StatsI — Exercise 6

- 1. Let Y_1, \dots, Y_n be a sample from a Poisson distribution with mean $\theta > 0$ unknown.
 - (a) Let $Y = Y_1 + \cdots + Y_n$. Find the mean, the variance and the distribution of Y. (**Hint**: Find out the MGF of Y.)
 - (b) Obtain the MLE for θ and its standard error.
 - (c) Suppose now that only the first m (m < n) observations of the sample are known explicitly, while for the other n m only their sum, Z say, is known, determine the MLE of θ .
- 2. Find the maximum likelihood estimator of λ given a random sample from the gamma distribution with density function

$$f(x) = \frac{1}{\Gamma(r)} \exp(-\lambda x) x^{r-1} \lambda^r,$$

where r is a known constant.

3. Find the maximum likelihood estimator for θ from a random sample from the population with density function

$$f(y; \theta) = \frac{2y}{\theta^2} \ 0 < y \le \theta, \theta > 0.$$

Do not use calculus. Draw a picture of the likelihood.

4. Suppose that we have a random sample of size n from the logistic distribution with density function

$$f(y; \mu) = \frac{\exp(y - \mu)}{[1 + \exp(y - \mu)]^2}.$$

Find the likelihood equation for μ , and write the iteration equations for the Fisher scoring method.

(**Hint**. write quantities as much as possible in terms of the density function and the distribution function for the logistic.)

- 5. Let X_1, \dots, X_n be a sample from $U(0, \theta)$, where $\theta > 0$ is an unknown parameter.
 - (a) Find the MLE $\hat{\theta}$ for θ . Derive the distribution for $\hat{\theta}$, and, therefore, show that $\hat{\theta}$ is a consistent estimator in the sense that $\hat{\theta} \xrightarrow{P} \theta$ when $n \to \infty$.

(**Hint**:
$$P\{\max_{1 \le i \le n} X_i \le y\} = \prod_{1 \le i \le n} P(X_i \le y)$$
.)

(b) Draw a sample of size n = 300 from $U(0, \theta)$ with $\theta = 2$ from R. Set B = 500, plot the histograms for bootstrap estimates for θ using both the nonparametric bootstrap and the parametric bootstrap methods. Compare them with the true PDF of $\hat{\theta}$.

- 6. Let X_1, \dots, X_n be a random sample from an exponential distribution with the density function $f(x, \lambda) = \lambda e^{-\lambda x} I(x \ge 0)$, where $\lambda > 0$ is an unknown parameter. Suppose the last n-m (m < n) observations are *censored* in the sense that we only known $X_j \in [u_j, v_j]$ for some given $v_j > u_j > 0$ while X_j itself is unknown, $j = m + 1, \dots, n$. Outline an EM algorithm for estimating the parameter $\lambda > 0$.
- 7. Let X_1, \dots, X_n be a random sample from the density function

$$f(x) = \begin{cases} \theta^2 x e^{-\theta x} & x > 0, \\ 0 & x \le 0, \end{cases}$$

where $\theta > 0$ is an unknown parameter.

- (a) Find the maximum likelihood estimator for θ .
- (b) Suppose now that only the last n m (m < n) observations of the sample are known explicitly, while for the first m only their sum, $Z = X_1 + \cdots + X_m$, is known. Show that the probability density function of Z is of the form

$$f_Z(z) = \theta^{2m} e^{-\theta z} g(z),$$

where g(z) is a function independent of θ . Determine the maximum likelihood estimator of θ based on the observations Z, X_{m+1}, \dots, X_n .

(**Hint**. Find the CDF $F_Z(z)$ first.)

- (c) Suppose now that the first m observations are censored in the sense that we only known $X_j \in [u_j, v_j]$ for some given $v_j > u_j > 0$ while X_j itself is unknown, $j = 1, \dots, m$. Outline an EM algorithm for estimating the parameter θ .
- 8. Let X_1, \dots, X_n be a random sample from Bernoulli distribution, i.e. $P(X_1 = 1) = p = 1 P(X_1 = 0)$, where $p \in (0, 1)$ is unknown. Let $\theta = p^2$.
 - (a) Find the Cramer-Rao lower bound for the variance of unbiased estimators for θ .
 - (b) Find the MLE $\hat{\theta}$ for the parameter θ .
 - (c) Show that $E(\widehat{\theta}) \neq \theta$.
 - (d) Outline a bootstrap procedure for estimating the bias of $\hat{\theta}$.
- 9. Let $\mathbf{X} = (X_1, \dots, X_n)'$ be a sample from distribution $N(\mu, \sigma^2)$. Let $\theta = (\mu, \sigma^2)'$. Find the Fisher information matrix $\mathcal{F}_{\mathbf{X}}(\theta)$.

(**Hint**: Use $\theta_2 = \sigma^2$ in your calculation.)