Synthetic Biology

한국생명공학연구원 합성생물학전문연구단

김하성

Complexity in biology

What about in physics and chemistry?

180 element in the periodic table

DNA-RNA-Protein-Cell-Organism-Biome

Discovery vs. Invention

1665년 로버트 훅의『마이크로그라피아』

https://time.com/3517011/thomas-edison/

A complex system with assembled (DNA) parts

Blueprint

https://henryfordandfordautomotive.weebly.com/the-ford-model-t.html

Blueprint in Synthetic Biology

K. oxytoca nitrogen fixation gene cluster

Christoph Voigt (MIT) 2016 SB7

2016 Science

DNA Parts SBOL (synthetic biology open language) http://sbolstandard.org/

Nucleic Acid Glyphs

iGEM wiki tools search PRODUCTION 2017 SERVER login

Registry of Standard Biological Parts

tools catalog repository assembly protocols help search

Promoters/Catalog/Ecoli/Positive

All the promoters on this page are *E. coli* promoters that are **positively regulated** meaning that increased levels of at least one transcription factor (other than the sigma factor) will increase the activity of these promoters.

Contents

1 Positively regulated *E. coli* σ^{70} promoters 2 Positively regulated *E. coli* σ^{8} promoters

3 Positively regulated *E. coli* σ^{32} promoters

4 Positively regulated *E. coli* σ⁵⁴ promoters

Positively regulated *E. coli* σ⁷⁰ promoters

This section lists promoters that are recognized by $E.\ coli\ \sigma^{70}\ RNAP.\ \sigma^{70}$ is the major $E.\ coli\ sigma$ factor so there should be RNAP present to transcribe these promoters under most growth conditions (although maximally during exponential growth).

Name	Description	Promoter Sequence	Positive Regulators	Negative Regulators	Length	Doc	Status
BBa_I0500	Inducible pBad/araC promoter	gtttctccatacccgtttttttgggctagc			1210	3742	In stock
BBa_I1051	Lux cassette right promoter	tgttatagtcgaatacctctggcggtgata			68	1263	It's complicated
BBa_I12006	Modified lamdba Prm promoter (repressed by 434 cl)	attacaaactttcttgtatagatttaacgt			82	798	In stock
BBa_I12007	Modified lambda Prm promoter (OR-3 obliterated)	atttataaatagtggtgatagatttaacgt			82	828	In stock
BBa_I12036	Modified lamdba Prm promoter (cooperative repression by 434 cl)	tttcttgtatagatttacaatgtatcttgt			91	927	In stock
BBa_I12040	Modified lambda P(RM) promoter: -10 region from P(L) and cooperatively repressed by 434 cl	tttcttgtagatacttacaatgtatcttgt			91	1018	In stock
BBa_I12210	plac Or2-62 (positive)	ctttatgcttccggctcgtatgttgtgtgg			70	939	In stock
BBa_I13406	Pbad/AraC with extra REN sites	ttttttgggctagcaagctttaccatggat			1226	817	Not in stock
BBa_I13453	Pbad promoter	tgtttctccataccgtttttttgggctagc			130	3744	In stock

DNA assembly

Table 1 Su	mmary of	physical	l standards in	DNA assembly
--------------	----------	----------	----------------	--------------

idote i Sai iiii	y 0. pyo.o									
Physical standards	Underlying methodology					Limitations		Workflow		
	Restriction and ligation	HE	Type IIS RE	SSR	Long overlap	PCR required*	Forbidden restriction sites [‡]	Number of assembly tiers	Multipart assembly§	Hierarchical assembly
BioBrick ¹³ and BglBrick ¹⁵	✓					No	4	1	No	Yes
iBrick ²¹		√				No	0	1	No	Yes
HVAS ²²		✓		/		No	0	2	Yes; no	No
MoClo ²⁹			✓			No	3	2	Yes; yes	Yes
GoldenBraid 2.0 (REF. 30)			✓			No	3	≥2	Yes; no	Yes
GreenGate ³²			✓			No	1	2	Yes; no	Yes
Binder et al. ³¹			✓			No	3	2	Yes; yes	Yes
PSA ³⁷			✓			No	0	1	No	Yes
DNA assembler ⁵³					✓	Yes	0	2	Yes; yes	No
MODAL ⁹					✓	Yes	0	1	Yes	No
BASIC ⁵⁸			✓		✓	No	1	1	Yes	Yes
Torella et al.55¶	✓				✓	No	≥4#	2	No; yes	No
Guye et al. ⁵⁹		✓		/	✓	No	0	2	Yes; yes	Yes
PaperClip ⁵⁶					✓	No	0	1	Yes	No

Casini, A., Storch, M., Baldwin, G. S., & Ellis, T. (2015). Bricks and blueprints: Methods and standards for DNA assembly. Nature Reviews Molecular Cell Biology, 16(9), 568–576. https://doi.org/10.1038/nrm4014

What to make?

How to make?

- Too many parts (none characterized)
- Laborious DNA assembly

 10^{82} vs. 20^{170} vs. $10^{7284000}$

2003 an independent study course at (MIT)

2015 - 259 teams,

2016 – 299 teams,

2017 – 312 teams,

2018 – 343 teams, 5,000 participants (3,000 students), 45~50 countries

DNA parts

Basic Components (Parts)

Promoters (?): A promoter is a DNA s of the downstream DNA sequence.

Ribosome Binding Site/about (?): A ribosomes can bind and initiate translar

Protein domains (?): Protein domains up a protein coding sequence. Some p target the protein for cleavage, or enab

Protein coding sequences (?): Protei Note that some protein coding sequenc protein from start codon to stop codon. also included here.

Translational units (?): Translational in They begin at the site of translational in codon.

Terminators (?): A terminator is an RN causes transcription to stop.

DNA (?): DNA parts provide functionali sites, spacers, recombination sites, co

Plasmid backbones (?): A plasmid is base pairs that replicate within the cell plasmid sequence beginning with the B and ending with the BioBrick prefix.

Plasmids (?): A plasmid is a circular, that replicate within the cell independer propagate or assemble plasmid backbo Registry that are only available as circuthat these plasmids largely do not conf

Primers (?): A primer is a short singlesequencing. Although primers are not ϵ primer sequences here.

Composite parts (?): Composite parts

http://sbolstandard.org/

BioBrick, iGEM Since 2003, 2015 - 259 teams, 2700 students Over 1200 high-quality parts / 20,000 documents

Genetic circuits

(A) Single input / Invertor

(B) Multi input

(C) Toggle switch

(D) Autoregulator

(E) Repressilator / oscillator

https://2020.igem.org/Main_Page

