COMPUTER SYSTEMS AND ORGANIZATION Part 1

Daniel G. Graham Ph.D.

- 1. Transistor Fundamentals
- 2. Build Gates from transistors
- 3. Using a breadboard to build a gate
- 4. Combine Gates to build logic circuits
- 5. Express logic circuits as equations

SKILLS

- By the end lecture, you should be able to look at the circuit on the right and tell what it will output given different inputs
- You should be able to express the circuit as a Boolean logic equation
- 3. Understand how to combine gates to implement a Boolean logic equation.
- Combine transistors to implement a gate or logic circuit.

RESOURCES

Beej's Guide to C Programming

Brian "Beej Jorgensen" Hall

Digital Design and Computer Architecture

RISC-V Edition

Sarah L Harris **David Harris**

Linux

Risc-V

Data path, Stages

Nand, NOR, NOT ..

PNP NPN Transistors

Electrons

TRANSISTOR

THIS WERE WE'LL START OUR JOURNEY

Metal oxide silicon (MOS) transistors:

- Polysilicon (used to be metal) gate
- Oxide (silicon dioxide) insulator
- Doped silicon

DOPED SILICON

- Pure silicon is a poor conductor (no free charges)
- Doped silicon is a good conductor (free charges)
 - n-type (free *n*egative charges, electrons)
 - p-type (free positive charges, holes)

Gate = 0

OFF (no connection between source and drain)

Gate = 1

ON (channel between source and drain)

THINKING OF TRANSISTORS AS SWITCHES

CAN WE USER TRANSISTORS TO BUILD GATES

Questions we need to answer

- What are logic gates?
- How do logic gates work?
- Are there different types of gates?

WHAT ARE LOGIC GATES

- Logic gates are circuits that perform logic functions
 - such as AND, OR, (NOT), etc
- Logic gates have different symbols and their behavior is normally described using a truth table.

•

$$Y = AB$$

_A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

BUILD AN AND GATE FROM TRANSISTORS

AND GATE CIRCUIT DIAGRAM

AND

$$Y = AB$$

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

SINGLE INPUT VS TWO INPUT GATES

NOT

$$Y = \overline{A}$$

OR

$$Y = A + B$$

	A	В	Y
•	0	0	
	0	1	
	1	0	
	1	1	

MORE LOGIC GATES

XOR

$$Y = A \oplus B$$

16

NAND

$$Y = \overline{AB}$$

NOR

$$Y = \overline{A + B}$$

Α	В	Υ
0	0	
0	1	
1	0	
1	1	

XNOR

$$Y = \overline{A \oplus B}$$

Α	В	Y
0	0	
0	1	
1	0	
1	1	

NPN (NMOS) VS PNP (PMOS) TRANSISTORS

NMOS VS PMOS

$$g = 0$$

g = 1

nMOS

pMOS

PULL UP PULL DOWN NETWORKS

- nMOS: pass good 0's, so connect source to GND
- **pMOS:** pass good 1's, so connect source to V_{DD}

NOT GATE

NOT

$$Y = \overline{A}$$

A	P1	N1	Y
0			
1			

NAND

$$Y = \overline{AB}$$

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

\boldsymbol{A}	B	P1	P2	N1	N2	Y
0	0					
0	1					
1	0					
1	1					

\overline{A}	B	C	Q
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

WHAT IS THE OUTPUT OF THIS CIRCUIT?

EXPRESS CIRCUIT AS AN EQUATION

Write the equation representing the circuit. Note I replaced the OR with a NOR.

EXAM QUESTION

Fill in the following truth table for this circuit:

A	В	C	D
0	0	0	
0	0	1	
0	1	0	
0	1	1	

SPRING 2022 Midterm 1

CREATIVE QUESTIONS

NAND GATES ARE TURNING COMPLETE

It is possible to implement every other gate by using a NAND. You can implement the complete RISC-V architecture using only NAND gates. What a beautiful building block right ©

Hint: Start by asking NOT what a NAND gate can do for you but what you can do with a NAND gate.

Use a NAND gate to implement the following gates:

- 1. NOT
- 2. AND
- 3. OR
- 4. NOR
- 5. XOR

