1. Fonction sinusoïdale.

1.1. Définition.

$$\mathbf{u}(t) = \mathbf{U}_{\mathrm{M}} \sin(\omega t + \theta_{\mathrm{u}})$$
 et $\mathbf{i}(t) = \mathbf{I}_{\mathrm{M}} \sin(\omega t + \theta_{\mathrm{i}})$

- $ightharpoonup U_M$ et I_M : amplitudes en volts (V) et ampères (A) ;
- > t: temps en secondes (s);
- > ω : pulsation en radians par seconde (rad.s⁻¹);
- \triangleright θ_u et θ_i : phase à l'origine en radians (rad).

1.2. Valeur moyenne.

$$\mathbf{U}_{\text{mov}} = \mathbf{0} \text{ et } \mathbf{I}_{\text{mov}} = \mathbf{0}$$
.

1.3. Valeur efficace.

$$\mathbf{U} = \frac{\mathbf{U}_{\mathrm{M}}}{\sqrt{2}}$$
 et $\mathbf{I} = \frac{\mathbf{I}_{\mathrm{M}}}{\sqrt{2}}$

1.4. Période et fréquence.

Par définition la période T, exprimée en secondes (s), est telle que :

$$u(t) = u(t + kT)$$
 et $i(t) = i(t + kT)$ avec $k = 1, 2, 3, ...$

Par conséquent :

$$T = \frac{2\pi}{\omega}$$
 ou $\omega = 2\pi f$ avec $f = \frac{1}{T}$ fréquence en hertz (Hz).

2. Représentation de Fresnel.

La représentation de Fresnel est une représentation vectorielle des grandeurs sinusoïdales.

2.1. Représentation d'un vecteur.

En coordonnées cartésiennes : \vec{U} (x; y) et \vec{I} (x; y).

En coordonnées polaires : \vec{U} (U ; θ_u) et \vec{I} (I ; θ_i).

2.2. Représentation de Fresnel.

$$i$$
 Z u

Pour la tension : $\mathbf{u}(\mathbf{t}) = \mathbf{U}\sqrt{2}\sin(\omega \mathbf{t} + \mathbf{\theta}_{\mathbf{u}}) \iff \vec{\mathbf{U}}(\mathbf{U}; \mathbf{\theta}_{\mathbf{u}})$.

Pour le courant : $i(t) = I\sqrt{2}\sin(\omega t + \theta_i) \iff \vec{I}(I;\theta_i)$.

Différence de phase : $\varphi = \theta_u - \theta_i$.

Si on prend le courant i comme origine des phases la représentation se simplifie.

$$\mathbf{u}(\mathbf{t}) = \mathbf{U}\sqrt{2}\sin(\omega \mathbf{t} + \mathbf{\varphi}) \iff \vec{\mathbf{U}}(\mathbf{U};\mathbf{\varphi}) \text{ et } \mathbf{i}(\mathbf{t}) = \mathbf{I}\sqrt{2}\sin(\omega \mathbf{t}) \iff \vec{\mathbf{I}}(\mathbf{I};\mathbf{0})$$

j (phi) représente le déphasage de i par rapport à u. Il dépend de la nature du dipôle.

2.3. Déphasage.

a. Valeurs instantanées.

$$\mathbf{u}(\mathbf{t}) = \mathbf{U}\sqrt{2}\sin(\omega \mathbf{t} + \mathbf{\theta}_{\mathbf{u}})$$
 et $\mathbf{i}(\mathbf{t}) = \mathbf{I}\sqrt{2}\sin(\omega \mathbf{t} + \mathbf{\theta}_{\mathbf{i}})$.

b. Différence de phase.

 $\phi = \theta_u - \theta_i$: ϕ est la différence de phase entre u et i ou le déphasage de i par rapport à u.

 \triangleright si $\varphi < 0$, i est en avance sur u : la charge est de nature capacitive.

 \triangleright si $\varphi > 0$, i est en retard sur u : la charge est de nature inductive.

 \triangleright si $\varphi = 0$, i et u sont en phase : la charge est de nature résistive.

Si on prend u comme référence des phases alors $\theta_u = 0$ et $\theta_i = -\phi$. On peut donc écrire :

$$\mathbf{u}(t) = \mathbf{U}\sqrt{2}\sin(\omega t)$$
 et $\mathbf{i}(t) = \mathbf{I}\sqrt{2}\sin(\omega t - \varphi)$.

Si on prend i comme référence des phases alors $\theta_i = 0$ et $\theta_u = \varphi$. On peut donc écrire :

$$\mathbf{u}(t) = \mathbf{U}\sqrt{2}\sin(\omega t + \varphi)$$
 et $\mathbf{i}(t) = \mathbf{I}\sqrt{2}\sin(\omega t)$.

c. Déphasage en représentation de Fresnel.

Sur le diagramme de Fresnel, $\boldsymbol{\phi}$ est l'angle allant de $\vec{\boldsymbol{I}}$ vers $\vec{\boldsymbol{U}}$.

d. Mesure du déphasage à l'oscilloscope.

À l'oscilloscope, on mesure l'intervalle de temps Δt allant de u vers i ainsi que la période T. Sachant qu'une période complète correspond à 2π rad ou 360° , on effectue une règle de trois pour trouver le déphasage φ .

$$\varphi = 2\pi \frac{\Delta t}{T}$$
 en radians ou $\varphi = 360 \frac{\Delta t}{T}$ en degrés.

En résumé, sachant que φ est le déphasage de i par rapport à \mathbf{u} , on a les résultats ci-après.

Grandeurs instantanées	Représentation de Fresnel	Mesure à l'oscilloscope
$\varphi = \theta_u - \theta_i$	Angle allant de i vers u	Mesurer Δt de u vers i

2.4. Loi des mailles, loi des nœuds en représentation de Fresnel.

Considérons l'exemple ci-dessous où $\mathbf{u_1}$, $\mathbf{u_2}$, \mathbf{u} et \mathbf{i} ont la même période.

$$i$$
 u_1
 u_2
 u_2

Écrivons la loi des mailles instantanée :

$$\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2 \text{ avec } \mathbf{u}_1(t) = \mathbf{U}_1 \sqrt{2} \sin(\omega t + \theta_1) \text{ et } \mathbf{u}_2(t) = \mathbf{U}_2 \sqrt{2} \sin(\omega t + \theta_2).$$

Écrivons la loi des mailles vectorielle :

$$\vec{\mathbf{U}} = \vec{\mathbf{U}}_1 + \vec{\mathbf{U}}_2 \text{ avec } \vec{\mathbf{U}}_1 (\mathbf{U}_1; \boldsymbol{\theta}_1) \text{ et } \vec{\mathbf{U}}_2 (\mathbf{U}_2; \boldsymbol{\theta}_2).$$

 \triangle En aucun cas il ne faut faire la somme algébrique des valeurs efficaces U_1 et U_2 . $U \neq U_1 + U_2$

3. Puissances en régime sinusoïdal.

3.1. Puissance active.

La puissance active est la moyenne de la puissance instantanée. Elle s'exprime en watts (W).

$$P = UI \cos \varphi$$

3.2. Puissance réactive.

La puissance réactive s'exprime en voltampère réactif (VAR), soit : $\mathbf{Q} = \mathbf{UI}\sin\phi$

3.3. Puissance apparente.

La puissance apparente permet le dimensionnement d'une installation. Elle s'exprime en voltampère (VA), soit : S = UI.

3.4. Autres relations.

$$ightharpoonup \cos \varphi = \frac{P}{S} \text{ et } \tan \varphi = \frac{Q}{P} \text{ ou } Q = P \tan \varphi.$$

Relation de Pythagore:
$$S^2 = P^2 + Q^2$$
 ou $S = \sqrt{P^2 + Q^2}$

4. Les dipôles passifs linéaires.

4.1. Définition de l'impédance d'un dipôle.

Un dipôle passif linéaire soumis à une tension \mathbf{u} sinusoïdale de pulsation \mathbf{w} et traversé par un courant \mathbf{i} sinusoïdal de même pulsation a pour impédance \mathbf{Z} , exprimée en ohms (Ω) :

$$Z = \frac{U}{I}$$

4.2. Tableau récapitulatif.

Dipôles	Résistance R	Inductance L	Capacité C
Schéma	i R u	$\stackrel{i}{\longrightarrow} \stackrel{L}{\longleftarrow}$	$\frac{i}{u}$
Équation fondamentale	u = Ri	$\mathbf{u} = \mathbf{L} \frac{\mathbf{d}\mathbf{i}}{\mathbf{d}\mathbf{t}}$	$i = C \frac{du}{dt}$
Relation entre les valeurs efficaces	U = RI	$U = L\omega I$	$U = \frac{1}{C\omega}I \Leftrightarrow I = C\omega U$
Impédance $Z = \frac{U}{I} (\Omega)$	Z = R	$Z = L\omega$	$Z = \frac{1}{C\omega}$
Déphasage φ (rad)	$\phi = 0$	$\varphi = \frac{\pi}{2}$	$\varphi = -\frac{\pi}{2}$
Représentation de Fresnel	\overrightarrow{U}	\vec{U} $+\frac{\pi}{2}$	\vec{U} $\frac{\vec{I}}{2}$
Puissance active P = UI cos φ (W)	$P = UI = RI^{2} = \frac{U^{2}}{R}$ R absorbe P	0	0
Puissance réactive Q = UI sin φ (VAR)	0	$Q = UI = L\omega I^2$ L absorbe Q	$Q = -UI = -C\omega U^{2}$ C fournit Q

4.3. La bobine réelle.

Z est l'impédance de la bobine réelle en ohms (Ω) : $\mathbf{Z} = \sqrt{\mathbf{R}^2 + \mathbf{L}^2 \omega^2}$ et $\tan \varphi = \mathbf{Z}$

$$d = \sqrt{R^2 + L^2 \omega^2}$$
 et $\tan \varphi = \frac{L\omega}{R}$

4.4. Le condensateur réel.

Le condensateur réel ne s'éloigne du condensateur parfait que pour les très hautes fréquences c'est-àdire f > 1 MHz. Nous considérons ici que le condensateur est parfait.

5. Théorème de Boucherot.

5.1. Théorème.

Les puissances active et réactive absorbées par un groupement de dipôles sont respectivement égales à la somme des puissances actives et réactives absorbées par chaque élément du groupement.

5.2. Exemple.

- Puissance instantanée : $p = p_1 + p_2 + p_3$ avec p = ui ;
- Puissance active : $P = P_1 + P_2 + P_3$ avec $P = UI \cos φ$;
- > Puissance réactive : $Q = Q_1 + Q_2 + Q_3$ avec $Q = UI \sin \varphi = P \tan \varphi$.

⚠ Le théorème de Boucherot n'est pas valable pour la puissance apparente S.

6. Facteur de puissance.

6.1. Définition générale.

$$\mathbf{k} = \frac{\mathbf{P}}{\mathbf{S}} .$$

6.2. Cas particulier du régime sinusoïdal.

$$k = \frac{P}{S} = \frac{UI\cos\phi}{UI} = \cos\phi \text{ soit } \cos\phi = \frac{P}{S}$$

6.3. Importance du cosφ.

La valeur efficace I du courant i circulant dans un dipôle soumis à une tension u de valeur efficace U et consommant la puissance active P est :

$$I = \frac{P}{U \cos \varphi}.$$

Plus I est faible plus les pertes en lignes sont faibles. Pour diminuer I sans modifier P ou U, il faut augmenter $\cos \phi$. On dit qu'il faut relever le facteur de puissance.

On sait aussi que:

$$\cos\varphi = \frac{P}{S} = \frac{P}{\sqrt{P^2 + Q^2}}.$$

Plus Q tend vers 0, plus $\cos \phi$ se rapproche de 1. En rajoutant à l'installation électrique des condensateurs ou des inductances, on modifie Q sans modifier P.

6.4. Relèvement du facteur de puissance.

Si l'installation électrique est **inductive** (Q > 0), il faut diminuer Q en adjoignant des condensateurs $(Q_c < 0)$ de telle sorte que $0 \le Q + Q_c < Q$

L'objectif est de dimensionner les condensateurs de capacité globale C en fonction du facteur de puissance recherché pour passer du facteur de puissance $\cos \phi$ à $\cos \phi$.

Sans le condensateur

$$P = UI\cos \varphi$$

$$Q = UI \sin \phi$$

$$Q = P \tan \varphi$$

$$S = UI$$

Avec le condensateur

$$P' = UI'\cos\phi' = P$$
 avec $\cos\phi' > \cos\phi$

$$Q' = UI'\sin \varphi'$$
 avec $Q' < Q$

$$Q' = Q + Q_c = P' \tan \varphi' = P \tan \varphi'$$

$$S' = UI'$$
 avec $I' < I$

$$\mathbf{Q}_{c} = \mathbf{Q'} - \mathbf{Q} = \mathbf{P} \left(\tan \phi' - \tan \phi \right) \text{ avec } \mathbf{Q}_{c} = -\mathbf{C} \omega \mathbf{U}^{2} \text{ donc}$$

$$C = \frac{P(\tan \varphi - \tan \varphi')}{\omega U^2}$$