Permit Numbers 76990 and PSDTX1059

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminant

Emission

Source

AIR CONTAMINANTS DATA

Emission Pates *

Emission	Source	Air Contaminar	nt <u>emiss</u>	<u>ion Rates *</u>
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
SCENARIO 1: GENER	AL ELECTRIC PG71	L21 (EA) AND 165 MI	MBTU/HR DUCT	BURNER
CTDB1-A	CT/HRSG Unit 1-	NO _x	21.4	
	75 MW Gas	CO	68.6	
	165 MMBtu/hr	SO ₂	1.7	
		PM/PM ₁₀	12.4	
		VOC	3.5	
		H_2SO_4	0.2	
		NH ₃	11.1	
		HCHO	0.3	
		Toluene	0.2	
CTDB1-B	CT/HRSG Unit 1-	NO_x	21.4	
	75 MW Gas	CO	68.6	
	165 MMBtu/hr	SO ₂	1.7	
		PM/PM ₁₀	12.4	
		VOC	3.5	
		H_2SO_4	0.2	
		NH_3	11.1	
		HCHO	0.3	
		Toluene	0.2	

CTDB2-A	CT/HRSG Unit 2- 75 MW Gas	NO _x	21.4	
		CO	68.6	
	165 MMBtu/hr	SO_2	1.7	
		PM/PM ₁₀	12.4	
		VOC	3.5	
		H_2SO_4	0.2	
		NH_3	11.1	
		HCHO	0.3	
		Toluene	0.2	
	OT/UD00 11-1-0	_	_	
CTDB2-B	CT/HRSG Unit 2-	NO_x	21.4	
	75 MW Gas	CO	68.6	
	165 MMBtu/hr	SO ₂	1.7	
		PM/PM ₁₀	12.4	
		VOC	3.5	
		VOC H₂SO₄	3.5 0.2	
		H ₂ SO ₄	0.2	

SCENARIO 2: GENERAL ELECTRIC PG7121 (EA) OPERATING WITHOUT DUCT BURNER

CTDB1-A	CT/HRSG Unit 1-	NO_x	18.5	
	75 MW Gas	CO	55.4	
		SO ₂	1.5	
		PM/PM ₁₀	10.4	
		VOC	1.9	
		H_2SO_4	0.2	
		NH_3	9.6	
		HCHO	0.3	
		Toluene	0.2	
CTDB1-B	CT/HRSG Unit 1-	NO_x	18.5	
	75 MW Gas	CO	55.4	
		SO ₂	1.5	

		PM/PM ₁₀ VOC H ₂ SO ₄ NH ₃ HCHO Toluene	10.4 1.9 0.2 9.6 0.3 0.2	
CTDB2-A	CT/HRSG Unit 2- 75 MW Gas	NO_x CO SO_2 PM/PM_{10} VOC H_2SO_4 NH_3 $HCHO$ $Toluene$	18.5 55.4 1.5 10.4 1.9 0.2 9.6 0.3 0.2	
CTDB2-B	CT/HRSG Unit 2- 75 MW Gas	NO_x CO SO_2 PM/PM_{10} VOC H_2SO_4 NH_3 $HCHO$ $Toluene$	18.5 55.4 1.5 10.4 1.9 0.2 9.6 0.3 0.2	

SCENARIO 3: GENERAL ELECTRIC PG7121 (EA) DURING MAINTENANCE, STARTUP, AND SHUTDOWN

CTDB1-A	CT/HRSG Unit 1-	NO_x	500	
	75 MW Gas	CO	1,000	
		VOC	60	
		SO_2	1.7	

		PM/PM ₁₀	10.5	
		H ₂ SO ₄	0.2	
		NH ₃	10.8	
		HCHO	0.3	
		Toluene	0.2	
		Toldene	0.2	
CTDB1-B	CT/HRSG Unit 1-	NO _x	500	
	75 MW Gas	CO	1,000	
		VOC	60	
		SO ₂	1.7	
		PM/PM ₁₀	10.5	
		H_2SO_4	0.2	
		NH_3	10.8	
		HCHO	0.3	
		Toluene	0.2	
	CT/UDCC Unit 2			
CTDB2-A	CT/HRSG Unit 2-	NO _x	500	
	75 MW Gas	CO	1,000	
		VOC	60	
		SO ₂	1.7	
		PM/PM ₁₀	10.5	
		H_2SO_4	0.2	
		NH ₃	10.8	
		НСНО	0.3	
	OT/UDOO 11 '4 O	Toluene	0.2	
CTDB2-B	CT/HRSG Unit 2-	NO_x	500	
	75 MW Gas	CO	1,000	
		VOC	60	
		SO ₂	1.7	
		PM/PM ₁₀	10.5	
		H_2SO_4	0.2	
		NH ₃	10.8	
		HCHO	0.3	
		Toluene	0.2	

ANNUAL EMISSIONS GENERAL ELECTRIC PG7121 (EA) AND 165 MMBTU/HR DUCT

CTDB1-A	CT/HRSG Unit 1- 75 MW Gas 165 MMBtu/hr	NO_x CO SO_2 PM/PM_{10} VOC H_2SO_4 NH_3 $HCHO$ $Toluene$	 77.1 245.0 6.2 50.5 11.7 0.7 39.9 1.2 0.6
CTDB1-B	CT/HRSG Unit 1- 75 MW Gas 165 MMBtu/hr	NO_x CO SO_2 PM/PM_{10} VOC H_2SO_4 NH_3 $HCHO$ $Toluene$	 77.1 245.0 6.2 50.5 11.7 0.7 39.9 1.2 0.6
CTDB2-A	CT/HRSG Unit 2- 75 MW Gas 165 MMBtu/hr	NO _x CO SO ₂ PM/PM ₁₀ VOC H ₂ SO ₄ NH ₃ HCHO Toluene	 77.1 245.0 6.2 50.5 11.7 0.7 39.9 1.2 0.6
CTDB2-B	CT/HRSG Unit 2- 75 MW Gas 165 MMBtu/hr	NO_x CO SO_2 PM/PM_{10} VOC	 77.1 245.0 6.2 50.5 11.7

		H ₂ SO ₄ NH ₃ HCHO Toluene	 	0.7 39.9 1.2 0.6
AUX1	Auxiliary Boiler 17 MMBtu/hr	NO_x CO SO_2 PM/PM_{10} VOC	0.7 1.1 0.02 0.2 0.3	1.9 2.9 0.07 0.5 0.8
AUX2	Auxiliary Boiler 17 MMBtu/hr	NO_x CO SO_2 PM/PM_{10} VOC	0.7 1.1 0.02 0.2 0.3	1.9 2.9 0.07 0.5 0.8
EG1	Emergency	NO_x CO SO_2 PM PM_{10} VOC	27.3 7.3 0.5 0.6 0.5 0.8	1.7 0.5 0.03 0.04 0.03 0.05
EG2	Emergency	NOx CO SO ₂ PM PM ₁₀ VOC	27.3 7.3 0.5 0.6 0.5 0.8	1.7 0.5 0.03 0.04 0.03 0.05
FWP1	Fire Water Pump	NO_x CO SO_2 PM/PM_{10} VOC	11.3 2.5 0.2 0.8 0.9	0.7 0.2 0.01 0.05 0.05

Permit Numbers 76990 and PSDTX1059 Page 7

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

CD1	Cooling Tower Cell	PM	0.41	1.78
0.00	Cooling Tower Coll	PM ₁₀ /PM _{2.5}	0.02	0.08
CD2	Cooling Tower Cell	PM PM ₁₀ /PM _{2.5}	0.41 0.02	1.78 0.08
CD3	Cooling Tower Cell	PM	0.41	1.78
		PM ₁₀ /PM _{2.5}	0.02	0.08
CD4	Cooling Tower Cell	PM	0.41	1.78
		PM ₁₀ /PM _{2.5}	0.02	0.08
CD5	Cooling Tower Cell	PM	0.41	1.78
		PM ₁₀ /PM _{2.5}	0.02	0.08
CD6	Cooling Tower Cell	PM	0.41	1.78
		PM ₁₀ /PM _{2.5}	0.02	0.08
CD7	Cooling Tower Cell	PM	0.41	1.78
		PM ₁₀ /PM _{2.5}	0.02	0.08
CD8	Cooling Tower Cell	PM	0.41	1.78
		PM ₁₀ /PM _{2.5}	0.02	0.08
CD9	Cooling Tower Cell	PM	0.41	1.78
		PM ₁₀ /PM _{2.5}	0.02	0.08
CD10	Cooling Tower Cell	PM	0.41	1.78
		PM ₁₀ /PM _{2.5}	0.02	0.08
CD11	Cooling Tower Cell	PM	0.41	1.78
		PM ₁₀ /PM _{2.5}	0.02	0.08
CD12	Cooling Tower Cell	PM .	0.41	1.78
		PM ₁₀ /PM _{2.5}	0.02	0.08

- (1) Emission point identification either specific equipment designation or emission point number from a plot plan.
- (2) Specific point source names.
- (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}

 PM_{10} - particulate matter equal to or less than 10 microns in diameter $PM_{2.5}$ - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide H₂SO₄ - sulfuric acid

NH₃ - ammonia HCHO - formaldehyde

- * Emission rates are based on and the facilities are limited by the following maximum operating schedule:
 - <u>24</u> Hrs/day <u>7</u> Days/week <u>52</u> Weeks/year or <u>8,760</u> Hrs/year
- ** Compliance with annual emission limits is based on a rolling 12-month period.