ENR-325/325L Principles of Digital Electronics and Laboratory

Xiang Li

Fall 2025

Digital electronics: the multi-staged abstraction:

How the arithmetic and logic functions are physically realized

...and it's very different from the macro world

Example: how op amps chips ACTUALLY works:

NPN BJT in IC:

7.2 Functional Block Diagram

The MOSFET revolution

Robert Noyce, inventor of silicon IC and "mayor of silicon valley"

April 25, 1961

R. N. NOYCE

2,981,877

Aug. 27, 1963

DAWON KAHNG

3,102,230

SEMICONDUCTOR DEVICE-AND-LEAD STRUCTURE

Filed July 30, 1959

3 Sheets-Sheet 2

ELECTRIC FIELD CONTROLLED SEMICONDUCTOR DEVICE

Filed May 31, 1960

Mohamed Atalla and Dawon Kahng's MOS transistor patent. At the time it was 100 times slower than BJT.

The MOSFET revolution

MOS works on "surface physics":

Solid state, band gap theories, tunneling effects...

← Fairchild FI 100 p-channel MOS switching transistor

Output

Description

Output

Description

Descr

Credit: Fairchild Camera & Instrument Corporation

Fig.1 - Transfer characteristics for the RCA 3N128 vhf MOS transistor.

RCA IC and MOSFET Applications Notes, 1983

Bonus slide: how silicon wafer is made

Czochralski Process

Sliced and polished wafer

Bonus slide: how silicon wafer is sold:

https://order.universitywafer.com/default.aspx?cat=Silicon

Qty		ID ↑	Price Per Qty	Diam ↓	Type †	Dopant ↑	Orien ↑	Res (Ohm-cm)	Thick (um)	Polish †	Grade ↑
100	•	3105	\$11.22	25.4mm	Р	В	<100>	.0105	500um	DSP	Test
10	•	4170	\$92.00	300mm	Р	В	<100>	1-100ohm.cm	775um	DSP	Dummy
500	•	704	\$10.09	200mm					750um	SSP	MECH

The MOSFET fabrication

It was made with...

Surface modification like photolithography

Fig. 1.8 Various steps for photo-etching

Roy, D. Choudhury. Linear integrated circuits. New Age International, 2003.

1 A = 0.1 nm 1 nm = 0.001 um 1 um = 0.001 mm

Surface chemistry like doping of impurities

AP 6120, Chapter 8 Diffusion, CCHK

Why doping?

Because intrinsic silicon is **electrically** uninteresting:

- ~1.08e10 electrons turn conductive per cm^3
- Total electrons: 10e22
- That's one in a trillion odds escaping bonds.
- +B to make P type (additional holes h+)
- +P to make N type (additional electrons e-)

Both holes and electrons can be utilized as carriers.

Why doping?

Because intrinsic silicon is **electrically** uninteresting:

- ~1.08e10 electrons turn conductive per cm^3
- Total electrons: 10e22
- That's one in a trillion odds escaping bonds.
- +B to make P type (additional holes h+)
- +P to make N type (additional electrons e-)

Both holes and electrons can be utilized as carriers.

Empirical Device Models

MOSFET is a four terminal system

n-channel MOSFET

p-channel MOSFET

OLLEGE

And its symbol system is quite confusing, all above are all legit in IEEE standard.

MOSFET physics is complicated

By adjusting doping level:

Enhancement mode: when gate is zero-bias, no conductive channel region.

This is the "normally off" condition.

Depletion mode: when gate is zero-bias, already has a conductive channel region.

I.e., the "normally on" condition.

NMOS

Enhancement mode

Depletion mode

PMOS

Enhancement mode

Depletion mode

MOSFET physics is complicated, more example

Four terminal means many bias arrangements (but mostly we manipulate V_{GS} and V_{DS}):

n-channel MOSFET

Current-voltage equations of the n-channel MOSFET:

$$I_{D} = 0, \quad for \quad V_{GS} < V_{T}$$

$$I_{D}(lin) = \frac{\mu_{n} \cdot C_{ox}}{2} \cdot \frac{W}{L} \cdot \left[2 \cdot (V_{GS} - V_{T}) V_{DS} - V_{DS}^{2} \right] \qquad for \quad V_{GS} \ge V_{T}$$

$$and \quad V_{DS} < V_{GS} - V_{T}$$
(3.55)

$$I_{D}(sat) = \frac{\mu_{n} \cdot C_{ox}}{2} \cdot \frac{W}{L} \cdot (V_{GS} - V_{T})^{2} \cdot (1 + \lambda \cdot V_{DS}) \qquad \text{for} \quad V_{GS} \ge V_{T}$$

$$\text{and} \quad V_{DS} \ge V_{GS} - V_{T}$$

$$(3.56)$$

MOSFET physics is complicated, more example

Four terminal means many bias arrangements (but mostly we manipulate V_{GS} and V_{DS}):

Drain to source voltage [V]

https://en.wikipedia.org/wiki/MOSFET, this is a simulated graph

n-channel MOSFET

Current-voltage equations of the n-channel MOSFET:

$$I_{D} = 0, \quad for \quad V_{GS} < V_{T}$$

$$I_{D}(lin) = \frac{\mu_{n} \cdot C_{ox}}{2} \cdot \frac{W}{L} \cdot \left[2 \cdot (V_{GS} - V_{T}) V_{DS} - V_{DS}^{2} \right] \qquad for \quad V_{GS} \ge V_{T}$$

$$and \quad V_{DS} < V_{GS} - V_{T}$$

$$I_{D}(sat) = \frac{\mu_{n} \cdot C_{ox}}{2} \cdot \frac{W}{L} \cdot (V_{GS} - V_{T})^{2} \cdot (1 + \lambda \cdot V_{DS}) \qquad for \quad V_{GS} \ge V_{T}$$

$$and \quad V_{DS} \ge V_{GS} - V_{T}$$

$$(3.55)$$

Kang, Sung Mo, and Yusuf Leblebici. *CMOS digital integrated circuits*. New York, NY, USA:: MacGraw-Hill, 2003.

Empirical Device Models

Figure 4.9. Drain current versus drain voltage characteristics of an n-channel MOSFET calculated with the LEVEL 2 model (A) and the LEVEL 3 model (B) (Copyright © 1988 by McGraw-Hill, Inc.).

The parameters common for both models are: VTO = 1, XJ = 1.0E-6, LD = 0.8E-6.

The parameters of the LEVEL 2 model are: UO = 800, UCRIT = 5.0E4, UEXP = 0.15.

The parameters of the LEVEL 3 model are: UO = 850, THETA = 0.04.

Kang, Sung Mo, and Yusuf Leblebici. *CMOS digital integrated circuits*. New York. NY. USA:: MacGraw-Hill. 2003.

MOSFET as voltage controlled switches:

NMOS as pulldown

Switch	Input
On (Vgs>Vth)	High
Off (Vgs <vth)< td=""><td>Low</td></vth)<>	Low

PMOS as pullup

Switch	Input
On (Vgs <vth)< td=""><td>Low</td></vth)<>	Low
Off (Vgs>Vth)	High

Entering the CMOS

Dec. 5, 1967

F. M. WANLASS

3,356,858

LOW STAND-BY POWER COMPLEMENTARY FIELD EFFECT CIRCUITRY

Accordingly, an object of the present invention is to provide circuits in which power losses are minimized.

Another object of the present invention is to provide logic circuits in which power dissipation is reduced during stand-by periods.

Another object of the present invention is to provide a transistor circuit employing field-effect semiconductor devices wherein a field-effect semiconductor device of one carrier type is used as the active load for the field-effect semiconductor device of the opposite carrier type.

Another object of the present invention is to provide a transistor circuit in which an inverter action is produced without employing any passive load element.

Entering the CMOS

11 photomasks and 150 fabrication steps, easy!

1. CL01

8. CL01

14. CL01

SUB-CMOS Versions 150

3. CV02- Si3N4-1500Å

4. PH03 –1- JG nwell 5. ET29 – Nitride Etch

6. IM01 – n-well 7. ET07 – Resist Strip

2. OX05--- pad oxide, Tube 4

9. OX04 - well oxide, Tube 1

12. OX06 - well drive, Tube 1

15. OX05 - pad oxide, Tube 4

16. CV02 – Si3N4 -1500 Å 17. PH03 – 2 – JG Active

18. ET29 - Nitride Etch

19. ET07 - Resist Strip

20. PH03 - - Pwell Stop

10. ET19 – Hot Phos Si3N4 11. IM01 – p-well

13. ET06 - Oxide Etch

SUB-CMOS 150 PROCESS

21. IM01- stop 22. ET07 Resist Strip 23. CL01 24. OX04 - field, Tube 1 25. ET19 - Hot Phos Si3N4 26. ET06 - Oxide Etch 27. OX04 - Kooi, Tube 1 28. IM01 - Blanket Vt 29. PH03 - 4-PMOS Vt Adjust 30. IM01 - Vt 31. ET07 - Resist Strip 32. ET06 - Oxide Etch 33. CL01 34. OX06 - gate, Tube 4 35. CV01 - Poly 5000A 36. IM01 - dope poly 37. OX08 - Anneal, Tube 3 38. DE01 - 4 pt Probe	41. ET07 – Resist Strip 42. PH03 – 6 - n-LDD 43. IM01 44. ET07 – Resist Strip 45. PH03 – 7 - p-LDD 46. IM01 47. ET07 – Resist Strip 48. CL01 49. CV03 –TEOS, 5000A 50. ET10 - Spacer Etch 51. PH03 – 8 - N+D/S 52. IM01 – N+D/S 53. ET07 – Resist Strip 54. PH03 – 9 P+ D/S 55. IM01 – P+ D/S 56. ET07 – Resist Strip 57. CL01 Special - No HF Dip 58. OX08 – DS Anneal, Tube 2	61. ET26 - CC Etch 62. ET07 - Resist Strip 63. CL01 Special - Two HF Dip 64. ME01 - Metal 1 Dep 65. PH03 -11- metal 66. ET15 - plasma Etch Al 67. ET07 Resist Strip 68. SI01 - Sinter 69. CV03 - TEOS- 4000Å 70. PH03 - VIA 71. ET26 - Via Etch 72. ET07 - Resist Strop 73. ME01 - Metal 2 Dep 74. PH03- M2 75. ET15 - plasma Etch Al 76. ET07 - Resist Strip 77. SEM1 78. TE01
39. PH03-5-JG poly 40. ET08 – Poly Etch	59. CV03 – TEOS, 4000A 60. PH03 – 10 CC	79. TE02 80. TE03

A homemade MOSFET:

https://www.youtube.com/watch?v=IS5ycm7VfXg

The realm of process engineering (1/2)

Photolithography example: lift-off

Discuss: mask design for electrodes:

Discuss: mask design for electrodes:

Which mask?

Discuss: mask design for electrodes:

Which mask?

Depends on the types of PR, actually.

The realm of process engineering (2/2)

In science if you know what you are doing you should not be doing it.

In engineering if you do not know what you are doing you should not be doing it.

How could we manage the thickness control back in the 60-70s (1nm precision and 0.1 nm resolution)?

The realm of process engineering (2/2)

In science if you know what you are doing you should not be doing it.

In engineering if you do not know what you are doing you should not be doing it.

How could we manage the thickness control back in the 60-70s (1nm precision and 0.1 nm resolution)?

1. Good vacuum pump

The realm of process engineering (2/2)

2. (Quartz Crystal Microbalance (QCM) sensor)

Typically a 6 MHz crystal, and runs until there's a 1.50 MHz shift.

The Sauerbrey equation is defined as:

$$\Delta f = -rac{2f_0^2}{A\sqrt{
ho_q\mu_q}}\Delta m$$

where:

 f_0 – Resonant frequency of the fundamental mode (Hz)

 Δf – normalized frequency change (Hz)

 Δm – Mass change (g)

A – Piezoelectrically active crystal area (Area between electrodes, cm²)

 ρ_q – Density of quartz (ρ_q = 2.648 g/cm³)

 μ_a – Shear modulus of quartz for AT-cut crystal (μ_a = 2.947x10¹¹ g·cm⁻¹·s⁻²)

A) Physical Characteristics

1)Sensor material

2) Angle of Cut¹

3)Contour

4)Surface Roughness

5)Diameter 6) Electrode

B) Electrical Characteristics²

2) Resistance at Resonance

3) Contact Resistance

Fil-Tech OI8010

Single crystal Alpha Quartz

35°15' (AT)

3 +/_0.5 diopter Plano-Convex

10 micron

0.550" (13.97 mm) Gold/Chromium

1) Resonant Frequency (MHz) 5.975-5.993

<15 Ohms

<15 Ohms

A quartz crystal is arguably one of the most sensitive electrical devices ever invented. When used for thin film coating measurements, a crystal can detect as little as a picogram or 0.00000000001 gram of deposited material. This corresponds to a coating layer on the order of one atom thick!

With a device this sensitive operating in high stress coating environments you have to ask, "How can it work?" Our answer is, "Just barely!"

Tech bulletin from the QCM vendor, Fil-Tech inc.

