

DEMANDE INTERNATIONAL

UBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 6: C08J 5/04, 3/215, C08L 101/00 // (C08L 101/00, 101:02)

(11) Numéro de publication internationale:

WO 95/23824

- (43) Date de publication internationale: 8 septembre 1995 (08.09.95)
- PCT/FR95/00234 (21) Numéro de la demande internationale:
- (22) Date de dépôt international:

28 février 1995 (28.02.95)

(30) Données relatives à la priorité:

94/02315

1er mars 1994 (01.03.94)

FR

(71) Déposant (pour tous les Etats désignés sauf US): ELF ATOCHEM S.A. [FR/FR]; 4 & 8, cours Michelet, La Défense 10, F-92800 Puteaux (FR).

(72) Inventeurs; et

- (75) Inventeurs/Déposants (US seulement): CAVAILLE, Jean-Yves [FR/FR]; 18 bis, route du Château, F-38640 Claix (FR). CHANZY, Henri [FR/FR]; 37, rue Doyen-Gosse, F-38700 La Tronche (FR). FAVIER, Véronique, Geneviève [FR/FR]; 1, rue le Bouvier, F-92340 Bourg-la-Reine (FR). ERNST, Benoît [FR/FR]; 38, rue Saint-Nicolas, F-27170 Beaumont-le-Rocher (FR).
- (74) Mandataire: HAICOUR, Philippe; ELF Atochem S.A., 4 & 8, cours Michelet, F-92800 Puteaux (FR).

(81) Etats désignés: AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, JP, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MN, MW, MX, NO, NZ, PL, RO, RU, SD, SI, SK, TJ, TT, UA, US, UZ, VN, brevet européen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), brevet ARIPO (KE, MW, SD, SZ, UG).

Publiée

Avec rapport de recherche internationale.

- (54) Title: CELLULOSE MICROFIBRIL-REINFORCED POLYMERS AND USES THEREOF
- (54) Titre: POLYMERES RENFORCES DE MICROFIBRILLES DE CELLULOSE ET LEURS APPLICATIONS
- (57) Abstract

Cellulose microfibril-reinforced polymers, corresponding latices, powders, films and rods, and uses thereof. Polymer/cellulose composites are prepared using individualised cellulose microfibrils with a high form factor, e.g. tunicin microfibrils, as the reinforcement. For this purpose, reinforced latices consisting of a polymer latex and a stable aqueous suspension of said microfibrils are used. Said polymers have a wide variety of uses, particularly in paints and nanocomposites.

(57) Abrégé

Polymères renforcés de microfibrilles de cellulose, latex, poudres, films, joncs correspondants, et leurs applications. On réalise des composites polymères/cellulose en utilisant comme renfort des microfibrilles de cellulose individualisées à grand facteur de forme, par exemple des microfibrilles de tunicine. On met en œuvre pour cela des latex renforcés constitués d'un latex d'un polymère, et d'une suspension aqueuse stable desdites microfibrilles. Applications nombreuses, notamment aux peintures et aux nanocomposites.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Autriche	GB	Royaume-Uni	MR	Mauritanie
			•	MW	
ΑU	Australie	GE	Géorgie		Malawi
BB	Barbade	GN	Guinée	NE	Niger
BE	Belgique	GR	Grèce	NL	Pays-Bas
BF	Burkina Faso	HU	Hongrie	NO	Norvège
BG	Bulgarie	IE	Irlande	NZ	Nouvelle-Zélande
BJ	Bénin	IT	Italie	PL	Pologne
BR	Brésil	JP	Japon	PT	Portugal
BY	Bélarus	KE	Kenya	RO	Roumanie
CA	Canada	KG	Kirghizistan	RU	Fédération de Russie
CF	République centrafricaine	KP	République populaire démocratique	SD	Soudan
CG	Congo		de Corée	SE	Suède
CH	Suisse	KR	République de Corée	SI	Slovénie
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovaquie
CM	Cameroun	Lī	Liechtenstein	SN	Sénégal
CN	Chine	LK	Sri Lanka	TD	Tchad
CS	Tchécoslovaquie	LU	Luxembourg	TG	Togo
CZ	République tchèque	LV	Lettonie	TJ	Tadjikistan
DE-	Allemagne	MC	Monaco	TT	Trinité-et-Tobago
DK	Danemark	MD	République de Moldova	·UA	Ukraine
ES	· Espagne	MG	Madagascar	US	Etats-Unis d'Amérique
FI.	Finlande	ML	Mali	UZ	Ouzbekistan
FR	France	MN	Mongolie	, VN	Viet Nam
GA	Gabon				

Polymeres renforces de microfibrilles de cellulose et leur applications

5 DOMAINE TECHNIQUE

La présente invention a trait à des matrices polymères renforcées de fibres cellulosiques, à leur élaboration sous forme de suspensions aqueuses, et à certaines de leurs utilisations.

10

ART ANTERIEUR

L'industrie fait largement appel à des matériaux composites constitués d'une matrice polymère dont les propriétés, en particulier les propriétés mécaniques 15 doivent être adaptées par incorporation de charges ou de renforts. Certains de ces matériaux composites sont élaborés à partir de latex copolymères et de fibres. C'est de ces matériaux que traite la présente invention. En matière de renfort, on a déjà reconnu l'avantage de la 20 cellulose, en particulier des particules de cellulose microcristalline, pour le renfort de polymères à partir de leurs solutions, par exemple les solutions aqueuses de résines aminoplastes citées dans WO 93/10172, ou encore pour la réalisation de compositions pour vernis à ongles 25 (US 4,891,213) dont on а apprécié des propriétés secondaires mais importantes comme la transparence ou le poli du composite. On a aussi envisagé la charge ou le renfort cellulosique par les méthodes ordinaires compounding résines thermoplastiques de (voir pour 30 exemples : Composite Systems from Natural and Synthetic Polymers, par Klason et all dans Materials Science Monographs, 36, Elsevier 1986, ou encore Future Prospects for Wood Cellulose as reinforcement in Organic Polymer Composites par Zadorecki et all dans Polymer Composites, 35 10/2, p. 69, 1989).

On vient maintenant de trouver que l'on peut réaliser des composites d'une qualité tout à fait inattendue constitués d'un polymère thermoplastique et d'un renfort de microfibrilles individualisées de cellulose, 5 comme moyen de réalisation, des latex incorporant lesdites microfibrilles de cellulose. Pour la commodité du langage, on décrira ces latex sous le raccourci de latex renforcés.

sens de la présente invention, on entend 10 microfibrilles individualisées de cellulose, des formes de cellulose qui se présentent en éléments plus ou moins rigides, d'une longueur moyenne supérieure au micromètre, dont le diamètre est compris approximativement entre 2 et nanomètres, préférentiellement supérieur 7 15 nanomètres, avec un facteur de forme, c'est-à-dire rapport longueur/ diamètre toujours supérieur à 60, dont le taux de cristallinité est supérieur à 20%, préférentiellement supérieur à 70%.

D'une façon générale, la cellulose se présente sous forme 20 d'une hiérarchie de structures. Les molécules cellulose sont toujours biosynthétisées sous forme de microfibrilles, qui sont à leur tour assemblées fibres, pellicules, parois, etc. La microfibrille de cellulose être peut considérée comme 25 structural important de la cellulose naturelle. Elle est constituée par un assemblage de chaînes de cellulose dont le degré moyen de polymérisation est supérieur à 1.000 et dont le degré de perfection dans leur organisation parallèle se traduit dans son taux de cristallinité. On 30 l'obtient à partir de la cellulose brute dont la teneur par rapport au poids sec des parois des cellules dont elle constitue l'armature va de 30% (cellulose parenchyme) à 95% (cellulose de tunicine). Il est donc nécessaire d'appliquer à la matière première cellulosique traitement de dilacération, blanchiment désincrustation pour obtenir une cellulose brute, puis

d'en obtenir les microfibrilles par cisaillement puissant

10

dans un homogénéiseur. Les microfibrilles de cellulose végétale sont associées entre elles de façon parallèle dans les parois secondaires ou entrelacées de façon désordonnée dans les parois primaires. La dissociation des parois secondaires est difficile ; par contre, dans les parois primaires, elle est beaucoup plus aisée. Le parenchyme est un exemple de tissu ne comprenant que de la paroi primaire. Un modèle de traitement de la cellulose animale est donné dans les exemples 1 et 1bis pour l'obtention de microfibrilles de tunicine. l'obtention de la microcellulose de parenchyme, on peut appliquer les traitements préconisés par Weibel 4.831.127) pour l'obtention de la cellulose brute.

Toutes les microfibrilles ne développent pas la qualité 15 de renfort présentement recherchée, ou du moins ne la développent pas au niveau qui a été reconnu dans l'invention. Le phénomène de renforcement provient de ce que les microfibrilles sont dispersées dans la matrice polymère, au sein de laquelle elle s'organise en une 20 sorte de réseau dont la maille dépend de leur fraction pondérale ou volumique et de leurs caractéristiques dimensionnelles. Cette propriété liée est conditions de forme : leur diamètre et leur longueur que l'on apprécie plutôt dans son rapport au diamètre via un 25 facteur de forme. Cette propriété est très fortement conditionnée par l'individualité des microfibrilles, laquelle se repère clairement sur les microscopique (voir par exemple la figure 1) mais plus l'observation que simplement par leurs suspensions 30 aqueuses à quelques pour-cent sont colloïdale. Cette propriété de renfort est également liée, bien qu'à un degré moindre, à leur rigidité, elle-même en relation étroite avec leur cristallinité, dont la valeur est d'autant plus élevée qu'est plus faible leur rapport 35 surface/volume. Cette cristallinité s'estime de facon bien connue par l'examen des diagrammes de diffraction X. Le corollaire important de la dépendance de la propriété

WO 95/23824 PCT/FR95/00234

de renfort des microfibrilles est qu'elle altérée considérablement par leur agrégation. microfibrilles utiles pour l'invention se distinguent en ce gu'on dénomme couramment celluloses 5 microcristallines, lesquelles résultent de l'hydrolyse de la cellulose de bois ou de coton, particulièrement de son hydrolyse chlorhydrique, dont déjà le degré polymérisation est nettement plus faible, et qui surtout ne sont pas individualisées ; lesquelles celluloses 10 microcristallines lorsqu'elles subissent un traitement adapté pour en individualiser les éléments, fournissent que des microcristaux qui, si conservent plus ou moins le diamètre de la cellulose de départ, sont beaucoup plus courtes, par exemple environ 100 nm pour la cellulose de bois (tel est le cas par exemple des celluloses utilisées par Boldizar et coll., "Prehydrolyzed Cellulose as Reinforcing Filler Thermoplastics", Intern. J. Polymeric Mater., 1987, vol. 11, 229-262).

20 Il est souhaitable que pour une bonne réalisation de l'invention, les caractéristiques révélées plus haut des microfibrilles soient toutes exactement réalisées. microfibrilles utilisables pour l'invention sont d'une facon générale constituées d'une succession 25 monocristaux séparés par des zones de cellulose amorphe, la flexibilité qu'elles présentent provenant d'une part de la longueur des monocristaux, d'une autre de présence des segments intermédiaires amorphes. définition qu'on a donné des microfibrilles 30 l'invention englobe aussi les monocristaux de cellulose très longs qui sont obtenus avec un facteur de forme est supérieur à 60 par hydrolyse acide de fibres ou fibrilles de cellulose native, comme c'est le cas de la tunicine. Il existe des possibilités de compensation entre ces 35 caractéristiques : ainsi, peuvent rester acceptables pour l'invention des microfibrilles longues qui présentent une certaine flexibilité, pour autant que cela ne nuise pas à leur individualité, ou encore des microfibrilles de faible diamètre, qui à teneur pondérale comparable à celle de microfibrilles de plus fort diamètre compensent leur manque de rigidité par une densité en nombre plus grande et la formation d'un réseau plus dense. Ce sont des choix qui appartiennent à l'homme du métier qui, dans les cas particuliers qui se présentent à lui, sait toujours balancer les avantages et les inconvénients, y compris économiques, de chaque solution. Les indications qui suivent l'aideront dans ses choix.

sources de microfibrilles sont diverses. parenchyme végétal en fournit qui ont des diamètres de 2 à 3 nm; celles du bois sont d'environ 3,5 nm. Les longues microfibrilles de cellulose d'origine bactérienne ont des 15 diamètres d'environ 5 à 7 nm. Les microfibrilles d'origine animale, et en particulier celles qu'on peut obtenir à partir de la tunicine qui constitue la majeure partie de l'enveloppe d'animaux marins appartenant à la famille des tuniciers (par exemple les espèces 20 comestibles Halocynthia roeretzi ou Halocynthia aurantium du Japon ou Microcosmus Fulcatus de Méditerranée - les violets) ont un diamètre d'environ 10 à 20 nanomètres. . D'autres, également de diamètre plus élevé, peuvent être tirées d'algues à parois cellulosiques.

Les microfibrilles de tunicine, dont une image est donnée en figure 1, répondent parfaitement à cette définition des microfibrilles selon l'invention. Elles contiennent peu de défauts et peuvent être considérées comme de véritables monocristaux auxquels on s'accorde à attribuer un module d'élasticité de l'ordre de 130 GPa, ce qui devrait donner au niveau des contraintes de rupture des valeurs de l'ordre de 13 GPa pour une microfibrille.

La cellulose de parenchyme se présente sous la forme de longues microfibrilles dont les diamètres sont compris 35 entre 2 et 3,5 nm, organisées de façon désordonnée dans les parois cellulaires de type primaire. Certaines de ces microfibrilles sont associées en faisceaux de 10 à 20 unités, d'autres sont individuelles.

Les microfibrilles de cellulose d'origine bactérienne ont un facteur de forme très élevé et leur cristallinité est plus faible.

5 Les microfibrilles de celluloses sont exploitées selon l'invention sous la forme des dispersions aqueuses telles que les produisent les homogénéiseurs. Il peut arriver, et c'est même assez fréquent, que les suspensions qu'on obtient ainsi soient floculantes, et donc 10 microfibrilles y perdent leur individualité. Il est alors nécessaire de leur appliquer un traitement le procédé de préparation stabilisation. Ainsi, des microfibrilles tel qu'il a été décrit dans la demande internationale WO 9310172, consiste à combiner 15 désintégration de la cellulose, avec un passage dans un homogénéiseur puissant et un traitement acide apte à munir les microfibrilles de charges électriques surface, sans pour autant modifier l'ordre de grandeur du degré initial de polymérisation de la cellulose, par 20 exemple un traitement à l'acide sulfurique ou à l'acide phosphorique. peut parfaire On la dispersion suspensions aqueuses ainsi obtenues par un passage aux ultrasons.

Les suspensions titrant jusqu'à 0,3% de microfibrilles 25 sont translucides. Leur observation entre deux polariseurs croisés et en agitant les suspensions révèle présence de nombreux domaines biréfringents correspondant à un ordonnancement en cristaux liquides. Ces domaines de biréfringence deviennent difficilement 30 observables dans les suspensions à concentrations supérieures à 0,6% du fait de leur opacité. suspensions de microfibrilles de cellulose présentent en outre des propriétés rhéologiques remarquables. Leur viscosité est déjà très notable pour des concentrations 35 de l'ordre de 1 à 2%, et certaines d'entre elles peuvent présenter un comportement thixotropique. De telles suspensions sont directement utilisables pour la

préparation de latex dits "renforcés" dont on parle maintenant.

Au sens de la présente invention, on entend par "latex renforcés" des compositions aqueuses qui renferment en 5 suspension à la fois un polymère thermoplastique amorphe et des microfibrilles individualisées de cellulose, le taux de microfibrilles rapporté à la matrice polymère étant de 15% ou moins, et même préférentiellement inférieur à 10%. On les obtient très simplement par 10 mélange sous agitation des deux milieux aqueux, l'un, le latex contenant les billes de polymères et l'autre, la suspension aqueuse de microfibrilles de cellulose, dans les proportions voulues. Leur principal intérêt est qu'ils sont un véhicule très commode pour la matière que 15 constitue le résultat final de leur évaporation et qui est une composition polymère chargé de façon uniforme et régulière de microfibrilles individualisées de cellulose dont les propriétés mécaniques et thermomécaniques sont tout à fait remarquables et inattendues (dans la suite, 20 ces matériaux seront décrits sous le nom de matériaux composites polymères / microfibrilles). Outre ce rôle de renfort de la matrice polymère, les microfibrilles au apportent latex renforcé lui-même une épaississante très appréciable, dans les compositions 25 aqueuses telles que peintures, encres, vernis, compositions pour colles aqueuses et revêtements de sols. Les latex de polymères avec lesquels on réalise les latex renforcés de l'invention sont constitués de particules de polymères thermoplastiques, de forme sphériques, 30 dispersion colloïdale dans l'eau. Pour certains besoins satisfaire l'invention, que peut par formulation de peintures, la formation d'un film par coalescence est avantageusement comprise entre -40°C et +90°C, mais d'autres usages peuvent faire appel à des 35 thermoplastiques dont les Tg sont extérieures à ces limites. Ces polymères peuvent être de composition chimique très variable. On s'est particulièrement.

intéressé ici au polyacrylate de butyle, au polystyrène et à leurs copolymères, mais il ne s'agit nullement là d'une limitation de l'invention qui peut être étendue difficulté à d'autres latex polymères, 5 particuliers aux latex vinyliques. Les latex correspondants s'obtiennent par les techniques de polymérisation en émulsion, bien connues de l'homme du métier; ils sont disponibles industriellement.

A partir de ces latex renforcés, on élabore aisément 10 divers types de matériaux composites, qui sont également des objets de la présente invention, selon une opération qui dans son principe n'est autre que l'évaporation du latex, opération extraordinairement simple si on la compare à la méthode traditionnelle de dispersion de une masse de polymère. 15 fibres dans Les matériaux composites polymères / microfibrilles, lorsque teneur en microfibrilles n'excède pas 2% et qu'ils sont examinés sous de faibles épaisseurs (environ 2 mm) présentent pas de différence d'aspect par rapport à la 20 matrice polymère qui soit décelable à l'oeil nu ni même au microscope optique en lumière ordinaire. Il en est autrement de leurs propriétés mécaniques. microfibrilles, même en faible pourcentage, apportent un effet de renfort remarquable aussi bien aux faibles 25 qu'aux fortes déformations et cet effet est de façon très bien supérieur inattendue, à celui que produisent d'autres types de structures cellulosiques (pâte de bois, cellulose microcristalline, etc.). En termes de physique des matériaux, on n'observe pas de modification sensible 30 de la température de transition vitreuse, l'introduction des microfibrilles de cellulose se traduit par une augmentation du module relaxé en mécanique dynamique, une augmentation de la pente à l'origine, en particulier à haute température, et une augmentation de 35 la contrainte équivalente au point d'inflexion plasticité. Cette contrainte au seuil d'écoulement croît fortement avec le taux de microfibrilles. Elle passe par

exemple de 80 MPa pour un film non renforcé à 120 MPa pour un film comportant 6% de microfibrilles de tunicine. Ce qui signifie en pratique que les objets ainsi réalisés encaisser des contraintes beaucoup importantes sans subir de déformations irréversibles. Les composites selon l'invention présentent en outre une meilleure stabilité à haute température (apparition sur les diagrammes de modules en fonction de la température de plateaux "caoutchoutiques" pouvant se maintenir 10 jusqu'à 225-230°C). En pratique, le module caoutchoutique du polymère se trouve multiplié par 100 avec une charge de 6% de microfibrille. Ces modifications sont réellement extraordinaires, et tellement peu conformes à ce qui est connu de l'art antérieur que les modèles habituellement retenus pour le calcul des modules d'élasticité ou de cisaillement des composites (modèle Halpin-Kardos, Halpin J.C. et Kardos J.L., Moduli of Crystalline Polymers Employing Composite Theory, Journal Applied Physics, 43, 1972, 5, 2235-2241, ou modèle de Tsai-Halpin, cité par 20 Boldizar, supra) ne sont plus utilisables pour matériaux composites à microfibrilles selon l'invention (avec des microfibrilles de tunicine, il introduire dans le modèle des facteurs de forme d'une valeur 25 fois supérieure à la valeur expérimentale!). pratique de l'invention, les compositions correspondantes contienment 15% moins de de microfibrilles au sens de l'invention, et préférentiellement moins de 10%.

On peut ainsi former des films épais ou des objets par simple évaporation, en coulant le latex renforcé dans un moule à revêtement anti-adhésif afin de permettre un décollage facile de ces composites qui présentent un fort pouvoir d'adhésion. La filmification se fait ensuite dans une étuve, préférablement à une température d'environ 30°C. L'évaporation doit se faire très lentement pour éviter un séchage intempestif en surface; pour cela l'humidité est maintenue proche de 100%, par exemple sous

couvercle perforé et l'opération dure une quinzaine de jours.

peut encore former des objets composites en polymères / fibres cellulosiques par lyophilisation du 5 "latex renforcé" correspondant, puis compression à chaud du produit lyophilisé. Ce procédé de mise en oeuvre donne des composites dont les propriétés mécaniques bien qu'inférieures à celles des "évaporés" sont remarquables pour les faibles taux de renfort sur lesquels 10 travaille. On peut également envisager d'extruder produit lyophilisé préparé avec des taux de renfort plus élevés. Le procédé est particulièrement adapté à réalisation de très petites structures, par exemple des connecteurs, dans lesquels la taille des microfibrilles 15 de cellulose est sans conséquence sur l'homogénéité globale de la pièce. On préfère dans ce cas le renfort constitué de microfibrilles de tunicine pour leur facteur de forme et leur caractère cristallin.

On peut obtenir des poudres de matériau composite par lyophilisation du mélange latex-cellulose, selon les techniques connues de l'homme du métier. Les poudres ainsi obtenues sont plus ou moins compactes selon la température de transition vitreuse de la matrice polymère. Elles peuvent être utilisées telles quelles ou encore transformées en joncs par extrusion. Poudres et joncs peuvent être à leur tour utilisées pour la réalisation de plaques, de films ou d'objets par compression ou injection. On peut également en formuler des colles à chaud (hots-melts).

30 L'application la plus directe des "latex renforcés" est sans doute la formulation de peintures et produits du même type, à savoir encres, vernis, colles, compositions pour revêtements de sols, etc.

Elle offre divers avantages, à commencer par celui de 35 pouvoir utiliser un latex de polymère à température de transition vitreuse inférieure à celles habituellement retenues. Par exemple, en prenant un latex avec une

température de transition vitreuse de 0°C au lieu de 20°C habituelle des peintures), on facilite filmification (coalescence des billes de latex) à température ambiante tout en maintenant de bonnes 5 propriétés mécaniques et une stabilité thermique grâce à l'addition des microfibrilles de cellulose. addition permet en outre de bénéficier d'un important accroissement de viscosité sans faire appel viscosants externes (ou du moins en en limitant les 10 quantités) dont le maintien dans le film évaporation est préjudiciable à ses propriétés et à sa bonne conservation. On observe en outre, ce qui est très apprécié, que les peintures formulées avec les latex renforcés de l'invention ont un temps de reprise 15 sensiblement allongé, et que la peinture séchée a une bien meilleure résistance à l'abrasion.

EXEMPLES

Les exemples qui suivent feront mieux comprendre 20 l'invention.

Exemple 1

L'exemple relate la préparation de microfibrilles porteuses de charges sulfates à partir de tunicine.

25 Après avoir nettoyé de manière grossière les morceaux d'enveloppe de violets, ceux-ci sont mis dans 500 ml d'une solution aqueuse de potasse (KOH) à 5% pendant une nuit. Ils sont ensuite lavés et blanchis pendant 6 heures dans un bain à 80°C, en changeant celui-ci toutes les deux heures. Ce bain est composé de 300 ml d'une solution de chlorite (17 g de NaClO2 dans 1 l d'eau distillée) mélangée à 300 ml d'une solution tampon acétate (27 g de NaOH ajouté à 75 ml de CH3COOH et complété jusqu'à 1 l avec de l'eau distillée). Ce traitement de blanchiment est répété 3 fois; il rend les morceaux de violets complètement blancs.

Les morceaux de cellulose sont ensuite désintégrés dans

mixer un Waring Blender, pendant 20 minutes, concentration en morceaux étant d'environ 5% dans l'eau distillée. On obtient ainsi une suspension floculante de fragments de paroi, que l'on dilue à 5 environ 1% et qu'on introduit en cycles successifs dans un homogénéiseur mécanique Gaulin 15M8TA. La pression de l'appareil est montée jusqu'à 600 bars, par paliers pour éviter le blocage de l'appareil par les plus gros fragments de cellulose. On surveillera la montée en 10 température qu'on veille à limiter à 70°C. Après une quinzaine de cycles, on obtient une suspension homogène contenant de petits agrégats de fibres. Un très simple test d'efficacité de l'opération consiste à observer la montée de l'épaississement du produit. A titre indicatif, 15 le résultat souhaité est atteint lorsqu'une consistance de vaseline est obtenue avec des suspensions titrant environ 2% de cellulose.

La suspension issue de l'homogénéiseur est alors traitée par l'acide sulfurique, à raison de 300 ml d'acide 20 sulfurique concentré (95%) pour 450 ml de la suspension sortant de l'homogénéiseur. On maintient le tout à 60°C pendant 20 minutes. La suspension est ensuite filtrée sur un verre fritté (porosité 1) pour éliminer les gros agrégats, après quoi les fibrilles cellulosiques sont 25 retenues sur un filtre de porosité 4. On lave à l'eau distillée puis à la soude NaOH (0.1%) jusqu'à neutralité de la suspension, puis de nouveau à l'eau distillée. La cellulose se dépose alors sur le filtre sous forme d'une pâte aqueuse de consistance visqueuse. 30 On la redisperse dans l'eau, on homogénéise la suspension à l'aide d'un agitateur magnétique, puis on la passe sous ultrasons (Branson Sonifier B12) pendant 5 minutes. La suspension finale est prête l'utilisation, bien homogène, non floculante et stable 35 pendant plusieurs semaines.

L'exemple relate la préparation de microfibrilles porteuses de charges phosphates à partir de tunicine.

On procède comme dans l'exemple 1 au blanchiment des tuniciers et le passage à l'homogénéiseur. 18 g de la suspension à 1% issue de l'homogénéiseur sont alors ajoutés dans le milieu de phosphorylation constitué de 50g d'urée dissoute à 50°C dans de l'acide orthophosphorique à 85%. Le mélange est alors chauffé à 140°C au bain d'huile pendant 15-25 minutes. Le protocole de nettoyage, récupération et dispersion des microfibrilles est le même que celui de l'exemple 1.

Ce mode de préparation "phosphorique" est préféré au mode "sulfurique" de l'exemple 1 pour les microfibrilles autres que celles de tunicine et qui n'ont pas une aussi bonne résistance à l'hydrolyse acide.

Exemple 2 : Préparation de latex renforcé.

On a préparé des latex renforcés à divers taux microfibrilles à partir de suspensions de microfibrilles 20 de tunicine à 0,68% d'extrait sec et d'un latex à environ 50% d'extrait sec formé par polymérisation en émulsion de 34% de styrène, 64% d'acrylate de butyle, 1% d'acrylamide et 1% d'acide acrylique, l'amorceur utilisé étant le persulfate de potassium ; le polymère correspondant 25 présente une température de transition vitreuse Tg de +0°C. Les latex renforcés correspondants résultent de leur mélange soigneux avec des suspensions microfibrilles de cellulose dans des proportions telles que le pourcentage du renfort dans le copolymère se situe 30 aux valeurs visées. Par exemple, on forme des systèmes dont la matière sèche comportera approximativement 6% de microfibrilles en mélangeant soigneusement 18,5 parties 81,5 parties de la suspension latex et microfibrilles.

35

Exemple 3 : modules élastiques des composites On a formé, à partir du latex de l'exemple précédent

renforcé par respectivement 68, 38, 1% et 0 ક microfibrilles de tunicine et selon la technique des films épais par évaporation décrite plus haut, de petits parallélépipèdes (longueur 15-20 mm, largeur 6-7 mm, 5 épaisseur 0,5-2 mm) que l'on a soumis à une analyse dynamique au pendule de torsion (mécanalyseur Metravib Instruments), dans une gamme de températures allant de 200 à 350°K (on renvoie pour un exposé plus détaillé sur le comportement viscoélastique du copolymère Sty-ABu, 10 Cavaillé J.-Y., Vassoille R., Thollet G., Rios L. Pichot C., Structural Morphology of Polystyrène-Polybutyl Acrylate Polymer - Polymer Composites Studied by Dynamic Mechanical Properties, Colloid & Polymer Science, (1991), 248-258, et pour la technologie du mécanalyseur 15 Metravib à Cavaillé J.-Y. et all., Un Nouvel Outil d'Analyse de Spectrométrie Mécanique Micromécanalyseur, Spectra 2000, 16 N°113, 1988, 37-45). d'obtenir permet des courbes des modules caractéristiques du composite en fonction de 20 température, en particulier son module réel de cisaillement G' qui est associé à l'énergie élastique emmagasinée dans le matériau lors de la déformation, le module imaginaire G" qui est associé au caractère visqueux et donc à l'énergie dissipée lors de l'essai, et 25 la grandeur tang(ϕ) = G"/G', tangente de l'angle de perte, le coefficient de frottement est intérieur caractérisant l'aptitude du matériau à dissiper l'énergie lorsqu'il est soumis à une contrainte cyclique. La figure 2 représente l'évolution du module réel de 30 cisaillement G' en fonction de la température. comportement dynamique des échantillons composites testés est typique de celui d'un polymère, avec une chute du module de cisaillement lors de la transition vitreuse, encadrée par deux paliers, l'un situé aux 35 températures (T<Tg) correspondant au domaine vitreux et l'autre situé aux hautes températures (T>Tq)correspondant au domaine caoutchoutique. On remarque que

la température de transition Tg n'est pratiquement pas charge affectée par la de microfibrilles. Aux températures supérieures à Tg, l'effet de renfort est remarquable, si on en juge par comparaison avec le module 5 du polymère seul qui chute jusqu'à 10⁵ Pa. Le module relaxé du film à 6% de microfibrilles de tunicine est plus de 100 fois supérieur au module relaxé de la matrice pure. De plus, ce module reste parfaitement constant jusqu'à 500°K, température à laquelle la cellulose commence à se dégrader. Contrairement au cas de matrice pure, les chaînes polymères ne fluent pas avec la température. La stabilité thermique du matériau est ainsi améliorée.

15 Exemple 4

On a soumis à l'analyse dynamique selon le processus décrit à l'exemple 3 précédent, des éprouvettes de même géométrie mais réalisées selon la technique des poudres pressées avec des latex qui diffèrent de ceux 20 l'exemple 2 en ce que qu'il sont formés par émulsion de 49% de styrène, polymérisation en d'acrylate de butyle, 1% d'acrylamide et 1% d'acide acrylique, et dont la température de transition vitreuse Tg est de +20°C. Les courbes de la figure 3 permettent de 25 comparer le renforcement obtenu par différents types de renforts cellulosiques. Les composites testés contiennent renfort : microfibrilles de tunicine, microfibrilles de cellulose bactérienne préparée laboratoire, cellulose microcristalline de bois (ces deux 30 dernières ont été obtenues par application de traitement l'exemple 1, mais appliqué respectivement à cellulose bactérienne et une cellulose microcristalline commerce). On constate sur de diagramme considérable pouvoir de renforcement des microfibrilles 35 de tunicine, comparé à celui beaucoup plus modeste des fibrilles de cellulose de bois que l'on attribue à leur association en agrégats non individualisés et à leur très bas facteur de forme, ou à celui des fibrilles de cellulose bactérienne, longues, mais dénuées de rigidité.

Exemple 5 : viscosité des latex renforcés

5 On a mesuré la viscosité de latex avec un rhéomètre plancône à contrainte imposée, Carri-Med CSL 100 fonctionnant en régime dynamique. La figure 4 rapporte les résultats sur un graphique viscosité en Pa.s en fonction de la pulsation en radians/seconde. Le témoin est le latex 10 acrylique de l'exemple 4, qu'on compare au même latex additionné d'une part de 18 d'une cellulose microcristalline, et d'autre part de 1% de microfibrilles de tunicine selon l'invention telles qu'obtenues dans l'exemple 1.

REVENDICATIONS

- 1. Composition comportant une matrice polymère thermoplastique et une charge cellulosique, caractérisée que la charge cellulosique comporte microfibrilles individualisées de cellulose, la longueur moyenne est supérieure au micromètre, le diamètre est compris approximativement entre 2 et 30 nanomètres, le facteur de forme est supérieur à 60, et 10 dont le taux de cristallinité est supérieur à 20%, préférentiellement supérieur à 70%.
 - 2. Composition selon la revendication 1 caractérisée en ce qu'elle contient moins de 15% de microfibrilles, préférentiellement moins de 10%.
- 3. Composition selon les revendications 1 ou 2, caractérisée en ce que les microfibrilles sont des microfibrilles de tunicine.
- Composition selon les revendications 1 ou 2, caractérisée en ce que les microfibrilles sont des microfibrilles d'algues à parois cellulosiques.
 - 5. Composition selon les revendications 1 ou 2, caractérisée en ce que les microfibrilles sont des microfibrilles de parenchyme.
- 6. Composition aqueuse comportant un latex polymère et une charge cellulosique caractérisée en ce que la charge cellulosique est constituée des microfibrilles telles que décrites dans les revendications 1 à 5, en suspension stable et individualisées dans la composition.
- 7. Composition aqueuse selon la revendication 6, 30 caractérisée en ce que le latex polymère est un latex de polymère thermoplastique présentant une température de transition vitreuse comprise entre -40°C et +90°C.
- 8. Composition aqueuse selon les revendications 6 à 7, caractérisée en ce que les microfibrilles sont
 35 stabilisées par la présence de charges superficielles.
 - 9. Composition aqueuse selon la revendication 8, caractérisée en ce que les microfibrilles portent des

charges superficielles constituées par des ions sulfates.

- 10. Composition aqueuse selon la revendication 8, caractérisée en ce que les microfibrilles portent des charges superficielles constituées par des ions 5 phosphates.
 - 11. Compositions selon l'une ou l'autre des revendications 6 à 10, caractérisées en ce que les microfibrilles sont des microfibrilles de tunicine.
- 12. Compositions selon l'une ou l'autre des 10 revendications 6 à 10, caractérisées en ce que les microfibrilles sont des microfibrilles d'algues à parois cellulosiques.
- 13. Compositions selon l'une ou l'autre des revendications 6 à 10, caractérisées en ce que les microfibrilles sont des microfibrilles de parenchyme.
 - 14. Films de la composition selon les revendications 1 à 5, caractérisés en ce qu'on les obtient par évaporation d'une composition aqueuse stable de latex de polymère et de suspension aqueuse de microfibrilles de cellulose.
- 15. Poudres de la composition selon les revendications l à 5, caractérisées en ce qu'on l'obtient par lyophilisation d'une composition aqueuse stable de latex de polymère et de suspension aqueuse de microfibrilles de cellulose.
- 25 16. Joncs de la composition selon les revendications 1 à 5, caractérisés en ce qu'on les obtient par extrusion d'une poudre de la revendication 15.
 - 17. Plaques de la composition selon les revendications 1 à 5, caractérisées en ce qu'on les obtient par pressage de la poudre de la revendication 15 ou des joncs de la revendication 16.
 - 18. Application des compositions aqueuses selon les revendications 6 à 13 à la formulation des peintures, encres et vernis.
- 19. Application des compositions aqueuses selon les revendications 6 à 13 à la formulation des colles aqueuses et des compositions pour revêtements de sols.

- 20. Fabrication d'objets de la composition selon les revendications 1 à 5 par évaporation directe ou lyophilisation d'une composition aqueuse stable de latex de polymère et de suspension aqueuse de microfibrilles de 5 cellulose.
 - 21. Fabrication d'objet par pressage ou injection respectivement de poudres ou de joncs selon les revendications 15 ou 16.
- 22. Application respectivement de poudres ou de joncs 10 selon les revendications 15 ou 16 à la préparation de colles à chaud (hot-melts).

FIGURE 2

FIGURE 3

INTERNATIONAL SEARCH REPORT

Inten-onal Application No

RCT/FR 95/00234

A. CLASSIFICATION OF IPC 6 CO8J5/04

CT MATTER COSJ3/215

C08L101/00

//(C08L101/00,1:02)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

÷

٠,

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 CO8J CO8L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DUCUI	IENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO,A,93 10172 (DSM N.V.) 27 May 1993 cited in the application see claims 1,2,4,5,7-10,18 see examples I,II	1
A	COMPOSITE SYSTEMS FROM NATURAL AND SYNTHETIC POLYMERS, 1986, EDITED BY SALMÉN L. ET AL, AMSTERDAM pages 65 - 74 KLASON C. ET AL 'Cellulose in Polymeric Composites' see page 73, line 16 - page 74, line 9	1

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance E* earlier document but published on or after the international filling date L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O* document referring to an oral disclosure, use, exhibition or other means P* document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 27 April 1995	Date of mailing of the international search report 24. 05. 95
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax (+ 31-70) 340-3016	Authorized officer Niaounakis, M

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Internation No

T/FR 95/00234

C/Continu	ation) DOCUMEN NSIDERED TO BE RELEVANT	CT/FR 95/00234
Category *	ation) DOCUMEN NSIDERED TO BE RELEVANT Citation of documents with indication, where appropriate, of the relevant passages	Belowe to alice N
	man appropriate, of the relevant passages	Relevant to claim No.
A	POLYMER COMPOSITES, vol.10, no.2, April 1989 pages 69 - 77 ZADORECKI P. ET AL 'Future Prospects for Wood Cellulose as Reinforcement in Organic Polymer Composites' *abrégé* see page 70, left column, paragraph 3 -paragraph 5; table 1 see page 71, right column, paragraph 2 -paragraph 3	1
٠	see figure 8 GB,A,2 195 672 (FARRIS R. ET AL) 13 April 1988 see claims 1,4,13,26 see page 4, line 42 - line 57	1
\	PATENT ABSTRACTS OF JAPAN vol. 10, no. 123 (C-344) 8 May 1986 & JP,A,60 250 079 (DAICEL KAGAKU KOGYO KK.) 10 December 1985 see abstract	1
		
ł		

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International Application No

		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
•	Patent document cited in search report	Publication date	Patent mem	family ber(s)	Publication date	
	WO-A-9310172	27-05-93	NL-A-	9101920	16-06-93	
	GB-A-2195672	13-04-88	US-A- US-A-	4842924 5102601	27-06-89 07-04-92	

A. CLASSEMENT DE L'OB CIB 6 CO8J5/04

CO8J3/215

C08L101/00

//(C08L101/00,1:02)

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 6 CO8J CO8L

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés)

Catégorie *	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
	, and the second	no. des formates ons riscus
A	WO,A,93 10172 (DSM N.V.) 27 Mai 1993	1
	cité dans la demande	-
	voir revendications 1,2,4,5,7-10,18	
	voir exemples I,II	
	***	i
A	COMPOSITE SYSTEMS FROM NATURAL AND	1
ļ	SYNTHETIC POLYMERS, 1986, EDITED BY SALMÉN	_
	L. ET AL, AMSTERDAM	
	pages 65 - 74	
	KLASON C. ET AL 'Cellulose in Polymeric	
- 1	Composites'	ļ
	voir page 73, ligne 16 - page 74, ligne 9	
İ	-/	
		:-
Ĭ		
	,	
ļ		1
1		1

	Des nocembrais de l'alimnes de dieves sont manques en annexe
"L' document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée	To document ulterieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention X° document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolèment Y° document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du mêtier &° document qui fait partie de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée 27 Avril 1995	Date d'expédition du présent rapport de recherche internationale 2 4. 05, 95
Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Fonctionnaire autorise Niaounakis, M

Formulaire PCT/ISA/210 (deuxième feuille) (juillet 1992)

RAPPORT DE RECHERCHE INTERNATIONALE

Dem_ ... Internationale No

ategorie *	OCUMENTS COI RES COMME PERTINENTS Identification des desuments cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
zategorie	reconnected and documents cares, avec, he can extremely harmonic despectations	no. des revenueadons visees
	POLYMER COMPOSITES, vol.10, no.2, Avril 1989 pages 69 - 77 ZADORECKI P. ET AL 'Future Prospects for Wood Cellulose as Reinforcement in Organic	1
	Polymer Composites! *abrégé* voir page 70, colonne de gauche, alinéa 3 -alinéa 5; tableau 1	
	voir page 71, colonne de droite, alinéa 2 -alinéa 3 voir figure 8 	
:	GB,A,2 195 672 (FARRIS R. ET AL) 13 Avril 1988 voir revendications 1,4,13,26 voir page 4, ligne 42 - ligne 57	1
	PATENT ABSTRACTS OF JAPAN vol. 10, no. 123 (C-344) 8 Mai 1986 & JP,A,60 250 079 (DAICEL KAGAKU KOGYO KK.) 10 Décembre 1985 voir abrégé	1

Formulaire PCT/ISA/210 (suite de la deuxième feuille) (juillet 1992)

---- 0 4- 0

RAPPORT DE RECHERCHE INTERNATIONALE

Dem __e Internationale No

			1,711, 50, 00201			
Date de publication	Membre famille de	(s) de la brevet(s)	Date de publication	-		
27-05-93	NL-A-	9101920	16-06-93			
13-04-88	US-A- US-A-	4842924 5102601	27-06-89 07-04-92			
	publication 27-05-93	publication famille de 27-05-93 NL-A- 13-04-88 US-A-	Date de publication Membre(s) de la famille de brevet(s) 27-05-93 NL-A- 9101920 13-04-88 US-A- 4842924	Date de publication Membre(s) de la famille de brevet(s) Date de publication 27-05-93 NL-A- 9101920 16-06-93 13-04-88 US-A- 4842924 27-06-89		

Formulaire PCT/ISA/210 (annexe familles de brevets) (juillet 1992)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.