Esperienza 6

Brugnara Fabio Debiasi Maddalena Musso Francesco **Gruppo A01**

1 novembre 2019

1 Oscillatore armonico smorzato mediante due integratori ed un invertitore

Il circuito utilizzato in questa sezione è il seguente.

Figura 1: Circuito oscillatore smorzato

Le resistenze R sono da $100 \,\mathrm{k}\Omega$ mentre i condensatori C da 10nF. Definiamo il rapporto tra le resistenze R_1 e R_2 come $\epsilon = R_2/R_1$. Siamo interessati a calcolare il guadagno a loop aperto (G_{ol}) del circuito. Lo calcoliamo prima senza considerare il ramo con le resistenze R_1 e R_2 . Data la semplicità nel trattare integrali e convoluzioni nello spazio delle frequenze, troviamo facilmente (abbiamo 2 integratori e un amplificatore con guadagno -1):

$$s^2\tilde{x} + \frac{1}{\tau^2}\tilde{x} = 0\tag{1}$$

da cui l'equazione dell'oscillatore, nello spazio dei tempi

$$\ddot{x} + \omega_0^2 x = 0 \qquad \text{con} \qquad \omega_0 = 1/\tau \tag{2}$$

Tuttavia, a causa dell'instabilità dei circuiti integratori questa configurazione non sarebbe stabile. Introduciamo quindi il ramo con le 2 resistenze e con un po' di algebra troviamo:

$$\tilde{x} = -\tilde{x}(\frac{1}{s^2\tau^2} + \frac{2R_2}{R_1 + R_2} \frac{1}{s\tau}) = -\tilde{G}_{ol}\tilde{x}$$
(3)

e spostandoci nello spazio dei tempi otteniamo

$$\ddot{x} + \frac{2}{\tau} \frac{R_2}{R_1 + R_2} \dot{x} + \omega_0^2 x = 0 \tag{4}$$

che è l'equazione dell'oscillatore armonico soggetto a smorzamento viscoso $\gamma=\frac{2}{\tau}\frac{R_2}{R_1+R_2}$. Il guadagno a loop chiuso sarà dato quindi da

$$\tilde{G}_{cl}(s) = \frac{1}{1 + \tilde{G}_{ol}} \tag{5}$$

Utilizzando due metodi diversi, studiamo ora la stabilità del circuito. Studiamo in prima istanza la funzione $1 + \tilde{G}_{ol}$. Se $1 + \tilde{G}_{ol}$ non ha zeri nel RHP allora il circuito è stabile. Svolgendo i calcoli otteniamo:

$$1 + \tilde{G}_{ol} = \frac{s^2 \tau^2 (R_1 + R_2) + 2R_2 s\tau + R_1 + R_2}{s^2 \tau^2 (R_1 + R_2)} \tag{6}$$

Calcoliamo dunque gli zeri del numeratore:

$$s_{1,2} = \frac{-R_2 \pm i\sqrt{R_1^2 + 2R_1R_2}}{\tau(R_1 + R_2)} \tag{7}$$

Entrambe le soluzioni si trovano nel LHP: il circuito è stabile.

Ora studiamo la stabilità con il metodo del "sentiero di Nyquist" (Nyquist Path). Usando il teorema di Lagrange sugli zeri e i poli di una funzione analitica studiamo la funzione G_{ol} sul seguente cammino di integrazione:

Figura 2: Cammino di Nyquist

dove si deve immaginare che il raggio della circonferenza rossa tenda all'infinito. La presenza della circonferenza verde è dovuta al fatto che G_{ol} ha un polo doppio in 0 e si deve immaginare che il raggio di essa tenda a zero. Parametrizzando il sopracitato cammino con la stessa funzione G_{ol} si ottiene un altro cammino di integrazione sul piano complesso. Sempre per il teorema di Lagrange, gli zeri della funzione $1+G_{ol}$ nel RHP equivaranno al numero di giri che quest'ultimo cammino compie intorno a -1. Riportiamo in seguito la parametrizzazione della curva precedente:

Figura 3: Cammino di Nyquist parametrizzato con G_{ol}

dove ogni colore corrisponde al colore della curva in figura precedente e dove si deve immaginare che la curva verde chiuda il resto della curva all'infinito. La curva non compie giri intorno a -1: $1 + G_{ol}$ non ha zeri nel RHP dunque il circuito è stabile.

Misuriamo ora l'output del circuito all'uscita dei 2 integratori, eccitando il circuito con il generatore di d.d.p continua, verifichiamo subito la stabilità di esso e l'effettivo smorzamento dell'oscillazione. Essendo due circuiti integratori invertenti ci aspettiamo che i 2 segnali V_1 e V_2 siano sfasati di 90 gradi, lo verifichiamo con i cursori dell'oscilloscopio misurando esattamente una fase di $\pi/2$ con un'errore minore dell'un per cento.

Figura 4: V_{out} oscillatore smorzato

L'anomalo ripetersi del segnale in figura è causato dal fenomeno di aliasing, dovuto alla scarsa frequenza di campionamento dell'oscilloscopio. Per riuscire a effettuare un fit per misurare il tempo caratteristico di scarica e la frequenza di oscillazione abbiamo ingrandito l'asse temporale. Il segnale in figura ha l'andamento della soluzione dell'equazione 4:

$$V(x) = A\sin(2\pi f_0 t + \phi)e^{-t/\tau} \tag{8}$$

dove, ora, τ è 2 volte il reciproco di γ definito prima.

Variamo il rapporto tra le due resistenze per 5 valori di ϵ (10⁻¹, 10⁻², 10⁻³, 10⁻⁴ e 10⁻⁵). I fit ci confermano come la frequenza di oscillazione non vari al variare di ϵ , teoricamente infatti $f_0 = \omega_0/2\pi = 2\pi \frac{1}{RC} \simeq 160 Hz$ (il \simeq è dato dal fatto che non abbiamo misurato direttamente R e C ma abbiamo semplicemente letto i valori nominali). Le misure restituiscono

ϵ	f_0
10^{-1}	$(155.27 \pm 0.01)Hz$
10^{-2}	$(155.27 \pm 0.01)Hz$
10^{-3}	$(155.31 \pm 0.01)Hz$
10^{-4}	$(155.30 \pm 0.04)Hz$
10^{-5}	$(155.29 \pm 0.01)Hz$

che confermano l'indipendenza della frequenza di oscillazione da ϵ . Il reciproco del tempo caratteristico di scarica sarà dato invece, teoricamente, da

$$\tau^{-1} = \gamma/2 = RC \frac{R_2}{R_2 + R_1} = RC \frac{\epsilon}{1 + \epsilon} \tag{9}$$

Nel seguente grafico sono riportate le misure del reciproco di τ e la legge sopra. La legge non fitta perfettamente i dati, ma i dati seguono comunque l'andamento atteso.

Figura 5: Andamento tempo di smorzamento in funzione di ϵ

Dalla legge possiamo evincere il valore del tempo di scarica per $\epsilon = 0$, $\tau_{-1}(\epsilon = 0) = 0Hz$. Ce lo potevamo aspettare dato che questo caso corrisponde a mettere a massa V_+ dell'amplificatore invertente, togliendo il ramo con le 2 resistenze, caso che avevamo già studiato prima con eq. 1 e 2 trovando un oscillatore armonico semplice, quindi con tempo di smorzamento infinito.

2 Oscillatore armonico: compensazione dello smorzamento

Introduciamo un'ulteriore ramo al circuito per contrastare lo smorzamento.

Figura 6: Oscillatore armonico compensato

Ora il circuito, dopo un periodo di transizione, sfruttando il rumore, inizia ad auto-oscillare con un'ampiezza e una frequenza precisa. Utilizziamo l'oscilloscopio per misurare le tensioni V_1 e V_2 che si trovano anche questa volta sfasate di 90 gradi. Le misure restituiscono $f = (155.3 \pm 0.1)$ Hz e $\Delta \phi = (90.0 \pm 0.3)^{\circ}$, come da previsione dato che il ramo aggiunto compensa solo lo smorzamento.

Proviamo a cambiare una resistenza R o una capacità C per vedere come cambia il segnale: ci aspettiamo che continui ad oscillare, variando la frequenza ma mantenendo lo sfasamento di 90° tra gli output V_1 e V_2 . Infatti diminuendo ad esempio la resistenza R del primo integratore a $10 \,\mathrm{k}\Omega$, il circuito integratore rimane invertente, quindi lo sfasamento rimarrà di $\pi/2$, mentre frequenza invece, in accordo con eq.2, ora sarà:

$$f_0^2 = \frac{1}{4\pi^2} \frac{1}{R_1 C_1} \frac{1}{R_2 C_2} \simeq 500 \,\text{Hz}$$
 (10)

Misuriamo uno sfasamento di $\Delta\phi=(-90.4\pm0.2)^\circ$ e una frequenza di $f=(489.5\pm0.1)\,\mathrm{Hz}$. Abbiamo anche sostituito il primo condensatore con uno da $100\,\mathrm{nF}$. Come prima ci aspetteremo il solito sfasamento ma una frequenza $f\simeq 50\,\mathrm{Hz}$. I valori misurati sono $f=(49.4\pm0.2)\,\mathrm{Hz}$ e $\Delta\phi=(90.0\pm0.5)^\circ$

Riportando il circuito allo stato in figura 4, proviamo a modificare il guadagno dell'amplificatore invertente da G=1 a G=2. Facendo ciò non ci aspettiamo che modifichi frequenza e sfasamento

dei due segnali, bensì che provochi variazione in ampiezza. Stiamo infatti andando a raddoppiare il guadagno a loop aperto, di conseguenza diminuiremo il guadagno a loop chiuso.