Bộ để 9

- 1. Một nguyên tố X có điện tích hạt nhân là 38,4.10⁻¹⁹ C. X thuộc chu kì nào, nhóm nào (A hay B) của bảng hệ thống tuần hoàn? Công thức của oxit của X ứng với số oxi hóa dương cao nhất là gì? Oxit ấy thuộc loại nào? Điện tích 1 electron là -1,6.10⁻¹⁹ C.
 - A. Chu kì 4, nhóm VI_B, XO₃, oxit axit
 - B. Chu kì 4, nhóm VI_A, XO₃, oxit axit
 - C. Chu kì 4, nhóm V_B, X₂O₅, oxit axit

D. Chu kì 4, nhóm VII_A, X₂O₇, oxit axit.

- 2. Trong các chất sau
 - benzen

2) 1,3,5-trimetylbenzen

- 3) xiclohexan
- 4) 2,3-dimetylbuten-2 Chất nào có tâm các nguyên tử cacbon nằm trong cùng một mặt phẳng?
- A. 1, 2, 3

- C. 1, 2, 4 D. Chỉ có 1.

- B. 2, 3, 4
- 3. 12 gam hỗn hợp X gồm Fe₂O₃, Fe₃O₄, MgO và CuO tan hết trong 100 ml dung dịch HCl 2 M (lượng vừa đủ). Tính tổng khối lượng các muối clorua thu được. Nếu dùng H₂SO₄ loãng (dư) thì với 12 g hỗn hợp X, thu được bao nhiêu gam muối sunfat? Cl = 35,5, S = 32
 - A. 16,5 g; 20 g

B. 17,5 g; 20 g

C. 18,2 g; 21 g

- D. 17,2 g; 22 g.
- **4.** Cho $E_{Cl_2/Cl_2}^0 = +1.39 \text{ V}, E_{Br_2/Br_2}^0 = +1.09 \text{ V},$

$$E^{0}_{I_{2}/I^{-}} = +0.53V, E^{0}_{Fe^{3+}/Fe^{2+}} = +0.77 V.$$

có thể dùng chất oxi hóa gì để oxi hóa cùng 1 lúc Cl-, Br-, I- hoặc chỉ oxi hóa I (trong hỗn hợp Cl, Br, I)

- A. MnO_4^- , Cl_2
 - B. MnO₄, Fe³⁺
- C. Fe³⁺, Br₂

- D. MnO_4 , I_2 .
- 5. Với 3 amino axit X, Y, Z có thể tạo bao nhiều đipeptit, tripeptit khác nhau?
- A. 9 dipeptit, 19 tripeptit
- B. 9 dipeptit, 16 tripeptit
- C. 6 dipeptit, 19 tripeptit
- D. 9 dipeptit, 18 tripeptit.

A. 1,3

B. 0,8

C. 1

D. 1.2.

7. Đốt cháy 0,1 mol một amino axit X thu được 2,24 lít N_2 (đktc) và 0,4 mol CO₂. Với phenolphtalein dung dịch X cho ra màu hồng. Công thức cấu tạo của X là:

A. $NH_2 - CH_2 - COOH$

khối của Y đối với không khí.

B. $HOOC - CH_2 - CH - COOH$ NH_2

C. $H_2N - (CH_2)_2 - COOH$

D. NH₂ - (CH₂)₂ - CH - COOH

8. Cho 80 gam hỗn hợp X gồm MgO và CuO tác dung với V lít (đktc) CO và H₂ (lượng vừa đủ). Sau phản ứng khối lượng chất rắn giảm 10%. Tính tĩ lệ mol MgO/CuO và giá trị của V. (Mg = 24, Cu = 64).

A. 1:1; 11,2 lít

B. 1:2; 22,4 lít

C. 2:1; 11,2 lít

D. 3:1; 11,2 lít. 9. Môt polime có M = 1.050.000 và hệ số trùng hợp là 25.000, monome tạo

ra polime này là: A. $CH_2 = CH_2$

B. $CH_2 = CH$ Cl

C. CH₂ = CH

D. $C_6H_5 - CH = CH_2$.

10. Để tinh chế NaCl có lẫn một ít NaBr, NaI, MgCl₂, CaCl₂ có thể dùng các chất gì?

A. Cl₂, Na₂CO₃, HCl

B. HCl, Cl₂, NaOH

C. Cl₂, HCl, Na₂CO₃

D. Cl_2 , HCl.

11. Dung dịch chứa HCl 0,1 M và HX 0,1 M (HX: axit yếu có hằng số $k_a = 10^{-3}$). Tính [H⁺] của riêng HX.

A. 0,01 M

B. 0,002 M

C. 0,001 M

D. 0,003 M.

12. Cho phản ứng cân bằng trong dung dịch

 $A + 2B \rightleftharpoons C + D$

Hằng số cân bằng của phản ứng này là 18,2. Nếu trộn 0,2 mol A, 0,1 mol B, 0,3 mol C và 0,2 mol D trong bình V = 1 lít thì sẽ có hiện tượng gì xảy ra?

- A. Cân bằng chuyển dịch theo chiều thuận
- B. Cân bằng chuyển dịch theo chiều nghịch
- C. Vẫn giữ nguyên số mol ban đầu
- D. Sẽ có phản ứng theo chiều thuận cho đến khi hết A.
- 13. Một hỗn hợp X gồm 1 este A và axit B đều no, đơn chức A, B có cùng công thức phân tử. Đốt cháy 0,1 mol X thu được 0,3 mol CO₂. Xác định công thức cấu tạo và số mol của A, B trong 0,1 mol X biết este A khi bị thủy phân cho ra 1 axit có khả năng cho phản ứng tráng gương, 0,1 mol X với Na (du) cho ra 0,896 lít khí H₂ (đktc)
 - A. HCOOC₂H₅ (0,02 mol); C₂H₅COOH (0,08 mol)
 - B. HCOOC₂H₅ (0,04 mol); C₂H₅COOH (0,06 mol)
 - C. CH₃COOCH₃ (0,04 mol); C₂H₅COOH (0,06 mol)
 - D. CH₃COOCH₃ (0,02 mol); C₂H₅COOH (0,08 mol).
- 14. Viết công thức cấu tạo của ion CN⁻. Khi ion CN⁻ liên kết với ion kim loại. CN⁻ nối với ion qua đầu C hay đầu N?
 - A. $C = N^-$, đầu C

B. $C = N^-$, đầu N

 $C. C = N^-, d\hat{a}u N$

D. $IC \subseteq N^-$, đầu C.

15. Cho chuỗi biến hóa

Dung dịch A + NaOH
$$\rightarrow$$
 B $\xrightarrow{\text{NaOH rán}}$ khí C

$$C \xrightarrow{\text{Crackinh}} D \uparrow + H_2$$

$$D \xrightarrow{+H_2O} F \xrightarrow{+[O]} F (co)$$

$$D \xrightarrow[H_2SO_4]{+H_2SO_4} E \xrightarrow{-t[O]} F \text{ (có mùi giấm)}$$

Xác định A, B, C, D, E, F.

- A. C₂H₅COOH; C₂H₅COONa; C₂H₆; C₂H₂; C₂H₅OH; CH₃COOH
- B. C₂H₅COOH; C₂H₅COONa; C₂H₆; C₂H₄; C₂H₅OH; CH₃COOH
- C. CH₃COOH; CH₃COONa; CH₄; C₂H₂; CH₃CHO; CH₃COOH
- D. C₃H₇COOH; C₃H₇COONa; C₃H₈; C₃H₆; C₃H₇OH; C₂H₅COOH.
- 16. X là hợp chất hữu cơ có chứa nhân thơm, tác dụng được với NaOH. Đốt cháy 0,1 mol X, được 0,7 mol CO_2 và 0,4 mol H_2O , X với nước Br_2 cho ra kết tủa có %Br (theo khối lượng) là 60,15%. Xác định công thức cấu tạo của X. Br = 80.

17. Điện phân 1 lít dung dịch NaCl với điện cực trơ, có màng ngăn xốp. Điện phân được 200 s thì dung dịch có pH = 12. Cường độ I bằng.

A. 0,4825 A

B. 0,965 A

C. 1,325 A

D. 0,820 A.

18. Cho a mol Mg, b mol Zn vào dung dịch chứa c mol Cu²⁺ và d mol Ag⁺. Tìm điều kiện giữa a, b, c, d để sau khi phản ứng kết thúc dung dịch chứa 2 ion kim loại và chất kết tủa gồm 3 kim loại.

A. a + b < c + d

B. a + b > c + $\frac{d}{2}$

C. $a + b < c + \frac{d}{2}$

D. a + b > c + d.

- 19. Trong các phản ứng sau:
 - 1) $\text{Cl}_2 + \frac{1}{2}\text{O}_2 \rightarrow \text{Cl}_2\text{O}$
 - 2) $Cl_2 + 2KOH \rightarrow HClO + KCl + H_2O$
 - 3) $Cl_2 + H_2 \rightarrow 2HCl$
 - 4) $Cl_2 + F_2 \rightarrow 2FCl$

trong phản ứng nào, Cl2 chỉ đóng vai trò một chất khử.

A. 1, 4

B. 2, 3

C. 2, 4

D. 3, 4.

20. Điều chế polime PVC từ nguyên liệu đầu là CaC₂. Bắt đầu từ 128 kg CaC₂, thu được bao nhiêu kg PVC biết hiệu suất phản ứng cho ra vinylclorua là 80% và từ vinylclorua ra PVC là 90%.

$$Ca = 40, Cl = 25,5$$

A. 80 kg

B. 90 kg

C. 85 kg

D. 82 kg.

21. Cho m gam hỗn hợp gồm $FeSO_4$, $CuSO_4$ (có cùng số mol) vào bình có $V=11,2\ l$ chứa không khí ở đktc. Nung cho đến khi phản ứng hoàn toàn thì thấy áp suất trong bình là 2,1 atm. Giá trị của m là

$$Fe = 56$$
, $Cu = 64$

A. 60,5 g

B. 64,2 g

C. 62,4 g

D. 58 g.

22.	Phải thêm bao nhiều ml nước vào 100 ml dung dịch chứa HCl 0,2 M và H_2SO_4 0,1 M để được dung dịch có pH = 1								
	A. 100 ml		C. 300 ml	D. 200 ml.					
23.	Trong 4 chất		0. 00 v	2. 200					
	1) axit butendi	cacboxylic	2) buten-2						
	3) buten-1		4) isobuten.						
	_	no được đồng phá							
	A. 1, 3	B. 2, 3	C. 1, 4	D. 1, 2.					
24.		•		·					
	Chọn phát biểu không đúng trong các phát biểu sau: 1) Phi kim có độ âm điện càng cao, hợp chất giữa phi kim và kim loại								
	càng nhiều tính ion.								
	2) Phi kim có	độ âm điện cao	hơn kim loại n	ên hợp chất giữa kim					
	loại và phi kim luôn luôn là hợp chất ion.								
		loại kiềm thổ đề:	· -	I.					
	4) Các phi kim có độ âm điện cao nhất tập trung ở góc trên bên phải								
	của bảng H'								
	A. 1, 3	B. 2, 3	C. 3, 4	D. 2, 4.					
25.	Trong 4 phản ứn	g nhiệt phân							
	1) $KClO_3 \xrightarrow{\iota^0} KCl + \frac{3}{2}O_2$								
	2) $CaCO_3 \xrightarrow{t^0} CaO + CO_2$								
	3) $NH_4Cl \xrightarrow{t^0} NH_3 + HCl$								
	4) $(NH_4)_2Cr_2O_7 \xrightarrow{t^0} Cr_2O_3 + N_2 + 4H_2O$								
	phản ứng nào là	phản ứng oxi h	óa khử?						
	A. 3, 4	B. 1, 3	C. 1, 4	D. 1, 2.					
26.	Để có được glixe	rol từ nguyên liệ	u đầu là n-buta	n, cần bao nhiêu phản					
	ứng?								
	A. 3	B. 4	C. 2	D. 5.					
27.	Crackinh hoàn t	oàn 1 ankan X	được hỗn hợp Y	gồm 2 hiđrocacbon có					
	cùng số nguyên tử C và có tỉ khối đối với không khí bằng 1. Xác định								
	công thức cấu tạo của X biết rằng X là đồng phân có nhiệt độ sôi thấp								
	nhất trong các đ	ồng phân							
	A. $CH_3 - CH - C$	$H_2 - CH_3$	B. CH ₃ –	$CH_2 - CH_2 - CH_3$					
	ŀ	•							
	CH_3								
	C. $CH_3 - CH_2 -$	$\mathrm{CH_2}-\mathrm{CH_2}-\mathrm{CH}$	D. CH_3	$CH - CH_3$					
				CH_3					
				3					

28.	Nung 48,4 gam nitrat kim loại M trong 1 bình có V = 11,2 l chứa không
	khí (ở đktc) cho đến khi phản ứng hoàn toàn thì thấy áp suất trong
	bình lên đến 2,5 atm khi trở về 0°C. Xác định số mol nitrat và tên của
	kim loai M. Fe = 56 , Mn = 55 , Ca = 40 , Cu = 64 .

A. 0,3 mol, Cu B. 0,2 mol, Fe

D. 0,3 mol, Fe.

29. 0,1 mol một axit hữu cơ X với NaOH cho ra muối có khối lượng 16 gam. Xác định công thức cấu tạo của X.

A. CH₂=CH-CH₂-COOH

C. 0,25 mol, Mn

B. CH₃-CH₂-CH₂-COOH

C. HOOC-CH=CH-COOH

D. CH₃-CH=CH-COOH.

30. Dung dịch A chứa NaOH 0,3 M và KOH 0,2 M. Dung dịch B chứa HCl 0,2 M và $\rm H_3PO_4$ 0,2 M. Tính nồng độ mol các ion photphat có trong dung dịch khi trộn 100 ml dung dịch A với 100 ml dung dịch B.

A. $[H_2PO_4^-] = [HPO_4^{2-}] = 0.05 M$

B. $[H_2PO_4^-] = 0.5 M$, $[HPO_4^{2-}] = 0.04 M$

C. $[HPO_4^{2-}] = [PO_4^{3-}] = 0.05 \text{ M}$

D. $[HPO_4^{2-}] = 0.05 M$, $[PO_4^{3-}] = 0.03 M$.

31. Tìm điều kiện để một axit A có cùng khối lượng phân tử M với 1 rượu B, A và B đều là hợp chất no. Xác định công thức cấu tạo của este biết rằng X khi bị thủy phân cho ra axit A và rượu B có cùng M và 0,1 mol X đốt cháy cho ra 0,3 mol CO₂.

A. HCOOC₂H₅

B. CH₃COOCH₃

C. CH₃COOC₂H₅

D. CH₃COOC₃H₇.

32. Khi thêm Ba(OH)₂ dư vào 100 ml dung dịch chứa Cl⁻, SO₄²⁻ và NH₄ thu được 2,33 gam kết tủa vào 0,896 lít khí NH₃ (đktc). Nồng độ mol của Cl⁻, SO₄²⁻ và NH₄ lần lượt là: (Ba = 137).

A. 0,2 M; 0,2 M; 0,4 M

B. 0,2 M; 0,1 M; 0,4 M

C. 0,25 M; 0,2 M; 0,5 M

D. 0,15 M; 0,1 M; 0,3 M.

33. Sắp các chất sau đây:

1) benzen

2) phenol

3) anilin

theo thứ tự nhiệt độ nóng chảy tăng dần

A. 1 < 3 < 2

B. 2 < 1 < 3

C. 3 < 2 < 1

D. 1 < 2 < 3.

34.	Hợp chất A mạch thẳng là dẫn xuất halogen của ankan B (A chứa 4 Cl)
	A tác dụng với dung dịch KQH nóng cho ra sản phẩm D có khả năng
	tự tạo este vòng E. Biết 0,1 mol A đốt cháy cho ra 0,6 mol CO2 xác
	định công thức cấu tạo của A.

A.
$$CHCl_2 - (CH_2)_4 - CHCl_2$$

B.
$$CH_2Cl - (CH_2)_4 - CCl_3$$

C.
$$CH_2Cl - (CHCl)_3 - CH_3$$

D.
$$CH_2Cl - CCl_2 - CHCl - CH_2 - CH_3$$
.

35. Một hợp chất X khi tác dụng với H₂SO₄ cho ra axit A và khi X tác dụng với dung dịch NaOH cho ra khí B (làm xanh giấy quỳ đỏ ẩm). Biết rằng A và B có khối lượng phân tử M xấp xỉ bằng nhau, 0,1 mol X đốt cháy cho ra 0,3 mol CO₂, xác định công thức cấu tạo của X.

B. HCOONH₃-C₂H₅

D. CH₃COONH₃-C₂H₅.

36. Trong các phản ứng sau, phản ứng nào là phản ứng axit bazơ?

1) 2 NaHCO₃ +
$$H_2SO_4 \rightarrow Na_2SO_4 + 2CO_2 + 2H_2O$$

2)
$$CH_3COOH + CH_3NH_2 \rightarrow CH_3COONH_3-CH_3$$

3)
$$Ba(NO_3)_2 + Na_2SO_4 \rightarrow BaSO_4 \downarrow + 2NaNO_3$$

4) NaH +
$$H_2O \rightarrow H_2$$
 + NaOH.

D. 2, 4.

37. Viết công thức tổng quát của một điamin no. Trong các công thức sau, công thức nào ứng với một điamin no?

- 1) $C_2H_8N_2$
- 2) $C_3H_8N_2$
- 3) $C_4H_{12}N_2$
 - 4) $C_4H_{10}N_2$.

A. $C_nH_{2n+2}N_2$, 2, 4

B. $C_nH_{2n+4}N_2$, 1, 2

C. C_nH_{2n+3} , 3

D. $C_nH_{2n+4}N_2$, 1, 3.

38. Xác định công thức của sunfat kim loại M biết rằng sunfat sau khi bị nhiệt phân hoàn toàn để lại một chất rắn có khối lượng bằng $\frac{1}{2}$ khối lượng của sunfat.

$$Zn = 65$$
, $Cu = 64$, $Mg = 20$, $Fe = 56$.

- A. CuSO₄
- B. ZnSO₄
- C. MgSO₄
- D. $Fe_2(SO_4)_3$.

39. Anken A và ankan B có cùng số nguyên tử C có khối lượng phân tư $M_A = 0.933~M_B$. Cho hỗn hợp X của A, B với cùng số mol qua 1 lít nước $Br_2~0.4~M$. Nồng độ Br_2 còn lại là 0.2~M. Tính độ tăng khối lượng của nước Br_2 và khối lượng ankan trong hỗn hợp X.

A. 21,6 g Al; 18,2 g Cu B. 10,8 g Al; 19,2 g Cu C. 5,4 g Al; 12,8 g Cu D. 21,6 g Al; 19,2 g Cu. 41. Sắp các chất sau: 4) C₆H₄ NO 2) $C_2H_5-NH_2$ 3) $C_6H_5-NH_2$ 1) NH₃ theo thứ tự tính bazơ tăng dần A. 4 < 3 < 2 < 1B. 4 < 3 < 1 < 2C. 1 < 2 < 3 < 4D. 3 < 4 < 1 < 2. 42. X là muối tạo ra từ một α-amino axit trung tính và một amin. Công thức thực nghiệm của X là (C₂H₆ON)_n Khi đun X với dung dịch NaOH dư thoát ra 2,24 lít khí A (làm xanh giấy quỳ ẩm), A có tỉ khối đối với H₂ bằng 15,5. Xác định công thức cấu tạo của X. A. $CH_3 - CH - COONH_3 - CH_3$ B. $CH_3 - CH - COONH_3 - C_2H_5$ C. $CH_3 - CH_2 - CH - COONH_3 - CH_3$ NH_2

43. Phân biệt 4 dung dịch: CuSO₄, Al₂(SO₄)₃, ZnSO₄, Na₂SO₄ (với dung dịch CuSO₄ khá loãng để không thấy rõ màu xanh) bằng một thuốc thử duy

B. dung dịch Na₂S

D. dung dịch Ba(NO₃)₂.

B. 5,2 g; 4,8 g D. 5 g; 5,4 g.

40. Một hỗn hợp X gồm Al và Cu tác dụng với HNO_3 (dư) cho ra hỗn hợp khí Y gồm N_2O và NO có V = 11,2 lít (ở đktc) và tỉ khối đối với H_2 bằng 19,2. (Mỗi kim loai cho ra một khí). Khối lượng của Al và Cu

nhất.

A. dung dịch NaOH

C. dung dich NH₄OH

A. 4,8 g; 6 g

C. 5,6 g; 6 g

trong hỗn hợp X là (Al = 27, Cu = 64).

D. $CH_3 - CH(NH_2) - COONH_3 - C_3H_7$.

44. Dung dịch A chứa Na₂CO₃ 0,1 M, Na₃PO₄ 0,2 M, Na₂S 0,1 M. Dung dịch B chứa MnCl₂ 0,1 M, CuCl₂ 0,2 M và BaCl₂ 0,15 M. Phải dùng bao nhiều ml dung dịch A để kết tủa hết các ion kim loại có trong 100 ml dung dịch B? Tính tổng khối lượng các kết tủa. Mn = 55, Cu = 64,

Ba = 137, S = 32, P = 31.

A. 92 ml; 3,450 gam
B. 85 ml; 3,820 gam
C. 95 ml; 3,618 gam
D. 90 ml; 3,963 gam.

45. Cho các chất

1) HCOOH
2) CH₃COOH
3) CF₃-COOH
4) CF₂Cl-COOH.

1) HCOOH 2) CH₃COOH 3) CF₃-COOH Sắp các chất này theo thứ tư tính axit tăng dần

A. 3 < 4 < 1 < 2 B. 2 < 1 < 4 < 3

C. 4 < 3 < 1 < 2 D. 1 < 2 < 3 < 4.

46. Ankan A mạch thẳng có tỉ khối đối với H_2 bằng 29. B là dẫn xuất chứa

6. Ankan A mạch thắng có tỉ khối đối với H₂ bằng 29. B là dẫn xuất chứa 2 Cl của A. Biết rằng B với dung dịch NaOH cho ra sản phẩm D có khả năng tạo phức màu xanh với Cu(OH)₂ và khi D bị oxi hóa bằng CuO nóng, D cho ra sản phẩm E cho được phản ứng tráng gương, xác định công thức cấu tao của B.

A. $CH_2Cl - CHCl - CH_2 - CH_3$

B.
$$CH_2Cl - CH_2 - CH - CH_3$$

Cl

C. $CH_2Cl - CHCl - CH_3$

D. $CH_2Cl - CH_2 - CH_2 - CH_2Cl$.

- 47. Để điều chế K kim loại, người ta có thể dùng phương pháp
 - 1) điện phân KCl nóng chảy (có màng ngăn)
 - 2) điện phân KOH nóng chảy
 - 3) điện phân dung dịch KCl
 - 4) khử K₂O bằng H₂ ở nhiệt độ cao.

Chọn phương pháp đúng.

A. 1, 4 B. 2, 3

C. 1, 2

dịch B thu được dung dịch có pH = 13 và m gam kết tủa. Giá trị của a

D. 2, 4.

48. Dung dịch A chứa HCl 0,2 M và H₂SO₄ 0,1 M. Dung dịch B chứa Ba(OH)₂ nồng độ a mol/lít. Trộn 100 ml dung dịch A với 100 ml dung

và m là (Ba = 137) giả sử H_2SO_4 và $Ba(OH)_2$ phân li hoàn toàn.

A. a = 0,2 M; m = 4,66 g B. a = 0,32 M; m = 1,66 g C. a = 0,3 M; m = 2,33 g D. a = 0,25 M; m = 2,33 g.

- 49. Gọi tên chất dẫn xuất A chứa 1 Cl của isopentan để khi cho A tác dụng với dung dịch KOH nóng, sản phẩm chính thu được là 2-metylbuten-2
 - A. 2-clo-2-metylbutan

B. 1-clo-2-metylbutan

C. 2-clo-2-metylbutan

D. 2-clo-3-metylbutan.

2-clo-3-metylbutan

- 50. Điện phân dung dịch chứa a mol ZnCl₂ và b mol NaBr với b > 2a. Sư điện phân này gồm bao nhiêu giai đoạn, pH cuối cùng của dung dịch sẽ như thế nào?
 - A. 4, pH > 7

B. 5, pH > 7 C. 4, pH < 7 D. 3, pH = 7.

ĐÁP ÁN BÔ ĐỀ 9

1.
$$Z = \frac{38, 4.10^{-19}}{1.6.10^{-19}} = 24$$

Với 24 electron, X có cấu hình

 $1s^22s^22p^63s^23p^63d^54s^1$.

Với 4 lớp electron, 6 electron ở 2 phân tử lớp 3d và 4s, X thuộc chu kỳ 4, nhóm VI_B, X có số oxi hóa dương cao nhất là +6 ứng với oxit XO₃, oxit axit.

Chọn đáp án A.

Các cacbon có lai hóa sp² ở đỉnh một lục giác đều phẳng.

2) 1,3,5-trimetylbenzen HC CH CH₃

Cả 9 C đều nằm trong cùng 1 mặt phẳng

3) Xiclohexan CH_2 CH_2

6 C không nằm trong cùng một mặt phẳng

4) 2,3-dimetylbuten-2 H_3C CH_3 C = C

2C đều có lai hóa sp 2 nên 6 C nằm trong cùng 1 mặt phẳng 1, 2, 4. Chon đáp án C.

3. $n_{HCl} = 0,1.2 = 0,2 \text{ mol}$

Cứ 1 mol oxi thay bằng 2 mol Cl, khối lượng tăng 71 – 16 = 55 gam cho 1 mol oxi, 0,2 mol Cl thay 0,1 mol oxi vậy khối lượng tăng $55 \times 0,1 = 5,5$ gam $m_{\text{muoi clorus}} = 12 + 5,5 = 17,5$ g

1 mol oxi thay bằng 1 mol SO_4 (vì cùng hóa trị 2) khối lượng tăng. 96-16=80 gam

Với 0,1 mol oxi, khối lượng tăng

 $80 \times 0.1 = 8 \text{ g}$ $m_{\text{muoi sunfat}} = 12 + 8 = 20 \text{ gam}$

Chọn đáp án B.

4. Để oxi hóa cùng 1 lúc Cl⁻, Br⁻, I⁻ thành Cl₂, Br₂, I₂ chất oxi hóa phải có E^0 lớn hơn $E^0_{Cl_2/Cl^-}$ (đương nhiên sẽ lớn hơn $E^0_{Br_2/Br^-}$ và $E^0_{I_2/I_1}$)

Đó là MnO₄

Để chỉ oxi hóa I^- mà không oxi hóa Cl^- , Br^- , chọn chất oxi hóa có E^0

$${\rm E_{Cl_{2}/Cl^{-}}^{0}}>{\rm E_{Br_{2}/Br^{-}}^{0}}>{\rm E^{0}}>{\rm E_{I_{2}/I^{-}}^{0}}$$

Đó là Fe³⁺

20 14 10

Chọn đáp án B. 5. Dipeptit X – X, Y – Y, Z – Z

vy vy g v g v g g

XY, YX, Z - X, Z - X, Y - Z, Z - Y

Tripeptit X - X - X, Y - Y - Y, Z - Z - Z

XYZ, XZY, YXZ, YZX, ZXY, ZYX

XXY, YXX, XZZ, Z - Z - X

ZXX, XXZ, ZYY, YYZ

tinantit 10 tuinantit

9 đipeptit, 19 tripeptit.

YZZ, ZZY.

Chọn đáp án A.

6.
$$n_X = \frac{5,6}{22,4} = 0,25$$
 mol trong đó có 0,15 mol H_2 và 0,10 mol C_2H_2

$$n_Y = \frac{2,24}{22.4} = 0,10 \text{ mol}$$

Độ giảm số mol là số mol H_2 phản ứng 0.25 - 0.10 = 0.15 mol.

0.25 - 0.10 = 0.15 moi. Vậy H_2 phản ứng hết. Y không cho kết tủa với $AgNO_3/NH_3$, vậy Y không chứa C_2H_2 dư, C_2H_2 phản ứng biết

$$C_2H_2$$
 ta, C_2H_2 phanting sievons C_2H_2 + H_2 \rightarrow C_2H_4 a a a C_2H_2 + $2H_2$ \rightarrow C_2H_6 b $2b$ b

$$n_{C_2H_2} = a + b = 0.10$$
 (1)
 $n_{H_2} = a + 2b = 0.150$ (2)

$$(1), (2) \rightarrow a = b = 0.05 \text{ mol}$$

Tỉ khối của Y đối với không khí
$$d_{Y_{KK}} = \frac{\overline{M}_{Y}}{29} = \frac{0,05[28+30]}{0.1\times29} = 1$$

Chọn đáp án C.

7.
$$n_{N_2} = \frac{2,24}{22,4} = 0,1 \text{ mol } N_2$$

0,1 mol X
$$\rightarrow$$
 0,4 mol CO₂, X chứa 4 C 0,1 mol X \rightarrow 0,1 mol N₂ vậy X chứa 2 $-NH_2$. X với phenolphtalein có

0,1 mol X \rightarrow 0,1 mol N₂ vậy X chứa 2 $-NH_2$. X với phenolphtalein có màu hồng vậy X là amino axit bazơ (1-COOH, 2- NH_2) với 4 C, công

thức cấu tạo của amino axit là
$$\frac{\mathrm{H_2N-(CH_2)_2-CH-COOH}}{\mathrm{NH_2}}$$

Chọn đáp án D.

8. H₂ chỉ khử được CuO. Mất 10% tức là mất 8 gam. Đó là khối lượng oxi trong CuO.

$$n_{\text{CuO}} = n_{\text{O mát}} = \frac{8}{16} = 0,5 \text{ mol}$$
 $m_{\text{CuO}} = 40 \text{ g}$
 $m_{\text{MgO}} = 80 - 40 = 40 \text{ gam}$
 $n_{\text{MgO}} = \frac{40}{40} = 1 \text{ mol}$

Tî lệ mol MgO/CuO =
$$\frac{1}{0.5}$$
 = 2 : 1

Có 0,5 mol CuO bị khử vậy có 0,5 mol CO hay H2 phản ứng.

$$V = 0.5.22.4 = 11.2 l$$

Chọn đáp án C.

9. Khối lượng một mắt xích (monome) là $\frac{1.050.000}{25.000} = 42$.

$${
m M_{CH_2=CH_2}}$$
 = 28 (loại) ${
m M_{CH_2=CH}}_{\stackrel{|}{C}{
m I}}$ = 62,5 (loại)

$$M_{CH_2=CH} = 42. \ D\acute{u}ng$$

Vậy monome là
$$CH_2 = CH$$
 (propilen)
 CH_3

Polime là polipropilen

Chọn đáp án C.

10. Đầu tiên ta thay Br-, I- bằng Cl- bằng cách cho tác dụng với Cl₂.

$$Cl_2 + 2NaBr \rightarrow 2NaCl + Br_2$$

$$Cl_2 + 2NaI \rightarrow 2NaCl + I_2$$

Thêm Na₂CO₃ để loại Ca²⁺ và Mg²⁺

$$CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 \downarrow + 2NaCl$$

$$MgCl_2 + Na_2CO_3 \rightarrow MgCO_3 \downarrow + 2NaCl$$

Loại Na₂CO₃ dư bằng HCl

$$Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2 \uparrow + H_2O$$

Đun sôi để loại hết Br2, I2 và HCl dư.

Chọn đáp án A.

11. Dung dịch chứa HCl là axit mạnh hoàn toàn bị phân ly.

$$[H^+]_{HCl} = 0.1 M$$

Gọi x là [H⁺] của HX

$$[H^+]_{\rm chung} = 0.1 + x$$

$$k_a = \frac{[H^+]_{chung}[X^-]}{[HX]} = \frac{(0,1+x)x}{0,1-x} = 10^{-3}.$$

Do x rất nhỏ so với 0,1, có thể lấy

$$0.1 + x = 0.1$$
 $0.1 - x = 0.1$ $0.1x = 0.001$ $0.1x = 0.001$ 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Chọn đáp án C.

12. A + 2B \rightleftharpoons C + D

$$K = \frac{[C][D]}{[A][B]^2} = 18,2$$

Với
$$V = 1$$
 lít, $[A] = 0.2$ M, $[B] = 0.1$ M, $[C] = 0.3$ M, $[D] = 0.2$ M.

$$P = {[C][D] \over [A][B]^2} = {0, 3.0, 2 \over 0.2.0.1^2} = 30 > 18,2$$

Vậy giá trị P của biểu thức phải hạ xuống cho đến khi bằng 18,2. P sẽ giảm khi [C], [D] giảm, [A], [B] tăng. Cân bằng chuyển dịch theo chiều nghịch.

Chọn đáp án B.

13. 0,1 mol X đốt cháy cho ra 0,3 mol CO_2 . Vậy A, B đều có 3 C và công thức phân tử của A, B là $C_3H_6O_2$

Axit B có công thức C₂H₅-COOH

Este A bị thủy phân cho ra axit có khả năng cho phản ứng tráng gương. Đó là HCOOH.

Vậy este A có công thức cấu tạo là

Trong 2 chất, chỉ có axit B với Na cho ra khí H₂

$$C_2H_5COOH + Na \rightarrow C_2H_5COONa + \frac{1}{2}H_2$$

$$0.08$$

$$0.04$$

Có 0,08 mol C₂H₅COOH và

$$0.10 - 0.08 = 0.02 \text{ mol HCOOC}_2\text{H}_5.$$

Chọn đáp án A.

14. Ion CN⁻ có thêm 1 electron. Electron này nhập vào N (có độ âm điện lớn hơn C). N có 5 + 1 = 6 electron ở lớp ngoài cùng, N chỉ cần tao 2

liên kết để có được 8 electron ở lớp ngoài cùng.

C = N⁻ sau khi tạo 2 liên kết, C mới có 4 + 2 = 6 electron nên N cung cấp thêm 1 cặp electron cho C qua liên kết cho nhận. Giữa C và N có 3 liên kết trong đó có 1 liên kết cho nhận.

$$[IC \subseteq N]$$

Cnhận electron từ N qua nên C có điện tích âm và $CN^{\text{-}}$ liên kết với ion $M^{\rm n+}$ qua đầu âm của C.

Chon đáp án D.

15. A tác dụng với NaOH nên A có thể là axit, F có mùi giấm. Vậy F là CH₃COOH, A phải có nhiều hơn F 1 cacbon. Vậy A là C₂H₅-COOH

$$C_2H_5COOH + NaOH \rightarrow C_2H_5COONa + H_2O$$
(B)

$$C_2H_5COONa + NaOH \xrightarrow{\iota^0} C_2H_6\uparrow + Na_2CO_3$$
(C)

$$C_2H_6 \xrightarrow{t^0 \text{ cao}} C_2H_4 + H_2$$
(D)

$$\begin{array}{c} (D) \\ C_2H_4 + H_2O \xrightarrow{H_2SO_4} C_2H_5OH \\ (D) \end{array}$$
(E)

$$C_2H_5OH + [O] \rightarrow CH_3COOH$$
(F)

Chọn đáp án B.

 $Ch\acute{u}$ \acute{y} : C) sai vì $C_2H_2 + H_2O \rightarrow CH_3CHO$ với xúc tác là $HgSO_4 + H_2SO_4$.

16. Hợp chất X đốt cháy

0,1 mol X
$$\rightarrow$$
 0,7 mol CO₂ \rightarrow X có 7 C
0,1 mol X \rightarrow 0,4 mol H₂O \rightarrow X có 8 H

X có chứa nhân thơm, tác dụng được với NaOH vậy X có thể là axit,

phenol. Với nước
$$Br_2$$
, X cho kết tủa vậy X là phenol C_6H (7 C, 8 H)

Gọi x là số nguyên tử Br thế vào nhân benzen.

$$\%Br = \frac{80x \times 100}{90 + 80x} = 60,15$$

$$\rightarrow x = 2$$
.

OH của phenol hướng Br vào 3 vị trí, 2 octo và 1 para. Hợp chất X này chỉ thế được 2 Br vậy -CH₃ phải chiếm 1 trong 3 vị trí octo và para

$$\begin{array}{ccc}
OH & OH \\
CH_3 & Br_2
\end{array}$$

$$\begin{array}{ccc}
OH & CH_3 \\
Br_2
\end{array}$$

$$\begin{array}{ccc}
OH & OH \\
OH & OH \\
CH_3 & Br & OH \\
Br & OH_3
\end{array}$$

Chọn đáp án D.

17. pH =
$$12 \rightarrow [H^+] = 10^{-12} \text{ M}$$

$$[OH^{-}] = \frac{10^{-14}}{10^{-12}} = 10^{-2} = 0.01 \text{ M}$$

n_{OH} trong 1 lít là 0,01 mol.

$$n_{OH} = \frac{I.200}{96500} \rightarrow I = 0,4825 \text{ A}.$$

Chọn đáp án A.

18.

Mg phản ứng trước Zn, Ag⁺ trước Cu²⁺. Dung dịch chứa 2 ion kim loại thì 2 ion ấy chỉ có thể là Mg²⁺ và Zn²⁺ vì nếu còn Cu²⁺ thì Mg và Zn đã phản ứng hết và dung dịch sẽ chứa 3 ion kim loại Mg²⁺, Zn²⁺ và Cu²⁺ dư.

Chất kết tủa gồm 3 kim loại thì 2 kim loại ấy chỉ có thể là Ag, Cu và Zn dư.

Để khử hết c mol Cu²⁺ và d mol Ag⁺ cần (2c + d) mol electron.

Dư Zn vậy số mol electron do a mol Mg và b mol Zn (2a + 2b mol) lớn hơn 2c + d (số mol electron cần để khử hết Ag^+ và Cu^{2+})

Điều kiện 2a + 2b > 2c + d

hay
$$a + b > c + \frac{d}{2}$$

Chọn đáp án B.

19. 1)
$$Cl_2 + \frac{1}{2}O_2 \rightarrow Cl_2O$$

Do oxi có độ âm điện cao hơn Cl, Cl có số oxi hóa +1 trong Cl₂O. Số oxi hóa Cl từ 0 lên +1, Cl₂ là chất khử.

2)
$$Cl_2 + 2KOH \rightarrow KCl + KClO + H_2O$$

Cl có số oxi hóa từ 0 lên đến +5 và xuống -1 nên Cl₂ tư oxi hóa khử.

3)
$$Cl_2 + H_2 \rightarrow 2HCl$$

Cl₂ là chất oxi hóa vì có số oxi hóa của Cl từ 0 xuống -1.

4) $Cl_2 + F_2 \rightarrow 2FCl$ Cl có độ âm điện thấp hơn F nên Cl có số oxi hóa +1 trong FCl. Cl là chất khử vì có số oxi hóa tăng từ 0 lên +1.

4: Cl chỉ đóng vai trò một chất khử.

Chọn đáp án A.

20. $n_{CaC_2} = \frac{128}{64} = 2 \text{ Kmol}$

 $CaC_2 + H_2O \rightarrow C_2H_2 + Ca(OH)_2$

2 Kmol 2 Kmol

+ $HCl \rightarrow CH_2 = CHCl$ C_2H_2

 \rightarrow 2 × 0,8 = 1,6 Kmol 2 Kmol $nCH_2 = CHCl \rightarrow (CH_2 - CH)_n$

 $1.6 \text{ Kmol} \rightarrow 1.6 \times 0.9 = 1.44 \text{ Kmol}.$

Khối lượng PVC $1.44 \times 62.5 = 90 \text{ kg}$.

Chọn đáp án B. 21. Goi $x = n_{FeSO_A} = n_{CuSO_A}$

 $2\text{FeSO}_4 \xrightarrow{t^0} \text{Fe}_2\text{O}_3 + 2\text{SO}_2 + \frac{1}{2}\text{O}_2$

 $CuSO_4 \xrightarrow{t^0} CuO + SO_2 + \frac{1}{2}O_2$

 $n_1 = n_{kh\hat{o}ng \ kh\hat{i}} = \frac{11,2}{22,4} = 0.5 \ mol$

Số mol khí sau phản ứng

 $\frac{n_2}{n_1} = \frac{P_2}{P_1} = 2.1 \rightarrow n_2 = 2.1.0.5 = 1.05 \text{ mol}$

 $n_2 = 0.5 + 2x + \frac{3x}{4} = 1.05 \rightarrow x = 0.2 \text{ mol}$

m = 0.2[56 + 96 + 64 + 96) = 62.4 gam

Chon đáp án C.

$$0.1(0.2 + 2.0.1) = 0.04 \text{ mol } H^+$$

Dung dịch có pH = $1 \rightarrow [H^+] = 0,1 \text{ M}$

Gọi x là thể tích nước (lít) thêm vào

$$[H^+] = \frac{0.04}{0.1 + x} = 0.1 \rightarrow x = 0.3 \text{ lit}$$

x = 300 ml

23. 1) Axit butendicacboxylic

Chọn đáp án C.

$$HOOC - CH = CH - COOH$$

C của liên kết C = C chứa H và -COOH khác nhau nên cho được đồng phân hình học

Buten-2: $CH_3 - CH = CH - CH_3$ cũng cho được đồng phân hình học.

- 3) Buten-1 CH₂ = CH CH₂ CH₃ không cho được đồng phân hình học vì C nối với 2 H.
 4) Isobuten CH C CH cũng không cho được đồng phân hình học
- (4) Isobuten $CH_3 C = CH_2$ cũng không cho được đồng phân hình học.

Chỉ có 1, 2. Chọn đáp án D.

- 24. 1) Đúng. Tính ion của hợp chất giữa kim loại và phi kim tăng theo hiệu số 2 độ âm điện của phi kim và kim loại. Cùng 1 kim loại, hiệu số này càng lớn khi độ âm điện của phi kim càng cao. TD: MgF₂ có tính ion cao hơn MgBr₂.
 - 2) Không đúng khi hiệu số 2 độ âm điện X ($X_{phi \ kim} X_{kim \ loại}$) nhỏ hơn 1,7, tính cộng hóa trị của hợp chất cao hơn tính ion

TD: AlBr₃ là hợp chất cộng hóa trị vì $X_{Br} - X_{Al} < 1,7$

3) Không đúng BeCl_2 là hợp chất mang nhiều tính cộng hóa trị do Be có độ âm điện khá lớn

B) Đúng F, O, N, Cl ở góc bên phải phía trên của bảng HTTH.

2, 3 không đúng \rightarrow Chọn đáp án B. 25. 1) KClO₃ $\stackrel{t^0}{\longrightarrow}$ KCl + $\frac{3}{2}$ O₂

Đây là phản ứng oxi hóa khử: Cl từ +5 xuống -1 còn O từ -2 lên 0.

2) CaCO₃ ^{t⁰} → CaO + CO₂
Không phải là phản ứng oxi hóa khử vì Ca, C, O vẫn giữ nguyên số oxi hóa.

3) NH₄Cl → NH₃ + HCl Không phải là phản ứng oxi hóa khử vì N, H, Cl giữ nguyên số oxi hóa.

4) (NH₄)₂Cr₂O₇

 ^{t°} → Cr₂O₃ + N₂ + 4H₂O

 Đây là phản ứng oxi hóa khử vì Cr có số oxi hóa từ +6 xuống +3 còn N từ -3 lên 0. 1, 4 là phản ứng oxi hóa khử.

 Chọn đáp án C.

26. Điều chế glixerol từ nguyên liệu đầu là n-butan. Từ 4 C trong butan phải xuống 3 C trong glixerol, đầu tiên phải crackinh butan.

$$C_4H_{10} \xrightarrow{t^0} CH_4 + CH_3 - CH = CH_2$$

Thế Cl vào CH₃ (t⁰ cao)

$$CH_3 - CH = CH_2 + Cl_2 \xrightarrow{t^0} CH_2Cl - CH = CH_2 + HCl$$

 $CH_2Cl - CH = CH_2 + Cl_2 \rightarrow CH_2Cl - CHCl - CH_2Cl$

 $CH_2Cl-CHCl-CH_2Cl + 3KOH \xrightarrow{t^0} CH_2OH-CHOH-CH_2OH + 3KCl$

Với KOH (t⁰)

27. $C_{2n}H_{4n+2} \xrightarrow{t^0} C_nH_{2n+2} + C_nH_{2n}$

$$M_{C_{2n}H_{4n+2}} = 2\overline{M}_{hh} = 2.29 = 58$$

$$\begin{split} M_X = 12.2n + 4n + 2 = 58 \\ n = 2 \rightarrow X & \text{c\'o c\^ong th\'uc } C_4H_{10} \end{split}$$

Có 2 đồng phân

$$\mathrm{CH_3-CH_2-CH_2-CH_3}; \ \mathrm{CH_3-CH-CH_3}; \ \mathrm{CH_3-CH_3-CH_3}$$

Ankan có nhánh sôi ở nhiệt độ thấp hơn ankan mạch thẳng. Vậy công thức cấu tạo của X là ${\rm CH_3-CH-CH_3} \atop {\rm I} \atop {\rm CH_3}$

Chọn đáp án D.

 $2M(NO_3)_x \xrightarrow{t^0} M_2O_x + 2xNO_2 + \frac{x}{2}O_2$ $ax \qquad ax \qquad \frac{ax}{2}$

a ax
$$\frac{ax}{4}$$
Trước khi nung, số mol khí $n_1 = 0.5$ mo

Trước khi nung, số mol khí n_1 = 0,5 mol. Sau khi nung, số mol khí n_2 = 0,5 + $\frac{5ax}{4}$

$$\frac{\frac{P_2}{P_1}}{P_1} = \frac{n_2}{n_1} = \frac{2.5}{1}$$

$$\frac{0.5 + \frac{5ax}{4}}{0.5} = 2.5 \rightarrow a = \frac{3}{5x}$$

$$M_{\text{nitrat}} = \frac{48.4}{3} = \frac{48.4.5x}{3}$$

 $242 = M + (14 + 48)3 \rightarrow M = 56, M \text{ là Fe}$ $a = \frac{3}{5x} = 0,2 \text{ mol.}$ Chọn đáp án B.

x = 3, M = 242

Với

29. Giả sử X là axit đơn chức. Muối Na của X có công thức C_xH_yO₂Na
0.1 mol muối có m = 16 gam

0,1 mol muối có m = 16 gam
$$M_{\text{muối}} = 160 = 12x + y + 32 + 23$$

$$12x + y = 105.$$
Vô nghiệm
$$\begin{array}{c|cccc}
x & 7 & 8 \\
\hline
 & & 21 & 9
\end{array}$$

X là axit 2 chức. Muối Na của X có công thức là $C_xH_vO_4Na_2$

$$M_{\text{mu\'o}i} = 12x + y + 64 + 46 = 160$$
• $12x + y = 50$
• $x = 4, y = 2$

X có công thức phân tử C₄H₄O₄

Công thức, cấu tạo

$$HOOC - CH = CH - COOH$$

Chọn đáp án C.

30. Số mol OH chứa trong 100 ml dung dịch A là:

$$0.1(0.3 + 0.2) = 0.05 \text{ mol OH}^-$$

Số mol HCl và H₃PO₄ trong 100 ml dung dịch B là:

$$n_{HCl} = 0,1.0,2 = 0,02 \text{ mol}$$

$$n_{H_3PO_4} = 0,1.0,2 = 0,02 \text{ mol}$$

OH đầu tiên tác dụng với HCl axit mạnh

$$OH^- + H^+ \rightarrow H_2O$$

0,02 0,02

Còn lại $0.05 - 0.02 = 0.03 \text{ mol OH}^-$

$$n_{H_3PO_4} < n_{OH^-} < 2 n_{H_3PO_4}$$

Vậy được 2 ion H₂PO₄ và HPO₄²

$$H_3PO_4 + OH^- \rightarrow H_2PO_4^- + H_2O$$

a a a
$$H_3PO_4 + 2OH^- \rightarrow HPO_4^{2-} + H_2O$$

$$n_{out} = a + 2b = 0.03$$

$$n_{H_0PO_4} = a + b = 0.02$$

$$\rightarrow$$
 a = b = 0.01 mol

$$[H_2PO_4^-] = [HPO_4^{2-}] = \frac{0.01}{0.2} = 0.05 M$$

Chọn đáp án A.

31. Axit A: R₁-COOH, Ruou B: R₂-CH₂OH

A, B có cùng M.

$$R_1 + 45 = R_2 + 31 \rightarrow R_2 = R_1 + 14$$

Vậy gốc R_2 phải nhiều hơn R_1 một CH_2 0,1 mol X đốt cháy cho ra 0,3 mol CO_2 vậy phân tử X chứa 3 C. Axit chứa 1 C (HCOOH) và rượu chứa 2 C (C_2H_5OH).

Công thức cấu tạo của este X là HCOOC₂H₅.

Chọn đáp án A.

32.
$$Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4 \downarrow$$

$$n_{SO_4^{2-}} = n_{BaSO_4} = \frac{2,33}{233} = 0,01 \text{ mol}$$

$$NH_4^+ + OH^- \xrightarrow{t^0} NH_3 + H_2O$$

$$n_{NH_4^+} = n_{NH_3} = \frac{0,896}{224} = 0,04 \text{ mol}$$

Tổng điện tích dương của $\mathrm{NH_4^+}$ bằng |tổng diện tích âm| của $\mathrm{Cl^-}$ và $\mathrm{SO_4^{2-}}$

$$0.04 = 0.01.2 + n_{Cl}$$

$$n_{Cl} = 0.02 \text{ mol}$$

$$[Cl^-] = \frac{0.02}{0.1} = 0.2 \text{ M}$$

$$[SO_4^{2-}] = \frac{0.01}{0.1} = 0.1 \text{ M}$$

$$[NH_4^+] = \frac{0.04}{0.1} = 0.4 \text{ M}.$$

Chọn đáp án B.

33. Benzen

Phenol

OH OH

Anilin

Nhiệt độ nóng chảy tăng theo khối lượng phân tử M và nhất là khi có liên kết hiđro.

Benzen có M nhỏ nhất và không có liên kết hiđro nên nóng chảy ở nhiệt độ thấp nhất.

Phenol và anilin có M xấp xỉ bằng nhau và đều cho được liên kết hiđro nhưng liên kết hiđro do OH mạnh hơn liên kết hiđro N-H (liên kết OH phân cực mạnh hơn N-H) vậy phenol có nhiệt độ nóng chảy cao hơn anilin (Phenol là chất rắn còn anilin là chất lỏng ở nhiệt độ thường).

Chọn đáp án A.

34. A là dẫn xuất có chứa 4 Cl của ankan, A với KOH cho ra sản phẩm.

D có khả năng tự tạo este vòng vậy D chứa ở đầu dây 1 chức axit và đầu dây kia một chức rượu. Vậy A có 3 Cl ở 1 đầu và 1 Cl ở đầu dây còn lại. •

/CCl₃-(CH₂)_n-CH₂Cl
$$\xrightarrow{\text{KOH}}$$
 HO $\xrightarrow{\text{HO}}$ C-(CH₂)_n - CH₂OH HO $\xrightarrow{\text{HO}}$ C - (CH₂)_n - CH₂OH + H₂O

0,1 mol A đốt cháy cho ra 0,6 mol CO₂. Vậy A chứa 6 cacbon. Công thức cấu tao của A là:

CCl₃-(CH₂)₄- CH₂Cl

Phản ứng cho ra este vòng E.

Chọn đáp án B.

35. B làm xanh giấy quỳ tím vậy B là một amin (có tính bazơ) và X là muối tạo ra từ một axit và một amin.

$$R - COOH + H_2N-R' \rightarrow RCOONH_3-R'$$

RCOOH và R'-NH₂ có M xấp xỉ bằng nhau nên R + $45 \approx R' + 16$

$$R + 29 \approx R'$$

R' có nhiều hơn R 2 nguyên tử C $(2CH_2 = 28)$

0,1 mol X đốt cháy cho ra 0,3 mol CO2. Vậy X có 3 nguyên tử C.

 R^\prime có hơn R 2 nguyên tử C vậy axit là HCOOH và amin là $C_2H_5{-}NH_2$ Công thức cấu tao của X là

Chọn đáp án B.

36. 1) $2NaHCO_3 + H_2SO_4 \rightarrow Na_2SO_4 + 2CO_2 + 2H_2O$

Viết dưới dạng ion

$$2 \text{HCO}_3^{\circ} + 2 \text{H}^+ \rightarrow 2 \text{CO}_2 + 2 \text{H}_2 \text{O}$$

Đây là phan ứng giữa bazơ HCO, nhận H⁺ cho ra CO₂ và H₂O.

2) $CH_3COOH + CH_3NH_2 \rightarrow CH_3COONH_3-CH_3$

Đây là phản ứng axit bazơ giữa CH₃COOH nhường H⁺ cho bazơ là amin CH₃NH₂

- 3) $Ba(NO_3) + Na_2SO_4 \rightarrow BaSO_4 \downarrow + 2NaNO_3$
- Đây là phản ứng trao đổi chứ không phải là phản ứng axit bazo. 4) $\dot{N}aH + H_2O \rightarrow H_2 + NaOH$

Đây là phản ứng axit bazơ giữa H₂O là axit nhường H⁺ cho bazơ H^- tạo ra H_2 và OH^- .

$$H^- + H_2O \rightarrow H_2 + OH^-$$

1, 2, 4 là phản ứng axit bazo

Chọn đáp án C.

37. Công thức tổng quát của một điamin no. Khi thay H của ankan bằng nhóm NH2 phải thêm 1 H, vậy với điamin, phải thêm 2 H vào công

thức của ankan. Công thức của điamin no $C_nH_{2n+4}N_2$

1) $C_2H_8N_2$ phù hợp

 $H_2N - CH_2 - CH_2 - NH_2$

3) $C_4H_{10}N_2$ phù hợp $H_2N-(CH_2)_4-NH_2$

Chọn đáp án D.

$$M_2(SO_4)_x \xrightarrow{t^0} M_2O_x + xSO_2 + \frac{x}{2}O_2$$

$$\frac{m_{\text{oxit}}}{m_{\text{sunfat}}} = \frac{2M + 16x}{2M + 96x} = 0.5$$

M = 32x

Với x = 2, $M = 64 \rightarrow M$ là Cu

Công thức của sunfat là CuSO₄

39. Anken C_nH_{2n} , Ankan: C_nH_{2n+2}

 $M_A = 0.933M_B$

$$\frac{14n}{14n+2} = 0.933 \to n = 2$$

A là C_2H_4 , B là C_2H_6

Chon đáp án A.

Khi qua nước Br₂ chỉ có C₂H₄ phản ứng.

$$C_2H_4 + Br_2 \rightarrow C_2H_4Br_2$$

$$0.2 0.2$$

Độ tăng khối lượng của nước Br₂ là khối lượng của C₂H₄

$$n_{C_2H_4} = 0.2.28 = 5.6 g$$

 $n_{C_2H_6} = 0.2.30 = 6 g.$

Chọn đáp án C.

40. Al có tính khử mạnh hơn Cu cho ra N₂O còn Cu cho ra NO.

$$n_Y = \frac{11,2}{22,4} = 0,5 \text{ mol.}$$

Giả sử trong 0,5 mol Y có x mol N_2O và (0,5-x) mol NO.

$$\overline{M}_{Y} = \frac{44x + 30(0, 5 - x)}{0, 5} = 2.19, 2 = 38, 4$$

 $x = 0.3 \text{ mol } N_2O, 0.2 \text{ mol } NO$

$$8Al + 30HNO_3 \rightarrow 8Al(NO_3)_3 + 3N_2O + 15H_2O$$

$$m_{Al} = 0.8.27 = 21.6 g.$$

$$3\text{Cu} + 8\text{HNO}_3 \rightarrow 3\text{Cu}(\text{NO}_3)_2 + 2\text{NO} + 4\text{H}_2\text{O}$$

$$m_{Cu} = 0.3.64 = 19.2 g$$

41. 1) NH₃ 2)
$$C_2H_5-NH_2$$
 3) $C_6H_5-NH_2$ 4) C_6H_4
NO₂

Các chất này đều có tính bazơ do có 1 cặp electron tư do trên N có thể nhận 1 H⁺. Các yếu tố nào đẩy cặp electron này ra xa nguyên tử N làm tăng tính bazơ, kết quả ngược lại khi có yếu tố kéo cặp electron tư do về gần N.

0.3

0.2

 C_2H_5 – NH_2 có $-C_2H_5$ đẩy electron ra xa N nên C_2H_5 – NH_2 mạnh hơn NH_3

3) và 4) có gốc thơm, hút electron, kéo cặp electron tự do gần N nên làm giảm tính bazơ

3 và 4 đều yếu hơn NH₃

So sánh giữa 3) và 4).

4) So với 3) có thêm 1 gốc -NO2 hút electron nên 4) yếu hơn 3).

Thứ tự 4 < 3 < 1 < 2.

Chon đáp án B.

42. Amino axit trong tính chứa 1-COOH và n = 2 (có 2 oxi)

$$C_4H_{12}O_2N_2$$

Khí A có tính bazo, A là amin

$$d_{\stackrel{A}{/}H_2} = 15.5 \rightarrow M_A = 31$$

$$M_{R-NH_{2}} = R + 16 = 31 \rightarrow R = 15$$

Vậy R là -CH₃ và amin là CH₃-NH₂

X có 4 C vậy amino axit có 3 C và X có công thức cấu tạo là

$$\begin{array}{c} CH_3-CH-COONH_3-CH_3\\ I\\ NH_2 \end{array}$$

Chọn đáp án A.

43. Phân biệt giữa CuSO₄, Al₂(SO₄)₃, ZnSO₄, Na₂SO₄.

Chọn dung dịch NH₄OH.

Với CuSO₄ cho ra phức màu xanh da trời Cu(NH₃)₄(OH)₂

Với Al₂(SO₄)₃, NH₄OH cho ra kết tủa keo trong, không tan trong NH₄OH dư.

Với ZnSO₄, NH₄OH cho ra kết tủa keo trong Zn(OH)₂ tan trong NH₄OH dư Zn(NH₃)₄ (OH)₂

Với Na₂SO₄, NH₄OH không phản ứng.

Chọn đáp án C.

44. Để cho anion CO_3^{2-} , PO_4^{3-} , S^{2-} của dung dịch A kết tủa hết các ion kim loại trong dung dịch B thì tổng điện tích dương của Mn^{2+} , Cu^{2+} , Ba^{2+} trong 100 ml dung dịch B phải bằng | tổng điện tích âm | của các anion trong dung dịch A. Tổng điện tích dương.

$$2 \times 0,1[0,1+0,2+0,15] = 0,09$$

Tổng điện tích âm của các anion trong 1 lít dung dịch A bằng.

$$0.2 + 0.2.3 + 0.2 = 1$$
 $\downarrow \qquad \downarrow \qquad \downarrow$
 $CO_3^{2-} PO_4^{3-} S^{2-}$.

Cần
$$\frac{0.09}{1}$$
 = 0.09 lít dung dịch A hay 90 ml

Tổng khối lượng kết tủa:

$$\begin{split} &m_{Mn^{2+}} + m_{Cu^{2+}} + m_{Ba^{2+}} + m_{Co_3^{2-}} + m_{PO_4^{3-}} + m_{S^{2-}} \\ &= 0.1[0.1.55 + 0.2.64 + 0.15.137] + 0.09[0.1.60 + 0.2.95 + 0.1.32] \\ &= 3.963 \text{ g} \end{split}$$

Chọn đáp án D.

- 45. So sánh tính axit của
 - 1) HCOOH 2) CH₃COOH 3) CF₃-COOH 4) CF₂Cl-COOH So sánh 2, 3, 4, với 1).
 - 2) CH_3COOH có nhóm $-CH_3$ đẩy electron về phía -COOH làm cho H^+ khó tách ra hơn (tính axit giảm) 2 < 1

So sánh 3, 4 với 2

 CF_3COOH và $CF_2Cl-COOH$ có F, Cl hút electron làm cho H^+ dễ tách hơn, tính axit của 3, 4 manh hơn 2.

Giữa 3, 4 thì 3 mạnh hơn 4 vì 3F hút electron mạnh hơn 2F + 1Cl Thứ tư tính axit tăng dần

Chọn đáp án B.

46.
$$M_A = 2 \times 29 = 58 = 14n + 2 \rightarrow n = 4$$

A là
$$C_4H_{10}$$
 $\overset{1}{C}H_3 - \overset{2}{C}H_2 - \overset{3}{C}H_2 - \overset{4}{C}H_3$

D chứa 2 nhóm -OH thay 2 Cl. Do D tạo phức màu xanh với Cu(OH)₂, 2 OH ấy phải gắn vào 2 C kế cân: 1, 2 hoặc 2, 3.

D oxi hóa bằng CuO cho ra sản phẩm E cho được phản ứng tráng gương. Vậy rượu ấy phải là rượu bậc 1, nhóm OH gắn ở C_1 .

Công thức cấu tạo của B

$$CH_2Cl - CHCl - CH_2 - CH_3$$

Chọn đáp án A.

47. Điều chế K kim loại. Do K là 1 kim loại có hoạt tính rất mạnh, K⁺ rất bền, không thể bị khử thành K bằng phản ứng hóa học. Chỉ có thể dùng phương pháp điện phân.

Điện phân KCl nóng chảy hoặc KOH nóng chảy

KCl
$$\xrightarrow{\text{dpnc}}$$
 K + $\frac{1}{2}$ Cl₂

$$2\text{KOH} \xrightarrow{\text{dpnc}}$$
 2K + H₂O + $\frac{1}{2}$ O₂

Không thể điện phân dung dịch KCl vì $K^{\scriptscriptstyle +}$ không điện phân được trong nước

 $1, 2 \rightarrow Chọn đáp án C.$

$$n_{H^+} = 0.1(0.2 + 0.1.2) = 0.04 \text{ mol } H^+$$

Khi trộn 2 dung dịch có phản ứng:

$$H^+ + OH^- \rightarrow H_2O$$

 $Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4 \downarrow$

Sau khi trộn được dung dịch có pH = 13

$$[H^+] = 10^{-13}$$
. Vậy $[OH^-] = 10^{-1} = 0,1$ M
 $n_{OH} = 0,1.0,2 = 0,02$ mol

Sau phản ứng giữa H^+ và OH^- còn dư 0.02 mol OH^- vậy số mol OH^- ban đầu $n_{OH} = 0.02 + 0.04 = 0.06$ mol.

Nồng độ của dung dịch Ba(OH)2

$$n_{OH^-} = 0.2 \text{ a} = 0.06 \rightarrow \text{a} = 0.3 \text{ M}$$

 $n_{Ba^{2+}} = 0.03 \text{ mol}, n_{SO_{-}^{2-}} = 0.01 \text{ mol}$

Vậy $n_{BaSO_4} = 0.01 \text{ mol} \rightarrow m_{BaSO_4} = 0.01.233 = 2.33 \text{ gam}.$

Chọn đáp án C.

49. Isopentan
$$CH_3 - CH - CH_2 - CH_3$$

$$\begin{array}{ccc} 2\text{-}metylbuten-2 & \text{CH}_3 - \text{C} = \text{CH} - \text{CH}_3 \\ & \text{CH}_3 \end{array}$$

Để có được nối đôi ở C_2 và C_3 thì -OH phải nằm ở C_2 hoặc C_3 .

$$\begin{array}{c} \text{OH} \\ \text{CH}_3 - \text{C} - \text{CH}_2 - \text{CH}_3 & \xrightarrow{\text{H}_2\text{O}} & \text{CH}_3 - \text{C} = \text{CH} - \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{sán phẩm chính} \end{array}$$

$$\begin{array}{c} \text{OH} \\ \mid \\ \text{CH}_3 - \text{CH} - \text{CH} - \text{CH}_3 & \xrightarrow{\text{H}_2\text{O}} & \text{CH}_3 - \text{C} = \text{CH} - \text{CH}_3 \\ \mid \\ \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{sån phẩm chính} \end{array}$$

Vậy A có thể là 2-clo-3-metylbutan hay 2-clo-2-metylbutan. Chon đáp án C.

50. n_{Zn²}. = a, n_{Cl} = 2a, n_{Br} = b.
Br⁻ có tính khử mạnh hơn Cl⁻ nên Br⁻ bị oxi hóa trước bên anot, hết Br⁻ mới đến Cl⁻. Chỉ có Zn²⁺ bị khử bên catot (Na⁺ không điện phân

dược trong nước). $GD1: Zn^{2+} + 2e \rightarrow Zn$ $2Br^{-} - 2e \rightarrow Br_{2}$

GĐ2 chấm dứt khi hết Br-. Trong dung dịch còn lại NaCl và NaOH

Do b > 2a, khi hết Zn²⁺ vẫn còn Br

GD2: $H_2O + e \rightarrow QH^- + \frac{1}{2}H_2$

 Br - $\mathrm{e} o rac{1}{2} \mathrm{Br}_2$

GĐ3: Điện phân NaCl

 $NaCl + H_2O \xrightarrow{dp} NaOH + \frac{1}{2}Cl_2 + \frac{1}{2}H_2$

Giai đoạn 3 chấm dứt khi hết Cl⁻. Còn lại NaOH.

$$H_2O \xrightarrow{dp} H_2 + \frac{1}{2}O_2$$

Có 4 giai đoạn, pH trong dung dịch cuối cùng lớn hơn 7. Chọn đáp án A.

GĐ4: Điện phân dung dịch NaOH, trên thực chất là điện phân H₂O

BỘ ĐỀ 9

1. A	2. C	3. B	4. B	5. A	6. C	7. D
8. C	9. C	10. A	11. C	12. B	13. A	14. D
15. B	16. D	17. A	18. B	19. A	20. B	21. C
22. C	23. D	24. B	25. C	26. B	27. D	28. B
29. C	30. A	31. A	32. B	33. A	34. B	35. B
36. C	37. D	38. A	39. C	40. D	41. B	42. A
43. C	44. D	45. B	46. A	47. C	48. C	49. C
50. A						