MoE 优化

Mixtral-8x7B 模型优化

该模型有8个专家,每个专家7B规模,模型总大小约为96G,因此用2卡推理较为合适。

从组网看,该模型只是在 llama 的基础上,将 mlp部分 变成了 moe部分,moe 组网也较为简单,核心代码如下:

```
class FeedForward(nn.Module):
         def __init__(
 2
             self,
 3
             config
 4
         ):
 5
 6
 7
             Initialize the FeedForward module.
 8
             Args:
                 dim (int): Input dimension.
10
                 hidden_dim (int): Hidden dimension of the feedforward layer.
11
                 multiple_of (int): Value to ensure hidden dimension is a multiple
12
     of this value.
                 ffn_dim_multiplier (float, optional): Custom multiplier for
13
     hidden dimension. Defaults to None.
14
15
             Attributes:
                 w1 (ColumnParallelLinear): Linear transformation for the first
16
     layer.
                 w2 (RowParallelLinear): Linear transformation for the second
17
     layer.
18
                 w3 (ColumnParallelLinear): Linear transformation for the third
     layer.
19
20
21
             super().__init__()
22
             self.w1 = nn.Linear(
23
                 config.hidden_size, config.intermediate_size, bias=False
24
25
             self.w2 = nn.Linear(
26
                 config.intermediate_size, config.hidden_size, bias=False
27
28
29
             self.w3 = nn.Linear(
```

```
30
                 config.hidden_size, config.intermediate_size, bias=False
             )
31
32
         def forward(self, x):
33
             return self.w2(F.silu(self.w1(x)) * self.w3(x))
34
35
    class MoE(nn.Module):
36
         def __init__(
37
38
             self,
             config,
39
40
         ):
             super().__init__()
41
             self.config = config
42
             num_experts = config.num_experts
43
             self.experts = nn.ModuleList([FeedForward(config) for i in
44
    range(num_experts)])
45
             self.gate = nn.Linear(config.hidden_size, num_experts, bias=False)
46
             self.num_experts_per_token = config.num_experts_per_token
47
         def forward(self, x):
48
49
             orig_shape = x.shape #(batch, seq_len, d_model)
             x = x.view(-1, x.shape[-1]) #(num_tokens, d_model)
50
51
52
             scores = self.gate(x) #(num_tokens, num_experts)
53
54
             expert_weights, expert_indices = torch.topk(scores,
    self.num_experts_per_token, dim=-1) #(num_tokens, k)
55
             expert_weights = expert_weights.softmax(dim=-1) #(num_tokens,
56
     num_experts_per_token)
57
             flat_expert_indices = expert_indices.view(-1) #(num_tokens *
     num_experts_per_token)
58
             x = x.repeat_interleave(self.num_experts_per_token, dim=0) #
59
     (num_tokens * num_experts_per_token, d_model) -->
60
             y = torch.empty_like(x)
61
             for i, expert in enumerate(self.experts):
62
                 print(f"flat expert indices == i =: {flat expert indices == i}")
63
                 y[flat_expert_indices == i] = expert(x[flat_expert_indices == i])
64
             y = (y.view(*expert_weights.shape, -1) *
65
    expert_weights.unsqueeze(-1)).sum(dim=1) #(num_tokens *
    num_experts_per_token, d_model) --> (num_tokens, num_experts_per_token,
     d_model)
66
                   # --> (num_tokens, 1, d_model)
67
             return y.view(*orig_shape)
```

注意这里对 gating 后的分数 scores 的处理方式:

top_k + softmax 归一化

```
expert_weights, expert_indices = torch.topk(scores, self.num_experts_per_token,
9602
expert_weights = expert_weights.softmax(dim=-1) #(num_tokens, num_experts_per_to
```

Vllm 推理

Vllm 较新的代码已经支持了该模型的部署,但是使用的是 EP 并行,forward 部分,采用 for 循环,性能可能较差,下面是具体的测试数据:

A100,双卡

elasped	Prompt = 1	Prompt = 1000	Prompt = 2000	Prompt = 4000
Batch = 1	39ms	42ms	44ms 9602	48ms ** 950?

注意 vllm 的实现,对 gating 后的分数(router_logits)处理方式不同

Softmax + topk + 除以sum归一化

routing_weights /= routing_weights.sum(dim=-1, keepdim=True)

https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/mixtral.py#L143

乍一看,代码实现上确实不同,但是简单地做下数学推导,就会发现,是一致的<mark>!</mark>

使用 group gemm 优化

该 moe 没有 EP 均衡措施,所以无法使用 BMM 替代 for 循环进行加速计算,因此可以使用 group gemm

参考 trt-llm 的 moe 实现,将 trt-llm 中的 moe kernel 抽离出来然后修改,编译为单独的算子库,方便即插即用!

未来可以继续拓展、维护,变成支持更多算子的算子库。

https://git.singularity-ai.com/shengying.wei/MoE

运行里面的单测,可以检测算子的正确性。

使用vllm 框架的最新代码,重新组网 mixtral ,利用我们的 MoE 算子库加速

如上所说,vllm 中 mixtral 使用的 ep 并行,重新组网使用 TP 并行即可:

```
lass MixtralMoE(nn.Module):
  def __init__(
      self,
      config: MixtralConfig,
      linear_method: Optional[LinearMethodBase] = None,
      super().__init__()
      self.tp_size = get_tensor_model_parallel_world_size()
      self.hidden_size = config.hidden_size
      self.inter size = config.intermediate size // self.tp size
      self.top_k = config.num_experts_per_tok
      self.num_experts = config.num_local_experts
      params_dtype = torch.get_default_dtype(
      self.gate = ReplicatedLinear(config.hidden_size,
                                    self.num_experts,
                                    bias=False.
                                    linear_method=None)
      from torch.nn.parameter import Parameter
      self.moe_up_proj_weight = Parameter(torch.empty((self.num_experts, self.hidden_size, 2 * self.inter_size),
                                                           device=torch.cuda.current_device(),
                                                           dtype=params_dtype))
       self.moe_down_proj_weight = Parameter(torch.empty((self.num_experts, self.inter_size, self.hidden_size),
                                                           device=torch.cuda.current_device(),
                                                           dtype=params_dtype))
       import moe_ops
       self.run_moe_fc = moe_ops.run_moe_fc
   def forward(self, hidden_states):
       batch_size, sequence_length, hidden_dim = hidden_states.shape
      hidden_states = hidden_states.view(-1, hidden_dim) # (num_tokens, hidden_dim)
      num_rows = hidden_states.size(0)
      gating_output, _ = self.gate(hidden_states) # (num_tokens, n_experts)
       moe_output = self.run_moe_fc(hidden_states, gating_output, self.moe_up_proj_weight,
                                  "Swiglu", self.moe_down_proj_weight, num_rows, self.top_k
         self.tp_size == 1:
          return moe_output
       torch.distributed.all_reduce(moe_output, group=get_tensor_model_parallel_group())
       return moe_output.view(batch_size, sequence_length, hidden_dim)
```

如图,我们直接把 8 个专家合并在一起(self.moe_up_proj_weight, self.moe_down_proj_weight),然后进行切分, forward 函数中,使用我们 moe 算子库中封装好的支持torch tensor 的api,组网变得非常简洁!

最后,因为组网的改变,把 8 个专家合并在一起,所以模型切分逻辑稍微复杂一些,切分专家的主要 代码如下:

```
1 if ("block_sparse_moe.experts." in name): # like
   "model.layers.31.block_sparse_moe.experts.7.w2.weight"
2 substrings = name.split('.')
3 layer_num = int(substrings[2])
4 expert_num = int(substrings[5])
5 if("w1" in name or "w3" in name): # 列切
6 loaded_weight = loaded_weight.T # (hidden_size, inter_size)
7 shard_size = loaded_weight.shape[-1] // tp_size
```

```
loaded_weight_slice = loaded_weight[:, tp_rank * shard_size :
     (tp_rank + 1) * shard_size] # (hidden_size, inter_size // tp_size)
             coresponed_param_name = f"model.layers.
 9
     {layer_num}.block_sparse_moe.moe_up_proj_weight"
             param = params_dict[coresponed_param_name] #(num_expert, hidden_size,
10
     2 * inter_size // tp_size)
             if ("w1" in name):
11
                 param_slice = param[expert_num, : , shard_size : ]
12
13
                 assert loaded weight slice.shape == param slice.shape
                 param_slice.data.copy_(loaded_weight_slice)
14
                 continue
15
             else: # w3
16
                 param_slice = param[expert_num, : , : shard_size]
17
                 assert loaded_weight_slice.shape == param_slice.shape
18
                 param_slice.data.copy_(loaded_weight_slice)
19
20
                 continue
         elif ("w2" in name): # 行切
21
             loaded_weight = loaded_weight.T # (inter_size, hidden_size)
22
             shard_size = loaded_weight.shape[0] // tp_size
23
             loaded_weight_slice = loaded_weight[tp_rank * shard_size : (tp_rank +
24
     1) * shard_size, :] # (inter_size // tp_size, hidden_size)
             coresponed_param_name = f"model.layers.
25
     {layer_num}.block_sparse_moe.moe_down_proj_weight"
26
             param = params_dict[coresponed_param_name] #(num_expert, inter_size)
     // tp_size, hidden_size, )
             param_slice = param[expert_num]
27
             assert loaded_weight_slice.shape == param_slice.shape
28
             param_slice.data.copy_(loaded_weight_slice)
29
             continue
30
         else:
31
             raise ValueError(f"invalid params: {name}")
32
         continue
33
```

完整组网和切分代码见附录。

性能测试

Mixtral-8x7B,平均每个token 耗时,包含首token

Vllm 原生推理(双卡), EP 并行

elasped	Prompt = 1	Prompt = 1000	Prompt = 2000	Prompt = 4000
Batch = 1	39 ms	42 ms	44 ms	48 ms

使用 group gemm 优化后, TP 并行

elasped	Prompt = 1	Prompt = 1000	Prompt = 2000	Prompt = 4000
Batch = 1	18.64 ms	19.82 ms	21.70 ms	24.00 ms

Vllm 最新的代码支持 cuda-gprah, 开启后:

首token /	Prompt = 1	Prompt = 1000	Prompt = 2000	Prompt = 4000
生成耗时		经准 9603	段蓋 9602	段響 9602
Batch = 1	26 ms	129 ms	240 ms	464 ms
段營 9602	16.64 ms	18.23 ms	19.3 ms	21.79 ms

cuda-graph 约有 5% 到 10% 的性能收益。

手动配置 cutlass gemm config,避免内部自己遍历寻优

首token /	Prompt = 1	Prompt = 1000	Prompt = 2000	Prompt = 4000
生成耗时		及惟 9602	· · · · · · · · · · · · · · · · · · ·	07. 段雅 9602
Batch = 1 ^{3 18 9602}	25.6 ms /	106 ms	192 ms	372 ms
段誉 9602	16.00 ms	17.40 ms	18.4 ms	20.35 ms

生成性能提升不明显:约4%

首token 性能有较大提升:在 prompt 长度1000 以上,有 <mark>20%+</mark> 的提升

四卡推理:

elasped	Prompt = 1	Prompt = 1000	Prompt = 2000	Prompt = 4000
Batch = 1 9602	11.61 ms	12.61 ms	13.45 ms	14.75 ms

精度已对齐。

段響

- 3 vllm 原生推理输出:
- ' a city that is full of history and culture. It is also a city that is full of things to do. If you are looking for a place to stay in Washington DC, then you should consider staying in a hotel. There are many hotels in Washington DC, and each one has its own unique features.\n\n## The Best Hotels in Washington DC\n\nThere are many hotels in Washington DC, and each one has its own unique features. Some of the best hotels in Washington DC include'

5

- 6 优化后输出:
- ' a city that is full of history and culture. It is also a city that is full of things to do. If you are looking for a place to stay in Washington DC, then you should consider staying in a hotel. There are many hotels in Washington DC, and each one has its own unique features.\n\n## The Best Hotels in Washington DC\n\nThere are many hotels in Washington DC, and each one has its own unique features. Some of the best hotels in Washington DC include'

部署细节

vllm: https://git.singularity-ai.com/shengying.wei/vllm-moe moe_develop_0117 分支

Moe 算子库:https://git.singularity-ai.com/shengying.wei/MoE master 分支

Docker: gpu-image-cn-shanghai.cr.volces.com/gpu-train/skyllm2:v0.1

代码细节

浅谈 moe 中 kernel 的设计思想

了解 kernel 的算法设计,才能吃透代码,感受 cuda 的艺术。

topkGatingSoftmax

该 kernel 完成对 gating 之后的分数的处理,对应的 python 逻辑如下:

- 1 expert_scales = F.softmax(input_dict["gating_output"], dim=-1)
- 2 expert_scales, experts_for_row = torch.topk(expert_scales, k, dim=-1)
- 3 expert_scales /= expert_scales.sum(dim=-1, keepdim=True) #除和归一化

该 kernel 处理的任务规模不大,输入的 shape 为 (num_tokens, num_experts), 在 mixtral 中,专家个数为 8。

1. 向量化读取(提升内存读取效率):

a. 该kernel约定,每个线程每次加载的字节个数为: BYTES_PER_LDG,那么每次可以加载的元素个数为: ELTS_PER_LDG = BYTES_PER_LDG / sizeof(T), 因此,把 ELTS_PER_LDG 个元素 看成一个向量,线程只需要一个内存加载操作即可完成该向量(ELTS_PER_LDG 个元素)的加载, ELTS PER_LDG 也即向量的长度。

2. 算法设计(thread block的协同)

a. 每一行都有 num_experts 个元素(专家),因此至少用一个线程束 warp 来负责一行,那么每个线程负责的元素个数为:EXPERTS / WARP_SIZE,即 EXPERTS / (ELTS_PER_LDG * WARP_SIZE) 个向量。如果 num_experts 较少,则**每个线程只负责一个向量**,一个线程束可以处理多行。代码如下:

- 2 static constexpr int VPT = VECs_PER_THREAD * ELTS_PER_LDG; //This gives the total number of elements (or vectors, depending on how you interpret it) processed by a single thread.
- b. 进一步便可以求出,一行需要多少个线程来处理,以及一个线程束可以处理多少行
 - 1 static constexpr int THREADS_PER_ROW = EXPERTS / VPT; // 每一行需要 THREADS_PER_ROW 个 thread 来处理
 - 2 static constexpr int ROWS_PER_WARP = WARP_SIZE / THREADS_PER_ROW; // 一个线程束 wrap 可以处理 ROWS_PER_WARP 行

3. 线程组织方式(grid_dim and block_dim)

- a. 上述计算出,一个线程束 warp 可以处理 ROWS_PER_WARP 行,那么对于输入的数据规模,则可以计算出一共需要多少个线程束,每次 thread block 最多有 WARPS_PER_TB 个线程束,因此一共需要的 block 数目也可随之计算出来:
 - 1 const int num_warps = (num_rows + ROWS_PER_WARP 1) / ROWS_PER_WARP; //一 行需要 ROWS_PER_WARP 个 warp 来处理,所以一共需要 num_warps 个 wrap
 - 2 const int num_blocks = (num_warps + WARPS_PER_TB 1) / WARPS_PER_TB; //一 个 thread block 中最多有 WARPS_PER_TB 个 warp, 所以需要 num_blocks 个 thread block
 - 3 dim3 block_dim(WARP_SIZE, WARPS_PER_TB); //一个 thread block 中有 WARPS_PER_TB 个 warp

4. 线程束 warp 内部的合作方式

a. 一个 warp 可能会负责多行,所以一个 warp 中的32个线程,也会被分割为多个sub-group,每个子部分 sub-group 处理一行。所以需要计算出,每个线程需要处理哪一行。当然,专家的个数可能是 32 的倍数,那么一个 warp 可能只处理一行,这时候,每个线程需要负责多个向量。

```
// The threads in a warp are split into sub-groups that will work on a row.
// We compute row offset for each thread sub-group
const int thread_row_in_warp = threadIdx.x / THREADS_PER_ROW;
const int thread_row = warp_base_row + thread_row_in_warp; // 当前线程需要处理的对应行
```

b. 合并内存访问

正如上面所说,假如 warp 内的每个线程需要处理 2 个向量,那么处理方式如下:

[0][1][2][3].....[31][0][1][2].....[31]

而不是:

[0][0][1][1].....[31][31]

对应代码部分:LDG_PER_THREAD 即每个线程需要处理 LDG_PER_THREAD 个向量,注意代码中的跳跃式加载。

```
1 #pragma unroll
2 for (int ii = 0; ii < LDG_PER_THREAD; ++ii) // 将全局内存中的 input 数据,加载
到 row_chunk_input 来
3 {
4    row_chunk_vec_ptr[ii] = vec_thread_read_ptr[ii * THREADS_PER_ROW];
5 }</pre>
```

5. Shared memory

使用 cutlass 中提供的静态数组,将 global memory 中的input数据,加载到 shared memory中

6. 计算精度

a. 由于有 softmax ,需要求和以及指数运算,因此计算精度最好是 float,这需要把输入的 half 或者 bfloat16 转换为 float。

```
using ComputeType = float;
using Converter = cutlass::NumericArrayConverter<ComputeType, T, VPT>;
Converter compute_type_converter;
cutlass::Array<ComputeType, VPT> row_chunk =
compute_type_converter(row_chunk_input); // 把加载进来的输入数据,转换为 float
```

7. 其他cuda kernel常用变成技巧

- a. 线程束内通信: __shfl_xor_sync、butterfly reduce 等。
- b. 强制精度类型转换

更多详细细节可以查看代码和相关注释。

单测代码

```
from vllm import LLM, SamplingParams
1
 2
    import time
    prompt = [
 3
            "The capital of America is"
 5
    max tokens = 100
 6
    sampling_params = SamplingParams(temperature=0.8, top_p=0.95, top_k = 1,
7
    max_tokens = max_tokens, ignore_eos=True)
 8
    llm = LLM(model="/mnt/infra/weishengying/model/Mixtral-8x7B-v0.1",
    max_num_batched_tokens=32768, tensor_parallel_size=2, trust_remote_code=True,
    enforce_eager=False)
10
11
    # while True:
       # prompt = input("User:\t")
12
        # if prompt == 'quit':
13
        # break
14
15
    warm\_time = 2
16
    repeat_time = 5
17
    for _ in range(warm_time):
18
      llm.generate(prompt, sampling_params)
19
20
21
    start = time.time()
    for _ in range(repeat_time):
22
        outputs = llm.generate(prompt, sampling_params)
23
    end = time.time()
24
    print(f"total elasped time: {(end-start)*1000/repeat_time}ms")
25
    # Print the outputs.
26
    for output in outputs:
27
```

```
prompt = output.prompt
generated_text = output.outputs[0].text
print("generate len: ", len(output.outputs[0].token_ids))
print(f"Generated text: {generated_text!r}")
```

Mixtral 组网和切分代码:

```
# coding=utf-8
 1
 2
     # Adapted from
 3
     https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/mode
     ls/llama/modeling_llama.py
     # Copyright 2023 The vLLM team.
 4
     # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights
     reserved.
 6
 7
    # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
     # and OPT implementations in this library. It has been modified from its
 8
     # original forms to accommodate minor architectural differences compared
 9
     # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
10
11
     # Licensed under the Apache License, Version 2.0 (the "License");
12
     # you may not use this file except in compliance with the License.
13
14
     # You may obtain a copy of the License at
15
           http://www.apache.org/licenses/LICENSE-2.0
16
17
     # Unless required by applicable law or agreed to in writing, software
18
     # distributed under the License is distributed on an "AS IS" BASIS,
19
     # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
20
     # See the License for the specific language governing permissions and
21
     # limitations under the License.
22
     """Inference-only Mixtral model."""
23
     from typing import List, Optional, Tuple
24
25
     import numpy as np
26
27
28
     import torch
29
     import torch.nn.functional as F
30
31
     from torch import nn
     from transformers import MixtralConfig
32
33
34
     from vllm.model_executor.input_metadata import InputMetadata
     from vllm.model_executor.layers.attention import PagedAttention
35
```

```
36
     from vllm.model_executor.layers.layernorm import RMSNorm
     from vllm.model_executor.layers.linear import (LinearMethodBase,
37
                                                     ReplicatedLinear,
38
                                                     QKVParallelLinear,
39
                                                     RowParallelLinear)
40
     from vllm.model_executor.layers.rotary_embedding import get_rope
41
     from vllm.model_executor.layers.sampler import Sampler
42
     from vllm.model_executor.layers.vocab_parallel_embedding import (
43
44
         VocabParallelEmbedding, ParallelLMHead)
45
     from vllm.model_executor.parallel_utils.communication_op import (
         tensor_model_parallel_all_reduce)
46
     from vllm.model_executor.parallel_utils.parallel_state import (
47
         get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
48
     from vllm.model_executor.sampling_metadata import SamplingMetadata
49
     from vllm.model_executor.weight_utils import (default_weight_loader,
50
51
                                                    hf_model_weights_iterator)
     from vllm.sequence import SamplerOutput
52
53
     KVCache = Tuple[torch.Tensor, torch.Tensor]
54
55
56
     from vllm.model_executor.parallel_utils.parallel_state import (
         get_tensor_model_parallel_world_size,
57
         get_tensor_model_parallel_group,
58
59
     from vllm.utils import NcclAllReduce
60
61
     class MixtralMoE(nn.Module):
62
         def __init__(
63
             self,
64
             config: MixtralConfig,
65
66
             linear_method: Optional[LinearMethodBase] = None,
         ) -> None:
67
             super().__init__()
68
             self.tp_size = get_tensor_model_parallel_world_size()
69
             self.hidden_size = config.hidden_size
70
             self.inter_size = config.intermediate_size
71
             self.top_k = config.num_experts_per_tok
72
             self.num_experts = config.num_local_experts
73
             params_dtype = torch.get_default_dtype()
74
             self.gate = ReplicatedLinear(config.hidden_size,
75
76
                                           self.num_experts,
                                           bias=False,
77
                                           linear_method=None)
78
79
             from torch.nn.parameter import Parameter
80
81
             self.moe_up_proj_weight = Parameter(torch.empty((self.num_experts,
     self.hidden_size, 2 * self.inter_size // self.tp_size),
```

```
82
      device=torch.cuda.current_device(),
 83
      dtype=params_dtype))
 84
 85
              self.moe_down_proj_weight = Parameter(torch.empty((self.num_experts,
      self.inter_size // self.tp_size, self.hidden_size),
 86
      device=torch.cuda.current_device(),
 87
      dtype=params_dtype))
 88
              import moe_ops
              self.run moe fc = moe ops.run moe fc
 89
 90
          def forward(self, hidden_states):
 91
 92
              batch_size, sequence_length, hidden_dim = hidden_states.shape
              hidden_states = hidden_states.view(-1, hidden_dim) # (num_tokens,
 93
      hidden_dim)
              num_rows = hidden_states.size(0)
 94
 95
 96
              gating_output, _ = self.gate(hidden_states) # (num_tokens, n_experts)
 97
              moe_output = self.run_moe_fc(hidden_states, gating_output,
 98
      self.moe_up_proj_weight,
                                          "Swiglu", self.moe_down_proj_weight,
 99
      num_rows, self.top_k )
              if self.tp_size == 1:
100
101
                  return moe output
              # torch.distributed.all_reduce(moe_output,
102
      group=get tensor model parallel group())
103
              moe_output = NcclAllReduce.all_reduce(moe_output)
              return moe_output.view(batch_size, sequence_length, hidden_dim)
104
105
106
      class MixtralAttention(nn.Module):
107
108
          def __init__(self,
                       hidden_size: int,
109
110
                       num_heads: int,
                       num_kv_heads: int,
111
                       max_position: int = 4096 * 32,
112
                       rope theta: float = 10000,
113
                       linear_method: Optional[LinearMethodBase] = None,
114
                       sliding_window: Optional[int] = None) -> None:
115
              super().__init__()
116
              self.hidden_size = hidden_size
117
118
              tp_size = get_tensor_model_parallel_world_size()
              self.total num heads = num heads
119
```

```
120
              assert self.total_num_heads % tp_size == 0
              self.num_heads = self.total_num_heads // tp_size
121
              self.total_num_kv_heads = num_kv_heads
122
              if self.total num kv heads >= tp size:
123
                  # Number of KV heads is greater than TP size, so we partition
124
                  # the KV heads across multiple tensor parallel GPUs.
125
                  assert self.total_num_kv_heads % tp_size == 0
126
              else:
127
128
                  # Number of KV heads is less than TP size, so we replicate
                  # the KV heads across multiple tensor parallel GPUs.
129
                  assert tp size % self.total num kv heads == 0
130
              self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
131
              self.head_dim = hidden_size // self.total_num_heads
132
              self.q_size = self.num_heads * self.head_dim
133
              self.kv_size = self.num_kv_heads * self.head_dim
134
              self.scaling = self.head_dim**-0.5
135
              self.rope_theta = rope_theta
136
137
              self.sliding_window = sliding_window
138
              self.qkv_proj = QKVParallelLinear(
139
                  hidden_size,
140
                  self.head_dim,
141
                  self.total_num_heads,
142
143
                  self.total_num_kv_heads,
144
                  bias=False,
                  linear method=linear method,
145
146
              self.o_proj = RowParallelLinear(
147
                  self.total_num_heads * self.head_dim,
148
                  hidden_size,
149
150
                  bias=False,
                  linear_method=linear_method,
151
152
              self.rotary_emb = get_rope(
153
154
                  self.head_dim,
155
                  rotary_dim=self.head_dim,
                  max_position=max_position,
156
                  base=int(self.rope_theta),
157
                  is_neox_style=True,
158
159
160
              self.attn = PagedAttention(
                  self.num_heads,
161
                  self.head dim,
162
                  self.scaling,
163
                  num_kv_heads=self.num_kv_heads,
164
165
                  sliding_window=self.sliding_window,
166
```

```
167
          def forward(
168
              self,
169
              positions: torch. Tensor,
170
              hidden_states: torch.Tensor,
171
              kv cache: KVCache,
172
              input metadata: InputMetadata,
173
          ) -> torch.Tensor:
174
175
              qkv, _ = self.qkv_proj(hidden_states)
              q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
176
              q, k = self.rotary_emb(positions, q, k)
177
              k_cache, v_cache = kv_cache
178
              attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
179
              output, _ = self.o_proj(attn_output)
180
181
              return output
182
183
      class MixtralDecoderLayer(nn.Module):
184
          def init (
185
              self,
186
187
              config: MixtralConfig,
              linear_method: Optional[LinearMethodBase] = None,
188
          ) -> None:
189
              super().__init__()
190
              self.hidden_size = config.hidden_size
191
              # Requires transformers > 4.32.0
192
              rope_theta = getattr(config, "rope_theta", 10000)
193
              self.self attn = MixtralAttention(
194
                  hidden_size=self.hidden_size,
195
                  num_heads=config.num_attention_heads,
196
                  max_position=config.max_position_embeddings,
197
                  num_kv_heads=config.num_key_value_heads,
198
                  rope_theta=rope_theta,
199
                  sliding_window=config.sliding_window,
200
201
                  linear_method=linear_method)
202
              self.block_sparse_moe = MixtralMoE(config=config,
                                                  linear_method=linear_method)
203
              self.input_layernorm = RMSNorm(config.hidden_size,
204
                                              eps=config.rms_norm_eps)
205
              self.post_attention_layernorm = RMSNorm(config.hidden_size,
206
                                                       eps=config.rms_norm_eps)
207
208
          def forward(
209
              self,
210
              positions: torch.Tensor,
211
              hidden_states: torch.Tensor,
212
              kv_cache: KVCache,
213
```

```
214
              input_metadata: InputMetadata,
              residual: Optional[torch.Tensor],
215
          ) -> torch.Tensor:
216
              # Self Attention
217
              if residual is None:
218
                  residual = hidden states
219
                  hidden states = self.input layernorm(hidden states)
220
221
              else:
222
                  hidden_states, residual = self.input_layernorm(
223
                      hidden_states, residual)
              hidden states = self.self attn(
224
                  positions=positions,
225
                  hidden states=hidden states,
226
                  kv_cache=kv_cache,
227
                  input_metadata=input_metadata,
228
229
              )
230
231
              # Fully Connected
232
              hidden_states, residual = self.post_attention_layernorm(
                  hidden_states, residual)
233
              hidden_states = self.block_sparse_moe(hidden_states)
234
              return hidden_states, residual
235
236
237
      class MixtralModel(nn.Module):
238
          def __init__(
239
240
              self,
              config: MixtralConfig,
241
              linear_method: Optional[LinearMethodBase] = None,
242
          ) -> None:
243
244
              super().__init__()
              self.padding_idx = config.pad_token_id
245
              self.vocab_size = config.vocab_size
246
247
248
              self.embed_tokens = VocabParallelEmbedding(
249
                  config.vocab_size,
250
                  config.hidden_size,
251
              self.layers = nn.ModuleList([
252
                  MixtralDecoderLayer(config, linear_method=linear_method)
253
                  for _ in range(config.num_hidden_layers)
254
255
              ])
256
              self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
257
258
          def forward(
259
              self,
              input_ids: torch.Tensor,
260
```

```
261
              positions: torch. Tensor,
              kv_caches: List[KVCache],
262
              input_metadata: InputMetadata,
263
          ) -> torch.Tensor:
264
              hidden states = self.embed tokens(input ids)
265
              residual = None
266
              for i in range(len(self.layers)):
267
                  layer = self.layers[i]
268
269
                  hidden_states, residual = layer(positions, hidden_states,
270
                                                   kv_caches[i], input_metadata,
271
                                                   residual)
              hidden_states, _ = self.norm(hidden_states, residual)
272
              return hidden states
273
274
      class MixtralForCausalLM(nn.Module):
275
276
          def __init__(
277
278
              self,
279
              config: MixtralConfig,
              linear_method: Optional[LinearMethodBase] = None,
280
          ) -> None:
281
              super().__init__()
282
              self.config = config
283
284
              self.linear_method = linear_method
              self.model = MixtralModel(config, linear_method)
285
              self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
286
287
              self.sampler = Sampler(config.vocab_size)
              NcclAllReduce.init comm()
288
289
          def forward(
290
291
              self,
              input_ids: torch.Tensor,
292
              positions: torch. Tensor,
293
              kv_caches: List[KVCache],
294
295
              input_metadata: InputMetadata,
          ) -> torch.Tensor:
296
              hidden_states = self.model(input_ids, positions, kv_caches,
297
                                          input_metadata)
298
              return hidden_states
299
300
301
          def sample(
302
              self,
              hidden_states: Optional[torch.Tensor],
303
              sampling_metadata: SamplingMetadata,
304
          ) -> Optional[SamplerOutput]:
305
306
              next_tokens = self.sampler(self.lm_head.weight, hidden_states,
                                          sampling_metadata)
307
```

```
308
              return next_tokens
309
          def load_weights(self,
310
                           model_name_or_path: str,
311
                           cache_dir: Optional[str] = None,
312
                           load_format: str = "auto",
313
                           revision: Optional[str] = None):
314
315
              stacked_params_mapping = [
316
                  # (param_name, shard_id)
                  ("qkv_proj", "q_proj", "q"),
317
                  ("qkv_proj", "k_proj", "k"),
318
                  ("qkv_proj", "v_proj", "v"),
319
              1
320
              params_dict = dict(self.named_parameters())
321
              tp_size = get_tensor_model_parallel_world_size()
322
323
              tp_rank = get_tensor_model_parallel_rank()
              assert tp_size == 2
324
325
              for name, loaded_weight in hf_model_weights_iterator(
                      model_name_or_path,
326
                      cache_dir,
327
328
                      load_format,
                      revision,
329
                      fall_back_to_pt=False):
330
331
                 if "rotary_emb.inv_freq" in name:
                      continue
332
                  for (param_name, weight_name, shard_id) in stacked_params_mapping:
333
334
                      if weight_name not in name:
335
                          continue
                      name = name.replace(weight_name, param_name)
336
                      # Skip loading extra bias for GPTQ models.
337
                      if name.endswith(".bias") and name not in params_dict:
338
                          continue
339
                      param = params_dict[name]
340
                      weight_loader = param.weight_loader
341
342
                      weight_loader(param, loaded_weight, shard_id)
343
                      break
344
                  else:
                      # Skip loading extra bias for GPTQ models.
345
                      if name.endswith(".bias") and name not in params_dict:
346
                          continue
347
348
                      # Skip experts that are not assigned to this worker.
                      if ("block_sparse_moe.experts." in name): # like
349
      "model.layers.31.block_sparse_moe.experts.7.w2.weight"
                          substrings = name.split('.')
350
351
                          layer_num = int(substrings[2])
                          expert_num = int(substrings[5])
352
                          if("w1" in name or "w3" in name): # 列切
353
```

```
354
                              loaded_weight = loaded_weight.T # (hidden_size,
      inter_size)
                              shard_size = loaded_weight.shape[-1] // tp_size
355
                              loaded_weight_slice = loaded_weight[:, tp_rank *
356
      shard size : (tp rank + 1) * shard size] # (hidden size, inter size //
      tp_size)
                              coresponed_param_name = f"model.layers.
357
      {layer_num}.block_sparse_moe.moe_up_proj_weight"
358
                              param = params_dict[coresponed_param_name] #
      (num_expert, hidden_size, 2 * inter_size // tp_size)
                              if ("w1" in name):
359
                                  param_slice = param[expert_num, : , shard_size : ]
360
                                  assert loaded_weight_slice.shape ==
361
      param_slice.shape
362
                                  param_slice.data.copy_(loaded_weight_slice)
363
                                  continue
                              else: # w3
364
365
                                  param_slice = param[expert_num, : , : shard_size]
                                  assert loaded_weight_slice.shape ==
366
      param_slice.shape
367
                                  param_slice.data.copy_(loaded_weight_slice)
                                  continue
368
                          elif ("w2" in name): # 行切
369
370
                              loaded_weight = loaded_weight.T # (inter_size,
      hidden_size)
                              shard_size = loaded_weight.shape[0] // tp_size
371
                              loaded_weight_slice = loaded_weight[tp_rank *
372
      shard_size : (tp_rank + 1) * shard_size, :] # (inter_size // tp_size,
      hidden_size)
                              coresponed_param_name = f"model.layers.
373
      {layer_num}.block_sparse_moe.moe_down_proj_weight"
374
                              param = params_dict[coresponed_param_name] #
      (num_expert, inter_size // tp_size, hidden_size, )
                              param_slice = param[expert_num]
375
376
                              assert loaded_weight_slice.shape == param_slice.shape
377
                              param_slice.data.copy_(loaded_weight_slice)
378
                              continue
379
                              raise ValueError(f"invalid params: {name}")
380
                          continue
381
382
                      else:
383
                          param = params_dict[name]
                          weight_loader = getattr(param, "weight_loader",
384
                                                  default_weight_loader)
385
386
                          weight_loader(param, loaded_weight)
```

