

INTRODUCTION

Patient and their problems

Monitoring anamnesis, register exploration

Data

transformation

Syndromic diagnosis

Information

Differential diagnosis

Integration

inference

Diagnostic hypothesis

Decisions making

Medical orders

Actions planning

execution

PREMISES

- Information / Knowledge division
 - ➤ Making explicit the knowledge
- Explicit knowledge can be managed
- More interaction in systems construction
- OntoDDB born as a system for integrating different DBs in RDF and RDF/S models
- Improvement of the system through the years

USE CASE: DB for research

- Data register and storage
- Reflection of structure of data
- Data extraction for analysis
- Context
 - Distributed access
 - Constant changes in knowledge: i.e. new relevant information to be included in research study

INCONVENIENTS

- Cost
 - In development: Database, Web Application
 - In maintenance: database modifications, web pages modifications
- Long development time
- Very short amortization time
- Need of very technical resources
- Distance between researcher and developer
- Heterogeneity between different applications
- No reuse

OBJETIVES

KNOWLEDGE

- Specification of data model by ontologies
- Specification of user interface by ontologies
- Automatic storage of data and user interface
- On-line modifications
- Data extraction
- Distributed access

COMPONENTS

OWL STORAGE

- Requirements
 - Wide scope, not limited to any project
 - Conceptual representation, not attached to any format
 - Portable between different DBMS
 - Efficiency retrieving concepts
- No good models proposed
 - Very simple
 - Not efficient
- Solution
 - Design a new storage model taking advantage of relational capabilities
 - Make explicit all OWL components defined in the OWL specification: classes, properties, literals, etc.

ONTOLOGY REPOSITORIES

- Three popular database representations:
 - Schema-aware storage
 - Also called *specific* or *binary*
 - One table per RDF/S schema property or class
 - Schema-oblivious storage
 - Also called *generic* or *vertical*
 - One table to store triples (*subject-predicate-object*)
 - Hybrid of schema-aware and schema-oblivious representations
 - A ternary relation for every different property range
 - A binary relation for all classes instances

Theoharis, Y., Christophides, V., Karvounarakis, G. *Benchmarking Database Representations of RDF/S Stores*. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 685–701. Springer, Heidelberg (2005)

OWL-DB: Characteristics

- EAV-based database
 - Tables for all OWL elements
 - Resources identified by internal ID
- Statements table
 - Resources identified by URI
 - No order dependent
- Statements as access point to the system
 - > Can be used by any application managing OWL statements
- Propagation of information from statements table to rest of tables to ensure consistency
 - Triggers and procedures
- API for external applications

OWL-DB: Class Hierarchy

Classes organized in a tree with indexes

very fast searches of subclasses

Celko J. *Joe Celko's SQL for smarties: Advanced SQL programming*. Morgan Kaufmann Publishers Inc., San Francisco, CA, 1995

OWL-DB: Multiple inheritance

PROTÉGÉ - PLUGIN OWL-DB

- Backend plug-in for Protégé: change in storage format
 - Ontology repository instead of OWL file
 - Changes in loading and storing processes
- Statements as means of communication between Protégé and repository
- Two storing modes:
 - Save all
 - Removal of previous statements from the database
 - Insertion of all the statements of the ontology
 - Save changes
 - Detection of changes made in the ontology
 - Update of names in the database
 - Insertion of new statements (statements comparison)
 - Removal of old statements

PROTÉGÉ - PLUGIN OWL-DB

PROBLEMS: Name changes

- Resource name: common identifier between database and Protégé
- User allowed to modify the name
- Solution
 - ChangeListener over Protégé frames
 - List of modified elements
 - Old and new names of each element
 - Names update on DB before storing
 - Update trigger on *resr* table \rightarrow update of *stat* table

PROBLEMS: Blank nodes

- Name (URI) as identifier for resources
 - In statements communication with external applications
 - In repository (statements table)
- Anonymous resources have no name
 - Internal names change in each Protégé session
 - Impossible to link old and new names
- Solution:
 - Anonymous resources considered as changed resources in save changes mode
 - Namespace: *Anonymous*
 - Penalty on the first storing of each session

OWL-DB OntoLoad

- Module for loading NEW ontologies on database
- OWL file as input
- Use of Jena API for ontology management
- Statements as means of communication with repository
- Capacity to load large ontologies
 - NCI ontology: 500.000 statements

OWL-DB OntoLoad

OWL-XML file

OWL File: SQL Server: Database Name: Username:	D:\Documents and Settings\csc\Mis documentos\Ontologías\OntoDDB\pr	Browse	Stored procedures of the database
Password:	**************************************		
	FINISHED!!! Ontology loaded into database.		OWL- DB

OntoDDB-MM: Metamodel

OntoDDB-MM: Metamodel

OntoDDB: Web Application

OntoDDB-DataExtraction

OntoDDB-DataExtraction

🙆 OntoDDB - D	ataExtraction	_ _ ×
Directory:	D:\Documents and Settings\rlozano\Escritorio	Browse
SQL Server:	IDIBSQL	
Database Name:	OWL	
Model:	VALID	
Username:		
Password:	*****	
	Start the Data Extraction	
	FINISHED!!!	
	Generated Files:	
	de_patient.csv	

de_patient.csv

id|patient_id|baseline_crf|country_study|bi:
2404|011073|2406|France|09/30/1968|10/27/20|
2429|011079|2431|France|02/10/1964|05/06/20|
2456|011082|2458|France|10/03/1983|01/18/20|
2481|012091|2483|France|04/04/1970|08/01/20|
2530|011083|2532|France|03/01/1940|02/08/20|
2628|011076|2630|France|06/01/1945|02/06/20|
2653|012096|2655|France|01/21/1947|07/05/20|
2874|011087|2876|France|08/25/1985|05/24/20|
2899|011086|2900|France|04/18/1977|04/17/20|
3068|012090|3070|Germany|11/15/1968|04/28/2|
3238|012069|3240|France|12/15/1941|11/29/20|
3359|011080|3360|France|09/02/1947|11/24/20|

ADVANTAGES

- Simplification in development
 - Reduction in development cost
 - Reduction in development time
 - No need to programming, so no need of technical resources for doing it
 - Applications construction is reduced to analysis and design phases
 - Prototypes available from the beginning
- Ease of maintenance
 - Great flexibility respect to later modifications
 - Reduction in costs
- Allows to take advantage of economies of scale

ADVANTAGES

- Use of ontological technologies
 - Ontological analysis clarifies the knowledge structure
 - Processable
 - Integration with Semantic Web
 - Reuse of models
- Use of standards: OWL, Protégé (de facto)
 - Models communication
 - Models sharing
 - Easily extensible with new functionalities
- Multilingualism
- Help to establish homogeneous criteria in organization
- Domain independent

FUTURE WORK

- Upcoming version 2.0
 - Web services
 - OntoDDB API improvements (waiting time, ...)
- Extract more explicit knowledge
 - Division between data model and presentation
 - Incorporation of more web functionality
 - Incorporation of procedures
- Changes in ontology editing process
 - Progressive loading of information
 - Introduction to views of an ontology
- Future applications:
 - Clinical repository for patients data collection (not research)

