Introduction to Bayesian Statistics

Part 3
Prior & Posterior Distributions

This lecture

Short summary of last lecture

Some useful distributions

The prior distribution

The posterior distribution

Posterior predictions and model evaluation

Update beliefs (prior) by gaining new information (data & likelihood)

Posterior distribution used for quantitative & direct statements on research questions

Don't have access to posterior distribution Approximate by MCMC sampling

- 1) Research question (hypotheses)
- 2) Data collection
- 3) Statistical model
- 4) Prior distribution choice
- 5) Model fitting (MCMC)
- 6) Evaluate model output
- 7) Quantitative statements on hypotheses

Revise model

- Example: number of individuals from a population
 of N = 10 that survive the winter
- y discrete and bounded variable with outcomes 0, 1, 2, ..., 10
- Average survival probability $\theta = 0.6 (60\%)$
- Binomial distribution: $y \sim \text{Binomial}(N, \theta)$ random variable "distributed as" parameters: size N probability θ

Prior distribution

Chosen by you

Density known over full parameter range

$$p(\theta) = \text{dbeta}(\theta \mid 2,2)$$

Likelihood function

Defined by **your** data and **your** statistical model (deterministic & stochastic part)

Can be computed for every single parameter value But values not known over full parameter range

$$L(\theta) = \prod_{i=1}^{n} p(y_i | \theta)$$

= $\prod_{i=1}^{n} dBinom(survived_i, total_i | \theta)$

Posterior distribution

Software **output**: approximation by MCMC sampling

$$p(\theta|y) \sim p(\theta) \cdot L(\theta)$$

Represented by samples $\theta_1, \theta_2, \theta_3, ..., \theta_{1000}$ only!

Posterior density values $p(\theta_1|y), p(\theta_2|y), ..., p(\theta_{1000}|y)$ not required, don't need to be saved

Counting instead of integrating for hypotheses testing!

Super easy once you have a posterior sample

Distribution zoo app

https://ben18785.shinyapps.io/distribution-zoo/

Probability playground app

https://www.acsu.buffalo.edu/~adamcunn/probability/probability.html

The gamma distribution is a "waiting time" distribution. Suppose events occur independently and randomly with an average time between events of β . The waiting time until α events have occurred is a gamma(α , β) random variable.

The parameter α is known as the shape parameter, and the parameter β is called the scale parameter. Increasing α leads to a more "peaked" distribution, while increasing β increases the "spread" of the distribution.

The function $\Gamma(s)$ in the denominator of the pdf and cdf denotes the <u>gamma function</u>, while the function $\gamma(s,x)$ in the cdf denotes the <u>lower incomplete</u> gamma function.

Parameter	Range	Description
α	a > 0	Shape parameter
β	β > 0	Scale parameter

Probability Density Function	Support
$f(x; \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta}$	$0 \le x < \infty$

Mean	Variance	
αβ	$\alpha \beta^2$	

A radioactive substance emits two alpha particles every second on		
average. Let X be the waiting time for three particles to be	3.000	0.5000
emitted.		

Cars arrive at an intersection at an average rate of one every two minutes. Let $\it X$ be the waiting time until five cars have arrived. 5.000 2.000

6.000 5.000

Garage door lightbulbs last five years on average and are replaced when they fail. Let $\it X$ be the time that a box of six bulbs lasts.

Example

Note that the mean $\alpha\beta$ is directly proportional to both α and β . This is what we would intuitively expect - the mean time spent waiting for α events to occur increases in proportion to both the number of events α and the average time β between events.

The shape of the pdf depends on the parameter α . For values of $\alpha \le 1$, the pdf is strictly decreasing. For values of $\alpha > 1$, the pdf is unimodal.

Prior distributions

Prior information

- Priors represent belief about model parameters (for example effect size of an x-y association)
- Traditional viewpoint: before we see the data y
 Data information is already contained in the likelihood!
- Use information from
 - General expectation / reasonable range
 - Previous experiments
 - Related studies in the literature
- *Modern* viewpoint:
 - Priors used for regularization
 - Prior predictive checks:Are predictions from the prior in the same range / magnitude as observed data?
- Priors are problem-specific

Types of priors

Flat / uninformative prior

- You know absolutely nothing about the parameter
- This is rarely the case

Vague / weakly informative prior

- You have a vague idea
- For example about the order of magnitude, or sign

Informative prior

• You have some idea about the parameter

→ There is no formal definition of these terms!

Prior affects the posterior

- Example: survival rate $\theta \in [0,1]$
- 1 Observation: 8/10 survived
- Binomial likelihood function
- Priors all beta distributions with mean = 0.5
- but different standard deviations
 (concentration around mean)

Prior affects the posterior

- For flat priors, posterior is proportial to likelihood
- For any other prior, posterior is a compromise between prior and likelihood
- For weakly informative priors, even little data dominates the posterior
- More informative priors (lower sdev)
 draw the posterior mean further away from
 the maximum likelihood estimate (MLE)
 towards the prior mean

Likelihood affects the posterior

- Example: survival rate $\theta \in [0,1]$
- "informative prior" from last slide
- Different numbers of obs. *n*
- Width of likelihood function decreases with n (higher certainty)

Likelihood affects the posterior

- For small datasets (little experimental evidence),
 the prior can dominate the posterior
- In large datasets, likelihood can dominate the posterior
- Number of observations decreases the width of the likelihood and therefore also posterior uncertainty (stronger experimental evidence)
- Number of observations draws posterior mean towards maximum likelihood estimate (MLE)

Are priors subjective?

Prior predictive checks

- Test if priors make sense
- Generate predictions with samples from prior distribution
- Compare them to the range of observed data
- Helpful when using data transformations
 (GLMs use nonlinear link-functions, like log or logit)
- Traditional viewpoint (old school):
 Priors should be chosen before even looking at the data
- Modern viewpoint: Prior predictive simulations are useful!
 E.g. McElreath: Statistical Rethinking (2020, 2nd ed.)

brms default priors

- brms automatically chooses priors for intercepts and standard deviations
- Based on the observed data
- Overriding intercept default prior must be handled carefully:
 brms internally uses mean-centered predictors, which changes intercept
- → My advice: leave them unless you want to include specific information on these parameters
- brms default priors for effect sizes / regression **slopes** are flat priors!
- → Choose your own priors for them!

Posterior distribution

	Intercept	Slope
[1,]	-0.524	0.638
[2,]	-0.703	0.473
[3,]	-0.200	0.942
[4,]	0.610	-0.357
[5,]	0.928	-0.581
[6,]	0.807	-0.941
[7,]	1.905	-1.924
[8,]	-0.136	-0.079
[9,]	-0.799	0.403
[10,]	0.098	-1.532

MCMC output is a matrix / dataframe !

Each **column** contains all samples of 1 parameter

	Intercept	Slope
[1,]	-0.524	0.638
[2,]	-0.703	0.473
[3,]	-0.200	0.942
[4,]	0.610	-0.357
[5,]	0.928	-0.581
[6,]	0.807	-0.941
[7,]	1.905	-1.924
[8,]	-0.136	-0.079
[9,]	-0.799	0.403
[10,]	0.098	-1.532

Each **row** contains 1 sample of all parameters

A random row is part of the posterior sample

Random entries of each column (mixed) are **not** part of the posterior sample

Everything is a distribution!

Posterior predictions

Example:

Example: linear relationship between age x and body mass y of sea turtles

Deterministic part: $\mu(x) = a + b \cdot x$

Stochastic part: $y \sim \text{Normal}(\mu, \sigma)$

Parameters: a intercept

b slope

 σ standard deviation

Model output

```
> fit1 = brm(weight ~ age, data=data)
> summary(fit1)

Family: gaussian
Links: mu = identity: sigma = identity
```

```
Links: mu = identity; sigma = identity

Formula: weight ~ age

Data: data (Number of observations: 8)

Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup draws = 4000
```

Regression Coefficients:

Regression Coerrectenes.							
		Est.Error					
Intercept	19.99	16.24	-13.79	53.23	1.00	2848	1916
age	8.53	1.50	5.46	11.59	1.00	2817	1838

Further Distributional Parameters:

```
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS sigma 4.01 1.43 2.19 7.73 1.00 1606 1766
```

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

mean and **sdev** of parameters' posterior distribution

How to predict?

What is the predicted weight at age x = 10.5 ?

Deterministic part: $\mu(x) = a + b \cdot x$

We have mean values for intercept a=19.99 and slope b=8.53

However, in Bayesian statistics, we **don't** use mean parameter values to make prediction.

We use the **whole posterior distribution** to quantify prediction uncertainty correctly!

The fitted distribution

draw b	_Intercept	b_age	fitted(age=10.5)	
1	7.473	9.738		109.720	
2	30.477	7.614		110.425	
3	22.153	8.273		109.022	
4	34.008	7.310		110.763	llh l
5	39.144	6.667	Deterministic part	109.147	
6	12.472	9.328	$\mu = a + b \cdot x$	110.415	
7	7.005	9.674		108.579	
8	-3.196	10.633		108.446	
9	23.362	8.309		110.602	100 110 120
10	23.745	8.247		110.342	$\mu(age = 10.5)$

Each sample from the posterior (a_i, b_i) generates 1 sample for, $\mu_i(\text{age} = 10.5) = a_i + b_i \cdot 10.5$

> posterior_epred(fit1, newdata=data.frame(age=10.5))

Each posterior sample generates a regression line

<u>draw b</u>	_Intercept	b_age	sigma
1	7.473	9.738	4.128
2	30.477	7.614	3.456
3	22.153	8.273	3.474
4	34.008	7.310	4.200
5	39.144	6.667	4.456
6	12.472	9.328	3.671
7	7.005	9.674	4.045
8	-3.196	10.633	4.117
9	23.362	8.309	3.519
10	23.745	8.247	3.336
11	27.194	7.948	4.249
12	18.373	8.566	3.351
13	20.358	8.522	3.447
14	10.307	9.322	3.007
15	24.486	8.224	3.408

Each posterior sample generates a regression line

draw	b_Intercept	b_age	sigma
1_	7.473	9.738	4.128
2	30.477	7.614	3.456
3	22.153	8.273	3.474
4	34.008	7.310	4.200
5	39.144	6.667	4.456
6	12.472	9.328	3.671
7	7.005	9.674	4.045
8	-3.196	10.633	4.117
9	23.362	8.309	3.519
10	23.745	8.247	3.336
11	27.194	7.948	4.249
12	18.373	8.566	3.351
13	20.358	8.522	3.447
14	10.307	9.322	3.007
15	24.486	8.224	3.408

Each posterior sample generates a regression line

draw	b_Intercept	b_age	sigma
1	7.473	9.738	4.128
2	30.477	7.614	3.456
3	22.153	8.273	3.474
4	34.008	7.310	4.200
5	39.144	6.667	4.456
6	12.472	9.328	3.671
7	7.005	9.674	4.045
8	-3.196	10.633	4.117
9	23.362	8.309	3.519
10	23.745	8.247	3.336
11	27.194	7.948	4.249
12	18.373	8.566	3.351
13	20.358	8.522	3.447
14	10.307	9.322	3.007
15	24.486	8.224	3.408

Each posterior sample generates a regression line

draw	b_Intercept	b_age	sigma
1	7.473	9.738	4.128
2	30.477	7.614	3.456
3	22.153	8.273	3.474
4	34.008	7.310	4.200
5	39.144	6.667	4.456
6	12.472	9.328	3.671
7	7.005	9.674	4.045
8	-3.196	10.633	4.117
9	23.362	8.309	3.519
10	23.745	8.247	3.336
11	27.194	7.948	4.249
12	18.373	8.566	3.351
13	20.358	8.522	3.447
14	10.307	9.322	3.007
15	24.486	8.224	3.408

Credible intervals

Distribution of fitted values / regression lines with **deterministic model part only**

$$\mu_i(x) = a_i + b_i \cdot x$$
 (*i* = 1, ..., 1000)

Mean fitted value

$$\overline{\mu}(x) = \operatorname{mean}(\mu_1(x), \dots, \mu_{1000}(x))$$

95% intervals are called **credible intervals**. They quantify uncertainty of the regression line.

There is nothing magical about 95%, can also choose other intervals, e.g. 90%

> plot(conditional_effects(fit1, spaghetti=TRUE, ndraws=200))

Credible intervals

Distribution of fitted values / regression lines with **deterministic model part only**

$$\mu_i(x) = a_i + b_i \cdot x$$
 (*i* = 1, ..., 1000)

Mean fitted value

$$\overline{\mu}(x) = \operatorname{mean}(\mu_1(x), \dots, \mu_{1000}(x))$$

95% intervals are called **credible intervals**. They quantify uncertainty of the regression line.

There is nothing magical about 95%, can also choose other intervals, e.g. 90%

> plot(conditional_effects(fit1), points=TRUE)

The predictive distribution

b_Intercept	b_age
7.473	9.738
30.477	7.614
22.153	8.273
34.008	7.310
39.144	6.667
12.472	9.328
7.005	9.674
-3.196	10.633
23.362	8.309
23.745	8.247

The predictive distribution

Prediction intervals

Predictions add random residual error to fitted values

Distribution of predicted values with **deterministic and stochastic model part**

$$\widehat{y}_i(x) = \mu_i(x) + \varepsilon_i$$
 ($i = 1, ..., 1000$)
 $\varepsilon_i \sim \text{Normal}(0, \sigma_i)$

Same as: $\widehat{y}_i(x) \sim \text{Normal}(\mu_i(x), \sigma_i)$

95% intervals are called **prediction intervals.**They quantify uncertainty of newly predicted data.
(Should contain around 95% of observed data.)

Fitted vs. predictive

Fitted

Mean regression line / curve under parameter uncertainty

"Credible intervals"

Uses deterministic model part only

Predicted

Predictive data distribution under parameter uncertainty and model residuals

"Prediction intervals"

Uses deterministic and stochastic model parts

Fitted vs. predictive

Fitted

```
> fitted(fit1)
    Estimate Est.Error Q2.5 Q97.5
[1,] 105.25324 1.813620 101.59634 108.8769
[2,] 122.30603 2.343272 117.55827 127.0220
[3,] 113.77964 1.458628 110.92357 116.6928
[4,] 113.77964 1.458628 110.92357 116.6928
[5,] 96.72685 2.995963 90.55468 102.8774
[6,] 113.77964 1.458628 110.92357 116.6928
[7,] 105.25324 1.813620 101.59634 108.8769
[8,] 122.30603 2.343272 117.55827 127.0220
```

Mean regression line / curve under parameter uncertainty

"Credible intervals"

Uses deterministic model part only

Predicted

Predictive data distribution under parameter uncertainty and model residuals

"Prediction intervals"

Uses deterministic and stochastic model parts

Posterior predictive checks

Linear regression assumptions

- Independent observations.
 Systematic differences in y are because of x!
- 2. Trend of y follows (linear) prediction model $\mu(x) = a + b \cdot x$
- 3. Residuals follow normal distribution $\varepsilon \sim \text{Normal}(0,\sigma)$
- 4. Constant variance (standard deviation) across whole range of x

Model checking

Visualization is easy when you have just one predictor!

Need alternative visual tools when dealing with multiple predictors.

Response / prediction is just 1 variable

- → Compare and plot against each other:
- observations
- (mean) predictions
- residuals (observed predicted)

> plot(conditional_effects(fit1), points=TRUE)

Model checking (from brms package)

> pp_check(fit1, type=,,scatter_avg")

> pp_check(fit1, ndraws=50)

Model checking (from performance package)

Fitted values

> check model(fit1, check=,,linearity")

> check model(fit1, check=,,homogeneity")

Model checking (from performance package)

> check model(fit1, check=,,qq")

Normality of Residuals Distribution should be close to the normal curve

> check model(fit1, check=,,normality")

Pitfalls of prediction: Multivariate posterior

If you posterior (parameters a,b) was shaped like Croatia, (nonlinear correlation), then the mean (\bar{a},\bar{b}) in 2d-space would not be part of the posterior sample

Parameter combination (\bar{a}, \bar{b}) is **highly unlikely**

Prediction $\mu(\bar{a}, \bar{b})$ is not the mean prediction, but rather meaningless!

→ Always use full posterior for making predictions!

Due to its shape, the centre of Croatia is actually located in Bosnia and Herzegovina

Post übersetzer

Pitfalls of prediction: Jensen's inequality

For linear models μ (as in linear regression $\mu = a + bx$)

$$\mathrm{mean}\big(\mu(\theta_1),...,\mu(\theta_{1000})\big) = \mu\big(\mathrm{mean}(\theta_1,...,\theta_{1000})\big)$$

$$\mathrm{Distribution\ of}_{\mathrm{predictions}}$$

$$\mathrm{Prediction\ with}_{\mathrm{point\ estimate\ }\overline{\theta}}$$

For **nonlinear functions** μ

$$\operatorname{mean}\big(\mu(\theta_1), \dots, \mu(\theta_{1000})\big) \neq \mu\big(\operatorname{mean}(\theta_1, \dots, \theta_{1000})\big)$$

Relevant for nonlinear statistical models, GLMs, link functions, parameter or data transformations

→ Always use full posterior for making predictions!

Summary

Summary

- Priors → you choose!
- Likelihood → given by data & statistical model
- MCMC samples from posterior → check convergence!
- Informative priors can decrease uncertainty in posterior
- More datapoints can decrease uncertainty in posterior
- Use posterior predictions to check model assumptions and model fit
- In Bayesian statistics, everything is a distribution
- → Use full posterior (samples) for everything

Further reading

Banner, K. M., Irvine, K. M., & Rodhouse, T. J. (2020). The use of Bayesian priors in Ecology: The good, the bad and the not great. *Methods in Ecology and Evolution*, 11(8), 882–889. https://doi.org/10.1111/2041-210X.13407

Bürkner, P. (2024). The brms Book [in progress]. https://paulbuerkner.com/software/brms-book/

Conn, P. B., Johnson, D. S., Williams, P. J., Melin, S. R., & Hooten, M. B. (2018). A guide to Bayesian model checking for ecologists. *Ecological Monographs*, 88(4), 526–542. https://doi.org/10.1002/ecm.1314

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization in Bayesian workflow. *Journal of the Royal Statistical Society. Series A, (Statistics in Society)*, 182(2), 389–402. https://doi.org/10.1111/rssa.12378

Lemoine, N. P. (2019). Moving beyond noninformative priors: why and how to choose weakly informative priors in Bayesian analyses. *Oikos*, 128(7), 912–928. https://doi.org/10.1111/oik.05985

McElreath, R. (2020). Statistical Rethinking: A Bayesian Course with Examples in R and STAN (2nd ed.). *Chapman and Hall/CRC*. https://doi.org/10.1201/9780429029608

van de Schoot, R., Depaoli, S., King, R., et al. (2021). Bayesian statistics and modelling. *Nature Reviews. Methods Primers*, 1(1), 1–26. https://doi.org/10.1038/s43586-020-00001-2

Wesner, J. S., & Pomeranz, J. P. F. (2021). Choosing priors in Bayesian ecological models by simulating from the prior predictive distribution. *Ecosphere*, 12(9), e03739. https://doi.org/10.1002/ecs2.3739