Introduction to Machine Learning

Risk Minimizers

Learning goals

- Know the concepts of the Bayes optimal model (also: risk minimizer, population minimizer)
- Know the Bayes risk
- Know the concept of consistent learners
- Know the concept of the optimal constant model

RISK MINIMIZER

Our goal is to minimize the risk

$$\mathcal{R}_L(f) := \mathbb{E}_{xy}[L(y, f(\mathbf{x}))] = \int L(y, f(\mathbf{x})) d\mathbb{P}_{xy}.$$

for a certain hypothesis $f(\mathbf{x}) \in \mathcal{H}$ and a loss $L(y, f(\mathbf{x}))$.

Let us assume we are in an "ideal world":

- ullet The hypothesis space ${\mathcal H}$ is unrestricted. We can choose any $f:{\mathcal X} o {\mathbb R}^g.$
- We do not care about the optimizer; let us assume every solution in the hypothesis space can be reached efficiently.
- ullet We know \mathbb{P}_{xy} .

How should f be chosen?

RISK MINIMIZER

We call the function $f: \mathcal{X} \to \mathbb{R}^g$ that minimizes the risk

$$f^{*} = \underset{f:\mathcal{X} \to \mathbb{R}^{g}}{\arg \min} \mathcal{R}_{L}(f) = \underset{f:\mathcal{X} \to \mathbb{R}^{g}}{\arg \min} \mathbb{E}_{xy} \left[L(y, f(\mathbf{x})) \right]$$
$$= \underset{f:\mathcal{X} \to \mathbb{R}^{g}}{\arg \min} \int L(y, f(\mathbf{x})) d\mathbb{P}_{xy}.$$

the **risk minimizer**, **population minimizer**, or **Bayes optimal model**. Note that we search over an unrestricted hypothesis space (that is over all possible functions $f: \mathcal{X} \to \mathbb{R}^g$)!

The resulting risk is called Bayes risk

$$\mathcal{R}_{L}^{*}=\inf_{f:\mathcal{X}\rightarrow\mathbb{R}^{g}}\mathcal{R}_{L}\left(f\right) .$$

OPTIMAL POINT-WISE PREDICTIONS

To derive the risk minimizer we usually make use of the following trick:

- We can choose $f(\mathbf{x})$ as we want (unrestricted hypothesis space)
- Consequently, for a fixed value $\mathbf{x} \in \mathcal{X}$ we can select **any** value c we want to predict (we are not restricted by any functional form, e.g., a linear function)
- Instead of looking for the optimal f in function space (which is impossible), we compute the **point-wise optimizer** for every $\mathbf{x} \in \mathcal{X}$.

OPTIMAL POINT-WISE PREDICTIONS

To derive the risk minimizer we usually make use of the following trick:

- We can choose $f(\mathbf{x})$ as we want (unrestricted hypothesis space)
- Consequently, for a fixed value $\mathbf{x} \in \mathcal{X}$ we can select **any** value \mathbf{c} we want to predict (we are not restricted by any functional form, e.g., a linear function)
- Instead of looking for the optimal f in function space (which is impossible), we compute the point-wise optimizer for every x ∈ X.

THEORETICAL AND EMPIRICAL RISK

The risk minimizer in general only allows for theoretical considerations:

- ullet In practice we need to restrict the hypothesis space ${\cal H}$ such that we can efficiently search over it.
- In practice we (usually) do not know \mathbb{P}_{xy} . Instead of $\mathcal{R}(f)$, we are optimizing the empirical risk and

$$\hat{f} = \operatorname*{arg\,min}_{f \in \mathcal{H}} \mathcal{R}_{emp}(f) = \operatorname*{arg\,min}_{f \in \mathcal{H}} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

Note that according to the **law of large numbers** (LLN), the empirical risk converges to the true risk:

$$\bar{\mathcal{R}}_{\text{emp}}(f) = \frac{1}{n} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right) \stackrel{n \to \infty}{\longrightarrow} \mathcal{R}(f).$$

ESTIMATION AND APPROXIMATION ERROR

Goal of learning: Train a model \hat{f} for which the true risk $\mathcal{R}_L\left(\hat{f}\right)$ is close to the Bayes risk \mathcal{R}_L^* . In other words, we want the **Bayes regret**

$$\mathcal{R}_L\left(\hat{f}\right)-\mathcal{R}_L^*$$

to be as low as possible.

The Bayes regret can be decomposed as follows:

$$\mathcal{R}_{L}\left(\hat{f}\right) - \mathcal{R}_{L}^{*} = \underbrace{\left[\mathcal{R}_{L}\left(\hat{f}\right) - \inf_{f \in \mathcal{H}} \mathcal{R}_{L}(f)\right]}_{\text{estimation error}} + \underbrace{\left[\inf_{f \in \mathcal{H}} \mathcal{R}_{L}(f) - \mathcal{R}_{L}^{*}\right]}_{\text{approximation error}}$$

ESTIMATION AND APPROXIMATION ERROR

- $\mathcal{R}_L\left(\hat{f}\right)$ $\inf_{f\in\mathcal{H}}\mathcal{R}(f)$ is the **estimation error**. We fit \hat{f} via empirical risk minimization and (usually) use approximate optimization, so we usually do not find the optimal $f\in\mathcal{H}$.
- $\inf_{f \in \mathcal{H}} \mathcal{R}_L(f) \mathcal{R}_L^*$ is the **approximation error**. We need to restrict to a hypothesis space \mathcal{H} which might not even contain the Bayes optimal model f^* .

A NOTE ON NOTATION

The risk function \mathcal{R}_L depends on the choice of the loss function $L(y, f(\mathbf{x}))$. To make this clear we denote this as subscript:

$$\mathcal{R}_{L}$$

To keep notation simple, we will omit the subscript most of the time.

Keep in mind that the risk \mathcal{R} always depends on the specific choice of the loss function $L(y, f(\mathbf{x}))!$

(UNIVERSALLY) CONSISTENT LEARNERS

Consistency is an asymptotic property of a learning algorithm, which ensures the algorithm returns **better models** when given **more data**.

Let $\mathcal{I}: \mathbb{D} \times \Lambda \to \mathcal{H}$ be a learning algorithm^(*) that takes a training set $\mathcal{D}_{\text{train}} \sim \mathbb{P}_{xy}$ of size n_{train} and estimates a model $\hat{f}: \mathcal{X} \to \mathbb{R}^g$.

The learning method \mathcal{I} is said to be **consistent** w.r.t. a certain distribution \mathbb{P}_{xy} if the risk of the estimated model \hat{f} converges in probability (" $\stackrel{p}{\longrightarrow}$ ") to the Bayes risk \mathcal{R}^* when n_{train} goes to ∞ :

$$\mathcal{R}\left(\mathcal{I}\left(\mathcal{D}_{\mathsf{train}}, \boldsymbol{\lambda}\right)\right) \stackrel{p}{\longrightarrow} \mathcal{R}_{I}^{*} \quad \mathsf{for} \; n_{\mathsf{train}} \to \infty.$$

 $^{(*)}$ $\lambda \in \Lambda$ denote hyperparameters of the learning algorithm.

(UNIVERSALLY) CONSISTENT LEARNERS

Consistency of an algorithm is a statement that is valid for only one particular distribution \mathbb{P}_{xy} .

But since we usually do not have any prior knowledge on \mathbb{P}_{xy} , consistency of algorithms does not offer much help to choose an algorithm for a particular task.

Thus we define the stronger concept of **universal consistency**: An algorithm is said to be universally consistent if it is consistent for **any** distribution \mathbb{P}_{xy} .

Note that universal consistency is obviously a desirable property however, (universal) consistency does not tell us anything about convergence rates ...

OPTIMAL CONSTANT MODEL

While the risk minimizer gives us the (theoretical) optimal solution, the **optimal constant model** (also: featureless predictor) gives us an computable empirical lower baseline solution.

The constant model is the model $f(\mathbf{x}) = \theta$ that optimizes the empirical risk $\mathcal{R}_{\text{emp}}(\theta)$.

RISK MINIMIZER AND OPTIMAL CONSTANT

In the following chapters, we will derive the risk minimizers and optimal constant models for different loss functions.

Name	Risk Minimizer	Optimal Constant
L2	$f^*(\mathbf{x}) = \mathbb{E}_{y x}[y \mid \mathbf{x}]$	$\hat{f}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} y^{(i)}$
L1	$f^*(\mathbf{x}) = med_{y x}[y \mid \mathbf{x}]$	$\hat{f}(\mathbf{x}) = med(y^{(i)})$
0-1	$h^*(\mathbf{x}) = \operatorname{argmax}_{l \in \mathcal{Y}} \mathbb{P}(y = l \mid \mathbf{x})$	$\hat{h}(\mathbf{x}) = mode\left\{y^{(i)}\right\}$
Brier	$\pi^*(\mathbf{x}) = \mathbb{P}(y = 1 \mid \mathbf{x} = \mathbf{x})$	$\hat{\pi}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} y^{(i)}$
Bernoulli (on probs)	$\pi^*(\mathbf{x}) = \mathbb{P}(y = 1 \mid \mathbf{x} = \mathbf{x})$	$\hat{\pi}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} y^{(i)}$
Bernoulli (on scores)	$f^*(\mathbf{x}) = \log\left(\frac{\mathbb{P}(y=1 \mid \mathbf{x})}{1 - \mathbb{P}(y=1 \mid \mathbf{x})}\right)$	$\hat{f}(\mathbf{x}) = \log \frac{n_{+1}}{n_{-1}}$