Concours commun Centrale

MATHÉMATIQUES 2. FILIERE MP

Partie I -

I.A -

I.A.1) a) Soit $x \in E$. h(x) est une application de E dans K, linéaire par linéarité de ϕ par rapport à sa deuxième variable. Donc $\forall x \in E$, $h(x) \in E^*$.

b) h est donc une application de E dans E*. Soient $(x,y) \in E^2$ et $(\alpha,\beta) \in \mathbb{K}^2$. Pour tout $z \in E$,

$$h(\alpha x + \beta y)(z) = \varphi(\alpha x + \beta y, z) = \alpha \varphi(x, z) + \beta \varphi(y, z) = (\alpha h(x) + \beta h(y))(z),$$

et donc $h(\alpha x + \beta y) = \alpha h(x) + \beta h(y)$. h est donc une application linéaire de E dans E*.

$$h\in \mathscr{L}(E,E^*).$$

I.A.2) Soit A une partie non vide de E. Pour chaque $\alpha \in A$, $\{\alpha\}^{\perp \varphi} = \{x \in E/\ h(\alpha)(x) = 0\} = \mathrm{Ker}(h(\alpha))$ et donc pour chaque $\alpha \in A$, $\{\alpha\}^{\perp \varphi}$ est un sous-espace vectoriel de E. Mais alors $A^{\perp \varphi} = \bigcap_{\alpha \in A} \{\alpha\}^{\perp \varphi}$ est un sous-espace vectoriel de E en tant qu'intersection de sous-espaces vectoriels de E.

I.A.3) E et E^* sont deux K-espaces de mêmes dimensions finies et $h \in \mathcal{L}(E, E^*)$. Donc, h est un isomorphisme si et seulement si h est injective. Or

$$\begin{split} h \ \mathrm{injective} &\Leftrightarrow \mathrm{Ker} h = 0 \Leftrightarrow \{x \in E/\ h(x) = 0\} = \{0\} \Leftrightarrow \{x \in E/\ \forall y \in E,\ \phi(x,y) = 0\} = \{0\} \\ &\Leftrightarrow E^{\perp \phi} = \{0\} \Leftrightarrow \phi \ \mathrm{non} \ \mathrm{d\acute{e}g\acute{e}n\acute{e}r\acute{e}e}. \end{split}$$

 ϕ est non dégénérée si et seulement si h est un isomorphisme.

 $\textbf{I.A.4) a) \ \text{On sait que pour toute forme linéaire } f \ \text{sur } E, \ \text{on a} \ f = \sum_{i=1}^n f(e_i)e_i^*. \ \text{En particulier}, \ \forall j \in [\![1,n]\!],$

$$h(e_j) = \sum_{i=1}^n h(e_j)(e_i)e_i^* = \sum_{i=1}^n \phi(e_i, e_j)e_i^*.$$

 $\text{Pour chaque } j \in [\![1,n]\!], \text{ la } j\text{-\`eme colonne de mat}(h,e,e^*) \text{ est donc } \left(\begin{array}{c} \phi(e_1,e_j) \\ \phi(e_2,e_j) \\ \vdots \\ \phi(e_n,e_j) \end{array} \right) \text{ ou encore }$

$$\operatorname{mat}(h,e,e^*) = (\phi(e_i,e_j))_{1\leqslant i,j\leqslant n}.$$

b) Soit $(x,y) \in E^2$.

$$\varphi(x,y) = \varphi\left(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j\right) = \sum_{1 \leqslant i,j \leqslant n} x_i y_j \varphi(e_i, e_j) = \sum_{i=1}^{n} x_i \left(\sum_{j=1}^{n} \varphi(e_i, e_j) y_j\right)$$

$$= {}^{t}XOY.$$

$$\forall (x,y) \in E^2, \, \phi(x,y) = {}^t X \Omega Y.$$

I.B.1) Soit $q \in Q(E)$. Par définition de Q(E), il existe une forme bilinéaire symétrique ϕ telle que $q = q_{\phi}$. Vérifions que ϕ est unique. Soit ψ une forme bilinéaire symétrique sur E telle que $q = q_{\psi}$.

Pour tout $(x,y) \in E^2$, on a $q(x+y) = \psi(x+y,x+y) = \psi(x,x) + 2\psi(x,y) + \psi(y,y) = q(x) + 2\psi(x,y) + q(y)$ et on obtient l'identité de polarisation

$$\psi(x,y) = \frac{1}{2}(q(x+y) - q(x) - q(y)) = \phi(x,y).$$

Donc $\psi = \varphi$ et φ est uniquement définie.

- **I.B.2)** Soit q (resp. q') une forme quadratique sur E (resp. E'). On note φ (resp. φ') la forme bilinéaire symétrique associée à q (resp. q').
- Supposons qu'il existe une base e de E et une base e' de E' telles que $\max(\mathfrak{q},e)=\max(\mathfrak{q}',e')$. Soit f l'application linéaire de E dans E' définie par f(e)=e'. Tout d'abord l'image par f d'une base de E est une base de E' et donc f est un isomorphisme de E sur E'. Puis, pour $x=\sum_{i=1}^n x_ie_i$,

$$\begin{split} q'(f(x)) &= \phi'\left(f\left(\sum_{i=1}^n x_i e_i\right), f\left(\sum_{j=1}^n x_j e_j\right)\right) = \sum_{1\leqslant i,j\leqslant n} x_i x_j \phi'(f(e_i),f(e_j)) = \sum_{1\leqslant i,j\leqslant n} x_i x_j \phi'(e_i',e_j') \\ &= \sum_{1\leqslant i,j\leqslant n} x_i x_j \phi(e_i,e_j) \text{ (puisque mat}(q,e) = \text{mat}(q',e')) \\ &= \phi\left(\sum_{i=1}^n x_i e_i, \sum_{j=1}^n x_j e_j\right) = q(x). \end{split}$$

• Réciproquement, supposons qu'il existe une isométrie f de (E,q) dans (E',q'). f est un isomorphisme de E sur E' et pour tout $x \in E$, q'(f(x)) = q(x). Plus généralement, pour $(x,y) \in E^2$,

$$\begin{split} \phi'(f(x),f(y)) &= \frac{1}{2}(q'(f(x)+f(y))-q'(f(x))-q'(f(y))) = \frac{1}{2}(q'(f(x+y))-q'(f(x))-q'(f(y))) \\ &= \frac{1}{2}(q(x+y)-q(x)-q(y)) = \phi(x,y). \end{split}$$

Soient alors e une base de E puis e'=f(e). Puisque f est un isomorphisme de E sur $E',\ e'$ est une base de E'. De plus, pour $(i,j)\in [\![1,n]\!]^2$,

$$\phi'(e_i',e_j') = \phi'(f(e_i),f(e_j)) = \phi(e_i,e_j),$$

et donc pour tout $(i,j) \in [1,n]^2$, le coefficient ligne i colonne j de mat(q',e') est égal au coefficient ligne i colonne j de mat(q,e). Par suite, mat(q,e) = mat(q',e').

 $\textbf{I.B.3) a) \ \text{Pour } x = \sum_{i=1}^{2p} x_i c_i \ \text{et } y = \sum_{i=1}^{2p} y_i c_i \ \text{éléments de } \mathbb{K}^{2p}, \ \text{posons } \phi_p(x,y) = \sum_{i=1}^p (x_i y_{i+p} + y_i x_{i+p}). \ \phi_p \ \text{est une forme}$ bilinéaire symétrique telle que $\forall x \in \mathbb{K}^{2p}, \ q_p(x) = \phi_p(x,x). \ \text{Donc } q_p \ \text{est une forme quadratique sur } \mathbb{K}^{2p} \ \text{et } \phi_p \ \text{est la forme}$ bilinéaire symétrique associée à q_p . De plus, pour $(i,j) \in [\![1,2p]\!]^2, \ \phi_p(c_i,c_j) = \left\{ \begin{array}{l} 1 \ \text{si } j=i+p \ \text{ou } i=j+p \ \text{otherwise} \\ 0 \ \text{sinon} \end{array} \right.$ et donc

b) Déterminons l'orthogonal de \mathbb{K}^{2p} pour ϕ_p c'est à dire l'ensemble des $x = \sum_{i=1}^{2p} x_i c_i$ tels que

$$\forall y = \sum_{i=1}^{2p} y_i c_i, \sum_{i=1}^{p} (x_i y_{i+p} + x_{i+p} y_i) = 0.$$
© Jean-Louis Rouget, 2010. Tous droits réservés.

http://www.maths-france.fr

En appliquant l'égalité précédente à $y=c_i,\ 1\leqslant i\leqslant p,$ on obtient $x_{i+p}=0$ et pour $y=c_i,\ p+1\leqslant i\leqslant 2p,$ on obtient $x_{i-p}=0$. Par suite, $\forall i\in [\![1,2p]\!],\ x_i=0$ et donc x=0. q_p est donc non dégénérée. Si maintenant (F,q) est un espace isométrique à $(\mathbb{K}^{2p},q_p),$ d'après la question I.B.2), il existe une base e de E dans laquelle la matrice de q est $\begin{pmatrix} 0_p & I_p \\ I_p & 0_p \end{pmatrix}$. Les calculs précédents s'appliquent donc à q et q est non dégénérée.

c) Posons $A = \mathrm{mat}(q_p,c) = \begin{pmatrix} 0_p & I_p \\ I_p & 0_p \end{pmatrix}$. La matrice A est symétrique réelle et donc orthogonalement semblable à une matrice diagonale réelle d'après le théorème spectral. Déterminons les valeurs propres de A. Un calcul par blocs fournit $A^2 = I_{2p}$ et donc A est une matrice de symétrie et puisque A n'est ni I_{2p} , ni $-I_{2p}$, les valeurs propres de A sont 1 et -1. Enfin, $A + I_{2p} = \begin{pmatrix} I_p & I_p \\ I_p & I_p \end{pmatrix}$ est de rang p car les p premières colonnes de cette matrice sont linéairement indépendantes et la famille des p dernières est égales à la famille des p premières. Donc -1 est d'ordre 2p - p = p puis 1 est d'ordre p. En résumé, il existe $P \in O_{2p}(\mathbb{R})$ telle que $A = PDP^{-1} = PD^tP$ où $D = \mathrm{diag}(\underbrace{1 \dots 1_{-1} \dots -1}_{p})$.

Soit $e = (e_1, \dots, e_p, e_{p+1}, \dots, e_{2p})$ la base de \mathbb{C}^{2p} dont les vecteurs sont les colonnes de la matrice P puis $e' = (e_1, \dots, e_p, ie_{p+1}, \dots, ie_{2p}) = (e'_k)_{1 \leqslant k \leqslant 2p}$. e' est une base de \mathbb{C}^{2p} car $\det_c(e') = i^p \det(P) \neq 0$. Pour $x \in E$, posons $x = \sum_{k=1}^{2p} x''_k e'_k = \sum_{k=1}^{2p} x'_k e_k = \sum_{k=1}^{2p} x_k c_k$. D'après la question I.A.4)b)

$$q_p(x) = \sum_{k=1}^p x_k x_{k+p} = {}^t X A X = {}^t (PX) D(PX) = \sum_{k=1}^p x_k'^2 - \sum_{k=p+1}^{2p} x_k'^2 = \sum_{k=1}^p x_k''^2 - \sum_{k=p+1}^{2p} (i x_k'')^2 = \sum_{k=1}^{2p} x_k''^2.$$

Par suite, $\operatorname{mat}(\mathfrak{q}_{\mathfrak{p}},e')=I_{2\mathfrak{p}}=\operatorname{mat}(\mathfrak{q},c).$ Comme $\operatorname{mat}(\mathfrak{q}_{\mathfrak{p}},e')=\operatorname{mat}(\mathfrak{q},c),$ les espaces $(\mathbb{C}^{2\mathfrak{p}},\mathfrak{q})$ et $(\mathbb{C}^{2\mathfrak{p}},\mathfrak{q}_{\mathfrak{p}})$ sont isométriques d'après la question I.B.2) et donc

 (\mathbb{C}^{2p},q) est un espace de Artin.

d) La matrice de q' dans la base c est $D = \operatorname{diag}(\underbrace{1\dots 1}_{p} \underbrace{-1\dots -1}_{p})$. D'autre part, d'après la réduction usuelle d'une forme quadratique d'un espace euclidien en base orthonormée, il existe une base e de \mathbb{R}^{2p} telle que $\operatorname{mat}(q,e) = D$. D'après la question I.B.2), les espaces (\mathbb{R}^{2p}, q') et (\mathbb{R}^{2p}, q_p) sont isométriques et donc

$$(\mathbb{R}^{2p}, \mathfrak{q}')$$
 est un espace de Artin.

e) Soit f une isométrie de (\mathbb{K}^{2p},q_p) sur (F,q). On pose $G=f(\mathrm{Vect}(c_1,\ldots,c_p))$. Puisque f est un isomorphisme, G est un sous-espace de F de dimension p. Pour tout $x\in \mathrm{Vect}(c_1,\ldots,c_p)$, les p dernières composantes de x sont nulles et donc $q_p(x)=0$. Soit alors $y\in G$. Il existe $x\in \mathrm{Vect}(c_1,\ldots,c_p)$ tel que y=f(x) et donc $q(y)=q(f(x))=q_p(x)=0$. En résumé, G est un sous-espace vectoriel de F de dimension p et la restriction de q à G est nulle.

Partie II -

II.A -

II.A.1) a) On suppose p < n. Puisque la forme ϕ est non dégénérée, h est un isomorphisme d'après la question I.A.3). Soit $x \in E$. On sait que $h(x) \in E^*$ puis $h(x) = \sum_{i=1}^n (h(x)(e_i))e_i^*$ (*).

$$\begin{split} x \in F^\perp &\Leftrightarrow \forall y \in F, \ \phi(x,y) = 0 \\ &\Leftrightarrow \forall i \in [\![1,p]\!], \ \phi(x,e_i) = 0 \ (\Leftarrow \ \mathrm{est} \ \mathrm{vraie} \ \mathrm{par} \ \mathrm{lin\acute{e}arit\acute{e}} \ \mathrm{de} \ \phi \ \mathrm{par} \ \mathrm{rapport} \ \grave{a} \ \mathrm{sa} \ 2 \ \grave{e}\mathrm{me} \ \mathrm{variable}) \\ &\Leftrightarrow \forall i \in [\![1,p]\!], \ h(x)(e_i) = 0 \Leftrightarrow h(x) \in \mathrm{Vect}(e_{p+1}^*,\ldots,e_n^*) \ (\mathrm{d'apr\grave{e}s} \ (*)) \\ &\Leftrightarrow x \in h^{-1} \left(\mathrm{Vect}(e_{p+1}^*,\ldots,e_n^*) \right). \end{split}$$

$$F^{\perp} = h^{-1} \left(\operatorname{Vect}(e_{\mathfrak{p}+1}^*, \dots, e_{\mathfrak{n}}^*) \right).$$

b) Puisque h^{-1} est un isomorphisme,

$$\dim(\mathsf{F}^\perp) = \dim\left(\mathsf{h}^{-1}\left(\operatorname{Vect}(e_{\mathfrak{p}+1}^*,\ldots,e_{\mathfrak{n}}^*)\right)\right) = \dim\left(\operatorname{Vect}(e_{\mathfrak{p}+1}^*,\ldots,e_{\mathfrak{n}}^*)\right) = \mathfrak{n} - \mathfrak{p} = \mathfrak{n} - \dim(\mathsf{F}).$$

La formule précédente reste vraie quand p=n (dans ce cas F=E et donc $F^{\perp}=\{0\}$ car ϕ est non dégénérée) et quand p=0 (dans ce cas $F=\{0\}$ et donc $F^{\perp}=E$).

Pour tout sous-espace F de E,
$$\dim(F) + \dim(F^{\perp}) = n$$
.

c) $\forall x \in F, \forall y \in F^{\perp}, \ \phi(x,y) = 0.$ En particulier, tout x de F est dans $(F^{\perp})^{\perp}$ ou encore $F \subset (F^{\perp})^{\perp}$. De plus, $\dim((F^{\perp})^{\perp}) = n - (n - \dim(F)) = \dim(F) < +\infty$ et donc

$$(\mathsf{F}^{\perp_{\mathsf{L}}})^{\perp_{\mathsf{L}}} = \mathsf{F}.$$

II.A.2) a) Soit $x \in E$. Si x est dans $(F+G)^{\perp}$, x est en particulier orthogonal à tout élément de F (car $F \subset F+G$) et tout élément de G et donc G est dans $F^{\perp} \cap G^{\perp}$. Réciproquement, si G est dans G alors G est orthogonal à tout élément de G et donc G est orthogonal à toute somme d'un élément de G et d'un élément de G par linéarité de G par rapport à chacune de ses variables. On a montré que

$$(F+G)^{\perp}=F^{\perp}\cap G^{\perp}.$$

 $\mathbf{b)} \text{ D'après ce qui précède } (\mathsf{F}^\perp + \mathsf{G}^\perp)^\perp = (\mathsf{F}^\perp)^\perp \cap (\mathsf{G}^\perp)^\perp = \mathsf{F} \cap \mathsf{G} \text{ et donc } (\mathsf{F} \cap \mathsf{G})^\perp = ((\mathsf{F}^\perp + \mathsf{G}^\perp)^\perp)^\perp = \mathsf{F}^\perp + \mathsf{G}^\perp.$

$$(F\cap G)^{\perp}=F^{\perp}+G^{\perp}.$$

- II.A.3) L'ensemble des éléments de F qui sont orthogonaux à tous les éléments de F est $F \cap F^{\perp}$.
- Donc, F est non singulier $\Leftrightarrow \phi_F$ non dégénérée \Leftrightarrow l'orthogonal de F pour ϕ dans F est réduit à $\{0\} \Leftrightarrow F \cap F^{\perp} = \{0\}$.
- Ensuite, si $F \cap F^{\perp} = \{0\}$, dim $(F + F^{\perp}) = \dim(F) + \dim(F^{\perp}) \dim(F \cap F^{\perp}) = \mathfrak{n} \mathfrak{0} = \mathfrak{n}$ et donc $E = F \oplus F^{\perp}$. Réciproquement, si $E = F \oplus F^{\perp}$ alors $F \cap F^{\perp} = \{0\}$.
- Si F est non singulier alors $F^{\perp} \cap (F^{\perp})^{\perp} = F^{\perp} \cap F = \{0\}$ et donc F^{\perp} est non singulier. Mais alors, si F^{\perp} est non singulier, $F = (F^{\perp})^{\perp}$ est non singulier.

On a montré que : F non singulier $\Leftrightarrow F \cap F^{\perp} = \{0\} \Leftrightarrow E = F \oplus F^{\perp} \Leftrightarrow F^{\perp}$ non singulier.

II.A.4) Puisque F et G sont orthogonaux alors $G \subset F^{\perp}$ et puisque F est non singulier, $F \cap G \subset F \cap F^{\perp} = \{0\}$. La somme F + G est donc directe. Ensuite, d'après la question II.A.2)a)

$$(F+G) \cap (F+G)^{\perp} = (F+G) \cap F^{\perp} \cap G^{\perp}.$$

Soient alors $(x_1, x_2) \in F \times G$ puis $x = x_1 + x_2 \in F + G$.

$$\begin{split} x \in F^{\perp} \cap G^{\perp} &\Leftrightarrow \forall (y,z) \in F \times G, \ \phi(x,y) = \phi(x,z) = 0 \\ &\Leftrightarrow \forall (y,z) \in F \times G, \ \phi(x_1,y) = \phi(x_2,z) = 0 \ (\text{car F et G sont orthogonaux et par bilinéarité de ϕ}) \\ &\Leftrightarrow x_1 \in F \cap F^{\perp} \ \text{et $x_2 \in G \cap G^{\perp}$} \\ &\Leftrightarrow x_1 = x_2 = 0 \ (\text{car F et G sont non singuliers}) \\ &\Leftrightarrow x = 0 \end{split}$$

Donc $(F+G) \cap (F+G)^{\perp} = \{0\}$ et on a montré que $F \oplus G$ est non singulier.

II.B -

II.B.1) On note $c = (c_1, c_2)$ la base canonique de \mathbb{R}^2 .

Pour $((x_1,y_1),(x_2,y_2)) \in (\mathbb{R}^2)^2$, $\varphi((x_1,y_1),(x_2,y_2)) = x_1x_2 - y_1y_2$ et $\varphi'((x_1,y_1),(x_2,y_2)) = x_1y_2 + y_1x_2$. Par suite, $\varphi(c_1,c_2) = 0$ et la base c est q-orthogonale. Ensuite, $\varphi'((1,1),(1,-1)) = 0$ et donc la famille $e = (c_1+c_2,c_1-c_2)$ qui est une base de \mathbb{R}^2 est q'-orthogonale.

II.B.2) Soient $e_1 = (x_1, y_1)$ et $e_2 = (x_2, y_2)$ deux vecteurs de \mathbb{R}^2 .

$$\begin{cases} \phi(e_1,e_2) = 0 \\ \phi'(e_1,e_2) = 0 \end{cases} \Leftrightarrow \begin{cases} x_1x_2 - y_1y_2 = 0 \\ x_1y_2 + y_1x_2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (x_1,-y_1)|(x_2,y_2) = 0 \\ \det((x_1,-y_1),(x_2,y_2)) = 0 \end{cases}$$
 (où | et det désignent le produit scalaire et le déterminant usuels)
$$\Leftrightarrow (x_1,-y_1) = 0 \text{ ou } (x_2,y_2) = 0 \Leftrightarrow e_1 = 0 \text{ ou } e_2 = 0.$$

Il n'existe donc pas de base de \mathbb{R}^2 qui soit à la fois q-orthogonale et q'-orthogonale.

II.B.3) h est un isomorphisme de E sur E* et h' est une application linéaire de E dans E*. Donc $h^{-1} \circ h'$ est un endomorphisme de E.

Soit $e = (e_1, \dots, e_n)$ une base à la fois q-orthogonale et q'-orthogonale.

Soit $i \in [1, n]$. $h'(e_i)$ est une forme linéaire sur E telle que $\forall j \neq i, h'(e_i)(e_j) = \phi'(e_i, e_j) = 0$. Mais alors

$$h'(e_i) = \sum_{j=1}^{n} (h'(e_i)(e_j))e_j^* = (h'(e_i)(e_i))e_i^* = q(e_i)e_i^* \text{ puis }$$

$$h^{-1} \circ h'(e_i) = q(e_i)h^{-1}(e_i^*).$$

Maintenant, d'après la question II.A.1.a), $h^{-1}(e_i^*) \in \text{Vect}(e_j)_{j \neq i}^{\perp \varphi}$. Mais puisque la base e est q-orthogonale, $\text{Vect}(e_i) \subset \text{Vect}(e_j)_{j \neq i}^{\perp \varphi}$ puis $\text{Vect}(e_i) = \text{Vect}(e_j)_{j \neq i}^{\perp \varphi}$ car ces deux sous-espaces ont même dimension finie d'après II.A.1)b). Finalement,

$$h^{-1} \circ h'(e_i) = q(e_i)h^{-1}(e_i^*) \in Vect(e_i),$$

et donc e_i est un vecteur propre de $h^{-1} \circ h'$ (car $e_i \neq 0$).

Une base e à la fois q-orthogonale et q'-orthogonale est une base de vecteurs propres de $h^{-1} \circ h'$.

II.B.4) Si $h^{-1} \circ h'$ admet n valeurs propres distinctes, $h^{-1} \circ h'$ est diagonalisable et les sous-espaces propres sont des droites. Notons $(\lambda_1, \ldots, \lambda_n)$ la famille des valeurs propres de $h^{-1} \circ h'$ puis $e = (e_1, \ldots, e_n)$ une base de vecteurs propres associée.

Pour tout $(i, j) \in [1, n]^2$.

$$h^{-1} \circ h'(e_i) = \lambda_i e_i \Rightarrow h'(e_i) = \lambda_i h(e_i) \Rightarrow (h'(e_i))(e_j) = \lambda_i (h(e_i))(e_j) \Rightarrow \phi'(e_i, e_j) = \lambda_i \phi(e_i, e_j)$$

Puisque φ et φ' sont symétriques, en échangeant les rôles de i et j on a aussi $\varphi'(e_i, e_j) = \lambda_j \varphi(e_i, e_j)$ et donc

$$\forall (i,j) \in [1,n]^2, (\lambda_i - \lambda_j) \varphi(e_i, e_j) = 0.$$

Si de plus $i \neq j$, puisque $\lambda_i - \lambda_j \neq 0$, on obtient $\phi(e_i, e_j) = 0$ puis $\phi'(e_i, e_j) = \lambda_i \phi(e_i, e_j) = 0$. La base e est donc une base à la fois q-orthogonale et q'-orthogonale.

II.C -

II.C.1) a) Puisque q est non dégénérée, $E^{\perp \varphi} = \{0\}$. Par suite, $x \notin E^{\perp \varphi}$ et il existe $z' \in E$ tel que $\varphi(x,z') \neq 0$. Soit $z = \frac{1}{\varphi(x,z')}z'$. Alors, $\varphi(x,z) = \frac{1}{\varphi(x,z')}\varphi(x,z') = 1$. Donc il existe $z \in E$ tel que $\varphi(x,z) = 1$.

$$q(y) = \phi\left(z - \frac{q(z)}{2}x, z - \frac{q(z)}{2}x\right) = q(z) - 2\frac{q(z)}{2}\phi(x, z) + \frac{q^2(z)}{4}q(x) = q(z) - q(z) = 0$$

c) Montrons que la famille (x, y) est libre. Soit $(\alpha, \beta) \in \mathbb{K}^2$ tel que $\alpha x + \beta y = 0$. Alors

$$\begin{split} \phi(x,\alpha x + \beta y) &= 0 \Rightarrow \alpha \phi(x,x) + \beta \phi(x,y) = 0 \\ &\Rightarrow \beta \phi\left(x, z - \frac{q(z)}{2}x\right) = 0 \; (\mathrm{car} \; q(x) = 0) \\ &\Rightarrow \beta \phi(x,z) = 0 \Rightarrow \beta = 0 \end{split}$$

Il reste $\alpha x = 0$ et donc $\alpha = 0$ car $x \neq 0$. Finalement, la famille (x, y) est libre et si on pose $\Pi = \text{Vect}(x, y)$, Π est un plan et (x, y) est une base de ce plan.

On a déjà $\phi(x,x) = \phi(y,y) = 0$. On a aussi $\phi(x,y) = \phi(x,z) = 1$. Par suite, la matrice de q_Π dans la base (x,y) est $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Comme la matrice de q_1 dans la base canonique de \mathbb{K}^2 est aussi $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, la question I.B.2) permet d'affirmer que Π est un plan artinien. (En particulier, la dimension \mathfrak{n} de E est nécessairement supérieure ou égale à 2.)

II.C.2) a) Soit $x \in G \cap G^{\perp}$. Pour tout élément y_1 de G, on a $\phi(x,y_1) = 0$. Maintenant, x est dans G et donc dans F et pour tout élément y_2 de $F \cap F^{\perp}$, $\phi(x,y_2) = 0$. En résumé, $\forall (y_1,y_2) \in G \times (F \cap F^{\perp})$, $\phi(x,y_1) = \phi(x,y_2) = 0$. Puisque $F = G + (F \cap F^{\perp})$, on en déduit par linéarité que $\forall y \in F$, $\phi(x,y) = 0$. Donc $x \in F^{\perp}$. Finalement, $x \in G \cap (F \cap F^{\perp}) = \{0\}$ et donc x = 0. On a montré que $G \cap G^{\perp} = \{0\}$ et d'après la question II.A.3),

G est non singulier.

- b) Démontrons le résultat par récurrence sur $s = \dim(F \cap F^{\perp})$.
- Si s=1, e_1 un vecteur non nul de $F \cap F^{\perp}$. En particulier, e_1 est dans F^{\perp} et donc dans G^{\perp} . D'après la question précédente, G est non singulier et donc G^{\perp} est non singulier d'après la question II.A.3) ou encore la restriction $\phi_{G^{\perp}}$ de ϕ à G^{\perp} est non dégénérée.

Maintenant $q(e_1) = \phi(e_1, e_1) = 0$ et d'après II.C.1)c), il existe un plan artinien P_1 pour $\phi_{G^{\perp}}$ et donc pour ϕ contenu dans G^{\perp} et contenant e_1 .

On a donc montré l'existence d'un plan artinien P_1 contenant e_1 et orthogonal à G.

- Soit $s \ge 2$. Supposons le résultat acquis si $\dim(F \cap F^{\perp}) = s 1$. Soient F un sous-espace singulier de E tel que $\dim(F \cap F^{\perp}) = s$ et (e_1, \ldots, e_s) une base de $F \cap F^{\perp}$.
- Je n'ai pas encore trouvé : on cherche à appliquer l'hypothèse de récurrence à $F_1 = \mathrm{Vect}(e_1, \dots, e_{s-1})$ ou à $F_1 = \mathrm{Vect}(e_1, \dots, e_{s-1}) \oplus G$. Les vecteurs e_s et e_s' doivent être orthogonaux aux e_i , $1 \le i \le s-1$ mais malheureusement, $(\mathrm{Vect}(e_s) \oplus G)^{\perp}$ est singulier car $\mathrm{Vect}(e_s) \oplus G$ l'est ... Toute solution est la bienvenue.
- **II.C.3)** G est non singulier d'après II.C.2)a) et les P_i sont non singuliers d'après I.B.3)b). De plus G et les P_i , $1 \le i \le s$, sont deux à deux orthogonaux. On en déduit que \overline{F} est non singulier d'après II.A.4)
- $\begin{aligned} \mathbf{II.C.4}) \ \mathrm{Si} \ q_{/F} &= 0, \ \mathrm{alors} \ \phi_{/F} &= 0 \ (\mathrm{car} \ \forall (x,y) \in F^2, \ \phi(x,y) = \frac{1}{2} (q(x+y) q(x) q(y)) = 0) \ \mathrm{et} \ \mathrm{donc} \ F \subset F^\perp. \ \mathrm{On} \ \mathrm{en} \\ \mathrm{d\'eduit} \ \mathrm{que} \ F &= F \cap F^\perp \ \mathrm{puis} \ \mathrm{que} \ s = p = \dim(F) \ \mathrm{et} \ G = \{0\}. \ \mathrm{Le} \ \mathrm{sous\text{-espace}} \ \overline{F} = P_1 \oplus \ldots \oplus P_s \ \mathrm{et} \ \mathrm{de} \ \mathrm{dimension} \ s = 2p \ \mathrm{et} \\ \mathrm{donc} \ 2p \leqslant n \ \mathrm{ou} \ \mathrm{encore} \ \mathrm{dim}(F) = p \leqslant \frac{n}{2}. \end{aligned}$

$$\mathrm{Si}\ \mathfrak{q}_{/F}=0,\,\mathrm{alors}\,\dim(F)\leqslant\frac{n}{2}.$$

II.C.5) D'après I.B.3)e), si (E,q) est un espace de Artin de dimension 2p, il existe un sous-espace F de dimension p tel que $q_{/F} = 0$. Réciproquement, supposons qu'il existe un sous-espace F de dimension p tel que $q_{/F} = 0$.

D'après la question précédente, F est singulier, s=p et $G=\{0\}$. Un complété non singulier de F est $\overline{F}=G\oplus P_1\oplus\ldots\oplus P_s=P_1\oplus\ldots\oplus P_p$. Comme $\dim(\overline{F})=2p=\dim(E)$, on a donc

$$E = P_1 \oplus \ldots \oplus P_n$$
.

Mais alors, avec les notations de la question II.C.2), $e = (e_1, \dots, e_p, e'_1, \dots, e'_p)$ est une base de E dans laquelle la matrice est égale à $\begin{pmatrix} 0 & I_p \\ I_p & 0 \end{pmatrix} = \max(q_p, c)$ et donc (E, q) est un espace de Artin.

Partie III -

III.A -

III.A.1) a) Si pour tout $(x,y) \in E^2$, $\varphi(f(x),f(y)) = \varphi(x,y)$, en particulier pour tout x de E, $\varphi(f(x)) = \varphi(f(x),f(x)) = \varphi(x,x) = \varphi(x)$.

Réciproquement, supposons que $\forall x \in E$, q(f(x)) = q(x). Alors, pour $(x, y) \in E^2$, une identité de polarisation fournit

$$\begin{split} \phi(f(x),f(y)) &= \frac{1}{2} \left(q(f(x)+f(y)) - q(f(x)) - q(f(y)) \right) = \frac{1}{2} \left(q(f(x+y)) - q(f(y)) - q(f(y)) \right) \\ &= \frac{1}{2} \left(q(x+y) - q(x) - q(y) \right) = \phi(x,y). \end{split}$$

Donc,

$$f \in O(E,q) \Leftrightarrow \forall (x,y) \in E^2, \, \phi(f(x),f(y)) = \phi(x,y).$$

Soient $x \in F$ et $y \in F^{\perp}$. $\phi(f(x), f(y)) = \phi(x, y) = 0$. Donc $\forall y \in F^{\perp}$, $f(y) \in (f(F))^{\perp}$ ou encore $f(F^{\perp}) \subset (f(F))^{\perp}$. Vérifions alors que f est un automorphisme de E. Soit $x \in E$.

$$\begin{split} f(x) &= 0 \Rightarrow \forall y \in E, \ \phi(f(x), f(y)) = 0 \Rightarrow \forall y \in E, \ \phi(x, y) = 0 \\ &\Rightarrow x = 0 \ (\mathrm{car} \ \phi \ \mathrm{est \ non \ d\acute{e}g\acute{e}n\acute{e}r\acute{e}e}). \end{split}$$

Ainsi, $Ker(f) = \{0\}$ et f est un automorphisme (car $dim(E) < +\infty$). Mais alors

$$\dim(f(F))^{\perp}=n-\dim(f(F))=n-\dim(F)=\dim(F^{\perp})=\dim(f(F^{\perp}))<+\infty$$

et finalement $f(F^{\perp}) = (f(F))^{\perp}$.

$$\forall f \in O(E, q), f(F^{\perp}) = (f(F))^{\perp}.$$

http://www.maths-france.fr

b) Posons $\Omega = \max(\varphi, e)$ et $M = \max(f, e)$. Pour x et y éléments de E, on note X et Y les vecteurs colonnes dont les composantes sont les coordonnées des vecteurs x et y dans la base e. On note enfin φ' la forme bilinéaire $(x, y) \mapsto \varphi(f(x), f(y))$ et Ω' la matrice de φ' dans la base e.

D'après la question I.4)b),

$${}^{\mathsf{t}}\mathsf{X}\Omega'\mathsf{Y} = \varphi'(\mathsf{x},\mathsf{y}) = \varphi(\mathsf{f}(\mathsf{x}),\mathsf{f}(\mathsf{y})) = {}^{\mathsf{t}}(\mathsf{M}\mathsf{X})\Omega(\mathsf{M}\mathsf{Y}) = {}^{\mathsf{t}}\mathsf{X}({}^{\mathsf{t}}\mathsf{M}\Omega\mathsf{M})\mathsf{Y}.$$

Ainsi, $\forall (X,Y) \in (\mathcal{M}_{n,1}(\mathbb{K}))^2$, ${}^tX\Omega'Y = {}^tX({}^tM\Omega M)Y$ et on sait alors que $\Omega' = {}^tM\Omega M$ (obtenu par exemple en appliquant les égalités ci-dessus aux vecteurs de la base canonique de $\mathcal{M}_{n,1}(\mathbb{K})$).

$$\mathrm{mat}(\phi',e)={}^{\mathrm{t}}(\mathrm{mat}(\mathsf{f},e))\times\mathrm{mat}(\phi,e)\times\mathrm{mat}(\mathsf{f},e).$$

c) D'après les questions a) et b)

$$f \in O(E,q) \Leftrightarrow \phi' = \phi \Leftrightarrow \Omega' = \Omega \Leftrightarrow \Omega = {}^tM\Omega M.$$

d) Puisque $\Omega = {}^{t}M\Omega M$, $\det(\Omega) = \det(\Omega)(\det M)^2$. Vérifions alors que la matrice Ω est inversible. Soit $Y \in \mathcal{M}_{n,1}(\mathbb{R})$.

$$\begin{split} Y \in \mathrm{Ker}(\Omega) &\Rightarrow \Omega Y = 0 \Rightarrow \forall X \in \mathcal{M}_{n,1}(\mathbb{K}), \ ^t X \Omega Y = 0 \\ &\Rightarrow \forall x \in E, \ \phi(x,y) = 0 \Rightarrow y = 0 \ (\mathrm{car} \ \phi \ \mathrm{est \ non \ d\acute{e}g\acute{e}n\acute{e}r\acute{e}e}). \end{split}$$

Donc $Ker(\Omega) = \{0\}$ et Ω est inversible.

Par suite, $\det(\Omega) \neq 0$ et l'égalité $\det(\Omega) = \det(\Omega)(\det M)^2$ fournit $(\det(M))^2 = 1$ puis $\det(M) \in \{-1, 1\}$.

$$\forall f \in \mathscr{L}(E), \, f \in O(E,q) \Rightarrow \det(\mathrm{mat}(f,e)) \in \{-1,1\}.$$

III.A.2) a) • Si $s \in O(E, q)$, Pour tout $(x, y) \in F \times G$,

$$\varphi(x,y) = \varphi(s(x),s(y)) = \varphi(x,-y) = -\varphi(x,y)$$

et donc $\phi(x,y)=0$. On en déduit que $G\subset F^\perp$ puis que $G=F^\perp$ par égalité des dimensions.

• Réciproquement, supposons que $G = F^{\perp}$. Soit $z \in E$. Il existe $(x,y) \in F \times G$ tel que z = x + y et

$$q(s(z)) = q(x - y) = \varphi(x - y, x - y) = \varphi(x, x) + \varphi(y, y) = \varphi(x + y, x + y) = q(x + y) = q(z).$$

Donc $s \in O(E, q)$.

$$s \in O(E, q) \Leftrightarrow G = F^{\perp \varphi}.$$

- b) D'après la question II.A.3), $E = F \oplus F^{\perp} \Leftrightarrow F$ non singulier. Donc les symétries de $O(E, \mathfrak{q})$ sont les symétries par rapport à F parallèlement à F^{\perp} , où F est un sous-espace non singulier de E.
- c) Soit e une base adaptée à la décomposition $E = H \oplus H^{\perp}$. mat(f, e) = diag(1, ..., 1, -1) et donc det(s) = -1.

Toute réflexion est dans
$$O^-(E, q)$$
.

d) Puisque $\phi(x+y, x-y) = q(x) - q(y) = 0$, on a $x+y \in \{x-y\}^{\perp} = H$. D'autre part $x-y \in H^{\perp}$ et donc y = s(x) (si on pose $x+y=2x_1 \in H$ et $x-y=2x_2 \in H^{\perp}$, alors $x=x_1+x_2$ et $y=x_1-x_2=s(x)$).

III.B -

III.B.1) Soit (e_1, \ldots, e_p) une base de F. On complète cette base en $(e_1, \ldots, e_p, e'_1, \ldots, e'_p)$ base de E telle que, avec les notations de la partie II, $\forall i \in \llbracket 1, p \rrbracket$, $\varphi(e_i, e_i) = \varphi(e'_i, e'_i) = 0$ et $\varphi(e_i, e'_i) = 1$ puis, si $\overline{F} = P_1 \oplus \ldots \oplus P_p$ avec $P_i = \operatorname{Vect}(e_i, e'_i)$ base de P_i , alors \overline{F} est un complété non singulier de F.

Dans une telle base, on a $\Omega = \begin{pmatrix} 0 & I_p \\ I_p & 0 \end{pmatrix}$ puis $M = \begin{pmatrix} M_1 & M_2 \\ 0 & M_3 \end{pmatrix}$ car f(F) = F. D'après la question III.A.1.c), $f \in O(E,q) \Leftrightarrow \Omega = {}^tM\Omega M$. Ceci fournit

$$\begin{pmatrix} 0 & I_p \\ I_p & 0 \end{pmatrix} = \begin{pmatrix} {}^tM_1 & 0 \\ {}^tM_2 & {}^tM_3 \end{pmatrix} \begin{pmatrix} 0 & I_p \\ I_p & 0 \end{pmatrix} \begin{pmatrix} M_1 & M_2 \\ 0 & M_3 \end{pmatrix} = \begin{pmatrix} 0 & {}^tM_1 \\ {}^tM_3 & {}^tM_2 \end{pmatrix} \begin{pmatrix} M_1 & M_2 \\ 0 & M_3 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & {}^tM_1M_3 \\ {}^tM_3M_1 & {}^tM_3M_2 + {}^tM_2M_3 \end{pmatrix}.$$

En particulier, ${}^{t}M_{3}M_{1} = I_{p}$. On en déduit que

$$\det(f) = \det(M) = \det(M_1)\det(M_3) = \det({}^tM_1)\det(M_3) = \det({}^tM_1M_3) = \det(I_p) = 1.$$

Donc $f \in O^+(E, q)$.

III.B.2) Si $F = \{0\}$, alors $F \cap F^{\perp} = \{0\}$ puis $G = \{0\}$ et donc $E \neq \overline{F}$.

Donc $F \neq \{0\}$. Si F est non singulier, alors $E = \overline{F} = F$ et donc $f = Id_E$. Dans ce cas, on a $\det(f) = 1$. Sinon, avec les notations de la partie II, $E = G \oplus (P_1 \oplus \ldots \oplus P_s)$. Chaque P_i , $1 \leq i \leq s$, est orthogonal à G et donc $P_1 \oplus \ldots \oplus P_s$ est orthogonal à G ou encore $P_1 \oplus \ldots \oplus P_s \subset G^{\perp}$. Comme de plus, $\dim(P_1 \oplus \ldots \oplus P_s) = n - \dim(G) = \dim(G^{\perp})$, on en déduit que

$$G^{\perp} = P_1 \oplus \ldots \oplus P_s$$
.

Ensuite, $f_{/F} = Id_F$ et donc $f_{/G} = Id_G$. En particulier, f(G) = G et donc d'après la question III.A.1)a), $f(P_1 \oplus \ldots \oplus P_s) = f(G^{\perp}) = G^{\perp} = P_1 \oplus \ldots \oplus P_s$. Ainsi, les restrictions de f aux deux sous-espaces supplémentaires G et $P_1 \oplus \ldots \oplus P_s$ sont des endomorphismes de ces sous-espaces et on en déduit que

$$\det(f) = \det(f_{/G}) \times \det(f_{/G^{\perp}}) = 1 \times \det(f_{/P_1 \oplus \ldots \oplus P_s}) = \det(f_{/P_1 \oplus \ldots \oplus P_s}).$$

Maintenant, $P_1 \oplus \ldots \oplus P_s$ est un espace artinien de dimension 2s et $\mathrm{Vect}(e_1,\ldots,e_s) = F \cap F^\perp$ est un sous-espace de dimension s tel que $\mathfrak{q}_{/\mathrm{Vect}(e_1,\ldots,e_s)} = 0$ (car (e_1,\ldots,e_s) est une base de $F \cap F^\perp$). De plus, $\mathfrak{f}_{/P_1 \oplus \ldots \oplus P_s} \in O(P_1 \oplus \ldots \oplus P_s,\mathfrak{q})$ et $\mathfrak{f}_{/P_1 \oplus \ldots \oplus P_s}(\mathrm{Vect}(e_1,\ldots,e_s)) = \mathrm{Vect}(e_1,\ldots,e_s)$ car $\mathfrak{f}_{/(\mathrm{Vect}(e_1,\ldots,e_s))} = \mathrm{Id}_{\mathrm{Vect}(e_1,\ldots,e_s)}$. D'après la question précédente, $\mathrm{det}(\mathfrak{f}_{/P_1 \oplus \ldots \oplus P_s}) = 1$ et finalement $\mathrm{det}(f) = 1$. On a montré que $f \in O^+(E,\mathfrak{q})$.

III.B.3) a) On ne peut avoir q = 0 car alors $\varphi = 0$ ce qui n'est pas car φ est non dégénérée. Donc il existe $x_0 \in E$ tel que $q(x_0) \neq 0$ (en particulier, $x_0 \neq 0$). Par hypothèse, on a alors $f(x_0) - x_0 \neq 0$ et $q(f(x_0) - x_0) = 0$.

Si la famille $(x_0, f(x_0) - x_0)$ est liée, il existe $\lambda \in \mathbb{K}$ tel que $f(x_0) - x_0 = \lambda x_0$ (car $x_0 \neq 0$). On en déduit $0 = q(f(x_0) - x_0) = \lambda^2 q(x_0)$ et donc $\lambda = 0$ (car $q(x_0) \neq 0$) puis $f(x_0) - x_0 = 0$ ce qui n'est pas. Donc la famille $(x_0, f(x_0) - x_0)$ est libre.

Ensuite, $0 = q(f(x_0) - x_0) = \phi(f(x_0) - x_0, f(x_0) - x_0) = \phi(f(x_0), f(x_0)) - 2\phi(f(x_0), x_0) + \phi(x_0, x_0) = 2(\phi(x_0, x_0) - \phi(f(x_0), x_0))$ (car $f \in O(E, q)$) et donc $\phi(f(x_0), x_0) = \phi(x_0, x_0)$. On en déduit que $\phi(f(x_0) - x_0, x_0) = 0$. Comme d'autre part, $\phi(f(x_0) - x_0, f(x_0) - x_0) = q(f(x_0) - x_0) = 0$, on a montré que $f(x_0) - x_0 \in (\text{Vect}(x_0, f(x_0) - x_0))^{\perp}$ et en particulier dim $\left((\text{Vect}(x_0, f(x_0) - x_0))^{\perp}\right) \geqslant 1$ car $f(x_0) - x_0 \neq 0$. Mais alors

$$\dim(E) = \dim\left(\operatorname{Vect}(x_0, f(x_0) - x_0)\right) + \dim\left(\left(\operatorname{Vect}(x_0, f(x_0) - x_0)\right)^\perp\right) \geqslant 2 + 1 = 3.$$

- b) Soit $x \in V = \operatorname{Ker}(f \operatorname{Id}_E)$. Si $q(x) \neq 0$, alors par hypothèse $f(x) x \neq 0$ ce qui n'est pas. Donc q(x) = 0. On a montré que $q_{/V} = 0$.
- c) $\dim(H) \in \{n-1,n\}$ ou encore $\dim(H) \geqslant n-1 = \frac{n}{2} + \frac{n}{2} 1 \geqslant \frac{n}{2} + \frac{3}{2} 1 > \frac{n}{2}$. La question II.C.4) permet alors d'affirmer que $q_{/H} \neq 0$.

Soit alors $y \in H^{\perp} = \{x\}^{\perp}$ tel que $q(y) \neq 0$. On a $q(x \pm y) = q(x) \pm 2\phi(x,y) + q(y) = 0 + 0 + q(y) = q(y) \neq 0$. On a montré que pour tout x de E tel que q(x) = 0, il existe $y \in E$ tel que $q(x + y) = q(x - y) = q(y) \neq 0$.

d) Soit $x \in E$. Si $q(x) \neq 0$, alors q(f(x) - x) = 0. Sinon, q(x) = 0 et il existe $y \in E$ tel que $q(x + y) = q(x - y) = q(y) \neq 0$. Or

$$\begin{cases} q(y) \neq 0 \\ q(x+y) \neq 0 \\ q(x-y) \neq 0 \end{cases} \Rightarrow \begin{cases} q(f(y)-y) = 0 \\ q(f(x+y)-(x+y)) = 0 \\ q(f(x-y)-(x-y)) = 0 \end{cases} \Rightarrow \begin{cases} q(f(y)-y) = 0 \\ q(f(x)-x) + 2\phi(f(x)-x, f(y)-y) + q(f(y)-y) = 0 \\ q(f(x)-x) - 2\phi(f(x)-x, f(y)-y) = 0 \end{cases} \Rightarrow \begin{cases} q(f(y)-y) = 0 \\ q(f(x)-x) + 2\phi(f(x)-x, f(y)-y) = 0 \\ q(f(x)-x) - 2\phi(f(x)-x, f(y)-y) = 0 \end{cases} \Rightarrow 2q(f(x)-x) = 0 \Rightarrow q(f(x)-x) = 0.$$

Ainsi, pour tout x de E, q(f(x) - x) = 0 et donc $q_{/V} = 0$.

e) D'après le théorème du rang, $\dim(U) + \dim(V) = n$. Mais d'après les questions b) et d), $q_{/U} = 0$ et $q_{/V} = 0$. La question II.C.4) permet d'affirmer que $\dim(U) \leqslant \frac{n}{2}$ et $\dim(V) \leqslant \frac{n}{2}$. On en déduit que $\dim(U) = \dim(U) = \dim(U) = \frac{n}{2}$ (et en particulier n est pair).

Puisque $q_{/U} = 0$, pour tout $x \in U$ on a $\phi(x,x) = q(x) = 0$ et donc $U = U^{\perp}$ puis $U = U^{\perp}$ car ces deux sous-espaces ont mêmes dimensions finies. D'autre part, pour tous $x \in V$ et $y \in E$. $\phi(x,f(y)-y) = \phi(x,f(y)) - \phi(x,y) = \phi(f(x),f(y)) - \phi(x,y) = 0$. Donc $V \subset U^{\perp}$ puis $V = U^{\perp}$ car ces deux sous-espaces ont mêmes dimensions finies.

On a montré que $U^{\perp} = V = U$.

f) On a montré que n est pair et qu'il existe un sous-espace V de dimension $\frac{n}{2}$ tel que $q_{/F} = 0$. D'après la question II.C.5), (E, q) est un espace de Artin. et d'après la question III.B.1, puisque $f_{/V} = 0$, $f \in O^+(E, q)$.

Partie IV -

IV.A -

IV.A.1) Si n = 1, $\mathcal{L}(E)$ est constitué des homothéties. Maintenant, il n'y a que deux homothéties de déterminant ± 1 à savoir Id_E et $-Id_E$. Réciproquement Id_E et $-Id_E$ sont dans O(E,q) car pour tout $x \in E$, $q(-Id_E(x)) = q(-x) = (-1)^2 q(x) = q(x) = q(Id_E(x))$. Donc si n = 1, $O(E,q) = \{Id_E, -Id_E\}$.

 $-Id_E$ est la réflexion par rapport à $\{0\}$ (qui est un hyperplan non singulier de E). Donc $-Id_E$ est la composée de 1 réflexion et puisque Id_E est la composée de 0 réflexions, tout élément de O(E,q) est la composée d'au plus 1 réflexion. Le théorème de Cartan-Dieudonné est démontré dans le cas n=1.

Soit alors n > 1. Supposons le théorème de Cartan-Dieudonné démontré pour tout espace de dimension n - 1. Soient E un espace de dimension n et $f \in O(E, q)$.

IV.A.2) Supposons qu'il existe $x_0 \in E$ tel que $f(x_0) = x_0$ et $q(x_0) \neq 0$. En particulier, $x_0 \neq 0$ et $D = \mathrm{Vect}(x_0)$ est une droite vectorielle. Si $f = \mathrm{Id}_E$, c'est fini. Sinon, puisque $q(x_0) \neq 0$, $q_{/D}$ est non dégénérée ou encore D est non singulier. D'après la question II.A.3), $H = D^{\perp} = \{x_0\}^{\perp}$ est non singulier et $E = D \oplus H$.

Puisque $f(x_0) = x_0$, $f_{/D} = Id_D$ et en particulier, f(D) = D. Mais alors d'après la question III.A.1)a), f(H) = H ou encore $f_{/H} \in O(H, \mathfrak{q}_{/H})$. Par hypothèse de récurrence, $f_{/H}$ est la composée d'au plus $\mathfrak{n}-1$ réflexions $s_1', \ldots, s_p', 0 \leqslant \mathfrak{p} \leqslant \mathfrak{n}-1$. On note H_1', \ldots, H_p' les hyperplans (hyperplans non singuliers de H) de ces réflexions.

Pour $1 \le i \le p$, on pose $H_i = D \oplus H'_i$. H_1, \ldots, H_p sont des hyperplans de E. Pour tout $i \in [\![1,p]\!]$, D est non singulier, H'_i est non singulier et D et H'_i sont orthogonaux, la question II.4.A) permet d'affirmer que $\forall i \in [\![1,p]\!]$, H_i est un hyperplan non singulier de E.

On peut donc $s_1, \ldots, s_p, 1 \leq p \leq n$ les réflexions d'hyperplans H_1, \ldots, H_p . Les endomorphismes f et $s_1 \circ \ldots \circ s_p$ coïncident sur les deux sous-espaces supplémentaires D et H et donc $f = s_1 \circ \ldots \circ s_p$. Ainsi, f est une composée d'au plus n-1 réflexions et en particulier, d'au plus n réflexions.

IV.A.3) Supposons qu'il existe $x_0 \in E$ tel que $q(x_0) \neq 0$ et $q(f(x_0) - x_0) \neq 0$. Soit $y_0 = f(x_0)$. On a $q(y_0) = q(f(x_0)) = q(x_0)$ et $q(x_0 - y_0) \neq 0$. D'après la question III.A.2)d), si s est la réflexion selon $H = \{x_0 - y_0\}^{\perp}$, alors $s(x_0) = y_0$ et donc aussi $s(y_0) = x_0$. On en déduit que $s \circ f(x_0) = s(y_0) = x_0$.

Maintenant, la composée de deux éléments u et v de O(E,q) est un élément de O(E,q) car pour $(x,y) \in E^2$, $q(u \circ v(x)) = q(v(x)) = q(x)$. Donc l'endomorphisme $s \circ f$ est dans O(E,q) et vérifie $s \circ f(x_0) = x_0$ avec $q(x_0) \neq 0$. D'après la question précédente, il existe au plus n-1 réflexions s_1, \ldots, s_p telles que $s \circ f = s_1 \circ \ldots \circ s_p$ ou encore $f = s \circ s_1 \circ \ldots \circ s_p$. Dans ce cas aussi, f est la composée d'au plus f réflexions.

IV.A.4) Les cas analysés en 2) et 3) s'écrivent :

$$(\exists x \in E/\ q(x) \neq 0 \ \mathrm{et}\ f(x) - x = 0)) \ \mathrm{ou}\ (\exists x \in E/\ q(x) \neq 0 \ \mathrm{et}\ q(f(x) - x) \neq 0))$$
 ou encore
$$\exists x \in E/\ q(x) \neq 0 \ \mathrm{et}\ (f(x) - x = 0 \ \mathrm{ou}\ q(f(x) - x) \neq 0).$$

Les cas restants sont obtenus en niant la proposition précédente :

$$\forall x \in E/\ q(x) = 0 \text{ ou } (f(x) - x \neq 0 \text{ et } q(f(x) - x) = 0)$$
 ou encore
$$\forall x \in E/\ q(x) \neq 0 \Rightarrow (f(x) - x \neq 0 \text{ et } q(f(x) - x) = 0).$$

Ce dernier cas est le cas analysé en III.B.3). E est un espace de dimension paire $n=2p\geqslant 4$ (car $n\geqslant 3$), $f\in O^+(E,q)$ et $\mathrm{Ker}(f-\mathrm{Id}_E)=\mathrm{Im}(f-\mathrm{Id}_E)=(\mathrm{Im}(f-\mathrm{Id}_E))^\perp$ est un sous-espace de dimension $p\geqslant 2$.

Avec les notations de III.B.3), U est un sous-espace de dimension p tel que $U = U^{\perp}$ (et donc U est singulier) et en particulier $U = U \cap U^{\perp}$. Donc un supplémentaire de $U \cap U^{\perp}$ dans U est $G = \{0\}$. Avec les notations de II.C.2)b), on note (e_1, \ldots, e_p) une base de $U = U \cap U^{\perp} = U^{\perp} = V$ et on note $\overline{U} = P_1 \oplus \ldots \oplus P_p$ un complété non singulier de U avec, pour $1 \leq i \leq p$, (e_i, e_i') base artinienne de P_i .

 $\begin{aligned} &(e_1,\ldots,e_p) \text{ est une base de } \operatorname{Ker}(f-\operatorname{Id}_E) \text{ et donc } \forall i \in \llbracket 1,p \rrbracket, \ f(e_i) = e_i. \ \operatorname{D'autre part}, \ (e_1,\ldots,e_p) \text{ est aussi une base de } \operatorname{Im}(f-\operatorname{Id}_E) \text{ et donc pour } i \in \llbracket 1,p \rrbracket, \ f(e_i') - e_i' \in \operatorname{Vect}(e_1,\ldots,e_p). \ \operatorname{La \ matrice \ de \ f \ dans \ la \ base} \ \mathscr{B} = (e_1,\ldots,e_p,e_1',\ldots,e_p') \\ &\text{est \ donc \ de \ la \ forme} \ M = \left(\begin{array}{c} \operatorname{I}_p & A \\ 0 & \operatorname{I}_p \end{array} \right) \text{ où } A \in \mathscr{M}_p(\mathbb{K}). \ \text{R\'eciproquement}, \ d'après \ \text{la \ question \ III.A.1})c), \ f \in O(E,q) \Leftrightarrow \\ \Omega = {}^t M\Omega M \ \text{avec} \end{aligned}$

$${}^t M \Omega M = \left(\begin{array}{cc} I_p & 0 \\ {}^t A & I_p \end{array} \right) \left(\begin{array}{cc} 0 & I_p \\ I_p & 0 \end{array} \right) \left(\begin{array}{cc} I_p & A \\ 0 & I_p \end{array} \right) = \left(\begin{array}{cc} 0 & I_p \\ I_p & {}^t A \end{array} \right) \left(\begin{array}{cc} I_p & A \\ 0 & I_p \end{array} \right) = \left(\begin{array}{cc} 0 & I_p \\ I_p & A + {}^t A \end{array} \right).$$

9

 $\mathrm{Donc}\ f\in O(E,q)\Leftrightarrow \mathrm{Mat}_{\mathscr{B}}=\left(\begin{array}{cc} I_{\mathfrak{p}} & A \\ 0 & I_{\mathfrak{p}} \end{array}\right)\ \mathrm{avec}\ ^{t}A=-A.\ \mathrm{Solution\ inachev\acute{e}e}.$

IV.B http://www.maths-france.fr **IV.B.1)** Supposons le résultat acquis quand les sous-espaces sont non singuliers. Si F (et F') sont nuls, $g = Id_E$ convient. Soient F et F' deux sous-espaces non nuls tels qu'il existe une isométrie f de $(F,q_{/F})$ dans $(F',q_{/F'})$. Avec les notations de II.C.2), on note $\overline{F} = P_1 \oplus \ldots \oplus P_s \oplus G$ un complété non singulier de F avec, pour $1 \leqslant i \leqslant s$, (e_i,e_i') base artienne de P_i . Puisque f est un isomorphisme, on a $F' = \mathrm{Vect}(f(e_1),\ldots,f(e_s)) \oplus f(G)$.

Puisque f est une isométrie, pour $y \in F$, $f(y) \in f(F)^{\perp} \Leftrightarrow \forall x \in F$, $\phi(f(x), f(y)) = 0 \Leftrightarrow \forall x \in F$, $\phi(x, y) = 0 \Leftrightarrow y \in F^{\perp}$. Donc $f(F \cap F^{\perp}) = f(F) \cap f(F)^{\perp} = F' \cap F'^{\perp}$.

En résumé, $(f(e_1), \ldots, f(e_s))$ est une base de $F' \cap F'^{\perp}$ et f(G) est un supplémentaire de $F' \cap F'^{\perp} = (\operatorname{Vect}(f(e_1), \ldots, f(e_s)))$ dans F'.

Pour $1 \leqslant i \leqslant s$, on pose $\varepsilon_i = f(e_i)$ puis on note $\overline{F'} = P'_1 \oplus \ldots \oplus P'_s \oplus f(G)$ un complété non singulier de F' avec, pour $1 \leqslant i \leqslant s$, $(\varepsilon_i, \varepsilon_i')$ base artienne de P'_i . On définit alors \overline{f} l'application linéaire de \overline{F} dans $\overline{F'}$ par : $\overline{f}_{/F} = f$ et $\forall i \in [\![1, s]\!]$, $f(e'_i) = \varepsilon'_i$.

$$\mathrm{Soient}\ x = \sum_{i=1}^s x_i e_i + \sum_{i=1}^s x_i' e_i' + z \ \mathrm{et}\ y = \sum_{i=1}^s y_i e_i + \sum_{i=1}^s y_i' e_i' + t \ \mathrm{deux}\ \mathrm{vecteurs}\ \mathrm{de}\ F\ \mathrm{avec}\ (z,t) \in G^2.$$

$$\begin{split} \phi\left(\overline{f}(x),\overline{f}(y)\right) &= \phi\left(\sum_{i=1}^s x_i\epsilon_i + \sum_{i=1}^s x_i'\epsilon_i' + f(z), \sum_{i=1}^s y_i\epsilon_i + \sum_{i=1}^s y_i'\epsilon_i' + f(t)\right) \\ &= \sum_{i=1}^s x_iy_i' + x_i'y_i + \phi(f(z),f(t)) = \sum_{i=1}^s x_iy_i' + x_i'y_i + \phi(z,t) \\ &= \phi\left(\sum_{i=1}^s x_i\epsilon_i + \sum_{i=1}^s x_i'\epsilon_i' + z, \sum_{i=1}^s y_i\epsilon_i + \sum_{i=1}^s y_i'\epsilon_i' + t\right) = \phi(x,y). \end{split}$$

Donc \overline{f} est une isométrie de $(\overline{F}, \mathfrak{q}_{/\overline{F}})$ sur $(\overline{F'}, \mathfrak{q}_{/\overline{F'}})$. Par hypothèse, il existe $\mathfrak{g} \in O(E, \mathfrak{q})$ telle que $\mathfrak{g}_{/\overline{F}} = \overline{f}$ et en particulier $\mathfrak{g}_{/\overline{F}} = f$. Il suffit donc de démontrer le théorème de Witt quand F et F' sont non singuliers.

IV.B.2) a) Si q(x + y) = q(x - y) = 0, alors $q(x) + 2\phi(x,y) + q(y) = q(x) - 2\phi(x,y) + q(y) = 0$ et donc $\phi(x,y) = q(x) + q(y) = 0$. Comme y = f(x) et que f est une isométrie de $(F,q_{/F})$ sur $(F',q_{/F'})$, on obtient 0 = q(x) + q(y) = q(x) + q(f(x)) = 2q(x) et donc $\phi(x,x) = 0$. Mais (x) est une base de F et donc $q_{/F} = 0$ ce qui contredit l'hypothèse « F est non singulier ». On a montré que l'un des deux nombres q(x + f(x)) ou q(x - f(x)) est non nul.

b) Si $q(x-y) \neq 0$, soit s la réflexion selon $\{x-y\}^{\perp}$. Puisque d'autre part, q(y) = q(f(x)) = q(x), la question III.A.2)d) permet d'affirmer que s(x) = y = f(x) et donc $s_{/F} = f$. s es un élément g de O(E,q) tel que $g_{/F} = f$. Le théorème de Witt est démontré dans le cas $\dim(F) = \dim(F') = 1$.

IV.B.3) a) Puisque F est non singulier, il existe $x \in F$ tel que $q(x) \neq 0$. Soit $F_2 = \text{Vect}(x)$. $q_{/F}$ est non dégénérée et F_2 est un sous-espace non singulier de $(F, q_{/F})$ car $\phi(x, x) = q(x) \neq 0$. Donc, si F_1 est l'orthogonal de F_2 dans F, d'après la question II.A.3), F_1 est un sous-espace non singulier de $(F, q_{/F})$ et donc de (E, q) et F_1 est un supplémentaire de F_2 dans F.

On a montré l'existence de deux sous-espaces non singuliers F_1 et F_2 de F tels que $F_1 \perp F_2$ et $F = F_1 \oplus F_2$.

- **b)** Soient $x \in F_2$ et $y \in F_1$. $\varphi(f(x), f(y)) = \varphi(x, y) = 0$. Donc, $\forall x \in F_2$, $f(x) \in F_1^{\prime \perp}$ ou encore $f(F_2) \subset F_1^{\prime \perp}$. Ensuite, $F_2 \subset F_1^{\perp}$ et donc $g(F_2) \subset g(F_1^{\perp}) = g(F_1)^{\perp} = f(F_1)^{\perp} = F_1^{\prime \perp}$.
- $\begin{array}{l} \textbf{c)} \ g(F_2) \subset F_1'^{\perp}. \ \text{D'autre part, } g^{-1}(g(F_2)) = F_2 \ \text{puis } f \circ g^{-1}(g(F_2)) = f(F_2) \subset F_1'^{\perp}. \\ \text{Ainsi, } g(F_2) \ \text{et } f(F_2) \ \text{sont deux droites vectorielles non singulières de } F_1'^{\perp} \ (\text{l'image d'un sous-espace non singulier par une isométrie est clairement un sous-espace non singulier) et } (f \circ g^{-1})_{/g(F_2)} \ \text{est une isométrie de } g(F_2) \ \text{sur } f(F_2). \ \text{D'après la question IV.B.2}), \ \text{il existe } h \in O(F_1'^{\perp}, q_{F_1'^{\perp}}) \ \text{telle que } h_{/g(F_2)} = (f \circ g^{-1})_{/g(F_2)}. \end{array}$
- d) Puisque F_1 est non singulier, $E = F_1 \oplus F_1^{\perp}$. Soit k l'endomorphisme de E défini par les égalités : $k_{/F_1} = f$ et $k_{/F_1^{\perp}} = h \circ (g_{/F_2^{\perp}}) (g(F_1^{\perp}) = g(F_1)^{\perp} = F_1^{\prime \perp}$ et donc $h \circ (g_{/F_2^{\perp}})$ est bien défini).

On a déjà $k_{/F_1} = f_{/F_1}$. Puis pour $x \in F_2 \subset F_1^{\perp}$, $g(x) \in g(F_2)$ et $k(x) = h(g(x)) = (f \circ g^{-1})(g(x)) = f(x)$. Donc $k_{/F_2} = f_{/F_2}$. On en déduit encore que $k_{/F} = f_{/F}$ car $F = F_1 \oplus F_2$. Il reste à vérifier que $k \in O(E, \mathfrak{q})$.

Soit $(x,y) \in F_1 \times F_1^{\perp}$. $\phi(k(x),k(y)) = \phi(f(x),h(g(y))) = 0$ car $f(x) \in f(F_1) = F_1'$ et $h(g(y)) \in h(g(F_1^{\perp})) = h(F_1'^{\perp}) = F_1'^{\perp}$. Donc $k(F_1)$ et $k(F_1^{\perp})$ sont des sous-espaces orthogonaux.

Soit alors $x \in E$. Il existe $(x_1, x_2) \in F_1 \times F_1^{\perp}$ tel que $x = x_1 + x_2$ et donc $q(k(x)) = q(k(x_1)) + 2\phi(k(x_1), k(x_2)) + q(k(x_2)) = q(f(x_1)) + q(h(g(x_2))) = q(x_1) + q(x_2) = q(x)$. Donc $k \in O(E, q)$. On a montré qu'il existe $k \in O(E, q)$ tel que $k_{/F} = f$.

IV.B.4) D'après IV.B.2), le théorème de Witt est vrai quand F et F' sont deux sous-espaces non singuliers de dimension 1, et d'après IV.B.3), pour $\mathfrak{p} \geqslant 2$, si le théorème de Witt est vrai quand F et F' sont deux sous-espaces non singuliers de dimension $\mathfrak{p}-1$ alors le théorème de Witt est vrai quand F et F' sont deux sous-espaces non singuliers de dimension \mathfrak{p} . Ceci montre le théorème de Witt par récurrence pour deux sous-espaces non singuliers et finalement d'après IV.B.1), le théorème de Witt est démontré pour tous sous-espaces F et F'.