

CS229

Syllabus and Course Schedule

Time and Location: Monday, Wednesday 9:30-10:50am, NVIDIA Auditorium **Class Videos**: Current quarter's class videos are available here for SCPD students and here for non-SCPD students.

Event	Date	Description	Materials and Assignments
Introduction (1 class)			
Lecture 1	9/25	1. Basic concepts	Class Notes • Supervised Learning, Discriminative Algorithms [ps] [pdf]
Α0	9/25	Problem Set 0 [pdf]. Submission instructions.	
Supervised learning (5 classes)			
Lecture 2	9/27	1. Supervised learning setup. LMS.	
Section	9/29	Discussion Section: Linear Algebra	Discussion Section : Linear Algebra [Notes]
Lecture 3	10/2	2. Logistic regression. Perceptron. Exponential family.	
Lecture 4	10/4		
A1	10/4	Problem Set 1 [pdf]. Out 10/4. Due 10/18. Submission instructions.	
Section	10/6	Discussion Section: Probability	Discussion Section: Probability[Notes][Slides]

Event	Date	Description	Materials and Assignments
Lecture 5	10/9	3. Generative learning algorithms. Gaussian discriminant analysis. Naive Bayes.	Class Notes • Generative Algorithms [ps] [pdf]
Lecture 6	10/11	4. Support vector machines.	Class Notes • Support Vector Machines [ps] [pdf]
Section	10/13	Discussion Section: Vectorization	Discussion Section: Vectorization[Slides][kNN][Logistic Regression][Softmax Regression] [images][labels]
Practice ML advice (2 classes)			
Lecture 7	10/16	Bias/variance tradeoff Model selection and feature selection	 Class Notes Bias/variance tradeoff and error analysis[pdf] Learning Theory [ps] [pdf] Regularization and Model Selection [ps] [pdf] Online Learning and the Perceptron Algorithm. (optional reading) [ps] [pdf] Advice on applying machine learning[pdf]
Lecture 8	10/18	3. Evaluating and debugging learning algorithms4. Practical advice on structuring an ML project	
A2	10/18	Problem Set 2 [pdf]. Out 10	0/18. Due 11/1. Submission instructions.

Event	Date	Description	Materials and Assignments		
Section	10/20	Discussion Section: Convex Optimization	Discussion Section: Convex Optimization • Convex Optimization Overview, Part I [ps] [pdf] • Convex Optimization Overview, Part II [ps] [pdf]		
Project	10/20	Project pro	posal due at 11:59pm .		
	Deep Learning (2 classes)				
Lecture 9	10/23	 NN architecture Forward/Back propagation 	Class NotesDeep learning [pdf]Backpropagation [pdf]		
Lecture 10	10/25	3. Vectorization4. Other optimization tricks.			
Section	10/27	Discussion Section: Evaluation Metrics	Discussion Section : Evaluation Metrics [Slides]		
	Unsupervised learning (5 classes)				
Lecture 11	10/30	1. Clustering. K-means.	Class Notes		
Lecture 12	11/1	 EM. Mixture of Gaussians. Factor analysis. PCA (Principal components analysis). ICA (Independent components analysis). 	 Unsupervised Learning, k-means clustering. [ps] [pdf] Mixture of Gaussians [ps] [pdf] The EM Algorithm [ps] [pdf] Factor Analysis [ps] [pdf] Principal Components Analysis [ps] [pdf] Independent Components Analysis [ps] [pdf] 		
Lecture 13	11/6				
Lecture 14	11/8				
Lecture 15	11/13				

Problem Set 3 Out 11/1. Due 11/15.

72018	118 CS229: Machine Learning		
Section Event	11/3 Date	Discussion Section: Description Midterm-Review	Discussion Section : Midterm- Materials and Assignments Review
А3	11/1	Problem Set 3 [pdf]. Out 11/1. Due 11/15. Submission instructions.	
Midterm	11/8	The midterm is open-book/open-notes/open laptop (no internet). It will take place on Wednesday, November 8, 2017 from 6-9 PM. The course staff will announce exam venue and material covered closer to the midterm date.	
Section	11/17	Discussion Section: Deep Learning Methods	Discussion Section : Deep Learning Methods
Project	11/20	Project milestones due 11/20 at 11:59pm .	
Reinforcement learning and control (4 classes)			
Lecture 16	11/15	1. MDPs. Bellman equations.	Class Notes • Reinforcement Learning and
Lecture 17	11/27	2. Value iteration and policy iteration.3. Linear quadratic	 Control [ps] [pdf] LQR, DDP and LQG [pdf] Problem Set 4 Out 11/15. Due 12/6.
Lecture 18	11/29	regulation (LQR). LQG. 4. Q-learning. Value function approximation.	
A4	11/15	Problem Set 4 [pdf]. Out 11/15. Due 12/6. Submission instructions.	
Section	12/1	Discussion Section: Deep Learning Platform	Discussion Section : Deep Learning Platform
Lecture 19	12/4	Generative Adversarial Networks (GANs)	Class NotesGenerative AdversarialNetworks (GANs)[pdf]

Lecture 20 Event	12/6 Date	Adversarial machine Description learning	Class Notes Materials and Assignments • Adversarial examples in ML[pdf]
Project	12/11	Project poster PDF and project recording (some teams) due at 11:59 pm Submission instructions.	
Project	12/12	Poster presentations from 8:30-11:30am. Venue and details to be announced.	
Project	12/15	Final writeup due at 11:59pm (no late days).	

Supplementary Notes

- 1. Binary classification with +/-1 labels [pdf]
- 2. Boosting algorithms and weak learning [pdf]
- 3. Functional after implementing stump_booster.m in PS2. [here]
- 4. The representer theorem [pdf]
- 5. Hoeffding's inequality [pdf]

Section Notes

- 1. Linear Algebra Review and Reference [pdf]
- 2. Probability Theory Review [pdf]
- 3. Files for the Matlab tutorial: [pdf] [sigmoid.m] [logistic_grad_ascent.m] [matlab_session.m]
- 4. Convex Optimization Overview, Part I [ps] [pdf]
- 5. Convex Optimization Overview, Part II [ps] [pdf]
- 6. Hidden Markov Models [ps] [pdf]
- 7. The Multivariate Gaussian Distribution [pdf]
- 8. More on Gaussian Distribution [pdf]
- 9. Gaussian Processes [pdf]

Other Resources
Event Date

1. Advice on applying machine learning: Slides from Andrew's lecture on getting

machine learning algorithms to work in practice can be found here.

- 2. Previous projects: A list of last year's final projects can be found here.
- 3. Matlab resources: Here are a couple of Matlab tutorials that you might find helpful: http://www.math.ucsd.edu/~bdriver/21d-s99/matlab-primer.html and http://www.math.mtu.edu/~msgocken/intro/node1.html. For emacs users only: If you plan to run Matlab in emacs, here are matlab.el, and a helpful .emac's file.
- 4. Octave resources: For a free alternative to Matlab, check out GNU Octave. The official documentation is available here. Some useful tutorials on Octave include http://en.wikibooks.org/wiki/Octave_Programming_Tutorial and http://www-mdp.eng.cam.ac.uk/web/CD/engapps/octave/octavetut.pdf.
- 5. Data: Here is the UCI Machine learning repository, which contains a large collection of standard datasets for testing learning algorithms. If you want to see examples of recent work in machine learning, start by taking a look at the conferences NIPS(all old NIPS papers are online) and ICML. Some other related conferences include UAI, AAAI, IJCAI.
- 6. Viewing PostScript and PDF files: Depending on the computer you are using, you may be able to download a PostScript viewer or PDF viewer for it if you don't already have one.