Properties

All useful properties
$$\boldsymbol{AB} = \begin{pmatrix} \boldsymbol{Ab_1} & \boldsymbol{Ab_2} & \cdots & \boldsymbol{Ab_n} \\ \boldsymbol{AB} = \begin{pmatrix} \boldsymbol{a_1B} \\ \boldsymbol{a_2B} \\ \vdots \\ \boldsymbol{a_nB} \end{pmatrix}$$

$$\sum_{x=1}^{m} \sum_{y=1}^{n} a_{ix}b_{yj} = \sum_{y=1}^{n} \sum_{x=1}^{m} a_{ix}b_{yj}$$

$$(\boldsymbol{AB})^{\mathrm{T}} = \boldsymbol{B}^{\mathrm{T}}\boldsymbol{A}^{\mathrm{T}}$$

$$(\boldsymbol{cA})^{-1} = \frac{1}{c}\boldsymbol{A}^{-1}$$

$$(\boldsymbol{A}^{\mathrm{T}})^{-1} = (\boldsymbol{A}^{-1})^{\mathrm{T}}$$

$$(\boldsymbol{AB})^{-1} = \boldsymbol{B}^{-1}\boldsymbol{A}^{-1}$$

$$det(\mathbf{A}) = det(\mathbf{A}^{T})$$
$$det(c\mathbf{A}) = c^{n} det(\mathbf{A})$$

$$\det(\boldsymbol{A}\boldsymbol{B}) = \det(\boldsymbol{A})\det(\boldsymbol{B})$$

$$\begin{split} \det(\boldsymbol{A}^{-1}) &= \frac{1}{\det(\boldsymbol{A})} \\ \boldsymbol{A}^{-1} &= \frac{1}{\det(\boldsymbol{A})} \mathbf{adj}(\boldsymbol{A}) \end{split}$$

$$\det(\mathbf{adj}(\mathbf{A})) = \det(\mathbf{A})^{n-1}$$

$$\mathbf{adj}(\mathbf{adj}(\mathbf{A})) = \det(\mathbf{A})^{n-2}\mathbf{A}$$
$$\dim(V) = |S|, \text{ S is a basis for V.}$$
$$\mathcal{CS}(\mathbf{A}_{m \times n}) = \{\mathbf{A}\mathbf{u} | \mathbf{u} \in \mathbb{R}^n\}$$

$$\mathcal{NS}(\boldsymbol{A}_{m\times n}) = \{\boldsymbol{u}|\boldsymbol{A}\boldsymbol{u} = \boldsymbol{0}\}$$
$$\|\boldsymbol{u}\| = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$$
$$\|\boldsymbol{u}\| = \sqrt{\boldsymbol{u} \cdot \boldsymbol{u}}$$

$$oldsymbol{u}\cdotoldsymbol{v}=oldsymbol{u}^{ ext{T}}oldsymbol{v}=oldsymbol{v}\cdotoldsymbol{u}=oldsymbol{v}^{ ext{T}}oldsymbol{u}$$

$$(\boldsymbol{u} + \boldsymbol{v}) \cdot \boldsymbol{w} = \boldsymbol{u} \cdot \boldsymbol{v} + \boldsymbol{u} \cdot \boldsymbol{w}$$

$$\mathbf{u} \cdot \mathbf{u} \ge 0$$
, and $\mathbf{u} \cdot \mathbf{u} = 0$
 $\Leftrightarrow \mathbf{u} = \mathbf{0}$

$$\theta = \arccos\left(\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|}\right)$$

Theorems

Jesus' Theorem

- 1. \boldsymbol{A} is invertible.
- 2. $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 3. RREF of \boldsymbol{A} is \boldsymbol{I} .
- 4. **A** is a product of elementary matrices.
- 5. Ax = b has exactly one solution $\boldsymbol{b}, \forall \boldsymbol{b} \in \mathbb{R}^n$.
- 6. $\det(\mathbf{A}) \neq 0$
- 7. Columns and rows of \boldsymbol{A} are linearly independent.
- 8. Columns and rows of \boldsymbol{A} span
- 9. Columns and rows of \boldsymbol{A} form a basis for \mathbb{R}^n .
- 10. $\operatorname{rank}(\boldsymbol{A}) = n$
- 11. $\operatorname{nullity}(\boldsymbol{A}) = 0$
- 12. $\mathcal{NS}(\mathbf{A})^{\perp} = \mathbb{R}^n$

- 13. $\mathcal{RS}(A)^{\perp} = \{0\}$
- 14. $\ker(T_A) = \{\hat{\mathbf{0}}\}$
- 15. range $(T_A) = \mathbb{R}^n$
- 16. T_A is one-one. 17. $\lambda = 0$ is not an eigenvalue.

Let S be a basis for a vector space V where |S| = k. Then, if $v_1, \cdots, v_k \in V$

- 1. v_1, \dots, v_k are linearly dependent in $V \Leftrightarrow (\boldsymbol{v}_1)_S, \cdots, (\boldsymbol{v}_k)_S$ are linearly dependent in \mathbb{R}^k .
- 2. $\operatorname{span}\{\boldsymbol{v}_1, \cdots, \boldsymbol{v}_k\} = V \Leftrightarrow \operatorname{span}\{(\boldsymbol{v}_1)_S, \cdots, (\boldsymbol{v}_k)_S\} = \mathbb{R}^k$

Let V be a vector space of dimension k and S a subset of V. Then (equiv.):

- 1. S is a basis for V.
- 2. S is lin. indep and |S| = k.
- 3. S spans V and |S| = k.

Dimensions

If U is a subspace of V, then $\dim(U) \leq \dim(V)$. If $\dim(U) =$ $\dim(V)$, then U=V.

Row/Col Spaces

EROs preserve the row space but not the column space (in general). EROs preserve the linear relations between cols.

Let $\mathbf{A}\mathbf{x} = \mathbf{b}$ be a lin. sys. Then if c_1, \dots, c_n are the cols. of A, (equiv.)

- 1. Ax = b is consistent
- 2. $\boldsymbol{b} \in \operatorname{span}\{\boldsymbol{c}_1, \cdots, \boldsymbol{c}_n\}$
- 3. span $\{\boldsymbol{c}_1,\cdots,\boldsymbol{c}_n\}$ $\operatorname{span}\{\boldsymbol{c}_1,\cdots,\boldsymbol{c}_n,\boldsymbol{b}\}$
- 4. $\operatorname{rank}(\boldsymbol{A}) = \operatorname{rank}(\boldsymbol{A}|\boldsymbol{b})$

Ranks

invertible.

 $\mathbf{A}_{m \times n}$; rank $(\mathbf{A}) = \min\{m, n\}$. $rank(AB) \le min\{rank(A), rank(B)\}$ $CS(AB) \subseteq CS(A)$ $\mathcal{RS}(\boldsymbol{AB}) \subseteq \mathcal{RS}(B)$ If $CS(AB) \subseteq CS(A)$, then **B** is not

Orthogonality

If $S = \{\boldsymbol{u}_1, \cdots, \boldsymbol{u}_k\}$ is an orthogonal basis for V, then $\forall w \in$

$$p = \frac{\boldsymbol{w} \cdot \boldsymbol{u}_1}{\boldsymbol{u}_1 \cdot \boldsymbol{u}_1} \boldsymbol{u}_1 + \dots + \frac{\boldsymbol{w} \cdot \boldsymbol{u}_k}{\boldsymbol{u}_k \cdot \boldsymbol{u}_k} \boldsymbol{u}_k$$

where \boldsymbol{p} is the projection of \boldsymbol{w} onto V and $\boldsymbol{w} = \boldsymbol{n} + \boldsymbol{p}$, where \boldsymbol{n} is orthogonal to V . \boldsymbol{w} is said to be orthogonal to V if $\boldsymbol{w} \cdot \boldsymbol{u}_i = 0, \forall i. \ \boldsymbol{u}$ is

a least squares solution to Ax = biff $\mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{u} = \mathbf{A}^{\mathrm{T}} \mathbf{b}$.

A square matrix \boldsymbol{A} is orthogonal iff $\mathbf{A}\mathbf{A}^{\mathrm{T}} = \mathbf{I}$. Then, (equiv.); the rows/cols of \boldsymbol{A} form an orthonormal basis for \mathbb{R}^n . The transition matrix between two orthonormal bases is orthogonal.

Diagonalisation

If $A_{n\times n}$ is a square matrix, then a nonzero $u \in \mathbb{R}^n$ is an eigenvector of \mathbf{A} if $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$, for some $\lambda \in \mathbb{R}$. Char. poly. of **A** is $\det(\lambda \boldsymbol{I} - \boldsymbol{A}) = 0.$

If \mathbf{A} is triangular, the eigenvalues of \boldsymbol{A} are the diagonal entries. \boldsymbol{A} is diagonalisable $\Leftrightarrow A$ has n lin. indep. eigenvectors.

In the char. poly φ , $\varphi(\lambda) =$ $(\lambda - \lambda_1)^{r_1}(\lambda - \lambda_2)^{r_2} \cdots$, the # of eigenvectors associated with λ_i is bounded above by r_i . If **A** has ndistinct eigenvalues, then A is diagonalisable.

A is ortho-diag if can $P^{T}AP = D$. A is symmetric $\Leftrightarrow A$ is ortho-diag.

Lin. Transforms

If T is a lin. transform, then $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$ and T(0) = 0.

For T defined by standard matrix \mathbf{A} , range $(T) = \mathcal{CS}(\mathbf{A})$ and $\ker(T) = \mathcal{NS}(\mathbf{A}).$

If $T: \mathbf{B}$ and $S: \mathbf{A}$, then $(T \circ S)(\mathbf{x}) =$ BAx.

Algorithms

Gauss-Jordan Elimination

- 1. Find first nonzero row (interchange if needed) and delete downwards.
- 2. Move to next nonzero row and delete, repeat until last nonzero row. If zero row reached, move to bottom stop for Gaussian Elimination.
- 3. Make all leading entries 1.
- 4. Start with last nonzero row and delete rightmost entry upwards, repeat until top row.

Values for Consistency

Always ensure no DIV/0.

1. Convert augmented matrix to REF.

- If any possible DIV/0 in REF conversion, isolate values causing DIV/0 and sub into original augmented matrix ⇒ New Case
- 3. Continue where left off, considering all cases except isolated values.

Inverse

- 1. Through adjoint:
 - (a) For each entry, find the cofactor and replace the
 - (b) Transpose (c) Divide by determinant of original
- 2. Through GJE
 - (a) Form (A|I) and convert to RREF to obtain $(I|A^{-1})$.

Determinant

- 1. Choose any row or column and calculate the cofactor of all entries in the row.
- 2. Take the dot product of the row/column and the set of co-factors

$$A_{ij} = (-1)^{i+j} \det(\boldsymbol{M}_{ij})$$

Determinant of a triangular matrix is the product of the diagonal entries.

Cramer's Rule

For a linear system Ax = b, x_i is obtained by replacing the *i*-th column of A with b, then find $\frac{\det(A_i)}{\det(A)}$.

Show Span \subseteq Span

Let $S = \{u_1, u_2, u_3\}$ and $T = \{v_1, v_2, v_3\}$. To show $\operatorname{span}(S) \subseteq \operatorname{span}(T)$, form $(v_1 \ v_2 \ v_3 \ | \ u_1 \ | \ u_2 \ | \ u_3)$ and show consistency. In essence, for $S \subseteq T$, show (T|S) consistent.

Transition Matrix

Transition matrix from S to T is the matrix whose columns are the vectors of S expressed in the basis of T. $P_{S\to T}$ is given by converting (T|S) into $(I|P_{S\to T})$.

Finding Basis for V

- With new vectors:
 - 1. Place the vectors as the rows of a matrix and convert to REF

- 2. Take the nonzero vectors as the basis vectors
- With existing vectors:
 - Place the vectors as the columns of a matrix and convert to REF
 - 2. Take the pivot columns of the REF and use the corresponding columns of the original

To extend the basis to some *n*-space, insert the standard basis vectors corresponding to nonpivot cols.

Gram-Schmidt

Choose $m{v}_1 = m{u}_1$. Then, $m{v}_k = m{u}_k - \sum_{i=1}^{k-1} rac{m{u}_k \cdot m{v}_i}{m{v}_i \cdot m{v}_i} m{v}_i$ To normalise, take $m{v}_i' = rac{1}{m{v}_i \cdot m{v}_i} m{v}_i$.

Least Squares Solution

Compute $A^{T}A$ and $A^{T}b$ then solve $A^{T}Ax = A^{T}b$.

Diagonalisation

- 1. Find all eigenvalues λ_i by solving the characteristic equation.
- 2. For each eigenvalue, find a basis B_{λ_i} for the eigenspace E_{λ_i} .
- 3. Let $S = \bigcup_{i=1}^k S_{\lambda_i}$.
- 4. If |S| < n, then not diagonalisable.
- 5. If |S| = n, then diagonalisable. Take P as the matrix whose columns are vectors of S, and D as the eigenvalues associated with S vectors in the same order.

Recurrence Relations

If the sequence is $a_0 = c_0, a_1 = c_1, \cdots$ with some $a_n = p(a_{n-1}) + q(a_{n-2})$, form the linear system of $\begin{pmatrix} a_n & a_{n+1} & a_{n+2} \end{pmatrix}^T = A \begin{pmatrix} a_{n-1} & a_n & a_{n+1} \end{pmatrix}$, where A is the coefficient matrix formed through info given. Find the eigenvalues of A and diagonalise A. Then, express x_n as $A^n x_0 = PD^n P^{-1} x_0$.

Ortho-Diagonalisation

Same as normal diagonalisation except send every eigenbasis to the Gram-Schmidt. If the matrix isn't symmetric initially, it can't be OD.

Show Mapping is LT

Show that $T(c\mathbf{u}+d\mathbf{v}) = cT(\mathbf{u})+dT(\mathbf{v})$. To show not LT, try $T(\mathbf{0}) \neq 0$ first.

Finding Formula of LT

Find the solution set of column space of T for some $(x_1, x_2, \dots, x_k)^{\mathrm{T}}$. This is really the general formula for the subspace that forms $\mathrm{range}(T)$.

Proofs

Idempotent/Projection
Nilpotent
Stochastic (and doubly)
Permutation
Persymmetric
Antisymmetric
Involutory
Orthogonal
Unipotent