14.7 Dual Norms

In the remark following the proof of Proposition 9.10, we explained that if (E, || ||) and (F, || ||) are two normed vector spaces and if we let $\mathcal{L}(E; F)$ denote the set of all continuous (equivalently, bounded) linear maps from E to F, then, we can define the *operator norm* (or subordinate norm) || || on $\mathcal{L}(E; F)$ as follows: for every $f \in \mathcal{L}(E; F)$,

$$||f|| = \sup_{\substack{x \in E \\ x \neq 0}} \frac{||f(x)||}{||x||} = \sup_{\substack{x \in E \\ ||x|| = 1}} ||f(x)||.$$

In particular, if $F = \mathbb{C}$, then $\mathcal{L}(E; F) = E'$ is the *dual space* of E, and we get the operator norm denoted by $\| \|_*$ given by

$$||f||_* = \sup_{\substack{x \in E \\ ||x|| = 1}} |f(x)|.$$

The norm $\| \cdot \|_*$ is called the *dual norm* of $\| \cdot \|$ on E'.

Let us now assume that E is a finite-dimensional Hermitian space, in which case $E' = E^*$. Theorem 14.6 implies that for every linear form $f \in E^*$, there is a unique vector $y \in E$ so that

$$f(x) = \langle x, y \rangle,$$

for all $x \in E$, and so we can write

$$||f||_* = \sup_{\substack{x \in E \\ ||x|| = 1}} |\langle x, y \rangle|.$$

The above suggests defining a norm $\| \|^D$ on E.

Definition 14.13. If E is a finite-dimensional Hermitian space and $\| \|$ is any norm on E, for any $y \in E$ we let

$$||y||^D = \sup_{\substack{x \in E \\ ||x|| = 1}} |\langle x, y \rangle|,$$

be the dual norm of $\| \|$ (on E). If E is a real Euclidean space, then the dual norm is defined by

$$\|y\|^D = \sup_{\substack{x \in E \\ \|x\| = 1}} \langle x, y \rangle$$

for all $y \in E$.

Beware that $\| \|$ is generally *not* the Hermitian norm associated with the Hermitian inner product. The dual norm shows up in convex programming; see Boyd and Vandenberghe [29], Chapters 2, 3, 6, 9.

The fact that $\| \|^D$ is a norm follows from the fact that $\| \|_*$ is a norm and can also be checked directly. It is worth noting that the triangle inequality for $\| \|^D$ comes "for free," in the sense that it holds for any function $p \colon E \to \mathbb{R}$.