11° φροντιστήριο Μαθηματική Ανάλυση

Σπύρος Χαλκίδης Ε.ΔΙ.Π.

Ιανουάριος 2022

1 Ασκήσεις σε διαφορικές εξισώσεις δεύτερης τάξης

$1.1 1^{\eta}$ Άσκηση

Να βρεθεί η γενιχή λύση της $\ddot{y} + 2\dot{y} - y = 0$.

Η χαρακτηριστική εξίσωση είναι $r^2 + 2r - 1 = 0$.

Η διακρίνουσα είναι $\Delta=4+4=8$ και συνεπώς οι ρίζες της χαρακτηριστικής εξίσωσης είναι $r_{1,2}=\frac{-2\pm2\sqrt{2}}{2}=-1\pm\sqrt{2}$.

Συνεπώς, η γενική λύση της διαφορικής εξίσωσης είναι:

$$y(t) = C_1 e^{(-1+\sqrt{2})t} + C_2 e^{(-1-\sqrt{2})t}.$$

1.2 2^{η} Άσχηση

Να βρεθεί η γενική λύση της $\ddot{y} + 2\dot{y} + 4y = 0$.

Η χαραχτηριστική εξίσωση είναι $r^2 + 2r + 4 = 0$.

Η διακρίνουσα είναι $\Delta = 4 - 16 = -12$.

 Σ υνεπώς, οι ρίζες της χαραχτηριστιχής εξίσωσης είναι:

$$r_{1,2} = \frac{-2 \pm 2\sqrt{3}i}{2} = -1 \pm \sqrt{3}i$$

 $h = -1, \ v = \sqrt{3}.$

Άρα: $y(t) = A_1 e^{-t} cos(\sqrt{3}t) + A_2 e^{-t} sin(\sqrt{3}t)$.

$1.3 3^{\eta}$ Άσχηση

Να βρεθεί η γενική λύση της $\ddot{y}+4\dot{y}-y=4$. Η χαρακτηριστική εξίσωση είναι $r^2+4r-1=0$.

Η διαχρίνουσα είναι $\Delta = 16 + 4 = 20$.

Συνεπώς, οι ρίζες της χαρακτηριστικής εξίσωσης είναι:

$$r_{1,2} = \frac{-4 \pm 2\sqrt{5}}{2} = -2 \pm \sqrt{5}.$$

Το σημείο ισορροπίας είναι $\bar{y}=-4$.

Συνεπώς $y(t) = C_1 e^{(-2+\sqrt{5})t} + C_2 e^{(-2-\sqrt{5})t} - 4$ και η συνάρτηση αποκλίνει από το σταθερό σημείο $\bar{y} = -4$.

1.4 4^{η} Άσχηση

Να βρεθεί η γενική λύση της $\ddot{y} - 2\dot{y} + y = 20$.

Η γαραχτηριστική εξίσωση είναι $r^2 - 2r + 1 = 0$.

Η διαχρίνουσα είναι $\Delta=4-4=0$, συνεπώς έχουμε διπλή ρίζα την $r_{1,2}=1$.

To σημείο ισορροπίας είναι το $\bar{y}=20$.

Συνεπώς $y(t) = C_1 e^t + C_2 t e^t + 20$ και το σημείο ισορροπίας είναι ασταθές.

1.5 5^{η} Άσκηση

Να βρεθεί η λύση της $\ddot{y}-4\dot{y}+\frac{7}{4}\dot{y}=20$ όταν y(0)=10 και $\dot{y}(0)=4$

Η χαραχτηριστική εξίσωση είναι $r^2 - 4r + \frac{7}{4} = 0$.

Η διαχρίνουσα είναι $\Delta = 16 - 7 = 9$.

Άρα $r_{1,2} = \frac{4\pm 3}{2}$ και συνεπώς $r_1 = \frac{7}{2}$ και $r_2 = \frac{1}{2}$.

Το σημείο ισορροπίας είναι το $\bar{y} = \frac{80}{7}$.

Άρα
$$y(t) = C_1 e^{\frac{7}{2}t} + C_2 e^{\frac{1}{2}t} + \frac{80}{7}$$

$$\operatorname{xol}\,\dot{y}(t) = \frac{7}{2}C_1e^{\frac{7}{2}t} + \frac{1}{2}C_2e^{\frac{1}{2}t}.$$

$$y(0) = 10 \iff C_1 + C_2 + \frac{80}{7} = 10 \iff C_1 = -C_2 - \frac{10}{7}.$$

$$\dot{y}(0) = 4 \iff -\frac{7}{2}C_2 - 5 + \frac{1}{2}C_2 = 4 \iff -3C_2 = 9 \iff C_2 = -3.$$

Συνεπώς
$$C_1 = 3 - \frac{10}{7} = \frac{11}{7}$$
 και

$$y(t) = \frac{11}{7}e^{\frac{7}{2}t} - 3e^{\frac{1}{2}t} + \frac{80}{7}$$

1.6 6^{η} Άσκηση

Να βρεθεί η γενική λύση της διαφορικής εξίσωσης $\ddot{y}-2\dot{y}+y=t.$

Η χαρακτηριστική εξίσωση είναι: $r^2 - 2r + 1 = 0$.

Η διαχρίνουσα είναι $\Delta = 4 - 4 = 0$.

Άρα έχουμε διπλή ρίζα την $r_{1,2}=1$.

Η μεριχή λύση θα είναι της μορφής $y_p = A_0 + A_1 t$.

$$\frac{dy_p}{dt} = A_1 \text{ and } \frac{d^2y_p}{dt} = 0.$$

 Σ ύνεπώς $-2A_1^m + A_0 + A_1 t = t$ και άρα $A_1 = 1$ και $-2A_1 + A_0 = 0 \iff A_0 = 2A_1$ και συνεπώς $A_0 = 2$.

Άρα η γενική λύση της διαφορικής εξίσωσης είναι της μορφής:

$$y(t) = C_1 t e^t + C_2 e^t + t + 2.$$

1.7 7^{η} Άσκηση

Να βρεθεί η γενική λύση της διαφορικής εξίσωσης $\ddot{y} + 3\dot{y} - 4y = 10$.

Η χαραχτηριστική εξίσωση είναι: $r^2 + 3r - 4 = 0$.

Η διακρίνουσα είναι ίση με $\Delta=9+16=25$ και οι ρίζες:

 $r_{1,2} = \frac{-3\pm 5}{2}$. Συνεπώς $r_1 = -4$ και $r_2 = 1$.

Για το σημείο ισορροπίας ισχύει $-4\bar{y}=10\iff \bar{y}=-\frac{5}{2}$. Άρα η γενική λύση της διαφορικής εξίσωσης είναι της μορφής:

$$y(t) = C_1 e^{-4t} + C_2 e^t - \frac{5}{2}.$$

1.8 8^{η} Άσκηση

Να βρεθεί η γενική λύση της διαφορικής εξίσωσης $\ddot{y} - \dot{y} + 2y = 5$.

Η χαρακτηριστική εξίσωση είναι: $r^2 - r + 2 = 0$.

Η διακρίνουσα είναι $\Delta = 1 - 8 = -7$ και οι ρίζες:

$$r_{1,2} = \frac{1 \pm \sqrt{7}i}{2}.$$

 Γ ια το σημείο ισορροπίας ισχύει $2\bar{y}=5\iff \bar{y}=\frac{5}{2}.$

$$h = \frac{1}{2} \text{ kal } v = \frac{\sqrt{7}}{2}.$$

Συνεπώς η γενική λύση της διαφορικής εξίσωσης είναι της μορφής:

$$y(t) = C_1 e^{\frac{t}{2}} cos(\frac{\sqrt{7}}{2}t) + C_2 e^{\frac{t}{2}} sin(\frac{\sqrt{7}}{2}t) + \frac{5}{2}$$