```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
    from sklearn import metrics
    import warnings
    warnings.filterwarnings("ignore")
```

Reading the data

```
In [2]: insurance_dataset = pd.read_csv('downloads\insurance.csv')
```

In [3]: insurance_dataset.head()

Out[3]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	ma l e	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

In [4]: insurance_dataset.describe()

Out[4]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

In [5]: insurance_dataset.shape

Out[5]: (1338, 7)

```
In [6]: insurance_dataset.info()
```

RangeIndex: 1338 entries, 0 to 1337 Data columns (total 7 columns): # Column Non-Null Count Dtype ---------0 1338 non-null int64 age 1338 non-null object 1 sex 2 bmi 1338 non-null float64 3 children 1338 non-null int64 4 1338 non-null object smoker 5 region 1338 non-null object float64 6 charges 1338 non-null dtypes: float64(2), int64(2), object(3) memory usage: 73.3+ KB

<class 'pandas.core.frame.DataFrame'>

```
In [7]: insurance_dataset.isnull().sum()
```

```
Out[7]: age 0
sex 0
bmi 0
children 0
smoker 0
region 0
charges 0
dtype: int64
```

```
In [8]: plt.bar(insurance_dataset["age"],insurance_dataset["charges"],color='brown')
plt.show()
```



```
In [53]: plt.hist(insurance_dataset["bmi"],color='green')
   plt.show()
```


In [9]: plt.scatter(insurance_dataset['age'],insurance_dataset['charges'])
 plt.show()

In [10]: plt.scatter(insurance_dataset['age'],insurance_dataset['bmi'],color='black')
 plt.show()


```
In [11]: sns.set()
    plt.figure(figsize=(6,6))
    sns.distplot(insurance_dataset['age'],color='red')
    plt.title('Age Distribution')
    plt.show()
```



```
In [14]: insurance_dataset['sex'].value_counts()
```

Out[14]: male 676 female 662

Name: sex, dtype: int64

```
In [13]: plt.figure(figsize=(6,6))
    sns.distplot(insurance_dataset['bmi'],color='cyan')
    plt.title('BMI Distribution')
    plt.show()
```


Name: children, dtype: int64

Name: smoker, dtype: int64

Name: region, dtype: int64

324

northeast

Data Pre-Processing

```
In [25]: X
```

Out[25]:

	age	sex	bmi	children	smoker	region
0	19	1	27.900	0	0	1
1	18	0	33.770	1	1	0
2	28	0	33.000	3	1	0
3	33	0	22.705	0	1	3
4	32	0	28.880	0	1	3
1333	50	0	30.970	3	1	3
1334	18	1	31.920	0	1	2
1335	18	1	36.850	0	1	0
1336	21	1	25.800	0	1	1
1337	61	1	29.070	0	0	3

1338 rows × 6 columns

```
In [26]: Y
Out[26]: 0
                  16884.92400
                   1725.55230
          2
                   4449.46200
                  21984.47061
         3
                   3866.85520
         1333
                  10600.54830
         1334
                   2205.98080
         1335
                   1629.83350
         1336
                   2007.94500
         1337
                  29141.36030
         Name: charges, Length: 1338, dtype: float64
```

Splitting the data into Training data & Testing Data

Model Training

```
In [29]: regressor = LinearRegression()
In [30]: regressor.fit(X_train, Y_train)
Out[30]: LinearRegression()
In [31]: training_data_prediction =regressor.predict(X_train)
In [32]: r2_train = metrics.r2_score(Y_train, training_data_prediction)
    print('R squared mean value : ', r2_train)
    R squared mean value : 0.751505643411174
In [33]: test_data_prediction =regressor.predict(X_test)
In [34]: r2_test = metrics.r2_score(Y_test, test_data_prediction)
    print('R squared mean value : ', r2_test)
    R squared mean value : 0.7447273869684077
```

Predicting with test values

```
In [35]: input_data = (31,1,25.74,0,1,0)
    input_data_as_numpy_array = np.asarray(input_data)
    input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
    prediction = regressor.predict(input_data_reshaped)
    print(prediction)

    print('The insurance cost is USD $',prediction[0])

[3760.0805765]
The insurance cost is USD $ 3760.0805764960487
In []:
```