MATH 4281 Risk Theory-Ruin and Credibility

Module 2: Ruin Theory (cont.)

Feb 23, 2021

Reinsurance Review

2 Applying Ruin Theory to Reinsurance

Reinsurance Review

Reinsurance definitions review

- Proportional
 - quota share: the proportion is the same for all risks
 - surplus: the proportion can vary from risk to risk
- Non-Proportional
 - (individual) excess of loss: on each individual loss (X_i)
 - stop loss: on the aggregate loss (S)
- Cheap (reinsurance premium is the expected value), or non cheap (reinsurance premium is loaded)

Reinsurance definitions review

- In proportional reinsurance the retained proportion α defines who pays what:
 - the insurer pays $Y = \alpha X$
 - the reinsurer pays $Z = (1 \alpha)X$
- In (individual) excess of loss reinsurance for each individual loss X, the reinsurer pays the excess over a retention (excess point) d
 - the insurer pays $Y = \min(X, d)$
 - the reinsurer pays $Z = (X d)_+$
- These are the examples we will study today.

Applying Ruin Theory to Reinsurance

Why would Ruin theory help?

- Ruin theory gives us a model to study options about reinsurance
- Note that even if $\psi(u)$ can't be calculated, we can still play with the adjustment coefficient R and have qualitative results about $\psi(u)$.
- We can adjust the adjustment coefficient (hence its name..)
 to meet a goal, such as
 - maximize $R \Leftrightarrow \text{minimize } \psi(u)$
 - find the cheapest reinsurance such that $\psi(u)$ is inferior to some level

Assumptions

- Let $0 \le h(x) \le x$ be the amount paid by the reinsurer for a claim with amount x i.e.
 - $h(X) = (1 \alpha)X$ for proportional reinsurance.
 - $h(X) = (X d)_+$ for excess of loss reinsurance.

• Reinsurance is non cheap and that the loading on reinsurance premiums is $\xi > \theta > 0$. So the reinsurance premium say c_h is:

$$c_h = (1 + \xi)\lambda E[h(X)]$$

Assumptions

With reinsurance, the Cramér-Lundberg process becomes

$$U(t) = u + (c - c_h)t - \sum_{i=1}^{N(t)} (X_i - h(X_i)).$$

• With reinsurance, the adjustment coefficient, R_h , is then the non-trivial solution to

$$\lambda \left[m_{X-h(X)}(r) - 1 \right] = (c - c_h)r.$$

Equivalently,

$$\lambda + (c - c_h) r = \lambda \int_0^\infty e^{r[x - h(x)]} p(x) dx.$$

Example 1: Proportional Reinsurance

Suppose claims form a compound Poisson process, with $\lambda=1$ and p(x)=1 for 0 < x < 1. Further premiums are received continuously at the rate of c=1. Find the adjustment coefficient if proportional reinsurance is purchased with $\alpha=0.5$ and with reinsurance loading equal to $\xi=100\%$.

Example 2: Excess of Loss Reinsurance

Consider the Cramér-Lundberg process with $X \sim \exp(1)$, $\theta = 0.25$ and $\xi = 0.4$. There is proportional reinsurance with retention α , i.e. $X - h(X) = \alpha X$. What is the retention α that will maximize R_h ?

Use software to maximize R_h , we have

$$d^* = 0.9632226$$

and

$$R_h^* = 0.3493290,$$

which is much higher (better) than the best we could achieve with proportional reinsurance.

A Theorem

lf

- We are in a Cramér-Lundberg setting
- We are considering two reinsurance treaties, one of which is excess of loss
- Both treaties have same expected payments and same premium loadings

then

 The adjustment coefficient with the excess of loss treaty will always be at least as good (high) as with any other type of reinsurance treaty