GROUPES ET ANNEAUX 2 CORRIGÉ DE L'EXAMEN DU 24 MAI 2024

Exercice 1 (2+4 pts). Soit H < G un sous-groupe d'un groupe G. On considère l'action par translation à gauche de G sur l'ensemble G/H.

- (i) Montrer que, pour tout $q \in G$, le stabilisateur $\operatorname{st}(qH)$ coïncide avec qHq^{-1} .
- (ii) Soit H' < G un autre sous-groupe de G. Montrer que les G-ensembles G/H et G/H' sont isomorphes si et seulement si H et H' sont conjugués.

Solution. (i) $g' \in \operatorname{st}(gH) \Leftrightarrow g'gH = gH \Leftrightarrow g'gHg^{-1} = gHg^{-1} \Leftrightarrow g' \in gHg^{-1}$.

- (ii) Montrons que $G/H \cong G/H' \Leftrightarrow \exists g \in G \ gHg^{-1} = H'$.
 - (\Leftarrow) $G/H' = G/gHg^{-1} = G/\operatorname{st}(gH) \cong \operatorname{orb}(gH) = G/H$ grâce au point (i).
- (\Rightarrow) Soit $\varphi:G/H\to G/H'$ un isomorphisme, et soit $gH=\varphi^{-1}(H')$. Montrons que $gHg^{-1}=H'$.
- $(\supset) \ \forall h' \in H' \ \varphi(h'gH) = h'\varphi(gH) = h'H' = H' = \varphi(gH)$. Comme φ est injectif, alors $\forall h' \in H' \ h'gH = gH$. En particulier, $\forall h' \in H' \ \exists h \in H \ h'g = gh$. De manière équivalente, $\forall h' \in H' \ \exists h \in H \ h' = ghg^{-1}$. Cela signifie que $gHg^{-1} \supset H'$.
- (\subset) $\forall h \in H$ $H' = \varphi(gH) = \varphi(ghH) = \varphi(ghg^{-1}gH) = ghg^{-1}H'$. De manière équivalente, $\forall h \in H$ $ghg^{-1} \in H'$. Cela signifie que $gHg^{-1} \subset H'$.

Exercice 2 (4+2+2 pts). Soit A un anneau. Par définition, le nilradical de A est le sous-ensemble $N(A) = \{x \in A \mid \exists m \in \mathbb{N} \ x^m = 0\} \subset A$, et le radical de Jacobson de A est le sous-ensemble $J(A) = \{x \in A \mid \forall a \in A \ 1 - ax \in A^{\times}\} \subset A$.

- (i) Montrer que N(A) et J(A) sont des idéaux de A.
- (ii) Montrer que, si $I \subset A$ est un idéal premier, alors $N(A) \subset I$.
- (iii) Montrer que, si $I \subset A$ est un idéal maximal, alors $J(A) \subset I$.

Solution. On rappelle que, afin de montrer qu'un sous-ensemble I d'un anneau A est un idéal, il suffit de montrer qu'il n'est pas vide, qu'il est clos par l'addition, et qu'il absorbe la multiplication. En effet, la dernière propriété implique en particulier que I est un sous-groupe additif, car il absorbe la multiplication par $-1 \in A$.

(i) Tout d'abord, $0^1=0$, donc $0\in \mathrm{N}(A)$. Ensuite, si $x,y\in \mathrm{N}(A)$, alors ils existent $m,n\in \mathbb{N}$ tels que $x^m=0$ et $y^n=0$. Par conséquent,

$$(x+y)^{m+n-1} = \sum_{k=0}^{m+n-1} \binom{m+n-1}{k} x^{m+n-k-1} y^k = 0,$$

car k < n implique $m+n-k-1 \ge m$, donc $x+y \in \mathcal{N}(A)$. Pour terminer, si $a \in A$ et $x \in \mathcal{N}(A)$, alors il existe $m \in \mathbb{N}$ tel que $x^m = 0$. Cela implique $(ax)^m = a^m x^m = 0$, donc $ax \in \mathcal{N}(A)$.

Tout d'abord, $1-a\cdot 0=1\in A^{\times}$ pour tout $a\in A,$ donc $0\in \mathrm{J}(A).$ Ensuite, si $x,y\in \mathrm{J}(A),$ alors $1-ax,1-by\in A^{\times}$ pour tout $a,b\in A.$ Par conséquent,

$$1 - a(x+y) = (1 - ax) - ay = (1 - ax)\left(1 - \frac{a}{(1 - ax)}y\right) \in A^{\times}$$

pour tout $a \in A$, donc $x + y \in J(A)$. Pour terminer, si $a \in A$ et $x \in J(A)$, alors $1 - bx \in A^{\times}$ pour tout $b \in A$. Cela implique $1 - abx \in A^{\times}$ pour tout $b \in A$, donc $ax \in J(A)$.

- (ii) Si $x \in N(A)$, alors il existe $m \in \mathbb{N}$ tel que $x^m = 0$. Comme I est premier, A/I est intègre, donc $(x+I)^m = x^m + I = I$ implique $x \in I$.
- (iii) Si $x \notin I$, alors $x + I \in (A/I)^{\times}$, car A/I est un corps. Il existe donc $y \in A$ tel que (x + I)(y + I) = xy + I = 1 + I. On a alors qu'il existe $y \in A$ tel que $1 xy \in I$. Mais $I \cap A^{\times} = \emptyset$, car I est maximal, donc $x \notin J(A)$.

Exercice 3 (2+4+4+2 pts). Soit G un groupe d'ordre 255. Le but de cet exercice est de montrer que G est cyclique.

- (i) Montrer que G admet un sous-groupe distingué $K \triangleleft G$ d'ordre 17.
- (ii) Montrer que G admet un sous-groupe H < G d'ordre 15. Indication : montrer que G admet un sous-groupe d'ordre 3 et un d'ordre 5, et que l'un des deux est forcement distingué.
- (iii) Montrer que $G \cong K \times H$. Indication: montrer d'abord que $G = K \times H$, et ensuite que l'action par conjugaison de H sur K est triviale.
 - (iv) Montrer que tout groupe H d'ordre 15 est cyclique.

Solution. Soit $\mathrm{Syl}_p(G)$ l'ensemble des p-Sylows de G pour tout $p \in \mathbb{N}$ premier, et soit $n_p = |\mathrm{Syl}_p(G)|$.

- (i) D'après les théorèmes de Sylow, on sait que $n_{17} \mid 15$ et $n_{17} \equiv 1 \pmod{17}$, donc $n_{17} = 1$. En d'autres termes, G admet un unique 17-Sylow K, qui est distingué et d'ordre 17.
- (ii) D'après les théorèmes de Sylow, on sait que $n_3 \mid 85$ et $n_3 \equiv 1 \pmod{3}$, donc $n_3 \in \{1,85\}$. Similairement, $n_5 \mid 51$ et $n_5 \equiv 1 \pmod{5}$, donc $n_5 \in \{1,51\}$. Si $n_3 = 85$, alors G contient $2 \cdot 85 = 170$ éléments d'ordre 3 distincts. Si $n_5 = 51$, alors G contient $4 \cdot 51 = 204$ éléments d'ordre 5 distincts. Ces deux conditions ne peuvent pas être satisfaites au même temps, car 170 + 204 > 255 = |G|. Soit donc P un 3-Sylow, et Q un 5-Sylow. Comme $|P \cap Q| \mid \operatorname{pgcd}(|P|, |Q|) = \operatorname{pgcd}(3, 5) = 1$, alors le sous-groupe H = PQ satisfait

$$|H| = \frac{|P||Q|}{|P \cap Q|} = \frac{3 \cdot 5}{1} = 15.$$

(iii) Comme avant, $|K \cap H| \mid \operatorname{pgcd}(|K|, |H|) = \operatorname{pgcd}(17, 15) = 1$, ce qui implique $K \cap H = \{e\}$. De plus,

$$|KH| = \frac{|K||H|}{|K \cap H|} = \frac{17 \cdot 15}{1} = 255,$$

donc KH = G. On déduit que $G = K \rtimes H$.

 ${\cal H}$ agit par conjugaison sur ${\cal K}.$ Comme il s'agit d'une action par homomorphisme, on obtient un morphisme de groupes

$$\rho: H \to \operatorname{Aut}(K)$$
$$h \mapsto h \quad h^{-1}$$

Comme $|\operatorname{Aut}(K)| = 16$, et comme $\operatorname{pgcd}(|H|, |\operatorname{Aut}(K)|) = \operatorname{pgcd}(15, 16) = 1$, cette action est triviale, c'est-à-dire $hkh^{-1} = k$ pout tout $h \in H$ et $k \in K$. En d'autres termes,

$$K \times H \to G$$

 $(k,h) \mapsto kh$

est un isomorphisme de groupes.

(iv) Comme 3 et 5 sont deux nombres premiers avec 3 < 5 et $5 \not\equiv 1 \pmod{3}$, l'Exercice 6 du TD3 (ou alors le Théorème 2.6.7 du cours) nous permet de conclure.