CSC660 DEEP LEARNING

CONTINUOUS ASSESSMENT 1

NAME: GAYATHRI C

UNIQUE ID: E7122002

M.Sc. DEGREE(AI)-TERM 4

The rain in Australia dataset is attached this question paper as weather AUS.csv file. This dataset contains daily weather observations from numerous Australian weather stations. The target variable Rain Tomorrow.

1. Perform the necessary pre-processing. [2]

SOURCE CODE:

import pandas as pd

from sklearn.model selection import train test split

from sklearn.preprocessing import LabelEncoder, StandardScaler

import pandas as pd

Read the CSV file into a DataFrame

data = pd.read_csv('/content/drive/MyDrive/DeepLearning_Dataset/weatherAUS.csv')

data.info()

data.head()

Handle missing values

data = data.dropna()

Convert categorical variables into numerical format

le = LabelEncoder()

data['RainToday'] = le.fit transform(data['RainToday'])

data['RainTomorrow'] = le.fit transform(data['RainTomorrow'])

```
data = pd.get_dummies(data, drop_first=True)

# Normalize or standardize numerical features

scaler = StandardScaler()

numerical_cols = ['MinTemp', 'MaxTemp', 'Rainfall', 'Evaporation', 'Sunshine',
    'WindGustSpeed', 'WindSpeed9am', 'WindSpeed3pm', 'Humidity9am', 'Humidity3pm',
    'Pressure9am', 'Pressure3pm', 'Cloud9am', 'Cloud3pm', 'Temp9am', 'Temp3pm']

data[numerical_cols] = scaler.fit_transform(data[numerical_cols])

# Split the dataset into training and test sets

X = data.drop('RainTomorrow', axis=1)

y = data['RainTomorrow']

X train, X test, y train, y test = train_test_split(X, y, test_size=0.2, random_state=42)
```

2. Build an ANN model. Plot accuracy and loss for training and validation dataset.

[5]

SOURCE CODE:

```
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
# Build the ANN model
model = Sequential()
model.add(Dense(64, input_dim=X_train.shape[1], activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='relu'))
# Compile the model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Train the model
history = model.fit(X_train, y_train, epochs=50, batch_size=32, validation_data=(X_test, y_test))
```

```
history = model.fit(X_train, y_train, epochs=50, batch_size=32, validation_data=(X_test, y_test))
 Epoch 1/50
1411/1411 [=
                                        :==] - 12s 8ms/step - loss: 0.3460 - accuracy: 0.8480 - val loss: 0.3235 - val accuracy: 0.8608
     Epoch 2/50
1411/1411 [=
                                            - 9s 6ms/step - loss: 0.3091 - accuracy: 0.8654 - val_loss: 0.3138 - val_accuracy: 0.8672
                                             11s 8ms/step - loss: 0.2862 - accuracy: 0.8754 - val_loss: 0.3151 - val_accuracy: 0.8664
     1411/1411 [
                                             11s 8ms/step - loss: 0.2612 - accuracy: 0.8861 - val_loss: 0.3153 - val_accuracy: 0.8677
                                             8s 6ms/step - loss: 0.2407 - accuracy: 0.8945 - val_loss: 0.3196 - val_accuracy: 0.8686
     1411/1411 [
                                             11s 8ms/step - loss: 0.2252 - accuracy: 0.9046 - val_loss: 0.3329 - val_accuracy: 0.8657
                                             9s 7ms/step - loss: 0.2072 - accuracy: 0.9117 - val_loss: 0.3494 - val_accuracy: 0.8641
     1411/1411 [=
                                            - 9s 6ms/step - loss: 0.1925 - accuracy: 0.9181 - val_loss: 0.3624 - val_accuracy: 0.8634
     1411/1411 [:
 <u>1411/14</u>11 [====
                                =======] - 9s 7ms/step - loss: 0.0974 - accuracy: 0.9597 - val_loss: 0.5638 - val_accuracy: 0.8605
Epoch 21/50
                          ================ ] - 9s 6ms/step - loss: 0.0948 - accuracy: 0.9609 - val_loss: 0.6077 - val_accuracy: 0.8605
1411/1411 [==
Epoch 22/50
1411/1411 [=
                                      ====] - 9s 6ms/step - loss: 0.0884 - accuracy: 0.9642 - val_loss: 0.6112 - val_accuracy: 0.8563
 Epoch 23/50
                                            - 10s 7ms/step - loss: 0.0841 - accuracy: 0.9657 - val_loss: 0.6486 - val_accuracy: 0.8632
 1411/1411 [=
                                             8s 6ms/step - loss: 0.0828 - accuracy: 0.9666 - val_loss: 0.6380 - val_accuracy: 0.8602
 Epoch 25/50
 1411/1411 [=
                                            - 11s 7ms/step - loss: 0.0821 - accuracy: 0.9665 - val_loss: 0.6451 - val_accuracy: 0.8609
 Epoch 26/50
                                 :=======] - 8s 6ms/step - loss: 0.0771 - accuracy: 0.9681 - val_loss: 0.6879 - val_accuracy: 0.8604
1411/1411 [=
Epoch 27/50
                                 :=======] - 10s 7ms/step - loss: 0.0731 - accuracy: 0.9710 - val_loss: 0.7238 - val_accuracy: 0.8622
 1411/1411 [=
Epoch 28/50
                                ========] - 9s 6ms/step - loss: 0.0733 - accuracy: 0.9703 - val_loss: 0.7037 - val_accuracy: 0.8608
 1411/1411 [=
 Epoch 29/50
1411/1411 [==
                                      ====] - 9s 6ms/step - loss: 0.0709 - accuracy: 0.9711 - val_loss: 0.7169 - val_accuracy: 0.8570
# Plot accuracy and loss
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 4))
# Plot training & validation accuracy values
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
# Plot training & validation loss values
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'])
plt.plot(history.history['val loss'])
plt.title('Model loss')
```

```
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.tight_layout()
plt.show()
```


3. Implement two regularization techniques and analyze the performance before and after regularization [3]

SOURCE CODE:

Two common regularization techniques are Dropout and L1/L2 regularization.

Dropout: This randomly drops a fraction of the input units to 0 at each update during training, which helps prevent overfitting.

L1/L2 regularization: These add a penalty to the loss function for large values of model parameters. L1 regularization leads to sparsity, while L2 regularization leads to smaller weights.

```
# Using Dropout and L2 regularization
model = Sequential()
```

```
model.add(Dense(64, input dim=X train.shape[1], activation='relu',
kernel regularizer=tf.keras.regularizers.l2(0.001)))
model.add(Dropout(0.5))
model.add(Dense(32, activation='relu', kernel regularizer=tf.keras.regularizers.l2(0.001)))
model.add(Dense(1, activation='sigmoid', kernel regularizer=tf.keras.regularizers.12(0.001)))
from tensorflow.keras.optimizers import Adam
# Compile the model
model.compile(optimizer='adam', loss='binary crossentropy', metrics=['accuracy'])
# Train the model
history = model.fit(X train, y train, epochs=50, batch size=32, validation data=(X test,
y test))
 1411/1411 [==
                                 ===] - 14s 10ms/step - loss: 0.3833 - accuracy: 0.8482 - val_loss: 0.3536 - val_acc⊢↑ ↓ 🚓 🗏 🏚 🎵
                         =========] - 12s 8ms/step - loss: 0.3556 - accuracy: 0.8570 - val_loss: 0.3487 - val_accuracy: 0.8611
                 ==========================] - 8s 6ms/step - loss: 0.3527 - accuracy: 0.8572 - val_loss: 0.3474 - val_accuracy: 0.8602
                         =============== - 11s 7ms/step - loss: 0.3517 - accuracy: 0.8578 - val_loss: 0.3455 - val_accuracy: 0.8615
               1411/1411 [=:
                                 ===] - 9s 6ms/step - loss: 0.3497 - accuracy: 0.8588 - val_loss: 0.3465 - val_accuracy: 0.8618
                        =========] - 10s 7ms/step - loss: 0.3500 - accuracy: 0.8593 - val_loss: 0.3465 - val_accuracy: 0.8630
    =======] - 12s 8ms/step - loss: 0.3498 - accuracy: 0.8588 - val_loss: 0.3459 - val_accuracy: 0.8624
    1411/1411 [==
    .
1411/1411 [===============================] - 13s 9ms/step - loss: 0.3489 - accuracy: 0.8604 - val_loss: 0.3468 - val_accuracy: 0.8628
                                 ==l - 9s 6ms/step - loss: 0.3491 - accuracv: 0.8591 - val loss: 0.3460 - val accuracv: 0.8631
    1411/1411 [=
                         =========] - 10s 7ms/step - loss: 0.3498 - accuracy: 0.8588 - val loss: 0.3455 - val accuracy: 0.8632
 Epoch 40/50
                      =========] - 9s 6ms/step - loss: 0.3485 - accuracy: 0.8600 - val_loss: 0.3469 - val_accuracy: 0.8625
1411/1411 [==
                           ======] - 11s 8ms/step - loss: 0.3478 - accuracy: 0.8601 - val_loss: 0.3458 - val_accuracy: 0.8627
1411/1411 [==
                               ==] - 10s 7ms/step - loss: 0.3473 - accuracy: 0.8608 - val_loss: 0.3454 - val_accuracy: 0.8640
Epoch 43/50
                               ===] - 9s 7ms/step - loss: 0.3478 - accuracy: 0.8609 - val_loss: 0.3431 - val_accuracy: 0.8625
                               ===] - 10s 7ms/step - loss: 0.3484 - accuracy: 0.8614 - val_loss: 0.3496 - val_accuracy: 0.8617
1411/1411 [=
                        :========] - 11s 8ms/step - loss: 0.3483 - accuracy: 0.8600 - val_loss: 0.3455 - val_accuracy: 0.8633
1411/1411 [==
                        ========] - 10s 7ms/step - loss: 0.3483 - accuracy: 0.8593 - val_loss: 0.3476 - val_accuracy: 0.8620
1411/1411 [=======
                          =======] - 12s 8ms/step - loss: 0.3483 - accuracy: 0.8605 - val_loss: 0.3434 - val_accuracy: 0.8627
 Epoch 48/50
                               ===] - 12s 9ms/step - loss: 0.3481 - accuracy: 0.8603 - val_loss: 0.3449 - val_accuracy: 0.8633
1411/1411 [=
_.
1411/1411 [======
               =================] - 10s 7ms/step - loss: 0.3483 - accuracy: 0.8605 - val_loss: 0.3466 - val_accuracy: 0.8637
               # Plot accuracy
plt.plot(history.history['accuracy'], label='Train Accuracy')
plt.plot(history.history['val accuracy'], label='Validation Accuracy')
plt.title('Model Accuracy')
```

```
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()

# Plot loss
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Model Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
```


Evaluate the model

loss, accuracy = model.evaluate(X test, y test)

print(f"Test Accuracy: {accuracy * 100:.2f}%")

INTERPRETATION:

- * With the introduction of regularization, the training and validation accuracies are closer, which suggests the regularization techniques helped mitigate overfitting.
- * The test accuracy is 86.33%, which is slightly better than the validation accuracy, indicating that the model generalizes well to unseen data.
- * L2 regularization has introduced a penalty on large weights, which has made the model's parameters more conservative, preventing them from fitting too closely to the noise in the training data.
- 4. For the chosen dataset, build a CNN model with at least 80% accuracy. [4] SOURCE CODE:

import matplotlib.pyplot as plt

img = plt.imread("/content/drive/MyDrive/DeepLearning_Dataset/Covid19-dataset/test/Viral Pneumonia/0101.jpeg")

plt.imshow(img)

plt.show()

pip install split-folders

import splitfolders

```
splitfolders.ratio("/content/drive/MyDrive/DeepLearning_Dataset/Covid19-dataset/test",output = "output",seed = 1337,ratio = (.8, .2))
```

 $from\ tensor flow. keras. preprocessing. image\ import\ Image Data Generator$

all images will be rescaled by 1./255

train_data = ImageDataGenerator(

rescale = 1./255,)

test data = ImageDataGenerator(rescale = 1./255)

train generator =train data.flow from directory(

"/content/drive/MyDrive/DeepLearning Dataset/Covid19-dataset/train",

target size = (224,224),

batch size = 20,

class mode = 'categorical')

validation generator = test data.flow from directory(

"/content/drive/MyDrive/DeepLearning_Dataset/Covid19-dataset/test",

```
target size = (224,224),
batch size = 20,
class mode = 'categorical')
```

```
Copying files: 66 files [00:00, 179.56 files/s]
     from tensorflow.keras.preprocessing.image import ImageDataGenerator
     # all images will be rescaled by 1./255
     train_data = ImageDataGenerator(
         rescale = 1./255,)
     test_data = ImageDataGenerator(rescale = 1./255)
     train_generator =train_data.flow_from_directory(
          "/content/drive/MyDrive/DeepLearning_Dataset/Covid19-dataset/train",
         target_size = (224,224),
         batch_size = 20,
          class_mode = 'categorical')
     validation_generator = test_data.flow_from_directory(
          "/content/drive/MyDrive/DeepLearning_Dataset/Covid19-dataset/test",
         target_size = (224,224),
         batch_size = 20,
          class_mode = 'categorical')
 Found 261 images belonging to 3 classes.
     Found 66 images belonging to 3 classes.
num classes = 3
input shape = (224,224,3)
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
model = Sequential([
  layers.Rescaling(1./255, input shape=(input shape)), #input layer
  layers.Conv2D(16,3,padding = 'same',activation = 'relu'), # 16 is no of filters, filter size is
3*3
  layers.MaxPooling2D(),
  layers.Conv2D(32,3,padding = 'same',activation = 'relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(64,3,padding = 'same',activation = 'relu'),
  layers.MaxPooling2D(),
  layers.Flatten(),
```

```
layers.Dense(128,activation = 'relu'), # 1 st hidden layer has 128 neurons layers.Dense(256,activation = 'relu'), # 2 nd hidden layer has 256 neurons layers.Dense(256,activation = 'relu'), # 3 rd hidden layer has 256 neurons layers.Dense(num_classes,activation = 'softmax')

])
model.summary()
```

```
Model: "sequential_1"
 Layer (type)
                             Output Shape
                                                        Param #
 rescaling_1 (Rescaling)
                             (None, 224, 224, 3)
                                                        0
conv2d_3 (Conv2D)
                             (None, 224, 224, 16)
                                                        448
 max pooling2d 3 (MaxPoolin (None, 112, 112, 16)
                                                        0
 g2D)
 conv2d_4 (Conv2D)
                             (None, 112, 112, 32)
                                                        4640
 max_pooling2d_4 (MaxPoolin (None, 56, 56, 32)
                                                        0
 g2D)
 conv2d_5 (Conv2D)
                             (None, 56, 56, 64)
                                                        18496
 max pooling2d 5 (MaxPoolin (None, 28, 28, 64)
                                                        0
 g2D)
flatten 1 (Flatten)
                             (None, 50176)
dense_4 (Dense)
                             (None, 128)
                                                        6422656
 dense_5 (Dense)
                             (None, 256)
                                                        33024
 dense_6 (Dense)
                             (None, 256)
                                                        65792
```

```
loss = tf.keras.losses.CategoricalCrossentropy(),
    metrics = ['accuracy'])
epochs = 10
historyl = model.fit(
    train_generator ,
    validation_data = validation_generator,
```

model.compile(optimizer = 'adam',

epochs = epochs

)

```
Epoch 1/10
14/14 [====
                                   ===] - 23s 2s/step - loss: 1.0955 - accuracy: 0.4559 - val_loss: 1.0947 - val_accuracy: 0.3939
Epoch 2/10
                                  ===] - 21s 1s/step - loss: 1.0853 - accuracy: 0.4559 - val loss: 1.0913 - val accuracy: 0.3939
14/14 [====
Epoch 3/10
                                    = ] - 21s 2s/step - loss: 1.0754 - accuracy: 0.4559 - val loss: 1.1059 - val accuracy: 0.3939
14/14 [===
Epoch 4/10
                               =====] - 21s 1s/step - loss: 1.0738 - accuracy: 0.4559 - val loss: 1.1151 - val accuracy: 0.3939
14/14 [===:
Epoch 5/10
                                       - 22s 1s/step - loss: 1.0718 - accuracy: 0.4559 - val loss: 1.0909 - val accuracy: 0.3939
14/14 [===
                                    =] - 28s 2s/step - loss: 1.0724 - accuracy: 0.4559 - val_loss: 1.0935 - val_accuracy: 0.3939
14/14 [===
Epoch 7/10
                                    =] - 20s 1s/step - loss: 1.0695 - accuracy: 0.4559 - val_loss: 1.1045 - val_accuracy: 0.3939
14/14 [===
Epoch 8/10
                                   ===] - 21s 1s/step - loss: 1.0682 - accuracy: 0.4559 - val_loss: 1.0967 - val_accuracy: 0.3939
14/14 [====
Epoch 9/10
14/14 [===
                                       - 22s 1s/step - loss: 1.0680 - accuracy: 0.4559 - val_loss: 1.0917 - val_accuracy: 0.3939
Epoch 10/10
                                =====] - 22s 1s/step - loss: 1.0707 - accuracy: 0.4559 - val loss: 1.0911 - val accuracy: 0.3939
```

5. Now include 5 data augmentation techniques appropriate to your dataset and build

CNN on augmented images. [4]

```
SOURCE CODE:
#image generator is to augment the images
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# all images will be rescaled by 1./255
train data = ImageDataGenerator(
  rescale = 1./255,
  rotation range = 40,
  width shift range = 0.2,
  height shift range = 0.2,
  shear range = 0.2,
  horizontal flip = True,)
test data = ImageDataGenerator(rescale = 1./255)
train generator = train data.flow from directory(
  "/content/drive/MyDrive/DeepLearning Dataset/Covid19-dataset/train",
  target size = (224,224),
  batch size = 20,
  class mode = 'categorical')
validation generator = test data.flow from directory(
  "/content/drive/MyDrive/DeepLearning Dataset/Covid19-dataset/test",
  target size = (224,224),
```

```
batch size = 20,
  class mode = 'categorical')
num classes = 3
input shape = (224,224,3)
model = Sequential([
  layers.Rescaling(1./255, input shape=(input shape)), #input layer
  layers.Conv2D(16,3,padding = 'same',activation = 'relu'), # 16 is no of filters, filter size is
3*3
  layers.MaxPooling2D(),
  layers.Conv2D(32,3,padding = 'same',activation = 'relu'), # padding = 'same', input size =
output size of an image
  layers.MaxPooling2D(),
  layers.Conv2D(64,3,padding = 'same',activation = 'relu'),
  layers.MaxPooling2D(),
  layers.Flatten(),
  layers.Dense(128,activation = 'relu'), # 1 st hidden layer has 128 neurons
  layers.Dense(256,activation = 'relu'), # 2 nd hidden layer has 256 neurons
  layers.Dense(256,activation = 'relu'), # 3 rd hidden layer has 256 neurons
  layers.Dense(num classes,activation = 'softmax')
])
model.compile(optimizer = 'adam',
        loss = tf.keras.losses.CategoricalCrossentropy(),
        metrics = ['accuracy'])
epochs = 10
history2 = model.fit(
  train generator,
  validation data = validation generator,
  epochs = epochs
)
```

```
14/14 [===
                                          - 32s 2s/step - loss: 1.0945 - accuracy: 0.4023 - val_loss: 1.0914 - val_accuracy: 0.3939
    Epoch 2/10
                                          - 31s 2s/step - loss: 1.0735 - accuracy: 0.4559 - val_loss: 1.0934 - val_accuracy: 0.3939
    Epoch 3/10
                                            36s 3s/step - loss: 1.0798 - accuracy: 0.4559 - val_loss: 1.0919 - val_accuracy: 0.3939
    Epoch 4/10
                                            31s 2s/step - loss: 1.0801 - accuracy: 0.4559 - val_loss: 1.0907 - val_accuracy: 0.3939
    14/14 [==
    Epoch 5/10
                                          - 25s 2s/step - loss: 1.0747 - accuracy: 0.4559 - val_loss: 1.0951 - val_accuracy: 0.3939
    14/14 [==
    Epoch 6/10
                                          - 26s 2s/step - loss: 1.0687 - accuracy: 0.4559 - val_loss: 1.0976 - val_accuracy: 0.3939
   14/14 [==
   Epoch 7/10
                                          - 28s 2s/step - loss: 1.0696 - accuracy: 0.4559 - val_loss: 1.1277 - val_accuracy: 0.3939
   14/14 [==:
   Epoch 8/10
                                        =] - 24s 2s/step - loss: 1.0704 - accuracy: 0.4559 - val_loss: 1.0939 - val_accuracy: 0.3939
    14/14 [===
    Epoch 9/10
                                            28s 2s/step - loss: 1.0710 - accuracy: 0.4559 - val_loss: 1.0913 - val_accuracy: 0.3939
    14/14 [==
    Epoch 10/10
                                        =] - 25s 2s/step - loss: 1.0719 - accuracy: 0.4559 - val_loss: 1.0936 - val_accuracy: 0.3939
    14/14 [==
```

6. Compare the performance of above two models [2]

SOURCE CODE:

```
acc = history1.history['accuracy']
val acc = history[.history['val accuracy']
loss = history[.history['loss']
val loss = history1.history['val loss']
epochs range = range(epochs)
plt.figure(figsize=(8,8))
plt.subplot(1, 2, 1)
plt.plot(epochs range, acc, label='Training Accuracy')
plt.plot(epochs range, val acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs range, loss, label='Training Loss')
plt.plot(epochs range, val loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
```


7. Choose a pre-trained model and implement from scratch on the chosen dataset [5] SOURCE CODE:

from tensorflow.keras.layers import Conv2D, DepthwiseConv2D, ReLU, BatchNormalization, add,Softmax, AveragePooling2D, Dense, Input, GlobalAveragePooling2D

from tensorflow.keras.models import Model

def expansion block(x,t,filters,block id):

```
prefix = 'block_{}_'.format(block_id)

total_filters = t*filters

x = Conv2D(total_filters,1,padding='same',use_bias=False, name = prefix +'expand')(x)

x = BatchNormalization(name=prefix +'expand_bn')(x)

x = ReLU(6,name = prefix +'expand_relu')(x)

return x
```

```
def depthwise_block(x,stride,block_id):
    prefix = 'block_{}_'.format(block_id)
    x = DepthwiseConv2D(3,strides=(stride,stride),padding ='same', use_bias = False, name = prefix + 'depthwise conv')(x)
```

```
x = BatchNormalization(name=prefix +'dw bn')(x)
  x = ReLU(6,name=prefix +'dw relu')(x)
  return x
def projection block(x,out channels,block id):
  prefix = 'block_{}_'.format(block_id)
  x = Conv2D(filters = out_channels,kernel_size = 1,padding='same',use_bias=False,name=
prefix + 'compress')(x)
  x = BatchNormalization(name=prefix + 'compress bn')(x)
  return x
def Bottleneck(x,t,filters, out channels,stride,block id):
  y = expansion block(x,t,filters,block id)
  y = depthwise block(y,stride,block id)
  y = projection_block(y, out_channels,block_id)
  if y.shape[-1]==x.shape[-1]:
    y = add([x,y])
  return y
def MobileNetV2(input image = (224,224,3), n classes=3):
  input = Input (input shape)
  x = Conv2D(32,3,strides=(2,2),padding='same', use bias=False)(input)
  x = BatchNormalization(name='conv1 bn')(x)
  x = ReLU(6, name='conv1 relu')(x)
  #17 Bottlenecks
  x = depthwise block(x,stride=1,block id=1)
  x = projection block(x, out channels=16,block id=1)
  x = Bottleneck(x, t = 6, filters = x.shape[-1], out_channels = 24, stride = 2,block_id = 2)
  x = Bottleneck(x, t = 6, filters = x.shape[-1], out channels = 24, stride = 1,block id = 3)
  x = Bottleneck(x, t = 6, filters = x.shape[-1], out channels = 32, stride = 2,block id = 4)
  x = Bottleneck(x, t = 6, filters = x.shape[-1], out channels = 32, stride = 1,block id = 5)
  x = Bottleneck(x, t = 6, filters = x.shape[-1], out channels = 32, stride = 1,block id = 6)
  x = Bottleneck(x, t = 6, filters = x.shape[-1], out channels = 64, stride = 2,block id = 7)
  x = Bottleneck(x, t = 6, filters = x.shape[-1], out channels = 64, stride = 1,block id = 8)
```

```
x = Bottleneck(x, t = 6, filters = x.shape[-1], out channels = 64, stride = 1,block id = 9)
  x = Bottleneck(x, t = 6, filters = x.shape[-1], out channels = 64, stride = 1,block id = 10)
  x = Bottleneck(x, t = 6, filters = x.shape[-1], out channels = 96, stride = 1,block id = 11)
  x = Bottleneck(x, t = 6, filters = x.shape[-1], out channels = 96, stride = 1,block id = 12)
  x = Bottleneck(x, t = 6, filters = x.shape[-1], out channels = 96, stride = 1,block id = 13)
  x = Bottleneck(x, t = 6, filters = x.shape[-1], out channels = 160, stride = 2,block id = 14)
  x = Bottleneck(x, t = 6, filters = x.shape[-1], out channels = 160, stride = 1,block id = 15)
  x = Bottleneck(x, t = 6, filters = x.shape[-1], out channels = 160, stride = 1,block id = 16)
  x = Bottleneck(x, t = 6, filters = x.shape[-1], out channels = 320, stride = 1,block id = 17)
  x = Conv2D(filters = 1280,kernel size = 1,padding='same',use bias=False, name =
'last conv')(x)
  x = BatchNormalization(name='last bn')(x)
  x = ReLU(6,name='last relu')(x)
  x = GlobalAveragePooling2D()(x)
  output = Dense(3,activation='softmax')(x)
  model = Model(input, output)
  return model
n classes = 3
input shape = (224,224,3)
model = MobileNetV2(input shape,n classes)
model.summary()
```

```
hNormalization)
add_9 (Add)
                                                                    ['add_8[0][0]',
                             (None, 7, 7, 160)
                                                          0
                                                                      'block_16_compress_bn[0][0]']
block_17_expand (Conv2D)
                             (None, 7, 7, 960)
                                                          153600
                                                                     ['add_9[0][0]']
block_17_expand_bn (BatchN (None, 7, 7, 960)
                                                                     ['block_17_expand[0][0]']
                                                          3840
ormalization)
block_17_expand_relu (ReLU (None, 7, 7, 960)
                                                          0
                                                                     ['block_17_expand_bn[0][0]']
                                                                     ['block_17_expand_relu[0][0]']
block_17_depthwise_conv (D (None, 7, 7, 960)
                                                          8640
epthwiseConv2D)
block_17_dw_bn (BatchNorma (None, 7, 7, 960)
                                                          3840
                                                                     ['block_17_depthwise_conv[0][0
lization)
block 17 dw relu (ReLU)
                             (None, 7, 7, 960)
                                                                     ['block_17_dw_bn[0][0]']
block_17_compress (Conv2D)
                             (None, 7, 7, 320)
                                                                     ['block_17_dw_relu[0][0]']
                                                          307200
block_17_compress_bn (Batc
                             (None, 7, 7, 320)
                                                          1280
                                                                     ['block_17_compress[0][0]']
hNormalization)
last_conv (Conv2D)
                             (None, 7, 7, 1280)
                                                          409600
                                                                     ['block_17_compress_bn[0][0]']
last_bn (BatchNormalizatio (None, 7, 7, 1280)
                                                          5120
                                                                     ['last_conv[0][0]']
 last_relu (ReLU)
                             (None, 7, 7, 1280)
                                                                     ['last_bn[0][0]']
global_average_pooling2d ( (None, 1280)
                                                                     ['last_relu[0][0]']
GlobalAveragePooling2D)
dense_12 (Dense)
                             (None, 3)
                                                          3843
                                                                     ['global_average_pooling2d[0][
                                                                     0]']
Total params: 2261827 (8.63 MB)
Trainable params: 2227715 (8.50 MB)
Non-trainable params: 34112 (133.25 KB)
```

```
14/14 [=
                                       76s 4s/step - loss: 0.9655 - accuracy: 0.6284 - val_loss: 1.1445 - val_accuracy: 0.3939
    Epoch 2/10
                                       57s 4s/step - loss: 0.9883 - accuracy: 0.6475 - val_loss: 1.3178 - val_accuracy: 0.3939
    14/14 [====
    Epoch 3/10
                                       60s 4s/step - loss: 0.6884 - accuracy: 0.6973 - val_loss: 1.6317 - val_accuracy: 0.3939
    Epoch 4/10
                                       55s 4s/step - loss: 0.7077 - accuracy: 0.7318 - val_loss: 1.7668 - val_accuracy: 0.3939
    14/14 [===
    Epoch 5/10
                                       57s 4s/step - loss: 0.5809 - accuracy: 0.7510 - val_loss: 2.4045 - val_accuracy: 0.3939
    14/14 [===
    14/14 [==
                                       54s 4s/step - loss: 0.5285 - accuracy: 0.7663 - val_loss: 2.8537 - val_accuracy: 0.3939
                                      - 62s 4s/step - loss: 0.5097 - accuracy: 0.7893 - val loss: 3.4363 - val accuracy: 0.3939
    14/14 [=
    Epoch 8/10
                                       57s 4s/step - loss: 0.4633 - accuracy: 0.8314 - val_loss: 3.2319 - val_accuracy: 0.3939
    14/14 [==:
    Epoch 9/10
                                      - 61s 4s/step - loss: 0.3949 - accuracy: 0.8621 - val_loss: 3.0549 - val_accuracy: 0.3939
    Epoch 10/10
                                   ==] - 60s 4s/step - loss: 0.3697 - accuracy: 0.8582 - val_loss: 3.8832 - val_accuracy: 0.3939
    14/14 [===
acc = history3.history['accuracy']
val acc = history3.history['val accuracy']
loss = history3.history['loss']
val loss = history3.history['val loss']
epochs range = range(epochs)
plt.figure(figsize=(8,8))
plt.subplot(1, 2, 1)
plt.plot(epochs range, acc, label='Training Accuracy')
plt.plot(epochs range, val acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs range, loss, label='Training Loss')
plt.plot(epochs range, val loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
```


8. Choose a pre-trained model and implement as transfer learning on the chosen dataset [5]

SOURCE CODE:

```
from tensorflow.keras import Model
```

from tensorflow.keras.layers import

Conv2D,Dense,MaxPooling2D,Dropout,Flatten,GlobalAveragePooling2D

from tensorflow.keras.models import Sequential

from tensorflow.keras.applications.mobilenet v2 import MobileNetV2, preprocess input

Model_V2 = MobileNetV2(weights='imagenet',include_top = False, input_shape = (224,224,3))

x = Model V2.output

x = GlobalAveragePooling2D()(x)

output = Dense(units = 3, activation='softmax')(x)

The last 15 layers fine tune

for layer in Model_V2.layers[:15]:

layer.trainable = False

model = Model(inputs=Model_V2.input, outputs=output)

model.compile(optimizer = 'adam',

loss = tf.keras.losses.CategoricalCrossentropy(),

```
metrics = ['accuracy'])
epochs = 10
history4 = model.fit(
  train generator,
  validation data = validation generator,
  epochs = epochs
  Epoch 1/10
                                   =] - 65s 4s/step - loss: 0.5906 - accuracy: 0.7778 - val_loss: 3.9056 - val_accuracy: 0.6667
  14/14 [==
  Epoch 2/10
                                       51s 4s/step - loss: 0.4469 - accuracy: 0.8276 - val_loss: 14.3271 - val_accuracy: 0.3030
  14/14 [==:
  Epoch 3/10
                                     - 48s 3s/step - loss: 0.3002 - accuracy: 0.8966 - val loss: 6.8390 - val accuracy: 0.3788
  14/14 [===
  Epoch 4/10
                                     - 48s 3s/step - loss: 0.2238 - accuracy: 0.9272 - val_loss: 2.8853 - val_accuracy: 0.5000
  14/14 [==:
  Epoch 5/10
                                   =] - 48s 3s/step - loss: 0.3481 - accuracy: 0.8966 - val_loss: 6.2693 - val_accuracy: 0.3182
  14/14 [===
  Epoch 6/10
                                  ==] - 45s 3s/step - loss: 0.3089 - accuracy: 0.9195 - val_loss: 2.8205 - val_accuracy: 0.4242
  14/14 [====
  Epoch 7/10
                                   =] - 45s 3s/step - loss: 0.2282 - accuracy: 0.9195 - val_loss: 1.3171 - val_accuracy: 0.6364
  14/14 [==:
  Epoch 8/10
                                  ==] - 44s 3s/step - loss: 0.1925 - accuracy: 0.9234 - val_loss: 3.4247 - val_accuracy: 0.4394
  14/14 [===:
  Epoch 9/10
                                  ==] - 41s 3s/step - loss: 0.1427 - accuracy: 0.9349 - val_loss: 2.0372 - val_accuracy: 0.6667
  14/14 [==:
  Epoch 10/10
  14/14 [====
                      ========] - 44s 3s/step - loss: 0.1481 - accuracy: 0.9540 - val_loss: 4.8823 - val_accuracy: 0.3788
acc = history4.history['accuracy']
val acc = history4.history['val accuracy']
loss = history4.history['loss']
val loss = history4.history['val loss']
epochs range = range(epochs)
plt.figure(figsize=(8,8))
plt.subplot(1, 2, 1)
plt.plot(epochs range, acc, label='Training Accuracy')
plt.plot(epochs range, val acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs range, loss, label='Training Loss')
plt.plot(epochs range, val loss, label='Validation Loss')
plt.legend(loc='upper right')
```

plt.title('Training and Validation Loss')
plt.show()

