EE6204

Decision Making under Certainty

Example: car purchasing decision problem

- · decision alternatives: 'Accord, Souturn, Cavalier
- · criteria: 'price. 2 MPG. 3 comfort. 4 style

after verbal judgment & numerical rating:

	price	MPG	comfort	style	
price	1	3	2	2	
MPG		1	4	4	
Comfort		4	1	1/2	
Style	之	4	2	1	Other to the
Sum	2.333	12	5.25	3.75	D年列村加

normalized

	price	MPG	comfort	style	priority	
			0381			②每个element 跨以到Sum
MPG			0.048			③每行作平均
			0.190	0.133	0.218	④ 均值×每列,相加
Style			0.381	0.267	0.299	⑤和除以物值

Consistency: 1 0.398
$$\begin{bmatrix} 1/3 \\ 1/2 \end{bmatrix}$$
 + 0.085 $\begin{bmatrix} 3 \\ 1/4 \end{bmatrix}$ + 0.218 $\begin{bmatrix} 2/4 \\ 1/4 \end{bmatrix}$ + 0.299 $\begin{bmatrix} 2/114 \\ 1/2 \end{bmatrix}$ = $\begin{bmatrix} 1.687 \\ 0.347 \\ 0.907 \end{bmatrix}$; 12 price: 1.687 ÷ 0.398 = 4.239 $\begin{bmatrix} 2/114 \\ 1/2 \end{bmatrix}$ MpG: 0.347 ÷ 0.085 = 4.082 $\begin{bmatrix} 0.347 \\ 0.274 \end{bmatrix}$ Comfort: 0.907 ÷ 0.218 = 4.161 $\begin{bmatrix} 0.274 \\ 0.299 \end{bmatrix}$ Style: 1.274 ÷ 0.299 = 4.261

$$\Theta CI = \frac{\lambda_{max} - n}{n-1} = \frac{4.186 - 4}{4-1} = 0.062 \quad (consistency index)$$

(a)
$$CR = \frac{CI}{RI} = \frac{0.062}{0.90} = 0.0689 < 0.1$$

atten	pairmise	companison	for each	alternatives:
-------	----------	------------	----------	---------------

\.	and the second	A	S	C	
· price;	A	1	1/3	1/4	
	S	3	1	1/2	
D末Sum	C	4	2	1	
	Sum	8	3.33	1.75	

	A	S	C	prionty
A	0.125	0.1	0.143	0.123
	0.375	0.3	0.286	0.320
	0.5	0.6	0.572	0.557
			2	FTelemen
			P	斧以らい

	A	S	C	priority
A	0.091	0.059	0.111	0.087
S	0.364	0.235	0.222	0.274
C	0.545	0706	0.667	0.087

	A	S	C	0.593 0.341 0.196
A	0.615	0.632	0.535	0.593
S	0.308	0-316	04	0.341
C	0.077	0-052	0-067	0.196

_	A	S	C	priority
A	0.235	0.226	0.}}}	0.265
S	0.706	0.677	0.583	0.655
C	0.059	0-097	0.083	priority 0.≥65 0.655 0.080

	price	MPG	comfort	Style	
Accord	0.123	0.087	0.593	0265	
Saturn	0.320	0.274	0.341	0.655	
Cavalier	0.557	0.659	0.196	0.080	

=
$$\begin{bmatrix} 0.265 \\ 0.421 \\ 0.343 \end{bmatrix} \rightarrow Accord = 0.265$$
$$\Rightarrow Satum = 0.421 \lor Cavalier = 0.343$$

with equality & inequality:

min.
$$2 = -x_1(30-x_1) - x_2(50-2x_2) + 3x_1 + 5x_2 + 10x_3$$

S.t.
$$X_1 + X_2 - X_3 \le 0$$

 $X_3 \le 17.25$

$$L = -30x_1 + x_1^2 - 50x_2 + 2x_2^2 + 3x_1 + 5x_2 + 10x_3 + \mu_1(x_1 + x_2 - x_3) + \mu_2(x_5 - 17.25)$$

min.
$$f(x) = (x_1 - 1)^2 + x_2 - 2$$

S.t.
$$h(x) = -x_1 + x_2 - 1 = 0$$

 $g(x) = x_1 + x_2 - 2 = 0$

$$L = (X_1 - 1)^{2} + X_2 - 2 + \lambda (-X_1 + X_2 - 1) + \mu (X_1 + X_2 - 2)$$

$$\frac{\partial x_1}{\partial L} = 2x_1 - 2 - \lambda + M = 0,$$

$$\frac{\partial L}{\partial X_1} = 1 + \lambda + \mu = 0$$

$$\frac{\partial L}{\partial \lambda} = -\chi_1 + \chi_2 - |z| = 0$$

$$\frac{\partial}{\partial x} = -x_1 + x_2 - |x - 0|, \qquad (3)$$

$$g(x) = x_1 + x_2 - 2 \le 0$$
,

$$\mu_{g(x)} = \mu_{(x_1 + x_2 - z)} = 0.$$
 §

$$\nabla h^{T} Y = [-1, 1][y_{1}] = -y_{1} + y_{2} = 0$$

$$Y^{T} \nabla_{y} L Y = [y_{1} y_{1}] \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} y_{1} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{1} \end{bmatrix}$$

$$= [2y_{1} & 0] \begin{bmatrix} y_{1} \\ y_{1} \end{bmatrix} = 2y_{1}^{2} > 0$$

(2)

(4)

(6)

$$f(\alpha x_1 + (1-\alpha)x_2) \leq \alpha f(x_1) + (1-\alpha)f(x_2)$$

₩ H 正定/半正定

Lagrange multipliers:

max.
$$f = -2x_1^2 - x_1^2 + x_1x_1 + 8x_1 + 3x_1$$

S.t. $3x_1 + x_2 = 10$

Standardized:

min.
$$f = 2x_1^2 + x_2^2 - x_1 x_2 - 8x_1 - 5x_2$$

S.t. $3x_1 + x_2 = 10$

$$L = J + \lambda h$$

$$= 2x_1^2 + x_2^2 - x_1 x_2 - 8x_1 - 3x_2 + \lambda (3x_1 + x_2)$$

$$\frac{\partial L}{\partial x_1} = 4x_1 - x_2 - 8 + 3\lambda = 0$$
, 0

$$-7x_1+7x_2-1=0$$
.

$$x_1 = \frac{69}{28}$$
, $x_2 = \frac{73}{28}$. $\lambda = \frac{1}{4}$

is [69 , 73] the minimum point?

$$\nabla h(x) = 13 \quad ||y_1| = 3y_1 + y_2 = 0.$$

$$\Delta_{xx}^{xx} \Gamma = \begin{bmatrix} \gamma_{5} \Gamma / 3 X^{5} \gamma X^{7} & \gamma_{5} \Gamma / 3 X^{7} \\ \gamma_{5} \Gamma / 3 X^{7} & \gamma_{5} \Gamma / 3 X^{7} \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 4 & -1 \end{bmatrix}$$

$$Y^{T} \nabla_{y_{1}} L Y = [y_{1}, y_{1}] \begin{bmatrix} 4 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{1} \end{bmatrix}$$

$$= [4y_{1} - y_{1}, y_{1} - y_{1} + 2y_{1}] \begin{bmatrix} y_{1} \\ y_{1} \end{bmatrix}$$

$$= 4y_{1}^{2} - y_{1}y_{1} - y_{1}y_{1} + 2y_{1}^{2}$$

Fibonacci search:

$$f(x) = \chi(5\pi - \chi)$$
, $\chi \in [0, 20]$, $\xi = 1$
 $0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0$
 $F = \{1, 1, 2, 3, 5, 8, 13, 21, 34, \dots \}$

$$b-a=20-0=20$$
. $F_7=21>20$, $E'=\frac{b-a}{F_N}=\frac{20}{21}=a9524$.

$$f(x_1) = 12.38(5\pi - 12.38) = 41.20$$

$$F_{N-1} \cdot E' = F_{5} \times 0.9524 = 7.619$$
.
 $\times 3 = 12.38 - 7.619 = 4761$
 $f(x_{5}) = 4761(5\pi - 4761) = 52.12$.

Fn-1. E'= F4x0/524= 5x0/524 = 4762. X4 = X3+4762 = 9.523

Fr-1. E' = F3 x 0.9524 = 3x0.9524 = 2.857. X5 = 9.523 - 2.857 = 6666.

Golden-section Search:

$$T0, 12.361$$
, $L = 12.36 - 0 = 12.36$
 $X_5 = 12.36 - L \times 0.618 = 4.722$,
 $T(X_5) = 51.88$.

$$74 = 47,2 + L \times a618 = 9.442$$

 $f(x4) = 59.16$

(在 X6 左也) [6.525, 8.328], L=1,801 isx

$$x_7 = 8.328 - 2 \times 0.618 = 7.214$$

 $f(x_7) = 61.28$

Newton's method:

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

Stop when | Xn+1-Xn | < 10-5

$$f'(x) = 2x - \frac{54}{x^2}, f''(x) = 2 + 108 \frac{1}{x^2}.$$

$$x_1 = x_0 - \frac{f'(x_0)}{f''(x_0)} = 2 - \frac{4 - 54/4}{2 + 108/8} = 2.613.$$

Multivariable optimization:

$$f(x_1, x_2) = x_1^3 + 2x_1x_2 + x_2^3$$

$$\nabla f = \begin{bmatrix} \partial f / \partial x_1 \\ \partial f / \partial x_2 \end{bmatrix} = \begin{bmatrix} 3x_1^2 + 2x_2 \\ 2x_1 + 2x_2 \end{bmatrix}.$$

$$\forall f = H = \begin{bmatrix} 6x_1 & 2 \\ 2 & 2 \end{bmatrix}.$$

$$X_{n+1} = X_n - \frac{\nabla f(X_n)}{\nabla^2 f(X_n)}$$

max.
$$Z = -(x_1 - \sqrt{5})^2 - (x_2 - \pi)^2 - 10$$

$$\nabla_{T}^{+} = \begin{bmatrix} -2(\lambda_{1} - \sqrt{\zeta}) \\ -2(\lambda_{2} - \pi) \end{bmatrix}, \quad H = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}.$$

$$H^{-1} = \begin{bmatrix} -0.5 & 0 \\ 0 & -0.5 \end{bmatrix}, \quad \nabla f(X_0) = \begin{bmatrix} -8.722 \\ -5.488 \end{bmatrix}.$$

$$X_1 = X_0 - \frac{\nabla f(X_0)}{H} = \begin{bmatrix} 6.597 \\ 5.891 \end{bmatrix} - \begin{bmatrix} -0.5 & 0 \\ 0 - 0.5 \end{bmatrix} \begin{bmatrix} -8.712 \\ -5.499 \end{bmatrix}$$

$$\nabla f(X_1) = \begin{bmatrix} -\alpha \cos \alpha \\ 0.0008 \end{bmatrix} \cdot X_2 = X_1 - H' \nabla f(X_1)$$

Q1: decision hierarchy select the best job overall goal location training criteria Salary advancement Job A job A JODA jobA Job B JOB B job B decision alternatives JOBB Job C job C job C JOBC 2) element Fith Sum ③年行作平均 Q2: Salanj adv loc tra supriority adv loc tra 1/2 0.077 0.085 0.059 0.069 0.0725 Salary 117 1/3 3 a 538 a 597 0.588 a 621 0.586 adv 1 0.154 0.119 0.118 0.103 0.1235 100 1/2 115 0.231 0.199 0.235 0.207 0.218 tra 1/3 D Sum 1.676 8.5 4.833 $|a_0| \ge 5 \begin{bmatrix} 1 \\ 7 \\ 2 \\ 3 \end{bmatrix} + |a_5| = \begin{bmatrix} 1/7 \\ 1 \\ 1/5 \\ 1/3 \end{bmatrix} + |a_1| \ge 5 \begin{bmatrix} 1/2 \\ 5 \\ 1 \\ 2 \end{bmatrix} + |a_2| = \begin{bmatrix} 0.291 \\ 2.365 \\ 0.495 \\ 0.878 \end{bmatrix}$ Salary: 0.291 + 0.0725 = 4.014, Amax= 4x(4.014+4.036+4.008 +4027) = 4021 adv: 2,365 + 0,586 = 4,036, 10C: 0.495 ÷ 0.1235 = 4.008, $CI = \frac{\lambda_{max} - n}{n - 1} = \frac{4.021 - 4}{4 - 1} = 0.00$ tra: 0878 + 02/8 = 4.027. CR = CI = 0007 = 0.0078 < 0.1 Q3: i, the consistency is acceptable. a 0909 a 6572 02748 0.2213 0.2063 [0.0725 0.586 0.12/5 02/8] T 0.0934 0.7147 a 4545 a 0682

= 0.2530 | ... job B should be selected.

amival rate: A

service rate: M

$$\bigcirc \xrightarrow{\lambda} \bigcirc$$

rate balance egn: $\pi_0 \lambda = \pi_1 \mu$, $\pi_0 + \pi_1 = 1$.

$$= > \pi_1 = 1 - \pi_0, \quad \pi_0 \wedge = (1 - \pi_0) \mu = \mu - \pi_0 \mu, \quad (\lambda + \mu) \pi_0 = \mu,$$

$$\Rightarrow$$
 $\pi_0 = \frac{M}{M+N}$, $\pi_1 = \frac{N}{M+N}$

(b) (i)
$$V: \rho = \frac{\lambda_1}{M} = \frac{1}{4}, \quad \pi_0 = 1 - \rho = \frac{3}{4}.$$

$$C: \rho = \frac{\lambda_2}{M} = \frac{3}{4}, \quad \pi_0 = 1 - \rho = \frac{1}{4}.$$

$$M: \rho = \frac{\lambda_3}{M} = \frac{1}{2}, \quad \pi_0 = 1 - \rho = \frac{1}{2}.$$

(ii) V:
$$Q = \frac{\rho^2}{1-\rho} = \frac{\frac{1}{16}}{\frac{3}{4}} = \frac{1}{12}$$

$$C = Q = \frac{\frac{9}{16}}{\frac{1}{4}} = \frac{9}{4}.$$

$$M: Q = \frac{4}{\frac{1}{2}} = \frac{1}{2}$$

(iii)
$$V : D = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{1}{4 \times 3} = \frac{1}{12}$$

$$C : D = \frac{3}{4 \times 1} = \frac{3}{4}$$

$$M : D = \frac{2}{21 \times 2} = \frac{1}{4}$$