Degradation Aware Predictive Energy Management Strategy for Ship Power Systems

Satish Vedula*

Mehrzad Mohammadi Bijaieh

Ellis Oti Boateng

Olugbenga Moses Anubi

Motivation

- Integration of modern defense weapons into ship power systems (SPS) poses a challenge in terms of meeting the high ramp rate requirements of those loads.
- Key power supplying sources:
 - Power Generation Module (PGM)
 - Power Conversion Module (PCM)
 - Auxiliary PGM (APGM)
- Key power demanding modules:
 - Propulsion Motor Module (PMM)
 - Pulse Power Loads (PPL)
 - High ramp-rate requirements
- Addressing the PPL ramp-rate requirements by designing an energy management strategy (EMS).

Problem Statement

Control Structure

- Hierarchical Control Structure in SPS
 - Energy Management Layer (EMS)
 - Optimizer
 - Power Management Layer (PMS)
 - Droop Control
 - Device Level Controllers (DLCs)
 - PI Control
- Power flow model in SPS
 - $g(\boldsymbol{p}_g, \boldsymbol{p}_b, \boldsymbol{p}_l) = 0$
 - $p_g \in R^{n_g}$ represents the power injected by n_g number of generators
 - $p_b \in R^{n_b}$ represents power injected by n_b number of ESS
 - $p_l \in R^{n_l}$ represents number of loads in the system (n_l)

APGM: Auxiliary Power Generation Module, **PMM:** Propulsion Motor Module, **MPGM:** Main Power Generation Module, **PCM:** Power Conversion Module **ESS:** Energy Storage System, **DC-DC:** DC to DC Convertor, **EM:** Energy Management, p_m : Measured Power from Modules, p^* : Optimal Power from EM

Problem Statement

MPC Formulation

- Decision Variables
 - p_{g_k} : Generator Power
 - p_{b_k} : Battery Power
- Load Forecast : p_l^f
- Decision Variable Initialization
 - p_{g_m} : Measured Generator Power
 - p_{b_m} : Measured Battery Power
- Upper and Lower Power Limitations
- Ramp Rate Limitations
 - r_a : Generator Ramp Limitations
 - r_b : Battery Ramp Limitations
- State of Charge (SoC)
 - q_0 : Initial SoC
 - q_h: Final SoC (End of Horizon SoC)

Problem Statement

Other Descriptions

• Q_T : Battery Capacity in AHr

• v_b^{*} : Bus Voltage

• h : Horizon

Battery Monitored Quantities

State of Health (SOH)

Q_{loss}: Battery Capacity Loss

Ah : Ah-throughput

· Calculated as Integral of current throughput till end of life.

State of Charge (SOC)

Generator Monitored Quantities

- State of Power (SOP in %)
 - Measured by dividing current power by rated power and multiplied by 100.
- State of Health (SOH)
 - Based on Stress Equation and degradation determined through integral of power supplied through end of life.
- Simulation tested on Single generator, battery and load model shown to the left

$$Q_{loss} = Be^{\frac{-A \times C_{rate}}{RT}} (Ah)^{0.5}$$

Load Forecast

- Power Forecast is generated to replicate the usage of PPLs.
- Noise varying from 1% to 10% threshold is introduced to the load forecast as seen in the figure to the left.
- The table showing the component ratings for PCM, PGM and PMM used for the simulation.

TABLE I: System Components Power Ratings

PGM, PCM and Load Ratings				
	Power (MW)	RR (MW/sec)	LL (MW)	UL (MW)
PGM	29	2.9	0.29	27.5
PCM	30	10	-10.64	10.64
Load	30	10	-	-

Simulation Setup

• Initial SOC: 0.8

• Final SOC : 0.77

Simulation Timestep : 100μs

• EMS and System Timescale separation = 1ms

• PGM

- Power Injected by the PGM in (MW)
- SOP of the PGM throughout the simulation
- SOH of the PGM are shown in the figure to the right.

- PCM
 - Power Injected by the battery in (MW)
 - SOC of the battery throughout the simulation
 - SOH of the battery are shown in the figure to the right. The simulation run is adjusted to meet the accelerated end of life for components
- Combined Power injections by generator and battery compared to power forecast shown in figure below.

- Battery Degradation Data
 - Varying noise power from 1% to 10% is injected into load forecast and the resulting effect on the robustness of the controller, the battery target SoC and battery accelerated capacity loss is studied.
 - The target SOC is swept from 0.8 to 0.6
 - Using parallel simulation (*parsim*) environment in Simulink the simulation is run 400 times based on situations mentioned above.
- The collected data from the simulations is plotted as "degradation curve" shown in the figure to the right.

Conclusions and Future Work

Conclusion

- An EMS for SPS considering the ramp-rate limitations of Generator and Batteries is presented.
- Power forecast is designed to address the usage of PPLs.
- The formulated MPC is validated is run in parsim and the degradation data is collected and plotted.

Future Work

- Current simulation results have been implemented on a single generator, battery and load model as shown to the left.
- Future goal is to expand this work to multi zone SPS, staring with 2-zone model and then the 4zone model.
- Introducing the collected battery degradation data as the cost function in the objective shown to the right.

Satish Vedula: svedula@fsu.edu

