Advanced Macroeconomics II

Handout 7 - Models with Distortions and GE

Sergio Ocampo

Western University

October 27, 2020

Short recap

Prototypical DP problem:

$$V(z, k) = \max_{\{c, k'\}} u(c) + \beta E\left[V\left(z', k'\right) | z\right]$$
s.t. $c + k' = f(z, k)$

$$z' = h(z, \eta); \eta \text{ stochastic}$$

▶ We are looking for functions V, g^c, g^k .

But that is not the actual problem we started with!

Macroeconomic model

▶ We had a representative agent choosing consumption (and labor) to solve:

$$\max_{\{c_{t},\ell_{t}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} u(c,\ell) \qquad \text{s.t. } c_{t} + a_{t+1} = (1 + r_{t}) a_{t} + w_{t} \ell_{t} + \pi_{t}$$

▶ We had a representative firm choosing capital and labor to solve:

$$\pi_t = \max_{\left\{k_t, \ell_t^d\right\}} f\left(z_t, k_t, \ell_t^d\right) - \left(r_t + \delta\right) k_t - w_t \ell_t^d$$

And we had prices that cleared markets:

$$\ell_t = \ell_t^d$$
 $a_t = k_t$ $c_t + a_{t+1} = f(z_t, k_t, \ell_t) + (1 + \delta) a_t$

Equilibrium vs Planner's problem

- ► FWT lets us solve planner's problem
- Map planner's solution to the competitive market allocation and prices
 - ▶ Planner solves for aggregate quantities { C, L, K }
 - ▶ We want to get individual quantities $\{c, \ell, a, k\}$ and prices $\{r, w\}$

$$c = C$$
 $\ell = L$ $k = a = K$
 $r = f_k(z, K, L) - \delta$ $w = f_\ell(z, K, L)$

- ▶ Key: Planner's problem is a "simple" dynamic programming problem
 - ▶ We can solve it with the tools from the previous 6 lectures!

How to solve for the equilibrium directly?

- ▶ Easy part: Firm's problem is static
 - Solution depends on aggregate quantities
 - Solution gives us prices

$$r = f_k(z, K, L) - \delta$$
 $w = f_\ell(z, K, L)$

- ► Hard part: Consumer problem a dynamic programming problem
 - What are the states?
 - Consumer is a price taker: No clue about aggregate effect of choices
 - States must provide enough information to solve the problem
 - Consumer must know how states evolve

A DP problem for the consumer: (k, K)

$$V(k, \underbrace{z, K}_{\text{Agg. States}}) = \max_{\left\{c, \ell, k'\right\}} u(c, \ell) + \beta E\left[V\left(k', z', K'\right) | z\right]$$
s.t.
$$c + k' = (1 + r)k + w\ell$$

- ▶ This problem looks a lot like the one we have been working with
- But the problem is incomplete:
 - 1. Where do prices come from?
 - 2. How to update aggregate states?

Key: little k (the individual state) and big K (the aggregate state)

▶ In equilibrium they are the same, but the agent does not know it

A DP problem for the consumer: (k, K)

$$V(k, z, K) = \max_{\{c,\ell,k'\}} u(c,\ell) + \beta E \left[V\left(k', z', K'\right) | z \right]$$
s.t. $c + k' = (1+r)k + w\ell$

$$r = R(z, K, L)$$

$$w = W(z, K, L)$$

$$L = G_{\ell}(z, K)$$

$$K' = G_{k}(z, K)$$

$$z' = h(z, \eta), \text{ with } \eta \text{ stochastic}$$

Key: Find functions R, W, G_{ℓ} and G_{k} .

Given these you can solve consumer's problem

A recursive competitive equilibrium

An RCE is a set of a value function V, policy functions g_k and g_ℓ , updating functions G_k and G_ℓ and price functions R and W such that:

- 1. The value function V and policy functions g_k and g_ℓ solve the DP problem in previous slide
- 2. Pricing functions R and W satisfy the firm's first order conditions

$$R(z,K,L) = f_k(z,K,L) - \delta$$
 $W(z,K,L) = f_\ell(z,K,L)$

3. Updating functions G_k and G_l are consistent with individual optimization

$$G_k(z,K) = g_k(K,z,K)$$
 $G_\ell(z,K) = g_\ell(K,z,K)$

Some comments

1. Market clearing:

The definition of RCE didn't include market clearing explicitly

- ► This is a device of the CRS technology of the firm
- ▶ At equilibrium prices demand for inputs is perfectly elastic
- Markets clear automatically
- Not the case in all models
- 2. Consistency only has to apply in equilibrium
 - As you converge to the equilibrium consistency does not have to hold
 - ▶ The agent's DP can be solved given any update functions
- 3. Curse of dimensionality applies
 - You have to solve the agent's problem off-equilibrium
 - You need to know $g_k(k, z, K)$ for any combination of (k, K), even though in equilibrium k = K

RCE algorithm

Algorithm 1: RCE Algorithm

input: Guess for updating functions (G_k, G_ℓ)

output: $V, g_k, g_\ell, G_k, G_\ell$

- 1. Solve the DP problem of the agent given G_k , G_ℓ : $(V, g_k, g_\ell) = T(V; G_k, G_\ell)$ (a fixed point problem);
- 2. Update updating functions:

$$G_k(z,K) = g_k(K,z,K)$$
 $G_\ell(z,K) = g_\ell(K,z,K)$;

- 3. Check convergence in updating functions;
- 4. Repeat (1)-(3) until convergence;

Some comments

- Why would this converge?
 - ▶ We no longer have the CMT... No reason for it to converge
 - Eppur si muove
- ► How to get it to converge?
 - Carefully...
 - ▶ The best strategy is the tortoise strategy: Slowly but surely
 - 2' Dampened update of updating functions:

$$G_k^{n+1}(z, K) = \gamma g_k(K, z, K) + (1 - \gamma) G_k^n(z, K)$$

 $G_\ell^{n+1}(z, K) = \gamma g_\ell(K, z, K) + (1 - \gamma) G_\ell^n(z, K)$

VFI is simplified with the RCE

$$-\frac{u_{\ell}(c,\ell)}{u_{c}(c,\ell)}=w\longrightarrow\ell(c;w)$$

Algorithm 2: EGM for RCE problem

Function EGM($V, \vec{k}, \vec{z}, \ell(z, k), k'(z, k)$, parameters):

for $i=1:n_z$ # productivity (aggregate state) do for $j=1:n_k$ # capital (aggregate state) do

1. Evaluate prices: $r = R(\vec{z_i}, \vec{K_i}), w = W(\vec{z_i}, \vec{K_i})$

for $h=1:n_k \# capital (individual state)$ do

2. Expectd value:
$$\mathbb{V} = \beta E \left[V \left(\vec{k}_h, z', G_k(\vec{z}_i, \vec{K}_j) \right) | \vec{z}_i \right]$$

Requires interpolation on $K' = G_k(\vec{z_i}, \vec{K_j})$

3. Consumption from Euler: $u_c\left(\tilde{c}_{ijh}, \ell(\tilde{c}_{ijh}; w)\right) = \mathbb{V}_k$ Analytical solution using $\ell(c; w)$ from FOC

- 4. Endo. capital: $\hat{k}_{ijh} = \left(ilde{c}_{ijh} + ec{k}_h w\ell(ilde{c}_{ijh};w) \right)/1 + r$
- 5. Update value at endogenous grid:

$$\hat{V}(\hat{k}_{iih}; \vec{z_i}, \vec{K_i}) = u\left(\tilde{c}_{iih}, \ell(\tilde{c}_{iih}; w)\right) + \mathbb{V}$$

6. Interpolate to exogenous grid: $V_new[:,i,j] = Interp(\hat{k}, \hat{V}, \vec{k})$

Some comments

- ▶ In most cases we can now solve everything analytically
 - Big advantage of EGM in these problems
 - ▶ Some cases we still need to change states to Y, or to Y_k

$$c + k' \leq Y_k + w\ell$$

Think of problems with agents that can invest, or manage businesses

- No requirement that the grids on capital have to match: $\vec{K} \neq \vec{k}$
 - Often they are the same
- We do have to interpolate in taking expectations
 - EGM is fixing the future capital of the agent
 - ► The future capital of the economy is exogenous (to the agent)
 - ▶ The agent has to be "consistent" and use G_k to forecast K'

RCE applications

Many applications for RCE, but first:

- Check that your code works!
- ► The NGM's last gift to you... Contrast RCE solution with Planner's DP problem

Applications (all your heart's desire):

- ► Taxes (distortions in general)
- Multiple agents
- Externalities
- Business Cycle Accounting
- ► Non-stationary problems (transitions, life-cycle)

Application: Taxes/Wedges

Taxes (or wedges)

- Classical question in economics: Effect of taxes
- ▶ Distortionary taxes prevent us from using the planner's problem to solve for the market equilibrium
 - ▶ In fact that is the point! We want to know how to make the market equilibrium closer to the planner's solution
- Usual taxes:
 - Labor income taxes (possibly non-linear)
 - Capital income taxes or wealth taxes
 - Consumption taxes (dangerous!

Taxes (or wedges) - Agent's problem

$$V(k, z, K; \tau) = \max_{\left\{c, \ell, k'\right\}} u(c, \ell) + \beta E\left[V\left(k', z', K'; \tau\right) | z\right]$$
s.t.
$$(1 + \tau_c) c + k' = (1 + (1 - \tau_k) r) k + (1 - \tau_\ell) w \ell + T$$

$$r = R\left(z, K, L\right)$$

$$w = W\left(z, K, L\right)$$

$$L = G_{\ell}\left(z, K\right)$$

$$K' = G_{k}\left(z, K\right)$$

$$z' = h\left(z, \eta\right), \text{ with } \eta \text{ stochastic}$$

Some comments

- ► Taxes do not need to be constant
 - You can have functions $\tau(z, K)$
 - ▶ You might need to find those functions in equilibrium
 - Yet another loop!
- This problem is independent of the government's budget
 - Agent takes taxes as given
 - ▶ These taxes need not balance the budget
 - ► This is important for interpretation as wedges (next slide)
- What if you do care about the budget...
 - 1. Are you balancing the budget every period
 - ▶ Then you need to search for $\tau(z, K)$
 - 2. Are you allowing for deficit/surplus?
 - Where is Gov. getting/putting funds?
 - You have to figure out market clearing

Taxes as wedges

$$u_{c}(c,\ell) = \beta (1 + (1 - \tau_{k})r) u_{c}(c',\ell')$$
$$-\frac{u_{\ell}(c,\ell)}{u_{c}(c,\ell)} = \left(\frac{1 - \tau_{\ell}}{1 + \tau_{c}}\right) w$$

- ► Taxes show up in the solution to the model as wedges in FOC
- You can rebate (lump-sum) the "tax revenue"
 - Taxes only affect combination, not level
- This is a powerful idea
 - Front and center in public economics
 - Core of equivalence results between models
 - Many ways of generating the same wedges
 - Implications for measurement: BCA

Non-linear taxes: Two options

- 1. Map the tax system
 - ▶ Different (discrete) tax brackets have different rates
 - Potential exemption levels
- 2. Approximate tax system with smooth function
 - ▶ Benabou (2000-AER, 2002, ECMA)
 - ► Heathcote, Storesletten & Violante (2017-QJE)
 - ▶ If an agent has income y then after tax income is:

$$Y(y) = (1-\tau)y^{1-\theta} + \underline{y}$$
 $T(y) = y - Y(y)$

- lacktriangle Without transfers (y) and zero progressivity (heta=0) we get tax rate au
- ► Taxes are progressive (regressive) if ratio of marginal to average tax is larger (smaller) than 1

$$\frac{\operatorname{mrg tax}}{\operatorname{ave tax}} = \frac{1 - T^{'}(y)}{1 - T^{(y)/y}} = \frac{(1 - \theta)(1 - \tau)y^{-\theta}}{(1 - \tau)y^{-\theta} + \frac{y}{y}} \le (1 - \theta)$$

Non-linear taxes

Regressive Taxes: τ =0.25, θ =-0.05

Taxes (or wedges) - RCE

An RCE is a set of a value function V, policy functions g_k and g_ℓ , updating functions G_k and G_ℓ and price functions R and W such that, given taxes, transfers and expenditure $\{\tau_k, \tau_\ell, \tau_c, T, G\}$:

- 1. The $\{V, g_k, g_\ell\}$ solve the agent's DP problem
- 2. Pricing functions R and W satisfy the firm's first order conditions

$$R(z,K,L) = f_k(z,K,L) - \delta$$
 $W(z,K,L) = f_\ell(z,K,L)$

3. Updating functions G_k and G_l are consistent with agent optimization

$$G_k(z,K) = g_k(K,z,K)$$
 $G_\ell(z,K) = g_\ell(K,z,K)$

4. Market clearing/Balanced budget:

$$G+c+K'=f(z,K,L)$$
 or: $G+T=\tau_c c+\tau_k R(z,K,L)K+\tau_w W(z,K,L)L$

Taxes (or wedges) - Algorithm

Algorithm 3: RCE Algorithm with taxes/wedges

```
input : Guess for taxes/wedges (G, T, \tau_k, \tau_c, \tau_\ell) output: V, g_k, g_\ell, G_k, G_\ell, G, T, \tau_k, \tau_c, \tau_\ell
```

- 1. Guess (G_k, G_ℓ) ;
- 2. Solve the DP problem of the agent given G_k , G_ℓ , G, T, τ_k , τ_c , τ_ℓ : $(V, g_k, g_\ell) = T(V; G_k, G_\ell, G, T, \tau_k, \tau_c, \tau_\ell)$ (a fixed point problem);
- 3. Update updating functions:

$$G_k(z,K) = g_k(K,z,K)$$
 $G_\ell(z,K) = g_\ell(K,z,K)$;

- 4. Check convergence in updating functions;
- 5. Repeat (2)-(4) until convergence;
- 6. Verify market clearing Adjust taxes/transfer/spending;
- 7. Repeat (1)-(6) until market clears;

Some comments

- General equilibrium == Outer loops
 - Outer loops are very expensive!
 - You have to do everything over and over again
- No all taxes/wedges can be free to choose

$$G + T = \tau_c c + \tau_k r K + \tau_w w L$$

- Something has to be fixed
- Sometimes it is taxes, sometimes it is expenditure
- ► Further complication: Dynamics
 - Taxes here are static, so is the budget
 - ▶ In general there can also be debt with deficit/surpluses
 - ▶ Change in market clearing (K = k D), non-stationarity (transitions)

Application: Multiple Agents

Multiple agents - Model

- ▶ We already saw one of these:
 - ► Capitalist/Union model
- ▶ Back then we cheated:
 - Union does not optimize... instead it fixes wages to avoid GE
- Lets try again

Multiple agents - Model

- ▶ There are three types of agents:
 - Capitalists
 - High-skilled workers
 - Low-skilled workers
- Capitalists do not work but they own capital
- Workers are hand to mouth
- Production combines skill types with capital

Capitalists

$$V(k, z, K; w_{l}, w_{h}) = \max_{\{c, k'\}} u(c) + \beta E \left[V\left(k', z', K'; w'_{l}, w'_{h}\right) | z \right]$$
s.t. $c + k' \leq \pi(z, k; w_{l}, w_{h})$

$$\pi(z, k; w_{l}, w_{h}) = \max_{\ell} f(z, k, \ell_{l}, \ell_{h}) - w_{l}\ell_{l} - w_{h}\ell_{h} + (1 - \delta) k$$

$$\log z' = \rho \log z + \eta; \qquad \eta \sim N(0, \sigma_{\eta}^{2})$$

- ► The production function is key
 - See Krusell, Ohanian, Rios-Rull & Violante (2000, ECMA)
- ► Capitalist needs to distinguish between *k* and *K* to predict wages

Workers

▶ The problem of the workers is symmetric and static:

$$\max u^{i}(w_{i}\ell,\ell) \qquad \text{fot } i = \{I,h\}$$

Key here is the FOC given wages:

$$u_{\ell}^{i}\left(w_{i}\ell,\ell\right)=w_{i}u_{c}^{i}\left(w_{i}\ell,\ell\right)$$

▶ This condition gives closed form of $\ell_i(w_i)$ and $c_i(w_i)$

Market clearing - Labor

▶ From the profit maximization problem we get

$$w_{l} = f_{l}(z, K, \ell_{l}(w_{l}), \ell_{h}(w_{h}))$$

$$w_{h} = f_{h}(z, K, \ell_{l}(w_{l}), \ell_{h}(w_{h}))$$

- ▶ Solve for price functions that depend on aggregate states (z, K)
- Is it clear why these conditions imply market clearing?

Multiple agents - RCE

An RCE is a set of a value function V and policy function g_k for capitalists, updating function G_k and price functions W_L and W_H such that:

- 1. The value function V and policy functions g_k and g_ℓ solve the DP problem in previous slide
- 2. Pricing functions W_L , W_H satisfy the firm's first order conditions

$$W_{L}(z,K) = f_{I}(z,K,\ell_{I}(W_{L}(z,K)),\ell_{h}(W_{H}(z,K)))$$

$$W_{H}(z,K) = f_{h}(z,K,\ell_{I}(W_{L}(z,K)),\ell_{h}(W_{H}(z,K)))$$

3. Updating functions G_k and G_l are consistent with individual optimization

$$G_k(z,K) = g_k(K,z,K)$$

Application: Business Cycle Accounting

Business Cycle Accounting (CKM,2007)

- Main idea:
 - ▶ Use the model as a measurement device
- Change the question:
 - What are the effects of a shock or a policy?
 - What shock or policy could have generated the observed data?
- ▶ This is a crucial way in which we think about models
 - How to explain the world we have seen?
 - Which frictions or policies are most relevant?

Business Cycle Accounting (CKM,2007)

Method:

- 1. Use a "prototype" model with wedges
 - ▶ The model can fit the data by construction by adjusting wedges
- 2. Analyze data with the model to recover wedges
 - Which wedges are important for the data?
- 3. Establish equivalence results between models and wedges
 - Some are obvious: wedges look like taxes
 - ► Some are not obvious: wedges can represent financial frictions

Application: Sovereign Default

Sovereign default

- ▶ Default models form a large literature on international econ
- Great example of dynamic programming:
 - Default option is inherently dynamic
- Great example of RCE:
 - Default and savings choice depend on prices!
 - Prices are endogenous... but taken as given

Basic model - Arellano (2008)

- (Stochastic) Endowment economy
 - Output follows an exogenous Markov process
- ▶ Benevolent government (planner) chooses:
 - Borrowing/savings and whether to default on debt
- (Risk-neutral) Financial intermediary
 - Breaks even in expectation (wrt default)
- Default repercussion: Autarky
 - Output penalty during autarky
 - Autarky costly because of income fluctuation
 - Autarky ends with probability $\lambda \geq 0$

Sovereign default - Prices

Profits of intermediary:

$$\Pr = qb' - \frac{1-\delta}{1+r}b' \longrightarrow \Pr = 0$$

- Here δ is the probability of default
- \triangleright δ is endogenous, in fact:

$$\delta = E_{s^{'}} \left[g^{D} \left(s^{'}, b^{'} \right) | s \right] \qquad \text{where } g^{D} \left(s^{'}, b^{'} \right) = \begin{cases} 1 & \text{if default} \\ 0 & \text{if no default} \end{cases}$$

Free entry gives the zero profit condition:

$$q(s,b') = \begin{cases} \frac{1-\sum\limits_{s'\in\mathcal{S}}\pi(s')g^D(s',b')}{R} & \text{if } b'<0\\ \frac{1}{R} & \text{if } b'\geq0 \end{cases}$$

Sovereign default - DP

$$V^{\star}\left(s,b
ight) = \max_{d \in \left\{0,1\right\}} \left\{ \left(1-d\left(s,b
ight)\right)V\left(s,b
ight) + d\left(s,b
ight)V^{A}\left(s
ight)
ight\}$$

Sovereign default - DP

$$V^{\star}\left(s,b
ight) = \max_{d \in \left\{0,1\right\}} \left\{ \left(1-d\left(s,b
ight)\right)V\left(s,b
ight) + d\left(s,b
ight)V^{A}\left(s
ight)
ight\}$$

$$V\left(s,b\right) = \max_{\left\{c,b'\right\}} \left\{ \frac{c\left(s,b\right)^{1-\sigma} - 1}{1-\sigma} + \beta \sum_{s' \in S} \pi\left(s'\right) V^{\star}\left(s',b'\right) \right\}$$
s.t. $c\left(s,b\right) - q\left(s,b\right) b'\left(s,b\right) \leq y\left(s\right) + b$

$$-B \leq b'\left(s,b\right) \quad \text{[B: borrowing limit]}$$

$$0 \leq c\left(s,b\right)$$

Sovereign default - DP

$$V^{\star}(s,b) = \max_{d \in \{0,1\}} \left\{ (1 - d(s,b)) V(s,b) + d(s,b) V^{A}(s) \right\}$$

$$V(s,b) = \max_{\{c,b'\}} \left\{ \frac{c(s,b)^{1-\sigma} - 1}{1-\sigma} + \beta \sum_{s' \in S} \pi(s') V^{\star}(s',b') \right\}$$
s.t. $c(s,b) - q(s,b) b'(s,b) \le y(s) + b$
 $-B \le b'(s,b)$ [B: borrowing limit]
 $0 \le c(s,b)$

$$V^{A}(s) = rac{h\left(y\left(s
ight)
ight)^{1-\sigma}-1}{1-\sigma} + eta \sum_{s' \in S} \pi\left(s'
ight)\left(\lambda V^{\star}\left(s',0
ight)+\left(1-\lambda
ight)V^{A}\left(s'
ight)
ight)$$

Sovereign default - RCE

A Recursive Competitive Equilibrium is

- 1. Value functions V^* , V^A , V
- 2. Policy functions $g^{c}(s, b), g^{b}(s, b), g^{D}(s, b)$
- 3. Price functional given by $q(s,b) = \frac{\left(1 \sum \pi(s')g^D(s',b')\right)}{R}$

Such that the value functions and policy functions solve the DP of previous slide taking \boldsymbol{q} as given.