SI252 Reinforcement Learning

2020/03/06

Homework 1

Professor: Ziyu Shao Due: 2020/03/26 11:59am

1. For a random variable X whose moment of order r>0 is finite, we define the following norm

$$||X_1||_r = (\mathbb{E}(|X|^r))^{\frac{1}{r}}.$$

Show the following norm inequalities hold.

- The Holder Inequality. Let $\frac{1}{p} + \frac{1}{q} = 1$. If $\mathbb{E}(|X|^p), \mathbb{E}(|Y|^q) < \infty$, then $|\mathbb{E}(XY)| \leq \mathbb{E}|XY| \leq ||X||_p \cdot ||Y||_q$.
- The Lyapunov Inequality. For $0 < r \le p$, $||X||_r \le ||X||_p$.
- The Minkowski Inequality. Let $p \geq 1$, $\mathbb{E}(|X|^p)$, $\mathbb{E}(|Y|^p) < \infty$, then $||X + Y||_p \leq ||X||_p + ||Y||_p$.
- 2. Let the random variables X_1, X_2, \ldots, X_n be independent with $E(X_i) = \mu$, $a \le X_i \le b$ for each $i = 1, \ldots, n$, where a, b are constants. Then for any $\epsilon \ge 0$, show the following inequality hold (Hoeffding Bound):

$$\mathbb{P}(|\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mu| \ge \epsilon) \le 2e^{-\frac{2n\epsilon^{2}}{(b-a)^{2}}}.$$

- 3. Instead of predicting a single value for the parameter, we given an interval that is likely to contain the parameter: A $1-\delta$ confidence interval for a parameter p is an interval $[\hat{p}-\epsilon,\hat{p}+\epsilon]$ such that $Pr\left(p\in[\hat{p}-\epsilon,\hat{p}+\epsilon]\right)\geq 1-\delta$. Now we toss a coin with probability p landing heads and probability 1-p landing tails. The parameter p is unknown and we need to estimate its value from experiments results. We toss such coin N times, Let $X_i=1$ if the ith result is head, otherwise 0. We estimate p by using $\hat{p}=\frac{X_1+\ldots+X_N}{N}$. Find the confidence interval for p, then discuss the impacts of δ and N.
- 4. A coin with probability p of landing Heads is flipped repeatedly. Let N denote the number of flips until the pattern HH is observed.
 - (a) Suppose that p is a known constant, with 0 . Find <math>E(N)
 - (b) Now suppose that p is unknown, and that we use a Beta(a, b) prior to reflect our uncertainty about p (where a and b are known constants and are greater than 2). What is the expected number of flips until the pattern HH is observed.

- 5. Show the following theorem hold (Orthogonality Property of MMSE).
 - (a) For any function $\phi(\cdot)$, one has

$$E[(Y - E[Y|X])\phi(X)] = 0$$

(b) Moreover, if the function g(X) is such that

$$E[(Y - g(X))\phi(X)] = 0, \forall \phi(\cdot).$$

then
$$g(X) = E(Y|X)$$

6. The Linear Least Square Estimate (LLSE) of Y given X, denoted by L[Y|X], is the linear function a + bX that minimizes $E[(Y - a - bX)^2]$. Show the following equation hold:

$$L[Y|X] = E(Y) + \frac{Cov(X,Y)}{Var(X)}(X - E(X))$$

- 7. We wish to estimate the probability of landing heads, denoted by θ , of a biased coin. We model θ as the value of a random variable Θ with a known prior PDF $f_{\Theta} \sim \text{Unif}(0, 1)$. We consider n independent tosses and let X be the number of heads observed. Find the MMSE $E[\Theta|X]$ and the LLSE $L[\Theta|X]$.
- 8. Given k skill levels, we define a reward function $H(\cdot): \{1, \ldots, k\} \to \mathcal{R}$. Then for skill levels $x \in \{1, \ldots, k\}$ and $y \in \{1, \ldots, k\}$, we define a soft-max function

$$\pi(x) = \frac{e^{H(x)}}{\sum_{y=1}^{k} e^{H(y)}}.$$

Please show the following result: for any skill level $a \in \{1, ..., k\}$, we have

$$\frac{\partial \pi(x)}{\partial H(a)} = \pi(x) \left(1_{\{x=a\}} - \pi(a) \right),\,$$

where 1_A is an index function of events, being 1 when event A is true and being 0 otherwise.