

Description

The VSM8N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 100V, I_D = 8A$ $R_{DS(ON)} < 28m\Omega @ V_{GS} = 10V$ (Typ:22m Ω)
- Special process technology for high ESD capability
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current

Application

- DC/DC Primary Side Switch
- Telecom/Server
- Synchronous Rectification

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM8N10-S8	VSM8N10	SOP-8	Ø330mm	12mm	2500 units

Absolute Maximum Ratings (T_A=25 ℃ unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	8	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	5.6	А	
Pulsed Drain Current	I _{DM}	57	А	
Maximum Power Dissipation	P _D	2.6	W	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 150	°C	

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ heta JA}$	48	°C/W

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics				•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	100	110	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•	•		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.3	1.8	2.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =8A	-	22	28	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =8A	20	-	-	S
Dynamic Characteristics (Note4)	·			•		
Input Capacitance	C _{lss}	V _{DS} =50V,V _{GS} =0V,	-	2000	-	PF
Output Capacitance	Coss	V _{DS} -50V,V _{GS} -0V, F=1.0MHz	-	300	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.UIVITZ	-	250	-	PF
Switching Characteristics (Note 4)	·			•		
Turn-on Delay Time	t _{d(on)}		-	12	-	nS
Turn-on Rise Time	t _r	V_{DD} =50V, I_D =10A, R_L =5 Ω ,	-	10	1	nS
Turn-Off Delay Time	t _{d(off)}	$R_G=1\Omega,V_{GS}=10V$	-	19	-	nS
Turn-Off Fall Time	t _f		-	8	-	nS
Total Gate Charge	Qg		-	42	-	nC
Gate-Source Charge	Q_{gs}	I _D =10A,V _{DD} =50V,V _{GS} =10V	-	9	-	nC
Gate-Drain Charge	Q_{gd}		-	10	-	nC
Drain-Source Diode Characteristics	·		-	•		
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =8A	-	0.85	1.2	V
Diode Forward Current (Note 2)	I _S		-	-	8	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F = 8A	-	30		nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	44		nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 11 Normalized Maximum Transient Thermal Impedance

Square Wave Pluse Duration(sec)