基因编辑载体构建手册

1. 服务流程	2
2. 仪器与试剂	3
3. 构建实例	4
3.1. 基因基因编辑载体构建:	4
3.1.1. 目的基因	4
3.1.2. 载体信息	4
3.1.3. 基因编辑载体图谱(NC 序列)	4
3.2. 质粒构建步骤	5
3.2.1. sgRNA 靶点设计	5
3.2.2. 载体酶切	5
3.2.3. 目的序列合成及退火	5
3.2.4. 退火产物与载体进行连接	6
3.2.5. 转化涂板	6
3.2.6. 阳性克隆摇菌及质粒提取	6
3.2.7. 质粒质控(目的基因测序)	6
3.2.8. 测序引物	7

1. 服务流程

合生基因 www.syngen.tech 010-80767807

2. 仪器与试剂

表 1 主要仪器及生产商

仪器名称	生产厂家
Sorvall Legend Mircro 17 台式离心机	美国 ThermoFisher 公司
微量移液器	德国 Eppendorf 公司
生物安全柜	新加坡 ESCO 公司
实验室耗材 I (移液枪头、1.5/2.0 mL 离心管)	美国 Axygen 公司
实验室耗材 II(细胞培养皿、移液管等)	美国 Corning 公司
凝胶成像分析系统	北京赛智创业科技有限公司
凝胶电泳系统	美国 BioRad 公司

表 2 主要试剂及生产商

试剂名称	生产厂家
质粒小量快速提取试剂盒(离心柱型)	北京艾德莱生物科技有限公司
限制性内切酶类	美国 NEB 公司/ ThermoFisher 公司
DNA Ligase	北京合生基因科技有限公司

合生基因 www.syngen.tech 010-80767807

3. 构建实例

以 sgRNA 阴性对照靶点序列为例描述载体构建。

3.1. 基因基因编辑载体构建:

3.1.1. 目的基因

sgRNA NC 序列

3.1.2. 载体信息

载体编 号	载体元件	原核抗性
XX	pZDonor _U6-NC sgRNA -hEF1a-hCas9-2A-Puro	AMP

3.1.3. 基因编辑载体图谱(NC序列)

基因编辑载体示例

3.2. 质粒构建步骤

3.2.1. sgRNA 靶点设计

针对目的基因序列,遵循基因 sgRNA 靶点设计原则,设计多个 sgRNA 靶点序列,选择最优靶点构建目的载体。除了针对目的基因的靶点序列外,我们也使用一些无义序列作为 sgRNA 阴性对照。另外, sgRNA 靶点序列也可由客户提供,根据客户的需求构建在相应的载体上。

3.2.2. 载体酶切

酶切骨架载体,对载体酶切产物进行琼脂糖凝胶电泳,回收目的条带:

酶切体系:

10x buffer 2 μL

酶 1 μL

酶 2 1 μL

Plasmid/product 2~3 µL

Add ddH $_2$ O to 20 μ L

3.2.3. 目的序列合成及退火

根据目的序列及骨架载体序列,设计引物序列;先合成单链引物序列, 然后退火成双链 DNA。

ddH2O 14 μL

 $10 \times Buffer$ 2 μL

100 μM 正向引物 2 μL

100 μM 反向引物 2 μL

反应程序为:95 ℃ 3 min ,95 ℃ 到 25 ℃ 缓慢冷却,例如 -1 ℃/30 s

3.2.4. 退火产物与载体进行连接

退火产物	1 μL
骨架载体	1 μL
1×Buffer	5 μL
ddH2O	2 μL

3.2.5. 转化涂板

连接后产物 $10 \mu L$ 转化至 $100 \mu L$ 感受态 A2 ℃金属浴 热激 $1 \min$,冰上迅速预冷 $2 \min$,在超净工作台中,加入 $600 \mu L$ 无抗培养基,37 ℃ 摇床振荡培养 1 h,取适量菌液涂布在含有相应抗生素的平板上,在恒温培养箱中倒置培养 12-16 h。

3.2.6. 阳性克隆摇菌及质粒提取

挑选 3-4 个单菌落摇菌,加入相应抗性培养基摇菌过夜(8 mL LB 液体培养基),然后参照质粒抽提试剂盒进行质粒抽提。

3.2.7. 质粒质控(目的基因测序)

完成基因编辑质粒构建后,针对目的基因序列测序,并比对鉴定,以获得构建正确的质粒。

基因编辑载体信息

载体编号	载体内容	shRNA 序列
NC	NC sgRNA	5' - CCTCGTTCACCGCCGTCGCG -3'

NC 载体测序结果:

基因编辑质粒测序比对结果

合生基因 www.syngen.tech 010-80767807

3.2.8. 测序引物

引物名称	序列
NC 质粒	CAGGAAGAGGCCTATTTCCC