

Chapter 8: Search Trees (Part 2)

Dr. Sirasit Lochanachit

Outline

AVL Trees:

- Definition and Balance Factor
- Balancing Algorithms and Operation examples

Types of Binary Trees (Revisited)

Binary Search Tree (Revisited)

- Running time of <u>inserting node</u> is also proportional to the **height of tree** (i.e. $log_2 n$ or n) == O(h).
 - A **balanced search tree** has the same number of nodes in both left and right subtree.
 - Worst-case performance is $O(\log_2 n)$.
- Inserting keys in sorted order would construct an imbalanced tree.
 - Provides poor performance of the Algorithms Principles

Balanced Binary Search Tree

- ensure balance
- AVL tree
- Splay tree
- Red-black tree

AVL Tree

G.M. Adelson-Velskii and E.M. Landis.

 AVL tree introduces a balance factor for each node in the tree.

Balance Factor in AVL Tree

 AVL tree is considered to be <u>balanced</u> when the balance factor is -1, 0, or 1.

$$\circ |H_{left} - H_{right}| <= 1$$

 AVL tree uses trinode restructuring, involving reconfigurations of three nodes.

Balance Factor in AVL Tree

Balance Factor in AVL Tree

Balancing AVL Tree

Balancing AVL Tree

Balancing AVL Tree (LoL)

Balancing AVL Tree (LoL)

A tree is **left-heavy** with a balance factor of 2 at the root.

Requires a right rotation.

Right Rotation

To perform a right rotation (at node 30), do 4 steps below:

- Promote the left child to be the root of the subtree.
- 2. Move the old root to the right as a right child of the new root.
- If the new root already had a right child,
 - The right child become the left child of the old root.
- 4. Update parents pointers (if exist).

Left of Left

Balancing AVL Tree (LoL)

Balance Factor Condition is $|H_{left} - H_{right}| \le 1$

where (Y) is a node which is a rotated node 06036120 Data Structures and Algorithms Principles

Balancing AVL Tree (LoL)

where (Y) is a node which is a rotated node 06036120 Data Structures and Algorithms Principles

Balancing AVL Tree

Balancing AVL Tree (RoR)

A tree is **right-heavy** with a balance factor of -2 at the root.

Requires a left rotation.

Left Rotation

To perform a left rotation (at node 12), do 4 steps below:

- Promote the right child to be the root of the subtree.
- Move the old root to the left to be the left child of the new root.
- If the new root already had a left child,
 - The left child become the right child of the old root.
- Update parents pointers (if exist).

Right of Right

Balancing AVL Tree (RoR)

where (Y) is a node which is a rotated node 06036120 Data Structures and Algorithms Principles

Balancing AVL Tree (RoR)

where (Y) is a node which is a rotated node 06036120 Data Structures and Algorithms Principles

Balancing AVL Tree

Right Rotation

Left Heavy Balanced

Right Rotation

Left Heavy

Right Heavy

Right Rotation

06036120 Data Structures and Algorithms Principles

Left then Right Rotation

To solve this problem, there are additional rules:

- If a subtree needs a right rotation,
 - Check the balance factor of the left child.
 - If the left child is right-heavy, then do left rotation on the left child.
 - Then do right rotation on the subtree.

Left then Right Rotation

06036120 Data Structures and Algorithms Principles

Right then Left Rotation

Additional rules:

- If a subtree needs a **left rotation**,
 - Check the balance factor of the right child.
 - If the right child is left-heavy, then do right rotation on the right child.
 - Then do left rotation on the subtree.

Balancing AVL Tree

Balancing AVL Tree Example

Example: Rebalance the given AVL tree.

Balancing AVL Tree Exercise

Exercise: Insert the nodes into an AVL tree according to this order: 40, 50, 65 and rebalance the AVL tree.

Summary

 AVL tree ensures that accessing the node costs only O(log₂n) time after deleting or inserting a node.