Alexandrov-Krümmung, Hadamard-Räume und der Satz von Cartan-Hadamard

Tim Baumann

Seminar Metrische Geometrie

27. Mai 2014

Krümmung in der Differentialgeometrie

Für die Gaußkrümmung K im Punkt u gilt $K = \kappa_1 \cdot \kappa_2 = \det(W_u)$, wobei κ_1 und κ_2 die Hauptkrümmungen und

$$W_u := D_u \nu \circ (D_u X)^- 1 : T_u X \to T_u X$$

die Weingartenabbildung in u bezeichnet.

Für $K \in \mathbb{R}$ ist der Modellraum M_K^2 definiert durch

$$M_K^2 := egin{cases} (S^2, rac{1}{\sqrt{K}} d_{S_2}) & ext{für } K > 0, \ (\mathbb{E}^2, d_{\mathbb{E}^2}) & ext{für } K = 0, \ (\mathbb{H}^2, rac{1}{\sqrt{-K}} d_{\mathbb{H}^2}) & ext{für } K < 0, \end{cases}$$

wobei $\mathbb{E}^2 = \mathbb{R}^2$ den gewöhnlichen euklidischen Raum und \mathbb{H}^2 den zweidimensionalen hyperbolischen Raum mit konstanter Krümmung -1 bezeichnet.

Dabei sind $d_{\mathbb{S}^2}$ und $d_{\mathbb{H}^2}$ die induzierten intrinsichen Normen. Im Fall $K \neq 0$ bezeichnet $\frac{1}{\sqrt{|K|}}d$ die skalierte Metrik $(x,y) \mapsto \frac{1}{\sqrt{|K|}}d(x,y).$

$$(x,y)\mapsto \frac{1}{\sqrt{|K|}}d(x,y)$$

Definition

Ein Dreieck Δabc in X besteht aus drei Eckpunkten $a,b,c\in X$ und verbindenden kürzesten Wegen $\sigma_{ab},\sigma_{bc},\sigma_{ac}:[0,1]\to X$.

Definition

Ein Dreieck $\triangle abc$ in X besteht aus drei Eckpunkten $a,b,c\in X$ und verbindenden kürzesten Wegen $\sigma_{ab},\sigma_{bc},\sigma_{ac}:[0,1]\to X$.

Definition

Ein Vergleichsdreieck $\Delta \overline{abc}$ von Δabc in M_K^2 besteht aus drei Punkten $\overline{a}, \overline{b}, \overline{c} \in M_K^2$ und verbindenden kürzesten Wegen $\sigma_{\overline{ab}}, \sigma_{\overline{bc}}, \sigma_{\overline{ca}} : [0,1] \to M_K^2$, sodass gilt: $d_{M_K^2}(\overline{a}, \overline{b}) = d(a,b), \quad d_{M_K^2}(\overline{b}, \overline{c}) = d(b,c), \quad d_{M_K^2}(\overline{c}, \overline{a}) = d(c,a)$

Definition

Ein Dreieck Δabc in X besteht aus drei Eckpunkten $a,b,c\in X$ und verbindenden kürzesten Wegen $\sigma_{ab},\sigma_{bc},\sigma_{ac}:[0,1]\to X$.

Definition

Ein Vergleichsdreieck $\Delta \overline{abc}$ von Δabc in M_K^2 besteht aus drei Punkten $\overline{a}, \overline{b}, \overline{c} \in M_K^2$ und verbindenden kürzesten Wegen $\sigma_{\overline{ab}}, \sigma_{\overline{bc}}, \sigma_{\overline{ca}} : [0,1] \to M_K^2$, sodass gilt: $d_{M_{\nu}^2}(\overline{a}, \overline{b}) = d(a,b), \quad d_{M_{\nu}^2}(\overline{b}, \overline{c}) = d(b,c), \quad d_{M_{\nu}^2}(\overline{c}, \overline{a}) = d(c,a)$

Definition

Ein Vergleichspunkt von $d \in \operatorname{Bild}(\sigma_{ac})$ in einem Vergleichsdreieck $\Delta \overline{abc}$ ist ein Punkt $\overline{d} \in \operatorname{Bild}(\sigma_{\overline{ac}})$ mit $d(a,d) = d_{M_{\kappa}^2}(\overline{a},\overline{d})$.

Definition

Eine Teilmenge $U \subseteq X$ heißt CAT(K)-Gebiet, falls gilt:

- Für alle $x,y\in U$ gibt es eine Geodäte $\sigma_{xy}:[0,1]\to U$ der Länge d(x,y).
- Alle Dreiecke Δabc mit Eckpunkten und Seiten in U erfüllen die CAT(K)-Vergleichseigenschaft: Für alle $d \in \operatorname{Bild}(\sigma_{ac})$ mit Vergleichspunkt \overline{d} in $\Delta \overline{abc}$ gilt

$$d(b,d) \leq d_{M_{\kappa}^2}(\overline{b},\overline{d}).$$

und analog für $d' \in \sigma_{ab}$, $d'' \in \sigma_{bc}$.

Definition

Eine Teilmenge $U \subseteq X$ heißt CAT(K)-Gebiet, falls gilt:

- Für alle $x, y \in U$ gibt es eine Geodäte $\sigma_{xy} : [0, 1] \to U$ der Länge d(x, y).
- Alle Dreiecke Δabc mit Eckpunkten und Seiten in U erfüllen die CAT(K)-Vergleichseigenschaft: Für alle $d \in \operatorname{Bild}(\sigma_{ac})$ mit Vergleichspunkt \overline{d} in $\Delta \overline{abc}$ gilt $d(b,d) \leq d_{M_c^2}(\overline{b},\overline{d})$.

und analog für $d' \in \sigma_{ab}, d'' \in \sigma_{bc}$.

Definition

Der Längenraum X heißt CAT(K)-Raum, falls X eine Überdeckung mit offenen CAT(K)-Gebieten besitzt. Man sagt auch, der Raum habe Alexandrov-Krümmung $\leq K$.

Warum der Name CAT(K)?

Élie Cartan (1869-1951)

Alexander D. Alexandrov (1912-1999)

Victor A. Toponogov (1930-2004)

Es reicht aus, in der Definition die Ungleichung

$$d(b,d) \leq d_{M_K^2}(\overline{b},\overline{d})$$

nur für Mittelpunkte d der Seite σ_{ac} , also $d \in \operatorname{Bild}(\sigma_{ac})$ mit $d(a,d) = d(d,c) = \frac{1}{2}d(a,c)$, zu fordern.

Es reicht aus, in der Definition die Ungleichung

$$d(b,d) \leq d_{M_K^2}(\overline{b},\overline{d})$$

nur für Mittelpunkte d der Seite σ_{ac} , also $d \in \operatorname{Bild}(\sigma_{ac})$ mit $d(a,d) = d(d,c) = \frac{1}{2}d(a,c)$, zu fordern.

Beispiele

• \mathbb{R}^n ist ein CAT(0)-Raum.

Es reicht aus, in der Definition die Ungleichung

$$d(b,d) \leq d_{M_K^2}(\overline{b},\overline{d})$$

nur für Mittelpunkte d der Seite σ_{ac} , also $d \in \operatorname{Bild}(\sigma_{ac})$ mit $d(a,d) = d(d,c) = \frac{1}{2}d(a,c)$, zu fordern.

Beispiele

- \mathbb{R}^n ist ein CAT(0)-Raum.
- $\mathbb{R}^2 \setminus B_1(0)$ ist ein CAT(0)-Raum.

Es reicht aus, in der Definition die Ungleichung

$$d(b,d) \leq d_{M_K^2}(\overline{b},\overline{d})$$

nur für Mittelpunkte d der Seite σ_{ac} , also $d \in \operatorname{Bild}(\sigma_{ac})$ mit $d(a,d) = d(d,c) = \frac{1}{2}d(a,c)$, zu fordern.

Beispiele

- \mathbb{R}^n ist ein CAT(0)-Raum.
- $\mathbb{R}^2 \setminus B_1(0)$ ist ein CAT(0)-Raum.
- Klebe drei Kopien des Strahls $[0,\infty)$ am Punkt 0 zusammen. Dieser Raum hat nichtpositive Krümmung.

Es reicht aus, in der Definition die Ungleichung

$$d(b,d) \leq d_{M_K^2}(\overline{b},\overline{d})$$

nur für Mittelpunkte d der Seite σ_{ac} , also $d \in \operatorname{Bild}(\sigma_{ac})$ mit $d(a,d) = d(d,c) = \frac{1}{2}d(a,c)$, zu fordern.

Beispiele

- \mathbb{R}^n ist ein CAT(0)-Raum.
- $\mathbb{R}^2 \setminus B_1(0)$ ist ein CAT(0)-Raum.
- Klebe drei Kopien des Strahls $[0,\infty)$ am Punkt 0 zusammen. Dieser Raum hat nichtpositive Krümmung.

Satz (Ballman, 3.7)

Sei X eine Riemannsche Mannigfaltigkeit. Dann ist die Alexandrov-Krümmung von X höchstens K genau dann, wenn die Schnittkrümmung von X nach oben durch K beschränkt ist.

Satz (Kosinussatz)

In jedem wie rechts beschrifteten Dreieck gilt

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

Satz (Kosinussatz)

In jedem wie rechts beschrifteten Dreieck gilt

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

Definition

Für drei Punkte x, y, z aus einem metrischen Raum (X, d) heißt

$$\widetilde{\angle}xyz := \arccos \frac{d(y,x)^2 + d(y,z)^2 - d(x,z)^2}{2 \cdot d(y,x) \cdot d(y,z)}$$

Vergleichswinkel.

Satz (Kosinussatz)

In jedem wie rechts beschrifteten Dreieck gilt

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

Definition

Für drei Punkte x, y, z aus einem metrischen Raum (X, d) heißt

$$\widetilde{\angle}xyz := \arccos \frac{d(y,x)^2 + d(y,z)^2 - d(x,z)^2}{2 \cdot d(y,x) \cdot d(y,z)}$$

Vergleichswinkel.

Definition

Sei (X,d) ein Längenraum, $p \in X$ und $\alpha, \beta : [0,\epsilon) \to X$ zwei Geodäten mit $\alpha(0) = \beta(0) = p$. Falls der Limes existiert, so heißt $\angle(\alpha,\beta) = \lim_{s,t\to 0} \widetilde{\angle}(\alpha(s),p,\beta(t))$

Winkel zwischen α und β .

Sei (X, d) ein Längenraum, $U \subseteq X$ ein CAT(0)-Gebiet.

Proposition (BBI, 4.3.5)

Seien $\alpha, \beta : [0, \epsilon] \to U$ kürzeste Wege mit $\alpha(0) = \beta(0) = p$.

Dann ist die Abbildung

 $\Theta: [0,\epsilon] \times [0,\epsilon] \to [0,\pi], \quad (s,t) \mapsto \widetilde{\measuredangle}(\alpha(s),p,\beta(t))$ monoton steigend in beiden Argumenten.

Sei (X, d) ein Längenraum, $U \subseteq X$ ein CAT(0)-Gebiet.

Proposition (BBI, 4.3.5)

Seien $\alpha, \beta : [0, \epsilon] \to U$ kürzeste Wege mit $\alpha(0) = \beta(0) = p$. Dann ist die Abbildung

 $\Theta: [0,\epsilon] \times [0,\epsilon] \to [0,\pi], \quad (s,t) \mapsto \widetilde{\measuredangle}(\alpha(s),p,\beta(t))$ monoton steigend in beiden Argumenten.

Korollar (BBI, 4.3.2)

Sei Δabc ein Dreieck in U. Dann sind die Winkel

$$\alpha := \measuredangle(\sigma_{ab}, \sigma_{ac}), \quad \beta := \measuredangle(\sigma_{ba}, \sigma_{bc}), \quad \gamma := \measuredangle(\sigma_{ca}, \sigma_{cb}),$$
 wohldefiniert und es gilt $\alpha + \beta + \gamma \leq \pi$.

Sei (X, d) ein Längenraum, $U \subseteq X$ ein CAT(0)-Gebiet.

Proposition (BBI, 4.3.5)

Seien $\alpha, \beta : [0, \epsilon] \to U$ kürzeste Wege mit $\alpha(0) = \beta(0) = p$. Dann ist die Abbildung

$$\Theta: [0,\epsilon] \times [0,\epsilon] \to [0,\pi], \quad (s,t) \mapsto \widetilde{\measuredangle}(\alpha(s),p,\beta(t))$$
 monoton steigend in beiden Argumenten.

Korollar (BBI, 4.3.2)

Sei $\triangle abc$ ein Dreieck in U. Dann sind die Winkel

$$\alpha := \measuredangle(\sigma_{ab}, \sigma_{ac}), \quad \beta := \measuredangle(\sigma_{ba}, \sigma_{bc}), \quad \gamma := \measuredangle(\sigma_{ca}, \sigma_{cb}),$$
 wohldefiniert und es gilt $\alpha + \beta + \gamma < \pi$.

Bemerkung

Die Behauptung des Korollars ist äquivalent zur CAT(0)-Vergleichseigenschaft, kann also auch als zur Definition von CAT(0)-Gebieten verwendet werden.

Proposition (BBI, 9.1.17)

Sei (X, d) ein Längenraum, $U = B_r(x_0) \subseteq X$ ein CAT(0)-Gebiet. Dann gilt:

- Für alle $a, b \in U$ gibt es einen eindeutigen kürzesten Weg, der a und b verbindet, und dieser ist in U enthalten.
- ② Seien σ_{ab} und σ_{bc} zwei kürzeste Wege in U, die in b enden bzw. starten. Falls $\angle abc = \pi$, dann ist auch $\sigma_{ab} * \sigma_{bc}$ ein kürzester Weg.
- 3 Jede Geodäte in *U* ist ein kürzester Weg.

Lemma (BBI, 9.2.3)

Sei (X,d) ein Längenraum, $U\subseteq X$ ein CAT(0)-Gebiet und $\alpha,\beta:I\to U$ zwei durch dasselbe Intervall I parametrisierte und mit jeweils konstanter Geschwindigkeit durchlaufene Geodäten in U. Dann ist die Distanzfunktion

$$\delta: I \to \mathbb{R}_{\geq 0}, \quad t \mapsto d(\alpha(t), \beta(t))$$

konvex.

Lemma (Alexandrov's Lemma)

Seien $a,b,c,d\in\mathbb{E}^2$, sodass a und c auf verschiedenen Halbebenen bezüglich der Verbindungsstrecke [bd] liegen. Seien $\tilde{a},\tilde{b},\tilde{c}\in\mathbb{E}^2$ mit $d(a,b)=d(\tilde{a},\tilde{b}),\quad d(b,c)=d(\tilde{b},\tilde{c}),\quad d(a,d)+d(d,c)=d(\tilde{a},\tilde{c}).$ Sei $\tilde{d}\in [\tilde{a},\tilde{c}]$ mit $d(\tilde{a},\tilde{d})=d(a,d).$ Dann gilt:

• $\angle adb + \angle bdc < \pi$ genau dann, wenn $d(\tilde{b}, \tilde{d}) < d(d, b)$. Dann gilt auch $\angle \tilde{b}\tilde{a}\tilde{d} < \angle bad$ und $\angle \tilde{b}\tilde{c}\tilde{d} < \angle bcd$.

Lemma (Alexandrov's Lemma)

Seien $a,b,c,d\in\mathbb{E}^2$, sodass a und c auf verschiedenen Halbebenen bezüglich der Verbindungsstrecke [bd] liegen. Seien $\tilde{a},\tilde{b},\tilde{c}\in\mathbb{E}^2$ mit $d(a,b)=d(\tilde{a},\tilde{b}),\quad d(b,c)=d(\tilde{b},\tilde{c}),\quad d(a,d)+d(d,c)=d(\tilde{a},\tilde{c}).$ Sei $\tilde{d}\in [\tilde{a},\tilde{c}]$ mit $d(\tilde{a},\tilde{d})=d(a,d).$ Dann gilt:

- $\angle adb + \angle bdc < \pi$ genau dann, wenn $d(\tilde{b}, \tilde{d}) < d(d, b)$. Dann gilt auch $\angle \tilde{b}\tilde{a}\tilde{d} < \angle bad$ und $\angle \tilde{b}\tilde{c}\tilde{d} < \angle bcd$.
- $\angle adb + \angle bdc > \pi$ genau dann, wenn $d(\tilde{b}, \tilde{d}) > d(d, b)$. Dann gilt auch $\angle \tilde{b}\tilde{a}\tilde{d} > \angle bad$ und $\angle \tilde{b}\tilde{c}\tilde{d} > \angle bcd$.

Lemma (Alexandrov's Lemma)

Seien $a,b,c,d\in\mathbb{E}^2$, sodass a und c auf verschiedenen Halbebenen bezüglich der Verbindungsstrecke [bd] liegen. Seien $\tilde{a},\tilde{b},\tilde{c}\in\mathbb{E}^2$ mit $d(a,b)=d(\tilde{a},\tilde{b}),\quad d(b,c)=d(\tilde{b},\tilde{c}),\quad d(a,d)+d(d,c)=d(\tilde{a},\tilde{c}).$ Sei $\tilde{d}\in [\tilde{a},\tilde{c}]$ mit $d(\tilde{a},\tilde{d})=d(a,d).$ Dann gilt:

- $\angle adb + \angle bdc < \pi$ genau dann, wenn $d(\tilde{b}, \tilde{d}) < d(d, b)$. Dann gilt auch $\angle \tilde{b}\tilde{a}\tilde{d} < \angle bad$ und $\angle \tilde{b}\tilde{c}\tilde{d} < \angle bcd$.
- $\angle adb + \angle bdc > \pi$ genau dann, wenn $d(\tilde{b}, \tilde{d}) > d(d, b)$. Dann gilt auch $\angle \tilde{b}\tilde{a}\tilde{d} > \angle bad$ und $\angle \tilde{b}\tilde{c}\tilde{d} > \angle bcd$.

Lemma

Sei (X, d) ein Längenraum, Δabc ein Dreieck in X und $d \in \operatorname{Bild}(\sigma_{ac})$. Wenn die Teildreiecke Δabd und Δcbd die CAT(0)-Vergleichseigenschaft erfüllen, dann auch Δabc .

Definition

Sei X ein topologischer Raum, $\gamma_1,\gamma_2:[0,1]\to X$ stetige Kurven mit $p=\gamma_1(0)=\gamma_2(0)$ und $q=\gamma_1(1)=\gamma_2(1)$. Eine Homotopie der Wege γ_1 und γ_2 relativ der Endpunkte ist eine stetige Abbildung

$$H:[0,1]\times[0,1]\to X$$

mit

- $H(-,0) = \gamma_1$,
- $H(-,1) = \gamma_2$,
- H(0,t) = p für alle $t \in [0,1]$,
- H(1,t) = q für alle $t \in [0,1]$.

Definition

Sei X ein topologischer Raum, $\gamma_1,\gamma_2:[0,1]\to X$ stetige Kurven mit $p=\gamma_1(0)=\gamma_2(0)$ und $q=\gamma_1(1)=\gamma_2(1)$. Eine Homotopie der Wege γ_1 und γ_2 relativ der Endpunkte ist eine stetige Abbildung

$$H: [0,1] \times [0,1] \to X$$

mit

- $H(-,0) = \gamma_1$,
- $H(-,1) = \gamma_2$,
- H(0,t) = p für alle $t \in [0,1]$,
- H(1, t) = q für alle $t \in [0, 1]$.

Definition

Ein topologischer Raum X heißt einfach zusammenhängend, falls

- er wegzusammenhängend ist und
- jeder geschlossene Weg $\gamma:[0,1]\to X$ (d. h. $\gamma(0)=\gamma(1)=:p$) homotop relativ der Endpunkte zum konstanten Weg $t\mapsto p$ ist.