Multivariate Analysis Principal Component Analysis

Shaobo Jin

Department of Mathematics

Intended Learning Outcome

Through this chapter, you should be able to

- derive PCA using matrix algebra
- conduct PCA

Motivation

Extract information from data, and achieve dimension reduction as an early step of an analytical process.

- A data set may contain a long list of variables.
- We want to reduce them to a smaller set of summary indices.
- Most of the information in the original set of variables are still preserved.

Task of Principal Component Analysis (PCA)

Rough Task

Let the random vector X $(p \times 1)$ have the covariance matrix $\Sigma \geq 0$. Find linear combinations $Y_i = \boldsymbol{a}_i^T \boldsymbol{X}$ such that

```
\boldsymbol{a}_1 maximizes var (\boldsymbol{a}_1^T\boldsymbol{X}),
\boldsymbol{a}_2 maximizes var (\boldsymbol{a}_2^T\boldsymbol{X}), and cov (\boldsymbol{a}_2^T\boldsymbol{X}, \boldsymbol{a}_1^T\boldsymbol{X}) = 0,
a_3 maximizes var (a_3^T X), and cov (a_3^T X, a_i^T X) = 0, j < 3,
```

 a_p maximizes var $(a_p^T X)$, and cov $(a_p^T X, a_i^T X) = 0$, j < p.

Consider the linear combination $Y_i = \boldsymbol{a}_i^T \boldsymbol{X}$. We have

$$var(Y_i) = \boldsymbol{a}_i^T \boldsymbol{\Sigma} \boldsymbol{a}_i,$$

$$cov(Y_i, Y_k) = \boldsymbol{a}_i^T \boldsymbol{\Sigma} \boldsymbol{a}_k, \quad i \neq k.$$

Consider the new linear combination $Z_i = cY_i = c\boldsymbol{a}_i^T\boldsymbol{X}$, for a constant c. We have

$$\operatorname{var}(Z_i) = c^2 \mathbf{a}_i^T \mathbf{\Sigma} \mathbf{a}_i,$$

$$\operatorname{cov}(Z_i, Z_k) = c^2 \mathbf{a}_i^T \mathbf{\Sigma} \mathbf{a}_k.$$

Hence, we need to set the scale such as $\boldsymbol{a}_i^T \boldsymbol{a}_i = 1$.

Principal Components

Principal components are particular linear combinations of the p random variables $X_1, X_2, ..., X_p$.

- First principal component is the linear combination that maximizes var $(\boldsymbol{a}_1^T \boldsymbol{X})$ subject to $\boldsymbol{a}_1^T \boldsymbol{a}_1 = 1$.
- 2 Second principal component is the linear combination that maximizes var $(\boldsymbol{a}_2^T\boldsymbol{X})$ subject to $\boldsymbol{a}_2^T\boldsymbol{a}_2=1$ and $\operatorname{cov}\left(\boldsymbol{a}_{2}^{T}\boldsymbol{X},\boldsymbol{a}_{1}^{T}\boldsymbol{X}\right)=0$
- ith principal component is the linear combination that maximizes var $(\boldsymbol{a}_i^T \boldsymbol{X})$ subject to $\boldsymbol{a}_i^T \boldsymbol{a}_i = 1$ and $\operatorname{cov}(\boldsymbol{a}_i^T \boldsymbol{X}, \boldsymbol{a}_k^T \boldsymbol{X}) = 0$ for all k < i.

It is not required to have a multivariate normal assumption for X.

Two Useful Lemma

Lemma

Consider the function $f(x) = x^T A x$, where x is a vector. Then,

$$\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}} = (\boldsymbol{A} + \boldsymbol{A}^T) \boldsymbol{x}.$$

If A is also symmetric, then,

$$\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}} = 2\boldsymbol{A}\boldsymbol{x}.$$

Lemma

Let **A** and B > 0 be two symmetric matrices. The maximum value of $x^T A x$ subject to $x^T B x = 1$ is attained when x is the eigenvector of $B^{-1}A$ corresponding to the largest eigenvalue of $B^{-1}A$. Its maximum value is the largest eigenvalue of $B^{-1}A$.

Find Principal Components

In order to find the first principal component, we consider

$$\max \operatorname{var} \left(\boldsymbol{a}_1^T \boldsymbol{X} \right)$$
 s.t. $\boldsymbol{a}_1^T \boldsymbol{a}_1 = 1$.

In other words, we need to optimize

$$f(\boldsymbol{a}_1) = \boldsymbol{a}_1^T \boldsymbol{\Sigma} \boldsymbol{a}_1 - \lambda \left(\boldsymbol{a}_1^T \boldsymbol{a}_1 - 1 \right).$$

In order to find the first principal component, we consider

$$\max \operatorname{var}\left(\boldsymbol{a}_{2}^{T}\boldsymbol{X}\right)$$
 s.t. $\boldsymbol{a}_{2}^{T}\boldsymbol{a}_{2}=1,\ \operatorname{cov}\left(\boldsymbol{a}_{2}^{T}\boldsymbol{X},\boldsymbol{a}_{1}^{T}\boldsymbol{X}\right)=0.$

In other words, we need to optimize

$$f(\boldsymbol{a}_2) = \boldsymbol{a}_2^T \boldsymbol{\Sigma} \boldsymbol{a}_2 - \lambda_1 (\boldsymbol{a}_2^T \boldsymbol{a}_2 - 1), \quad \boldsymbol{a}_2 \notin \operatorname{span} \{\boldsymbol{a}_1\}.$$

Principal Components

Result 8.1: Simply An Eigen Decomposition

Let Σ be the covariance matrix associated with the $p \times 1$ random vector X. Let Σ have the eigenvalue-eigenvector pairs $(\lambda_1, e_1), \ldots,$ (λ_p, e_p) , where $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0$. Then, the *i*th principal component is $Y_i = e_i^T X$. With these choices

$$\operatorname{var}(Y_i) = \boldsymbol{e}_i^T \boldsymbol{\Sigma} \boldsymbol{e}_i = \lambda_i,$$

 $\operatorname{cov}(Y_i, Y_k) = 0.$

Total Variation Explained by Principal Components

Result 8.2

Let X have covariance matrix Σ with eigenvalue-eigenvector pairs $(\lambda_1, e_1), ..., (\lambda_p, e_p), \text{ where } \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0. \text{ Let } Y_i = e_i^T X,$ i = 1, ..., p, be the unique principal components. Then,

$$\sum_{i=1}^{p} \sigma_{ii} = \sum_{i=1}^{p} \lambda_i = \sum_{i=1}^{p} \operatorname{var}(Y_i).$$

This result says that the total population variance, $\sum_{i=1}^{p} \operatorname{var}(X_i)$, is the same as the total principal component variance. Hence, the proportion of total variance explained by the kth principal component is

$$\frac{\lambda_k}{\sum_{i=1}^p \lambda_i}.$$

Importance

Result 8.3

If $Y_i = e_i^T X$, i = 1, 2, ..., p, are the principal components obtained from the covariance matrix Σ , then

$$\rho_{Y_i,X_k} = \frac{e_{ik}\sqrt{\lambda_i}}{\sqrt{\sigma_{kk}}}, \qquad i,k = 1, 2, ..., p,$$

are the correlation coefficients between the components Y_i and the variables X_k .

The magnitude of e_{ik} measures the importance of X_k to the *i*th principal component Y_i .

Principal Components From Correlation Matrix

Suppose that we standardize all X_i by $Z_i = (X_i - \mu_i) / \sqrt{\sigma_{ii}}$. All our previous results apply to $cov(\mathbf{Z}) = corr(\mathbf{X})$.

Result 8.4

The ith principal component of the standardized variables Z with $cov(\mathbf{Z}) = \boldsymbol{\rho}$ is given by

$$Y_i = e_i^T \mathbf{Z} = e_i^T \mathbf{V}^{-1/2} (\mathbf{X} - \boldsymbol{\mu}).$$

Moreover, $\sum_{i=1}^{p} \operatorname{var}(Y_i) = \sum_{i=1}^{p} \operatorname{var}(Z_i) = p$, and $\rho_{Y_i,Z_k} = e_{ik}\sqrt{\lambda_i}$. In this case, $(\lambda_1, e_1), ..., (\lambda_p, e_p)$ are the eigenvalue-eigenvector pairs for ρ , with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$.

The PC derived from Σ are different from those derived from ρ . One set of PC is not a simple function of the other.

```
A <- matrix(c(2.0, 0.5, 0.4, 0.5, 1.5, 0.3, 0.4, 0.5, 1.5, 0.3, 0.4, 0.4, 0.3, 1.0), 3, 3, byrow = TRUE)
eigen(A)

## eigen() decomposition
## $values
## [1] 2.477083 1.195800 0.827117
##
## $vectors
## [,1] [,2] [,3]
## [1,] 0.8000667 0.5626808 -0.2080470
## [2,] 0.5075924 -0.8197795 -0.2651631
## [3,] 0.3197549 -0.1065451 0.9414908
```

```
D \leftarrow diag(1.0 / sqrt(c(2.0, 1.5, 1)))
D %*% A %*% D
             [.1] [.2]
## [1,] 1.0000000 0.2886751 0.2828427
## [2.] 0.2886751 1.0000000 0.2449490
## [3.] 0.2828427 0.2449490 1.0000000
eigen(D %*% A %*% D)
## eigen() decomposition
## $values
## [1] 1.5447573 0.7552427 0.7000000
##
## $vectors
              [.1]
                        [.2]
## [1.] -0.5958111 -0.0463897 0.8017837
## [2,] -0.5700908 -0.6787568 -0.4629100
## [3.] -0.5656904 0.7328965 -0.3779645
```

Suppose the data $x_1, ..., x_n$ represent n independent drawings from some p-dimensional population with mean μ and covariance matrix Σ , not necessarily a multivariate population.

- First sample principal component is the linear combination that maximizes the sample variance of $\mathbf{a}_1^T \mathbf{x}$ subject to $\mathbf{a}_1^T \mathbf{a}_1 = 1$.
- ② Second sample principal component is the linear combination that maximizes the sample variance of $\boldsymbol{a}_2^T \boldsymbol{x}$ subject to $\boldsymbol{a}_2^T \boldsymbol{a}_2 = 1$ and zero sample covariance between $\boldsymbol{a}_2^T \boldsymbol{x}$ and $\boldsymbol{a}_1^T \boldsymbol{x}$.
- ith sample principal component is the linear combination that maximizes the sample variance of $\boldsymbol{a}_i^T \boldsymbol{x}$ subject to $\boldsymbol{a}_i^T \boldsymbol{a}_i = 1$ and zero sample covariance between $\boldsymbol{a}_i^T \boldsymbol{x}$ and $\boldsymbol{a}_k^T \boldsymbol{x}$ for all k < i.

Apply Sample Covariance

By Result 2.5,

- the linear combination $a_i^T x$ has sample mean $a_i^T \bar{x}$, and sample variance $a_i^T S a_i$,
- \bullet the sample covariance between $\boldsymbol{a}_i^T \boldsymbol{x}$ and $\boldsymbol{a}_k^T \boldsymbol{x}$ is $\boldsymbol{a}_i^T \boldsymbol{S} \boldsymbol{a}_k$.

Hence,

- First sample principal component is the linear combination that maximizes $a_1^T S a_1$ subject to $a_1^T a_1 = 1$.
- ② Second sample principal component is the linear combination that maximizes $a_2^T S a_2$ subject to $a_2^T a_2 = 1$ and zero sample covariance between $a_2^T x$ and $a_1^T x$.
- ith sample principal component is the linear combination that maximizes $\mathbf{a}_i^T \mathbf{S} \mathbf{a}_i$ subject to $\mathbf{a}_i^T \mathbf{a}_i = 1$ and zero sample covariance between $\mathbf{a}_i^T \mathbf{x}$ and $\mathbf{a}_k^T \mathbf{x}$ for all k < i.

Result: Simply An Eigen Decomposition

If S is a $p \times p$ sample covarinace matrix with eigenvalue-eigenvector pairs $(\hat{\lambda}_i, \hat{e}_i)$, i = 1, ..., p, the *i*th sample principal component is

$$\hat{y}_i = \hat{\boldsymbol{e}}_i^T \boldsymbol{x},$$

where $\hat{\lambda}_1 \geq \hat{\lambda}_2 \geq \cdots \geq \hat{\lambda}_p \geq 0$. The values $(\hat{y}_1 \quad \cdots \quad \hat{y}_p)$ are the principal component scores. The sample variance of \hat{y}_i is $\hat{\lambda}_k$, and the sample covariance between \hat{y}_i and \hat{y}_k is 0. In addition, the total sample variance satisfies $\sum_{i=1}^{p} s_{ii} = \sum_{i=1}^{p} \hat{\lambda}_{i}$, and

$$r_{\hat{y}_i, x_k} = \frac{\hat{e}_{ik} \sqrt{\hat{\lambda}_i}}{\sqrt{s_{kk}}}.$$

Further, the PCs from S and the sample correlation matrix are not the

Rotation of Axes

PCA is simply eigen decomposition of S as $S = E \Lambda E^T$.

• The eigen decomposition is only applicable to a symmetric matrix.

Every matrix has a singular value decomposition (SVD). For any $m \times n$ matrix **A** of rank r, there exist an $m \times m$ orthogonal matrix **U** and an $n \times n$ orthogonal matrix V such that

$$oldsymbol{A}_{m imes n} = oldsymbol{U}_{m imes m} \left(egin{array}{cc} oldsymbol{D}_1 & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{array}
ight)_{m imes n} oldsymbol{V}_{n imes n}^T,$$

where D_1 is an $r \times r$ diagonal matrix with diagonal elements that are positive.

ullet Diagonal elements in $\left(egin{array}{cc} D_1 & 0 \\ 0 & 0 \end{array}
ight)$ are called singular values.

- The diagonal elements in D_1 are the positive square root of the nonzero eigenvalues (not necessarily distinct) of $A^T A$ or AA^T .
- ② Let the columns of V_1 be the eigenvectors corresponding to the nonzero eigenvalues of $A^T A$, and the columns of V_2 be the eigenvectors corresponding to the 0 eigenvalues. Then $V = \begin{bmatrix} V_1 & V_2 \end{bmatrix}$.
- ② Let the columns of U_1 be the eigenvectors corresponding to the nonzero eigenvalues of AA^T , and the columns of U_2 be the eigenvectors corresponding to the 0 eigenvalues. Then $U = \begin{bmatrix} U_1 & U_2 \end{bmatrix}$.

The SVD is

$$oldsymbol{A} = oldsymbol{U} \left(egin{array}{cc} oldsymbol{D}_1 & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{array}
ight) oldsymbol{V}^T = oldsymbol{U}_1 oldsymbol{D}_1 oldsymbol{V}_1^T.$$

And U_1 actually must satisfy $U_1 = AV_1D_1^{-1}$.

SVD in R

```
A \leftarrow matrix(c(2, 0, 1, 0, 1, 2), 3, 2)
edV <- eigen(t(A) %*% A)
D1 <- diag(sqrt(edV$values))
D <- rbind(D1, matrix(0, 1, 2))</pre>
V <- edV$vectors
edU <- eigen(A %*% t(A))
U <- edU$vectors
round(cbind(U %*% D %*% t(V), NA, U %*% D %*% t(-1.0 * V), NA,
          (A \% \% V \% \% solve(D1)) \% \% D1 \% \% t(V)), 6)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] -2 O NA 2
                                NA
## [2,] O -1 NA O 1 NA O 1
## [3,] -1 -2 NA 1 2 NA 1
```

SVD in R.

```
A \leftarrow matrix(c(2, 0, 1, 0, 1, 2), 3, 2)
svd(A)
## $d
## [1] 2.645751 1.732051
##
## $u
        \lceil , 1 \rceil \qquad \lceil , 2 \rceil
##
## [1,] -0.5345225 0.8164966
## [2,] -0.2672612 -0.4082483
## [3,] -0.8017837 -0.4082483
##
## $v
## [,1] [,2]
## [1,] -0.7071068 0.7071068
## [2,] -0.7071068 -0.7071068
```

PCA and SVD

Suppose that we have a data matrix \boldsymbol{X} that has been demeaned. \boldsymbol{X} can be SVD decomposed as

$$X = UDV^T \Rightarrow XV = UD$$
,

where the m columns of U are orthonormal eigenvectors of XX^T . Then, we should have

$$\boldsymbol{X}^{T}\boldsymbol{X}/\left(n-1\right) = \boldsymbol{V}\boldsymbol{D}\boldsymbol{U}^{T}\boldsymbol{U}\boldsymbol{D}\boldsymbol{V}^{T}/\left(n-1\right) = \boldsymbol{V}\left[\boldsymbol{D}^{2}/\left(n-1\right)\right]\boldsymbol{V}^{T}.$$

- the PCA loading matrix: V.
- ullet the principal component scores: UD.
- the variances of principal components: $D^2/(n-1)$.

```
dx <- x - matrix(colMeans(x), nrow = N, ncol = 2, byrow = TRUE)
sqrt((svd(dx)$d^2) / (N - 1))
## [1] 0.7600400 0.3254688
svd(dx)$v
## [,1] [,2]
## [1,] -0.8377819 -0.5460050
## [2,] -0.5460050 0.8377819
prcomp(x)
## Standard deviations (1, ..., p=2):
## [1] 0.7600400 0.3254688
##
## Rotation (n \times k) = (2 \times 2):
## PC1 PC2
## [1,] -0.8377819 -0.5460050
   [2.] -0.5460050 0.8377819
```

How Many Components?

There is no definite answer on how many PCs we should choose. Some popular methods are

- Scree plot: the point (elbow) before where the curve flattens.
- Choose the number of PCs such that a specified percentage of variance been explained.