Policy Gradient Methods: Estimation

Lucas Janson

CS/Stat 184(0): Introduction to Reinforcement Learning Fall 2024

Today

- Feedback from last lecture
- Recap
- Estimation: REINFORCE
- Variance Reduction
 - Other Gradient Expressions
 - Baselines and Advantages
- Examples

Feedback from feedback forms

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

Today

- Feedback from last lecture
 - Recap
 - Estimation: REINFORCE
 - Variance Reduction
 - Other Gradient Expressions
 - Baselines and Advantages
 - Examples

The Learning Setting:

We don't know the MDP, but we can obtain trajectories.

The Finite Horizon, Learning Setting. We can obtain trajectories as follows:

- We start at $s_0 \sim \mu$.
- We can act for H steps and observe the trajectory $\tau = \{s_0, a_0, s_1, a_1, \ldots, s_{H-1}, a_{H-1}\}$

Note that with a simulator, we can sample trajectories as specified in the above.

Optimization Objective

Consider a parameterized class of policies:

$$\{\pi_{\theta}(a \mid s) \mid \theta \in \mathbb{R}^d\}$$

(why do we make it stochastic?)

. Objective $\max_{\theta} J(\theta)$, where

$$J(\theta) := \mathbb{E}_{s_0 \sim \mu} \left[V^{\pi_{\theta}}(s_0) \right] = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta}}} \left[\sum_{h=0}^{H-1} r(s_h, a_h) \right]$$

Policy Gradient Descent:

$$\theta^{k+1} = \theta^k + \eta \nabla J(\theta^k)$$

Example Policy Parameterizations

Recall that we consider parameterized policy $\pi_{\theta}(\cdot \mid s) \in \Delta(A), \forall s$

1. Softmax linear Policy

Feature vector $\phi(s, a, h) \in \mathbb{R}^d$, and parameter $\theta \in \mathbb{R}^d$

$$\pi_{\theta}(a \mid s, h) = \frac{\exp(\theta^{\top} \phi(s, a, h))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a', h))}$$

Example Policy Parameterizations

Recall that we consider parameterized policy $\pi_{\theta}(\cdot \mid s) \in \Delta(A), \forall s$

1. Softmax linear Policy

Feature vector $\phi(s, a, h) \in \mathbb{R}^d$, and parameter $\theta \in \mathbb{R}^d$

$$\pi_{\theta}(a \mid s, h) = \frac{\exp(\theta^{\top} \phi(s, a, h))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a', h))} \qquad \pi_{\theta}(a \mid s, h) = \frac{\exp(f_{\theta}(s, a, h))}{\sum_{a'} \exp(f_{\theta}(s, a', h))}$$

2. Neural Policy:

Neural network $f_{A}: S \times A \times [H] \mapsto \mathbb{R}$

$$\pi_{\theta}(a \mid s, h) = \frac{\exp(f_{\theta}(s, a, h))}{\sum_{a'} \exp(f_{\theta}(s, a', h))}$$

Example Policy Parameterization for "Controls"

Suppose $a \in \mathbb{R}^k$, as it might be for a control problem.

Example Policy Parameterization for "Controls"

Suppose $a \in \mathbb{R}^k$, as it might be for a control problem.

3. Gaussian + Linear Model

- Feature vector: $\phi(s, h) \in \mathbb{R}^d$,
- Parameters: $\theta \in \mathbb{R}^{k \times d}$, (and maybe $\sigma \in \mathbb{R}^+$)
- Policy: sample action from a (multivariate) Normal with mean $\theta \cdot \phi(s,h)$ and variance $\sigma^2 I$, i.e.

$$\pi_{\theta,\sigma}(\cdot \mid s,h) = \mathcal{N}\left(\theta \cdot \phi(s,h), \sigma^2 I\right)$$

Sampling:

$$a = \theta \cdot \phi(s, h) + \eta$$
, where $\eta \sim \mathcal{N}(0, \sigma^2 I)$

Example Policy Parameterization for "Controls"

Suppose $a \in \mathbb{R}^k$, as it might be for a control problem.

3. Gaussian + Linear Model

- Feature vector: $\phi(s, h) \in \mathbb{R}^d$,
- Parameters: $\theta \in \mathbb{R}^{k \times d}$, (and maybe $\sigma \in \mathbb{R}^+$)
- Policy: sample action from a (multivariate) Normal with mean $\theta \cdot \phi(s,h)$ and variance $\sigma^2 I$, i.e.

$$\pi_{\theta,\sigma}(\cdot \mid s,h) = \mathcal{N}\left(\theta \cdot \phi(s,h), \sigma^2 I\right)$$

Sampling:

$$a = \theta \cdot \phi(s, h) + \eta$$
, where $\eta \sim \mathcal{N}(0, \sigma^2 I)$

4. Gaussian + Neural Model

- Neural network $g_{\theta}: S \times [H] \mapsto \mathbb{R}^k$
- Parameters: $\theta \in \mathbb{R}^d$, (and maybe $\sigma \in \mathbb{R}^+$)
- Policy: a (multivariate) Normal with mean $g_{\theta}(s)$ and variance $\sigma^2 I$, i.e.

$$\pi_{\theta,\sigma}(\cdot \mid s,h) = \mathcal{N}(g_{\theta}(s,h),\sigma^2 I)$$

• Sampling:

$$a = g_{\theta}(s, h) + \eta$$
, where $\eta \sim \mathcal{N}(0, \sigma^2 I)$

• Suppose
$$J(\theta) = \mathbb{E}_{x \sim P_{\theta}} \left[f(x) \right] = \sum_{x} P_{\theta}(x) f(x)$$
, and our objective is $\max_{\theta} J(\theta)$.

- Suppose $J(\theta) = \mathbb{E}_{x \sim P_{\theta}} \left[f(x) \right] = \sum_{x} P_{\theta}(x) f(x)$, and our objective is $\max_{\theta} J(\theta)$.
- Computing $\nabla_{\theta}J(\theta)$ exactly may be difficult (due to the sum over x=trajectories)

• Suppose
$$J(\theta) = \mathbb{E}_{x \sim P_{\theta}} \left[f(x) \right] = \sum_{x} P_{\theta}(x) f(x)$$
, and our objective is $\max_{\theta} J(\theta)$.

- Computing $\nabla_{\theta}J(\theta)$ exactly may be difficult (due to the sum over x=trajectories)
 - So GD not an option—what about SGD?

• Suppose
$$J(\theta) = \mathbb{E}_{x \sim P_{\theta}} \left[f(x) \right] = \sum_{x} P_{\theta}(x) f(x)$$
, and our objective is $\max_{\theta} J(\theta)$.

- Computing $\nabla_{\theta}J(\theta)$ exactly may be difficult (due to the sum over x=trajectories)
 - So GD not an option—what about SGD?
 - In supervised learning, stochastic gradient was just gradient on one sample—will that work here?

• Suppose
$$J(\theta) = \mathbb{E}_{x \sim P_{\theta}} \left[f(x) \right] = \sum_{x} P_{\theta}(x) f(x)$$
, and our objective is $\max_{\theta} J(\theta)$.

- Computing $\nabla_{\theta}J(\theta)$ exactly may be difficult (due to the sum over x=trajectories)
 - So GD not an option—what about SGD?
 - In supervised learning, stochastic gradient was just gradient on one sample—will that work here?
 - Won't work: θ -dependence is inside the distribution, not inside the expectation

• Suppose
$$J(\theta) = \mathbb{E}_{x \sim P_{\theta}} \left[f(x) \right] = \sum_{x} P_{\theta}(x) f(x)$$
, and our objective is $\max_{\theta} J(\theta)$.

- Computing $\nabla_{\theta} J(\theta)$ exactly may be difficult (due to the sum over x=trajectories)
 - So GD not an option—what about SGD?
 - In supervised learning, stochastic gradient was just gradient on one sample—will that work here?
 - Won't work: θ -dependence is inside the distribution, not inside the expectation
 - So how can we unbiasedly estimate $\nabla_{\theta} J(\theta)$?

• Suppose
$$J(\theta) = \mathbb{E}_{x \sim P_{\theta}} \left[f(x) \right] = \sum_{x} P_{\theta}(x) f(x)$$
, and our objective is $\max_{\theta} J(\theta)$.

- Computing $\nabla_{\theta}J(\theta)$ exactly may be difficult (due to the sum over x=trajectories)
 - So GD not an option—what about SGD?
 - In supervised learning, stochastic gradient was just gradient on one sample—will that work here?
 - Won't work: θ -dependence is inside the distribution, not inside the expectation
 - So how can we unbiasedly estimate $\nabla_{\theta} J(\theta)$?
- Suppose we can compute f(x), $P_{\theta}(x)$, and $\nabla P_{\theta}(x)$, and we can sample $x \sim P_{\theta}(x)$

• Suppose
$$J(\theta) = \mathbb{E}_{x \sim P_{\theta}} \left[f(x) \right] = \sum_{x} P_{\theta}(x) f(x)$$
, and our objective is $\max_{\theta} J(\theta)$.

- Computing $\nabla_{\theta}J(\theta)$ exactly may be difficult (due to the sum over x=trajectories)
 - So GD not an option—what about SGD?
 - In supervised learning, stochastic gradient was just gradient on one sample—will that work here?
 - Won't work: θ -dependence is inside the distribution, not inside the expectation
 - So how can we unbiasedly estimate $\nabla_{\theta} J(\theta)$?
- Suppose we can compute f(x), $P_{\theta}(x)$, and $\nabla P_{\theta}(x)$, and we can sample $x \sim P_{\theta}(x)$
- We have that:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{x \sim P_{\theta}(x)} \left[\nabla_{\theta} \log P_{\theta}(x) f(x) \right]$$

• Suppose
$$J(\theta) = \mathbb{E}_{x \sim P_{\theta}} \left[f(x) \right] = \sum_{x} P_{\theta}(x) f(x)$$
, and our objective is $\max_{\theta} J(\theta)$.

- Computing $\nabla_{\theta}J(\theta)$ exactly may be difficult (due to the sum over x=trajectories)
 - So GD not an option—what about SGD?
 - In supervised learning, stochastic gradient was just gradient on one sample—will that work here?
 - Won't work: θ -dependence is inside the distribution, not inside the expectation
 - So how can we unbiasedly estimate $\nabla_{\theta} J(\theta)$?
- Suppose we can compute f(x), $P_{\theta}(x)$, and $\nabla P_{\theta}(x)$, and we can sample $x \sim P_{\theta}(x)$
- We have that:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{x \sim P_{\theta}(x)} \left[\nabla_{\theta} \log P_{\theta}(x) f(x) \right]$$
 Proof:

• Suppose
$$J(\theta) = \mathbb{E}_{x \sim P_{\theta}} \left[f(x) \right] = \sum_{x} P_{\theta}(x) f(x)$$
, and our objective is $\max_{\theta} J(\theta)$.

- Computing $\nabla_{\theta}J(\theta)$ exactly may be difficult (due to the sum over x=trajectories)
 - So GD not an option—what about SGD?
 - In supervised learning, stochastic gradient was just gradient on one sample—will that work here?
 - Won't work: θ -dependence is inside the distribution, not inside the expectation
 - So how can we unbiasedly estimate $\nabla_{\theta} J(\theta)$?
- Suppose we can compute f(x), $P_{\theta}(x)$, and $\nabla P_{\theta}(x)$, and we can sample $x \sim P_{\theta}(x)$
- We have that:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{x \sim P_{\theta}(x)} \left[\nabla_{\theta} \log P_{\theta}(x) f(x) \right]$$
 Proof:
$$\nabla_{\theta} J(\theta) = \sum_{x} \nabla_{\theta} P_{\theta}(x) f(x)$$

• Suppose
$$J(\theta) = \mathbb{E}_{x \sim P_{\theta}} \left[f(x) \right] = \sum_{x} P_{\theta}(x) f(x)$$
, and our objective is $\max_{\theta} J(\theta)$.

- Computing $\nabla_{\theta}J(\theta)$ exactly may be difficult (due to the sum over x=trajectories)
 - So GD not an option—what about SGD?
 - In supervised learning, stochastic gradient was just gradient on one sample—will that work here?
 - Won't work: θ -dependence is inside the distribution, not inside the expectation
 - So how can we unbiasedly estimate $\nabla_{\theta} J(\theta)$?
- Suppose we can compute f(x), $P_{\theta}(x)$, and $\nabla P_{\theta}(x)$, and we can sample $x \sim P_{\theta}(x)$
- We have that:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{x \sim P_{\theta}(x)} \left[\nabla_{\theta} \log P_{\theta}(x) f(x) \right]$$

Proof:

$$\nabla_{\theta} J(\theta) = \sum_{x} \nabla_{\theta} P_{\theta}(x) f(x)$$

$$= \sum_{x} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x)$$

• Suppose
$$J(\theta) = \mathbb{E}_{x \sim P_{\theta}} \left[f(x) \right] = \sum_{x} P_{\theta}(x) f(x)$$
, and our objective is $\max_{\theta} J(\theta)$.

- Computing $\nabla_{\theta}J(\theta)$ exactly may be difficult (due to the sum over x=trajectories)
 - So GD not an option—what about SGD?
 - In supervised learning, stochastic gradient was just gradient on one sample—will that work here?
 - Won't work: θ -dependence is inside the distribution, not inside the expectation
 - So how can we unbiasedly estimate $\nabla_{\theta} J(\theta)$?
- Suppose we can compute f(x), $P_{\theta}(x)$, and $\nabla P_{\theta}(x)$, and we can sample $x \sim P_{\theta}(x)$
- We have that:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{x \sim P_{\theta}(x)} \left[\nabla_{\theta} \log P_{\theta}(x) f(x) \right]$$

Proof:

$$\nabla_{\theta} J(\theta) = \sum_{x} \nabla_{\theta} P_{\theta}(x) f(x)$$

$$= \sum_{x} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x)$$

$$= \sum_{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x) f(x)$$

We have:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{x \sim P_{\theta}(x)} \left[\nabla_{\theta} \log P_{\theta}(x) f(x) \right]$$

We have:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{x \sim P_{\theta}(x)} \left[\nabla_{\theta} \log P_{\theta}(x) f(x) \right]$$

An unbiased estimate is given by:

$$\widehat{\nabla}_{\theta} J(\theta) = \nabla_{\theta} \log P_{\theta}(x) \cdot f(x)$$
, where $x \sim P_{\theta}$

We have:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{x \sim P_{\theta}(x)} \left[\nabla_{\theta} \log P_{\theta}(x) f(x) \right]$$

• An unbiased estimate is given by:
$$\widehat{\nabla}_{\theta} J(\theta) = \nabla_{\theta} \log P_{\theta}(x) \cdot f(x), \text{ where } x \sim P_{\theta}$$

• We can lower variance by drawing N i.i.d. samples from $P_{ heta}$ and averaging:

$$\widehat{\nabla}_{\theta} J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(x_i) f(x_i)$$

Today

• Feedback from last lecture

- Estimation: REINFORCE
- Variance Reduction
 - Other Gradient Expressions
 - Baselines and Advantages
- Examples

• Let $\rho_{\theta}(\tau)$ be the probability of a trajectory $\tau = \{s_0, a_0, s_1, a_1, ..., s_{H-1}, a_{H-1}\}$, i.e. $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \mid s_0)P(s_1 \mid s_0, a_0)...P(s_{H-1} \mid s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1} \mid s_{H-1})$

• Let $\rho_{\theta}(\tau)$ be the probability of a trajectory $\tau = \{s_0, a_0, s_1, a_1, \ldots, s_{H-1}, a_{H-1}\}$, i.e. $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \mid s_0)P(s_1 \mid s_0, a_0)\dots P(s_{H-1} \mid s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1} \mid s_{H-1})$

Let $R(\tau)$ be the cumulative reward on trajectory τ , i.e. $R(\tau) := \sum_{h=0}^{\infty} r(s_h, a_h)$

• Let $\rho_{\theta}(\tau)$ be the probability of a trajectory $\tau = \{s_0, a_0, s_1, a_1, ..., s_{H-1}, a_{H-1}\}$, i.e. $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \mid s_0)P(s_1 \mid s_0, a_0)...P(s_{H-1} \mid s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1} \mid s_{H-1})$

Let $R(\tau)$ be the cumulative reward on trajectory τ , i.e. $R(\tau) := \sum_{h=0}^{\infty} r(s_h, a_h)$

Our objective function is:

$$J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[R(\tau) \right]$$

• Let $\rho_{\theta}(\tau)$ be the probability of a trajectory $\tau = \{s_0, a_0, s_1, a_1, \ldots, s_{H-1}, a_{H-1}\}$, i.e. $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \mid s_0)P(s_1 \mid s_0, a_0)\dots P(s_{H-1} \mid s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1} \mid s_{H-1})$

Let $R(\tau)$ be the cumulative reward on trajectory τ , i.e. $R(\tau) := \sum_{h=0}^{\infty} r(s_h, a_h)$

Our objective function is:

$$J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[R(\tau) \right]$$

• From the likelihood ratio method, we have:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) \ R(\tau) \right]$$

Apply likelihood ratio method to policy gradient

• Let $\rho_{\theta}(\tau)$ be the probability of a trajectory $\tau = \{s_0, a_0, s_1, a_1, \ldots, s_{H-1}, a_{H-1}\}$, i.e. $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0\,|\,s_0)P(s_1\,|\,s_0, a_0)\dots P(s_{H-1}\,|\,s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1}\,|\,s_{H-1})$

Let $R(\tau)$ be the cumulative reward on trajectory τ , i.e. $R(\tau) := \sum_{h=0}^{\infty} r(s_h, a_h)$

Our objective function is:

$$J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[R(\tau) \right]$$

• From the likelihood ratio method, we have:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) \ R(\tau) \right]$$

• But $\rho_{\theta}(\tau)$ involves the dynamics P, which we assumed we don't know!

• The REINFORCE Policy Gradient expression:

$$\nabla_{\theta} \ln \rho_{\theta}(\tau) \ R(\tau) = \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h)\right) R(\tau)$$

• The REINFORCE Policy Gradient expression:

$$\nabla_{\theta} \ln \rho_{\theta}(\tau) \ R(\tau) = \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h)\right) R(\tau)$$

• Proof:

$$\nabla_{\theta} \ln \rho_{\theta}(\tau) = \nabla_{\theta} \left(\ln \mu(s_0) + \ln \pi_{\theta}(a_0 | s_0) + \ln P(s_1 | s_0, a_0) + \dots \right)$$

• The REINFORCE Policy Gradient expression:

$$\nabla_{\theta} \ln \rho_{\theta}(\tau) \ R(\tau) = \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h)\right) R(\tau)$$

• Proof:

$$\nabla_{\theta} \ln \rho_{\theta}(\tau) = \nabla_{\theta} \left(\ln \mu(s_0) + \ln \pi_{\theta}(a_0 | s_0) + \ln P(s_1 | s_0, a_0) + \dots \right)$$
$$= \nabla_{\theta} \left(\ln \pi_{\theta}(a_0 | s_0) + \ln \pi_{\theta}(a_1 | s_1) \dots \right)$$

• The REINFORCE Policy Gradient expression:

$$\nabla_{\theta} \ln \rho_{\theta}(\tau) \ R(\tau) = \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h)\right) R(\tau)$$

•Proof:
$$\nabla_{\theta} \ln \rho_{\theta}(\tau) = \nabla_{\theta} \left(\ln \mu(s_0) + \ln \pi_{\theta}(a_0 \mid s_0) + \ln P(s_1 \mid s_0, a_0) + \ldots \right)$$

$$= \nabla_{\theta} \left(\ln \pi_{\theta}(a_0 \mid s_0) + \ln \pi_{\theta}(a_1 \mid s_1) \ldots \right)$$

$$= \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \right)$$

Obtaining an Unbiased Gradient Estimate at θ

$$\nabla_{\theta} J(\theta) := \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \right) R(\tau) \right]$$

Obtaining an Unbiased Gradient Estimate at θ

$$\nabla_{\theta} J(\theta) := \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \right) R(\tau) \right]$$

1. Obtain a trajectory $\tau \sim \rho_{\theta}$ (which we can do in our learning setting)

Obtaining an Unbiased Gradient Estimate at heta

$$\nabla_{\theta} J(\theta) := \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \right) R(\tau) \right]$$

- 1. Obtain a trajectory $\tau \sim \rho_{\theta}$ (which we can do in our learning setting)
- 2. Set:

$$g(\theta, \tau) := \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h)\right) R(\tau)$$

Obtaining an Unbiased Gradient Estimate at θ

$$\nabla_{\theta} J(\theta) := \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \right) R(\tau) \right]$$

- 1. Obtain a trajectory $\tau \sim \rho_{\theta}$ (which we can do in our learning setting)
- 2. Set:

$$g(\theta, \tau) := \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h)\right) R(\tau)$$

We have:
$$\mathbb{E}[g(\theta, \tau)] = \nabla_{\theta} J(\theta)$$

1. Initialize θ^0 , step size parameters: η^1, η^2, \dots

- 1. Initialize θ^0 , step size parameters: η^1, η^2, \dots
- 2. For k = 0,...:

- 1. Initialize θ^0 , step size parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Compute $g(\theta^k, \tau)$

- 1. Initialize θ^0 , step size parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Compute $g(\theta^k, \tau)$
 - 2. Update: $\theta^{k+1} = \theta^k + \eta^k g(\theta^k, \tau)$

(reducing variance using batch sizes of M)

(reducing variance using batch sizes of M)

1. Initialize θ^0 , parameters: η^1, η^2, \dots

(reducing variance using batch sizes of M)

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:

(reducing variance using batch sizes of M)

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Init G = 0 and do M times:

Obtain a trajectory $au \sim
ho_{\theta^k}$

Update: $G \leftarrow G + g(\theta^k, \tau)$

(reducing variance using batch sizes of M)

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Init G = 0 and do M times:

Obtain a trajectory $\tau \sim \rho_{\theta^k}$

Update:
$$G \leftarrow G + g(\theta^k, \tau)$$

2. Set $g := \frac{1}{M}G$

(reducing variance using batch sizes of M)

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Init G=0 and do M times: Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Update: $G \leftarrow G + g(\theta^k, \tau)$
 - $2. \text{ Set } g := \frac{1}{M}G$
 - 3. Update: $\theta^{k+1} = \theta^k + \eta^k g$

(reducing variance using batch sizes of M)

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Init G=0 and do M times: Obtain a trajectory $\tau \sim \rho_{\theta^k}$

Update: $G \leftarrow G + g(\theta^k, \tau)$

- $2. \text{ Set } g := \frac{1}{M}G$
- 3. Update: $\theta^{k+1} = \theta^k + \eta^k g$

We still have that at the kth step, g is unbiased for $\nabla_{\theta}J(\theta)$ evaluated at θ^k

Today

- Feedback from last lecture

- Recap

 Estimation: REINFORCE
 - Variance Reduction
 - Other Gradient Expressions
 - Baselines and Advantages
 - Examples

Other PG formulas (that are lower variance for sampling)

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \right) R(\tau) \right]$$
 (REINFORCE)

Other PG formulas (that are lower variance for sampling)

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \right) R(\tau) \right]$$
 (REINFORCE)

$$= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \left(\nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \sum_{t=h}^{H-1} r_t \right) \right]$$

Other PG formulas (that are lower variance for sampling)

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \right) R(\tau) \right]$$
 (REINFORCE)

$$= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \left(\nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \sum_{t=h}^{H-1} r_t \right) \right]$$

$$= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) Q_h^{\pi_{\theta}}(s_h, a_h) \right]$$

Other PG formulas (that are lower variance for sampling)

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_{h} \mid s_{h}) \right) R(\tau) \right]$$
 (REINFORCE)
$$= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \left(\nabla_{\theta} \ln \pi_{\theta}(a_{h} \mid s_{h}) \sum_{t=h}^{H-1} r_{t} \right) \right]$$

$$= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_{h} \mid s_{h}) Q_{h}^{\pi_{\theta}}(s_{h}, a_{h}) \right]$$

Intuition: Changing the action distribution at h only affects rewards later on...

HW: You will show these simplified version are also valid PG expressions

On a trajectory τ , define:

$$R_h(\tau) = \sum_{t=h}^{H-1} r_t$$

$$g'(\theta, \tau) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) R_h(\tau)$$

On a trajectory τ , define:

$$R_h(\tau) = \sum_{t=h}^{H-1} r_t$$

1. Initialize θ^0 , parameters: η^1, η^2, \dots

$$g'(\theta, \tau) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) R_h(\tau)$$

On a trajectory τ , define:

$$R_h(\tau) = \sum_{t=h}^{H-1} r_t$$

1. Initialize θ^0 , parameters: η^1, η^2, \dots

2. For k = 0,...:

$$g'(\theta, \tau) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) R_h(\tau)$$

On a trajectory τ , define:

$$R_h(\tau) = \sum_{t=h}^{H-1} r_t$$

1. Initialize θ^0 , parameters: η^1, η^2, \dots

2. For k = 0,...:

1. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Set $g'(\theta^k, \tau)$

$$g'(\theta, \tau) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) R_h(\tau)$$

On a trajectory τ , define:

$$R_h(\tau) = \sum_{t=h}^{H-1} r_t$$

$$g'(\theta, \tau) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) R_h(\tau)$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Set $g'(\theta^k, \tau)$
 - 2. Update: $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau)$

On a trajectory τ , define:

$$R_h(\tau) = \sum_{t=h}^{H-1} r_t$$

And define:

$$g'(\theta, \tau) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) R_h(\tau)$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Set $g'(\theta^k, \tau)$
 - 2. Update: $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau)$

Comments:

- We still have unbiased gradient estimates.
- Easy to use a mini-batch algorithm to reduce variance.
- Easy to compute the gradient in "one pass" over the data.

Today

- Feedback from last lecture

- Recap

 Estimation: REINFORCE
 - Variance Reduction
- Other Gradient Expressions
 - Baselines and Advantages
 - Examples

With a "baseline" function:

With a "baseline" function:

For any function only of the state, $b_h: S \to \mathbb{R}$, we have:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(R_h(\tau) - b_h(s_h) \right) \right]$$

$$= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right) \right]$$

With a "baseline" function:

For any function only of the state, $b_h: S \to \mathbb{R}$, we have:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(R_h(\tau) - b_h(s_h) \right) \right]$$

$$= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right) \right]$$

This is (basically) the method of control variates.

• To see this, first note:
$$\mathbb{E}_{x \sim P_{\theta}} \left[\nabla_{\theta} \log P_{\theta}(x) \ c \right] = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} \left[C \right] = \nabla_{\theta} C = 0$$

To see this, first note:

$$\mathbb{E}_{x \sim P_{\theta}} \left[\nabla_{\theta} \log P_{\theta}(x) \ c \right] = \mathcal{O}$$

• Thus for any constant c,

$$\mathbb{E}_{x \sim P_{\theta}} \left[\nabla_{\theta} \log P_{\theta}(x) \left(f(x) - c \right) \right] = \mathbb{E}_{x \sim P_{\theta}} \left[\nabla_{\theta} \log P_{\theta}(x) f(x) \right]$$

To see this, first note:

$$\mathbb{E}_{x \sim P_{\theta}} \left[\nabla_{\theta} \log P_{\theta}(x) \ c \right] =$$

• Thus for any constant *c*,

$$\mathbb{E}_{x \sim P_{\theta}} \left[\nabla_{\theta} \log P_{\theta}(x) \left(f(x) - c \right) \right] = \mathbb{E}_{x \sim P_{\theta}} \left[\nabla_{\theta} \log P_{\theta}(x) f(x) \right]$$

Returning to RL, we have:

$$\mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \left(R_{h}(\tau) - b_{h}(s_{h}) \right) \right] = \sum_{h=0}^{H-1} \mathbb{E}_{s_{h} \sim \rho_{\theta}} \left[\mathbb{E}_{a_{h} \sim \pi_{\theta}(\cdot | s_{h})} \left[\nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \left(R_{h}(\tau) - b_{h}(s_{h}) \right) \right] \right]$$

$$= \sum_{h=0}^{H-1} \mathbb{E}_{s_{h} \sim \rho_{\theta}} \left[\mathbb{E}_{a_{h} \sim \pi_{\theta}(\cdot | s_{h})} \left[\nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) R_{h}(\tau) \right] \right]$$

(where $s_h \sim \rho_\theta$ is a sample from the marginal state distribution at time h)

$$b_h^{\theta} = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[R_h(\tau) \right]$$

$$b_h^{\theta} = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[R_h(\tau) \right]$$

$$g'(\theta, \tau, b) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(R_h(\tau) - b_h \right)$$

1. Initialize θ^0 , parameters: η^1, η^2, \dots

$$b_h^{\theta} = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[R_h(\tau) \right]$$

$$g'(\theta, \tau, b) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(R_h(\tau) - b_h \right)$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:

$$b_h^{\theta} = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[R_h(\tau) \right]$$

$$g'(\theta, \tau, b) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(R_h(\tau) - b_h \right)$$

$$b_h^{\theta} = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[R_h(\tau) \right]$$

$$g'(\theta, \tau, b) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(R_h(\tau) - b_h \right)$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Sample M trajectories, $\tau_1, ..., \tau_M \sim \rho_{\theta^k}$. Set:

$$\widetilde{b}=(\widetilde{b}_0,...,\widetilde{b}_{H-1}), \text{ where } \widetilde{b}_h=\frac{1}{M}\sum_{i=1}^M R_h(\tau_i)$$

$$b_h^{\theta} = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[R_h(\tau) \right]$$

$$g'(\theta, \tau, b) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(R_h(\tau) - b_h \right)$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Sample M trajectories, $\tau_1, \ldots, \tau_M \sim \rho_{\theta^k}$. Set: $\widetilde{b} = (\widetilde{b}_0, \ldots, \widetilde{b}_{H-1}), \text{ where } \widetilde{b}_h = \frac{1}{M} \sum_{i=1}^M R_h(\tau_i)$
 - 2. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Compute $g'(\theta^k, \tau, \widetilde{b})$

$$b_h^{\theta} = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[R_h(\tau) \right]$$

$$g'(\theta, \tau, b) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(R_h(\tau) - b_h \right)$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Sample M trajectories, $\tau_1, \ldots, \tau_M \sim \rho_{\theta^k}$. Set: $\widetilde{b} = (\widetilde{b}_0, \ldots, \widetilde{b}_{H-1}), \text{ where } \widetilde{b}_h = \frac{1}{M} \sum_{i=1}^M R_h(\tau_i)$
 - 2. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Compute $g'(\theta^k, \tau, \widetilde{b})$
 - 3. Update: $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau, \widetilde{b}_{k})$

$$V_h^{\pi}(s) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \,\middle|\, s_h = s\right] \qquad Q_h^{\pi}(s, a) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \,\middle|\, (s_h, a_h) = (s, a)\right]$$

$$V_h^{\pi}(s) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| s_h = s\right] \qquad Q_h^{\pi}(s, a) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| (s_h, a_h) = (s, a)\right]$$

The Advantage function is defined as:

$$A_h^{\pi}(s, a) = Q_h^{\pi}(s, a) - V_h^{\pi}(s)$$

$$V_h^{\pi}(s) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| s_h = s\right] \qquad Q_h^{\pi}(s, a) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| (s_h, a_h) = (s, a)\right]$$

The Advantage function is defined as:

$$A_h^{\pi}(s, a) = Q_h^{\pi}(s, a) - V_h^{\pi}(s)$$

We have that:

$$\mathbb{E}_{a \sim \pi(\cdot|s)} \left[A_h^{\pi}(s, a) \, \middle| \, s, h \right] = \sum_{a} \pi(a \, | \, s) A_h^{\pi}(s, a) =$$

$$V_h^{\pi}(s) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| s_h = s\right] \qquad Q_h^{\pi}(s, a) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| (s_h, a_h) = (s, a)\right]$$

The Advantage function is defined as:

$$A_h^{\pi}(s, a) = Q_h^{\pi}(s, a) - V_h^{\pi}(s)$$

We have that:

$$\mathbb{E}_{a \sim \pi(\cdot|s)} [A_h^{\pi}(s, a) \mid s, h] = \sum_{a} \pi(a \mid s) A_h^{\pi}(s, a) = ??$$

• What do we know about $A_h^{\pi^*}(s,a)? \le 0$ $\forall q \le 5$

$$V_h^{\pi}(s) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| s_h = s\right] \qquad Q_h^{\pi}(s, a) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| (s_h, a_h) = (s, a)\right]$$

The Advantage function is defined as:

$$A_h^{\pi}(s, a) = Q_h^{\pi}(s, a) - V_h^{\pi}(s)$$

We have that:

$$\mathbb{E}_{a \sim \pi(\cdot|s)} [A_h^{\pi}(s, a) \mid s, h] = \sum_{a} \pi(a \mid s) A_h^{\pi}(s, a) = ??$$

- What do we know about $A_h^{\pi^*}(s,a)$?
- For the discounted case, $A^{\pi}(s,a) = Q^{\pi}(s,a) V^{\pi}(s)$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right) \right]$$

$$\begin{split} \nabla_{\theta} J(\theta) &= \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \,|\, s_h) \Big(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \Big) \right] \\ &= \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \,|\, s_h) A_h^{\pi_{\theta}}(s_h, a_h) \right] \end{split}$$

$$\begin{split} \nabla_{\theta} J(\theta) &= \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \,|\, s_h) \Big(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \Big) \right] \\ &= \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \,|\, s_h) A_h^{\pi_{\theta}}(s_h, a_h) \right] \end{split}$$

• The second step follows by choosing $b_h(s) = V_h^{\pi}(s)$.

$$\begin{split} \nabla_{\theta} J(\theta) &= \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \,|\, s_h) \Big(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \Big) \right] \\ &= \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \,|\, s_h) A_h^{\pi_{\theta}}(s_h, a_h) \right] \end{split}$$

- The second step follows by choosing $b_h(s) = V_h^{\pi}(s)$.
- In practice, the most common approach is to use $b_h(s)$ that's an estimate of $V_h^{\pi}(s)$.

Let
$$g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(R_h(\tau) - b(s_h, h) \right)$$

Let
$$g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(R_h(\tau) - b(s_h, h) \right)$$

1. Initialize θ^0 , parameters: η^1, η^2, \dots

Let
$$g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \left(R_h(\tau) - b(s_h, h) \right)$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:

Let
$$g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \left(R_h(\tau) - b(s_h, h) \right)$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline b $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$

Let
$$g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \left(R_h(\tau) - b(s_h, h) \right)$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline b $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$
 - 2. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Compute $g'(\theta^k, \tau, \widetilde{b}())$

Let
$$g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \left(R_h(\tau) - b(s_h, h) \right)$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline b $b(s,h) \approx V_b^{\theta^k}(s)$
 - 2. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Compute $g'(\theta^k, \tau, \widetilde{b}())$
 - 3. Update: $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau, \widetilde{b}())$

Let
$$g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \left(R_h(\tau) - b(s_h, h) \right)$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline b $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$
 - 2. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Compute $g'(\theta^k, \tau, \widetilde{b}())$
 - 3. Update: $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau, \widetilde{b}())$

Note that regardless of our choice of \widetilde{b} , we still get unbiased gradient estimates.

1. Initialize θ^0 , parameters: η^1, η^2, \dots

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline b $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline b $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$
 - 2. Obtain M trajectories $\tau_1, \dots \tau_M \sim \rho_{\theta^k}$

Compute
$$g = \frac{1}{M} \sum_{m=1}^{M} g'(\theta^k, \tau_m, \widetilde{b}())$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline b $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$
 - 2. Obtain M trajectories $\tau_1, \dots \tau_M \sim \rho_{\theta^k}$

Compute
$$g = \frac{1}{M} \sum_{m=1}^{M} g'(\theta^k, \tau_m, \widetilde{b}())$$

3. Update: $\theta^{k+1} = \theta^k + \eta^k g$

Today

- Feedback from last lecture
- Recap
- Estimation: REINFORCE
 - Variance Reduction
- Other Gradient Expressions
- Baselines and Advantages
 - Examples

Policy Parameterizations

Recall that we consider parameterized policy $\pi_{\theta}(\cdot \mid s) \in \Delta(A), \forall s$

1. Softmax linear Policy

Feature vector $\phi(s,a) \in \mathbb{R}^d$, and parameter $\theta \in \mathbb{R}^d$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\mathsf{T}} \phi(s, a))}{\sum_{a'} \exp(\theta^{\mathsf{T}} \phi(s, a'))}$$

2. Neural Policy:

Neural network

$$f_{\theta}: S \times A \mapsto \mathbb{R}$$

$$\pi_{\theta}(a \mid s) = \frac{\exp(f_{\theta}(s, a))}{\sum_{a'} \exp(f_{\theta}(s, a'))}$$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top} \phi(s, a))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a'))}$$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\mathsf{T}} \phi(s, a))}{\sum_{a'} \exp(\theta^{\mathsf{T}} \phi(s, a'))}$$
 Two p

Two properties (see HW):

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\mathsf{T}} \phi(s, a))}{\sum_{a'} \exp(\theta^{\mathsf{T}} \phi(s, a'))} \cdot \mathbf{E}_{a'}$$

Two properties (see HW):

• More probable actions have features which align with θ . Precisely,

$$\pi_{\theta}(a \mid s) \ge \pi_{\theta}(a' \mid s)$$
 if and only if $\theta^{\top} \phi(s, a) \ge \theta^{\top} \phi(s, a')$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\mathsf{T}} \phi(s, a))}{\sum_{a'} \exp(\theta^{\mathsf{T}} \phi(s, a'))}$$

Two properties (see HW):

• More probable actions have features which align with θ . Precisely,

$$\pi_{\theta}(a \mid s) \ge \pi_{\theta}(a' \mid s)$$
 if and only if $\theta^{\top} \phi(s, a) \ge \theta^{\top} \phi(s, a')$

• The gradient of the log policy is:
$$\nabla_{\theta} \log(\pi_{\theta}(a \mid s)) = \phi(s, a) - \mathbb{E}_{a' \sim \pi_{\theta}(\cdot \mid s)}[\phi(s, a')]$$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\mathsf{T}} \phi(s, a))}{\sum_{a'} \exp(\theta^{\mathsf{T}} \phi(s, a'))}$$

Two properties (see HW):

• More probable actions have features which align with θ . Precisely,

$$\pi_{\theta}(a \mid s) \ge \pi_{\theta}(a' \mid s)$$
 if and only if $\theta^{\top} \phi(s, a) \ge \theta^{\top} \phi(s, a')$

The gradient of the log policy is:

$$\nabla_{\theta} \log(\pi_{\theta}(a \mid s)) = \phi(s, a) - \mathbb{E}_{a' \sim \pi_{\theta}(\cdot \mid s)}[\phi(s, a')]$$

We have:

$$\nabla_{\!\!\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim \rho_{\boldsymbol{\theta}}} \left[\sum_{h=0}^{H-1} Q_h^{\pi_{\boldsymbol{\theta}}}(s_h, a_h) \Big(\phi(s_h, a_h) - \mathbb{E}_{a' \sim \pi_{\boldsymbol{\theta}}(\cdot \mid s_h)} [\phi(s_h, a')] \Big) \right]$$

$$= \mathbb{E}_{\tau \sim \rho_{\boldsymbol{\theta}}} \left[\sum_{h=0}^{H-1} A_h^{\pi_{\boldsymbol{\theta}}}(s_h, a_h) \phi(s_h, a_h) \right]$$

Summary:

- 1. REINFORCE (a direct application of the likelihood ratio method)
- 2. Variance Reduction: with baselines

Attendance:

bit.ly/3RcTC9T

Feedback:

bit.ly/3RHtlxy

