National Institute of Technology, Tiruchirappalli E. E. E. Department

OPERATIONAL AMPLIFIERS

Introduction to Operational Amplifiers

- 'Integrated Circuit' is a multi-component circuit in which all the components are fabricated on the same chip
- 'Integrating' is a process of fabricating a single device which functions as a multi-component circuit

Advantages of integration

- Miniaturisation
- Superior performance (better than discrete component circuits)
- Economical (when ?)
- Long and trouble-free operation

Disadvantages?

Types of ICs: a) Linear ICs and b) Digital ICs

Linear ICs:

- Equivalents of discrete transistor networks such as amplifiers, filters, modulators, frequency multipliers etc.
- Often require additional components for satisfactory operation.
- Output signals vary in proportion to the input signal (s). Signals are analogous to physical quantities (**Analog ICs**).

Digital ICs:

- These are complete, functioning logic circuits such as gates, counters, flip-flops etc.
- Only a power supply and input signal are required. Primarily concerned with High or Low logic voltage levels
- Easy to design since accuracy is not required

The Operational Amplifier

- Op-Amp is the most fundamental of the Linear ICs.
- Is a direct coupled high gain amplifier
- Most widely used linear IC versatile amplifier
- Historically been the great grand-parent of computers
- OP-Amp μA741 Introduced for first time in 1968 by Fairchild company

OP-AMP 741 IC

Plastic DIP

Top view of DIP

Metal Can Package (MCP)

Top view of MCP

Circuit symbol

Output
$$V_o = AV_{id}$$

THE INSIDE STORY

Differential Amplifier Input Stage and Emitter Follower Output Stage

Characteristics of an ideal op-amp

- 1. Infinite voltage gain A in open loop
- 2. Infinite input resistance R_i no loading
- 3. Zero output resistance R_o can drive a no. of loads
- 4. Infinite bandwidth no attenuation or distortion to '∞' Hz
- 5. Infinite common mode rejection ratio
- 6. Zero output voltage when input voltage is zero
- 7. Infinite slew rate -- output changes simultaneously with the input

Low frequency equivalent ckt

Output
$$V_0 = AV_{id} - i_0R_0 = A(V_1 - V_2) - i_0R_0$$

Where A = large signal voltage gain.

 V_{id} = differential input voltage.

 V_1 = voltage at n.inv. input terminal (w.r..t ground)

 V_2 = voltage at inv. Input terminal (w.r..t ground)

Operational model of OP-Amp

Open-loop Voltage Transfer Characteristics

Maximum possible output voltage is governed by $+V_{cc}$ & - V_{ee} . $+V_{sat}$ & $-V_{sat}$ are slightly less Than $+V_{cc}$ & $-V_{ee}$ respectively.

Closed loop configurations of Op-Amp

Disadvantages of open loop operation of Op-Amp

- Clipping of output signal due to saturation
- Practically negligible operating range of input voltages (μV) due to very high open loop gain
- Susceptible to noise
- Open loop gain not constant, affected by changes in temperature, power supply and production techniques
- The open loop bandwidth almost zero for the Op-Amp unsuitable for ac applications
- Very limited applications such as a comparator

Advantages of closed loop operation of Op-Amp

- Controllable gain using negative feedback of output degenerative feedback
- Positive or regenerative feedback used in oscillator circuits
- Increased bandwidth with negative feedback—suitable for ac applications
- Can further increase the input resistance and decrease output resistance
- Noise immunity and stability

The golden rules for op-Amp circuits

virtual ground concept

- When operated with negative feedback, an ideal op-Amp will do whatever it takes to drive v_{id} to zero. That is, it will force $v_{_}$ to track v_{+} but without drawing any input current. Hence $v_{_}$ tracks v_{+}
- the input port looks like an open circuit for current (currents into op-Amp are zero)
- The input port looks like a short circuit for voltage (v_{id} is zero -**virtual short**)
- Due to very large open loop gain, the closed loop gain is independent of the open loop gain

INVERTING AMPLIFIER

Inverting amplifier gain --

Assumptions: Infinite input impedance: hence i_1 = 0; i_2 = 0 and zero voltage drop between inputs i.e., $V_1 = V_2$, and $A = \infty$

Let $R_s = 0$, or include it as part of R_{in} ; then: $i_{in} - i_f = 0$; i.e.,

$$\frac{V_{in} - 0}{R_{in}} - \frac{0 - V_{out}}{R_f} = 0$$

closed loop gain = $\frac{V_{out}}{V_{in}}$

Since A is very large $\frac{V_{out}}{V_{c}} = -\frac{R_f}{R}$

$$\frac{V_{out}}{V_{in}} = -\frac{R_f}{R_{in}}$$

If A is not very large, then gain

$$= -\frac{R_f}{R_{in}} \left[\frac{1}{1 + (R_{in} + R_f)/AR_{in}} \right]$$

NON-INVERTING AMPLIFIER

- Derivation of gain
- Assumptions: infinite input impedance: hence $i_1=0$; $i_2=0$; zero voltage drop between inputs i.e., $V_1=V_2$ and $A=\infty$.

Since $i_1 = 0$, $V_I = V_{in}$ Due to potential division,

$$V_{2} = rac{V_{out}R_{1}}{(R_{1} + R_{2})} = V_{1} = V_{in}$$

$$hence rac{V_{out}}{V_{in}} = rac{R_{1} + R_{2}}{R_{1}}$$

SUMMING AMPLIFIER (INVERTING)

Summing amplifier

INVERTING AMPLIFIER OFFSET DUE TO BIAS CURRENT

$$\begin{split} I_{I\!N} \; - \qquad I_{\mathcal{B}} \qquad - \; I_{\mathcal{F}} \; &= \; 0 \\ V_{O\!F\!F} \; &= \; - \; R_1 \; I_{\mathcal{B}} \\ &\frac{V_{I\!N} \; - \; V_{O\!F\!F}}{R_{I\!N}} \qquad - \; I_{\mathcal{B}} \qquad - \; \frac{V_{O\!F\!F} \; - \; V_{O\!U\!T}}{R_{\mathcal{F}}} = \; 0 \end{split}$$

but with no input signal, $V_{IN}=0$, and we want $V_{OUT}=0$, so :

$$\mathbf{-}\,\mathbf{I}_{\mathtt{B}}\,=\,V_{\mathit{OFF}}\left[\frac{1}{R_{\mathit{I\!N}}}\,+\,\frac{1}{R_{\mathit{F}}}\right]\!;\quad\mathbf{-}\,\mathbf{I}_{\mathtt{B}}=-\,R_{1}\,\,I_{\mathit{B}}\!\left[\frac{1}{R_{\mathit{I\!N}}}\,+\,\frac{1}{R_{\mathit{F}}}\right]$$

thus $: \left[\frac{1}{R_{IN}} + \frac{1}{R_F} \right] = \left[\frac{1}{R_1} \right]$ as a condtion for no offset at V_o

Closed loop Difference amplifier

Use superposition theorem to analyze.

First consider $V_y = 0$ (grounded) So, with V_x alone, output is $V_{ox} = -V_x R_F / R_1$ -----(1)

With
$$V_y$$
 alone (set $V_x = 0$)
$$V_{oy} = [(R_1 + R_F)/R_1]V_1$$
 where $V_1 = V_y[R_3/(R_2 + R_3)]$

is the voltage at the non-inverting input terminal

Therefore

$$V_{oy} = [R_3/(R_2+R_3)][(R_1 + R_F)/R_1]V_y$$
 -----(2)

Summing (1) & (2) for total output Vo,

$$\mathbf{V}_{o} = \mathbf{V}_{ox} + \mathbf{V}_{oy}$$

$$= \mathbf{V}_{y} [\mathbf{R}_{3}/(\mathbf{R}_{2} + \mathbf{R}_{3})][(\mathbf{R}_{1} + \mathbf{R}_{F})/\mathbf{R}_{1}] - (\mathbf{R}_{F}/\mathbf{R}_{1})\mathbf{V}_{x} \quad \text{in general}$$

If
$$R_1 = R_2$$
 and $R_3 = R_F$, then
$$V_o = V_y R_F / R_1 - V_x R_F / R_1$$
$$= R_F / R_1 (V_y - V_x)$$
$$= -V_{xy} \cdot R_F / R_1 \text{ (similar to inv. Amp)}$$