Algorithm Design and Analysis Assignment 7

1. Show that the following problem is NP-Complete.

MAXIMUM COMMON SUBGRAPH Input: Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$; a budget b. Output: Decide whether there exist two set of nodes $V'_1 \subseteq V_1$ and $V'_2 \subseteq V_2$ whose deletion leaves at least b nodes in each graph, and makes the two graphs identical.

Solution. Given G_1 , G_2 , V'_1 , and V'_2 , we can efficiently delete these vertices from G_1 and G_2 and check the two remaining subgraph are identical and have at least b nodes in $O(n^2)$ time. (Notice that identical is different from isomorphic.) It proves that MAXIMUM COMMON SUBGRAPH is in NP.

Consider the NP-Complete problem k-CLIQUE, which ask us to find a size k clique in a given graph G. Let us consider the MAXIMUM COMMON SUBGRAPH where $G_1 = G$, b = k, and G_2 be the size k clique. For any yes instance of the k-CLIQUE, we can find a size k clique, which is a size k subgraph of G_1 and is identical to G_2 . Therefore, the input we construct before is also a yes instance of MAXIMUM COMMON SUBGRAPH. On the other hand, if the input of MAXIMUM COMMON SUBGRAPH is yes, then because the subgraph contains at least b nodes, it must be G_2 , and G_2 must be a subgraph of G_1 , which is a size k clique. Therefore, G should be a yes instance of k-CLIQUE. Thus far, we give a karp reduction from k-CLIQUE to MAXIMUM COMMON SUBGRAPH, and prove MAXIMUM COMMON SUBGRAPH is NP-Complete.

- 2. SINGLE EXECUTION TIME SCHEDULING (SS). Given a set S of n jobs, a relation \prec on S, a number of processors k and a time limit t. Does there exist a function f from S to $\{0, 1, ..., t-1\}$ such that
 - 1. $f^{-1}(i)$ has at most k members, and
 - 2. if $J \prec J'$, then f(J) < f(J')?

For a verbal description of the problem, we need to assign those n jobs to those k processors. Each processor takes one unit of time to complete each job. f(J) is the starting time for job J, and job J ends at time f(J) + 1. The first requirement above says that at most k jobs can be executed simultaneously. For two jobs J and J', $J \prec J'$ indicates J must be finished before executing J'. This is captured by the second requirement. We are deciding if we can schedule the n jobs on those k processors such that all of them are finished before time t.

Now consider a more complex version: Single execution time scheduling with variable number of processors (SSV). Given a set S of n jobs, a relation \prec on S, a time limit t, and a sequence of integers $c_0, c_1, \ldots, c_{t-1}$, where $\sum_{i=0}^{t-1} c_i = n$, does there exist a function f from S to $0, 1, \ldots, t-1$ such that

- 1. $f^{-1}(i)$ has exactly c_i members, and
- 2. if $J \prec J'$, then f(J) < f(J')?

Show that (SS) is NP-Complete. You may follows the three steps below:

- (a) Show (SS) is in NP.
- (b) Show that there is a Karp reduction from SSV to SS: SSV \leq_k SS.
- (c) Show that there is a Karp reduction from 3SAT to SSV: 3SAT \leq_k SSV.

Hint for part (c):

- For each variable x_i (i = 1, ..., n) in the 3SAT instance, create two gadgets corresponding to the two Boolean assignments to the variable as follows:
 - Gadget for $x_i = \mathbf{true}$: create n + 2 jobs $x_{i0}, x_{i1}, \dots, x_{in}, y_i$ with $x_{i0} \prec x_{i1} \prec \dots \prec x_{in}$ and $x_{i(i-1)} \prec y_i$;
 - Gadget for $x_i =$ **false**: create n + 2 jobs $\bar{x}_{i0}, \bar{x}_{i1}, \dots, \bar{x}_{in}, \bar{y}_i$ with $\bar{x}_{i0} \prec \bar{x}_{i1} \prec \dots \prec \bar{x}_{in}$ and $\bar{x}_{i(i-1)} \prec \bar{y}_i$.
 - Intuitive idea: we may imagine x_i (or \bar{x}_i) to be true if and only if x_{i0} (or \bar{x}_{i0} , respectively) is executed at time 0, all the other jobs are used to control the requirement of the 3SAT problem.

- For each clause C_j $(j=1,\ldots,m)$, create 7 jobs $c^j_{ttt}, c^j_{tft}, c^j_{ftt}, c^j_{ftf}, c^j_{ftf}, c^j_{fft}, c^$
- Consider t = n + 2. Setup the values for $c_0, c_1, \ldots, c_{t-1}$ appropriately such that, in order to finish all the tasks, we must have the followings:
 - For each i = 1, ..., n, we must have either $f(x_{i0}) = 0$, $f(\bar{x}_{i0}) = 1$ or $f(x_{i0}) = 1$, $f(\bar{x}_{i0}) = 0$. The former case will represent $x_i = \mathbf{true}$ and the latter case will represent $x_i = \mathbf{false}$;
 - For the 7 jobs corresponding to each clause, exactly one job must be executed at time n, and the remaining 6 jobs must be executed at time n + 1. The job executed at time n will represent the values for the three literals in the clause in a satisfying Boolean assignment.

Solution. Please refer to the paper of J.D. ULLMAN. (P2) is our problem (SS) in the paper, they prove (P2) is NP-Complete via (P4) (i.e. (SSV)). \Box

3. How long does it take you to finish the assignment (include thinking and discussing)? Give a score (1,2,3,4,5) to the difficulty.