Module -1	Teaching Hours
INTRODUCTION TO THE THEORY OF COMPUTATION AND FINITE AUTOMATA: Three basic concepts, Some Applications, Deterministic Finite Accepters, Nondeterministic Finite Accepters, Equivalence of Deterministic and Nondeterministic Finite Accepters, Reduction of the Number of States in Finite Automata. Text Book 1: Chapter 1:1.2 - 1.3, Chapter 2: 2.1 - 2.4	08 Hours

1 Introduction to the Theory of Computation

1.2 Three Basic Concepts

Languages

Grammars

Automata

1.3 Some Applications*

2 Finite Automata

2.1 Deterministic Finite Accepters

Deterministic Accepters and Transition Graphs

Languages and Dfa's

Regular Languages

2.2 Nondeterministic Finite Accepters

Definition of a Nondeterministic Accepter

Why Nondeterminism?

- 2.3 Equivalence of Deterministic and Nondeterministic Finite Accepters
- 2.4 Reduction of the Number of States in Finite Automata*

	TALFACE	XI
1	INTRODUCTION TO THE THEORY	
	OF COMPUTATION	1
	1.1 Mathematical Preliminaries and Notation	3
	Sets	3
	Functions and Relations	
	Graphs and Trees	
	Proof Techniques	
	1.2 Three Basic Concepts	17
	Languages	17
	Grammars	20
	Automata	26
	L3 Some Applications*	30
2	FINITE AUTOMATA	37
	2.1 Deterministic Finite Accepters	38
	Languages and Dia's	41
	Regular Languages	
	2.2 Nondeterministic Finite Accepters	51
	Definition of a Nondeterministic Accepter	51
	Why Nondeterminism?	55
	2.3 Equivalence of Deterministic and Nondeterministic	
	Finite Accepters	58
	2.4 Reduction of the Number of States in Finite Automata*	66

Three Basic concepts

Languages, Grammars & Automata

A language is a set of strings

String: A sequence of letters

Examples: "cat", "dog", "house", ...

Defined over an alphabet:

$$\Sigma = \{a, b, c, \dots, z\}$$

Alphabets and Strings

Alphabet: Finite nonempty set Σ of symbols, called the alphabet

Strings: Finite sequence of symbols from the alphabet Strings

For example, if the alphabet is $\Sigma=\{a,b\}$, then abab & aaabbba are strings on Σ . We use lowercase letters a, b,c,... for elements of Σ & u,v,w... for string names

ab

abba

baba

u = ab

v = bbbaaa

w = abba

aaabbbaabab

String Operations

$$w = a_1 a_2 \cdots a_n$$

$$v = b_1 b_2 \cdots b_m$$

Concatenation

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$

abbabbbaaa

$$w = a_1 a_2 \cdots a_n$$

ababaaabbb

Reverse

$$w^R = a_n \cdots a_2 a_1$$

bbbaaababa

String Length

$$w = a_1 a_2 \cdots a_n$$

|a|=1

Length:
$$|w| = n$$

Examples:
$$|abba| = 4$$

 $|aa| = 2$

Length of Concatenation

$$|uv| = |u| + |v|$$

Example:
$$u = aab$$
, $|u| = 3$
 $v = abaab$, $|v| = 5$

$$|uv| = |aababaab| = 8$$

 $|uv| = |u| + |v| = 3 + 5 = 8$

Empty String

Empty string: A string with no symbols and it is denoted by λ

$$|\lambda| = 0$$

Observations:

$$\lambda w = w\lambda = w$$

$$\lambda abba = abba\lambda = abba$$

Substring

Substring of string: a subsequence of consecutive characters

String	Substring	
<u>ab</u> bab	ab	
<u>abba</u> b	abba	
ab <u>b</u> ab	b	
abbab	bbab	

Prefix and Suffix

abbab

Prefixes Suffixes

abbab

a bbab

ab bab

abb ab

abba b

abbab λ

Another Operation

$$w^n = \underbrace{ww \cdots w}_n$$

Example:
$$(abba)^2 = abbaabba$$

Definition:
$$w^0 = \lambda$$

$$(abba)^0 = \lambda$$

The * Operation

 $\Sigma^*\colon$ the set of all possible strings from alphabet Σ

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$

The + Operation

 Σ^+ : the set of all possible strings from alphabet Σ except λ

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$

$$\Sigma^{+} = \Sigma^{*} - \lambda$$

$$\Sigma^{+} = \{a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

Languages

```
A language is any subset of \Sigma^* Example: \Sigma = \{a,b\}
Languages: \Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, \ldots\}
                 \{a,aa,aab\}
                 \{\lambda, abba, baba, aa, ab, aaaaaaa\}
```

Note that:

$$\emptyset = \{ \} \neq \{\lambda\}$$

$$|\{\ \}| = |\varnothing| = 0$$

$$|\{\lambda\}| = 1$$

String length
$$|\lambda| = 0$$

$$|\lambda| = 0$$

Another Example

An infinite language
$$L = \{a^n b^n : n \ge 0\}$$

$$\left. \begin{array}{c} \lambda \\ ab \\ aabb \end{array} \right\} \in L \qquad abb
otin L \\ aaaaaabbbbb \end{array}$$

Operations on Languages

The usual set operations

$${a,ab,aaaa} \cup {bb,ab} = {a,ab,bb,aaaa}$$

 ${a,ab,aaaa} \cap {bb,ab} = {ab}$
 ${a,ab,aaaa} - {bb,ab} = {a,aaaa}$

Complement:
$$\overline{L} = \Sigma^* - L$$

$$\overline{\{a,ba\}} = \{\lambda,b,aa,ab,bb,aaa,\ldots\}$$

Reverse

Definition:
$$L^R = \{w^R : w \in L\}$$

Examples:
$$\{ab, aab, baba\}^R = \{ba, baa, abab\}$$

$$L = \{a^n b^n : n \ge 0\}$$

$$L^R = \{b^n a^n : n \ge 0\}$$

Concatenation

Definition:
$$L_1L_2 = \{xy : x \in L_1, y \in L_2\}$$

Example: $\{a,ab,ba\}\{b,aa\}$

 $= \{ab, aaa, abb, abaa, bab, baaa\}$

Another Operation

Definition:
$$L^n = LL \cdots L$$

$${a,b}^3 = {a,b}{a,b}{a,b} =$$

 ${aaa,aab,aba,abb,baa,bab,bba,bbb}$

Special case:
$$L^0 = \{\lambda\}$$

$$\{a,bba,aaa\}^0 = \{\lambda\}$$

More Examples

$$L = \{a^n b^n : n \ge 0\}$$

$$L^{2} = \{a^{n}b^{n}a^{m}b^{m}: n, m \ge 0\}$$

$$aabbaaabbb \in L^2$$

Star-Closure (Kleene *)

Definition:
$$L^* = L^0 \cup L^1 \cup L^2 \cdots$$

Example:
$$\left\{a,bb\right\}* = \left\{\begin{matrix} \lambda,\\ a,bb,\\ aa,abb,bba,bbb,\\ aaa,aabb,abba,abbb,\ldots \end{matrix}\right\}$$

Positive Closure

Definition:
$$L^+ = L^1 \cup L^2 \cup \cdots$$

= $L^* - \{\lambda\}$

$$\{a,bb\}^{+} = \begin{cases} a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \dots \end{cases}$$