第八章 面板数据分析方法 第一节至第四节

汇报人: 陈露滢

Overview

- 8.1 什么是面板数据
- 8.2 面板数据的信息来源
- 8.3 面板数据因果关系分析的直观理解
- 8.4 面板数据分析的3种常见模型

8.1 什么是面板数据

- 1.1 面板数据的结构
- 1.2 面板数据的分类

1.1 面板数据的结构

- 面板数据是包含多个个体,并且同一个体由一系列不同时间观测点的数据
 - 包含了横截面和时间序列两个维度的数据: 个体维度(i = 1,2,...,N)和时间维度(t = 1,2,...,T)

ID	YEAR	INC	EDU	AGE	GENDER
1	2017	800	3	23	1
1	2018	1000	4	24	1
1	2019	1200	5	25	1
2	2017	1200	5	30	0
2	2018	1250	6	31	0
2	2019	1300	7	32	0

1.1 面板数据的结构

- 并不是所有包含个体和时间两个维度的数据都是面板数据
- 合并横截面数据:没有跟踪记录同一个个体,观测点属于不同个体
 - 可以看作是横截面数据的简单合并

YEAR	INC	EDU	AGE	GENDER
2017	800	3	23	1
2018	1000	4	24	1
2019	1200	5	25	1
2017	1200	5	30	0
2018	1250	6	31	0
2019	1300	7	32	0

2020/11/27 5

1.2 面板数据的分类

- 短面板和长面板
 - 短面板是指个体维度N较大,时间维度T较小
 - 长面板是指数据的N较小,T较大
- 平衡面板与非平衡面板
 - 平衡面板:每个个体都有相同时间T的观测点
 - 非平衡面板:有部分个体没有相同时间T的观测点
 - 若非平衡面数据由随机原因造成的,那么处理方法和平衡面板一样,但是如果数据缺失由非随机原因造成的,则必须考虑缺失的原因:如样本选择偏差

8.2 面板数据的信息来源

2面板数据的信息来源

- 两个维度的信息
 - 不同个体间的差异和同一个个体在不同时间上的差异
- 总方差可以分解为个体间方差和个体内方差

总方差(total variation)=个体间方差(between variation)+个体内方差(within variation)

2 面板数据的信息来源

$$s_0^2 = \frac{1}{NT - 1} \sum_{t=1}^{N} \sum_{t=1}^{T} (X_{it} - \bar{X})^2$$

$$s_B^2 = \frac{1}{N - 1} \sum_{i=1}^{N} (\bar{X}_i - \bar{X})^2$$

$$s_W^2 = \frac{1}{NT - 1} \sum_{i=1}^{N} \sum_{t=1}^{T} (X_{it} - \bar{X}_i)^2$$

$$s_0^2 \approx s_R^2 + s_W^2$$

 X_{it} 是个体i在时间t的值, \bar{X} 是X在数据里总的平均值, \bar{X}_i 是X在个体i中的平均值。计算样本的方差,做了N-1和NT-1的调整

 $INC_{it} = \alpha + \beta EDU_{it} + \gamma GENDER_i + \theta TALENT_i + \varphi LUCK_{it}$

- 上式中i表示个体, t表示时间
- 收入 INC_{it} 、受教育程度 EDU_{it} 的值可观测并随时间变化,称为**可观测的随时间变化的变量**
- 性别GENDER_i可观测到,但他的值不随时间变化,称为 可观测的不随时间变化的变量
- 个人天赋TALENT_i观测不到,且不随时间变化,称为不可 观测且不随时间变化的变量
- 个人运气LUCK_{it}不可观测且随时间变化的, 称为不可观测 且随时间变化的

$$INC_{it} = \alpha + \beta EDU_{it} + \gamma GENDER_i + e_{it}$$

• 上式把所有不可观测的因素,包括TALENT和LUCK都归于干扰项e,那么要得到 β 的正确估计,需要EDU和e不相关,即EDU与天赋和运气都不相关

$$INC_{it} = \alpha + \beta EDU_{it} + \gamma GENDER_i + \alpha_i + u_{it}$$

- 将干扰项e分解为 α_i 和u, α_i (个体效应)是个体不可观测且不随时间变化的因素 $\theta TALENT_i$, u是个体不可观测且随时间变化的因素 $\phi LUCK_{it}$
- 此时 α_i 控制了天赋因素,要正确估计 β 只需要满足EDU与LUCK不相关

• $INC_{it} = \alpha + \beta EDU_{it} + \gamma GENDER_i + e_{it}$ (简单回归模型)

不存在混淆路径

存在混淆路径

• $INC_{it} = \alpha + \beta EDU_{it} + \gamma GENDER_i + \alpha_i + u_{it}$ (固定效应模型)

面板数据的变量路径图:通过控制不可观测且不随时间变化的变量截断混淆路径

8.4 面板数据分析的3种常见模型

2020/11/27 15

4模型基本假设

- $INC_{it} = \alpha + \beta EDU_{it} + \gamma GENDER_i + \alpha_i + u_{it}$
- 需要假设不可观测且随时间变化的变量u_{it}与可观测 变量不相关
 - $= E(u_{it} | EDU_{it}, GENDER_{it}) = 0$
 - 在本例中,即为 $E(LUCK_{it} | EDU_{it}, GENDER_{it}) = 0$
- 三个模型的关键差别在于:对个体不可观测且不随时间变化的变量 α_i 的假设

4.1 合并横截面模型

● 假设 α_i 不存在,即不存在会影响收入的不可观测且不随时间变化的因素,本例中 $\theta TALENT_i$ 假设为零 $INC_{it} = \alpha + \beta EDU_{it} + \gamma GENDER_i + u_{it}$

- 假设此时也满足 $E(u_{it}|EDU_{it},GENDER_{it})=0$
- 这只是简单的横截面数据在时间上的叠加
- 若α_i此时存在并且与可观测变量相关,就会导致缺失 变量问题

4.2 随机效应模型

• 假设 α_i 存在,但 α_i 与可观测变量不相关,即 $E(\alpha_{it}|EDU_{it},GENDER_{it})=0$,此时将 α_i 放进干扰项 不会造成估计误差

$$INC_{it} = \alpha + \beta EDU_{it} + \gamma GENDER_i + e_{it}$$

 $e_{it} = \alpha_i + u_{it}$

• 由于同一个个体的干扰项 e_{it} 在不同时间包含了相同的 α_i ,即干扰项在同一个个体内是相关的,其相关系数为:(其中 σ_{α}^2 是 α_i 的方差, σ_{u}^2 是 u_{it} 的方差)

$$Corr(e_{it}, e_{it-s}) = Corr(\alpha_i + u_{it}, \alpha_i + u_{it-s})$$
$$= \sigma_{\alpha}^2 / (\sigma_{\alpha}^2 + \sigma_u^2)$$

4.2 随机效应模型

● 当干扰项已知时,采用GLS估计,现将模型转换为同方差:

$$INC_{it}^{*} = \alpha^{*} + \beta EDU_{it}^{*} + \gamma GENDER_{i}^{*} + e_{it}^{*}$$

$$INC_{it}^{*} = INC_{it} - \theta \overline{INC_{i}}$$

$$\theta = 1 - \frac{\sigma_{\alpha}}{\sqrt{\sigma_{\alpha}^{2} + T\sigma_{u}^{2}}}$$

$$e_{it}^{*} = e_{it} - \theta \overline{e_{i}}$$

• 对转换之后的模型使用OLS,估计出来的 β^{RE} ,在 α_i 与可观测值无关的情况下是无偏、一致且有效的估计量

- 假设 α_i 存在,且 α_i 与可观测变量相关,即 $E(\alpha_{it}|EDU_{it},GENDER_{it}) \neq 0$,需要把 α_i 看作解 释变量处理
- 若没有把 α_i 看作解释变量,而是作为干扰项的一部分处理,即 $INC_{it} = \alpha + \beta EDU_{it} + \gamma GENDER_i + e_{it}$
- 对上述模型求条件期望值:

 $E(INC_{it} | EDU_{it}, GENDER_i)$ $= \alpha + \beta EDU_{it} + \gamma GENDER_i + E(e_i | EDU_{it}, GENDER_i)$ $= \alpha + \beta EDU_{it} + \gamma GENDER_i + E(\alpha_i + u_{it} | EDU_{it}, GENDER_i)$ $= \alpha + \beta EDU_{it} + \gamma GENDER_i + E(\theta TALENT_i + \varphi LUCK_it | EDU_{it}, GENDER_i)$ $= \alpha + \beta EDU_{it} + \gamma GENDER_i + \theta E(TALENT_i | EDU_{it}, GENDER_i)$ $= \alpha + \beta EDU_{it} + \gamma GENDER_i + \theta E(TALENT_i | EDU_{it}, GENDER_i)$ $= \alpha + \beta EDU_{it} + \gamma GENDER_i + \theta E(TALENT_i | EDU_{it}, GENDER_i)$ $= \alpha + \beta EDU_{it} + \gamma GENDER_i + \theta E(TALENT_i | EDU_{it}, GENDER_i)$

的相关关系表示如下: $E(TALENT_i|EDU_{it},GENDER_i) = \phi_o + \phi_1EDU_{it} + \phi_2GENDER_i$

2020/11/27 21

● 将相关关系代入原式得

 $E(INC_{it} | EDU_{it}, GENDER_i)$

- $= (\alpha + \theta \phi_0) + (\beta + \theta \phi_1)EDU_{it} + (\gamma + \theta \phi_2)GENDER_i$
- 可以看出,若将 α_i 看作干扰项,估计出来的系数是 $\beta + \theta \phi_1$,而不是 β ,会有缺失变量 $TALENT_i$ 对 INC_{it} 及与 EDU_{it} 相关的部分
- 存在缺失变量误差
- 因此要把α;作为解释变量来使用模型

- 固定效应模型:认为每个个体对应一个与其他解释变量相关的固定个体效应 α_i
- 随机效应模型:认为个体效应是从某个分布中随机抽取,与其他解释变量无关(不太合理)

2020/11/27 23