

Universidade Federal de Uberlândia FEELT – Faculdade de Engenharia Elétrica

SISTEMAS E CONTROLE

Roteiro 04b - Matlab com a TL

Professor: Dr. Éder Alves de Moura

Gabriel Cardoso Mendes de Ataide

11811ECP008

SUMÁRIO

Introdução	2
Atividade 01	3
Atividade 02	4
Atividade 03	5
Resolução	5
Atividade 04	6
Resolução Exemplo 2.1	ϵ
Resolução Exemplo 2.2	ϵ
Resolução Exemplo 2.3	ϵ
Resolução Exemplo 2.4	7
Resolução Exemplo 2.5	7
Resolução Exemplo 2.6	7
Resolução Exemplo 2.7	8
Resolução Exemplo 2.8	8
Resolução Exemplo 2.9	8
Resolução Exemplo 2.10	8
Resolução Exemplo 2.11	Ģ
Resolução Exemplo 2.12	Ģ
Resolução Exemplo 2.13	g
Resolução Exemplo 2.14	10
Resolução Exemplo 2.15	10
Resolução Exemplo 2.16	10
Resolução LaPlace	11
Resolução Transfer Function	11

Introdução

Esta semana avançamos na apresentação do conceito de Transformada de Laplace e dos métodos de solução via ferramentas computacionais.

Apresente um relatório em formato PDF, contendo o desenvolvimento das soluções de cada questão. Na(s) atividade(s) que solicita(m) o desenvolvimento com o Matlab/Simulink, apresente o código e/ou tire prints legíveis da tela com a implementação, seguido dos gráficos.

Veja os seguintes vídeos:

- https://www.youtube.com/watch?v=ZwvslIKUzpE
- https://www.youtube.com/watch?v=rlesPBN6Whw
- https://www.youtube.com/watch?v=qB1VzuYPaCs
- https://www.youtube.com/watch?v=jwqk4b6xDHI

Caso precise, veja os seguintes vídeos de uma visão geral sobre o uso do conjunto Matlab/Simulink:

Material para aprender o Matlab e Simulink

- https://www.youtube.com/watch?v=T_ekAD7U-wU
- https://www.youtube.com/watch?v=vxzR3W2BcRk

Explique os objetivos das seguintes funções: residue, poly, roots, symbolic, partfrac, conv, polyval, tf, tf2zp, tfdata, impulse, step, ramp, pretty

Resolução

- **residue**: Calcula a decomposição em frações parciais de uma função de transferência em sistemas lineares no MATLAB.
- poly: Cria um polinômio a partir de uma sequência de raízes dadas como entrada.
- roots: Encontra as raízes de um polinômio dado no MATLAB.
- **symbolic**: Cria variáveis simbólicas para realizar cálculos simbólicos no MATLAB.
- partfrac: Calcula a expansão em frações parciais de uma expressão racional no MATLAB.
- conv: Realiza a convolução de duas sequências ou funções no MATLAB.
- polyval: Avalia um polinômio em um valor específico no MATLAB.
- **tf**: Cria um objeto de função de transferência em sistemas lineares a partir de coeficientes numéricos no MATLAB.
- tf2zp: Converte uma função de transferência em seus zeros e polos no MATLAB.
- **tfdata**: Obtém informações sobre uma função de transferência, como coeficientes numéricos dos polinômios no numerador e no denominador, no MATLAB.
- impulse, step e ramp: Geram sinais de impulso, degrau e rampa, respectivamente.
- **pretty**: Formata expressões matemáticas de maneira legível no MATLAB.

Faça os exemplos práticos disponíveis no arquivo 'Ogata - cap 2 – Matlab'. Essa atividade visa apresentar os conceitos básicos de uso do Matlab para a modelagem e resolução de problemas de sistemas de controle.

Os códigos fontes também estão disponíveis na pasta do GitHub.

Resolução Exemplo 2.1

```
Unset
num = [2536];
den = [16116];

[r,p,k] = residue(num, den);
[a, b] = residue(r,p,k);
printsys(num, den, 's')
```

Resolução Exemplo 2.2

```
Unset
num = [0 1 2 3];
den = [1 3 3 1];

[r,p,k] = residue(num, den);

[num, den] = residue(r, p, k);
printsys(num, den, 's')
```

```
Unset
num = [5 30 55 30];
den = [1 9 33 65];

[z,p,k] = tf2zp(num,den);
a = zpk(z,p,k)

[num, den] = zp2tf(z,p,k);
printsys(num, den, 's')
```

```
Unset
syms s t
num = [100 1000];
den = [1 10 100 600 0];

[r,p,k] = residue(num, den);

printsys(num, den, 's')

a = (100*s + 1000)/(s^4 + 10*s^3 + 100*s^2 + 600*s);

ilaplace(a)
```

Resolução Exemplo 2.5

```
Unset
num = [1 8 23 35 28 3];
den = [0 0 1 6 8 0];
[r,p,k] = residue(num, den)
```

```
Unset
z1 = [];
p1 = [-1+2*j; -1-2*j];
k1 = [10];
[num1, den1] = zp2tf(z1, p1, k1);
printsys(num1, den1, 's')
z2 = [0];
p2 = [-1+2*j; -1-2*j];
k2 = [10];
[num2, den2] = zp2tf(z2, p2, k2);
printsys(num2, den2, 's')
z3 = [-1];
p3 = [-2; -4; -8];
k3 = [12];
[num3, den3] = zp2tf(z3, p3, k3);
printsys(num3, den3, 's')
```

```
Unset

num = [0 0 0 0 0 2];

den = [1 2 10 0 0 0];

[r,p,k] = residue(num, den);

d = [1 2 3 4];
r = roots(d)
pol = poly(r)
```

Resolução Exemplo 2.8

```
Unset
num = [25.04 5.008];
den = [1 5.03247 25.1026 5.008];
[A, B, C, D] = tf2ss(num, den)
```

Resolução Exemplo 2.9

```
Unset

A = [0 1 0; 0 0 1; -5.008 -25.1026 -5.03247];

B = [0; 25.04; -121.005];

C = [1 0 0];

D = [0];

[num, den] = ss2tf(A, B, C, D)
```

```
Unset

A = [0 1; -2 -3];

B = [1 0; 0 1];

C = [1 0];

D = [0 0];

[num, den] = ss2tf(A, B, C, D, 1)

[num, den] = ss2tf(A, B, C, D, 2)
```

```
Unset

A = [0 1; -25 -4];

B = [1 1; 0 1];

C = [1 0; 0 1];

D = [0 0; 0 0];

[num, den] = ss2tf(A, B, C, D, 1)

[num, den] = ss2tf(A, B, C, D, 2)
```

Resolução Exemplo 2.12

```
Unset
num1 = [10];
den1 = [1 2 10];
num2 = [5];
den2 = [1 5];

[num, den] = series(num1, den1, num2, den2);
printsys(num, den)

[num, den] = parallel(num1, den1, num2, den2);
printsys(num, den)

[num, den] = feedback(num1, den1, num2, den2);
printsys(num, den)
```

```
Unset
sysg1 = [4];
numg2 = [2];
deng2 = [1 9 8];
sysg2 = tf(numg2, deng2);

numg3 = [1];
deng3 = [1 0];
sysg3 = tf(numg3, deng3);

sysh = [0.2];

sys1 = feedback(sysg2, sysh);
sys2 = series(sys1, sysg3);
sys3 = series(sysg1, sysg2);
sys = feedback(sysg3, [1])
```

```
Unset
numg1 = [2];
deng1 = [1 0];
sysg1 = tf(numg1, deng1);

numg2 = [1];
deng2 = [1 0];
sysg2 = tf(numg2, deng2);

sysg3 = [1];

sys1 = parallel(sysg1, sysg3);
sys2 = series(sys1, sysg2);
sys = feedback(sys2, [1])

sys_ss = ss(sys)
```

Resolução Exemplo 2.15

```
Unset
num1 = [1 2 1];
deng1 = [1 0 0];
sys1 = tf(num1, deng1);
sys1_ss = ss(sys1);

num2 = [2];
deng2 = [1 5];
sys2 = tf(num2, deng2);
sys2_ss = ss(sys2);

sysf = feedback(series(sys1a_ss, sys2a_ss), [1]);
sys_tf = tf(sysaf)
```

```
Unset
num = [1 3 2];
den = [1 8 19 12];
sys = tf(num, den);
state = ss(sys)

sys
sys_min = minreal(sys)
```

Resolução LaPlace

```
Unset
syms s t;

x = 3*t*exp(-2*t)*sin(4*t+pi/3);
y = ((s^2+3*s+10)*(s+5))/((s+3)*(s+4)*(s^2+2*s+100));
z = (s^3+4*s^2+2*s+6)/((s+8)*(s^2+8*s+3)*(s^2+5*s+7));

F = laplace(x);
G = ilaplace(z);
simplify(G);
pretty(ans);
```

Resolução Transfer Function