TIP8419 - Tensor Algebra Homework 1

Prof. André de Almeida andre@gtel.ufc.br

2019.2

Hadamard, Kronecker and Khatri-Rao Products

Problem 1 For randomly generated matrices **A** and $\mathbf{B} \in \mathbb{C}^{N \times N}$, create an algorithm to compute the Hadamard Product $\mathbf{A} \odot \mathbf{B}$. Then, compare the run time of your algorithm with the operator .* of the *software* Octave/Matlab $^{\textcircled{R}}$. Plot the run time curve as a function of the number of rows/columns $N \in \{2, 4, 8, 16, 32, 64, 128\}$.

Problem 2 For randomly generated matrices \mathbf{A} and $\mathbf{B} \in \mathbb{C}^{N \times N}$, create an algorithm to compute the Kronecker Product $\mathbf{A} \otimes \mathbf{B}$. Then, compare the run time of your algorithm with the operator $kron(\mathbf{A}, \mathbf{B})$ of the software Octave/Matlab[®]. Plot the run time curve as a function of the number of rows/columns $N \in \{2, 4, 8, 16, 32, 64, 128\}$.

Problem 3 For randomly generated matrices \mathbf{A} and $\mathbf{B} \in \mathbb{C}^{N \times N}$, create an algorithm to compute the Khatri-Rao product $\mathbf{A} \diamond \mathbf{B}$ according with the following prototype function:

$$\mathbf{R} = kr(\mathbf{A}, \mathbf{B}).$$

[⊙] Denotes the Hadamard Product.

 $[\]otimes$ Denotes the Kronecker Product.

[♦] Denotes the Khatri-Rao Product.