EK2360 – Introduction to COMSOL Multiphysics - Tasks

Bernhard Beuerle — Fritzi Töpfer November 4, 2015

1 Guided tutorial: Simulation of simple cantilever (2D) and calculation of spring constant

- will be demonstrated and explained step by step by the course assistant
- do along with the demonstration of the assistant, interrupt if you can't follow!

${\small 2} \quad \text{Tutorial $Computing $Capacitance$ from the AC/DC Module Model Library}$

 \bullet follow the instructions from the pdf Task2_models.acdc.capacitor_dc.

3 Calculation of electrostatic force for parallel plate capacitor (2D)

• Model a parallel plate capacitor with the following parameters:

Space Dimension Physics Study	2D Electrostatics (Es) Stationary
Plate parameters	
length	300 μm
height	$5\mathrm{\mu m}$
width	$30\mu\mathrm{m}$
gap	$10\mathrm{\mu m}$
$\operatorname{act_voltage}$	$60\mathrm{V}$
material between plates	air

Do not forget to use a sufficient *air box* around the capacitor. Make sure that the mesh between the plates is sufficiently fine.

- or use the provided model Task3_ParallelPlateCapacitor_2D_es_FT
- Calculate the force between the plates. Consult the document calculation_of_electrostatic_force for help. Compare result to textbook formula.

4 (optional) Simulation of a simple folded spring (2D)

• Model a folded spring with the following dimensions. Use Global parameters for the length of the beams (L) and the force (F).

Space Dimension Physics Study	2D Solid Mechanics (solid) Stationary
Spring parameters	
L	$\{200, 300, 400\}\mu\mathrm{m}$
F	$20\mu\mathrm{N}$
material	Poly-Si
out-of-plane dimen-	$30\mu\mathrm{m}$
sion (z-direction)	

- Use a parametric sweep to simulate the displacement for different beam lengths. The displacement can be obtained as a Derived Value. Also plot the displacement in a 2D plot.
- Calculate the spring constants in x and y direction. Compare result(s) to textbook formula.

5 (optional) Calculation of the electrostatic force of a combdrive actuator

• Use the provided model Task5_comb_drive of a comb-drive actuator and calculate the electrostatic force for different gap sizes (global parameter: overlap). Consult the document calculation_of_electrostatic_force for help.

6 (optional) Tutorial *Electrostatic Actuated Cantilever* from the MEMS Module Model Library

- follow the instructions from the pdf
 Task6_optional_models.mems.electrostatically_actuated_cantilever
- This model uses the Electromechanics interface, which combines solid mechanics and electrostatics with a moving mesh to model the deformation of electrostatically actuated structures. This is a true multiphysics model and more complex than the models in Task 1-3. A multiphysics model combining solid mechanics and electrostatics is not requested for the course.