МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Фихтех-школа радиотехники и компьютерных технологий

Лабораторная работа 2.2.3

Измерение теплопроводности воздуха при атмосферном давлении

Автор: Черниенко Владислав Антонович Группа Б01-110 Цель работы: измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

В работе используются: цилиндрическая колба с натянутой по оси нитью; термостат; вольтметр и амперметр (цифровые мультиметры); эталонное сопротивление; источник постоянного напряжения; реостат (или магазин сопротивлений).

Теоретические сведения

Теплопроводность — это процесс передачи тепловой энергии от нагретых частей системы к холодным за счёт хаотического движения частиц среды (молекул, атомов и т.п.). В газах теплопроводность осуществляется за счёт непосредственной передачи кинетической энергии от быстрых молекул к медленным при их столкновениях. Перенос тепла описывается законом Фурье, утверждающим, что плотность потока энергии $\vec{q} \left[\frac{\text{Вт}}{\text{м}^2} \right]$ (количество теплоты, переносимое через единичную площадку в единицу времени) пропорциональна градиенту температуры ∇T :

$$\vec{q} = -k \cdot \nabla T,\tag{1}$$

где $k\left[\frac{\mathrm{Br}}{\mathrm{M}\cdot\mathrm{K}}\right]$ — коэффициент теплопроводности. Молекулярно-кинетическая теория даёт следующую оценку для коэффициента теплопроводности газов:

$$k \sim \lambda \bar{v} \cdot nc_V,$$
 (2)

где λ — длина свободного пробега молекул газа, $\bar{v}=\sqrt{\frac{8k_{\rm B}T}{\pi m}}$ — средняя скорость их теплового движения, n — концентрация (объёмная плотность) газа, $c_V = \frac{i}{2} k_{\rm B}$ — его теплоёмкость при постоянном объёме в расчёте на одну молекулу (i — эффективное число степеней свободы молекулы).

Длина свободного пробега может быть оценена как $\lambda = 1/n\sigma$, где σ — эффективное сечение столкновений молекул друг с другом. Тогда из (2) видно, что коэффициент теплопроводности газа не зависит от плотности газа и определяется только его температурой. В простейшей модели твёрдых шариков $\sigma = const$, и коэффициент теплопроводности пропорционален корню абсолютной температуры: $k \propto \bar{v}/\sigma \propto \sqrt{T}$.

Рассмотрим стационарную теплопроводность в цилиндрической геометрии (см. рис. 1). Пусть тонкая нить радиусом r_1 и длиной Lпомещена на оси цилиндра радиусом r_0 . Температура стенок цилиндра T_0 поддерживается постоянной. Пусть в нити выделяется некоторая тепловая мощность Q [Bt]. Если цилиндр длинный $(L \gg r_0)$, можно пренебречь теплоотводом через его торцы. Тогда все параметры газа можно считать зависящими только от расстояния до оси системы r. Вместо (1) имеем

$$q = -k\frac{dT}{dr}.$$

В стационарном состоянии полный поток тепла через любую цилиндрическую поверхность радиуса r площадью $S=2\pi rL$ должен быть одинаков и равен Q = qS:

Рис. 1: Геометрия задачи

$$Q = -2\pi r L \cdot k \frac{dT}{dr} = const. \tag{3}$$

Если перепад температуры $\Delta T = T_1 - T_0$ между нитью и стенками цилиндра мал $(\Delta T \ll T_0)$, то в (3) можно пренебречь изменением теплопроводности от температуры в пределах системы,

положив $\kappa \approx \kappa(T_0)$. Тогда разделяя переменные в (3) и интегрируя от радиуса нити до радиуса колбы, получим

$$Q = \frac{2\pi L}{\ln \frac{r_0}{r_1}} k \cdot \Delta T. \tag{4}$$

Видно, что поток тепла через систему пропорционален разности температур в ней (закон Нью-moнa).

Экспериментальная установка

Схема установки приведена на рис. 2. На оси полой цилиндрической трубки с внутренним диаметром $2r_0 \sim 1$ см размещена металлическая нить диаметром $2r_1 \sim 0,05$ мм и длиной $L \sim 40$ см (материал нити и точные геометрические размеры указаны в техническом описании установки). Полость трубки заполнена воздухом (полость через небольшое отверстие сообщается с атмосферой). Стенки трубки помещены в кожух, через которых пропускается вода из термостата, так что их температура t_0 поддерживается постоянной. Для предотвращения конвекции трубка расположена вертикально.

Металлическая нить служит как источником тепла, так и датчиком температуры (термометром сопротивления). По пропускаемому через нить постоянному току I и напряжению U на ней вычисляется мощность нагрева по закону Джоуля-Ленца:

$$Q = UI$$
,

и сопротивление нити по закону Ома:

$$R = \frac{U}{I}$$
.

Рис. 2: Схема установки

На рис. 3 приведена электрическая схема установки. Эта схема предусматривает использование одного вольтметра и эталонного сопротивления $R_{\text{9}} \sim 10$ Ом, включённого последовательно с нитью. В положении переключателя 2 вольтметр измеряет напряжение на нити, а в положении 1 — напряжение на R_{9} , пропорциональное току через нить. Для исключения влияния контактов и подводящих проводов эталонное сопротивление R_{9} необходимо подключать в цепь по четырёхпроводной схеме.

Рис. 3: Электрическая схема

Ход работы

1. Для начала запишем все необходимые параметры установки и погрешности приборов, взятые из технического описания:

• Диаметр нити: $2r_1 = 0,055 \pm 0,005$ мм

• Диаметр колбы: $2r_0 = 10, 0 \pm 0, 1$ мм

• $ln(r_2/r_1) \sim 5,30$

ullet Длина нити: $L=365\pm 2$ мм

• Эталонное сопротивление: $R_9 = 10,000 \text{ Ом}$

• ЭДС: E = 4 В

• Погрешность вольтметра: $\varepsilon_U \sim 0, 1 \%$

• Погрешность термостата: $\sigma_T = \pm 0, 1^{\circ}C$

- 2. Выставим сопротивление на магазине сопротивлений $R_{\rm M}=0$ Ом, для того, чтобы рассчитать максимальное количество теплоты, которое может выделиться на нити: $Q_{max}=386,3$ мВт.
- 3. По формуле $Q = \alpha \cdot Q_{max}$ найдём такие сопротивления магазина сопротивлений $R_{\rm M}$, при которых мощность нагрева Q возрастает равномерно в диапазоне от 0 до Q_{max} . Результат занесём в табл. 1.

					,			,	,	,	0,01
$R_{\rm M}$, Om	0	1,4	3	4,9	7,3	10,4	14,5	20,6	30,9	54,1	225

Таблица 1: Значения сопротивлений $R_{
m M}$ магазина сопротивлений

- 4. Выставим значение температуры термостата $T=22^{\circ}C$ комнатная температура. При этой температуре построим нагрузочную кривую $R_{\scriptscriptstyle \rm H}(Q)$:
 - Будем последовательно менять сопротивление магазина сопротивлений, беря значения $R_{\rm M}$ из табл. 1. Далее будем измерять напряжения на эталонном сопротивлении $R_{\rm 9}$ (U_1) и на нити $R_{\rm H}$ (U_2) при определённом значении $R_{\rm M}$. По этим значениям, будем вычислять мощность нагрева Q, а затем и сопротивление нити $R_{\rm H}$ при данном $R_{\rm M}$. Результаты будем заносить в табл. 2. Также по ходу выполнения работы построим график нагрузочной кривой по МНК.
- 5. Проведём измерения нагрузочных кривых согласно п. 3 ещё для 4 температур термостата в диапазоне от 30 до $60^{\circ}C$. Построим их графики по МНК. Результаты также будем заносить в табл. 2.

		$T = 22^{\circ}C$	1	
$R_{\rm M}$, O _M	U_1 , мВ	U_2 , мВ	Q, м B т	$R_{\rm H}$, Om
0	1560	2476	386,3	15,87
1,4	1487	2342	348,3	15,75
3	1410	2204	310,8	15,63
4,9	1328	2060	273,6	15,51
7,3	1236	1901	235,0	15,38
10,4	1134	1730	196,2	15,26
14,5	1021	1543	157,5	15,11
20,6	887,7	1330	118,1	14,98
30,9	726,3	1079	78,37	14,86
54,1	514,1	756,8	38,91	14,72
225	162,6	237,4	3,860	14,60

		$T = 30^{\circ}C$		
$R_{\rm M}, O_{\rm M}$	U_1 , мВ	U_2 , мВ	Q, м B т	$R_{\rm H}$, Om
0	1540	2497	384,5	16,21
1,4	1469	2363	347,1	16,09
3	1394	2226	310,3	15,97
4,9	1314	2083	273,7	15,85
7,3	1224	1924	235,5	15,72
10,4	1123	1752	196,7	15,60
14,5	1012	1566	158,5	15,47
20,6	880,7	1352	119,1	15,35
30,9	721,6	1098	79,23	15,22
54,1	511,8	772,1	39,52	15,09
225	162,3	242,9	3,942	14,97

	$T = 40^{\circ}C$							
$R_{\rm M}, O_{\rm M}$	U_1 , мВ	U_2 , мВ	Q, мВт	$R_{\rm H}$, Om				
0	1516	2521	382,2	16,63				
1,4	1447	2389	345,7	16,51				
3	1374	2253	309,6	16,40				
4,9	1296	2110	273,5	16,28				
7,3	1208	1952	235,8	16,16				
10,4	1110	1780	197,6	16,04				
14,5	1001	1593	159,5	15,91				
20,6	872,5	1377	120,1	15,78				
30,9	716,0	1121	80,26	15,66				
54,1	508,9	790,3	40,22	15,53				
225	162,0	249,7	4,045	15,41				

		$T = 50^{\circ}C$	1	
$R_{\rm M}, {\rm Om}$	U_1 , мВ	U_2 , мВ	Q, м B т	$R_{\rm H}$, Om
0	1493	2546	380,1	17,05
1,4	1425	2414	344,0	16,94
3	1355	2278	308,7	16,81
4,9	1278	2137	273,1	16,72
7,3	1192	1979	235,9	16,60
10,4	1097	1807	198,2	16,47
14,5	990,2	1619	160,3	16,35
20,6	864,0	1403	121,2	16,24
30,9	710,4	1144	81,27	16,10
54,1	506,1	808,8	40,93	15,98
225	161,8	256,5	4,150	15,85

	$T = 60^{\circ}C$							
$R_{\rm M}, { m Om}$	U_1 , мВ	U_2 , мВ	Q, мВт	$R_{\rm H}$, Om				
0	1470	2570	377,8	17,48				
1,4	1403	2438	342,1	17,38				
3	1335	2305	307,7	17,27				
4,9	1260	2164	272,7	17,17				
7,3	1177	2007	236,2	17,05				
10,4	1083	1835	198,7	16,94				
14,5	979,0	1647	161,2	16,82				
20,6	855,8	1429	122,3	16,70				
30,9	704,6	1168	82,30	16,58				
54,1	503,1	827,6	41,64	16,45				
225	161,4	263,6	4,255	16,33				

Таблица 2: Нагрузочные кривые

Обработка результатов измерений

1. Пользуясь данными графиков из табл. 2, найдём значения R_0 : $R_{\rm H}$ при Q=0 Вт (это значения $R_{\rm H}$ при температуре равной температуре термостата) и коэффициенты наклона графиков dR/dQ. Рассчитаем также погрешности полученных значений. Погрешности будем считать по следующим формулам:

$$\begin{split} \sigma_{dR/dQ} &= \sqrt{(\sigma_{dR/dQ}^{\text{cnyq}})^2 + (\sigma_{dR/dQ}^{\text{приб}})^2}, \\ \sigma_{dR/dQ}^{\text{cnyq}} &= \frac{1}{\sqrt{11}} \sqrt{\frac{\langle R^2 \rangle - \langle R \rangle^2}{\langle Q^2 \rangle - \langle Q \rangle^2} - (\frac{dR}{dQ})^2}, \\ \varepsilon_{dR/dQ}^{\text{приб}} &= \varepsilon_{Q_2 - Q_1}, \\ \sigma_{Q_2 - Q_1} &= \sqrt{\sigma_{Q_1}^2 + \sigma_{Q_2}^2}, \\ \varepsilon_Q &= \sqrt{4 \cdot \varepsilon_{U_2}^2 + \varepsilon_{U_1}^2}, \ \varepsilon_{U_2} = \varepsilon_{U_1} = \varepsilon_U \Rightarrow \varepsilon_Q = \sqrt{5} \cdot \varepsilon_U. \end{split}$$

Полученные значения dR/dQ и их погрешности занесём в табл. 3.

$T, \circ C$	dR/dQ, Om/Bt	$\sigma_{dR/dQ}, \mathrm{Om/BT}$	$\varepsilon_{dR/dQ}$, %
22	3,34	0,02	0,5
30	3,26	0,01	0,3
40	3,22	0,01	0,3
50	3,17	0,02	0,6
60	3,09	0,01	0,5

Таблица 3: Коэффициенты наклона dR/dQ нагрузочных кривых и их погрешности при данных температурах T

2. Занесём полученные в п. 1 значения R_0 в табл. 4. Построим график зависимости сопротивления нити от её температуры $R_0(T)$ (рис. 4).

Рис. 4: График зависимости R_0 от T

$T, ^{\circ}C$	22	30	40	50	60
R_0 , Om	14,59	14,96	15,40	15,85	16,32

Таблица 4: Значения R_0 при данных температурах T

Рассчитаем коэффициент наклона графика dR/dT и его погрешность. При подсчёте погрешности воспользуемся следующими формулами:

$$\begin{split} \sigma_{dR/dT} &= \sqrt{(\sigma_{dR/dT}^{\text{случ}})^2 + (\sigma_{dR/dT}^{\text{приб}})^2}, \\ \sigma_{dR/dT}^{\text{случ}} &= \frac{1}{\sqrt{5}} \sqrt{\frac{\langle R^2 \rangle - \langle R \rangle^2}{\langle T^2 \rangle - \langle T \rangle^2} - (\frac{dR}{dT})^2}, \\ \varepsilon_{dR/dT}^{\text{приб}} &= \varepsilon_{T_2 - T_1}, \\ \sigma_{T_2 - T_1} &= \sqrt{(\sigma_{T_1})^2 + (\sigma_{T_2})^2} = \sqrt{2} \cdot \sigma_T. \end{split}$$

Окончательно получим:

$$\frac{dR}{dT} = (4,53 \pm 0,03) \cdot 10^{-2} \ \frac{\rm O_M}{\rm K}.$$

3. Зная значения dR/dQ и dR/dT, рассчитаем:

$$\frac{dQ}{d(\Delta T)} = \frac{dR}{dT} / \frac{dR}{dQ},$$

для различных температур T. Посчитаем также погрешности полученных значений по следующей формуле:

$$\varepsilon_{dQ/d(\Delta T)} = \sqrt{(\varepsilon_{dR/dT})^2 + (\varepsilon_{dR/dQ})^2}.$$

Результаты занесём в табл. 5.

Зная значения $dQ/d(\Delta T)$, по формуле (4) найдём значения коэффициента теплопроводности воздуха при температурах T:

$$k = \frac{Q}{\Delta T} \cdot \frac{\ln \frac{r_0}{r_1}}{2\pi L}.$$

Рассчитаем погрешность k по следующей формуле:

$$\sigma_k^2 = \left(\frac{\partial k}{\partial (Q/\Delta T)}\right)^2 \cdot \sigma_{Q/\Delta T}^2 + \left(\frac{\partial k}{\partial r_0}\right)^2 \cdot \sigma_{r_0}^2 + \left(\frac{\partial k}{\partial r_1}\right)^2 \cdot \sigma_{r_1}^2 + \left(\frac{\partial k}{\partial L}\right)^2 \cdot \sigma_L^2.$$

Результаты занесём в табл. 5.

T, ° C	$dQ/d(\Delta T)$, $10^{-2} \cdot \mathrm{Br/K}$	$\sigma_{dQ/d(\Delta T)}, 10^{-2} \cdot \mathrm{Br/K}$	$\varepsilon_{dQ/d(\Delta T)}$, %
22	1,36	0,01	0,9
30	1,39	0,01	0,8
40	1,41	0,01	0,8
50	1,43	0,01	0,9
60	1,47	0,01	0,9

$T, \circ C$	$k, Дж/(K \cdot мм)$	σ_k , Дж/(К · мм)	ε_k , %
22	30,8	0,3	1
30	31,5	0,3	1
40	31,9	0,3	1
50	32,4	0,3	1
60	33,3	0,3	1

Таблица 5: Значения $dQ/d(\Delta T)$ и k при данных T

4. Пользуясь данными табл. 5 проведём наилучшую прямую по МНК через точки зависимости коэффициента теплопроводности воздуха k от температуры T. Результат представим на рис. 5.

Рис. 5: График зависимости k от T

Предполагая, что k степенным образом зависит от абсолютной температуры T: $k \propto T^{\beta}$, построим график зависимости lnk от lnT и определим из него показатель степени β . Результаты представим в табл. 6 и рис. 6.

lnT, K	5,69	5,71	5,75	5,78	5,81
lnk , Дж/($K \cdot M$)	-3,48	-3,46	-3,44	3,43	-3,40

Таблица 6: lnT и lnk

Рис. 6: График зависимости lnk от lnT

Коэффициент наклона этого графика: $\beta=0,6$ Дж/м. Погрешность β посчитаем по следующей формуле:

$$\sigma_{\beta}^{\text{случ}} = \frac{1}{\sqrt{5}} \sqrt{\frac{\langle ln(k)^2 \rangle - \langle ln(k) \rangle^2}{\langle ln(T)^2 \rangle - \langle ln(T) \rangle^2} - \beta^2}.$$

Приборная погрешность мала, поэтому ей можно пренебречь, тогда: $\sigma_{\beta}^{\text{случ}} = \sigma_{\beta}$.

В итоге:

$$\beta = (0,60 \pm 0,04) \frac{\text{Дж}}{\text{M}}.$$

Вывод

В ходе данной работы мы измерили коэффициент теплопроводности воздуха и исследовали зависимость коэффициента теплопроводности от температуры. Маленькие погрешности измерений связаны с маленькими погрешностями приборов, с помощью которых проводились измерения, и точными графиками. Несмотря на это значение коэффициента теплопроводности сходится с табличным только по порядку. Это может быть связано с различными пренебрежениями, сделанными нами в нашей физической модели.