Treebank Translation for Cross-Lingual Parser Induction

Jörg Tiedemann¹ **Željko Agić**² Joakim Nivre¹

¹Department of Linguistics and Philology, Uppsala University ²Department of Linguistics, University of Potsdam

CoNLL 2014, 2014-06-27

Motivation

Motivation

There are languages out there that require processing, but lack the required resources (Bender, 2011; Bender, 2013).

- ▶ most of World languages under-resourced (META-NET LWPs, 2012)
- uniform language processing
 - lack of resources
 - balkanization the one-scheme-per-language rule
- we focus on dependency parsing
- ▶ Is there a dependency treebank for... Croatian? Slovene?

Approaches

- annotation projection
- model transfer
- unsupervised
 - not addressed here
 - performance generally below previous two

Annotation projection

- take a parallel corpus
- word-align it
- parse it for syntactic dependencies
- project the annotation via alignment
- some variations
 - one side of parallel corpus is a treebank (rare)
 - word alignments are manual (rare)
 - usually relies on automatic word alignment and dependency parsing (Yarowsky et al., 2001; Hwa et al., 2005)
- ✓ language-specific features
- X noise from parsing, alignment, projection

Model transfer

- train model on source language treebank
- rely on common features
- apply model on target language
- approaches
 - delexicalization (Zeman & Resnik, 2008; McDonald et al., 2013)
 - data point selection (Søgaard, 2011)
 - ► multi-source transfer (McDonald et al., 2011)
 - cross-lingual word clusters (Täckström et al., 2012)
- no resources required for target, no alignment and projection noise
- x poor feature model

Treebank translation

- train a source-target SMT system
- translate source treebank into target language
- project annotations
- train dependency parser on synthetic treebank
- do parsing

Treebank translation

- differs from annotation projection
 - ✓ no source parsing noise
 - ✓ word alignment not separated, better for synthetic data
- and from model transfer
 - ✓ lexicalization
 - ✓ allows full feature set in target language
 - ✓ no assumptions on language universals
- potential issues
 - X annotation projection noise still remains
 - quality of SMT

Setup

treebanks

- ► Google Universal Treebanks 1.0 (McDonald et al., 2013)
- Universal POS (Petrov et al., 2012)
- (adapted) Stanford Dependencies
- excluded Korean as outlier: 5 languages
- reliable cross-lingual dependency parsing assessment
- existing train-dev-test split

parsing

- ► MaltParser (Nivre et al., 2007)
- ► MaltOptimizer chooses optimal configuration (Ballesteros & Nivre, 2012)

translation

► Moses (Koehn et al., 2007), Europarl (Koehn, 2005)

Translation

- three scenarios
 - dictionary lookup
 - replace each word by default translation
 - no reordering
 - word-to-word
 - single-word translation table
 - distance-based reordering
 - 5-gram language model
 - phrase-based
 - standard phrase-based SMT model
- effects on non-projectivity
- projection requirements

- trivial for dictionary lookup
- ▶ same for word-to-word translation, non-projectivity occurs

- projection for phrase-based models
- multi-word alignments (m:n)
- labels must be projected as well
- one solution: dummy nodes (Hwa et al., 2005)
- our approach
 - use SMT phrase membership and phrase alignment information
 - use tree attachment heuristics

```
Input: source tree S, target sentence T.
   word alignment A, phrase segmentation P
   Output: syntactic heads head[],
   word attributes attr∏
 1 treeSize = max_distance_to_root(S):
 2 attr = [];
 3 head = □ ;
                                                           use phrase
   for t \in T do
                                                           segmentation
        if is_unaligned_trg(t,A) then
              for t' \in \text{in\_trg\_phrase}(t, P) do
                                                                                  function: find aligned:
                   [s_x,..,s_y] = aligned\_to(t');
                   \hat{s} = \text{find\_highest}([s_x,..,s_u],S);
                                                                                      Input: node s, source tree S with root ROOT,
                   \hat{t} = \text{find\_aligned}(\hat{s}, S, T, A);
                                                                                      target sentence T, word alignment A
                   attr[t] = DUMMY;
                                                                                      Output: node t*
                                                                                                                               walk up the tree
                   head[t] = \hat{t}:
11
                                                                                      if s == ROOT then
                                                                                                                               if unaligned
                                                                                          return ROOT;
12
              end
        else
13
                                                           attach to
                                                                                      while is_unaligned_src(s,A) do
              [s_x,..,s_y] = aligned_to(t);
14
                                                           highest node
                                                                                           s = head_of(s,S):
              s = find\_highest([s_x,..,s_y],S)
15
                                                                                           if s == ROOT then
              attr[t] = attr(s);
                                                                                               return ROOT:
              \hat{s} = \text{head\_of}(s.S):
17
                                                                                           end
             î = find_aligned(ŝ,S,T,A) :
18
              if \hat{t} == t then
                                                                                                                               heuristics for
                  [s_x,..,s_y] = in\_src\_phrase(s,P)
20
                                                                                     t* = undef:
                   s^* = \text{find\_highest}([s_x,..,s_y],S)
21
                                                                                                                               multiple targets:
                                                                                     for t' \in \text{aligned}(s,A) do
                   \hat{s} = \text{head\_of}(s^*,S);
22
                                                                                           if position(t',T) > p then
                                                                                                                               take right-most
                   î = find_aligned(ŝ,S,T,A) ;
23
                                                                                                t* = t':
                   head[t] = \hat{t}:
                                                                                                p = position(t',T);
24
25
              end
                                                                                           end
                                                                                   17 end
        end
                                                                                   18 return t*:
27 end
```


Results Baseline

Мо	Monolingual						
	de	en	es	fr	SV		
	72.13	87.50	78.54	77.51	81.28		
De	Delexicalized						
	de	en	es	fr	sv		
de	62.71	43.20	46.09	46.09	50.64		
en	46.62	77.66	55.65	56.46	57.68		
es	44.03	46.73	68.21	57.91	53.82		
fr	43.91	46.75	59.65	67.51	52.01		
sv	50.69	49.13	53.62	51.97	70.22		
Мс	McDonald et al. (2013)						
	de	en	es	fr	sv		
de	64.84	47.09	48.14	49.59	53.57		
en	48.11	78.54	56.86	58.20	57.04		
es	45.52	47.87	70.29	63.65	53.09		
fr	45.96	47.41	62.56	73.37	52.25		
sv	52.19	49.71	54.72	54.96	70.90		

Results Delexicalized models

Wo	Word-to-word					
	de	en	es	fr	SV	
de	_	48.12 ^(4.92)	50.84 ^(4.75)	52.92 ^(6.83)	55.52 ^(4.88)	
en	49.53 ^(2.91)	_	57.41 ^(1.76)	58.53 (2.07)	57.82 (0.14)	
es	45.48 ^(1.45)	48.46 ^(1.73)	_	58.29 ^(0.38)	55.25 ^(1.43)	
fr	46.59 ^(2.68)	47.88 ^(1.13)	59.72 (0.07)	_	52.31 ^(0.30)	
sv	52.16 (1.47)	49.14 (0.01)	56.50 (2.88)	56.71 ^(4.74)	-	
Phr	Phrase-based					
	de	en	es	fr	SV	
de	_	45.43 ^(2.23)	47.26 ^(1.17)	49.14 ^(3.05)	53.37 ^(2.73)	
en	49.16 ^(2.54)	_	57.12 ^(1.47)	58.23 (1.77)	58.23 (0.55)	
es	46.75 ^(2.72)	46.82 ^(0.09)	_	58.22 ^(0.31)	54.14 ^(0.32)	
fr	48.02 ^(4.11)	49.06 (2.31)	60.23 (0.58)	_	55.24 ^(3.23)	
SV	50.96 (0.27)	$46.12^{-3.01}$	55.95 ^(2.33)	54.71 ^(2.74)	-	

Results

Lexicalized models

Loc	Lookup						
	de	en	es	fr	SV		
de	_	48.63 ^(5.43)	52.66 ^(6.57)	52.06 ^(5.97)	58.78 ^(8.14)		
en	48.59 ^(1.97)	_	57.79 ^(2.14)	57.80 ^(1.34)	62.21 ^(4.53)		
es	47.36 ^(3.33)	49.13 ^(2.40)	_	62.24 ^(4.33)	57.50 ^(3.68)		
fr	47.57 ^(3.66)	54.06 ^(7.31)	66.31 ^(6.66)	-	57.73 ^(5.72)		
sv	51.88 (1.19)	48.84 ^(0.29)	54.74 ^(1.12)	52.95 ^(0.98)	-		
Wo	Word-to-word						
	de	en	es	fr	SV		
de	-	51.86 ^(3.74)	55.90 ^(5.06)	57.77 ^(4.85)	61.65 ^(6.13)		
en	53.80 (4.27)	_	60.76 ^(3.35)	63.32 ^(4.79)	62.93 ^(5.11)		
es	49.94 ^(4.46)	49.93 ^(1.47)	_	65.60 ^(7.31)	59.22 ^(3.97)		
fr	52.07 ^(5.48)	54.44 (6.56)	65.63 ^(5.91)	-	57.67 ^(5.36)		
sv	53.18 ^(1.02)	50.91 ^(1.77)	60.82 ^(4.32)	59.14 ^(2.43)	-		
Phr	Phrase-based						
	de			fr	SV		
de	_	50.89 ^(5.46)	52.54 ^(5.28)	54.99 ^(5.85)	59.46 ^(6.09)		
en	53.71 ^(4.55)	_	60.70 ^(3.58)	62.89 ^(4.66)	64.01 ^(5.78)		
es	49.59 ^(2.84)	48.35 ^(1.53)	-	64.88 ^(6.66)	58.99 ^(4.85)		
fr	51.83 ^(3.81)	53.81 ^(4.75)	65.55 ^(5.32)	_	59.01 ^(3.77)		
sv	53.22 (2.26)	49.06 ^(2.94)	58.41 ^(2.46)	58.04 ^(3.33)	-		

Conclusions

- substantial improvements
 - delexicalized up to +6.38 LAS
 - lexicalized up to +7.31 LAS
- phrase-based projection fails to deliver
 - quality of SMT
 - unreliable POS mappings, link ambiguity
 - no tree constraints
- overall results very positive
 - lexical features
 - reordering
 - per-language parser optimization
- future work
 - better translation
 - better projection (Tiedemann, 2014)
 - multi-synthetic-source transfer using n-best lists
 - closely related languages (Agić et al., 2012)

Thank you for your attention. \bigcirc

Non-projectivity

Original							
	de	en	es	fr	sv		
	14.0	0.00	7.90	13.3	4.20		
Wo	Word-to-word						
	de	en	es	fr	sv		
de	_	49.1	62.6	52.8	60.4		
en	43.3	_	27.6	34.8	0.00		
es	54.9	25.1	_	12.3	18.3		
fr	68.2	39.6	32.8	_	57.8		
SV	34.1	5.20	21.6	33.7	-		
Phi	Phrase-based						
	de	en	es	fr	SV		
de	_	51.5	57.3	58.8	46.8		
en	49.3	_	50.3	61.7	14.6		
es	65.9	66.7	_	62.8	49.0		
fr	58.0	53.7	44.7	-	38.2		
SV	43.9	43.6	49.6	57.1	-		

Link ambiguity

