Matrix Decomposition and Approximation

3. Singular Value Decomposition	2
3.1 Introduction	2
3.2 Construction of the SVD	3
3.2.1 $m = n$	3
3.2.2 <i>m</i> < <i>n</i>	5
3.2.3 <i>m</i> > <i>n</i>	6
4. Matrix Approximation	7

3. Singular Value Decomposition

3.1 Introduction

Theorem 4.22 (SVD Theorem). Let $A^{m \times n}$ be a rectangular matrix of rank $r \in [0, \min(m, n)]$. The SVD of A is a decomposition of the form

$$\begin{bmatrix}
A \\
A
\end{bmatrix} =
\begin{bmatrix}
E \\
U
\end{bmatrix}
\begin{bmatrix}
E \\
\Sigma
\end{bmatrix}
\begin{bmatrix}
V^{\top} \\
V^{\top}
\end{bmatrix} =$$
(4.64)

with an orthogonal matrix $U \in \mathbb{R}^{m \times m}$ with column vectors u_i , $i = 1, \ldots, m$, and an orthogonal matrix $V \in \mathbb{R}^{n \times n}$ with column vectors v_j , $j = 1, \ldots, n$. Moreover, Σ is an $m \times n$ matrix with $\Sigma_{ii} = \sigma_i \geqslant 0$ and $\Sigma_{ij} = 0, i \neq j$.

The diagonal entries σ_i , $i=1,\ldots,r$, of Σ are called the *singular values*, u_i are called the *left-singular vectors*, and v_j are called the *right-singular vectors*. By convention, the singular values are ordered, i.e., $\sigma_1 \geqslant \sigma_2 \geqslant \sigma_r \geqslant 0$.

Remark

- The matrix Σ is unique
- The matrix Σ have the same size of A, this mean Σ can be rectangular Several types of Σ .

m = n	m > n	m < n
$\begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \dots & \sigma_n \end{bmatrix}$	$\begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \dots & \sigma_m \\ 0 & 0 & \dots & 0 \\ \vdots & & & & \\ 0 & 0 & \dots & 0 \end{bmatrix}$	$\begin{bmatrix} \sigma_1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 & 0 & & 0 \\ 0 & 0 & \ddots & 0 & 0 & & 0 \\ 0 & 0 & \dots & \sigma_n & 0 & \dots & 0 \end{bmatrix}$

3.2 Construction of the SVD

3.2.1 m = n

1. Construct V

- **1.1** Determine the eigenvalues of $A^{T}A$.
- **1.2** Order the eigenvalues such that $\lambda_1 \geq ... \geq \lambda_n$ and their respective eigenvectors.
- **1.3** Normalize the eigenvectors.
- 1.4 $V = [v_1 \ v_2 \dots v_n], \ v_i \ eigenvector.$

2. Construct Σ

- $D = diag(\lambda_1, ..., \lambda_m);$
- $VDV^{\mathsf{T}} = A^{\mathsf{T}}A = (U\Sigma V^{\mathsf{T}})^{\mathsf{T}}(U\Sigma V^{\mathsf{T}}) = V\Sigma\underbrace{U^{\mathsf{T}}U}_{I}\Sigma V^{\mathsf{T}} = V\Sigma^{2}V^{\mathsf{T}};$
- $VDV^{\mathsf{T}} = V\Sigma^2 V^{\mathsf{T}} \iff D = \Sigma^2;$

$$\mathbf{2.1} \ \boldsymbol{\Sigma} = \begin{bmatrix} \sqrt{\lambda_1} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \sqrt{\lambda_2} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \dots & \sqrt{\lambda_n} \end{bmatrix}.$$

3. Construct U

$$\textbf{3.1 Determine} \ \Sigma^{-1} = \begin{bmatrix} \frac{1}{\sqrt{\lambda_1}} & 0 & \dots & 0 \\ 0 & \frac{1}{\sqrt{\lambda_2}} & \dots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \dots & \frac{1}{\sqrt{\lambda_n}} \end{bmatrix} \text{, if for some } i, \ \lambda_i = 0 \text{, then replace } \frac{1}{\sqrt{\lambda_i}} \ \text{by } 0.$$

3.2 If for every $i \lambda_i \neq 0$ then:

3.2.1
$$U = AV\Sigma^{-1}$$

- $U\Sigma V^{\mathsf{T}} = A \Leftrightarrow U\Sigma = AV \Leftrightarrow U = AV\Sigma^{-1}$;
- $\bullet \quad \text{U is orthogonal } U^\top U = (AV\Sigma^{-1})^\top (AV\Sigma^{-1}) = \Sigma^{-1} \underbrace{V^\top A^\top A V}_{\Sigma^2} \Sigma^{-1} = I_n \ ;$
- $A^{\mathsf{T}}A = VDV^{\mathsf{T}} = V\Sigma^2 V^{\mathsf{T}} \Leftrightarrow V^{\mathsf{T}}A^{\mathsf{T}}AV = \Sigma^2$;
- **3.3** If for some i, $\lambda_i = 0$, then:

3.3.1
$$W1 = AV\Sigma_{I}$$
.

Suppose n_1 is the number $\lambda_i=0$, then W_1 has n_1 null columns.

- **1.3.2** Choose the submatrix W , constitute by the $n-n_1$ non null columns of W_1 .
- **1.3.3** Find the subspace $Z = (W)^{\perp}$ (orthogonal complement);
 - **1.3.3.1** Choose $u_1...u_{n_1}$, n_1 vectors in \mathbb{R}^n , such that $rank([W,u_1...u_{n_1}])=n$. The vectors and the columns of W must be linearly independent.
 - **3.3.3.2** Using the Gram-Schmidt process find vectors z_1, \dots, z_{n_1} , such that $\{w_1, \dots, w_{m-n_1}, z_1, \dots, z_{n_1}\}$ is an orthonormal base.

3.3.4
$$U = [w_1 \dots, w_{m-n_1}, z_1, \dots, z_{n_1}]$$
.

$3.2.2 \, m < n$

1. Construct V

- **1.1** Determine the eigenvalues of $A^{T}A$.
- **1.2** Order the eigenvalues such that $\lambda_1 \geq ... \geq \lambda_n$ and their respective eigenvectors .($\underbrace{\lambda_{m+1} = \cdots = \lambda_n}_{n-m \ eigenvalues \ are \ zero} = 0$).
- 1.3 Normalize the eigenvectors

$$V = [v_1 \ v_2 \dots v_n] \ v_i \ eigenvector.$$

2. Construct Σ

$$\Sigma = \begin{bmatrix} \sqrt{\lambda_1} & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & \sqrt{\lambda_2} & \dots & 0 & 0 & & 0 \\ 0 & 0 & \ddots & 0 & 0 & & 0 \\ 0 & 0 & \dots & \sqrt{\lambda_m} & 0 & \dots & 0 \end{bmatrix}.$$

3. Construct U

$$\mathbf{3.1} \; \mathsf{Determine} \; \mathbf{\Sigma}_{I} = \begin{bmatrix} \frac{1}{\sqrt{\lambda_{1}}} & 0 & \dots & 0 \\ 0 & \frac{1}{\sqrt{\lambda_{2}}} & \dots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \dots & \frac{1}{\sqrt{\lambda_{m}}} \\ 0 & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \; \text{, if for some} \; i \; \lambda_{i} = 0 \text{, then replace} \; \frac{1}{\sqrt{\lambda_{i}}} \; \mathsf{by} \; 0.$$

- **3.2** If for every $i \lambda_i \neq 0$ then then $U = AV\Sigma_I$.
- **3.3** If for some i, $\lambda_i = 0$ then

3.3.1
$$W1 = AV\Sigma_{I}$$

Suppose n_1 is the number $\lambda_i=0$, then W_1 has n_1 null columns.

- **3.3.2** Choose the submatrix W, constitute by the $m-n_1$ non null columns of W_1 .
- **3.3.3** Find the subspace $Z = (W)^{\perp}$ (orthogonal complement).
 - **1.3.3.2** Choose $u_1 \dots u_{n_1}, n_1$ vectors in \mathbb{R}^m , such that $rank([W, u_1 \dots u_{n_1}]) = m$ The vectors and the columns of W must be linearly independent.
 - **3.3.3.2** Using the Gram-Schmidt process find vectors z_1, \dots, z_{n_1} , such that $\{w_1, \dots, w_{m-n_1}, z_1, \dots, z_{n_1}\}$ is a orthonormal base.

3.3. 4
$$U = [w_1 \dots, w_{m-n_1}, z_1, \dots, z_{n_1}]$$

$3.2.3 \, m > n$

1. Construct V

- **1.1** Determine the eigenvalues of $A^{T}A$.
- **1.2** Order the eigenvalues such that $\lambda_1 \geq ... \geq \lambda_n$ and their respective eigenvectors.
- **1.3** Normalize the eigenvectors.

$$V = [v_1 \ v_2 \dots v_n] \ v_i \ eigenvector$$
.

2 Construct Σ

$$\mathbf{\Sigma} = \begin{bmatrix} \sqrt{\lambda_1} & 0 & \dots & 0 \\ 0 & \sqrt{\lambda_2} & \dots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \dots & \sqrt{\lambda_n} \\ 0 & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}.$$

3 Construct U

$$\mathbf{3.1} \, \mathsf{Determine} \, \Sigma_I = \begin{bmatrix} \frac{1}{\sqrt{\lambda_1}} & 0 & \dots & 0 \\ 0 & \frac{1}{\sqrt{\lambda_2}} & \dots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \dots & \frac{1}{\sqrt{\lambda_n}} \\ 0 & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}, \, \mathsf{if} \, \mathsf{for} \, \mathsf{some} \, i \, \lambda_i = 0, \, \mathsf{then} \, \mathsf{replace} \, \frac{1}{\sqrt{\lambda_i}} \, \mathsf{by} \, 0.$$

3.2 $W1 = AV\Sigma_{I}$

 $W_1={
m has} \ {
m at} \ {
m least} \ m-n \ \ {
m null} \ {
m columns}, {
m suppose} \ n_1 \ {
m is} \ {
m the} \ {
m number} \ {
m of} \ {
m null} \ {
m columns}.$

- **3.3** Choose W , the submatrix constitute by the $m-n_1$, non null columns of W_1 .
- **3.4** Find the subspace $Z = (W)^{\perp}$ (orthogonal complement).

3.4.1 Choose
$$u_1 \dots u_{n_1}, n_1$$
 vectors in \mathbb{R}^m , such that $rank([W, u_1 \dots u_{n_1}]) = m$.

The vectors and the columns of W must be linearly independent.

3.4.2 Using the Gram-Schmidt process find vectors z_1, \dots, z_{n_1} , such that $\{w_1, \dots, w_{m-n_1}, z_1, \dots, z_{n_1}\}$ is a orthonormal base.

3.5
$$U = [w_1 \dots, w_{m-n_1}, z_1, \dots, z_{n_1}]$$

4. Matrix Approximation

Consider $A \in \mathbb{R}^{m \times n}$ with the factorization $A = U \Sigma V^{\top} \in \mathbb{R}^{m \times n}$ with $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ and $\Sigma \in \mathbb{R}^{m \times n}$.

We construct a rank-1 matrix $A_i \in \mathbb{R}^{m \times n}$ as

$$A_i \coloneqq u_i v_i^\mathsf{T}$$

 u_i is the *ith* column of U, and v_i is the *ith* column of V.

A matrix $\pmb{A} \in \mathbb{R}^{m \times n}$ of rank r can be written as a sum of rank-1 matrices \pmb{A}_i so that

$$\mathbf{A} = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top} = \sum_{i=1}^{r} \sigma_i \mathbf{A}_i, \qquad (4.91)$$

Definition

$$\widehat{\boldsymbol{A}}(k) := \sum_{i=1}^{k} \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^{\top} = \sum_{i=1}^{k} \sigma_i \boldsymbol{A}_i$$
 (4.92)

The matrix $\hat{A}(k)$ is called rank-k approximation of A with $rank\left(\hat{A}(k)\right)=k$.

Example

Definition 4.23 (Spectral Norm of a Matrix). For $x \in \mathbb{R}^n \setminus \{0\}$, the *spectral norm* of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as

$$\|A\|_{2} := \max_{x} \frac{\|Ax\|_{2}}{\|x\|_{2}}.$$
 (4.93)

We introduce the notation of a subscript in the matrix norm (left-hand side), similar to the Euclidean norm for vectors (right-hand side), which has subscript 2. The spectral norm (4.93) determines how long any vector \boldsymbol{x} can at most become when multiplied by \boldsymbol{A} .

. .

Theorem 4.24. The spectral norm of A is its largest singular value σ_1 .

Theorem 4.25 (Eckart-Young Theorem (Eckart and Young, 1936)). Consider a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ of rank r and let $\mathbf{B} \in \mathbb{R}^{m \times n}$ be a matrix of rank k. For any $k \leqslant r$ with $\widehat{\mathbf{A}}(k) = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$ it holds that

$$\widehat{\boldsymbol{A}}(k) = \operatorname{argmin}_{\operatorname{rk}(\boldsymbol{B})=k} \|\boldsymbol{A} - \boldsymbol{B}\|_{2},$$
 (4.94)

$$\left\| \mathbf{A} - \widehat{\mathbf{A}}(k) \right\|_2 = \sigma_{k+1}. \tag{4.95}$$