A cylindrical container is made from a transparent material. Two students want to determine the density of this material.	
(a) The students need to make measurements to determine the volume of the transparent material. The external diameter of the container is approximately 10 cm.	;
Student A suggests measuring the external diameter with a metre rule.	
Student B suggests placing a piece of string around the circumference of the container and then measuring this length of string with a metre rule.	
Explain which of these measurements would have the least percentage uncertainty.	(2)
(b) The students decide to use string to determine the circumference of the container.They measure the thickness t of the string using a micrometer screw gauge.	
They measure the thickness t of the string using a micrometer screw gauge. (i) Explain two techniques that could be used to make sure this measurement is as	
They measure the thickness t of the string using a micrometer screw gauge.	(2)
They measure the thickness <i>t</i> of the string using a micrometer screw gauge. (i) Explain two techniques that could be used to make sure this measurement is as	(2)
They measure the thickness t of the string using a micrometer screw gauge. (i) Explain two techniques that could be used to make sure this measurement is as	(2)
They measure the thickness <i>t</i> of the string using a micrometer screw gauge. (i) Explain two techniques that could be used to make sure this measurement is as	(2)
They measure the thickness <i>t</i> of the string using a micrometer screw gauge. (i) Explain two techniques that could be used to make sure this measurement is as	(2)
They measure the thickness <i>t</i> of the string using a micrometer screw gauge. (i) Explain two techniques that could be used to make sure this measurement is as	(2)
They measure the thickness <i>t</i> of the string using a micrometer screw gauge. (i) Explain two techniques that could be used to make sure this measurement is as	(2)
They measure the thickness <i>t</i> of the string using a micrometer screw gauge. (i) Explain two techniques that could be used to make sure this measurement is as	(2)

(ii) The following measurements were obtained.

		<i>t</i> / mm		
2.15	2.06	2.13	2.08	2.10

Calculate the mean value of t in mm and its uncertainty.

(2)

mean t = mm \pm

(c) The circumference C of the container can be determined using the formula

$$C = x - \pi t$$

where *x* is the length of string around the container.

(i) Calculate the value of *C* in cm.

$$x = 25.8 \,\mathrm{cm} \pm 0.2 \,\mathrm{cm}$$

(2)

C - am

(ii) Show that the uncertainty in C is approximately $0.2\,\mathrm{cm}$.

(1)

(d) The volume V of the transparent material is given by

$$V = \frac{C^2 L}{4\pi} - V_{\rm i}$$

where L is the length of the container and $V_{\rm i}$ is the internal volume of the container.

Determine the value of V in cm³ and its uncertainty.

$$L = 19.90 \,\mathrm{cm} \pm 0.05 \,\mathrm{cm}$$

$$V_{\rm i} = 810 \, {\rm cm}^3 \pm 5 \, {\rm cm}^3$$

(4)

|
 |
|------|
| |
|
 |
| |
|
 |
|
 |
| |
| |

V =	$cm^3 +$	cm

(e) The table shows the densities of some common materials used to manufacture this type of container. Only borosilicate is safe to heat directly with a Bunsen burner.

Material	Soda glass	Borosilicate	Perspex
ho / g cm ⁻³	2.52	2.23	1.18

The	mass	of t	he	container	was	measured	as	463	g±	1 g	ζ.

Deduce whether the container is safe to heat directly with a Bunsen burne	er.
---	-----

(4)