Profiling & Parallelization

Lecture 21

Dr. Colin Rundel

Profiling & Benchmarking

profvis demo

```
1  n = le6
2  d = tibble(
3     x1 = rt(n, df = 3),
4     x2 = rt(n, df = 3),
5     x3 = rt(n, df = 3),
6     x4 = rt(n, df = 3),
7     x5 = rt(n, df = 3),
8  ) |>
9     mutate(y = -2*x1 - 1*x2 + 0*x3 + 1*x4 + 2*x5 + rnorm(n))
```

```
1 profvis::profvis(lm(y~., data=d))
```

Benchmarking - bench

```
# A tibble: 4 \times 6
                               median `itr/sec` mem alloc `gc/sec`
 expression
                          min
 <br/><bch:expr>
                  <bch:tm> <bch:tm>
                                        <dbl> <bch:byt>
                                                          <dbl>
                                                           19.4
1 d(dx > 0.5, )
                        128µs 140µs
                                         7002. 239.84KB
2 d[which(d$x > 0.5), ] 137\mus 152\mus
                                        6388. 271.49KB
                                                           33.5
3 \text{ subset}(d, x > 0.5)
                       167µs 195µs
                                         4940. 288.85KB
                                                           26.3
4 filter(d, x > 0.5)
                                         2167. 1.48MB
                        379 \mu s
                              432 \mu s
                                                           35.4
```

Larger n

```
# A tibble: 4 \times 6
                               median `itr/sec` mem alloc `gc/sec`
 expression
                         min
 <br/><bch:expr>
                     <bch:tm> <bch:tm>
                                         <dbl> <bch:byt>
                                                          <dbl>
                         12ms
                               12.4ms
                                         80.6
                                                         60.4
1 d[d$x > 0.5, ]
                                                 13.4MB
2 d[which(dx > 0.5), 1 13.3ms
                                         73.6 24.8MB
                                                          210.
                             13.6ms
3 subset(d, x > 0.5) 17.7ms
                                          55.7 24.8MB
                             17.9 \mathrm{ms}
                                                          65.0
4 filter(d, x > 0.5) 13.5ms
                                          71.9
                                                 24.8MB
                                                           56.8
                             13.9ms
```

bench - relative results

```
1 summary(b, relative=TRUE)
# A tibble: 4 \times 6
 expression
                min median `itr/sec` mem alloc `gc/sec`
                                     <dbl>
 <bch:expr>
                <dbl> <dbl>
                              <dbl>
                                            <dbl>
1 d[d$x > 0.5, ] 1 1
                              1.45
                                            1.06
2 d[which(d$x > 0.5), ] 1.11 1.09 1.32 1.86 3.70
3 subset(d, x > 0.5) 1.47 1.45 1 1.86 1.14
4 filter(d, x > 0.5) 1.12 1.12
                              1.29 1.86
                                            1
```

t.test

Imagine we have run 1000 experiments (rows), each of which collects data on 50 individuals (columns). The first 25 individuals in each experiment are assigned to group 1 and the rest to group 2.

The goal is to calculate the t-statistic for each experiment comparing group 1 to group 2.

```
1 m = 1000
 2 n = 50
 3 X = matrix(
     rnorm(m * n, mean = 10, sd = 3),
     ncol = m
     as.data.frame() >
 7
     set names(paste0("exp", seq len(m)))
     mutate(
10
       ind = seq len(n),
       group = rep(1:2, each = n/2)
11
     ) |>
12
     as tibble() |>
13
     relocate(ind, group)
14
15 X
```

```
# A tibble: 50 × 1,002
       ind group exp1 exp2 exp3 exp4 exp5 exp6
     <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
              1 12.1 15.0 12.8
                                  5.54 12.0 11.5
              1 5.61 6.99 14.3
                                  8.47 6.49 5.17
   3
              1 12.5 11.6 15.7 10.3 14.0
                                             7.52
              1 8.33 8.39 10.5 15.6
                                        9.94 8.21
                      5.80 8.22 9.48
             1 11.1
                                       5.08 2.59
             1 9.48 6.19 6.05 9.16 8.69 17.0
              1 11.2 11.8
                            5.98 6.05
                                       9.70 12.9
              1 9.56 8.14 14.6 11.4
                                        7.39 9.63
   9
              1 10.1
                      8.72 10.3
                                  7.71 11.5 12.1
              1 17.1 11.6 8.38 12.3
                                       7.88 8.59
        10
      40 more rows
  # i 994 more variables: exp7 <dbl>, exp8 <dbl>,
      exp9 <dbl>, exp10 <dbl>, exp11 <dbl>,
\# exp12 <dbl>. exp13 <dbl>. exp14 <dbl>.
```

Implementations

```
1 ttest formula = function(X, m) {
            for(i in 1:m) t.test(X[[2+i]] ~ X$group)$stat
        3 }
        5 system.time(ttest formula(X,m))
user system elapsed
       0.001
             0.186
0.183
        1 ttest for = function(X, m) {
            for(i in 1:m) t.test(X[[2+i]][X$group == 1], X[[2+i]][X$group == 2])$stat
        3 }
        5 system.time(ttest for(X,m))
      system elapsed
user
0.064
       0.001
             0.066
        1 ttest apply = function(X) {
            f = function(x, g) {
          t.test(x[q==1], x[q==2])$stat
            apply(X[,-(1:2)], 2, f, X$group)
        6 }
        8 system.time(ttest apply(X))
                                          Sta 323 - Spring 2024
```

user system elapsed
0.053 0.000 0.054

Implementations (cont.)

```
1 ttest hand calc = function(X) {
     f = function(x, grp) {
       t stat = function(x) {
         m = mean(x)
 4
         n = length(x)
         var = sum((x - m)^2) / (n - 1)
 6
         list(m = m, n = n, var = var)
 8
 9
        }
10
11
       g1 = t stat(x[grp == 1])
12
       g2 = t stat(x[grp == 2])
13
14
       se total = sqrt(g1\$var / g1\$n + g2\$var / g2\$n)
15
       (q1\$m - q2\$m) / se total
16
17
       apply(X[,-(1:2)], 2, f, X$group)
18
19 }
```

```
user system elapsed
0.014  0.000  0.015
```

Comparison

```
bench::mark(
ttest_formula(X, m),
ttest_for(X, m),
ttest_apply(X),
ttest_hand_calc(X),
check=FALSE

7 )
```

```
# A tibble: 4 \times 6
 expression
                           median `itr/sec` mem alloc `gc/sec`
                      min
                  <bch:tm> <bch:tm>
 <bch:expr>
                                     <dbl> <bch:byt>
                                                     <dbl>
1 ttest formula(X, m) 197.05ms 199.89ms
                                      5.01
                                             8.24MB
                                                      26.7
2 ttest for(X, m) 68.75ms 69.1ms 14.3
                                            1.91MB
                                                      26.8
3 ttest_apply(X) 58.24ms 62.82ms 16.1
                                                      26.8
                                            3.49MB
4 ttest_hand_calc(X) 8.61ms 9.21ms
                                     89.6
                                             3.45MB
                                                      25.9
```

Parallelization

parallel

Part of the base packages in R

- tools for the forking of R processes (some functions do not work on Windows)
- Core functions:
 - detectCores
 - pvec
 - mclapply
 - mcparallel & mccollect

detectCores

Surprisingly, detects the number of cores of the current system.

```
1 detectCores()
```

[1] 10

pvec

Parallelization of a vectorized function call

```
1 system.time(pvec(1:1e7, sqrt, mc.cores = 1))
      system elapsed
user
0.016
       0.012
             0.028
       1 system.time(pvec(1:1e7, sqrt, mc.cores = 4))
      system elapsed
user
0.168
       0.151
               0.249
       1 system.time(pvec(1:1e7, sqrt, mc.cores = 8))
      system elapsed
user
0.092
     0.164 0.152
       1 system.time(sqrt(1:1e7))
      system elapsed
user
     0.018
              0.072
0.055
```

pvec - bench::system_time

```
1 bench::system_time(pvec(1:le7, sqrt, mc.cores = 1))

process    real
    25ms    24.8ms

1 bench::system_time(pvec(1:le7, sqrt, mc.cores = 4))

process    real
    150ms    179ms

1 bench::system_time(pvec(1:le7, sqrt, mc.cores = 8))

process    real
    191ms    223ms
```

```
1 bench::system_time(Sys.sleep(.5))

process real
64µs 497ms

1 system.time(Sys.sleep(.5))

user system elapsed
```

0.000

0.000

0.505

Cores by size

```
1 cores = c(1,4,6,8,10)
 2 order = 6:8
 3 f = function(x,y) {
 4 system.time(
 5 pvec(1:(10^{\circ}y), sqrt, mc.cores = x)
 6 )[3]
 7 }
 8
9 \text{ res} = map(
10
    cores,
   function(x) {
11
12
   map dbl(order, f, x = x)
13
14 ) |>
15
     do.call(rbind, args = )
16
17 rownames(res) = paste0(cores, "cores")
18 colnames(res) = paste0("10^",order)
19
20 res
```

```
10^6 10^7 10^8
1 cores 0.004 0.032 0.371
4 cores 0.032 0.145 2.006
6 cores 0.024 0.138 1.367
8 cores 0.033 0.127 1.265
10 cores 0.033 0.147 1.548
```

mclapply

0.360

0.150

0.179

Parallelized version of lapply

```
1 system.time(rnorm(1e7))
       system elapsed
user
0.262
        0.004
                0.266
        1 system.time(unlist(mclapply(1:10, function(x) rnorm(1e6), mc.cores = 2)))
       system elapsed
user
0.309
        0.095
                0.268
        1 system.time(unlist(mclapply(1:10, function(x) rnorm(1e6), mc.cores = 4)))
       system elapsed
user
0.322
        0.089
                0.161
        1 system.time(unlist(mclapply(1:10, function(x) rnorm(1e6), mc.cores = 8)))
       system elapsed
user
                0.172
0.336
        0.145
        1 system.time(unlist(mclapply(1:10, function(x) rnorm(1e6), mc.cores = 10)))
       system elapsed
user
```

Sta 323 - Spring 2024

mcparallel

Asynchronously evaluation of an R expression in a separate process

```
1 m = mcparallel(rnorm(1e6))
          2 n = mcparallel(rbeta(1e6,1,1))
          3 o = mcparallel(rgamma(1e6,1,1))
          1 \, str(m)
List of 2
 $ pid: int 14040
 $ fd : int [1:2] 4 7
 - attr(*, "class")= chr [1:3] "parallelJob" "childProcess" "process"
          1 str(n)
List of 2
 $ pid: int 14041
 $ fd : int [1:2] 5 9
 - attr(*, "class")= chr [1:3] "parallelJob" "childProcess" "process"
```

mccollect

Checks mcparallel objects for completion

```
1 str(mccollect(list(m,n,o)))
List of 3
$ 14040: num [1:1000000] -0.7172 -1.8334 -0.0983 0.953 0.1629 ...
$ 14041: num [1:1000000] 0.235 0.554 0.301 0.977 0.644 ...
$ 14042: num [1:1000000] 0.448 0.192 0.342 1.386 0.397 ...
```

mccollect - waiting

```
1 p = mcparallel(mean(rnorm(1e5)))

1 mccollect(p, wait = FALSE, 10)

$`14043`
[1] -0.001305267

1 mccollect(p, wait = FALSE)

NULL

1 mccollect(p, wait = FALSE)
```

NULL

doMC & foreach

doMC & foreach

Packages by Revolution Analytics that provides the foreach function which is a parallelizable for loop (and then some).

- Core functions:
 - registerDoMC
 - foreach, %dopar%, %do%

registerDoMC

Primarily used to set the number of cores used by foreach, by default uses options ("cores") or half the number of cores found by detectCores from the parallel package.

```
1 options("cores")
$cores
NULL
          1 detectCores()
[1] 10
          1 getDoParWorkers()
[1] 1
            registerDoMC(4)
          2 getDoParWorkers()
[1] 4
```

foreach

A slightly more powerful version of base for loops (think for with an lapply flavor). Combined with %do% or %dopar% for single or multicore execution.

```
1 for(i in 1:10) {
2   sqrt(i)
3  }
4
5 foreach(i = 1:5) %do% {
6   sqrt(i)
7  }
```

```
[[1]]
[1] 1

[[2]]
[1] 1.414214

[[3]]
[1] 1.732051
```

[[4]] [1] 2

foreach - iterators

 Γ Γ Γ Γ Γ Γ

foreach can iterate across more than one value, but it doesn't do length coercion

```
1 foreach(i = 1:5, j = 1:5)
                                                     1 foreach(i = 1:5, j = 1:2)
              sqrt(i^2+j^2)
                                                     2 sqrt(i^2+j^2)
          3 }
                                                     3 }
                                          [[1]]
[[1]]
[1] 1.414214
                                          [1] 1.414214
[[2]]
                                          [[2]]
[1] 2.828427
                                          [1] 2.828427
[[3]]
[1] 4.242641
[[4]]
[1] 5.656854
```

foreach - combining results

```
1 foreach(i = 1:5, .combine='c') %do% {
             sqrt(i)
         3 }
[1] 1.000000 1.414214 1.732051 2.000000 2.236068
         1 foreach(i = 1:5, .combine='cbind') %do% {
         2 sqrt(i)
         3 }
    result.1 result.2 result.3 result.4 result.5
[1,]
           1 1.414214 1.732051 2 2.236068
         1 foreach(i = 1:5, .combine='+') %do% {
         2 sqrt(i)
         3 }
```

[1] 8.382332

foreach - parallelization

Swapping out %do% for %dopar% will use the parallel backend.

```
1 registerDoMC(4)
        2 system.time(foreach(i = 1:10) %dopar% mean(rnorm(1e6)))
      system elapsed
user
0.298
       0.028
               0.109
        1 registerDoMC(8)
        2 system.time(foreach(i = 1:10) %dopar% mean(rnorm(1e6)))
      system elapsed
user
0.302
       0.032
               0.076
        1 registerDoMC(10)
        2 system.time(foreach(i = 1:10) %dopar% mean(rnorm(1e6)))
      system elapsed
user
       0.042
               0.069
0.325
```


Sta 323 - Spring 2024

furrr / future

```
1 system.time( purrr::map(c(1,1,1), Sys.sleep) )
      system elapsed
user
0.000
       0.000
               3.012
       1 system.time( furrr::future_map(c(1,1,1), Sys.sleep) )
       system elapsed
user
       0.008
              3.097
0.053
        1 future::plan(future::multisession) # See also future::multicore
        2 system.time( furrr::future map(c(1,1,1), Sys.sleep) )
      system elapsed
user
0.206
       0.007
               1.451
```

Example - Bootstraping

Bootstrapping is a resampling scheme where the original data is repeatedly reconstructed by taking a samples of size n (with replacement) from the original data, and using that to repeat an analysis procedure of interest. Below is an example of fitting a local regression (loess) to some synthetic data, we will construct a bootstrap prediction interval for this model.

```
1 ggplot(d, aes(x,y)) +
2     geom_point(color="gray50") +
3     geom_ribbon(
4     aes(ymin = pred_y - 1.96 * pred_y_se,
5         ymax = pred_y + 1.96 * pred_y_se),
6     fill="red", alpha=0.25
7     ) +
8     geom_line(aes(y=pred_y)) +
9     theme_bw()
```


Bootstraping Demo

What to use when?

Optimal use of parallelization / multiple cores is hard, there isn't one best solution

- Don't underestimate the overhead cost
- Experimentation is key
- Measure it or it didn't happen
- Be aware of the trade off between developer time and run time

BLAS and LAPACK

Statistics and Linear Algebra

An awful lot of statistics is at its core linear algebra.

For example:

• Linear regession models, find

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

- Principle component analysis
 - Find T = XW where W is a matrix whose columns are the eigenvectors of X^TX .
 - Often solved via SVD Let $X = U\Sigma W^T$ then $T = U\Sigma$.

Numerical Linear Algebra

Not unique to Statistics, these are the type of problems that come up across all areas of numerical computing.

- Numerical linear algebra \neq mathematical linear algebra
- Efficiency and stability of numerical algorithms matter
 - Designing and implementing these algorithms is hard
- Don't reinvent the wheel common core linear algebra tools (well defined API)

BLAS and LAPACK

Low level algorithms for common linear algebra operations

BLAS

- Basic Linear Algebra Subprograms
- Copying, scaling, multiplying vectors and matrices
- Origins go back to 1979, written in Fortran

LAPACK

- Linear Algebra Package
- Higher level functionality building on BLAS.
- Linear solvers, eigenvalues, and matrix decompositions
- Origins go back to 1992, mostly Fortran (expanded on LINPACK, EISPACK)

Modern variants?

Most default BLAS and LAPACK implementations (like R's defaults) are somewhat dated

- Written in Fortran and designed for a single cpu core
- Certain (potentially non-optimal) hard coded defaults (e.g. block size).

Multithreaded alternatives:

- ATLAS Automatically Tuned Linear Algebra Software
- OpenBLAS fork of GotoBLAS from TACC at UTexas
- Intel MKL Math Kernel Library, part of Intel's commercial compiler tools
- cuBLAS / Magma GPU libraries from Nvidia and UTK respectively
- Accelerate / vecLib Apple's framework for GPU and multicore computing

OpenBLAS Matrix Multiply Performance

```
1 x=matrix(runif(5000^2),ncol=5000)
 2
   sizes = c(100,500,1000,2000,3000,4000,5000)
   cores = c(1, 2, 4, 8, 16)
   sapply(
     cores,
     function(n cores)
 9
       flexiblas::flexiblas set num threads(n cores)
10
11
       sapply(
12
         sizes,
         function(s)
13
14
            y = x[1:s,1:s]
15
           system.time(y %*% y)[3]
16
17
18
19
20 )
```

n	1 core	2 cores	4 cores	8 cores	16 cores
100	0.000	0.000	0.000	0.000	0.000
500	0.004	0.003	0.002	0.002	0.004
1000	0.028	0.016	0.010	0.007	0.009
2000	0.207	0.110	0.058	0.035	0.039
3000	0.679	0.352	0.183	0.103	0.081
4000	1.587	0.816	0.418	0.227	0.145
5000	3.104	1.583	0.807	0.453	0.266

Matrix Multiply of (n x n) matrices

Matrix Multiply of (n x n) matrices

