MS BGD MDI 720/721 : Statistiques

Joseph Salmon

http://josephsalmon.eu Télécom Paristech, Institut Mines-Télécom

Enseignants

Joseph Salmon :

- Précédemment : Paris Diderot-Paris 7, Duke University, Télécom ParisTech
- Spécialités : statistiques en grande dimension, optimisation, agrégation, traitement des images
- Email : joseph.salmon@telecom-paristech.fr

Bureau : E410

François Portier :

- Précédemment : Université de Rennes 1, Université catholique de Louvain, Télécom ParisTech
- Spécialités : régression parcimonieuse, bootstrap, estimation semi-paramétrique, méthodes à noyaux
- Email : fportier@enst.fr
- ▶ Bureau : E 302

Calendrier de validation

- Devoir maison 1 : 5% note finale
 - Date : séance du 03/10 (sujet déjà disponible) à rendre avant 23h59 le mercredi 04/10
 - ▶ Validation par pairs : à rendre pour le dimanche 08/10
- Devoir maison 2 : 20% note finale
 - Date : sujet mis à disposition le 10/10 et à rendre avant 23h59 le dimanche 15/10
 - ► Validation par pairs : à rendre pour le vendredi 13/10
- Devoir maison 3: 20% note finale
 - Date : sujet mis à disposition le 20/10 et à rendre avant 23h59 le dimanche 22/10 (zéro passé cette limite)
 - ▶ Validation par pairs : à rendre pour le vendredi 27/10
- Un devoir final : 55% note finale
 - ▶ Date: 25/10
 - Format : partie Quiz (1h30), partie numérique (1h30) qui pourra être rendue jusqu'à 23h59 le 25/10.

ATTENTION : le travail rendu doit être personnel!!!

Notation des parties numériques

Pour chaque rendu, note totale sur **20** Détails des points :

- Qualité des réponses aux questions 15 pts
- Qualité de rédaction, de présentation et d'orthographe 2 pts
- ▶ Indentation, Style PEP8, commentaires dans le code 2 pts
- ▶ absence de bug 1 pt

Retard: 0 pour tout retard, sauf excuse validée par l'administration

Consigne supplémentaire : un fichier unique au format .ipynb

Aucun travail par mail accepté!

Bonus

1 pt supplémentaire sur <u>la note finale</u> pour toute contribution à l'amélioration des cours (présentations, codes, etc.)

Contraintes:

- seule la première amélioration reçue est "rémunérée"
- déposer un fichier .txt par proposition dans la partie du site pédagogique intitulée "Propositions d'améliorations"
- détailler précisément (ligne de code, page des présentations, etc.) l'amélioration proposée, ce qu'elle corrige et/ou améliore
- pour les fautes d'orthographe : proposer au minimum 5 corrections par contribution

Plan du cours

```
Séance 1. Joseph Salmon (13/09): Introduction
 Séance 2. Joseph Salmon (20/09): Modèle linéaire (p < n)
 Séance 3. Joseph Salmon (27/09): Modèle linéaire (suite)
 Séance 4. A. G./ E.N. / F.P. / J. S. (03/10) : TP #1 : noté
 Séance 5. Joseph Salmon (4/10): SVD / IC
 Séance 6. A. G. / E.N. / F.P. / J. S. (10/10) : TP #2 : noté
 Séance 7. François Portier (11/10) : IC / Bootstrap
 Séance 8. Joseph Salmon (13/10): Tests, Ridge
 Séance 9. Joseph Salmon (17/10): Sélection de variables / Lasso
Séance 10. Joseph Salmon (18/10): GLM / Régression logistique
Séance 11. A.G. / E.N. / F.P. / J.S. (20/10) : TP #3 : noté
Séance 12. F.P. / J.S. (25/10) : Validation finale
```

- Bases de probabilités : probabilité, densité, espérance, loi des grands nombres, lois gaussiennes, théorème central limite Lecture : Foata et Fuchs (1996)
- Bases de l'optimisation : fonctions convexes, condition du premier ordre, descente de gradient, méthode de Newton Lecture : Boyd et Vandenberghe (2004), Bertsekas (1999)

- Bases de probabilités : probabilité, densité, espérance, loi des grands nombres, lois gaussiennes, théorème central limite Lecture : Foata et Fuchs (1996)
- Bases de l'optimisation : fonctions convexes, condition du premier ordre, descente de gradient, méthode de Newton Lecture : Boyd et Vandenberghe (2004), Bertsekas (1999)
- Bases de l'algèbre (bi-)linéaire : espaces vectoriels, normes, produit scalaire, matrices, déterminants, diagonalisation Lecture : Horn et Johnson (1994)

- Bases de probabilités : probabilité, densité, espérance, loi des grands nombres, lois gaussiennes, théorème central limite Lecture : Foata et Fuchs (1996)
- Bases de l'optimisation : fonctions convexes, condition du premier ordre, descente de gradient, méthode de Newton Lecture : Boyd et Vandenberghe (2004), Bertsekas (1999)
- Bases de l'algèbre (bi-)linéaire : espaces vectoriels, normes, produit scalaire, matrices, déterminants, diagonalisation Lecture : Horn et Johnson (1994)
- Bases de l'algèbre linéaire numérique : résolution de système, factorisation de matrices, conditionnement, etc.
 Lecture : Golub et VanLoan (2013), Applied Numerical Computing par L. Vandenberghe

- Bases de probabilités : probabilité, densité, espérance, loi des grands nombres, lois gaussiennes, théorème central limite Lecture : Foata et Fuchs (1996)
- Bases de l'optimisation : fonctions convexes, condition du premier ordre, descente de gradient, méthode de Newton Lecture : Boyd et Vandenberghe (2004), Bertsekas (1999)
- Bases de l'algèbre (bi-)linéaire : espaces vectoriels, normes, produit scalaire, matrices, déterminants, diagonalisation Lecture : Horn et Johnson (1994)
- ▶ Bases de l'algèbre linéaire numérique : résolution de système, factorisation de matrices, conditionnement, etc. Lecture : Golub et VanLoan (2013), Applied Numerical Computing par L. Vandenberghe

Aspects algorithmiques : quelques conseils

Installation Python : Conda / Anaconda (tous OS)

Rem: sur ce point je ne peux rien pour vous : entraidez-vous!

Outils:

- Rendus Jupyter / IPython Notebook
- Projets plus importants : IPython + éditeur de texte avancé;

e.g., Atom, Sublime Text, PyCharm, etc.

 Python, Scipy, Numpy: Reproducible Data Analysis in Jupyter (Tutos de Jake Vanderplas): OBLIGATOIRE!

http://perso.telecom-paristech.fr/~gramfort/liesse_python/

- ▶ Pandas : https://github.com/jorisvandenbossche/pandas-tutorial
- ► scikit-learn : http://scikit-learn.org/stable/tutorial/index.html

<u>Rem</u>: en TP, prenez vos portables si vous préférez garder votre environnement (packages, versions, etc.)

Rem: je suis passé à Python 3 cette année... vous aussi?

Conseils généraux pour l'année

- Utilisez un système de versionnement de fichiers pour vos travaux en groupe : Git (e.g., Bitbucket, Github, etc.)
- Adoptez des règles d'écriture de code et tenez-y vous!
 Exemple : PEP8 pour Python (utiliser AutoPEP8)
- Utilisez Markdown (.md) (markdown-preview-plus avec Atom), e.g., pour les parties rédigées / comptes-rendus

```
"A (wo)man must have a code."
- Bunk
```

Apprenez de bons exemples (ouvrez les codes sources!) :
https://github.com/scikit-learn/,
http://jakevdp.github.io/, etc.

Plan

Aspects pratiques du cours

Introduction générale

Modèle statistique Biais/Variance

Statistiques descriptives

Résumés basiques d'un jeu de données Corrélations/Nuage de points

Rappels de probabilités

Covariances
Les lois gaussiennes

Cadre statistique standard

On notera \mathbb{P}, \mathbb{E} pour probabilité et l'espérance

- On observe des réalisations (y_1, \ldots, y_n) de variables aléatoires inconnues (éventuellement vectorielles)
- On suppose ici que les variables sont indépendantes et identiquement distribuées (i.i.d.) selon une loi \mathbb{P}_Y

Rem: on note souvent Y une variable aléatoire et y une réalisation

Estimation

Comment apprendre certaines caractéristiques de \mathbb{P}_Y seulement à partir des observations (y_1, \dots, y_n) ?

Prédiction

On se prépare à observer y_{n+1} : comment approcher y_{n+1} , quantifier une incertitude sur cette grandeur, etc. ?

Vocabulaire

- Observations $\mathbf{y} = y_{1:n} = (y_1, \dots, y_n)$: échantillon de taille n
- Grandeurs **théoriques** : dépendent de la loi \mathbb{P}_Y (**inconnue**) et contrôlent la génération des observations Exemple : l'espérance $\mathbb{E}(Y)$ ou la variance $\mathrm{Var}(Y)$ de Y
- Grandeurs empiriques : calculées à partir des observations y_i $\underline{\text{Exemple}} : \text{la moyenne empirique } \bar{y}_n = \frac{1}{n} \sum_{i=1}^n y_i$
- Objectif général : apprendre les caractéristiques théoriques de \mathbb{P}_Y à partir de résumés empiriques.

Sommaire

Aspects pratiques du cours

Introduction générale Modèle statistique

Biais/Variance

Statistiques descriptives

Résumés basiques d'un jeu de données Corrélations/Nuage de points

Rappels de probabilités

Covariances Les lois gaussiennes

Modèle statistique : contexte

Rappel

- On observe des réalisations (y_1, \ldots, y_n) de variables aléatoires inconnues (éventuellement vectorielles)
- On suppose ici que les variables sont indépendantes et identiquement distribuées (i.i.d.) selon une loi \mathbb{P}_Y
- Selon la situation, la loi \mathbb{P}_Y a certaines caractéristiques. <u>Exemple</u>: "Pile ou face": on sait que $\mathbb{P}_Y = \mathsf{Bernoulli}(\theta)$ pour un certain $\theta \in [0,1]$ inconnu
- Performulation: on dispose d'une famille de lois candidates, (parfois naturelle) pour \mathbb{P}_Y Exemple: la famille des lois de Bernoulli

Exo: Quel est un modèle naturel pour "un lancer de dé"?

Modèle statistique

La loi cible \mathbb{P}_Y est indexée par un **paramètre** $\theta \in \Theta$: $\mathbb{P}_Y = \mathbb{P}_\theta$ pour un θ inconnu, et Θ est l'ensemble d'indexation

Exemple : "Pile ou face", $\theta \in \Theta = [0,1]$ et $\mathbb{P}_{\theta} = \mathsf{Bernoulli}(\theta)$

Définition

Un modèle statistique est une famille de lois

$$\mathcal{M} = \{ \mathbb{P}_{\theta} : \theta \in \Theta \}$$

indexée par un ensemble de paramètres Θ .

Exo: Proposer un modèle \mathcal{M} pour le "lancer de dé".

Modèle statistique paramétrique

Définition

Un modèle paramétrique est une famille de lois $\mathcal{M} = \{ \mathbb{P}_{\theta} : \theta \in \Theta \}$ indexée par un nombre fini p de paramètres : $\Theta \subset \mathbb{R}^p$. On note aussi \mathbb{E}_{θ} l'espérance associée.

Rem: le modèle est indexé par un nombre ou un vecteur réel; p est la dimension du modèle

Exemple:

- Modèle de Bernoulli (ou "Pile ou face") : $\Theta = [0, 1]$.
- Modèle gaussien : $\theta = (\mu, \sigma^2)$, $\Theta = \mathbb{R} \times \mathbb{R}_+^*$.

Rem: le modèle est dit non-paramétrique s'il n'est pas indexable par un paramètre de dimension finie, e.g., $\{f: \int f=1, \text{ et } f \geq 0\}$

<u>Rem</u>: dans le cadre **fréquentiste**, on suppose qu'il existe un vrai paramètre inconnu, tel que $\mathbb{P}_Y = \mathbb{P}_{\theta}$

Estimateur

• Objectif : estimer une quantité $g = g(\theta)$ qui ne dépend que de la loi \mathbb{P}_{θ} des observations. g est une constante inconnue **déterministe** *i.e.*, non aléatoire.

Exemple : espérance, quantile, variance, écart-type, etc.

Intuition : un estimateur \hat{g} est calculé à partir de l'échantillon (y_1, \ldots, y_n) , dans le but d'approcher $g(\theta)$.

Définition

Un **estimateur** \hat{g} de g est une fonction (mesurable) des observations :

$$\hat{g}:(y_1,\ldots,y_n)\mapsto \hat{g}(y_1,\ldots,y_n)$$

Rem: un estimateur est parfois aussi appelé une statistique

Rem: en pratique l'estimateur doit être calculable efficacement

Sommaire

Aspects pratiques du cours

Introduction générale

Modèle statistique

Biais/Variance

Statistiques descriptives

Résumés basiques d'un jeu de données Corrélations/Nuage de points

Rappels de probabilités

Covariances

Les lois gaussiennes

Propriétés d'un estimateur : le biais

Définition

Le biais d'un estimateur \hat{g} est l'espérance de son écart au paramètre :

$$\operatorname{Biais}(\hat{g}, g) = \mathbb{E}_{\theta}(\hat{g}(y_1, \dots, y_n)) - g(\theta)$$
 (dépend de θ)

Définition

Un estimateur \hat{g} de g est dit **non biaisé** (ou **sans biais**) si : $\forall \theta \in \Theta, \quad \mathbb{E}(\hat{q}(y_1, \dots, y_n)) = q(\theta)$

Rem: le biais mesure l'erreur systématique d'un estimateur

Estimateur sans biais de l'espérance

- L'espérance 'théorique' dépend de la loi \mathbb{P}_{θ}
- On cherche ici à estimer $g(\theta) = \mathbb{E}(Y) (= \mathbb{E}_{\theta}(Y))$

Théorème

Sous l'hypothèse que l'échantillon est i.i.d., la moyenne empirique $\overline{y}_n = \frac{1}{n} \sum_{i=1}^n y_i$ est un estimateur sans biais de l'espérance $\mathbb{E}(Y)$

Démonstration :

$$\mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}y_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}(y_{i}) = \mathbb{E}(Y)$$

car $\mathbb{E}(y_i) = \mathbb{E}(Y)$ (caractère *i.i.d.* des y_i)

Rem: $\hat{g}(y_1, \dots, y_n) = y_1$ est un estimateur sans biais de l'espérance

Estimateur sans biais de la variance

- La variance 'théorique' dépend de la loi $\mathbb{P}_{ heta}$
- On cherche ici à estimer $g(\theta) = Var(Y) (= Var_{\theta}(Y))$

Théorème

L'estimateur $\hat{g}(y_1,\ldots,y_n)=\frac{1}{n-1}\sum_{i=1}^n(y_i-\overline{y}_n)^2$ est un estimateur sans biais de la variance $\mathrm{Var}(Y)$

Rem: l'estimateur $\frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y}_n)^2$ est lui biaisé

Exo: Vérifier cette propriété par le calcul

Propriétés d'un estimateur : la variance

Définition

La variance d'un estimateur \hat{g} est sa variance théorique :

$$\operatorname{Var}(\hat{g}) = \operatorname{Var}(\hat{g}(y_1, \dots, y_n)) = \mathbb{E}_{\theta}(\hat{g} - \mathbb{E}_{\theta}(\hat{g}))^2$$
 (dépend de θ)

Rem: la variance mesure la dispersion autour de l'espérance

Biais ou variance?

Biais ou variance?

- Si \hat{g}_0 et \hat{g}_1 sont sans biais, on préfère avoir une faible variance

Biais ou variance?

- Si \hat{g}_0 et \hat{g}_1 ont la même variance, on préfère un biais faible

Risque quadratique / compromis biais-variance

Définition

Le **risque quadratique** d'un estimateur \hat{g} est l'espérance de son erreur au carré :

$$R(\hat{g}) = \mathbb{E}\left[(\hat{g} - g)^2\right]$$

Règle de choix : prendre l'estimateur dont le risque est le plus petit

Théorème : décomposition biais / variance

$$\mathsf{Risque}(\hat{g}) = \mathsf{Variance}(\hat{g}) + \left(\mathsf{Biais}(\hat{g})\right)^2$$

$$\begin{split} \underline{\text{D\'emonstration}} &: \text{faire appara\^{l}tre le biais } B = \mathbb{E}[\hat{g}] - g \text{ ; d\'evelopper} \\ R(\hat{g}) &= \mathbb{E}\left[(\hat{g} - \mathbb{E}(\hat{g}) + B)^2\right] \\ &= \mathbb{E}\left[(\hat{g} - \mathbb{E}(\hat{g}))^2 + B^2 + 2B(\hat{g} - \mathbb{E}(\hat{g}))\right] \\ &= \text{Var}(\hat{g}) + B^2 + 2B\underbrace{\mathbb{E}\left[\hat{g} - \mathbb{E}(\hat{g})\right]}_{} = \text{Var}(\hat{g}) + B^2 \end{split}$$

Sommaire

Aspects pratiques du cours

Introduction générale Modèle statistique Biais/Variance

Statistiques descriptives Résumés basiques d'un jeu de données Corrélations/Nuage de points

Rappels de probabilités Covariances

Statistique exploratoire et descriptive

- Première analyse sans hypothèse sur la loi \mathbb{P}_Y .
- Analyse qualitative du jeu de données / échantillon
- Visualisation du jeu de données / échantillon

Rappel: statistique = estimateur, c'est une fonction (mesurable) des observations (y_1, \ldots, y_n) (et qu'on espère être une fonction calculable des observations (y_1, \ldots, y_n) !)

Rem: les enjeux computationnels seront a prendre en compte dans la plupart de vos applications pratiques

Moyenne (arithmétique)

Définition

Moyenne (arithmétique) :
$$\overline{y}_n = \frac{1}{n} \sum_{i=1}^n y_i$$

Si
$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i$$
 (produit scalaire) et $\mathbf{1}_n = (1, \dots, 1)^\top \in \mathbb{R}^n$:
$$\overline{y}_n = \left\langle \mathbf{y}, \frac{\mathbf{1}_n}{n} \right\rangle$$

Exo: Le vecteur $\overline{y}_n \mathbf{1}_n$ est la projection de \mathbf{y} sur l'espace $\text{vect}(\mathbf{1}_n)$

Médiane

On ordonne les y_i dans l'ordre croissant : $y_{(1)} \leqslant y_{(2)} \leqslant \ldots \leqslant y_{(n)}$

Définition

Rem: la définition d'une médiane est non-unique, et peut être parfois ambiguë...

Moyenne tronquée

Pour un paramètre α (e.g., $\alpha=15\%$), on calcule la moyenne en enlevant les $\alpha\%$ plus grandes et plus petites valeurs

Définition

Moyenne tronquée (à l'ordre α): $\overline{y}_{n,\alpha} = \overline{z}_n$

où $\mathbf{z} = (y_{(\lfloor \alpha n \rfloor)}, \dots, y_{(\lfloor (1-\alpha)n \rfloor)})$ est l'échantillon α -tronqué

 $\underline{\mathrm{Rem}} \colon \lfloor u \rfloor \text{ est le nombre entier tel que } \lfloor u \rfloor - 1 < u \leqslant \lfloor u \rfloor$

Moyenne vs médiane

- Les trois statistiques ne coïncident pas
- Moyennes tronquées et médianes sont robustes aux points atypiques (≅ : outliers), la moyenne non!

Dispersion: variance / écart-type

Définitions

Variance:
$$\operatorname{var}_n(\mathbf{y}) = \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y}_n)^2 = \frac{1}{n} \|\mathbf{y} - \overline{y}_n \mathbf{1}_n\|^2$$

Écart-type:
$$s_n(\mathbf{y}) = \sqrt{\operatorname{var}_n(\mathbf{y})}$$
 (où $\|\mathbf{z}\|^2 = \sum_{i=1}^n z_i^2$)

Exo: Quels sont les vecteurs $\mathbf{y} \in \mathbb{R}^n$ tels que $\operatorname{var}_n(\mathbf{y}) = 0$?

Dispersion: MAD

Définition

Déviation médiane absolue (Mean Absolute Deviation) :

$$MAD_n(\mathbf{y}) = Med_n(|Med_n(\mathbf{y}) - \mathbf{y}|)$$

Estimation de la densité : histogramme

L'histogramme est une approximation de la densité par une fonction constante par morceaux

Rem: les « cases » (bins) ont une aire proportionnelle au nombre de données qu'elles contiennent

<u>Rem</u>: en Python, on compte le nombre ou la proportion de données par case, *e.g.*, avec normed=**False**(**True**) dans la fonction hist

Estimation de la densité : méthode à noyau

Méthode à noyau (☒☐ : Kernel Density Estimation, KDE) : approche non-paramétrique estimant la densité par une fonction continue – généralisation de l'histogramme

Pour plus de détails voir le livre Silverman (1986)

Densité bi-dimensionnelle (spatiale)

cf. http://scikit-learn.org/stable/_downloads/plot_species_kde.py

Fonction de répartition

Définition : fonction de répartition

Théorique:
$$F(u) = \mathbb{P}(Y \leq u) = \int_{-\infty}^{u} f_Y(x) dx$$

Empirique:
$$F_n(u) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{y_i \leqslant u\}}$$

Interprétation : proportion d'observations sous un certain niveau

Fonction quantile

Définition

Pour $p \in]0,1]$,

Quantile théorique (d'ordre p): $F^{\leftarrow}(p) = \inf\{u \in \mathbb{R} : F(u) \geqslant p\}$

Quantile empirique (d'ordre p) : $F_n^{\leftarrow}(p) = y_{(\lfloor (n-1)p \rfloor + 1)}$

Rem: c'est l'inverse (généralisée) de la fonction de répartition ; sa définition admet plusieurs conventions, *cf.* percentile in Numpy

Sommaire

Aspects pratiques du cours

Introduction générale Modèle statistique Biais/Variance

Statistiques descriptives

Résumés basiques d'un jeu de données Corrélations/Nuage de points

Rappels de probabilités

Covariances Les lois gaussiennes

Covariances et corrélations empiriques

Covariance empirique

Pour deux échantillons ${\bf x}$ et ${\bf y}$ de moyennes et variances empiriques \overline{x}_n , \overline{y}_n et ${\rm var}_n({\bf x})$, ${\rm var}_n({\bf y})$:

$$\operatorname{cov}_n(\mathbf{x}, \mathbf{y}) = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)(y_i - \overline{y}_n)$$
 c'est-à-dire $\operatorname{cov}_n(\mathbf{x}, \mathbf{y}) = \frac{1}{n} \langle \mathbf{x} - \overline{x}_n \mathbf{1}_n, \mathbf{y} - \overline{y}_n \mathbf{1}_n \rangle$

Corrélation empirique

$$\rho = \operatorname{corr}_n(\mathbf{x}, \mathbf{y}) = \frac{\operatorname{cov}_n(\mathbf{x}, \mathbf{y})}{\sqrt{\operatorname{var}_n(\mathbf{x})}\sqrt{\operatorname{var}_n(\mathbf{y})}}, \quad \text{c'est-à-dire}$$

$$\rho = \frac{\langle \mathbf{x} - \overline{x}_n \mathbf{1}_n, \mathbf{y} - \overline{y}_n \mathbf{1}_n \rangle}{\|\mathbf{x} - \overline{x}_n \mathbf{1}_n\| \|\mathbf{y} - \overline{y}_n \mathbf{1}_n\|} = \operatorname{cos}(\mathbf{x} - \overline{x}_n \mathbf{1}_n, \mathbf{y} - \overline{y}_n \mathbf{1}_n)$$

Interprétation pour n=3 et $\|\mathbf{x}\|=\|\mathbf{y}\|=1$

Exemples de corrélations

Exemples de corrélations proches de zéro

Exemples de corrélations proches de zéro

Exemples de corrélations proches de zéro

Nuages de points / Scatter plot / PairGrid

Covariance \neq **causalité**

US spending on science, space, and technology

Suicides by hanging, strangulation and suffocation

Corrélation: 0.9979

cf. http://www.tylervigen.com/spurious-correlations

Sommaire

Aspects pratiques du cours

Introduction générale

Modèle statistique Biais/Variance

Statistiques descriptives

Résumés basiques d'un jeu de données Corrélations/Nuage de points

Rappels de probabilités

Covariances

Les lois gaussiennes

Covariance d'un couple de v.a.

Soient X et Y des variables aléatoires <u>réelles</u> de carré intégrable.

Définition

La covariance de X et Y est la moyenne des fluctuations jointes : $\mathrm{Cov}(X,Y) = \mathbb{E}\left[\left(X-\mathbb{E}(X)\right)\left(Y-\mathbb{E}(Y)\right)\right]$

<u>Propriété</u> : la covariance est bilinéaire, pour tous $\alpha, \beta \in \mathbb{R}$ et toutes variables aléatoires réelles X_1, X_2, Y_1, Y_2 on a

$$Cov(\alpha X_1 + \beta X_2, Y_1) = \alpha Cov(X_1, Y_1) + \beta Cov(X_2, Y_1)$$
$$Cov(X_1, \alpha Y_1 + \beta Y_2) = \alpha Cov(X_1, Y_1) + \beta Cov(X_1, Y_2)$$

Rappel : inégalité de Cauchy-Schwarz dans ce cadre

$$|\operatorname{Cov}(X,Y)| \leq \sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}$$

Matrice de covariance d'un vecteur aléatoire

Notation:
$$X = (X_1, \dots, X_p)^{\top}$$
 est vecteur aléatoire t.q. $\forall j \in [1, p], \mathbb{E}(X_j^2) < +\infty$ et $\sigma_{i,j} = \text{cov}(X_i, X_j)$ $(\sigma_{i,i} = \text{var}(X_i))$

Définition

La matrice de covariance du vecteur X est la matrice Cov(X), de taille $p \times p$, formée par les $\sigma_{i,j}$ (i^e ligne, j^e colonne). Ainsi,

$$\operatorname{Cov}(X) = \begin{pmatrix} \operatorname{var}(X_1) & \operatorname{cov}(X_1, X_2) & \dots & \operatorname{cov}(X_1, X_p) \\ \operatorname{cov}(X_2, X_1) & \operatorname{var}(X_2) & & \vdots \\ \vdots & & \ddots & \vdots \\ \operatorname{cov}(X_p, X_1) & \dots & & \operatorname{var}(X_p) \end{pmatrix} \in \mathbb{R}^{p \times p}$$

$$\underline{\mathsf{Version} \ \mathsf{condens\acute{e}e}} : \quad \mathrm{Cov}(X) = \mathbb{E}\Big[\big(X - \mathbb{E}(X) \big) \big(X - \mathbb{E}(X) \big)^\top \Big]$$

Exo: Montrer que pour μ déterministe $Cov(X + \mu) = Cov(X)$

Quelques propriétés de la covariance

▶ Une matrice de covariance est symétrique :

$$\mathrm{Cov}(X) = \mathrm{Cov}(X)^\top \Leftrightarrow \forall (i,j) \in [\![1,p]\!]^2,\, \mathrm{Cov}(X_i,X_j) = \mathrm{Cov}(X_j,X_i)$$

▶ Une matrice de covariance est (semi-définie) positive :

$$\forall u \in \mathbb{R}^p, \ u^{\top} \operatorname{Cov}(X) u \geqslant 0$$

Démonstration :

$$u^{\top} \operatorname{Cov}(X) u = \sum_{i=1}^{p} \sum_{j=1}^{p} u_{i} u_{j} \operatorname{Cov}(X_{i}, X_{j}) = \underbrace{\operatorname{Cov}(\sum_{i=1}^{p} u_{i} X_{i}, \sum_{j=1}^{p} u_{j} X_{j})}_{= \operatorname{Var}(\sum_{j=1}^{p} u_{j} X_{j}) \geqslant 0}$$

Exo: $Cov(AX) = A Cov(X)A^{T}$, pour toute matrice $A \in \mathbb{R}^{m \times p}$

La décomposition spectrale

Théorème spectral

Une matrice symétrique $S \in \mathbb{R}^{n \times n}$ est diagonalisable en base orthonormée, *i.e.*, il existe $\lambda_1 \geqslant \cdots \geqslant \lambda_n$ et une matrice orthogonale $U \in \mathbb{R}^{n \times n}$ telle que :

$$S = U \operatorname{diag}(\lambda_1, \dots, \lambda_n) U^{\top}$$
 ou $SU = U \operatorname{diag}(\lambda_1, \dots, \lambda_n)$

 $\frac{\mathsf{Rappel}}{U^\top U} : \text{ une matrice orthogonale } U \in \mathbb{R}^n \text{ est une matrice telle que } U^\top U = UU^\top = \mathrm{Id}_n \text{ ou } \forall (i,j) \in \llbracket 1,n \rrbracket, \mathbf{u}_i^\top \mathbf{u}_i = \langle \mathbf{u}_i, \mathbf{u}_i \rangle = \delta_{i,j}$

Rem: si l'on écrit $U = [\mathbf{u}_1, \dots, \mathbf{u}_n]$ cela signifie que :

$$S = \sum_{i=1}^{n} \lambda_i \mathbf{u}_i \mathbf{u}_i^{\top}$$
 et $\forall i \in [1, n], S \mathbf{u}_i = \lambda_i \mathbf{u}_i$

Vocabulaire:

- les λ_i sont les valeurs propres de S (\blacksquare : eigenvalues)
- les \mathbf{u}_i sont les **vecteurs propres** de S (\ref{S} : eigenvectors)

La décomposition spectrale : exemple

$$A = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 2 & 1 & 2 & 0 \\ 0 & 2 & 1 & 2 \\ 2 & 0 & 2 & 1 \end{pmatrix} = UDU^{\top}$$

avec

$$D = \begin{pmatrix} 5 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -3 \end{pmatrix} \quad \text{et} \quad U = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{\sqrt{2}}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{2}}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{\sqrt{2}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{2}}{2} & 0 & \frac{1}{2} \end{pmatrix}$$

La décomposition spectrale : numérique

```
import numpy as np
from scipy.linalg import toeplitz
from numpy.linalg import eigh
A = toeplitz([1, 2, 0, 2])
[Dint, Uint] = eigh(A)
# use eigh not eig for symmetric matrices
idx = Dint.argsort()[::-1]
D = Dint[idx]
U = Uint[:, idx]
print(np.allclose(U.dot(np.diag(D)).dot(U.T), A))
```

Sommaire

Aspects pratiques du cours

Introduction générale Modèle statistique

Statistiques descriptives

Résumés basiques d'un jeu de données Corrélations/Nuage de points

Rappels de probabilités

Covariances

Les lois gaussiennes

Loi normale unidimensionnelle

 Une v.a. réelle X suit une « loi normale standard » (ou « loi gaussienne » ou « loi de Laplace-Gauss ») si sa densité vaut

$$\varphi_{0,1}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

On note alors $X \sim \mathcal{N}(0, 1)$.

• Une v.a. Y suit une loi normale de paramètres μ et σ^2 si $Y=\mu+\sqrt{\sigma^2}X$, où $X\sim\mathcal{N}(0,1),$ et on note $Y\sim\mathcal{N}(\mu,\sigma^2)$

Densité :
$$\varphi_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Exemple: variation sur μ

Exemple: variation sur μ

Vecteurs gaussiens

En dimension p, les lois gaussiennes ont des densités de la forme :

$$\varphi_{\mu,\Sigma}(\mathbf{x}) = \frac{1}{(2\pi)^{p/2}\sqrt{|\Sigma|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu)^{\top} \Sigma^{-1}(\mathbf{x} - \mu)\right\}.$$

La fonction $\varphi_{\mu,\Sigma}$ est gouvernée par deux paramètres :

- le vecteur d'espérance $\mu \in \mathbb{R}^p$
- la matrice de covariance $\Sigma \in \mathbb{R}^{p \times p}$

Notation: lorsque le vecteur aléatoire X suit une loi normale d'espérance μ et de covariance Σ , on note $X \sim \mathcal{N}(\mu, \Sigma)$ qu'on suppose définie positive

Rem: $|\Sigma| = \det(\Sigma)$ est le produit des valeurs propres de Σ . On parle de cas dégénéré quand $\det(\Sigma) = 0$

$$\Sigma = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 3 \\ 3 \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix},$$

$$\Sigma = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}, \theta = 0$$

$$\Sigma = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}, \theta = 1 \cdot \pi/5$$

$$\Sigma = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}, \theta = 2 \cdot \pi/5$$

$$\Sigma = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}, \theta = 3 \cdot \pi/5$$

$$\Sigma = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}, \theta = 4 \cdot \pi/5$$

Propriétés des vecteurs gaussiens

Proposition

Si X est un vecteur gaussien de \mathbb{R}^p , et si A est une matrice de $\mathbb{R}^{m \times p}$ et que b est un vecteur de \mathbb{R}^m alors Y = AX + b est un vecteur gaussien de \mathbb{R}^m

Construction

Soit $X \in \mathbb{R}^p$ un vecteur gaussien centré-réduit $X \sim \mathcal{N}(0, \mathrm{Id}_p)$. Supposons que l'on connaisse $L \in \mathbb{R}^{p \times p}$ telle que $LL^\top = \Sigma$, alors pour tout $\mu \in \mathbb{R}^p$, $Y = \mu + LX \sim \mathcal{N}(\mu, \Sigma)$

Démonstration :

$$\operatorname{Cov}(Y) = \operatorname{Cov}(LX) = L \operatorname{Cov}(X)L^{\top} = L \operatorname{Id}_p L^{\top} = \Sigma$$

 $\underline{\mathsf{Rem}}$: L peut être obtenue par la factorisation de Cholesky

Factorisation de Cholesky

Théorème

Toute matrice symétrique définie positive $\Sigma \in \mathbb{R}^{p \times p}$ peut s'écrire $\Sigma = LL^{\top}$ pour une matrice L triangulaire inférieure

$$L = \begin{bmatrix} L_{11} & 0 & \cdots & 0 \\ L_{21} & L_{22} & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ L_{p1} & L_{p2} & \cdots & L_{pp} \end{bmatrix}$$

Rem: on peut imposer que les éléments diagonaux de la matrice L soient tous positifs; la factorisation correspondante est alors unique

Rem: numériquement L est obtenue par la méthode du pivot de Gauss, e.g., avec numpy.linalg.cholesky

Bibliographie

DataScience:

Blog + videos de Jake Vanderplas :
 http://jakevdp.github.io/,
 http://jakevdp.github.io/blog/2017/03/03/
 reproducible-data-analysis-in-jupyter/

- VanderPlas (2016), Müller et Guido (2016) : statistiques/apprentissage avec Python
- Exemples d'application de scikit-learn: http://www.baglom.com/b/10-scikit-learn-case-studies-examples-tutorials-cm572/?utm_content=bufferbde5d&utm_medium=social&utm_source-twitter.com&utm_campaign=buffer

Math:

- ► Hastie et al. (2009) : Elements of Statistical Learning
- ▶ James et al. (2013) : An introduction to statistical learning (version simplifiée du précédent)
- Tsybakov (2006) cours de "Statistique appliquée"
- ▶ Delyon (2015) cours de Régression

Références I

- Bertsekas, D. P. (1999).
 Nonlinear programming.
 Athena Scientific.
- Boyd, S. and Vandenberghe, L. (2004).
 Convex optimization.
 Cambridge University Press, Cambridge.
- Delyon, B. (2015).
 Régression.
 https://perso.univ-rennes1.fr/bernard.delyon/
 regression.pdf.
- Foata, D. and Fuchs, A. (1996).
 Calcul des probabilités : cours et exercices corrigés.
 Masson.

Références II

- Golub, G. H. and van Loan, C. F. (2013).
 Matrix computations.
 Johns Hopkins University Press, Baltimore, MD, fourth edition.
- Hastie, T., Tibshirani, R., and Friedman, J. (2009).
 The elements of statistical learning.
 Springer Series in Statistics. Springer, New York, second edition.
 http://www-stat.stanford.edu/~tibs/ElemStatLearn/.
- Horn, R. A. and Johnson, C. R. (1994).
 Topics in matrix analysis.
 Cambridge University Press, Cambridge.
 Corrected reprint of the 1991 original.
- ▶ James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical learning, volume 6. Springer.

Références III

Müller, A. C. and Guido, S. (2016).
 Introduction to Machine Learning with Python: A Guide for Data Scientists.
 O'Reilly Media, early access edition.

- Silverman, B. W. (1986).
 Density estimation for statistics and data analysis.
 Monographs on Statistics and Applied Probability. Chapman & Hall, London.
- Tsybakov, A. B. (2006). Statistique appliquée. http://josephsalmon.eu/enseignement/ENSAE/ StatAppli_tsybakov.pdf.
- VanderPlas, J. (2016).
 Python Data Science Handbook.
 O'Reilly Media.