SOLUTIONS

Section 1

Question	Correct	Notes		
1	С	Rate per 30 seconds = 4, so $X \sim Poisson(4)$ Need $P(X \le 4) = .6288$		
2	А	Mean = np = $4.8 = 12 \times p$. Hence p = $4.8 / 12 = 0.4$. $X \sim Bin(12, .4)$ P(X > 6) = $1 - P(X \le 6) = 18418 = .1582$		
3	С	If X ~ U(a,b) then var(X) = $\frac{(b-a)^2}{12}$.		
		If E(X) = 0, then $a = -b$, so $var(X) = \frac{(2b)^2}{12} = \frac{b^2}{3}$. If $var(X) = 16/3$, then $b = 4$.		
4	С	if X ~ Exponential(2) then $var(X) = \frac{1}{4}$. $Var(4X+3) = 16 var(X) = \frac{16}{4} = 4$		
5	D	Since independent, $P(A \cap B) = P(A) P(B)$. i.e., $.3 = .4 \times P(B)$. $P(B) = .75$ $P(A \cup B) = P(A) + P(B) - P(A \cap B) = .4 + .753 = .85$		
6	С	$var(X) = E(X^2) - μ^2$, so $var(X)$ cannot exceed $E(X^2) = 5$. Also, $var(X) ≥ 0$, so $μ^2 ≤ E(X^2) = 5$. Thus, $E(X) < √5 ≈ 2.236$.		
7	С	Others may be true. Only C must be true, since $P(X \le 3) \ge .5$.		
8	D	$var(X) = E(X^2) - [E(X)]^2$. We have $E(X) = 5$, $var(X) = 25$, so $E(X^2) = 25 + 25 = 50$		
9	С	Other options address other concepts (A, B) or are misstated (D).		
10	В	Must sum to 1 with all probs non-negative. Only B does this.		

		Solution								
1	(a)	(P -0072 (80) -0546	Using - D = diseased P = positive test result							
				D 0939	<u>D</u>	Total				
		0.501	$\frac{P}{\overline{P}}$.0828	.0546 .8554	.1374 .8626				
		.8554	Total	.09	.91	1				
		192 P .0828 109 D .08 P .0072 191 D .0546 P .8554	Symbols r Labelling Totals cor End-path tree diagr All four pr diagram.	must be c npleted o probabilit am.	orrect. n table. ies compl					
	(b)	P(diseased positive) = .0828 / .1374 = .6026 (.6	[2. 0 if co		•	ecognised.				
	(c)	Redo calculation with P(D) = .6026. This gives – P($P D$) = .6026 × .92 = .5544 P($P \overline{D}$) = (16026)(194) = .0238 P(D P) = .5544 / (.5544 + .0238) = .9588				[1] [1] [1]				
2	(a)	X ~ Hyper(10, 7, 50) [assume n, M, N. Must show <i>numbers</i> . 3]								
	(b)	$Var(X) = n \frac{M}{N} \left(1 - \frac{M}{N} \right) \left(\frac{N - n}{N - 1} \right) = 10 \frac{7}{50} \left(1 - \frac{7}{50} \right) \left(\frac{40}{49} \right) = .9829 $ [2]								
	(c)	$P(X \ge 3) = 1 - P(X \le 2) = 18674 = .1326$								
	(d)	X ~ Bin(10, .14)		[2]						
		$Var(X) = 10 \times .14 \times .86 = 1.204$				[1]				
	7-1	Va Const (2) OB Va No 1: (4 2)				Fa 1				
3	(a)	X ~ Geom(.2) OR X ~ Negbin(1, .2) Y ~ Negbin(4, .2)				[1] [2]				
	(b)	mean = E(Y) = $\frac{r(1-p)}{p} = \frac{4 \times .8}{.2} = 16$				[1]				
		$var(Y) = \frac{r(1-p)}{p^2} = \frac{4 \times .8}{.04} = 80$				[1]				
	(c)	P(7 attempts) = P(Y = 3)				[1]				
		$P(Y = 3) = {6 \choose 3}.2^4.8^3 = 20 \times .0016 \times .512 = .0164$				[2]				
	(d)	$P(X>6) = 1 - P(X \le 6) = 1 - (18^7) = .2097$				[3]				

4	(a)	$F(1) = ax^3 - 3x^2 = 1$. Hence $a = 4$.	[1]					
	(b)	$f(x) = \frac{d}{dx}F(x) = 12x^2 - 6x$						
	(c)	It is wrong as this part yields a NEGATIVE probability.						
		F(.6) =216						
		F(.3) =162 P(.3 < X < .6) = F(.6) - F(.3) =216 - (162) =054						
	(d)	This part yields a NEGATIVE variance, so wrong again.						
		$E(X) = \int_{0}^{0} x(12x^{2} - 6x)dx = 6\int_{0}^{0} (2x^{3} - x^{2})dx = 6\left[\frac{x^{4}}{2} - \frac{x^{3}}{3}\right]_{0}^{1} = 6\left(\frac{1}{2} - \frac{1}{3}\right) = 1$						
		$E(X^{2}) = \int_{0}^{0} x^{2} (12x^{2} - 6x) dx = 6 \int_{0}^{0} (2x^{4} - x^{3}) dx = 6 \left[\frac{2x^{5}}{5} - \frac{x^{4}}{4} \right]_{0}^{1} = 6 \left(\frac{2}{5} - \frac{1}{4} \right) = \frac{9}{10}$						
		$Var(X) = E(X^2) - E(X)^2 = .9 - 1 =1$						
_	, ,							
5	(a)	Using rounded Z-scores and tables: (40-47.4 52-47.4) Using exact z-scores (e.g., in R):	7					
		$P(40 < X < 52) = P\left(\frac{40 - 47.4}{5.71} < Z < \frac{52 - 47.4}{5.71}\right)$ Using exact z-scores (e.g., in R): P(X < 52) - P(X < 40)						
		= P(-1.30 < Z < .81) $= .78980975$						
		= P(Z < .81) - P(Z < -1.30) [1] = .6923						
		=.79100968						
	/1-1	= .6942 [1, total = 2]						
	(b)	Using rounded Z-scores and tables: $P(X \ge 55) = 1 - P(X < 55)$ Using exact z-scores (e.g., in R):						
		$=1-P\left(Z<\frac{55-47.4}{5.71}\right) \qquad P(X \ge 55) = 1-P(X < 55)$						
		-15004						
		=1-P(Z<1.33) [1] $=.0916$						
	(6)	=19082 = .0918 [1, total = 2]						
	(c)	By definition, quartiles divide a distribution into chunks of 25%. Since a normal distribution is symmetric, we need to find only the lower quartile.						
		That is, find x so that $P(X \le x) = .25$						
		From tables , the closest left-tailed probability to 0.25 0.2514, for which the						
		corresponding Z-score is -0.67.						
		Thus, Q1 = 43.6						
		By symmetry Q3 = 47.4 + .67 × 5.71 = 51.2.						
		From R , the quorm function gives Q1 = 43.55 and Q3 = 51.25						
	(d)	We have $Var(X) = 5.71^2 = E(X^2) - E(X)^2$, so $E(X^2) = 5.71^2 + 47.4^2 = 2279.364$	[1]					
		Hence $E(3X^2) = 3E(X^2) = 3 \times 2279.364 = 6838.092$	[1]					