```
In [1]: #Expt-7
In [ ]:
          # Name: Gauri Santosh Ingale
          # Roll no: 20
          # Sec: CSE-Ds
          # Subject: ET 1
In [ ]:
          import pandas as pd
In [2]:
          import os
In [3]:
          os.getcwd()
         'C:\\Users\\ASUS'
Out[3]:
In [4]:
          os.chdir('C:\\Users\\ASUS\\Desktop')
In [5]:
          data=pd.read_csv("salary_data.csv")
In [6]:
          data.head(30)
             YearsExperience
                              Salary
Out[6]:
                             39343.0
                        1.1
                             46205.0
                        1.3
          1
                        1.5 37731.0
          2
          3
                        2.0
                             43525.0
                        2.2
                             39891.0
          4
                        2.9 56642.0
          5
                             60150.0
          6
                        3.0
                        3.2 54445.0
          7
                        3.2 64445.0
          8
          9
                        3.7
                             57189.0
         10
                        3.9
                             63218.0
         11
                        4.0
                             55794.0
                             56957.0
         12
                        4.0
                        4.1
         13
                             57081.0
         14
                        4.5
                             61111.0
                             67938.0
         15
                        4.9
                             66029.0
         16
                        5.1
         17
                        5.3
                             83088.0
         18
                        5.9
                            81363.0
         19
                        6.0
                             93940.0
         20
                        6.8 91738.0
         21
                        7.1
                             98273.0
         22
                        7.9 101302.0
         23
                        8.2 113812.0
                        8.7 109431.0
         24
                        9.0 105582.0
         25
         26
                        9.5 116969.0
                        9.6 112635.0
         27
                        10.3 122391.0
         28
         29
                        10.5 121872.0
```

Tn [7]+

```
data.info
         <bound method DataFrame.info of</pre>
                                               YearsExperience
                                                                   Salary
 Out[7]:
                                39343.0
                          1.1
                                46205.0
         1
                          1.3
                                37731.0
                          1.5
                          2.0
                                43525.0
                                39891.0
                          2.2
                          2.9
                                56642.0
                          3.0
                                60150.0
                          3.2
                                54445.0
         8
                          3.2
                                64445.0
          9
                          3.7
                                57189.0
          10
                          3.9
                                63218.0
                          4.0
                                55794.0
          11
                                56957.0
          12
                          4.0
          13
                          4.1
                                57081.0
                          4.5
                                61111.0
          14
                          4.9
          15
                                67938.0
          16
                          5.1
                                66029.0
          17
                          5.3
                               83088.0
                          5.9
                                81363.0
          18
                                93940.0
          19
                          6.0
          20
                          6.8 91738.0
          21
                          7.1
                                98273.0
                          7.9 101302.0
          22
                          8.2 113812.0
8.7 109431.0
          23
          24
                          9.0 105582.0
          25
          26
                          9.5 116969.0
          27
                          9.6 112635.0
                         10.3 122391.0
                         10.5 121872.0>
          29
 In [8]:
          data.shape
Out[8]: (30, 2)
 In [9]:
          data.size
 Out[9]: 60
In [10]:
          data.ndim
Out[10]: 2
In [11]:
          data.columns
Out[11]: Index(['YearsExperience', 'Salary'], dtype='object')
In [12]:
          data.describe()
Out[12]:
               YearsExperience
                                    Salary
                     30.000000
                                  30.000000
          count
                      5.313333
                               76003.000000
          mean
            std
                      2.837888
                               27414.429785
                      1.100000
                               37731.000000
           min
           25%
                      3.200000
                               56720.750000
           50%
                      4.700000
                               65237.000000
           75%
                      7.700000 100544.750000
                     10.500000 122391.000000
           max
```

In [13]: data.isna()

Out[13]:		YearsExperience	Salary
	0	False	False
	1	False	False
	2	False	False
	3	False	False
	4	False	False
	5	False	False
	6	False	False
	7	False	False
	8	False	False
	9	False	False
	10	False	False
	11	False	False
	12	False	False
	13	False	False
	14	False	False
	15	False	False
	16	False	False
	17	False	False
	18	False	False
	19	False	False
	20	False	False
	21	False	False
	22	False	False
	23	False	False
	24	False	False
	25	False	False
	26	False	False
	27	False	False
	28	False	False
	29	False	False

```
12
                  56957.0
                  57081.0
          13
          14
                  61111.0
          15
                  67938.0
          16
                  66029.0
          17
                  83088.0
          18
                  81363.0
          19
                  93940.0
                  91738.0
          20
          21
                  98273.0
          22
                 101302.0
          23
                 113812.0
          24
                 109431.0
          25
                 105582.0
          26
                 116969.0
          27
                 112635.0
          28
                 122391.0
          29
                 121872.0
          Name: Salary, dtype: float64>
In [18]:
           #importing the basic library
           import numpy as np
           from matplotlib import pyplot as plt
In [33]:
           plt.plot(x,y)
plt.title("Line chart")
plt.xlabel("x axis")
           plt.ylabel("y axis")
           plt.show()
                                      Line chart
            120000
            100000
          y axis
             80000
             60000
             40000
                                  4
                                                    8
                                                             10
                                           6
                                        x axis
In [34]:
           from sklearn.model_selection import train_test_split
In [35]:
           x_train,x_test,y_test,y_train=train_test_split(x,y,test_size=.3,random_state=50)
In [36]:
           x_train,x_test,y_test,y_train=train_test_split(x,y,random_state=0,test_size=0.30)
In [37]:
           print(x_train.shape)
          (21, 1)
In [38]:
           x_test.shape
          (9, 1)
Out[38]:
In [49]:
           y_test.shape
Out[49]: (6,)
```

9

10

11

57189.0

63218.0

55794.0

```
In [50]: y_train.shape
Out[50]: (24,)
```

Model Fitting

```
In [40]:
          from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=42)
In [41]:
          x_train=np.array(x_train).reshape(-1,1)
          x_{\text{test}} = \text{np.array}(x_{\text{test}}).\text{reshape}(-1,1)
In [56]:
          LR = LinearRegression()
In [57]:
          LR.fit(x train,y train)
         LinearRegression()
Out[57]:
In [58]:
          m = LR.coef_
In [59]:
          print("Coefficient :" , m)
         Coefficient : [9423.81532303]
In [60]:
          #Assigning Y-intercept to a
          c = LR.intercept_
In [61]:
          print("Intercept : ", c)
         Intercept : 25321.583011776813
```

y=mx+c

prediction

```
In [63]:
           y_pred=LR.predict(x_test)
In [64]:
           y pred
Out[64]: array([115790.21011287, 71498.27809463, 102596.86866063, 75267.80422384, 55477.79204548, 60189.69970699])
In [65]:
           y_test
Out[65]: 27
                 112635.0
          15
                  67938.0
          23
                 113812.0
                  83088.0
          17
                  64445.0
          8
                  57189.0
          Name: Salary, dtype: float64
```

Evaluation matrices

```
In [66]: from sklearn import metrics
In [68]: Accuracy = LR.score(x_test, y_test)
Accuracy
Out[68]: 0.9024461774180497
```

MAE

```
In [69]: print(metrics.mean_absolute_error(y_test,y_pred))
6286.453830757749
```

MSE

```
In [70]: print(np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
7059.04362190151
```

RMSE

```
In [71]:
    rmse = np.sqrt(metrics.mean_squared_error(y_test,y_pred))
    print("RMSE:", rmse)

RMSE: 7059.04362190151
```

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js