Introduction to Machine Learning SS20	0/1 loss	Kernelized linear regression (KLR)	Backpropagation
Fundamental Assumption	$l_{0/1}(w;y_i,x_i) = 1$ if $y_i \neq \text{sign}(w^T x_i)$ else 0	Ansatz: $w^* = \sum_{i=1}^n \alpha_i x$	Output layer:
Data is iid for unknown $P: (x_i, y_i) \sim P(X, Y)$	Perceptron algorithm	$\alpha^* = \operatorname{argmin}_{\alpha} \alpha^T K - y _2^2 + \lambda \alpha^T K \alpha$	Error: $\delta^{(L)} = \mathbf{l}'(\mathbf{f}) = [l'(f_1),, l'(f_p)]$
True risk and estimated error	Use $l_P(w; y_i, x_i) = \max(0, -y_i w^T x_i)$ and SGD	$=(K+\lambda I)^{-1}y$, Prediction: $\hat{y}=\sum_{i=1}^{n}\alpha_{i}k(x_{i},\hat{x})$	Gradient: $\nabla_{\mathbf{W}^{(L)}} \ell(\mathbf{W}; \mathbf{y}, \mathbf{x}) = \delta^{(L)} \mathbf{v}^{(L-1)T}$
True risk: $R(w) = \int P(x, y)(y - w^T x)^2 \partial x \partial y =$	$\nabla_{w} l_{P}(w; y_{i}, x_{i}) = \begin{cases} 0 & \text{if } y_{i} w^{I} x_{i} \geq 0 \\ -y_{i} x_{i} & \text{otherwise} \end{cases}$	<i>i</i> =1	Hidden layers: Error: $\boldsymbol{\delta}^{(\ell)} = \boldsymbol{\phi}'(\mathbf{z}^{(\ell)}) \odot \mathbf{W}^{(\ell+1)T} \boldsymbol{\delta}^{(\ell+1)}$
$\mathbb{E}_{x,y}[(y-w \ x)]$	Data lin. separable ⇔ obtains a lin. separator (not	$y = \text{sign } \left(\sum_{i=1}^{n} y_i [x_i \text{ among } k \text{ nearest neigh-} \right)$	Gradient: $\nabla - \psi(\mathbf{z}^{(\ell)}) \otimes \mathbf{v} = \delta^{(\ell)} \mathbf{v}^{(\ell-1)T}$
Est. error: $\hat{R}_D(w) = \frac{1}{ D } \sum_{(x,y) \in D} (y - w^T x)^2$	necessarily optimal)	bours of x] – No weights \Rightarrow no training! But	Learning with momentum
Standardization		depends on all data.	Learning with momentum
Centered data with unit variance: $\tilde{x}_i = \frac{x_i - \hat{\mu}}{\hat{\sigma}}$	Hinge loss: $l_H(w;x_i,y_i) = \max_T (0,1-y_iw^Tx_i)$	Imbalance	$a \leftarrow m \cdot a + \eta_t \nabla_W l(W; y, x); W_{t+1} \leftarrow W_t - a$
$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i, \ \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$	$\nabla_{w} l_{H}(w; y, x) = \begin{cases} 0 & \text{if } y_{i} w^{T} x_{i} \ge 1\\ -y_{i} x_{i} & \text{otherwise} \end{cases}$	up-/downsampling	Clustering
Cross-Validation	$w^* = \operatorname{argmin}_{w} l_H(w; x_i, y_i) + \lambda w _2^2$	Cost-Sensitive Classification	k-mean
For all models m , for all $i \in \{1,,k\}$ do:	Kernels	Scale loss by cost: $l_{CS}(w;x,y) = c_{\pm}l(w;x,y)$	$\hat{R}(\mu) = \sum_{i=1}^{n} \min_{j \in \{1,k\}} x_i - \mu_j _2^2$
1. Split data: $D = D_{train}^{(i)} \uplus D_{test}^{(i)}$ (Monte-Carlo or	efficient, implicit inner products	Metrics $n = n_+ + n, n_+ = TP + FN, n = TN + FP$	$\hat{\mu} = \operatorname{argmin}_{\mu} \hat{R}(\mu)$ non-convex, NP-hard
k-Fold) 2. Train model: $\hat{w}_{i,m} = \operatorname{argmin}_{w} \hat{R}_{train}^{(i)}(w)$	Properties of kernel	Δ_{CCUP2CV} $\frac{TP+TN}{TP+TN}$ Precision: $\frac{TP}{TP}$	Lloyd's Heuristic: 1. Initialize cluster centers
3. Estimate error: $\hat{R}_m^{(i)} = \hat{R}_{test}^{(i)}(\hat{w}_{i,m})$	$k: X \times X \to \mathbb{R}$, k must be some inner product	Recall/TPR $\cdot \frac{TP}{}$ FPR $\cdot \frac{FP}{}$	$\mu^{(0)} = [\mu_1^{(0)},, \mu_k^{(0)}]$ While not converged:
Select best model: $\hat{m} = \operatorname{argmin}_{m} \frac{1}{k} \sum_{i=1}^{k} \hat{R}_{m}^{(i)}$	(symmetric, positive-definite, inicar) for some space	F1 score: $\frac{2TP}{2TP+FP+FN} = \frac{2}{\frac{1}{ppec} + \frac{1}{pec}}$	1. Assign points $z_i^{(t)} \leftarrow \operatorname{argmin}_i \mathbf{x}_i - \boldsymbol{\mu}_i^{(t-1)} _2^2$
Gradient Descent	<i>V</i> . i.e. $k(\mathbf{x}, \mathbf{x}') = \langle \varphi(\mathbf{x}), \varphi(\mathbf{x}') \rangle_V \stackrel{Eucl.}{=} \varphi(\mathbf{x})^T \varphi(\mathbf{x}')$ and $k(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}', \mathbf{x})$		2. Update centers $\mu_j^{(t)} \leftarrow \frac{1}{n_i} \sum_{i:z^{(t)} = i} \mathbf{x}_i$
1. Pick arbitrary $w_0 \in \mathbb{R}^d$	Kernel matrix	Multi-class	k-Means++: Start with random data point as center
$2. w_{t+1} = w_t - \eta_t \nabla \hat{R}(w_t)$	$\begin{bmatrix} k(x_1,x_1) & \dots & k(x_1,x_n) \end{bmatrix}$	one-vs-all (c), one-vs-one $(\frac{c(c-1)}{2})$, encoding	and add centers randomly, proportionally to the
Stochastic Gradient Descent (SGD)	$K = \begin{bmatrix} K(1) & K$	Multi-class Hinge loss	squared distance to closest center.
1. Pick arbitrary $w_0 \in \mathbb{R}^d$	$\begin{bmatrix} k(x_n,x_1) & \dots & k(x_n,x_n) \end{bmatrix}$	•	Dimension reduction
2. $w_{t+1} = w_t - \eta_t \nabla_w l(w_t; x', y')$, with u.a.r.	Positive semi-definite matrices \Leftrightarrow kernels k	$l_{MC-H}(w^{(1)},,w^{(c)};x,y) = \max(0,1+\max_{w^{(j)T}x-w^{(y)T}x})$	PCA
data point $(x', y') \in D$	Important kernels	$\max(0,1+\max_{j\in\{1,\cdots,y-1,y+1,\cdots,c\}}w^{(j)T}x-w^{(y)T}x)$	$D=x_1,,x_n\subset\mathbb{R}^d, \Sigma=\frac{1}{n}\sum_{i=1}^nx_ix_i^T, \mu=0$
Regression	Linear: $k(x,y) = x^T y$	Neural networks	$(W,z_1,,z_n) = \operatorname{argmin} \sum_{i=1}^{n} Wz_i - x_i _2^2$
Solve $w^* = \operatorname{argmin}_{w} \hat{R}(w) + \lambda C(w)$	Polynomial: $k(x,y) = (x^Ty+1)^d$ Gaussian: $k(x,y) = exp(- x-y _2^2/(2h^2))$	Parameterize feature map with θ : $\phi(x, \theta) =$	$W = (v_1 v_k) \in \mathbb{R}^{d \times k}$, orthogonal; $z_i = W^T x_i$
Linear Regression	Laplacian: $k(x,y) = exp(- x-y _1/h)$	$\varphi(\theta^T x) = \varphi(z)$ (activation function φ)	v_i are the eigenvectors of Σ
$\hat{R}(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 = Xw - y _2^2$	Composition rules	$\Rightarrow w^* = \operatorname{argmin}_{w,\theta} \sum_{i=1}^n l(y_i; \sum_{j=1}^m w_j \phi(x_i, \theta_j))$ $f(x_i, \theta_j) = \sum_{i=1}^m w_i \phi(\theta^T x_i) = w^T \phi(\Theta x_i)$	Kernel PCA
$\nabla_{w} \hat{R}(w) = -2\sum_{i=1}^{n} (y_i - w^T x_i) \cdot x_i$	Valid kernels k_1, k_2 , also valid kernels: $k_1 + k_2$; $k_1 \cdot k_2$;	$f(x; w, \theta_{1:d}) = \sum_{j=1}^{m} w_j \varphi(\theta_j^T x) = w^T \varphi(\Theta x)$ Activation functions	Kernel PC: $\alpha^{(1)},, \alpha^{(k)} \in \mathbb{R}^n, \alpha^{(i)} = \frac{1}{\sqrt{\lambda_i}} v_i$
$w^* = (X^T X)^{-1} X^T y,$ $\mathbf{E}[w^*] = w, \mathbf{V}[w^*] = (X^T X)^{-1} \sigma^2$	$c \cdot k_1, c > 0$; $f(k_1)$ if f polynomial with pos. coeffs.		$K = \sum_{i=1}^{n} \lambda_i v_i v_i^T, \lambda_1 \ge \dots \ge \lambda_d \ge 0$
Ridge regression	or exponential Reformulating the perceptron	Sigmoid: $\frac{1}{1+exp(-z)}$, $\varphi'(z) = (1-\varphi(z)) \cdot \varphi(z)$	New point: $\hat{z} = f(\hat{x}) = \sum_{j=1}^{n} \alpha_j^{(i)} k(\hat{x}, x_j)$
$\hat{R}(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda w _2^2$	Ansatz: $w^* \in \text{cpon}(Y) \rightarrow w - \nabla^n$	tanh: $\varphi(z) = tanh(z) = \frac{exp(z) - exp(-z)}{exp(z) + exp(-z)}$	Autoencoders
$ \nabla_{\mathbf{w}} \hat{\mathbf{R}}(w) = \sum_{i=1}^{n} (y_i - w^T x_i) + \lambda w _2 \nabla_{\mathbf{w}} \hat{\mathbf{R}}(w) = -2 \sum_{i=1}^{n} (y_i - w^T x_i) \cdot x_i + 2\lambda w $	Ansatz: $w^* \in \text{span}(X) \Rightarrow w = \sum_{j=1}^n \alpha_j y_j x_j$ $\alpha^* = \operatorname{argmin} \sum_{j=1}^n \max(0, \sum_{j=1}^n \alpha_j y_j x_j x_j)$	ReLU: $\varphi(z) = \max(z,0)$	Find identity function: $x \approx f(x; \theta)$
$w^* = (X^T X + \lambda I)^{-1} X^T y$	$\alpha^* = \underset{\alpha \in \mathbb{R}^n}{\operatorname{argmin}} \sum_{i=1}^n \max(0, -\sum_{j=1}^n \alpha_j y_i y_j x_i^T x_j)$	Forward Propagation	$f(x;\theta) = f_{decode}(f_{encode}(x;\theta_{encode});\theta_{decode})$
$\mathbf{E}[w^*] = (X^T X + \lambda I)^{-1} (X^T X) w$	Kernelized perceptron and SVM	Input layer: $\mathbf{v}^{(0)} = \mathbf{x}$	Probabilistic modeling
$\mathbf{V}[w^*] = \sigma^2 (X^T X + \lambda I)^{-1} (X^T X) [(X^T X + \lambda I)^{-1}]^{\top}$	Use $\alpha^T k_i$ instead of $w^T x_i$,	Hidden layers: $\mathbf{z}^{(\ell)} = \mathbf{W}^{(\ell)} \mathbf{v}^{(\ell-1)}, \ \mathbf{v}^{(\ell)} = \phi(\mathbf{z}^{(\ell)})$ Output layer: $f = \mathbf{W}^{(L)} \mathbf{v}^{(L-1)}$	Find $h: X \rightarrow Y$ that min. pred. error:
L1-regularized regression (Lasso)	use $\alpha^T D_y K D_y \alpha$ instead of $ w _2^2$	SGD for ANNs	$R(h) = \int P(x,y)l(y;h(x))\partial yx\partial y = \mathbb{E}_{x,y}[l(y;h(x))]$
$\hat{R}(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda w _1$	$k_i = [y_1 k(x_i, x_1),, y_n k(x_i, x_n)], D_y = \text{diag}(y)$ Prediction: $\hat{y} = \text{sign}(\sum_{i=1}^n \alpha_i y_i k(x_i, \hat{x}))$ SGD update:		For least squares regression
Classification	Prediction: $y = \text{sign}(\sum_{i=1}^{n} \alpha_i y_i k(x_i, x))$ SGD update: $\alpha_{t+1} = \alpha_t$, if mispredicted: $\alpha_{t+1,i} = \alpha_{t,i} + \eta_t$ (c.f.	$\ell(\mathbf{W}; \mathbf{x}, \mathbf{y}) = \ell(\mathbf{y} - f(\mathbf{x}, \mathbf{W}))$	Best h : $h^*(x) = \mathbb{E}[Y X=x]$
Solve $w^* = \operatorname{argmin}_w l(w; x_i, y_i)$; loss function l			Pred.: $\hat{y} = \hat{\mathbb{E}}[Y X = \hat{x}] = \int \hat{P}(y X = \hat{x})y\partial y$

Maximum Likelihood Estimation (MLE)	Examples	Hard-EM algorithm	e.g. $\nabla_{w} \log(1 + \exp(-yw^{T}x)) =$
$\theta^* = \operatorname{argmax}_{\theta} \hat{P}(y_1,, y_n x_1,, x_n, \theta)$ E.g. lin. + Gauss: $y_i = w^T x_i + \varepsilon_i, \varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ i.e. $y_i \sim N(w^T x_i, \sigma^2)$, With MLE (use argmin -log): $w^* = \operatorname{argmin}_w \sum (y_i - w^T x_i)^2$	MLE for $P(y) = p = \frac{n_+}{n}$ MLE for $P(x_i y) = N(x_i; \mu_{i,y}, \sigma_{i,y}^2)$: $\hat{\mu}_{i,y} = \frac{1}{n_y} \sum_{x \in D_{x_i y}} x$ $\hat{\sigma}_{i,y}^2 = \frac{1}{n_y} \sum_{x \in D_{x_i y}} (x - \hat{\mu}_{i,y})^2$	Initialize parameters $\theta^{(0)}$ E-step: Predict most likely class for each point: $z_i^{(t)} = \operatorname{argmax}_z P(z x_i, \theta^{(t-1)})$ $= \operatorname{argmax}_z P(z \theta^{(t-1)}) P(x_i z, \theta^{(t-1)});$	$\frac{1}{1+\exp(-yw^Tx)} \cdot \exp(-yw^Tx) \cdot (-yx) = \frac{1}{1+\exp(yw^Tx)} \cdot (-yx)$ Invertible/nonsingular Matrices $A^{m \times m} : A^{-1}A = I_d = AA^{-1} \text{ only if } \det(A) \neq 0;$
Bias/Variance/Noise	MLE for Poi.: $\lambda = \operatorname{avg}(x_i)$	M-step: Compute the MLE: $O(t) = \operatorname{argmax}_{P} P(D(t) O) : a \cdot u^{(t)} = \frac{1}{2} \sum_{i=1}^{n} u_i^{(t)}$	Ax = 0 has only trivial solution $x = 0$.
Prediction error = $Bias^2 + Variance + Noise$	\mathbb{R}^d : $P(X = x Y = y) = \prod_{i=1}^d Pois(\lambda_y^{(i)}, x^{(i)})$	$\theta^{(t)} = \operatorname{argmax}_{\theta} P(D^{(t)} \theta)$, i.e. $\mu_j^{(t)} = \frac{1}{n_j} \sum_{i:z_i=j} x_j$	Orthogonal Matrices
Maximum a posteriori estimate (MAP)	Deriving decision rule	Soft-EM algorithm	$A^{m \times m} : A^{\top} A = I_d = AA^{\top} \Leftrightarrow A^{\top} = A^{-1}$
$\hat{\theta}_{MAP}(x) = \underset{\theta}{\operatorname{argmax}} g(\theta) \prod_{i=1}^{n} f(x \mid \theta)$	$P(y x) = \frac{1}{Z}P(y)P(x y), Z = \sum_{y}P(y)P(x y)$ $y^* = \max_{y}P(y x) = \max_{y}P(y)\prod_{i=1}^{d}P(x_i y)$	E-step: Calc p for each point and cls.: $\gamma_j^{(t)}(x_i)$ M-step: Fit clusters to weighted data points:	Symmetric Positive Definite Matrices Symmetric: $A^{n \times n} : A^{\top} = A$, symmetric positive definite if: $\forall x \mid (0) \in \mathbb{R}^n : x^{\top} A \mapsto 0$ (comit definite)
Logistic regression	Gaussian Bayes Classifier	$w_j^{(t)} = \frac{1}{n} \sum_{i=1}^n \gamma_j^{(t)}(x_i); \mu_j^{(t)} = \frac{\sum_{i=1}^n \gamma_j^{(t)}(x_i) x_i}{\sum_{i=1}^n \gamma_j^{(t)}(x_i)}$	definite if: $\forall x \setminus \{0\} \in \mathbb{R}^n : x^\top Ax > 0$ (semi-definite if: ≥ 0) \Leftrightarrow all eigenvalues of A are positive.
Link func.: $\sigma(w^T x) = \frac{1}{1 + exp(-w^T x)}$ (Sigmoid) $P(y x,w) = Ber(y;\sigma(w^T x)) = \frac{1}{1 + exp(-yw^T x)}$ Classifi-	$\hat{P}(x y) = \mathcal{N}(x; \hat{\mu}_y, \hat{\Sigma}_y)$ $\hat{P}(Y=y) = \hat{p}_y = \frac{n_y}{n_y}$	$\sigma_j^{(t)} = \frac{\sum_{i=1}^n \gamma_j^{(t)}(x_i)(x_i - \mu_j^{(t)})^T (x_i - \mu_j^{(t)})}{\sum_{i=1}^n \gamma_j^{(t)}(x_i)}$	Eigendecomposition $AP = PD \Leftrightarrow A = PDP^{-1}$ iff eigenvectors of A form
cation: Use $P(y x,w)$, predict most likely class label. MLE: $\operatorname{argmax}_{w} P(y_{1:n} w,x_{1:n})$	$\hat{\boldsymbol{\mu}}_{y} = \frac{1}{n_{y}} \sum_{i:y_{i}=y} x_{i} \in \mathbb{R}^{d}$ $\hat{\boldsymbol{\Sigma}}_{y} = \frac{1}{n_{y}} \sum_{i:y_{i}=y} (x_{i} - \hat{\boldsymbol{\mu}}_{y}) (x_{i} - \hat{\boldsymbol{\mu}}_{y})^{T} \in \mathbb{R}^{d \times d}$	$\theta^{(t)} = \operatorname{argmax}_{\theta} \sum_{i=1}^{n} \sum_{z_{i}=1}^{k} \gamma_{z_{i}}(x_{i}) \log P(x_{i}, z_{i} \theta)$ Soft-EM for semi-supervised learning	a basis in \mathbb{R}^n . D diagonal matrix of eigenvalues, Eigenvectors in P . $Ap = \lambda p$ Cholesky decomposition
SGD update: $w = w + \eta_t yx \hat{P}(Y = -y w,x)$	Fisher's LDA (c=2)	labeled y_i : $\gamma_j^{(t)}(x_i) = [j = y_i]$, unlabeled: $\gamma_j^{(t)}(x_i) = P(Z = j x_i, \mu^{(t-1)}, \Sigma^{(t-1)}, w^{(t-1)})$	$A^{n \times n}$: $A = LL^{\top}$, symmetric and positive definite. Singular value decomposition
$\hat{P}(Y = -y w,x) = \frac{1}{1 + exp(yw^Tx)}$ MAP: Gauss. prior $\Rightarrow w _2^2$, Lap. p. $\Rightarrow w _1$ SGD: $w = w(1 - 2\lambda \eta_t) + \eta_t yx \hat{P}(Y = -y w,x)$	Assume: $p=0.5$; $\hat{\Sigma}_{-}=\hat{\Sigma}_{+}=\hat{\Sigma}$ discriminant function: $f(x)=\log\frac{p}{1-p}+$	$ \gamma_{j}^{*}(x_{i}) = P(Z = f x_{i}, \mu^{*} = 3, 2^{*} = 3, w^{*} = 3) $ Useful Math Calculus	$A = U\Sigma V^{\top}; A^{m\times n}; U^{m\times m}, V^{n\times n}: U, V \text{ orthogonal and } \Sigma^{m\times n} \text{ diagonal with singular values}$
Bayesian decision theory - Conditional distribution over labels $P(y x)$	$\frac{1}{2} [\log \frac{ \hat{\Sigma}_{-} }{ \hat{\Sigma}_{+} } + ((x - \hat{\mu}_{-})^{T} \hat{\Sigma}_{-}^{-1} (x - \hat{\mu}_{-})) - ((x - \hat{\mu}_{+})^{T} \hat{\Sigma}_{+}^{-1} (x - \hat{\mu}_{+}))]$	F'(x)= $f'(g(x))g'(x)$ Probabilities	$\sigma = \sqrt{\lambda (A^{\top} A)} \qquad Av = \sigma u$
- Set of actions A - Cost function $C: Y \times A \to \mathbb{R}$ $a^* = \operatorname{argmin}_{a \in A} \mathbb{E}[C(y,a) x]$	Predict: $y = \text{sign}(f(x)) = \text{sign}(w^T x + w_0)$ $w = \hat{\Sigma}^{-1}(\hat{\mu}_+ - \hat{\mu});$ $w_0 = \frac{1}{2}(\hat{\mu}^T \hat{\Sigma}^{-1} \hat{\mu} \hat{\mu}_+^T \hat{\Sigma}^{-1} \hat{\mu}_+)$	$\mathbb{E}_{x}[X] = \begin{cases} \int x \cdot p(x) dx & \text{if continuous} \\ \sum_{x} x \cdot p(x) & \text{otherwise} \end{cases}$	
Calculate $\mathbb E$ via sum/integral.	Outlier Detection	$\operatorname{Var}[X] = \mathbb{E}[(X - \mu_X)^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$ $P(A B) = \frac{P(B A) \cdot P(A)}{P(B)}; \ p(Z X,\theta) = \frac{P(X,Z \theta)}{p(X \theta)}$	
Classification: $C(y,a) = [y \neq a]$; asymmetric: $C(y,a) = \begin{cases} c_{FP}, & \text{if } y = -1, a = +1 \\ c_{FN}, & \text{if } y = +1, a = -1 \\ 0, & \text{otherwise} \end{cases}$	$P(x) \le \tau$ Categorical Naive Bayes Classifier	$P(x,y) = P(y x) \cdot P(x) = P(x y) \cdot P(y)$ $\mathbb{E}_x[b+cX] = b+c \cdot \mathbb{E}_x[X]$	
Regression : $C(y, a) = (y - a)^2$; asymmetric: $C(y,a) = c_1 \max(y-a,0) + c_2 \max(a-y,0)$ E.g. $y \in \{-1,+1\}$, predict + if $c_+ < c$, $c_+ = \mathbb{E}[C(y,+1) y] = P(y,-1 y) = 0$	MLE for feature distr.: $\hat{P}(X_i = c Y = y) = \theta_{c y}^{(i)}$ $\theta^{(i)} = \frac{Count(X_i = c, Y = y)}{C(x_i = c)}$	$\mathbb{E}_{x}[b+CX] = b+C \cdot \mathbb{E}_{x}[X], C \in \mathbb{R}^{n \times n}$ $\mathbb{V}_{x}[b+cX] = c^{2}\mathbb{V}_{x}[X]$ $\mathbb{V}_{x}[b+CX] = C\mathbb{V}_{x}[X]C^{\top}, C \in \mathbb{R}^{n \times n}$	
E.g. $y \in \{-1,+1\}$, predict + if $c_+ < c$, $c_+ = \mathbb{E}(C(y,+1) x) = P(y=1 x) \cdot 0 + P(y=-1 x) \cdot c_{FP}$, c likewise	Prediction: $y^* = \operatorname{argmax}_y \hat{P}(y x)$ Missing data	$\operatorname{Cov}[X, Y] = \mathbb{E}[(X - \mathbb{E}(X)(Y - \mathbb{E}(Y))] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$	-
Discriminative vs. generative modeling		$\mathbb{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y] + 2\operatorname{Cov}[X,Y]$	
Discr. estimate $P(y x)$, generative $P(y,x)$. Approach (generative): $P(x,y) = P(x y) \cdot P(y)$ Naive Bayes	Mixture modeling Model each c. as probability distr. $P(x \theta_j)$ $P(D \theta) = \prod_{i=1}^{n} \sum_{j=1}^{k} w_j P(x_i \theta_j)$	Bayes Rule $P(A B) = \frac{P(B A)P(A)}{P(B)} = \frac{P(B A)P(A)}{\sum_A P(B A)P(A)}$ P-Norm	
- Estimate prior on labels $P(y)$	$L(w,\theta) = -\sum_{i=1}^{n} \log \sum_{j=1}^{k} w_j P(x_i \theta_j)$	$ x _p = (\sum_{i=1}^n x_i ^p)^{\frac{1}{p}}, 1 \le p < \infty$	
- Estimate cond. distr. $P(x y)$ for each class y	Gaussian-Mixture Bayes classifiers	Some gradients	
- Pred. using Bayes: $P(y x) = \frac{P(y)P(x y)}{P(x)}$	Estimate prior $P(y)$; Est. cond. distr. for each class		
$P(x) = \sum_{y} P(x, y)$	$P(x y) = \sum_{j=1}^{k_{y}} w_{j}^{(y)} N(x; \mu_{j}^{(y)}, \Sigma_{j}^{(y)})$	$-f(x) = x^T A x; \nabla_x f(x) = (A + A^T) x$	