Geometrical structures among known APN functions

Jules Baudrin, Anne Canteaut & Léo Perrin Inria, Paris, France

Ínría_

July 5th, 2024

Contact: jules.baudrin@inria.fr

Block cipher

A family of bijections $\mathcal{E} = (E_k)_{k \in K}$:

 $\forall k \in K, \qquad E_k \colon \mathbb{F}_2^n \xrightarrow{\sim} \mathbb{F}_2^n.$

$$y = E_k(x) \iff x = (E_k)^{-1}(y)$$

Kerckhoffs

- Publicly known bijections ${\cal E}$
- Only the choice of E_k by A and B is unknown

Jules Baudrin (Inria)

3 / 27

$$y = E_k(x) \iff x = (E_k)^{-1}(y)$$

Indistinguishability

 $[E \stackrel{\$}{\leftarrow} \mathcal{E}]$ indistinguishable from $[F \stackrel{\$}{\leftarrow} \text{Bij}(\mathbb{F}_2^n)]$.

Major constraints

$$|K| = 2^{128}, n = 64, 128$$

- E should be easily implemented,
- E should be "easily" analyzed.

Séminaire C2 - 05/06/2024 Jules Baudrin (Inria)

3-step round function

- Local non-linear layer, global linear layer, and key/constant addition
- Repeat r times

\$\mathcal{E}\$ should be easily implemented

Differential distinguisher

Find α, β st. for many k, $E_k(x + \alpha) = E_k(x) + \beta$ has many solutions x.

Random permutation F

$$F(x + \alpha) + F(x) = \beta$$
 with proba 2^{-n} .

5 / 27

Differential distinguisher

Differential distinguisher

Find α, β st. for many k, $E_k(x + \alpha) = E_k(x) + \beta$ has many solutions x.

Random permutation F

$$F(x + \alpha) + F(x) = \beta$$
 with proba 2^{-n} .

Wide trail strategy

- Sbox layer, $\rightsquigarrow S(x + \alpha) = S(x) + \beta$ must have few solutions for all α, β
- Linear layer must diffuse a lot
- Key schedule should be built carefully.

5 / 27

Differential distinguisher

Find α, β st. for many k, $E_k(x + \alpha) = E_k(x) + \beta$ has many solutions x.

Random permutation F

$$F(x + \alpha) + F(x) = \beta$$
 with proba 2^{-n} .

Wide trail strategy

- Sbox layer, $\rightsquigarrow S(x + \alpha) = S(x) + \beta$ must have few solutions for all α, β
- Linear layer must diffuse a lot
- Key schedule should be built carefully.

How much differentially-resistant can an Sbox be?

 $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$

$$F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$$

- Multivariate $F = (F_1, \dots, F_n)$ where $F_i : \mathbb{F}_2^n \to \mathbb{F}_2$
- Univariate: (up to identification) $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$

- n coordinates in n variables (\mathbb{F}_2)
 - 1 coordinate, 1 variable (\mathbb{F}_{2^n})

6 / 27

Vectorial Boolean functions

$$F: \mathbb{F}_2^n \to \mathbb{F}_2^n$$

Representations

- Multivariate ${m \digamma}=({m \digamma}_1,\ldots,{m \digamma}_n)$ where ${m \digamma}_i\colon {\mathbb F}_2^n o {\mathbb F}_2$
- Univariate: (up to identification) $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$

- n coordinates in \emph{n} variables (\mathbb{F}_2)
 - 1 coordinate, 1 variable (\mathbb{F}_{2^n})

Every function is polynomial

- Multivariate degree $\max_{i=1,...,n} (\deg(F_i))$
- Univariate degree deg(F)
- Linear, quadratic...refer to multivariate

$$F: \mathbb{F}_2^n \to \mathbb{F}_2^n$$

- Multivariate $F = (F_1, \dots, F_n)$ where $F_i \colon \mathbb{F}_2^n \to \mathbb{F}_2$
- Univariate: (up to identification) $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$

- n coordinates in \emph{n} variables (\mathbb{F}_2)
 - 1 coordinate, 1 variable (\mathbb{F}_{2^n})

Every function is polynomial

- Multivariate degree $\max_{i=1,...,n} (\deg(F_i))$
- Univariate degree deg(F)
- Linear, quadratic...refer to multivariate

$$F: \mathbb{F}_{26} \to \mathbb{F}_{26}, X \mapsto X^3 + X^{10} + uX^{24}$$

$$deg(F) = 24$$

6 / 27

$$F: \mathbb{F}_2^n \to \mathbb{F}_2^n$$

- Multivariate $F = (F_1, \dots, F_n)$ where $F_i : \mathbb{F}_2^n \to \mathbb{F}_2$
- Univariate: (up to identification) $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$

- n coordinates in n variables (\mathbb{F}_2)
 - 1 coordinate, 1 variable (\mathbb{F}_{2^n})

Every function is polynomial

- Multivariate degree $\max_{i=1,...,n} (\deg(F_i))$
- Univariate degree deg(F)
- Linear, quadratic...refer to multivariate

$$F: \mathbb{F}_{2^6} \to \mathbb{F}_{2^6}, X \mapsto X^3 + X^{10} + uX^{24}$$

$$\deg(\digamma)=24$$

$$F_1 = x_1x_4 + x_1x_5 + x_2x_3 + x_2x_6 + x_3 + x_4x_5 + x_4x_6 + x_4 + x_5$$

$$\mathsf{deg}({\color{red} \digamma_1})=2$$

$$F_6 = x_1x_2 + x_1x_4 + x_2x_4 + x_2x_5 + x_2 + x_3x_4 + x_3x_6 + x_4 + x_5x_6 + x_6$$

$$\deg(\digamma_6)=2$$

6 / 27

$$F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$$

- Multivariate $F = (F_1, \dots, F_n)$ where $F_i : \mathbb{F}_2^n \to \mathbb{F}_2$
- Univariate: (up to identification) $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$

- n coordinates in \emph{n} variables (\mathbb{F}_2)
 - 1 coordinate, 1 variable (\mathbb{F}_{2^n})

Every function is polynomial

- Multivariate degree $\max_{i=1,...,n} (\deg(F_i))$
- Univariate degree deg(F)
- Linear, quadratic...refer to multivariate

$$F: \mathbb{F}_{26} \to \mathbb{F}_{26}, X \mapsto X^3 + X^{10} + uX^{24}$$

$$deg(F) = 24$$

F is quadratic

Jules Baudrin (Inria)

Séminaire C2 - 05/06/2024

$$F: \mathbb{F}_2^n \to \mathbb{F}_2^n$$

- Multivariate $F = (F_1, \dots, F_n)$ where $F_i : \mathbb{F}_2^n \to \mathbb{F}_2$
- Univariate: (up to identification) $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$

- n coordinates in n variables (\mathbb{F}_2)
 - 1 coordinate, 1 variable (\mathbb{F}_{2^n})

Every function is polynomial

- Multivariate degree $\max_{i=1,\ldots,n}(\deg(F_i))$
- Univariate degree deg(F)
- Linear, quadratic refer to multivariate

$$F: \mathbb{F}_{2^6} \to \mathbb{F}_{2^6}, X \mapsto X^3 + X^{10} + uX^{24}$$

$$\deg(\digamma)=24$$

6 / 27

$$3 = 0b000011, 10 = 0b001010, 24 = 0b011000$$

$$\forall \alpha, \beta, \quad \delta_{F}(\alpha, \beta) := |\{x \in \mathbb{F}_{2^n}, F(x + \alpha) + F(x) = \beta\}|$$

Jules Baudrin (Inria)

$\forall \alpha, \beta, \quad \delta_{F}(\alpha, \beta) := |\{x \in \mathbb{F}_{2^n}, \ F(x + \alpha) + F(x) = \beta\}|$

Differential uniformity

The differential uniformity of F is $\Delta_F := \max_{\alpha \neq 0, \beta} \delta_F(\alpha, \beta)$.

A function is Almost Perfect Non-linear (APN) if $\Delta_{\mathcal{F}} = 2$.

$$\forall \alpha, \beta, \quad \delta_{F}(\alpha, \beta) := |\{x \in \mathbb{F}_{2^{n}}, F(x + \alpha) + F(x) = \beta\}|$$

Differential uniformity

The differential uniformity of F is $\Delta_F := \max_{\alpha \neq 0, \beta} \delta_F(\alpha, \beta)$.

A function is Almost Perfect Non-linear (APN) if $\Delta_F = 2$.

The linear case

F linear.

$$F(x + \alpha) + F(x) = F(x) + F(\alpha) + F(x) = F(\alpha)$$

$$\alpha \neq 0$$
. $\delta_F(\alpha, \beta) = \begin{cases} 2^n & \text{if } \beta = F(\alpha) \\ 0 & \text{otherwise.} \end{cases}$

$$\forall \alpha, \beta, \quad \delta_{F}(\alpha, \beta) := |\{x \in \mathbb{F}_{2^n}, F(x + \alpha) + F(x) = \beta\}|$$

Differential uniformity

The differential uniformity of F is $\Delta_F := \max_{\alpha \neq 0, \beta} \delta_F(\alpha, \beta)$.

A function is Almost Perfect Non-linear (APN) if $\Delta_F = 2$.

The linear case

F linear.

$$F(x + \alpha) + F(x) = F(x) + F(\alpha) + F(x) = F(\alpha)$$

$$\alpha \neq 0$$
. $\delta_F(\alpha, \beta) = \begin{cases} 2^n & \text{if } \beta = F(\alpha) \\ 0 & \text{otherwise.} \end{cases}$

The APN case

F APN. Then $\forall \alpha \neq 0$, $|\{\beta, \delta_{F}(\alpha, \beta) > 0\}| = 2^{n-1}$.

$$F, G: \mathbb{F}_2^n \to \mathbb{F}_2^n,$$

$$\stackrel{\textbf{P}}{\blacksquare} \quad \textbf{\textit{F}}, \textbf{\textit{G}} : \mathbb{F}_2^n \to \mathbb{F}_2^n, \qquad \mathcal{G}_{\textbf{\textit{F}}} = \left\{ \begin{pmatrix} x \\ \textbf{\textit{F}}(x) \end{pmatrix}, x \in \mathbb{F}_{2^n} \right\}, \qquad \mathcal{G}_{\textbf{\textit{G}}} = \left\{ \begin{pmatrix} x \\ \textbf{\textit{G}}(x) \end{pmatrix}, x \in \mathbb{F}_{2^n} \right\}$$

Séminaire C2 - 05/06/2024 Jules Baudrin (Inria)

Equivalence relations

$$F, G: \mathbb{F}_2^n \to \mathbb{F}_2^n$$

$$\mathcal{G}_{\mathsf{F}} = \left\{ \begin{pmatrix} x \\ \mathsf{F}(x) \end{pmatrix}, x \in \mathbb{F}_{2^n} \right\},$$

$$\mathbb{E} \quad F, G: \mathbb{F}_2^n \to \mathbb{F}_2^n, \qquad \mathcal{G}_F = \left\{ \begin{pmatrix} x \\ F(x) \end{pmatrix}, x \in \mathbb{F}_{2^n} \right\}, \qquad \mathcal{G}_G = \left\{ \begin{pmatrix} x \\ G(x) \end{pmatrix}, x \in \mathbb{F}_{2^n} \right\}$$

Affine equivalence

$$F \sim A G$$

$$\exists A, B \quad A \circ F \circ B = G$$

$$F \sim_A G \iff \exists A, B \quad A \circ F \circ B = G \iff \begin{pmatrix} B^{-1} & 0 \\ 0 & A \end{pmatrix} \mathcal{G}_F = \mathcal{G}_G$$

with A, B affine, bijective.

Jules Baudrin (Inria)

8 / 27

8 / 27

$$\mathbb{E} \quad F, G: \mathbb{F}_2^n \to \mathbb{F}_2^n, \qquad \mathcal{G}_F = \left\{ \begin{pmatrix} x \\ F(x) \end{pmatrix}, x \in \mathbb{F}_{2^n} \right\}, \qquad \mathcal{G}_G = \left\{ \begin{pmatrix} x \\ G(x) \end{pmatrix}, x \in \mathbb{F}_{2^n} \right\}$$

Affine equivalence

$$F \sim_A G \iff \exists A, B \quad A \circ F \circ B = G \iff \begin{pmatrix} B^{-1} & 0 \\ 0 & A \end{pmatrix} \mathcal{G}_F = \mathcal{G}_G$$

with A, B affine, bijective.

Extended-affine equivalence

$$F \sim_{\mathsf{EA}} G \iff \exists A, B, C \quad A \circ F \circ B + C = G \iff \begin{pmatrix} B^{-1} & 0 \\ CB^{-1} & A \end{pmatrix} \mathcal{G}_F = \mathcal{G}_G$$

with A, B, C affine, A, B bijective.

<u>Jules Baudrin (Inria)</u> Séminaire C2 - 05/06/2024,

Equivalence relations

$$\mathbb{E} \quad F, G: \mathbb{F}_2^n \to \mathbb{F}_2^n, \qquad \mathcal{G}_F = \left\{ \begin{pmatrix} x \\ F(x) \end{pmatrix}, x \in \mathbb{F}_{2^n} \right\}, \qquad \mathcal{G}_G = \left\{ \begin{pmatrix} x \\ G(x) \end{pmatrix}, x \in \mathbb{F}_{2^n} \right\}$$

Affine equivalence

$$F \sim_A G \iff \exists A, B \quad A \circ F \circ B = G \iff \begin{pmatrix} B^{-1} & 0 \\ 0 & A \end{pmatrix} \mathcal{G}_F = \mathcal{G}_G$$

with A, B affine, bijective.

Extended-affine equivalence

$$F \sim_{\mathsf{EA}} G \iff \exists A, B, C \quad A \circ F \circ B + C = G \iff \begin{pmatrix} B^{-1} & 0 \\ CB^{-1} & A \end{pmatrix} \mathcal{G}_F = \mathcal{G}_G$$

with A, B, C affine, A, B bijective.

CCZ equivalence

$$F \sim_{CCZ} G \iff \exists A \text{ affine, bijective} \quad A(\mathcal{G}_F) = \mathcal{G}_G.$$

A = L + c

8 / 27

CCZ equivalence and differential properties

$$A = L + c$$

Example

Let $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ bijective. Then $F \sim_{CCZ} F^{-1}$.

$$\mathcal{G}_{\mathbf{F}^{-1}} = \begin{pmatrix} 0 & \mathrm{Id} \\ \mathrm{Id} & 0 \end{pmatrix} \mathcal{G}_{\mathbf{F}}$$

CCZ equivalence and differential properties

$$A = L + c$$

9 / 27

Example

Let $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ bijective. Then $F \sim_{CCZ} F^{-1}$.

$$\mathcal{G}_{\digamma^{-1}} = \begin{pmatrix} 0 & \mathrm{Id} \\ \mathrm{Id} & 0 \end{pmatrix} \mathcal{G}_{\digamma}$$

Main usage of CCZ equivalence

Let
$$F \sim_{\mathsf{CCZ}} G$$
. Then $\forall \alpha, \beta, \delta_G(\alpha, \beta) = \delta_F(\mathcal{L}^{-1}(\alpha, \beta))$.

$$A = L + c$$

9 / 27

Example

Let $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ bijective. Then $F \sim_{CCZ} F^{-1}$.

$$\mathcal{G}_{\digamma^{-1}} = \begin{pmatrix} 0 & \operatorname{Id} \\ \operatorname{Id} & 0 \end{pmatrix} \mathcal{G}_{\digamma}$$

Main usage of CCZ equivalence

Let $F \sim_{CCZ} G$. Then $\forall \alpha, \beta, \delta_G(\alpha, \beta) = \delta_F(\mathcal{L}^{-1}(\alpha, \beta))$.

Invariants

 $F \sim_{\mathsf{CCZ}} G \implies \Delta_F = \Delta_G.$

 $F \sim_{CCZ} G \implies \text{multideg}(F) = \text{multideg}(G).$

But $F \sim_{\mathsf{EA}} G \implies \mathrm{multideg}(F) = \mathrm{multideg}(G)$.

- 1992: APN definition

[NybKnu92]

- 1993: First APN power mappings $x \mapsto x^{2^i+1}$

[Nyberg93]

- 1993-2001: 5 more families of APN non-quadratic power mappings

- 1992: APN definition

[NybKnu92]

- 1993: First APN power mappings $x \mapsto x^{2^{i}+1}$

[Nyberg93]

10 / 27

- 1993-2001: 5 more families of APN non-quadratic power mappings
- 2006: First APN functions CCZ-inequivalent to a power function.

[BCP06, EKP06]

- 2007-2024: $\simeq 20$ infinite families of quadratic APN functions.

11 / 27

LOTS of open questions

Two major classes

- 1) Power mappings $x \mapsto x^d$
- 2) Quadratic functions

All known APN functions are CCZ-equiv to 1) or 2) ... except one.

More APN functions CCZ-inequivalent to monomials and quadratic functions?

Two major classes

- 1) Power mappings $x \mapsto x^d$
- 2) Quadratic functions

All known APN functions are CCZ-equiv to 1) or 2) ... except one.

More APN functions CCZ-inequivalent to monomials and quadratic functions?

APN bijections

- Some are known for odd n

(e.g. APN powers)

11 / 27

- None are known for even *n* ... except one.

Big APN problem: More APN bijections in even dimension?

Zoo of APN functions

ID	Functions	Conditions	Source
F1-	$x^{2^{s}+1} + u^{2^{k}-1}x^{2^{ik}+2^{mk+s}}$	$n = pk, \gcd(k, 3) = \gcd(s, 3k) = 1, p \in$	[10]
F2		$\{3,4\}, i = sk \mod p, m = p - i, n \ge$	
		12, u primitive in $\mathbb{F}_{2^n}^*$	
F3	$sx^{q+1} + x^{2^i+1} + x^{q(2^i+1)} + cx^{2^iq+1} +$	$q = 2^m, n = 2m, \gcd(i, m) = 1, c \in$	[9]
	$c^q x^{2^i+q}$	$\mathbb{F}_{2^n}, s \in \mathbb{F}_{2^n} \setminus \mathbb{F}_q, X^{2^i+1} + cX^{2^i} + c^qX +$	
		1 has no solution x s.t. $x^{q+1} = 1$	
F4	$x^3 + a^{-1} \text{Tr}_n(a^3 x^9)$	$a \neq 0$	[11]
F5	$x^3 + a^{-1} \text{Tr}_3^n (a^3 x^9 + a^6 x^{18})$	$3 n, a \neq 0$	[12]
F6	$x^3 + a^{-1} \text{Tr}_3^n (a^6 x^{18} + a^{12} x^{36})$	$3 n, a \neq 0$	[12]
F7-	$ux^{2^s+1}+u^{2^k}x^{2^{-k}+2^{k+s}}+vx^{2^{-k}+1}+$	$n = 3k, \gcd(k, 3) = \gcd(s, 3k) = 1, v, w \in$	[7]
F9	$wu^{2^k+1}x^{2^s+2^{k+s}}$	$\mathbb{F}_{2^k}, vw \neq 1, 3 (k+s), u$ primitive in $\mathbb{F}_{2^n}^*$	
F10	$a^2x^{2^{2m+1}+1} + b^2x^{2^{m+1}+1} +$	$n = 3m, m \text{ odd}, L(x) = ax^{2^{2m}} + bx^{2^m} + cx$	[8]
	$ax^{2^{2m}+2} + bx^{2^m+2} + (c^2 + c)x^3$	satisfies the conditions of Lemma 8 of [8]	
F11	$x^3 + a(x^{2^i+1})^{2^k} + bx^{3\cdot 2^m} +$	$n = 2m = 10, (a, b, c) = (\beta, 1, 0, 0), i = 3,$	[13]
	$c(x^{2^{i+m}+2^m})^{2^k}$	$k=2,\beta$ primitive in \mathbb{F}_{2^2}	
		$n = 2m, m \text{ odd}, 3 \nmid m, (a, b, c) = (\beta, \beta^2, 1),$	
		β primitive in $\mathbb{F}_{2^2},\ i \in \{m-2,m,2m-1\}$	
		$1, (m-2)^{-1} \mod n$	
F12	$a \operatorname{Tr}_{m}^{n}(bx^{2^{i}+1}) + a^{q} \operatorname{Tr}_{m}^{n}(cx^{2^{s}+1})$	$n=2m, m \text{ odd}, q=2^m, a \notin \mathbb{F}_q, \gcd(i,n)=$	[37]
		1, i, s, b, c satisfy the conditions of Theorem 2	
F13	$L(z)^{2^m+1} + vz^{2^m+1}$	$gcd(s, m) = 1, v \in \mathbb{F}_{2^m}^*, \mu \in \mathbb{F}_{2^{3m}}^*, L(z) =$	[30]
		$z^{2^{m+s}} + \mu z^{2^s} + z$ permutes $\mathbb{F}_{2^{3m}}$	

ID	Functions	Conditions	Source
F14		$gcd(k, m) = 1$, m even, α not a cube	[38]
F15	$ax^{2^{2m}}y^{2^m} + by^{2^m+1}$	$x^{2^m+1}+ax+b$ has no root in \mathbb{F}_{2^m}	[34]
F16	$(xy, x^{2^{i}+1} +$	$(cx^{2^{i}+1} + bx^{2^{i}} + 1)^{2^{m/2}+1} + x^{2^{m/2}+1}$	[15]
	$x^{2^{i+m/2}}y^{2^{m/2}} + bxy^{2^i} +$	$(cx^{2^i+1}+bx^{2^i}+1)^{2^{m/2}+1}+x^{2^{m/2}+1}$ has no roots in \mathbb{F}_{2^m}	
	cy^{2^i+1})		
F17	$(x^{2^{i}+1} + xy^{2i} + y^{2^{i}+1}, x^{2^{2^{i}}+1} + x^{2^{2^{i}}}y +$	gcd(3i, m) = 1	[26]
	2,22i+1)		
F18	$(x^{2^{i}+1} + xy^{2^{i}} + y^{2^{i}+1}, x^{2^{3i}}y + xy^{2^{3i}})$	gcd(3i, m) = 1, m odd	[26]
	$y^{2^{i}+1}, x^{2^{3i}}y + xy^{2^{3i}}$		
F19	$(x^3 + xy^2 + y^3 + xy, x^5 +$	gcd(3, m) = 1	[30]
	$x^4y + y^5 + xy + x^2y^2$		
F20	$(x^{q+1} + By^{q+1}, x^ry +$	$0 < k < m, q = 2^k, r = 2^{k+m/2},$	[27]
	$\frac{a}{B}xy^r$)	$m \equiv 2 \pmod{4}, \gcd(k, m) = 1,$	
		$a\in \mathbb{F}_{2^{m/2}}^*,B\in \mathbb{F}_{2^m},B ext{ not a cube,} \ B^{q+r} eq a^{q+1}$	
F21	$(x^{q+1} + xy^q +$	$k, m > 0, \gcd(k, m) = 1, q = 2^k,$	[16]
	$\alpha y^{q+1}, x^{q^2+1} + \alpha x^{q^2}y +$	$\alpha \in \mathbb{F}_{2^m}, \ x^{q+1} + x + \alpha$ has no roots	
	$(1 + \alpha)^q x y^{q^2} + \alpha y^{q^2+1}$		
F22		$\alpha \in \mathbb{F}_{2^m}, \ x^3 + x + \alpha$ has no roots in	[16]
	$xy + \alpha x^2y^2 + \alpha x^4y + (1 +$	\mathbb{F}_{2^m}	
	$(\alpha)^2 x y^4 + \alpha y^5$		

Zoo of APN functions

				ID	Functions		Conditions	Source		
ID	Functions	Conditions	Source	F14		$y^{(2^k+1)2^i}$)	$\gcd(k,m)=1,\ m$ even, α not a cube	[38]		
F1-	$x^{2^s+1} + u^{2^k-1}x^{2^{ik}+2^{mk+s}}$	$n = pk, \gcd(k, 3) = \gcd(s, 3k) = 1, p \in$	[10]	F15	$(xy, x^{2^{2m}+2^{3m}})$ $ax^{2^{2m}}y^{2^m} + by^2$	+ 2 ^m +1)	$x^{2^m+1}+ax+b$ has no root in \mathbb{F}_{2^m}	[34]		
F2				-	ax y + by		$(cx^{2^{i}+1} + bx^{2^{i}} + 1)^{2^{m/2}+1} + x^{2^{m/2}+1}$	[15]		
F3	$sx^{q+1} + x^{2^i+1} + x^{q(2^i+1)} +$	elationships between e	each o	othe	ers?	bxy^{2^i} +	has no roots in \mathbb{F}_{2^m}			
	$c^q x^{2^i+q}$	•			J.	xy^{2i} +	gcd(3i, m) = 1	[26]		
n.	31m (3.9)	1 has no solution x s.t. x = 1	***			$x^{2^{2^{i}}}y +$	gca(oi,m)=1	[20]		
F4	$x^3 + a^{-1} \text{Tr}_n(a^3 x^9)$	$a \neq 0$	[11]		$y^{2^{2i}+1}$)	9 .				
F5	$x^3 + a^{-1} \text{Tr}_3^n (a^3 x^9 + a^6 x^{18})$	$3 n, a \neq 0$	[12]	F18	$(x^{2^i+1} + :$	xu^{2^i} +	gcd(3i, m) = 1, m odd	[26]		
F6	$x^3 + a^{-1} \text{Tr}_3^n (a^6 x^{18} + a^{12} x^{36})$	$3 n, a \neq 0$	[12]	1.10	$y^{2^{i}+1}, x^{2^{3i}}y + x$	21 ²³ⁱ)	804(01,111) = 1, 111 044	[20]		
F7-	$ux^{2^{s}+1}+u^{2^{k}}x^{2^{-k}+2^{k+s}}+vx^{2^{-k}+1}+$ $wu^{2^{k}+1}x^{2^{s}+2^{k+s}}$	$n = 3k, \gcd(k, 3) = \gcd(s, 3k) = 1, v, w \in$	[7]	F19	$(x^3 + xy^2 + y^3 +$		gcd(3, m) = 1	[30]		
F9		\mathbb{F}_{2^k} , $vw \neq 1, 3 (k+s), u$ primitive in $\mathbb{F}_{2^n}^*$		117	$x^4y + y^5 + xy$		gca(o,m)=1	[50]		
F10	$a^2x^{2^{2m+1}+1} + b^2x^{2^{m+1}+1} +$	$n = 3m, m \text{ odd}, L(x) = ax^{2^{2m}} + bx^{2^m} + cx$	[8]	E20	$(x^{q+1} + By^{q+1})$		$0 < k < m, q = 2^k, r = 2^{k+m/2},$	[27]		
	$ax^{2^{2m}+2} + bx^{2^{m}+2} + (c^{2}+c)x^{3}$	satisfies the conditions of Lemma 8 of [8]		F20	$\frac{a}{a} r u^r$, x y +	$m = 2 \pmod{4} \gcd(k, m) = 1,$	[2/]		
F11	$x^{3} + a(x^{2^{i}+1})^{2^{k}} + bx^{3\cdot 2^{m}} +$	$n = 2m = 10, (a, b, c) = (\beta, b, c)$								
	$c(x^{2^{i+m}+2^m})^{2^k}$	$k=2,\beta$ primitive in \mathbb{F}_{2^2}	100		100	100	B not a cube,			
		$n = 2m, m \text{ odd}, 3 \nmid m, (a, b, b)$ Is this classification that wide?								
		β primitive in \mathbb{F}_{2^2} , $i \in \{m\}$								
		$1, (m-2)^{-1} \mod n$			αy , x , $+$	$\alpha x \cdot y +$	$\alpha \in \mathbb{F}_{2^m}, x \mapsto x + \alpha$ has no roots			
F12	$a \operatorname{Tr}_{m}^{n}(bx^{2^{i}+1}) + a^{q} \operatorname{Tr}_{m}^{n}(cx^{2^{s}+1})$	$n = 2m$, m odd, $q = 2^m$, $a \notin \mathbb{F}_q$, $gcd(i, n) =$	[37]		$(1+\alpha)^q x y^{q^2} +$		in \mathbb{F}_{2^m}			
		1, i, s, b, c satisfy the conditions of Theorem 2		F22	$(x^3+xy+xy^2+$		$\alpha \in \mathbb{F}_{2^m}$, $x^3 + x + \alpha$ has no roots in	[16]		
F13	$L(z)^{2^m+1} + vz^{2^m+1}$	$gcd(s, m) = 1, v \in \mathbb{F}_{2^m}^*, \mu \in \mathbb{F}_{2^{3m}}^*, L(z) =$	[30]		$xy + \alpha x^2y^2 + \alpha x$	$x^4y + (1 +$	\mathbb{F}_{2^m}			
		$z^{2^{m+s}} + \mu z^{2^s} + z$ permutes $\mathbb{F}_{2^{3m}}$			$\alpha)^2 xy^4 + \alpha y^5$					

13 / 27

Big APN problem

Does there exist an APN bijection in even dimension?

Known facts [Hou06]

An APN bijection for n = 2t

- does not exist for $n \in \{2, 4\}$
- cannot be quadratic

The (only ?) solution to the big APN problem

Big APN problem

Does there exist an APN bijection in even dimension?

Known facts

[Hou06]

13 / 27

An APN bijection for n = 2t

- does not exist for $n \in \{2, 4\}$
- cannot be quadratic

Kim mapping

$$\kappa: \begin{cases} \mathbb{F}_{2^6} & \to \mathbb{F}_{2^6} \\ x & \mapsto x^3 + x^{10} + ux^{24} \end{cases}$$

APN, quadratic, not bijective

The (only?) solution to the big APN problem

Big APN problem

Does there exist an APN bijection in even dimension?

Known facts

[Hou06]

13 / 27

An APN bijection for n = 2t

- does not exist for $n \in \{2, 4\}$
- cannot be quadratic

Kim mapping

$$\kappa: \begin{cases} \mathbb{F}_{2^6} & \to \mathbb{F}_{2^6} \\ x & \mapsto x^3 + x^{10} + ux^{24} \end{cases}$$

APN, quadratic, not bijective

$$\not\sim_{\it EA}$$

The (only?) solution to the big APN problem

Big APN problem

Does there exist an APN bijection in even dimension?

Known facts

[Hou06]

An APN bijection for n = 2t

- does not exist for $n \in \{2, 4\}$
- cannot be quadratic

Kim mapping

$$\kappa: \begin{cases} \mathbb{F}_{2^6} & \to \mathbb{F}_{2^6} \\ x & \mapsto x^3 + x^{10} + ux^{24} \end{cases}$$

APN, quadratic, not bijective

$$\sim$$
ccz

Dillon et al.'s permutation

$$P: \begin{cases} \mathbb{F}_{2^6} & \to \mathbb{F}_{2^6} \\ x & \mapsto P(x) \end{cases}$$

APN, not quadratic, bijective

[BDMW10]

Walsh transform

$$F \colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$$
. $\alpha, \beta \in \mathbb{F}_{2^n}$.

$$\widehat{F}(\alpha, \beta) := \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\alpha \cdot x + \beta \cdot F(x)}$$

Walsh transform

Walsh transform

 $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}, \ \alpha, \beta \in \mathbb{F}_{2^n}.$

$$\widehat{F}(\alpha, \beta) := \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\alpha \cdot x + \beta \cdot F(x)}$$

Walsh transform and CCZ-equivalence

$$F, G: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$$
.

$$A = L + c$$
 $A(\mathcal{G}_{\mathbf{F}}) = \mathcal{G}_{\mathbf{G}} \iff$

$$\iff$$

$$\widehat{\mathsf{G}}(\alpha,\beta) = (-1)^{c \cdot (\alpha,\beta)} \widehat{\mathsf{F}}(\mathcal{L}^{\top}(\alpha,\beta)) \quad \forall \alpha,\beta \in \mathbb{F}_{2^n}$$

$$\stackrel{\square}{\vdash} F, G: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$$

$$A = L + c \qquad A(G_F) = G_G$$

$$\begin{split} \widehat{F}(\alpha,\beta) &:= \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\alpha \cdot x + \beta \cdot F(x)}. \\ \widehat{G}(\alpha,\beta) &= (-1)^{c \cdot (\alpha,\beta)} \widehat{F}(\mathcal{L}^\top(\alpha,\beta)) \quad \forall \alpha,\beta \in \mathbb{F}_{2^n} \end{split}$$

$$\stackrel{\square}{\vdash} F, G: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$$

$$A = L + c$$
 $A(G_F) = G_G$

$$\widehat{F}(\alpha, \beta) := \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\alpha \cdot x + \beta \cdot F(x)}$$
.

$$\widehat{\mathbf{G}}(\alpha,\beta) = (-1)^{c \cdot (\alpha,\beta)} \widehat{\mathbf{F}}(\mathcal{L}^{\top}(\alpha,\beta)) \quad \forall \alpha,\beta \in \mathbb{F}_{2^n}$$

Dillon APN bijection

Jules Baudrin (Inria)

$$\stackrel{\square}{\vdash} F, G: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$$

$$A = L + c$$
 $A(G_F) = G_G$

$$\mathcal{A}(\mathcal{G}_{\digamma}) = \mathcal{G}_{G}$$

$$\widehat{F}(\alpha, \beta) := \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\alpha \cdot x + \beta \cdot F(x)}$$
.

$$\widehat{\mathbf{G}}(\alpha,\beta) = (-1)^{c \cdot (\alpha,\beta)} \widehat{\mathbf{F}}(\mathcal{L}^{\top}(\alpha,\beta)) \quad \forall \alpha,\beta \in \mathbb{F}_{2^n}$$

$$\widehat{F}(\{0\}\times\mathbb{F}_{2n}^*)=\{0\}.$$

$$\widehat{F}(\mathbb{F}_{2^n}^* \times \{0\}) = \{0\}.$$

$$\mathbb{F}_{2^n} \times \{0\} \ \bigcap \ \{0\} \times \mathbb{F}_{2^n} = \{0\}$$

 \mathcal{L}^{\top} linear bijection.

Dillon APN bijection

$$\stackrel{\square}{\vdash} F, G: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$$

$$A = \mathcal{L} + c \qquad A(\mathcal{G}_{F}) = \mathcal{G}_{G}$$

$$\widehat{F}(\alpha, \beta) := \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\alpha \cdot x + \beta \cdot F(x)}$$
.

$$\widehat{\mathbf{G}}(\alpha,\beta) = (-1)^{c \cdot (\alpha,\beta)} \widehat{F}(\mathcal{L}^{\top}(\alpha,\beta)) \quad \forall \alpha,\beta \in \mathbb{F}_{2^n}$$

Dillon APN bijection

Kim mapping
Séminaire C2 - 05/06/2024

$$\stackrel{\square}{\vdash} F, G: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$$

$$A = L + c$$
 $A(G_F) = G_G$

$$\widehat{F}(\alpha, \beta) := \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\alpha \cdot x + \beta \cdot F(x)}$$

$$\widehat{\mathbf{G}}(\alpha,\beta) = (-1)^{c \cdot (\alpha,\beta)} \widehat{\mathbf{F}}(\mathcal{L}^{\top}(\alpha,\beta)) \quad \forall \alpha,\beta \in \mathbb{F}_{2^n}$$

Dillon APN bijection

Kim mapping Séminaire C2 - 05/06/2024

Partition into cosets

- **F** ⊂ **L** finite fields of characteristic 2.
- \mathbb{F}^* multiplicative subgroup of \mathbb{L}^* \Longrightarrow $\mathbb{L}^* = \bigsqcup_{\gamma \in \Gamma} \gamma \mathbb{F}^*$

Any $\lambda \in \mathbb{L}^*$ can be uniquely written as $\lambda = \gamma \varphi$ with $\gamma \in \Gamma, \varphi \in \mathbb{F}^*$.

The enigmatic Kim function

$$\lambda \in \mathbb{L}, \varphi \in \mathbb{F}, \gamma \in \Gamma.$$

[BDMW10]

Kim mapping

$$\kappa \colon \mathbb{L} \to \mathbb{L}$$

$$\kappa: \quad \mathbb{L} \quad \to \quad \mathbb{L}$$

$$\lambda \quad \mapsto \quad \lambda^3 + \lambda^{10} + u\lambda^{24};$$

for a specific $u \in \mathbb{L}$.

Jules Baudrin (Inria)

The enigmatic Kim function

$$\lambda \in \mathbb{L}, \varphi \in \mathbb{F}, \gamma \in \Gamma.$$

[BDMW10]

Kim mapping

$$\kappa: \quad \mathbb{L} \quad \to \quad \mathbb{L}$$

$$\lambda \quad \mapsto \quad \lambda^3 + \lambda^{10} + u\lambda^{24};$$

for a specific $u \in \mathbb{L}$

Key observation

[BDMW10]

$$\varphi \in \mathbb{F}, \lambda \in \mathbb{L}$$

$$\kappa(\varphi\lambda) = (\varphi\lambda)^3 + (\varphi\lambda)^{10} + u(\varphi\lambda)^{24} = \varphi^3 \kappa(\lambda)$$

because $3 \equiv 10 \equiv 24 \mod 7$ and $|\mathbb{F}^*| = 7$.

Jules Baudrin (Inria)

Séminaire C2 - 05/06/2024

Cyclotomic mappings

$$\kappa(\varphi\lambda) = \varphi^3 \kappa(\lambda) \quad \forall \varphi \in \mathbb{F}, \lambda \in \mathbb{L}.$$

Cyclotomic mappings

$$\kappa(\varphi\lambda) = \varphi^3 \kappa(\lambda) \quad \forall \varphi \in \mathbb{F}, \lambda \in \mathbb{L}.$$

Cyclotomic mapping

[Wang07]

 $\mathbb{G} \subset \mathbb{L}^*$ a subgroup. $F: \mathbb{L} \to \mathbb{L}$ is a cyclotomic mapping of order d over \mathbb{G} if:

$$\forall \lambda \in \mathbb{L}, \forall \varphi \in \mathbb{G}, \quad F(\varphi \lambda) = \varphi^d F(\lambda).$$

Here: $\mathbb{G} = \mathbb{F}^*$

$$\kappa(\varphi\lambda) = \varphi^3 \kappa(\lambda) \quad \forall \varphi \in \mathbb{F}, \lambda \in \mathbb{L}.$$

Cyclotomic mapping

[Wang07]

 $\mathbb{G} \subset \mathbb{L}^*$ a subgroup. $F: \mathbb{L} \to \mathbb{L}$ is a cyclotomic mapping of order d over \mathbb{G} if:

$$\forall \lambda \in \mathbb{L}, \forall \varphi \in \mathbb{G}, \quad F(\varphi \lambda) = \varphi^d F(\lambda).$$

Here: $\mathbb{G} = \mathbb{F}^*$

18 / 27

Polynomial characterization

 $F: \lambda \mapsto \sum_{i=0}^{2^n-1} a_i \lambda^i$ is a cyclotomic mapping of order d over \mathbb{G} iff $a_i \neq 0 \implies i \equiv d \mod |\mathbb{G}|$.

Cyclotomic mappings

$$\bowtie$$
 $\kappa: \lambda \mapsto \lambda^3 + \lambda^{10} + u\lambda^{24}$.

$$\kappa(\varphi\lambda) = \varphi^3 \kappa(\lambda) \quad \forall \varphi \in \mathbb{F}, \lambda \in \mathbb{L}.$$

Cyclotomic mapping

[Wang07]

 $\mathbb{G} \subset \mathbb{L}^*$ a subgroup. $F: \mathbb{L} \to \mathbb{L}$ is a cyclotomic mapping of order d over \mathbb{G} if:

$$\forall \lambda \in \mathbb{L}, \forall \varphi \in \mathbb{G}, \quad F(\varphi \lambda) = \varphi^d F(\lambda).$$

Here: $\mathbb{G} = \mathbb{F}^*$

Polynomial characterization

 $F: \lambda \mapsto \sum_{i=0}^{2^n-1} a_i \lambda^i$ is a cyclotomic mapping of order d over \mathbb{G} iff $a_i \neq 0 \implies i \equiv d \mod |\mathbb{G}|$.

- Also known as Wan Lidl polynomials

[Wan Lidl91]

- Studies about graphs or permutations

[AkbWan07, BorPanWan23, Laigle-Chapuy07]

- only a few about cryptographic properties

[ChenCoulter23, Gologlu23, BeiBriLea21]

Properties of the Kim mapping (1/2)

$$\kappa: \lambda \mapsto \lambda^3 + \lambda^{10} + u\lambda^{24}$$
 is a cyclotomic mapping over \mathbb{F}_{2^3} of order 3

Immediate corollary

$$F$$
 cyclotomic $\Longrightarrow F(\lambda \mathbb{F}) \subset F(\lambda)\mathbb{F}$

Séminaire C2 - 05/06/2024 Jules Baudrin (Inria)

Properties of the Kim mapping (1/2)

 $\kappa: \lambda \mapsto \lambda^3 + \lambda^{10} + u\lambda^{24}$ is a cyclotomic mapping over \mathbb{F}_{2^3} of order 3

Immediate corollary

F cyclotomic $\Longrightarrow F(\lambda \mathbb{F}) \subset F(\lambda)\mathbb{F}$

The Kim mapping case

$$\varphi \mapsto \varphi^3$$
 is a bijection over $\mathbb{F}_{2^3} \Longrightarrow F(\lambda \mathbb{F}) = F(\lambda)\mathbb{F}$.

 $\kappa: \lambda \mapsto \lambda^3 + \lambda^{10} + u\lambda^{24}$ is a cyclotomic mapping over \mathbb{F}_{23} of order 3

Immediate corollary

F cyclotomic $\Longrightarrow F(\lambda \mathbb{F}) \subset F(\lambda)\mathbb{F}$

The Kim mapping case

$$\varphi \mapsto \varphi^3$$
 is a bijection over $\mathbb{F}_{2^3} \Longrightarrow F(\lambda \mathbb{F}) = F(\lambda) \mathbb{F}$.

The subspace property

[BDMW10]

19 / 27

 $F: \mathbb{L} \to \mathbb{L}$ satisfies the F-subspace property if:

$$F(\lambda \mathbb{F}) = F(\lambda)\mathbb{F} \quad \forall \ \lambda \in \mathbb{L}.$$

$$F(\varphi \lambda) = F(\lambda)G_{\lambda}(\varphi)$$
 where $G_{\lambda}: \mathbb{F} \to \mathbb{F}$ is bijective.

Properties of the Kim mapping (2/2)

Subspace prop:
$$\forall \lambda$$
, $F(\lambda \mathbb{F}) = F(\lambda)\mathbb{F}$
Cyclotomic: $\exists d, \forall \lambda, \forall \varphi$, $F(\varphi \lambda) = F(\lambda)\varphi^d$

$$\kappa(\lambda) = \lambda^3 + \lambda^{10} + u\lambda^{24}.$$

Subspace prop:
$$\forall \lambda$$
, $F(\lambda \mathbb{F}) = F(\lambda) \mathbb{F}$
Cyclotomic: $\exists d, \forall \lambda, \forall \varphi$, $F(\varphi \lambda) = F(\lambda) \varphi^d$

$$\kappa(\lambda) = \lambda^3 + \lambda^{10} + u\lambda^{24}.$$

Properties of the Kim mapping (2/2)

Subspace prop: $\forall \lambda$, $F(\lambda \mathbb{F}) = F(\lambda) \mathbb{F}$ Cyclotomic: $\exists d, \forall \lambda, \forall \varphi$, $F(\varphi \lambda) = F(\lambda) \varphi^d$

$$\kappa(\lambda) = \lambda^3 + \lambda^{10} + u\lambda^{24}.$$

Properties of the Kim mapping (2/2)

Subspace prop: $\forall \lambda$, $F(\lambda \mathbb{F}) = F(\lambda)\mathbb{F}$ Cyclotomic: $\exists d, \forall \lambda, \forall \varphi$, $F(\varphi \lambda) = F(\lambda)\varphi^d$

$$\kappa(\lambda) = \lambda^3 + \lambda^{10} + u\lambda^{24}.$$

Not bijective

 \mathbb{F}

 $F(1)\mathbb{F}$

$$F(0) = 0$$

$$F(\varphi) = \varphi^{3}F(1)$$

Séminaire C2 - 05/06/2024

Properties of the Kim mapping (2/2)

Subspace prop: $\forall \lambda$, $F(\lambda \mathbb{F}) = F(\lambda)\mathbb{F}$ Cyclotomic: $\exists d, \forall \lambda, \forall \varphi$, $F(\varphi \lambda) = F(\lambda)\varphi^d$ $\kappa(\lambda) = \lambda^3 + \lambda^{10} + u\lambda^{24}.$

Not bijective

F

Bijective, monomial

 $F(1)\mathbb{F}$ F(0) = 0 $F(\varphi) = \varphi^{3}F(1)$

Jules Baudrin (Inria)

Subspace property and Cyclotomy

Subspace prop: $\forall \lambda$, $F(\lambda \mathbb{F}) = F(\lambda)\mathbb{F}$ Cyclotomic: $\exists d, \forall \lambda, \forall \varphi$, $F(\varphi \lambda) = \varphi^d F(\lambda)$ Gen. cyclotomic: $\forall \lambda, \exists d_{\lambda}, \forall \varphi$, $F(\varphi \lambda) = \varphi^{d_{\lambda}} F(\lambda)$

Spectral point of view (1/2)

Subspace prop: $\forall \lambda$, $F(\lambda \mathbb{F}) = F(\lambda)\mathbb{F}$.

$$\widehat{F}(\alpha, \beta) := \sum_{\lambda \in \mathbb{T}} (-1)^{\alpha \cdot \lambda + \beta \cdot F(\lambda)}$$

$$F(\lambda \varphi) = F(\lambda)G_{\lambda}(\varphi)$$
, with $G_{\lambda} : \mathbb{F} \xrightarrow{\sim} \mathbb{F}$

Jules Baudrin (Inria)

Spectral point of view (1/2)

Subspace prop: $\forall \lambda$, $F(\lambda \mathbb{F}) = F(\lambda)\mathbb{F}$.

$$F(\lambda \varphi) = F(\lambda)G_{\lambda}(\varphi)$$
, with $G_{\lambda} : \mathbb{F} \xrightarrow{\sim} \mathbb{F}$

$$\widehat{F}(\alpha, \beta) := \sum_{\lambda \in \mathbb{L}} (-1)^{\alpha \cdot \lambda + \beta \cdot F(\lambda)}$$

Decomposition of Walsh coefficients

system of representatives, $\alpha, \beta \in \mathbb{L}$. $F: \mathbb{L} \to \mathbb{L}$ satisfying the F-subspace property. Then:

$$\widehat{F}(\alpha,\beta) = C + \sum_{\gamma \in \Gamma} \widehat{G}_{\lambda} \left(\operatorname{Tr}_{\mathbb{L}/\mathbb{F}} \left(\alpha \gamma \right), \operatorname{Tr}_{\mathbb{L}/\mathbb{F}} \left(\beta F(\gamma) \right) \right).$$

Spectral point of view (1/2)

Subspace prop: $\forall \lambda$, $F(\lambda \mathbb{F}) = F(\lambda)\mathbb{F}$. $F(\lambda \varphi) = F(\lambda)G_{\lambda}(\varphi)$, with $G_{\lambda} : \mathbb{F} \xrightarrow{\sim} \mathbb{F}$ $\widehat{F}(\alpha, \beta) := \sum_{\lambda \in \mathbb{L}} (-1)^{\alpha \cdot \lambda + \beta \cdot F(\lambda)}$

Decomposition of Walsh coefficients

 Γ system of representatives, $\alpha, \beta \in \mathbb{L}$. $F: \mathbb{L} \to \mathbb{L}$ satisfying the \mathbb{F} -subspace property. Then:

$$\widehat{F}(\alpha,\beta) = C + \sum_{\gamma \in \Gamma} \widehat{G}_{\lambda} \left(\operatorname{Tr}_{\mathbb{L}/\mathbb{F}} \left(\alpha_{\gamma} \right), \operatorname{Tr}_{\mathbb{L}/\mathbb{F}} \left(\beta_{\gamma} F(\gamma) \right) \right).$$

Symmetries of Walsh coefficients

Let $G: \mathbb{F} \xrightarrow{\sim} \mathbb{F}$. F satisfies the subspace property with $G_{\lambda} = G \ \forall \ \lambda$ if and only if:

$$\forall \alpha, \beta \in \mathbb{L}, \ \forall \varphi \in \mathbb{F}^*, \quad \widehat{F}(\alpha, \beta G(\varphi)) = \widehat{F}(\alpha \varphi^{-1}, \beta).$$

Kim mapping $\kappa: \lambda \mapsto \lambda^3 + \lambda^{10} + u\lambda^{24}$

Cube over $\mathbb{F}_{64} \stackrel{\lambda}{\lambda} \mapsto \stackrel{\lambda}{\lambda}^3$

Kim mapping $\kappa: \lambda \mapsto \lambda^3 + \lambda^{10} + u\lambda^{24}$

Cube over $\mathbb{F}_{64} \stackrel{\lambda}{\lambda} \mapsto \stackrel{\lambda}{\lambda}^3$

Walsh coefficients $\widehat{F}(0,\beta)$

Subspace prop:
$$\forall \lambda$$
, $F(\lambda \mathbb{F}) = F(\lambda)\mathbb{F}$.

$$F(\lambda \varphi) = F(\lambda)G_{\lambda}(\varphi)$$
, with $G_{\lambda} : \mathbb{F} \xrightarrow{\sim} \mathbb{F}$

$$\widehat{F}(\alpha, \beta) := \sum_{\lambda \in \mathbb{L}} (-1)^{\alpha \cdot \lambda + \beta \cdot F(\lambda)} \qquad N_{\lambda} := \frac{|F^{-1}(\lambda \mathbb{F})|}{|\mathbb{F}|}$$

Walsh coefficients $\widehat{F}(0,\beta)$

Subspace prop:
$$\forall \lambda$$
, $F(\lambda \mathbb{F}) = F(\lambda)\mathbb{F}$.

$$F(\lambda \varphi) = F(\lambda)G_{\lambda}(\varphi)$$
, with $G_{\lambda} \colon \mathbb{F} \xrightarrow{\sim} \mathbb{F}$

$$\widehat{F}(\alpha, \beta) := \sum_{\lambda \in \mathbb{L}} (-1)^{\alpha \cdot \lambda + \beta \cdot F(\lambda)} \qquad N_{\lambda} := \frac{|F^{-1}(\lambda \mathbb{F})|}{|\mathbb{F}|}$$

Walsh coefficients in zero

 \digamma satisfying the subspace property. $[\mathbb{L}:\mathbb{F}]=2$. Then

$$\forall \beta \in \mathbb{L}^*, \quad \widehat{F}(0,\beta) = 2^t (N_{\beta^{-1}} - 1)$$

Walsh coefficients $\widehat{F}(0,\beta)$

Subspace prop: $\forall \lambda$, $F(\lambda \mathbb{F}) = F(\lambda)\mathbb{F}$. $F(\lambda \varphi) = F(\lambda)G_{\lambda}(\varphi)$, with $G_{\lambda} : \mathbb{F} \xrightarrow{\sim} \mathbb{F}$

$$F(\lambda arphi) = F(\lambda)G_{\lambda}(arphi)$$
, with $G_{\lambda} \colon \mathbb{F} \xrightarrow{\sim} \mathbb{F}$

$$\widehat{F}(\alpha, \beta) := \sum_{\lambda \in \mathbb{L}} (-1)^{\alpha \cdot \lambda + \beta \cdot F(\lambda)} \qquad N_{\lambda} := \frac{|F^{-1}(\lambda \mathbb{F})|}{|\mathbb{F}|}$$

$$N_{\lambda} := \frac{\left|F^{-1}(\lambda \mathbb{F})\right|}{\left|\mathbb{F}\right|}$$

Walsh coefficients in zero

F satisfying the subspace property. [L : F] = 2. Then

$$\forall \beta \in \mathbb{L}^*, \quad \widehat{F}(0,\beta) = 2^t(N_{\beta^{-1}} - 1)$$

Kim mapping

Jules Baudrin (Inria)

Walsh coefficients $\widehat{F}(0,\beta)$

Subspace prop: $\forall \lambda$, $F(\lambda \mathbb{F}) = F(\lambda)\mathbb{F}$. $F(\lambda \varphi) = F(\lambda)G_{\lambda}(\varphi)$, with $G_{\lambda} : \mathbb{F} \xrightarrow{\sim} \mathbb{F}$

$$F(\lambda arphi) = F(\lambda)G_{\lambda}(arphi)$$
, with $G_{\lambda} \colon \mathbb{F} \xrightarrow{\sim} \mathbb{F}$

$$\widehat{F}(\alpha, \beta) := \sum_{\lambda \in \mathbb{L}} (-1)^{\alpha \cdot \lambda + \beta \cdot F(\lambda)} \qquad N_{\lambda} := \frac{|F^{-1}(\lambda \mathbb{F})|}{|\mathbb{F}|}$$

$$N_{\lambda} := \frac{\left|F^{-1}(\lambda \mathbb{F})\right|}{\left|\mathbb{F}\right|}$$

Walsh coefficients in zero

F satisfying the subspace property. [L : F] = 2. Then

$$\forall \beta \in \mathbb{L}^*, \quad \widehat{F}(0,\beta) = 2^t(N_{\beta^{-1}} - 1)$$

Cube

Jules Baudrin (Inria)

Subspace property and APNness

Subspace prop:
$$\forall \lambda$$
, $F(\lambda \mathbb{F}) = F(\lambda)\mathbb{F}$.

$$N_{\lambda} := \frac{|F^{-1}(\lambda \mathbb{F})|}{|\mathbb{F}|}$$
 $\mathcal{N}_i := \{ \gamma \in \Gamma, N_{\gamma} = i \}$

Subspace prop. when
$$\mathbb{L} = \mathbb{F}_{2^{2t}}, \mathbb{F} = \mathbb{F}_{2^t} \implies$$

$$F(\lambda \varphi) = F(\lambda)G_{\lambda}(\varphi)$$
, with $G_{\lambda} : \mathbb{F} \xrightarrow{\sim} \mathbb{F}$

$$\widehat{F}(0,\beta) = 2^t (N_{\beta^{-1}} - 1)$$

 $\hat{F}(0,\beta) = 2^t (N_{\beta-1} - 1)$

Subspace property and APNness

Subspace prop:
$$\forall \lambda$$
, $F(\lambda \mathbb{F}) = F(\lambda)\mathbb{F}$. $F(\lambda \varphi) = F(\lambda)G_{\lambda}(\varphi)$, with $G_{\lambda} : \mathbb{F} \xrightarrow{\sim} \mathbb{F}$ $N_{\lambda} := \frac{|F^{-1}(\lambda \mathbb{F})|}{|\mathbb{F}|}$ $\mathcal{N}_{i} := \{ \gamma \in \Gamma, N_{\gamma} = i \}$

Necessary condition to be APN

F quadratic satisfying the subspace property. [L : F] = 2.

Subspace prop. when $\mathbb{L} = \mathbb{F}_{2^{2t}}, \mathbb{F} = \mathbb{F}_{2^t} \implies$

- If \digamma is APN then $\mathcal{N}_0 + \mathcal{N}_2 \geq \frac{2(2^t+1)}{3}$
- If $\mathcal{L}(F) = 2^{t+1}$ and $\mathcal{N}_0 + \mathcal{N}_2 \ge \frac{2(2^t+1)}{3}$ then F is APN.

Proof:

[BerCanChaLai06]

Jules Baudrin (Inria)

Séminaire C2 - 05/06/2024

Subspace property and APNness

Subspace prop:
$$\forall \lambda$$
, $F(\lambda \mathbb{F}) = F(\lambda)\mathbb{F}$.

$$F(\lambda \varphi) = F(\lambda)G_{\lambda}(\varphi)$$
, with $G_{\lambda} : \mathbb{F} \xrightarrow{\sim} \mathbb{F}$

$$N_{\lambda} := \frac{|F^{-1}(\lambda \mathbb{F})|}{|\mathbb{F}|} \qquad \mathcal{N}_i := \{ \gamma \in \Gamma, N_{\gamma} = i \}$$

Subspace prop. when
$$\mathbb{L} = \mathbb{F}_{2^t}$$
, $\mathbb{F} = \mathbb{F}_{2^t} \implies \widehat{F}(0,\beta) = 2^t(N_{\beta^{-1}} - 1)$

Necessary condition to be APN

F quadratic satisfying the subspace property. [L : F] = 2.

- If \digamma is APN then $\mathcal{N}_0 + \mathcal{N}_2 \geq \frac{2(2^t+1)}{3}$
- If $\mathcal{L}(F)=2^{t+1}$ and $\mathcal{N}_0+\mathcal{N}_2\geq \frac{2(2^t+1)}{3}$ then F is APN.

Proof:

[BerCanChaLai06]

One already-solved case

[Gologlu2023, ChaLis21]

F quadratic cyclotomic when $[\mathbb{L} : \mathbb{F}] = 2$.

- If $t \neq 3$: F APN \iff F \sim_{CCZ} Gold power
- If t = 3: F APN \iff F \sim_{CCZ} Gold power or F $\sim_{CCZ} \kappa$.

Cyclotomic mappings among the zoo of APN functions

ID	Functions	Conditions	Source
F1-	$x^{2^s+1} + u^{2^k-1}x^{2^{ik}+2^{mk+s}}$	$n = pk, \gcd(k, 3) = \gcd(s, 3k) = 1, p \in$	[10]
F2		$\{3,4\}, i \ = \ sk \bmod p, m \ = \ p - i, n \ \geq$	
		12, u primitive in $\mathbb{F}_{2^n}^*$	
F3	$sx^{q+1} + x^{2^i+1} + x^{q(2^i+1)} + cx^{2^iq+1} +$	$q = 2^m, n = 2m, \gcd(i, m) = 1, c \in$	[9]
	$c^{q}x^{2^{i}+q}$	$\mathbb{F}_{2^n}, s \in \mathbb{F}_{2^n} \setminus \mathbb{F}_q, X^{2^i+1} + cX^{2^i} + c^qX +$	
		1 has no solution x s.t. $x^{q+1} = 1$	
F4	$x^3 + a^{-1} Tr_n(a^3 x^9)$	$a \neq 0$	[11]
F5	$x^3 + a^{-1} \text{Tr}_3^n (a^3 x^9 + a^6 x^{18})$	$3 n, a \neq 0$	[12]
F6	$x^3 + a^{-1} \text{Tr}_3^n (a^6 x^{18} + a^{12} x^{36})$	$3 n, a \neq 0$	[12]
F7-	$ux^{2^s+1} + u^{2^k}x^{2^{-k}+2^{k+s}} + vx^{2^{-k}+1} +$	$n = 3k, \gcd(k, 3) = \gcd(s, 3k) = 1, v, w \in$	[7]
F9	$wu^{2^k+1}x^{2^s+2^k+s}$	\mathbb{F}_{2^k} , $vw \neq 1, 3 (k+s), u$ primitive in $\mathbb{F}_{2^n}^*$	
F10	$a^2x^{2^{2m+1}+1} + b^2x^{2^{m+1}+1} +$	$n = 3m, m \text{ odd}, L(x) = ax^{2^{2m}} + bx^{2^m} + cx$	[8]
	$ax^{2^{2m}+2} + bx^{2^m+2} + (c^2 + c)x^3$	satisfies the conditions of Lemma 8 of [8]	
F11	$x^{3} + a(x^{2^{i+1}})^{2^{k}} + bx^{3 \cdot 2^{m}} + c(x^{2^{i+m}+2^{m}})^{2^{k}}$	$n = 2m = 10, (a, b, c) = (\beta, 1, 0, 0), i = 3,$	[13]
	$c(x^{2^{i+m}+2^m})^{2^k}$	$k=2,\beta$ primitive in \mathbb{F}_{2^2}	
		$n = 2m$, m odd, $3 \nmid m$, $(a, b, c) = (\beta, \beta^2, 1)$,	
		β primitive in $\mathbb{F}_{2^2}, \ i \in \{m-2, m, 2m-1\}$	
		$1, (m-2)^{-1} \mod n$	
F12	$a \operatorname{Tr}_{m}^{n}(bx^{2^{1}+1}) + a^{q} \operatorname{Tr}_{m}^{n}(cx^{2^{s}+1})$	$n=2m, m \text{ odd}, q=2^m, a \notin \mathbb{F}_q, \gcd(i,n)=$	[37]
		1,i,s,b,c satisfy the conditions of Theorem 2	
F13	$L(z)^{2^m+1} + vz^{2^m+1}$	$gcd(s, m) = 1, v \in \mathbb{F}_{2^m}^*, \mu \in \mathbb{F}_{2^{3m}}^*, L(z) =$	[30]
		$z^{2^{m+s}} + \mu z^{2^s} + z$ permutes $\mathbb{F}_{2^{3m}}$	

ID	Functions	Conditions	Source
F14	$(xy, x^{2^k+1} + \alpha y^{(2^k+1)2^i})$	$gcd(k, m) = 1$, m even, α not a cube	[38]
F15	$ax^{2^{2m}}y^{2^m} + by^{2^m+1}$	$x^{2^m+1}+ax+b$ has no root in \mathbb{F}_{2^m}	[34]
F16	$(xy, x^{2^i+1} +$	$(cx^{2^{i}+1} + bx^{2^{i}} + 1)^{2^{m/2}+1} + x^{2^{m/2}+1}$	[15]
	$x^{2^{i+m/2}}y^{2^{m/2}} + bxy^{2^i} +$	$(cx^{2^i+1}+bx^{2^i}+1)^{2^{m/2}+1}+x^{2^{m/2}+1}$ has no roots in \mathbb{F}_{2^m}	
	$cy^{2^{*}+1}$)		
F17	$(x^{2^{i}+1} + xy^{2i} + y^{2^{i}+1}, x^{2^{2^{i}}+1} + x^{2^{2^{i}}}y +$	gcd(3i, m) = 1	[26]
	$y^{2^{2i}+1}$)		
F18	$(x^{2^{i}+1} + xy^{2^{i}} + y^{2^{i}+1}, x^{2^{3i}}y + xy^{2^{3i}})$	gcd(3i, m) = 1, m odd	[26]
F19	$(x^3+xy^2+y^3+xy, x^5+$	gcd(3, m) = 1	[30]
	$x^4y + y^5 + xy + x^2y^2)$	1 1 10	
F20		$0 < k < m, q = 2^k, r = 2^{k+m/2},$	[27]
	$\frac{a}{B}xy^r$)	$m \equiv 2 \pmod{4}, \gcd(k, m) = 1,$	
		$a\in \mathbb{F}_{2^{m/2}}^*,\ B\in \mathbb{F}_{2^m},\ B ext{ not a cube,} \ B^{q+r} eq a^{q+1}$	
F21	$(x^{q+1} + xy^q +$	$k,m > 0$, $gcd(k,m) = 1$, $q = 2^k$, $\alpha \in \mathbb{F}_{2^m}$, $x^{q+1} + x + \alpha$ has no roots	[16]
	$\alpha y^{q+1}, x^{q^2+1} + \alpha x^{q^2}y +$	$\alpha \in \mathbb{F}_{2^m}, \ x^{q+1} + x + \alpha$ has no roots	
	$(1+\alpha)^q x y^{q^2} + \alpha y^{q^2+1})$	in \mathbb{F}_{2^m}	
F22		$\alpha \in \mathbb{F}_{2^m}, \ x^3 + x + \alpha$ has no roots in	[16]
	$xy + \alpha x^2y^2 + \alpha x^4y + (1 +$	\mathbb{F}_{2^m}	
	α) ² $xy^4 + \alpha y^5$)		

Cyclotomic mappings among the zoo of APN functions

[LiKaleyski23]

Let
$$gcd(m,7) = 1$$
,

$$F(x,y,z) = (x^3 + x^2z + yz^2, x^2z + y^3, xy^2 + y^2z + z^3).$$

Conclusion

Cyclotomic mappings and APNness

- Natural generalization of monomials
- WANTED: more necessary conditions to be APN (in the quadratic case).

"Pen and paper" APN functions

- A lot of them are cyclotomic mappings → is the zoo that broad after all?
- PROBLEM: geometrical structure not CCZ-invariant
- Some ideas to detect it. But can we prove it?

Computer search

- Most of the APN functions found are not cyclotomic (at first sight)
- Cyclotomic (with more conditions) seems a good search heuristic!

Thanks!

27 / 27