Topics in Statistical theory

Could outlied

1. Introduction

2. Density Estimation

3. Rogargion Problems

4. Minimox lower bounds

5. Chesification problems

6. ?

Introduction

Parametric vs nor parametric

A statistical woodel specifies a family
of possible data generating mechanisms.

For example

1) Let X....X. ii T(m, θ) where m is hown, and θ ∈ Θ = (0, 0)
is an unknown parameter

2) Linear model: $Y_i = x + \beta x_i + \xi_i$ i = 1, ..., n, where $x_1, ..., x_k$ are human and ξ_i ich $N(0, \sigma^2)$. Here the unleason parameter is 3-dimensional $\theta = (x, \beta, \sigma^2) \in \mathcal{D} \times \mathbb{R} \times (0, \infty)$

If the parameter speak θ is finite dumentional, we appeal of a parametric model. Often in much cost, we are use MLE $\hat{\theta}_n$ to estimate the θ , and have $\hat{\theta}_n - \theta = O_p(n^{-1/2})$.

This note amount that the model contains the true date generating process. If they is not the ease, our inferences may be my leading.

We very instead use a non-parametric worder. Some examples:

3) Let X.... Xn = F. when Fin on arbitrary distribution function

4) Let x, ... x is f, when fix a twice differentiable density function

5) Shape contrained extination

Y: = $v_n(x:) + z:$, i = 1, ..., n, where $x_1, ..., x_N$ known, E(g:) = 0, $V_{n, n}(g:) = \sigma^2$ and $w_i v_i$ a nonotona increasing function. Such ∞ - Limon ignal models one less unlaunded to anotother wishperitiention, typically however we pay or price in ferms of the rate of consulty once, $g_{n, n}(g) = 0$, $g_{n, n}(g) = 0$, in example 4.

Estimating an artifacy distribution

Let X... X. In F. The empirical distribution

function, for is given beg $\hat{F}_{n}(x) := \frac{1}{n} \sum_{i=1}^{n} 11_{|x_{i}| \leq x} |f_{n}(x)|^{2}$

Theoren (Ghivenho - Canlalli , 1933)

(the Findanahl Theorem of Statistics)

Sup | Fu(x) - F(x) > 0 ara.5.

Proof Given $\xi > 0$, choose a partition $-\alpha = x, \ \angle x \in \mathbb{Z}... \ \angle x = \infty \text{ . much that}$ $F(x;) - F(x;-i) \leq \xi \text{ where}$ $F(x) := \lim_{y \to \infty} F(y)$ $y^{\uparrow} \times y^{\uparrow}$

Note that any point at which F jumps by more than E, must be in the postition.

Now by the SLLN, there exists an event Ω_0 with $P(\Omega_0) = 1$, much that for all $0 \in \Omega_0$, F no = no(ω) $\in \mathbb{N}$ with the property that for all $n \ge n_0$ $|F_n(x_i) - F(x_i)| \le E$ and $|F_n(x_i)| - F(x_i)| \le E$ and $|F_n(x_i)| - F(x_i)| \le E$

Fix $x \in \mathbb{R}$ and find i much that $\text{that } x \in [x_{i-1}, x_i)$. For $w \in \mathbb{N}_0$ $n \ge n_0(w)$

 $\hat{F}_{n}(x) - F(x) \le \hat{F}_{n}(x_{i}^{-}) - F(x_{i-1})$ $\le \hat{F}_{n}(x_{i}^{-}) - F(x_{i}^{-})$ $+ F(x_{i}^{-}) - F(x_{i-1})$ $\le \xi + \xi$

In the same way can show $F(x) - \hat{F}_n(x) \le 2\varepsilon$ for all $n \ge n_0(\omega)$

In fact, much more is true.

Theorem 2

Let $x_1 ... x_n \stackrel{\text{ind}}{\sim} F$. Then for all $\varepsilon > 0$ $P\left(\underset{x \in \mathbb{R}}{\text{Sup}} |\hat{F}_n(x) - F(x)| > \varepsilon \right) \leq 2e^{-2n\varepsilon^2}$