Internet of Things (IoTs) Development Software Platforms

By

Quan LE-TRUNG, Dr.techn.

https://sites.google.com/site/quanletrung/

Jul.2015, UIT

- Review on different open-source development software platforms
- TinyOS Introduction
- TinyOS Applications
- Running TinyOS Application with WSIM/WSNET/AVRORA
 - Provided Tutorials, Do at home
- Inside IoTs: in-network processing & routing

IoTs Open-Source Development Software Platforms (1/2): Platforms

- ContikiOS, http://www.contiki-os.org/
- TinyOS, http://www.tinyos.net/
- Adruino, http://www.arduino.cc/
- BeagleBoard, http://beagleboard.org/
- Raspbian, http://raspbian.org/
- OpenIoT, http://openiot.eu/
- Cloud-based IoTs [Emulation/Scalability/Availability]
- Simulation/Emulation: ns-2, InstantContiki, Wsim/Wsnet/Avrora

•

IoTs Open-Source Development Software Platforms (2/2): Standards

- Open InterConnect Consortium (OIC), http://openinterconnect.org/
- AllSeen Alliance, https://allseenalliance.org/
- ZigBee Alliance, http://www.zigbee.org
- IPSO Alliance, http://www.ipso-alliance.org
- IETF. 6LowApp Charter, http://trac.tools.ietf.org/area/app/trac/wiki/BarBofs/IETF75/6LowApp
- IETF. ROLL Charter, http://www.ietf.org/dyn/wg/charter/roll-charter.html
- IEEE 802.15 WPAN™ Task Group 4 (TG4), http://www.ieee802.org/15/pub/TG4.html
- IEEE 802.15 WPAN™ Task Group 1 (TG1), http://www.ieee802.org/15/pub/TG1.html
- IEEE 802.11TM WIRELESS LOCAL AREA NETWORKS, http://www.ieee802.org/11/
- HART Communication Foundation. **Wireless HART Technology.** http://www.hartcomm.org/protocol/wihart/wireless-technology.html
- http://www.isa.org/isa100
- http://www.iai-tech.org
- http://www.buildingsmart.com
- Open Geospatial Consortium (OGC). CITYGML: http://www.opengeospatial.org/standards/citygml

- Review on different open-source development software platforms
- TinyOS Introduction
- TinyOS Applications
- Running TinyOS Application with WSIM/WSNET/AVRORA
 - Provided Tutorials, Do at home
- Inside IoTs: in-network processing & routing

TinyOS Introduction [1/x]: TinyOS

- Open-source operating system designed for wireless embedded sensor networks
- Component-based architecture
- Enables rapid implementation with minimal code size
- Event-driven execution model enables fine-grained power management, power/battery saving capabilities, etc.
- http://www.tinyos.net/

TinyOS Introduction [2/x]: nesC

- (New) structured component-based language
- C-like syntax (extension of C-language)
- TinyOS operating system, libraries and applications are written in nesC
- Supports the TinyOS concurrency model
- Goal: build components that can be easily composed into complete,
 concurrent systems

 No Dynamic Memory (no malloc)
- http://www.tinyos.net/
- No Function Pointers
- No Heap

TinyOS Introduction [3/x]: Programming concepts

Application

- A TinyOS/nesC application consists of one or more components
- Are linked/wired together via configurations to get a run-time executable

Component

- Basic building blocks for nesC applications
- Two types: Modules & Configurations
- Can provide and use interfaces (bidirectional in contrast to unidirectional in common programming languages like JAVA)

Module

- A component that implements one or more interface
- Contains application code...

Two types of components TinyOS Introduction [3/x]: Programming concepts

- Configuration
 - A component that wires other components together
 - Idea: build applications as set of modules, wiring together by providing a configuration
- Interface
 - Abstract definition of the interaction of two components
 - Concept is similar to JAVA interfaces
 - NesC-interfaces are bidirectional

Module

Components

A configuration is a component built out of other components. It wires "used" to "provided" interfaces. It can instantiate generic components It can itself provide and use interfaces

- Basic unit of nesC code is compone
 - Configurations
 - Wire other components together
 - Configurations compose modules into larger abstractions
 - Modules
 - Variables and executable codes
 - Implement program logic

Components start with a signature specifying

- the interfaces *provided* by the component
- the interfaces *used* by the component

A module is a component implemented in C

- with functions implementing commands and events
- and extensions to call commands, events

Interfaces

- Collections of related functions
- Define interactions between components
- Interfaces are bidirectional
 - Commands
 - Implemented by provider
 - Called by user
 - Events
 - Called (signaled) by provider
 - Implemented (captured) by user

In TinyOS, all long-running operations are split-phase:

- A command starts the op: read
- An event signals op completion: readDone Errors are signalled using the error_t type, typically
- Commands only allow one outstanding request
- Events report any problems occurring in the op


```
interface Timer<tag> {
  command void startOneShot(uint32_t period);
  command void startPeriodic(uint32_t period);
  event void fired();
}
```

The Toolchain

The Toolchain

The Toolchain

The "Make" System

apps	worked around tinyos.jar dependency	
deprecated/tosthreads	mv Deprecated to deprecated to conform to TEP 3	inyus
doc	Docs: Updated READMEs	https://github.com/tinyos/tinyos-main
licenses	licences/bsd: bump year and tweak a touch	
packaging	workaround for #311 - parellel compilation creates empty ja	аг
support	generic NeighborhoodC (for multiple independent rfxlink) -	resolves #273
tools	Corrects the list of targets for python tools.	
tos	rfxlink: remove deprecated ReceiveDefault and SnoopDefau	ult
gitignore	Updated .gitignore	
Makefile.include	Set TINYOS_ROOT_DIR in Makefile, change var names	
■ README.md	Update README.md	
README.tinyos	Update instructions for repo use	
release-notes.txt	Merge branch 'master' of git://github.com/markushx/tinyos	s-main into c

Architectures

- AVR
 - mica2, mica2dot
 - micaz
 - btnode
 - IRIS

- ARM
 - imote2

- MSP430
 - telosb, sky
 - shimmer
 - eyesIFX
 - tinynode
 - epic
- 8051
 - CC2430
 - CC1110/CC1111

- Review on different open-source development software platforms
- TinyOS Introduction
- TinyOS Applications
- Running TinyOS Application with WSIM/WSNET/AVRORA
 - Provided Tutorials, Do at home
- Inside IoTs: in-network processing & routing

Blink Application

- README for Blink
- Author/Contact: tinyos-help@millennium.berkeley.edu
- Description:
- Blink is a simple application that blinks the 3 mote LEDs. It tests
- that the boot sequence and millisecond timers are working properly.
- The three LEDs blink at 1Hz, 2Hz, and 4Hz. Because each is driven by
- an independent timer, visual inspection can determine whether there are
- bugs in the timer system that are causing drift. Note that this
- method is different than RadioCountToLeds, which fires a single timer
- at a steady rate and uses the bottom three bits of a counter to display
- on the LEDs.

http://www.tinyos.net/dist-2.0.0/tinyos-2.0.0beta2/doc/html/tutorial/lesson1.html #include "Timer.h" https://github.com/tinyos/tinyos-main/tree/master/apps/Blink

```
The BlinkAppC.nc Configuration
apps/Blink/BlinkAppC.nc:
configuration BlinkAppC
implementation
 components MainC, BlinkC, LedsC;
 components new TimerMilliC() as TimerO;
 components new TimerMilliC() as Timer1;
 components new TimerMilliC() as Timer2;
 BlinkC -> MainC.Boot;
 BlinkC.Timer0 -> Timer0:
 BlinkC.Timer1 -> Timer1;
 BlinkC.Timer2 -> Timer2;
 BlinkC.Leds -> LedsC;
```

```
Configuration BlinkAppC
                                           Interfaces in the
                                           tos/interfaces directory
                         MainC
                     in tos/system
                                           Modules in the
                                           tos/system directory
    Interface Boot
    in tos/interfaces
                                Event Boot.booted()
                        BlinkC
                      in BlinkC.nc
                                      Call Leds.led0On()
Event Timer.fired()
                                       //Call command ledO on
//Receive event fired,
from Timer
                    Call startPeriodic()
                 Interface Timer
                                   Interface Leds
    Time rMilliC
                                                    Leds C
   in tos/system
                                                in tos/system
```

```
module BlinkC @safe()
 uses interface Timer<TMilli> as Timer0;
 uses interface Timer<TMilli> as Timer1:
 uses interface Timer<TMilli> as Timer2;
 uses interface Leds;
 uses interface Boot;
                      The BlinkC.nc Module
implementation
                      apps/Blink/BlinkC.nc:
 event void Boot.booted()
  call Timer0.startPeriodic(250);
  call Timer1.startPeriodic(500);
  call Timer2.startPeriodic( 1000 );
 event void Timer0.fired()
 dbg("BlinkC", "Timer 0 fired @ %s.\n", sim time string());
  call Leds.led0Toggle();
 event void Timer1.fired()
 dbg("BlinkC", "Timer 1 fired @ %s \n", sim time string());
  call Leds.led1Toggle();
 event void Timer2.fired()
  dbg("BlinkC", "Timer 2 fired @ %s.\n", sim time string());
  call Leds.led2Toggle();
```

Other Applications

- https://github.com/tinyos/tinyos-main/tree/master/apps
- /opt/tinyos-2.1.2/apps

- Review on different open-source development software platforms
- TinyOS Introduction
- TinyOS Applications
- Running TinyOS Application with WSIM/WSNET/AVRORA
 - Provided Tutorials, Do at home
- Inside IoTs: in-network processing & routing

Installation TinyOS/WSIM/WSNET [1/2]

- Linux OS
 - Ubuntu 14.04 [getting a copy of ISO image], or
 - http://www.ubuntu.com/download/desktop
- Other Oses, e.g., Windows/MacOS/...
 - Oracle VirtualBox: https://www.virtualbox.org/wiki/Downloads
 - vmware, https://my.vmware.com/web/vmware/downloads
 - Ubuntu
- TinyOS, http://www.tinyos.net
 - http://tinyos.stanford.edu/tinyos-wiki/index.php/Installing TinyOS 2.1.1
 - Or steps-by-steps instructions from students

Installation TinyOS/WSIM/WSNET [2/2]

- WSIM, http://wsim.gforge.inria.fr/
- WSNET, http://wsnet.gforge.inria.fr/
- Compile the /apps/Blink application, e.g., "make telosb"
- Run the Blink application with WSIM/WSNET

- Review on different open-source development software platforms
- TinyOS Introduction
- TinyOS Applications
- Running TinyOS Application with WSIM/WSNET/AVRORA
 - Provided Tutorials, Do at home
- Inside IoTs: in-network processing & routing

Inside IoTs: in-network processing & routing

In the next tutorials