

Attila Bagoly

Autoencoders

- Unsupervised learning: no-labels (just X)
- Autoencoder: $\mathcal{M}: X \to X$
- Tries to learn "identity" function, but we add constraints
- Constraints: e.g. less neurons in the middle (lower dim. repr.)
- Design:
 - Encoder: encodes the input into a lower dimensional space
 - Decoder: decodes the input from the lower dimensional space to the original space
- PCA: linear projection; Autoencoder: non-linear projection

Autoencoders

- Loss: e.g. MSE, binary-crossentropy (minimizing the difference between the input and output)
- Non-triviality: lower dimensional representation

Convolutional autoencoder

- The encoder is a classical convolutional network
- Decrease the spatial dimension:
 - MaxPooling, AvgPooling: not learnable
 - Convolution with stride >1: learnable (we learn how to do the downsampling, tiny details, preserves spatial information)
 - Size calculation: $d' = \frac{d-f+2p}{s} + 1$
 - Padding: 'valid': p=0; 'same': $d = d' \rightarrow p$
- What about in the decoder?
- We need to reverse Pooling and Conv
- Encoder: downsampling
- Decoder: upsampling

Upsampling: "max unpooling"

- Pooling: remember the max positions
- Unpooling: lot of zeros, except in the max positions
- Fixed layer: doesn't learn

0.1	0.5	1.2	-0.7
0.8	-0.2	-0.5	0.3
0.4	0.9	-0.1	-0.2
-0.6	0.1	0.5	0.3

		х	
х			
	х		
		х	

0	0	0.5	0
1.3	0	0	0
0	0.4	0	0
0	0	0.1	0

max locations

Upsampling: Transposed convolution

- Other name: Fractionally strided convolution
- Sometimes called: deconvolution
- But deconvolution (inverse convolution) exists and it is mathematically very different: but both results the same dimension. Real deconv not used in deep learning!
- Transposed convolution: learnable layer (learns how to do the upsampling)

Upsampling: Transposed convolution

- Transposed convolution is also a convolution
- But with some fancy padding

Convolutional autoencoder

Decoder: upsample with 'max unpooling' or with transposed convolution

Denoising autoencoder

Sparse autoencoder

Average activation in 2. layer:

$$\hat{
ho}_j = rac{1}{m} \sum_{i=1}^m \left[a_j^{(2)}(x^{(i)})
ight]$$

- Sparsity parameter: ρ
- Constraint: $\hat{\rho}_i = \rho$

Constraint: loss penalty term

$$\sum_{j=1}^{s_2} \rho \log \frac{\rho}{\hat{\rho}_j} + (1-\rho) \log \frac{1-\rho}{1-\hat{\rho}_j} = \sum_{j=1}^{s_2} \mathrm{KL}(\rho||\hat{\rho}_j)$$

Autoencoder applications

- Pretraining
- Data compression: hashing
- Image search
- Information retrieval
- Denoising, reconstruction
- Image colorization
- Generating higher resolution images

Autoencoder demo notebooks

Problems with autoencoder

- Latent space not continuous
- Not well structured: hard to interpret it
- Clusters: easier to decode
- Gaps: if we change the latent code a little bit, we can get totally unrealistic images
- Happy, not happy encoded
 -> what if we move in "happy direction"?
- We can fall into gaps
- Can't generate new images

Variational autencoder

Ideal autencoder:

- VAE: continuous, structured latent space by design
- Each latent variable range of possible values
- Each latent var for given input: prob. dist

- Given input: each latent variable is a probability distribution
- Encoder: encodes the input to prob. distributions
- Decoder: decodes randomly sampled z from these distrs.

- Encoder: range of values; Decoder: random sample
 - smooth latent representation
- Nearby in latent space: very similar reconstruction

- We have latent variable z, and observation x
- Latent variable: $z \sim p(z)$ (prior)
- Draw datapoint: $x \sim p(x|z)$ (likelihood)
- We want to learn what is z given x
- In other words: p(z|x):

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)} = \frac{p(x|z)p(z)}{\int p(x|z)p(z)dz}$$

- Problem: integral intractable
- Solution: variational inference: approximate posterior with q(z|x), which has tractable distribution
- ullet We choose the parameters of q to be a good approximate

- We need p(z|x), but we can't calculate it
- We approximate it with q(z|x)
- We want to q(z|x) to be close to p(z|x): min $\mathrm{KL}\big(q(z|x)|p(z|x)\big)$
- After some calculation we will get:

$$\mathbb{E}_{q(z|x)}\log p(x|z) - \mathrm{KL}(q(z|x)|p(z))$$

- First term: reconstruction error
- Second: we want q(z|x)to be close to the prior

We'd like to use our observations to understand the hidden variable.

- Autoencoder: $\mathcal{L}(\hat{x}, x)$ (gaps in latent code z)
- Variational autoencoder (\sum each dim. in latent space):

$$\mathcal{L}(\hat{x}, x) + \sum_{j} KL(q_{j}(z|x)|p(z))$$

- Prior: $p(z) \sim \mathcal{N}(0, I)$
- q: $q(z|x) \sim \mathcal{N}(\mu(x), \Sigma(x))$
- Kullback-Leibler divergence (k dimension):

$$KL(\mathcal{N}(\mu(x), \Sigma(x))|\mathcal{N}(0, I))$$

$$= \frac{1}{2} \left(\operatorname{tr} \Sigma(x) + (\mu(x))^{T} \mu(x) - k - \log \det \Sigma(x) \right)$$

VAE architecture

VAE architecture

VAE latent space

Penalizing reconstruction loss encourages the distribution to describe the input

Only reconstruction loss

Without regularization, our network can "cheat" by learning narrow distributions

Only KL divergence

Penalizing KL divergence acts as a regularizing force

Combination

VAE mnist

DEMO notebooks

VAE example

- https://www.youtube.com/watch?v=Q1XuXwPVFko
- https://magenta.tensorflow.org/music-vae

Generative adversarial networks (GAN)

- Imagine an art forger who want's to make Mona Lisa to sell it
- But the gallery has an art "detective": game

Generative adversarial networks (GAN)

- GAN: two competing network
- Generator: tries to create real-like pictures
- Discriminator: wants to detect the forgery

GAN

• The cost used for the discriminator:

$$J^{(D)}\big(\Theta^{(D)},\Theta^{(G)}\big) = \\ -\frac{1}{2} \mathbb{E}_{x \sim p(X)} \log D(x) - \frac{1}{2} \mathbb{E}_{x \sim p(X)} \log \left(1 - D\big(G(x)\big)\right)$$

This is the binary-crossentropy (real=1, fake=0)

GAN

- Discriminator tries to distinguish between real and fake data
- Generator tries to fool the discriminator
- What loss can be used for this?
- Simplest case:

$$J^{(G)}(\Theta^{(D)}, \Theta^{(G)}) = -J^{(G)}(\Theta^{(D)}, \Theta^{(G)}) =$$

$$\frac{1}{2} \mathbb{E}_{x \sim p(X)} \log D(x) + \frac{1}{2} \mathbb{E}_{x \sim p(X)} \log \left(1 - D(G(x))\right)$$

- So the discriminator tries to make D(G(x)) close to 0
- The generator tries to make D(G(x)) close to 1 (log big negative number)
- Minimax game:

$$V(D,G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]$$

 $\min_{G} \max_{D} V(D,G)$

Problems with Counting

(Goodfellow 2016

Problems with Perspective

(Goodfellow 2016)

Problems with Global Structure

(Goodfellow 2016)

Examples

• Text to image: https://arxiv.org/pdf/1703.06412.pdf

This flower has yellow petals along with green and yellow stamen

This flower is red and yellow in color, with petals that are ruffled and curled

This flower has petals that are yellow with red lines

This flower is white and pink in color, with petals that are oval shaped

A yellow flower with large petal with a large long pollen tubes

The petals on this flower are white with yellow stamen

Examples

- Houses: https://www.youtube.com/watch?v=JCEuwO5BPnk&t=97s
- Zebras:

https://www.youtube.com/watch?v=9reHvktowLY

• Faces:

https://www.youtube.com/watch?v=G06dEcZ-QTg

And a lot of other amazing examples

Hacks: https://github.com/soumith/ganhacks

DEMO notebooks

Homeworks

Értékelés:

Házik:

- hw01 2 pont
- hw02 5.5 pont
- hw03 8 pont
- hw09 3 pont

Photoz kaggle:

- 1-10: 7 pont
- 11-20: 5 pont
- · 21-baseline: 3 pont
- baseline alatt: 1 pont

Photoz kaggle:

- 1-10: 11 pont
- 11-20: 9 pont
- · 21-baseline: 7 pont
- · baseline alatt: 2 pont

Max pont 36.5

Max házi + (kaggle baseline + ϵ) = 28.5

Homeworks

Counter({1: 3, 2: 3, 3: 5, 4: 5, 5: 26})

	githubName	hw01	hw02	hw03	hw09	happy_points	photoz_points	points_sum	grades
16	danielgrajzel	1.835	0.0	0.0	0.0	0.0	3.0	4.835	1
19	gichy	2.000	3.0	0.0	0.0	0.0	0.0	5.000	1
45	Zongi93	0.000	0.0	0.0	0.0	0.0	0.0	0.000	1

	githubName	hw01	hw02	hw03	hw09	happy_points	photoz_points	points_sum	grades
10	balint225	1.835	5.5	3.000	0.0	0.0	0.0	10.335	2
17	e-velin	2.000	0.0	0.000	0.0	9.0	0.0	11.000	2
18	ggalgoczi	2.000	2.0	2.165	0.0	0.0	7.0	13.165	2

	githubName	hw01	hw02	hw03	hw09	happy_points	photoz_points	points_sum	grades
1	CliffyH	2.000	5.5	6.000	3.0	0.0	3.0	19.500	3
24	ilxstatus	2.000	5.5	4.000	2.5	2.0	3.0	19.000	3
26	kazozoka	2.000	5.0	6.000	0.0	0.0	5.0	18.000	3
27	kissmate6	1.835	5.0	3.000	2.5	0.0	5.0	17.335	3
37	oresme	2.000	3.5	3.665	2.5	7.0	0.0	18.665	3

	githubName	hw01	hw02	hw03	hw09	happy_points	photoz_points	points_sum	grades
4	PentadD	2.000	5.5	3.0	2.5	7.0	3.0	23.000	4
6	Turcsi	1.835	5.0	6.0	0.0	7.0	3.0	22.835	4
28	kommancs96	1.835	5.0	8.0	3.0	0.0	5.0	22.835	4
33	masterdesky	1.500	5.0	6.0	0.0	7.0	1.0	20.500	4
41	zentaijanos	2.000	4.0	1.5	3.0	9.0	3.0	22.500	4

Grades

Homework for extra points

https://github.com/qati/DeepLearningCourse/tree/master/assignments/emoji

References

- https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
- https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
- David, Eli & Netanyahu, Nathan. (2016). DeepPainter: Painter Classification Using Deep Convolutional Autoencoders. 20-28. 10.1007/978-3-319-44781-0_3.
- Stanford CS231n, Lecture 11: https://www.youtube.com/watch?v=nDPWywWRIRo
- https://towardsdatascience.com/autoencoders-introduction-and-implementation-3f40483b0a85
- https://blog.manash.me/implementing-pca-feedforward-and-convolutional-autoencoders-and-using-it-for-image-reconstruction-8ee44198ea55
- http://www.ericlwilkinson.com/blog/2014/11/19/deep-learning-sparse-autoencoders
- http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/
- https://towardsdatascience.com/autoencoders-are-essential-in-deep-neural-nets-f0365b2d1d7c
- https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
- https://www.jeremyjordan.me/variational-autoencoders/
- https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
- http://kvfrans.com/variational-autoencoders-explained/
- https://github.com/houxianxu/DFC-VAE
- https://deeplearning4j.org/generative-adversarial-network
- https://www.analyticsvidhya.com/blog/2017/06/introductory-generative-adversarial-networks-gans/
- https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
- https://arxiv.org/pdf/1701.00160.pdf
- https://github.com/hjweide/adversarial-autoencoder
- Deep Learning with Python, by FRANÇOIS CHOLLET