Spatial Graph-Based Social Trade Transaction Simulation

Manuel Bröchin, Renato Menta, Oliver Blaser

Number of Agents: 315 Number of Edges: 1792

TPS: 87

Some Terminology

- Willingness-to-trade factor (WTF): The probability of an agent to accept a trade
- Gold-Dig-Factor (GDF): A value between 0 and 1 which quantifies the preference of an agent towards money or sympathy respectively.
- Resource: A general resource (could be food, money...).
 If it sinks below 0 the agent dies

Agent behaviour

Each agent has:

- Data:
 - List of neighbours: [(id, sympathy, resource)]
 - Own resource count
- Input:
 - List of proposed trades from neighbours
 - Harvest (how much resource he gets by tick)
- Independent variables
 - Willingness-to-trade factor (WTF)
 - ► Gold-Dig-Factor (GDF)
- Outputs
 - Propose trades to neighbours
 - Accept trades from neighbours
 - Update position

Agent

ID: 0 GDF: 0.5 WTF: 0.5

Decision making

In order to decide to whom the agent wants to propose, he computes:

$$\underset{a \in \text{Neighbours}}{\operatorname{arg max}} \left(\text{GDF} \cdot a. \text{resource} + (1 - \text{GDF}) \cdot a. \text{sympathy} \right)$$

In order to decide which trade to accept, he computes:

$$\underset{a \in A'}{\operatorname{arg\,min}} \left(\operatorname{GDF} \cdot a. \operatorname{resource} - (1 - \operatorname{GDF}) \cdot a. \operatorname{sympathy} \right)$$

$$A' = \left\{ a \mid a \in \text{Neighbours}, \ a.\text{resource} \leq \frac{1}{2} \text{ resource} \right\}$$

Propose trade

ID	Resourc e	Sympathy from Agent 0
0	42	-
1	100	40
2	120	105
3	90	-30
4	34	-1

Computation Example

Agent 0 decides which neighbour he wants to ask to trade

ID	Resource	Sympathy from Agent 0	GDF * resource + (1 - GDF) * sympathy
0	42	-	-
1	100	40	70
2	120	105	<u>112.5</u>
3	90	-30	30
4	34	-1	16.5

When Agent 0 has received all trade requests from his neighbours, he decides which one to accept

ID	Resource	Sympathy from Agent 0	GDF * resource - (1 - GDF) * sympathy
1	100	40	<u>30</u>
3	90	-30	60

Emerging behaviour of our agents

- Clustering around profitable places
- Few agents are able to initiate mass migration (building bridges)
- Achieving of an equilibrium in certain scenarios

Thank you for your attention!