Линейная алгебра

Чепелин Вячеслав

Содержание

1	Ино	рормация о курсе	2
2	Лин	нейные отображения.	3
	2.1	Основные определения. Теорема о ранге и дефекте линейных отоб-	
		ражений	3
	2.2	Матрица лин. отображения. Координатный изоморфизм. Формула	
		замены матрицы линейного отображения при замене базиса	6
	2.3	Инварианты линейного отображения	8

1 Информация о курсе

Поток — y2024.

Группы М3138-М3139.

Преподаватель — Кучерук Екатерина Аркадьевна.

2 Линейные отображения.

2.1 Основные определения. Теорема о ранге и дефекте линейных отображений

def: U, V - линейное пространства над одним полем $K(\mathbb{R}, \mathbb{C})$.

 $\mathcal{A}:U o V$ называется **линейным гомоморфизмом**, если:

$$\forall \lambda \in K, \forall u_1, u_2 \in U : \mathcal{A}(u_1 + \lambda u_2) = \mathcal{A}(u_1) + \lambda \mathcal{A}(u_2)$$

Замечание 1: Мы будем писать Au, вместо A(u).

Замечание 2: Au, Bu это какие-то числа, поэтому мы можем складывать их и умножать на скаляр.

Примеры:

- 1. О: это нулевое отображения $\forall u \in U : \mathbb{O}u = 0$
- 2. P_n пространство многочленов степени $\leq n$. $\mathcal{A} = \frac{d}{dx}$ дифферинцирование.
- 3. ε тождественное отображение. $\varepsilon:U\to U: \forall u\in U: \varepsilon u=u.$

Введем операции:

1. $\lambda \in K : \mathcal{A}$ — линейное отображение. Введем операцию умножения:

$$\forall u \in U : (\lambda \mathcal{A})u = \lambda(\mathcal{A}u)$$

2. \mathcal{A}, \mathcal{B} — линейные отображение. Введем операцию сложения:

$$\forall u \in U : (\mathcal{A} + \mathcal{B})u = \mathcal{A}u + \mathcal{B}u$$

3. $\mathcal{B} \in L(U, W)$, $\mathcal{A} \in (L(W, V)$. Введем операцию произведения:

$$\forall u \in U : (\mathcal{A} \cdot \mathcal{B})u = \mathcal{A}(\mathcal{B}u)$$

 $\operatorname{Im} \mathcal{A} = \{v \in V : v = \mathcal{A}u | \forall u \in V\}$ — образ линейного пространства.

Замечание: $\operatorname{Im} \mathcal{A}$ — линейное подпространство.

 $\mathcal{K}er\mathcal{A}=\{u\in U|\mathcal{A}u=0\}$ — ядро линейного отображения.

 $rg\mathcal{A} = \dim\operatorname{Im}\mathcal{A} - \mathbf{pahr}$ отображения

 $def \mathcal{A} = \dim \mathcal{K}er \mathcal{A} - \mathbf{деффект}$ отображения.

Виды отображений:

- сюръекция, если $\operatorname{Im} \mathcal{A} = V \Leftrightarrow rg\mathcal{A} = \dim V$.
- инъекция, если $KerA = \{ \mathbb{O}_U \} \Leftrightarrow defA = 0.$
- биекция или изоморфизм $\Leftrightarrow \begin{cases} \operatorname{Im} \mathcal{A} = V \\ \mathcal{K}er\mathcal{A} = \{\mathbb{O}_U\} \end{cases} \Leftrightarrow \begin{cases} rg\mathcal{A} = \dim V \\ def\mathcal{A} = 0 \end{cases}$
- эндоморфизмом или линейным оператором, когда U=V.

$$\mathcal{A} \in End(V) = End_K(v)$$

• автоморфизм это биекция + эндоморфизм.

$$\mathcal{A} \in Aut(V) = Aut_K(v)$$

Примеры:

- 1. P_n пространство многочленов степени не больше n. $\mathcal{A} = \frac{d}{dt} \mathcal{A} : P_n \to P_n$. не инъекция, не сюръекция, не изоморофизм, эндоморфизм и не автоморфизм
- 2. $U = K^n, V = K^m, A = (a_{ij})_{m \times n}, a_{ij} \in K, \forall u \in U : Au = A \cdot u.$

$$\operatorname{Im} \mathcal{A} = \left\{ y \in K^m \ \ \substack{y = \mathcal{A}x \\ \forall x \in K^n} \ \right\} = span(A_1, \dots, A_n) - oбраз \ матрицы.$$

$$y = A \cdot x = \sum_{i=1}^{n} A_i \cdot x_i$$

Давайте более подробно рассмотрим отображения:

1. сюръекция $\Leftrightarrow rg\mathcal{A} = \dim V = m$.

 $Ker \mathcal{A} = \{x \in K^n : Ax = \mathbb{O}\}$ — общее решение СЛОУ, ядро матрицы.

 $\dim \mathcal{K}er\mathcal{A} = \dim$ общего решения = n - rgA.

 $def \mathcal{A} = n - rgA - \partial e \phi e \kappa m$ матрицы.

- 2. инъекция $\Leftrightarrow def A = 0 \Leftrightarrow n rgA = 0 \Leftrightarrow rgA = n$.
- 3. биекция $\Leftrightarrow \begin{cases} rgA = n \\ rgA = m \end{cases} \Leftrightarrow n = M.$
- 4. эндоморфизм $\Leftrightarrow n = m \Leftrightarrow A_{n \times n}$.
- 5. автоморфизм $\Leftrightarrow rg\mathcal{A} = n, A_{n \times n} \Leftrightarrow \exists A^{-1}.$

Свойства произведения:

1. \mathcal{A}, \mathcal{B} — изоморф. $\Rightarrow \mathcal{A} \cdot \mathcal{B}$ — изоморфно.

- 2. $\mathcal{A}(\mathcal{B}_1 + \mathcal{B}_2) = \mathcal{A}\mathcal{B}_1 + \mathcal{A}\mathcal{B}_2$.
- 3. $\forall \lambda \in K : \mathcal{A}(\lambda \mathcal{B}) = (\lambda \mathcal{A})\mathcal{B} = \lambda(\mathcal{A} \cdot \mathcal{B}).$
- 4. $C \in L(\Omega, U) : A \cdot (B \cdot C) = (A \cdot B) \cdot C$

Ассоциативная унитальная алгебра.

Замечание 1. Если $\mathcal{A} \in L(U,V)$ — изоморфно $\Rightarrow \mathcal{A}^{-1}$ — взаимно обр. отображение.

Замечание 2. Если $\mathcal{A} \in End(V)$, а также изоморфизм $\Leftrightarrow \mathcal{A} \in Aut(V) \Leftrightarrow \mathcal{A}^{-1} \in End(V)$ — обратный лин. оператор к \mathcal{A} .

<u>def:</u> $U_0 \subset U$ - линейное подпространство. $\mathcal{A} \in L(U,V)$

 $\mathcal{A}|_{U_0}:U_0\to V$ сужение лин. отобр. на лин подпространство.

 $\forall u \in \mathcal{A}_0 : \mathcal{A}_0 u = \mathcal{A} u.$

Если \mathcal{A} — изоморфизм, то тогда его сужение на U_0 будет линейным отображением между U_0 и Im \mathcal{A}_0 . И это будет тоже изоморфизм.

Теорема(о ранге и дефекте линейного отображения)

 $\forall \mathcal{A} \in L(U, V)$. Доказать dim $U = def \mathcal{A} + rg \mathcal{A}$.

Доказательство:

Пусть $U_0 = \mathcal{K}er \subset U$. Пусть $U_1 \subset U$, такое, что $U_0 \oplus U_1 = U$ — прямое дополнение. Возьму $\mathcal{A}_1 = \mathcal{A}|_{U_1} \in L(U_1, \operatorname{Im} \mathcal{A}_1)$.

 $\forall u \in U : \exists ! u = u_0 + u_1$, где $u_0 \in U_0$, $u_1 \in U_1$, по т. об определении прямой суммы. Тогда получаем, что:

$$\mathcal{A}u = \mathcal{A}u_0 + \mathcal{A}u_1 = \mathcal{A}u_1$$

Откуда $\operatorname{Im} \mathcal{A} = \operatorname{Im} \mathcal{A}_1, rg\mathcal{A} = rg\mathcal{A}_1.$

 $\mathcal{K}er\mathcal{A}_1\subset U_1$, а также $\mathcal{K}er\mathcal{A}_1\subset\mathcal{K}er\mathcal{A}=U_0\Rightarrow\mathcal{K}er\mathcal{A}_1=\{\mathbb{O}\}\Rightarrow\mathcal{A}_1$ изоморфно. Откуда получаем:

$$\dim U = \dim U_1 + \dim U_0 = rg\mathcal{A} + def\mathcal{A}$$

Q.E.D.

Следствие. (характеристика автоморфизма)

Если $\mathcal{A} \in Aut(V) \Leftrightarrow rg\mathcal{A} = \dim V \Leftrightarrow def\mathcal{A} = 0$ — условие обратимости линейного пространства.

2.2 Матрица лин. отображения. Координатный изоморфизм. Формула замены матрицы линейного отображения при замене базиса.

 $\mathcal{A} \in L(U,V)$ — линейное отображение.

Пусть есть $\xi = (\xi_1, \xi_2, \dots, \xi_n)$ базис U, а так же $\eta = (\eta_1, \eta_2, \dots, \eta_n)$ базис V.

$$u \in U \xleftarrow{\text{изоморфизм}} u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} \in K^n; \ v \in V \xleftarrow{\text{изоморфизм}} v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{pmatrix} \in K^m$$

$$\exists v = \mathcal{A}u, u \in U : v = \mathcal{A}(\sum_{i=1}^{n} x_i \xi_i) = \sum_{i=1}^{n} x_i \mathcal{A}\xi_i$$

To есть Im $\mathcal{A} = span(\mathcal{A}\xi_1, \mathcal{A}\xi_2, \dots, \mathcal{A}\xi_n)$

$$rg\mathcal{A} = rg(\mathcal{A}\xi_1, \mathcal{A}\xi_2, \dots, \mathcal{A}\xi_n).$$

Теперь заметим, что $\mathcal{A}\xi_i \in V$, откуда:

$$A\xi_i = \sum_{j=1}^m a_{ji}\eta_j \stackrel{\mathrm{коорд.\ изоморфизм}}{\longleftrightarrow} A_i = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{pmatrix} \in K^m$$

Назовем $A = (A_1, \dots, A_n) = (a_{ij})_{m \times n} - \underline{\text{матрицой линейного отображения}} \mathcal{A}$ на базисах ξ, η .

Замечание. Т.к. здесь координатный изоморфизм, то:

$$rg\mathcal{A} = rg(\mathcal{A}\xi_1, \dots, \mathcal{A}\xi_n) = rg(A_1, \dots, A_n) = rgA.$$

<u>def:</u> $A \in End(V) : A : V \to V$ — лин. оператор.

Зафиксируем здесь один базис $e=e_1,\ldots,e_n$. Получу:

$$\mathcal{A}e_i = \sum_{j=1}^n a_{ji}e_j \Leftrightarrow (\mathcal{A}e_1, \dots, \mathcal{A}e_n) = (e_1, \dots, e_n)\mathcal{A}$$

Тогда $A_{n \times n}$ — матрица линейного оператора.

Заметим, что теперь мы умеем:

$$\mathcal{A} \in L(U,V) \stackrel{\text{вз. однозначно}}{\longleftrightarrow} A \in M_{m \times n}$$

Утв. $L(U,V) \cong M_{m \times n}$ координатный изоморфизм линейных отображений Доказательство:

У нас есть взаимно однозначное соответствие. Проверим линейность:

 $\forall \lambda \in K : \mathcal{A} + \lambda \mathcal{B} \stackrel{\text{проверить}}{\longleftrightarrow} A + \lambda B.$

$$(\mathcal{A} + \lambda \mathcal{B})\xi_i = \mathcal{A}\xi_i + \lambda \cdot \mathcal{B}x_i = \sum_{j=1}^m a_{ji}\eta_j + \lambda \sum_{j=1}^m b_{ji}\eta_j = \sum_{j=1}^m (a_{ji} + \lambda b_{ji}) \cdot \eta_j$$

А откуда уже видно нужное нам соответствие.

Q.E.D.

Утв. $\mathcal{A} \in L(W,V), \mathcal{B} \in L(V,W), \mathcal{AB} \in L(U,V)$. Пусть w - базис W, η - базис V, ξ - базис U. Тогда $\mathcal{AB} \leftrightarrow AB$ в базисах (ξ,η)

Доказательство:

$$\mathcal{AB}\xi_{i} = \mathcal{A}(\mathcal{B}\xi_{i}) = \mathcal{A}(\sum_{k=1}^{p} b_{ki}w_{k}) = \sum_{k=1}^{p} b_{ki}\mathcal{A}(w_{k}) = \sum_{k=1}^{p} b_{ki}\sum_{j=1}^{m} a_{jk}\eta_{j} = \sum_{j=1}^{m} (\sum_{k=1}^{p} a_{jk}b_{kj})\eta_{j} =$$

$$= \sum_{j=1}^{m} (AB)_{ji} \cdot \eta_{j}$$

Q.E.D.

Следствие: $\mathcal{A} \in L(U,V)$ - изоморфизм, A - матр в $\xi,\eta \Rightarrow A^{-1}$ - матр в (η,ξ) .

Доказательство:

$$v = Cu = \sum_{i=1}^{n} u_i \mathcal{A}\xi_i = \sum_{i=1}^{n} u_i \sum_{j=1}^{m} a_{ji} \eta_j = \sum_{j=1}^{m} (\sum_{i=1}^{n} a_{ji} u_i) \eta_j \Rightarrow v_j = \sum_{i=1}^{n} a_{ji} u_i$$

Откуда получаю, что $v = \mathcal{A}u \Leftrightarrow v = A \cdot u$. Откуда уже получаем то, что и хотели найти

Q.E.D.

Теорема (формула замены мантрицы лин. отобр. при замене базиса)

 $\mathcal{A} \in L(U,V)$ — линейное отображение.

 ξ, ξ' базисы U, а η, η' базисы V. Хотим поменять базисы на штрихованные и получить новую матрицу. Тогда ее можно получить так:

$$A' = T_{\eta \to \eta'}^{-1} A T_{\xi \to \xi'}$$

Доказательство:

Воспользуемся данным рисунком, чтобы понять происходящее. Мы хотим найти матрицу \mathcal{A}' . Для этого, заметим, что преобразование \mathcal{A}' , это преобразование \mathcal{B} , потом примененное к нему преобразование \mathcal{A} , а после этого примененое к нему преобразование \mathcal{C} . То есть:

$$A' = CAB$$

.

Заметим, что матрица \mathcal{B} , это матрица перехода из ξ в ξ' . Это так потому что у нас просто меняется базис (про саму матрицу перехода см. одноименный раздел). Матрица \mathcal{C} , это $T_{\eta' \to \eta}$. Откуда, исходя из двух утверждений сверху:

$$A' = T_{\eta' \to \eta} A T_{\xi \to \xi'} \Rightarrow A' = T_{\eta \to \eta'}^{-1} A T_{\xi \to \xi'}$$

Q.E.D.

Следствие: $A \in End(V)$. e, e' базисы V. $A' = T^{-1}AT$

2.3 Инварианты линейного отображения.

<u>Инвариатность</u> называется некоторое свойство объекта, которое не меняется при определенных действиях и преобразованиях.

A - линейное отображение. Ранг и дефект инварианты относительно выбора базиса.