MATH 569 Statistical Learning

Part VI: Model Assessment and Selection

Maggie Cheng

red light curve: conditional test error on one training set Err_{τ} red solid curve: expected test error $E[Err_{\tau}]$ blue light curve: training error for one training set \overline{err} blue solid curve: expected training error $E[\overline{err}]$

Fig 7.2 Behavior of bias and variance

Fig 7.3

Expected prediction error (orange) squared bias (green) variance (blue)

Left: orange= green + blue

Right: not equal

k-NN - Regression

k-NN - Classification

Fig 7.3

Expected prediction error (orange) squared bias (green) variance (blue)

Left: orange= green + blue

Right: not equal

Linear Model – Regression

0.2 0.1 0.0 5 10 15 20 Subset Size p

Linear Model - Classification

Training-set-size Bias for Cross Validation

FIGURE 7.8. Hypothetical learning curve for a classifier on a given task: a plot of 1 — Err versus the size of the training set N. With a dataset of 200 observations, 5-fold cross-validation would use training sets of size 160, which would behave much like the full set. However, with a dataset of 50 observations fivefold cross-validation would use training sets of size 40, and this would result in a considerable overestimate of prediction error.

The wrong and right way to do cross validation

Wrong way

- 1. Screen the predictors: Select predictors based on all samples
- 2. Build a model: Use the selected predictors to build the model
- 3. Perform cross-validation: Use cross validation to estimate the unknown tuning parameters and estimate the prediction error of the final model

Right way

- 1. Divide the samples into K folds
- 2. For each fold k=1, ..., K
 - a) Find a subset of good predictors using all but the k-th fold samples
 - b) Use this subset of predictors to build a model using all but the k-th fold samples
 - Use the model to predict the outcome for the samples in the k-th fold

The wrong and right way to do cross validation

Fig 7.10

Ave(correlation)=0.28

What's the problem: the good predictors are chosen after seeing all samples.

Correlations of Selected Predictors with Outcome

Correlations of Selected Predictors with Outcome

Ave(correlation)=0

Samples must be left out before any selection or screening is applied that uses labels.

One exception: unsupervised screening that does not use label.

Fig 7.14

Thick red: Err

Thick black: $E_{\tau}[CV_K]$

Fig 7.12

