

Höhere Mathematik 4

1. Nützliches Wissen $e^{ix} = \cos(x) + i \cdot \sin(x)$

1.1 Sinus, Cosinus $\sin^2(x) + \cos^2(x) = 1$								
x φ	0 0°	π/6 30°	π/4 45°	π/3 60°	$\frac{1}{2}\pi$ 90°	π 180°	$1\frac{1}{2}\pi$ 270°	2π 360°
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	1 0	-1	0	1
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	±∞	0	∓∞	0

Additionstheoreme Stammfunktionen

$\cos(x - \frac{\pi}{2}) = \sin x$	$\int x \cos(x) \mathrm{d}x = \cos(x) + x \sin(x)$
$\sin(x + \frac{\bar{\pi}}{2}) = \cos x$	$\int x \sin(x) dx = \sin(x) - x \cos(x)$
$\sin 2x = 2\sin x \cos x$	$\int \sin^2(x) \mathrm{d}x = \frac{1}{2} \left(x - \sin(x) \cos(x) \right)$
$\cos 2x = 2\cos^2 x - 1$	$\int \cos^2(x) \mathrm{d}x = \frac{1}{2} \left(x + \sin(x) \cos(x) \right)$
$\sin(x) = \tan(x)\cos(x)$	$\int \cos(x)\sin(x) = -\frac{1}{2}\cos^2(x)$

Sinus/Cosinus Hyperbolicus sinh, cosh

$\sinh x = \frac{1}{2}(e^x - e^{-x}) = -i \text{ si}$	$n(ix)$ $\cosh^2 x - \sinh^2 x = 1$
$ \cosh x = \frac{1}{2}(e^x + e^{-x}) = \cos(ix) $	$(x) \qquad \cosh x + \sinh x = e^x$
Kardinalsinus $si(x) = \frac{sin(x)}{x}$	genormt: $\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$

1.2 Integrale $\int e^x dx = e^x = (e^x)'$

Partielle Integration: $\int uw' = uw - \int u'w$ Substitution: $\int f(g(x))g'(x) dx = \int f(t) dt$

F(x)	f(x)	f'(x)
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}
$\frac{2\sqrt{ax^3}}{3}$	\sqrt{ax}	$\frac{a}{2\sqrt{ax}}$
$x \ln(ax) - x$	$\ln(ax)$	$\frac{a}{x}$
$\frac{1}{a^2}e^{ax}(ax-1)$	$x \cdot e^{ax}$	$e^{ax}(ax+1)$
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$
$-\ln \cos(x) $	$\tan(x)$	$\frac{1}{\cos^2(x)}$

 $\int e^{at} \sin(bt) dt = e^{at} \frac{a \sin(bt) + b \cos(bt)}{a^2 + b^2}$

$$\int \frac{\mathrm{d}t}{\sqrt{at+b}} = \frac{2\sqrt{at+b}}{a} \qquad \qquad \int t^2 e^{at} \, \mathrm{d}t = \frac{(ax-1)^2 + 1}{a^3} e^{at}$$
$$\int t e^{at} \, \mathrm{d}t = \frac{at-1}{2a} e^{at} \qquad \qquad \int x e^{ax^2} \, \mathrm{d}x = \frac{1}{2a} e^{ax^2}$$

1.3 Exponentialfunktion und Logarithmus

$a^x = e^{x \ln a}$	$\log_a x = \frac{\ln x}{\ln a}$	$\ln x \le x - 1$
$\ln(x^a) = a \ln(x)$	$\ln(\frac{x}{a}) = \ln x - \ln a$	log(1) = 0

1.4 Determinante von $A \in \mathbb{K}^{n \times n}$: det(A) = |A|

$$\begin{split} \det \begin{pmatrix} \pmb{A} & \pmb{0} \\ \pmb{C} & \pmb{D} \end{pmatrix} &= \det \begin{pmatrix} \pmb{A} & \pmb{B} \\ \pmb{0} & \pmb{D} \end{pmatrix} = \det (\underline{\pmb{A}}) \cdot \det (\underline{\pmb{D}}) \\ \text{Hat } \pmb{A} \text{ 2 linear abhäng. Zeilen/Spalten} &\Rightarrow |\pmb{A}| = 0 \end{split}$$

Entwicklung. n. iter Zeile: $|\mathbf{A}| = \sum_{i=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot |\mathbf{A}_{ij}|$

Inverse
$$2 \times 2$$
:
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$|\mathbf{i}| = \sqrt{-1}$$
 $|\mathbf{z}|^2 = \mathbf{z}\mathbf{z}^* = x^2 + y^2$

1.5 Reihen

$\sum\limits_{n=1}^{\infty} rac{1}{n} ightarrow \infty$ Harmonische Reihe	$\sum_{n=0}^{\infty} q^n \stackrel{ q < 1}{=} \frac{1}{1-q}$ Geometrische Reihe	$\sum\limits_{n=0}^{\infty} rac{z^n}{n!} = e^z$ Exponentialreihe

1.6 Wichtige Formeln

П		
	Dreiecksungleichung:	$ x - y \le x \pm y \le x + y $
	Cauchy-Schwarz-Ungleichung:	$\begin{aligned} x - y &\le x \pm y \le x + y \\ \underline{\boldsymbol{x}}^{\top} \cdot \underline{\boldsymbol{y}} &\le \underline{\boldsymbol{x}} \cdot \underline{\boldsymbol{y}} \end{aligned}$
	Bernoulli-Ungleichung:	$(1+x)^n \ge 1 + nx$
	Aritmetrische Summenformel	$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$
	Geometrische Summenformel	$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$
	Binomialkoeffizient	$\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k! \cdot (n-k)!}$
П		·

2. Grundlagen der Numerik

Begriffe:

	Numerik	liefert eine zahlenmäßige Lösung eines Problems mit einem Algorithmus.
	Kondition	Ein Maß wie stark sich Eingabefehler auf die Ausgabe auswirken. $\kappa=\frac{\ \delta f\ }{\ \delta x\ } o f'(x) $
Ī	$f(x)$ $\tilde{f}(\tilde{x})$	Mathematisches Problem f mit exakter Eingabe x Numerischer Algorithmus \tilde{f} mit gerundeter Eingabe \tilde{x}

2.1 Zahlen und Arithmetik im Rechner

Gleitkommazahlen nach IEEE 754: $Wert = (-1)^s \cdot 2^{e-127} \cdot 1.f$ $s \in \{-1, 1\}$: Vorzeichen, $e \in \mathbb{Z}$: Exponent, $f \in \mathbb{N}$: Mantisse

$$\mathbb{G}_{b,t} = \{x \in \mathbb{G}_{b,t} \mid e_{\mathsf{min}} \leq e_{\mathsf{max}}\} \cup \{\pm \infty, \mathsf{NaN}\}$$

$$\begin{array}{l} \mathbb{M}_{b,t,e_{\min},e_{\max}} = \left\{x \in \mathbb{G}_{b,t} \mid e_{\min} \leq e \leq e_{\max}\right\} \cup \left\{\pm\infty,\mathsf{NaN}\right\} \\ \mathsf{Anzahl} \ \mathsf{der} \ \mathsf{Maschinenzahlen} \ |\mathbb{M}| = 2a(b-1)b^{t-1} + 1 \end{array}$$

Maschinengenauigkeit $\epsilon_{b,t} = b^{-(t-1)}$

In MATLAB: $\epsilon_{2.53} \approx 2 \times 10^{-16}$ Runden: $fl_{b,t}(x)$

2.2 Kondition:

$$\begin{split} \kappa_{\mathsf{abs}}(x) &= \left| f'(x) \right| \qquad \kappa_{\mathsf{rel}}(x) = \frac{\left| f'(x) \right| \cdot |x|}{|f(x)|} \\ \mathsf{Falls} \; \kappa_{\mathsf{rel}} &\ll 100 \text{: gute Konditionierung} \end{split}$$

Verkettung h = g(f(x)) $\kappa_{abs}^{h}(x) = \kappa_{abs}^{g}(f(x))\kappa_{abs}^{f}(x)$

2.3 Fehler

Absolut: $\|\tilde{f}(x) - f(x)\|$ Relativ: $\|\tilde{f}(x) - f(x)\|$

2.4 Stabilität

$$\forall x \in X \quad \wedge \quad \tilde{x} : \frac{\|x - \tilde{x}\|}{\|x\|} = \mathcal{O}(\epsilon_{b,t})$$

$$\dots \qquad \|\tilde{f}(x) - f(\tilde{x})\|$$

 $\begin{aligned} & \text{Vorwärtsstabil: } \frac{\left\|\tilde{f}(x) - f(\tilde{x})\right\|}{\left\|f(x)\right\|} = \mathcal{O}(\epsilon_{b,t}) \\ & \text{Rückwärtsstabil: } \forall x \in X : \tilde{f}(x) = f(\tilde{x}) \end{aligned}$

Horna-Schema für Polynome: $(...((a_n)x+a_{n-1})x+...+a_1)x+a_0$

3. Matrix Zerlegung

3.1 LR-Zerlegung von Matrizen (Lower and Upper)

Geeignetes Lösungsverfahren für $\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$, falls n < 500 $A = L \cdot R$ mit R ist obere $\widetilde{\text{Drejecksmatrix}}$

Gaußverfahren durch Matrixmultinlikaiton

- ullet Zerlegen des Problems $A\underline{x}=\underline{b}$ in das Problem $L(R\underline{x})=\underline{b}$ mit A = LR bzw. Ly = Pb (mit Pivotisierung)
- Zerlegungsmatrix (für 2 × 2):

$$\underline{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \rightarrow \begin{bmatrix} a & b \\ \frac{c}{a} & d - \frac{c}{a}b \end{bmatrix} = \underline{A}^*$$
 mit den Eliminations-

- Für jede Spalte der unteren Dreiecksmatrix wiederholen. Für eine 3 × 3 Matrix bräuchte man 2 Durchläufe, da 3 Spalten Elimationsfaktoren bestimmt werden müssen.
- $R = triu(A^*)$

(obere Dreiecksmatrix von A^* , inkl. Diagonalelemente)

- $L = tril(A^*, -1) + 1$
- (untere Dreiecksmatrix mit 1en auf der Diagonale.
- ullet Vorwärtseinsetzen: $Ly = \underline{b}$ bzw. $Ly = P\underline{b}$ (mit Pivotisierung)
- ullet Rückwärtseinsetzen: $R\underline{x} = y$ (Löse nach \underline{x})

3.1.1 Pivotisierung (Spaltenpivotsuche)

Permutationsmatrix $P^{\top} = P^{-1}$ vertauscht Zeilen, damit LR Zerlegung bei 0 Einträgen möglich ist. Tausche so, dass man durch die betragsmäßig größte Zahl dividiert (Pivoelement)

3.2 QR-Zerlegung

$$\widetilde{\boldsymbol{A}} = \boldsymbol{Q} \widetilde{\boldsymbol{R}} \text{ mit } \boldsymbol{Q}^{-1} = \boldsymbol{Q}^{\top}$$

Verfahren: Housholder (numerisch stabil), Gram-Schmidt, Givens Rotati-

 $\underbrace{\underbrace{A}^{EZF}}_{\text{Aufgabe: Finde Vektor }\underline{v}}\underbrace{\underbrace{\tilde{H}}_{EZF}}_{\text{Oethorsechain}}\underbrace{\underbrace{\tilde{H}}_{EZF}}_{\text{Enkrecht auf}}\underbrace{\underbrace{\tilde{H}}_{EZF}}_{\text{Enkrecht auf}}\underbrace{\underbrace{\tilde{H}}_{EXF}}_{\text{Enkrecht auf}}\underbrace{\underbrace{\tilde{H}}_{EXF}}_{\text{Enkrecht auf}}\underbrace{\underbrace{\tilde{H}}_{EXF}}_{\text{Enkrecht auf}}\underbrace{\underbrace{\tilde{H}}_{EXF}}_{\text{Enkrecht auf}}\underbrace{\underbrace{\tilde{H}}_{EXF}}_{\text{Enkrecht auf}}\underbrace{\underbrace{\tilde{H}}_{EXF}}_{\text{Enkrecht auf}}\underbrace{\underbrace{\tilde{H}}_{EXF}}_{\text{Enkrecht auf}}\underbrace{\underbrace{\tilde{H}}_{EXF}}_{\text{Enkrecht auf}}\underbrace{\underbrace{\tilde{H}}_{EXF}}_{\text{Enkrecht auf}}\underbrace{\underbrace{\tilde{H}}_{EXF}}_{\text{Enkrec$

Q/R Zerlegung für $oldsymbol{A} \in \mathbb{R}^{m imes n}$

- ullet Setze $\underline{m{a}} = \underline{m{s}}_1$ (erste Spalte) und $\underline{m{v}} = \underline{m{a}} + \mathrm{sgn}(a_1) \, \| \underline{m{a}} \| \, \underline{m{e}}_1$
- Konstruiere die Householder Transformationsmatrix mit $\underbrace{\boldsymbol{H}}_{v} = \underbrace{\boldsymbol{E}}_{m} - \frac{2}{\boldsymbol{v}^{\top} \boldsymbol{v}} \underline{\boldsymbol{v}} \underline{\boldsymbol{v}}$
- Erhalte die Matrix $H_v A$ die in der ersten Spalte bis auf das Element a₁₁ nur Nullen enthält
- Setze $Q_1 = H_v$
- ullet Wende den gleichen Algorithmus auf die Untermatrix $oldsymbol{A}^*$ ($oldsymbol{H}_voldsymbol{A}$ ohne erste Zeile und Spalte) an.
- Setze anschließend $Q_2 = H_v$ und fülle mit erweitere mit E_m (d.h. erste Zeile und Spalte die von E_m)
- Nach $p = \min\{m-1, n\}$ Schritten: $H_v A^*$ ist obere Dreiecksmatrix → Disco, disco, party, party;)
- Somit ist mit $Q^{\top} = Q_n \cdots Q_1$ ist $Q^{\top} A = R$ und A = QR

Lösen von LGSen mit der QR Zerlegung Bestimme \underline{x} durch Rückwärtssubsitution aus $R\underline{x} = Q^{\top}\underline{b}$

Anwendung in der linearen Ausgleichsrechnung (Minimierung d. Re-

Problem: $A^{\top}Ax = A^{\top}b$ mit $A \in \mathbb{R}^{m \times n}$ und $b \in \mathbb{R}^m$

Lösen der Normalengleichung

- $\begin{array}{l} \bullet \ \ \text{Bestimme eine reduzierte QR-Zerlegung} \\ \underline{\boldsymbol{A}} = \tilde{\boldsymbol{Q}} \underline{\tilde{\boldsymbol{R}}} \ \text{mit} \ \tilde{\boldsymbol{Q}} \in \mathbb{R}^{m \times n}, \tilde{\boldsymbol{R}} \in \mathbb{R}^{n \times n} \\ \end{array}$
- ullet Löse $ilde{R} oldsymbol{x} = ilde{Q}^ op oldsymbol{b}$

$$\left\|\underline{\underline{b} - \underline{A}\underline{x}}\right\|^2 = \left\|\underline{Q}^{\top}(\underline{b} - \underline{A}\underline{x})\right\|^2 = \left\|\underline{\underline{b}} - \underline{\underline{R}}\underline{x}\right\|^2 + \left\|\underline{c}\right\|^2 \ge \left\|\underline{c}^2\right\|$$

4. Fixpunktiteration

Nullstellenproblem f(x) = 0Fixpunktproblem $\phi(x) = x$ mit $\phi(x) = g(x)f(x) + x$

Rekursive Lösung: $x_{i+1} = \phi(x)$

Bsp: $x^7 - x - 2$ $x = \sqrt[7]{x+2}, x = x^7 - 2$ MATLAB: x=s; for k=1:n; x=phi(x); end

4.1 Konvergenz von Iterationsverfahren

Falls $(x_k)_k$ mit $x_0 = s$ und $x_{k+1} = \phi(x_k)$ dann ist der Grenzwert von Falls $(x_k)_k$ time $x_0 = 0$ and $x_{k+1} = \sqrt{-x_k}$, $(x_k)_k$ ein Fixpunkt von ϕ , denn $x = \lim_{k \to \infty} \phi(x_k) = \phi(\lim_{k \to \infty} x_k) = 0$ $\phi(x)$

Fehler $e_k = |x_k - x_*|$

Libschitzstetig: $\exists L < \infty : ||f(a) - f(b)|| < L ||a - b||$ Globaler Konvergenzsatz von Banach für $\phi:D o\mathbb{R}^n$

- $D \subseteq \mathbb{R}^n$ ist abgeschlossen
- $f(\overline{D}) \subseteq D$ (Selbstabbildung)
- $\exists L = \sup_{x \in D} \|\phi'(x)\| < 1$ (Kontraktion)

Dann konvergiert $\phi \ \forall x_0 \in D$ eindeutig gegen x_* und es gilt folgende Fehlerabschätzung:

- A-Priori: $||x_k x_*|| \le \frac{L^k}{1-L} ||x_1 x_0|| \le \varepsilon$
- A-posteriori: $||x_k x_*|| \le \frac{L}{1-L} ||x_k x_{k-1}||$
- ullet Für Genauigkeit arepsilon: $k \geq \ln\left(rac{arepsilon(1-L)}{\|x_1-x_0\|}
 ight)/\ln(L)$

Lokale Konvergenz ohne Norm: Falls $\max \lambda_i < 1$ mit λ_i is EW von J_{ϕ}

5. Iterative Näherungsverfahren

Problemstellung

Schreibe Ax = b in ein Fixpunktproblem um:

Finde A = M - N mit M ist invertierbar. $\Rightarrow (M - N)\underline{x} = \underline{b}$

$$\phi(\underline{x}) = \underline{M}^{-1}\underline{N}\underline{x} + \underline{M}^{-1}\underline{b} = \underline{T}\underline{x} + \underline{C}$$

Für jedes $x_0 \in \mathbb{R}^n$ konvergent, falls Spektralradius $\rho(\boldsymbol{M}^{-1}\boldsymbol{N}) < 1$ Je kleiner der Spektralradius von $M^{-1}N$ desto bessere Konvergenz.

 $\mathbf{A} = \mathbf{M} - \mathbf{N}$ Systemmatrix Diagonalmatrix diag(diag(A))negative linke untere Dreiecksmatrix negative rechte obere Dreiecksmatrix

Wichtige Begriffe

Diagonaldominante Matrix: Diagonalelemente sind größer als die restlichen Elemente der selben Zeile: $|a_{ii}| > \sum_{i} |a_{ij}|$ mit $j \neq i$

Spektralradius $\rho(A)$ einer Matrix A: Betragsmäßig größter Eigenwert. Konvergenzbeweis aller Verfahren: Gershgorinkreise um die Null mit r <

5.1 Jacobiverfahren

Konvergiert $\forall x_0 \in \mathbb{R}^n$, falls \boldsymbol{A} strikt diagonaldominant.

$$\underline{\boldsymbol{x}}_0 = s \in \mathbb{R}^n \qquad \underline{\boldsymbol{M}} = \underline{\boldsymbol{\mathcal{D}}} \qquad \underline{\boldsymbol{N}} = \underline{\boldsymbol{\mathcal{L}}} + \underline{\boldsymbol{\mathcal{R}}} = \underline{\boldsymbol{\mathcal{D}}} - \underline{\boldsymbol{\mathcal{A}}}$$

$$\boxed{\underline{\boldsymbol{x}}_{k+1} = \phi(\underline{\boldsymbol{x}}_k) = \underline{\boldsymbol{\mathcal{D}}}^{-1} \cdot (\underline{\boldsymbol{\mathcal{D}}} - \underline{\boldsymbol{\mathcal{A}}}) \cdot \underline{\boldsymbol{x}}_k + \underline{\boldsymbol{\mathcal{D}}}^{-1}\underline{\boldsymbol{b}}}$$

Komponentenweise:
$$x_1, \dots = (a^{-1}(b) = \sum_{k \in \mathcal{K}} a_{k+1} x_k)$$

Komponentenweise: $\underline{\boldsymbol{x}}_{k+1} = (a_{ii}^{-1}(b_i - \sum_{i=1, i \neq i} a_{ij}x_{k,j})_i$

5.2 Gauß-Seidel Verfahren

Unterschied zu Jacobi: Komponentenweise Berechnung von $oldsymbol{x}$ mit bereits iterierten Werten. (Kürzere Iterationszyklen)

Konvergenz: A ist strikt diagonaldominant oder A ist positiv definint. Komponentenweise Darstellung:

$$\underline{\underline{x}}_{i}^{(k+1)} = a_{ii}^{-1} \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k)} \right)$$

Matrixdarstellung:

$$\underline{\underline{x}}^{(k+1)} = (\underline{\underline{D}} - \underline{\underline{L}})^{-1} \cdot (\underline{\underline{R}}\underline{\underline{x}}^{(k)} + \underline{\underline{b}})$$

$$Mit M = (D - L) \qquad N = R$$

5.3 SOR Verfahren

Konvergenz: für $0<\omega<2$ und positiv definites ${m A}$

$$\boxed{\underline{\boldsymbol{x}}_{k+1}^{(neu)} = \omega \underline{\boldsymbol{x}}_{k+1}^{(alt)} + (1 - \omega)\underline{\boldsymbol{x}}_k}$$

Bestimme ω so, dass die Konvergenz besser wird: $\omega_{opt}=rac{2}{2-\lambda_1-\lambda_2}$

$$\begin{array}{l} \text{Matrix darstellung:} \\ \underline{x}_{k+1} &= (\underline{1}_n - \omega \underline{\mathcal{D}}^{-1} \underline{\mathcal{L}})^{-1} ((1-\omega)\underline{1}_n + \omega \underline{\mathcal{D}}^{-1} \underline{\mathcal{R}}) x_k + \omega (1_n - \omega)\underline{1}_n + \omega \underline{\mathcal{D}}^{-1} \underline{\mathcal{L}})^{-1} \underline{\mathcal{D}}^{-1} \underline{\mathcal{L}} \\ \omega \underline{\mathcal{D}}^{-1} \underline{\mathcal{L}})^{-1} \underline{\mathcal{D}}^{-1} \underline{\mathcal{L}} \end{array}$$

$$\underline{\underline{\boldsymbol{A}}} = (\tfrac{1}{\omega}\,\underline{\underline{\boldsymbol{D}}} - \underline{\underline{\boldsymbol{L}}}) - \left((\tfrac{1}{\omega} - 1)\underline{\underline{\boldsymbol{D}}} + \underline{\underline{\boldsymbol{R}}}\right)$$

Komponentendarstellung:

$$x_i^{k+1} = \omega a_{ii}^{-1} \left(\underline{b}_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right) + (1 - \omega) x_i^{(k)}$$

6. Nichtlineare Gleichungen

Problemstellung

Gegeben nichtlineare, stetige Funktion $f: [a_0, b_0] \to \mathbb{R}, f(a_0) \cdot f(b_0) < 0$

6.1 Bisektionsverfahren

Globale, lineare Konvergenz mit $|x^* - x_k| \leq \frac{1}{2k} (b_0 - a_0)$

Bisektionsverfahren

- $x_k = \frac{1}{2}(a_k + b_k)$
- $a_{k+1}=a_k,\ b_{k+1}=x_k \quad \text{ , falls } f(a_k)f(x_k)<0$ $a_{k+1} = x_k, b_{k+1} = b_k$, sonst
- Abbruch falls $|b_k a_k| < \varepsilon$ oder maxiter erreicht

6.2 Newton-Raphson-Verfahren

Funktion durch Gerade annähern und Nullstelle bestimmen. An dieser Stelle den Vorgang wiederholen. Nur geeignet für einfache Nullstellen. \exists Umgebung U mit $f'(x) \neq 0 \forall x \in U$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

$$\boxed{ \underline{\boldsymbol{x}}_{k+1} = \underline{\boldsymbol{x}}_k - \underline{\boldsymbol{J}}_{\boldsymbol{f}}^{-1}(\underline{\boldsymbol{x}}_k)\underline{\boldsymbol{f}}(\underline{\boldsymbol{x}}_k) } \quad \text{MATLAB:} \\ \boldsymbol{x} = \boldsymbol{x} - \underline{\boldsymbol{J}}_{\boldsymbol{f}} \backslash \boldsymbol{f}$$

Abbruchkriterium: $\|\underline{x}_k - \underline{x}^*\| \le \|\Delta\underline{x}\| + c \|\underline{x}_k - \underline{x}^*\|$

6.2.1 Vereinfachtes Newtonverfahren

Man benutzt die Jacobimatrix über mehrer Iterationen.

Bemerkungen: Es gibt keine Existenz und Eindeutigkeitsaussage zur Lösbarkeit des Nullstellenproblems

$$\underline{\underline{J}}_f(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}$$

7. Numerik gewöhnlicher DGL

 $\dot{x}(t) = f(t, x(t)), \quad x(t_0) = x_0$ Vorgehen: Finde diskrete Werte $x[t_i]$ anstatt Näherungsfunktion x = x(t)

7.1 Einzelschrittverfahren

Def: Man erhält x_{k+1} aus x_k

Eulersches Polygonzugverfahren: $x_{k+1} = x_k + h \cdot f(t_k, x_k)$ Mittelpunktregel (implizit):

$$\begin{aligned} x_{k+1} &= x_k + h \cdot f(\frac{t_{k+1} + t_k}{2}, \frac{x_{k+1} + x_k}{2}) \\ \text{Implizites Eulerverfahren (rekursiv): } & x_{k+1} &= x_k + h \cdot f(t_{k+1}, x_{k+1}) \end{aligned}$$

Mit verkleinern der Schrittweite wird die Genauigkeit der Lösung nicht unbedingt besser (Schrittweitensteuerung) Mehrschrittverfahren: Man erhält x_{k+1} aus $x_k, x_{k-1}, ... x_1$

8. Verfahren zum numerischen Lösen von DGLs

8.1 4 Stufiges Runge-Kutta Verfahren

Einschrittverfahren für AWPs mit variabler Schrittweite.

Butcher Schema:
$$\frac{\underline{c} \mid \underline{A}}{\mid \underline{b}^{\top}} = \frac{1}{2} \begin{vmatrix} \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{3} & \frac{1}{6} \end{vmatrix}$$

Komponentendarstellung:
$$x_i^{k+1} = \omega a_{ii}^{-1} \left(\underline{b}_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right) + (1 - \omega) x_i^{(k)}$$

$$\omega_j x_i^{(k)}$$

$$k_1 = f(t_n, x_n)$$

$$k_2 = f(t_n + \frac{h}{2}, x_n + \frac{h}{2}k_1)$$

$$k_3 = f(t_n + \frac{h}{2}, x_n + \frac{h}{2}k_2)$$

$$k_2 = f(t_n + \frac{h}{2}, x_n + \frac{h}{2}k_1)$$

$$k_3 = f(t_n + \frac{h}{2}, x_n + \frac{h}{2}k_2)$$

$$k_4 = f(t_n + h, x_n + hk_3)$$

$$k_4 = f(t_n + h, x_n + hk_3)$$

$$k_4 = f(t_n + h, x_n + hk_3)$$

$$k_5 = f(t_n + \frac{h}{2}, x_n + \frac{h}{2}k_2)$$

$$k_6 = f(t_n + \frac{h}{2}, x_n + \frac{h}{2}k_2)$$

$$k_7 = f(t_n + \frac{h}{2}, x_n + \frac{h}{2}k_2)$$

$$k_8 = f(t_n + \frac{h}{2}, x_n + \frac{h}{2}k_3)$$

$$k_8 = f(t_n + \frac{h}{2}, x_n + \frac{h}{2}k_3)$$

Für andere Stufenzahl(s): $k_i = f(t_n + c_i h, x_n + h \sum_{i=1}^s a_{ij} k_j)$

9. Optimierung

Problemstellung

 $\begin{array}{ccc} f: & X \\ \text{Zielfunktion Zulässigkeitsbereich} & \subseteq \mathbb{R}^d \to \mathbb{R} \end{array}$ $\nabla f(\underline{x}^*) = 0$ und $\underline{H}_f(\underline{x}^*)$ pos. definit. (Numerische Katastrophe)

9.1 Abstiegsverfahren / Gradientenverfahren

Konvergenz: linear

Abstiegsverfahren

- ullet Bestimme Abstiegsrichtung $\underline{oldsymbol{v}}_k:
 abla f(\underline{oldsymbol{x}}_k) \underline{oldsymbol{v}}_k < 0$
- Armijo: $\max h_k \in \left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right\}$
- $f(\underline{\boldsymbol{x}}_k + h_k\underline{\boldsymbol{v}}_k) < f(x_k) + h_k\gamma\nabla f(\underline{\boldsymbol{x}}_k)^{\top}\underline{\boldsymbol{v}}_k \quad \gamma \in]0,1[$
- Setze $\underline{\boldsymbol{x}}_{k+1} = \underline{\boldsymbol{x}}_k + h_k \underline{\boldsymbol{v}}_k$
- Abbruch, falls x approximativ stationär ist

9.2 Das lokale Newton-Optimierungsverfahren

Geg:
$$f \in \mathcal{C}^2$$
, Ges: $\underline{\boldsymbol{x}}^* : \nabla f(\underline{\boldsymbol{x}}^*) = 0$

lokales Newton-Optimierungsverfahren

- ullet Wähle Startpunkt $x_0 \in \mathbb{R}^d$
- Falls $\nabla f(x_k) = 0 \rightarrow \text{Stop}$: Ergebnis x_k
- Bestimme \underline{v}_k durch lösen von $\underline{H}_f(\underline{x}_k)\underline{v}_k = -\nabla f(\underline{x}_k)$
- ullet Setze $\underline{oldsymbol{x}}_{k+1} = \underline{oldsymbol{x}}_k + \underline{oldsymbol{v}}_k$

9.3 Das globale Newton-Optimierungsverfahren

Geg: $f \in C^2$, Ges: $\mathbf{x}^* : \nabla f(\mathbf{x}^*) = 0$

globales Newton-Optimierungsverfahren

- Bestimme $\underline{\boldsymbol{v}}_k$ durch lösen von $\boldsymbol{H}_f(\underline{\boldsymbol{x}}_k)\underline{\boldsymbol{v}}_k = -\nabla f(\underline{\boldsymbol{x}}_k)$ Falls $\nabla f(\underline{\boldsymbol{x}}_k)^{\top}\underline{\boldsymbol{v}}_k \ll 0 \to \text{Newtonschritt}$ Falls $\nabla f(\underline{\boldsymbol{x}}_k)^{\top}\underline{\boldsymbol{v}}_k \ll 0 \rightarrow$ Gradientenverfahren mit Armijo
- Setze $\underline{x}_{k+1} = \underline{x}_k + \underline{v}_k$ Abbruch, falls \underline{x}_k approximativ stationär ist.
- 10. Funktionentheorie (Komplexe Funktionen)

10.1 Reelifizierung

$$\boldsymbol{f}(\boldsymbol{z}) = \boldsymbol{f}(x+y\mathrm{i}) = u(x,y) + \mathrm{i} v(x,y)$$

 $\sinh(z) = \cos(y)\sinh(x) + i\sin(y)\cosh(x)$ $\cosh(z) = \cos(y)\cosh(x) + i\sin(y)\sinh(x)$

10.2 holomorphe(analytische, reguläre) Funktionen f Eine Funktion f ist

holomorph falls f in G komplex differenzierbar ist. ganz falls f in ganz $\mathbb C$ komplex differenzierbar ist. konform falls Kurven Winkel- und Orientierungstreu bleiben.

f ist genau dann holomorph, falls f(x+yi)=u(x,y)+iv(x,y) und

- u, v sind stetig partiell diffbar
- · Cauchy-Riemann DGLs sind erfüllt

 $\partial_x u(x,y) = \partial_y v(x,y)$ $\partial_y u(x,y) = -\partial_x v(x,y)$

Holomorph: exp, sin, cosh, Polynome, $f \pm g$, fg, $\frac{f}{g}$, f(g)

10.3 harmonische Funktionen u. v

u bzw. v sind harmonisch, falls gilt:

$$\Delta u = \partial_{xx} u + \partial_{yy} u = 0$$
 $\Delta v = \partial_{xx} v + \partial_{yy} v = 0$

oder falls f(z) = u + iv holomorph ist; denn mit Satz von Schwarz: $\Delta u = \partial_{ux}v - \partial_{xy}v = 0$ $\Delta v = -\partial_{ux}u + \partial_{xy}u = 0$

Bestimmung der harmonischen Konjugierten

- ullet geg: harm. Fkt. $u:G
 ightarrow \mathbb{R}, (x,y)
 ightarrow u(x,y)$
- ullet ges: harm. Fkt. $v:G\to\mathbb{R},(x,y)\to v(x,y)$ so, dass $f:G o \mathbb{V}, f(z)=u(x,y)+\mathrm{i} v(x,y)$
- $v(x,y) = \int u_x \, \mathrm{d}y$ mit Integrationskonstante g(x)• $v_x = -u_y \Rightarrow g'(x)$
- $g(x) = \int g'(x) dx \Rightarrow v$ bis auf Konstante C bestimmt
- zugehörige holomorphe Fkt. f(z) = u(x, y) + iv(x, y)

10.4 Möbiustransformation $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

Einzige bijektive, holomorphe, konforme Abbildung von $\hat{\mathbb{C}}$ auf sich selbst $f: \mathbb{C} \setminus \left\{-\frac{d}{c}\right\} \to \mathbb{C} \setminus \left\{-\frac{d}{c}\right\}, f(z) = \frac{az+b}{cz+d}$ $f^{-1}(\mathbf{w}) = \frac{d\mathbf{w} - b}{d\mathbf{w} - b}$

10.5 Komplexes Kurvenintegral

für $D\subset\mathbb{C}$ Gebiet, $f:D\to\mathbb{C}$ stetig, ${m \gamma}:[t_1,t_2]\to$ stetig diffbar orientierte Kurve.

So brechnet man ein komplexes Kurvenintegral

- ullet Bestimme Parametrisierung von γ
- $m{\gamma} = m{\gamma}_1 + \ldots + m{\gamma}_2, \, m{\gamma}_i : [a_i, b_i]
 ightarrow \mathbb{C}$ ullet Stelle Inegrale auf

$$\int_{\pmb{\gamma}_i} \pmb{f}(\pmb{z}) \; \mathrm{d}\pmb{z} = \int\limits_{a_i}^{b_i} \pmb{f}\big(\pmb{\gamma}_i(t)\big) \cdot \dot{\pmb{\gamma}}_i(t) \; \mathrm{d}t$$

Falls f holomorph: $\int_{\mathbf{z}} f(\mathbf{z}) d\mathbf{z} = F(\gamma(b)) - F(\gamma(a))$

Berechne die Integrale und addiere:

$$\int_{\boldsymbol{\gamma}} \boldsymbol{f}(\boldsymbol{z}) \, d\boldsymbol{z} = \sum_{i=1}^{h} \int_{\boldsymbol{\gamma}_{i}} \boldsymbol{f}(\boldsymbol{z}) \, d\boldsymbol{z}$$

10.6 Cauchy-Integralformel

(falls Unstetigkeitsstelle auf Gebiet G) Falls γ geschl. doppelpunktfreie Kurve in einfach zsh. Gebiet G mit holomorphen Fkt. f, gilt für iedes

$$\boxed{ \begin{aligned} f(\boldsymbol{z}_0) &= \frac{1}{2\pi \mathrm{i}} \oint_{\boldsymbol{\gamma}} \frac{f(\boldsymbol{z})}{\boldsymbol{z} - \boldsymbol{z}_0} \, \mathrm{d}\boldsymbol{z} \\ f^{(k)}(\boldsymbol{z}_0) &= \frac{k!}{2\pi \mathrm{i}} \oint_{\boldsymbol{\gamma}} \frac{f(\boldsymbol{z})}{(\boldsymbol{z} - \boldsymbol{z}_0)^{k+1}} \, \mathrm{d}\boldsymbol{z} \end{aligned}}$$

$$f^{(k)}(\boldsymbol{z}_0) = \frac{k!}{2\pi i} \oint_{\boldsymbol{\gamma}} \frac{f(\boldsymbol{z})}{(\boldsymbol{z} - \boldsymbol{z}_0)^{k+1}} d\boldsymbol{z}$$

10.7 Integralsatz von Cauchy

Falls keine Unstetigkeitsstelle innerhalb der Kurve γ

 $f:G\to\mathbb{C}$ komplex diffbar auf offenem, einfach zusammenhängendem Gebiet $G\subset\mathbb{C}$. γ sei einfach geschlossene Kurve in G (keine Doppelpunkte)

$\oint \boldsymbol{f}(\boldsymbol{z}) \, \mathrm{d}\boldsymbol{z} = 0$

10.8 Singularitäten

Isolierte Singularität ${m z}_0\colon {m f}:G\setminus \{{m z}_0\} o {\mathbb C} \ \ ext{(einzelne Punkte)}$ Hebbare Sing., falls f auf punktierter Umgebung beschränkt ist. Pol mter Ordnung: $(z - z_0)^m f(z)$ ist hebbar in z_0 Wesentliche Singularität: Sonst.

10.9 Taylorreihe und Laurentreihe

Taylorreihe: falls f holomorph:

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}z_0}{k!} (z - z_0)^k$$

Laurentreihe: Falls f nicht holomorph ist.

$$\sum_{k=-\infty}^{\infty} \boldsymbol{c}_k (\boldsymbol{z} - \boldsymbol{z}_0)^k$$

zerfällt in $\sum_{k=0}^{\infty} \frac{1}{d_k w^k}$ mit $d_k = c_{-k}$ und $w = \frac{1}{z-z_0}$ (Hauptteil) und

$$\sum\limits_{k=0}^{\infty}c_k(z-z_0)^k$$
 (Nebenteil)
Konvergenz falls Hauptteil und Nebenteil konvergiert.

Konvergenzradien:
$$R = \lim \left| \frac{c_k}{c_{k+1}} \right| \in [0, \infty]$$

Residensatz: $\operatorname{Res}_{z_0} f = c_{-1} = \frac{1}{2\pi i} \oint f(z) dz$

Allgemeiner Residuensatz G Gebiet: $f: G \setminus \{z_1, \ldots, z_n\} \to \mathbb{C}$

 \forall doppelpunktfrei, geschlossene und pos. orientierte Kurven γ mit $z_1, \ldots z_n$ liegen im Inneren von γ : $\oint_{\gamma} f(z) \, \mathrm{d}z = 2\pi \mathrm{i} \sum_{k=1}^{n} \operatorname{Res}_{z_{k}} f$