Exercises completed: None.

Exercise 1. §24 #8 a,b,d.

Collaborators: None.

- a. Yes (if we're using the product topology). Suppose X_{α} is path connected for all α in some indexing set, and let $\mathbf{x}, \mathbf{y} \in \prod X_{\alpha}$. Since each X_{α} is path connected, we can find a continuous path γ_{α} from \mathbf{x}_{α} to \mathbf{y}_{α} for all α . Define a new function $\gamma = (\gamma_{\alpha})_{\alpha}$, then by Munkres Theorem 19.6, γ is continuous since each γ_{α} is continuous. Since γ is then a continuous path from \mathbf{x} to \mathbf{y} , the space $\prod X_{\alpha}$ is path connected.
- b. No. If we let

$$S \doteq \{(x, \sin(1/x) \mid 0 < x \le 1\},\$$

then \overline{S} is the topologist's sine curve. S is the graph of a continuous function over a path connected domain, so it is itself path connected; however, \overline{S} is known to not be path connected.

d. Yes. Suppose $x, y \in \bigcup A_{\alpha}$, then $x \in A_{\alpha_x}$ and $y \in A_{\alpha_y}$ for some α_x, α_y . Since the intersection of all A_{α} is nonempty, we know that A_{α_x} and A_{α_y} have at least one common point. Let z be a point in their intersection, then we can find paths γ_1 from x to z and γ_2 from z to y. By the pasting lemma, we can use γ_1 and γ_2 to construct a single continuous path from x to y. Thus $\bigcup A_{\alpha}$ is path connected.

Exercise 2. $\S25 \#1$.

Collaborators: None.

The connected components of \mathbb{R}_l are its individual points. Suppose x < y are in the same connected component C of \mathbb{R}_l , then they can be separated by the disjoint open sets $C \cap (-\infty, y)$ and $C \cap [y, \infty)$. Thus no connected component of \mathbb{R}_l can have more than 1 distinct point.

By Theorem 25.5, every path component lies in a component of \mathbb{R}_l . Thus every path component is also just a single point in \mathbb{R}_l .

Suppose $f: \mathbb{R} \to \mathbb{R}_l$ is continuous. Since \mathbb{R} is connected and continuous maps preserve connectedness, f must map \mathbb{R} to a connected subset of \mathbb{R}_l . But the connected subsets of \mathbb{R}_l are just single points, so f must be constant. Thus the continuous maps from \mathbb{R} to \mathbb{R}_l are the constant maps.

Exercise 3. §26 #5.

Collaborators: None.

Fix $b \in B$. Since X is Hausdorff, for all $a \in A$ we can find disjoint neighborhoods $U_{a,b}, V_{a,b}$ of a, b, respectively. Since $\{U_{a,b}\}_{a \in A}$ covers A and A is compact, there is a finite subcover $\{U_{a_i,b}\}_{i=1}^N$. Then $U_b \doteq \bigcup_{i=1}^N U_{a_i,b}$ contains A and does not intersect $V_b \doteq \bigcap_{i=1}^N V_{a_i,b}$, which is a neighborhood of b since the intersection is finite.

Now $\{V_b\}_{b\in B}$ is an open cover of B and B is compact, we can find a finite subcover $\{V_{b_j}\}_{j=1}^M$. Since U_b doesn't intersect V_b for all b, we can define two disjoint open sets

$$U \doteq \bigcap_{j=1}^{M} U_{b_j}, \quad V \doteq \bigcup_{j=1}^{M} V_{b_j}.$$

Since each U_{b_j} contains A, so does their intersection U, and V is a cover of B by definition. Thus we have found disjoint open sets containing A and B.

Exercise 4. §27 #2.

Collaborators: None.

a. **Forward:** Suppose d(x,A) = 0. If $x \notin \overline{A}$, then there is a neighborhood U of x such that U does not intersect A. Now there is some $\varepsilon > 0$ such that $B(x,\varepsilon) \subset U$, which implies $d(x,A) \geq \varepsilon$, but this contradicts the assumption that d(x,A) = 0, so $x \in \overline{A}$.

Backward: Supose $x \in \overline{A}$. If $x \in A$, then d(x, A) is clearly 0, so assume x is a limit point of A but not in A. Since it's a limit point, for all $\varepsilon > 0$, $B(x, \varepsilon)$ intersects A. Since ε was arbitrary, the only possibility for d(x, A) is 0.

b. Suppose A is compact. Fix $x \in X$, then we will show that $f(a) \doteq d(x, a)$ is continuous, from which the desired result will follow. Fix $\varepsilon > 0$ and set $\delta = \varepsilon$. If $d(a_1, a_2) < \delta = \varepsilon$, then by the triangle inequality,

$$|f(a_1) - f(a_2)| = |d(a_1, x) - d(a_2, x)| \le d(a_1, a_2) < \delta = \varepsilon.$$

Thus f is continuous. Then by the extreme value theorem, f attains its infimum on A. This means there is some $a \in A$ such that f(a) = d(x, a) = d(x, A).

c. Fix $\varepsilon > 0$. Let $x \in \bigcup_{a \in A} B(a, \varepsilon)$, then $x \in B(\tilde{a}, \varepsilon)$ for some $\tilde{a} \in A$. Then $d(x, \tilde{a}) < \varepsilon$, so $d(x, A) < \varepsilon$, so $x \in U(A, \varepsilon)$. Thus $\bigcup_{a \in A} B(a, \varepsilon) \subset U(a, \varepsilon)$. Conversely, let $x \in U(a, \varepsilon)$, then $d(x, A) < \varepsilon$. Then there is some $\tilde{a} \in A$ such that $d(x, \tilde{a}) < \varepsilon$, so $x \in B(\tilde{a}, \varepsilon)$. Thus $U(A, \varepsilon) \subset \bigcup_{a \in A} B(a, \varepsilon)$.

d. Suppose A is compact and is contained in an open set U. Then for all $a \in A$, there is some $\varepsilon_a > 0$ such that $B_a \doteq B(a, \varepsilon_a/2) \subset U$. Since $\{B_a\}_{a \in A}$ is an open cover of A and A is compact, we can find a finite subcover $\{B_{a_i}\}_{i=1}^N$ of A (which still lies entirely in U).

Let $\varepsilon \doteq \min_i \varepsilon_{a_i}$, then we claim that $U(A, \varepsilon/2)$ is contained U. Let $x \in U(A, \varepsilon/2)$, then by part (c), x is in some ball $B(\tilde{a}, \varepsilon/2)$. Since $\tilde{a} \in A$, we can use our finite open cover of A to find some ball $B(a_i, \varepsilon_{a_i}/2)$ that contains \tilde{a} . Then by the triangle inequality,

$$d(x, a_i) \le d(x, \tilde{a}) + d(\tilde{a}, a_i) < \frac{\varepsilon}{2} + \frac{\varepsilon_{a_i}}{2} \le \varepsilon_{a_i}.$$

Thus $x \in B(a, \varepsilon_{a_i}) \subset U$, so $U(A, \varepsilon/2)$ is an ε -neighborhood of A that is contained in U.

e. Let $A=\mathbb{Z}\subset\mathbb{R}$, which is closed since its complement $\mathbb{R}-\mathbb{Z}=\bigcup_{z\in\mathbb{Z}}(n,n+1)$ is open. Since it's an unbounded set in \mathbb{R} , it cannot be compact. Now consider the open set

$$U = \bigcup_{n \in \mathbb{Z}} \left(n - \frac{1}{|n|}, n + \frac{1}{|n|} \right).$$

Fix $\varepsilon > 0$, then since we can always find $n \in \mathbb{Z}$ such that $1/n < \varepsilon$, the ε -neighborhood $U(A, \varepsilon)$ can never be fully contained in U. Since ε was arbitrary, no $U(A, \varepsilon)$ can be fully contained in U. Thus (d) does not necessarily hold if A is not compact.

Exercise 5. §28 #7 b.

Collaborators: None.

I couldn't fill in all the gaps in the proof outlined in the book's hint, so I did something else entirely that's similar to what I did in Exercise 4(b). We claim that the function

$$g: X \to \mathbb{R}$$

 $x \mapsto d(x, f(x))$

is continuous. To show this, note that by the triangle inequality and the fact that f is a shrinking map,

$$\begin{split} d(x,f(x)) &\leq d(x,y) + d(y,f(y)) + d(f(y),f(x)) \\ g(x) &- g(y) \leq d(x,y) + d(f(x),f(y)) \\ g(x) &- g(y) < 2d(x,y). \end{split}$$

Swapping x and y and using the symmetry of d gives the same inequality, so

$$|g(x) - g(y)| < 2d(x, y).$$

Now fix $\varepsilon > 0$ and let $\delta = \varepsilon/2$. When $d(x,y) < \delta$, the inequality we just derived gives

$$|g(x) - g(y)| < 2d(x, y) < \varepsilon,$$

so g is continuous. Since X is compact, the extreme value theorem says that g attains its infimum I on X, say at a point x. Suppose I > 0, then since f is a shrinking map,

$$g(f(x)) = d(f(x), f^{2}(x)) < d(x, f(x)) = g(x) = I.$$

This contradicts the fact that I is an infimum, so I must be 0, i.e. x is a fixed point of f. To show that x is unique, suppose $y \neq x$ is also a fixed point of f. Then

$$d(x,y) = d(f(x), f(y)) < d(x,y),$$

which is a contradiction, so x = y. Thus we've found a unique fixed point of f.