Introducere în teoria fasciculelor

Seminar 8 Luni, 07.04.2014.

1. (Rezoluția canonică și șiruri exacte scurte asociate) Demonstrați că șirul

$$0 \to \mathcal{Z}^q(\mathcal{F}) \to \mathcal{W}^q(\mathcal{F}) \to \mathcal{Z}^{q+1}(\mathcal{F}) \to 0$$

este exact pentru orice $q \geq 0$.

2. (Fasciculul diferențial indus de o rezoluție) Fie \mathcal{F} un fascicul de grupuri abeliene de bază X și fie $(\mathcal{L}^{\bullet}, j)$ o rezoluție a lui \mathcal{F} , i.e. fie șirul exact de fascicule

$$0 \longrightarrow \mathcal{F} \xrightarrow{j} \mathcal{L}^0 \xrightarrow{d} \mathcal{L}^1 \longrightarrow \dots$$
 (1)

- a) Demonstrați că rezoluția (1) definește un fascicul diferențial \mathcal{L}^{\bullet} pentru care $\mathcal{H}^0(\mathcal{L}^{\bullet}) = \mathcal{F}$ și $\mathcal{H}^n(\mathcal{L}^{\bullet}) = 0$ pentru orice $n \neq 0$.
- b) Demonstrați că un șir de forma (1) este o rezoluție dacă și numai dacă sunt îndeplinite condițiile (i)-(iii) de mai jos:
 - (i) există aplicații injective de la secțiunile lui \mathcal{F} la secțiunile lui \mathcal{L}^0 (la nivel de deschiși);
 - (ii) dată o secțiune $s \in \mathcal{L}^0(U)$ are loc echivalența: s este secțiune a lui $\mathcal{F} \Leftrightarrow ds = 0$;
- (iii) dată o secțiune $s \in \mathcal{L}^n(U)$ $(n \ge 1)$ are loc echivalența: $ds = 0 \Leftrightarrow$ pentru orice deschis $V \subset U$ "suficient de mic" există $\sigma \in \mathcal{L}^{n-1}(V)$ astfel ca $d\sigma = s|_V$ pe V.
- 3. (Rezoluții și produs tensorial) Fie X un spațiu topologic și $0 \to \mathbb{Z}_X \to \mathcal{L}^0 \to \mathcal{L}^1 \to \dots$ o rezoluție a fasciculului \mathbb{Z}_X , cu fascicule de grupuri abeliene fără torsiune (i.e. \mathcal{L}^n_x este fără torsiune pentru orice n și orice x). Demonstrați că pentru orice fascicul \mathcal{F} , $0 \to \mathbb{Z}_X \otimes_{\mathbb{Z}_X} \mathcal{F} \to \mathcal{L}^0 \otimes_{\mathbb{Z}_X} \mathcal{F} \to \mathcal{L}^1 \otimes_{\mathbb{Z}_X} \mathcal{F} \to \dots$ este o rezoluție a fasciculului $\mathbb{Z}_X \otimes_{\mathbb{Z}_X} \mathcal{F}$.
- 4. (De la rezoluții de fascicule la complexe de colanțuri) Fie \mathcal{F} un fascicul de grupuri abeliene de bază X și fie $(\mathcal{W}^{\bullet}(\mathcal{F}), j^{0})$ rezoluția canonică a lui \mathcal{F} . Detaliați cum $\Gamma(X, \mathcal{W}^{\bullet}(\mathcal{F}))$ generează, în mod natural, un complex de colanțuri.
- 5. $(H^0 \text{ si } \Gamma)$ Fie \mathcal{F} un fascicul de grupuri abeliene de bază X. Demonstrați că $H^0(X,\mathcal{F}) \simeq \Gamma(X,\mathcal{F})$.
- 6. (Coomologia cu valori în produsul direct) Fie $(\mathcal{F}_i)_{i\in I}$ o familie local finită de fascicule de grupuri abeliene și $\mathcal{F} = \prod_{i\in I} \mathcal{F}_i$. Demonstrați că $H^q(X,\mathcal{F}) \simeq \prod_{i\in I} H^q(X,\mathcal{F}_i)$, pentru orice q. (Indicație: stabiliți mai întâi o legătură între $\mathcal{W}^0(\mathcal{F})$ și familia de fascicule $(\mathcal{W}^0(\mathcal{F}_i))_{i\in I}$).