Probleme 1 Proiectare Logică

Sisteme de numerație, coduri, reprezentarea numerelor, aritmetica binară, algebră booleană

Sisteme de numerație

- 1. Realizați conversia numărului 1100101011₂ în baza 10 și în baza 16.
- **2.** Știind că $(16)_{10} = (100)_b$, determinați valoarea lui b.
- **3.** Efectuați operația $5367_8 + 1476_8 + 3761_8$. Care este rezultatul exprimat în octal, binar şi hexazecimal?

Coduri

- 1. Codificați cifrele zecimale 0, 1, 2,..., 8, 9 cu ajutorul codului ponderat: 2; 1; 4; 2.
- 2. Reprezentați cifrele zecimale 2, 6 și 9 în codurile: BCD, Exces 3, 2421, Gray.

Reprezentarea numerelor în calculator

- 1. Reprezentați numărul -101110100_2 prin mărime și semn, complement față de 2 și complement față de 1.
- **2.** Arătați care este reprezentarea numărului –253₁₀ în complement față de 2 și în complement față de 1.
- **3.** Determinați numărul zecimal care este exprimat în virgulă mobilă în simplă precizie astfel:

0 1000111 1001 0111 1000 0000 0000 0000

Deplasamentul se consideră 64.

Aritmetica binară

- 1. Efectuați adunarea, scăderea, înmulțirea și împărțirea numerelor $+18_{10}$ și $+4_{10}$ exprimate prin mărime și semn.
- 2. Realizați adunarea și scăderea în complement față de 2 a numerelor zecimale +20 și +7.

Algebră booleană

- 1. Aplicați axiomele și teoremele algebrei booleene pentru a simplifica următoarele funcții:
- 1) $(a + a \cdot b) \cdot (a + b)$
- 2) $\overline{a} \cdot \overline{b} + \overline{a+b+c+d}$
- 3) $a + b \cdot \overline{c} + \overline{a} \cdot b \cdot \overline{c} \cdot (a \cdot d + b)$
- 4) $\overline{a \cdot b \cdot c \cdot d} + a \cdot b \cdot c \cdot d + a \cdot b \cdot c \cdot d + a \cdot b \cdot c \cdot d$
- 2. Să se demonstreze că:
- 1) (a + b) + $a \cdot b = a$ + b
- 2) $a + b = \overline{a + \overline{b}} = \overline{a + b}$
- 3. Arătați că următoarea identitate este adevărată:

 $x_1 \cdot x_4 + \overline{x}_2 \cdot \overline{x}_4 + x_3 \cdot \overline{x}_4 = (x_1 + \overline{x}_4)(\overline{x}_2 + x_3 + x_4)$