CUSTOMER PERSONALITY ANALYSIS

ABSTRACT:

Based on detailed data of company A' s customers, this report analysis and predict **customer response** to promotion campaigns, **customer preference** to wines and meat products and **amount of customer spent**. According the prediction, the report provides a **recommendation system** to realize personalized recommendation and promotion. Meanwhile, **customer cluster** has been done to help company A segment their customers into **3** groups and corresponding suggestions are also provided.

CONTENTS:

4		
1 1	ntroduction	
⊥.	HUOGUCUOH	

- 2.Data cleaning and processing
- 3.Descriptive statistic
- 4.Part1: consumer behavior prediction
 - 4.1 generalized logistic regression
 - 4.2 regression tree
 - 4.3 random forest
 - 4.4 model comparison
- 5.Part2: consumer preference prediction
 - 5.1 prediction on wines
 - 5.2 prediction on meat
 - 5.3 prediction on total spend
- 6.Recommendation system based on the prediction
- 7.Part3: customer clustering
 - 7.1 K-means clustering
 - 7.2 market segment and suggestion
- 8.Appendix

1.INTRODUCTION

DATA BACKFGROUND:

Resource link: https://www.kaggle.com/datasets/imakash3011/customer-personality-analysis

Problem statement:

This dataset is a detailed analysis of a Company A's customers. It helps a business to better understand its customers and makes it easier for them to modify products according to the specific needs, behaviors and concerns of different types of customers. It collected **29** variables of **2240** customers, the attributes of the variables are attached to the appendix. There are 3 problems set to help Company A achieve better promotion and recommendation performance.

Problem1: How customers response to the promotion campaign? Is the campaign efficient? (Part 1)

Problem2: What's customers' preference? Which product should Company A recommend to them? (Part 2)

Problem3: How to segment these customer? (Part 3)

2.DATA CLEANING AND PROCESSING

DATA CLEANING

DATA READING AND REMOVE NA: remove 24 rows with missing data

REDESIGN VARIABLES:

Age: change Year_Birth to age

Dt_Customer: change to days the customer has been to the company

Marital_Status: 8 levels to 2 levels; combine 'Absurd Alone Divorced Single Widow YOLO' to 1; combine 'Married.

Together' to 2

Education: 5 levels to 4 levels; combine '2n Cycle' & 'basic' to 'undergraduate'

ADD VARIABLES:

ttlspend: total money spent on the 6 products ttlnum: total numbers of purchase the customer made

CREATE DUMMY VARIABLES:

Education : to Education_Master; Education_PhD; Education_Undergraduate

REMOVE VARIABLES:

Remove: ID, Year_Birth, Kidhome, Teenhome, Z_CostContact, Z_Revenue (figure 1)

After data cleaning, we now have data of 2216 rows and 30 variables.

DATA PROCESSING:

REMOVE OUTLINERS:

After data processing, we now have data of <u>2198 rows and 30 variables</u>, which can be divided into 3 groups to help our further analysis.

1. **Demographic** (11):

age, Education(3 dummies), Marital_Status, Income, child, family, Dt_Customer, Recency, complain

2. Behaviors:

- a) Products (7): MntWine, MntFruits, MntMeatProducts, MntFishProducts, MntSweetProducts, MntGoldProds, ttlspend
- b) Promotion (7): NumDealsPurchases, AcceptedCmp1, AcceptedCmp2, AcceptedCmp3, AcceptedCmp4, AcceptedCmp5, Response
- 3. **Distribution** (5): NumWebPurchases, NumCatalogPurchases, NumStorePurchases, NumWebVisitsMonth, tllnum

3.DESCRIPTIVE STATISTIC

Group1: Demographic

Group2.a: Behaviors--Product

We divide 6 products into 2 groups

according to the purchase amount:

ace product: wines & meat

normal product: sweet & gold & fruits & fish

Group2.b: Behaviors—Promotion

Percentage: numbers of those who accepted the offer / total amount

Group 3: Distribution

The traditional **store** distribution is the most contributed one, followed by websites and catalog.

4.CONSUMER BEHAVIOR PREDICTION

We want to use data analysis to predict whether the customer will accept the offer when the promotion campaign is made **(Response-dependent variables)**, thus to help decide whether we should give the customer a discount or do the promotion.

We randomly select 30% of the data to be the test set, and the rest 70% to be the training set.

Key features used:

- 1. Accuracy: % correct prediction
- 3. AIC: Akaike Information Criterion

- 2. Sensitivity: true positive rate
- 4. Specificity: rue negative rate

GENERALIZED LINEAR REGRESSION

1. FULL MODEL:

Formula: Response ~ .

Summary of the regression result :

```
glm(formula = Response \sim ., family = "binomial", data = train.data)
                                                                                           Confusion Matrix and Statistics
                                                                                                    Reference
Deviance Residuals:
               10
                     Median
                                   3Q
                                             Max
                                                                                           Prediction
                                                                                                       0
-2.36183 -0.41208 -0.20146 -0.08322
                                                                                                   0 548 40
                                                                                                    1 25
                                                                                                          47
Coefficients: (3 not defined because of singularities)
                                                                                                          Accuracy
                                                                                                                  : 0.9015
                                      Std. Error z value
                                                                      Pr(>|z|)
                           Estimate
                                                                                                           95% CI
                        -15.86489251
                                                            0.0000000000000033
                                                                                                                     (0.8762
                                                                                                                             0.9232)
(Intercept)
                                      2.01357475 -7.879
                                                            0.0000000000001878
                                                                                               No Information Rate: 0.8682
Marital_Status
                         -1.45107483
                                      0.19723202
                                                  -7.357
                                                                                               P-Value [Acc > NIR] : 0.005291
                                      0.00001151
                                                                      0.339836
Income
                         0.00001098
                                                   0.954
                                                   8.496 < 0.000000000000000000
Dt Customer
                         0.00496497
                                      0 00058440
                                                                                                             Kappa : 0.5358
Recency
                         -0.03401140
                                      0.00370109 -9.190 < 0.00000000000000002
MntWines
                         -0.00119915
                                      0.00051496 -2.329
                                                                      0.019879
                                                                                            Mcnemar's Test P-Value : 0.082478
MntFruits
                         0.00142554
                                      0.00292663
                                                                      0.626194
                                                   0.487
                                                                                                       Sensitivity: 0.54023
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                                                       Specificity: 0.95637
                                                                                                    Pos Pred Value: 0.65278
                                                                                                    Neg Pred Value : 0.93197
(Dispersion parameter for binomial family taken to be 1)
                                                                                                       Prevalence: 0.13182
                                                                                                    Detection Rate : 0.07121
    Null deviance: 1352.16 on 1537 degrees of freedom
                                                                                              Detection Prevalence: 0.10909
Residual deviance: 773.45 on 1511 degrees of freedom
                                                                                                 Balanced Accuracy: 0.74830
AIC: 827.45
                                                                                                  'Positive' Class : 1
Number of Fisher Scoring iterations: 6
```

Key features: AIC: 827.45 Accuracy: 0.9015 Sensitivity: 0.54023 Specificity: 0.95637

883.40 917.40

2. REDUCED MODEL:

- Recency

Formula: Response ~ Marital_Status + Dt_Customer + Recency + MntWines + MntMeatProducts + NumDealsPurchases + NumCatalogPurchases + NumStorePurchases + NumWebVisitsMonth + AcceptedCmp3 + AcceptedCmp4 + AcceptedCmp5 + AcceptedCmp1 + AcceptedCmp2 + child + Education_PhD + Education_undergraduate

Variables selection: backward elimination

	Df	Deviance	AIC
<none></none>		779.73	815.73
 NumWebVisitsMonth 	1	782.70	816.70
- child	1	782.94	816.94
- MntWines	1	783.17	817.17
- NumDealsPurchases	1	786.09	820.09
- Education_undergraduate	1	786.62	820.62
AcceptedCmp2	1	787.50	821.50
AcceptedCmp4	1	791.78	825.78
- Education_PhD	1	793.34	827.34
 MntMeatProducts 	1	795.92	829.92
 NumCatalogPurchases 	1	797.86	831.86
AcceptedCmp1	1	800.26	834.26
- NumStorePurchases	1	810.80	844.80
AcceptedCmp5	1	815.96	849.96
- Marital_Status	1	836.68	870.68
- AcceptedCmp3	1	841.56	875.56
- Dt_Customer	1	866.56	900.56

1

Confusion Matrix:

Confusion Matrix:

Confusion Matrix and Statistics Reference Prediction 0 0 548 39 1 25 48 Accuracy [0.903 95% CI (0.8779) 0.9245) No Information Rate: 0.8682 P-Value [Acc > NIR] : 0.003668 Kappa : 0.5453Mcnemar's Test P-Value : 0.104163 Sensitivity: 0.55172 Specificity: 0.95637 Key features: AIC: 815.73 Accuracy: 0.903 Sensitivity: 0.55172 Specificity: 0.95637

DEFAULT REGRESSION TREE

Tree Plot:

Confusion Matrix:

Confusion Matrix and Statistics

Reference Prediction 0 1 0 556 61 1 17 26

> Accuracy : 0.8818 95% CI : (0.8547, 0.9055) No Information Rate : 0.8682 P-Value [Acc > NIR] : 0.1641

> > Kappa : 0.3427

Mcnemar's Test P-Value : 0.000001123

Sensitivity: 0.29885 Specificity: 0.97033 Pos Pred Value: 0.60465 Neg Pred Value: 0.90113 Prevalence: 0.13182 Detection Rate: 0.03939 tion Prevalence: 0.06515

Detection Prevalence : 0.06515 Balanced Accuracy : 0.63459

Key features: Accuracy: **0.8818** Sensitivity: **0.29885** Specificity: **0.97033** 'Positive' Class : 1

variable importance

RANDOM FOREST

Variable Importance Plot:

AcceptedCmp3 0 Recency ttlspend MntMeatProducts NumStorePurchases NumStorePurchases Income AcceptedCmp1 AcceptedCmp5 Dt_Customer MntWines NumCatalogPurchases MntGoldProds familymember MntSweetProducts NumWebVisitsMonth ttlnum NumWebvisitsWontr ttlnum MntFishProducts NumWebPurchases Marital_Status AcceptedCmp2 MntFruits child Education_PhD NumDealsPurchases 0 0 AcceptedCmp4 age Education_Master Education_undergraduate - 0 Complain 0 5 10 15 20 MeanDecreaseAccuracy

Confusion Matrix:

Confusion Matrix and Statistics

Reference Prediction 0 1 0 559 53 1 14 34

> Accuracy: 0.8985 95% (I: (0.8729, 0.9205) No Information Rate: 0.8682 P-Value [Acc > NIR]: 0.0105

> > Kappa : 0.4524

Mcnemar's Test P-Value : 0.000003443

Sensitivity : 0.39080 Specificity : 0.97557 Pos Pred Value : 0.70833 Neg Pred Value : 0.91340 Prevalence : 0.13182 Detection Rate : 0.05152 Detection Prevalence : 0.07273 Balanced Accuracy : 0.68319

'Positive' Class : 1

Key features: Accuracy: **0.8985** Sensitivity: **0.39080** Specificity: **0.97557**

MODEL COMPARISON

We can evaluate the efficiency of these models above by comparing their AIC, accuracy, sensitivity, specificity.

The comparison table:

	Full linear regression	Reduced linear regression	Default tree	Random forest
AIC	827.45	815.73	NA	NA
Accuracy	0.9015	0.903	0.8818	0.8985
Sensitivity	0.54023	0.55172	0.29885	0.39080
Specificity	0.95637	0.95637	0.97033	0.97557

Conclusion:

According to the table, we can see that the reduced linear regression model has the highest accuracy of 90.3%, the highest the sensitivity of 55,2%. It is also among the highest specificity. So we should choose the **reduced linear regression model** as our algorithms to predict consumer behavior.

Using the model, if the customer's 'response' to the promotion campaign is '1', which means promotion is efficient to this customer, than Company A should push the promotion campaign to him/her. Otherwise, Company A shouldn't take the action.

5.CONSUMER PREFERENCE PREDICTION

After predicted whether we should push the promotion campaign, Company A would likely to know which of the 6 kinds of products is the one the customer most likely to purchase.

Model used: reduced linear regression (backward elimination)

Dependent variable (group2.a):

MntWine, MntFruits, MntMeatProducts, MntFishProducts, MntSweetProducts, MntGoldProds, ttlspend

	Wine	Meat	Fruit	Fish	Sweet	Gold	ttlspend
multiple R^2	0.6856	0.6517	0.389	0.4553	0.4171	0.4234	0.8262
adjusted R^2	0.6838	0.6499	0.385	0.4517	0.4129	0.4196	0.8253

After regression of the 7 variables separately, we found that the models of fruit\fish\sweet\gold don' t performance well, but the models of wine\meat/ttlspend are quite good. So we notice that the information provided **cannot** predict one' s preference on **normal products** (fruit, fish, sweet, gold), but can have a **good** prediction on **ace products** (wines, meat) and the **total amount** one would spend.

Following, let's see the efficient models in details.

PREDICTION OF MNTWINES (AMOUNT SPENT ON WINE IN LAST 2 YEARS)

Formula: wine ~ Income + Dt_Customer + NumWebPurchases + NumCatalogPurchases + NumStorePurchases + NumWebVisitsMonth + child + Education_Master + Education_PhD

Summary of the regression result :

```
Call:
```

lm(formula = wine ~ Income + Dt_Customer + NumWebPurchases +
NumCatalogPurchases + NumStorePurchases + NumWebVisitsMonth +
child + Education_Master + Education_PhD, data = train.data)

Residuals:

Min 1Q Median 3Q Max -792.03 -109.09 -10.91 82.04 913.26

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	-907.2200163	84.0498614	-10.794	< 0.0000000000000000000002	***
Income	0.0083699	0.0004682	17.878	< 0.0000000000000000000002	***
Dt_Customer	0.1189641	0.0263968	4.507	0.00000708376403745	***
NumWebPurchases	9.4816695	2.6884575	3.527	0.000433	***
NumCatalogPurchases	29.9296427	2.8445045	10.522	< 0.0000000000000000000002	***
NumStorePurchases	18.0999787	2.2487494	8.049	0.000000000000000166	***
NumWebVisitsMonth	33.3301922	3.4682962	9.610	< 0.0000000000000000000002	***
child	-39.5864064	7.6390088	-5.182	0.00000024861529493	***
Education_Master	62.1502598	13.3327646	4.661	0.00000341291978295	***
Education_PhD	95.5450785	12.3179283	7.757	0.00000000000001584	***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 189.1 on 1528 degrees of freedom Multiple R-squared: 0.6856, Adjusted R-squared: 0.6838

F-statistic: 370.3 on 9 and 1528 DF, p-value: < 0.00000000000000022

Predicted	Actual	Residual
415	173	-242
202	76	-126
160	14	-146
100	14	-140
353	194	-159
244	84	-160
714	1012	298
590	867	277
-153	8	161
-38	6	44
-203	3	206

PREDICTION OF MNTMEAT (AMOUNT SPENT ON MEAT IN LAST 2 YEARS)

Formula: meat ~ Income + Dt_Customer + NumWebPurchases + NumCatalogPurchases + NumStorePurchases + age + child + Education_PhD

Predicted	Actual	Residual
178	118	-60
12	56	44
-8	24	32
303	480	177
127	38	-89
287	498	211
184	86	-98
-36	10	46
-2	14	16
-113	10	123

Summary of the regression result :

Call:

lm(formula = meat ~ Income + Dt_Customer + NumWebPurchases +
NumCatalogPurchases + NumStorePurchases + age + child + Education_PhD,
data = train.data)

Residuals:

Min 1Q Median 3Q Max -513.14 -71.94 -10.38 48.67 522.39

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	-302.2482157	57.6574482	-5.242	0.000000181	***
Income	0.0053157	0.0002779	19.131	< 0.0000000000000000000002	***
Dt_Customer	0.0809520	0.0169061	4.788	0.000001845	***
NumWebPurchases	-3.7055854	1.6105025	-2.301	0.02153	*
NumCatalogPurchases	22.3429734	1.9010772	11.753	< 0.0000000000000000000002	***
NumStorePurchases	-2.6732388	1.4950113	-1.788	0.07396	
age	-0.9418859	0.2935538	-3.209	0.00136	**
child	-67.3331085	5.0875429	-13.235	< 0.0000000000000000000002	***
Education_PhD	-24.1966276	8.1075249	-2.984	0.00289	**
	.				

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 128.3 on 1529 degrees of freedom Multiple R-squared: 0.6517, Adjusted R-squared: 0.6499 F-statistic: 357.6 on 8 and 1529 DF, p-value: < 0.0000000000000000022

PERDICTION OF TTLSPEND (TOTAL AMOUNT SPENT ON COMPANY A' S PRODUCTS)

Formula: ttlspend ~ Income + Dt_Customer + NumWebPurchases + NumCatalogPurchases + NumStorePurchases + NumWebVisitsMonth + age + child

Summary of the regression result :

```
Call:
lm(formula = ttlspend ~ Income + Dt_Customer + NumWebPurchases +
   NumCatalogPurchases + NumStorePurchases + NumWebVisitsMonth +
   age + child, data = train.data)
Residuals:
    Min
              10
                  Median
                               30
                                      Max
-1310.64 -145.14
                   -19.55
                           117.00 1153.34
Coefficients:
                                                                Pr(>|t|)
                       Estimate
                                   Std. Error t value
(Intercept)
                   -1270.0414017
                                 0.0006367 23.336 < 0.00000000000000000 ***
Income
                      0.0148579
                                                       0.000000000000678 ***
Dt_Customer
                      0.2585922
                                    0.0356874
                                              7.246
                                                                 0.00343 **
NumWebPurchases
                     10.5902475
                                    3.6136451
                                              2.931
                                    3.8579205 17.695 < 0.00000000000000000 ***
NumCatalogPurchases
                     68.2663174
                                                       0.000000000134489 ***
NumStorePurchases
                     19.8649863
                                    3.0719240
                                              6.467
                                                        0.000015924753669 ***
NumWebVisitsMonth
                     20.3805091
                                    4.7074912
                                               4.329
                                                                 0.00706 **
                     -1.5727677
                                    0.5829754 -2.698
age
child
                    -137.5313042
                                   10.4031413 -13.220 < 0.00000000000000000 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 254.2 on 1529 degrees of freedom
Multiple R-squared: 0.8262,
                             Adjusted R-squared: 0.8253
```

Predicted	Actual	Residual
1468	1617	149
960	716	-244
1551	1315	-236
502	317	-185
206	131	-75
331	302	-29
25	81	56
200	67	-133
-336	31	367
960	1319	359

6.RECOMMENDATION SYSTEM BASED ON THE PREDICTION

F-statistic: 908.6 on 8 and 1529 DF, p-value: < 0.00000000000000022

We assume that if **the predicted amount spent** is above the **0.75 quantile** of the original dataset, then the customer has preference on the product, and we should recommend this product to him/her.

Models used: Model 1: reduced generalized linear regression of **Response**

Model 2: reduced linear regression of MntWines (0.75 quantile=507)

Model 3: reduced linear regression of MntMeatProducts (0.75 quantile=232)

Model 4: reduced linear regression of ttlspend (0.75 quantile=1046)

Recommendation logistic:

7.CUSTOMER CLUSTERING & MARKET SEGMENT

K-MEANS CLUSTERING

SELECT VARIABLES:

Group1: age, Education(3 dummies), Marital_Status, Income, child, family, Dt_Customer, Recency (10)

Group2.a: MntWine, MntFruits, MntMeatProducts, MntFishProducts, MntSweetProducts, MntGoldProds (6)

Group3: NumWebPurchases, NumCatalogPurchases, NumStorePurchases, NumWebVisitsMonth (4)

Correlation table:

Kappa: 25.29492

After standardizing the data, the kappa of it is 25.29492.

Correlations between the variables are not so great.

K-MEANS CLUSTERING:

1. Determine cluster number

Looking at the elbow plot, we can see that it's decline tends to be gender from 3.

So, we choose to cluster the customers into **three** groups.

Elbow plot:

2. K-means clustering

Group	Marital_Status	Income	Age	Child	Master	PhD	Undergraduate
1	0.03	0.26	0.33	0.34	0.07	0.2	-0.2
2	0.01	-0.84	-0.23	0.37	-0.01	-0.09	0.15
3	-0.05	1.14	0.06	-0.94	-0.06	-0.05	-0.06
	Wines	Fruits	Meat	Fish	Sweet	Gold	
1	0.45	-0.17	-0.16	-0.21	-0.18	0.28	
2	-0.79	-0.54	-0.66	-0.56	-0.54	-0.57	
3	0.87	1.06	1.27	1.13	1.07	0.67	
	NumDealsPurc	NumWebP	NumCatalo	NumStoreP	NumWebVi		
	hases	urchases	gPurchases	urchases	sitsMonth		low
1	0.87	0.84	0.1	0.54	0.29		
2	-0.19	-0.78	-0.76	-0.82	0.44		high
3	-0.54	0.46	1.17	0.82	-1.02		

MARKET SEGMENT AND SUGGESTION

CUSTOMER PROFILES OF THE THREE GROUPS:

Group 1:

Demographic: middle income; high education level

Behaviors: prefer wines and gold to other products

Distributions: prefer making purchases through websites and using discount

Group 2:

Demographic. low income; younger generation; most undergraduate

Behaviors: don't like most products of company A

Distributions: like visiting the website but seldom make purchase

Group 3:

Demographic. single; high income; without child

Behaviors: like most products of company A

Distributions: prefer making purchase at stores and through catalogue

SUGGESTION TO COMPANY A

	Group 1	Group 2	Group 3
Attribute	Potential consumer base	not target consumer	Loyal consumer
How to improve	 Provide discount of wines and gold products Focusing on website distribution 	Drop	Improve in-store experienceEstablish membership system

8.APPENDIX

1. Attributes of original variables:

People

- ID: Customer's unique identifier
- Year_Birth: Customer's birth year
- Education: Customer's education level
- Marital Status: Customer's marital status
- Income: Customer's yearly household income
- Kidhome: Number of children in customer's household
- Teenhome: Number of teenagers in customer's household
- Dt_Customer: Date of customer's enrollment with the company
- Recency: Number of days since customer's last purchase
- Complain: 1 if the customer complained in the last 2 years, 0 otherwise

Products

- MntWines: Amount spent on wine in last 2 years
- MntFruits: Amount spent on fruits in last 2 years
- MntMeatProducts: Amount spent on meat in last 2 years
- MntFishProducts: Amount spent on fish in last 2 years
- MntSweetProducts: Amount spent on sweets in last 2 years
- MntGoldProds: Amount spent on gold in last 2 years

Promotion

- NumDealsPurchases: Number of purchases made with a discount
- AcceptedCmp1: 1 if customer accepted the offer in the 1st campaign, 0 otherwise
- AcceptedCmp2: 1 if customer accepted the offer in the 2nd campaign, 0 otherwise
- AcceptedCmp3: 1 if customer accepted the offer in the 3rd campaign, 0 otherwise
- AcceptedCmp4: 1 if customer accepted the offer in the 4th campaign, 0 otherwise
- AcceptedCmp5: 1 if customer accepted the offer in the 5th campaign, 0 otherwise
- Response: 1 if customer accepted the offer in the last campaign, 0 otherwise

Place

- NumWebPurchases: Number of purchases made through the company's website
- NumCatalogPurchases: Number of purchases made using a catalogue
- NumStorePurchases: Number of purchases made directly in stores
- NumWebVisitsMonth: Number of visits to company's website in the last month

2. Code:

Code from 'consumer.R' : code for data cleaning and processing, descriptive statistic

##DATA READING

oridata < - read.csv('marketing_campaign.csv',sep='\t')

```
dim(oridata)
str(oridata)
##DATA CLEANING
clndata=na.omit(oridata)
dim(clndata) #2216
#add variables
clndata$ttlspend=
clndata$MntWines+clndata$MntFruits+clndata$MntMeatProducts+clndata$MntFishProducts+clndata$MntSweetProducts
+clndata$MntGoldProds
clndata$ttlnum= clndata$NumWebPurchases+clndata$NumCatalogPurchases+clndata$NumStorePurchases
clndata$age=2002-clndata$Year_Birth
clndata=clndata[,-2] #remove year birth
clndata$child=clndata$Kidhome+clndata$Teenhome
clndata=clndata[,-5] #remove kid home teen home
clndata=clndata[,-5]
#cIndata$age=cIndata$age-20
#resign date
clndata$Dt_Customer=as.Date(clndata$Dt_Customer,"%d-%m-%Y")
clndata$Dt_Customer=as.Date("2022-06-20")-clndata$Dt_Customer
clndata$Dt_Customer=as.numeric(clndata$Dt_Customer,units='days')
#cIndata$Dt_Customer=round(cIndata$Dt_Customer/365,digits=2)
# education
for(i in 1:length(clndata$Education)){
  if(clndata[i,]$Education=='2n Cycle')clndata[i,]$Education='undergraduate'
  if(clndata[i,]$Education=='Basic')clndata[i,]$Education='undergraduate'
}
# marriage
table(clndata$Marital_Status)
for(i in 1:length(clndata$Marital_Status)){
  if(clndata[i,]$Marital_Status=='Absurd')clndata[i,]$Marital_Status=1
  if(clndata[i,]$Marital_Status=='Alone')clndata[i,]$Marital_Status=1
  if(clndata[i,]$Marital_Status=='Divorced')clndata[i,]$Marital_Status=1
  if(clndata[i,]$Marital_Status=='Married')clndata[i,]$Marital_Status=2
  if(clndata[i,]$Marital_Status=='Single')clndata[i,]$Marital_Status=1
```

if(cIndata[i,]\$Marital_Status=='Together')cIndata[i,]\$Marital_Status=2

```
if(clndata[i,]$Marital_Status=='Widow')clndata[i,]$Marital_Status=1
  if(clndata[i,]$Marital_Status=='YOLO')clndata[i,]$Marital_Status=1
}
clndata$Marital_Status=as.numeric(clndata$Marital_Status)
clndata$familymember=clndata$Marital_Status+clndata$child
#cIndata$accept=cIndata$AcceptedCmp1+cIndata$AcceptedCmp2+cIndata$AcceptedCmp3+cIndata$AcceptedCmp4+cI
ndata$AcceptedCmp5+cIndata$Response
clndata=clndata[,-1]#remove ID
#cIndata$Income=round(cIndata$Income/10000,digits=2)
clndata=clndata[,-23] #remove 2Z
clndata=clndata[,-23]
clndata <- dummy_cols(clndata ,select_columns = c("Education"),remove_first_dummy = TRUE,remove_selected_columns
= TRUE )
dim(clndata)
str(clndata)
skim(clndata)
#options(scipen = 100)
#age outliner remove
boxplot(clndata$age,main='age-before',col='#bac3d5')
cIndata=cIndata[cIndata$age<100,]
boxplot(clndata$age,main='age-after',col='#d6d8d8')
#income outliner remove
boxplot(oridata$Income,main='income-before',col='#bac3d5')
clndata=clndata[clndata$Income<150000,] #2208,30
boxplot(clndata$Income,main='income-after',col='#d6d8d8')
#meat outliner remove
boxplot(clndata$MntMeatProducts,main='meat-before',col='#bac3d5')
clndata=clndata[clndata$MntMeatProducts<1000,]
boxplot(clndata$MntMeatProducts,main='meat-after',col='#d6d8d8')
#gold outliner remove
boxplot(clndata$MntGoldProds,main='gold-before',col='#bac3d5')
clndata=clndata[clndata$MntGoldProds<250,]
boxplot(clndata$MntGoldProds,main='gold-after',col='#d6d8d8')
#sweet outliner remove
boxplot(clndata$MntSweetProducts,main='sweet-before',col='#bac3d5')
clndata=clndata[clndata$MntSweetProducts<200,]
```

breaks = 2.

labels = TRUE)

```
boxplot(clndata$MntSweetProducts,main='sweet-after',col='#d6d8d8')
write.csv(clndata,file='cleaned.csv')
#descriptive statistics
par(mfrow=c(3,2))
hist(cIndata$age,
     xlab = "age",
     main = "Histogram of age",
     col = "#bac3d5",
     breaks = 10,
     labels = TRUE)
hist(clndata$Income,
     xlab = "income",
     main = "Histogram of income",
     col = "#d6d8d8",
     breaks = 10,
     labels = TRUE)
hist(clndata$Dt_Customer,
     xlab = "days",
     main = "Histogram of days",
     col = "#f3f0f1",
     breaks = 4,
     labels = TRUE)
hist(clndata$Recency,
     xlab = "recency(days)",
     main = "Histogram of recency",
     col = "#b1a8ac",
     breaks = 5,
     labels = TRUE)
hist(clndata$Marital_Status,
     xlab = "marital status",
     main = "Histogram of marital status: 1 for single 2 for couple",
     col = "#b1a8ac",
```

```
hist(clndata$child,
     xlab = "child",
     main = "Histogram of child",
     col = "#8a99af",
     breaks = 3,
     labels = TRUE)
#product
summary(clndata[,6:11])
spend=data.frame(Item=as.factor(c('wines','fruits','meat','fish','sweet',
                                       'gold')),
                    data=c(675860,58365,363357,83367,59883,97392))
#ace product:wines,meat
waterfallchart(ltem~data,data=spend,col=c('#bac3d5','#d6d8d8'),main='product')
sum(cIndata$MntFruits)
#promotion
sum(clndata$AcceptedCmp1) #142
sum(clndata$AcceptedCmp2) #30
sum(clndata$AcceptedCmp3) #163
sum(clndata$AcceptedCmp4) #164
sum(clndata$Response) #333
Campaign\_column = c("1st","2nd","3rd","4th","5th","last")
Result_column = c(142,30,163,164,162,333)
Percentage_column = c("142 (6.4\%)","30 (1.4\%)","163 (7.4\%)","164 (7.4\%)","162 (7.3\%)","333 (15.0\%)")
CampaignResult = data.frame(Campaign_column,Result_column,Percentage_column)
plot =barplot( height = CampaignResult$Result_column,
                   names.arg = CampaignResult$Campaign_column,
                   ylim = c(0,350),
                   ylab = "Number of people accepted the offer",
                   main = "effectiveness of promotion campaign",
                   col = "#d6d8d8")
text(x = plot,
      y = CampaignResult$Result_column,
      label = CampaignResult$Percentage_column,
      pos = 3, cex = 0.8, col = "#8a99af")
table(clndata$NumDealsPurchases)
hist(clndata$NumDealsPurchases)
```

```
dealsname=as.character(c(0:10))
dealsname=c(dealsname,"above10")
plot= barplot(names.arg=dealsname,
                height=c(34,956,493,293,187,94,60,39,14,8,5,15),
                ylab="number of people",
                main="number of deals made with a discount",
                col='#bac2d5')
#distribution
purchase=data.frame(Item=as.factor(c('web','catalog','store')),
                   data=c(9049,5812,12849))
waterfallchart(Item~data,data=purchase,col=c('#b1a8ac','#bac3d5'),main='distribution')
#most distribution:store
Code from 'Im2.R': code for part1(customer behaviour prediction)
data<-read.csv('cleaned.csv',sep=',')
Imdata=data[,-1]
#GLM
set.seed(110)
train.rows <- sample(rownames(Imdata), nrow( Imdata )*0.7)
train.data <- Imdata[train.rows,]
valid.rows <- setdiff(rownames( Imdata ), train.rows)</pre>
valid.data <- Imdata[valid.rows , ]</pre>
#glm1
#cor(Imdata)
result=glm(Response~.,data=train.data,family='binomial')
summary(result)
AIC(result)
result=step(result,direction="backward")
p=predict(result,newdata=valid.data,type='response')
confusionMatrix(factor(ifelse(p >= 0.5, 1, 0)), factor(valid.data$Response), positive = "1")
c <- as.data.frame(result$coefficients)
c$name <- rownames(c)
colnames(c)[1] <- "coef"
c$odds <- exp(c$coef)
```

```
c=c[order(c$odds),]
c=c[-1,]
ggplot(c,aes(x=odds,y=name))+
  geom_bar(stat='identity')+
  geom_vline(aes(xintercept=1),size=.25,linetype='dashed')+
  theme(panel.grid.minor=element_blank())+
  ylab("")+xlab("odds ratio")
#default tree
customer.default.tree = rpart(Response ~ .,
                                    data = train.data,
                                    method = "class")
prp( customer.default.tree,
     type = 1, extra = 1, varlen = -10,
     box.col = ifelse(customer.default.tree$frame$var == "<leaf>", '#f3f0f1', '#bac3d5'))
customer.default.tree.pred <- predict(customer.default.tree, valid.data, type = "class")
confusionMatrix(customer.default.tree.pred, as.factor(valid.data$Response), positive = "1")
#random forest
customer.rf <- randomForest(as.factor(Response) ~ .,
                                data = train.data,
                                ntree = 500.
                                mtry = 4,
                                nodesize = 5,
                                importance = TRUE)
summary(customer.rf)
varImpPlot(customer.rf, type = 1,main='variable importance',col='#486090')
customer.rf.pred <- predict(customer.rf, valid.data)</pre>
confusionMatrix(customer.rf.pred, as.factor(valid.data$Response), positive = "1")
code from 'Im3.R' : code for part2 (customer spend prediction)
data<-read.csv('cleaned.csv',sep=',')
Imdata=cbind(data[,2:5],data[,12:16],data[,25:31])
#wine
Imwine=cbind(Imdata,data[,6])
```

```
names(Imwine)[17]='wine'
set.seed(1120)
train.rows <- sample(rownames(Imwine), nrow( Imdata )*0.7)
train.data <- Imwine[train.rows , ]</pre>
valid.rows <- setdiff(rownames( Imwine ), train.rows)</pre>
valid.data <- Imwine[valid.rows , ]</pre>
result1=lm(wine~.,data=train.data)
summary(result1)
AIC(result1)
result=step(result1,direction = 'back')
summary(result)
AIC(result)
p= predict(result,newdata=valid.data,type='response')
valid.resid = valid.data$wine - p
plot(valid.resid)
accuracy(p,actual)
par(mfrow=c(2,2))
plot(result,1:4,col='grey')
res=data.frame( "Predicted" = p[1:10],
              "Actual" = valid.data$wine[1:10],
              "Residual" = valid.resid[1:10])
write.csv(res,file='re.csv')
train.data['1816',]
#meat
Immeat=cbind(Imdata,data[,8])
names(Immeat)[17]='meat'
set.seed(1120)
train.rows <- sample(rownames(Immeat), nrow( Imdata )*0.7)
train.data <- Immeat[train.rows , ]</pre>
valid.rows <- setdiff(rownames( Immeat ), train.rows)</pre>
valid.data <- Immeat[valid.rows , ]</pre>
result1=lm(meat~.,data=train.data)
summary(result1)
AIC(result1)
result=step(result1,direction = 'back')
```

```
summary(result)
p= predict(result,newdata=valid.data,type='response')
valid.resid = valid.data$meat- p
#plot(valid.resid)
#accuracy(p,actual)
par(mfrow=c(2,2))
plot(result,1:4,col='grey')
res=data.frame( "Predicted" = p[1:10],
                   "Actual" = valid.data$meat[1:10],
                   "Residual" = valid.resid[1:10])
#fish
Imfish=cbind(Imdata,data[,9])
names(Imfish)[16]='fish'
set.seed(1120)
train.rows <- sample(rownames(Imfish), nrow( Imdata )*0.7)
train.data <- Imfish[train.rows , ]</pre>
valid.rows <- setdiff(rownames( Imfish ), train.rows)</pre>
valid.data <- Imfish[valid.rows , ]</pre>
result1=lm(fish~.,data=train.data)
summary(result1)
AIC(result1)
result=step(result1,direction = 'back')
summary(result)
#sweet
Imsweet=cbind(Imdata,data[,10])
names(Imsweet)[16]='sweet'
set.seed(120)
train.rows <- sample(rownames(Imfish), nrow( Imdata )*0.7)
train.data <- Imsweet[train.rows , ]</pre>
valid.rows <- setdiff(rownames( Imfish ), train.rows)</pre>
valid.data <- Imsweet[valid.rows , ]</pre>
result1=lm(sweet~.,data=train.data)
summary(result1)
AIC(result1)
result=step(result1,direction = 'back')
```

```
summary(result)
```

```
#gold
Imgold=cbind(Imdata,data[,10])
names(Imgold)[16]='gold'
set.seed(110)
train.rows <- sample(rownames(Imfish), nrow( Imdata )*0.7)
train.data <- Imgold[train.rows , ]</pre>
valid.rows <- setdiff(rownames( Imfish ), train.rows)</pre>
valid.data <- Imgold[valid.rows , ]</pre>
result1=lm(gold~.,data=train.data)
summary(result1)
AIC(result)
result=step(result1,direction = 'back')
summary(result)
#ttlspned
Imttl=cbind(Imdata,data[,24])
names(Imttl)[17]='ttlspend'
set.seed(200)
train.rows <- sample(rownames(Imttl), nrow(Imdata)*0.7)
train.data <- Imttl[train.rows , ]</pre>
valid.rows <- setdiff(rownames( lmttl ), train.rows)</pre>
valid.data <- Imttl[valid.rows , ]</pre>
result=Im(ttlspend~.,data=train.data)
summary(result)
result1=step(result,direction='backward')
summary(result1)
result2=Im(ttlspend ~ Income + Dt_Customer + NumWebPurchases +
               NumCatalogPurchases + NumStorePurchases + NumWebVisitsMonth +
               age + child, data = train.data)
summary(result2)
AIC(result2)
p= predict(result2,newdata=valid.data,type='response')
valid.resid = valid.data$ttlspend- p
par(mfrow=c(2,2))
```

```
plot(result2,1:4,col='grey')
res=data.frame( "Predicted" = p[1:10],
                   "Actual" = valid.data$ttlspend[1:10],
                   "Residual" = valid.resid[1:10])
#
normal=cbind(Imdata,data[,7:11])
normal=normal[,-17]
fruit=Imdata
fruit$fruit=0
for(i in 1:2198){
  if(max(normal[i,16:19])==normal[i,16])fruit[i,]$fruit=1
}
set.seed(100)
train.rows <- sample(rownames(fruit), nrow( Imdata )*0.7)
train.data <- fruit[train.rows , ]</pre>
valid.rows <- setdiff(rownames(fruit), train.rows)</pre>
valid.data <- fruit[valid.rows , ]</pre>
re=glm(fruit~.,data=train.data,family='binomial')
pf=predict(re,newdata=valid.data,type='response')
confusionMatrix(factor(ifelse(p >= 0.5, 1, 0)), factor(valid.data$fruit), positive = "1")
summary(data$MntWines)
summary(data$MntMeatProducts)
summary(data$ttlspend)
code from 'clustering.R' : code for part 3
data<-read.csv('cleaned.csv',sep=',')
data=data[,-1]
scal.data=scale(data[,-1])
kappa(cor(scal.data))
corr=round(cor(data),1)
corrplot(corr,)
data.pr<-princomp(scal.data,cor=T)</pre>
summary(data.pr)
screeplot(data.pr,type="lines")
```

data.pr

```
cluster=data[,c(1:4,23:27,5:15)]
cluster=scale(cluster)
corr=round(cor(cluster),1)
corrplot(corr,tl.col='black',
          tl.srt=30)
kappa(cor(cluster))
options(scipen = 100)
fviz\_nbclust(cluster,kmeans,method="wss") + geom\_vline(xintercept=3,linetype=2)
set.seed(90)
km<-kmeans(cluster,iter.max=100,center=3,nstart=20)
fviz_cluster(km, cluster, geom = "point",ellipse.type = "convex",
               repel = TRUE,
               labelsize=7,palette = "jco",
               ggtheme = theme_minimal())
cluster 1 < -round (aggregate (cluster, by = list (km \$ cluster), FUN = mean), 2) \\
?fviz_cluster
write.csv(cluster1,file='cluser.csv')
```