Ejercicio 9 Relación Tema 1

Lógica y Métodos discretos

Javier Gómez López

3 de abril de 2022

Ejercicio 9. Es cierto que de un número n_0 en adelante se tiene que $100^n < n!$. Encuéntrelo y demuestre por inducción lo dicho a partir de ese número n_0 .

En primer lugar, estudiemos la convergencia de la serie $\sum_{n\geq 1} \frac{n!}{100^n}$. Para ello, sea $\alpha_n = \frac{n!}{100^n}$ y apliquemos el criterio de d'Alembert o del cociente:

$$\lim_{n \to \inf} \frac{\alpha_{n+1}}{\alpha_n} = \lim_{n \to \infty} \frac{\frac{(n+1)!}{100^{n+1}}}{\frac{n!}{100^n}} = \lim_{n \to \infty} \frac{n+1}{100} = \infty$$

Vemos que dicho límite es mayor estricto que 1, por tanto el criterio del cociente nos dice que la serie $\sum_{n>1} \alpha_n$ diverge.

Que dicha serie es divergente, supone que:

$$\exists n_0 \in \mathbb{N} : n \ge n_0 \Rightarrow 100^n < n!$$

Ahora, tratemos de hallar dicho n_0 . Para ello, sabiendo que la función logaritmo es una función creciente, y por tanto, obtenemos la siguiente expresión:

$$\log(100^n) < \log(n!)$$

Desarrollamos esta expresión:

$$n \cdot \log(100) < \log(n!) < \int_{\text{Fórmula de Stirling}} n \cdot \log(n) - n$$

$$\log(100) < \log(n) - 1$$

Ahora aplicamos que la función exponencial es una función creciente:

$$e^{\log(100)+1} < n$$

Y deducimos que

La fórmula de Stirling la hemos visto en la asignatura de Algorítmica, y se basa en la siguiente aproximación:

$$n! \simeq \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

Cabe destacar que $n_0 = 272$ no tiene por qué ser el mínimo natural que cumpla nuestro enunciado, debido a que la fórmula de Stirling es una aproximación, no una igualdad. Aún así, hemos encontrado un $n_0 \in \mathbb{N}$ que cumple lo que queríamos probar.

Ahora pasamos a usar lo demostrado como caso base de nuestra hipótesis de inducción. Apliquemos el primer principio de inducción:

• Supongamos $n \in \mathbb{N}$, $n \ge n_0$ tal que $100^n < n!$ y probemos que $100^{n+1} < (n+1)!$

Entonces, tenemos que

$$100^{n+1} < (n+1)! \Rightarrow 100^n \cdot 100 < (n+1) \cdot n!$$

Por la hipótesis de inducción, se verifica que $100^n < n!$. Por otro lado, de 100 < n+1 sabemos que se cumple pues $n \ge n_0$, pero $n_0 = 272$. Por tanto, la desigualdad queda probada y hemos terminado.