Assignment -3 BUILD AN CNN MODEL FOR THE CLASSIFICATION OF FLOWERS

Assignment Date	10 October 2022
Student Name	Mr.E.R.GOWSHIGAN
Student Roll Number	913319104301
Maximum Marks	2 Marks

Question-1:

DOWNLOAD THE DATA SET

!unzip '/content/Flowers-Dataset.zip'

```
!unzip '/content/Flowers-Dataset.zip'
      inflating: flowers/dandelion/5996421299 b9bf488c1a n.jpg
D
      inflating: flowers/dandelion/6012046444_fd80afb63a_n.jpg
      inflating: flowers/dandelion/6019234426 d25ea1230a m.jpg
      inflating: flowers/dandelion/6035460327_4bbb708eab_n.jpg
      inflating: flowers/dandelion/6044710875_0459796d1b_m.jpg
      inflating: flowers/dandelion/6060576850_984176cf4f_n.jpg
      inflating: flowers/dandelion/6103898045_e066cdeedf_n.jpg
      inflating: flowers/dandelion/6104442744 ee2bcd32e7 n.jpg
      inflating: flowers/dandelion/61242541_a04395e6bc.jpg
      inflating: flowers/dandelion/6132275522_ce46b33c33_m.jpg
      inflating: flowers/dandelion/6146107825_45f708ecd7_n.jpg
      inflating: flowers/dandelion/6208857436_14a65fe4af_n.jpg
      inflating: flowers/dandelion/62293290_2c463891ff_m.jpg
      inflating: flowers/dandelion/6229634119_af5fec0a22.jpg
      inflating: flowers/dandelion/6250363717 17732e992e_n.jpg
      inflating: flowers/dandelion/6400843175 ef07053f8f m.jpg
      inflating: flowers/dandelion/6412422565 ce61ca48a9 n.jpg
      inflating: flowers/dandelion/645330051 06b192b7e1.jpg
      inflating: flowers/dandelion/6495802659 98b57e0cca_m.jpg
      inflating: flowers/dandelion/674407101_57676c40fb.jpg
      inflating: flowers/dandelion/6888894675 524a6accab n.jpg
      inflating: flowers/dandelion/6897671808 57230e04c5 n.jpg
      inflating: flowers/dandelion/6900157914 c3387c11d8.jpg
      inflating: flowers/dandelion/6901435398_b3192ff7f8_m.jpg
      inflating: flowers/dandelion/6918170172 3215766bf4 m.jpg
```

Question-2:

IMAGE AUGUMENTATION

Solution

Question-3:

CREATE MODEL

Solution

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Convolution2D,MaxPooling2D,Flatten,Dense

Question-4:

ADD LAYERS (CONVOLUTION, MAX POOLING , FLATTEN, DENSE(HIDDEN LAYERS) , OUTPUT)

Solution

```
# Flatten laver
```

model = Sequential()

model.add(Convolution2D(32,(3,3),activation='relu',input_shape=(64,64,3))) # Convolution layer model.add(MaxPooling2D(pool_size=(2,2))) # Max pooling layer model.add(Flatten())

```
model = Sequential()
model.add(Convolution2D(32,(3,3),activation='relu',input_shape=(64,64,3))) # Convolution layer
model.add(MaxPooling2D(pool_size=(2,2))) # Max pooling layer
model.add(Flatten()) # Flatten layer
model

<keras.engine.sequential.Sequential at 0x7f0657db3710>
```

Dense layers

model.add(Dense(300,activation='relu')) # Hidden layer model.add(Dense(150,activation='relu')) # Hidden layer model.add(Dense(5,activation='softmax')) # Output layer

```
[17] model.add(Dense(300,activation='relu')) # Hidden layer
    model.add(Dense(150,activation='relu')) # Hidden layer
    model.add(Dense(5,activation='softmax')) # Output layer

<keras.engine.sequential.Sequential at 0x7f0657db3710>
```

Question-5:

COMPILE THE MODEL

Solution

model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])

```
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
```

Question-6:

FIT THE MODEL

```
Solution
model.fit(xtrain,
steps_per_epoch=len(xtrain),
epochs=10,
```

```
model.fit(xtrain,
       steps_per_epoch=len(xtrain),
       epochs=10,
Epoch 1/10
                 ========] - 22s 292ms/step - loss: 1.6018 - accuracy: 0.2402
44/44 [====
Epoch 2/10
44/44 [====
               ========] - 13s 303ms/step - loss: 1.6017 - accuracy: 0.2402
Epoch 3/10
44/44 [====
                 ========] - 13s 301ms/step - loss: 1.5998 - accuracy: 0.2437
Epoch 4/10
                  =======] - 13s 300ms/step - loss: 1.5997 - accuracy: 0.2423
44/44 [===:
Epoch 5/10
                   44/44 [===
Epoch 6/10
                   =======] - 13s 301ms/step - loss: 1.5993 - accuracy: 0.2349
44/44 [===
Epoch 7/10
44/44 [===
                   Epoch 8/10
                  =======] - 13s 303ms/step - loss: 1.5996 - accuracy: 0.2437
44/44 =====
Epoch 9/10
44/44 [====
                Epoch 10/10
<keras.callbacks.History at 0x7f0640358550>
```

Question-7:

SAVE THE MODEL

Solution

model.save('gowshigan.flowers')

Question-8:

TEST THE MODEL

Solution

import numpy as np

from tensorflow.keras.preprocessing import image

 $img=image.load_img('/content/flowers/tulip/11746276_de3dec8201.jpg', target_size=(64,64)$

Img

x = image.img_to_array(img)

Χ

 $x = np.expand_dims(x,axis=0)$

Χ

model.predict(x)

xtrain.class_indices

```
xtrain.class_indices
{'daisy': 0, 'dandelion': 1, 'rose': 2, 'sunflower': 3, 'tulip': 4}
```

op = ['daisy','dandelion','rose','sunflower','tulip']
pred = np.argmax(model.predict(x))
op[pred]

'dandelion'

 $img=image.load_img('/content/flowers/sunflower/1022552002_2b93faf9e7_n.jpg', target_size=(500,500)$

Img

