166. a)
$$\arccos(\frac{5}{6})$$

b) $\frac{\pi}{3}$

168. a)
$$x - int : 12$$
 $xy - trace : 2x + 3y = 24$

y - int : 8 xz - trace : 2x + 4z = 24z - int:6yz - trace : 3y + 4z = 24

b) x - int : -15 xy - trace : x + 15 = 0 $y - int : non \quad xz - trace : 3x + 5z = 45$ z - int : -9 yz - trace : z + 9 = 0

a) $\arccos(\frac{\pi}{3})$ 170.

b) $\arccos(1/5)$

172. a)
$$5x + y = 33x + z = 43y - 5z + 6 = 0$$

b) x = 2z = -1

174. a)
$$\frac{x}{5} = \frac{y-3}{4}, z = 6$$
 b) $\frac{x-a}{m} = \frac{y-b}{n} = \frac{z}{1}$

b)
$$\frac{x-a}{m} = \frac{y-b}{n} = \frac{z}{1}$$

176.
$$8x+y-26z+6=0$$

178. a)
$$13/\sqrt{14}$$

b) $4/\sqrt{6}$

180.
$$\sqrt{61}/\sqrt{22}$$

- 182. a) (EP)
- b) (HP) c) H_2 d) Cone
- e) H_1

184.

- 186. By rotation about x-axis by an angle $\pi/4 : (x-2)^2 + y^2 z^2 = 4$, hyperboloid of one skeet.

- 188. $h(x^2 + y^2) + 2ax(x h) = 0$ 190. $(x a)^2 + (y a)^2 = 2a^2$ 192. $x^2 + z^2 y^2 = 0$ cone 194. $x^2 + y^2 = (z + 1)^2$, cone vertex at (0, 0, -1)
- 196. $6y = x^2 + 9$, parabolic cylinder;

