Praktilise töö protokoll nr. 4

Nimi ja eesnimi	Taavi Tammaru		ıd	03.04.2024		
Eriala						
Praktikumi juhendaja	Peeter I		Arvestatud			
TÖÖ PEALKIRI Optilin	Juhendi kood 7.2					
KATSEOBJEKTID Optiline püromeeter ОППИР-017, volframlindiga hõõglamp, voltmeeter, voolutangid Meterman, autotrafo ЛАТР-1M, toiteallikas püromeetri lambile.						
Temperatuur 20C	Suhteline niiskus		Õhurõhk 1 atm			
Mõõtevahendi nimetus	Tüüp	Tehase number	Mõõtepiirkond	Täpsusklass või lubatud põhiviga		
Optiline püromeeter ОППИР-017			800 °C – 1400 °C	± 20 °C		
voltmeter			1200 °C – 2000 °C	± 30 °C		
Abivahendid						
autotrafo ЛАТР-1М						

Küsimused

- 1. Millistes lainepikkuste vahemikus on nähtav elektromagnetlainetus? Kuidas muutub valguse värvus lainepikkuse muutudes?
 - Nähtavate elektromagnetlainete lainepikkuste vahemik on umbes 380 kuni 750 nanomeetrit, ja valguse värvus muutub sinisest punaseni, kui lainepikkus suureneb.
- 2. Milliseid kehi nimetatakse (absoluutselt) mustadeks?
 - Absoluutselt mustaks kehaks nimetatakse ideaalset füüsikalist keha, mis neelab kõik sellele langevad elektromagnetilised lained ega peegelda ning lase läbi kiirgust üldse.
- 3. Mida nimetatakse kiirgavuseks ja mida spektraalseks kiirgavuseks? Kuidas nad teineteisega seotud on? Millistes ühikutes neid mõõdetakse?
 - Kiirgavus on füüsikaline suurus, mis määrab keha pinnaühiku poolt ajaühikus kiiratava energia hulga, mõõdetuna vattides ruutmeetri kohta (W/m²). Spektraalne kiirgavus on kiirgavuse jaotus sõltuvalt lainepikkusest, mõõdetuna vattides ruutmeetri ja mikromeetri kohta (W/m²μm), näidates, kuidas kiirgavus jaotub erinevatel lainepikkustel.
- 4. Päike on üsna hea musta keha näide pinnatemperatuuriga ≈ 6000 K. Millisele lainepikkusele vastab tema spektraalse kiirgavuse maksimum? Kas see maksimum asub nähtava valguse piirkonnas?
 - Päikese spektraalse kiirgavuse maksimum vastab lainepikkusele umbes 0.483 mikromeetrit, mis asub nähtava valguse piirkonnas.
- 5. Joonise 1 allkirjas on väidetud, et punktiirjoon pole Wieni nihkeseaduse graafik, kuigi ta näitab spektraalse kiirgavuse maksimumi nihkumist lühemate lainete poole keha temperatuuri tõstmisel. Milline oleks Wieni nihkeseaduse graafik ja mille poolest mainitud punktiirjoon erineb Wieni nihkeseaduse graafikust? Eksiarvamuste vältimiseks olgu öeldud, et see joon pole kantud graafikule "umbropsu", vaid on täpselt välja arvutatud musta keha kiirguse valemite põhjal.
 - Joonisel 1 olev graafik on saadud Plancki valemi põhjal, mis on natukene täpsem kui Wieni nihkeseadus
- 6. Selgitage püromeetri ehitust ja optilise püromeetria põhimõtet.
 - Püromeetris on kahe läätsega süsteem, et tekitada olukord, kus mõlema objekti valguskiired tuleksid sama kauguselt. Spetsiifiline lainepikkusfilter on rakendatud, et selektiivselt läbi lasta ainult teatud lainepikkusega valgus, võimaldades täpsemat temperatuuri hindamist, põhinedes kindlaksmääratud spektraalalal. Lisatakse valgusfilter, et võimaldada liiga eredate objektide ohutut vaatlust.
 - Optilise püromeetria põhimõte seisneb objekti kiiratava valguse võrdlemises standardvalgusallika kiirgusega, mille temperatuur on teada, võimaldades määrata mõõdetava objekti temperatuuri, tuginedes Plancki musta keha kiirguse seadusele.
- 7. Milleks on püromeetris valgust nõrgendav filter ja punane filter (vt jn 2)?

 Valgust n\u00f6rgendav filter on selleks, et inimsilma mitte kahjustada ja tuua eredus inimesele tajutavasse vahemikku. Punane filter lihtsustab eredus v\u00f6rdlemist, keskendudes ainult \u00fchhele lainepikkuse vahemikule.

8. Milliseid raskusi võib mõõtmistel tekkida, kui mitte kasutada püromeetri punast filtrit?

 Eri värvi objektide eredust on raske silma järgi võrrelda, ning mõõtmistesse võib tulla suur viga.

9. Miks tuleb püromeetriga mõõtes keha heledustemperatuur väiksem keha tõelisest temperatuurist?

- Heledustemperatuur tuleb väiksem kuna püromeetriga mõõtes arvestame, et objekt on must keha, aga tegelikult kiirgustegur on igal materjalil erinev ja väiksem kui üks. Kuna niimoodi mõõtes, ei võeta arvesse keha neelavuse sõltuvust temperatuurist.

10. Millises temperatuuride vahemikus saab mõõta püromeetriga? Miks?

 Selliste temperatuuride vahemikku, kus keha soojuskiirgus jääb nähtava valguse vahemikku. Sest ainult seda vahemikku on inimsilmaga võimalik tuvastada. Praktikas mõjutavad seda ka teised tegurid ja temperatuuride vahemik on umbes 700K -3000K.

Mõõtmistulemused

Iga pinge ja voolutugevuse paari kohta tehti kolm mõõtmist, et vähendada mõõtmisviga.

temperatuur, C	pinge, V	voolutugevus, A
850	0.91	7.4
940	1	7.8
920	1	7.8
920	1	7.8
970	1.11	8.1
980	1.11	8.1
970	1.11	8.1
1100	1.4	8.9
1110	1.4	8.9
1110	1.4	8.9
1280	2	10.6
1280	2	10.6
1270	2	10.6
1350	2.4	11.6
1380	2.4	11.6
1390	2.4	11.6
1420	3	12.8
1400	3	12.8
1390	3	12.8
1640	4.5	16
1650	4.5	16
1630	4.5	16
1780	6	18.7
1780	6	18.7
1770	6	18.7
1860	7.5	21.3
1880	7.5	21.3
1890	7.5	21.3

Lähendusvalemi ja tõeliste temperatuuride leidmine

Teist järku polünoomi lähendusvalem neelduvuse $\alpha_{_{\mathfrak{I}}}(t_{_{\mathfrak{I}}})$ jaoks, kus $(t_{_{\mathfrak{I}}})$ on Kelvinites.

$$\alpha_{\lambda}(t_{\lambda}) = 2,2536 \cdot 10^{-9} t_{\lambda}^{2} - 2,9012 \cdot 10^{-5} t_{\lambda}$$

Leidsime selle kasutades pythoni koodi

```
import numpy as np
from numpy.polynomial.polynomial import Polynomial
from sklearn.metrics import r2_score
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

temperatures = np.array([800, 900, 1200, 1500, 1800, 2000, 2200, 2500])
coefficients = np.array([0.460, 0.457, 0.450, 0.443, 0.437, 0.432, 0.429, 0.423])

poly_features = PolynomialFeatures(degree=2)
X_poly = poly_features.fit_transform(temperatures.reshape(-1, 1))

poly_reg_model = LinearRegression()
poly_reg_model.fit(X_poly, coefficients)

second_degree_coefs = Polynomial(poly_reg_model.coef_).convert().coef
second_degree_coefs
```

Nüüd saame teha kaks uut exceli tabeli tulpa: temperatuur kelvinites ja neelduvuse valem temperatuuri järgi.

Temperatuur, K	needluvus	
1123	0.4598616043	
1213	0.4577243212	
1193	0.4581961179	
1193	0.4581961179	
1243	0.4570200064	
1253	0.4567861363	
1243	0.4570200064	
1373	0.4540148507	
1383	0.4537868399	
1383	0.4537868399	
1553	0.4499796168	
1553	0.4499796168	
1543	0.4501999653	
1623	0.4484497971	
1653	0.4478009209	
1663	0.4475855303	
1693	0.4469420627	
1673	0.4473705904	
1663	0.4475855303	
1913	0.4423472487	
1923	0.4421435768	
1903	0.4425513713	
2053	0.4395368576	
2053	0.4395368576	
2043	0.4397346701	
2133	0.4379705831	
2153	0.4375835217	
2163	0.4373906671	

Järgmiseks, siis kasutame saadud tulemust tegeliku temperatuuri arvutamiseks:

$$T = \frac{t_{\lambda}}{1 + \frac{k\lambda}{hc} t_{\lambda} \ln \alpha_{\lambda}(t_{\lambda})}$$

siis arvutame võimsuse P valemiga $P = U \cdot I$

meid väga huvitab ka järgmine valem, kus on lineaarne seos T ja P vahel

$ln P = ln(S \cdot B) + n ln T.$

Selleks arvutame ka suurused In(P) ja In(T)

		\ /J- \ /	
Tőeline temp	Р	In(P)	In(T)
1169.020073	6.734	1.907169321	7.023758955
1267.20637	7.8	2.054123734	7.100851909
1245.322887	7.8	2.054123734	7.084226422
1245.322887	7.8	2.054123734	7.084226422
1300.101222	8.991	2.196224077	7.125283092
1311.084837	8.991	2.196224077	7.133295955
1300.101222	8.991	2.196224077	7.125283092
1443.626252	12.46	2.522523513	7.224753406
1454.733612	12.46	2.522523513	7.232010332
1454.733612	12.46	2.522523513	7.232010332
1645.061286	21.2	3.054001182	7.347943823
1645.061286	21.2	3.054001182	7.347943823
1633.785863	21.2	3.054001182	7.341483852
1724.273631	27.84	3.326473835	7.392031568
1758.375484	27.84	3.326473835	7.410347098
1769.763443	27.84	3.326473835	7.416378479
1803.989694	38.4	3.64805746	7.434257382
1781.161782	38.4	3.64805746	7.422373701
1769.763443	38.4	3.64805746	7.416378479
2057.899933	72	4.276666119	7.556427969
2069.565795	72	4.276666119	7.561641746
2046.24507	72	4.276666119	7.551186867
2222.23421	112.2	4.720282993	7.627057417
2222.23421	112.2	4.720282993	7.627057417
2210.4231	112.2	4.720282993	7.622174595
2317.133685	159.75	5.073610093	7.665284718
2340.97352	159.75	5.073610093	7.674617497
2352.910819	159.75	5.073610093	7.679251426

Nüüd konstrueerime Ln(P) ja Ln(T) vahelise graafiku:

Teeme eraldi graafikud ilma ja koos filtriga olukorra jaoks. Esimeseks, graafik ilma filtrita mõõtmiste jaoks:

Filtriga mõõtmised:

Leiame, et tõusu väärtuses on tõesti erinevus nende kahe olukorra jaoks. Kuid see erinevus võib siiski jääda juhusliku erinevuse piiridesse.

Siit on näha, et graafiku tõus on 5.06.

Leiame ka tõusu standardhälve pythoni koodiga:

Tõusu standardhälve on 0.136.

Astendaja n võrdlemine tegeliku väärtusega

Leitud tõus 5.06 ongi selles katses arvutatud n väärtus. Kuna meil ei ole tegemist töpse väärtusega peame leidma 95% usaldusvahemiku n väärtuse jaoks.

$$\Delta n = 1,96 \cdot 0,136 = 0,27$$

Seega saame

$$n = 5.06 \pm 0.27$$

Stefan-Boltzmanni valemi kohaselt n = 4. See väärtus ei jää leitud usaldusvahemikku.

B väärtuse leidmine

Teeme dimensionaalset analüüsi järgneva valemi kaudu

$$P = S \cdot B \cdot T^n$$

ja leiame, et suuruse B ühik peab olema

$$1B = 1 \frac{W}{m^2 \cdot K^n}$$

Ln(P) ja Ln(T) vahelise graafiku põhjal saame kirja panna seose:

$$ln(S \cdot B) = -33.9$$

sest ln(SB) ei sisalda muutujaid T ega P ning on Ln(P) ja Ln(T) vahelisel seosel vabaliikme rollis.

võtame võrrandi mõlemad pooled e astmesse ning saame

$$e^{-33.9} = S \cdot B$$
$$B = \frac{e^{-33.9}}{S}$$

Lindi pindala S on antud, ilma määramatuseta, asendame selle valemisse ja saame

$$B = \frac{e^{-33.9}}{0,0001} = 1.89416175 \cdot 10^{-12} \frac{W}{m^2 \cdot K^n}$$

See erineb oodatud väärtusest $\sigma=5,6704\cdot10^{-8}$ nelja magnituudi võrra. Seega saame järeldada, et Stefan-Boltzmanni valem ei ole siinkohal täpne.

Kohandatud kiirgavuse valemi leidmine ja graafik

Asendades valemisse $M_e=B\cdot T^n$ eelmises alapunktis saadud konstandi väärtused, saame lõpliku kohandatud valemi.

$$M = 1.89416175 \cdot 10^{-12} \cdot T^{5.06}$$

Visandame ka graafiku selle valemi põhjal leitud keha kiirgavuse ja musta keha kiirgavuse võrdlemiseks.

