

Symulacja Komputerowa Mechaniki Fortepianu

Michał Janczak

Prowadzący: dr C. Rzymkowski

Cel symulacji

- Ocena poprawności modelu matematycznego
- Analiza symulowanego układu pod względem wzajemnego oddziaływania na siebie elementów
- Budowa uproszczonego modelu
- Budowa instrumentu z wirtualną mechaniką

Najważniejsze problemy

- Określenie przedmiotu symulacji
- Budowa modelu matematycznego
- Zebranie danych do modelu matematycznego
- Regulacja modelu mechanizmu
- Zebranie danych do weryfikacji doświadczalnej
- Wiarygodność weryfikacji
- Szybkość symulacji

Budowa mechanizmu

Model mechanizmu

Główne założenia symulacji

- Dwuwymiarowa geometria
- Uproszczenie warunków kontaktu pomiędzy elementami układu (geometria i własności sprężyste)
- Uproszczenie kinematyki układu (tłumik)
- Uproszczenie modelu zjawiska tarcia

Budowa algorytmu

- Wczytanie danych
- Tworzenie struktury modelu
- Pętla programu
 - Wymuszenie
 - Równania ruchu
 - Wyniki
 - (Poprawki)

Równania ruchu

- Położenie elementów
- Moment sprężynek
- Tłumienie
- Siły reakcji i tarcia
- Rozwiązanie układu równań dla zespołu figury (Gauss-Jordan)
- Obniżenie stopnia równań

Równania ruchu c.d.

Równanie podstawowe

$$I * \varepsilon = \Sigma M = \sum \overrightarrow{r_{k,i}} \times \overrightarrow{F_{k,i}} + Q * r_{mx} + M_{tlumienia} + M_{sprezynek}$$

Układ równań

Układ równań I stopnia

$$\frac{d^{2}\alpha}{dt^{2}} = \varepsilon \qquad \Rightarrow \begin{cases} \frac{d\alpha}{dt} = \omega \\ \frac{d\omega}{dt} = \varepsilon \end{cases}$$

Tłumienie i momenty sprężynek

$$M_{tlum} = -\omega^* wsp_tlum;$$

$$M_{\text{sprez}} = m0 + m * d\alpha$$

Siły reakcji

Problem uwzględnienia histerezy

Punkt przyłożenia siły

Siły tarcia

Problem nieciągłości algorytmu

Problem rozkładu siły wymuszającej

Pomiary doświadczalne

Własności sprężyste

Pomiary doświadczalne c.d.

 Pomiary charakterystyk dynamicznych mechaniki fortepianu

Weryfikacja symulacji

- Dokładność całkowania
- Porównanie wyników symulacji i pomiarów

Weryfikacja symulacji c.d.

Ocena ciągłości algorytmu

Model uproszczony

- Dane wejściowe i wyjściowe algorytmu
- Uproszczenie całkowania
- Mechanizm oddziaływania

Porównanie modelu dokładnego i uproszczonego

- Szybkość algorytmu
- Dokładność algorytmu

Model dokładny

Model uproszczony