Universidade de Brasília Instituto de Física

Disciplina: Física 2 Experimental

2º semestre 2019

Data de realização do experimento: 05/09/2019 e 12/09/2019

Grupo 13:

Gustavo Pereira Chaves - 19/0014113 Luigi Paschoal Westphal de Oliveira - 19/0062894 David Goncalves Mendes - 19/0056967

Relatório do Experimento 3 - Giroscópio

Objetivos:

O objetivo do experimento foi analisar o movimento do giroscópio observando seu comportamento, utilizando vetores, mediante forças externas, diferentes velocidades de rotação e diferentes forças causadoras da precessão. Além disso, calculamos o momento de inercia no disco utilizando diferentes equações, conceitos e métodos para compara-los e obter uma aproximação mais precisa.

Introdução Teórica:

As direções e sentidos dos vetores relacionados à rotação são derivados de produtos vetoriais, sendo preciso o conhecimento e aplicação da "regra da mão direita" para determinar os sentidos e direções desses vetores.

O giroscópio do experimento pode girar livremente em torno de três eixos: vertical, horizontal e o eixo de rotação do disco. Para permanecer em equilíbrio, tanto a resultante de forças quanto a resultante dos torques sobre o giroscópio devem ser nulas. Com a ausência de forças e torques externos, o giroscópio conserva seus vetores momento linear e angular.

Quando submetido a um torque externo o giroscópio reage de acordo com a seguinte relação: $\tau = dL/dt$. Essa expressão nos informa que a direção do momento angular é alterada na mesma direção do torque aplicado. Se o giroscópio gira sem atrito, o módulo do momento angular é constante e somente sua direção será alterada devido ao movimento de precessão que ocorre quando um peso é pendurado em uma das extremidades (situada a uma distância r do ponto de apoio) do giroscópio equilibrado girando em torno de seu próprio eixo. Sendo φ o ângulo de precessão do giroscópio em torno do eixo vertical, temos que:

Turma I

$$\left| \frac{dL}{dt} \right| = L \frac{d\emptyset}{dt} = \tau = mgr$$

E sendo Ω a velocidade angular de precessão e I o momento de inércia do giroscópio, temos:

$$\Omega = \frac{d\mathcal{O}}{dt} = \frac{mgr}{I_L} = \frac{mgr}{I_W} = \frac{\tau}{I_W}$$

Assim, dL apontará na mesma direção do vetor torque τ aplicado pela força do peso pendurado a uma distância r do ponto de apoio.

Para calcular o momento de inércia do giroscópio, foram usadas três técnicas diferentes: por meio da lei de conservação de energia mecânica, por meio da velocidade angular de precessão do mesmo, e pela fórmula teórica do momento de inércia de um disco.

Segundo a lei de conservação de energia de um sistema isolado, temos que:

$$mgh = \frac{I\omega^2}{2} + \frac{mv^2}{2} \quad (1)$$

Onde m é a massa do peso pendurado, g é o valor da aceleração da gravidade, h é a altura da qual "m" foi solto, l é o momento de inércia do disco e ω é sua velocidade angular. A partir de (1), podemos obter a relação (2), sendo rp o raio da polia, e $\omega = \frac{2\pi}{T}$, que se assemelha com a forma de uma equação de reta.

$$\frac{1}{T^2} = \frac{mgh}{2\pi^2 [I + m(rp)^2]}$$
 (2)

A partir da velocidade angular de precessão, por meio da relação $\Omega = \frac{mgl}{I\,\omega} \quad \text{(3), chegamos à fórmula} \quad \frac{1}{T\,.T_{_p}} = \frac{gl}{4\,\pi^2 I} \,\,, \,\, \text{que comparada com a}$ equação da reta encontrada a partir do gráfico feito no Grace, é possível encontrar l.

Por fim, o terceiro método utilizado para calcular o momento de inércia do disco foi a partir da fórmula teórica $I = \frac{1}{2 MR^2}$

Materiais utilizados:

- Giroscópio PASCO modelo ME-8960;
- Dois discos de rotação;
- Dois contrapesos de 900g;
- Um contrapeso de 30g;
- Uma massa adicional de 150g;
- Um motor elétrico para aceleração do disco;
- Um temporizador para medida do período do disco;
- Um cronômetro digital;
- Um conjunto com nove setas indicativas das grandezas vetoriais;
- Uma régua de 1m de comprimento;

Procedimentos:

Análise qualitativa do movimento do giroscópio

Análise das Forças Estáticas

O giroscópio foi ajustado para manter-se em equilíbrio mesmo com suas travas soltas. Para tal, foram afixados os vetores $\vec{P}C$, $\vec{P}D$ e \vec{N} no contrapeso, próximo ao centro do disco e na haste de sustentação, respectivamente.

Foi verificado que os pesos do contrapeso juntamente com o peso o disco formam um par ação-reação com a força normal, fazendo com que o peso e o contrapeso não transladam.

Análise dos torques

Uma vez que o giroscópio estava equilibrado, foi colocada uma massa adicional à posição 1 e em seguida na posição 12 e foi observado o torque resultante em cada um dos casos. Depois, o giroscópio foi girado em torno de seu eixo vertical no sentido horário e, posteriormente, no anti-horário, e foi verificado o que ocorre com o torque quando o sentido de rotação foi invertido.

Velocidade e momento angular

O disco foi girado no sentido anti-horário (olhando de frente) com o auxílio do motor. Foi verificado, então, que a velocidade angular $(\vec{\omega})$ e o momento angular (\vec{L}) são paralelos entre si e também são paralelos ao sentido positivo do eixo x do giroscópio.

Resposta dinâmica do giroscópio a torques externos

O disco do giroscópio foi girado no sentido anti-horário (de frente) e então giroscópio foi girado na horizontal e na vertical e então foi verificada a direção e o sentido da força de reação do giroscópio ao torque aplicado.

Posteriormente, foi invertido o sentido de rotação do disco e repetido o procedimento.

Movimento de Precessão

O giroscópio foi colocado para girar com a massa adicional colocada na extremidade dos discos. Depois, foi invertido o sentido de rotação do disco e repetido o processo.

Movimento de Nutação

O disco do giroscópio foi acelerado com o eixo horizontal inclinado 30º para baixo. Então, foi colocada uma leve massa adicional na posição 12. Interrompemos o movimento do giroscópio e repetimos o procedimento anterior. Porém, desta vez, ao soltar a massa adicional, o empurramos levemente na direção oposta ao de sua precessão.

O efeito de um segundo disco no giroscópio

Prendeu-se o giroscópio com a ajuda do eixo vertical e a braçadeira. Colocamos o segundo disco e um contrapeso na extremidade do eixo horizontal oposta aos discos de forma que o giroscópio ficasse balanceado. Foram girados, então, os dois discos no mesmo sentido e o giroscópio precedeu, como esperado. Ao girar os dois discos em sentidos opostos o giroscópio não precedeu

Parte Qualitativa

Determinação do Momento de Inércia usando a Lei da Conservação de Energia

Foram colocados quatro pesos de 100g cada, totalizando 400g, no suporte para pesos amarrando-o a um barbante. Fizemos então um laço solto no barbante para que pudesse ser ajustado posteriormente. Girando o disco, o enrolamos até que a altura entre o suporte de pesos e o chão fosse de 10cm. Preparado o contador, o peso foi solto, e assim que ele encostou no chão, o temporizador foi disparado e o período da rotação foi medido. O procedimento foi repetido, aumentando-se a altura entre o peso e o chão de 10 em 10cm até 80cm.

Determinação do Momento de Inércia usando a Velocidade Angular de Precessão

Giramos o disco do giroscópio em alta velocidade de rotação, seguramos seu eixo e dependuramos o suporte de pesos vazio na extremidade adjunta aos discos. Então, medimos a velocidade de rotação antes de soltar o eixo do giroscópio. Em seguida, o liberamos para precessar disparando o cronômetro simultaneamente. Ao completar ¼ de volta, paramos o cronômetro e anotamos o tempo(esse tempo foi posteriormente multiplicado por 4 para ser calculado o período). Repetimos este procedimento acrescentando 50g, 100g, 150g e 200g ao suporte.

Cálculo do Momento de Inércia

O valor do Momento de Inércia calculado a partir da fórmula $I=MR^2/2$ foi comparado com o valor medido.

Dados Experimentais:

Tabelas de Reação ao torque aplicado

Giro do disco no sentido anti-horário

Força aplicada na extremidade 1	Direção e sentido do torque aplicado	Direção e sentido da reação da extremidade 12	Direção de movimento da extremidade do vetor Momento Angular
$\overrightarrow{+x}$	→ +Z	→ +Z	→ + <u>Z</u>
$\overrightarrow{-x}$	$\overrightarrow{-z}$	$\overrightarrow{-z}$	→ -Z
→ +Z → -Z	$-\overrightarrow{x}$	$\overrightarrow{-x}$	$\overrightarrow{-x}$
$\overrightarrow{-z}$	$+\overrightarrow{x}$	$+\overrightarrow{x}$	$+\overrightarrow{x}$
Gire o suporte central no sentido horário (visto de cima)	→ - Z	→ -Z	→ -z
Gire o suporte central no sentido anti-horário (visto de cima)	→ +z	→ +z	→ + Z

Giro do disco no sentido horário

Força aplicada na extremidade 1	Direção e sentido do torque aplicado	Direção e sentido da reação da extremidade 12	Direção de movimento da extremidade do vetor Momento Angular
$+\overrightarrow{x}$	<u>→</u> + <u>Z</u>	$\overrightarrow{-z}$	+ 7
$\overrightarrow{-x}$	$\overrightarrow{-z}$	→ + <i>Z</i> ,	$\overrightarrow{-z}$
→ +Z → −Z	$\overrightarrow{-x}$	$+\overrightarrow{x}$	$\overrightarrow{-x}$
$\overrightarrow{-z}$	$+\overrightarrow{x}$	$\overrightarrow{-x}$	$\overrightarrow{+x}$
Gire o suporte central no sentido horário (visto de cima)	→ -z	→ +Z	→ -Z
Gire o suporte central no sentido anti-horário (visto de cima)	→ +z	→ -Z	→ +z

RESULTADOS DO MOVIMENTO DE PRECESSÃO

A partir da observação do experimento, foi verificado que a velocidade de precessão aumenta quando a velocidade angular do disco diminui. Verificouse também que quando se trocava o sentido da velocidade angular, mantendo o peso na mesma posição, o sentido da velocidade de precessão também se

alterava. Além disso, a velocidade de precessão também segue a regra da mão direita para multiplicação vetorial.

Movimento de Nutação

Figura 4: Movimentos de nutação possíveis

Foi observado que, quando soltamos a massa adicional levemente, sem aplicar qualquer torque manual no giroscópio, o movimento da extremidade próxima ao disco seguiu o movimento (C). Já quando foi aplicado um torque na direção contrária ao movimento de precessão, a extremidade do disco fez um movimento parecido com o movimento a do roteiro, descrito pela imagem (A).

Foi verificado que, quanto mais devagar o disco gira, o movimento de nutação tende para o movimento (A), e quanto mais rápido o disco gira, o movimento de nutação tende para o movimento (C), sendo assim o movimento (B) um intermediário entre os dois movimentos.

Em ângulos menores, a nutação fica mais parecida com o movimento (C). Em ângulos maiores, a nutação fica mais parecida com o movimento (A).

O EFEITO DE UM SEGUNDO DISCO NO GIROSCÓPIO

Foi verificado que, quando giramos os dois discos em sentidos diferentes, o giroscópio não precede, porque o momento angular de um disco se anula com o momento angular do outro disco.

CÁLCULOS DO MOMENTO DE INÉRCIA

Inverso do Período ao quadrado x altura de liberação do peso

Usando a Lei de Conservação de Energia

h(m)	T(ms)	T(s)	$\frac{1}{T^2}$	Erro Associado
0,1	720,4	0,7204	1,9269	0.0053
0,2	549,7	0,5497	3,3094	0.0120
0,3	448,3	0,4483	4,9758	0.0222
0,4	390	0,3900	6,5746	0.0337
0,5	347,5	0,3475	8,2811	0.0477
0,6	317,7	0,3177	9,9075	0.0624
0,7	294,3	0,2943	11,5457	0.0785
0,8	275,3	0,2753	13,1943	0.0959

Tabela 3 - Período em função da altura entre os pesos e o chão

Massa total dependurada: 423g. Momento de Inércia do Disco: 0,0125.

Erro associado: 0,0002.

Inverso do produto do período do disco com de precessão X massa

Usando a Velocidade Angular de Precessão

T disco (s)	T precessão (s)	Peso (Kg)	$\frac{1}{T \times T_p}$	Erro associado
0,07285	111,960	0,023	0,123	0.002
0,05614	44,160	0,073	0,403	0.007
0,06786	22,072	0,123	0,668	0.010
0,0685	18,324	0,173	0,797	0.012
0,05719	16,308	0,223	1,072	0.019

Tabela 4 - Período do Disco em função do peso dependurado

Momento de Inércia do Disco: 0,0127;

Erro associado: 0,0008;

Cálculo do Momento de Inércia

Calculado com a Lei de Conservação de	0,0,125±0,0002
Energia	
Calculado com a Velocidade Angular de	0, 0127±0,0008
Precessão	
Calculado usando a Fórmula Geral	0,0136 ±0,0012

Demais dados

- · Raio do Disco (m): 0,13;
- · Espessura do Disco (m): 0,022;
- · Densidade do Disco (g/cm 3): 1,375 ± 0,075;
- · Distância entre o eixo vertical e a massa adicional: 23,5cm;
- · Raio da Polia do Disco: 3,0cm.
- · Peso das Massas Adicionais:
 - o 150,4g;
 - o 50,1g;
 - o 99,4q;
 - o 3 massas de 99,8g.

Análise de dados:

Análise qualitativa do movimento do giroscópio:

Ao mudarmos a massa adicional do ponto (1) para o ponto (12), o vetor do torque resultante mudou o sentido; e ao girarmos o giroscópio no eixo vertical, no sentido anti-horário visto de cima, obtemos um torque com sentido para cima, e quando invertemos o sentido do movimento obtemos um torque com sentido para baixo.

Sem a massa adicional de 150g e com o giroscópio em ponto de equilíbrio, giramos o disco com o auxílio do motor elétrico no sentido anti-horário e, depois, horário. Entretanto, ao tentarmos movê-lo para "fora" desse equilíbrio, sendo no eixo vertical ou horizontal, percebemos que o giroscópio exerce uma força de reação para tentar se manter no mesmo local.

A partir da análise das tabelas, foi possível concluir que a direção do vetor momento angular sempre varia na mesma direção que o vetor do torque. Além disso, podemos verificar a veracidade dessa afirmação a partir da

equação teórica:
$$\tau = \frac{dL}{dt}$$

Para o disco do giroscópio girando no sentido anti-horário e com a massa adicional colocada na posição (12), obtivemos que o sentido da velocidade de precessão (Ω) foi para cima, e com a massa na posição (1), o sentido de Ω foi para baixo. Já para o disco girando no sentido horário, obtivemos o oposto: para a massa na posição (12), o sentido de Ω era para baixo; e quando colocada na posição (1), o sentido foi para cima.

Efetuando a rotação do disco em diferentes velocidades, fomos capazes de perceber que quanto maior for essa velocidade (w), menor é a velocidade de precessão (Ω). Essa conclusão pode ser observada pela equação $\tau = \Omega L$. Sendo o torque um valor constante, para obtermos uma menor velocidade de precessão, necessariamente precisamos de um momento angular maior, que é causado a partir de uma maior velocidade angular.

Movimento de Nutação

Na observação do movimento de nutação, observamos que ao soltar o giroscópio sem aplicar torque manual, o movimento da extremidade (1) se assemelha ao movimento "c" do roteiro. Quando aplicamos torque na direção contrária ao movimento de precessão, a precessão se assemelha com a imagem "a". Ao diminuir a velocidade do disco ou aumentar o ângulo de inclinação do mesmo, o movimento de nutação se aproxima de "a" também; e ao aumentar a velocidade de rotação ou diminuir o ângulo inicial, ele se aproxima de "c".

> O efeito de um segundo disco no giroscópio

Ao girar os discos em sentidos opostos com a massa adicional, percebemos que o giroscópio não precessa e não fica equilibrado, pois os momentos angulares se anulam.

· Análise qualntitativa do movimento do giroscópio:

Determinação do momento de inércia usando a lei da conservação da energia

Fazendo a regressão linear no gráfico (1), obtivemos a equação da reta y= 16,11x - 0,14. Comparando essa equação com a relação (2), percebemos que o coeficiente angular da reta é igual a $\frac{mg}{2\,\pi^2[I+m(rp)^2]} \ .$ Isolando "I" e substituindo os valores em (3), temos:

$$I = \frac{mg}{2\pi^2 a - mr^2}$$
 (3) $\rightarrow I = 0.0130 \text{ kg.m}^2$

O erro do momento de inércia pôde ser obtido a partir da derivada parcial da fórmula (3):

$$\Delta I = \left| \frac{g}{2\pi^2 a} - (rp)^2 \right| \Delta m + \left| \frac{-mg}{2\pi^2 a^2} \right| \Delta a + \left| -2mr \right| \Delta r \quad (4)$$

Substituindo os valores em (4), encontramos um valor aproximadamente igual a 2.4x10-4.

Determinação do momento de inércia usando a velocidade angular de precessão

A partir da equação (4), é possível concluir que $\frac{1}{T.T_p} = \frac{gl}{4\pi^2I}$. Comparando essa relação com a equação da reta encontrada pela regressão linear do gráfico, chegamos à conclusão de que o coeficiente angular da reta é igual a $\frac{gl}{4\pi^2I}$. Sendo assim:

$$I = 0.0127 \text{ kg.m}^2$$

O erro foi calculado a partir da seguinte fórmula:

$$\Delta I = \left| \frac{g}{4\pi^2 \alpha} \Delta I \right| + \left| \frac{-gl}{4\pi^2 \alpha^2} \right| \Delta \alpha$$

Com o valor de $\Delta\alpha$ sendo fornecido pelo programa Grace. Substituindo os valores obtidos, temos $\Delta I=7,52$. 10^{-4} .

Cálculo do momento de inércia

Para encontrar o valor da massa do disco, foi substituído os dados na fórmula da inércia:

$$I = \frac{MR^2}{2} \quad (5)$$

$$I = 0.0132 \text{ kg.m}^2$$

O erro foi obtido pela derivada parcial de (5). Assim, $\Delta I = \frac{R^2 \Delta M}{2} + RM \Delta R$ (6). Utilizando os valores obtidos, temos $\Delta I = 5,924.10^{-6}$.

Questões suplementares

A presença de atrito leva a uma dissipação de energia e com isso a energia mecânica não é conservada, e a variação dessa grandeza corresponde ao trabalho realizado pela força de atrito nos rolamentos dos eixos. Sendo o trabalho da força de atrito (τ) igual a variação da energia mecânica, temos a seguinte equação:

$$\tau = mgh = \frac{I\omega^2}{2} + \frac{mv^2}{2} = (I + mr^2) \frac{\omega^2}{2} = 2\pi^2 \frac{(1 + mr^2)}{T^2}$$

Então: $\frac{1}{T^2} = \frac{\tau h}{2 \, \pi^2 (1 + m r^2)}$. Com isso a equação apresentará um coeficiente linear dado por: $\frac{\tau}{2 \pi^2 (I + m r^2)}$. Então o gráfico que supostamente cruzaria a origem, não cruzará mais.

Conclusão:

Com o fim desse experimento fomos capazes de concluir que o giroscópio apresenta um torque resultante que varia de acordo com a força aplicada e com a direção e sentida da mesma e é nulo quando está em equilíbrio e sem ação de forças externas, mesmo com o disco rotacionando.

A "regra da mão direita" foi importante para a análise qualitativa do experimento, permitindo a correta determinação dos vetores envolvidos no movimento do giroscópio. Determinamos experimentalmente que a direção do vetor momento angular sempre varia em direção ao vetor do torque.

O giroscópio se mostra um importante instrumento de navegação, visto que seu eixo se mantém estável em uma orientação fixa devido a conservação do momento angular.

Concluímos também que os cálculos do momento de inercia encontrados de três maneiras diferentes resultaram em valores próximos, sendo que calculando pela fórmula I =MR22 é a mais exata. Assim, comparando-a com as outras, percebemos que a que mais se aproxima desse valor é a calculada pela lei de conservação de energia, que inclusive tem um erro percentual menor que o calculado por meio da velocidade angular.

Bibliografia:

Young, H. D.; Freedman, R. A.; Física 2 Termodinâmica e Ondas, 12ª ed., Pearson, 2008.

Halliday, Walker e Resnick, Fundamentos de Física - 2, Editora LTC.