Karan Vora (kv2154) Machine Learning Assignment 4

Problem 1):

Compute the mean of the image data of shape (100, 1900). And then subtract the mean from all data points to get the de-centered data.

$$\mu = mean(X)$$

and get x from

$$x=X-\mu$$

Computing the covariance matrix

$$C = x^T x$$

Apply eigenvector Decomposition to covariance matrix

$$C = V \Lambda V^{-1}$$

The 3 most significant eigen value is

Eigen Value = 4.215022

Eigen Value = 3.016759

Eigen Value = 2.099301

The coefficient matrix is obtained by

$$c_{ij} = (X_i - \mu)^T V_j' = x_i^T V_j'$$

This is just the inner product of \boldsymbol{x} and the top 3 eigenvectors

$$c = xV'$$

we can calculate $\stackrel{\wedge}{X}$ by

$$\hat{X} = \mu + \sum_{j=1}^{c} c_{ij} V'_{j}$$

which in simple terms is

$$\stackrel{\wedge}{X} = \mu + cV'$$

The 10 generated images are

Original image

5
10
15
20
25
30
35
10 20 30 40 50

Original image

5
10
15
20
25
30
35
10 20 30 40 50

Original image

5
10
15
20
25
30
35
10
20
30
40
50

Original image

5
10
15
20
25
30
35
10 20 30 40 50

PCA image

5
10
15
20
25
30
35
10 20 30 40 50

Problem 2):

First box 8 Apples 4 Oranges Second box 10 Apples 2 Oranges

Probability of selecting box = $P(E_1) = P(E_2) = \frac{1}{2}$

Select Apple from First box

$$P(A/E_1) = \frac{8}{12} = \frac{2}{3}$$

Select Apple from Second box

$$P(A/E_2) = \frac{10}{12} = \frac{5}{6}$$

Applying Bayes Theorem

$$P(E_1/A) = \frac{P(E_1)P(A/E_1)}{P(E_1)P(A/E_1) + P(E_2)P(A/E_2)}$$

$$= \frac{\frac{1}{2}x\frac{2}{3}}{(\frac{1}{2}x\frac{2}{3})+(\frac{1}{2}x\frac{5}{6})}$$

$$P(E_1/A) = \frac{4}{9}$$

Problem 3):

Now, St=A Therefore we will differentiare the enough A

Therefore we will differentiate the enough A

Therefore we will different a the enough A

Therefore we will differen 2 (A-1) - [\$ [07:-Mo](1]:-Mo]] 100 1 - 1 5 (x; -M°)(x; -M°)(=0 The patons when I free warring with No 50-18, (Di-Mo) (Di-Mo) =0 NU (E0) = E: (J) - MI (T) - MI) + 50 = 00 & (00; -10) (00; -10)

Similarly, $\sum_{i=1}^{n} \sum_{i=1}^{n} (x_{i}^{n} - M_{i}^{n})(x_{i}^{n} - M_{i}^{n})^{T}$ Now, The given Bayes optimal decision is y = argmax 9 - 50,13 P (y)) For a linear Lecision Boundry of 2 class profit P(y=1/2) = P(y=0 x)=0.5 Using the conditional pouranters we get in P(y=1/x) = P(3(,y=1) = 0()(, 7=1)+0(4=1) (a, y) = P(x(y=1)P(B=1) P()(, y=1) + P()(, y=0)

$$\sum_{i=1}^{n} (M_{i} - M_{i})^{T} \sum_{i=1}^{n} (M_{i} - M_{i})$$