MATH 20510 Lecture 17

May 2, 2025

Definition 0.1. The integral of a 2-form $\omega = \sum_{i,j} f_{i,j} (dx_i \wedge dx_j)$ over a 2-surface $\gamma : [a,b] \times [c,d] \to \mathbb{R}^n$ (which is C^1) is

$$\int_{\gamma} \omega = \int_{a}^{b} \left(\int_{c}^{d} \omega_{\gamma(t_{1}, t_{2})} \left(\frac{\partial \gamma}{\partial t_{1}}, \frac{\partial \gamma}{\partial t_{2}} \right) dt_{2} \right) dt_{1}$$

Definition 0.2. A k-surface in \mathbb{R}^n is a C^1 map $\gamma: D \to \mathbb{R}^n$ where D is a k-cell.

Definition 0.3. (Informal) A k-form in \mathbb{R}^n , ω , is a rule that assigns a real number to every oriented k-dimensional parallelepiped in \mathbb{R}^n in a "suitable" way.

Specify a k-dimensional oriented parallelepiped in \mathbb{R}^n based at $p \in \mathbb{R}^n$ by giving an ordered list of vectors $v_1, \ldots, v_k \in T_p\mathbb{R}^n$. We require that for any $p \in \mathbb{R}^n$, a k-form ω satisfies

- (i) $\omega_p(v_1,\ldots,tv_i,\ldots,v_k) = t\omega_p(v_1,\ldots,v_i,\ldots,v_k)$.
- (ii) $\omega_p(v_1,\ldots,v_i+w_i,\ldots,v_k)=\omega(v_1,\ldots,v_i,\ldots,v_k)+\omega_p(v_1,\ldots,w_i,\ldots,v_k).$
- (iii) $\omega_p(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_k) = -\omega_p(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_k).$

Definition 0.4. A multi-index of length k in \mathbb{R}^n is a list $I = (i_1, \dots, i_k)$ of k integers between 1 and n.

Definition 0.5. Let $I = (i_1, \ldots, i_k)$ be a multi-index. Then $dx_I = dx_{i_1} \wedge \cdots \wedge dx_{i_k}$ is the k-form in \mathbb{R}^n defined by

$$dx_{I}(v^{1},...,v^{k}) = \det \begin{pmatrix} v_{i_{1}}^{1} & v_{i_{1}}^{2} & \dots & v_{i_{1}}^{k} \\ v_{i_{2}}^{1} & v_{i_{2}}^{2} & \dots & v_{i_{2}}^{k} \\ \vdots & \vdots & \ddots & \vdots \\ v_{i_{k}}^{1} & v_{i_{k}}^{2} & \dots & v_{i_{k}}^{k} \end{pmatrix}$$

Remark 0.6.

- (i) If I contains a repeated index, then $dx_I(v^1,\ldots,v^k)=0$.
- (ii) For any I, if v^1, \ldots, v^k contains a repeated vector, then $dx_I(v^1, \ldots, v^k) = 0$.
- (iii) If J is obtained from I by swapping a single pair of indices, then $dx_I(v^1, \ldots, v^k) = -dx_J(v^1, \ldots, v^k)$.

Definition 0.7. A differential k-form in \mathbb{R}^n , ω , is a rule assigning a real number to each oriented parallelepiped of the form

$$\omega = \sum_{I} f_{I} dx_{I}$$

where the sum is taken over all multi-indices I of length k and $f_I : \mathbb{R}^n \to \mathbb{R}$ is C^2 . If $p \in \mathbb{R}^n, v^1, \dots, v^k \in \mathbb{R}^n$,

$$\omega_p(v^1,\dots,v^k) = \sum_I f_I(p) dx_I(v^1,\dots,v^k)$$

Definition 0.8. Let $\phi: D \to \mathbb{R}^n$ be a k-surface and $\omega = \sum_I f_I dx_I$ be a k-form.

$$\int_{\phi} \omega = \int_{D} \omega_{\phi(u)} \left(\frac{\partial \phi}{\partial u_{1}}, \dots, \frac{\partial \phi}{\partial u_{k}} \right) du$$

$$= \int_{D} \sum_{I} f_{I}(\phi(u)) dx_{I} \left(\frac{\partial \phi}{\partial u_{1}}, \dots, \frac{\partial \phi}{\partial u_{k}} \right) du$$

$$= \int_{D} \sum_{I} f_{I}(\phi(u)) \frac{\partial (x_{i_{1}}, \dots, x_{i_{k}})}{\partial (u_{1}, \dots, u_{k})} du$$

where $\frac{\partial(x_{i_1},\ldots,x_{i_k})}{\partial(u_1,\ldots,u_k)}$ is the Jacobian of the map $u_1,\ldots,u_k\mapsto\phi_{i_1}(u),\ldots,\phi_{i_k}(u)$.

Example 0.9. $\omega = xdy \wedge dz - ydx \wedge dz + zdx \wedge dy$ is a 2-form in \mathbb{R}^3 . $\phi : [0,3] \times [0,2\pi] \to \mathbb{R}^3$, $\phi(r,\theta) = (r\cos\theta, r\sin\theta, 5)$.