TERMODINÁMICA

Problema − **1** (4 puntos)

Nombre			

Se tiene un ciclo de Brayton que aspira aire (gas perfecto, $\gamma = 1.4$, R = 0,287 kJ/kg-K) del ambiente a 27 °C y 1 bar. La salida de los gases de la turbina se realiza también al ambiente a 1 bar y 557 °C. El caudal de aire aspirado es de 100 kg/s y puede despreciarse la cantidad de combustible añadido en la cámara de combustión, cuyo calor se asume aportado a una temperatura de foco caliente igual a 1027 °C. El ciclo presenta una entropía generada total de 43,7184 kW/K¹.

Se pide determinar el calor aportado en la cámara de combustión, la potencia neta y el rendimiento del ciclo Brayton.

Dado que el rendimiento es relativamente bajo se decide pasar los gases de escape por una caldera de recuperación de calor con el fin de disponer de un ciclo combinado, mediante el acoplamiento con un ciclo Rankine. El diseño se hace de manera que los gases salen de la caldera, a la atmósfera, sin pérdida de presión, 76 °C por encima de la temperatura del agua de alimentación entrando en la caldera.

A la turbina del ciclo Rankine el vapor, procedente de la caldera de recuperación, entra a 60 bar y 450 °C y en esta turbina se expansiona hasta la presión de operación del condensador (0,1 bar). El agua sale del condensador en condiciones de líquido saturado a esa presión y se sabe que el calor disipado por el condensador al sistema de refrigeración por cada kg de agua de alimentación que sale del mismo es 1990,07 kJ.

La línea de expansión de la turbina, entre la entrada y la salida al condensador, es una recta en el diagrama de Mollier. En la turbina hay una extracción de vapor que se dirige a la carcasa de un calentador cerrado, de superficie. La temperatura de esta extracción es de 200 °C. En el calentador, el vapor se desrecalienta, se condensa y se subenfría, saliendo los drenajes de la carcasa del mismo 5 °C por encima de la temperatura de entrada a los tubos del agua de alimentación y dirigiéndose dichos drenajes, a través de una válvula, a la carcasa del condensador. El caudal de vapor de extracción supone un 10% del caudal de vapor a la entrada de la turbina. El agua de alimentación procedente de los tubos del calentador se dirige directamente a la caldera.

No hay pérdidas de presión en conductos e intercambiadores.

¹ Para el cálculo de esta entropía generada se asume que los gases que salen de la turbina se dirigen a una instalación totalmente reversible (un foco a 557°C que absorbe masa). Es decir, que la única irreversibilidad exterior al ciclo Brayton se localiza en la transferencia de calor desde el foco caliente al ciclo.

Se pide:

- Dibujar un esquema de la instalación del ciclo combinado, colocando adecuadamente la bomba de agua de alimentación, que se tomará con un rendimiento del 100%.
- Calcular todos los puntos representativos del ciclo Rankine (caudal, presión y/o temperatura y entalpía). Para la zona de vapor de agua se usará única y exclusivamente el diagrama de Mollier (no se admiten tablas) aproximándose los valores de entalpía, incluidos los de entalpía isentrópica, a la ciencuentena más próxima, es decir no se admiten, para vapor, valores de entalpía que no terminen en 50 ó en 00. Para la zona de agua en fase líquida se usarán las tablas adjuntas.
- Rendimiento global de la turbina de vapor, entre la entrada y la salida.
- Temperatura de salida de los gases de la caldera de recuperación y calor intercambiado en la misma.
- Potencia neta proporcionada por el ciclo de vapor así como su rendimiento.
- Potencia térmica disipada en el condensador.
- Rendimiento global del ciclo combinado.

Tabla de saturación del agua (líquido-vapor)

				_	_		
p	t	vf	vg	hf	hg	sf	sg
[bar]	[°C]	$[m^3/kg]$	$[m^3/kg]$	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
0,1	45,81	0,001010	14,67000	191,81	2583,9	0,64919	8,14884
0,12	49,42	0,001012	12,35822	206,91	2590,3	0,69628	8,08496
0,14	52,55	0,001013	10,69122	219,99	2595,8	0,73663	8,03114
0,16	55,31	0,001015	9,43070	231,56	2600,7	0,77201	7,98465
0,18	57,8	0,001016	8,44321	241,96	2605,0	0,80354	7,94375
0,2	60,06	0,001017	7,64810	251,42	2608,9	0,83202	7,90725
0,22	62,13	0,001018	6,99376	260,11	2612,6	0,85800	7,87430
0,24	64,05	0,001019	6,44555	268,15	2615,9	0,88191	7,84427
0,26	65,84	0,001020	5,97940	275,64	2619,0	0,90407	7,81670
0,28	67,52	0,001021	5,57801	282,66	2621,9	0,92472	7,79121
1	99,61	0,001043	1,69413	417,51	2675,0	1,30277	7,35893
1,1	102,3	0,001045	1,54965	428,84	2679,2	1,33304	7,32693
1,2	104,8	0,001047	1,42853	439,36	2683,1	1,36094	7,29776
1,3	107,1	0,001049	1,32549	449,19	2686,7	1,38684	7,27094
1,4	109,3	0,001051	1,23672	458,42	2690,0	1,41101	7,24614
1,5	111,3	0,001053	1,15942	467,13	2693,1	1,43370	7,22306
1,6	113,3	0,001054	1,09149	475,38	2696,1	1,45507	7,20149
1,7	115,1	0,001056	1,03130	483,22	2698,8	1,47529	7,18124
1,8	116,9	0,001058	0,97759	490,70	2701,4	1,49448	7,16215
1,9	118,6	0,001059	0,92935	497,85	2703,9	1,51275	7,14410
15	198,3	0,001154	0,13171	844,55	2791,0	2,31432	6,44301
30	233,9	0,001217	0,06667	1008,29	2803,2	2,64543	6,18563
45	257,4	0,001269	0,04406	1122,13	2798,0	2,86129	6,01977
60	275,6	0,001319	0,03245	1213,75	2784,6	3,02748	5,89017
75	290,5	0,001368	0,02533	1292,72	2765,9	3,16584	5,77929

Bomba de agua de alimentación M5=h4+ 100×0.00101 (60-0.1) = 197.8599 KJ/Up $75 = 45.81 + \frac{49.42 - 45.81}{206.91 - 191.81} (197.8599 - 191.81) -$ = 47.2564°C; T10=T5+5=52,2564°C Li eu el calentador se subenfría (enunciado) esta temperatura corresponde a líquido comprimido es decir: h10=206.91+ 219.99-206.91 (52.2564-49.42)= = 218.7629 kJ/kp = h11 Balance energético en condensador: Por cada ko de agua de alineutación se tendra (1-x)hq+ xhy = 1990.07+191.81; d=0.1 hg = 1990.07+191.81-0.1×218.7629 = 2400 kJ/kg La el diagrama de Mollier, trasada la recta entre los puntos (7) y (9) (60 bas & 450°C) y (0.1 bas & 2400 kJ/kg) respectivamente, se ve que corta a la linea de 200°C' (punto 8) con ma entalpla de 2850 kJ/kg. La isentrópica que pasa por D corta a la livea de 0.1 bar a una entalpia ~2150 kJ/kg MTV = 3300-2400 = 78.26% Balance energético en calentador: (h6-h5) ingx = (h8-h10) 0.1 ingx h6=h5+0.1(h8-h10)=460,9836 kJ/kg

A 60 bas esa entalpia corresponde a líquido Souprimido $T_6 = 1093 + \frac{111.3 - 109.3}{467.13 - 458.42} (460.9836 - 458.42)$ = 109.887°C Vuego T3 = 109.8887+76 = 185.8887°C Valor intercambiado en HRSG QHRSG = 100×1.0045 x (557-185.8887) = = 37278. kW, => mR= 37278 3300-460,9836 = 13.13kg Potencias Rankine Turbina vapor 13.13 [3300-2850] +0.9 (2850-2400)] = 11227 bW. Bomba: 13.13 × (197.8599-191.81) = 79.4392 kW. WNETO RK = 11147. 6 kW. MRK = 11147.6 = 29.9 % Calor disipado en condeusador: $13.13 \times 10.9 (2400 - 191.81) + 0.1 (218.7629 - 191.81) =$ $= 26129.6 \text{ kW} \cdot | \hat{Q}_{c} = 13.13 \times 1990.07 = 26129.6$ Potencia total neta ciclo combinado Wcc = 11147.6+ 22816.5 = 33964 kW Pcc = 33964 = 44.66%

TERMODINÁMICA

Problema -2 (4 puntos)

Nombre		

El esquema adjunto representa un ciclo de refrigeración que emplea R717 (sustancia pura, ver tablas adjuntas) como fluido refrigerante. El ciclo retira 100 kW en el evaporador de una corriente de anticongelante (líquido incompresible) que llega a la instalación a -10°C y sale a -15°C. La instalación incluye una cámara que se encuentra a 2 bar y se encarga de suministrar líquido saturado al evaporador y vapor saturado al compresor. El R717 abandona el evaporador como vapor saturado y el condensador como líquido saturado. La presión del condensador es de 13,5 bar. El compresor es adiabático.

En el condensador el R717 cede calor a una corriente de agua (líquido incompresible) que llega a la instalación a 25°C y la abandona a 30°C. El COP de la instalación es de 2,833. Se desprecian las pérdidas de presión en los intercambiadores y conductos.

Determinar:

- a) Relación de gasto másico que recorre el condensador respecto al que recorre el evaporador.
- b) Rendimiento isentrópico del compresor.
- c) Variación de entropía del universo.

(PROBLEMA - 2)

Tablas del R717 como vapor sobrecalentado

2 bar (Tsat = -18,85 °C)					13,5 bar (Tsat = 34,98 °C)					
T	٧	u	h	s		T	٧	u	h	S
[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-kg]		[°C]	[m ³ /kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-kg]
sat	0,59266	1320,3	1438,8	5,88472		sat	0,09568	1359,2	1488,3	5,20877
-16	0,60265	1325,6	1446,2	5,91353		36	0,09626	1361,8	1491,8	5,21990
-11	0,61654	1334,8	1458,1	5,95958		41	0,09898	1374,5	1508,1	5,27228
-6	0,63024	1343,8	1469,9	6,00408		46	0,10161	1386,6	1523,8	5,32175
-1	0,64380	1352,8	1481,5	6,04722	• · · · · •	51	0,10416	1398,3	1538,9	5,36879
4	0,65722	1361,6	1493,0	6,08915		56	0,10663	1409,6	1553,6	5,41377
9	0,67053	1370,4	1504,5	6,12997		61	0,10905	1420,7	1567,9	5,45696
14	0,68374	1379,0	1515,8	6,16981		66	0,11141	1431,5	1581,9	5,49861
19	0,69686	1387,7	1527,1	6,20873		71	0,11374	1442,1	1595,7	5,53889
24	0,70990	1396,3	1538,3	6,24683		76	0,11602	1452,6	1609,2	5,57797
29	0,72288	1404,9	1549,5	6,28417		81	0,11826	1462,9	1622,6	5,61596
34	0,73580	1413,5	1560,6	6,32080		86	0,12048	1473,1	1635,8	5,65299
39	0,74866	1422,0	1571,8	6,35677		91	0,12267	1483,3	1648,9	5,68915
44	0,76148	1430,6	1582,9	6,39213		96	0,12484	1493,3	1661,8	5,72450
49	0,77425	1439,2	1594,0	6,42692		101	0,12698	1503,3	1674,7	5,75912
54	0,78698	1447,8	1605,1	6,46118		106	0,12910	1513,2	1687,5	5,79308
59	0,79968	1456,3	1616,3	6,49492		111	0,13120	1523,1	1700,2	5,82642
64	0,81235	1464,9	1627,4	6,52819		116	0,13329	1532,9	1712,9	5,85918
69	0,82499	1473,6	1638,6	6,56101		121	0,13536	1542,8	1725,5	5,89141
74	0,83760	1482,2	1649,7	6,59339		126	0,13742	1552,6	1738,1	5,92315
79	0,85018	1490,9	1660,9	6,62538		131	0,13947	1562,4	1750,6	5,95441
84	0,86275	1499,5	1672,1	6,65697		136	0,14150	1572,2	1763,2	5,98525
89	0,87529	1508,3	1683,3	6,68819		141	0,14352	1581,9	1775,7	6,01567
94	0,88782	1517,0	1694,6	6,71906		146	0,14554	1591,7	1788,2	6,04571
99	0,90033	1525,8	1705,9	6,74959		151	0,14754	1601,6	1800,7	6,07538
104	0,91282	1534,6	1717,2	6,77980		156	0,14953	1611,4	1813,2	6,10470
109	0,92530	1543,5	1728,5	6,80970		161	0,15152	1621,2	1825,8	6,13370
114	0,93777	1552,4	1739,9	6,83929		166	0,15350	1631,1	1838,3	6,16238
119	0,95022	1561,3	1751,3	6,86860		171	0,15547	1640,9	1850,8	6,19076
124	0,96266	1570,3	1762,8	6,89764		176	0,15743	1650,8	1863,4	6,21886
129	0,97509	1579,3	1774,3	6,92641		181	0,15939	1660,8	1875,9	6,24669

(PROBLEMA – 2) **Tablas de saturación del R717 (líquido-vapor)**

p [bar]	T [°C]	v _f [m³/kg]	v _g [m³/kg]	u _f [kJ/kg]	u _g [kJ/kg]	h _f [kJ/kg]	h _g [kJ/kg]	s _f [kJ/kg-K]	s _g [kJ/kg-K]
2	-18,85	0,001507	0,59266	113,50	1320,3	113,80	1438,8	0,67439	5,88472
2,5	-13,66	0,001522	0,48042	136,93	1325,5	137,31	1445,6	0,76563	5,80722
3	-9,231	0,001536	0,40456	157,00	1329,7	157,47	1451,1	0,84234	5,74387
3,5	-5,354	0,001548	0,34976	174,67	1333,3	175,21	1455,7	0,90880	5,69023
4	-1,891	0,001559	0,30826	190,51	1336,3	191,14	1459,6	0,96760	5,64367
4,5	1,249	0,001570	0,27570	204,93	1338,9	205,64	1463,0	1,02047	5,60252
5	4,128	0,001580	0,24945	218,19	1341,2	218,98	1466,0	1,06858	5,56562
5,5	6,791	0,001589	0,22782	230,51	1343,3	231,38	1468,6	1,11279	5,53214
6	9,273	0,001598	0,20968	242,01	1345,1	242,97	1470,9	1,15375	5,50150
6,5	11,6	0,001606	0,19425	252,84	1346,8	253,88	1473,0	1,19193	5,47322
7	13,79	0,001615	0,18094	263,06	1348,2	264,19	1474,9	1,22774	5,44695
7,5	15,87	0,001622	0,16936	272,77	1349,6	273,99	1476,6	1,26147	5,42242
8	17,84	0,001630	0,15917	282,02	1350,8	283,32	1478,2	1,29338	5,39939
8,5	19,72	0,001637	0,15014	290,86	1351,9	292,25	1479,6	1,32368	5,37768
9	21,51	0,001644	0,14208	299,33	1353,0	300,81	1480,8	1,35254	5,35714
9,5	23,23	0,001651	0,13484	307,46	1353,9	309,03	1482,0	1,38010	5,33764
10	24,89	0,001658	0,12830	315,30	1354,8	316,96	1483,1	1,40650	5,31907
10,5	26,48	0,001665	0,12236	322,86	1355,6	324,61	1484,1	1,43183	5,30134
11	28,01	0,001671	0,11694	330,17	1356,3	332,01	1484,9	1,45619	5,28437
11,5	29,5	0,001678	0,11198	337,25	1357,0	339,18	1485,8	1,47967	5,26809
12	30,93	0,001684	0,10742	344,25	1357,6	346,27	1486,5	1,50275	5,25244
12,5	32,32	0,001690	0,10320	350,78	1358,2	352,90	1487,2	1,52422	5,23736
13	33,67	0,001696	0,09930	357,27	1358,7	359,47	1487,8	1,54542	5,22282
13,5	34,98	0,001702	0,09568	363,58	1359,2	365,87	1488,3	1,56597	5,20877
14	36,25	0,001708	0,09231	369,73	1359,6	372,12	1488,8	1,58591	5,19517

$$P_4 = P_1 = P_6 = P_5 = 2 bar$$

$$x_{J} = 10 = X_3$$

$$x_1 = 1 = x_6$$

$$\Delta_1 = Ay (2 har) = 1,889772$$
 $h_{ZA} = h(13.5 har; A_1) = 1722,88 KJ/KY$

$$\eta_{c} = \frac{1722,88 - 1438,8}{Nz - 1438,8}$$
 (2)

$$\frac{-me\left(113.8 - 1438.8\right)}{mc\left(h_2 - 1438.8\right)}$$
 (1)

$$m_{c}$$
 (n_{2} - 175%)

 m_{c} (n_{2} - 175%)

 m_{c} (n_{3} -

Entrando en (1):

$$h_{2} = 1038.8 + \frac{2.833}{2.833} \times \frac{1.53460}{1.53460} = 1814.25 KJ/kh$$

$$\frac{dSu}{dz} = \frac{-\frac{de}{Ta}}{Ta} + \frac{\frac{dcon}{Tw}}{Tw} = \frac{-\frac{100}{260,49}}{\frac{260,49}{300,49}} = \frac{-\frac{131,298}{66,37}}{\frac{300,49}{K}}$$

$$\overline{1}_{\text{N}} = \frac{30 - 25}{L \left(\frac{30 + 273}{25 + 273} \right)} = 300,401 \text{ K}$$

$$T_{\alpha} = \frac{-15 + 10}{L\left(\frac{273 - 15}{273 - 10}\right)} = 260,49 \text{ K}$$

$$0 con = mc (1817, 32 - 365, 87) = 135, 298 kW$$

$$0 con = mc (1817, 32 - 365, 87) = 135, 298 kW$$

$$100 = mc (1438, 8 - 113, 8) = mc = 0.07547 ky/13$$

$$100 = mc (1438, 8 - 113, 8) = mc = 0.0932 ky/13$$

Tombiei:

$$Qe = 100 \text{ km}$$

$$= 100 \text{ km} = 35'298 \text{ km}; Qc = 100 + 35'798 = 135.798 \text{ km}$$

TERMODINÁMICA

Problema − **3** (2 puntos)

Un equipo de refrigeración opera entre un foco frío a -12,5°C y el ambiente (foco a 27,5°C). La relación entre la entropía generada total (\dot{S}_{gen}^{TOT}), la temperatura ambiente (T_0) y el calor retirado del foco frío (\dot{Q}_F) viene dada por:

$$\frac{T_0 \cdot \dot{S}_{gen}^{TOT}}{\dot{Q}_F} = 19,943\%$$

Determinar el COP del equipo.

$$\begin{array}{c|c}
\hline
70 & = 27'T'C & = 300, FK \\
\hline
400 & & & \\
\hline
1F & = -12, T'C & = 260. FK
\end{array}$$

$$\dot{S}_{qpen} = \frac{\dot{Q}_0}{T_0} - \frac{\dot{Q}_F}{T_F}$$

$$\mathring{Q}_0 = \mathring{Q}_F + \mathring{W} = \mathring{Q}_F + \frac{\mathring{Q}_F}{COP}$$

Combinando amban ema dom:

En deur:

$$\frac{To \, \dot{s} \, yen}{dF} = 1 + \frac{1}{coP} - \frac{To}{TF} = \frac{1}{coP} + \frac{TF - To}{TF} = \frac{1}{coP} + \frac{1}{coP} = \frac{1}{coP} + \frac{1}{coP} = \frac{1}{c$$

operando:

remodul:
$$\frac{1}{coP} = 0.19943 + \frac{300.5 - 260.5}{260.5} \Rightarrow \frac{coP}{260.5} = 2.833$$