Electronic Circuits

- An electronic circuit is a network of one or more interconnected circuit elements.
- The three most basic types of circuit elements are:
 - resistors:
 - inductors; and
 - capacitors.
- Two fundamental quantities of interest in electronic circuits are current and voltage.
- Current is the rate at which electric charge flows through some part of a circuit, such as a circuit element, and is measured in units of amperes (A).
- Voltage is the difference in electric potential between two points in a circuit, such as across a circuit element, and is measured in units of volts (V).
- Voltage is essentially a force that makes electric charge (or current) flow.

Resistors

- A resistor is a circuit element that opposes the flow of current.
- A resistor is characterized by an equation of the form

$$v(t) = Ri(t) \quad \left(ext{or equivalently, } i(t) = rac{1}{R}v(t)
ight),$$

where R is a nonnegative real constant, and v and i respectively denote the voltage across and current through the resistor as a function of time.

- As a matter of terminology, the quantity R is known as the resistance of the resistor.
- Resistance is measured in units of ohms (Ω) .
- In circuit diagrams, a resistor is denoted by the symbol shown below.

Inductors

- An inductor is a circuit element that converts an electric current into a magnetic field and vice versa.
- An inductor uses the energy stored in a magnetic field in order to oppose *changes in current* (through the inductor).
- An inductor is characterized by an equation of the form

$$v(t) = L rac{d}{dt} i(t)$$
 (or equivalently, $i(t) = rac{1}{L} \int_{-\infty}^t v(au) d au$),

where L is a nonnegative real constant, and v and i respectively denote the voltage across and current through the inductor as a function of time.

- As a matter of terminology, the quantity L is known as the inductance of the inductor.
- Inductance is measured in units of henrys (H).
- In circuit diagrams, an inductor is denoted by the symbol shown below.

Capacitors

- A capacitor is a circuit element that stores electric charge.
- A capacitor uses the energy stored in an electric field in order to oppose *changes in voltage* (across the capacitor).
- A capacitor is characterized by an equation of the form

$$v(t) = rac{1}{C} \int_{-\infty}^t i(au) d au \quad ext{(or equivalently, } i(t) = C rac{d}{dt} v(t)),$$

where C is a nonnegative real constant, and v and i respectively denote the voltage across and current through the capacitor as a function of time.

- As a matter of terminology, the quantity C is known as the capacitance of the capacitor.
- Capacitance is measured in units of farads (F).
- In circuit diagrams, a capacitor is denoted by the symbol shown below.

Circuit Analysis with the Laplace Transform

- The Laplace transform is a very useful tool for circuit analysis.
- The utility of the Laplace transform is partly due to the fact that the differential/integral equations that describe inductors and capacitors are much simpler to express in the Laplace domain than in the time domain.
- Let v and i denote the voltage across and current through a circuit element, and let V and I denote the Laplace transforms of v and i, respectively.
- In the Laplace domain, the equations characterizing a resistor, an inductor, and a capacitor respectively become:

$$V(s)=RI(s)$$
 (or equivalently, $I(s)=\frac{1}{R}V(s)$); $V(s)=sLI(s)$ (or equivalently, $I(s)=\frac{1}{sL}V(s)$); and $V(s)=\frac{1}{sC}I(s)$ (or equivalently, $I(s)=sCV(s)$).

Note the absence of differentiation and integration in the above equations for an inductor and a capacitor.

Section 7.7

Application: Design and Analysis of Control Systems

Control Systems

- A control system manages the behavior of one or more other systems with some specific goal.
- Typically, the goal is to force one or more physical quantities to assume particular desired values, where such quantities might include: positions, velocities, accelerations, forces, torques, temperatures, or pressures.
- The desired values of the quantities being controlled are collectively viewed as the input of the control system.
- The actual values of the quantities being controlled are collectively viewed as the output of the control system.
- A control system whose behavior is not influenced by the actual values of the quantities being controlled is called an open loop (or non-feedback) system.
- A control system whose behavior is influenced by the actual values of the quantities being controlled is called a closed loop (or feedback) system.
- An example of a simple control system would be a thermostat system, which controls the temperature in a room or building.

Feedback Control Systems

- input: desired value of the quantity to be controlled
- output: actual value of the quantity to be controlled
- error: difference between the desired and actual values
- plant: system to be controlled
- **sensor**: device used to measure the actual output
- **controller**: device that monitors the error and changes the input of the plant with the goal of forcing the error to zero

Stability Analysis of Feedback Systems

- Often, we want to ensure that a system is BIBO stable.
- The BIBO stability property is more easily characterized in the Laplace domain than in the time domain.
- Therefore, the Laplace domain is extremely useful for the stability analysis of systems.

Stabilization Example: Unstable Plant

causal LTI plant:

ROC of P:

system is not BIBO stable

Stabilization Example: Using Pole-Zero Cancellation

system formed by series interconnection of plant and causal LTI compensator:

system function H of overall system:

$$H(s) = W(s)P(s) = \left(\frac{s-1}{10(s+1)}\right)\left(\frac{10}{s-1}\right) = \frac{1}{s+1}$$

ROC of H:

overall system is BIBO stable

Stabilization Example: Using Feedback (1)

feedback system (with causal LTI compensator and sensor):

$$P(s) = \frac{10}{s-1}, \quad C(s) = \beta, \quad Q(s) = 1$$

system function H of feedback system:

$$H(s) = \frac{C(s)P(s)}{1+C(s)P(s)Q(s)} = \frac{10\beta}{s-(1-10\beta)}$$

ROC of H:

feedback system is BIBO stable if and only if $1-10\beta < 0$ or equivalently $\beta > \frac{1}{10}$

Stabilization Example: Using Feedback (2)

Stabilization Example: Using Feedback (3)

$$P(s) = \frac{10}{s-1}, \quad C(s) = \beta, \quad Q(s) = 1$$

$$H(s) = \frac{C(s)P(s)}{1 + C(s)P(s)Q(s)}$$

$$= \frac{\beta(\frac{10}{s-1})}{1 + \beta(\frac{10}{s-1})(1)}$$

$$= \frac{10\beta}{s - 1 + 10\beta}$$

$$= \frac{10\beta}{s - (1 - 10\beta)}$$

Remarks on Stabilization Via Pole-Zero Cancellation

- Pole-zero cancellation is not achievable in practice, and therefore it cannot be used to stabilize real-world systems.
- The theoretical models used to represent real-world systems are only approximations due to many factors, including the following:
 - Determining the system function of a system involves measurement, which always has some error.
 - A system cannot be built with such precision that it will have exactly some prescribed system function.
 - The system function of most systems will vary at least slightly with changes in the physical environment.
 - Although a LTI model is used to represent a system, the likely reality is that the system is not exactly LTI, which introduces error.
- Due to approximation error, the effective poles and zeros of the system function will only be approximately where they are expected to be.
- Since pole-zero cancellation requires that a pole and zero be placed at exactly the same location, any error will prevent this cancellation from being achieved.

Section 7.8

Unilateral Laplace Transform

Unilateral Laplace Transform

The unilateral Laplace transform of the function x, denoted $\mathcal{L}_{u}x$ or X, is defined as

$$\mathcal{L}_{\mathsf{u}}x(s) = X(s) = \int_{0^{-}}^{\infty} x(t)e^{-st}dt.$$

The unilateral Laplace transform is related to the bilateral Laplace transform as follows:

$$\mathcal{L}_{\mathsf{u}}x(s) = \int_{0^{-}}^{\infty} x(t)e^{-st}dt = \int_{-\infty}^{\infty} x(t)u(t)e^{-st}dt = \mathcal{L}\left\{xu\right\}(s).$$

- In other words, the unilateral Laplace transform of the function x is simply the bilateral Laplace transform of the function xu.
- Since $\mathcal{L}_{u}x = \mathcal{L}\{xu\}$ and xu is always a *right-sided* function, the ROC associated with $\mathcal{L}_{u}x$ is always either a *RHP* or the *entire complex plane*.
- For this reason, we often do not explicitly indicate the ROC when working with the unilateral Laplace transform.

Inversion of the Unilateral Laplace Transform

- With the unilateral Laplace transform, the same inverse transform equation is used as in the bilateral case.
- The unilateral Laplace transform is *only invertible for causal functions*.
- In particular, we have

$$\mathcal{L}_{u}^{-1} \{ \mathcal{L}_{u} x \}(t) = \mathcal{L}_{u}^{-1} \{ \mathcal{L} \{ xu \} \}(t)$$

$$= \mathcal{L}^{-1} \{ \mathcal{L} \{ xu \} \}(t)$$

$$= x(t)u(t)$$

$$= \begin{cases} x(t) & t \ge 0 \\ 0 & t < 0. \end{cases}$$

For a noncausal function x, we can only recover x(t) for $t \ge 0$.

Unilateral Versus Bilateral Laplace Transform

- Due to the close relationship between the unilateral and bilateral Laplace transforms, these two transforms have some similarities in their properties.
- Since these two transforms are not identical, however, their properties differ in some cases, often in subtle ways.
- In the unilateral case, we have that:
 - the time-domain convolution property has the additional requirement that the functions being convolved must be *causal*;
 - the time/Laplace-domain scaling property has the additional constraint that the scaling factor must be positive;
 - the time-domain differentiation property has an extra term in the expression for $\mathcal{L}_{\mu}\{\mathcal{D}x\}(t)$, where \mathcal{D} denotes the derivative operator (namely, $-x(0^-)$);
 - 4 the time-domain integration property has a different lower limit in the time-domain integral (namely, 0^- instead of $-\infty$); and
 - 5 the time-domain shifting property does not hold (except in special circumstances).

Properties of the Unilateral Laplace Transform

Property	Time Domain	Laplace Domain
Linearity	$a_1x_1(t) + a_2x_2(t)$	$a_1X_1(s) + a_2X_2(s)$
Laplace-Domain Shifting	$e^{s_0t}x(t)$	$X(s-s_0)$
Time/Laplace-Domain Scaling	x(at), a > 0	$\frac{1}{a}X\left(\frac{s}{a}\right)$
Conjugation	$x^*(t)$	$X^*(s^*)$
Time-Domain Convolution	$x_1 * x_2(t)$, x_1 and x_2 are causal	$X_1(s)X_2(s)$
Time-Domain Differentiation	$\frac{d}{dt}x(t)$	$sX(s) - x(0^-)$
Laplace-Domain Differentiation	-tx(t)	$\frac{d}{ds}X(s)$
Time-Domain Integration	$\int_{0^{-}}^{t} x(au) d au$	$\frac{1}{s}X(s)$

Property	
Initial Value Theorem	$x(0^+) = \lim_{s \to \infty} sX(s)$
Final Value Theorem	$ \lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s) $

Unilateral Laplace Transform Pairs

Pair	$x(t), t \ge 0$	X(s)
1	$\delta(t)$	1
2	1	$\frac{1}{s}$
3	t^n	$\frac{n!}{s^{n+1}}$
4	e^{-at}	$\frac{1}{s+a}$
5	$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$
6	$\cos(\omega_0 t)$	$\frac{s}{s^2+\omega_0^2}$
7	$\sin(\omega_0 t)$	$\frac{\omega_0}{s^2+\omega_0^2}$
8	$e^{-at}\cos(\omega_0 t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$
9	$e^{-at}\sin(\omega_0 t)$	$\frac{\omega_0}{(s+a)^2+\omega_0^2}$
		$(s+a)^2 + \omega_0^2$

Solving Differential Equations [Using the Unilateral Laplace Transform]

- Many systems of interest in engineering applications can be characterized by constant-coefficient linear differential equations.
- One common use of the unilateral Laplace transform is in solving constant-coefficient linear differential equations with nonzero initial conditions.

Part 8

Complex Analysis

Complex Numbers

- **A complex number** is a number of the form z = x + jy where x and y are real numbers and j is the constant defined by $i^2 = -1$ (i.e., $i = \sqrt{-1}$).
- The Cartesian form of the complex number z expresses z in the form

$$z = x + jy,$$

where x and y are real numbers. The quantities x and y are called the real part and imaginary part of z, and are denoted as Rez and Imz, respectively.

The **polar form** of the complex number z expresses z in the form

$$z = r(\cos \theta + j \sin \theta)$$
 or equivalently $z = re^{j\theta}$,

where r and θ are real numbers and $r \ge 0$. The quantities r and θ are called the magnitude and argument of z, and are denoted as |z| and arg z. respectively. [Note: $e^{j\theta} = \cos \theta + j \sin \theta$.]

Complex Numbers (Continued)

- Since $e^{j\theta} = e^{j(\theta + 2\pi k)}$ for all real θ and all integer k, the argument of a complex number is only uniquely determined to within an additive multiple of 2π .
- The principal argument of a complex number z, denoted Arg z, is the particular value θ of arg z that satisfies $-\pi < \theta \le \pi$.
- The principal argument of a complex number (excluding zero) is *unique*.