Grundkurs: Programmieren

Einführung in grundlegende Programmierkonzepte mit Python

Maren Krafft

WS 18/19

Universität Passau

Einführung in die Programmierung

Vorstellung

- Name
- Studiengang
- Programmiererfahrung allgemein
- Programmiererfahrung Python
- Erwartungen

Organisatorisches

- Anwesenheitspflicht
- Teilnahmebestätigung (Zertifikat)
- "Regeln"
- Codio
- Skript

Ablauf

```
14.00 - 14.15 Erwartungen und Vorkenntnisse
14.15 - 14.45 Einführung in Python und Umgebung
14.45 - 15.30 Datentypen, Operatoren, Variablen und Zuweisungen
15.30 - 15.45 Pause
15.45 - 16.45 Bedingte Ausführung
17.00 - 18.00 Schleifen
```

Ablauf

```
10.15 - 10.30 Besprechung Tagesplan

10.30 - 12.15 Wiederholung + Neues

12.15 - 13.00 Pause

13.00 - 13.30 Theorie

13.30 - 14.45 Listen

14.45 - 15.00 Pause

15.00 - 16.00 Funktionen
```

Die Programmiersprache Python

- Warum Python?
 - Flache Lernkurve, sehenswerte Ergebnisse bereits nach dem ersten Tag
 - Verankert in Forschung und Wirtschaft
 - Der englischen Sprache sehr ähnlich

Quelle: lifehacker.com

Codio

Allgemeines zu Python

Kommentare

• Wir kommentieren mit #

```
1 # Einfach so
```

- Einzeiler
- Sinnvolle Kommentare
- Am Anfang jeder Python-Datei ein Kommentar, der den Inhalt beschreibt

Groß/Kleinschreibung und Einrückungen

- Fast alles wird klein geschreiben
- Es gibt Ebenen (durch Einrückungen = 4 Leerzeichen)
- Leerzeilen und Umbrüche sind nicht nötig, aber manchmal sinnvoll

Programm

- Wird "von oben nach unten" ausgeführt
- Kein automatisches Springen (nach oben) oder neu starten
- Ein komplettes Python-Dokument mit allen Befehlen

Funktion

- Wird ähnlich wie in der Mathematik verwendet (nur nicht mit Zahlen)
- Eine Vielzahl von Befehlen (vorgefertigt oder selbstgeschrieben) zusammengefasst in einer bestimmten Schreibweise

```
1
       #Ein Beispielcode
2
3
        e2g_dict = {'a':'ein', 'is':'ist', 'test':'Test',
            'this':'dies'}
4
5
       # Englisch nach Deutsch uebersetzen
6
       def translate(english):
                return e2g_dict[english]
8
9
        esentence = 'this is a test'
10
       elist = esentence.split()
11
       glist = []
12
13
       for eword in elist:
14
                glist = glist + [translate(eword)]
15
16
       gsentence = " ".join(glist)
17
       print gsentence
```

Datentypen

Datentypen

Lernziele

- Die wichtigsten Datentypen kennenlernen
- Diese ausgeben können
- Datentypen in andere Datentypen umwandeln

Erste wichtige Funktion: print()

```
print():
```

Gibt alles innerhalb der Klammern aus.

```
1  print("Hallo")
2  print(1)
3  print(1+2)
```

String

String, str:

- ist eine Zeichenkette
- wird in " " geschrieben

```
"Ich bin vom Typ String, eine Reihe von Zeichen"
"1"
" "
```

Hello World

```
1 print("Hello World!")
```

• Dieser Befehl gibt den Text (String) "Hello World!" aus.

Hello World

```
1 print("Hello World!")
```

• Dieser Befehl gibt den Text (String) "Hello World!" aus.

Glückwunsch

Ihr habt gerade euer erstes Programm geschrieben!

Zahlen

Integer, int:

• ist eine ganze Zahl

Float, float:

• ist eine Gleitkommazahl

```
1 3.1415
2 3.0
-2.3
```

Boolean

Boolean, bool:

Wahrheitswert

```
1 True
2 False
```

Typumwandlung

- int(...): Castet zu int.
- float(...): Castet zu int.
- str(...): Castet zu String.

Wandle um und gebe mit print() aus

- 5 zu "5"
- "5.0" zu 5.0
- "Hallo" + 5 zu "Hallo 5"

Typumwandlung

- int(...): Castet zu int.
- float(...): Castet zu int.
- str(...): Castet zu String.

Wandle um und gebe mit print() aus

- 5 zu "5"
- "5.0" zu 5.0
- "Hallo" + 5 zu "Hallo 5"

```
1  print(str(5))
2  print(float("5.0"))
3  print("Hallo" + " " + str(5))
```

Operatoren

Operatoren

- Rechenoperatoren
- Vergleichende Operatoren
- Logische Operatoren

Rechenoperatoren

- + und -
- * und /
- Modulo % (entspricht dem Rest, der durch eine Teilung entsteht)

Zahlen und Rechenoperatoren - Übung

Was ergeben folgende Ausdrücke? Überprüfe mit Python.

```
1  print("Ich" + " bin " + str(10) + " Jahre alt")
2  print("Hallo"*2)
3  print(2.45 + 3)
4  print("Hallo " + "3")
5  print(1/2.5 + 2)
6  print(3%2)
7  print(6%3)
```

Zahlen und Rechenoperatoren - Übung

Was ergeben folgende Ausdrücke? Überprüfe mit Python.

```
1  print("Ich" + " bin " + str(10) + " Jahre alt")
2  print("Hallo"*2)
3  print(2.45 + 3)
4  print("Hallo " + "3")
5  print(1/2.5 + 2)
6  print(3%2)
7  print(6%3)
```

Vergleichende Operatoren

Wollen wir aber Datentypen vergleichen, benötigen wir weitere Operatoren.

Diese ergeben immer einen Booleanwert (True/False).

- == prüft zwei Werte auf Gleichheit
- != prüft zwei Werte auf Ungleichheit
- > größer (bei Strings wird automatisch die Länge verglichen)
- < kleiner (bei Strings wird automatisch die Länge verglichen)
- <=, >= kleiner-gleich, größer-gleich (bei Strings wird automatisch die Länge verglichen)

Vergleichende Operatoren - Übung

Was ergeben folgende Ausdrücke? Überprüfe mit Python.

```
print(3 > 4)

print(6 != 7)

print("Hallo" < "Hallo Welt!")

print("Hallo" == "Hallo Welt")</pre>
```

Logische Operatoren

Vergleichen von zwei Wahrheitswerten (meist auf Grundlage von vergleichenden Operatoren).

Diese ergeben immer einen Booleanwert (True/False).

- and: logisches 'Und' (True, wenn beide Seiten wahr sind)
- or: logisches 'Oder' (True, wenn eine Seite, die andere oder beide wahr sind)
- not: verneint einen Ausdruck (Verneinung: aus True wird False, aus False wird True)

Logische Operatoren - Übung

Was ergeben folgende Ausdrücke? Überprüfe mit Python.

```
print(3 > 4 or 6 != 7)

print("Hallo" < "Hallo Welt!" and 3 > 4)

print(not("Hallo" == "Hallo Welt"))
```

Variablen, Zuweisungen und

Typumwandlung

Variablen und Zuweisungen

Lernziele

- Kennenlernen von Variablen und Zuweisungen
- Variablen und Zuweisungen anwenden

Variable

- Eine Art Platzhalter/Speicherplatz
- Man kann in ihnen Werte speichern
- Sie werden kleingeschrieben
- Wenn möglich sinnvoll benennen
- Bsp. name, alter, prozent, age, pi, todelete

Zuweisung

 Zuweisung von Werten zu einer Variablen mit dem Zuweisungsoperator =

```
1 a = 5

2 b = 3.14

3 c = "Hallo Grundkurs: Programmieren"
```

 Der Variable kann auch das Ergebnis einer Operation zugewiesen werden

```
1 divisor = 1000
2 dividend = 200
3 percent = dividend / divisor * 100
```

Zuweisung - Übung

Fülle die ... aus

```
1 toprint = "Hallo"
2 print(toprint)
3 Ausgabe: ...
```

```
1 Name = ...
2 Alter = ...
print(...)
4 Ausgabe soll sein: Max Mustermann ist 20 Jahre alt
```

Zuweisung - Übung

```
Fülle die ... aus
```

```
1 toprint = "Hallo"
2 print(toprint)
3 Ausgabe: ...
```

```
1 Name = ...
2 Alter = ...
3 print(...)
4 Ausgabe soll sein: Max Mustermann ist 20 Jahre alt
```

```
toprint = "Hallo"
print(toprint)
Ausgabe: Hallo
name = "Max Mustermann"
alter = 20
print(name + " ist " + str(alter) + " Jahre alt")
```

Erneute Zuweisung

- Soll einer Variable ein neuer Wert zugewiesen werden, so ist eine neue Zuweisung mit = notwendig.
- Beispiel: a um 5 erhöhen. Korrigiere den Code

```
1 a = 5
2 a + 5
print(a)
```

Erneute Zuweisung

- Soll einer Variable ein neuer Wert zugewiesen werden, so ist eine neue Zuweisung mit = notwendig.
- Beispiel: a um 5 erhöhen. Korrigiere den Code

```
1 a = 5
2 a + 5
print(a)
```

```
1 a = 5
2 a = a + 5
print(a)
```

= und ==

Der Unterschied zwischen = und == ist sehr wichtig.

- == Vergleich beider Seiten; gibt False/True zurück
- = ist eine Zuweisung

Übung zu = und ==

Welche Ausgabe wird folgendes Programm haben?

```
1 a = 21

2 b = 21

3 a == b + 1

4 c = a==b

5 print(c)
```

Eine weitere wichtige Funktion: input()

input()

- Liest die letzte Konsolenzeile ein
- Gibt den Konsoleneintrag als String zurück
- input("...") gibt in der Konsole den Inhalt innerhalb der ""
 aus bevor eingelesen wird.
- z.B name = input("Name: ")

Input - Übung

Aufgabe

- Lasse dich von deinem Programm begrüßen, indem du input(''Hallo, wie heißt du?'') verwendest
- Deinen Namen als Eingabe in einer Variable speicherst
- Lasse ausgeben: Hallo 'name'

Input - Übung

Aufgabe

- Lasse dich von deinem Programm begrüßen, indem du input(''Hallo, wie heißt du?'') verwendest
- Deinen Namen als Eingabe in einer Variable speicherst
- Lasse ausgeben: Hallo 'name'

Lösung

```
name = input("Hallo, wie heisst du? ")
Eingabe: Maren
print("Hallo " + name)
```

Input - Übung

Aufgabe

- Lasse dich von deinem Programm begrüßen, indem du mit input("Hallo, wie heißt du?") ausgeben lässt. (Schon erledigt)
- Deinen Namen als Eingabe in einer Variable speicherst.
 (Schon erledigt)
- Lasse das Programm nach deinem Alter mit input("Wie alt bist du?") fragen
- Speichere die Eingabe als Integer in einer Variable
- Erhöhe das Alter danach um 1
- Lasse ausgeben: "Du heißt 'name' und wirst 'alter' Jahre alt."

Inputaufgabe

Lösung

Umgangssprachlich:

Wenn (if) eine Bedingung True ist, dann führe Programmcode 1 aus, andernfalls (else) Programmcode 2

```
1  if Bedingung == True:
2     # Programmcode 1
3  else:
4     # Programmcode 2
```

```
1    zahl = int(input("Zahl: "))
2    if zahl > 10:
4         print("Die Zahl ist > 10.")
5    else:
6         print("Die Zahl ist <= 10.")</pre>
```

Schreibe ein Programm, das eine Eingabe einliest und speichert mit input ("Wetter: "). Falls die Eingabe "Schnee" lautet, gebe "Es ist Winter" aus. Andernfalls gebe "Noch einmal Glück gehabt" aus.

Schreibe ein Programm, das eine Eingabe einliest und speichert mit input("Wetter: "). Falls die Eingabe "Schnee" lautet, gebe "Es ist Winter" aus. Andernfalls gebe "Noch einmal Glück gehabt" aus.

```
inp = input("Wetter: ")
if inp == "Schnee":
    print("Es ist Winter")
else:
    print("Noch einmal Glück gehabt")
```

Mehrfach bedingte Ausführung

Umgangssprachlich:

Wenn (if) eine Bedingung1 True ist, dann führe Programmcode 1 aus,

falls nicht, dann prüfe (elif) ob Bedingung2 True ist, dann führe Programmcode 2 aus,

andernfalls (else) Programmcode 3.

```
if Bedingung == True:
    # Programmcode 1

elif Bedingung2 == True:
    # Programmcode 2

else:
    # Programmcode 3
```

Mehrfach bedingte Ausführung - Beispiel

```
1  zahl = int(input("Zahl: "))
2
3  if zahl > 10:
    print("Die Zahl ist > 10.")
5  elif zahl > 5:
    print("Die Zahl ist > 5 und <= 10.")
7  else:
    print("Die Zahl ist <= 5.")</pre>
```

Ergänze das zuvor erstellte Programm so, dass nicht nur der Fall "Schnee" abgefragt wird, sondern auch "Sonne". Bei Eingabe Sonne verwende print("Ein paar letzte Sonnenstrahlen") und print("Genieße solange wie möglich").

Ergänze das zuvor erstellte Programm so, dass nicht nur der Fall "Schnee" abgefragt wird, sondern auch "Sonne". Bei Eingabe Sonne verwende print ("Ein paar letzte Sonnenstrahlen") und print ("Genieße solange wie möglich").

```
inp = input("Wetter: ")
if inp == "Schnee":
    print("Es ist Winter")
elif inp == "Sonne":
    print("Ein paar letzte Sonnenstrahlen")
print("Genieße solange wie möglich")
print("Noch einmal Glück gehabt")
```

Schachtelung

- Bedingungen und Schleifen (dazu später) können beliebig oft ineinander geschachtelt werden
- Erkennbar durch Einrückungen
- Beachte Logik
- Zu viele Schachtelungen führen zu Unübersichtlichkeit => schlechter Code

Schachtelung bedingter Ausführungen

```
zahl = int(input())

if zahl < 10:
    if zahl < 5:
        print("Die Zahl ist < 5")
    else:
        print("Die Zahl ist >= 5 und < 10")

else:
    print("Die Zahl ist > 10")
```

4

5

6

Bedingte Ausführung - Übung

Aufgabe: Hundealter in Menschenalter Bei kleinen Hunden entspricht das erste Lebensjahr etwa 20 Menschenjahren. Das zweite entspricht 8 Jahren und alle weiteren Hundejahre entsprechen jeweils 4 Menschenjahren. Bei einem 5-jährigen Hund rechnest du also: 20+8+4+4+4=40. Fünf Hundejahre wären demnach etwa 40 Menschenjahre.

Bedingte Ausführung - Übung 1

Kurz:

- 1. Hundejahr = 20 Jahre
- 2. Hundejahr = 28 Jahre
- Über 2 Jahren = 20 + 8 + (Alter 2) * 4 Jahre

Aufgabe: Es soll ein Programm geschrieben werden, das mit input() nach dem Alter fragt (nur positives Hundealter), mit bedingter Ausführung das Menschenalter ermittelt und ausgibt.

- input("Alter des Hundes: ")
- bedingte Ausführung
- print("Das entspricht ca. ??? Jahren.")

Bedingte Ausführung - Übung

Lösung

```
alter = int(input("Alter des Hundes: "))
if age == 1:
    print("Das entspricht ca. 20 Jahren.")
elif age == 2:
    print("Das entspricht ca. 28 Jahren.")
else:
    human = 28 + (age -2)*4
print("Das entspricht ca. " + str(human) + "
    Jahren.")
```

Schleifen

Schleifen

- for-Schleife
- while-Schleife

Hello World

Aufgabe 1

Erweitere das Programm so, dass der String "Hello World" 6-mal ausgegeben wird.

Hello World

Aufgabe 1

Erweitere das Programm so, dass der String "Hello World" 6-mal ausgegeben wird.

Lösung

```
print("Hello World!")
```

for-Schleife

for-Schleife

Umgangssprachlich:

Eine Variable (kann ein Buchstabe oder Wort sein) nimmt den Anfangswert an und erhöht sich pro Schleifendurchlauf um 1, solange die Variable < Ende. (Sie durchläuft alle Elemente in der range)

```
1 for Variable in range(Anfang, Ende):
2 # Programmcode
```

```
for i in range(1,7):
print("Hello World!)
```

for-Schleife Übungen

Verändere den Code so, dass ...

- Aufgabe 1: ...nur dreimal "Hello World!" ausgegeben wird
- Aufgabe 2: ...nach jedem der 3 "Hello World!" ein "Hello" ausgegeben wird

Verwendung des Parameters im Code

Aufgabe

Schreibe ein Programm, das von 1 bis 100 zählt.

```
1, 2, 3, .....
```

Lösungsvariante 1

Verwendung des Parameters im Code

Aufgabe

Schreibe ein Programm, das von 1 bis 100 zählt.

```
1, 2, 3, .....
```

Lösungsvariante 1

```
1     print(1)
2     print(2)
3     print(3)
4     print(4)
5     print(5)
6     print(6)
7     print(7)
8     ...
```

```
1 for i in range(1, 101):
print(i)
```

Aufgaben zu for-Schleifen

Verändere den Code so, dass...

- Aufgabe 1: nur Zahlen zwischen 35 und 40 ausgegeben werden
- Aufgabe 2: die Quadratzahlen für 1 bis 4 ausgegeben werden

while-Schleife

Die while-Schleife

Umgangssprachlich:

Wiederhole den Programmcode solange die Bedingung True ist. Gefahr: Falls immer das gleiche (Bedingung wird nicht verändert) geprüft wird => Schleife ohne Ende

```
while Bedingung == True:
     # Programmcode
```

Beispiel zähle bis 3

Aufgabe 1

Verändere den Code so, dass er mit einer while-Schleife 6-mal den String "Hello World" ausgibt.

Aufgabe 1

Verändere den Code so, dass er mit einer while-Schleife 6-mal den String "Hello World" ausgibt.

Lösung

```
i = 1
while i <= 6:
print("Hello World!")
i = i+1</pre>
```

Aufgabe 2

Schreibe einen Code, der solange fragt "Nerv ich dich?" bis er die Eingabe "JA!" erhält.

Danach lass das Programm "Schade" ausgeben.

Aufgabe 2

Schreibe einen Code, der solange fragt "Nerv ich dich?" bis er die Eingabe "JA!" erhält.

Danach lass das Programm "Schade" ausgeben.

Lösung

```
inp = input("Nerv ich dich? ")
while inp != "JA!":
    inp = input("Nerv ich dich? ")
print("Schade")
```

Magische Miesmuschel

Programmiere einen einfachen Bot.

Er wartet mit ("Du: ") auf eine Nein/Ja-Frage und beantwortet sie mit einer zufälligen (random) Antwort ("Bot: " + Antwort). Er fragt so lange nach bis er "Ich will nicht mehr" als Eingabe erhält. Er verabschiedet sich mit "Bot: Bye" nötig:

- input
- while-Schleife
- Bedingung
- random Zahl (soll einer bestimmten Antwort zugeordnet werden)

Die while-Schleife

Lösung

3

5

6

11

```
from random import *
   inp = input("Du: ")
   while inp != "Ich will nicht mehr" :
       zahl = randint(0, 1)
       if zahl == 0:
          print("Bot: Nein")
8
       else:
          print("Bot: Ja")
10
       inp = input("Du: ")
   print("Bot: Bye")
```

Ablauf

```
10.15 - 10.30 Besprechung Tagesplan

10.30 - 12.15 Wiederholung + Neues

12.15 - 13.00 Pause

13.00 - 13.30 Theorie

13.30 - 14.45 Listen

14.45 - 15.00 Pause

15.00 - 16.00 Funktionen
```

Wiederholung

Datentypen

- String (str)
- Boolean (bool)
- Integer (int)
- Float (float)

Operatoren

- ==: prüft zwei Werte auf Gleichheit
- !=: prüft zwei Werte auf Ungleichheit
- >: größer
- <: kleiner</p>
- <=, >=, kleiner-gleich, größer-gleich
- and: logisches 'Und'
- or: logisches 'Oder'
- not: verneint einen Ausdruck

Variablen und Zuweisungen

- Werte werden Variablen mit = zugewiesen
- sinnvolle, kleingeschriebene Variablennamen
- auf Variablentyp achten (welchen Datentyp hat der zugewiesene Wert)

Bedingte Ausführung

```
if Bedingung == True:
    # Programmcode 1

elif Bedingung2 == True:
    # Programmcode 2

...
else:
    # Programmcode 3
```

Schleifen

for-Schleife

```
1 for Variable in range(Anfang, Ende):
2 # Programmcode
```

while-Schleife

```
while Bedingung == True:
     # Programmcode
```

Wichtige Funktinen

print()

- Gibt den Inhalt innerhalb der Klammern aus
- Die einzelnen Teile in den Klammern müssen vom gleichen Datentyp sein (meist String)

input()

- Liest eine Zeile ein
- Gibt einen String zurück (Typumwandlung hinterher)
- input("Hallo") gibt Hallo aus, bevor die Eingabe erwartet wird

Aufgabe: Ein komplexerer Chatbot

- Wiederholung bis Eingabe "Genug"
- Eingabe einlesen mit "Du: "
- Wenn die Eingabe "Alles okay?" lautet, soll dreimal "Bot: SOS" ausgegeben werden
- Wenn die Eingabe "Wie geht es dir?" lautet, soll zufällig "Bot: Gut", "Bot: Schlecht", oder "Bot: Passt schon" ausgegeben werden (from random import * und randint)
- Wenn die Eingabe "Was ist der Sinn des Lebens" lautet, soll "Bot: 42" ausgegeben werden

 Wenn die Eingabe "Rechne aus wie alt ich bin" lautet, soll der Bot nach dem Geburtsjahr fragen und dann nach dem Monat (als Zahl) und dann nach dem Tag.

Fall 1: Falls Monat < 11 or (Monat == 11 and Tag < heutiger Tag)

Fall 2: heute Geburtstag

Fall 3: noch nicht Geburtstag gehabt

- sonst "Bot: Stelle mir eine andere Frage"
- Sobald die Eingabe "Genug" lautet und die Schleife verlassen worden ist, gebe "Bot: Bis bald!" aus

```
from random import *
   inp = input("Du: ")
   while inp != "Genug":
4
       if inp == "Alles okay?":
5
            for i in range (1,4):
6
                print("Bot: SOS")
8
       elif inp == "Wie geht es dir?":
            zahl = randint(0,2)
10
            if zahl == 0:
11
                print("Bot: Gut")
12
            elif zahl == 1:
13
                print("Bot: Schlecht")
14
            else:
15
                print("Bot: Passt schon")
16
       elif inp == "Was ist der Sinn des Lebens?":
17
            print("Bot: 42")
```

```
1
        elif inp == "Rechne aus wie als ich bin":
            geburtsmonat = int(input("Monat als Zahl: "))
3
            geburtstag = int(input("Tag: "))
4
            geburtsjahr = int(input("Jahr: "))
5
            if geburtsmonat <= 11 or (geburtsmonat == 11 and</pre>
                 geburtstag <9):
7
                print("Bot: " + str(2018- geburtsjahr))
8
            elif geburtsmonat == 11 and geburtstag == 9:
                print(2018-geburtsjahr)
10
                print("Bot: Herzlichen Glückwunsch")
11
            else:
12
                print("Bot: "+ str(2018-geburtsjahr-1))
13
14
       else:
15
           print("Bot: Stelle mir eine andere Frage")
16
        inp = input("Du: ")
   print("Bot: Schade")
17
```

Listen

Listen

- Einfache Listen
- Wichtige Listenfunktionen
- Mehrdimensionale Listen

Einfache Listen

- Datenstruktur
- Speichert eine beliebige Anzahl an Elementen
- wir mit eckigen Klammern [] dargestellt
- Trennung der Elemente durch Kommas
- Das erste Element ist der 0. Eintrag

Einfacher Zugriff auf Elemente

```
1 zahlen = [1, 2, 3, 4, 5, 6]
```

Ein Element aus der Liste lesen

```
1 zahlen[Index]
2 zb. zahlen[0]
```

Ein Element aus der Liste lesen und in einer Variable speichern

```
zahl = zahlen[Index]
zahl = zahlen[0]
zahl == 1
```

Speichert den Wert an der entsprechenden Position

```
1    zahlen[Index] = wert
2    zahlen[0] = 99
3    zahlen == [99, 2, 3, 4, 5, 6]
```

Listenfunktionen

Seien s = [1, 2] und t = [3, 4] zwei Listen

- s + t
- $1 \mid s + t == [1, 2, 3, 4]$
- len(s)
- $1 \mid len(s) == 2$
- min(s)
- $1 \mid \min(s) == 1$
- max(s)
- $1 \mid \max(s) == 2$
- sum(s)
- 1 | sum(s) == 3

Listen

```
zahlen = [5, 9, 2]
zahlen2 = [4, 1, 0]
```

- Aufgabe 1
 "Addiere" die beiden Listen und speichere das Ergebnis wieder in 'zahlen'
- Aufgabe
 Lasse die Länge der Liste 'zahlen' ausgeben.
- Aufgabe
 Lasse das Minimum der Liste 'zahlen' ausgeben
- Aufgabe
 Lasse das Maximum der Liste 'zahlen' ausgeben
- Aufgabe
 Lasse die Summe der Werte in der Liste 'zahlen' ausgeben

Listenfunktionen

Sei
$$s = [1, 2, 3, 4, 5]$$

- s.append(x)
- 1 s.append(6) => s == [1, 2, 3, 4, 5, 6]
- s.remove(x)
- 1 s.remove(3) => s == [1, 4, 5, 6]
- s.insert(position, object)
- 1 s.insert(2, 8) => s == [1, 4, 8, 5, 6]

Listen

liste = [1, "Passau", 4, 6, "Berlin"]

- Aufgabe
 Füge "Hamburg" am Ende der liste1 an und gebe die Liste aus
- Aufgabe
 Entferne "Berlin" aus der Liste und gebe die Liste neu aus.
- Aufgabe 3
 Füge 42 am Index 0 ein. Gebe die Liste erneut aus.

Schleifen über Listen

For-Schleifen für Listen

Bisher:

```
1 for i in range(anfang, ende):
2    ....
```

range(anfang, ende) kann ersetzt werden durch eine Liste. Dh. sobald wir eine Liste haben, können wir mit der for-Schleife einmal die Liste durchgehen

Bsp.

```
1 zahlen = [1,4,6]
2 for zahl in zahlen:
3 print(zahl)
```

Listen - Übung

Schreibe ein Programm, das drei Prüfungs-Noten einliest, in einer Liste speichert und dir nach jeder Eingabe den Durchschnitt errechnet.

Listen - Übung

Schreibe ein Programm, das drei Prüfungs-Noten einliest, in einer Liste speichert und dir nach jeder Eingabe den Durchschnitt errechnet.

Lösung siehe Beamer

Mit Dateien arbeiten

- Dateien einlesen
- Inhalte bearbeiten
- Umgang mit txt

Wir können Daten aus einer .txt-Datei einlesen, Inhalte verarbeiten und in einer gleichen oder anderen .txt-Datei wieder ausgeben.

Wichtiges:

Liest Daten ein.

```
1 daten = open("name.txt", "r")
```

Öffnet eine Datei um Daten in sie schreiben zu können

```
1 daten = open("name.txt", "w")
```

Schließt die Datei

```
1 daten.close()
```

Liest ein und entfernt unnötige Leerzeichen am Ende jeder Datenzeile

zeilederdatei.rstrip()

Schreibt in eine Datei

1 datei.write(Element)

```
# öffnet und speichert die Daten.
daten = open("daten.txt", "r")
for line in daten:
    print(line.rstrip())

daten.close()
```

```
zahlen = [1, 2, 3]
daten = open("daten.txt", "w")
for zahl in zahlen:
    daten.write(str(zahl))

daten.close()
```

Schreiben geht nahezu analog. Zum Öffnen benutzt man "w" (für write) statt "r". Daten schreibt man in eine Datei mit der Methode 'write' des Dateiobjektes.

Beispiel:

```
1  zahlen = [1, 2, 3]
2  daten = open("daten2.txt", "w")
3  for zahl in zahlen:
4   daten.write(str(zahl))
5  daten.close()
```

Das Beispielprogramm liest aus der Datei datenein.txt Werte ein, verdoppelt diese und schreibt sie anschließend in die Datei datenaus.txt .

```
daten_ein = open("datenein.txt", "r")
daten_aus = open("datenaus.txt", "w")

for line in daten_ein:
    for number in line.strip():
        daten_aus.write(str(int(number) * 2) +"\n")

datenein.close()
datenaus.close()

Der String ''\n'' ist ein Zeilenumbruch.
```

6

7

10 11

Funktionen

Funktionen

- Funktionen ohne Parameter
- Funktionen mit Parameter
- Rückgabewert

Funktionen

- Fasst mehrere sinnvolle Befehle zusammen
- Kann später im Code aufgerufen werden
- "Auslagerung von Code" (Beispielsweise, weil er häufiger verwendet werden soll)

Funktionen ohne Parameter

Jedes mal, wenn die Funktion name() im späteren Verlauf aufgerufen wird, wird der Programmcode ausgeführt.

Wichtig: Die Definition der Funktion ist keine Ausführung der Funktion.

```
1 def name():
2 #Programmcode
```

Beispiel

```
1 def greet():
2    print("Hey!")
3    print("How are you?")
```

Funktionen mit Parameter

Es werden ein oder mehrere Parameter übergeben. Bei jedem Aufruf muss die Anzahl an Parametern übergeben werden.

```
1 def name(a, b, c, ....):
2 #Programmcode
```

```
1 def greet(name):
2    print("Hey!" + name)
3    print("How are you?")
```

Funktionen mit Parameter und Rückgabewert

Die Funktion bekommt mehrere Parameter übergeben a,b,c,... Führt den in der Funktion enthaltenen Code aus und gibt einen Wert zurück.

```
1 def name(a, b, c, ....):
2  #Programmcode
3 return wert
```

```
#gibt die Summe zweier Werte zurück
def sum(wert1, wert2):
    return wert1 + wert2
```

Übungsaufgabe

Schreibe eine Funktion, die die Summe aus 3 Zahlen bildet. Lese 3 Zahlen jeweils ein und speichere sie ab. Rufe die Funktion mit den 3 Zahlen als Parameter auf, speichere das Ergebnis und gebe es aus.

Übungsaufgabe

Schreibe eine Funktion die 2 Parameter erhält und das Produkt ausrechnet und zurückgibt.

Lese 2 Zahlen ein mit input("Zahl: ") und speichere sie jeweils ab. Rufe die Funktion auf und übergebe die beiden Zahlen.

Gebe das Ergebnis mit print(produkt) aus

Objektorientierung

Je größer ein Projekt wird, desto wichtiger ist es, den Überblick zu behalten. Funktionen sind eine Art, das Programm übersichtlich zu halten. Objektorientierung eine weitere.

Objektorientierung

Je größer ein Projekt wird, desto wichtiger ist es, den Überblick zu behalten. Funktionen sind eine Art, das Programm übersichtlich zu halten. Objektorientierung eine weitere.

```
# einfachste Art einer Klasse
class Person:
    pass

james = Person()

james.name = "James"
james.alter = 42
```

Objektorientierung, die __init__() methode

```
class Person():

def __init__(self):
    self.name = "James"
    self.alter = 42

def alter_plus_10(self):
    return self.alter + 10
```

Programmiersprachen

- Unterscheidungsmerkmale
 - Programmierparadigma: imperativ, funktional oder objektorientiert
 - allgemein vs. domänenspezifisch
 - compiliert vs. interpretiert
 - hardwarenah vs. höhere Programmiersprachen

Programmiersprachen

- Imperative Programmiersprachen: C/C++, C#, Java . . .
- Funktionale Programmiersprachen: SQL, Haskell, Erlang, (Scala) . . .
- Objektorientierte Programmiersprachen: C++, C#, Java, Javascript, PHP, Python . . .

Imperative Sprachen (C/C++, C#, Python, Java, ...)

- ältestes Programmierparadigma
- große Verbreitung in der Industrie
- besteht aus Befehlen (lat. imperare = befehlen)
- Abarbeiten der Befehle 'Schritt für Schritt'
- sagt einem Computer, 'wie' er etwas tun soll

```
print("Hey, whats' up?")
sleep(3)
print("Learning Python right now")
sleep(2)
```

- Verwendung
 - 'Standard-Software', hardwarenahe Entwicklung

Funktionale Sprachen (Haskell, Erlang, SQL, Lisp, ...)

- vergleichsweise modern
- sagt einem Computer, 'was' das Ergebnis sein soll
- SELECT name FROM students WHERE major='law' AND semester='1';
- Verwendung
 - akademische Zwecke
 - sicherheitskritische und ...
 - hoch performante Anwendungen

```
1 square :: [Int] -> [Int]
2 square a = [2*x | x <- a]
```

Objektorientierte Sprachen (Java, Python, C++, C#, ...)

- starke Verbreitung
- Abbilden der realen Welt der Dinge auf Objekte
- Klasse: Bauplan eines Objekts bestehend aus Eigenschaften (Attributen) und Methoden
- · Vererbung möglich
- Verwendung
 - Standard-Software
 - Modellierung realer Projekte (Unternehmen, Mitarbeiter, Kunden, Waren, ...)
 - ullet große Projekte (o Planung durch Klassendiagramme)

Objektorientierung: Beispiel

```
class Konto:
       def __init__(self, name, nr):
            self.inhaber = name
4
            self.kontonummer = nr
5
           self.kontostand = 0
6
       def einzahlen(self, betrag):
           self.kontostand = kontostand + betrag
8
       def auszahlen(self, betrag):
            self.kontostand = kontostand - betrag
10
       def ueberweisen(self, ziel, betrag):
11
            ziel.einzahlen(self.betrag)
12
            self.auszahlen(betrag)
13
       def kontostand(self):
14
           return self.kontostand
15
16
   class Unternehmenskonto (Konto):
17
       def erhalteBonus(self, bonus):
18
            self.kontostand = kontostand + bonus
```

Kompilierte und Interpretierte Sprachen

- kompilierte Sprachen (Java, C/C++, C#, ...):
 - Übersetzung des (kompletten) Programmcodes in Maschinencode
 - dann Ausführung des Maschinencodes
- interpretierte Sprachen (Python, Lisp, PHP, JavaScript, ...):
 - Übersetzung einer einzelnen Programmanweisung
 - Ausführung dieser Anweisung
 - Übersetzung der nächsten Anweisung

Hardwarenahe und höhere Sprachen

- hardwarenah: abhängig von der Bauweise des Prozessors
- höhere Sprachen: von der Bauweise abstrahiert (print(), sleep())

```
START ST
                          a = 2;
      ST: MOV
               R1,#2
                                                 for i in range
                          i = 1:
3
                                                      (1, 20) {
          MOV
               R2,#1
                          # compare i ==
      M1: CMP R2,#20
                              20
          BGT
              M2
                                              4
                          # if True, jump
          MUL R1, R2
                                               5
                                                      a = a*i:
                              to M2
              R.2
                                              6
                                                 }
          TNT
                          a = a*i:
          JMP M1
                          i++:
      M2: JSR PRINT
                           # jump to M1
10
           . F.ND
                                                 print(a);
                       9
                           print(a)
```

Populäre Programmiersprachen

- C++
 - imperativ, objektorientiert, typsicher, kompiliert, allgemein, höhere Sprache (dennoch hardwarenah)
 - große Verwendung in hocheffizienten Systemen (Betriebssysteme, Grafikberechnungen, Computerspiele, ...)
 - Erweiterung von C mit Objektorientierung
- Java
 - imperativ, objektorientiert, typsicher, kompiliert, allgemein
 - im bayrischen Lehrplan und an vielen Universitäten 'erste' Sprache
 - ebenfalls große Verbreitung

Populäre Programmiersprachen

Python

- (imperativ), (funktional), objektorientiert, dynamisch getypt, interpretiert, allgemein
- große Verbreitung auch gerade im akademischen Umfeld, Web,
 Machine Learning und Data Science

Installieren von Python

- Python 3.6.3 unter https://www.python.org/downloads/ herunterladen und ausführen
- Zum 'PATH' hinzufügen

Grundkurs: Programmieren | Maren Krafft | WS 18/19

Entwicklungsumgebung einrichten

Achtung

Word, TextEdit, Notepad, oder Wordpad sind Textverarbeitungsprogramme, keine Quelltext-Editoren und schon gar keine Entwicklungsumgebungen

- Editoren wie Sublime Text, Atom oder IDLE sind ausreichend
- große IDE's wie Eclipse, IntelliJ oder PyCharm bieten weitere Funktionen

Entwicklungsumgebung einrichten

- Pythonprogramme in IDLE schreiben und ausführen
 - 1. Datei > Neue Datei
 - geeigneten Speicherort aussuchen, bspws.
 Dokumente/GrundkursProgrammieren/helloworld.py
 - 3. Programm schreiben...
 - 4. Programm unter Run > Run Module ausführen oder F5 drücken

Weiterführendes Material

- Universität Passau: 'Programmierung I' (5102) an der FIM
- Automate the Boring Stuff with Python: Practical Programming for Total Beginner (Sweigart, 2015)
- 'How to think like a Computer Scientist' (Wentworth, Peter and Elkner, Jeffrey and Downey, Allen B and Meyers, Chris, 2011)
- www.pythontutor.com/visualize.html
- https://www.w3schools.com/python/
- https://www.geeksforgeeks.org/python-programminglanguage/

Evaluation

- Danke für die Teilnahme! Informationen zu weiteren Kursen im jeweiligen Semester beim ZKK
- www.evaluation.uni-passau.de (Unter Umständen muss noch das Zertifikat heruntergeladen werden)