Введение в машинное обучение

Н.В. Артамонов

15 апреля 2025 г.

Содержание

. 1
8
8
9
стики
емен-

index	sleep	totwrk	age	male
0				
5				
100				
700				

- 3. Вычислите корреляционную матрицу для следующих переменных: sleep, totwrk, age
- 4. Заполните следующую таблицу

Desc.Stat	sleep	totwrk	age	hrwage
max				
min				
mean				
median				
st.dev				
var				
1st quartile				
3rd quartile				

Замечание: 1st/3rd квантили – 25%/75% квантили соответственно.

- 5. Сколько наблюдения соответствуют следующим условиям
 - (a) sleep>3000
 - (b) totwrk<2000
 - (c) age>40
 - (d) age<30
- 6. Сколько наблюдений с условием totwrk=0? Кто эти люди?
- 7. Есть ли в датасете пропущенные наблюдения? Сколько их?
- #3. Загрузите датасет Electricity.
 - 1. вычислите размер датасета (число наблюдений & число переменных)

2. заполните следующую таблицу со значениями переменных

index	cost	q	pl	pk	pf
1					
15					
48					
87					

- 3. Вычислите корреляционную матрицу для следующих переменных: $\cos t, \, q, \, pl, \, pk, \, pf$
- 4. Заполните следующую таблицу

Desc.Stat	cost	q	pl	pk	pf
max					
min					
mean					
median					
st.dev					
var					
1st quartile					
3rd quartile					

Замечание: 1 st/3 rd квантили – 25%/75% квантили соответственно.

- 5. Сколько наблюдения соответствуют следующим условиям
 - (a) cost>40
 - (b) q<5000
 - (c) q>4000
 - (d) 20 < cost < 50
- 6. Есть ли в датасете пропущенные наблюдения? Сколько их?
- #4. Загрузите датасет wage2.
 - 1. вычислите размер датасета (число наблюдений & число переменных)

2. заполните следующую таблицу со значениями переменных

index	wage	hours	IQ	educ	exper	age
1						
25						
179						
800						

- 3. Вычислите корреляционную матрицу для следующих переменных: wage, hours, IQ, educ, exper
- 4. Заполните следующую таблицу

Desc.Stat	wage	hours	IQ	educ	exper	wage
max						
min						
mean						
median						
st.dev						
var						
1st quartile						
3rd quartile						

Замечание: 1 st/3 rd квантили – 25%/75% квантили соответственно.

- 5. Сколько наблюдения соответствуют следующим условиям
 - (a) wage>1000
 - (b) age < 40
 - (c) exper>10
 - (d) 100<IQ<130
- 6. Есть ли в датасете пропущенные наблюдения? Сколько их?
- #5. Загрузите датасет Labour. Создайте новый датасет, содержащий log-переменные из исходного датасета.
- #6. Загрузите датасет Electricity. Создайте новый датасет, содержащий log-переменные из исходного датасета.

1.2 Визуализация

- #7. Загрузите датасет sleep75.
 - 1. нарисуйте гистограммы для переменных sleep, totwrk, age, hrwage, educ
 - 2. нарисуйте гистограмму с накопление для sleep относительно male
 - 3. нарисуйте гистограмму с накопление для totwrk относительно south
 - 4. нарисуйте гистограмму с накопление для totwrk относительно smsa
 - 5. нарисуйте диаграмму рассеяния sleep vs totwrk
 - 6. нарисуйте диаграмму рассеяния sleep vs totwrk с группировкой по male
 - 7. нарисуйте диаграмму рассеяния sleep vs age
 - 8. нарисуйте диаграмму рассеяния sleep vs age с группировкой по south
 - 9. нарисуйте диаграмму рассеяния sleep vs edu
 - 10. нарисуйте диаграмму рассеяния sleep vs edu с группировкой по smsa
 - 11. визуализируйте корреляционную матриц для следующих переменных: sleep, totwrk, age
- #8. Загрузите датасет Labour.
 - 1. нарисуйте гистограммы для каждой переменной
 - 2. нарисуйте гистограммы для log-переменных output, capital, labour, wage
 - 3. нарисуйте диаграммы рассеяния output vs других переменных
 - 4. нарисуйте диаграммы рассеяния log(output) vs log других переменных
 - 5. визуализируйте корреляционную матриц для всех переменных

- 6. визуализируйте корреляционную матриц для log-переменных
- #9. Загрузите датасет Electricity.
 - 1. нарисуйте гистограммы для переменных cost, q, pf, pk, pl
 - 2. нарисуйте гистограммы для log-переменных cost, q, pf, pk, pl
 - 3. нарисуйте диаграммы рассеяния cost vs других переменных
 - 4. нарисуйте диаграммы рассеяния log(cost) vs log других переменных
 - 5. визуализируйте корреляционную матриц для всех переменных
 - 6. визуализируйте корреляционную матриц для log-переменных

#10. Загрузите датасет diamonds.

- 1. нарисуйте гистограммы для переменных price, carat
- 2. нарисуйте гистограммы для log-переменных price, carat
- 3. нарисуйте гистограмму с накопление для price относительно cut
- 4. нарисуйте гистограмму с накопление для carat относительно clarity
- 5. нарисуйте гистограмму с накопление для log(price) относительно color
- 6. нарисуйте гистограмму с накопление для log(carat) относительно color
- 7. нарисуйте диаграмму рассеяния price vs carat
- 8. нарисуйте диаграмму рассеяния log-price vs log-carat
- 9. нарисуйте диаграмму рассеяния log-price vs log-carat с группировкой по cut
- 10. нарисуйте диаграмму рассеяния log-price vs log-carat с группировкой по color
- 11. нарисуйте диаграмму рассеяния log-price vs log-carat с группировкой по clarity

#11. Загрузите датасет Diamond.

- 1. нарисуйте гистограммы для переменных price, carat
- 2. нарисуйте гистограммы для log-переменных price, carat
- 3. нарисуйте гистограмму для price с группировкой относительно переменной certification
- 4. нарисуйте гистограмму для carat с накопление относительно clarity
- 5. нарисуйте гистограмму для log(price) с накопление относительно colour
- 6. нарисуйте гистограмму для log(carat) с накопление относительно colour
- 7. нарисуйте диаграмму рассеяния price vs carat
- 8. нарисуйте диаграмму рассеяния log-price vs log-carat
- 9. нарисуйте диаграмму рассеяния log-price vs log-carat с группировкой по certification
- 10. нарисуйте диаграмму рассеяния log-price vs log-carat с группировкой по colour
- 11. нарисуйте диаграмму рассеяния log-price vs log-carat с группировкой по clarity

#12. Загрузите датасет countries.

- 1. Постройте гистограммы для всех переменных
- 2. Постройте диаграмму рассеяния Население vs ВВП д/н
- 3. Постройте диаграмму рассеяния ИРЧП vs ВВП д/н
- 4. Постройте диаграмму рассеяния Безработица vs ВВП д/н

2 Preprocessing

Замечание: рассмотрите следующие преобразования переменных:

- квантильное (для гауссового распределения)
- Box-Cox
- Yeo-Johnson
- #1. Загрузите датасет Labour
 - 1. Нарисуйте гистограммы для каждой переменной в уровнях и после стандартных преобразований
 - 2. Нарисуйте диаграммы рассеяния в уровнях и после стандартных преобразований
- #2. Загрузите датасет diamonds. Для переменных price, carat, x, y, z
 - 1. Нарисуйте гистограммы для каждой переменной в уровнях и после стандартных преобразований
 - 2. Нарисуйте диаграммы рассеяния в уровнях и после стандартных преобразований

3 Снижение размерности

- #1. Загрузите датасет Labour.
 - 1. Визуализируйте данные в главных компонентах (рассмотрите 2D и 3D визуализацию)
 - 2. Визуализируйте данные, используя метод t-SNE (рассмотрите 2D и 3D визуализацию)
 - 3. Вычислите накопленные дисперсии главных компонент.
- #2. В условиях предыдущей задачи проведите визуализацию и вычислите накопленные дисперсии главных компонент после (нелинейного) преобразования данных (квантильное, Box-Cox, Yeo-Johnson)

- #3. Загрузите датасет sleep75 и удалите переменные с пропущенными значениями.
 - 1. Визуализируйте данные в главных компонентах (рассмотрите 2D и 3D визуализацию)
 - 2. Визуализируйте данные, используя метод t-SNE (рассмотрите 2D и 3D визуализацию)
 - 3. Вычислите накопленные дисперсии главных компонент.
- #4. В условиях предыдущей задачи проведите визуализацию и вычислите накопленные дисперсии главных компонент после (нелинейного) преобразования данных (квантильное, Box-Cox, Yeo-Johnson)
- #5. Загрузите датасет diamonds и удалите категориальные переменные.
 - 1. Визуализируйте данные в главных компонентах (рассмотрите 2D и 3D визуализацию)
 - 2. Визуализируйте данные, используя метод t-SNE (рассмотрите 2D и 3D визуализацию)
 - 3. Вычислите накопленные дисперсии главных компонент.
- #6. В условиях предыдущей задачи проведите визуализацию и вычислите накопленные дисперсии главных компонент после (нелинейного) преобразования данных (квантильное, Box-Cox, Yeo-Johnson)

4 Кластеризация

Важно обязательно проводим предварительную обработку данных:

- удаление пропущенных значений
- нормировка
- преобразование категориальных признаков
- #1. Для набора данных countries проведите разбиение на кластеры следующими методам:

Число кластеров	Метод
3	k-средних
4	k-средних
5	k-средних
3	иерархическая
4	иерархическая
5	иерархическая

Визуализируйте разбиение на кластеры на диаграмме рассеяния в переменных датасета

- #2. Для набора данных countries найдите «оптимальное» число кластеров для метода
 - 1. k-средних
 - 2. иерархической кластеризации

относительно метрик: Silhouette, Calinski-Harabasz, Davies-Bouldin

#3. Из набора данных sleep75 возьмите переменные sleep, totwrk, age, educ и проведите разбиение на кластеры следующими методам:

Число кластеров	Метод
3	k-средних
4	k-средних
5	k-средних
3	иерархическая
4	иерархическая
5	иерархическая

Визуализируйте разбиение на кластеры на диаграмме рассеяния в переменных датасета

- #4. Из набора данных sleep75 возьмите переменные sleep, totwrk, age, educ и найдите «оптимальное» число кластеров для метода
 - 1. k-средних
 - 2. иерархической кластеризации

относительно метрик: Silhouette, Calinski-Harabasz, Davies-Bouldin

#5. Для набора данных Labour проведите разбиение на кластеры следующими методам:

Число кластеров	Метод
3	k-средних
4	k-средних
5	k-средних
3	иерархическая
4	иерархическая
5	иерархическая

Визуализируйте разбиение на кластеры на диаграмме рассеяния в переменных датасета

#6. Для набора данных Labour найдите «оптимальное» число кластеров для метода

- 1. k-средних
- 2. иерархической кластеризации

относительно метрик: Silhouette, Calinski-Harabasz, Davies-Bouldin