BECA / Dr. Huson / Geometry Unit 8: Year-to-date Regents review 16 February 2023

Name: Solutions

8.3 Classwork: Partitioning a line segment

1. Point B is the midpoint of \overline{AC} , with AB = x + 10, BC = 20. First write an equation representing the situation, find x, then check it.

- 2. Given M is the midpoint of \overline{AB} , AM = 4x + 3, MB = 19.
 - (a) Mark the diagram with the values and tick marks
 - (b) Write an equation and solve for x
 - (c) Check your result

$$4x+3=19$$
 $4m=4(4)+3=19$
 $4x=16$ $19=19$

3. Point E bisects \overline{DEF} and DE = 5x - 12, DF = 36. Find x. (show check)

5x-12= 18 5x= 3= 7=68

4. Points B and C trisect segment \overline{AD} with segment lengths as shown. Find x.

5. Find the coordinates of the midpoint M of \overline{RS} , R(-3,1) and S(5,7). Mark and label it on the graph.

6. On the graph below, draw \overline{AB} , with A(2,1) and B(8,4), labeling the end points. Determine and state the coordinates of the midpoint M of \overline{AB} and mark and label it on the graph.

$$M = \begin{pmatrix} 2 + 8 \\ \overline{2} \end{pmatrix} \begin{pmatrix} 1 + 4 \\ \overline{2} \end{pmatrix}$$

$$= \begin{pmatrix} 5, 2 \\ \overline{2} \end{pmatrix}$$

7. Find the midpoint of \overline{AB} , with A(12, -3) and B(5, 13).

8. Given collinear points with Q the bisector of \overline{PR} , Q(25) and R(35). Find P, marking it and labeling it on the number line.

9. Given the midpoint M(5,7) of \overline{AB} with $\overline{A(1,4)}$. Find the coordinates of point B. Mark and label all three points and segment \overline{AB} the grid below.

10. Point T divides \overline{RS} so that RT:TS=1:2. If R has coordinates (1,2) and S has coordinates (10,5), find the coordinates of T and mark and label it on the graph.

$$T_{+9,+3}$$
 $R \to S$
 $\int_{3}^{4} T = +3,+1$
 $R \to T_{+3,+1}$
 $T_{-3,+1}$
 $T_{-4,3}$

11. The endpoints of directed line segment PQ have coordinates of P(-7, -5) and Q(5, 3). What are the coordinates of point A, on \overline{PQ} , that divide \overline{PQ} into a ratio of 1:3?

$$P \rightarrow Q +12, +8$$

$$f = f +3, +2$$

$$P \left(-7, -5\right) \rightarrow A\left(-4, -3\right)$$

12. The coordinates of the endpoints of directed line segment ABC are A(-8,7) and C(7,-13). If AB:BC=3:2, what are the coordinates of B?

13. Directed line segment DE has endpoints D(-4, -2) and E(1, 8). Point F divides such that DF : FE is 2 : 3. What are the coordinates of F?

that
$$DF : FE \text{ is } 2 : 3$$
. What are the coordinates of F ?
$$\frac{2}{5} : \frac{3}{5}$$

$$\frac{1}{5}T = T_{+1,+2}$$

$$D(-4,-2) \longrightarrow F(-3,0)$$

14. Point G divides \overline{AB} so that AG : GB = 1 : 2. If A has coordinates (-1, -3) and B has coordinates (8, 9), what are the coordinates of G?

$$T_{+9,+12}$$

$$\frac{1}{3}:\frac{2}{3}$$

$$A(-1,-3) \rightarrow G(+2,1)$$

15. The coordinates of the endpoints of directed line segment PQ are P(-7, -5) and Q(5,3). If PQ is divided into a ratio of 1:3, what are the coordinates of point A?

$$T_{+12,+8}$$
 $\frac{1}{4}.7 = T_{43,+2}$
 $P(-7,-5) \longrightarrow A(-4,-3)$