Exercise Sheet 1 - Real Numbers System

Ex. 1:

Exercice 1

1. Prove that : $\forall x \in \mathbb{R}, \ E(x) + E(-x) = \begin{cases} -1 & \text{if} \ x \in \mathbb{R} \setminus \mathbb{Z} \\ 0 & \text{if} \ x \in \mathbb{Z} \end{cases}$

2. Prove that : $\forall x, y \in \mathbb{R}, \ E(x+y) - E(x) - E(y) \in \{0, 1\}.$

3. Prove that : $\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}, \ E\left(\frac{E(nx)}{n}\right) = E(x)$.

Proof:

1. Take $x=m+r, m\in \mathbb{Z}, r\in [0,1[.$

If r=0, then x=m. Thus $\lfloor x \rfloor = m$ and $\lfloor -x \rfloor = -m$ hence:

$$\lfloor x
floor + \lfloor -x
floor = m + (-m) = 0$$

If r>0 (meaning if $x
otin \mathbb{Z}$), then $m \leq m+r < m+1$. Multiply by -1 to get:

$$-m-1<-m-r\leq -m$$

So, we get:

$$\lfloor -x
floor = \lfloor -m-r
floor = -m-1$$

And since $\lfloor x \rfloor = m$, we get:

$$\lfloor x
floor + \lfloor -x
floor = m + (-m-1) = m-m-1 = -1 \quad \Box$$

2.

Let x=m+lpha, y=n+eta where $m,n\in\mathbb{Z}, ext{ and } lpha,eta\in[0,1).$ Therefore, $E(x)=m,\ E(y)=n$

Now,

$$x+y=(m+n)+(\alpha+\beta)$$

$$E(x + y) = |x + y| = m + n + |\alpha + \beta|$$

Now, since $\alpha, \beta \in [0,1)$, we have $\alpha+\beta \in [0,2)$. Hence, $\lfloor \alpha+\beta \rfloor$ has to be either 0, or 1. Ergo:

$$E(x+y)-E(x)-E(y)=(m+n+\lfloor lpha+eta
floor)-m-n=\lfloor lpha+eta
floor\in [0,1)\ \Box.$$

3.

Let x=m+lpha, where $m=|x|\in\mathbb{Z}$ and $lpha\in[0,1)$. Multiplying by some $n\in\mathbb{N}^*$, we get:

$$nx = nm + n\alpha$$

taking the floors, we get:

$$|nx| = nm + |n\alpha|$$

Dividing by n:

$$rac{\lfloor nx
floor}{n} = m + rac{\lfloor nlpha
floor}{n}$$

Now, since $0 \leq \alpha < 1$, we have $0 \leq n\alpha < n$. So $\lfloor n\alpha \rfloor$ is an integer in $\{0,1,\dots,n-1\}$. Therefore:

$$\lfloor \frac{\lfloor nx \rfloor}{n} \rfloor = \lfloor m + \frac{\lfloor n\alpha \rfloor}{n} \rfloor = m = \lfloor x \rfloor \ \Box.$$