SM-4331 Formula Sheet

1. Distributions

Distribution	Distribution function	Mean	Variance
Bernoulli	$p^x(1-p)^{1-x}$	p	p(1 - p)
Binomial	${}^nC_x p^x (1-p)^{n-x}$	np	np(1-p)
Poisson	$e^{-\lambda}\lambda^x/x!$	λ	λ
Normal	$(2\pi\sigma^2)^{-1/2}e^{-(x-\mu)^2/(2\sigma^2)}$	μ	σ^2
Exponential	$\mu^{-1}e^{-x/\mu}$	μ	μ^2

2. Sampling variances for estimators of the mean

Let y_1, \ldots, y_N be values of a population whose mean is $\mu := N^{-1} \sum_{i=1}^N y_i$, and (corrected) variance is $(N-1) \sum_{i=1}^N (y_i - \mu)^2$.

• Simple random sampling: Let $\hat{\mu}$ be an estimator for μ from a sample of SRS of size n. Then

$$\operatorname{Var}_{\mathrm{srs}}(\hat{\mu}) = \frac{N-n}{Nn} S^2$$

• Cluster sampling: Let $\hat{\mu}$ be an estimator for μ using data from m out of a total of M clusters. Then

$$\operatorname{Var}_{\operatorname{cl}}(\hat{\mu}) = \frac{M-m}{Mm} S_{\operatorname{cl}}^2$$

where $S_{\rm cl}^2 = (M-1)^{-1} \sum_{j=1}^M (\mu_j - \mu)^2$ and μ_j are the cluster means.

• Stratified sampling: Let $\hat{\mu}$ be the stratified sample estimator, where n_h elements out of a possible N_h elements from each strata $h=1,\ldots,H$ were taken. Then

$$\operatorname{Var}(\hat{\mu}) = \sum_{h=1}^{H} \frac{N_h - n_h}{N_h n_h} S_h^2$$

where S_h^2 is the (corrected) variance of the stratum h.

3. Two-sample t-test (equal variances)

$$T = \frac{n_x + n_y - 2}{1/n_x + 1/n_y} \sqrt{\frac{\bar{X} - \bar{Y} - \delta}{(n_x - 1)s_x^2 + (n_y - 1)s_y^2}}.$$

Under $H_0: \mu_x - \mu_y = \delta$, $T \sim t_{n_x + n_y - 2}$.

4. Simple linear regression

• Model: $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, $\epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ for $i = 1, \dots, n$.

1

• LSE:

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}, \quad \hat{\beta}_1 = \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}) / \sum_{j=1}^n (x_i - \bar{x})^2, \text{ and}$$

$$\operatorname{Var}(\hat{\beta}_0) = \frac{\sigma^2 \sum_{i=1}^n x_i^2}{n \sum_{j=1}^n (x_i - \bar{x})^2}, \quad \operatorname{Var}(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{j=1}^n (x_i - \bar{x})^2}, \quad \operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1) = \frac{-\sigma^2 \bar{x}}{\sum_{j=1}^n (x_i - \bar{x})^2}$$

- Estimator for the variance of ϵ_i : $\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i \beta_0 \beta_1 x_i)^2$.
- Regression ANOVA:

Total SS =
$$\sum_{i=1}^{n} (y_i - \bar{y})^2$$
, Reg SS = $\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$, Resid SS = $\sum_{i=1}^{n} (\hat{y}_i - \hat{y}_i)^2$.

• Regression correlation coefficients:

$$R^2 = \frac{\text{Reg SS}}{\text{Total SS}},$$
 $\tilde{R}^2 = 1 - \frac{\text{Resid SS}/(n-2)}{\text{Total SS}/(n-1)}$

• Confidence interval: A $(1-\alpha)\%$ confidence interval for $\mu(x)$ is

$$\hat{\beta}_0 + \hat{\beta}_1 x \pm t_{n-2} (\alpha/2) \cdot \hat{\sigma} \sqrt{\frac{\sum_{i=1}^n (x_i - x)^2}{n \sum_{j=1}^n (x_j - \bar{x})^2}}$$

• **Predictive interval:** A predictive interval which covers y with probability $(1 - \alpha)$ is

$$\hat{\beta}_0 + \hat{\beta}_1 x \pm t_{n-2} (\alpha/2) \cdot \hat{\sigma} \sqrt{1 + \frac{\sum_{i=1}^n (x_i - x)^2}{n \sum_{j=1}^n (x_j - \bar{x})^2}}$$