Project Report

3D Cubes

Done by:

Firas Al_Azizy
Heba Aldobai
Nashwan Taha
Salman Alhemyari
Morad Alshibani
Mohammed Alriashi
Nada Albahsani

Major: Computer Science

Sem: 4

Supervisor: Dr. Ameen

Shayea

Part one:	3
Introduction:	3
Objective:	3
Limitation:	3
Used software:	3
Used Libraries:	3
Part two:	3
Simulation Architecture:	
General definition:	4
Entity:	4
Motion:	4
Lighting:	4
Part four:	5
Simulation:	5
1 dice face:	5
1 cube :	5
3 Cubes:	6
Part five:	7
Conclusion:	7

Part one:

Introduction:

Computer Graphics were invented and developed to mainly make a representation of the real-world environments and objects by making a mathematical abstraction of it to manipulate it due to the interval real world variables like (motion, lighting, perspectives, projections, materials ...etc.)

Objective:

The main objectives of this Graphical simulation are:

- Create a real-world 3d simulation of a dice.
- Make the dice move in different ways like if is thrown.
- Make a simple lighting on the dice.

Limitation:

Here are some limits of the simulation.

- Lighting is only (diffuse) there is not any (Specular areas).
- Can not control the rotation of the cubes with keys.

Used software:

Java

Used Libraries:

- slick-util.
- lwjgl util.
- lwjgl.

Part two:

Simulation Architecture:

General definition:

Entity:

6 images of different dots assembled in the form of a cube to represent the dice faces

Motion:

Giving movement to the dice entity by:

- Rotation on different axis's(X,Y,Z).
- Camera movement which can be controlled by the following keys:

```
KEY_W : move in the direction of z+ Forward

KEY_D : move in the direction of x- Right

KEY_A : move in the direction of x+ Left

KEY_S : move in the direction of z- Backward

KEY_E : move in the direction of y- Down

KEY_Q : move in the direction of y+ Up
```

Lighting:

Diffuse lighting can be turned on by pressing the **KEY_L** (if it is not turned on , the dice entity will remain dark with out any dots visible to the eye)

Part four:

Simulation:

1 dice face:

1 cube:

vertice1 = { indice1 = { textureCoord1= {0,0, -0.5f, 0.5f, 0,0,1,3, 0,0.6f, -0.5f,-0.5f,0, 0.6f, 0.6f, 3,1,2, }; 0.5f,-0.5f,0, 0.6f,0, 0.5f, 0.5f, 0, $indice2 = {$ 0,0, -0.5f,0.5f,1, 4,5,7, 0,0.6f, -0.5f,-0.5f,1, 7,5,6,}; 0.6f, 0.6f, 0.5f,-0.5f,1, 0.6f,0, 0.5f,0.5f,1, $\underline{indice3} = \{$ 0,0, 0.5f,0.5f,0, 8,9,11, 0,0.6f, 0.5f,-0.5f,0, 11,9,10,}; 0.6f,0.6f, 0.5f,-0.5f,1, 0.6f,0, 0.5f, 0.5f, 1,indice4 = { 0,0, -0.5f,0.5f,0, 0,0.6f, 12,13,15, -0.5f,-0.5f,0, 0.6f, 0.6f, 15,13,14,}; -0.5f,-0.5f,1, 0.6f,0, -0.5f,0.5f,1, indice5 = { 0,0, -0.5f, 0.5f, 1,16,17,19, 0,0.6f, -0.5f, 0.5f, 0,19,17,18,}; 0.6f, 0.6f, 0.5f, 0.5f, 0, 0.6f,0, 0.5f, 0.5f, 1, $indice6 = {$ 0,0, -0.5f,-0.5f,1, 20,21,23, 0,0.6f, -0.5f,-0.5f,0, 0.6f, 0.6f, 23,21,22}; 0.5f,-0.5f,0, 0.6f,0}; 0.5f,-0.5f,1 };

3 Cubes:

indice1 = {	textureCoord 0,1,3, 3,1,2, };	d1= {0,0, 0,0.6f, 0.6f,0.6f, 0.6f,0,	Left cube = { -2f,-1f,0, -2f,-2f,0, -1f,-2f,0, -1f,-1f,0,	Mid cube = { -0.5f,0.5f,0, -0.5f,-0.5f,0, 0.5f,-0.5f,0, 0.5f,0.5f,0,	Right cube = { 1.5f,2.5f,0, 1.5f,1.5f,0, 2.5f,1.5f,0, 2.5f,2.5f,0,
<pre>indice2 = {</pre>	4,5,7, 7,5,6,};	0,0, 0,0.6f, 0.6f,0.6f, 0.6f,0,	-2f,-1f,1, -2f,-2f,1, -1f,-2f,1, -1f,-1f,1,	-0.5f,0.5f,1, -0.5f,-0.5f,1, 0.5f,-0.5f,1, 0.5f,0.5f,1,	1.5f,2.5f,1, 1.5f,1.5f,1, 2.5f,1.5f,1, 2.5f,2.5f,1,
<pre>indice3 = {</pre>	8,9,11, 11,9,10,};	0,0, 0,0.6f, 0.6f,0.6f, 0.6f,0,	-1f,-1f,0, -1f,-2f,0, -1f,-2f,1, -1f,-1f,1,	0.5f,0.5f,0, 0.5f,-0.5f,0, 0.5f,-0.5f,1, 0.5f,0.5f,1,	2.5f,2.5f,0, 2.5f,1.5f,0, 2.5f,1.5f,1, 2.5f,2.5f,1,
<u>indice4</u> = {	12,13,15, 15,13,14,};	0,0, 0,0.6f, 0.6f,0.6f, 0.6f,0,	-2f,-1f,0, -2f,-2f,0, -2f,-2f,1, -2f,-1f,1,	-0.5f,0.5f,0, -0.5f,-0.5f,0, -0.5f,-0.5f,1, -0.5f,0.5f,1,	1.5f,2.5f,0, 1.5f,1.5f,0, 1.5f,1.5f,1, 1.5f,2.5f,1,
<u>indice5</u> = {	16,17,19, 19,17,18,};	0,0, 0,0.6f, 0.6f,0.6f, 0.6f,0,	-2f,-1f,1, -2f,-1f,0, -1f,-1f,0, -1f,-1f,1,	-0.5f,0.5f,1, -0.5f,0.5f,0, 0.5f,0.5f,0, 0.5f,0.5f,1,	1.5f,2.5f,1, 1.5f,2.5f,0, 2.5f,2.5f,0, 2.5f,2.5f,1,
<u>indice6</u> = {	20,21,23, 23,21,22};	0,0, 0,0.6f, 0.6f,0.6f, 0.6f,0};	-2f,-2f,1, -2f,-2f,0, -1f,-2f,0, -1f,-2f,1};	-0.5f,-0.5f,1, -0.5f,-0.5f,0, 0.5f,-0.5f,0, 0.5f,-0.5f,1 };	1.5f,1.5f,1, 1.5f,1.5f,0, 2.5f,1.5f,0, 2.5f,1.5f,1 };

Right cube = Translation of Mid cube by (2,2)

Left cube = Translation of Right cube by (-3.5, -3.5)

Mid cube Rotates on the x axis(1, 0, 0)

Right cube Rotates on the y axis(0, 1, 0)

Left cube Rotates on the z axis (0, 0, 1)

Part five:

Conclusion:

3d cubes (dices movement simulation) is actually a powerful software which calculates and processes a lot of mathematical variables to output such a beautiful representation of a real world entity made of simple images and prepectives.

This simulation was created by CS.TEAM if you would like to contact us for more details here is the available email: cs.team@gmail.com. we will be pleasure to hear your opinion and answer your questions.

Thank you.