

Analysis Between Cyberattack and Tweets

Junha Lee, Boyoung Han IT Management, Seoul National University of Science and Technology

1. Background & Goal

The number of twitters sent every day → Lots of information in Twitter

→ Find Relations between Cyberattack and Hackers' Tweets

2. Related Work & Differentiation

- Analyzing the Perceived Severity of Cybersecurity Threats Reported on Social Media
 - Analysis of text referring to the severity of cyberattacks online based on specific keywords
- Discovering Signals from Web Sources to Predict Cyber Attacks
 - Predict attack by analyzing cyber threats by analyzing articles posted on various websites through ML
- Detecting Denial-of-Service Attacks from Social Media Text: Applying NLP to Computer Security
 - Analysis of SNS users' responses to cyberattack(DDoS) using NLP models
 - Common point : Predict cyberattack using SNS (Twitter) data
- Different Point
 - Focus on **Graph database**(user network)
 - **Time-series**(frequency of tweets)

3. Project Process **For more details, feel free to ask us**

Collection

- User List
 - Provided by Recorded Future
- Tweepy
 - Twitter Developer API
 - Follow/ Following Relationship
- Scrapy
 - All historical Tweets Data
- News Data
 - Key-work : Hit by Cyberattack
 - Google News
 - Exact Attack date / Importance

Network Graph Analysis

- Follow / Following Relationship
- Neo4J
- Criteria
 - Random
 - Recorded Future
 - Betweenness Centrality
 - Closeness Centrality
- Clustering each Criteria

Criteria	Cluster 1	Cluster 2	Density	
Random	65	1	65%	
Recorded Future	95	1	95%	
Betweenness	100	-	100%	
Closeness	100	_	100%	

Frequency Graph **Analysis**

- 2013 2018
- Criteria for Tweets Data
 - All
 - Keyword Filter "keyword": "telecom sit"
- Criteria for News
 - All
 - Importance

Adjacent (News date - Attack date)

Relation **Analysis**

- Set the Period
 - Before the Attack Days
 - Attack Day
 - After the Attack Days
- Compare the Average
 - Year Average
 - Attack Average

4. Analysis & Conclusion

About Users: 4 Criteria (Described at the above part) About Tweets: 2 Criteria (Described at the above part)

About News: 3 Criteria

	2013	2014	2015	2015	2017	2018	Total
All Attack	12	10	9	8	8	11	58
Important Attack	5	4	4	2	4	4	23
Adjacent Attack	7	7	7	3	3	3	30

About Period: 3 Criteria

Criteria 1: 15 Days (Before 7 days + Attack Day + After 7 days) Criteria 2:11 Days (Before 5 days + Attack Day + After 5 days) Criteria 3: 7 Days (Before 3 days + Attack Day + After 3 days)

If an Attack Average is higher than Year Average, that attack is assumed to be **related to the tweet activity of users** involved in the Cyberattack.

(Attack Avg means the average of given period)

The Result

R: Random / R_F: Random Filtered / RF: Recorded Future / RF_F: Recorded Future Filtered BC: Betweenness & Closeness / BC_F: Betweenness & Closeness Filtered

Criteria 1 : 15 Days		R	R_F	RF	RF_F	ВС	BC_F
	All Attack	38.89%	40.68%	42.37%	33.90%	44.07%	49.15%
	Important Attack	34.78%	47.83%	30.43%	34.78%	47.83%	43.48%
	Adjacent Attack	43.33%	50.00%	50.00%	43.33%	40.00%	53.33%
	Avg	39.03%	46.17%	40.93%	37.34%	43.97%	48.65%
Criteria 2 : 11 Days		R	R_F	RF	RF_F	ВС	BC_F
	All Attack	30.51%	38.98%	40.68%	33.90%	42.37%	45.76%
	Important Attack	26.90%	43.48%	30.43%	34.78%	43.48%	39.13%
	Adjacent Attack	36.67%	46.67%	40.00%	40.00%	43.33%	56.67%
	Avg	31.36%	43.04%	37.04%	36.23%	43.06%	47.19%
		R	R_F	RF	RF_F	ВС	BC_F
Criteria 3 : 7 Days	All Attack	37.29%	42.37%	44.07%	32.20%	40.68%	49.15%
	Important Attack	39.13%	52.17%	34.78%	30.43%	47.83%	47.83%
	Adjacent Attack	43.33%	50.00%	50.00%	40.00%	36.67%	60.00%
	Avg	39.92%	48.18%	42.95%	34.21%	42.25%	52.33%

- 1. Sort the Users involved in overall Cyberattacks by Betweenness Centrality
- 2. Filter the Tweets based on Keywords related to Cyberattacks

→ More relevant to Cyberattacks

5. Future Work

- 1. Subdivide the time series consider the time differences
- 2. Analyze Tweet text which was written BEFORE the attack by using NLP
- 3. Find deep relationship between users' Tweets and actual cyberattack
- 1. Subdivide the time series consider the time differences
- 2. Analyze Tweet text which was written AFTER the attack by using NLP
- 3. Find deep relationship between users' Tweets and actual cyberattack
- → Possible to <u>detect</u> the potential Cyberattack
- → Possible to <u>notify</u> the Cyberattack as soon as possible

Seoultech IT Management 2019 Capstone Design Junha Lee and Boyoung Han