

Departement Informatik

Theoretische Informatik

Prof. Dr. Juraj Hromkovič

1. Zwischenklausur

Zürich, 4. November 2011

Aufgabe 1

(a) Konstruieren Sie einen (deterministischen) endlichen Automaten, der die Sprache

$$L_1 = \{w \in \{0, 1, 2\}^* \mid (|w|_0 + 3 \cdot |w|_1 + 4 \cdot |w|_2) \mod 4 = 2\}$$

akzeptiert und geben Sie für jeden Zustand q Ihres konstruierten Automaten die Klasse $\mathrm{Kl}[q]$ an.

(b) Konstruieren Sie einen (deterministischen) endlichen Automaten für die Sprache

$$L_1 \cap \{w = x11y \mid x, y \in \{0, 1, 2\}^*\}.$$

5+5 Punkte

Aufgabe 2

Zeigen Sie, dass die folgenden Sprachen nicht regulär sind.

- (a) $L_1 = \{u11u \mid u \in \{0, 1\}^+\},\$
- (b) $L_2 = \{1^i 0^{i^2} \mid i \in \mathbb{N}\}.$

Hierfür dürfen Sie sich jeweils eine der folgenden drei Beweismethoden aussuchen, jedoch nicht dieselbe für beide Aufgabenteile.

- (i) Mit Hilfe eines angenommenen endlichen Automaten (Verwendung von Lemma 3.3 aus dem Buch oder direkt über den Automaten),
- (ii) mit Hilfe des Pumping-Lemmas, oder
- (iii) mit der Methode der Kolmogorov-Komplexität.

Bitte beachten Sie, dass bei Lösungen, die dieselbe Methode für beide Teilaufgaben verwenden, nur Teilaufgabe (a) bewertet wird.

5+5 Punkte

(bitte wenden)

Aufgabe 3

Sei n_1, n_2, n_3, \ldots eine aufsteigende unendliche Folge von natürlichen Zahlen mit $K(n_i) \ge \lceil \log_2 n_i \rceil / 2$. Sei für alle $i \in \mathbb{N} - \{0\}$ die Zahl q_i die grösste Primzahl, die die Zahl n_i teilt. Zeigen Sie, dass dann die Menge $Q = \{q_i \mid i \in \mathbb{N} - \{0\}\}$ unendlich ist. **10 Punkte**

Aufgabe 4

Seien G_1 und G_2 zwei beliebige reguläre Grammatiken. Geben Sie eine formale Konstruktion an, wie man aus G_1 und G_2 eine reguläre Grammatik für $L(G_1) \cdot L(G_2)$ erhalten kann und erläutern Sie kurz informell die Korrektheit Ihrer Konstruktion.

4 Punkte

Aufgabe 5

Für alle $i \in \mathbb{N}$ sei w_i das *i*-te Wort über $\{0,1\}$ in kanonischer Reihenfolge und M_i die *i*-te Turingmaschine in kanonischer Reihenfolge. Wir betrachten die folgenden zwei Sprachen:

- (a) $L_{\text{diagA}} = \{ w \in \{0,1\}^* \mid w = w_i \text{ für ein } i \in \mathbb{N} \text{ und } M_{2i+5} \text{ akzeptiert } w \text{ nicht} \},$
- (b) $L_{\text{diagB}} = \{w \in \{0,1\}^* \mid w = w_{2i+5} \text{ für ein } i \in \mathbb{N} \text{ und } M_i \text{ akzeptiert } w \text{ nicht}\}.$

Zeigen Sie für die eine der beiden Sprachen (analog zum Beweis für die Diagonalsprache), dass sie nicht rekursiv aufzählbar ist, und begründen Sie, warum für die andere Sprache ein derartiger Beweis nicht möglich ist.

6 Punkte