Introdução a Deep Learning

Luciano Barbosa

What is Deep Learning?

- Sub-area of Machine Learning
- Not really something new
- Handwriting recognition paper (1998)

What is new?

- New training strategies: able to train deep networks
 - Hinton et al. (2006) presented a new, stacked training method which applies the concept of pre-training
- More data has been available
- Computer infrastructure (hardware and software) has improved- > bigger models

Supervised Learning

- Goal: to infer a function from examples to predict classes on new examples
 - Example of classification tasks: sentiment analysis, image detection, text categorization etc
- Two steps:
 - Training: learn the function
 - Test: apply the function on new examples

Supervised Learning

Training set: instances and labels

Categorical

							*
Training set -		viagra	learning	the	dating	nigeria	spam?
	$\vec{x}_1 = ($	1	0	1	0	0)	$y_1 = 1$
	$\vec{x}_2 = ($	0	1	1	0	0)	$y_2 = -1$
	$\vec{x}_3 = ($	0	0	0	0	1)	$y_3 = 1$
L							•

- Instance represented by its features' vector: x
- Goal: to learn f(x)=y that better predicts y given x
- Label y
 - Categorical -> classification
 - Numerical -> regression

Features

- Very important for good classification results
- Good feature: high correlation with the classification outcome
 - Ex₁: weather prediction: temperature, humidity
 - Ex₂: sentiment analysis: words with polarity (positive/negative)
- Usually human-generated
- The training task becomes optimizing weights of the features for prediction

	viagra	learning	the	dating	nigeria	spam?
$\vec{x}_1 = ($	1	0	1	0	0)	$y_1 = 1$
$\vec{x}_2 = ($	0	1	1	0	0)	$y_2 = -1$
$\vec{x}_3 = ($	0	0	0	0	1)	$y_3 = 1$

Traditional ML vs. Deep Learning

Traditional Machine Learning

Feature Engineering:
Describe your data with features a computer can
understand

Machine Learning: Some hyperparameter tuning

Deep Learning Approach

Getting Domain Expertise

Design / select a suitable network architecture

Optimize architecture & fine-tune parameters

Deep Learning

- Automatically learns good features or representations (instead of feature engineering)
- Multiple levels of representation from raw data
- Usually needs large amounts of data
 - Not necessarily labeled
- For small datasets: hand-designed features can still be included

Basics: Artificial Neuron

Given inputs: $x_1, x_2, x_3, ... \in \mathbb{R}$ and **weights**: $w_1, w_2, w_3, ... \in \mathbb{R}$ and a **bias** value: $b \in \mathbb{R}$

A neuron produces a single output:

$$o_1 = s(\sum_i w_i x_i + b)$$

Features' vector of instance

- Function s: activation function
- The weights and bias values
 - Initialized randomly
 - Learned during training

Activation Function & Non-linearity

- Motivation: linear classifier can not solve some problems
- Example: learning the XOR function
- Goal of activation function: to add non-linearity

Step function scales between 0 and 1

Sigmoid Function scales between 0 and 1

Img-Source: Wikipedia cin.ufpe.br

Hyperbolic tangent scales between -1 and 1

Rectifier:

$$f(x) = \max(0, x)$$

 A unit using the rectifier function is called rectified linear unit (ReLU)

Img-Source: http://datascience.stackexchange.com/questions/5706/what-is-the-dying-relu-problem-in-neural-networks

Feed Forward Neural Networks

- Layers of neurons
- Information flows forward
- First layer: input data
- Last layer: output of the model

Feed Forward Neural Networks

- The hidden layers (L₂, L₃) represent learned non-linear combination of input data
 - Project the input to a (usually) low dimensional space

Assigning initial weights

Img-Source: http://stevenmiller888.github.io/mind-how-to-build-a-neural-network/

cin.ufpe.br

Summing weights in the hidden layer

Applying the activation function in the hidden layer

Summing the weights and applying the activation function in the output layer

Output Layer: Softmax-Classifier

- Multi-class classification
- Given *K* classes (*K* = number of output units), compute the activation *z* for the last layer:

$$z = W_3 l_3 + b_3 \in \mathbb{R}^K$$

Compute the final output y:

$$y_j = \operatorname{softmax}(z)_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$

 y_i can have values between 0 and 1

 y_i sums up to 1 -> it can be interpreted as probability distribution

Long function of vector and matrix operations

$$output = \operatorname{softmax}(b_3 + W_3 \tanh(b_2 + W_2 \tanh(b_1 + W_1 x)))$$

Long function of vector and matrix operations

 $output = \operatorname{softmax}(b_3 + W_3 \tanh(b_2 + W_2 \tanh(b_1 + W_1 x)))$

Long function of vector and matrix operations

- Long function of vector and matrix operations
- Compose linear combinations and activation functions

$$output = \operatorname{softmax}(b_3 + W_3 \tanh(b_2 + W_2 \tanh(b_1 + W_1 x)))$$

Feed-Forward Network for Handwritten Digit Recognition

Hidden Layers: Rules of Thumb

- The number and the size of the hidden layers can have a large impact on the performance
- More hidden layers ⇒ more parameters to learn ⇒ more data you need
- Start with a small number of hidden layers, i.e. with 1
- Increase number of hidden layers stepwise until you find an optimum

Learning the Weights

Training

- Goal: to minimize the error over the training data
- Error: difference between the output of the network and the expected output (true label)
- Mean-squared error:

$$\frac{1}{2}\sum (y_i - o_i)^2$$

where y_i : the expected value of instance i and o the network's output of i

Error Function: Negative log-likelihood

Negative log-likelihood:

$$-\sum_{x \in X} log(P(Y = y^*|x))$$

- P(Y=y*|x): probability of x belonging to the true class y*
- Ex: given the true label of a sentence s is negative
 - The probability of s being negative returned by the network is 0.5
 - Error = $-\log(1/2) = 1$
- Error = 0 if p = 1
- Error increases as p << 0

Example of Error Function

$$E(x, W, b) = -\log(\operatorname{softmax}(b_3 + W_3 \tanh(b_2 + W_2 \tanh(b_1 + W_1 x)))_y)$$

Error Curve

Img source: mathworks.de

Training: Back Propagation

- Tuning parameters (weights and biases) to minimize the error: optimization problem
- Analytical solution doesn't work: huge number of parameters

Img source: mathworks.de

- Gradient descent:
 - The gradient of the error curve points towards a local minima

Training with Back Propagation

- Initialize the weights and biases randomly
- Given the input data, compute the values for the output neurons
- Compare the output to the gold labels compute error function 3.
- Compute the derivative for all tunable parameters (weights and parameters)
- Update the parameters:

$$W^{(i)} := W^{(i)} - \lambda \frac{\partial}{\partial W^{(i)}} E(x, W, b)$$

$$b^{(i)} := b^{(i)} - \lambda \frac{\partial}{\partial b^{(i)}} E(x, W, b)$$

is denoting the learning rate

Training with Back Propagation

- Each iteration of backpropagation is called an epoch
- After each epoch, the error function decreases, converging to a local minima
- Mini-batches:
 - 1. Compute derivatives for few instances
 - Accumulate them
 - 3. Update the parameters based on them

$$W^{(i)} := W^{(i)} - \lambda \frac{\partial}{\partial W^{(i)}} E(x, W, b)$$

$$b^{(i)} := b^{(i)} - \lambda \frac{\partial}{\partial b^{(i)}} E(x, W, b)$$

Back Propagation: Example

Back Propagation: Example

After 1 epoch:

old	new
1.00	1. 0 712
w1: 0.8	w1: 0.712
w2: 0.4	w2: 0.3548
w3: 0.3	w3: 0.2681
w4: 0.2	w4: 0.112
w5: 0.9	w5: 0.8548
w6: 0.5	w6: 0.4681
w7: 0.3	w7: 0.1162
w8: 0.5	w8: 0.329
w9: 0.9	w9: 0.708

Img-Source: http://stevenmiller888.github.io/mind-how-to-build-a-neural-network/

Computation of Gradients

- Computation of the gradient (the derivative of a multi dimensional function) can be cumbersome
 - Billions of computations
- DL frameworks provide us automatic gradient computation
 - We don't need to compute the derivative
 - And we don't need to implement it into our program code

Motivation for Deep Learning

- In theory, feed forward networks with a single hidden layer can compute any function: no need for deep architectures
- However, learning shallow architectures is not always efficient
- Some problems require an exponential number of hidden units

What does a Deep Network can look like?

- Google's Entry for the 2014 ImageNet Challenge
- 5 million parameters 20MB model size

Other

Requirements for Training

- Deal with billions of operations
 - Google had trained some models on up to 16000 cores
- Fast: performance in training time is crucial
- Nearly all operations are matrix operations (multiplications, additions)
 - Optimizing matrix multiplication for speed is hard
- Run on multiple CPUs and on GPUs