ANSWER KEY (AIPMT-1998)

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans	2	3	3	2	1	1	1	3	1	1	1	1	2	1	1	1	2	1	1	2
Ques.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans	2	4	4	2	3	3	1	3	4	2	1	1	1	2	1	2	2	1	1	3
Ques.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	2	4	2	2	2	1	1	3	4	2	3	4	2	1	1	4	1	1	3	2
Ques.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans	1	1	3	3	1	3	1	2	1	2	2	4	1	1	1	3	1	4	2	4
Ques.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans	2	1	3	1	4	2	2	4	1	1	1	3	1	3	3	1	1	1	4	2
Ques.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans	1	1	3	2	1	1	1	1	1	2	1	4	1	1	1	1	4	3	3	3
Ques.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans	3	1	1	1	2	3	1	4	1	1	1	1	1	1	2	1	1	2	3	2
Ques.	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans	2	4	3	2	1	3	2	1	1	1	1	3	1	3	1	1	1	2	1	1
Ques.	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans	1	1	1	4	2	1	1	1	1	2	2	2	1	1	1	1	1	1	1	3
1 1113		-																		
Ques.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200

HINTS & SOLUTIONS

1.
$$\frac{N_1}{N_2}$$
 = ratio

Average weight =
$$\frac{N_1W_1 + N_2W_2}{N_1 + N_2}$$

$$10.81 = \frac{10N_1 + 11N_2}{N_1 + N_2}$$

$$10.81N_1 = 10.81N_2 = 10N_1 + 11N_2$$

$$0.81N_1 = 0.19N_2 \qquad \Rightarrow \boxed{\frac{N_1}{N_2} = \frac{19}{81}}$$

- **2.** Electric field will be zero at the centre of hollow sphere.
- 3. AND gate \rightarrow C = A . B OR gate \rightarrow C = A + B

NOT gate \rightarrow (It has only one input)

NAND gate $\rightarrow C = \overline{A.B}$

A	В	A.B	A+B	A.B	$\overline{A + B}$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	1	0
1	1	1	1	0	0

Therefore answer is NAND gate.

5.
$$v_{\text{wave}} = \frac{\omega}{k}$$

$$v_{\text{particle}} = \frac{dy}{dt} = \underbrace{y_0 \ \omega}_{\text{cos}} \qquad cos(\omega t - kx)$$

$$\boxed{ y_0 \omega = 2 \frac{\omega}{k} } \Rightarrow \boxed{ k = \frac{2}{y_0} = \frac{2\pi}{\lambda} } \Rightarrow \boxed{ \lambda = \pi y_0 }$$

6.
$$(N+1)T_S = NT_\ell$$
 because $T \propto \sqrt{\ell}$

$$\Rightarrow \frac{N+1}{N} = \sqrt{\frac{\ell_{\ell}}{\ell_{S}}} = \sqrt{\frac{2}{0.5}} = 2$$

$$\Rightarrow \frac{N+1}{N} = 2 \Rightarrow N = 1 \Rightarrow N+1 = 2$$

8. According to law of conservation of angular momentum

$$I_{\omega} = I'\omega'$$

$$Mr^{2}\omega = (Mr^{2} + 2mr^{2})\omega'$$

$$\omega' = \frac{M\omega}{M + 2m}$$

9. Work energy theorem

$$W = \Lambda KE$$

10.

$$x = 3 - 4t^2 + t^3$$

$$v = \frac{dx}{dt} = -8t + 3t^2$$

$$v_1(t=0)=0$$

$$v_1(t=0) = 0$$

 $v_2(t=4) = 16$

Therefore,
$$\Delta KE = \frac{1}{2} \text{ mv}_2^2 - \frac{1}{2} \text{mv}_1^2$$

= $\frac{1}{2} \times 3 \times 10^{-3} \times 16 \times 16 - 0 = 384 \text{ mJ}$

$$\therefore F = \frac{dP}{dt} \Rightarrow Fdt = dP$$

$$\Delta P = Impulse = \int_0^t Fdt = \int_0^t (500 - 100t)dt$$

= 500t - 50t²

 $T_{1/2(A)} = 40 \text{min}, \ T_{1/2(B)} = 20 \text{min}$ 11. t = 80 min

$$n_A = \frac{t}{T_{1/2_{(A)}}} = \frac{80}{40} = 2$$

$$n_{\rm B} = \frac{t}{T_{\rm 1/2_{(B)}}} = \frac{80}{20} = 4$$

$$\frac{N_A}{N_B} = \frac{N_0/2^2}{N_0/2^4} = \frac{16}{4} = 4:1$$

From Einstein's photoelectric effect eqⁿ 13.

$$\frac{hc}{\lambda} = \phi_0 + \frac{1}{2} mv^2$$

$$\frac{4hc}{3\lambda} = \phi_0 + \frac{1}{2} mv_1^2$$

$$\Rightarrow \frac{4}{3} \left(\phi_0 + \frac{1}{2} \text{mv}^2 \right) = \phi_0 + \frac{1}{2} \text{mv}_1^2$$

$$\Rightarrow \frac{1}{2} \operatorname{mv}_{1}^{2} = \frac{\phi_{0}}{3} + \frac{1}{2} \operatorname{m} \left(\sqrt{\frac{4}{3}} \operatorname{v} \right)^{2} \Rightarrow \boxed{\operatorname{v}_{1} > \sqrt{\frac{4}{3}} \operatorname{v}}$$

14.

$$2\pi R = L \qquad 4\pi R_1 = L$$

$$B_{1} = \frac{\mu_{0}I}{2R} \times N = \frac{\mu_{0}I\pi}{L} ; B_{2} = \frac{\mu_{0}I}{2R_{1}} \times 2 = \frac{4\mu_{0}I\pi}{L}$$

$$\Rightarrow \frac{B_{1} - 1}{L}$$

15.

19.

23.

$$t = \frac{d}{\sqrt{V_{mr}^2 - V_r^2}} \Rightarrow \frac{15}{60} = \frac{1}{\sqrt{25 - V_r^2}}$$

$$\Rightarrow 4 = \sqrt{25 - V_r^2} \Rightarrow V_r^2 = 25 - 16 \Rightarrow V_r^2 = 9$$

$$\Rightarrow$$
 V_r = 3 km/hr

In elastic collision of bodies of same mass, the 16. velocities get mutually exchanged between them.

17.
$$T_1 - mg = ma$$
 $mg - T_2 = ma$
 $T_1 = m(g + a)$ $T_2 = m(g - a)$
 $\frac{T_1}{T_2} = \frac{g + a}{g - a} = \frac{14.7}{4.9} = \frac{3}{1}$

$$\therefore \qquad 90^{\circ} - r > i_{c} \qquad \text{or} \qquad r < 90^{\circ} - i_{c}$$

According to Snell's law $\sin i = n \sin r < n \sin (90^{\circ} - i_{c})$

$$\Rightarrow \frac{\sin i}{\cos i_c} < n \Rightarrow \frac{\sin i}{\sqrt{1 - \sin^2 i_c}} < n$$

$$\Rightarrow \frac{\sin i}{\sqrt{1 - 1/n^2}} < n \Rightarrow n^2 - 1 > 1$$

$$\Rightarrow$$
 $n > \sqrt{2}$

20. m = ZIt = ZQ \Rightarrow m \propto Q

Then amount of librated Ag will be double.

21. K.E_{max} =
$$\frac{hc}{\lambda} - \phi$$

= $\frac{12400 \text{eV} \text{Å}}{5000 \text{Å}} - 1.5 \text{eV}$
= $(2.48 - 1.5) \text{eV} = 0.98 \text{ eV}$

22.
$$\frac{T}{4} = 6 \text{ sec.} \Rightarrow T = 24 \text{ sec.}$$

Frequency = $\frac{1}{T} = \frac{1}{24}$ Hz = 0.04 Hz

$$e = M \frac{di}{dt} = 0.005 \times \frac{d}{dt} (i_0 sin\omega t)$$

=
$$0.005 i_0 \omega \cos \omega t = e_0 \cos \omega t$$

• $e_{max} = 0.005 \times 2 \times 100\pi = \pi$

$$24. S = \left(\frac{i - i_s}{i_s}\right) C$$

$$G = \frac{\overline{1A \cdot 0.2A} \odot 8\Omega}{2\Omega \cdot 0.8A}$$

$$\frac{i_s}{i} = \frac{G}{S+G} = \frac{8}{2+8} = \frac{8}{10}$$

$$i_S = 0.8i = 0.8 \times 1 = 0.8A$$

26. Here
$$v \frac{dm}{dt} = m(4.9 + 9.8) = (14.7)m$$

$$v = 2km/s \qquad \qquad m = 1000$$

$$2000 \frac{dm}{dt} = 14.7 \times 1000$$

$$\frac{dm}{dt} = \frac{14.7}{2} = 7.35 \text{ kg/s}$$

27. From the centre distance of three sides are equal

$$F_1X + F_2X - F_3X = 0$$
$$F_3 = F_1 + F_2$$

$$\begin{vmatrix} \overrightarrow{F}_3 \end{vmatrix} = \begin{vmatrix} \overrightarrow{F}_1 \end{vmatrix} + \begin{vmatrix} \overrightarrow{F}_2 \end{vmatrix}$$

28.
$$dU = \mu C_V dt = \frac{\mu R dT}{\gamma - 1} = \frac{P(2V - V)}{\gamma - 1} = \frac{PV}{\gamma - 1}$$

29.
$$\Delta U = \mu C_V \Delta T = 0$$

30.

$$\therefore \quad \Delta T = 0 \text{ (temp. constant)}$$

$$\frac{1}{P_{eq}} = \frac{1}{P_1} + \frac{1}{P_2} + \frac{1}{P_3} \quad P_{eq} = P_1 + P_2 + P_3$$

$$\Rightarrow \boxed{10 = \frac{P}{3}} \quad \Rightarrow P_{eq} = 3P = 3 \times 30 = 90 \text{ watt}$$

$$V_1 = \sqrt{2g \times 5} \qquad 1.8m$$

$$\sqrt{2g \times 1.8} = V$$

$$\frac{V_2}{V_1} = \frac{\sqrt{2g \times 1.8}}{\sqrt{2g \times 5}} = \sqrt{\frac{18}{50}} = \sqrt{\frac{9}{25}}$$

$$\frac{V_2}{V_1} = \frac{3}{5}$$

32.
$$F = \frac{\mu_0 i_1 i_2}{2\pi d} = \frac{4\pi \times 10^{-7} \times 1 \times 1}{2\pi \times 1} = 2 \times 10^{-7} \text{ N/m}$$

33.
$$n\lambda = 2d \sin\theta$$
; $\theta = 60^{\circ}$, $n = 2$

$$d = \frac{2 \times 1 \times 2 \times 10^{-10}}{2 \times \sqrt{3}} = 1.15 \text{Å}$$

34.
$$n = \frac{1}{2\pi} \sqrt{k/m} \quad ; \quad n \propto \frac{1}{\sqrt{m}}$$

$$\frac{n}{n_2} = \sqrt{\frac{m_2}{m_1}} = \sqrt{\frac{4m}{m}}$$

$$n_2 = \frac{n}{2}$$

Therefore
$$\lambda = 1.21$$
Å

36.
$$I^2RT = ms\Delta\theta$$

 $\Rightarrow I^2 \propto \Delta\theta$

$$\frac{\Delta\theta_2}{\Delta\theta_1} = \frac{I_2^2}{I_1^2}$$

$$\Rightarrow \frac{\Delta\theta_2}{5} = (2)^2 \Rightarrow \Delta\theta_2 = 20^{\circ}\text{C}$$

37.
$$v^2 = u^2 - 2as$$

$$s = \frac{u^2}{2a} \implies s \propto u^2$$

$$\Rightarrow \frac{20}{s'} = \frac{u^2}{4u^2}$$

$$s' = 80 \text{ meter}$$

38.
$$\Delta$$
K.E. = force × displacement = Work done

$$\Delta K.E. = qEy$$

39.
$$\frac{\text{mv}^2}{r} = \frac{1}{4\pi \epsilon_0} \times \frac{e^2}{r^2}$$

$$v = \frac{e}{\sqrt{4\pi \in_0 rm}}$$

40. E =
$$\frac{kp}{r^3}$$

$$\Rightarrow \qquad E \varpropto \frac{p}{r^3} \quad \Rightarrow \ \frac{E_1}{E} = \frac{2}{8}$$

$$\Rightarrow$$
 $E_1 = \frac{E}{4}$

41. Note: Load coil = Secondary coil

$$\frac{E_s}{E_p} = \frac{N_s}{N_p} = \frac{I_p}{I_s} \implies \frac{25}{1} = \frac{I_p}{2}$$

Therefore $I_p = 50 \text{ A}$

42. If source moves perpendicular to observer's motion then change in freq. = 0

(No doppler's effect)

43.
$${}_{92}U^{235} + {}_{0}n^1 \rightarrow {}_{56}Ba^{144} + {}_{z}X^A + 3{}_{0}n^1$$

$$235 + 1 = 144 + A + 3 \implies A = 89$$

$$92 + 0 = 56 + Z + 0 \Rightarrow Z = 36$$

Therefore $_{36}X^{89} \rightarrow _{36}Kr^{89}$

44. $x^2 + y^2 = \ell^2 = constant$

$$2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0$$

$$\frac{\mathrm{dx}}{\mathrm{dt}} = -V_{\mathrm{A}} = -10$$

$$\frac{dy}{dt} = V_B \&$$

$$\frac{y}{x} = \tan\alpha = \tan 60^{\circ} = \sqrt{3}$$

$$10 = \sqrt{3} V_B \implies V_B = \frac{10}{\sqrt{3}}$$

45. According to Stefan's law

$$E \propto T^4$$

$$\frac{E}{E_2} = \left(\frac{T}{2T}\right)^4$$

$$E_2 = 16E$$

47.
$$I_B = \frac{V}{R} = \frac{5}{10^3} = 5 \times 10^{-3}$$

$$\beta = \frac{I_C}{I_B} = 50 = \frac{\text{out put current}}{\text{input current}}$$

$$50 = \frac{I_C}{5 \times 10^{-3}}$$

$$I_C = 25 \text{ mA}$$