

Faculty of Physics, Warsaw University of Technology, Ulica Koszykowa 75, 00-662 Warsaw, Poland

🛘 (+33) 6 26 97 41 96 | 🗷 antoine.boulet@protonmail.com | 🆀 antoineboulet.github.io | 💿 0000-0003-3839-6090

"I have doubts, do you have any?"

References __

Available upon request.

Personal Details_

FRENCH CITIZEN

- Married
- Born on 30 March 1993 [29y/o] in Argentan (61), France

LANGUAGES French (native), English (fluent) SPORTS running, table tennis HOBBIES chess, movies, musics, reading

Computer Skills

OPERATING SYSTEM MacOS Unix

Python, C/C++, Fortran, Mathematica PROGRAMMING HPC CODE Developer of W-SLDA Toolkit

TECHNIQUES

GITHUB

- Monte Carlo methods for integration
- numerical methods for optimization problem
- diagonalization of HFB kernel

Research Interests

My research interests as theoretical physicist are mainly focused on the quantum many-body problems and the development of ab initio Density Functional Theories and their applications for nuclear and atomic physics.

Systems

- · infinite nuclear matter
- ultracold atomic Fermi systems
- · atomic nuclei, neutron stars

METHODS

- · diagramatic resummation
- path integral and effective action
- regularisation in effective field theory

THEORIES

- Density Functional Theory (DFT)
- Many-Body Perturbation Theory (MBPT)
- Variational Perturbation Theory (VPT)
- Superfluid Local Density Approximation (SLDA)

- equation of states and thermodynamics
- linear response and collective modes
- self-energy and Landau-Fermi liquid theory
- structure and dynamics of superfluid vortices
- · quantum turbulence

Professional Experiences

RESEARCH

Faculty of Physics, Warsaw University of Technology

RESEARCH ASSOCIATE

• development and implementation of an extended SLDA functional

• numerical simulation of dissipation processes in superfluid vortices systems, quantum turbulence, Higgs modes, and quantum quenches

https://github.com/AntoineBoulet

FRIB/NSCL, Michigan State University

RESEARCH ASSOCIATE

• development of microscopically-motivated DFT using *ab initio* theories and their implementation for large-scale calculations of nuclei

IPN Orsay, Paris-Sud University

Ph.D. Student

• development of the DFT for Fermi systems with large s-wave scattering length and application to atomic and nuclear physics

TEACHING

IUT Orsay, Paris-Saclay University

GRADUATE TEACHING ASSISTANT

• Directed Studies: electromagnetism (36 h) and metrology, quality, statistics (12 h)

• Practical Works: metrology, quality, statistics (68 h) and chains of measurement, control, tests (12 h)

Jan. 2021 - now

East Lansing, MI USA Nov. 2019 - Nov. 2020

Orsay, France

Oct. 2016 - Oct. 2019

Sep. 2017 - Aug. 2019

Education & Diplomas

Paris-Saclay University

IPN Orsay

· Density Functional Theory for Fermi systems with large s-wave scattering length: application to atomic and nuclear physics

· Advisor: D. Lacroix, Jury: G. Colò, D. Davesne, M. Grasso, D. Lacroix, D. Petrov, A. Rios Huguet, and V. Somà

Paris-Saclay University ENS Pari.

M.Sc. fundamental concepts of physics

Ph.D. THEORETICAL PHYSICS

2016

2019

· ICFP master program, condensed matter physics speciality

Paris-Sud University

UFR sciences Orsay

B.Sc. FUNDAMENTAL PHYSICS 2014

• Magistère of fundamental physics

Outreach & Professional Developments

SERVICE AND OUTREACH

2022 Committee Member,

International Experience at WUT

Organizer,

Welcome day for new entrants at IPN Orsay

Organizing Committee Member,

PHENIICS doctoral school conference

DOCTORAL SCHOOLS

Doctoral School of the GGI for Theoretical Physics,

Florence, Italy

Frontiers in Nuclear and Hadronic Physics

ECT* Doctoral Training Program,

Trento, Italy

Microscopic Theories of Nuclear Structure, Dynamics, and Electroweak Currents

RESEARCH INTERNSHIPS

LPTMS, Paris-Sud University Orsay, France

M.Sc. training studies

Separation of Variables and Correlation Functions of Quantum Integrable Systems

• Advisor: V. Terras

QGLab, University of Nottingham Nottingham Nottingham, UK

M.Sc. training studies

3 months, 2015

2 months, 2016

• Hydrodynamic simulation of rotating black holes

• Advisor: S. Weinfurtner

LPT, Paris-Sud University Orsay, France

Weak interaction and CP symmetry violation: mesons mixing

B.Sc. training studies 2 months, 2014

Advisor: S. Descotes-Genons

GANIL Caen, France

B.Sc. training studies 2 weeks, 2013

· Persistence of magic numbers far from stability

• Advisor: J.-C. Thomas

Publications

PUBLISHED

A. Barresi, A. Boulet, P. Magierski, and G. Wlazłowski, arXiv:2207.00870 (2022). [submitted to Phys. Rev. Lett.] Investigation of dissipative dynamics of quantum vortices

A. Boulet, G. Wlazłowski, and P. Magierski, arXiv:2201.07626 (2022). [submitted to Phys. Rev. A] Local energy density functional for superfluid Fermi gases from effective field theory

A. Boulet. Ph.D. thesis, Paris-Saclay University (2019). (NNT: 2019SACLS212) (tel-02355418)

Density functional theory for Fermi systems with large s-wave scattering length: Application to atomic and nuclear physics

A. Boulet and D. Lacroix, J. Phys. G: Nucl. Part. Phys. 46, 105104 (2019).

Approximate self-energy for Fermi systems with large s-wave scattering length: A step towards density functional theory

A. Boulet and D. Lacroix, Phys. Rev. C 97, 6337 (2018).

Static response, collective frequencies, and ground-state thermodynamical properties of spin-saturated two-component cold atoms and neutron matter

D. Lacroix, **A. Boulet**, M. Grasso, and C.-J. Yang, Phys. Rev. C **95**, 22726 (2017).

From bare interactions, low-energy constants, and unitary gas to nuclear density functionals without free parameters: Application to neutron matter

TO BE SUBMITTED SOON

A. Boulet, A. Barresi, P. Magierski, and G. Wlazłowski.

Instability of Higgs mode in ultracold Fermi gases

IN PREPARATION

A. Boulet and S. K. Bogner.

Variational Perturbation Theory for Density Functional Theory: Towards a systematic improvement of the Hartree-Fock-Bogoliubov approximation

A. Boulet

Beyond mean-field effective interaction via the many-body perturbation theory: Application to the pairing Hamiltonian and unitary Fermi gas

Presentations

CONFERENCES

INT program, University of Washington

Seattle, WA USA

NUCLEAR STRUCTURE AT THE CROSSROADS

2019

Approximate self-energy for Fermi systems with large s-wave scattering length: A step towards density functional theory

GANIL symposium Caen, France

NUCLEAR STRUCTURE AND REACTIONS: THE NEXT SIGNIFICANT BREAKTHROUGHS

2019

Quasi-particle properties of Fermi gas from low density to unitary limits

WORKSHOPS

IPN Orsay, Paris-Sud University

Orsay, France

BRIDGING NUCLEAR AB-INITIO AND EDF THEORIES

2017

Static and dynamical responses of neutron systems

SEMINARS

Hadron and Nuclear Theory group, University of Barcelona

Rarcelona Snair

[VISIO-]SEMINAR

2022

Towards ab initio Density Functional Theory from atomic to nuclear systems

Nuclear Theory Group, Warsaw University of Technology

Varsaw Poland

[VISIO-]SEMINAR

2020

Density Functional Theory for Fermi systems with large s-wave scattering length: application to nuclear and atomic physics

FRIB/NSCL, Michigan State University

East Lansing, MI USA

[VISIO-]RESEARCH DISCUSSION

Variational Perturbation Theory for Density Functional Theory:

Towards a systematic improvement of the Hartree-Fock-Bogoliubov approximation

DPhN/IRFU, CEA Saclay

Orme des Merisiers, France.

SNIF MEETING

Connecting EFT to DFT for strongly interacting fermions

IPN Orsay, Paris-Sud University

Orsay, France.

THEORY GROUP SEMINAR

2019

Quasi-particle properties of Fermi gas from low density to unitary limits