Lab 8 - Phoebe Spratt

3. For all natural numbers, $n \ge 7$, $3^n < n!$.

Base case:
$$(n = 7)$$

 $3^7 = 2187$
 $7! = 5040$
So $3^7 < 7!$

Induction step:

Assume that for some natural number k with $k \ge 7$, $3^k < k!$

$$(k + 1)! = k!(k + 1)$$

$$> 3^{k}(k + 1)$$
(by IH)
$$> 3^{k}(8 + 1)$$

$$> 3^{k} \cdot 3$$

$$= 3^{k+1}$$
So $3^{k+1} < (k + 1)!$

4. For all natural numbers $n \ge 1$, $\sum_{i=1}^{n} 2i = n(n+1)$.

Base case:
$$(n = 1)$$

$$\sum_{i=1}^{1} 2i = 2$$

$$1(1+1) = 2$$
So $\sum_{i=1}^{1} 2i = 1(1+1)$

Induction step:

Assume for some
$$k \in N$$
 $\sum_{i=1}^{k} 2i = k(k+1)$

$$\sum_{i=1}^{k+1} 2i = \sum_{i=1}^{k} 2i + 2(k+1)$$

$$= k(k+1) + 2(k+1) \quad \text{(by IH)}$$

$$= (k+1)(k+2)$$

$$= (k+1)(k+1+1)$$
Therefore $\sum_{i=1}^{k+1} 2i = (k+1)(k+1+1)$

5. For all $n \in N$, n^2 - 3n is even.

Base case: (n = 0)

$$0^2 - 3(0) = 0 - 0 = 0 \in N$$

0 is even because there exists an integer k such that 0 = 2k

Induction step:

Assume for some natural number k and k^2 - 3k is even

Since k^2 - 3k is even, there must exist some integer j that k^2 - 3k = 2j

$$(k + 1)^2 - 3(k + 1) = k^2 + 2k + 1 - 3k - 3$$

= $k^2 - 3k + 2k + 1 - 3$
= $2j + 2k - 2$ (by IH)
= $2(j + k - 1)$

j, k, and -1 are integers, so j + k - 1 is too

Therefore $(k + 1)^2 - 3(k + 1)$ is even