E1-K						
25.	9.	2017				

Charakteristika žárovky

3D2 Meinlschmidt

ZADÁNÍ:

- Sestrojte charakteristiky žárovky I = f(U), R = f(U)
- Graf vypracujte jak na počítači, tak i ručně na milimetrový papír
- Do čísla úlohy zapište označení varianty *K*, kterou jste dostali při zadání úlohy od vyučujícího

TEORIE:

V první řadě je zde aplikován tzv. Ohmův zákon, jež vyjadřuje vztah mezi elektrickým odporem, napětím a proudem v elektricky vodivém prostředí a zároveň přináší definici elektrického odporu $R = \frac{U}{I} [\Omega]$.

Elektrický odpor R [Ω] je skalární fyzikální veličina, která charakterizuje schopnost elektrických vodičů vést elektrický proud, ten je definován jako uspořádaný pohyb nosičů elektrického náboje. Těmi jsou v kovech zpravidla valenční elektrony, které se mohou působením elektrického napětí volně pohybovat v krystalové mřížce daného kovu.

Elektrický proud I[A] je jakožto skalární fyzikální veličina roven množství elektrického náboje, který projde průřezem vodiče za jednotku času.

Elektrický náboj Q [C] vyjadřuje určitou vlastnost částic, vzájemně působit na ostatní částice elektrickou silou v elektrickém poli podobně, jako probíhá působení sil v poli gravitačním. Elektrické pole má původ právě v částicích s elektrickým nábojem, který může být neutrální, kladný nebo také záporný. Kladný a záporný náboj je dán pouze konvencí, která elektronu přisuzuje náboj záporný, tím pádem je nositelem kladného náboje proton. Velikost náboje obou těchto částic je stejná a je považována za elementární elektrický náboj e, který je po zaokrouhlení roven $e=1,602177\cdot 10^{-19}$ C.

Na elektrický náboj svým způsobem navazuje elektrický potenciál φ [V], který jakožto skalární fyzikální veličina popisuje potenciální energii bodu v neměnném elektrickém poli. Tento potenciál lze zjistit následujícím vzorcem, kde r značí polohový vektor a ε permitivitu prostředí, $\varphi(r) = \frac{Q}{4\pi r \varepsilon}$.

Od elektrického potenciálu se dále odvíjí elektrické napětí U[V], které je definováno jako skalární fyzikální veličina vyjadřující rozdíl dvou elektrických potenciálů $U=\varphi(r_1)-\varphi(r_2)$, napětí mezi dvěma body lze také vypočítat s užitím elektrické intenzity a vzdálenosti mezi body v elektrickém poli. Vzniklým napětím lze přemístit elektrický náboj Q po určité dráze o délce l. Vykonanou práci při tomto přenosu lze zapsat jako $W=Q\cdot U[J]$. Jak bylo řečeno, uspořádaný pohyb nosičů elektrického náboje nazýváme elektrický proud.

Tomu je zpravidla kladen elektrický odpor daného prostředí, který je dán užitým materiálem, tvarem, teplotou (zabaleno do rezistivity materiálu), délkou vodiče a jeho průřezem. Základní vztah zde platí $R = \frac{\rho l}{s} [\Omega]$, kde ρ je rezistivita vodiče $[\Omega m]$, l jeho délka [m] a S jeho průřez $[m^2]$.

Pro účely této úlohy, kde teplota vodiče hraje u žárovky klíčovou roli (při dostatečném zahřátí vodiče dochází k tomu, že září jak v infračervené oblasti, tak i ve viditelném spektru), proto k teorii přidáme ještě vliv teploty materiálu na jeho rezistivitu a to $p = p_0(1 + \alpha \Delta t)$, kde p_0 se rovná počáteční rezistivitě (v tabulkách měřena zpravidla při 20 °C), α je teplotní součinitel elektrického odporu a Δt rozdíl teplot ve [°C].

ODPOVĚDI NA OTÁZKY:

Jaký je odpor vypnuté žárovky? Vzhledem k neúplnosti zadání nelze poskytnout úplnou odpověď. V případě, že vypnutím je myšleno, že vláknem žárovky neprotéká žádný proud, lze říci, že odpor vlákna je v tomto případě nekonečný. Pokud bychom chtěli zjistit odpor vlákna za studena (při 20 °C), potřebovali bychom znát ze zadání alespoň výkon a teplotu vlákna při daném proudu.

SCHÉMA ZAPOJENÍ:

POUŽITÉ PŘÍSTROJE A POMŮCKY:

Nebyly užity žádné měřící přístroje ani zařízení.

POPIS PRÁCE:

Žádné měření s tímto protokolem neprobíhalo.

TABULKY:

U[V]	I[mA]	$R[\Omega]$	U[V]	I[mA]	$R[\Omega]$
0,000	0,000		13,000	318,000	40,881
1,000	116,000	8,621	14,000	328,000	42,683
2,000	123,000	16,260	15,000	344,000	43,605
3,000	170,000	17,647	16,000	353,000	45,326
4,000	186,000	21,505	17,000	359,000	47,354
5,000	204,000	24,510	18,000	378,000	47,619
6,000	221,000	27,149	19,000	383,000	49,608
7,000	227,000	30,837	20,000	391,000	51,151
8,000	249,000	32,129	21,000	398,000	52,764
9,000	260,000	34,615	22,000	404,000	54,455
10,000	276,000	36,232	23,000	411,000	55,961
11,000	287,000	38,328	24,000	416,000	57,692
12,000	301,000	39,867			

VÝPOČTY:

$$R = \frac{U}{I}$$

$$R = \frac{1,000}{116,000 \cdot 10^{-3}}$$

$$R = 8,621 \Omega$$

GRAF:

O Proud [mA] \times Odpor [Ω]

SPOLUPRACOVALI:

Úloha byla vypracována samostatně.

ZÁVĚR:

Byly splněny všechny úkoly ze zadání. Mezi získané poznatky patří stručný výklad základů elektrotechniky v kapitole teorie, kde jsem jednoduše shrnul základní vztahy mezi veličinami. Dále jsem si oživil vliv teploty a dalších veličin na odpor vodiče a dozvěděl se o průběhu voltampérové charakteristiky žárovky. Jelikož průběh proudu není vzhledem ke "skoku" na začátku měření přímo lineární, rozhodl jsem se pro spojení jednotlivých hodnot využít polynomickou funkci, která je blíže skutečnému průběhu.