APPENDIX

A. Quadcopter Equations of Motion (EoM)

In this study, we use a linearized dynamic model of quadcopter multi-rotors in simulations in which the dynamics of different Euler angles are decoupled and the body and propeller gyroscopic effects are neglected [?], as represented in (A.1). It is good to mention that this dynamic model is only effective and reliable around the hovering point of the multi-rotor MAV where the rolling (ϕ) and pitching (θ) angles are relatively small.

$$\bar{x} := \begin{bmatrix} \phi \\ \theta \\ \psi \\ Z \\ X \\ Y \\ \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \\ \dot{Z} \\ \dot{X} \\ \dot{Y} \end{bmatrix} \rightarrow \dot{\bar{x}} = \begin{bmatrix} \phi \\ \dot{\theta} \\ \dot{\psi} \\ \dot{Z} \\ \dot{X} \\ \dot{Y} \\ \frac{l}{l_{xx}} (U_2 + T_X) \\ \frac{l}{l_{yy}} (U_3 + T_Y) \\ \frac{l}{l_{zz}} (U_4 + T_Z) \\ g - \frac{u_z}{m} U_1 + \frac{l}{m} \Lambda_Z \\ \frac{u_x}{m} U_1 + \frac{l}{m} \Lambda_X \\ \frac{u_y}{m} U_1 + \frac{l}{m} \Lambda_Y \end{bmatrix}$$

$$(A.1)$$

where T_X , T_Y , T_Z , and Λ_X , Λ_Y , Λ_Z are the elements of the \bar{T} and $\bar{\Lambda}$ vectors in (12), (13). The definitions of the other parameters are mentioned in the table below.

TABLE II

PARAMETER DEFINITIONS OF QUADCOPTER MULTI-ROTOR DYNAMIC

MODEL USED IN SIMULATIONS

Par.	Definition	[Unit]
$I_{\chi\chi}$	drone moment of inertia about x-axis	kg.m ²
I_{yy}	drone moment of inertia about y-axis	kg.m ²
$I_{\chi\chi}$	drone moment of inertia about z-axis	kg.m ²
l	drone rolling/pitching arm length	m
m	drone total mass	kg
g	gravity = 9.81	m/s^2
u_z	$= cos(\phi)cos(\theta)$	[]
u_{χ}	$= cos(\phi)sin(\theta)cos(\psi) + sin(\phi)sin(\psi)$	[]
u_y	$= cos(\phi)sin(\theta)sin(\psi) - sin(\phi)cos(\psi)$	[]
U_1	drone resultant input thrust along body z-axis	N
	$U_1=C_L(\mathbb{T}_1+\mathbb{T}_2+\mathbb{T}_3+\mathbb{T}_4)$	
U_2	drone resultant input torque about the body x-axis	N.m
	$U_2 = lC_L(\mathbb{T}_1 - \mathbb{T}_2 - \mathbb{T}_3 + \mathbb{T}_4)$	
U_3	drone resultant input torque about the body y-axis	N.m
	$U_3 = lC_L(\mathbb{T}_1 + \mathbb{T}_2 - \mathbb{T}_3 - \mathbb{T}_4)$	
U_4	drone resultant input torque about the body z-axis	N.m
	$U_4 = lC_D(\mathbb{T}_1 - \mathbb{T}_2 + \mathbb{T}_3 - \mathbb{T}_4)$	

* \mathbb{T}_i : thrust force of the *i*-th propeller N** C_L : propeller Lift coefficient
*** C_D : propeller Drag coefficient

One can realize that the matrices A, B, D, and the vector \bar{a} (from (3)) representing the autonomous dynamics of the system can readily be obtained from (A.1).