3SN-T

Génération de l'enveloppe complexe d'un signal

I - Partie théorique

On considère un signal réel de bande B centré sur la fréquence f₀=B.

Le signal x(t) est échantillonné à Fe= $4f_0$ et le traitement de la figure 1 est appliqué au signal échantillonné x(n).

Figure 1

« -B » représente un décalage en fréquence de -B.

Le filtre h_{HB}(n) a pour réponse en fréquence :

- 1- Ce filtre est synthétisé à Fe=4B et a un point de symétrie à f=B. En remarquant qu'il peut être vu comme un filtre de Nyquist synthétisé à Fe=2Rs, montrez que les coefficients d'indice pair sont nuls (sauf le coefficient central). Quel est le roll-off du filtre de Nyquist ainsi défini ?
- 2- Tracer les densités spectrales de puissance des signaux en différents points de la chaine.
- 3- Montrez que:

$$y(n) = \sum_{r=0}^{1} \sum_{l} h_r (n-l) x_r(l) (-j)^{2l+r} \ avec \ x_r(l) = x(2l+r)et \ h_r(l) = h_{HB}(2l-r)$$

4- En déduire

$$Re\big(y(n)\big) = \sum_{l} h_0(n-l) x_0(n) (-1)^l \quad et \ Im\big(y(n)\big) = -\sum_{l} h_1(n-l) x_1(n) (-1)^l$$

5- En déduire le schéma d'implantation suivant :

6- Que peut on dire du filtre $h_0(n)$? quel est la complexité du schéma de réalisation ?

II- Implantation sous Matlab

L'objectif de cette partie est l'implantation sous MATLAB du générateur d'enveloppe complexe.

- 1- Génération du signal réel
 - ⇒ Générer un signal réel ayant les caractéristiques suivantes :
 - Modulation QPSK
 - Filtre en racine carrée de cosinus surélevé de roll-off a
 - Fréquence porteuse : 2Rs
 - Fréquence d'échantillonnage : 8Rs
- 2- Implantation du générateur d'enveloppe complexe : schéma de principe de la figure 1
 - ⇒ Générer les coefficients du filtre demi-bande en vous aidant de la partie 1
 - ⇒ Générer le signal y(n) et tracer sa DSP
 - Rajouter le filtre adapté et vérifier que l'on récupère bien la constellation de la QPSK
- 3- Implantation du générateur d'enveloppe complexe : schéma de réalisation de la figure 2
 - ⇒ Générer le signal y(n) et tracer sa DSP
 - Rajouter le filtre adapté et vérifier que l'on récupère bien la constellation de la QPSK
 - ⇒ Comparer les signaux en sortie du schéma de principe et du schéma de réalisation