MATH110BH Homework 7

Boran Erol

February 2024

1 Problem 1

Lemma 1.1. Let R be a UFD, The intersection of two principal ideals aR and bR is a principal ideal generated by lcm(a,b).

Proof. Let $a=p_1^{\alpha_1}p_2^{\alpha_2}...p_n^{\alpha_n}$ and $b=p_1^{\beta_1}p_2^{\beta_2}...p_n^{\beta_n}$ where α_i and β_i are non-negative integers. Let $m_i=\max\{\alpha_i,\beta_i\}$. Let $c:=lcm(a,b)=p_1^{m_1}...p_n^{m_n}$. We'll prove that $aR\cap bR=cR$.

Notice that $aR \mid cR$ and $bR \mid cR$, so $cR \subseteq aR \cap bR$. Now, let $x \in aR \cap bR$. Notice that $p_i^{m_i} \mid x$, so $c \mid x \implies x \in cR$. Thus, $aR \cap bR \subseteq cR$ and we conclude the proof.

2 Problem 2

Let F be a field. Then, $R = F[x_1, x_2, ...]$ is a Euclidean domain. Notice that R is a free R-module since it's generated by 1. Now, let N be the submodule generated by $\{x_1, x_2, ...\}$. Clearly, finitely many elements can't generate N since every x_i has to be in any generating set. Now, notice that if x_i and x_j are in some set S, $x_i \cdot x_j = x_j \cdot x_i$, so S is not independent. Therefore, N is not a free module.

Recall (2,x) not principal in Z[x] and use prev hw problem

3 Problem 3

Lemma 3.1. Let R be a PID and M be a R-module generated by n elements. Let N be a submodule of M. Then, N can also be generated by n elements.

Proof. Let M be an R-module generated by $\{x_1, ..., x_n\}$. Let $f: R^n \to M$ defined by mapping $e_i \mapsto x_i$. This is a surjective module homomorphism. Let $P = f^{-1}(N)$. Since N is a submodule of M, P is a submodule of R^n . Then, by the theorem proven in class, P is generated by at most n elements. Then, let $\{y_1, ..., y_m\}$ be the generating set for P where $m \le n$. Then, $\{f(y_1), ..., f(y_m)\}$ is a generating set for N.

4 Problem 4

Lemma 4.1. The group \mathbb{Z}^n can't be generated by n-1 elements.

Proof. \mathbb{Z}^n has a standard basis consisting of n elements. We showed in Problem 8 of Homework 6 that every free module generated by m elements has a basis consisting of at most m elements. In Problem 9, we showed that every two bases for a free finitely generated R-module have the same number of elements. Putting these two facts together, any generating set of \mathbb{Z}^n should have at least n elements.

BRING IT DOWN TO THE EMPTY SET.

USE Q INSTEAD. □

5 Problem 5

Let $M = \mathbb{Z}/2\mathbb{Z}$ and $N = \mathbb{Z}/3\mathbb{Z}$. Clearly, these aren't free $\mathbb{Z}/6\mathbb{Z}$ modules since $2 \cdot x = 0$ for any $x \in M$ and $3 \cdot x = 0$ for any $x \in N$. However, (1,1) generates $M \bigoplus N$, so $M \bigoplus N$ is free (in fact, cyclic).

6 Problem 6

Lemma 6.1. Let R be a PID and M be a torsion finitely generated R-module with the invariant factors $d_1 \mid d_2 \mid ... \mid d_k$. Let $I = \{a \in R : aM = 0\}$. Then, $I = d_k R$.

Proof. We prove both inclusions. By the representation for finitely generated modules, we have that $M \cong R/d_1R \bigoplus ... \bigoplus R/d_kR$. Let $x \in I$ and $s \in R/d_kR$. Then, $xs \in d_kR$ for any $s \in R$ since $x \cdot (s + d_kR) = d_kR$ for any $s \in R$. Letting s = 1, $s \in d_kR$. Now, let $s \in d_kR$. Then, $s \in d_kR$ for any $s \in R$. Letting s = 1, $s \in d_kR$. Now, let $s \in d_kR$. Then, $s \in d_kR$ for any $s \in R$. Then, $s \in d_kR$ for any $s \in R$. We thus conclude the proof.

7 Problem 7

Let A be an Abelian group of order 300. By the primary decomposition theorem, $A \cong A_1 \times A_2 \times A_3$ where $|A_1| = 2^2$, $|A_2| = 3$ and $|A_3| = 5^2$. Notice that $A_1 \cong C_4$ or $A_1 \cong C_2 \times C_2$, $A_2 \cong C_3$ and $A_3 \cong C_{25}$ or $A_3 \cong C_5 \times C_5$.

Therefore, we have the following 4 possible groups:

$$C_4 \times C_3 \times C_{25}$$

$$C_2 \times C_2 \times C_3 \times C_{25}$$

$$C_4 \times C_3 \times C_5 \times C_5$$

$$C_2 \times C_2 \times C_3 \times C_5 \times C_5$$

8 Problem 10

Lemma 8.1. Let R be a PID and M be an R-module. M is cyclic if and only if $M \cong R/(a)$ for some $a \in R$.

Proof. Assume M is cyclic. Then, there's some $x \in M$ such that x generates M. Consider the module homomorphism $\phi_x : R \to M$ given by $\phi(r) = rx$. Since x generates M, ϕ is surjective. Since R is a PID, $ker(\phi_x) = (a)$ for some $a \in R$.

Then, by the first isomorphism theorem for modules, $M \cong R/(a)$.

For the converse, notice that a is a generator for the module R/(a).

Lemma 8.2. Let M be a finitely generated torsion module over a PID R. M is cyclic if and only if every two elementary divisors of M are relatively prime.

П

Proof. Assume M is cyclic. Then, $M \cong R/(a)$. Since R is a UFD, we have that a has a unique prime factorization.

$$a = p_1^{\alpha_1} ... p_n^{\alpha_n}$$

Then, by the Chinese Remainder Theorem,

$$R/aR \cong R/p_1^{\alpha_1}R \oplus ... \oplus R/p_n^{\alpha_n}R$$

Clearly, p_i and p_j are relatively prime. To see the converse, just apply the Chinese Remainder theorem again and see that $M \cong R/aR$ for some $a \in R$.