Theoretische Physik III (Schäfer)

Robin Heinemann

24. Oktober 2017

Inhaltsverzeichnis

A	Phänomenologie der Maxwell-Gleichungen	2
A. 1	elektrisches Feld	3
A.2	elektrische Feldstärke	3
A.3	Maxwell-Gleichungen	3
A.4	Eigenschaften der Maxwell-Gleichungen	4
A.5	Erhaltung der elektrischen Ladung	5
A.6	Elektrodynamik in Materie	5
A. 7	elektrisches Potenzial \rightarrow Elektrostatik	6
A.8	Dirac-Funktion δ_D	7
A.9	potenzielle Energie und das elektrostatische Potenzial	7
A. 10	Eigenschaften der δ_D -Funktion	8
A. 11	Feldänderung an einer Oberfläche	8
A.12	Energie einer statischen Ladungsverteilung	9
В	Potentialtheorie	10
B. 1	Green-Theoreme	11

Teil A. Phänomenologie der Maxwell-Gleichungen

A.1 elektrisches Feld

A.1. elektrisches Feld

$$F = k \frac{q_1 q_2}{|\vec{r}_1 - \vec{r}_2|^2}$$

$$k = \frac{1}{4\pi\varepsilon_0}$$

$$\varepsilon_0 = 8654 \times 10^{-12} \,\mathrm{A\,s\,V^{-1}\,m} \simeq \frac{1}{4\pi9 \times 10^9} \,\mathrm{A\,s\,V^{-1}\,m}$$

im SI-System.

$$q \to \frac{q}{\sqrt{4\pi\varepsilon_0}} \to k = 1, F = \frac{q_1 q_2}{|\vec{r}_1 - \vec{r}_2|^2}$$

q wird gemessen in $\sqrt{\text{erg cm}} = 1 \text{ esu}$ "elektrostatic unit".

A.2. elektrische Feldstärke

$$\vec{E}(\vec{r}) = \frac{\vec{F}(\vec{r})}{q}$$

viele Bücher verlangen:

$$\vec{E}(\vec{r}) = \lim_{\Delta q \to 0} \frac{\Delta \vec{F}}{\Delta q}$$

dies ist nicht notwending \rightarrow Linearität der Elektrodynamik

analog: Lorentz-Kraft auf bewegte Ladungen ightarrow magnetische Felder

A.3. Maxwell-Gleichungen

ightarrow axiomatisch für die Elektrodynamik. Verbindung zwischen Ladungsdichte ho, elektrischen Stromdichte \vec{j} und den Feldern $\vec{E}, \vec{D}, \vec{H}$ und \vec{B} . In einem Inertialsystem nehmen die Maxwell-Gleichungen diese Form an:

1. div $\vec{E}=\nabla\cdot\vec{E}=4\pi\rho$ Gesetz von Grauß. elektrische Ladungen sind Quellen des elektrischen Feldes

Satz von Gauß eingschl. Ladung
$$\int_V \mathrm{d}^3 r \, \mathrm{div} \; \vec{E} \stackrel{\uparrow}{=} \int_{\partial V} \mathrm{d} \, \vec{S} \, \vec{E} = \psi = \int_v \mathrm{d}^3 r 4\pi \rho = 4\pi q$$
 el. Fluss

2. div
$$\vec{B} = \nabla \vec{B} = 0$$

$$\int_{v} d^{3}r \operatorname{div} \vec{B} = \int_{\partial V} d\vec{S} \vec{B} = \phi = 0$$

3. rot $\vec{E} = \nabla \times \vec{E} = -\partial_{ct}\,\vec{B}$ Faraday-Induktionsgesetz. \downarrow

Lenz.-Regel.

$$\partial_{ct} = \frac{\partial}{\partial(ct)} = \frac{1}{c} \frac{\partial}{\partial t}$$

$$\int_{S} d\vec{S} \cdot \operatorname{rot} \vec{E} = \underbrace{\int_{\partial S} d\vec{r} \vec{E}}_{U} = -\frac{d}{d(ct)} \underbrace{\int_{s} d\vec{S} \cdot \vec{B}}_{\phi}$$

4. rot
$$\vec{B} = \nabla \times \vec{B} = \partial_{ct} \vec{E} + \frac{4\pi}{c} \vec{j}$$

$$\int_{S} d\vec{S} \operatorname{rot} \vec{B} = \int_{\partial S} d\vec{r} \vec{B} = \frac{d}{(ct)} \underbrace{\int_{S} d\vec{S} \vec{E}}_{dt} + \frac{4\pi}{c} \underbrace{\int_{S} d\vec{S} \vec{j}}_{I}$$

A.4. Eigenschaften der Maxwell-Gleichungen

- zwei skalare und zwei vektoriell Gleichungen
- lineare, partielle Differenzialgleichungen erster Ordnung
- für vorgegebene ρ und \vec{j} lassen sich \vec{E} und \vec{B} berechnen
- oder aus einer Feldkonfiguration \vec{E} und \vec{B} lassen sich Ladungen ρ und \vec{j} finden
- Maxwell-Gleichungen gelten in einem Inertialsystem: erst die Definitonen aus Bezugssystem bestimmt, was ρ und \vec{j} ist, und damit \vec{E} und \vec{B} darüber hinaus ist mit Wahl des Systems klar, was xvolt ist, und damit ∂_{ct} und ∇ .
- nur eine Skala enthalten: $c \sim$ Lichtgeschwindigkeit

• im Vakuum:
$$\rho=0,\, \vec{j}=0$$
: $\varepsilon=1=\mu \to \vec{D}=\vec{E},\, \vec{H}=\vec{B}.$
$${\rm div}\,\, \vec{E}=0$$

$${\rm div}\,\, \vec{E}=0$$

$${\rm rot}\,\, \vec{E}=-\partial_{ct}\, \vec{B}$$

$${\rm rot}\,\, \vec{B}=-\partial_{ct}\, \vec{E}$$

Wenn man $\vec E o \vec B, \, \vec B o - \vec E$ vertauscht, dann ändern sich die Gleichungen nicht o **elektromagnetische Dualität**.

- seltsame Asymmetrie, es gibt kein $\rho_{\rm mag}$ oder $\vec{j}_{\rm mag}$

div
$$\vec{B} = 4\pi \rho_{\text{mag}} = 0$$

rot $\vec{E} = -\partial_{ct} \vec{B} + \underbrace{\frac{4\pi}{c} \vec{j}_{\text{mag}}}_{-0}$

A.5. Erhaltung der elektrischen Ladung

$$\operatorname{rot} \vec{B} = \partial_{ct} \vec{E} + \frac{4\pi}{c} \vec{j}$$

$$\operatorname{div} \operatorname{rot} \vec{B} = \varepsilon_{ijk} \partial_i \partial_j B_k = 0 = \partial_{ct} \underbrace{\operatorname{div} \vec{E}}_{=4\pi\rho} + \frac{4\pi}{c} \operatorname{div} \vec{j}$$

$$= \frac{4\pi}{c} \left(\partial_t \rho + \operatorname{div} \vec{j} \right)$$

$$\Longrightarrow \partial_t \rho + \operatorname{div} \vec{j} = 0$$
(Kontinuitätsgleichung)

Aus der Kontinuitätsgleichung folgt die Ladungserhaltung

$$\int_{V} d^{3}r \partial_{t} \rho = \frac{d}{dt} \underbrace{\int_{V} d^{3}r \rho}_{c} = -\int_{V} d^{3}r \operatorname{div} \vec{j} = -\int_{\partial V} d\vec{S} \cdot \vec{j}$$

- Änderung der Ladung in einem Volumen = Fluss der Ladung durch die Oberfläche.
- Dynamik der Felder ist konsistent zur Bewegung der Ladungen
- gilt auch in Materie! Ampere-Gesetz und Gauß-Gesetz enthalten falls $\varepsilon \neq 1$ die dielektrische Verschiebung \vec{D} .
- es existiert implizit eine zweite Erhaltungsgleichung für die magnetische Ladungen, die nicht existieren. 2(1+3) Maxwell-Gleichungen für $2\cdot 2\cdot 3$ Felder!

A.6. Elektrodynamik in Materie

Wechselwirkungen zwischen dem elektromagnetischen Feld und Materie ist **sehr** kompliziert im Mikroskopischen \rightarrow in vielen Fällen ist es trotzdem möglich, mit zwei Konstatnen eine einfach **effektive** Beschreibung zu finden.

- ε : Dielektrizitätskonstante $\rightarrow \vec{D} = \varepsilon \vec{E}$
- μ : Permeabilitätskonstante ightarrow $\vec{B} = \mu\,\vec{H}$

Im Vakuum: $\varepsilon=1, \mu=1$, in Materie: $\varepsilon\neq 1, \mu\neq 1$

$$\begin{array}{ll} \text{im Vakuum} & \text{in Materie} \\ & \text{div } \vec{E} = 4\pi\rho & \text{div } \vec{D} = 4\pi\rho \\ & \text{div } \vec{B} = 0 & \text{div } \vec{B} = 0 \\ & \text{rot } \vec{E} = -\partial_{pt}\vec{B} & \text{rot } \vec{E} = -\partial_{pt}\vec{B} \\ & \text{rot } \vec{B} = \partial_{ct}\vec{E} + \frac{4\pi}{c}\vec{j} & \text{rot } \vec{H} = \partial_{ct}\vec{D} + \frac{4\pi}{c}\vec{j} \end{array}$$

(wir brauchen noch zwei Konzepte, Dipolfelder und das elektrische Potenzial um ein Modell für ε aufstellen zu können).

A.7. elektrisches Potenzial ightarrow Elektrostatik

$$\vec{E}(\vec{r}) = q_1 \frac{\vec{r} - \vec{r}_1}{|\vec{r} - \vec{r}_1|^3}$$

$$\vec{E}(\vec{r}) = \sum_i q_i \frac{\vec{r} - \vec{r}_i}{|\vec{r} - \vec{r}_i|^3}$$

(Definiton: Probeladung ist positiv \rightarrow abstoßende

Coulomb-Kraft falls $q_1 > 0$.)

Superposition wegen der Linearität der Maxwell-Gleichnug.

Kontinuumslimit: ersetze $q \rightarrow \rho$

$$\begin{split} \vec{E}(\vec{r}) &= \int_{V} \mathrm{d}^{3}r' \rho(\vec{r}) \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^{3}} = -\int_{V} \mathrm{d}^{3}r' \rho(\vec{r}) \nabla \frac{1}{|r - r'|} \\ &= -\nabla \underbrace{\int_{V} \mathrm{d}^{3}r' \frac{\rho(\vec{r})}{|\vec{r} - \vec{r}'|}}_{=\phi(\vec{r})} \\ \rightarrow & \boxed{\vec{E}(\vec{r}) = -\nabla \phi(\vec{r})} \\ \phi(\vec{r}) &= \int_{V} \mathrm{d}^{3}r' \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} \end{split}$$

und es gilt automatisch in diesem Fall:

rot
$$\vec{E} = -\operatorname{rot} \nabla \phi = 0;$$
 $(\operatorname{rot} E)_i = \varepsilon_{ijk} \partial_j \partial_k \phi = 0$

Substitution in das Gauß-Gesetz:

div
$$\vec{E}=4\pi\rho$$
 \rightarrow $\triangle\phi=-4\pi\rho$ (Poisson-Gleichung)

Falls keine Ladungen vorliegen, muss $\triangle \phi = 0$ gelten.

$$\phi(\vec{r}) = \frac{1}{|r - r'|}$$

Für Quelle mit q=1 an der Stelle $\vec{r}'=\vec{0}$:

$$\triangle \phi = \left(\partial_x^2 + \partial_y^2 + \partial_z^2\right) \phi = \triangle \frac{1}{r} = \frac{1}{r} \frac{\partial^2}{\partial r^2} \left(r \frac{1}{r}\right) = 0$$

Kugelkoordinaten, Winkel fallen weg, da sie nicht in ϕ vorkommen

klar, bei \vec{r} ist die Ladung nicht, sondern bei $\vec{0}$

$$\int_{V} d^{3}r \, \Delta \phi = \int_{V} d^{3}r \nabla (\nabla \phi) = \int_{\partial V} d\vec{S} \nabla \phi$$
Satz von Gauß
$$= \int r^{2} d\Omega \underbrace{\frac{\partial \phi}{\partial r}}_{=-\frac{1}{r^{2}}} = -\int d\Omega = -4\pi$$

A.8 Dirac-Funktion δ_D

Zusammenfassung beider Fälle

$$\triangle \frac{1}{|\vec{r} - \vec{r}'|} = -4\pi \delta_D (\vec{r} - \vec{r}')$$

analog für Gravitation

$$\operatorname{div} \vec{g} = 4\pi\rho$$
$$\Delta\phi = 4\pi G\rho$$

A.8 . Dirac-Funktion δ_D

Elektrodynamik ist eine Kontinuumstheorie ightarrow
ho ist eine Ladungsdichte:

$$\int_{V} d^{3}r \rho = q \qquad \qquad \text{(im Volumen } V\text{)}$$

 $q\delta_D(\vec{r}-\vec{r}')$ repräsentiert eine Punktladung q an der Stelle \vec{r}' .

$$\rho(\vec{r}) = \sum_{i} q_{i} \delta_{D}(\vec{r} - \vec{r}_{i})$$

$$\phi(\vec{r}) = \int d^{3}r' \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|}$$

denn

$$\triangle \phi(\vec{r}) = \int d^3 r' \rho(\vec{r}') \, \triangle \frac{1}{|\vec{r} - \vec{r}'|} = \int d^3 r' \rho(\vec{r}') (-4\pi) \delta_D(\vec{r} - \vec{r}')$$

$$\triangle \phi(\vec{r}) = -4\pi \sigma(\vec{r})$$
Poisson-Gleichung

im diskreten Fall:

$$\phi(\vec{r}) = \sum_{i} \frac{q_i}{|\vec{r} - \vec{r}_i|}$$

$$\triangle \phi(\vec{r}) = \sum_{i} q_i \triangle \frac{1}{|\vec{r} - \vec{r}'|} = \sum_{i} q_i (-4\pi) \delta_D(\vec{r} - \vec{r}_i)$$

$$= -4\pi \sum_{i} q_i \sigma_D(\vec{r} - \vec{r}') = -4\pi \rho(\vec{r})$$

A.9. potenzielle Energie und das elektrostatische Potenzial

bitte seid super vorsichtig mit Energieinterpretationen von allem, was mit Relativität zutun hat!

Coulomb-Kraft \vec{F} :

$$\vec{F}(\vec{r}) = q\vec{E}(\vec{r})$$

Verschiebearbeit W:

$$W = \int_A^B \mathrm{d}\vec{r} \cdot \vec{F} = -q \int_A^B \mathrm{d}\vec{r} \, \vec{E} = g \int_A^B \underbrace{\mathrm{d}\vec{r} \nabla \phi}_{=\frac{\partial}{\partial \vec{r}} \phi}$$

$$\vec{E} = -\nabla \phi$$

mit $d\vec{r} \cdot \frac{\partial}{\partial \vec{r}} \phi = d\phi$ (totales Differenzial)

$$W = q \int_{A}^{B} d\phi = q(\phi(B) - \phi(A))$$

- Potenzialdifferenz entspricht der Verschiebearbeit pro Ladung
- Verschiebung muss extrem langsam erfolgen, dass $E \to B$ nicth transformiert (Lorentz!)

A.10. Eigenschaften der δ_D -Funktion

Zur Beschreibung wir die Dirac-Delta-Funktion verwendet:

Normierung

$$\int \mathrm{d}^n x \delta_D(x) = 1$$

Lokalisierung

$$\int d^n x g(x) \delta_D(x-y) = g(y)$$

A.11. Feldänderung an einer Oberfläche

Betrachte Oberfläche mit Oberflächenladung σ

$$\sigma = \lim_{\Delta S \to 0} \frac{\Delta q}{\Delta S}$$

wie wird ein elektrischen Feld durch diese Oberfläche beeinflusst? (vor Oberfläche: \vec{E}_1 , nach Oberfläche \vec{E}_2) Dazu wählen Zylinder mit den Mantelflächen parallel zur Oberfläche und Volumen ΔV .

$$\begin{split} \int_{\Delta V} \mathrm{d}^3 r' \, \mathrm{div} \,\, \vec{E} &= \int_{\Delta S} \mathrm{d} \, \vec{S} \cdot \vec{E} = 4\pi q = 4\pi \overbrace{\int_{\partial V} \mathrm{d} \, \vec{S} \sigma}^{\Delta S \cdot \sigma} = \Delta S \Big(E_2^\perp - E_1^\perp \Big) \\ &\quad \text{Gauß} \end{split}$$

$$\implies E_2^\perp = E_1^\perp + 4\pi \sigma$$

Wenn das Feld tangential zur Oberfläche ist, kann man stattdessen eine Schleife wählen und den Satz von Stokes benutzen:

$$\int_{\partial} \mathrm{d}\vec{r} \, \vec{E} \tau \int_{S} \mathrm{d}\vec{S} \, \mathrm{rot} \, \vec{E} = \left(E_{2}^{\parallel} - E_{1}^{\parallel} \right) \Delta r \to E_{2}^{\parallel} = E_{1}^{\parallel}$$
 Stokes

A.12. Energie einer statischen Ladungsverteilung

1.
$$q_1$$
 an einer Stelle $\vec{r}_1 \rightarrow \text{Potential } \phi_1 = \frac{q_1}{|\vec{r} - \vec{r}_1|}$

2.
$$q_2$$
 an einer Stelle $\vec{r}_2 \rightarrow W_2 = q_2 \cdot \phi_1(\vec{r}_2)$

1.
$$q_1$$
 an einer Stelle $\vec{r}_1 \rightarrow \text{Potential } \phi_1 = \frac{q_1}{|\vec{r} - \vec{r}_1|}$
2. q_2 an einer Stelle $\vec{r}_2 \rightarrow W_2 = q_2 \cdot \phi_1(\vec{r}_2)$
3. q_3 an einer Stelle $\vec{r}_3 \rightarrow W_3 = q_3 \cdot (\phi_1(\vec{r}_2) + \phi_2(\vec{r}_3))$ Man erkennt

 q_n an einer Stelle $ec{r}_n \quad o \quad W_n = q_n \cdot \sum_i^{n-1} \phi_i(ec{r}_n)$

$$W = \sum_{n}^{N} W_{n} = \sum_{n}^{N} q_{n} \sum_{i}^{n-1} \phi_{i}(\vec{r}_{n})$$

$$W = \sum_{n}^{N} q_{n} \sum_{i}^{n-1} \frac{q_{1}}{|\vec{r}_{1} - \vec{r}_{n}|} = \frac{1}{2} \sum_{n}^{N} \sum_{i}^{N} \frac{q_{i}q_{n}}{|\vec{r}_{1} - \vec{r}_{n}|}$$

Kontinuums-Limes

$$\begin{split} \sum_{i} q_{i} &\to \int \mathrm{d}^{3}r' \rho(\vec{r}') \\ W &= \frac{1}{2} \int \mathrm{d}^{3}r \int \mathrm{d}^{3}r' \frac{\rho(\vec{r})\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} = \frac{1}{2} \int \mathrm{d}^{3}r \rho(\vec{r}) \underbrace{\int \mathrm{d}^{3}r' \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|}}_{=\phi(\vec{r})} \\ &= \frac{1}{2} \int \mathrm{d}^{3}r \rho(\vec{r})\phi(\vec{r}) \\ W &= -\frac{1}{8\pi} \int \mathrm{d}^{3}r \, \triangle \phi \phi = -\frac{1}{8\pi} \int \mathrm{d}^{3}r^{3} \phi \, \triangle \phi \end{split}$$

Poisson-Gleichung $\triangle \phi = -4\pi \rho$

Es gilt: $\phi \triangle \phi = \phi \nabla \cdot (\nabla \phi) = \nabla (\phi \nabla \phi) - \nabla \phi \nabla \phi$

$$W = -\frac{1}{8\pi} \int d^3r \nabla(\phi \nabla \phi) + \frac{1}{8\pi} \int d^3r (\nabla \phi)^2$$
$$= -\frac{1}{8\pi} \int d^3r (\nabla \phi)^2 + \frac{1}{8\pi} \int d^3r \underbrace{(\nabla \phi)^2}_{\vec{E} = -\nabla \phi}$$

 $\int \mathrm{d}\vec{S}(\phi \nabla \phi) = 0$ für große Volumen, da $\phi \sim 1/r$, $\nabla \phi \sim 1/r^2 \implies \phi \nabla \phi \sim 1/r^3$, aber d $\vec{S} \sim r^2$

$$= \int \mathrm{d}^3 r \frac{\vec{E}^2}{8\pi}$$

Selbstenergie für $\vec{r}' = \vec{r}$ - keine Lösung in der klassischen Elektrodynamik.

Teil B. Potentialtheorie

B.1 Green-Theoreme

Lösungen der Poisson-Gleichung $\triangle \phi = -4\pi \rho$. 3 Probleme

- 1. Inversion des Differenzialoperators \rightarrow Green-Funktion
- 2. Geometrie der Ladungsverteilung \rightarrow Multipolentwicklung
- 3. Randbedingungen \rightarrow Green-Theorie

B.1. Green-Theoreme

Es gilt für $\vec{A}(\vec{r}) = \varphi \nabla \psi$

$$\operatorname{div} \vec{A} - \operatorname{div}(\varphi \nabla \psi) = \nabla \varphi \nabla \psi + \varphi \triangle \psi$$

Satz von Gauß:

$$\int_{V} d^{3} \operatorname{div} \vec{A} = \int_{\partial V} d\vec{S} \vec{A}$$

 $\vec{S} = \mathrm{d}S\,\vec{n},\,\vec{n} \sim \mathrm{Normal envektor}$

$$\int_V \mathrm{d}^3 r' \big(\nabla' \varphi \nabla' \psi + \varphi \, \triangle' \psi \big) = \int_{\partial V} \mathrm{d} S \varphi \nabla' \psi \cdot \vec{n} = \int_{\partial V} \mathrm{d} S \varphi \frac{\partial \psi}{\partial n} \quad \text{Erste greensche Identität}$$

 $\varphi \rightleftharpoons \psi$ und Subtraktion der Gleichungen

$$\int_{V} d^{3}r' (\varphi \triangle' \psi - \psi \triangle' \varphi) = \int_{\partial U} dS \left(\varphi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi}{\partial n} \right)$$