

Chapter 2

1.	We ha	ave and to qeury instances of relational database.			
		a. Relational algebra, Expression algebra			
		Relational algebra, Relational calculus			
	C.	Domain algebra, Tuple calculus			
	d.	Relational calculus, Expression algebra			
		Answer: b. Relational algebra, Relational calculus			
2.	Set in	tersection is operation			
	a.	Fundamental			
	b.	Basic			
	C.	Additional or derived			
	d.	None of the above			
		Answer: c. Additional or derived			
3.		commands are used to add, retrive, update data in database.			
		TCL			
		DDL			
		DQL			
	d.	DML			
		Answer: d. DML			
4.		TE command is used to from table.			
		Delete records from table			
		Drop the table			
		Delete the table			
	d.	Delete and drop the records of table			
_	5 :	Answer: a. Delete records from table			
5.		onal calculus tells			
		How to do			
	_	What to do			
		How and what to do			
	a.	All of the above			
•	ا من بلا منا	Answer: b. What to do			
6.	=	le relational calculus filtering variable uses:			
	a.	Attributes of relation			

b. The whole relationc. Tuples of the relation

- d. It depends on condition given
 - Answer: c. Tuples of the relation
- 7. In domain relational calculus filtering variable uses:
 - a. Tuples of the relation
 - b. Domain of attributes
 - c. Attributes and tuples of relation
 - d. (a) and (b)

Answer: b. Domain of attributes

- 8. SQL depends upon:
 - a. Relational algebra and relational calculus
 - b. Tuple and domain
 - c. Domain algebra, Tuple calculus
 - d. Relational calculus, Expression algebra
 - e. Answer: a. Relational algebra and relational calculus
- 9. TRUNCATE command is:
 - a. DQL
 - b. DML
 - c. TCL
 - d. DDL

Answer: d. DDL

- 10. MySQL is:
 - a. Commercial DBMS
 - b. Open source DBMS
 - c. Both (a) and (b)
 - d. None of the above

Answer: b. Open source DBMS

- 11. Sybase and Oracle are:
 - a. Commercial DBMS
 - b. Open source DBMS
 - c. Both (a) and (b)
 - d. None of the above

Answer: a. Commercial DBMS

	-				-
Fill	in	the	h	an	ke:
					n.ə.

1.	Relational algebra is language.
	Answer: Procedural
2.	In Relational algebra we have fundamental operations.
	Answer: Six
3.	Cartesian product is operation.
	Answer: Binary
4.	Rho, ρ , is symbol used for
	Answer: Rename operation
5.	Relational calculus is language.
	Answer: non-procedural
6.	Relational calculus has sub-types.
	Answer: two
7.	Domain relational calculus operators.
	Answer: logical connective
8.	Relational algebra is basis for
	Answer: SQL
9.	DBMS with SQL3 support are known as
	Answer: OR-DBMS
10.	INSERT is command.
	Answer: DML

Short answer questions:

1. What is relational algebra?

Keywords: procedural, relations, instances, language

2. What is Relational calculus?

Keywords: non-procedural, instances, tuple, domain

3. What are the fundamental relational operations?

Keywords: select, rename, project, cartesian, set-difference, union

4. Exaplin tuple and domain relational calculus.

Keywords: connectives, condition, filtering variable

5. What is SQL3? Answer in brief.

Keywords: OR-DBMS, Encapsulation, Inheritance, Triggers

6. Exaplain DDL and give its examples.

Keywords: define structure, Create, alter, drop

7. Exaplain DML and give its examples.

Keywords: data, update, delete, insert

8. How domain and tuple relational calculus different.

Keywords: filtering variables, connectives

9. Exaplin unary relational operations.

Keywords: select, project, rename

10. Exaplain binary relational operations.

Keywords: set difference, cartesian product, union

Long answer questions:

1. Differentiate between DML and DDL

Keywords:

2. Exaplain SQL3 and its features.

Keywords: Exaplain DDL and give its examples.

3. Explain both the types of relational calculus and give the difference between the two.

Keywords: domain, tuple, operators, connectives.

4. Exaplain relational algebra and give exaplain its fundamental types with examples.

Keywords: rename, select, project, cartesian, set difference, union

5. Exaplin SQL and its types of commands.

Keywords: DDL, DML, DQL, TCL, DCL

Relational Database Design:

Multiple Choice Questions:

- 1. Relation R has eight attributes ABCDEFGH. Fields of R contain only atomic values. F = {CH -> G, A -> BC, B -> CFH, E -> A, F -> EG} is a set of functional dependencies (FDs) so that F+ is exactly the set of FDs that hold for R. How many candidate keys does the relation R have?
 - (a) 3
 - (b) 4
 - (c) 5
 - (d) 6

Answer: (b) 4

2. Consider the following relational schema:

Suppliers(sid:integer, sname:string, city:string, street:string)

Parts(pid:integer, pname:string, color:string)

Catalog(sid:integer, pid:integer, cost:real)

Assume that, in the suppliers relation above, each supplier and each street within a city has a unique name, and (sname, city) forms a candidate key. No other functional dependencies are implied other than those implied by primary and candidate keys. Which one of the following is TRUE about the above schema?

- (a) The scheme is in BCNF
- (b) The scheme is in 3NF but not in BCNF.
- (c) The scheme is in 2NF but not in 3NF.
- (d) The scheme is not in 2NF.

Answer: (a) The scheme is in BCNF

- 3. Consider the relation scheme R = {E, F, G, H, I, J, K, L, M, M} and the set of functional dependencies {{E, F} -> {G}, {F} -> {I, J}, {E, H} -> {K, L}, K -> {M}, L -> {N} on R. What is the key for R?
 - (a) { E,F }
 - (b) { E,F,H }

- (c) { E,F,H,K,L }
- (d) $\{E\}$

Answer: (b) { E,F,H }

- 4. The maximum number of superkeys for the relation schema R(E,F,G,H) with E as the key is
 - (a) 5
 - (b) 6
 - (c) 7
 - (d) 8

Answer: (d) 8

5. The relation scheme Student Performance (name, courseNo, rollNo, grade) has the following functional dependencies:

name, courseNo \rightarrow grade

rollNo, courseNo → grade

 $name \rightarrow rollNo$

rollNo → name

The highest normal form of this relation scheme is:

- (a) 2 NF
- (b) 3 NF
- (c) BCNF
- (d) 1 NF

Answer: (b) 3 NF

6. Relation R is decomposed using a set of functional dependencies, F and relation S is decomposed using another set of functional dependencies G. One decomposition is definitely BCNF, the other is definitely 3NF, but it is not known which is which. To make a guaranteed identification, which one of the following tests should be used on the decompositions? (Assume that the closures of F and G are available).

- (a) Dependency Preservation.
- (b) Lossless-join
- (c) BCNF definition
- (d) 3NF definition

Answer: (c) BCNF definition

- 7. Which of the following FD can't be implied from FD set: {A->B, A->BC, C->D}?
 - (a) A->C
 - (b) B->D
 - (c) BC -> D
 - (d) All of the above

Answer: (b) B->D

8. Consider a schema R(A, B, C, D) and following functional dependencies.

 $A \rightarrow B, B \rightarrow C, C \rightarrow D,D \rightarrow B$. then decomposition of R into R1 (A, B), R2(B, C) and R3(B, D) is:

- (a) Dependency Preserving and lossless join.
- (b) Lossless join but not dependency Preserving.
- (c) Dependency Preserving but not lossless join.
- (d) Not Dependency Preserving and not lossless join.

Answer: (a) Dependency Preserving and lossless join.

- 9. Which of the following statements is TRUE? D₁: The decomposition of the schema R(A, B, C) into R₁(A, B) and R₂ (A, C) is always lossless. D₂: The decomposition of the schema R(A, B, C, D, E) having AD → B, C → DE, B → AE and AE → C, into R₁ (A, B, D) and R₂ (A, C, D, E) is lossless.
 - (a) Both D₁ and D₂
 - (b) Neither D₁ nor D₂
 - (c) Only D₁

	(d)) Only D ₂	
	Ans	nswer: (d) only D ₂	
10.		he set of attributes X will be fully functionally dependent on the set of attributes llowing conditions are satisfied.	Y if the
	(a)) X is functionally dependent on Y.	
	(b)) X is not functionally dependent on any subset of Y.	
	(c)) Both (a) and (b)	
	(d)) None of these.	
	Ans	nswer: (c) Both (a) and (b)	
	Fill	ll in the blanks.	
	1.	Normalization is used to eliminate	
		Answer: Redundancy	
	2.	X→Y is FD if Y is a subset of X.	
		Answer: Trivial	
	3.	Attributes of relations which are part of candidate key are known as	·
		Answer: Prime Attribute.	
	4.	normal form is considered adequate for normal relational d design.	atabase
		Answer: 3 NF	
	5.	Minimal Super key is known as	
		Answer: Candidate key.	
		Short Questions:	

1. What is functional dependency? Explain trivial and non trivial functional

dependency with example. **Keywords:** FD, subset, trivial, Non-trivial

2. Given R= (A, B, C, G, H, I). The following set F of functional dependencies holds A -> B, A -> C, CG -> H, CG -> I, B -> H Compute AG+ . Is AG a candidate key?

Keywords: Candidate key, Attribute closure

Long Questions:

1. What is meant by normalization? Write its need. List and discuss database anomaly during database design.

Keywords: Redundancy, normal forms, Insert anomaly, update anomaly, delete anomaly

2. Consider schema EMPLOYEE(E-ID,E-NAME,E-CITY,E-STATE) and

FD = {E-ID->E-NAME, E-ID->E-CITY, E-ID->E-STATE, E-CITY->E-STATE}

(1) Find attribute closure for: (E-ID)+ (2) Find(E-Name)+

Keywords: Attribute Closure

Query Processing and Query Optimization

Multiple Choice Questions	ultiple Choice	Questions
---------------------------	----------------	-----------

ultip	le Choi	ce Questions:	
1.	In exte	ernal sorting, the number o	f runs that can be merged in every pass are called
	a.	Degree of sorting	
	b.	Degree of runs	
	c.	Degree of passing	
	d.	Degree of merging	
2.	The re	sults of each intermediate o	peration are created and then are used for evaluation
	of the	next-level operations. This	is called
	a.	Materialized evaluation	
	b.	Expression evaluation	
	c.	Tree evaluation	
	d.	Tree materialization	
3.	Pipelir	nes can be executed in	
	a.	4	
	b.		
	C.	-	
	d.		
4.			s repeated requests for tuples from the operation a
		p of the pipeline.	
		Demand-driven pipeline	
		Producer-driven pipeline	
		Demand pipeline	
	_	All of the mentioned	
5.		<u> </u>	o not wait for requests to produce tuples, but instead
	_	ate the tuples eagerly.	
		Demand-driven pipeline	
		Producer-driven pipeline	
		Demand pipeline	
		All of the mentioned	
6.	Tuples	are generated	in producer-driven pipelining, they are generated

a. Lazily, Eagerly

on demand, in demand-driven pipelining.

- b. Eagerly, Lazily
- c. Slowly, Eagerly

- d. Eagerly, Slowly
- 7. In a ______ the system scans each file block and tests all records to see whether they satisfy the selection condition.
 - a. Index Search
 - b. Linear search
 - c. File scan
 - d. Access paths

Long Questions:

1. Explain different search algorithm for selection operation.

Keywords: Linear Search and Binary Search

2. Explain evaluation expression process in query optimization.

Keywords: Materialization and Pipelining

3. Explain steps in Query Processing.

Keywords: Parser and translator, Optimizer, Evaluation

4. Explain transformation of relational expression to equivalent relational expression.

Keywords: Equivalence Rules