Existence and Uniqueness of Minimizers

Tuesday, February 9, 2021 10:40 PM

ie., fancter versions of "the infimum of a continuous function over a compact set is achieved"

Existence

Def
$$f: \mathbb{R}^n \to [-\infty, \infty]$$
 is coercive if $\lim_{||x|| \to \infty} f(x) = \infty$ (i.e., if $g_{nons}!$)

Fact: f coercire iff all sub-level sets $\{x: f(x) \leq \alpha\}$ are bounded

Fact: If $f \in \Gamma_0(\mathbb{R}^n)$, f coercive iff $\exists x \in \{x : f(x) \neq \alpha\}$ That the in any $\forall l$ is non-empty and bounded

Convex + coercine need not be coercine

Main result Let C be closed, convex, $f \in \Gamma_0(\mathbb{R}^n)$, $C \cap dom(f) \neq \emptyset$ then min f(x) exists (ie., \exists a minimize x^*) if either \bigcirc f is coercive or \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc is bounded.

Uniquene 33

Main result Let C be convex, f is proper and convex, C ndom (f) & &,

then there is at most one minimizer (uniqueness) of

min f(x) if either

(i) f is strictly convex

(eg., C = IR^n is ok)

or

(2) C n argmin f = &

and C is strictly commex

A set C is strictly convex if there are no line segments on its boundary, ie.,

Symmay
$$f \in P_0(\mathbb{R}^n)$$
, f strictly convex \Rightarrow at most 1 minimize f coeraine \Rightarrow at least 1 minimizer

If f is strongly convex,
$$\Rightarrow$$
 it's also strictly convex
 $\Rightarrow f(y) \Rightarrow f(x) + \langle \overline{V}f(x), y - x \rangle + |M_2||y - x||^2$
i.e., choose $x = 0$, $||y|| \rightarrow \infty$
 $\Rightarrow f(y) \Rightarrow \infty$...
So coercive

convex functions are nice, strongly convex functions are very nice