Chapter 6 Challenge Problem Solutions

Vishal Canumalla

October 19, 2019

6.97

Problem: Nitric oxide and bromine at initial pressures of 98.4 and 41.3 torr, respectively, were allowed to react at 300. K. At equilibrium the total pressure was 110.5 torr. The reaction is as follows.

$$2 \, \mathrm{NO} + \mathrm{Br}_2 \Longrightarrow 2 \, \mathrm{NOBr}$$

- a) Calculate the value of K_p
- b) What would be the partial pressures of all species if NO and Br_2 , both at an initial partial pressure of 0.30 atm, were allowed to come to equilibrium at this temperature?

Solution: We model the change in pressure of each substance through an ICE table and note the partial pressures.

We are told that $P_E = 110.5$ torr, meaning that we can solve for x

$$P_E = P_{NO} + P_{Br_2} + P_{NOBr}$$

 $110.5 = (98.4 - 2x) + (41.3 - x) + (2x)$
 $x = 29.2 \text{ torr}$

Solving for each equilibrium concentration gives us a K_p value of

$$K_p = \frac{58.4^2}{40.0^2 \times 12.1} = 0.176 \text{ torr}^{-1} = 134 \text{ atm}^{-1}$$

Solving for the second part of the problem becomes a bit more convoluted. We are given that the initial concentrations of the reactants NO and Br_2 are 0.3 atm each. Writing an ICE table for the following reaction is trivial and is omitted. We end with a K_p of

$$134 = \frac{(2x)^2}{(0.3 - 3x)^2(0.3 - x)}$$

Solving for x is complicated to do algebraically, but graphically, we see that x = 0.125 atm. Knowing that the equilibrium concentrations of NO and Br₂ are (0.3-2x) and (0.3-x), and NOBr is 2x, we see that the partial pressures of each of the substances are

$$P_{\rm NO} = 0.052 \, {\rm atm}$$
 $P_{\rm Br_2} = 0.18 \, {\rm atm}$ $P_{\rm NOBr} = 0.25 \, {\rm atm}$

6.99

Problem: Consider the reaction

$$P_4(g) \Longrightarrow 2 P_2(g)$$

where $K_p = 1.00 \times 10^{-1}$ at 1325 K. In an experiment where $P_4(g)$ was placed in a container at 1325 K, the equilibrium mixture of $P_4(g)$ and $P_2(g)$ has a total pressure of 1.00 atm. Calculate the equilibrium pressures of $P_4(g)$ and $P_2(g)$. Calculate the fraction (by mole) of $P_4(g)$ that has dissociated to reach equilibrium.

Solution: In this problem, we have a few unknowns, including the original pressure of $P_4(g)$ and of course the equilibrium pressures of $P_4(g)$ and $P_2(g)$. Our basic ICE table gives us two unknowns, the initial concentration of $P_4(g)$ y, and the change variable x. I have omitted the ICE table again for this problem, but writing it out would give us the equilibrium concentrations of the two substances in terms of y and x.

$$P_4(g) = y - x$$
$$P_2(g) = 2x$$

The problem statement also gives us the total pressure as P = 1.00 atm, which we can rewrite to get our system of equations

$$K_p = \frac{(2x)^2}{(y-x)}$$
$$P = (y-x) + (2x)$$

Solving this system of equations is simply algebraic manipulation, which gives us y = 0.865 atm, and x = 0.135 atm. Finding our answers is simply arithmetic.

 $P_{\mathrm{P}_4} = 0.73\,\mathrm{atm}$ $P_{\mathrm{P}_2} = 0.270\,\mathrm{atm}$ 16% of P_4 decomposed

6.101

Problem: Consider the reaction

$$3 O_2(g) \rightleftharpoons 2 O_3(g)$$

At 175 °C and a pressure of 128 torr an equilibrium mixture of O_2 and O_3 has a density of 0.168 g/L. Calculate the K_p for the above reaction at 175 °C.

Solution: We first must come up with a method of finding density in terms of pressure. Density's units are gL^{-1} , and the equation that relates pressure and volume is

$$PV = nRT$$

However, we must manipulate this equation to introduce mass. We do this by introducing molar mass (M) and obtain

$$PM = M\frac{n}{V}RT = \rho RT$$

$$\frac{PM}{RT} = \frac{P_{\text{O}_2} M_{\text{O}_2} + P_{\text{O}_3} M_{\text{O}_3}}{RT} = \rho = 0.168$$

We also know that P = 128 torr, or 0.168 atm. Our second equation is

$$P = P_{O_2} + P_{O_3} = 0.168$$

This is a simple system of equations with two unknowns (P_{O_2} and P_{O_3}). Once solved, we find that $P_{O_2}=0.118$ atm and $P_{O_3}=0.05$ atm. Which gives us a final answer

$$K_p = \frac{P_{\text{O}_3}^2}{P_{\text{O}_2}^3} = 1.5 \,\text{atm}^{-1}$$

6.103

Problem: A $4.72 \,\mathrm{g}$ sample of methanol (CH₃OH) was placed in an otherwise empty $1.00 \,\mathrm{L}$ flask and heated to $250 \,\mathrm{^{\circ}C}$ to vaporize the methanol. Over time the methanol vapor decomposed by the following reaction:

$$CH_3OH(g) \rightleftharpoons CO(g) + 2H_2(g)$$

After the system has reached equilibrium, a tiny hole is drilled in the side of the flask allowing gaseous compounds to effuse out of the flask. Measurements of the effusing gas show that it contains 33.0 times as much $H_2(g)$ as $CH_3OH(g)$. Calculate the K for this reaction at $250\,^{\circ}C$.

Solution: We are given that the effusing gas shows 33 times as much H_2 as CH₃OH. However, this does not account for the the differing rate of effusion for the two gasses. Using Graham's law of effusion gets us an effusion ratio of $\frac{\text{Rate}_{H_2}}{\text{Rate}_{\text{CH}_3\text{OH}}} = \sqrt{\frac{M_{\text{CH}_3\text{OH}}}{M_{\text{H}_2}}} = \sqrt{\frac{32}{2}} = 4$.

We now know that H_2 effuses at 4 times the rate of CH₃OH, however, we are told that there is 33 times as much H_2 . Since the effusion rate does not account for enough of an increase, the other $\frac{33}{4} = 8.25$ factor comes from the greater concentration of H_2 at equilibrium. The mole ratio of H_2 to CH₃OH is thus

$$\frac{n_{\rm H_2}}{n_{\rm CH_3OH}} = 8.25$$

We start with 4.72 grams of CH₃OH, or 0.147 mol. The ICE Table is trivial and is omitted. Once written however, we see at equilibrium

$$8.28 = \frac{n_{\text{H}_2}}{n_{\text{CH}_3\text{OH}}} = \frac{2x}{0.147 - x}$$

$$x = 0.118$$

Note that because the reaction takes place in a 1 liter vessel, the number of moles of any substance is identical in number to the concentration.

$$K = \frac{4x^3}{0.147 - x} = 0.23$$

6.105

Problem: At 207 °C, $K_p = 0.267$ atm for the reaction

$$PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$$

- a) If $0.100 \,\mathrm{mol}$ of $\mathrm{PCl}_5(g)$ is placed in an otherwise empty $12.0 \,\mathrm{L}$ vessel at $207\,^{\circ}\mathrm{C}$, calculate the partial pressures of $\mathrm{PCl}_5(g)$, $\mathrm{PCl}_3(g)$, and $\mathrm{Cl}_2(g)$ at equilibrium.
- b) In another experiment the total pressure of an equilibrium mixture is $2.00\,\mathrm{atm}$ at $207\,^{\circ}\mathrm{C}$. What mass of PCl_5 was introduced into a $5.00\,\mathrm{L}$ vessel to reach this equilibrium position?

Solution: We are given moles of PCl_5 , when we need partial pressure to use it in K_p . We use the ideal gas equation to find partial pressure

$$PV = nRT$$

 $P(12) = 0.1(0.0821)(480)$
 $P_{PCl_5} = 0.3284 \text{ atm}$

The ICE table is trivial and omitted, but gives us a K_p expression of

$$K_p = \frac{x^2}{0.3284 - x} 0.267$$

Solving this quadratic, we get x=0.191, and the partial pressures at equilibrium are thus

$$P_{\text{PCl}_5} = 0.1374$$
 $P_{\text{PCl}_3} = 0.191$ $P_{\text{Cl}_2} = 0.191$

For part b, we are asked to solve for the initial concentration of PCl_5 . However, we are given neither the equilibrium concentration of PCl_5 nor the value of the change variable x. It is evident that we will thus have to use a system of equations. Writing an ICE table and representing the initial concentration of PCl_5 with the variable y and the change variable as x, we obtain a K_P expression of

$$K_P = \frac{P_{\text{Cl}_2} \cdot P_{\text{PCl}_3}}{P_{\text{PCl}_5}}$$

We have two unknowns x and y and thus need a second equation to solve this system. This comes from the value for P_{tot} at equilibrium, 2.00 atm. Our system of equations is thus

$$0.267 = \frac{x^2}{y - x}$$
$$2.00 = P_{PCl_5} + P_{PCl_3} + P_{Cl_2} = (y - x) + x + x$$

Solving this system of equations gets us an initial pressure of 1.49 atm for PCL₅, and converting to moles using PV = nRT gives us a mass of $39.4 \,\mathrm{gPCl_5}$ introduced.

6.107

Problem: At 1000K the $N_2(g)$ and $O_2(g)$ in air (78% N_2 , 21% O_2 , by moles) react to form a mixture of NO(g) and $NO_2(g)$. The values of the equilibrium constants are 1.5×10^{-4} and 1.0×10^{-5} atm⁻¹ for the formation of NO(g) and $NO_2(g)$, respectively. At what total pressure will the partial pressures of NO(g) and $NO_2(g)$ be equal in an equilibrium mixture of $N_2(g)$, $O_2(g)$, NO(g) and $NO_2(g)$?

Solution: One particular ratio we can keep constant in this problem is the ratio between N_2 and O_2 , the ratio always being 78:21. We can call the equilibrium pressure of O_2 to be P_{O_2} , and the equilibrium pressure of N_2 is thus

$$P_{\text{N}_2} = (78/21)P_{\text{O}_2} \approx 3.71P_{\text{O}_2}$$

6.109

Problem: An $8.00 \,\mathrm{g}$ sample of SO_3 was placed in an evacuated container, where it decomposed at $600 \,\mathrm{^{\circ}C}$ according to the following reaction:

$$SO_3(g) \rightleftharpoons SO_2(g) + \frac{1}{2}O_2(g)$$

At equilibrium the total pressure and the density of the gaseous mixture were $1.80\,\mathrm{atm}$ and $1.60\,\mathrm{g\,L^{-1}}$, respectively. Calculate K_p for this reaction.

Solution: This problem is rather similar to 6.101, with some extra complications. In order to solve, first we set up an ICE table.

This gives us our base K_p expression

$$K_p = \frac{P_{\text{SO}_2} P_{\text{O}_2}^{\frac{1}{2}}}{P_{\text{SO}_3}} = \frac{x \times (\frac{1}{2}x)^{\frac{1}{2}}}{P_{\text{SO}_3} - x}$$

and our substances' partial pressures at equilibrium

$$P_{SO_3} = P_0 - x$$

$$P_{SO_2} = x$$

$$P_{O_2} = \frac{1}{2}x$$

This K_p expression relates the partial pressures of the 3 substances at equilibrium, meaning we can write the total pressure (1.8 atm) in terms of x and P_0

$$1.80 = P_{SO_3} + P_{SO_2} + P_{O_2}$$
$$1.80 = (P_0 - x) + x + \frac{1}{2}x$$
$$1.80 = P_0 + \frac{1}{2}x$$

Finally, we must derive an expression relating x, P_0 and density ρ . This is rather similar to the process done in 6.101, thus the reader is encouraged to review 6.101 if they have trouble deriving any steps.

$$\begin{split} \rho &= \frac{PM}{RT} \\ 1.6 \,\mathrm{g} \,\mathrm{L}^{-1} &= \frac{P_{\mathrm{SO}_3} M_{\mathrm{SO}_3} + P_{\mathrm{SO}_2} M_{\mathrm{SO}_2} + P_{\mathrm{O}_2} M_{\mathrm{O}_2}}{RT} \\ &= \frac{(P_0 - x) M_{\mathrm{SO}_3} + x M_{\mathrm{SO}_2} + \frac{1}{2} x M_{\mathrm{O}_2}}{RT} \\ 1.6 &= \frac{((1.80 - \frac{1}{2}x) - x) M_{\mathrm{SO}_3} + x M_{\mathrm{SO}_2} + \frac{1}{2} x M_{\mathrm{O}_2}}{RT} \end{split}$$

At this point, we can solve for x through algebraic manipulation, and obtain a value of $x \approx 0.73$ atm. This allows us to solve for P_0 , and thereby the partial pressures of all substances. The final answer is thus

$$K_p = 0.63$$