Inverse Problems in Geophysics Part 10: Probability and Likelihood

2. MGPY+MGIN

Thomas Günther thomas.guenther@geophysik.tu-freiberg.de

Recap

- linear problems: least-squares solution of (regularized) problem
- $oldsymbol{\bullet}$ non-linear problems: linearization of $f(m)\Rightarrow$ linear problem for $\Delta \mathbf{m}$ and $\Delta \mathbf{d} = \mathbf{d} \mathbf{f}(\mathbf{m})$
- grid search: systematic search through model space

Objective function for VES

Alternatives to grid search

(i) Monte Carlo search

draw random samples and accept them if the error is improved

undirected search (Newtons method is directed)

(i) Simulated annealing

decrease temperature controlling particle movements:

high T: undirected, low T: search in vicinity of current model

Monte Carlo vs. Simulated Annealing

Monte Carlo method

Simulated Annealing

Newtons method (Menke, 2012)

linearize with value, slope and curvature of Φ_d

Gauss-Newton minimization

- 1. Choose starting model \mathbf{m}^0 and set n=0
- 2. Compute model response $\mathbf{f}(\mathbf{m}^n)$
- 3. Compute sensitivity matrix S^n
- 4. Solve linearized subproblem $\mathbf{S}^n \Delta \mathbf{m}^n = \Delta \mathbf{d} = (\mathbf{d} \mathbf{f}(\mathbf{m}^n))$
- 5. Optimize line search parameter τ^n
- 6. Update model by $\mathbf{m}^{n+1} = \mathbf{m}^n + au^n \Delta \mathbf{m}^n$
- 7. If convergence quit, otherwise $n \leftarrow n+1$ & proceed with 2.

Computation of the sensitivity matrix

- analytically (derivation of the forward operator)
- transforming the PDE and its numerical solution
- perturbation method (brute force)

$$rac{\partial f_i(\mathbf{m})}{\partial m_j} pprox rac{f_i(\mathbf{m} + \delta_j \Delta m) - f_i(\mathbf{m})}{\Delta m}$$

with the Dirac vector $\delta_j = [0, \dots, 0, 1, 0, \dots, 0]^T$ \Rightarrow one full forward computation for every model parameter

Model transformation

Objective function for VES

To keep the parameters positive, we often invert for the logarithms.

If we invert for \hat{m} instead of m, we use the chain rule

$$rac{\partial f}{\partial \hat{m}} = rac{\partial f}{\partial m} \cdot rac{\partial m}{\partial \hat{m}} = rac{\partial f}{\partial m} / rac{\partial \hat{m}}{\partial m}$$

E.g.
$$\partial \log
ho/\partial
ho = 1/
ho$$

Data transformation

Objective function for VES

Often, measured data show a wide range so that we use the logarithm

If we invert \hat{d} instead of d, we use the chain rule

$$rac{\partial \hat{f}}{\partial m} = rac{\partial f}{\partial m} \cdot rac{\partial \hat{f}}{\partial f}$$

E.g.
$$\partial \log
ho^a/\partial
ho^a=1/
ho_a$$

Combined model and data transformation

Sensitivity
$$S_{ij}=rac{\partial
ho_i^a}{\partial
ho_j}$$

Data $d_i = \log
ho_i^a$, model parameter $m_i = \log
ho_j$

$$\Rightarrow$$
 Jacobian matrix $rac{\partial \hat{f}}{\partial \hat{m}} = rac{\partial f}{\partial m} \cdot rac{\partial \hat{f}}{\partial f} / rac{\partial \hat{m}}{\partial m}$

$$J_{ij} = rac{\partial \log
ho_i^a}{\partial \log
ho_j} = rac{\partial
ho_i^a}{\partial
ho_j} \cdot rac{
ho_j}{
ho_i^a}$$

Regularization

$$\Phi = (\mathbf{d} - \mathbf{f}(\mathbf{m}))^T (\mathbf{d} - \mathbf{f}(\mathbf{m})) + \lambda (\mathbf{c} - \mathbf{Cm})^T (\mathbf{c} - \mathbf{Cm})^T$$

$$b_i = rac{\partial \Phi}{\partial m_i} = -2 \mathbf{S}^T (\mathbf{d} - \mathbf{f}(\mathbf{m})) - 2 \lambda \mathbf{C}^T (\mathbf{c} - \mathbf{Cm})$$

$$B_{ij} = rac{\partial^2 \Phi}{\partial m_i \partial m_j} = rac{\partial b_i}{\partial m_j} pprox 2 \mathbf{S}^T \mathbf{S} + 2 \lambda \mathbf{C}^T \mathbf{C}$$

$$\Rightarrow (\mathbf{S}^T\mathbf{S} + \lambda \mathbf{C}^T\mathbf{C})\Delta \mathbf{m} = \mathbf{S}^T(\mathbf{d} - \mathbf{f}(\mathbf{m}^n)) + \lambda \mathbf{C}^T(\mathbf{c} - \mathbf{Cm})$$

Resolution matrices for non-linear problems

$$\mathbf{m}^{k+1} = \mathbf{m}^k + \mathbf{S}^{\dagger}(\mathbf{d} - \mathbf{f}(\mathbf{m})) + \mathbf{C}^{\dagger}\mathbf{C}(\mathbf{m}^0 - \mathbf{m}^k)$$

with

$$\mathbf{S}^{\dagger} = (\mathbf{S}^T\mathbf{S} + \lambda\mathbf{C}^T\mathbf{C})^{-1}\mathbf{S}^T$$

$$\mathbf{C}^{\dagger} = (\mathbf{S}^T\mathbf{S} + \lambda\mathbf{C}^T\mathbf{C})^{-1}\mathbf{C}^T$$

and their combination $\mathbf{S}^{\dagger}\mathbf{S}+\mathbf{C}^{\dagger}\mathbf{C}=\mathbf{I}$

Resolution matrices for non-linear problems

$$\mathbf{m}^{k+1} = \mathbf{m}^k + \mathbf{S}^{\dagger}(\mathbf{d} - \mathbf{f}(\mathbf{m})) + \mathbf{C}^{\dagger}\mathbf{C}(\mathbf{m}^0 - \mathbf{m}^k)$$

assuming we "come close", i.e. $\mathbf{m}^{est} = \mathbf{m}^{k+1}$ and $\Delta \mathbf{m}^k$ is small. With

$$\mathbf{d} = \mathbf{f}(\mathbf{m}^{true}) + \mathbf{n} = \mathbf{f}(\mathbf{m}^k) + \mathbf{S}(\mathbf{m}^{true} - \mathbf{m}^k) + \mathbf{n}$$

$$\mathbf{m}^{est} = \mathbf{m}^k + \mathbf{S}^{\dagger}\mathbf{S}(\mathbf{m}^{true} - \mathbf{m}^k) + \mathbf{C}^{\dagger}\mathbf{C}(\mathbf{m}^0 - \mathbf{m}^k) + \mathbf{S}^{\dagger}\mathbf{n}$$

$$\Rightarrow \mathbf{m}^{est} = \mathbf{m}^k + \mathbf{S}^{\dagger} \mathbf{S} \mathbf{m}^{true} - (\mathbf{S}^{\dagger} \mathbf{S} + \mathbf{C}^{\dagger} \mathbf{C}) \mathbf{m}^k + \mathbf{C}^{\dagger} \mathbf{C} \mathbf{m}^0 + \mathbf{S}^{\dagger} \mathbf{n}$$

$$\mathbf{m}^{est} = \mathbf{R}^{M}\mathbf{m}^{true} + (\mathbf{I} - \mathbf{R}^{M})\mathbf{m}^{0} + \mathbf{S}^{\dagger}\mathbf{n}^{0}$$

Data resolution for non-linear problems

$$egin{aligned} \mathbf{f}(\mathbf{m}^{k+1}) &= \mathbf{S}(\mathbf{S}^{\dagger}(\mathbf{f}(\mathbf{m}^{true}) + \mathbf{d} - \mathbf{f}(\mathbf{m}^{k}))) + \mathbf{C}^{\dagger}\mathbf{C}(\mathbf{m}^{0} - \mathbf{m}^{k}) \ \mathbf{f}(\mathbf{m}^{est}) &= \mathbf{R}^{D}\mathbf{f}(\mathbf{m}^{true}) + \mathbf{R}^{D}\mathbf{n} + (\mathbf{I} - \mathbf{R}^{D})\mathbf{f}(\mathbf{m}^{0}) \ \mathbf{f}(\mathbf{m}^{est}) &= \mathbf{R}^{D}(\mathbf{f}(\mathbf{m}^{true}) + \mathbf{n}) + (\mathbf{I} - \mathbf{R}^{D})\mathbf{f}(\mathbf{m}^{0}) \ \mathbf{f}(\mathbf{m}^{est}) &= \mathbf{R}^{D}\mathbf{d} + (\mathbf{I} - \mathbf{R}^{D})\mathbf{f}(\mathbf{m}^{0}) \end{aligned}$$

Response through data space & starting response through null space

Gradient methods

Sometimes, computing the Frechet derivatives is too expensive, but the misfit Φ_d and its derivatives $\partial \Phi_d/\partial m_i$ are easy to compute

(i) Steepest descent method

Go into the direction where Φ_d decreases:

$$u = -rac{oldsymbol{
abla}\Phi_d}{|oldsymbol{
abla}\Phi_d|}$$

Line search using Armijo rule

$$\mathbf{m}^{k+1} = \mathbf{m}^k + \alpha \nu$$

 $^{(i)}$ Armijo's rule to determine lpha

$$\Phi_d(\mathbf{m}^{k+1}) \leq \Phi_d(\mathbf{m}^k) + c lpha
u^T oldsymbol{
abla} \Phi_d$$

- *c*-empirical constant, typically 1e-4
- ullet start with large lpha and decrease until rule is fulfilled

Gradient vs. Newton

Gradient method

Newtons method

Monte Carlo vs. Simulated Annealing

Monte Carlo method

Simulated Annealing

Probability and likelihood

random variables: probability through many repetitions

maximum p(d) is most likely

expectation: $\langle d \rangle = \int d \cdot p(d) \, \mathrm{d}d$

Probability density function

Variance

$$\sigma^2 = \int (d - \langle d
angle)^2 p(d) \, \mathrm{d}d$$

 σ is a measure of the width of the distribution

related to standard deviation and mean of sampling

$$\sigma_{est}^2 = rac{1}{N-1} \sum_{i=1}^N (d_i - \langle d
angle)^2 \quad ext{with} \quad \langle d
angle = rac{1}{N} \sum_{i=1}^N d_i$$

Correlated data

independent: $p(\mathbf{d}) = p(d_1)p(d_2)\dots p(d_N)$

uncorrelated data (Menke, 2012)

correlated data (Menke, 2012)

Covariance

(measure of correlation between data)

$$\mathrm{cov}(d_1,d_2) = \int\!\int (d_1 - \langle d_1
angle) (d_2 - \langle d_2
angle) p(d_1,d_2) \, \mathrm{d}d_1 \, \mathrm{d}d_2$$

$$\langle d_i
angle = \int \ldots \int d_i p(\mathbf{d}) \, \mathrm{d} d_1 \ldots \mathrm{d} d_N$$

Covariance propagation

Linear problem $\mathbf{m} = \mathbf{M}\mathbf{d}$, e.g. $\mathbf{m} = \mathbf{G}^{\dagger}\mathbf{d}$

Mean value $\langle \mathbf{m}
angle = \mathbf{M} \, \langle \mathbf{d}
angle + \mathbf{n}$ and covariance

$$ext{cov}(\mathbf{m}) = \mathbf{M} ext{cov}(\mathbf{d}) \mathbf{M}^T$$

Least-squares: $\mathbf{M} = (\mathbf{G}^T\mathbf{G})^{-1}\mathbf{G}^T$, uncorrelated data: $\mathrm{cov}(\mathbf{d}) = \sigma_d^2\mathbf{I}$

$$\mathbf{E}\Rightarrow \mathrm{cov}(\mathbf{m}) = (\mathbf{G}^T\mathbf{G})^{-1}\mathbf{G}^T\sigma_d^2\mathbf{I}((\mathbf{G}^T\mathbf{G})^{-1}\mathbf{G}^T)^T = \sigma_d^2(\mathbf{G}^T\mathbf{G})^{-1}\mathbf{G}^T$$

A priori knowledge

accurate prior model (Menke, 2012)

accurate data (Menke, 2012)

Bayes' theorem

Onditional probability

$$p(d_1|d_2)=rac{p(d_1,d_2)}{p(d_2)}$$

$$p(\mathbf{m}|\mathbf{d})p(\mathbf{d}) = p(\mathbf{d}|\mathbf{m})p(\mathbf{m})$$

$$p(\mathbf{m}|\mathbf{d}) = rac{p(\mathbf{d}|\mathbf{m})p(\mathbf{m})}{p(\mathbf{d})}$$

A priori (Menke, 2012)

A: a priori pdf $p_a(\mathbf{m}, \mathbf{d})$, B: conditional pdf $p_g(\mathbf{m}, \mathbf{g})$, C: product $p_t(\mathbf{m}, \mathbf{d}) = p_a(\mathbf{m}, \mathbf{d})p_g(\mathbf{m}, \mathbf{d})$, white

A priori and

Monte Carlo methods

Monte Carlos search: randomly draw solutions from grid

Markow-Chain-Monte-Carlo

Metropolis-Hastings