

5 mars 2024 MAM3A

Feuille de TD

Convergences et estimateurs

Exercice 1 Soit (X_n) une suite de v.a. indépendantes dont la loi est définie pour tout n>1 et tout $\alpha>0$ par :

$$\left\{ \begin{array}{lll} \mathbb{P}(X_n = \frac{1}{n}) & = & 1 - \frac{1}{n^a} \\ \mathbb{P}(X_n = n) & = & \frac{1}{n^a} \end{array} \right.$$

En revenant aux définitions

- 1. Étudier la convergence en loi de (X_n) .
- 2. Étudier la convergence en probabilité de (Xn).
- 3. Étudier la convergence en moyenne quadratique de (X_n) .

Exercice 2 On considère une urne contenant deux boules blanches et 4 boules noires, dans laquelle on effectue n tirages avec remise. A chaque tirage (pour $1 \le i \le n$) on associe une v.a. :

$$X_{l} = \begin{cases} 1 & \text{si la boule tirée est blanche} \\ 0 & \text{sinon} \end{cases}$$

Soit $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

- 1. En utilisant l'inégalité de Bienaymé-Tchebytchev, montrer que la variable aléatoire \bar{X}_n converge en probabilité vers une variable aléatoire que l'on précisera.
- 2. Déterminer le nombre minimum n_0 de tirages nécessaires pour que

$$\mathbb{P}(|\tilde{X}_{n_0} - \frac{1}{3}| \ge 0.02) \le 0.01.$$

- En utilisant une loi approchée de Xn, déterminer une autre valeur n'₀ répondant à la question précédente. Comparer n₀ et n'₀.
- Exercice 3 Soit (X_n) une suite de v.a. indépendantes, de même loi de densité pour $\theta > 0$

$$f(x) = e^{-(x-\theta)} \mathbf{I}_{[\theta,+\infty[}(x),$$

- 1. Calculer la fonction de répartition et la densité de la va : $X_{(1)} = \inf_{1 \le i \le n} X_i$.
- 2. Montrer que $X_{(1)}$ converge en probabilité vers θ .
- 3. Montrer qu'elle converge également en moyenne quadratique.
- 4. Quelle est la loi de la variable $Z_n = \sqrt{n}(X_{(1)} \theta)$?

Exercise 4 Soit X une v.a. réelle à valeurs dans $I=[0,1,\dots,a-1]$, où $a\geq 2$ est un entier. Pour tout $k\in I$, on pose $\mathbb{P}(X=k)=p_k>0$. On considère une suite X_n de v.a. indépendantes de même loi que X. On note Y_{nk} la fréquence relative des événements $\{X_i=k\}$ pour $i=1,\dots,n$, i.e. $Y_{nk}=\frac{1}{n}\sum_{i=1}^n 1_{\{X_i=k\}}$.

- 1. Quelle est la loi de Y_{nk} ? Calculer l'espérance et la variance de Y_{nk} .
- 2. Montrer que pour tout $\epsilon > 0$, on a : $\mathbb{P}(|Y_{nk} \mathbb{E}(Y_{nk})| > \epsilon) \le \frac{1}{4n\epsilon^2}$
- 3. En déduire la convergence en loi de la suite (Y_{nk}) vers p_k quand n tend vers $+\infty$.
- 4. A-t-on convergence en moyenne quadratique?
- 5. On suppose maintenant que pour tout k dans I, on a $p_k = 1/a$.

On considère : $X_{(n)} = \sup_{1 \le i \le n} X_i$.

- (a) Déterminer la loi de la va $X_{(n)}$.
- (b) Montrer que $X_{(n)}$ converge en loi vers a-1.

Exercice 5. Soit $(\mathbb{R}^n_+, [Q^{\otimes n}_{\theta}]_{\theta>0})$ un modèle statistique tel que pour chaque $\theta>0$, Q_{θ} est la loi sur \mathbb{R}_+ de densité

$$f_{\theta}(x) = \frac{1}{2\sqrt{x\theta}} \mathbb{1}_{[0,\theta]}(x).$$

Le paramètre d'intérêt est le paramètre de ce modèle. Dans la suite, on note $(X_1,\cdots,X_n)\sim Q_{\theta}^{\otimes n}$ et $\hat{\theta}_1=\max_{1\leq i\leq n}X_i$.

- 1. Calculer la fonction de répartition de $\hat{\theta}_1$ et en déduire sa densité.
- 2. Montrer que $\hat{\theta}_1$ est biaisé, mais asymptotiquement sans biais.
- 3. Calculer l'espérance de X_1 et en déduire un autre estimateur $\hat{\theta}_2$ de θ , qui est sans biais.
- 4. Déterminer les risques quadratiques de $\hat{\theta}_1$ et $\hat{\theta}_2$. Lequel est préférable? Sont-ils consistants?
- 5. Trouver les lois limites des estimateurs $\hat{\theta}_1$ et $\hat{\theta}_2$.

Exercice 6. On considère le modèle statistique $(\mathbb{R}^n, [\mathcal{N}(0, \theta^2)^{\otimes n}]_{\theta>0})$. Le paramètre d'intérêt est le paramètre du modèle

- 1. Calculer le moment d'ordre 1 de la variable aléatoire |Z|, si Z suit la loi $\mathcal{N}(0,\theta^2)$. En déduire un estimateur $\hat{\theta}_1$ par insertion. Montrer que $\hat{\theta}_1$ est consistant.
- 2. Construire un autre estimateur $\hat{\theta}_2$ par la méthode des moments. Montrer qu'il est consistant.
- 3. Les estimateurs $\hat{\theta}_1$ et $\hat{\theta}_2$ sont-ils biaisés?
- 4. Calculer la loi limite et la vitesse de $\hat{\theta}_1$ et $\hat{\theta}_2$. De ce point de vue, lequel de ces deux estimateurs est le plus performant?

Exercice 7. Soit $(\mathbb{R}^n, |Q_{\theta}^{\otimes n}|_{\theta \in [-1,1]})$ un modèle statistique tel qué, pour chaque $\theta \in [-1,1[,Q_{\theta}$ désigne la loi sur \mathbb{R} de densité

$$\frac{1}{2}(1+\theta x)\mathbb{1}_{]-1,1[}(x).$$

- 1. Construire un estimateur $\hat{\theta}$ de θ en utilisant la méthode des moments.
- 2. Calculer son biais et son risque quadratique moyen.
- 3. Soit α < [0, 1]. Déterminer la loi limite de $\hat{\theta}$, puis en déduire un intervalle de confiance asymptotique pour θ au niveau de confiance $(1-\alpha)$.