HOMEWORK 5 – MATH 4341 DUE DATE: MONDAY 10/09/2023

Problem 1. Let X be a topological space and $Y \subset X$. Show that IntY is equal to the set of all points $x \in X$ such that some neighborhood of x is a subset of Y.

Problem 2. Let X be a topological space and $Y \subset X$. Show that:

- (1) $\operatorname{Int} Y = X \setminus \overline{(X \setminus Y)}$.
- (2) $\overline{Y} = X \setminus \operatorname{Int}(X \setminus Y)$.

Problem 3. Let X be a topological space and $Y, Z \subset X$. Show that:

- (1) $\overline{Y \cup Z} = \overline{Y} \cup \overline{Z}$.
- (2) $\overline{Y \cap Z} \subset \overline{Y} \cap \overline{Z}$. Find an example where $\overline{Y \cap Z} \neq \overline{Y} \cap \overline{Z}$.
- (3) $\operatorname{Int} Y \cup \operatorname{Int} Z \subset \operatorname{Int}(Y \cup Z)$. Find an example where $\operatorname{Int} Y \cup \operatorname{Int} Z \neq \operatorname{Int}(Y \cup Z)$.
- (4) $\operatorname{Int} Y \cap \operatorname{Int} Z = \operatorname{Int}(Y \cap Z)$.

Problem 4. Let \mathbb{R}_{ℓ} be the set of all real numbers \mathbb{R} with the lower limit topology, and \mathcal{I} be the set of all irrational real numbers. Prove that

- (1) $\partial \mathcal{I} = \mathbb{R}_{\ell}$.
- (2) \mathcal{I} is dense in \mathbb{R}_{ℓ} .