## Convergence of the maximum of a sample from a Uniform distribution

**Objective:** The primary purpose is to explore the convergence of  $X_{(n)}$  for the Uniform distribution as the sample size (n) increases.

**Task:** Follow the subsequent steps to examine the convergence of  $X_{(n)}$ :

- 1. Open the Shiny app given in the URL <a href="https://tinyurl.com/shinyconv">https://tinyurl.com/shinyconv</a>.
- 2. Using the Shiny app, select the Uniform distribution, the sample size (n), the population maximum  $(\gamma)$  and  $\epsilon$  based on the information given in Table 1.
- 3. In Table 1, fill the gaps by using the results from the Shiny app in order to infer curves on Figure 1 (convergence quickness of  $X_{(n)}$ ) with their respective colors which are associated to each distinct value of  $\epsilon$ .

Table 1. Assessment of  $F_{X_{(n)}}(\gamma - \epsilon)$  as n increases.

|         |                  |                                                                       | n = 3 | n = 44 | n<br>= 101 | n<br>= 197 |
|---------|------------------|-----------------------------------------------------------------------|-------|--------|------------|------------|
|         | $\epsilon = 0.1$ | $F_{X_{(n)}}(\gamma - \epsilon) = P( X_{(n)} - \gamma  \ge \epsilon)$ | 0.96  |        |            |            |
| y = 8.6 | $\epsilon = 0.3$ | $F_{X_{(n)}}(\gamma - \epsilon) = P( X_{(n)} - \gamma  \ge \epsilon)$ |       |        |            | 0          |
|         |                  | $F_{X_{(n)}}(\gamma - \epsilon) = P( X_{(n)} - \gamma  \ge \epsilon)$ |       | 0.07   |            |            |



Figure 1. Template to illustrate the convergence swiftness of  $X_{(n)}$  for each distinct value of  $\epsilon$ .

| What can be inferred with regard to the pattern observed?                                             |
|-------------------------------------------------------------------------------------------------------|
| It can be affirmed that $X_{(n)}$ is close to $\gamma=8.6$ with high probability (when $n$ is large)? |
| What can be concluded about the convergence quickness of $X_{(n)}$ as $\epsilon$ rises?               |
|                                                                                                       |

4. In accordance with Table 1:

## Convergence of the minimum of a sample from a Shifted Exponential distribution

**Objective:** The primary purpose is to explore the convergence of  $X_{(1)}$  for the Shifted Exponential distribution as the sample size (n) increases.

**Task:** Follow the subsequent steps to examine the convergence of  $X_{(1)}$ :

- 1. Open the Shiny app given in the URL.
- 2. Using the Shiny app, select the Shifted Exponential distribution, the sample size (n), the population minimum  $(\gamma)$  and  $\epsilon$  based on the information given in Table 2.
- 3. In Table 2, fill the gaps by using the results from the Shiny app in order to infer curves on Figure 2 (convergence quickness of  $X_{(1)}$ ) with their respective colors which are associated to each distinct value of  $\epsilon$ .

Table 2. Assessment of  $F_{X_{(1)}}(\gamma + \epsilon)$  as n increases.

|                |                  |                                                                     | n - 2 | n - 25 | n<br>= 115 | n     |
|----------------|------------------|---------------------------------------------------------------------|-------|--------|------------|-------|
|                |                  |                                                                     | n-2   | n-25   | = 115      | = 185 |
|                | $\epsilon = 0.1$ | $F_{X_{(1)}}(\gamma + \epsilon) = P( X_{(1)} - \gamma  < \epsilon)$ |       |        | 0.99       |       |
| $\gamma = 4.2$ | $\epsilon = 0.3$ | $F_{X_{(1)}}(\gamma + \epsilon) = P( X_{(1)} - \gamma  < \epsilon)$ | 0.44  |        |            |       |
|                | $\epsilon = 0.5$ | $F_{X_{(1)}}(\gamma + \epsilon) = P( X_{(1)} - \gamma  < \epsilon)$ |       |        |            | 0.99  |



Figure 2. Template to illustrate the convergence swiftness of  $X_{(1)}$  for each distinct value of  $\epsilon$ 

| It can be affirmed that $X_{(1)}$ is close to $\gamma=4.2$ with high probability (when $n$ is large)?  What can be concluded about the convergence quickness of $X_{(1)}$ as $\epsilon$ rises? |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What can be concluded about the convergence quickness of $Y_{C}$ as $\epsilon$ rises?                                                                                                          |
|                                                                                                                                                                                                |

4. In accordance with Table 2: