Neuronové sítě

Doc. RNDr. Iveta Mrázová, CSc.

Katedra teoretické informatiky

Matematicko-fyzikální fakulta

Univerzity Karlovy v Praze

Neuronové sítě

Interní reprezentace znalostí –

Doc. RNDr. Iveta Mrázová, CSc.

Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Interní reprezentace znalostí

- počet neuronů a generalizační schopnosti sítě
 - → prořezávání a doučování

Interní reprezentace znalostí

Kondenzovaná interní reprezentace

• interpretace aktivity skrytých neuronů:

- 1 ←→ aktivní ←→ ANO
- \bigcirc 0 \longleftrightarrow pasivní \longleftrightarrow NE
- $\begin{array}{cccc}
 & \frac{1}{2} & \longleftrightarrow & \text{tich\'y} & \longleftrightarrow \\
 & & \longleftrightarrow & ,, \text{nelze rozhodnout"}
 \end{array}$
 - průhledná struktura sítě
 - detekce nadbytečných neuronů a prořezávání
 - lepší generalizace

Kondenzovaná interní reprezentace

- **D:** Pro vrstevnatou síť \boldsymbol{B} zpracovávající vstupní vzor \vec{x} :
 - Skrytý neuron s vahami $(w_1, ..., w_n)$, prahem ϑ , vstupním vzorem \vec{z} a přenosovou funkcí $f[\vec{w}, \vartheta](\vec{z})$ vytváří **reprezentaci** $r: r = y = f[\vec{w}, \vartheta](\vec{z})$
 - Vektor \vec{r} reprezentací vytvořených vrstvou skrytých neuronů se nazývá **interní** reprezentace \vec{x}

Kondenzovaná interní reprezentace

D: Pro vrstevnatou síť B:

- Interní reprezentace $\vec{r} = (r_1, \dots, r_m)$ je binární, jestliže $r_i \in \{0,1\}; 1 \le i \le m$
- Interní reprezentace $\vec{r} = (r_1, ..., r_m)$ je kondenzovaná, jestliže $r_i \in \{0, 0.5, 1\}; 1 \le i \le m$

Požadavky na vynucování kondenzované interní reprezentace

• formulace "požadovaných vlastností" ve formě cílové funkce:

standardní chybová funkce
$$G = E + c_s F$$
 reprezentační chybová funkce
velikost vlivu F na G

• lokální minima reprezentační chybové funkce odpovídají aktivním, pasivním a tichým stavům:

$$F = \sum_{p} \sum_{h} y_{h,p}^{s} (1 - y_{h,p})_{h,p}^{s} (y_{h,p} - 0.5)^{2}$$
vzory pasivní stav tvar F tichý stav aktivní stav

Vliv parametrů na vytváření kondenzované interní reprezentace

- pomalejší vytváření interní reprezentace a požadovaná funkce sítě
- stabilita vytvářené interní reprezentace a optimální architektura sítě
- tvar reprezentační chybové funkce, rychlost vytváření interní reprezentace a její forma
- časová náročnost při adaptaci vah

Chybový člen pro posilování kondenzované interní reprezentace

Kondenzovaná interní reprezentace $(y_i^s (1-y_i)^s (y_i - 0.5)^2)$:

$$\rho_{j} = \begin{cases} 0 & \text{pro výstupní neurony} \\ -\left[2(s+1)y_{j} (1-y_{j}) - \frac{s}{2}\right] \cdot y_{j}^{s} (1-y_{j})^{s} (y_{j}-0.5) \\ & \text{pro neurony z nejvyšší skryté vrstvy} \end{cases}$$

$$\left(\sum_{k} \rho_{k} w_{jk}\right) y_{j} (1-y_{j}) \\ & \text{pro ostatní skryté neurony} \end{cases}$$
I. Mrázová: Neuronové sítě (NAIL002)

Vliv parametrů na vytváření kondenzované interní reprezentace

- pomalejší vytváření interní reprezentace a požadovaná funkce sítě
- stabilita vytvářené interní reprezentace a optimální architektura sítě
- tvar reprezentační chybové funkce, rychlost vytváření interní reprezentace a její forma
- časová náročnost při adaptaci vah

Tvar reprezentační chybové funkce

$$F = y^{s}(1-y)^{s}(y-0.5)^{t}$$

Chybový člen pro posilování binární interní reprezentace

Binární interní reprezentace $(y_j (1-y_j))$:

$$\rho_{j} = \begin{cases} 0 & \text{pro výstupní neurony} \\ -\left(1 - 2y_{j}\right)y_{j}\left(1 - y_{j}\right) \\ & \text{pro neurony z nejvyšší skryté vrstvy} \end{cases}$$

$$\left(\sum_{k} \rho_{k}w_{jk}\right)y_{j}\left(1 - y_{j}\right) \\ & \text{pro ostatní skryté neurony} \end{cases}$$

Jednoznačná interní prezentace

- Hodně odlišným výstupům by měly odpovídat hodně odlišné interní reprezentace
- Formulace požadavků ve formě modifikované cílové funkce: G = E + F + H
- Kritérium pro jednoznačnost IR:

$$H = -\frac{1}{2} \sum_{\substack{p \ q \neq p}} \sum_{\substack{j \ \text{vzory} \\ \text{vzory} \\ \text{skryt\'e neurony}}} \sum_{\substack{q \neq p \ j \ \text{v\'yst.} \\ \text{neurony}}} \sum_{\substack{p \ q \neq p \ j \ \text{v\'yst.} \\ \text{ekonst. pro dan\'e p}}} \sum_{\substack{p \ \text{odan\'e p} \\ \text{ekonst. pro dan\'e p}}} \sum_{\substack{p \ \text{odan\'e p} \\ \text{ekonst. pro dan\'e p}}} \sum_{\substack{p \ \text{odan\'e p} \\ \text{ekonst. pro dan\'e p}}} \sum_{\substack{p \ \text{odan\'e p} \\ \text{ekonst. pro dan\'e p}}} \sum_{\substack{p \ \text{odan\'e p} \\ \text{neurony}}} \sum_{\substack{p \ \text{odan\'e p} \\ \text{odan\'e p}}} \sum_{\substack{p$$

Prořezávání podle interní reprezentace (1)

- **D:** Pro danou vrstevnatou síť \boldsymbol{B} a množinu \boldsymbol{S} vstupních vzorů určujících vstupní vektory \vec{z} :
 - Skrytý neuron s vahami $(w_1, ..., w_n)$, prahem ϑ a přenosovou funkcí $f[\vec{w}, \vartheta](\vec{z})$ vytváří uniformní reprezentaci r, jestliže:

$$r = f[\vec{w}, \theta](\vec{z}) = const$$
 pro všechny stupní vzory $\vec{x} \in S$

Prořezávání podle interní reprezentace (2)

- **D:** Pro danou vrstevnatou síť B a množinu S vstupních vzorů určujících vstupní vektory \vec{z} :
 - Skrytý neuron $i \in N$ s vahami $(w_{i1}, ..., w_{in})$, prahem θ_i a přenosovou funkcí $f_i[\vec{w}_i, \theta_i](\vec{z})$ vytváří reprezentaci r_i identickou k reprezentaci r_j vytvářené skrytým neuronem $j \in N$ s vahami $(w_{j1}, ..., w_{jn})$, prahem θ_j a přenosovou funkcí $f_j[\vec{w}_j, \theta_j](\vec{z})$, jestliže:

$$f_i[\vec{w}_i, \theta_i](\vec{z}) = f_i[\vec{w}_i, \theta_i](\vec{z})$$
 pro všechny vstupní vzory $\vec{x} \in S$

Prořezávání podle interní reprezentace (3)

- <u>D:</u> Pro danou vrstevnatou síť B a množinu S vstupních vzorů určujících vstupní vektory \vec{z} :
 - Skrytý neuron $i \in N$ s vahami $(w_{il}, ..., w_{in})$, prahem θ_i a přenosovou funkcí $f_i[\vec{w}_i, \theta_i](\vec{z})$ vytváří reprezentaci r_i inverzní k reprezentaci r_j vytvářené skrytým neuronem $j \in N$ s vahami $(w_{jl}, ..., w_{jn})$, prahem θ_j a přenosovou funkcí $f_j[\vec{w}_j, \theta_j](\vec{z})$, jestliže:

$$f_i[\vec{w}_i, \theta_i](\vec{z}) = 1 - f_i[\vec{w}_i, \theta_i](\vec{z})$$
 pro všechny vstupní vzory $\vec{x} \in S$

Prořezávání podle interní reprezentace (4)

D: Pro danou vrstevnatou síť \boldsymbol{B} a množinu vstupních vzorů \boldsymbol{S} :

redukovaná vrstva je vrstva, pro kterou platí, že:

- žádný neuron nevytváří uniformní reprezentaci,
- žádný neuron i nevytváří reprezentaci identickou k reprezentaci vytvářené jiným neuronem j a
- žádný neuron *i* nevytváří reprezentaci inverzní k reprezentaci vytvářené jiným neuronem *j*.

Interní reprezentace vytvářená redukovanou vrstvou se nazývá **redukovaná**.

Prořezávání podle interní reprezentace (5)

D: Pro danou množinu vstupních vzorů S:

- vrstevnatá síť **B** je **redukovaná**, jestliže jsou všechny její skryté vrstvy redukované.
- vrstevnatá síť \boldsymbol{B} je **ekvivalentní** k vrstevnaté síti \boldsymbol{B}' , jestliže je pro libovolný vstupní vzor $\vec{x} \in S$ skutečný výstup \vec{y}_B sítě \boldsymbol{B} roven skutečnému výstupu $\vec{y}_{B'}$ sítě \boldsymbol{B}' : $\vec{y}_B = \vec{y}_{B'}$

Prořezávání podle interní reprezentace (6)

V: Ke každé vrstevnaté síti **B** a množině vstupních vzorů **S** existuje ekvivalentní redukovaná vrstevnatá síť **B**′.

Důkaz (idea):

Popis konstrukce redukované vrstevnaté sítě B': Necht' B = (N, C, I, O, w, t) je původní vrstevnatá sít'.

1. Postupná eliminace všech takových neuronů j, které vytvářejí uniformní reprezentaci r_j^k a přičtení součinu $w_{ij} r_j^k$ ke všem prahům ϑ_j v následující vrstvě.

Prořezávání podle interní reprezentace (7)

Důkaz (pokračování):

- 2. Postupná eliminace všech takových neuronů j, které vytvářejí reprezentaci r_j^{id} identickou k reprezentaci r_k vytvářené jiným neuronem k a přičtení vah w_{ij} ke každé váze w_{ik} , kde i je neuron v následující vrstvě.
- 3. Postupná eliminace všech takových neuronů j, které vytvářejí reprezentaci r_j^{in} inverzní k reprezentaci r_k vytvářené jiným neuronem k a nahrazení všech vah w_{ik} , kde i označuje neuron z následující vrstvy, rozdílem $w_{ik} w_{ij}$ a přičtení váhy w_{ij} k prahu θ_i každého neuronu i.

Prořezávání podle interní reprezentace (8)

Důkaz (pokračování):

Potom bude pro libovolný vstupní vzor \vec{x} skutečný výstup $\vec{y}_{B'}$ vrstevnaté sítě \vec{B}' roven skutečnému výstupu \vec{y}_{B} vrstevnaté sítě \vec{B} .

Vrstevnatá síť B' konstruovaná ze sítě B popsaným způsobem je redukovaná a ekvivalentní k B.

QED

Výsledky experimentů: binární sčítání

$$[5(\approx(1,-1,1)) + 3(\approx(-1,1,1)) = 8(\approx(1,-1,-1,-1))]$$

- SCG-s nápovědou (přenos na
 výstupní neuron)
 - 'přenos' první a druhý výstupní bit skryté neuronsy 1 a 3
 - funkce ostatních skrytých neuronů není tak zřejmá
- SCGIR-s nápovědou (přenos na 2. výstupní neuron)
 - 'přenos' pro vyšší výstupní bity skryté neurony 1, 3, 5
 - podobná funkce je zřejmá pro jednotlivé výstupní neurony

Akustická emise: simulace (s M. Chladou a Z. Převorovským)

MODELOVANÝ SIGNÁL

Simulovaná AE-data

(s M. Chladou a Z. Převorovským)

KONVOLUCE S GREENOVOU FUNKCÍ

Model závislosti

(s M. Chladou a Z. Převorovským)

Celková citlivost sítě (přes Q vzorů) s-tého výstupu na r-tý vstup:

$$sens_r = 1/Q \sum_{q} \sum_{s} |\partial y_{q,s}/\partial y_{q,r}|$$

I. Mrázová: Neuronové sítě (NAIL002)

Model závislosti

(s M. Chladou a Z. Převorovským)

Faktorová vs. citlivostní analýza vstupních parametrů

(s M. Chladou a Z. Převorovským)

	1	2	3	4	5	6	7	8	9
14	0.08	0.18	0.95	0.02	0.09	0.04	0.01	0.06	0.02
13	0.04	0.09	0.97	0.00	0.05	0.00	0.00	0.06	0.02
12	0.20	0.07	0.14	0.02	0.93	0.09	0.03	0.23	0.04
11	0.25	0.10	0.12	0.03	0.25	0.11	0.03	0.90	0.05
10	0.93	0.14	0.06	0.08	0.10	0.17	0.06	0.09	0.19
9	0.90	0.15	0.09	0.08	0.15	0.17	0.06	0.21	0.18
8	0.12	0.06	0.01	0.88	0.02	0.02	0.24	0.03	0.36
7	0.29	0.06	0.03	0.27	0.03	0.17	0.16	0.04	0.86
6	0.26	0.00	0.04	0.03	0.08	0.93	0.02	0.10	0.20
5	0.30	0.05	0.04	0.41	0.06	0.49	0.17	0.07	0.66
4	0.13	0.91	0.02	0.03	0.05	0.06	0.04	0.06	0.20
3	0.10	0.96	0.15	0.00	0.03	0.00	0.02	0.05	0.07
2	0.09	0.02	0.01	0.19	0.03	0.03	0.95	0.03	0.16
1	0.04	0.91	0.16	0.10	0.01	0.07	0.06	0.01	0.23

		SE	ENSITIVITY COEFFICIEN	rs
	1	0.173	0.266	0.149 -
	2	0.093	0.068	0.047 -
	3	0.320	0.193	0.184 -
	4	0.301	0.178	0.196 -
	5	0.564	0.250	0.206 -
	6	0.196	0.322	0.158 -
INPUTS	7	0.099	0.063	0.043 -
<u>N</u>	8	0.065	0.015	0.030 -
	9	0.022	0.014	0.016 -
	10	0.053	0.020	0.012 -
	11	0.035	0.012	0.032 -
	12	0.039	0.050	0.022 -
	13	0.081	0.134	0.082 -
	14	- 0.260	0.172	0.109 -
	-	1	2 OUTPUTS	3

vybrané faktory

- Vybráno 9 faktorů ("vysvětlují" 98.4% proměnných)
- redukce lineárně závislých vstupních parametrů

- Vybráno 7 příznaků
- detekce nelineární
 závislosti vstupních
 parametrů (1, 3, 4, 5, 6, 13,
 14)

Analýza dat ze Světové banky

WDI-indikátory (indikátory vývoje ve světě)

- každoročně zveřejňovány Světovou bankou
 - pomoc rozvojovým zemím při půjčkách / investicích
 - odhad stavu ekonomik a jejich vývoje v jednotlivých zemích
- původ údajů neúplné a nepřesné údaje

používané techniky

- regresní analýza lineární závislosti
- kategorizace států používaná v rozvinutých zemích(G. Ip, Wall Street Journal)
- kategorizace zemí podle HDP (Světová banka)
- Kohonenovy mapy (T. Kohonen, S. Kaski, G. Deboeck)

Analýza dat ze Světové banky: použité WDI-indikátory

- Implicitní deflace HDP
- Vnější zadluženost (% HNP)
- Celkové náklady na zadlužení (% z exportu zboží a služeb)
- Export high-tech technologií
 (% z vyvážených výrobků)
- Výdaje na armádu a zbrojení (% HNP)
- Výdaje na výzk. a výv. (% HNP)
- Celk. výd. na zdrav. (% HDP)
- Veř. výd. na školst. (% HNP)

- Očekávaná délka života u mužů
- Plodnost
- GINI-index (rozdělení příjmů a spotřeby)
- Uživ. internetu na 10000 obyvatel
- Počet mobilních telefonů na 1000 obyvatel
- HNP na obyvatele podle parity kupní síly (PPP)
- HNP na obyvatele (v USD)
- Růst HDP (% na obyvatele)

Analýza dat ze Světové banky: předzpracování

- 99 států se 16 WDI-indikátory
- po složkách transformace vzorů do intervalu (0,1) pomocí:

$$x' = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$

$$x'' = \frac{1}{1 + e^{-4(x'-1/2)}}$$

- FCM-klastrování: 7 shluků, s = 1.4
- řízené učení a iterativní rozpoznávání:
 - 99 (90+9) států s 14 (13+1) WDI-indikátory
 - GREN-síť 14-12-1, BP-síť 13-10-1; 500-600 cyklů učení

Analýza dat ze Světové banky: vliv indikátorů na stav ekonomiky

Indikátor	Síť 1	Síť 2
GDP defl.	0.0	0.0
Vněj. dluh	5.6	10.9
Celk. nákl. na dluh	5.5	8.1
Export high-tech	12.2	6.6
Vojenské výdaje	5.4	6.1
Výdaje na výzk. a výv.	16.0	12.0
Uživ. internetu	11.1	12.4
Mobily	8.3	10.0
GINI-index	7.1	3.9
Oček. délka života	12.3	7.6
Plodnost	4.4	5.0
Výdaje na zdrav.	6.1	10.9
Veř. výd. na školstv.	6.1	6.1

Relativní citlivost GREN-sítí

Citlivost na vstupní příznaky

(se Z. Reitermanovou)

Vzájemná závislost parametrů

(se Z. Reitermanovou)

