Pset 5 Solutions

- 1 a) $\lambda 27 = 0$
 - b) $\lambda^{3} + \lambda^{2} + 1 = 0$
 - c) 17+1=0
 - d) 22-42+16=0
- (2) a) Chan. eqn. $\lambda^2 + 8\lambda + 7 = 0$ Solutions: $(\lambda + 1)(\lambda + 7) = 0 \Rightarrow \lambda = -1$ on $\lambda = -7$. So a real solution is $S(x) = e^{-x}$ (another is e^{-7})
 - b) Chan. eqn. $\lambda^2 + 8\lambda + 16 = 0$ Solutions: $(\lambda + 4)^2 = 0 = \lambda = -4$ So a real solution is $f(x) = e^{-4x}$ (repeated noct = 1 another is $x \cdot e^{-4x}$)
 - c) Chan. eqn. $\lambda^2 + 8\lambda + 70 = 0$ Solutions: $\lambda = \frac{1}{2}(-8 \pm \sqrt{64-80}) = -4 \pm \sqrt{-4} = -4 \pm 2i$. one Complex solution: $e^{-4x}\cos(7x) + i\sin(7x)$ so one real solution is $e^{-4x}\cos(7x)$ (another is $e^{-4x}\sin(7x)$).
 - d) Chan. eqn. $\lambda^2 + 8\lambda + 116 = 0$ Solutions $\lambda = \frac{1}{2}(-8 \pm \sqrt{8^2 + 4 \cdot 116}) = -4 \pm \sqrt{16 - 116} = -4 \pm \sqrt{-100}$ $= -44 \pm 10i$ one complex solin is $e^{(4+10i)x} = e^{4x}(\cos(10x) + i \cdot \sin(10x))$ so one real solution is $e^{-4x}\cos(10x)$ (another is $e^{-4x}\sin(10x)$)
 - 3) $5^{""}(x) + 5(x)$ has chan eqn. 13 + 1 = 0, ie. 13 = -1. Using polar form for -1, this is $13 = e^{\pi i}$ One solution is $13 = e^{\pi i/3}$ (the others are $13 = e^{\pi i/3} = e^{\pi i} = -1$).

In rectangular form.

$$e^{\pi i/3} = \cos(\frac{\pi}{3}) + i \cdot \sin(\frac{\pi}{3})$$
$$= \frac{1}{2} + i \cdot \frac{\sqrt{3}}{2}$$

So a complex soin of the diffurntial equation is

$$e^{\left(\frac{1}{2}+i\cdot\frac{D}{2}\right)\times} = e^{\times/2} e^{i\left(\frac{D}{2}\right)/2} \times = e^{\times/2} \left(\cos\left(\frac{D}{2}\right) + 2\sin\left(\frac{D}{2}\right)\right)$$

Taking the real part gives one real solution $\{f(x) = e^{x/2} \cos(\frac{\pi}{2}x)\}$

Note. Another solin comes from the imag. part: $e^{x/2}$. $\sin(\frac{\pi}{2}x)$.

The value $\lambda = e^{-\pi i/3} = \frac{1}{2} - i \cdot \frac{\sqrt{2}}{2}$ gives the same two solutions (up to sign). The value $\lambda = -1$ gives $f(x) = e^{-x}$, solutions (up to sign). The value $\lambda = -1$ gives $f(x) = e^{-x}$, though the problem asks for one of the other ones. The general solution has three constants (this order equ):

The general solution has three constants (this order equ): $f(x) = C \cdot e^{-x} + D \cdot e^{-x/2} \cos(\frac{\pi}{2}x) + E \cdot e^{-x/2} \sin(\frac{\pi}{2}x)$.

(4) f(x) = e-7x cosix could be obtained anthereal part of

$$e^{-7 \times \cos(Z_X)} + i \cdot e^{-7 \times \sin(Z_X)}$$

= $e^{(-7+Z_1)} \times$

so we're looking for a diffeq whose chan, eqn. has $\lambda = -7 + 2i$ as a solution. So the chan equation could be

$$(\lambda - (-7+2i))(\lambda - (-7-2i)) = 0$$

$$(\lambda^{2}+7-2i)(\lambda+7+2i) = 0$$

$$(\lambda+7)^{2}-(2i)^{2}=0$$

$$\lambda^{2}+14\lambda+49+4=0$$

on 22+142+4553

So the diff. Eq. could be [5"(x)+145'(x)+53f(x)=0]

(5) The chan. eqn. is $\lambda^2 + d\lambda + k = 0$, which has solutions $\lambda = \frac{1}{2}(-d \pm \sqrt{d^2 - 4k})$.

These are real precisely when the square root is not of a negative number; that is

overdamped (=) $d^2-4k > 0$ (=) $d^2>4k$.

- a) If k=16, then the spring is overdamped (=) d2 = 4.16, ie. [d=8] (d=8) is also a fine answer since d is positive for physical springs).
- b) If d=6. then the spring is overdamped (=> 62 > 4k.

 ie. [k ≤ 9] (note: small values of the cause overdamping, while large values of d do).
- (6) a) This is linear & homog. Chan. eyn: x+5=0, so one solution is e^{-5x} . Mult. by a constant, the general solution is $f(x) = C \cdot e^{-5x}$.

b)
$$5'(x) = 5 \sin x$$
; take antidenivative.
=> $5(x) = 5 \sin x dx$
 $5(x) = -5 \cos x + C$

- c) f'(x) = 3f(x) (=) f'(x) 3f(x) = 0. Linear & homog., char. x - 3 = 0 ie. $\lambda = 3$. So e^{3x} is one solin; gen'l solin is $f(x) = C \cdot e^{3x}$
- d) $5'(x) = 3x^2$; take antiderivative $f(x) = 53x^2dx = 5$
- (7 a) We saw in (2) that e-x & e-7x are two solins.

 This is linear & homog., so genil solin is $s(x) = c \cdot e^{-x} + D \cdot e^{-7x}$
 - b) We saw e^{-4x} . Because $\lambda = -4$ was a double root, $x \cdot e^{-4x}$ is another solin. So the gen's solin is $f(x) = C \cdot e^{-4x} + D \cdot x \cdot e^{-4x}$
 - c) We saw e-4xcos(Zx) & e-4xsin(Zx).

 So gen'l sol'n is [f(x) = C·e-4xcos(Zx) + D·e-4xsin(Zx)]
 - d) We saw $e^{-4x}\cos(l0x)$ & $e^{-4x}\sin(l0x)$. So gen't solin is $f(x) = C \cdot e^{-4x}\cos(l0x) + D \cdot e^{-4x} \cdot \sin(l0x)$

8 Use the geril solin from (7) in each part:

b)
$$0 = f(0) = C \cdot e^{-0} + D \cdot 0 \cdot e^{-0}$$

=> $0 = C$.
 $6 = f'(0)$ and $f'(x) = -4 \cdot C \cdot e^{-4y} + D \cdot e^{-4y} + -4D \cdot x \cdot e^{-4x}$
= $(D - 4C) \cdot e^{-4y} - 4Dx \cdot e^{-4x}$

=)
$$6 = (D-4C) \cdot 1 - 4 \cdot D \cdot 0$$

 $6 = D-4C$
So solve $C = 0$
 $0 = C$
 $6 = D-4C$ $D = 6$ $f(x) = 6 \cdot xe^{-4x}$

c)
$$0 = \frac{1}{3}(0) = \frac{1}{3}(0) + \frac{1}{3}(0)$$

=> $\frac{0 = C}{3}$.

 $6 = \frac{1}{3}(0)$ and $\frac{1}{3}(x) = -\frac{1}{3}(e^{-4x}\cos(2x)) = \frac{1}{3}(e^{-4x}\sin(2x))$
 $-\frac{1}{3}(e^{-4x}\sin(2x)) + \frac{1}{3}(e^{-4x}\cos(2x))$

= $\frac{1}{3}(e^{-4x}\sin(2x)) + \frac{1}{3}(e^{-4x}\cos(2x))$

= $\frac{1}{3}(e^{-4x}\cos(2x)) + \frac{1}{3}(e^{-4x}\sin(2x))$

=> $\frac{1}{3}(e^{-4x}\cos(2x)) + \frac{1}{3}(e^{-4x}\cos(2x))$

A) $0 = \frac{1}{3}(e^{-4x}\cos(2x)) + \frac{1}{3}(e^{-4x}\cos(2x))$
 $0 = \frac{1}{3}(e^{-4x}\sin(2x)) + \frac{1}{3}(e^{-4x}\cos(2x))$

= $\frac{1}{3}(e^{-4x}\sin(2x)) + \frac{1}{3}(e^{-4x}\cos(2x))$

= $\frac{1}{3}(e^{-4x}\sin(2x)) + \frac{1}{3}(e^{-4x}\cos(2x))$

= $\frac{1}{3}(e^{-4x}\sin(2x)) + \frac{1}{3}(e^{-4x}\cos(2x))$

= $\frac{1}{3}(e^{-4x}\sin(2x)) + \frac{1}{3}(e^{-4x}\cos(2x))$

= $\frac{1}{3}(e^{-4x}\cos(2x)) + \frac{1}{3}(e^{-4x}\cos(2x))$

=

 $\int f(x) = \frac{3}{5} e^{-4x} \sin(10x)$