NAME: MOKSHA SAI PEESABATTULA

REG NO:21BCE9167

MAIL ID: mokshasai.21bce9167@vitapstudent.ac.in

PH No:9390380348 CAMPUS :VIT-AP

1. IMPORT THE LIBRARIES

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
```

2. IMPORT THE DATASET

```
In [ ]: df=pd.read_csv("Titanic-Dataset.csv")
In [ ]: df
```

		Z I BOLO TO / Assignment o								'	
Ca	Fare	Ticket	Parch	SibSp	Age	Sex	Name	Pclass	Survived	PassengerId]:
Ν	7.2500	A/5 21171	0	1	22.0	male	Braund, Mr. Owen Harris	3	0	1	0
(71.2833	PC 17599	0	1	38.0	female	Cumings, Mrs. John Bradley (Florence Briggs Th	1	1	2	1
٨	7.9250	STON/O2. 3101282	0	0	26.0	female	Heikkinen, Miss. Laina	3	1	3	2
C	53.1000	113803	0	1	35.0	female	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	1	4	3
٨	8.0500	373450	0	0	35.0	male	Allen, Mr. William Henry	3	0	5	4
					•••						•••
٨	13.0000	211536	0	0	27.0	male	Montvila, Rev. Juozas	2	0	887	886
	30.0000	112053	0	0	19.0	female	Graham, Miss. Margaret Edith	1	1	888	887
٨	23.4500	W./C. 6607	2	1	NaN	female	Johnston, Miss. Catherine Helen "Carrie"	3	0	889	888
С	30.0000	111369	0	0	26.0	male	Behr, Mr. Karl Howell	1	1	890	889
Ν	7.7500	370376	0	0	32.0	male	Dooley, Mr. Patrick	3	0	891	890

891 rows × 12 columns

In []: df.head()

9/23, 3:39 PM					21B	CE9167 A	ssignm	ent 3				
Out[]:	Passengerle	d Survi	ived F	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabir
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN
4												•
In []:	df.tail()											
Out[]:	Passenge	veld Su	rvivod	Delas	s Name	Say	Λασ	SibSr	Darch	n Ticket	Faro C	ahin
out[].		887	0		Montvila, 2 Rev. Juozas	male	27.0			211536		NaN
	887	888	1	·	Graham, Miss. Margaret Edith	female	19.0) () () 112053	30.00	B42
	888	889	0	3	Johnston, Miss. 3 Catherine Helen "Carrie"	female	· NaN	I 1	1 2	W./C. 6607	23.45	NaN
	889	890	1	,	Behr, Mr. 1 Karl Howell	male	26.0) () () 111369	30.00	C148
	890	891	0	3	Dooley, 3 Mr. Patrick	male	9 32.0) () (370376	7.75	NaN
4												•
In []:	df.shape											
Out[]:	(891, 12)											
In []:	df.info()											
[]·												

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
44	67 164/2	\ :-+<4/5\	

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In []: df.describe()

Out[]:		Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In []: corr=df.corr()
corr

<ipython-input-13-7d5195e2bf4d>:1: FutureWarning: The default value of numeric_onl
y in DataFrame.corr is deprecated. In a future version, it will default to False.
Select only valid columns or specify the value of numeric_only to silence this war
ning.

corr=df.corr()

Out[]: **Pclass** SibSp **PassengerId** Survived Age **Parch Fare PassengerId** 1.000000 -0.005007 -0.035144 0.036847 -0.057527 -0.001652 0.012658 Survived -0.005007 1.000000 0.081629 0.257307 -0.338481 -0.077221 -0.035322 **Pclass** -0.035144 -0.338481 1.000000 -0.369226 0.083081 0.018443 -0.549500 -0.308247 Age 0.036847 -0.077221 -0.369226 1.000000 -0.189119 0.096067 SibSp -0.057527 -0.035322 0.083081 -0.308247 1.000000 0.414838 0.159651 **Parch** -0.001652 0.081629 1.000000 0.216225 0.018443 -0.189119 0.414838 **Fare** 0.012658 0.257307 -0.549500 1.000000 0.096067 0.159651 0.216225

```
In [ ]:
           plt.subplots(figsize=(15,10))
           sns.heatmap(corr,annot=True)
           <Axes: >
Out[]:
           Passengerld
                              -0.005
                                                                    -0.058
                                                                                                               - 0.8
           Survived
                                                                                                               - 0.6
           Pclass
                                                                                              -0.55
                                                                                                                - 0.4
           Age
                                                                                                                0.2
                 -0.058
                                           0.083
                                                                                              0.16
                                                                                                                0.0
                                                                                                                -0.2
          Parch
                 -0.0017
                                                        -0.19
                                                                                                                -0.4
           Fare
               PassengerId
                             Survived
                                           Pclass
                                                                    SibSp
                                                                                 Parch
                                                                                              Fare
                                                        Age
           df.Survived.value_counts()
In [ ]:
                 549
Out[ ]:
          Name: Survived, dtype: int64
In [ ]:
           df.Sex.value_counts()
                       577
          male
Out[ ]:
           female
                       314
          Name: Sex, dtype: int64
In [ ]:
           df.Embarked.value_counts()
                 644
          S
Out[]:
                 168
          Name: Embarked, dtype: int64
```

3. CHECK FOR NULL VALUES

```
In [ ]: df.isnull().any()
```

```
False
        PassengerId
Out[ ]:
         Survived
                        False
         Pclass
                        False
        Name
                        False
                        False
         Sex
                         True
        Age
         SibSp
                        False
         Parch
                        False
         Ticket
                        False
         Fare
                        False
         Cabin
                         True
         Embarked
                         True
         dtype: bool
In [ ]: df.isnull().sum()
                          0
        PassengerId
Out[]:
        Survived
                          0
         Pclass
                          0
        Name
                          0
         Sex
                          0
                        177
        Age
        SibSp
                          0
        Parch
                          0
        Ticket
                          0
         Fare
                          0
         Cabin
                        687
         Embarked
                          2
         dtype: int64
         Fill null values in the 'Age' column with the mean age
In [ ]: |
         mean_age = df['Age'].mean()
         df['Age'].fillna(mean_age, inplace=True)
         Fill null values in the 'Embarked' column with the most common value
         most_common_embarked = df['Embarked'].mode()[0]
In [ ]:
         df['Embarked'].fillna(most_common_embarked, inplace=True)
         df.drop(['Cabin'],axis=1, inplace=True)
In [ ]:
         df.drop(['Ticket'],axis=1, inplace=True)
In [ ]:
         df.drop(['Name'],axis=1,inplace=True)
         print(df.isnull().sum())
In [ ]:
                        0
         PassengerId
         Survived
                        0
         Pclass
                        0
                        0
         Sex
                        0
         Age
         SibSp
                        0
         Parch
                        0
         Fare
                        0
         Embarked
                        0
         dtype: int64
```

4. Data Visualization

```
In [ ]: # Visualize the distribution of the 'Survived' column (0 = Not Survived, 1 = Survived')
    sns.countplot(data=df, x='Survived')
    plt.title('Survival Count')
    plt.xlabel('Survived')
    plt.ylabel('Count')
    plt.show()
```

Survival Count


```
In [ ]: #Visualize the distribution of the 'Age' column
    sns.histplot(data=df, x='Age', bins=20, kde=True)
    plt.title('Age Distribution')
    plt.xlabel('Age')
    plt.ylabel('Count')
    plt.show()
```


In []: #Visualize the distribution of the 'Fare' column and detect outliers we will handle
 sns.boxplot(data=df, x='Fare')
 plt.title('Fare Distribution')
 plt.xlabel('Fare')
 plt.show()

Fare Distribution


```
#Pair plot for selected numerical columns
In [ ]:
         sns.pairplot(data=df[['Fare', 'SibSp', 'Parch']])
         plt.title('Pair Plot')
         plt.show()
            500
            400
            300
            200
            100
              0
              8
              6
              2
              6
              5
              3
              2
              1
              0
                         200
                                   400
                                                                     8
                                                                                                 6
                 0
                                             0
                                                   2
                                                         4
                                                               6
                                                                         0
                                                                                 2
                                                                                         4
```

```
In [ ]: corr_matrix = df.corr()
    sns.heatmap(corr_matrix, annot=True,cmap='coolwarm')
    plt.title('Correlation Heatmap')
    plt.show()
```

<ipython-input-30-8dcbd071fff3>:1: FutureWarning: The default value of numeric_onl
y in DataFrame.corr is deprecated. In a future version, it will default to False.
Select only valid columns or specify the value of numeric_only to silence this war
ning.

SibSp

Parch

corr_matrix = df.corr()

Fare

5. Detect and Handle Outliers

```
In [ ]:
        z_scores = np.abs(stats.zscore(df['Age']))
        max threshold=3
        outliers = df['Age'][z_scores > max_threshold]
        # Print and visualize the outliers
        print("Outliers detected using Z-Score:")
        print(outliers)
        Outliers detected using Z-Score:
        96
               71.0
               70.5
        116
        493
               71.0
        630
               80.0
        672
               70.0
        745
               70.0
        851
               74.0
        Name: Age, dtype: float64
        z scores = np.abs(stats.zscore(df['Fare']))
In [ ]:
        max threshold=3
        outliers = df['Fare'][z_scores > max_threshold]
        # Print and visualize the outliers
        print("Outliers detected using Z-Score:")
        print(outliers)
```

```
Outliers detected using Z-Score:
               263.0000
        27
        88
               263.0000
        118
               247.5208
        258
               512.3292
        299
               247.5208
        311
               262.3750
        341
               263.0000
               211.5000
        377
               227.5250
        380
        438
               263.0000
        527
               221.7792
        557
               227.5250
        679
               512.3292
        689
               211.3375
        700
               227.5250
        716
               227.5250
        730
               211.3375
        737
               512.3292
        742
               262.3750
        779
               211.3375
        Name: Fare, dtype: float64
In [ ]: column_name = 'Fare'
        # Calculate the first quartile (Q1) and third quartile (Q3)
        Q1 = df[column_name].quantile(0.25)
        Q3 = df[column_name].quantile(0.75)
        # Calculate the IQR
        IQR = Q3 - Q1
        # Define the lower and upper bounds for outliers
        lower_bound = Q1 - 1.5 * IQR
        upper_bound = Q3 + 1.5 * IQR
        # Filter rows with values outside the IQR bounds
        df_cleaned = df[(df[column_name] > lower_bound) & (df[column_name] <upper_bound)]</pre>
        # Display the original and cleaned DataFrame sizes
        print(f"Original DataFrame size: {df.shape}")
        print(f"Cleaned DataFrame size: {df_cleaned.shape}")
        df cleaned
        Original DataFrame size: (891, 9)
        Cleaned DataFrame size: (775, 9)
```

Out[]:		Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	1	0	3	male	22.000000	1	0	7.2500	S
	2	3	1	3	female	26.000000	0	0	7.9250	S
	3	4	1	1	female	35.000000	1	0	53.1000	S
	4	5	0	3	male	35.000000	0	0	8.0500	S
	5	6	0	3	male	29.699118	0	0	8.4583	Q
	886	887	0	2	male	27.000000	0	0	13.0000	S
	887	888	1	1	female	19.000000	0	0	30.0000	S
	888	889	0	3	female	29.699118	1	2	23.4500	S
	889	890	1	1	male	26.000000	0	0	30.0000	С
	890	891	0	3	male	32.000000	0	0	7.7500	Q

775 rows × 9 columns

```
In [ ]: sns.boxplot(df_cleaned)
```



```
In [ ]: df=df_cleaned
In [ ]: x=df.drop('Survived', axis=1)
y=df['Survived']
In [ ]: x.head()
```

Out[]:	PassengerId Pclass		Sex	Age	SibSp	Parch	Fare	Embarked	
	0	1	3	male	22.000000	1	0	7.2500	S
	2	3	3	female	26.000000	0	0	7.9250	S
	3	4	1	female	35.000000	1	0	53.1000	S
	4	5	3	male	35.000000	0	0	8.0500	S
	5	6	3	male	29.699118	0	0	8.4583	Q

```
In [ ]: y.head()
Out[ ]: 0 0
2 1
3 1
4 0
5 0
Name: Survived, dtype: int64
```

7. Perform Encoding

```
en = LabelEncoder()
In [ ]:
         x['Sex'] = en.fit_transform(x['Sex'])
In [ ]:
         x.head()
            PassengerId Pclass Sex
                                          Age SibSp Parch
                                                                Fare Embarked
         0
                                     22.000000
                                                                              S
                      1
                                                          0
                                                              7.2500
                                     26.000000
                                                              7.9250
         3
                                                             53.1000
                                                                              S
                      4
                             1
                                  0 35.000000
                                     35.000000
                                                              8.0500
         5
                      6
                             3
                                     29.699118
                                                    0
                                                                             Q
                                                              8.4583
         x = pd.get_dummies(x,columns=['Embarked'])
In [ ]:
         x.head()
                               Sex
Out[ ]:
            Passengerld
                        Pclass
                                                                      Embarked_C Embarked_Q Embarked
                                          Age SibSp Parch
                                                                Fare
         0
                      1
                                     22.000000
                                                              7.2500
                                                                                0
                                                                                             0
                             3
                                                          0
         2
                                                                                             0
                                     26.000000
                                                              7.9250
                                                                                0
         3
                             1
                                  0 35.000000
                                                             53.1000
                                                                                0
                                                                                             0
                                                                                             0
                                     35.000000
                                                              8.0500
                                                                                0
                                     29.699118
                                                              8.4583
                                                                                             1
```

8. Feature Scaling

```
scale = StandardScaler()
         x[['Age', 'Fare']] = scale.fit_transform(x[['Age', 'Fare']])
In [ ]: x.head()
Out[]:
            PassengerId Pclass Sex
                                        Age SibSp Parch
                                                                     Embarked_C Embarked_Q Embar
                                                               Fare
         0
                     1
                                 1 -0.556219
                                                        0 -0.779117
                                                                              0
                                                                                           0
         2
                                  -0.243027
                                                          -0.729373
                                                                                           0
         3
                     4
                                    0.461654
                                                           2.599828
                                    0.461654
                                                          -0.720161
                                    0.046606
                                                        0 -0.690071
```

9. Splitting the data into Train and Test

```
In [ ]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state)
In [ ]: print(x_train.shape)
    print(y_train.shape)
    print(y_train.shape)
    print(y_test.shape)

(620, 10)
    (155, 10)
    (620,)
    (155,)
```