NEC Microcomputers, Inc.

HIGH END SINGLE CHIP 8-BIT MICROCOMPUTER WITH 4K ROM

PRODUCT DESCRIPTION

The NEC µPD7801 is an advanced 8-bit general purpose single-chip microcomputer fabricated with N-Channel Silicon Gate MOS technology.

The NEC µPD7801 is intended to serve a broad spectrum of 8-bit designs ranging from enhanced single chip applications extending into the multi-chip microprocessor range. All the basic functional blocks – 4096 x 8 of ROM program memory, 128 x 8 of RAM data memory, 8-bit ALU, 48 I/O lines, Serial I/O port, 12-bit timer, and clock generator are provided on-chip to enhance stand-alone applications. Fully compatible with the industry standard 8080A bus structure, expanded system operation can be easily implemented using any of the 8080A/8085A peripherals and memory products. Total memory space can be increased to 64K bytes.

The powerful 140 instruction set coupled with 4K bytes of ROM program memory and 128 bytes of RAM data memory greatly extends the range of single chip microcomputer applications. Five level vectored interrupt capability combined with a 2 microsecond cycle time enable the µPD7801 to compete with multi-chip microprocessor systems with the advantage that most of the support functions are on-chip.

FEATURES

- NMOS Silicon Gate Technology Requiring +5V Supply
- Complete Single-Chip Microcomputer with On-Chip ROM; RAM and I/O 4K Bytes ROM
 - 128 Bytes RAM
 - 48 I/O Lines
- Internal 12-Bit Programmable Timer
- On-Chip 1 MHz Serial Port
- Five Level Vectored, Prioritized Interrupt Structure
 - Serial Port
 - Timer
- 3 External Interrupts
- Bus Expansion Capabilities
 - Fully 8080A Bus Compatible
 - 60K Bytes External Memory Address Range
- On-Chip Clock Generator
- Wait State Capability
 Alternate Z80TM Type Register Set
- Powerful 140 Instruction Set
- 8 Address Modes; Including Auto-Increment/Decrement
- Multi-Level Stack Capabilities
- Fast 2 µs Cycle Time
- **Bus Sharing Capabilities**

PIN CONFIGURATION

PIN NO.	DESIGNATION	FUNCTION
1, 49-63 2	AB ₀ -AB ₁₅ EXT	(Tri-State, Output) 16-bit address bus. (Output) EXT is used to simulate µPD7801/7802 external memory reference operation. EXT distinguishes between internal and external memory references, and goes low when locations 4096 through 65407 are accessed.
3-10	DB ₀ -DB ₇	(Tri-State Input/Output, active high) 8-bit true bi-directional data bus used for external data exchanges with I/O and memory.
11	INT ₀	(Input, active high) Level-sensitive interrupt input.
12	INT ₁	(Input, active high) Rising-edge sensitive interrupt input. Interrupts are initiated on low-to-high transi- tions, providing interrupts are enabled.
13	INT ₂	(Input) INT ₂ is an edge sensitive interrupt input where the desired activation transition is programmable. By setting the ES bit in the Mask Register to a 1, INT ₂ is rising edge sensitive. When ES is set to 0, INT ₂ is falling edge sensitive.
14	WAIT	(Input, active low) WAIT, when active, extends read or write timing to interface with slower external memory or I/O, WAIT is sampled at the end of T2, if active processor enters a wait state TW and remains in that state as long as WAIT is active.
15	M1	(Output, active high) when active, M1 indicates that the current machine cycle is an OP CODE FETCH.
16	WR	(Tri-State Output, active low) WR, when active, indicates that the data bus holds valid data. Used as a strobe signal for external memory or I/O write operations. WR goes to the high impedance state during HALT, HOLD, or RESET.
17	RD	(Tri-State Output, active low) $\overline{\text{RD}}$ is used as a strobe to gate data from external devices onto the data bus. $\overline{\text{RD}}$ goes to the high impedance state during HALT, HOLD, and RESET.
18-25	PC ₀ -PC ₇	(Input/Output) 8-bit I/O configured as a nibble I/O port or as control lines.
26	SCK	(Input/Output) SCK provides control clocks for Serial Port Input/Output operations. Data on the SI line is clocked into the Serial Register on the rising edge. Contents of the Serial Register is clocked onto SO line on falling edges.
27	SI	(Input) Serial data is input to the processor through the SI line. Data is clocked into the Serial Register MSB to LSB with the rising edge of SCK.
28	SO	(Output) SO is the Serial Output Port. Serial data is output on this line on the falling edge of SCK, MSB to LSB.
29	RESET	(Input, active low) \overline{RESET} initializes the $\mu PD7801$.
30	STB	(Output) Used to simulate μ PD7801 Port E operation, indicating that a Port E operation is being performed when active.
31	X ₁	(Input) Clock Input
33-40	PA ₀ -PA ₇	(Output) 8-bit output port with latch capability.
41-48	PB ₀ -PB ₇	(Tri-State Input/Output) 8-bit programmable I/O port. Each line configurable independently as an input or output.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Memory Map

The μ PD7801 can directly address up to 64K bytes of memory. Except for the on-chip ROM (0-4095) and RAM (65,408-65,535), any memory location can be used as either ROM or RAM. The following memory map defines the 0-64K byte memory space for the μ PD7801 showing that the Reset Start Address, Interrupt Start Address, Call Tables, etc., are located in the internal ROM area.

I/O Ports

PORT	FUNCTIONS
Port A	8-bit output port with latch
Port B	8-bit programmable Input/Output port w/latch
Port C	8-bit nibble I/O or Control port
Port E	16-bit Address/Output Port

FUNCTIONAL DESCRIPTION (CONT.)

Port A

Port A is an 8-bit latched output port. Data can be readily transferred between the accumulator and the output latch buffers. The contents of the output latches can be modified using Arithmetic and logic instructions. Data remains latched at Port A unless acted on by another Port A instruction or a RESET is issued.

Port B

Port B is an 8-bit I/O port. Data is latched at Port B in both the Input or Output modes. Each bit of Port B can be independently set to either Input or Output modes. The Mode B register programs the individual lines of Port B to be either an Input (Mode $B_{n=1}$) or an Output (Mode $B_{n=0}$).

Port C

Port C is an 8-bit I/O port. The Mode C register is used to program the upper 6 bits of Port C to provide control functions or to set the I/O structure per the following table.

	MODE C _n = 0	MODE C _n = 1
PC ₀	Output	Input
PC ₁	Output	Input
PC ₂	SCS Input	Input
PC ₃	SAK Output	Output
PC ₄	To Output	Output
PC ₅	IO/M Output	Output
PC ₆	HLDA Output	Output
PC ₇	HOLD Input	Input

Port E

Port E is a 16-bit address bus/output port. It can be set to one of three operating modes using the PER, PEN, or PEX instructions.

- 16-Bit Address Bus the Per instruction sets this mode for use with external I/O or memory expansion (up to 60K bytes, externally).
- 4-Bit Output Port/12 Bit Address Bus the PEN instruction sets this mode which allows for memory expansion of up to 4K bytes, externally, plus the transfer of 4-bit nibbles.
- 16-Bit Output Port the PEX instruction sets Port E to a 16-bit output port. The contents of B and C registers appear on PE_{8.15} and PE_{0.7}, respectively.

FUNCTIONAL DESCRIPTION (CONT.)

Timer Operation

TIMER BLOCK DIAGRAM

A programmable 12-bit timer is provided on-chip for measuring time intervals, generating pulses, and general time-related control functions. It is capable of measuring time intervals from 4 μ s to 16 μ s in duration. The timer consists of a prescaler which decrements a 12-bit counter at a fixed 4 μ s rate. Count pulses are loaded into the 12-bit down counter through timer register (TM0 and TM1). Count-down operation is initiated upon extension of the STM instruction when the contents of the down counter are fully decremented and a borrow operation occurs, an interval interrupt (INTT) is generated. At the same time, the contents of TM0 and TM1 are reloaded into the down-counter and countdown operation is resumed. Count operation may be restarted or initialized with the STM instruction. The duration of the timeout may be altered by loading new contents into the down counter.

The timer flip flop is set by the STM instruction and reset on a countdown operation. Its output (T0) is available externally and may be used in a single pulse mode or general external synchronization.

Timer interrupt (INTT) may be disabled through the interrupt.

Serial Port Operation

SERIAL PORT BLOCK DIAGRAM

The on-chip serial port provides basic synchronous serial communication functions allowing the NEC µPD7801 to serially interface with external devices.

Serial Transfers are synchronized with either the internal clock or an external clock input (SCK). The transfer rate is fixed at 1 Mbit/second if the internal clock is used or is variable between DC and 1 Mbit/second when an external clock is used. The Clock Source Select is determined by the Mode C register. The serial clock (internal or external SCK) is enabled when the Serial Chip Select Signal (SCS) goes low. At this time receive and transmit operations through the Serial Input port (SI)/Serial Output port (SO) are enabled. Receive and transmit operations are performed MSB first.

Serial Acknowledge (SAK) goes high when data transfers between the accumulator and Serial Register is completed. SAK goes low when the buffer becomes full after the completion of serial data receive or transmit operations. While SAK is low, no further data can be received.

Interrupt Structure

The μ PD7801 provides a maskable interrupt structure capable of handling vectored prioritized interrupts. Interrupts can be generated from six different sources; three external interrupts, two internal interrupts, and non-maskable software interrupt. Each interrupt when activated branches to a designated memory vector location for that interrupt.

INT	VECTORED MEMORY LOCATION	PRIORITY	TYPE
INTT	8	3	Internal, Timer Overflow
INTS	64	6	Internal, Serial Buffer Full/Empty
INT0	4	2	Ext., level sensitive
INT1	16	4	Ext., Rising edge sensitive
INT2	32	5	Ext., Rising/Falling edge sensitive
SOFTI	96	1	Software Interrupt

FUNCTIONAL DESCRIPTION (CONT.)

FUNCTIONAL DESCRIPTION (CONT.)

RESET (Reset)

An active low-signal on this input for more than 4 μ s forces the μ PD7801 into a Reset condition. RESET affects the following internal functions:

- The Interrupt Enable Flags are reset, and Interrupts are inhibited.
- The Interrupt Request Flag is reset.
- The HALT flip flop is reset, and the Halt-state is released.
- The contents of the MODE B register are set to FFH, and Port B becomes an input port.
- The contents of the MODE C register are set to FF_H. Port C becomes an I/O port and output lines go low.
- All Flags are reset to 0.
- The internal COUNT register for timer operation is set to FFFH and the timer F/F is reset.
- The ACK F/F is set.
- The HLDA F/F is reset.
- The contents of the Program Counter are set to 0000H.
- The Address Bus (PE_{0.15}), Data Bus (DB_{0.7}), RD, and WR go to a high impedance state.

Once the $\overline{\text{RESET}}$ input goes high, the program is started at location 0000H.

REGISTERS

The μ PD7801 contains sixteen 8-bit registers and two 16-bit registers.

PC SP O' 70' 7 V A B C Alternate D E A' H L Alternate D' E' H'	0				15	
O' 70' 7 V A B C D E H L V' A' B' C' D' E' Alternate			PC			
V A B C D E H L Main Main Main C' A' B' C' D' Alternate			SP			
B C D E H L Main Main Main Alternate D' Alternate	O ^l		70'		<u> </u>	
D E H L V' A' B' C' D' E' Alternate		V		A		
D E H L V' A' B' C' D' E' Alternate		В	T T	С		Main
V' A' B' C' D' E'		D		Е		(
B' C' Alternate		Н		L)
B' C' Alternate					,	`
D' E'		V′		Α')
D' E'		B ^r	T	C'		Alternate
H' L'		D'		E'		(
		H'		Ľ')

General Purpose Registers (B, C, D, E, H, L)

There are two sets of general purpose registers (Main: B, C, D, E, H, L: Alternate: B', C', D', H', L'). They can function as auxiliary registers to the accumulator or in pairs as data pointers (BC, DE, HL, B'C', D'E', H'L'). Auto Increment and Decrement addressing mode capabilities extend the uses for the DE, HL, D'E', and H'L' register-pairs. The contents of the BC, DE, and HL register-pairs can be exchanged with their Alternate Register counterparts using the EXX instruction.

µPD7801

Vector Register (V)

When defining a scratch pad area in the memory space, the upper 8-bit memory address is defined in the V-register and the lower 8-bits is defined by the immediate data of an instruction. Also the scratch pad indicated by the V-register can be used as 256 x 8-bit working registers for storing software flags, parameters and counters.

FUNCTIONAL DESCRIPTION (CONT.)

Accumulator (A)

All data transfers between the μ PD7801 and external memory or I/O are done through the accumulator. The contents of the Accumulator and Vector Registers can be exchanged with their Alternate Registers using the EX instruction.

Program Counter (PC)

The PC is a 16-bit register containing the address of the next instruction to be fetched. Under normal program flow, the PC is automatically incremented. However, in the case of a branch instruction, the PC contents are from another register or an instruction's immediate data. A reset sets the PC to 0000H.

Stack Pointer (SP)

The stack pointer is a 16-bit register used to maintain the top of the stack area (last-in-first-out). The contents of the SP are decremented during a CALL or PUSH instruction or if an interrupt occurs. The SP is incremented during a RETURN or POP instruction.

Register Addressing

Working Register Addressing

Register Indirect Addressing

Direct Addressing

Auto-Increment Addressing

Immediate Addressing

Auto-Decrement Addressing

Immediate Extended Addressing

Register Addressing

The instruction opcode specifies a register r which contains the operand.

Register Indirect Addressing

The instruction opcode specifies a register pair which contains the memory address of the operand. Mnemonics with an X suffix are ending this address mode.

Auto-Increment Addressing

The opcode specifies a register pair which contains the memory address of the operand. The contents of the register pair is automatically incremented to point to a new operand. This mode provides automatic sequential stepping when working with a table of operands.

ADDRESS MODES

ADDRESS MODES (CONT.) Auto-Decrement Addressing

Working Register Addressing

The contents of the register is linked with the byte following the opcode to form a memory address whose contents is the operand. The V register is used to indicate the memory page. This address mode is useful as a short-offset address mode when working with operands in a common memory page where only 1 additional byte is required for the address. Mnemonics with a W suffix ending this address mode.

Direct Addressing

The two bytes following the opcode specify an address of a location containing the operand.

Immediate Addressing

PC OPCODE
PC + 1 OPERAND

Immediate Extended Addressing

 PC
 OPCODE

 PC + 1
 Low Operand

 PC + 2
 High Operand

Operand Description

OPERAND	DESCRIPTION
r	V, A, B, C, D, E, H, L
r1	B, C, D, E, H, L
r2	A, B, C
sr	PA PB PC MK MB MC TM0 TM1 S
sr1	PA PB PC MK S
sr2	PA PB PC MK
rp	SP, B, D, H
rp1	V, B, D, H
rpa	B, D, H, D+, H+, D-, H-
rpa1	B, D, H
wa	8 bit immediate data
word	16 bit immediate data
byte	8 bit immediate data
bit	3 bit immediate data
f	F0, F1, F2, FT, FS,

Notes:

- When special register operands sr, sr1, sr2 are used; PA=Port A, PB=Port B, PC=Port C, MK=Mask Register, MB=Mode B Register, MC=Mode C Register, TM0=Timer Register 0, TM1=Timer Register 1, S=Serial Register.
- When register pair operands rp, rp1 are used; SP=Stack Pointer, B=BC, D=DE, H=HL, V=VA.
- Operands rPa, rPa1, wa are used in indirect addressing and auto-increment/ auto-decrement addressing modes.
 B=(BC), D=(DE), H=(HL)
 D+=(DE)⁺, H+=(HL)⁺, D-=(DE)⁻, H-=(HL)⁻.
- 4. When the interrupt operand f is used; F0=INTF0, F1=INTF1, F2=INTF2, FT=INTFT, FS=INTFS.

MNEMONIC	OPERANDS	NO.	CLOCK	OPERATION	SKIP CONDITION	FLA	
	O. D. MARIO	0.,120	<u> </u>	ATA TRANSFER	CONDITION	<u></u>	
моч	MNEMONIC OPERANDS BYTES CYCLE 8-BIT 8-BIT 4 MOV r1, A 1 4 MOV A, r1 1 4 MOV sr, A 2 10 MOV r, word 4 17 MOV word, r 4 17 MVI r, byte 2 7 MVIW wa, byte 3 13 MVIX rpa1, byte 2 10 STAW wa 2 10 STAX rpa 1 7 LDAX rpa 1 7 EXX 1 4 BLOCK 1 13 (C+1)			r1 ← A			
моч	A, r1	1	4	A ← r1			
моч	sr, A	2	10	sr ← A			
моч	A, sr1	2	10	A ← sr1			
моч	r, word	4	17	r ← (word)			
моч	word, r	4	17	(word) ← r			
M∨I	r, bỳte	2	7	r ← byte			
. MVIW	wa, byte	3	13	(V, wa) ← byte			
MVIX	rpa1, byte	2	10	(rpa1) ← byte			
STAW	wa	2	10	(V, wa) ← A			
LDAW	wa	2	10	A ← (V, wa)			
STAX	rpa	1	7	(rpa) ← A	·		
LDAX	rpa	1	7	A ← (rpa)			
EXX		1	4	Exchange register sets			
EX		1	4	V, A ↔ V, A			
BLOCK		1	13 (C+1)	(DE) ⁺ ← (HL) ⁺ , C ← C − 1			
			16-BI	T DATA TRANSFER			
SBCD	word	4	20	(word) ← C, (word + 1) ← B			
SDED	word	4	20	(word) ← E, (word + 1) ← D			
SHLD	word	4	20	(word) ← L, (word + 1) ← H			
SSPD	word	4	20	(word) ← SPL, (word + 1) ← SPH			
LBCD	word	4	20	C ← (word), B ← (word + 1)			
LDED	word	4	20	E ← (word), D ← (word + 1)			
LHLD	word	4	20	L ← (word), H ← (word + 1)			
LSPD	word	4	20	SP _L ← (word), SP _H ← (word + 1)	·		
PUSH	rp1	2	17	$(SP - 1) \leftarrow rp1_H, (SP - 2) \leftarrow rp1_L$			
POP	rp1	2	15	$rp1_{\text{H}} \leftarrow (SP)$ $rp1_{\text{H}} \leftarrow (SP + 1), SP \leftarrow SP + 2$			
LXI	rp, word	3	10	rp ← word			
TABLE		1	19	C ← (PC + 2 + A) B ← (PC + 2 + A + 1)			

	φ					•••	
MNEMONIC	OPERANDS	NO. BYTES	CLOCK CYCLES	OPERATION	SKIP CONDITION	FL/	
			Α	RITHMETIC			
ADD	A, r	2	8	A ← A + r		\$	‡
ADD	r, A	2	8	r←r+A	•	\$	‡
ADDX	rpa	2	11	A ← A + (rpa)		‡	‡
ADC	A, r	2	8	A A + r + CY		‡	‡
ADC	r, A	2	8	r ← r + A + CY		‡	‡
ADCX	rpa	2	11	A ← A + (rpa) + CY		\$	\$
SUB	A, r	2	8	A ← A − r		\$	‡
SUB	r, A	2	8	r←r-A		\$	‡
SUBX	rpa	2	11	A ← A − (rpa)		‡	\$
SBB	A, r	2	8	A - A - r - CY		\$	‡
SBB	r, A	2	8	r ← r − A − CY		‡	‡
SBBX	rpa	2	11	A ← A − (rpa) − CY		‡	\$
ADDNC	A, r	2	8	A ← A + r	No Carry	\$	\$
ADDNC	r, A	2	8	r←r+A	No Carry	‡	\$
ADDNCX	rpa	2	11	A ← A + (rpa)	No Carry	‡	‡
SUBNB	A,r	2	8	A ← A − r	No Borrow	\$	\$
SUBNB	r, A	2	8	r←r-A	No Borrow	‡	\$
SUBNBX	rpa	2	11	A ← A − (rpa)	No Borrow	‡	‡
			L	OGICAL			
ANA	A, r	2	8	A ← A ∧ r			‡
ANA	r, A	2	8	r←r∧A			‡
ANAX	rpa	2	11	A ← A ∧ (rpa)			‡
ORA	A, r	2	8	A ← A ∨ r			\$
ORA	r, A	2	8	r←r∨A			‡
ORAX	rpa	2	11	A ← A ∨ (rpa)			‡
XRA	A, r	2	8	A ← A ¥ r			‡
XRA .	r, A	2	8	A←r∀A			‡
XRAX .	rpa	2	11	A ← A ¥ (rpa)			\$
GTA	A, r	2	8	A-r-1	No Borrow	‡	t
				· · · · · · · · · · · · · · · · · · ·		-	

INSTRUCTION GROUPS	(CONT.)					-		
	MNEMONIC	OPERANDS	NO. BYTES	CLOCK	OPERATION	SKIP CONDITION		AGS
			L	L	GICAL (CONT.)	<u> </u>	L	
	GTAX	rpa	2	11	A - (rpa) - 1	No Borrow	ţ.	‡
	LTA	A, r	2	8	A – r	Borrow	ŧ	‡
	LTA	r, A	2	8	r - A	Borrow	‡	‡
	LTAX	rpa	2	11	A - (rpa)	Borrow	‡	‡
	ONA	A, r	2	8	AAr	No Zero		t
	ONAX	rpa	2	11	A ^ (rpa)	No Zero		‡
	OFFA	A, r	2	8	AAr	Zero		‡
	OFFAX	rpa 🐧	2	2 11	A ∧ (rpa)	Zero		. ‡
	NEA	A, r	2	8	A - r	No Zero	\$	‡
	NEA	r, A	2	8	r - A	No Zero	‡	‡
	NEAX	rpa	2	11	A - (rpa)	No Zero	‡	‡
	EQA	A, r	2	8	A-r	Zero	‡	\$
	EQA	r, A	2	8	r – A .	Zero	ţ	‡
	EQAX	rpa	2	11	A – (rpa)	Zero	‡	\$
			IMMEDI	ATE DATA	TRANSFER (ACCUMULATOR)			
	XRI	A, byte	2	7	A ← A ¥ byte			‡
	ADINC	A, byte	2	7	A ← A + byte	No Carry	‡	‡
	SUINB	A, byte	2	7	A ← A − byte	No Borrow	‡	‡
	ADI	A, byte	2	7	A ← A + byte		‡	‡
	ACI	A, byte	2	7	A ← A + byte + CY		\$	\$
	SUI	A, byte	2	7	A ← A − byte ^{2/3}		‡	‡
	SBI	A, byte	2	7	A ← A − byte − CY		‡	‡
	ANI	A, byte	2	- 7	A ← A ∧ byte			\$
	ORI	A, byte	2	7	A ← A ∨ byte			\$
	GTI	A, byte	2	7	A - byte - 1	No Borrow	‡	‡
	LTI	A, byte	2	7	A - byte	Borrow	‡	‡
	ONI	A, byte	2	7	A∧byte.	No Zero		‡
	OFFI	A, byte	2	7	A^ byte	Zero		‡
	NEI	A, byte 🧎	2	7	A - bytę	No Zero	‡	‡
	EØI	Å, byte	2	7	A - byte	Zero	\$	‡ [*]

MNEMONIC	OPERANDS	NO. BYTES	CLOCK	OPERATION	SKIP CONDITION	FL	AGS Z
MITCHIONE	OFERANDO		<u> </u>	DATA TRANSFER	CONDITION	10.	L <u>-</u>
XRI	r, byte	3	11	r ← r ¥ byte			ŧ
ADINC	r, byte	3	11	r ← r + byte	No Carry	‡	‡
SUINB	r, byte	3	11	r ← r − byte	No Borrow	‡	‡
ADI	r, byte	3	11	r ← r + byte		\$	1
ACI	r, byte	3	11	r ← r + byte + CY		‡	\$
SUI	r, byte	3	11	r←r-byte		‡	‡
SBI	r, byte	3	11	r ← r – byte – CY		1	‡
ANI	r, byte	3	11	r←r∧byte		1	‡
ORJ	r, byte	3	11	r ← r ∨ byte			t
GT!	r, byte	3	11	r – byte – 1	No Borrow	1	1
LTI	r, byte	3	11	r – byte	Borrow	1	, \$
ONI	r, byte	3	11	r∧byte	No Zero		‡
OFFI	r, byte	3	11	r∧ byte	Zero	,	‡
NEI	r, byte	3	11	r - byte	No Zero	\$	\$
EQI	r, byte	3	11	r – byte	Zero	\$	ţ
	IN.	MEDIAT	E DATA TI	RANSFER (SPECIAL REGISTER)		
XRI	sr2, byte	3	17	sr2 ← sr2 ¥ byte			\$
ADINC	sr2, byte	3	17	sr2 ← sr2 + byte	No Carry	1	ţ
SUINB	sr2, byte	3	17	sr2 ← sr2 – byte	No Borrow	‡	ţ
ADI	sr2, byte	3	17	sr2 ← sr2 + byte		‡	ţ
ACI	sr2, byte	3	17	sr2 ← sr2 + byte + CY		:	ţ
sui	sr2, byte	3	17	sr2 ← sr2 – byte		1	ţ
SBI	sr2, byte	3	17	sr2 ← sr2 – byte – CY		1	ţ
ANI	sr2, byte	3	17	sr2 ← sr2 ∧ byte			ţ
ORI	sr2, byte	3	17	sr2 ← sr2 ∨ byte			1
GTI	sr2, byte	3	14	sr2 – byte – 1	No Borrow	‡	ţ
LTI	sr2, byte	3 .	14	sr2 – byte	Borrow	‡	ţ
ONI	sr2, byte	3	14	sr2∧ byte	No Zero		1

	0050	NO.	CLOCK		SKIP		AGS			
MNEMONIC	OPERANDS	BYTES	CYCLES	OPERATION	CONDITION	CY	Z			
	IMMED	IATE DA	TA TRANS	SFER (SPECIAL REGISTER) (CO	NT.)					
OFFI	sr2, byte	3	14	sr2∧byte	Zero		‡			
NEI	sr2, byte	3	14	sr2 – byte	No Zero	ţ	‡			
EQI	sr2, by te	3	14	sr2 – byte	Zero	‡	ţ			
	WORKING REGISTER									
XRAW	wa	3	14	A ← A ¥ (V, wa)			‡			
ADDNCW	wa	3	14	A ← A + (V, wa)	No Carry	1	‡			
SUBNBW	wa	3	14	A ← A ~ (V, wa)	No Borrow	.\$	ţ			
ADDW	wa	3	14	A ← A + (V, wa)		‡	ţ			
ADCW	wa	3	14	A ← A + (V, wa) + CY		‡	\$			
SUBW	wa	3	14	A ← A − (V, wa)		‡	t			
SBBW	wa	. 3	14	A ← A − (V, wa) − CW		Į į	‡			
ANAW	wa	3	14	A ← A ∧ (V, wa)			\$			
ORAW	wa	3	14	$A \leftarrow A \lor (V, wa)$			-\$			
GTAW	wa	3	14	A ← (V, wa) ~ 1	No Borrow	1	‡			
LTAW	wa	3	14	A - (V, wa)	Borrow	ţ	\$			
ONAW	wa .	3	14	A ∧ (V, wa)	No Zero		‡			
OFFAW	wa .	3	14	A ∧ (V, wa)	Zero		\$			
NEAW	wa	3	14	A – (V, wa)	No Zero	î	‡			
EQAW	wa	3	14	A - (V, wa)	Zero	1	\$			
ANIW	wa, b y te	3	16	(V, wa) ← (V, wa) ∧ byte			\$			
ORIW	wa, byte	3	16	(V, wa) ← (V, wa) ∨ byte			ţ			
GTIW	wa, byte	3	13	(V, wa) – byte – 1	No Borrow	1	1			
LTIW	wa, byte	3	13	(V, wa) – byte	Borrow	1	1			
ONIW	wa, byte	3	13	(V, wa)∧ byte	No Zero		‡			
OFFIW	wa, byte	3	13	(V, wa)∧ byte	Zero		1			
NEIW	wa, byte	3	13	(V, wa) - byte	No Zero	ı	ţ			
EQIW	wa, byte	3	13	(V, wa) – byte	Zero	ı	1			
			INCRE	MENT/DECREMENT		•				
INR .	r2	1	4	r2 ← r 2 + 1	Carry		1			
INRW	, wa	2	13	(V, wa) ← (V, wa) + 1	Carry		ţ			

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	NO. BYTES	CLOCK	OPERATION	SKIP CONDITION	FL/ CY	_	
				IENT/DECREMENT (CONT.)		L_		
DCR	r2	1	4	r2 ← r2 – 1	Borrow		1	
DCRW	wa	2	13	(V, wa) ← (V, wa) – 1	Borrow		1	
INX	rp	1	7	rp ← rp + 1		_	T	
DCX	rp	` 1	7	rp ← rp – 1			T	
	L					L	Ц	
DAA		1	4	Decimal Adjust Accumulator		1	t	
STC		2	8	CY ← 1		1		
CLC		2	8	CY ← 0		0		
ROTATE AND SHIFT								
RLD		2	17	Rotate Left Digit				
RRD		2	17	Rotate Right Digit				
RAL		2	8	Am + 1 ← Am, A ₀ ← CY, CY ← A ₇		î		
RCL		2	8	$Cm + 1 \leftarrow Cm, C_0 \leftarrow CY, CY \leftarrow C_7$		1	T	
RAR		2	8	Am - 1 ← Am, A ₇ ← CY, CY ← A ₀		‡	Γ	
RCR		2	8	$Cm - 1 \leftarrow Cm, C_7 \leftarrow CY, CY \leftarrow C_0$		1	T	
SHAL		2	8	Am + 1 ← Am, A ₀ ← 0, CY ← A ₇		1	T	
SHCL		2	8	Cm + 1 ← CM, C ₀ ← 0, CY ← C ₇		1	T	
SHAR		2	8	Am - 1 ← Am, A ₇ ← 0, CY ← A ₀		1	T	
SHCR		2	8	Cm - 1 ← Cm, C ₇ ← 0, CY ← C ₀		1		
				JUMP	L	L	_	
JMP	word	3	10	PC ← word			Γ	
JB		1	4	PC _H ← B, PC _L ← C				
JR .	word	1	13	PC ← PC + 1 + jdisp1				
JRE	word	2	13	PC ← PC + 2 + jdisp			T	
				CALL				
CALL	word	3	16	(SP - 1) ← (PC - 3) _H , (SP - 2) ← (PC - 3) _L , PC ← word			Γ	
CALB		1	13	(SP - 1) ← (PC - 1) _H , (SP - 2) ← (PC - 1) _L , PC _H ← B, PC _L ← C				
CALF	word	2	16	(SP-1)←(PC-2) _H , (SP-2)←(PC-2) _L PC15 ~ 11 ← 00001, PC10 ~ 0 ← fa			Γ	
CALT.	word	1	19	(SP-1)←(PC-1) _H ,(SP-2)←(PC-1) _L PC ₁ ←(128-2ta), PC _H ←(129+2ta)				
SOFTI		1	19	(SP - 1) ← PSW, SP - 2, (SP - 3) ← PC PC ← 0060 _H , SIRQ ← 1			T	

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	NO. BYTES	CLOCK CYCLES	OPERATION	SKIP CONDITION	FLA	GS Z
	L		J	RETURN	<u> </u>	L	L
RET		1	11	PC _L ← (SP), PC _H ← (SP + 1) SP ← SP - 2			
RETS		1	11+a	PC _L ← (SP), PC _H ← (SP + 1), SP ← SP + 2, PC ← PC + n		 	
RETI		1	15	PC _L ← (SP), PC _H ← (SP + 1) PSW←(SP+2), SP←SP+3, SIRQ←0			
				SKIP	<u> </u>	L	I
ВІТ	bit, wa	2	10	Bit test	(V, wa) _{bit} = 1)	Ι	
skc		2	8	Skip if Carry	CY = 1		
SKNC		2	8	Skip if No Carry	CY = 0		
SKZ		2	8	Skip if Zero	Z = 1		
SKNZ	•	2	8	Skip if No Zero	Z = 0		
SKIT	f	2	8	Skip if INT X = 1, then reset INT X	f = 1		
SKNIT	f	2	8	Skip if No INT X otherwise reset INT X	f = 0		
	L		СР	U CONTROL			L
NOP		1	4	No Operation			
EI		2	8	Enable Interrupt			
DI		2	8	Disable Interrupt			
HLT		1	6	Halt			
	L		SERIA	AL PORT CONTROL	· •	1	
SIO		1	4	Start (Trigger) Serial I/O			
STM		1	4	Start Timer			
			IN	PUT/OUTPUT			
IN	byte	2	10	AB ₁₅₋₈ ← B,AB ₇₋₀ ← byte A ← DB ₇₋₀			
OUT	byte	2	10	AB ₁₅₋₈ ← B,AB ₇₋₀ ← byte DB ₇₋₀ ← A	,		
PEX		2	11	PE ₁₅₋₈ ← B, PE ₇₋₀ ← C			
PEN		2	11	PE ₁₅₋₁₂ ← B ₇₋₄			
PER		2	11	Port E AB Mode			

Program Status Word (PSW) Operation

		PERATION				D6	D5	D4	D3	D2	DO
	REG, MEMO		IMME	DIATE	SKIP	Z	SK	HC	L1	LO	CY
ADD ADC SUB SBB	ADDW ADCW SUBW SBBW	ADDX ADCX SUBX SBBX	ADI ACI SUI SBI			‡	0	‡	0	0	‡
ANA ORA XRA	ANAW ORAW XRAW	ANAX ORAX XRAX	ANI ORI XRI	ANIW		‡ .	0	•	0	0	•
ADDNC SUBNB GTA LTA	ADDNCW SUBNBW GTAW LTAW	ADDNCX SUBNBX GTAX LTAX	ADINC SUINB GTI LTI	GTIW LTIW		‡	‡	‡	0	0	\$
ONA OFFA	ONAW OFFAW	ONAX OFFAX	ONI OFFI	ONIW OFFIW		\$	\$	•	0	0	•
NEA EQA	NEAW EQAW	NEAX EQAX	NEI EQI	NEIW EQIW		\$	‡	‡	0	0	\$
INR DCR	INRW DCRW					\$	\$	\$	0	0	•
DAA						\$	0	\$	0	0	‡
	R, RCL, RCR IAR, SHCL, S					•	0	•	0	0	‡
RLD, RR	D					•	0	•	0	0	•
STC						•	0	•	0_	0	1
CLC						•	0	•	0	0	0
			MVIA	A, byte		•	0	•	1	0	•
				., byte I, word		•	0	•	0	1	•
	,				BIT SKC SKNC SKZ SKNZ SKIT SKNIT	•	\$	•	0	0	•
		1			RETS	• .	1	•	0	0	•
	All ot	her instruction	ns			•	0	•	0	0	•

^{\$} Flag affected according to result of operation

¹ Flag set

⁰ Flag reset

Flag not affected

ABSOLUTE MAXIMUM **RATINGS***

Operating Temperature	-10°C to +70°C
Storage Temperature	-65°C to +125°C
Voltage On Any Pin	0.3V to +7.0V

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*T_a = 25°C

DC CHARACTERISTICS $-10 \text{ to } +70^{\circ}\text{C}$, $V_{CC} = +5.0\text{V} \pm 10\%$

10 to
$$+70^{\circ}$$
 C. $V_{CC} = +5.0 V \pm 10\%$

		LIMITS			TEST	
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	CONDITIONS
Input Low Voltage	VIL	0		0.8	٧	
Input High Voltage	V _{IH1}	2.0		Vcc	V	Except SCK, X1
input high voitage	V _{IH2}	3.8		Vcc	V	SCK, X1
Output Low Voltage	VOL			0.45	V	IOL = 2.0 mA
Outros High Voltage	V _{OH1}	2.4			V	I _{OH} = -100 μA
Output High Voltage	V _{OH2}	2.0			V	IOH = -500 μA
Low Level Input Leakage Current	^I LIL			-10	μΑ	V _{IN} = 0V
High Level Input Leakage Current	¹ LIH			10	μА	VIN = VCC
Low Level Output Leakage Current	¹ LOL			-10	μΑ	V _{OUT} = 0.45V
High Level Output Leakage Current	ILOH			10	μΑ	V _{OUT} = V _{CC}
V _{CC} Power Supply Current	¹ CC		110	200	mA	

CAPACITANCE Ta = 25°C, VCC = GND = 0V

			LIMIT	S		TEST
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	CONDITIONS
Input Capacitance	Cl			10	рF	fc = 1 MHz
Output Capacitance	co			20	pF	All pins not
Input/Output Capacitance	CIO			20	pF	under test at 0V

 $-10 \text{ to } +70^{\circ}\text{C}, V_{\text{CC}} = +5.0\text{V} \pm 10\%$

CLOCK TIMING

		LIM	IITS		TEST
PARAMETER	SYMBOL	MIN	MAX	UNITS	CONDITIONS
X1 Input Cycle Time	tCYX	227	1000	ns	
X1 Input Low Level Width	tXXL	106		ns	
X1 Input High Level Width	txxH	106		ns	
ΦΟUT Cycle Time	^t CY ϕ	454	2000	ns	
ΦOUT Low Level Width	[†] φφL	150		ns]
$\phi_{ extsf{OUT}}$ High Level Width	^t φφΗ	150		ns	1
φ _{OUT} Rise/Fall Time	t _r ,t _f		40	ns	

READ/WRITE OPERATION

		LIM	ITS		TEST
PARAMETER	SYMBOL	MIN	MAX	UNITS	CONDITIONS
RD L.E. → ØOUT L.E.	^t Rφ	100		ns	
Address (PE ₀₋₁₅) → Data	tAD1		550 + 500 x N	ns	
Input					
RD T.E. → Address	^t RA	200(T3); 700(T4)		ns	
RD L.E. → Data Input	tRD		350 + 500 x N	ns	
RD T.E. → Data Hold	tRDH	0		ns	
Time					
RD Low Level Width	tRR	850 + 500 x N		ns	
RD L.E. → WAIT L.E.	tRWT		450	ns	
Address (PE ₀₋₁₅) →	tAWT1		650	ns	
WAIT L.E.					
WAIT Set Up Time	twrs	290		ns	
(Referenced from					
ΦΟUT L.E.)					
WAIT Hold Time	tWTH	0		ns	
(Referenced from					
φουτ L.E.)					
M1 → RD L.E.	tMR	200		ns	t _{CYφ.} = 500 ns
RD T.E. → M1	tRM	200		ns	$ {}^{3}C\gamma \phi, {}^{3}C\gamma \phi, $
IO/M → RD L.E.	t _{IR}	200		ns .	, '
RD T.E. → IO/M	^t RI	200		ns	
ΦOUT L.E. → WR L.E.	tφW	40	125	ns	
Address (PE ₀₋₁₅) →	tΑφ	100	300	ns	
ΦOUT T.E.					
Address (PE ₀₋₁₅) →	tAD2	450		ns	
Data Output					
Data Output → WR	tDW	600 + 500 x N		ns	
T.E.					
WR T.E. → Data	tWD	150		ns	
Stabilization Time					
Address (PE ₀₋₁₅) → WR L.E.	tAW	400		ns	
WR T.E. → Address			,		
WH I.E. → Address Stabilization Time	tWA	200		ns	
WR Low Level Width	*1484	600 + 500 × N		ns	1
IO/M→WR L.E.	tww				
WR T.E. → IO/M	tIW	500		ns	
WR 1.E. → 10/M	tWI	250	L	ns	

SERIAL I/O OPERATION

PARAMETER	SYMBOL	MIN	мах	UNIT	CONDITION
SCK Cycle Time	• • • • • • • • • • • • • • • • • • • •	800		ns	SCK Input
SCR Cycle Time	tCYK	900	4000	ns	SCK Output
SCK Low Level Width	•	350		ns	SCK Input
SCK Low Level Width	tKKL	400		ns	SCK Output
SCK High Level Width	*****	350		ns	SCK Input
SCK High Level Width	tKKH	400		ns	SCK Output
SI Set-Up Time (referenced from SCK T.E.)	t S IS	140		ns	
SI Hold Time (referenced from SCK T.E.)	^t SIH	260		ns	
SCK L.E. → SO Delay Time	^t K0		180	ns	
SCS High → SCK L.E.	^t CSK	100		ns	
SCK T.E. → SCS Low	tKCS	100		ns	
SCK T.E. → SAK Low	^t KSA		260	ns	

HOLD OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
HOLD Set-Up Time (referenced from ØOUT L.E.)	tHDS ₁	200		ns ns	
HOLD Hold Time (referenced from ØOUT L.E.)	tHDH	0		ns	t _{CYφ} = 500 ns
Ø _{OUT} L.E. → HLDA	t DHA	110	100	ns	
HLDA High → Bus Floating (High Z State)	tHABF	-150	150	ns	
HLDA Low → Bus Enable	tHABE		350	ns	

Notes:

1 AC Signal waveform (unless otherwise specified)

- ② Output Timing is measured with 1 TTL + 200 pF measuring points are V_{OH} = 2.0V V_{OL} = 0.8V
- 3 L.E. = Leading Edge, T.E. = Trailing Edge

 $t_{\text{CY}\phi}$ DEPENDENT AC PARAMETERS

AC CHARACTERISTICS (CONT.)

PARAMETER	EQUATION	MIN/MAX	UNIT
^t Rφ	(1/5) T	MIN	ns
tAD ₁	(3/2 + N) T - 200	MAX	ns
t _{RA} (T ₃)	(1/2) T ~ 50	MIN	ns
t _{RA} (T ₄)	(3/2) T - 50	MIN	ns
^t RD	(1 + N) T - 150	MAX	ns
^t RR	(2 + N) T - 150	MIN	ns
^t RWT	(3/2) T - 300	MAX	ns
tAWT ₁	(2) T - 350	MAX	ns
^t MR	(1/2) T - 50	MIN	ns
^t RM	(1/2) T - 50	MIN	ns
^t IR	(1/2) T - 50	MIN	ns
tRI	(1/2) T - 50	MIN	ns
t_{\phiW}	(1/4) T	MAX	ns
$^{t}A\phi$	(1/5) T	MIN	ns
t _{AD2}	T - 50	MIN	ns
^t DW	(3/2 + N) T - 150	MIN	ns
^t WD	(1/2) T - 100	MIN	ns
^t AW	T - 100	MIN	ns
^t WA	(1/2) T - 50	MIN	ns
^t WW	(3/2 + N) T - 150	MIN	ns
tIW	Т	MIN	ns
^t WI	(1/2) T	MIN	ns
^t HABE	(1/2) T - 150	MAX	ns

Notes: 1 N = Number of Wait States

② $T = t_{CY\phi}$

3 Only above parameters are $\mathbf{t_{CY}}_{\phi}$ dependent

(4) When a crystal frequency other than 4 MHz is used ($t_{\rm CY_\phi}$ = 500 ns) the above equations can be used to calculate AC parameter values.

CLOCK TIMING

TIMING WAVEFORMS

TIMING WAVEFORMS (CONT.)

READ OPERATION

WRITE OPERATION

SERIAL I/O OPERATION

HOLD OPERATION

PACKAGE INFORMATION

STRAIGHT LEADS

	(Plastic)					
ITEM	ITEM MILLIMETERS I					
A	41 8 MAX	1 65				
В	1 22	0.06				
С	2 54	0 1				
D	05:01	0 02 · 0 004				
E	39 37	1 55				
F	1 27	0.05				
G	6 75	0 27				
н	93	0 37				
1	36	0 14				
J	35 1	1 38				
K	30 0	1 18				
L	16 5	0 65				
м	0 25 : 0 05	0 01 : 0 002				

7801 DS-12-80-CAT