

Source Address Validation Using BGP UPDATEs, ASPA, and ROA (BAR-SAV)

https://datatracker.ietf.org/doc/html/draft-sriram-sidrops-bar-sav-00

Kotikalapudi Sriram, Igor Lubashev, and Doug Montgomery

Email: ksriram@nist.gov_ilubashe@akamai.com_dougm@nist.gov

June 2022

Motivation and Summary

- Much interest seen in the community to improve Source Address Validation (SAV) techniques (e.g., RFC 8704, SAVNET BOFs at IETF 113 and 114)
- There are attempts to further improve upon EFP-uRPF [RFC 8704]
- Proposed new BAR-SAV method makes complementary use of BGP UPDATEs, ASPAs, and ROAs

New Draft: https://datatracker.ietf.org/doc/html/draft-sriram-sidrops-bar-sav-00

- BAR-SAV advances the technology for SAV filter design
 - ✓ Significantly improves the ability to detect hidden prefixes
 - ✓ Provides a solution to the CDN/Direct Server Return (DSR) problem
- No changes to protocol on the wire
- Offers immediate benefits to early adopters

Goal: Construct Permissible Ingress Prefix List for SAV (at AS7)

The methodology is the same for a Customer or Lateral (i.e., non-transit) Peer* Interface

SAV Using Only ASPA and ROA (Procedure X)

Construction of Permissible Ingress Prefix List for SAV (at AS7)

When ASPA and ROA adoption is ubiquitous (in the future)

Or an ISP may use Procedure X on customer interfaces if it requires all its customers to register ROAs and ASPAs

- A. Obtain the set of ASNs in the Customer's customer cone (CC) using ASPAs
- B. Gather all prefixes in ROAs associated with the ASNs found in Step A. Keep only the unique prefixes.
- C. The set computed in Step B is the permissible prefix list for SAV for the interface in consideration.

But there will be...

Partial deployment of ROAs and ASPAs for some time

- During that period...
 - ✓ BAR-SAV compensates
 - ✓ Makes complementary use of BGP UPDATEs, ASPA, and ROA
 - Incorporates a refined version of EFP-uRPF*

^{*} Enhanced Feasible Path uRPF (EFP-uRPF) [RFC 8704]

SAV Using ASPA, ROA, and BGP UPDATE (BAR-SAV)

Construction of Permissible Ingress Prefix List for SAV (at AS7)

Applicable in the period when ASPA and ROA adoption is not ubiquitous

- A. Obtain the set of ASNs in the Customer's customer cone (CC) using ASPAs and AS_PATHs
- B. Gather all prefixes in ROAs associated with the ASNs found in Step A.
- C. Gather all prefixes in BGP UPDATE messages with originating ASN among ASNs found in Step A.
- D. Combine sets found in Steps B and C. Keep only the unique prefixes. This is the permissible prefix list for SAV for the interface in consideration.

A Note on Customer Cone Computation

 One should not compute a customer cone by <u>separately</u> processing ASPA data and AS_PATH data and then <u>merging</u> the two sets of ASes at the end. Doing so is likely to miss ASes from the customer cone.

Instead, both ASPAs and AS_PATHs should be used to iteratively expand the discovered customer cone. When new ASes are discovered, both ASPA and AS_PATH data should be used to discover customers of those ASes. This process is repeated for newly discovered customer ASes until there are no new ASes to be found.

Refined Version of Algorithm A of EFP-uRPF [RFC 8704] Incorporated into BAR-SAV

- Only Q1 is detected by Alg. A of RFC 8704
- Both Q1 and P3 are detected by BAR-SAV

EFP-uRPF = Enhanced Feasible Path uRPF

Much better detection of "Hidden" prefixes in multihoming scenarios by BAR-SAV

Detailed Description of the BAR-SAV Procedure

- 1. Let the Customer or Lateral Peer ASN be denoted as AS-k.
- 2. Let i = 1. Initialize: AS-set $Z(1) = \{AS-k\}$.
- 3. Increment i to i+1.
- 4. Create AS-set A(i) of all ASNs whose ASPA data declares at least one ASN in AS-set Z(i-1) as a Provider.
- 5. Create AS-set B(i) of all "non-ASPA" customer ASNs each of which is a customer of at least one ASN in AS-set Z(i-1) according to unique AS_PATHs in Adj-RIBs-In [RFC4271] of all interfaces at the BGP speaker computing the SAV filter. "Non-ASPA" ASN are ASNs that declare no provider in ASPA data.
- 6. Form the union of AS-sets A(i) and B(i) and call it AS-set C. From AS-set C, remove any ASNs that are present in Z(j), for j=1 to j=(i-1). Call the resulting set Z(i).
- 7. If AS-set Z(i) is null, then set i_max = i 1 and go to Step 8. Else, go to Step 3.
- 8. Form the union of the AS-sets, Z(i), i = 1, 2, ..., i_max, and name this union as AS-set D.
- 9. Select all ROAs in which the authorized origin ASN is in AS-set D. Form the union of the sets of prefixes listed in the selected ROAs. Name this union set of prefixes as Prefix-set P1.
- 10. Using the routes in Adj-RIBs-In of all interfaces, create a list of all prefixes originated by any ASN in ASset D. Name this set of prefixes as Prefix-set P2.
- 11. Form the union of Prefix-sets P1 and P2. Apply this union set as the list of permissible prefixes for SAV.

The next 4 slides illustrate the details of how BAR-SAV works

How BAR-SAV Works

Finding All ASes and Prefixes in Customer's (or Peer's) Customer Cone Using BGP Announcements (as seen at AS4), ASPA, and ROA

Finding All ASes in the CC using BGP AS_PATH and ASPA

INPUTS

OUTPUT

Iteration	Customer Cone	New ASes from ASPA	New ASes from AS_PATH
1	AS3	None	P6 [AS3 AS1 AS6] \rightarrow AS1 P7 [AS3 AS1 AS7] \rightarrow AS1 P2 [AS9 AS3 AS2] \rightarrow AS2
2	AS3, AS1, AS2	AS5 {AS1} \rightarrow AS5 AS6 {AS1} \rightarrow AS6 AS8 {AS2} \rightarrow AS8	P6 [AS3 AS1 <u>AS6</u>] → AS6 P7 [AS3 AS1 <u>AS7</u>] → AS7
3	AS3, AS1, AS2, AS5, AS6, AS8, AS7	None	None

Finding All Prefixes in the CC using BGP Routes and ROA

INPUTS

ASPAs:	ROAs:	BGP UPDATE AS_PATHs:	
AS3 {AS4}	P2a AS2	Interface in Consideration: AS3	
AS3 {AS9}	P5 AS5	P6 [AS3 AS1 <mark>AS6</mark>]	
AS5 (AS1)	P6 AS6	P7 [AS3 AS1 <mark>AS7</mark>]	
AS6 {AS1}	P8 AS8	Other Interfaces:	
AS8 {AS2}		P2 [AS9 AS3 AS2]	
A30 [A32]	Customer Cone		

customer cone

AS1, AS2, AS3, AS5, AS6, AS7, AS8

OUTPUT

ASN	Prefixes from ROA	Prefixes from BGP
AS1		
AS2	(<u>P2a</u> AS2) → P2a	<u>P2</u> [AS9 AS3 AS2] → P2
AS3		
AS5	(<u>P5</u> AS5) → P5	
AS6	(<u>P6</u> AS6) → P6	$P6 \text{ [AS3 AS1 AS6]} \rightarrow P6$
AS7		<u>P7</u> [AS3 AS1 AS7] → P7
AS8	(<u>P8</u> AS8) → P8	

SAV Prefixes

P2, P2a, P5, P6, P7, P8

Help from ASPA Data to Clean-Up Anomalies in AS_PATH Data

Content Delivery Network (CDN) Application

Example of how the BAR-SAV method solves the DSR blocking problem

Backup slides

Detailed Procedure X

Creating the Permissible Prefix List for SAV for a Customer or Lateral Peer using only ASPA and ROA

- 1. Let the Customer or Lateral Peer ASN be denoted as AS-k.
- 2. Let i = 1. Initialize: AS-set $S(1) = \{AS-k\}$.
- 3. Increment i to i+1.
- 4. Create AS-set S(i) of all ASNs whose ASPA data declares at least one ASN in AS-set S(i-1) as a Provider.
- 5. If AS-set S(i) is null, then set i_max = i 1 and go to Step 6. Else, go to Step 3.
- 6. Form the union of the sets, S(i), i = 1, 2, ..., i_max, and name this union as AS-set A.
- 7. Select all ROAs in which the authorized origin ASN is equal to any ASN in AS-set A. Form the union of the sets of prefixes listed in the selected ROAs. Name this union set of prefixes as P-set.
- 8. Apply P-set as the list of permissible prefixes for SAV.

Note: Algorithm X is for future use when the deployment of ASPA and ROA is ubiquitous.

Anycast/Edge Hybrid – Direct Server Return

- Anycast POPs lookup "best" edge POP for each new connection (using the actual user IP)
- 2. Anycast POPs tunnel packets to edge POPs
- Edge servers send data to users directly – Direct Server Return (DSR)

