Bogdan Alex Georgescu Matemáticas Grado 6 Geometría June 26, 2023

P2. Mediana En Un Triangulo Rectangulo

Problema. Considere el triángulo rectángulo $\triangle ABC$, $m(\angle A) = 90^{\circ}$ y M el medio de BC como se muestra en la Fig. 1.

Demuestre que $AM = \frac{BC}{2}$.

FIGURE 1. Triángulo rectángulo y mediana.

Prueba:

La demostración se completará mostrando que $\triangle BAM$ es isósceles, es decir, $AM \cong BM$. Como M es el punto medio de BC, se concluirá que $AM = BM = \frac{BC}{2}$.

Para probar que $AM \cong BM$ es mejor usar una construcción auxiliar. Para relacionar AM y BM es mejor usar la perpendicular de M a AB. E es un punto en AB tal que $ME \perp AB$.

Figure 2. Opciones de condiciones auxiliares.

Para probar que $AM \cong BM$ el par de triángulos similares más útil es: $\triangle ABC$ y $\triangle EBM$.

Considere la similitud de estos triángulos y $BM = \frac{BC}{2}$. Esto implica que E es el punto medio de AB. Como $AE \cong BE$ y tienen un ángulo recto se puede inferir que el triángulo $\triangle AEM$ es congruente con $\triangle BEM$.

El caso de congruencia observado es lado-ángulo-lado.

Una de las consecuencias de la congruencia de triángulos es que $AM \cong BM$.

Se concluye: $AM = BM = \frac{BC}{2}$

APT. 805 80 POINT MCKAY CR NW, CALGARY, ALBERTA, CANADA, T3B 4W4