# Государственное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

# ЛАБОРАТОРНАЯ РАБОТА №2 ПО КУРСУ «АНАЛИЗ АЛГОРИТМОВ»

## Умножение матриц

Выполнил: Сорокин А.П., гр. ИУ7-52Б

Преподаватели: Волкова Л.Л., Строганов Ю.В.

#### Оглавление

| Bı       | Введение |                                                           |    |  |  |  |
|----------|----------|-----------------------------------------------------------|----|--|--|--|
| 1        | Ана      | алитическая часть                                         | 3  |  |  |  |
|          | 1.1      | Задачи                                                    | 3  |  |  |  |
|          | 1.2      | Описание алгоритмов                                       | 3  |  |  |  |
|          |          | 1.2.1 Алгоритм Винограда                                  | 4  |  |  |  |
|          |          | 1.2.2 Оптимизированный алгоритм Винограда                 | 4  |  |  |  |
|          |          | 1.2.3 Модель вычислений                                   | Ę  |  |  |  |
| <b>2</b> | Кон      | иструкторская часть                                       | 6  |  |  |  |
|          | 2.1      | Схемы алгоритмов                                          | 6  |  |  |  |
|          | 2.2      | Оценка трудоёмкости                                       | 7  |  |  |  |
|          |          | 2.2.1 Классический алгоритм                               | 8  |  |  |  |
|          |          | 2.2.2 Алгоритм Винограда                                  | 8  |  |  |  |
|          |          | 2.2.3 Оптимизированный алгоритм Винограда                 | 8  |  |  |  |
|          | 2.3      | Список оптимизаций алгоритма Винограда                    | 8  |  |  |  |
|          | 2.4      | Замер используемой памяти                                 | 8  |  |  |  |
| 3        | Tex      | нологическая часть                                        | 9  |  |  |  |
|          | 3.1      | Требования к программному обеспечению                     | Ĝ  |  |  |  |
|          | 3.2      | Средства реализации                                       | S  |  |  |  |
|          | 3.3      | Реализации алгоритмов                                     | S  |  |  |  |
|          | 3.4      | Тесты                                                     | 12 |  |  |  |
| 4        | Экс      | спериментальная часть                                     | 13 |  |  |  |
|          | 4.1      | Примеры работы                                            | 13 |  |  |  |
|          | 4.2      | Сравнение работы алгоритмов при чётных размерах матрицы   | 13 |  |  |  |
|          | 4.3      | Сравнение работы алгоритмов при нечётных размерах матрицы | 14 |  |  |  |
| За       | клю      | чение                                                     | 16 |  |  |  |
| .П₁      | итеп     | arvna                                                     | 17 |  |  |  |

#### Введение

В настоящее время у современного человека очень много различных задач. Он научился запускать ракеты в космос, строить различные машины и станки, строить здания колоссальной высоты. Но для всего этого человеку необходимо выполнять необходимые расчеты, чтобы обеспечить безопасность. В огромном количестве областей при расчетах используют такое математичекое действие как умножение матриц. Это довольно трудоемкий процесс, именно поэтому человек озадачен проблемой его оптимизации.

Таким образом, умножение матриц является актуальной проблемой в настоящее время, а эффективное умножение матриц - еще более актуальная задача.

#### 1. Аналитическая часть

#### 1.1 Задачи

Цель лабораторной работы - изучение трех алгоритмов умножения матриц: классического, алгоритма Винограда и его оптимизации.

Для того чтобы добиться этой цели, были поставлены следующие задачи:

- изучить и реализовать классический алгоритм умножения матриц и алгоритм Винограда;
- оптимизировать работу алгоритма Винограда;
- выполнить сравнительный анализ трудоёмкостей алгоритмов;
- сравнить эффективность алгоритмов по времени и памяти.

#### 1.2 Описание алгоритмов

#### Классический алгоритм умножения

Матрицей называют математический объект, эквивалентный двумерному массиву. Матрица является таблицей, на пересечении строк и столбцов находятся элементы матрицы. Количество строк и столбцов является размерностью матрицы.

Пусть даны две прямоугольные матрицы A и B размерности  $m \times n$ ,  $n \times q$  соответственно:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1q} \\ b_{21} & b_{22} & \dots & b_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nq} \end{bmatrix}$$

Тогда произведением матриц A и B называется матрица C размерностью  $m \times q$ 

$$C = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1q} \\ c_{21} & c_{22} & \cdots & c_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mq} \end{bmatrix}, \tag{1.1}$$

в которой:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \quad (\overline{i=1\dots m}; \ \overline{j=1\dots q}).$$

#### 1.2.1Алгоритм Винограда

Исходя из равенства 1.1, видно, что каждый элемент в нем представляет собой скалярное произведение соответствующих строки и столбца исходных матриц. Такое умножение допускает предварительную обработку, позволяющую часть работы выполнить заранее. Рассмотрим два вектора U и V:

$$U = A_i = (u_1, u_2, \dots, u_n), \tag{1.2}$$

где  $U = A_i$  – i-ая строка матрицы A,

 $u_k = a_{ik}, \overline{k = 1 \dots n}$  – элемент i-ой строки k-ого столбца матрицы A.

$$V = B_j = (v_1, v_2, \dots, v_n), \tag{1.3}$$

где  $V=\underbrace{B_j-\mathrm{j-}\mathbf{h}}_{c}$  столбец матрицы B,  $v_k=b_{kj}, \overline{k=1\dots n}$  — элемент k-ой строки j-ого столбца матрицы B.

По определению их скалярное произведение равно:

$$U \cdot V = u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4. \tag{1.4}$$

Равенство 1.4 можно переписать в виде:

$$U \cdot V = (u_1 + v_2)(u_2 + v_1) + (u_3 + v_4)(u_4 + v_3) - u_1u_2 - u_3u_4 - v_1v_2 - v_3v_4. \tag{1.5}$$

В равенстве 1.4 насчитывается 4 операции умножения и 3 операции сложения, в равенстве 1.5 насчитывается 6 операций умножения и 9 операций сложения. Однако выражение  $-u_1u_2-u_3u_4$  используются повторно при умножении і-ой строки матрицы  ${\rm A}$  на каждый из столбцов матрицы  ${
m B}$ , а выражение  $-v_1v_2-v_3v_4$  - при умножении ј-ого столбца матрицы В на строки матрицы А. Таким образом, данные выражения можно вычислить предварительно для каждых строк и столбцов матриц для сокращения повторных вычислений. В результате повторно будут выполняться лишь 2 операции умножения и 7 операций сложения (2 операции нужны для добавления предварительно посчитанных произведений).

#### 1.2.2Оптимизированный алгоритм Винограда

Для оптимизации алгоритма Винограда могут использоваться такие стратегии, как:

- предварительные вычисления повторяющихся одинаковых действий;
- использование более быстрых операций при вычислении (такие, как смещение битов вместо умножения или деления на 2);
- уменьшения количества повторных проверок.

Ниже представлен список личностей, проводивших оптимизацию алгоритма:

- в 2010 Эндрю Стотерс усовершенствовал алгоритм до  $O(n^{2.374})$ ;
- в 2011 году Вирджиния Уильямс усовершенствовала алгоритм до  $O(n^{2.3728642})$ ;

• в 2014 году Франсуа Ле Галль упростил метод Уильямса и получил новую улучшенную оценку  $O(n^{2.3728639})$ .

#### 1.2.3 Модель вычислений

В рамках данной работы используется следующая модель вычислений:

- операции, имеющие трудоемкость 1: <, >, =, <=, =>, ==, ! =,+, -, \*, /, +=, -=, \*=, /=, [];
- оператор условного перехода имеет трудоёмкость, равную трудоёмкости операторов тела условия;
- оператор цикла for имеет трудоемкость:

$$F_{for} = F_{init} + F_{check} + N * (F_{body} + F_{inc} + F_{check}), \tag{1.6}$$

где  $F_{init}$  – трудоёмкость инициализации,  $F_{check}$  – трудоёмкость проверки условия,  $F_{inc}$  – трудоёмкость инкремента аргумента,  $F_{body}$  – трудоёмкость операций в теле цикла, N – число повторений.

### 2. Конструкторская часть

#### 2.1 Схемы алгоритмов

На рисунках 2.1 - 2.3 представлены схемы алгоритмов трёх алгоритмов умножения матриц.



Рис. 2.1: Классический алгоритм



Рис. 2.2: Алгоритм Винограда

#### 2.2 Оценка трудоёмкости

Пусть даны две матрицы A и B размерностью  $M \times N$  и размерностью  $N \times Q$  соответственно. Рассмотрим трудоемкость трёх алгоритмов умножения матриц.



Рис. 2.3: Оптимизированный алгоритм Винограда

- 2.2.1 Классический алгоритм
- 2.2.2 Алгоритм Винограда
- 2.2.3 Оптимизированный алгоритм Винограда

#### 2.3. Список оптимизаций адгоритма Винограда

#### 3. Технологическая часть

#### 3.1 Требования к программному обеспечению

На вход подаются размеры двух матриц. На выход программа выдаёт три матрицы, которые являются результатами работы трёх различных алгоритмов умножения.

#### 3.2 Средства реализации

Для реализации программы был использован язык C++ [1]. Для замера процессорного времени была использована функция rdtsc() из библиотеки stdrin.h.

#### 3.3 Реализации алгоритмов

На листингах 3.1 - 3.3 представлены коды реализации алгоритмов умножения матриц.

Листинг 3.1: Классический алгоритм

```
void multiply_classic(int **A, int **B, int **C, unsigned M, unsigned N, unsigned Q)

for (unsigned i = 0; i < M; i++)

for (unsigned j = 0; j < Q; j++)

{
    C[i][j] = 0;
    for (unsigned k = 0; k < N; k++)
    C[i][j] += A[i][k] * B[k][j];
}</pre>
```

Листинг 3.2: Алгоритм Винограда

```
void multiply_vinograd(int **A, int **B, int **C, unsigned M, unsigned N, unsigned Q)

int *MulH = new int[M];

for (unsigned i = 0; i < M; i++)

{
    MulH[i] = 0;
    for (unsigned k = 0; k < N / 2; k++)
        MulH[i] = MulH[i] + A[i][2 * k] * A[i][2 * k + 1];

}

int *MulV = new int[Q];

for (unsigned i = 0; i < Q; i++)

MulV[i] = 0;</pre>
```

```
for (unsigned k = 0; k < N / 2; k++)
15
         MuV[i] = MuV[i] + B[2 * k][i] * B[2 * k + 1][i];
16
    }
17
18
    for (unsigned i = 0; i < M; i++)
19
       for (unsigned j = 0; j < Q; j++)
20
21
         C[i][j] = -MulH[i] - MulV[j];
22
         for (unsigned k = 0; k < N / 2; k++)
23
           C[i][j] = C[i][j] + (A[i][2 * k] + B[2 * k + 1][j]) *
                 (A[i][2 * k + 1] + B[2 * k][j]);
       }
27
28
    if (N \% 2 == 1)
29
       for (unsigned i = 0; i < M; i++)
         for (unsigned j = 0; j < Q; j++)
31
           C[i][j] = C[i][j] + A[i][N - 1] * B[N - 1][j];
32
33
    delete ∏ MulH;
34
    delete ∏ MulV;
35
36 }
```

Листинг 3.3: Оптимизированный алгоритм Винограда

```
void multiply vinograd opt(int **A, int **B, int **C, unsigned M, unsigned N, unsigned Q)
2 {
    unsigned half N = N \gg 1;
3
    int *MulH = new int[M];
    for (unsigned i = 0; i < M; i++)
      MulH[i] = 0;
      for (unsigned k = 0; k < half N; k++)
9
10
        k << = 1;
11
        MulH[i] += A[i][k] * A[i][k + 1];
12
      }
13
    }
14
15
    int *MuIV = new int[Q];
16
    for (unsigned i = 0; i < Q; i++)
17
    {
18
      MuIV[i] = 0;
19
      for (unsigned k = 0; k < half N; k++)
20
      {
21
        k << = 1:
22
        MuV[i] += B[k][i] * B[k + 1][i];
    }
25
26
    if (N % 2)
27
28
      unsigned N minus 1 = N - 1;
29
```

```
for (unsigned i = 0; i < M; i++)
30
31
         for (unsigned j = 0; j < Q; j++)
32
           C[i][j] = A[i][N\_minus\_1] * B[N\_minus\_1][j] - MulH[i] - MulV[j];
33
           for (unsigned k = 0; k < half N; k++)
35
             k << = 1;
36
             C[i][j] += (A[i][k] + B[k + 1][j]) * (A[i][k + 1] + B[k][j]);
37
38
         }
39
    }
40
    else
41
42
       for (unsigned i = 0; i < M; i++)
43
         for (unsigned j = 0; j < Q; j++)
44
45
           C[i][j] = -MulH[i] - MulV[j];
46
           for (unsigned k = 0; k < half N; k++)
47
           {
48
             k << = 1;
49
             C[i][j] += (A[i][k] + B[k + 1][j]) * (A[i][k + 1] + B[k][j]);
50
           }
         }
52
    }
    delete | MulH;
    delete | MulV;
56
57 }
```

#### **3.4** Тесты

Для проверки корректности работы были подготовлены функциональные тесты, представленные в таблице 3.1. Входные данные удовлетворяют условиям, необходимым для умножения матриц, так как проверка на соответствие их размеров возложена на другую функцию.

Таблица 3.1: Функциональные тесты

| Матрица 1                                                 | Матрица 2                                                | Ожидание                                            |
|-----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|
| [5]                                                       | [-8]                                                     | $\begin{bmatrix} -40 \end{bmatrix}$                 |
| [2 1 1]                                                   | $\begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix}$             | [6]                                                 |
| $\begin{bmatrix} 5 & 1 \\ 0 & -1 \end{bmatrix}$           | $\begin{bmatrix} 3 & -5 \\ 10 & 0 \end{bmatrix}$         | $\begin{bmatrix} -10 & 25 \\ -10 & 0 \end{bmatrix}$ |
| $\begin{bmatrix} 1 & 2 & 0 \\ 3 & 0 & -1 \end{bmatrix}$   | $\begin{bmatrix} 1 & 2 \\ 3 & 0 \\ 0 & -2 \end{bmatrix}$ | $\begin{bmatrix} 7 & 2 \\ 3 & 8 \end{bmatrix}$      |
| $\begin{bmatrix} 1 & 1 & -1 \\ 5 & -3 & -4 \end{bmatrix}$ | $\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$  | $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$      |
| $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$            | $\begin{bmatrix} 1 & 3 \\ -2 & 1 \end{bmatrix}$          | $\begin{bmatrix} 1 & 3 \\ -2 & 1 \end{bmatrix}$     |

В результате проверки реализации всех алгоритмов умножения прошли все поставленные функциональные тесты.

#### 4. Экспериментальная часть

#### 4.1 Примеры работы

На рисунке 4.1 представлен пример работы программы, демонстрирующий корректную работу алгоритмов.

Рис. 4.1: Пример работы программы

# 4.2 Сравнение работы алгоритмов при чётных размерах матрицы

Для сравнения времени работы алгоритмов умножения матриц были использованы квадратные матрицы размером от 100 до 1000 с шагом 100. Эксперимент для более точного результата повторялся 100 раз. Итоговый результат рассчитывался как средний из полученных результатов. Результаты измерений показаны в таблице 4.1 и на рисунке 4.2.

Таблица 4.1: Время работы алгоритмов при чётных размерах матриц в тактах процессора

| Размер матриц | Классический | Алг-м Виногада | Оптимиз. алг-м Винограда |
|---------------|--------------|----------------|--------------------------|
| 100           | 11378576     | 8801206        | 1183784                  |
| 200           | 94712580     | 77139807       | 6132265                  |
| 300           | 342637546    | 273553296      | 13960164                 |
| 400           | 863174672    | 684590971      | 24498851                 |
| 500           | 1792773181   | 1404195438     | 38730481                 |
| 600           | 3521402245   | 2810464339     | 65344034                 |
| 700           | 5996792976   | 4687597625     | 90821373                 |
| 800           | 10493249242  | 8357682976     | 125045114                |
| 900           | 14519644100  | 11520503989    | 150466748                |
| 1000          | 23147499368  | 18975832272    | 182725943                |

Из результатов экспериментов можно сделать вывод о том, что алгоритм Винограда выигрывает классический алгоритм умножения матриц в среднем на 18%. Оптимизированный алгоритм имеет большой выигрыш во времени работы: его реализация работает быстрее в среднем в 10 раз, тем самым являясь самым эффективным по времени из трёх представленных.



Рис. 4.2: График времени работы алгоритмов при чётных размерах матриц

# 4.3 Сравнение работы алгоритмов при нечётных размерах матрицы

Для сравнения времени работы алгоритмов умножения матриц были использованы квадратные матрицы размером от 101 до 1001 с шагом 100. Эксперимент для более точного результата повторялся 100 раз. Итоговый результат рассчитывался как средний из полученных результатов. Результаты измерений показаны в таблице 4.2 и на рисунке 4.3.

Таблица 4.2: Время работы алгоритмов при нечётных размерах матриц в тактах процессора

| Размер матриц | Классический | Алг-м Виногада | Оптимиз. алг-м Винограда |
|---------------|--------------|----------------|--------------------------|
| 101           | 11889847     | 9424292        | 1314911                  |
| 201           | 97600814     | 77692429       | 5905464                  |
| 301           | 356044760    | 286028727      | 15421621                 |
| 401           | 939094754    | 750760519      | 27668312                 |
| 501           | 2032880488   | 1606779606     | 42609865                 |
| 601           | 4139224911   | 3146415361     | 71468977                 |
| 701           | 6253434863   | 4930691171     | 95735554                 |
| 801           | 9771180988   | 7753844038     | 122309346                |
| 901           | 14620168149  | 11646686358    | 156299495                |
| 1001          | 23445735293  | 19176489090    | 193180038                |

Для случая с нечётными размерами матриц можно сделать те же выводы, что и для случая с чётными. При этом можно заметить, что классический алгоритм в среднем работает за то же время, что и при чётных размерах, в то время как алгоритм Винограда и его оптимизация работают дольше за счёт дополнительных операций при нечётном случае. Однако по-прежнему классический алгоритм значительно проигрывает во времени на те же величины.



Рис. 4.3: График времени работы алгоритмов при нечётных размерах матриц

#### Заключение

В ходе лабораторной работе были изучены и реализованы три алгоритма умножения матриц: классический алгоритм, алгоритм Винограда и его оптимизированный вариант. Сравнительный анализ алгоритмов показал, что алгоритм Винограда и его оптимизации выполняются за меньшее количество операций.

# Литература

[1] https://cppreference.com/ [Электронный ресурс]