10X 空间转录组 常见问题 (FAQ)

Spatial Transcriptomics (ST)

10X 空间转录组常见问题(FAQ)

10X	空间	间转录组常见问题(FAQ)	. 2
– ,	前	前期常见问题	4
	(—]) 技术选择	4
	1.	10x Genomics 公司的两个空转平台(ployA 捕获和探针捕获)的区别是什么	? 4
	2.	空间转录组测序需要生物学重复吗?	4
	3.	临床样本无法一次把所有样本取到,可以分批取样吗?	4
	4.	研究的物种没有参考基因组,可以做吗?	4
	5.	FFPE 样本时间太长,是否适合做空转?	5
	6.	组织太小可以拼片吗?	5
	7.	想要和其他组学联合,可以考虑哪些组学?	5
	(二)) 样本准备	5
	1.	新鲜样本的包埋是否需要客户自己完成?	5
	2.	切片是客户自己做还是公司完成?	5
	3.	FF 和 FFPE 的切片厚度是否有差异?	6
	4.	FF 和 FFPE 分别需要多少张切片?	6
	5.	样本如何收集?	6
	6.	如果空间转录组和空间代谢组一起做,该如何取样?	6
=,	关	卡于 spaceranger 的问题	. 6
	1.	空间样本需要覆盖多少 spots 才能分析?	6
	2.	空间转录组测序的 reads 能否进行拼接?	6
	3.	Sequencing Saturation 需要达到多少才能继续分析?	7
	4.	是否可以和单细胞 cellranger 一样进行 force cell?	7
		如果组织中存在比较大的非细胞结构(类似囊腔等),spacerange 将这部分 的 spots 识别出来继续分析,是否可行?	
三、	关-	于报告和后续分析问题	. 7
	1.	空间转录组测序结果,除了 spacerager 软件处理之外,是否还进行其他质控	
	2.	空转可以调整 cluster 的数目吗?	7
	3.	如何判断是否存在批次效应?	7
	4.	如何判断过度矫正?	8

	5. ‡	常用的批次矫正方法	8
	6. <u>2</u>	空间转录组可以进行细胞类型鉴定吗?常用的方法是什么?	8
	7. 🕽	为什么有的报告有 celltype 结果,有的没有?	8
	8. m	narker 基因的鉴定原则是什么,top10 是如何筛选的?	8
	9. 2	空间 spots 的成分比较复杂,那么分 cluster 的意义在哪里?	8
	10.	差异基因的筛选标准是什么?	9
		空间切片上存在不同的组织结构,如癌和癌旁、不同脑区,是否需要单独分 论?	
	12.	空间转录组可以进行细胞亚型分析吗?	9
	13.	如果利用单细胞鉴定到了细胞亚型,想在空间上进行分析,是否可行?	9
	14.	空间测序数据可以与 bulk RNA-seq 联合分析吗,有何好处?	9
	15.	空转是否可以检测融合基因?	9
	16.	关注的基因在测序结果中检测不到为什么?	9
	17.	10X Genomics 单细胞转录组测序是否可以分析可变剪切?	9
	18.	10X Genomics 单细胞转录组测序是否可以分析 SNP 和 CNV?	9
四、	关于	高级分析的内容	10
	(—)	拟时序的相关问题	. 10
	1. 扌	以时序分析的方法有几种?	. 10
	2. 扌	以时序分析什么情况下适用?	.10
	3. 扌	以时序分析需要人为判定方向吗?如何判断?	.10
	(二)	Scenic 的相关问题	. 10
	1. 2	空间转录组是否可以做 scenic 分析?	.10
	2. 5	是否可以按照分组/cluster 进行 regulon 比较?	.10
	3. 1	十么情况下按照分组分析 regulon?	.10
	4. ‡	如果 RAS 和 RSS 的数据不一致,怎么办?	.11
	5. }	舌性高是否代表这个基因表达量也高?	. 11
	6. <u>‡</u>	兆选的某个 cluster 里面活性高的 regulon,是否下游靶基因也是上调的?	. 11
	7. 福	确定了 regulon 之后还能做些什么?	.11
	(三)	细胞间通讯的相关问题	. 11
	1. 2	空间通讯分析一定要有细胞类型的信息才能做吗?	. 11
	答:	不一定。有两种情况。	. 11
	2. c	ellphoneDB 和 cellchat 该如何选择?	. 11

3.	如何筛选关键的受配体基因?	11
4.	cellphoneDB 没有收录通路信息,是否意味着不能关注通路?	12
(四)CNV 的相关问题	12
1.	是否存在专门的数据库进行 CNV 预测?	12
	空间转录组一个 spots 可能包含多个细胞类型,肿瘤细胞和正常细胞共定位,正常细胞如何指定?	
3.	CNV group 应该怎么用?	12

一、前期常见问题

(一) 技术选择

1. 10x Genomics 公司的两个空转平台(ployA 捕获和探针捕获)的区别是什么?

答: 10x Visum(PloyA 捕获)和 Cytassist(探针捕获)平台的主要区别如下:

	10x Visum平台	Cytassist平台	
涉及物种类型	真核生物均可	人、小鼠	
样本处理方式	新鲜样本OCT包埋(FF)	新鲜样本OCT包埋(FF)、石蜡包埋(FFPE)	
RNA捕获方式	ployA捕获	探针捕获	
质检方式	RIN>7	DV200>30%	
是否需要透化优化	需要	不需要	
非编码RNA捕获	可以捕获部分LncRNA	仅捕获mRNA	
未知基因检出	可以检出未知基因	仅针对已知基因	
基因数检出(中位值) 视样本具体类型,一般4000以下 可以		视样本具体类型,一般是visum的1.5-2倍	
		可以	

2. 空间转录组测序需要生物学重复吗?

答:建议要做生物学重复。对于小鼠的样本,背景比较单一,可以考虑每组3个样本;对于临床样本,个体差异比较大,建议每组3-5个甚至更多。

3. 临床样本无法一次把所有样本取到,可以分批取样吗?

答:可以分批提供。空间转录组后续分析过程中可以通过软件进行批次矫正。

4. 研究的物种没有参考基因组,可以做吗?

答:不建议。没有参考基因的样本,后续空转测完之后无法对基因进行比对和注释,因此后续分析可能无法达到老师的目的。

5. FFPE 样本时间太长,是否适合做空转?

答:按照官方的建议,最好 5 年以内的 FFPE 蜡块,不过正式实验之前要检测 DV200 是否大于 30%,如果质检合格,也是可以尝试做空转的。

6. 组织太小可以拼片吗?

答:理论上是可以的,不过要视切片大小具体定夺,尽量避免两张切片部分重叠导致数据无法拆分的情况。此外,FF 样本建议不同样本直接包埋在一起,避免后期分别贴片造成更多的风险。

7. 想要和其他组学联合,可以考虑哪些组学?

答:组学联合可以考虑一下

- 1) DNA 层面:可以联合 scATAC-seq, WGS, WES(找到关键基因或转录因子进行空间定位分析)
- 2) 转录层面:可以联合 bulk RNA-seq, scRNA-seq 针对关键基因/转录因子/细胞类型/细胞亚型进行空间定位和空间微环境分析
- 3)蛋白层面: DIA、lable-free, TMT 检测(至少每组3重复,临床至少5对以上),差异蛋白或特征通路等进行空间分析
- 4) 代谢层面: GC-MS/LC-MS(可以通过通路等进行联合分析),或可以联合空间代谢(建议 邻近切片测序)

(二) 样本准备

1. 新鲜样本的包埋是否需要客户自己完成?

答:

- 1) 做 FF 的样本:建议客户包埋好送公司切片。主要原因是防止直接冻存时间久,可能会导致组织内冰晶太多(比如肺组织,皮肤及其他有空腔结构的组织)
- 2) 做 FFPE 的样本: 直接提供蜡块即可

2. 切片是客户自己做还是公司完成?

答:两个平台要求不同

10x Vsium 平台: 切片由公司完成,直接提供组织或包埋好的组织块即可

Cytassist:可以由公司完成,也可提供切好的切片。如果客户自己切片,需要按照样本准备指南进行准备,可以联系销售索取。

3. FF 和 FFPE 的切片厚度是否有差异?

答: 有差异。FF 样本在 10 µm 左右, 部分样本 15 µm; FFPE 样本 5 µm 厚度。

4. FF 和 FFPE 分别需要多少张切片?

答:

FF: 大约 20 张左右,每张 10 μ m 厚度(分别需要进行 RNA 质检,HE 染色,透化优化,正式实验)。

FFPE:

样本类型	用途	厚度 (μm)	提供量	备注
石蜡卷及石	RNA 抽提质检	5-20	60 <i>μ</i> m<总厚度≤80 <i>μ</i> m	新鲜石蜡卷放置于 Ep 管中
蜡切片			(总厚度=厚度*张数)	(每管 2 卷)
	HE 染色质检	5	2-3 张	用于框选正式实验区域
	Cytassist 正式	5	2 张,客户确认包含 ROI	务必参考样本准备指南贴于
	实验		(Region of Interest)	玻片上有效转片区域内

5. 样本如何收集?

答:

1) FF 样本: 干冰运输和保存

2) FFPE: 4℃运输和保存

6. 如果空间转录组和空间代谢组一起做,该如何取样?

答:注意事项:

1) 仅针对 FF 样本可行,石蜡包埋样本(FFPE)不能做空间代谢组

2) 包埋胶只能用莱卡特用胶,不能用 0CT

二、 关于 spaceranger 的问题

1. 空间样本需要覆盖多少 spots 才能分析?

答:空间样本的大小取决能覆盖多少 spots,一般建议目标区域覆盖的 spots 尽量不要低于50 个,否则后续无法完成聚类及相应分析。

2. 空间转录组测序的 reads 能否进行拼接?

答:不能,空间转录组测序技术有两种(探针捕获和 ployA 捕获),都只能针对特定带有标签的序列进行测序和基因定量,并不会进行拼接

3. Sequencing Saturation 需要达到多少才能继续分析?

答: 空转目前对于测序饱和度没有特殊要求,但是这个指标可以反应样本的基因丰富度, 所以可以对比单细胞,一般达到 40%以上为最佳。

4. 是否可以和单细胞 cellranger 一样进行 force cell?

答: 不可以,单细胞是根据基因和 UMI 来预测是否为细胞,指标设定的不同,可以对于细胞数进行调整,但是空转的结果 spots 的多少是和组织部位有关的,理论上 spots 的数量是一定的,进行 force cell 并不合理。

5. 如果组织中存在比较大的非细胞结构(类似囊腔等), spacerange 将这部分对应的 spots识别出来继续分析,是否可行?

答:如果囊腔部分很小,比如覆盖半个 spots,是可以继续留用的,但如果面积很大,多个 spots 都未被组织覆盖,建议手动调整对应关系,将非组织部位的 spots 剔除为最佳。

三、关于报告和后续分析问题

1. 空间转录组测序结果,除了 spacerager 软件处理之外,是否还进行其他质控?

答:不会,空间转录和单细胞不同,不会对部分 spots 进行剔除,避免造成结构不完整。但是会对 spots 的 UMI 和 gene 等进行可视化,和标准化分析。

2. 空转可以调整 cluster 的数目吗?

答: cluster 的划分是根据各 spot 基因表达模式相似性进行分析的,一般表达模式相似性高的细胞会聚在同一个 cluster, cluster 分出来的多少,和参数(resolution)设置有关,必要情况下,可以针对 resolution 参数调整,从而实现 cluster 分群数目的调整。

3. 如何判断是否存在批次效应?

答: 空转也会存在批次,但是空转的批次判断,可能由于切片位置不同和个体差异,需要结合病理特征进行判断

- 1) 同一个组的样本是否处在不同的疾病阶段;
- 2) 两个组 cluster 完全不同, 甚至是同一个 cluster 的不同分组 spots 完全不重合;
- 3) 同一个组的重复样本完全分开

4. 如何判断过度矫正?

答:一般总的细胞聚类做批次矫正,对于是否造成过度,并没有严格的标准作为参考。但是根据项目经验,可能出现的表现:

- 1) UMAP 会缩在一起,各 cluster在 HE 上的分布没有明显的边界,很均匀;
- 2) 筛选不到明显的 marker 基因;
- 3) 聚类的 cluster 和病理结构(如癌和癌旁)完全没有对应关系;
- 5. 常用的批次矫正方法

答: MNN, Harmony, CCA, 不矫正批次为 PCA 分析

6. 空间转录组可以进行细胞类型鉴定吗? 常用的方法是什么?

答:可以的,一般常用的是三种方法

- 1) 利用单细胞数据反卷积空间结果,例如RCTD,SPOTlight,MIA等
- 2) 利用 marker 基因在空间进行 addmodulescore, GSEA 评分等
- 3) 利用 marker 基因解析 spots 的细胞类型组成,例如 CARDfree (不常用、结果比较差)
- 7. 为什么有的报告有 celltype 结果, 有的没有?

答:一般情况如果对应的组织类型有单细胞的公开数据,或老师自己做了单细胞结果并知道细胞类型, 空转的报告会默认提供 celltype 信息,如果没有上述的数据,会默认不提供。

8. marker 基因的鉴定原则是什么, top10 是如何筛选的?

答:一般认为某个 cluster 的 marker 基因为在某特定 cluster 中高表达,在其他 cluster 中低表达或不表达的基因,可以根据 pct1 和 pct2 的值来评估,top10 的 marker 基因是按照 Gene Diff 由大到小来排列的。

Pct1: clusterA 中表达 a 基因的 spots 数除以 clusterA 中 spots 的比值

Pct2: 除了 clusterA, 其他 cluster 中表达 a 基因的 spots 除以其他 cluster 总 spots 的比值

Gene Diff =
$$\frac{pct1}{pct2}$$

9. 空间 spots 的成分比较复杂,那么分 cluster 的意义在哪里?

答:空间聚类结果,也是具有一定的价值的

- 1) 如果关注空间的某个部位,可以通过聚类探究内部是否存在异质性;
- 2) 如果不能根据 HE 结果划分病理结构,可以考虑通过聚类探究是否存在不同的基因表达模式;

- 3) 可以根据聚类, 筛选特征基因, 从而推断不同位置的基因表达模式和功能特征。
- 10. 差异基因的筛选标准是什么?
- 答:通常按照 P<0.05, FC>2 来筛选差异基因,但由于某些样本差异基因比较少,可调整为FC>1.2 或 1.5, P<0.05 来筛选差异基因,也是比较认可的。
- 11. 空间切片上存在不同的组织结构, 如癌和癌旁、不同脑区, 是否需要单独分析或讨论?
- 答:建议分开,这样不同的区域特征可以分别筛选,但不一定要分开讨论,比如癌和癌旁,可以看到肿瘤,边界和癌旁的微环境差异。
- 12. 空间转录组可以进行细胞亚型分析吗?
- 答:可以的,和单细胞一样,如果认为某个区域存在较强的异质性,可以考虑进行亚型分析。
- 13. 如果利用单细胞鉴定到了细胞亚型,想在空间上进行分析,是否可行?
- 答:可以的,具体方法可以参考问题 6
- 14. 空间测序数据可以与 bulk RNA-seq 联合分析吗,有何好处?
- 答:可以。与 bulk RNA-seg 联合分析的目的有两个:
- 1) 与空间转录组测序进行联合分析, 计算 person 相关性指数, 观察两组数据的相似性;
- 2) 针对 bulk 中筛选的特定基因和通路,可以在空间上进行可视化,分析同部位的共表达基因及微环境的细胞组成等。
- 15. 空转是否可以检测融合基因?

答:不一定:

- 1) ployA 捕获平台,是利用 mRNA 3'末端捕获的 ployA 尾来捕获 mRNA,因此检测到的序列也是靠近 3'末端的序列,所以如果其中一个基因距离 3'末端较远,可能检测不到;
- 2) 探针捕获平台,是针对某些基因特定的保守其余设计的引物,可能也涉及不到融合区域, 因此也有可能检测不到。
- 16. 关注的基因在测序结果中检测不到为什么?
- 答:有三种情况,1)关注基因表达的丰度太低了,导致捕获不到;2)有些基因的半衰期很短,mRNA 水平停留的时间很短,导致捕获不到;3)用的蛋白 name 进行搜索,可以转换 gene name 试一下。
- 17. 10X Genomics 单细胞转录组测序是否可以分析可变剪切?
- 答:不可以。空间转录组测序只能捕获 mRNA 的 3'端或特定保守区域进行测序,因此无法分析可变剪切。
- 18. 10X Genomics 单细胞转录组测序是否可以分析 SNP 和 CNV?

答:目前空间转录组还不能分析 SNP, 可以进行 CNV 分析。

四、关于高级分析的内容

(一) 拟时序的相关问题

1. 拟时序分析的方法有几种?

答:有两种情况:1)沿用单细胞的拟时序分析方法,如 Monocle2;2)空间拟时序方法,如 stLearn。

2. 拟时序分析什么情况下适用?

答: 以下几种情况下可以考虑应用

- 1) 探究生长发育过程可以考虑用;
- 2) 肿瘤侵袭和不同亚克隆的相互转变可以考虑用。
- 3. 拟时序分析需要人为判定方向吗?如何判断?
- 答: 需要。软件自动预测的方向,可能和实际生物学意义不符。判断方向的原则参考如下
- 1) 先验知识的积累(常用)
- 2) 正常疾病的样本,一般会指定正常组定位的细胞为起点(常用)
- 3) 根据不同分支基因的功能/通路富集情况进行推测(不常用)
- 4) 根据特定基因的表达,如凋亡、初始相关基因定位的分支,认为是起点(不常用)
- 5) 根据 HE 染色结果判断(如肿瘤的侵袭会有不同的体现)

(二) Scenic 的相关问题

1. 空间转录组是否可以做 scenic 分析?

答:可以

2. 是否可以按照分组/cluster 进行 regulon 比较?

答:可以的。

3. 什么情况下按照分组分析 regulon?

答: 理论上什么情况都可以,

- 1) 一般针对 subcluster 分析时,如果不同的 subcluster 在组间差异比较大的情况,建议按照 cluster 之间的差异 regulon 来分析
- 2) 如果针对很重要的区域,但是细胞数很少,做 subcluster 效果不好的情况,可以考虑直接做组间的差异 regulon 分析

- 3) 如果某些区域在组间 cluster 分布差异不大, subcluster 看不到想要的信息, 也可以考虑直接分析组间的 regulon
- 4. 如果 RAS 和 RSS 的数据不一致, 怎么办?
- 答: RAS 和 RSS 侧重点不一样,通常情况下, RAS 高不代表 RSS 高,因此如果数据不一致,可以重点参考 RAS 指标。
- 5. 活性高是否代表这个基因表达量也高?
- 答: 不一定
- 6. 挑选的某个 cluster 里面活性高的 regulon, 是否下游靶基因也是上调的?
- 答:不一定,有些转录因子可以抑制靶基因的转录,造成靶基因下调
- 7. 确定了 regulon 之后还能做些什么?

答:

- 1) 分析层面,可以针对 CSI 模块的 regulon 或重点关注的 regulon 及靶基因做富集分析,这样不仅可以关注到具体的基因,还能靶向相关的 pathway
- 2) 验证层面,可以对相关 TF 或靶基因进行免疫荧光或 KO 等实验验证
- (三)细胞间通讯的相关问题
- 1. 空间通讯分析一定要有细胞类型的信息才能做吗?
- 答:不一定。有两种情况。
- 1) 如果知道每个 spots 的细胞类型组成,可以更好的评估这些 spots 之间的通讯主要和哪些细胞类型相关;
- 2) 如果不知道细胞类型的情况,可以按照 spot cluster 做通讯分析。
- 2. cellphoneDB和cellchat该如何选择?
- 答:两个方法都能用,但目前 cellchat 应用的广泛一些。两个方法主要有几点不同
- 1) cellphoneDB 收录的受配体对相对较多, cellchat 相对较少
- 2) cellchat 可视化的图更多样 cellchat 具有通路的信息
- 3. 如何筛选关键的受配体基因?
- 答: 如果没有关注的基因, 可参考如下原则
- 1) 先锁定细胞类型
- 2) 筛选 P<0.05 的关系对
- 3) 在 2)的基础上, 筛选 prob(通讯概率, cellchat)或 express(L-R 的表达量, cellphoneDB) 由大到小

4. cellphoneDB 没有收录通路信息,是否意味着不能关注通路?

答: cellphoneDB 本身没有通路信息,但如果老师想要关注一些细胞类型之间的受体配体信息,可以考虑针对 P<0.05 的关系对,或特定关注的关系对,进行 G0/KEGG 富集。

(四) CNV 的相关问题

- 1. 是否存在专门的数据库进行 CNV 预测?
- 答:目前没有数据库,一般是基本项目中正常的细胞,作为对照进行 CNV 分析。
- 2. 空间转录组一个 spots 可能包含多个细胞类型, 肿瘤细胞和正常细胞共定位的话, 正常细胞如何指定?
- 答:可以考虑从3个方面来指定:
- 1) 根据 HE 结果,将 stroma 区域划分出来,作为 Normal
- 2) 根据 RCTD、Spotlight 结果,将非肿瘤的 spots 指定成 Normal
- 3) 软件自动预测(准确性会差)
- 3. CNV group 应该怎么用?

答: CNV group 是 inferCNV 软件通过判定肿瘤细胞的 CNV 水平进行的分组,一般情况下,如果想要探究是否肿瘤具有不同的恶性程度,及不同恶性细胞之间的特征基因等信息,可以考虑用 CNV group 进行分类。此外,也可以通过原始聚类的 cluster 进行比较分析,不用 CNV group,也是可行的。