THE PATCH FRAME AND ITS RELATIONS WITH SEPARATION IN POINT-FREE TOPOLOGY

ABSTRACT.

1. Introduction

Aquí va la introducción.

2. Preliminaries

3. HAUSDORFF PROPERTIES IMPLIES PATCH TRIVIALITY

Gadgets:

A the base frame

Its point space S = pt(A).

NA is the assembly of nucleus of A.

The compact saturated sets of S,

Q(S).

The preframe of open filters of A,

 A^{\wedge} .

The preframe of open filters of $\Omega(S)$.

$$\Omega(S)^{\wedge}$$
.

The set of compact quotients

$$KA = \{j \in NA \mid A_j \text{ is compact}\}.$$

First we recall that every open filter $F\in A^\wedge$ has three faces, that is, determines (and its determine) by :

- The compact saturated $Q \in \mathcal{Q}S$.
- $\nabla \in \Omega(S)^{\wedge}$.
- The compact quotient $A \to A_F$.
- The fitted nucleus v_F .

Hoffman-Mislove can be rephrase:

There is a bijection between compact quotients of A and compact saturated sets of S

4. COMPACT QUOTIENTS

Definition 4.1. A frame has KC if every compact quotient of A is a closed one. In other words every compact sublocale is closed.

Denote by $\Re rm$ the subcategory of Frm of Hausdorff frames in the sense of Johnstone and Shu.

If $f^* \colon A \to B$ is a frame morphism and $F \subseteq A$, $G \subseteq B$ filters in A, B, respectively, we can produce new filters as follows

(1)
$$b \in f^*F \Leftrightarrow f_*(b) \in F$$
 and $a \in f_*G \Leftrightarrow f^*(a) \in G$

where $a \in A, b \in B$ and f_* is the right adjoint of f^* . Here $f^*F \subseteq B$ and $f_*G \subseteq A$ are filters on B and A, respectively.

Proposition 4.2. For $f = f^* \colon A \to B$ a frame morphism and $G \in B^{\wedge}$, then $f_*G \in A^{\wedge}$.

Proof. By (1), f_*G is a filter on A. We need f_*G to satisfy the open filter condition. Let $X \subseteq A$ be such that $\bigvee X \in f_*G$, with X directed. Then

$$Y = \{ f(x) \mid x \in X \}$$

is directed and $f(\bigvee X) = \bigvee f[X] = \bigvee Y \in G$. Since G is a open filter, exists $y = f(x) \in Y$ such that $y \in G$. Thus $x \in f_*G$, so that, $f_*G \in A^{\wedge}$.

In [?], the autor says that $A \in \mathbf{Frm}$ is *tidy* if for all $F \in A^{\wedge}$

$$x \in F \Rightarrow u_d(x) = d \lor x = 1$$

where $d = d(\alpha) = f^{\alpha}(0)$, $f = \dot{\bigvee} \{v_y \mid y \in F\}$, $v_y \in NA$ and $0 = 0_A$ (the reason for the last two clarifications will be understood later).

We want translate this same notion, but for A_j when $j \in NA$, so that, for all $F \in A_j^{\wedge}$, if $x \in F$ then $d \vee x = 1$, with d similar to before, because for this case we have that $v_y \in NA_j$ and $0_{A_j} = j(0)$.

Simmons proves in [?] (Lamma 8.9 and Corollary 8.10), that the diagram

$$A \xrightarrow{f^{\infty}} A$$

$$U_A \downarrow \qquad \qquad \downarrow U_A$$

$$\mathcal{O}S \xrightarrow{F^{\infty}} \mathcal{O}S$$

commutes laxly, so that, $U_A \circ f^{\infty} \leq F^{\infty} \circ U_A$. In this diagram U_A is the spatial reflection morphism, f^{∞} and F^{∞} represent the associated nuclei to the filters $F \in A^{\wedge}$ and $\nabla \in \mathcal{O}S^{\wedge}$. Also f^{∞} and F^{∞} are idempotent closeds associated to the prenuclei f and F respectively.

We prove something more general here, since we consider the diagram

$$\begin{array}{ccc}
A & \xrightarrow{\hat{f}^{\infty}} & A \\
\downarrow j & & \downarrow j \\
A_j & \xrightarrow{f^{\infty}} & A_j
\end{array}$$

where \hat{f}^{∞} is the nuclei associated to the filter $j_*F \in A^{\wedge}$ and $j \in NA$.

Lemma 4.3. For j, f and \hat{f} as above, it holds that $j \circ \hat{f} \leq f \circ j$.

Proof. By (1) is true that

$$\hat{f} = \bigvee \{v_y \mid y \in j_*F\} \quad \text{ and } \quad f = \bigvee \{v_{j(y)} \mid j(y) \in F\}.$$

then, for $a \in A$ it is hold

$$v_y(a) = (y \succ a) \le \hat{f}(a) \le j(\hat{f}(a)).$$

Also, for all $a, y \in A$, $(y \succ a) \land y = y \land a$ and

$$j((y \succ a) \land y) \le j(a) \Leftrightarrow j(y \succ a) \land j(y) \le j(a)$$
$$\Leftrightarrow j(y \succ a) \le (j(y) \succ j(a)).$$

Thus

$$v_y(a) \le j(\hat{f}(a)) \le (j(y) \succ j(a)) = v_{j(y)}(j(a)) \le f(j(a)).$$

Therefore $j \circ \hat{f} \leq f \circ j$.

Now, we prove the above, but for all α -ordinals.

Corollary 4.4. For j, f and \hat{f} as before, it is hold that $j \circ \hat{f}^{\alpha} < f^{\alpha} \circ j$

Proof. For an ordinal α we will check that $j \circ \hat{f}^{\alpha} < f^{\alpha} \circ j$. We will do it by transfinite induction.

If $\alpha = 0$, it is trivial.

For the induction step, we assume that for α it holds. Then

$$j \circ \hat{f}^{\alpha+1} = j \circ \hat{f} \circ \hat{f}^{\alpha} \le f \circ j \circ \hat{f}^{\alpha} \le f \circ f^{\alpha} \circ j = f^{\alpha+1} \circ j,$$

where the first inequality is Lemma 4.3 and the second is true by the induction hypothesis.

If λ is a limit ordinal, then

$$\hat{f}^{\lambda} = \bigvee \{ \hat{f}^{\alpha} \mid \alpha < \lambda \}, \quad f^{\lambda} = \bigvee \{ f^{\alpha} \mid \alpha < \lambda \}$$

and

$$j\circ \hat{f}^{\lambda}=j\circ\bigvee_{\alpha<\lambda}\hat{f}^{\alpha}\leq\bigvee_{\alpha<\lambda}j\circ \hat{f}^{\alpha}.$$

Thus, by the induction hypothesis, we have that

$$j \circ \hat{f}^{\alpha} \leq f^{\alpha} \circ j \Rightarrow \bigvee_{\alpha < \lambda} j \circ \hat{f}^{\alpha} \leq \bigvee_{\alpha < \lambda} f^{\alpha} \circ j.$$

Therefore $j \circ \hat{f}^{\lambda} \leq f^{\lambda} \circ j$.

By the Corollary 4.4, we have that $j \circ \hat{f}^{\infty} \leq f^{\infty} \circ j$ is true. Futhermore, by H-M Theorem, $f^{\infty} = v_F$ and $\hat{f}^{\infty} = v_{j*F}$. With this in mind, we have the following diagram

$$\begin{array}{ccc}
A & \xrightarrow{(v_{j*F})^*} & A_{j*F} \\
\downarrow & & \downarrow & \downarrow \\
A_j & \xrightarrow{(v_F)_*} & A_F
\end{array}$$

Here, A_F and A_{j_*F} are the compact quotients produced by v_F and v_{j_*F} , respectively. The morfism $H:A\to A_F$ is defined by $H=v_F\circ j$. Futhermore, $(v_F)_*$ and $(v_{j_*F})_*$ are inclusions.

Let $h: A_{j_*F} \to A_j$ be such that, for $x \in A_{j_*F}$, h(x) = H(x). Therefore, if $h = H_{|A_{j_*F}|}$, then the above diagram commutes.

We need that h to be a frame morphism. First, by the difinition of h, this is \land -morphism. It remains to be seen that h is \bigvee -morphism.

The joins in A_{j_*F} and A_F are calculated differently. Thus, let \hat{V} be join in A_{j_*F} and let \hat{V} be join in A_F . Therefore

$$\hat{\bigvee} = v_{j_*F} \circ \bigvee$$
 and $\tilde{\bigvee} = v_F \circ \bigvee$,

that is, for $X \subseteq A$, $Y \subseteq A_i$,

$$\hat{\bigvee} X = v_{j_*F}(\bigvee X)$$
 and $\tilde{\bigvee} Y = v_F(\bigvee Y)$.

Since H is a frame morphism, then $H \circ \bigvee = \tilde{\bigvee} \circ H$. Let us get something similar to h.

Lemma 4.5. $h \circ \hat{\bigvee} = \tilde{\bigvee} \circ h$.

Proof. It is enough to check the comparison $h \circ \hat{V} \leq \tilde{V} \circ h$. Thus

$$h\circ \mathring{\bigvee} = H\circ v_{j_*F}\circ \bigvee = v_F\circ j\circ v_{j_*F}\circ \bigvee \leq v_F\circ v_F\circ j\circ \bigvee$$

where the inequality is the Corollary 4.4. Futhermore, $v_F \circ v_F = v_F$, then

$$h \circ \hat{\bigvee} \leq v_F \circ j \circ \bigvee = H \circ \bigvee = \tilde{\bigvee} \circ H = \tilde{\bigvee} \circ h.$$

Therefore $h \circ \hat{\nabla} = \tilde{\nabla} \circ h$.

With this we prove the following.

Proposition 4.6. The diagram

$$\begin{array}{ccc}
A & \xrightarrow{v_{j_*F}} & A_{j_*F} \\
\downarrow \downarrow & & \downarrow h \\
A_j & \xrightarrow{v_F} & A_F
\end{array}$$

is commutative.

With the above diagram, we could analyze some compact quotients, for example, closed compact quotients.

Definition 4.7. Let A be a frame and $F \in A^{\wedge}$. The compact quotient A_F is closed if $A_F = A_{u_d}$ for some $d \in A$.

Proposition 4.8. If A is a tidy frame, then A_i is tidy.

Proof. It is easy to prove that $F \subseteq j_*F$. Since A is tidy and $F \in A^{\wedge}$, it is true that $x \in F \Rightarrow \hat{d} \lor x = 1$,

where
$$\hat{d} = d(\alpha) = f^{\alpha}(0)$$
.
If $\hat{d} \leq d$, then $d \vee x = 1$, for $d = d(\alpha) = f^{\alpha}(j(0))$.

Thus, for Corollary 4.4

$$\hat{d} = \hat{d}(\alpha) \le j(\hat{d}(\alpha)) = j(\hat{f}^{\alpha}(0)) \le f^{\alpha}(j(0)) = d(\alpha) = d.$$

Therefore if $x \in F$, then $d \vee x = 1$ and A_i is tidy.

Proposition 4.9. If A has KC, then A_j has KC for every $j \in N(A)$.

Proof. We consider $k \in NA_j$ such that $(A_j)_k$ is compact. Since any open filter is admissible, we have $\nabla(k) \in A_i^{\wedge}$ and by Proposition 4.2 $j_*\nabla(K) \in A^{\wedge}$.

Let $l = j_* \circ k \circ j^* \in NA$ be, then A_l is a compact quotient of A and exists $a \in A$ such that $l = u_a$. Thus, we have

$$A \xrightarrow{j^*} A_j \xrightarrow{k} (A_j)_k \xrightarrow{j_*} A_j \subseteq A$$

and $a \vee x = k(j(x))$. Therefore, if x = a, k(j(x)) = a.

We need that
$$k=u_b$$
 for some $b\in A_j$. For $x\in A_j$ and $b=j(a)$
$$u_b(x)=b\vee x=b\vee j(x)=j(j(a)\vee j(x))$$

$$=j(k(j(a))\vee x)$$

$$=j(u_a(x))$$

$$=j(k(x))$$

$$=k(x).$$

Therefore
$$u_b = k$$
.

Proposition 4.10. If A is a KC frame, the A is a T_1 frame.

Proof. A frame is T_1 if and only if for all $p \in \operatorname{pt} A$, p is maximal. Let $p \in \operatorname{pt} A$ and $a \in A$ be such that $p \le a \le 1$. We consider

$$w_p(x) = \begin{cases} 1 & \text{si} \quad x \nleq p \\ p & \text{si} \quad x \le p \end{cases}$$

for $x \in A$. $P = \nabla(w_p) = \{x \in A \mid x \nleq p\}$ is a filter completely prime (in particular, $P \in A^{\wedge}$). Since A is KC, then A_{w_p} is a closed compact quotient. Thus $u_p = w_p$, futhermore

$$u_p(a) = a$$
 and $w_p(a) = 1$.

that is, a = 1. Therefore p is maximum.

5. Admissibility intervals

The block structure on a frame is an important problem and its related with some separation properties of frames.

Proposition 5.1. For $F \in A^{\wedge}$ and $Q \in QS$, if $j \in [v_Q, w_Q]$, then $U_*jU^* \in [v_F, w_F]$, where U^* is the morfism spatial reflection U_* is the right adjoint.

Proof. Since N is a functor, we have

$$\begin{array}{c|c}
A & NA \\
U \downarrow & \stackrel{N(\square)}{\longrightarrow} & \bigvee_{N(U)} \\
\mathcal{O}S & N\mathcal{O}S
\end{array}$$

and $N(U)_*$ is the right adjoint of $N(U)^{\wedge}$. Note the following:

- (1) $N(U)(j) \le k \Leftrightarrow j \le N(U)_*k$.
- (2) If $k \in NOS$ then $N(U)(j) \le k \Leftrightarrow Uj \le kU$.
- (3) $N(U)_*k = U_*kU^*$ and $UN(U)_*k = k(U)$.

In 3), if j = k, $N(U)_*(j) = U_*jU^*$ and $UN(U)_*j = jU$. For $x \in F$

$$x \in A \xrightarrow{U^*} \mathcal{O}S \xrightarrow{j} \mathcal{O}S \xrightarrow{U_*} A$$

and $U_*(j(U(x))) = \bigwedge(S \setminus j(U(x)))$. Note that $U_*(j(U^*(x))) \subseteq \operatorname{pt} A$. Thus

$$x \in F \Leftrightarrow Q \subseteq U(x) \Leftrightarrow U(x) \in \nabla(j) = \nabla(Q) \Leftrightarrow S \setminus j(U(x)) = \emptyset$$
$$\Leftrightarrow \bigwedge (S \setminus j(U(x))) = 1 = (U_* j U^*)(x)$$
$$\Leftrightarrow x \in \nabla(U_* j U^*)$$

Therefor $F = \nabla (U_* j U^*)$.

In this way we have a function

$$\mathcal{U} \colon [V_Q, W_Q] \to [V_F, W_F]$$

Proposition 5.2. For every $A \in \mathcal{H}rm$ the interval corresponding to the block determined by an open filter $F \in A^{\wedge}$ is trivial, that is,

$$[v_F, w_F] = \{*\}$$

Proof. We know that for all $F \in A^{\wedge}$ the following holds: $v_F \leq w_F$. As a contradition, suppose that exists $F \in A^{\wedge}$ such that $w_F \nleq v_F$, that is, exists $a \in A$ such that $w_F(a) \not \leq v_F(a)$.

Note that $w_F(a) \neq 1$, otherwise

$$1 = w_F(a) = \bigwedge \{ p \in M \mid a \le p \} \le p$$

and this is a contradition because $p \neq 1$.

Then $1 \neq w_F(a) \nleq v_F(a)$ and for the property (H), exists $u \in A$ such that

(2)
$$u \not\leq w_F(a)$$
 and $\neg u \not\leq v_F(a)$

Due to monotony, $w_F(0) \le w_F(a)$ and $v_F(0) \le v_F(a)$ - Thus, for (2) we have that

(3)
$$i) u \not\leq w_F(0)$$
 and $ii) \neg u \not\leq v_F(0)$.

For 3-(i) is true that $u \nleq \bigwedge M$, in particular, $u \nleq p$ for all $p \in M$. Therefore, $\neg u \leq p$ and $\neg u \leq w_F(0)$. If 3-(ii) is true, then $u \notin F$, in otherwise

$$u \in F \Rightarrow v_u \le f \Rightarrow v_u(0) = \neg u \le f(0)$$

and this is a contradition. Thus, for the Birkhoff's separation lemma, exists a completely prime filter G such that $u \notin G \supseteq F$. We take

$$q = \bigvee \{ y \in A \mid y \notin G \}$$

the point corresponding to G. Thus, $u \notin G$, $u \leq q$. If $q \notin F$, then $q \in M$ and $u \not \leq q$. Hence $u \leq q$, $u \not \leq q$ and this is a contradition.

A consequence of the Proposition 5.2 is that $v_F = w_F$, so that, $A_{v_F} = A_{w_F}$ and $A_{w_F} \simeq \mathcal{O}M \simeq \mathcal{O}Q$. Thus, for all $j \in KA$ we have that $j = v_F$. Then in the Huasdorff case

$$\begin{array}{ccc}
A & \longrightarrow & A_F \\
\downarrow & & \downarrow g \\
OS & \longrightarrow & OS_{\nabla}
\end{array}$$

where g (seria el h del 4.5) is an isomorphism and $A_F \simeq \mathcal{O}Q \simeq \mathcal{O}S_{\nabla}$.

HAY que explicar mejor los isorfismos quien es M quien es Q On the other hand, $U_*u_{Q'}U^*=v_F$ if and only if $u_{Q'}U^*=U^*v_F$, for the adjuntion properties and U^* the spatial reflection morphism. Therefore

8 THE PATCH FRAME AND ITS RELATIONS WITH SEPARATION IN POINT-FREE TOPOLOGY

$$A \xrightarrow{v_F} A$$

$$U_* \uparrow \downarrow_U \qquad U \downarrow \uparrow_{U_*} \uparrow_{U_*}$$

$$\mathcal{O}S \xrightarrow{v_\nabla} \mathcal{O}S$$

so that, if $A \in \mathcal{H}rm$, then KC implies patch trivial.

The above is the proof of the following theorem.

Theorem 5.3. If $A \in \mathcal{H}rm$. then every compact quotient is isomrphic to a closed quotient of the topology of a Hausdorff space.

Corollary 5.4. *If* $A \in \mathcal{H}rm$.

$$Q(S) \cong \operatorname{pt}(V(A))$$

EJEMPLOS DE marcos ptrivial que no sean KC

HAY que COMENTAR LAS COSAS QUE ESTAN MAL comentar me refiero a ponerlas entre

REFERENCES