Form A

Dwint Vous Names SOLUTION	Sout #
Print Your Name: <u>SOLUTION</u>	Seat #:
Notes:	
1 - DO NOT OPEN THE EXAM UNTIL YOU ARE T	OLD TO DO SO.
2 - GIVE ALL THE NECESSARY DETAILS TO GET	Γ FULL CREDITS.
3 - IF YOU USE CALCULATOR FOR A PROBLEM,	, GIVE THE MODEL NAME
OF THE CALCULATOR AND THE FUNCTIONS US	SED HERE:
4 - NO ELECTRONIC DEVICES OTHER THAN A CUSED.	CALCULATOR MAY BE

1. Suppose *z* is a standard normal random variable. Compute the following (with the help of *z*-table)

a)
$$P(z < 1.5) = ?$$

$$P(z < 1.5) = 0.9332$$

b)
$$P(z < -0.38) = ?$$

$$P(z < -0.38) = 0.3520$$

c)
$$P(-0.38 < z < 1.5) = ?$$

$$P(z < 1.5) - P(z < -0.38) = 0.9332 - 0.3520 = 0.5812$$

d)
$$P(z > -0.38) = ?$$

$$1 - P(z < -0.38) = 1 - 0.3520 = 0.6480$$

e) Find the $z(\alpha)$ for $\alpha = 0.05$.

$$z(\alpha) = 1.65$$

f) Find the z^* such that $P(-z^* \le z \le z^*) = 0.90$.

$$z^* = 1.65$$

PLEASE DO NOT WRITE IN THE FOLLOWING SPACE.

1	2	3	4	5	Total
25	15	15	25	25	105

2. Suppose x is a binomial random variable with parameter n=36 and p=0.50. Use normal approximation to binomial (if possible) to compute:

$$P(x < 23) = ?$$

(First, check the assumptions)

$$\begin{cases} np > 5 & \rightarrow 36 \times 0.50 = 18 > 5 \\ n(1-p) > 5 & \rightarrow 36 \times 0.50 = 18 > 5 \end{cases}$$

$$\mu = np = 36 \times 0.50 = 18$$

$$\sigma = \sqrt{np(1-p)} = \sqrt{36 \times 0.50 \times 0.50} = \sqrt{9} = 3$$

$$P(x < 23) = P(x \le 22.5) = P\left(z \le \frac{22.5 - \mu}{\sigma}\right) = P\left(z \le \frac{22.5 - 18}{3}\right)$$
$$= P(z \le 1.5) = 0.9332$$

15 pts

- 3. From previous semesters we know that the mid-term grade for MATH-1700 classes (denoted with x) follows a normal distribution with population mean 77 ($\mu = 77$), and standard deviation 4 ($\sigma = 4$).
 - a) Compute $P(x \ge 78.5) = ?$

$$P\left(z \ge \frac{78.5 - \mu}{\sigma}\right) = P\left(z \ge \frac{78.5 - 77}{4}\right) = P(z \ge 0.38) = 0.3520$$

b) We took a random sample of 16 students from MATH-1700 class this semester. Describe the sampling distribution of the sample mean \bar{x} ?

 \bar{x} is following normal with mean $(\mu = 77)$ and standard deviation $\left(\frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{16}} = 1\right)$

c) Compute $P(\bar{x} \ge 76.5) = ?$

$$P(\bar{x} \ge 78.5) = P\left(z \ge \frac{78.5 - \mu}{\sigma/\sqrt{n}}\right) = P\left(z \ge \frac{78.5 - 77}{1}\right) = P(z \ge 1.5) = 0.0688$$

- 4. Soroush (our TA) didn't know the population mean of the mid-term grade for MATH-1700 classes (μ). I already told him that the population standard deviation 4 ($\sigma = 4$). He took a random sample of 16 students from MATH-1700 classes, resulted $\bar{x} = 78.5$ and $s^2 = 15$. Help him to obtain the followings:
 - a) Give a point estimate of μ .

$$\bar{x} = 78.5$$

b) Construct a 90% confidence interval for μ .

$$\alpha = 0.1 \Rightarrow z(\alpha/2) = z(0.05) = 1.65$$

$$\left(\bar{x} - z(\alpha/2)\frac{\sigma}{\sqrt{n}}, \bar{x} + z(\alpha/2)\frac{\sigma}{\sqrt{n}}\right) \Rightarrow \left(78.5 - 1.65\frac{4}{\sqrt{16}}, 78.5 + 1.65\frac{4}{\sqrt{16}}\right) \Rightarrow (76.85, 80.15)$$

c) What is your maximum error in part (b) with confidence level of 0.90?

$$E = z(\alpha/2)\frac{\sigma}{\sqrt{n}} = 1.65$$

d) Finally I want to have confidence interval with maximum error not more than 1.00 unit. Choose the sample size *n* so that your maximum error be less than 1.00 with a confidence level 0.90.

$$n = \left(\frac{z(\alpha/2) \cdot \sigma}{E}\right)^2 = \left(\frac{1.65 \cdot 4}{1}\right)^2 = 43.56 \uparrow$$

$$n = 44$$

- 5. Again Soroush didn't know the population mean of the mid-term grade for MATH-1700 classes (μ). I already told him that the population standard deviation 4 ($\sigma = 4$). He took a random sample of 16 students from MATH-1700 classes, resulted $\bar{x} = 78.5$ and $s^2 = 15$. I asked Soroush to test if the mid-term grade has increased comparing to the previous semesters.
- a) Use **p-value** approach to test H_0 : $\mu \le 77$ versus H_a : $\mu > 77$ at the level of significance = 0.1
 - 1. $H_0: \mu \le 77 \text{ versus } H_a: \mu > 77$
 - 2. Population is normal $\Rightarrow \bar{x}$ is following normal (assumption holds)
 - 3. T.S. $z^* = \frac{\bar{x} \mu_0}{\sigma / \sqrt{n}} = \frac{78.5 77}{4 / \sqrt{16}} = \frac{3}{2} = 1.5$
 - 4. p-value = $P(z > 1.5) = 0.0668 < 0.1 \Rightarrow p$ -value $< \alpha \Rightarrow \text{Reject } H_0$
 - 5. There is a significant evidence that mid-term grade has increased.
- b) Use **classicial** approach to test H_0 : $\mu \le 77$ versus H_a : $\mu > 77$ at the level of significance = 0.1.
 - 1. $H_0: \mu \le 77 \text{ versus } H_a: \mu > 77$
 - 2. Population is normal $\Rightarrow \bar{x}$ is following normal (assumption holds)
 - 3. T.S. $z^* = \frac{\bar{x} \mu_0}{\sigma / \sqrt{n}} = \frac{78.5 77}{4 / \sqrt{16}} = \frac{3}{2} = 1.5$
 - 4. $C.R: [z > z(\alpha)] = [z > 1.28] \Rightarrow \text{Since } [z^* > 1.28] \text{ we Reject } H_0$
 - 5. There is a significant evidence that mid-term grade has increased.

c) Do the conclusions from (a) align with those from (b)?

Exam II (Fall 2025) Time Limit: 70 minutes

Section 101

Form B

Print Your Name: Solution	Seat #:
Time Tour Nume.	Seac ***
Notes:	
1 - DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO	DO SO.
2 - GIVE ALL THE NECESSARY DETAILS TO GET FULL	CREDITS.
3 - IF YOU USE CALCULATOR FOR A PROBLEM, GIVE T	THE MODEL NAME
OF THE CALCULATOR AND THE FUNCTIONS USED HE	RE:
4 - NO ELECTRONIC DEVICES OTHER THAN A CALCUL USED.	ATOR MAY BE

- 1. Suppose z is a standard normal random variable. Compute the following probabilities (with the help of z-table)
 - a) P(z < 0.38) = ?

$$P(z < 0.38) = 0.6480$$

b)
$$P(z < -1.5) = ?$$

$$P(z < -1.5) = 0.0668$$

c)
$$P(-1.5 < z < 0.38) = ?$$

$$P(z < 0.38) - P(z < -1.5) = 0.6480 - 0.0668 = 0.5812$$

d)
$$P(z > -1.5) = ?$$

$$1 - P(z < -1.5) = 0.9332$$

e) Find the $z(\alpha)$ for $\alpha = 0.10$.

$$z(\alpha) = 1.28$$

f) Find the z^* such that $P(-z^* \le z \le z^*) = 0.80$.

$$z^* = 1.28$$

PLEASE DO NOT WRITE IN THE FOLLOWING SPACE.

1	2	3	4	5	Total
25	15	15	25	25	105

2. Suppose x is a binomial random variable with parameter n=36 and p=0.50. Use normal approximation to binomial (if possible) to compute:

$$P(x > 13) = ?$$

(First, check the assumptions)

$$\begin{cases} np > 5 & \rightarrow 36 \times 0.50 = 18 > 5 \\ n(1-p) > 5 & \rightarrow 36 \times 0.50 = 18 > 5 \end{cases}$$

$$\mu = np = 36 \times 0.50 = 18$$

$$\sigma = \sqrt{np(1-p)} = \sqrt{36 \times 0.50 \times 0.50} = \sqrt{9} = 3$$

$$P(x > 13) = P(x \ge 13.5) = P\left(z \ge \frac{13.5 - \mu}{\sigma}\right) = P\left(z \ge \frac{13.5 - 18}{3}\right)$$
$$= P(z \ge -1.5) = 1 - P(z \le -1.5) = 0.9332$$

15 pts

- 3. From previous semesters we know that the mid-term grade for MATH-1700 classes (denoted with x) follows a normal distribution with population mean 75 ($\mu = 75$), and standard deviation 4 ($\sigma = 4$).
 - a) Compute $P(x \ge 76.5) = ?$

$$P\left(z \ge \frac{76.5 - \mu}{\sigma}\right) = P\left(z \ge \frac{76.5 - 75}{4}\right) = P(z \ge 0.38) = 0.3520$$

b) We took a random sample of 16 students from MATH-1700 class this semester. Describe the sampling distribution of the sample mean \bar{x} ?

 \bar{x} is following normal with mean ($\mu = 75$) and standard deviation $\left(\frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{16}} = 1\right)$

c) Compute $P(\bar{x} \ge 76.5) = ?$

$$P(\bar{x} \ge 76.5) = P\left(z \ge \frac{76.5 - \mu}{\sigma/\sqrt{n}}\right) = P\left(z \ge \frac{76.5 - 75}{1}\right) = P(z \ge 1.5) = 0.0688$$

- 4. Soroush (our TA) didn't know the population mean of the mid-term grade for MATH-1700 classes (μ). I already told him that the population standard deviation 4 ($\sigma = 4$). He took a random sample of 16 students from MATH-1700 classes, resulted $\bar{x} = 76.5$ and $s^2 = 15$. Help him to obtain the followings:
 - a) Give a point estimate of μ .

$$\bar{x} = 76.5$$

b) Construct a 90% confidence interval for μ .

$$\alpha = 0.1 \Rightarrow z(\alpha/2) = z(0.05) = 1.65$$

$$\left(\bar{x} - z(\alpha/2)\frac{\sigma}{\sqrt{n}}, \bar{x} + z(\alpha/2)\frac{\sigma}{\sqrt{n}}\right) \Rightarrow \left(76.5 - 1.65\frac{4}{\sqrt{16}}, 76.5 + 1.65\frac{4}{\sqrt{16}}\right) \Rightarrow (74.85, 78.15)$$

c) What is your maximum error in part (b) with confidence level of 0.90?

$$E = z(\alpha/2)\frac{\sigma}{\sqrt{n}} = 1.65$$

d) Finally I want to have confidence interval with maximum error not more than 1.00 unit. Choose the sample size n so that your maximum error be less than 1.00 with a confidence level 0.90.

$$n = \left(\frac{z(\alpha/2) \cdot \sigma}{E}\right)^2 = \left(\frac{1.65 \cdot 4}{1}\right)^2 = 43.56 \uparrow$$

$$n = 44$$

- 5. Again Soroush didn't know the population mean of the mid-term grade for MATH-1700 classes (μ). I already told him that the population standard deviation 4 ($\sigma = 4$). He took a random sample of 16 students from MATH-1700 classes, resulted $\bar{x} =$ 76.5 and $s^2 = 15$. I asked Soroush to test if the mid-term grade has increased comparing to the previous semesters.
- a) Use **p-value** approach to test H_0 : $\mu \le 75$ versus H_a : $\mu > 75$ at the level of significance = 0.1
 - 1. $H_0: \mu \le 75 \text{ versus } H_a: \mu > 75$
 - 2. Population is normal $\Rightarrow \bar{x}$ is following normal (assumption holds) 3. T.S. $z^* = \frac{\bar{x} \mu_0}{\sigma/\sqrt{n}} = \frac{76.5 75}{4/\sqrt{16}} = \frac{3}{2} = 1.5$

 - 4. p-value = $P(z > 1.5) = 0.0668 < 0.1 \Rightarrow p$ -value $< \alpha \Rightarrow \text{Reject } H_0$
 - 5. There is a significant evidence that mid-term grade has increased.

- b) Use **classicial** approach to test H_0 : $\mu \le 75$ versus H_a : $\mu > 75$ at the level of significance = 0.1.
 - 1. $H_0: \mu \le 75 \text{ versus } H_a: \mu > 75$
 - 2. Population is normal $\Rightarrow \bar{x}$ is following normal (assumption holds)
 - 3. T.S. $z^* = \frac{\bar{x} \mu_0}{\sigma / \sqrt{n}} = \frac{76.5 75}{4 / \sqrt{16}} = \frac{3}{2} = 1.5$
 - 4. $C.R: [z > z(\alpha)] = [z > 1.28] \Rightarrow \text{Since } [z^* > 1.28] \text{ we Reject } H_0$
 - 5. There is a significant evidence that mid-term grade has increased.

c) Do the conclusions from (a) align with those from (b)?