Documentation of Sentiment Analysis Model Development

Process and Method Overview:

1. Data Loading:

- Loaded the provided dataset, which contained user conversation posts labeled with three sentiment categories: positive, negative, and neutral.
- Checking the dataset info and missing values.

2. Data Preprocessing:

- Text Cleaning:
 - Removed unnecessary text elements such as punctuation, special characters, etc.. Converted text to lowercase to standardize the input.
- Stopword Removal:
 - o Removed Bengali stopwords using an NLTK Bengali stopword list.

3. Feature Engineering:

- TF-IDF (Term Frequency-Inverse Document Frequency):
 - This technique was applied to convert the text data into a numerical format that reflects the importance of words in the dataset. It allows the machine learning model to understand the textual data numerically.

4. Exploratory Data Analysis (EDA):

- Word Cloud:
 - Generated word clouds to visualize the most frequently occurring words across different sentiment classes, helping identify common themes or topics in positive, negative, and neutral posts.
- Bar Plot & Histogram:
 - Bar plotted the distribution of sentiment classes in the dataset to observe class imbalance, where the "neutral" class was dominant. Histogram provides a better understanding of the relationship between sentiment and review conversation text length

5. Handling Imbalanced Data:

• SMOTE (Synthetic Minority Over-sampling Technique):

• This technique helped balance the dataset and improve model performance.

6. Model Development:

- Logistic Regression: A statistical model used for binary and multiclass classification.
- Naive Bayes: A probabilistic classifier based on Bayes' theorem with strong independence assumptions.
- Llama-3.1-8B: Llama-3.1 8b and Unsloth 2x faster finetuning

7. Model Evaluation:

• Metrics Used:

- Accuracy: To measure the overall correctness of the model.
- Precision, Recall, F1-Score: These metrics were used to assess the balance between precision and recall, especially in light of class imbalance.
- Confusion Matrix: A table used to evaluate the performance of classification models.

Challenges Faced:

1. Preprocessing Bengali Text:

 Removing Bengali stopwords was challenging due to limited support in NLP libraries.

2. Class Imbalance:

 The dataset was small, containing only 99 rows and highly imbalanced, with a larger proportion of neutral sentiments. This imbalance negatively affected model performance until SMOTE was applied to oversample the minority classes.

3. Bangla Font Issue in Word Cloud Visualization:

• While generating word clouds, Bengali text was not displayed correctly due to font issues. To overcome this, the **Kalpurush** font was downloaded and applied to properly render the Bengali characters in the visualization.

4. Low Accuracy:

• Initial models (logistic regression and Naive Bayes) yielded low accuracy (60% and 65%), indicating room for improvement in feature extraction, model tuning, or data augmentation.

5. Fine-Tuning LLaMA:

- **Model Size**: LLaMA is a large model, which can easily exceed available GPU or CPU memory, leading to OOM errors, especially on consumer-grade hardware.
- **Batch Size**: When training large models, batch sizes often need to be reduced to prevent memory overflow. LLaMA's attention layers require substantial memory.
- **Gradient Accumulation**: Large models like LLaMA struggle with memory management, especially when trained with large datasets or longer sequences.

Performance Analysis:

- Baseline Model (Logistic Regression, Naive Bayes):
 - Accuracy: Logistic Regression 60%, Naive Bayes 65%
 - Precision, Recall, and F1-Score indicated the model was struggling to differentiate between neutral and other classes.
- SMOTE + Logistic Regression, Naive Bayes:
 - Naive Bayes handles the class imbalance effectively after applying SMOTE, delivering better performance 80% accuracy for underrepresented classes like neutral sentiment.
 - Logistic regression improved slightly with SMOTE but did not perform as well as Naive Bayes due to its difficulty in predicting the neutral sentiment class
- Llama-3.1-8B:
 - The evaluation loss of 0.818 indicates how well the model performed on the validation set. A lower loss value suggests better model performance. Compared to the training loss (0.948), this lower evaluation loss signifies that the model generalized well to the validation data.
 - Evaluation Metrics:
 - Evaluation Loss: 0.818 (lower is better, indicating good generalization)

Runtime: 10.2 seconds
 Samples Per Second: 1.96
 Steps Per Second: 0.295

Training Metrics:

Training Loss: 0.948
 Runtime: 163.3 seconds
 Samples Per Second: 0.735
 Steps Per Second: 0.367

Recommendations for Improvement:

1. Data Augmentation:

 Collecting more labeled data would provide the model with more training examples, especially for underrepresented sentiment classes.
 This could significantly improve classification performance.

2. Experiment with Deep Learning Models:

• Replacing traditional ML models with deep learning techniques like LSTM, GRU, or transformers would allow for capturing the temporal and semantic dependencies in the text, leading to better performance.

3. Hyperparameter Tuning:

 Exploring a wider range of hyperparameters (e.g., regularization strength, learning rate) through grid search or random search could enhance model performance.

4. Cross-Validation:

• Implementing cross-validation to ensure that the model generalizes well across different subsets of the data and is not overfitting to the training data.

How to Run the Project

1. Download the Notebook Files

• Download from the Drive Link:

• Obtain the notebook files from the provided Google Drive link and save them to your local machine.

2. Upload the Notebook Files to Google Colab

- Open Google Colab:
 - o Go to Google Colab.
- Upload the Notebook Files:
 - o Click on the "File" menu.
 - Select "Upload notebook".
 - o Click on "Choose File" and select the notebook file you downloaded.
 - o Repeat this step if you have multiple notebook files to upload.

• Upload Dataset and Bangla Font Files:

- Click on the "Files" icon (folder icon) on the left sidebar.
- Click on "Upload" and select your dataset files and Bangla font file from your local machine.
- Once uploaded, note the file paths. You will need to adjust these paths in your notebook to match the uploaded files.

• Change Paths in the Notebook:

- Open the uploaded notebook file(s).
- Locate the sections where the dataset and Bangla font file paths are specified.
- o Update these paths to match the location of the files you just uploaded.

3. Switch the Runtime to GPU for Fine-Tuning LLaMA 3.1 8B Notebook

- Change Runtime Type:
 - o In your Colab notebook, click on the "Runtime" menu.
 - Select "Change runtime type".
 - In the pop-up window, select "GPU" from the "Hardware accelerator" dropdown menu.
 - o Click "Save".

4. Run All Cells

• Run Cells Sequentially:

- Click on "Runtime" in the top menu.
 Select "Run all" from the dropdown. This will execute all cells in the notebook sequentially.