Fundamental Concepts of Analysis

Week 1 Notes (b)

shaozewxy

June 2022

5 Least-Upper-Bound Axiom

5.1 Definition of lower/upper bound

A nonempty subset $X \subseteq \mathbf{R}$ is said to be **bounded above(below)** if there exists a real number a such that $\forall x \in X, x \leq a(x \geq a)$. The number a is called an **upper(lower) bound** for X.

5.2 Definition of least-upper(greatest-lower) bound

Let $X \subseteq \mathbf{R}$ be nonempty.

A number $a \in \mathbf{R}$ is said to be a **least upper bound** for X if

- (i) a is an upper bound for X.
- (ii) If b is an upper bound for X, then $a \leq b$.

The greatest lower bound is defined similarly.

Also, the (ii) part can be stated as:

If b < a, then b is not an upper bound for X.

Using 5.1, the statement above is equivalent to

(ii') If b < a, then $\exists x \in X, x > b$

Sometimes when proving least upper bound, using (ii') is more convenient.

5.3 Least upper bound is unique

Let $X \subseteq \mathbf{R}$. If a, b are least upper bounds of X, then a = b.

Proof:

Suppose a < b, then by definition $\exists a < b$ such that a is an upper bound, therefore b is not an upper bound. Contradiction.

We can then denote the least-upper (greatest-lower) bound of a set X by

$$lub\ X = sup\ X, glb\ X = inf\ X$$

Axiom 13

A nonempty subset of real numbers bounded above has a least upper bound. This axiom is essentially saying there are no holes in the real line.

5.4 Conditions for GLB

A nonempty subset of real numbers bounded below has a greatest lower bound.

Proof:

Denote the set $X \subseteq \mathbf{R}$ which is bounded below. Then we create Y as the set of real numbers that are lower bounds of X.

Since X non-empty, $\exists x \in X$ such that x is an upper bound of Y.

Therefore Y bounded above and $\exists y = lub \ Y$.

We claim that a = lub Y = glb X:

First NTS a is a lower bound of X:

Suppose $\exists x \in X$ such that x < a, then since $a = lub\ Y$ we know that $\exists y \in Y$ such that y > x but since y is a lower bound of X this is a contradiction.

Therefore no such x exists, and thus a is a lower bound of X.

Then NTS a is the greaster upper bound of X:

 $\forall b>a$ clearly $b\notin Y$ and therefore b not a lower bound. Therefore a is the greatest lower bound.

6 Set of Positive Integers

6.1 Definition of sucessor set

A subset $X \subseteq \mathbf{R}$ is said to be a **successor set**

- (i) If $1 \in X$.
- (ii) If $n \in X$, then $n + 1 \in X$.

Since **R** itself is a successor set, we know that successor set exists.

6.2 Intersection of successor sets

If \mathscr{A} is a nonempty collection of successor sets, then $\cap \mathscr{A}$ is a successor set.

Proof:

For (i), $\forall A \in \mathcal{A}$, since $1 \in A \to 1 \in \cap \mathcal{A}$.

For (ii), $\forall n \in \cap \mathscr{A}$, since $\forall A \in \mathscr{A}, n \in A \to n+1 \in A$, we know that $n+1 \in \cap \mathscr{A}$.

6.3 Definition of positive integers

The set **P** of **positive integers** is the intersection of the family of all successor sets.

The meaning of the above defintion is that P is the smallest successor set:

If X is a successor set, then $P \subset X$.

6.4 Mathematical Induction

Suppose that for each positive integer n we have a statement S(n) and that

- (i) S(1) is true.
- (ii) If S(n) is true, then S(n+1) is true.

Then S(n) is true for every positive integer n.

Proof:

Let $G = \{n \in \mathbf{P} | S(n) \text{ is true}\}$, then $G \subseteq \mathbf{P}$.

But by definition $1 \in G$ and $n \in G \to n+1 \in G$, therefore G a successor set and $\mathbf{P} \subseteq G$.

Therefore $G = \mathbf{P}$.

Here are two examples of the induction:

6.5 Positive integer ≥ 1

If n is a positive integer, then $n \geq 1$.

Proof:

For (i), clearly $1 \ge 1$.

For (ii), suppose $n \ge 1$, then $n+1 \ge n \ge 1$.

Therefore this is true for all positive integer n.

6.6 Sum of positive integers are positive integers

If $m, n \in \mathbf{P}$ then $m + n \in \mathbf{P}$.

Proof:

Define S(m) to be " $\forall n \in \mathbf{P}, m+n \in \mathbf{P}$ ".

For (i), it is by definiton that $\forall n \in \mathbf{P}, 1 + n \in \mathbf{P}$.

For (ii), $\forall n \in \mathbf{P}m + 1 + n = (m+n) + 1$, since $m+n \in \mathbf{P} \to (m+n) + 1 \in \mathbf{P}$.

Therefore this is true for all positive integer m.

We then prove the well-ordering Theorem

6.7

If $n \in \mathbf{P}$, then either n-1=0 or $n-1 \in \mathbf{P}$.

The proof of this is obvious.

6.8

If $m, n \in \mathbf{P}$ and m < n, then $n - m \in \mathbf{P}$.

Proof:

Let S(m) be the statement above.

For (i), if 1 < n then n-1 by 6.7 either n-1=0 or $n-1 \in \mathbf{P}$. Since $n \neq 1$, $n-1 \in \mathbf{P}$.

For (ii), if m+1 < n, then n-(m+1) = n-m-1 by 6.7 and the fact that $n-m \in \mathbf{P}$, either n-m-1 = 0 or $n-m-1 \in \mathbf{P}$. Since $n \neq m+1$, we know that $n-m-1 \in \mathbf{P}$.

Thereofre this is true for all positive integers.

6.9

Let n be a positive integer. No positive integer m satisfies n < m < n + 1

Proof:

By 6.8 we know that $m - n \in \mathbf{P}$, but since $m < n + 1 \to m - n < 1$. This contradicts with the fact that $m - n \in \mathbf{P}$ should be ≥ 1 .

Therefore no such m exists.

6.10 Well-Ordering Theorem

If X is a non-void subset of positive integers, then X contains a least element $a \in X$ such that $\forall x \in X, a \leq x$.

Proof:

We let the statement S(n) be that "If $n \in X$, then X contains a least element".

For (i), if $1 \in X$ then 1 is the least element by 6.5.

For (ii), if S(n) is true, i.e. $n \in X \to X$ contains a least element, then suppose $n+1 \in X$, WTS that X has a least element.

Now $X \cup \{n\}$ has a least element m. If $m \in X$ then we are done, therefore assume $m \notin X \to m = n$.

This means that $\forall x \in X, n \leq x$. Therefore by 6.9 we have $\forall x \in X, n+1 \leq x$, therefore n+1 is the least element of X.

6.11

The set of positive integers is not bounded above.

Proof:

If **P** is bouned above, then $lub \mathbf{P} = a$.

We know that a-1 < a is not an upper bound of **P** and therefore $\exists n \in \mathbf{P}$ such that $a-1 < n \to a < n+1 \in \mathbf{R}$. Contradiction.

The ordering of positive integers also implies some ordering of positive real numbers:

6.12 Archimedean ordering of positive real numbers

If a, b positive real numbers, then $\exists n \in \mathbf{P}$ such that a < nb.

Proof:

Since **P** is not bounded above, then $\exists n \in \mathbf{P}$ such that a/b < n.

Therefore a < nb.