빅데이터 분석 [R 데이터 탐색 - 다중변수 자료]

BigData Analysis

다중변수 자료탐색

데이터 탐색

산점도

상관분석

BigData Analysis

다중변수 자료탐색 - 산점도

산점도

- 산점도(scatter plot)이란 2개의 변수로 구성된 자료의 분포를 일아보는 그래프
- 관측단위별 값들의 분포를 통해서 2개의 변수 사이의 관계를 파악이 관계를 파악이 기계를 받아 되었다.

^	mpg [‡]	cyl [‡]	disp [‡]	hp [‡]	drat [‡]	wt [‡]	qsec [‡]	vs [‡]	am [‡]	gear [‡]	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4

관측단위 -> 데이터프레임의 행

산점도

- 산점도(scatter plot)이란 2개의 변수로 구성된 자료의 분포를 일아보는 그래프
- 관측단위별 값들의 분포를 통해서 2개의 변수 사이의 관계를 파악

성명 상명대학교

BigData Analysis

다중변수 자료탐색 - 산점도

산점도 그리기

print(mtcars)

wt <- mtcars\$wt

mpg <- mtcars\$mpg

plot(wt, mpg)

mtcare datacet

	mt	cars dataset	
	mpg	yl disp hp drat wt qsec vs	
Mazda RX4	21.0	6 160.0 110 3.90 2.620 16.46 0	1 4
Mazda RX4 Wag	21.0	6 160.0 110 3.90 2.875 17.02 0	1 4
Datsun 710	22.8	4 108.0 93 3.85 2.320 18.61 1	1 4
Hornet 4 Drive	21.4	6 258.0 110 3.08 3.215 19.44 1	0 3
Hornet Sportabout	18.7	8 360.0 175 3.15 3.440 17.02 0	0 3
Valiant	18.1	6 225.0 105 2.76 3.460 20.22 1	0 3
Duster 360	14.3	8 360.0 245 3.21 3.570 15.84 0	0 3
Merc 240D	24.4	4 146.7 62 3.69 3.190 20.00 1	0 4
Merc 230	22.8	4 140.8 95 3.92 3.150 22.90 1	0 4
Merc 280	19.2	6 167.6 123 3.92 3.440 18.30 1	0 4
Merc 280C	17.8	6 167.6 123 3.92 3.440 18.90 1	0 4
Merc 450SE	16.4	8 275.8 180 3.07 4.070 17.40 0	0 3
Merc 450SL	17.3	8 275.8 180 3.07 3.730 17.60 0	0 3
Merc 450SLC	15.2	8 275.8 180 3.07 3.780 18.00 0	0 3
Cadillac Fleetwood	10.4	8 472.0 205 2.93 5.250 17.98 0	0 3
Lincoln Continental	10.4	8 460.0 215 3.00 5.424 17.82 0	0 3
Chrysler Imperial	14.7	8 440.0 230 3.23 5.345 17.42 0	0 3
Fiat 128	32.4	4 78.7 66 4.08 2.200 19.47 1	1 4
Honda Civic	30.4	4 75.7 52 4.93 1.615 18.52 1	1 4
Toyota Corolla	33.9	4 71.1 65 4.22 1.835 19.90 1	1 4
Toyota Corona	21.5	4 120.1 97 3.70 2.465 20.01 1	0 3
Dodge Challenger	15.5	8 318.0 150 2.76 3.520 16.87 0	0 3
AMC Javelin	15.2	8 304.0 150 3.15 3.435 17.30 0	0 3
Camaro Z28	13.3	8 350.0 245 3.73 3.840 15.41 0	0 3
Pontiac Firebird	19.2	8 400.0 175 3.08 3.845 17.05 0	0 3
Fiat X1-9	27.3	4 79.0 66 4.08 1.935 18.90 1	1 4
Porsche 914-2	26.0	4 120.3 91 4.43 2.140 16.70 0	1 5
Lotus Europa	30.4	4 95.1 113 3.77 1.513 16.90 1	1 5
Ford Pantera L	15.8	8 351.0 264 4.22 3.170 14.50 0	1 5
Ferrari Dino	19.7	6 145.0 175 3.62 2.770 15.50 0	1 5
Maserati Bora	15.0	8 301.0 335 3.54 3.570 14.60 0	1 5
Volvo 142E	21.4	4 121.0 109 4.11 2.780 18.60 1	1 4

성당 상명대학교

wt # 본 역급자료는 적작권자의 중의값의 우년 목제 및 배포할 수 없습니다.

산점도 그리기 중량•연비 산점도 # R 제공 mtcars 데이터셋 data(mtcars) wt <- mtcars\$wt # 중량자료 mpg <- mtcars\$mpg #연비자료 plot(wt, mpg, # 2개 변수(x축, y축) main = "중량-연비 산점도", #제목 xlab = "중량(wt)", # x축 레이블 ylab = "연비(mpg)", # y축 레이블 col = "red", # point 컬러 중량(wt) pch = 19# point 종류

성 상명대학교

본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

7

BigData Analysis

다중변수 자료탐색 - 산점도

산점도 pch(plot characters)값에 따른 점의 모양

20	21	22	23 ♦	24	2
15 ■	16 •	17 A	18 ◆	19 •	
10 ⊕	11	12 ⊞	13 ⊠	14 ⊠	
5 ♦	6	7 ⊠	8	9 ⇔	
0	1	2 △	3 +	4 ×	

3개 이상의 변수 사이의 산점도

■ 3개 이상의 변수 사이의 관계를 파악하고 싶은 경우, 여러 개의 산점도 그리기 가능

성 상명대학교

9

BigData Analysis

다중변수 자료탐색 - 산점도

3개 이상의 변수 사이의 산점도

pairs() 함수

- 여러 개의 변수에 대해 짝지어진 산점도를 한번에 그리는 함수
- pairs(target, main = "Multi Plots")

<mark>대괄호[]</mark>

■ 데이터프레임 형식은 대괄호[]를 사용하여 데이터를 조회, 추출

R 제공 mtcar 데이터셋 이용 다중 산점도

vars <- c("mpg", "disp", "drat", "wt") # 대상 변수

target <- mtcars[,vars] # 데이터프레임에서 위의 변수명을 가진 열 선택

head(target) # 데이터프레임 확인

pairs(target, main = "Multi Plots") # 다중 산점도 생성

head(데이터프레임, 숫자) 데이터가 너무 클 때, 해당 숫자까지만 보여줌

본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

BigData Analysis

다중변수 자료탐색 - 산점도

3개 이상의 변수 사이의 산점도

4개의 변수를 적용한 산점도

성정 상명대학교

12

11

실습

상명이는 미국 주별 도심 인구(UrbanPop), 폭력 사건 수(Assault), 실인 사건수(Murder) 변수들 사이의 상관관계를 보여주는 산점도를 시각화 해보고자 합니다.

R 제공 USArrests 데이터셋을 사용하여 여러가지 변수들 사이의 상관관계를 보여주는 산점도를 만들고, x축에 주별 도심 인구수(UrbanPop) 및 y축에 폭력 사건수(Assault)가 있는 산점도를 찾아서 표시하세요.

* 산점도 표시할 때, 캡처 도구 내 펜을 활용하여 표시하면 편리합니다.

본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

13

BigData Analysis

다중변수 자료탐색 - 산점도

3개 이상의 변수 사이의 산점도

먼저 데이터셋 확인 Print(USArrests) USArrests dataset

	Murder	Assault	UrbanPop	Rape
Alabama	13.2	236	5.8	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7
Connecticut	3.3	110	77	11.1
Delaware	5.9	238	72	15.8
Florida	15.4	335	80	31.9
Georgia	17.4	211	60	25.8
Hawaii	5.3	46	83	20.2
Idaho	2.6	120	54	14.2
Illinois	10.4	249	83	24.0
Indiana	7.2	113	65	21.0
Iowa	2.2	56	5.7	11.3
Kansas	6.0	115	66	18.0
Kentucky	9.7	109	52	16.3
Louisiana	15.4	249	66	22.2
Maine	2.1	83	51	7.8
Maryland	11.3	300	67	27.8
Massachusetts	4.4	149	85	16.3
Michigan	12.1	255	74	35.1
Minnesota	2.7	72	66	
Mississippi	16.1	259	44	17.1
Missouri	9.0	178		
Montana	6.0	109	53	16.4
Nebraska	4.3	102	62	16.5
Nevada	12.2	252	81	46.0
New Hampshire	2.1	57	56	9.5
New Jersey	7.4	159	89	18.8
New Mexico	11.4	285	70	32.1
New York	11.1	254	86	26.1
North Carolina	13.0	337	45	16.1
North Dakota	0.8	45	44	7.3
Ohio	7.3	120	75	21.4
Oklahoma	6.6	151	68	20.0
Oregon	4.9	159	67	29.3
Pennsylvania	6.3	106	72	14.9
Rhode Island	3.4	174	87	8.3
South Carolina	14.4	279	48	22.5
South Dakota	3.8	86	45	12.8
Tennessee	13.2	188	59	26.9
Texas	12.7	201	80	25.5
Utah	3.2	120	80	22.9
Vermont	2.2	48	32	11.2
Virginia	8.5	156	63	20.7
Washington	4.0	145	73	26.2
West Virginia	5.7	81	39	9.3
Wisconsin	2.6	53		10.8
Wyoming	6.8	161	60	15.6
Wyoming	-	202		

상명대학교 SANGMYUNG UNIVERSITY

본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다

3개 이상의 변수 사이의 산점도

vars <- c("UrbanPop", "Murder", "Assault")</pre> target <- USArrests[,vars]</pre> pairs(target) UrbanPop

성명 상명대학교

본 학습자료는 저작권자의 용의없이 약단 복제 및 비환할 수 없습니다.

15

BigData Analysis

다중변수 자료탐색 - 산점도

성당 상명대학교

본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

BigData Analysis

다중변수 자료탐색 - 상관분석

상관분석과 상관계수

- 상관분석(correlation analysis) 은 두 변수간의 관계를 분석하기 위해 사용
- 변수는 연속형 자료만 가능(구간척도, 비율척도)
- 예시. 키의 변화는 몸무게의 변화와 관계가 있는지
 - 가설: 키가 커지면 몸무게가 늘어난다.

데이터 구조 - 변수 개수 기반 분류• 단일변수 자료 • 다중변수 자료

- 데이터 구조 자료 특성 기반 분류 범주형 자료 명목척도 / 서열척도 연속형 자료 구간 척도 / 비율 척도

상관분석과 상관계수

- <mark>상관계수</mark>(correlation coefficient) **r = X와 Y가 함께 변하는 정도** / X와 Y가 각각 변하는 정도
 - 두 변수간 X와 Y가 완전히 동일하면 상관계수 r은 +1 (양<mark>의상관관계)</mark>
 - 두 변수간 X와 Y가 반대빙향으로 완전히 동일하면 상관계수 <mark>r은 -1 (음의 상관관계)</mark>
 - 두 변수간 X와 Y가 상관성이 없으면 상관계수 r은 0

<mark>份</mark> 상명대학교

본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

BigData Analysis

다중변수 자료탐색 - 상관분석

상관분석과 상관계수

beers	5	2	9	8	3	7	3	5	3	5
bal	0.10	0.03	0.19	0.12	0.04	0.095	0.07	0.06	0.02	0.05

- 음주정도와 혈중일코올농도가 상관성이 있는지 일아보는 예시
 - 10명의 실험자들에 대해 맥주를 마신 잔수(beers)와 혈중일코올농도(bal)에 대한 측정자료

*bal : blood alcohol concentration

- 유주정도에 따라 혈중일코올농도가 변하는 정도

19

plot() 함수

- plot() 함수는 x와 y의 2개 축을 기준으로 좌표를 찍듯이 그리는 컨셉을 가지는 함수 ²⁰
 - 예시. plot(2,1)
- plot() 함수는 산점도(scatter plot)를 그리는 함수
- plot(벡터2(Y)~ 벡터1(X), data=데이터프레임)
 - 벡터1과 벡터2의 관계 → 벡터1(X)이 변화함에 따라 벡터2(Y)가 변화하는 정도

본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

21

0

0.5 1.0 1.5 2.0

1,0

0.5

BigData Analysis

다중변수 자료탐색 - 상관분석

plot() 함수

- 데이터프레임을 생성하고 산점도
- 음주정도(beers)에 따라 혈중일코올농도(bal)가 변하는 정도

beers <- c(5, 2, 9, 8, 3, 7, 3, 5, 3, 5)
bal <- c(0.1, 0.03, 0.19, 0.12, 0.04, 0.095, 0.07, 0.06, 0.02, 0.05)
ca <- data.frame(beers, bal)
print(ca)
plot(bal~beers, data=ca) # 산점도

plot() 함수

```
> beers <- c(5, 2, 9, 8, 3, 7, 3, 5, 3, 5)
> bal <- c(0.1, 0.03, 0.19, 0.12, 0.04, 0.095, 0.07, 0.06, 0.02, 0.05)
> ca <- data.frame(beers, bal)</pre>
> print(ca)
                bal
    beers
          5 0.100
                                                                            0.15
          2 0.030
          9 0.190
          8 0.120
                                                                       pal
                                                                            0.10
          3 0.040
           7 0.095
          3 0.070
                                                                            0.05
          5 0.060
          3 0.020
          5 0.050
> plot(bal~beers, data=ca)
```

상명대학교 SANGMYUNG UNIVERSITY

본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

23

BigData Analysis

다중변수 자료탐색 - 상관분석

lm() 함수

- lm() 함수는 linear model 약자로 선형모델을 맞추는데 사용
- lm() 함수는 두 변수의 선형관계를 가장 잘 나타낼 수 있는 선의 식을 자동으로 찾는 역할
- lm() 함수는 'y=ax+b' 형태의 1차식
- abline() 함수 그래프 위에 선을 추가하고 싶은 경우
- lm(벡터2~벡터1, data=데이터프레임) # 회귀식 도출
- abline(회귀식) # 회귀선 그리기

camodel <- lm(bal~beers, data=ca) abline(camodel)

lm() 함수

```
> plot(bal~beers, data=ca)
> camodel <- lm(bal~beers, data=ca)
> abline(camodel)
> |
```


성명대학교

본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

25

BigData Analysis

다중변수 자료탐색 - 상관분석

cor() 함수

- 상관계수(correlation)를 구하는 함수
- method를 "person", "kendall", "spearman"으로 지정할 수 있는데, 기본값은 "person"(피어슨 상관계수)
- cor(벡터1,벡터2) # 상관계수 계산

cor(beers,bal)

피어슨 상관계수

피어슨상관계수 = 공분산
표준편차·표준편차

편차 = 평균과 예측값 간의 차이 + 예측값과 실제 값의 차이

공분산은 두 개의 확률 변수의 선형관계를 나타내는 값이다.

cor() 함수

```
> cor(beers,bal)
[1] 0.8882323
> |
```

상관계수	<u> </u>
± 0.9 이상	상관관계가 아주 높다
± 0.7 ~ 0.9	상관관계가 높다
± 0.4 ~ 0.7	상관관계가 있다
± 0.2 ~ 0.4	상관관계가 있으나 낮다
± 0.2 미만	상관관계가 거의 없다

본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

27

BigData Analysis

다중변수 자료탐색 - 상관분석

BigData Analysis

다중변수 자료탐색 - 선그래프

R 선그래프

- 두개의 변수 중 하나가 시간을 나타내는 값일 때 사용
- 시계열 자료(times series data) 시간의 변화에
 따라 자료의 중감추이를 확인

R 선그래프

month	1	2	3	4	5	6	7	8	9	10	11	12
cold	5	8	7	9	4	6	12	13	8	6	6	4

■ 한개 학교의 월별 감기 환자 통계를 알아본 예시

본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

BigData Analysis

다중변수 자료탐색 - 선그래프

plot() 함수

- 선그래프를 작성하는 함수는 산점도를 작성할 때 사용한 plot()함수
- plot() 함수에서 매개변수 type의 값을 "l" (일파벳)로 하면 선그래프가 작성
- plot(x축 데이터, y축 데이터, 옵션)

```
month <- 1:12
cold <- c(5,8,7,9,4,6,12,13,8,6,6,4)
                                # x data
plot(month,
                                # y data
   cold,
   main="감기 환자 통계",
                                # 제목
   type="l",
                                # 그래프의 종류 선택(알파벳) Line
   lty=1,
                                # 선의 종류(Line Type) 선택
                                # 선의 굵기 선택
   lwd=1,
   xlab="month",
                                # x축 레이블
                  ients" # y축 레이블
# 본 학습자료는 저작권자의 통의없이 무단 복제 및 배포할 수 없습니다.
   ylab="cold patients"
```

성명대학교 SANGMYUNG UNIVERSITY

32

31

BigData Analysis

다중변수 자료탐색 - 선그래프

R 복수 선그래프

month	1	2	3	4	5	6	7	8	9	10	11	12
cold1	5	8	7	9	4	6	12	13	8	6	6	4
cold2	4	6	5	8	7	8	10	11	6	5	7	3

■ 두개 학교의 월별 감기 환자 통계를 일아본 예시

lines() 함수

- lines()함수는 좌표의 점들을 이어서 선을 그리는 함수
- plot() 함수로 작성한 그래프 위에 선을 겹쳐서 그리는 역할

```
month <- 1:12
                                                              lines(month,
                                                                              #xdata
             cold1 <- c(5,8,7,9,4,6,12,13,8,6,6,4)
                                                                              # y data
                                                                  cold2,
                                                                 type="b".
                                                                              # 선의 종류 선택
             cold2 <- c(4,6,5,8,7,8,10,11,6,5,7,3)
                                                                  col="blue") # 선의 색 선택(파랑)
             plot(month,
                                    # x data
                cold1,
                                    # u data
                main="감기 환자 통계", # 제목
                type="b",
                                    # 그래프의 종류 선택(일파벳) Line
                lty=1,
                                    # 선의 종류(Line Type) 선택
                                    # 선의 굵기 선택
                lwd=1,
                col="red",
                                    # 선의 색 선택(빨강)
                xlab="month",
                                    # x축 레이블
                ylab="cold patients" # y축 레이블
                               # y축 값의 (하한, 상한)
                ylim=c(1,15)
23 상명대학교
                               # 본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.
```

BigData Analysis

다중변수 자료탐색 - 선그래프

lines() 함수

```
> month <- 1:12

> cold1<- c(5,8,7,9,4,6,12,13,8,6,6,4)

> cold2<- c(4,6,5,8,7,8,10,11,6,5,7,3)

> plot(month,

+ cold1,

+ main="감기 환자 통계",

+ type="b",

+ lty=1,

+ lwd=1,

+ col="red",

+ xlab="month",

+ ylab="cold patients",

+ ylim=c(1,15)

+ )

> lines(month,

+ cold2,

+ type="b",

+ col="blue")
```


성명대학교 SANGMYUNG UNIVERSITY

본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

35

성명대학교

본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

BigData Analysis

SUMMARY

- 산점도
 - plot(x축, y축)
 - main / xlab / ylab / col / pch
- 다중산점도
 - pairs(target, main = "Multi Plots")
 - target <- 데이터프레임[,vars]

38

37

SUMMARY

■ 상관분석

- 연속형 자료로만 가능
- plot() 함수 # 산점도
- lm(벡터2~벡터1, data=데이터프레임) # 회귀식 도출
- abline(회귀식) # 회귀선 그리기

■ 상관계수

- r = X와 Y가 함께 변하는 정도
- cor(벡터1,벡터2) # 상관계수 계산
- r은 +1 (양의상관관계) / R은 -1 (음의 상관관계) / R은 O

본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

39

BigData Analysis

SUMMARY

■ 선그래프

- plot() 함수 # 산점도
- lines() 함수 # plot() 함수로 작성한 그래프 위에 선을 겹쳐서 그리는 역할

- R에서 제공하는 cars 데이터셋을 이용하여 속도(speed)와 제동거리(dist)에 대한 산점도를 작성하고, 두 변수 간의 상관관계를 설명하시오(x축: speed, y축: dist).
- R에서 제공하는 pressure 데이터셋을 이용하여 온도(temperature)와 기압(pressure)에 대한 산점도를 작성하고, 두 변수 간의 상관관계를 설명하시오(x축: temperature, y축: pressure).
- R에서 제공하는 state.x77 데이터셋에서 인구수(Population), 소득(Income), 문맹률(Illiteracy), 면적(Area) 변수 간 산점도를 작성하고, 상관 관계를 관찰하시오

본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

41

BigData Analysis

연습문제1 답

plot(cars\$speed, cars\$dist)

속도가 증가하면 제동거리도 선형적으로 증가하는 경향을 보인다.

plot(pressure\$temperature, pressure\$pressure)

온도가 200도까지는 기압의 변화가 거의 없으나 200도를 넘으면 지수적으로 증가하는 경향을 보인다.

pairs(state.x77[,c("Population", "Income", "Illiteracy", "Area")]) # 유의한 상관관계를 보이는 변수들이 잘 보이지 않으나 약하지만 Illiteracy가 증가하면 Income이 감소하는 경향이 관찰된다.

- R에서 제공하는 trees 데이터셋에 대해 다음 문제를 해결하기 위한 R 코드를 작성하시오.
 - 나무의 지름(Girth)과 높이(Height)에 대해 산점도와 상관계수를 보이시오.
 - trees 데이터셋에 존재하는 3개 변수 간의 산점도와 상관계수를 보이시오.

본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

43

BigData Analysis _

연습문제2 답

plot(trees\$Girth,trees\$Height)
cor(trees\$Girth,trees\$Height)

pairs(trees)
cor(trees)

■ R에서 제공하는 Orange 데이터셋에서 나무의 연령(age)과 나무의 둘레(circumference)에 대해 산점도를 그룹(Tree) 번호별로 점의 색을 달리하여 작성하시오.

본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

45

BigData Analysis _

연습문제3 답

- mlbench 패키지에서 제공하는 Glass 데이터셋에 대해 다음의 문제를 해결하기 위한 R 코드를 작성하시오.
 - Glass 데이터셋을 myds에 저장하시오.
 - myds에서 Type을 제외한 변수들 간의 분포를 산점도를 통해 보이시오.
 - myds에서 Type을 제외한 변수들 간의 분포를 상관계수를 통해 확인하시오.
 - myds에서 Type을 제외한 변수들 간의 분포를 산점도를 통해 보이되 Type을 그룹으로
 하여 그룹별로 점의 색을 달리하시오.

본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

47

BigData Analysis _

연습문제4 답

```
install.packages("mlbench")
library(mlbench)
data("Glass")
myds <- Glass
```

```
pairs(myds[,-10]) # 10번째 열이 Type
cor(myds[,-10]) # 10번째 열이 Type
```


연습문제4 답

plot(myds[,-10], col=myds\$Type)

본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

49

BigData Analysis

연습문제5

- mlbench 패키지에서 제공하는 Ionosphere 데이터셋에 대해 다음의 문제를 해결하기 위한 R 코드를 작성하시오.
 - Ionosphere 의 유효한 데이터셋을 myds에 저장하시오.
 - myds에서 선형 관계가 가장 강한 두 변수를 찾아서 각각 산점도와 상관계수를 보이시오
- (상기 Ionosphere 데이터셋 사용이 불가한 경우) R에서 제공하는 mtcars 데이터셋에 대해 다음의 문제를 해결하기 위한 R 코드를 작성하시오.
 - mtcars 의 mpg, cyl, disp, hp 열값을 myds에 저장하시오.
 - myds에서 선형 관계가 가장 강한 두 변수를 찾아서 각각 산점도와 상관계수를 보이시오

연습문제5-1 답

```
library(mlbench)
data("Ionosphere")
myds <- Ionosphere[,3:12]
cor(myds)
mycor <- data.frame(cor(myds))</pre>
```


본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

51

BigData Analysis _

연습문제5-1 답

연습문제5-2 답

```
data("mtcars")
myds <- mtcars[,1:4]

cor(myds)
mycor <- data.frame(cor(myds))</pre>
```


본 학습자료는 저작권자의 동의없이 무단 복제 및 배포할 수 없습니다.

53

BigData Analysis _

연습문제5-2 답

감사합니다.