CSE 323: Operating System Design Thread

Salman Shamil

North South University (NSU) Fall 2025

Original slides by Mathias Payer and Sanidhya Kashyap [EPFL]

Salman Shamil # CSE 323: Operating System Design

1/10

Lecture Topics

- Thread abstraction
- Multi-threading challenges
- Key concurrency terms and definitions

This slide deck covers chapters 26 and 27 in OSTEP.

[Credits: Portions of the content are adapted from slides based on the OSTEP book by Prof. Youjip Won (Hanyang University) and Prof. Mythili Vutukuru (IIT Bombay), with thanks.]

Threads: Executions context

- Threads are independent execution context
 - similar to processes
 - EXCEPT they share the same address
- We only had one thread in a process so far
 - single-threaded program
 - one Program Counter (PC)
 - one Stack Pointer (SP)

4 / 10

Multi-threaded Process

- What happens if we want multiple threads in parallel?
 - shared address space but separate execution stream
 - is that possible with a shared stack or
 - each thread has separate stack and PC
 - leading to independent function calls
 - able to execute different parts
 - code and heap segments are still shared

- user-level threads: scheduled by thread library in user space
- **kernel-level threads**: scheduled directly by the OS

5/10

Creating Threads

```
#include <stdio.h>
                                  int main(int argc, char *argv[]) {
#include <stdlib.h>
                                      if (argc != 1) {
#include <pthread.h>
                                        fprintf(stderr, "usage: main\n");
                                        exit(1):
#include "common.h"
#include "common_threads.h"
                                      pthread_t p1, p2;
void *mythread(void *arg) {
                                      printf("main: begin\n");
    printf("%s\n", (char *) arg);
                                      Pthread_create(&p1, NULL, mythread, "A");
    return NULL:
                                      Pthread_create(&p2, NULL, mythread, "B");
}
                                      // join waits for the threads to finish
                                      Pthread_join(p1, NULL);
                                      Pthread_join(p2, NULL);
                                      printf("main: end\n"):
                                      return 0:
                   Salman Shamil # CSE 323: Operating System Design
                                                                       7 / 10
```

Threads & Concurrency

Concurrency vs Parallelism

- Concurrency: multiple processes/threads making progress during the same time period
 - Possibly on a single core by interleaving executions
 - Better CPU utilization (e.g., when one thread is blocked on I/O, another runs)
- Parallelism: running multiple processes in parallel over multiple CPU cores
 - A single process can achieve paralellism with multiple threads

How do they communicate?

- Processes need complicated Inter-Process Communication
- Extra memory footprint for IPC
- Threads can do it by simply using global variables (shared)
- Question: When to use threads vs processes?

6/10

Shared data is useful but not so simple!

```
#include <stdio.h>
                                  int main(int argc, char *argv[]) {
#include <stdlib.h>
                                    if (argc != 2) {
#include <pthread.h>
                                      fprintf(stderr, \
#include "common.h"
                                      "usage: main-first <loopcount>\n");
#include "common_threads.h"
                                      exit(1):
// shared global variables
                                    max = atoi(argv[1]);
int max;
volatile int counter = 0:
                                    pthread_t p1, p2;
// ^ no caching on register
                                    printf("main: begin \
                                           [counter = %d]\n", counter);
void *mythread(void *arg) {
                                    Pthread_create(&p1, NULL, mythread, "A");
  char *letter = arg;
                                    Pthread_create(&p2, NULL, mythread, "B");
  int i; // on stack
                                    // join waits for the threads to finish
         // (private per thread)
                                    Pthread_join(p1, NULL);
  printf("%s: begin \
                                    Pthread_join(p2, NULL);
          [addr of i: %p]\n",
                                    printf("main: done \
          letter, &i);
                                           [counter: %d] \
  for (i = 0; i < max; i++) {
                                          [should: %d]\n",
    counter = counter + 1;
                                          counter, max*2);
    // shared: only one
                                    return 0:
  printf("%s: done\n", letter); Will the final count always be 2 \times max?
  return NULL;
                   Salman Shamil #  CSE 323: Operating System Design
                                                                       8 / 10
```

Uncontrolled Scheduling

• assembly instructions for counter = counter + 1 (in x86)

mov 0x8049a1c, %eax 100

add \$0x1, %eax 105

mov %eax, 0x8049a1c 108

[Critical Section] consider a context switch after 'add'.

		(after instruction)		
Thread 1	Thread 2	PC	eax	counter
before critical section		100	0	50
mov 8049a1c,%eax		105	50	50
add \$0x1,%eax		108	51	50
		100	0	50
	mov 8049a1c,%eax	105	50	50
	add \$0x1,%eax	108	51	50
	mov %eax,8049a1c	113	51	51
		108	51	51
mov %eax,8049a1c		113	51	51
	before critical section mov 8049a1c,%eax add \$0x1,%eax	before critical section mov 8049a1c,%eax add \$0x1,%eax mov 8049a1c,%eax add \$0x1,%eax mov %eax,8049a1c	Thread 1 Thread 2 PC before critical section mov 8049a1c,%eax add \$0x1,%eax 100 add \$0x1,%eax 108 mov 8049a1c,%eax add \$0x1,%eax mov %eax,8049a1c 108 108 108	Thread 1 Thread 2 PC eax before critical section mov 8049a1c,%eax add \$0x1,%eax 100 0 add \$0x1,%eax 108 51 mov 8049a1c,%eax add \$0x1,%eax mov %eax,8049a1c 100 0 100 0 105 50 100 0 105 50 100 0 105 50 100 0 108 51 100 0 108 51

Salman Shamil # CSE 323: Operating System Design

9/10

Concurrency Terms

Race Condition

Concurrent execution of threads leading to different results depending on the order of execution. Such programs are indeterminate, producing different outputs across runs.

Critical Section

Portion of code resulting in a race condition, usually by accessing a shared resource (e.g., a variable or data structure).

Mutual Exclusion

Guarantees a single thread executes a critical section at a time, preventing race conditions. [Atomicity]

Next: We need to design synchronization primitives for **mutex**.

Salman Shamil # CSE 323: Operating System Design

10 / 10

_			
L			