Arranque del Sistema e Implementación de Procesos

Arquitectura interna Sistemas Operativos

Arquitectura x86

Índice

- Historia
- Registros
- Repertorio de Instrucciones
- Modo Real
- Modo Protegido

Índice - Historia

Historia

- » Intel 16-bits
- Intel IA-32
- Intel P6
- » AMD Kryptonite
- » Intel P4

Intel 16-Bit

- Intel 8086/8088 (1978)
 - IBM PC 5150 (1981) y el IBM PC-XT 5160 (1983)
 - » Bus Datos 16 Bits
 - » Bus Dir 20 Bits (compartidos con Bus Dir)
 - » Acceso segmentado Segmento: Desplazamiento
 - Memoria Direccionable 1 MB (Segmentos 64KB)
 - » Coprocesador de punto flotante (8087)
 - » 80186 (Embedded) iAPX 186 –
- Intel 80286 (1982): 1.5 μm
 - » IBM-AT (1984), BUS IDE, Bus Datos 16 bits, Dir 24 Bits
 - » MMU. Paginación -opcional-
 - » 2 Modos: Real y Modo Protegido 16-Bits
 - Real: Mantener compatibilidad con 8086
 - Protegido: Memoria Direccionable 16 MB

Intel IA-32

- Intel 386 (1985): 1.5 1 μm
 - » Modo Protegido 32 Bits
 - 4 GB de memoria direccionable
 - » Modo Virtual 8086 (MV86)
 - » clon AMD386 (1991)
- Intel486 (1989): 0.80 μm
 - » Pipelining, FPU y Cache integrada
 - » clones AMD486 (1993) y AMD5x86 (1995)
- Pentium (1993): 0.80 0.25 μm
 - » Superscalar dos vias
 - » Pentium MMX (1997) 0.25 μm
 - Repertorio MMX (1997) 57 nuevas Instrucciones SIMD int, Reg MMX

Intel P6

- Pentium Pro (1995): 0.50 0.35 μm
 - » Ejecución especulativa fuera de orden, Segmentación más profunda, Renombramiento de Registros, Nucleo RISC (μ-operaciones)
 - On-package L2
 - » Physical Address Extension (PAE):
 - Direcciones Fisicas 36-bits (64GB),
 - Direcciones Virtuales 32-bits
- Pentium II (1997): 0.35 0.25 μm
 - » Celeron Pentium II Pentium II Xeon
- Pentium III (1999): 0.25 0.18 μm Evolución hasta el 2006!!!
 - » Katmai (May 1999 0.25): Repertorio SSE SIMD FP
 - Soppermine (Oct 1999 − 0.18): L2 integrada
 - » Tualatin (2001). Predecesor de:
 - Intel Pentium M (2003) e Intel Core Duo/Solo (2006)

1997

AMD Kryptonite

- AMD K5 (1995): 0.50 0.35 μm
 - » Basado en AMD 29k RISC
 - Decodificador CISC/RISC
- AMD K6 MMX Enhanced (1997): 0.35 0.25 μm
- AMD K6-II/III (1998): 0.25 0.18 μm
 - » K6-2 (1998): Repertorio AMD 3DNow! SIMD FP
 - » K6-III (1999): L2 integrada
- AMD K7 Athlon (1999): 0.25 0.13 μm
 - » Athlon Classic (1999)
 - Athlon XP (2001)

Intel Pentium 4

- Willamette (2001) 180nm
 - » Arquitectura Netburst: Super-pipelining (GHz)
 - » SSE2
- Northwood (2002) 130nm
 - » Intel Xeon (2003): Hyperthreading
- Gallatin (2003) 130nm
 - » Pentium 4 Extreme Edition
- Prescott (2004) 90nm
 - » SSE3
 - » 3.8 GHZ
- Cedar Mill (2006) 65 nm

Índice – Registros

Registros

- » Registros IA-32
- » Registros IA-32. Propósito General
- » Registros IA-32. Registros Especiales

Registros IA-32 (I)

8 Registros Propósito 32 Bits

EAX
EBX
ECX
EDX

■ Flags-Control, Puntero Instrucción

6 Registros Selectores Segmento 16 Bits

CS	ES			
SS	FS			
DS	GS			

Registros IA-32 (II)

- Para mantener compatibilidad con procesadores anteriores, los registros se solapan
 - » 16 Bits: AX, BX,CX, DX, BP, SP, SI, DI, FLAGS, IP
 - » 8 Bits: AH, LH, BH, BL, CH, CL, DH, DL

Registros IA-32. Propósito General

- EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI son registros generales pero algunas instrucciones los tratan de forma especial.
 - » EAX Acumulador. Se usa implícitamente en división y multiplicación
 - » EBX Puntero a Datos en segmento DS
 - » ECX Contador bucles y strings
 - » EDX Puntero para operaciones I/O
 - SESP puntero de pila
 - No se debe usar nunca para operaciones aritméticas, ni para transferencia de datos
 - » EBP Puntero a la pila para accesos con desplazamiento (marco de pila)
 - » ESI Puntero Datos en DS o Registro índice Fuente (Source) en transferencias
 - » EDI Puntero Datos en ES o Registro índice Destino en transferencias

Registros IA-32. Registros Especiales (I)

- Registros de Segmento
 - » CS segmento de código
 - » DS segmento de datos
 - » SS segmento de pila
 - S ES, FS, GS segmentos adicionales
- EIP Puntero de instrucción D
 - » Desplazamiento dentro del segmento apuntado por CS

Registros IA-32. Registros Especiales (II)

EFLAGS

IOPL = Nivel Privilegio I/O (0,1,2,3)

AC = Alignment-Check (1=yes, 0=no)

NT = Nested-Task (1=yes, 0=no)

RF = Resume Flag (1=yes, 0=no)

VM = Modo Virtual-8086 (1=yes, 0=no)

VIF = Flag Interrupción 'Virtual', Interrupt Virtual Pendiente?

ID = Instruccion CPUID si se puede cambiar el valor de este bit

ZF = Zero Flag

SF = Sign Flag

CF = Carry Flag

PF = Parity Flag

OF = Overflow Flag

AF = Auxiliary Flag

Registros IA-32. Registros Especiales (III)

Crx [0-4]

- » Determinan el modo operativo del procesador y las características de la tarea actual
- » CR0: Paginación? (PG), Modo de Protección (PE), Conmutación Tarea (TS)
- » CR2: Si PG=1 y PE=1, Dirección que provocó Fallo de Página
- » CR3: Si PG=1 y PE=1, Puntero Tabla de Paginas (primer nivel)

Índice – Repertorio de Instrucciones

Repertorio de Instrucciones

- » Sintaxis general
- Orden little endian
- » Modos de direccionamiento
- » Repertorio de Instrucciones manual -

Sintaxis general de instrucciones

Notación Intel – NASM, MASM

» Instrucción Destino, Fuente

mov eax,ebx

add eax.ebx

» Instrucción Destino / Fuente

inc eax

push eax

pop eax

» Instrucción Operando implícitos

pushad

popad

Notación AT&T – Gnu AS

» Instrucción Fuente, Destino

movl %ebx, %eax

- addl %eax,%ebx

!eax=ebx

!eax=eax + ebx

!eax=eax+1

! [esp]<-- eax, esp=esp-4

! [esp]--> eax, esp=esp+4

!guarda en la pila eax,ecx,edx,ebx,esp,ebp,esi,edi !recupera de pila eax,ecx,edx,ebx,esp,ebp,esi,edi

!eax=ebx l=double word, w=word, b = byte

!eax=eax+ebx

Orden Little Endian

- Todos los tipos de datos mayores que el byte, guardan sus bytes en orden little endian:
 - » El byte menos significativo se guarda en la dirección más baja
- Ejemplo:
 - Palabra 16 bits: 5678h
 - Doble palabra 32 bits: 12345678h
 - » Quad 64 bits: ABCDEF0012345678h

_	
0007	AB
0006	CD
0005	EF
0004	00
0003	12
0002	34
0001	56
0000	78

Modos de direccionamiento

Operandos registro

mov ax, ax

Operandos constantes

```
mov ax, 25 ; movw $25, %ax mov ecx, 8*8
```

Direccionamiento Directo

```
mov ax, (1000)
mov esi, (_gdt + GDT_SELECTOR +2)
```

Direccionamiento Indirecto

mov ax, (bx)

Direccionamiento Indexado

mov ax, 4(ebx)

Modos de Operación IA-32

Modo Real

- » Modo Nativo MS-DOS (monoprogramado)
- » Direcciones 20 Bits (Espacio Segmentado)
 - Espacio Direccionable 1MB
 - Punteros near, far, huge
- » El software tiene acceso a las rutinas de la BIOS y los periféricos
- Todos los procesadores x86 arrancan en modo real
- » 8086 solo tiene un modo de operación semejante al modo real

Modo protegido (32 Bits i386)

- » Modo Nativo de SO modernos (multiprogramación)
- » Direcciones 32 Bits (Espacio Segmentado, Paginación Opcional)
 - Espacio Direccionable 4GB
- » Selectores de segmento: índice tabla de segmentos
- Modo Real Virtual
 - Virtualización: Modo real dentro de un contexto protegido y multitarea
 - Cada proceso dispone de su propio 8086

Modo Real. Memoria Segmentada

- Dirección: Segmento: Desplazamiento.
 - » Dirección lineal (absoluta): 16*RegSegmento + Desplazamiento

Modo Real. Memoria Segmentada

 Los segmentos pueden solaparse: A una misma dirección lineal le corresponden diferentes direcciones segmentadas

Modo Protegido

- La Segmentación Funciona Diferente
 - » Reg de segmentos apuntan a entradas de Tabla de Descriptores (segmentos)
 - » Memoria direccionable 4 GB, Segmentos de hasta 4 GB

Modo Protegido. Paginación Opcional

Modo Protegido. Descriptor de Segmento (I)

- P = Presencia/Cargado en memoria (1=si, 0=no)
- DPL = Nivel de Privilegio (00=supervisor, 11=usuario)
- S = Segmento de Sistema (0=si, 1=no)
- X = Ejecutable: 1=si (segmento codigo), 0=no (segmento datos)
- C/E = Conforming (1=si, 0=no) cuando Bit X=1
 Expansión-hacia-Abajo (1=si, 0=no) cuando X=0
- R/W = Readable (1=si, 0=no) cuando X-bit=1 Writable (1=yes, 0=no) cuando X-bit=0
- A = El segmento ha sido accedido (1=si, 0=no)
- G = Granularidad Segmento: (0=byte, 1=pagina). El valor de Limite depende de G
- D = Operandos y Direcciones por defecto (0=16-bits, 1=32-bits)

Modo Protegido. Tabla de Descriptores Global – GDT (I)

Modo Protegido. Tabla de Descriptores Global – GDT (II)

Ejemplo Información de la GDT (Minix)

```
#define GDT INDEX
                                         /* GDT descriptor */
#define IDT INDEX
                                         /* IDT descriptor */
#define DS INDEX
                                         /* kernel DS */
#define ES INDEX
                                         /* kernel ES (386: flat 4 Gb at startup) */
#define SS INDEX
                                         /* kernel SS (386: monitor SS at startup) */
#define CS INDEX
                                         /* kernel CS */
#define MON CS INDEX
                                         /* temp for BIOS (386: monitor CS at startup) */
#define TSS_ INDEX
                                         /* kernel TSS */
#define DS 286 INDEX
                                         /* scratch 16-bit source segment */
#define ES 286 INDEX
                                         /* scratch 16-bit destination segment */
#define A INDEX
                                         /* 64K memory segment at A0000 */
                         11
#define B_INDEX
                                         /* 64K memory segment at B0000 */
                         12
#define C INDEX
                                         /* 64K memory segment at C0000 */
                         13
#define D INDEX
                                         /* 64K memory segment at D0000 */
                         14
                                         /* rest of descriptors are LDT's */
#define FIRST LDT INDEX
                             15
```


Modo Protegido. Tabla de Descriptores Global – GDT (III)

Instrucciones Privilegiadas para leer/escribir en el registro GDTR

```
» sgdt dest_6_bytes
    dest[0:15] <- GDTR(limite)
    dest[16:47] <- GDTR(base)</pre>
```

» lgdt src_6_bytes
GDTR(limite) ← src[0:15];
GDTR(base) ← src[16:47];

Modo Protegido. Tabla de Descriptores Local – LDT

Modo Protegido. Segmento Estado Tarea – TSS

 TSS: Espacio para almacenar los registros del procesador y otra información que hay que guardar en una conmutación de tarea

Modo Protegido. Tabla Descriptores Interrupción – IDT

IDT: interrupción gate descriptores

Modo Protegido. Registros de Segmento: Selector

- Registros de Segmentos
 - » La parte oculta del registro de segmento se carga en el 1er acceso
 - TI: Table indicator: 0 = GDT, 1=LDT
 - » RPL: Requested Privileged Level: 00-11
 - » CPL: El nivel de privilegio actual –Current Privilege Level– es el RPL de CS
 - Solo es posible acceder a segmentos de datos de mayor nivel de prioridad a través de GATES

Modo Protegido. Cambio Modo

Entrar en modo protegido

```
# con interrupciones desabilitadas
mov eax, cr0; Obtener estado actual
bts eax, 0; set bit 0 (bit PE)
mov cr0, eax; entra modo protegido
```

Salir del modo protegido

```
# con interrupciones desabilitadas
mov eax, cr0; Obtener estado actual
btr eax, 0; reset bit 0 (bit PE)
mov cr0, eax; entra modo protegido
```


AMD64 - x86-64

- AMD K8 Arquitectura AMD-64
 - » AMD Athlon 64 (2000) y AMD Opteron (2003)
 - » Hypertransport
 - » Arquitectura 64 bits
 - Registros de Propósito General Adicionales
 - » Nuevo modo de operación (Long)
 - Direcciones Virtuales 64 Bits (Memoria Lineal)
 - Memoria Física de hasta 2^52 Bytes limitado por entradas tabla de pagina
 - (Actualidad) Memoria Fisica 2⁴⁰ Bytes

El hardware de interrupción – 8259

El IBM PC y IBM XT venían equipados con un único controlador 8259

8 bits (programado en la inicialización del controlador – espació I/O – puertos

El hardware de interrupción – 8259s maestro y esclavo

El hardware de interrupción

- **8259**
 - » integrado en el southbridge
- APIC:
 - » Nuevo Controlador Interrupciones
 - » Sistemas multiprocesador

Interrupciones modo protegido

- Cuando tiene lugar una interrupción en modo protegido
 - Es necesario una transición de nivel (y cambio de pila)
- Gates: cambio de nivel

Descriptores "Call-Gate"

Descriptores de 8 bytes ~ Descriptores de segmentos

63

offset[3116]	Р	D P L	0	tipo de gate		# de parametros
selector segmento codigo	offset[150] (función)					
31						0

31

- P=presencia (1=si, 0=no)
- DPL=Descriptor Prvilege Level (0,1,2,3)
- Selector de codigo (segmento que contiene el codigo de la función)
- offset (el punto de entrada a la función)
- # de parametros (parametros que se copiaran)
- tipo de gate ('0x4' 16-bit call-gate, '0xC' 32-bit call-gate)

far call: "llamada lejana"

Manuel Prieto-Matías Arquitectura Interna Sistemas Operativos Universidad Complutense de Madrid

Descriptores "Interrupt-Gate"

punto de entrada-offset[31..16] P D D Q tipo gate

selector segmento codigo punto de entrada-offset[15..0]

- P=presencia (1=si, 0=no)
- DPL=Descriptor Prvilege Level (0,1,2,3)
- Selector de codigo (segmento que contiene la rutina tratamiento interrupcion)
- offset (el punto de entrada a la rutina de tratamiento de interrupcion)
- tipo de gate
 - 32 ó 16 bits

Tabla de descriptores de interrupción IDT

INT

ID