INT102 Assignment 2 Submission

Guanyuming He ID: 2035573

 $\mathrm{May}\ 9,\ 2022$

1 Question 1

1.1 1)

A	G	С	Т
1	2	5	3

1.2 2)

The process is shown below:

The total number of comparisons is 3 (C \neq G) + 1 (T \neq A) + 5 (match found) = 9.

2 Question 2

2.1 1)

The process is shown below, assuming that each iteration goes through the edges in the order from e_1 to e_6 .

iteration	a	b	с	d	е
before	(a, 0)	$(-, \infty)$	$(-, \infty)$	$(-, \infty)$	$(-, \infty)$
1 finish	(a, 0)	(a, 4)	(a, 5)	$(-, \infty)$	$(-, \infty)$
2 until e_3	(a, 0)	(a, 4)	(a, 5)	(b, 14)	$(-, \infty)$
2 until e_4	(a, 0)	(a, 4)	(a, 5)	(b, 14)	(c, -2)
2 finish	(a, 0)	(e, -5)	(a, 5)	(b, 14)	(c, -2)
3 until e_3	(a, 0)	(e, -5)	(a, 5)	(b, 5)	(c, -2)
3 finish	(a, 0)	(e, -5)	(a, 5)	(b, 5)	(c, -2)
4 finish	(a, 0)	(e, -5)	(a, 5)	(b, 5)	(c, -2)
5 finish	(a, 0)	(e, -5)	(a, 5)	(b, 5)	(c, -2)

The shortest path from a to a is $\{(a,a)\}$. From a to b is $\{(a,c), (c,e) (e,b)\}$. From a to c is $\{(a,c)\}$. From a to d is $\{(a,c), (c,e), (e,b), (b,d)\}$. From a to e is $\{(a,c), (c,e)\}$.

3 Question 3

3.1 1)

The table is shown below:

	-	A	\mathbf{G}	\mathbf{C}	\mathbf{C}	\mathbf{C}	${f T}$
-	0	0	0	0	0	0	0
G	0	0↑	1	1←	1←	1←	1←
A	0			1↑		1↑	1
G	0	1↑		$2 \leftarrow$	$2 \leftarrow$	$2 \leftarrow$	$2\leftarrow$
T	0	1↑	2↑	2↑	2↑	2↑	3

3.2 2)

According to the table, the longest subsequence is AGT.

4 Question 4

4.1 1)

4.1.1 a)

The table is shown below:

	-	A	\mathbf{G}	A	\mathbf{C}	\mathbf{C}	${ m T}$
-	0	-1	-2	-3	-4	-5	-6
G	-1	-2←△↑	0<	-1←	-2←	-3←	-4←
A	-2	0×	-1←↑	1	0←	-1←	-2←
G	-3	-1↑	1	0←↑	-1←↑	-2←↑	-3←↑
${ m T}$	-4	-2↑	0↑	-1←↑	-2←△↑	-3←△↑	-1

4.1.2 b)

According to the table, an optimal global alignments is:

4.2 2)

4.2.1 a)

The table is shown below:

	-	A	G	A	\mathbf{C}	\mathbf{C}	\mathbf{T}
				0			
G	0	0	1	0←	0	0	0
Α	0	1	0←	2	$1 \leftarrow$	0←	0
G	0	0↑	2	1← 0←↑	0←↑	0	0
Τ	0	0	1↑	0←↑	0	0	1

4.2.2 b)

According to the table, an optimal local alignment is: $\begin{pmatrix} G & A \\ G & A \end{pmatrix}$

5 Question 5

First fill in the matrix:

	a	b	\mathbf{c}	d	e
a	0	4	5	2	1
b	4	0	4	3	1
\mathbf{c}	5	4	0	1	8
d	2	3	1	0	6
e	1	1	8	2 3 1 0 6	0

At the beginning, the lower bound is

$$\lceil \frac{1+2}{2} + \frac{1+3}{2} + \frac{1+4}{2} + \frac{1+2}{2} + \frac{1+1}{2} \rceil = 9$$

It is sufficient to only consider tours starting from vertex a. In addition, since it is an undirected graph, a requirement is made that b must be travelled before c, under which it will still be enough to get the correct result. The calculation process is shown below:

According to the process, the optimal tour is: $a \to e \to b \to c \to d \to a$.

6 Question 6