TD Tas

CERI - Licence 2 Informatique - Année Académique 2022-2023 29 septembre 2024

Exercice 1 On considére la procédure suivante d'insertion d'entiers dans un tas de n éléments

```
Algorithme: Insertion(x,T,n) n = n + 1; T[n] = x; i = n; tant que i \ge 1 \ et \ T[i] < T[\lfloor \frac{i}{2} \rfloor] \ faire \begin{vmatrix} echanger(T[i], T[\lfloor \frac{i}{2} \rfloor]); \\ i = \lfloor \frac{i}{2} \rfloor \end{vmatrix} fin
```

1/ Donner le contenu de T après insertion dans l'ordre des valeurs suivantes : 7,6,5,2,12,4,3,8,11,1,9.

2/ Donner le contenu de T après suppression du minimum et réorganisation du tas.

Exercice 2. Soit T le tableau suivant :

1/T est-il un tas?

- 2/ Ecrire le pseudo-code d'une méthode "Test(T)", de complexité $\Theta(n)$, renvoyant vraie si T est un tas et faux sinon.
- 3/ Illustrer le fonctionnement de l'algorithme du tri par tas sur ${\cal T}$ (voir pseudo-codes cours).
- 4/ Illustrer le fonctionnement de l'algorithme du tri par tas sur le tableau suivant (voir pseudo-codes cours)

1/ Oui c'est un tas l'arbre correspondant est le suivant. Chaque noeud a bien une valeur inférieure à ses fils.

2/

```
Algorithme: Test(T,n)

pour i allant de 1 à \lfloor \frac{n}{2} \rfloor faire

\mid si T[i] > min(T[2i], T[2i+1]) alors

\mid retourner(faux);

fin

fin

retourner(vrai);
```

3/ Le contenu de T à chaque itération est indiqué dans le tableau cidessous. T est déjà un tas à chaque itération la méthode suppression/réorganisation vue en cours est appliquée.

it	1	2	3	4	5	6	7	8	9	10
0	2	6	10	8	9	11	12	9	13	14
1	6	8	10	9	9	11	12	14	13	2
2	8	9	10	13	9	11	12	14	6	2
3	9	9	10	13	14	11	12	8	6	2
4	9	12	10	13	14	11	9	8	6	2
5	10	12	11	13	14	9	9	8	6	2
6	11	12	14	13	10	9	9	8	6	2
7	12	13	14	11	10	9	9	8	6	2
8	13	14	12	11	10	9	9	8	6	2
9	14	13	12	11	10	9	9	8	6	2

4/L'arbre correspondant à la séquence est :

est le suivant

Ce n'est pas un tas. Son tri necessite d'abord une réorganisation en tas dont les effets seront les suivants (voir cours).

it	1	2	3	4	5	6	7	8	9
0	5	13	2	25	7	17	20	8	4
1	5	13	2	4	7	17	20	8	25
2	5	4	2	13	7	17	20	8	25
3	2	4	5	13	7	17	20	8	25

A l'itération 3 on obtient un tas sur lequel la méthode utilisée à la question peut s'appliquer.

it	1	2	3	4	5	6	7	8	9
0	2	4	5	13	7	17	20	8	25
1	4	7	5	13	25	17	20	8	2
2	5	7	8	13	25	17	20	4	2
3	7	13	8	20	25	17	5	4	2
4	8	13	17	20	25	7	5	4	2
5	13	20	17	25	8	7	5	4	2
6	17	20	25	13	8	7	5	4	2
7	20	25	17	13	8	7	5	4	2
8	25	20	17	13	8	7	5	4	2

Exercice 4. On considère un arbre ternaire parfait partiellement ordonné. C'est à dire un arbre dont tous les noeuds ont au plus trois fils, et dont tous les niveaux remplis sauf éventuellement le dernier et dans ce cas les feuilles sont groupés à gauche. Un exemple d'arbre ternaire partiellement ordonné est donné ci-dessous.

1/ Montrer comment représenter un tel arbre par un tableau appelé "tas ternaire" indicé de 1 à n où n est le nombre de noeuds de l'arbre. Donner le tableau correspondant à l'exemple. Indiquer pour chaque indique i du tableau les indices du pére, des fils et des frères de T[i].

resp : On range les noeuds de l'arbre dans un tableau T de n éléments en le parcourant en largeur de haut en bas. Chaque élément T[i] est un neud de l'arbre, les fils de T[i] se situeront aux indices 3i-1,3i,3i+1. Le père de T[i] est situé à l'indice $\lfloor \frac{i}{3} \rfloor$.

2/ Généraliser aux tas ternaires l'algorithme de suppression du plus petit élément vu en cours par les tas (binaires). Donner le contenu de T après suppression du minimum avec cet algorithme.

resp: il suffit de reprendre chaque algorithme du cours en tenant compte du fait qu'il y a maintenant trois fils au lieu de 2.