

SEQUENCE LISTING

<110> NAKAMURA, Toshikazu
MATSUMOTO, Kunio
FUKUTA, Kazuhiko

<120> GLYCOSYLATION-DEFICIENT HEPATOCYTE GROWTH FACTOR

<130> 2006_0825A

<140> 10/582,973
<141> 2006-09-13

<150> PCT/JP04/18719
<151> 2004-12-15

<150> JP 2003-418790
<151> 2003-12-16

<150> JP 2003-425691
<151> 2003-12-22

<160> 8

<170> PatentIn version 3.3

<210> 1
<211> 728
<212> PRT
<213> Homo sapiens

<400> 1

Met Trp Val Thr Lys Leu Leu Pro Ala Leu Leu Leu Gln His Val Leu
1 5 10 15

Leu His Leu Leu Leu Pro Ile Ala Ile Pro Tyr Ala Glu Gly Gln
20 25 30

Arg Lys Arg Arg Asn Thr Ile His Glu Phe Lys Lys Ser Ala Lys Thr
35 40 45

Thr Leu Ile Lys Ile Asp Pro Ala Leu Lys Ile Lys Thr Lys Lys Val
50 55 60

Asn Thr Ala Asp Gln Cys Ala Asn Arg Cys Thr Arg Asn Lys Gly Leu
65 70 75 80

Pro Phe Thr Cys Lys Ala Phe Val Phe Asp Lys Ala Arg Lys Gln Cys
85 90 95

Leu Trp Phe Pro Phe Asn Ser Met Ser Ser Gly Val Lys Lys Glu Phe
100 105 110

Gly His Glu Phe Asp Leu Tyr Glu Asn Lys Asp Tyr Ile Arg Asn Cys
115 120 125

Ile Ile Gly Lys Gly Arg Ser Tyr Lys Gly Thr Val Ser Ile Thr Lys
130 135 140

Ser Gly Ile Lys Cys Gln Pro Trp Ser Ser Met Ile Pro His Glu His
145 150 155 160

Ser Phe Leu Pro Ser Ser Tyr Arg Gly Lys Asp Leu Gln Glu Asn Tyr
165 170 175

Cys Arg Asn Pro Arg Gly Glu Gly Gly Pro Trp Cys Phe Thr Ser
180 185 190

Asn Pro Glu Val Arg Tyr Glu Val Cys Asp Ile Pro Gln Cys Ser Glu
195 200 205

Val Glu Cys Met Thr Cys Asn Gly Glu Ser Tyr Arg Gly Leu Met Asp
210 215 220

His Thr Glu Ser Gly Lys Ile Cys Gln Arg Trp Asp His Gln Thr Pro
225 230 235 240

His Arg His Lys Phe Leu Pro Glu Arg Tyr Pro Asp Lys Gly Phe Asp
245 250 255

Asp Asn Tyr Cys Arg Asn Pro Asp Gly Gln Pro Arg Pro Trp Cys Tyr
260 265 270

Thr Leu Asp Pro His Thr Arg Trp Glu Tyr Cys Ala Ile Lys Thr Cys
275 280 285

Ala Asp Asn Thr Met Asn Asp Thr Asp Val Pro Leu Glu Thr Thr Glu
290 295 300

Cys Ile Gln Gly Gln Gly Glu Gly Tyr Arg Gly Thr Val Asn Thr Ile
305 310 315 320

Trp Asn Gly Ile Pro Cys Gln Arg Trp Asp Ser Gln Tyr Pro His Glu
325 330 335

His Asp Met Thr Pro Glu Asn Phe Lys Cys Lys Asp Leu Arg Glu Asn
340 345 350

Tyr Cys Arg Asn Pro Asp Gly Ser Glu Ser Pro Trp Cys Phe Thr Thr
355 360 365

Asp Pro Asn Ile Arg Val Gly Tyr Cys Ser Gln Ile Pro Asn Cys Asp
370 375 380

Met Ser His Gly Gln Asp Cys Tyr Arg Gly Asn Gly Lys Asn Tyr Met
385 390 395 400

Gly Asn Leu Ser Gln Thr Arg Ser Gly Leu Thr Cys Ser Met Trp Asp
405 410 415

Lys Asn Met Glu Asp Leu His Arg His Ile Phe Trp Glu Pro Asp Ala
420 425 430

Ser Lys Leu Asn Glu Asn Tyr Cys Arg Asn Pro Asp Asp Asp Ala His
435 440 445

Gly Pro Trp Cys Tyr Thr Gly Asn Pro Leu Ile Pro Trp Asp Tyr Cys
450 455 460

Pro Ile Ser Arg Cys Glu Gly Asp Thr Thr Pro Thr Ile val Asn Leu
465 470 475 480

Asp His Pro Val Ile Ser Cys Ala Lys Thr Lys Gln Leu Arg Val Val
485 490 495

Asn Gly Ile Pro Thr Arg Thr Asn Ile Gly Trp Met Val Ser Leu Arg
500 505 510

Tyr Arg Asn Lys His Ile Cys Gly Gly Ser Leu Ile Lys Glu Ser Trp
515 520 525

Val Leu Thr Ala Arg Gln Cys Phe Pro Ser Arg Asp Leu Lys Asp Tyr
530 535 540

Glu Ala Trp Leu Gly Ile His Asp Val His Gly Arg Gly Asp Glu Lys
545 550 555 560

Cys Lys Gln Val Leu Asn Val Ser Gln Leu Val Tyr Gly Pro Glu Gly
565 570 575

Ser Asp Leu Val Leu Met Lys Leu Ala Arg Pro Ala Val Leu Asp Asp
580 585 590

Phe Val Ser Thr Ile Asp Leu Pro Asn Tyr Gly Cys Thr Ile Pro Glu
595 600 605

Lys Thr Ser Cys Ser Val Tyr Gly Trp Gly Tyr Thr Gly Leu Ile Asn
610 615 620

Tyr Asp Gly Leu Leu Arg Val Ala His Leu Tyr Ile Met Gly Asn Glu
625 630 635 640

Lys Cys Ser Gln His His Arg Gly Lys Val Thr Leu Asn Glu Ser Glu
645 650 655

Ile Cys Ala Gly Ala Glu Lys Ile Gly Ser Gly Pro Cys Glu Gly Asp
660 665 670

Tyr Gly Gly Pro Leu Val Cys Glu Gln His Lys Met Arg Met Val Leu
675 680 685

Gly Val Ile Val Pro Gly Arg Gly Cys Ala Ile Pro Asn Arg Pro Gly
690 695 700

Ile Phe Val Arg Val Ala Tyr Tyr Ala Lys Trp Ile His Lys Ile Ile
705 710 715 720

Leu Thr Tyr Lys Val Pro Gln Ser
725

<210> 2
<211> 723
<212> PRT
<213> Homo sapiens

<400> 2

Met Trp Val Thr Lys Leu Leu Pro Ala Leu Leu Leu Gln His Val Leu
1 5 10 15

Leu His Leu Leu Leu Pro Ile Ala Ile Pro Tyr Ala Glu Gly Gln
20 25 30

Arg Lys Arg Arg Asn Thr Ile His Glu Phe Lys Lys Ser Ala Lys Thr
35 40 45

Thr Leu Ile Lys Ile Asp Pro Ala Leu Lys Ile Lys Thr Lys Lys Val
50 55 60

Asn Thr Ala Asp Gln Cys Ala Asn Arg Cys Thr Arg Asn Lys Gly Leu
65 70 75 80

Pro Phe Thr Cys Lys Ala Phe Val Phe Asp Lys Ala Arg Lys Gln Cys
85 90 95

Leu Trp Phe Pro Phe Asn Ser Met Ser Ser Gly Val Lys Lys Glu Phe
100 105 110

Gly His Glu Phe Asp Leu Tyr Glu Asn Lys Asp Tyr Ile Arg Asn Cys
115 120 125

Ile Ile Gly Lys Gly Arg Ser Tyr Lys Gly Thr Val Ser Ile Thr Lys
130 135 140

Ser Gly Ile Lys Cys Gln Pro Trp Ser Ser Met Ile Pro His Glu His
145 150 155 160

Ser Tyr Arg Gly Lys Asp Leu Gln Glu Asn Tyr Cys Arg Asn Pro Arg
165 170 175

Gly Glu Glu Gly Gly Pro Trp Cys Phe Thr Ser Asn Pro Glu Val Arg
180 185 190

Tyr Glu Val Cys Asp Ile Pro Gln Cys Ser Glu Val Glu Cys Met Thr
195 200 205

Cys Asn Gly Glu Ser Tyr Arg Gly Leu Met Asp His Thr Glu Ser Gly
210 215 220

Lys Ile Cys Gln Arg Trp Asp His Gln Thr Pro His Arg His Lys Phe
225 230 235 240

Leu Pro Glu Arg Tyr Pro Asp Lys Gly Phe Asp Asp Asn Tyr Cys Arg
245 250 255

Asn Pro Asp Gly Gln Pro Arg Pro Trp Cys Tyr Thr Leu Asp Pro His
260 265 270

Thr Arg Trp Glu Tyr Cys Ala Ile Lys Thr Cys Ala Asp Asn Thr Met
275 280 285

Asn Asp Thr Asp Val Pro Leu Glu Thr Thr Glu Cys Ile Gln Gly Gln
290 295 300

Gly Glu Gly Tyr Arg Gly Thr Val Asn Thr Ile Trp Asn Gly Ile Pro
305 310 315 320

Cys Gln Arg Trp Asp Ser Gln Tyr Pro His Glu His Asp Met Thr Pro
325 330 335

Glu Asn Phe Lys Cys Lys Asp Leu Arg Glu Asn Tyr Cys Arg Asn Pro
340 345 350

Asp Gly Ser Glu Ser Pro Trp Cys Phe Thr Thr Asp Pro Asn Ile Arg
355 360 365

Val Gly Tyr Cys Ser Gln Ile Pro Asn Cys Asp Met Ser His Gly Gln
370 375 380

Asp Cys Tyr Arg Gly Asn Gly Lys Asn Tyr Met Gly Asn Leu Ser Gln
385 390 395 400

Thr Arg Ser Gly Leu Thr Cys Ser Met Trp Asp Lys Asn Met Glu Asp
405 410 415

Leu His Arg His Ile Phe Trp Glu Pro Asp Ala Ser Lys Leu Asn Glu
420 425 430

Asn Tyr Cys Arg Asn Pro Asp Asp Asp Ala His Gly Pro Trp Cys Tyr
435 440 445

Thr Gly Asn Pro Leu Ile Pro Trp Asp Tyr Cys Pro Ile Ser Arg Cys
450 455 460

Glu Gly Asp Thr Thr Pro Thr Ile Val Asn Leu Asp His Pro Val Ile
465 470 475 480

Ser Cys Ala Lys Thr Lys Gln Leu Arg Val Val Asn Gly Ile Pro Thr
485 490 495

Arg Thr Asn Ile Gly Trp Met Val Ser Leu Arg Tyr Arg Asn Lys His
500 505 510

Ile Cys Gly Gly Ser Leu Ile Lys Glu Ser Trp Val Leu Thr Ala Arg
515 520 525

Gln Cys Phe Pro Ser Arg Asp Leu Lys Asp Tyr Glu Ala Trp Leu Gly
530 535 540

Ile His Asp Val His Gly Arg Gly Asp Glu Lys Cys Lys Gln Val Leu
545 550 555 560

Asn Val Ser Gln Leu Val Tyr Gly Pro Glu Gly Ser Asp Leu Val Leu
565 570 575

Met Lys Leu Ala Arg Pro Ala Val Leu Asp Asp Phe Val Ser Thr Ile
580 585 590

Asp Leu Pro Asn Tyr Gly Cys Thr Ile Pro Glu Lys Thr Ser Cys Ser
595 600 605

Val Tyr Gly Trp Gly Tyr Thr Gly Leu Ile Asn Tyr Asp Gly Leu Leu
610 615 620

Arg Val Ala His Leu Tyr Ile Met Gly Asn Glu Lys Cys Ser Gln His
625 630 635 640

His Arg Gly Lys Val Thr Leu Asn Glu Ser Glu Ile Cys Ala Gly Ala
645 650 655

Glu Lys Ile Gly Ser Gly Pro Cys Glu Gly Asp Tyr Gly Gly Pro Leu
660 665 670

Val Cys Glu Gln His Lys Met Arg Met Val Leu Gly Val Ile Val Pro
675 680 685

Gly Arg Gly Cys Ala Ile Pro Asn Arg Pro Gly Ile Phe Val Arg Val
690 695 700

Ala Tyr Tyr Ala Lys Trp Ile His Lys Ile Ile Leu Thr Tyr Lys Val
705 710 715 720

Pro Gln Ser

<210> 3
<211> 2172
<212> DNA
<213> Homo sapiens

<400> 3
atgtgggtga ccaaactcct gccagccctg ctgctgcagc atgtcctcct gcatctcctc 60
ctgctccccca tcgccatccc ctatgcagag ggacaaagga aaagaagaaa tacaattcat 120
gaattcaaaa aatcagcaaa gactacccta atcaaaatag atccagcact gaagataaaaa 180
accaaaaaag tgaatactgc agaccaatgt gctaatacgat gtacttagaa taaaggactt 240
ccatttcactt gcaaggcttt tgttttgat aaagcaagaa aacaatgcct ctggttcccc 300
ttcaatagca tgtcaagtgg agtaaaaaaaaa gaatttggcc atgaatttga cctctatgaa 360
aacaaagact acattagaaaa ctgcatcatt ggtaaaggac gcagctacaa gggAACAGTA 420
tctatcacta agagtggcat caaatgtcag ccctggagtt ccatgatacc acacgaacac 480
agctatcggg gtaaagacct acaggaaaac tactgtcgaa atcctcgagg ggaagaaggg 540
ggacccttgtt gtttcacaag caatccagag gtacgctacg aagtctgtga cattcctcag 600
tgttcagaag ttgaatgcat gacctgcaat gggagagtt atcgaggtct catggatcat 660
acagaatcag gcaagatttgc tcagcgctgg gatcatcaga caccacaccg gcacaaattc 720
ttgcctgaaa gatatcccgaa caagggcttt gatgataatt attgccgcaa tcccgatggc 780
cagccgaggc catggtgcta tactcttgac cctcacaccc gctggggagta ctgtgcaatt 840
aaaacatgcg ctgacaatac tatgaatgac actgatgttc ctttggaaac aactgaatgc 900
atccaaggcgtt aaggagaagg ctacaggggc actgtcaata ccatttggaa tggaattcca 960
tgtcagcggtt gggattctca gtatcctcac gagcatgaca tgactcctga aaatttcaag 1020

tgcaaggacc tacgagaaaa ttactgccga aatccagatg ggtctgaatc accctggtgt	1080
tttaccactg atccaaacat ccgagttggc tactgctccc aaattccaaa ctgtgatatg	1140
tcacatggac aagattgtta tcgtggaat ggcaaaaatt atatggcaa cttatcccaa	1200
acaagatctg gactaacatg ttcaatgtgg gacaagaaca tggaagactt acatcgcat	1260
atcttctggg aaccagatgc aagtaagctg aatgagaatt actgccaaa tccagatgat	1320
gatgctcatg gaccctgggtg ctacacgggaaatccactca ttccttgggatattgcct	1380
atttctcggtt gtgaaggtga taccacacct acaatagtca atttagacca tcccgtaata	1440
tcttgccaaacgaaaca attgcgagtt gtaaatgggatccacacg aacaaacata	1500
ggatggatgg ttagtttagat acagaaat aaacatatct gcggaggatc attgataaag	1560
gagagttggg ttcttactgc acgacagtgttcccttc gagactgaa agattatgaa	1620
gcttggcttg gaattcatga tgtccacggaaagaggagatg agaaatgcaa acaggttctc	1680
aatgtttcccc agctggtata tggccctgaa ggatcagatc tggtttaat gaagcttgcc	1740
aggcctgctg tcctggatga tttttagt acgattgatt tacctaatta tggatgcaca	1800
attcctgaaa agaccagttt cagttttat ggctgggct acactggatt gatcaactat	1860
gatggcctat tacgagtggc acatctctat ataatggaa atgagaaatg cagccagcat	1920
catcgagggaa aggtgactct gaatgagttct gaaatatgtc tggtggctga aaagattgga	1980
tcaggaccat gtgagggggatatggatgc ccacttgggtt gtgagcaaca taaaatgaga	2040
atggttcttg gtgtcattgt tcctggtcgtt ggtgtgcca ttccaaatcg tcctggatt	2100
tttgcgtag tagcatatta tgcaaaaatgg atacacaaaa ttatTTAAC atataaggta	2160
ccacagtcat ag	2172

<210> 4
<211> 39
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 4
tgcgctgaca atactatgca agacactgat gttccctttg 39

<210> 5
<211> 41
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 5
ggcaaaaatt atatggccaa acaagatctg g 41

<210> 6
<211> 38
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 6
tgcaaacagg ttctccaagt ttcccagctg gtatatgg 38

<210> 7
<211> 38
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 7
gggaaggtga ctctgcaaga gtctgaaata tgtgctgg 38

<210> 8
<211> 38
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 8
ggtgatacca cacctggaat agtcaattta gaccatcc 38