Solution to Q4, Question sheet 3

From Q3, we know

$$\mathbf{K} = \begin{bmatrix} k_1 + k_2 & -k_2 & 0 \\ -k_2 & k_2 + k_3 & -k_3 \\ 0 & -k_3 & k_3 \end{bmatrix} = \begin{bmatrix} 5 & -2 & 0 \\ -2 & 3 & -1 \\ 0 & -1 & 1 \end{bmatrix} \times 10^7 \text{ N/m}$$

$$\mathbf{M} = \begin{bmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1.5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times 10^5 \text{ kg}$$

$$\mathbf{M} = \begin{bmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1.5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times 10^5 \text{ kg}$$

a) Consider only the 1st mode increasing linearly with the height [Refer to Q3 a]

The approximation to 1st mode:

Modal shape: $v_1 = [1 \ 2 \ 3]^T$ Natural frequency: $\omega_1 = 5.94 \text{ 1/s}$ $T_1=2\pi/\omega_1=1.058s$ Period:

 $\overline{m}_1 = \mathbf{v}_1^T \mathbf{M} \mathbf{v}_1 = 1.7 \times 10^5 \text{ kg}$ Modal mass:

(1) $S_a(T_1)$ and $S_u(T_1)$

From the Eurocode 8 diagram given for the question:

 $S_a(T_1)=0.3/T_1 * g=2.836$ (g=10 ms⁻²)

 $S_u(T_1) = S_a(T_1) / \omega_1^2 = 0.08$

(2) Load participation factor: l_1

$$l_1 = \mathbf{v}_1^T \mathbf{M} \mathbf{d} / \overline{m}_1$$

where: Earthquake input direction vector: $\mathbf{d} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$

$$\mathbf{Md} = [2 \ 1.5 \ 1]^T \times 10^5$$

So: $l_1 = 8/17$

(3) Maximum displacement U_{1,max}

$$\mathbf{U}_{1,\text{max}} = l_1 S_a(\mathbf{T}_1) \mathbf{v}_1 = \{0.038 \ 0.076 \ 0.114\}^{\mathrm{T}}$$
 (m)

(4) Base shear force, Floor forces, Overturning moment (Following Eurocode 8)

The total mass of the structure, m=(2+1.5+1)×10⁵ kg

$$V_b=m S_a(T_1)=12.8\times10^5 N$$

The heights of the three floors: $\{Z_1, Z_2, Z_3\} = \{3,6,9\}m$

The floor forces:

$$F_i{=}V_b\frac{m_iz_i}{\sum\nolimits_{\it i=1}^{\it 3}m_iz_i} \ \ \text{where} \quad \sum_{\it i=1}^{\it 3}m_iz_i=24{\times}10^5$$

So: $\{F_1, F_2, F_3\} = \{3.2, 4.8, 4.8\} \times 10^5 \text{ N}$

Overturning moment $M_b = F_1 \times Z_1 + F_2 \times Z_2 + F_3 \times Z_3 = 81.6 \times 10^5 \text{ Nm}$

b) Consider all the three modes

Use the following Matlab code to find out the natural frequencies and modal shapes:

Note: W – Natural frequencies; EV – Modal shapes

Mode No.	1	2	3
Natural Freq. ω (1/s)	5.928	12.68	18.82
Period T (s)	1.06	0.5	0.333
Modal Shape V ^T	{1, 2.149, 3.313}	{1, 0.893, -1.473}	{1, -1.042, 0.410}
Modal Mass \overline{m} (kg)	19.9×10 ⁵	5.366×10 ⁵	3.796×10 ⁵
S _a (T)	0.3/T*g=2.83	0.5*g=5	0.5*g=5
$S_u(T)=S_a(T)/\omega^2$	0.081	0.0311	0.0141
Load participation factor: $l_i = \mathbf{v}_i^T \mathbf{M} \mathbf{d} \ / \ \overline{m}_i$	0.4289	0.3480	0.2231
Max displacement Vector (m) $ \mathbf{U_{i,max}} = l_i \mathbf{S_u}(\mathbf{T}_i) \mathbf{v}_i $	{0.0345,0.0742,0.1144}	{0.0108,0.0097, -0.0159}	{0.0031, -0.0033,0.0013}
Total max displacement vector U _{max} (using SRSS)	$\mathbf{U}_{\text{max}} = \sqrt{\mathbf{U}_{1,\text{max}}^2 + \mathbf{U}_{2,\text{max}}^2 + \mathbf{U}_{3,\text{max}}^2} = \{0.036, \ 0.079, \ 0.116\}$ (m)		
Max floor force Vector $\mathbf{F}_{i,\text{max}} = l_i \mathbf{S}_a(\mathbf{T}_i) \mathbf{M} \mathbf{v}_i$	{2.43,3.91,4.02}×10 ⁵ N	{3.48,2.33,-2.58}×10 ⁵ N	{2.23,-1.74,0.46}×10 ⁵ N
Total max force F _{max} (using SRSS)	$\mathbf{F}_{\text{max}} = \sqrt{\mathbf{F}_{1,\text{max}}^2 + \mathbf{F}_{2,\text{max}}^2 + \mathbf{F}_{3,\text{max}}^2} = \{4.79, \ 4.88, 4.79\} \times 10^5 \text{ N}$		
Base shear force V _b	$V_b = F_{\text{max},1} + F_{\text{max},2} + F_{\text{max},3} = 14.46 \times 10^5 \text{ N}$		
Overturning Moment M _b	$M_b = F_{1,max} \times Z_1 + F_{2,max} \times Z_2 + F_{3,max} \times Z_3 = 86.76 \times 10^5 \text{ Nm}$		