Measuring Galaxy Properties with JWST

Robert Crager, UMass - Amherst Advisor: Dr. Alex Pope

Outline

1

Project Motivation 2

Sample,
Data, &
Process

Results & Future Goals

Motivations

(Low AGN) Full?

- Range of galaxy types in the universe
 - We don't know how much they eat
 - eating = active galactic nucleus

Is there some correlation between a galaxy type and its active galactic nucleus (AGN) fraction?

Hungry?
(High AGN)

Cui, Yin & Xiang, Yongzhou & Rong, Kun & Feris, Rogerio & Cao, Liangliang. (2014). A spatial-color layout feature for representing galaxy images. 213-219. 10.1109/WACV.2014.6836098.

Sample, Data, & Process

- Sample [Kirkpatrick+2012]
 - 151 dusty Mid-Infrared selected galaxies with 1<z<3
 - AGN fraction from Mid-IR spectral decomposition

Data

- Need imaging from JWST NIRCam (~50 galaxies visible)
- Using GOODS-N & GOODS-S fields from Grizli reduction of JADES data
- Quantitative morphology analysis performed at the same rest wavelength of ~1 micron

Visuals & Quantitative

Visual Morphology

- Visual Classification Survey (21 responses)
- Multi-select: Disk, Spheroid, or Irregular
- Merger, Has Clumps, Spiral Arms

Quantitative Analysis

- [Statmorph, Rodriguez-Gomez+2019]
- Asymmetry higher values = more clumpy
- Concentration high values = more central light
- Gini smaller values = evenly distributed light
- M20 more negative = noncentral concentration

Cartwheel Galaxy, ESO 350-40, AM0035-335
NIRCam: Red: F444W + F356W Yellow: F277W Green: F200W Blue: F150W + F090W
MIRI: Orange: F770W + F1000W + F1280W + F1800W
Image Credits: NASA, ESA, CSA, STScI, Webb ERO Production Team

Visuals vs AGN (%)

- Spheroids don't appear to evolve with AGN fraction
 - Most AGN are spheroids
- Disks get brighter in center as increase in AGN Fraction
 - Colors and structures same
- No irregulars contain strong AGN

Asymmetry and AGN

- Star-forming galaxies span full range of asymmetry values
- Asymmetry decreases with AGN fraction
 - AGN are symmetric/less clumpy than star-forming and composite
 - Consistent with [Dodd+2021]

Concentration and AGN

Concentration and AGN

- Concentration remains roughly constant as AGN fraction increases
 - Especially for high AGN spheroids

Gini and AGN

- Average Gini seems to increase with AGN fraction
 - AGNs are more likely to have most of their light in smaller regions than SF or Composites

Summary & Future

- Are high AGNs mainly spheroid because the nucleus obscures the outer structure?
- What fundamental process might prevent AGN from being irregular or merging?

Extra Slides

Data Sample: Spectral Fitting

Figure 2. Mid-IR spectra of GN_IRS26 (left), GN_IRS12 (middle), and GN_IRS30 (right). The red dashed curves show the best-fit SED, which is made up of an extincted power-law component (blue dashed line) and a starburst template (green dashed line). GN_IRS26 has strong PAH features indicative of star formation activity, while GN_IRS30 are dominated by the power-law component, indicating the presence of an AGN. GN_IRS30 shows a strong 9.7 μm Si absorption feature on top of the continuum component. The relative contributions of each component to the mid-IR luminosity determine whether a galaxy is dominated by AGN or star formation activity in the mid-IR.

Kirkpatrick et al. 2012

Data Sample: JADES & Grizli

- Data Reduction [Grizli GN & GS]
- JADES Survey Site (Segmentation map & Viewer Images)
- <u>Kirkpatrick+2012 [Sample data source]</u>

Quantitative & Visuals

• Quantitative

- Asymmetry Fraction of light in nonsymmetric parts of galaxy
- Concentration Log Ratio of light in the outer 80% region of the galaxy compared to the inner 20%
 - focused on the center
- Gini Disruption of light in the galaxy (not preferential towards the center)
 - High values = focused light
 - lower values = evenly distributed light
- M20 Brightest 20% of the galaxy (non-central)

$$G = \frac{1}{|\overline{f}|n(n-1)} \sum_{i=1}^{n} (2i - n - 1)|f_i|$$

$$M_{20} = \mathrm{log}10\left(rac{\sum\limits_{i}}{M_{\mathrm{tot}}}
ight) ext{ while } \sum if_{i} < 0.2f_{\mathrm{tot}}$$

Quantitative & Visuals

Process: Rest-Frame Light

- Make sure we're looking at the same light for each
- Probing Rest-Frame ~0.96 Micron or 960 nanometers

700 nm

Process: Statmorph Configuration

Configuration settings for statmorph

- Variable size of the cutout for galaxy (150-300 pixels) depending on the physical size of galaxy (Grizli)
- JADES segmentation image for the galaxy
- Weightmap from Grizli
- Skybox size = 32
- All sources flag<=1
- Manually looked through make_figures and flag output

Asymmetry and AGN

- Star-forming galaxies span full range of asymmetry values
- Asymmetry decreases with AGN fraction
 - AGN are symmetric/less clumpy than star-forming and composite

Gini & Concentration

- AGNs have more focused light distribution
 - Because of the bright nucleus?

M20 & Asymmetry

- AGN don't have preferential M20 values
- The light for SF, Composite, and AGN is distributed similarly
 - no distinct bright places of star formation or other activities
- AGN disks aren't special compared to SF or Composite (similar M20 values)

Gini/M20

- Visual mergers are (roughly) in agreement with the Lotz+2008
- AGN have more even light distribution than Star-forming and Composites
- Suggests (again) less clumps
- Smaller variation in Gini for AGN too

