

MPC: Quadcopter unconstrained

Martin Steinberger
Institute of Automation and Control

WS 2021/22

Simulink

Quadcopter Modell

Feedback loop

Nominal case

$N_P = 10, N_C = 5, Q_i = E, R_i = E$

$N_P=10, N_C=5, Q_i=E, R_i=E$

$N_P = 10, N_C = 5, Q_i = E, R_i = E$

Variation of Q and R

$Q_i = diag([1 \ 1 \ 1000]), R_i = diag([1 \ 1 \ 1])$

$Q_i = diag([1 \ 1 \ 1000]), R_i = diag([1 \ 1 \ 1])$

$Q_i = diag([1 \ 1 \ 1000]), R_i = diag([1 \ 1 \ 1])$

Variation of N_P and N_C

$N_{P}=15, N_{C}=5$

$N_{P}=5$, $N_{C}=5$

$N_P = 10, N_C = 10$

$N_P = 10, N_C = 3$

$N_{P}=10, N_{C}=1$

