SRN							l
O							l

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE20PH101

July/August 2021: END SEMESTER ASSESSMENT (ESA) B TECH II SEMESTER UE20PH101 – ENGINEERING PHYSICS

Т	ime:	3 Hr Answer All Questions Max Marks: 10	00					
		$m_{\rm e} = 9.1 { m x} 10^{-31} { m kg} $	g					
1	a)	By using Maxwell's equations for free space obtain the differential equations describing the electric and magnetic fields.	5					
	b)	An electron and a photon have a wavelength of 5 angstrom. Calculate their momenta and total energies.	4					
	c)	Explain the uncertainty principle. If the speed of an electron is measured to be $3 \times 10^3 \ ms^{-1}$ with an accuracy of 0.004 % estimate the uncertainty in the position of the particle.	5					
	d)	Define the following terms used in quantum mechanics.						
		i. Wavefunction ii. Normalization iii. Observable iv. Eigen values v. Eigen functions vi. Hamiltonian						
2	a)	A beam of particles of mass m and total energy E is incident on a potential step of height V_0 . If $E > V_0$ then by applying continuity conditions obtain the expression for the reflection coefficient.	5					
	b)	Draw the sketch of a barrier potential. A proton of energy 3 MeV is incident on a potential barrier of height 10 MeV and thickness $2 \times 10^{-14} m$. Estimate the transmission coefficient.	5					
	c)	Obtain the Eigen values and normalized Eigen functions for a particle in an Infinite Potential Well defined as $V = 0$ for $-\frac{a}{2} \le x \le \frac{a}{2}$ and $V = \infty$ everywhere else.	6					

	d)	Write a note on a quantum harmonic oscillator. Find the first two energy Eigen values of a particle undergoing SHM with a fundamental frequency 10^{13} Hz.								
3	a)	Discuss any three failures of Classical free electron theory.								
	b)	Show the dependence of the density of states on energy using a plot. Derive an expression for the average energy of free electrons.								
		Explain the following terms with expressions wherever necessary								
	c)	i. Fermi factor ii. Fermi temperature iii. Fermi energy iv. Fermions								
	d)	Explain how specific heat is calculated according to the quantum free electron theory along with a discussion on Wiedemann-Franz law.	4							
	•		•							
4	a)	What is population inversion? Define the basic requirements of a laser system.	4							
	b)	Discuss the following terms	6							
		i. Life time and meta-stable ii. Spatial coherence state								
		iii. Gain and loss in a laser iv. Frequency comb cavity								
	c)	Give a comprehensive idea of the working of a He-Ne laser by including the construction aspects and the energy level diagram.	5							
	d)	What are direct and indirect band semiconductors? Discuss the working of a heterojunction diode laser.	5							
5	a)	a) Give a brief account of Diamagnetism and Paramagnetism.								
	b)	Explain the phenomenon of Giant Magneto Resistance.	5							
	c)	What are polar dielectrics? Explain the idea of orientation polarization and how the susceptibility varies with temperature in polar dielectrics.	5							
	d)	Give examples of ferroelectric and piezoelectric materials along with their applications.	5							