CONSISTÊNCIA CENTRADAS NO CLIENTE

DCE540 - Computação Paralela e Distribuída

Atualizado em: 17 de janeiro de 2023

CLIENTE COMO PONTO CENTRAL

Na aula anterior, vimos modelos de consistência baseados em dados

 O dado tem sempre que estar consistente com suas replicações

Entretanto, também é possível pensar em consistência do ponto de vista dos usuários (clientes)

Este modelo normalmente trabalha com uma consistência frouxa

- É uma maneira simples e barata de esconder inconsistências nos dados
- Dados só são atualizados quando requisitados pelo cliente

MOTIVOS PARA CENTRALIZAÇÃO NO CLIENTE

NOTAÇÃO UTILIZADA

Vamos usar uma notação um pouco mais elaborada nesta aula

- $\bigcirc x_i \leftarrow \text{versão do dado } x$
- \bigcirc $W_i(x_j) \leftarrow$ processo i está escrevendo no dado x
- O Se temos x_i e x_j , sendo j > i, dizemos que o dado x_j é mais atualizado
 - ∘ $W_k(x_i; x_j)$ ← processo k alterou a versão do dado x de i para j
 - W_k(x_i|x_j) ← processo k atualizou a versão do dado x de i para j de forma concorrente com outro processo
- \bigcirc $R_i(x_i) \leftarrow$ processo *i* leu a versão *j* do dado *x*

LEITURA MONOTÔNICA

Uma coisa importante é garantir a leitura monotônica

- Uma leitura posterior de um dado nunca pode retornar uma versão mais antiga
- Deve retornar a mesma versão ou então uma mais atualizada

ESCRITA MONOTÔNICA

Duas atualizações em um dado \boldsymbol{x} por um mesmo processo tem que ser sequenciais

- A segunda atualização deve sobrescrever a primeira
- Esquema de atualizações FIFO
- \bigcirc $W_k(x_i; x_j)$

Monotônica

L1: $W_1(x_1)$ L2: $W_2(x_1;x_2)$ $W_1(x_2;x_3)$ Não monotônica

 $L1: W_1(X_1)$

L2: $W_2(x_1|x_2)$

 $W_1(x_1|x_3)$

LEIA SUA ESCRITA

Uma operação de escrita por um processo k em um dado x deve ser visível a partir de uma requisição de leitura deste mesmo processo (no mesmo dado)

 Processo de escrita tem que terminar antes que uma leitura possa ser realizada

	Consistente			Não consistente		
L1:	$W_1(x_1)$		<u>L1:</u>	$W_1(x_1)$		
L2:	$W_2(x_1;x_2)$	R ₁ (x ₂)	L2:	$W_2(x_1 x_2)$	$R_1(x_2)$	

7

ESCRITA SEGUE LEITURA

Se um processo k lê um dado x e posteriormente atualiza o valor de x na versão i, então este processo de escrita deve ser realizado numa versão i ou mais recente do dado x

Uma escrita nunca deve ocorrer sob um dado desatualizado

8