Quadratic-Time Dependency Parsing for Machine Translation

Gabriele Sarti, University of Trieste

Algorithmic Design

July 23, 2019

Table of Contents

- A Primer on Linguistic Formalisms
- Efficient Graph-based Dependency Parsing
- Dependency Parsing for Machine Translation

What is a Context-Free Grammar?

Constituents → Group of words behaving as single units in sentence construction.

Context-Free Grammars → Formal system to model constituent structure, formed by:

- A set of **productions** that describes how symbols can be grouped together.
- A lexicon of words and symbols.

Used in linguistics and computer science for **language parsing**, difficult and costly to apply for many natural languages.

Lexicon:

 $\underline{\text{Noun}} \rightarrow flight \mid Thursday$ $\underline{\text{Verb}} \rightarrow want \mid leave \mid do$ $\underline{\text{Pronoun}} \rightarrow I \mid me \mid you \mid it$ $\underline{\text{Prop Noun}} \rightarrow Los \ Angeles \mid Boston$ $\underline{\text{Determiner}} \rightarrow the \mid a \mid an \mid this \mid these$ $\underline{\text{Prep}} \rightarrow from \mid to \mid near \mid on$

Productions	Examples
$\underline{S} \rightarrow \underline{NP} \underline{VP}$	I + want a flight
<u>NP</u> → Pronoun (Prop) Noun Det Noun	I Los Angeles a + flight
<u>VP</u> → Verb Verb <u>NP</u> Verb <u>PP</u> Verb <u>NP PP</u>	do want + a flight leave + on Thursday leave + Boston + on Thursday
<u>PP</u> → Prep <u>NP</u>	from + Los Angeles

What is a Dependency Structure?

In **dependency grammars** we focus on **relations** among words instead of constituents.

Relations are **typed** and have a **head** and a **dependent**.

Abstracts away word order information, useful for **free word order** languages.

Models **semantic relations** between predicates and their arguments, used for many NLP tasks.

Relations	Description
<u>NSUBJ</u>	Nominal subject
<u>DOBJ</u>	Direct object
NMOD	Nominal modifier
<u>DET</u>	Determiner
<u>CASE</u>	Pre/postposition cases

Dependency Structures as Trees

The dependency structures are **directed** graphs G = (V, A), where V is a set of vertices corresponding to the words in the sentence and A is the set of arcs defining grammatical relations between words.

Computationally-motivated restrictions:

- **Single root** with no incoming arcs.
- One incoming arc per non-root vertex.
- **Unique path** from root to each vertex.

Thus, the structure becomes a **dependency tree** that can be used for efficient parsing.

Projectivity

An arc A from a head h to a dependent d the is said to be **projective** if all words between h and d have a path that connects them to h.

A dependency tree is projective if all its arcs are projective, aka **no crossing edges**.

Projectivity makes parsing more costly and it is not desirable for many languages.

Despite enlarging the tree search space, **non-projectivity** yields comparable performances in parsing even in English.

From Chart Parsing to Graph Dependency Parsing

Hierarchical approaches to Machine
Translation (MT) employed the
Cocke-Younger-Kasami (CYK) algorithm
with high-order language models, very
expensive computationally.

Complexity of CYK on a sentence of size n using m-grams is $O(n^{3+3(m-1)}) \simeq O(n^{3m})$ (Eisner and Satta, 1999).

Dependency parsing algorithms that run in time $O(n^3)$ (Eisner 1996) or even $O(n^2)$ (McDonald et al. 2005) can be used instead.

Dependency Parsing as a MST Problem

A **Maximum Spanning Tree (MST)** of a weighted graph G is an acyclic subgraph including all the vertices of G using the minimal possible number of edges (one entering edge per node) with the maximal possible total edge weight.

Given an input sentence, we build a **fully-connected**, **weighted directed graph** having words for vertices and all possible head-dependent relations as edges.

Weights represent the scores given by a classifier trained on treebanks (more later). A root node σ onnected to all vertices is added.

We use the **Chu-Liu Edmonds (CLE) algorithm** (<u>Edmonds, 1967</u>) to find the MST in a weighted directed graph. The MST rooted in will be the optimal dependency parse selected by the algorithm.

CLE Algorithm Intuitively

- For each vertex in the fully-connected weighted directed graph, greedily select the incoming edge with highest weight.
- ❖ If the result of the previous operation is a tree, it must be a MST. **Stop**.
- If not, there must be a cycle:
 - Identify and contract the cycle in a single vertex of a new contracted graph.
 - > Recalculate edge weights coming in and out of the cycle
 - Only max outbound edge for each outer vertex is kept
 - Inbound edges are kept and scored as best spanning trees originating in outer vertices, including only inner vertices.
 - Apply CLE recursively.

It can be shown that the MST on the contracted graph resulting from CLE is equivalent to a MST on the original graph (Georgiadis, 2003).

Visualizing the CLE Algorithm

Greedy Selection of Maximum Inbound Edge

Not a Tree! Missing Connection and Cycle Presence

Contract the Cycle & Keep Unrelated Edges Weights

Keep Only Max Outbound Edge for each Vertex

Rescoring and Pruning of Inbound Edges as MST

Rescoring and Pruning of Inbound Edges as MST

A New Contracted Graph is Created

Greedy Selection on Contracted Graph. It's a MST!

Expand the Contracted Graph. We have our MST!

Chu Liu Edmonds Algorithm

- G(V,E) is the fully-connected weighted directed graph composed by vertices V and edges E.
- s is the adjacency matrix for the graph.
- Cycles are found using Tarjan SCC lowlink algorithm.
- Returns a MST for graph G

```
CLE(G=(V,E), root, s)
bestEdges ← []
newTree ← []
for each v in V do
     currBest \( ARGMAX(INCOMING_EDGES(v, s))
     INSERT(bestEdges, currBest)
if IS_SPANNING_TREE(T=(V,bestEdges)) then
     return T
else
     C ← FIND_CYCLE(bestEdges)
     newGraph \leftarrow CONTRACT(G,C,s)
     newTree ← CLE(newGraph, root, s)
     T ← EXPAND(newTree, C)
     return T
```

Algorithmic Complexity of CLE

CLE for dependency parsing deals with a fully connected graph with n vertices for words and $m=n^2$ edges.

Thus, naive complexity of CLE is $O(n^3)$

- \diamond At most n recursive calls, given at most n contractions.
- \bullet Each call takes $O(n^2)$ to find the highest incoming edge and contract the graph.

However, a modification adopted by (<u>Tarjan, 1977</u>) for dense graphs using ordered lists to store edges leads to a total complexity of $O(n^2)$.

Edge Scores: Features and Training

The score associated to an edge can be reduced to a weighted sum of features extracted from it:

$$score(S,e) = \sum_{i=1}^{N} w_i f_i(S,e)$$

Features can go from POS tags to relation distances to word embeddings. In our case, we keep information concerning the **predicted POS tags** for each word and its adjacent words, conjoined to the **word itself**, a **dependency score** and a **translation score**. Recent methods features rely solely on embeddings (<u>Zeman et al. 2017</u>), making hand-crafted features obsolete.

Weights are inferred from a treebank training set by applying a learning algorithm. Our paper uses the Margin Infused Relaxed Algorithm (MIRA) (Crammer, Singer 2003)

Machine Translation Experiments

- The Moses phrase-based decoder was used with standard features to test
 Chinese-to-English translation.
- 28 million English words & 23.3 million Chinese words from news parallel corpora, plus a smoothed 5-gram LM using Gigaword corpus ~ 700 million words.
- Used NIST MT evaluation data for Chinese, tested on BLUE and TER.
- Tested with and without the dependency language model score as additional feature.

	В	LEU[%]		55 11
DEP. LM	newswire	web	speech	all
no	32.86	21.75	36.88	32.29
yes	33.19	22.64	37.51	32.74
S. Commission of the Commissio	(+0.33)	(+0.89)	(+0.63)	(+0.45)
	7	TER[%]		
DEP. LM	newswire	web	speech	all
m o	57.72	62.64	5516	50 00

		LK[70]			
DEP. LM	newswire	web	speech	all	
no	57.73	62.64	55.16	58.02	
yes	56.73	61.97	54.26	57.10	
	(-1)	(-0.67)	(-0.9)	(-0.92)	
	newswire	web	speech	all	
Sentences	4006	1149	1451	6606	

Results and Discussion

- Without CLE, performance is similar (not relevant for LM)
- Performance is only slightly worse than SOTA implementation.
- Performance loss worth the scaling gain for larger LM.
- For MT, outperforms 5-gram LM with significant scores, though a bit slower.

ALGORITHM	TIME	SETUP	TRAINING	TESTING	ACCURACY
Projective	$O(n^3)$	Parsing	WSJ(02-21)	WSJ(23)	90.60
Chu-Liu-Edmonds	$O(n^3)$	Parsing	WSJ(02-21)	WSJ(23)	89.64
Chu-Liu-Edmonds	$O(n^2)$	Parsing	WSJ(02-21)	WSJ(23)	89.32
Local classifier	$O(n^2)$	Parsing	WSJ(02-21)	WSJ(23)	89.15
Projective	$O(n^3)$	MT	CTB(050-325)	CTB(001-049)	86.33
Chu-Liu-Edmonds	$O(n^3)$	MT	CTB(050-325)	CTB(001-049)	85.68
Chu-Liu-Edmonds	$O(n^2)$	MT	CTB(050-325)	CTB(001-049)	85.43
Local classifier	$O(n^2)$	MT	CTB(050-325)	CTB(001-049)	85.22
Projective	$O(n^3)$	MT	CTB(050-325), WSJ(02-21), ATB, OntoNotes	CTB(001-049)	87.40(**)
Chu-Liu-Edmonds	$O(n^3)$	MT	CTB(050-325), WSJ(02-21), ATB, OntoNotes	CTB(001-049)	86.79
Chu-Liu-Edmonds	$O(n^2)$	MT	CTB(050-325), WSJ(02-21), ATB, OntoNotes	CTB(001-049)	86.45(*)
Local classifier	$O(n^2)$	MT	CTB(050-325), WSJ(02-21), ATB, OntoNotes	CTB(001-049)	86.29

1111 1111	11.19.1111.111		BLEU[%]			
DEP. LM	MT05 (tune)	MT02	MT03	MT04	MT06	MT08
no	33.42	33.38	33.13	36.21	32.16	24.83
yes	34.19 (+.77**)	33.85 (+.47)	33.73 (+.6*)	36.67 (+.46*)	32.84 (+.68**)	24.91 (+.08)
		***************************************	TER[%]			
DEP. LM	MT05 (tune)	MT02	MT03	MT04	MT06	MT08
no	57.41	58.07	57.32	56.09	57.24	61.96
yes	56.27 (-1.14**)	57.15 (92**)	56.09 (-1.23**)	55.30 (79**)	56.05 (-1.19**)	61.41 (55*)
	MT05 (tune)	MT02	MT03	MT04	MT06	MT08
Sentences	1082	878	919	1788	1664	1357

Thanks for the attention!

Gabriele Sarti, University of Trieste

gabriele.sarti996@gmail.com

References

Main paper

Galley & Manning "Quadratic-Time Dependency Parsing for Machine Translation", Proc. of ACL 2009.

Other sources, in appearance order:

- Primer on linguistics formalisms was inspired by Jurafsky & Martin "Speech and Language Processing" 3rd edition draft 2018, Chapters 10-13. Examples were mainly taken and adapted from there.
- Chapter 2 of Nguyen Bach "<u>Dependency Structures for Statistical Machine Translation</u>" PhD Thesis @ CMU, 2012 for an overview of the field of SMT, with a focus on dependency structures.
- Moses website and its <u>phrase-based tutorial</u>.

References

Other papers consulted and referred inside the presentation, in appearance order:

- Eisner & Satta "Efficient parsing for bilexical context-free grammars and head-automaton grammars", Proc. of ACL 1999.
- Eisner "Three new probabilistic models for dependency parsing: An exploration", Proc. of COLING 1996.
- ❖ McDonald & al. "Online large-margin training of dependency parsers", Proc. of ACL 2005a.
- McDonald & al. "Non-projective dependency parsing using spanning tree algorithms", Proc. of EMNLP 2005b.
- Edmonds "Optimum branchings", Research of the National Bureau of Standards, 1967.
- Crammer & Singer "<u>Ultraconservative online algorithms for multiclass problems</u>", JMLR 2003
- Georgiadis "<u>Arborescence optimization problems solved by Edmonds' algorithm</u>", Theoretical CS, 2003.
- Tarjan "Finding Optimum Branchings", Networks, 1977.
- Zeman et al. "Conll shared task: Multilingual parsing from raw text to universal dependencies", Proc. of Conll 2017
- ❖ Papineni et al. "BLEU: a method for automatic evaluation of machine translation"