Algebraic Structures

- Algebraic systems Examples and general properties
- Semi groups
- Monoids
- Groups
- Sub groups

Algebraic systems

- N = $\{1,2,3,4,.....\infty\}$ = Set of all natural numbers. Z = $\{0, \pm 1, \pm 2, \pm 3, \pm 4,\infty\}$ = Set of all integers. Q = Set of all rational numbers. R = Set of all real numbers.
- Binary Operation: The binary operator * is said to be a binary operation (closed operation) on a non empty set A, if
 a * b ∈ A for all a, b ∈ A (Closure property).

 Ex: The set N is closed with respect to addition and multiplication but not w.r.t subtraction and division.
- Algebraic System: A set 'A' with one or more binary(closed) operations defined on it is called an algebraic system. Ex: (N, +), (Z, +, -), (R, +, ., -) are algebraic systems.

Properties

- Commutative: Let * be a binary operation on a set A.

 The operation * is said to be commutative in A if
 - a * b= b * a for all a, b in A
- **Associativity:** Let * be a binary operation on a set A.
 - The operation * is said to be associative in A if
 - (a * b) * c = a * (b * c) for all a, b, c in A
- **Identity:** For an algebraic system (A, *), an element 'e' in A is said to be an identity element of A if
 - a * e = e * a = a for all $a \in A$.
- **Note:** For an algebraic system (A, *), the identity element, if exists, is unique.
- Inverse: Let (A, *) be an algebraic system with identity 'e'. Let a be an element in A. An element b is said to be inverse of A if

Semi group

- **Semi Group:** An algebraic system (A, *) is said to be a semi group if
 - 1. * is closed operation on A.
 - 2. * is an associative operation, for all a, b, c in A.
- Ex. (N, +) is a semi group.
- Ex. (N, .) is a semi group.
- Ex. (N, −) is not a semi group.
- **Monoid:** An algebraic system (A, *) is said to be a **monoid** if the following conditions are satisfied.
 - 1) * is a closed operation in A.
 - 2) * is an associative operation in A.
 - 3) There is an identity in A.

Monoid

- Ex. Show that the set 'N' is a monoid with respect to multiplication.
- Solution: Here, N = {1,2,3,4,.....}
 - 1. <u>Closure property</u>: We know that product of two natural numbers is again a natural number.
 - i.e., a.b = b.a for all a,b \in N
 - ... Multiplication is a closed operation.
 - 2. <u>Associativity</u>: Multiplication of natural numbers is associative.

i.e., (a.b).c = a.(b.c) for all a,b,c
$$\in$$
 N

- 3. <u>Identity</u>: We have, $1 \in \mathbb{N}$ such that
 - a.1 = 1.a = a for all $a \in N$.
 - ... Identity element exists, and 1 is the identity element.

Hence, N is a monoid with respect to multiplication.

Subsemigroup & submonoid

Subsemigroup: Let (S, *) be a semigroup and let T be a subset of S. If T is closed under operation *, then (T, *) is called a subsemigroup of (S, *).

Ex: (N, .) is semigroup and T is set of multiples of positive integer m then (T,.) is a sub semigroup.

Submonoid: Let (S, *) be a monoid with identity e, and let T be a non- empty subset of S. If T is closed under the operation * and $e \in T$, then (T, *) is called a submonoid of (S, *).

Group

- **Group:** An algebraic system (G, *) is said to be a **group** if the following conditions are satisfied.
 - 1) * is a closed operation.
 - 2) * is an associative operation.
 - 3) There is an identity in G.
 - 4) Every element in G has inverse in G.
- Abelian group (Commutative group): A group (G, *) is said to be abelian (or commutative) if

Algebraic systems

- In a Group (G, *) the following properties hold good
- 1. Identity element is unique.
- 2. Inverse of an element is unique.
- 3. Cancellation laws hold good

```
a * b = a * c \implies b = c (left cancellation law)

a * c = b * c \implies a = b (Right cancellation law)
```

- 4. $(a * b)^{-1} = b^{-1} * a^{-1}$
- In a group, the identity element is its own inverse.
- Order of a group: The number of elements in a group is called order of the group.
- Finite group: If the order of a group G is finite, then G is called a finite group.

Ex. Show that, the set of all integers is a group with respect to addition.

Solution: Let Z = set of all integers.

Let a, b, c are any three elements of Z.

1. <u>Closure property</u>: We know that, Sum of two integers is again an integer.

i.e.,
$$a + b \in Z$$
 for all $a,b \in Z$

2. Associativity: We know that addition of integers is associative.

i.e.,
$$(a+b)+c = a+(b+c)$$
 for all $a,b,c \in Z$.

3. <u>Identity</u>: We have $0 \in Z$ and a + 0 = a for all $a \in Z$.

... Identity element exists, and '0' is the identity element.

4. Inverse: To each $a \in Z$, we have $-a \in Z$ such that

$$a + (-a) = 0$$

Each element in Z has an inverse.

■ 5. Commutativity: We know that addition of integers is commutative.

i.e., a + b = b + a for all $a,b \in Z$.

Hence, (Z, +) is an abelian group.

- Ex. Show that set of all non zero real numbers is a group with respect to multiplication .
- Solution: Let R^* = set of all non zero real numbers. Let a, b, c are any three elements of R^* .
- 1. <u>Closure property</u>: We know that, product of two nonzero real numbers is again a nonzero real number.
 - i.e., $a.b \in R^*$ for all $a,b \in R^*$.
- 2. <u>Associativity</u>: We know that multiplication of real numbers is associative.
 - i.e., (a.b).c = a.(b.c) for all a,b,c $\in R^*$.
- 3. <u>Identity</u>: We have $1 \in R^*$ and a .1 = a for all $a \in R^*$.
 - .: Identity element exists, and '1' is the identity element.
- 4. Inverse: To each $a \in R^*$, we have $1/a \in R^*$ such that $a \cdot (1/a) = 1$ i.e., Each element in R^* has an inverse.

5.<u>Commutativity</u>: We know that multiplication of real numbers is commutative.

```
i.e., a.b = b.a for all a,b \in R^*.
Hence, (R^*, .) is an abelian group.
```

- <u>Ex:</u> Show that set of all real numbers 'R' is not a group with respect to multiplication.
- Solution: We have $0 \in R$.

The multiplicative inverse of 0 does not exist.

Hence. R is not a group.

Example

- Ex. Let (Z, *) be an algebraic structure, where Z is the set of integers and the operation * is defined by n * m = maximum of (n, m).
 Show that (Z, *) is a semi group.
 Is (Z, *) a monoid?. Justify your answer.
- Solution: Let a , b and c are any three integers.

Closure property: Now, a * b = maximum of (a, b) \in Z for all a,b \in Z

Associativity: $(a * b) * c = maximum of {a,b,c} = a * (b * c)$ \therefore (Z, *) is a semi group.

Identity: There is no integer x such that
 a * x = maximum of (a, x) = a for all a ∈ Z
 ∴ Identity element does not exist. Hence, (Z, *) is not a monoid.

Example

■ Ex. Show that the set of all strings 'S' is a monoid under the operation 'concatenation of strings'.

Is S a group w.r.t the above operation? Justify your answer.

Solution: Let us denote the operation

'concatenation of strings' by +.

Let s_1 , s_2 , s_3 are three arbitrary strings in S.

<u>Closure property</u>: Concatenation of two strings is again a string.

i.e.,
$$s_1 + s_2 \in S$$

Associativity: Concatenation of strings is associative.

$$(s_1 + s_2) + s_3 = s_1 + (s_2 + s_3)$$

- Identity: We have null string , $\lambda \in S$ such that $s_1 + \lambda = S$.
- ∴ S is a monoid.
- Note: S is not a group, because the inverse of a non empty string does not exist under concatenation of strings.

Example

Ex. Let S be a finite set, and let F(S) be the collection of all functions $f: S \rightarrow S$ under the operation of composition of functions, then show that F(S) is a monoid.

Is S a group w.r.t the above operation? Justify your answer.

Solution:

Let f_1 , f_2 , f_3 are three arbitrary functions on S.

<u>Closure property</u>: Composition of two functions on S is again a function on S.

i.e.,
$$f_1 \circ f_2 \in F(S)$$

Associativity: Composition of functions is associative.

i.e.,
$$(f_1 \circ f_2) \circ f_3 = f_1 \circ (f_2 \circ f_3)$$

- Identity: We have identity function $I : S \rightarrow S$ such that $f_1 \circ I = f_1$.
 - \therefore F(S) is a monoid.
- Note: F(S) is not a group, because the inverse of a non bijective function on S does not exist.

Ex. If M is set of all non singular matrices of order 'n x n'. then show that M is a group w.r.t. matrix multiplication. Is (M, *) an abelian group?. Justify your answer.

- Solution: Let $A,B,C \in M$.
- 1.Closure property: Product of two non singular matrices is again a non singular matrix, because

 $|AB| = |A| \cdot |B| \neq 0$ (Since, A and B are nonsingular) i.e., $AB \in M$ for all $A,B \in M$.

2. Associativity: Marix multiplication is associative.

i.e., (AB)C = A(BC) for all $A,B,C \in M$.

- 3. <u>Identity</u>: We have $I_n \in M$ and $AI_n = A$ for all $A \in M$.
 - \therefore Identity element exists, and 'I_n' is the identity element.
- 4. <u>Inverse</u>: To each $A \in M$, we have $A^{-1} \in M$ such that

 $A A^{-1} = I_n$ i.e., Each element in M has an inverse.

■ ∴ M is a group w.r.t. matrix multiplication.

We know that, matrix multiplication is not commutative.

Hence, M is not an abelian group.

Ex. Show that the set of all positive rational numbers forms an abelian group under the composition * defined by a * b = (ab)/2.

- Solution: Let A = set of all positive rational numbers.
 Let a,b,c be any three elements of A.
- 1. <u>Closure property:</u> We know that, Product of two positive rational numbers is again a rational number.

i.e., $a * b \in A$ for all $a,b \in A$.

- 2. Associativity: (a*b)*c = (ab/2)*c = (abc)/4a*(b*c) = a*(bc/2) = (abc)/4
- 3. <u>Identity</u>: Let e be the identity element.

We have $a^*e = (a e)/2 ...(1)$, By the definition of * again, $a^*e = a$ (2), Since e is the identity. From (1)and (2), $(a e)/2 = a \Rightarrow e = 2$ and $2 \in A$.

... Identity element exists, and '2' is the identity element in A.

- 4. Inverse: Let a ∈ A
 let us suppose b is inverse of a.
 Now, a * b = (a b)/2(1) (By definition of inverse.)
 Again, a * b = e = 2(2) (By definition of inverse)
 From (1) and (2), it follows that
 (a b)/2 = 2
 ⇒ b = (4 / a) ∈ A
 ∴ (A,*) is a group.
- Commutativity: a * b = (ab/2) = (ba/2) = b * a
- Hence, (A,*) is an abelian group.

- Ex. In a group (G, *), Prove that the identity element is unique.
- Proof :
- a) Let e_1 and e_2 are two identity elements in G.

```
Now, e_1 * e_2 = e_1 ...(1) (since e_2 is the identity)
Again, e_1 * e_2 = e_2 ...(2) (since e_1 is the identity)
From (1) and (2), we have e_1 = e_2
```

:. Identity element in a group is unique.

- Ex. In a group (G, *), Prove that the inverse of any element is unique.
- Proof:
- Let a ,b,c \in G and e is the identity in G.
- Let us suppose, Both b and c are inverse elements of a.
- Now, a * b = e ...(1) (Since, b is inverse of a)
- Again, a * c = e ...(2) (Since, c is also inverse of a)
- From (1) and (2), we have
- a * b = a * c
- \Rightarrow b = c (By left cancellation law)
- In a group, the inverse of any element is unique.

```
■ Ex. In a group (G, *), Prove that (a * b)^{-1} = b^{-1} * a^{-1} for all a,b \in G.
```

- Proof :
- Consider,

$$= (a * (b * b^{-1}) * a^{-1})$$
 (By associative property).

$$= (a * e * a^{-1})$$
 (By inverse property)

$$= (a * a^{-1}) (Since, e is identity)$$

- Similarly, we can show that
- \bullet (b⁻¹ * a⁻¹) * (a * b) = e
- Hence, $(a * b)^{-1} = b^{-1} * a^{-1}$.

Ex. If (G, *) is a group and $a \in G$ such that a * a = a, then show that a = e, where e is identity element in G.

- Proof: Given that, a * a = a
- \Rightarrow a * a = a * e (Since, e is identity in G)
- \Rightarrow a = e (By left cancellation law)
- Hence, the result follows.

Ex. If every element of a group is its own inverse, then show that the group must be abelian .

- Proof: Let (G, *) be a group.
- Let a and b are any two elements of G.
- Consider the identity,
- \Rightarrow (a * b) = b * a (Since each element of G is its own
- inverse)
- Hence, G is abelian.

Note:
$$a^2 = a * a$$

 $a^3 = a * a * a$ etc.

- Ex. In a group (G, *), if $(a * b)^2 = a^2 * b^2 \forall a,b \in G$ then show that G is abelian group.
- Proof: Given that $(a * b)^2 = a^2 * b^2$
- \Rightarrow (a * b) * (a * b) = (a * a)* (b * b)
- \Rightarrow a *(b * a)* b = a * (a * b) * b (By associative law)
- \Rightarrow (b * a)* b = (a * b) * b (By left cancellation law)
- \Rightarrow (b * a) = (a * b) (By right cancellation law)
- Hence, G is abelian group.

Finite groups

- Ex. Show that $G = \{1, -1\}$ is an abelian group under multiplication.
- Solution: The composition table of G is

- 1. <u>Closure property:</u> Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
- 2. <u>Associativity</u>: The elements of G are real numbers, and we know that multiplication of real numbers is associative.
- 3. <u>Identity</u>: Here, 1 is the identity element and $1 \in G$.
- 4. <u>Inverse</u>: From the composition table, we see that the inverse elements of

1 and -1 are 1 and -1 respectively.

Hence, G is a group w.r.t multiplication.

5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative.

Hence, G is an abelian group w.r.t. multiplication..

Ex. Show that $G = \{1, \omega, \omega^2\}$ is an abelian group under multiplication. Where $1, \omega, \omega^2$ are cube roots of unity.

Solution: The composition table of G is

- 1. <u>Closure property:</u> Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
- 2. <u>Associativity</u>: The elements of G are complex numbers, and we know that multiplication of complex numbers is associative.
- 3. <u>Identity</u>: Here, 1 is the identity element and $1 \in G$.
- 4. <u>Inverse</u>: From the composition table, we see that the inverse elements of 1ω , ω^2 are 1, ω^2 , ω respectively.

- Hence, G is a group w.r.t multiplication.
- 5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative.
- Hence, G is an abelian group w.r.t. multiplication.

Ex. Show that $G = \{1, -1, i, -i\}$ is an abelian group under multiplication.

Solution: The composition table of G is

- 1. <u>Closure property:</u> Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
- 2. <u>Associativity</u>: The elements of G are complex numbers, and we know that multiplication of complex numbers is associative.
- 3. <u>Identity</u>: Here, 1 is the identity element and $1 \in G$.

- 4. <u>Inverse</u>: From the composition table, we see that the inverse elements of
 - 1 -1, i, -i are 1, -1, -i, i respectively.
- 5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative. Hence, (G, .) is an abelian group.

Modulo systems.

- \blacksquare Addition modulo m (+_m)
- let m is a positive integer. For any two positive integers a and b
- = a $+_m$ b = r if a + b \ge m where r is the remainder obtained
- by dividing (a+b) with m.
- \blacksquare Multiplication modulo p (\times_p)
- let p is a positive integer. For any two positive integers a and b
- \blacksquare a \times_{p} b = r if a b \ge p where r is the remainder obtained
- by dividing (ab) with p.
- Ex. $3 \times_5 4 = 2$, $5 \times_5 4 = 0$, $2 \times_5 2 = 4$

Ex.The set $G = \{0,1,2,3,4,5\}$ is a group with respect to addition modulo 6.

Solution: The composition table of G is

•	+ ₆	0	1	2	3	4	5
•	0	0	1	2	3	4	5
•	1	1					
•	2		3				
	3	3					
	4		5				
•	5	5	0	1	2	3	4

■ 1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under $+_6$.

2. <u>Associativity</u>: The binary operation $+_6$ is associative in G. for ex. $(2 +_6 3) +_6 4 = 5 +_6 4 = 3$ and $2 +_6 (3 +_6 4) = 2 +_6 1 = 3$

- 3. <u>Identity</u>: Here, The first row of the table coincides with the top row. The element heading that row, i.e., 0 is the identity element.
- 4. . <u>Inverse</u>: From the composition table, we see that the inverse elements of 0, 1, 2, 3, 4. 5 are 0, 5, 4, 3, 2, 1 respectively.
- 5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation $+_6$ is commutative.
- \blacksquare Hence, (G, $+_6$) is an abelian group.

Ex.The set $G = \{1,2,3,4,5,6\}$ is a group with respect to multiplication modulo 7.

Solution: The composition table of G is

•	\times_7	1	2	3	4	5	6
•		1					
•		2					
•		3					
•	4	4	1	5	2	6	3
•	5	5					
•	6	6	5	4	3	2	1

■ 1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under \times_7 .

2. Associativity: The binary operation \times_7 is associative in G. for ex. $(2 \times_7 3) \times_7 4 = 6 \times_7 4 = 3$ and

 $2 \times_7 (3 \times_7 4) = 2 \times_7 5 = 3$

- 4. . <u>Inverse</u>: From the composition table, we see that the inverse elements of 1, 2, 3, 4. 5, 6 are 1, 4, 5, 2, 5, 6 respectively.
- **5**. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation \times_7 is commutative.
- Hence, (G, \times_7) is an abelian group.

More on finite groups

- In a group with 2 elements, each element is its own inverse
- In a group of even order there will be at least one element (other than identity element) which is its own inverse
- The set G = {0,1,2,3,4,....m-1} is a group with respect to addition modulo m.
- The set $G = \{1,2,3,4,....p-1\}$ is a group with respect to multiplication modulo p, where p is a prime number.
- Order of an element of a group:
- Let (G, *) be a group. Let 'a' be an element of G. The smallest integer n such that aⁿ = e is called order of 'a'. If no such number exists then the order is infinite.

Examples

- Ex. $G = \{1, -1, i, -i\}$ is a group w.r.t multiplication. The order -i is a) 2 b) 3 c) 4 d) 1
- Ex. Which of the following is not true.
- a) The order of every element of a finite group is finite and is a divisor of the order of the group.
 - b) The order of an element of a group is same as that of its inverse.
- c) In the additive group of integers the order of every element except
- 0 is infinite
- d) In the infinite multiplicative group of nonzero rational numbers the
- order of every element except 1 is infinite.
- Ans. d

Sub groups

- <u>Def.</u> A non empty sub set H of a group (G, *) is a sub group of G,
- if (H, *) is a group.

Note: For any group {G, *}, {e, *} and (G, *) are trivial sub groups.

Ex. $G = \{1, -1, i, -i\}$ is a group w.r.t multiplication.

 $H_1 = \{1, -1\}$ is a subgroup of G.

 $H_2 = \{1\}$ is a trivial subgroup of G.

- Ex. (Z, +) and (Q, +) are sub groups of the group (R +).
- Theorem: A non empty sub set H of a group (G, *) is a sub group of G iff
- $\bullet \quad \text{i)} \quad \text{a*b} \in \mathsf{H} \quad \forall \ \mathsf{a,b} \in \mathsf{H}$
- ii) $a^{-1} \in H \quad \forall a \in H$

Theorem

- Theorem: A necessary and sufficient condition for a non empty subset H of a group (G, *) to be a sub group is that $a \in H$, $b \in H \Rightarrow a * b^{-1} \in H$.
- Proof: Case1: Let (G, *) be a group and H is a subgroup of G Let $a,b \in H \Rightarrow b^{-1} \in H$ (since H is is a group) $\Rightarrow a * b^{-1} \in H$. (By closure property in H)
- \blacksquare Case2: Let H be a non empty set of a group (G, *).

Let
$$a * b^{-1} \in H \quad \forall a, b \in H$$

- Now, $a * a^{-1} \in H$ (Taking b = a) $\Rightarrow e \in H$ i.e., identity exists in H.
- Now, $e \in H$, $a \in H \implies e * a^{-1} \in H$ $\Rightarrow a^{-1} \in H$

■ ∴ Each element of H has inverse in H.

Further, $a \in H$, $b \in H \Rightarrow a \in H$, $b^{-1} \in H$

- \Rightarrow a * (b⁻¹)⁻¹ \in H.
- \Rightarrow a * b \in H.
- ∴ H is closed w.r.t *.
- Finally, Let a,b,c ∈ H
 - \Rightarrow a,b,c \in G (since H \subseteq G)
 - \Rightarrow (a * b) * c = a * (b * c)
 - ∴ * is associative in H
- Hence, H is a subgroup of G.

Ex. Show that the intersection of two sub groups of a group G is again a sub group of G.

- Proof: Let (G, *) be a group.
- Let H₁ and H₂ are two sub groups of G.
- Let $a, b \in H_1 \cap H_2$.
- Now, a, b \in H₁ \Rightarrow a * b⁻¹ \in H₁ (Since, H₁ is a subgroup of G)
- again, a, b ∈ $H_2 \Rightarrow a * b^{-1} \in H_2$ (Since, H_2 is a subgroup of G)
- Hence, $H_1 \cap H_2$ is a subgroup of G .

Ex. Show that the union of two sub groups of a group G need not be a sub group of G.

- Proof: Let G be an additive group of integers.
- Let $H_1 = \{0, \pm 2, \pm 4, \pm 6, \pm 8, \ldots\}$
- and $H_2 = \{0, \pm 3, \pm 6, \pm 9, \pm 12, \dots\}$
- Here, H₁ and H₂ are groups w.r.t addition.
- Further, H₁ and H₂ are subsets of G.
- \therefore H₁ and H₂ are sub groups of G.
- $H_1 \cup H_2 = \{ 0, \pm 2, \pm 3, \pm 4, \pm 6, \ldots \}$
- Here, $H_1 \cup H_2$ is not closed w.r.t addition.
- For ex. $2,3 \in G$
- But, 2+3=5 and 5 does not belongs to $H_1 \cup H_2$.
- Hence, $H_1 \cup H_2$ is not a sub group of G.

Homomorphism and Isomorphism.

- Homomorphism: Consider the groups (G, *) and (G¹, ⊕)
 A function f: G → G¹ is called a homomorphism if
 f (a * b) = f(a) ⊕ f (b)
- **Isomorphism**: If a homomorphism $f: G \to G^1$ is a bijection then f is called isomorphism between G and G^1 .

Then we write $G \equiv G^1$

Example

- Ex. Let R be a group of all real numbers under addition and R⁺ be a group of all positive real numbers under multiplication. Show that the mapping $f: R \to R^+$ defined by $f(x) = 2^x$ for all $x \in R$ is an isomorphism.
- Solution: First, let us show that f is a homomorphism.
- Let $a, b \in R$.
- Now, $f(a+b) = 2^{a+b}$
- = 2^a 2^b
- = f(a).f(b)
- .:. f is an homomorphism.
- Next, let us prove that f is a Bijection.

For any
$$a, b \in R$$
, Let, $f(a) = f(b)$

$$\Rightarrow$$
 2^a = 2^b

- ∴ f is one.to-one.
- Next, take any $c \in R^+$.
- Then $\log_2 c \in R$ and $f(\log_2 c) = 2^{\log_2 c} = c$.
- \Rightarrow Every element in R⁺ has a pre image in R.
- i.e., f is onto.
- ∴ f is a bijection.
- Hence, f is an isomorphism.

Example

- Ex. Let R be a group of all real numbers under addition and R⁺ be a group of all positive real numbers under multiplication. Show that the mapping $f: R^+ \to R$ defined by $f(x) = \log_{10} x$ for all $x \in R$ is an isomorphism.
- Solution: First, let us show that f is a homomorphism.
- Let a, $b \in R^+$.
- Now, $f(a.b) = log_{10} (a.b)$
- $= \log_{10} a + \log_{10} b$
- = f(a) + f(b)
- .:. f is an homomorphism.
- Next, let us prove that f is a Bijection.

For any
$$a, b \in R^+$$
, Let, $f(a) = f(b)$

$$\Rightarrow \log_{10} a = \log_{10} b$$

- ∴ f is one.to-one.
- Next, take any $c \in R$.
- Then $10^c \in R$ and $f(10^c) = log_{10} 10^c = c$.
- \Rightarrow Every element in R has a pre image in R⁺.
- i.e., f is onto.
- ∴ f is a bijection.
- Hence, f is an isomorphism.

Theorem

- Theorem: Consider the groups $(G_1, *)$ and (G_2, \oplus) with identity elements e_1 and e_2 respectively. If $f: G_1 \to G_2$ is a group homomorphism, then prove that
 - a) $f(e_1) = e_2$
 - b) $f(a^{-1}) = [f(a)]^{-1}$
 - c) If H_1 is a sub group of G_1 and $H_2 = f(H_1)$, then H_2 is a sub group of G_2 .
 - d) If f is an isomorphism from G_1 onto G_2 , then f^{-1} is an isomorphism from G_2 onto G_1 .

Proof

```
Proof: a) we have in G_2,

e_2 \oplus f(e_1) = f(e_1) (since, e_2 is identity in G_2)

= f(e_1 * e_1) (since, e_1 is identity in G_1)

= f(e_1) \oplus f(e_1) (since f is a homomorphism)

e_2 = f(e_1) (By right cancellation law)
```

■ b) For any $a \in G_1$, we have $f(a) \oplus f(a^{-1}) = f(a^{*} a^{-1}) = f(e_1) = e_2$ and $f(a^{-1}) \oplus f(a) = f(a^{-1} * a) = f(e_1) = e_2$ ∴ $f(a^{-1})$ is the inverse of f(a) in G_2 i.e., $[f(a)]^{-1} = f(a^{-1})$

- c) $H_2 = f(H_1)$ is the image of H_1 under f; this is a subset of G_2 .
- Let $x, y \in H_2$.
- Then x = f(a), y = f(b) for some $a,b \in H_1$
- Since, H_1 is a subgroup of G_1 , we have a * $b^{-1} \in H_1$.
- Consequently,
- $x \oplus y^{-1} = f(a) \oplus [f(b)]^{-1}$
- $= f(a) \oplus f(b^{-1})$
- = $f(a * b^{-1}) \in f(H_1) = H_2$
- Hence, H_2 is a subgroup of G_2 .

- d) Since $f: G_1 \rightarrow G_2$ is an isomorphism, f is a bijection.
- $f^{-1}: G_2 \to G_1$ exists and is a bijection.
- Let $x, y \in G_2$. Then $x \oplus y \in G_2$
- and there exists $a, b \in G_1$ such that x = f(a) and y = f(b).
- $\therefore f^{-1}(x \oplus y) = f^{-1}(f(a) \oplus f(b))$
- = f^{-1} (f (a* b))
- = a * b
- $= f^{-1}(x) * f^{-1}(y)$
- This shows that $f^{-1}: G_2 \to G_1$ is an homomorphism as well.
- \cdot f⁻¹ is an isomorphism.

Cosets

- If H is a sub group of (G, *) and $a \in G$ then the set Ha = { h * a | h \in H}is called a right coset of H in G. Similarly $aH = \{a * h \mid h \in H\}$ is called a left coset of H is G.
- Note:- 1) Any two left (right) cosets of H in G are either identical or disjoint.
- 2) Let H be a sub group of G. Then the right cosets of H form a partition of G. i.e., the union of all right cosets of a sub group H is equal to G.
 - 3) <u>Lagrange's theorem</u>: The order of each sub group of a finite group is a divisor of the order of the group.
- 4) The order of every element of a finite group is a divisor of the order of the group.
- 5) The converse of the lagrange's theorem need not be true.

Example

■ Ex. If G is a group of order p, where p is a prime number. Then the number of sub groups of G is

- **a** a) 1 b) 2 c) p-1 d) p
- Ans. b
- Ex. Prove that every sub group of an abelian group is abelian.
- Solution: Let (G, *) be a group and H is a sub group of G.
- Let $a, b \in H$
- \Rightarrow a, b \in G (Since H is a subgroup of G)
- \Rightarrow a * b = b * a (Since G is an abelian group)
- Hence, H is also abelian.

State and prove Lagrange's Theorem

- Lagrange's theorem: The order of each sub group H of a finite group G is a divisor of the order of the group.
- Proof: Since G is finite group, H is finite.
- Therefore, the number of cosets of H in G is finite.
- Let Ha₁,Ha₂, ...,Ha_r be the distinct right cosets of H in G.
- Then, $G = Ha_1 \cup Ha_2 \cup ..., \cup Ha_r$
- So that $O(G) = O(Ha_1) + O(Ha_2) ... + O(Ha_r)$.
- But, $O(Ha_1) = O(Ha_2) = = O(Ha_r) = O(H)$
- \cdot : O(G) = O(H)+O(H) ...+ O(H). (r terms)
- = r . O(H)
- This shows that O(H) divides O(G).