LASSIFICATION	SYSTEM NUMBER 153514
UNCLASSIFIED	
ITLE	
ANALYSIS OF SHIP STRUCTURAL DETA MAESTRO ANALYSIS	AILS BY A TOP-DOWN METHOD USING RESULTS FROM A
System Number:	
Patron Number:	
Requester:	
Notes:	

P153514.PDF [Page: 2 of 37]

UNLIMITED DISTRIBUTION

National Defence
Research and
Development Branch

Défense nationale Bureau de recherche et développement

DREA CR/95/440

ANALYSIS OF SHIP STRUCTURAL DETAILS BY A TOP-DOWN METHOD USING RESULTS FROM A MAESTRO ANALYSIS

by D.R. Smith

D.R. SMITH
Suite 707, 5959 Spring Garden Road
Halifax, Nova Scotia, Canada
B3H 1Y5

CONTRACTOR REPORT

Prepared for

Defence Research Establishment Atlantic

Centre de Recherches pour la Défense Atlantique

Canadä

THIS IS AN UNEDITED REPORT ON SCIENTIFIC OR TECHNICAL WORK CONTRACTED BY THE DEFENCE RESEARCH ESTABLISHMENT ATLANTIC OF THE RESEARCH AND DEVELOPMENT BRANCH OF THE DEPARTMENT OF NATIONAL DEFENCE, CANADA.

THE CONTENTS OF THE REPORT ARE THE RESPONSIBILITY OF THE CONTRACTOR, AND DO NOT NECESSARILY REFLECT THE OFFICIAL POLICIES OF THE DEPARTMENT OF NATIONAL DEFENCE.

PLEASE DIRECT ENQUIRIES TO:

THE CHIEF,
DEFENCE RESEARCH ESTABLISHMENT ATLANTIC,
P.O. BOX 1012,
DARTMOUTH, NOVA SCOTIA, CANADA
B2Y 377

P153514.PDF [Page: 5 of 37]

UNLIMITED DISTRIBUTION

National Defence
Research and
Development Branch

Défense nationale Bureau de recherche et développement

DREA CR/95/440

ANALYSIS OF SHIP STRUCTURAL DETAILS BY A TOP-DOWN METHOD USING RESULTS FROM A MAESTRO ANALYSIS

by D.R. Smith

D.R. SMITH
Suite 707, 5959 Spring Garden Road
Halifax, Nova Scotia, Canada
B3H 1Y5

Scientific Authority

June 1995

W7707-4-2881/01-HAL Contract Number

CONTRACTOR REPORT

Gilkov

Prepared for

Defence Research Establishment Atlantic

Centre de Recherches pour la Défense Atlantique

Canad'ä

P153514.PDF [Page: 7 of 37]

Abstract

A method for performing a stress analysis of a ship structural detail using the results from a MAESTRO analysis is described. The method was a top-down procedure where a portion of the MAESTRO model was modelled in considerable detail using a detailed finite element grid with boundary nodes matching the MAESTRO model. The displacements obtained at the boundary nodes from the MAESTRO analysis were applied to the refined model and a finite element analysis was carried out using the finite element program VAST. The comparison of results shows that a MAESTRO analysis alone cannot determine the stress concentrations that occur in a structural detail such as an opening in a deck. When combined with a top-down procedure however, a more accurate assessment of the detail stresses can be obtained.

Résumé

Description d'une méthode d'analyse des contraintes d'un détail de structure de navire en utilisant les résultats d'une analyse MAESTRO. La méthode utilisée fait appel à une procédure allant du haut vers le bas dans laquelle une partie du MAESTRO était modelée à l'extrême dans le détail à l'aide d'une grille d'éléments finis avec des noeuds limites compatibles avec le modèle MAESTRO. Les déplacements obtenus aux noeuds limites à partir de MAESTRO ont été appliqués au modèle raffiné et une analyse par éléments finis a été effectuée en utilisant le programme VAST. La comparison des résultats indique qu'une analyse MAESTRO seule ne permet pas de déterminer les concentrations de contraintes qui se produisent dans un détail de structure comme une ouverture dans un pont. Cependant, lorsqu'on lui associe une procédure allant du haut vers le bas on obtient une évaluation plus précise des constraintes du détail.

P153514.PDF [Page: 8 of 37]

Contents

A .	bstract	iii
Тŧ	able of Contents	v
Li	st of Figures	vi
1	Introduction	1
2	The MAESTRO Model 2.1 Model Loading	
3	The Detailed Deck Models	2
4	Top-down Analysis of Deck 4.1 Top-down Model Results	3
5	Comparison of the Results from the Models	4
\mathbf{R}	eferences	24

List of Figures

1	The MAESTRO Model of the Ship	6
2	Schematic of the MAESTRO Model Showing the Substructures and the Modules	7
3	Midship Module Cross-section Showing the Location of the Strakes and Nodes .	8
4	MAESTRO Model with the Superstructure Removed	9
5	The MAESTRO Model Analysed with Superstructure, Showing XX Stresses in	Ů
	the Deck for a Sagging Load	10
6	XX Stresses in MAESTRO Model Deck when Loaded without the Superstructure	11
7	An Enlarged View of the Stresses at the Large Deck Opening in the MAESTRO	
	Model for a Sagging Load	12
8	The Refined Grid of VAST Model of the Deck from Frames 27 to 32.5	13
9	The Refined Grid Model Showing Constrained Boundary Nodes	14
10	The Minimum Refined Model for Showing the Stresses at the Large Opening in	
	the Deck	15
11	The Intermediate Refined Deck Model for Showing the Stresses at the Large Hole	_
	in the Deck	16
12	The Extended Deck Model with the Boundaries Nodes Adjusted to Match the	
	MAESTRO Nodes	17
13	The Extended Deck Model Showing the Boundary Nodes	18
14	XX Stresses from the Top-down Analysis of the Deck Detail from Frames 27 to	
	32.5 with Superstructure	19
15	XX Stresses from the Top-down Analysis of the Deck Detail from Frames 27 to	
		20
16	XX Stresses from the Top-down Analysis of the Minimum Model of the Large	
	Opening in the Deck with Superstructure	21
17	XX Stresses from the Top-down Analysis of the Intermediate Model of the Large	
	Opening in the Deck with Superstructure	22
18	XX Stresses from the Top-down Analysis of the Extended Model of the Large	
	O	23

P153514.PDF [Page: 11 of 37]

1 Introduction

The computer code MAESTRO[1] has been developed for the finite element analysis of the global structural behaviour of ship hulls. When used for such an analysis, details such as stress concentrations around openings and other geometries which require fine grids cannot be assessed. MAESTRO can, however, provide boundary conditions for fine mesh models of structural details generated for a general purpose finite element code.

This report describes the process of using boundary conditions from a MAESTRO analysis of a ship, subjected to a sagging condition sea load, to obtain detailed stresses around an opening in the deck. The method used for the process was a top-down procedure where displacements from the MAESTRO analysis were applied to the boundaries of a refined finite element model of the deck. The resulting stresses were obtained using the finite element program VAST[2]. The stress results of the MAESTRO analysis and the top-down method are shown and compared. The top-down method was also used to assess the effect of the model size on the stress results obtained from the refined models.

2 The MAESTRO Model

The MAESTRO model was of the entire ship as shown in Figure 1. The largest entity in the model was a MAESTRO substructure. There were three substructures in the model as illustrated in the schematic of the model in Figure 2. The first was from the stem to frame 34, and the second was the length aft of frame 34. The third substructure was the superstructure which was removed for one of the analyses. Each of the substructures was divided into modules. There are 6 modules in substructures 1 and 2, and 5 in substructure 3. Each module was used to model a portion of the ship structure which maintained approximately the same cross-section shape. They linearly increased or decreased in overall size along the length of the ship over their length. In this way modules were used to define geometry as well as specific components such as superstructure.

The modules were divided into strakes. The strakes stretched from one end of a module to the other. They made up the module cross-section as shown in the midship cross-section in Figure 3. The strakes were of uniform plate thickness and, as in this case, had uniformly spaced identical longitudinal stiffeners smeared into the strake cross-section giving an equivalent cross-section area. The strakes resisted in-plane loads but not lateral loads which cause bending. Girders in the structure were defined as beams running along the edge of the strakes and they provided axial and bending stiffness to resist in-plane and lateral loads.

The strakes were divided along their length by uniformly spaced transverse frames. Longitudinal frame divisions are called sections in which the frames are modelled as beam elements resisting both axial and lateral loads. The frame cross-sections were constant over the width of a strake but were varied as required from strake to strake. The ship model is shown without the superstructure in Figure 4. Module 1 of substructure 2 contained the midship region of the

ship which is the area where the study of detailed stresses was made. When generating the MAESTRO model, elements were removed from the weather deck to represent large openings in the structure. The coordinate system for the model, as shown in Figure 2, was a right handed system with the X axis the longitudinal axis placing zero at the forward perpendicular. The Y axis was the vertical axis with zero at the keel. The Z axis was positive to port.

2.1 Model Loading

The model was loaded by a static balance on a wave. Sagging due to a 8 metre wave height was the loading case used. The wave length, wave amplitude (in this case 4 metres), the location of the wave peak and the trim angle were defined. This data was translated into concentrated loads and applied to the MAESTRO element nodes at the frame and strake edge intersections or at explicitly defined nodes. The structural weight was defined by the density of the elements. The non-structural weight was defined at each section interval where it was distributed uniformly over the corresponding cross-section. The static wave balance was obtained by the use of the program TRIM[3].

2.2 MAESTRO Model Results

The longitudinal XX stresses in the deck obtained from the MAESTRO analysis of the model, including the superstructure, are shown as colour fringes for the sagging case in Figure 5. The fringes were obtained by using the VAST Visualiser[4] post-processing program. The box around the model was created by the Visualizer from the process required to remove the superstructure to make the deck beneath it visible. The maximum compressive stress in this case was -138.2 MPa.

The XX stresses in the deck are shown in Figure 6 for the analysis conducted with the superstructure removed, but with its mass included. The stresses of -138.2 MPa for the model with the superstructure and -143.2 mpa without show that the presence of the superstructure reduces the stresses in the deck.

The region of the largest deck opening was enlarged to show the stress colour fringes in greater detail. The maximum compressive stress as seen in Figure 7 was -138.20 MPa. This coarse grid showed the need for a finer model to assess the presence of stress concentrations around the opening.

3 The Detailed Deck Models

A detailed finite element model of the deck (in VAST format and initially covering frame 27 to frame 32.5) was created to investigate the stress concentrations around the deck openings. It was generated from a hull data base obtained by digitizing tranverse section drawings of the ship. The longitudinal structure for the deck was generated from the tranverse data. The

P153514.PDF [Page: 13 of 37]

program VASGEN[5] was used to combine the individual components into a single structure. The model included the fore and aft bulkheads between decks one and two. The grid was refined in the region of the holes in the deck to account for stress concentrations. The grid was generated from the VAST library of elements, using the general beam, the three-noded triangular plate, and the four-noded quadrilateral shell. The model is shown in Figure 8.

Care was taken in the modelling to match the detailed model boundary nodes with the MAESTRO nodes. There were locations where the number of detailed model boundary nodes exceeded the MAESTRO nodes along the boundary edge, such as in the transverse direction across the deck. The extra boundary conditions required were obtained by interpolation of the MAESTRO nodes boundary conditions. The locations of the detailed model boundary nodes are shown in Figure 9.

To assess the effect of model size three additional models were created. The first of these models was extracted from the large model as the minimum model to examine the stress concentration at the the major hole in the deck. It is shown in Figure 10. The second or intermediate model, as illustrated in Figure 11, was increased in size to include the edge of the deck with two frame stations added forward and three frame stations added aft. In the third of the models, two more frame stations were added at each end as shown in Figure 12. In this case the finite element grid at the fore and aft boundaries was adjusted to match the MAESTRO grid thereby eliminating the need to interpolate the displacements for the extra boundary nodes. The boundary nodes assigned displacements are shown in Figure 13.

4 Top-down Analysis of Deck

Top-down analysis is based on applying the boundary conditions obtained from a previous coarse model analysis, such as a MAESTRO analysis, to a detailed model of a region of the coarse model. The boundary conditions are in the form of displacements at the boundary nodes for each of the degrees of freedom. In the case of the detailed deck models three translations and three rotations were obtained. They were then applied to the VAST detailed finite element models of the portion of the deck as prescribed displacements. The nodes to which the displacements were applied were listed in the VAST stiffness modification file PREFX.SMD. If loads had been present they would have been stored in the VAST file PREFX.LOD. With these conditions set the finite element analysis of the top-down model was carried out.

4.1 Top-down Model Results

The longitudinal XX stresses in the models are presented, for the top-down analysis, in the form of colour fringes for the sagging condition load condition. The XX stresses from the analysis of the deck detail, from frames 27 to 32.5 with superstructure, are shown in Figure 14. The XX stresses from the top-down analysis of the deck detail from frames 27 to 32.5 without superstructure are shown in Figure 15. The fringes show maximum compressive stresses of

-289.19 MPa and -321.09 MPa respectively. These stresses occurred in a door region in one of the longitudinal bulkheads and were not significant in this analysis as the grid in the door region was not designed specifically to investigate that region. The deck grid was designed to focus mainly on the region of the deck openings with special concentration on the large opening. The largest compressive stress in the port side of the opening was -230 MPa with the superstructure and -239 MPa without the superstructure.

The XX stresses from the top-down analysis of the minimum model of the large opening in the deck, with superstructure, are shown in Figure 16. The most negative stress in this case was -212 MPa.

The XX stresses from the top-down analysis of the intermediate model of the large opening in the deck, with superstructure, are shown in Figure 17 with a largest compressive stress of -231 MPa. This stress occurred at the port side of the deck opening.

The XX stresses from the top-down analysis of the extended model of the large opening in the deck, with superstructure, are shown in Figure 18. The largest compressive stress in this case was -247 MPa which occurred at a door opening in one of the longitudinal bulkheads. The largest negative stress in the deck opening was -228 MPa on the port side.

5 Comparison of the Results from the Models

The results from the models are compared using the XX longitudinal axis stresses. They were obtained for the same point of stress concentration at the port side of the large deck opening. The comparison is shown in Table 1.

Table 1: Comparison of Stresses At Large Deck Opening for the MAESTRO, Top-down and Botton-up Models

Analysis	Model	XX Stresses (MPa)
MAESTRO	MAESTRO Model+Superstructure	-138
	MAESTRO Model-Superstructure	-143
	Deck+Superstructure	-230
	Deck-Superstructure	-239
Top-down	Minimum Model	-212
	Intermediate Model	-231
	Extended Model	-228

The table shows that the MAESTRO analysis did not properly represent the stress concentration around the large opening. It also shows that the intermediate model of the top-down analysis gave the highest stress for the stress concentration at the opening. The large deck

P153514.PDF [Page: 15 of 37]

model, which was the most representative of the deck, produced the next highest stress. It's value was probably the most accurate of all the stresses. The extended model actually encroached into the area where other holes were present, without including them in the grid, which could account for it's lower stress values. The minimum model was the least accurate in representing the stress concentration being 8 percent lower then the large deck model. It does however have the considerable advantage of being a much more economical model. The effect of the superstructure in lowering the deck stresses, as indicated by the MAESTRO analysis, was confirmed by the detailed analysis.

Figure 1: The MAESTRO Model of the Ship

Figure 2: Schematic of the MAESTRO Model Showing the Substructures and the Modules

Figure 3: Midship Module Cross-section Showing the Location of the Strakes and Nodes

Figure 4: MAESTRO Model with the Superstructure Removed

Figure 5: The MAESTRO Model Analysed with Superstructure, Showing XX Stresses in the Deck for a Sagging Load

Figure 6: XX Stresses in MAESTRO Model Deck when Loaded without the Superstructure

Figure 7: An Enlarged View of the Stresses at the Large Deck Opening in the MAESTRO Model for a Sagging Load

Figure 8: The Refined Grid of VAST Model of the Deck from Frames 27 to 32.5

Figure 9: The Refined Grid Model Showing Constrained Boundary Nodes

Figure 10: The Minimum Refined Model for Showing the Stresses at the Large Opening in the Deck

Figure 11: The Intermediate Refined Deck Model for Showing the Stresses at the Large Hole in the Deck

Figure 12: The Extended Deck Model with the Boundaries Nodes Adjusted to Match the MAESTRO Nodes

Figure 13: The Extended Deck Model Showing the Boundary Nodes

Figure 14: XX Stresses from the Top-down Analysis of the Deck Detail from Frames 27 to 32.5 with Superstructure

Figure 15: XX Stresses from the Top-down Analysis of the Deck Detail from Frames 27 to 32.5 without Superstructure

Figure 16: XX Stresses from the Top-down Analysis of the Minimum Model of the Large Opening in the Deck with Superstructure

Figure 17: XX Stresses from the Top-down Analysis of the Intermediate Model of the Large Opening in the Deck with Superstructure

Figure 18: XX Stresses from the Top-down Analysis of the Extended Model of the Large Opening in the Deck with Superstructure

References

- [1] 'MAESTRO,-Method for Analysis Evaluation and Structural Optimization, User's Manual-Version 6.0', distributed by Ross McNatt Naval Architects, Annapolis, MD., July 1992.
- [2] 'Vibration And Strength Analysis Program (VAST): User's Manual Version 6.0', Martec Ltd., Halifax, Nova Scotia, September, 1990.
- [3] Pegg N. C., 'Ship Structure Design, Analysis and Ultimate Strength Reliability Estimation with MAESTRO', DREA TM in review, Defence Research Establishment Atlantic, Dartmouth, Nova Scotia.
- [4] Heath D.C., McCullough A.D.B., Gilroy L., 'VAST Visualizer User's Manual', DREA TM/95/201, Defence Research Establishment Atlantic, Dartmouth, Nova Scotia, January 1995.
- [5] Crocker E.J., Chernuka M.W., 'VASGEN A Finite Element Model Generation Program For VAST, Users Manual Version 04', DREA CR/91/447, Martec Ltd., Halifax, Nova Scotia, May 1991.

P153514.PDF [Page: 36 of 37]

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM (highest classification of Title, Abstract, Keywords)

	DOCUMENT CONTROL DATA (Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)						
1.	ORIGINATOR (the name and address of the organization preparing the document Organizations for whom the document was prepared, e.g. Establishment sponsoring a contractor's report, or tasking agency, are entered in section 8.) Defence Research Establishment Atlantic		SECURITY CLASSIFICATION (overall security classification of the document including special warning terms if applicable).				
	P.O. Box 1012 Dartmouth, N.S. B2Y 3Z7		Unclassif	ied			
3.		TITLE (the complete document title as indicated on the title page, its classification should be indicated by the appropriate					
4.	Analysis of Ship Structural Details by a Top-Down Method Using Results from a MAESTRO Analysis						
T.	AUTHORS (Last name, first name, middle initial. If military, show rank, e.g. Doe, Maj. John E.) D.R. Smith						
5.	DATE OF PUBLICATION (month and year of publication of document)	containing	PAGES (total g information Include Appendices, etc).	6b. NO. OF REFS (total cited in document)			
	June 1995	27	e popul randos, Gluj.	5			
6.	DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered).						
	DREA Contractor Report						
8.	SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development. Include the address). Defence Research Establishment Atlantic P.O. Box 1012						
9a.	Dartmouth, N.S. B2Y 3Z7 PROJECT OR GRANT NO. (if appropriate, the applicable research and development project or grant number under which the document was written. Please specify whether project or grant)		RACT NO. (if appropriate document was written).	e, the applicable number under			
	was written. Please specify whether project or grant). 1AQ	W770)7-4-2881/01 - H/	AL			
10a.	ORIGINATOR'S DOCUMENT NUMBER (the official document number by which the document is identified by the originating activity. This number must be unique to this document).		gned this document either	(Any other numbers which may by the originator or by the			
	DREA/CR/95/440						
11.	1. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security classification) (X) Unlimited distribution () Distribution limited to defence departments and defence contractors; further distribution only as approved () Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved () Distribution limited to government departments and agencies; further distribution only as approved () Distribution limited to defence departments; further distribution only as approved () Other (please specify):						
12.	DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announ (11). However, where further distribution (beyond the audience specified in 11) is po						
	Full, unlimited						

UNCLASSIFIED SECURITY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include here abstracts in both official languages unless the text is billingual).

A method for performing a stress analysis of a ship structural detail using the results from a MAESTRO analysis is described. The method used was a top-down procedure where a portion of the MAESTRO model was modelled in considerable detail using a detailed finite element grid with boundary nodes matching the MAESTRO model. The displacements obtained at the boundary nodes from the MAESTRO analysis were applied to the refined model and a finite element analysis was carried out using the finite element program VAST. The comparison of results shows that a MAESTRO analysis alone cannot determine the stress concentrations that occur in a structural detail such as an opening in a deck. When combined with a top-down procedure however, a more accurate assessment of the detail stresses can be obtained.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title).

stress analysis
ship structures
finite element
top-down
MAESTRO
VAST
stress concentration
structural detail

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM
(highest classification of Title, Abstract, Keywords)