CATEGORIES for the WORKING PROGRAMMER

Philip Wadler University of Edinburgh Joy of Code, 17 June 2016

CATEGORY C

= ECA,B) = EABEC3 COMPOSITION $id_A: f = f; id_B$ (f; g); h = f; (g; h)

4,->: C(C,A)XC(C,B) = C(C,A"B)

A×B

$$A \times B$$
 $A \times B$
 $A \times B \longrightarrow B$

$$\begin{array}{ll}
\langle f,g \rangle; fst = f \\
\langle f,g \rangle; snd = g \\
h; fst = f & h; snd = g
\end{array}$$

Lind, inr] = id

r-f-A FIA MATE 7-2-13 -2B-insA+B r-hA+B TXA FIC L×13-3-0 Leigh [x(A+B) (rxA)+(rxB) =5,97 C

DISTRIBUTIVE

< Efst; ind, fst; inr], [snd, snd] >

$$(A+C)*(B+C) \cong (A+B)*C$$

<fit; [cur(ind), cur(inr)], snd); app

EXPONENTIAL

VARIABLES

x:A - x:A THN:B T, x:AHN:B THN:B x:A,THN:B

A id, A

F-2-N

FXAST-2-N

A× L=M A× L=M

EXPONENTIAL

PRODUCTS & SUMS

ISOMORPHISMS

$$E(C,A) \times E(C,B) \cong E(C,A \times B)$$

 $E(C,A) \times E(B,C) \cong E(C,A \times B,C)$
 $E(C,C) \times E(B,C) \cong E(C,CA \Rightarrow B)$

HIGH SCHOOL

$$A^{c} \times B^{c} = (A \times B)^{c}$$

$$C^{A} \times C^{B} = C^{(A+B)}$$

$$B^{(c\times A)} = (B^{A})^{c}$$