Exponential Distribution as a Lifetime Model

Barsha-Arnab-Ritik-Rudransh-Sayan-Sujil-Ananda

Contents

- Introduction
- Probability Density Function
- Survival Function
- 4 Hazard Function
- **6** Cumulative Hazard Function

Lifetime data / survival time data measure the <u>time to a certain event</u>, such as failure, death etc. These times are subject to random variations, and like any random variables, form a probability distribution.

Lifetime data / survival time data measure the <u>time to a certain event</u>, such as failure, death etc. These times are subject to random variations, and like any random variables, form a probability distribution.

 $\mathrm{Time}(T)$ is a non-negative continuous $(T \geq 0)$ quantity and one of the simplest distributions to model lifetime data is the Exponential Distribution.

The distribution of survival times is usually characterized by 3 functions as follows:

• the Probability Density Function

- the Probability Density Function
- the Survival Function

- the Probability Density Function
- the Survival Function
- the Hazard Function

- the Probability Density Function
- the Survival Function
- the Hazard Function
- the Cumulative Hazard Function

Probability Density Function

If the lifetime T follows the exponential distribution with $\underline{\text{rate }\lambda\in\mathbb{R}^+}$, the probability density function $f:(-\infty,\infty)\to[0,\infty)$ is given by

$$f(t) = \begin{cases} \lambda e^{-\lambda t}, & t > 0 \\ 0, & \text{otherwise.} \end{cases}$$

From definition, with $F(\cdot)$ being the CDF of T, Survival function $S:[0,\infty)\to[0,1]$ is given by

$$S(t) = P[T > t] = 1 - F(t) \ \forall t \geq 0.$$

From definition, with $F(\cdot)$ being the CDF of T, Survival function $S:[0,\infty)\to[0,1]$ is given by

$$S(t) = P[T > t] = 1 - F(t) \ \forall t \geq 0.$$

From definition, with $F(\cdot)$ being the CDF of T, Survival function $S:[0,\infty)\to[0,1]$ is given by

$$S(t) = P[T > t] = 1 - F(t) \ \forall t \geq 0.$$

$$\forall t \ge 0, \ F(t) = \int_{0}^{t} f(x) dx$$

From definition, with $F(\cdot)$ being the CDF of T, Survival function $S:[0,\infty)\to[0,1]$ is given by

$$S(t) = P[T > t] = 1 - F(t) \ \forall t \ge 0.$$

$$\forall t \ge 0, \ F(t) = \int_0^t f(x)dx$$
$$= \int_0^t \lambda e^{-\lambda x} dx = \lambda \left[-\frac{e^{-\lambda x}}{\lambda} \right]_0^t$$
$$= 1 - e^{-\lambda t}$$

From definition, with $F(\cdot)$ being the CDF of T, Survival function $S:[0,\infty)\to[0,1]$ is given by

$$S(t) = P[T > t] = 1 - F(t) \ \forall t \ge 0.$$

$$\forall t \ge 0, \ F(t) = \int_0^t f(x)dx$$
$$= \int_0^t \lambda e^{-\lambda x} dx = \lambda \left[-\frac{e^{-\lambda x}}{\lambda} \right]_0^t$$
$$= 1 - e^{-\lambda t}$$

$$\bullet \ S(t) = e^{-\lambda t} \ \forall t \geq 0$$

The Hazard function $h:[0,\infty)\to[0,\infty)$ is defined as

$$h(t) = \lim_{\Delta t \to 0} \frac{P \left[\begin{array}{c} \text{an individual fails in the time interval } (t, t + \Delta t) \\ \text{given the individual has survived to } t \end{array} \right]}{\Delta t} \ \forall t \geq 0.$$

The Hazard function $h:[0,\infty)\to[0,\infty)$ is defined as

$$h(t) = \lim_{\Delta t \to 0} \frac{P \left[\begin{array}{c} \text{an individual fails in the time interval } (t, t + \Delta t) \\ \text{given the individual has survived to } t \end{array} \right]}{\Delta t} \ \forall t \geq 0.$$

A simple derivation leads to

$$h(t) = \frac{f(t)}{S(t)} \ \forall t \ge 0.$$

We have

$$\bullet \ f(t) = \lambda e^{-\lambda t} \cdot I_{(0,\infty)}(t), \ \lambda > 0.$$

We have

- $\bullet \ f(t) = \lambda e^{-\lambda t} \cdot I_{(0,\infty)}(t), \ \lambda > 0.$
- $\bullet \ S(t) = e^{-\lambda t} \ \forall t \geq 0.$

We have

$$\bullet \ f(t) = \lambda e^{-\lambda t} \cdot I_{(0,\infty)}(t), \ \lambda > 0.$$

•
$$S(t) = e^{-\lambda t} \ \forall t \ge 0$$
.

IF $h(t) = \lambda \ \forall t \geq 0$, a constant, independent of t.

We have

- $\bullet \ f(t) = \lambda e^{-\lambda t} \cdot I_{(0,\infty)}(t), \ \lambda > 0.$
- $\bullet \ S(t) = e^{-\lambda t} \ \forall t \ge 0.$

IF $h(t) = \lambda \ \forall t \geq 0$, a constant, independent of t.

A constant hazard rate is a <u>necessary and sufficient</u> condition for a continuous lifetime distribution to be exponential.

Cumulative Hazard Function

The Cumulative Hazard Function $H:[0,\infty)\to[0,\infty)$ is defined by

$$H(t) = \int_{0}^{t} h(x)dx.$$

Cumulative Hazard Function

The Cumulative Hazard Function $H:[0,\infty)\to[0,\infty)$ is defined by

$$H(t) = \int_{0}^{t} h(x)dx.$$

For
$$T \sim \text{Exp}(\text{rate} = \lambda)$$
,

$$H(t) = \lambda t \ \forall t \ge 0.$$

