Devoir surveillé n° 03

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit E un ensemble et A, B deux parties fixées de E. Soit φ : $\begin{cases} \mathcal{P}(E) & \to & \mathcal{P}(A) \times \mathcal{P}(B) \\ X & \mapsto & (X \cap A, X \cap B). \end{cases}$

- 1) Qu'est-ce que $\varphi(\varnothing)$? $\varphi(E \setminus (A \cup B))$?
- 2) À quelle condition sur A et B, φ est-elle injective?
- 3) Est-ce que le couple (\emptyset, B) possède un antécédent par φ ?
- 4) À quelle condition sur A et B, φ est-elle surjective?

II. Étude de deux fonctions.

1) Soit f la fonction définie sur $[0, \pi]$ par

$$\forall x \in [0, \pi]$$
 $f(x) = \frac{\sin x}{\sqrt{5 - 4\cos x}}$.

- a) Calculer la dérivée de f. Vérifier que f'(x) est du signe de $\cos(x) \frac{1}{2}$.
- b) En déduire les variations de f sur $[0,\pi]$ et tracer sa courbe représentative.
- 2) Soit g la fonction définie sur $[0, \pi]$ par

$$\forall x \in [0, \pi]$$
 $g(x) = \operatorname{Arccos}\left(\frac{4 - 5\cos x}{5 - 4\cos x}\right)$.

- a) Vérifier que g est bien définie en tout point de $[0,\pi]$.
- b) Pour $x \in [0, \pi]$, simplifier les expressions $\cos(g(x))$ et $\sin(g(x))$.
- c) Calculer g'(x) pour $x \in]0, \pi[$ (pour cela, on pourra dériver la relation donnant $\cos(g(x))$ obtenue à la question précédente).
- d) Vérifier que $\forall x \in [0, \pi]$ g(g(x)) = x. Qu'en déduit-on concernant la courbe (Γ) représentant g?

- e) Construire la courbe (Γ) .
- 3) Soit x un réel appartenant à l'intervalle $\left[0, \frac{\pi}{3}\right[$.
 - a) Montrer qu'il existe un unique $z \in \left[\frac{\pi}{3}, \pi\right]$ tel que f(z) = f(x).
 - **b)** Montrer que z = g(x).

III. Résolution d'une équation différentielle.

Dans ce problème, on s'intéresse à l'équation différentielle (\mathscr{E}) :

$$x(x-4)y' + (x-2)y = -2. (\mathscr{E})$$

Soit I un intervalle ouvert de \mathbb{R} . On appelle solution de (\mathscr{E}) sur l'intervalle I toute fonction $y:I\to\mathbb{R}$ dérivable sur I telle que

$$\forall x \in I, \ x(x-4)y'(x) + (x-2)y(x) = -2.$$

On pourra utiliser librement les limites suivantes :

$$\frac{\operatorname{Arcsin} x - x\sqrt{1 - x^2}}{x^3} \xrightarrow[x \to 0]{} \frac{2}{3} \qquad \text{et} \qquad \frac{\ln(\sqrt{x} + \sqrt{1 + x})}{\sqrt{x}} \xrightarrow[x \to 0]{} 1 \ .$$

De plus, on rappelle que si f est une fonction définie sur un intervalle ouvert contenant un point $a \in \mathbb{R}$, elle est continue en a si elle admet une limite en a, auquel cas $\lim_a f = f(a)$, et que la dérivée de f en a est définie par $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$, si cette limite existe et est finie.

Partie A - Étude de deux primitives

- 1) Pour tout $x \in]0, 4[$, on pose $A(x) = \int_1^x \frac{\mathrm{d}t}{\sqrt{t(4-t)}}$. À l'aide du changement de variable $u = \sqrt{t}$, calculer A(x) pour tout $x \in]0, 4[$.
- 2) Pour tout $x \in]-\infty, 0[$, on pose $B(x)=\int_{-2}^x \frac{\mathrm{d}t}{\sqrt{t(t-4)}}$. À l'aide du changement de variable $u=\sqrt{-t}+\sqrt{4-t}$, calculer B(x) pour tout $x \in]-\infty, 0[$.

Partie B – Résolution de (\mathscr{E})

- 3) On note (\mathcal{H}) l'équation homogène associée à (\mathcal{E}) .
 - a) Résoudre (\mathcal{H}) sur l'intervalle $]-\infty,0[$.
 - **b)** Résoudre (\mathcal{H}) sur l'intervalle]0,4[.
 - c) Résoudre (\mathcal{H}) sur l'intervalle $]4, +\infty[$.
 - d) Montrer que la fonction constante, égale à 0, est la seule solution de (\mathcal{H}) sur \mathbb{R} tout entier.
- 4) On étudie ici (\mathscr{E}) sur]0,4[.
 - a) Résoudre (\mathcal{E}) sur l'intervalle]0,4[.
 - b) Montrer que (\mathscr{E}) possède une unique solution sur l'intervalle]0,4[possédant une limite finie à droite en 0.

 On note f cette solution. Donner l'expression de f(x) ainsi que $\lim_{0^+} f$ (on pourra commencer par montrer que $\frac{\operatorname{Arcsin} t}{t} \xrightarrow[t \to 0]{} 1$).
- 5) On étudie ici (\mathscr{E}) sur $]-\infty,0[$.
 - a) Résoudre (\mathscr{E}) sur l'intervalle $]-\infty,0[$.
 - b) Montrer que (\mathscr{E}) possède une unique solution sur l'intervalle $]-\infty,0[$ possédant une limite finie à gauche en 0. On note g cette solution. Donner l'expression de g(x) ainsi que $\lim_{n\to\infty} g$.
- 6) On étudie ici (\mathscr{E}) sur $]-\infty,4[$.
 - a) Montrer qu'il existe une unique fonction h définie sur $]-\infty,4[$ qui vérifie les trois points suivants :
 - (1) la restriction de h à]0,4[est solution de (\mathcal{E}) sur]0,4[,
 - (2) la restriction de h à $]-\infty,0[$ est solution de (\mathscr{E}) sur $]-\infty,0[$,
 - (3) h est continue en 0.
 - **b)** Pour tout $x \in]-\infty, 0[\cup]0, 4[$, on pose $T(x)=\frac{h(x)-h(0)}{x-0}.$ Montrer l'existence et donner la valeur de la limite ℓ de T en 0^+ . On admettra que T tend aussi vers ℓ en 0^- .
 - c) En déduire que (\mathscr{E}) possède une unique solution sur l'intervalle $]-\infty, 4[$. Préciser la valeur de cette fonction en 0, ainsi que la valeur de sa dérivée en 0.
- 7) L'équation (\mathscr{E}) possède-t-elle une solution définie sur \mathbb{R} ?