ML3 – dimensionality and assessment

Machine Learning – Tools and applications for policy – Lecture 4

Iman van Lelyveld – Michiel Nijhuis DNB Data Science Hub

ML3 – dimensionality and assessment

1. How to reduce dimensionality?

- Principal Components Analysis (PCA)
- 2. Feature selection and regularization
 - How to tune model input by selecting features and beat overfitting?
 - How to select the most important features?
 - Examples RIDGE, LASSO, Elastic net
- 3. Is a "good" model always good? What is external validity?
 - Holdout, K-fold cross validation, Stratified K-fold. Leave-one-out (LOO)
- 4. What if we apply this to asset pricing?

Outline

ML3 – dimensionality and assessment

Dimensionality Reduction
Principal Component Analysis (PCA)

Feature selection

Further discussion of Regularization

Least Absolute Shrinkage and Selection Operator (LASSO)

Model Evaluation and Hyperparameter Tuning

Information leakage

Taming the factor zoo

- Principal component analysis PCA (Statquest) (link)
 The key concepts are covered until 12.35.
- RIDGE regressions (Statquest) (link)
 This video is a bit slow but does cover RIDGE in detail
- LASSO regressions (Statquest) (link)
 If you have just seen RIDGE regression, you can start at 2.40
- Bonus: Playing around with Eigenvectors (Victor Powell and Lewis Lehe)

Outline

ML3 - dimensionality and assessment

Dimensionality Reduction

Principal Component Analysis (PCA)

Feature selection

Further discussion of Regularization

Least Absolute Shrinkage and Selection Operator (LASSO

Model Evaluation and Hyperparameter Tuning

Information leakage

Taming the factor zoo

- Economic theory and practitioner knowledge is usually the starting point for looking for a parsimonious model
- Examining the correlation matrix of the features included can provide insight in (non-linear) relations/dependencies
- However, if the # of features increases, statistical methods to reduce dimensionality are called for: Principal Component Analysis (PCA)
- Also, we can aim to reduce the number of features
 - Least Absolute Shrinkage and Selection Operator (LASSO)
 - Least Angle Regression (LARS), RIDGE (Hastie et al. (2017))
- Efficient feature selection can also save computational and memory resources, in addition to improving model performance.

- Find the directions of maximum variance
 - Transforming/Projecting d-dimensional data to k dimensions (k << d)
- Principal components: PC1 and PC2
 - First principal component will have the largest variance
 - Second principal component will have next largest variance, etc., ...
- PCA sensitive to scaling, so need to standardize features

See "Principal component analysis" – PCA (Statquest) in Knowledge clips).

Steps:

- 1. Standardize the *d*-dimensional dataset
- 2. Construct the covariance matrix
- 3. Decompose the covariance matrix into its eigenvectors and eigenvalues
- 4. Select k eigenvectors that correspond to the k largest eigenvalues, where k is the dimensionality of the new feature subspace ($k \le d$).
- 5. Construct a projection matrix **W** from the "top" *k* eigenvectors
- 6. Transform the *d*-dimensional input dataset **X** using the projection matrix **W** to obtain the new *k*-dimensional feature subspace
- 7. See Statquest link for PCA Step-by-Step explanation.

- Symmetric $d \times d$ -dimensional matrix (d number of dimensions)
- Pairwise covariances between the different features
- Covariance between two features x_i and x_k :

$$cov(x_j, x_k) = \frac{1}{n} \sum_{i=1}^{n} (x_j^{(i)} - \mu_j) (x_k^{(i)} - \mu_k)$$

Where μ_i and μ_k are the sample means of feature j and k (i.e., expected values)

• Covariance can be standardized to yield the correlation

$$\rho_{j,k} = \frac{cov(x_j, x_k)}{\sigma_j \sigma_k}$$

• Measure of how much two random variables change together

- Measure of how much two random variables change together
- Positive covariance
 - Features increase and decrease together
 - e.g. as a balloon is blown up it gets larger in all dimensions

- Measure of how much two random variables change together
- Positive covariance
 - Features increase and decrease together
 - e.g. as a balloon is blown up it gets larger in all dimensions
- Negative covariance
 - Features vary in opposite directions
 - Large values of one variable correspond to small values of the other
 - e.g. if a balloon is squashed in one dimension then it will expand in the other two

- Measure of how much two random variables change together
- Positive covariance
 - Features increase and decrease together
 - e.g. as a balloon is blown up it gets larger in all dimensions
- Negative covariance
 - Features vary in opposite directions
 - Large values of one variable correspond to small values of the other
 - e.g. if a balloon is squashed in one dimension then it will expand in the other two
- The magnitude of the covariance is not easy to interpret

- Measure of how much two random variables change together
- Positive covariance
 - Features increase and decrease together
 - e.g. as a balloon is blown up it gets larger in all dimensions
- Negative covariance
 - Features vary in opposite directions
 - Large values of one variable correspond to small values of the other
 - e.g. if a balloon is squashed in one dimension then it will expand in the other two
- The magnitude of the covariance is not easy to interpret
- PM: The normalized version of covariance (correlation coefficient) indicates the strength of the linear relation

• correlation indicates the degree of the linear co-movement between two variables ...

Anscombe (1973)

- correlation indicates the degree of the linear co-movement between two variables ...
- ... but does not say anything about the informativeness

Anscombe (1973)

Linear dependence – Correlation

- correlation indicates the degree of the linear co-movement between two variables ...
- ... but does not say anything about the informativeness
- Nor anything about non-linearity

Anscombe (1973)

Anscombe's quartet (Anscombe (1973))

Clockwise from top left:

- simple linear relationship
- not linear and the Pearson correlation coefficient is not relevant. Regression with non-linear features
- one high-leverage point is enough to produce a high correlation coefficient even without a relationship between the variables
- linear but with a different regression line: adding the outlier changes the slope coefficient from 1 to 0.816

• For two features, covariance matrix will look like this:

$$A = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{bmatrix}$$

- The eigenvector of A represent the principal components: direction of maximum variance
- The corresponding eigenvalues represent their magnitude
- More formally: An Eigenvector **v** satisfies the condition:

$$A\mathbf{v} = \lambda \mathbf{v}$$

where λ is the eigenvalue (scalar)

See "Playing around with Eigenvectors" (Powell and Lehe) in Knowledge dips

• Variance explained ratio of an eigenvalue λ_j :

$$\frac{\lambda_j}{\sum_{j=1}^d \lambda_j}$$

- First two principal components explain about 60 percent of the variance in the data
- Choosing the 'optimal' number of PCs: elbow? ad hoc?

Outline 16

ML3 - dimensionality and assessment

Dimensionality Reduction Principal Component Analysis (PCA)

Feature selection

Further discussion of Regularization
Least Absolute Shrinkage and Selection Operator (LASSO)
odel Evaluation and Hyperparameter Tuning
ormation leakage

Recall from our discussion on Logit, *L*2 regularization – one approach to reduce model complexity

$$L2: \|\mathbf{w}\|_2^2 = \sum_{j=1}^m w_j^2$$

An alternative approach is *L*1 regularization:

$$L1: \|\mathbf{w}\|_1 = \sum_{i=1}^m |w_i|$$

- *L*1 yields sparse solutions
- Most feature weights will be zero
- Useful for high-dimensional datasets with irrelevant features
- It can be viewed as a technique for feature selection
- Some intuition as to why this is the case will follow. For OLS, the cost function becomes:

$$J(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \hat{y_i})^2 + \lambda ||\mathbf{w}||$$

which becomes a regular OLS with $\lambda \to 0$

Outline 19

ML3 – dimensionality and assessment

Dimensionality Reduction
Principal Component Analysis (PCA)

Feature selection

Further discussion of Regularization

Least Absolute Shrinkage and Selection Operator (LASSO)

Model Evaluation and Hyperparameter Tuning Information leakage

Taming the factor zoo

L2: RIDGE

L2: RIDGE

L1: Lasso

See both Statquest clips in Knowledge clips

Sparsity

- Regularization penalty and cost pull in opposite directions
- Regularization wants the weight to be at (0, 0)
 - i.e. regularization prefers a simpler model
 - note that Lasso can have a zero weight on a feature (because the 'triangle' has corners where one of the weights is zero)
- Decreases the dependence of the model on the training data

L1 in scikit-learn

- Limitation of Ridge Regression
 - Ridge regression decreases the complexity of a model but does not reduce the number of variables since it never leads to a coefficient been zero rather only minimizes it. Hence, this model is not good for feature reduction.
- Limitation of Lasso Regression
 - If there are two or more highly collinear variables then LASSO regression select one of them randomly which is not good for the interpretation of data
 - Lasso sometimes struggles with some types of data. If the number of predictors (*p*) is greater than the number of observations (*n*), Lasso will pick at most *n* predictors as non-zero, even if all predictors are relevant (or may be used in the test set).

Solution: weigh Ridge and Lasso → Elastic Net

Outline 23

ML3 – dimensionality and assessment

Dimensionality Reduction

Feature selection

Further discussion of Regularization

Least Absolute Shrinkage and Selection Operator (LASSO)

Model Evaluation and Hyperparameter Tuning

Information leakage

Taming the factor zoo

- Model evaluation
 - Performance metrics (discussed in Lecture 3 ML2 the basics) indicate how good the model is
- How do we obtain an unbiased estimate of model's performance?
- Key concept: estimate model performance on unseen data
- So we need to separate data for 1) finding the right model and for 2) assessing it
- Note the difference between model parameters (e.g. weights) vs hyperparameters (e.g. de *k* in *k*-nearest neighbors)

- 1. Holdout
- 2. *k*-fold
- 3. Stratified *k*-fold
- 4. Leave-one-out
- 5. ...

See SKLearn documentation for further approaches

• Split data into training and test datasets

1. The holdout method

- Split data into training and test datasets
- However, typically we cannot test immediately after training
 - Need to tune the model to further improve the performance
 - Select optimal values of hyperparameters
- This step is known as model selection
- A better approach: training + validation + test sets
 - Validation set is used for model selection
 - Test set is for model evaluation

1. The holdout method

- Split data into training and test datasets
- However, typically we cannot test immediately after training
 - Need to tune the model to further improve the performance
 - Select optimal values of hyperparameters
- This step is known as model selection
- A better approach: training + validation + test sets
 - Validation set is used for model selection
 - Test set is for model evaluation
- Let's for now assume we know the hyperparameters

- Disadvantage of the holdout method: sensitive to partitioning
- To fix this, use *K*-fold cross-validation
 - Randomly split the training dataset into k folds
 - Of these, k-1 folds are used for training and one for testing
 - Repeat this procedure k times and then average across k folds
- Each sample will be part of train and test sets
- Lower-variance estimate of the model performance (compared to holdout)

- The standard value is k = 10
- For small datasets, increase the number of folds
 - increases the amount of training data
- For larger datasets, we can decrease the number of folds
 - e.g. k = 5 is a reasonable choice

- StratifiedKFold is a variation of k-fold which returns stratified folds: Class proportions preserved in each fold
- So each fold is representative of the entire training set
- Better performance estimates for imbalanced data

- Set the number of folds equal to the number of training samples
- Only a single training sample used for testing during each iteration
- Recommended approach for very small datasets

Time series make things even more complicated

• TimeSeriesSplit is a variation of k-fold which returns first k folds as train set and the (k + 1) th fold as test set. Note that unlike standard cross-validation methods, successive training sets are supersets of those that come before them. Also, it adds all surplus data to the first training partition, which is always used to train the model.

Time series make things even more complicated

- TimeSeriesSplit is a variation of k-fold which returns first k folds as train set and the (k + 1) th fold as test set. Note that unlike standard cross-validation methods, successive training sets are supersets of those that come before them. Also, it adds all surplus data to the first training partition, which is always used to train the model.
- Alternatively you can do walk forward cross validation

- Many ML algorithms offer a number of hyperparameters, but it is often unclear what the optimal set is
- Options
 - 1. Manual
 - 2. Grid search: a brute-force exhaustive search of the complete hyperparameter space
 - ► GridSearchCV
 - ▶ Obviously, this can be computationally very expensive but will find the global optimum
 - 3. Randomized search:
 - ► RandomizedSearchCV

Overview of hyper parameters in Python packages

ML Algorithm	Main HPs	Optional HPs	HPO methods	Libraries
Linear regression	-	-	-	_
Ridge & lasso	alpha	-	BO-GP	Skpot
Logistic regression	penalty, c, solver		BO-TPE, SMAC	Hyperopt, SMAC
KNN	n_neighbors	weights, p, algorithm	BOs, Hyperband	Skpot, Hyperopt, SMAC, Hyperband
SVM	C, kernel, epsilon (for SVR)	gamma, coef0, degree	BO-TPE, SMAC, BOHB	Hyperopt, SMAC, BOHB
NB	alpha	-	BO-GP	Skpot
DT	criterion, max_depth, min_samples_split, min_samples_leaf, max_features	splitter, min_weight_fraction_leaf, max_leaf_nodes	GA, PSO, BO-TPE, SMAC, BOHB	TPOT, Optunity, SMAC, BOHB
RF & ET	n_estimators max_depth, criterion, min_samples_split, min_samples_leaf, max_features	splitter, min_weight_fraction_leaf, max_leaf_nodes	GA, PSO, BO-TPE, SMAC, BOHB	TPOT, Optunity, SMAC, BOHB
XGBoost	n_estimators, max_depth, learning_rate, subsample, colsample_bytree.	min_child_weight, gamma, alpha, lambda	GA, PSO, BO-TPE, SMAC, BOHB	TPOT, Optunity, SMAC, BOHB
Voting	estimators, voting	weights	GS	Sklearn
Bagging	base_estimator, n_estimators	max_samples, max_features	GS, BOs	sklearn, Skpot, Hyperopt, SMAC
AdaBoost	base_estimator, n_estimators, learning_rate	•	BO-TPE, SMAC	Hyperopt, SMAC
Deep learning	number of hidden layers, 'units' per layer, loss, optimizer, Activation, learning_rate, dropout rate, epochs, batch_size, early stop patience	number of frozen layers (if transfer learning is used)	РЅО, ВОНВ	Optunity, BOHB
K-means	n_clusters	init, n_init, max_iter	BOs, Hyperband	Skpot, Hyperopt, SMAC, Hyperband
Hierarchical clustering	n_clusters, distance_threshold	linkage	BOs, Hyperband	Skpot, Hyperopt, SMAC, Hyperband
DBSCAN	eps, min_samples	-	BO-TPE, SMAC, BOHB	Hyperopt, SMAC, BOHB
aussian mixture	n_components	covariance type, max iter, tol	BO-GP	Skpot
PCA .	n_components	svd_solver	BOs, Hyperband	Skpot, Hyperopt, SMAC, Hyperband
LDA	n_components	solver, shrinkage	BOs, Hyperband	Skpot, Hyperopt, SMAC, Hyperband

Source: Yang and Shami 2020

36

Comparison of Hyperparameter Optimization Algorithms

HPO Method	Strengths	Limitations	Time Complexity
GS	• Simple,	 Time-consuming Only efficient with categorical HPs. 	$O(n^k)$
RS	More efficient than GS Enable parallelization.	Not consider previous results Not efficient with conditional HPs.	O(n)
Gradient- based models	Fast convergence speed for continuous HPs.	Only support continuous HPs May only detect local optimums.	$O(n^k)$
BO-GP	 Fast convergence speed for continuous HPs. 	 Poor capacity for parallelization Not efficient with conditional HPs. 	$O(n^3)$
SMAC	 Efficient with all types of HPs. 	 Poor capacity for parallelization. 	O(nlogn)
BO-TPE	 Efficient with all types of HPs Keep conditional dependencies. 	 Poor capacity for parallelization. 	O(nlogn)
Hyperband	Enable parallelization.	Not efficient with conditional HPs Require subsets with small budgets to be representative.	O(nlogn)
ВОНВ	Efficient with all types of HPs Enable parallelization.	 Require subsets with small budgets to be representative. 	O(nlogn)
GA	Efficient with all types of HPs Not require good initialization.	 Poor capacity for parallelization. 	$O(n^2)$
PSO	Efficient with all types of HPs Enable parallelization.	Require proper initialization.	O(nlogn)

Source: Yang and Shami 2020. n=# HP values, k=# HP

Comparison of Hyperparameter Optimization Algorithms

Algorithm	Advantages	Disadvantages	Complexity
Grid search	Simple	Time-consuming. Only efficient with categorical HPs.	$O(n^k)$
Random search	More efficient than GS. Enable paral- lelization	Not consider previous results. Not efficient with conditional HPs.	O(n)
Gradient-based	Fast convergence speed for continuous HPs. May only detect local optimums	Only support continuous HPs.	$O(n^k)$
BO-GP	Fast convergence speed for continuous HPs.	Poor capacity for parallelization. Not efficient with conditional HPs.	$O(n^3)$
SMAC	Efficient with all types of HPs.	Poor capacity for parallelization.	O(nlogn)

Source: Yang and Shami 2020. n= # HP values, k= # HP

Hyperparameters: Gradient Boosting Decision Trees

						xaboost			lightabm		cathoost	
					Parame	er Names		Paramete	er Names		Parameter Names	
											Original API &	
Name	What	Allowed Range	Baseline Choice	Favorable Tuning Range	Original API	sklearn API	Default	Original API	skleam API	Default	sklearn API	Defaul
. Most important!												
. most importanti	Maximum depth of each trained											_
Azeimum Depth	tree.	[0,]	5 or 6	[3, 12]	max_depth	max_depth	6	max_depth	max_depth	-1	depth	- 6
. Tune at earlier pl												
	Percentage of rows used per iteration frequency.	(0, 1)	0.8	10.6, 1.01	subsample	subsample	1.0	bagging_fraction	subsample	1.0	subsample	
low Sampling	Percentage of columns used per	(0, 1)	0.8	[0.6, 1.0]	vateamper	sitisangee	1.0	bugging_traction	subsamper	1.0	sunamps	Depend
Jolumn Sampling by Tree	iteration.	00, 11	0.8	[0.6, 1.0]	colsample_bytree	colsample_bytree	1.0	feature_fraction	colsample_bytree	1.0	NULL	
	Percentage of columns used per											
Johann Sampling by Level	split selection. Prune by minimum hossian	(0, 11	0.5	19.6, 1.01	colsample_bylevel	colsample_bylevel	1.0		NULL	_	tyn	1.0
tessian Regularization	requirement.	[0.00]	1.0	10.1, 10.01	min child weight	min child weight	1.0	min sum bessian in leaf	min child weight	0.001	NULL	
	TO THE TOTAL PROPERTY OF THE TOTAL PROPERTY	100,000		[6:1] 10:33		and and and and	1.0		in the same of the	0.041		
3. Tune at intense to												
dinimum Data per Leaf	Prune by minimum number of observations requirement.	10.001	bundres/thousands for lar	or 20 for small data (P-100),		NULL		min data in leaf	min child samples	20	min data in leaf *	
with the control of t	COSCINIDA TOPTORIOL	[0,00]	Introduction of the	agboost, cathoost:		HOLL		military in sta	military samples	- 20	THE GOOD TO CALL	
				255/ (2/4) = 255* (2/4)								
	Maximum leaves for each trained			Eghtgbm:								
Maximum Leaves	tree.	[1,]	255	Less than 24(max_depth)	max Jezves	max_leaf_nodes	0	nsm_leaves	num_leaves	31	max Jeaves *	31
1. Parameters to tu	ne when other parameters ar	e tuned enoug	h.									
1 Regularization	L1 Regularization for boosting.	[0, ∞]	Default Value		alpha	reg_alpha	0.0	lantda_H	reg_alpha	0.0	NULL	
.2 Regularization	L2 Regularization for boosting.	[0, 00]	Default Value		lambda	reg_lambda	1.0	lantda_l2	reg_lambda	0.0	12_leaf_reg	3.0
ons Regularization	Frune by minimum loss requirement.	[0, →]	Default Value	(0.0, 1.0)	gamma	gamma	0.0	min gain to split	min split gain	0.0	NULL	
tar anguraroanon	regirenal.	[0, 10]	Detail varie	[00, 10]	ganna	ganna	0.0	min gain to spin	nn pn gin	0.0	NOLL	
Leave baseline at	first, smaller at the time of fi	nal tuning.										
	Multiplication performed on each											
earning rate	boosting iteration.	(0, 1]	0.1	[0.01, 0.05] as phase advances.	eta	learning_rate	0.3	learning_rate	learning_rate	0.1	learning_rate	Auto or 0.
. Too many iteratio	ons can cause overfitting. Nur	nber of iteration	ons can be large if ea	arly stopping is enabled, and v	ve should do so :)							
lumber of iterations	Number of boosting iterations.	[1, ∞]		10000 with early stopping.	nrounds	n_estimators	NULL	num_herations	n_estimators	100	Iterations	1000
arly Stopping	Number of maximum iterations without improvements.	[0, ∞]		vided by 'learning rate'	early stopping rounds	early stopping rounds	NULL	early stopping round	early stopping rounds	0	early stopping rounds	False

Outline 38

ML3 - dimensionality and assessment

Dimensionality Reduction
Principal Component Analysis (PCA)

Feature selection

Further discussion of Regularization

Least Absolute Shrinkage and Selection Operator (LASSO

Model Evaluation and Hyperparameter Tuning

Information leakage

Taming the factor zoo

- Explicit: some features represent transformation of or a proxy for the target variable
 - Number of months behind in interest payments

- Explicit: some features represent transformation of or a proxy for the target variable
 - Number of months behind in interest payments
- Implicit: training has info unavailable for the test observations
 - time series: if a feature is measured with a lag and/or is revised often (e.g. GDP, news), be careful to use the right value

- Skin cancer, the most common human malignancy, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by more (invasive) tests
- Esteva et al. (2017, Nature), train a CNN using a dataset of 129,450 clinical images consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images
- It would be great if this method could be rolled out to your smartphone ...

- Skin cancer, the most common human malignancy, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by more (invasive) tests
- Esteva et al. (2017, Nature), train a CNN using a dataset of 129,450 clinical images consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images
- It would be great if this method could be rolled out to your smartphone ...
- ... but turns out that a ruler is bad for you

- CheXNet: algorithm to detect pneumonia from chest X-rays at a level exceeding radiologists (Rajpurkar et al. (2017))
- 121-layer convolutional neural network trained on largest chest X-ray dataset (ChestX-ray14)
- Radiologists annotate a test set (n=4), on which we compare CheXNet to radiologists performance
- CheXNet > average radiologist performance on the F1 metric
 - 100,000 frontal-view X-rays with 14 diseases
 - 30,000 patients
 - random train-test

- CheXNet: algorithm to detect pneumonia from chest X-rays at a level exceeding radiologists (Rajpurkar et al. (2017))
- 121-layer convolutional neural network trained on largest chest X-ray dataset (ChestX-ray14)
- Radiologists annotate a test set (n=4), on which we compare CheXNet to radiologists performance
- CheXNet > average radiologist performance on the F1 metric
 - 100,000 frontal-view X-rays with 14 diseases
 - 30,000 patients
 - random train-test

Replying to @AndrewYNg @pranavrajpurkar and 2 others

Were you concerned that the network could memorize patient anatomy since patients cross train and validation?

"ChestX-ray14 dataset contains 112,120 frontal-view X-ray images of 30,805 unique patients. We randomly split the entire dataset into 80% training, and 20% validation."

12:26 PM · Nov 16, 2017 from Brooklyn, NY · Twitter for iPhone

Outline 42

ML3 – dimensionality and assessment

Dimensionality Reduction
Principal Component Analysis (PCA)

Feature selection

Further discussion of Regularization

Least Absolute Shrinkage and Selection Operator (LASSO

Model Evaluation and Hyperparameter Tuning

Information leakage

Taming the factor zoo

- So far we've talked a lot about techniques and relatively little about applications for finance such as:
 - Classification: robo advice, fraud detection
 - Forecasting: trading bots
 - NLP: compliance
- Here we will look at one example: asset pricing based on Kozak et al. (2019)
- Also see Bianchi, Büchner, Hoogteijling, and Tamoni (2021), Bianchi, Büchner, and Tamoni (2021), Chen (2021), Easley et al. (2021), Erel et al. (2021), Farboodi et al. (2022), Fuster et al. (2022), Goldstein et al. (2021), Leippold et al. (2022), Li et al. (2021), and Obaid and Pukthuanthong (2022)

- Prediction is central to ML and also essential to asset pricing (AP)
 - Forecasting returns
 - Forecasting cash-flows
 - Forecasting default
 - Forecasting risk exposures
- Fundamental asset pricing equation for asset with excess return *R* and Stochastic Discount Factor (SDF) *M*:

$$\mathbb{E}[R_{t+1}M_{t+1}|x_t]=0$$

- Empirical implementation involves function approximation $x_t \to$ (Co-)moments of R_{t+1} ; M_{t+1}
- This is a supervised learning problem + maybe dimension reduction in joint distribution of $(R_{t+1}; M_{t+1})$: unsupervised learning
- Pre-ML literature: x_t typically low-dimensional but little real-world justification

- Consider supervised learning problem: find $y_i = f(x_i)$ where i = 1, 2, ..., N and x_i has dimension $I \times 1$.
- When x_i high-dimensional (e.g., J > N), standard methods (e.g., OLS) would horribly overfit in-sample \rightarrow bad out-of-sample (OOS) prediction performance
- Regularization: Penalize estimation results that are regarded as implausible based on prior knowledge
 - Example: if big magnitudes of regression coefficient on Sharpe ratio are a priori unlikely, penalize big coefficient estimates
- Remember: many ML methods can be derived as penalized estimators

$$\hat{\theta} = \arg\min_{\theta} \Sigma_i L\{y_i - f(x_i, \theta)\} + \lambda R(\theta)$$

for loss function L(.) and penalty function R(.).

$$R(\theta) = ||\theta||_1$$
: Lasso $R(\theta) = ||\theta||_2^2$: Ridge regression $R(\theta) = \alpha ||\theta||_1 + (1 - \alpha)||\theta||_2^2$: Elastic net

- Penalty forces regularization: Well-behaved estimates, useful for prediction, even if J > N
- Regularization crucial for prediction performance

Predict monthly return of individual U.S. stocks with past returns 48

• Cross-section of i = 1, ..., N, with Jx1 characteristics vector (observable predictors) x_{it} .

$$\mathbb{E}[r_{i,t+1}|x_{it}] = f(x_{it},\theta)$$

- Observations $r_t = (r_{1t}, \dots, r_{N,t})$ for $t = 1, \dots, T$.
- x_{it} contains:
 - 120 lags of monthly returns, $r_{it}, r_{i,t-1}, r_{i,t-2}, \dots r_{i,t-120}$
 - 120 lags of monthly squared returns $r_{it}^2, r_{i,t-1}^2, r_{i,t-2}^2, \dots r_{i,t-120}^2$

where all returns are cross-sectionally demeaned each month (i.e., cross-sectional focus) and x_{it} is standardized.

- Estimate during 1980-2000. Evaluate forecasts out-of-sample during 2001-2019.
- Ridge regression (where $\lambda = 0$ implements OLS)

$$\hat{\theta} = arg \min_{\theta} \Sigma_i (r_{i,t+1} - \theta' x_{i,t})^2 + \lambda \theta' \theta$$

	Typical ML application	Asset pricing
Signal-to-noise	Outcome observable e.g. { hotdog, not hotdog }	
Big Data dimensions	N and J big	J big, N not so much
Sparsity	Often sparse e.g., some regions of image irrelevant	Unclear
ucas critique	Often not an issue e.g. hotdogs don't change shape in response to image classification	Investors learn from data and adapt

Source: Nagel (2019)

- Multi-decade quest: Describe cross-section of N excess stock returns, $\mathbb{E}[r]$, with small number (K) of factor excess returns where factors are returns on portfolios constructed based on firm characteristics (size, momentum, . . .).
- Popular factor models are sparse in characteristics, e.g.: Fama-French 3-, 4-, 5-factor models
- But can a characteristics-sparse representation of the SDF be adequate?
 - Taking into account all anomalies that have been discovered
 - Plus potentially hundreds or thousands of additional stock characteristics, including interactions
 - High-dimensional problem!

THE JOURNAL OF FINANCE • VOL. LI, NO. 1 • MARCH 1996

Multifactor Explanations of Asset Pricing Anomalies

EUGENE F. FAMA and KENNETH R. FRENCH*

ABSTRACT

Previous work shows that average returns on common stocks are related to firm characteristics like size, earnings/price, cash flow/price, book-to-market equity, past sales growth, long-term past return, and short-term past return. Because these

... but now the list of factors is endless

Risk type		Description	Examples		
Common (113)	Financial (46)	Proxy for aggregate financial market movement, including market portfolio returns, volatility, squared market returns, among others	Sharpe (1964): market returns; Kraus and Litzenberger (1976): squared market returns		
	Macro (40)	Proxy for movement in macroeconomic fundamentals, including consumption, investment, inflation, among others	Breeden (1979): consumption growth; Cochrane (1991): investment returns		
	Microstructure (11)	Proxy for aggregate movements in market microstructure or financial market frictions, including liquidity, transaction costs, among others	Pastor and Stambaugh (2003): market liquidity; Lo and Wang (2006): market trading volume		
	Behavioral (3)	Proxy for aggregate movements in investor behavior, sentiment or behavior-driven systematic mispricing	Baker and Wurgler (2006): investor sentiment; Hirshleifer and Jiang (2010): market mispricing		
	Accounting (8)	Proxy for aggregate movement in firm-level accounting variables, including payout yield, cash flow, among others	Fama and French (1992): size and book-to-market; Da and Warachka (2009): cash flow		
	Other (5)	Proxy for aggregate movements that do not fall into the above categories, including momentum, investors' beliefs, among others	Carhart (1997): return momentum; Ozoguz (2009): investors' beliefs		
Characteristics (202)	Financial (61)	Proxy for firm-level idiosyncratic financial risks, including volatility, extreme returns, among others	Ang et al. (2006): idiosyncratic volatility; Bali, Cakici, and Whitelaw (2011): extreme stock returns		
	Microstructure (28)	Proxy for firm-level financial market frictions, including short sale restrictions, transaction costs, among others	Jarrow (1980): short sale restrictions; Mayshar (1981): transaction costs		
	Behavioral (3)	Proxy for firm-level behavioral biases, including analyst dispersion, media coverage, among others	Diether, Malloy, and Scherbina (2002): analyst dispersion; Fang and Peress (2009): media coverage		
	Accounting (87)	Proxy for firm-level accounting variables, including PE ratio, debt-to-equity ratio, among others	Basu (1977): PE ratio; Bhandari (1988): debt-to-equity ratio		
	Other (24)	Proxy for firm-level variables that do not fall into the above categories, including political campaign contributions, ranking-related firm intangibles, among others	Cooper, Gulen, and Ovtchinnikov (2010): political campaign contributions; Edmans (2011): intangibles		

Source: Factor List from Harvey et al. (2016)

	Regularization	Assets	Nonlinearity
SDF models			•
Kozak, Nagel, Santosh (2019)	elastic net	char. portfolios PC portfolios	interactions
Kozak (2019)	elastic net	char. portfolios PC portfolios	kernels
Giglio, Feng, and Xiu (2019)	Lasso	char. portfolios	-
DeMiguel et al. (2019)	Lasso	char. portfolios	-
Beta models	DCA autoff	la di cata da	
Kelly, Pruitt, Su (2018)	PCA cutoff	indiv. stocks	
Gu, Kelly and Xiu (2019)	Lasso	char. portfolios	autoencoder neural nets
Return prediction models			
Freyberger, Neuhierl, Weber (2018)	Group lasso	indiv. stocks	splines
Moritz and Zimmerman (2016)	Random forest	indiv. stocks	interactions
Gu, Kelly, Xiu (2018)	many	indiv. stocks	many

DataScience Hub

Source: Nagel (2019)

• Penalize based on economic theory to reduce overfitting

$$\hat{b} = \arg\min_{b}(\hat{f} - \Sigma b)'\Sigma^{-}1(\hat{f} - \Sigma b) + \underbrace{\gamma_{1}b'b}_{L2} + \underbrace{\gamma_{2}\Sigma^{H}_{i=1}|b_{i}|}_{L1}$$

- L_1 en L_2 are regularization penalties and are based on economic theory
 - Sharpe ratio's can't be too big
 - Many of the covariates will be uninformative
- Summary of key results
 - 1. Shrinkage is extremely important
 - 2. Very little redundancy in original characteristics space: Characteristics-sparse SDF not achievable
 - 3. But PC-sparse SDF based on a few (high-variance) PCs prices well
- Result (2) could be partly a consequence of looking at a set of data-mined anomalies
- Could there be more characteristics-sparsity if we include some unexplored factors, or factors that are not known to be associated with return premia?

- See Martin and Nagel (2022, JFE) and Farboodi et al. (2022, RFS) for an excellent discussions
- Modern investors face a high-dimensional prediction problem: thousands of observable variables are potentially relevant for forecasting
- Framed as an ML problem, *N* assets have cash flows that are a (linear) function of *J* firm characteristics, but with uncertain coefficients
- Risk-neutral Bayesian investors impose shrinkage (Ridge regression) or sparsity (Lasso) when they estimate the *J* coefficients of the model for pricing assets
- When *J* is comparable in size to *N*, returns appear cross-sectionally predictable using firm characteristics to an econometrician who analyzes data from the economy ex post. A factor zoo emerges even without p-hacking and data-mining.
- Standard in-sample tests of market efficiency reject the no-predictability null with high probability, despite the fact that investors optimally use the information available to them in real time. In contrast, out-of-sample tests keep their economic meaning

- The economic content of the (semi-strong) market efficiency notion that prices "fully reflect" all public information is not clear in a high-dimensional setting
 - Abstracting from joint hypothesis problem Fama (1970, JoF): the econometrician studying asset prices does not know the model that determines risk premia required by risk-averse investors
- Does "fully reflect" mean that investors:
 - 1. know the parameters of the cash-flow prediction model \rightarrow typical RE notion?
 - 2. employ Bayesian updating when they learn from data about the parameters of the cash-flow prediction model?
- The null hypothesis in a vast empirical literature in asset pricing is 1)
 - Literature on return predictability regressions, event studies, and asset pricing model estimation based on orthogonality conditions
- An apparent rejection of market efficiency == unsurprising consequence of investors not having precise knowledge of the parameters of a DGP that involves thousands of predictor variables

- Is there potential "Alpha content"?
 - Does the new data or method give rise to sufficient risk-adjusted return to merit implementation of a stand-alone strategy or as a component of a portfolio strategy (cf Kolanovic and Krishnamachari (2017))
- Markets already digest a lot of information so the room for improvement is small

"The flat maximum effect states that for most problems there is not a single best model that is substantially better than all others." (Finlay (2014), page 105)

- Kaggle suggests that structured data is best analyzed by tools like XGBoost and Random Forests
- Use of Deep Learning is limited to analysis of images or text
 - Deep Learning tools still require a substantial amount of data to train. Training on small sample sizes (e.g. generative-adversarial models) is still at an early stage
 - Large sample data required implies that first applications of Deep Learning will be in intraday or high-frequency trading before we see its application in lower frequencies (See Algorithmic Trading course!!!)
- Deep Learning finds immediate use for portfolio managers in an indirect manner.
 Parking lot images are analyzed using Deep Learning architectures (like CNN) to count cars. Text in social media is analyzed using Deep Learning architectures (like LSTM) to detect sentiment
- Such traffic and sentiment signals can be integrated directly into quantitative strategies (See Kolanovic and Krishnamachari (2017))
- Calculation of signals often outsourced to specialized firms

Summary

In this lecture we covered:

- 1. We looked at methods to reduce the complexity to models
 - Dimension reduction through PCA
 - Feature selection with RIDGE and LASSO
- 2. We also discussed ways of assessing how well a model performs
 - holdout
 - K-fold cross validation
- 3. An application to asset pricing

- Anscombe, F. (1973). Graphs in Statistical Analysis. American Statistician, 27, 17–21.
- Bianchi, D., Büchner, M., Hoogteijling, T., & Tamoni, A. (2021). Corrigendum: Bond Risk Premiums with Machine Learning. The Review of Financial Studies, 34, 1090–1103.
- Bianchi, D., Büchner, M., & Tamoni, A. (2021). Bond Risk Premiums with Machine Learning [Publisher: Oxford Academic]. The Review of Financial Studies, 34(2), 1046–1089.
- Chen, A. Y. (2021). The Limits of p-Hacking: Some Thought Experiments [Publisher: John Wiley & Sons, Ltd]. The Journal of Finance, 76(5), 2447–2480.
- Easley, D., López De Prado, M., O'hara, M., & Zhang, Z. (2021). Microstructure in the Machine Age. The Review of Financial Studies, 34, 3316–3363.
- Erel, I., Stern, L. H., Tan, C., & Weisbach, M. S. (2021). Selecting Directors Using Machine Learning. Review of Financial Studies, 34, 3226–3264.

- Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017).

 Dermatologist-level classification of skin cancer with deep neural networks
 [Publisher: Nature Publishing Group]. Nature, 542(7639), 115–118.
- Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383–417.
- Farboodi, M., Matray, A., Veldkamp, L., & Venkateswaran, V. (2022). Where Has All the Data Gone? Review of Financial Studies, 35(7), 3101–3138.
- Finlay, S. (2014). Predictive Analytics, Data Mining and Big Data. Palgrave MacMillan.
- Fuster, A., Goldsmith-Pinkham, P., Ramadorai, T., & Walther, A. (2022). Predictably Unequal? The Effects of Machine Learning on Credit Markets. <u>Journal of Finance</u>, 77(1), 5–47.
- Goldstein, I., Spatt, C. S., & Ye, M. (2021). Big Data in Finance. Review of Financial Studies, 34, 3213–3225.

- Harvey, C. R., Liu, Y., & Zhu, H. (2016). . . . and the Cross-Section of Expected Returns [Publisher: Narnia]. Review of Financial Studies, 29(1), 5–68.
 - Hastie, T., Tibshirani, R., & Friedman, J. (2017).

 The Elements of Statistical Learning: Data Mining, Inference, and Prediction
 [arXiv: 1011.1669v3 ISSN: 03436993].
- Kolanovic, M., & Krishnamachari, R. T. (2017). Big Data and AI Strategies Machine Learning and Alternative Data Approach to Investing Quantitative and Derivatives Strategy. J.P. Morgan report.
 - Kozak, S., Nagel, S., & Santosh, S. (2019). Shrinking the Cross Section. Journal of Financial Economics.
- Leippold, M., Wang, Q., & Zhou, W. (2022). Machine learning in the Chinese stock market. Journal of Financial Economics.
- Li, K., Mai, F., Shen, R., & Yan, X. (2021). Measuring Corporate Culture Using Machine Learning. The Review of Financial Studies, 34, 3265–3315.

- Martin, I., & Nagel, S. (2022). Market Efficiency in the Age of Big Data.

 Journal of Financial Economics, 145(1), 154–177.

 http://www.nber.org/papers/w26586
- Nagel, S. (2019). Asset Pricing and Machine Learning Lecture 1.
 Princeton Lectures in Finance.
- Obaid, K., & Pukthuanthong, K. (2022). A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news.

 Iournal of Financial Economics.
- Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C., Shpanskaya, K., Lungren, M. P., & Ng, A. Y. (2017). CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning [arXiv:1711.05225 [cs, stat]].
 - Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295–316.

DataScience Hub