RICERCA OPERATIVA – 7 crediti

Tema d'esame del 26 gennaio 2017

Scrivere subito!	COGNOME: NOME:	Questo foglio deve essere consegnato
	MATRICOLA:	 con l'elaborato

1. La zia Bice, ricamatrice, coordina la preparazione dei bavaglini da vendere al prossimo mercatino. I bavaglini sono di tre tipi: maschile, femminile e unisex. Ogni bavaglino richiede dei filati nelle quantità, in cm, indicate nella seguente tabella, che riporta anche il tempo in minuti richiesto e il ricavo di vendita.

Bavaglino	Azzurro	Rosa	Giallo	Verde
Maschile	100	10	30	20
Femminile	10	100	40	20
Unisex	30	10	50	70

I fornitori di filati mettono a disposizione delle confezioni con le seguenti caratteristiche (metri di filati dei vari colori e prezzo in euro):

Confezione	Azzurro	Rosa	Giallo	Verde	Prezzo
1	40	30	50	20	20
2	20	50	40	50	25
3	30	40	40	10	15

Ciascun bavaglino richiede manodopera per 15 minuti e viene venduto a 5 euro. La zia Bice e le sue numerose amiche potranno dedicare ai bavaglini 200 ore del loro tempo e devolveranno il ricavato delle vendite, al netto dei costi per i soli filati, in beneficienza. Tenendo conto che tutti i bavaglini ricamati saranno sicuramente venduti, scrivere il modello di programmazione lineare che determini quanti bavaglini ricamare al fine di massimizzare le somme devolute in beneficienza, considerando anche che:

- sono richiesti almeno 10 bavaglini per tipo;
- si vogliono acquistare al massimo due tipi di confezione;
- ciascun fornitore pratica uno sconto del 5% sul prezzo unitario di vendita se si acquistano almeno 10 delle loro confezioni (suggerimento: modellare la decisione sul numero di confezioni da acquistare a prezzo scontato).
- 2. Si risolva con il metodo del simplesso, applicando la regola anticiclo di Bland, il seguente problema di programmazione lineare:

max
$$x_2 - 2 x_3$$

s.t. $x_1 - 2 x_2 + x_3 \le 1$
 $x_1 - x_2 + 2 x_3 \ge -1$
 $2 x_2 - x_3 \le 2$
 $x_1 \ge 0$ $x_2 \ge 0$ $x_3 \le 0$

3. Risolvere con il metodo del branch-and-bound il seguente problema di zaino 0/1

max
$$14 x_1 + 6 x_2 + 12 x_3 + 12 x_4 + 7 x_5 + 15 x_6$$

s.t. $10 x_1 + 6 x_2 + 8 x_3 + 6 x_4 + 8 x_5 + 12 x_6 \le 30$
 $x_i \in \{0,1\}, i = 1...6$

... CONTINUA SUL RETRO ...

... CONTINUA DAL FRONTE ...

4. Dato il seguente grafo, calcolare i cammini minimi a partire dal nodo A verso tutti gli altri nodi.

- a. si scelga l'algoritmo da utilizzare e si motivi la scelta;
- b. si applichi l'algoritmo scelto (riportare e giustificare i passi dell'algoritmo in una tabella);
- c. si riportino l'albero e il grafo dei cammini minimi, e due cammini minimi da A a F (**descrivere** il procedimento per ottenere albero, grafo e cammini).
- 5. a. Enunciare le condizioni di complementarietà primale-duale in generale.
 - b. Applicare tali condizioni per dimostrare che $(x_1, x_2, x_3) = (0, 2, 1)$ è soluzione ottima del seguente problema:

min
$$2 x_1 - 4 x_2 + x_3$$

s.t. $2 x_1 + x_2 + x_3 \ge 2$
 $x_1 - x_2 = -2$
 $2 x_2 - 3 x_3 \le 1$
 $2 x_1 + x_2 + x_3 \ge 1$
 $x_1 \le 0 x_2 \text{ libera} x_3 \ge 0$

6. Si consideri il seguente tableau del simplesso:

x_1	x_2	x_3	x_4	x_5	x_6	\boldsymbol{z}	b
0	0			-7	0	- 1	5
0	1	2	0			0	8
0	0	2	– 1	$\frac{-0}{1}$	1 0	0	2
1	0	3	4	2	0	0	3

Si dica, senza svolgere calcoli e fornendo una giustificazione teorica delle risposte:

- a. riusciamo a individuare una soluzione di base corrispondente? Quale? Possiamo subito dire se è ottima?
- b. perché non è consentita l'operazione di pivot sull'elemento evidenziato nel cerchio (1)?
- c. su quali elementi è possibile effettuare il pivot secondo le regole del simplesso (indipendentemente dalle regole anticiclo)?
- d. quale sarà il cambio base secondo le regole del simplesso e applicando la regola di Bland? Perché la soluzione di base ottenuta in seguito a questo cambio base è sicuramente degenere?