

Programmazione Lineare: Introduzione

Alessandro Hill

Basato sul materiale di <u>Daniele Vigo (D.E.I.) & Marco Boschetti (D.M.)</u>. rev. 2.1(AH) – 2024

Programmazione Lineare

Def.: (F, φ) è un problema di Programmazione Lineare (LP, PL) se

• la funzione obiettivo φ è lineare

Es.
$$\varphi(x) = c^T x = c_1 x_1 + c_2 x_2 + ... + c_n x_n$$

• la <u>regione ammissibile</u> $F \subseteq \mathbb{R}^n$ è definita da

$$g_i(x) \le 0, h_j(x) = 0 \quad (i = 1, ..., m; j = 1, ..., p)$$

con $g_i, h_j : \mathbb{R}^n \to \mathbb{R}$ lineare $\forall i \in \forall j$

Es.
$$a_{i1} x_1 + a_{i2} x_2 + ... + a_{in} x_n \ge d_i$$

Forma matriciale

 Normalmente il problema si esprime in forma matriciale

$$min c^T x$$

$$Ax \ge d$$

$$x \ge 0$$

Nella programmazione lineare, l'ottimizzazione si riduce a trovare il miglior punto tra un insieme finito di vertici del poliedro che rappresenta la regione ammissibile, rendendo il problema un tipo di problema combinatorio.

Regione ammissibile di PL

F è un insieme convesso (poliedro)

Questo insieme convesso è rappresentato graficamente come un poliedro (una figura geometrica tridimensionale o più generica, un politopo in più dimensioni).

Anche se la regione ammissibile può contenere infiniti punti, per determinare la soluzione ottimale x* (massimizzare o minimizzare una funzione obiettivo lineare), è sufficiente esaminare un numero finito di punti. Questi punti sono i vertici del poliedro. La teoria della programmazione lineare afferma che la soluzione ottimale si trova sempre in uno dei vertici della regione ammissibile.

il numero di $x \in F$ da esaminare per determinare x^* è un numero finito (\equiv vertici del poliedro)

⇒ problema combinatorio

Il fatto che bisogna esaminare i vertici del poliedro per trovare la soluzione ottimale implica che il problema ha una natura combinatoria. Questo perché i vertici rappresentano combinazioni specifiche delle soluzioni dove alcuni vincoli diventano equazioni di uguaglianza. La ricerca della soluzione ottimale consiste, quindi, nel valutare queste combinazioni di vertici.

Esempio

Es. 1: Produzione di sedie (1)

- 2 prodotti:
 - Sedia in Legno (SL)
 - Sedia in Alluminio (SA)
- 3 reparti:
 - Lavorazione parti in Legno (RL)
 - Lavorazione parti in Alluminio (RA)
 - Lavorazione parti in Tessuto (RT)

Produzione di sedie (2)

- Tempi di Produzione (min. per pezzo)
- Ricavo netto (Euro per pezzo)

• Disponibilità reparti (min. per periodo)

	RL	RA	RT	Ricavo
SL	10	-	30	30
SA	-	20	20	50
D.	40	120	180	

Formulazione del problema LP (1)

- 0. Capire il problema.
- 1. Individuare le variabili decisionali.
- 2. Definire la funzione obiettivo come combinazione delle variabili decisionali.
- 3. Definire i vincoli come combinazione delle variabili.

1. Definizione e 2. Variabili

- Dati:
 - Tempi di Produzione (min. per pezzo)
 - Disponibilità reparti (min. per periodo)
 - Ricavo netto (Euro per pezzo)

Supponendo di poter vendere tutta la produzione quante sedie di ciascun tipo devono essere prodotte per massimizzare il ricavo ?

- Variabili decisionali:
 - x_1 = n. di sedie di legno prodotte in un periodo
 - x_2 = n. di sedie di alluminio prodotte in un periodo
 - x_1 ed x_2 possono essere frazionarie

3. Funzione obiettivo

Profitto per unità di prodotto:

$$\max z = 30 x_1 + 50 x_2$$

4. Vincoli

Consumo tempo per unità di prodotto:

Reparto SL SA Disp.

RL 10 - 40

RA - 20 120

RT 30 20 180

max
$$z = 30 x_1 + 50 x_2$$

(RL) $10 x_1 \le 40$

(RA) $20 x_2 \le 120$

(RT) $30 x_1 + 20 x_2 \le 180$

5. Upper e lower bound

- valori negativi delle x privi di senso
- vincoli di non negatività delle variabili:

max
$$z = 30 x_1 + 50 x_2$$

RL) $10 x_1 \le 40$
RA) $20 x_2 \le 120$
RT) $30 x_1 + 20 x_2 \le 180$
 $x_1, x_2 \ge 0$

Modello LP completo

- stabilità numerica degli algoritmi:
- coefficienti interi e piccoli in valore assoluto

max	3 x ₁ +	$5 x_2$		
RL)	<i>x</i> ₁		<u><</u>	4
RA)		2 x ₂	<	12
RT)	3 x ₁ +	$2 x_2$	\leq	18
	X_1 ,	X_2	<u>></u>	0

Es. 2: Produzione di vasche (1)

 Un'azienza produce due tipi di vasche: Blue Tornado e Hot Spring

	BT	HS_
Motore	1	1
Lavoro	9 ore	6 ore
Tubazione	12 metri	16 metri
Profitto Unitario	€350	€300

 sono disponibili: 200 motori, 1566 ore di lavoro, e 2880 metri di tubazione

Modello LP

max
$$350 x_1 + 300 x_2$$

s.t. $1 x_1 + 1 x_2 \le 200$
 $9 x_1 + 6 x_2 \le 1566$
 $12 x_1 + 16 x_2 \le 2880$
 $x_1 \ge 0$
 $x_2 \ge 0$

Problemi di Mix di Produzione

- *n* prodotti, *m* risorse (materie prime, macchine ...)
- a_{ij} quantità della risorsa i necessaria per produrre 1 unità del prodotto j (i=1,...,m; j=1,...,n)
- d_i quantitativo di risorsa i (i=1,...,m) disponibile
- r_i ricavo per 1 unità del prodotto j (j=1,...,n)
- x_j quantità del prodotto j da produrre (j=1,...,n)

$$\max r^T x$$

$$Ax \leq d$$

$$x \ge 0$$

Es. 3: Problema della dieta

... per cani e gatti

	Alimenti (contenuto g/Kg)			
Sostanze	A1	A2	A3	
Proteine	500	300	300	
Grassi	300	300	100	
Carboidrati	0	100	200	

Contenuto
minimo
(g)
800
400
2000

Costo (€/Kg)	5	2	1
Variabili (Kg)	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃

Modello LP

 x_1 , x_2 , x_3 : Kg di A2, A2, A3 da acquistare

min
$$z = 5x_1 + 2x_2 + x_3$$

s.t. $5x_1 + 3x_2 + 3x_3 \ge 8$
 $3x_1 + 3x_2 + x_3 \ge 4$
 $x_2 + 2x_3 \ge 20$
 $x_1, x_2, x_3 \ge 0$

Problema della dieta (generale)

- n alimenti, m sostanze nutritive
- a_{ij} quantità della sostanza i in 1 unità dell'alimento j (i=1,...,m; j=1,...,n)
- d_i fabbisogno della sostanza i (i=1,...,m)
- c_i costo 1 unità dell' alimento j (j=1,...,n)
- x_j quantità dell'alimento j da acquistare (j=1,...,n)
 min c^Tx

$$Ax \ge d$$

$$x \ge 0$$

Soluzione LP: Approccio intuitivo

- Blue Tornado (x_1) ha un profitto unitario più alto
 - conviene produrne il maggior numero possibile st.

• Ponendo
$$x_2 = 0$$

- Vincolo 1:
- x_1 <= 200

- Vincolo 2: $9 x_1 <= 1566$
- o $x_1 \le 174$

- Vincolo 3:
- $12 x_1 <= 2880$
- o $x_1 \le 240$
- Il massimo valore di x₁ è 174 e il profitto totale è €350*174 + €300*0 = €60900
- Questa soluzione è ammissibile: è anche ottima?
- No! $(x_1 = 122, x_2 = 78, \text{è amm. e vale } €66100)$

 $1 x_2 \leq 200$ $6 x_2 \leq 1566$

 $12 x_1 + 16 x_2 \le 2880$

Soluzione LP: Approccio Grafico

- I vincoli di un problema LP definiscono la sua regione ammissibile.
- Il punto migliore nella regione ammissibile è la soluzione ottima per il problema.

 Per problemi LP con 2 (o 3) variabili, è possibile disegnare la regione ammissibile e trovare la soluzione ottima.

Interpretazione geometrica di LP

 F è l'intersezione di insiemi convessi associati ai vincoli

$$H = \{ x \in R^n : a^T x = d \}$$

 $S = \{ x \in R^n : a^T x \le d \}$

 F è un insieme convesso intersezione di un numero finito di insiemi convessi definiti dalle relazioni lineari: poliedro convesso (se limitato: politopo)

Equazioni Lineari

$$H=\{x \in R^n : a^T x = d\}$$
 è un iperpiano

$$a_1x_1 + a_2x_2 = d$$

in R^2 è una retta

Disequazioni Lineari

 $S = \{ x \in \mathbb{R}^n : a^T x \leq d \}$ è un semispazio

Regione ammissibile

max
$$z = 3x_1 + 5x_2$$

s.t. $x_1 \le 4$
 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18$
 $x_1 , x_2 \ge 0$

Vertici: intersezione di vincoli o di iperpiani di supporto

Vincoli ridondanti

max
$$z = 3x_1 + 5x_2$$

s.t. $x_1 \le 4$
 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18$
 x_1 , $x_2 \ge 0$

Soluzione grafica (1)

- si disegnano le rette
 z=c^T x = costante
 (perpendicolari al gradiente)
- si cerca l'intersezione tra
 F e la retta con z
 massimo (minimo)

max
$$z = 3x_1 + 5x_2$$

 $\nabla = (3,5)$

Soluzione grafica (2)

- L'intersezione ottima avviene sempre in corrispondenza di almeno un vertice di F
- vero solo per LP

 φ non lineare

vincoli non lineari

Soluzioni ottime alternative

 Esempio di soluzioni ottime alternative

max
$$z = 3x_1 + 2 x_2$$

 $\nabla = (3,2)$

 tra le infinite soluzioni ottime ci sono anche dei vertici

Esercizio

Max
$$Z = 150 X_1 + 100 X_2$$

Subject to: $X_1 + X_2 \le 600$
 $2 X_1 + X_2 \le 1000$
 $X_1, X_2 \ge 0$

Graphical Solution

Max
$$Z = 150 X_1 + 100 X_2$$

Subject to: $X_1 + X_2 \le 600$
 $2 X_1 + X_2 \le 1000$
 $X_1, X_2 \ge 0$

Corner Points	X ₁	X ₂	Z
N	0	0	0
Α	0	600	60,000
В	400	200	80,000*
С	500	0	75,000

Corner point B is the (unique) optimal solution with objective value Z = 80,000.

Notes: • *Active* or *binding* constraints intersect with solution point.

Redundant constraints have no effect on the feasible region.

Soluzione ottima illimitata

 La regione ammissibile può essere illimitata

 La soluzione può a sua volta essere illimitata

 Normalmente significa che il modello è "sbagliato"

Limiti di LP

- Assunzioni implicite nella formulazione di un modello LP:
 - 1) Proporzionalità
 - 2) Additività
 - 3) Divisibilità
 - 4) Certezza

Proporzionalità

$$z = \ldots + c_h x_h \qquad \ldots$$
$$\ldots + a_{ih} x_h + \ldots \leq d_i$$

- l'effetto dell'uso della risorsa h (f.o., vincoli) è proporzionale al livello x_h impiegato
- la proporzionalità si mantiene in tutto l'intervallo di ammissibilità per x_h

Proporzionalità (2)

 fenomeni di saturazione (costo marginale decrescente)

situazioni di start-up (avviamento)

 Migliore approssimazione con funzione lineare a tratti

modello MILP (es. fixed-charge problem)

Additività

costo soluzione e consumo delle risorse nei vincoli

$$z = \ldots + c_h x_h + c_k x_k \ldots$$
$$\ldots + a_{ih} x_h + a_{ik} x_k \ldots \leq d_i$$

- somma dei termini indipendenti legati alle attività
- ⇒ Non vi sono interazioni tra le diverse attività che influenzano il costo o i vincoli
- ⇒ L'effetto dovuto ad una attività non dipende dal livello di produzione delle altre

Divisibilità

- Le variabili decisionali possono essere suddivise ed assumere anche valori non interi (Es. tasso di produzione....)
- Spesso solo i valori interi hanno significato (Es. n. addetti, n. di pezzi prodotti...):
 - riformulazione con variabili che rappresentano percentuali sul numero totale (Es. tasso di produzione....)
 - formulazione con modelli ILP e MILP
 - alcuni LP hanno soluzione ottima sempre intera

Certezza

- Tutti i parametri del modello sono costanti note
- Spesso i parametri sono frutto di stime, previsioni o sono affetti da errori di misura
- se si modifica un costo o un coefficiente la soluzione resta ottima?

 analisi di sensitività della soluzione alla variazione dei parametri

Forme di PL

Programmazione Lineare

- Def.: (F, φ) è un problema di Programmazione Lineare (LP, PL) se
- la funzione obiettivo φ è lineare

Es.
$$\varphi(x) = c^T x = c_1 x_1 + c_2 x_2 + ... + c_n x_n$$

• la regione ammissibile $F \subseteq \mathbb{R}^n$ è definita da

$$g_i(x) \le 0, h_j(x) = 0 \quad (i = 1, ..., m; j = 1, ..., p)$$

con $g_i, h_j : \mathbb{R}^n \to \mathbb{R}$ lineare $\forall i \in \forall j$

Es.
$$a_{i1} x_1 + a_{i2} x_2 + ... + a_{in} x_n \ge d_i$$

Regione ammissibile di PL

- F è un insieme convesso (poliedro)
- il numero di x∈F da esaminare per determinare x* è un numero finito (= vertici del poliedro)
 - ⇒ problema combinatorio
- Normalmente il problema si esprime in forma matriciale

min
$$c^T x$$

$$Ax \ge d$$

$$x \ge 0$$

Esempio

min
$$3x_1 - 2x_2 + x_3$$

s.t. $2x_1 + x_2 - x_3 \ge 2$
 $x_1 + 2x_3 \ge 1$
 $x_1, x_2, x_3 \ge 0$
 $n = 3 \ m = 2 \ c^T = [3 - 2 \ 1] \ A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 0 & 2 \end{bmatrix} d = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

Forma generale

 $A = \text{matrice intera } m \times n$

d = vettore intero di m elementi

c = vettore intero di n elementi

min

$$x_1 + x_3$$

$$x_{2} - 2x_{3} = 4$$
 $M = \{1\}$
 $x_{1} + x_{2} \ge 3$ $M' = \{2\}$
 $x_{1}, x_{2} \ge 0$
 $x_{3} \text{ libera}$

$$N = \{1,2\}$$
 $N' = \{3\}$

$$m=2$$

$$n = 3$$

$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 1 & 0 \end{bmatrix}$$

$$d = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \qquad c = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Forme di PL (2)

Forma canonica

min
$$c^T x$$

$$Ax \ge d$$

$$x \ge 0$$

Forma standard

$$min c^T x$$

$$Ax = d$$

$$x \ge 0$$

Le 3 forme sono equivalenti (1)

a) Funzione obiettivo:

$$\max c^T x = -\min (-c^T x)$$

Le 3 forme sono equivalenti (2)

b) Trasformazione di disequazioni in equazioni:

b1)
$$x_1 \le d_1$$
 $\Rightarrow x_1 + x_s = d_1$
 $x_s \ge 0$ variabile slack

In ogni soluzione ammissibile (x_1, x_s) :

se
$$x_s = 0 \implies x_1 = d_1$$
; se $x_s > 0 \implies x_1 < d_1$
b2) $x_1 \ge d_1 \implies x_1 - x_s = d_1$

$$x_s \ge 0$$
 variabile surplus

Le 3 forme sono equivalenti (3)

c) Trasformazione di equazioni in disequazioni:

$$a_i^T x = d_i \Rightarrow \begin{cases} a_i^T x \geq d_i \\ -a_i^T x \geq -d_i \end{cases}$$

d) Variabili libere

$$x_i$$
 libera $\Rightarrow x_i = x_i^+ - x_i^- \text{ con } x_i^+, x_i^- \ge 0$

- b), d) aumentano n
- c) aumenta m

Esempio

$$\max z = -2x_1 + 3x_2$$

$$x_1 + 2x_2 \leq 4$$

$$2x_1 - x_2 = 2$$

$$x_1 \qquad \geq 0$$

$$x_2 \qquad \text{libera}$$

Forma generale \rightarrow F. canonica (1)

$$\max z = -2x_{1} + 3x_{2}$$

$$x_{1} + 2x_{2}$$

$$2x_{1} - x_{2}$$

$$-2x_{1} + x_{2}$$

$$x_{1}$$

$$x_{2}$$

$$\leq 4$$

$$= 2 \geq 2$$

$$\geq -2$$

$$\geq 0$$
libera

Forma generale \rightarrow F. canonica (2)

max
$$z = -2x_1 + 3x_2^{+3}x_2^{+-3}x_2^{-}$$

 $x_1 + 2x_2^{+2}x_2^{+-2}x_2^{-} \le 4$
 $2x_1 - x_2^{-}x_2^{++}x_2^{-} \ge 2$
 $-2x_1 + x_2^{+}x_2^{+-}x_2^{-} \ge -2$
 $x_1 , x_2^{+}, x_2^{-} \ge 0$
libera

Forma generale \rightarrow F. canonica (3)

$$\max z = -2x_1 + 3x_2^+ - 3x_2^-$$

$$-x_1 + 2x_2^+ - 2x_2^- \qquad \leq 4 \geq -4$$

$$2x_1 - x_2^+ + x_2^- \qquad \geq 2$$

$$-2x_1 + x_2^+ - x_2^- \qquad \geq -2$$

$$x_1, x_2^+, x_2^- \qquad \geq 0$$

Forma generale \rightarrow F. canonica (4)

$$\max z = \frac{1}{2} 2x_{1} + 3x_{2} + \frac{1}{3} 3x_{2} - \frac{1}{3} x_{2} - \frac{1}{3} x_{$$

Forma generale \rightarrow F. canonica (5)

-min -
$$z = 2x_1 - 3x_2^+ + 3x_2^-$$

 $-x_1 - 2x_2^+ + 2x_2^- \ge -4$
 $2x_1 - x_2^+ + x_2^- \ge 2$
 $-2x_1 + x_2^+ - x_2^- \ge -2$
 $x_1, x_2^+, x_2^- \ge 0$

Forma generale → Forma standard

- min - z =
$$2x_1 - 3x_2^+ + 3x_2^-$$

 $x_1 + 2x_2^+ - 2x_2^- + x_3 = 4$
 $2x_1 - x_2^+ + x_2^- = 2$
 $x_1, x_2^+, x_2^-, x_3 \ge 0$

Vertici ed Insiemi Convessi

Def.: z è vertice di un insieme convesso S

non è esprimibile come combinazione convessa di altri punti di S

Def.: Dato un insieme di punti $P = \{p_1, p_2, ..., p_K\} \subset R^n$ si dice chiusura convessa di P, conv(P) il più piccolo insieme convesso che contiene P.

Th. 1:

Ogni punto di un politopo (poliedro limitato) è combinazione convessa dei vertici del politopo

Th. 2:

In un problema PL con *F* non vuoto e limitato esiste sempre almeno un vertice ottimo

Dimostrazione (probl. di minimo)

$$c = \text{vettore costo};$$
 $x^{(0)} = \text{soluzione ottima (non vertice)}$
 $x^{(1)}, \dots, x^{(p)} = \text{vertici di } F$
 $x^{(0)} \in F \implies x^{(0)} = \sum_{i=1,p} \lambda_i x^{(i)} \text{ con } \sum_{i=1,p} \lambda_i = 1, \lambda_i \ge 0 \ \forall i$
 $sia \ x^{(j)} \text{ il vert. di costo min.: } c^T x^{(j)} = \min_{1 \le i \le p} \{c^T x^{(i)}\}$
 $c^T x^{(0)} = c^T \sum_{i=1,p} \lambda_i x^{(i)} \ge c^T x^{(j)} \sum_{i=1,p} \lambda_i = c^T x^{(j)}$
 $\Rightarrow c^T x^{(0)} \ge c^T x^{(j)}$

Esiste un vertice x⁽ⁱ⁾ cui corrisponde una soluzione non peggiore di x⁽⁰⁾!!!

Esercizi su modelli PL