

Vanilla seq2seq

iPavlov.ai [Sutskever et al. 14] Sequence to Sequence Learning with Neural Networks

Vanilla seq2seq

h_i - encoder hidden states_i - decoder hidden state

Vanilla seq2seq

BOTTLENECK

 $\mathbf{h_i}$ - encoder hidden state

s_i - decoder hidden state

You can't cram the meaning of a whole %&!\$# sentence into a single \$&!#* vector!

[Sutskever et al. 14] Sequence to Sequence Learning with Neural Networks

Attention Beginnings

h_i - encoder hidden state
 s_j - decoder hidden state
 α_i - attention weight from j-th

decoder state to i-th encoder state

[Bahdanau et al. 15] Neural Machine Translation by Jointly Learning to Align and Translate [Luong et al. 15] Effective Approaches to Attention-based Neural Machine Translation

Attention Beginnings

Additive Attention

Multiplicative Attention

[Bahdanau 15]

[Luong 15]

$$\alpha_{t,i}(\mathbf{s}_t, \mathbf{h}_i) = \mathbf{v}_a^T tanh(\mathbf{W}_a[\mathbf{h}_i; \mathbf{s}_t])$$

$$\alpha_{t,i}(\mathbf{s}_t, \mathbf{h}_i) = \mathbf{h}_i^T \mathbf{W}_a \mathbf{s}_t$$

$$\alpha_{t,i}(\mathbf{s}_t, \mathbf{h}_i) = \mathbf{v}_a^T tanh(\mathbf{W}_1 \mathbf{h}_i + \mathbf{W}_2 \mathbf{s}_t)$$

[Bahdanau et al. 15] Neural Machine Translation by Jointly Learning to Align and Translate [Luong et al. 15] Effective Approaches to Attention-based Neural Machine Translation

Google seq2seq

[Britz et al. 17] Massive Exploration of Neural Machine Translation Architectures

Attention Is All You Need (Transformer)

[Vaswani et al. 17] Attention Is All You Need

Attention Is All You Need (Transformer)

Embeddings. Positional and Not

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

E_i is one of the 30k tokens vocabulary embeddings

Vaswani et al. 17 Attention Is All You Need [Alammar 18] Illustrated Transformer

iPavlov.ai

Embeddings. Positional and Not

Byte pair encoding

Start from characters:

- a, a, a, b, d, a, a, a, b, a, c
- Vocabulary: ('a', 'b', 'c', 'd')

Merge most common bigram "aa":

- **aa**, a, b, d, **aa**, a, b, a, c
- Vocabulary: ('a', 'b', 'c', 'd', 'aa')

Then merge the following most common bigram "ab":

- aa, **ab,** d, aa, **ab,** a, c
- Vocabulary: ('a', 'b', 'c', 'd', 'aa', 'ab')

And again:

- aabd, d, aabd, a, c
- Vocabulary: ('a', 'b', 'c', 'd', 'aa', 'ab', 'abbd')

An example of tokenization:

tokenize('he likes playing') →

['he', 'likes', 'play', '##ing']

Attention Is All You Need (Transformer)

[Vaswani et al. 17] Attention Is All You Need

Attention(Q, K, V) = softmax(
$$\frac{QK^T}{\sqrt{d_k}}$$
)V

[Vaswani et al. 17] Attention Is All You Need

Key-Value Attention Visualization

Multihead Attention

Multihead Attention Visualization

Feed Forward + Normalization

[Vaswani et al. 17] Attention Is All You Need

Feed Forward + Normalization

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

[Vaswani et al. 17] Attention Is All You Need

Feed Forward + Normalization

Batch Norm

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β
Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

[Ioffe and Szegedy 15] Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Layer Norm

Batch Norm

Layer Norm

$$\mathbf{h}^t = f\left[\frac{\mathbf{g}}{\sigma^t} \odot \left(\mathbf{a}^t - \mu^t\right) + \mathbf{b}\right] \qquad \mu^t = \frac{1}{H} \sum_{i=1}^H a_i^t \qquad \sigma^t = \sqrt{\frac{1}{H} \sum_{i=1}^H \left(a_i^t - \mu^t\right)^2}$$

[Ba et al. 16] Layer Normalization

Decoder

[Vaswani et al. 17] Attention Is All You Need

Decoder Masked Self-Attention

Decoder Attention to Encoder States

Visualization

Transformer: A Novel Neural Network Architecture for Language Understanding

Tricks

- BPE ~30k vocab
- Label smoothing: 0.1
- Averaging the last 5 (20 for big model) checkpoints, which were written at 10-minute intervals
- Layer norm
- Learning rate is proportional to the square root of the dimensionality of the hidden states
- 4000 warm up steps, then decreasing ~ 1 / sqrt(step). Warmup from 1e-7 to 5e-4.

Language Modelling

$$P(x_1,x_2,x_3,...,x_n) = P(x_1)P(x_2|x_1)P(x_3|x_1,x_2)...P(x_n|x_1,...,x_{n-1})$$

[Karphathy 15] The Unreasonable Effectiveness of Recurrent Neural Networks

Open Al Generative Pre-Trained Transformer

Open Al Generative Pre-Trained Transformer

Open AI Generative Pre-Trained Transformer

[Radford 18] Improving Language Understanding with Unsupervised Learning

BERT

[Devlin et al. 18] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

BERT Input Embeddings

Use the output of the masked word's position to predict the masked word

[Devlin et al. 18] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

do the following:

Use the output of the masked word's position to predict the masked word

- Possible classes: All English words

- 0.1%

- Improvisation

Aardvark

- 80% of the time: Replace the word with the [MASK] token, e.g., my dog is hairy \rightarrow my dog is [MASK]

• Rather than always replacing the chosen words with [MASK], the data generator will

- 10% of the time: Replace the word with a random word, e.g., my dog is hairy → my dog is apple
- 10% of the time: Keep the word unchanged, e.g., my dog is hairy → my dog is hairy. The purpose of this is to bias the representation towards the actual observed word.

[Devlin et al. 18] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

[Devlin et al. 18] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

[Devlin et al. 18] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERTBASE	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

System	D	ev	Test		
•	EM	F1	EM	F1	
Leaderboard (Oct	8th, 2	(018)			
Human	-	_	82.3	91.2	
#1 Ensemble - nlnet	-	-	86.0	91.7	
#2 Ensemble - QANet	-	-	84.5	90.5	
#1 Single - nlnet	-	-	83.5	90.1	
#2 Single - QANet	-	-	82.5	89.3	
Publishe	ed				
BiDAF+ELMo (Single)	-	85.8	-	-	
R.M. Reader (Single)	78.9	86.3	79.5	86.6	
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5	
Ours		111			
BERT _{BASE} (Single)	80.8	88.5	-	-	
BERT _{LARGE} (Single)	84.1	90.9	_	_	
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-	
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8	
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2	

Table 2: SQuAD results. The BERT ensemble is 7x systems which use different pre-training checkpoints and fine-tuning seeds.

System	Dev F1	Test F1
ELMo+BiLSTM+CRF	95.7	92.2
CVT+Multi (Clark et al., 2018)	-	92.6
BERT _{BASE}	96.4	92.4
BERT _{LARGE}	96.6	92.8

Table 3: CoNLL-2003 Named Entity Recognition results. The hyperparameters were selected using the Dev set, and the reported Dev and Test scores are averaged over 5 random restarts using those hyperparameters.

Learning and Evaluating General Linguistic Intelligence

Supervised pre-training tasks:

- Semantic Role Labeling
- Relation Extraction
- Natural Language Inference
- Reading Comprehension (TriviaQA and QuAC)

Model	EM (↑)	F_1 (\uparrow)
BERT	78.5	86.5
BERT + supervised	79.4	87.1
ELMo	72.1	81.8
ELMo + supervised	72.8	82.3

BERT and ELMo for MNLI

Unsupervised →SQuAD → MNLI

[Yogatama et al. 19] Learning and Evaluating General Linguistic Intelligence

Unsupervised →SQuAD → Trivia

Spasibo