

CS 6375 Final Project by Lakshmipriya Narayanan

ABOUT THE DATA

- Objective is to predict song popularity using various machine learning algorithms
- Dataset source: Kaggle <u>30000 Spotify Songs</u>
- Contains over 32,828 songs from the 60s to 2020s. (1957 2020)
- There are 23 song attributes like energy, danceability, loudness, key, speechiness, etc.
- Response variable is 'track_popularity' measured on a scale of 0 100.
- Features we will be using to predict response are danceability, energy, key, loudness, speechiness, acousticness, instrumentalness, liveliness, valence and, tempo.
- Future applications

DATA PRE-PROCESSING

- Removal of irrelevant attributes like ID's of songs and albums, mode (categorical) and duration of song.
- Dropped missing values. 5 missing values in all.
- Analyzed unique and duplicate value counts to avoid inaccuracy in analysis and model performances.
- Centering and scaling to remedy presence of multicollinearity.
- Data was mostly cleaned in terms of massive rectification of observations.

Summary				
Variable	Unique	Duplicate		
Track name	23,449	9,379		
Track artist	10,692	22,136		
Track popularity	101	32,727		
Track album name	19,743	13,085		
Playlist genre	6	32,822		
Mode	2	32,826		

EXPLORATORY DATA ANALYSIS

- 1) Analysis of feature distributions:
- Response follows mostly normal distribution whereas other numerical features are skewed and some similar to normality.

2. Popularity

• With respect to song genre

• With respect to artists

Most Popular

Least popular

This Photo by Unknown Author is licensed under CC BY-ND

An interesting observation

3. Multicollinearity and correlation between feature variables

	Feature	VIF		Feature	VIF
0	danceability	18.627477	0	danceability	1.286881
1	energy	19.482459	1	energy	2.720484
2	key	3.171256	2	key	1.001452
3	loudness	7.561613	3	loudness	2.114826
4	speechiness	2.248755	4	speechiness	1.061658
5	acousticness	2.104711	5	acousticness	1.488041
6	instrumentalness	1.291220	6	instrumentalness	1.143523
7	liveness	2.615568	7	liveness	1.055531
8	valence	6.861232	8	valence	1.258983
9	tempo	18.228049	9	tempo	1.061393
	Before standard	zing		After standardizing	

MODEL FITTING WITH MULTIPLE LINEAR REGRESSION

With polynomial features of degree 2

Training MSE: 515.6684
Test MSE: 498.4739
Test R^2: 0.0560
Train R^2: 0.0502

Intercept (beta_0): 39.757092756560056

Feature Coefficient 0 danceability 0.812262 1 -4.594179 energy 2 loudness 4.080772 3 speechiness -0.498265 4 acousticness 1.274059 5 instrumentalness -2.257600 6 liveness -0.663832 7 valence 0.666266 0.767656 tempo

Training MSE: 504.1231 Test MSE: 491.9518 Test R^2: 0.0683

Train R^2: 0.0715

Intercept (beta_0): 39.63815146880444

Feature Coefficient

danceability 1.213027

energy -4.315998

key -0.100787

3 loudness 4.330121 4 speechiness -0.856083 liveness valence 0.055730 61 liveness tempo -0.117265 62 valence^2 -0.693602 63 valence tempo 0.000106

tempo^2

0.462841

[65 rows x 2 columns]

64

MODEL FITTING WITH RIDGE REGRESSION

Training MSE: 515.6700

Training RMSE: 22.7084

Test MSE: 498.4962

Test RMSE: 22.3270

Training R^2: 0.5019

Testing R^2: 0.0559

danceability 0.819008 energy -4.497691 key -0.053079 loudness 3.997916 speechiness -0.491948 acousticness 1.287285 instrumentalness -2.261747 liveness -0.667259 valence 0.651961

tempo

0.759389

MODEL FITTING WITH RANDOM FOREST

- Took into consideration interaction terms and transformation.
- Hyperparameters used to obtain a Test R^2 of 0.076 and training R^2 of 0.75 are as follows:
 - \square Number of trees = 150
 - \square Maximum depth of each tree in the forest = 20
 - ☐ Minimum number of samples required to split an internal node = 5
 - ☐ Minimum number of leaf nodes of each subtree = 2 (binary tree)
- Severely overfit
- Hyperparameter tuning not done because of technical issues.

MODEL FITTING WITH GRADIENT BOOSTING

WITHOUT HYPERPARAMETER TUNING

• Did some feature engineering to obtain various interaction terms and more transformations.

Model Performance: Training R^2: 0.2960 Testing R^2: 0.0793 Cross-Validation R2 Scores: [0.05690778 0.06335279 0.07472757 0.0762595 0.06749369] Mean CV R2: 0.06774826481097129 Top 10 Feature Importances: feature importance instrumentalness 0.115309 acousticness 0.074214 3 speechiness 0.068984 danceability 0.068545 7 valence 0.067326 11 log tempo 0.065644 8 tempo 0.064650 liveness 6 0.062464 dance speechiness 0.059036 10 acousticness_valence 0.057984

WITH HYPERPARAMETER TUNING

• Used the same feature engineering used in model with hyperparameter tuning.

Fitting 3 folds for each of 20 candidates, totalling 60 fits
Best Hyperparameters: {'subsample': 0.8, 'n_estimators': 100, 'min_samples_split': 5, 'max_depth': 3, 'learning_rate': 0.1}
Training R^2: 0.8742
Testing R^2: 0.8959

Top	10 Feature Import	ances:
	feature	importance
5	instrumentalness	0.204180
11	log_tempo	0.086177
4	acousticness	0.079133
13	loudness_squared	0.075239
0	danceability	0.069565
8	tempo	0.068974
2	loudness	0.067609
3	speechiness	0.050851
7	valence	0.045449
6	liveness	0.044150

CONCLUSION

Looking at all the models above we can build a summary table to <u>make</u> our conclusions based on the inferences done in the above sections:

Model	Training data			Test Data		
	R ²	MSE	RMSE	R ²	MSE	RMSE
Multiple linear regression	0.0502	515.66	22.708	0.056	498.47	22.326
Multiple linear regression with	0.0715	504.12	22.452	0.0683	498.95	22.337
Polynomial features of degree 2						
Ridge regression	0.5019	515.67	22.708	0.0559	498.49	22.327
Random forest	0.7507	-	-	0.0766		9 -2
Gradient Boosting	0.296	-	-	0.0793	-)). — (:
Gradient Boosting with	0.8742	-	-	0.8959	-	
hyperparameter tuning						

Based on <u>above</u> summary, ridge regression and random forest overfit our data and hence should not be considered in prediction of track popularity. Instead, we can use gradient boosting models with hyperparameter tuning to do so since the model $R^2 \ge 0.80 = 80\%$ of the proportion of variance is explained by both test and training data.

