ARBORI DE CĂUTARE ECHILIBRAŢI

(BALANCED SEARCH TREES)

Analiza arborilor binari de căutare

- operațiile specifice se execută în timp dependent de înălțimea arborelui (complexitate timp O(h)).
- în cel mai rău caz pentru n elemente înălțimea este n-1 (arbore degenerat) $\Rightarrow \theta(n)$ înălțime (complexitate în caz defavorabil pentru operații).
- cazul ideal: arbore echilibrat a cărui înălțime să fie $O(loq_2n)$.

(a) ABC echilibrat.

(b) ABC degenerat (lant).

- ideea: la fiecare nod să păstrăm echilibrarea.
- când un nod îşi pierde *echilibrul* \Rightarrow **reechilibrare** (prin rotații specifice).
- sunt mai multe moduri de definire a echilibrării \Rightarrow variante de arbori de căutare echilibrați.
 - arbori AVL, arbori splay, arbori roşu-negru, B-arbori, etc.
 - caracteristică comună: înălțimea arborelui este $O(loq_2n)$.

ARBORI AVL

Definiție 1 Un **Arbore AVL** (Adelson Velski Landis) este un ABC care satisface următoarea proprietate (invariant AVL):

- dacă x este un nod al AVL, atunci:
 - înălțimea subarborelui stâng al lui x diferă de înălțimea subarborelui drept al lui x cu 0, 1 sau -1 (0, 1 sau -1 se numește **factor de echilibrare**).

Figura 2: Factori de echilibrare posibili la orice nod al unui AVL.

• în AVL cheile (elementele) memorate în noduri sunt distincte.

Exemplu Presupunem că în container avem cheile 4 5 6 7 8 10 şi relația $\mathcal{R} = \leq$. În Figura 3 sunt indicați 2 ABC care conțin aceste chei. Cel din stânga nu este AVL, pe când cel din dreapta este AVL.

• la aborele din Figura 3(a) va fi necesară o rotație în subarborele marcat, pentru a-l echilibra.

Figura 3: Arbori care conțin aceeași mulțime de chei: cel din stânga nu e echilibrat, cel din dreapta e echilibrat.

Proprietate. Înălțimea unui arbore AVL cu n noduri este $\theta(log_2n)$.

În cazul în care arborele are număr maxim de noduri (n), acesta este **plin** (orice nod interior are factorul de echilibrare 0). $\Rightarrow h = \theta(log_2n)$

- Notăm cu N(h) numărul minim de noduri ale unui arbore AVL de înălțime h.
 - toate nodurile interioare au factor de echilibrare -1 sau 1.
 - înălțimea unui arbore (a cărui rădăcină este p) se poate defini recursiv ca fiind 1+ maximul dintre înățimea subarborelui stâng și înățimea subarborelui drept h(p) = 1 + max(h([p].st), h([p].dr)).

Figura 4: AVL cu număr maxim de noduri n.

Figura 5: Număr minim de noduri în AVL

$$N(h) = \begin{cases} 1 & h = 0 \\ 2 & h = 1 \\ N(h-1) + N(h-2) + 1 & alt fel \end{cases}$$
 (1)

– se poate arăta că $N(h) \approx \phi^h$, unde $\phi = \frac{1+\sqrt{(5)}}{2}$ este numărul de aur (golden ratio), $\phi = 1.618...$

$$\Rightarrow h \approx log_{\phi}n \in \theta(log_2n)$$

Rotații și situații de reechilibrare în AVL

- 6 situații de reechilibrare (Knuth);
 - în cazul **adăugării** unui element
 - în cazul **ștergerii** unui element
- 4 tipuri de **rotații** pentru reechilibrare:
 - 1. o singură rotație spre stânga (SRS);
 - 2. dublă rotație spre stânga (**DRS**);
 - 3. o singură rotație spre dreapta (SRD);
 - 4. dublă rotație spre dreapta (DRD).

Situații de reechilibrare la adăugare

Caz I - rotații spre stânga

Caz Ia) - e necesară o SRS (Figura 6)

Figura 6: Caz Ia) la adăugare - e necesară o SRS pentru reechilibrare.

Exemplu caz Ia)

Figura 7: Exemplu caz Ia) la adăugare - e necesară o SRS pentru reechilibrare.

!!! Atenţie !!!

• la inserarea unui element, rotațiile se aplică în subarborele de înălțime minimă a cărui rădăcină și-a pierdut echilibrul (de jos în sus - de la frunze spre rădăcină)

Figura 8: Echilibrul se strică la nodul 7. În subarborele de rădăcină 7 se aplică SRS pentru reechilibrare.

Implementare SRS

- pentru implementarea operațiilor, pp. în cele ce urmează reprezentare înlănțuită folosind alocare dinamică.
- pp. că fiecare nod memorează:
 informația utilă (e);
 adresa celor doi subarbori (stâng st şi drept dr);
 înălțimea nodului în arbore (h).
 Nod
 e: TElement //informația utilă nodului
 st: ↑ Nod //adresa la care e memorat descendentul stâng

st: ↑ Nod //adresa la care e memorat descendentul stâng dr: ↑ Nod //adresa la care e memorat descendentul drept h: ↑ Intreg //înălţimea nodului

```
Functia h(p)
     {complexitate timp: \theta(1)}
        p:\uparrow Nod
pre:
         se returnează înălțimea lui p
post:
     {dacă e subarbore vid}
     Daca p = NIL atunci
        h \ \leftarrow \ \text{-1}
     altfel
        h \leftarrow [p].h
     SfDaca
  SfFunctia
  Functia inaltime(p)
     {complexitate timp: \theta(1)}
        p:\uparrow Nod
pre:
         recalculează înălțimea lui p pe baza înălțimilor subarborilor lui p
     {dacă e subarbore vid}
     {\tt Daca}\ p = {\tt NIL}\ {\tt atunci}
        inaltime \leftarrow -1
```

```
altfel  \{ \text{se recalculează înălțimea lui } p \text{ pe baza înălțimilor celor doi fii} \} \\ \text{inaltime} \leftarrow \max(\mathsf{h}([p].st), \ \mathsf{h}([p].dr)) + 1 \\ \text{SfDaca} \\ \text{SfFunctia}
```


Figura 9: Situația de SRS pentru reechilibrare.

```
Functia SRS(p)
      {complexitate timp: \theta(1)}
         peste adresa unui nod; p:\uparrow Nodeste rădăcina unui subarbore
pre:
post:
          se returnează rădăcina noului subarbore rezultat în urma unei SRS aplicate arborelui cu
      rădăcina p
      \{ pd : \uparrow Nod \text{ e fiul drept } \}
      pd \leftarrow [p].dr
      { se restabilesc legăturile între noduri conform SRS}
      [p].dr \leftarrow [pd].st
      [pd].st \leftarrow p
      {se recalculează înălțimile conform SRS}
      [p].h \leftarrow \mathtt{inaltime}(p)
      [pd].h \leftarrow \mathtt{inaltime}(pd)
      \mathtt{SRS} \ \leftarrow pd
   SfFunctia
```

Caz Ib) - e necesară o DRS (Figura 10)

Figura 10: Caz Ib) la adăugare - e necesară o DRS pentru reechilibrare.

Exemplu caz Ib)

Figura 11: Exemplu caz Ib) la adăugare - e necesară o DRS pentru reechilibrare.

Caz Ic) - e necesară o DRS (Figura 12)

Figura 12: Caz Ic) la adăugare - e necesară o DRS pentru reechilibrare.

Exemplu caz Ic)

Figura 13: Exemplu caz Ic) la adăugare - e necesară o DRS pentru reechilibrare.

Caz II - rotații spre dreapta

- simetric cu cele trei situații de la cazul I
- Caz IIa) e necesară o SRD (caz simetric ca cel descris în Figura 6)
- Caz IIb) e necesară o DRD (caz simetric ca cel descris în Figura 10)
- Caz IIc) e necesară o DRD (caz simetric ca cel descris în Figura 12)

Exemplu caz IIa)

Figura 14: Exemplu caz IIa) la adăugare - e necesară o SRD pentru reechilibrare.

Exemplu caz IIc)

Figura 15: Exemplu caz IIc) la adăugare - e necesară o DRD pentru reechilibrare.

Operația de adăugare în arbore AVL

PP. reprezentare înlănțuită cu alocare dinamică, fiecare nod memorează și înălțimea sa.

• un element identificat de o *cheie*

```
Functia creeazaNod(e) este {θ(1)}

{creeaza un nod avand informatia utila 'e' si cei doi descendenti NIL}

aloca(p) {p:↑Nod}

[p].e←e

[p].st←NIL

[p].dr←NIL

[p].h←0

creeazaNod←p

sf creeazaNod
```

```
Functia adauga rec(p, e) este
                                    \{O(\log_2 n)\}
{se adauga informatia utila 'e' in subarborele de radacina 'p' si se returneaza noua
radacina a subarborelui }
       Daca p=NIL atunci
              p← creeazaNod(e)
         altfel
              daca e.c>[p].e.c atunci
                      [p].dr←adauga_rec([p].dr,e)
                      daca h([p].dr)-h([p].st)=2 atunci
                             daca e.c>[[p]_dr].e.c atunci {caz Ia}
                                     p \leftarrow SRS(p)
                                                           {caz Ib, Ic}
                                     p←DRS (p)
                             sfDaca
                        altfel
                             [p].h←inaltime(p)
                      sfDaca
                 altfel
                      daca e.c<[p].e.c atunci
                             @ simetric pe partea stanga – rotatii spre dreapta
                      altfel
                             @ cheie duplicat – nu e permisa in AVL
                      sfdaca
              sfDaca
       sfDaca
       adauga rec←p
sf adauga rec
Subalgoritm adauga(ab, e) este \{O(\log_2 n)\}
{se adauga informatia utila 'e' in arborele 'ab' si se returneaza arborele rezultat}
       ab.rad←adauga rec(ab.rad, e)
sf adauga
```

Observații

- alte reprezentări posibile pentru arborele AVL (ca și pentru un ABC)
 - reprezentare înlănțuită cu reprezentare înlănțuiri pe tablou.
 - reprezentare secvențială, folosind ca schemă de memorare un ansamblu.
- în locul înălțimii fiecărui nod, se poate memora factorul de echilibrare al acestuia

Situații de reechilibrare la ștergere

Caz I - rotații spre stânga

Caz Ia) și Ib) - dacă prin ștergere din A1, înălțimea devine h-1 , e necesară o SRS (Figura 16)

 \bullet e posibil ca prin ștergere din A1, înălțimea să rămănă $h\Rightarrow$ nu e necesară rotație

Figura 16: Caz Ia) și Ib) la ștergere - e necesară o SRS pentru reechilibrare.

Exemple caz Ia) și caz Ib) în care sunt necesare rotații

Figura 17: Exemplu caz Ia) la ștergere - e necesară o SRS pentru reechilibrare.

Figura 18: Exemplu caz Ib) la ştergere - e necesară o SRS pentru reechilibrare.

Exemplu caz Ia) în care nu e necesară rotație

Figura 19: Exemplu caz Ia) la ștergere - nu e necesară rotație.

Caz Ic) - dacă prin ștergere din A1, înălțimea devine h-1, e necesară o DRS (Figura 20)

Figura 20: Caz Ic) la ștergere - e necesară o DRS pentru reechilibrare.

Exemplu caz Ic)

Figura 21: Exemplu caz Ic) la ștergere - e necesară o DRS pentru reechilibrare.

Caz II - rotații spre dreapta

• simetric cu Ia)

Observație

Tabelele de dispersie cu rezolvare coliziuni prin liste independente își pot memora listele folosind arbori AVL.

• se reduce complexitatea timp defavorabil la căutare de la $\theta(n)$ la $\theta(log_2n)$.

Fie m=4 și funcția de dispersie prin divizune.

c(heie)	4	5	16	9	20	7	12	8
$c \bmod m$	0	1	0	1	0	3	0	0

Probleme

- 1. Descrieți în Pseudocod următoarele rotații: DRS, SRD, DRD.
- 2. Dați exemple concrete în care apare necesitatea următoarelor tipuri de rotații la adăugare/ștergere: SRS, SRD, DRS, DRD.
- 3. Reprezentări alternative pentru AB, ABC, AVL folosind următoarele reprezentări:
 - reprezentare înlănțuită cu reprezentare înlănțuiri pe tablou.
 - reprezentare secvențială, folosind ca schemă de memorare un ansamblu.

Alte tipuri de ABC echilibrați

Înălțimea este $O(loq_2n)$

- arbori roşu-negru (red-black trees)
 - sunt ABC
 - nodurile au o culoare: roșie sau neagră
 - frunzele (nil) sunt negre
 - un nod roşu are cei doi fii de culoare neagră
 - pe orice drum de la rădăcină la o frunză, numărul nodurilor negre este același
 - \ast în urma constrângerii legate de modul în care se coloreaza nodurile \Rightarrow
 - · niciun drum de la radacina la o frunza nu este mai lung decât dublul lungimii oricarui alt drum \Rightarrow arborele este aproximativ echilibrat.
 - $h < log_2 n + 1$

• B-arbori

- generalizare ABC
- fiecare nod interior conține mai multe chei
- nodurile pot avea mai mult de 2 descendenți
 - $\ast\,$ dacă un nod conține 2 chei c_1 și $c_2,$ atunci are 3 descendenți
- $-\,$ folosiți în $\mathit{baze}\,\,\mathit{de}\,\,\mathit{date}$ și $\mathit{sisteme}\,\,\mathit{de}\,\,\mathit{fișiere}$