

EVALUATION OF FLAWED COMPOSITE STRUCTURAL COMPONENTS UNDER STATIC AND CYCLIC LOADING

BY

19960222 065

T. R. PORTER

Boeing Aerospace Company
A Division of The Boeing Company
Seattle, Washington

DEPARTMENT OF DEFENSE

PLASTICS FECHNICAL EVALUATION CENTER ARRADCOM, DOVER, N. J. 07801

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center Contract NAS3-19709 Gordon T. Smith, Project Engineer

DTIC QUALITY INSPECTED 1

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

1. Report No. NASA CR-135403	2. Government Access	sion No.	3. Recipient's Catalo	og INO.			
4. Title and Subtitle			5. Report Date				
Evaluation of Flawed Comp	osite Structural Comp	onents Under	February 1				
Static and Cyclic Loading		onenda onder	6. Performing Organ	ization Code			
7. Author(s)			8. Performing Organi	zation Report No.			
T. R. Porter							
9. Performing Organization Name and Add	Iress		10. Work Unit No.				
Boeing Aerospace Company			11. Contract or Gran	t No.			
P.O. Box 3999		NAS 3-1970	9				
Seattle, washington 9012	Seattle, Washington 98124						
 Sponsoring Agency Name and Address National Aeronautics and 	Space Administration						
Lewis Research Center	Space Admititistration		14. Sponsoring Agend	cy Code			
21000 Brookpark Road							
Cleveland, Ohio 44135 15. Supplementary Notes							
Project Manager, Gordon 1 Materials and Structures	T. Smith						
NASA Lewis Research Cente							
Cleveland, Ohio 44135							
polar/hoop wound laminate. Defect full and half pen showing the effec	miantes investigated or pressure vessel lamina s investigated were for etration slits, and cots of the defect size	ate, and a typic ull and half pen ountersink holes and type on the	al engine fan blade etration circular h Results are pres e static fracture	oles, ented			
	performance, and res						
	ures are shown, descr						
	e propagation in comp			study			
	ne proof test levels		on procedure in				
composite structu	re subjected to cycli	c loading.					
			,				
.* 							
17. Key Words (Suggested by Author(s))	ACM ACM	18. Distribution Star	tement				
Composite Materials Graphite/Epoxy		Unclassif	ied - Unlimited				
Fracture Fatigue		1					
Proof Test							
Flaw		<u> </u>					
40.0	20 Conveient Classif (of this page!	21 No of Pages	22 Price*			
19. Security Classif. (of this report) Unclassified	20. Security Classif. (Unclassif		21. No. of Pages 265	22. Price*			

FOREWORD

This report summarizes the work accomplished on NASA Contract NAS3-19709, "Evaluation of Flawed Composite Structural Components Under Static and Cyclic Loading."

The program was sponsored by the National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio. Mr. G. T. Smith, NASA Lewis Research Center, was Project Manager.

Performance of this contract was under the direction of the Boeing Military Airplane Development (BMAD) organization of Boeing Aerospace Company. Dr. R. R. June, reporting to Mr. D. E. Strand who heads the Structures/Materials Technology organization, was the Program Leader. Mr. T. R. Porter was the Technical Leader, C. R. Speelmon coordinated specimen fabrication, C. C. Kissler provided testing support and L. R. Hause was responsible for ultrasonic inspection support.

TABLE OF CONTENTS

	<u>Page</u>
INTRODUCTION	1
SPECIMEN DESIGN AND MANUFACTURE	3
TEST PROCEDURES	11
STATIC FRACTURE TEST BEHAVIOR	15
CYCLIC LOAD BEHAVIOR	19
PROOF TEST PROCEDURES FOR COMPOSITE STRUCTURE	23
CONCLUSIONS	25
REFERENCES	27
APPENDIX A STATIC AND CYCLIC TEST DATA	83
APPENDIX B ULTRASONIC INSPECTION DATA	105
APPENDIX C STATIC TEST CRACK OPENING DISPLACEMENT RECORDS	189
APPENDIX D CYCLIC TEST CRACK OPENING DISPLACEMENT DATA	231
APPENDIX E PHOTOGRAPHS OF FAILED TEST SPECIMENS	239

LIST OF FIGURES

Figure	<u>Title</u>	Page
1	Structural Laminates Evaluated	. 31
2	Test Specimen Configuration	
3	Test Program Load Sequences	
4	Test Specimen Fabrication Sequence	
5	Stress ConcentrationConfigurations Tested	
6	Natural Defect Configurations Tested for Each Laminate Type	
7	Photomicrograph Showing Root of Ultrasonic Flaw	
8	Clip Gage Installation on Test Specimens Containing	
	Defects	. 37
9	Static Test Results for Laminate L1 Specimens with Holes	. 38
10	Static Test Results for Laminate L1 Specimens with Slits	
11	Static Test Results for Laminate L2 Specimens with Holes	. 40
12	Static Test Results for Laminate L2 Specimens with Slits	. 41
13	Static Test Results for Laminate L3 Specimens with Holes	. 42
14	Static Test Results for Laminate L3 Specimens with Slits	. 43
15	Crack Opening Displacement Records for Laminate L1	
	Specimens with Full-Penetration Hole	. 44
16	Crack Opening Displacement Records for Laminate L2	
	Specimens with Full-Penetration Hole	. 45
17	Crack Opening Displacement Records for Laminate L3	
	Specimens with Full-Penetration Hole	. 46
18	Comparison of Inherent Flaw Analysis and Static	
	Test Data	. 47
19	Comparison of Average Stress Analysis and Static	
	Test Data	. 48
20	Comparison of Point Stress Analysis and Static Test Data	. 49
21	Fatigue Data for Laminate L1 5/8 FP Hole	. 50
22	Fatigue Data for Laminate L1 5/8 FP Slit	
23	Fatigue Data for Laminate L1 3/8 FP Hole	

Figure	<u>Title</u>	Page
24	Fatigue Data for Laminate L1 3/8 FP Slit	. 51
25	Fatigue Data for Laminate L1 1/8 FP Hole	. 52
26	Fatigue Data for Laminate L1 1/8 FP Slit	. 52
27	Fatigue data for Laminate L1 5/8 HP Hole	. 53
28	Fatigue Data for Laminate L1 5/8 HP Slit	. 53
29	Fatigue Data for Laminate L1 1/8 HP Hole	. 54
30	Fatigue Data for Laminate L1 1/8 HP Slit	. 54
31	Fatigue Data for Laminate L1 1/8 CSK Hole	. 55
32	Fatigue Data for Laminate L1 1/8 CSK Hole	. 55
33	Fatigue Data for Laminate L1 No Initial Defect	. 56
34	Fatigue Data for Laminate L2 5/8 FP Hole	. 57
35	Fatigue Data for Laminate L2 5/8 FP Slit	. 57
36	Fatigue Data for Laminate L2 with Low Cure Pressure	
	and 5/8 FP Hole	. 58
37	Fatigue Data for Laminate L2 with Low Cure Pressure	
	and 5/8 CSK Hole	. 58
38	Fatigue Data for Laminate L2 1/8 FP Hole	. 59
39	Fatigue Data for Laminate L2 1/8 FP Slit	. 59
40	Fatigue Data for Laminate L2 5/8 HP Slit	. 60
41	Fatigue Data for Laminate L2 1/8 HP Slit	. 60
42	Fatigue Data for Laminate L2 Specimens with	
	No Initial Defect	61
43	Fatigue Data for Laminate L3 5/8 FP Hole	62
44	Fatigue Data for Laminate L3 5/8 FP Slit	62
45	Fatigue Data for Laminate L3 3/8 FP Hole	63
46	Fatigue Data for Laminate L3 3/8 FP Slit	63
47	Fatigue Data for Laminate L3 1/8 FP Hole	64
48	Fatigue Data for Laminate L3 1/8 FP Slit	64
49	Fatigue Data for Laminate L3 5/8 HP Slit	65
50	Fatigue Data for Laminate L3 3/8 HP Slit	65
51	Fatigue Data for Laminate L3 1/8 HP Slit	66
52	Fatigue Nata for Laminate 13 with No Initial Defect	66

<u>Figure</u>	<u>Title</u>	Page
53	Tension Compression Fatigue Data for Laminate L1,	
	No Initial Defect	. 67
54	Tension Compression Fatigue Data for Laminate L1,	
	Disbond Defect	. 67
55	Tension Compression Fatigue Data for Laminate L1,	
	1/8 FP Hole	. 68
56	Tension Compression Fatigue Data for Laminate L1,	
	5/8 FP Hole	. 68
57	Tension Compression Fatigue Data for Laminate L1,	
	5/8 HP Hole	. 69
58	Tension Compression Fatigue Data for Laminate L1,	
	5/8 CSK Hole	. 69
59	Tension Compression Fatigue Data for Laminate L1,	
	1/8 FP Slit	. 70
60	Tension Compression Fatigue Data for Laminate L1,	
	5/8 FP Slit	. 70
61	Tension Compression Fatigue Data for Laminate L1,	
	1/8 HP Slit	. 71
62	Tension Compression Fatigue Data for Laminate L1,	
	5/8 HP S1it	. 71
63	Relative Fatigue Behavior of Unnotched and Circular	
	Hole Flawed Specimens	
64	Comparison of Circular Disbond and No Initial Defects	, 72
65	Laminate L2 Fatigue Test Specimen5/8 FP Hole,	
	10° Cycles	. 73
66	Laminate L3 Fatigue Test Specimen5/8 FP Hole,	
	1.5 x 10 ⁶ Cycles	, 73
67	Ultrasonic Scan Records of Laminate L1 Specimen	
	Containing 5/8 HP Hole	. 74
68	Ultrasonic Scan Records of Laminate L1 Specimen	
	Containing 5/8 FP Hole	. 75
69	Ultrasonic Scan Records of Laminate L2 Specimen	
	5/8 FP Hole	76

7 0			
	<u>Figure</u>	<u>Title</u> <u>Page</u>	
	70	Ultrasonic Scan Record for Laminate L1 Tension-	
		Compression Fatigue Test Specimen 1/8 HP Slit 77	
	71	Ultrasonic Scan Record for Laminate L1 Tension-	
		Compression Fatigue Test Specimen 5/8 HP Hole 78	
	72	Potential Proof Test Method	
	73	Minimum Fatigue Behavior for Laminate L1 Test	
		Specimens Having Various Defects 80	
	74	Proof Stress Requirements for Life Assurance of	
		Laminate L1	
	75	Comparison of Proof Stress Requirements of Tested	
		Laminates of 10 ⁶ Cyclic Life 82	

LIST OF TABLES

Table		Page
1	Defect Type and Size Code	28
2	Static Test Matrix	. 28
3	Tension/Tension Load Test Matrix	29
4	Tension/Compression Cyclic Load Test Matrix	30

INTRODUCTION

The objective of this program was to derive data for evaluating the integrity of fiber composite components. In particular, the static and cyclic performance of three potential composite laminate designs containing inadvertent flaws and natural defects was investigated. The results address the following topics:

- 1) Effect of defect type and size on static fracture.
- 2) Effect of defect type and size on fatigue.
- 3) Descriptions of the effects of static and cyclic loadings on damage accumulation in material surrounding the various stress concentrations.
- 4) The effect of preloads on damage growth, static strength, and cyclic load behavior.
- 5) The viability of proof loading as a qualification method for advanced composite structure, and the development of approaches to application of proof testing.

Data were obtained on the effects of six different types of stress concentrations or flaws (full and half penetration circular holes, full and half penetration sharp slits, excessive voids, and delaminations) on the static strength and fatigue lives of three different graphite/epoxy composite materials. The test panels were fabricated from T-300/934 0.3 m (12 in) wide prepreg tape. Three different 20-ply laminates were tested. These included a typical angle ply laminate $((0/\pm45/0/90)_S)_2$, a laminate that is representative of polar/hoop wound pressure vessels $((0_3/\pm80)_2)_S$, and a laminate that is representative of fan blades for turbine propulsion systems $((0/\pm30/0*/-30/0)_2)_S$ The fan blade laminate contains four plies of S-glass (denoted by *) to improve the fracture performance. Both static and cyclic

tests were conducted on specimens containing one of three different sizes of each type of defect. Comparison specimens were preloaded to 90% of their ultimate load capacity, prior to static and cyclic testing, to assess the potential effects of proof loading. Intermittent nondestructive inspection was used to detect changes in defect geometry, and other structural changes occurring in the region immediately surrounding the defects. The test data were evaluated, using current composite fracture and fatigue analysis concepts. The effectiveness of using proof test procedures for quality assurance of composite components was evaluated.

The program was divided into six tasks. Task I defined the materials, layups, fabrication and processing steps, defect fabrication methods, and design and fabrication of test specimens. Tasks II, III, and IV consisted of static, tension/tension, and tension/compression cyclic testing, while Task V included data analysis and Task VI reporting.

The report contains a presentation of the specimen preparation, test procedures, static and cyclic test results, and a potential proof test method. All the test data, ultrasonic inspection data, crack opening displacement data, and photographs of the test specimens are included in the appendices.

SPECIMEN DESIGN AND MANUFACTURE

The test specimen materials, design, and fabrication procedures were selected to permit the generation of data for evaluation of flawed structural components. The components considered were a general purpose laminate structure, a polar/hoop wound pressure vessel, and a turbine engine fan blade.

Materials

The materials used for the program were Thornel T-300 graphite fiber, 901 S-glass fiber, and Fiberite 934 epoxy resin. Intermediate stiffness graphite/epoxy was selected as the basic material for the program, because of its wide usage, moderate cost, and established structural performance. The Thornel T-300 graphite fibers were selected since they can be supplied with a twist making them suitable for general purpose structure as well as filament winding pressure vessels. The fiberite 934 resin system satisfied the requirements of a general purpose epoxy and has a wide range of applications in aerospace structures. In the turbine engine fan blade layup 901 S-glass fiber plies were interspersed with the T-300 fiber plies to improve impact damage resistance of the laminate. This S-glass/graphite hybrid was selected on the basis of prior work (References 1 through 3) demonstrating significantly improved impact damage tolerance.

Layups and Stacking Sequences

Three different layups were used in the fabrication of test specimens, as shown in Figure 1. The first layup (L1) was a 20-ply balanced layup representative of a practical aerospace application. This layup is moderately directional, and would be used to support biaxial loads having about a 2:1 ratio. The second layup (L2) is representative of spacecraft pressure vessels, fabricated using both polar and hoop wraps. The third layup (L3) is representative of turbine fan blades or, possibly, tubular support struts. The S-glass fiber was included as zero degree plies.

The stacking sequence for layup L1 was selected based on symmetry and load transfer requirements. The stacking sequence was $((0/\pm45/0/90)_S)_2$ and has distributed (0) plies throughout the thickness.

The stacking sequence for layup L2 is representative of a typical pressure vessel layup. There are two basic approaches to polar/hoop wrapping of aerospace pressure vessels. If the hoop thickness is thin, all the polar wraps can be applied at once followed by all the hoop wraps. When the hoop thickness is too large to prevent slippage of the hoop wraps at the end of the cylinder, the polar and hoop wraps are interspersed. This would typically be accomplished by applying one revolution (2 plies) of polar wrap followed by three plies of hoop wrap. The resulting stacking sequence is (0/0/0/+80/-80). Hence, stacking sequence for laminate L2 was $((0/0/0/+80/-80)_2)_S$.

The stacking sequence for layup L3 was representative of those used in composite turbine engine blades. Two possible approaches are the dispersed ply approach and the core-shell approach. The dispersed ply approach was used because such layups are less subject to delamination due to foreign object impact. A representative stacking sequence then becomes $((0/+30/0*/-30/0)_2)_S$. The asterisks indicate the plies that are replaced with S-glass to increase fracture toughness of the laminate. Replacement of the middle ply results in an even distribution of the hybridizing material throughout the panel.

Test Specimen Configuration

The test specimen configuration is shown in Figure 2. The 76 mm (3.0 in) width was chosen to provide specimens large enought to preclude significant interaction between the stress concentration and stress-free specimen boundaries. The specimen was designed so that the stress concentration factor for the largest defect would be within five percent of the corresponding stress concentration factor for an infinitely wide plate. The test section was selected as twice the specimen width to ensure representative load distribution around the imposed defect. The zero degree laminate direction

corresponds to the axial direction of the specimen. Woven fiberglass grip tabs were bonded to the specimen.

Test Specimen Fabrication and Processing

Specimen fabrication and processing steps are illustrated in Figure 3. Laminates were laid up and cured in 81 cm (32 in) wide panels having lengths ranging up to 244 cm (100 in). Specimens for laminates L2 and L3 were cut from a single panel. Two panels were requred for L1 specimens. The fiberglass end tabs were bonded to the basic laminates. Finally, the panels were sawcut into specimen blanks. The panel fabrication steps were as follows:

- 1) Remove material from freezer and allow it to come to room temperature before unwrapping.
- 2) Unwrap material and cut tape to length. Use a template to cut angle plies to size. (Allow excess on all edges.)
- 3) Lay up plies.
- 4) Debulk after 4th, 8th, 12th, 16th, and 20th ply by holding the laminate under vacuum for 15 to 20 minutes.
- 5) Cover laminate with perforated FEP, one ply of 1581 fiberglass bleeder for each four plies of laminate, a layer of nonperforated FEP, a metal caul sheet, two layers of 1581 fiberglass breather, and a vacuum bag.
- 6) Cure laminate in an autoclave using the following cure cycle:
 - o Apply vacuum.
 - o Increase autoclave temperature so that laminate temperature increases at a rate of 0.5 to 2.80C (1 to 50F) per minute.

- o Hold 60 min at $(121^{\circ}C \pm 5.5^{\circ}C)$ $(250^{\circ}F \pm 20^{\circ}F)$.
- o Apply 689 kPa (100 psi) pressure 15 minutes after the laminate reaches temperature.
- o Increase laminate temperature to $177^{\circ}C \pm 5.5^{\circ}C$ (350°F $\pm 10^{\circ}F$) at a rate of 0.5 to 2.8°C (1 to 5°F) per minute.
- o Hold at temperature for 120 min ± 5 min., then cool under pressure.
- 7) Cut laminate panels to length of test specimens.
- 8) Lay up fiberglass/epoxy grips on the panel edges.
- 9) Vacuum bag and cure in an autoclave at 121° C (250° F).
- 10) Remove panels from autoclave and cut specimens from the panels.

Specimen Defect Geometry

A number of defects can occur in composite laminates due to either manufacturing, handling, or inservice damage. Defects that can be found in the basic laminates are:

- 1) Excessive porosity or voids due to contamination of the prepreg materials, geometrical restrictions that prevent the escape of volatiles during cure, or low curing pressure.
- 2) Wrinkled or nonaligned fibers due to improper layup, thickness changes, etc.
- 3) Resin-rich and resin-starved areas.
- 4) Impacted damaged surface areas, resulting in delaminations or broken fibers.

5) Scratched or gouged surfaces caused by mishandling during manufacture or inservice damage.

There are also a number of defects associated with the use of fasteners in composite structure. Some of these are:

- 1) Delaminations near the exit side of drilled holes due to inadequate backing or excessive drill pressure.
- 2) Overly deep countersinks.
- 3) Local damage due to excessive fastener torque.
- 4) Resin starved bearing surfaces, resulting from excessive heat from drilling.
- 5) Relocated holes where mislocated holes have been redrilled.

The potential effects of several of these defects were assessed by testing laminates containing defects simulated by stress concentrations. These defect types can be categorized as (1) sharp defects that break or cut filaments, (2) blunt defects that cut or break filaments, (3) delaminations, and (4) poor resin properties. The defect categories that include cut or broken filaments were represented by holes and sharp slits. Both full penetration (FP) and half penetration (HP) holes and slits were tested, as shown in Figure 4. The delaminations were produced by inducing a disbond into the laminate during cure. In addition to these stress concentrations, potential natural defects typical of the particular laminate application were also tested, as shown in Figure 5.

For laminate L1, specimens were tested that had holes containing overly deep countersinks. Deep countersinks are often unavoidable due to the lack of thickness of laminate skins. This condition was simulated by countersinking holes so that the countersink extended through the laminate thickness and left a sharp edge at the exit side of the hole.

For filament-wound pressure vessels, great care must be taken to provide the correct pressure during cure. Hence, it is appropriate to investigate the effects of low pressure on fracture and fatigue strength of laminate L2. Three variations of curing pressure were used, 345 kPa (50 psi), 172 kPa (25 psi), and 86 kPa (12.5 psi). The normal curing pressure is 689 kPa (100 psi).

For laminate L3, tests were conducted in a 20-ply layup that contained no S-glass. These tests were conducted to allow an evaluation of the effectiveness of the S-glass in increasing the fracture toughness of the laminates.

The hole and slit sizes selected for test were 3.18 mm (0.125 in), 9.52 mm (0.375 in), and 15.87 mm (0.625 in). These sizes cover the range of most practical fastener diameters. They are also at the threshold of detectable damage sizes for many common inspection procedures. The same sizes were used for the surface length of the half penetration defects, since when partial penetration damage exists in structure, the most obvious dimension is the length of the damage on the surface.

The type and size codes used to identify each of the defects are given in Table I.

All slits were perpendicular to the primary load carrying direction of each laminate. This means that they were perpendicular to the zero degree fibers. The zero degree fibers correspond to the hoop direction of a cylindrical filament-wound pressure vessel for laminate L3.

The slits were fabricated by means of ultrasonic machining. Ultrasonic machining is typically used to produce cuts of difficult configuration in nonconductive materials. Circular cutter tips were machined with a thickness of 0.06 inch and a sharp radius. The ultrasonic vibrations of the cutter produce a lapping action in an abrasive slurry that carries away the excess material as the cutter penetrates the part. The slit radius in the composite laminate was typically about 0.127 mm (0.005 in) with a smooth surface.

Figure 6 shows a typical partial penetration flaw that has been sectioned to illustrate the root geometry.

The full penetration circular holes were drilled, and the half penetration circular holes were end milled.

TEST PROCEDURES

The test program had the following objectives for each layup and defect:

- 1) Evaluate the initial static strength.
- 2) Establish maximum cyclic stresses for given cyclic lives.
- 3) Monitor the residual static tensile strength during cyclic loading.
- 4) Evaluate the effects of proof loading on cyclic and static behavior.

These objectives were satisfied by following the test load sequences shown in Figure 7. The numbers of test specimens and test conditions are defined in Tables II, III, and IV.

The first specimen in each series was static loaded to failure. The second specimen was preloaded to 90% of the failure load, unloaded, and then residual static loaded to failure. The remaining specimens were cyclic tested. However, one-half of these remaining specimens were statically preloaded to 90% of the first specimen failure load prior to cyclic test.

The cyclic testing included specimens that were "fatigue to failure" tests and "fatigue/residual static" tests. The maximum fatigue load was limited in most cases to 90% of the static preload (81% of the estimated static strength). This was established as an upper limit for use in structural applications. The cyclic loading in each test was limited to a maximum predetermined number, as defined in Tables III and IV. In the cyclic tests where failure did not occur after 10^3 , 10^5 , or 1.5×10^6 cycles as appropriate, the specimens were loaded to failure to obtain the residual static strength.

In this manner, fatigue life data were defined for stress levels up to 81% of the static strength, and cyclic lives to 1.5×10^6 cycles. For test specimen configurations that had fatigue behavior that exceeded these conditions (i.e., no fatigue failures at 81% of static strength and 1.5×10^6 cycles), these conditions were considered to be the minimum

performance. However, this minimum fatigue performance would exceed nearly all practical requirements.

Both the baseline static and the residual static test specimens were loaded to failure, using a loading rate of about 1100 N/s. This loading rate resulted in failure in about one minute after the onset of loading. This loading rate was also used for applying the preload.

The majority of the cyclic testing was performed using tension/tension loading (R = 0.05). Comparison cyclic testing was performed on laminate L1 test specimens with tension/compression loading. Two cyclic stress ratio values of R = -1.0 and R = -0.5 were included in these tests. The compression loaded test specimens were supported with two plates covering the specimen faces between the grips. The face plates were constructed of 13 mm (0.5 in) aluminum and faced with Teflon to minimize surface friction. The plates were clamped to the specimen using finger-tight bolts at the plate edge. A 51 mm (2.0 in) diameter central cutout in both plates was placed over the defect for instrumentation and inspection access, and to allow out of plane displacements around the defect. The edges of the specimen were fully supported since the specimen width is greater than the hole size. The 51 mm (2.0 in) diameter circular portion of the test specimen would be stable for panel buckling.

All flawed specimens were continuously instrumented throughout each test to detect both the time, at which and the manner in which, structural changes occur in the region immediately surrounding the defect. This was accomplished by continuous monitoring of the displacement across the stress concentrations using clip gages. Clip gages were spring-loaded against knife edges bonded to the specimen surface at the specimen centerline. For all but the 5/8 FP holes, the knife edges were located immediately above and below the stress concentration, as illustrated in Figure 8. For the test specimens containing the largest full penetration holes, knife edged supports were placed against the hole surfaces. In static tests, both clip gage and load cell were connected to an X-Y recorder to produce a recording of load versus clip gage

displacement. In the cyclic tests, the clip gage was connected to a strip chart recorder to obtain a recording of deflection amplitude versus cycles.

The fatigue test specimens were cycled at a maximum frequency of 10 Hz. The cyclic frequency was reduced to 1 Hz for the first cycles, and again when reading the instrumentation.

The tests were performed in room temperature laboratory air. These ambient conditions were nominally 20°C (70°F) and 40% relative humidity.

STATIC FRACTURE TEST BEHAVIOR

The static testing is discussed in this section. All test data are tabulated in Appendix A of this report. Figures 9 through 14 present static failure stresses and residual static stresses, after preloading, for all the test laminates and defect types.

The results for the half penetration slit tests show less effect of slit surface length on strength degradation. A comparison betwen the static (NPL) and residual static after preload (PL) specimens can also be made from these figures. The residual static results for the laminate L1 specimens show a slight increase over the NPL specimens. This trend was not consistent with the L2 and L3 laminate specimen results. In all three laminates, a hole and a slit of equal transverse size had essentially the same effect on static strength. It can also be seen from the results shown in Figure 9 that the full depth countersink hole has a strength that corresponds to a hole size equal to the average diamater.

The low cure pressures used in laminate L2 static specimens did not have an effect on static strength. This result is consistent with the conclusion that the static tension properties are fiber dominated in these layups, and are not influenced by the changes in matrix properties associated with the low curing pressures investigated. These data do not support the need for tight control of cure pressures in pressure vessels.

A comparison of the fracture stress of laminate L3 panels for the S-glass hybrid and the all-graphite layups is given in Figure 14. These results show an improvement in fracture stress for the hybrid laminate.

Examination of the failure faces and crack opening displacement (COD) records reveals a difference in the fracture behavior of the three laminates. Sample crack opening displacement records from testing of each of the three laminates with a full penetration hole are shown in Figures 15, 16, and 17. All the crack opening data records are included in Appendix C. The tests for one

specimen configuration are included on one figure. The first recording in each figure is from the static fracture test, followed by the preload record, the residual static fracture record, and the preloaded fatigue specimen records. Lamiate L1 had nearly a linear COD record to failure as shown in Figure 15. In some cases there is an indication of damage growth just prior to failure that is are manifested by sudden small increases in the crack opening. Laminate L1 failure faces showed transverse fracture with a relatively small amount of delamination. Laminate L2 (Figure 16) demonstrated a nonlinear load-COD relationship with an indication of some specimens having a larger amount of sudden damage growth prior to failure. The fracture face of laminate L2 specimens displayed delamination and splitting. The delaminations occur in the plane of ± 80 degree plies. The load-COD records for laminate L3 specimens (Figure 17) were initially linear, with sudden occurrences of damage growth prior to maximum load. There was a sudden drop in maximum load when the graphite fibers failed in the test panel. The test panel had not separated into two pieces, because all the glass fibers had not failed. There was extensive damage to the panel, however, in the form of fractures and delamination. Continued loading of the panel resulted in separation of the panel at a much lower load than that which caused the initial fracture of the graphite fibers. The failed test specimen has extensive delamination in the planes of the S-glass. Final separation of the panel resulted in fiber pull-out of the S-glass giving a "broom like" appearance. The COD records obtained during preloading of the fatigue specimens of each of the laminates followed the trends for the static fracture specimens. The linear behavior of the L1 laminates resulted in a single load/unload curve. The COD records show that laminates L2 and L3 experienced damage around the stress concentration due to the application of the preload.

The static data developed for the three laminates were examined for a consistent trend between failure stress and defect size. Figure 18 presents the static data for the full penetration holes and slits, as a function of defect size. As a comparison in this figure, the inherent flaw analysis prepared by Waddoups, et al (Reference 4), was applied to the data. In this analysis, an inherent flaw is assumed to control the static strength of the

undamaged laminate, and is assumed to exist at the edge of holes and slits. This condition results in the following expressions for fracture toughness parameters.

For slits (through center cracks)

$$K_c = \sigma_c [\pi(a+a_0)]^{\frac{1}{2}}$$

For holes

$$K_c = \sigma_c [\pi a_O]^{\frac{1}{2}} F(a_O/R)$$

For static unnotched strength

$$K_{C} = \sigma_{C} [\pi a_{O}]^{\frac{1}{2}}$$

where:

a₀ = inherent flaw size
O_c = fracture stress

 K_c = critical stress intensity factor

a = one-half slit length (for through center cracks)

R = hole radius

F() = Bowie function for cracks emanating from a hole

In preparing the curves presented in Figure 18, the data for the unnotched tests and the 15.8 mm (0.625 in) slits were utilized to evaluate the two dependent quantities a and K. As shown in the figure, constant values of the a and K provide trends that are quite good for laminates L1 and L3. For L2, the smallest damage size is more severe than predicted. Also, the inherent flaw size computed for laminate L2 is much larger than for other laminates. Similar analyses are presented in Figure 19 for the average stress failure criteria, and in Figure 20 for the point stress criteria. As shown, the three fracture prediction methods yield comparable results.

CYCLIC LOAD BEHAVIOR

Figures 21 through 52 present the tension/tension cyclic test data for the three laminates. The figures present the applied gross area stress as a function of the number of applied load cycles. Triangle symbols represent static fracture tests, and circles represent cyclic tests. The closed symbols indicate specimens that have been previously preloaded (PL). An arrow indicates a cyclic test that did not result in a fatigue failure.

A review of the data confirms the high resistance of all the laminates to tension/tension fatigue, which is characteristic of such composite laminates. Only the laminates L2 and L3, containing half penetration defects or no defect had a consistent tendency to develope fatigue failures in less than 1.5×10^6 cycles. This is illustrated by the data in Figures 40, 42, and 49 through 52. In the remaining cases, the majority of the cyclic tests were terminated at the targeted number of cycles.

A beneficial effect of preload was noted for the residual static fracture test for laminate L1. The application of a preload to a laminate L1 specimen resulted in a subsequent increase in the preloaded specimen residual static strength when compared to the nonpreloaded static test result. However, the fatigue data do not show such an effect from preloading.

Results of the laminate L1 tension/compression fatigue tests are presented in Figures 53 through 62. The data are presented as applied load cycles against the maximum tension load. Two tension/compression stress ratios R(R = min load/max load) were tested, (1) fully reversed, R = -1 and (2) R = -0.5. All test specimens were the general purpose 20-ply laminate L1. This laminate is T-300/934 graphite/epoxy with a $((0/\pm45/0/90)_S)_2$ stacking. On the figures, the circles represent the R = -1.0 fatigue data, the squares represent the R = -0.5 fatigue data, and the triangles represent the residual static tests of the specimens that did not fail during cycling. The closed symbols represent test specimens that had been preloaded (PL) to 90% of the estimated static strength prior to cyclic test.

In general, the test data indicate a significant influence of the compression loading on cyclic life. This was in contrast to the small effect found for the tension loads.

When comparing the effects of the various types of defects, it was noted that increasing the notch severity had a greater effect on static than on the fatigue properties. This is illustrated by the relative fatigue performance comparison between the specimens containing holes and the unnotched specimens presented in Figure 63. As shown, the relative fatigue strength of the notched specimens is greater than that of the unnotched specimens.

The test results of disbond defects developed in this program were found to be no different than for unnotched specimens, as illustrated in Figure 64.

A visual comparison of the test specimens after cyclic loadings illustrated the effect of layup on damage propagation. The test specimens constructed from laminate L1, $((0/\pm45/0/90)_S)_2$, showed only minimal or no visual damage. The appearance of damage was evidenced by a fine craze or split running parallel to the loading direction of the outer 0^0 plies. Laminate $L2((0_3/\pm80)_2)_S$ generally displayed greater splitting than found in laminate L1. The splits in laminate L2 penetrated the outer plies, and were up to several centimeters in length. An example of splitting in laminate L2 is shown in Figure 65 for a fatigue specimen with only 1,000 cycles. A photograph of a similar specimen from laminate L3 $((0/\pm30/0/-30/0)_2)_S$ in Figure 66 showed only minimal damage. Visual examinations of laminte L1 specimens displayed even less damage. It was concluded that the cyclic fatigue characteristics are influenced by the clustering or dispersion of the (0) plies in the laminate.

These visual observations were extended by the use of ultrasonic records. These records are traces of through transmission scans of the test specimens made with a Holosonics Model 200 unit. Both signal attenuation and a time gate were used, resulting in light areas for delaminations as well as for the edges and initial defects. The inspection records from a half penetration hole are presented in Figure 67. In this case delamination occurs, and is

shown to extend from the defect in a direction parallel to the loading, with the greatest extent of delamination progressing along the center line of the panel. A similar record for a full penetration hole is shown in Figure 68. As shown in this figure, there is no apparent damage extension from the defect, even though the number of load cycles applied is much greater. Records for a full penetration hole specimen from laminate L2 $((0_3/\pm 80)_2)_S$ are shown in Figure 69. The extent of delamination was greater for laminate L2 specimens than for L1.

Similar results were found for the tension/compression test data. Several examples are shown in Figures 70 and 71. Results for a half penetration slit are shown in Figure 70. For this type of defect, the damage propagates above and below the initial slit. The development of edge delaminations can also be seen in this specimen. The edge delaminations developed in specimens with small or no initial defects that were cycled at relatively high stress levels. Figure 71 presents the records for a specimen containing a half penetration hole where the delaminations above and below the defect can be seen. The delamination in this specimen was the result of only 1,000 fatigue cycles.

Appendix B of this report contains all the ultrasonic C-scan records. These records were made for a range of defect types and loading conditions.

The damage growth during cyclic loading was also monitored, using a crack opening displacement gage that was recorded during the cyclic test. These results from the cyclic testing identified the time of damage growth during the testing. Appendix D contains the results of these measurements.

PROOF TEST PROCEDURES FOR COMPOSITE STRUCTURE

The development of data for establishing proof loading techniques for composite structure was a major objective of this program. For illustration, typical requirements for proof loading are shown in Figure 72. A key element is whether the initial strength and the cyclic life or residual strength distribution are controlled in the same manner by an initial defect; i.e., is there a relationship between initial static strength and the fatigue performance.

A second requirement is that the application of the proof load either (1) does not have a detrimental effect on the subsequent structural performance, or (2) the effects on the fatigue behavior can be accurately assessed. The application of the preload had a beneficial effect on only the laminate L1 static test behavior. All other comparisons including the fatigue and the residual static strength after cyclic loading, did not reveal any difference between preloaded and non-preloaded test specimens. Therefore, the application of a proof load was not considered to affect the subsequent performance of the structure.

As a first step in the development of a proof test method, the cyclic test data developed for each flaw type were reviewed to determine the minimum cyclic life associated with given cyclic stress levels. It was recognized that the number of test data points developed for each specimen configuration was limited (six to eight specimens). However, there is a systematic variation in defect type and size in the test program. For this reason, the collective data demonstrate the consistent trend of a sharp transition between stress levels that produce early fatigue failures, and stress levels below which no failures occur. Because of this result, it is possible to construct, from the available data base, S/N curves that represent the maximum allowed cyclic stress for given cyclic lives. Since the maximum demonstrated cyclic stress was used when constructing the curves, further testing could result in higher allowable cyclic stresses. However, because of the curve shape and the

relatively high cyclic stress test results, there could be only a slight increase in the result.

As the next step in the evaluation of proof loading methods, potential relationships between initial static strength and cyclic behavior were investigated. The quantitative evaluation of such a potential relationship is an integral part of developing a useful proof test method. A number of techniques have been proposed (Reference 6 for example), using analytical models. Some were extensions of metallic fracture analysis procedures. Because of the large flaw type and flaw size data base developed in this program, a direct experimental approach was used. As a step in this approach the minimum cyclic data (S/N) curves found for each of the defects were defined. The initial static strength found for test specimens that contained the same defect geometry was used to identify the curves. As illustrated in Figure 73 for the laminate L1 data, these curves present a systematic relationship between fatigue performance and the initial static strength for all types of defects tested. This result is amplified in Figure 74 which defines the cyclic stress level for the selected cyclic lives of 1, 10^2 , 10^4 , and 10^6 as a function of the initial static strength.

Since a relationship exists between initial static strength and fatigue behavior, these curves then define the proof loading requirements to meet defined life and operating stress levels.

Similar analyses were performed for laminates L2 and L3. The results were normalized (to the undamaged static strength) for all laminates at 10^6 cycles, and are presented in Figure 75. As can be seen, laminates L1 and L3 display nearly identical behavior, while laminate L2 shows a slightly different response. However, the variation between all three is only slight, indicating that this result is applicable to a wide variety of composite laminates.

CONCLUSIONS

Three composite 20-ply laminates representative of general structure, pressure vessels and turbo engine fan blades were studied to develop data on their static and fatigue behavior. The test results presented apply specifically to the laminates and test conditions evaluated. However the trends define general behavior for a wide range of laminate configurations. Some general conclusions that are discussed in detail in the report are presented below:

- 1) Initial defects of the type that cut filaments can significantly reduce the static tension strength of composite structure.
- 2) Graphite fiber composite materials are relatively insensitive to tension/tension fatigue, and may be cycled at high percentages of their static strength. In tension/compression fatigue, however, these composite materials exhibit increased sensitivity.
- 3) Half penetration defects are less severe than full penetration defects with the same surface length.
- 4) There is little difference between the performance of laminates with circular holes or with sharp slits in the sizes tested.
- 5) For a wide range of flaw types, there is a relationship between initial static strength and cyclic life. This relationship was found for the three laminates tested, and was used to develop proof load requirements for the types of composites tested. It is expected that this approach will be applicable to other graphite fiber composites as well.
- 6) No detrimental effect on the subsequent fatigue or static strength was found as a result of the application of a proof load.

REFERENCES

- 1. Hoggatt, J. T. and Dobyns, A. L., "Evaluation of Hybrid Composites," Boeing contract with AFML, F33615-74-C-5074.
- 2. Friedrich, L. D. and Preston, J. L. Jr., "Impact Resistance of Fiber Composite Blades Used in Aircraft Turbine Engines," NASA CR-134052.
- 3. "Battle Damage Tolerant Wing Structure Development," Navy Contract N00019-75-C-0178 with The Boeing Aerospace Company, in progress.
- 4. Waddoups, M. E., Eisenmann, J. R., and Kamminski, B. E., "Microscopic Fracture Mechanics of Advanced Composite Materials," Journal of Composite Materials, Vol. 5, October 1971.
- 5. Whitney, J. M., and Nuismer, R. J., "Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations," Journal of Composite Materials, Vol. 8, July 1974.
- 6. Halpin, J. C., Jerina, K. L. and Johnson, T. E., "Characterization of Composites for the Purpose of Reliability Evaluation," Analysis of Test Methods for High Modulus Fibers and Composites, Air Force Materials Laboratory Presentation to Industry, February 1975.

Table 1. Defect Type and Size Code

Approximate diameter or surface length mm (in) type	3.18 (0.125)	9.52 (0.375)	15.9 (0.625)		
Full-penetration hole	1/8 FP hole	3/8 FP hole	5/8 FP hole		
Half-penetration hole	1/8 HP hole	3/8 HP hole	5/8 HP hole		
Full-penetration slit	1/8 FP slit	3/8 FP slit	5/8 FP slit		
Half-penetration slit	1/8 HP slit	3/8 HP slit	5/8 HP slit		
100-degree full-depth countersink hole	1/8 CSK hole	3/8 CSK hole	5/8 CSK hole		
Circular disbond defect between 15th and 16th plies	****	-	5/8 disbond		

Table 2. Static Test Matrix

			Number of tests														
	ult)		Circular holes							Sharp slits							
te	Laminate Proof load (% $\sigma_{\sf ult}$)		S ₁		s ₂		S	s ₃		s ₁		s ₂		3	Natural defects		
Laminate	Proof Ic	Unflawed Specimens	FP	HP	FP	HP	FP	НР	FP	HP	FP	НР	FP	НР	S ₁	s ₂	S ₃
	0	1	1	1	. 1	1	1	1	1	1	1	1	1	1	1	1	1
L ₁	90	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	0	1	1		1		1		1	1	1	1	1	1	1	1	1
L ₂	90	1	1		1	:	1		1	1	1	1	1	1	1	1	1
	0	1	1		1		1		1	1	1	1	1	1	1	1	1
L ₃	90	1	1		1		1		1	1	1	1	1	1	1	1	1

 S_1 , S_2 , S_3 depict defect sizes

FP = full penetration of thickness

HP = half penetration of thickness

Table 3. Tension/Tension Load Test Matrix

					Number of tests													
	t)				***************************************	Circula	r holes			Sharp slits								
e.	Laminate Proof load (%o _{ult}) Cyclic stress		þ	s	1	s	2	S	3	S	1	S	2	s	3		Natura defects	
Laminate	Proof lo	Cyclic stress	Unflawed	FP	HP	FP	НР	FP	HP	FP	HP	FP	HP	FP	НР	s ₁	s ₂	S ₃
	0	σ_1 σ_2 σ_3	1 1 1	1 1 1	1 1	1 1 1		1 1 1	1 1 1	1 1 1	1 1 1	1 1 1		1 1 1	1 1 1	1		1
L ₁	90	σ ₁ σ ₂ σ ₃	1 1 1	1 1 1	1 1 1	1 1 1		1 1 1	1 1 1	1 1 1	1 1 1	1 1 1		1 1 1	1 1 1	1		1
L ₂	0	σ ₁ σ ₃	1	1				1 1		1	1			1	1 1 1	1 1 1		1 1 1
-2	90	σ ₁	1	1 1				1 1		1	1			1	1	1		1
	0	$\frac{\sigma_1}{\sigma_3}$	1	1		1		1		1	1	1	1 1	1	1			
L3	90	$\frac{\sigma_1}{\sigma_3}$	1	1		1		1		1	1	1	1	1	1			

 $[\]sigma_1$, σ_2 , σ_3 = stress levels corresponding to cyclic lives of 500, 50,000, and 10^6 cycles, respectively

FP = full penetration HP = half penetration

Table 4. Tension/Compression Cyclic Load Test Matrix

										Num		f tests						"																																											
	(Sharp slits						Counter- sink holes	Disbond defect		efect																																													
	1 (5 UH)		Linflowed		Unflowed		Linflowed		Linflowed		Unflowed		Unflowed		Unflowed		Unflawed		Unflawed		Unflowed		Linflowed		Linflawed		Unflawed		S ₁ S ₃ S ₅		-	S ₁ FP	S ₁		3 P	S H	_	S ₃ FP	5/8	-in circ	cular																				
Laminate	Proof load	Cyclic stress	R	R -1.0	R -1.0	R -0.5	R -1.0	R -0.5		R -1.0	R -1.0	R	R	R -0.5	R -1.0	R -1.0	R -0.5	R -1.0	R +0.1																																										
		σ ₁	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1																																										
L ₁	0	<i>σ</i> 3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1																																										
	90	^σ 1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	0	1	0																																										

 $[\]sigma_1$, σ_3 = stress levels corresponding to cyclic lives of 500 and 10^6 cycles, respectively.

 S_1 , S_2 , S_3 depict different defect sizes

S₁, S₃ depict different defect sizes

FP = full penetration HP = half penetration

DESIGNATION	MATERIAL	LAYUP	APPLICATION
L1	THORNEL 300/FIBERITE 934 (T300/934)	[(0/±45/0/90) ₅] ₂	GENERAL STRUCTURE
L2	Т300/934	[(0 ₃ / [±] 80) ₂] _S	PRESSURE VESSELS
L3	T300/934 with 901-S	[(0/+ 30/0*/-30/0) ₂] _S	TURBINE ENGINE FAN BLADES OR SUPPORT STRUTS

^{*} PLIES THAT ARE REPLACED WITH S-glass

Figure 1. Structural Laminates Evaluated

Figure 2. Test Specimen Configuration

Figure 3. Test Program Load Sequences

Figure 4. Test Specimen Fabrication Sequence

Figure 5. Stress Concentration Configurations Tested

	The second secon
LAMINATE	DEFECT
L1	DEEP COUNTERSINK
L2	VOIDS
L3	NO HYBRID FIBERS

Figure 6. Natural Defect Configurations Tested for Each Laminate Type

Figure 7. Photomicrograph Showing Root of Ultrasonic Flaw

SECTION A-A FOR CIRCULAR HOLES

Figure 8. Clip Gage Installation on Test Specimens Containing Defects

Figure 9. Static Test Results for Laminate L1 Specimens With Holes

Figure 10. Static Test Results for Laminate L1 Specimens With Slits

Figure 11. Static Test Results for Laminate L2 Specimens With Holes

Figure 12. Static Test Data for Laminate L2 Specimens With Slits

Figure 13. Static Test Results for Laminate L3 Specimens With Holes

Figure 14. Static Test Results for Laminate L3 Specimens With Slits

Figure 15. Crack Opening Displacement Records for Laminate L1

Specimens With Full-Penetration Hole

Figure 16. Crack Opening Displacement Records for Laminate L2
Specimens With Full-Penetration Hole

Figure 17. Crack Opening Displacement Records for Laminate L3
Specimens With Full-Penetration Hole

• Inherent flaw theory (Ref. 4)

Holes

Slits

Test data

Figure 18. Comparison of Inherent Flaw Analysis and Static Test Data

Figure 19. Comparison of Average Stress Analysis and Static Test Data

Figure 20. Comparison of Point Stress Analysis and Static Test Data

TRANSVERSE NOTCH SIZE, 2a, mm (in)

Figure 21. Fatigue Data for Laminate L1 5/8 FP Hole

Figure 22. Fatigue Data for Laminate L1 5/8 FP Slit

Figure 23. Fatigue Data for Laminate L1 3/8 FP Hole

Figure 24. Fatigue Data for Laminate L1 3/8 FP Slit

Figure 25. Fatigue Data for Laminate L1 1/8 FP Hole

Figure 26. Fatigue Data for Laminate L1 1/8 FP Slit

Figure 27. Fatigue Data for Laminate L1 5/8 HP Hole

Figure 28. Fatigue Data for Laminate L1 5/8 HP Slit

Figure 29. Fatigue Data for Laminate L1 1/8 HP Hole

Figure 30. Fatigue Data for Laminate L1 1/8 HP Slit

Figure 31. Fatigue Data for Laminate L1 5/8 CSK Hole

Figure 32. Fatigue Data for Laminate L1 1/8 CSK Hole

Figure 33. Fatigue Data for Laminate L1 No Initial Defect

Figure 34. Fatigue Data for Laminate L2 5/8 FP Hole

Figure 35. Fatigue Data for Laminate L2 5/8 FP Slit

Figure 36. Fatigue Data for Laminate L2 With Low Cure Pressure and 5/8 FP Hole

Figure 37. Fatigue Data for Laminate L2 With Low Cure Pressure and 5/8 CSK Hole

Figure 38. Fatigue Data for Laminate L2 1/8 FP Hole

Figure 39. Fatigue Data for Laminate L2 1/8 FP Slit

Figure 40. Fatigue Data for Laminate L2 5/8 HP Slit

Figure 41. Fatigue Data for Laminate L2 1/8 HP Slit

Figure 42. Fatigue Data for Laminate L2 Specimens With No Initial Defect

Figure 43. Fatigue Data for Laminate L3 5/8 FP Hole

Figure 44. Fatigue Data for Laminate L3 5/8 FP Slit

Figure 45. Fatigue Data for Laminate L3 3/8 FP Hole

Figure 46. Fatigue Data for Laminate L3 3/8 FP Slit

Figure 47. Fatigue Data for Laminate L3 1/8 FP Hole

Figure 48. Fatigue Data for Laminate L3 1/8 FP Slit

Figure 49. Fatigue Data for Laminate L3 5/8 HP Slit

Figure 50. Fatigue Data for Laminate L3 3/8 HP Slit

Figure 51. Fatigue Data for Laminate L3 1/8 HP Slit

Figure 52. Fatigue Data for Laminate L3 With No Initial Defect

Figure 53. Tension Compression Fatigue Data for Laminate L1, No Initial Defect

Figure 54. Tension Compression Fatigue Data for Laminate L1, Disbond Defect

Figure 55. Tension Compression Fatigue Data for Laminate L1,1/8 FP Hole

Figure 56. Tension Compression Fatigue Data for Laminate L1,5/8 FP Hole

Figure 57. Tension Compression Fatigue Data for Laminate L1, 5/8 HP Hole

Figure 58. Tension Compression Fatigue Data for Laminate L1,5/8 CSK Hole

Figure 59. Tension Compression Fatigue Data for Laminate L1,1/8 FP Slit

Figure 60. Tension Compression Fatigue Data for Laminate L1, 5/8 FP Slit

Figure 61. Tension Compression Fatigue Data for Laminate L1, 1/8 HP Slit

Figure 62. Tension Compression Fatigue Data for Laminate L1, 5/8 HP Slit

Figure 63. Relative Fatigue Behavior of Unnotched and Circular Hole Flawed Specimens

Figure 64. Comparison of Circular Disbond and No Initial Defects

Figure 65. Laminate L2 Fatigue Test Specimen -5/8 FP Hole, 10^3 Cycles

Figure 66. Laminate L3 Fatigue Test Specimen -5/8 FP Hole, 1.5×10^6 Cycles

Ultrasonic Scan Records of Laminate L1 Specimen Containing 5/8 HP Hole

• Specimen L1-5-9

• 15.8-mm (0.625-in)-dia half-penetration hole

Ultrasonic Scan Records of Laminate L1 Specimen Containing 5/8 FP Hole Figure 68.

Specimen L2-1-32

• 15.8-mm (0.625-in)-dia full-penetration hole

Figure 69. Ultrasonic Scan Records of Laminate L2 Specimen Containing 5/8 FP Hole

BEFORE TEST

AFTER 114,600 CYCLES

- Specimen L1-10-27
- 3.18 mm (0.125-in) half-penetration slit

Figure 70. Ultrasonic Scan Record for Laminate L1 Tension-Compression Fatigue Test Specimen 1/8 HP Slit

BEFORE TEST

AFTER 10³ CYCLES

- Specimen L1-10-15
- 15.8-mm (0.625-in) half-penetration hole

Figure 71. Ultrasonic Scan Record for Laminate L1 Tension-Compression Fatigue
Test Specimen 5/8 HP Hole

Figure 72. Potential Proof Test Method

Minimum Fatigue Behavior for L1 Laminate Test Specimens Having Various Defects Figure 73.

Figure 74. Proof Stress Requirements for Life Assurance of Laminate L1

Figure 75. Comparison of Proof Stress Requirements of Tested Laminates at 10⁶ Cyclic Life

APPENDIX A

STATIC AND CYCLIC TEST DATA

This appendix contains the static and cyclic test data for all specimens. The reported data include specimen geometry, loadings and test parameters. The gross section stresses have been reported for all the critical test conditions.

,				1		† †	į		כיניור		1				3 f 3 f	1			,	
REMARKS				•					DVENSE								i	TE BULUARIE	Termony	
,	١								CVECTONS TRET									E DA I BASE	TETATION R	•
C VAL	STRESS	MNVm² (KSI)	787	(3,96.6)	(38.3)	(1,95)	265	299	1	296 (43.0)	243	239	(34.7)		(39.9)	285	767		1.	27.5
RESIDUAL STATIC	LOAD	N (16)	58,300	(13,100)	(14200)	(13300)	(04, 200)	(005.51)	!	71400	(00651)	39600	(13480)	(14000)	(001.51)	(15600)	63600	 		67,00
	CYCLES				1	, o	20	1.5×10 6	_	20	1.5×10	1		l 	1.5×10	r _o	~o	<u> </u>	2	61600
OADING	 Λ			1	(6.05								I 	80.					1>-
CYCLIC LOADING	MAX (2	MN/m² (KSI)		I	1	207 (1.05)	216	202 (29.3)	!	218	193 (28.0)			ľ	214	(31,7)				
	Λ <u>Χ</u> ξ	z 🤶		Non	NOME	(11800) (30.1)	52 500 216 (11'800) (31.3)	46,600 202	1	52500	46600) 3 2 4	}	Non	53,400	53,400	(12600)	53.400 (12.000)		
PRELOAD	STRESS	MN/m² (KSI)		220		l		1	228	218 (31.7)	31.6)				1	1	i	(32.0)		
PRE	LOAD	z 9	() } } 	(11 820)	0	0	0	12,200	52,300	22,280		53,600	(12,000)	0	0	0	53,600	53,600	53,600
TEST TEMP.		% g		ý —																-
TYPE			1445		SIMIC	כינבנור		-	PRELOAD		- ,	STATIC	DRELOAD	STATE	7457			PREMAD		>
FLAW		mm (INCH)			1	1	1					١	<u>. </u>	1		1		1	1	
LENGTH	BACK	mm (INCH)																		
FLAW U	FRONT	(FNCH)	F.8.1		(S, 623)	(6.1.7)	(15.8	(8.29)	8:5:	15.7 (4.3)	8.51		(29.2)	(8.63)	15.7	(5.7	(e 6 6 6 6 7	(5,5,7	76.3 (4.64)	6
FLAW			5 /8									5/8	FD SLT	:						
WIDTH	***	HIM (HINCH)	75.7	CH (186.2)	75.9	7.17 (3,089)	301)	75.6 (TFP.5)	75.8	75.8	75.4 (2.970)	ے او	(2.994)	(2.9.2)	76.5	25.6 (17.97)	76.4	15.9	15.6	9
THICK		(INCH)	3.03	(0,120)	(421.0)	3.28	3.18	3.05	3.05	3.18	3.20	3,28	(0.129)	(0,128)	3.25	3.22	3.12	3.20	8.18	2,27
LAYUP			A	<u>-</u>							-	<u>-</u> -								>
SPEC. NO.		. —		111111111111111111111111111111111111111	11-1-12	١١-5-١ه	5-5-17	H-8-H	11-5-8	4-5-17	11-5-7	6	1 3 1 1	LI -2 ·10	P-L1-7	01-7-10	11-11-11	21 - 1 - 1 - 1 - 1	E1-L-17	

REMARKS																				
	STRESS	MN/m ²	(KSI)	182);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	(A. i.)	317 (460)	32 6 (47.3)	354 (51.4)	319 (4 6.3)	323	354 (51.4)	(1.24)	247	299 (43.3)	335	345 (50.0)	327	341	3 63
RESIDUAL STATIC	LOAD	z	(16)	007.59	3	(00491)	17840 (v7 \$00)	00LB1	83200 (18100)	72900 (1690)	11 BHO (17 500)	85 you 19 200)	(16006)	60, 4	1 3no (16100)	(00L&))	(009 81) 00LZ8	(100 loo	80100 (18000)	00750
	CYCLES			:			°o	106,320	1.5.106	2114	ō,	1.5 10	1	1	ó	20	1.5 410	~ 0	٥,	1.5.10
SYCLIC LOADING	<u>«</u> ∆—			1		! 	Š.					A -	1	. 1	, o					
CYCLIC	MAX	MN/m ²	(KSI)				C. (34.8)	2.64	\$8900 ' 251 (13250) (36.4)	25.8°	245	245	1	:	257			126	34.5)	25
- 1	¥¥¥.		\dashv	NONE		NOME	58900	58400	58900 (1325c	58400	(13256)	(13250)	HONE	HOME	74100	(14 (00) (14 (00))	60900 (13700)	64 Fro		90909
PRELOAD	STRESS	MN/m ²	(KSI)	1	-	(354)				258 (37.4	245	(35.5)	1	265		1	i	(37.9)	272	
<u> </u>	LOAD	z	(16)	0		(13,30)	; c		<u>′</u>	58700	58700	58700	r	00117	(0	С	64100 (1440)	(00 + 10) (07 + 100)	001 19
TEST TEMP.		γ.	(P)	t	: :						 						,			-
TEST				STATIC		PRELOAD	حزد ۱۹ ح		-	PRELIDAD CYCH C			STATE	PRELOND	Cyclif			PREIDAD		-
FLAW		æ	(INCH)	,		,							1	1	•• • • • • • • • • • • • • • • • • • • •					
FLAW LENGTH	BACK	Ē	(INCH)										. <u></u>		·					
FLAW	FRONT	E	(INCH)	Ц		- (F	8.6 (376)	9.4	हिं हर्	33	P. (ere.)	25. (375)		9 4 E	F. (F.	3 &	£ (£	F.	- (i	1
FLAW				3/6	FP House							>	3 CO							-
WIDTH			(INCH)	75.8	(3.486)	15.6 2.915.5	76-1	11.3	- 1 P	2, E.S.	78.4	75.9	15.4	097	1.5 (30g)	7 68 8 68	303	76.5	15.8 (2.8)	18.0
THICK		į	(INCH)	3.07	(,,,	3.18	3.22	3.12	3.01	3.05	3.18	3.18	3.25	W. 18	3.25 2.25 (88)	217 (821)	9.14 (ES)	3.22	3,10	3.05
LAYUP				A	٠.			*	• • •						an communica					
SPEC.	<u> </u>					6-1-10	11-4-11	2) - 6-17	1-8-11	1 -4- 17	L1-5-3	11-5-5	į.		b -1-1	, 5 Y- U	9-1-1	8-6-17		6-0-11

,					·		******	4 11.08											p			
REMARKS	٨						-	Grave Bank +				•							GRID TAILING DUE	TO 1040		
RESIDUAL	STRESS	MN/m²	(KSI)	359	-	543	F. (6. 4)	1			(83.83)	387			(8.4.8)	401			(9.09)	1	406	452
RESI	7	z	(36)	P.5400	(19 200)	(21200)	وعدد دا		100 100	41600	(20,000)	(20802)	109 400	89 000	(000 02)	98300	100 500	43460			97000 (21800)	
	CYCLES] 			, ,	1	1. 5 × 10		8	201	1. 5 × 10 6		ı 	1	103	מ	<u> </u>	819662	-0°	ν _ο
CYCLIC LOADING	ζ-					1	ام ام		, ,				- <u>-</u> -			1	ó					
CYCLIC	MAX	MN/m ²	(KSI))			278		281		_	243	278			ı	308					299
	WAX		(18)	Nove		NONE	(8900)		38,400	68900	(0085)	(15 500)	68(100	NOW F		NO UR	72 000	000 21	12 000	(16200)	(16200)	72 000 (16 200)
PRELOAD	STRESS	MN/m²	(Y.)			~			I	318		(4) - (4)	311	1	320		1			l ;		332
	LOAD	z	io:	C	200	(17 300)	0	0	0	76900	11.7300	(005 [1)	76 900	0	8	(18000)	0	0	6) 8	(1800)	(18000)
TEST TEMP.		Å €		- L																		
TEST				STATE	PRELOND	STATIC	בארו ר -			PRELOND	}		-	2141.5	TRELOAD	Simil	יננייר טינייר		-	PRELORD) 15 5	-
FLAW		E S		1		\ 	ı 	1		J		,	1	1		1	ı ——	1	ı		1	
LENGTH	BACK	E S	#																			!
FLAWL	FRONT	GINCH)				(211)	3.0	300	3.0	3.0	30.00	(2115)	(217)			(81.3)	5 (g)	E (E)	86	. K. 18.	(E)	(1)
FLAW			Н~	FP HOVE								· · ·		8/ fi		-				:		
WIDTH		E G	Ħ⁻	(2,445)			771.144		16.1	75.9	75.9	(2.989)	(2,412)	(2.944)	75.9	(186.2)	(3.018)	15.9	78.3	75.8	(2.983)	(h&62)
THICK. NESS		(INCH)	н-		3,22	(121,)	(1,28)	(5:11)		3.25		(521,	(4211)	6.10	3.20	(126)	(0211)	(911)	3.18	3.15	(421)	((52))
LAYUP				A						-												-
SPEC. NO.				11-1-3	h-1-1		1-H-1	71-8-1	11-2-11	5-4-13	1-1-17		7-4-17	1-2-17	2-2-1	! .	 د ا	15 -9 -1-	و - -	7	9	8-9-17

REMARKS	\							CALL TEST TERNINAMON		FATIGUE FRUE							•			:
SUAL IC	STRESS	MN/m ²	(KSI)	1		369 (53.5)	394	1	354		462	354	404			430 (62 3)	346 (51.4)	434 (6 24)		41 6 (404)
RESIDUAL STATIC	LOAD	z	(16)	84800	(20200)	P.6. 300	902 000 (21 5m)	ì	63600 : 354 (18800) (51.2)	1	96 50c	64500 (19 cm)	98 Bco	103(900	106.300 3 (23900)	102 76.C (23 100)	CINESPO (21 200)		106780 (created)	(1) 600
	CYCLES				!		302.000	,o	^m 0	و۔ .	1 550 000	Ęō.	,	1	50100	101 410	60	1.5 × 10 6	r _o	, o
CYCLIC LOADING	æ Λ—				,		٠ <u>٠</u>						1	1	ζ.					
CYCLIC	MAX 2	MN/m2	(KSI)		[1	(43.61)	298	314 (45.5)	347	304	305	,		247					34.
-	V-WAX	Z Z	(16)		NON .	Nove	12900 (164∞)	32900	72.900 (16.400)	86900 (18200)	(8)491) 20)2L	72 to (00)	NONE	NC KE	840ec	28 BB (000)	99 em	99 coc (18 coc)	98,000	9
PRELOAD	STRESS	MN/m2	(KSI)	,		346			١	347 (503)	337	8338	1	4 L S	1	1	ļ	369	3.16 (SH.6)	318
9.	LOAD	z	(16)	() 	(18 200)	0	0	0	80900)	الهجور) (الهجون)	8,0,900.	o	(30002)	0	O	J	(30.00)	(zooce)	84166
TEST TEMP.		8	(F)	1-0	- -															
TEST						STATIC	באננור		-	PRELOND		-	STATIC	PRELEAD	כאכריל			PREICAD CYCLITY		
FLAW		E	(INCH)	 2.	(9,0)								1:51	}						
HETH	BACK	£	(INCH)	(-		>
FLAW LENGTH	FRONT	æ	(INCH)	F.S1	(,62)	15.7 (50.)	(29')	راج، (م	ري. (ج.)	[(23)	ارج) (جار)	[s]	15,7	7.9. (1.6.4)	15.2	18.5	ر د د کار	16.0 (16.3)	15.0	ر وفي
FLAW				8/8	HP MOLE							-	5/8			,				-
WIDTH		Ē	(INCH)	75.7	(086.2)	4.3r	الايم (3.008)	3.010)	74.4	15.9	75.6 (2.971)	75.9	16.1	ا ا ا ا ا	(3,0%)	10°C)	76.4	75.9	75,7	75.8
THICK		æ	=	3.07	(121)	3.10		3.20	3,12	7.07 (151,)	3.18	3.15	3.18	3.10	3.00	21.5	3.10	3.16		
LAYUP				Δ	ـــــــــــــــــــــــــــــــــــــ							A STATE OF THE STATE OF								-3
SPEC. NO.				7	61-1-17	-1-17	11-5-10	4-5-11	71-2-17	1-7-17	. 2 - 7-17	11-6-3	. 11-2-11	21-2-12	1-8-17	2-8-1	1-8-3	F8-14	5-8-17	9-8-1

Γ.	• ,				,:1		:	-		48 002'4				· .									
REMARKS										TA 100 H	TOT CYCHES		FATCOS TAILORE										-
, A.	STRESS	MN/m ²	(KSI)	9 44	(1.63)	456	8Lh	(F.3)	(2.07)	_1			i I	436	45.0	(9.99)	44°	38. (5.28)	514 (74.5)	507 (3.51)	(83.3)	\$31 (0.LL)	469
RESIDUAL STATIC	LOAD	z	(16)	115 700	(26000)	109 900 (247m)	111200	(32,600)	(27000)	005021	(8) (7)	(2000) (2000)		104100 (2340)	106 500	(05/52)	122 800	135 200	(27600)	121000		129000	112 100
	CYCLES				1	1	و : : : :		p ^o	wō.) Q × S · 1	32.545	~o		1	•	1.500.400	20	-0°	1.5×106	201	° 0
ADING	~				ı	1	Ç	<u>-</u>						-		•	•	o.					-
CYCLIC LOADING	MAX	STRESS MN/m ²	(KSI)	1		1	 	ر . بری از . بریز	(54.9)	387	384	(55.7)	400	343		1		379 (0.55)	361	362	364	355	361
	WAX	N N	(18)		Noon	Nova	93,800	(00) 12)	75890	93 800	93.800	(21.100)	93800	93.800 (21.100)		1,00X	Non	86300	86300 (19400)	86300	P6300	86300	84300
OAD	STRESS	MN/m ²	(KSI)		i	434	1		ı	ı	426	(61.8)	£44 £.£3	436		1	385	J	1	ı	405 (587)	394 (57.2)	401
PRELOAD	LOAD	z	(16)	()	(Cap.82)	. 0		0	0	₹ 8	(23400)	(23400)	(23,400)		0	(2) \$50)	0	0	0	45800 (21550)	95800 (21550)	95800
TEST TEMP.		, ¥	(^O F)	į																			· •
TEST				CTATIC		PRELOAD	כייניו	_			PRELIDING	לאכם ל				リエンち	PRELOAD	טישט			PREMOND		-
FLAW DEPTH		Ē	(INCH)	1:0	(96-)									>-	<u>:</u> ب	(90)							13p=
FLAW LENGTH	BACK	E E	(INCH)	0					-								<u> </u>		·				>
FLAW	FRONT	£	(INCH)		(211)	3.0	3.0	1	(211)	3.0	o in	(41)	9.65	3.0	ki Ci	(51.3)		(3,0)	3.0	3.0	3.0	3.0	W
FLAW		•		8/1	99. dr									-	1/8	HP SLIT							-
М ІРТН		E	(INCH)	76.5	(3.011)	(3.002)	75.9) / 	(3,03)	75.8	78.7	(2862)	(2.979)	75.3	75.9	(2,484)	75.4 (2.469)	75.9	(3,011)	76.3 (\$.00.3)	75.8	15.9	18.9
THICK		Ē	(INCH)	3.18	(:125)	3,15	3.15	2 2 2	(821,)	3.20	3.52	(נקי,)	3.10	3.18	25.5	(421.)	3.80	3.00	3.12	3.2	3.12	3.20	3.15
- LAYUP				A														····				-	>
SPEC. NO.				5-1-1		9-1-17	2-4-17		را - ۱ و	L-H-13	=) []	6-17-17	1.4-10	,	C - 7 - 17	h-2-17	11-7-11	11-6-11	71-0-1-	- L-17	Z-L-17	2-1-11

REMARKS					DOUGH ACETONO														
	٨				FAILURE DUR														
C AL	STRESS	MN/m ²	(KSI)	242	١	225 (7.15)	77.85	256	293 (42.5)	(37.2)	(3.55)	314			370 (F. 68)	332	371	1420	
RESIDUAL	LOAD	z	(16)	36000 (12,600)	١	52966	(13 80)	57406 (309 51)	69400	(3,60)	(14900)	0057L)	79 200 (11 800)	64 BC0 (15 700)	90300 (20300)	700 E	(000 or.)	96 500 (21700)	113000
	CYCLES					.0°	1 502900	<u>ه</u>	1.5 KIO	(,	eō.	و ن ۶ نده ن	103		1	ı
CYCLIC LOADING	<u>م</u>			 		٠			-		1			80.				1	1
CYCLIC	MAX (2	STRESS MN/m²	(KSI)	1		192 (27.8)	(5.23)	201	ات! (عانح)		1		١	274 (7.98.7)				1.	ı
	Ž Ž	ro v D	(6)	None	LODE	44900 (10100)	40500	44,900	40500 (910)	NONE	NOUS	NONK	Non	(1890)	(13900)	21400	(13,900)	NONE	2000
PRELOAD	STRESS	MN/m ²	(icsi	1	215	, ,	1	102	190	١	(32.1)	l	283			289			9.50
PRE	1040	2	(9)	0	49 800	0	0	(00101)	44900	0	(34 300 (12 200)	0	68400 (15500)	a	0	(15,500)	(8400)	0	87000
TEST		8	. G	R F															-
TEST				STATIL	PRELOAD	ولإصاد		SIATIC	· \	STATIL	PRELOND	SIPAIL	PRELOND	כילכגוב		Presono		STATIC	PRELOAD
FLAW		{	(INCH)	1	}	1	1	1	ı	1	1	ı	ı	ı	1	1	ı	s: (4	-
LENGTH	RACK	1	(INCH)	1 2	5.	(5,7)	r. 51	اد ٥	[.S.]	اه و ا	P. (18)	3.0	30	3.0	3.6	30	3.0		:
FLAWLE	FROMT	1	(INCH)	6.22	2 6	(06.)	9.22	22.9	22. (%)	ور روزو	و و و و و	10.9	10.7 (.42)	م م ن ن	1.0	10.2	F (F)	4.6	7.6
FLAW	·			8/5					-	3/8 (5/6		1 /8 CSK noug			,			3/8	
HLDIM		{	(INCH)	75.2		76.3	76.2	73.5	2,5					4	7.5	78.7	75.5		
THICK		1	PNCH	2.07	2.67	3.01	3.05	3.65	3.10			3.22	3.20	2.45	8.18	3.15	8. is 5	3.02	3,28
LAYUP				A															-
SPEC.	ì			2-2-17	7-3-4	11-8-11	71-8-12	21-8-13	F1-8-11	1-3-17	1-3-2	11-2-13	-2-11	1-8-11	8-11	1-8-19	8-17	11.2-7	, ,

			T		· §) · ·	,						 ·······					•
REMARKS					GHOTSES SWIFTCH	!					FAILURE					1-		
	٨				11 00 14 14			•			FATIGUE		 					
T N	STRESS	MN/m²	(Kal)	H19 /	1	لراه	(a.r)	520 (18.5)	(43.2)	642 (100.4)	i	645 (43.5)						
RESIDUAL STATIC	LOAD	z	(10)	(37 (98)		00109	(36 000)	(m. 82)	157 sto	169 900 (38 200)	. 1	149 900 (33 700)						
	CYCLES			. 1)	(m2 82)	ro		760 15	20						
ADING	<u>«</u>			. 1			1	80				-						
CYCLIC LOADING	MAX [2	MN/m ²	(Kall)					(0.85)	348	347	416	419 (1.00)	 					
	XVX		í l	NOWE		1 7 0 2	NONE	97400 ;	97400	47400	00414	97400 (21900)	 		***			
OAD	STRESS	MN/m²	icu	1	505	(2.27)	(৪-১৪)	🔾	1	i	رود م) دود ع)							
PRELOAD	LOAD	z §	(0)	0	020 021	(000 LZ)	(8)(2)	0	0	0	108190	108100	 -					
TEST TEMP.		Å ģ		L _L								>					,	
TEST				SINTIC	CREAMO	STATIL	7.845 	כאכנוו ל			CYCLIC	-	 					
FLAW		E S		0								<u>~</u>	 					
NGTH	BACK		Î.	0								→						
FLAW LENGTH	FRONT	E CHONE	11.50	0										,	,			
₹ ₹				Nove	,							>	-					:
WIDTH		mm (INCH)		15.6	ُ ف	15.6	(2.978)	(12.891)	75.4 (2862)	76.0	7.5.7 (979.5)	75.7						
THICK		ENCH)	т,	3.12					3.25	3.23	3.10	3.07						
LAYUP				A.								> -	 					
SPEC.	-			7-1-17	1-1-11	, -)	5-8-17	9-8-17	1-8-1J	F1-3-8	6-E-1				•		., =

	-		T			+	•						-					
REMARKS					• •		בייוייועד דיייוראני	PATIEUE PAILURE	FATIEUSE FAILUESE					STATIC COMPRESSIVE	FATTEUR FALURE		. :	TATA SECTION TO SECTIO
- NAL	STRESS	MN/m2	(KSI)	581	123	642 (43.1)	1	1	1	444 (12.4)	(73.8)		285 (41.3)	330	1.	329 (4.Lh)	(40.8)	,
RESIDUAL	LOAD	z	(16)	(28 40)	(36 200)	(31 000)	l	١,	1	83900 (25800)	566 600 108 100)		3 <u>;</u> 8 <u>8</u>	522 850 (Baroo)	١	1842 500 (16 200)	(13 800) (14 300)	١
	CYCLES			1	8	337700	5. 88	8	15 88	83,400	266600		8	225 BSD	7300	1842 5000	1000	22 800
CYCLIC LOADING	Œ				5.0-		<u>.</u>	0	329 (1.P.)	0	0.1		5.0	<i>i</i>	0:	-1.0	ð. 8	0
CYCLIC	MAX	STRESS MN/m ²	(KSI)	١	1,30 (6.5.6)		339	320		29B (43.2)	(3.12)		(30.1)	(31.2)	(30,2)	(21.2)		205
	MAX	o z	9	NONE	(21 400)	41.100	73 4m	13.50 (16.50)	(10 Soo)	(02451) (08800)	(00% OI)		(10480)	(08,01)	(10,480)	32,000		46600
PRELOAD	STRESS	MN/m2	(KSI)		ŀ	ł	1	. 1	448 (72.3)	· · · · · · · · · · · · · · · · · · ·	1		1	l 	! 		232 (133.7)	230
PRE	LOAD	z	(19)	0	0	C	O	c	(24 300)	· o	0		0	0	0	0	(11 \$000)	52500
TEST TEMP.		*	(PF)	Į.														-
TEST TYPE				STATIL	CKUIC			-	PRELIGHE CYCUL	Set T	_		כיבנינ			-	RRELOND C'ELL L	CHALLOND
FLAW		Ē	(iNCH)	o-														
LENGTH	BACK	Ē	(INCH)	0					->	u								
FLAW	FRONT	E	(INCH)	o -						3.0	3.0	ر ي ي		(5.7)	15.7	LS.1 (59.)	15.7 (••2)	15.7
FLAW				BONE					- -	1/8	-				<u>-</u>			-
WIDTH		Ē	(INCH)	75.7		75.5 (5.9.2)	75.5	75.6	75.C (2.976)	76.0	76.0)	. ((2,980)	2.27 (27.4.2)	76.0	75.7	75.4	96
THICK		Ē	(INCH)	2.67	2.84 (3.11.)	2.84	2.87	2.94	2.87	3.02	(.110)		(LII.)	2.87	(9) (9)	2.89	3.80	86
LAYUP				٥					-		- >-							-
SPEC.				1-01-17	2-01-17	-1-10-3	4-0:-0	1-10-5	4-0-11	11-10-7	11-10-8		-10-1	01-01-1	11-10-11	4 5	51-01-17	HI-01-11

				T	<u> </u>		-		 				····	. :				:	
REMARKS						下をこしいれて	TP. U. C.	戸ないる。	FAILURE		FAILURE			- :	TAILURE.	P. N. J. CA.P.	!	·	
REV	٠					ましら けんち	3000	F 7-1 (9.48)	おみむられ		PAT GUE				子の子	PATT IS UF			
CUAL	STRESS	} '	MN/m ²	(KSI)	486 (70.5)	ı	ı	ı	 1	303	1	-	780	(82.4)	,	1	643 (100.5)	553	_
RESIDUAL	LOAD	}	z	(18)	108 100	1	1	1	 ŀ	00051) 000000	ı		164000 (38000)	(28,000)	1	i	150300 (33800)	1500 300 117900 (26 500)	154300
	CYCLES				90	272,400	8	742,400	 % %	Se 088			000	15780	77	12 560	8	(Scooling	90
CYCLIC LOADING					2.0.5	9.0	<u>,</u>	0	 0.7	0.1	0.1.		5.0	.0.5	0.1	0	ö	- ġ	0
CYCLIC	MAX	STRESS	MN/m	(KSI)	360	354	331	244 (35.4)	 (1.67)	132	(1.67)		450 (5.29)	(144 (64.4)	438 (5.5)	331	449	(6 4 5) (6 4 3)	333
	WAX.	LOAD	z	(16)	80100	(0008)	73 400	(12,200)	 45 300 (00 to 10 t	28400	42300		97400 (21900)	47400	97 (20)	73 400	97 400	47 400	73,400
PRELOAD	STRESS	,	MN/m	(KSI)		ı	i	ı	ı	1	232 (33.6)		1	, 	1				140
34	LOAD	:	z į	(36)	0	0	0	0	 0	0	(11 900)		0	0	0	0	0	0	108100
TEST TEMP.		à	¥į	(F)	15-			-	_		-								-
TEST					כאברוך			-	1 -	-	CHOLL) - - -					-	RELOAD
FLAW			E .	(INCH)							•								
FLAW LENGTH	BACK		E	(INCH)	0	0	0	0	 18.7 (54)	رة درجا	. (S.)								
FLAW	FRONT	ļ	E 6	(INCH)	(9 (9 (9 (9 (9 (9 (9 (9 (9 (9 (9 (9 (9 ((,66	و وو دو	(99. (99.)	 	(.88)	22.6 (.84)								
FLAW					5/8 110 5/17			-	CSIC HOLE		-	, q	ρ					•	-
WIDTH		i	E TOTAL	(INCH)	75.5 5/ (279.2)	(2.893)	76.0	76.0 (2.84)	 76.0	76.5	75.6 (2.975)		75.5 (2.913)	75.7	(5.43)	75.3	(2.975)	(25.3)	75.5
THICK				(INCH)	2.94	۲ ۹. (۲۱۱.)	292	2.42	 (ni.)	2.89 (HIV)	8.6 (1.18)	,	7.81 (3)	2.89 (HII.)	2.94 (2116)	2.94	2.87 (511.)	2.82	26.2
LAYUP			_		7			-				,					 ;	. ,	-
SPEC. NO.					82-01-17	62-01-17	L-10-30	11-10-31	11-10-32	11-10-33	11-10-34		1-11-17	7-11-17	E-11-3	H-11-17	5-11-17	9-11-11	4-11-17

		•			<u> </u>					1		٠							
					• •				• • •	-			;	- ;	•				
	REMARKS	٨					,											FATICAVE FAILURE	
	JAN C	STRESS	MN/m² (KSI)	418	486	481 (0.01)	574 (83.2)	HA3 (7.1.5)	314	540 (18.4)	58.8 (85.3)	785	5	(81.6)	(88.1)	151	(87.2)	}	
	RESIDUAL	LOAD	x (9t	99,000	009 Lil	116 soo (26 200)	1.5X10 (35200)	118800 (25,02)	(00 + 12)	127 700 (28700)	139 200	136 600	(30700)	(30,00)	161500)	175300 (39 400)	145000 (32600)	1	
		CYCLES		,	ı	<u>~o</u>	1.5X10	 	1,5×10	ı			1	ι	" ō	1.5×106	~o	130000	
	ADING	æ			i	80			·	·	١			ı	ģ.			-	
	CYCLIC LOADING	MAX 2	MN/m² (KSI)	,	1	332	340	332	33.8	1			1	(467 (67.0)	473	457	475	
		MAX		None	NONE	80 100 (18000)	(18000)	60,100	(18 000)	Nour	HONE		KONE	NONE	110300	(24800)	110 300	110300 (24800)	
	Q¥0	STRESS	MN/m² (KSI)		369			370	375	ı	488) 	(3.6)	,	,	90° (3.8°)	528 (14.6)	
	PRELOAD	LOAD	ъ (ĝ	0	002.68	0	0	84 000 (20 005)	(2000)	0	(0x852)	(0 :	(009LZ)	0	Ó	(009 LZ)	(27 600)	
	TEST TEMP.	•	γ, (⁷ F)	7.4					->			-							
	TEST			STAMC	PRELIOND	2,127,0		CHELLIC CHELLIC		S. R. C.	PRELAND STRIT'S	j		STATIC	באנוור		CYCLIC	-	
	FLAW		Imm (INCH)		1	,	1	,	٠,	ı	1		I	1	1	•	1	ı	
	FLAW LENGTH	BACK	mm (INCH)		:	,						,, .	!	:					2 .
	FLAWI	FRONT	mm (HMCH)	L'\$1	15.7	\ \frac{2}{3}	(15.7)	(.s.)	15.7	9.6		ن ن ن	(21.)	3.0		3.0		8 (2) (2)	1,08.7
	FLAW			8/8						3/8 FP 40U	-	8/	(21.) BIOH 07						(03 /
	WIDTH		mm (BNCH)	76.4	7 2 2	76.1 (2.99b)	75.4 (2.969)	15.9	75.9	4.47	74.6	و ج	(3,636)	(2.931)	7.4	75.3	15.9	7.7	,
	THICK		mm BMCH)	3.10	3.18	3.18	3,12	3.18	3.12	3.18	4 1. (x21.)	3.52	(521)	3,25	3.12	3.10	3.18	3.05	L2.
	LAYUP			727														 -	LAWINATE GROSS
	7 20 20 20 20 20 20 20 20 20 20 20 20 20			12-1-21	12-1-8	08-1-21	12-1-21	25 -1- 27	12-1-31	2-1-5	12.1-6		5-1-77	4-1-27	12-1-26	12-1-15	42-1-28	12-1-27	
1				,															

					i	1	:				ı •		:	:	;	10			
REMARKS					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									•		דאיונית לאומנים באנוני הבעד בעוב דם מעבנים אם			
	STRESS	MN/m ²	(KSI)	LSH	432	(F. 7)	(20) (40)	524 (L ,L)	(1.5)		873	541	- ((88.2)	583	<u> </u>	(0/c) (0/c)	740 (101.4)	620
RESIDUAL	LOAD	z	(16)	109 000	(003 NZ)	•	119260				133.000	(020 P2)	0	(2) (wz 2)	(3150)	1	162.800 (36.600)	176 100	150300
	CYCLES					و بر بر	103	1.8×10	m _Q			1		1	1	521 640	8	(Sep (50	1003
CYCLIC LOADING	<u>~</u> Ω–			-		, v							-			, , ,			>
CYCLIC	MAX	STRESS MN/m ²	(KSI)	ļ.,			363						·			(5.5)			468
	X M M		(18)	i ve		Ψ	88100				LONE	HONE		None	NONE	112.500	(25 300)		
PRELOAD	STRESS	MN/m²	(KSI)			(5.19) (6.12)	. 1	98100 393	(\$100 401 (\$100 401			50 ((7.27) (0		۱ 	520	1.	1	(2.25)	
	POAD LOAD	z	(1 8)	0	98.00	(G 0	0	98100	98 100		0	119 600		٥	(28100)	0	0	(28100)	125000
TEST TEMP.		*	Ę.	R				- :								·			-
TEST				STATIC	PRELOAD	ליכור ליכור		PRELOND	} 	• 	STATIC	PRELOND) 12 5	PRELOND	ر ئ		CYCINC	 -
FLAW		E.	(INCH)	1		·					,` 	1							۱
/ LENGTH	BACK	Ē	(INCH)								·	are were re-					· · · ·		
FLAW	FRONT	Ē	(INCH)	I	(s.7)	(25.) - - - -	ا او روا است	و (او	(Sa)		4.4 (rs.)	4.4	ر ب س		3.3	3.3	3.0	3.3	(u)
FLAW				3/8	i 1						3/8	 -	<u> </u>	7					-
WIDTH		Ē	(INCH)	7 7	13.8	76.3		•	(2,415) (2,614))	73.6	75.1	7	(2.929)	74.5	15.9 (1887)		76.1	75.7
THICK. NESS		Ę	(INCH)	J	3.13	27 E	3.28	3.25	(5, 15)		3.12	2.18 (.125)	٠ - ١	(:123)	3,23	3.18	5.22 (151,)	2.12	0
₽				Q 27					_ 				ě						
1 0.0€				F1-1-27	81-1-27	14-1-27	12-1-42	£h−1: z1	44-1-27		51-1-27	H-1-27		6-1-21	01-1-50	£2-1-27	12.1-34	12-1-35	98-1-21

REMARKS					Cambac Secure	FAMILIE		1386 W.	- Levering G									
	Λ				יי איניסינקי	FORM SOF		Finance	P PANCE M									_
UAL	STRESS	MN/m ²	(KSI)	139	1	1	(8:8) (8:8)	i	į	187	8	(a.e.	(1.46)	738 (107.0)	845	838 ((21.5)	(123.1)	(8.7.1)
RESIDUAL STATIC	LOAD		(16)	(39(60)	,	1	(37200)	ı	ı	aplitude (165 ace	(04) [8]	(38.3m)	718800 (40200)		19790 (41500)	1.5 x10 (47100)	192 100 (45 200)
	CYCLES				:	267 210	, o	105 245	9	١	1	-,	1	1	S is	,00	1.5 710	1421
ADING	<u>α</u>				:	\$		-		1			1	1	n o			-
CYCLIC LOADING	MAX	STRESS MN/m ²	(KSI)		:	5.0)	527 (16.5)	\$2; (15,6)	348		ı		ı	,	517 (75.0)	5.47)	49z (1).4)	513
	-	_	(16)	S, LOS V.	HOME	(28 500) (15.0)	(5.9L) (00582)	126,800	124800 (28500)	Novie	4		Louis	Novie	(27300)	121 400 (TI300)	(-0E LZ)	12,1 400 (2.1 300)
OAD	STRESS	MN/m ²	(KSI)		618		,	580 (91.:)			90	(P.S. 4)	ı	557	1	1	547	571 121 400 (82.8) (21300)
PRELOAD	LOAD	z	(18)	0	36 Con	0	0	(31700)	_	0	406	(36400)	0	(30 350)	0	0	(36350)	(36350)
TEST		<u>*</u>	(OF)	齿														-
TEST	1			Theil	PREJORO	CKNC	·	CKELOFO .	.	SIATIC	PRELAMO	* Participation	STATE	Prelobo	2,17,5	>	CYCLIC	-
FLAW	 :	Ē	(INCH)	1.5				<u>.</u>	 			-		_Y			Y	-
NGTH	BACK	Ę	(INCH)	0														
FLAW LENGTH	FRONT	Ē	(INCH)	2 6	1 6	h (19:	8 (9) (9)	~(C)	(502)	ا م	5.61	(eh.)	3.0	3.3	3.0	3.0	3.0	3.0
FLAW	:			2/2 2/2 3/2						18 / 18 di			10 St. 17					3.006)
МІВТН		mm	(INCH)	75.	(6) (c)	76.5 (Pro. 4)	(30.30)	J. 6. C.	(2.5%)	75.0		(5. 8 %)	6.47)	15.1	76.4 (7.00.5)	76.3 (3.003)	2.55 (5.0.5)	(3.906)
THICK	3	E	=	8 5	3.57		P. 1.5	(52)		3,25	21.5	(\$ 21.)	3.15	3.22 (1.21)			3.22 (751.)	2.10
LAYUP				1					· •									-
SPEC.	j			ال 1- حر	CZ-1-Z7	ار دار دار دار دار دار دار دار دار دار د	74-1-27	TP-1-27	84-1-21	2-1-15	0111)	11-1-2-	71-1-27	12-1-27	82-1-27	15-1-27	04-1-27

				.	7	i 3"	· ·		· .	<u>: -</u>			<i>:</i>	£ 5.			• :	- 1
REMARKS					•	FATIL OF TALLER	•	FALLED THE USE CYCLIC	CATC NECONO TRUME	:		***		4	:	•	•	
	STRESS	MN/m²	(KSI)	720	818		849		1					-			•	
RESIDUAL STATIC	LOAD	z	(16)	20120			203100 849 (4590) (013)	,										
,	CYCLES				1	8 PZ Q	<u>8</u>		[]									
CYCLIC LOADING	<u>«</u>					0		·					-					
כאכרוכו	MAX 3	MN/m2	(KSI)	ł	,	9 6		138										
	\ ₩AX	N	(16)	Mone	None	156860	158 800		1									
PRELOAD	STRESS	MN/m ²	(KSI)	1	746 None		١	(39650) (134)	748									
P.R.	LOAD	z	(18)	0	176400 (089 68)	0	0	(39 650)	(39630)									
TEST TEMP.		×	(P.)	K.+														
TEST				STATI	DACADE OF DESCRIPTION	0,40,40		PRELOND										
FLAW		E	(INCH)	0														
FLAW LENGTH	BACK	E	(INCH)	0									,	,				
FLAW	FRONT	E	(INCH)	0														
FLAW				NONE														
WIDTH		E	(INCH)	74.5	74.5	7.67	76.1	[2] (18)	(5.45.5)									
THICK		e e	(INCH)	3.18	3.17	3.17	(424°)	(217)	3.10									
LAYUP				A ₂					→			T 78 11						
SPEC. NO.				1-1-27	2-1-27	12-1-21	72-1-27	12-1-23	12-1-27		,	**						

				PRESENTE		:	:						25 PS!)			PRESSURE	ر ام ام	1.		•	1	A PERCENT	:
REMARKS	^			LOW AUTOCIANE PRESSING					-		·		Low Avrociave Portune		>	Low Auth CLANE P	= 86 K·N/m= (125 ps.)				4	THE PARTY OF THE P	->-
	7.	MNAm ²	(KSI)	440	(8.59)	436	\$\$5 (\$\text{\$0.0})			(83.2)	454		الاردي) (جيم)	077	(8.89)	787	(200)	376 (S4.6)	405 (EQ 3)		(24.6)	1	177
RESIDUAL	200	3 2	z <u>6</u>	067256	(00 5 22)	104 100	(301 PZ)	Oot 201	(2.5 1.20)	(37,000)	109 400		(00622)	200	(000 £ 2)	112 500	(25300)	(20202)	(15200		(202 (2)	1	001-11
	07.07.0	CTCLES					1.5 × 10	£03	-	1.5 × 10	W ₀		1		1		l 	1	e 5	پر - -	5.5×10	1	ار الا
ADING		r				1	80.				-		4		1		t	1	So.	-			-
CYCLIC LOADING	Δ	STRESS	(KSI)			i	337	340	(44.3)	(48.4)	334		1		1		١	ł	261	(0.10)	(F.13)	1	5 4d
	۲		z ĝ		202	NONE	80500	00 200	(18100)	(18100)	80500	3	NOWE		NONE		None	N.F.K	008 17	(00/161)	(13 scc)	}	980
QVC		STRESS	KSI)		1	375	ı			(543)	372		١	į	(57.2)		ł	1	}		1	3(1)	
PRELOAD		COAD	z ĝ		0	89 400	0	0)	(20102)	89400	6010	0	0	(300,00)		0	0	ن 		υ	74360	66900
TEST TEMP.		ć	¥ £	,	<u>-</u>								٠	_	-								->-
TEST					SINIC	PRELOND	Cicur		-	CACLIC			5.19.16		STATIC	-	SIATI	SARIC	01010	_	hu-	PRELOAD	7
FLAW			(INCH)		1	ı	ı			,			1		1		1	!		٠	l	i	
ENGTH		BACK	(INCH)															ر در روز	Ls.1	(29')	(29:)	[5,]	ه چ <u>ن</u> و وج
FLAW LENGTH		FRONT	ENCH)	15.7	(29.)	[S.]	[s.7]	(عم) الجا	(291)	(5.7)	15.7	(29) -		_	(5,7)	ý	\sim			(265)	23 (42)	43.4	1 K
FLAW	:			8/8	TO HOLE								8 8	4		,	TO HOLE	8/8	_				<u></u>
WIDTH			(INCH)	15.2	(2.960)	13.1	75.2	(1965). 75.2	(1967)	75.3	2.8.	(2.961)	4.4	(2,948)	(74.3		(2,867)	75.2	75.2	(295.2)	75.3	75.2	(2.962)
THICK	3		ENCH)	3.00	(811)				(,124)	3.18	3.20	(921,)	3,10	(221)	3.12 (4.5)		(32)	8)	3.12	(821.)	3.15	ھ ج ب	(\$21,)
LAYUP	_				ר א						-												-
SPEC.					1-2-27	2.2.21	, ,) į	h-2-21	5-2-27		9-7-7-	12-3-1		2-8-2		L-4-27	12-4-2		2-4-3	4-4-21	•	2.4.7

	REMARKS					בשורמשב בחשיותר שמבחשם					,	•							•	
	JAE	STRESS	MN/m ²	(KSI)	436	ı I	(8:1)	425	436 (63.2)	410		348 (57.72)	376	(0.09)	370	385 (55.9)	423 (61.4)	رن غ	(48.5)	279
	RESIDUAL STATIC	LOAD	z	9	110 800	1	126.60°	(003 50)	104000	(00,100)		48 Sec (22 ISO)	95400	(23 (co)	15 200 (71 1m)	97 000	105900 (229co)	91	~~~	(13450)
		CYCLES			١	1	" <u>o</u>	1,51,06	1.5X10	⁶ 0		1	١	1.394700	2 0	1 500 281	 	-	'	ι
	DADING	<u>~</u> Λ			,	ı	o. N			-			1	N _			-		ı	!
	CYCLIC LOADING	MAX 2	MN/m ²	(KSI)	,	1	315	315	308	303 (44.0)		1		323	311	318 (46.1)	320		t	1
		Λ Δ	Z z	(16)	HONE	News	(cc. 50)	76900 (17300)	36900 √∞571)	76900 (1300)		NONE	NOWE	80100 (18000)	80100 (18000)	(18000)	80100 (18000)		None	274 NOWE
	PRELOAD	STRESS	MN/m²	(KSI)	,	34; (56.7)	1	1	341 (49.5)	336		1	350 (80.8)	ι	1	352	357 (Si.8)		1	(39.8)
	PREI	σ¥ο٦	z	(18)	0	34700	0	0	85400 (19200)	85 400 (19200)		0	88700 (19450)	0	0	88700 (19950)	891900)		0	(13770) (39.8) NO
	TEST TEMP.		¥	(^O F)	18. 17.			<u></u>		-	-		. —				-			
	TEST				JAMT1C.	PRELOAD	ליכנונ		PRELOND			STRIC	PRELIGAO	טינטיט	-	PRELOAD	>		STATIC	PRELDIND
	FLAW		Ē	(INCH)	,	l 				<i>i</i>		,	ļ	t 	· ·	(,		1.	
	FLAW LENGTH	BACK		(INCH)																
	F.CAW	FRONT	Ē	(INCH)	(162)	(562)	ربي) (ادي)	ر.ها (۱۵۵۰)	15.7 (50.)	(63)		روم)	('S)	15,7 (50,)	ر <mark>ده</mark> ر)	(29,)	(عور)	ķ		(291) A
	FLAW	-			5/8 FP WOLE					-		10 PT						5/8	FO SLIT	→ (*)
	WIDTH		£	(INCH)	75.2	15.1	75.1	75.1	1.2.7	(15.957)	i	(12.9zl)	75.0	15.2	15.1	15.1	75.2	¥.	(2.951) FO	(12.954)
i	THICK.		æ	(INCH)	3.38	3.23	3.25	3.25	3.33	(133)		3.30	3.38	3.30	3.43	3.35	3.33		(F11)	2.97 (F1).
	LAYUP				13							A G					<u> </u>	Ē	13-2-11 1-3-	<u>~</u>
	SPEC.				7-1-8-	13-1-8	3-1-35	7-1-27	3-1-37	85-1-67		3-1-17	13-1-18	13-1-55	3-1-51	3-1-57	13-1-28	3	3-2-2	2-2-21

REMARKS						,		PALLUES DURING CYCLL.										
. Jar	STRESS	MN/m²		14c	164	2 7 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	لاله) (د.ور)	น้ำ	493 (71.5)		(65,4)	455	140	437 (1,33.4)	450	443		
RESIDUAL STATIC	LOAD	z (9		13 400 446.	119 000 464	-	116 500 473	1	00 LZ		(25750)	114 800	1.338 x10 (24.00)	(36, 400	110700 (249m)	111600 (25 100)		
	CYCLES				.1	ا.دمرة	201	764 500	m ₀		1	1	1.338410	. 10 ³	1.5 × 10 6	i	_	
CYCLIC LOADING	<u>«</u> /			i	·	, 0-		4	-		ı	1	0			-		
CYCLIC	MAX [2	MN/m²		١	ì.	370 (53.6)					1		93000 394	372				
	MAX			NONE	Noor	9160°	91600		91600 (10600)		NONE	NOUE	93000)	93em				
PRELOAD	STRESS	MN/m ²		i.	2 E		ı	412	22 (38) (482)		1 _	(53200); (59.4)			103 200 419 (00.8)	105100 410 (25715) (59.4)		an radioare
A.	LOAD	z ĝ		0	005 901	0	0	102100	102 100 (22 9.30)		0	ους ξοι. (σεςξε)	0	0	(03 20p)	105100 (25 175		
TEST TEMP.	_	ዓ <u>ኖ</u>		\$							-1							
TEST				STATIC	PRE LOND	כאבו גר	-	PRELIDAD			SANK	PRELOAD	כאכרור	-	PRELOAD			
FLAW DEPTH		(INCH)		ŧ	1						1)			J.			
LENGTH	BACK	mm (INCH)				· ··				- •	_							
FLAW	FRONT	EMCH)		ر ع د ع	9 6	9.4	- 6-4- (-3-1)	هر ع ر خ	(.37)		(181)	ر رء 86 رء 88	र हि		£(%)	(36)		
FLAW				3/8 FP HOLE						?								
WIDTH	-	(INCH)	H	75.2	75.3		75.2 (2.759)		15.1	ý			74.4	74.6				
THICK		(INCH)	Ħ١	3.38	3.40	3.30	3.28	3.30	3.35)			(35)	3.18	3.35	3.28	3.35		
LAYUP			-	Б					>		د ارع ارع					→		
SPEC.				13.1.6	13.1-5	13-1-29	13-1-30	13-1-33	h&-1-£1		13-1-13	113-1-14	Th-1-67	84-1-87	6h-1-87	05-1-51		

REMARKS	1						TAILURE														
	- ∧	/	· , .			*** ****	FATIGUS							***************************************			********	 -		•	
RESIDUAL	2	STRESS	MN/m² (KSI)	Ц.		_		583 (84.8)	4			(2,2)			543			2,5	(2,21)	481	
RES	STA	LOAD	z ()	150 333	(6, 3)	(83 (88)	1	(32.30)	0017H1	146800 (32 mg)		(33 2.80)	146300	148 100	133 400	004 171	145480 (32700)	90,7	(25700)	(24100)	
		CYCLES			1	ŧ	40	" o	123 2 252	50		ł	ı	1543700	603	•	m _O			١	×-1-
OADING	/	œ			l	ı	ò-					ı	ı	19						,	13-
CYCLIC LOADING	Ŀ	MAX	MN/m²		ı	1	487	488 (10.8)	(4.97)	492 (71.3)				477	484	484	(9.89)		1	1	3
		MAX	z (9	2401	2	NOWE	(001.12)	(00 t (2)	(27 400)	(27400)		10 US	70135	(27,000)					Nove	Novie	2
OAD	72	STRESS	MN/m ² (KSI)		1	(3,7)	i	4	543			(530 (4,47)		1	538			ı	462	S- GLA SS
PRELOAD		LOAD	z (91)		0	30 500)	0	0	(30500)	30508		0	30 000		0	33 400			0 '	(23100)	OF 1
TEST	TEMP.		A (f)	Į.	-	Y				>							-	-		• ·	0 714
TEST	Ye				JE45	PRELOND	G'CU'C -		CYCLIC	 ,		STATIC	PREIOND	ילביר -		CYCLIC CYCLIC			7	PRECORD	
FLAW	DEPTH H		(INCH)			1			¥			1	1			<u> </u>			 I		٠,
HZ		BACK	HOCH)																		-30/0/-
FLAW LENGTH		FRONT	(INCH)	3.0	(51.)	3.0	3.0	3.0	3.0	30	. ((۲۱)	3.3	3.3	3.0	8 % (F)	(21-)	8,	(20)	- 14	·
FLAW				8	BIOT da					-	4	Ŀ					-	00	FP Sir	7	10/05+/0)]
МІВТН			(INCH)	H	4 (7862)	75.3	75.1	75.0	15.1	75.1		7 (729.2)	15.0	15.1	75.0	75.2 (3,96,1)	75.2	75.2		(6,945)	<u>ل</u>
THICK	S S		(INCH)	3.35		~~	3.32	3.32								3.30		26.2			2
L ¥vu				٥						ັ≀ >		ے اے					- <u>·</u>	<u>Q</u>		-	LAN. KATE
3. 3.				12.1.2		13-1-4	13-1-25	42-1-87	13-1-57	13-1-57	. •	1 6-1-27	13-1-10	13-1-29	13-1-40	13-1-61	24-1-87		7-2-61	n l	A CAN

RKS .				DORING PREUMO	これといれば		TEALLUR .		-						
REMARKS	١			FARURE DORY	FATICOTE FA		FATIGOE FEA					•			
UAL C	STRESS	MN/m² (KSI)	(PL)		١	702	1	(46.4)	5.87 (8.87)	57.8 (83.8)					
RESIDUAL STATIC	LOAD	z ê	2000 (80)	} 1	l	(40300)	1	165900	(20012)	27,700 (00182)					
	CYCLES		,	ı	259 986	, o	458 516	1057	ļ 	j					
ADING	ac A			1	ő A				1	1					
CYCLIC LOADING	MAX F	MN/m ² (KSI)	,	1	508	493 (71.5)	504	504	,	1					
	X¥X V	z 🤶	Bowe	Novic	(1259eb	(28300)	000 221 (98380)	12590D	7702	NONE					
PRELOAD	STRESS [3	MN/m² (KSI)	1	63.2			560	5.59 (81.1)		493					
PREL	LOAD	z 🗑		002281	0	0	139700	(31420)	0	(005 kg)		- 			
TEST TEMP.		9K (9F)	<u>ئ</u>							 -					
TEST			STAIR	PRELOND	これに		PRELOND	,	PRELOAD	PRELOND					
FLAW DEPTH		(INCH)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u>}</u>					1.8 (.06)						
ENGTH	BACK	ENCH)	0	0	0	0	0	0	0	0		 -		· <u> </u>	
FLAW LENGTH	FRONT	(INCH)	9 3	يا وا او او	() () () () () () () () () ()	.s. 3	7) (E (E (E (E (E)	ه <i>در</i> (رهز)	15.7	· ·	,,			ļ.
FLA¥			5/8					- y	5/8 HP 5LIT				:		
WIDTH		E H	75,0			78.1	0.25 (45.5)	75,0 (2,958)	0.27	0.27					
THICK		ENCH)	3.8	3.28	3.80 (5.130)	340	3.33	3.33	7.87 (ru.)	2,98					
LAYU			[3 [3					>	A-						
SPEC.			61-5	13-1-20	PS-1-51	13-1-60	13-1-61	-3 - 1 - 62	13.2-6	13-2-7			•	:	

						j J		لِو	•	•			/ }		Ņ			
REMARKS						一年 といれて		というので					TANLURE		FAILURE			
E	٨					戸みて らった		FATIOUS					FATI GUE		アスナンらいまし			•
CAL	STRESS	MN/m²	(Kal)	(1081)	696 (100.9)	. 1	696 (1∞.9)	1	454	151	(1,001)	(2,801)	ı	(F.E.)	1	761		
RESIDUAL	LOAD	z į	(310)	1800 400 (40 SSD)	167000	l.	(40 00)		(25 700)	190 400	(45800)	(40700)	1	(41 3∞)	1	(43 (00)	na kulomba maya na .	-
	CYCLES			l i	(875 54Z	"ō	1 00	201	(١	ררי, ר	6 0	280 400	103		
OADING	 Λ					۱ <u>۷</u> –			-				ب و م					
CYCLIC LOADING	MAX (2)	MN/m²	(KS)			545 (1.45)	529 (1.31)					•	(920)	(40.0)		(88.5)		1
	¥ A_	z	ê)	Nous	Howe	135200	(30 400)	(30 400)	9300p (2090)	Source Contraction		NONE	(34600)	153900 (24600)	153 900	(34 PO)		,
PRELOAD	STRESS	MN/m²	(KSI)	1	6,16 (98.1)	ı	1	(9.88)	ı			705 (102.3)	1	(695 (180.8)	679 (48.5)		
PRE	LOAD	z §	(6)	0	(36500)	0	0	(33 800)	0	C	į	(38500)	0	0	711200 (385m)	(38500)		
TEST TEMP.		ئ ئا لا		包												-		
TEST				SIATIC	PRELOND SIMING	באברוכ		PETONO CONTRACT	7	- K		STATIC	ר ילפדו נ		בילבו ל			
FLAW		E	(INCII)) (95)	ر باه ر ر باه ر				—	15.	(90)	ر (عور) (اولا)				-		
ENGTH	BACK	E		0	0	0	0	0		0		0	0	0	0	0		
FLAW LENGTH	FRONT	E S	(Laca)	6. 9. 6. 9.	4.4 (.39)	10 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	(5k)	10.2 (0 ¹)	9.4	0 (i	3	0°2)	3.0 (2.2)	3.6	0.5	2.0 (n.)) 5.	
FLAW TYPE				3/8				-	3/8	a	r オー 主					-		
HLOW		EE ST		75.1	75.0	(12.951)	1.27	75.1	75.1 378 (2.958) FP 3.17	15.1		75,2 (2 A b2)	2.27 (2.940)		3 ¥ ((1,8,5)			
THICK		ma d	Line	3.38	3,20	3.30			3.35	& .	(1,133)	55.8 (15',)	3.22	3.30	3.30	3.38		
LAYUP				A					-	A						-		
SPEC.				3-1-15	13-1-16	13.1.51	13-1-52	13-1-53	13-1-54	13-1-1)		-3-1-12	13-1-43	74-1-57	13-1-45	13.1-46		

					•	1		Δ		· · · · · · · · · · · · · · · · · · ·			19 sli	(3+3+ -}	* *			٦
	REMARKS	\				TANJAR HANGE		SALURE DURING PRELIGHD	; ;									
	A V	STRESS	MN/m² (KSI)	924 C	912	1	934 (1354)		1									
	RESIDUAL STATIC	LOAD	x (9)	262675	305 752 (305 12)	i	234 480 (52800)	,	1							 		
		CYCLES		,		122 284	103	1	l 									
*	OADING	œ Λ_				М -	→	ļ	l			27.780 NA.						
	CYCLIC LOADING	MAX (2)	MN/m2 (KSI)		ı	(30.5)	6 5 7 (88.7)	1	ı									
		MAX	z (9	7007	DANG	153905	(34 600)	1	i									
	PRELOAD	STRESS	MN/m² (KSI)	,	86.531)		1	(52,3)	869	-							-	_
	PREL	LOAD	z (9E)	0	21(200)	٥	0	(00819) 005 912	(00LL))									
	TEST TEMP.	-	۶ چ	1 d					-					·	·	 		,
	TEST			1	PRELIDIO	כגכמנ		PREMORD CYCLI &										
	FLAW		(INCH)	0	0	0	0	0	0							 		
	HENGTH	BACK	(INCH)	0	0	8	0	٥	0									١
	FLAW LENGTH	FRONT	(HOCH)	0	. 0	0	۵	0	0	:	<u>;</u>		·				1	
	FLAW			Nows					>									
	WIDTH		(INCH)	75.2 18.2	18.1	75.1	78.0 (28.54)	1.25.7	75.1									
	THICK		(INCH)	3.45			3.35											
i .	LAYUP			D.					-							 		
	SPEC.			13-1-51	13-1-2	13-1-21	22-1-87	13-1-53	H2-1-E1				•	- 118		 		

APPENDIX B

ULTRASONIC INSPECTION DATA

This appendix contains copies of the ultrasonic C-scan records that were developed for the test specimens. The records are identified by the test specimen number, the defect code and a brief description of the point in the test sequence the inspection was made. For many of the test specimens, ultrasonic inspection was performed several times during the test showing the progressive development of the damage.

AFTER PRELOAD

SPECIMEN NUMBER LI-5-6 **5/8 FP HOLE**

AFTER CYCLIC TEST

103 CYCLES

AFTER CYCLIC TEST

AFTER PRELOAD

SPECIMEN NUMBER LI-5-9 5/8 FP HOLE

BEFORE TEST

10⁵ CYCLES

107

NOT INSPECTED

AFTER CYCLIC TEST 10⁵ CYCLES

BEFORE TEST

SPECIMEN NUMBER LI-4-12 3/8 FP HOLE

NO PRELOAD

AFTER 10³ CYCLES

SPECIMEN NUMBER LI-4-1
1/8 FULL PENETRATION HOLE

SPECIMEN NUMBER LI-4-2 AFTER 1.5 × 10⁶ CYCLES PRELOADED SPECIMEN NUMBER LI-4-4 AFTER 10⁵ CYCLES PRELOADED

SPECIMEN NUMBER LI-7-11 5/8 FP SLIT

BEFORE TEST

AFTER CYCLIC TEST 10³ CYCLES

NOT INSPECTED

AFTER CYCLIC TEST 10⁵ CYCLES

BEFORE TEST
SPECIMEN NUMBER LI-7-10
5/8 FP SLIT

NOT INSPECTED

NO PRELOAD

AFTER CYCLIC TEST

 $1.5 \times 10^6 \text{ CYCLES}$

SPECIMEN NUMBER LI-7-9

5/8 FP SLIT

BEFORE TEST

AFTER CYCLIC TEST 1.5 x 10⁶ CYCLES

AFTER PRELOAD

SPECIMEN NUMBER LI-7-14

5/8 FP SLIT

BEFORE TEST

NOT INSPECTED

NOT INSPECTED

BEFORE TEST

AFTER PRELOAD

AFTER CYCLIC TEST

10⁵ CYCLES

SPECIMEN NUMBER LI-7-7

3/8 FP SLIT

NO PRELOAD

AFTER 10³ CYCLES

SPECIMEN NUMBER LI-6-4
1/8 FULL PENETRATION SLIT

AFTER 103 CYCLES

AFTER PRELOAD

SPECIMEN NUMBER LI-6-3 5/8 HP HOLE

BEFORE TEST SPECIMEN NUMBER LI-5-12

5/8 HP HOLE

AFTER CYCLIC TEST

103 CYCLES

AFTER CYCLIC TEST 103 CYCLES

NO PRELOAD

BEFORE TEST
SPECIMEN NUMBER LI-8-3
5/8 HP SLIT

BEFORE TEST SPECIMEN NUMBER LI-8-6 5/8 HP SLIT

AFTER CYCLIC TEST

AFTER PRELOAD

103 CYCLES

NOT INSPECTED

NOT INSPECTED

AFTER CYCLIC TEST 10⁵ CYCLES

AFTER PRELOAD

5/8 HP SLIT

SPECIMEN NUMBER LI-8-5

BEFORE TEST

NOT INPSECTED

NOT INSPECTED

AFTER PRELOAD

SPECIMEN NUMBER LI-8-4

5/8 HP SLIT

BEFORE TEST

AFTER CYCLIC TESTS 1.5 x 10⁶ CYCLES

NO PRELOAD AFTER 1.5 x 10⁶ CYCLES SPECIMEN LI-7-1

1/8 HALF PENETRATION SLIT

SPECIMEN NUMBER LI-6-12 1/8 HALF PENETRATION SLIT

NO PRELOAD AFTER 10³ CYCLES

PRELOADED

10⁵ CYCLES

SPECIMEN NUMBER LI-7-2

1/8 HALF PENETRATION SLIT

1/8 HALF PENETRATION SLIT

SPECIMEN NUMBER LI-7-3

103 CYCLES

PRELOADED

AFTER CYCLIC TEST 10³ CYCLES

NO PRELOAD

BEFORE TEST
SPECIMEN NUMBER LI-8-11
5/8 CSK HOLE

AFTER CYCLIC TEST 1.5 x 10⁶ CYCLES

NO PRELOAD

BEFORE TEST
SPECIMEN NUMBER LI-8-12
5/8 CSK HOLE

AFTER PRELOAD

AFTER CYCLIC TEST 1.5 × 10⁶ CYCLES

SPECIMEN NUMBER LI-8-14

BEFORE TEST

5/8 CSK HOLE

NOT INSPECTED

AFTER CYCLIC TEST 10³ CYCLES

NO PRELOAD

BEFORE TEST
SPECIMEN NUMBER L2-1-30
5/8 FP HOLE

SPECIMEN NUMBER L2-1-32

AFTER CYCLIC TEST 10³ CYCLES

NO PRELOAD

BEFORE TEST SPECIMEN NUMBER L2-1-42

5/8 FP SLIT

NOT INSPECTED

AFTER PRELOAD

AFTER CYCLIC TEST 1.5 × 10⁶ CYCLES

SPECIMEN NUMBER L2-1-43

5/8 FP SLIT

BEFORE TEST

NOT INSPECTED

AFTER CYCLIC TEST

AFTER PRELOAD

103 CYCLES

BEFORE TEST

BEFORE TEST SPECIMEN NUMBER L2-1-46 5/8 HP SLIT

AFTER CYCLIC TEST

103 CYCLES

FAILURE DURING
CYCLIC TEST

AFTER PRELOAD

5/8 HP SLIT

SPECIMEN NUMBER L2-1-48

BEFORE TEST

AFTER CYCLIC TEST 1.5 × 10⁶ CYCLES

NO PRELOAD

BEFORE TEST
SPECIMEN NUMBER L2-4-4
5/8 CSK HOLE

AFTER CYCLIC TEST 1.5 × 10⁶ CYCLES

BEFORE TEST SPECIMEN NUMBER L2-4-6 5/8 CSK HOLE

AFTER PRELOAD

AFTER CYCLIC TEST 1.5 × 10⁶ CYCLES

NO PRELOAD

BEFORE TEST SPECIMEN NUMBER L3-1-3-

5/8 FP HOLE

AFTER CYCLIC TEST 10³ CYCLES

AFTER PRELOAD

5/8 FP HOLE

BEFORE TEST SPECIMEN NUMBER L3-1-38

AFTER CYCLIC TEST 10³ CYCLES

NO PRELOAD

BEFORE TEST
SPECIMEN NUMBER L3-1-56
5/8 FP SLIT

NO PRELOAD

AFTER CYCLIC TEST 1.5 x 10⁶ CYCLES

BEFORE TEST

SPECIMEN NUMBER L3-1-55

5/8 FP SLIT

NOT INSPECTED

AFTER CYCLIC TEST 10³ CYCLES

AFTER PRELOAD

5/8 FP SLIT

SPECIMEN NUMBER L3-1-58

1/8 FULL PENETRATION SLIT SPECIMEN NUMBER L3-1-41 1.5 x 10⁶ CYCLES PRELOADED

1/8 FULL PENETRATION SLIT

1/8 FULL PENETRATION SLIT SPECIMEN NUMBER L3-1-42

PRELOADED 10³ CYCLES

SPECIMEN NUMBER L3-1-40 103 CYCLES

AFTER CYCLIC TEST 10³ CYCLES

NO PRELOAD

BEFORE TEST SPECIMEN NUMBER L3-1-60

5/8 HP SLIT

BEFORE TEST

SPECIMEN NUMBER L3-1-62

5/8 HP SLIT

AFTER PRELOAD AF

BEFORE TEST
SPECIMEN NUMBER L1-10-1

BEFORE TEST
SPECIMEN NUMBER L1-10-2
NO DEFECT

AFTER CYCLIC TEST 10³ CYCLES

AFTER CYCLIC TEST 337 700 CYCLES

SPECIMEN NUMBER L1-10-3

BEFORE TEST SPECIMEN NUMBER L1-10-4

BEFORE TEST SPECIMEN NUMBER L1-10-5

AFTER PRELOAD

NO DEFECT

SPECIMEN L1-10-6

BEFORE TEST

152

AFTER CYCLIC TEST 83,900 CYCLES

BEFORE TEST SPECIMEN NUMBER L1-10-7 1/8 FULL PENETRATION HOLE

AFTER CYCLIC TEST 566 600 CYCLES

1/8 FULL PENETRATION HOLE **SPECIMEN NUMBER L1-10-8**

AFTER CYCLIC TEST 10³ CYCLES

5/8 FULL PENETRATION HOLE

SPECIMEN NUMBER L1-10-9

SPECIMEN NUMBER L1-10-10 5/8 FULL PENETRATION HOLE

BEFORE TEST

SPECIMEN NUMBER L1-10-11

5/8 FULL PENETRATION HOLE

AFTER CYCLIC TEST 1.5 x 10⁶ CYCLES

SPECIMEN NUMBER L1-10-12 5/8 FULL PENETRATION HOLE

BEFORE TEST
SPECIMEN NUMBER L1-10-13
5/8 FULL PENETRATION HOLE

AFTER CYCLIC TEST 10³ CYCLES

AFTER PRELOAD

AFTER PRELOAD

SPECIMEN NUMBER L1-10-14 5/8 FULL PENETRATION HOLE

AFTER CYCLIC TEST 10³ CYCLES

5/8 HALF PENETRATION HOLE

SPECIMEN NUMBER L1-10-15

BEFORE TEST
SPECIMEN NUMBER L1-10-16
5/8 HALF PENETRATION HOLE

SPECIMEN NUMBER L1-10-17 5/8 HALF PENETRATION HOLE

BEFORE TEST SPECIMEN NUMBER L1-10-18

AFTER CYCLIC TEST 1.5 x 10⁶ CYCLES

SPECIMEN NUMBER L1-10-19
1/8 FULL PENETRATION SLIT

BEFORE TEST
SPECIMEN NUMBER L1-10-20
1/8 FULL PENETRATION SLIT

AFTER CYCLIC TEST

SPECIMEN NUMBER L1-10-21 5/8 FULL PENETRATION SLIT

SPECIMEN NUMBER L1-10-22 5/8 FULL PENETRATION SLIT

BEFORE TEST

AFTER CYCLIC TEST 1.5 × 10⁶ CYCLES

SPECIMEN NUMBER L1-10-23 5/8 FULL PENETRATION SLIT

BEFORE TEST

AFTER CYCLIC TEST 1.5 × 10⁶ CYCLES

SPECIMEN NUMBER L1-10-24 5/8 FULL PENETRATION SLIT

SPECIMEN NUMBER L1-10-25 5/8 FULL PENETRATION SLIT

BEFORE TEST

AFTER CYCLIC TEST 23 800 CYCLES

1/8 HALF PENETRATION SLIT

SPECIMEN NUMBER L1-10-26

AFTER CYCLIC TEST 114 600 CYCLES

1/8 HALF PENETRATION SLIT

BEFORE TEST SPECIMEN NUMBER L1-10-27

AFTER CYCLIC TEST 10³ CYCLES

5/8 HALF PENETRATION SLIT

SPECIMEN NUMBER L1-10-28

BEFORE TEST
SPECIMEN NUMBER L1-10-29
5/8 HALF PENETRATION SLIT

BEFORE TEST
SPECIMEN L1-10-30
5/8 HALF PENETRATION SLIT

AFTER CYCLIC TEST 10⁵ CYCLES

5/8 HALF PENETRATION SLIT

SPECIMEN NUMBER L1-10-31

BEFORE TEST SPECIMEN NUMBER L1-10-32

ECIMEN NUMBER L1-10-32 5/8 COUNTERSINK HOLE

AFTER CYCLIC TEST 1.5 × 10⁶ CYCLES

SPECIMEN NUMBER L1-10-33 **BEFORE TEST**

5/8 COUNTERSINK HOLE

AFTER PRELOAD

SPECIMEN NUMBER L1-10-34 5/8 COUNTERSINK HOLE

AFTER CYCLIC TEST 10² CYCLES

BEFORE TEST SPECIMEN NUMBER L1-11-1

5/8 DISBOND DEFECT

AFTER CYCLIC TEST

15 780 CYCLES

SPECIMEN NUMBER L1-11-2

AFTER CYCLIC TEST

77 CYCLES

SPECIMEN NUMBER L1-11-3

BEFORE TEST

5/8 DISBOND DEFECT

SPECIMEN L1-11-4 5/8 DISBOND DEFECT

AFTER CYCLIC TEST 10² CYCLES

SPECIMEN NUMBER L1-11-5 5/8 DISBOND DEFECT

BEFORE TEST
SPECIMEN NUMBER L1-11-6

AFTER CYCLIC TEST 1.5 × 10⁶ CYCLES

5/8 DISBOND DEFECT

AFTER PRELOAD

AFTER CYCLIC TEST 10² CYCLES

APPENDIX C

STATIC TEST CRACK OPENING DISPLACEMENT RECORDS

This appendix contains copies the machine records giving the crack opening displacement gage reading versus the static test machine load. Each page generally contains the records for all the static, preload and residual static tests for each defect configuration and laminate type. The curves are identified by specimen number and defect code. The value of the maximum test machine load as read from test machine dial is also recorded on the record. The letters ULT designate an ultimate or specimen failure load.

APPENDIX D

CYCLIC TEST CRACK OPENING DISPLACEMENT DATA

This appendix contains the results of crack opening displacement measurements made during cyclic loading. The total displacement measured during a cycle was divided by the stress excursion giving a "compliance" value. This data was recorded periodically during the cyclic test. All the results found for a particular defect type are given in each figure. Each figure is identified with the defect code and laminate type.

Figure D-1. Cyclic Load Crack Opening Displacement Result (Sheet 1 of 6)

Figure D-1. Cyclic Load Crack Opening Displacement Result (Sheet 2 of 6)

Figure D-1. Cyclic Load Crack Opening Displacement Result (Sheet 3 of 6)

Figure D-1. Cyclic Load Crack Opening Displacement Result (Sheet 4 of 6)

Figure D-1. Cyclic Load Crack Opening Displacement Result (Sheet 5 of 6)

Figure D-1. Cyclic Load Crack Opening Displacement Result (Sheet 6 of 6)

APPENDIX E

PHOTOGRAPHS OF FAILED TEST SPECIMENS

This appendix contains photographs of typical test specimens after completion of the testing. One test specimen is included for each laminate configuration, defect type, and defect size. The specimens are identified by specimen number, defect code, and testing history.

- Specimen L1-10-2
- Laminate L-1
- 10³ cycles
- Residual static

- Specimen L2-1-2
- Laminate L2
- Preload
- Residual static

- Specimen L3-1-22
- Laminate L3
- 10³ cycles
- Residual static

Figure E-1. Test Specimens With No Initial Defect

• Specimen L1-3-11

- 1/8 FP hole
- 1.5 x 10⁶ cycles
- Residual static

- Specimen L1-1-7
- 3/8 FP hole
- Static

- Specimen L1-5-5
- 5/8 FP hole
- 10⁵ cycles
- Residual static

Figure E-2. Laminate L1 Test Specimens Containing a Full-Penetration Hole

- Specimen L1-6-5
- 1/8 FP slit
- 10⁵ cycles
- Residual static

- Specimen L1-2-6
- 3/8 FP slit
- Preload
- Residual static

- Specimen L1-7-14
- 5/8 FP slit
- 1.5 x 10⁶ cycles
- Residual static

Figure E-3. Laminate L1 Test Specimens Containing a Full-Penetration Slit

• Specimen L1-1-5

• 1/8 HP hole

- Specimen L1-1-10
- 3/8 HP hole
- Preload

Static

Residual static

- Specimen L1-1-13
- 5/8 HP hole

Static

Figure E-4. Laminate L1 Test Specimens Containing a Half-Penetration Hole

• Specimen L1-2-3

- 1/8 HP slit
- Static

- Specimen L1-2-8
- 3/8 HP slit
- Preload
- Residual static

- Specimen L1-2-11
- 5/8 HP slit

• Static

Figure E-5. Laminate L1 Test Specimens Containing a Half-Penetration Slit

- Specimen L1-8-7
- 1/8 CSK hole
- 10³ cycles
- Residual static

- Specimen L1-3-2
- 3/8 CSK hole
- Preload
- Residual static

- Specimen L1-8-12
- 5/8 CSK hole
- 1.5×10^6 cycles
- Residual static

Figure E-6. Laminate L1 Test Specimens Containing a Hole With a Full-Depth Countersink

- Specimen L2-1-25
- 1/8 FP hole
- 1.5 x 10⁶ cycles
- Residual static

- Specimen L2-1-6
- 3/8 FP hole
- Preload
- Residual static

- Specimen L2-1-29
- 5/8 FP hole
- 1.5 x 10⁶ cycles
- Residual static

Figure E-7. Laminate L2 Test Specimens Containing a Full-Penetration Hole

- Specimen L2-1-10
- 1/8 FP slit
- Preload
- Residual static

- Specimen L2-1-14
- 3/8 FP slit
- Preload
- Residual static

- Specimen L2-1-42
- 5/8 FP slit
- 10³ cycles
- Residual static

Figure E-8. Laminate L2 Test Specimens Containing a Full-Penetration Slit

- Specimen L2-1-35
- 1/8 FP slit
- Preload
- 1.5×10^6 cycles
- Residual static

- Specimen L2-1-16
- 3/8 HP slit

- Specimen L2-1-19
- 5/8 HP slit

- Preload
- Residual static

Static

Figure E-9. Laminate L2 Test Specimens Containing a Full- or Half-Penetration Slit

- Specimen L2-2-3
- 345 kPa/(50 lb/in²) cure
- 1.5 x 10⁶ cycles
- Residual static

- Specimen L2-3-1
- 172 kPa(25 lb/in² cure
- Specimen L2-4-2
- 86 kPa(12.5 lb/in²) cure

• Static

Static

Figure E-10, Laminate L2 Test Specimens Cured With Low Autoclave Pressure

- Specimen L3-1-28
- 1/8 FP hole
- Preload
- 10³ cycles
- Residual static

- Specimen L3-1-29
- 3/8 FP hole
- 1.5 x 10⁶ cycles
- Residual static

- Specimen L3-1-7
- 5/8 FP hole
- Static

Figure E-11. Laminate L3 Test Specimens Containing a Full-Penetration Hole

- Specimen L3-1-40
- 1/8 FP slit
- 10³ cycles
- Residual static

- Specimen L3-1-14
- 3/8 FP slit
- Preload
- Residual static

- Specimen L3-1-17
- 5/8 FP slit
- Static

Figure E-12. Laminate L3 Test Specimens Containing a Full-Penetration Slit

• Specimen L3-1-44

- 1/8 HP slit
- 10³ cycles
- Residual static

- Specimen L3-1-15
- 3/8 HP slit
- Static

- Specimen L3-1-60
- 5/8 HP slit
- 10³ cycles
- Residual static

Figure E-13. Laminate L3 Test Specimens Containing a Half-Penetration Slit

- Specimen L3-2-5
- 5/8 FP slit
- Preload
- Residual static

- Specimen L3-2-6
- 5/8 HP slit
- Static

Figure E-14. All-Graphite Laminate L3 Test Specimens Containing a Full- and a Half-Penetration Slit

• Fatigue Failure

- 22,800 cycles
- Fatigue failure

- 3,100 cycles
- Fatigue failure

Figure E-15. Tension-Compression Fatigue (R = -1.0) Laminate L1 Test Specimens Containing a Full- and a Half-Penetration Hole

FINAL REPORT DISTRIBUTION LIST, CR-135403

NAS3-19709

"EVALUATION OF FLAWED COMPOSITE STRUCTURE UNDER STATIC AND CYCLIC LOADING"

Advanced Research Projects Agency Washington, D.C. 20525

Attn: Library

Advanced Technology Center, Inc. LTV Aerospace Corporation P.O. Box 6144 Dallas, TX 75222

Attn: D. H. Petersen

W. J. Renton

Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base, OH 45433

Attn: G. P. Sendeckyj (FBC)

R. S. Sandhu

Air Force Materials Laboratory Wright-Patterson Air Force Base, OH 45433

Attn: H. S. Schwartz (LN)

T. J. Reinhart (MBC)

G. P. Peterson (LC)

E. J. Morrisey (LAÉ)

S. W. Tsai (MBM)

N. J. Pagano

J. M. Whitney (MBM)

Air Force Office of Scientific Research Washington, D.C. 20333

Attn: J. F. Masi (SREP)

Air Force Office of Scientific Research 1400 Wilson Boulevard Arlington, VA 22209

Air Force Advanced Systems Division Wright-Patterson Air Force Base, OH 45433

Attn: C. F. Tiffany

AFOSR/NA
Bolling Air Force Base, D.C. 20332
Attn: W. J. Walker

Babcock & Wilcox Company Advanced Composites Department P.O. Box 419 Alliance, OH 44601 Attn: P. M. Leopold

Bell Helicopter Company P.O. Box 482 Ft. Worth, TX 76101

Attn: H. Zinberg

The Boeing Company Vertol Division Morton, PA 19070

Attn: R. A. Pinckney E. C. Durchlaub

Battelle Memorial Institute Columbus Laboratories 505 King Avenue Columbus, OH 43201

Attn: E. F. Rybicki L. E. Hulbert

Brunswick Corporation Defense Products Division P.O. Box 4594 43000 Industrial Avenue Lincoln, NE 68504

Attn: R. Morse

Commander
Naval Air Systems Command
U.S. Navy Department
Washington, D.C. 20360
Attn: M. Stander, AIR-43032D

256

Commander
Naval Ordnance Systems Command
U.S. Navy Department
Washington, D.C. 20360

Attn: B. Drimmer, ORD-033 M. Kinna, ORD-033A

Cornell University
Department Theoretical & Applied Mechanics
Thurston Hall
Ithaca, NY 14853

Attn: S. L. Phoenix

Defense Metals Information Center Battelle Memorial Institute Columbus Laboratories 505 King Avenue Columbus, OH 43201

Department of the Army U.S. Army Aviation Materials Laboratory Ft. Eustis, VA 23604

Attn: I. E. Figge, Sr. Library

Department of the Army U.S. Army Aviation Systems Command P.O. Box 209 St. Louis, MO 63166

Attn: R. Vollmer, AMSAV-A-UE

Department of the Army Plastics Technical Evaluation Center Picatinny Arsenal Dover, NJ 07801

Attn: H. E. Pebly, Jr.

Department of the Army Watervliet Arsenal Watervliet, NY 12189

Attn: G. D'Andrea

Department of the Army Watertown Arsenal Watertown, MA 02172

Attn: A. Thomas

Department of the Army Redstone Arsenal Huntsville, AL 35809

Attn: R. J. Thompson, AMSMI-RSS

Department of the Navy Naval Ordnance Laboratory White Oak Silver Springs, MD 20910

Attn: R. Simon

Department of the Navy U.S. Naval Ship R&D Laboratory Annapolis, MD 21402

Attn: C. Hersner, Code 2724

Director
Deep Submergence Systems Project
6900 Wisconsin Avenue
Washington, D.C. 20015

Attn: H. Bernstein, DSSP-221

Director Naval Research Laboratory Washington, D.C. 20390

Attn: Code 8430

I. Wolock, Code 8433

Drexel University 32nd and Chestnut Streets Philadelphia, PA 19104

Attn: P. C. Chou

E. I. duPont DeNemours & Company duPont Experimental Station Wilmington, DE 19898

Attn: C. H. Zweben

Fiber Science, Inc. 245 East 157th Street Gardena, CA 90248

Attn: E. Dunahoo

General Dynamics P.O. Box 748 Ft. Worth, TX 76100

Attn: M. E. Waddoups Library

General Dynamics/Convair P.O. Box 1128 San Diego, CA 92112

Attn: J. L. Christian

General Electric Company Evendale, OH 45215

Attn: C. Stotler

R. Ravenhall R. Stabrylla

General Motors Corporation

Detroit Diesel-Allison Division Indianapolis, IN 46244

Attn: M. Herman

Georgia Institute of Technology School of Aerospace Engineering Atlanta, GA 30332

Attn: L. W. Rehfield

Grumman Aerospace Corporation Bethpage, Long Island, NY 11714

Attn: S. Dastin

J. B. Whiteside

Hamilton Standard Division United Aircraft Corporation Windsor Locks, CT 06096

Attn: W. A. Percival

Hercules, Inc.
Allegheny Ballistics Laboratory
P.O. Box 210
Cumberland, MD 21053

Attn: A. A. Vicario

Hughes Aircraft Company Culver City, CA 90230

Attn: A. Knoell

Illinois Institute of Technology 10 West 32nd Street Chicago, IL 60616

Attn: L. J. Broutman

IIT Research Institute 10 West 35th Street Chicago, IL 60616

Attn: I. M. Daniel

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91103

Attn: Library

Lawrence Livermore Laboratory P.O. Box 808, L-421 Livermore, CA 94550

Attn: T. T. Chiao E. M. Wu

Lehigh University Institute of Fracture & Solid Mechanics Bethlehem, PA 18015

Attn: G. C. Sih

Lockheed-Georgia Company Advanced Composites Information Center Department 72-14, Zone 402 Marietta, GA 30060

Attn: T. M. Hsu

Lockheed Missiles and Space Company P.O. Box 504 Sunnyvale, CA 94087

Attn: R. W. Fenn

Lockheed-California Burbank, CA 91503

Attn: J. T. Ryder

K. N. Lauraitis

J. C. Ekvall

McDonnell Douglas Aircraft Corporation P.O. Box 516 Lambert Field, MS 63166

Attn: J. C. Watson

McDonnell Douglas Aircraft Corporation 3855 Lakewood Boulevard Long Beach, CA 90810

Attn: L. B. Greszczuk

Material Sciences Corporation 1777 Walton Road Blue Bell, PA 19422

Attn: B. W. Rosen

Massachusetts Institute of Technology Cambridge, MA 02139

Attn: F. J. McGarry

J. F. Mandell

J. W. Mar

NASA-Hugh L. Dryden Flight Research Center P.O. Box 273 Edwards, CA 93523

Attn: Library

NASA-George C. Marshall Space Flight Center Huntsville, AL 35812

Attn: C. E. Cataldo, EHOl

Library

C. E. Lifer, EP41

NASA-Goddard Space Flight Center Greenbelt, MD 20771

Attn: Library

NASA-Langley Research Center Hampton, VA 23665

Attn: E. E. Mathauser, MC 188a

R. A. Pride, MC 188a M. C. Card, MC 230

J. R. Davidson, MC 188E

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135

Attn: Contracting Officer, MS 500-312 Tech. Report Control, MS 5-5 Tech. Utilization, MS 3-19 AFSC Liaison, MS 501-3

Rel. and Quality Assur., MS 500-211 T. W. Orange, MS 49-3

T. W. Orange, MS 49-3 R. F. Lark, MS 49-3 J. C. Freche, MS 49-1 R. H. Johns, MS 49-3 C. C. Chamis, MS 49-3

Library, MS 60-3

G. T. Smith, MS 49-3 (20 copies)

NASA-Lyndon B. Johnson Space Center Houston, TX 77001

Attn: S. Glorioso, ES5 Library R. G. Forman, ES5

NASA Scientific and Technical Information Facility P.O. Box 33 College Park, MD 20740

Attn: Acquisitions Branch (10 copies)

National Aeronautics and Space Administration Office of Advanced Research & Technology Washington, D.C. 20546

Attn: M. J. Salkind, Code RWS-3 D. P. Williams, Code RW-3

National Aeronautics and Space Administration Office of Technology Utilization Washington, D.C. 20546 National Science Foundation Engineering Division 1800 G. Street, NW Washington, D.C. 20540

Attn: Library

Northrop Space Laboratories 3401 West Broadway Hawthorne, CA 90250

Attn: R. M. Verette G. C. Grimes

Pratt & Whitney Aircraft East Hartford, CT 06108

Attn: A. J. Dennis T. Zupnik

Rockwell International Los Angeles Division International Airport Los Angeles, CA 90009

Attn: L. M. Lackman D. Y. Konishi

Sikorsky Aircraft Division United Aircraft Corporation Stratford, CT 06602

Attn: Library

Southern Methodist University Dallas, TX 75275

Attn: R. M. Jones

Southwest Research Institute 8500 Culebra Road San Antonio, TX 78284

Attn: P. H. Francis

Space & Missile Systems Organization Air Force Unit Post Office Los Angeles, CA 90045

Attn: Technical Data Center

Structural Composites Industries, Inc. 6344 N. Irwindale Avenue Azusa, CA 91702

Attn: R. Gordon

Texas A&M Mechanics & Materials Research Center College Station, TX 77843

Attn: R. A. Schapery

TRW, Inc. 23555 Euclid Avenue Cleveland, OH 44117

Attn: W. E. Winters

Union Carbide Corporation P.O. Box 6116 Cleveland, OH 44101

Attn: J. C. Bowman

United Technologies Research Center East Hartford, CT 06108

Attn: R. C. Novak

University of Dayton Research Institute Dayton, OH 45409

Attn: R. W. Kim

University of Delaware Mechanical & Aerospace Engineering Newark, DE 19711

Attn: B. R. Pipes

University of Illinois
Department of Theoretical & Applied Mechanics
Urbana, IL 61801

Attn: S. S. Wang

University of Oklahoma School of Aerospace Mechanical & Nuclear Engineering Norman, OK 73069

Attn: C. W. Bert

University of Wyoming College of Engineering University Station Box 3295 Laramie, WY 82071

Attn: D. F. Adams

U.S. Army Materials & Mechanics Research Center Watertown Arsenal Watertown, MA 02172

Attn: E. M. Lenoe D. W. Oplinger

V.P.I. and S.U. Department of Engineering Mechanics Blacksburg, VA 24061

Attn: R. H. Heller H. J. Brinson C. T. Herakovich