Discrete Mathematics Structure

Notes

Rule of Inference:

Constructing more complicated valid statements using simple arguments, which are valid are known as rule of inference.

1. Modus Ponens

Suppose there are two premises, P and P \rightarrow Q. Now, we will derive Q with the help of Modules Ponens like this:

 $\begin{array}{c} P \rightarrow Q \\ \\ \hline \\ \hline \\ \vdots Q \end{array}$

Example:

Suppose $P \rightarrow Q =$ "If we have a bank account, then we can take advantage of this new policy."

P = "We have a bank account."

Therefore, Q = "We can take advantage of this new policy."

2. Modus Tollens

Suppose there are two premises, $P \rightarrow Q$ and $\neg Q$. Now, we will derive $\neg P$ with the help of Modules Tollens like this:

Example:

Suppose $P \rightarrow Q =$ "If we have a bank account, then we can take advantage of this new policy."

 $\neg Q$ = "We cannot take advantage of this new policy."

Therefore, $\neg P$ = "We don't have a bank account."

3. Hypothetical Syllogism

Suppose there are two premises, $P \rightarrow Q$ and $Q \rightarrow R$. Now, we will derive $P \rightarrow R$ with the help of Hypothetical Syllogism like this:

 $P \rightarrow Q$ $Q \rightarrow R$ \longrightarrow $\therefore P \rightarrow R$

Example:

Suppose P → Q = "If my fiancé comes to meet me, I will not go to office."

 $Q \rightarrow R = "If I will not go to office, I won't require to do office work."$

Therefore, $P \rightarrow R = "If my fiancé come to meet me, I won't require to do office work."$

4. Disjunction Syllogism

Suppose there are two premises $\neg P$ and $P \lor Q$. Now, we will derive Q with the help of Disjunction Syllogism like this:

¬P
P ∨ Q

... Q

Example:

Suppose ¬P = "Harry birthday cake is not strawberry flavored."

P v Q = "The birthday cake is either red velvet flavored or mixed fruit flavored."

Therefore, Q = "The birthday cake is mixed fruit flavored."

5. Addition

Suppose there is a premise P. Now, we will derive P V Q with the help of Addition like this:

∴ P v Q

Example:

Suppose P be the proposition, "Harry is a hard working employee" is true

Here Q has the proposition, "Harry is a bad employee".

Therefore, "Either Harry is a hard working employee Or Harry is a bad employee".

6. Simplification:

Suppose there is a premise P \wedge Q. Now, we will derive P with the help of Simplification like this:

$P\Lambda Q$

_____ ∴ P

Example:

Suppose $P \wedge Q =$ "Harry is a hard working employee, and he is the best employee in the office".

Therefore, "Harry is a hard working employee".

7. Conjunction

Suppose there are two premises P and Q. Now, we will derive P \land Q with the help of conjunction like this:

Р

Q

∴P∧Q

Example:

Suppose P = "Harry is a hard working employee".

Suppose Q = "Harry is the best employee in the office".

Therefore, "Harry is a hard working employee and Harry is the best employee in the office".

8. Resolution

Suppose there are two premises P \vee Q and \neg P \vee R. Now, we will derive Q \vee R with the help of a resolution like this:

P ∨ Q
¬ P ∨ R

... Q ∨ R

Example:

Suppose $P \rightarrow Q$ = "If my fiancé comes to meet me, I will not go to office".

¬ P V R = "If my fiancé did not come to met me, I won't require to do office work".

Therefore, Q v R = "Either I will not go to office or I won't require to do office work".

9. Constructive Dilemma

Suppose there are two premises (P \rightarrow Q) \land (R \rightarrow S) and P \lor R. Now, we will derive Q \lor S with the help of a constructive dilemma like this:

$$(P \rightarrow Q) \land (R \rightarrow S)$$

$$P \lor R$$

$$\vdots Q \lor S$$

Example:

Suppose $P \rightarrow Q$ = "If my fiancé will come to meet me, I will not go to office".

 $R \rightarrow S =$ "If my relatives will come, I will tell my employees that I will come".

P V R = "Either my fiancé will comes to meet me or my relatives will come".

Therefore, Q v S = "Either I will not go to office or I will tell my employees that I will come".

10. Destructive Dilemma

Suppose there are two premises (P \rightarrow Q) \land (R \rightarrow S) and \neg Q \lor \neg S. Now, we will derive \neg P \lor \neg R with the help of a Destructive dilemma like this:

$$(P \rightarrow Q) \land (R \rightarrow S)$$

$$\neg Q \lor \neg S$$

$$\vdots \neg P \lor \neg R$$

Example:

Suppose $P \rightarrow Q$ = "If my fiancé comes to meet me, I will not go to office".

 $R \rightarrow S =$ "If my relatives come, I will tell my employees that I will come".

 $\neg Q \lor \neg S =$ "Either I will go to office or I will tell my employees that I will not come".

Therefore, $\neg P \lor \neg R =$ "Either my fiancé will not come to meet me or my relatives will not come".