Joint PMF and Conditioning of Multiple Random Variables

John N. Tsitsiklis

November 17, 2017

Joint PMF of Multiple Random Variables

Definition 1 (Joint PMF). Let X and Y be two random variables associated with the same experiment. Then the *joint PMF* $p_{X,y}$ of X and Y is defined by

$$p_{X,Y}(x,y) = \mathbf{P}(X=x,Y=y)$$

Definition 2 (Marginal PMF). The *marginal PMF*s of *X* and *Y* can be obtained from the joint PMF, using the formulas

$$p_{X}(x) = \sum_{y} p_{X,Y}(x,y), \quad p_{Y}(y) = \sum_{x} p_{X,Y}(x,y)$$

Remark 1. If *A* is the set of all pairs that have a certain property, then

$$\mathbf{P}(A) = \sum_{(x,y)\in A} p_{X,Y}(x,y)$$

Remark 2. A function g(X, Y) of X and Y defines another random variable, and

$$\mathbf{E}\left[g(X,Y)\right] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$$

Remark 3. If g(X,Y) = aX + bY + c, we have

$$\mathbf{E}\left[aX + bY + c\right] = a\mathbf{E}\left[X\right] + b\mathbf{E}\left[Y\right] + c$$

Example 1 (The Hat Problem). Suppose that *n* people throw their hats in a box and then each picks one hat at random. What is the expected value of *X*, the number of people that get back their own hat?

Solution For the ith person, let's define the random varible X_i such that

$$X_i = \begin{cases} 1 & \text{if the person picks his own hat,} \\ 0 & \text{otherwise.} \end{cases}$$

Since $P(X = 1) = \frac{1}{n}$, we have

$$\mathbf{E}[X_i] = 1 \cdot \frac{1}{n} + 0 \cdot (1 - \frac{1}{n}) = \frac{1}{n}$$

We now have

$$X = X_1 + X_2 + \dots + X_n$$

so that

$$\mathbf{E}[X] = \mathbf{E}[X_1] + \mathbf{E}[X_2] + \dots + \mathbf{E}[X_n] = n \cdot \frac{1}{n} = 1$$

Conditioning

Conditioning a Random Varible on an Event

Definition 3 (Conditional PMF). The Conditional PMF of a random variable X, conditioned on a particular event A with P(A) > 0, is defined by

$$p_{X|A}(x) = \mathbf{P}(X = x \mid A) = \frac{\mathbf{P}(\{X = x\} \cap A)}{\mathbf{P}(A)}$$

Remark 4. The events $\{X = x\} \cap A$ are disjoint for different values of x, their union is A, hence

$$\mathbf{P}(A) = \sum_{x} \mathbf{P}(\{X = x\} \cap A)$$

Combining the above formulas we have

$$\sum_{x} \mathbf{P}(X \mid A) x = 1$$

So $p_{X|A}$ is a legitimate PMF.

Remark 5. If A_1, \ldots, A_n are disjoint events that form a partition of the sample space, with $\mathbf{P}(A_i) > 0$ for all i, then

$$p_X(x) = \sum_{i=1}^{n} \mathbf{P}(A_i) p_{X|A_i}(x)$$

Also for any event *B*, with $\mathbf{P}(A_i \cap B) > 0$ for all *i*, we have

$$p_{X|B}(x) = \sum_{i=1}^{n} \mathbf{P}(A_i \mid B) p_{X|A_i \cap B}(x)$$

Conditioning one Random Variable on Another

Definition 4. Let *X* and *Y* be two random variables associated with the same experiment. The Conditional PMF $p_{X|Y}$ of X given Y is defined by

$$p_{X|Y}(x|y) = \mathbf{P}(X = x \mid Y = y)$$

Remark 6.

$$p_{X,Y}(x,y) = p_Y(y) p_{X|Y}(x|y) = p_X(x) p_{Y|x}(y|x)$$

Conditional Expectation

Let *X* and *Y* be random variables associated with the same experiment

 The conditional expectation of X given an event A with P (A) > 0, is defined by

$$\mathbf{E}\left[X \mid A\right] = \sum_{x} x p_{X\mid A}\left(x\right)$$

For a function g(X), we have

$$\mathbf{E}\left[g(X) \mid A\right] = \sum_{x} g(x) p_{X \mid A}(x)$$

• The conditional expectation of *X* given a value *y* of *Y* is defined by

$$\mathbf{E}\left[X \mid Y = y\right] = \sum_{x} x p_{X|Y}\left(x|y\right)$$

• If $A_1, ..., A_n$ are disjoint events that form a partition of the sample space, with $P(A_i) > 0$ for all i, then

$$\mathbf{E}[X] = \sum_{i=1}^{n} \mathbf{P}(A_i) \mathbf{E}[X \mid A_i]$$

Also for any event B, with $\mathbf{P}(A_i \cap B) > 0$ for all i, we have

$$\mathbf{E}[X \mid B] = \sum_{i=1}^{n} \mathbf{P}(A_i \mid B) \mathbf{E}[X \mid A_i \cap B]$$

• We have

$$\mathbf{E}[X] = \sum_{y} p_{Y}(y) \mathbf{E}[X | Y = y]$$

Example 2 (D. Bernoulli's problem of joint lives). Consider 2m persons forming m couples who live together at a given time. Suppose that at some later time the probability of each person being alive is p, independent of other persons. At that later time, let A be the number of persons that are alive and let S be the number of couples in which both partners are alive. For any survivor number a, find E[S | A = a]

Solution Let X_j be the indicator of the event that the jth couple survives. Then

$$\mathbf{E}[S \mid A = a] = \mathbf{E}\left[\sum_{j=1}^{m} X_{j}\right]$$
$$= m\mathbf{E}[X_{1}]$$
$$= m\mathbf{P}(X_{1} = 1)$$

because the chance of survival is the same for every couple. Now we can choose the a survivors in $\binom{2m}{a}$ ways, and the number of these in which the first couple is remain alive is $\binom{2m-2}{a-2}$. Since all outcomes are equally likely we have

$$\mathbf{P}(X_1 = 1) = \frac{\binom{2m-2}{a-2}}{\binom{2m}{a}} = \frac{a(a-1)}{2m(2m-1)}$$

Hence we have

$$\mathbf{E}[S \mid A = a] = m \cdot \frac{a(a-1)}{2m(2m-1)} = \frac{a(a-1)}{2(2m-1)}$$

An alternative solution:

Let X_i be the random variable taking the value 1 or 0 depending on whether the first partner of the ith couple has survived or not. Let Y_i be the corresponding random variable for the second partner of the ith couple. Then, we have $S = \sum_{i=1}^m X_i Y_i$, and by using the total expectation theorem,

$$\mathbf{E}[S | A = a] = \sum_{i=1}^{m} \mathbf{E}[X_{i}Y_{i} | A = a]$$

$$= m\mathbf{E}[X_{1}Y_{1} | A = a]$$

$$= m\mathbf{P}(X_{1}Y_{1} = 1 | A = a)$$

Also

$$\mathbf{P}(X_1Y_1 = 1 \mid A = a) = \mathbf{P}(Y_1 = 1 \mid X_1 = 1 \cap A = a) \cdot \mathbf{P}(X_1 = 1 \mid A = a)$$

We have

$$\mathbf{P}(Y_1 = 1 \mid X_1 = 1 \cap A = a) = \frac{a-1}{2m-1}, \quad \mathbf{P}(X_1 = 1 \mid A = a) = \frac{a}{2m}$$

Thus

$$\mathbf{E}[S \mid A = a] = m \cdot \frac{a-1}{2m-1} \cdot \frac{a}{2m}$$
$$= \frac{a(a-1)}{2(2m-1)}$$

Note that $\mathbf{E}[S \mid A = a]$ does not depend on p.

Example 3. A coin that has probability of heads equal to *p* is tossed successively and independently until a head comes twice in a row or a tail comes twice in a row. Find the expected value of the number of tosses.

Solution Let X be number of tosses until the game is over and let H_k (or T_k) be the event that a head (or a tail, respectively) comes at

the kth toss. Since H_1 and T_1 form a partition of the sample space, by total expectation theorem, we have

$$\mathbf{E}[X] = p\mathbf{E}[X | H_1] + (1 - p)\mathbf{E}[X | T_1]$$

Using the total expectation theorem again, we have

$$\mathbf{E}[X | H_1] = p\mathbf{E}[X | H_1 \cap H_2] + (1 - p)\mathbf{E}[X | H_1 \cap T_2]$$

= 2p + (1 - p)(1 + \mathbf{E}[X | T_1])

Since **E** $[X | H_1 \cap H_2] = 1$ as game ends. Also **E** $[X | H_1 \cap T_2] = 1 +$ $\mathbf{E}[X \mid T_1]$ since the last toss only matters and the game proceeds. Similarly we have

$$\mathbf{E}[X | T_1] = 2(1 - p) + p(1 + \mathbf{E}[X | H_1])$$

Combining the above equations we have

$$\mathbf{E}[X \mid H_1] = \frac{2 + (1 - p)^2}{1 - p(1 - p)}$$

And

$$\mathbf{E}[X \mid T_1] = \frac{2 + p^2}{1 - p(1 - p)}$$

Thus

$$\mathbf{E}[X] = \frac{2 + p(1 - p)}{1 - p(1 - p)}$$