Der Banachsche Fixpunktsatz

Jendrik Stelzner

24. Dezember 2014

Wir wollen hier (als Übung für den Leser) den Banachschen Fixpunktsatz für \mathbb{R}^n formulieren und beweisen.

Definition 1. Eine Abbildung $f: \mathbb{R}^n \to \mathbb{R}^m$ heißt *Kontraktion*, falls es eine Konstante 0 < L < 1 gibt, so dass

$$||f(x) - f(y)|| \le L||x - y||$$
 für alle $x, y \in \mathbb{R}^n$.

Übung 1.

Bestimmen Sie, welche der folgenden Abbildungen $f,g,h\colon\mathbb{R}\to\mathbb{R}$ eine Kontraktion ist

$$f: x \mapsto \frac{x}{4} - \frac{2}{3}$$
$$g: x \mapsto x^2$$
$$h: x \mapsto |x|^{1/2}$$

Übung 2.

Für eine Abbildung $f : \mathbb{R}^n \to \mathbb{R}^m$ gebe es eine Konstante L > 0, so dass

$$||f(x) - f(y)|| \le L||x - y||$$
 für alle $x, y \in \mathbb{R}^n$.

Zeigen Sie, dass f stetig ist.

Man bezeichnet eine solche Abbildung als Lipschitz-stetig (mit Konstante L). Folgern Sie, dass Kontraktionen stetig sind.

Theorem 2 (Banachscher Fixpunktsatz). Es sei $T: \mathbb{R}^m \to \mathbb{R}^m$ eine Kontraktion. Dann besitzt T einen eindeutigen Fixpunkt, d.h. es existiert genau ein $\xi \in \mathbb{R}$ mit $T(\xi) = \xi$. Außerdem gilt für jedes $x \in \mathbb{R}$, dass $\lim_{n \to \infty} T^n(x) = \xi$. (Hier bezeichnet T^n die n-fache Hintereinanderschaltung von T mit sich selbst.)

Der Beweis des Satzes lässt sich in kleinere Zwischenschritte aufteilen:

Übung 3.

Es sei $T \colon \mathbb{R}^m \to \mathbb{R}^m$ eine Kontraktion.

- 1. Zeigen Sie die Eindeutigkeit des Fixpunktes von T. (Wir setzen hier noch keine Existenz voraus.)
- 2. Zeigen Sie, dass für jeden Startwert $x\in\mathbb{R}^m$ die Folge $(x_n)_{n\in\mathbb{N}}$ mit $x_n\coloneqq T^n(x)$ konvergiert. (*Hinweis*: Zeigen Sie, dass es sich um eine Cauchy-Folge handelt.)

3. Zeigen Sie, dass für jedes $x\in\mathbb{R}^m$ der Grenzwert $\xi\coloneqq\lim_{n\to\infty}T^n(x)$ ein Fixpunkt von T ist.

Bemerkung 3. Der Banachsche Fixpunktsatz gilt allgemeiner für alle vollständige metrische Räume. Der Beweis hierfür läuft analog.

Lösung 1.

f ist eine Kontraktion, da für alle $x,y\in\mathbb{R}$

$$|f(x) - f(y)| = \left|\frac{x}{4} - \frac{y}{4}\right| = \frac{1}{4}|x - y|$$

mit 1/4 < L. g ist keine Kontraktion, denn

$$|g(2) - g(1)| = |2^2 - 1^2| = 3 > 1 = |2 - 1|.$$

hist keine Kontrakiton. Ansonsten gebe es $0 \le L < 1$ mit |h(x) - h(y)| < |x-y| für alle $x,y \in \mathbb{R}.$ Insbesondere wäre dann für alle $n \ge 1$

$$\frac{1}{n^{1/2}} = \left| h\left(\frac{1}{n}\right) - h(0) \right| \le L \left| \frac{1}{n} - 0 \right| = \frac{L}{n}$$

und somit $n^{1/2} \leq L$.

Lösung 2.

f erfüllt an jeder Stelle $x \in \mathbb{R}^n$ das ε -δ-Kriterium, denn für beliebiges $\varepsilon > 0$ ergibt sich für $\delta \coloneqq \varepsilon/L$, dass für alle $y \in \mathbb{R}^n$ mit $\|x-y\| < \delta$

$$||f(x) - f(y)|| \le L||x - y|| < L\delta = L\frac{\varepsilon}{L} = \varepsilon.$$

Also ist f stetig. Kontraktionen sind per Definition Lipschitz-stetige Abbildung mit Konstante L<1 und somit stetig.

Lösung 3.

Es sei 0 < L < 1, so dass $||T(x) - T(y)|| \le L||x - y||$ für alle $x, y \in \mathbb{R}^m$.

1. Es seien $\xi, \zeta \in \mathbb{R}^m$ zwei Fixpunkte von T. Dann ist

$$\|\xi - \zeta\| = \|T(\xi) - T(\zeta)\| \le L\|\xi - \zeta\|.$$

Da $L \neq 1$ folgt, dass $|\xi - \zeta| = 0$ und somit $\xi = \zeta$.

2. Für alle $n \ge 1$ ist

$$||x_{n+1} - x_n|| = ||T(x_n) - T(x_{n-1})|| \le L||x_n - x_{n-1}||$$

Für $M:=\|x_1-x_0\|$ ergibt sich damit induktiv, dass

$$||x_{n+1} - x_n|| \le L^n ||x_1 - x_0|| = ML^n.$$

für alle $n\in\mathbb{N}$. Für alle $N'\in\mathbb{N}$ und $m,m'\geq N$, wobei o.B.d.A. $m\geq m'$, ist daher

$$||x_{m} - x_{m'}|| \le ||x_{m} - x_{m-1}|| + ||x_{m-1} - x_{m-2}|| + \dots + ||x_{m'+1} - x_{m'}||$$

$$\le ML^{m-1} + \dots + ML^{m'} = ML^{m'} \sum_{k=0}^{m-1-m'} L^{k}$$

$$\le ML^{N'} \sum_{k=0}^{\infty} L^{k} = \frac{M}{1 - L} L^{N'}.$$

Da $\lim_{N'\to\infty} M/(1-L)L^{N'}=0$ gibt es für alle $\varepsilon>0$ ein $N\in\mathbb{N}$ mit $M/(1-L)L^N<\varepsilon$, und damit insbesondere $\|x_m-x_{m'}\|<\varepsilon$ für alle $m,m'\geq N$. Dies zeigt, dass (x_n) eine Cauchy-Folge ist.

3. T ist eine Kontraktion, und damit insbesondere stetig. Für beliebiges $x\in\mathbb{R}$ erhalten wir unter Verwendung der Folgenstetigkeit für $\xi:=\lim_{n\to\infty}T^n(x)$, dass

$$T(\xi) = T\left(\lim_{n \to \infty} T^n(x)\right) = \lim_{n \to \infty} T(T^n(x)) = \lim_{n \to \infty} T^{n+1}(x) = \xi.$$