Graph Isomorphism

iam.mcloughlin@gmit.ie

March 3, 2022

Basics

Set: $\{a, b, c\}$

Tuple: (a, a, a, b, c, d)

Map: $\{(a,d), (b,e), (c,d)\}$

Bijection

Map $f: X \longleftrightarrow Y$

Every y in Y is mapped to by exactly one x in X

Means map is reversible.

Counterexample: $f(x) = x^2$.

Graph

Graph: G = (V, E)

Vertex: element of $V = \{1, 2, 3, 4\}$

Edge: any 2-subset of V, e.g. $\{1,2\}$

Example

V: {1,2,3,4}

 $E: \{\{1,2\},\{1,4\},\{2,3\},\{3,4\}\}$

Isomorphism

When two graphs have the exact same structure.

$$G_1 = (V_1, E_1) \cong G_2 = (V_2, E_2)$$

 $f: V_1 \longleftrightarrow V_2$

 $\{f(x), f(y)\} \in E_2 \Leftrightarrow \{x, y\} \in E_1$

Exercise

Figure 1: Are these isomorphic?

Adjacency Matrix

	1	2	3	4		1	2	3	4
1	0	1	0	1	1	0	0	1	1
2	1	0	1	0	2	0	0	1	1
3	0	1	0	1	3	1	1	0	0
4	0 1 0 1	0	1	0	4	1	1	0	0

Decision Problem

Adjacency matrix 1: 0101 1010 0101 1010

Adjacency matrix 2: 0011 0011 1100 1100

String 1: 101 10 1

String 2: 011 11 0

Alphabet: $\{0,1\}$

Language: $L \subseteq A^*$

Graph Isomorphism Problem: $L = \{st | s \cong t\}$

Example: $s_1 s_2 = 1011010111110 \in L$

Ignore the spaces - they are just for explanation.