Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи №4 з дисципліни «Ігрова фізика»

«Визначення коефіцієнта в'язкості рідини методом Стокса»

Варіант 10

Виконав студент ІП-13, Замковий Дмитро Володимирович

(шифр, прізвище, ім'я, по батькові)

Перевірив Скирта Юрій Борисович

(прізвище, ім'я, по батькові)

Лабораторна робота 4

Визначення коефіцієнта в'язкості рідини методом Стокса

Мета: вивчення руху матеріальної точки під дією сили, що пропорційна швидкості; визначення коефіцієнта в'язкості гліцерину.

Теорія:

В загальному вигляді закон Стокса має наступний вигляд:

$$F_c = 6\pi r \eta v$$
,

та має виконуватись умова:

$$Re = \frac{vr\rho_1}{\eta} << 1$$

Для обчислення швидкості v_{ycr} в даній роботі необхідно використати формулу

$$v = \frac{l}{t},$$

де 1 – відстань яку пройшла кулька

t – час за який кулька пройшла цю відстань

Вимірявши усталену швидкість падіння кульки та знаючи її радіус, а також величини густин речовини кульки та рідини , можна обчислити коефіцієнти в'язкості рідини за формулою

$$\eta = \frac{2}{9}gr^2 \frac{\rho - \rho_1}{v_{vcr}}$$

В чому і полягає ідея Стокса

На початку вимірювань необхідно також визначити, на якій відстані від відкритої поверхні гліцерину повинна бути нанесена верхня позначка, щоб на момент її проходження швидкість кульки була рівною υ уст. Для цього необхідно визначити шлях S, який пройде кулька за час t=3 τ якби її рух від поверхні мав нульову початкову швидкість. Якщо проінтегрувати вираз у межах від 0 до 3 τ , то отримаємо:

$$S(3\tau) = \int_0^{3\tau} v(t)dt = v_{yc\tau} * \tau(\frac{t}{\tau} - 1 + e^{-\frac{t}{\tau}})|_0^{3\tau} = \frac{8}{81}gr^4 \frac{\rho(\rho - \rho_1)}{\eta^2}$$

Розрахунки:

Густина матеріалу кульок $\rho = 11,3*10^3 \, \text{кг/м}^3$

Густина гліцерину $\rho_1 = 1200 \; \text{кг/м}^3$

Температура гліцерину t = 25.6°C

No	d, м	1, м	t, c	v_{yct} , M/c	η, Па*с	η _i -<η>, Πa*c	$(\eta_i - <\eta >)^2, (\Pi a * c)^2$
1	0.0027	0.520	4.594	0.113	0.355	-0.0031	0.0000967
2	0.0019	0.355	6.219	0.057	0.348	-0.0095	0.00009049
3	0.0018	0.363	7.140	0.051	0.351	-0.0068	0.00004661
4	0.0029	0.513	3.953	0.130	0.357	-0.0009	0.00000082
5	0.0025	0.683	6.907	0.099	0.348	-0.0097	0.00009435
6	0.0018	0.359	7.297	0.049	0.363	0.0049	0.00002381
7	0.0022	0.414	5.641	0.073	0.363	0.0054	0.00002902
8	0.0025	0.406	4.391	0.092	0.372	0.0145	0.00020897
9	0.0022	0.470	6.250	0.075	0.354	-0.0033	0.00001118
10	0.0021	0.410	6.187	0.066	0.366	0.0087	0.00007552

Для найгіршого випадку (d = 0.0029) з'ясуємо на якій відстані від відкритої поверхні гліцерину повинна бути верхня позначка

$$S(3\tau) = \frac{8}{81}gr^4 \frac{\rho(\rho - \rho_1)}{\eta^2} = 0.003841$$

Переконаємось, що між d і η не має систематичної залежності

Вирахуємо вибірковий стандарт середнього

$$a = 0.9$$

 $<\eta> = 0.358$
 $S_{<\eta>} = \sqrt{\frac{1}{n(n-1)}\sum_{i=1}^{n}\Delta\eta_{i}^{2}} = 0.002561$
 $\eta = <\eta> \pm \eta_{a,n} * S_{<\eta>} = 0.358 \pm 2.92 * 0.002561 = 0.358 \pm 0.007479 (\Pia*c)$

Визначимо відсотковий вміст води у розчині гліцерину

Po	зчин гліцерину	водний			
Вміст гліцерину,	В'язкість _η , 10 ⁻³ Па·с				
масові відсотки	20 °C	25 °C	30 °C		
100	1495,0	942,0	622,0		
99	1194,0	772,0	509,0		
98	971,0	627,0	423,0		
97	802,0	521,0	353,0		
96	659,0	434,0	295,0		
95	543,0	365,0	248,0		

Оскільки найближче табличне значення до температури у досліді - 25°C, а $<\eta>=0.358$, то з таблиці в імітаторі дізнаємось, що вміст гліцерину в розчині $\sim 95\%$, а тобто вміст води в розчині $\sim 5\%$

Висновок:

В ході даної лабораторної роботи я дослідив метод визначення коефіцієнта в'язкості рідини методом Стокса, а саме: провів експеримент в емітаторі, заповнив таблицю для подальшого її аналізу, визначив застосовність формули Стокса, з'ясував на якій відстані від відкритої поверхні гліцерину повинна бути верхня позначка, визначив усталені швидкості падіння кульки і вирахував за даною формулою коефіцієнти в'язкості гліцерину, переконався, що між коефіцієнтом в'язкості і діаметром кульки немає залежності, визначив середнє значення коефіцієнта в'язкості гліцерину, вирахував стандарт середнього, визначив відсотковий вміст води у досліджуваному гліцерині.

Відповіді на контрольні запитання:

1. Коефіцієнти в'язкості. Формула Ньютона для сили внутрішнього тертя.

Коефіцієнт в'язкості - фізична величина, чисельно рівна силі внутрішнього тертя F, що діє на кожну одиницю площі контакту двох шарів S, що рухаються відносно один одного з градієнтом швидкості, рівним одиниці.

$$F_T = \eta \cdot S \cdot \frac{dv}{dz}$$
 (1), де

S – площа межуючих поверхонь рідини і бруска;

η – коефіцієнт пропорційності або в'язкості;

 $\frac{dv}{dz}$ — градієнт (перепад) швидкості, який характеризує зміну швидкості між межуючими шарами в напрямі перпендикулярному до течії рідини

2. Ламінарний і турбулентний рух. Число Рейнольдса.

Ламінарний рух - це регулярний рух рідини або газу, при якому рідина (газ) рухається шарами, паралельними напрямку потоку. При цьому перемішування між сусідніми шарами рідини немає.

Турбулентність — невпорядкований рух, який в загальному випадку виникає в рідинах, газоподібних або крапельних середовищах, коли вони обтікають непроникні поверхні або ж коли сусідні один з одним потоки однієї і тієї ж рідини слідують поруч або проникають один в інший. (Т. Карман).

Число Рейнольдса – безвимірна величина, яка характеризує відношення інерціальних сил до сил в'язкості тертя у в'язких рідинах і газах

3. Які кульки потрібно використовувати для вимірювань?

Для досліду можна використовувати кульки для яких дійсна нерівність $\frac{vr\rho_1}{n} << 1$

$$\frac{vr\rho_1}{\eta} << 1$$

4. На якій відстані від відкритої поверхні гліцерину слід наносити верхню позначку?

Для того аби порахувати цю відстань потрібно визначити шлях який пройде кулька за час - 3т, якби її рух від поверхі мав нульову швидкість. Запишемо та розкриємо формулу:

$$S(3\tau) = \int_{0}^{3\tau} v(t)dt = v_{ycT}\tau \left(\frac{t}{\tau} - 1 + e^{-\frac{t}{\tau}}\right)|_{0}^{3\tau} \approx 2v_{ycT}\tau \approx \frac{8}{81}gr^{4}\frac{\rho(\rho - \rho_{1})}{\eta^{2}}$$

5. Що є критерієм надійності даного експерименту?

Критерієм надійності даного експерименту буде відсутня систематична залежність η від г. ця залежність може мати тільки випадковий характер, пов'язаний із випадковими похибками. Тільки у цьому разі можна усереднювати результати вимірювань та робити висновки щодо справедливості теоретичних положень.