Числа на Лах

Калоян Стоилов

29 април 2021 г.

Числата на Лах за първи път се появяват 1954г. в труд на Иво Лах(Ivo Lah), словенски математик, живял 05.09.1896-23.03.1979. Имат връзка с числата на Стирлинг.

Подобно на числата на Стирлинг от първи род има числа на Лах със и без знак. Числата на Лах без знак обикновено се бележат:

$$\begin{bmatrix} n \\ k \end{bmatrix}$$
, $L(n,k)$, $\mathscr{L}_{n,k}$.

Това са броят начини n-елементно множество да се разбие на k на брой непразни линейни наредби. Това е все едно броят начини от азбука с n букви да образуваме k думи без да повтаряме букви, общо използващи целия набор от букви.

За начални условия взимаме:

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1$$
 (условно приемане) $\begin{bmatrix} n \\ 0 \end{bmatrix} = 0, \ n > 0$ (не се получава разбиване), $\begin{bmatrix} n \\ n \end{bmatrix} = 1$ (всяка буква е дума), $\begin{bmatrix} n \\ k \end{bmatrix} = 0, \ n < k$ (не достигат букви).

Твърдение 1. Рекурентната формула, задаваща числата на Лах е:

$$\left\lfloor \frac{n+1}{k} \right\rfloor = (n+k) \left\lfloor \frac{n}{k} \right\rfloor + \left\lfloor \frac{n}{k-1} \right\rfloor.$$

 \mathcal{A} ок. n+1-вият елемент или участва в някоя "предишна" дума (първото събираемо), или е сам (второто събираемо).

- 1. Нека имаме разбиване по линейни наредби, чиито дължини са съответно $i_1,...,i_k$. Тогава може да поставим n+1-вият елемент или след някоя от тях или най-напред. Но това са съответно $i_1+1,...,i_k+1$ начина. Тогава има $\sum_{j=0}^k (i_j+1) = n+k$.
- 2. Трябва да получим k-1 линейни наредби от останалите (n+1)-1=n елемента.

Твърдение 2. Може да се даде явна формула за числата на Лах. По-точно:

$$\begin{bmatrix} n \\ k \end{bmatrix} = \frac{n!}{k!} \binom{n-1}{k-1}.$$

Док. Има n! пермутации на n елемента. Думи може да получим, като на всяка пермутация между елементи сложим "разграничител така че да получим общо k думи, но местата между n-те елемента са n-1, а за да получим k думи ти трябват k-1 разграничителя, откъдето получаваме члена $\binom{n-1}{k-1}$. Така обаче достигнахме брой начини за наредена последователност от k думи, а се интересуваме само от това какви са те. Но за всяко множество от k думи има k! техни пермутации, получени по посочения по-горе начин.

Нека с L(n,k) бележим коефициента пред k-тия намаляващ факториел в "развитието" на n-тия растящ факториел, тоест:

$$x^{\overline{n}} = \sum_{k=0}^{n} L(n,k) x^{\underline{k}}$$

Ще отбележим, че това е възможно, тъй като отляво и отдясно се получават полиноми от n-та степен, а $x^{\underline{0}},...x^{\underline{n}}$ образуват базис за полиномите от n-та степен (или приемете това твърдение на доверие, или разгледайте връзката между числата на Стирлинг от втори род и падащите факториели).

Твърдение 3. В сила е следното тъждество, даващо връзка между числата на Стирлинг от първи и втори род и L(n,k):

$$L(n,k) = \sum_{j=0}^{n} {n \brack j} {j \brace k}.$$

 се получава:

$$x^{\overline{n}} = \sum_{k=0}^{n} {n \brack k} x^{k} = \sum_{k=0}^{n} {n \brack k} \sum_{i=0}^{k} {k \brack i} x^{i}$$
$$= \sum_{k=0}^{n} \left(\sum_{j=k}^{n} {n \brack j} {j \brack k} \right) x^{k} = \sum_{k=0}^{n} \left(\sum_{j=0}^{n} {n \brack j} {j \brack k} \right) x^{k}$$

За последното равенство използваме, че $\binom{n}{k} = 0$ при n < k.

Остава ни последното твърдение, а то е:

Твърдение 4.

$$\begin{bmatrix} n \\ k \end{bmatrix} = L(n,k).$$

Док. За да докажем, че двете "таблици" от числа са равносилно е достатъчно да проверим еднаквостта на началните условия и рекурентните уравнения. Имаме, че:

$$L(0,0)=1 \quad (x^{\overline{0}}=1=x^{\underline{0}},\ 1=1.x^0),$$
 $L(n,0)=0,\ n>0 \quad ($ полиномът $x^{\overline{n}}$ е без свободен член, а $x^{\underline{0}}=1.x^0),$ $L(n,n)=1 \quad ($ от сумата остава $\begin{bmatrix} n \\ n \end{bmatrix} \begin{Bmatrix} n \\ n \end{Bmatrix} =1.1=1),$ $L(n,k)=0,\ n< k \quad ($ полиномът $x^{\underline{k}}$ е с ненулев член пред $x^k).$

Така началните условия съвпадат. За проверка на рекурентната зависимост използваме равенството от по-рано:

$$\begin{split} &L(n+1,k) \\ &= \sum_{j=0}^{n+1} {n+1 \brack j} \left\{ j \atop k \right\} \quad \text{(прилагаме Тв. 3)} \\ &= \sum_{j=0}^{n+1} {n \brack j} + {n \brack j-1} \right) \left\{ j \atop k \right\} \quad \text{(от рекурентната зависимост на } {n \brack k} \text{)} \\ &= n \sum_{j=0}^{n+1} {n \brack j} \left\{ j \atop k \right\} + \sum_{j=0}^{n+1} {n \brack j-1} \left\{ j \atop k \right\} \\ &= n {n \brack n+1} \left\{ n+1 \right\} + n \sum_{j=0}^{n} {n \brack j} \left\{ j \atop k \right\} + {n \brack n-1} \left\{ 0 \atop k \right\} + \sum_{j=1}^{n+1} {n \brack j-1} \left\{ j \atop k \right\} \\ &= n \sum_{j=0}^{n} {n \brack j} \left\{ j \atop k \right\} + \sum_{j=0}^{n} {n \brack j} \left\{ j \atop k \right\} \quad \text{(от условията над числата на Стирлинг)} \\ &= n \sum_{j=0}^{n} {n \brack j} \left\{ j \atop k \right\} + \sum_{j=0}^{n} {n \brack j} \left\{ k \right\} + \left\{ j \atop k-1 \right\} \right) \quad \text{(от рекурентната зависимост на } {n \brack k} \text{)} \\ &= (n+k) \sum_{j=0}^{n} {n \brack j} \left\{ j \atop k \right\} + \sum_{j=0}^{n} {n \brack j} \left\{ j \atop k-1 \right\} \\ &= (n+k) L(n,k) + L(n,k-1) \end{split}$$

Сега отчитаме Тв. 1 и явно рекурентата зависимост е същата. И тъй двете "таблици" съвпадат. \Box

Ето и началната част от таблицата на числата на Лах без знак:

n	0	1	2	3	4	5	6	7	8	9
0	1	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0
2	0	2	1	0	0	0	0	0	0	0
3	0	6	6	1	0	0	0	0	0	0
4	0	24	36	12	1	0	0	0	0	0
5	0	120	240	120	20	1	0	0	0	0
6	0	720	1800	1200	300	30	1	0	0	0
7	0	5040	15120	12600	4200	630	42	1	0	0
8	0	40320	141120	141120	58800	11760	1176	56	1	0
9	0	362880	1451520	1693440	846720	211680	28224	2016	72	1

Някои интересни наблюдения:

Твърдение 5.

$$\left| \frac{n^2 - 1}{|\sqrt{n^2 - 1}|} \right| = \left| \frac{n^2 - 1}{|\sqrt{n^2 - 1}| + 1} \right|, \ n > 1$$

 \mathcal{A} ок. Знаем, че n^2 е точен квадрат, чийто корен е цялото число n. Но тогава n^2-1 ще бъде с корен между тези на $(n-1)^2=n^2-2n+1$ и n^2 (понеже 2n-1>1), но тогава цялата му част ще е n-1. Получаваме:

Тяхното отношение е:

Тяхното отношение е:
$$\frac{\frac{(n^2-1)!(n^2-2)!}{(n-1)!(n-2)!(n^2-n)!}}{\frac{(n^2-1)!(n^2-2)!}{n!(n-1)!(n^2-n-1)!}} = \frac{n!(n-1)!(n^2-n-1)!}{(n-1)!(n-2)!(n^2-n)!} = \frac{n(n-1)}{n^2-n} = 1 \quad (\text{и тъй те са равни})$$

Числата на Лах със знак нямат стандартно означение. Дефинират се като $(-1)^n \left| {n \atop k} \right|$. Оказва се, че те се явяват като коефициенти пред x^{-n-k} при n-тата производна на $e^{\frac{1}{x}}$, разделена на $e^{\frac{1}{x}}$.[Вижте тук]

5