

Meta Fluidic Vortex Induced Vibration Energy Harvester

By: Shivansh Pandey

for the fulfilment of requirement of Summer Internship 2023

Date: 20 June 2023

Principal Investigator:

Dr. Bishakh Bhattacharya HAL Chair Professor, ME-IITK

Mentors:

Dr. Manas Ranjan Behera Vivek Gupta Ashish Shukla

Introduction

MFC 2814 P1

Objective

- To examine the effect of the design and properties of the meta-beam, which is connected to the bluff body, on the oscillation amplitude of a flow-induced vibration system.
- To match interface mode frequency with the shedding frequency of the vortices to get lock in phenomena .

Meta-Beam Designs

Park et. (2022) [1]

Meta-material beam

rotational inertia I bending stiffness β Length: 200mm Thickness: 1mm

mass m shear stiffness a

Length: 200mm, Thickness: 1.5mm

Different variations-

- Inserts of stainless steel
- Increasing cavity length
- Increasing cavity thickness

Compared with normal beam

Meta-Beam with inserts

With 0 inserts-

Frequency (hz)	Amplitude ratio
80	74
146 - 152	12.2 - 0.0008
336	163
412 - 420	13.7 - 0.15
804	3640
994	0.056

1.00E+04
1.00E+02
1.00E+01
1.00E+00
1.00E+01
1.00E-01
1.00E-02
1.00E-03
1.00E-04

With 2 inserts-

	-	
Frequency (hz)	Amplitude ratio	1.0
34	49.8	1.0
110 - 120	14.1 - 0.04	
310	1290	1.0
396 - 398	0.87 - 2.1	1.0
806	621	1.
970	0.0435	1

Meta-Beam with inserts

With 4 inserts-

Trequency (nz)	Amplitude ratio
80	57
146 - 152	1650 - 0.016
340	149
416 - 420	8.26 - 0.044
812	2190
996	0.055

Amplitude ratio

Frequency (hz)

Frequency (hz)	Amplitude ratio
104	63.6
158 - 166	16 - 0.063
330	210
412 - 416	1.28 - 2.11
856	401

With 6 inserts-

Meta-Beam with inserts

With 8 inserts

Frequency (hz)	Amplitude ratio
121	290
157 - 165	39.6 - 0.078
380	331
492 - 505	102 - 0.017
845	658

With 10 inserts

Frequency	Amplitude ratio
120	442
150 - 156	52.9 - 0.032
455	457
522 - 535	519 - 0.042
881	769

Results from Simulations

Meta-beam with	First mode (hz)	Antisymmetric mode (hz)	Interface mode (hz)	Amplitude ratio for Antisymmetric mode
0 inserts	80	146	804	12.2
2 inserts	34	110	806	14.1
4 inserts	80	146	812	1650
6 inserts	104	158	856	16
8 inserts	121	157	845	39.6
10 inserts	120	150	881	52.9
30% increased cavity length	47	140	727	55.6

Increasing cavity length of Meta-Beam Azadi Ka Amrit Mahotsav

Meta-material beam with 4 inserts Cavity length: 42mm

Frequency (hz)	Amplitude ratio
80	57
146 - 152	1650 - 0.016
340	149
416 - 420	8.26 - 0.044
812	2190
996	0.055

Meta-materia beam with 4 inserts Cavity length 54.6mm i.e. 30% increase

al	Frequency (hz)	Amplitude ratio
.	47	123
	140 - 174	55.6 - 0.032
•	307	192
	459 - 473	58 - 0.006
•	727	484
y	993	73

Laboratory
IIT KANPUR

Experimental Set-up

Fig: Normal beam

Fig: System

SMSS Fig: Experiment full set-up

Fig: Clamp

Fig: Shaker

Experiment Results

NORMAL BEAM

Length: 200 mm,

Thickness: 1.8 mm

Frequency (hz)	Amplitude ratio
66.406	11.5
405.27	3.92
1021	3.38
1423	1.94

Frequency (hz)	Voltage (micro-V)	Amplitude ratio
49.805	102	1.35

Experiment Results

META-MATERIAL BEAM

Length: 200 mm, Thickness: 1 mm

S. no.	Frequency (hz)	Amplitude ratio
1	58.6	19.7
2	116.2	2.85
3	309.6	11.9
4	400.4	3.79
5	627	3.15
6	957	2.23
7	1969	2.22
8	2964	1.64

Frequency (hz)	Voltage peak (micro-V)	Amplitude ratio
49.805	102	1.35

Experiment Results

META-MATERIAL BEAM Length: 200 mm, Thickness: 2 mm

S. no.	Frequency (hz)	Amplitude ratio	
1	48.8	10.3	
2	127.9	3.12	
3	245.1	4.87	
4	417.9	1.64	
5	596.7	2.96	
6	810	1.11	
7	1213	2.28	

Frequency (hz)	Voltage peak (micro-V)	Amplitude ratio
49.805	134	10.3

Experiment Results Comparison

Beam Configuration	Thickness (mm)	Frequency (hz)	Voltage (micro-V)
Normal Beam	1.8	49.805	102
Meta-Beam	1	49.805	106
Meta-Beam	2	49.805	134

Future Goals

Ansys Fluent:

Different sizes of cylinder were simulated to determine optimum shedding frequency.

The simulation data had inconsistencies in determining shedding frequency, hence are avoided for this PPT.

Once the validation of method of finding shedding frequency is done, all the stored data can be used to get shedding frequency.

References

- 1. Park, H. W., Seung, H. M., Choi, W., Kim, M., & Oh, J. H. (2022). Highly tunable low frequency metamaterial cavity for vibration localization. Scientific Reports, 12(1), 1–11. https://doi.org/10.1038/s41598-022-13453-1
- 2. Mehdipour, I., Madaro, F., Rizzi, F., & De Vittorio, M. (2022). Comprehensive experimental study on bluff body shapes for vortex-induced vibration piezoelectric energy harvesting mechanisms. Energy Conversion and Management: X, 13. https://doi.org/10.1016/j.ecmx.2021.100174
- 3. Wang, J., Sun, S., Tang, L., Hu, G., & Liang, J. (2021). On the use of metasurface for Vortex-Induced vibration suppression or energy harvesting. In Energy Conversion and Management (Vol. 235). https://doi.org/10.1016/j.enconman.2021.113991
- 4. Kovalovs, A., Barkanov, E., & Gluhihs, S. (2007). Active control of structures using macro-fiber composite (MFC). Journal of Physics: Conference Series, 93(1). https://doi.org/10.1088/1742-6596/93/1/012034
- 5. Wang, J., Sun, S., Tang, L., Hu, G., & Liang, J. (2021). On the use of metasurface for Vortex-Induced vibration suppression or energy harvesting. In Energy Conversion and Management (Vol. 235). https://doi.org/10.1016/j.enconman.2021.113991

Thank You!

