2

AMENDMENTS TO THE CLAIMS:

Please amend the claims as follows:

1. (Currently Amended) An output monitor/control device, comprising:

a Mach-Zehnder circuit that receives a light beam, branches the received light beam into two light beams having a phase difference of 180°, and transmits each of the light beams, exhibiting a periodic optical transmittance-optical frequency characteristic with a period of a frequency interval corresponding to a predetermined free spectral range;

a first photoelectric conversion means and a second photoelectric conversion means, each for receiving a respective one of two light beams that have emerged from said Mach-Zehnder circuit; and

a calculation means for calculating a predefined discrimination formula to evaluate a wavelength change in each of said light beams based on conversion outputs of said first photoelectric conversion means and said second photoelectric conversion means,

wherein said conversion outputs change responsively to a wavelength change in accordance with said optical transmittance-optical frequency characteristic.

- 2. (Currently Amended) An output monitor/control device according to claim 1, wherein said Mach-Zehnder circuit is adjusted in advance such that <u>a</u> the wavelength to be controlled is included in a wavelength region that corresponds to a frequency region in which <u>an</u> the optical transmittance-optical frequency characteristic curve of said Mach-Zehnder circuit changes steeply.
- 3. (Currently Amended) An output monitor/control device according to claim 2, wherein said discrimination formula comprises is a the ratio of the conversion output of either one of

Serial No. 09/963,531 Docket No. NEC01P175-JNb 3

said first and second photoelectric conversion means to the <u>a</u> sum of conversion outputs of said first <u>photoelectric conversion means</u> and <u>said</u> second photoelectric conversion means.

- 4. (Currently Amended) An output monitor/control device according to claim 2, wherein said discrimination formula comprises is a the ratio of the difference between the conversion outputs of said first photoelectric conversion means and said second photoelectric conversion means to the sum of the conversion outputs of said first photoelectric conversion means and said second photoelectric conversion means.
- 5. (Currently Amended) An output monitor/control device according to claim 2, further comprising wavelength control means for detecting <u>a</u> change in wavelength based on <u>a</u> the calculation result obtained by said calculation means and adjusting wavelength to a preset value.
- 6. (Currently Amended) An output monitor/control device according to claim 3, further including:

a level calculation means for calculating <u>a</u> the sum of the conversion outputs of said first <u>photoelectric conversion means</u> and <u>said</u> second photoelectric conversion means to evaluate an intensity variation in <u>a</u> the total amount of the light that emerges from said Mach-Zehnder circuit; and

a level adjusting means for compensating for variation in \underline{a} the level of light that emerges from said Mach-Zehnder circuit based on said sum of the conversion outputs.

Serial No. 09/963,531 Docket No. NEC01P175-JNb

- 7. (Currently Amended) An output monitor/control device according to claim 2, wherein a the wavelength interval that corresponds to said free spectral range is identical to a the wavelength interval of an the ITU (International Telecommunications Union) grid.
- (Currently Amended) An optical communication system, comprising:
 an optical transmission means for transmitting optical signals of different
 wavelengths in parallel;

a multiplexer having an arrayed waveguide diffraction grating for performing wavelength division multiplexing of said optical signals transmitted by said optical transmission means;

an optical transmission path for transmitting the <u>a</u> wavelength division multiplexed optical signal provided by said multiplexer;

nodes arranged as appropriate midway on this said optical transmission path;
a demultiplexer having an arrayed waveguide diffraction grating for receiving a
multiplexed optical signal transmitted by way of said optical transmission path, and
demultiplexes said multiplexed optical signal into optical signals of respective wavelengths;
and

an optical receiver for receiving optical signals of each wavelength demultiplexed by said demultiplexer;

wherein said optical transmission means and said nodes each have an output monitor/control device[[;]], said output monitor/control device comprising:

an arrayed waveguide diffraction grating for receiving the wavelengthdivision-multiplexed optical signal and demultiplexing the multiplexed optical signal to generate demultiplexed optical signals;

Mach-Zehnder circuits each of which receives a demultiplexed optical signal,

branches the demultiplexed optical signal into two light beams having a phase difference of 180°, and transmits each of these light beams, exhibiting a periodic optical transmittance-optical frequency characteristic having a period of a frequency interval that corresponds to a predetermined free spectral range;

sets of first photoelectric conversion means and second photoelectric conversion means each for receiving a respective one of said two light beams that have emerged from said Mach-Zehnder circuit;

calculation means each for calculating a predefined discrimination formula for evaluating a wavelength change in each of said light beams based on conversion outputs of said first photoelectric conversion means and said second photoelectric conversion means, wherein said conversion outputs change responsively to a wavelength change in accordance with said optical transmittance-optical frequency characteristic; and

a wavelength control means for detecting changes in wavelengths based on calculation results obtained by said calculation means and adjusting the wavelengths to preset values.

9. (Currently Amended) An optical communication system according to claim 8, further comprising:

a level control means for compensating for variation in the level of optical signals supplied from said Mach-Zehnder circuit based on the a calculation result of the a sum of conversion outputs from said first photoelectric conversion means and said second photoelectric conversion means calculated by said calculation means.

10-11. (Canceled)

6

Serial No. 09/963,531 Docket No. NEC01P175-JNb

- 12. (New) An output monitor/control device according to claim 1, further comprising a plurality of Mach-Zehnder circuits each of which receives a demultiplexed optical signal, branches the demultiplexed optical signal into two light beams having a phase difference of 180°, and transmits each of these light beams, exhibiting a periodic optical transmittance-optical frequency characteristic having a period of a frequency interval that corresponds to a predetermined free spectral range.
- 13. (New) An output monitor/control device according to claim 1, wherein the wavelength of said light beams is controlled by varying at least one of a drive current of a light source of said light beams and an ambient temperature.
- 14. (New) An output monitor/control device according to claim 1, wherein said Mach-Zehnder circuit comprises a single-side Mach-Zehnder circuit.
- 15. (New) An output monitor/control device according to claim 1, wherein said discrimination formula is a ratio of a conversion output of either one of said first and second photoelectric conversion means to a sum of conversion outputs of said first photoelectric conversion means and said second photoelectric conversion means.
- 16. (New) An output monitor/control device according to claim 1, wherein said discrimination formula comprises a ratio of a difference between the conversion outputs of said first photoelectric conversion means and said second photoelectric conversion means to a sum of the conversion outputs of said first photoelectric conversion means and said second photoelectric conversion means.

Serial No. 09/963,531

Docket No. NEC01P175-JNb

(New) An output monitor/control device according to claim 1, further comprising

wavelength control means for detecting change in wavelength based on a calculation result

7

obtained by said calculation means and adjusting said wavelength to a preset value.

18. (New) An output monitor/control device according to claim 1, further including:

a level calculation means for calculating a sum of the conversion outputs of said first

photoelectric conversion means and said second photoelectric conversion means to evaluate

an intensity variation in a total amount of light that emerges from said Mach-Zehnder circuit;

and

17.

a level adjusting means for compensating for a variation in a level of light that

emerges from said Mach-Zehnder circuit based on said sum of the conversion outputs.

19. (New) An output monitor/control device according to claim 1, wherein a wavelength

interval that corresponds to said free spectral range is identical to a wavelength interval of an

ITU (International Telecommunications Union) grid.

20. (New) An output monitor/control device according to claim 1, further comprising an

arrayed waveguide diffraction grating for receiving a wavelength-division-multiplexed

optical signal and demultiplexing the multiplexed optical signal to generate demultiplexed

optical signals.

21. (New) An optical communication system, comprising:

an optical transmission means for transmitting optical signals of different

wavelengths in parallel; and

nodes arranged midway on an optical transmission path,

wherein said optical transmission means and said nodes each have an output monitor/control device, said output monitor/control device comprising:

an arrayed waveguide diffraction grating for receiving a wavelengthdivision-multiplexed optical signal and demultiplexing the multiplexed optical signal to generate demultiplexed optical signals;

a plurality of Mach-Zehnder circuits, which receives a demultiplexed optical signal, branches the demultiplexed optical signal into two light beams having a phase difference of 180°, and transmits each of these light beams, exhibiting a periodic optical transmittance-optical frequency characteristic having a period of a frequency interval that corresponds to a predetermined free spectral range; and

calculation means for calculating a predefined discrimination formula for evaluating a wavelength change in said light beams.