

Licence 1ère année, Mathématiques et Calcul 2 (MC2)

Interrogation 3 : Séries numériques et équations différentielles

Exercice 1. 5 pts

1. Déterminer la nature de $\sum \frac{1}{n(n+1)(n+2)}$ (1 pt)

2. Calculer la somme
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)(n+2)}$$
 (4 pt)

Correction.

1. Pour tout $n \ge 1$, $u_n > 0$. $u_n = \frac{1}{n(n+1)(n+2)} \underset{n \to +\infty}{\sim} \frac{1}{n^3}.$

On reconnait une série de Riemann convergente (3>1), donc par critère d'équivalence, la série $\sum \frac{1}{n(n+1)(n+2)}$ converge.

2. Par une décomposition en éléments simples,

$$\frac{1}{n(n+1)(n+2)} = \frac{1/2}{n} - \frac{1}{n+1} + \frac{1/2}{n+2}$$

Soit $N \geq 1$,

$$\sum_{n=1}^{N} \frac{1}{n(n+1)(n+2)} = \sum_{n=1}^{N} \frac{1/2}{n} - \frac{1}{n+1} + \frac{1/2}{n+2}$$

$$= \sum_{n=1}^{N} \frac{1/2}{n} - \frac{1/2}{n+1} + \frac{1/2}{n+2} - \frac{1/2}{n+1}$$

$$= \frac{1}{2} \left(\sum_{n=1}^{N} \frac{1}{n} - \frac{1}{n+1} \right) + \frac{1}{2} \left(\sum_{n=1}^{N} \frac{1}{n+2} - \frac{1}{n+1} \right)$$

On reconnait 2 sommes téléscopiques. Etudions la première.

$$\begin{split} \sum_{n=1}^{N} \frac{1}{n} - \frac{1}{n+1} &= \sum_{n=1}^{N} \frac{1}{n} - \sum_{n=1}^{N} \frac{1}{n+1} \\ &= \sum_{n=1}^{N} \frac{1}{n} - \sum_{k=2}^{N+1} \frac{1}{k} \text{ en faisant le changement de variable k=n+1} \\ &= \sum_{n=2}^{N} \frac{1}{n} + \frac{1}{1} - \left(\sum_{k=2}^{N} \frac{1}{k} + \frac{1}{N+1}\right) \\ &= 1 - \frac{1}{N+1} \end{split}$$

De la même façon,

$$\sum_{n=1}^{N} \frac{1}{n+2} - \frac{1}{n+1} = \frac{1}{N+2} - \frac{1}{2}$$

D'où

$$\sum_{n=1}^{N} \frac{1}{n(n+1)(n+2)} = \frac{1}{2} \left(1 - \frac{1}{N+1} \right) + \frac{1}{2} \left(\frac{1}{N+2} - \frac{1}{2} \right)$$
$$= \frac{1}{4} - \frac{1}{2} \left(-\frac{1}{N+1} + \frac{1}{N+2} \right)$$

Enfin,

$$\lim_{N \to +\infty} \sum_{n=1}^{N} \frac{1}{n(n+1)(n+2)} = \lim_{N \to +\infty} \frac{1}{4} - \frac{1}{2} \left(-\frac{1}{N+1} + \frac{1}{N+2} \right)$$
$$= \frac{1}{4}$$

Exercice 2. 5 pts

Résoudre les équations différentielles suivantes.

1.
$$(E_1)$$
: $\frac{1}{2}y'(x) + \frac{x}{1+x^2}y(x) = 0$, $x \in \mathbb{R}$ (2 pts)

2.
$$(E_2): y'(x) + 3y(x) = xe^{-3x}, x \in \mathbb{R}$$
 (3 pts)

Correction.

1. On écrit l'équation différentielle normalisée :

$$y'(x) + \frac{2x}{1+x^2}y(x) = 0$$

On reconnait une équation différentielle linéaire d'ordre 1 homogène avec pour coefficient $\alpha: x \mapsto \frac{2x}{1+x^2}$. α est continue sur \mathbb{R} donc admet des primitive sur \mathbb{R} et une primitive de α est $A: x \mapsto \ln(1+x^2)$. L'ensemble des solutions de (E_1) est :

$$S_1 = \{y : x \mapsto Ke^{-\ln(1+x^2)}/K \in \mathbb{R}\}$$

= $\{y : x \mapsto K\frac{1}{1+x^2}/K \in \mathbb{R}\}$

2. L'équation homogène associée à (E_2) est

$$(E_2^0): y'(x) + 3y(x) = 0$$

Le coefficient de cette équation différentielle linéaire d'ordre 1 homogène est $\alpha: x \mapsto 3$. α est continue sur \mathbb{R} donc admet des primitive sur \mathbb{R} et une primitive de α est $A: x \mapsto 3x$,. L'ensemble des solutions de l'équation homogène (E_2^0) est :

$$S_2^0 = \{ y_0 : x \mapsto Ke^{-3x} / K \in \mathbb{R} \}$$

On cherche une solution particulière y_p de (E_2) de la forme $y_p(x) = Q(x)e^{-3x}$ avec $Q \in \mathbb{R}[X]$ (pas d'hypothèses sur le degré du polynôme).

La dérivée de y_p est : $y'(p) = Q'(x)e^{-3x} - 3Q(x)e^{-3x}$

En injectant dans (E_2) , on obtient :

$$Q'(x)e^{-3x} - 3Q(x)e^{-3x} + 3Q(x)e^{-3x} = xe^{-3x} \iff Q'(x)e^{-3x} = xe^{-3x}$$

 $\iff Q'(x) = x$

Une primtive de $Q': x \mapsto x$ est $Q: x \mapsto \frac{x^2}{2}$

D'où
$$y_p: x \mapsto \frac{x^2}{2}e^{-3x}$$

D'où $y_p:x\mapsto \frac{x^2}{2}e^{-3x}$ Conclusion : L'ensemble des solutions de (E_2) sont :

$$S_2 = \{y_0(x) + y_p(x)/K \in \mathbb{R}\}$$

$$= \{Ke^{-3x} + \frac{x^2}{2}e^{-3x}/K \in \mathbb{R}\}$$

$$= \{(K + \frac{x^2}{2})e^{-3x}/K \in \mathbb{R}\}$$