## Project 1: Gradient Descent Algorithm with Armijo's Rule

The projects requires you to write a Python code that performs steepest gradient descent, using Armijo's rule for the step size. The code should take the following as an input from the user.

- (a) A function  $f: \mathbb{R}^2 \to \mathbb{R}$  that is to be minimized (assume input function to be smooth with Lipschitz gradient), and
- (b)  $\epsilon$ , for the stopping criteria  $\|\nabla f(x)\| \leq \epsilon$ .

Let the Armijo parameter s=1. Perform analysis with respect to the Armijo's parameters  $\sigma$ , and  $\beta$ , i.e., run the code for N pair (at least 5) of values of  $(\sigma, \beta)$ , where  $\sigma \in [10^{-5}, 10^{-2}]$  and  $\beta \in [1/10, 1/2]$ . For each of the above 5 pairs, plot the progression of the descent steps on the contour plot of f(x), as elucidated in the figure below.



Figure 1.1: Steepest descent Steps with Armijo's rule

**Submission guidelines:** Details to be updated soon. Broadly, you will be required to submit the .ipynb file (IPython Notebook) that determines the minimum value, and prints the value of  $x^*$  and the contour plot (along with the descent step) for each of the N pair of parameters  $(\sigma, \beta)$ .

Submission deadline: 22nd March 2024.

Total marks: 5 points