G. Parmeggiani

Algebra e matematica discreta, a.a. 2020/2021,

Scuola di Scienze - Corso di laurea:

Informatica

Svolgimento degli Esercizi per casa 1 (1^a parte)

 $\boxed{\mathbf{1}}$ Si trovino il quoziente q ed il resto r della divisione di a con b nei seguenti casi (N.B.: si richiede $r \geq 0$):

1)
$$a = 46 \text{ e } b = 10$$
: $46 = 10 \cdot 4 + 6$ $\implies q = 4 \text{ ed } r = 6$;

2)
$$a = 49 \text{ e } b = 52$$
: $49 = 52 \cdot 0 + 49$ $\implies q = 0 \text{ ed } r = 49$;

3)
$$a = -12$$
 e $b = 17$: $-12 = 17 \cdot (-1) + 5$ $\implies q = -1$ ed $r = 5$;

4)
$$a = 76 \text{ e } b = -13$$
: $76 = (-13) \cdot (-5) + 11 \implies q = -5 \text{ ed } r = 11$;

5)
$$a = -21$$
 e $b = 12$: $-21 = 12 \cdot (-2) + 3$ $\implies q = -2$ ed $r = 3$.

2 Si calcoli MCD(a, b) con l'algoritmo di Euclide nei seguenti casi:

1)
$$a = 126 \text{ e } b = 56,$$

2)
$$a = 234 \text{ e } b = 273,$$

3)
$$a = -168 \text{ e } b = 180,$$

4)
$$a = 231 \text{ e } b = 165,$$

5)
$$a = -136 \text{ e } b = 48,$$

6)
$$a = -208 \text{ e } b = 286,$$

7)
$$a = 132 \text{ e } b = 180.$$

Osserviamo che:

- 1. Se d è il massimo comun divisore positivo di a e b, allora d e -d sono i massimi comun divisori di a e b;
- **2.** MCD(a, b) = MCD(b, a);
- **3.** MCD(a, b) = MCD(|a|, |b|).

Quindi in ogni caso calcoliamo con l'algoritmo di Euclide in $\mathbb N$

$$d = MCD(|a|,|b|)$$

scegliendo le notazioni in modo tale che $|a| \ge |b|$, ed avremo che d e -d sono i massimi comun divisori di a e b.

1)
$$126 = 56 \cdot 2 + 14$$

 $56 = 14 \cdot 4 + 0$
 $\implies MCD(126, 56) = 14.$

$$\implies MCD(126, 56) = 14$$

$$\begin{array}{ll} 2) & 273 = 234 \cdot 1 + 39 \\ & 234 = 39 \cdot 6 + 0 \\ \Longrightarrow & MCD(234, 273) = MCD(273, 234) = 39. \end{array}$$

3)
$$180 = 168 \cdot 1 + 12$$

 $168 = 12 \cdot 14 + 0$
 $\implies MCD(-168, 180) = MCD(168, 180) = MCD(180, 168) = 12.$

$$\begin{array}{ll} 4) & 231 = 165 \cdot 1 + 66 \\ & 165 = 66 \cdot 2 + 33 \\ & 66 = 33 \cdot 2 + 0 \\ \Longrightarrow & MCD(231, 165) = 33. \end{array}$$

5)
$$136 = 48 \cdot 2 + 40$$

 $48 = 40 \cdot 1 + 8$
 $40 = 8 \cdot 5 + 0$
 $MCD(-136, 48) = MCD(136, 48) = 8.$

6)
$$286 = 208 \cdot 1 + 78$$

 $208 = 78 \cdot 2 + 52$
 $78 = 52 \cdot 1 + 26$
 $52 = 26 \cdot 2 + 0$
 $\Rightarrow MCD(-208, 286) = MCD(208, 286) = MCD(286, 208) = 26.$

7)
$$180 = 132 \cdot 1 + 48$$

$$132 = 48 \cdot 2 + 36$$

$$48 = 36 \cdot 1 + 12$$

$$36 = 12 \cdot 3 + 0$$

$$\implies MCD(132, 180) = MCD(180, 132) = 12.$$

3 Si calcolino il quoziente q(x) ed il resto r(x) della divisione di f(x) per g(x) $\overline{\operatorname{in}} \mathbb{R}[x]$ nei seguenti casi:

1)
$$f(x) = 12x^5 + 3x^4 + 7x^3 - 11x^2 - 2x - 3$$
 e $g(x) = 3x^3 + x - 3$,
2) $f(x) = 12x^6 + 20x^4 + x^2 - 7$ e $g(x) = 2x^4 + x^2 + 3x - 1$.

1) Dividendo $f(x) = 12x^5 + 3x^4 + 7x^3 - 11x^2 - 2x - 3$ per $g(x) = 3x^3 + x - 3$ si ottengono $q(x) = 4x^2 + x + 1$ ed r(x) = 0. Infatti:

2) Dividendo $f(x) = 12x^6 + 20x^4 + x^2 - 7$ per $g(x) = 2x^4 + x^2 + 3x - 1$ si ottengono $g(x) = 6x^2 + 7$ ed $r(x) = -18x^3 - 21x$. Infatti: