

### Sumário

- 1. Apresentação do curso
- 2. Introdução
- 3. Conceitos Primitivos
- 4. Primeiras Propriedades
- 5. Segmento de Reta

# Apresentação do curso

## Avaliações



- ► T Formulários avaliativos semanais, presenciais.
- ► P1 24/02/2023
- ► P2 14/04/2023
- ► PS 28/04/2023
- ► EF 05/05/2023

Fórmula de Avaliação

$$M = 0, 4 \cdot P1 + 0, 4 \cdot P2 + 0, 2 \cdot T$$

## Bibliografia



Livro texto: Fundamentos de Matemática Elementar, vol. 9. (Click para baixar)

# Introdução

### Visão Geral

- A geometria estuda as propriedades das figuras usadas na medição de comprimentos, áreas e volumes.
- Essas propriedades s\u00e3o obtidas atrav\u00e9s de uma sequ\u00eancia l\u00f3gica de racioc\u00eanios (que faz com que a Geometria seja uma excelente oportunidade para o desenvolvimento do pensamento l\u00e1gico de qualquer pessoa!)
- Aprendendo a raciocinar com lógica, a argumentar e a justificar nossas afirmações, podemos conduzir melhor nossas vidas.

### Início

- Teve seu início muito antes de Cristo.
- De forma empírica, foi especialmente desenvolvida pelos egípcios que a utilizaram para medir a terra nos trabalhos de irrigação.
- Mas coube aos gregos a formulação de uma cadeia lógica e rigorosa da Geometria.
- ► Euclides (330 275 A.C.) foi o primeiro matemático a introduzir uma estrutura estritamente lógica na Geometria, sintetizando trabalhos de vários séculos em sua famosa obra de 13 volumes: **Elementos**.

## **Conceitos Primitivos**

## O ponto inicial: ponto, reta e plano



- Pode parecer possível definir todos os entes da Geometria, mas percebam que para definir um termo (por exemplo, paralelogramos) empregamos outros termo (por exemplo, quadriláteros).
- Por isso, teremos que aceitar alguns termos sem defini-los. S\u00e3o eles: o ponto, a reta e o plano.

## Noção exata e Notações



Mesmo sem defini-los, temos a noção exata desses entes:

- ► Um ponto pode ser representado pela marca produzida pela ponta fina de um lápis quando pressionada sobre uma folha de papel
  - ▶ Usaremos letras maiúsculas como A, B, C, . . . , para denotar os pontos: \*
- ► Parte de uma reta pode ser desenhada com a ajuda de uma régua, com duas setas nas suas pontas.
  - ▶ Usaremos letras minúsculas como a, b, c, ..., para denotar as retas:
- ► Um plano pode ser visto como a superfície de uma parede que se estende indefinidamente em todas as direções.

• Usaremos letras gregas como  $\alpha$ ,  $\beta$ ,  $\gamma$ , . . ., para denotar os planos:

# Primeiras Propriedades

### **Postulados**

- Nem tudo na matemática pode ser provado!
- ► Isso se deve ao fato de que, quando demonstramos uma proposição, nos apoiamos em alguma proposição anteriormente provada.
- Assim, em algum momento, teremos que aceitar algumas afirmações sem demonstrá-las.
- Essas afirmações são denominadas **postulados**.
- As proposições que provarmos serão chamadas teoremas.

### Postulado da Existência

- a) Numa reta, bem como fora dela, há infinitos pontos.
- b) Num plano há infinitos pontos.



## Posição de ponto e reta



- ou o ponto P está na reta ( $P \in r$ );
- ▶ ou o ponto P não está na reta ( $P \notin r$ )



### **Pontos Colineares**



#### Definição 1

Diz-se que os pontos de um conjunto estão **alinhados** ou são **colineares**, se existe uma reta que os contém.



Os pontos A, B e C são colineares.

Os pontos R, S e T não são colineares.

## Postulado da Determinação



#### Postulado da Determinação: Reta

Dados dois pontos distintos quaisquer, existe uma única reta que os contém.

Assim, diremos que dois pontos distintos determinam uma reta.



Neste caso, designaremos também a reta por  $\overrightarrow{AB}$ .

## Consequência do Postulado da Determinação: Reta



Quando duas retas, uma reta e um plano ou dois planos têm um ponto em comum, diz-se que eles se **interceptam**.

#### Teorema 1

Se duas retas distintas se interceptam, então a interseção contém um ponto apenas.

- ▶ **Hipótese**<sup>1</sup>: as retas distintas r e s se interceptam.
- ► Tese<sup>2</sup>: o ponto de interseção é único.

<sup>&</sup>lt;sup>1</sup>Hipótese é um conjunto de condições que se supõe verdadeiras.

<sup>&</sup>lt;sup>2</sup>Tese é a verdade que se pretende demonstrar.

## Teorema 1: Demonstração

Vamos usar a prova por contradição, supondo que a negativa da tese seja verdadeira. Ou seja, existe mais de um ponto de interseção.

Sejam P e Q dois pontos em comum das retas r e s. Então, pelo Postulado da Determinação para retas, existe uma única reta que passa pelos pontos P e Q. Como P,  $Q \in r$  e P,  $Q \in s$ , devemos ter r = s, contrariando a hipótese de que as duas retas são distintas.

Portanto, não pode haver mais de um ponto de interseção entre duas retas distintas, como queríamos.

## Postulado da Determinação: Plano



### Postulado da Determinação: Plano

Dados três pontos quaisquer não colineares, existe um único plano que os contém.



Três pontos não colineares determinam um plano!

### Postulado da Inclusão

#### Postulado da Inclusão

Se dois pontos de uma reta pertencem a um plano, então esta reta está contida neste plano.



### **Retas Concorrentes**

### Definição 2

Quando duas retas têm apenas um ponto em comum, elas são ditas concorrentes.



# Consequência dos Postulados de Determinação e Inclusão

#### Teorema 2

Se duas retas são concorrentes, então existe um único plano que as contém.



## Demonstração do Teorema 2

- ► **Hipótese:** As retas *r* e *s* são concorrentes .
- ► Tese: Existe um único plano que as contém.



## Demonstração do Teorema 4



Sejam A o único ponto de interseção entre as retas. Sejam B e C dois pontos distintos de A, com  $B \in r$  e  $C \in s$ . Com isso, obtemos 3 pontos não colineares<sup>3</sup> que, pelo Postulado da Determinação, determinam um único plano  $\alpha$ . Como A e B pertencem à reta r e ao plano  $\alpha$ , o Postulado da Inclusão garante que r está contida no plano  $\alpha$  ( $r \subset \alpha$ ). Analogamente, B e C pertencem à reta s e ao plano  $\alpha$ , de onde concluímos que s está contida no plano  $\alpha$  ( $s \subset \alpha$ ).

Portanto, o único plano determinado por A, B e C, contém r e s. Não há outro plano que satisfaça a condição de conter r e s, uma vez que esse plano também deve conter os pontos A, B e C, não podendo ser distinto de  $\alpha$ .

<sup>&</sup>lt;sup>3</sup>Para exercitar: o que garante essa afirmação?

### Formulário 1



Responda ao formulário: Aula 01: Noções Primitivas.

# Segmento de Reta

### Segmentos



### Definição 3

Dados dois pontos quaisquer A e B em uma reta r, chama-se **segmento de reta** de extremos A e B ao conjunto formado pelos pontos A e B, e por todos todos os pontos de r entre A e B.



Denotaremos por  $\overline{AB}$  o segmento de extremos A e B.

## Segmentos



Fixando-se uma unidade de comprimento  $\mu$ , podemos associar a cada segmento de reta um número real positivo denominado o seu **comprimento** ou a sua **medida**.

#### Definição 4

Dois segmentos são ditos **congruentes** se têm a mesma medida.



### Semirretas



#### Definição 5

Um ponto O de uma reta r divide-a em duas partes, cada uma delas denominada semirreta.



O ponto *O* é denominado a **origem** dessas semirretas e as mesmas são denominadas semirretas **opostas**.

### Semirretas



Denotaremos as semirretas com letras minúsculas (como as retas) ou através de dois dos seu pontos, sendo um deles a origem.



Acima, temos as semirretas opostas  $\overrightarrow{OA}$  e  $\overrightarrow{OB}$ .

## **Segmentos Consecutivos**

### Definição 6

Dois segmentos de reta são consecutivos se, e somente se, uma extremidade de um deles é também extremidade do outro (uma extremidade de um coincide com uma extremidade do outro).



## Segmentos Colineares



#### Definição 7

Dois segmentos de reta são colineares se, e somente se, estão numa mesma reta.



## Ponto Médio de um Segmento



#### Definição 8

Um ponto M é ponto médio do segmento AB se, e somente se, M está entre A e B, com  $\overrightarrow{AM} \equiv \overrightarrow{MB}$ .

$$M \in \overline{AB}$$
 e  $\overline{MA} \equiv \overline{MB}$ 



### Formulário 2



Responda ao formulário: Aula 01: Segmento de Reta.