Multivariable Calculus

Andres Duarte

2018

Contents

1	Line	ear Equations in Linear Algebra
	1.1	Systems of Linear Equations
		1.1.1 Elementary Row Operations
		1.1.2 Questions
	1.2	Row Reduction and Echelon Forms
	1.3	Vector Equations
		1.3.1 Algebraic Properties of \mathbb{R}^n
	1.4	The Matrix Equation $Ax = b$
	1.5	Solution Sets of Linear Systems
	1.6	Introduction to Linear Transformations

1 Linear Equations in Linear Algebra

1.1 Systems of Linear Equations

Definition 1.1. A linear equation is an equation of the form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

Definition 1.2. A *linear system* is a set of linear equations involving like variables.

Definition 1.3. A *solution* to a linear system is an ordered set that makes the linear system true.

Definition 1.4. A solution set is the set of all possible solutions to the linear system.

Remark. Two linear systems with like solution sets are equivalent.

Remark. A linear system is consistent if it has at least one solution, and inconsistent if it has no solutions.

Definition 1.5. A *coefficient matrix* is a matrix that consists of the coefficients of the variables of a linear system.

Remark. Each column of the coefficient matrix corresponds to a variable in the linear system.

Definition 1.6. An augmented matrix consists of the coefficient matrix with an added column containing the constants of the RHS of the linear system.

Definition 1.7. An $m \times n$ matrix is a rectangular array of elements with m rows and n columns.

1.1.1 Elementary Row Operations

- add the multiple of one row to another
- switch two rows
- scale a row by a nonzero constant

Remark. Row operations are reversible.

Definition 1.8. Two matrices are *row equivalent* if a sequence of row operations can transform one into the other.

Remark. All row equivalent augmented matrices have the same solution set.

1.1.2 Questions

- does a solution to the linear system exist?
- If it does, is it unique?

1.2 Row Reduction and Echelon Forms

Definition 1.9. The *leading entry* of a row is its left-most non-zero entry.

Definition 1.10. A matrix is in *echelon form* if:

- all non-zero rows are above any all-zero rows
- the leading entry of each row is in a column to the right of the leading entry of the row above it
- all entries in a column below a leading entry are zeros

Definition 1.11. A matrix is in reduced row echelon form if:

- it's in echelon form
- all leading entries are 1
- all leading entries are the only non-zero entries in their columns

Remark. A matrix can be row equivalent with many echelon forms but only one reduced echelon form.

Definition 1.12. A pivot position corresponds to the position of one of the leading entries of the reduced echelon form of a matrix.

Definition 1.13. A column of the coefficient matrix is a *free column* if it doesn't contain a pivot position.

Definition 1.14. A column of the augmented matrix is a *pivot column* if it contains a pivot position.

Remark. Variables corresponding to free columns are *free variables*. Variables corresponding to pivot columns of the coefficient matrix are *basic variables*.

Remark. The solution set of a consistent linear system has a parametric representation in which by convention free variables act as parameters. The solution set of an incosistent linear system is empty and has **no** parametric representation.

Remark. Solving a system amounts to finding a parametric representation of the solution set or determing that the solution set is empty.

Remark. A linear system is consistent iff the right-most column of the augmented matrix is **not** a pivot column.

Theorem 1.1 (Existence and uniqueness theorem). A linear system is consistent iff the right-most column of the augmented matrix is **not** a pivot column. A consistent linear system has either a unique solution, if it has no free variables, or infinitely many solutions if it has at least one free variable.

1.3 Vector Equations

$$\mathbb{R}^n := \text{ Set of ordered n-tuples } \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \text{ where } x_1, \dots, x_n \in \mathbb{R}$$

 $\mathbb{R}^1 := \mathbb{R} = \text{Set of real numbers} = \text{Number line}$

 $\mathbb{R}^2 := \text{Plane}$

 $\mathbb{R}^3 := \text{Space}$

Definition 1.15. A *vector* in \mathbb{R}^n is an element of \mathbb{R}^n .

Remark. Two vectors are equal iff their corresponding entries are equal.

1.3.1 Algebraic Properties of \mathbb{R}^n

$$\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n \text{ and } c, d \in \mathbb{R}$$
 (1)

- $\bullet \ \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- $\bullet \ (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- $\mathbf{u} + 0 = 0 + \mathbf{u} = \mathbf{u}$
- $\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = 0$
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- $c(d\mathbf{u}) = (cd)\mathbf{u}$
- $1\mathbf{u} = \mathbf{u}$

Definition 1.16. If $\mathbf{v}_1, \dots, \mathbf{v}_p \in \mathbb{R}^n$ and $c_1, \dots, c_p \in \mathbb{R}$, then

$$\mathbf{y} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p$$

is a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_p$.

Definition 1.17. Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is the set of all linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_p$.

1.4 The Matrix Equation Ax = b

Definition 1.18. If $A^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^n$ then $A\mathbf{x} = \mathbf{b}$ is the linear combination of the columns of A using the corresponding entries of \mathbf{x} as weights

$$A\mathbf{x} = [\mathbf{a}_1 \ \cdots \ \mathbf{a}_n] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1\mathbf{a}_1 + \cdots + x_n\mathbf{a}_n$$

Remark. $A\mathbf{x}$ is defined iff the number of columns of A equals the number of entries in \mathbf{x} .

Theorem 1.2. If $A^{m \times n}$ and $b \in \mathbb{R}^m$, then the matrix equation

$$Ax = b$$

has the same solution set as the vector equation

$$x_1 \mathbf{a}_1 + \cdots + x_n \mathbf{a}_n = b$$

which in turn, has the same solution set as the system of linear equations whose augmented matrix is

$$[\mathbf{a}_1 \cdots \mathbf{a}_n \mathbf{b}]$$

Remark. The equation $A\mathbf{x} = \mathbf{b}$ has a solution iff \mathbf{b} is a linear combination of the columns of A.

Theorem 1.3. If $A^{m \times n}$, then the following statements are logically equivalent.

- $A\mathbf{x} = \mathbf{b}$ has a solution $\forall \mathbf{b} \in \mathbb{R}^m$
- Each $\mathbf{b} \in \mathbb{R}^m$ is a linear combination of the columns of A
- $Span \{ \boldsymbol{a}_1, \cdots, \boldsymbol{a}_n \} = \mathbb{R}^m$
- A has a pivot position in every row

Remark. The *i*th entry of $A\mathbf{x}$ is the sum of the products of the entries of the *i*th row of A with the corresponding entries of \mathbf{x}

Definition 1.19. The *identity matrix*, denoted I_n , is an $n \times n$ matrix with 1's on the diagonal and 0's elsewhere.

$$I_n \mathbf{x} = \mathbf{x} \ \forall \mathbf{x} \in \mathbb{R}^n$$

Theorem 1.4. If $A^{m \times n}$, \boldsymbol{u} and $\boldsymbol{v} \in \mathbb{R}^n$ and $c \in \mathbb{R}$, then

$$A(\boldsymbol{u}+\boldsymbol{v})=A\boldsymbol{u}+A\boldsymbol{v}$$

$$A(c\mathbf{u}) = c(A\mathbf{u})$$

1.5 Solution Sets of Linear Systems

Definition 1.20. A system of linear equations is *homogeneous* if it can be written in the form

$$A\mathbf{x} = \mathbf{0}$$

where $A^{m \times n}$ and $\mathbf{0} \in \mathbb{R}^m$

Remark. All homogeneous linear systems, $A\mathbf{x} = \mathbf{0}$, have a trivial solution.

It follows. From the existence and uniqueness theorem.

A homogeneous linear system has a non-trivial solution iff it has at least one free variable.

Definition 1.21. The parametric vector form of the solution set of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$ with one free variable is

$$\mathbf{x} = t\mathbf{v}$$
 where $t \in \mathbb{R}$

Remark. The solution set of a homogeneous linear system, $A\mathbf{x} = \mathbf{0}$, with only one free variable is a line through the origin.

Definition 1.22. The parametric vector form of the solution set of the non-homogeneous linear system $A\mathbf{x} = \mathbf{b}$ is

$$\mathbf{x} = \mathbf{p} + t\mathbf{v}$$
 where $t \in \mathbb{R}$

Theorem 1.5. The solution set of a consistent non-homogeneous linear system $A\mathbf{x} = \mathbf{b}$ is obtained by translating the solution set of its corresponding homogeneous linear system $A\mathbf{x} = \mathbf{0}$ by any particular solution \mathbf{p} of $A\mathbf{x} = \mathbf{b}$.

Definition 1.23. An indexed set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\} \in \mathbb{R}^n$ is linearly independent if the vector equation

$$x_1\mathbf{v}_1 + \dots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution.

Definition 1.24. An indexed set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\} \in \mathbb{R}^n$ is linearly dependent if \exists weights c_1, \dots, c_p , not all zero, such that

$$c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p = \mathbf{0}$$

Remark. The columns of A are linearly independent iff the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Remark. An indexed set of vectors is linearly dependent iff at least one of the vectors in the set is a linear combination of the others.

Remark. A set containing a single vector is linearly independent iff its not the zero vector. It follows: the zero vector is linearly dependent.

Theorem 1.6. Any set $\{v_1, \dots, v_p\} \in \mathbb{R}^n$ is linearly dependent if p > n

Theorem 1.7. Any set $\{v_1, \dots, v_p\} \in \mathbb{R}^n$ that contains the zero vector is linearly dependent.

1.6 Introduction to Linear Transformations

Definition 1.25. A transformation T from \mathbb{R}^n to \mathbb{R}^m , written $T: \mathbb{R}^n \to \mathbb{R}^m$, is a rule that assigns to each vector $\mathbf{x} \in \mathbb{R}^n$ a vector $T(\mathbf{x}) \in \mathbb{R}^m$.

- \mathbb{R}^n is the domain of T and \mathbb{R}^m is its codomain.
- $\forall \mathbf{x} \in \mathbb{R}^n$ the vector $T(\mathbf{x}) \in \mathbb{R}^m$ is the *image* of x.
- The set of all images $T(\mathbf{x})$ is the range of T.

Remark. The codomain is all the places the transformation could take you, the range is all the places it does.

Remark. $\forall \mathbf{x} \in \mathbb{R}^n$, $T(\mathbf{x})$ is computed as $A\mathbf{x}$ and written as $\mathbf{x} \mapsto A\mathbf{x}$.

Remark. The range of T is the set of all linear combinations of the columns of A.

Definition 1.26. A transformation T is *linear* if:

- $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \quad \forall \mathbf{u}, \mathbf{v} \text{ in the domain of } T.$
- $T(c\mathbf{u}) = cT(\mathbf{u})$ $\forall c, \mathbf{u}$ in the domain of T.

Remark. Every matrix transformation is a linear transformation.

Remark. Linear Transformations preserve the operations of vector addition and scalar multiplication.

It follows. From linearity.

$$T(0) = 0$$