AI25BTECH11013-Gautham

Question:

Show that the points $A(-2\hat{i}+3\hat{j}+5\hat{k})$, $B(\hat{i}+2\hat{j}+3\hat{k})$ and $C(7\hat{i}-\hat{k})$ are collinear.

Let the points are
$$\mathbf{A} \begin{pmatrix} -2 \\ 3 \\ 5 \end{pmatrix}, \mathbf{B} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 and $\mathbf{C} \begin{pmatrix} 7 \\ 0 \\ -1 \end{pmatrix}$.

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} -2 \\ 3 \\ 5 \end{pmatrix} \tag{0.1}$$

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} 1 - (-2) \\ 2 - 3 \\ 3 - 5 \end{pmatrix} \tag{0.2}$$

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix} \tag{0.3}$$

$$\mathbf{C} - \mathbf{A} = \begin{pmatrix} 7 \\ 0 \\ -1 \end{pmatrix} - \begin{pmatrix} -2 \\ 3 \\ 5 \end{pmatrix} \tag{0.4}$$

$$\mathbf{C} - \mathbf{A} = \begin{pmatrix} 7 - (-2) \\ 0 - 3 \\ -1 - 5 \end{pmatrix} \tag{0.5}$$

$$\mathbf{C} - \mathbf{A} = \begin{pmatrix} 9 \\ -3 \\ -6 \end{pmatrix} \tag{0.6}$$

(0.7)

If A, B and C are collinear, then the Rank of matrix (B - A, C - A) should be 1.

$$(\mathbf{B} - \mathbf{A}, \mathbf{C} - \mathbf{A}) = \begin{pmatrix} 3 & 9 \\ -1 & -3 \\ -2 & -6 \end{pmatrix} \tag{0.8}$$

$$R_3 \to (\frac{R_1}{3} \times 2) + R_3$$
 (0.9)
 $R_2 \to \frac{R_1}{3} + R_2$ (0.10)

$$R_2 \to \frac{R_1}{3} + R_2$$
 (0.10)

$$= \begin{pmatrix} 3 & 9 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \tag{0.11}$$

(0.12)

Since all elements of R_2 and R_3 are 0, The Rank of matrix $(\mathbf{B} - \mathbf{A}, \mathbf{C} - \mathbf{A})$ is 1. \implies A, B and C are collinear.

2

Visualization of Points A, B, and C

Fig. 0.1