8. Neural Network (Part 2)

Neural Network: Feedforward

Krittameth Teachasrisaksakul

Recap

- ถ้ามี dataset (ชุดข้อมูล) $(X^{(i)}, y^{(i)})$: เป้าหมายของ neural network คือ หา intermediate features ที่จะทำนาย $y^{(i)}$ แต่ละตัว ได้ดีที่สุด โดย ใช้ (จาก) $X^{(i)}$ ที่สอดคล้องกัน
- บางครั้ง neural network ถูกเรียกว่า black box เพราะมันยากที่จะเข้าใจความหมายของ intermediate features ที่ network หาได้

Neural Network: สัญลักษณ์ (Notation)

- ullet สมมติ เรามี input layer ที่ประกอบด้วย features X_1 , X_2 , ...
- ullet ใช้สัญลักษณ์ (notation) $a_{_i}^{^{(j)}}$ แทน $_{\mathbf{activation}}$ ของ หน่วย / unit ที่ $m{i}$ ในชั้น layer ที่ $m{j}$ เช่น
 - O $a_{_{_{1}}}^{^{(2)}}$ แทน output ของ hidden unit ที่ 1 ใน hidden layer ที่ 1
 - $\circ \quad a_{_1}^{_{(3)}}$ แทน output ของ unit ที่ 1 ใน hidden layer ที่ 2 (หรือ output layer ถ้าเป็น network ที่มีเพียง 1 hidden layer)
- ullet เพื่อรวมสัญลักษณ์: ให้ $a_{i}^{(1)}=x_{i}$ ก็คือ มอง input เป็น layer 1

Neural Network: สัญลักษณ์ (Notation)

Activation Function

เราเคยเห็น ReLU network แบบง่าย แล้ว

เราสามารถมอง <mark>logistic regression</mark> เป็น neural network อย่างง่ายที่มี 1 output unit และ ไม่มี hidden unit ก็คือ

$$g(x) = \frac{1}{1 + e^{-\theta^T x}}$$

สามารถเขียนสมการนี้ในรูปแบบ neural network ดวย 2 ขนตอน:

- 1. คำนวณ linear response
- 2. คำนาณ activation function

$$\begin{array}{c}
z = \theta_0 + \sum_{i=1}^n \theta_i x_i \\
a = \sigma(z) \quad \Rightarrow \sigma(z) = \frac{1}{1 + e^{-z}}
\end{array}$$

Activation Function

ส่วนมาก g(z) ไม่เป็นเชิงเส้น (non-linear)

activation function ที่พบทั่วไปมากที่สุด ได้แก่

1. Sigmoid:
$$g(z) = \frac{1}{1 + e^{-z}}$$

2. ReLU (activation function ที่ถูกเลือกอัตโนมัติ / เป็นค่าเริ่มต้น ใน neural network สมัยใหม่):

$$g(z) = \max(z,0)$$

3. Hyperbolic tangent:
$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Forward Propagation (การถ่ายทอด/ส่งไปข้างหน้า)

- การคำนวณเต็มรูปแบบ มีขั้นตอน ดังนี้
- สำหรับ hidden unit แรก ใน hidden layer แรก \rightarrow คำนวณ

$$z_{1}^{(2)} = \Theta^{(1)} x + \theta_{0}^{(1)}$$

$$a_{1}^{(2)} = g(z_{1}^{(2)})$$

$$a_{1}^{(2)} = g(z_{1}^{(2)})$$

และ

- เมื่อ $\Theta^{(j)}$ เป็น matrix ของ parameters หรือ weights ที่ควบคุม function ที่ map (เชื่อมโยง) จาก laver j ไปยัง layer j+1
- ทำขั้นตอนนี้ซ้ำกับแต่ละ unit ในแต่ละ layer เพื่อหาค่าของ output layer สุดท้าย

Forward Propagation (การถ่ายทอด/ส่งไปข้างหน้า)

$$a_i^{(j)}$$
 = 'activation' of unit *i* in layer *j*

 $\Theta^{(j)}$ = matrix of weights controlling function mapping from layer j to layer j + 1

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0}) + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0}) + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0}) + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$\Theta^{(i)} \in \mathbb{R}^{3 \times 4}$$

$$h_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)})$$

ถ้าใน network : layer j มี S_j unit (หน่วย) และ layer $j{+}1$ มี $S_{j{+}1}$ unit แล้ว $\Theta^{(j)}$ จะมี dimension (มิติ) เป็น $m{s}_{i+1} imes (m{s}_i + m{1})$

Neural Network

- $a_i^{(j)}$ = "activation" ของ unit (หน่วย) i ใน layer (ชั้น) j
- $\Theta^{(j)}$ = matrix ของ weights ที่ควบคุม function mapping from layer j to layer i + 1

หาค่า activation unit 1 unit ใน hidden layer โดย

1. คุณ 1 แถวของ matrix parameters $oldsymbol{\Theta}^{(1)}$ กับ input vector X

2. ใช้ logistic function $g(\cdot)$ กับ ผลจาก ข้อ 1

 $a_i^{(j)}$ = "activation" ของ unit (หน่วย) iใน layer (ชั้น) j

 $\Theta^{(j)}$ = matrix ของ weights ที่ควบคุม function mapping from layer j to layer i+1

$$egin{aligned} a_1^{(2)} &= g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3) \ a_2^{(2)} &= g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3) \ a_3^{(2)} &= g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3) \end{aligned}$$

- แต่ละ layer (ชั้น) จะมี matrix ของ weights $oldsymbol{\Theta}^{(j)}$ ของมันเอง
- ถ้าใน network
 - layer j มี ${m S}_j$ unit (หน่วย) และ
 - layer j+1 มี S_{j+1} unit
 - แล้ว $\Theta^{(j)}$ จะมี dimension (มิติ) เป็น $oldsymbol{s_{i+1}} imes (oldsymbol{s_j}+1)$

layer 1 มี 3 unit, layer 2 มี 3 unit

-> dimension ของ $\Theta^{(j)}$

 $= s_{i+1} \times (s_i + 1) = 3 \times (3+1) = 3 \times 4$

input nodes นับรวม bias node X_0 ด้วย

hypothesis output

Question

จาก neural network ในรูป

dimension ของ $oldsymbol{\Theta}^{ ext{ iny (1)}}$ จะเป็นเท่าไร?

- (ii) 4×2
- (iii) 3×4
- (iv) 4×3

12

Question

จาก neural network ในรูป

dimension ของ $oldsymbol{\Theta}^{ ext{(1)}}$ จะเป็นเท่าไร $ext{?}$

layer 1 มี 2 unit, layer 2 มี

4 unit

(ii)
$$4 \times 2$$

(iii)
$$3 \times 4$$

$$(iv)$$
 4×3

dimension ของ $\Theta^{(j)}$

$$= s_{j+1} \times (s_j + 1)$$

$$= 4 \times (2+1)$$

$$=4 \times 3$$

Feedforward Propagation

Feedforward Propagation

Forward Propagation

หัวข้อที่เหลือ

ตอนนี้ เราเข้าใจ การคำนวณแบบ feed-forward ของ neural network แล้วเราจะมาเรียนเรื่อง ดังนี้

- การกระทำ (execution) ที่มีประสิทธิภาพของการคำนวณแบบ feed-forward
- ullet กระบวนการ gradient descent ที่ใช้เรียนรู้ weights $oldsymbol{\Theta}$

หมายเหตุ: Ng ใช้สัญลักษณ์ Θ แทน weights แต่แหล่งอ้างอิงอื่นๆบางแหล่งใช้ W

ดังนั้น slide นี้จะใช้ทั้งสองตัวสลับไปมา

พิจารณาการคำบวณ activation ของ hidgen unit จะให้

$$\mathbf{z}_{1}^{(2)} = \mathbf{W}_{1}^{(1)}(x) + \mathbf{b}_{1}^{(1)}$$
 and $\mathbf{a}_{1}^{(2)} = g(\mathbf{z}_{1}^{(2)})$

$$\mathbf{z}_4^{(2)} = \mathbf{W}_4^{(1)^T} x + \mathbf{b}_4^{(1)}$$
 and $\mathbf{a}_4^{(2)} = g(\mathbf{z}_4^{(2)})$

พิจารณาการคำนวณ activation ของ hidden unit จะได้

ขึ้นอยู่กับ 'deepness' (ความลึก) ของ architecture, สำหรับ 1 input เราอาจทำการคำนวณของ activation ของ 100 หรือ 1,000 unit

Code ที่ทำการคำนวณนี้ใช้ 'for' loop และสิ่งที่คล้ายกันจะ run <mark>อย่างช้ามาก</mark> โดยเฉพาะถ้า implement (เขียนโปรแกรม) เป็น bytecode ด้วยภาษา Python หรือ Java

สิ่งที่ต้องมี คือ ความสามารถที่จะทำ matrix algebra (พีชคณิตเมทริกซ์) ด้วยการเรียก (call) หรือคำสั่ง library 1 อัน ที่ <mark>highly optimized</mark> โดยใช้คำสั่ง CPU (CPU instruction) ที่ถูกทำมาเพื่อ vector operation

BLAS เป็น library ที่โด่งดัง ซึ่งทำสิ่งนี้ และ numpy ก็สร้างโดยใช้ library นี้

อีกวิธีหนึ่ง คือ อาจ parallelize computation (ทำการคำนวณขนาน/พร้อมกัน) โดยใช้ GPU resources (ทรัพยากร) (GPU : graphics processing unit = หน่วยประมวลผลกราฟฟิกส์)

ถ้าจะใช้การคำนวณในรูป vector (vectorized computation) สำหรับทั้ง layer \rightarrow ต้องทำ operation ใน operation เดียว:

$$a_1^{(2)} = g\left(\Theta_{10}^{(1)}x_0\right) + \left(\Theta_{11}^{(1)}x_1\right) + \left(\Theta_{12}^{(1)}x_2\right) + \left(\Theta_{13}^{(1)}x_3\right)$$

$$a_2^{(2)} = g\left(\Theta_{20}^{(1)}x_0\right) + \left(\Theta_{21}^{(1)}x_1\right) + \left(\Theta_{22}^{(1)}x_2\right) + \left(\Theta_{23}^{(1)}x_3\right)$$
 สามารถ implement ได้ด้วย Python
$$a_3^{(2)} = g\left(\Theta_{30}^{(1)}x_0\right) + \left(\Theta_{31}^{(1)}x_1\right) + \left(\Theta_{32}^{(1)}x_2\right) + \left(\Theta_{33}^{(1)}x_3\right)$$

$$W1 = \text{np.matrix}(\text{np.random.normal}(0, 1, (3, 4)))$$

 $x = \text{np.matrix}(\text{np.random.normal}(0, 1, (4, 1)))$
 $z2 = \text{np.dot}(W1, x)$

คำสั่งชุดนี้จะ run เร็วกว่า for loop ที่ซ้อน 2 ชั้นมาก

ถ้าจะใช้การคำนวณในรูป vector (vectorized computation) สำหรับทั้ง layer \rightarrow ต้องทำ operation ใน operation เดียว:

$$\mathbf{z}_{1}^{(2)} = \mathbf{W}_{1}^{(1)^{T}} x + \mathbf{b}_{1}^{(1)}$$

สามารถ implement ได้ด้วย Python statement เดียว

W1 = np.matrix(np.random.normal(0, 1, (3, 4)))

$$x = np.matrix(np.random.normal(0, 1, (4, 1)))$$

 $z2 = np.dot(W1, x)$

คำสั่งชุดนี้จะ run เร็วกว่า for loop ที่ซ้อน 2 ชั้นมาก

เพื่อคำนวณ $a^{(2)}$ ด้วย vector operation เราสามารถใช้ vectorized functions (function ที่อยู่ในรูป vector) ใน implementation ของเรา

ตัวอย่าง: ถ้าเรามี sigmoid function เรา implement:

เป็น

$$g(z^{(2)}) = \frac{1}{1 + e^{-(z^{(2)})}}$$

return $1/(1 + \exp(-z)$

$$z2 = np.matrix([[1, 2, 3]]).T$$

 $a2 = \sqrt{(2)}$

นี่จะ run ได้เร็วกว่า executing exp() function ใน Python loop มาก

คำนวณโดยใช้ training examples หลายๆตัว

ใช้ $\pmb{X^{\!\! (i)}}$ ของแต่ละ training example \pmb{i} :

$$\mathbf{z}_{1}^{(2)} = \mathbf{W}_{1}^{(1)T} \mathbf{x}^{(i)} + \mathbf{b}_{1}^{(1)}$$

ถ้าทำ operation นี้ใน loop ซ้ำๆ จะช้ากว่าใช้ vectorized operation (Xเป็น vector):

$$\mathbf{z}_{1}^{(2)} = \mathbf{W}_{1}^{(1)T} \mathbf{X}^{T} + \mathbf{b}_{1}^{(1)}$$

ภาษาบางภาษา เช่น Python จะอนุญาตให้ broadcast การบวก (addition operation) ในแนวนอน:

(broadcast = ทำสิ่งเดิมซ้ำๆกับสมาชิกทุกตัว)

$$A = np.matrix([[1, 2, 3], [2, 3, 4]])$$

b = np.matrix([[2, 3]]).T

$$>> A + b$$

ด้วย broadcasting การคำนวณจะมีประสิทธิภาพมากกว่า for loop มาก

$$a_1^{(2)} = g(z_1^{(2)})$$

 $Z_i^{(j)}$: ผลรวมเชิงเส้นแบบถ่วงน้ำหนัก (weighted linear combination) ของ inputs ที่ถูกส่งไปที่ neuron:

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3}) \dots z_{1}^{2}$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3}) \dots z_{2}^{(2)}$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}) \dots z_{3}^{(2)}$$

$$h_{\Theta}(x) = a_{1}^{(3)} = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

$$u_1^{(2)} = g(z_1^{(2)})$$

 $Z_i^{(j)}$: ผลรวมเชิงเส้นแบบถ่วงน้ำหนัก (weighted linear combination) ของ inputs ที่ถูกส่งไปที่ neuron:

$$z_{1}^{(2)} = \Theta_{10}^{(1)} x_{0} + \Theta_{11}^{(1)} x_{1} + \Theta_{12}^{(1)} x_{2} + \Theta_{13}^{(1)} x_{3}$$

$$z_{2}^{(2)} = \Theta_{20}^{(1)} x_{0} + \Theta_{21}^{(1)} x_{1} + \Theta_{22}^{(1)} x_{2} + \Theta_{23}^{(1)} x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)} x_{0} + \Theta_{31}^{(1)} x_{1} + \Theta_{32}^{(1)} x_{2} + \Theta_{33}^{(1)} x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)} x_{0} + \Theta_{31}^{(1)} x_{1} + \Theta_{32}^{(1)} x_{2} + \Theta_{33}^{(1)} x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)} x_{0} + \Theta_{31}^{(1)} x_{1} + \Theta_{32}^{(1)} x_{2} + \Theta_{33}^{(1)} x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)} x_{0} + \Theta_{31}^{(1)} x_{1} + \Theta_{32}^{(1)} x_{2} + \Theta_{33}^{(1)} x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)} x_{0} + \Theta_{31}^{(1)} x_{1} + \Theta_{32}^{(1)} x_{2} + \Theta_{33}^{(1)} x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)} x_{0} + \Theta_{31}^{(1)} x_{1} + \Theta_{32}^{(1)} x_{2} + \Theta_{33}^{(1)} x_{3}$$

$$z_{3}^{(1)} = \Theta_{30}^{(1)} \Theta_{31}^{(1)} + \Theta_{31}^{(1)} \Theta_{31}^{(1)} + \Theta_{32}^{(1)} X_{2} + \Theta_{33}^{(1)} X_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)} x_{0} + \Theta_{31}^{(1)} x_{1} + \Theta_{32}^{(1)} x_{2} + \Theta_{33}^{(1)} x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)} x_{0} + \Theta_{31}^{(1)} x_{1} + \Theta_{32}^{(1)} x_{2} + \Theta_{33}^{(1)} x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)} x_{0} + \Theta_{31}^{(1)} x_{1} + \Theta_{32}^{(1)} x_{2} + \Theta_{33}^{(1)} x_{3}$$

$$a_0^{(2)} = 1 \Longrightarrow a^2 \in \mathbb{R}^4$$

$$\vdots (z^{(3)}) = \Theta^{(2)}a^{(2)}$$

$$h_{\Theta}(x) = a^{(3)} = g(z^{(3)})$$

$$\vdots viu \quad a_1^{(2)} = g(z_1^{(2)})$$

 $Z_i^{(j)}$: ผลรวมเชิงเส้นแบบถ่วงน้ำหนัก (weighted linear combination) ของ inputs ที่ถูกส่งไปที่ neuron:

$$z_{1}^{(2)} = \Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3}$$

$$z_{2}^{(2)} = \Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}$$

$$z_{3}^{(2)} = \Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}$$

i.e.
$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

$$a^{(2)} = g(z^{(2)})$$

Forward Propagation

<mark>ดังกล่าวข้างต้น</mark> ถ้า network ไม่มี hidden unit และขึ้นอยู่กับชนิด activation function : network อาจกลายเป็นการทำ regression

Forward Propagation

<mark>ดังกล่าวข้างต้น</mark> ถ้า network ไม่มี hidden unit และขึ้นอยู่กับชนิด activation function : network อาจกลายเป็นการทำ regression

Network Architecture อื่น

คำว่า architecture เกี่ยวกับว่า neuron ต่างๆ ต่อเข้าด้วยกันอย่างไร

(เช่น จำนวน layer, จำนวน unit, ชนิดของ unit, connectivity ระหว่าง unit)

Ouestion

พิจารณา network ให้ $a^{(1)}=x \subseteq \mathbb{R}^{n+1}$ แทน input เมื่อ $a_0^{(1)}=1$

จะคำนวณ $a^{(2)}$ ได้อย่างไร?

(i)
$$a^{(2)} = \Theta^1 a^{(1)}$$

(ii)
$$z^{(2)} = \Theta^2 a^{(1)}$$
; $a^{(2)} = g(z^{(2)})$

(iii)
$$z^{(2)} = \Theta^1 a^{(1)}$$
; $a^{(2)} = g(z^{(2)})$

(iv)
$$z^{(2)} = \Theta^2 g(a^{(1)})$$
; $a^{(2)} = g(z^{(2)})$

Question

พิจารณา network ให้ $a^{(1)}=x \in \mathbb{R}^{n+1}$ แทน input เมื่อ $a_0^{-(1)}=1$

จะคำนวณ $a^{(2)}$ ได้อย่างไร?

(i)
$$a^{(2)} = \Theta^1 a^{(1)}$$

(ii) $z^{(2)} = \Theta^2 a^{(1)}$; $a^{(2)} = g(z^{(2)})$
(iii) $z^{(2)} = \Theta^1 a^{(1)}$; $a^{(2)} = g(z^{(2)})$
(iv) $z^{(2)} = \Theta^2 g(a^{(1)})$; $a^{(2)} = g(z^{(2)})$

References

- Andrew Ng, Machine Learning, Coursera.
- Teeradaj Racharak, Al Practical Development Bootcamp.
- 3. What is Machine Learning?, https://www.digitalskill.org/contents/5