Written Exercises

For each right triangle shown, verify that $\tan R = \frac{\sin R}{\cos R}$.

1.

4–6. Use the right triangles in Exercises 1–3 to verify that $(\sin R)^2 + (\cos R)^2 = 1.$

 $\triangle ABC$ is a 30°-60°-90° triangle.

- 7. Find AB and AC.
- 8. Verify that $\tan 60^\circ = \frac{\sin 60^\circ}{\cos 60^\circ}$.
- **9.** Verify that $(\sin 30^\circ)^2 + (\cos 30^\circ)^2 = 1$.

 $\triangle RST$ is an isosceles right triangle with a leg of length 8.

10. Sketch the triangle. Label the length of each side and the measure of each angle.

11. Verify that
$$\tan 45^\circ = \frac{\sin 45^\circ}{\cos 45^\circ}$$
.

12. Verify that
$$(\sin 45^\circ)^2 + (\cos 45^\circ)^2 = 1$$
.

Use the table of trigonometric ratios on page 311 or a calculator to verify each statement.

13.
$$(\sin 35^\circ)^2 + (\cos 35^\circ)^2 = 1$$
 14. $\tan 80^\circ = \frac{\sin 80^\circ}{\cos 80^\circ}$

14.
$$\tan 80^\circ = \frac{\sin 80^\circ}{\cos 80^\circ}$$

Use the relationships among the trigonometric ratios to find the values of the other two ratios. You may assume that all the trigonometric ratios are positive.

15.
$$\sin A = \frac{21}{29}$$

16.
$$\cos Y = \frac{1}{3}$$

17.
$$\tan D = \frac{7}{24}$$

Use the diagram of $\triangle ABC$ to prove each statement.

18.
$$\sin A = \cos B$$

19.
$$(\tan A)^2 + 1 = \frac{1}{(\cos A)^2}$$

