САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО

Институт компьютерных наук и технологий Кафедра «Распределенные вычисления и компьютерные сети»

Курсовая работа

на тему: Метод Сильвера-Полига-Хеллмана

по дисциплине: Основы компьютерной алгебры

Выполнил студент			
гр. 23507/1	<подпись>		В.Б.Борисов
Руководитель			
доц. кафедры	<подпись>		П.В.Трифонов
		u	w 2015 i

Санкт-Петербург

содержание

Введение	3
Основная часть	3
Постановка задачи	3
Описание алгоритма	3
Тестирование	4
Заключение	4
Список литературы	4

Введение

Алгоритм Полига — **Хеллмана** (также называемый *алгоритм Сильвера* — *Полига* — *Хеллмана*) — детерминированный алгоритм дискретного логарифмирования в кольце вычетов по модулю простого числа. Одной из особенностью алгоритма является то, что для простых чисел специального вида можно находить дискретный логарифм за полиномиальное время.

Алгоритм Полига—Хеллмана крайне эффективен, если p-1 раскладывается на небольшие простые множители. Это очень важно учитывать при выборе параметров криптографических схем. Иначе схема будет ненадёжной.

Основная часть

Постановка задачи

Реализовать метод Сильвера-Полига-Хеллмана по модулю сколь угодно большого простого числа на языке C++.

Описание алгоритма

Пусть задано сравнение

$$a^x \equiv b \pmod{p}$$
,

и известно разложение числа p-1 на простые множители:

$$p-1=\prod_{i=1}^k q_i^{\alpha_i}.$$

Необходимо найти число $x, \ 0 \le x < p-1$, удовлетворяющее сравнению.

Составить таблицу значений
$$\{r_{i,j}\}$$
 , где $\{r_{i,j}\}$ = $a^{j*rac{p-1}{q_i}}$, $i \in \{1,\dots,k\}$, $j \in \{0,\dots,q_i-1\}$

Вычислить $loga^b modq_i^{lpha_i}$

Для і от 1 до k

Пусть

$$x \equiv log a^b \equiv x_0 + x_1 q_i + \dots + x_{\alpha_{i-1}} q_i^{\alpha_i - 1} (mod q_i^{\alpha_i})$$

Где $0 \le x_i \le q_i - 1$

Тогда верно сравнение:
$$a^{x_0*rac{p-1}{q_i}}\equiv b^{rac{p-1}{q_i}}\ (mod\ p)$$

Вывод верхнего сравнения:

С помощью таблицы, составленной на шаге 1, находим x_0 . Для j от 1 до α_i-1 . Рассматриваем сравнение

$$a^{x_{j}*\frac{p-1}{q_{i}}} \equiv (ba^{-x_{0}-x_{1}q_{i}...-x_{j}-1q_{i}^{j-1}})^{q_{i}^{\frac{p-1}{j+1}}} (mod \ p)$$

Решение опять же находится по таблице

Конец цикла по ј

Конец цикла по і

Найдя
$$loga^b modq_i^{lpha_i}$$
 для всех і, находим $loga^b mod(p-1)$

По китайской теореме об остатках

Тестирование

Чтобы убедиться в правильности написанной программы были проведены тесты, которые показали не только корректные результаты, но и время работы алгоритма. Ниже приведена таблица результатов.

Входные данные	Результат	Время работы алгоритма в	
		секундах	
3 13 17	4	0	
2 5 7237	4085	0.015	
2 40 37	Нет решений	0.015	
71 210 251	197	0.015	
123123 123123 999997	1	0.078	
1231231 1231231 1982354	1	0.156	

Заключение

Алгоритм и длинная арифметика к нему реализованы на C++. Программа протестирована так и на малых, так и на больших числах. Проверено корректность вычислений с помощью программного пакета Maple. Поставленная задача решена.

Список литературы

[1] П.В Трифонов, Построение и анализ алгоритмов