Professeur: Lahcen Ait Lhaj

Lycée : Aourir

Année scolaire :2024-2025

**Devoir Maison N01** 

Semestre 1

Classe: 2BAC SP1 BIOF



## **Exercice 01**

## Les questions de cet exercice sont indépendantes

1) Simplifier le nombre suivant:

$$A = \frac{\sqrt[3]{2^{10}} \times \sqrt{\sqrt{64}} \times \sqrt[5]{6^5}}{\sqrt{18} \times \sqrt[3]{\frac{3}{256}}}$$

- 2) Classer dans l'ordre croissante les nombres suivants:  $\sqrt{2}$ ;  $\sqrt[3]{4}$ ;  $\sqrt[6]{5}$ ;  $\sqrt[4]{3}$ .
- 3) Résoudre dans  $\mathbb{R}$  l'équation et l'inéquation suivantes:

(E): 
$$\sqrt[3]{3+x} - \sqrt[3]{3-x} = \sqrt[6]{9-x^2}$$
 et (I):  $\sqrt[3]{x^2+2x+8} \le x+2$ 

4) Calculer les limites suivantes:

$$\lim_{x\to 0} \frac{\sqrt[3]{x+8}-2}{\sin x} \ et \ \lim_{x\to +\infty} \left(\sqrt[3]{x^3+5x^2+7}-4x\right) \ et \lim_{x\to +\infty} \left(\sqrt[3]{8x^3+x^2+7}-2x\right)$$

5) on considère la fonction f définie sur  $\mathbb R$  par:

$$\begin{cases} f(x) = x^2 + 2x - \frac{5}{2}; x \le -3 \\ f(x) = \frac{\sqrt{2x + 10} - 2}{x + 3}; x > -3 \end{cases}$$

Montrer que f est continue sur  $\mathbb{R}$ .

## **Exercice 02**

Soit g la fonction numérique définie sur  $\mathbb{R}$  par:  $g(x) = x^3 + 3x - 5$ .

- 1)Etudier les variations de la fonction g.
- 2)Montrer que l'équation g(x)=0 admet une solution unique lpha dans  $\mathbb R$  puis vérifier que 1<lpha<2.
- 3) En utilisant la méthode de dichotomie, donner un encadrement de lpha d'amplitude 0,25.
- 4) Dresser le tableau de signe de g(x) sur  $\mathbb{R}$ .

## Exercice 03

On considère la fonction f définie par:  $f(x) = x - 2\sqrt{x-1}$ 

- 1) Déterminer  $D_f$  puis Calculer  $\lim_{x \to +\infty} f(x)$ .
- 2) Montrer que f est continue sur  $D_f$ .
- 3) Etudier la dérivabilité de la fonction f à droite en 1, puis interpréter ce résultat graphiquement.
- 4) a-Montrer que pour tout  $x \in ]1; +\infty[$ :

$$f(x) = \frac{x-2}{\sqrt{x-1}(1+\sqrt{x-1})}$$

b-Dresser le tableau de variations de la fonction f sur  $D_f$ .

- 5) Soit g la restriction de la fonction f sur l'intervalle  $I = [2; +\infty[$ .
  - a-Montrer que g admet une fonction réciproque  $g^{-1}$  définie sur un intervalle J à déterminer .
  - b-Dresser le tableau de variations de la fonction  $g^{-1}$ .
  - c-Vérifier que :  $g(x) = (\sqrt{x-1} 1)^2$  puis déterminer  $g^{-1}(x)$  pour tout  $x \in J$ .

| - |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |