Data Mining in Action

Decision trees

• Нужен линейный порядок на каждой из фичей

OneHotEncoding

Страна	
2	
2	
1	
3	

Страна=1	Страна=2	Страна=3
0	1	0
0	1	0
1	0	0
0	0	1

Все равно 1 сплит на 1 категорию!

Хорошее решение

• Посчитать статистику по другой колонке

Страна	Доход
2	2,000
2	20,000
1	10,000
3	12,000
2	2,000

Опасное решение

- Брать статистику по целевому признаку
- Ведет к переобучению
- Выход K-fold предсказания

• Плохое восстановление линейных (арифметических) зависимостей

- Добавить комбинации признаков: сумма, разность, произведение, частное
- Бинарные признаки: конъюнкции, XOR
- Разность скоррелированных признаков, сумма антикоррелированных

Линейные методы

• Неупорядоченные категориальные признаки

Страна
2
2
1
3

OneHotEncoding

Страна	Страна=1	Страна=2	Страна=3
2	0	1	0
2	0	1	0
1	1	0	0
3	0	0	1

• Чувствительность к большому разбросу значений

- Если это значение имеет смысл NaN, то заменим его на ноль или среднее по колонке
- Добавим еще один бинарный признак isNaN

• Неоднородность признакового пространства

Признак1	Признак2	Признак3	Признак4	Признак5
1	100000	1	0.345	54
2	-55500	0	-0.123	76
3	3000	0	0.864	12
4	150000	1	0.0023	34
5	500	1	1.1867	87

• По мотивам соревнования Springleaf: заменим все признаки на среднее по целевому

Признак1	Признак2	Признак3	Признак4	Признак5
0.1	0.3	0.35	0.04	0.1
0.2	0.1	0.65	0.03	0.2
0.3	0.4	0.65	0.12	0.9
0.4	0.5	0.35	0.05	0.76
0.5	0.6	0.35	0.43	0.2

• Заменим все значения на их ранки!

Признак1	Признак2	Признак3	Признак4	Признак5
0	3	1	2	2
1	0	0	0	3
2	2	0	3	0
3	4	1	1	1
4	1	1	4	4

• Распределения с длинными хвостами

- sign(x) * log(1+ |x|)
- sign(x) * sqrt(|x|)

• Зачем sign(x)?

Проверим на данных

Logistic Regression, данные - Santander

Данные	ROC AUC
train	0.6036
scale(train)	0.7909
scale(train_rank)	0.8206
scale(train_rank) + преобразование распределений	0.8215