Задание 2

Александр Андреев

May 2021

1 Условие

Алиса, Боб и Вася играют в игру, где каждый должен назвать действительное число от 0 до 1. Выигрывает игрок, назвавший число, которое лежит между двумя другими. Алиса объявила, что выбирает число случайным образом равномерно на отрезке от 0 до $\frac{2}{3}$, Боб утверждает, что также выбирает случайное число, но распределенное равномерно на отрезке от $\frac{1}{2}$ до 1.

Какое число должен назвать Вася, чтобы максимизировать свои шансы на победу? Ответ дайте в виде несократимой дроби $\frac{p}{q}$, где p — целое и q — натуральное.

2 Решение

Разобьем на случаи.

- 1. $\delta \in [0, \frac{1}{2}]$, где δ число Васи.
 - (a) $P_1 = \delta * \frac{3}{2} * 1$, возрастающая функция на области определения
- 2. $\delta \in [\frac{2}{3}, 1]$, где δ число Васи.
 - (a) $P_2 = 1*(1-\delta)*2$, убывающая функция на области определения
- 3. $\delta \in [\frac{1}{2}, \frac{2}{3}]$, где δ число Васи.
 - (a) $P_{31}=3(\delta(1-\delta)),$ где число Ани меньше, а Боба больше числа Васи.
 - (b) $P_{32} = (2-3\delta)(\delta-\frac{1}{2})$, где число Боба меньше, а Ани больше числа Васи.
 - (c) $P_3=P_{31}+P_{32}=-6\delta^2+\frac{13}{2}\delta-1$, итоговая вероятность, парабола с ветвями вниз, максимум в вершине $b_0=\frac{13}{24}.$

Очевидно, что максимум достигается в вершине, значит ответ $\frac{13}{24}$