

7장. 머신러닝

Contents

- I. 머신러닝의 유형
- II. 머신러닝의 과정
- Ⅲ. 최근접 이웃 분류기

(The nearest neighbor classifier)

IV. 회귀(Regression)

자동숫자인식기 (Automatic Digit Recognizer)

MNIST 데이터 셋

Modified + National Institute of Standards and Technology (6만개 훈련 이미지 + 1만개 테스트 이미지)

07114943482218708107

이미지를 주면 자동으로 정확한 레이블 (0~9 사이의 숫자)을 결과로 줌

- 손으로 쓴 우편번호 자동 인식
- 수표에 기입한 금액 자동 인식
- 등등...

자동숫자인식기

규칙기반 접근방식 1980년대 전문가 시스템(Expert System)

규칙

- 검정색 픽셀(pixel)이 대부분 단일 <u>루프</u> 형태인 경우 레이블은 0
- 검정 픽셀이 두 개의 교차 루프 형태인 경우 레이블은 8
- 검정 픽셀이 <u>대부분</u> 그림 중앙의 수직선에 있는 경우 레이블은 1
- 등등... ⇒ 수 많은 예외가 발생

전문가 시스템

- 절차적 코드가 아닌 규칙으로 표현되는 지식을 통해 추론함으로써 복잡한 문제를 해결해 나감
- 지식베이스, 추론엔진, 사용자 인터페이스(UI)로 구성
- 인간은 많은 지식을 가지고 있고, 지식을 통해 새로운 사실을 추론

지식표현 방법 - 규칙

- 생성 규칙(Production rules)
 - 다른 지식표현방법(시맨틱 네트워크, 술어논리, 개념 그래프)에 비해, 상대적으로 이해하고 작성하기 쉬움

규칙 #1: IF	신호등이 녹색이다.	
	THEN 자동차를 진행한다. 조건.	전제, 상황
규칙 #2: IF	신호등이 빨강색이다.	
¬ #2.	THEN 자동차를 멈춘다.	
		결론, 결과
규칙 #3: IF	배터리의 전압이 낮다.	
	THEN 시동이 걸리지 않을 것이다.	
규칙 #4: IF	자동차가 움직이지 않는다.	
	AND 연료 탱크가 비었다.	
	THEN 자동차에 연료를 급유한다.	
규칙 #5: IF	도로가 미끄럽다.	
	OR 안개가 자욱하다.	
	THEN 속도를 시속 60km 이하로 낮춘다.	

전문가 시스템 – 추론엔진

- 추론(inference)
 - 명제를 근거로 어떤 사실에 대한 판단이나 결론을 이끌어 내는 사고과정

규칙: IF 자동차에 연료가 없다 THEN 시동이 걸리지 않는다.

사실: 연료가 없다.

규칙기반 전문가 시스템

이름	기능	개발기관
MYCIN	백혈병 진단	스탠포드 대학
DENDRAL	질량분석	스탠포드 대학
ROSPECTOR	광맥 탐사	SRI International
AIRPLAN	항공기 이착륙 관리	U.S. Army
LOGOS	자동 번역	Logos Computer System
ASK	자연어 DB관리	Caltech

자동숫자인식기

07114943482218708107

- 검정색 픽셀(p 레이블은 0
- 검정 픽셀이 =
- 검정 픽셀이 다 레이블은 1
- 등등...

형태인 경우

!우 레이블은 8 게 있는 경우

머신러닝이란?

● 입력을 받아서 출력하는 함수 y = f(x)를 학습

머신러닝 == 함수 근사(function approximation)

머신러닝 개요 (1/4)

- 머신러닝(Machine Learning)의 정의
 - 1959년 아서 새무얼(Arthur Samuel)이 최초로 정의
 - ▶ "프로그램을 명시적으로 작성하지 않고 컴퓨터에 학습할 수 있는 능력을 부여하기 위한 연구 분야이다."
 - 1998년 톰 미첼(Tom M. Mitchell)이 구체적으로 정의
 - ➤ "컴퓨터 프로그램이 어떤 작업 T와 평가 척도 P에 대해 경험 E로부터 학습한다는 것은, P에 의해 평가되는 작업 T의 성능이 경험 E에 의해 개선되는 경우를 말한다."

머신러닝 개요 (2/4)

- 1952년 새무얼(Samuel)이 '체커(Checker)' 개발
 - 체커는 최초의 머신러닝 프로그램
 - 체커는 당시로는 가장 복잡한 게임 프로그램 중 하나
 - 체커는 경험을 통해 학습하는 방법을 사용
 - 알파고와 같은 AI 바둑 S/W 작성의 바탕이 됨

머신러닝 개요 (3/4)

- 머신러닝은 데이터에서 지식을 추출하는 작업
 - 통계에 뿌리를 둠 : 선형회귀(Linear Regression), 베이지안 통계(Bayesian Statistics)
 - 데이터로부터 유용한 규칙 등을 추출하며 프로그래밍 하기 어려운 작업의 해결에 주로 활용됨

머신러닝 개요 (4/4)

- 머신러닝에서는 학습 데이터 셋(set)을 대상으로 학습
- 그 결과 머신러닝 시스템은 학습 결과의 일반화된 규칙을 생성
- 학습된 머신러닝 시스템에 적용할 새로운 데이터를 입력 시키면 학습된 규칙에 따라 적절한 결과를 얻을 수 있음

머신러닝의 학습유형과 활용체계

머신러닝의 학습방법

- 지도 학습(Supervised Learning)
 - 샘플과 정답을 제공해서 입력을 출력에 매핑하는 일반적인 규칙을 학습
- 비지도 학습(Unsupervised Learning)
 - 레이블이나 올바른 출력의 제공 없이, 입력에서 어떤 구조를 발견하는 학습
- 강화 학습(Reinforcement Learning)
 - 동적인 환경에서 작동하는 경우, 행동에 대한 피드백(좋고 나쁨)만 제공

The categories are somewhat overlapping and fuzzy.

머신러닝의 분류

- 모델이 하는 일에 따라 판별모델과 생성모델로 분류
 - 판별 모델 (Discriminative Model) : 입력된 데이터셋을 특정 기준에 따라 분류하거나 특정 값을 맞추는 모델
 - 학습 방법 : 분류 경계를 찾는 것을 목적으로 학습
 - 예) 이미지를 개 또는 고양이로 분류
 - 생성 모델 (Generative Model) : 학습한 데이터셋과 비슷하면서도 기존에 없던 새로운 데이터셋을 생성
 - 학습 방법 : 데이터의 분포를 학습
 - 예) 개나 고양이 이미지의 특성을 학습한 후 새로운 개나 고양이 이미지를 생성

머신러닝의 용어 (1/3)

- 특징(features)
 - 학습모델에게 공급하는 입력
 - 사례:이메일이 스팸인지 아닌지 결정하기 위한 특징
 - 원천 데이터 : 이메일의 텍스트, 발신자 주소, 첨부된 이미지, 첨부 된 코드 등
 - 이메일에 "검찰"이라는 문자 포함여부
 - 이메일에 "광고", "이벤트 당첨" 문자열 포함여부
 - 이메일의 제목이나 본문에 "★"과 같은 특수 기호의 개수

머신러닝의 용어 (2/3)

- 레이블(Label)
 - 머신러닝으로 예측하는 항목, y = f(x)에서 y 변수에 해당
 - 농작물의 향후 가격, 동물의 종류, 동영상의 의미 등
- 샘플
 - 머신러닝에 주어지는 특정한 예, y = f(x)에서 x에 해당
 - 레이블이 있는 샘플도 있고, 레이블이 없는 샘플도 있음
- 예측(prediction)
 - 학습된 모델을 레이블이 없는 샘플에 적용하는 것
 - 학습된 모델을 사용하여 유용한 예측(y')을 해내는 것

머신러닝의 용어 (3/3)

● 학습 데이터와 테스트 데이터

테스트 단계

지도 학습(Supervised Learning) (1/2)

지도 학습(Supervised Learning) (2/2)

- 입력과 미리 알려진 출력을 연관시키는 관계를 학습
- 주어진 입력과 출력 쌍 사이의 대응 관계를 학습
 - 예) 자동차 번호판이 오염된 경우 인식하지 못할 수도 있음
 ⇒ 그러나 오염된 번호판 사례들을 학습시켜 인식률을 높임
- 지도학습을 위한 문제의 유형 : 분류와 회귀

분류(Classification)

지도 학습 – 분류 (1/4)

- 분류(Classification) : 항목들을 카테고리로 정렬
 - 입력을 두 개 이상의 레이블(카테고리)로 분할 하는 것
 - 분류는 지도 학습의 형태로 이루어지는 것이 일반적

지도 학습 – 분류 (2/4)

- 분류 알고리즘
 - 결정 트리(Decision Trees)
 - 데이터의 특징을 기반으로 데이터를 분류하거나 예측하기 위 해 트리(Tree) 구조로 표현
 - 랜덤 포레스트(Random Forests)
 - 여러 개의 결정 트리를 조합해서 더 강력한 예측 모델 생성
 - 각 결정 트리는 데이터 일부를 사용해 독립적으로 학습하며, 이들의 예측 결과를 결합하여 최종 예측을 수행하는 방식

지도 학습 - 분류 (3/4)

- 분류 알고리즘(계속)
 - kNN(k-nearest neighbor, k최근접 이웃)
 - 주어진 데이터 포인트 주변에 위치한 K개의 최근접 이웃을 기 반으로 예측 수행
 - SVM(Support Vector Machine)
 - 데이터 포인트들을 고차원 공간으로 매핑하여 클래스 간 가장 큰 간격을 가지는 결정 경계를 찾는 방식으로 동작
 - Naïve Bayes 분류기

지도 학습 – 분류 (4/4)

- 예제

 - 스팸메일 필터
 - 편지봉투의 손으로 쓴 주소 판별
 - 카드 부정 사용 감지
 - 의료 영상에서 종양의 존재 여부 판단

지도학습 – 회귀 (1/4)

- 회귀(Regression)
 - 자료 분석 방법 중 하나로, 여러 자료들 간의 관계성을 수학적으로 추정 및 설명
 - 회귀분석: 독립변수와 종속변수를 설정하고, 이들의 관계를 통계적으로 살펴보는 대부분의 방법론을 말함
 - 기본적으로 변수들 사이에서 나타나는 경향성을 설명하는 것을 주 목적으로 함

지도학습 - 회귀 (2/4)

- 회귀는 실수값(real values) 식별
 - 회귀는 실수 입력(x)과 실수 출력(y)이 주어질 때, 입력에서 출력으로의 매핑 함수 y = f(x)를 학습하는 것

지도학습 – 회귀 (3/4)

- 회귀 알고리즘
 - 선형 회귀(Linear regression)
 - 입력 변수와 출력 변수 사이의 선형 관계(직선, y = a + bx)를 모델링하는 회귀분석 방법
 - 비선형 회귀(Non-Linear Regression)
 - 입력 변수와 출력 변수 사이의 비선형 관계를 모델링하는 회 귀 분석 방법
 - 다항식 회귀(Polynomial Regression), 로지스틱 회귀, 지수 함수, 로그 함수 등의 비선형 함수 사용해 관계 모델링함

지도학습 - 회귀 (4/4)

● 예제

- 광고 콘텐츠 및 사용자의 이전 행동에 대한 데이터를 기반으로 구글 광고를 클릭할 사람들의 수 예측
- 도로 상황 및 제한 속도를 기반으로 교통사고 건수 예측
- 부동산의 위치 규모, 건설 연도, 조건을 고려해서 부동산의 매매가를 예측
- 날씨에 대한 예측
- 원유가격 추정 등

비지도 학습(Unsupervised Learning) (1/2)

- 출력값을 알려주지 않고 스스로 모델을 구축하여 학습
- 비지도 학습은 입력만 있고 출력 즉 레이블(label)이 없음
- 규칙성을 스스로 찾아내는 것이 학습의 주요 목표
- 결과는 지도 학습의 입력으로 사용 가능 또는 전문가에
 의해 해석되어 다른 용도로 활용됨

비지도 학습(Unsupervised Learning) (2/2)

 정답이 제공되지 않기 때문에, 훈련데이터에 대한 정답에 맞게 모델을 만들 수 없고, 학습된 모델이 잘 작동되는지 확인할 수 없기 때문에 더 어려워짐

비지도 학습 – 클러스터링 (1/4)

- 클러스터링(clustering, 군집화) : 가장 대표적인 비지도 학습
 - 데이터 간 거리를 계산해서 입력을 몇 개 그룹으로 나누는 방법

비지도 학습 – 클러스터링 (2/4)

- 클러스터링 주요 응용분야
 - 비슷한 성향의 고객을 그룹으로 묶기
 - 블로그에서 주제별로 구분하기
 - 유사한 꽃이나 동물들끼리 묶기
 - 네트워크상에서의 비정상적인 접근의 탐지

비지도 학습 – 클러스터링 (3/4)

- 비지도 학습 알고리즘
 - K-means 클러스터링
 - 가우스 혼합 모델
 - 계층적 클러스터링
- 비지도학습을 통한 클러스터링은 추천 시스템에서 활용
 - 추천을 위해 연관 데이터 정의에 도움 주는 클러스터링 방법
 - 사용자의 '선호도'를 예측하는 정보 필터링의 일종
 - 여러 분야에서 상업적으로 활용 중

비지도 학습 – 클러스터링 (4/4)

- 예제: 매장에서 고객의 쇼핑 행동에 대한 데이터를 수집
 - 각 고객을 점으로 표시하고 동일한 제품을 구매하는 경향이 있는 고객을 다른 제품을 구매하는 고객보다 더 가깝게 배치하여 시각화
 - 고객그룹의 집합
 - 저예산 건강 식품 애호가
 - 고급 생선 애호가
 - 주 6일 소다 및 피자

강화 학습 (1/7)

- 강화학습(Reinforcement Learning)
 - 어떤 환경 안에서 정의된 에이전트가 현재의 상태를 인식하여, 선택 가능한 행동들 중 보상을 최대화하는 행동 혹은 행동 순서를 선택하는 방법
 - 보상기반학습 : 환경으로부터 양수, 음수 또는 중립적인 보상을 받음
 - 지능적인 에이전트와
 환경의 상호작용 개념

강화 학습 (2/7)

- 강화학습의 특징
 - 시간적 연속성 : 시간적으로 연속된 상호작용을 통해 학습하는 방법
 - 에이전트는 일련의 행동을 수행하고 그에 따른 결과로 보상 을 받음 ⇒ 어떤 행동이 좋은지 경험을 통해 학습
 - 시행착오 : 시행착오를 통해 최적의 행동을 탐색
 - 초기에는 에이전트가 무작위로 행동을 선택 ⇒ 보상을 통해 피드백을 얻게 됨 ⇒ 보상이 높은 행동을 선택하는 경향을 보 임 ⇒ 시간이 지나면 보상을 최대화하는 행동을 학습

강화 학습 (3/7)

- 강화학습의 4가지 기본 구성요소
 - 에이전트(Agent): 환경에서 어떤 행동을 취할지 결정하는 학습 주체
 - 환경(Environment): 에이전트의 행동에 반응하여 보상을 제공하는 공간
 - 행동(Action): 에이전트가 환경에서 선택할 수 있는 행동
 - 보상(Reward): 환경이 에이전트의 행동에 따라 제공하는 피드백으로, 보상을 최대화하는 것이 에이전트의 주된 목표

강화 학습 (4/7)

- 강화학습 주요 개념 로봇청소기
 - <u>에이전트</u> : 로봇청소기
 - 로봇청소기는 주어진 환경에서 청소 작업을 수행하는 주체
 - 주변 상태를 감지하고 해당 상태에 따라 어떤 행동을 취할지 를 결정
 - 환경:청소할 집의 공간
 - 환경은 로봇청소기에게 상태 정보를 제공하고 청소 작업을 수행하면서 변경되는 요소
 - 환경에는 로봇청소기의 움직임에 대한 제약 사항이나 장애물 등이 포함

강화 학습 (5/7)

- 강화학습 주요 개념 로봇청소기 (계속)
 - 상태(State): 환경으로부터 관찰하는 정보
 - 청소하는 공간에서의 위치나 청소가 필요한 구역 등을 상태로 관찰할 수 있음
 - 상태 정보를 기반으로 로봇청소기는 행동을 선택
 - <u>행동(Action)</u>: 로봇청소기가 취할 수 있는 선택지
 - 이동, 청소, 회전 등이 행동
 - 로봇청소기는 현재 상태에 따라 가능한 행동 중에 최적의 행동을 선택하여 환경에 적용하게 됨

강화 학습 (6/7)

- 강화학습 주요 개념 로봇청소기 (계속)
 - 보상(Reward): 환경으로부터 보상을 받음
 - 로봇청소기가 청소 작업을 수행하고 성공적으로 장애물을 피하면 양수, 충돌이나 실패한 경우에는 음수를 보상받음
 - 보상은 로봇청소기 행동의 결과를 평가하고 학습에 활용

강화 학습 (7/7)

- 강화학습과 큐러닝
 - 큐러닝(Q-learning)은 강화 학습의 대표적인 알고리즘으로 큐함수를 학습하는 방법을 사용함
 - 큐함수(Q-function)는 에이전트가 어떤 상태에서 어떤 행동을 취했을 때 얻을 수 있는 예상 보상을 나타냄
 - 큐러닝의 핵심은 벨만 방정식으로 큐함수를 업데이트하는 것
 - 에이전트는 시간이 지남에 따라 최적의 행동 전략을 학습함

Q-러닝 (1/3)

- Q 러닝(Q-learning)은 강화 학습 기법 가운데 하나
 - Q러닝 기반의 DQN(Deep Q-network)을 구글 딥마인드에서 개발 ⇒ 알파고
 - Q-러닝의 목표 : MDP(마르코프 결정과정)에서 에이전트가 특정 상황에서 특정 행동을 하라는 최적의 Policy를 학습
 - 현재 상태로부터 시작하여 모든 연속적인 단계들을 거쳤을
 때 전체 보상의 예측 값을 극대화 시킴

Q-러닝 (2/3)

● 알고리즘

- 1. 초기화 : Q-table을 0으로 초기화한다.
- 2. 상호작용 : 에이전트는 상태를 관찰하고 현재의 Qtable을 기반으로 행동을 선택한다.
- 3. 행동 및 보상 : 선택한 행동을 환경에 적용하고 보상을 받는다.
- 4. Q-value 업데이트 : 새로운 상태에서 최대 Q-value를 이용하여 Q-value를 업데이트한다.
- 5. 종료 조건 : 학습이 충분히 진행될 때까지 위 과정을 반복하고, 종료 조건을 설정하여 학습을 종료한다.

Q-러닝 (3/3)

- MDP(마르코프 결정과정, Markov Decision Process)
 - 큐러닝 프로세스를 수학적으로 모델링한 것

구성요소	설명		
상태(State)	상태 S는 에이전트가 관찰 가능한 상태의 집합		
행동(Action)	가능한 모든 행동의 집합으로 어떤 상태 St에서 에이전트 가 선택 할 수 있는 모든 행동을 포함		
전이확률(Transition Probability)	상태와 행동에 따른 다음 상태로의 전이 확률(Markov property를 갖는 전이확률)		
보상함수 (Reward Function)	상태와 행동에 따른 보상의 값을 계산하는 함수로 에이 전트의 행동에 대한 피드백으로 사용		
할인율 (Discount Factor)	미래 보상에 대한 중요도를 결정하는 요소로 에이전트가 미래 보상을 고려하여 최적의 행동을 선택하도록 유도		

과적합 경고(Overfitting alert)

● 머신러닝에서 학습 데이터를 과하게 학습(overfitting)

하는 것

과적합된 모델

➤ 너무 제한적이거나 너무 유연하지 않은 모델을 선택

Contents

- 1. 머신러닝의 유형
- Ⅱ. 머신러닝의 과정
- III. 최근접 이웃 분류기 (The Nearest

Neighbor Classifier)

IV. 회귀(Regression)

머신 러닝 절차

머신 러닝의 예 (1/8)

- 주스인지 콜라인지를 판별하는 시스템 만들기
 - 머신러닝에서는 이런 시스템을 모델(model)이라고 함
 - 이 모델을 학습(train) 과정을 통해 생성됨
 - 특징(feature)

• 주스와 콜라를 구별하기 위해 선택된 요소 : 색상(파장)과 산 성도 The pH Scale

머신 러닝의 예 (2/8)

● 데이터 수집

색상(nm)	산성도(pH)	라벨	
610	3.8	오렌지주스	
380	2.5	콜라	
390	2.6	콜라	
	•••		

• 훈련 데이터의 구조

특징 #1	특징 #1	특징 #3	•••	특징 #n	
x_1	x_2	x_3		x_n	샘플 #1
x_1	x_2	x_3		x_n	샘플 #2
x_1	x_2	x_3		x_n	샘플 #3
x_1	x_2	x_3	•••	x_n	샘플 #k

머신 러닝의 예 (3/8)

• 학습 데이터와 테스트 데이터 (일반적으로 80:20)

• 학습 단계

머신 러닝의 예 (4/8)

• 테스트 단계

머신 러닝의 예 (5/8)

- 모델 선택
 - 수년 동안의 연구에 의해 많은 모델들이 존재함
 - 색상과 산성도라는 두가지 특징만 있으므로 간단한 선형 모델을 사용하기로 함

머신 러닝의 예 (6/8)

- 학습
 - m과 b를 임의의 값으로 초기화
 - 입력 값으로 출력을 예측
 - 출력값을 정확한 값과 비교하여, 더 정확한 예측이 되도록 m 과 b를 조정

머신 러닝의 예 (7/8)

- 평가
 - 학습이 완료되면, 모델을 평가하여 모델의 성능 확인
 - 테스트 데이터를 사용
 - 성능평가 : 정확도, 혼동행렬

정확도
$$(accuarcy) = \frac{$$
올바르게 분류한 샘플 수 전체 샘플 수

혼동행렬(Confusion Matrix)

머신 러닝의 예 (8/8)

- 예측
 - 학습된 모델을 통해 값을 예측
 - 예) 색상이 590nm이고, 산성도가 3.9인 음료는 무엇인가?
 - ▶ 훈련된 대로 색상과 산성도를 고려하여 주어진 음료가 콜라인지 주스인지 예측

