



Master's Degree Thesis

Brignone Giovanni

Supervisor: Prof. Lavagno Luciano

October 21, 2021

Politecnico di Torino

# Introduction

# **High-Level Synthesis**

# **Designer**:

- Functionality
- Architecture
- Constraints

## HLS:

· Low-level implementation



- High productivity
- Quick design space exploration
- Limited low-level control

# **Memory management**

### **Scratchpad**:

- · Manual memory selection
- · HLS state of the art

#### Cache:

- · Automatic full hierarchy exploit
- · Thesis work objective



### **Previous work**

#### **Architecture:**

· Cache inlined in application

### **User friendliness:**

- Integrable: operator[] overload
- Configurable: template parameters
- Observable: hit ratio reports



# **Development**

### **Basic architecture**

# **Objective**:

No application cluttering

# **Proposed solution:**

- Application:
  - 1. Send request
  - 2. Receive response
- Cache: separate process
  - SW simulation: std::thread
  - HW synthesis: dataflow



### **Basic architecture**

### **Cache process:**

• Optimal pipeline (II=1)

#### Interface:

- Scheduler unaware of latency between request and response
- · Workaround: forced clock cycles

### Original schedule



#### Schedule with workaround



### **Multi-levels architecture**

# **Objective:**

 Improve performance with sub-optimal interface schedule

# **Proposed solution:**

• L1 cache inlined in application



# **Multi-ports architecture**

## **Objective**:

Improve performance with loop unrolling

### **Proposed solution:**

- Multiple ports
- Single L2 cache, multiple L1 caches



# **Results**

# **Matrix multiplication**

### Algorithm:

$$C = A \times B$$
,  $A, B, C \in \mathbb{R}^{32 \times 32}$ 

### **Caches configuration:**

- A: 1 line of 32 elements
- B: 32 lines of 32 elements (direct mapped)
- C: 1 line of 32 elements



# **Summary**

# **Summary**

#### **Achieved results:**

- Multi-process modeling for HLS
- Extended design space

#### **Future work:**

• RTL implementation for optimizing interface

#### References

- Ma, L., Lavagno, L., Lazarescu, M., & Arif, A. (2017). Acceleration by inline cache for memory-intensive algorithms on fpga via high-level synthesis. *IEEE Access, PP*, 1–1. https://doi.org/10.1109/ACCESS.2017.2750923
- Pursley, D. (2016). What's the real benefit of high-level synthesis? Retrieved October 16, 2021, from https://semiengineering.com/whats-the-real-benefit-of-high-level-synthesis
- Xilinx Inc. (2021). Vitis high-level synthesis user guide.

  https://www.xilinx.com/support/documentation/sw\_manuals/xilinx2021\_1/ug1399-vitis-hls.pdf