### Introducing Bayesian Data Analysis Using R

Mark Andrews Psychology Department, Nottingham Trent University

☐ mark.andrews@ntu.ac.uk

♥ @xmjandrews

Thttps://github.com/lawsofthought/notts\_rmeetup-jul2018

July 25, 2018

## Bayesian data analysis

- ▶ Bayesian statistics is an alternative school of statistics to the *classical* or *frequentist* or school.
- ► Classical statistics is defined by concepts like *sampling distributions*, (null) hypothesis significance tests, confidence intervals, etc.
- ► These concepts per se do not exist in Bayesian approaches to statistics (though there are analogous concepts).
- Bayesian statistics arguably originated with a single essay by Reverend Thomas Bayes in 1763, though Bayes's main idea was independently discovered and developed much further by Pierre-Simon Laplace at the end of the 18th century.
- ▶ With the origin of frequentist approaches to statistics in the early 20th century, Bayesian method were sidelined.
- Beginning in the late 20th century, Bayesian methods have regained popularity.

# Bayesian methods: A definition

- Classical and Bayesian approaches to data analysis both begin by positing a probabilistic *generative model* of the data being analysed.
- ► For example, if our data was  $x_1, x_2...x_n$ , we might assume or propose that this data arose from the following process:

$$x_i \sim N(\mu, \sigma^2)$$
, for  $i \in 1...n$ ,

where  $\mu$  and  $\sigma^2$  are the fixed but unknown mean and variance of a Normal distribution.

- ► The fundamental difference between classical and Bayesian methods are that Bayesian methods describes our state of uncertainty about  $\mu$  and  $\sigma^2$  by a probability distribution (known as *priors*).
- In general, all unknown variables in the probabilistic are described by priors.

#### Posterior distributions

► In general, given observed data D and a model Ω, the posterior distribution over the parameters θ of the model is

$$P(\theta|D,\Omega) = \underbrace{\frac{\underset{P(D|\theta)}{\text{Likelihood}} \underset{P(\theta|\Omega)}{\text{Prior}}}{P(D|\theta) P(\theta|\Omega) \ d\theta}}_{\text{Marginal likelihood}}.$$

where the *marginal likelihood* gives the likelihood of the model given the observed data.

- ightharpoonup Given the posterior distribution  $P(\theta|D,\Omega)$ , our aim is often to characterise this distribution in terms of e.g. its mean, variance, etc.
- Likewise, we may aim to calculate *posterior predictive* distributions such as

$$P(x_{new}|D,\Omega) = \int P(x_{new}|\theta,\Omega)P(\theta|D,\Omega) \ d\theta.$$

# Sampling from posterior distributions

- In only rare situations can we determine the characteristics of the posterior distribution, or calculate posterior predictive distributions, in closed form.
- Nowever, in general, if we can draw samples from  $P(\theta|D, \Omega)$  then we can approximate, e.g., the mean of the distribution by

$$\langle \theta \rangle = \int \theta P(\theta|D,\Omega) \approx \frac{1}{N} \sum_{i=1}^{N} \tilde{\theta}_{i},$$

or the posterior predictive distribution by

$$P(x_{new}|D,\Omega) = \int P(x_{new}|\theta,\Omega)P(\theta|D,\Omega) d\theta \approx \frac{1}{N} \sum_{i=1}^{N} P(x_{new}|\tilde{\theta}_{i},\Omega),$$

where

$$\tilde{\theta}_1, \tilde{\theta}_2 \dots \tilde{\theta}_N$$

are samples from  $P(\theta|D,\Omega)$ .

### *Markov Chain Monte Carlo (MCMC)*

- Markov Chain Monte Carlo (MCMC) methods provide with general purpose methods for drawing samples from the posterior distributions of Bayesian models.
- ▶ Until recently the two most widely used MCMC methods were
  - Metropolis Hastings
  - Gibbs sampling
- More recently Hamiltonian Monte Carlo (HMC) has become very popular.

# Probabilistic programming languages

- ► The most general purpose approach to Bayesian data analysis is to use a *probabilistic programming language* like
  - ▶ Bugs
  - Jags
  - ► PyMC
  - ▶ Stan
- In all these case, your work entails defining your probabilistic model, including priors, and then a MCMC sampling algorithm is compiled.

## Using Stan

▶ We define a probabilistic model in Stan as follows:

```
transformed parameters {
  vector[N] mu;
  mu = a + b * x;
model {
  a ~ normal(0, 10);
  b ~ normal(0, 10);
  sigma \sim cauchy(0, 5);
  y ~ normal(mu, sigma);
```

## Call Stan from R

► Here, model\_data is artificial data with N = 50 data points and where the true values of the parameters were:  $\alpha = 0.5$ , b = 2.25,  $\sigma = 1.75$ .

#### Summarize

S <- rstan::summary(M\_stan)
pander::pander(S\$summary)</pre>

Table 1: Table continues below

|        | mean   | se_mean  | sd     | 2.5%   | 25%    | 50%    | 75%    |
|--------|--------|----------|--------|--------|--------|--------|--------|
| a      | 0.6058 | 0.001801 | 0.2436 | 0.1238 | 0.445  | 0.6057 | 0.7656 |
| b      | 2.395  | 0.001959 | 0.259  | 1.885  | 2.223  | 2.395  | 2.569  |
| sigma  | 1.692  | 0.001362 | 0.1808 | 1.387  | 1.563  | 1.675  | 1.803  |
| **lp** | -50.26 | 0.01322  | 1.271  | -53.55 | -50.83 | -49.93 | -49.33 |

|        | 97.5%  | n_eff | Rhat   |
|--------|--------|-------|--------|
| a      | 1.087  | 18282 | 0.9999 |
| b      | 2.903  | 17481 | 1      |
| sigma  | 2.093  | 17621 | 0.9999 |
| **lp** | -48.83 | 9249  | 1      |

### Visualize

rstan::plot(M\_stan)



### Visualize

rstan::stan\_hist(M\_stan)



#### **Conclusions**

- Bayesian methods are vital where you need to build complex probabilistic models.
- ▶ In general, inference is based on MCMC sampling.
- ► Probabilistic modelling language like Stan make this easy and efficient.