Helmholtz's Theorems:
1. T'= const. along vortex tube
2. Vortex tube continued in a fluid closed (extend to boundary or form dosed bop) (extend to boundary or form dosed bop) (inviscid flow)
(all 1 to down or form doesd box)
(inviscid of low)
3 mond fluid remains itrot. If no viscous
3. 1004. fluid remains itrot. if no viscous forces or other external forces.
Les Elbanes
- baratropic Pelotronelion
VI. = C. C. Combatan Theorem: Dr = inviscid
The body forces - Coriolis
matt contour (tollow a contour in spacetime)
by tracking Fluid motion
Kelvin's Circulation Theorem: DI = 0 - inviscid - no nonconservative body forces - Coriolis I'- eround a mati contour (follow a contour in spacetime) I'- of u.dl DI' (Du.dc + (11. Dds)
Mi 9 Mi Ot
body force
use 15-5 - conv. to (Tr (T) + VO). Fich
CAPTER IN PROPERTY
2nd Term: Dds = (change of matt line element)
apply Stokes
$s \circ G u \cdot \frac{\mathrm{Dds}}{\mathrm{Dt}} = G u \cdot (\mathrm{ds} \cdot \nabla) u = \frac{1}{2} G \nabla (u^2) \cdot \mathrm{ds} \rightarrow \frac{1}{2} (\nabla \times \nabla (u^2) \cdot \mathrm{dA})$ $\operatorname{cond} = 0$
cul of grad.=0
So Dr =0
if viscous Dt = for dui ds
FLuis in a moving vortex moves with the vortex

Con Vortex tube end on a boundary? FLUX of Morticity thru any Ax is constant 1 - "interisty": if ends on solid boundaries: Two of no slip (to the sufface BUT if there is ship then we can have finite Wz. 10-slip condition: Vortex tubes et not and on surface 2. For inviscid flows vortex takes com end on sonface.