Mathematica Lab #3

Due Monday April 3rd 2023 by 11:59 P.M.

All work is to be done in a programming notebook.

Please refer to the blackboard site for commands and examples.

You will be graded on the output that I am able to generate from your commands.

Α	В	С	D	Е	F	G	Н	ı	J	K	L	М	N	Ο	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
27	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

1. Consider the function $f(x) = \frac{1}{x}$ for x > 1. Revolve this function about the x-axis creates what is referred to as Gabriel's (or Torricelli's) Horn. A picture is provided below.

- (a) Calculate the volume of the horn for $1 < x < \infty$.
- (b) Calculate the anti-derivative that would represent the surface area.
- (c) Use part 1b to compute the surface area for $1 < x < \infty$ by taking the limit as $t \to \infty$.
- (d) Explain in words why this is a paradox. It is best to talk in terms of paint.
- 2. Consider the function $g(x) = \frac{x^5}{x!}$. Let a be the number corresponding to the first initial of your family (last) name.
 - (a) Graph the function for $0 \le x \le 20$. Note the plot command will not work since g(x) is not defined for n < x < n+1 for all $n \in \mathbb{N}$. See template for project 3 for a suggestion on which package to use.
 - (b) Guess the limit of g(x) as x approaches infinity.
 - (c) Find the smallest value N that correspond to $\epsilon = \frac{1}{a^3}$ in the precise (formal) definition of the limit. See definition 2 on page 692 of your book or the wikipedia page on formal definition of the limit of a sequence.
- 3. Consider the series.

$$\sum_{n=1}^{\infty} \frac{(\ln n)^2}{n^2}$$

- (a) Show that the series is convergent by computing its sum, S.
- (b) Let $S_a = \sum_{n=1}^a \frac{(\ln n)^2}{n^2}$, find the error in $S \approx S_a$.
- (c) Find the error in $S \approx S_{a+100}$ and $S \approx S_{a+1000}$.