

Заполнение пропусков

Заполнение пропусков: план

- Линейная интерполяция.
- Модели для заполнения пропусков.
- Использование STL-разложения.

Линейная интерполяция

Идея

Заполним пропуски так, чтобы восстановленные значения идеально ложились на прямую (образовывали арифметическую прогрессию),

$$\Delta y_t^{imp} = const.$$

Пример:

10, NA, NA, 100.

10, 40, 70, 100

Модели для заполнения пропусков

- 1. Оцениваем модель, допускающую пропуски в данных. ARIMA подходит! И автоматическая ARIMA тоже!
- 2. Пропущенные значения y_t заменяем на условное математическое ожидание, полагая оценённые параметры модели равным истинными,

$$y_t^{imp} = \mathbb{E}(y_t \mid \mathsf{данныe}).$$

Используется фильтр Калмана.

Возможность оценивать модель на данных с пропусками сильно зависит от реализации.

Использование STL-разложения

1. Раскладываем ряд с пропусками на составляющие:

 $y_t = {\sf trend}_t + {\sf seasonal}_t + {\sf remainder}_t = {\sf seasonal}_t + {\sf deseason}_t.$ STL восстанавливает сезонную компоненту без пропусков!

- 2. Восставливаем пропущенные значения десезонированного ряда линейной интерполяцией.
- 3. Пропущенные значения y_t заменяем на сумму восстановленных десезонированных значений и сезонной составляющей,

$$y_t^{imp} = \text{seasonal}_t + \text{deseason}_t^{imp}$$
.

Зачем заполнять пропуски?

- Иногда заполнение пропусков основная задача.
- Возможность использовать больше алгоритмов прогнозирования для восстановленного ряда.
- Возможность использовать восстановленный ряд как предиктор.

Заполнение пропусков: итоги

- Линейная интерполяция: просто и быстро!
- Использование ARIMA или более сложных моделей.
- STL-разложение и восстановление компонент.
- Вариации у каждого алгоритма.

Обнаружение аномалий

Обнаружение аномалий: план

- Какое наблюдение считать аномальным?
- Алгоритмы обнаружения и исправления аномалий.
- Зачем искать аномальные наблюдения?

Какое наблюдение считать аномальным?

Деление наблюдений на аномальные и обычные субъективно.

Неформально, аномальное наблюдение выбивается из основной динамики ряда.

Что считать «основной динамикой»? Что значит «выбивается»?

Алгоритм обнаружения аномалий

• Берём любой алгоритм, позволяющий выделять из ряда остаток \hat{u}_t .

Подойдут как модели ARIMA, ETS, ..., так и алгоритм STL.

Остатком для моделей называют разницу фактическим значением и прогнозом внутри обучающей выборки.

- Оцениваем стандартную ошибку остатков.
- Если остаток по модулю больше трех стандартных ошибок, считаем наблюдение аномальным.

Исправление аномалий

Вычитаем из аномального наблюдения остаток:

$$y_t^{imp} = y_t - \hat{u}_t.$$

Зачем искать аномальные наблюдения?

- Иногда обнаружение аномалий основная задача.
- Возможность получить более точные прогнозы для исправленного ряда.
- Возможность получить более точные прогнозы, если использовать исправленный ряд как предиктор.

Обнаружение аномалий: итоги

- Берём любой алгоритм (STL, ARIMA, ETS, ...), выделяющий из ряда остаток.
- Есть куча специальных алгоритмов.
- Если остаток велик, то считаем наблюдение аномальным.
- Чтобы исправить аномальное наблюдение, заменяем остаток на ноль.
- Исправление аномальных наблюдений перед прогнозирование может улучшить прогнозы!

Обнаружение структурного сдвига

Обнаружение структурного сдвига: план

- Что такое структурный сдвиг?
- Обнаружение одного структурного сдвига.
- Обнаружение нескольких структурных сдвигов.

Что считать структурным сдвигом?

Деление временного ряда на периоды между структурными сдвигами субъективно.

Неформально, момент структурного сдвига меняет поведение ряда.

Что считать «меняет»?

Идея обнаружения отдельного сдвига

• Стартуем со штрафной функции, измеряющей неоднородность наблюдений y_a , y_{a+1} , ..., y_b ,

$$C(y_{a:b}).$$

• Перебираем все моменты $au \in [1; T-1]$ и находим минимум величины

$$C(y_{1:\tau}) + C(y_{\tau+1:T}).$$

Подозреваем, что сдвиг мог быть в этот момент τ^* .

• Считаем, что сдвиг был в τ^* , если суммарная неоднородность фрагментов сильно меньше неоднородности всего ряда,

$$C(y_{1:\tau^*}) + C(y_{\tau^*+1:T}) < C(y_{1:T}) - \beta.$$

Выбор штрафной функции ${\cal C}$

- Есть огромное вариантов.
- Часто берут функцию лог-функцию правдоподобия некоторой модели, домноженную на минус два:

$$C(y_{a:b}) = -2 \max_{\theta} \ln L(y_a, \dots, y_b \mid \theta).$$

Простейший вариант: считать, что $y_t \sim \mathcal{N}(\mu, \sigma^2)$ и независимы.

• Выбор функции C связан с выбором β при проверке наличия сдвига в подозрительной точке τ^* ,

$$C(y_{1:\tau^*}) + C(y_{\tau^*+1:T}) < C(y_{1:T}) - \beta.$$

Чем больше параметров в θ , тем больше должно быть β .

Как обнаружить много структурных сдвигов?

- Запустить алгоритм по обнаружению одного структурного сдвига.
 Если алгоритм не обнаружил сдвиг, то считаем, что сдвигов на данном участке нет.
- Разбиваем исходный ряд на два участка согласно обнаруженному структурному сдвигу.
- Рекурсивно запускаем алгоритм обнаружения одного структурного сдвига на каждом обнаруженном участке.

Преобразования для поиска сдвига

Сдвиг может легче обнаруживаться на преобразованном ряду.

- Простые действия с исходным рядом: логарифм, преобразование Бокса-Кокса, переход к разностям.
- Разложение на компоненты и поиск сдвига в компонентах ряда: STL, ETS, ...

Зачем искать структурные сдвиги?

- Иногда обнаружение сдвигов основная задача.
- Возможность получить более точные прогнозы, если добавить в предикторы дамми-переменную равную единице после сдвига.
- Возможность получить более точные прогнозы других рядов, если скорректировать структурный сдвиг в предикторе.

Обнаружение структурного сдвига: итоги

- Есть куча специальных алгоритмов.
- Чтобы найти много сдвигов, достаточно поискать очередной сдвиг на уже выявленных участках ряда.
- STL разложение позволяет искать сдвиги в компонентах ряда.

Байесовские структурные модели

Байесовские структурные модели: план

- Как добавить предикторы в ETS?
- Идея байесовского подхода.
- Пример структурной модели.

Как добавить предикторы в ETS?

- Классическая ETS модель не позволяет включать предикторы.
- А что мешает их туда добавить и получить новую модель? В новой модели может оказаться слишком много параметров.
 - Качество прогнозов может быть плохим.
- Спасительная идея регуляризация.
 Рассматриваем модель с большим числом параметров и дополнительной информацией, что параметры небольшие.

Байесовский подход!

- Трактуем все параметры как ненаблюдаемые случайные величины, $\theta = (a, b, c)$.
- Модель задаёт распределение ряда при заданных параметрах,

$$y_t = a + u_t + bu_{t-1}, \quad u_t \sim \mathcal{N}(0; c).$$

• Добавляем информацию в виде априорного распределения,

$$a \sim \mathcal{N}(0; 100), \quad b \sim \mathcal{N}(0, 1), \quad \ln c \sim \mathcal{N}(0; 4).$$

• Алгоритмы MCMC (Markov Chain Monte Carlo) позволяют сгенерировать большую выборку из апостериорное распределение

$$(a, b, c \mid y_1, y_2, \dots, y_T).$$

Немного про МСМС

• Выборка из апостериорного распределения $(\theta \mid y)$ позволяет считать всё!

$$(a_1, b_1, c_1), (a_2, b_2, c_2), \dots, (a_S, b_S, c_S).$$

- Имея значения параметров можно симулировать будущие траектории.
- МСМС позволяет работать с моделями фантастической сложности.
- МСМС работает медленно.
- Генерируемая выборка только в пределе похожа на выборку из апостериорного закона.

Конструктор структурных моделей

Компоненты: тренд, сезонность, предикторы, ошибка:

$$y_t = \mu_t + s_t + \beta_t x_t + u_t, \quad u_t \sim \mathcal{N}(0; \sigma_{obs}^2).$$

Для каждой компоненты есть куча вариантов.

Тренд

$$y_t = \mu_t + s_t + \beta_t x_t + u_t, \quad u_t \sim \mathcal{N}(0; \sigma_{obs}^2).$$

Локальный линейный тренд:

$$\mu_t = \mu_{t-1} + \delta_{t-1} + w_{1t}, \quad w_{1t} \sim \mathcal{N}(0; \sigma_{level}^2).$$

Уравнение для наклона δ_t :

$$\delta_t = \delta_{t-1} + w_{2t}, \quad w_{2t} \sim \mathcal{N}(0; \sigma_{slope}^2).$$

Сезонность с помощью дамми

$$y_t = \mu_t + s_t + \beta_t x_t + u_t, \quad u_t \sim \mathcal{N}(0; \sigma_{obs}^2).$$

 γ_{it} — оценка сезонного эффекта для наблюдения t-i в момент t.

$$s_t = \gamma_{0t}$$

$$\gamma_{it} = \gamma_{i} - 1, t - 1, \quad i \in \{1, \dots, 11\}. \gamma_{0t} + \gamma_{1}, t - 1 + \gamma_{2}, t - 1 + \dots$$

Сезонность с помощью Фурье

$$y_t = \mu_t + s_t + \beta_t x_t + u_t, \quad u_t \sim \mathcal{N}(0; \sigma_{obs}^2).$$

$$s_t = a_{1t} \cos\left(\frac{2\pi}{365}t\right) + b_{1t} \sin\left(\frac{2\pi}{365}t\right) + a_{2t} \cos\left(2 \cdot \frac{2\pi}{365}t\right) + b_{2t} \sin\left(2 \cdot \frac{2\pi}{365}t\right) + a_{2t} \sin\left(2 \cdot \frac{2\pi}{365}t\right) + a_{2t}$$

$$a_{it} = a_{i,t-1} + w_{4it}, \quad w_{4it} \sim \mathcal{N}(0; \sigma_{ai}^2) b_{it} = b_{i,t-1} + w_{5it}, \quad w_{5it} \sim$$

Эволюция зависимости от предиктора

$$y_t = \mu_t + s_t + \beta_t x_t + u_t, \quad u_t \sim \mathcal{N}(0; \sigma_{obs}^2).$$

$$\beta_t = \beta_{t-1} + w_{6t}, \quad w_{6t} \sim \mathcal{N}(0; \sigma_{reg}^2)$$

Байесовские структурные модели: итоги

- Трактуем параметры как случайные величины.
- Конструируем из кубиков настоящего монстра с предикторами и кучей параметров.
- МСМС работает медленно.
- С помощью МСМС можно сгенерировать большую выборку из апостериорного распределения параметров.

Как оценить эффект воздействия?

Оценивание эффекта: план

- Основная идея оценивания.
- Чем хорош байесовский подход?

Оценивание эффекта: идея

- Возьмём любую модель.
- Разделим выборку на обучающую и тестовую по точке воздействия.
- Оценим модель по обучающей выборке и получим прогноз.
- Разница прогноза и фактических значений на тестовой выборке оценивает эффект воздействия.

Нюансы идеи

- Модель должна хорошо прогнозировать.
 Если сезонность сильна, то даже наивная сезонная модель подойдёт.
- Разумно протестировать идею в точке, где воздействия ещё нет.
- Можно оценивать эффект воздействия на конкретное значение y_{T+h} , а можно оценивать кумулятивный эффект на $y_{T+1}+y_{T+2}+\ldots+y_{T+h}$.
- Помните о доверительных интервалах.

А зачем тут байесовский подход?

- Позволяет оценивать более сложные модели с предикторами.
 - Возможность более точно оценить эффект воздействия.
- Позволяет построить доверительный интервал для кумулятивного эффекта.

Проблема: прогнозы \hat{y}_{T+1} , ..., \hat{y}_{T+h} нетривиально коррелированы между собой. В частотном подходе сложно получить явную формулу для доверительного интервала.

Решение: в байесовском подходе апостериорная выборка параметров модели позволяет сгенерировать множество гипотетических будущих траекторий без воздействия.

• Графики будущих траекторий!

Оценивание эффекта воздействия: итоги

- Делим выборку на обучающую и тестовую в точке воздействия.
- Смотрим на разницу прогноза модели и фактических значений.
- Байесовских подход дарит доверительные интервалы для кумулятивного эффекта.

Неужели на том и конец?

Спасибо!