Service Manual

ViewSonic 15G

Model No. 1569GA

15" Digital Controlled Color Monit Graphics Seri

5.6.4 Linearity

Horizontal linearity

= X max.- X min. X max.+ X min. × 100% ≤ 7%

Vertical linearity

= Y max. Y min. Y max.+ Y min. × 100% ≤ 6%

Cook from:

Oisplay mage—crosshatch pattern Maximum and minimum values should not be adjacent to each other.

X max, is maximum value among X1-Xm. X min is minimum value among X1-Xm.

Pictax is maximum value among Y1-Yn. Yimo is minimum value among Y1-Yn.

5-7 General performance

5.7 : Video sulput

Sandwicth | 35 MHz (Typ)

Picture is readable 90MHz dot frequency signal.

5 T.P. Maximum luminanca.

Vālue	20 adiod (mm.) at the center of the dis- play area. Specified by \$300K + 27 MPCO		
Conditions	Display image: White full flat field Luminance: Mrt. (Contrasrt: Max.) (Brightness: Conter)		

5.7.3 Minimum programs

Ve ue	≤ 25 od mr at the center of the display area Specified by 9900 K + 27 MPCD
Conditions	Display mage: White full hat field Luminanco: Vir. (Contrast: Min.) (Brig/hess Camer)

5.7.4 Brightness variation

Value	65%(Min.) Variation = C/A X 100					
Conditions	Disply image: White full flat field Luminance: 110 od/mi at center of the display area. A: Luminance at the center position C: Luminance at position of lowest					
	brightness					

5.7.5 Display area regulation

	Display area variation	Range of variation	
Due to	Within 1.5% of	26~120CD/m²	
Luminance	display area	(White list field:	
Due to	Within 15% of	AC: 90-132V	
Power supply	display area	or 198-264V	
Oua to	Within 2.0% of	0-35°C	
Temperature	display area	Maet 40°C	

5.7 G Color Foint

Value	% 9300K+ 27MPCD (x=0.251± 0.020, y=0.311± 0.020					
Conomicns	Display image:	White hat field at the center of tip display				
	Luminance:	area. 26-120 cd/m ¹				

E.7.7 Misconvergence

Center area of display (A) :0.3 mm (Max.) Center area of display (B) :0.4 mm (Max.)

Conditions:

Display image:

Crossnatch pattern mixed

with R. G and B colors.

Convergence gauge: KLEIN CM7AG or equivalent Wix H $_262\times$ 195 mm

5.7.8 Posity

Conspicteds mistanding shall not be visible within display area at a distance of 50cm from the CRT surface. Conditions:

Display image: White liet field

Laminance: 80 od/m² at the center of display area.

5.7.9 Ditter

Less than floot, or invisible at a distance of 60cm from CRT surface.

		0		Specification		
	Rem	Соловія	411	Min.	Тур.	Мах.
	Line input signal level	t ichr			0.8Vrms	2.0Vrms
Line Input	Maximum Power Output (Electric) Signal to Noise Fatio Cross Talk Distortion Responde Characteristics Maximum Electric Power Output				24KΩ	
Audio-SP	Maximum Power Output (Electric)	f: "kHz, THD:	7%	W:+W:	2W-2W	
	Signal to Noise Fatio	t: tkHz with 20 Low Pass file			50dB	
	Cross Talk	i: tkHz			50dB	
	Distonion	f: 1kHz, Output: 1W				1%
		It Webs, Cuspo	t: 2W			10%
	Responde Characteristics	7HD: 1%	100Hz		+6c3	
		Curput: 1W 059 at 1875		1	-658	
	Maximum Electric Power Output	f 1kHz THD: 1%, Rc: 3211		5mW	4m/V	
Meacyhone Maccyhone	Distortion	fitkNo Galpur Ro:32Q	::2mW			19/2
Mic	Microphona Sensitivity	f::tkHz, Pin= 1 (9c3=1V/Pa)	Pa		~43dB	

GPOWERMANAGEMENTFORPOWERSAVING

Power saving dystom is designed upon based VESA DPMS standard

(Porposal/ Lop, Bavision: 0.70)

Power consumption and recovery time

*1 APM				MONITOR	RECOVERY	INDICATOR	
state	H. Syna V. Syna		VIDEO	CONSUMPTION	TOUNSTATE		
ON	ra NORMAL I	13 NORMAL	*2 ACTIVE	100 %	Maria Maria di J	Green	
STAND-BY	Na Sync or 15 k 5 KHz	> 40 Hz	*6 BLANK	< 30 W	<4s	Yellow	
SUSSEND	> 10 KHz	No Synaet 12 < 20 Hz	*6 BLANK	< 32 W	<43	Yellow	
OFF	No Syrd or 15 d 8 KHz	No Synder *5 < 20 Hz	*6 5LANK	< 3 W	< 20 s	Yellow	

- The transition time from CN state to each AMP state is 5 sesones.
- *1; APM: Advanced Fower Management.
- Weapure condition of power consumption for CN state;
 - DISPLAY MAGE, White to "F" characters with a border line ("N 9 dots")
- "3: Normall, See page 5 "Acceptable timing"
- "4: Fower pensional in mageure 3: AC100-2407.
- Power saving characton a done at least less than specified value in the list.
- *e ViDED BLANK: "BLANK" Includes" no set up signal "and no syno's grief" on Video Bigna.

7. ENVIRONMENTS

7.1 Ambient temperature, humidity and altitude

	Operating	Storage and Shipment
Temperature	6°C -40°C (32-104°F)	-20°C -60°C (-4-140°F)
Humid ty	5-90% *	5-90% *
Attuda	3,000 m (f/tax.) (f000,00)	12,000 m (Max.) (40,000 ft)

*Non-condensation

7.2 Vibration and shock

(1) Vibration

	Order	vibration		Ac	caleration			
	of tests			Non- Operation	Storaga and snipment	Fraquoncy	Swear	Test time
	1	Varical	Up to down					30 min
Unpacked	2	Horizontal	From to back	29 m/s* (0.3 G)		5-55 Hz	120 S	15 m.n.
3	rib:izcritai	Right Ic laft		/				
	1	Vertical	Up to down		9.8 m/s ¹ (10 G)			40 min.
Packed	2	- Herizonta	Front le back	1	4.9 m/s² (0.5 G)	5-50 Hz	810 S (Log -	20 min.
3	Paginguisia	Right to left	1	(13-9.80665 m/s1)		sweep)		

(2) Block (Drop test)

Urparked	20 G One time	for each face (6 laces) (non-opera	ation)	
	Order of drop	Face to drop is to face the fisor. (see the figure)	Helghi	Number of drap
Pauked	1 Corner, S Eus	ge, 6 Paga	61 pm	t time for each

8. REGULATORY STANDARDS

S. Sariaty standards, Applicable standards Uknetio, Listing, CSA 22 2 No. 950, Products Certification TUV (ENSUGGO/GS,CHV818), NORDIO CHHS, 21 CHR Supplierer J. X-Ray Radiation PTB, X-Ray Radiation, Self-Dechration, HWC

8.2 EMC standards

Designed to meet the following standards VCCI class 2 FCC part 15, simplest B, dueb B VCL 9678 class B, MPR-II Fadiation CISPESS 9 see B, TCO-92

8.3 CABLE

- Signal debie with Mini Bi Sud 16P connectors (VIDEO CARLE) Liength: 1.5 mater (4.93 feet)
- 2" Audio cable: Dua RON (columnal) Sterac minilack (male) Longth: 15 Profer (4.33 feet)
- 5 Microphone cab ay Starsom in Jack (male) Length: 15 meter (4.90 feet)

<EM lest patterrs

White, full "H" characters (7 × 9 cots), block (8 × 16 cots) "H" character (ont is as follows:

Aveisale from 195 June Production

- DIMENSIONS -

Dimensions:

Width: 14.7*(374mm) Height: 15.1*(383mm)

Depth ±15.0*(407mm)

Pan/Till range

Up : 13 degrees Down : 4 degrees

Left, right: 90 degrees each

CONTROL LOCATION

Speaker operation

On-Screen Display

1) Menu screen

2) Adjustment screen (example: horizontal position adjustment)

SERVICE ADJUSTMENT CONTROL LOCATION-

CAUTION FOR ADJUSTMENT AND REPAIR

- Degaussing is inevitably required during purity or convergence adjustments.
- If you check or adjust electrical specification or function, a minimum of 20 minutes burn in is required.
- Reforming of the leadwire is required after your repair work.
- Prior to starting work, be sure to check that the input signal is at the specified liming and that the polarity is as specified in all modes.
- Brightness control. After mounting the rear cover, brightness tend to decrease about 5 cd/m² on a hat white field and about 1 cd/m² on a white rester field. This should be taken into consideration.

- Brightness stabilizing time: It takes about 20 to 50 seconds for the brightness to stabilize after turning the power off for 5 seconds (AC).
- Aging should be parformed in white raster of 30~ 50 cd m² and raster size of 280 × 210 mm before adjusting the ITC.
- Comrest: When both CONTRAST switches (UP and DOWN SW) are simultaneously presed, the contrast increases to a maximum.
- Brightness: When both BRIGHT switches (UP and DOWNSW) are simultaneously pressed, the brightness lights at the center point.

CAUTION FOR SERVICING.

When servicing or replacing the CRT, high voltage sometimes remains on the anoda. Completely discharge high voltage before servicing at replacing the CRT to prevent a shock hozard.

CRT Anode Discharge

- When you check the CRT anode or replace the CRT, channings the CRT anode to the external canductive coating (aquadag) of the CRT, especially when checking directly right after power turnsoft.
- Ground one unit of a jumper wire that has a 100 M in registor (A0 kV is resisting pressure 108M II) and connect this other end to the ORT acode.
 NOTE: Supporting must be cone first.

Power Supply

This model has a section that doos not share a common ground, with the power supply section. The different sections are reterred to as the HOT section and the COLD section in the precautions below.

- Bo not touch the HOT section and the COLD section at the same time. You may receive an electric snock.
- Do not short the HOT section to the COLD section.
 This could plow the luse or damage parts.
- Never measure the HOT section and DGLD section at the same time when using tools such as oscilloscopes or multimeters.
- Always unplug the unit before beginning any operation such as removing the chassis.

ADJUSTMENT AND CHECK PROCEDURE

INTRODUCTION

 This monitor is controlled by microcomputer. With the exception of purity/convergence/focus at is digitally adjusted.

Therefor a computer, the dedicated control software, the dedicated interface, a \$-12V power supply, and a signal generator are required servicing.

TOOLS REQUIRED

· Computer

The control software is IBM PC compatible only. Therefore it is not compatible with any other operating systems. For fother information p-case contact 1-800-888-8383.

· Control Sattware

The IsseGA-1 chassis can only use "1569GA-1" adjustment program disk" No other program can access the EEPROM on the monitor.

· Interface

The interface is codicated to work only with the control software and the 1569GA-1. There are no substitutes for this interface.

Power Supply

A DC 9-12V (+9-12V/-9-12V) power supply is required for operating the interface.

Signal Generator

it is necessary for you to use a signal generator which operates on IH=69 KHz, IV=180 Hz, and follow MHz bands.

INTERFACE CONNECTION

OTHER TOOLS

Osothoscopa (dual trace).

Scope probe - Attenuation: 1901.

Attenuation: 10:1

Digital Voltmeter - Range: 8 to 1000V DC.

Accuracy: 0.7%

 TV color Anyalyzer II - that reads juminance and chromaticity X and Y coordinates.

Digital High Voltmeter

AC power supply - Output voltage: 0 to 308V

Degaussing coil

Convergance meter

Scale.

De injertacod scale

Maroscope - Scale factor: 50

Scrowdriver - Tip width: 1/10" (2.5 dor)

One with extremely partow (prend Langth; 61 (15 cm)

 Schawdriver - Cross recessed head Length: 44" (36 cm)

 Tool- of Sexagon socket set screw of Detection York

White adquer (Paint)

STANDARD CONDITION OF ADJUSTMENT PROCEDURE

Signal triving: Standard timing 1024 X 768

(See page 5)

Display patterns
 Signal levels
 Whysi, full "H" character
 Virti "T" level video: 709mV

Input source: AC 120V, 59/60 Hz
 Ambient temperatura: Room temperature
 Warm-up tima: More than 30 minutes

Engritress control: Center
 Contrast control: Max.

Magnetic field Vertical: -M: 50 uT,-E:-40 uT.

Ap45 ut

Signal capie. Horizontal: 0 uT.

Attached

Vices input signal from PC.

- Use a Normaliz device to adjust a unit with no hore cortal magnetic field and a vertical field of 40 of .
- · Inspect the end under the same conditions.
- The archiect durringnee must be 200 lux.
- Use an external degaussing coll any time that DECIAUSS switch does not remove oblor shanding.
 To check the image width, height, linearly and distortion, proceed as below.

Measure level with respect to 1906 8XS.

ADJUSTMENT SOFTWARE

Software operating procedure

- Power on the computer.
- 2) Connect the Communication dadis for monitor at pairtiest.
- 3) insert the adjustment disk into the duke
- At the Apprompt type ADJ, then press [ENTER]
- Rafer to the adjustment procedures.

2. Adjustment Program

Main Manu of Adjustment Program

Main Manu of Adjustment tragger	
REISCOGNE ADJUST PROGRAM MAD	NIMENUS> (atoxt) (Ver 1.5)
 Load data from F&E. 	5 Save cata to FLLE
2) Adjust VSR setting	 Change EFPRO Midata
 Adjust DISTORTION 	8 Special ADJLST
4) Adjust Factory presat	\$ intermation Service
5) Clear User presel	10 Show Version & Error

Duscription of Function of Each Menu

- Carlo Data from Files
 - This transfers the data tile from the disc to the EEPROM on the monitor.
- p. Adjust VSR Setting:
 - To guarantee the full range of honzontal frequencies operate correctly. The reference voltage and the distortion utilized that should be set.
- A tilea Instantion:
 - to make a teament of any geometric distortion of El Trepeaud or Parallelogram,
- 4. Anjust Huggory Fraget
 - Maken adjustments to the factory presets. This carais is also retarenced when in mades other than the productioned
- 多、Clann Uson Prasett
 - Cleare the interest per in the user presot come of There is no cata in the user prosots when the product phipped from the latters.
- 6 Sava Data to File
 - I rend up the but. Them the EEPROM on the monder to a data file on a to poy disk or hard drive. The data her our he named unjurying as long as it is less than 5 characters long.
- To Change Fill I dill block
 - Allows the quasilines EERHOM to be changed
- \$ Jacqual Add 50
 - This many rein has there superate functions.
 - A LAurenteen Thurs you two tems of adjustment, DAF, and V. Un, Dit.
 - The Dymning Artigment Popus (DAF) and the Vertical Linearity need to be set for correct operation.
 - En Esta od suistion. There are three barts or data da culation. Violed topp. Objet Adjust, and H. Side Limit, All these did not one are come automatically by the activate.
 - On Final Tipro. This completes the non-so, stable date of the EEPROM with the non-adjustable date of the 51%. If a financial and found the 519R6OM should be revised.
- El Information Service
 - Disclars the PV that who so that is being his collected to the moreton and gives the operational status of the more to:
- Show yers at one Briss
 - Is now since were border of the characters assorting the money transportable. Also, it there is an error in the operation of the important for an one sometimes and the songer section of the songer s

ADJUSTMENT PROCEDURE WITH COMPUTER

1. Description of Adjustment Method

ltem Program Manu	 ○ Test Motor : ▼ Test Point : □ Pattern 	305 3090	input Signal		Adjusting VZ da
DATA SETTING	▼ 00641×±650	Α-	0==	Figure the bower of, but opingt connect the signal debie in reasize by setting the begins the menu at left.	
		A2 A3	ì	A message File -> EEFROM FILE NAME (G or O	
γ Load data from FILE		74.3		escape [] is displayed. So, key in the TYER-IK.DAT (when busing the standard data) and press (2).	
		A4	}	Nate : To make the transferred data effective, turn the power of the monitor set off chice and turn it on once again.	
		ı	ŀ	Only load standard data when the main board or the EEPROM is replaced.	
DARAN Protection	▼ 040357-GNO	181		1 A 35 194 to the 1961 point	
Notice I I wilder do		8.7	į.	THE PERSON WE STONE STATE	
		53		Turk 1949 end shar turk Divising slower, the monitor will be postally to the g	
	10 Deta	O.		Abjust VR901 until the 24V or test point at the right is	24.0 0.5V
-84 mat v B. (voljušt.)	ve trieter			frasulted.	
	▼ T75 GND		-1	**** 5V ± € 5V	
	(ii) Crossnatch		2	7 64 GV 1. C 5 /	
			+3	3 TM DV = 0.5V	
				4.155.59 0.79	
- 0 () a vit in a case -	() 5 g (a)	. D1		Set on sipplified are menulation translations and pressuring —.	
	101111111	UZ.		Set the be its the abjusting mode (NTP(S) and press	5 F11
				*** A	- / / / · · ·
(2) Add (5) Y SM (40) (3)		0.3	1 .:	Chark to be sure that the input signal to the monitor	
	▼ 038101-040			5 (1 + 19 SkHz) and (14 48 OHz) and press (no !!	2049
	1	24		Set the set to <u>4 OUT 9</u> and pross the E	
	į			Then, move the call to the data side	I
	- Alder Copp	C5		i vieko sigustroentisa es shown at right usung @2 and Peur	
				Make neg stretch using the 🚍 siter equatment and	1200 ± 107
				press the B come menu of C2.	
			1	The same as D2, D3, D4 and D5 after setting the	
		24	- 7	splacing mode ages <u>B</u> rid 20,300mon	
1		07	. 3	Anjusting mode 447(5)() Industry ages [144.38.0km2](14.77.144) Adjusting mode (NOP 2)	1270 ± 100
		28		and the second s	1940 ± 10V
	1	ŒΞ		input signal (14,69 9kHz)(17,10,5 0Hz). The turn to the main menu by pressing the (E).	12#0± 15V
A Hartery (Youth Ity		-1		Aquar vessare find the bost point of the Blinking patient.	; L Hazem
				Turning FOOLS VISITING HER to make the focus of	
- POKOUS	I 3-3-3	-	-	The first chere section (E) That	
	2 - 114.7			Note: This adjustment should be done by furning the	

New York of the content of a content of a content of the content o

kem Programi Mehu	 Cost Meter Test Porc Pattern 	JOB	ingot Signal	Operation	Adjusting Value
S H CHNTER	T. AGB OHP (Sync signs only)			Agust ≼9551 to get A v E	A A-B E
					Sal the EASTER to the denter with respect to the bexal A · B 4. 2 mm
(~V.S'ZE, HV.POSI. √ POC (2)	Grossnator	11 2		Set the delisticine menuits with and press the ED Set the delisticities adjusting mode (NTP[0] and press	-
		15	. •	[the III] That is to a sixe that the input signs to the input for a jim 28.5kHz] and jim 48.0Hz] and Press the Six. Secting cell to the following dams, press the IIII. and	260± 4mm V 5125
Tiedday VSR setting]& .ç.		Tight investigate and stress of the EP and PP DIS REPORT TO HIS TO SEE TO HIS TORK TO A MINE TO SEE TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TOT	CHULES
				the menulative section of the except for the educating made grave.	
		H		Ab usting mode (478/1): raptiognal (4-33 0-traj/V 77/1mb)	
			-3	Ad using mode (NEPO) modelsign = [[H 64 CHRF][IV 105 CH2] Adjusting mode (NEP[6]) steat signed [H 64 CHRF][IV 165 CH2]	
		==		Trace El spretting to the month mont	_
VERNING BY ACCOUNTS	Crossnatch		MODE- 43	. Sor the occurs the menulatilets and pross the Eul. Or echito be sure that the input signal is shown at lot and the a their	
4 Adjal Fastory	1	.3		kSer inaide, to the following 1979 press the ⊒. 870 make U2 kt o L4 w. Adjiertha HS 75, y 8/22 ± 205, and V 205(10 ft).	2607 457
# ************************************		1 11	1		RV.POS ENTER
W., 200		F		Thank to be sure that the input bighal as shown at left	
i I	i		143	Set the delith the menulatileft and press the (E), where the container to all highers, press the (E), and there inecessary adjustment >	I
 Activity of HER Setting 		· =	[[RAY fruight <u>の中でごのできたらら、4 PSO CENT EA</u> and <u>M PCC</u> EA An CE to the best using the EE and EE Prose the EE to return to the reun reer u.	à
1					

Item Program Mend			laper Signa	Operation	Adjusting Value
L (HV SIZE, HV,POS), V,PCC (3)	☐ Chessnatch	Et LE		Set the ceato the manulatile's and press the	H.S:26 2601 455
4) Argust Factory		-5		Set the call to the following terms, press the EL, and make actuathiers as shown at right using the EL and following the EL and DIES ZE, ONE SZE, ONE POS. ON POS. ONE POS. ON	V SIZE 195± 4nin, HV,POSI CENTEH V PCC past point
proset	į	L\$. I.A	Note: HPOSI and VISIZE should use both modes. MSB and USB For paralls, raight to the description of adjusting screen image. After actuating SHD is go to MS using the IBI and IV; VSDIME as 1.2, uS and U4 except for the input signal typics.	
i		. Lõ	36 VODI-	Toutis great (in 37 834 mg) and [17 60 34x] Atten adjustment, go to 17 sping the [第 800 图] To the great (tal 48 30x3 xg) and [17 80.0—2] Assume the manulation of ustment uping the [第 800 17.	
Provide HOV. 1000 S Adjust Heservation Energy	TI Grasshaton	WI	2.3 \$	kFame as \$2,03 and \$4 extent for the input signal decker. TMDDS-2, 3, 8, 12, 15, 1	
N 730 (TNS) X. (30.25	I Sync signationly enly (RGB OFF)	1,2		THE THE DOWNHAST MAK BRIGHTNESS - CONTON SHOOD, OR - BECCK using the OSD of the conton set	
I		1,1	MOSE.	Firstly selected many or off and press the Later factors to a government and selections of the monitor selections of the factors of the Following Hems, press the Following money has believed as the Following selections.	
Appropries some		l	i	During Milliand TR, is a shall the pend at which the book respect of each PLG or Big sters FLC or TIGHT SACTKLIG COW LIGHT 6300K And BLO OF SACTKLIG COW.	
		1.5	MO18-	Ability street will and adjust to the point where the sale rester is off. Switz reserve to the postern street and sheek to be sure.	X 0.581= 0.025
1	Till a chadtion consistate Till a landative contactive		143	that the Programmer voguely gifters. Switch over to the murtern at left and other the sensor of the language to the somewher the period of the doresh invige. ODIVITEAST MAKE	
Flower of Aff. 1967	_ 1. MOLOR ANALYZER T			i a erzedőki ar <u>tók a sűgad</u> őki szcok, and a al egőki szork	(CONT_WIND (Mat0 = 515 m) (K-0751 ± 0.020)
		113		Sective Confiltives in the maintenant to thin MIN and move the to it of the following seri. Then, make adjust as shawn at right. PLOW TOWN 9900K, @LOW LIGHT 9800K and BLOW LIGHT 9800K.	:
		-1-1			(BESCH)
1				Purch Counting Total Counting T, 8550K and BUDWINS THE BASTRIC Pressure ID to return to the their went. Set the bell Special ADJUST; to the menulat left and	(XUD,312 0 020 YUD,372 = 0.021
		%,-5 12.50 1-=		uness the 区。 Select 3 <u>Data ADLU</u> ST from the menu. Autoniscos y convert with press 图 . Areau 区 foirerth to Mrainan i than press 图 to re- turn to the nitero.	
				- 11 -	

tem Program Menu	↑ Test Meter ▼ Test Fort Fattern		Inpet Signal	Operation	Adjusting Value
Adjust CTHER seiting	T. Totally white pattern O TV collon ANALYZER II	Ca Ca	,MODE-	Set the CONTRAST MAX SRIGHTNESS CENTER, COLOR SSCOK using the OSD of the monitor so: Set the delito the chart of all and press the Ed. Feed the signal at late and brung the sensor of the energies to the scheen stage content. Move the select ARA SROOK and adjust as shown at right. Charge the ARA SROOK and adjust as shown at right. Charge the ARA SROOK data values the same as ARA SROOK using Effect E. Press (6) to relate to the main plane.	
E PAROT TO SETTING S States Addless	Totally write	21 22 23 24 25 26	43	Exhibite call to the manulatively and press the Lip Select 1, WIDEO 16Y ADJUST from the menu. Set the GOOD RASY MAY and MIDEO INPUT 1 DV using the CSD of the monitorise! Press the TE against the message of the return key? Press the TE against the message of dap ayed. Press the TE to return to the menulation O2 and return to the manufactorise.	
C FINAL SETTING			43	Set the call to the manual left and press the ES Selecting 9 Final TOVE from the menu. Presidential Y or Nileton the mestage of "OANOBL USER PRESST DATA" yithey has been output offer every in a great the mestage of SEUDOT FriAGRAPH Press the Exit of the mestage of SEUDOT FriAGRAPH Press the Exit of the menu of P2 and return to the menu.	
M. JAMA SAN D 1. Bene tria in		= 1		Sent allocation mont at withing measing TE was introduced the TE care of the Dename Witer()). Lie SER AL No as a clemane. FXAVELE PRANTESTE (41657) DATE:	

CHECK ITEM

Those items are intended for a rechack after adjustment and for a check of the following function operations:

- Respliction check
- 2. Brightness variation check
- Gradation check
- 4. Brightness check
- Deflection linearity check
- 6 Distortion chack
- 7 Image stability check
- 8 Elinking image check
- Circuit operation check
- 10. Specific function check
- 11. Power save function chack

1. Resultation Check

(% Apply resolution check pattern

- (2) Chack with the normal signal and inverted signal. Chack to be sure that display color between data is uncorn, and that there are no color difference are sportly display opton.
- (3) Check the antire image quality including resolution.

2. Brightness Variation Caeck

- (1) Cause the white full dot pattern to be displayed with the fitode-57 signal.
- (2) Set the contrast to a maximum. Set the originaless to the carror.
- (5) Make sure that a brightness difference between the center and petiphory is < 65% with the horizerra magnetic field in the condition of ± 30 cl..

3. Gradation Check

- Cause the 16 grayscale to be displayed with the Mode-43 signal. (White gradation waves.)
- (2) Set the contrast to a maximum and the brightness to the center.
- (3) At this time, the 1st gradation (black level) cannot be seen a lottne 2nd gradation must be barely Rt.
- Withthe prightness set to the center, vary the contrast from the max mum point and the gradation tracking must be pood at that time.

Note: if tint (particularly the gray, which is a middle color) is different, make adjustment of the white balance once again.

(5) With the contrast set to a maximum, vary the brightness from the maximum point to the minimum paint and chock to be sure that the brightness of the low gradation portion changes.

Note: Check both the color select 9300K and

4. Briggmess Check

- (% Cause the winte full-flat field pattern to 50 cusplayed with the Mode-43 signal.
- (2) Make sure that the brightness value is < 15 colors wherethe contrastes set to a minimum and the brightneutric transcenter.

5. Deflection Linearity Check

(t) Electry the green only crossnaten pattern

Hierarchal anotatity X max. - X min > 100%

Vertical Toy of ty = | Y max - Y min > 1005a

(2) Typiqueries the horizon is alloction linearity graphed in the heat meet a procinodast.

MODER, MODERN) +,

To combine the vertice (tell lest on inverty, proceed in the relief wing impotes any letters.)

6. Distortion Check

(f) Apply the signal of the following mode and supply the green prosphator pattern.

Mode-56

Mode-57

Mode 43

- (2) Make sure that each value cornes within the values indicated below.
- Total distantion

Amoustich

a. b. c. d ≤ 2.0 mm

Retation

7. Image Stability Check

- (f) Check to be sure that the size variations are < 2 mm for horizontal size and < 1.5 km for vertical size when the white full det pattern of Mode-58 Mode-43 is displayed and the AC vehage is changed to 90 ~ 264 V.</p>
- (2) Make sure that the size variations are k 2000 for horizontal size and k 15 mm for vertical size when contrast is changed to a minimum from maximum at the AC voltage of 126V/240V.

8. Hilloking Image Check

Apply blinking patern signal. (10054).

Check the initial trabulty at Mode-1 and Mode-3. Chock if image changes due to bloking meets the standards below using the microscope.

9, Circuit Operation Check

- (*) Check the protection operation at fit not covered in the specifications.
- (2) Apply the 28 KHz and 66KHz signa, and check to be sure that syno flows.

to, Specific Function Check

- (t) Croate the crosshatch pattern using the Mode-3 signs of the preset timing
- (2) Vary the vertical size and the deviation of the horizontal zonce; size and check to be sure that the horizontal size and horizontal position variations meet the values given below.

Versical	SIZO	- 8	47- 20 mm or more
Vertical	poston		up and pown
			5 mm or more
From your	ni size	_	MIN. a 250 mm
			MAX, a 280 mm
Heracon	a! position	-	left 20 mm or more
Harizant	s: position	_	right 20 him or more

11. Power Save Function Check

The power constraption must meet the specifications when the horizontal vertical synd signals are changed as shown below.

F.SYNC	OFF 1	QN	Ì	OFF
V.SYNC	ON	OFF		OFF
SPEC	< 30W	< 30W	T	×8W

TRUTH TABLE FOR DIP MIS

	\$7740	SIGNAL	D.P.M.S. SIGNAL		
	H. SYNC	V. SYNC	SUSPEND	POWER OFF	
6,740441	NORMAL	NORMAL	LOW	. HIGH 4	
STAND BY I		NORMAL	HiGH	HIGH _	
. SUSPEND _	5.0 B 555.	GHE	<u> </u>	нісн	
FOWER OF] HIG용	#OM	

SERVICE WARNING

TO PREVENT RISK OF AN ELECTRIC HAZARD, TEST BEFORE TOUCHING. Where, after operation of the fuse in the live side of the main power supply, some components of the equipment that remain under voltage might represent a hazard during servicing.

GENERAL INFORMATION:

1. OUTLINE

This is a 15" color FS (flat square) CRT display with the following 11 funtures.

Stard Dome Speakers with 2W+2W outpit and mic function are mounted on monitor, and Headphone is available to use.

This monitor also has OSD (on screen display) control and Power saving function based on VESA DPMS.

2. FEATURES

9.1 Stared Dame Speakers

- High quality stened sound by ViewSound Domes. Specific system.
- Audio typical autaut RW +2W (electric).
- THIS (Total Harmonic Obstantion) maximum 1.0% (coppler 1.0W).

2.2 Merunetien

A merophone is installed on the troof parts of monter for sending value message to computer system. Also interephone jack is incurted on left side of monitor for additional use.

2.3 Headenens function

Free aphone jack is also mounted on left side **in mo**niter to unity music, conversation and orderts ament

2.4 Power Saving

Bid in Power Silving function based on VESA-DRMS proposal.

Power energy shall be saved by controlling the discus of appointance with power save signal from combutor.

2.5 OSO Unation

CSD (an screen display) function is new and exection; man machine interlade.

Any one is able to set up the picture as ballike through OSD mend

2.5 Seff-Test function:

Self flasting picture domes out by pushing [F] -key in the case of no connection with computer or power saying operation.

This function shows if mention is alive or not and can be used for self again test.

27 VESA DEC 1/2B

Compliant with VESA DDC standard and applicable to DDC 1/29 onl-directional only.

2.8 Erconomics design.

- Low emission cesing to meet with MPR11.
- ESF (Electro static field) free coating on CRT.

2.9 Muhi sean with digital technology

- 6 51 micro-computer controls the direct operation to meet with wide range signal of the 30+69 K/b and tv= 50+160 Hz, Se VESA640 X 480, VESA60 5 X 600, VESA1224 X 768 and 1280 X 1024 middle are applicable.
- 2.10.3 Factory presets (+5 Reservation), Bluber memories
 - 3 standard modes are proset at the factory.
 - 5 modes are reserved at the factory.
 - 8 user memorios are available to set the users own timing and display information.

2.11 Fat (ace and fine dot pitch

Fig. (aco CRT with fine dot pitch 0.27 nm gives condenable sight of the screen.)

2 t2 Superior display performance

- High contrast.
- Minarized distortion by correction circuit.
- Good convergence.
- Users enjoy full scan image for graphics.

if no horizontal and/or vertical sync from PG, then the power save circuit becomes active.

Emportant Safety Notice Components identified by the international symbol △ have special characteristics that are important for safety. When replacing any of these components use only manufacture's specified pans.

RESISTOR	PART NAME & DESCRIPTION	CAPACITOR		DESCRIPTION	
	TYPE ALLOWANCE		TYPE	ALLOWANCE	
	C Garbon F = 1%		C Cerainic	C, ± 0.25 pF	
	F Fuse J = 5%		E Electrolytic	D I to 0.5 pF	
	M Metal Oxide K ± 10 %	ļ '	P . Polyester	F ± 1pH	
	S Solid M = 20 %	-	S Styrel	J = 5%	
	G Wire Wound G = 2 %	1	T i Yantalum	K ± 10 %	
	V Vaviabla Ros.	1	FP Palypropy and		
	T Thick Film Cup Resistor		CH:2	M	
Exam	Part No. Descript se: CRDS:T.I104TD 🔘 100 K O	on Disaw Exem	Part No. plat ECGM1H10-4J2	Peacrelo Pam ⊕ colu≓ Ç	n) GOV

REF NO.	. DADT MII	DESCRIPTION	REP NO	PART NO.	DESCRIPTION
Δ Δ	CABINET 6 N EAGUD3A M30XPC000X01 STQF1562A 12H320 18M404588 TBM404470	AAIN PARTS SPEAKER (2W) C.R.T. (15") LAREL H.S. FOIL MODEL NO. PLATE(1569GA-1A) MODEL NO. PLATE(1569GA-1M)		TMM85587T TNP4069048-22 TNP4060649-21 TNP406066-21 TNG80970 TP0400880-2 TPE400880-8	MICROPHONE GUM MAIN POB (W/ COMPONMENTS AUDIO/ORT POB (") SUB POB (W/ COMPONMENTS) MICROPHONE PACKING CASE SET COVER
_	TBM404575 13887523011 TBM6752401T TBM6752501T	MODELL NO. PLATE(1569/GAPE) CONTROL BUTTON AUDIO BUTTON AO SWITCH BUTTON		TGB830367 TGB4G3626 TGB4G5021 TGF4G6285	OH PM, SOFTWARE SHEET BAG PM, SOFTWARE SHEET WARNING LARCI.
Δ	TES4C0008 TKE3720AD1T TKK4C0014-1 TKK859316-1T (TKK859316-1T	SW. SPRING FRONT CABINET CENTER POST FOWER LED SAR MUTE LED BAR		TOF400409 TOF400427 TOF400425 TOF80720-2 TOF88870T	S/N (1569CA-1M) BAR CODE LABEL(1569CA-1A) BAR CODE LABEL(1569CA-1E) FWO LABEL PTR LABEL
Δ.	TKK859740-97 TKK859978-17 TKK859979-17 TKL6949317 JTKX8718017	PANEL COVER AC SWITCH SHAFT FEDESTAL BACK COVER POB SPACES		TGF88874T TGF8660BT TSAA3000T TSM4G82042 T8N6311S-1	IUS PATENT LABEL EARTH NOTICE LABEL RADIATOR OISK MAGNET
<u>م</u> ۵	TKX871801T TKY859501T TLK659005T TMK84549 TMK84928:1T 1 MK87711T	JACK HOLDER BOTTOM CABINET DEGAUSS COL MEMALLOY(L) SET LEG MICROPHONE SPONGE	<u> </u>	T8X405108-2 T8X9410 T8XF002 19XF005 T8XF006 T8XX0017	AC CORD (1568GA-1A/1F) AC CORD (1568GA-1M) SIGNAL CABLE SPI CABLE MIC. CABLE 1F CONNECTOR WIRE
	TMKE002T TMKG001T TMM15404-1 TMM16452 TMM4C0025 TMM4C0037 TMM4C00341	BUTTON SPACER GLM ISPACER RING CLAMPER WIRE CLIP FOAM CLIP	2	TSXX002T TSXX003T TTE3720ACW1T 1U093495T TU086995T TU086985T TU086986T	EPICONNECTION WIRE SPICONNECTION WIRE FRONT CABINET TOP SHIFLD CASE ORT EARTH METAL ORT EARTH METAL ORT EARTH METAL ORT EARTH METAL
	TMM4C0082 TMM7466 TMM81416 TMM82532-1	LEAD GLAMPER WIRE GLAMPER WIRE GLAMPER GRI GUM		TUG96999T TUG97591T TUG95094T TUX86192T	ORT EARTH METAL ORT POBISHELD CASE REAR SHIELD CASE BOTTOM PLATE

REF.	PART NO.		DESCRIP	TION		REF.	PART NO.		DESCRIP	7105	
	11JX86195T	EN	FOAGE MET	AL.		0400	EDEA1STK100BJ	Ε	10 uf		257
	TXASA2562VFWT	CF	T KNOWIES	-		C401	ECQM:Ht04JZ3M	P	0.1 uF	J	50 v
	TXAJTC2P751AT	2P	CONNECTO	8		C402	ECOM1R22SUZ3M	F	0.022 UF	J	1007
	TXAJTC3P1664T	₁ 3P	CONNECTO	8		C403	≅CEAhCTKh015J	E	100 uF		12.7
	CXAUTC4P529T	4P	CONNECTO	3		C404	ECOP/H66/GZ3M	F	680 pF	G	557
	TXAJTC6P581T	62	CONNECTO	7		C405	EQQM:HI03UZ3M	F	0.01 uF	J	507
	FXA9D1f1562	GL	ISHION			Q405	ECOM:H224JZBM	Р	0.22 uF	J	50 v
	THT1027		REW			C407	ECUV19404ZFX	C	0.1 88	Z	507
	1HT 1069		REW			C408	ECKRIMIO2KBIP	C	1000 pF	K	557
	TJT9913		REW			Ç409	FCQM#4473JZ3M	2	0.547 yF	J	507
	XTUS+16A		REW			C410	ECEAICTK470BJ	#	47 NF		167
	XTN5+15A		REW			0411	ECKP1H103XB1P	С	0.01 uF	ĸ	507
	X1V3+10C		REW			C412	ECKRIH103KBIP	2	0.01 65	K	50%
	XYA4-EF8	80	REW			0413	ECEA1ETK100BJ	Ε	10 LF		257
						C414	ECCM1H103JZSM	P	0.01 UF	Ú	507
						C4 16	ECCR!HISUG!P	Į.	100 pF	4	90 v
	Mary Mary Association State					0417	FORESHIOSKER	9	0.01 UF	K	507
	CAPACITORS					C418	EGEA1HTKG10BJ	=	1 ph	K	E00
	E-01844-000-7-7-14		2 B F	-		C420	ECKR1H222XB1P	Ç	2300 SF	K	507
O11	EQUVICASETA	Ç	2.2 pF	Z	167	CE51	ECKR2HSS/KS/P	Ç	390 gF	K	5000
013 014	EQUVIDATORKEN	C	1000 pf	K	504		FECWHISHISUZEM FECWHISHISSUZEM	F.	1800 ph	7	507
	ECUV:H:04ZFX		0.1 uF	Z	50V	C553 C554		F	1800 pF	_	507
016 017	TAC1028Z104H	0	580 pF 5 1 uF	K Z	50V	C555	ECKR3A331KB1P	P	8800 pF	J	6007
0202	ECQM1H224JZ8M	P		J	1007	0355	ECKRSASSIKE P	0	330 pF	X	100007
C203	FOGV H334JM3	þ	0.22 uF 0.33 uF	J	677	G557	EGGE2024KE3M	p	330 pF 0 22 uF	K	1000 - 2007
0204	ECEATETK4878J	F	4.7 119		807	C556	ECKRIFIC2KBIP	0	1000 pF	ĸ	50
CZCS	ECGM1H104JZ3M	P	0 1 45	-	5.57	0355	ECEATOTK470BU	E	47 uF	^	15-
G200	FGGM1H224JZBM	P	0.22 uf		6 mm	0580	ECWF4044JZBM	P	C.24 UF		4007
C257	ECEATHTKS3478J		0.47 UF	-	507		ECWF4154JZBM	P	0.15 nF	lu .	400.
0208	ECCR*B47*UGIP	Ī	470 pF		607	0862	EGW#4334J2BV	P	0.33 uF	2	4007
C209	ECCM1H332JZ3M	5	3300 pF	-	507	0583	ECWF4824J28V		0.62 uF	_	40071
C210	ECCR1H10UG1F	l c	100 pF	Ü	507	C584	ECGM1H473JZ3M	P	G.047 UF	j	509
C211	ECGE2104 KE8M		G 1 UF	K	2007	C585	ECGM1H473JZ3M	5	0.047 uF	j	507
C212	ECEATETK 101BJ	E	100 uF		2.87	0586	ECCE1475JZBM	P	4.7 uF		1000
C213	ECK91H103KB1P	C	0.01 UF	X	604	C570	ECGM1H1043Z3M	þ	Q.1 μΓ	Ĵ	507
C214	SGFA1VTK47cBJ	- E	47 UF		357	0571	ECOM IHI04JZ3M	P	0 1 uF	Ĵ	95v
C215	ECOR/HS30UG/P	0	33 pF	2	507	0572	ECEA HTK010BJ	E	1 uF		50.1
C215	ECEAIVTKICOB.	E	10 UF		357	0580	BOSANYTK4716U	Ε	470 uF		357
O217	ECEATVTK1018J	E	100 UF		357	C381	ECFA1EGN1018	Ë	100 us		254
0210	ECCIVIF332JZ3M	Р	3300 pF	J	557	C582	ECEANETIKNO183	E	100 uF		257
C221	ECCR1H101JG1P	٥	100 pE	J	50v	C583	ECEA1ETK1005J	Ē	10 (46)		257
0301	EGGVTI I225JI 3	P	2.2 uF	J	50V	C594		F	2.1 22	J	507
C 302	ECCM1H154JZBM	j2	5.15 uA	J	507	C580	E0066220078M3	F	2200 pF	J	5007
C303	ECUVIHI03KBG	٥	0.01 UF	X	507	0591		Þ	1500 pf		12001
C304	FCEA1CGE1018	E	100 UF		157	C592	EOGM:H104JZ3M	P	0.198	J	507
C 305	EGGM1H104JZ3M	2	O.† ⊔F	ь	FOA	0601	ECEATET KOTOBIT		5 u.E.		507
C306	ECCRIHBBUGIR	¢	630 pF	Ų	507	0602	BOFA2QGE100B	E	10 u.F		1657
C527	EORA15G54748	Ξ	470 dF		257	0503	EGEA2ATK220BU	E	22 uF		100%
C309	ECOV1224JIV3	0	0.22 JF	J	1007		FOFA1HTK4B7BU		4.7 uf		50V
0309	ECRAIVTK101BJ	Ε	100 45		85.		ECEA1ETK100BU	Ε	10 ш		25 v
O310	LOGRIMSSOJGIP	C	33 pF	J	507	0703	ECEA1ETK100BJ	Ê	10 uF		257
0311	ECEA1EGE471B	E	470 UF		257		EGEATEGN:00B	Ε	10 uF		257
0313	ECKRONIO2KE1P	0	1000 pF	K	507	G707	ECKRIHICSKB19	5	0.01.05	Х	50V (
0314	EDGV1H224J3V3	6	0.22 45	J		△ C801					250 - 1
0315 0351	ECQMINIZ2SUZSM LCEA 107K 100RJ	Ê	0.022 3F 40 3F	J	100V 257	.1 G362 .1.G363	EGGUZASS4MNFT . TOKMNS282MFU	2	0 00 0.	Li	250.
O32.	LOUGH IN NOVEM	Ξ	10, 15		11.	0500	L OZWINSY KSIMED	-	5800 PE	'n	4000

REF.	5 A D.T. MO	İ	NECCOID	TIO.		REF.	I DART NA	Ĭ	DESCRIP	miles.	Į.
NO.	FART NO		DESCRIP	4105	١ إ	NO	PART NO.		DESCRIP	HO.	
S Q804	TOKMNS222MFJ	15	2200 გნ	N	400V	D1005	ECCR1H221JG1P	10	220 pF	J	507
C805	ECCRIH6SUGIP	C	880 př	Ĵ	507	C1000	ECEA10GE101B	Ε	105 uF	Ŭ	167
C803	ECQE4333KF3	Р	0.533 LF	X	4007	C1008	ECEATHTK010BJ	E	1 uF		50V
	ECOS2GA331DB	E	330 tF	"	4007	C1009	ECC/V1H104JZ3M	i p	5.1 uf	J	50V
Q810 Q814	ECEADJGE470B		47 uF		5.37	C1010	ECKRIH103KB1P	İc	0.01 uF	ĸ	507
C811		I E					ECKC2H103KB1P	C			
C812	ECEA (ETX 101BJ	E	100 uF		25V 50V	C1011		-	0.01 ⊔F	K	\$00Y
C813	ECCR:H:01/G:P	C	100 pF	J	-	C1101	EGFA:ETK100BJ	E	10 uF		257
CB1B	ECQF6473JZ3M	16	D.047 ∪F	Ĵ	600V	Q1:02	ECOMIHI04JZ3M	٩	0.1 uF	J	507
C 6.79	ECKC3A331KR1P	Ċ	330 pF	K	100007	C1105	EDORAHISUGIP	C	150 pF	Ĵ	507
C620	ECOM:H:04JZ3M	2	0.1 uF	J	50V	Q1:06	ECEA:QGE:0:B	5	100 uF		157
C621	SCUV (H104ZFX	C	0.1 uF	Z	50V	C 1105	ECEA (HTK0 (0BJ	15 6	1 15		507
C523	ECCR1H221JG/P	¢	220 pF		50V	C1100	200M1Httt4JZ3M	P	0.1 47	ų.	507
C824	EGGM1H102JZ3M	2	1000 pF	4	50V	Q1110	ECKENHIOSKBIP	. 0	0.D1 u#	К	504
C825	[ECEAHETK100BJ	Ξ	10 UF		257	Q1111	FOKOSHIOSKBIB	. 0	0.01 ឯក	κ,	5007
0828	ECOM:Https://www.	P	0.01 uF	-	50Y	01201	ECSA (STK 100BJ	E	10 UF		257
△ C831	TORMNS222MFJ	0	2200 pF	U	4009	0.805	ECGM1H104JZ3M	P	0.1 uF	J.	5.07
1. C832	TOKMNS222MFJ	0	2200 pF	U	4007	01206	ECCF1H181/JG1P	C	180 pF	J	507
0835	FECKESA (C)KB1P	0	100 pF	- K	10007	01206	ECSA100E101B	E	100 uF		150
C842	ECKC3A333KB1F	0	3300 pF	X	10007	01208	FOSA (HTX 0103J	E	1 uF		557
Q843	ECKC3A101KB1P	C	100 pF	K	1000V	0,503	ECCM1H104JZ3M	P	0 1 UF	J	507
C844	ECKRSA331KB1P	C	\$30 pF	K	1000V	01210	ECKR1H103XB18	0	0.01 uF	K	507
Q\$45	ECKRSA221KB1P	Ċ	220 pF	K	1000V	C1211	ECKC2H:03KB:H		0.01 UF	K	500V
C950	FORAZOGE100B	1 =	10 UF		190V	C12:2	ECORIHIO IJG IP	. 0	100 07	J	507
0961	ECEASAGE471E	18	470 UF		1007		ECQM*H:04JZ3M	Р	0.1 p=	Ĵ	507
C862	SCEA2CGE1018	18	100 uf		1607	C1302	ECKRIA:02KB:P		1000 pf	- 2	50%
CEES	SCEATVGE222E	1 2	2200 uF		357	G1304	ECCRIHIONGIP	É	100 55	j	507
CEE4	GOEA (FOF 10PR	1 5	1000 UF		257	C1305	ECCRI-ISSOJGIP	15	22 pt	J	5. V
	EOBA:OGE223B	15	2220 uh		167	C1305	CEA1ATK221BJ	I E	225 CF	~	10 4
CBE6	COLATETKSSIFU	İΞ	330 uF		25%	C1205	ECEATATRIZESJ	=	220 65		107
C987	EDGM1H154JZ3M	1 2	0.1 uF	J	50V	C1303	ECQM*H*03JZ3M	i	0.01 0	J	557
G\$66	ECRA1EGE1028	1	1000 uF		257	C1307	ECCM::H393JZ3M	1 6	0.039 69	J	507
	SOEA IETK 1005J				25/	C1203	500M/H103JZ3M	P		_	507
C369		Ξ.	10 uF						0.01 pF	Ĵ	
C870	SOEA IET K100BU	=	10 uF		257	C13:0	ECCM*H*03JZ3M	Р	0.01 05	J	507
C671	"EQUY1010528W	i G	1 uF	A	167	01311	.ECKC30272KB1P	. 0	2700 pf	K	2000V
C872	ECEA10GE331B	€.	330 uF		167	C1212	ECEA (CTK (02E)	É	1000 uF		1#V
C896	ECFAPDG51015	=	100 uF		200V	01313	ECEA (CGE) 31B	E	100 UF		187
₽886	ECKR2H221KB1H	C	220 pF	K	900V	01314	ECEA2CGE101E	E	100 UF		4600
0897	E00122230Z3W	=	0.022 uF	lu.	2007	01315	ECEATETIC TOORU	E	10 uF		257
	ECKC3A332KBW	C	3200 pF	X		01316	ECCA1ETK100BJ	Ξ	10 JF		25%
C891	ECSA17 (K2225)	1.	2800 UF		357		FOEV-F1840081	1 5	10 65		25V
C807	ECEATVOESSE	E	2200 UF		GBV	Q1319	CORAIST KICOBU	E	10 uE		257
C900	ECEA1ETK 1008J	E	10 uf		25V	01320	recommedatizaM	P	0.01 uF	Ţ	507
C901	ECCR15220JG1P	, 0	22 5€	J	\$0V	01321	ECEA (ET K 100BU	E	10 UF		257
C903	ECOM1H104UZ3M	P	0.1 05	J	Boy	Q1322	ECEA1CTK4708J	ı E	47 uF		157
C 804	ECCR1H221JG/P	0	220 bF	J	507	C1323	ECKRYHOZKBIP	10	0.01 uF	K	507
C995	ECCA19221JG1P	0	220 pF	J	500		EOK R2H33*KB1P	. 5	390 pF	K	5007
O 906	E0081H221JG1P	0	220 pF	Ĵ	Sov		ECEA1ETK101BJ	·Ę	1GD uF		257
G907	SIGTAOUT KIIO 1BU	=	100 57		8.37		ECKR3A157KB1F	Ċ	1500 pF	K	3000 V
C908	ECCR/H101JG1P	İò	100 pF	٦	507		.ECEATETIK 100BU	E	10 шЕ		257
C808	ECEATHT KOTOBU	E	1 uF	_	507		ECKA'M'03KB'P		0.01 u ^c	K	50V
Care	ECORTHIZZUJG1F	Īċ	22 pF	Ĵ	507		ECKRIHIDSKSIP -	Ç	0.01 05	Š	50V
	FOOR HEROTOP	C	22 pF	J	50V		1500R/H/0/JG1P		100 pF	J	50Y
C914	SCORMH225JOR	ď	22 pF 22 pF	J	50V		E00R1H1010G1P		100 pF	ĵ	501
C215	ECCR:H2201G1P	0	22 pr 22 pr				TOOR HOUSE	ľ			507
0.3		10	22 g. 22 gF	J	50V 50V		ECEANETKISTEU	ΙÉ	100 pF 390 uF		287
			7	J				-	5 - 1 1 1 1		75%
C916	ECCR:H220UG1P										
	ECCATETICOSRU ECCATETICOSRU		10 UF	J	25 v 53 v	0.1561	E012B1H103UF3 E012B1H123UF3	12	0.01 uF 0.012 uF		55% 50%

		_			1	255	<u> </u>	
RES. NO.	PART NO.		DESCRIPT	FION		REF. NO:	PART NO.	DESCRIPTION .
00003	ECQBRHY23JF8	! F	0.012 UF	J	SCV	D406	-MA28W-ATX	CHIP D'OBE
C2302 C2303	ECHA1EGE220B	lε	22 uf	_	257	D551	FMP-G2FS	DODE
C2304	ECEA1FKG0108	Ξ	1 uF		507	D552	31DF6HC(A)	DIODE
	ECEATOTK2218J	5	220 uF		167	D554	1:DQ04TA2	DIODE
	ECEA:HKG0:0B	Ē	1 65		50V	0555	RG2ALFC4-H	DICOE
Q2307		E	22 DF		25V	D556	MTZJ15BT77	ZENER DIODE
C2308	ECEATOTK471BJ	E	470 uF		16V	D\$57	1N5818E-2	[D:00E]
	FCQB1R104JF3	18	0.1 uF	J	50V	0558	1:00F6-TA2	DiODE
C2310	ECGR:HI04JF3	2	0.1 uF	2	50V	0580	10DF6-TA2	DIODE
G2311	ECEA GTK4716J	=	470 UF		167	0561	MTZJ6R66T77	ZENER DIQDE
C2312	ECFA!EGE102B	Ę	1000 uF		25V	D\$82	1N4148T \$52	PICOE
C2312	(ECEA:ETK102EJ	1 2	1000 oF		257	D\$62	1N4148TB26	DIODE
C2401	ECEA1HKG2E2B	E	2 2 uf		50V	D553	RP3F014-302	D:ODE
	ECEA1HKG2R2B	E	2.2 uF		507	0366	1N4146TB52	DIODE
	ECQUIH223JF3	į s	0.022 uF	I Le	507	0565	1N4148TB26	DICDE
G2494		1 =	0.22 UF		507	D690	EU02AV0	, DIODE
	EDGB*H223JF3	- 10	0.022 uF	J	507	D590	EU02AV0-H	BUODE
	SCEARHXGE22B	1 2	0.22 65		5CV	DS91	"NA146"1652	2000
C2409		=	10 LF		167	D591	1N4 MST B26	DORT
02410	ECEA:CKG2203	1 5	22 65		167	D592	EU02AV0-H	D.OUE
C3411	.ECEATHKG010B	1 =	1 65		507	D601	188133T77	DODE
G2412		E	220 uF		16 V	D692	EU02ZV0-H	DIODE
C8413	ECEATOTIK470BL	E	47 uF		167	D003	:NA148TB52	DIODE
C2414	ECEANIGNOTOR	, E	1 uF		507	D603	1N4148TB25	DICOS
Q2415	ECOB1H103U73	P	0.01 uF	.1	517	0804	MA700TA	DICDE
_	BOXR1H102KB1P	Ç.	1000 pF	K	50V	D805	MTZJ:5BT77	ZENSR DIODE
C2421		Ċ	1000 pF	X	507	1.0801	RBV406MLFA	DICDE
02422		1.2	660 pF	J	807	D805	PG2A21F	DICOE
C2423		=	880 pf	J	507	DE05	ERA32-02V0	DICRE
						D911	MTZ32R76T77	ZENER DIODE
						D812	MTZUSB1BT77	ZENER DIODE
	!					D814	MTZUICBT77	ZENER DIODE
		ı				D830	MTZJ248T77	ZENER D'ODF
						0.851	FML-G18SUF	DIODE
	DIODES					2080	RG2A21F	DIODE
						D863	ERC90M-03	DICOE
011	MA153ATX	Or	ODE (CHP)			D864	RN37014-305	DIOCE
012	MAS150MTX	DI	ODE (CHIP)			D255	31DF2-FC	B00.0
D 13	(MA172TX	0.	HIR DIGDE			D868	BN32014-305	DIODE
D201	MT2J5R1BT77	128	SOCIO PENE			0870		DIODE
D0002	M1 ZUSH19T77	. 23	ENER DIODE			0871	MTZJ8R8ST77	ZENER DIODE
0203	1N4148TB52	21	ODE			D872	MT216R2BT77	ZENER DIODS
D203	1N4148TB26	51	ODE			D886	310F2-40	20002
0204	1N4149TB52	101	QDE .			0.001	U-57EQW	LED
D204	IN4148TB26	DI	ODE			D902	185133777	DIDDE
0207	HZ733-097D	101	CDE			D003	1SS133T77	DIDDE
0206	HZT334091D	DI	ÇDÊ			D904	19S133T77	DIODE
bace	MTZJ128*77	ZE	Eddic Fene			0205	MTZU5R6BT77	ZENER DIODE
0.80	MT2320CT77	ZL	ENER DIODE			0908	1N4148TB29	PIDDE
D232	MTZJSR13T77	23	ENER DIODE			0912	MTZJ5R69T77	ZENER DIODE
D301	1N4001TB25	QI	ODE			D816	188132777	DODÉ
Dada	1N4N4STE52		ODE			⊅517	1N4149TB26	10 00E
D353	1N4146T B26	: D	ODE			D918	188123177	D:00f
D403	MTZJ:5BT77	123	ENER DIODE			0.949	158133T77	DICOE
₽404	1N41487B82	150	ODE			0920	1SS133T77	DIODE
5454	/N4448TB28	0.0	CDE			0930	;±483AD-12.5	_ED
D405	MATORTA	01	COE			0.000	: KSS#32T77	D COF
	1					!		

REF. PART NO.	DESCRIPTION	REF. PART NO	DESCRIPTION
D1002 ISS133T77 D1005 ISS133T77 D1006 IMA167ATA5 D1007 MA167ATA5	D:03E D:06E D:06E D:06E	.01304 LM2931AZ-5T3 IO1501 24LO21:P IO2401 LA4270 IO2402 CXA1279AS	IC (3 PIN) IC (6 PIN) IC (10 PIN) IC (22 PIN)
D1101 (SS133T77) D1102 (SS133T77) D1105 (SS133T77) D1106 (MA107ATAS) D1107 (MA167ATAS) D1201 (SS133T77) D1202 (SS133T77)	D:00E D:00E D:00E D:00E D:00E D:00E	COILS L201 TLT331K186T L552 TLX4C8056K21	COIL
D1206 ISS103T77 D1206 MA167ATA5 D1207 MA167ATA5 D1301 MTZUSR88T77 D1302 MTZUSR88T77 D1303 MTZUSR88T77 D1304 MA700TA D1305 MA148TB82 D1301 MA148TB82 D1301 MA27WATA D1501 MIZUSR88T77 D1502 MIZUSR88T77 D1504 MA700TA D2403 MA700TA D2404 MA7091ATA D2405 MA7091ATA D2406 MSS103T77 D2408 ISS103T77 D2410 MSS103T77 D2411 MSS103T77 D2412 MSS103T77 D3412 MSS103T7 DIODS DIODS DIODS ZENER DIODS ZENER DIODS ZENER DIODS ZENER DIODS DIODS DIODS DIODS ZENER DIODS ZENER DIODS ZENER DIODS ZENER DIODS ZENER DIODS DIODS DIODS DIODS DIODS DIODS DIODS DIODS DIODS DIODS DIODS ZENER DIODS	A USSS TEMAOSSSORD A USSA TUMAOSSSORD LISSS TUMAOSSSOR LISSS TUMAOSSSORD LISSS TUMAOSSSORD LISSS TUMAOSSSORD LISSS TUMAOSSSORD LISSS TUMAOSSSORD LISSS EXCELDRISSSORD LISSS EXCELDRISSSORD LISSS EXCELDRISSSORD LISSS EXCELDRISSSORD LISSS EXCELDRISSSORD LISSS EXCELDRISSSORD LISSS TUMASCHARSE LISSS TUMAS	CHOKE COIL BRIDGE COIL COIL LINE FILTER COIL COIL COIL COIL COIL COIL COIL COIL	
I.C IC201 CXA1915S IC301 TGAB178	IC (22 PIN) IO (7 PIN)	TRANSISTORS	
10401 TDA9109 10402 LM324MX 10408 LM324MX 10552 LM324MX 10552 LM324MX LM358MX LM368MX LM369MX LM36	G (43 PIN) GHP IO (M PIN) GHP IO (M PIN) IO (B PIN)	C11 CSK M701 D C12 C250602CPT X C250602CPT X C2504080DETD C14 C2504080DETD C351 C254575DETD C351 C45459TZ C254 C45458PTZ C2551 C4551	CHIP MOS TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR

REF.	PART NO.	DESCRIPTION	REF. NO.	PART NO.		DESCRIPT	MOII	
O 552	28K2015TX	ONE TRANSISTOR		RESISTORS				
Q553	2SK 1917F91	MOS F.E.3			_			
Q554	2SK 1917 F91	MGS F.E.T	J:1	ERUBGEY0700VT	¦ T	0 Ω		17.10 m
Q565	2501266QRRL	TRANSISTOR	J:021	:EAUGGEYDROUVT	T	0 0		17.10%
Q556	2SB1322AORTA	TRANSISTOR	31002	ERU6GEY0R00VT	T	0 22		17.104
Q557	DTG114ESTQ	TRANSISTOR	31003	ERU6GEY0R00VT	-	D G		17.10%
Q558	IDTC114ESTQ	[TRANSISTOR	J1004	ERJ6GEY0R00VT	Τ	0 0		12308)
O 559	2SD2133RSTA	TRANSISTOR	J1005	ERUSGEYCHOOVT	i T	0 Ω		17 10%
Q560	28B1413RSTA	TRANSISTOR	J1006	ERUSGEY0R00VT	T	0 (1		17.108
	-25K1507-91M	F.C.T	J1007	issu6@EY0R00VT	l T	D G		1/104
Q590		F.E.T.	J1006	#RJ6GEY0R00VT	-	o G		17.754
Q601	28K2148F106			ERUSGEYORGOVT	1	0 0		17.5%
C 802	DTC:14ESTQ	TRANSISTOR	J1009		; <u>†</u>	0 0		1/10/1
Q803	2SA7330R-T	TRANSISTOR	J1015	EAUSGEYCROOVT				
Q904	2SC4926V25T2	TRANSISTOR	J1011	ERUSGEYOROOV"	I			17.104
Q505	DTC114ESTQ	TRANSISTOR	S101F	ERLEGEYOROCVT	T	ខ្ល		10.104
0507	25A1577AT106	CHPITRANSISTOR	J 10 13	ERUGGEYORODVT	T	0 6		17.104
Q808	2SC4061RT106	CHAITRANSISTOR	01014	ERUSGEYORCOVT	T	0 0		10.104
Q809	284733QB-T	TRANSISTOR	10.15	ERUSGEMORGOVT	Т	0 0		111,0
2810	2SA1577RT108	CHIE THANSISTOR	31215	ERUSGEYORCOVT	Ϋ́	0 ()		17.100
08:	25C1S18ETA	TBANS'STOR	J1017	ENUMBERGROOM	Т	cΩ		1, 104
	2SB1414 RSTA	TRANSISTOR	01016	-ERUSGEYCROOVT	· T	0.0		1 101
C650		THANSISTOR	7.0.8	ERUSGEYCHOOVT	iτ	e n		11104
Q851	2SO1473RTA		J1023	ERJSGEYCROOVT	Ϊż	σΩ		17:04
C891	28A733QR-T	TRANSISTOR			 	6.0		12.104
G352	28A733C P-T	TRANSISTOR	J1021	ERUSGEYOROGVI	1			17.19.
G853	2S011620D	THANSISTOR	J1022	TAMBGEYCROSVT	17	0.0		
02864	[DTC:MESIQ	TEANSISTOR	J1023	ERUGGEYOHOOV1	17	5 0		1
Q865	222649AC	TRANSISTOR	J1024	FRURGEYOROUVT	-	0 17		1000
0986	D:Or4ESTQ	TRANSISTOR	31026	[BRUSGEYORODVT	7	0 12		5.3000
0867	288857WC	TRANSISTOR	U1026	ERUSGEYCRODVT	17	0 0		17/150
9307	288857WO	TRANS STOR	U1027	ERJ6GEMC/COVT	ī	0 13		10.100
0888	H045PTZ	TRANSISTOR	21028	EBURGLYCROOVT	Т	0 0		10.104
G870	DICHAESTO	TRANSISTOR	J1029	ERUSGEYCROOVT	Τ	0 ()		17.101
	WSB1202RS-TL	CEP TRANSISTOR	J1032	ERUWGEYOROOVE	ΪŤ	C O		17:104
C87*		TRANSISTOR	J-031	ERUSGEYORDGVT	l T	5 22		11101
0872	2SA733CH-1			ERUSGEYOROUVT	1	5 11		11101
0878	ESC1473ORTA	TRANSISTOR	11032	.,	-	0 0		17.10%
0881	UTG114FSTQ	TRANSISTOR	J 1028	ERUSOEYORGOVT	1:			
C882	OTQ14581Q	TRANSISTOR	31034	ERUNGRYCHOOVI	1	0 0		17.104
Q883	2SD199RAQRTA	TRANSISTOR	01589	TERUSGEYORGOVT	T	0 Ω		11124
O884	28B1321AOSTA	THANSISTOR	J1038		T	3 44		104
Q885	2SK1917F91	MOS P.E.T	J1037		-	0.00		1110%
0903	DTAMESTO	TRANSISTOR	31038	ERU603EY0R00VT	Ť	0 0		1.104
G903	OT0114ESTQ	TRANSISTOR	U1089	ERUSGEYCR00VT	ΙŤ	0 0		11124
0904		TRANSISTOR	0.040	ERUSGEYORGOVT	T	M 75		1000
	2 2804693	TRANS STOR	J*941	ERUSGEYOROGVT	T	5 23		1.106
	3 2SO4934E	TRANSISTOR	J:045	ERUSGEY0ROOV1	1 +	5 0		17.10%
	2804994	TRANSISTOR	J1043		-	0.0		1/10%
		TRANSISTOR	84	ERJOSENF 1202VT	-	10 < 62	-	1. 104
	1/2804934E		812 812	ERUGENE4703VT		470KΩ	=	1, 104
	2 2804893	TRANSISTOR			- 1	1040	=	1, 104
	2SC4934E	TRANSISTOR	3/3	EAUSENF1002VT	15		-	
	i įžSO38mETA	TRANSISTOR	5754	ERUSENHOSOIVT	1	5.340	-	1, 104
Q1303		TRANSISTOR	715	TARref20063H	1	183 0		104
	3 DTO114ESTQ	THANSISTOR	F16	ERUSENT5800VII	Ĩ	68G O	F	17.159
Q1354	4 28A788@R-T	TEANSISTOR	FR18	TAR101D0273H	, T	27K G		104
	5 2SA733QR-T	TRANSISTOR	E*0	ERUSENF4702VT	T	47X C	-	47.40%
			5.20	ERUSENF4702VT	-	47KG	-	11156
			722	SRUSGEY8R00VT	-	0 Ω		1 10 -
			R22	FRURCEYS10577	' -	19.0	J	4334
	1							

REF NO.	PART NO.		DESCRIF	गा	N	REF. NO.	PA)CT NO.		DESCRIP	TIO:	N
R24	ERUSENF4703VT	т		F	17 107	R351	ERJ5GEYJ562VT	Ť	5.6X O	J	17.10%
R25	ERUSENF 1000VT	T	100 0	F	17.10%	R352	ERJBGEYJ103VT	-	10 K 🖸	J	17.004
R201	ERJ6GFYJ471VT	T	470 D	J	17.10%	R353	ERU6GEYU562VT	1	5.6KD	J	17,104
R202	ERD25TJ102TT	Ġ	1K G	Ĵ	1/4%	R254	ERDS2TJ103TT	10	1K G	J	3744
A203	ERUSGEYJ104VT	Ī	100X &	J	17.10%	F355	SRUGGEYUS62VT	ΙŢ	5.8ΚΩ	J	17,104
R205	ERDS2TU27/TT	l c	270 11	J	1/4//	P.356	(ERU6GEYU103VT	l T	10K D	j	17.107
R206	ERUSGEYU123VT	-	12X Ω		17.15%	F357	FRDS2TU103TT	l ċ	1K Ω	Į.	1747
R207	ERJSGEYJ3S2VT	T	3.9KR	Ĵ	17.10%	R358	ERDS2TJ392TT	· C	3.9kΩ	_	174%
R208	ERU6GEYU682VT	-	6.8KB	J	1/ 10%	R359	EROS2TJ103TT	10	1X G	J	174%
R209	ERU6GEYUS92VT	, T	3.9KΩ	J	17 10 4	R360	ERUSGEYU103VT		10 KΩ	Ĵ	17104
		l'c	2.2KΩ	Ĵ	1/4%	R361	ERJ6GEYJ582VT	-	5.640	J	17 104
R210	ERDS::TJ222TT	10	1,2KΩ	J	1/4%	R362	ERL6GEYJ472VT	1 +	4.7KQ	J	11104
R211	ERDS2TJ122TT	-			47.10%	P363	-ERU6GEYU103VT	+	108.0	J	1.104
E212	ERUSOBYU122VT	Ī	1,2KO	Ţ		F401	IERUSGEYUBCZVI	1 .	a 2K13	ul	1.10%
P213	ERUSCEYU223VT	1.	25KU		37.104			1 T		U	
R234	EADS2[4223][T	15	22X ft	· ·	1/44	R402	ERUSGEYU393VT		39X ()	9	17106
F.215	EHISGEYJZ22VT		2.240	J	17.104	5(403	ERD25TJ:03TT	1 -	10 X O	- 4	1/44
F216	ERUSSEYU102VT	ļ.,.	13 Ω	Ų.	1/ 10 / 3	R404	ERJ8GEYJ100VT	1	10 0	٦	17.104
E217	EHUSOEYJ102VT		1K ()	Ų	1/10/	0,408	ERUSENF750'VT	1	7.550	i.	1,000
F.218	EROS21110311	16	1 K (2)	Ų.	1748	3409	ERDS2TU222TT	10	2,245	Ų.	7.23
R219	EROS2TUR79TT	0	2.7⊀Ω	J	7.4 6	E410	EETPOEAT283A1	-	354%	J	1 - 104
F.220	EROSSIUS92TT	C	3.9KB	J	1.44	=1.42	EBU6ENE1242VT	_	12.430	Γ	17.104
E221	ERUSOEYUZZEVT	-	\$54 U	Ų	1/10/	23×13	ERUSENF2822VT	_	23.240	F	17.10%
R223	FRUSBN62152VT	-	21.5KD	- 8	1/10/	24.4	ERUSGEYU103VT	ī	10 K ()	J.	1/004
F224	ERDS1VJ103TF	0	70 K D	4	1/2/	R415	ERDS2TJ502TT	C	5.6KΩ	J	1.44
E225	REOSSTUICSTT	0	1 K D	Ų	1144	84.5	ERUSGEY0472VT	; -	4.730	Ų,	17,104
B226	CBUSGRYJ472VI	7	4.740	J	17.10%	44.7	RR0257J2737T	10	27KG	J	7 4 6
E207	ERDS2TU104TT	.0	100KB	Ų.	$f: \mathcal{I} \to \mathcal{I}_{\mathcal{I}}$	8146	ERDS2TJ82/TT	0	800 G	J	5 44
E228	ERUSCEYJ472VT	-	4.780	J	17.107	7,419	ERUSGEYUSGSVT	19	53KH	J	17.10%
R229	EPU0GCYJ102VT	-	* < (')	J	17.10%	E420	BRUSGEYUSS4VT	7	560K#	J	1.104
8000	ERC6ENF6492VT	-	84.9KΩ	F	17.10%	0.421	ERUSSEY2103VT	-	100%	J.	1.304
8233	EEOS21K#15021	Į,į	15K O	F	174%	8432	ERUSCEYU102VT	ĭ	58.0	J	10104
R233	ERUGGIYJ472VT	Ŧ	4.7KQ	j	17.10%	E423	ERUSGEYU562V7	Т	5.880	J	31107
B234	EAUGGEYUSE'VT	T	680 N	Ĵ	17.10%	6424	ERUSGEYU224VT	T	220KO	J	17.107
R235	ER/OGEYUS32VT	Ť	3.2KA	Ĵ	1/10%	B425	ERUSCEYU:53VT	۱۳	158.02	J	17:10%
F236	.ERDS1TJ680TT	Ċ	68 G	J	1/26	B426	ERUGGEYU283VT	T	22K O		17106
R237	EROSZTJ0237T	ľ	22X O	- 1	1/44	P427	ERUSGRYJ183VT	Ť	18X ()	ŭ	17:100
B238	FRUEGEYL 103V1	1.	1000	1	17104	R542	ERX3SJ3E9ST	Ņ.	3.9 0	Ĵ	3n
9301 1	EPOSZTJ123TT	ľ	1246		1728	8541	DEXSSUAR9ST	. 4	3.9 0	Ĵ	34
	EBJUENE4531VT	1 -	4.58KD	Ē	17.104	R550	EFGSFJX270E	1 14	27 5	J	3.4
R302	ER36ENF2432VT	1 :	24.3KG	F	1/104	R551	TEROS TUATOTT	Ĉ	47 G	J	1, 2/
R303	.0506G8YJ472V1	7	4.7KG	J	17.107	P.552	SRUGGEYU382VT	1	3.3KO		17:107
P305 P307	ISRDS2TJ120TT	15	12K A	7	1/44	R553	ERGISUW581E	, h	580 G	Ĵ	57
	680821J1037T					F354	[8 RX25.W1R28	Ų	1.2 0	J	2.
F308		Ç	1K G	.]	1744	l			1,2,44		
F(309	ERDS:TUBBSTT	0	53KG	J	1724	F355	ERX2SJW170E	Ų		Ų	2.4
R310	ERJ5ĞÉYU123Vİ	1	12K G	7	17.104	A553	ERXZSJBRBST	'n	0.8.0	J	24
R311	ERJSGEYJ082VT	†	6.8KG	J	17.104	R557	ENX3FJX6R8É	.W	6.8 77	J	3.4
F312	ERDS1TJ183TT	0	18K G	J	1/24	R553	ERJ5GEYJ562VT		5.6KD	J	17.104
F.313	ERDESTUDENT	5	1 0	J	1/45	F.559	ERUSGEMU472VT	_	4.7KQ	J.	11104
P.314	ERG1SJW221E	15	220 0	J	5.5	2,560	FRD811U27111	- 5	270 0	J	1723
R315	ERX1SUW1605	M	1 77	J	14	N351	TARRS5B19002	. 14	15 G	J	57
E316	ERUSGEY2471VT	T	470 0	Ĵ	1004	E553	TARR\$5B15002	1/4	15 6	J	57
F317	ERDS2TU103TT	0	1X Q	J	1744	A563	ERUSGEYUSG2VT	-	3.3KA	J	1, 107
R318	ERD25TU103TT	C	10KB		1743	A\$64	[8FD81TJ4717T	0	470 ft	Ţ.	17.27
R312	ERUSGEYU382VT	Ī	3.9%0	ij.	1000	9565	!ERDS1TJ47fTT	0	477 0		1 - 25
E820	DBUSGEYU278VT	7	27 (12	J.	11117	93566	FERGESEYU100VT	Ī	10.00		5 400
A350	¹ ERUSGEYUKSVT	7	10 (17)	J	1:10:	5887	E7J63EYJ472V1	Ī	$A: \mathbb{T} \times \Omega$	"	1. 127
						:					

REF.	PART NO.	İ	DESCRIE	Tio:	N.	REF.	PART NO.		DESCR!	PTIC	N.
NO.						80	 				
R558	EROS213190TT	. 0	10 G		174%	R809	ERDS1TJ224TT	0	220KG	J	1724
R559	SERDS2TJ472TT	ŀċ	4.7KD	L	114%	R610	ERG2SJW333E	i ų	93K Ø	J	24
R570	ERDS1TJ472TT	c	4.780	Ü	1/2%	A811	ERG2\$JW333E	4	33K C	J	23
R571	EROSITJ4721T	Ċ	4.780	0	1727	R812	ERUSGEYJ472VT	7	4 7X O	J	17.10%
F.572	ERX2SJW2R7E	λl	2.7 0	J	24	F.813	ERUSGEYJ472VT	Т	4 7542	J	17.157
R575	ERD25TJ272TT	C	2.7KΩ	J	57.4%	F.815	ERGSFUX473E	: 14	47X Ω	J	37
R576	ERJ6GEYJ682VT	-	0.86€	J	17.10%	F(816	EROMAJW220E	F	22 G	7	1746
R577	FRDS2TJ472ŤŤ	0	4 7K Ω	J	1744	₽817	ERJ6SFYJ223VT	T	22K Ω	7	17.10%
R578	ERJ6GEYJ333VT	T	33K ()	J	17.18#	#81a	-ERX3FJXR22E	М	D.22 D	ы	34
R580	CRJ6GEYJ222VT	Т	5 5KU	J	17.104	R8 19	ENDS2TJ282TT	C	2.2KΩ	Γ,	1744
R581	ERD251J222TT	0	2 2KA	J	1748	F\$20	EAX3SJR22H	М	0 22 G	Ų	3.4
7582	FRDS2TJ833TT	: 0	32X U	7	1748	R621	CHU6GEY J332VT		3.3KG	Ų	17.124
H583	ERUSGEYU103VT	Ī	10 K G	ů	1/10/	B822	ERJSGEYJ338VT	1 40	3.3% 0	J	17.157
FISS4	EU183EA1555AL	T	2.2417	W	17.10%	H823	ERUSENF8202VT	. T	8 240	F	1.100
F.585	ERUSGEYJ:03VT	17	10 < Ω	J	17.10%	F824	EROSSTU476TT	C	47 0	н	1740
F.596	ERUEGEYJ332VT	1	3.3K Ω	J	17.10%	F.825	FFX3ALXR23E	N.	2.22 6	lu	G A
FISE7	ERDS2TJ153TT	0	15K O	J	1744	A826	'ERDSCTJ103TT	0	1ΚΩ	ų.	1724
R588	ERUGGEYU479VT	-	4.7EQ	J	17.104	E827	TVS88UYB882VT	ľ	6.8KG		10.10%
H509	ERD25TJ828TT	0	8.2K O	J	1.41	A888	080817127411	0	270% (2	v	1.12.4
R530	[ERDS21U222][[0	2.2K ()	J	17.44	1,529	(ERDSYTURESTT	¢	22K ()	-	1 4 1
B691	FEBORATUI82TT	C	1,880	J	37.44	81830	EPRSSTURVOTT	C	22 0	-	* 123
Fi592	EROPSTUM73TT	C	27 K O	J	17.44	8831	EPOSYTU334TT	C	330K @	~	1728
F1593	ERUSGEYU223VT	T	35 < U	J	17.10%	F.832	EHDS2TJ224TT	Ç	220 €Ω	v	1744
R594	ERUGGTYU273VT	T	27K G	J	17.10W	F.833	ERDS2TJ224TT	ĮĈ.	220K ()	-	1740
F595	ERUSCEYU102VT	T	1040	Ų.	17.10%	R.834	E5.668YU472YI	I	4.740	12	17.71.0
B598	FRUSGEYU682VT	T	6.840	J	17.104	8836	ERUSGEYU472VT	T	4.780	~	57.50 e
F597	ERU60EY0222VT	17	2.28 0	J	17.10%	F.837	(EB00@EX0.88A)	Ī	1,240	_	17.3008
F598	[EBUSCEYU2222VT	:	2.280	ď	11108	5838	ERUGGEYUSSIVT	T	680 0	~	17.100
R599	EBUCGEYUGSSVT	7	6.860	J	17.10%	E209	ERLEGEYJ882VT	I	6.8KG	lu	17.10%
E601	EIRLEENF1893VT	7	1658 ()	F	17.124	7(840	ERDS2TU202TT	0	2.260	4	1740
F602	DEJ60N9 (683V)	1	165K ()	F	17.104	<u> 11 11 11 11 11 11 11 11 11 11 11 11 11</u>	EROWAJE47HK	F	0 47 ()	v	1726
R603	ERDSSTU100TT	0	10 G	J	1744	4,350	EROS2TU473TT	0	47K O	-	* / 4 //
R604	EROSITUR78TT	10	2.7KG	J	1724	Ras*	ERGISJW393E	, M	39K G	-	1.6
F1605	ERLECEYJIROVT	7	1.0	J	47,104	Ease	SMD28 FU10STT	0	10 8 G		1/44
8605	EROS2TKF8292T	4	82.5KO	F	1744	R853	ERDS27L103TT	10	1K 67	J	1.44
R507	ERUSGEYU502VT	Ť	5 8KU	J	17.10#	R880	ERDS:TJ473TT	ic	47KΩ J		
	EROR2TKP82521	l4	82 5X G	F	1748		ERX3FJX4R76	- V		37	
B701	ERDS2TUG83TT	0	E8K 72	J	1 1 4 1	H362	EROSITUSESTT	0		1.0	
R702	ERUSGEYU154VT	Ť	1504 0		10.10%		ERC '2AJE47HK		0.47 () 3		
P(703	ERUSGEYUNSVT	ΙŢ	10 K Ω	v.		1.5 F684	EROTALIE47HK			1/21	
P.764	ERUSCEYL685VT	1	69K ()	J	11124		ERO12AJR47HK			1/2/	
F1707	ERLEGEYU:04VT	Ī	100K (2	J	11104	1	ERCIZALR47HK		047 Ω J 5.8 Ω J		
F.708	EADS2 (JIG4TT	0	100k@	Ĵ	1044	1	EAXSPUXSRSE			-	
R709	ERJEGEYCAOCVT	-	0.0		1 124	7,869	ERXISUVIRUE			1W	
F(713	EFDS21J333TT	0	33K G	J	1744	1	29J5GEYJ223VT	: T		100	
F(7.1)	ERJ6GEYJ103VT	T	10 K Ω	Ţ	17.124	R870	EAUCGEYU103VT	' T		1/101	
F:712	ERU6GEYU103VT	Ţ	10 K Ω	J	1 104	R872	ERJ6GEYJ271VT	T		1.142	
B713	ideusgemutsavii	1	15K Ω	J	11124	1	ERDS:TUZZ:TT	C		1 172	
R714	ERDS2TJ104TT	. 0	100K Ω	J	1744		ERDS:TU201TT			1.72	
H7 17	ERDS21U122T1	Ç	1,240	ij	1.44	1	ERUEGEYUSBZVT	Ţ		11101	
P501	ERC12AGK394D	. 2	390K D	<	1724	R878	REDS2Tare371	ic		4.4	
△ F802	TAP101N018	Ē	18 Ω		108	B577	ERDSZTJ563TT	٠Ĉ		114	
A R803	ERTD6ZFU420F		ERMISTOR			R872	5AU6GEYU102VÎ	Ť		17107	
E204	,ERUSCIEYU472VT	1	4,7ΚΩ		11104	5383	ERUEGEYUSEZVT	Ţ			
F.805	EFJ60EYJ361VT	17	560 O	Į.	4 . 4 . 1	13551	ERUSGEYU102VT	T		1300	
Rada	GEOSITUS24TT	10	220K C	ز	1.177	P050	SRD\$17J12971	0	12 A J	1.27	Y.
						i					

REF.	PART NO.	i	DESCRIE	TIO	N	REF. NO.	PART NO.	_	DESCRI	יסנלי	8
NO.				- —				1			
8863	ERDS2TJ104TT	C	100KΩ	ل	1/4#	R953	ERDSSTJ2231T	Ç	22XΩ	2	1/4%
R884	ERJ6GEYJ102VT	7	1K Ω	J	1/10#	R954	EAJSGEYJ223VT	T	22KΩ	J	17.10W
R865	ERX3#JXR568	Já	0.58 Ω	J	31/	R955	ERJSGEYJ223V7	T	22KΩ	J	17.10%
R886	ERDS17J3327T	C	3.3KA	J	1/2%	R956	ERD\$2TJ331TT	C	330 G	Ļ	174%
R887	ERD\$27J102TT	0	1K O	J	17.4%	A 957	ERJ6GEYJ563VT	! T	56K 🗯	J	17.10#
R688	ERDS2TJ472TT	10	4.7KΩ	J	17.4%	R1000	ERDS2TJ103TT	į C	1K Q	J	17.4%
R689	ERCS2TJ392TT	¢	3.940	J	174%	F11001	ERO25TK#75P0T	74	75 N	F	174%
R890	ERJ6GEYJ103VT	T	10 K Ω	J	17.10%	R1002	ERDS2TJ330TT	0	33 0	J.	174%
R892	ERJ6GEYJ103VT	ĺτ	10 K D	J	17.10%	R1003	ERDS2TJ103TT	0	1X Q	J	174%
R893	ERD25FVJ222C	lo	2.280	Ĵ	1743	FR1005	ERD\$2734727T	Ç	4,760	J	174%
F.894	ERJ6GEYJ102VT	7	1K O	Ĺ	17.15₩	R1009	EROS2TKF2870T	М	287 Ω	F	1/4#
R900	ERDS2TJ:03TT	0	1K Ω	Ĵ	174%	81018	ERGSSJ182ST	l N	1.8KΩ	J	54
R901	EROSZTJ152TT	16	1.5K ()	Ĵ	17.4%	B1011A	ERG5\$J182\$T	1.86	1.8K (2	Ĵ	5.4
R902	ERDS2TJ162TT	Ċ	1.5X Q	J	17.4%	FI 10 12	ERDS*TJ472TT	l c	4.7KΩ	J	1/27
R903	ERJEGEYJ*52VT	ΙT	1.5 <g< td=""><td>J</td><td>17.10%</td><td>P1014B</td><td></td><td>М</td><td>100 €</td><td>2</td><td>18</td></g<>	J	17.10%	P1014B		М	100 €	2	18
A904	ERDS1VJ562TT	ľċ	5.6KD	ل	1/2%	R:014A		l W	100 🗯	Ĵ	177
R905	ERDS2TJ562TT	Č	5.6KD	Ĵ	1/44	P:015	EROS2TU390TT	ľů	39 0	Ĵ	1748
	ERDS2TJ562T1	ď	5,6K D	J	1/44	R1018	iSRDS2TJ::04TT	C	100K Ø	J	1744
A906		1 -	3,00 D	J	1/44	R1019	ERDS21U181TT	Č	180 0	Ĵ	1/44
F1907	ERDS2TJ1G1TT	Ç		3		F:023	EROSITUS30TT	Ċ	33 44	J	1/28
R909	ERUSCIEVUTOZVT	Ţ	18.0	_	17.10%	R1021	EADS11033011	c	390 8	J	1728
R909	ERDS2TJ102T7	C	: K Ω	ď			ERGISJW101E	M	100 0	Ĵ	14
A910	ERDS2TJ102TT	Ç	16.0	4	1/44			l M		J	14
8911	ERDS2TJ101TT	0	100 Ω	Ų	1/44	R1030A		1 '			
R912	ERDS2TJ223TT	C	22K C	J	1/44	R1100	ERD2572103TT	C	10KB	J	1744
B913	ERDS2TJ103TT	C	1K Q	J	1744	R1101	ERC25TKF75R0T	h	75 G	F	1/48
R914	ERDS2TJ292TT	C	3,9KΩ	J	7/4%	R1102	ERDS2TJ330TT	ļç	33 0	J	174 W
R916	ERDS2TJ393TT	C	33 K C	J	1/49	R1103	ERDS2TU:03TT	ı Ç	1K G	J	1/44
R925	ERJ6GEYJ103VT	-	10K ()	J	1710#	R1105	ERDS2TJ472TT	C	4.7KB	J	* / 4 4
R921	ERJSGEYJS63VT	17	50K Ω	J	1710%	R1109	EROS2TKF28707	M.	287 D	F	17.44
R922	ERUSGEYUS63VT	Ť	58K Ω	Ţ	17.10%	81113	ERG5SJ182ST	: 34	1.8K D	J	54
R923	ERUSGEYU563VT	T	53K (1	Ų	17.10%	RISSA	ERGSSJ182ST	, M	1.8KD	J	54
R924	ERJSGEYJ563VT	=	58K A	J	17.10W	R1512	ERDSiTU472TT	j C	4.7KΩ	J	172%
R925	ERJ9GEYJ223VT	T	22K()	J	17.10%	B1134A	ERGISUWIDIE	Ч	100 R	J	* H
23926	ERJSGEYJ223VT	' T	2240	J	17.10%	P.11143	ERGISJW101E	M	100 N	j	11
R927	ERJ6GEYJ223VT	įΤ	2240	J	17.10%	F.:115	ERDS2TJ470TT	0	47 N	J.	174%
H928	ERJSGEYU223VT	İт	22KG	2	17.10%	R1116	(FF082701047T	C	100KΩ	J	17.4%
R929	ERDS2TJ1011T	l c	100 O	Ų	1/4%	81119	ERDS2TU331TT	, C	330 D	J	174%
R930	ERUEGEYU101VT	T	100 0	Ú	17.10%	R1120	ERDS1TU330TT	0	33 f2		1728
F931	(ERJ8GEYJ101VT	T	100 N	Ĵ	17.1QW	R1121	ERDS:TJ3917T	0	390 D	J	1/28
R932	ERDS2TUS31TT	0	330 ଯ	Ĵ	1/4%	R11308	ERGISJW101E	Ы	100 €	J	4 ች
P933	ERDS2TJ331TT	10	330 D	J	1748		√6RG1SJW101E	M	100 €	J	177
R934	ERJ6GEYJ103VT	ıΤ	10K G	2	17.10%	81200	ERC25TU103TT	l c	10K Ω	J	5744
A935	ERDS2TU102TT	Ċ	18.0	ij	1/4#	Rt201	ERO25TKF75R0T	N	75 (2	F	1749
H935	ERUGGEYUDGVT	:1	10 K Ω	Ĵ	17.10%	31202	ERDS2TJ330TT	C	33 [2	J	1/4%
R937	ERU6GEYU103VT	İ	10 K D	Ĵ	17.10%	R1203	ERDSZTJ103TT	, č	1K Ω	J	1747
R938	ERU6GEYU472VT	1	4.7K C	J	17.10%	R1205	ERDS2TJ472TT	ő	4.7KΩ	1	174%
H940	ERDS27J101TT	İç	100 B	J	1/4#	R1209	EROS2TKF2870T	Ų,	287 N	ž	1748
R941	ERDS2TJ101TT	10	100 Ω	7	1/4%	R1211B		4	1.BKΩ		5%
	EROS2TKF2553T	' M	255KΩ	5	1/49	5121:A		N.	1.8KΩ	Ţ	57
R942			, K U	Ę	1/4%	R1212	ERDS1TJ472TT	o a	4.7X R		1/28
R943	EROS2TKF1001f	· M			17.10%	61214A		М	100 G	Ü	17.21
R944	ERUGENF2553VT	įΤ	255K D	F			ERGISJIDIV	H	100 A	J	18
R945	ERUSENF1001VT	Ţ	1K D	F	17:10%	1		- 1			1748
R949	ERCSZTJZZZZTT	C	2.2KΩ	J	1 / 4 W		ERDS2TJ47GTT	C	47 G	J	:/4W
R950	ERD257J104TT	C	100KΩ	J	17.4%		ERDS2T3104TT	C	100K D	J	
R951	FRDS2TJ562TT	C	58K Ω	J	1/4%	1	ERDS2TJ221TT	10	220 0]	1748 * (D)
R952	ERJSGEYJ563VT	17	58K Ω	J	17.10%	R1220	EROS17J330TT	i C	33 Ω	J	1/24
									_		

							-				
REF. NO.	PART NO.		DESCRU	TION	2	REF. NO.	PART NO.	1	DESCRI	MOLTS	ı
		+				_::: -	-	_			
R1221	ERDS17J391TT	C	390 N	J	1/2₩	R1505	ERDS2TJ331TT	Ċ	330 Ω	J	1/4%
	ERG1SJ101V	M.	100 M	J	1+	R4506	EADS2TJ103TT	C	1ΚΩ	Л	1/4%
B1230A	ERGISJW 101E	M	100 N	J	1 🕆	F230:	ERDS2TJ102TT	C	1 K Ω	J	1/4%
R1301	SRDS2TJB22TT	C	8.2KΩ	J	1749	R2302	EROS2TJ102TT	C	*KQ	Л	1/4%
A:302	ERBS2TJ472TT	0	4.7KΩ	J	174%	R2303	ERD\$!VJ292TT	C	2.2 Ω]	17.2%
R1303	ERDS2TJ33017	0	33 ល	J	174%	R2304	EROS:VJ2R2TT	C	2.2 Ω	J	17.2%
R1304	ERDS:TU681TT	15	880 N	J	17.2%	R2305	ERDS2TJ471TT	C	470 O	3	17.4%
R1307	(ERDS2TJ:02TT	0	1K Ω	J	174%	R2305	ERD\$2TJ471TT	C	470 N	J	174%
B1308	EAD\$2TJM2TT	0	1K G	J	174%	R2307	ERDS2TJ471TT	C	470 O	ل	1/4%
R1309	EROS2TU102TT	C	1K 🗯	J	174%	R2308	ERDS2TJ471TT	0	470 N	J	1/44
PH310	ERDS27J1027T	ļç	1X Ø	J	174%	R2309	ERX3FJX3R3E	į W	3.3 1	J	3#
A1311	ERD\$2"J\021T	C	1K 🗅	J	174%	R2310	ERX3FJX3R3E	. W	3.3 0	J	3.4
FI 13 12	EROS2TJ103TT	C	1 K Ω	1,	1749	R2401	ERDS2TJ103TT	jĊ	18.0	J	174%
B 13 13	ERDS2TJ332TT	C	3.340	Ĉ.	1744	R2402	ERDS2TJ683TT	C	\$8 K D	J	174%
P1314	EROS2TK#9091T	Į)	9.09K M	F	1/4#	R2403	ERDS2TJ10STT	C	14.0	1	17.4%
B1315	EEDS2TJ222TT	C	2.280	J	1/4%	F.2404	ERDS2TJ583T7	C	бакО	-	1748
R1216	ERDS2TJ474TT	C	470K O	J	174%	R2405	EROS2TKF4021T	N	4 02K N	F	174%
B1317	ERDSZTUICZTT	c	±κ.Ω	J	1/4#	F.2408	EROSZTKE3901T	N	3.9K D	Ē	1.4%
H 13 18	ERO25TU151TT	C	:50 G	J	1/4%	F2407	EROS2TKF4021T	M	4.02K C	=	17.4%
R 13 19	EROS17J273T7	¢	27 (0	J.	1/2#	R2408	ERGS2TKF1002T	M	10 K G	F	1748
R1320	FROSSTUISSTT	C	1.5< €		1/4%	R2409	ERDS21J102TT	C	1K ()	j.	174%
R1321	ERDS2TU822TT	C	8.24Ω	4	1/4#	F2410	ERDS2TJ102TT	Ç	1K D	J	174%
R1323	ERDS2TU100TT	C	10 Ω	J	174#	R2411	ERGSSTK#865:T	i M	6.65KD	F	174%
R1324	ERDS2TU/61TT	- 6	180 D	į.	1748	F2412	EROSSTKF2611T	i M	2.0180	F	17.4%
B1828	LRDS27J473TT	- 0	47X Q	J.	174%	F(2413	ERDSSTUMOSTT	10	1K 🖸	J	1748
81337	ERDS2TJ473TT	C	47X Ω	J	1/48	R2414	ERG2SJW331E	1 M	330 0	J	2%
81308	ERDSZTUZZNTT	C	220 G	į.	1748	R2415	ERDS2TJ822TT	Ċ	8 2X (2	Ĵ	174%
81329	ERDSYUMNIT	.0	100 42		1/24	B2419	ERDS2TU222TT	. C	2,240	J	174%
R1330	ERDS/TUSCOTT	C	86 G	J	1728	F2417	REDS2TU562TT	0	5 6K Ø	J	1744
B1351	ERDS:TU:01TT	. 0	100 🙃	Į.	1/24	F2418	ERDS2TU882TT	Ô	8 8 (()	j	174%
B1332	EROSTTU:00TT	10	10 Ω	3	1724	R2420	ERXSFUXSR9E	l M	3.9 11	Ĵ	34
R1334	EBO25TU331TT	10	330 D	į.	174₩					_	
R1335	EXCEUSR357	:00									
741361	ERUSSEYU103VT	! T	10 (0	Ţ	17:104						
R1352	ERJSGEYJ123VT	l T	10 K Ω	Ū	17.15%						
R 1353	ERJ6GEYJ103VT	i T	10 K Ω	Ü	17.10#						
	ERJ6GEYJ109VT	T	10 K 🗯	Ü	1/10%		SPARK GAPS				'
FR1385		T	10K G	Ĵ	1/10%		Q				
	ERL6ENF5621VT	Ť	5.82K ()	F	1/10%	\$1001	TAGOSP201MT	185	ARK GAP		
	ERVEGEYURGAVI	Ι÷	10K Ω	j	17.10%		TAGDSP201MT	1 -	ARK GAP		
R1258		-	68KG	Ĵ	17.10%	1	TAGESP201MT		PARK GAP		
91359		0	15K (1	Ĵ	174%	ı	JAGOSP201MT		ARK GAP		
R1360		-	3.985	J	37.10%		TAGDSP201MT		PARKIGAP		
81361		-	1K.22	J	17.10%	\$1303			ARK GAP		
R1352		lc	330 G	J	17.4%	2 .0		-			
	ERGS2TKF2102T	N	2 1 K Ω	F	174%			i			
P.1373		T	27K Ω	F	17.10%		SWITCHS				
	ERU6GEYU102VT	T	1K (2	j	17.10%						
	.ERU6GEYU102VT	l T	1 K Ω	Ĵ	1/10%	∆SWaci	1 (E\$591234A	AC	SW		
	ERU6GEYU102VT	+	·κΩ	J	1/ 10%		LEVQPB005K		MITCH		
	ERJOGEYJ102VT	Ϊ́	, κ.α	J	1/ 10%		EVQPB005K		MITCH		
	ERJ6GEYJ:02VT	T	-, K Ω	J	17.10%	i	EVQPB005K		WITCH		
	ERJ6GEYJ102VT	T	1KΩ	J	17.10%		EVORBOOSK		HOTIN		
	SRDS2TJ47:TT	ľċ	470 Ω	J	1/4%		EVQPB005K		HOTIN		
R1503		ľ	330 N	J	1/4%		EVQPB005K		WITCH		
R:504	ERBS2TJ473TT	ľč	47KΩ	J	174%		NEVGRBOOSK	-	WITCH		
			771616	J	11 -11	271201	2. 0. 00001	"			
		!									

REF. NO.	PART NO.	DESCRIPTION	REF. NO.	PART NO.	DESCRIPTION
	THANSFORMERS		TP1	TEL302-9	TERMINAL (GT PIN)
△ T601		SWITCHING DRIVE TRANS. FLYBACK TRANSFORMER SWITCHING TRANS. CHOKE COIL	X901 Z1061 Z1151 Z1261	EVNDCAA03B53 HC49U805 TAX10125 TAX10125 TAX10125	VR. 5K D B 8.0MHZ OSC LC FILTER LC FILTER LC FILTER
	OTHERS		Z1361 Z1362	TAXZJSR102T TAXZJSR102T	LC FILTER LC FILTER MICA SHEET
F3803 F3803 F3801 F3802 JK2 JK2 JK3 JK3 JK3 JK3 JK3 JK3 JK3 JK3 JK3 JK3	TMM4C0083 TMM16452 X8A2:ST4.QAH TJE4C0010 TJE4C0010 TJC85341 TJC85341 TJC85341 TJC85341 TJC85341 TJC85341 TJC85341 TJC85321 TJC85502T TXAJT1P10:562 TJS9A8440 TJS9A8760 TJS9A8760 TJS9A8760 TJS9A8760 TJS9A8760 TJS9A8760 TJS9A8760 TJS9A8760 TJS9A8760 TJS9A8760 TJS9A8760 TJS9A8760 TJS9A8760 TJS9A864A TJS876204 TJS9T8204 TJS9T8204 TJS876204 TJS876204 TJS876204 TJS876204 TJS876205 TEL302-9 TXAJTC7P152T	LEAD CLAMPER CLAMPER AC FUSE (T4AF/250V) EARTH PLATE EARTH LOCK EA		TMK4C0039 TMM5428-1 TUC4C0074-11 TUC4C0105-1 TUC4C0117-1 TUC4C0117-2 TUC81534-7T TUC855828T TUC87568T TUC87568T TUC95012T TW68202009ELT XTV3+10C XWG3F10 XWGT40660	MICA SHEET LEAD CLAMPER MEAT SINK HEAT SINK HEAT SINK HEAT SINK AC INLET METAL HEAT SINK O'SUB CONN, SHIELD CASE IF TERMINAL WIRS SCREW WASHER WASHER
	TUS879203 TUP721FD4GRH	: 3P BASE ! PHOTO COUPLER P721F			

Copyright © 1996 by ViewSonic Corp. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by sny means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of ViewSonic, Corp.

Disclaimer

ViewSonic Corp. makes no representations or warranties, either expressed or implied, with respect to the contents hereof and specifically discisins any warranty of merchantability or fitness for any particular purpose. Further, ViewSonic, Corp. reserves the right to revise this publication and to make changes from time to time to the contents hereof without obligation of ViewSonic, Corp. to notify any person of such revision or changes.

Safety Precautions	
Service Warning	2
General Information	
Specifications	3
Dimensions	10
Control Location	
Service Adjustment Control Location	
Caution For Adjustment And Repair	14
Caution For Servicing	
Adjustment And Check Procedure	18
Adjustment Software	17
Adjustment Procedure With Computer	.18
Block Diagram	
Conductor View	
Schematic Diagram	34
Troubleshooting Tips	
Replacement Parts List	44

SAFETY PRECAUTIONS

1. CAUTION

No modification of any circuit should be attempted. Service work should be parlarmed only after you are throughly familiar with all of the following safety checks and servicing guidelines.

2. SAFETY CHECK

Care should be taken white servicing this CRT display. because of the high vortage ased in the deflection circuits. These voltages are exposed in such area as the associated Hyback and yoke circuits.

3. FIRE AND SHOCK HAZARD

- Insert an isolation transformer between the CRT display and AC power line before servicing the chassis.
- 3.2 While servicing, specially in the high voltage circuit. pay attention to the original lead dress. If a short eircuit is found, replace all parts which have overheated as a result of the short circuit.
- 3.3. All the protective devices must be reinstalled per the original design.
- A.4. So getting must be inspected for possible cold activer jaints, frayed labos, damaged insulation, soider spendings or sharp solder points. By certain to remove all foreign material.

LEAKAGE CURRENT COLD CHECK

- Usgaing the AC cord and consists # jumper between Ing two prongs on the plug.
- 4.4 Manufile CRT display power switch foot.
- 4.5. Yousuru the resistance value with an partirieter between the pimpered AC plut and each exposed mytable part on the CRT display such as the metal. frama, screwbeads, cortrol shafts, etc. When the expanded metallic part has a roturn path to the chassis, the reading should be 18 megonin minimum

5. LEAKAGE CUHRENT HOT CHECK

- 5.1. Plugitha AC outplicinactly into the AC cutlet. Do not title are solution transformer during this cheek.
- 5.0 Connect a 1900 ohm, 10 watt resistor, pare led a 0. 15 L. F. capacitor bytween cach exposed metallic part and a good earth ground (as shown in Fig to
- 5.3. Use an AC voltrieter with 1000 of threvolt of more scriptivity and recourse the AC voltage across the combination (580) of minusister and 0,15 # Ficapactor.
- 5.4 Mays the resistor control on to sach exposed metall a partiana maasure tha voitage.
- 5.3 Asverse the obtainty of the AC plug in the AC outlet and repeat the above measurement.
- Vorage measured must not exceed 7.5 volt RMS. from any exposed metalin part to ground. A leakage distrant tester may be used in the applye hot check. in which page any current measured **must not exceed** 5.0 milliamps, in the copy of a measurement exceeding the 5-0 militaring value, a temorialis recorded to eliminate the chance of a shock hazard.

Note:

High voltage is present when this CRT display is operating. Always discharge the arrode of the picture tube to the display chassis to prevent shock hazard.

Flgure, 1

6. IMPLOSION PROTECTION

All picture tabes are odulpoed with an integral implesion pretection system, but care should be taken to avoic camage and scratching during installation. Use only replacement dictors tubus.

7. X-RADIATION

WARNING: The only potential source of X-Radiation is the picture tabe. However, when the high voltage circuitry is operating properly there is no possibility of X-Radiation problem. To ensure that this is the case the high veltage must be tested and maintained at the following factory recommended levels.

Note: It is apportant to sue an accurate, periodically calibrated, high voltage meter.

- 7-1 The procedure for adjusting the high voltage is shown on page 12.
- 7-2. If the high vestage cannot be adjusted to 25.0 KV. immediate service is required
- 7-3 To prevent X-Radiation possibility it is essential to use the specified preture tube

PROPERTY INFORTANT SAFETY NOTICE CONTROL OF

There are special components used in this ORT that are important for safety. These parts are identified by the international symbol (4) on the schematic diagram and on the replacement parts. list, it is essential that these critical parts should be replaced with manufacture's specified parts to prevent X-RADIATION, shock, his or other hazards. Do not modify the original dissign without written permission of the ViewSonic Corp Company or this will void the original parts and labor quarantee. ن من المن المنظمة المنظمين المن المن المن المن المن المنظم المنظم المنظم المنظم المنظم المنظم المنظم المنظم الم

- 1.* POWERSW, LED, ffl -key (MENU), (J-key (LEPT), (D-key (RIGHT), f2l -key, Audio Volume Up/Down key, Muse-key and Mute LED are located on the Iron panel.
- 12 Signal cable and AC inlet are located on the back side of the cabinet.
- 1.3 OSO menu includes the following function. CONTRAST, BRIGHTNESS, HAV SIZE, HAV POSITION, V. PINCUSHION, TRAPEZOID, PARALLELOGRAM, COLOR SELECT, USER COLOR, VIDEO INPUT LEVEL, DISPLAY FRE-CUEVCY, RECALL, AUDIO LEVEL, LANGUAGE.
 - # | CONTRAST can be directly controlled with
 - With synd, signal, OSD menu appears by pushing iff key.
 Without synd signal, salt test monu appears by outning iff key.
 - AUGIO LEVEL can be directly controlled with VOL UP/DOWN-key.

2. MECHANICAL SPECIFICATIONS

... refer to the attached drawing

2.1 Dimensions

Height: 115.1 in. (385 mm)
Weth: (14.7 in. (374 mm)
Depth: 118.0 in. (407 mm)
3.0 Net Weight: (15.0 kg (33.0 lbs))

3. CONNECTORS

3.1 Signal commeditor

Vidao signal 1Spin Mini D-Sub
Lino input RCA Type pia jack
Mic Output 9.35mm Stered Mini jack 1
Exturnal Morephene 9.4 3.5mm Stered Mini jack
Headphone 9.4 3.5mm Stered Mini jack
1.5 connect with sound Card, Please use stareo

** To connect with sound Card. Please use stareo type cable. If you use monoral type cable, Mic cossn't work correctly.*

3.2 AC inlet : CEE 22 typed connector 15P Min. D-Sub. Pin assignment L.RED 2...GREEN 5...GROUND

11...GROUND 12...SOA 13...H.SYNC.

3...BLUE 4...GROUND 5...GROUND 8...GROUND 9....- (OPNN) 18...GROUND

MUNSYNO(VOLK)

4. CRT SPECIFICATIONS

Part No.	M35KPC000X	
yoe	15", 90" 29 & , in-line gun	
Dot Piten	0.27 mm	
Prespher	R. G. R Short Persistence	
GluE	TINT	
Face	New AGRAS Coating	
Total Frans- mission	53.5%	

5. ELECTRICAL SPECIFICATIONS

5.1 STANDARDS CONDITIONS...EXCEPT SPECIAL ITEMS

44.000				
Display image	Groen, full "H" characters with a border line, (7× 9 dots) Video Signal: 100% duty			
Video signal levol;	8.7 Vpp			
Contrast, Brightness	Contrast: Max., Brightness: Center (50% poim)			
Ambient - Temperature	20= 5°C (58± 9°F)			
input Voltage	AC 120 V, 50 Hz			
Terrestrial magnetism	Vertical field: -M: 50 uT ,-E: -40 : A			
Viewing direction	Parallel to the CRT axis			
Measurements	After an initial warming up time of more than 30 minutes			
Ambient light	200 = 50 lux			
Display mode	1024 × 768 75Hz			

5.2 POWER SUPPLY...Commercial power source

hout voltage	AC 90 - 254 V
Power frequency	50/60 Hz ± 3 Hz
Input current	2.0 A (at AC 100V)
larush current (at 201)	C) 40A0-p
Power consumption	120W (Typ.)

TIMING CHART

			PRESET		RESERVATION
		MODE-58	MODE-57	MODE-43	MODE-2
		640 X 490 at 75-tz	600 X 600 at 76Hz	1024 N 768 at 75Hz	VGA480 at 70Hz
T)	OT CLOCK	31.500 MHz	49.500 WHz	78.750 MHz	25.175 MHz
	1H	37.50 KHz	46.88 KHz	50.02 KHz	31,47 KHz
H	A-Period	25.667 us (840 dots)	21333 us (1056 dots)	16.660 us (1312 dots)	31,778 us (800 dots)
0	9-Blanking	6.349 us (200 dots)	5.172 us (256 dets)	3.657 us (288 dots)	6.356 us (160 dots)
2	C-Sync width	2.032 us (64 dats)	1.616 us (60 dats)	1.219 us (95 dots)	3.813 us (95 dols)
I	D-Back porch	3.810 us (120 dots)	3.232 us (150 dots)	2.235 us (176 dots)	1907 us (48 dots)
Z	E-Active time	20.317 us (640 dots)	16.162 us (200 dots)	13.003 us (1024 dots)	25.423 us (540 dots
	F-Front porch	0.508 us (16 dots)	0.323 us (16 dots)	0.203 us (16 dots)	0.635 us (15 dots)
-	fV	75 00 Hz	75.00 Hz	75.03 Hz	70.08 Hz
	A-Pariod	13 333 ms (500 lines)	13.333 ms (625 lines)	13.325 ms (800 lines)	14.268 ms (449 lines
V	B Blanking	0.533 ms (20 fnes)	0.533 ms (25 lines)	0.533 ms (32 lines)	1.557 ms (49 lines)
E	C-Sync width	0.050 ms (3 lines)	0.064 ms (3 lines)	0.050 ms (3 (nes)	0.064 ms (2 lines)
R	D-Back porch	0.427 ms (16 lines)	0.448 ms (21 lines)	0.466 ms (28 linas)	1 112 ms (35 lines)
T	E-Active time	12.800 ms (480 lines)	12,800 ms (600 lines)	12.795 ms (768 linus)	12.711 ms (400 lines
	F-Front porch	0.027 ms (1 nes)	0.021 ms (1 lines)	0.017 ms (1 lines)	0.361 ms (12 lines)
Sy	ne polarity (H/V)	Negative/Negative	Positive Fostive	PosniverPositive	Negative/Positive

		RESER	VATION	
The Particular Street of the Particular Street	MODE-3	MODE-9	MODE-12	MODE-15
THE RESTREE THE PARTY OF THE PA	VGA480 at 60Hz	2HC8 is 008 × 008	1024 × 768 at 60Hz	1280 × 1024 81 60Hz
DOT CLOCK	25.175 MHz	40,000 MHz	55.000 MHz	109.497 MHz
14	3147 KHz	37.88 KHz	48.36 KHz	83.73 KHz
A-Pariod	31.778 us (800 dots)	26.400 us (1056 cots)	20.577 us (1344 cots)	15.590 us (1718 dots)
B-Blanking	8.355 us (160 dats)	6.400 us (255 dots)	4.923 us (320 dots)	4,000 us (438 dots)
C-Sync width	3.813 bs (96 dots)	3.200 us (128 dats)	2.092 us (136 dats)	1.420 us (156 dots)
D-Back perch	1,907 us (48 dats)	2,200 us (53 dots)	2.462 us (160 dots)	2.174 us (238 dots)
E-Active time	25 423 us (640 dots)	20,000 us (800 dols)	15.754 us (1024 dots)	11.690 us (1250 dots
F-Front perch	0.536 us (15 dots)	1,000 us (40 dots)	0.369 us (24 dots)	0.402 bs (44 dots)
TV	59.94 Hz	60.32 Hz	50.004 Hz	60.00 Hz
A-Period	16.584 ms (525 lines)	16.579 ms (628 Fres)	16.666 ms (806 lines)	16.663 ms (1062 lines
B-Blanking	1,430 ms (.45 lines)	0.739 ms (29 lines)	0.786 ms (38 lines)	0.596 ms (38 lines)
P. China saldin	0.084 ms (2 knos)	0.106 ms (4 lines)	0.124 ms (6 lines)	0.047 ms (3 linas)
D-Back perch	1.049 ms (33 lines)	0.507 ms (23 lines)	0.600 ms (29 lines)	0.502 ms (32 lines)
E Activo time	15.254 ms (480 lines)	15.540 ms (600 mes)	1 15,880 ms (768 lines)	15.067 ms (1024 lines
F-Frent parch	0.318 ms (10 lines)	0.026 ms (11mps)	0.062 ms (3 lines)	0.047 ms (3 lines)
Sync polarity (H/V)	The state of the s	Positiva Positive	Negative/Negative	Negative/Negative

		RESERVATION					
		-1	-2	-3	-4		
T	DOT CLOCK	20 800 MHz	40.250 MHz	64 040 MHz	93,430 MHz		
-	184	29.50 KHz	39.002KHz	53.997KH:	69,985KHz		
H	A-Foriad	33.894 us (766 dots)	25 640 us (1032 dots)	18.520 us (1186 dots)	14,298 us (1335 cets)		
0	B-Blanking	5 400 ns (122 dots)	5.140 us (207 dots)	3,900 us (250 dats)	2.900 us (272 dots)		
R		4,1'5 us (93 dets)	2.832 us (1"4 dots)	1.718 us (110 dots)	1,092 us (102 data)		
1 2	D-Back parch	1283 us (29 dots)	2.311 us (93 dots)	2.188 us (140 dots)	1.820 us (170 dots)		
	E-Active time	27.876 us (650 dats)	19 901 us (804 dots)	14.007 us (897 dots)	10.950 us (1024 dats)		
	F-Front porum	0.820 us 14 dots)	0.600 us (24 dats)	0.600 us (38 dots)	0.410 (/s (39 cots)		
	ITV	48.65 Hz	77.079Hz	105.053 Hz	165,059 Fg		
	A-Penad	20,815 ms (514 lines)	12.974 ms (506 lines)	9.519 ms (514 lines)	6.058 ms (424 fines)		
4	8-8 anking	0.914 ms (24 lines)	0.615 ms (24 fnes)	0.389 ms (211nes)	0,386 ms (27 lines)		
日の日	C Syna width	0.102 ms (3 taes)	0.103 ms (8 lines)	(0.037 ms (2 (mas)	0.043 ms (3 lines)		
	D-Back porch	2.712 Hts (21 less)	0.513 ms (20 Enes)	0.352 ms (19 lings)	0.343 ms (24 lines)		
	E-Active time	19 809 ms (587 fines)	12 239 ms (477 lines)	4.980 ms (498 fines)	5.601 ms (392 lines)		
	F-Front porch	0.102 ms (3 (pos)	0.128 ms (5 ines)	0.093 ms (5 (nes)	0.071 ms (\$ lines)		
5.	no palenty (H.V)	Necetive Negative	Positive Positive	Negative/Negative	NegativaNegative		

5.4 Acceptable timing

 If your timing is within the following specification, this CRT display can automatically function with a carrain size and position.

Horizontal: Sync fraquency: 30.0 - 69.0 kHz

Blanking Time:≥ 4.0 uS Back Proch;≥ 1.25 uS Front Proch:≤ Back Proch Sync Width:≥ 1.2 uS

Vertical Sync frequency: 50.0 = 160.0 Hz
Blanking Timer® 0.5 mS
Back Proch:≥ 0.4 mS
Sync Width:≥ 0.045 mS

 In case of size and/or position is not appropriate, please adjust it as you like through OSD mens, and if you want to keep it (size and position), please ; ish the key for menory.

If ease notice, however, that there is the case you can not get the size and/or position you want. (for example Display Time is too short tike MAC-II (8-32 × 824) timing, then you can't get bigger size of the image.)

 The CRT adopted in this CRT display is designed to make the maire phanomenon at suitable size for typical display modes. However, there might be a display format among many formats, in which the moire phenomenon appears on this display. In such case, please adjust the height and/or width and/or moire disappears.

5.5 Signs, level and input Impedance.

5.5.1 Video signal level

This CRT display is adjusted at the factory using 0.7 Vp.o Visco Signal, Stack level is 0V.

B.E.E. Sync. Since Lievel

- · H/V Squarate, H/V Mixed: TTL level
- Sync on Green: 0.286 Vpp

5.8.8 Audio Signat level

Missimum audio input level is 2 0Vrms.

(III tk.hb., s newayer to present signal saturation of pre-smoother stage :

Note: This QFF display is designed that the Spino microphony on mage is not visible less than 0.5Vrms audio mout level. If the sound microphony appears, please reduce audio disput level by Audio Volume Key.

5.9.4 Input mandance

- Video mout 75.17
- Sync mouto≥ 1kQ

5.6 Display performance (for preset timing)

5.6.1 Display area

a) 3 Pheset mode

540 Y 450, 800 K 500 / WIDTH 1800 mm ±5 mm 1024 × 788 NSISHT = 195 mm ±5 mm

of 5 Reservation mode

\$40 X 450, 540 X 480, [WIDTH: 260 mm ± 7 mm 829 X 500, 1024 X 768 THEIGHT: 195 mm ± 7 mm 1024 X 1280 [WIDTH: 244 mm± 5 mm HEIGHT: 195 mm± 5 mm

5.5.2 Centering

3 Preset mozo | A-B | ≤ 5 mm | C-D | ≤ 5 mm

5.5.3 Distortion

a) Trapezoio, Parallerogram & Rotation

a . | b ≤ 2.5 mm (factory preset) a . | b ≤ 1.5 mm (user adjustable)

is is 1.5 mm (factory preset)

b) Pincush on and Barrel

