Title: Ev nt and Sport P rformance Methods and Systems

Related Applications

This application claims priority to US Provisional Application No. 60/152,688, which is hereby incorporated by reference.

Field of the Invention

The invention relates to sport performance and measuring sport performance at events like the X-GAMES.

Summary of the Invention

A. In one aspect, the invention (**FIG. 1**) provides systems and methods to monitor and gauge airtime, altitude and spin ratios for an event with a sportsman jumping into the air. For example, the US SKI team has aerial competitions where the team jumps off a ramp and lands in water. The invention of this aspect provides for measuring the time in the air (airtime), the peak altitude, and other factors such as spin ratios (how much the body spun, or how much one part of the body spun relative to other parts or relative to the sports vehicle, e.g., the ski).

In FIG. 1, a digital camera 12 like a SONY DCR VX1000 takes a picture of a sportsman 18 jumping off a ramp 20. Data from the camera 12 goes to a computer 14 such as through an i-Link (IEEE 1394) or "firewire" link 15 to take digital data to the computer (those skilled in the art should appreciate that video data could alternatively be sent through the link 15 and then digitized by a frame-grabber in the computer 14.

Data taken from the computer can be analyzed in a "frame by frame" technique to decipher motion of the sportsman 18 through the frames of data (typically captured at 30Hz or more), as shown in **FIG. 2**. U.S. Patent No. 5,798,519 provides similar processing of frame data and is thus incorporated by reference as useful for application with the invention. For example, since only the sportsman moves, the ramp 24 stays substantially fixed through the several frames of data and so it remains fixed though the sportsman moves from "start" to "stop" positions.

Altitude is determined by referencing the track 17 of the sportsman 18 relative to the object 20. Specifically, system 10 takes an image of the object 20 with a known height and compares that to the motion of the user. Trigonometric relations provide direct correlation to the user's actual height "x" along the track. By way of example, if the object 20 were a mountain at 14,000 feet, then by trigonometry ratios we know that that peak altitude of 14,000 feet corresponds to 50 feet at the sportsman's location. Another example is that an object such as a measuring tape is placed at the same location as the sportsman's track and stored in memory in the computer 14 so that the track 17 is compared relative to an actual height stored at that location through the tape. For instance, if for example 1 meter at the sportsman's position corresponds to 25 pixels of imagery (either on screen or digitally, pixel by pixel of the camera 12), then this information correlates directly to the track 17 such that height "X" is determined.

B. In another aspect, the invention provides 3D tracking of a sport enthusiast via triangulation through an emitter attached with the enthusiast. In this aspect, a radio beacon 58 is attached to the sportsman 60, and antennas 62 capture the signal 58a from the beacon; and this data is compared at the computer 64 to "time" the receipt of signal 58a at each antenna 62 such that he sportsman's location is known at each moment of time. This location is, over time, evaluated to determine metrics such as peak altitude, rotation of the user, drop distance and time in the air.

C. In another aspect, the invention provides for stride-rate evaluations and training for sports such as roller blading. Specifically, two sensing units are attached to the vehicle as shown in **FIG. 4** and these sensing units are evaluated by a common data unit to determine stride rate and other useful sporting performance information.

U.S. Patent No. 5,636,146 is incorporated herein by reference. Appendix A, attached hereto, provides other information for purposes of disclosure, Appendix A being in the form of a PCT application by some of the inventors hereof.