CS-417 COMPUTER SYSTEMS MODELING

Spring Semester 2020

Batch: 2016-17

(LECTURE # 28)

FAKHRA AFTAB LECTURER

DEPARTMENT OF COMPUTER & INFORMATION SYSTEMS ENGINEERING NED UNIVERSITY OF ENGINEERING & TECHNOLOGY

Recap of Lecture # 27

Petri Nets - Introduction

Graphical & Set Notation Representation

Dynamic behavior of Petri-Nets

Dual of a Petri-Net

Chapter # 8 (Cont'd)

PETRI NET-BASED PERFORMANCE MODELING

Inverse of Petri Net

The *inverse* of a Petri net keeps all places and transitions the same and switches input functions with output functions.

Fig 3: Petri net example

Fig 6: Inverse of Petri Net from Fig 3

Petri Nets as Multi-graph

Petri nets are defined also as *multi-graphs*, since a place can represent multiple inputs and/or outputs from or to a transition.

Fig 8: Multipath arc as bold line

State of a Petri Net

- Petri nets have a *state* defined by the cardinality of tokens and their distribution throughout the places in the Petri net.
- Marking represented as a function, μ (or MP), as follows:

$$\mu: p \to Z^+$$

• The marking, μ , can also be defined as an n vector.

$$\mu = (\mu_1, \mu_2, \mu_3, ..., \mu_n)$$

Where $\mathbf{n} = |\mathbf{P}|$ and each $\mu_i \in \mathbf{Z}^+$, i = 0, ..., n and $\mu(p_i) = \mu_i$.

• Therefore, the true representation of a marked Petri net is:

$$\mathbf{M} = (\mathbf{P}, \mathbf{T}, \mathbf{I}, \mathbf{O}, \boldsymbol{\mu}_{\mathsf{t}})$$

where μ_t represents state of Petri net at time t, where $t \in \mathbb{Z}^+$.

- Set of all possible markings for a Petri net with n places
 - the set of all n vectors, \mathbb{N}^n ,
 - N represents all possible states and n the no. of places.
- The number of tokens that may be assigned to a place is unbounded.

Fig 9: Marked Petri net

• The marking for the Petri net shown in Fig 9 represented as a vector would be μ_t = (1, 2, 0, 0, 1).

Classical Petri Net

- The classical PNs do not convey any notion of time.
- The exact moment of firing can be pictured as occurring as a clock signal in a computer system.

Fig 10: Enabled transition Marking $\mu_0 = (1,2,0)$

Fig 11: New Petri net state

Marking $\mu_1 = (0,0,3)$

• Input function $I(t_1) = \{P_1, P_2, P_2\}$ and Output function $O(t_1) = \{P_3, P_3, P_3\}$

State Space

• The collection of all possible states of a Petri net.

• Next-state function, δ applied to a Petri net state as follows:

$$\delta \left(\mu_{i}\{t\} \right) = \mu_{i+1}$$

• The set {*t*} represents the set of all enabled transitions within this Petri net.

• If a transition not enabled, then this function is undefined.

Petri Nets and the Modeling of Computer Systems

- PN used for modeling real systems sometimes referred to as *Condition/Events* nets.
- Places identify conditions of parts (working, idle, queuing, failed), and transitions describe the passage from one condition to another (end of a task, failure, repair ...).
- An event occurs (a transition fires) when all conditions satisfied.
- The number of tokens in a place used to identify the number of resources lying in the condition denoted by that place.

Concurrency (Parallelism)

- In reliability modeling, the PN of Fig 12 can represent two components C_1 and C_2 in parallel redundancy.
- $p_1 \& p_3$ represent working condition, $p_2 \& p_4$ the failed condition and $t_1 \& t_2$ the event of failure of $C_1 \& C_2$ respectively.

Fig 12: PN modeling two parallel activities

Synchronization

- Both the routines of a parallel program should be terminated before the program execution can proceed.
- The synchronization activity modeled in Fig 13 by means of t_3 whose firing requires a token both in p_2 and p_4 .

Fig 13: PN modeling two parallel activities with synchronization

Limited Resources

- This is a typical factor influencing the performance of computer systems.
- A PN representation of a buffer with limited size.

Fig 14: Block diagram and PN of a buffer with finite size.

The Bounded Buffer Producer/Consumer Problem

• A realistic situation is obtained by considering a buffer of *limited* capacity (Fig 15).

Fig 15: The producer/consumer problem with finite buffer

