

homotopy with a contractible domain

 ${\bf Canonical\ name} \quad {\bf Homotopy With A Contractible Domain}$

Date of creation 2013-03-22 18:02:12 Last modified on 2013-03-22 18:02:12

Owner joking (16130) Last modified by joking (16130)

Numerical id 26

Author joking (16130)
Entry type Theorem
Classification msc 55P99
Related topic homotopy
Related topic contractible

Theorem. Assume that Y is an arbitrary topological space and X is a contractible topological space. Then all maps $f: X \to Y$ are homotopic if and only if Y is path connected.

Proof: Assume that all maps are homotopic. In particular constant maps are homotopic, so if $y_1, y_2 \in Y$, then there exists a continuous map $H: I \times Y \to Y$ such that $H(0, y) = y_1$ and $H(1, y) = y_2$ for all $y \in Y$. Thus the map $\alpha: I \to Y$ defined by the formula $\alpha(t) = H(t, y_0)$ for a fixed $y_0 \in Y$ is the wanted path.

On the other hand assume that Y is path connected. Since X is contractible, then for any $c \in X$ there exists a continous homotopy $H: I \times X \to X$ connecting the identity map and a constant map c. Let $f: X \to Y$ be an arbitrary map. Define a map $F: I \times X \to Y$ by the formula: F(t,x) = f(H(t,x)). This map is a homotopy from f to a constant map f(c). Thus every map is homotopic to some constant map.

The space Y is path connected, so for all $y_1, y_2 \in Y$ there exists a path $\alpha: I \to Y$ from y_1 to y_2 . Therefore constant maps are homotopic via the homotopy $H(t, x) = \alpha(t)$.

Finaly for any continous maps $f, g: X \to Y$ and any point $c \in X$ we get:

$$f \simeq f(c) \simeq g(c) \simeq g$$
,

which completes the proof. \Box

Corollary. If X is a contractible space, then for any topological space Y there exists a bijection between the set [X, Y] of homotopy classes of maps from X to Y and the set $\pi_0(Y)$ of path components of Y.

Proof: Assume that $Y = \bigcup Y_i$, where Y_i are path components of Y. It is well known that contractible spaces are path connected, thus the image of any continuous map $f: X \to Y$ is contained in Y_i for some i. It follows from the theorem that two maps from X to Y are homotopic if and only if their images are contained in the same Y_i . Thus we have a well defined, injective

map

$$\psi: [X, Y] \to \pi_0(Y)$$
$$\psi([f]) = Y_i,$$

where i is such that $f(X) \subseteq Y_i$. This map is also surjective, since for any i there exists $y \in Y_i$, so the class of the constant map f(x) = y is mapped into Y_i . \square