Copyright © Copyright University of New South Wales 2020. All rights reserved.

Course materials subject to Copyright

UNSW Sydney owns copyright in these materials (unless stated otherwise). The material is subject to copyright under Australian law and overseas under international treaties. The materials are provided for use by enrolled UNSW students. The materials, or any part, may not be copied, shared or distributed, in print or digitally, outside the course without permission. Students may only copy a reasonable portion of the material for personal research or study or for criticism or review. Under no circumstances may these materials be copied or reproduced for sale or commercial purposes without prior written permission of UNSW Sydney.

Statement on class recording

To ensure the free and open discussion of ideas, students may not record, by any means, classroom lectures, discussion and/or activities without the advance written permission of the instructor, and any such recording properly approved in advance can be used solely for the students own private use.

WARNING: Your failure to comply with these conditions may lead to disciplinary action, and may give rise to a civil action or a criminal offence under the law.

THE ABOVE AUSTRICATION TO THE REPORT OF THE PARTIE THE PROPERTY OF THE PARTIE THE PARTIE

https://tutorcs.com

WeChat: cstutorcs

Financial Econometrics ECON3206/5206

Term 2 2020

Sample Answers/Hints to Tutorial 5

1. (Error correction and common trend)

The first VEC equation is directly obtained from the assumption that $\Delta x_t = \gamma \Delta x_{t-1} + \eta_t$ with $\alpha_1 = 0$, $\phi_{11} = \gamma$ and $u_{1t} = \eta_t$. The second VEC equation can be found from $y_t = \beta x_t + \varepsilon_t$

$$\begin{split} \Delta y_t &= y_t - y_{t-1} \\ &= -y_{t-1} + \beta x_t + \varepsilon_t \\ &= -(y_{t-1} - \beta x_{t-1}) + \beta x_t - \beta x_{t-1} + \varepsilon_t \\ &= -(y_{t-1} - \beta x_{t-1}) + \beta (\gamma \Delta x_{t-1} + \eta_t) + \varepsilon_t \\ &= -(y_{t-1} - \beta x_{t-1}) + \beta \gamma \Delta x_{t-1} + (\beta \eta_t + \varepsilon_t) \;. \end{split}$$

Comparing Λ exact expension spains the second year of the depend on the last period's cointegration error $(\alpha_1 = 0)$ and the adjustment toward long-run equilibrium is entirely done by y_t $(\alpha_2 = -1)$, x_t is the common trend that drives y_t moving along.

https://tutorcs.com

- 2. AR(p), MA(q) and ARMA(p,q) imply linear predictability. We learned that for financial return there is no linear predictability. Moreover, all these models have constant variance, while financial returns exhibit time-varying a finite and volatility clustering. We will get to these exiting models very soon.
- 3. (Cointegration and error correction model)
- (a) The time series plot of R and INF does visually suggest that they move together in the sample period: both were high in 80s and low in post 1990 period.

© Copyright University of New South Wales 2020. All rights reserved. This copyright notice must not be removed from this material.

The estimation results for $R_t = \beta_0 + \beta_1 INF_t + \varepsilon_t$ indicate that the residuals are strongly autocorrelated (tiny p-values for Q-stats in residual correlogram). The ADF unit-root test on residu1, using the **Dick S-Sull drival autocorrelated** (tiny p-values for Q-stats in residual correlogram). The ADF unit-root test on residu1, using the **Dick S-Sull drival autocorrelated** (tiny p-values for Q-stats in residual correlogram). Sometimes below, strongly rejects the null hypothesis of a unit-root (p-value = .0007).

https://tutorcs.com

Correlogram of Residuals WeChat: cstude 05-17-20-13-13 Partial Correlation Autocorrelation AC PAC Q-Stat Dependent Variable: R Method: Least Squares 0.622 0.622 44.834 0.000 0.569 0.298 82.733 0.000 Sample: 1984Q1 2012Q1 3 0.531 0.175 116.05 0.000 Included observations: 113 4 0.542 0.190 151.02 0.000 5 0.498 0.070 180.85 0.000 Variable Coefficient Std. Error t-Statistic Prob 0.445 -0.002 204.92 0.000 0.416 0.007 226.09 0.000 0.0000 C 4.727418 0.485456 9.738090 8 0.362 -0.052 242.30 0.000 INF 0.918825 0.103577 8.870954 0.0000 9 0.308 -0.073 254.13 0.000 10 0.281 -0.022 264.06 0.000 0.414847 8 037522 R-squared Mean dependent var 11 0.235 -0.047 271.12 0.000 Adjusted R-squared 0.409575 S.D. dependent var 4 296092 12 0.246 0.060 278.94 0.000 S.E. of regression 3.301080 Akaike info criterion 5.243917 13 0.200 -0.009 284.14 0.000 Sum squared resid 1209.581 Schwarz criterion 5.292189 14 0.194 0.034 289.08 0.000 Log likelihood -294 2813 F-statistic 78 69382 15 0.176 0.026 293 17 0.000 Durbin-Watson stat 0.701208 Prob(F-statistic) 0.000000 16 0.160 0.004 296.58 0.000

Augmented Dickey-Fuller Unit Root Test on RESID01

Null Hypothesis: RESID01 has a unit root

Exogenous: None

Lag Length: 1 (Automatic based on SIC, MAXLAG=12)

		t-Statistic	Prob.*
Augmented Dickey-Fr Test critical values:	uller test statistic 1% level 5% level 10% level	-3.459213 -2.585962 -1.943741 -1.614818	0.0007

^{*}MacKinnon (1996) one-sided p-values.

- The Engle-Granger cointegration test is just the ADF on the residual from part (b) without intercept and time trend. However the critical values of the EG test differ from the Dickey-Fuller critical values because the test is performed on the residual from a regression involving I(1) time series. In fact, the 1%, 5%, 10% critical values for EG test involving two I(1) series are approximately -4.1, -3.4, A. Septiment Herical test residual (specific provides of a unit-root in residual (or spurious regression) at approximately 5% level. The reported p-value (0.0007) is under the Dickey-Fuller critical values and are invalid in this context.
- (d) Given that β_1 is positive, if the cointegration error $\varepsilon_t = R_t \beta_0 \beta_1 INF_t$ is positive at t, R_{t+1} and INF_{t+1} should move toward eliminating the error. Hence R_{t+1} would likely move downward or INF_{t+1} would likely now toward S_t to S_t
- (e) The estimation results, where E = resid01, suggest that many of the coefficients on the lags of DR and DINF are statistically insignificant. For the adjustment coefficients on E(-1), α_1 is only statistically significant at about 15% (p-value=0.1342) and α_2 is at about 30% (p-value=0.2994).

Dependent Variable: DR Method: Least Squares

Sample (adjusted): 1984Q2 2012Q1 Included observations: 112 after adjustments Dependent Variable: DINF Method: Least Squares

Sample (adjusted): 1984Q2 2012Q1 Included observations: 112 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.068242	0.094035	0.725707	0.4697	С	0.042511	0.221627	0.191814	0.8483
E(-1)	0.054172	0.035881	1.509753	0.1342	E(-1)	0.088206	0.084566	1.043033	0.2994
DR(-1)	0.095159	0.102556	0.927873	0.3557	DR(-1)	-0.949470	0.241710	-3.928138	0.0002
DR(-2)	0.013995	0.092036	0.152059	0.8794	DR(-2)	-0.381278	0.216916	-1.757718	0.0818
DR(-3)	0.217247	0.085789	2.532337	0.0129	DR(-3)	-0.021145	0.202192	-0.104581	0.9169
DR(-4)	-0.075634	0.083956	-0.900872	0.3698	DR(-4)	0.015634	0.197871	0.079013	0.9372
DINF(-1)	-0.029474	0.049132	-0.599890	0.5499	DINF(-1)	-0.712485	0.115797	-6.152859	0.0000
DINF(-2)	-0.044087	0.050898	-0.866183	0.3884	DINF(-2)	-0.544431	0.119958	-4.538509	0.0000
DINF(-3)	0.034231	0.049238	0.695219	0.4885	DINF(-3)	-0.446453	0.116047	-3.847159	0.0002
DINF(-4)	0.050601	0.039576	1.278605	0.2039	DINF(-4)	-0.161552	0.093274	-1.732026	0.0863
R-squared	0.181211	Mean dependent var		0.083214	R-squared	0.411134	Mean deper	ndent var	0.006924
Adjusted R-squared	0.108965	S.D. depend	dent var	1.047904	Adjusted R-squared	0.359175	S.D. dependent var		2.912268
S.E. of regression	0.989165	Akaike info criterion		2.901135	S.É. of regression	2.331315	Akaike info criterion		4.615788
Sum squared resid	99.80168	Schwarz criterion		3.143858	Sum squared resid	554.3731	Schwarz criterion		4.858511
Log likelihood	-152.4635	F-statistic		2.508255	Log likelihood	-248.4841	F-statistic		7.912690
Durbin-Watson stat	2.007214	Prob(F-statistic)		0.012322	Durbin-Watson stat	2.055841	Prob(F-stati	stic)	0.000000

Hence the assumed cointegration cannot be statistically justified at even 13.42% level because it is necessary to have the error correction mechanism in place for the cointegration to hold. However the model here may have been overly "large" and included too many irrelevant lags. Including too many irrelevant lags may have raised the variance (or standard errors) of the OLS estimators.

(f) As many of the coefficients on the lags of DR and DINF are statistically insignificant, the model size can indeed be reduced. For example, we can test the exclusion of the DINF lags from the first equation and the exclusion of DR(-3) and DR(-4) from the second equation. The Wald tests below confirm that the exclusions cannot be rejected (large p-values). See Tutorial 2 for EViews clicks for the Wald test (tips iii). From the new estimation results, indeed, the standard errors on the adjustment coefficients are smaller than those in part (e). The adjustment coefficient α_1 is now statistically significant at 5% (p-value=0.0231) whilst α_2 remains insignificant. An interpretation is that the interest rate makes adjustments according to the inflation and the latter acts as the common trend, which does not respond to the deviation from the long-run relationship.

Wald Test: Assignment Project Exam Help

Equation: EQIV4				10/-14 T4:		_	
Test Statistic	Value	df	Probability	Wald Test: Equation: EQN	15		
F-statistic Chi-square	1.311 35 5.247740	19 S ² /	/toleto	TCS GOT	1 Value	df	Probability
			0.2020	F-statistic Chi-square	0.008300 0.016599	(2, 102) 2	0.9917 0.9917
Null Hypothesis S Normalized Restri		eCh	at. Err.	Stutores	Summary:		
C(7)		-0.029474 -0.044087	0.049132 0.050898	Normalized Re	striction (= 0)	Value	Std. Err.
C(8) C(9) C(10)		0.034231 0.050601	0.049238 0.039576	C(5) C(6)		-0.021145 0.015634	0.202192 0.197871

Dependent Variable: DR Method: Least Squares

Sample (adjusted): 1984Q2 2012Q1 Included observations: 112 after adjustments

t-Statistic Variable Coefficient Std. Error Prob. 0.068053 0.094578 0.719543 E(-1) 0.069750 0.030260 2.305005 0.0231 DR(-1) 0.107971 0.099253 1.087840 0.2791 DR(-2) -0.021571 0.083630 -0.257930 0.7970 DR(-3) 0.226945 0.081229 2.793907 0.0062 DR(-4) -0.084482 0.082638 -1.022311 0.3090 0.139086 0.083214 R-squared Mean dependent var Adjusted R-squared 0.098477 1.047904 S.D. dependent var S.E. of regression 0.994970 Akaike info criterion 2.879875 3.025509 104.9363 Schwarz criterion Sum squared resid Loa likelihood -155.2730 3.424994 F-statistic Durbin-Watson stat 2.000971 Prob(F-statistic) 0.006577

Dependent Variable: DINF Method: Least Squares

Sample (adjusted): 1984Q2 2012Q1 Included observations: 112 after adjustments

	С	0.042457	0.219071	0.193804	0.8467
:	E(-1)	0.088531	0.082615	1.071600	0.2864
	DR(-1)	-0.943837	0.232946	-4.051751	0.0001
	DR(-2)	-0.382355	0.211139	-1.810916	0.0730
	DINF(-1)	-0.710166	0.111908	-6.345996	0.0000
	DINF(-2)	-0.541910	0.112432	-4.819876	0.0000
	DINF(-3)	-0.445855	0.110805	-4.023790	0.0001
_	DINF(-4)	-0.159725	0.089154	-1.791550	0.0761
R	-squared	0.411038	Mean deper	ndent var	0.006924
Α	djusted R-squared	0.371396	S.D. dependent var		2.912268
S	.E. of regression	2.308978	Akaike info criterion		4.580236
S	um squared resid	554.4634	Schwarz criterion		4.774415
	og likelihood	-248.4932	F-statistic	10.36883	
D	urbin-Watson stat	2.058307	Prob(F-stati	stic)	0.000000

© Copyright University of New South Wales 2020. All rights reserved. This copyright notice must not be removed from this material.

4. While the specific results will be different due to random numbers, this is my output:

SUMMARY OUTPUT								
Regression Statistics								
Multiple R	0.452819							
R Square	0.205045							
Adjusted R Square	0.204248							
Standard Error	6.467619							
Observations	1000							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	10767.78	10767.78	257.4169915	1.03657E-51			
Residual	998	41746.44	41.8301					
Total	999	52514.21						
Coefficients		andard Err	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	16.0075	0.220029	72.75172	0	15.57572369	16.43926929	15.57572369	16.43926929
X Variable 1	0.169708	0.010578	16.04422	1.03657E-51	0.148951156	0.190464572	0.148951156	0.190464572

The common theme will be that the coefficient estimates of the regression will be super significant.

The R² is also relatively high. However, the regression does not make any sense (we regress two totally unrelated random warks) and we would expect coefficient estimates to be equal to zero. This is an example of spurious regression.

More cute examples on the property of the control o

 $\underline{http://www.eco.uc3m.es/\sim} jgonzalo/teaching/timeseriesMA/examplesspuriousregression.pdf$

WeChat: cstutorcs

*[Nice discussion and remedy "Is the Spurious Regression Problem Spurious?" http://www.nber.org/papers/w15690.pdf]