

	NLP
☆ 진행 상태	Done

Pre-training of Deep Bidirectinal Transformers for Language Understanding

0. Abstract

BERT: Bidirectional Encoder Representations from Transformers

BERT는 Transformer의 Encoder 구조를 이용하여 unlabeled data로부터 bidirectional representation을 pre-train한 후, fine-tuning 하는 모델이다. Pre-trained BERT 모델에 하나의 output layer를 추가함으로써 다양한 task에 적용될 수 있다.

1. Introduction

Language model의 pre-training 방법은 많은 NLP task에서 좋은 성능을 내고 있었다. Down-stream task에 pre-trained language representation을 적용하는 방법에는 두 가지 전략이 존재한다.

1. feature-based approach

pre-trained representation을 추가적인 feature로 활용한 task-specific architectures를 사용한다.

Ex. ELMO

2. fine-tuning approach

모든 pre-trained 파라미터를 fine-tuning하여 down stream task를 학습한다.

Ex. GPT

BERT

두 가지 방법 모두 pre-train 과정에서 동일한 목적함수를 공유하는데, **일반적으로 language representation을 학습하기 위해 unidirectional language model을 사용**한다.

* ELMO는 각각의 단방향(순방향, 역방향) 모델의 출력값을 concat해서 사용하는 것이기 때문에 하나의 모델 자체는 단방향이다.

본 논문에서는 기존의 방법이 pre-trained representation의 성능을 저하시킨다고 주장한다. BERT는 "masked language model" (MLM)을 pre-trainig의 목적으로 사용하여 단방향성의 제약을 완화시킨다.

Masked Language Model(MLM)은 랜덤하게 input token의 일부를 마스킹하고, 해당 토큰이 구성하는 문장만을 기반으로 그 마스킹된 token들의 원래 값을 정확하게 예측하는 것이 목적이다. MLM는 양방향 context를 융합시켜 bidirectional Transformer를 가능하게 한다. 추가적으로, 두 문장이 주어졌을 때 이어지는 문장인지 예측하는 next sentence prediction task를 사용한다.

2. Related Work

▼ Unsupervised Feature-based Approaches

word embedding의 Pre-training은 오늘날 NLP 분야에서 중요한 부분이며, 이러한 word embedding을 통한 접근 방식은 자연스 레 sentence embedding 혹은 paragraph embedding으로 이어졌다.

BERT 이전의 연구에서는 아래와 같은 방법을 사용하였다.

- 1. 다음 문장 후보들의 순위를 메기는 방법
- 2. 이전 문장이 주어졌을 때, 다음 문장의 단어를 왼쪽에서 오른쪽으로 생성하는 방법
- 3. 노이즈 제거 AutoEncoder에서 파생된 방법 (노이즈가 추가된 문장은 입력을 받아 원본 문장을 복원하려고 시도한다.)

ELMo와 그 후속 모델들은, 전통적인 word embedding 연구에서 left-to-right와 right-to-left 언어 모델을 통해 context-sensitive feature들을 뽑아내는 방식으로 발전하여 높은 성능 향상을 이끌어내었으나, **deep bidirectional하지 않다.**

▼ Unsupervised Fine-tuning Approaches

최근에는, contextual token representation을 만들어내는 인코더가 pre-training되고, supervised downstream task에 맞춰 fine-tuning된다.

이러한 접근방식은 처음부터 학습하는데 적은 파라미터로 충분하다는 장점이 있고, OpenAl GPT는 GLUE 벤치마크의 여러 문장 수준 작업에서 최첨단 결과를 달성하였다.

▼ Transfer Learning from Supervised Data

큰 dataset을 가진 지도학습에서 효과적인 transfer learning이 가능하다.

3. BERT

Pre-training: 다양한 pre-training tasks에서 unlabled data를 활용해 학습된다.

fine-tuning: 사전학습 된 파라미터로 초기화되고, downstream tasks의 labled data를 이용해 fine-tuning한다. (각각의 downstream task는 동일한 사전학습 파라미터로 초기화된다.)

• Model Architecture

BERT 모델의 구조는 양방향 Transformer의 Encoder를 여러 층 쌓은 것이다.

• Input/Output Representations

3가지 Embedding vector의 합으로 Input이 표현된다.

Token Embeddings

▼ Wordpiece Embedding

단어의 출현 빈도수를 기반으로 하여, 자주 등장하지 않는 단어는 더 작은 하위 단어로 분해한다.

Ex)

- 1. playing \rightarrow play + ing
- 2. playtime \rightarrow play + time

BERT

2

3. displayed \rightarrow dis + play + ed

모든 문자들을 분해하고, 가장 자주 등장하는 문자 쌍을 묶어 새로운 하위 단어를 만드는 과정을 반복하여 출현 빈도가 높은 문자 쌍을 기반으로 하위 단어를 생성한다.

→ 희소한 단어, OOV 단어 등의 문제를 해결하고 전체적으로 더 나은 성능을 발휘한다.

Segment Embeddings

input sequence는 문장 쌍으로 구성된다. 문장 쌍의 각 문장들은 [SEP] 토큰으로 분리되며, 각 문장이 A문장인지 B문장인지 구분 하기 위한 Segment Embeddings을 진행한다.

Position Embeddings

Pre-training BERT

BERT의 **Pre-training 과정에서는 크게 두가지 unsupervised-tasks** (Masked LM, Next Sentence Prediction(NSP))가 사용된다.

Task1: Masked LM

input tokens의 일정 비율을 마스킹하고, 마스킹 된 토큰을 예측하는 과정이다.

본 논문에서의 실험 결과, 15%의 비율로 마스킹을 할 때 가장 성능이 좋았다고 한다.

[MASK] token은 pre-training에만 사용되고, fine-tuning 과정에서는 사용되지 않기 때문에 pre-training과 fine-tuning 사이의 불 일치가 발생할 수 있다.

이를 해결하기 위해 15%의 [MASK] token에서 추가적인 처리를 해준다.

- 。 80%: [MASK] token으로 바꾼다.
 - Ex. My dog is hairy \rightarrow My dog is [MASK]
- 10%: random token으로 치환한다.
 - Ex. My dog is hairy \rightarrow My dog is apple
- 10%: **원래의 token** 그대로를 사용한다.
 - Ex. My dog is hairy \rightarrow My dog is hairy

Task2: Next Sentence Prediction (NSP)

많은 NLP의 downstream task(QA, NLI 등)는 **두 문장 사이의 관계**를 이해하는것이 중요하다.

이를 학습하기 위해 모든 단일 언어 말뭉치에서 쉽게 생성될 수 있는 binarized next sentence prediction task에 대해 pre-train한다. 즉 두 문장이 주어졌을 때, 두 번째 문장이 첫 번째 문장의 바로 다음에 오는 문장인지 여부를 예측하도록 한다.

- 50%는 실제로 이어진 것, 50%는 실제로 이어지지 않는 것에서 뽑아와 학습시킨다.

Fine-tuning BERT

가장 위에 하나의 layer를 추가로 쌓아 fine-tuning을 진행한다.

수행하고자 하는 downstream task에 따라 task-specific input을 받는다.

- (1) 문장 쌍 (paraphrasing)
- (2) 가설-전제 쌍 (entailment)
- (3) 질문-문단 쌍 (question answering)
- (4) 텍스트-None 쌍 (text classification or sequence tagging)

Output도 downstream task에 따라 달라진다.

token-level task) 토큰 표현이 출력 계층으로 전달된다. Ex. Question Answering, Seqeunce tagging classification) 모든 sequence의 첫번째 token인 [CLS]와 대응되는 최종 hidden state가 분류 문제를 해결하기 위한 표현들을 종합하고, 이것이 분류를 위한 출력 계층으로 전달된다. Ex. Entailment, sentiment analysis

4. Experiments

GLUE

General Language Understanding Evaluation

: 다양한 자연어 이해 task가 담겨있는 benchmark

BERT

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

SQuAD

The Stanford Question Answering Dataset

: Wikipedia를 바탕으로 만든 Question-Answering Task benchmark

System	D	ev	Test	
•	EM	F1	EM	F1
Top Leaderboard System	s (Dec	10th,	2018)	
Human	-	-	82.3	91.2
#1 Ensemble - nlnet	-	-	86.0	91.7
#2 Ensemble - QANet	-	-	84.5	90.5
Publishe	ed			
BiDAF+ELMo (Single)	-	85.6	_	85.8
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5
Ours				
BERT _{BASE} (Single)	80.8	88.5	-	-
BERT _{LARGE} (Single)	84.1	90.9	-	-
BERT _{LARGE} (Ensemble)	85.8	91.8	_	-
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2

SWAG

Situations With Adversarial Generation

: 앞 문장이 주어지고, 보기로 주어지는 4가지 보기 중에 가장 적절한 문장을 고르는 Task

System	Dev	Test
ESIM+GloVe	51.9	52.7
ESIM+ELMo	59.1	59.2
OpenAI GPT	-	78.0
BERT _{BASE}	81.6	-
$\mathrm{BERT}_{\mathrm{LARGE}}$	86.6	86.3
Human (expert) [†]	-	85.0
Human (5 annotations) [†]	-	88.0

→ 모든 Task에서 SOTA 성능을 달성하였다.

5. Ablation Studies

BERT에서 어떤 요소가 성능 향상에 어떻게 기여했는지 구체적으로 알아보기 위해 동일한 환경에서 특정 조건만을 변경해 어느 정도의 영향을 끼치는지 분석했다.

Effect of Pre-training Tasks

No NSP: pre-training 단계에서 MLM만 수행하고, NSP는 수행하지 않은 모델

LTR & No NSP: MLM 대신 Left to Right의 Unidirectional attention을 적용하고 NSP는 수행하지 않은 모델

5

			Dev Set		
Tasks	MNLI-m	QNLI	MRPC	SST-2	SQuAD
	(Acc)	(Acc)	(Acc)	(Acc)	(F1)
BERTBASE	84.4	88.4	86.7	92.7	88.5
No NSP	83.9	84.9	86.5	92.6	87.9
LTR & No NSP	82.1	84.3	77.5	92.1	77.8
+ BiLSTM	82.1	84.1	75.7	91.6	84.9

Table 5: Ablation over the pre-training tasks using the BERT_{BASE} architecture. "No NSP" is trained without the next sentence prediction task. "LTR & No NSP" is trained as a left-to-right LM without the next sentence prediction, like OpenAI GPT. "+ BiLSTM" adds a randomly initialized BiLSTM on top of the "LTR + No NSP" model during fine-tuning.

BERT - No NSP → NSP Pre-training이 성능 향상에 영향을 끼친다.

NO NSP - LTR&No NSP → Bidirectional 모델이 성능 향상에 영향을 끼친다.

Effect of Model Size

Ну	perpar	ams	Dev Set Accuracy				
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2	
3	768	12	5.84	77.9	79.8	88.4	
6	768	3	5.24	80.6	82.2	90.7	
6	768	12	4.68	81.9	84.8	91.3	
12	768	12	3.99	84.4	86.7	92.9	
12	1024	16	3.54	85.7	86.9	93.3	
24	1024	16	3.23	86.6	87.8	93.7	

Table 6: Ablation over BERT model size. #L = the number of layers; #H = hidden size; #A = number of attention heads. "LM (ppl)" is the masked LM perplexity of held-out training data.

→ Model Size가 증가할수록 성능이 높아지는 경향이 있다.

Feature-based Approach with BERT

지금까지의 BERT는 모두 fine-tuning 모델이었는데, BERT를 Feature-based로 사용했을 때 성능을 분석하였다.

System	Dev F1	Test F1
ELMo (Peters et al., 2018a)	95.7	92.2
CVT (Clark et al., 2018)	-	92.6
CSE (Akbik et al., 2018)	-	93.1
Fine-tuning approach		
BERT _{LARGE}	96.6	92.8
$BERT_{BASE}$	96.4	92.4
Feature-based approach (BERT _{BASE})		
Embeddings	91.0	-
Second-to-Last Hidden	95.6	-
Last Hidden	94.9	-
Weighted Sum Last Four Hidden	95.9	-
Concat Last Four Hidden	96.1	-
Weighted Sum All 12 Layers	95.5	-

Table 7: CoNLL-2003 Named Entity Recognition results. Hyperparameters were selected using the Dev set. The reported Dev and Test scores are averaged over 5 random restarts using those hyperparameters.

개체명 인식 task에 대해 Feature-based Approach를 적용해보았다.

Fine-tuning 단계를 제거하고, Transformer Layer의 output을 그대로 768-dimensional BiLSTM의 input으로 사용한다. 그 뒤 classification layer를 통과시켜 결과를 도출해낸 결과 기존 모델들을 뛰어넘었다.

6. Conclusion

Deep Bidirectional Model을 통해 다양한 NLP 작업을 성공적으로 수행할 수 있게 한다.