# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (СПбГУ)

Образовательная программа бакалавриата «Науки о данных»



Отчёт по практике «Учебная практика (проектно-технологическая практика)»

Выполнил студент 2 курса бакалавриата (группа 22.Б05-мкн) Ратьков Андрей Игоревич

Научный руководитель: д.ф.-м.н. Охотин Александр Сергеевич

 ${
m Cahkt-} \Pi$ етербург 2024

## Содержание

| 1        |     | исание алгоритма Хопкрофта                           | 3  |
|----------|-----|------------------------------------------------------|----|
|          | 1.1 | Вступление                                           | 3  |
|          | 1.2 |                                                      |    |
|          | 1.3 | Несколько утверждений                                |    |
|          | 1.4 | Псевдокод                                            |    |
|          | 1.5 | Корректность алгоритма                               |    |
|          | 1.6 | Асимптотика алгоритма                                |    |
| <b>2</b> | Pea | лизация алгоритма                                    | 7  |
|          | 2.1 | Класс DFA                                            | 8  |
|          |     | Класс NFA                                            |    |
|          | 2.3 | Взаимодействие с пользователем                       |    |
| 3        | Ана | лиз работы программы                                 | 13 |
|          | 3.1 | Сравнение времени работы алгоритмов Хопкрофта и Мура | 13 |
|          |     | Расходуемая память                                   |    |
| 4        | Зак | лючение                                              | 14 |

## 1 Описание алгоритма Хопкрофта

## 1.1 Вступление

На входе подаётся детерминированный конечный автомат (DFA)  $A(\Sigma, Q, q_0, \delta, F)$ .  $\Sigma$  — входной алфавит — конечный набор символов, Q — конечное множество состояний,  $q_0 \in Q$  — начальное состояние,  $\delta: Q \times \Sigma \longrightarrow Q$  — правила переходов,  $F \subset Q$  — множество принимающих состояний. Алгоритм минимизации преобразует автомат до нового минимального автомата A' (автомата с минимальным числом состояний), распознающего тот же язык.

Для начала удаляются состояния, в которые нельзя попасть из начального состояния  $q_0$ . Остальные состояния разбиваются на классы эквивалентности по следующему отношению:

Определение 1. Состояния  $q_1$  и  $q_2$  эквивалентны  $(q_1 \sim q_2)$ , если множество слов, принимаемых из состояния  $q_1$  равно множеству слов, принимаемых из состояния  $q_2$ .

По теореме Мура, получаемый при этом автомат минимальный. Алгоритм Мура минимизации конечных автоматов работает за время  $O(n^2)$ , где n=|Q| — количество состояний в исходном автомате A. Ниже будет расмотрен алгоритм Хопкрофта [1], делающий то же самое, но с лучшей асимптотикой  $O(n \log n)$ .

## 1.2 Используемые объекты и подготовка к минимизации

Первым делом покажем, что удаление недостижимых из  $q_0$  состояний можно сделать линейно. Будем красить состояния в три цвета: черный, серый, белый. Белый будет означать, что алгоритм не достиг ещё этого состояния, серый — достиг, но не прошёл из него в соседние состояния (т.е. в состояния, в которые можно попасть из текущего по какому-то символу), чёрный — что состояние посещено и достигнуты соседние с ним состояния. В начале алгоритм красит начальное состояние в серый, остальные — в белый, начальное состояние кладёт в очередь (очередь состоит из серых состояний). Далее, пока очередь непуста, из неё берется серое состояние, перекрашивается в чёрный. Перебираются его соседние состояния, и те из них, которые белые, перекрашиваются в серый и добавляются в очередь. Работает это за время  $O(|\Sigma|n)$ , так по каждому из рёбер графа, задаваемом А, алгоритм пройдёт не более 1 раза, сделает не более n добавлений и вытаскивний элемента из очереди (каждая из этих операций — O(1)).

В реализации алгоритма понадобится отображение  $\delta^{-1}: Q \times \Sigma \longrightarrow 2^Q$ : каждому состоянию  $q \in Q$  и символу  $a \in \Sigma$  сопоставляется множество состояний, из которых можно прийти в q по a ( $\delta^{-1}(q,a) = \{s \in Q | \delta(s,a) = q\}$ ). Поскольку

$$\sum_{q \in Q} \sum_{a \in A} \delta^{-1}(q, a) = |\Sigma| n$$

(обе части — количество переходов в графе, задаваемом A), для  $\delta^{-1}$  построение занимает  $O(|\Sigma|n)$  времени и  $O(|\Sigma|n)$  памяти.

Как и в алгоритме Мура, алгоритм Хопкрофта будет разбивать состояния автомата А на блоки (раскрашивать состояния в цвета), пока в конце не окажется, что разбиение на блоки (цвета) не удовлетворяет следующему условию: два состояния находятся в одном блоке (помечены одним цветом) тогда и только тогда, когда они эквивалентны. Тогда будет получено искомое разбиение на классы эквивалентности.

На каждой итерации алгоритма все состояния покрашены в k цветов (разбиты на k блоков). Блоки будем обозначать B(0), B(1), ..., B(k-1). Чтобы быстро уметь итерироваться (перебирать все элементы) по какомунибудь блоку B(j), будем представлять, что состояния находятся в каком-то порядке и для каждого состояния мы храним номер следующего состояния такого же цвета и предыдущего состояния такого же цвета. Также для каждого цвета j удобно хранить первое состояние цвета j (обозначим его за first(j)). Тогда проитерироваться по всем состояния B(j) несложно: для начала обращаемся к состоянию first(j), а затем из состояния идём в следующее состояние этого цвета (пока не достигнем последнего состояния в блоке). При такой конструкции итерирование по всякому блоку B(j) (перебор всех состояний из B(j)) занимает O(|B(j)|) времени.

Также для каждого цвета j и символа a будем помнить множество всех состояний цвета j, в которые можно попасть по символу a. Будем обозначать это множество как  $\hat{B}(B(j),a)$ . Нам понадобится итерироваться по таким множествам  $\hat{B}(B(j),a)$ . Можно считать, что состояния в каждом множестве  $\hat{B}(B(j),a)$  — элементы двусвязного списка. А именно, для каждого состояния  $q \in B(j)$ , для каждого символа a, если в q можно попасть по a, будем хранить номер следующего состояния из  $\hat{B}(B(j),a)$  и предыдущего (если таковые есть). Также для каждого множества  $\hat{B}(B(j),a)$  будем хранить первого состояния из этого множества (обозначим его за first(j,a)). Тогда итерирование по множеству  $\hat{B}(B(j),a)$  выглядит так: сначала обращаемся к first(j,a), а затем из состояния переходим к следующему, которое лежит в  $\hat{B}(B(j),a)$  (пока можем перейти, то есть пока следующее есть). При такой конструкции итерирование по состояниям из всякого множества  $\hat{B}(B(j),a)$  занимает  $O(|\hat{B}(B(j),a)|)$  времени.

На каждом этапе алгоритма мы будем поддерживать, что если у состояний разный цвет (они в разных блоках), то из них принимаются разные языки. То есть для всяких блоков  $B(i), B(j), (i \neq j)$ , для любых двух состояний из них  $q_1 \in B(i), q_2 \in B(j)$  существует разделяющая строка  $w \in \Sigma^*$  (то есть такая, w — принимаемая

из  $q_1$ , но не принимаемая из  $q_2$ , или наоборот — принимаемая из  $q_2$ , но не принимаемая из  $q_1$ ). Например, в начале все принимающие состояние покрашены в цвет 0 (блок B(0)), отвергающие — в цвет 1 (блок B(1)). Разделяющая строка для этих блоков —  $\epsilon$ .

## 1.3 Несколько утверждений

**Лемма 1.** Пусть все состояния разбиты на блоки: из состояний разных блоков принимаются разные языки. Зафиксируем блок B(i) и символ  $a \in \Sigma$ . Рассмотрим произвольный блок B(j). Определим

$$B'(j) = \{t \in B(j) | \delta(t,a) \in B(i)\},$$

$$B''(j) = \{t \in B(j) | \delta(t, a) \notin B(i)\}.$$

Тогда  $\forall q_1 \in B'(j) \ \forall \ q_2 \in B''(j)$  из состояний  $q_1$  и  $q_2$  принимаются разные языки, то есть  $q_1 \not\sim q_2$ .

Доказательство. Пусть  $p_1 = \delta(q_1, a)$ .  $p_1 \in B(i)$ , так как  $q_1 \in B'(j)$ . Пусть  $p_2 = \delta(q_2, a)$ .  $p_2 \notin B(i)$ , так как  $q_2 \in B''(j)$ .

Состояния  $p_1$  и  $p_2$  лежат в разных блоках, поэтому существует строка w, принимаемая ровно из одного из них. Тогда строка aw принимается ровно из одного из состояний  $q_1, q_2$  (w принимается из  $p_1 \iff aw$  принимается из  $q_1$ ; w принимается из  $p_2 \iff aw$  принимается из  $q_2$ ).

Отсюда понятно, что если блок B(j) заменить на блоки B'(j) и B''(j) (если они оба непусты), то по-прежнему в новом разбиении на блоки выполнено, что состояния в разных блоках неэквивалентны.

Определение 2. Пусть все состояния разбиты на k блоков  $B(0), B(1), \ldots, B(k-1)$ , зафиксирован блок B(i) и символ  $a \in \Sigma$ . Для каждого блока B(j) определим множества B'(j) и B''(j) как в теореме выше. Получим новое разбиение: для каждого  $j \in \{0, \ldots, k-1\}$ , если оба множества B'(j) и B''(j) непусты, заменим блок B(j) на блоки B'(j) и B''(j), тем самым получим новое разбиение на блоки — измельчение старого разбиения. Такую операцию измельчения разбиения состояний на блоки будем называть измельчением c помощью блока B(i) и символа a. Измельчение будем называть бесполезным, если оно не увеличивает число блоков (для всякого блока B(j) один из блоков B'(j) и B''(j) пуст), или полезным в противном случае.

Суть алгоритма — сначала разбить состояние на два блока (принимающие и отвергающие состояния). А дальше много раз измельчать разбиение: выбирать какой-то блок B(i) и какой-то символ a и измельчать с помощью них.

**Утверждение 1.** Каждый блок состоит либо только из принимающих состояний, либо только из отвергающих.

Доказательство. Индукция по количеству блоков. База: 2 блока: B(0) — все принимающие состояния, B(1) — все отвергающие. Переход: количество блоков увеличивается, когда какой-то блок разбивается на два других. Поскольку разбиваемый блок состоял только из принимаемых состояний или только из отвергающих, то и новые два блока тоже.

**Утверждение 2.** Если до какого-то измельчения любые два эквивалентных состояния находились в одном блоке, то и после измельчения тоже.

Доказательство. Пусть эквивалентные состояния  $q_1$  и  $q_2$  находятся в блоке B(j) и происходит измельчение по блоку B(i) и символу a. Возможны два варианта: либо оба  $\delta(q_1,a)$  и  $\delta(q_2,a)$  лежат в B(i), тогда  $q_1$  и  $q_2$  лежат в B'(j), либо оба  $\delta(q_1,a)$  и  $\delta(q_2,a)$  не лежат в B(i), тогда  $q_1$  и  $q_2$  лежат в B''(j). Третий вариант, когда только одно из  $\delta(q_1,a)$  и  $\delta(q_2,a)$  лежит в B(i), не достигается: тогда, по теореме  $1, q_1$  и  $q_2$  неэквивалентны — противоречие.

**Лемма 2.** Пускай все состояния разбиты на непустые блоки, причём для всякого блока B(i) и символа  $a \in \Sigma$  верно, что измельчение по блоку B(i) и символу a бесполезно. Тогда состояния внутри каждого блока эквивалентны.

Доказательство. Предположим, что существуют пары состояний  $q_1$  и  $q_2$  лежащих в одном блоке, которые не эквивалентны. Каждой такой паре сопоставим кратчайшую разделяющую строку. Понятно, что каждая разделяющая строка не является пустой: тогда бы одно из состояний было бы принимающим, а другое нет, что противоречило бы лемме 1.

Рассмотрим пару неэквивалентных состояний  $q_1$  и  $q_2$  из какого-то блока, которым была сопоставлена самая короткая строка (назовём её w). Как мы уже выяснили, w непуста, а значит представима в виде  $w=au,a\in\Sigma$ ,  $u\in\Sigma^*$ . Рассмотрим  $p_1=\delta(q_1,a)$  и  $p_2=\delta(q_2,a)$ . Состояния  $p_1$  и  $p_2$  лежат в одном блоке (это следует из условия теоремы: если это не так, то измельчение по блоку, содержащему одно из них и по символу a будет полезным — после него  $q_1$  и  $q_2$  окажутся в разных блоках, противоречие).

Если u является разделяющей для состояний  $p_1$  и  $p_2$ , то возникает противоречие с выбором пары  $q_1,q_2$  и строки w — кратчайшей разделяющей строки (|u|<|w|). Иначе, оба  $p_1$  и  $p_2$  принимаются/отвергаются по строке u. Тогда оба состояния  $q_1$  и  $q_2$  принимаются/отвергаются по строке w=au, а значит она неразделяющая, противоречие.

Алгоритм измельчает разбиение, пока может: пытается найти блок B(i) и символ a, измельчение с помощью которых полезно. Понятно, что он завершается, так как количество блоков в конце станет не более n, а значит полезных измельчений случится не более чем n-2. По лемме 2 если какие-то состояния эквивалентны, то они всегда будут оставаться в одном блоке и, следовательно, в конечном разбиении они тоже будут лежать в одном блоке. По теореме 2, если два состояния неэквивалентны, то после завершения алгоритма они будут лежать в разных блоках.

**Лемма 3.** Пусть состояния разбиты на блоки и происходит измельчение с помощью блока B(i) и символа  $a \in \Sigma$ . Далее происходит сколько-то каких-то других измельчений, и оказывается, что получилось новое измельчение, в котором блок B(i) заменился на  $m \ge 1$  блоков  $B(i_1), \ldots, B(i_m)$  и произошли измельчения по блокам  $B(i_1), \ldots, B(i_{m-1})$  и символу a. Тогда, после этого, измельчение по блоку  $B(i_m)$  и символу a бесполезно.

Доказательство. Рассмотрим произвольный блок B(l), в котором есть состояние  $s \in B(l)$ , из которого по a можно попасть в блок  $B(i_m)$  ( $\delta(s,a) \in B(i_m)$ ). Покажем, что тогда из всех состояний блока B(l) по a можно попасть в  $B(i_m)$ . Рассмотрим произвольное состояние:  $t \in B(l)$ .

Пусть B(k) — блок, в который из t можно попасть по a. Если  $k \in \{i_1 \dots, i_{m-1}\}$  (по блоку B(k) и символу a было измельчение), то состояния s и t и до, и после измельчения по блоку B(k) и символу a оставались внутри одного блока, хотя ровно из одного из них по a можно попасть в B(k) — противоречие. Если  $k \notin \{i_1, \dots, i_m\}$ , то состояния s и t и до, и после измельчения по блоку B(i) и символу a оставались в одном блоке, хотя ровно из одного из них по a можно было попасть в B(i) по символу a — противоречие.

Алгоритм будет хранить для каждого  $a \in \Sigma$  множество L(a) номеров блоков, из которых впоследствии будет выполняться измельчение по символу a.

Алгоритм такой. В начале для всякого  $a \in \Sigma$  определяем  $L(a) = \{\}$ . Это множество номеров блоков, с помощью которых и символа a будут происходить измельчения. После разделения состояний на два блока -B(0) (принимающие) и B(1) (отвергающие), для каждого  $a \in \Sigma$  в L(a) добавляем 0, если  $|\hat{B}(B(0),a)| \leq |\hat{B}(B(1),a)|$ , иначе 1. Пока не все L(a) пусты, алгоритм берёт и вытаскивает какой-то номер блока i из какого-то L(a). Для всех B(j) алгоритм, если оба множества B'(j) и B''(j) из теоремы 1 непусты, делит B(j) на два новых блока  $B(j_1) = B'(j)$  и  $B(j_2) = B''(j)$ . Для всякого символа  $c \in \Sigma$  если в L(c) был блок B(j), теперь вместо него будут оба блока  $B(j_1)$  и  $B(j_2)$ , иначе туда добавится ровно один из них: если  $|\hat{B}(B(j_1),a)| \leq |\hat{B}(B(j_2),a)|$ , то  $B(j_1)$ , иначе  $B(j_2)$ . Таким образом шаблон алгоритма выглядит так:

#### 1.4 Псевдокод

```
1: while \exists a : L(a) \neq \emptyset do
        select a and i \in L(a), delete i from L(a)
 2:
        for all blocks B(j) do
 3:
            if \exists t \in B(j) : \delta(t, a) \in B(i) then
                                                                                         ▶ We need to divide this block into 2 blocks
 4:
                divide B(j) into B'(j) = \{t \in B(j) | \delta(t, a) \in \hat{B}(B(i), a)\}
 5:
                and B''(j) = \{t \in B(j) | \delta(t, a) \notin \hat{B}(B(i), a)\}
 6:
                let k be a number for a new block
 7:
                B(j) = B''(j), B(k) = B''(j)
 8:
                for c \in \Sigma do
 9:
                     if j \in L(c) then
10:
11:
                         L(c).add(k)
                     else if |\hat{B}(B(j),c)| \leq |\hat{B}(B(k),c)| then
12:
13:
                         L(c).add(j)
14:
15:
                         L(c).add(k)
                     end if
16:
                end for
17:
            end if
18:
        end for
19:
20: end while
```

Написанный выше псевдокод несложно улучшить по асимптотике, используя уже построенные структуры. Во-первых, на каждой итерации алгоритма (при каждом измельчении), создадим множество R, состоящее из

номеров блоков, которые надо разделить. Для этого в начале нужно его инициализировать  $R = \{\}$ , а дальше для всякого  $t : \delta(t, a) \in B(i)$  добавим в R номер блока, в котором лежит t. То есть, это делается за  $O(|\{t|\delta(t, a) \in B(i)\}|)$ .

Для каждого номера j из R обозначим за f(j) номер нового блока, в который мы перенесём состояния блока B(j), из которых по a можно попасть в B(i). То есть блок B(j) разделится на блоки B(j) и B(f(j)). При этом, возможно, блок B(j) после этого останется пустым (в случае, если до разделения блока B(j) из всех его состояний по a можно было попасть в B(i)).

Далее будем снова проходить по состояниям  $t:\delta(t,a)\in B(i)$  и менять номер блока каждого из них (если он был j, то станет f(j)). Также, поскольку для каждого блока мы храним |B(j)| и  $|\hat{B}(B(j),a)|$ , будем поддерживать изменения этих параметров для блоков B(j) и B(f(j)). И, ещё, поскольку для каждого состояния мы храним указатели на следующее и предыдущее состояния из этого же блока, а также (для каждого  $a\in \Sigma$ , если в состояние можно попасть по a) указатели на следующее и предыдущее состояние этого же блока, в которые можно попасть по a, эту иформацию нужно тоже обновить. В общем, всю  $O(|\Sigma|)$  информацию, которую мы храним в каждом состоянии, нужно будет поменять. Это можно сделать за время  $O(|\Sigma|)$  (поскольку у нас двусторонние списки, вставка в конец и вытаснивание элемента делаются за O(1)).

Итого, одна итерация внешнего цикла while (строка 1 псевдокода) занимает  $O(|\Sigma| \cdot |\{q|\delta(q,a) \in B(i)\}|)$  времени — все состояния из множества  $\{q|\delta(q,a) \in B(i)\}$  вытаскиваются из своих блоков и кладутся в новые блоки.

## 1.5 Корректность алгоритма

Лемма 4. Алгоритм, описанный выше, корректен.

Доказательство. Достаточно показать, что для любых состояний  $q_1, q_2 \in Q$ , если  $q_1 \sim q_2$ , то  $q_1$  и  $q_2$  лежат в одном блоке, иначе в разных.

Первое следует из леммы 2: действительно, в начальном разбиении на B(0) и B(1), если пара состояний эквивалентны, то оба лежат в одном блоке, а далее, в ходе измельчений, они будут продолжать лежать в одном блоке.

Теперь покажем, что если состояния неэквивалентны, то они окажутся в разных блоках. Предположим, что существуют пары состояний  $q_1$  и  $q_2$  такие что  $q_1 \not\sim q_2$  и при этом они лежат в одном блоке B(i) в конце работы алгоритма. Каждой паре таких состояний сопоставим кратчайшую разделяющую их строку.

Среди всех таких пар состояний  $q_1$  и  $q_2$  выберем ту, для которой сопоставленная кратчайшая строка является самой короткой. Пусть теперь это пара  $p_1$  и  $p_2$ , а кратчайшая разделяющая их строка —  $w \in \Sigma^*$ .

Поскольку  $p_1$  и  $p_2$  лежат в одном блоке B(i), они либо оба принимающие, либо оба отвергающие, значит, всякая разделяющая их строка имеет положительную длину. Пусть a — первый символ строки w: w = au, где  $u \in \Sigma^*$ .

Пусть  $r_1 = \delta(p_1, a), r_2 = \delta(p_2, a)$ . Блок, в котором находится состояние  $r_1$ , назовём  $B(j_1)$ , а в котором находится состояние  $r_2 - B(j_2)$ .

Заметим, что  $j_1 \neq j_2$ : иначе, если  $j_1 = j_2$ , то получится, что  $r_1$  и  $r_2$  — состояния из одного блока, и при этом они неэквивалентны (u — разделяющая их строка). Тогда у этой пары состояний кратчайшая строка короче (|u| < |w|) — противоречие с выбором  $p_1$  и  $p_2$ .

Рассмотрим итерацию алгоритма, после которой состояния  $r_1$  и  $r_2$  оказались в разных блоках, пусть это блоки  $B(l_1)$  и  $B(l_2)$ . После этого не менее, чем одно из чисел  $l_1, l_2$  было помещено в L(a). Не умаляя общности, будем считать, что это  $l_1$ . Начиная с этого момента, состояние  $r_1$  находилось в одном из блоков, упомянутых в списке L(a). Поскольку алгоритм завершился после того, как список L(a) опустел, был хотя бы один момент, когда из L(a) вытащили номер m блока, содержащего состояние  $r_1$  ( $r_1 \in B(m)$ ). Рассмотрим такой момент.

Происходит измельчение по блоку B(m) и символу a. Отметим, что  $r_1 \in B(m)$ ;  $r_2 \notin B(m)$ , так как  $B(m) \subset B(l_1)$  и  $r_2 \notin B(l_1)$ . Тогда получается, что

$$\delta(p_1, a) = r_1 \in B(m)$$

$$\delta(p_2, a) = r_2 \notin B(m)$$

Состояния  $p_1$  и  $p_2$  находятся в одном блоке. Значит, после измельчения, они должны оказаться в разных блоках. Тогда и по завершении алгоритма они будут в разных блоках. Противоречие.

#### 1.6 Асимптотика алгоритма

**Утверждение 3.** Пусть  $a \in \Sigma$ ,  $q \in Q$ . За всю работу алгоритма, из L(a) извлекался номер блока, содержащего состояние q, не более  $\log(n)$  раз.

Доказательство. Пусть k — количество раз, когда из L(a) извлекался номер блока, содержащего q.

Пусть  $x_1$  — размер этого блока при первом извлечении,  $x_2$  — при втором, и так далее,  $x_k$  — размер при последнем извлечении из L(a). Покажем, что  $\forall j < k : x_j \geq 2 \cdot x_{j+1}$ .

Рассмотрим j-ое извлечение. При нём состояние q перестало находиться в каком-либо блоке, упомянутом в L(a). После этого, в какой-то момент, в L(a) был добавлен блок, содержащий q. Рассмотрим ближайший такой момент.

Он соответствует 10-16 строкам псевдокода (происходит L(a).add(m), где m — номер блока, в котором находится состояние q при этом добавлении). Это происходит после разделения блока (строки 5-8), в котором лежало состояние q (пусть размер разделившегося блока  $y_{j+1}$ ). При этом номер этого блока не находился в L(a). Значит, добавлению соответствуют строки 12-15 псевдокода (то есть из двух образовавшихся блоков добавили только наименьший). Таким образом, справедливо:

$$x_j \ge y_{j+1} \ge 2 \cdot x_{j+1} \Rightarrow x_j \ge 2 \cdot x_{j+1}$$

Аналогично можно отметить, что  $x_1 \le n/2$ , так как  $2 \cdot x_1 \le y_1 \le n$ .

Отсюда следует, что

$$n/2 \ge x_1 \ge 2^{k-1} \cdot x_k$$

Откуда, поскольку  $x_k \ge 1, n \ge 2^k \Leftrightarrow k \le \log(n).$ 

**Утверждение 4.** Рассмотрим  $t \in Q$ . За всю работу алгоритма, состояние t меняло блок (то есть извлекалось из старого блока в новый) не более  $|\Sigma| \cdot \log(n)$  раз.

Доказательство. Пусть  $\Sigma = \{a_1, a_2, \dots, a_{|\Sigma|}\}; \ q_i = \delta(t, a_i)$  для всех  $i \in \{1, \dots, |\Sigma|\}$ . t меняет блок на какойто итерации алгоритма, если на этой итерации алгоритма из  $L(a_i)$  было извлечён блок, содержащий  $q_i$  (для некоторого  $i \in \{1, \dots, |\Sigma|\}$ ). Таких итераций, по лемме 3, не более  $|\Sigma| \cdot \log(n)$ .

**Лемма 5.** Алгоритм, описанный выше, имеет временную асимптотику  $O(|\Sigma|^2 n \log(n))$ .

Доказательство. Удаление недостижимых из  $q_0$  состояний, а также разбиение состояний на блоки B(0) и B(1), работают за линейное время, как было показано выше.

Всего состояний n, значит, по лемме 4, перемещений состояний из одного блока в новый, было всего не более  $|\Sigma| n \log(n)$ . Одно перемещение занимает  $O(|\Sigma|)$  времени (так как нужно поменять номер блока, в котором находится состояние, и, следовательно, информацию о том, какое следующее и предыдущее состояние в том же новом блоке, а также следующее и предыдущее состояния, в которые можно попасть по символу c (для всех  $c \in \Sigma$ ) — это нужно для того, чтобы двусвязные списки оставались корректными).

Итого, все перемещения состояний требуют  $O(|\Sigma|^2 n \log(n))$  времени.

Осталось показать, сколько было добавлений и извлечений номеров блоков из L(c)  $(c \in \Sigma)$ . Зафиксируем какое-то  $c \in \Sigma$ .

Отметим, что можно в L(c) добавлять номера только непустых блоков (действительно, после этого извлекать номера пустых блоков бессмысленно — измельчение с помощью них будет бесполезным). Итак, в L(c) добавляются только блоки положительного размера. Это значит, что в строках 5-6 псевдокода перед этим произошло разбиение B(j) на непустые B'(j) и B''(j). Поскольку блоков положительного размера не более чем n в конце работы алгоритма, то разбиений блока на два непустых, случалось не более n-1 раза за всю работу алгоритма. То есть в L(c) добавляли (и, следовательно, извлекали) номера не более n раз (для фиксированного  $c \in \Sigma$ ). Значит, всего добавлений и извлечений номеров из L было  $O(|\Sigma|n)$  раз. Каждое добавление — O(1) по времени (добавление в конец списка: 11, 13, 15 строки псевдокода), каждое извлечение —  $O(|\Sigma|)$  времени (строка 2 псевдокода), так как в ней нужно найти первый непустой список L(a) и из него извлечь элемент.

Итого, каждый вид действий, предпринимаемых алгоритмом, занимает не более чем  $O(|\Sigma|^2 n \log(n))$  времени. Значит, и алгоритм работает с асимптотикой  $O(|\Sigma|^2 n \log(n))$ .

Если считать, что  $|\Sigma|$  — некоторая константа, то асимптотика алгоритма Хопкрофта равна  $O(n \log(n))$ .

## 2 Реализация алгоритма

Проект реализован в нескольких файлах:

- Директория src/ содержит файлы реализаций функций и методов классов:
  - ♦ dfa\_methods.cpp реализация методов класса DFA.
  - ♦ nfa\_methods.cpp реализация методов класса NFA.
  - ❖ dfa\_build.cpp реализация функций обработки команд пользователя и инициализации DFA, исходя из этих команд.
  - ❖ main.cpp работа с пользователем: получение DFA, его минимизация, вывод DFA.

- Директория include/ содержит заголовочные файлы.
  - ♦ dfa\_class.h объявление класса DFA.
  - ♦ nfa\_class.h объявление класса NFA.
- Директория оbj/ содержит объектные файлы (скомпилированные .cpp файлы)
- Файл minimizer скомпилированный проект.
- ullet Makefile файл для сборки.

Как собрать проект: зайти в главную директорию, запустить команду make. Как запустить проект: запустить исполняемый файл minimizer с несколькими аргументами (подробнее — см. раздел 2.3).

#### 2.1 Класс DFA

Сущность детерминированного конечного автомата как объекта реализована в классе class DFA, который объявлен в файле include/dfa\_class.h. Все состояния хранятся как числа в формате uint32\_t и могут принимать значения от 0 до  $2^{32} - 2 = 4294967294$  (число UINT32\_MAX = 4294967295 зарезервировано как особое "пустое" состояние (EMPTY\_STATE), которое нужно для упрощения работы некоторых методов).

Основные поля класса class DFA (заполняются при инициализации объекта):

- uint32\_t alphabet\_length длина рабочего алфавита.
- uint32\_t size размер автомата.
- ullet std::vector<std::vector<uint32\_t> > delta правила переходов автомата. Элемент [a][q] состояние  $\delta(q,a)$ .
- uint32\_t starting\_node начальное состояние.
- std::vector<StateInfo> states\_info блоки информации для каждого состояния. Один блок информации (объект структуры struct StateInfo) содержит следующую информацию о состоянии автомата:
  - ♦ bool acc true, если состояние принимающее, false, если отвергающее.

Следующие поля нужны только при минимизации автомата (в них храним информацию о разбиении всех состояний на блоки):

- ♦ uint32\_t color номер блока, в котором находится состояние (его "цвет").
- ♦ uint32\_t next\_state\_of\_same\_color номер следующего состояния из того же блока.
- ❖ uint32\_t prev\_state\_of\_same\_color номер предыдущего состояния из того же блока.

Дополнительные поля класса class DFA (используются при минимизации автомата):

- std::vector<uint32\_t> block2first\_state\_of\_this\_block по номеру блока(цвета) сопоставляет первое состояние этого блока(цвета). То есть i-ый элемент показывает первое состояние в блоке B(i).
- ullet std::vector<std::vector<uint32\_t> > block\_and\_char2first\_node\_of\_this\_color\_and\_char здесь элемент [a][i] по-казывает первое состояние в множестве  $\hat{B}(B(i),a)$ .
- std::vector<std::vector<uint32\_t> > L здесь a-ый элемент вектор, в котором написаны состояния множества L(a).
- std::vector<std::vector<bool> > info\_L здесь элемент [a][i] принимает значение true, если  $i \in L(a)$ , иначе принимает значение false.

Следующие поля нужны для того, чтобы уметь быстро итерироваться и работать с множествами  $\hat{B}(B(i),a)$ :

- std::vector<std::vector<uint32\_t> > next\_B\_cap здесь элемент [a] [i] показывает, какое следующее состояние в том же блоке, что и i-ое состояние, тоже достижимо по символу a (если i-ое состояние не достижимо по символу a ни из какого другого состояния, то нам не важно, что там написано). Если i-ое состояние последнее в своём блоке, которое достижимо по символу a, то следующим считается "пустое" состояние (емрту\_стате).
- std::vector<std::vector<uint32\_t> > prev\_B\_cap по аналогии, здесь элемент [a][i] показывает, какое предыдущее состояние в том же блоке, что и i-ое состояние, тоже достижимо по символу a.
- ullet std::vector<std::vector<uint32\_t> > B\_cap\_lengths здесь элемент [a][i] это длина  $|\hat{B}(B(i),a)|$ .

Следующие поля нужны для того, чтобы построить  $\delta^{-1}$  с небольшой константой по памяти и при этом чтобы итерирование по множеству состояний  $\delta^{-1}(q,a)$  было быстрым  $(O(|\delta^{-1}(q,a)|))$  времени):

- std::vector<std::vector<uint32\_t> > reversed\_delta\_lengths элемент [a][i] показывает  $|\delta^{-1}(i,a)|$  из скольки состояний можно попасть по символу a в состояние i.
- std::vector<std::vector<uint32\_t> > addresses\_for\_reversed\_delta элемент [a][i] показывает, с какого места в reversed\_delta начинается последовательность состояний, лежащих в множестве  $\delta^{-1}(i,a)$ .
- std::vector<uint32\_t> reversed\_delta вектор состояний длины  $n\cdot |\Sigma|$ . Он устроен так, что список состояний из  $\delta^{-1}(i,a)$  начинается с addresses\_for\_reversed\_delta[a][i]-го элемента и занимает длину reversed\_delta\_lengths[a][i]  $(i \in Q, a \in \Sigma)$ .

Следующие поля понадобятся для реализации одной итерации разбиения по блоку B(i) и символу a:

- std::vector<bool> blocks\_need\_to\_be\_separated i-ый элемент равен true, если блок B(i) существовал и его нужно разделить по символу a, иначе false.
- std::vector<uint32\_t> block2index\_of\_new\_block если і-ый блок (B(i)) разделяется на два блока, то их номера і и block2index\_of\_new\_block[i].
- std::vector<uint32\_t> sep\_blocks список разделяемых блоков.
- std::vector<uint32\_t> sep\_states список состояний, которые окажутся в новых блоках (то есть множество  $\delta^{-1}(B(i),a)$ ), если происходит измельчение с помощью блока B(i) и символа a.
- std::queue<uint32\_t> empty\_colors неиспользованные цвета (неиспользованный номера для блоков).
- std::vector<uint32\_t> block2index\_special каждому разбивающемуся блоку сопоставляется номер от 0 до количества разбиваемых блоков минус 1 (нужно для упрощения работы в одной итерации минимизации).

Также в классе class DFA доступны следующие методы (реализованы в файле src/dfa\_methods.cpp):

- void init(uint32\_t \_alphabet\_length, uint32\_t \_size, uint32\_t \_starting\_node, std::vector<std::vector<uint32\_t> > & table, std::vector<bool> &v\_acc) инициализация автомата новыми значениями длины алфавита, размера, начального состояния, функции δ (table) и информацией о принимающих/отвергающих состояниях (v\_acc).
- ▶ bool check\_string(std::vector<uint32\_t> &str) проверяет, принимается ли строка str или нет.
- ▶ void delete\_unreachable\_states() удаление недостижимых состояний (делается в начале минимизации).
- ightharpoonup void construct\_reversed\_delta() CTPOUT reversed\_delta\_lengths, addresses\_for\_reversed\_delta, reversed\_delta, используя функцию  $\delta$ .
- ▶ void color\_acc\_and\_rej\_in\_2\_colors() выполняет первую итерацию алгоритма: красит все принимающие состояния в 0 цвет (0 блок), отвергающие в 1.
- ▶ bool minimize\_iteration() реализация одной итерации алгоритма Хопкрофта. Это самый важный метод в классе. Работает он так:
  - 1. Поиск  $a \in \Sigma$  такого, что L(a) непусто, и выбор какого-нибудь блока B(i) из L(a).
  - 2. Проходимся по всем состояниям state\_i из i-го блока (B(i)), которые достижимы по символу a (то есть, просто перебираем state\_i  $\in \hat{B}(B(i),a)$ ).
    - Перебираем sep\_state  $\in \delta^{-1}(\text{state_i}, a)$ . Если состояние одно-единственное в своём блоке, то и разделять нечего
    - Иначе добавляем sep\_state в sep\_states. Блок ( $B(\text{sep\_state\_color})$ ), в котором лежит состояние sep\_state, будет разбит на два новых  $B(\text{sep\_state\_color})$  (состояние, из которого рёбра по a ведут не в B(i)) и  $B(\text{block2index\_of\_new\_block[sep\_state\_color]})$ , из которого рёбра по a ведут в B(i). Номер нового блока block2index\_of\_new\_block[sep\_state\_color] берётся из очереди empty\_colors.
    - sep\_state\_color добавляется в sep\_blocks.
    - $\Pi \text{одсчитывается количество добавляемых блоков added\_blocks}, 3 a \pi \text{олняется blocks\_need\_to\_be\_separated}.$
  - 3. Далее будем извлекать состояния из sep\_states в новые added\_blocks блоков. Для начала создаются структуры
    - std::vector<uint32\_t> last\_states\_of\_new\_blocks тут хранятся последние обработанные состояния для каждого из added\_blocks новых блоков

и std::vector<std::vector<uint32\_t> > last\_states\_with\_new\_color\_and\_char — тут для каждого нового блока и символа  $a \in \Sigma$  хранится последнее обработанное состояние из этого блока, достижимое по a.

Затем пробегаемся по всем состояниям из sep\_states, аккуратно отделяем их из старых блоков в новые (чтобы не поломались двусвязные списки, в которых хранятся блоки B(j) и их подмножества  $\hat{B}(B(j),c)$  (где, как всегда,  $j \in Q, c \in \Sigma$ )).

- 4. Для каждого блока B(j) из sep\_blocks, разбившегося на блоки B(j) и  $B(block2index_of_new_block[j])$  и для каждого  $c \in \Sigma$ , нужно также в L(c) добавить j или block2index\_of\_new\_block[j] в зависимости от того, в какой блок входит меньше ребёр с c и лежит ли j в L(c).
- 5. В конце нужно очистить sep\_blocks и sep\_states, и вернуть в исходное состояние block2index\_of\_new\_block (все значение равны EMPTY\_STATE) и blocks\_need\_to\_be\_separated (все значения равны false).

Функция возвращает значение true, если итерация была последней и false, если нет.

➤ void minimization(bool no\_debug) — в ней происходит минимизация, и затем перестройка автомата: каждый блок становится одним состоянием. Аргумент bool no\_debug показывает, нужен ли вывод промежуточных резальтатов минимизации в stdout (false, если да; true, если нет). Схематично, функция работает так:

```
void DFA::minimization(bool no_debug) {
    delete_unreachable_states();
    construct_reversed_delta();
    color_acc_and_rej_in_2_colors();

bool finish = false;
    while (!finish) {
        finish = minimize_iteration();
    }

/*dfa rebuilding*/
}
```

В частности, часть методов, нужная практически только для дебага:

- ightharpoonup void print\_table() вывод таблицы  $\delta$  в стандартный поток вывода stdout (если в DFA не более 50 состояний).
- void print\_current\_classes\_of\_equality(bool finished, bool debug) печатает текущее разбиение состояний на блоки в stdout.
- ➤ void print\_L() печатает L в stdout.
- $\blacktriangleright$  void print\_B\_caps() печатает  $\hat{B}(B(j),c)$  для всех  $i\in Q, a\in \Sigma$  в stdout.
- ➤ uint32\_t get\_size() возвращает размер DFA.

Также есть метод:

▶ int save\_to\_file(char\* filename) — сохранение DFA в бинарный файл, находящемуся по относительному пути, записанному в filename. Сначала записываются три параметра size, alphabet\_length, starting\_node — количество состояний, размер алфавита и номер начального состояния, за тем  $|\Sigma| \cdot n$  переходов. Далее записывается информация для каждого состояния, принимающее или отвергающаее оно (1 бит) — это информация умещается в [n/8] + 1 байт.

И несколько методов для инициализации (подробнее — в разделе 2.3):

- ▶ DFA(uint32\_t \_alphabet\_length, uint32\_t \_size, uint32\_t \_starting\_node, std::vector<std::vector<uint32\_t>> &\_delta, std::vector<bool> &\_v\_acc) инициализация по всем заранее заданным полям.
- ➤ explicit DFA(char\* command, char\* dfa\_str) инициализация по двум строкам командам пользователя подробнее в разделе 2.3. Функция реализована в файле src/dfa\_build.cpp. Она по двум аргументам от пользователя генерирует DFA (предварительно проверяя в функции request\_check correctness\_of\_dfa\_input(char\* command, char\* dfa\_str)) корректность вводимых данных (возвращаемое значение request\_check пара булевого значения, показывающего, успешна ли проверка или нет и строки, в которой написана, какая ошибка, если она есть).

#### 2.2 Класс NFA

Класс, симулирующий недетерминированный конечный автомат, реализован в class NFA, который объявлен в файле include/nfa\_class.h. Объект этого класса имеет следующие поля:

- uint32\_t alphabet\_length длина рабочего алфавита.
- uint32\_t size pa3Mep NFA.
- std::vector<std::vector<std::vector<uint32\_t> >> delta функция недетерминированных переходов  $\delta: Q \times \Sigma \to 2^Q$ .
- std::vector<uint32\_t> starting\_nodes начальные состояния NFA.
- std::vector<bool> v\_acc информация о принимающих/отвергающих состояниях: элемент [i] равен true тогда и только тогда когда i-ое состояние принимается.

И методы (реализованы в src/nfa\_methods.cpp):

- ➤ void init(uint32\_t \_alphabet\_length, uint32\_t \_size, std::vector<std::vector<std::vector<uint32\_t> > &\_delta, std ::vector<uint32\_t> &\_starting\_nodes, std::vector<bool> &\_v\_acc) инициализация объекта заданными значениями всех полей.
- ➤ void print() печатает NFA в stdout.
- ➤ DFA convert2dfa() переводит NFA в DFA.
- ➤ uint32\_t get\_size() возвращает размер NFA (количество состояний).
- $\blacktriangleright$  bool line\_complicated\_initial\_states() true, если начальные состояния заданы нетривиально, false, если тривиально (то есть начальное состояние одно и оно 0-ое).
- $\blacktriangleright$  std::string longline() строковое представление длинных NFA (то есть размера более 61).
- ➤ std::string line() строковое представление NFA.
- ➤ state\_to\_printable\_character(int x) переводит число от 0 до 61 в цифру или букву (нужно для метода line()).

## 2.3 Взаимодействие с пользователем

Команды пользователя — аргументы функции main(). Если проект скомпилирован в файл minimizer, то запуск минимизации пользователем в командной строке может выглядить так:

./minimizer from\_bin\_file binary\_files/dfa0.bin -t -np

Первые два аргумента (в данном случае — from\_bin\_file binary\_files/dfa0.bin) будем называть char\* command и char\* dfa\_str. Через них однозначно задаётся автомат, который предстоит минимизировать. Первый аргумент — command — задаёт тип инициализации DFA. Он может принимать следующие строковые значения:

- \* "from\_dfa\_string" автомат инициализируется из строкового представления DFA, записанного в dfa\_str. Строковое представление DFA здесь имеет вид "010110...1\_1a6Uy98...": сначала идёт n нулей и единиц: i-ая из них означает, принимается ли i-ое состояние или отвергается. Затем идет разделитель "\_" и  $|\Sigma| \cdot n$  состояний (состояние на  $(j \cdot a + c)$ -ом месте  $(0 \le c < |\Sigma|)$  состояние в которое идёт ребро из состояния  $q_j$  по c-ому символу алфавита  $\Sigma$ ). Все состояния кодируются либо цифрой, либо строчной или заглавной латинской буквой (таким образом, в этом случае их не более чем 62). Цифры кодируют первые 10 состояний, строчные буквы с 11-го по 36-ое, заглавные последние 26 состояний.
- \* "bamboo" в таком случае в dfa\_str через запятую написан размер и количество символов в алфавите автомата. Сам автомат устроен так: для каждого символа  $c \in \Sigma$  из i-го состояния по символу c переход в (i+1)-ое состояние (если i-ое состояние не последнее), иначе, если состояние последнее, то из него все переходы ведут в себя же. Принимается только последнее состояние. Несложно показать, что такой автомат при минимизации не уменьшается, однако алгоритм Мура на нём работает с асимптотикой  $O(n^2)$  по времени, а алгоритм Хопкрофта за O(n). Этот пример указан в статье Джона Хопкрофта [1].
- ★ "circle" от автоматов предыдущего типа отличаются лишь тем, что из последнего состояния все переходы ведит не в себя, а в самое первое состояние. Для них верны те же утверждения про алгоритм Мура и Хопкрофта.

- \* "repeated\_cycle" односимвольный автомат, для которого параметры размер size и длина цикла cycle\_size указываются через запятую в аргументе dfa\_str (при этом длина цикла делитель числа состояний!). Переходы тут такие же, как в DFA типа "circle" из i-го состояния переход в состояние  $(i+1) \mod n$ . Но принимающие состояния все, чьи номера равны (n-1) по модулю числа "cycle\_size". Такой автомат минимизируется до цикла длины cycle\_size, в котором ровно одно принимающее состояние (последнее), а начальное состояние первое (то есть до автомата типа "circle" размера cycle\_size).
- ★ "from\_bin\_file" чтение DFA из бинарного файла, путь к которому указан во втрором аргументе dfa\_str. Кодировка такая же, как в методе int save\_to\_file(char\* filename) класса DFA.
- \* "from\_nfa\_string" сначала с помощью строки dfa\_str инициализируется NFA, который потом переводится в DFA. В строке dfa\_str NFA закодирован следующим образом. Для начала для каждого состояния пишутся множества состояний, в которые из него можно попасть по каждому из символов  $\Sigma$ . Если множество востоит не из 1 элемента, оно обособляется фигурными скобками. Если состояние начальное, перед тем, как писать его переходы, печатается символ ">". Если символов ">" нет, то начальное состояние по умолчанию только одно первое. В конце идёт n плюсов и минусов, i-ый плюс означает, что i-ое состояние принимающее, минус наоборот, отвергающее. Например, у NFA могут быть следующие кодировки: " $\{03\}\{12\}\{002\}2\{12\}----$ ", " $\{01\}3>\{12\}\{002\}2\{12\}+++-$ ".

Также пользователь может (но это необязательно) сохранить минимизированный DFA в какой-нибудь бинарный файл. Для этого третьим аргументов необходимо указать слово "save\_to\_bin\_file", а четвёртым — относительный путь к этому файлу.

Также пользователь может указать в конце некоторые из следующих флагов:

- \* -t если надо засекать время работы по минимизации автомата (потраченное время будет напечатано в stdout).
- \* -nd, --no-debug если не надо выводить в stdout информацию о успешном начале/конце минимизации и подобных действиях, а также количество состояний в минимизированном автомате.
- \* -np, --no-print если не надо в конце выводить в stdout новый минимизированный DFA.

Примеры работы программы:

Минимизация автомата, данного в формате NFA, и сохранение его в бинарный файл:

```
1 ./minimizer from_nfa_string {03}1{12}{}0{02}2{12}--+- save_to_bin_file binary_files/dfa0.bin -t
2 DELETING UNREACHABLE STATES...
3 MINIMIZATION STARTED...
4 MINIMIZATION FINISHED SUCCESSFULLY
5 10 iterations happened
6 DFA UPDATED
7 It has 7 states now
8 Execution time: 0.000243977 seconds.
9 SIZE: 7 LEN_ALPHABET: 2 STARTING_NODE: 2
    | 0 | 1 | TYPE
0 | 0 | 0 | ACC
13 ==============
  1 | 0 | 5 | REJ
14
15
  2 | 1 | 6 | REJ
17 ==============
  3 | 1 | 0 | ACC
18
19 ============
  4 | 4 | 4 | REJ
20
21 ============
  5 | 0 | 3 | ACC
23
  ------
  6 | 5 | 4 | REJ
25 ===========
26 Saved successfully to binary file
```

Минимизация автомата из файла и сохранение в другой файл:

```
_1 ./minimizer from_bin_file binary_files/dfa1.bin save_to_bin_file binary_files/dfa2.bin -t -np -nd _2 Execution time: 8.0964e-05 seconds.
```

Минимизация автомата типа "bamboo", состоящего из 1000000 состояний:

```
    ./minimizer bamboo 1000000,1 -t -np
    DELETING UNREACHABLE STATES...
    MINIMIZATION STARTED...
    MINIMIZATION FINISHED SUCCESSFULLY
```

- $_{5}$  999999 iterations happened
- 6 DFA UPDATED
- 7 It has 1000000 states now
- 8 Execution time: 3.6638 seconds.

## 3 Анализ работы программы

## 3.1 Сравнение времени работы алгоритмов Хопкрофта и Мура

Как уже было отмечено, алгоритм Хопкрофта работает на автоматах типа "бамбук" линейно от размеров автомата, а алгоритм Мура — квадратично. Это было проверено на автоматах размеров  $2^n$ ,  $n \in \{10, \dots, 24\}$ . Результаты измерений времени работы отражены в следующей таблице:

| Размер DFA типа bamboo | Алгоритм Хопкрофта (сек.) | Алгоритм Мура (сек.) |
|------------------------|---------------------------|----------------------|
| 1024                   | 0.000269                  | 0.0010017            |
| 2048                   | 0.00087                   | 0.0040186            |
| 4096                   | 0.001407                  | 0.0155907            |
| 8192                   | 0.00277                   | 0.0565663            |
| 16384                  | 0.004176                  | 0.237831             |
| 32768                  | 0.008006                  | 0.951994             |
| 65536                  | 0.014809                  | 4.01016              |
| 131072                 | 0.029341                  | 16.5476              |
| 262144                 | 0.058262                  | 67.5289              |
| 524288                 | 0.120135                  | 274.041              |
| 1048576                | 0.235781                  | _                    |
| 2097152                | 0.469479                  | -                    |
| 4194304                | 0.953751                  | _                    |
| 8388607                | 1.97026                   | -                    |

Соотношение времени работы алгоритмов Мура и Хопкрофта на автоматах типа "бамбук".



Также была исследована работа этих алгоритмов для минимизации DFA для языка, задающего все слова над алфавитом  $\{a,b\}$ , у которых (n-1)-ый символ с конца равен a. Строился NFA, задающий этот язык, переводился в DFA, который затем минимизировался (как известно, в минимизированном DFA в таком случае будет не менее чем  $2^{n-1}$  состояний).

| n  | Алгоритм Хопкрофта (сек.) | Алгоритм Мура (сек.) |
|----|---------------------------|----------------------|
| 12 | 0.000747                  | 0.0010522            |
| 13 | 0.001364                  | 0.0017582            |
| 14 | 0.002397                  | 0.0029991            |
| 15 | 0.00477                   | 0.0049912            |
| 16 | 0.010971                  | 0.0135385            |
| 17 | 0.023378                  | 0.0270009            |
| 18 | 0.047164                  | 0.0590049            |
| 19 | 0.115261                  | 0.127855             |
| 20 | 0.302292                  | 0.296526             |
| 21 | 0.672999                  | 0.65721              |
| 22 | 1.43655                   | 1.5208               |
| 23 | 3.25043                   | 3.84943              |
| 24 | 6.82125                   | 8.92102              |
| 25 | 13.5632                   | 18.8834              |
| 26 | 27.5825                   | 40.6004              |
| 27 | 59.4406                   | _                    |

Сравнение работы алгоритмов минимизации автоматов, имеющих  $2^{n-1}$  состояний.

При больших n реализация алгоритма Хопкрофта опережает алгоритм Мура. Однако при этом алгоритм расходует намного больше памяти, нежели необходимо алгоритму Мура.

## 3.2 Расходуемая память

Для каждого состояния хранятся номер блока, в котором оно находится (4 байта), номер следующего и предыдущего состояний их того же самого блока (8 байт). Также для каждого символа  $a \in \Sigma$  хранятся номер следующего и предыдущего состояний из этого же блока, которые достижимы по этому символу a (если само состояние достижимо по символу a) — то есть ещё  $|\Sigma| \cdot 8$  байт. Для содержания состояния в L(a) нужно 4+1=5 байт (4 на само состояние, если оно там лежит, и 1 байт показывающий, лежит ли оно в L(a) или нет). Итого, ещё  $|\Sigma| \cdot 5$  байт.

Для каждого блока B(j) (которых может быть от 1 до n) хранится количество состояний в нём, а также количество состояний в нём, достижимых по символу a (для каждого  $a \in \Sigma$ ) — это  $(|\Sigma|+1) \cdot 4$  байт. И ещё хранятся first(j) и first(j,a) (для каждого  $a \in \Sigma$ ) — это ещё  $(|\Sigma|+1) \cdot 4$  байт.

Также каждое из полей класса class DFA, отвечающих за одну итерацию минимизации, может достигать размера n (поля blocks\_need\_to\_be\_separated, block2index\_of\_new\_block, sep\_blocks, sep\_states, empty\_colors, block2index\_special). Они суммарно занимают не более  $21 \cdot n$  байт.

Также, для содержания функции  $\delta^{-1}$  нужно  $3 \cdot |\Sigma| \cdot n$  байт. Итого, суммарно используется не более чем

$$(4+8+|\Sigma|\cdot 8+|\Sigma|\cdot 5+(|\Sigma|+1)\cdot 4\cdot 2+21+3\cdot |\Sigma|)\cdot n=(41+|\Sigma|\cdot 24)\cdot n$$
 байт,

где n — число состояний в исходном DFA.

## 4 Заключение

Исследована статья Джона Хопкрофта [1], в которой описан этот алгоритм.

Разобрана работа алгоритма Хопкрофта, доказаны утверждения о его корректности и асимптотике, написана программа, минимизирующая входной DFA, пользуясь этим алгоритмом. Поставленная задача выполнена.

Также планируется добавить дополнительную операцию инициализации DFA — shift (циклический сдвиг) — получение нового автомата из какого-то путём циклического сдвига. Это преобразование описано в статье [2], с которой я на данный момент разбираюсь.

## Список литературы

- [1] John Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In *Theory of machines and computations*, pages 189–196. Elsevier, 1971.
- [2] Galina Jirásková and Alexander Okhotin. State complexity of cyclic shift. RAIRO-Theoretical Informatics and Applications, 42(2):335–360, 2008.