AKADEMIA GÓRNICZO-HUTNICZA

GŁĘBOKIE UCZENIE I INTELIGENCJA OBLICZENIOWA ${\rm Automatyka~i~Robotyka~II~Stopie\acute{n}}$ 2019/2020

Optymalizacja fabryki z wykorzystaniem algorytmu immunologicznego (selekcji klonalnej)

Skład zespołu:

Artur Bauer Kamil Szostek Sławomir Goździewski Wiktor Filipiak

Opiekun:

dr hab. inż. Joanna Kwiecień

Złożono: 25 marca 2020

Spis treści

L	Wst	ep .
	1.1	Factory model
		1.1.1 Factory main goal function:
		1.1.2 Punish
		1.1.3 Number of types
		1.1.4 Max number of items
		1.1.5 Real working time of the i-type machine/employee for one product
	1.2	Model assumption
	Bad	ny problem
	2.1	Przeglad literatury

1 Wstęp

1.1 Factory model

Rysunek 1: Factory scheme

1.1.1 Factory main goal function:

$$Income = \sum_{i=1}^{n_p} (p_i * (v_i - m_i * m_p)) - (1 + b_i) * \sum_{i=1}^{n_w} (w_i * s_i * t_{wi}) - m_r * m_p - punish$$

Where:

- n_p number of item types (param)
- $p_i(n_m)$ number of manufactured i-type items
- $v_i(v_{bi}, t_{wi}, t_{bi}, w_q)$ value of the i-type items
- m_i number of material needed to manufacture the i-type item (param)
- m_p material price (param)
- n_w number of types of employees (param)
- w_i number of i-type employees (param)
- s_i the salary of i-type employees
- \bullet b the bonus for employees (param)
- \bullet t_{wi} real working time of the i-type machine/employee for one product
- $m_r(p_i, n_m)$ material remains, unused material
- $p_{i_{min}}$ minimum number of i-type items that must be manufactured to avoid punishment (param)
- $p_{i_{max}}$ maximum number of items that can be manufactured
- n_m number of materials in the warehouse at the beginning of the day (param)
- $punish(p_{un}, p_{num_i}, v_i)$ punishment for not produced required item number

1.1.2 Punish

$$punish = p_{un} * \sum_{i=1}^{n_p} (p_{num_i}) * v_i$$

$$p_{num_i} = \begin{cases} 0 & \text{if } p_{i_{min}} - p_i \leq 0 \\ p_{i_{min}} - p_i & \text{if } p_{i_{min}} - p_i > 0 \end{cases}$$
Where:

- p_{un} punishment rate
- $p_{num_i}(p_{i_{min}}, p_i)$ number of i-type items for which a punishment will be charged

1.1.3 Number of types

Number of types of employees and machines should be the same: $n_p = n_w$

1.1.4 Max number of items

Numbers of i-type items must meet: $\sum_{i=1}^{n_p} p_{i_{max}} * m_i < n_m$

1.1.5 Real working time of the i-type machine/employee for one product

$$t_{wi} = t_{pi} + p_i * t_{bi}$$

1.2 Model assumption

Parameter	$_{\mathrm{mark}}$	value
Material number	n_m	[x - 100]
Material cost	m_p	15
Working time	?	[1 - 16]
Minimal number of big parts	$p_{0_{min}}$	[0 - 10]
Minimal number of small parts	$p_{1_{min}}$	[0 - 10]
Big machine worker salary	s_0	70
Big machine material requirements	m_0	4
Big machine preparation time	t_{p0}	$30 \min$
Base big machine item value	v_{b0}	50
Base big machine working time per item	t_{b0}	1h
Number of big machines	?	[0 - 10]
Small machine worker salary	s_1	60
Small machine material requirements	m_1	3
Small machine preparation time	t_{p1}	$45 \min$
Base small machine item value	v_{b1}	35
Base small machine working time per item	t_{b1}	$45 \min$
Number of small machines	?	[0 - 10]
Max working time per worker	?	8h
Worker bonus	b	[0.0 - 0.2]
Punishment rate	p_{un}	1.5

Where:

- \bullet x number of required parts * cost of part
- Input parameters are given in square brackets
- Worker is hired on full time. Must work 8h
- First and second shift are equal in machine and worker count and type
- We reserve materials for a require items
- Any item manufactured over require number is a profit

2 Badany problem

2.1 Przegląd literatury

This article is about the artificial immune system in industrial application. Basing on cutting parameters (force, vibrations, torque etc.) they try to detect tool brake using a negative-selection algorithm [1].

This article is about the artificial immune system in industrial application. Authors compare AIS with Social Learning Mechanisms to few others AIS which use cloning alghoritm. Basing on proportional—/integral—/derivative-time they try to tune a PID [2].

Bibliografia

- [1] Dipankar Dasgupta i Stephanie Forrest. "Artificial immune systems in industrial applications". W: Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No. 99EX296). T. 1. IEEE. 1999, s. 257–267.
- [2] Mingan Wang i in. "An Artificial Immune System Algorithm with Social Learning and Its Application in Industrial PID Controller Design". en. W: Mathematical Problems in Engineering 2017 (2017), s. 1–13. ISSN: 1024-123X, 1563-5147. DOI: 10.1155/2017/3959474. URL: https://www.hindawi.com/journals/mpe/2017/3959474/ (term. wiz. 25.03.2020).