Sprawozdanie

Metody numeryczne Laboratorium 6.

Poszukiwanie pierwiastków wielomianów metodą iterowanego dzielenia (metoda Newtona)

18.04.2020 r.

Aleksandra Rolka

Celem 6. laboratorium było wyznaczenie wartości miejsc zerowych wielomianu metodą iterowanego dzielenia, a dokładniej metodą stycznych – metodą Newtona.

1. Wstęp teoretyczny

Metoda dzielenia wielomianu

Dany jest wielomian:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0 = 0.$$
(1)

n –stopień wielomianu

Dzieląc go przez dwumian $(x - x_i)$ otrzymuje się:

$$f(x) = (x - x_i)(b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \dots + b_0 + R_i).$$
 (2)

Współczynniki nowego wielomianu wyznacza się rekurencyjnie:

$$b_0 = 0, (3)$$

$$b_k = a_{k+1} + x_j b_{k+1}$$
, $k = n - 1, n - 2, ..., 0$ (4)

$$R_j = a_0 + x_j b_0. (5)$$

Wraz z następnym dzieleniem wielomianu otrzymuje się:

$$f(x) = (x - x_i)^2 (c_{n-2}x^{n-2} + c_{n-3}x^{n-3} + \dots + c_0 + R'_i(x - x_i) + R_i,$$
 (6)

gdzie:

współczynniki c_n i R'_j wyznaczane są podobnie jak b_n i R_j (wzory 3-5).

Metoda Newtona

Zwana również **metodą Newtona-Raphsona** lub **metodą stycznych** jest iteracyjnym algorytmem wyznaczania przybliżonej wartości pierwiastka funkcji.

W metodzie przyjmuje się następujące założenia dla funkcji f:

- 1) W przedziale [a, b] znajduje się dokładnie jeden pierwiastek.
- 2) Funkcja ma różne znaki na krańcach przedziału, tj. $f(a) \cdot f(b) < 0$
- 3) Pierwsza i druga pochodna funkcji mają stały znak w tym przedziale.

W pierwszym kroku metody wybierany jest punkt startowy x_1 (zazwyczaj jest to wartość a, b, 0 lub 1), z którego następnie wyprowadzana jest styczna w $f(x_1)$. Odcięta punktu przecięcia stycznej z osią OX jest pierwszym przybliżeniem rozwiązania (ozn. x_2).

Jeśli to przybliżenie nie jest satysfakcjonujące, wówczas punkt x_2 jest wybierany jako nowy punkt startowy i wszystkie czynności są powtarzane. Proces jest kontynuowany, aż zostanie uzyskane wystarczająco dobre przybliżenie pierwiastka.

Stosując tą metodę można iteracyjnie wyznaczyć kolejne zera funkcji wielomianowej zgodnie z formułą:

$$x_{j+1} = x_j - \frac{R_j}{R_{ij}},\tag{7}$$

gdzie

 x_{j+1} - kolejne, lepsze przybliżenie zera R_i , R'_i – czynniki wyznaczone zgodnie ze wzorem (5.)

Obliczenia przybliżeń wykonuje się iteracyjnie, aż do uzyskania satysfakcjonującego wyniku. Aby określić kiedy program za zakończyć obliczenia stosuje się różne kryteria, jednym z nich jest:

• odległość miedzy kolejnymi przybliżeniami – zadaje się pewną dokładność obliczeń ε:

$$|x_{j+1} - x_j| \le \varepsilon \tag{8}$$

2. Zadanie do wykonania

2.1 Opis problemu

Do ułatwienia rozwiązania problemu podany został poniższy pseudokod:

```
"ustalenie stopienia wielomianu: N

inicjalizacja wektora danych: a[i]=...., dla i=0,1,...,N

pętla po kolejnych zerach wielomianu

for(L=1; L<=N; L++) {

   ustalenie aktualnego stopienia wielomianu: n=N-L+1

   inicjalizacja wzoru iteracyjnego: x0

   for(it=1; it<=IT_MAX; it++){
        wyznaczenie: Rj=...
        wyznaczenie: Rj'=...
        x1=x0-Rj/Rj'
        warunek wcześniejszego opuszczenia pętli: |x1-x0| <1.0E-7 ← ustalona dokładność obliczeń
```

Zadania:

• napisać funkcję *licz r* obliczającą wartość *R_i* dla danej wartości *x_i* (*x0* w pseudokodzie)

$$licz_r(a,b,n,x0), (9)$$

gdzie

a — wektor zawierający współczynniki aktualnego wielomianu $ec{a}$

b- wektor do którego funkcja wpisze współczynniki wielomianu o stopień niższego \vec{b}

n- stopień wielomianu

x0 — wartość x_j dla którego funkcja ma zwracać wartość R_i

Stosując tą funkcję po raz drugi w danej iteracji dla wektora współczynników \vec{b} dostarczany jest wektor \vec{c} oraz wartość czynnika R'_j , przy czym stopień wielomianu jest o 1 mniejszy niż w pierwszym wywołaniu:

$$licz \ r \ (b,c,n-1,x0),$$
 (10)

- <u>zaprogramować metodę iterowanego dzielenia do poszukiwania zer wielomianu z</u> <u>wykorzystaniem powyższej funkcji</u>
- znaleźć wszystkie zera wielomianu:

$$f(x) = x^5 + 14x^4 + 33x^3 - 92x^2 - 196x + 240$$

Przyjęto:

$$x_0=0$$
 — wartość startowa x_0 dla każdego poszukiwanego zera
$$IT_{MAX}=30$$
 $\varepsilon=10^{-7}$ — zadana dokładność obliczeń. wzór (8), warunek, dla którego przerywane są obliczenia

2.2 Wyniki

Program rozwiązujący powyższy problem nie korzysta z żadnych dodatkowych bibliotek numerycznych. Otrzymane wyniki zapisane zostały w pliku *results.dat* (wyniki uzyskane dla typu *double*). Z każdej iteracji zapisano:

>> numer zera (L), numer iteracji (it), wartość przybliżenia x_j oraz wartość reszty z dzielenia R_j i R'_j .

Wyniki przedstawione w formie tabeli:

L	it	Xit	R _{it}	R' _{it}
1	1	1.22449	240	-196
1	2	0.952919	-43.1289	-158.813
1	3	0.999111	10.5714	-228.86
1	4	1	0.195695	-220.179
1	5	1	7.96468e-05	-220
1	6	1	1.32729e-11	-220
Pierwsze miejsce zerowe: x = 1				
2	1	-5.45455	-240	-44
2	2	-4.46352	-120.975	122.071
2	3	-4.10825	-24.2755	68.3304
2	4	-4.00957	-4.31754	43.7539
2	5	-4.00009	-0.347977	36.6891
2	6	-4	-0.00323665	36.0065
2	7	-4	-2.90891e-07	36
Drugie miejsce zerowe: x = <mark>-4</mark>				
3	1	15	-60	4
3	2	9.20218	5850	1009
3	3	5.53752	1687.53	460.488
3	4	3.38316	469.259	217.818
3	5	2.33534	118.159	112.767
3	6	2.0277	22.07	71.739
3	7	2.00021	1.67505	60.9441
3	8	2	0.0128842	60.0073
3	9	2	7.83733e-07	60
Trzecie miejsce zerowe: x = 2				
4	1	-2.30769	30	13
4	2	-2.94284	5.32544	8.38462
4	3	-2.99954	0.403409	7.11433
4	4	-3	0.00321531	7.00092
4	5	-3	2.10929e-07	7
Czwarte miejsce zerowe: x = <mark>-3</mark>				
5	1	-10	10	1
5	2	-10	0	1
Piąte miejsce zerowe: x = <mark>-10</mark>				

<u>Tabela 1</u>: **Przybliżenia miejsc zerowych** - w kolumnach kolejno: L – numer miejsca zerowego, it – numer iteracji, x_{it} – przybliżenie miejsca zerowego w danej iteracji, R_{it} – reszta z dzielenia wielomianu w danej iteracji, R'_{it} – reszta z powtórnego dzielenia wielomianu w danej iteracji.

3. Wnioski

Otrzymane pierwiastki wielomianu: 1, -4, 2, -3, -10, zostały wyznaczone poprawnie. Metoda iterowanego dzielenia z metodą Newtona jest szybka i bardzo prosta w implementacji. Iteracje przerywane są, gdy osiągnięta jest założona zbieżność: kolejne znalezione punkty są już w przybliżeniu identyczne. Widoczna jest zależność, że im x_j jest bliższe miejscu zerowemu, tym reszta z dzielenia (R_j) jest mniejsza. Z tabeli wyników widoczne jest również, że zbieżność uzyskiwana jest bardzo szybko. Wadą metody jest jednak fakt, iż zbieżność nie musi zawsze zachodzić. W wielu przypadkach metoda bywa rozbieżna, kiedy punkt startowy jest zbyt daleko od szukanego pierwiastka równania.

Źródła:

- [1] Dr hab inż. Tomasz Chwiej Notatki do wykładu "Wyznaczanie wartości i wektorów własnych macierzy"
- [2] https://pl.wikipedia.org/wiki/Metoda_Newtona