Is Ct for N gene different for 21A (Delta)?

Stevin Wilson

12/22/2021

Contents

1	Out	tline	2
2	Cla	de Assignment Results	2
	2.1	Exclude Sample without patient_id or collection_date, and only retain COVID +ve testkit_ids	3
	2.2	Retain only the 1st COVID19 +ve test from a Patient	4
	2.3	Join sample_collection Information	6
3	Exp	ploratory Data Analysis	8
4	Cla	de definition from NextClade	14
5	Poo	oling Samples across order_priority Statuses	14
	5.1	Bar Plots with Monthly Count for each Clade	14
	5.2	Preparing diagnostics data	18
	5.3	Join clade_assignments and diagnostics_data	20
	5.4	Compilation of Supplementary Table with Database Accession Numbers	30
	5.5	N gene	35
	5.6	$\label{eq:control} {\rm CONTROL: Compare\ Ct\ values\ for\ the\ Human\ RNase\ P\ gene} \ldots \qquad \ldots \qquad \ldots \qquad \ldots$	43
	5.7	Conclusions	48
6	sur	veillance Samples Only	49
	6.1	Bar Plots with Monthly Count for each Clade: surveillance Samples Only	50
	6.2	Preparing diagnostics data for surveillance-only set of samples	52
	6.3	Join clade_assignments and diagnostics_data	53
	6.4	N gene	60
	6.5	$\label{eq:control} {\rm CONTROL: Compare\ Ct\ values\ for\ the\ Human\ RNase\ P\ gene}\ \ldots \ldots \ldots \ldots \ldots$	67
	6.6	Conclusions	72

7	symp	ptomatic Samples Only	7 3
	7.1	Bar Plots with Monthly Count for each Clade: symptomatic Samples Only	74
	7.2	Preparing diagnostics data for symptomatic-only set of samples	77
	7.3	Join clade_assignments and diagnostics_data	77
	7.4	N gene	83
	7.5	$\label{eq:control} \mbox{CONTROL}: \mbox{Compare Ct values for the Human RNase P gene} \ \dots $	88
	7.6	Conclusions	93
	7.7	Appendix	94

1 Outline

- 1. Extract clade assignment results for the sequenced samples.
- 2. Extract sample collection information for COVID +ve samples, and exclude samples with missing collection date or patient ID.
- 3. Retain only the first COVID +ve sample collected from a patient (Prior infection could potentially affect Ct for subsequent reinfections.)

The following steps are done A) considering samples from all order priority statuses, or B) only retaining surveillance samples.

- 4. Draw a stacked bar plot to represent clade composition among sequenced samples collected during every month of 2021.
- 5. Determine mean Ct values for N and RNase P genes. If Ct RNase P is missing, impute median values for samples belonging to the same clade.
- 6. Retain only samples classified with the following clades:

```
21A (Delta)
20I (Alpha, V1)
20J (Gamma, V3)
20G
```

7. Perform statistical tests to compare Ct values for N and RNase P genes between different clades.

2 Clade Assignment Results

Samples were sent to Premier Medical Services and LabCorp during the course of the year 2021, to get clade and lineage assigned to the samples.

Since these two vendors used different pipelines, in order to maintain consistency, CUGBF reran the SARS-CoV-2 sequence analysis on all samples using the nf-core/viralrecon pipeline.

A table viralrecon_clade was prepared with testkit_ids and clade assignment results from nf-core/viralrecon.

```
viralrecon_table <- viralrecon_table %>%
  mutate(run_date_time = date(as_datetime(run_date_time))) %>%
  filter(run_date_time != "2021-12-18")

glimpse(viralrecon_table)
```

```
## Rows: 1,981
## Columns: 19
## $ testkit id
                            <chr> "117M18D54A87FDE9Y8", "117M18D54A8819F81W", "1~
                            <dbl> 1803950, 1793232, 1887908, 2360264, 1435168, 4~
## $ num_input_reads
## $ num_trimmed_reads_fastp <dbl> 1121492, 1211678, 1259134, 1681220, 915724, 28~
                            <dbl> 81.97383, 37.66710, 30.45458, 87.74176, 29.085~
## $ pc non host read
                            <dbl> 55.69, 0.04, 0.15, 82.65, 3.65, 99.21, 72.28, ~
## $ pc mapped reads
                            <dbl> 624539, 543, 1871, 1389586, 33399, 2796671, 20~
## $ num_mapped_reads
## $ num_trimmed_reads_ivar
                            <dbl> 618974, NA, NA, 1375419, 32764, 2757078, 19976~
## $ median_coverage
                            <dbl> NA, NA, NA, 1843, NA, 3919, 2948, 1839, 2453, ~
## $ pc_coverage_gt1x
                            <dbl> 28, NA, NA, 100, 13, 100, 100, 99, 100, NA, 63~
                            <dbl> 24, NA, NA, 99, 4, 100, 99, 97, 99, NA, 30, 93~
## $ pc_coverage_gt10x
## $ num_snps
                            <dbl> 11, NA, NA, 18, 2, 40, 40, 39, 19, NA, 19, 27,~
## $ num_indels
                            <dbl> NA, NA, NA, NA, NA, 3, 3, 3, NA, NA, 5, 1, 1, ~
                            <dbl> 6, NA, NA, 10, 1, 26, 28, 25, 5, NA, 15, 18, 1~
## $ num_missense_var
## $ Ns_per_100kb
                            <dbl> 75992.38, NA, NA, 1337.66, 96090.69, 421.49, 1~
                            <chr> NA, NA, NA, "B.1.243", NA, "B.1.617.2", "B.1.6~
## $ lineage
## $ clade
                            <chr> "21A (Delta)", NA, NA, "20A", "19B", "21A (Del~
                            <chr> "iVar", "iVar", "iVar", "iVar", "iVar", "iVar"~
## $ variant_caller
                            ## $ viralrecon version
## $ run_date_time
                            <date> 2021-11-14, 2021-10-23, 2021-10-23, 2021-10-2~
clade assignments <- viralrecon table %>%
 select(testkit_id, clade) %>%
 drop na() %>%
 mutate(pipeline = "nf-core/viralrecon") %>%
 distinct()
glimpse(clade_assignments)
## Rows: 1,599
## Columns: 3
## $ testkit_id <chr> "117M18D54A87FDE9Y8", "117M18D5796486135Z", "117M18D6B4187C~
               <chr> "21A (Delta)", "20A", "19B", "21A (Delta)", "21A (Delta)", ~
## $ clade
               <chr> "nf-core/viralrecon", "nf-core/viralrecon", "nf-core/viralr~
## $ pipeline
Are there any testkit_ids with multiple clade assignments?
clade_assignments %>%
 group_by(testkit_id) %>%
```

```
filter(n() > 1)
```

```
## # A tibble: 0 x 3
## # Groups:
              testkit id [0]
## # ... with 3 variables: testkit_id <chr>, clade <chr>, pipeline <chr>
```

Exclude Sample without patient_id or collection_date, and only retain COVID +ve testkit_ids

In the upcoming steps, we only include the first COVID +ve sample isolated from each patient, and in order to not compromise that step, testkit ids with missing patient id and collection date were excluded from further analysis. Also, the gender information is required.

```
sample_collection_without_missing <- sample_collection_table %>%
filter(
    rymedi_result == "POSITIVE",
    !(is.na(collection_date) | is.na(patient_id)),
    !(is.na(gender))
) %>%
mutate(
    collection_date = as_datetime(collection_date),
    result_date = as_date(result_date)
)
glimpse(sample_collection_without_missing)
```

```
## Rows: 12,351
## Columns: 20
                                                       <chr> "117M18C0D709B3E3IM", "117M18C0D7255382DL", "117M1~
## $ testkit id
## $ rymedi_result
                                                       <chr> "POSITIVE", "POSITIVE", "POSITIVE", "P~
## $ population
                                                       ## $ order_priority
                                                       <chr> "SURVEILLANCE", "SURVEILLANCE", "SURVEILLANCE", "S~
## $ collection_date
                                                       <dttm> 2020-09-11 11:52:37, 2020-09-11 13:58:06, 2020-09~
                                                       <date> 2020-09-13, 2020-09-13, 2020-09-14, 2020-09-14, 2~
## $ result_date
                                                       ## $ gender
                                                       <chr> "NO", "NO", "NO", "NO", NA, NA, NA, NA, "NO"~
## $ pregnancy_status
## $ zip_code
                                                       <chr> "20872", "01867", "78746", "75244", "29631", "0882~
                                                       <chr> "DAMASCUS", "READING", "AUSTIN", "DALLAS", "CLEMSO~
## $ city
                                                       <chr> "MONTGOMERY COUNTY", "MIDDLESEX COUNTY", "TRAVIS C~
## $ county
                                                       <chr> "MD", "MA", "TX", "TX", "SC", "NJ", "SC", "NC", "S~
## $ state
                                                       <chr> "US", "US", "US", "US", "US", "US", "US", "US", "US", "U~
## $ country
## $ zip_code_user_input <chr> "20872", "1867", "78746", "75244", "29631", "8825"~
## $ city_user_input
                                                       <chr> "DAMASCUS", "READING", "AUSTIN", "DALLAS", "CLEMSO~
                                                       <chr> "MD", "MA", "TX", "TX", "SC", "NJ", "SC", "NC", "S~
## $ state_user_input
## $ patient_id
                                                       <chr> "fcb108e79831904e198b62a1", "bd23fd30b7fae0727949b~
                                                       <chr> "G7-PCR-DTPM", "G7-PCR-DTPM", "G7-PCR-DTPM", "G7-P~
## $ teskit sku
## $ performing_facility <chr> "CLEMSON UNIVERSITY", "CLEMSON UNIV
                                                       <chr> "DAVID STEFANICH", "DAVID STEFANICH", "DAVID STEFA~
## $ testing facility
```

2.2 Retain only the 1st COVID19 +ve test from a Patient.

Multiple samples were tested from numerous patients during the course of their infection, and many such samples were sequenced. Having multiple COVID19 +ve from a single patient during a single infection event, could affect assumption of independence used for statistical analysis later. Also, prior infection could potentially affect Ct for subsequent reinfections.

```
sample_collection_without_missing %>%
  group_by(patient_id) %>%
  filter(n() > 1) %>%
  arrange(patient_id, collection_date) %>%
  select(testkit_id, collection_date, patient_id) %>%
  ungroup() %>%
  slice(1:15) %>%
  kbl() %>%
  kable_classic_2(
```

```
full_width = F,
latex_options = c(
    "hold_position",
    "striped"
)
```

testkit_id	collection_date	patient_id
117M18C1FB4AC5D522	2020-09-16 19:41:00	00154 fa 7450 a 8 feec 9 a 5 fcb 9
117M18C2044154BCWT	2020-09-16 19:41:10	00154fa7450a8feec9a5fcb9
117M18CE12F66182FL	2020-11-19 19:02:13	001c0ca5a8857313549f8afd
117M18CE5A7D02B4DL	2020-11-20 18:58:15	001c0ca5a8857313549f8afd
117M18C08906F6A4HY	2020-09-17 16:23:51	001c38fd878a98a109a3e27f
117M18C1FB4803D1S5	2020-09-17 16:24:07	001c38fd878a98a109a3e27f
117M1911ECC1D0DDXP	2021-09-08 10:09:47	00254 cb7 ea 55304 cf70 b4c0 d
117M1911C551F75FUV	2021-09-14 13:48:03	00254 cb7 ea 55304 cf70 b4c0 d
117M19142B956BCESK	2021-09-15 12:23:50	00254 cb7 ea 55304 cf70 b4c0 d
117M1913EB586BDBHF	2021-10-01 12:23:29	00476fb5ca57c934bae7b45b
117M191AD76C6BB8JR	2021-10-04 13:42:21	00476fb5ca57c934bae7b45b
117M18CED6D6F135G5	2021-01-02 15:03:18	00 fe 63 ab 514 eb 3 ec 5b 4 afd 7c
117M18D6B40131CCNY	2021-01-04 14:52:22	00 fe 63 ab 514 eb 3 ec 5b 4 afd 7c
117M18C1FB774C40AB	2020-09-17 16:49:45	0110f10a54eab5bf92346a06
117M18C1FB4640EEH9	2020-09-17 16:50:05	0110f10a54eab5bf92346a06

```
not_first_covid_positive_samples <- sample_collection_without_missing %>%
  filter(rymedi_result == "POSITIVE") %>%
  group_by(patient_id) %>%
  filter(n() > 1) %>%
  select(testkit_id, patient_id, collection_date) %>%
  arrange(patient_id, collection_date) %>%
  slice(2:n()) %>%
  pull(testkit_id)

glimpse(not_first_covid_positive_samples)
```

```
## chr [1:1268] "117M18C2044154BCWT" "117M18CE5A7D02B4DL" ...
```

Therefore, only the first COVID19 +ve sample from patients are considered for further analysis.

```
sample_collection_without_missing <- sample_collection_without_missing %>%
filter(!(testkit_id %in% not_first_covid_positive_samples))
glimpse(sample_collection_without_missing)
```

```
<dttm> 2020-09-11 11:52:37, 2020-09-11 13:58:06, 2020-09~
## $ collection date
## $ result_date
                      <date> 2020-09-13, 2020-09-13, 2020-09-14, 2020-09-14, 2~
                      ## $ gender
                      <chr> "NO", "NO", "NO", "NO", NA, "NO", NA, NA, NA, "NO"~
## $ pregnancy_status
                      <chr> "20872", "01867", "78746", "75244", "29631", "0882~
## $ zip code
## $ city
                      <chr> "DAMASCUS", "READING", "AUSTIN", "DALLAS", "CLEMSO~
## $ county
                      <chr> "MONTGOMERY COUNTY", "MIDDLESEX COUNTY", "TRAVIS C~
                      <chr> "MD", "MA", "TX", "TX", "SC", "NJ", "SC", "NC", "S~
## $ state
                      ## $ country
## $ zip_code_user_input <chr> "20872", "1867", "78746", "75244", "29631", "8825"~
## $ city_user_input
                      <chr> "DAMASCUS", "READING", "AUSTIN", "DALLAS", "CLEMSO~
                      <chr> "MD", "MA", "TX", "TX", "SC", "NJ", "SC", "NC", "S~
## $ state_user_input
                      <chr> "fcb108e79831904e198b62a1", "bd23fd30b7fae0727949b~
## $ patient_id
## $ teskit_sku
                      <chr> "G7-PCR-DTPM", "G7-PCR-DTPM", "G7-PCR-DTPM", "G7-P~
## $ performing_facility <chr> "CLEMSON UNIVERSITY", "CLEMSON UNIVERSITY", "CLEMS~
## $ testing_facility
                      <chr> "DAVID STEFANICH", "DAVID STEFANICH", "DAVID STEFA~
```

2.3 Join sample_collection Information

In this step, we join the sample collection information with the clade_assignments table described previously, and we name the output table as clades_and_collection.

```
clades_and_collection <- clade_assignments %>%
  inner_join(sample_collection_without_missing,
    by = "testkit id"
  ) %>%
  mutate(collection_date = date(collection_date)) %>%
   patient_id, testkit_id, collection_date, clade, population, order_priority, gender,
   pregnancy_status, pipeline, rymedi_result
  ) %>%
  arrange(patient_id, collection_date)
clades_and_collection <- clades_and_collection %>%
  mutate(
   population = factor(population,
      levels = c(
        "UNIVERSITY",
        "ATHLETICS",
        "COMMUNITY",
        "TRICOUNTY"
      )
   ),
   order_priority = factor(order_priority,
      levels = c(
        "SURVEILLANCE",
        "SYMPTOMATIC",
        "EXPOSED",
        "ONE DAY"
      )
   ),
    gender = factor(gender,
      levels = c("M", "F")
```

```
pregnancy_status = factor(pregnancy_status,
                   levels = c("YES", "NO")
             clade = as_factor(clade),
             rymedi_result = factor(rymedi_result,
                   levels = c("POSITIVE")
             pipeline = as_factor(pipeline)
      ) %>%
      arrange(collection_date, order_priority, population)
glimpse(clades_and_collection)
## Rows: 1,458
## Columns: 10
## $ patient_id
                                                                        <chr> "0a6f1c09b23ae1ef7b322a8f", "1133ae22349307de010cdeb4~
## $ testkit id
                                                                          <chr> "117M18DCE7D400229H", "117M18DCE7D40EDCMA", "117M18DC~
## $ collection_date <date> 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 20
                                                                       <fct> "20A", "21C (Epsilon)", "20G", "20G", "20C", "20G", "~
## $ clade
## $ population
                                                          <fct> UNIVERSITY, UNIVERSITY, UNIVERSITY, UNIVERSITY, ATHLE~
## $ order_priority <fct> SURVEILLANCE, SURVEILLANCE, SURVEILLANCE, SURVEILLANC-
## $ gender
                                                                           <fct> M, F, F, M, M, M, M, F, M, F, F, M, F, F, M, F, F, ~
## $ pregnancy_status <fct> NA, NO, NO, NA, NA, NA, NA, NO, NA, NO, NA, NO, NA, NO, N~
## $ pipeline
                                                                       <fct> nf-core/viralrecon, nf-core/viralrecon, nf-core/viral~
## $ rymedi_result
                                                                           <fct> POSITIVE, POSITIVE, POSITIVE, POSITIVE, POSITIVE, POSTIVE, P
The following are the range of responses to columns in the clades_and_collection table.
map(
      clades_and_collection %>% select(
             population, order_priority, gender,
             pregnancy_status, rymedi_result, clade, pipeline
      ),
      unique
## $population
## [1] UNIVERSITY ATHLETICS COMMUNITY
## Levels: UNIVERSITY ATHLETICS COMMUNITY TRICOUNTY
## $order_priority
## [1] SURVEILLANCE SYMPTOMATIC EXPOSED
## Levels: SURVEILLANCE SYMPTOMATIC EXPOSED ONE DAY
##
## $gender
## [1] M F
## Levels: M F
##
## $pregnancy_status
## [1] <NA> NO YES
## Levels: YES NO
```

```
##
## $rymedi_result
## [1] POSITIVE
## Levels: POSITIVE
## $clade
  Γ1] 20A
                        21C (Epsilon)
                                         20G
## [5] 20B
                        20H (Beta, V2)
                                        20I (Alpha, V1) 21F (Iota)
## [9] 21D (Eta)
                        20J (Gamma, V3) 21A (Delta)
## [13] 19B
                        21B (Kappa)
## 14 Levels: 20I (Alpha, V1) 20G 21A (Delta) 21F (Iota) 20C 21C (Epsilon) ... 21D (Eta)
##
## $pipeline
## [1] nf-core/viralrecon
## Levels: nf-core/viralrecon
```

3 Exploratory Data Analysis

In this step we take a visual glimpse of the clades_and_collection table.

```
summary(clades_and_collection)
```

```
##
     patient_id
                         testkit_id
                                            collection_date
    Length: 1458
                       Length: 1458
                                           Min.
                                                   :2021-01-13
    Class :character
                       Class :character
                                           1st Qu.:2021-03-29
##
    Mode :character
                       Mode :character
                                           Median :2021-08-05
##
                                           Mean
                                                   :2021-06-26
##
                                           3rd Qu.:2021-09-14
##
                                           Max.
                                                   :2021-11-09
##
##
                clade
                                population
                                                  order_priority gender
    21A (Delta)
                   :789
                           UNIVERSITY:898
                                            SURVEILLANCE: 1183
    20I (Alpha, V1):264
                           ATHLETICS : 27
                                            SYMPTOMATIC: 192
                                                                 F:704
##
                           COMMUNITY:533
                                            EXPOSED
##
                   :159
    20J (Gamma, V3): 87
##
                          TRICOUNTY: 0
                                            ONE DAY
##
    20A
                   : 65
##
    20B
                   : 29
##
    (Other)
                   : 65
    pregnancy_status
                                    pipeline
                                                 rymedi_result
   YES: 5
                     nf-core/viralrecon:1458
                                                POSITIVE: 1458
##
    NO:698
##
    NA's:755
##
##
##
##
clades_and_collection %>%
  group_by(gender) %>%
  summarise(count = n()) %>%
  ggbarplot(
   x = "gender",
```

```
y = "count",
fill = "gender"
)
```



```
clades_and_collection %>%
  group_by(order_priority, gender) %>%
  summarise(count = n()) %>%
  ggbarplot(
    x = "order_priority",
    y = "count",
    fill = "gender"
)
```



```
clades_and_collection %>%
  group_by(population, gender) %>%
  summarise(count = n()) %>%
  ggbarplot(
    x = "population",
    y = "count",
    fill = "gender"
)
```


4 Clade definition from NextClade

Since clades in this study follow the nomenclature set by the NextClade team, it is useful to learn the phylogenetic relations between the clades.

The upcoming steps are performed

- A) considering samples from all order priority statuses, or
- B) only retaining surveillance samples.

5 Pooling Samples across order_priority Statuses

5.1 Bar Plots with Monthly Count for each Clade

The clades present in clades_and_collection when all order_priority statuses are considered are as follows:

```
clades_factor_level <- clades_and_collection %>%
  group_by(clade) %>%
  summarize(count = n()) %>%
  pull(clade)

(clades_factor_level <- sort(as.character(clades_factor_level)))</pre>
```


Figure 1: From clades.nextstrain.org

```
## [1] "19A" "19B" "20A" "20B" ## [5] "20C" "20G" "20H (Beta, V2)" "20I (Alpha, V1)" ## [9] "20J (Gamma, V3)" "21A (Delta)" "21B (Kappa)" "21C (Epsilon)" ## [13] "21D (Eta)" "21F (Iota)"
```

From clades_and_collection, we tabulate the count of each clade among sequenced samples collected in each month of 2021.

```
monthly_clade_date <- clades_and_collection %>%
  mutate(
    collection_period = as.yearmon(collection_date),
    clade = factor(clade,
        levels = clades_factor_level
    )
    ) %>%
    group_by(collection_period, clade) %>%
    summarize(count = n())

glimpse(monthly_clade_date)
```

Visualizing the table above using a stacked bar plot.

```
ggplot(
 monthly_clade_date,
  aes(
   x = collection_period,
   y = count,
   fill = clade
  )
) +
  geom_bar(colour = "black", position = "stack", stat = "identity") +
  scale x yearmon(breaks = monthly clade date$collection period) +
  scale_fill_manual(values = color_tbl %>%
   filter(clade %in% monthly_clade_date$clade) %>%
   pull(color)) +
  labs(
   y = "Number of Sequenced Samples",
   x = "Sample Collection Period"
  ) +
  theme_pubclean() +
  theme(
   legend.position = "right",
   legend.title = element_blank(),
   legend.key.size = unit(0.5, "cm"),
    axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)
```



```
ggplot(
  monthly_clade_date,
  aes(
    x = collection_period,
    y = count,
    fill = clade
  )
) +
  geom_col(colour = "black", position = "fill") +
  scale_y_continuous(labels = scales::percent) +
  scale_x_yearmon(breaks = monthly_clade_date$collection_period) +
  scale_fill_manual(values = color_tbl %>%
    filter(clade %in% monthly_clade_date$clade) %>%
    pull(color)) +
  labs(
    y = "% Sequenced Samples",
    x = "Sample Collection Period"
  ) +
  theme_pubclean() +
  theme(
    legend.position = "right",
    legend.title = element_blank(),
    legend.key.size = unit(0.5, "cm"),
    axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)
```


5.2 Preparing diagnostics data

Our goal is to determine whether 21A (Delta) shows lower Ct values for N gene when compared with the clades 20I (Alpha, V1), 20G, and 20J (Gamma, V3). In order to know that, we use the Ct values for N gene from the REDDI lab dataset. Since two replicates were done for each qRT-PCR reaction, we will compute the mean Ct for N gene and RNase P control for each testkit_id

```
# diagnostics_data
diagnostics_data <- diagnostics_table %>%
  filter(testkit_id %in% clades_and_collection$testkit_id) %>%
  select(testkit_id, ct_rnasep_rep1, ct_rnasep_rep2, ct_N_rep1, ct_N_rep2) %>%
  arrange(testkit_id) %>%
  mutate(
   average_ct_rnasep = rowMeans(.[, c("ct_rnasep_rep1", "ct_rnasep_rep2")], na.rm = TRUE),
   average_ct_N = rowMeans(.[, c("ct_N_rep1", "ct_N_rep2")], na.rm = TRUE)
  ) %>%
  select(-c(
    ct_rnasep_rep1, ct_rnasep_rep2,
    ct_N_rep1, ct_N_rep2
  )) %>%
  group_by(testkit_id) %>%
  summarise(
    ct_RNaseP = mean(average_ct_rnasep, na.rm = TRUE),
    ct_N = mean(average_ct_N, na.rm = TRUE)
```

```
diagnostics_data %>%
  filter(!complete.cases(.)) %>%
  kbl() %>%
  kable_classic_2(
    full_width = F,
    latex_options = c(
        "hold_position",
        "striped"
    )
)
```

	, DM D	
testkit_id	ct_RNaseP	ct_N
117M18DBFE8BB0A1JJ	NaN	21.29940
117M18DBFE8BB18FTW	NaN	26.99776
117M18DBFE8C4DF29V	NaN	30.18376
117M18DBFEE11FC1HA	NaN	23.52962
117M18DCB750444B1K	NaN	29.40396
117M18DCB750672AZL	NaN	25.19355
117M18DCB750EF7DKW	NaN	23.28848
117M18DCB7CE53ED5Q	NaN	22.70748
117M18DCB7CE6AC0J1	NaN	27.95281
117M18DCB7CE7001AZ	NaN	22.73960
117M18DCB7CE700F6S	NaN	25.49053
117M18DCB7CE70B07G	NaN	19.39017
117M18DCB7CE7F0BO1	NaN	17.95333
117M18DCB7CE81040Q	NaN	24.27213
117M18DCB7CE9BEE6F	NaN	25.83106
117M18DCB7CE9BFF04	NaN	24.22209
117M18DD9F7D8DF0LH	NaN	23.69066
117M18DD9F7DF503YP	NaN	16.45756
117M18DD9F7E062D0Q	NaN	24.82307
117M18DD9F7E67D57T	NaN	26.20155
117M18DDC2E0AD0A70	NaN	29.20234
117M18DDD30852A7D3	NaN	16.67494
117M18DDD3085427A5	NaN	30.80809
117M18DDD308C25FZY	NaN	21.30878
117M18DDD308C63FEZ	NaN	25.31193
117M18DDD4896537BX	NaN	18.88141
117M18DDD48F66A8GX	NaN	26.61771
117M18DDD48FDEBD87	NaN	26.39463
117M18DDD490489F80	NaN	26.09010
117M18DDD4916F9CG2	NaN	21.62621
117M18DE172DA3990T	NaN	22.35571
117M18DE172DA3E12G	NaN	27.27337
117M18DE172DA66AEW	NaN	23.83437
117M18DE1733C0D5PY	NaN	26.53400
117M18E355CFD320PV	NaN	29.74500

35 testkit_ids do not have a ct value for RNase P. We will use imputation to deal with the missing values.

5.3 Join clade_assignments and diagnostics_data

We join clades_and_collection and the diagnostics data to get the clade_collection_diagnostics table.

```
clade_collection_diagnostics <- clades_and_collection %>%
  inner_join(diagnostics_data, by = "testkit_id")
glimpse(clade_collection_diagnostics)
```

```
## Rows: 1,456
## Columns: 12
                     <chr> "0a6f1c09b23ae1ef7b322a8f", "1133ae22349307de010cdeb4~
## $ patient_id
## $ testkit id
                     <chr> "117M18DCE7D400229H", "117M18DCE7D40EDCMA", "117M18DC~
## $ collection date <date> 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-
## $ clade
                     <fct> "20A", "21C (Epsilon)", "20G", "20G", "20C", "20G", "~
                     <fct> UNIVERSITY, UNIVERSITY, UNIVERSITY, UNIVERSITY, ATHLE~
## $ population
                     <fct> SURVEILLANCE, SURVEILLANCE, SURVEILLANC~
## $ order_priority
## $ gender
                      <fct> M, F, F, M, M, M, M, F, M, F, F, M, F, F, F, M, F, F,~
## $ pregnancy_status <fct> NA, NO, NO, NA, NA, NA, NA, NO, NA, NO, NA, NO, NA, NO, N~
## $ pipeline
                     <fct> nf-core/viralrecon, nf-core/viralrecon, nf-core/viral~
## $ rymedi_result
                     <fct> POSITIVE, POSITIVE, POSITIVE, POSITIVE, POSITIVE, POS-
## $ ct_RNaseP
                     <dbl> 16.59912, 17.39000, 21.62271, 24.57796, 19.51531, 18.~
                     <dbl> 22.26138, 23.00548, 28.37183, 23.92611, 22.17447, 25.~
## $ ct_N
```

Since many samples had missing Ct values for RNase P, we impute median value of ct_RNaseP for each clade to the missing values.

```
get_median_ct <- function(input_clade) {
  median_RNAseP <- clade_collection_diagnostics %>%
    filter(clade == input_clade) %>%
    pull(ct_RNaseP) %>%
    median(na.rm = TRUE)

return(median_RNAseP)
}
```

Median Ct RNase P - 20I (Alpha, V1)

```
# 20I (Alpha, V1)
(median_RNAseP_20I <- get_median_ct("20I (Alpha, V1)"))

## [1] 18.65

Median Ct RNase P - 21A (Delta)
```

```
# 21A (Delta)
(median_RNAseP_21A <- get_median_ct("21A (Delta)"))</pre>
```

```
## [1] 18.9
```

Median Ct RNase P - 20G

```
# 20G
(median_RNAseP_20G <- get_median_ct("20G"))</pre>
## [1] 19.39105
Median Ct RNase P - 20J (Gamma, V3)
# 20J (Gamma, V3)
(median_RNAseP_20J <- get_median_ct("20J (Gamma, V3)"))</pre>
## [1] 19.16812
Summary of the clade_collection_diagnostics table after imputation
clade_collection_diagnostics <- clade_collection_diagnostics %>%
  mutate(
   ct_RNaseP = replace(
      ct_RNaseP,
      (is.na(ct_RNaseP) & (clade == "20I (Alpha, V1)")), median_RNAseP_20I
   ),
    ct_RNaseP = replace(
      ct_RNaseP,
      (is.na(ct_RNaseP) & (clade == "21A (Delta)")), median_RNAseP_21A
   ),
   ct_RNaseP = replace(
      ct_RNaseP,
      (is.na(ct RNaseP) & (clade == "20G")), median RNAseP 20G
   ),
   ct RNaseP = replace(
      ct_RNaseP,
      (is.na(ct_RNaseP) & (clade == "20J (Gamma, V3)")), median_RNAseP_20J
   )
  )
summary(clade_collection_diagnostics)
##
     patient_id
                        testkit_id
                                           collection_date
##
  Length: 1456
                       Length: 1456
                                           Min.
                                                  :2021-01-13
## Class :character
                       Class : character
                                           1st Qu.:2021-03-29
  Mode :character Mode :character
                                           Median :2021-08-05
##
                                                  :2021-06-26
                                           Mean
##
                                           3rd Qu.:2021-09-14
##
                                           Max.
                                                  :2021-11-09
##
##
                clade
                               population
                                                 order_priority gender
##
   21A (Delta)
                   :787
                          UNIVERSITY:898
                                            SURVEILLANCE: 1183
                                                                M:753
##
   20I (Alpha, V1):264
                          ATHLETICS: 27
                                            SYMPTOMATIC: 190
                                                                 F:703
                                                        : 77
                          COMMUNITY:531
                                            EXPOSED
##
   20G
                   :159
##
   20J (Gamma, V3): 87
                          TRICOUNTY: 0
                                            ONE DAY
```

20A

20B

: 65

: 29

```
##
    (Other)
                    : 65
##
                                                   rymedi_result
                                                                     ct_RNaseP
    pregnancy_status
                                     pipeline
    YES: 5
                      nf-core/viralrecon:1456
##
                                                  POSITIVE: 1456
                                                                   Min.
                                                                          :14.12
    NO :697
                                                                   1st Qu.:17.71
##
##
    NA's:754
                                                                   Median :18.91
##
                                                                   Mean
                                                                           :19.47
##
                                                                   3rd Qu.:20.57
##
                                                                   Max.
                                                                           :34.35
##
                                                                   NA's
                                                                           :15
##
         ct_N
           : 7.98
##
    Min.
    1st Qu.:20.36
##
    Median :23.49
##
    Mean
           :23.22
##
##
    3rd Qu.:26.37
##
    Max.
            :33.45
##
```

The counts of different clades in the clade_collection_diagnostics table are as follows:

```
clade_collection_diagnostics %>%
  group_by(clade) %>%
  summarize(count = n()) %>%
  arrange(desc(count)) %>%
  kbl() %>%
  kable_classic_2(
   full_width = F,
   latex_options = c(
       "hold_position",
       "striped"
   )
)
```

count
787
264
159
87
65
29
25
14
12
4
4
2
2
2

In order to not affect our assumption of phylogenetic independence, we are only going to compare Ct values for variants at terminal nodes of NextClade tree. We extract data from clade_collection_diagnostics table and create a new table limited_clade_collection_diagnostics with only data for the following clades:

```
21A (Delta)
20I (Alpha, V1)
20J (Gamma, V3)
20G
```

```
limited_clade_collection_diagnostics <- clade_collection_diagnostics %>%
  filter(clade %in% c(
    "21A (Delta)",
   "20I (Alpha, V1)",
    "20J (Gamma, V3)",
    "20G"
  )) %>%
  mutate(clade = factor(clade,
   levels = c(
      "20G",
      "20I (Alpha, V1)",
     "20J (Gamma, V3)",
      "21A (Delta)"
   )
  )) %>%
  select(testkit_id, clade, ct_RNaseP, ct_N) %>%
  ungroup() %>%
  drop_na()
glimpse(limited_clade_collection_diagnostics)
```

Summary of the limited_clade_collection_diagnostics table:

summary(limited_clade_collection_diagnostics)

```
testkit_id
                                      clade
                                                  \mathsf{ct}_{\mathtt{RNaseP}}
                                                                       \mathsf{ct}_{\mathtt{N}}
## Length:1297
                         20G
                                         :159
                                                Min.
                                                      :14.48
                                                                  Min. : 7.98
## Class :character
                        20I (Alpha, V1):264
                                                1st Qu.:17.71
                                                                  1st Qu.:20.29
## Mode :character
                        20J (Gamma, V3): 87
                                                Median :18.95
                                                                  Median :23.28
##
                        21A (Delta)
                                        :787
                                                Mean :19.45
                                                                  Mean
                                                                        :23.08
##
                                                3rd Qu.:20.54
                                                                  3rd Qu.:26.18
##
                                                Max.
                                                        :34.35
                                                                  Max. :33.27
```

Median and range of patient age whose samples are in the limited_clade_collection_diagnostics table as follows:

```
sample_collection_table %>%
mutate(collection_date = year(as_datetime(collection_date))) %>%
filter(testkit_id %in% limited_clade_collection_diagnostics$testkit_id) %>%
left_join(demographics_table, by = "patient_id") %>%
```

```
mutate(age_at_sample_collection = (collection_date - birth_year)) %>%
select(testkit_id, patient_id, age_at_sample_collection) %>%
summarize(
    median_age_at_sample_collection = median(age_at_sample_collection),
    lowest_age_at_sample_collection = min(age_at_sample_collection),
    highest_age_at_sample_collection = max(age_at_sample_collection)
) %>%
kbl() %>%
kable_classic_2(
    full_width = F,
    latex_options = c(
        "hold_position",
        "striped"
)
)
```

median_age_at_sample_collection	lowest_age_at_sample_collection	highest_age_at_sample_collection
21	0	91

The counts of each gender in the limited_clade_collection_diagnostics table are as follows:

```
sample_collection_table %>%
  filter(testkit_id %in% limited_clade_collection_diagnostics$testkit_id) %>%
  group_by(gender) %>%
  summarize(count = n()) %>%
  kbl() %>%
  kable_classic_2(
    full_width = F,
    latex_options = c(
        "hold_position",
        "striped"
    )
)
```

gender	count
F	627
M	670

The median, IQR and range of Ct values for each clade in the limited_clade_collection_diagnostics table are as follows:

```
limited_clade_collection_diagnostics %>%
  group_by(clade) %>%
summarise(
  count = n(),
  median_ct_N = round(median(ct_N), 3),
  IQR_ct_N = round(IQR(ct_N), 3),
  min_ct_N = round(range(ct_N)[1], 3),
  max_ct_N = round(range(ct_N)[2], 3)
) %>%
kbl() %>%
kable_classic_2(
```

```
latex_options = c(
    "hold_position",
    "striped",
    "scale_down"
)
```

clade	count	median_ct_N	IQR_ct_N	min_ct_N	max_ct_N
20G	159	25.210	4.706	12.87	33.274
20I (Alpha, V1)	264	23.925	5.561	12.24	32.968
20J (Gamma, V3)	87	24.740	5.904	13.31	31.212
21A (Delta)	787	22.615	5.891	7.98	32.355

```
limited_clade_collection_diagnostics %>%
  group_by(clade) %>%
  summarise(
   count = n(),
   median_ct_RNaseP = round(median(ct_RNaseP), 3),
   IQR_ct_RNaseP = round(IQR(ct_RNaseP), 3),
   min_ct_RNaseP = round(range(ct_RNaseP)[1], 3),
   max_ct_RNaseP = round(range(ct_RNaseP)[2], 3)
  ) %>%
 kbl() %>%
 kable_classic_2(
   latex_options = c(
      "hold_position",
      "striped",
      "scale_down"
    )
```

clade	count	median_ct_RNaseP	IQR_ct_RNaseP	min_ct_RNaseP	max_ct_RNaseP
20G	159	19.391	3.193	15.714	28.890
20I (Alpha, V1)	264	18.650	3.044	15.330	34.350
20J (Gamma, V3)	87	19.168	3.765	15.590	28.708
21A (Delta)	787	18.900	2.604	14.485	33.280

The median, IQR, and range of Ct values for each clade - order_priority combination in the limited_clade_collection_diagnostics table are as follows:

```
limited_clade_collection_diagnostics %>%
  inner_join(sample_collection_without_missing %>%
    select(testkit_id, order_priority),
  by = "testkit_id"
) %>%
  group_by(clade, order_priority) %>%
  summarise(
    count = n(),
    median_ct_N = round(median(ct_N), 3),
    IQR_ct_N = round(IQR(ct_N), 3),
```

clade	order_priority	count	median_ct_N	IQR_ct_N	median_ct_RNaseP	IQR_ct_RNaseP
20G	EXPOSED	25	25.210	3.336	19.391	3.030
20G	SURVEILLANCE	95	25.752	4.226	19.391	2.560
20G	SYMPTOMATIC	39	23.165	6.681	19.391	4.108
20I (Alpha, V1)	EXPOSED	25	25.455	6.720	17.700	2.825
20I (Alpha, V1)	SURVEILLANCE	181	23.810	5.303	18.772	2.890
20I (Alpha, V1)	SYMPTOMATIC	58	23.230	6.484	18.555	3.227
20J (Gamma, V3)	SURVEILLANCE	86	24.688	5.852	19.167	3.598
20J (Gamma, V3)	SYMPTOMATIC	1	28.035	0.000	23.030	0.000
21A (Delta)	EXPOSED	21	22.390	6.685	18.765	2.645
21A (Delta)	ONE DAY	5	22.790	3.700	21.605	2.725
21A (Delta)	SURVEILLANCE	691	22.560	5.889	18.935	2.635
21A (Delta)	SYMPTOMATIC	70	22.985	5.238	18.540	2.189

```
limited_clade_collection_diagnostics %>%
  inner_join(sample_collection_without_missing %>%
    select(testkit_id, order_priority),
  by = "testkit_id"
  group_by(clade, order_priority) %>%
  summarise(
    count = n(),
   mean_ct_N = round(mean(ct_N), 3),
   min_ct_N = round(range(ct_N)[1], 3),
   max_ct_N = round(range(ct_N)[2], 3),
    mean_ct_RNaseP = round(mean(ct_RNaseP), 3),
    min_ct_RNaseP = round(range(ct_RNaseP)[1], 3),
    max_ct_RNaseP = round(range(ct_RNaseP)[2], 3)
  ) %>%
  kbl() %>%
  kable_classic_2(
    latex_options = c(
      "hold_position",
      "striped",
      "scale_down"
  )
```

Exploring if Ct values have any relation with gender

clade	order_priority	count	mean_ct_N	min_ct_N	max_ct_N	mean_ct_RNaseP	min_ct_RNaseP	max_ct_RNaseP
20G	EXPOSED	25	25.055	17.965	30.832	20.103	17.165	24.660
20G	SURVEILLANCE	95	25.410	17.735	33.274	19.451	15.714	25.753
20G	SYMPTOMATIC	39	23.037	12.870	29.890	19.540	16.280	28.890
20I (Alpha, V1)	EXPOSED	25	25.387	16.900	31.495	18.467	16.210	23.520
20I (Alpha, V1)	SURVEILLANCE	181	23.635	12.240	32.968	19.697	15.330	34.350
20I (Alpha, V1)	SYMPTOMATIC	58	23.923	13.225	32.505	19.238	16.150	29.920
20J (Gamma, V3)	SURVEILLANCE	86	24.237	13.310	31.212	19.843	15.590	28.708
20J (Gamma, V3)	SYMPTOMATIC	1	28.035	28.035	28.035	23.030	23.030	23.030
21A (Delta)	EXPOSED	21	22.370	11.943	31.935	19.248	16.535	23.515
21A (Delta)	ONE DAY	5	24.704	22.300	30.130	21.094	17.735	23.995
21A (Delta)	SURVEILLANCE	691	22.374	10.675	32.355	19.388	14.485	32.160
21A (Delta)	SYMPTOMATIC	70	21.839	7.980	29.980	19.124	14.690	33.280

```
lc_age_gender <- limited_clade_collection_diagnostics %>%
  inner_join(sample_collection_table %>%
    select(testkit id, patient id, gender, collection date),
  by = "testkit id"
  ) %>%
  inner_join(demographics_table %>%
    select(patient_id, birth_year),
  by = "patient_id"
  ) %>%
  mutate(
    collection_date = as_datetime(collection_date),
   gender = factor(gender, levels = c("M", "F")),
   age = year(collection_date) - birth_year,
    age_{group} = cut(x = age, breaks = c(0, 18, 30, 40, 50, 65, 85, 100))
  )
summary(lc_age_gender)
```

```
##
     testkit_id
                                     clade
                                                  ct_RNaseP
                                                                      \mathsf{ct}_{\mathtt{N}}
##
   Length: 1297
                        20G
                                        :159
                                                       :14.48
                                                                       : 7.98
                                               Min.
                                                                Min.
    Class : character
                        20I (Alpha, V1):264
                                                1st Qu.:17.71
                                                                 1st Qu.:20.29
   Mode :character
                                                                Median :23.28
##
                        20J (Gamma, V3): 87
                                               Median :18.95
##
                        21A (Delta)
                                        :787
                                               Mean
                                                       :19.45
                                                                Mean
                                                                        :23.08
                                                                 3rd Qu.:26.18
##
                                                3rd Qu.:20.54
##
                                               Max.
                                                       :34.35
                                                                Max.
                                                                        :33.27
##
     patient_id
##
                        gender
                                 collection_date
                                                                   birth_year
##
    Length: 1297
                        M:670
                                 Min.
                                        :2021-01-13 13:28:00
                                                                        :1930
                                                                Min.
    Class :character
                        F:627
                                 1st Qu.:2021-04-02 11:43:33
                                                                 1st Qu.:1990
##
    Mode :character
                                 Median :2021-08-10 16:45:09
                                                                Median:2000
##
                                 Mean
                                        :2021-07-05 03:41:03
                                                                Mean
                                                                        :1995
##
                                                                 3rd Qu.:2002
                                 3rd Qu.:2021-09-14 18:23:30
##
                                 Max.
                                        :2021-11-09 15:41:20
                                                                Max.
                                                                        :2021
##
##
                       age_group
         age
    Min.
           : 0.00
                     (18,30]:703
    1st Qu.:19.00
                     (0,18]:262
##
    Median :21.00
                     (30,40]:129
##
   Mean
           :26.24
                     (40,50]:98
    3rd Qu.:31.00
                     (50,65]:76
## Max.
           :91.00
                     (Other): 26
                     NA's : 3
##
```

```
p <- lc_age_gender %>%
 filter(
    !is.na(gender),
    !is.na(age_group)
  ) %>%
  ggboxplot(
   x = "clade",
   y = "ct_N"
   color = "gender",
alpha = 0.3,
   add = c("jitter"),
   add.params = list(alpha = 0.25),
  )
p <- facet(p,</pre>
facet.by = "age_group",
 ncol = 2
p + rotate_x_text(45)
```


5.4 Compilation of Supplementary Table with Database Accession Numbers

5.4.1 Clade and Lineage Info

```
glimpse(viralrecon table)
## Rows: 1,981
## Columns: 19
## $ testkit_id
                            <chr> "117M18D54A87FDE9Y8", "117M18D54A8819F81W", "1~
## $ num input reads
                            <dbl> 1803950, 1793232, 1887908, 2360264, 1435168, 4~
## $ num_trimmed_reads_fastp <dbl> 1121492, 1211678, 1259134, 1681220, 915724, 28~
## $ pc non host read
                            <dbl> 81.97383, 37.66710, 30.45458, 87.74176, 29.085~
## $ pc_mapped_reads
                            <dbl> 55.69, 0.04, 0.15, 82.65, 3.65, 99.21, 72.28, ~
                            <dbl> 624539, 543, 1871, 1389586, 33399, 2796671, 20~
## $ num_mapped_reads
## $ num_trimmed_reads_ivar <dbl> 618974, NA, NA, 1375419, 32764, 2757078, 19976~
## $ median_coverage
                            <dbl> NA, NA, NA, 1843, NA, 3919, 2948, 1839, 2453, ~
                            <dbl> 28, NA, NA, 100, 13, 100, 100, 99, 100, NA, 63~
## $ pc_coverage_gt1x
## $ pc_coverage_gt10x
                            <dbl> 24, NA, NA, 99, 4, 100, 99, 97, 99, NA, 30, 93~
                            <dbl> 11, NA, NA, 18, 2, 40, 40, 39, 19, NA, 19, 27,~
## $ num_snps
## $ num_indels
                            <dbl> NA, NA, NA, NA, NA, 3, 3, 3, NA, NA, 5, 1, 1, ~
## $ num_missense_var
                            <dbl> 6, NA, NA, 10, 1, 26, 28, 25, 5, NA, 15, 18, 1~
## $ Ns_per_100kb
                            <dbl> 75992.38, NA, NA, 1337.66, 96090.69, 421.49, 1~
                            <chr> NA, NA, NA, "B.1.243", NA, "B.1.617.2", "B.1.6~
## $ lineage
                            <chr> "21A (Delta)", NA, NA, "20A", "19B", "21A (Del~
## $ clade
                            <chr> "iVar", "iVar", "iVar", "iVar", "iVar"~
## $ variant_caller
                            ## $ viralrecon_version
                            <date> 2021-11-14, 2021-10-23, 2021-10-23, 2021-10-2~
## $ run_date_time
clades_lineage_table <- viralrecon_table %>%
 select(testkit_id, lineage, clade) %>%
 filter(!(is.na(lineage) & is.na(clade))) %>%
 distinct() %>%
 arrange(testkit_id)
glimpse(clades_lineage_table)
## Rows: 1,599
## Columns: 3
## $ testkit_id <chr> "117M18D54A87FDE9Y8", "117M18D5796486135Z", "117M18D6B4187C~
## $ lineage <chr> NA, "B.1.243", NA, "B.1.617.2", "B.1.617.2", "B.1.617.2", "~
               <chr> "21A (Delta)", "20A", "19B", "21A (Delta)", "21A (Delta)", ~
selected_clades_lineage_table <- limited_clade_collection_diagnostics %>%
 select(testkit_id) %>%
 left_join(clades_lineage_table, by = "testkit_id") %>%
 select(testkit_id, lineage, clade) %>%
 arrange(testkit_id)
glimpse(selected_clades_lineage_table)
```

```
## Rows: 1,297
## Columns: 3
## $ testkit id <chr> "117M18D54A87FDE9Y8", "117M18D6B5444CCFEJ", "117M18D6B544FA~
## $ lineage <chr> NA, "B.1.617.2", "B.1.617.2", "B.1.617.2", NA, "B.1.2", "B.~
                                       <chr> "21A (Delta)", "21A (Delta)", "21A (Delta)", "21A (Delta)",~
## $ clade
5.4.2 SC DHEC Info
glimpse(dhec_table)
## Rows: 1,412
## Columns: 4
## $ testkit_id <chr> "117M18D5796486135Z", "117M18D6B5444CCFEJ", "117M18D6B~
\verb| ## \$ dhec_accession < chr> "5796486135Z", "6B5444CCFEJ", "6B544FA90Y1", "6B545ED0~ chr> "5796486135Z", "6B544FA90Y1", "6B545ED0~ chr> "5796486135Z", "6B5444CCFEJ", "6B5444FA90Y1", "6B5445ED0~ chr> "5796486135Z", "6B5444CCFEJ", "6B5444FA90Y1", "6B5445ED0~ chr> "5796486135Z", "6B5444FA90Y1", "6B544FA90Y1", "6B5444FA90Y1", "6B5444FA90Y1", "6B5444FA90Y1", "6B5444FA90Y1", "6B544FA90Y1", "6B544FA90Y1", "6B544FA90Y1", "6B545FA90Y1", "6B55FA90Y1", "6B55FA90Y1", "6B55FA90Y1", "6B55FA90Y1", "6B55FA90Y1", "6B55FA90Y1", "6B55FA90Y1", "6B55FA90Y1", "6B55FA9
## $ pipeline <chr> "nf-core/viralrecon", "nf-core/viralrecon", "nf-core/v~
## $ submission date <dbl> 18948, 18948, 18948, 18948, 18948, 18948, 18948, 18948, 18948,
selected_clades_lineage_table <- selected_clades_lineage_table %>%
    left_join(dhec_table %>%
         filter(pipeline == "nf-core/viralrecon"),
    by = "testkit_id"
     ) %>%
     select(testkit_id, dhec_accession, clade, lineage)
glimpse(selected_clades_lineage_table)
## Rows: 1,297
## Columns: 4
## $ testkit_id <chr> "117M18D54A87FDE9Y8", "117M18D6B5444CCFEJ", "117M18D6B5~
## $ dhec_accession <chr> NA, "6B5444CCFEJ", "6B544FA90Y1", "6B545ED0BHB", NA, "7~
## $ clade
                                          <chr> "21A (Delta)", "21A (Delta)", "21A (Delta)", "21A (Delta")
                                              <chr> NA, "B.1.617.2", "B.1.617.2", "B.1.617.2", NA, "B.1.2",~
## $ lineage
5.4.3 GenBank Info
glimpse(genbank_table)
```

```
selected_clades_lineage_table <- selected_clades_lineage_table %>%
 left_join(genbank_table %>%
   filter(pipeline_used == "nf-core/viralrecon 2.2"),
 by = "testkit id"
 ) %>%
 select(testkit_id, dhec_accession, genbank_accession, clade, lineage)
glimpse(selected clades lineage table)
## Rows: 1,297
## Columns: 5
## $ testkit id
                     <chr> "117M18D54A87FDE9Y8", "117M18D6B5444CCFEJ", "117M18D~
## $ genbank_accession <chr> NA, NA, NA, NA, NA, "OL709445", "OL709477", NA, NA, ~
                     <chr> "21A (Delta)", "21A (Delta)", "21A (Delta)", "21A (D~
## $ clade
## $ lineage
                    <chr> NA, "B.1.617.2", "B.1.617.2", "B.1.617.2", NA, "B.1.~
5.4.4 GISAID Info
glimpse(gisaid_table)
## Rows: 604
## Columns: 5
## $ testkit id
                   <chr> "117M18DBD3F633A6VM", "117M18DBD66163CENK", "117M18DE~
## $ gisaid_sample_id <chr> "hCoV-19/USA/SC-REDDI-BD3F633A6VM/2021", "hCoV-19/USA~
## $ gisaid_epi_isl <chr> "EPI_ISL_7155707", "EPI_ISL_7155714", "EPI_ISL_715571~
                     <chr> "nf-core/viralrecon 2.2", "nf-core/viralrecon 2.2", "~
## $ pipeline_used
## $ submission_date <dbl> 18965, 18965, 18965, 18965, 18965, 18965, 18965, 18965, 18967
selected_clades_lineage_table <- selected_clades_lineage_table %>%
 left join(gisaid table %>%
   filter(pipeline_used == "nf-core/viralrecon 2.2"),
 by = "testkit_id"
 ) %>%
 select(testkit_id, dhec_accession, genbank_accession, gisaid_epi_isl, clade, lineage)
glimpse(selected_clades_lineage_table)
## Rows: 1,297
## Columns: 6
## $ testkit_id
                     <chr> "117M18D54A87FDE9Y8", "117M18D6B5444CCFEJ", "117M18D~
## $ dhec accession <chr> NA, "6B5444CCFEJ", "6B544FA90Y1", "6B545ED0BHB", NA,~
## $ genbank_accession <chr> NA, NA, NA, NA, NA, "OL709445", "OL709477", NA, NA, ~
## $ gisaid epi isl <chr> NA, NA, NA, NA, NA, "EPI ISL 7155960", "EPI ISL 7156~
## $ clade
                      <chr> "21A (Delta)", "21A (Delta)", "21A (Delta)", "21A (D~
                     <chr> NA, "B.1.617.2", "B.1.617.2", "B.1.617.2", NA, "B.1.~
## $ lineage
selected_clades_lineage_table <- selected_clades_lineage_table %>%
 mutate(sample id = str sub(testkit id,
```

start = 8L

```
)) %>%
  relocate(sample_id, .after = testkit_id)
glimpse(selected_clades_lineage_table)
## Rows: 1,297
## Columns: 7
                      <chr> "117M18D54A87FDE9Y8", "117M18D6B5444CCFEJ", "117M18D~
## $ testkit_id
## $ sample_id
                      <chr> "54A87FDE9Y8", "6B5444CCFEJ", "6B544FA90Y1", "6B545E~
                      <chr> NA, "6B5444CCFEJ", "6B544FA90Y1", "6B545ED0BHB", NA,~
## $ dhec accession
## $ genbank_accession <chr> NA, NA, NA, NA, NA, "OL709445", "OL709477", NA, NA, ~
## $ clade
                      <chr> "21A (Delta)", "21A (Delta)", "21A (Delta)", "21A (D~
                      <chr> NA, "B.1.617.2", "B.1.617.2", "B.1.617.2", NA, "B.1.~
## $ lineage
5.4.5 Sample Collection Info
imp_sc_info <- sample_collection_table %>%
  filter(testkit id %in% selected clades lineage table$testkit id) %%
  select(testkit_id, collection_date, order_priority) %>%
  mutate(collection_date = date(as_datetime(collection_date)))
glimpse(imp_sc_info)
## Rows: 1,297
## Columns: 3
                    <chr> "117M18DBD66165C8BE", "117M18DBD66167A8RC", "117M18DBD~
## $ testkit_id
## $ collection_date <date> 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-0
## $ order_priority <chr> "EXPOSED", "SURVEILLANCE", "SYMPTOMATIC", "SURVEILLANC~
selected_clades_lineage_table <- selected_clades_lineage_table %>%
  left_join(imp_sc_info,
   by = "testkit_id"
  ) %>%
  mutate(collection_period = as.yearmon(collection_date)) %>%
  select(testkit_id, sample_id, collection_period, order_priority, collection_date, dhec_accession, gen
  arrange(collection_period, order_priority, sample_id)
glimpse(selected_clades_lineage_table)
## Rows: 1,297
## Columns: 10
## $ testkit_id
                      <chr> "117M18DBD5B6F749CQ", "117M18DBD5B70AA1EI", "117M18D~
                      <chr> "BD5B6F749CQ", "BD5B70AA1EI", "BD5C92943TH", "BD5C92~
## $ sample_id
## $ collection_period <yearmon> Jan 2021, Jan 2021, Jan 2021, Jan 2021, Jan 2021,
                      <chr> "EXPOSED", "EXPOSED", "EXPOSED", "EXPOSED", "EXPOSED"
## $ order_priority
## $ collection_date
                      <date> 2021-01-19, 2021-01-19, 2021-01-19, 2021-01-19, 202~
```

\$ genbank_accession <chr> NA, "OL709487", NA, "OL709493", "OL709499", "OL70953~

\$ dhec_accession

\$ gisaid epi isl

<chr> NA, "BD5B70AA1EI", "BD5C92943TH", "BD5C92CA4AQ", "BD~

<chr> NA, "EPI_ISL_7156011", "EPI_ISL_7156946", "EPI_ISL_7~

```
<chr> "20G", "20G", "20G", "20G", "20G", "20G", "20G", "20G", "20~
## $ clade
## $ lineage
                                                          <chr> NA, "B.1.2", "B.1.2", "B.1.2", "B.1.2", "B.1.2", "B.*
selected_clades_lineage_table <- selected_clades_lineage_table %>%
     select(-c(testkit id, collection date))
selected_clades_lineage_table %>%
     group_by(sample_id) %>%
    filter(n() > 1)
## # A tibble: 0 x 8
## # Groups: sample_id [0]
## # ... with 8 variables: sample_id <chr>, collection_period <yearmon>,
## # order_priority <chr>, dhec_accession <chr>, genbank_accession <chr>,
## #
                 gisaid_epi_isl <chr>, clade <chr>, lineage <chr>
glimpse(selected_clades_lineage_table)
## Rows: 1,297
## Columns: 8
## $ sample id
                                                          <chr> "BD5B6F749CQ", "BD5B70AA1EI", "BD5C92943TH", "BD5C92~
## $ collection_period <yearmon> Jan 2021, Jan 2021, Jan 2021, Jan 2021, Jan 2021, Jan 2021~
## $ order_priority <chr> "EXPOSED", "EXPOSE
                                                          <chr> NA, "BD5B70AA1EI", "BD5C92943TH", "BD5C92CA4AQ", "BD~
## $ dhec accession
## $ genbank_accession <chr> NA, "OL709487", NA, "OL709493", "OL709499", "OL70953~
## $ gisaid_epi_isl <chr> NA, "EPI_ISL_7156011", "EPI_ISL_7156946", "EPI_ISL_7~
## $ clade
                                                        <chr> "20G", "20G", "20G", "20G", "20G", "20G", "20G", "20G"
                                                       <chr> NA, "B.1.2", "B.1.2", "B.1.2", "B.1.2", "B.1.2", "B.
## $ lineage
```

5.4.6 Final Formatting

```
selected_clades_lineage_table %>%
  mutate(collection_period = as.character(collection_period)) %>%
  rename(
    `Sample ID` = "sample_id",
    `Collection Period` = "collection_period",
    `Priority Status` = "order_priority",
    `SC DHEC Accession` = "dhec_accession",
    `GenBank Accession` = "genbank_accession",
    `GISAID Accession` = "gisaid_epi_isl",
    Clade = "clade",
    Lineage = "lineage"
) %>%
    write_csv("supplementary_table_1.csv")
```

```
selected_clades_lineage_table %>%
mutate(
    collection_period = as.character(collection_period),
    across(.cols = c(
        "order_priority", "collection_period",
```

```
"clade", "lineage"
), as_factor)
) %>%
summary()
```

```
order_priority dhec_accession
##
     sample_id
                       collection_period
    Length: 1297
##
                       Sep 2021:343
                                          EXPOSED
                                                      : 71
                                                              Length: 1297
    Class :character
                       Aug 2021:202
                                          SURVEILLANCE: 1053
                                                               Class : character
##
    Mode :character
                       Mar 2021:201
                                          SYMPTOMATIC : 168
                                                               Mode :character
##
                       Apr 2021:157
                                          ONE DAY
                                                      :
                       Oct 2021:111
##
                       Jan 2021: 83
##
##
                       (Other) :200
    genbank_accession gisaid_epi_isl
##
                                                       clade
                                                                       lineage
##
    Length: 1297
                       Length: 1297
                                           20G
                                                           :159
                                                                  B.1.617.2:536
    Class : character
                       Class : character
                                           20I (Alpha, V1):264
                                                                  B.1.1.7 :248
##
   Mode : character
                       Mode :character
                                           20J (Gamma, V3): 87
                                                                  B.1.2
                                                                           :131
                                           21A (Delta)
                                                         :787
                                                                           : 84
##
                                                                  P.1
##
                                                                  AY.3
                                                                           : 25
##
                                                                  (Other) : 19
##
                                                                  NA's
                                                                           :254
```

5.5 N gene

5.5.1 Assumptions

5.5.1.1 Independence No two samples came from the same patient_id. The samples are from Clemson University's COVID19 testing program. The CU REDDI lab chose samples that were sent for sequencing.

5.5.1.2 Normality:

```
res_aov_n <- aov(ct_N ~ clade,
    data = limited_clade_collection_diagnostics
)
hist(res_aov_n$residuals)</pre>
```

5.5.1.2.1 Histogram of Residuals

Histogram of res_aov_n\$residuals

The histogram shows a slightly left skewed distribution.

```
qqPlot(res_aov_n$residuals,
  id = FALSE
)
```

5.5.1.2.2 QQ-Plot of Residuals

5.5.1.2.3 Shapiro-Wilk

Null Hypothesis: Data comes from a normal distribution.

Alternate Hypothesis: Data does not come from a normal distribution.

shapiro.test(res_aov_n\$residuals)

```
##
## Shapiro-Wilk normality test
##
## data: res_aov_n$residuals
## W = 0.99307, p-value = 9.203e-06
```

Since p-value < 0.05, we reject the null hypothesis. The data does not follow a normal distribution.

We will perform Kruskal-Wallis Test to compare the Ct values for N gene between the different SARS-CoV-2 clades.

5.5.1.3 Equality of Variances

```
p <- limited_clade_collection_diagnostics %>%
    ggviolin(
    x = "clade",
```

```
y = "ct_N",
fill = "cyan",
add = c("jitter", "boxplot"),
add.params = list(alpha = 0.1),
notch = TRUE
)

ggpar(p, orientation = "horiz")
```

5.5.1.3.1 Box Plot

The box plot appears to show groups that have different variances when compared with the other groups.

5.5.1.3.2 Levene's Test

Null Hypothesis : Variances are equal.

Alternate Hypothesis : At least one variance is different.

```
leveneTest(ct_N ~ clade,
   data = limited_clade_collection_diagnostics
)
```

Since p-value < 0.05, we reject the null hypothesis. Equality of Variances assumption is not met.

5.5.2 Kruskal-Wallis Test for Stochastic Dominance

Null Hypothesis:

```
H_0: P(Xi > Xj) = 0.5 for all groups i and j from 1 to k
```

Alternate Hypothesis:

```
H_A: P(Xi > Xj) \neq 0.5 for at least one group i \neq j
```

From Non-normal distribution even with Kruskal-Wallis test.

```
kruskal.test(ct_N ~ clade,
    data = limited_clade_collection_diagnostics
)
```

```
##
## Kruskal-Wallis rank sum test
##
## data: ct_N by clade
## Kruskal-Wallis chi-squared = 61.758, df = 3, p-value = 2.476e-13
```

Since p-value < 0.05, we reject the null hypothesis. The groups are sampled from populations with different distributions.

5.5.3 Kruskal-Wallis Effect Size

```
kruskal_effsize(ct_N ~ clade,
    data = limited_clade_collection_diagnostics
) %>%
    kbl() %>%
    kable_classic_2(
    full_width = F,
    latex_options = c(
        "hold_position",
        "striped"
    )
)
```

5.5.4 Dunn's Test of Multiple Comparisons

.y.	n			magnitude
ct_N	1297	0.0454428	eta2[H]	small

.y.	group1	group2	n1	n2	statistic	p	p.adj	p.adj.signif
ct_N	20G	20I (Alpha, V1)	159	264	-2.4477602	0.0143747	0.0431242	*
ct_N	20G	20J (Gamma, V3)	159	87	-0.9466712	0.3438064	0.6676212	ns
ct_N	20G	21A (Delta)	159	787	-6.5905363	0.0000000	0.0000000	****
ct_N	20I (Alpha, V1)	20J (Gamma, V3)	264	87	0.9664669	0.3338106	0.6676212	ns
ct_N	20I (Alpha, V1)	21A (Delta)	264	787	-4.6020787	0.0000042	0.0000209	****
ct_N	20J (Gamma, V3)	21A (Delta)	87	787	-3.9545344	0.0000767	0.0003067	***

There is a significant difference in Ct values of N gene between 21A (Delta) and other clades in the study. Additionally, there is a significant difference in Ct values of N gene between 20I (Alpha, V1) and 20G.

5.5.5 KW Visualization

```
ggbetweenstats(
  data = limited_clade_collection_diagnostics,
  x = clade,
  y = ct_N,
  type = "nonparametric",
  xlab = "Clade",
 vlab = "Ct for N gene",
  var.equal = FALSE,
  plot.type = "boxviolin",
  pairwise.comparisons = TRUE,
  pairwise.display = "significant",
  centrality.plotting = FALSE,
  bf.message = FALSE,
  p.adjust.method = "holm"
) +
  scale_color_manual(values = c(
    "dodgerblue2",
    "#E31A1C",
    "green4",
    "#6A3D9A"
 ))
```


Pairwise test: Dunn test, Comparisons shown: only significant

5.5.6 Welch's ANOVA

```
welch_anova_test(
  formula = ct_N ~ clade,
  data = limited_clade_collection_diagnostics
)

## # A tibble: 1 x 7

## .y. n statistic DFn DFd p method

## * <chr> <int> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 ct_N 1297 24.4 3 294. 4.07e-14 Welch ANOVA
```

5.5.7 Games-Howell Test

```
games_howell_test(ct_N ~ clade,
    data = limited_clade_collection_diagnostics
) %>%
    kbl() %>%
    kable_classic_2(
    full_width = F,
```

```
latex_options = c(
    "hold_position",
    "striped"
)
```

.y.	group1	group2	estimate	conf.low	conf.high	p.adj	p.adj.signif
ct_N	20G	20I (Alpha, V1)	-0.9082844	-1.9145811	0.0980123	9.30e-02	ns
ct_N	20G	20J (Gamma, V3)	-0.4921003	-1.8078835	0.8236829	7.66e-01	ns
ct_N	20G	21A (Delta)	-2.4311226	-3.2769032	-1.5853421	0.00e+00	****
ct_N	20I (Alpha, V1)	20J (Gamma, V3)	0.4161841	-0.8646932	1.6970614	8.34e-01	ns
ct_N	20I (Alpha, V1)	21A (Delta)	-1.5228382	-2.3104644	-0.7352121	5.20e-06	****
ct_N	20J (Gamma, V3)	21A (Delta)	-1.9390223	-3.1005751	-0.7774695	1.73e-04	***

5.5.8 Welch's ANOVA Visualization

```
ggbetweenstats(
  data = limited_clade_collection_diagnostics,
  x = clade,
  y = ct_N,
  type = "parametric",
    xlab = "Clade",
    ylab = "Ct for N gene",
    var.equal = FALSE,
    plot.type = "boxviolin"
) +
    scale_color_manual(values = c(
        "dodgerblue2",
        "#E31A1C",
        "green4",
        "#6A3D9A"
))
```

Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.

5.6 CONTROL: Compare Ct values for the Human RNase P gene

5.6.1 Assumptions

5.6.1.1 Normality:

```
res_aov_rnasep <- aov(ct_RNaseP ~ clade,
   data = limited_clade_collection_diagnostics
)
hist(res_aov_rnasep$residuals)</pre>
```

5.6.1.1.1 Histogram of Residuals

Histogram of res_aov_rnasep\$residuals

There is a strong right skew according to the histogram.

```
qqPlot(res_aov_rnasep$residuals,
   id = FALSE
)
```

5.6.1.1.2 QQ-Plot of Residuals

5.6.1.1.3 Shapiro-Wilk

Null Hypothesis: Data comes from a normal distribution.

Alternate Hypothesis: Data does not come from a normal distribution.

shapiro.test(res_aov_rnasep\$residuals)

```
##
## Shapiro-Wilk normality test
##
## data: res_aov_rnasep$residuals
## W = 0.89981, p-value < 2.2e-16</pre>
```

Since p-value < 0.05, we reject the null hypothesis. The data does not follow a normal distribution.

5.6.1.2 Equality of Variances

```
p <- limited_clade_collection_diagnostics %>%
    ggviolin(
    x = "clade",
    y = "ct_RNaseP",
    fill = "grey",
```

```
add = c("jitter", "boxplot"),
  add.params = list(alpha = 0.1),
  notch = TRUE
)

ggpar(p, orientation = "horiz")
```

5.6.1.2.1 Box Plot

5.6.1.2.2 Levene's Test

Null Hypothesis : Population variances are equal.

Alternate Hypothesis : At least one population variance is different.

```
leveneTest(ct_RNaseP ~ clade,
    data = limited_clade_collection_diagnostics
)

## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 3 3.2996 0.01975 *
```

```
## 1293
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Since p-value < 0.05, we reject the null hypothesis. Equality of Variances assumption is not met.

5.6.2 Kruskal-Wallis Test for Stochastic Dominance

Null Hypothesis:

```
H_0: P(Xi > Xj) = 0.5 for all groups i and j from 1 to k
```

Alternate Hypothesis:

```
H_A: P(Xi > Xj) \neq 0.5 for at least one group i \neq j
```

From Non-normal distribution even with Kruskal-Wallis test.

```
kruskal.test(ct_RNaseP ~ clade, data = limited_clade_collection_diagnostics)
```

```
##
## Kruskal-Wallis rank sum test
##
## data: ct_RNaseP by clade
## Kruskal-Wallis chi-squared = 4.1948, df = 3, p-value = 0.2412
```

Since the p-value is > 0.05, we cannot reject the null hypothesis. There is no significant difference in Ct values for RNase P gene between the different clades in this study.

5.6.3 KW Visualization

```
ggbetweenstats(
  data = limited_clade_collection_diagnostics,
 x = clade,
 y = ct_RNaseP,
 type = "nonparametric",
 xlab = "Clade",
 ylab = "Ct for RNase P gene (control)",
  var.equal = FALSE,
 plot.type = "boxviolin",
  pairwise.comparisons = FALSE,
  centrality.plotting = FALSE,
  bf.message = FALSE,
  p.adjust.method = "holm"
) +
  scale_color_manual(values = c(
    "dodgerblue2",
    "#E31A1C",
    "green4",
    "#6A3D9A"
 ))
```

Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.

5.7 Conclusions

We analysed the results from 1297 SARS-CoV-2 infected patients across from the COVID19 testing program in the university area (median age 21 years [<1 year to 91 years], 670 Male : 627 Female).

The clade composition among the sequenced samples were as follows:

20G :159 20I (Alpha, V1):264 20J (Gamma, V3): 87 21A (Delta) :787

Statistical analyses were performed in an R environment (Kruskal-Wallis test followed by Dunn's test of multiple comparisons). There were significant differences in the Ct values for N gene between 21A (Delta) [median: 22.615, range: 7.98-32.355] and other clades [20G: 25.210 (12.87-33.274), 20I (Alpha, V1): 23.925 (12.24-32.968), 20J (Gamma, V3): 24.740 (13.31-31.212)]. Additionally, there was a significant difference in Ct values for N gene between 20I (Alpha, V1) and 20G.

Concurrently, the Ct values for the RNase P control did not exhibit a statistically significant difference among these clades [20G: 19.391 (15.714-28.890), 20I (Alpha, V1): 18.650 (15.330-34.350), 20J (Gamma, V3): 19.168 (15.590-28.708), 21A (Delta): 18.900 (14.485-33.280)].

These results suggests significant differences in viral load of 21A (Delta) relative to the other clades.

6 surveillance Samples Only

In the following steps, we are limiting our study to samples in the surveillance category. We filter the clades_and_collection for such samples and name the output table as clades_and_collection_surveillance.

```
clades_and_collection_surveillance <- clades_and_collection %>%
      filter(order_priority == "SURVEILLANCE")
glimpse(clades_and_collection_surveillance)
## Rows: 1.183
## Columns: 10
                                                                          <chr> "0a6f1c09b23ae1ef7b322a8f", "1133ae22349307de010cdeb4~
## $ patient_id
## $ testkit_id
                                                                          <chr> "117M18DCE7D400229H", "117M18DCE7D40EDCMA", "117M18DC~
## $ collection_date <date> 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 20
                                                                          <fct> "20A", "21C (Epsilon)", "20G", "20G", "20C", "20G", "~
## $ clade
                                                                          <fct> UNIVERSITY, UNIVERSITY, UNIVERSITY, UNIVERSITY, ATHLE~
## $ population
## $ order priority
                                                                          <fct> SURVEILLANCE, SURVEILLANCE, SURVEILLANCE, SURVEILLANC~
## $ gender
                                                                          <fct> M, F, F, M, M, M, F, M, F, M, M, M, M, F, M, M, F,~
```

<fct> nf-core/viralrecon, nf-core/viralrecon, nf-core/viral~

<fct> POSITIVE, POSITIVE, POSITIVE, POSITIVE, POSITIVE, POS-

The summary of the clades_and_collection_surveillance table is as follows:

summary(clades_and_collection_surveillance)

\$ pipeline

\$ rymedi result

```
##
     patient_id
                         testkit_id
                                            collection_date
    Length:1183
                        Length:1183
                                                   :2021-01-13
                                           Min.
    Class : character
                        Class : character
                                           1st Qu.:2021-04-01
##
    Mode :character
                        Mode :character
                                           Median :2021-08-17
##
                                           Mean
                                                   :2021-07-06
##
                                           3rd Qu.:2021-09-15
##
                                           Max.
                                                   :2021-11-09
##
                clade
##
                                population
                                                  order_priority gender
##
    21A (Delta)
                   :691
                           UNIVERSITY:887
                                            SURVEILLANCE: 1183
                                                                 M:623
    20I (Alpha, V1):181
                           ATHLETICS: 26
                                            SYMPTOMATIC :
                                                             0
                                                                 F:560
##
                   : 95
                           COMMUNITY:270
                                            EXPOSED
                                                             0
##
   20J (Gamma, V3): 86
##
                           TRICOUNTY: 0
                                            ONE DAY
##
    20A
                   : 55
##
   21C (Epsilon)
                   : 23
##
    (Other)
                   : 52
##
    pregnancy_status
                                    pipeline
                                                  rymedi_result
   YES: 3
                     nf-core/viralrecon:1183
                                                POSITIVE: 1183
##
   NO:557
    NA's:623
##
##
##
##
##
```

6.1 Bar Plots with Monthly Count for each Clade: surveillance Samples Only

The clades present in clades_and_collection_surveillance when only surveillance samples are considered are as follows:

```
clades factor level <- clades and collection surveillance %>%
 pull(clade) %>%
  unique()
(clades_factor_level <- sort(as.character(clades_factor_level)))</pre>
                                                                 "20B"
##
   [1] "19A"
                           "19B"
                                              "20A"
   [5] "20C"
                           "20G"
                                              "20H (Beta, V2)"
                                                                 "20I (Alpha, V1)"
   [9] "20J (Gamma, V3)" "21A (Delta)"
                                              "21B (Kappa)"
                                                                 "21C (Epsilon)"
## [13] "21D (Eta)"
                           "21F (Iota)"
```

From clades_and_collection_surveillance, we tabulate the count of each clade among sequenced samples collected in each month of 2021.

```
monthly_clade_date_surveillance <- clades_and_collection_surveillance %>%
  mutate(
    collection_period = as.yearmon(collection_date),
    clade = factor(clade,
        levels = clades_factor_level
    )
    ) %>%
    group_by(collection_period, clade) %>%
    summarize(count = n())

glimpse(monthly_clade_date_surveillance)
```

Visualizing the table above using a stacked bar plot.

```
ggplot(
  monthly_clade_date_surveillance,
  aes(
    x = collection_period,
    y = count,
    fill = clade
)
) +
  geom_bar(colour = "black", position = "stack", stat = "identity") +
  scale_x_yearmon(breaks = monthly_clade_date$collection_period) +
  scale_fill_manual(values = color_tbl %>%
    filter(clade %in% monthly_clade_date_surveillance$clade) %>%
```

```
pull(color)) +
labs(
    y = "Number of Sequenced Samples",
    x = "Sample Collection Period"
) +
theme_pubclean() +
theme(
    legend.position = "right",
    legend.title = element_blank(),
    legend.key.size = unit(0.5, "cm"),
    axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)
)
```



```
ggplot(
  monthly_clade_date_surveillance,
  aes(
    x = collection_period,
    y = count,
    fill = clade
)
) +
  geom_col(colour = "black", position = "fill") +
  scale_y_continuous(labels = scales::percent) +
  scale_x_yearmon(breaks = monthly_clade_date$collection_period) +
```

```
scale_fill_manual(values = color_tbl %>%
  filter(clade %in% monthly_clade_date_surveillance$clade) %>%
  pull(color)) +
labs(
  y = "% Sequenced Samples",
  x = "Sample Collection Period"
) +
theme_pubclean() +
theme(
  legend.position = "right",
  legend.title = element_blank(),
  legend.key.size = unit(0.5, "cm"),
  axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)
)
```


6.2 Preparing diagnostics data for surveillance-only set of samples

Our goal is to determine whether 21A (Delta) shows lower Ct values for N gene when compared with the clades 20I (Alpha, V1), 20G, and 20J (Gamma, V3) when only the surveillance samples are considered. In order to know that, we use the Ct values for N gene from the REDDI lab dataset. Since two replicates were done for each qRT-PCR reaction, we will compute the mean Ct for N gene and RNase P control for each testkit_id

```
diagnostics_data_surveillance <- diagnostics_table %>%
  filter(testkit_id %in% clades_and_collection_surveillance$testkit_id) %>%
  select(testkit_id, ct_rnasep_rep1, ct_rnasep_rep2, ct_N_rep1, ct_N_rep2) %>%
  arrange(testkit_id) %>%
  mutate(
    average_ct_rnasep = rowMeans(.[, c("ct_rnasep_rep1", "ct_rnasep_rep2")], na.rm = TRUE),
   average_ct_N = rowMeans(.[, c("ct_N_rep1", "ct_N_rep2")], na.rm = TRUE)
  select(-c(
    ct_rnasep_rep1, ct_rnasep_rep2,
    ct_N_rep1, ct_N_rep2
  )) %>%
  group_by(testkit_id) %>%
  summarise(
    ct_RNaseP = mean(average_ct_rnasep, na.rm = TRUE),
    ct_N = mean(average_ct_N, na.rm = TRUE)
diagnostics_data_surveillance %>%
  filter(!complete.cases(.)) %>%
  kbl() %>%
  kable_classic_2(
   full_width = F,
   latex_options = c(
      "hold position",
      "striped"
   )
  )
```

26 testkit_ids do not have a ct value for RNase P. We will use imputation to deal with the missing values.

6.3 Join clade assignments and diagnostics data

We join clades_and_collection_surveillance and the diagnostics data to get the clade_collection_diagnostics_surveible.

```
clade_collection_diagnostics_surveillance <- clades_and_collection_surveillance %>%
  inner_join(diagnostics_data_surveillance, by = "testkit_id")
glimpse(clade_collection_diagnostics_surveillance)
```

```
## Rows: 1,183
## Columns: 12
                                                                              <chr> "0a6f1c09b23ae1ef7b322a8f", "1133ae22349307de010cdeb4~
## $ patient_id
## $ testkit_id
                                                                               <chr> "117M18DCE7D400229H", "117M18DCE7D40EDCMA", "117M18DC~
## $ collection_date <date> 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 20
## $ clade
                                                                               <fct> "20A", "21C (Epsilon)", "20G", "20G", "20C", "20G", "~
                                                                              <fct> UNIVERSITY, UNIVERSITY, UNIVERSITY, UNIVERSITY, ATHLE~
## $ population
## $ order_priority
                                                                              <fct> SURVEILLANCE, SURVEILLANCE, SURVEILLANCE, SURVEILLANC~
## $ gender
                                                                               <fct> M, F, F, M, M, M, F, M, F, M, M, M, M, F, M, M, F,~
<fct> nf-core/viralrecon, nf-core/viralrecon, nf-core/viral~
## $ pipeline
```

testkit_id	ct_RNaseP	ct_N
117M18DBFE8BB0A1JJ	NaN	21.29940
117M18DBFE8BB18FTW	NaN	26.99776
117M18DBFE8C4DF29V	NaN	30.18376
117M18DBFEE11FC1HA	NaN	23.52962
117M18DCB750444B1K	NaN	29.40396
117M18DCB750672AZL	NaN	25.19355
117M18DCB750EF7DKW	NaN	23.28848
117M18DCB7CE9BFF04	NaN	24.22209
117M18DD9F7D8DF0LH	NaN	23.69066
117M18DD9F7DF503YP	NaN	16.45756
117M18DD9F7E062D0Q	NaN	24.82307
117M18DD9F7E67D57T	NaN	26.20155
117M18DDC2E0AD0A70	NaN	29.20234
117M18DDD30852A7D3	NaN	16.67494
117M18DDD3085427A5	NaN	30.80809
117M18DDD308C25FZY	NaN	21.30878
117M18DDD308C63FEZ	NaN	25.31193
117M18DDD4896537BX	NaN	18.88141
117M18DDD48F66A8GX	NaN	26.61771
117M18DDD48FDEBD87	NaN	26.39463
117M18DDD490489F80	NaN	26.09010
117M18DDD4916F9CG2	NaN	21.62621
117M18DE172DA3990T	NaN	22.35571
117M18DE172DA3E12G	NaN	27.27337
117M18DE172DA66AEW	NaN	23.83437
117M18DE1733C0D5PY	NaN	26.53400

Since many samples had missing Ct values for RNase P, we impute median value of ct_RNaseP for each clade to the missing values.

```
get_median_ct_surveillance <- function(input_clade) {
  median_RNAseP <- clade_collection_diagnostics_surveillance %>%
    filter(clade == input_clade) %>%
    pull(ct_RNaseP) %>%
    median(na.rm = TRUE)

return(median_RNAseP)
}
```

Median Ct RNase P - 20I (Alpha, V1)

```
# 20I (Alpha, V1)
(median_RNAseP_20I_surveillance <- get_median_ct_surveillance("20I (Alpha, V1)"))</pre>
```

```
## [1] 18.77233
```

Median Ct RNase P - 21A (Delta)

```
# 21A (Delta)
(median_RNAseP_21A_surveillance <- get_median_ct_surveillance("21A (Delta)"))</pre>
## [1] 18.935
Median Ct RNase P - 20G
# 20G
(median_RNAseP_20G_surveillance <- get_median_ct_surveillance("20G"))</pre>
## [1] 19.18
Median Ct RNase P - 20J (Gamma, V3)
# 20J (Gamma, V3)
(median_RNAseP_20J_surveillance <- get_median_ct_surveillance("20J (Gamma, V3)"))</pre>
## [1] 19.16656
Summary of the clade collection diagnostics table after imputation
clade_collection_diagnostics_surveillance <- clade_collection_diagnostics_surveillance %>%
  mutate(
    ct_RNaseP = replace(
      ct RNaseP,
      (is.na(ct_RNaseP) & (clade == "20I (Alpha, V1)")),
      median_RNAseP_20I_surveillance
   ),
    ct_RNaseP = replace(
      ct_RNaseP,
      (is.na(ct_RNaseP) & (clade == "21A (Delta)")),
      median_RNAseP_21A_surveillance
    ),
    ct_RNaseP = replace(
      ct_RNaseP,
      (is.na(ct_RNaseP) & (clade == "20G")),
      median_RNAseP_20G_surveillance
    ct_RNaseP = replace(
      ct_RNaseP,
      (is.na(ct_RNaseP) & (clade == "20J (Gamma, V3)")),
      median_RNAseP_20J_surveillance
    )
  )
summary(clade_collection_diagnostics_surveillance)
##
    patient_id
                        testkit_id
                                           collection_date
## Length:1183
                       Length:1183
                                                  :2021-01-13
                                           Min.
## Class :character Class :character
                                           1st Qu.:2021-04-01
```

```
##
         :character
                        Mode :character
                                            Median :2021-08-17
##
                                                    :2021-07-06
                                            Mean
##
                                            3rd Qu.:2021-09-15
##
                                            Max.
                                                    :2021-11-09
##
##
                 clade
                                population
                                                  order_priority gender
    21A (Delta)
                           UNIVERSITY:887
                                             SURVEILLANCE: 1183
##
                    :691
                                                                  M:623
    20I (Alpha, V1):181
                                             SYMPTOMATIC :
                                                                  F:560
##
                           ATHLETICS: 26
                                                              0
##
    20G
                    : 95
                           COMMUNITY:270
                                             EXPOSED
                                                          :
                                                              0
    20J (Gamma, V3): 86
                                                              0
##
                           TRICOUNTY: 0
                                             ONE DAY
##
    20A
                    : 55
    21C (Epsilon)
                   : 23
##
##
    (Other)
                    : 52
    pregnancy_status
                                                  rymedi_result
##
                                    pipeline
                                                                     ct_RNaseP
    YES: 3
                      nf-core/viralrecon:1183
                                                 POSITIVE:1183
##
                                                                  Min.
                                                                          :14.48
##
    NO:557
                                                                  1st Qu.:17.76
##
    NA's:623
                                                                  Median :18.96
##
                                                                  Mean
                                                                          :19.50
                                                                  3rd Qu.:20.59
##
##
                                                                  Max.
                                                                          :34.35
##
                                                                  NA's
                                                                          :12
##
         ct_N
##
           :10.68
    Min.
    1st Qu.:20.31
##
##
    Median :23.44
##
    Mean
           :23.17
##
    3rd Qu.:26.36
           :33.45
##
    Max.
##
```

The counts of different clades in the clade_collection_diagnostics table are as follows:

```
clade_collection_diagnostics_surveillance %>%
  group_by(clade) %>%
  summarize(count = n()) %>%
  arrange(desc(count)) %>%
  kbl() %>%
  kable_classic_2(
    full_width = F,
    latex_options = c(
        "hold_position",
        "striped"
    )
)
```

As in the previous analysis, in order to not affect our assumption of phylogenetic independence, we are only going to compare Ct values for variants at terminal nodes of NextClade tree. We extract data from clade_collection_diagnostics_surveillance table and create a new table limited_clade_collection_diagnostics_surveillance with only data for the following clades:

```
21A (Delta)
20I (Alpha, V1)
20J (Gamma, V3)
20G
```

clade	count
21A (Delta)	691
20I (Alpha, V1)	181
20G	95
20J (Gamma, V3)	86
20A	55
21C (Epsilon)	23
20B	23
21F (Iota)	8
20C	8
20H (Beta, V2)	4
19B	4
21B (Kappa)	2
19A	2
21D (Eta)	1

```
limited_clade_collection_diagnostics_surveillance <- clade_collection_diagnostics_surveillance %%
  filter(clade %in% c(
    "21A (Delta)",
   "20I (Alpha, V1)",
    "20J (Gamma, V3)",
    "20G"
  )) %>%
  mutate(clade = factor(clade,
   levels = c(
      "20G",
      "20I (Alpha, V1)",
     "20J (Gamma, V3)",
      "21A (Delta)"
   )
  )) %>%
  select(testkit_id, clade, ct_RNaseP, ct_N) %>%
  ungroup()
glimpse(limited_clade_collection_diagnostics_surveillance)
## Rows: 1,053
## Columns: 4
```

Summary of the limited_clade_collection_diagnostics_surveillance table:

```
summary(limited_clade_collection_diagnostics_surveillance)
```

```
## 21A (Delta) :691 Mean :19.48 Mean :23.02
## 3rd Qu.:20.57 3rd Qu.:26.15
## Max. :34.35 Max. :33.27
```

Median and range of patient age whose samples are in the limited_clade_collection_diagnostics_surveillance table as follows:

```
sample_collection_table %>%
  mutate(collection_date = year(as_datetime(collection_date))) %>%
  filter(testkit_id %in% limited_clade_collection_diagnostics_surveillance$testkit_id) %>%
  left_join(demographics_table, by = "patient_id") %>%
  mutate(age_at_sample_collection = (collection_date - birth_year)) %%
  select(testkit_id, patient_id, age_at_sample_collection) %>%
  summarize(
   median_age_at_sample_collection = median(age_at_sample_collection),
   lowest_age_at_sample_collection = min(age_at_sample_collection),
   highest_age_at_sample_collection = max(age_at_sample_collection)
  ) %>%
  kbl() %>%
  kable_classic_2(
   full_width = F,
   latex_options = c(
      "hold_position",
      "striped"
    )
```

$median_age_at_sample_collection$	lowest_age_at_sample_collection	highest_age_at_sample_collection
21	0	91

The counts of each gender in the limited_clade_collection_diagnostics_surveillance table are as follows:

```
sample_collection_table %>%
  filter(testkit_id %in% limited_clade_collection_diagnostics_surveillance$testkit_id) %>%
  group_by(gender) %>%
  summarize(count = n()) %>%
  kbl() %>%
  kable_classic_2(
    full_width = F,
    latex_options = c(
        "hold_position",
        "striped"
    )
    )
}
```

gender	count
F	500
M	553

The median, IQR and range of Ct values for each clade in the limited_clade_collection_diagnostics_surveillance table are as follows:

```
limited_clade_collection_diagnostics_surveillance %>%
  group_by(clade) %>%
  summarise(
    count = n(),
    median_ct_N = round(median(ct_N), 3),
    IQR_ct_N = round(IQR(ct_N), 3),
    min_ct_N = round(range(ct_N)[1], 3),
    \max_{\text{ct}_N} = \text{round}(\text{range}(\text{ct}_N)[2], 3)
  ) %>%
  kbl() %>%
  kable_classic_2(
    full_width = F,
    latex_options = c(
      "hold_position",
      "striped",
      "scale_down"
    )
```

clade	count	$median_ct_N$	IQR_ct_N	min_ct_N	max_ct_N
20G	95	25.752	4.226	17.735	33.274
20I (Alpha, V1)	181	23.810	5.303	12.240	32.968
20J (Gamma, V3)	86	24.688	5.852	13.310	31.212
21A (Delta)	691	22.560	5.889	10.675	32.355

```
limited_clade_collection_diagnostics_surveillance %>%
  group_by(clade) %>%
  summarise(
    count = n(),
    median_ct_RNaseP = round(median(ct_RNaseP), 3),
    IQR_ct_RNaseP = round(IQR(ct_RNaseP), 3),
    min_ct_RNaseP = round(range(ct_RNaseP)[1], 3),
    max_ct_RNaseP = round(range(ct_RNaseP)[2], 3)
  ) %>%
  kbl() %>%
  kable_classic_2(
   full width = F,
    latex_options = c(
      "hold_position",
      "striped",
      "scale_down"
    )
  )
```

clade	count	median_ct_RNaseP	IQR_ct_RNaseP	$\min_{\text{ct}} RNaseP$	max_ct_RNaseP
20G	95	19.180	2.560	15.714	25.753
20I (Alpha, V1)	181	18.772	2.890	15.330	34.350
20J (Gamma, V3)	86	19.167	3.598	15.590	28.708
21A (Delta)	691	18.935	2.635	14.485	32.160

6.4 N gene

6.4.1 Assumptions

6.4.1.1 Independence No two samples came from the same patient_id. The samples are from Clemson University's COVID19 testing program and the order priority of these samples were labeled as surveillance. The CU REDDI lab chose samples that were sent for sequencing.

6.4.1.2 Normality:

```
res_aov_n_surveillance <- aov(ct_N ~ clade,
    data = limited_clade_collection_diagnostics_surveillance
)
hist(res_aov_n_surveillance$residuals)</pre>
```

6.4.1.2.1 Histogram of Residuals

Histogram of res_aov_n_surveillance\$residuals

The histogram shows a slightly left skewed distribution.

```
qqPlot(res_aov_n_surveillance$residuals,
   id = FALSE
)
```

6.4.1.2.2 QQ-Plot of Residuals

6.4.1.2.3 Shapiro-Wilk

Null Hypothesis: Data comes from a normal distribution.

Alternate Hypothesis: Data does not come from a normal distribution.

shapiro.test(res_aov_n_surveillance\$residuals)

```
##
## Shapiro-Wilk normality test
##
## data: res_aov_n_surveillance$residuals
## W = 0.99412, p-value = 0.0003742
```

Since p-value < 0.05, we reject the null hypothesis. The data not follow a normal distribution.

6.4.1.3 Equality of Variances

```
p <- limited_clade_collection_diagnostics_surveillance %>%
    ggviolin(
    x = "clade",
    y = "ct_N",
    fill = "cyan",
    add = c("jitter", "boxplot"),
    add.params = list(alpha = 0.1),
    notch = TRUE
    )

ggpar(p, orientation = "horiz")
```

6.4.1.3.1 Box Plot

6.4.1.3.2 Levene's Test

Null Hypothesis : Variances are equal.

Alternate Hypothesis : At least one variance is different.

```
leveneTest(ct_N ~ clade,
    data = limited_clade_collection_diagnostics_surveillance
)

## Levene's Test for Homogeneity of Variance (center = median)

## Df F value Pr(>F)

## group 3 4.0785 0.006822 **

## 1049

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Since p-value < 0.05, we reject the null hypothesis. Equality of Variances assumption is not met.
```

6.4.2 Kruskal-Wallis Test for Stochastic Dominance

Null Hypothesis:

```
H_0: P(Xi > Xj) = 0.5 for all groups i and j from 1 to k
```

Alternate Hypothesis:

```
H_A: P(Xi > Xj) \neq 0.5 for at least one group i \neq j
```

From Non-normal distribution even with Kruskal-Wallis test.

```
kruskal.test(ct_N ~ clade,
    data = limited_clade_collection_diagnostics_surveillance
)
```

```
##
## Kruskal-Wallis rank sum test
##
## data: ct_N by clade
## Kruskal-Wallis chi-squared = 56.708, df = 3, p-value = 2.967e-12
```

Since p-value < 0.05, we reject the null hypothesis. The groups are sampled from populations with different distributions.

6.4.3 Kruskal-Wallis Effect Size

```
kruskal_effsize(ct_N ~ clade,
    data = limited_clade_collection_diagnostics_surveillance
) %>%
    kbl() %>%
    kable_classic_2(
    full_width = F,
    latex_options = c(
        "hold_position",
        "striped"
    )
)
```

.y.	n			magnitude
ct_N	1053	0.0511989	eta2[H]	small

6.4.4 Dunn's Test of Multiple Comparisons

.y.	group1	group2	n1	n2	statistic	p	p.adj	p.adj.signif
ct_N	20G	20I (Alpha, V1)	95	181	-3.462600	0.0005350	0.0021399	**
ct_N	20G	20J (Gamma, V3)	95	86	-1.911782	0.0559042	0.1118084	ns
ct_N	20G	21A (Delta)	95	691	-6.587392	0.0000000	0.0000000	****
ct_N	20I (Alpha, V1)	20J (Gamma, V3)	181	86	1.176868	0.2392480	0.2392480	ns
ct_N	20I (Alpha, V1)	21A (Delta)	181	691	-3.378820	0.0007280	0.0021839	**
ct_N	20J (Gamma, V3)	21A (Delta)	86	691	-3.815252	0.0001360	0.0006802	***

There are significant differences in Ct values of N gene between 21A (Delta) and other clades in the study. Additionally, there is a significant difference in Ct values of N gene between 20I (Alpha, V1) and 20G.

6.4.5 KW Visualization

```
ggbetweenstats(
 data = limited_clade_collection_diagnostics_surveillance,
 x = clade,
 y = ct_N,
 type = "nonparametric",
 xlab = "Clade",
 ylab = "Ct for N gene",
 var.equal = FALSE,
  plot.type = "boxviolin",
  pairwise.comparisons = TRUE,
  pairwise.display = "significant",
  centrality.plotting = FALSE,
 bf.message = FALSE,
 p.adjust.method = "holm"
  scale_color_manual(values = c(
    "dodgerblue2",
   "#E31A1C",
```

```
"green4",
"#6A3D9A"
))
```

Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.

Pairwise test: Dunn test, Comparisons shown: only significant

6.4.6 Welch's ANOVA

```
welch_anova_test(
  formula = ct_N ~ clade,
  data = limited_clade_collection_diagnostics_surveillance
)

## # A tibble: 1 x 7

## .y. n statistic DFn DFd p method

## * <chr> <int> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 ct_N 1053 26.8 3 233. 6.19e-15 Welch ANOVA
```

6.4.7 Games-Howell Test

```
games_howell_test(ct_N ~ clade,
    data = limited_clade_collection_diagnostics_surveillance
) %>%
    kbl() %>%
    kble_classic_2(
    full_width = F,
    latex_options = c(
        "hold_position",
        "striped"
    )
)
```

.y.	group1	group2	estimate	conf.low	conf.high	p.adj	p.adj.signif
ct_N	20G	20I (Alpha, V1)	-1.7752235	-2.9246345	-0.6258126	0.000495	***
ct_N	20G	20J (Gamma, V3)	-1.1734858	-2.5446256	0.1976541	0.122000	ns
ct_N	20G	21A (Delta)	-3.0359345	-3.9716066	-2.1002624	0.000000	****
ct_N	20I (Alpha, V1)	20J (Gamma, V3)	0.6017378	-0.7486234	1.9520990	0.655000	ns
ct_N	20I (Alpha, V1)	21A (Delta)	-1.2607109	-2.1622121	-0.3592098	0.002000	**
ct_N	20J (Gamma, V3)	21A (Delta)	-1.8624487	-3.0384119	-0.6864856	0.000402	***

6.4.8 Welch's ANOVA Visualization

```
ggbetweenstats(
 data = limited_clade_collection_diagnostics_surveillance,
  x = clade,
 y = ct_N,
 type = "parametric",
 xlab = "Clade",
 ylab = "Ct for N gene",
 var.equal = FALSE,
 plot.type = "boxviolin"
) +
  scale_color_manual(values = c(
    "dodgerblue2",
    "#E31A1C",
    "green4",
    "#6A3D9A"
  ))
```

```
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
```


6.5 CONTROL: Compare Ct values for the Human RNase P gene

6.5.1 Assumptions

6.5.1.1 Normality:

```
res_aov_rnasep_surveillance <- aov(ct_RNaseP ~ clade,
   data = limited_clade_collection_diagnostics_surveillance
)
hist(res_aov_rnasep_surveillance$residuals)</pre>
```

6.5.1.1.1 Histogram of Residuals

Histogram of res_aov_rnasep_surveillance\$residuals

There is a strong right skew according to the histogram.

```
qqPlot(res_aov_rnasep_surveillance$residuals,
   id = FALSE
)
```

$\bf 6.5.1.1.2 \quad QQ\text{-}Plot \ of \ Residuals$

6.5.1.1.3 Shapiro-Wilk

Null Hypothesis: Data comes from a normal distribution.

Alternate Hypothesis: Data does not come from a normal distribution.

shapiro.test(res_aov_rnasep_surveillance\$residuals)

```
##
## Shapiro-Wilk normality test
##
## data: res_aov_rnasep_surveillance$residuals
## W = 0.90703, p-value < 2.2e-16</pre>
```

Since p-value < 0.05, we reject the null hypothesis. The data does not follow a normal distribution.

6.5.1.2 Equality of Variances

```
p <- limited_clade_collection_diagnostics_surveillance %>%
    ggviolin(
    x = "clade",
    y = "ct_RNaseP",
    fill = "grey",
```

```
add = c("jitter", "boxplot"),
  add.params = list(alpha = 0.1),
  notch = TRUE
)

ggpar(p, orientation = "horiz")
```

6.5.1.2.1 Box Plot

6.5.1.2.2 Levene's Test

Null Hypothesis : Variances are equal.

Alternate Hypothesis : At least one variance is different.

```
leveneTest(ct_RNaseP ~ clade,
    data = limited_clade_collection_diagnostics_surveillance
)

## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 3 3.9001 0.008719 **
```

```
## 1049
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Since p-value < 0.05, we reject the null hypothesis. Equality of Variances assumption is not met.

6.5.2 Kruskal-Wallis Test for Stochastic Dominance

```
Null Hypothesis:
```

```
H_0: P(Xi > Xj) = 0.5 for all groups i and j from 1 to k Alternate Hypothesis :
```

 $H_A: P(Xi > Xj) \neq 0.5$ for at least one group $i \neq j$

From Non-normal distribution even with Kruskal-Wallis test.

```
kruskal.test(ct_RNaseP ~ clade,
    data = limited_clade_collection_diagnostics_surveillance
)
```

```
##
## Kruskal-Wallis rank sum test
##
## data: ct_RNaseP by clade
## Kruskal-Wallis chi-squared = 0.86757, df = 3, p-value = 0.8332
```

Since the p-value is > 0.05, we cannot reject the null hypothesis. There is no significant difference in Ct values for RNase P gene between the different clades in this study.

6.5.3 KW Visualization

```
ggbetweenstats(
 data = limited_clade_collection_diagnostics_surveillance,
 x = clade,
 y = ct_RNaseP,
 type = "nonparametric",
  xlab = "Clade",
 ylab = "Ct for RNase P gene (control)",
  var.equal = FALSE,
 plot.type = "boxviolin",
  pairwise.comparisons = FALSE,
 centrality.plotting = FALSE,
  bf.message = FALSE,
) +
  scale_color_manual(values = c(
    "dodgerblue2",
    "#E31A1C",
    "green4",
    "#6A3D9A"
  ))
```

Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.

6.6 Conclusions

We analysed the results from 1053 SARS-CoV-2 infected patients from the COVID19 surveillance testing program in the university area (median age 21 years [<1 year to 91 years], 553 Male: 500 Female).

The clade composition among the sequenced samples were as follows:

20G : 95 20I (Alpha, V1):181 20J (Gamma, V3): 86 21A (Delta) :691

Statistical analyses were performed in an R environment (Kruskal-Wallis test followed by Dunn's test of multiple comparisons). There were significant differences in the Ct values for N gene between 21A (Delta) [median: 22.560, range: 10.675-32.355] and other clades [20G: 25.752 (17.735-33.274), 20I (Alpha, V1): 23.810 (12.240-32.968), 20J (Gamma, V3): 24.688 (13.310-31.212)]. Additionally, there was a significant difference in Ct values for N gene between 20I (Alpha, V1) and 20G.

Concurrently, the Ct values for the RNase P control did not exhibit a statistically significant difference among these clades [20G: 19.180 (15.714-25.753), 20I (Alpha, V1): 18.772 (15.330-34.350), 20J (Gamma, V3): 19.167 (15.590-28.708), 21A (Delta): 18.935 (14.485-32.160)].

These results suggests significant differences in the viral load of 21A (Delta) relative to the other clades.

7 symptomatic Samples Only

In the following steps, we are limiting our study to samples in the symptomatic category. We filter the clades_and_collection for such samples and name the output table as clades_and_collection_symptomatic.

```
clades_and_collection_symptomatic <- clades_and_collection %>%
      filter(order_priority == "SYMPTOMATIC")
glimpse(clades_and_collection_symptomatic)
## Rows: 192
## Columns: 10
## $ patient_id
                                                                      <chr> "6e7e2e2183a368ea0ae832df", "7ca4cbe296aea284c226cd16~
## $ testkit_id
                                                                      <chr> "117M18DCD4E4B5AECE", "117M18DBD6617396JO", "117M18DB~
## $ collection_date <date> 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 20
                                                                      <fct> "20G", "20G", "20G", "20B", "20G", "20G", "20C", "20G~
## $ clade
                                                                      <fct> UNIVERSITY, COMMUNITY, COMMUNITY, COMMUNITY, COMMUNIT~
## $ population
## $ order priority
                                                                      <fct> SYMPTOMATIC, SYMPTOMATIC, SYMPTOMATIC, SYMPTOMATIC, S~
## $ gender
                                                                      <fct> F, F, M, F, F, F, M, M, F, M, M, F, F, M, M, M, M, ~
## $ pipeline
                                                                      <fct> nf-core/viralrecon, nf-core/viralrecon, nf-core/viral~
```

<fct> POSITIVE, POSITIVE, POSITIVE, POSITIVE, POSITIVE, POS~

The summary of the clades_and_collection_symptomatic table is as follows:

```
summary(clades_and_collection_symptomatic)
```

\$ rymedi result

```
##
     patient_id
                         testkit_id
                                            collection date
##
    Length:192
                        Length:192
                                           Min.
                                                   :2021-01-13
    Class :character
                        Class : character
                                            1st Qu.:2021-03-10
##
    Mode :character
                        Mode :character
                                           Median :2021-04-20
##
                                           Mean
                                                   :2021-05-18
                                            3rd Qu.:2021-08-10
##
##
                                                   :2021-11-09
                                           Max.
##
                clade
##
                               population
                                                 order_priority gender
##
    21A (Delta)
                    :72
                          UNIVERSITY: 6
                                            SURVEILLANCE: 0
                                                                 M:98
    20I (Alpha, V1):58
                          ATHLETICS : 1
                                           SYMPTOMATIC: 192
                                                                 F:94
##
##
    20G
                    :39
                          COMMUNITY:185
                                           EXPOSED
##
    20A
                    : 7
                          TRICOUNTY: 0
                                           ONE DAY
##
   20B
                    : 5
##
    21F (Iota)
                    : 4
##
    (Other)
                    : 7
##
    pregnancy_status
                                    pipeline
                                                 rymedi_result
   YES : 2
                     nf-core/viralrecon:192
                                                POSITIVE: 192
   NO :92
##
    NA's:98
##
##
##
##
##
```

7.1 Bar Plots with Monthly Count for each Clade: symptomatic Samples Only

The clades present in clades_and_collection_symptomatic when only symptomatic samples are considered are as follows:

```
clades_and_collection_symptomatic %>%
  pull(clade) %>%
 unique()
##
   [1] 20G
                        20B
                                         20C
                                                         20A
  [5] 21C (Epsilon)
                        20I (Alpha, V1) 21F (Iota)
                                                         20J (Gamma, V3)
## [9] 21D (Eta)
                        21A (Delta)
## 14 Levels: 20I (Alpha, V1) 20G 21A (Delta) 21F (Iota) 20C 21C (Epsilon) ... 21D (Eta)
(clades_factor_level <- sort(as.character(clades_factor_level)))</pre>
## [1] "19A"
                          "19B"
                                             "20A"
                                                                "20B"
## [5] "20C"
                          "20G"
                                             "20H (Beta, V2)"
                                                               "20I (Alpha, V1)"
## [9] "20J (Gamma, V3)" "21A (Delta)"
                                             "21B (Kappa)"
                                                                "21C (Epsilon)"
## [13] "21D (Eta)"
                          "21F (Iota)"
```

From clades_and_collection_symptomatic, we tabulate the count of each clade among sequenced samples collected in each month of 2021.

```
monthly_clade_date_symptomatic <- clades_and_collection_symptomatic %>%
  mutate(
    collection_period = as.yearmon(collection_date),
    clade = factor(clade,
        levels = clades_factor_level
    )
    ) %>%
    group_by(collection_period, clade) %>%
    summarize(count = n())

glimpse(monthly_clade_date_symptomatic)
```

Visualizing the table above using a stacked bar plot.

```
ggplot(
  monthly_clade_date_symptomatic,
  aes(
    x = collection_period,
    y = count,
  fill = clade
```

```
) +
  geom_bar(colour = "black", position = "stack", stat = "identity") +
  scale_x_yearmon(breaks = monthly_clade_date$collection_period) +
  scale_fill_manual(values = color_tbl %>%
    filter(clade %in% monthly_clade_date_symptomatic$clade) %>%
    pull(color)) +
  labs(
    y = "Number of Sequenced Samples",
    x = "Sample Collection Period"
  ) +
  theme_pubclean() +
  theme(
    legend.position = "right",
    legend.title = element_blank(),
    legend.key.size = unit(0.5, "cm"),
    axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)
```



```
ggplot(
  monthly_clade_date_symptomatic,
  aes(
    x = collection_period,
    y = count,
```

```
fill = clade
  )
) +
  geom_col(colour = "black", position = "fill") +
  scale_y_continuous(labels = scales::percent) +
  scale_x_yearmon(breaks = monthly_clade_date$collection_period) +
  scale_fill_manual(values = color_tbl %>%
    filter(clade %in% monthly_clade_date_symptomatic$clade) %>%
    pull(color)) +
  labs(
    y = "% Sequenced Samples",
    x = "Sample Collection Period"
  ) +
  theme_pubclean() +
  theme(
    legend.position = "right",
    legend.title = element_blank(),
    legend.key.size = unit(0.5, "cm"),
    axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)
```


7.2 Preparing diagnostics data for symptomatic-only set of samples

Our goal is to determine whether 21A (Delta) shows lower Ct values for N gene when compared with the clades 20I (Alpha, V1), 20G, and 20J (Gamma, V3) when only the symptomatic samples are considered. In order to know that, we use the Ct values for N gene from the REDDI lab dataset. Since two replicates were done for each qRT-PCR reaction, we will compute the mean Ct for N gene and RNase P control for each testkit_id

```
diagnostics_data_symptomatic <- diagnostics_table %>%
  filter(testkit_id %in% clades_and_collection_symptomatic$testkit_id) %>%
  select(testkit_id, ct_rnasep_rep1, ct_rnasep_rep2, ct_N_rep1, ct_N_rep2) %>%
  arrange(testkit id) %>%
  mutate(
   average_ct_rnasep = rowMeans(.[, c("ct_rnasep_rep1", "ct_rnasep_rep2")], na.rm = TRUE),
   average_ct_N = rowMeans(.[, c("ct_N_rep1", "ct_N_rep2")], na.rm = TRUE)
  ) %>%
  select(-c(
   ct_rnasep_rep1, ct_rnasep_rep2,
    ct_N_rep1, ct_N_rep2
  )) %>%
  group_by(testkit_id) %>%
  summarise(
    ct_RNaseP = mean(average_ct_rnasep, na.rm = TRUE),
   ct_N = mean(average_ct_N, na.rm = TRUE)
  )
diagnostics_data_symptomatic %>%
  filter(!complete.cases(.)) %>%
  kbl() %>%
  kable_classic_2(
   full width = F,
   latex_options = c(
      "hold_position",
      "striped"
    )
  )
```

$\operatorname{testkit_id}$	ct_RNaseP	ct_N
117M18DCB7CE53ED5Q	NaN	22.70748
117M18DCB7CE7001AZ	NaN	22.73960
117M18DCB7CE7F0BO1	NaN	17.95333
117M18DCB7CE81040Q	NaN	24.27213
117M18E355CFD320PV	NaN	29.74500

5 testkit_ids do not have a ct value for RNase P. We will use imputation to deal with the missing values.

7.3 Join clade_assignments and diagnostics_data

We join clades_and_collection_symptomatic and the diagnostics data to get the clade_collection_diagnostics_symptotable.

```
clade_collection_diagnostics_symptomatic <- clades_and_collection_symptomatic %>%
    inner_join(diagnostics_data_symptomatic, by = "testkit_id")
glimpse(clade_collection_diagnostics_symptomatic)
## Rows: 190
## Columns: 12
                                         <chr> "6e7e2e2183a368ea0ae832df", "7ca4cbe296aea284c226cd16~
## $ patient_id
## $ testkit id
                                          <chr> "117M18DCD4E4B5AECE", "117M18DBD6617396JO", "117M18DB~
## $ collection date <date> 2021-01-13, 2021-01-13, 2021-01-13, 2021-01-13, 2021-
                                           <fct> "20G", "20G", "20G", "20B", "20G", "20G", "20C", "20G~
## $ clade
## $ population <fct> UNIVERSITY, COMMUNITY, COMMUNITY, COMMUNITY, COMMUNITY
## $ order_priority <fct> SYMPTOMATIC, SYMPTOMATIC, SYMPTOMATIC, SYMPTOMATIC, S~
## $ gender
                                            <fct> F, F, M, F, F, F, M, M, F, M, M, F, F, M, M, M, M, ~
## $ pipeline <fct> nf-core/viralrecon, nf-cor
## $ rymedi_result <fct> POSITIVE, POSITIVE, POSITIVE, POSITIVE, POSITIVE, POS-
                                            <dbl> 21.27448, 21.00248, 17.12404, 19.25705, 18.04183, 22.~
## $ ct_RNaseP
## $ ct_N
                                            <dbl> 19.55871, 26.42359, 17.39554, 28.29983, 22.63608, 25.~
Since many samples had missing Ct values for RNase P, we impute median value of ct_RNaseP for each
clade to the missing values.
get_median_ct_symptomatic <- function(input_clade) {</pre>
   median RNAseP <- clade collection diagnostics symptomatic %>%
       filter(clade == input_clade) %>%
       pull(ct RNaseP) %>%
       median(na.rm = TRUE)
    return(median RNAseP)
Median Ct RNase P - 20I (Alpha, V1)
# 20I (Alpha, V1)
(median RNAseP 20I symptomatic <- get median ct symptomatic("20I (Alpha, V1)"))
## [1] 18.555
Median Ct RNase P - 21A (Delta)
# 21A (Delta)
(median_RNAseP_21A_symptomatic <- get_median_ct_symptomatic("21A (Delta)"))</pre>
## [1] 18.54
Median Ct RNase P - 20G
# 20G
(median_RNAseP_20G_symptomatic <- get_median_ct_symptomatic("20G"))</pre>
```

```
## [1] 19.32
```

Median Ct RNase P - 20J (Gamma, V3)

```
# 20J (Gamma, V3)
(median_RNAseP_20J_symptomatic <- get_median_ct_symptomatic("20J (Gamma, V3)"))
## [1] 23.03</pre>
```

Summary of the clade_collection_diagnostics table after imputation

```
clade_collection_diagnostics_symptomatic <- clade_collection_diagnostics_symptomatic %>%
  mutate(
   ct_RNaseP = replace(
      ct_RNaseP,
      (is.na(ct_RNaseP) & (clade == "20I (Alpha, V1)")),
      median RNAseP 20I symptomatic
   ),
    ct RNaseP = replace(
      ct_RNaseP,
      (is.na(ct_RNaseP) & (clade == "21A (Delta)")),
      median_RNAseP_21A_symptomatic
   ),
    ct_RNaseP = replace(
      ct_RNaseP,
      (is.na(ct_RNaseP) & (clade == "20G")),
      median_RNAseP_20G_symptomatic
   ),
   ct_RNaseP = replace(
      ct_RNaseP,
      (is.na(ct_RNaseP) & (clade == "20J (Gamma, V3)")),
      median_RNAseP_20J_symptomatic
   )
  )
summary(clade_collection_diagnostics_symptomatic)
```

```
##
    patient_id
                       testkit_id
                                         collection_date
##
   Length: 190
                      Length: 190
                                         Min.
                                                :2021-01-13
## Class :character
                      Class :character
                                         1st Qu.:2021-03-10
  Mode :character Mode :character
                                         Median :2021-04-20
##
                                         Mean
                                                :2021-05-17
##
                                         3rd Qu.:2021-08-09
##
                                         Max.
                                                :2021-11-09
##
##
                clade
                             population
                                              order_priority gender
   21A (Delta)
                                         SURVEILLANCE: 0
##
                   :70
                        UNIVERSITY: 6
                                                             M:97
## 20I (Alpha, V1):58
                        ATHLETICS : 1
                                         SYMPTOMATIC: 190
                                                             F:93
                        COMMUNITY:183
## 20G
                   :39
                                         EXPOSED
                                                     : 0
## 20A
                   : 7
                        TRICOUNTY: 0
                                         ONE DAY
## 20B
                  : 5
## 21F (Iota)
                  : 4
```

```
##
    (Other)
                    : 7
                                                 rymedi_result
                                                                   ct_RNaseP
##
    pregnancy_status
                                     pipeline
                                                 POSITIVE: 190
                                                                        :14.12
   YES : 2
                      nf-core/viralrecon:190
                                                                Min.
   NO :91
                                                                 1st Qu.:17.51
##
##
    NA's:97
                                                                Median :18.67
##
                                                                Mean
                                                                        :19.34
##
                                                                 3rd Qu.:20.47
                                                                        :33.28
##
                                                                Max.
##
                                                                NA's
                                                                        :3
##
         ct_N
##
   Min.
           : 7.98
    1st Qu.:20.25
##
    Median :23.11
##
##
   Mean
           :22.96
##
    3rd Qu.:26.15
##
    Max.
           :32.51
##
```

The counts of different clades in the clade_collection_diagnostics table are as follows:

```
clade_collection_diagnostics_symptomatic %>%
  group_by(clade) %>%
  summarize(count = n()) %>%
  arrange(desc(count)) %>%
  kbl() %>%
  kable_classic_2(
    full_width = F,
    latex_options = c(
        "hold_position",
        "striped"
    )
)
```

count
70
58
39
7
5
4
4
1
1
1

As in the previous analysis, in order to not affect our assumption of phylogenetic independence, we are only going to compare Ct values for variants at terminal nodes of NextClade tree. We extract data from clade_collection_diagnostics_symptomatic table and create a new table limited_clade_collection_diagnostics_symptomatic with only data for the following clades:

```
21A (Delta)
20I (Alpha, V1)
20G
```

```
limited_clade_collection_diagnostics_symptomatic <- clade_collection_diagnostics_symptomatic %>%
  filter(clade %in% c(
    "21A (Delta)",
    "20I (Alpha, V1)",
    "20G"
  )) %>%
  mutate(clade = factor(clade,
   levels = c(
     "20G",
      "20I (Alpha, V1)",
      "21A (Delta)"
   )
  )) %>%
  select(testkit_id, clade, ct_RNaseP, ct_N) %>%
  ungroup()
glimpse(limited_clade_collection_diagnostics_symptomatic)
## Rows: 167
## Columns: 4
## $ testkit id <chr> "117M18DCD4E4B5AECE", "117M18DBD6617396JO", "117M18DBD3F633~
                <fct> "20G", "20G", "20G", "20G", "20G", "20G", "20G", "20G", "20G", "20~
## $ clade
## $ ct_RNaseP <dbl> 21.27448, 21.00248, 17.12404, 18.04183, 22.68423, 21.34041,~
## $ ct N
                <dbl> 19.55871, 26.42359, 17.39554, 22.63608, 25.70162, 15.63790,~
```

Summary of the limited_clade_collection_diagnostics_symptomatic table:

```
summary(limited_clade_collection_diagnostics_symptomatic)
```

```
testkit_id
                                    clade
                                                \mathsf{ct}_{\mathtt{RNaseP}}
##
                                                                    \mathsf{ct}_{\mathtt{N}}
                        20G
## Length:167
                                       :39
                                             Min. :14.69
                                                              Min.
                                                                    : 7.98
## Class :character
                       20I (Alpha, V1):58
                                             1st Qu.:17.38 1st Qu.:20.34
## Mode :character 21A (Delta)
                                       :70
                                             Median :18.61
                                                              Median :23.05
##
                                              Mean :19.26 Mean
                                                                     :22.84
##
                                              3rd Qu.:20.03 3rd Qu.:26.09
##
                                              Max. :33.28
                                                              Max.
                                                                     :32.51
```

Median and range of patient age whose samples are in the limited_clade_collection_diagnostics_symptomatic table as follows:

```
sample_collection_table %>%
  mutate(collection_date = year(as_datetime(collection_date))) %>%
  filter(testkit_id %in% limited_clade_collection_diagnostics_symptomatic$testkit_id) %>%
  left_join(demographics_table, by = "patient_id") %>%
  mutate(age_at_sample_collection = (collection_date - birth_year)) %>%
  select(testkit_id, patient_id, age_at_sample_collection) %>%
  summarize(
    median_age_at_sample_collection = median(age_at_sample_collection),
    lowest_age_at_sample_collection = min(age_at_sample_collection),
    highest_age_at_sample_collection = max(age_at_sample_collection)
) %>%
  kbl() %>%
```

```
kable_classic_2(
  full_width = F,
  latex_options = c(
    "hold_position",
    "striped"
)
)
```

median_age_at_sample_collection	lowest_age_at_sample_collection	highest_age_at_sample_collection
32	5	82

The counts of each gender in the limited_clade_collection_diagnostics_symptomatic table are as follows:

```
sample_collection_table %>%
  filter(testkit_id %in% limited_clade_collection_diagnostics_symptomatic$testkit_id) %>%
  group_by(gender) %>%
  summarize(count = n()) %>%
  kbl() %>%
  kable_classic_2(
    full_width = F,
    latex_options = c(
        "hold_position",
        "striped"
    )
}
```

gender	count
F	81
M	86

The median, IQR, and range of Ct values for each clade in the limited_clade_collection_diagnostics_symptomatic table are as follows:

```
limited_clade_collection_diagnostics_symptomatic %>%
  group_by(clade) %>%
  summarise(
    count = n(),
    median_ct_N = round(median(ct_N), 3),
    IQR_ct_N = round(IQR(ct_N), 3),
    min_ct_N = round(range(ct_N)[1], 3),
    max_ct_N = round(range(ct_N)[2], 3)
  ) %>%
  kbl() %>%
  kable_classic_2(
    full_width = F,
    latex_options = c(
      "hold_position",
      "striped",
      "scale down"
    )
```

clade	count	median_ct_N	IQR_ct_N	min_ct_N	max_ct_N
20G	39	23.165	6.681	12.870	29.890
20I (Alpha, V1)	58	23.230	6.484	13.225	32.505
21A (Delta)	70	22.985	5.238	7.980	29.980

```
limited_clade_collection_diagnostics_symptomatic %>%
  group_by(clade) %>%
  summarise(
   count = n(),
   median_ct_RNaseP = round(median(ct_RNaseP), 3),
   IQR_ct_RNaseP = round(IQR(ct_RNaseP), 3),
   min_ct_RNaseP = round(range(ct_RNaseP)[1], 3),
   max_ct_RNaseP = round(range(ct_RNaseP)[2], 3)
 ) %>%
 kbl() %>%
 kable_classic_2(
   full_width = F,
   latex_options = c(
      "hold_position",
      "striped",
      "scale down"
   )
 )
```

clade	count	median_ct_RNaseP	IQR_ct_RNaseP	$\min_{ct}RNaseP$	max_ct_RNaseP
20G	39	19.320	4.108	16.28	28.89
20I (Alpha, V1)	58	18.555	3.227	16.15	29.92
21A (Delta)	70	18.540	2.189	14.69	33.28

7.4 N gene

7.4.1 Assumptions

7.4.1.1 Independence No two samples came from the same patient_id. The samples are from Clemson University's COVID19 testing program and the order priority of these samples were labeled as symptomatic. The CU REDDI lab chose samples that were sent for sequencing.

7.4.1.2 Normality:

```
res_aov_n_symptomatic <- aov(ct_N ~ clade,
    data = limited_clade_collection_diagnostics_symptomatic
)
hist(res_aov_n_symptomatic$residuals)</pre>
```

7.4.1.2.1 Histogram of Residuals

Histogram of res_aov_n_symptomatic\$residuals

The histogram shows a slightly left skewed distribution.

```
qqPlot(res_aov_n_symptomatic$residuals,
   id = FALSE
)
```

7.4.1.2.2 QQ-Plot of Residuals

7.4.1.2.3 Shapiro-Wilk

Null Hypothesis: Data comes from a normal distribution.

Alternate Hypothesis: Data does not come from a normal distribution.

shapiro.test(res_aov_n_symptomatic\$residuals)

```
##
## Shapiro-Wilk normality test
##
## data: res_aov_n_symptomatic$residuals
## W = 0.97964, p-value = 0.01476
```

Since p-value < 0.05, we reject the null hypothesis. The data not follow a normal distribution.

7.4.1.3 Equality of Variances

```
p <- limited_clade_collection_diagnostics_symptomatic %>%
    ggviolin(
    x = "clade",
    y = "ct_N",
    fill = "cyan",
```

```
add = c("jitter", "boxplot"),
  add.params = list(alpha = 0.1),
  notch = TRUE
)

ggpar(p, orientation = "horiz")
```

7.4.1.3.1 Box Plot

7.4.1.3.2 Levene's Test

Null Hypothesis : Variances are equal.

Alternate Hypothesis : At least one variance is different.

```
leveneTest(ct_N ~ clade,
    data = limited_clade_collection_diagnostics_symptomatic
)

## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 0.129 0.8791
## 164
```

Since p-value > 0.05, we cannot reject the null hypothesis. Equality of Variances assumption is met.

7.4.2 Kruskal-Wallis Test for Stochastic Dominance

Null Hypothesis:

```
H_0: P(Xi > Xj) = 0.5 for all groups i and j from 1 to k
```

Alternate Hypothesis:

```
H_A: P(Xi > Xj) \neq 0.5 for at least one group i \neq j
```

From Non-normal distribution even with Kruskal-Wallis test.

```
kruskal.test(ct_N ~ clade,
    data = limited_clade_collection_diagnostics_symptomatic
)

##

## Kruskal-Wallis rank sum test
##

## data: ct_N by clade
## Kruskal-Wallis chi-squared = 4.4895, df = 2, p-value = 0.106
```

Since the p-value is > 0.05, we cannot reject the null hypothesis. There is no significant difference in Ct values for RNase P gene between the different clades in this study.

7.4.3 KW Visualization

```
ggbetweenstats(
 data = limited_clade_collection_diagnostics_symptomatic,
 x = clade,
 y = ct_N,
  type = "nonparametric",
  xlab = "Clade",
 ylab = "Ct for N gene",
  var.equal = TRUE,
  plot.type = "boxviolin",
  pairwise.comparisons = TRUE,
  pairwise.display = "significant",
  centrality.plotting = FALSE,
  bf.message = FALSE,
  p.adjust.method = "holm"
) +
  scale_color_manual(values = c(
    "dodgerblue2",
    "#E31A1C",
    "#6A3D9A"
  ))
```

Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.

Pairwise test: Dunn test, Comparisons shown: only significant

7.5 CONTROL: Compare Ct values for the Human RNase P gene

7.5.1 Assumptions

7.5.1.1 Normality:

```
res_aov_rnasep_symptomatic <- aov(ct_RNaseP ~ clade,
   data = limited_clade_collection_diagnostics_symptomatic
)
hist(res_aov_rnasep_symptomatic$residuals)</pre>
```

7.5.1.1.1 Histogram of Residuals

Histogram of res_aov_rnasep_symptomatic\$residuals

There is a strong right skew according to the histogram.

```
qqPlot(res_aov_rnasep_symptomatic$residuals,
   id = FALSE
)
```

7.5.1.1.2 QQ-Plot of Residuals

7.5.1.1.3 Shapiro-Wilk

Null Hypothesis: Data comes from a normal distribution.

Alternate Hypothesis: Data does not come from a normal distribution.

shapiro.test(res_aov_rnasep_symptomatic\$residuals)

```
##
## Shapiro-Wilk normality test
##
## data: res_aov_rnasep_symptomatic$residuals
## W = 0.82929, p-value = 1.076e-12
```

Since p-value < 0.05, we reject the null hypothesis. The data does not follow a normal distribution.

7.5.1.2 Equality of Variances

```
p <- limited_clade_collection_diagnostics_symptomatic %>%
    ggviolin(
    x = "clade",
    y = "ct_RNaseP",
    fill = "grey",
```

```
add = c("jitter", "boxplot"),
  add.params = list(alpha = 0.1),
  notch = TRUE
)

ggpar(p, orientation = "horiz")
```

7.5.1.2.1 Box Plot

7.5.1.2.2 Levene's Test

Null Hypothesis : Variances are equal.

Alternate Hypothesis : At least one variance is different.

```
leveneTest(ct_RNaseP ~ clade,
    data = limited_clade_collection_diagnostics_symptomatic
)

## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 0.1325 0.876
## 164
```

Since p-value > 0.05, we cannot reject the null hypothesis. Equality of Variances assumption is met.

7.5.2 Kruskal-Wallis Test for Stochastic Dominance

```
{\bf Null\ Hypothesis}:
```

```
H_0: P(Xi > Xj) = 0.5 for all groups i and j from 1 to k
```

Alternate Hypothesis:

```
H_A: P(Xi > Xj) \neq 0.5 for at least one group i \neq j
```

From Non-normal distribution even with Kruskal-Wallis test.

```
kruskal.test(ct_RNaseP ~ clade,
    data = limited_clade_collection_diagnostics_symptomatic
)
```

```
##
## Kruskal-Wallis rank sum test
##
## data: ct_RNaseP by clade
## Kruskal-Wallis chi-squared = 1.2302, df = 2, p-value = 0.5406
```

Since the p-value is > 0.05, we cannot reject the null hypothesis. There is no significant difference in Ct values for RNase P gene between the different clades in this study.

7.5.3 Visualization

```
ggbetweenstats(
  data = limited_clade_collection_diagnostics_symptomatic,
 x = clade,
 y = ct_RNaseP,
  type = "nonparametric",
 xlab = "Clade",
 ylab = "Ct for RNase P gene (control)",
 var.equal = TRUE,
 plot.type = "boxviolin",
 pairwise.comparisons = FALSE,
  centrality.plotting = FALSE,
 bf.message = FALSE,
  p.adjust.method = "holm"
) +
  scale_color_manual(values = c(
   "dodgerblue2",
   "#E31A1C",
    "#6A3D9A"
 ))
```

```
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
```


7.6 Conclusions

We analysed the results from 167 SARS-CoV-2 infected patients with symptomatic order priority status from the COVID19 testing program in the university area (median age 32 years [5 year to 82 years], 86 Male : 81 Female).

The clade composition among the sequenced samples were as follows:

20G : 39 20I (Alpha, V1): 58 21A (Delta) : 70

Statistical analyses were performed in an R environment (Kruskal-Wallis test). The Ct values for the N gene did not exhibit a statistically significant difference among these clades [20G:23.165~(12.870-29.890),~20I~(Alpha, V1):23.230~(13.225-32.505),~21A~(Delta):22.985~(7.980-29.980)].

Concurrently, the Ct values for the RNase P control did not exhibit a statistically significant difference among these clades $[20G:19.320\ (16.28-28.89),\ 20I\ (Alpha,\ V1):18.555\ (16.15-29.92),\ 21A\ (Delta):18.540\ (14.69-33.28)].$

These results suggests that there is no difference in the viral load of 21A (Delta) relative to the other clades.

7.7 Appendix

```
ltd_clade_symptomatic_w_gamma <- clade_collection_diagnostics_symptomatic %>%
     filter(clade %in% c(
          "21A (Delta)",
          "20I (Alpha, V1)",
          "20J (Gamma, V3)",
          "20G"
     )) %>%
     mutate(clade = factor(clade,
          levels = c(
                "20G",
               "20I (Alpha, V1)",
                "20J (Gamma, V3)",
                "21A (Delta)"
          )
     )) %>%
     select(testkit_id, clade, ct_RNaseP, ct_N) %>%
     ungroup()
glimpse(ltd_clade_symptomatic_w_gamma)
## Rows: 168
## Columns: 4
## $ testkit_id <chr> "117M18DCD4E4B5AECE", "117M18DBD6617396JO", "117M18DBD3F633~
                                       <fct> "20G", "20
## $ clade
## $ ct_RNaseP <dbl> 21.27448, 21.00248, 17.12404, 18.04183, 22.68423, 21.34041,~
## $ ct_N
                                           <dbl> 19.55871, 26.42359, 17.39554, 22.63608, 25.70162, 15.63790,~
# With our palette
ggbetweenstats(
    data = ltd_clade_symptomatic_w_gamma,
    x = clade,
     y = ct_N,
     type = "nonparametric",
     xlab = "Clade",
     ylab = "Ct value",
     var.equal = FALSE,
     plot.type = "boxviolin",
     pairwise.comparisons = FALSE,
     results.subtitle = FALSE,
     centrality.plotting = FALSE,
     bf.message = FALSE,
     p.adjust.method = "holm",
     ggtheme = ggpubr::theme_pubclean()
     scale color manual(values = c(
          "dodgerblue2",
           "#E31A1C",
          "green4",
          "#6A3D9A"
     )) +
```

```
labs(title = "N gene") +
scale_y_continuous(
  breaks = get_breaks(by = 5, from = 0),
  limits = c(5, 35)
)
```

Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.

N gene

