Parcial 1: Biodisponibilidad y Bioequivalencia 2018-01

Parra G., Daniel S.

19 de septiembre de 2018

Introducción

Se ha efectuado un estudio para demostrar la bioequivalencia entre dos productos que llevan como principio activo Antibiótico SP-4X el que se prescribe a razón de 140 mg por vía IV y 700 mg por vía oral en presentación de tabletas. Para el estudio se utilizó un diseño experimental cruzado con 12 voluntarios, los que se dividieron en 2 grupos de 6 voluntarios, quienes recibieron en periodos diferentes los dos productos en estudio (referencia y competidor). El estudio estuvo completamente controlado los voluntarios fueron todos hombres con edades comprendidas entre los 20 y 35 años y con un peso promedio de 70 kilogramos, la alimentación fue estandarizada y el producto se administró en ayunas con 250 mL de agua, después de 10 horas de ayuno. Del análisis de las muestras de sangre, por un método bioanalítico validado, se obtuvieron los datos que se indican a continuación y se solicita calcular:

- 1. La constante de velocidad de eliminación (k_e) del antibiótico en la muestra poblacional utilizada, datos individuales y el promedio poblacional con su variabilidad (emplear la constante determinada por la vía IV en los cálculos subsiguientes de $AUC|_0^{\infty}$).
- 2. Determinar la constante de velocidad de absorción para el fármaco en los dos productos. Datos individuales y el promedio poblacional con su variabilidad (emplear la constante correspondiente a cada producto para los cálculos del C_{max} y del t_{max}).
- 3. Calcule y tabule los parámetros biofarmacéuticos para cada producto en cada individuo y establezca el valor medio $(\bar{\theta})$ y su variabilidad, ilustre los resultados con las gráficas correspondientes para cada individuo con los dos productos (una sóla gráfica para los 12 individuos de un mismo producto). Establezca la gráfica promedio poblacional para cada producto (En esta se compara en una misma los dos productos).
- 4. ¿Cuál es la biodisponibilidad F de cada producto?
- 5. Se podrían considerar bioequivalentes los dos productos, ¿por qué? Justifique plenamente su respuesta.

Modelamiento Individual Datos Administración IV

Se han modelado mediante regresión no-lineal los datos de concentración-tiempo para el producto de referencia tras admistración intravenosa (IV). El modelo farmacocinético para estos datos corresponde a modelo de 1 compartimento que se describe de manera general por ecuaciones diferenciales:

$$\begin{cases} \frac{dx_1(t)}{dt} = k_e x_1(t) + k_a x_2(t) + r(t) \\ \frac{dx_2(t)}{dt} = -k_a x_2(t) \end{cases}$$

En una forma matricial es equivalente a la siguiente expresión:

$$\frac{d\vec{x}}{dt} = \frac{d}{dt} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} -k_e & k_a \\ 0 & k_a \end{bmatrix} \cdot \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} r(t) \\ 0 \end{bmatrix}$$

En este caso x_1 y x_2 son las cantidades en los compartimentos 1 (central), y 2 (absorción) en unidades de masa. De esta se puede obtener la concentración plasmática C_P al dividir la cantidad en el compartimento central x_1 sobre el volumen de distribución V_D . Las constantes de velocidad k_a y k_e son de absorción y eliminación respectivamente, el término r(t) se añade para denotar un aporte de fármaco al sistema de primer órden (p.ej. en el caso de infusión continua).

En el caso de administración IV en forma de bolo simple, se puede resolver la ecuación de manera analítica relacionando C_p y tiempo. Al tener en cuenta también el error residual, se tiene el siguiente modelo no lineal:

$$\vec{C}_p = \frac{D_0}{V_D} \cdot e^{-k_e \cdot \vec{t}} + \vec{\varepsilon} \qquad \vec{\varepsilon} \sim \mathcal{N}(0, \sigma^2)$$

En este caso se tiene que $\vec{C_p}$ es el vector de concentraciones plasmáticas observadas, mientras \vec{t} es un vector que corresponde a los tiempos en los cuales se han medido las concentraciones. Se tiene que D_0 es la dosis administrada en bolo, y $\vec{\varepsilon}$ es un vector con residuales que se definen como la diferencia entre las concentraciones plasmáticas observadas menos las predichas por el modelo. Los residuales se distribuyen de manera nomal alrededor de cero con varianza σ^2 . El modelo está parametrizado con k_e y V_D , y se pueden obtener parámetros secundarios como clearance total $CL_T = k_e \cdot V_D$, concentración inicial $C_0 = \frac{D_0}{V_D}$, y tiempo de vida media $t_{1/2} = \ln 2/k_e$.

El área bajo la curva truncada y total se obtienen al sumar las áreas por el método de trapezoides, que se define para un intervalo de tiempo entre el primer punto y el último punto de muestreo (C_p^*) :

$$AUC_{TRUNC} = \left(\frac{(C_0 + C_p(t_1))}{2} \cdot t_1\right) + \sum_{i=1}^{n-1} \frac{(C_p(t_i) + C_p(t_{i+1}))}{2} \cdot (t_{i+1} - t_i)$$

El área bajo la curva total se define por medio de la siguiente expresión:

$$AUC = \left(\frac{(C_0 + C_p(t_1))}{2} \cdot t_1\right) + \sum_{i=1}^{n-1} \frac{(C_p(t_i) + C_p(t_{i+1}))}{2} \cdot (t_{i+1} - t_i) + \frac{C_p(t_n)}{k_e}$$

El modelamiento se ha realizado por medio del algoritmo de Gauss-Newton, la función objetivo tiene la forma de suma de errores al cuadrado $S(\theta) = \sum_{i=1}^n \varepsilon_i^2$, como no tiene una solución analítica se realiza un procedimiento de optimización. En el cuadro 1 se puede observar un reporte de los resultados de modelamiento para los datos de administración intravenosa.

Cuadro 1: Resultados de Regresión Modelos 1 Compartimento (Producto IV)

ID	Dosis	V_D	k_e	CL_T	C_0	$t_{1/2}$	$\mathrm{AUC}_0^{C_P^*}$	AUC_0^∞
Sujeto 01	140	21.005	0.230	4.828	6.665	3.015	27.374	29.201
Sujeto 02	140	20.385	0.230	4.688	6.868	3.013	28.192	30.062
Sujeto 03	140	21.663	0.230	4.976	6.463	3.017	26.556	28.341
Sujeto 04	140	19.995	0.230	4.602	7.002	3.011	28.720	30.632
Sujeto 05	140	22.122	0.230	5.077	6.329	3.019	26.027	27.770
Sujeto 06	140	21.879	0.230	5.032	6.399	3.013	26.265	28.004
Sujeto 07	140	20.198	0.230	4.640	6.931	3.017	28.483	30.398
Sujeto 08	140	19.449	0.230	4.474	7.198	3.013	29.532	31.488
Sujeto 09	140	22.845	0.230	5.246	6.128	3.018	25.190	26.888
Sujeto 10	140	20.388	0.234	4.778	6.867	2.957	27.702	29.537
Sujeto 11	140	22.129	0.231	5.104	6.327	3.005	25.949	27.727
Sujeto 12	140	21.917	0.232	5.083	6.388	2.988	26.027	27.665

En la figura 1 se pueden observar los perfiles farmacocinéticos (concentración-tiempo) de cada individuo con el ajuste del modelo. En el cuadro 2 se observan tres parámetros de bondad de ajuste del modelo coeficiente de determinación (R^2) , grados de libertad (g_L) , y error residual estándar (RSE). Estos tres parámetros son definidos de la siguiente manera respectivamente:

$$R^{2} = 1 - \frac{\text{SSE}}{\text{SST}} = 1 - \frac{\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}$$
$$g_{L} = n - p$$
$$\text{RSE} = \hat{\sigma}^{2} = \frac{SSE}{g_{L}} = \frac{(Y_{i} - \hat{Y}_{i})^{2}}{n - p}$$

Donde \hat{Y}_i y Y_i son los valores de concentración observados y predichos, mientras \bar{Y} es el promedio de valores observados. En el caso de g_L , n es el número de pares de coordenadas que conforman el perfil plasmático y p es el número de parámetros del modelo.

Cuadro 2: Diagnósticos Modelos 1 Compartimento (Producto IV)

ID	R^2	g_L	RSE
Sujeto 01	0.999999	8	0.00261
Sujeto 02	0.999999	8	0.00371
Sujeto 03	0.999999	8	0.00240
Sujeto 04	1.000000	8	0.00164
Sujeto 05	0.999996	8	0.00542
Sujeto 06	0.999999	8	0.00342
Sujeto 07	0.999998	8	0.00433
Sujeto 08	0.999999	8	0.00396
Sujeto 09	0.999996	8	0.00554
Sujeto 10	0.999413	8	0.07530
Sujeto 11	0.999897	8	0.02922
Sujeto 12	0.999995	8	0.00735

En la figura 2 y figura 3 se pueden observar todos los datos de administración IV superpuestos en escala de concentraciones normal y logarítmica respectivamente.

Modelamiento Individual Datos Administración Producto A

En el caso de administración peroral, se tiene en cuenta el modelo con administración de un bolo en el compartimento de absorción, y se puede resolver de forma analítica al relacionar C_p y tiempo. Al tener en cuenta también el error residual, se tiene el siguiente modelo no lineal:

$$\vec{C}_p = \frac{F \cdot D_0 \cdot k_a}{V_D \cdot (k_a - k_e)} \cdot \left[e^{-k_e \cdot \vec{t}} - e^{-k_a \cdot \vec{t}} \right] + \vec{\varepsilon} \qquad \vec{\varepsilon} \sim \mathcal{N}(0, \sigma^2)$$

En este caso F es la biodisponibilidad del fármaco para el producto A, mientras k_a es la constante de velocidad de absorción. El parámetro F no se puede resolver sin datos de administración IV por lo cual se realiza un modelo reducido para el problema de optimización que tiene en cuenta un volumen de distribución sin el ajuste respectivo por biodisponibilidad, de la siguiente manera:

$$\vec{C}_p = \frac{D_0 \cdot k_a}{V^* \cdot (k_a - k_e)} \cdot \left[e^{-k_e \cdot \vec{t}} - e^{-k_a \cdot \vec{t}} \right] + \vec{\varepsilon} \qquad \vec{\varepsilon} \sim \mathcal{N}(0, \sigma^2)$$

En este modelo se pueden obtener parámetros farmacocinéticos secundarios como CL_T y $t_{1/2}$ de la forma definida previamente. Se hace un resumen de los diferentes parámetros farmacocinéticos obtenidos para el producto A en el cuadro 3, recordando que el volumen de distribución no se ha ajustado a la biodisponibilidad.

Cuadro 3: Resultados Parámetros Farmacocinéticos (Producto A)

ID	Dosis	k_a	k_e	V^*	CL_T	$t_{1/2}$
Sujeto 01	700	1.504	0.23	26.279	6.037	3.017
Sujeto 02	700	1.504	0.23	25.513	5.861	3.017
Sujeto 03	700	1.503	0.23	27.090	6.223	3.017
Sujeto 04	700	1.503	0.23	27.653	6.355	3.015
Sujeto 05	700	1.504	0.23	25.025	5.748	3.017
Sujeto 06	700	1.505	0.23	24.336	5.590	3.017
Sujeto 07	700	1.503	0.23	28.559	6.561	3.017
Sujeto 08	700	1.504	0.23	27.370	6.290	3.016
Sujeto 09	700	1.504	0.23	25.272	5.803	3.018
Sujeto 10	700	1.501	0.23	25.510	5.877	3.008
Sujeto 11	700	1.501	0.23	25.023	5.763	3.009
Sujeto 12	700	1.500	0.23	25.505	5.878	3.007

Para modelos con administración peroral, también se pueden obtener parámetros biofarmacéuticos como biodisponibilidad absoluta (F), concentración plasmática máxima $(C_{P,max})$ y tiempo de $C_{P,max}$ (T_{max}) . Estos parámetros se definen por las siguientes fórmulas:

$$F = \frac{[\mathrm{AUC_{PO}}]}{[\mathrm{AUC_{IV}}]} \times \frac{[D_0(\mathrm{IV})]}{[D_0(\mathrm{PO})]}$$

$$t_{max} = \frac{\ln k_a - \ln k_e}{k_a - k_e}$$

La concentración plasmática máxima se obtiene al reemplazar en la ecuación analítica el t_{max} . La biodisponibilidad se ha calculado con datos de AUC total y truncada. Los resultados en parámetros biofarmacéuticos se muestran en el cuadro 4 para el producto A.

Cuadro 4: Resultados Parámetros Biofarmacéuticos (Producto A)

ID	t_{max}	$C_{P,max}$	$\mathrm{AUC}_0^{C_P^*}$	AUC_0^∞	$F_{AUC_{TRUNC}}$	F_{AUC}
Sujeto 01	1.475	18.983	107.125	115.788	0.783	0.793
Sujeto 02	1.474	19.554	110.343	119.267	0.783	0.793
Sujeto 03	1.475	18.414	103.922	112.324	0.783	0.793
Sujeto 04	1.475	18.036	101.767	109.991	0.709	0.718
Sujeto 05	1.475	19.934	112.505	121.604	0.865	0.876
Sujeto 06	1.474	20.502	115.680	125.039	0.881	0.893
Sujeto 07	1.475	17.465	98.570	106.536	0.692	0.701
Sujeto 08	1.475	18.224	102.823	111.134	0.696	0.706
Sujeto 09	1.474	19.743	111.428	120.442	0.885	0.896
Sujeto 10	1.475	19.535	110.108	118.920	0.795	0.805
Sujeto 11	1.475	19.915	112.270	121.257	0.865	0.875
Sujeto 12	1.475	19.536	110.088	118.895	0.846	0.860

En el cuadro 5 se muestran los parámetros de diagnóstico del modelo, para los datos del producto A, en general se observa muy buen ajuste del modelo, por lo cual no se realiza análisis de residuales y pruebas de suposiciones de regresión.

Cuadro 5: Diagnósticos Modelos (Producto A)

ID	R^2	g_L	RSE
Sujeto 01	0.999997	8	0.01935
Sujeto 02	0.999997	8	0.02148
Sujeto 03	0.999997	8	0.01971
Sujeto 04	0.999997	8	0.01943
Sujeto 05	0.999997	8	0.02132
Sujeto 06	0.999997	8	0.02136
Sujeto 07	0.999997	8	0.01751
Sujeto 08	0.999997	8	0.01963
Sujeto 09	0.999997	8	0.01921
Sujeto 10	0.999996	8	0.02253
Sujeto 11	0.999996	8	0.02227
Sujeto 12	0.999996	8	0.02317

En la figura 4 se pueden observar los datos observados y curva con ajuste del modelo discriminado por individuos, etiquetados en azul celeste. En la figura 5 y figura 6 se pueden observar todos los datos de administración PO (producto A) superpuestos en escala de concentraciones normal y logarítmica respectivamente.

Modelamiento Individual Datos Administración Producto B

Se hace un resumen de los diferentes parámetros farmacocinéticos obtenidos para el producto B en el cuadro 6, recordando que el volumen de distribución no se ha ajustado a la biodisponibilidad.

Cuadro 6: Resultados Parámetros Farmacocinéticos (Producto B)

ID	Dosis	k_a	k_e	V^*	CL_T	$t_{1/2}$
Sujeto 01	700	2.797	0.23	26.286	6.035	3.018

ID	Dosis	k_a	k_e	V^*	CL_T	$t_{1/2}$
Sujeto 02	700	2.797	0.23	25.276	5.805	3.018
Sujeto 03	700	2.796	0.23	27.379	6.285	3.019
Sujeto 04	700	2.797	0.23	28.574	6.560	3.018
Sujeto 05	700	2.796	0.23	24.334	5.589	3.017
Sujeto 06	700	2.798	0.23	25.032	5.747	3.018
Sujeto 07	700	2.797	0.23	27.661	6.354	3.017
Sujeto 08	700	2.796	0.23	25.519	5.859	3.018
Sujeto 09	700	2.797	0.23	27.099	6.223	3.018
Sujeto 10	700	2.793	0.23	25.281	5.819	3.011
Sujeto 11	700	2.792	0.23	24.340	5.603	3.011
Sujeto 12	700	2.791	0.23	27.386	6.303	3.011

Los resultados en cuanto a parámetros biofarmacéuticos se muestran en el cuadro 7 para el producto B.

Cuadro 7: Resultados Parámetros Biofarmacéuticos (Producto B)

ID	t_{max}	$C_{P,max}$	$\mathrm{AUC}_0^{C_P^*}$	AUC_0^∞	$F_{AUC_{TRUNC}}$	F_{AUC}
Sujeto 01	0.974	21.295	107.190	115.160	0.783	0.789
Sujeto 02	0.974	22.146	111.457	119.731	0.791	0.797
Sujeto 03	0.974	20.444	102.922	110.589	0.775	0.780
Sujeto 04	0.974	19.590	98.615	105.932	0.687	0.692
Sujeto 05	0.974	23.001	115.755	124.332	0.889	0.895
Sujeto 06	0.974	22.364	112.573	120.935	0.857	0.864
Sujeto 07	0.974	20.235	101.823	109.397	0.715	0.720
Sujeto 08	0.974	21.934	110.418	118.606	0.748	0.753
Sujeto 09	0.974	20.656	103.962	111.714	0.825	0.831
Sujeto 10	0.974	22.128	111.222	119.390	0.803	0.808
Sujeto 11	0.974	22.982	115.520	123.991	0.890	0.894
Sujeto 12	0.974	20.425	102.688	110.248	0.789	0.797

En el cuadro 8 se muestran los parámetros de diagnóstico del modelo, para los datos del producto B, en general se observa muy buen ajuste del modelo, por lo cual no se realiza análisis de residuales y pruebas de suposiciones de regresión.

Cuadro 8: Diagnósticos Modelos (Producto B)

ID	\mathbb{R}^2	g_L	RSE
Sujeto 01	0.999997	8	0.02052
Sujeto 02	0.999998	8	0.02076
Sujeto 03	0.999997	8	0.02065
Sujeto 04	0.999997	8	0.01957
Sujeto 05	0.999997	8	0.02299
Sujeto 06	0.999998	8	0.02104
Sujeto 07	0.999997	8	0.01952
Sujeto 08	0.999997	8	0.02206
Sujeto 09	0.999998	8	0.01931
Sujeto 10	0.999997	8	0.02331
Sujeto 11	0.999997	8	0.02575
Sujeto 12	0.999997	8	0.02315

En la figura 7 se pueden observar los datos observados y curva con ajuste del modelo discriminado por individuos, etiquetados en **verde**. En la figura 8 y figura 9 se pueden observar todos los datos de administración PO (producto B) superpuestos en escala de concentraciones normal y logarítmica respectivamente.

Comparación de Resultados

A continuación, se realiza una comparación entre productos, teniendo en cuenta los intervalos de confianza. Los intervalos de confianza de parámetros farmacocinéticos casi siempre tienen una distribución log-normal.

En este caso se ha realizado el test de Shapiro-Wilk de normalidad en el conjunto de parámetros para conocer si siguen la distribución normal. Para V_D (p = 0.058), k_e (p = 8.73E-10), k_a (p = 1.88E-06), y AUC (p = 1.92E-07), el valor p al ser menor que el nivel de significancia (0.05) implica que la muestra no proviene de una población normal. En la transformación de logaritmo no se observa tampoco normalidad, sin embargo, en histogramas se puede observar log-normalidad en k_e , bi-modalidad en k_a , y normalidad en V_D .

Se realiza el cálculo de intervalos de confianza para cada parámetro por forma de administración de acuerdo al método de Cox (estimación de media aritmética en distribuciones log normal) (1).

Producto IV IC 95 % Producto A IC 95 % Producto B IC 95 % 20.4879 - 21.8412 V_D 21.1621.03 20.3746 - 21.6913 20.92 20.2701 - 21.5787 0.230.2296 - 0.23130.23 0.2297 - 0.23010.23 0.2296 - 0.2299 k_e 4.88 4.7233 - 5.0313 6.005.8121 - 6.18586.025.8105 - 6.2199 CL_T $t_{1/2}$ 3.01 2.9958 - 3.01853.01 3.0119 - 3.01693.02 3.0141 - 3.01832.80 1.50 1.5021 - 1.5042.7941 - 2.7971 k_a AUC_{trunc} 27.17 26.3049 - 28.0311 108.05 104.7593 - 111.3453 107.85 104.197 - 111.4938 AUC28.0561 - 29.896 116.77 113.2136 - 120.3191 115.84 111.9287 - 119.7424 28.98

Cuadro 9: Comparación Parámetros Farmacocinéticos

Cuadro 10: Comparación Parámetros Biofarmacéuticos

	Producto A	IC 95 $\%$	Producto B	IC 95 %
$\overline{t_{max}}$	1.475	1.4745 - 1.475	0.974	0.9737 - 0.974
c_{max}	19.153	18.5678 - 19.739	21.433	20.7059 - 22.1606
F_{trunc}	0.798	0.7532 - 0.8438	0.796	0.756 - 0.8362
F_{total}	0.809	0.7632 - 0.8549	0.802	0.7615 - 0.8419

```
# ANOVA en comparación de $F_{Total}$ summary(ANOV1)
```

1 0.00003 0.000034

as.factor(Tipo)

```
##
                      Sum Sq Mean Sq F value
                                                  Pr(>F)
## as.factor(ID)
                   11 0.09493 0.008630
                                        15.056 4.42e-05 ***
## as.factor(Tipo)
                    1 0.00032 0.000322
                                         0.561
                                                    0.47
## Residuals
                   11 0.00631 0.000573
## ---
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(ANOV1b)
                      Sum Sq Mean Sq F value
                                                  Pr(>F)
## as.factor(ID)
                   11 0.09352 0.008502 15.178 4.24e-05 ***
```

0.81

0.061

```
## Residuals
             11 0.00616 0.000560
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(ANOV2)
##
                  Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(ID) 11 0.000
                             0.000 5.36e+00 0.00485 **
                              1.506 4.45e+07 < 2e-16 ***
## as.factor(Tipo) 1 1.506
## Residuals
                 11 0.000
                              0.000
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(ANOV3)
##
                  Df Sum Sq Mean Sq F value
## as.factor(ID)
                  11 19.617
                                     4.735 0.00795 **
                              1.783
## as.factor(Tipo) 1 31.186 31.186 82.803 1.88e-06 ***
## Residuals
                 11 4.143
                             0.377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(MANOV1)
                  {\tt Df\ Pillai\ approx}\ {\tt F\ num\ Df\ den\ Df}
##
                                                     Pr(>F)
## as.factor(ID)
                  11 2.6244
                                   7
                                         33
                                               33 1.098e-07 ***
## as.factor(Tipo) 1 1.0000 17858487
                                         3
                                                9 < 2.2e-16 ***
## Residuals
                  11
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Comparaciones por Prueba t
# Comparación de Biodisponibilidad entre Productos
t.test(subset(LOL,Tipo == "A")$F.total, subset(LOL,Tipo == "B")$F.total)
##
##
   Welch Two Sample t-test
##
## data: subset(LOL, Tipo == "A")$F.total and subset(LOL, Tipo == "B")$F.total
## t = 0.26436, df = 21.626, p-value = 0.794
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.05016927 0.06481143
## sample estimates:
## mean of x mean of y
## 0.8090201 0.8016990
# Comparación de Cmax entre Productos
t.test(subset(LOL,Tipo == "A")$cmax, subset(LOL,Tipo == "B")$cmax)
##
##
   Welch Two Sample t-test
## data: subset(LOL, Tipo == "A")$cmax and subset(LOL, Tipo == "B")$cmax
```

t = -5.3736, df = 21.041, p-value = 2.478e-05

```
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.162030 -1.397636
## sample estimates:
## mean of x mean of y
## 19.15343 21.43326
# Comparación de Tmax entre Productos
t.test(subset(LOL,Tipo == "A")$tmax, subset(LOL,Tipo == "B")$tmax)
##
##
   Welch Two Sample t-test
##
## data: subset(LOL, Tipo == "A")$tmax and subset(LOL, Tipo == "B")$tmax
## t = 3740.7, df = 20.743, p-value < 2.2e-16
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.5006396 0.5011970
## sample estimates:
## mean of x mean of y
## 1.4747800 0.9738617
```

Bibliografía

1. Olsson U. Confidence intervals for the mean of a log-normal distribution. J Stat Educ. 2005;13(1).

Figura 1: Producto IV - Datos Individuales

Figura 2: Producto IV - Datos Agrupados

Figura 3: Producto IV - Datos Agrupados (Escala Ln)

Figura 4: Producto A - Datos Individuales

Figura 5: Producto A - Datos Agrupados

Figura 6: Producto A - Datos Agrupados (Escala Ln)

Figura 7: Producto B - Datos Individuales

Figura 8: Producto B - Datos Agrupados

Figura 9: Producto B - Datos Agrupados (Escala Ln)

Figura 10: Comparación Biodisponibilidad

Figura 11: Comparación F.trunc

Concentración Máxima de Pico, el punto en rojo corresponde a media geométrica; el punto en azul corresponde a media aritmética

Figura 12: Comparación Cmax

Figura 13: Comparación Tmax

Figura 14: Perfil Promedio de Productos