Uncertainty 1

If
$$A = X + Y$$
:

$$\triangle A = \triangle X + \triangle Y$$

If
$$A = XY$$
:

If
$$A = XY$$
:
 $\triangle A = A\left(\frac{\triangle X}{X} + \frac{\triangle Y}{Y}\right)$

If
$$A = X^n$$
:

$$\triangle A = n\left(\triangle X\right)$$

Projectile motion

2.0.1 Fundamental SUVAT

$$v^2 = u^2 + 2as$$

$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$s = t\left(\frac{u+v}{2}\right)$$

2.0.2 Symmetrical Projectile motion

$$h = \frac{v^2 \sin^2 \theta}{2g}$$

$$R = \frac{v^2 \sin 2\theta}{g}$$

$$t_{total} = \frac{v \sin \theta}{g}$$

Circular motion

3.0.1 Basic

 $\omega \colon$ Angular velocity, $\frac{\triangle \theta}{\triangle t},$ units rad/s

$$v=r\omega$$

$$\omega = \frac{2\pi}{t} = 2\pi f$$

$$a_{cent} = \frac{v^2}{r} = r\omega^2$$

$$F_{net} = m \frac{v^2}{r} = m r \omega^2$$

3.0.2 Special

Banking with angle θ

$$r = \frac{v^2}{g \tan \theta}$$