

NCERT solutions for class 9 Maths Number System Ex-1.6

Q1. Find: (i) $64^{\frac{1}{5}}$ (ii) $32^{\frac{1}{5}}$ (iii) $125^{\frac{1}{3}}$

Ans: (i) $64^{\frac{1}{2}}$

We know that $a^{\frac{1}{n}} = \sqrt[n]{a}$, where a > 0.

We conclude that $64^{\frac{1}{2}}$ can also be written as

$$\sqrt[2]{64} = \sqrt[2]{8 \times 8}$$

$$\sqrt[2]{64} = \sqrt[2]{8 \times 8} = 8.$$

Therefore, the value of $64^{\frac{1}{2}}$ will be 8.

(ii) 32^{1/5}

We know that $a^{\frac{1}{n}} = \sqrt[n]{a}$, where a > 0.

We conclude that $32^{\frac{1}{5}}$ can also be written as

$$\sqrt[5]{32} = \sqrt[2]{2 \times 2 \times 2 \times 2 \times 2}$$

$$\sqrt[5]{32} = \sqrt[2]{2 \times 2 \times 2 \times 2 \times 2} = 2$$

Therefore, the value of $32^{\frac{1}{5}}$ will be 2.

(iii) 125^{1/3}

We know that $a^{\frac{1}{n}} = \sqrt[n]{a}$, where a > 0.

We conclude that $125^{\frac{1}{3}}$ can also be written as

$$\sqrt[3]{125} = \sqrt[3]{5 \times 5 \times 5}$$

$$\sqrt[3]{125} = \sqrt[3]{5 \times 5 \times 5} = 5$$

Therefore, the value of $125^{\frac{1}{3}}$ will be 5.

Q2. Find: (i)
$$9^{\frac{3}{2}}$$
 (ii) $32^{\frac{2}{5}}$ (iii) $16^{\frac{3}{4}}$ (iv) $125^{\frac{-1}{3}}$

Ans: (i) 9^{3/2}

We know that $a^{\frac{1}{n}} = \sqrt[n]{a}$, where a > 0.

We conclude that $9^{\frac{3}{2}}$ can also be written as

$$\sqrt[2]{(9)^3} = \sqrt[2]{9 \times 9 \times 9} = \sqrt[2]{3 \times 3 \times 3 \times 3 \times 3 \times 3}$$
$$\sqrt[2]{(9)^3} = \sqrt[2]{3 \times 3 \times 3 \times 3 \times 3 \times 3}$$

Therefore, the value of $9^{\frac{3}{2}}$ will be 27.

We know that $a^{\frac{1}{n}} = \sqrt[n]{a}$, where a > 0.

We conclude that $32^{\frac{2}{5}}$ can also be written as

$$\sqrt[5]{\left(32\right)^2} = \sqrt[5]{\left(2 \times 2 \times 2 \times 2 \times 2\right)\left(2 \times 2 \times 2 \times 2 \times 2\right)} = 2 \times 2$$

Therefore, the value of $32^{\frac{2}{5}}$ will be 4.

We know that $a^{\frac{1}{n}} = \sqrt[n]{a}$, where a > 0.

We conclude that $16^{\frac{3}{4}}$ can also be written as

$$\sqrt[4]{(16)^3} = \sqrt[4]{(2 \times 2 \times 2 \times 2)(2 \times 2 \times 2 \times 2)(2 \times 2 \times 2 \times 2)}$$

$$= 2 \times 2 \times 2$$

$$= 8$$

Therefore, the value of $16^{\frac{3}{4}}$ will be 8.

(iv)
$$125^{\frac{-1}{3}}$$

We know that $a^{-n} = \frac{1}{a^n}$

We conclude that $125^{\frac{-1}{3}}$ can also be written as

$$\frac{1}{125^{\frac{1}{3}}}, \operatorname{or}\left(\frac{1}{125}\right)^{\frac{1}{3}}.$$

We know that $a^{\frac{1}{n}} = \sqrt[n]{a}$, where a > 0.

We know that $\left(\frac{1}{125}\right)^{\frac{1}{3}}$ can also be written as

$$\sqrt[3]{\left(\frac{1}{125}\right)} = \sqrt[3]{\left(\frac{1}{5} \times \frac{1}{5} \times \frac{1}{5}\right)}$$
$$= \frac{1}{5}.$$

Therefore, the value of $125^{\frac{-1}{3}}$ will be $\frac{1}{5}$.

Q3. Simplify: (i)
$$2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$$

(ii)
$$\left(3^{\frac{1}{3}}\right)^7$$

(iii)
$$\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$$

(iv)
$$7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}$$

Ans: (i)
$$2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$$

We know that $a^m \cdot a^n = a^{(m+n)}$.

We can conclude that $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}} = (2)^{\frac{2}{3} + \frac{1}{5}}$.

$$2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}} = (2)^{\frac{10+3}{15}} = (2)^{\frac{13}{15}}$$

Therefore, the value of $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$ will be $(2)^{\frac{13}{15}}$.

(ii)
$$\left(3^{\frac{1}{3}}\right)^7$$

We know that $a^m \times a^n = a^{m+n}$

We conclude that $\left(3^{\frac{1}{3}}\right)^7$ can also be written as

$$\left(3^{\frac{7}{3}}\right)$$
.

(iii)
$$\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$$

We know that $\frac{a^m}{a^n} = a^{m-n}$

We conclude that $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}} = 11^{\frac{1}{2} - \frac{1}{4}}$.

$$\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}} = 11^{\frac{1}{2} - \frac{1}{4}} = 11^{\frac{2-1}{4}}$$

$$= 11^{\frac{1}{4}}$$

Therefore, the value of $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$ will be $11^{\frac{1}{4}}$.

(iv)
$$7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}$$

We know that $a^m \cdot b^m = (a \times b)^m$.

We can conclude that $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}} = (7 \times 8)^{\frac{1}{2}}$.

$$7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}} = (7 \times 8)^{\frac{1}{2}} = (56)^{\frac{1}{2}}$$

Therefore, the value of $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}$ will be $(56)^{\frac{1}{2}}$.

******* END ******