(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Curriculum Structure

3rd Semester

Theory:

Sl. No.	CODE	Paper		act per er week		Total Contact	Credits
			L	T	P	Hrs	
1	PC-EE 301	Electric Circuit Theory	3	1	0	4	4
2	PC-EE 302	Analog Electronics	3	0	0	3	3
3	PC-EE 303	Electromagnetic field theory	3	0	0	3	3
4	ES-ME 301	Engineering Mechanics	3	0	0	3	3
5	BS-M 301	Mathematics-III	3	0	0	3	3
6	BS-302	Biology for Engineers	3	0	0	3	3
7	MC-EE 301	Indian Constitution	3	0	0	3	0
		TOTAL OF SEMESTER:				22	19

Sl.	CODE	Paper		Contact periods Per week		Total Contact	Credits
No.			L	T	P	Hrs	
1	PC-EE 391	Electric Circuit Theory Laboratory	0	0	2	2	1
2	PC-EE 392	Analog Electronics laboratory	0	0	2	2	1
3	PC-CS 393	Numerical Methods laboratory	0	0	2	2	1
		Total of Practical / Sessional				06	3
TOTA	AL OF SEMES	TER:				28	22

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

4th Semester

Theory:

Sl.	CODE	Paper	Cont	act peri	iods	Total	Credits
No.			P	Per week		Contact	
			L	T	P	Hrs	
1	PC-EE 401	Electric machine-I	3	1	0	4	4
2	PC-EE 402	Digital Electronic	3	0	0	3	3
3	PC-EE 403	Power Electronic	3	0	0	3	3
4	PC-EE 404	Electrical and Electronics	3	0	0	3	3
		Measurement					
_	EG 161		2				2
5	ES-ME 401	Thermal Power	3	0	0	3	3
		Engineering					
6	HM-401	Values and Ethics in	3	0	0	3	3
0	11101-401	profession	3	0		3	3
7	MC FE401	1	2	0	0	2	0
/	MC- EE401	Environmental Science	3	0	0	3	0
		TOTAL OF SEMESTER:				22	19

Sl. No.	CODE	Paper	Contact periods Per week		Total Contact	Credits	
			L	T	P	Hrs	
1	PC-EE 491	Electric Machine-I laboratory	0	0	2	2	1
2	PC-EE 492	Digital Electronics laboratory	0	0	2	2	1
3	PC-EE 493	Power Electronics laboratory	0	0	2	2	1
4	ES-ME 491	Thermal Power Engineering laboratory	0		2	2	1
		Total of Practical / Sessional				08	4
TOT	AL OF SEMES	TER:				30	23

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

<u>5th Semester</u>

Theory:

Sl.	CODE	Paper		Contact periods Per week		Total	Credits
No.			L	er week T	P	Contact Hrs	
1	PC-EE 501	Electric machine-II	3	0	0	3	3
2	PC-EE 502	Power System-I	3	0	0	3	3
3	PC-EE 503	Control system-I	3	0	0	3	3
4	PC-EE-504	Micro processor & micro controller	3	0	0	3	3
5	PE-EE 501		3	0	0	3	3
6	OE 501		3	0	0	3	3
		TOTAL OF SEMESTER:				18	18

Sl. No.	CODE	Paper		act per er weel		Total Contact	Credits
			L	T	P	Hrs	
1	PC-EE 591	Electric Machine-II laboratory	0	0	2	2	1
2	PC-EE 592	Power system-I laboratory	0	0	2	2	1
3	PC-EE 593	Control system laboratory	0	0	2	2	1
4	PC-EE 594	Microprocessor& Microcontroller laboratory	0	0	2	2	1
		Total of Practical / Sessional				08	4
TOTA	AL OF SEMES					26	22

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

6th Semester

Theory:

Sl. No.	CODE	Paper	Contact periods Per week			Total Contact	Credits
			L	T	P	Hrs	
1	PC-EE 601	Power System-II	3		0	3	3
2	PE-EE 601		3		0	3	3
3	PE-EE 602		3		0	3	3
4	OE-601		3		0	3	3
5	HM-601		3		0	3	3
		TOTAL OF SEMESTER:				15	15

Sl. No.	CODE	Paper		Contact periods Per week		Total Contact	Credits
			L	T	P	Hrs	
1	PC-EE 691	Power system-II laboratory	0	0	2	2	1
2	PC-EE 692	Electrical & Electronic design laboratory	1	0	4	5	3
		Total of Practical / Sessional				07	04
TOT	AL OF SEMES	TER:				22	19
PW-F	EE 681	Summer Internship	0	0	0	00	00

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

7th Semester

Theory:

Sl. No.	CODE	Paper	Contact periods Per week			Total Contact	Credits
			L	T	P	Hrs	
1	PC-EE 701	Electric Drive	3	0	0	3	3
2	PE-EE 701		3		0	3	3
3	OE-701		3		0	3	3
4	OE-702		3		0	3	3
5	HM-701		3		0	3	3
		TOTAL OF SEMESTER:				15	15

Practical / Sessional:

Sl. No.	CODE	Paper	Contact periods Per week			Total Contact	Credits
			L	T	P	Hrs	
1	PC-EE 791	Electric Drive laboratory	0	0	2	2	1
2	PW-EE 781	Project stage-I	0	0	6	6	3
		Total of Practical /				08	04
		Sessional					
TOT	TOTAL OF SEMESTER:					23	19

8th Semester

Theory:

Sl. No.	CODE	Paper		act peri er week		Total Contact	Credits
			L	T	P	Hrs	
1	PC-EE801	Utilization of Electric Power	3	0	0	3	3
2	PE- EE 801		3	0	0	3	3
3	OE-801		3	0	0	3	3
		TOTAL OF SEMESTER:				09	09

Sl. No.	CODE	Paper	Contact periods Per week			Total Contact	Credits
			L	T	P	Hrs	
1	PW-EE 881	Project stage-II	0	0	16	16	8
		Total of Practical /				16	08
		Sessional					
TOT	TOTAL OF SEMESTER:					25	17

(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Semester-III

Name	of the course	ELECTRIC CIRCUIT THE	ORY	
Course Code: PC-EE 301 Semester: 3rd				
Durat	ion: 6 months	Maximum Marks: 100		
Teach	ing Scheme	Examination Scheme		
Theor	eory: 3 hrs/week Mid Semester Exam: 15 Marks			
Tutor	al: 1 hr/week	Assignment & Quiz: 10	0 Marks	
Practi	Practical: 2 hrs/week Attendance: 05 Marks			
Credit	Credit Points: 4+1 End Semester Exam: 70 Marks			
Objec	tive:			
1.	To understand the structure and properties of	different type of electric	c circuits and so	ources.
2.	To learn different mathematical techniques to	analyze electric network	IS.	
3.	To learn circuit analysis techniques such as no	odal analysis, mesh analy	sis, theorems, s	ource
	transformation and several methods to simplif			
4.	To acquire problem solving skills of electric		lication of techr	niques and
	principles of electrical circuit analysis to com-	mon circuit problems		
	Requisite			
1.	Basic Electrical Engineering (ES-EE-101)			
2.	Mathematics (BS-M-102, Bs-M202)			
Unit	Content		Hrs	Marks
1	Introduction: Continuous & Discrete, Fix		3	
	Linear and Nonlinear, Lumped and Distribut			
	networks and systems. Independent & Dej			
	Ramp, Impulse, Sinusoidal, Square, Saw tootl		_	
2	Graph theory and Networks equations: Co		4	
	Tree link, Incidence matrix, Tie-set matrix an matrix and node pair potentials. Duality, Solu			
3	Coupled circuits: Magnetic coupling, Polari		3	
3	induced voltage, Concept of Self and Mutual		3	
	of coupling, Modeling of coupled circuits, So	· ·		
4	Laplace transforms: Impulse, Step & Sinu		8	
	RC, and RLC circuits. Transient analysis			
	circuits with and without initial conditions. C			
	theorem and its application. Solution of Pro	blems with DC & AC		
	sources.			
5	Fourier method of waveform analysis: For		6	
	Transform (in continuous domain only).	Application in circuit		
	analysis, Solution of Problems	1		
6	Network equations: Formulation of netw		8	
	transformation, Loop variable analysis, Node	_		
	Network theorem: Superposition, Thevenin's, power transfer theorem. Millman's theorem			
	three phase unbalanced circuit analysis. Solu			
	DC & AC sources.	ation of Frontins with		
	De a ne sources.			l

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

7	Two port networks analysis: Open circuit Impedance & Short	4	
	circuit Admittance parameter, Transmission parameters, Hybrid		
	parameters and their inter relations. Driving point impedance &		
	Admittance. Solution of Problems		
8	Filter Circuits: Analysis and synthesis of Low pass, High pass,		
	Band pass, Band reject, All pass filters (first and second order only)		
	using operational amplifier. Solution of Problems		

Text books:

- 1. Networks and Systems, D. Roy Chowdhury, New Age International Publishers
- 2. Network Analysis and Synthesis, C.L. Wadhwa, New Age International Publishers
- 3. Circuit and Networks: Analysis and synthesis, A. Sudhakar & S.S. Palli4th edition. Tata Mc Graw Hill Education Pvt. Ltd.
- 4. Circuit theory, Dr. Abhijit Chakrabarty, Dhanpat Rai & Co Pvt. Ltd.

Reference books

- 1. Network Analysis, M.E. Valkenburg, Pearson Education .
- 2. Fundamental of Electric circuit theory, D. Chattopadhay & P.C. Rakshit, S. Chand
- 3. Engineering Circuit Analysis, W.H. Hyat, J.E. Kemmerly & S.M. Durbin, The Mc Graw Hill
- 4. Company.

(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Electrical Engineering

Name	of the course	ANALOG ELECTRONICS		
Course Code: PC-EE 302 Semester: 3rd				
Durat	ion: 6 months	Maximum Marks: 100		
	9	Examination Scheme		
Theory: 3 hrs/week Mid Semester Exam: 15 Marks				
	Tutorial: 0 hr/week Assignment & Quiz: 10 Marks			
Practical: 2 hrs/week Attendance: 05 Marks				
Credi	Credit Points: 3+1 End Semester Exam: 70 Marks			
Obje				
1.	To understand the structure and properties Electronics.	of different compone	ents of Analog	
2.	To learn different techniques to analyze A	nalog electronics circ	uit.	
3.	To learn application of different component	<u>~</u>		
4.	To understand principle and operation of di		onic circuits.	
5.	To acquire problem solving skills of electr	ronic circuit.		
Pre-F	-Requisite			
1.	Physics (10+2)			
Unit	Content		Hrs	Marks
1	Filters & Regulators: Capacitor filters, π -		4	
	factor, series and shunt voltage reg	gulator, percentage		
	regulation, Concept of SMPS.			
2	Transistor biasing & stability: Q po		6	
	compensation techniques, h-model of Trans			
	voltage gain, current gain, input & output			
	resistance & Trans-conductance, Emitter	r follower circuits,		
2	High frequency model of Transistor.	C	(
3	Transistor amplifier: RC coupled amplif		6	
	components, Equivalent circuit, derivatio Current gain, Input impedance & o			
	Frequency response characteristics, Lov			
	frequencies, Bandwidth, Concept of Wide b			
4	Feed back amplifier & Oscillators: Con	-	5	
'	Negative & Positive feedback, Voltage/Cu			
	feedback, Berkhausen criterion, Colpit, Ha			
	Wien bridge, & Crystal oscillators.	,		
5	Operational amplifier: Ideal OPAMP, Di	ifferential amplifier.	6	
	Constant current source (Current mirror	* ·		
	CMRR, Open & closed loop circuits, impo	, · · · · · · · · · · · · · · · · · · ·		
	loop (positive & negative), inverting			
	amplifiers, Voltage follower/Buffer circuits	S.		
6	Application of Operational amplifiers: A	Adder, Integrator &	5	

(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Electrical Engineering

	Differentiator, Comparator, Schmitt Trigger, Instrumentation Amplifier, Log & Antilog amplifier, Trans-conductance multiplier, Precision rectifier, Voltage to current & Current to voltage converter.		
7	Power amplifier: Class A, B, AB, C, Conversion efficiency, Tuned amplifier.	4	
8	Multivibrator: Monostable, Bistable multivibrator, Monostable & Astable operation using 555 timer.	2	
9	Special function circuits: VCO & PLL	2	

(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Electrical Engineering

Introduction: Co-ordinate systems and transformation, Cartesian coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems Electrostatic field: Coulomb's law, field intensity, Gauss's law, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor – dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation	Name	of the course	ELECTRO MAGNETIC FI	ELD THEORY	
Teaching Scheme	Course Code: PC-EE 303 Semester: 3rd				
Theory: 3 hrs/week Tutorial: 0 hr/week Assignment & Quiz: 10 Marks Practical: 0 hrs/week Attendance: 05 Marks Credit Points: 3 End Semester Exam: 70 Marks Objective: 1. To learn the basic mathematical tools to deal with Electromagnetic field. 2. To understand properties and application of Electric and magnetic field. 3. To analyze electromagnetic wave propagation in transmission line. 4. To acquire problem solving skills related to Electromagnetic field. Pre-Requisite 1. Basic Electrical Engineering (ES-EE-101) 2. Mathematics (BS-M-102, Bs-M202) 3. Physics (BS-PH 101) Unit Content 1 Introduction: Co-ordinate systems and transformation, Cartesian 4 coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems 2 Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems 3 Electrostatic field: Coulomb's law, field intensity, Gauss's law, 8 Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor dielectric, Conductor-free space. Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field. Magnetic torque and moments, Magnetisation	Durat	ion: 6 months	Maximum Marks: 100		
Theory: 3 hrs/week Tutorial: 0 hr/week Assignment & Quiz: 10 Marks Practical: 0 hrs/week Attendance: 05 Marks Credit Points: 3 End Semester Exam: 70 Marks Objective: 1. To learn the basic mathematical tools to deal with Electromagnetic field. 2. To understand properties and application of Electric and magnetic field. 3. To analyze electromagnetic wave propagation in transmission line. 4. To acquire problem solving skills related to Electromagnetic field. Pre-Requisite 1. Basic Electrical Engineering (ES-EE-101) 2. Mathematics (BS-M-102, Bs-M202) 3. Physics (BS-PH 101) Unit Content 1 Introduction: Co-ordinate systems and transformation, Cartesian 4 coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems 2 Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems 3 Electrostatic field: Coulomb's law, field intensity, Gauss's law, 8 Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor dielectric, Conductor-free space. Poisson's and Laplace's equation. Solution of problems 4 Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field. Magnetic torque and moments, Magnetisation					
Tutorial: 0 hr/week Practical: 0 hrs/week Attendance: 05 Marks Credit Points: 3 End Semester Exam: 70 Marks Objective: 1. To learn the basic mathematical tools to deal with Electromagnetic field. 2. To understand properties and application of Electric and magnetic field. 3. To analyze electromagnetic wave propagation in transmission line. 4. To acquire problem solving skills related to Electromagnetic field. Pre-Requisite 1. Basic Electrical Engineering (ES-EE-101) 2. Mathematics (BS-M-102, Bs-M202) 3. Physics (BS-PH 101) Unit Content Introduction: Co-ordinate systems and transformation, Cartesian coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems 2 Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems 3 Electrostatic field: Coulomb's law, field intensity, Gauss's law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor dielectric, Conductor-free space. Poisson's and Laplace's equation. Solution of problems 4 Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field. Magnetic torque and moments, Magnetisation	Teach	ing Scheme	Examination Scheme		
Tutorial: 0 hr/week Practical: 0 hrs/week Attendance: 05 Marks Credit Points: 3 End Semester Exam: 70 Marks Objective: 1. To learn the basic mathematical tools to deal with Electromagnetic field. 2. To understand properties and application of Electric and magnetic field. 3. To analyze electromagnetic wave propagation in transmission line. 4. To acquire problem solving skills related to Electromagnetic field. Pre-Requisite 1. Basic Electrical Engineering (ES-EE-101) 2. Mathematics (BS-M-102, Bs-M202) 3. Physics (BS-PH 101) Unit Content Introduction: Co-ordinate systems and transformation, Cartesian coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems 2 Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems 3 Electrostatic field: Coulomb's law, field intensity, Gauss's law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field. Magnetic torque and moments, Magnetisation	Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Credit Points: 3		Tutorial: 0 hr/week Assignment & Quiz: 10 Marks			
Objective: 1. To learn the basic mathematical tools to deal with Electromagnetic field. 2. To understand properties and application of Electric and magnetic field. 3. To analyze electromagnetic wave propagation in transmission line. 4. To acquire problem solving skills related to Electromagnetic field. Pre-Requisite 1. Basic Electrical Engineering (ES-EE-101) 2. Mathematics (BS-M-102, Bs-M202) 3. Physics (BS-PH 101) Unit Content Hrs Mark 1 Introduction: Co-ordinate systems and transformation, Cartesian coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems 2 Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems 3 Electrostatic field: Coulomb's law, field intensity, Gauss's law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor dielectric, Conductor - dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation					
1. To learn the basic mathematical tools to deal with Electromagnetic field. 2. To understand properties and application of Electric and magnetic field. 3. To analyze electromagnetic wave propagation in transmission line. 4. To acquire problem solving skills related to Electromagnetic field. Pre-Requisite 1. Basic Electrical Engineering (ES-EE-101) 2. Mathematics (BS-M-102, Bs-M202) 3. Physics (BS-PH 101) Unit Content Hrs Mark 1 Introduction: Co-ordinate systems and transformation, Cartesian coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems 2 Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems 3 Electrostatic field: Coulomb's law, field intensity, Gauss's law, an Electric optential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation	Credit	Credit Points: 3 End Semester Exam: 70 Marks			
1. To learn the basic mathematical tools to deal with Electromagnetic field. 2. To understand properties and application of Electric and magnetic field. 3. To analyze electromagnetic wave propagation in transmission line. 4. To acquire problem solving skills related to Electromagnetic field. Pre-Requisite 1. Basic Electrical Engineering (ES-EE-101) 2. Mathematics (BS-M-102, Bs-M202) 3. Physics (BS-PH 101) Unit Content Hrs Mark 1 Introduction: Co-ordinate systems and transformation, Cartesian coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems 2 Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems 3 Electrostatic field: Coulomb's law, field intensity, Gauss's law, an Electric optential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation					
 Z. To understand properties and application of Electric and magnetic field. 3. To analyze electromagnetic wave propagation in transmission line. 4. To acquire problem solving skills related to Electromagnetic field. Pre-Requisite 1. Basic Electrical Engineering (ES-EE-101) 2. Mathematics (BS-M-102, Bs-M202) 3. Physics (BS-PH 101) Unit Content Hrs Mark 1 Introduction: Co-ordinate systems and transformation, Cartesian coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems 2 Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector fields, Helmholtz's theorem. Solution of problems 3 Electrostatic field: Coulomb's law, field intensity, Gauss's law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation 	Objec	tive:			
3. To analyze electromagnetic wave propagation in transmission line. 4. To acquire problem solving skills related to Electromagnetic field. Pre-Requisite 1. Basic Electrical Engineering (ES-EE-101) 2. Mathematics (BS-M-102, Bs-M202) 3. Physics (BS-PH 101) Unit Content Hrs Mark 1 Introduction: Co-ordinate systems and transformation, Cartesian coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems 2 Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems 3 Electrostatic field: Coulomb's law, field intensity, Gauss's law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation	1.	To learn the basic mathematical tools to deal v	with Electromagnetic fie	eld.	
 4. To acquire problem solving skills related to Electromagnetic field. Pre-Requisite 1. Basic Electrical Engineering (ES-EE-101) 2. Mathematics (BS-M-102, Bs-M202) 3. Physics (BS-PH 101) Unit Content Hrs Mark 1 Introduction: Co-ordinate systems and transformation, Cartesian coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems 2 Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems 3 Electrostatic field: Coulomb's law, field intensity, Gauss's law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor — dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation 	2.	To understand properties and application of E	lectric and magnetic fiel	ld.	
Pre-Requisite 1. Basic Electrical Engineering (ES-EE-101) 2. Mathematics (BS-M-102, Bs-M202) 3. Physics (BS-PH 101) Unit Content Hrs Mark 1 Introduction: Co-ordinate systems and transformation, Cartesian coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems 2 Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems 3 Electrostatic field: Coulomb's law, field intensity, Gauss's law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor — dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation	3.	To analyze electromagnetic wave propagation	in transmission line.		
1. Basic Electrical Engineering (ES-EE-101) 2. Mathematics (BS-M-102, Bs-M202) 3. Physics (BS-PH 101) Unit Content Hrs Mark 1 Introduction: Co-ordinate systems and transformation, Cartesian coordinates, Circular cylindrical coordinates, Spherical coordinates their transformation. Differential length, area and volume in different coordinate systems. Solution of problems 2 Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems 3 Electrostatic field: Coulomb's law, field intensity, Gauss's law, Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation	4.	To acquire problem solving skills related to El	ectromagnetic field.		
2. Mathematics (BS-M-102, Bs-M202) 3. Physics (BS-PH 101) Unit Content Hrs Mark 1 Introduction: Co-ordinate systems and transformation, Cartesian coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems 2 Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems 3 Electrostatic field: Coulomb's law, field intensity, Gauss's law, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor – dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation	Pre-R	equisite			
3. Physics (BS-PH 101) Unit Content Hrs Mark 1 Introduction: Co-ordinate systems and transformation, Cartesian coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems 2 Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems 3 Electrostatic field: Coulomb's law, field intensity, Gauss's law, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation	1.	Basic Electrical Engineering (ES-EE-101)			
Unit Content Hrs Mark Introduction: Co-ordinate systems and transformation, Cartesian coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor — dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation	2.				
Introduction: Co-ordinate systems and transformation, Cartesian coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems Electrostatic field: Coulomb's law, field intensity, Gauss's law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor – dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation	3.				
coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems 2 Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems 3 Electrostatic field: Coulomb's law, field intensity, Gauss's law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor — dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation	Unit	Content		Hrs	Marks
& their transformation. Differential length, area and volume in different coordinate systems. Solution of problems 2 Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems 3 Electrostatic field: Coulomb's law, field intensity, Gauss's law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor – dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation	1	Introduction: Co-ordinate systems and tran	nsformation, Cartesian	4	
different coordinate systems. Solution of problems Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems Electrostatic field: Coulomb's law, field intensity, Gauss's law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor – dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation					
Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems Electrostatic field: Coulomb's law, field intensity, Gauss's law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor – dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation					
scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems 3 Electrostatic field: Coulomb's law, field intensity, Gauss's law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor – dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation					
vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems 3 Electrostatic field: Coulomb's law, field intensity, Gauss's law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor – dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation	2			4	
vector fields, Helmholtz's theorem. Solution of problems 3 Electrostatic field: Coulomb's law, field intensity, Gauss's law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor – dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation					
Blectrostatic field: Coulomb's law, field intensity, Gauss's law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor – dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation					
Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor – dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation	2			0	
an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor – dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation	3			8	
field. Boundary conditions: Dielectric-dielectric, Conductor – dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation					
dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation					
General procedure for solving Poisson's and Laplace's equation. Solution of problems 4 Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation					
4 Magneto static fields: Biot- savart law, Ampere's circuit law, 8 Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation					
Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation					
due to magnetic field, Magnetic torque and moments, Magnetisation	4			8	
in material, Magnetic boundary condition, Inductor and Inductances,			-		
Magnetic energy, Force on magnetic material. Solution of problems					
5 Electromagnetic fields: Faraday's law, Transformer and motional 6	5			6	
emf, Displacement current, Maxwell's equations, Time varying					
Potential, Time harmonic fields. Solution of problems 6 Electromagnetic wave propagation: Wave equation, Wave 6	6			6	
propagation in lossy dielectric, Plane waves in loss less dielectric,	U			ا	
Plane wave in free space, Plane wave in good conductor, Skin effect,					

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	Skin depth, Power & Poynting vector, Reflection of a plane wave at		
	normal incidence, reflection of a plane wave at oblique incidence,		
	Polarisation. Solution of problems		
7	Transmission line: Concept of lump & distributed parameters, Line	4	
	parameters, Transmission line equation & solutions, Physical		
	significance of solutions, Propagation constants, Characteristic		
	impedance, Wavelength, Velocity of propagation. Solution of		
	problems		

Text books:

- 1. Elements of Electromagnetic, Mathew N.O. Sadiku, 4th edition, Oxford university press.
- 2. Engineering Electromagnetic, W.H. Hyat & J.A. Buck, 7th Edition, TMH
- 3. Theory and problems of Electromagnetic, Edminister, 2nd Edition, TMH
- 4. Electromagnetic field theory fundamentals, Guru & Hizroglu, 2nd edition, Cambridge University

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Nam	e of the course	ENGINEERING M	ECHANICS	
	rse Code: ES-ME 301	Semester: 3rd		
	Duration: 6 months Maximum Marks:		00	
2 42 4		1,14,11114		
Teac	hing Scheme	Examination Schem	e	
Theory: 3 hrs/week Mid Semester Exam: 15 Marks				
	rial: 0 hr/week	Assignment & Quiz:	10 Marks	
	ical: 0 hrs/week	Attendance:	05 Marks	
	it Points: 3	End Semester Exam:		
	-			
Obje	ctive:			
1.	To understand basic mathematical tools to	o deal with the physica	l bodies.	
2.	To learn different mathematical technique	1 0		
2.	To learn analysis techniques of rigid bodi			
2.	To acquire problem solving skills of gene			
	Requisite			
1.	Physics (BS-PH-101)			
2.	Mathematics (BS-M-102, Bs-M202)			
Unit	Content		Hrs	Marks
1	Introduction to vectors and tensor	s and co-ordinate	5	
	systems			
	Introduction to vectors and tensors and	coordinate systems;		
	Vector and tensor algebra; Indical notati	tion; Symmetric and		
	anti-symmetric tensors; Eigenvalues and F	Principal axes.		
2	Three-dimensional Rotation		4	
	Three-dimensional rotation: Euler's t	,		
	formulation and Euler angles; Coordina	te transformation of		
	vectors and tensors.			
3	Kinematics of Rigid Body		6	
	Kinematics of rigid bodies: Dentition ar			
	body; Rigid bodies as coordinate systems			
	a rigid body, and its rate of change; Dist			
	and three dimensional rotational motion; l	0		
	velocity to find orientation; Motion relati	ve to a rotating rigid		
	body: Five term acceleration formula.		_	
4	Kinetics of Rigid Bodies	1	5	
	Kinetics of rigid bodies: Angular mome	-		
	Inertia tensor: Dentition and computation	-		
	and axes of inertia, Parallel and perpendi			
	Mass moment of inertia of symmetric			
	sphere, cone etc., Area moment of inertia			
	inertia, Forces and moments; Newton-E	duler's laws of rigid		

(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Electrical Engineering

	body motion.		
5	Free Body Diagram (1 hour)	1	
	Free body diagrams; Examples on modelling of typical		
	supports and joints and discussion on the kinematic and kinetic		
	constraints that they impose.		
6	General Motion	9	
	Examples and problems. General planar motions. General 3-D		
	motions. Free precession, Gyroscopes, Rolling coin.		
7	Bending Moment	5	
	Transverse loading on beams, shear force and bending moment		
	in beams, analysis of cantilevers, simply supported beams and		
	overhanging beams, relationships between loading, shear force		
	and		
	bending moment, shear force and bending moment diagrams.		
8	Torsional Motion	2	
	Torsion of circular shafts, derivation of torsion equation, stress		
	and deformation in circular and hollow shafts.		
9	Friction	3	
	Concept of Friction; Laws of Coulomb friction; Angle of		
	Repose; Coefficient of friction.		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	e of the course	MATHEMATICS-I	II	
	se Code: MC-EE 301	Semester: 3rd		
	tion: 6 months	Maximum Marks: 1	00	
Teac	hing Scheme	Examination Schem	e	
Theo	ry: 3 hrs/week	Mid Semester Exam:	15 Marks	
Tutor	rial: 0 hr/week	Assignment & Quiz:	10 Marks	
Practi	ical: 0 hrs/week	Attendance:	05 Marks	
Credi	t Points: 3	End Semester Exam:	70 Marks	
	ctive:			
1.	To provide understanding of Probability r profession.	equired for an Electric	al Engineer to	apply in the
2.	To understand different numerical n	nethods required to so	olve numerical	ly different
	systems			
3.	To have basic understanding of Z transf	form to be applied to se	olve problem	of different
	discrete systems			
	Requisite			
1.	Mathematics (10+2)			
Unit 1	Probability:		Hrs	Marks
	Basic Probability Theory: Classical limitations. Axiomatic definition. Some 6 i) P(O)=0, ii) 0 \(\sigma P(A) \leq 1\), iii) P(A')=1-symbols have their usual meanings. Fre of probability.	elementary deduction: P(A) etc. where the quency interpretation	1	
	Addition rule for 2 events (proof) & its ed 2 events (statement only). Related probability & Independent events. Exter events (pair wise & mutual independent Rule. Examples. Baye's theorem (statem problems.	roblems. Conditional asion to more than 2 ence). Multiplication	3	
	Random Variable & Probability Distribut Definition of random variable. Continuou random variables. Probability density fun- mass function for single variable only. Di and its properties (without proof). Examp Expectation & Variance, properties & exa	s and discrete ction & probability stribution function les. Definitions of		
	Some important discrete distributions: distributions and related problems. Some		2	

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering

	distributions: Uniform, Exponential, Normal distributions and related problems. Determination of Mean & Variance for Binomial, Poisson & Uniform distributions only.	2	
2	Numerical Methods:		
	Approximation in numerical computation: Truncation and		
	rounding errors, Fixed and floating-point arithmetic, Propagation of errors.	4	
	Interpolation: Newton forward/backward interpolation,	_	
	Lagrange's and Newton's divided difference Interpolation.	5	
	Numerical integration: Trapezoidal rule, Simpson's 1/3 rule, Expression for corresponding error terms.	3	
	Numerical solution of a system of linear equations: Gauss elimination method, Matrix inversion, LU Factorization method, Gauss-Seidel iterative method.	6	
	Numerical solution of Algebraic equation: Bisection method, Regula-Falsi method, Newton-Raphson method.	4	
	Numerical solution of ordinary differential equation: Euler's method, Runge-Kutta methods, Predictor-Corrector methods and Finite Difference method.	6	
3	Z transform:		
	Sequence, Representation of sequence, Basic operations on sequences, Z-transforms, Properties of Z-transforms, Change		
	of scale, Shifting property, Inverse Z-transform, Solution of difference equation, Region of convergence.	4	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	e of the course	BIOLOGY FOR EN	GINEERS	
	se Code: BS- 301	Semester: 3rd		
	tion: 6 months	Maximum Marks: 1	00	
Teac	hing Scheme	Examination Schem	e	
	ry: 3 hrs/week	Mid Semester Exam:	15 Marks	
Tutor	ial: 0 hr/week	Assignment & Quiz:	10 Marks	
Practical: 0 hrs/week Attendance: 05 Marks				
Credi	t Points: 3	End Semester Exam:	70 Marks	
Obje	ctive:			
1.	To introduce modern biology with an odisciplinary field.	-		
2.	To make students aware of application		rinciples in b	oiology and
	engineering robust solution inspired by bid	ological examples.		
Pre-F	Requisite			
1.	NIL			
Unit	Content		Hrs	Marks
1	Darwinian evolution, molecular perspective Phylogenetic trees, study of interrelationships.		3	
2	Cellular structure and function, cellular as dogma of molecular Biology.	sembly and central	6	
3	Organismal physiology-Energy and energe	etic constraints.	3	
4	3 D structure and function of large biologi	cal molecules.	3	
5	Techniques in bio physics and bio chemis	stry	3	
6	Immunology- Self vs Non-self, pathogens system, antigen-antibody reactions.	, human immune	6	
7	Infectious disease Biology and vaccines.		4	
8	Cancer biology, gene regulation, aging, cell.	apoptosis and stem	6	
9	Environmental bio-safety, bioresources, bi	iodiversity.	2	
10	Drug design	<u>*</u>	2	
11	Engineering design inspired by examples	in biology	2	

(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Electrical Engineering
(Applicable from the academic session 2018-2019)

Text books:

- 1. Essential of Genetics, Miko, I & LeJeune, L, Cambridge, MA, NPG Education, 2009.
- 2. Essential of Cell Biology, O'Connor, C.M % Adam, J,U, Cambridge, MA, NPG Education, 2010.
- 3. Molecular Biology of the Gene, Warson JD, Baker, TA, Bell SP, Gann A, Levin M, Losick R, Pearson Education, 2004.

(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Electrical Engineering

Nam	e of the course	INDIAN CONSTOT	TUTION	
Course Code: MC-EE 301 Semester: 3rd				
Dura		Maximum Marks: 1	00	
Teac	hing Scheme	Examination Schem	e	
Theo	ry: 3 hrs/week	Mid Semester Exam:	15 Marks	
		Assignment & Quiz:	10 Marks	
Pract	ical: 0 hrs/week	Attendance:	05 Marks	
Credi	t Points: 0	End Semester Exam:	70 Marks	
	ctive:			
1.	To have basic idea about Indian Constituti	ion.		
2.	To understand the structure and functioning			nment.
3.	To understand the structure, jurisdiction a	and function of Indian	judiciary.	
	Requisite			
1.	NIL	,		
Unit	Content		Hrs	Marks
1	Indian Constitution:		5	
	Sources and constitutional history, Fe			
	Preamble, Fundamental Rights and	Duties, Directive		
	Principles of State Policy			
2	Union government and its administratio		10	
	Structure of the Indian Union: Federa	· · · · · · · · · · · · · · · · · · ·		
	relationship, President: Role, power and	* '		
	Council of ministers, Cabinet and Cent	ral Secretariat, Lok		
	Sabha, Rajya Sabha.			
	State government and its administration			
	Governor: Role and Position, CM and Cou			
	State Secretariat: Organisation, Structure a	and Functions		
3	Supreme court: Organization of supreme	e court procedure of	10	
	the court, independence of the court, jurisc	• •	10	
	supreme court.	aretion and power or		
	High court: Organization of high court	rt. procedure of the		
	court, independence of the court, jurisdi	-		
	supreme court.	totion and power or		
	Subordinate courts: constitutional prov	vision, structure and		
	jurisdiction.	,		
	National legal services authority, Lok ad	lalats, family courts.		
	gram nyayalays.	, - , ,		
	Public interest litigation (PIL): meaning	of PIL, features of		
	PIL, scope of PIL, principle of PIL, guid	-		
	PIL	8		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

4	Local Administration:	10	
	District's Administration head: Role and Importance,		
	Municipalities: Introduction, Mayor and role of Elected		
	Representative, CEO of Municipal Corporation, Pachayati raj:		
	Introduction, PRI: Zila Pachayat, Elected officials and their		
	roles, CEO Zila Pachayat: Position and role, Block level:		
	Organizational Hierarchy (Different departments), Village		
	level: Role of Elected and Appointed officials, Importance of		
	grass root democracy.		

Text books:

1. Indian polity, M, Laxmikanth, MC Graw Hill education, 5th Edition.