IN RNN (BPTT) BACKPROPAGATION

- BPTT (Bock propagation Through Time)

- Here me take a Marry to one. RNH Example

Example:

1 text		autput
cat most	rat	1
gat rat	nat	1
mat roat		0

		×	Y
	X.	[100] [010] [001]	1
7	X	[100] [010] [001] [001] [001] [010]	1
	Xz	[010] [010] [100]	0
	13	001	

$$\frac{\partial H_0}{\partial \Gamma} = \frac{\partial L}{\partial r} \cdot \frac{\partial M_0}{\partial m_0}$$

$$\frac{9 \text{Mi}}{9 \text{ F}} = \frac{95}{90} \cdot \frac{90^{3}}{90^{3}} + \frac{90^{3}}{90^{3}} + \frac{95}{90} \cdot \frac{90^{3}}{90^{3}} \cdot \frac{90^{3}}{90^{3}}$$

$$\frac{\partial L}{\partial \omega_i} = \frac{\partial h}{\partial j} \left(\frac{\partial L}{\partial j} \cdot \frac{\partial \hat{y}}{\partial \omega_j} \cdot \frac{\partial \hat{y}}{\partial \omega_j} \right)$$

$$= \frac{\partial L}{\partial \omega_i} = \frac{\partial h}{\partial j} \left(\frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial \omega_j} \cdot \frac{\partial \hat{y}}{\partial \omega_j} \right)$$

$$= \frac{\partial L}{\partial \omega_i} = \frac{\partial h}{\partial j} \left(\frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial \omega_j} \cdot \frac{\partial \hat{y}}{\partial \omega_j} \right)$$

$$= \frac{\partial L}{\partial \omega_i} = \frac{\partial h}{\partial j} \left(\frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial \omega_j} \cdot \frac{\partial \hat{y}}{\partial \omega_j} \right)$$

$$= \frac{\partial L}{\partial \omega_i} = \frac{\partial h}{\partial \omega_i} \left(\frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial \omega_j} \cdot \frac{\partial \hat{y}}{\partial \omega_j} \right)$$

$$= \frac{\partial L}{\partial \omega_i} = \frac{\partial h}{\partial \omega_i} \left(\frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial \omega_j} \cdot \frac{\partial \hat{y}}{\partial \omega_j} \right)$$

$$= \frac{\partial L}{\partial \omega_i} = \frac{\partial h}{\partial \omega_i} \left(\frac{\partial L}{\partial \omega_i} \cdot \frac{\partial \hat{y}}{\partial \omega_j} \cdot \frac{\partial \hat{y}}{\partial \omega_j} \right)$$

$$= \frac{\partial L}{\partial \omega_i} = \frac{\partial h}{\partial \omega_i} \left(\frac{\partial L}{\partial \omega_i} \cdot \frac{\partial \hat{y}}{\partial \omega_j} \cdot \frac{\partial \hat{y}}{\partial \omega_j} \right)$$

$$= \frac{\partial L}{\partial \omega_i} = \frac{\partial L}{\partial \omega_i} \cdot \frac{\partial \hat{y}}{\partial \omega_i} \cdot \frac{\partial \hat{y}}{\partial \omega_i} \cdot \frac{\partial \hat{y}}{\partial \omega_j} \cdot \frac{\partial \hat{y}}{\partial \omega_j} \right)$$

$$= \frac{\partial L}{\partial \omega_i} = \frac{\partial L}{\partial \omega_i} \cdot \frac{\partial \hat{y}}{\partial \omega_i} \cdot \frac{\partial \hat{y}}$$

$$\frac{311}{31} = \frac{35}{31} \cdot \frac{30}{30} \cdot \frac{311}{30} + \frac{37}{31} \cdot \frac{30}{30} \cdot \frac{$$

$$\frac{\partial L}{\partial W_h} = \sum_{j=1}^{h} \left(\frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial O_j}, \frac{\partial O_j}{\partial W_h} \right)$$

$$h \ge time steps$$

PROBLEM WITH RNN

problem with RHM: - problem of long term dependency:
- unstable todining/stograted todining. - The above two problems are corone due to unstable gradients Derblom of log term dependency:

- this problem is crown due to vanishing gradient - 3L is depends on theree terms. $\frac{9m!}{9\Gamma} = \frac{9\cancel{1}}{97} \cdot \frac{90^3}{90^3} + \frac{9\cancel{1}}{97} \cdot \frac{9\cancel{1}}{90^3} \cdot \frac{90^3}{90^3} \cdot \frac{90^5}{90^3} \cdot \frac{90^3}{90^5} \cdot \frac{90^3}{90^3} \cdot \frac{90^5}{90^3} \cdot \frac{90^5}{90^3} \cdot \frac{90^5}{90^5} \cdot$ Short term ford town dependency dependency $\frac{1}{1} \frac{\omega_1}{\omega_1} \frac{\omega_2}{\omega_1} \frac{\omega_2}{\omega_2}$

- for more number of time stops that number.
of terms in <u>3L</u> is very larg due to that.
long term dependency army (becomes small)

hence the calculatory the 3L the.
major contribution is on short term
dependency. for very large time step. $\frac{9M!}{9\Gamma} = \frac{93}{9\Gamma} \cdot \frac{90^{100}}{96} \frac{45}{11} \left(\frac{9047}{904}\right) \frac{9M!}{30!}$ Ot = tomb (Xit W; + Ot-1Wh) 301 = tomh (Xit W; + 0+1 Wh) Wh range to to 1 9 mi = 96, 90¹⁰⁰ f=5 (touch, (xifm: + 0f-1m)m) 3mic - tout, () have sade toan o to I am my home to each other too time. So. in above the entire equation become very small me con say the approximatly equal to zero. herce her vanishing grochiert problem ocem.

0

-

5

0

Solutions to resolve this problem: - Use different ordivation functions. - Better meight initialization, exomple. we can use the identity matrix - different type of. RAN (skip RNN) wse. LSTM 2.) Unstable. Towning. (Exploding gradients): - Here the long term dependency becomes. very large os compared to short term dependence dependency - This problem is occurs may be due to very lane. Learning rate

use rely activation function with. Wh=1 ititialisation. Solutions to restone this problems - use gradient clipping - controlled learning rate use LSTM

0

0000