Trabajo de Investigación Campo Magnetico Rotatorio Maquinas Asincronicas

Autor: Luis E. Millán U. Profesor: Ing. Hector Delgado

25 de septiembre de 2020 Caracas, Venezuela. Sección ÍNDICE 2

Índice

1.	Objetivos	3
2.	Instrumentos y Equipos	3
3.	Condiciones de Ensayo	3
4.	Procedimiento	3
5.	Disgramas	3
ნ.	Desempeño	3
7.	Resultados7.1. Caídas Internas de Tensión	3
В.	Análisis de los Resultados	4
9.	Conclusiones	4
10	. Hoja de Datos	4

Sección 1. Objetivos 3

- 1. Objetivos
- 2. Instrumentos y Equipos
- 3. Condiciones de Ensayo
- 4. Procedimiento
- 5. Disgramas
- 6. Desempeño
- 7. Resultados

7.1. Caídas Internas de Tensión

Debido a que las resistnecias son medidas en temperatura ambiente $(25^{\circ}C)$ dichas mediciones deben ser convertidas a una temperatura de referencia $(75^{\circ}C)$ mediante la ecuación 1. Para el cálculo de la incertidumbre se utiliza la ecuación 3.

Los resultados luego de referenciar las diferentes resistencias a la temperatura correcta, incluir la incertidumbre y obtener un promedio son ilustrados en las tablas 1, 2 y 3, para las resistencias de campo, serie y armadura.

$$R_r = R_{medida} \cdot \frac{T_r + T_k}{T_m + T_k} \tag{1}$$

Donde:

- lacksquare $R_r=$ Resistencia de la temperatura deseada
- lacksquare $R_m=$ Resistencia medida a la temperatura T_m
- $T_m = \text{Temperatura del Laboratorio}$
- T_r = Temperatura de Referencia
- $T_k = 234,5^{\circ}C$

$$R = \frac{V}{I} \tag{2}$$

$$\triangle R = \frac{\delta V}{\delta R} \cdot \triangle V + \frac{\delta I}{\delta R} \cdot \triangle I \tag{3}$$

Br. L. Millán Maquinas Asincronicas

$V_{DC}[V]$	$I_{DC}[A]$	$R_F [\Omega]$
63 ± 1	$1,00 \pm 0,02$	$75,14 \pm 2,26$
58 ± 1	0.92 ± 0.02	$75,19 \pm 2,46$
48 ± 1	0.76 ± 0.02	$75,32 \pm 2,97$
_	Promedio	$75,21 \pm 2,56$

Cuadro 1: Resistencia de Campo

$V_{DC}[V]$	$I_{DC}[A]$	$R_S [\Omega]$
60 ± 1	$3,3 \pm 0,1$	$21,69 \pm 0,85$
72 ± 1	$4,0 \pm 0,1$	$21,47 \pm 0,70$
78 ± 1	$4,6 \pm 0,1$	$20,22 \pm 0,59$
-	Promedio	$21,13 \pm 0,71$

Cuadro 2: Resistencia Serie

- 7.2. Curva de Vacío
- 8. Análisis de los Resultados
- 9. Conclusiones
- 10. Hoja de Datos

$V_{DC}[V]$	$V_{R_{shunt}} [mV]$	$I_{DC}[A]$	$R_A [\Omega]$
$1,65 \pm 0,05$	$18,0 \pm 0,1$	$3,60 \pm 0,02$	$0,46 \pm 0,02$
$1,50 \pm 0,05$	$16,0 \pm 0,1$	$3,20 \pm 0,02$	0.47 ± 0.02
$1,15 \pm 0,05$	$12,5 \pm 0,1$	$2,50 \pm 0,02$	0.46 ± 0.02
0.75 ± 0.05	$8,0 \pm 0,2$	$1,60 \pm 0,04$	$0,47 \pm 0,04$
-	-	Promedio	0.47 ± 0.03

Cuadro 3: Resistencia de Armadura

%Tensión	Corriente de Campo $\left[I_{F} ight]$	E_A Subida [V]	E_A Bajada [V]
$0,00U_{cc}$	0,00	8 ± 1	12 ± 1
$0.25U_{cc}$	0.16 ± 0.16	42 ± 1	45 ± 1
$0,50U_{cc}$	0.50 ± 0.1	58 ± 1	58 ± 1
$0.75U_{cc}$	0.70 ± 0.1	74 ± 1	74 ± 1
$1,00U_{cc}$	0.90 ± 0.1	100 ± 1	100 ± 1
$1,12U_{cc}$	$1,10 \pm 0,1$	110 ± 1	110 ± 1
$1,25U_{cc}$	$1,30 \pm 0,1$	12 ± 1	120 ± 1

Cuadro 4: Curva de Vacio

Br. L. Millán Maquinas Asincronicas