Name :	
Roll No. :	
Invigilator's Signature :	

HIGHWAY & TRANSPORTATION ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) Camber in the road is provided for
 - a) effective drainage
 - b) counteracting the centrifugal force
 - c) having proper sight distance
 - d) none of these.
 - ii) On a single lane road with two-way traffic the minimum stopping sight distance is equal to
 - a) stopping distance
 - b) two times the stopping distance
 - c) half the stopping distance
 - d) three times the stopping distance.

6112 [Turn over

iii)	Capital recovery factor for annual cost of pavement having a life of 10 years at 8% compound interest is							
	a)	0.08174	b)	0.1490				
	c)	0.080036	d)	0.1030.				
iv)	For the water-bound macadam road, in localities heavy rainfall, the recommended camber is							
	a)	1 in 40	b)	1 in 33				
	c)	1 in 25	d)	1 in 50.				
v)	The maximum spacing of contraction joints in rig							
	a)	2·5 m	b)	3·5 m				
	c)	4·5 m	d)	5·5 m.				
vi)	Abrasion test is carried out on aggregates to find							
	a)	hardness	b)	toughness				
	c)	crushing strength	d)	shear strength.				
vii)	Which of the following tests is done to determine consistency of Bitumen ?							
	a)	Viscosity tests	b)	Ductility tests				
	c)	Penetration tests	d)	Softening point tests.				
viii)	If the CBR value obtained at 5 mm penetration is higher that that at 2.5 mm, then the test is repeated for checking; and if the check test reveals a similar trend, then the CBR value is to be reported as the							
	a)	a) mean of the values for 5 mm & 2.5 mm penetration						
	b)	higher value minus the lower value						
	c)	lower value corresponding to $2.5~\mathrm{mm}$ penetration						
	d) higher value obtained at 5 mm penetration.							
6112		2						

ix)	The	method	of	design	of	flexible	pavement	as
	recor	nmended	by I					

- a) Group index method
- b) CBR method
- c) Water guard method
- d) Benkelman beam method.
- x) Warping joint is a
 - a) traverse joint b) construction joint
 - c) longitudinal joint d) none of these.
- xi) Dead slow is
 - a) regulatory sign b) warning sign
 - c) informatory sign d) none of these.
- xii) When path travelled along the road surface is more than circumferential movement of the wheels due to rotation, then it results in
 - a) slipping b) skidding
 - c) turning d) revolving.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2. State various recommendations made by Jayakar Committee.

What are the organizations formed based on above report?

4 + 1

6112 3 [Turn over

www.makaut.com

CS/B.Tech/CE (NEW)/SEM-6/CE-601/2013

- 3. Discuss briefly the various engineering surveys carried out before finalizing a new highway project.
- 4. The radius of a horizontal circular curve is 100 m. The design speed is 50 kmph and the design coefficient of lateral friction is 0.15.
 - a) Calculate the superelevation required if full lateral friction is assumed to develop.
 - b) Calculate the coefficient of friction needed if no superelevation is provided.
 - c) Calculate the equilibrium superelevation if the pressure on inner and outer wheels should be equal. $1\frac{1}{2}+1\frac{1}{2}+2$
- 5. The maximum increase in temperature is 25°C after the construction of a cement concrete pavement. If the expansion joint gap is $2\cdot 2$ cm, design the expansion and contraction joints.

Assume :
$$C = 10 \times 10^{-6} / ^{\circ}\text{C}$$
, $W = 2400 \text{ kg/m}^3$, $f = 1.5$, $S_c = 0.8 \text{ kg/cm}^2$. $3 + 2$

6. Calculate the minimum sight distance required to avoid a head-on collision of two cars approaching from the opposite direction at 95 kmph and 75 kmph. Assume a reaction time of 2·5 secs, coefficient of braking friction of 0·38 and a brake efficiency of 70%, in either case.

6112 4

7. There are four alternative plan proposals P, Q, R & S with different road length. Work out the utility per unit length for each of the system and indicate which of the plans yield the maximum utility based on saturation system.

Proposal	Total road length km	Number of towns and villages served with population range				Total agricultural and industrial products thousand tonnes.
		1001- 2000	2001- 5000	5001- 10000	> 10000	
P	300	160	80	30	6	200
Q	400	200	90	60	8	270
R	500	240	110	70	10	315
S	550	248	112	73	12	335

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. a) Derive an expression for calculating the overtaking sight distance on a highway. Explain all the variables you used in this expression with their proper units.
 - b) The speed of overtaking and overtaken vehicles are 80 kmph and 60 kmph respectively on a two-way traffic road. If the acceleration of overtaking vehicle is 0.99 m/s^2 , then calculate safe overtaking sight distance and minimum length of overtaking zone. Take other data values as per IRC.
 - c) Explain the PIEV theory.

5 [Turn over

4

9. a) A vertical summit curve is to be designed when two grades, +1/50 and - 1/80 meet on a highway. The stopping sight distance and overtaking sight distance required are 180 m and 640 m respectively. But due to sight consideration the length of vertical curve has to be restricted to a maximum value of 500 m, if possible.

Calculate the length of the summit curve needed to fulfil the requirements of

- i) stopping sight distance
- ii) overtaking sight distance or at least intermediate sight distance and discuss the results.8
- b) A national highway which passes through a rolling terrain in heavy rainfall area has a horizontal curve of radius 500 m. Design the length of transition curve assuming suitable data.
- 10. a) Design the flexible pavement section by triaxial test method using the following data:

Wheel load = 4100 kg

Radius of contract area = 15 cm

Traffic coefficient (X) = 1.5

Rainfall coefficient (Y) = 0.9

Design deflection = 0.25 cm

E-value of sub-grade soil $E_s = 100 \text{ kg/cm}^2$

E-value of base course material $\,E_b^{}=400\,\,\mathrm{kg/cm}^2$

E-value of 7.5 cm thick bituminous concrete surface course = 1000 kg/cm^2 .

b) Write down the construction steps for water-bound macadam road.

6112

- 11. a) Name the four major strength related tests of road aggregates. What is the basic difference among them context to the type of load? 2+2
 - b) For a soil sample with 60% finer than 75 m, L1 = 46% and PI = 15, find the group index.
 - c) Compare the annual costs of two types of pavement structures.
 - i) WBM with thin bituminous surface at total cost of Rs. 2·2 lakhs per km. life of 5 yrs., interest at 10%, salvage value of Rs. 0·9 lakh after 5 yrs., annual average maintenance cost of Rs. 0·35 lakh per km.
 - ii) Bituminous macadam base and bituminous concrete surface total cost of Rs. 4·2 lakhs per km life of 15 yrs. interest at 8%, salvage value of Rs. 2 lakhs at the end of 15 yrs. annual average maintenance cost Rs. 0·25 lakh per km.
- 12. Write short notes on the following:

 5×3

- i) Traffic separator
- ii) Construction of gravel road
- iii) Equivalent single wheel road
- iv) Softening point test
- v) Extra widening of roads.

6112 7 [Turn over