

06.10.2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年10月 7日

REC'D 26 MOV 2034

PCT

WIFO

出 願 番 号 Application Number:

特願2003-347829

[ST. 10/C]:

[JP2003-347829]

出 願 人
Applicant(s):

出光興産株式会社

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年11月11日

特許庁長官 Commissioner, Japan Patent Office 1) 11]

BEST AVAILABLE COPY

【書類名】 特許願 【整理番号】 IP10803 【提出日】 平成15年10月 7日 【あて先】 特許庁長官 殿 CO8L 69/00 【国際特許分類】 【発明者】 千葉県市原市姉崎海岸1番地1 【住所又は居所】 【氏名】 川東 宏至 【発明者】 千葉県市原市姉崎海岸1番地1 【住所又は居所】 【氏名】 堀尾 慶彦 【発明者】 千葉県市原市姉崎海岸1番地1 【住所又は居所】 【氏名】 石川 康弘 【特許出願人】 【識別番号】 000183657 出光石油化学株式会社 【氏名又は名称】 【代理人】 100078732 【識別番号】 【弁理士】 【氏名又は名称】 大谷 保 【選任した代理人】 【識別番号】 100081765 【弁理士】 東平 正道 【氏名又は名称】 【手数料の表示】 【予納台帳番号】 003171 【納付金額】 21,000円 【提出物件の目録】 【物件名】 特許請求の範囲 1 明細書 1 【物件名】 要約書 1 【物件名】 0000936 【包括委任状番号】 0000758 【包括委任状番号】

【書類名】特許請求の範囲

【請求項1】

(A) ポリカーボネート系樹脂と、その100質量部に対し、(B) アリールホスフイン 0.01~0.1質量部、及び(C) 脂環式エポキシ化合物 0.01~1.0質量部を含むことを特徴とするポリカーボネート系樹脂組成物。

【請求項2】

(A) ポリカーボネート系樹脂と、その100質量部に対し、(B) アリールホスフイン $0.001\sim0.1$ 質量、(C) 脂環式エポキシ化合物 $0.01\sim1.0$ 質量部、及び(D) アクリル系樹脂 $0.01\sim1.0$ 質量部を含むことを特徴とするポリカーボネート系樹脂組成物。

【請求項3】

(A) 成分100質量部に対し、更に(E) アルコキシ基、ビニル基及びフェニル基の中から選ばれる少なくとも一種の基を含有するポリシロキサン化合物0.01~1質量部を含むことを特徴とする請求項1又は2に記載のポリカーボネート系樹脂組成物。

【請求項4】

(A) 成分100質量部に対し、更に(F) 滑剤0.01~1質量部を含むことを特徴とする請求項1~3のいずれかに記載のポリカーボネート系樹脂組成物。

【請求項5】

(A) 成分のポリカーボネート系樹脂が、ガラス転移温度140℃以上である請求項1~ 4のいずれかに記載のポリカーボネート系樹脂組成物。

【請求項6】

(B) 成分のアリールホスフインが、トリフェニルホスフィンである請求項1~5のいずれかに記載のポリカーボネート系樹脂組成物。

【請求項7】

請求項1~6のいずれかに記載のポリカーボネート系樹脂組成物を成形してなる光学部品

【書類名】明細書

【発明の名称】ポリカーボネート系樹脂組成物及び光学部品

【技術分野】

[0001]

本発明は、ポリカーボネート系樹脂組成物及び光学部品に関し、詳しくは、優れた光学 特性が付与されると共に、耐高温恒湿性、耐熱老化性(高温エージング性)、耐熱性、耐 衝撃性等に優れ、特に厳しい環境にも使用可能な車載用光半導体装置レンズ等の光学部品 作製用として好適なポリカーボネート系樹脂組成物及びそれを用いて成形した光学部品に 関するものである。

【背景技術】

[0002]

近年、省エネルギー、環境保全の観点から自動車用の照明光源として、光半導体装置光源がテールランプ等に組み込まれ始めている。

この光半導体装置光源は、光半導体装置チップとこれを包埋する光反射特性を有するパッケージ及び蛍光体含有するエポキシ樹脂製封止体、これらを覆う透明樹脂製の光学レンズで形成されている。

この光学レンズは、光半導体装置チップからの光を受けて蛍光体層により変換された光 を集光して点光源として発光する光学部品である。

[0003]

上記車載用光半導体装置レンズは、耐スチーム性、高温エージング性等の耐環境性を有する材質が望ましく、高い耐熱性、耐スチーム性を有し、成形加工に優れた透明な樹脂が要求される。このような耐熱性が高く、光学的に透明度が高い樹脂としては、環状オレフィン系樹脂が挙げられる。

しかしながら、この環状オレフィン系樹脂の全光線透過率は、91~93%のレベルにあり、優れた透明性を有するが、耐高温エージング性に劣るため、使用環境が制限されるという問題点を有している。

例えば、車搭載用のヘッドランプ、インストルメントパネル、テイルランプ、ウィンカー等のバック照明装置に、環状オレフィン系樹脂製の車載用光半導体装置レンズを用いる場合、110~140℃以上の耐高温エージング試験環境において、レンズ製品に黄変が観られ、環状オレフィン系樹脂を用いることはできない。

[0004]

一方、ポリカーボネート系樹脂は、耐高温エージング試験環境には優れるが、不純物や酸化防止剤等の影響により耐加水分解性が低下し、自動車用途でも、特に厳しいエクステリア用途において要求される飽和水蒸気圧力下(120~127℃×100hr)のプレッシャークッカ試験では、激しく白濁するという問題がある。

そこで、特殊なアリールホスフィンや、ホスフィン類とオキセタン化合物および/またはエポキシド化合物をポリカーボネート系樹脂に配合した組成物が提案されている(例えば、特許文献1及び2参照)。

しかしながら、これらのポリカーボネート系樹脂組成物は、いまだ光学特性が不十分で ある。

[0005]

【特許文献1】特開平8-231840号公報

【特許文献2】特開平9-227863号公報

【発明の開示】

【発明が解決しようとする課題】

[0006]

本発明は、優れた光学特性(高い全光線透過率等)が付与されると共に、耐高温恒湿性、耐熱老化性(高温エージング性)、耐熱性、耐衝撃性等に優れ、特に厳しい環境にも使用可能な車載用光半導体装置レンズ等の光学部品作製用として好適なポリカーボネート系樹脂組成物及びそれを用いて成形した光学部品を提供するものである。

【課題を解決するための手段】

[0007]

本発明者らは、鋭意検討した結果、ポリカーボネート系樹脂、酸化防止剤として特定の アリールホスフイン、及び脂環式エポキシ化合物、更には場合により、アクリル系樹脂、 特定のポリシロキサンを所定の割合で含むポリカーボネート系樹脂組成物により、本発明 の目的を達成できることを見出し、本発明を完成するに至った。

[0008]

即ち、本発明は、

- 1. (A) ポリカーボネート系樹脂と、その100質量部に対し、(B) アリールホスフイン $0.001\sim0.1$ 質量部、及び(C) 脂環式エポキシ化合物 $0.01\sim1.0$ 質量部を含むことを特徴とするポリカーボネート系樹脂組成物、
- 2. (A) ポリカーボネート系樹脂と、その100質量部に対し、(B) アリールホスフイン $0.001\sim0.1$ 質量、(C) 脂環式エポキシ化合物 $0.01\sim1.0$ 質量部、及び(D) アクリル系樹脂 $0.01\sim1.0$ 質量部を含むことを特徴とするポリカーボネート系樹脂組成物、
- 3. (A) 成分100質量部に対し、更に(E) アルコキシ基、ビニル基及びフェニル基の中から選ばれる少なくとも一種の基を含有するポリシロキサン化合物0.01~1質量部を含むことを特徴とする上記1又は2に記載のポリカーボネート系樹脂組成物、
- 4. (A) 成分100 質量部に対し、更に (F) 滑剤 $0.01\sim1$ 質量部を含むことを特徴とする上記 $1\sim3$ のいずれかに記載のポリカーボネート系樹脂組成物、
- 5. (A) 成分のポリカーボネート系樹脂が、ガラス転移温度140℃以上である上記1~4のいずれかに記載のポリカーボネート系樹脂組成物、
- 6. (B) 成分のアリールホスフインが、トリフェニルホスフィンである上記1~5のいずれかに記載のポリカーボネート系樹脂組成物、
- 7. 上記1~6のいずれかに記載のポリカーボネート系樹脂組成物を成形してなる光学部品

に関するものである。

【発明の効果】

[0009]

本発明によれば、ポリカーボネート系樹脂に、特定の酸化防止剤(トリフェニルホスフィン)、及び脂環式エポキシ化合物を所定の割合で混練することにより、耐スチーム性が高く、高温での全光線透過率の経時変化が少なく、かつポリカーボネート系樹脂の耐熱性、耐衝撃性を損なうことなく、より厳しい環境にも使用可能な車載用光半導体装置レンズ等の作製用として好適な成形材料及びそれを用いて成形した車載用光半導体装置レンズ(ヘッドライト、バックライト、テールライト等)等の光学部品が得られる。

【発明を実施するための最良の形態】

[0010]

本発明のポリカーボネート系樹脂組成物において、(A)成分として用いられるポリカーボネート系樹脂としては、慣用された製造方法、即ち、通常、二価フェノールとホスゲン又は炭酸エステル化合物等のポリカーボネート前駆体とを反応させることにより製造したものを挙げることができる。

具体的には、例えば、塩化メチレン等の溶媒中において、公知の酸受容体や分子量調節 剤の存在下、更に、必要により分岐剤を添加し、二価フェノールとホスゲンのようなカー ポネート前駆体との反応により、あるいは二価フェノールとジフェニルカーボネートのよ うなカーボネート前駆体とのエステル交換反応等によって製造されたものである。

[0011]

用いられる二価フェノールとしては、様々なものが挙げられるが、特に、2,2-ビス(4-ヒドロキシフェニル)プロパン [通称:ビスフェノールA]が好適である。

ビスフェノールA以外のビスフェノールとしては、例えば、ビス(4-ヒドロキシフェニル)メタン;1, 1-ビス(4-ヒドロキシフェニル)エタン;2, 2-ビス(4-ヒ

ドロキシフェニル) ブタン; 2, 2-ビス(4-ヒドロキシフェニル) オクタン; 2, 2 -ビス (4-ヒドロキシフェニル) フェニルメタン; 2, 2-ビス (4-ヒドロキシ-3-メチルフェニル)プロパン;ビス(4 -ヒドロキシフェニル)ナフチルメタン;1, 1ービス(4ーヒドロキシーtーブチルフェニル)プロパン;2,2ービス(4ーヒドロキ シー3ーブロモフェニル)プロパン;2,2ービス(4ーヒドロキシー3,5ーテトラメ チルフェニル)プロパン;2,2ービス(4-ヒドロキシー3-クロロフェニル)プロパ ン; 2, 2-ビス(4-ヒドロキシ-3, 5-テトラクロロフェニル)プロパン; 2, 2 ービス (4-ヒドロキシー3, 5-テトラブロモフェニル) プロパン等のビス (ヒドロキ シアリール)アルカン類、1,1ービス(4ーヒドロキシフェニル)シクロペンタン;1 , 1-ビス (4-ヒドロキシフェニル) シクロヘキサン;1, 1-ビス (4-ヒドロキシ フェニル) -3, 5, 5-トリメチルシクロヘキサン;2, 2'ービス(4ーヒドロキシ フェニル) ノルボルネン;等のビス (ヒドロキシアリール) シクロアルカン類、4, 4' ージヒドロキシフェニルエーテル; 4, 4'ージヒドロキシー3, 3'ージメチルフェニ ルエーテル等のジヒドロキシアリールエーテル類、4,4'ージヒドロキシジフェニルス ルフィド;4,4'ージヒドロキシー3,3'ージメチルジフェニルスルフィド等のジヒ ドロキシジアリールスルフィド類、4,4'-ジヒドロキシジフェニルスルホキシド;4 , 4'ージヒドロキシー3, 3'ージメチルジフェニルスルホキシド等のジヒドロキシジ アリールスルホキシド類、4,4'-ジヒドロキシジフェニルスルホン;4,4'-ジヒ ドロキシー3,3'ージメチルジフェニルスルホン等のジヒドロキシジアリールスルホン 類、4,4'ージヒロキシジフェニル等のジヒドロキシジフェニル類、9,9ービス(4 ーヒドロキシフェニル)フルオレン;9,9ービス(4ーヒドロキシー3ーメチルフェニ ル)フルオレン等のジヒドロキシジアリールフルオレン類、ビス(4ーヒドロキシフェニ ル) ジフェニルメタン、1,3-ビス(4-ヒドロキシフェニル)アダマンタン;2,2 ービス (4-ヒドロキシフェニル) アダマンタン; 1, 3-ビス (4-ヒドロキシフェニ ル) -5, 7-ジメチルアダマンタン等のジヒドロキシジアリールアダマンタン類、ビス (4-ヒドロキシフェニル) ジフェニルメタン、4, 4, -[1, 3-フェニレンビス(1-メチルエチリデン)] ビスフェノール、10,10-ビス(4-ヒドロキシフェニル) - 9 - アントロン、 1, 5 - ビス(<math>4 - ヒドロキシフェニルチオ) - 2, 3 - ジオキサペンタエン、 α , ω -ビスヒドロキシフェニルポリジメチルシロキサン化合物等が挙げら れる。

これらの二価フェノールは、それぞれ単独で用いてもよいし、2種以上を混合して用いてもよい。

[0012]

また、炭酸エステル化合物としては、ジフェニルカーボネート等のジアリーカーボネートやジメチルカーボネート, ジエチルカーボネート等のジアルキルカーボネート等が挙げられる。

分子量調整剤としては通常、ポリカーボネート系の重合に用いられるものなら、各種の ものを用いることができる。

具体的には、一価フェノールとして、例えば、フェノール,o-n-ブチルフェノール,m-n-プチルフェノール,p-n-プチルフェノール,o-tフプチルフェノール,m-tフプチルフェノール,p-tフプチルフェノール,o-t-プチルフェノール,m-tフテルフェノール,p-t-プチルフェノール,o-n-ペンチルフェノール,m-n-ペンチルフェノール,p-n-ペンチルフェノール,p-t-オクチルフェノール,m-n-ペンチルフェノール,m-n-ペンチルフェノール,m-n-ペンチルフェノール,m-0ーシクロヘキシルフェノール,m-0ーシクロヘキシルフェノール,m-0ーシール,m-0ーフェニルフェノール,m-0ーフェニルフェノール,m-1ール,m-1ール,m-1ール,m-1ール,m-1ール,m-1ールフェノール,m-1ール,m-1ール,m-2ール,m-2ール,m-3ールフェノール,m-3ールフェノール,m-4ールフェノール,m-5ージーtープチルフェノール;m-5ージーtープチルフェノール;m-7・ブトル

; 2 , 5-ジクミルフェノール; 3 , 5-ジクミルフェノール; p-クレゾール,プロモフェノール,トリプロモフェノール、平均炭素数 <math>1 $2 \sim 3$ 5 の直鎖状又は分岐状のアルキル基をオルト位、メタ位、又はパラ位に有するモノアルキルフェノール; 9-(4-ヒドロキシフェニル)-9-(4-メトキシフェニル) フルオレン; 9-(4-ヒドロキシー3-メチルフェニル)-9-(4-メトキシ-3-メチルフェニル) フルオレン; 4-(1-r)

これらの一価フェノールの中では、p-t-プチルフェノール,p-クミルフェノール ,p-フェニルフェノール等が好ましく用いられる。

[0013]

その他、分岐剤として、例えば、1, 1, 1-トリス(4-ヒドロキシフェニル)エタン;4, 4' - [1- [4- [1- (4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エチリデン]ビスフェノール; α , α ', α " -トリス(4-ヒドロキシフェニル)-1, 3, 5-トリイソプロピルベンゼン;1- [$\alpha-$ メチル $-\alpha-$ (4' -ヒドロキシフェニル)エチル]-4-[α ', α ' -ビス(4" -ヒドロキシフェニル)エチル]ベンゼン;フロログリシン,トリメリト酸,イサチンビス(0-クレゾール)等の官能基を3つ以上有する化合物を用いることもできる。

[0014]

本発明において用いられるポリカーボネート系樹脂は、通常、粘度平均分子量が10, $000 \sim 100$, 000 のものが好ましく、より好ましくは15, $000 \sim 40$, 000 である。

[0015]

本発明で用いられる (B) 成分のアリールホスフィンとしては、例えば、一般式 (1) P-(X)₃ (1)

(式中、Xは炭化水素基であり、少なくともその1つは置換基を有していてもよい炭素数 $6\sim1$ 8のアリール基である。)

で表わされるアリールホスフィン化合物が挙げられる。

[0016]

一般式 (1) のアリールホスフィン化合物としては、例えば、トリフェニルホスフィン、ジフェニルプチルホスフィン、ジフェニルオクタデシルホスフィン、トリスー(p-hリル)ホスフィン、トリスー(p-lールフェニル)ホスフィン、トリスー(p-lールフェニル)ホスフィン、トリスー(p-lート・シメチル)ーホスフィン、ジフェニルー(p-lーエチルカルボキシエチル)ーホスフィン、トリスー(p-lーロフェニル)ホスフィン、トリスー(p-lーフルオロフェニル)ホスフィン、フェニルー(p-l) ホスフィン、ジフェニルーp-lーシアノエチルホスフィン、ジフェニルー(p-l) ルホスフィン、ジフェニルー1, 4ージヒドロキシフェニル-2ーホスフィン、フェニルナフチルベンジルホスフィン等が挙げられる。中でも、特にトリフェニルホスフィンが好適に用いられる。

[0017]

これらアリールホスフィン化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。

上記 (B) 成分のアリールホスフィンの配合量は、(A) ポリカーボネート系樹脂 100 質量部に対し、 $0.001\sim0.1$ 質量部、好ましくは $0.005\sim0.02$ 質量部、より好ましくは $0.008\sim0.015$ 質量部である。

配合量が 0.001質量部以上では、初期の黄色度(YI値)が向上すると共に、オーブン耐熱性(耐高温エージング性)が良好である。

また、0.1質量部を以下では、耐スチーム特性が向上する。

[0018]

本発明で用いられる(C)成分の脂環式エポキシ化合物は、脂環式エポキシ基、即ち、脂肪族環内のエチレン結合に酸素1原子が付加したエポキシ基をもつ環状脂肪族化合物を意味し、具体的には式(2)~(11)で表される化合物が好適に用いられる。

(R:H 又はCH₃)

【化5】

$$CO[O(CH_2)_5CO]_aOCH_2$$

$$CO[O(CH_2)_5CO]_bOCH_2$$

$$CO[O(CH_2)_5CO]_bOCH_2$$

(a+b=1 又は 2)

[0024] 【化6】

$$\mathsf{CH_2CO[O(CH_2)_5CO]_aOCH_2} \\ \mathsf{CH-CO[O(CH_2)_5CO]_bOCH_2} \\ \mathsf{CH-CO[O(CH_2)_5CO]_cOCH_2} \\ \mathsf{CH_2CO[O(CH_2)_5CO]_dOCH_2} \\ \mathsf{CH_2CO[O(CH_2)_5CO]_dOCH_2}$$

 $(a+b+c+d=1 \sim 3)$

[0025]

(a+b+c+d=n(整数), R:炭化水素基)

(n:整数, R:炭化水素基)

(R:炭化水素基)

[0028]

【化10】 R—O—H -----(11)

(n: 整数, R: 炭化水素基)

[0029]

中でも、式(1)、式(7)又は式(11)で表される化合物が、ポリカーボネート系樹脂への相溶性に優れ、透明性を損なうことがない点でより好ましく用いられる。

上記 (C) 成分の脂環式エポキシ化合物を配合することにより、本発明の樹脂組成物の透明性が更に向上し、耐加水分解性も向上する。

上記 (C) 成分の脂環式エポキシ化合物の配合量は、ポリカーボネート系樹脂 (A) 100質量部に対し、0.01~1.0質量部、好ましくは0.02~0.2質量部である

配合量が0.01質量部以上では、透明性及び耐加水分解性が向上する。また、1.0質量部以下では、相分離が起こることなく、透明性も良好である。

[0030]

本発明で用いられる(D)成分のアクリル系樹脂は、必要に応じ用いられる成分であり、アクリル酸、アクリル酸エステル、アクリロニトリル及びその誘導体のモノマー単位を繰り返し単位とする重合体を意味し、単独重合体又はスチレン、ブタジエン等との共重合体を意味している。

具体的には、ポリアクリル酸、ポリメタクリル酸メチル(PMMA), ポリアクリロニトリル、アクリル酸エチルーアクリル酸ー2ークロロエチル共重合体、アクリル酸ーnープチルーアクリロニトリル共重合体、アクリルニトリルースチレン共重合体、アクリロニトリループタジエン共重合体、アクリロニトリループタジエン共重合体等が挙げられる。

これらの中でも、特に、ポリメタクリル酸メチル(PMMA)を好適に用いることができる。ポリメタクリル酸メチル(PMMA)としては、特に制限はないが、通常、過酸化物、アゾ系の重合開始剤の存在下、メタクリル酸メチルモノマーを塊状重合して製造したものが好ましい。

[0031]

(D) 成分のアクリル系樹脂は、好ましくは粘度平均分子量が $200\sim10$ 万、更に好ましくは、 $2万\sim6$ 万である。

粘度平均分子量が200~10万であると、成形時にポリカーボネート系樹脂とアクリル系樹脂間の相分離が起こらず、十分な透明性が得られる。

粘度平均分子量の測定は、オストワルド型粘度管にて、25℃におけるクロロホルム溶液の極限粘度 [η] を測定し、次の関係式により平均重合度PAを求め、計算した。

 $logPA=1.613log([\eta] \times 104/8.29)$

[0032]

上記 (D) 成分のアクリル系樹脂の配合量は、ポリカーボネート系樹脂 (A) 100 質量部に対し、 $0.01\sim1.0$ 質量部、好ましくは $0.05\sim0.5$ 質量部、より好ましくは $0.1\sim0.1$ 質量部である。

配合量が0.01~1.0質量部では、透明性が向上する。

[0033]

本願発明で用いられる(E)成分のポリシロキサン化合物は、アルコキシ基、ビニル基及びフェニル基の中から選ばれる少なくとも一種の基を有し、例えば、シリコーン系化合物にメトキシ基,ビニル基、フェニル基の少なくとも一種の基を導入した反応性シリコーン系化合物(オルガノシロキサン等)等であり、必要に応じ配合される。

上記 (E) 成分は、成形時の熱劣化による黄変、シルバー (銀条)等の外観不良、気泡 混入を防止するために、ポリカーボネート系樹脂安定剤として配合される。

上記 (E) 成分の配合量は、通常、ポリカーボネート系樹脂 (A) 100 質量部に対し、 $0.01\sim3.0$ 質量部、好ましくは $0.05\sim2.0$ 質量部の範囲から適宜選択することができる。

配合量が、0.01質量部以上であると、上記配合効果が十分に発揮される。

また、3.0質量部以下では、成形品に曇り等が生ずることがない。

[0034]

本発明で用いられる(F)成分の滑剤としては、脂肪族炭化水素、ポリオレフィン系ワックス、高級カルボン酸、高級カルボン酸金属塩、脂肪酸アミド、脂肪酸エステル、及び高級アルコール等の化合物群から選ばれる化合物が挙げられる。

これらの滑剤は、樹脂原料中に既に含まれているものもあるが、樹脂組成物を製造するときの加工助剤として、あるいは樹脂組成物の着色を行う際の着色剤の分散剤や展着剤として、更には成形時において成形体の金型離型を向上させるための離型剤や面転写性向上剤として、樹脂組成物に配合されるものもある。

[0035]

上記 (F) 成分の滑剤のうち、脂肪族炭化水素とは、炭素数 5 ~ 1 0 0 の脂肪族炭化水素化合物であり、リグロイン、パラフィン油、鉱油、流動パラフィン等を例示することができる。

ポリオレフィン系ワックスとは、オレフィンを基本構造単位とする重量平均分子量が500~10,000である低分子量ポリオレフィンであり、パラフィンワックス、ポリエチレンワックス、ポリプロピレンワックス、エチレン・酢酸ビニル共 重合体ワックス、ポリオレフィンアイオノマー系ワックス等を例示することができる。

高級カルボン酸とは、炭素数が5~50の飽和または不飽和結合を有する脂肪酸であり、例えば、ステアリン酸、吉草酸、カプロン酸、カプリン酸、 ラウリン酸、ミリスチン酸、パルミチン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラトリアコンタン酸、グルタル酸、アジピン酸、アゼライン酸、ナフテン酸、ロジン酸、オレイン酸、リノール酸、リノレン酸等を挙げることができる。

高級カルボン酸金属塩とは、前記高級カルボン酸の金属塩であり、例えば、ステアリン酸アルカリ金属塩、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸鉛等を挙げることができる。

[0036]

脂肪酸アミドとは、分子内に1つ以上の酸アミド結合を有する炭素数12~150の化合物であり、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、エチレンビスステアリン酸アミド、メチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド等を例示することができる。

脂肪酸エステルとは、分子内に1つ以上のエステル結合を有する炭素数10~200の化合物であり、例えば、ステアリン酸プチル等の高級カルボン酸と一価アルコールのエステル、エチレングリコールモノステアレート、グリセリンモノステアレート、トリメチロールプロパンモノステアレート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、グリセリンジラウレート、グリセリントリステアレート、トリメチロールプロパンジステアレート、グリセリンジステアレート、グリセリントリベへネート、ペンタエリスリトールトリステアレート、トリメチロールプロパンジオレート、ペンタエリスリトールテトラステアレート等の高級カルボン酸と多価アルコールとのエステル等を

挙げることができる。

また、高級アルコールとは、分子内に1以上の水酸基を有する炭素数5~50の化合物であり、例えばステアリルアルコールを挙げることができる。

これら滑剤の中でも前記脂肪酸エステル系物質が、透明性、耐加水分解性をを損なわず 、好適に適用できる。

[0037]

本発明では、ポリカーボネート系樹脂組成物中に含まれる(F)成分の滑剤の総量が、 1質量部以下、好ましくは0.02~0.7質量部、更に好ましくは0.03~0.6質 量部、特に好ましくは0.03~0.5質量部とすることにより、成形加工時における面 転写性、離型性を要求する場合においても高度な成形性を達成することができる。滑剤の 総量が0.01質量部未満では、面転写性の向上が発現しない可能性がある。また、1質 量部までの添加に伴って、良好な離型性が選られるが、1質量部以上の添加では成形時に これらが揮発ガスとなって反って面転写性を阻害する可能性がある。

本発明の難燃性樹脂組成物中における滑剤(F)の含有量は、組成物中から良溶媒/貧溶媒の組み合わせにより、滑剤(F)成分を分離あるいは抽出して、プロトンNMR法、ガスクロマトグラフィー/マススペクトル法(GC/MS法)、液体クロマトグラフィー/マススペクトル法(LC/MS法)等の分析手法を組み合わせることにより定量することができる。

[0038]

本発明の樹脂組成物には、上記各成分の他に、必要に応じて、本発明の効果を損なわない範囲で各種添加剤を配合することができる。

例えば、ヒンダードフェノール系、エステル系、等の酸化防止剤、ベンゾトリアゾール系、ベンゾフェノン系等の紫外線吸収剤、ヒンダードアミン系等の光安定剤、通常用いられる難燃化剤、難燃助剤, 離型剤, 帯電防止剤, 着色剤等が挙げられる。

[0039]

上記各成分の配合及び混練法については、特に制限はなく、通常用いられる方法で行うことができる。

例えば、リボンブレンダー、ヘンシェルミキサー、バンバリーミキサー、ドラムタンブ ラー、単軸スクリュー押出機、2軸スクリュー押出機、コニーダ、多軸スクリュー押出機 等により行なうことができる。

混練に際しての加熱温度は、通常、280~320℃が適当である。

[0040]

本発明のポリカーボネート系樹脂組成物は、成形することにより光学部品とすることができる。

光学部品としては、例えば、光学レンズ、導光板(導光体)等の光学素子、街路灯カバー、車両用及び建材用合わせガラス等ガラス代替用途等が挙げられる。

車載用光学部品としては、近年進展が目覚しい車載用光半導体装置レンズが代表として 挙げられる。

車載用光半導体装置レンズは、本発明の樹脂組成物を好ましくは射出成形又は押出成形 することにより作製される。

[0041]

車載用光半導体装置レンズの射出成形は、シリンダー温度を260~320℃、金型温度を50~120℃にして行なうことが好ましい。

更に、レンズ表面にプリスム転写等の表面微細加工を行なう場合は、成形温度を300 ℃、金型温度を100~120℃にすることが好ましい。

[0042]

上記車載用光半導体装置レンズとしては、凹、凸、フレネル、プリズム等、特に制限はなく、指向性、集光性を加味してレンズ状に成形すればよい。

また、レンズの形状は、角板状、円筒状又はレンズ効果を有する曲面状でもよく、目的・用途に応じて適宜選定することができ、例えば、凸レンズ形状の断面を有する構造でも

よい。また、レンズの集光性を高めるために、フレネルレンズやプリズムをレンズ表面に 設けた構造にしてもよい。

[0043]

逆に、車載用光半導体装置レンズの指向性を落とし、光拡散性を得る為には、本発明の 樹脂組成物に光拡散剤を配合した樹脂組成物を車載用光半導体装置レンズ用材料として用 いてもよい。

上記光拡散剤は、本発明の樹脂組成物におけるポリカーボネート系樹脂の屈折率と 0.0 1以上の差があればよく、一般的なポリカーボネート樹脂を例にとると、1~50μmの平均粒子系を有する架橋ポリメチルメタクリレート (PMMA) 樹脂、シリカ、シリコーン樹脂等のビーズや粉末、微粒子等を用いることができる。

光拡散剤の配合量は、要求する光拡散性にもよるが、本発明の樹脂組成物をベースとして100質量部に対し、0.01~10質量部程度が好ましい。

配合量が0.01質量部以上では、十分な光拡散性を有し、10質量部以下では、光透過性が良く、光半導体装置の輝度も良好である。

上記車載用光半導体装置レンズに光散乱層を形成するにあたっては、レンズの全面に限 らず、一部に形成することもできる。

【実施例】

[0044]

次に、本発明を実施例により、更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。

[0045]

- (1) 実施例及び比較例で用いた材料の種類は、下記のとおりである。
- (A) ポリカーボネート系樹脂

ポリカーボネート1:タフロンFN1700A〔商品名,出光石油化学(株)製,粘度平均分子量18000〕

ポリカーボネート2~6:下記の製造例1~5で製造したポリカーボネート樹脂また、粘度平均分子量Mvは、ウベローデ型粘度管にて、20Cにおけるメチレンクロライド溶液の極限粘度 [n] を測定し、下記の関係式により計算した。

 $[\eta] = 1.23 \times 10^{-5} \text{M y}^{0.83}$

[0046]

製造例1.(ポリカーボネート2)

ビスフェノールA (BPA) のNAOH水溶液40L/hr、塩化メチレン15L/hrの流量で、ホスゲンを4.0kg/hrの流量で内径6mm、管長30mの管型反応器に連続的に通した。

管型反応器はジャケット部分を有しており、ジャケットに冷却水を通して反応液の温度 を40℃以下に保った。

管型反応器を出た反応液は、後退翼を備えた内容積40Lのバッフル付き槽型反応器へ連続的に導入され、ここに更にBPAのNAOH水溶液2.8L/hr、25質量%NAOH水溶液0.07L/hr、水17L/hr、1質量%トリエチルアミン水溶液を0.64L/hr添加して反応を行なった。

槽型反応器から溢れ出る反応液を連続的に抜き出し、静置することで水相を分離除去し、塩化メチレン相を採取した。

得られたポリカーボネートオリゴマーは、濃度325g/L、クロロホーメート基濃度0.71モル/Lであった。

邪魔板、パドル型攪拌翼及び冷却用ジャケットを備えた50L槽型反応器に、上記オリゴマー溶液15.0L、塩化メチレン9.4L、p-tertープチルフェノール141g、トリエチルアミン1.5mLを仕込み、ここに9,9ーピス(4ーヒドロキシー3ーメチルフェニル)フルオレン(BCFL)のNAOH水溶液(NaOH639gを水10.8Lに溶解後、BCFLを1812g溶解することで調製した。)を添加し1時間反応を行なった。

希釈のため塩化メチレン12.0Lを加えた後、静置することでポリカーボネートを含む有機相と過剰のNaOHを含む水相に分離し、有機相を単離した。

得られたポリカーボネートの塩化メチレン溶液を10L00.03 モル/LNaOH水溶液で洗浄した後、更に10L00.2 モル/L塩酸で洗浄し、次いで、洗浄後の水相中の電気伝導度が0.01 μ s/m以下になるまで純水で洗浄を繰り返した。

得られたポリカーボネートの塩化メチレン溶液を濃縮し、得られた固形分を粉砕して粉体ちし、減圧下120℃で乾燥した。

得られたポカーボネート2の性状は下記のとおりであった。

Mv = 17500

NMRにより求めたモノマー比 [モル%] BPA:BCFL=81:19

Tg = 168 $^{\circ}$

[0047]

製造例2 (ポリカーボネート3)

邪魔板、パドル型攪拌翼及び冷却用ジャケットを備えた50 L 槽型反応器に、製造例 1 で得られたオリゴマー溶液 15.0 L、塩化メチレン9.4 L、トリエチルアミン8.9 m L を仕込み、ここに α , ω - ビス(2 - ヒドロキシフェニルプロピル)ポリジメチルシロキサン10.0 [商品名10] [商品名10] を添加し10] で行なった。

更に、p-tertープチルフェノール141g、BPAのNAOH水溶液(NaOH 554gを水9.3Lに溶解後、BPAを1093g溶解することで調製した)を添加し40分間反応を行なった。

希釈のため塩化メチレン12.0Lを加えた後、静置することでポリカーボネートを含む有機相と過剰のNaOHを含む水相に分離し、有機相を単離した。

得られたポリカーボネートの塩化メチレン溶液を10L00.03 モル/LNaOH水溶液で洗浄した後、更に10L00.2 モル/L塩酸で洗浄し、次いで、洗浄後の水相中の電気伝導度が 0.01μ s/m以下になるまで純水で洗浄を繰り返した。

得られたポリカーボネートの塩化メチレン溶液を濃縮し、得られた固形分を粉砕して粉体ちし、減圧下120℃で乾燥した。

得られたポリカーボネート3の性状は、下記のとおりであった。

Mv = 17600

NMRにより求めたジメチルシロキサン量 [質量%] = 1.0

Tg = 148%

[0048]

製造例3(ポリカーボネート4)

製造例1において、BCFLのNAOH水溶液の代わりに、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン (BPZ)のNAOH水溶液 (NaOH639gを水10.8Lに溶解後、BPZを1427g溶解することで調製した。)を用いた他は、製造例1と同様にしてポリカーボネート4を得た。

得られたポリカーボネート4の性状は、下記のとおりであった。

Mv = 17500

NMRにより求めたモノマー比 [モル%] BPA:BPZ=81:19

Tg=155°C

[0049]

製造例4(ポリカーボネート5)

得られたポリカーボネート5の性状は、下記のとおりであった。

M v = 17700

NMRにより求めたモノマー比 [モル%] BPA:BPAD=81:19

T g = 1 7 8 ℃

[0050]

製造例5 (ポリカーボネート6)

製造例1において、p-tertープチルフェノール141gの代わりに、9-(4-ヒドロキシフェニル)-9-(4-メトキシフェニル)フルオレン342gを用い、BCFLのNAOH水溶液の代わりに、BPAのNAOH水溶液(NaOH639gを水10.8Lに溶解後、BPAを1093g溶解することで調製した。)を用いた用いた他は、製造例1と同様にしてポリカーボネート6を得た。。

得られたポリカーボネート6の性状は、下記のとおりであった。

Mv = 17700

Tg = 157 $^{\circ}$

[0051]

(B) アリールホスフィン

トリフェニルホスフィン:JC-263 [商品名, 城北化学工業 (株) 製]

(C) 脂環式エポキシ化合物

セロキサイド2021P [商品名, ダイセル化学工業 (株) 製、式 (2) の化合物)

(D) アクリル系樹脂

ポリメチルメタクリレート (PMMA):ダイアナールBR83 [商品名,三菱レーヨン (株) 製, 粘度平均分子量40000]

分子量は、オストワルド型粘度管にて、25℃におけるクロロホルム溶液の極限粘度[η]を測定し、次の関係式により平均重合度PAを求め、計算した。

 $1 \circ g P A = 1. 6 1 3 1 \circ g ([\eta] \times 104/8. 29)$

(E) アルコキシ基、ビニル基又はフェニル基を含有するポリシロキサン化合物

KR511 [商品名, 信越シリコーン (株) 製, フェニル基、メトキシ基及びビニル基を有するオルガノシロキサン]

(F) 滑剤

ステアリン酸モノグリセリド: S100A [商品名, 理研ビタミン (株) 製]

[0052]

(2) 各評価項目の測定法は、下記のとおりである。

透明性:全光線透過率; JIS-К-7105に準拠した。

スガ試験機社製;名称:DIGITAL HAZE COMPUTER形式:

HGM-2DPを用いて測定した。

黄色度: Y I 値; J I S - K - 7105に準拠した。

マクベス社製MS2020プラス(D光源;10度視野反射法)を用いて測定した。

熱変形温度:JIS-K-7207に準拠した。

耐スチーム性:下記の成形体を、耐スチーム試験機(平山製作所社製)槽内に入れ、127℃の飽和水蒸気下に100時間暴露し、全光線透過率の測定、ヘイズ(白濁及びクラックの発生の有無)及び外観の変化を目視観察した。

評価は、◎(極めて良好),○(良好),×(不良)の3段階で行なった。

オープン耐熱性(耐高温エージング性):ギアオープン(循環式熱風乾燥機)にて、140℃で200時間暴露後、全光線透過率及びYI(黄色度)を測定した。

Izod衝撃強度(ノッチ):ASTM D256に準拠した。

[0053]

[実施例1~9及び比較例1~7]

表1又表2に示す割合で各成分を混合し後、押出機にて280℃で混練し、ペレット化 した。

このペレットを射出成形機にて、成形温度300℃、金型温度100℃の条件で評価用成形体(14cm角板、厚さ4mm)を作製し、各評価を行なった。

尚、比較例6及び7においては、酸化防止剤として(B)成分のアリールホスフィンに代えて、リン酸エステル系化合物1(商品名:イルガホス168、チバガイギー社製)及びリン酸エステル系化合物2(商品名:アデカスタブPEP-36、旭電化工業(株)社製)を用いた。

評価結果を表1及び表2に示す。

[0054]

比較例1及び2においては、ポリカーボネート系樹脂の代えて、環状オレフィン系樹脂 1 [商品名アートン:F5032、日本合成ゴム(株)製]又は環状オレフィン系樹脂2 [商品名:ゼオノア1600、日本ゼオン(株)社製)を用い、表1又表2に示す割合で 各成分を混合し後、押出機にて280℃で混練し、ペレット化した。

このペレットを射出成形機にて、成形温度280℃、金型温度80℃の条件で評価用成 形体(30×20mm角板、厚さ3mm)を作製し、各評価を行なった。

[0055]

【表1】

表1

(B) アリールホスフィン 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.01 (9 100 0.01 0.01 0.1 0.03 91.3 8.6
(A) ポリカーボネート1 100 100 100 50 70 ポリカーボネート2 50 70 ポリカーボネート3 100 ボリカーボネート4 100 ボリカーボネート5 100 30 ポリカーボネート6 30 ポリカーボネート6 30 ポリカーボネート6 30 ポリカーボネート6 30 ポリカーボネート6 30 ポリカーボネート6 30 ボリカーボネート6 100 1 0.01 0.0		 100 0.01 0.01 0.1 0.03 91.3
ポリカーボネート2 50 ボリカーボネート3 100 ボリカーボネート4 100 ボリカーボネート5 30 ボリカーボネート6 30 ボリカーボネート6 30 ボリカーボネート6	0.01 (
ポリカーボネート3	0.01 (
ポリカーボネート4	0.01 (
ポリカーボネート5 30 ポリカーボネート6 30 ポリカーボネート6	0.01 (
ボリカーボネート6	0.01 (0.01 0.01 0.1 0.1 0.03 91.3
(B) アリールホスフィン 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.01 (0.01 0.01 0.1 0.1 0.03 91.3
(C) 脂環式エポキシ化合物 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.1	0.01 (0.1	0.01 0.1 0.1 0.03 91.3
(C) 脂環式エポキシ化合物 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.1	0.1 0.1 91.3 8.7	0.1 0.1 0.03 91.3
(D) アクリル系樹脂 - - 0.1 0.1 0.1 0.1 (E) ポリシロキサン化合物 - 0.1 0.1 0.1 0.1 0.1 リン酸エステル系化合物1 - - - - - - リン酸エステル系化合物2 - - - - - - 環状オレフィン系樹脂1 - - - - - - (F) 滑剤 - - - - - - 全光線透過率(%) 91.2 91.3 91.4 91.3 91.1 91.2 91.3 初期性能 はとははいる場合は、(KJ/m³) 60 60 60 43 65 40 40	91.3 8.7	0.1 0.03 91.3
(E) ポリシロキサン化合物 - 0.1 0.1 0.1 0.1 0.1 リン酸エステル系化合物1 - - - - - - 現状オレフィン系樹脂1 - - - - - - (F) 滑剤 - - - - - - 全光線透過率(%) 91.2 91.3 91.4 91.3 91.1 91.2 91.3 初期性能 はたいのでは、大力では、大力では、大力では、大力では、大力では、大力では、大力では、大力	91.3	 0.03 91.3 8.6
リン酸エステル系化合物1 - <td>91.3 8.7 60</td> <td>- 0.03 91.3 8.6</td>	91.3 8.7 60	- 0.03 91.3 8.6
リン酸エステル系化合物2 - <td>91.3 8.7 60</td> <td>- 0.03 91.3 8.6</td>	91.3 8.7 60	- 0.03 91.3 8.6
環状オレフィン系樹脂1	91.3 8.7 60	91.3 8.6
環状オレフィン系樹脂2	91.3 8.7 60	91.3 8.6
(F) 滑剤 一 <	91.3 8.7 60	91.3 8.6
全光線透過率(%) 91.2 91.3 91.4 91.3 91.1 91.2 91.3 初期性能 黄色度(YI) 8.5 8.6 8.6 8.7 8.6 8.6 8.6 Izod衝撃強さ(KJ/㎡) 60 60 60 43 65 40 40	91.3 8.7 60	91.3 8.6
初期性能 Izod衝撃強さ(KJ/m³) 60 60 60 43 65 40 40	8.7	8.6
期性能 Izod衝撃強さ(KJ/m³) 60 60 60 43 65 40 40	60	
期性能 Izod衝撃強さ(KJ/m³) 60 60 60 43 65 40 40	60	
期 性 能 lzod衝撃強さ(KJ/㎡) 60 60 60 43 65 40 40		60
能 Izod衝撃強さ(KJ/m) 60 60 43 65 40 40		60
能 250国年温さ(((5/11))		
外観 透明 透明 透明 透明 透明 透明 透明	1	
外観 透明 透明 透明 透明 起明 起明 起明	透明	透明
	122-97	22-97
	91.2	91.3
	,	
チ Izod衝撃論さ(KJ/m) 55 55 40 60 35 39		
	55	55
試		
♣ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		微少
後 外観	クレイス・	クレイス゛
高 全光線透過率(%) 91.0 90.8 90.9 90.8 90.9 90.8 90.9	90.8	90.7
温 温		
エ 黄色度(YI) 90 8.9 8.8 9.0 8.8 8.9 8.9	9.0	8.9
対 黄色度(YI) 9.0 8.9 8.8 9.0 8.8 8.9 8.9	9.0	0.9
	├──┼	
ング性 性試		
作 Izod衝撃強さ(KJ/m²) 60 60 60 43 60 35 40	60	60
註		
後 外観 透明 透明 透明 透明 透明 透明 透明 透	透明	透明

[0056]

【表2】

表2 配合物 |比較例1|比較例2|比較例3|比較例4|比較例5|比較例6|比較例7 (A) ポリカーボネート1 100 100 100 100 100 ポリカーボネ--**卜**2 ボネー ポリカー <u>---3</u> ポリカーボネー <u>-----4</u> ポリカーボネート5 ポリカーボネート6 アリールホスフィン 脂環式エポキシ化合物 (B) 0.01 0.15 (C) 0.01 0.01 0.01 原環式エホヤン化合物 アクリル系樹脂 ポリシロキサン化合物 リン酸エステル系化合物1 リン酸エステル系化合物2 環状オレフィン系樹脂1 環状オレフィン系樹脂2 (D) 0.1 0.1 0.1 0.1 0.01 0.01 100 100 全光線透過率(%) 92.7 92.5 90.0 91.0 91.5 91.8 91.5 初 黄色度(YI) 9.0 8.2 8.5 8.2 8.0 8.0 9.5 期 性 Izod衝撃強さ(KJ/㎡) 2 60 60 60 60 60 1 外観 透明 透明 透明 透明 透明 透明 透明 耐 全光線透過率(%) 92.5 85.7 89.8 89.5 80.4 88.5 72.4 ス チー Izod衝撃強さ(KJ/㎡) 1 2 60 45 40 35 60 厶 試 験 微少 微少 微少 白濁 白濁 外観 曇り 白斑点 後 クレイス クレイズ クレイス 高温 全光線透過率(%) 89.8 89.4 89.9 89.9 91.3 91.4 89.8 I Ī 8.9 10.0 黄色度(YI) 28.5 24.3 9.8 9.4 8.6 ジング性試 60 58 |Izod衝撃強さ(KJ/㎡) 6 60 60 60 4 験 後 外観 透明 透明 透明 黄変 黄変 黄変 透明

【書類名】要約書

【要約】

【課題】 優れた光学特性が付与されると共に、耐高温恒湿性、耐熱老化性(高温エージング性)、耐熱性、耐衝撃性に優れ、特に厳しい環境にも使用可能な車載用光半導体装置レンズ等の光学部品作製用として好適なポリカーボネート系樹脂組成物及びそれを用いて成形した光学部品を提供する。

【解決手段】 (A) ポリカーボネート系樹脂と、その100 質量部に対し、(B) アリールホスフイン $0.001\sim0.1$ 質量部、及び(C) 脂環式エポキシ化合物 $0.01\sim1.0$ 質量部を含むポリカーボネート系樹脂組成物である。

【選択図】 なし

【書類名】 出願人名義変更届(一般承継)

【整理番号】 IP10803

【提出日】平成16年 9月30日【あて先】特許庁長官 殿

【事件の表示】

【出願番号】 特願2003-347829

【承継人】

【識別番号】 000183646

【氏名又は名称】 出光興産株式会社

【承継人代理人】

【識別番号】 100078732

【弁理士】

【氏名又は名称】 大谷 保

【提出物件の目録】

【物件名】 承継人であることを証明する書面 1

【援用の表示】 特許第1873629号

【物件名】 被承継人の住所を証明する書面 2

【援用の表示】 特許第1873629号

【包括委任状番号】 0000937

特願2003-347829

出願人履歴情報

識別番号

[000183657]

1. 変更年月日

2000年 6月30日

[変更理由]

住所変更

住 所

東京都墨田区横網一丁目6番1号

氏 名 出光石油化学株式会社

特願2003-347829

出願人履歴情報

識別番号

[000183646]

1. 変更年月日

1990年 8月 8日

[変更理由]

新規登録

住 所 氏 名 東京都千代田区丸の内3丁目1番1号

出光興産株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
↓ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
\square reference(s) or exhibit(s) submitted are poor quality

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.