# Week 6

# **Hypothesis Testing**

Paul Laskowski and D. Alex Hughes January 30, 2023

UC Berkeley, School of Information

# **Frequentist Statistics**

**6.1 Historical Development of** 

#### Introduction

- Hypothesis, H, is a model for how the world might work
- In practice, evidence is rarely conclusive
- We want Pr(H|D), or the probability of the event that our hypothesis is true

#### THE DILEMMA

Whether our hypothesis is true is something we can never know

- The world is not a perfectly controlled lab
- Evidence collected contains information but does not begin to identify a unique model out of all the possible models
- We do not know how to weight all the possibilities out there

#### **EXAMPLE 1**

## You flip a coin once and it lands on heads

What is the probability that it is a double-headed coin?

Is there enough information to answer this?

- · How did the coin get there?
- The context is missing:
  - How do we choose between the different models?
  - How do we weight all the alternatives?
- Even with more information, you can never know the context completely

#### **EXAMPLE 2**

#### **Isaac Newton**

Both motions are consistent with a gravitation attraction that is proportional to the square of the distance between the objects

- What is the probability that Newton's theory of gravity is correct?
- **Problem:** Newton's second theory seemed to work up to the precision of 17th-century instruments
- Only later were instruments developed that were precise enough to show Newton's laws were incorrect

# **EXAMPLE 2 (CONT.)**

- How could Newton decide how probable his model was compared to general relativity (not imagined yet)?
- If he could have imagined another theory, would we be equipped to compare two very different ideas?
- We could never write down the infinite number of models consistent with observations of the planet in order to assign each a probability
- It may not even make sense to assign a probability to Newton's gravity (eg. true state of world or not)

# EXAMPLE 3

You discover three specimens of a new species of squid that measure 3.2, 3.3, and 4.0 feet long

- What is the probability that the average length amount the entire species is 3.5 feet?
  - Probability zero for a single number (point estimate) probability that the average length is between 3 and 4 feet?
  - · Positive number for length
  - No new numbers that have not been imagined
  - · A better grasp of the possibilities

# **EXAMPLE 3 (CONT.)**

- However, we don't know how representative the specimens are
  - · We still don't know all the relevant information
  - · Examples: deep water pressure, amount of light

We cannot deduce the probability of our model because we do not know enough about the structure of the world

#### **TWO BRANCHES OF STATISTICS**



# 6.4 The Frequentist Approach

#### THE BIRTH OF MODERN STATISTICS



**Jerzy Neyman** April 15, 1894– August 5, 1981



Egon Pearson August 11, 1895– June 12, 1980

- Before the 1930's, there were lots of statistical procedures but no coherent account of how to choose the right one
- Neyman and Pearson published articles that added a rigorous mathematical treatment, forming the basis of frequentist statistics

#### THE CENTRAL DILEMMA

- We observe data, D
- Given that this data occurs, we want the probability that our hypothesis P(H|D) is **true**

#### To a strict frequentist:

- Not just impossible to compute
- Does not even make sense to assign a probability to a hypothesis

# **OBJECTIVE PROBABILITY**

A frequentist defines probability as a matter of long-run frequencies

- We need to specify a collective of elements
  - Eg. throws of a dice
  - Collective: a frame of observations that can happen over and over
- As number of observations approaches infinity, proportion of throws of the die that show a 3 is 1/6
- The probability is the long-run frequency of the event relative to all observations (or of 3's relative to all throws)
  - Called objective probability

# **OBJECTIVE PROBABILITY AND HYPOTHESIS**

- If you view probability as objective, you cannot talk about the probability of a hypothesis
- it is just true or false
- Subjective Probability: The probability of a hypothesis
  - Allows for disagreement about what it is
  - · Reflects our lack of information

# So, what probabilities can we study?

• We need a long-run collective

# PR(D|H)

- *H* = hypothesis
- D = data

Assume H is true and call it the null hypothesis

- Has to be quite specific (the only extra assumption we're making)
- Is the basis for predictions we need to make about what data should come out of the experiment
- Governs how the experiment behaves as we run it over and over

# PR(D|H) (cont.)

#### Now we have a meaningful collective

- Can look at the relative frequencies of different outcomes
- Can specifically look at the number of hypothetical experiments in which we would get data at least as extreme as D
  - Captured by p-value
  - p-value: The probability of getting data as extreme as our observations, assuming the null hypothesis is true

**Components of a Hypothesis Test** 

#### **NOTES WHILE SCREENSHARING**

$$g(x_1,X_2,\dots,X_n)\to S\in\mathbb{R}$$
  $H_0=0$ 

#### **HYPOTHESIS TEST EXAMPLE**

#### Mad data science

Suppose that your lab has synthesized a new compound, *Vitamin W*.

Let random variable *B* represent the change in blood pressure that results from taking *Vitamin W*.

Let 
$$\mu = E[B]$$
.

You need to make a decision, to invest resources in Vitamin W or not.

#### TWO POSSIBLE STATES OF THE WORLD

**Goal:** Begin with a reasonable default supposition; leave this supposition behind if data provides compelling evidence

## **Null hypothesis**

- Default assumption, status quo, statement that data might overturn
- $H_\varnothing$  : Usually  $\mu=0$
- No effect

With compelling evidence, we leave the specific null hypothesis  $(H_{\varnothing})$  for the alternative  $(H_a)$ 

# **Alternative hypothesis**

- Idea or alternative to status quo
- $H_a$ : Usually  $\mu \neq o$
- Some effect exists

## **A HYPOTHESIS TEST**

A hypothesis test is a procedure.



Reject Null

Do Not Reject Null

# **FALSE POSITIVE AND FALSE NEGATIVE ERRORS**

|                   | True state of the world |                                   |
|-------------------|-------------------------|-----------------------------------|
|                   | The null is true        | The null is false                 |
| Reject the null   | False Positive          |                                   |
|                   | (Type I Error)          |                                   |
| Do not reject the |                         | False Negative                    |
| null              |                         | False Negative<br>(Type II Error) |

# **FALSE POSITIVE AND FALSE NEGATIVE ERRORS (CONT.)**

#### **False Positive Errors**

- Typically the most destructive
- Error rate, denoted  $\alpha$ , is the probability of rejecting the null hypothesis when we should not;  $P(\text{Reject } H_{\varnothing}|H_{\varnothing})$
- Starting with Ronald Fisher: set  $\alpha = 0.05$

A hypothesis test is a procedure for rejecting or not rejecting a null, such that the false positive error rate is controlled ( $\alpha = 0.05$ ).

#### **BREAKING DOWN A TEST PROCEDURE**

#### A test statistic

- · A function of our sample
- Measures deviations from the null hypothesis
- Distribution must be completely determined by the null

# A rejection region

- A set of values for which we will reject the null
- Chosen to be contrary to the null
- Total probability must be  $\alpha = \text{0.05}$

#### WHAT A HYPOTHESIS TEST DOESN'T DO

## A hypothesis test does not prove the null hypothesis.

- We control Type 1 error rates
- We cannot control Type 2 error rates
- How can you be sure the real B is not 0.01? Or 0.00001?

#### Never accept the null hypothesis.

· The valid decisions are reject and fail to reject.

# The One-Sample z-Test

#### **Vitamin W Example**

Suppose  $(B_1,..,B_{100})$  are i.i.d. random variables with mean  $\mu={\rm E}[B]$ , representing changes in blood pressure.

Assume  $B \sim N(\mu, \sigma)$ . Assume we know  $\sigma[B] = 20$ .



# One- and Two-Tailed Tests

## THE TWO-TAILED Z-TEST

#### **Normal Distribution**



- Null hypothesis:  $\mu = 0$
- Alternative hypothesis:  $\mu \neq 0$

## THE ONE-TAILED Z-TEST





- Null hypothesis:  $\mu = 0$
- Alternative hypothesis 1:  $\mu > 0$
- Alternative hypothesis 2:  $\mu < 0$

## **CHOOSING ONE OR TWO TAILS**



Switching your test after you see the statistic is cheating.

#### **ONE-TAILED TEST: THINGS TO CONSIDER**

Before using a one-tailed test, ask yourself these questions:

- 1. Will the audience believe that I started with one tail before I saw the data?
- 2. Will the audience share my opinion of which tail is interesting?
- 3. Am I really 100% committed to only this tail?
  - What if the effect turns out to be huge, but in the other direction?
  - Would I be willing to call that a negative result?
  - Can I convince my audience I have this much commitment?

# **T-Test Assumptions**

# T-TEST ASSUMPTIONS, PART I

# **Assumptions of t-test**

The textbook assumptions

- X is a metric variable.
- $\{X_1, X_2, ..., X_n\}$  is a random sample.
- X has a normal distribution.

Variables are almost never normal.

# T-TEST ASSUMPTIONS, PART II

But, in the large sample case, this is more plausible.

## Large sample t-test assumptions

#### If:

- X is a metric variable
- $\{X_1, X_2, ..., X_n\}$  is a random sample
- n is large enough that the CLT implies a normal distribution of mean

Then: The t-test is asymptotically valid

# T-TEST ASSUMPTIONS, PART III

## T-TEST ASSUMPTIONS, PART IV

The t-test is considered "reasonably robust," even when n < 30, as long as deviations from normality are moderate.

However, watch out for strong skewness, especially when n < 30.

## Twenty draws from gamma distributions



### Twenty draws from gamma distributions



### Twenty draws from gamma distributions



Twenty draws from gamma distributions



### Twenty draws from gamma distributions



## Twenty draws from gamma distributions



### Twenty draws from gamma distributions



## Twenty draws from gamma distributions



### Twenty draws from gamma distributions



### Twenty draws from gamma distributions



### Twenty draws from gamma distributions



## Twenty draws from gamma distributions



### Twenty draws from gamma distributions



### Twenty draws from gamma distributions



### Twenty draws from gamma distributions



## Twenty draws from gamma distributions



### Twenty draws from gamma distributions



## Twenty draws from gamma distributions



### Twenty draws from gamma distributions



## Twenty draws from gamma distributions



### Twenty draws from gamma distributions



## Twenty draws from gamma distributions



### Twenty draws from gamma distributions



## Twenty draws from gamma distributions



### Twenty draws from gamma distributions



### Twenty draws from gamma distributions



### Twenty draws from gamma distributions



#### **GAMMA WITH INCREASING SKEW**

#### Twenty draws from gamma distributions

#### Gamma Distribution with Skew: 3.9



#### **GAMMA WITH INCREASING SKEW**

#### Twenty draws from gamma distributions

#### Gamma Distribution with Skew: 4.0



#### **T-TEST ASSUMPTIONS**

#### More practical guidance:

- X is a metric variable.
- $\{X_1, X_2, ..., X_n\}$  is a random sample.
- The distribution is not too non-normal, considering n.

When the t-test is not valid, consider using a non-parametric test instead.

# Introduction to P-Values

#### **INTRODUCING P-VALUES**

The p-value is the probability, calculated assuming that the null hypothesis is true, of obtaining a value of the test statistic at least as contradictory to  $H_{\rm o}$  as the value calculated from the available sample.

Jay L. Devore (2015)

#### **Z-DISTRIBUTION**

#### THE P-VALUE FOR A Z-TEST

#### **Vitamin W**

You measure the effects of Vitamin W on blood pressure (measured in mmHg) for 100 patients and get  $\bar{X}=3$ .

Assume  $X \sim N(\mu, 20)$ .

- $H_0: \mu = 0$
- $\mathbf{Z} = \frac{\bar{\mathbf{X}} \mu_0}{\sigma / \sqrt{\mathbf{n}}}$

#### THE P-Value and Decision Rules, Part I

Neyman-Pearson hypothesis testing: rules to make a decision and usually be right ( $\alpha = 0.05$ )

#### A classic z-test

- z=1  $\rightarrow$  Do not reject null.
- $z=2 \rightarrow Reject null.$
- z=10  $\rightarrow$  Reject null.
- Strict frequentist with a dichotomous decision rule: treat z = 2 and z = 10 identically.
- But is there value in knowing how contrary the data is to the null?

#### THE P-VALUE AND DECISION RULES, PART II

|z| >critical value  $\Rightarrow$  reject  $H_0$ 

 $|z| < critical value \Rightarrow fail to reject H_0$ 

#### **Normal Distribution**



#### THE P-Value and Decision Rules, Part III

|z| >critical value  $\Rightarrow$  reject  $H_0$ 

 $|z| < \text{critical value} \Rightarrow \text{fail to reject } H_0$ 

#### **Normal Distribution**



#### AN EQUIVALENT DECISION PROCEDURE

Compute p-value.

- If  $p < .05 \Rightarrow \text{reject } H_0$
- If  $p \ge .05 \Rightarrow$  do not reject  $H_0$

But, can you justify making such a bright-line statement after reducing information so much?

- 1. Concept
- 2. Measurement
- 3. Statistic
- 4. Assumptions about distribution
- 5. p-value
- 6. Reject/fail to reject

## t-Test and p-Values

#### **P-Value Convention**

| p-value range   | Convention              | Symbol |
|-----------------|-------------------------|--------|
| <i>p</i> > 0.10 | Non-significant         |        |
| 0.10 > p > 0.05 | Marginally-significant  | •      |
| <i>p</i> < 0.05 | Significant             | *      |
| <i>p</i> < 0.01 | Highly significant      | **     |
| p < 0.001       | Very highly significant | ***    |

#### **REPORTING TEST RESULTS**

- A t-test for the effect of Vitamin W on blood pressure was highly significant (t = 3.1, p = .008).
- We found evidence that Vitamin W decreases blood pressure (t = 2.3, p = .04).
- The effect of Vitamin X on blood pressure was not statistically significant (t = 1.2, p = .23).

| Vitamin W | Vitamin X |
|-----------|-----------|
| 2.2 **    | 1.2       |
| (0.6)     | (0.8)     |

This is half the story; next, you'll need to describe practical significance.

#### **VARIABLE IMPORTANCE AND P-VALUES**

Does a small p-value mean that a variable is "important"?

- Statistical significance
- Practical significance

#### **A WARNING**

A very common mistake is to assume a p-value is the chance the null hypothesis is true.

Frequentist statistics cannot tell you the probability of a hypothesis!

#### A WARNING (CONT.)

#### **Example**

I test whether Vitamin X decreases blood pressure: p = 0.03.

However, you know that Vitamin X is secretly cornstarch because you created it yourself.

My test will not convince you that there is a 97% chance Vitamin X decreases blood pressure.

### **Statistical Power**

#### **FALSE POSITIVE AND FALSE NEGATIVE ERRORS**

|                        | The null is true   | The null is false   |
|------------------------|--------------------|---------------------|
| Reject the null        | False Positive (I) |                     |
| Do not reject the null |                    | False Negative (II) |

- False Positive (I) errors are jumping without cause
- False Negative (II) errors are failing to jump when you should
  - Failing to detect a real effect
  - Missed opportunity to create a product, publish a paper, or advance knowledge

#### STATISTICAL POWER, PART I

#### **Much Vitamin W**

Consider a specific alternate hypothesis:

- H<sub>a</sub>: Vitamin W decreases blood pressure by 20 mmHg
- False Negative Error Rate:  $\beta = P(\text{not rejecting } H_0|H_a)$
- Statistical power:  $1 \beta$
- Statistical power is the probability of supporting the alternate hypothesis, assuming it is true

#### STATISTICAL POWER, PART II

#### STATISTICAL POWER, PART II

#### STATISTICAL POWER, PART III

#### How to increase power

- Increase sample size.
- Choose a powerful test (if you can justify its assumptions).

**Practical Significance** 

#### **PRACTICAL SIGNIFICANCE**

#### Statistical significance

 How much does the data support the existence of an effect?

#### **Practical significance**

- · Is the size of this effect important?
- What is the magnitude of the effect?
- Should we care about this effect?

#### **EXAMPLE**

#### **Productivity supplements**

#### **Vitamin W**

$$n=30$$
 $\mu_{treat}=12.6$ 
 $\mu_{control}=6.1$ 
 $p=0.11$ 

"The difference between groups was not statistically significant, (t = 1.34, p = 0.11)."

#### **Vitamin Q**

$$n=30,000$$
  $\mu_{treat}=6.25$   $\mu_{control}=6.21$   $p=0.0005$ 

"The difference between the two groups was highly significant, (t = 3.34, p < 0.001)."

#### **PRACTICAL SIGNIFICANCE: CONTEXT**

**Primary goal**: Provide context for your audience to reason about results.

- · Who is your audience?
- What action might be taken based on these results?
- How does this result alter how you would run the business?
- What is the cost-benefit for implementing a change based on this result?
- How does this result "stack up" to other effects?

#### PRACTICAL SIGNIFICANCE: MODEL EXPLAINABILITY

- · Some tasks require explainable models.
- Finance, healthcare, insurance, and other regulated industries stipulate specific model forms .
- Humans reason in linear hypotheses—
  higher-dimensional and conditional hypotheses are
  too much to keep in mind.

#### PRACTICAL SIGNIFICANCE: EFFECT SIZES

#### **Effect sizes**

- Single-number metrics that characterize the magnitude of an effect
- Population parameters that we estimate—do not vary based on sample size

#### **Invalid effect size metrics**

- t-stat
- p-value

#### Valid effect size metrics

- Mean values
- Difference in means between groups

#### STANDARD EFFECT SIZE MEASURES

Standardized effect sizes are designed to be flexible and apply in many scenarios:

- Cohen's d
- Correlation  $\rho$
- Cramer's V

General metrics ignore the specific context around your research or business question.

#### COHEN'S D

Sometimes, a mean (or difference in means) is hard to assess because the units are unfamiliar.

• **Example**: The effect of angled bristles on tooth decay is 5 millicaviparsecs per brushstroke

#### Cohen's d

Compare effect size relative to the underlying natural variation in the outcome.

Cohen's 
$$d = \frac{\text{mean difference}}{\text{standard deviation}}$$

#### COHEN'S D (CONT.)



#### Rules of thumb (according to Cohen)

```
Small effect d = 0.2
Medium effect d = 0.5
Large effect d = 0.8
```

- Applicable across a huge number of contexts
- Ignores any important differences between context
- Saving dollars or saving lives are the same to Cohen's d

#### **TAKEAWAYS**

- After a statistical test, it's important to assess both statistical significance and practical significance.
- Standard effect size measures can help in a wide variety of situations.
- But don't get carried away and reach for them automatically.
- The main objective is to clearly explain how important the magnitude of the effect is.

## Reporting

**Guidelines For Statistical** 

#### **GUIDELINES FOR STATISTICAL REPORTING**

- Communicating your results is a key part of statistical analysis
- In this class (and other classes in the program) we'll ask you to submit your analysis as a written report
- Next are some guidelines to keep in mind when writing a report

In this case, the guidelines are specific to exploratory analysis

#### **GUIDELINE ONE**

#### A statistical analysis is a written argument

- · A good writing style is key
- This is technical writing: aim for clarity and exposition
- · All rules of good writing apply
  - · Organize your argument clearly
  - · Guide reader through the evidence in the data
  - Proofread

#### **GUIDELINE TWO**

## If you don't have something nice to say (about your output), don't display it at all

- · There should be no output dumps
- Every graph should be mentioned in your writing and should have some purpose
- · Explain what the graphs and numbers mean

#### **GUIDELINE THREE**

#### You should document decisions

- If you decide that observations should be removed, state which ones
- If values are suspicious, but you leave them in, state that too
- If you transform a variable, for example, by taking the logarithm, state that
- Your justification can often be very brief (just a sentence), but make sure that the reader can follow your logic

#### **GUIDELINE FOUR**

### Identify features that should be reflected in statistical models

- This will make more sense once you have experience building models
- Keep in mind the purpose of the analysis
- Eg. if you're interested in explaining the price of a house, look to see what kind of relationship that variable has with the explanatory variables
  - · Is it linear?
  - Is it exponential?
  - Are there values that don't seem to fit with the overall trend?

#### **GUIDELINE FIVE**

## Remember the difference between sample and population

- At this point, we don't know how to model a population This means that you must confine your conclusions to the sample
  - You can talk about sample means, sample covariances
- You can't say anything about the population that generated your sample

#### **GUIDELINE FIVE (CONT.)**

## Remember the difference between sample and population

- Be wary of technical words-in particular the word significant
  - People might casually say one value is significantly bigger than another
  - But this has a technical meaning, and it implies that we've built a model and performed a statistical test

#### **GUIDELINE SIX**

#### Show us the code (a guideline for this class)

- We really want to see the code that generates your output so we can follow your analysis in detail, step by step
  - Typically, your software will have a setting to suppress the code when generating a pdf report, but don't do it
- This is probably the biggest difference between writing analyses in school and in a professional context

#### **GUIDELINE SIX (CONT.)**

#### Show us the code (a guideline for this class)

- In most situations, you have to think about different levels of detail for different audiences
  - It's usually a good idea to provide an executive summary
  - Not everyone can read 50 pages of output
  - Often, you'll want to move details like your script to an appendix
- In this class, however, we'd like to see your code in the body of your report so we can evaluate it effectively