Qualificatifs topologiques

Daniel B. Williams

Octobre 2021 \longrightarrow Mars 2022

Table des matières

1	Espa	aces sép	parables	7
	1	Défini	tion, caractérisations et premières propriétés	7
		1.1	Définition et exemple	7
		1.2	Indice de familles dénombrables	7
	2	Consti	ructions	8
		2.1	Produit dénombrable d'une suite d'espaces séparables	8
		2.2	Espace quotient séparable	8
		2.3	Sous-espace séparable	8
	3	Liens	avec les autres qualificatifs	9
		3.1	Admettre une base dénombrable d'ouverts	9
		3.2	Espaces réguliers	10
		3.3	Espaces de Lindelöf	10
		3.4	Espaces métriques	10
		3.5	Espaces métrisables	11
		3.6	Espaces métriques précompacts	11
		3.7	Espaces métriques compacts	11
2	Espa	aces ad	mettant des bases dénombrables de voisinages	13
	1	Défini	tion, caractérisations et premières propriétés	13
		1.1	Définitions et exemples	13
	2	Lien a	vec les autres qualificatifs	14
		2.1	Espaces admettant une base dénombrable d'ouverts	14
		2.2	Espaces métriques	14
	3	Intérêt	ts	15
		3.1	Valeurs d'adhérences de suite	15
		3.2	Caractérisation séquentielle de l'adhérence et des fermés	15
		3.3	Caractérisation séquentielle des limites de fonctions et de la continuité	16

3 Espaces admettant une base dénombrable d'ouverts				
	1	Définit	ion, caractérisations et premières propriétés	17
		1.1	Définitions et exemples	17
	2	Lien av	vec les autres qualificatifs	18
		2.1	Espaces séparables	18
		2.2	Espaces admettant des bases dénombrables de voisinages	18
		2.3	Espaces réguliers	19
		2.4	Espaces de Lindelöf	19
		2.5	Espaces métriques	19
		2.6	Espaces métrisables	20
4	Espa	aces sépa	arés (T2) et espaces de Fréchet (T1)	21
	1	Définit	ion, caractérisations et premières propriétés	21
		1.1	Définitions et exemples	21
		1.2	Caractérisation des espaces de Fréchet (T1)	22
		1.3	Caractérisations des espaces séparés	22
	2	Constru	uctions	23
		2.1	Transmission du fait d'être T1	23
		2.2	Transmission du fait d'être séparé	23
		2.3	Topologie initiale et famille séparante d'applications	23
		2.4	Espace produit séparé	24
		2.5	Espace quotient séparé	24
	3	Liens a	wec les autres qualificatifs	26
		3.1	Espaces réguliers	26
		3.2	Espaces normaux	27
		3.3	Espaces métriques	28
	4	Intérêt	des espaces séparés	29
		4.1	Egalité de deux applications continues sur une partie dense	29
		4.2	Unicité des limites	29
		4.3	Usage pour la caractérisation séquentielle des limites de fonction	31
5	Espa	aces rég	uliers	33
	1	Définit	ion, caractérisations et premières propriétés	33
		1.1	Définition et exemples	33
		1.2	Caractérisations	33
	2	Constru		35
		2.1		35
	3	Liens a		36

TABLE DES MATIÈRES

		3.1	Espaces séparables	36
		3.2	Espaces admettant des bases dénombrables de voisinages	36
		3.3	Espaces admettant une base dénombrable d'ouverts	36
		3.4	Espaces complétement réguliers	37
		3.5	Espaces normaux	37
		3.6	Espaces de Lindelöf	37
		3.7	Espaces métrisables	38
	4	Utilité	· ·8	39
		4.1	Prolongation par continuité - Applications à valeurs dans un régulier	39
		4.2	Séparation des parties fermées et compactes	39
6	Espa	aces coi	mplétement réguliers	41
	1	Défini	tion, exemples et caractérisations	41
	2	Constr	ructions	42
		2.1	Sous-espaces	42
	3	Liens	avec les autres qualificatifs	43
		3.1	Espaces réguliers	43
		3.2	Espaces normaux	43
		3.3	Espaces de Lindelöf	44
	4	Utilité	: :8	45
		4.1	Complète séparation des parties fermées et compactes	45
7	Espa	aces no	rmaux	47
	1	Défini	tions, exemples et caractérisations	47
		1.1	Définition et exemples	47
		1.2	Caractérisations	47
	2	Constr	ructions	49
		2.1	Sous-espaces	49
		2.2	Transmission du fait d'être normal	49
		2.3	Espace quotient	49
	3	Liens	avec les autres qualificatifs	50
		3.1	Espaces de Fréchet (T1)	50
		3.2	Espaces séparés	50
		3.3	Espaces réguliers	50
		3.4	Espaces complètement réguliers	51
		3.5	Espaces de Lindelöf	51
		3.6	Espaces métriques	51
		3.7	Espaces compacts	52

	4	Utilité	és	53
		4.1	Chaines d'ouverts et d'adhérences dans un normal	53
		4.2	Complète séparation des fermés dans un normal	53
		4.3	Prolongement des applications continues d'un normal dans R	53
8	Esp	aces de	Lindelöf	55
	1	Défini	itions, exemples et caractérisations	55
		1.1	Définitions et exemples	55
	2	Liens	avec les autres qualificatifs	56
		2.1	Espaces séparables	56
		2.2	Espaces admettant une base dénombrable d'ouverts	56
		2.3	Espaces réguliers	57
		2.4	Espaces complètement réguliers	57
		2.5	Espaces normaux	57
		2.6	Espaces métriques	58

Chapitre 1

Espaces séparables

1 Définition, caractérisations et premières propriétés

1.1 Définition et exemple

Définition 1 (Partie dense et espace séparable)

Soient X un espace topologique, et $A \subseteq X$.

- 1. On dit que A est dense dans X si et seulement si $\overline{A} = X$.
- 2. On dit que X est **séparable** si et seulement s'il existe une partie de X dense dans X qui est au plus dénombrable.

Exemple:

Dans \mathbb{R} munit de sa topologie habituelle, l'ensemble \mathbb{Q} est dénombrable et dense dans \mathbb{R} , donc \mathbb{R} est séparable.

1.2 Indice de familles dénombrables

Proposition 1 (Espace séparable et famille d'ouverts 2 à 2 disjoints)

Soit X un espace topologique. Si X est séparable, alors pour toute famille $(U_i)_{i\in I}$ d'ouverts deux à deux disjoints, I est au plus dénombrable.

2 Constructions

2.1 Produit dénombrable d'une suite d'espaces séparables

Proposition 2 (Produit d'une suite d'espaces séparables)

Soit $(X_n)_{n\in\mathbb{N}}$ une suite d'espaces séparables. Alors l'espace produit $\prod_{n\in\mathbb{N}} X_n$ est séparable.

2.2 Espace quotient séparable

Proposition 3 (Espace quotient séparable)

Soient $(X; \mathcal{T})$ un espace topologique et \mathcal{R} une relation d'équivalence sur X. Si X est séparable, alors l'espace quotient X/\mathcal{R} est séparable.

2.3 Sous-espace séparable

Proposition 4 (Sous-espace d'un espace métrique séparable)

Soient (X; d) un espace métrique et $A \subseteq X$.

Si (X; d) est séparable, alors (A; d) est séparable.

3 Liens avec les autres qualificatifs

3.1 Admettre une base dénombrable d'ouverts

Théorème 1 (Base dénombrable d'ouverts et séparabilité)

Soit $(X; \mathcal{T})$ un espace topologique.

Si X admet une base dénombrable d'ouverts, alors X est séparable.

Remarque:

La réciproque de ce théorème est vraie si l'espace est métrique, mais est fausse en toute généralité par exemple pour X un ensemble infini, munis de la topologie cofinie, c'est-à-dire $\mathcal{T} := \{\varnothing\} \cup \{A \subseteq X \mid X \setminus A \text{ est finie}\}.$

Théorème 2 (Espace métrique de Lindelöf et séparable)

Soit (X; d) un espace métrique.

Les assertions suivantes sont équivalentes :

- 1. X admet une base dénombrable d'ouverts.
- 2. X est séparable.
- 3. X est de Lindelöf.

Théorème 3 (d'Urysohn sur les espaces métrisables)

Soit X un espace topologique.

- 1. X est métrisable et séparable.
- 2. X est homéomorphe à un sous-espace métrique de l'espace métrique produit $[0;1]^{\mathbb{N}}$.
- 3. X est régulier et admet une base dénombrable d'ouverts.

3.2 Espaces réguliers

Théorème 4 (d'Urysohn sur les espaces métrisables)

Soit X un espace topologique.

Les assertions suivantes sont équivalentes :

- 1. X est métrisable et séparable.
- 2. X est homéomorphe à un sous-espace métrique de l'espace métrique produit $[0;1]^{\mathbb{N}}$.
- 3. X est régulier et admet une base dénombrable d'ouverts.

3.3 Espaces de Lindelöf

Théorème 5 (Espace métrique de Lindelöf et séparable)

Soit (X; d) un espace métrique.

Les assertions suivantes sont équivalentes :

- 1. X admet une base dénombrable d'ouverts.
- 2. X est séparable.
- 3. *X* est de Lindelöf.

3.4 Espaces métriques

Théorème 6 (Espace métrique de Lindelöf et séparable)

Soit (X; d) un espace métrique.

- 1. X admet une base dénombrable d'ouverts.
- 2. X est séparable.
- 3. *X* est de Lindelöf.

Proposition 5 (Sous-espace d'un espace métrique séparable)

Soient (X; d) un espace métrique et $A \subseteq X$.

Si (X; d) est séparable, alors (A; d) est séparable.

3.5 Espaces métrisables

Théorème 7 (d'Urysohn sur les espaces métrisables)

Soit X un espace topologique.

Les assertions suivantes sont équivalentes :

- 1. X est métrisable et séparable.
- 2. X est homéomorphe à un sous-espace métrique de l'espace métrique produit $[0;1]^{\mathbb{N}}$.
- 3. X est régulier et admet une base dénombrable d'ouverts.

3.6 Espaces métriques précompacts

Proposition 6 (Les précompacts sont séparables)

Soit (X; d) un espace métrique.

Si (X; d) est précompact, alors (X; d) est séparable.

En particulier, si (X;d) est compact, alors (X;d) est séparable.

3.7 Espaces métriques compacts

Proposition 7 (Les précompacts sont séparables)

Soit (X; d) un espace métrique.

Si (X; d) est précompact, alors (X; d) est séparable.

En particulier, si (X; d) est compact, alors (X; d) est séparable.

Chapitre 2

Espaces admettant des bases dénombrables de voisinages

1 Définition, caractérisations et premières propriétés

1.1 Définitions et exemples

Définition 2 (Axiomes de dénombrabilité)

Soit X un espace topologique.

- 1. On dit que X vérifie le **1**^{er}axiome de dénombrabilité si et seulement si tout $x \in X$ admet une base au plus dénombrable de voisinages.
- 2. On dit que X vérifie le $2^{\text{ème}}$ axiome de dénombrabilité si et seulement si X admet une base au plus dénombrable d'ouverts.

2 Lien avec les autres qualificatifs

2.1 Espaces admettant une base dénombrable d'ouverts

Proposition 8 (Lien entre les axiomes de dénombrabilité)

Soit X un espace topologique. Si X vérifie le $2^{\text{ème}}$ axiome de dénombrabilité, alors X vérifie le 1^{er} axiome de dénombrabilité.

Remarque:

La réciproque est fausse : en effet en considérant X infini indénombrable, muni de la topologie discrète, alors pour tout $x \in X$, $\mathcal{V}(x) := \big\{\{x\}\big\}$ est une base de voisinages de x qui est bien au plus dénombrable, mais X n'admet pas de base d'ouverts qui est au plus dénombrable, puisqu'elle devrait contenir en particulier l'ensemble $\{\{x\} \mid x \in X\}$ qui est indénombrable.

2.2 Espaces métriques

Proposition 9 (Propriétés topologiques d'un espace métrique)

Soit (X; d) un espace métrique.

- 1. (X;d) est séparé.
- 2. (X;d) vérifie le premier axiome de dénombrabilité, c'est-à-dire que tout $x \in X$ admet une base au plus dénombrable de voisinages.
- 3. Soient (Y; d') un espace métrique et $f: X \longrightarrow Y$. Alors f est continue si et seulement si pour tout $x \in X$ et tout $\varepsilon > 0$, il existe $\mu > 0$ tel que $f^{\rightarrow} \Big(\mathcal{B}(x; \mu) \Big) \subseteq \mathcal{B}(f(x); \varepsilon)$.

3. INTÉRÊTS 15

3 Intérêts

3.1 Valeurs d'adhérences de suite

Proposition 10 (Limites, valeurs d'adhérence, suites et sous-suites)

Soient $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments d'un espace topologique X, et $\ell\in X$.

- 1. Si ℓ est une limite de $(x_n)_{n\in\mathbb{N}}$, alors ℓ est une valeur d'adhérence de $(x_n)_{n\in\mathbb{N}}$.
- 2. Si X est séparé et si $(x_n)_{n\in\mathbb{N}}$ converge dans X, alors $(x_n)_{n\in\mathbb{N}}$ admet une unique limite qui est aussi l'unique valeur d'adhérence.
- 3. Si $(x_n)_{n\in\mathbb{N}}$ converge vers ℓ , alors toute sous-suite de $(x_n)_{n\in\mathbb{N}}$ converge aussi vers ℓ .
- 4. $(x_n)_{n\in\mathbb{N}}$ converge vers ℓ si et seulement si $(x_{2n})_{n\in\mathbb{N}}$ et $(x_{2n+1})_{n\in\mathbb{N}}$ convergent vers ℓ .
- 5. Si ℓ est une valeur d'adhérence d'une sous-suite de $(x_n)_{n\in\mathbb{N}}$, alors ℓ est une valeur d'adhérence de $(x_n)_{n\in\mathbb{N}}$.
- 6. Si ℓ est une limite d'une sous-suite de $(x_n)_{n\in\mathbb{N}}$, alors ℓ est une valeur d'adhérence de $(x_n)_{n\in\mathbb{N}}$. Réciproquement, si ℓ admet une base dénombrable de voisinages dans X et si ℓ est une valeur d'adhérence de $(x_n)_{n\in\mathbb{N}}$, alors il existe une sous-suite de $(x_n)_{n\in\mathbb{N}}$ qui converge vers ℓ .

3.2 Caractérisation séquentielle de l'adhérence et des fermés

Théorème 8 (Adhérence d'un ensemble et limites de suite)

Soient X un espace topologique, $A \subseteq X$ et $x \in X$.

- 1. S'il existe une suite d'éléments de A qui converge vers x, alors $x \in \overline{A}$.
- 2. Si x admet une base dénombrable de voisinages dans X, et si $x \in \overline{A}$, alors il existe une suite d'éléments de A qui converge vers x.

Proposition 11 (Caractérisation séquent. de l'adhérence et des fermés)

Soit X un espace topologique **vérifiant le 1**^{er} **axiome de dénombrabilité** (c'est-à-dire que tout point de X admet une base dénombrable de voisinage). Soient $A \subseteq X$ et $x \in X$.

- 1. $x \in \overline{A}$ si et seulement s'il existe une suite d'éléments de A qui converge vers x.
- 2. A est un fermé de X si et seulement si toute limite de suite d'élément de A est dans A.

3.3 Caractérisation séquentielle des limites de fonctions et de la continuité

Théorème 9 (Limites de fonctions et limites de suites)

Soient X et Y deux espaces topologiques, $A \subseteq X$, $a \in \overline{A}$, $\ell \in Y$ et $f : A \longrightarrow Y$.

- 1. Si ℓ est une limite de f en a, alors pour toute suite $(a_n)_{n\in\mathbb{N}}$ d'éléments de A dont a est une limite, ℓ est une limite de la suite $(f(a_n))_{n\in\mathbb{N}}$.
- 2. Si a admet une base dénombrable de voisinages dans X, et si pour toute suite $(a_n)_{n\in\mathbb{N}}$ d'éléments de A dont a est une limite, ℓ est une limite de la suite $(f(a_n))_{n\in\mathbb{N}}$, alors ℓ est une limite de f en a.

Proposition 12 (Caractérisation séquentielle des limites de fonctions)

Soient X et Y deux espaces topologiques, avec Y <u>séparé</u>. Soient $A \subseteq X$, $a \in \overline{A}$ et $f : A \longrightarrow Y$. On suppose de plus que a admet une base dénombrable de voisinages dans X.

Les assertions suivantes sont équivalentes :

- 1. f admet une limite en a.
- 2. Pour toute suite $(a_n)_{n\in\mathbb{N}}$ d'éléments de A qui converge vers a, la suite $(f(a_n))_{n\in\mathbb{N}}$ converge.

Dans ce cas-là, on a alors $\lim_{n\to+\infty} f(a_n) = \lim_{x\to a} f(x)$.

Théorème 10 (Caractérisation séquentielle de la continuité)

Soient X et Y deux espaces topologiques, $x \in X$ et $f: X \longrightarrow Y$.

- 1. Si f est continue en x, alors pour toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de X qui converge vers x, la suite $(f(x_n))_{n\in\mathbb{N}}$ converge vers f(x).
- 2. Si x admet une base dénombrable de voisinages et si pour toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de X qui converge vers x, la suite $(f(x_n))_{n\in\mathbb{N}}$ converge vers f(x), alors f est continue en x.

Chapitre 3

Espaces admettant une base dénombrable d'ouverts

1 Définition, caractérisations et premières propriétés

1.1 Définitions et exemples

Définition 3 (Axiomes de dénombrabilité)

Soit X un espace topologique.

- 1. On dit que X vérifie le **1**^{er}axiome de dénombrabilité si et seulement si tout $x \in X$ admet une base au plus dénombrable de voisinages.
- 2. On dit que X vérifie le $2^{\text{ème}}$ axiome de dénombrabilité si et seulement si X admet une base au plus dénombrable d'ouverts.

Exemple:

L'espace $\mathbb R$ munit de la topologie usuelle admet une base dénombrable d'ouverts. En effet, il suffit de considérer $\mathcal B:=\{]a;b[\mid a\in\mathbb Q,b\in\mathbb Q\ \text{ et }a< b\}$. Puisque $\mathbb Q$ est dénombrable, $\mathcal B$ l'est aussi. Il reste donc à montrer que c'est une base d'ouverts : cela revient, d'après la prop. \ref{pp} ? \ref{pp} . \ref{pp} ? \ref{pp} a montrer que pour tout $x\in X$, $\{B\in\mathcal B\mid x\in B\}$ est une base de voisinages de x. Soit donc $x\in\mathbb R$. Puisque $\mathbb Q$ est dense dans $\mathbb R$, pour tout $n\in\mathbb N^*$ il existe p_n et q_n dans $\mathbb Q$ tels que $x-\frac1n< p_n< x< q_n< x+\frac1n$. Alors $\{]p_n;q_n[\mid n\in\mathbb N^*\}\subseteq\mathcal B$ est une base de voisinages de x.

De même, dans $\overline{\mathbb{R}}$, l'ensemble $\mathcal{B} \cup \{[-\infty; n[\mid n \in \mathbb{N}\} \cup \{]n; +\infty] \mid n \in \mathbb{N}\}$ est une base dénombrable d'ouverts.

2 Lien avec les autres qualificatifs

2.1 Espaces séparables

Théorème 11 (Base dénombrable d'ouverts et séparabilité)

Soit $(X; \mathcal{T})$ un espace topologique.

Si X admet une base dénombrable d'ouverts, alors X est séparable.

Remarque:

La réciproque de ce théorème est vraie si l'espace est métrique, mais est fausse en toute généralité. En effet, soit X un ensemble infini, munis de la topologie cofinie, c'est-à-dire $\mathcal{T} := \{\varnothing\} \cup \{A \subseteq X \mid X \setminus A \text{ est finie}\}.$

Théorème 12 (d'Urysohn sur les espaces métrisables)

Soit X un espace topologique.

Les assertions suivantes sont équivalentes :

- 1. X est métrisable et séparable.
- 2. X est homéomorphe à un sous-espace métrique de l'espace métrique produit $[0;1]^{\mathbb{N}}$.
- 3. X est régulier et admet une base dénombrable d'ouverts.

2.2 Espaces admettant des bases dénombrables de voisinages

Proposition 13 (Lien entre les axiomes de dénombrabilité)

Soit X un espace topologique. Si X vérifie le $2^{\text{ème}}$ axiome de dénombrabilité, alors X vérifie le 1^{er} axiome de dénombrabilité.

Remarque:

La réciproque est fausse : en effet en considérant X infini indénombrable, muni de la topologie discrète, alors pour tout $x \in X$, $\mathcal{V}(x) := \big\{\{x\}\big\}$ est une base de voisinages de x qui est bien au plus dénombrable, mais X n'admet pas de base d'ouverts qui est au plus dénombrable, puisqu'elle devrait contenir en particulier l'ensemble $\{\{x\} \mid x \in X\}$ qui est indénombrable.

2.3 Espaces réguliers

Théorème 13 (d'Urysohn sur les espaces métrisables)

Soit X un espace topologique.

Les assertions suivantes sont équivalentes :

- 1. X est métrisable et séparable.
- 2. X est homéomorphe à un sous-espace métrique de l'espace métrique produit $[0;1]^{\mathbb{N}}$.
- 3. X est régulier et admet une base dénombrable d'ouverts.

2.4 Espaces de Lindelöf

Théorème 14 (Base dénombrable d'ouverts et Lindelöf)

Soit X un espace topologique.

Si X admet une base dénombrable d'ouverts, alors X est de Lindelöf.

2.5 Espaces métriques

Théorème 15 (Espace métrique de Lindelöf et séparable)

Soit (X; d) un espace métrique.

- 1. X admet une base dénombrable d'ouverts.
- 2. X est séparable.
- 3. X est de Lindelöf.

2.6 Espaces métrisables

Théorème 16 (d'Urysohn sur les espaces métrisables)

Soit X un espace topologique.

- 1. X est métrisable et séparable.
- 2. X est homéomorphe à un sous-espace métrique de l'espace métrique produit $[0;1]^{\mathbb{N}}$.
- 3. X est régulier et admet une base dénombrable d'ouverts.

Chapitre 4

Espaces séparés (T2) et espaces de Fréchet (T1)

1 Définition, caractérisations et premières propriétés

1.1 Définitions et exemples

Définition 4 (Axiomes de séparations)

Soit X un espace topologique.

- 1. On dit que X est un T_0 —espace (ou que c'est un espace de Kolmogorov) si et seulement si pour tout points distincts x et y dans X, l'un au moins des deux points admet un voisinage qui ne contient pas l'autre point.
- 2. On dit que X est un T_1 -espace (ou que c'est un espace de Fréchet, ou encore un espace accessible) si et seulement si pour tout points distincts x et y dans X, il existe un voisinage V de x dans X et un voisinage W de y dans X tels que $x \notin W$ et $y \notin V$.
- 3. On dit que X est un T_2 -espace (ou que c'est un espace de Hausdorff, ou que c'est un espace séparé) si et seulement si pour tout points distincts x et y dans X, il existe un voisinage V de x dans X et un voisinage X de y dans X tels que $X \cap X = \emptyset$.

Remarque:

On a évidement $T_2 \implies T_1 \implies T_0$, mais les implications réciproques sont généralement fausses.

Proposition 14 (Exemples et contre-exemples d'espaces vérifiant les Ti)

- 1. Pour tout ensemble X de cardinal ≥ 2 munit de la topologie grossière $\{\emptyset; X\}$ n'est pas T_0 .
- 2. Tout ensemble infini X munit de la topologie cofinie est T_1 mais pas séparé.
- 3. Tout ensemble X totalement ordonné munit de la topologie de l'ordre est séparé.
- 4. R munit de la topologie usuelle est séparé.

1.2 Caractérisation des espaces de Fréchet (T1)

Proposition 15 (Caractérisation des espaces T1)

Soit X un espace topologique.

X est T_1 si et seulement si tout singleton est un fermé de X.

Remarque:

Comme tout espace séparé est en particulier T_1 , dans tout espace séparé les singletons sont des fermés.

1.3 Caractérisations des espaces séparés

Proposition 16 (Caractérisation du fait d'être séparé)

Soit X un espace topologique. Pour tout $x \in X$, notons $\mathcal{V}_F(x)$ l'ensemble des voisinages fermés de x dans X. Les assertions suivantes sont équivalentes :

- 1. X est séparé.
- 2. La diagonale $\Delta:=\{(x;x)\in X^2\mid x\in X\}$ est fermée dans X^2 munit de la topologie produit.
- 3. Pour tout $x \in X$, on a $\bigcap_{V \in \mathcal{V}_F(x)} V = \{x\}$.

Proposition 17 (Caractérisation par les filets des séparés)

Soit X un espace topologique.

- 1. X est séparé.
- 2. Tout filet à valeurs dans X admet au plus une limite.

2. CONSTRUCTIONS 23

2 Constructions

2.1 Transmission du fait d'être T1

Proposition 18 (Transmission du fait d'être T1 et normal)

Soient X et Y deux espaces topologiques, et $f: X \longrightarrow Y$ une application fermée et surjective dans Y.

- 1. Si X est T_1 , alors Y est T_1 .
- 2. Si X est normal et si f est continue, alors Y est normal.

2.2 Transmission du fait d'être séparé

Proposition 19 (Transmission du fait d'être séparé)

Soit X un espace topologique séparé. Soit Y un espace topologique.

- 1. S'il existe une application $f: Y \hookrightarrow X$ injective et continue, alors Y est séparé.
- 2. Si Y est homéomorphe à X, alors Y est séparé.
- 3. Si Y est un sous-espace topologique de X, alors Y est séparé.

2.3 Topologie initiale et famille séparante d'applications

Définition 5 (Famille séparante d'applications)

Soient X un ensemble et $(Y_i)_{i\in I}$ une famille d'ensembles. Soit pour tout $i\in I$ une application $f_i:X\longrightarrow Y_i$.

On dit que $(f_i)_{i\in I}$ est **séparante** si et seulement si pour tout points x et y de X tels que $x \neq y$, il existe $i \in I$ tel que $f_i(x) \neq f_i(y)$.

Lemme 1 (Topologie initiale associée à une famille séparante)

Soit X un ensemble. Soit $(Y_i)_{i\in I}$ une famille d'espaces <u>séparés</u>. Soit pour tout $i\in I$, une application $f_i:X\longrightarrow Y_i$. On munit X de la topologie initiale associée à $(f_i)_{i\in I}$.

Si $(f_i)_{i \in I}$ est séparante, alors X est séparé.

2.4 Espace produit séparé

Proposition 20 (Espace produit séparé)

Soit $(X_i)_{i\in I}$ une famille d'espaces topologiques <u>tous non vides ou tous vides</u>. On munit $\prod_{i\in I} X_i$ de la topologie produit.

 $\prod_{i \in I} X_i$ est séparé si et seulement si pour tout $i \in I$, X_i est séparé.

2.5 Espace quotient séparé

Remarque:

En général les espaces quotients ne sont pas séparés. Par exemple \mathbb{R} et \mathbb{Q} sont séparés pour la topologie usuelle, mais \mathbb{R}/\mathbb{Q} ne l'est pas pour la topologie quotient, car il s'agit de la topologie grossière $\{\emptyset; \mathbb{R}/\mathbb{Q}\}$.

Proposition 21 (Espace quotient séparé)

Soit X un espace topologique. Soit Y un espace $\underline{\text{séparé}}$. Soit $f: X \longrightarrow Y$. Soit \mathcal{R}_f la relation d'équivalence sur X associée à f, c'est-à-dire que $\forall x \in X, \forall y \in X, (x\mathcal{R}_f y \iff f(x) = f(y))$. On munit X/\mathcal{R}_f de la topologie quotient.

Si f est continue, alors X/\mathcal{R}_f est séparé.

2. CONSTRUCTIONS 25

Proposition 22 (Critère de séparation des espaces topologiques quotient)

Soit X un espace topologique. Soit $\mathcal R$ une relation d'équivalence sur X. On munit $X/\mathcal R$ de la topologie quotient. On munit X^2 de la topologie produit.

- 1. Si X/\mathcal{R} est séparé, alors \mathcal{R} est fermé en tant que partie de X^2 .
- 2. Si \mathcal{R} est ouverte en tant que relation d'équivalence sur X, et si \mathcal{R} est fermée en tant que partie de X^2 , alors X/\mathcal{R} est séparé.

3 Liens avec les autres qualificatifs

3.1 Espaces réguliers

Définition 6 (Espaces réguliers, complètement réguliers et normaux)

Soit X un espace topologique séparé.

- 1. On dit que X est un T_3 -espace, ou est régulier si et seulement si pour toute partie fermée F de X et tout $x \in X$, si $x \notin F$ alors il existe deux ouverts disjoints U et V de X tels que $x \in U$ et $F \subseteq V$.
- 2. On dit que X est complètement régulier, ou est de Tychonoff si et seulement si pour toute partie fermée F de X et tout point $x \in X$, si $x \notin F$ alors il existe une application continue $f: X \longrightarrow [0; 1]$ telle que f(x) = 1 et $\forall y \in F, f(y) = 0$.
- 3. On dit que X est un T_4 -espace, ou est **normal** si et seulement si pour toutes parties fermées A et B de X, si $A \cap B = \emptyset$ alors il existe deux ouverts disjoints U et V de X tels que $A \subseteq U$ et $B \subseteq V$.

Proposition 23 (Caractérisation des espaces réguliers parmi les séparés)

Soit X un espace **séparé**.

- 1. X est régulier.
- 2. Pour tout $x \in X$ et tout voisinage V_x de x dans X, il existe un ouvert U_x de X tel que $x \in U_x \subseteq \overline{U_x} \subseteq V_x$. Autrement dit, tout $x \in X$ admet une base de voisinages constituée uniquement de fermés dans X.
- 3. Pour tout $x \in X$ et toute partie fermée F de X, si $x \notin F$ alors il existe deux ouverts U et V de X tels que $x \in U$, $F \subseteq V$ et $\overline{U} \cap \overline{V} = \emptyset$.

3.2 Espaces normaux

Proposition 24 (Caractérisation des espaces normaux parmi les séparés)

Soit X un espace **séparé**.

Les assertions suivantes sont équivalentes :

- 1. X est normal.
- 2. Pour toute partie fermée A de X et tout ouvert U de X tel que $A \subseteq U$, il existe W un ouvert de X tel que $A \subseteq W \subseteq \overline{W} \subseteq U$.
- 3. Pour toutes parties fermées A et B de X qui sont disjointes, il existe U et V deux ouverts de X tels que $A \subseteq U$, $B \subseteq V$ et $\overline{U} \cap \overline{V} = \emptyset$.

Théorème 17 (Urysohn)

Soit X un espace topologique **séparé**.

Les assertions suivantes sont équivalentes :

- 1. X est normal.
- 2. Pour tous fermés non vides et disjoints A et B de X, il existe une application continue $f: X \longrightarrow [0; 1]$ telle que $\forall x \in A, f(x) = 0$ et $\forall x \in B, f(x) = 1$.

Théorème 18 (de prolongement de Tietze)

Soit X un espace séparé.

- 1. X est normal.
- 2. Pour tous a et b réels tels que a < b,tout fermé A de X et toute $f: A \longrightarrow [a; b]$ continue, il existe $g: X \longrightarrow [a; b]$ continue qui prolonge f.
- 3. Pour tout fermé A de X et toute $f:A\longrightarrow \mathbb{R}$ continue, il existe $g:X\longrightarrow \mathbb{R}$ continue qui prolonge f.

3.3 Espaces métriques

Proposition 25 (Propriétés topologiques d'un espace métrique)

Soit (X; d) un espace métrique.

- 1. (X;d) est séparé.
- 2. (X;d) vérifie le premier axiome de dénombrabilité, c'est-à-dire que tout $x \in X$ admet une base au plus dénombrable de voisinages.
- 3. Soient (Y;d') un espace métrique et $f:X\longrightarrow Y$. Alors f est continue si et seulement si pour tout $x\in X$ et tout $\varepsilon>0$, il existe $\mu>0$ tel que $f^{\rightarrow}\Big(\mathcal{B}\,(x;\mu)\Big)\subseteq\mathcal{B}\,(f(x);\varepsilon)$.

4 Intérêt des espaces séparés

4.1 Egalité de deux applications continues sur une partie dense

Proposition 26 (Applications continues dans un espace séparé)

Soit X un espace topologique. Soit Y un espace $\underline{\mathbf{séparé}}$. Soient $f: X \longrightarrow Y$ et $g: X \longrightarrow Y$ deux applications $\underline{\mathbf{continues}}$.

- 1. L'ensemble $F := \{x \in X \mid f(x) = g(x)\}$ est un fermé de X.
- 2. S'il existe une partie D dense dans X telle que $\forall x \in D, f(x) = g(x)$, alors f = g.

4.2 Unicité des limites

Proposition 27 (Limite d'une fonction à valeurs dans un espace séparé)

Soit X un espace topologique. Soit Y un espace **séparé**. Soient $A \subseteq X$, $a \in \overline{A}$ et $f : A \longrightarrow Y$.

- 1. Si ℓ est une limite de f en a, alors ℓ est la seule valeur d'adhérence de f en a.
- 2. f admet au plus une limite de f en a.
- 3. Si $a \in A$ et si f admet une limite en a, alors cette limite est f(a).

Proposition 28 (Limite pointée, épointée et continuité)

Soient X un espace topologique, Y un espace **<u>séparé**</u>, $A \subseteq X$, $a \in A$ et $f : A \longrightarrow Y$.

Les assertions suivantes sont équivalentes :

- 1. $\lim_{x \to a} f(x)$ existe.
- $2. \lim_{\substack{x \to a \\ x \neq a}} f(x) = f(a).$
- 3. f est continue en a.

Dans ce cas, on a alors $\lim_{x \to a} f(x) = \lim_{\substack{x \to a \\ x \neq a}} f(x) = f(a)$.

Proposition 29 (Limites, valeurs d'adhérence, suites et sous-suites)

Soient $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments d'un espace topologique X, et $\ell\in X$.

- 1. Si ℓ est une limite de $(x_n)_{n\in\mathbb{N}}$, alors ℓ est une valeur d'adhérence de $(x_n)_{n\in\mathbb{N}}$.
- 2. Si X est séparé et si $(x_n)_{n\in\mathbb{N}}$ converge dans X, alors $(x_n)_{n\in\mathbb{N}}$ admet une unique limite qui est aussi l'unique valeur d'adhérence.
- 3. Si $(x_n)_{n\in\mathbb{N}}$ converge vers ℓ , alors toute sous-suite de $(x_n)_{n\in\mathbb{N}}$ converge aussi vers ℓ .
- 4. $(x_n)_{n\in\mathbb{N}}$ converge vers ℓ si et seulement si $(x_{2n})_{n\in\mathbb{N}}$ et $(x_{2n+1})_{n\in\mathbb{N}}$ convergent vers ℓ .
- 5. Si ℓ est une valeur d'adhérence d'une sous-suite de $(x_n)_{n\in\mathbb{N}}$, alors ℓ est une valeur d'adhérence de $(x_n)_{n\in\mathbb{N}}$.
- 6. Si ℓ est une limite d'une sous-suite de $(x_n)_{n\in\mathbb{N}}$, alors ℓ est une valeur d'adhérence de $(x_n)_{n\in\mathbb{N}}$. Réciproquement, si ℓ admet une base dénombrable de voisinages dans X et si ℓ est une valeur d'adhérence de $(x_n)_{n\in\mathbb{N}}$, alors il existe une sous-suite de $(x_n)_{n\in\mathbb{N}}$ qui converge vers ℓ .

Remarque:

Soient $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments d'un espace topologique X, $\ell\in X$ et $B:=\{x_n\mid n\in\mathbb{N}\}$. Si X est séparé, alors les points d'accumulations de B sont tous $\underline{\operatorname{des}}$ valeurs d'adhérence de $(x_n)_{n\in\mathbb{N}}$, mais la réciproque n'est pas vraie à moins que les termes de $(x_n)_{n\in\mathbb{N}}$ soient distincts deux à deux. Ainsi, comme B' a été défini comme l'ensemble des points d'accumulations de B, et qu'on a montré lors que $\overline{B}=B\cup B'$, on en déduit que \overline{B} est la réunion (non forcément disjointe) de B avec les valeurs d'adhérence de $(x_n)_{n\in\mathbb{N}}$.

Proposition 30 (Limites et valeurs d'adhérence d'un filet)

Soient $(x_{\lambda})_{\lambda \in \Lambda}$ un filet d'un espace topologique X et $\ell \in X$.

- 1. Si ℓ est une limite de $(x_{\lambda})_{\lambda \in \Lambda}$, alors ℓ est une valeur d'adhérence de $(x_{\lambda})_{\lambda \in \Lambda}$. Si de plus X est séparé, alors c'est la seule valeur d'adhérence de $(x_{\lambda})_{\lambda \in \Lambda}$.
- 2. Si $(x_{\lambda})_{{\lambda} \in {\Lambda}}$ converge vers ℓ , alors tout sous-filet de $(x_{\lambda})_{{\lambda} \in {\Lambda}}$ converge aussi vers ℓ .
- 3. Si ℓ est une valeur d'adhérence d'un sous-filet de $(x_{\lambda})_{\lambda \in \Lambda}$, alors ℓ est aussi une valeur d'adhérence de $(x_{\lambda})_{\lambda \in \Lambda}$.
- 4. ℓ est une valeur d'adhérence de $(x_{\lambda})_{{\lambda}\in\Lambda}$ si et seulement s'il existe un sous-filet de $(x_{\lambda})_{{\lambda}\in\Lambda}$ qui converge vers ℓ .

4.3 Usage pour la caractérisation séquentielle des limites de fonction

Proposition 31 (Caractérisation séquentielle des limites de fonctions)

Soient X et Y deux espaces topologiques, avec Y <u>séparé</u>. Soient $A \subseteq X$, $a \in \overline{A}$ et $f : A \longrightarrow Y$.

On suppose de plus que a admet une base dénombrable de voisinages dans X.

Les assertions suivantes sont équivalentes :

- 1. f admet une limite en a.
- 2. Pour toute suite $(a_n)_{n\in\mathbb{N}}$ d'éléments de A qui converge vers a, la suite $(f(a_n))_{n\in\mathbb{N}}$ converge.

Dans ce cas-là, on a alors $\lim_{n\to +\infty} f(a_n) = \lim_{x\to a} f(x)$.

Chapitre 5

Espaces réguliers

1 Définition, caractérisations et premières propriétés

1.1 Définition et exemples

Définition 7 (Espaces réguliers, complètement réguliers et normaux)

Soit X un espace topologique séparé.

- 1. On dit que X est un T_3 -espace, ou est régulier si et seulement si pour toute partie fermée F de X et tout $x \in X$, si $x \notin F$ alors il existe deux ouverts disjoints U et V de X tels que $x \in U$ et $F \subseteq V$.
- 2. On dit que X est complètement régulier, ou est de Tychonoff si et seulement si pour toute partie fermée F de X et tout point $x \in X$, si $x \notin F$ alors il existe une application continue $f: X \longrightarrow [0; 1]$ telle que f(x) = 1 et $\forall y \in F, f(y) = 0$.
- 3. On dit que X est un T_4 -espace, ou est normal si et seulement si pour toutes parties fermées A et B de X, si $A \cap B = \emptyset$ alors il existe deux ouverts disjoints U et V de X tels que $A \subseteq U$ et $B \subseteq V$.

1.2 Caractérisations

Proposition 32 (Caractérisation des espaces réguliers parmi les séparés)

Soit X un espace **séparé**.

- 1. X est régulier.
- 2. Pour tout $x \in X$ et tout voisinage V_x de x dans X, il existe un ouvert U_x de X tel que $x \in U_x \subseteq \overline{U_x} \subseteq V_x$. Autrement dit, tout $x \in X$ admet une base de voisinages constituée uniquement de fermés dans X.

3. Pour tout $x \in X$ et toute partie fermée F de X, si $x \notin F$ alors il existe deux ouverts U et V de X tels que $x \in U$, $F \subseteq V$ et $\overline{U} \cap \overline{V} = \emptyset$.

2. CONSTRUCTIONS 35

2 Constructions

2.1 Sous-espaces

Proposition 33 (Sous-espaces d'espaces réguliers et complètement régul

Soient X un espace topologique et $A \subseteq X$, que l'on munie de la topologie induite par X.

- 1. Si X est régulier, alors A est régulier.
- 2. Si X est complètement régulier, alors A est complètement régulier.
- 3. Si X est normal et si A est un fermé de X, alors A est normal.

3 Liens avec les autres qualificatifs

3.1 Espaces séparables

Théorème 19 (d'Urysohn sur les espaces métrisables)

Soit X un espace topologique.

Les assertions suivantes sont équivalentes :

- 1. X est métrisable et séparable.
- 2. X est homéomorphe à un sous-espace métrique de l'espace métrique produit $[0;1]^{\mathbb{N}}$.
- 3. X est régulier et admet une base dénombrable d'ouverts.

3.2 Espaces admettant des bases dénombrables de voisinages

Proposition 34 (Caractérisation des espaces réguliers parmi les séparés)

Soit X un espace **séparé**.

Les assertions suivantes sont équivalentes :

- 1. X est régulier.
- 2. Pour tout $x \in X$ et tout voisinage V_x de x dans X, il existe un ouvert U_x de X tel que $x \in U_x \subseteq \overline{U_x} \subseteq V_x$. Autrement dit, tout $x \in X$ admet une base de voisinages constituée uniquement de fermés dans X.
- 3. Pour tout $x \in X$ et toute partie fermée F de X, si $x \notin F$ alors il existe deux ouverts U et V de X tels que $x \in U$, $F \subseteq V$ et $\overline{U} \cap \overline{V} = \emptyset$.

3.3 Espaces admettant une base dénombrable d'ouverts

Théorème 20 (d'Urysohn sur les espaces métrisables)

Soit X un espace topologique.

- 1. X est métrisable et séparable.
- 2. X est homéomorphe à un sous-espace métrique de l'espace métrique produit $[0;1]^{\mathbb{N}}$.
- 3. X est régulier et admet une base dénombrable d'ouverts.

3.4 Espaces complétement réguliers

Remarque:

Tout espace complètement régulier est régulier.

Théorème 21 (de Tychonoff)

Soit X un espace de Lindelöf (en particulier les espaces admettant une base au plus dénombrable d'après le théorème précédent). Les assertions suivantes sont équivalentes :

- 1. X est normal.
- 2. X est complètement régulier.
- 3. X est régulier.

3.5 Espaces normaux

Théorème 22 (de Tychonoff)

Soit X un espace de Lindelöf (en particulier les espaces admettant une base au plus dénombrable d'après le théorème précédent). Les assertions suivantes sont équivalentes :

- 1. X est normal.
- 2. X est complètement régulier.
- 3. X est régulier.

3.6 Espaces de Lindelöf

Théorème 23 (de Tychonoff)

- 1. X est normal.
- 2. X est complètement régulier.
- 3. X est régulier.

3.7 Espaces métrisables

Théorème 24 (d'Urysohn sur les espaces métrisables)

Soit X un espace topologique.

- 1. X est métrisable et séparable.
- 2. X est homéomorphe à un sous-espace métrique de l'espace métrique produit $[0;1]^{\mathbb{N}}$.
- 3. X est régulier et admet une base dénombrable d'ouverts.

4. UTILITÉS 39

4 Utilités

4.1 Prolongation par continuité - Applications à valeurs dans un régulier

Théorème 25 (Prolongation par continuité dans un régulier)

Soit A une partie <u>dense</u> d'un espace topologique X. Soient Y un espace <u>régulier</u> et $g:A\longrightarrow Y$ une application continue.

Les assertions suivantes sont équivalentes :

- 1. Il existe une application $f: X \longrightarrow Y$ continue qui prolonge g.
- 2. Pour tout $x \in X$, $\lim_{a \to x} g(a)$ existe dans Y.

4.2 Séparation des parties fermées et compactes

Proposition 35 (Séparation de parties fermées et compactes)

Soit X un espace topologique séparé.

Soient F une partie fermée de X et K une partie compacte de X telles que $K \cap F = \emptyset$.

- 1. Si X est régulier, alors il existe deux ouverts U et V de X tels que $K\subseteq U$, $F\subseteq V$ et $U\cap V=\varnothing$.
- 2. Si X est complètement régulier, alors il existe une application continue $f: X \longrightarrow [0;1]$ telle que $\forall x \in K, f(x) = 0$ et $\forall x \in F, f(x) = 1$.

Chapitre 6

Espaces complétement réguliers

1 Définition, exemples et caractérisations

Définition 8 (Espaces réguliers, complètement réguliers et normaux)

Soit X un espace topologique séparé.

- 1. On dit que X est un T_3 -espace, ou est régulier si et seulement si pour toute partie fermée F de X et tout $x \in X$, si $x \notin F$ alors il existe deux ouverts disjoints U et V de X tels que $x \in U$ et $F \subseteq V$.
- 2. On dit que X est complètement régulier, ou est de Tychonoff si et seulement si pour toute partie fermée F de X et tout point $x \in X$, si $x \notin F$ alors il existe une application continue $f: X \longrightarrow [0; 1]$ telle que f(x) = 1 et $\forall y \in F, f(y) = 0$.
- 3. On dit que X est un T_4 -espace, ou est **normal** si et seulement si pour toutes parties fermées A et B de X, si $A \cap B = \emptyset$ alors il existe deux ouverts disjoints U et V de X tels que $A \subseteq U$ et $B \subseteq V$.

2 Constructions

2.1 Sous-espaces

Proposition 36 (Sous-espaces d'espaces réguliers et complètement régul

Soient X un espace topologique et $A \subseteq X$, que l'on munie de la topologie induite par X.

- 1. Si X est régulier, alors A est régulier.
- 2. Si X est complètement régulier, alors A est complètement régulier.
- 3. Si X est normal et si A est un fermé de X, alors A est normal.

3 Liens avec les autres qualificatifs

3.1 Espaces réguliers

Remarque:

Tout espace complètement régulier est régulier.

Théorème 26 (de Tychonoff)

Soit X un espace de Lindelöf (en particulier les espaces admettant une base au plus dénombrable d'après le théorème précédent). Les assertions suivantes sont équivalentes :

- 1. X est normal.
- 2. X est complètement régulier.
- 3. X est régulier.

3.2 Espaces normaux

Proposition 37 (Tout espace normal est complètement régulier)

Tout espace normal est complètement régulier

Théorème 27 (de Tychonoff)

- 1. X est normal.
- 2. X est complètement régulier.
- 3. X est régulier.

3.3 Espaces de Lindelöf

Théorème 28 (de Tychonoff)

- 1. X est normal.
- 2. X est complètement régulier.
- 3. X est régulier.

4. UTILITÉS 45

4 Utilités

4.1 Complète séparation des parties fermées et compactes

Proposition 38 (Séparation de parties fermées et compactes)

Soit X un espace topologique séparé.

Soient F une partie fermée de X et K une partie compacte de X telles que $K \cap F = \emptyset$.

- 1. Si X est régulier, alors il existe deux ouverts U et V de X tels que $K\subseteq U$, $F\subseteq V$ et $U\cap V=\varnothing$.
- 2. Si X est complètement régulier, alors il existe une application continue $f: X \longrightarrow [0; 1]$ telle que $\forall x \in K, f(x) = 0$ et $\forall x \in F, f(x) = 1$.

Chapitre 7

Espaces normaux

1 Définitions, exemples et caractérisations

1.1 Définition et exemples

Définition 9 (Espaces réguliers, complètement réguliers et normaux)

Soit X un espace topologique **séparé**.

- On dit que X est un T₃-espace, ou est régulier si et seulement si pour toute partie fermée F de X et tout x ∈ X, si x ∉ F alors il existe deux ouverts disjoints U et V de X tels que x ∈ U et F ⊆ V.
- 2. On dit que X est complètement régulier, ou est de Tychonoff si et seulement si pour toute partie fermée F de X et tout point $x \in X$, si $x \notin F$ alors il existe une application continue $f: X \longrightarrow [0; 1]$ telle que f(x) = 1 et $\forall y \in F, f(y) = 0$.
- 3. On dit que X est un T_4 -espace, ou est normal si et seulement si pour toutes parties fermées A et B de X, si $A \cap B = \emptyset$ alors il existe deux ouverts disjoints U et V de X tels que $A \subseteq U$ et $B \subseteq V$.

1.2 Caractérisations

Proposition 39 (Caractérisation des espaces normaux parmi les séparés)

Soit X un espace **séparé**.

- 1. X est normal.
- 2. Pour toute partie fermée A de X et tout ouvert U de X tel que $A \subseteq U$, il existe W un ouvert de X tel que $A \subseteq W \subseteq \overline{W} \subseteq U$.
- 3. Pour toutes parties fermées A et B de X qui sont disjointes, il existe U et V deux ouverts de X

tels que $A \subseteq U$, $B \subseteq V$ et $\overline{U} \cap \overline{V} = \emptyset$.

Lemme 2 (Caractérisation des espaces normaux parmi les T1)

Soit X un espace topologique T_1 .

Les assertions suivantes sont équivalentes :

- 1. X est normal.
- 2. Pour tout ouverts U' et V' de X tels que $U' \cup V' = X$, il existe des fermés E et F de X tels que $E \subseteq U'$, $F \subseteq V'$ et $E \cup F = X$.

Théorème 29 (Urysohn)

Soit X un espace topologique **séparé**.

Les assertions suivantes sont équivalentes :

- 1. X est normal.
- 2. Pour tous fermés non vides et disjoints A et B de X, il existe une application continue $f: X \longrightarrow [0;1]$ telle que $\forall x \in A, f(x) = 0$ et $\forall x \in B, f(x) = 1$.

Théorème 30 (de prolongement de Tietze)

Soit X un espace **séparé**.

- 1. X est normal.
- 2. Pour tous a et b réels tels que a < b,tout fermé A de X et toute $f: A \longrightarrow [a; b]$ continue, il existe $g: X \longrightarrow [a; b]$ continue qui prolonge f.
- 3. Pour tout fermé A de X et toute $f:A\longrightarrow \mathbb{R}$ continue, il existe $g:X\longrightarrow \mathbb{R}$ continue qui prolonge f.

2. CONSTRUCTIONS 49

2 Constructions

2.1 Sous-espaces

Proposition 40 (Sous-espaces d'espaces réguliers et complètement régul

Soient X un espace topologique et $A \subseteq X$, que l'on munie de la topologie induite par X.

- 1. Si X est régulier, alors A est régulier.
- 2. Si X est complètement régulier, alors A est complètement régulier.
- 3. Si X est normal et si A est un fermé de X, alors A est normal.

2.2 Transmission du fait d'être normal

Proposition 41 (Transmission du fait d'être T1 et normal)

Soient X et Y deux espaces topologiques, et $f: X \longrightarrow Y$ une application fermée et surjective dans Y.

- 1. Si X est T_1 , alors Y est T_1 .
- 2. Si X est normal et si f est continue, alors Y est normal.

2.3 Espace quotient

Proposition 42 (Quotient d'un espace normal par une relation fermée)

Soient X un espace normal et \mathcal{R} une relation d'équivalence sur X qui est fermée en tant que relation. Alors X/\mathcal{R} munit de la topologie quotient est normal.

3 Liens avec les autres qualificatifs

3.1 Espaces de Fréchet (T1)

Lemme 3 (Caractérisation des espaces normaux parmi les T1)

Soit X un espace topologique T_1 .

Les assertions suivantes sont équivalentes :

- 1. X est normal.
- 2. Pour tout ouverts U' et V' de X tels que $U' \cup V' = X$, il existe des fermés E et F de X tels que $E \subset U'$, $F \subset V'$ et $E \cup F = X$.

3.2 Espaces séparés

Proposition 43 (Caractérisation des espaces normaux parmi les séparés)

Soit X un espace **séparé**.

Les assertions suivantes sont équivalentes :

- 1. X est normal.
- 2. Pour toute partie fermée A de X et tout ouvert U de X tel que $A \subseteq U$, il existe W un ouvert de X tel que $A \subseteq W \subseteq \overline{W} \subseteq U$.
- 3. Pour toutes parties fermées A et B de X qui sont disjointes, il existe U et V deux ouverts de X tels que $A \subseteq U$, $B \subseteq V$ et $\overline{U} \cap \overline{V} = \emptyset$.

3.3 Espaces réguliers

Théorème 31 (de Tychonoff)

- 1. X est normal.
- 2. X est complètement régulier.
- 3. X est régulier.

3.4 Espaces complètement réguliers

Proposition 44 (Tout espace normal est complètement régulier)

Tout espace normal est complètement régulier

Théorème 32 (de Tychonoff)

Soit X un espace de Lindelöf (en particulier les espaces admettant une base au plus dénombrable d'après le théorème précédent). Les assertions suivantes sont équivalentes :

- 1. X est normal.
- 2. X est complètement régulier.
- 3. X est régulier.

3.5 Espaces de Lindelöf

Théorème 33 (de Tychonoff)

Soit X un espace de Lindelöf (en particulier les espaces admettant une base au plus dénombrable d'après le théorème précédent). Les assertions suivantes sont équivalentes :

- 1. X est normal.
- 2. X est complètement régulier.
- 3. X est régulier.

3.6 Espaces métriques

Proposition 45 (Un espace métrique est normal)

Un espace métrique est normal.

3.7 Espaces compacts

Proposition 46 (Un compact est normal)

Un espace compact est un espace normal.

4. UTILITÉS 53

4 Utilités

4.1 Chaines d'ouverts et d'adhérences dans un normal

Lemme 4 (Chaîne d'ouverts et d'adhérences dans un normal)

Soient X un espace normal, F un fermé de X et V un ouvert de X tel que $F \subseteq V$. Pour tout $n \in \mathbb{N}^*$, posons $D_n := \left\{ \frac{k}{2^n} \mid k \in \llbracket 1; 2^n - 1 \rrbracket \right\}$ et soit $D := \bigcup_{n \in \mathbb{N}^*} D_n$.

Alors il existe une famille $(U_r)_{r \in D}$ d'ouverts de X tels que pour tout r et s dans D tels que r < s, alors $F \subseteq U_r \subseteq \overline{U_r} \subseteq U_s \subseteq \overline{U_s} \subseteq V$.

4.2 Complète séparation des fermés dans un normal

Théorème 34 (Urysohn)

Soit X un espace topologique séparé.

Les assertions suivantes sont équivalentes :

- 1. X est normal.
- 2. Pour tous fermés non vides et disjoints A et B de X, il existe une application continue $f: X \longrightarrow [0;1]$ telle que $\forall x \in A, f(x) = 0$ et $\forall x \in B, f(x) = 1$.

4.3 Prolongement des applications continues d'un normal dans R

Théorème 35 (de prolongement de Tietze)

Soit X un espace **séparé**.

- 1. X est normal.
- 2. Pour tous a et b réels tels que a < b, tout fermé A de X et toute $f: A \longrightarrow [a; b]$ continue, il existe $g: X \longrightarrow [a; b]$ continue qui prolonge f.
- 3. Pour tout fermé A de X et toute $f:A\longrightarrow \mathbb{R}$ continue, il existe $g:X\longrightarrow \mathbb{R}$ continue qui prolonge f.

Chapitre 8

Espaces de Lindelöf

1 Définitions, exemples et caractérisations

1.1 Définitions et exemples

Définition 10 (Espace de Lindelöf)

Soit X un espace topologique. On dit que X est de **Lindelöf** si et seulement si pour tout recouvrement ouvert de X, il en existe un sous-recouvrement au plus dénombrable, c'est-à-dire que pour tout recouvrement ouvert $(U_i)_{i\in I}$ de X, il existe $J\subseteq I$ au plus dénombrable telle que $X=\bigcup_{j\in J}U_j$.

2 Liens avec les autres qualificatifs

2.1 Espaces séparables

Théorème 36 (Espace métrique de Lindelöf et séparable)

Soit (X; d) un espace métrique.

Les assertions suivantes sont équivalentes :

- 1. X admet une base dénombrable d'ouverts.
- 2. X est séparable.
- 3. X est de Lindelöf.

2.2 Espaces admettant une base dénombrable d'ouverts

Théorème 37 (Base dénombrable d'ouverts et Lindelöf)

Soit X un espace topologique.

Si X admet une base dénombrable d'ouverts, alors X est de Lindelöf.

Théorème 38 (Espace métrique de Lindelöf et séparable)

Soit (X; d) un espace métrique.

- 1. X admet une base dénombrable d'ouverts.
- 2. *X* est séparable.
- 3. *X* est de Lindelöf.

2.3 Espaces réguliers

Théorème 39 (de Tychonoff)

Soit X un espace de Lindelöf (en particulier les espaces admettant une base au plus dénombrable d'après le théorème précédent). Les assertions suivantes sont équivalentes :

- 1. X est normal.
- 2. X est complètement régulier.
- 3. X est régulier.

2.4 Espaces complètement réguliers

Théorème 40 (de Tychonoff)

Soit X un espace de Lindelöf (en particulier les espaces admettant une base au plus dénombrable d'après le théorème précédent). Les assertions suivantes sont équivalentes :

- 1. X est normal.
- 2. X est complètement régulier.
- 3. X est régulier.

2.5 Espaces normaux

Théorème 41 (de Tychonoff)

- 1. X est normal.
- 2. X est complètement régulier.
- 3. X est régulier.

2.6 Espaces métriques

Théorème 42 (Espace métrique de Lindelöf et séparable)

Soit (X; d) un espace métrique.

- $1. \ X$ admet une base dénombrable d'ouverts.
- 2. X est séparable.
- 3. *X* est de Lindelöf.