Trigonometric Identities

Yuqing Zhang

September 29, 2010

1 It's all about the identities!

Trigonometry is one of the most formula-intensive topics in all of contest math. Nearly all trigonometry problems can be solved with a relatively small set of identities. This means that learning to solve trigonometric problems takes less time than learning other topics. Remember: identities are the tools we need to solve these problems.

2 Theorem: $e^{i\theta} = \cos \theta + i \sin \theta$

Proof: There are two common proofs for this. First, $f(x) = e^{ix}$ and $f(x) = \cos x + i \sin x$ have the same Taylor Series. Second, both $f(x) = e^{ix}$ and $f(x) = \cos x + i \sin x$ are solutions to the differential equation $\frac{dy}{dx} = iy$. Because the solution to a differential equation is unique, they must be equal.

3 Angle Addition and Subtraction Identities

 $\cos(\alpha + \beta) + i\sin(\alpha + \beta) = e^{i(\alpha+\beta)} = e^{i\alpha} \times e^{i\beta} = (\cos\alpha + i\sin\alpha) \times (\cos\beta + i\sin\beta)$. By equating the real and imaginary parts after expanding, we arrive at the following formulae:

•
$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

•
$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)$$

•
$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

•
$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

After using $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and simplifying, we have:

•
$$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}$$

•
$$\tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$$

Exercise 1 : Simplify $\frac{\sqrt{3}\sin(x+30^\circ)-\cos(x+30^\circ)}{4\cos x\sin(x+30^\circ)-4\sin x\cos(x+30^\circ)}$. (Source: Mandelbrot)

Exercise 2: Suppose that $\sin a + \sin b = \sqrt{\frac{5}{3}}$ and $\cos a + \cos b = 1$ What is $\cos(a - b)$? (Source: AMC)

4 Multiple Angle Identities

Double-angle and triple-angle Identities can be derived from the angle addition identities. With $\sin(2\theta) = \sin(\theta + \theta)$, $\cos(2\theta) = \cos(\theta + \theta)$, and $\tan(2\theta) = \tan(\theta + \theta)$, we draw the following conclusions:

- $\sin(2\theta) = 2\sin\theta\cos\theta$
- $\cos(2\theta) = \cos^2 \theta \sin^2 \theta = 1 2\sin^2 \theta = 2\cos^2 \theta 1$
- $\tan(2\theta) = \frac{2\tan(\theta)}{1-\tan^2(\theta)}$

In order to derive an expression for $\sin(3\theta)$, $\cos(3\theta)$, and $\cos(3\theta)$, we use $\sin(3\theta) = \sin(2\theta + \theta)$, $\cos(3\theta) = \cos(2\theta + \theta)$, $\tan(3\theta) = \tan(2\theta + \theta)$, and simplify:

- $\sin(3\theta) = 3\sin\theta 4\sin^3\theta$
- $\cos(3\theta) = -3\cos\theta + 4\cos^3\theta$
- $\tan(3\theta) = \frac{3\tan(\theta) \tan^3(\theta)}{1 3\tan^2(\theta)}$

For any n, n-tuple angle identities can be found using $e^{in\theta} = \cos(n\theta) + i\sin(n\theta) = (\cos\theta + i\sin\theta)^n$ and equating the real and imaginary parts.

To find the half-angle identities, we take the double-angle identities for cosine and solve for the half-angle:

- $\sin(\frac{\theta}{2}) = \pm \sqrt{\frac{1 \cos(\theta)}{2}}$
- $\cos(\frac{\theta}{2}) = \pm \sqrt{\frac{1 + \cos(\theta)}{2}}$

•
$$\tan(\frac{\theta}{2}) = \pm \frac{\sin(\frac{\theta}{2})}{\cos(\frac{\theta}{2})} = \pm \frac{\sqrt{1-\cos\theta}}{\sqrt{1+\cos\theta}} = \pm \frac{\sin(\theta)}{1+\cos(\theta)} = \pm \frac{1-\cos(\theta)}{\sin(\theta)}$$

Note the \pm . The sign depends on the angle in question.

Exercise 1: Find $\cos(\frac{\pi}{7})\cos(\frac{2\pi}{7})\cos(\frac{4\pi}{7})$.

Exercise 2: Compute the number of degrees in the smallest positive angle x that satisfies the equation $8\sin(x)\cos^5(x) - 8\sin^5(x)\cos(x) = 1$.

5 Sum-to-Product and Product-to-Sum Identities

The sum-to-product and product-to-sum identities are rearrangements of the angle addition identities. Instead of taking up (a lot of) space in these notes, I will derive these expressions during my lecture.

Sum-to-product:

•
$$\cos(\alpha) + \cos(\beta) = 2\cos(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})$$

•
$$\cos(\alpha) - \cos(\beta) = -2\sin(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2})$$

•
$$\sin(\alpha) + \sin(\beta) = 2\sin(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})$$

•
$$\sin(\alpha) - \sin(\beta) = 2\cos(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2})$$

Product-to-sum:

•
$$\sin(\alpha)\sin(\beta) = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

•
$$\cos(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

•
$$\sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

Exercise 1 : Compute $\frac{\sin 13^{\circ} + \sin 47^{\circ} + \sin 73^{\circ} + \sin 107^{\circ}}{\cos 17^{\circ}}$. (Source: ARML)

Exercise 2: Evaluate $\frac{\cos(1^{\circ})+\cos(2^{\circ})+\cos(3^{\circ})+...+\cos(43^{\circ})+\cos(44^{\circ})}{\sin(1^{\circ})+\sin(2^{\circ})+\sin(3^{\circ})+...+\sin(43^{\circ})+\sin(44^{\circ})}$. (Source: AIME)