_

Aplicação: Escolha Intertemporal

Escolha Intertemporal

- Até aqui, nos concentramos em <u>modelos estáticos</u>: todas as escolhas são feitas em apenas um período.
- Em muitas situações, precisamos modelar as escolhas que as pessoas fazem em vários períodos do tempo.
 - o Aplicação mais óbvia: poupança e demanda por crédito.
- Hoje, tentaremos explicar como consumidores alocam consumo em diferentes períodos do tempo, para explicar:
 - Empréstimos (consumo antecipado para o presente)
 - Poupança (consumo adiado para o futuro)

Escolha Intertemporal: Consumo

- \bigcirc Suponha que as pessoas podem consumir um único bem de consumo c agregado, mas podem consumi-lo em dois períodos de tempo distintos.
- \bigcirc Iremos considerar dois períodos de tempo: t_1, t_2 .
 - $\bullet \ \ \text{``Cesta de Consumo''} \colon (c_1,c_2) \in \mathbb{R}^2_+.$
 - o Preço do bem de consumo $\underline{\text{em seu respectivo período}}$ não varia: $p_1=p_2=1.$
 - o Dotações: renda (m_1,m_2) em cada período.
- \bigcirc As preferências sobre consumo intertemporal são representadas por uma função utilidade $u:\mathbb{R}^2_+\longrightarrow\mathbb{R}$ e dadas por $u(c_1,c_2)$.

Reta Orçamentária Sem Mercado de Crédito

- Suponha inicialmente: consumidor não pode tomar emprestado nem emprestar.
- Para levar consumo de hoje para amanhã, poupa à taxa de 1 para 1.
- Nessa situação, consumidor pode:
 - 1. Consumir $(c_1, c_2) = (w_1, w_2)$
 - 2. Consumir $c_1 < w_1 \ \mathrm{e} \ c_2 = w_2 + (w_1 c_1)$

Reta Orçamentária Sem Mercado de Crédito

Reta Orçamentária Com Mercado de Crédito: Poupança

- Suponha agora que o consumidor pode levar consumo de hoje para amanhã, poupa à taxa de juros de 1 para (1+r).
- igcap Para cada unidade poupada, o consumidor recebe r na forma de juros.
- $\, \bigcirc \,$ Em t=1 , consumo do poupador é $c_1 < w_1$
- \bigcirc Em t=2, consumo do poupador será:

$$\begin{array}{rcl} c_2 & = & w_2 + (w_1 - c_1) + r(w_1 - c_1) \\ c_2 & = & w_2 + (1 + r)(w_1 - c_1) \end{array} \tag{1}$$

Reta Orçamentária Com Mercado de Crédito: Devedor

- Consumidor também pode tomar empréstimo.
- O Neste caso, ele trará consumo de amanhã para hoje, à taxa de juros de 1 para (1+r).
- \bigcirc Em t=1, consumo do devedor é $c_1>w_1$
- \bigcirc Em t=2, consumo do poupador será:

$$\begin{array}{rcl} c_2 & = & w_2 - (c_1 - w_1) - r(c_1 - w_1) \\ c_2 & = & w_2 + (1 + r)(w_1 - c_1) \end{array} \tag{2}$$

Note: esta equação (2) é igual à equação (1) que obtivemos para o poupador.

Reta Orçamentária Com Mercado de Crédito

- Esta equação pode ser reescrita nas formas:
 - Valor Presente:

$$c_1 + \frac{c_2}{1+r} = w_1 + \frac{w_2}{1+r}$$

Valor Futuro:

$$(1+r)c_1 + c_2 = (1+r)w_1 + w_2$$

Reta Orçamentária Com Mercado de Crédito

Preferências Intertemporais

O Preferências serão com frequência algo como:

$$U(c_1,c_2)=u(c_1)+\beta u(c_2)$$

 \bigcirc Ou, com T períodos e $c=(c_1,\ldots,c_T)$:

$$U(c) = \sum_{t=1}^{T} \beta^{t-1} u(c_t)$$

 \bigcirc Ou em tempo infinito e com $c=\{c_t\}_{t=1}^{\infty}$:

$$U(c) = \sum_{t=1}^{\infty} \beta^{t-1} u(c_t)$$

U' > 0 e U'' < 0

Preferências Intertemporais

$$U(c_1, c_2) = u(c_1) + \beta u(c_2) = u(c_1) + \frac{1}{1+\delta} u(c_2)$$

- \bigcirc δ : fator de desconto intertemporal
- \bigcirc $\uparrow \delta$: impaciência
- \bigcirc \downarrow δ : paciência
- \bigcirc Como podemos aprender sobre o δ das pessoas?

Maximização de Utilidade

$$\begin{aligned} & \max & & \log(c_1) + \frac{1}{1+\delta} \log(c_2) \\ & s.a. & & c_1 + \frac{c_2}{1+r} = w_1 + \frac{w_2}{1+r} \end{aligned}$$

Preferências e Escolha do Poupador e do Devedor

Escolha e Taxa de Juros

- Aumento da taxa de juros:
 - Amplia possibilidades de consumo futuro
 - Beneficia poupador

$$c_2 = (1+r)(w_1 - c_1) + w_2$$

- Reduz possibilidades de consumo presente
- Prejudica tomador de empréstimos

$$c_1 = w_1 + \frac{w_2 - c_2}{1 + r}$$

o Geometricamente: reta orçamentária se torna mais inclinada, girando sobre $\left(w_{1},w_{2}\right)$

Escolha Intertemporal e Taxa de Juros

- \bigcirc Um poupador escolherá $c_1 < w_1$ e $c_2 > w_2$.
- \bigcirc Um tomador de empréstimos escolherá $c_1 > w_1$ e $c_2 < w_2$.
- \bigcirc Um aumento da taxa de juros induzirá $\downarrow c_1$ e $\uparrow c_2$.
 - Poupador continuará poupador
 - Tomador de empréstimo pode continuar tomador de empréstimo, ou se tornar poupador.
- \bigcirc Uma redução da taxa de juros induzirá $\uparrow c_1$ e $\downarrow c_2$.
 - o Tomador de empréstimo continuará tomador de empréstimo
 - Poupador pode continuar poupador, ou se tornar tomador de empréstimo.

Escolha do Poupador e Taxa de Juros

Escolha do Devedor e Taxa de Juros

Taxa de Juros e Equação de Slutsky

Comecemos com a Restrição Orçamentária em Valor Futuro:

$$\begin{array}{rcl} (1+r)c_1+c_2 & = & (1+r)w_1+w_2 \\ (1+r)(c_1-w_1)+c_2 & = & w_2 \end{array}$$

- O Note: parece a restrição orçamentária que já conhecemos, com $p_1=(1+r)$ e $p_2=1$.
- Aumentar a taxa de juros é o mesmo que aumentar o preço (relativo) do consumo hoje.
- $\bigcirc \ p_1 = (1+r)$ é o preço de consumir mais que a renda do período inicial.

$$\left. \frac{\partial c_1}{\partial p_1} = \left. \frac{\partial c_1}{\partial p_1} \right|_{u = \bar{u}} - (c_1 - w_1) \frac{\partial c_1}{\partial w} \right.$$

Taxa de Juros e Equação de Slutsky

$$\left.\frac{\partial c_1}{\partial p_1} = \left.\frac{\partial c_1}{\partial p_1}\right|_{u=\bar{u}} - (c_1 - w_1) \frac{\partial c_1}{\partial w}$$

- Teremos dois efeitos de um aumento nos juros:
 - 1. **Efeito-substituição**: como sempre, será negativo; reduz-se o consumo hoje em benefício do consumo amanhã
 - 2. Efeito-renda:
 - $\circ~$ Será negativo para o tomador de empréstimo (devedor), que terá que pagar mais juros amanhã: $c_1>w_1$
 - $\circ~$ Será positivo para o poupador, que terá mais renda para consumir: $c_1 < w_1 \label{eq:consum}$