« APPlications of intervationin

$$Y = \chi^{2} + 3$$
 : $Y = 2\chi$
 $Y_{1} = \chi^{2} - 17$: $Y_{1} = 2\chi$

$$V = \frac{ds}{dt}$$
 $Q = f = \frac{dV}{dt} = \frac{d^2s}{dt^2}$

$$\frac{d7}{dx} = \frac{df(x)}{dx} = -2x$$

$$Y = \int (x) = -2 \int x dx = -x^2 + C$$

at [1,1] $I = -1 + C$: $C = 2$

$$\frac{dY}{dx} = \frac{df(x)}{dx} = 4x$$

$$4 = \int_{(x)} = 4 \int_{(x)} x \, dx = 2 \chi^2 + C$$

at (1,5)

$$5 = 2 \times 1 + C$$
 : $C = 3 \Rightarrow 1 = 2 \times 2 + 3$

$$\frac{dx}{dt} = \frac{dx}{dt(x)} = 1x$$

$$Y = \int (x) = \int \sqrt{x} dx = \int x^{\frac{1}{2}} dx = \frac{2}{3}x^{\frac{3}{2}} + C$$
of (9,18)

$$aT (9,18)$$

$$18 = \frac{2}{3} \times 9^{\frac{3}{2}} + C \qquad \Rightarrow 1 = \frac{2}{3} \times \frac{3}{2}$$

$$[x_{ij}] m = \frac{\chi}{\gamma}$$
, $(4,2)$

$$\frac{dx}{dx} = \frac{df(x)}{dx} = \frac{1}{x}$$

$$\frac{y^2}{2} = \frac{\chi^2}{2} + C$$

$$\frac{4}{2} = \frac{16}{2} + C = C = -6 \Rightarrow Y^2 = X^2 - 12 \left[2 \text{ disjo} \right]$$

$$[E \times S] m = \frac{X}{1 + X^2}, (3.5)$$

$$\frac{dx}{dx} = \frac{dx}{dt(x)} = \frac{1+X_5}{X}$$

$$\frac{1}{2} = \frac{1}{2} \ln \left(1 + \chi^2 \right) + C = \frac{1}{2} \ln \left(1 + \chi^2 \right)$$

التاريخ: / /

الموضوع:

Partical Moves along --- (0,0) t=0

$$V = 4t$$
, $(0,4)$
 $V = 6T + 3$, $(1,3)$