EE 248 HW#1 - Convexity and Gradient Methods

Due date: Sunday October 17, 2021 midnight over iLearn.

- You only need to submit solutions for 2 out of the 3 problems.
- If you submit all 3 solutions you get 10% bonus. If your effort is not sufficient, you may not get it (at TA's discretion).
- Only 1 problem of TA's choice will be graded (out of the ones you submitted).
- You are free to discuss with others but you are not allowed to look at other's HW solutions. It has to be 100% your writing, your work.
- Please LATEX the solutions.

Problem 1

Part a. Let $(y_i, x_i)_{i=1}^n$ be a dataset with $y \in \mathbb{R}, x \in \mathbb{R}^d$. Fix $\lambda \ge 0$ and consider the ridge regression problem

$$\mathcal{L}(\boldsymbol{\beta}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta})^2 + \frac{\lambda}{2} \|\boldsymbol{\beta}\|_2^2.$$

- Derive $\nabla \mathcal{L}(\boldsymbol{\beta})$ and $\nabla^2 \mathcal{L}(\boldsymbol{\beta})$. Make sure to use matrix/vector notation where $\boldsymbol{X} = [\boldsymbol{x}_1 \ \dots \ \boldsymbol{x}_n]^{\mathsf{T}} \in \mathbb{R}^{n \times d}$ and $\boldsymbol{y} = [y_1 \ \dots \ y_n] \in \mathbb{R}^n$.
- Determine the precise conditions under which $\mathcal{L}(\beta)$ is a strongly-convex function.

Part b. Now consider the loss function

$$\bar{\mathcal{L}}(\boldsymbol{\beta}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - |\boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}|)^2.$$

- Given a choice of $(x_i)_{i=1}^n$, construct $(y_i)_{i=1}^n$ such that the loss function $\bar{\mathcal{L}}(\beta)$ is convex. What is the most general set (to which $(y_i)_{i=1}^n$ belongs) that guarantees convexity?
- Given a choice of $(x_i)_{i=1}^n$, construct $(y_i)_{i=1}^n$ such that $\bar{\mathcal{L}}(\beta)$ is nonconvex.

Solution a.
$$\nabla \mathcal{L}(\beta) = X^{\mathsf{T}}(X\beta - y) + \lambda \beta$$
. $\nabla^2 \mathcal{L}(\beta) = X^{\mathsf{T}}X + \lambda I$.

The Problem is strongly convex iff $\nabla^2 \mathcal{L}(\beta) > 0$ i.e. Hessian is positive definite. For this to happen, we either need

- $\lambda > 0$: positive ridge regression or
- $X^{T}X > 0$: X is rank d. This is same as $n \ge d$ and X is full rank.

Solution b: Q1. Expanding the function we find $(y_i - |\boldsymbol{x}_i^{\mathsf{T}}\boldsymbol{\beta}|)^2 = y_i^2 - 2y_i|\boldsymbol{x}_i^{\mathsf{T}}\boldsymbol{\beta}| + (\boldsymbol{x}_i^{\mathsf{T}}\boldsymbol{\beta})^2$. Observe that y_i^2 is a constant, $(\boldsymbol{x}_i^{\mathsf{T}}\boldsymbol{\beta})^2$ is a convex function and $|\boldsymbol{x}_i^{\mathsf{T}}\boldsymbol{\beta}|$ is a convex function as well. However, $-2y_i|\boldsymbol{x}_i^{\mathsf{T}}\boldsymbol{\beta}|$ can be convex or concave depending on y_i .

Main observation is that if we have $y_i \leq 0$ for all $1 \leq i \leq n$, then the problem is convex because each $-2y_i|\boldsymbol{x}_i^{\mathsf{T}}\boldsymbol{\beta}|$ term becomes convex.

Solution b: Q2. If all of $(x_i)_{i=1}^n$ are zero problem is convex. Suppose one of the examples $(x_i)_{i=1}^n$ are nonzero. Then, we can choose some β so that $X\beta \neq 0$ and set $y = |X\beta|$. This y choice leads to nonconvexity. The reason is that $\bar{\mathcal{L}}(\beta) = \bar{\mathcal{L}}(-\beta) = \frac{1}{2}||y - |X\beta||_{\ell_2}^2 = 0$ so $\pm \beta$ are global minima. However $\bar{\mathcal{L}}(0) = \frac{1}{2}||y||_{\ell_2}^2 > 0$ which contradicts with the convexity since 0 is linear combination of $\pm \beta$.

Solution b: Q1: Most general set. Here, the cleanest answer is all choices of y_i that makes $f(\beta) = -\sum_{i=1}^n y_i | x_i^{\mathsf{T}} \beta |$ convex.

- This automatically covers the case y_i are nonpositive.
- Conversely, if y_i 's are all non-negative and there is at least one pair (y, x) obeying y > 0 and $x \neq 0$, then $f(\beta)$ is nonconvex because

$$f(x) = f(-x) \le y|x^{\mathsf{T}}x| = y||x||_{\ell_2}^2 < f(0) = 0.$$

I say the convexity of $f(\beta)$ is the cleanest answer because $\bar{\mathcal{L}}(\beta) = 0.5 \|\boldsymbol{y}\|_{\ell_2}^2 + f(\beta) + f'(\beta)$ where $f'(\beta) = 0.5 \sum_{i=1}^n (\boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta})^2$. $0.5 \|\boldsymbol{y}\|_{\ell_2}^2$ term is constant and $f'(\beta)$ has no importance. To see the latter observe that $\bar{\mathcal{L}}$ is convex if and only if f is convex.

- If $f(\beta)$ is convex, $f'(\beta)$ is also convex so $\bar{\mathcal{L}}(\beta)$ is convex.
- If $f(\beta)$ is not convex, there is β, β' such that $\alpha f(\beta) + (1 \alpha)f(\beta') < f(\beta_{\alpha})$ where $\beta_{\alpha} = \alpha \beta + (1 \alpha)\beta'$. Let ε be a small scalar of our choice. Observe that

$$\bar{\mathcal{L}}(\varepsilon\boldsymbol{\beta}) = 0.5 \|\boldsymbol{y}\|_{\ell_2}^2 + \varepsilon f(\boldsymbol{\beta}) + \varepsilon^2 f'(\boldsymbol{\beta}).$$

Thus, we find

$$(1/\varepsilon)\left[\alpha\bar{\mathcal{L}}(\varepsilon\beta) + (1-\alpha)\bar{\mathcal{L}}(\varepsilon\beta') - \bar{\mathcal{L}}(\varepsilon\beta')\right] = \underbrace{\left[\alpha f(\beta) + (1-\alpha)f(\beta') - f(\beta_{\alpha})\right]}_{<0} + \underbrace{\varepsilon\left[\alpha f'(\beta) + (1-\alpha)f'(\beta') - f'(\beta_{\alpha})\right]}_{\rightarrow 0 \text{ as } \varepsilon \rightarrow 0}$$

Thus, letting $\varepsilon \to 0$, we find that $\bar{\mathcal{L}}(\beta)$ is not convex.

Problem 2

Part a. Recall that a convex function f may not be differentiable but it admits subgradients. The set of all subgradients of a function f is called the subdifferential and is denoted by $\partial f(\mathbf{a})$. Consider the ℓ_1 norm of a vector $\mathbf{a} \in \mathbb{R}^d$ which is defined as $\|\mathbf{a}\|_1 = \sum_{i=1}^d |a_i|$. Determine the set $\partial \|\mathbf{a}\|_1$.

Part b. Suppose you wish to pick a subgradient $\mathbf{g} \in \partial \|\mathbf{a}\|_1$ such that ℓ_1 norm reduces as much as possible when you take an ε small step in the $-\mathbf{g}$ direction. Determine this optimal \mathbf{g} at a given \mathbf{a} .

Part c. Consider the lasso problem which is ℓ_1 -penalized least-squares regression

$$\mathcal{L}(\boldsymbol{\beta}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta})^2 + \lambda \|\boldsymbol{\beta}\|_1.$$

Suppose you wish to solve $\arg\min_{\boldsymbol{\beta}} \mathcal{L}(\boldsymbol{\beta})$ using an iterative algorithm with constant learning rate η . Based on Parts a. & b., derive how to take a step from the current iterate $\boldsymbol{\beta}$ to obtain the next iterate $\hat{\boldsymbol{\beta}}$. **Hint:** Part of the loss is not differentiable so you need to choose the best sub-gradient.

Part d. People use ℓ_1 norm for a reason right? It turns out, it is because ℓ_1 norm is the smallest p for which ℓ_p quasi-norm is convex. Let us define the ℓ_p quasi-norm of a vector $\|\boldsymbol{a}\|_p = (\sum_{i=1}^d |a_i|^p)^{1/p}$ for all p > 0. Prove that ℓ_p quasi-norm is a nonconvex function for all 0 .

Solution **a.** Here a key observation is that ℓ_1 norm is decomposable into individual coordinates since $\|\boldsymbol{x}\|_1 = \sum_{i=1}^d |\boldsymbol{x}_i|$. Thus subgradient is the concatenation of the subgradients of the individual absolute value functions because $\partial \|\boldsymbol{x}\|_1/\partial \boldsymbol{x}_i = \partial |\boldsymbol{x}_i|/\partial \boldsymbol{x}_i$. Let $\operatorname{sgn}(\boldsymbol{a})$ be the sign vector which is 1 if $\boldsymbol{a}_i > 0$, -1 if $\boldsymbol{a}_i < 0$ and 0 else. Subdifferential is given by

$$\partial \|\boldsymbol{a}\|_1 = \{\boldsymbol{x} \mid \|\boldsymbol{x}\|_{\infty} \le 1, \ \boldsymbol{x}_i = \operatorname{sgn}(\boldsymbol{a}_i), \text{ whenever } \boldsymbol{a}_i \ne 0\}.$$

In words, subgradient is equal to sgn(a) over the nonzero entries and the remaining entries are arbitrary with absolute value bounded by 1.

Solution b. $g = \operatorname{sgn}(a)$. If g had a nonzero entry in a coordiate $a_i = 0$, then we would have $||a - \varepsilon g||_1 > ||a - \varepsilon \operatorname{sgn}(a)||_1$ because $|g_i + a_i| = |g_i| > 0$ would increase the ℓ_1 norm. Thus, optimal g has to be $\operatorname{sgn}(a)$.

Solution c. Any subgradient can be written as $g_{\mathcal{L}}(\boldsymbol{\beta}) = 0.5 \nabla \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|_{\ell_2}^2 + \lambda g_{\|\cdot\|_1}(\boldsymbol{\beta})$. Following part (b), we choose $g_{\mathcal{L}}(\boldsymbol{\beta}) = \boldsymbol{X}^{\top}(\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}) + \lambda \operatorname{sgn}(\boldsymbol{\beta})$.

Solution d. If d = 1, all norms are equal to absolute value and convex. So assume $d \ge 2$. Choose $\mathbf{z} = \begin{bmatrix} 1 & 0 \end{bmatrix}^{\mathsf{T}}$ and $\mathbf{z} = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix}^{\mathsf{T}}$. For p < 1, convexity is violated via

$$\frac{\|\boldsymbol{x}\|_p + \|\boldsymbol{y}\|_p}{2} = 1 < 2^{1/p-1} = 2^{1/p}0.5 = \|\boldsymbol{z}\|_p.$$

Problem 3

Part a. Let $C \in \mathbb{R}^d$ be a closed convex set. Let $a, b \in \mathbb{R}^d$ two points. Define the projection operator to be the unique point $\Pi_{\mathcal{C}}(a) = \arg\min_{v \in \mathcal{C}} \|a - v\|_2$. Prove that projection is contractive, that is,

$$\|\Pi_{\mathcal{C}}(\boldsymbol{a}) - \Pi_{\mathcal{C}}(\boldsymbol{b})\|_{2} \le \|\boldsymbol{a} - \boldsymbol{b}\|_{2}.$$
 (CONTRACTION)

Hint: Use the fact that projection satisfies $(v - \Pi_{\mathcal{C}}(a), a - \Pi_{\mathcal{C}}(a)) \le 0$ for any $v \in \mathcal{C}$.

Significance: In the special case of $b \in C$, this result implies: "Projecting a onto C is guaranteed to return a closer point to b" and forms the basis of iterative algos that use gradient-descent followed by projection.

Part b. Set \mathcal{C} to be the set of s-sparse signals, that is, $v \in \mathcal{C}$ iff v has at most s-nonzero entries for some $s \leq d$. Construct an example where (CONTRACTION) is violated for \mathcal{C} .

Part c. Consider the ℓ_{∞} norm-ball defined as $\mathcal{C} = \{ \boldsymbol{v} \in \mathbb{R}^d \mid |v_i| \le 1 \text{ for all } 1 \le i \le d \}$. Derive (the analytical expression for) the projection onto this ball i.e. $\Pi_{\mathcal{C}}(\boldsymbol{x})$.

Part d. In Problem 2a. you calculated the subdifferential of the ℓ_1 norm. Now, let us set \mathcal{C} to be this subdifferential i.e. $\mathcal{C} = \partial \|\boldsymbol{a}\|_1$. Derive the projection onto this subdifferential i.e. $\Pi_{\mathcal{C}}(\boldsymbol{x})$. Comment on any similarities to the norm-ball projection in Problem 3c. (**Hint:** What happens when $\boldsymbol{a} = 0$?)

Solution a (easiest to understand is by drawing on a paper). Let $a' = \Pi_{\mathcal{C}}(a), b' = \Pi_{\mathcal{C}}(b)$. Let P denote all points between a', b'. Note that P is in the convex set \mathcal{C} and $b' = \Pi_P(b)$ is the projection of b onto $P \subset \mathcal{C}$. Consider the two dimensional plane \mathcal{S} induced by the vectors a - a' and a - b. Obtain $b_2 = \Pi_{\mathcal{S}}(b)$ which projects b onto the plane (now you can draw a, b_2, a', b' on a paper). Since b_2 is a subspace projection and $P \subset \mathcal{S}$, we still have that b' is the closest point i.e. $b' = \Pi_P(b_2) = \Pi_P(b)$.

Let S' be the 1 dimensional subspace P lies on. Using the hint observe that

$$\|\boldsymbol{a} - \boldsymbol{b}\|_{\ell_2} \ge \|\boldsymbol{a} - \boldsymbol{b}_2\|_{\ell_2} \ge \|\Pi_{\mathcal{S}'}(\boldsymbol{a}) - \Pi_{\mathcal{S}'}(\boldsymbol{b}_2)\|_{\ell_2} \ge \|\boldsymbol{a}' - \boldsymbol{b}'\|_{\ell_2}$$

Solution b. Let us set d=2 and s=1. Consider $\boldsymbol{a}=\begin{bmatrix}1\ 0.9\end{bmatrix}$ and $\boldsymbol{b}=\begin{bmatrix}0.9\ 1\end{bmatrix}$. We have that $\|\boldsymbol{a}-\boldsymbol{b}\|_{\ell_2}^2=0.02$. On the other hand $\boldsymbol{a}'=\Pi_{\mathcal{C}}(\boldsymbol{a})=\begin{bmatrix}1\ 0\end{bmatrix}$ and $\boldsymbol{b}'=\Pi_{\mathcal{C}}(\boldsymbol{b})=\begin{bmatrix}0\ 1\end{bmatrix}$ thus $\|\boldsymbol{a}'-\boldsymbol{b}'\|_{\ell_2}^2=2>\|\boldsymbol{a}-\boldsymbol{b}\|_{\ell_2}^2$. Violation for general s< d can be done with similar construction (except for s=d where sparse set \mathcal{C} is the whole \mathbb{R}^d and convex).

Solution c. The key observation again is that this projection is decomposable i.e. it can be done entrywise. The ℓ_{∞} projection is given by

$$\Pi_{\infty}(\boldsymbol{x}_i) = \min(|\boldsymbol{x}_i|, 1) \cdot \operatorname{sgn}(\boldsymbol{x}_i)$$
 for $1 \le i \le d$.

Solution d. At the special case of a = 0, ℓ_1 subdifferential is exactly the ℓ_{∞} norm ball. This connection arises from the fact that ℓ_{∞} and ℓ_1 are so-called *dual norms* of each other. Let \mathcal{S} be the set of nonzero coordinates of a. Noticing entrywise decomposability again, the projection is same as Π_{∞} over \mathcal{S}^c and it is simply $\operatorname{sgn}(a_i)$ over \mathcal{S} as follows

$$\Pi_{\mathcal{C}}(\boldsymbol{x}_i) = \begin{cases} \min(|\boldsymbol{x}_i|, 1) \cdot \operatorname{sgn}(\boldsymbol{x}_i) & i \in \mathcal{S}^c \\ \operatorname{sgn}(\boldsymbol{a}_i) & i \in \mathcal{S} \end{cases}$$

Vector notation is $\Pi_{\mathcal{C}}(\boldsymbol{x}) = \operatorname{sgn}(\boldsymbol{a}) + \Pi_{\infty}(\boldsymbol{x}_{\mathcal{S}^c})$ where $\boldsymbol{x}_{\mathcal{S}^c}$ returns the entries over \mathcal{S}^c and zeros over \mathcal{S} .