Strukovna škola Vice Vlatkovića, Zadar

ADRIABOT

Karlo Ciciliani, Josip Sikirić

Mentorica: Dora Čošić

Sadržaj

Uvod	3
O nama	4
Što je AdriaBot	5
Mikroupravljač	5
Senzori:	5
Aktuatori:	5
Korišteni programi:	5
Dodatne komponente:	5
Funkcionalnosti Adriabot-a	6
Cilj AdriaBot-a	6
Dijelovi AdriaBot-a	7
Arduino Mega:	7
Adafruit Motor Driver Shield:	8
Motori	9
Senzori za praćenje linije	10
Ultrazvučni senzor	11
Huskylens kamera	12
Robotska ruka	13
Dodatne komponente	14
Konstrukcija robota	15
Crtež konstrukcije	15
Elektronička shema	17
Programiranje Adriabot-a	18
Inicijalizacija varijabli i pinova	18
Praćenje linije:	19
Prepoznavanje boja:	20
Ultrazvučni senzor:	21
Robotska ruka	21

Tablica slika

Slika 1. Prikaz Arduino Mega 2560 mikroupravljača	7
Slika 2. Prikaz Adafruit Motor Drivera	8
Slika 3. Prikaz DC motora	9
Slika 4. Prikaz senzora za praćenje linije	10
Slika 5. Prikaz ultrazvučnog senzora	11
Slika 6. Prikaz Huskylens AI kamere	
Slika 7. Prikaz robotske ruke	13
Slika 8. Prikaz držača za baterije	14
Slika 9. Prikaz rasporeda elemenata na prvom katu robota	15
Slika 10. Prikaz rasporeda elemenata na prvom katu robota	16
Slika 11. Elektronička shema spajanja komponenata	17
Slika 12. Prikaz inicijalizacija varijabli i pinova	18
Slika 13. Prikaz koda za praćenje linije	
Slika 14. Prikaz koda za detekciju boje	20
Slika 15. Prikaz koda za ultrazvučni senzor	21
Slika 16. Prikaz koda za robotsku ruku	21

Uvod

O nama

AdriaBot tim dolazi iz zadarske strukovne škole Vice Vlatkovića. Naš tim se sastoji od dva člana koji su kroz ovaj projekt htjeli testirati svoje maksimalne mogućnosti programiranja i korištenja Arduino mikroupravljača. Svo naše slobodno vrijeme iskorištavali smo za izradu našeg projekta. Uz pomoć naše mentorice dobili smo priliku da jednu od naših ideja realiziramo kao projekt.

Karlo Ciciliani → Učenik trećeg razreda Strukovne škole Vice Vlatkovića, smjer tehničar za računalstvo. Na temelju svog iskustva kroz osobne i školske projekte dobio je ulogu za konstruiranje i spajanje robota, programiranje, 3D modeliranje u Fusion 360 i 3D printanje.

Josip Sikirić → Učenik trećeg razreda strukovne škole Vice Vlatkovića, smjer tehničar za računalstvo. Sa svojim višegodišnjim iskustvom i stečenim znanjem u programiranju zadužen je za programiranje ovog robota te za logiku iza cijelog programa. Također, znatno jr pomogao sa sastavljanjem robota.

Što je AdriaBot

AdriaBot je robot konstruiran za natjecanje WorldSkills robotike 2024. godine. Razvili su ga Karlo Ciciliani i Josip Sikirć s ciljem da se natječe u kategoriji Wordskills Robotika. Robot je dizajniran za obavljanje različitih zadataka u skladu s pravilima natjecanja, a posjeduje sljedeće komponente:

Mikroupravljač

• Arduino Mega 2560: mozak robota za upravljanje svim komponentama i obradu podataka sa senzora.

Senzori:

- 3 senzora za praćenje linije: Omogućuju robotu da prati crnu liniju na bijeloj podlozi.
- Ultrazvučni senzor: Mjeri udaljenost do objekata u okruženju robota.
- Huskylens kamera: Omogućuje robotu da prepozna objekte i boje.

Aktuatori:

- Robotska ruka: Omogućuje robotu da hvata i pomiče objekte.
- Adafruit motor driver: Upravlja dva motora koja pokreću kotače robota.

Korišteni programi:

- Arduino Ide korišten za programiranje mikroupravljača
- Fritzing korišten za crtanje elektroničkih shema
- Fusion 360 korišten za 3D modele robotske ruke i držača za senzore

Dodatne komponente:

- Baterija: Napaja robot.
- Kabeli i konektori za povezivanje komponenti.
- Gumbi

Funkcionalnosti Adriabot-a

AdriaBot je sposoban za sljedeće funkcionalnosti:

- Praćenje linije: Robot može pratiti crnu liniju na bijeloj podlozi koristeći senzore za praćenje linije.
- Izbjegavanje prepreka: Robot može izbjegavati prepreke u svom okruženju koristeći ultrazvučni senzor.
- Prepoznavanje objekata: Robot može prepoznati objekte, boje i još mnogo toga koristeći Huskylens AI kameru.
- Hvat i premještanje objekata: Robot može uhvatiti i premjestiti objekte koristeći robotsku ruku.

Cilj AdriaBot-a

Adriabot usmjeren je prema tri ključna cilja koji su postavljeni s vizijom ostvarivanja napretka u području robotike. Prvi i najvažniji cilj jest natjecanje u kategoriji Wordskills Robotika 2024. godine. Ambicija robota leži u uspješnom izvršenju svih zadataka, istovremeno demonstrirajući napredne funkcionalnosti koje predstavljaju vrhunsku tehničku izvrsnost.

Drugi aspekt AdriaBota očituje se kroz njegovu ulogu u edukaciji. Robot se koristi kao snažan alat za poučavanje djece i studenata o ključnim konceptima robotike, programiranja i inženjeringa. AdriaBot približava apstraktne pojmove upravljanja robotima, senzora, aktuatora, računalnog vida, strojnog učenja i programiranja, čime potiče stvaranje nove generacije stručnjaka u području tehnologije.

Treći cilj AdriaBota prožet je idejom inovacije u području robotike. Svojim modularnim komponentama i otvorenim dizajnom, robot potiče kontinuirano unapređenje i proširivanje funkcionalnosti. Otvorenost platforme potiče mlade inženjere i studente da razvijaju nove ideje i rješenja, potičući ih na istraživanje u različitim područjima.

Sve ove dimenzije AdriaBota dolaze zajedno u njegovom doprinosu stvaranju budućnosti gdje roboti igraju ključnu ulogu. Njihova prisutnost obećava podršku u raznolikim industrijskim granama i integraciju u naš svakodnevni život. AdriaBot gradi temelje društva na znanju i napretku, potičući nas da zajednički oblikujemo inovativnu budućnost.

Dijelovi AdriaBot-a

Arduino Mega:

- Mikrokontroler s 54 digitalna ulaza/izlaza (od kojih se 15 može koristiti kao PWM izlazi), 16 analognih ulaza, 4 serijska porta (UART), kristalni oscilator od 16 MHz, USB veza, ICSP header i reset gumb.
- Koristi se kao glavni mozak robota za upravljanje svim komponentama i obradu podataka sa senzora
- Arduino Mega ima dovoljnu snagu i memorija za obavljanje složenih zadataka, što ga čini idealnim za AdriaBota.

Slika 1. Prikaz Arduino Mega 2560 mikroupravljača

Adafruit Motor Driver Shield:

- Shield koji se postavlja na Arduino Mega i omogućuje jednostavno upravljanje motorima robota.
- Ima dva kanala za upravljanje DC motorima, a podržava i korake motore.
- Shield ima ugrađene H-bridge MOSFET-e koji omogućuju kontrolu smjera i brzine vrtnje motora.
- Koristi se u kombinaciji s Arduino Mega za upravljanje robotovim kotačima.

Slika 2. Prikaz Adafruit Motor Drivera

Motori

- Dva DC motora koji pokreću kotače robota.
- Motori su spojeni na Adafruit Motor Driver Shield koji regulira njihovu brzinu i smjer vrtnje.
- Motori su odabrani tako da imaju dovoljnu snagu i brzinu za kretanje robota po natjecateljskoj podlozi.

Slika 3. Prikaz DC motora

Senzori za praćenje linije

- Tri senzora za praćenje linije koji se koriste za detekciju crne linije na bijeloj podlozi.
- Vrsta optičkog senzora koji emitira infracrvenu svjetlost i prima reflektirani signal.
- Na temelju reflektiranog signala, senzori mogu odrediti da li se nalaze iznad crne linije ili ne.
- Podaci sa senzora se koriste za upravljanje robotovim kotačima i održavanje robota na liniji.

Slika 4. Prikaz senzora za praćenje linije

Ultrazvučni senzor

- Senzor koji mjeri udaljenost do objekata u okruženju robota.
- Senzor emitira ultrazvučne valove i prima reflektirani signal.
- Na temelju vremena povratka reflektiranog signala, senzor može odrediti udaljenost do objekta.
- Podaci sa senzora se koriste za izbjegavanje prepreka i navigaciju robota u okruženju.

Slika 5. Prikaz ultrazvučnog senzora

Huskylens kamera

- Kamera koja se koristi za prepoznavanje objekata i boja.
- Kamera ima ugrađeni procesor koji omogućuje obradu slike u realnom vremenu.
- Huskylens kamera može prepoznati različite objekte, kao što su kocke, loptice i boje.
- Podaci sa kamere se koriste za izvršavanje zadataka na natjecanju, kao što je hvatanje i premještanje objekata te detekcija boje.

Slika 6. Prikaz Huskylens Al kamere

Robotska ruka

- Robotska ruka koja se koristi za hvatanje i premještanje objekata.
- Ruka se sastoji od nekoliko servo motora koji kontroliraju njezine zglobove.
- Upravlja se Arduino Mega mikrokontrolerom.
- Robotska ruka se koristi za izvršavanje zadataka na natjecanju, kao što je hvatanje i premještanje hokejskog paka.

Slika 7. Prikaz robotske ruke

Dodatne komponente

- Baterija koja napaja robot.
- Kabli i konektori za povezivanje komponenti.

Slika 8. Prikaz držača za baterije

Konstrukcija robota

AdriaBot je konstruiran na plastičnom okviru, s dva kata koji drže sve komponente robota na okupu:

- Adafruit Motor Driver postavljen je direktno na Arduino Mega 2560 preko pinova. Motori su spojeni žicama na Adafruit Motor Driver preko pinova.
- Senzori za praćenje linije se spajaju na Arduino Mega preko analognih pinova. Ultrazvučni senzor se spaja na Arduino Mega preko digitalnih pinova.
- Huskylens kamera se spaja na Arduino Mega preko I2C protokola.
- Robotska ruka se spaja na Arduino Mega preko servo pinova.
- Baterija se spaja na Arduino Mega preko konektora.

Svi kablovi i konektori su pravilno izolirani kako bi se spriječili kratki spojevi te je robot jako siguran za korištenje.

Crtež konstrukcije

Slika 9. prikazuje točan raspored komponenata na prvom katu robota.

Slika 9. Prikaz rasporeda elemenata na prvom katu robota

Slika 10. prikazuje točan raspored komponenata na drugom katu robota.

Slika 10. Prikaz rasporeda elemenata na prvom katu robota

Elektronička shema

Na slici 11. prikazana je elektronička shema AdriaBota. Koristeći program Fritzig napravljena je shema na kojoj je prikazan način spajanja korištenih aktuatora, senzora i dodatne opreme na mikroupravljač Arduino Mega. Podijeljena je na sljedeće dijelove:

- Napajanje: Prikazuje kako se baterija spaja na Arduino Mega i ostale komponente.
- Motori: Prikazuje kako su motori spojeni na Adafruit Motor Driver Shield i Arduino Mega.
- Senzori: Prikazuje kako su senzori za praćenje linije i ultrazvučni senzor spojeni na Arduino Mega.
- Huskylens kamera: Prikazuje kako je Huskylens kamera spojena na Arduino Mega.
- Dodatne komponente: Prikazuje kako su tipkala spojena na Arduino Mega.

Slika 11. Elektronička shema spajanja komponenata

Programiranje Adriabot-a

U ovom dijelu ćemo detaljno analizirati programiranje AdriaBota, otkrivajući logiku iza njegovih funkcija. Cilj je dati vam dublje razumijevanje načina na koji robot "misli" i izvršava zadatke.

Program AdriaBot-a sastoji se od različitih algoritama i funkcija koji rade zajedno. Neke od ključnih funkcija su:

Inicijalizacija varijabli i pinova

- Na početku samog koda definiraju se pinovi za senzore, motore, servo motor i botune te varijable za brzinu motora, kutove otvaranja i zatvaranja ruke, te boje
- U Setup funkciji postavlja se serijska komunikacija, inicijaliziraju se motori, senzori, Huskylens kamera i servo motor.

```
#include <HCSR04.h>
#define KUT_OTVORI_RUKU 0 // kalibriraj da se ruka skroz otvori
#define KUT_ZATVORI_RUKU 90 // kalibriraj da se ruka skroz zatvori
#define SS 25
#define LS 47
#define BCRVENA 30
#define BPLAVA 32
#define BZELENA 28
#define SERVO 10
#define OTVORI 0
#define ZATVORI 1
void lineFollower();
void pCrvena();
int prepoznajBoje();
bool ultraZvucni();
void ruka(bool stanje);
AF_DCMotor dM4(4);
AF_DCMotor 1M3(3);
HCSR04 zvucni(22, 23);
HUSKYLENS huskylens;
 void setup() {
  Serial.begin(9600);
  1M3.setSpeed(SPEED);
  dM4.setSpeed(SPEED - 50);
1M3.run(RELEASE);
  dM4.run(RELEASE);
  pinMode(BCRVENA, INPUT_PULLUP);
  pinMode(BPLAVA, INPUT_PULLUP);
pinMode(BZELENA, INPUT_PULLUP);
  Wire.begin();
  huskylens.begin(Wire);
  servo.attach(SERVO);
```

Slika 12. Prikaz inicijalizacija varijabli i pinova

Praćenje linije:

- Robot koristi tri senzora za praćenje linije kako bi detektirao crnu liniju na bijeloj podlozi.
- Algoritam analizira signale sa senzora i određuje potrebne korekcije u smjeru kretanja robota.

```
oid lineFollower() {
if (digitalRead(SS)) {
  if (!digitalRead(LS) && !digitalRead(DS)) {
    1M3.run(FORWARD);
    dM4.run(FORWARD);
  if (digitalRead(LS) && !digitalRead(DS)) {
    1M3.run(BACKWARD);
   dM4.run(FORWARD);
  if (!digitalRead(LS) && digitalRead(DS)) {
    1M3.run(FORWARD);
    dM4.run(BACKWARD);
  if (digitalRead(LS) && digitalRead(DS)) {
    1M3.run(RELEASE);
    dM4.run(RELEASE);
else {
  if (digitalRead(LS) && !digitalRead(DS)) {
    1M3.run(RELEASE);
    dM4.run(FORWARD);
  if (!digitalRead(LS) && digitalRead(DS)) {
    1M3.run(FORWARD);
    dM4.run(RELEASE);
  if (!digitalRead(LS) && !digitalRead(DS)) {
    1M3.run(BACKWARD);
    dM4.run(BACKWARD);
 // // naprid
// 1M3.run(FOWARD);
// dM4.run(FOWARD);
// }
```

Slika 13. Prikaz koda za praćenje linije

Prepoznavanje boja:

- Huskylens kamera se koristi za prepoznavanje crvene, plave i zelene boje.
- Algoritam obrade slike analizira sliku i određuje dominantnu boju u vidnom polju kamere.
- Prepoznavne boje se koriste za aktiviranje različitih zadataka u skladu s pravilima natjecanja.

```
/oid birajBoju() {
  if (!digitalRead(BCRVENA)) {
    Serial.println("Crveni");
    pCrvena();
  if (!digitalRead(BPLAVA)) {
    Serial.println("Plavi");
    pPlava();
  if (!digitalRead(BZELENA)) {
    Serial.println("Zeleni");
    pZelena();
oid pCrvena() { return; }
/oid pPlava() { return; }
/oid pZelena() { return; }
int prepoznajBoje() {
huskylens.request();
if (huskylens.available()) {
  HUSKYLENSResult result = huskylens.read();
  if (result.ID == 1) {
    Serial.println("Prepoznata crvena");
    return 1;
  else if (result.ID == 2) {
    Serial.println("Prepoznata plava");
  else if (result.ID == 3) {
    Serial.println("Prepoznata zelena");
  else {
    Serial.println("Prepoznata boja nije definirana");
```

Slika 14. Prikaz koda za detekciju boje

Ultrazvučni senzor:

- Ultrazvučni senzor se koristi za mjerenje distance ispred sebe
- Emitira zvučne valove visoke frekvencije (koje ljudi ne mogu čuti) koji se odbijaju od prepreke koja je pred senzorom
- Na temelju vremena koje je proteklo od emisije zvučnog vala do povratka izračunava udaljenost do prepreke

```
bool ultraZvucni() {
    // Serial.println(zvucni.dist());
    if (zvucni.dist() > 6 || !zvucni.dist()) {
        Serial.println("[+] Ultrazvucni: reazmak dovoljan.");
        return true;
    }
    else {
        Serial.println("[-] Ultrazvucni: rezmak nedovoljan!");
        return false;
    }
}
```

Slika 15. Prikaz koda za ultrazvučni senzor

Robotska ruka

- Robotska ruka je mehanička hvataljka sastavljena od servo motora i 3D isprintane PLA plastike
- Može hvatati i premještati objekte različitih veličina i težina

•

```
void ruka(bool stanje) {
    //ako servo nije spojen
    if (!servo.attached()) {
        Serial.println("Failed, no servo attached!");
        return;
    }
    // zatvori ruku
    if (stanje) {
        servo.write(KUT_ZATVORI_RUKU);
    }
    // otvori ruku
    else {
        servo.write(KUT_OTVORI_RUKU);
    }
}
```

Slika 16. Prikaz koda za robotsku ruku

Zaključak

Projekt AdriaBot je uspješno demonstrirao sposobnost dizajniranja, konstruiranja i programiranja robota za natjecanje WorldSkills robotici 2024. godine. Kroz ovaj projekt stekali smo vrijedna znanja, vještine i iskustvo iz područja:

- Robotika: Projekt je omogućio stjecanje temelja robotike i primjenu na izradi funkcionalnog robota. Dublje su shvaćeni senzori, aktuatori, mikrokontroleri i njihova primjena u realnom svijetu.
- Programiranje: Projekt je predstavio izazov razvija logike i algoritama za upravljanje robotom. Uz to je korišten Arduino IDE i specifične biblioteke za rad s komponentama.
- Mehanika i elektronika: Stečene su vještine iz ovih područja u konstrukciji robota, spajanju i integriranju komponenti te rješavanju nastalih problema
- Rješavanje problema: Kroz razvoj nailazili smo na različite izazove koji su jačali sposobnost rješavanja problema i kritičkog razmišljanja
- Timski rad: Ako ste radili u timu, projekt je doprinio razvoju timskog rada, kolaboracije, međusobne podrške i distribucije zadataka što je ključno za uspjeh u projektima ovog opsega.

Budući razvoj

AdriaBot predstavlja izvrsnu platformu za daljnji razvoj i usavršavanje:

- Optimizacija: Unaprjeđenje postojećih algoritama za učinkovitije i brže izvršavanje zadataka.
- Nove funkcionalnosti: Dodavanje novih senzora i aktuatora za proširenje robotskih sposobnosti.
 Npr. senzor temperature, kompas
- Autonomija: Razvoj naprednih algoritama za autonomnu navigaciju i donošenje odluka u nepoznatom okpyženju.

Uz posvećenost i kontinuirani razvoj, AdriaBot ima potencijal postići iznimne rezultate na natjecanju WorldSkills robotici 2024. godine, ali što je još važnije, ovaj je projekt predstavlja izvanrednu vrijednost u učenju i osobnom razvoju članova tima te će otvoriti vrata novim prilikama i izazovima u svijetu robotike.

