MA2102: LINEAR ALGEBRA

Lecture 5: Linear Dependence
26th August 2020

• $\operatorname{span}(S_1 \cup S_2) = \operatorname{span}(S_1) + \operatorname{span}(S_2)$ Before proving this, recall that

$$T_1 + T_2 := \{v + w \mid v \in T_1, w \in T_2\}$$

for any two subsets T_1 , T_2 of a vector space V. For example, if $A = \mathbb{Z}$ and B = (0,1) inside \mathbb{R} , then $A + B = \mathbb{R} - \mathbb{Z}$. Similarly, if C = [0,1), then $A + C = \mathbb{R}$.

As $S_i \subset S_1 \cup S_2$, we have $\operatorname{span}(S_i) \subseteq \operatorname{span}(S_1 \cup S_2)$. As $\operatorname{span}(S_1 \cup S_2)$ is a vector space, if $v \in \operatorname{span}(S_1)$ and $w \in \operatorname{span}(S_2)$, then $v + w \in \operatorname{span}(S_1 \cup S_2)$. Thus, we have the \supseteq inclusion.

Conversely, if $v = c_1v_1 + \dots + c_kv_k + d_1w_1 + \dots + d_lw_l$ with $v_i \in S_1$ and $w_i \in S_2$, then $v \in \operatorname{span}(S_1) + \operatorname{span}(S_2)$.

Let V_1, V_2 be subspaces of V. Show that $V_1 \cap V_2$ is a subspace.

In fact, $V_1 + V_2$ is the smallest subspace containing V_1 and V_2 .

• $\operatorname{span}(S_1 \cap S_2) \subseteq \operatorname{span}(S_1) \cap \operatorname{span}(S_2)$

As $S_1 \cap S_2 \subset S_i$, we have $\operatorname{span}(S_1 \cap S_2) \subseteq \operatorname{span}(S_1) \cap \operatorname{span}(S_2)$.

Let V_1 , V_2 be subspaces of V. Show that $V_1 + V_2$ is a subspace.

Remark The converse is not true. Let v be a non-zero vector. Let $S_1 = \{v\}$ and $S_2 = \{-v\}$ with $\text{span}(S_1) = \text{span}(S_2)$. Then

$$\{0\} = \operatorname{span}(\emptyset) = \operatorname{span}(S_1 \cap S_2) \not\supseteq \operatorname{span}(S_1).$$

Illustrative Examples

(1) Consider the set *S*

$$\left\{\left(\begin{array}{ccc}1&0\\0&0\end{array}\right),\left(\begin{array}{ccc}0&1\\0&0\end{array}\right),\left(\begin{array}{ccc}0&0\\1&0\end{array}\right),\left(\begin{array}{ccc}0&0\\0&1\end{array}\right),\left(\begin{array}{ccc}0&0\\0&0\end{array}\right),\left(\begin{array}{ccc}1&0\\0&-1\end{array}\right)\right\}$$

We observe that $M_2(\mathbb{R}) = \operatorname{span}(S)$. In fact, there is no unique way of representing $A \in M_2(\mathbb{R})$ as a linear combination of elements of S. For example,

$$\left(\begin{array}{cc} 2 & 3 \\ 1 & 0 \end{array}\right) = 2 \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) + 3 \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) + 1 \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) + c \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right)$$

$$\left(\begin{array}{cc}2&3\\1&0\end{array}\right)=2\left(\begin{array}{cc}1&0\\0&-1\end{array}\right)+3\left(\begin{array}{cc}0&1\\0&0\end{array}\right)+1\left(\begin{array}{cc}0&0\\1&0\end{array}\right)+2\left(\begin{array}{cc}0&0\\0&1\end{array}\right).$$

Show that $M_2(\mathbb{R})$ is the span of

$$\left\{ \left(\begin{array}{ccc} 1 & 0 \\ 0 & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & 0 \\ 1 & 0 \end{array}\right), \left(\begin{array}{ccc} 1 & 0 \\ 0 & -1 \end{array}\right) \right\}.$$

Convince yourself that $M_2(\mathbb{R})$ cannot be the span of a set of size three.

(2) Consider span($\{1-x, 1+x, x^2-x\}$) in $P(\mathbb{R})$, the space of all polynomials. Note that if p(x) is in the span, then $\deg(p) \leq 2$. On the other hand,

$$1 = \frac{1}{2}(1-x) + \frac{1}{2}(1+x)$$
$$x = \frac{1}{2}(1+x) - \frac{1}{2}(1-x)$$

$$x^2 = 1(x^2 - x) + \frac{1}{2}(1 + x) - \frac{1}{2}(1 - x)$$

implies that any polynomial of degree at most 2 is in the span. Thus, the span is $P_2(\mathbb{R})$.

Show that if
$$a(1-x) + b(1+x) + c(x^2-x) = 0$$
, then $a = b = c = 0$.

Convince yourself that $P_2(\mathbb{R})$ cannot be the span of a set of size two.

(3) Let $\mathbf{u}_1 = (2,-1,4)$, $\mathbf{u}_2 = (1,-1,3)$, $\mathbf{u}_3 = (1,1,-1)$ and $\mathbf{u}_4 = (1,-2,-1)$. If \mathbf{u}_1 is a linear combination of the other \mathbf{u}_i 's, then

$$S := \text{span}(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}) = \text{span}(\{\mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}).$$

Observe that

$$\mathbf{u}_3 = 2\mathbf{u}_1 - 3\mathbf{u}_2 = 2\mathbf{u}_1 - 3\mathbf{u}_2 + 0\mathbf{u}_4.$$

This implies that $S = \text{span}(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_4\})$. The above relation can be rewritten as

$$2\mathbf{u}_1 - 3\mathbf{u}_2 - 1\mathbf{u}_3 + 0\mathbf{u}_4 = 0$$
,

i.e., there is a *non-trivial* linear combination of \mathbf{u}_i 's which is zero. Show that no non-trivial combination of $\mathbf{u}_1, \mathbf{u}_2$ and \mathbf{u}_4 is zero.

In fact, from basic matrix theory, we can see that $S = \mathbb{R}^3$.

Definition [Linear Dependence] A subset S of a vector space (over a field F) is called linearly dependent if there exists distinct vectors v_1, \ldots, v_k in S and scalars $c_1, \ldots, c_k \in F$, not all zero, such that

$$c_1v_1+\cdots+c_kv_k=0.$$

A set *S* is called linearly independent if it is not linearly dependent.

Remarks (1) Note that if $v \in S$, then 2v + (-2)v = 0, although true, does not imply anything about S. However, if $-v \in S$, then 2v + 2(-v) = 0 implies that S is linearly dependent.

(2) Any set containing the zero vector is always linearly dependent.

A linear combination $c_1v_1+\cdots+c_kv_k=0$ is called non-trivial if some c_i 's are non-zero.

Example (1) Consider the set S consisting of

$$\mathbf{u}_1 = (1,0), \ \mathbf{u}_2 = (0,1), \ \mathbf{u}_3 = (1,1), \ \mathbf{u}_4 = (-2,-2).$$

Observe that the following relations hold

$$\mathbf{u}_{1} + \mathbf{u}_{2} + \mathbf{u}_{3} + \mathbf{u}_{4} = (0,0)$$

$$2\mathbf{u}_{1} + 2\mathbf{u}_{2} + \mathbf{u}_{3} + 2\mathbf{u}_{4} = (0,0)$$

$$\mathbf{u}_{1} + \mathbf{u}_{2} - \mathbf{u}_{3} = (0,0)$$

$$2\mathbf{u}_{3} + \mathbf{u}_{4} = (0,0)$$

Show that $\{u_1, u_2\}$, $\{u_2, u_3\}$, $\{u_1, u_3\}$ are linearly independent and all these sets span \mathbb{R}^2 while $\{u_3, u_4\}$ is linearly dependent.

Question Can you think of a linearly indepedent set of size 3 in \mathbb{R}^2 ?

Example (1) Consider the subsets

$$S_1 = \{1 - x, 1 + x, x\}, S_2 = \{1 - x, 1 + x, e\}$$

of $P(\mathbb{R})$, the set of polynomials. Note that e stands for the constant polynomial that takes the value e. Since

$$-1(1-x) + 1(1+x) - 2(x) = 0$$

$$1(1-x) + 1(1+x) - \frac{2}{e}(e) = 0$$

the sets S_1 , S_2 are linearly dependent. However, any subset of size two in S_1 or S_2 is linearly independent (exercise).

Question If S is linearly dependent, can we find $v \in S$ such that $span(S) = span(S - \{v\})$?