Exercițiul 1

În graficele Bode prezente observăm variația amplitudinii în funcție de frecvență. Acestea au fost utilizate pentru determinarea unor amplitudini specifice, necesare în calculul și deducerea unor funcții de transfer asociate sistemului analizat.

Graficul semilogaritmic amplitudine-pulsație (magnitudine în funcție de frecvență) pentru funcția hee

Graficul semilogaritmic fază-pulsație (fază în funcție de frecvență) pentru funcția hee

Graficul semilogaritmic amplitudine-pulsație (magnitudine în funcție de frecvență) pentru funcția hp

Graficul semilogaritmic fază-pulsație (fază în funcție de frecvență) pentru funcția hp

Exercițiul 2

```
>> ht
  ht =
       0.5
                                                                              Funcția componentă ht
     2s + 1
                                                                              și funcția de transfer he
  Continuous-time transfer function.
  >> he
  he =
                       0.468 s + 7.5
     0.043 \text{ s}^4 + 4.45 \text{ s}^3 + 8.15 \text{ s}^2 + 4.968 \text{ s} + 1
>> rooots([0.468 7.5])
Undefined function or variable 'rooots'.
Did you mean:
>> roots([0.468 7.5])
ans =
                                                                                Rădăcinile funcției
                                                                             utilizate pentru repartiția
  -16.0256
                                                                                polilor și zerourilor
                                                                                 pentru funcția de
>> roots([0.043 4.45 8.15 4.968 1])
                                                                               transfer a procesului
ans =
 -101.6347
   -0.6966
   -0.6576
   -0.4995
>> ho = 1 + hp
ho =
  0.043 \text{ s}^4 + 4.45 \text{ s}^3 + 8.15 \text{ s}^2 + 5.436 \text{ s} + 8.5
                                                                              Funcție ce ajută în
                                                                                  determinarea
    0.043 \text{ s}^4 + 4.45 \text{ s}^3 + 8.15 \text{ s}^2 + 4.968 \text{ s} + 1
                                                                             stabilității sistemului
```

Continuous-time transfer function.

```
>> b = [7.5 0.468 0 0]
b =

7.5000  0.4680  0  0

>> c = [0; 0; 0; 1/0.043]
c =

0
0
23.2558

>> a = [0 1 0 0; 0 0 1 0; 0 0 0 1; -1/0.043 -4.968/0.043 -8.15/0.043 -4.45/0.043]
a =

0 1.0000  0  0
0 0 1.0000  0
0 0 0 1.0000
-23.2558 -115.5349 -189.5349 -103.4884

>> s = sym('s')
s =

5
```

```
>> i = eye(4)
i =
   1 0 0 0
       1 0 0
   0
       0 1 0
0 0 1
   0 0 0
>> s * i - a
ans =
[ s, -1, 0,
                         0]
    0, s,
0, 0,
                 -1,
                  s,
[ 1000/43, 4968/43, 8150/43, s + 4450/43]
>> det(s*i - a)
ans =
s^4 + (4450*s^3)/43 + (8150*s^2)/43 + (4968*s)/43 + 1000/43
```

```
>> d1 = 4.45
d1 =
    4.4500
>> det(d10
 det(d10
Error: Expression or statement is inc
Did you mean:
>> det(d1)
ans =
    4.4500
\Rightarrow d2 = [4.45 5.436; 0.043 8.15]
d2 =
    4.4500 5.4360
    0.0430 8.1500
>> det(d2)
ans =
   36.0338
```

Determinarea determinaților pentru a vedea stabilitatea externă a sistemului. Valorile fiind pozitive, sistemul este extern stabil.

```
>> d3 = [4.45 5.436 0; 0.043 8.15 8.5; 0 4.45 5.436]
d3 =
   4.4500 5.4360 0
   0.0430 8.1500 8.5000
         4.4500 5.4360
      0
>> det(d3)
ans =
  27.5582
>> d4 = [4.45 5.436 0 0; 0.043 8.15 8.5 0; 0 4.45 5.436 0; 0 0.043 8.15 8.5]
d4 =
   4.4500 5.4360 0
   0.0430 8.1500 8.5000
      0 4.4500 5.4360
       0 0.0430 8.1500 8.5000
>> det(d4)
ans =
 234.2449
```

Determinarea rădăcinilor sistemului, acestea fiind strict negative sistemul este intern stabil

Exercițiul 3

Diagrama Nyquist:
Reprezentarea grafică
a părții reale și
imaginare a funcției de
transfer în planul
complex, în funcție de
pulsație
Sistemul este stabil
întrucât punctul -1 nu
este înconjurat

Evidențierea valorii maxime a graficului și a timpului tranzistoriu cu ajutorul Matlab-ului

Răspunsul sistemului la folosirea unui controller P

Setările blocului PI

Răspunsul sistemului la folosirea unui controller PID cu o perturbație și vizualizarea semnalului generat de Signal Builder

Configurația controller-ului PID

Răspunsul sistemului la folosirea unui controller PID cu o perturbație

Răspunsul sistemului la folosirea unui controller PID fără perturbație

Configurarea controller-ului PID

Definirea valorilor de intrare componente ale funcției Fuzzy și a parametrilor acestora

Definirea valorilor de ieșire componente ale funcției Fuzzy și a parametrilor acestora

Vizualizarea modificărilor răspunsului sistemului după adăugarea controllerului Fuzzy

