Optimization Techniques (MAT-2003)

Dr. Yada Nandukumar

Department of Mathematics
School of Advanced Sciences (SAS)
VIT-AP University

Convex linear combination: A linear combination of x and y i.e., ax + by is said to be convex linear combination if $0 \le a, b \le 1$ and a + b = 1.

Dominance property: In some games, it is possible reduce the size of the payoff matrix by eliminating redundant rows(or columns). If a game has such redundant rows(or columns), those rows or columns are dominated by some other rows(or columns), respectively. Such property is known as dominance property.

Dominance property by rows:

- ❖ In the payoff matrix of player A, if all the entries in a row (say X) are less than or equal to the corresponding entries of another row(say Y)(i.e., $X \le Y$), then row X is dominated by row Y. Under such situation, row X of the payoff matrix can be deleted.
- \clubsuit if some convex linear combination of some rows(X and Y) dominate Z row, then the Z row will be deleted. Here, elements of Z row dominated by convex linear combination of X and Y.

Dominance property for columns:

- ❖ In the payoff matrix of player A, if all the entries in a column (say X) are greater than or equal to the corresponding entries of another column (say Y) (i.e., $X \ge Y$), then column X is dominated by column Y. Under such situation, dominated column X of the payoff matrix can be deleted.
- \clubsuit if some convex linear combination of some column (X and Y) dominate Z column, then the Z column will be deleted. Here, elements of Z column dominated by convex linear combination of X and Y.

Example:

Solve the following payoff matrix using dominance property

			Player B				
		1	2	3	4	5	
	I	I	3	2	7	4	
Player A	II	3	4	1	5	6	
	III	6	5	7	6	5	
	IV	2	0	6	3	1	

Here, $R_4 \leq R_3$, therefore by row dominance property we can delete R_4 .

The resultant payoff matrix becomes:

In the above payoff matrix, no two rows are dominated by one another.

Let us look for column dominance property.

Here we have $C_4 \ge C_1$, therefore we can delete C_4

The resultant payoff becomes:

In the above payoff, $C_5 \ge C_2$. Therefore, we can delete C_5 .

The payoff matrix becomes:

In the above payoff matrix, $R_1 \leq R_3$. Therefore, delete R_1 by row dominance property.

The payoff becomes:

In the above payoff matrix, $R_2 \le R_3$. Therefore, delete R_3 by row dominance property.

The payoff becomes:

Now, we have only one row. Therefore we can delete maximum column elements using column dominance property.

Here, we left with only one value which is the saddle point of the game and its value is the value of the game

The game is a pure strategy game.

The optimal strategies of the players A and B are *III* and 2 respectively.

Player A is winning the game.

Example:

Solve the following payoff matrix using dominance property

		Player B				
		B_1	B_2	B_3	B_4	B_5
Player A	A_1	4	6	5	10	6
	A_2	7	8	5	9	10
	A_3	8	9	11	10	9
	A_4	6	4	10	6	4

Δ	6	5	10	6	$-R_1$
•			10		- ₁ 1
7	8	5	9	10	R_2
8	9	11	10	9	R_3
6	4	10	6	4	R_4
C_1	C_2	C_3	C_4	C_5	•

In the above payoff matrix $R_1 \leq R_3$, therefore, delete R_1 using row dominance property.

The payoff matrix becomes.

7	8	5	9	10	R_2
8	9	11	10	9	R_3
6	4	10	6	4	- R ₄
C_1	C_2	C_3	C_4	C_5	I

In the above payoff matrix $R_4 \le R_3$, therefore, delete R_4 using row dominance property.

The payoff matrix becomes.

In the above payoff matrix we have $C_2 \ge C_1$. Therefore, by column dominance property delete C_2 .

The payoff matrix becomes:

7	5	9	10	R_2
8	11	10	9	R_3
C_1	C_3	C_4	C_5	_

In the above payoff matrix we have $C_4 \ge C_1$. Therefore, by column dominance property delete C_4 .

The payoff matrix becomes:

In the above payoff matrix we have $C_5 \ge C_1$. Therefore, by column dominance property delete C_5 .

The payoff matrix becomes:

In the above payoff matrix we have $R_2 \le R_3$. Therefore, by row dominance property delete R_2 .

The payoff matrix becomes:

In the above payoff matrix we have $C_3 \ge C_1$. Therefore, by column dominance property delete C_3 .

The payoff matrix becomes:

Therefore, the game has a pure strategy and the players A and B are coming up with the strategies A_2 and B_2 respectively.

4	6	5	10	6	Saddle point
7	8 _	5	9	10	
8	9	11	10	9	
6	4	10	6	4	

The value of the game V=8

Player *A* is winning the game.

Mixed Strategy using Dominance property:

Example:

Solve the following payoff matrix using dominance property

		Player B			
		I	II	III	IV
	I	3	2	4	0
Player A	II	3	4	2	4
	III	4	2	4	0
	IV	0	4	0	8

	3	2	4	0	R_1
	3	4	2	4	R_2
	4	2	4	0	R_3
	0	4	0	8	R_4
,	C_1	C_2	C_3	C_4	

In the above payoff matrix $R_1 \leq R_3$, therefore, delete R_1 using row dominance property.

The payoff matrix becomes.

		•	ı	-	Ī
3		4	2	4	R_2
4		2	4	0	R_3
					113
0		4	0	8	D
					R_4
	C_1	C_2	C_3	C_4	!
	σ Ι	<u> </u>	03	5 4	

In the above payoff matrix $C_1 \ge C_3$, therefore, delete C_1 using column dominance property.

The payoff matrix becomes.

In the above payoff matrix $C_2 \geq \frac{1}{2}C_3 + \frac{1}{2}C_4$. Therefore, delete C_2 using column dominance property.

The payoff matrix becomes.

2	4	
4	0	
0	8	

In the above payoff matrix $R_1 \le \frac{1}{2}R_2 + \frac{1}{2}R_3$. Therefore, delete R_1 using row dominance property.

The payoff matrix becomes.

Here, the game has no strategy and it is a 2×2 pay-off matrix.

Therefore, we know formulae for finding the probabilities of the strategies and value of the game.

Let p_3 and p_4 are the probabilities of the player A to chose the strategies IIIand IV.

Let q_3 and q_4 are the probabilities of the player B to chose the strategies III and IV.

$$p_{3} = \begin{bmatrix} q_{3} & q_{4} \\ 4 & 0 \\ a & b \\ p_{4} & 0 \\ c & d \end{bmatrix} |0 - 8| = 8$$

$$p_{4} = \begin{bmatrix} 0 & 8 & |4 - 0| = 4 \\ c & d \end{bmatrix}$$

$$|0 - 8| = 8 \quad |0 - 4| = 4$$

$$p_3 = \frac{|c-d|}{|a-b|+|c-d|} = \frac{8}{8+4} = \frac{2}{3}$$

$$p_4 = \frac{|a-b|}{|a-b|+|c-d|} = \frac{4}{8+4} = \frac{1}{3}$$

$$q_3 = \frac{|b-d|}{|a-c|+|b-d|} = \frac{8}{8+4} = \frac{2}{3}$$

$$q_4 = \frac{|a-c|}{|a-c|+|b-d|} = \frac{4}{8+4} = \frac{1}{3}$$

And the value of the game is

$$V = \frac{a|c - d| + c|a - b|}{|a - b| + |c - d|}$$

$$= \frac{4|0 - 8| + 0|4 - 0|}{|0 - 8| + |4 - 0|}$$

$$= \frac{32}{12} = \frac{8}{3}$$

Here, the players A and B are using mixed strategies.

Player A is using III and IV strategies with the probabilities $\frac{2}{3}$ and $\frac{1}{3}$.

Player *B* is using *III* and *IV* strategies with the probabilities $\frac{2}{3}$ and $\frac{1}{3}$.

The value of the game, $V = \frac{8}{3}$

Player A is winning the game.