Examenul de bacalaureat național 2013

Proba E. c)

Matematică *M_pedagogic*

Barem de evaluare și de notare

Varianta 2

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{18} = 3\sqrt{2}$	2p
	$3 + 3\sqrt{2} - 3\sqrt{2} = 3$	3 p
2.	f(3) = 0	2p
	$f(-3) = -6 \Rightarrow f(-3) + f(3) = -6$	3 p
3.	$x^2 + 1 = 5$	3p
	x = -2 sau $x = 2$	2p
4.	Se notează cu x prețul inițial $\Rightarrow 10\% \cdot x = 70$	2p
	x = 700	2p
	Prețul după scumpire este 770 de lei	1p
5.	M mijlocul lui $(PR) \Rightarrow x_M = \frac{x_P + x_R}{2}$ și $y_M = \frac{y_P + y_R}{2}$	1p
	$x_M = 2$	2p
	$y_M = 8$	2p
6.	$\sin B = \frac{AC}{BC}$	2p
	BC = 100	3p

SUBIECTUL al II-lea (30 de puncte)

1.	$(-1)*3 = (-1)\cdot 3 + (-1) + 3 =$	3p
	=-1	2p
2.	x * y = xy + x + y = xy + x + y + 1 - 1	3 p
	=(x+1)(y+1)-1, pentru orice numere reale x şi y	2 p
3.	$x*0 = x \cdot 0 + x + 0 = x$, pentru orice număr real x	2p
	$0 * x = 0 \cdot x + 0 + x = x$, pentru orice număr real x	2p
	Finalizare	1p
4.	$x * x = x \Leftrightarrow x^2 + 2x = x$	3 p
	x = -1 sau $x = 0$	2p
5.	(-1) * x = (-1+1)(x+1)-1=	2p
	=-1, pentru orice număr real x	3 p
6.	(-1)*0*1**2012*2013 = (-1)*(0*1**2012*2013) =	3p
	=-1	2p

SUBIECTUL al III-lea (30 de puncte)

4	(· · · · · · · · · · · · · · · · · · ·	
1.	$A(1) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	
	$A(1) = \begin{vmatrix} 1 & 1 & 1 \end{vmatrix}$	2n
	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$	2p
	1 1 1	
	$\det(A(1)) = \begin{vmatrix} 1 & 1 & 1 \end{vmatrix} = 0$	3 p
	$\det(A(1)) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 0$ $A(1) \cdot A(0) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} = $	
2.	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$	
	$A(1) \cdot A(0) = \begin{vmatrix} 1 & 1 & 1 \end{vmatrix} \cdot \begin{vmatrix} 1 & 0 & 1 \end{vmatrix} =$	2p
	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$	
	$(2\ 2\ 3)$	
	$= \begin{vmatrix} 2 & 2 & 3 \end{vmatrix}$	3р
	$= \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix}$	1
3.	m 1 1	
	$\det(A(m)) = \begin{vmatrix} m & 1 & 1 \\ 1 & m & 1 \\ 1 & 1 & 1 \end{vmatrix} = m^2 + 2 - 2m - 1 =$	3р
		•
	$-m^2-2m+1$ pantru orica număr real m	2p
4.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$A(0), B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = I$	2p
	$= m^{2} - 2m + 1, \text{ pentru orice număr real } m$ $A(0) \cdot B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_{3}$	_
	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$	
	$B \cdot A(0) = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3 \Rightarrow \text{matricea } B \text{ este inversa matricei } A(0)$	3p
5.	Suma elementelor lui $A(m)$ este $2m+7$	2p
	$2m+7=2013 \Leftrightarrow m=1003$	3p
6.	$\begin{cases} y+z=1 \end{cases}$	200
	Pentru $m = 0$ sistemul devine $\begin{cases} x + z = 1 \end{cases}$	2p
	x + y + z = 3	
	x = 2, y = 2, z = -1	3 p