Библиотеки технического зрения

Студент - Каретный Я.М.

LabView IMAQ Vision

- LabVIEW (англ. Laboratory Virtual Instrum entation Engineering Workbench) это среда разработки и платформа для выполнения программ, созданных на графическом языке программирования «G» фирмы National Instruments (США).
- Дополнительный модуль технического зрения NI IMAQ Vision дает возможность загружать изображения с аналоговых и цифровых источников, имеет множество функций анализа и обработки изображений.

Функция	OpenCV, мсек	IMAQ, мсек	Отношение времени IMAQ к времени OpenCV, раз
Чтение кадра из .avi	9866	75197	7,62
Вывод изображения на экран	14207	2635	0,19
Трёхцветное размытие	40455	166364	4,11
Перевод в серую шкалу	6038	18755	3,10
Перевод в серую шкалу с последующим размытием	19495	62145	3,18
Копирование изображения	4413	3933	0,89
Рисование отрезка (1000 раз*)	4053	40318	9,95
Извлечение зелёного канала	2591	8098	3,13
Преобразование из RGB в HLS	124105	396111	3,19
Копирование цветов пикселей из одного отрезка в другой (500 раз**)		15454	5,38

ПРОЕКТ - СИСТЕМА ТЕХНИЧЕСКОГО ЗРЕНИЯ ДЛЯ УЧЕТА ДВИЖЕНИЯ НА ПЕРЕКРЕСТКАХ

Недостатки:

- •LabVIEW это продукт с <u>закрытым исходным кодом</u>. Версии для Windows, начиная с 8.2, требуют активации (для Linux и МАС такой необходимости нет).
- •Ограниченная поддержка не-Windows платформ (MAC, Linux): нет драйверов, нет специальных toolkit-программ

LabVIEW

LabVIEW поддерживает огромный спектр оборудования различных производителей и имеет в своём составе (либо позволяет добавлять к базовому пакету) многочисленные библиотеки компонентов:

- для подключения внешнего оборудования по наиболее распространённым интерфейсам и протоколам (RS-232, GPIB-488, TCP/IP и пр.);
- для удалённого управления ходом эксперимента;
- для управления роботами и системами машинного зрения;
- для генерации и цифровой обработки сигналов;
- для применения разнообразных математических методов обработки данных;
- для визуализации данных и результатов их обработки (включая 3D-модели);
- для моделирования сложных систем;
- для хранения информации в базах данных и генерации отчётов;
- для взаимодействия с другими приложениями в рамках концепции <u>COM/DCOM/OLE</u>.
- Специальный компонент *LabVIEW Application Builder* позволяет создавать LabVIEW-программы, пригодные для выполнения на тех компьютерах, на которых не установлена полная среда разработки. Для работы таких программ требуется бесплатно распространяемый компонент «LabVIEW Runtime Engine» и, при необходимости, драйверы используемых внешних устройств.

LTI-Lib

• LTI-Lib - это объектноориентированная библиотека с алгоритмами и структурами данных, которые часто используются при обработке изображений и компьютерном зрении. Она был разработана на кафедре технических компьютерных наук (Lehrstuhl fuer Technische Informatik) LTI в Ахенском технологическом университете в рамках многих исследовательских проектов в области компьютерного зрения, касающихся робототехники, распознавания объектов и распознавания языка пения и жестов.

Он был разработан с использованием <u>GCC</u> под <u>Linux</u> и <u>Visu</u> <u>al C ++</u> под <u>Windows NT</u>

LTI-Lib

Многие классы инкапсулируют функциональные возможности Windows / Linux, чтобы упростить работу с кодом системы или оборудования (например, классы для многопоточности и синхронизации, измерения времени и доступа к последовательному порту).

Остальные из более чем 500 классов в основном относятся к одной из следующих областей:

Линейная алгебра

• Предоставляются матрицы, векторы, тензоры и функторы для извлечения собственных значений, собственных векторов, решений линейных уравнений, статистики и т. Д.

Классификация и кластеризация

• Классификаторы радиальных базисных функций, машины опорных векторов, k-средние, нечеткие С-средние, статистика классификации.

Обработка изображения

• Большинство классов занимается проблемами обработки изображений. Уже доступны различные подходы к сегментации, линейные фильтры, вейвлеты, управляемые фильтры и многое другое.

Инструменты визуализации и рисования

• Самая сложная часть при разработке алгоритмов обработки изображений на C ++ - отображение временных изображений во время отладки. Благодаря объектно-ориентированной архитектуре LTI-Lib вам просто нужно создать объект просмотра и дать ему изображение, которое вы хотите показать. Вот и все. Если вам дополнительно необходимо нарисовать дополнительную информацию на этом изображении (текст, эллипсы, прямоугольники, линии или точки), вы можете использовать один из объектов рисования.

(Информация взята из данного источника: http://ltilib.sourceforge.net/doc/homepage/index.shtml)

Intel IPP

• Библиотека Intel Integrated Performance Primitives (Intel IPP) поддерживает многоядерные процессоры, содержит в себе оптимизированные функции для обработки мультимедийных данных, поддерживает Intel и AMD процессоры и работает под операционными системами Windows, Linux и Mac OS X. Intel IPP - небольшая библиотека, спроектированная для создания мультимедийных приложений и приложений обработки данных.

Тепсепt, крупнейший и наиболее часто используемый в Китае портал интернет-услуг, смог удвоить скорость своей системы фильтрации незаконных изображений с помощью набора инструкций SIMD и Intel® IPP.

JD.com, крупнейшая китайская компания прямых продаж через Интернет, обрабатывает несколько миллиардов изображений товаров каждый день. Для этого компания разработала собственную распределенную файловую систему JD File System * (JFS *). Используя компилятор Intel® C ++ и Intel® IPP, JD.com ускорил обработку изображений в 17 раз, обрабатывая 300 000 изображений за 162 секунды вместо 2800 секунд.

Intel IPP включает в себя следующие функции:

- кодирование и декодирование видео;
- кодирование и декодирование аудио;
- JPEG/JPEG2000
- машинное зрение;
- криптография;
- сжатие данных;
- преобразование цвета;
- обработка изображения;
- трассировка луча/визуализация;
- обработка сигналов;
- кодирование речи;
- распознавание речи;
- обработка строк;
- векторная/матричная математика;

• VXL (Vision- something -Libraries) - это набор библиотек С ++, предназначенных для исследований и внедрения компьютерного зрения. Пакет был создан путем извлечения основных функций двух больших систем: «Среда понимания изображений» (IUE) и «Target junior» (TargetJr).

- Основные библиотеки в VXL:
- vnl (числа)
- vil (изображение)
- vgl (геометрия)
- vsl (потоковый ввод-вывод)
- Помимо основных библиотек, существуют библиотеки, охватывающие числовые алгоритмы, обработку изображений, системы координат, геометрию камеры, стерео, манипуляции с видео, восстановление структуры из движения, вероятностное моделирование, проектирование графического интерфейса пользователя, классификацию, надежную оценку, отслеживание функций, топологию. , манипуляции со структурами, 3D-изображения и многое другое.

Сравнение

Тест проводился на Pentium M 1,7 ГГц:

- 1.2D DFT: прямое преобразование Фурье изображения 512x512
- 2.Изменение размера: от 512х512 до изображения 384х384, билинейная интерполяция. Использовалось 8-битное трехканальное изображение.
- 3.Оптический поток: отслеживалось 520 точек с окном 41х41 и 4 уровнями пирамиды
- 4. Нейронная сеть: грибной тест FANN

Информация была взята из данного источника: https://aishack.in/tutorials/opencv-vs-vxl-vs-lti-performance-test/

BoofCV

• BoofCV - это библиотека с открытым исходным кодом, написанная с нуля для компьютерного зрения в реальном времени. Его функции охватывают широкий диапазон объектов, обработку изображений на низком уровне, калибровку камеры, обнаружение / отслеживание функций, определение структуры по движению, определение реперных точек и распознавание.

BoofCV

Сводка возможностей

Обработка изображения		Характерная черта		Признание		Геометрический		Интеграция
		Черные полигоны Черные эллипсы	пример					
Свертка изображений Производные изображения Порог Бинарные операции Цветовое пространство Интерполяция Деформация изображения Размытие изображения Улучшение Удаление шума Преобразование Фурье Вейвлет-разложение Пирамида дискретных изображений Пирамида плавающих изображений	пример пример пример пример пример пример пример пример пример пример	Черные эллипсы Интересные точки Обнаружение линии Обнаружение движения Бинарные контуры Подгонка многоугольника Эллиптический фитинг Соответствие шаблонов Интересные точки Плотные особенности Отслеживание точек Не максимальное	пример пример пример пример пример пример пример пример	Поиск цветного изображения Классификатор КNN Классификаторы СNN Отслеживание объектов Реперные знаки QR-коды	пример пример пример пример Руководство Руководство	Калибровка камеры Моно калибровка Стерео калибровка Удалить искажение Регулировка связки 3D стерео облако Монокуляр стерео Некалиброванное стерео Стабилизация видео Видео Мозаика Визуальный Одом: Стерео	пример пример пример пример пример пример пример	Визуализация Android видео Kinect Обработка Python В
Масштабировать космическо изображение Равнопрямоугольный Камеры Fisheye	е пример пример	подавление Плотный оптический поток Суперпикселей Цветовая сегментация	пример			Визуальный одом: моноплан Визуальный одом: RGB-D	пример	

MATLAB

• **MATLAB** — это среда и язык технических расчетов, предназначенный для решения широкого спектра инженерных и научных задач любой сложности в любых отраслях.

• Говоря о ТЗ, считается, что МАТLAВ удобнее в разработке и представлении данных, однако OpenCV намного быстрее в исполнении. В случае OpenCV соотношение скоростей в некоторых случаях достигает более 80.

Если говорить об использовании Matlab для решений задач Т3:

- Пользователь может разрабатывать решения для зрения с помощью комплексного набора стандартных эталонных алгоритмов для обработки изображений, компьютерного зрения и глубокого обучения.
- Можно сотрудничать с командами, использующими OpenCV, Python и C / C ++, используя совместимые API и инструменты интеграции.
- Он помогает ускорять алгоритмы на графических процессорах NVIDIA, облачных ресурсах и ресурсах центров обработки данных без специального программирования или знаний в области ИТ.
- Приложения MATLAB можно использовать для интерактивного изучения ваших данных и автоматической генерации кода MATLAB. Это означает, что вам не нужно кодировать с нуля.
- Он может быть интегрирован напрямую с открытым исходным кодом. Вы можете повторно использовать устаревший код, на другом языке программирования, создавать написанный поддержкой веб-сайты C адаптивные обеспечение, программировать аппаратное используя безошибочный С-код, встроенный сгенерированный непосредственно из MATLAB.
- Используя MATLAB, пользователь может работать с кодом С / С ++ и HDL и запускать алгоритмы обработки изображений на аппаратном обеспечении ПК, ПЛИС и ASIC, а также разрабатывать системы обработки изображений.
- Пользователи могут использовать сгенерированный CUDA в MATLAB для ускорения вычислительно-интенсивных частей своего кода MATLAB.

Emgu CV

- Emgu CV это кроссплатформенная оболочка .Net для <u>библиотеки</u> обработки изображений <u>OpenCV</u> . Разрешение <u>вызова</u> функ ций <u>OpenCV</u> из языков, совместимых с .NET. Оболочку можно скомпилировать с помощью Visual Studio, Xamarin Studio и Unity.
- <u>Emgu</u> CV полностью написано на C#. Преимущество состоит в том, что он может быть <u>скомпилирован в Мопо</u> и, следовательно, может работать на любой платформе, поддерживаемой Мопо, включая iOS, Android, Windows, Phone, Mac OS X и Linux.
- <u>Emgu CV</u> можно использовать на нескольких разных языках, включая С #, VB.NET, С ++ и IronPython.

Особенности платформ

Windows

Name	Emgu CV (Open Source)	Emgu CV for Windows	s (Commercial Optimized)	Emgu CV for Unity		
Development tools	Visual Studio 2017 and up	Visual Studio 2017 and up Visual Studio 2017 and up		Unity 3D 2019.4 and up		
Platform	Windows	Windows	UWP / Windows 8.1 Store app	Windows Desktop Standalone		
Supported CPU Architecture	i386, x64	i386, x64	i386, x64	i386 (Editor & Standalone), x64 (Standalone)		
CUDA GPU Processing	✓	✓	Х	Х		
OpenCL (GPU&CPU)	✓	✓	Х	✓		
Tesseract OCR ₽	✓	✓	✓	✓		
Compiled with IPP & code dispatch	х	✓	Х	Х		
Exception Handling	✓	✓	✓	✓		
Debugger Visualizer	✓	✓	Х	Х		
Emgu.CV.UI	✓	✓	Х	Х		
License	GPL	Commer	cial License	Commercial License		

OSX, Linux, Unix

The commercial release include prebuild binary for OSX. For Linux and Unix platform, you need to compile the binary from source.

Name	Emgu CV (Open Source)	Emgu CV for OSX, Linux Unix(Commercial License)	Emgu CV for Unity
Development Tools	Xamarin Studio or MonoDevelop	Visual Studio for Mac or Xamarin Studio	Unity 3D Pro v5.1
osx	✓	✓	x86 & x64 (Editor & Standalone)
Linux, Unix	✓	✓	Х
CUDA GPU Processing	Х	х	х
OpenCL (GPU&CPU)	✓	✓	✓
Tesseract OCR ₽	✓	✓	✓
Exception Handling	✓	✓	✓
License	GPL	Commercial License	Commercial License

Mobile Devices

Name	Emgu CV for Xamarin iOS	Emgu CV for Xamarin Android	Emgu CV for UWP	Emgu CV for Unity			
Requirement	Visual Studio 2017+ for Mac (recommended) or Windows	Visual Studio 2017+ for Windows or Mac	Visual Studio 2017+	Unity 3D 2019.4			
Platform	iOS (iPhone, IPad, IPod Touch)	Android	UWP	iOS (iPhone, IPad, IPod Touch)	Android	Windows UWP	
Supported Device	armv7, armv7a, arm64	armeabi, armeabi-v7a, arm64-v8a, x86, x86_64	arm, x86, x64	armv7, armv7a, arm64	armeabi-v7a, x86	arm, x86, x86_64	
Supported Simulator	i386, x64	armeabi, armeabi-v7a, arm64-v8a, x86, x86_64	x86	i386	armeabi-v7a, x86	x86, x86_64	
CUDA GPU Processing	х	х	х	х	х	х	
OpenCL 1.2 (GPU&CPU)	х	√ (on supported devices ₽)	х	х	√ (on supported devices⊮)	х	
Tesseract OCR №	✓	✓	✓	✓	✓	✓	
Exception Handling	✓	✓	✓	✓	✓	√	
License	Commercial License	Commercial License	Commercial License	Commercial License			