Common inequalities¹

Prepared by HL

Chebychev's inequality Let X be a random variable and let g(x) be a nonnegative function. For any r > 0,

$$P(g(X) \ge r) \le \frac{E[g(X)]}{r}$$

Different forms of Chebychev's inequality

 If g is nondecreasing, then another form of Chebychev's inequality is, for ε > 0,

$$P(X \ge \varepsilon) \le \frac{E[g(X)]}{g(\varepsilon)}$$

• Suppose that *X* has expectation μ and variance σ^2 . For $g(x) = (x - \mu)^2 / \sigma^2$, we have

$$P(|X - \mu| \ge t\sigma) = P\left(\frac{(X - \mu)^2}{\sigma^2} \ge t^2\right) \le \frac{1}{t^2}$$

• If X has a finite kth moment with an integer k, then, for t > 0,

$$P(|X - \mu| \ge t) \le \frac{E|X - \mu|^k}{t^k}$$

• Chernoff inequality If X has a finite mgf $M_X(t)$ for $t \in (-h,h)$, then, for t > 0 and t > 0.

$$\begin{split} P(X \geq r) \leq \frac{E(e^{tX})}{e^{tr}} &= \frac{M_X(t)}{e^{tr}}, \quad P(X \leq -r) \leq \frac{E(e^{-tX})}{e^{tr}} &= \frac{M_X(-t)}{e^{tr}} \\ P(|X| \geq r) \leq \frac{M_X(t) + M_X(-t)}{e^{tr}} \end{split}$$

Cauchy-Schwartz's inequality If X and Y are random variables with $E(X^2) < \infty$ and $E(Y^2) < \infty$, then the following Cauchy-Schwartz's inequality holds:

$$[E(XY)]^2 \le E(X^2)E(Y^2)$$

with equality holds iff P(X = cY) = 1 for a constant c.

Hölder's inequality If p and q are positive constants satisfying p > 1 and $p^{-1} + q^{-1} = 1$ and X and Y are random variables, then

$$E|XY| \le (E|X|^p)^{1/p} (E|Y|^q)^{1/q}$$

Liapounov's inequality If r and s are constants satisfying $1 \le r \le s$ and X is a random variable, then

$$(E|X|^r)^{1/r} \le (E|X|^s)^{1/s}$$

Minkowski's inequality If $p \ge 1$ is a constant and X and Y are random variables, then

$$(E|X+Y|^p)^{1/p} < (E|X|^p)^{1/p} + (E|Y|^p)^{1/p}$$

Jensen's inequality If g is a convex function on a convex $A \subset \mathcal{R}$ and X is a random variable with $P(X \in A) = 1$, then

$$g(E(X)) \le E[g(X)]$$

provided that the expectations exist. If g is strictly convex, then \leq in the previous inequality can be replaced by < unless P(g(X) = c) = 1 for a constant c.

• The function $g(x) = x^{-1}$ is strictly convex. Hence,

$$(EX)^{-1} < E(X^{-1})$$

unless P(X = c) = 1 for a constant c.

• The function $g(x) = -\log x$ is strictly convex ($\log x$ is strictly concave). Then

$$-\log(EX) < -E(\log X)$$
 i.e., $E(\log X) < \log(EX)$

unless P(X = c) = 1 for a constant c.

• Let f and g be positive functions satisfying $0 < \int_{-\infty}^{\infty} g(x)dx \le \int_{-\infty}^{\infty} f(x)dx = 1$. We want to show that

$$\int_{-\infty}^{\infty} f(x) \log \frac{g(x)}{f(x)} dx \le 0$$

Cantelli's inequality

$$Pr(X - \mu \le \lambda) = \begin{cases} \le \frac{\sigma^2}{\sigma^2 + \lambda^2} & \text{if } \lambda < 0, \\ \ge 1 - \frac{\sigma^2}{\sigma^2 + \lambda^2} & \text{if } \lambda > 0, \end{cases}$$

where $\mu = E(X)$ and $\sigma^2 = \text{var}(X)$

Gnedenko g(x) is positive and nondecreasing.

$$P(|X - \mu| \ge c) \le \frac{Eg(|X - \mu|)}{g(c)}$$

EX = 0, then

$$P(|X| \ge c\sigma) \ge \frac{\mu_4 - \sigma^4}{\mu_4 + c^4\sigma^4 - 2c^2\sigma^4}$$

for c > 1.

Hajek-Renyi X_1, \dots, X_n are independent random variables with zero mean and finite variances σ_i^2 . Let c_1, \dots be positive and non-increasing, and $S_k = \sum_{i=1}^k X_i$. Then we have, for any integer m(< n) and $\varepsilon > 0$,

$$P\left(\max_{m\leq k\leq n}c_k|S_k|\geq \varepsilon\right)\leq \frac{1}{\varepsilon^2}\left(c_m^2\sum_{i=1}^m\sigma_i^2+\sum_{i=m+1}^nc_i^2\sigma_i^2\right)$$

A useful lower bound Let $Y \ge 0$ with $E(Y^2) < \infty$ and let a < E(Y). Then we have $P(Y > a) \ge (EY - a)^2 / EY^2$. This is often used with a = 0.

Feller-Chung Theorem For each integral number $j, A_j A_{j-1}^C \cdots A_0^C$ and B_j are independent, where $A_0 = \emptyset$. Then

 $P(\bigcup_j A_j B_j) \ge \alpha P(\bigcup_j A_j)$ for $\alpha = \inf_j P(B_j)$. X_1, \dots, X_n are independent and **symmetric** random variables. Write $S_k = \sum_{i=1}^k X_i$ for $k = 1, \dots, n$. Then

$$P(\max_{1 \le k \le n} S_k > a) \le 2P(S_n < a).$$

X and Y are independent with means zero. Then

 $E|X+Y|^r \ge \max(E|X|^r, E|Y|^r)$ for any $r \ge 1$.

Generalized Kolmogorov inequality X_1, \dots, X_n are independent random variables with mean zeros. Write $S_k = \sum_{k=1}^k X_k$ for $k = 1, \dots, n$ and $A = \{\sup_{k \le n} |S_k| \ge C\}$ for some positive constant C. Then

$$C^r P(A) \le E(|S_n|^r I_A) \le E|S_n|^r$$
 for $r \ge 1$.

Doob Inequality For independent sequence $\{X_n\}$ with mean zero and p > 1,

$$E\left(\max_{1\leq k\leq n}\left|\sum_{j=1}^k X_j\right|^p\right)\leq \left(\frac{p}{p-1}\right)^p E\left(\left|\sum_{j=1}^n X_j\right|^p\right)$$

Tail Normal $X \sim \mathcal{N}(0,1)$, then to show that for x > 0,

$$P(X > x) \le \frac{\exp(-x^2/2)}{x\sqrt{2\pi}}.$$

Bernstein inequalities Let X_1, \dots, X_n be independent Bernoulli random variables taking values +1 and -1 with probability 1/2, then for every positive ε ,

$$P\left\{\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}\right|\geq\varepsilon\right\}\leq2\exp\left\{-\frac{n\varepsilon^{2}}{2(1+\varepsilon/3)}\right\}.$$

Let X_1, \dots, X_n be independent zero-mean random variables. Suppose that $|X_i| \le M$ almost surely, for all i. Then, for all positive t,

$$P\left\{\sum_{i=1}^{n} X_i > t\right\} \le 2\exp\left\{-\frac{t^2}{\sum EX_j^2 + Mt/3}\right\}.$$

Hoeffding's inequality If X_1, \dots, X_n are independent. Assume that the X_i are almost surely bounded; that is, assume for $1 \le i \le n$ that $P(X_i \in [a,b]) = 1$. Then, for the empirical mean of these variables, $\overline{\mathbf{X}}$, we have the inequalities:

$$P\{\overline{\mathbf{X}} - E(\overline{\mathbf{X}}) \ge t\} \le \exp\left\{-\frac{2n^2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right\},$$

$$P\{|\overline{\mathbf{X}} - E(\overline{\mathbf{X}})| \ge t\} \le 2\exp\left\{-\frac{2n^2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right\}.$$

¹1-com-inequ-pocket-HL.tex