

Binaire wereld

IT Concepten

- Talstelsel = wiskundig systeem om getallen voor te stellen
- Bekende talstelsels
 - Decimaal
 - ✓ Binair
 - ✓ Hexadecimaal

- Andere talstelsels
 - ✓ Octale
 - ✓ Twaalftallige
 - **√** ..

Decimaal talstelsel

- Tientallig stelsel
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Positie van het getal = bepaalde macht van 10

427 =

 $(4x10^2)$

4 honderdtallen

 $(2x10^1)$

2 tientallen

 $(7x10^{0})$

7 eenheden

Binair talstelsel

- Tweetallig stelsel
- () "0" of "1"
- Positie van het getal = bepaalde macht van 2

V C R B E L

$$(1x2^3) + (1x2^2) + (0x2^1) + (1x2^0)$$

$$8 + 4 + 0 + 1 = 13$$

Elke plaats heeft een vaste waarde

2 tot de macht *

* = positie van de bit

 \bigcirc 00000001 = 1 (= 2⁰)

 \bigcirc 00000010 = 2 (= 2¹)

 \bigcirc 00000100 = 4 (= 2²)

 \bigcirc 00001000 = 8 (= 2³)

 \bigcirc 00010000 = 16 (= 2⁴)

 \bigcirc 00100000 = 32 (= 2⁵)

 \bigcirc 01000000 = 64 (= 2⁶)

 \rightarrow 10000000 = 128 (= 2^7)

Binair naar Decimaal

- Tr staat een "0" op een positie
 - ⇒ Deze waarde wordt NIET toegepast
- → Er staat een "1" op een positie
 - → Deze waarde wordt WEL toegepast

There are 10 types of people in the world - those who understand binary and those who don't.

De maximale waarde van een octet is dus 1111111 = 255

00000101 =

$$2^2 + 2^0 = 4 + 1 = 5$$

00110011 = $2^5 + 2^4 + 2^1 + 2^0 = 32 + 16 + 2 + 1 = 51$

Decimaal naar Binair

- Deel het getal steeds door 2
 - ⇒ Schrijf de rest op (zowel "0" als "1")
- Die resten
 - Binair getal

C C R B E 1000 =

1000 / 2	=	500	rest	0
500/2	=	250	rest	0
250/2	=	125	rest	0
125 / 2	=	62	rest	1
62 / 2	=	31	rest	0
31/2	=	15	rest	1
15 / 2	=	7	rest	1
7/2	=	3	rest	1
3/2	=	1	rest	1
1/2	=	0	rest	1

zo van links naar rechts schrijven

⇒ binaire getal is 11 1110 1000

- Bij IP-adressen (IPv4) gebruiken we steeds 4 octets
- Elk octet wordt gescheiden door "."
 Bvb. 192.168.10.1
- Belangrijke getallen bij IP:

```
  \begin{array}{rcl}
    10 & = & 0000 \ 1010 \\
    168 & = & 1010 \ 1000 \\
    172 & = & 1010 \ 1100 \\
    192 & = & 1100 \ 0000
  \end{array}
```


"It was bound to happen—they're beginning to think like binary computers."

Belangrijke getallen bij SubNetMask:

```
0
          0000 0000
                                     240
                                                   1111 0000
              1000 0000
128
                                    248
                                                   1111 1000
              1100 0000
192
                                    252
                                                   1111 1100
           1110 0000
                                               1111 1110
224
                                     254
                                     255
                                                1111 1111
```


Binair naar Decimaal

- → Methode: http://www.beterrekenen.nl/website/?pag=259
 - → Alleen kijken naar de posities waar een "1" staat

Nodig voor het berekenen van subnetten

Decimaal naar Binair

- Methode 1:
 - Decimaal getal delen door 2
 - ✓ Rest ⇒ Binair getal "1" noteren"
 - ✓ Geen rest \Rightarrow Binair getal "0" noteren"
- Methode 2:
 - Werken met tabel