# LAB-TS-4. ANALIZA COMPORTARII SISTEMLOR DE REGLARE AUTOMATĂ (SRA) ÎN REGIM STATIONAR CONSTANT (RSC). CALCULUL VALORILOR DE REGIM STAȚIONAR CONSTANT (VRSC) ALE MĂRIMILOR UNUI SRA

**A. OBIECTIVELE LUCRĂRII.** 1. Studiul proprietăților sistemelor de reglare automată (SRA) în regim staționar constant (RSC). 2. Calculul valorilor de regim staționar constant (VRSC) ale SRA. 3. Calculul statismului artificial al unui SRA.

### B. CONSIDERATII TEORETICE.

- 1. Regimul staționar constant. Într-un sistem în particular SRA regimul staționar constant (RSC) se poate stabili:
- dacă sistemul este stabil.
  - dacă intrările sistemului iau valoare constantă în timp, adică:

$$w_{\infty}$$
=const și  $v_{\infty}$ =const.

Indicele ∞ marchează valorile de regim staționar constant (VRSC) stabilite în sistem. Stabilirea RSC presupune deci *anularea efectelor de derivare și de integrare din sistem*.

- 2. Condițiile de stabilire a VRSC ale unui sistem și relații specifice. VRSC aferente unui sistem pot fi determinate:
- pe cale analitică: în acest scop sunt apelate diversele MM aferente sistemului, explicitate în RSC;
- *pe cale experimentală*, din măsurări de RSC efectuate asupra mărimilor sistemului. Condiția analitică de atingere a RSC poate fi exprimată în forme diferite.

# (a) În cazul sistemelor în timp continuu (SC).

În cazul sistemelor caracterizate prin MM-ISI:

$$x' = x'_{\infty} = 0.$$
 (2-a)

☐ În cazul sistemelor caracterizate prin MM-II, anularea efectelor de derivare presupune:

$$y^{(v)} = 0$$
  $y^{(\mu)} = 0$   $y^{(\mu)} = 0$ 

Pentru o funcție de transfer (f.d.t.) rațională:

$$B(s)$$
  $b_m s^m + ... + b_0$ 

$$H(s) = \frac{1}{A(s)} = \frac{1}{a_n s^n + ... + a_0} cu \ m \le n, \ b_0 \ne 0 \quad \text{si} \ \ a_0 \ne 0.$$
 (3)

Atunci pentru  $t \rightarrow \infty$ , în baza **teoremei valorii finale** (TVF) rezultă:

$$y_{\infty} = \lim_{s \to 0} s \cdot H(s) - u_{\infty} = H(0) u_{\infty} \quad \text{si corespunzător} \quad k = \frac{b_0}{a_0}. \tag{4-a}$$

Pentru orice valoare  $u_{\infty}$ =const  $\neq 0$  există o valoare  $y_{\infty}$ = const  $\neq 0$ . k este cunoscut, de asemenea, sub numele de **coeficient de transfer în RSC** sau **factor de amplificare în RSC**.

Reprezentarea grafică a dependenței:

$$y_{\infty} = f(u_{\infty}) \tag{4-b}$$

poartă denumirea de caracteristică statică (CS) a sistemului.

Expresia transformatei Laplace a ieșirii sistemului de reglare automată convențională (SRA-c, buclei de reglare) din fig. B-2 este

$$z(s) = H_{zv}(s)w(s) + H_{zv}(s)v(s);$$
 (5)

după aplicarea TVF, relația (5) devine:

$$z_{\infty} = H_{TW}(0)w_{\infty} + H_{TV}(0)v_{\infty}, \tag{6}$$

în care  $H_{zw}(0) = k_1$  și  $H_{zv}(0) = k_2$ , iar  $k_1$  și  $k_2$  sunt coeficienții de transfer în RSC ai SRA-c. În particular, pentru blocurile de tip P, I și D:

• blocurile de tip proporțional (P) (și PT1, PDT1,...) cu  $a_0 \neq 0$  și  $b_0 \neq 0$ 

$$y_{\infty} = k \cdot u_{\infty}; \tag{7}$$

aceste blocuri prezintă caracteristici statice.

 blocurile de tip integrator (I) (sau cu componentă I distinctă), fig. B-1 (a), recunoscute prin a<sub>0</sub>=0:

$$u_{\infty} = 0 \rightarrow y_{\infty} = \text{const}$$
, este posibilă orice valoare constantă. (8)

Aceste tipuri de blocuri nu prezintă caracteristică statică (CS);



Fig. B-1. Blocurile de tip I și D.

 blocurile de tip derivativ (D) (sau cu componentă D distinctă), fig. B-1 (b), recunoscute prin b<sub>0</sub>=0:

$$u_{\infty} = \text{const} \rightarrow y_{\infty} = 0$$
,  $u_{\infty}$  poate lua orice valoare constantă posibilă. (9)  
Aceste tipuri de blocuri *nu prezintă caracteristică statică*.

(b) În cazul sistemelor în timp discret (SD). În RSC sunt valabile următoarele condiționări de caracterizare matematică a funcționării sistemului:

☐ Pentru sistemele caracterizate de MM-ISI, referitor la mărimile de stare:

$$\underline{\mathbf{x}}_{k+1} = \underline{\mathbf{x}}_k = \underline{\mathbf{x}}_{\infty}. \tag{10}$$

Dacă sistemul este stabil și este cunoscut prin MM-II caracterizat de o f.d.t. rațională:  $B(z) = b_m z^m + ... + b_0$ 

$$H(z) = \frac{1}{A(z)} = \frac{1}{a_n z^n + \dots + a_0},$$
(11)

cu m  $\leq$  n,  $\Sigma b_u \neq 0$  și  $\Sigma a_v \neq 0$ , atunci în baza **TVF** rezultă:

$$y_{\infty} = \lim \frac{z - 1}{z} H(z) \frac{z}{z - 1} u_{\infty} \qquad \text{si corespunzător} \qquad k = H(1) = \frac{\sum b_{\mu}}{\sum a_{\nu}}$$
 (12)

În particular, pentru:

• blocurile de tip P: 
$$y_{\mu} = y_{\infty} = \text{const}$$
  $u_{\mu} = u_{\infty} = \text{const.}$  (13)

$$y_{\infty} = k u_{\infty}$$
 cu  $k = H(1)$  ; (14)

aceste tipuri de blocuri prezintă caracteristici statice;

• blocurile de tip integrator (I) (cu componentă I distinctă):

$$u_{\infty} = 0 \rightarrow y_{\infty} = y_k = y_{k+1} = \text{const}, \quad \text{orice valoare posibilă};$$
 (15)

• blocurile (D) de tip derivativ (D) (cu componentă D distinctă):

$$u_{\infty} = u_k = u_{k+1} = \text{const} \to y_{\infty} = 0.$$
 (16)

# 3. Situații de calcul al VRSC ale SRA.

# 3.1. Calculul VRSC ale sistemelor caracterizate prin MM-ISI.

Sisteme în timp continuu:

Sisteme în timp discret:

$$\begin{cases} \dot{\underline{x}}(t) = \underline{A}\underline{x}(t) + \underline{B}\underline{u}(t) \\ y(t) = \underline{C}\underline{x}(t) + \underline{D}\underline{u}(t) \end{cases} \qquad \begin{cases} \underline{x}(t+1) = \underline{A}\underline{x}(t) + \underline{B}\underline{u}(t) \\ \underline{y}(t) = \underline{C}\underline{x}(t) + \underline{D}\underline{u}(t) \end{cases}$$
(17)

cu r – numărul intrărilor, n – numărul stărilor și q – numărul ieșirilor. În condițiile de RSC (2-a) și (10), se obține:

$$\begin{cases}
\underline{0} = \underline{A}\underline{x}_{\infty} + \underline{B}\underline{u}_{\infty} \\
\underline{y}_{\infty} = \underline{C}\underline{x}_{\infty} + \underline{D}\underline{u}_{\infty}
\end{cases} \qquad \qquad \begin{cases}
\underline{x}_{\infty} = \underline{A}\underline{x}_{\infty} + \underline{B}\underline{u}_{\infty} \\
\underline{y}_{\infty} = \underline{C}\underline{x}_{\infty} + \underline{D}\underline{u}_{\infty}
\end{cases} . \tag{18}$$

(18) este un sistem algebric cu (n+q) ecuații în (n+r+q) VRSC. Dacă sunt cunoscute r VRSC și sistemul algebric este compatibil, atunci pot fi determinate celelalte n + q VRSC.

- 3.2. Calculul VRSC în cazul sistemelor care sunt cunoscute prin schema bloc informațională cu blocurile caracterizate prin MM-II sau MM-ISI. Pentru blocurile tipizate menționate, relațiile de calcul al VRSC sunt sintetizate în tabelul 1. Procedura de calcul:
- Se explicitează pentru fiecare din blocurile tipizate (I, D, P, ...) condițiile de funcționare în RSC și se scriu relațiile de calcul ale VRSC:
- pentru blocuri I:  $u_{\infty}=0 \rightarrow v_{\infty}=\text{const}$ ,
- pentru blocuri D:  $u_{\infty}=ct. \rightarrow y_{\infty}=0$ ,
- pentru blocuri P:  $u_{\infty} = \text{const} \rightarrow y_{\infty} = k \cdot u_{\infty}$ .
- Se obține un sistem algebric cu dimensiunea dependentă de complexitatea sistemului; în principiu rezultă un sistem de (n+q) ecuații cu (n+q+r) VRSC.
- Dacă este cunoscut un număr suficient de VRSC în raport cu care sistemul este compatibil (r VRSC, dar nu oricare), pot fi calculate celelalte VRSC din sistem.

| $\mathbf{T}$ | ah | elı | ıl | 1 |
|--------------|----|-----|----|---|
|              | uv | O10 | ~1 |   |

|          | 1                                               | Clui I.                                             |  |  |  |  |  |  |
|----------|-------------------------------------------------|-----------------------------------------------------|--|--|--|--|--|--|
| Tip      | Timp continuu                                   | Timp discret                                        |  |  |  |  |  |  |
| bloc     | •                                               | •                                                   |  |  |  |  |  |  |
| P        | $y_{\infty} = \frac{b_0}{a_0} u_{\infty}$       | $y_{\infty} = \frac{\sum b_i}{\sum a_j} u_{\infty}$ |  |  |  |  |  |  |
| ı        | $u_{\infty} = 0$ $y_{\infty} = \text{const}$    | $u_k = 0$                                           |  |  |  |  |  |  |
| 1        | $y_{\infty} = \text{const}$                     | $y_k = const$ pentru k>k <sub>0</sub>               |  |  |  |  |  |  |
| D        | $u_{\infty} = \text{const}$                     | $u_{k+1} = u_k$                                     |  |  |  |  |  |  |
| <u>и</u> | $u_{\infty} = \text{const}$<br>$y_{\infty} = 0$ | $y_k = 0$ pentru k>k <sub>0</sub>                   |  |  |  |  |  |  |

#### 4. Studiul SRA în RSC.

Sistemele de reglare automată (fig. B-2) (cu RG – regulator, EE – element de execuție, PC – proces condus și EM – element de măsură) trebuie să asigure de regulă:

- eroare de reglare staţionară de valoare nulă:

$$\mathbf{e}_{\infty} = \mathbf{w}_{\infty} - \mathbf{y}_{\infty} = 0 \qquad \Leftrightarrow \qquad \mathbf{y}_{\infty} = 1 \cdot \mathbf{w}_{\infty}; \tag{19}$$

- rejecția efectelor unor perturbații constante  $v_{\infty}$  = const:

$$y_{\infty} = y_0 + 0 \cdot v_{\infty} \qquad cu \qquad y_0 = 1 \cdot w_{\infty}; \qquad (20)$$

- funcționarea în jurul diverselor puncte de funcționare și tranziția între acestea;
- regimuri tranzitorii convenabile.



Fig. B-2. Schema bloc aferentă unui SRA-c.

- ☐ Relațiile (19) și (20) sunt valabile doar în cazul SRA cu RG cu componentă integratoare adusă de regulator (SRA de tip 1 sau 2).
- $\square$  În cazul SRA de tip 0 cu RG fără componentă integratoare, valoarea erorii de reglare staționare  $e_{\infty}$  va fi nenulă:

$$y_{\infty} = \frac{k_0}{1 + k_0} \cdot w_{\infty} + \gamma_n \ v_{\infty}, \text{ în care}$$
 (21-a)

$$\gamma_n = \frac{y_{\infty}}{v_{\infty}}\Big|_{w=0}$$
 reprezintă *statismul natural* al sistemului. (21-b)

și este o măsură a sensibilității ieșirii în raport cu perturbația. În acest caz, în RSC eroarea de reglare este nenulă ( $e_{\alpha} \neq 0$ ) cu:

$$e_{\infty} = W_{\infty} - Y_{\infty} = \frac{1}{1 + k_0} \cdot W_{\infty} + \gamma_n V_{\infty}. \tag{22}$$

Pentru EM de tip P (PT<sub>1</sub>, ...), relația de RSC este:

$$y_{\infty} = k_{\rm M} z_{\infty} \tag{23}$$

și se poate scrie:

$$z_{\infty} = \frac{1}{k_{M}} \cdot \frac{k_{0}}{1 + k_{0}} \cdot w_{\infty} + \frac{1}{k_{M}} \gamma_{n} \cdot v_{\infty}. \tag{24}$$

 $\gamma_{n(z)} = 1/k_M \cdot \gamma_n$  reprezintă statismul natural al sistemului în mărimea de ieșire de apreciere z. În general, pentru un SRA sunt exprimate:

$$\gamma_n = \frac{y_{\infty}}{v_{\infty}}\Big|_{v=0} = \frac{k_{N(y)}}{1+k_0} \quad [\langle y \rangle / \langle v \rangle],$$
 (25-a)

$$\gamma_{n(z)} = \frac{z_{\infty}}{v_{\infty}}\Big|_{v=0} = \frac{k_{N(z)}}{1+k_0} \qquad [\langle z \rangle / \langle v \rangle], \quad \text{cu} \quad k_0 = k_C k_{PC},$$
(25-b)

în care  $k_{N(y)}$  și  $k_{N(z)}$  sunt coeficienți de transfer care depind de proces și de regulator. Statismul natural poate fi modificat prin modificarea lui  $k_R$ ; această modificare poate afecta însă stabilitatea sistemului. Pentru o valoare dorită a statismului  $\gamma_{nd}$ , poate fi calculată valoarea necesară a lui  $k_R$  pentru  $k_N$  și  $k_{PC}$  cunoscute:

$$k_{Rnec} = \frac{k_N - \gamma_{nd}}{\gamma_{nd} k_{PC}}. (26)$$

#### În sinteză:

- În cazul SRA cu RG de tip I, PI, PID:  $e_{\infty} = 0$  și  $\gamma_n = 0$
- În cazul SRA cu RG de tip P, PT<sub>1</sub>:  $e_{\infty} \neq 0$  și  $\gamma_n \neq 0$

Reprezentările grafice ale dependențelor de RSC ale SRA sunt numite:

$$y_{\infty} = f(w_{\infty})$$
 pentru  $v_{\infty} = \text{const}$  caracteristică de prescriere, (27-a)  $y_{\infty} = f(v_{\infty})$  pentru  $w_{\infty} = \text{const}$  caracteristică de sarcină. (27-b)

Statismul natural poate fi explicitat și în unități raportate (normate) și în procente:

$$\gamma_{n(z)}^* = \frac{\Delta z_{\infty}/z_n}{\Delta v_{\infty}/v_n} = \frac{\Delta z_{\infty}}{\Delta v_{\infty}} \cdot \frac{v_n}{z_n} = \gamma_{n(z)} - \frac{v_n}{z_n} \quad \text{si în [\%]: } \gamma_{n(z)}^{\%} = \gamma_{n(z)} \cdot \frac{v_n}{z_n} \cdot 100\% . \tag{28}$$

# C. STUDII DE CAZ PENTRU A ÎNȚELEGE CONCEPTELE DE BAZĂ PREZENTATE ÎN ACEST LABORATOR.

**SC-1.** Se consideră structura de SRA din fig.C-1. Ea corespunde schemei bloc simplificate pentru o acționare cu un motor de curent continuu (m.c.c.). Regulatorul este de tip PI cu funcția de transfer  $H_{PI}(s)=k_C(1+sT_r)/(sT_r)$ , în care valorile parametrilor sunt  $k_R=5$  și  $T_r=1$ . Pentru celelalte blocuri valorile parametrilor sunt:

- pentru elementele de execuție în paralel  $k_{E1}=10$  (20),  $k_{E2}=15$  (20);
- pentru procesul propriu-zis (m.c.c.)  $k_1=0.08$ ,  $T_1=0.05$ ,  $1/T_i=1/0.1$ ,  $k_{em}=0.8$ ;
- pentru elementul de măsură (senzorul) k<sub>EM</sub>= 0.02.



Fig. C-1.

Se cere:

- (a) Să se determine  $H_{z-w}(s)$  și  $H_{z-w}(s)$ ; să se analizeze dacă pentru valorile date ale parametrilor RG, SRA este stabil și să se aprecieze valoarea rezervei de fază a sistemului (buclei de reglare). Dacă  $T_r$  are valoarea indicată, să se determine valoarea minimă a lui  $k_R$  la care sistemul devine instabil.
- (b) Să se calculeze VRSC din sistem  $\{e_{\infty}, u_{M\infty}, y_{\infty}, y_{1\infty}, e_{2\infty}, y_{2\infty}, n_{\infty}, e_{1\infty}\}$  pentru combinația de valori ale intrărilor indicate în tabelul SC-1 (s-a omis indicele  $\infty$ ):

Tabelul SC-1

| Taociai SC-1. |    |   |   |   |                |       |       |   |       |   |       |       |   |  |     |
|---------------|----|---|---|---|----------------|-------|-------|---|-------|---|-------|-------|---|--|-----|
| W             | v  | e | u | У | $\mathbf{y}_1$ | $e_2$ | $y_2$ | n | $e_1$ | m | $m_1$ | $m_2$ | Z |  |     |
| 0             | 0  |   |   |   |                |       |       |   |       |   |       |       |   |  | (1) |
| 3             | 0  |   |   |   |                |       |       |   |       |   |       |       |   |  | (2) |
| 6             | 0  |   |   |   |                |       |       |   |       |   |       |       |   |  | (3) |
| 6             | 5  |   |   |   |                |       |       |   |       |   |       |       |   |  | (4) |
| 6             | 10 |   |   |   |                |       |       |   |       |   |       |       |   |  | (5) |

- (c) Să se determine valoarea lui  $w_{\infty nec}$ , care asigură  $z_{\infty} = 250$  și  $z_{\infty} = 350$  în condițiile  $v_{\infty} = 10$ respectiv  $v_{\infty}$  = 15; calculati VRSC ale celelorlalte mărimi ale SRA (se întocmește un tabel similar tabelului SC-1).
- (d) O defectiune în elementul de execuție E1 cu  $k_{E1} = 10$  (20), este echivalentă cu  $m_{l\infty} = 0$ . Se acceptă că valoarea maximă a mărimii de execuție  $m_2$  este egală cu  $m_{2max} = 1.5 m_{2n}$ , în care  $m_{2n} = m_{2\infty}$  ( $m_{2\infty}$  preluată din linia (5) a tabelului SC-1); să se analizeze dacă sistemul poate functiona în aceste conditii în regimurile (4) si (5) date în tabelul SC-1. Calculati celelalte VRSC din sistem și interepretați rezultatele obținute.
- (e) Să se proiecteze o structură care să realizeze un statism artificial de -5% în ieșirea de măsură v. Valorile nominale ale mărimilor sunt cele corespunzătoare liniei (5) a tabelului SC-1.
- (f) Să se reia întregul studiu de caz considerând regulatorul de tip PDTI cu functia de transfer:

$$H_R(s) = \frac{Q(s)}{P(s)} = \frac{b_1 s + b_0}{a_1 s + a_0}$$
  $b_0 = 5$  ,  $b_1 = 12$ .  
  $a_1 = 0.1$  ,  $a_0 = 1$ 

În prealabil să se expliciteze parametrii  $k_R$ ,  $T_f$  și  $T_d$  ai regulatorului.

SC-2. Se consideră structura de SRA din fig. C-2. Schema corespunde schemei bloc simplificate a SRA a tensiunii la bornele unui generator sincron. Regulatorul este de tip PI, cu valorile parametrilor indicate în fig. C-2.



Se cere:

(a) Pentru pentru  $w_{\infty} = 10$  și  $v_{\infty} = 1250$  să se determine VRSC ale celorlalte mărimi ale sistemului.

- (b) Să se determine VRSC  $w_{\infty}$  care asigură la iesire valoarea  $z_{\infty} = 6000$  pentru  $v_{\infty} = 1000$ ; de asemenea să se calculeze VRSC ale celorlalte mărimi ale sistemului.
- (c) Să se determine funcțiile de transfer (caracteristicile de transfer) H<sub>z-w</sub>(s) și H<sub>z-v</sub>(s) și să se analizeze stabilitatea sistemului. Afectează cresterea de 10 ori a valorii lui k<sub>R</sub> statismul sistemului?
- SC-3. Se consideră SRA-c în timp discret, cu structura din fig. C-3, în care ER element de retinere (extrapolator de ordinul zero) si PC – procesul condus. Dispozitivul de conducere numerică (DC-N) este descris de f.d.t. următoare, obtinută prin discretizarea unor legi de reglare continue prin metoda trapezelor ( $T_e$  – perioada de eșantionare):

$$H_R(z) = H_R(s)|_{s=\frac{2}{T_e}\frac{z-1}{z+1}},$$

F-w (filtrul de referință): 
$$H_{F-w}(z^{-1}) = \frac{0.2 + 0.2z^{-1}}{1 - 0.6z^{-1}}$$
,

F-y (filtrul de ieșire reglată): 
$$H_{F-y}(z^{-1}) = \frac{0.8 - 0.8z^{-1}}{1 - 0.6z^{-1}}$$
,

AR (algorithmul de reglare): 
$$H_R(z^{-1}) = \frac{2.05 - 1.95z^{-1}}{1 - z^{-1}}$$
, cu  $T_e = 0.5$  sec.



Se cere:

- (a) Să se descrie algoritmul de reglare (AR) numerică ce caracterizează DC-N (u\*1(k),  $u_{2}^{*}(k)$ ,  $u(k) = u_{1}^{*}(k) - u_{2}^{*}(k)$  ca funcții de intrările  $w_{1}^{*}(k)$  și să se scrie programul de implementare în pseudocod.
- (b) Procesul condus este caracterizat de MM-ISI în timp continuu:

$$\begin{cases} \dot{x}_1 = -0.2x_1 + 200u_c \\ \dot{x}_2 = 0.6x_1 - x_2 + 2.5u_c - 50v \\ y = 0.005x_2 \\ z = 5x_2 \end{cases}$$

Să se determine VRSC aferente mărimilor PC pentru  $u_{co} = 10$  și  $v_{\infty} = 50$ :

$$\{u_{\infty}, x_{\infty}, x_{\infty}, z_{\infty}, z_{\infty}, y_{\infty}\}.$$

Să se expliciteze f.d.t. aferentă PC și valoarea coeficientului de transfer aferent elementului de măsură,  $k_M = y_{\infty}/z_{\infty}$ .

(c) Să se determine VRSC aferente mărimilor SRA pentru  $w_{\infty} = 10$  și  $v_{\infty} = 50$ :

$$\{e^*, \overline{w}^*, u_1^*, u_2^*, u^*, u_{c\infty}, x_{1\infty}, x_{2\infty}, z_{\infty}, y_{\infty}\}.$$

(d) Precizați o modalitate de creștere de 5 ori a coeficientului de transfer al AR, fără modificarea comportării dinamice a acestuia. Explicitați ecuația de recurență modificată.

SC-4. Se consideră structura de SRA-c din fig. C-4. Sunt cunoscute regulatoarele:

PDT1: 
$$H_{RG}(s) = \frac{2(1+2s)}{1+0.1s}$$
, PI:  $H_{RG}(s) = \frac{2(1+2s)}{s}$ .



#### Se cere:

- (a) În cazul RG de tip PDT1, pentru  $w_{\infty}$ = 7 și  $v_{\infty}$ = 1.25 să se determine toate valorile de RSC ale mărimilor din sistem.
- (b) Să se calculeze statismul natural  $(\gamma_n)$  în ieșirea de măsură y.
- (c) Să se rezolve din nou cerințele de la punctele (a) şi (b) în cazul RG de tip PI și să se calculeze expresia parametrului  $k_{bcv}$  în cadrul unei structuri de tip feedforward în raport cu perturbația v care asigură un statism artificial de 5%. Valorile nominale ale mărimilor sunt cele corespunzătoare punctului (a) calculate în cazul RG de tip PDT1.

## **Bibliografie**

- [1] S. Preitl, R.-E. Precup, Z. Preitl, *Structuri și algoritmi pentru conducerea automată a proceselor, vol. 1 si 2*, Editura Orizonturi Universitare, Timisoara, 2009.
- [2] S. Preitl, *Tehnica reglării automate*, Note de curs, Universitatea "Politehnica" din Timișoara, 2006-2008.
- [3] S. Preitl, *Elemente de reglare automată*, Note de curs, Universitatea "Politehnica" din Timișoara, 2006-2008.
- [4] S. Preitl, *Introducere în automatică*, Note de curs, Universitatea "Politehnica" din Timișoara, 2006-2008.