

## **ER-to-Relational Mapping**



## Outline

- ER-to-Relational Mapping Algorithm:
  - Step 1: Mapping of Regular Entity Types
  - Step 2: Mapping of Weak Entity Types
  - Step 3: Mapping of Binary 1:1 Relationship Types
  - Step 4: Mapping of Binary 1:N Relationship Types
  - Step 5: Mapping of Binary M:N Relationship Types
  - Step 6: Mapping of Mutivalued Attributes
  - Step 7: Mapping of N-ary Relationship Types

ч



### **Step 1: Mapping of Regular Entity Types**

- For each regular (strong) entity type E in the ER schema, create a relation R that includes all the simple attributes of E.
- Choose one of the key attributes of E as the primary key for R.
- If the chosen key of E is composite, the set of simple attributes that form it will together form the primary key of R.



Chapter 6: Relational Database Design by ER- and EER-to-Relational Mapping

^



• CUSTOMER entity type with simple attributes:



• CUSTOMER relation:

#### **CUSTOMER**

<u>CustomerID</u> CustomerName CustomerAddress

Chapter 6: Relational Database Design by ER- and EER-to-Relational Mapping











### ep 3: Mapping OF Binary 1:1 Relationship Types

- There are three possible approaches:
  - Foreign key approach:
    - Choose one of the relations S, say and include as a foreign key in S the primary key of T.
    - It is better to choose an entity type with total participation in R in the role of S.
    - Include all the simple attributes of the 1:1 relationship type as attributes of S.
  - Merged relation option:
    - Merging the two entity types and the relationship into a single relation. (Used when both participations are total)
  - Cross-reference or relationship relation option:
    - Setting up a third relation R for the purpose of crossreferencing the primary keys of the two relations S and T representing the entity types.

Chapter 6: Relational Database Design by ER- and EER-to-Relational Mapping









### ep 4: Mapping of Binary 1:N Relationship Types

- For each regular binary 1:N relationship type R, identify the relation S that represents the participating entity type at the N-side of the relationship type.
- Include as foreign key in S the primary key of the relation T that represents the other entity type participating in R.
- Include any simple attribute of the 1:N relationship type as attributes of S.



Chapter 6: Relational Database Design by ER- and EER-to-Relational Mapping

13

# ep 4: Mapping of Binary 1:N Relationship Types

• One-to-many relationship:



• Mapping the relationship (foreign key approach):



Chapter 6: Relational Database Design by ER- and EER-to-Relational Mapping





- For each binary M:N relationship type R, create a new relation S to represent R.
- Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types; their combination will form the primary key of S.
- Include any simple attributes of the M:N relationship type as attributes of S.





- For each multivalued attribute A, create a new relation R. This relation R will include an attribute corresponding to A, plus the primary key attribute K as a foreign key in R of the relation that represents the entity type or relationship type that has A as an attribute.
- The primary key of R is the combination of A and K.
- If the multivalued attribute is composite, include its simple components.





- Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types.
- Include any simple attributes of the n-ary relationship type as attributes of S.



















### ep 8: Options for Mapping Specialization or Generalization

#### **Mapping of Shared Subclasses (Multiple Inheritance)**

- Shared subclasses must have the same key attribute; otherwise the shared subclass would be modeled as a category.
- Any of the options discussed in step 8 can be applied to a shared subclass.



Chapter 6: Relational Database Design by ER- and EER-to-Relational Mapping

29

# CATAWAD

### ep 8: Options for Mapping Specialization or Generalization

### **Mapping of Shared Subclasses (Multiple Inheritance)**



Chapter 6: Relational Database Design by ER- and EER-to-Relational Mapping





• For mapping a category whose defining subclasses have different keys, it is customary to specify a new key attribute, called a surrogate key, when creating a relation to correspond to the category.



Chapter 6: Relational Database Design by ER- and EER-to-Relational Mapping









