SYDNEY TECHNICAL HIGH SCHOOL

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK 3

JUNE 2013

Mathematics

General Instuctions

- Working time 70 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in questions 6 to 13
- Start each question on a new page
- A table of standard integrals is provided at the back of the paper

Total marks - 55

Section 1 - 5 marks

Attempt Questions 1-5. Allow about 7 minutes for this section.

Section 2 - 50 marks

Attempt Questions 6 - 11. Allow about 63 minutes for this section.

Name	<u> </u>	
acher	•	

Section 1

5 marks
Attempt Questions 1 – 5
Allow about 7 minutes for this section

Use the multiple-choice answer sheet in your answer booklet for Questions 1-5. Do not remove the multiple-choice answer sheet from your answer booklet.

1. What is the period of the function $y = 5 - 3\cos 2x$?

- **A)** 3
- **B**) 5
- C) 4π
- \mathbb{D}) π

2. If k is a negative real number and P is a positive real number, which one of the following is most likely to be the graph of the function with equation $y = e^{kx} + P$?

A.

B.

C.

D.

- 3. If $\int_0^a sec^2 2x \ dx = \frac{1}{2}$, then a is equal to
 - A. $\frac{\pi}{4}$
 - B. $\frac{\pi}{8}$
 - C. $\frac{\pi}{12}$
 - $\mathbf{D.} \quad \frac{\pi}{2}$
- 4. If $g(t) = e^{-t} 1$ then g'(0) equals
 - A. -e
 - **B.** -2
 - C. -1
 - **D.** 0
- 5. If $\int_{1}^{3} f(x) dx = 5$ then $\int_{1}^{3} (2 f(x) 3) dx$ is equal to
 - A. 4
 - **B.** 5
 - **C.** 7
 - **D.** 10

Section 2

50 marks
Attempt Questions 6 – 10
Allow about 63 minutes for this section
Start each question on a new page

Question 6 (10 marks)

- a) Evaluate $e^{-2.8}$ giving your answer correct to 2 significant figures. 2
- b) Find the exact value of $\cos \frac{5\pi}{6}$.
- c) Sketch the graph of $y = 1 \cos x$ for $0 \le x \le 2\pi$.
- d) Evaluate $\int_0^{\frac{\pi}{6}} \sin 2x \ dx$
- e) The area bounded by $y = x^2 1$ and the x axis is rotated

 about the y axis. Find the volume of the solid of revolution formed.

Question 7 (10 marks) (Start a new page)

- a) Solve $\sqrt{3} \tan \theta 1 = 0$ for $0 \le \theta \le 2\pi$.
- b) Differentiate with respect to x.
 - i) $\tan 3x + \sin x$ 2
 - ii) $(x+2)e^{2x}$ 2
- c) Consider the function $f(x) = \frac{x^2}{x+4}$
 - i) Use the trapezoidal rule with 4 function values to approximate $\int_{1}^{7} f(x) dx$, giving your answer correct to 1 decimal place.
 - ii) For all values of x, between 1 and 7, f(x) > 0, f'(x) > 0 and f''(x) > 0.

Use this information to decide whether the approximation found in part i) is an over-estimate or an under-estimate of the true value of the integral. Give a brief reason.

1

Question 8 (10 marks) (Start a new page)

a)

In the diagram above, angle B = 90°, angle A = 60° and AB = AD = 10 m. BD is an arc of the circle with centre A.

i) Calculate the exact length of the arc BD.

1

ii) Calculate the shaded area in exact form.

- 3
- b) The area bounded by $y = x^2$ and y = 4 is rotated about the x axis 3 to form a solid. Find the volume of the solid.
- c) Find the equation of the tangent to $y = e^{4x} + x$ at the point where x = 0.

Question 9 (10 marks) (Start a new page)

a) i) Draw a neat sketch of the curve

1

1

$$y = 3\sin\frac{x}{2} \text{ for } -2\pi \le x \le 2\pi ,$$

showing clearly all the important features.

ii) Draw on your diagram a line, clearly labelled, which can be used to solve the following equation:

$$3 \sin \frac{x}{2} - x - 1 = 0$$

- iii) Determine the number of solutions the equation $3 \sin \frac{x}{2} x 1 = 0 \text{ has over the domain } -2\pi \le x \le 2\pi.$
- b) i) Show that $\frac{d^2}{dx^2} (e^x \sin x) = 2e^x \cos x$ 2
 - ii) Hence find $\int e^x \cos x \ dx$
- c) For what values of k does $y = 3e^{kx}$ satisfy the equation $\frac{d^2y}{dx^2} 9y = 0$?

Question 10 (10 marks) (Start a new page)

- a) A function f(x) is defined by $f(x) = \frac{e^{-x}}{x}$.
 - i) Differentiate f(x) with respect to x.

2

2

- ii) Find the coordinates of any stationary points of the graph of y = f(x), and determine their nature.
- iii) Sketch the graph of y = f(x), showing all important features. 2

 (Not inflexion points)

b) y = f(x) y = g(x) $m \to x$

Parts of the graphs of the functions $f(x) = x^3 - ax$, a > 0 and

$$g(x) = ax, a > 0$$

are shown in the diagram above.

The graphs intersect when x = 0 and when x = m. $(m \neq 0)$

i) Show that $m^2 = 2a$.

2

ii) If the area of the shaded region is 64 square units, find the value of a and m.

2

End of Paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

8.
a.
$$60^{\circ} = \frac{11}{3}$$
b) $l = r\Theta$

$$= 10 \times \frac{11}{3}$$

$$= \frac{10\pi}{3} \text{ m}$$

$$10) \quad + \tan 60^\circ = \frac{BC}{10}$$

$$13C = 10\sqrt{3}$$

b.
$$V = 2\pi \int_{0}^{\infty} 4^{2} - (\alpha^{2})^{2} d\alpha$$

$$= 2\pi \left[\frac{16\pi - \frac{1}{5}x^{5}}{32 - \frac{32}{5}} \right]$$

$$= \frac{2\pi \left[\frac{32 - \frac{32}{5}}{5} \right]}{256\pi}$$

$$= \frac{256\pi}{5}$$
co units

c.
$$y = 3e^{kx}$$

$$y' = 3ke^{kx}$$

$$y'' = 3k^2e^{kx}$$

$$3k^{2}e^{kx} - 27e^{kx} = 20$$

$$3e^{kx}(k^{2}-q) = 0$$

$$1 = k = \pm 3$$

10

a. i.
$$f(x) = e^{-x}$$

$$f'(x) = \frac{-xe^{-x} - e^{-x}}{x^{2}}$$

$$= -\frac{e^{-2k}(2k+1)}{2k}$$

ii. st. pts when f'(x)=0

$$x = -1$$

$$y = -e$$

b. i.
$$x^{3}$$
 - are = are x^{2} - 2 are = 0

a=m satisfies this equation

$$m(m^2-2a) = 0$$

 $m^2-2a = 0$ $(m \neq 0)$

$$\int_0^m 2anc - x^3 dnc = 64$$

.