Zadanie: MAT Matrioszka

Warsztaty ILO 2017-2018, grupa olimpijska, dzień 9. Dostępna pamięć: 128 MB.

09.12.2017

W sklepie jest sprzedawanych n lalek Matrioszka. Są lalki są ponumerowane od 1 do n. i-ta lalka ma promień r_i i wysokość h_i . Lalka i może być włożona w lalkę j jeśli zachodzi $r_i < r_j$ oraz $h_i < h_j$. Lalka która jest w innej lalce może mieć w sobie jeszcze inną lalkę, inna lalka znowuż, może mieć w sobie jeszcze inną lalkę itd..., ale tylko jedna lalka może być bezpośrednio w danej lalce (tak standardowo działają Matrioszki).

Masz dane q zapytań. Przy i-tym zapytaniu zakładamy, że kupujesz wszystkie lalki o promieniu nie mniejszym a_i ($a_i \leq r_i$) oraz o wysokości nie większej niż b_i ($h_i \leq b_i$). Dla takiego zapytania oblicz minimalną liczbę lalek które nie będą w żadnej innej lalce, przy optymalnym ich upakowaniu.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite $n, q \ (1 \le n, q \le 2 \cdot 10^5)$ oznaczająca liczbę lalek oraz liczbę zapytań.

W kolejnych n wierszach znajdują się pary liczb r_i, h_i $(1 \le r_i, h_i \le 10^9)$, oznaczające kolejno promień i wysokość kolejnych lalek.

W kolejnych q wierszach znajdują się pary liczb a_i, b_i $(1 \le a_i, b_i \le 10^9)$, oznaczające kolejno minimalny promień i maksymalną wysokość kupowanych lalek.

Wyjście

Na wyjściu znajduje się q wierszy, dla każdego zapytania minimalna liczba lalek które będę widoczne po optymalnym upakowaniu.

Przykład

Dla danych wejściowych:	poprawnym wynikiem jest:
7 3	0
9 5	1
3 7	2
10 6	
5 10	
2 6	
10 10	
4 1	
10 5	
3 5	
3 9	
Dla danych wejściowych:	poprawnym wynikiem jest:
10 5	3
14 19	1
9 16	3
11 2	5
7 18	0
20 16	
9 5	
10 9	
20 6	
4 17	
13 8	
7 14	
9 3	
9 13	
4 19	
12 4	

Ocenianie

Podjadanie	Ograniczenia	Punkty
1	$n, q \le 2000$	40
2	dla każdej pary i, j zachodzi $ r_i - j $	15
	$ r_j = 1$	
3	brak dodatkowych założeń	45

