

Categorical Normalizing Flows via Continuous Transformations

Master Thesis Defense, 25. August 2020

Student: Phillip Lippe

Supervisor: Dr. Efstratios Gavves

Second reader: Dr. Max Welling

Introduction

Motivation

Categorical Data

Introduction

Preliminaries

Normalizing Flows

+ Universality
+ Exact likelihood estimate
+ Efficient density evaluation and (parallel) sampling

<u>Figure credit</u>: Weng, Lilian. "Flow-based Deep Generative Models", 2018.

Introduction Related Work

Applying (Variational) Dequantization

Designed for image modeling

Categories are not "quantized" real values

Discrete Normalizing Flows

- Is limited to permutations
- Not universal with factorized prior
- (Biased) gradient approximations and difficult optimization

References

Tran, D. et al.: "Discrete Flows: Invertible Generative Models of Discrete Data". NeurIPS, 2019. Hoogeboom, E. et al.: "Integer Discrete Flows and Lossless Compression". NeurIPS, 2019.

Introduction Contributions

Categorical Normalizing Flow

Modeling categorical distribution by a continuous normalizing flow

- + Universality
- + Stable optimization without biased gradients
- + Efficient density evaluation and (parallel) sampling

GraphCNF

Powerful graph generation model based on Categorical Normalizing Flows

- + One-shot generation
- + Permutation-invariant to node order
- + Support of categorical node and edge attributes

Categorical Normalizing Flows Encoding

- First step: represent categorical data in continuous space
- Desired properties of an encoding function
 - → No loss of information (non-overlapping volumes)
 - → Learnable
 - → Smooth
 - → Support for higher dimensions
- \Rightarrow Variational inference with factorized posterior: $p(x) \geq \mathbb{E}_{z \sim q(\cdot | x)} \left[\frac{\prod_i p(x_i | z_i)}{q(z | x)} p(z) \right]$
 - Ensures that continuous form z contains the exact same information as discrete x
 - Small variational gap ⇒ close-to exact likelihood estimate

Categorical Normalizing Flows

Overview

Objective function:
$$p(\boldsymbol{x}) \geq \mathbb{E}_{\boldsymbol{z} \sim q(\cdot | \boldsymbol{x})} \left[\frac{\prod_i p(x_i | \boldsymbol{z}_i)}{q(\boldsymbol{z} | \boldsymbol{x})} p(\boldsymbol{z}) \right]$$

Categorical Normalizing Flows

Encoding function

Mixture model

$$q(\boldsymbol{z}|\boldsymbol{x}) = \prod_{i=1}^{N} g(\boldsymbol{z}_i|\mu(x_i), \sigma(x_i))$$

Exact posterior can be found
 ⇒ no "variational" gap

Linear flows

$$q(\boldsymbol{z}|\boldsymbol{x}) = \prod_{i=1}^{N} q(\boldsymbol{z}_i|x_i)$$

- One flow per category
- Shared across input

Variational encoding

$$q(oldsymbol{z}|oldsymbol{x})$$

- One flow on the whole discrete input
- Similar to variational dequantization

Categorical Normalizing Flows Related Work – Flow-based Variational Autoencoders

Latent Normalizing Flows

- Non-factorized posterior
- Complexity split between decoder and normalizing flow
- Instable training
- Performance worse than non-latent baseline

References

Ziegler, Z.M. and Rush, A.M.: "Latent Normalizing Flows for Discrete Sequences". ICML, 2019.

Categorical Normalizing Flows Experiments – Set Modeling

- Toy datasets on sets with known dataset likelihood
- Metric: test likelihood in bits per categorical variable (lower = better)

Model	Set shuffling	Set summation	
Discrete NF Variational Dequantization Latent NF	3.87 ± 0.04 3.01 ± 0.02 2.78 ± 0.00	$\begin{array}{c} 2.51 \pm 0.00 \\ 2.29 \pm 0.01 \\ 2.26 \pm 0.01 \end{array}$	
CNF + Mixture model CNF + Linear flows CNF + Variational Encoding	$egin{array}{ll} {\bf 2.78} & \pm 0.00 \\ {\bf 2.78} & \pm 0.00 \\ {2.79} & \pm 0.01 \end{array}$	$egin{array}{l} 2.24 \ \pm 0.00 \ 2.25 \ \pm 0.00 \ 2.25 \ \pm 0.01 \end{array}$	
Optimal	2.77	2.24	

Categorical Normalizing Flows

Experiments – Language Modeling

Metric: bits per character/word

Categorical Normalizing Flows Conclusion

- Categorical Normalizing Flow is a powerful framework to accurately model categorical distributions
- Encoding function: Mixture model efficient with exact posterior
- Factorized posterior pushes all complexity into the prior

Graph Generation with CNF Introduction

- (1) Node attributes \(\bigcup \)
- (2) Edge attributes
- (3) Adjacency matrix

Challenge: nodes are unordered, i.e. a set ⇒ Maintain permutation-invariance of nodes

Graph Generation with CNF Graph CNF

- + Permutation-invariant
- + Efficient three-step approach

Graph Generation with CNF Experiments – Molecule Generation

- **Task**: given a set of molecules, learn to model the space of valid molecules
- Metrics: calculated on 10k generated graphs,
 - (1) Validity: percentage of graphs being valid molecules
 - (2) Uniqueness: percentage of unique molecules
 - (3) Novelty: percentage of molecules that are not equal to any training molecule
 - (4) Reconstruction: reconstruction accuracy of test molecules from latent space

Graph Generation with CNF Experiments – Molecule Generation

Results on the Zinc250k dataset

(224k examples)

Method	Validity	${\bf Uniqueness}$	Novelty	Reconstruction	Parallel	General
JT-VAE	100%	100%	100%	71%	X	X
GraphAF	68%	99.10%	100%	100%	×	\checkmark
R-VAE	34.9%	100%	_	54.7%	\checkmark	\checkmark
GraphNVP	42.60%	94.80%	100%	100%	\checkmark	\checkmark
GraphCNF	83.41%	99.99%	100%	100%	√	✓
	(± 2.88)	(± 0.01)	(± 0.00)	(± 0.00)		
+ Sub-graphs	96.35% (±2.21)	99.98% (±0.01)	99.98% (±0.02)	100% (±0.00)	✓	✓
	((±0.01)	(±0.02)	(±0.00)		

Graph Generation with CNF

Experiments – Molecule Generation

Conclusion

- Mixture model encoding is the "dequantization" for categorical data
 - Simple, efficient and exact in likelihood (continuous)
- CNFs enable strong, latent-based generative models on domains like graphs
 - GraphCNF significantly outperforms previous flow-based approach on molecule generation
- Possible future direction:
 - Combining continuous and discrete normalizing flows
 - GraphCNF on large graphs (|V| > 100)

Thank You