VATT: Transformers for Multimodal Self-Supervised Learning from Raw Video, Audio and Text

Akbari, H., Yuan, L., Qian, R., Chuang, W. H., Chang, S. F., Cui, Y., & Gong, B. (2021). Vatt: Transformers for multimodal self-supervised learning from raw video, audio and text. *Advances in Neural Information Processing Systems*, *34*, 24206-24221.

육현준

1. Introduction

1.1 Background

- Transformer¹의 등장 이후 자연어 처리(NLP)에서 SOTA 달성
 - High Computational efficiency & Scalability
 - GPT, BERT
- Computer Vision
 - Large-scale Supervised Pre-trained Transformer (ViT²)의 성공
- Video Recognition task로 확장

1. Introduction

1.2 Problem

- 대량의 data → <u>Supervised</u> Pretrain
 - 많은 양의 Parameter와 Hyperparameter
 - Bias → 더 많은 양의 labeled data 필요

1.3 Difficulties

- 충분한 양의 label data를 위한 비용과 학습 시간 ↑
 - Computer Vision에서 Transformer의 적용이 어렵다.

1. Introduction

1.4 Solution

- Unlabeled data
- Raw signal을 입력으로 받는 <u>Self-Supervised</u> Learning Transformer

2.1 Transformer in Vision

- (ViT) 대량의 label data → Pre-train
 - CNN-base 모델보다 높은 성능
 - 다양한 downsteam task에 활용

2.2 Self-Supervised Learning

- Single vision modality
 - Self-supervised visual representation learning
 - Pretext task → Contrastive learning

2.2 Self-Supervised Learning

- Single vision modality
 - Pretext task
 - 사람이 정의한 작업을 통해 unlabel data로부터 feature를 추출

2.2 Self-Supervised Learning

- Single vision modality
 - Contrastive Learning
 - 입력 sample 간의 비교를 통해 representation 학습

3) Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.

2.2 Self-Supervised Learning

- Multimodal Video
 - Audio waveform
 - Text scripts
 - Video frames

3.1 VATT

- Transformer : BERT, ViT
- Modality Specific
- Modality Agnostic

3.2 Tokenization and Positional Encoding

• Raw signal을 input

- Video
 - 전체 $T \times H \times W \times 3 \rightarrow t \times h \times w 3$
 - [T/t] x [H/h] x [W/w] patches
 - D-dimension projection (flatten & linear)
 - $W_{vp} \in \mathbb{R}^{t \cdot h \cdot w \cdot 3 \times d} \rightarrow \text{Transformer input}$

- Positional Encoding
 - Learnable parameter

$$m{E}_{ ext{Temporal}} \in \mathbb{R}^{\lceil T/t
ceil imes d} \ m{E}_{ ext{Horizontal}} \in \mathbb{R}^{\lceil H/h
ceil imes d} \ m{E}_{ ext{Vertical}} \in \mathbb{R}^{\lceil W/w
ceil imes d} \ m{e}_{i,j,k} = m{e}_{ ext{Temporal}_i} + m{e}_{ ext{Horizontal}j} + m{e}_{ ext{Vertical}k}$$

- Audio
 - 전체 T' → t'
 - [T'/t'] segments
 - D-dimension projection (linear)
 - $W_{ap} \in \mathbb{R}^{t' \times d} \to \text{Transformer input}$

- 3. Proposed Idea
 - 3.2 Tokenization and Positional Encoding
 - Positional Encoding
 - Learnable embedding
 - [T'/t'] 개의 learnable embedding

- Text
 - V dimension one-hot encoding mapping
 - D-dimension projection (linear)
 - $W_{tp} \in \mathbb{R}^{v \times d} \to \text{Transformer input}$

```
['나', '는', '자연어', '처리', '를', '배운다']
```

```
단어 집합 : {'나': 0, '는': 1, '자연어': 2, '처리': 3, '를': 4, '배운다': 5}
```

```
one_hot_encoding("자연어", word_to_index)
```

```
[0, 0, 1, 0, 0, 0]
```

- Relative positional encoding
 - T5⁴ model에서 사용한 방법
 - Learnable parameter
 - Attention score + relative bias
- 이 방법을 사용하여 T5모델 Transfer 가능

Self Attention

$$z_i = \sum_{j=1}^n lpha_{ij}(x_j W^V)$$
 $e_{ij} = \frac{x_i W^Q (x_j W^K + a_{ij}^K)^T}{\sqrt{d_z}}$

$$z_i = \sum_{j=1}^n \alpha_{ij} (x_j W^V + \boxed{a_{ij}^V})$$

$$a_{ij}^K = w_{\text{clip}(j-i,k)}^K$$

$$a_{ij}^V = w_{\text{clip}(j-i,k)}^V$$

$$\text{clip}(x,k) = \max(-k, \min(k,x))$$

• I think therefore I am (k=4)

Index	Interpretation
0	dist between word at position i and i-4
1	dist between word at portition i and i-3
2	dist between word at position i and i-2
3	dist between word at position i and i-1
4	dist between word at position i and i
5	dist between word at position i and it!
6	dist between word at position i and i+2
7	dist between word at position i and 1+3
8	dist between word ail position i and it 4


```
[[4,5,6,7,8],
[3,4,5,6,7],
[2,3,4,5,6],
[1,2,3,4,5],
[0,1,2,3,4]]
```

3.3 DropToken

- *O*(*N*²) : Computational Complexity ↓
 - N: 입력 시퀀스의 토큰 수
- 제한된 하드웨어에서 대형 모델을 호스팅 가능
- resolution, dimension을 줄이는 것보다 더 나은 방법
- Video와 audio token에 적용
- 특히, Video는 중복성↑ 효율↑

Patch + Position Embedding

Figure 2. **DropToken**. During training, we leverage the high redundancy in multimodal video data and propose to randomly drop input tokens. This simple and effective technique significantly reduces training time with little loss of quality.

3.4 The Transformer Architecture

- [AGG] Token = [Class] Token $\rightarrow Z_{out}^0$
 - Downstream task or Common space mapping
 - Learnable parameter
- GeLU Activation / Layer Normalization

3.4 The Transformer Architecture

(VIT)
$$\mathbf{z}_0 = [\mathbf{x}_{class}; \mathbf{x}_p^1 \mathbf{E}; \mathbf{x}_p^2 \mathbf{E}; \dots; \mathbf{x}_p^N \mathbf{E}] + \mathbf{E}_{pos}, \quad \mathbf{E} \in \mathbb{R}^{(P^2 \cdot C) \times D}, \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) \times D}$$

(VATT)
$$oldsymbol{z}_{ ext{in}} = [oldsymbol{x}_{ ext{AGG}}; \ oldsymbol{x}_0 oldsymbol{W}_P; \ oldsymbol{x}_1 oldsymbol{W}_P; \dots; \ oldsymbol{x}_N oldsymbol{W}_P] + oldsymbol{e}_{ ext{POS}}$$

3.5 Common Space Projection

- Common Space Projection → Contrastive learning
- FAC: MMV⁵에서 제안한 방법
 - Video Audio : fine-grained space (512)
 - Video Text : lower dimension → coarse-grained space (256)

Figure 1: (a)-(c) Modality Embedding Graphs, (d) Projection heads and losses for the FAC graph. V=Vision, A=Audio, T=Text.

5) Alayrac, Jean-Baptiste, et al. "Self-supervised multimodal versatile networks." Advances in Neural Information Processing Systems 33 (2020): 25-37.

3.5 Common Space Projection

VATT

Multimodal Projection Head

Transformer Encoder

• 1 Layer Linear Projection • ReLU + 2 Layer Linear Projection

Batch Norm : After linear layer

3.6 Multimodal Contrastive Learning

- Video Audio : Noise-Contrastive Estimation (NCE loss)
- Video Text : Multiple-Instance-Learning-NCE (MIL-NCE loss)

$$NCE(\boldsymbol{z}_{v,va}, \boldsymbol{z}_{a,va}) = -\log \left(\frac{\exp(\boldsymbol{z}_{v,va}^{\top} \boldsymbol{z}_{a,va}/\tau)}{\exp(\boldsymbol{z}_{v,va}^{\top} \boldsymbol{z}_{a,va}/\tau) + \sum_{z' \in \mathcal{N}} \exp(\boldsymbol{z'}_{v,va}^{\top} \boldsymbol{z'}_{a,va}/\tau)} \right), \quad (4)$$

$$MIL-NCE(\boldsymbol{z}_{v,vt}, \{\boldsymbol{z}_{t,vt}\}) = -\log\left(\frac{\sum_{\boldsymbol{z}_{t,vt} \in \mathcal{P}} \exp(\boldsymbol{z}_{v,vt}^{\top} \boldsymbol{z}_{t,vt} / \tau)}{\sum_{\boldsymbol{z}_{t,vt} \in \mathcal{P}} \exp(\boldsymbol{z}_{v,vt}^{\top} \boldsymbol{z}_{t,vt} / \tau) + \sum_{z' \in \mathcal{N}} \exp(\boldsymbol{z'}_{v,vt}^{\top} \boldsymbol{z'}_{t,vt} / \tau)}\right),$$
(5)

3.6 Multimodal Contrastive Learning

- (NCE loss)
 - Positive Pair (1개) → minimize
 - <u>Negative</u> pair → maximize
 - Cosine similarity [0,1]

$$NCE(\boldsymbol{z}_{v,va}, \boldsymbol{z}_{a,va}) = -\log \left(\frac{\exp(\boldsymbol{z}_{v,va}^{\top} \boldsymbol{z}_{a,va} / \tau)}{\exp(\boldsymbol{z}_{v,va}^{\top} \boldsymbol{z}_{a,va} / \tau)} + \sum_{z' \in \mathcal{N}} \exp(\boldsymbol{z'}_{v,va}^{\top} \boldsymbol{z'}_{a,va} / \tau) \right)$$

3.6 Multimodal Contrastive Learning

- (MIL-NCE loss)
 - Positive Pair → minimize
 - Negative pair → maximize
 - Cosine similarity [0,1]

$$\text{MIL-NCE}(\boldsymbol{z}_{v,vt}, \{\boldsymbol{z}_{t,vt}\}) = -\log \left(\frac{\sum_{\boldsymbol{z}_{t,vt} \in \mathcal{P}} \exp(\boldsymbol{z}_{v,vt}^{\top} \boldsymbol{z}_{t,vt} / \tau)}{\sum_{\boldsymbol{z}_{t,vt} \in \mathcal{P}} \exp(\boldsymbol{z}_{v,vt}^{\top} \boldsymbol{z}_{t,vt} / \tau)} + \frac{\sum_{\boldsymbol{z}' \in \mathcal{N}} \exp(\boldsymbol{z'}_{v,vt}^{\top} \boldsymbol{z'}_{t,vt} / \tau)}{\sum_{\boldsymbol{z}' \in \mathcal{N}} \exp(\boldsymbol{z'}_{v,vt}^{\top} \boldsymbol{z'}_{t,vt} / \tau)} \right)$$

3.6 Multimodal Contrastive Learning

$$NCE(\boldsymbol{z}_{v,va}, \boldsymbol{z}_{a,va}) = -\log \left(\frac{\exp(\boldsymbol{z}_{v,va}^{\top} \boldsymbol{z}_{a,va}/\tau)}{\exp(\boldsymbol{z}_{v,va}^{\top} \boldsymbol{z}_{a,va}/\tau) + \sum_{z' \in \mathcal{N}} \exp(\boldsymbol{z'}_{v,va}^{\top} \boldsymbol{z'}_{a,va}/\tau)} \right),$$

$$\text{MIL-NCE}(\boldsymbol{z}_{v,vt}, \{\boldsymbol{z}_{t,vt}\}) = -\log \left(\frac{\sum_{\boldsymbol{z}_{t,vt} \in \mathcal{P}} \exp(\boldsymbol{z}_{v,vt}^{\top} \boldsymbol{z}_{t,vt} / \tau)}{\sum_{\boldsymbol{z}_{t,vt} \in \mathcal{P}} \exp(\boldsymbol{z}_{v,vt}^{\top} \boldsymbol{z}_{t,vt} / \tau)} + \sum_{\boldsymbol{z}' \in \mathcal{N}} \exp(\boldsymbol{z}'_{v,vt} \boldsymbol{z}'_{t,vt} / \tau)} \right)$$

$$\mathcal{L} = \text{NCE}(\boldsymbol{z}_{v,va}, \boldsymbol{z}_{a,va}) + \lambda \text{MIL-NCE}(\boldsymbol{z}_{v,vt}, \{\boldsymbol{z}_{t,vt}\}),$$

 ${\mathcal N}$: number of negative pair

 τ : temperature 변수

p:5 text clips

코사인 유사도 : -1

코사인 유사도 : 0

코사인 유사도 : 1

4.1 Setup

- Pre-train
 - AudioSet(Audio + Video + 0 Vector) + Howto100M(Video + Audio + Scripts)
 - Automatic Speech Recognition
 - Random Crop, Horizontal Flip, Color Augmentation, Normalize
 - Video
 - 32 x 224 x 224 x 3 (10fps)
 - Patch size : t=4 x h=16 x w=16 x 3
 - Audio
 - 48kHz
 - Patch size: 128
 - DropToken rate: 50%
 - Temperature 변수 τ : 0.07
 - $\lambda:1$

4.1 Setup

Video action recognition :

- UFC101 (101 classes, 13,320 videos)
- HMDB51 (51 classes, 6,766 videos)
- Kinetics-400 (400 classes, 234,584 videos)
- Kinetics-600 (600 classes, 366,016 videos)
- Moments in Time (339 classes, 791,297 videos)

Audio event classification :

- ESC50 (50 classes, 2000 audio clips)
- AudioSet (527 classes, 2M audio clips)

Zero-shot video retrieval :

- YouCook2 (3.1k video-text pairs)
- MSR-VTT (1k video-text pairs)

Image classification :

ImageNet-1000k (1000 classes, 1.2M)

Freeze & train linear classifier

4.1 Setup

- Network
 - Modality-agnostic
 - Medium Model (MA 155M parameter)
 - Modality-specific
 - (video-audio-text) backbone
 - Base-Base-Small (BBS 197M parameter)
 - Medium-Base-Small (MBS 264M parameter) : TPUv3 256개 3days
 - Large-Base-Small (LBS 415M parameter)

- Fine-tuning for video action recognition
 - SOTA 달성
 - Agnostics = Base model
 - 단일 backbone 가능성
 - Model 1
 - FLOPs 1
 - $10^{12}/s$
 - Accuracy 1

	Kinetics-400		Kinetics-600		Moments in Time		
МЕТНОО	TOP-1	TOP-5	TOP-1	TOP-5	TOP-1	TOP-5	TFLOPs
I3D [13]	71.1	89.3	71.9	90.1	29.5	56.1	-
R(2+1)D [26]	72.0	90.0	-	-	-	-	17.5
bLVNet [27]	73.5	91.2	_	-	31.4	59.3	0.84
S3D-G [96]	74.7	93.4	-	-	-	-	-
Oct-I3D+NL [20]	75.7	-	76.0	-	-	-	0.84
D3D [83]	75.9	-	77.9	-	-	-	-
I3D+NL [93]	77.7	93.3	_	-	-	-	10.8
ip-CSN-152 [87]	77.8	92.8	_	-	-	-	3.3
AttentionNAS [92]	-	-	79.8	94.4	32.5	60.3	1.0
AssembleNet-101 [77]	-	-	_	-	34.3	62.7	-
MoViNet-A5 [47]	78.2	-	82.7	-	39.1	-	0.29
LGD-3D-101 [69]	79.4	94.4	81.5	95.6	-	-	-
SlowFast-R101-NL [30]	79.8	93.9	81.8	95.1	-	-	7.0
X3D-XL [29]	79.1	93.9	81.9	95.5	-	-	1.5
X3D-XXL [29]	80.4	94.6	_	-	-	-	5.8
TimeSFormer-L [9]	80.7	94.7	82.2	95.6	-	-	7.14
VATT-Base	79.6	94.9	80.5	95.5	38.7	67.5	9.09
VATT-Medium	81.1	95.6	82.4	96.1	39.5	68.2	15.02
VATT-Large	82.1	95.5	83.6	96.6	41.1	67.7	29.80
VATT-MA-Medium	79.9	94.9	80.8	95.5	37.8	65.9	15.02

Table 1: Video action recognition accuracy on Kinetics-400, Kinetics-600, and Moments in Time.

- Fine-tuning for audio event classification
 - SOTA 달성
 - Agnostics = Base model

МЕТНОО	mAP	AUC	d-prime
DaiNet [21]	29.5	95.8	2.437
LeeNet11 [55]	26.6	95.3	2.371
LeeNet24 [55]	33.6	96.3	2.525
Res1dNet31 [49]	36.5	95.8	2.444
Res1dNet51 [49]	35.5	94.8	2.295
Wavegram-CNN [49]	38.9	96.8	2.612
VATT-Base	39.4	97.1	2.895
VATT-MA-Medium	39.3	97.0	2.884

Table 2: Finetuning results for AudioSet event classification.

- Fine-tuning for image classification
 - Train: Video
 - 다른 domain Transfer 가능성
 - Patch size: 4 x 16 x 16 x 3
 - Input image copy → 4장
 - Unlabeled data로 pretrain했지만 준수한 성능

Метнор	PRE-TRAINING DATA	TOP-1	TOP-5
iGPT-L [16]	ImageNet	72.6	-
ViT-Base [25]	JFT	79.9	
VATT-Base	-	64.7	83.9
VATT-Base	HowTo100M	78.7	93.9

Table 3: Finetuning results for ImageNet classification.

4.2 Results

- Zero-shot text-to-video retrieval
 - Zero-shot
 - Fine-tuning X
 - Semantic information
 - Metrics
 - Recall@10
 - MedR : True video 순위 median
 - S_{vt} space에서 representation 추출

Multimodal Projection Head

$$Recall = \frac{TP}{TP + FN}$$

* 실제 True 값 중 model이 True라고 예측한 비율

- Zero-shot text-to-video retrieval
 - SOTA X : noisy data
 - Batch size, epochs ↓ 비슷한 결과
 - Batch size: 8192
 - Epochs: 6
 - (YouCook2) MIL-NCE와 동일한 결과
 - (MSR-VTT) 성능↑
 - R@10:29.2
 - MedR: 42

Метнор	Ватсн	Еросн			MSR R@10	. – –
MIL-NCE [59] MMV [1]	8192 4096	27 8	51.2 45.4	10	32.4 31.1	30 38
VATT-MBS	2048	4	45.5	13	29.7	49
VATT-MA-Medium	2048	4	40.6	17	23.6	67

Table 4: Zero-shot text-to-video retrieval.

- Feature Visualization
 - Modality-specific과 Modality-agnostic 비교
 - Fine-tune : better separation
 - Specific과 agnostic과는 명확한 차이 X

Figure 2: t-SNE visualization of the feature representations extracted by the vision Transformer in different training settings. For better visualization, we show 100 random classes from Kinetics-400.

- Feature Visualization
 - After Tokenization layer와 After Common space 비교
 - Agnostic이 좀 더 섞여 있는 모습
 - 같은 concept을 묘사하는 다른 symbol을 다른 modality로 간주 → 여러 언어를 지원하는 NLP 모델과 유사

- Feature Visualization
 - After Tokenization layer와 After Common space 비교
 - Positive pair와 negative pair 분포는 비슷

- Model Activations
 - VATT average activation of the modality-agnostic
 - Text : early node activated
 - Video and audio: middle to later node activat
 - All modality: last layer activated
 - Mixture of Experts 가능성

- Effect of Drop Token
 - DropToken이 downstream과 pre-train에 미치는 영향
 - Pre-train DropToken rate: 75%, 50%, 25%, 0%
 - Accuracy와 Cost의 절충안: 50%

	DropToken Drop Rate				
	75%	50%	25%	0%	
Multimodal GFLOPs	188.1	375.4	574.2	784.8	
HMDB51	62.5	64.8	65.6	66.4	
UCF101	84.0	85.5	87.2	87.6	
ESC50	78.9	84.1	84.6	84.9	
YouCookII	17.9	20.7	24.2	23.1	
MSR-VTT	14.1	14.6	15.1	15.2	

Table 5: Top-1 accuracy of linear classification and R@10 of video retrieval vs. drop rate vs. inference GFLOPs in the VATT-MBS.

- Effect of Drop Token
 - 50% Pre-train model → fine-tune
 - DropToken rate: 75%, 50%, 25%, 0%
 - DropToken Vs low-resolution

Resolution/	DropToken Drop Rate					
FLOPs	75%	50%	25%	0%		
$32 \times 224 \times 224$	-	-	-	79.9		
Inference (GFLOPs)	-	_	-	548.1		
$\overline{64 \times 224 \times 224}$	-	-	-	80.8		
Inference (GFLOPs)	-	-	-	1222.1		
$32 \times 320 \times 320$	79.3	80.2	80.7	81.1		
Inference (GFLOPs)	279.8	572.5	898.9	1252.3		

Table 6: Top-1 accuracy of video action recognition on Kinetics400 using high-resolution inputs coupled with DropToken vs. low-resolution inputs.

5. Conclusion & Future Work

5.1 Conclusion

- Transformer 기반 <u>Self-supervised</u> <u>Multi-modal</u> Representation Learning Framework
 - Weight을 share해도 Representation을 학습 가능 (Agnostic)
 - Labeled data 의존도↓

5.2 Future Work

- Modality-agnostic model
- Computational Cost ↑

감사합니다.

육현준