## TEMEL KRIPTOLOJI İŞLEMLERİ VE RSA, ECC

## Başlıklar

- 1 Kriptografi nedir?
- Temel Kriptografi İşlemleri
- 3 Simetrik Asimetrik Şifreleme
- 4 RSA ve ECC
- Java implementasyon

#### Kriptografi nedir?

Okunabilir durumdaki bir verinin içerdiği bilginin istenmeyen taraflarca anlaşılamayacak bir hale dönüştürülmesinde kullanılan yöntemlerin tümüdür.

#### Amacı nedir?

#### Verilerimizin:

- Gizliliğini
- Bütünlüğünü
- Doğruluğunu korumaktır.



## Temel Kriptografi İşlemleri

- 1 Şifreleme (Encryption)
- 2 Şifre Çözme (Decryption)
- 3 Hashing
- 4 imzalama (Signing)
- imza Doğrulama (Verify Signing)

## 1) Şifreleme (Encryption)

Veriyi anlaşılabilir hâlden anlaşılamaz hâle getirme.



## 2) Şifre Çözme (Decryption)

Veriyi anlaşılamaz hâlden anlaşılabilir hâle getirme.



## 3) Hashing

 Herhangi büyüklükte veriyi sabit uzunlukta ve benzersiz bir şifreye dönüştüren algoritma.



#### SHA-256: Secure Hash Algorithm (256 bit)

• 256 bit çıktı

• Bütünlük

• Tek Yönlü

- Güvenlik
- Kırılması neredeyse imkansız

## 4) İmzalama (Signing)

Dijital belge veya mesajların sahibini ve bütünlüğünü doğrulamak.



## 5) İmza Doğrulama (Verify Signing)

Dijital belge veya mesajların sahibini ve bütünlüğünü doğrulamak.



## Şifreleme (Encryption)



#### Simetrik (Symmetric)

- Tek anahtar ——
- Pratik ve performanslı
- Asimetriğe göre zayıf güvenlik
- Dosya Şifreleme
  Güvenli Mesajlaşma

- Daha Eski
- En Yaygın Algoritma: **AES**



#### **Asimetrik (Asymmetric)**

Anahtar çifti





- Daha yavaş ve kaynak kullanımı fazla
- Simetriğe göre güçlü güvenlik
- Sertifika Doğrulama
  Dijital İmza





- Daha Yeni
- En Yaygın Algoritmalar: RSA, ECC

## Asimetrik Şifreleme Analoji



### RSA (Rivest-Shamir-Adleman)

- 1977
- İnternet güvenliği için devrim
- Çok yaygın
- Çok güvenli

#### Mantığı:

- İki oldukça büyük asal sayı seçilir ve çarpılır.
- Bu çarpım public ve private anahtarları oluşturmak için kullanılır.
- Şifreyi çözmek için çarpımı oluşturan asal sayıların bulunması gerekir.

• Asimetrik şifreleme algoritması



#### **Kullanım Alanları:**

- Dijital İmzalar
- SSL/TSL Sertifikaları
- Veri Şifreleme
- Kimlik Doğrulama

## **ECC (Elliptic Curve Cryptography)**

- 1985
- Daha modern
- Yüksek enerji verimliliği
- Mobil cihazlar için ideal

Asimetrik şifreleme algoritması



• 3072 bit RSA ~ 256 bit ECC



#### Mantığı:

- Eliptik eğri denklemi üzerinde tanımlanan noktalar ve bu noktalar arasında yapılan matematiksel işlemler.
- Private (özel) anahtar, eliptik eğri üzerinde bir nokta ile çarpılarak public (açık) anahtarı oluşturur.
- Zorluğu bu seçilen noktanın belirlenememesi.

#### **Kullanım Alanları:**

- Dijital İmzalar
- SSL/TSL Sertifikaları
- Mobil ve IoT Cihazları
- Blockchain
- Kimlik Doğrulama

## RSA vs ECC

| Özellik                     | RSA (Rivest-Shamir-Adleman)                            | ECC (Elliptic Curve Cryptography)                                             |
|-----------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------|
| Algoritmanın Temeli         | Büyük sayıları asal çarpanlarına ayırma zorluğu        | Eliptik eğri üzerinde nokta çarpımı                                           |
| İlk Geliştirilme Tarihi     | 1977                                                   | 1985                                                                          |
| Anahtar Boyutu              | 2048-bit veya daha büyük                               | 256-bit ile yüksek güvenlik sağlar                                            |
| Performans                  | Daha fazla işlem gücü ve enerji tüketimi<br>gerektirir | Düşük işlem gücü ve enerji tüketimi                                           |
| Güvenlik                    | Daha büyük anahtar boyutlarına ihtiyaç duyar           | Aynı güvenliği daha küçük anahtar boyutlarıyla<br>sağlar                      |
| Kullanım Alanları           | Dijital imzalar, SSL/TLS sertifikaları, veri şifreleme | Dijital imzalar, SSL/TLS sertifikaları, mobil ve loT<br>cihazları, blockchain |
| Verimlilik                  | Büyük anahtar boyutları nedeniyle daha az verimli      | Daha küçük anahtarlarla yüksek verimlilik                                     |
| Enerji Tüketimi             | Yüksek                                                 | Düşük, mobil cihazlar ve loT için ideal                                       |
| Kuantum Bilgisayar Direnci  | Kuantum bilgisayarlar karşısında daha zayıf            | Kuantum bilgisayarlara karşı daha dirençli olabilir                           |
| Anahtar Üretimi ve Yönetimi | Daha büyük ve daha karmaşık anahtar yönetimi           | Daha küçük, daha kolay yönetilebilir anahtarlar                               |

# Java İmplementasyonu







yasirgunes/cryptography operations

# TEŞEKKÜRLER