#### **Constraint Satisfaction Problems**





| 8 |   |   | 4 |   | 6 |   |   | 7 |
|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   | 4 |   |   |
|   | 1 |   |   |   |   | 6 | 5 |   |
| 5 |   | 9 |   | 3 |   | 7 | 8 |   |
|   |   |   |   | 7 |   |   |   |   |
|   | 4 | 8 |   | 2 |   | 1 |   | 3 |
|   | 5 | 2 |   |   |   |   | 9 |   |
|   |   | 1 |   |   |   |   |   |   |
| 3 |   |   | 9 |   | 2 |   |   | 5 |

#### What is Search For?

- Assumptions about the world: <u>a single agent</u>, <u>deterministic</u> <u>actions</u>, <u>fully observed state</u>, <u>discrete state space</u>
- *Planning*: sequences of actions
  - The path to the goal is the important thing
  - Paths have various costs, depths
  - Heuristics give problem-specific guidance
- *Identification*: assignments to variables
  - The goal itself is important, not the path
  - All paths at the same depth (for some formulat
  - CSPs are specialized for identification problems



#### **Constraint Satisfaction Problems**



#### Constraint Satisfaction Problems

- Standard search problems:
  - State is a "black box": arbitrary data structure
  - Goal test can be any function over states
  - Successor function can also be anything
- Constraint satisfaction problems (CSPs):

  - A special subset of search problems
    State is defined by variables X; with values from a domain D (sometimes D depends on i)
  - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a *formal representation language*
- Allows useful general-purpose algorithms with more power than standard search algorithms





#### **CSP Examples**



#### **Example: Map Coloring**

• Variables: WA, NT, Q, NSW, V, SA, T

• Domains: D = {red, green, blue}

• Constraints: adjacent regions must have different colors

Implicit:  $WA \neq NT$ 

Explicit:  $(WA, NT) \in \{(red, green), (red, blue), ...\}$ 

• Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}





#### Example: *n*-queens problem

• Put n queens on an  $n \times n$  board with no two queens on the same row, column, or diagonal





#### Example: N-Queens

#### Formulation 1:

• Variables:  $X_{ij}$ • Domains:  $\{0,1\}$ 

Constraints





$$\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\}$$

$$\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}$$

$$\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$$

$$\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$$

#### Example: N-Queens

• Formulation 2:

 $Q_k$ 

• Domains:

• Variables:

 $\{1, 2, 3, \dots N\}$ 

• Constraints:

 $Q_1$   $Q_2$   $Q_3$   $\Psi$   $Q_4$   $\Psi$ 

Implicit:  $\forall i, j$  non-threatening $(Q_i, Q_j)$ 

Explicit:  $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$ 

• • •

## **Constraint Graphs**



#### **Constraint Graphs**

 Binary CSP: each constraint relates (at most) two variables

 Binary constraint graph: nodes are variables, arcs show constraints

 General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!



#### Example: Sudoku



- Variables:
  - Each (open) square
- Domains:
  - **1**,2,...,9
- Constraints:

9-way alldiff for each column

9-way alldiff for each row

9-way alldiff for each region

(or can have a bunch of pairwise inequality constraints)

#### Varieties of CSPs

- Discrete Variables
  - Finite domains
    - Size d means  $O(d^n)$  complete assignments
    - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
  - Infinite domains (integers, strings, etc.)
    - E.g., job scheduling, variables are start/end times for each job
    - Linear constraints solvable, nonlinear undecidable



- E.g., start/end times for Hubble Telescope observations
- Linear constraints solvable in polynomial time by LP methods





#### Varieties of Constraints

- Varieties of Constraints
  - Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

$$SA \neq green$$

• Binary constraints involve pairs of variables, e.

$$SA \neq WA$$

• Higher-order constraints involve 3 or more variables:

- Preferences (soft constraints):

  - E.g., red is better than green
    Often representable by a cost for each variable assignment
  - Gives constrained optimization problems
  - (We'll ignore these until we get to Bayes' nets)



#### Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- ... lots more!



• Many real-world problems involve real-valued variables...

## Solving CSPs



#### Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
  - Initial state: the empty assignment, {}
  - Successor function: assign a value to an unassigned variable
  - Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it



#### Search Methods

• What would BFS do?

• What would DFS do?



• What problems does naïve search have?

## Video of Demo Coloring -- DFS



## Backtracking Search



#### **Backtracking Search**

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
  - Variable assignments are commutative, so fix ordering
  - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
  - Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
  - I.e. consider only values which do not conflict previous assignments
  - Might have to do some computation to check the constraints
  - "Incremental goal test"
- Depth-first search with these two improvements is called *backtracking search* (not the best name)
- Can solve n-queens for  $n \approx 25$



### **Backtracking Example**





[Demo: coloring – backtracking Simple]

### Backtracking Search

```
function Backtracking-Search(csp) returns solution/failure return Recursive-Backtracking(\{\}, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure if assignment is complete then return assignment var \leftarrow Select-Unassigned-Variable(Variables[csp], assignment, csp) for each value in Order-Domain-Values(var, assignment, csp) do if value is consistent with assignment given Constraints[csp] then add \{var = value\} to assignment result \leftarrow Recursive-Backtracking(assignment, csp) if result \neq failure then return result remove \{var = value\} from assignment return failure
```

- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?

## Video of Demo Coloring – Backtracking



### Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering:
  - Which variable should be assigned next?
  - In what order should its values be tried?
- <u>Filtering</u>: Can we detect inevitable failure early?
- <u>Structure</u>: Can we exploit the problem structure?



## Filtering



### Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment



- Most constrained variable:
  - Choose the variable with the fewest legal values
  - A.k.a. minimum remaining values (MRV) heuristic

- Most constrained variable:
  - Choose the variable with the fewest legal values
  - A.k.a. minimum remaining values (MRV) heuristic



- Most constraining variable:
  - Choose the variable that imposes the most constraints on the remaining variables

- Most constraining variable:
  - Choose the variable that imposes the most constraints on the remaining variables



## Given a variable, in which order should its values be tried?

- Choose the **least constraining value**:
  - The value that rules out the fewest values in the remaining variables

## Given a variable, in which order should its values be tried?

- Choose the **least constraining value**:
  - The value that rules out the fewest values in the remaining variables

Which assignment for Q should we choose?



### Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
  - Choose the variable with the fewest legal left values in its domain



- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering



### Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
  - Given a choice of variable, choose the *least constraining value*
  - I.e., the one that rules out the fewest values in the remaining variables
  - Note that it may take some computation to determine this! (E.g., rerunning filtering)



- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible



## Constraint propagation

 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures



- NT and SA cannot both be blue!
- Constraint propagation repeatedly enforces constraints locally

- Simplest form of propagation makes each pair of variables consistent:
  - $X \rightarrow Y$  is consistent iff for every value of X there is some allowed value of Y



- Simplest form of propagation makes each pair of variables consistent:
  - $X \rightarrow Y$  is consistent iff for every value of X there is some allowed value of Y



- Simplest form of propagation makes each pair of variables consistent:
  - $X \rightarrow Y$  is consistent iff for every value of X there is some allowed value of Y
  - When checking  $X \rightarrow Y$ , throw out any values of X for which there isn't an allowed value of Y



• If X loses a value, all pairs  $Z \rightarrow X$  need to be rechecked

- Simplest form of propagation makes each pair of variables consistent:
  - $X \rightarrow Y$  is consistent iff for every value of X there is some allowed value of Y
  - When checking  $X \rightarrow Y$ , throw out any values of X for which there isn't an allowed value of Y



• If X loses a value, all pairs  $Z \rightarrow X$  need to be rechecked

- Simplest form of propagation makes each pair of variables consistent:
  - $X \rightarrow Y$  is consistent iff for every value of X there is some allowed value of Y
  - When checking  $X \rightarrow Y$ , throw out any values of X for which there isn't an allowed value of Y



• If X loses a value, all pairs  $Z \rightarrow X$  need to be rechecked

- Simplest form of propagation makes each pair of variables consistent:
  - $X \rightarrow Y$  is consistent iff for every value of X there is some allowed value of Y
  - When checking  $X \rightarrow Y$ , throw out any values of X for which there isn't an allowed value of Y



- Simplest form of propagation makes each pair of variables consistent:
  - $X \rightarrow Y$  is consistent iff for every value of X there is some allowed value of Y
  - When checking  $X \rightarrow Y$ , throw out any values of X for which there isn't an allowed value of Y



- Arc consistency detects failure earlier than forward checking
- Can be run before or after each assignment

#### Tree-structured CSPs

 Certain kinds of CSPs can be solved without resorting to backtracking search!

• *Tree-structured CSP*: constraint graph does not have any loops



• Choose one variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering



- Choose one variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering
- Backward removal phase: check arc consistency starting from the rightmost node and going backwards



- Choose one variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering
- Backward removal phase: check arc consistency starting from the rightmost node and going backwards
- Forward assignment phase: select an element from the domain of each variable going left to right. We are guaranteed that there will be a valid assignment because each arc is consistent



- If *n* is the number of variables and *m* is the domain size, what is the running time of this algorithm?
  - $O(nm^2)$ : we have to check arc consistency once for every node in the graph (every node has one parent), which involves looking at pairs of domain values
- What about backtracking search for general CSPs?
  - Worst case  $O(m^n)$

#### Local search for CSPs

- Start with "complete" states, i.e., all variables assigned
- Allow states with unsatisfied constraints
- Attempt to improve states by reassigning variable values
- Hill-climbing search:
  - In each iteration, randomly select any conflicted variable and choose value that violates the fewest constraints
  - I.e., attempt to greedily minimize total number of violated constraints



h = number of conflicts

#### Local search for CSPs

- Start with "complete" states, i.e., all variables assigned
- Allow states with unsatisfied constraints
- Attempt to improve states by reassigning variable values
- Hill-climbing search:
  - In each iteration, randomly select any conflicted variable and choose value that violates the fewest constraints
  - I.e., attempt to greedily minimize total number of violated constraints
  - Problem: local minima



h = 1

#### Local search for CSPs

- Start with "complete" states, i.e., all variables assigned
- Allow states with unsatisfied constraints
- Attempt to improve states by reassigning variable values
- Hill-climbing search:
  - In each iteration, randomly select any conflicted variable and choose value that violates the fewest constraints
  - I.e., attempt to greedily minimize total number of violated constraints
  - Problem: local minima
- For more on local search, see ch. 4

















