Grado en Ingeniería Informática y Matemáticas Modelos matemáticos I (curso 20/21)

Relación de Ejercicios, Modelos de Leslie

1 Para una población estructurada por edades la matriz de Leslie viene dada por

$$L = \left(\begin{array}{cc} 0.3 & 0.2 \\ 0.2 & 0 \end{array}\right).$$

Además, $\mathbf{v} = \begin{pmatrix} 400 \\ 200 \end{pmatrix}$ es un vector propio de L.

- (a) Calcula el valor propio de la matriz de Leslie asociado al vector dado.
- (b) Justifica por qué el valor propio calculado en el apartado anterior es dominante.
- (c) ¿Qué puedes decir sobre el comportamiento de la población considerada a largo plazo?
- 2 Una determinada especie de simios se estudia a partir del modelo de Leslie, para lo que se distinguen tres grupos de edad (que denominaremos jóvenes, adultos y viejos). Se sabe que las tasas de mortalidad son del 30% y del 20% en jóvenes y adultos respectivamente, mientras que las tasas de fertilidad son del 70%, del 20% y del 0% en cada uno de los grupos de edad. Se pide:
 - (a) Inicialmente hay 20 individuos jóvenes. ¿Qué pasará a largo plazo con la población total?
 - (b) Supongamos ahora que inicialmente hay 20 individuos viejos. ¿Qué sucede con la población total a largo plazo? ¿Tiene sentido hablar de la pirámide de edades?
- **3** Para estudiar la dinámica poblacional a largo plazo de una especie X, que vive en un determinado hábitat, un equipo de biólogos recurre a un modelo de Leslie. Para ello, divide la población en tres grupos de edad (G_1, G_2, G_3) y emplea el modelo

$$\mathbf{P_{n+1}} = L\mathbf{P_n},$$

donde el vector $\mathbf{P_n}$ representa el número de individuos que hay en cada uno de los grupos en el recuento n. Teniendo en cuenta que los estudios realizados indican que

- \bullet la probabilidad de pasar del grupo G_1 al G_2 es 0.6 y la de pasar del grupo G_2 al G_3 es 0.4,
- los individuos de G_1 no tienen descendientes, mientras que la tasa de fertilidad de G_3 es el triple de la de G_2 ,
- $\lambda = 1.2$ es un valor propio de la matriz de Leslie, L, y el vector $(6,3,1)^t$ es un vector propio asociado a dicho valor propio.

Responde a las siguientes cuestiones.

- (a) Determina la matriz de Leslie L del modelo.
- (b) Indica, de forma justificada, cuál es el valor propio dominante, si existe, de L y cuál será la pirámide de edad a largo plazo de esta población.
- (c) Interpreta los resultados obtenidos en términos de la dinámica poblacional de la especie estudiada.
- 4 Se quiere estudiar una población de aves mediante un modelo de Leslie, por lo que se divide en cuatro grupos de edad (G1, G2, G3 y G4). Haciendo recuentos anuales de la población, se sabe que esta presenta una tendencia de comportamiento, con muy pocas variaciones, donde
 - la población de cada grupo disminuye a un ritmo constante igual al 20% por año;
 - los individuos de los grupos G1 y G4 no son fértiles;
 - la tasa de fertilidad de los individuos del grupo G3 es el cuádruple de la tasa de fertilidad de los individuos del grupo G2;
 - se han contabilizado 160, 140 y 105 individuos en G2, G3 y G4, respectivamente, por cada 400 individuos en G1.

Sea L la matriz asociada al modelo considerado.

- (a) Justifica la existencia de valor propio dominante y de vector propio dominante para L.
- (b) ¿Cuál es el valor propio dominante de L?

- (c) ¿Cuál es un vector propio dominante de L?
- (d) Plantea el sistema que permite hallar las tasas de fertilidad y las tasas de supervivencia para la población estudiada.
- (e) Calcula L. (Sugerencia: resuelve el sistema planteado en el apartado anterior).
- 5 En cierta reserva africana existe un tipo de gacela que puede alcanzar los 10 años de edad. Se desea modelizar el número de gacelas usando el modelo de Leslie con dos grupos de edad: jóvenes (0-5 años) y adultos (5-10 años). Para ello se han realizado tres censos durante los últimos 10 años y se han obtenido los siguientes resultados:

	Jóvenes	Adultos
	Jovenes	Adultos
enero de 2009	20	100
enero de 2014	50	10
enero de 2019	53	25

- (a) Encuentra el modelo de Leslie asociado a esta población.
- (b) ¿Se extinguirá la población a largo plazo? Razona la respuesta.
- (c) ¿Cuál será el porcentaje de individuos en cada grupo de edad dentro de mucho tiempo?
- 6 Se considera la matriz de Leslie

$$L = \begin{pmatrix} \frac{1}{2} & 2 & 1\\ \alpha & 0 & 0\\ 0 & \beta & 0 \end{pmatrix},$$

donde $\alpha, \beta \in]0,1[$. Encuentra las regiones donde se produce extinción, crecimiento ilimitado o convergencia a equilibrios en el plano de parámetros (α,β) .

7 Se considera la matriz

$$\left(\begin{array}{cc} \alpha-1 & \alpha \\ \frac{1}{\alpha} & 0 \end{array}\right), \qquad \alpha>1.$$

- (a) Describa la población que sigue el modelo de Leslie dado por la matriz
- (b) Estudie el comportamiento asintótico de la población en términos del parámetro α .
- 8 Se considera la matriz de Leslie

$$L = \begin{pmatrix} \frac{1}{2} & \delta & \gamma \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix},$$

donde $\delta, \gamma \geqslant 0$.

- (a) Encuentre las regiones donde se produce extinción, crecimiento ilimitado o convergencia a equilibrio en el plano de parámetros (δ, γ) .
- (b) Describa la pirámide de edad a largo plazo correspondiente a los valores $\delta = \frac{1}{2}, \gamma = 1$.
- 9 Una población estructurada en N grupos de edad tiene la matriz de Leslie

$$L = \begin{pmatrix} 1 & 2 & 3 & \dots & N-1 & N \\ \frac{1}{2} & 0 & 0 & \dots & 0 & 0 \\ 0 & \frac{1}{3} & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \frac{1}{N} & 0 \end{pmatrix}.$$

¿Qué grupo de edad es más fértil? ¿Se extinguirá la población?

- 10 Consideramos un modelo de Leslie con N grupos de edad. Se supone que todos los grupos tienen la misma tasa de natalidad α y la misma tasa de supervivencia β . Construye la matriz asociada y da una condición para que haya crecimiento ilimitado de la población.
- 11 Una determinada población está estructurada en base a tres grupos diferentes de edad: crías (hasta los 3 años), jóvenes (de 3 a 6 años) y adultos (de 6 a 9 años). Es conocido que cada cría engendra en media una nueva cría, cada joven engendra en media 1,5 crías y cada adulto engendra en media 0,5 crías. Además, las observaciones arrojan el dato de que la mitad de las crías llegan a jóvenes, en tanto que sólo el 20% de los jóvenes sobrevive.

2

- (a) Construya la matriz del modelo.
- (b) Si la distribución de tamaños iniciales es $P_0 = (3, 1, 0)^t$ (en las unidades adecuadas), calcule cuál será la distribución de tamaños al cabo de seis años.
- (c) Explique el comportamiento a largo plazo de la población (incluyendo su distribución porcentual por grupos de edad).

Cuestiones: Razona las respuestas correctas.

 ${f 12}$ Una población estructurada en tres grupos de edad evoluciona siguiendo el modelo de Leslie $P_{n+1}=LP_n$, siendo

$$L = \left(\begin{array}{ccc} 0 & 0.8 & 10\\ 0.1 & 0 & 0\\ 0 & 0.92 & 0 \end{array}\right).$$

- (a) El vector $(1000, 100, 92)^t$ es un vector propio de L asociado al valor propio $\lambda = 1$.
- (b) L no tiene valor propio dominante.
- (c) La probabilidad de que un individuo del grupo primero sobreviva al último es de 0.8.
- (d) A largo plazo, el segundo grupo de edad representa aproximadamente un 8.3% de la población total.
- 13 De una población estructurada en cuatro grupos de edad, que sigue un modelo de Leslie, se sabe que
 - las tasas de fertilidad de los grupos de edad tercero y cuarto no son cero;
 - si en un recuento hay 40, 15, 5 y 2 individuos, en el siguiente hay 80, 30, 10 y 4 individuos (en ambos casos, el número de individuos hace referencia a los grupos primero, segundo, tercero y cuarto, respectivamente).
 - (a) La matriz de Leslie asociada no tiene valor propio dominante.
 - (b) $\lambda = 2$ es el valor propio dominante de la matriz de Leslie asociada.
 - (c) La población a largo plazo se extinguirá.
 - (d) La población a largo plazo crecerá ilimitadamente.
- 14 Una población, agrupada en tres estados, evoluciona de acuerdo con la matriz

$$L = \left(\begin{array}{ccc} 0.4 & 0.8 & 1\\ 0.6 & 0 & 0\\ 0 & 0.2 & 0 \end{array}\right).$$

- (a) L es una matriz de Leslie.
- (b) L tiene un valor propio dominante y vale 1.
- (c) $(100, 60, 12)^t$ es un vector propio de L asociado al valor propio $\lambda = 1$.
- (d) A largo plazo el primer estado representa aproximadamente el 58% de la población total.
- 15 Cierta población estructurada en tres grupos sigue un modelo de Leslie con matriz

$$L = \left(\begin{array}{ccc} 0.7 & 2 & 0\\ 0.3 & 0 & 0\\ 0 & 0.5 & 0 \end{array}\right).$$

- (a) La pirámide de edad, a largo plazo, es proporcional a $\mathbf{v} = (48, 12, 5)^t$.
- (b) A largo plazo el total de la población tiende a estabilizarse en un valor constante.
- (c) La matriz del modelo admite valor propio dominante.
- (d) A largo plazo la población se extinguirá.
- 16 Se considera el modelo poblacional discreto representado por la matriz

$$A = \left(\begin{array}{ccc} 0 & 1.2 & 3.6 \\ 0.6 & 0 & 0 \\ 0 & 0.4 & 0 \end{array}\right),$$

de la que se sabe que $\lambda = 1.2$ es un valor propio.

(a) La matriz A representa un modelo de Leslie asociado a tres grupos de edad.

- (b) $\lambda = 1.2$ es el valor propio dominante de A.
- (c) A largo plazo, la población en cuestión tiende a estabilizarse en torno a un cierto número de individuos.
- (d) A largo plazo, los grupos de edad se estabilizan en las proporciones 60%, 30% y 10%, respectivamente.
- 17 Se considera el sistema de ecuaciones en diferencias

$$X_{n+1} = \begin{pmatrix} 0.25 & 1 & 1\\ 0.5 & 0 & 0\\ 0 & 0.5 & 0 \end{pmatrix} X_n, \ n = 0, 1, \dots$$

- (a) Este sistema representa un modelo poblacional de Leslie con crecimiento ilimitado.
- (b) El vector $X = (4, 2, 1)^t$ define una solución constante.
- (c) A largo plazo, la proporción de individuos del primer grupo respecto del segundo es la misma que la del segundo respecto del tercero.
- (d) A largo plazo, una población descrita por dicho sistema se extinguirá.
- 18 En un estudio se ha comprobado que la *dinámica anual* de cierta especie, que se mueve entre tres hábitats (A, B y C), viene dada por la matriz de transición

$$\left(\begin{array}{ccc} 0.5 & 0.6 & 0.25 \\ 0.5 & 0 & 0 \\ 0 & 0.4 & 0.75 \end{array}\right).$$

Se verifica que, al cabo de 2 años,

- (a) si inicialmente solo hay individuos en A, entonces la mitad de ellos estarán en B.
- (b) si inicialmente solo hay individuos en B, entonces no habrá individuos en B.
- (c) si inicialmente solo hay individuos en C, entonces el 20% de ellos estará en A.
- (d) si inicialmente solo hay individuos en A, entonces la quinta parte de ellos estarán en C.
- 19 Una población de ratones cuya esperanza de vida no supera los 6 meses está distribuída en dos grupos de edad: crías (0-3 meses) y adultos (3-6 meses). En la etapa de crías no hay reproducción; además, la tasa de mortalidad en esta etapa es del 40%. Experimentalmente se ha comprobado que si inicialmente hay 50 crías y 20 adultos cada grupo de la población crece un 50% cada 3 meses.
 - (a) La tasa de fertilidad en la etapa de adultos es de 4.25.
 - (b) La tasa de fertilidad en la etapa de adultos es de 3.75.
 - (c) La matriz de Leslie del sistema tiene un valor propio dominante.
 - (d) Si inicialmente tenemos sólo 5 crías, a largo plazo, cada grupo de la población crecerá un 50% cada 3 meses.