Comment développer une loi de comportement avec MFront

Jean-Michel Proix⁽¹⁾ Thomas Helfer ⁽²⁾

(1) FDF R&D AMA T64

(2) CEA DEN Cad DEC SESC LSC

mai 2014

- 1 un premier exemple simple
 - une loi de Norton
 - discrétisation et développement mfront
 - premier test mtestet Code_Aster
- 2 ce que permet mfront
 - mfront?
 - algorithmesMfront
 - K tangente
 - mtest
 - adao
 - exemples mfront
- 3 développement d'une loi pas-à-pas
 - loi élastoplastique de Chaboche
- 4 conclusions

les équations

La loi de Norton est définie en 3D par : $\begin{cases} \underline{\underline{\epsilon}}^{\text{co}} = \underline{\underline{\epsilon}}^{\text{ci}} + \underline{\underline{\epsilon}}^{\text{vis}} \\ \underline{\underline{\sigma}} = \underline{\underline{\mathbf{D}}} : \underline{\epsilon}^{\text{el}} \\ \underline{\dot{\epsilon}}^{\text{vis}} = \dot{p} \underline{n} \\ \dot{p} = A \sigma_{\text{co}}^{m} \end{cases}$

$$\begin{cases} \underline{\epsilon}^{\text{to}} = \underline{\epsilon}^{\text{el}} + \underline{\epsilon}^{\text{vis}} \\ \underline{\sigma} = \underline{\mathbf{D}} : \underline{\epsilon}^{\text{el}} \\ \underline{\dot{\epsilon}}^{\text{vis}} = \dot{p} \, \underline{n} \\ \dot{p} = A \, \sigma_{eq}^{m} \end{cases}$$

- $\underline{\epsilon}^{\text{to}}$, $\underline{\epsilon}^{\text{el}}$, $\underline{\epsilon}^{\text{vis}}$ tenseurs déf. totale, élastique et visqueuse;
- $\underline{n} = \frac{3}{2} \frac{\underline{s}}{\sigma_{\text{eq}}}$ est le tenseur direction d'écoulement;
- s est le tenseur déviateur des contraintes;
- σ_{eq} est la norme de Von Mises.

 ${f D}$ est déduit du module d'Young E et du coef. de Poisson u

développement d'une loi pas-à-pas

discrétisation implicite

Discrétisation en temps : ici, implicite

- Les quantités sont écrites à l'instant ti
- les dérivées en temps sont remplacées par leurs incréments sur l'intervalle $\Delta t = t_i - t_{i-1}$

Pour la loi de Norton, on obtient :
$$\begin{cases} \Delta \, \underline{\epsilon}^{\mathrm{el}} - \Delta \, \underline{\epsilon}^{\mathrm{to}} + \Delta \, p \, \underline{n} = 0 \\ \Delta \, p - \Delta \, t \, A \, \sigma_{\mathrm{eq}}^m = 0 \end{cases}$$

avec:

$$\bullet \ \underline{n} = \frac{3}{2} \frac{\underline{s}(t_i)}{\sigma_{eq}(t_i)} .$$

Système de 7 équations à 7 inconnues : $\Delta \epsilon^{\rm el}$, Δp

premier développement avec mfront

Newton, calcul de J

$$\sigma = \underline{\mathbf{D}} : \underline{\epsilon}^{\mathrm{el}}$$

$$\underline{n} = \frac{3}{2} \frac{\underline{s}}{\sigma_{\text{eq}}}$$

$$\underline{n} = \frac{3}{2} \frac{\underline{s}}{\sigma_{\text{eq}}}$$

$$\Delta \underline{\epsilon}^{\text{el}} + \Delta p \underline{n} - \Delta \underline{\epsilon}^{\text{to}} = 0$$

$$\Delta p - \Delta t A \sigma_{\text{eq}}^{m} = 0$$

$$\Delta p - \Delta t A \sigma_{eq}^m = 0$$

mtest

compilation...

mfront -obuild -interface=aster norton.mfront
test...

mtest norton.mtest

```
@Behaviour<aster> './src/
    libAsterBehaviour.so' 'asternorton':
@MaterialProperty < constant > 'YoungModulus'
         2.E11 ;
@MaterialProperty < constant > 'PoissonRatio
          0.3 :
@MaterialProperty < constant > 'A' 8.e-67;
@MaterialProperty < constant > 'm' 8.2;
@ExternalStateVariable 'Temperature'
   293.15:
@StiffnessMatrixType 'Elastic';
@ImposedStress 'SXX' {0.:0.,30.:40.e6};
@ImposedStress 'SXY' {0.:0.,30.:40.e6};
@Times {0., 30. in 300}:
```


utilisation avec Code Aster—1/2

compilation du comportement ;

un premier exemple simple

- soit avant le calcul Code_Aster:mfront -obuild -interface=aster norton.mfront => src/libAsterBehaviour.so
- dans le fichier de commandes :
 - import os;
 - os.system("mfront -obuild -interface=aster norton.mfront".

```
dans DEFI_MATERIAU sous UMAT:
C1=178600.0E6;
C2=0.3;
C3=8...;
```

...; comme définis dans le fichier norton.mfront.

conclusions

utilisation avec Code_Aster—2/2

dans STAT_NON_LINE sous COMPORTEMENT;

- RELATION='MFRONT'
- LIBRAIRIE='libAsterBehaviour.so'
- NOM_ROUTINE='asternorton.so'
- NB_VARI=7

fonctionnalités de mfront

- un premier exemple simple
 - une loi de Norton
 - discrétisation et développement mfront
 - premier test mtestet Code_Aster
- 2 ce que permet mfront
 - mfront?
 - algorithmesMfront
 - K tangente
 - mtest
 - adao
 - exemples mfront
- développement d'une loi pas-à-pas
 - loi élastoplastique de Chaboche
- 4 conclusions

avantages de mfront

- permettre l'écriture de connaissances matériau :

 - les comportements mécaniques (plasticité,endommagement);
- mutualiser ces connaissances matériau :
 - entre différentes applications de la plate-forme pleiades,
 - maintenant interfacé avec Code Aster
 - la base de données siriusutilise des fichiers mfront en interne (+ de 100 matériaux différents);
- simplifier le travail des utilisateurs :
 - numérique : on écrit les équations, pas les algos ;
 - informatique peu de lignes à écrire ;
 - donc minimiser le risque d'erreur
- mfront produit un code efficace:
 - opérations tensorielles optimisées;
 - benchmarks avec Code_Aster de 18 lois depuis 12 mois

avantages de mfront

- permettre l'écriture de connaissances matériau :
 - les propriétés matériau; voir matériaux
 - les comportements mécaniques (plasticité,endommagement);
- mutualiser ces connaissances matériau :
 - entre différentes applications de la plate-forme pleiades,
 - maintenant interfacé avec Code_Aster
 - la base de données siriusutilise des fichiers mfront en interne (+ de 100 matériaux différents);
- simplifier le travail des utilisateurs :
 - numérique : on écrit les équations, pas les algos ;
 - informatique peu de lignes à écrire ;
 - donc minimiser le risque d'erreur
- mfront produit un code efficace :
 - opérations tensorielles optimisées;
 - benchmarks avec Code_Aster de 18 lois depuis 12 mois

avantages de mfront

- permettre l'écriture de connaissances matériau :
 - les propriétés matériau; voir ► matériaux
 - les comportements mécaniques (plasticité,endommagement);
- mutualiser ces connaissances matériau :
 - entre différentes applications de la plate-forme pleiades,
 - maintenant interfacé avec Code_Aster
 - la base de données siriusutilise des fichiers mfront en interne (+ de 100 matériaux différents);
- simplifier le travail des utilisateurs :
 - numérique : on écrit les équations, pas les algos ;
 - informatique peu de lignes à écrire;
 - donc minimiser le risque d'erreur
- mfront produit un code efficace:
 - opérations tensorielles optimisées;
 - benchmarks avec Code_Aster de 18 lois depuis 12 mois

- permettre l'écriture de connaissances matériau :

 - les comportements mécaniques (plasticité,endommagement);
- mutualiser ces connaissances matériau :
 - entre différentes applications de la plate-forme pleiades,
 - maintenant interfacé avec Code_Aster
 - la base de données siriusutilise des fichiers mfront en interne (+ de 100 matériaux différents);
- simplifier le travail des utilisateurs :
 - numérique : on écrit les équations, pas les algos ;
 - informatique peu de lignes à écrire;
 - donc minimiser le risque d'erreur
- mfront produit un code efficace :
 - opérations tensorielles optimisées;
 - benchmarks avec Code_Aster de 18 lois depuis 12 mois

algorithmes disponibles dans mfront

Connaissant en un point et à un instant t le tenseur $\varepsilon_{t+\Delta t}$, et toutes les quantités à l'instant t, mfront a pour fonction de calculer:

- les contraintes $\underline{\sigma}_{t+\Delta t}$ et les variables internes $\alpha_{t+\Delta t}$;
- l'opérateur tangent cohérent : $\frac{\partial \Delta \underline{\sigma}}{\partial \Delta \epsilon^{\text{to}}}$.
- pour plus de détail, voir algo global

en intégrant le système d'équations régissant la loi de comportement locale à l'aide de divers algorithmes :

- spécifiques (élasto-(visco)-plasticité incompressible);
- explicites (méthodes de Runge-Kutta);
- implicites (méthode de Newton-Raphson et variantes);
- libre (l'utilisateur définit l'intégration).

- si un intégrateur spécifique existe, l'utiliser :
 - réduction du nombre d'équations et méthode implicite;
- si l'on doit recourir à un autre intégrateur, préférer l'intégration implicite :
 - les temps de calculs sont souvent très avantageux ;
 - on a (plus facilement) la tangente cohérente;
- utiliser une méthode de RUNGE-KUTTA si :
 - rien d'autre n'est possible (grand nombre de variables);
- exemple sur le petit test de Norton :

traction	spec	impl	rk
30 MPa	0.032s	0.128s	0.372s
50 MPa	0.218s		10.37s

- si un intégrateur spécifique existe, l'utiliser :
 - réduction du nombre d'équations et méthode implicite;
- si l'on doit recourir à un autre intégrateur, préférer l'intégration implicite :
 - les temps de calculs sont souvent très avantageux;
 - on a (plus facilement) la tangente cohérente;
- utiliser une méthode de RUNGE-KUTTA si :
 - rien d'autre n'est possible (grand nombre de variables);
- exemple sur le petit test de Norton :

traction	spec	impl	rk
30 MPa	0.032s	0.128s	0.372s
50 MPa	0.218s		10.37s

si un intégrateur spécifique existe, l'utiliser :

ce que permet mfront

- réduction du nombre d'équations et méthode implicite;
- si l'on doit recourir à un autre intégrateur, préférer l'intégration implicite :
 - les temps de calculs sont souvent très avantageux;
 - on a (plus facilement) la tangente cohérente;
- utiliser une méthode de RUNGE-KUTTA si :
 - rien d'autre n'est possible (grand nombre de variables);
- exemple sur le petit test de Norton :

conclusions

si un intégrateur spécifique existe, l'utiliser :

ce que permet mfront

- réduction du nombre d'équations et méthode implicite;
- si l'on doit recourir à un autre intégrateur, préférer l'intégration implicite :
 - les temps de calculs sont souvent très avantageux;
 - on a (plus facilement) la tangente cohérente;
- utiliser une méthode de RUNGE-KUTTA si :
 - rien d'autre n'est possible (grand nombre de variables);
- exemple sur le petit test de Norton :

traction	spec	impl	rk
30 MPa	0.032s	0.128s	0.372s
50 MPa	0.218s	0.228s	10.37s

• quatre intégrateurs spécifiques :

- IsotropicMisesCreep, écoulement viscoplastique isotrope $dp = f(\sigma_{eq})$;
- IsotropicStrainHardeningMisesCreep, écoulement viscoplastique isotrope avec écrouissage $dp=f\left(\sigma_{\mathrm{eq}},p\right)$;
- IsotropicPlasticMisesFlow, écoulement plastique isotrope $f\left(\sigma_{\mathrm{eq}},p\right)<=0$;
- MultipleIsotropicMisesFlows, une somme des différents écoulements précédents;
- l'élasticité est élastique isotrope :
 - les coefficients d'élasticité sont donnés par le code aux éléments finis;
- il suffit de donner la (ou les) fonction(s) f et ses dérivées;
- algorithme optimisé, réduction à une équation scalaire.

• quatre intégrateurs spécifiques :

- IsotropicMisesCreep, écoulement viscoplastique isotrope $dp = f(\sigma_{eq})$;
- IsotropicStrainHardeningMisesCreep, écoulement viscoplastique isotrope avec écrouissage $dp=f\left(\sigma_{\mathrm{eq}},p\right)$;
- IsotropicPlasticMisesFlow, écoulement plastique isotrope $f\left(\sigma_{\mathrm{eq}},p\right)<=0$;
- MultipleIsotropicMisesFlows, une somme des différents écoulements précédents;
- l'élasticité est élastique isotrope :
 - les coefficients d'élasticité sont donnés par le code aux éléments finis;
- il suffit de donner la (ou les) fonction(s) f et ses dérivées ;
- algorithme optimisé, réduction à une équation scalaire.

- quatre intégrateurs spécifiques :
 - IsotropicMisesCreep, écoulement viscoplastique isotrope $dp = f(\sigma_{eq})$;
 - IsotropicStrainHardeningMisesCreep, écoulement viscoplastique isotrope avec écrouissage $dp=f\left(\sigma_{\mathrm{eq}},p\right)$;
 - IsotropicPlasticMisesFlow, écoulement plastique isotrope $f\left(\sigma_{\mathrm{eq}},p\right)<=0$;
 - MultipleIsotropicMisesFlows, une somme des différents écoulements précédents;
- l'élasticité est élastique isotrope :
 - les coefficients d'élasticité sont donnés par le code aux éléments finis;
- il suffit de donner la (ou les) fonction(s) f et ses dérivées;
- algorithme optimisé, réduction à une équation scalaire.

• quatre intégrateurs spécifiques :

- IsotropicMisesCreep, écoulement viscoplastique isotrope $dp = f(\sigma_{eq})$;
- IsotropicStrainHardeningMisesCreep, écoulement viscoplastique isotrope avec écrouissage $dp=f\left(\sigma_{\mathrm{eq}},p\right)$;
- IsotropicPlasticMisesFlow, écoulement plastique isotrope $f\left(\sigma_{\mathrm{eq}},p\right)<=0$;
- MultipleIsotropicMisesFlows, une somme des différents écoulements précédents;
- l'élasticité est élastique isotrope :
 - les coefficients d'élasticité sont donnés par le code aux éléments finis;
- il suffit de donner la (ou les) fonction(s) f et ses dérivées;
- algorithme optimisé, réduction à une équation scalaire.

```
@Parser IsotropicMisesCreep ;
@Behaviour Norton;

@MaterialProperty stress A;
@MaterialProperty stress m;

@FlowRule{
  real tmp=A*pow(seq,m-1.);
   df_dseq = m*tmp;
  f = seq*tmp;
```

 $\dot{Y}=G\left(Y,t\right)$ avec : $\left[\Delta\,Y\right]^T=\left[\Delta\underline{\epsilon}^{\mathrm{el}}\;,\;\Delta\alpha\right]$ où t représente symboliquement l'évolution des variables externes et de la déformation totale ;

- le système différentiel s'écrit dans un bloc @Derivative;
- pour toute variable interne ou externex, dx représente la vitesse dans @ComputeStress et @Derivative
 ce n'est pas l'incrément!
- le code du bloc @UpdateAuxiliaryStateVariables peut être appelé plusieurs fois. Il faut utiliser la variable locale dt_ pour connaître le pas de temps effectivement utilisé (dt désigne toujours le pas de temps total)

 $\dot{Y} = G(Y,t)$ avec : $[\Delta Y]^T = [\Delta \underline{\epsilon}^{\mathrm{el}} , \Delta \alpha]$ où t représente symboliquement l'évolution des variables externes et de la déformation totale ;

- le système différentiel s'écrit dans un bloc @Derivative;
- pour toute variable interne ou externex, dx représente la vitesse dans @ComputeStress et @Derivative
 ce n'est pas l'incrément!
- le code du bloc @UpdateAuxiliaryStateVariables peut être appelé plusieurs fois. Il faut utiliser la variable locale dt_ pour connaître le pas de temps effectivement utilisé (dt désigne toujours le pas de temps total)

 $\dot{Y}=G\left(Y,t\right)$ avec : $\left[\Delta\,Y\right]^T=\left[\Delta\underline{\epsilon}^{\mathrm{el}}\;,\;\Delta\alpha\right]$ où t représente symboliquement l'évolution des variables externes et de la déformation totale :

- le système différentiel s'écrit dans un bloc @Derivative;
- pour toute variable interne ou externex, dx représente la vitesse dans @ComputeStress et @Derivative
 - ce n'est pas l'incrément!
- le code du bloc @UpdateAuxiliaryStateVariables peut être appelé plusieurs fois. Il faut utiliser la variable locale dt_ pour connaître le pas de temps effectivement utilisé (dt désigne toujours le pas de temps total)

 $\dot{Y} = G(Y,t)$ avec : $[\Delta Y]^T = [\Delta \underline{\epsilon}^{\mathrm{el}}, \Delta \alpha]$ où t représente symboliquement l'évolution des variables externes et de la déformation totale ;

- le système différentiel s'écrit dans un bloc @Derivative;
- pour toute variable interne ou externex, dx représente la vitesse dans @ComputeStress et @Derivative
 - ce n'est pas l'incrément!
- le code du bloc @UpdateAuxiliaryStateVariables peut être appelé plusieurs fois. Il faut utiliser la variable locale dt_ pour connaître le pas de temps effectivement utilisé (dt désigne toujours le pas de temps total)

```
@Parser RungeKutta;
@Algorithm rk54;
@Behaviour Norton;
@RequireStiffnessTensor;
@MaterialProperty real A;
@MaterialProperty real m;
@StateVariable real
@ComputeStress{ sig = D*eel;}
@TangentOperator{ Dt=D;}
@Derivative {
  real sigeq = sigmaeq(sig);
  Stensor n(0.):
  if (sigeq > 1.e-15){
    n = 1.5*deviator(sig)/sigeq;
  dp = A*pow(sigeq,m);
  deel = deto - dp*n;
```

Runge-Kutta ordres 4 et 5

$$\underline{\underline{\sigma}} = \underline{\underline{\mathbf{D}}} : \underline{\epsilon}^{\text{el}}$$
 \underline{eel} défini par défaut

$$\underline{n} = \frac{3}{2} \frac{\underline{s}}{\sigma_{\text{eq}}}$$

$$dp = A \sigma_{eq}^{m}$$

$$d \epsilon^{el} = d \epsilon^{to} - d p n$$

- propriété matériau @MaterialProperty:
 - fournie par le code appelant!
- variable local @Local Variable:
 - calcul de certains termes avant l'intégration (exemple de termes d'ARRHENIUS);
- variable interne @StateVariable;
- variable auxiliaire @AuxiliaryStateVariable: permet de réduire la taille des systèmes à intégrer;
- variable externe @ExternalStateVariable;
- notations;
 - mots réservés : eel, eto, sig,;
 - explicite : pour toute variable a, da est la vitesse ;
 - implicite : da est l'incrément, fa est l'équation, dfa_dda la dérivée :

Deux analyseurs :

- Implicit qui déclare automatiquement la déformation élastique;
- ImplicitII qui ne déclare pas automatiquement la déformation élastique;
- différents algorithmes :
 - NewtonRaphson (jacobienne calculée par l'utilisateur);
 - NewtonRaphson_NumericalJacobian (jacobienne calculée par différence finie centrée);
 - Broyden (jacobienne partielle);
 - Powell DogLeg (méthode de Powell combinant Gauss et Newton);

- le système différentiel devient un système non-linéaire : $[F\left(\Delta Y\right) = \Delta Y \Delta \, t \, G\left(Y_t + \theta \Delta Y, t + \theta \, \Delta t\right) = 0 \text{ avec : } \\ \left[\Delta \, Y\right]^T = \left[\Delta \underline{\epsilon}^{\text{el}} \, , \, \Delta \alpha\right]$
- pour les lois indépendantes du temps, on annule directement la surface de charge!
- on résout ce système par un NEWTON-RAPHSON
 - il faut la jacobienne $J = \frac{\partial F}{\partial \Delta Y}$
- la jacobienne peut être calculée par blocs :

$$J = \frac{\partial F}{\partial Y} = \begin{pmatrix} \frac{\partial f_{y_1}}{\partial y_1} & \dots & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \frac{\partial f_{y_l}}{\partial y_j} & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & \dots & \dots & \dots & \frac{\partial f_{y_N}}{\partial y_N} \end{pmatrix}$$

• on peut demander une vérification numérique!

- le système différentiel devient un système non-linéaire : $\left[F\left(\Delta \, Y \right) = \Delta Y \Delta \, t \, G \left(Y_t + \theta \Delta Y, t + \theta \, \Delta t \right) = 0 \text{ avec : } \\ \left[\Delta \, Y \right]^T = \left[\Delta \underline{\epsilon}^{\text{el}} \, , \, \Delta \alpha \right]$
- pour les lois indépendantes du temps, on annule directement la surface de charge!
- on résout ce système par un NEWTON-RAPHSON
 - il faut la jacobienne $J = \frac{\partial F}{\partial \Delta Y}$
- la jacobienne peut être calculée par blocs :

• on peut demander une vérification numérique!

- le système différentiel devient un système non-linéaire : $[F\left(\Delta Y\right) = \Delta Y \Delta \, t \, G\left(Y_t + \theta \Delta Y, t + \theta \, \Delta t\right) = 0 \text{ avec : } \\ \left[\Delta \, Y\right]^T = \left[\Delta \underline{\epsilon}^{\text{el}} \, , \, \Delta \alpha\right]$
- pour les lois indépendantes du temps, on annule directement la surface de charge!
- on résout ce système par un Newton-Raphson
 - il faut la jacobienne $J = \frac{\partial F}{\partial \Delta Y}$
- la jacobienne peut être calculée par blocs :

• on peut demander une vérification numérique!

- le système différentiel devient un système non-linéaire : $[F\left(\Delta Y\right) = \Delta Y \Delta \, t \, G\left(Y_t + \theta \Delta Y, t + \theta \, \Delta t\right) = 0 \text{ avec : } \\ \left[\Delta \, Y\right]^T = \left[\Delta \underline{\epsilon}^{\text{el}} \, , \, \Delta \alpha\right]$
- pour les lois indépendantes du temps, on annule directement la surface de charge!
- on résout ce système par un Newton-Raphson
 - il faut la jacobienne $J = \frac{\partial F}{\partial \Delta Y}$
- la jacobienne peut être calculée par blocs :

$$J = rac{\partial F}{\partial Y} = egin{pmatrix} rac{\partial f_{y_1}}{\partial y_1} & \cdots & \cdots & \cdots & \cdots \\ dots & dots & dots & dots & dots \\ dots & dots & rac{\partial f_{y_1}}{\partial y_j} & dots & dots \\ dots & dots & dots & dots & dots & dots \\ dots & dots & dots & dots & dots & dots & dots \\ dots & dots & dots & dots & dots & dots & dots \\ dots & dots & dots & dots & dots & dots & dots \\ dots & dots \\ dots & dots \\ dots & dots$$

on peut demander une vérification numérique!

- le système différentiel devient un système non-linéaire : $[F\left(\Delta Y\right) = \Delta Y \Delta \, t \, G\left(Y_t + \theta \Delta Y, t + \theta \, \Delta t\right) = 0 \text{ avec : } \\ \left[\Delta \, Y\right]^T = \left[\Delta \underline{\epsilon}^{\text{el}} \, , \, \Delta \alpha\right]$
- pour les lois indépendantes du temps, on annule directement la surface de charge!
- on résout ce système par un NEWTON-RAPHSON
 - il faut la jacobienne $J = \frac{\partial F}{\partial \Delta Y}$
- la jacobienne peut être calculée par blocs :

$$J = rac{\partial F}{\partial Y} = egin{pmatrix} rac{\partial f_{y_1}}{\partial y_1} & \dots & \dots & \dots \\ dots & dots & dots & dots & dots \\ dots & dots & dots & dots & dots \\ dots & dots & dots & dots & dots \\ dots & dots & dots & dots & dots \\ dots & dots & dots & dots & dots \\ dots & dots & dots & dots & dots \\ dots & dots & dots & dots & dots \\ dots & dots & dots & dots & dots \\ dots & dots & dots & dots & dots & dots \\ dots & dots & dots & dots & dots & dots \\ dots & dots & dots & dots & dots & dots & dots \\ dots & dots \\ dots & do$$

on peut demander une vérification numérique!

Exemple : loi de Norton avec intégration implicite

Le système à résoudre étant toujours défini par :

- feel= $\Delta \, \underline{\epsilon}^{\mathrm{el}} + \Delta \, p \, \underline{n} \Delta \, \underline{\epsilon}^{\mathrm{to}}$
- fp= $\Delta p \Delta t A \sigma_{\rm eq}^m$

Listons les différentes dérivées à calculer :

•
$$dfeel_deel = \frac{\partial}{\partial \Delta \underline{\epsilon}^{\mathrm{el}}} \left(\Delta \underline{\epsilon}^{\mathrm{el}} + \Delta p \, \underline{n} - \Delta \, \varepsilon \right) = \tilde{I} + \Delta p \frac{\partial \underline{n}}{\partial \Delta \, \underline{\epsilon}^{\mathrm{el}}}$$

$$\text{avec} \quad \tilde{I}_{ijkl} = \frac{1}{2} (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})$$

- $dfeel_ddp = \underline{n}$
- $dfp_ddeel = -\Delta t A m \sigma_{eq}^{m-1} \frac{\partial(\sigma)_{eq}}{\partial \Delta \underline{\epsilon}^{el}} = -\Delta t A m \sigma_{eq}^{m-1} \theta \underline{n} | D$

Les dérivées de la normale
$$\underline{n}$$
 sont : $\frac{\partial \underline{n}}{\partial \Delta \underline{\epsilon}^{\mathrm{el}}} = \frac{2\mu}{(\sigma)_{\mathrm{eq}}} \left(M - \underline{n} \otimes \underline{n} \right)$

Le tenseur $\underline{\underline{\mathbf{M}}}$ étant défini par : $\underline{\underline{\mathbf{M}}} = \frac{3}{2}\underline{\underline{\mathbf{I}}} - \frac{1}{2}\underline{I} \otimes \underline{I}$

Exemple : loi de Norton avec intégration implicite —1/2

La première partie de norton.mfront est inchangée. On a oté : Algorithm NewtonRaphson_NumericalJacobian;

```
@Parser Implicit;
@Behaviour Norton;
@RequireStiffnessTensor;
@Epsilon 1.e-12;
@MaterialProperty stress young;
@MaterialProperty real nu;
@MaterialProperty real A;
@MaterialProperty real m;
@StateVariable real p;
@TangentOperator{
  Stensor4 Je:
  getPartialJacobianInvert(Je):
  Dt = D*Je:
@ComputeStress{ sig = D*eel;}
```

La matrice jacobienne J est programmée :

```
@Integrator{
  real seg = sigmaeg(sig);
  real inv seq=0.;
  if (seq > 1.e-15){
   inv seq = 1./seq;
  Stensor n = 1.5*deviator(sig)*inv seq;
  feel += dp*n-deto;
  fp = -e dt *A*pow(seq,m);
  // jacobienne
  const Stensor4 Jmn = Stensor4::M() - (n^n);
  const real mu = young/2/(1.+nu);
  dfeel ddeel += 2.*mu*theta*dp*Jmn*inv seq ;
  dfeel ddp = n;
 dfp\_ddeel = - dt*A*m*pow(seq,m-1)*theta*(n| D);
 dfp ddp = 1;
```

- L'intégration de la loi de comportement est effectuée soit en explicite, soit en implicite;
- On obtient les contraintes $\underline{\sigma}_{t+\Delta t}$ et les variables internes $\alpha_{t+\Delta t}$;
- Mais pour qu'un calcul de structure converge vite, il faut calculer l'opérateur tangent cohérent :

$$\frac{\partial \Delta \underline{\sigma}}{\partial \Delta \epsilon^{\mathsf{to}}}$$

conclusions

l'opérateur tangent en mfront

ce que permet mfront

Dans le cas d'une intégration explicite, on utilise l'opérateur d'élasticité D

```
@TangentOperator{
                   Dt=D;
```

Dans le cas implicite, on peut souvent construire facilement l'opérateur tangent cohérent :

```
@TangentOperator {
  Stensor4 Je:
  getPartialJacobianInvert(Je):
  Dt = D*Je:
```

Il est extrait de l'inverse de la jacobienne J soit programmée, soit estimée numériquement par

- pour simuler la réponse d'un point matériel (comme SIMU_POINT_MAT);
- piloter en contraintes ou/en déformations ou de manière mixte;
- l'algorithme de résolution peut être paramétré :
 - matrice de prédiction, matrice tangente cohérente (interface Code_Aster);
 - sous-découpage du pas de temps;
 - etc...
- possibilité de comparer les résultats à une solution analytique ou des fichiers de références (non régression);
- les lois mfront peuvent générer des fichiers mtest en cas de non convergence d'un calcul de structure

exemple de fichier mtest

```
@Behaviour<aster> 'src/libAsterBehaviour.so' '
   asterburger';
@MaterialProperty < constant > 'young' 31000.;
@MaterialProperty < constant > 'nu' 0.3;
@MaterialProperty < constant > 'KRS' 2.0E5;
@MaterialProperty < constant > 'NRS' 4.0E10;
```

. . .

```
@ExternalStateVariable 'Temperature' 293.15;
@ExternalStateVariable 'C' 1.;
@ImposedStress 'SZZ' {0.: 0., 1.: -1., 31536010. : -1.};
@Times {0.,1. in 1, 138629.44 in 10,8640000. in 10 };
@Test<file > 'burger.ref' { 'EZZ':4} 1.e-8 ;
```

Utilisation: mtest fichier.mtest

exemples de simulations mtest

adao

- recalage des propriétés matériau;
- utilise Code_Aster+ mfrontou directement mtest;

(pour

plus de détail, voir (adao).

Hayhurst

• loi de fluage tertiaire (avec endommagement) • Hayhurst.mfront

Mazars

loi de Mazars
 ▶ Mazars.mfront

lois monocristallines - MC—DD-CFC—DD-CC

à vos claviers!

- - une loi de Norton
 - discrétisation et développement mfront
 - premier test mtestet Code_Aster

ce que permet mfront

- - mfront?
 - algorithmesMfront
 - K tangente
 - mtest
 - adao
 - exemples mfront
- développement d'une loi pas-à-pas
 - loi élastoplastique de Chaboche

formulation de la loi élastoplastique de Chaboche

Les équations du modèle sont résumées brièvement :

contraintes déformations élastiques :

$$\underline{\sigma} = \underline{\mathbf{D}} : (\underline{\epsilon}^{to} - \underline{\epsilon}^p)$$

Critère de plasticité :

$$F(\underline{\sigma}, \underline{X}) = (\sigma - \underline{X})_{eq} - R(p) \le 0$$

loi d'écoulement normale au critère :

$$\dot{\underline{\epsilon}}^{\mathrm{p}} = \dot{p}\,\underline{n} \; \mathrm{avec} \; \underline{n} = rac{3}{2} rac{\underline{\sigma}^{dev} - \underline{X}}{(\sigma - \underline{X})_{\mathrm{eq}}}$$

- \underline{X} écrouissages cinématiques : $\underline{X} = \underline{X}_1 + \underline{X}_2 + ...$;
- L'évolution de \underline{X}_i :

$$\underline{X}_i = \frac{2}{3}C_i\underline{\alpha}_i \text{ avec} : \underline{\dot{\alpha}}_i = \underline{\dot{\epsilon}}^p - \gamma_i\,\underline{\alpha}_i\,\dot{p};$$

• l'écrouissage isotrope R(p) est défini par : $R(p) = R^{\infty} + (R^0 - R^{\infty}) \exp(-bp)$;

• paramètres E, ν , R^0 , R^∞ , b, C_1 , C_2 ,..., C_n , γ_1 , γ_2 ,..., γ_n

discrétisation de la loi élastoplastique de Chaboche

Les inconnues sont : $\Delta \underline{\epsilon}^{el}$; Δp ; $\Delta \underline{\alpha}_i$;

- $\begin{array}{l} \bullet \;\; \text{Test} : \text{si} \\ F^{el}\left(\underline{\sigma},\underline{X}\right) = \left(\underline{\sigma}^{tr} \underline{X}|_{t}\right)_{\text{eq}} R\left(p|_{t}\right) < 0 \\ \text{avec} : \\ \underline{\sigma}^{tr} = \underline{D} : \;\; \left(\underline{\epsilon}^{\text{el}}|_{t} + \Delta\,\underline{\epsilon}^{\text{to}}\right) \\ \text{alors la solution est \'elastique} : \\ \Delta\,\underline{\epsilon}^{\text{p}} = 0 \quad \Delta\,p = 0 \quad \Delta\,\underline{\alpha}_{i} = \underline{0} \\ \end{array}$
- Sinon, il faut résoudre le système suivant :

$$\begin{split} F(\sigma,X) &= 0 &\Leftrightarrow \\ \left\{ \begin{aligned} \underline{\sigma}|_{t+\Delta\,t} &- \underline{X}|_{t+\Delta\,t}) \mathrm{eq} - R(p(t+\Delta\,t)) = 0 \\ \Delta\,\underline{\alpha}_i &- \Delta\,\underline{\epsilon}^\mathrm{p} + \gamma_i(\underline{\alpha}_i + \theta\Delta\underline{\alpha}_i)\Delta\,p = \underline{0} \\ \Delta\,\underline{\epsilon}^\mathrm{el} &- \Delta\,\underline{\epsilon}^\mathrm{to} + \Delta\,\underline{\epsilon}^\mathrm{p} = \underline{0} \end{aligned} \right. \\ \mathrm{O\grave{u}}\,\,\Delta\,\underline{\epsilon}^\mathrm{p} &= \Delta\,p\,\,\underline{n}|_{t+\Delta\,t} \end{split}$$

intégration implicite dans mfront—1/3

```
@Parser Implicit;
@Behaviour Chaboche:
@Algorithm NewtonRaphson NumericalJacobian;
@RequireStiffnessTensor;
@Theta 1. ;
@MaterialProperty stress young;
@MaterialProperty real nu;
@MaterialProperty real R inf:
@MaterialProperty real R 0;
@MaterialProperty real b;
@MaterialProperty real C[2]:
@MaterialProperty real g[2];
@StateVariable real p:
@StateVariable Stensor a[2];
@LocalVariable real Fel;
@InitLocalVars{ Stensor sigel=D*(eel+deto);
  for (unsigned short i=0; i!=2;++i) {
      sigel = C[i] * a[i]/1.5;
  const real segel = sigmaeg(sigel);
  const real Rpel = R_{inf} + (R_0-R_{inf})*exp(-b*p);
  Fel = segel - Rpel; // prediction elastique}
@ComputeStress{ sig = D*eel;}

    4 □ ト ← □ ト ← 필 ト ● □ ■ 의 및 약
```

intégration implicite dans mfront—2/3

```
@Integrator{
  if (Fel > 0) { // solution plastique
     // Les variables suivies de sont en t+theta*dt
     const real p = p +theta*dp ;
     const real Rp = R inf + (R 0-R inf)*exp(-b*p);
     Stensor a [2];
     Stensor sr = deviator(sig);
     for(unsigned short i=0;i!=2;++i){
         a[i] = a[i] + theta * da[i]:
         -= C[i]*a_[i]/1.5;
     } // tenseur Sigma-X
     const stress seq = sigmaeq(sr);
     Stensor n = 1.5*sr/seq;
     feel = deel - deto + dp*n;
     fp = (seq-Rp )/young; // pour normaliser
     for(unsigned short i=0;i!=2;++i){
       fa[i] = da[i] - dp*(n-g[i]*a[i]);
  } else {
     feel = deel - deto; // solution elastique }
```

intégration implicite dans mfront—3/3

opérateurs tangents

```
@TangentOperator{
  if ((smt==ELASTIC) || (smt==SECANTOPERATOR)) {
    Dt=D; // matrice elastique
} else if (smt==CONSISTANTTANGENTOPERATOR) {
    Stensor4 Je;
    getPartialJacobianInvert(Je);
    Dt = D*Je; // matrice tangente coherente
}
}
```

compilation:

```
mfront -obuild -interface=aster
Chaboche.mfront
```

petit test : cycles de traction-compression

```
@Behaviour<aster> 'src/libAsterBehaviour.
    so' 'asterchaboche':
@MaterialProperty < constant > 'young'
    200000. ;
@MaterialProperty < constant > 'nu' 0.33 ;
@MaterialProperty < constant > 'R inf' 50.;
@MaterialProperty < constant > 'R 0' 30. :
@MaterialProperty < constant > 'b' 20.;
@MaterialProperty < constant > 'C[0]'
    187000.:
@MaterialProperty < constant > 'C[1]' 45000.;
@MaterialProperty < constant > 'g[0]' 4460.:
@MaterialProperty < constant > 'g[1]' 340.;
@ExternalStateVariable 'Temperature' 0.;
@Times {0.,5. in 1000};
@ImposedStrain 'EYY'
    \{0.:0.,1.:0.007,2.:-0.007,3.:0.007,4.:-0.007,5.:0.007\}
```

```
Loi de Chaboche
    200
    100
Sigma (MPa)
   -100
                                   Epsilon total
```

exercice : modèle viscoplastique

```
Le critère de plasticité : F(\sigma,X) = (\sigma-X)_{\rm eq} - R(p) \leq 0 est remplacé par : \dot{p} = \langle \frac{F}{K} \rangle^m où : \langle F \rangle = \max(0,F) Dans le fichier mfront, fp= (seq_-Rp_) /young; devient : fp -= pow (F*UNsurK, m) *dt; Les propriétés matériau ajoutées : UNsurK et m
```

et si cela plante? Comment faire?

- erreurs de compilation souvent explicites;
 - Viscochab.mfront:94: error: 'F' was not declared in this scope
 - Viscochab.mfront:74: warning: unused variable 'Rp'
 - Viscochab.mfront:91: error: expected ',' or ';' before 'if' (oubli d'un ";" en fin de ligne)
- compilation avec -debug;
- impression de variables cout « "seq=" « seq « end; ;
- compilation avec CXXFLAGS='-g';
- générer des fichiers mtest @AsterGenerateMTestFileOnFailure=true;

- ajouts de nouveaux comportements : "very easy!";
- déjà dans la base de tests de Code_Aster!:

nom de la loi de comportement	test Code_Aster
loi élastoplastique de Chaboche	mfron01a
loi viscoplastique de Chaboche	mfron01b
loi viscoplastique de Hayhurst	mfron02a,b
loi d'endommagement de Mazars	mfron02c,d,e
loi de fluage de béton Burger	mfron02f,g
loi cristalline Méric-Cailletaud	mfron03b,c,d
loi cristalline DD_CFC (IRRA)	mfron03e,f,g
loi cristalline DD_CC (IRRA)	mfron03h,i
loi meta-lema-ani phases méta	mfron03j-n

- loi de LEMAÎTRE anisotrope : StrainHardeningCreep.mfront
- lois d'endommagement : Lorentz.mfront ,...;
- lois CZM : Tvergaard.mfront,...;
- lois monocristallines en grandes déformations FiniteStrainMonoCristal.mfront
- ...

72 lois de comportements dans la base de cas tests

contraintes planes (généralisées)

- déformation axiale $\underline{\epsilon}^{\text{to}}_{z}$ == variable interne supplémentaire;
- hypothèses :

un premier exemple simple

- la déformation élastique e^{el} == variable interne;
- la déformation totale n'intervient que dans $f_{\epsilon^{el}}$;
- partition des déformations :

$$f_{\epsilon^{\mathrm{el}}} = \Delta \underline{\epsilon}^{\mathrm{el}} - \Delta \underline{\epsilon}^{\mathrm{to}} - \Delta \underline{\epsilon}^{\mathrm{to}}_{z} \ \vec{e}_{z} \otimes \vec{e}_{z} + \dots$$

- aucune des autres équations du système implicite n'est modifiée :
- équation associée à $\underline{\epsilon}^{\mathrm{to}}_{z}$: $f_{\underline{\epsilon}^{\mathrm{to}}_{z}} = \frac{1}{F'}\sigma_{z}$
- contraintes planes généralisées : $f_{\underline{\epsilon}^{\text{to}}z} = \frac{1}{F'} \left(\sigma_z \sigma_z^{\text{équilibre}} \right)$

- ajouts de nouveaux analyseurs spécifiques :
 - plasticité/viscoplasticité isotrope compressible;
- matrice tangente cohérente :
 - facile pour algorithmes spécifiques et implicites;
 - pour l'intégration explicite ou par BROYDEN? :
- support de lois mécaniques générales :
 - transformations finies (presque fini);
 - couplages de lois de fluage, d'endommagement;
 - autres physiques : thermique non linéaire, métallurgie;
 - mécanique des sols : Cam-Clay, Drucker-Prager, THM,...
 - lois à gradient;
 - ... ;

ANNEXES: algorithme global

- algorithme global
- 6 KtgtFromJ
- lois particulières
 - loi de Hayhurst
 - loi de Mazars
 - un exemple de loi cristalline
 - loi meta-lema-ani
- 8 Propriétés matériau
- g contraintes planes
- 10 fonctionnement adao

équilibre mécanique : trouver $\Delta \vec{u}$ tel que :

- ullet $ec{R}\left(\Delta ec{u}
 ight) = ec{O}$ avec $ec{R}\left(\Delta ec{u}
 ight) = ec{F_i}\left(\Delta ec{u}
 ight) ec{F_e}$
- force interne élémentaire : $\vec{F}_i^{elem} = \sum_{i=1}^{N_G} \left(\underline{\sigma}_{t+\Delta t} \left(\Delta \underline{\epsilon}^{to}, \Delta t \right) : \underline{\underline{\mathbf{B}}} \right) w_i$
- résolution par Newton-Raphson : $\Delta \vec{u}^{n+1} = \Delta \vec{u}^n \underline{\mathbb{K}}^{-1} . \vec{R} \left(\Delta \vec{u}^n \right)$
- calcul de la raideur élémentaire : $\underline{\underline{\mathbb{E}}}^e = \sum_{i=1}^{N^o} {}^t\underline{\underline{\mathbf{B}}} : \frac{\partial \Delta \underline{\sigma}}{\partial \Delta \underline{\epsilon}^{to}} : \underline{\underline{\mathbf{B}}} w_i$ où $\frac{\partial \Delta \underline{\sigma}}{\partial \Delta \epsilon^{to}}$ est la *matrice tangente cohérente*.

algorithmesMfront

équilibre mécanique : trouver $\Delta \vec{u}$ tel que :

- ullet $ec{R}\left(\Delta ec{u}
 ight) = ec{O}$ avec $ec{R}\left(\Delta ec{u}
 ight) = ec{F_i}\left(\Delta ec{u}
 ight) ec{F_e}$
- force interne élémentaire : $\vec{F}_i^{elem} = \sum_{i=1}^{N_G} \left(\underline{\sigma}_{t+\Delta t} \left(\Delta \underline{\epsilon}^{\text{to}}, \Delta t \right) : \underline{\underline{\mathbf{B}}} \right) w_i$
- résolution par Newton-Raphson : $\Delta \vec{u}^{n+1} = \Delta \vec{u}^n \underline{\mathbb{K}}^{-1} . \vec{R} \left(\Delta \vec{u}^n \right)$
- calcul de la raideur élémentaire : $\underline{\underline{\mathbb{K}}}^e = \sum_{i=1}^{N^o} {}^t\underline{\underline{\mathbf{B}}} : \frac{\partial \underline{\Delta}\underline{\sigma}}{\partial \underline{\Delta}\underline{\epsilon}^{to}} : \underline{\underline{\mathbf{B}}} w_i$ où $\frac{\partial \underline{\Delta}\underline{\sigma}}{\partial \underline{\Delta}\underline{\epsilon}^{to}}$ est la *matrice tangente cohérente*.

▶ algorithmesMfront

équilibre mécanique : trouver $\Delta \vec{u}$ tel que :

- $\bullet \ \vec{R} \left(\Delta \vec{u} \right) = \vec{O} \ \text{avec} \ \vec{R} \left(\Delta \vec{u} \right) = \vec{F_i} \left(\Delta \vec{u} \right) \vec{F_e}$
- force interne élémentaire : $\vec{F}_i^{elem} = \sum_{i=1}^{N_G} \left(\underline{\sigma}_{t+\Delta t} \left(\Delta \underline{\epsilon}^{\text{to}}, \Delta t \right) : \underline{\underline{\mathbf{B}}} \right) w_i$
- résolution par Newton-Raphson :

$$\Delta \vec{u}^{n+1} = \Delta \vec{u}^n - \left(\frac{\partial \vec{R}}{\partial \Delta \vec{u}} \bigg|_{\Delta \vec{u}^n} \right)^{-1} . \vec{R} \left(\Delta \vec{u}^n \right) = \Delta \vec{u}^n - \underline{\underline{\mathbb{K}}}^{-1} . \vec{R} \left(\Delta \vec{u}^n \right)$$

• calcul de la raideur élémentaire : $\underline{\underline{\mathbb{K}}}^e = \sum_{i=1}^{N^o} {}^t\underline{\underline{\mathbf{B}}} : \frac{\partial \underline{\Delta}\underline{\sigma}}{\partial \underline{\Delta}\underline{\epsilon}^{to}} : \underline{\underline{\mathbf{B}}} w_i$ où $\frac{\partial \underline{\Delta}\underline{\sigma}}{\partial \underline{\Delta}\underline{\epsilon}^{to}}$ est la *matrice tangente cohérente*.

▶ algorithmesMfront

équilibre mécanique : trouver $\Delta \vec{u}$ tel que :

- $\vec{R}\left(\Delta \vec{u}\right) = \vec{O}$ avec $\vec{R}\left(\Delta \vec{u}\right) = \vec{F_i}\left(\Delta \vec{u}\right) \vec{F_e}$
- force interne élémentaire : $\vec{F}_i^{elem} = \sum_{i=1}^{N_G} \left(\underline{\sigma}_{t+\Delta t} \left(\Delta \underline{\epsilon}^{\text{to}}, \Delta t \right) : \underline{\underline{\mathbf{B}}} \right) w_i$
- résolution par Newton-Raphson : $\Delta \vec{u}^{n+1} = \Delta \vec{u}^n \underline{\mathbb{K}}^{-1} . \vec{R} \left(\Delta \vec{u}^n \right)$
- calcul de la raideur élémentaire : $\underline{\underline{\mathbb{K}}}^e = \sum_{i=1}^{N^G} {}^t\underline{\underline{\mathbf{B}}} : \frac{\partial \underline{\Delta}\underline{\sigma}}{\partial \underline{\Delta}\underline{\epsilon}^{\text{to}}} : \underline{\underline{\mathbf{B}}} w_i$ où $\frac{\partial \underline{\Delta}\underline{\sigma}}{\partial \underline{\Delta}\epsilon^{\text{to}}}$ est la *matrice tangente cohérente*.

▶ algorithmesMfront

ANNEXES: matrice tangente

- algorithme globa
- 6 KtgtFromJ
- lois particulières
 - loi de Hayhurst
 - loi de Mazars
 - un exemple de loi cristalline
 - loi meta-lema-ani
- Propriétés matériau
- g contraintes planes
- fonctionnement adao

une façon générique de calculer la tangente cohérente

Il faut calculer :
$$\frac{\partial \Delta \, \underline{\sigma}}{\partial \Delta \, \underline{\epsilon}^{\mathrm{to}}} = \left. \frac{\partial \underline{\sigma}}{\partial \underline{\epsilon}^{\mathrm{el}}} \right|_{\underline{\epsilon}^{\mathrm{el}} + \Delta \, \underline{\epsilon}^{\mathrm{el}}} : \frac{\partial \Delta \, \underline{\epsilon}^{\mathrm{el}}}{\partial \Delta \, \underline{\epsilon}^{\mathrm{to}}}$$

 $\text{On a r\'esolu}: F\left(\Delta \mathit{Y}, \Delta \,\underline{\epsilon}^{\text{to}}\right) = \bar{0} \,\, \text{avec} \,\, \vdots \, \left[\Delta \mathit{Y}\right]^T = \left[\Delta \underline{\epsilon}^{\text{el}} \,\,,\,\, \Delta \alpha\right]$

Par différentiation : $\frac{\partial F}{\partial \Delta Y} d\Delta Y + \frac{\partial F}{\partial \Delta \epsilon^{to}} d\Delta \underline{\epsilon}^{to} = 0$

 $\frac{\partial F}{\partial \Delta Y}$ est la jacobienne J, connue après la résolution.

 $\stackrel{\smile}{\mathsf{Hyp}}$. l'incrément de déformation $\Delta\underline{\epsilon}^{\mathsf{to}}$ n'apparaît que dans :

$$F_{\epsilon} = \Delta \,\underline{\epsilon}^{\mathrm{el}} + \Delta \,\underline{\epsilon}_{i}^{\mathrm{p}} - \Delta \,\underline{\epsilon}^{\mathrm{to}} = 0$$

$$\mathsf{donc}: J\,\mathsf{d}\,\Delta\,Y = -\frac{\partial F}{\partial\Delta\,\underline{\epsilon}^\mathsf{to}}\,\mathsf{d}\,\Delta\,\underline{\epsilon}^\mathsf{to} = \begin{pmatrix} \mathsf{d}\,\Delta\underline{\epsilon}^\mathsf{to} \\ 0 \end{pmatrix}$$

Du 1er bloc on déduit : $\mathrm{d}\,\Delta\,\underline{\epsilon}^\mathrm{el} = J_{\underline{\epsilon}^\mathrm{el}}^{-1}:\,\mathrm{d}\,\Delta\underline{\epsilon}^\mathrm{to}$ où $J_{\underline{\epsilon}^\mathrm{el}}^{-1}$ est la partie supérieure gauche de J^{-1} .

Finalement, nous obtenons : $\frac{\partial \Delta \, \underline{\sigma}}{\partial \Delta \, \epsilon^{\mathrm{to}}} = D \colon J_{\underline{\epsilon}^{\mathrm{el}}}^{-1}$

 $J_{\epsilon^{\mathrm{el}}}^{-1}$ est calculée par getPartialJacobianInvert dans le bloc

ANNEXES: quelques lois en mfront

- algorithme global
- 6 KtgtFromJ
- lois particulières
 - loi de Hayhurst
 - loi de Mazars
 - un exemple de loi cristalline
 - loi meta-lema-ani
- Propriétés matériau
- g contraintes planes
- 10 fonctionnement adao

présentation de la loi de Hayhurst R5.03.13

•
$$\sigma = (1 - D) C \varepsilon^e$$
;

•
$$\underline{\varepsilon}^e = \underline{\varepsilon} - \dot{p} \, \underline{n}$$
 avec $\underline{n} = 1.5 \frac{\sigma^{dev}}{\sigma_{ea}}$;

•
$$\dot{p} = \varepsilon_0 \sinh\left(\frac{\sigma_{eq}(1-H)}{K(1-D)(1-\phi)}\right)$$
;

•
$$H = H_1 + H_2$$
;

$$\bullet$$
 $\dot{H}_i = \frac{h_i}{\sigma_{eq}} (H_i^* - \delta_i H_i) \dot{p}$;

•
$$\dot{D} = A_0 \sinh \left(\frac{\alpha_D < tr(\sigma)>_+ + \sigma_{eq} (1 - \alpha_D)}{\sigma_0} \right)$$

implantation de la loi de Hayhurst —1/3

```
@Parser Implicit;
@Behaviour Hayhurst;
@IterMax 100 ;
@MaterialProperty stress young;
@MaterialProperty real nu;
@MaterialProperty real rho;
@MaterialProperty real alpha;
@MaterialProperty real K;
@MaterialProperty real epsi0;
@MaterialProperty real sigma0;
@MaterialProperty real h1;
@MaterialProperty real h2;
@MaterialProperty real H1star:
@MaterialProperty real H2star;
@MaterialProperty real A0;
@MaterialProperty real alphaD;
@MaterialProperty real delta1;
@MaterialProperty real delta2;
@MaterialProperty real seguid:
@Includes {
#include "TFEL/ Material / Lame, hxx "
```

implantation de la loi de Hayhurst —2/3

```
@StateVariable real
                       р;
@StateVariable real
                       H1;
@StateVariable real
                       H2;
@StateVariable real
                       d;
@LocalVariable real lambda;
@LocalVariable real mu;
@InitLocalVars{ using namespace tfel::material::lame;
 lambda = computeLambda(young, nu);
 mu = computeMu(young, nu);}
@ComputeStress {
  if (d > 1.-1.e-8){
    sig= Stensor(0.);
   else {
    sig = (1.-d)*(lambda*trace(eel)*Stensor::ld()+2*mu*
   eel);
```

implantation de la loi de Hayhurst —3/3

```
@Integrator{ real seq = sigmaeq(sig);
  Stensor sig0=lambda*trace(eel)*Stensor::Id()+2*mu*eel;
   real seq0 = sigmaeq(sig0);
  if (seq > 1.e-8*voung) {
     real H1 =H1+theta*dH1; real H2 =H2+theta*dH2;
     real d =d+theta*dd; const real H =H1 +H2;
     real shp = sinh(seq*(1-H)/K/(1-(d)));
     real chp = sqrt(1.+shp*shp);
     real trsig=max(trace(sig),0.); const real inv seq =
    1/seq:
     real shd= sinh((alphaD*trsig+(1-alphaD)*seq)/sigma0
   );
     real chd= sqrt(1.+shd*shd); const real dtrsde=(3.*
   lambda+2.*mu)*theta*(1.-d)*trsig/trace(sig);
    Stensor n = 1.5*deviator(sig)*inv seq;
    feel += dp*n-deto;
    fp = dp-epsi0*dt*shp;
   fH1 = dH1-h1*dp*(H1star-delta1*H1)*inv seq ;
        = dH2-h2*dp*(H2star-delta2*H2)*inv seq ;
   fH2
```

implantation de la loi de Mazars —1/3

```
@Parser DefaultParser:
@Behaviour mazars:
@MaterialProperty stress young;
@MaterialProperty real nu;
@MaterialProperty real Ac;
@MaterialProperty real At:
@MaterialProperty real Bc;
@MaterialProperty real Bt:
@MaterialProperty real k;
@MaterialProperty real ed0;
@ProvidesSymmetricTangentOperator;
@Includes{#include "TFEL/ Material/Lame. hxx"}
@StateVariable real d:
@StateVariable real Y:
@StateVariable real eegcor;
@LocalVariable real lambda;
@LocalVariable real mu;
@InitLocalVars{using namespace tfel::material::lame;
  lambda = computeLambda(young, nu);
 mu = computeMu(young, nu);}
```

implantation de la loi de Mazars —2/3

```
@Integrator{ using namespace tfel::material::lame;
  real e1, e2, e3;
  real s1, s2, s3;
 real ppe1, ppe2, ppe3;
  real pns1, pns2, pns3;
 real pps1, pps2, pps3;
  const Stensor e = eto+deto:
 const real tr = trace(e);
  const Stensor s0 = lambda*tr*Stensor::Id()+2*mu*e;
 const real dmax=0.99999:
 e.computeEigenValues(e1,e2,e3);
  // eigen values of s0
 s1 = 2*mu*e1+lambda*tr;
 s2 = 2*mu*e2+lambda*tr:
 s3 = 2*mu*e3+lambda*tr:
  const real sn = max(abs(s1), max(abs(s2), abs(s3)));
 ppe1=max(0.,e1);
 ppe2=max(0.,e2);
 ppe3=max(0..e3):
 pps1=max(0.,s1);
 pps2=max(0.,s2);
 pps3=max(0.,s3);
```

implantation de la loi de Mazars —3/3

```
real r=1.;
if (sn>1.e-6*young) {
   r = (pps1+pps2+pps3) / (abs(s1)+abs(s2)+abs(s3));
real gam=1.;
if ((\min(s1, \min(s2, s3)) < 0.) &&(r == 0.)) 
   pns1=min(0.,s1);
   pns2=min(0.,s2);
   pns3=min(0.,s3);
   gam = - sqrt(pns1*pns1+pns2*pns2+pns3*pns3)/(pns1+pns2*pns2*pns3*pns3)
  +pns3);
real eeqc= sqrt(ppe1*ppe1*ppe2*ppe2*ppe3*ppe3);
eegcor=max(gam*eegc,eegcor);
real A=At*(2*r*r*(1.-2*k)-r*(1-4*k))+Ac*(2*r*r-3*r+1);
real B=r*r*Bt+(1-r*r)*Bc:
real Y1=max(ed0, eegcor);
Y=max(Y1,Y);
d=max(d,1-(1-A)*ed0/Y-A*exp(-B*(Y-ed0)));
d=min(dmax,d);
sig = (1.-d)*s0:
```

expression d'une loi cristalline

- $\Delta\underline{\varepsilon}^p$ est déduit des glissements de chaque système : $\Delta\underline{\varepsilon}^p = \sum_{s=1,12} \Delta\gamma_s \underline{M_s}$
- Ceux-ci sont obtenus pour chaque système de glissement par : $\Delta \gamma_s = \Delta p_s \mathrm{sgn}(\tau_s C\alpha_s)$ avec $\Delta p_s = \Delta t \langle \frac{|\tau_s C\alpha_s| R(p_s)}{K} \rangle^m$
- Ecrouissage isotrope : $R(p_s) = R_0 + Q \sum_r h_{sr} (1 \exp(-bp_r)) h_{sr}$ matrice d'interaction entre systèmes.
- Ecrouissage cinématique : $\Delta \alpha_s = \Delta \gamma_s D\alpha_s \Delta p_s$
- Avec : $\tau_s = \underline{\sigma} : \underline{M_s} = \underline{\sigma} : \frac{1}{2} (\underline{m_s} \otimes \underline{n_s} + \underline{n_s} \otimes \underline{m_s})$
 - \underline{n}_s et \underline{m}_s sont les normales et directions de glissement.
 - L'élasticité peut être isotrope ou orthotrope : $\underline{\sigma} = \underline{D}\left(\underline{\varepsilon^e}\right)$

implantation d'une loi cristalline —1/3

```
@Parser Implicit;
@Behaviour monocrystal;
@Algorithm NewtonRaphson NumericalJacobian;
@OrthotropicBehaviour;
@RequireStiffnessTensor;
@MaterialProperty real m;
@MaterialProperty real K;
@MaterialProperty real C:
@MaterialProperty real R0;
@MaterialProperty real Q;
@MaterialProperty real b:
@MaterialProperty real d1;
@StateVariable real g[12];
@AuxiliaryStateVariable real p[12];
@AuxiliaryStateVariable real a[12];
@TangentOperator{
    Stensor4 Je:
    getPartialJacobianInvert(Je);
    Dt = D*Je: 
@Import "MonoCrystal CFC SlidingSystems.mfront";
@Import "MonoCrystal InteractionMatrix.mfront";
@ComputeStress{ sig = D*eel;}

    4 □ ト ← □ ト ← 필 ト ● □ ■ 의 및 약
```

implantation d'une loi cristalline —2/3

```
@Integrator{ StrainStensor vepsp(real(0)):
  real tau[12], vp[12], va[12], ag[12];
  real tma[12], tmR[12], Rp[12], pe[12];
  for (unsigned short i=0;i!=12;++i){
   ag[i] = abs(dg[i]);
   pe[i] = Q*(1.-exp(-b*(p[i]+theta*ag[i])));
  for (unsigned short i=0; i!=12; ++i) {
   Rp[i] = R0:
    for (unsigned short j=0; j!=12;++j) {
       Rp[i] += mh(i,i) * pe[i] ;
   tau[i] = mus[i] | sig ;
   va[i] = (dg[i]-d1*a[i]*ag[i])/(1.+d1*theta*ag[i]);
   tma[i] = tau[i]-C*(a[i]+theta*va[i]);
   tmR[i] = abs(tma[i])-Rp[i];
    if (tmR[i]>0.){real sgn=tma[i]/abs(tma[i]);
     vp[i] = dt*sqn*pow((tmR[i]/K),m);
    else { vp[i]=0.; }
   vepsp+=vp[i]*mus[i] ; }
  feel += vepsp-deto;
  for (unsigned short i=0; i!=12; ++i) {
```

implantation d'une loi cristalline —3/3

```
fg[i] -= vp[i]; }

@ UpdateAuxiliaryStateVars {
for (unsigned short i=0;i!=12;++i) {
    p[i]+=abs(dg[i]);
    a[i]+=(dg[i]-d1*a[i]*abs(dg[i]))/(1.+d1*abs(dg[i]));}}
```

```
// MonoCristal CFC SlidingSystems
@LocalVariable tfel::math::tvector<12,StrainStensor> mus
@InitLocalVariables {
 1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0
 const real ny[12]={ 1.0,1.0,1.0,-1.0,-1.0,-1.0, 1.0,
  1.0, 1.0, -1.0, -1.0, -1.0;
 1.0, 1.0, 1.0, 1.0, 1.0};
 0.0, 1.0, 1.0, -1.0, 1.0, 0.0;
```

expression discretisée de la loi meta-lema-ani

$$\Delta \varepsilon^e - \Delta \varepsilon + \Delta p n = 0$$

•
$$\sqrt{\underline{\sigma}:\underline{\underline{\mathbf{M}}}:\underline{\sigma}} - \sum_{i=1,3} f_i[Z]\sigma_{vi} = 0$$

avec:

$$\sigma_{vi} = a_i \left(e^{Q_i/T} \right)^{1/n_i} \left(p^- + \Delta p \right)^{m_i} \left(\frac{\Delta p}{\Delta t} \right)^{1/n_i}$$

meta-lema-ani —1/5

```
@Parser Implicit:
@Behaviour metalemani;
@Includes{ #include < TFEL / Material / Hill . hxx>
           #include <TFEL/ Material/Lame. hxx>
@OrthotropicBehaviour:
@Algorithm NewtonRaphson NumericalJacobian;
@Theta 1.; @Epsilon 1.e-10;
@MaterialProperty real young;
young.setGlossaryName("YoungModulus");
@MaterialProperty real nu;
nu.setGlossaryName("PoissonRatio");
@MaterialProperty real a[3];
@MaterialProperty real m[3]:
@MaterialProperty real pn[3];
@MaterialProperty real Q[3]:
@MaterialProperty real M1[6]:
@MaterialProperty real M3[6];
@StateVariable real p:
@AuxiliaryStateVariable real seq;
@AuxiliaryStateVariable real svi[3];
```

meta-lema-ani —2/5

```
@LocalVariable stress lambda;
@LocalVariable stress mu:
@LocalVariable tfel::math::st2tost2 <N, real > H;
@LocalVariable real T :
@LocalVariable real invn[3], f[3], gamma[3], sv[3] ;
// variables de commande aster
@ExternalStateVariable real SECH, HYDR, IRRA, NEUT1, NEUT2,
   CORR, ALPHPUR, ALPHBETA;
@IsTangentOperatorSymmetric true;
@TangentOperator{using namespace tfel::material::lame;
    StiffnessTensor Hooke: Stensor4 Je:
    computeElasticStiffness <N, Type > :: exe (Hooke, lambda, mu
   );
    getPartialJacobianInvert(Je);
    Dt = Hooke*Je; }
@InitLocalVariables {
  using namespace tfel::material::lame;
 lambda = computeLambda(young, nu);
 mu = computeMu(young, nu);
  // proportion en phase alpha en milieu de pas de temps
  const real Z = min(max(ALPHPUR + theta*dALPHPUR+
   ALPHBETA + theta*dALPHBETA,0.),1.);
```

```
// fonctions f
if (Z \ge 0.99) \{ f[0] = 1. \}
else if (Z >= 0.9) { f[0] = (Z-0.9)/0.09 ;}
                      \{ f[0] = 0. ; \}
} else
if (Z >= 0.1) { f[2]=0.;
} else if (Z >= 0.01) { f[2] = (0.1-Z)/0.09 ; else
                      \{ f[2] = 1. ; \}
} else
if (Z \ge 0.99) \{ f[1] = 0. \}
else if (Z >= 0.9) { f[1] = 1.0-(Z-0.9)/0.09 ;}
else if (Z >= 0.1) { f[1] = 1.0 ;}
else if (Z >= 0.01) { f[1] = 1.0 - (0.1 - Z)/0.09 ; }
} else
                 \{ f[1] = 0. ; \}
// Temperature Aster en Celsius
T = 273.0 + T + theta * dT ;
for (unsigned short i=0;i!=3;++i){
 invn[i] = 1.0 / pn[i];
 gamma[i] = a[i] * exp(Q[i]/T *invn[i]) ; }
```

meta-lema-ani —4/5

```
// correspondance M aster (repere x,y,z) et H
      real M[6];
                                     (Z \ge 0.99) {for (unsigned short i=0; i!=6; i!=6; i!=6)
           M[i]=M1[i];
      } else if (Z \ge 0.01) {for(unsigned short i=0; i!=6; i+i
           )\{M[i]=Z*M1[i]+(1.-Z)*M3[i];\}
      } else
                                                                            {for (unsigned short i=0; i!=6; 
           M[i]=M3[i]:
      const real H_F = 0.5*(M[0]+M[1]-M[2]);
      const real H_G = 0.5*(-M[0]+M[1]+M[2]);
      const real H H = 0.5*(M[0]-M[1]+M[2]);
      const real H L = 2.0*M[3];
      const real HM = 2.0*M[4];
      const real HN = 2.0*M[5];
     H = hillTensor < N, real > (H F, H G, H H, H L, H M, H N);
@ComputeStress {
      sig = lambda*trace(eel)*Stensor::Id()+2*mu*eel;}
@Integrator{
      const real sigeq = sqrt(sig|H*sig);
      real p =p+theta*dp ;
      real sigv = 0.; real pm[3]; real dpn[3];
```

```
for (unsigned short i=0;i!=3;++i){
   pm[i] = (p > 0.) ? pow(p , m[i]) : 0.;
   dpn[i] = (dp > 0.) ? pow((dp/dt), invn[i]) : 0. ;
   sv[i]=gamma[i]*pm[i]*dpn[i] ;
   sigv += f[i]*sv[i]; 
 Stensor n(0.);
  if (sigeq > 1.e-10*young) { n = (H*sig)/sigeq; }
 feel += dp*n-deto;
  fp = (sigeq-sigv)/young;
@UpdateAuxiliaryStateVars {
  for (unsigned short i=0; i!=3;++i) { svi[i]=sv[i] ; }
```

gestion des propriétés matériau

- 5 algorithme globa
- 6 KtgtFromJ
- lois particulières
 - loi de Hayhurst
 - loi de Mazars
 - un exemple de loi cristalline
 - loi meta-lema-ani
- Propriétés matériau
- g contraintes planes
- 10 fonctionnement adao

propriétés matériaux

- introduction en 3 étapes :
 - écriture d'une fonction Young=f (Temperature);
 - création d'une librairie libInconel600.so;
 - appel depuis Cast3M ou cyrano (Code_Aster à venir)
- voir la documentation de mfront

Exemple en mfront

```
@Parser MaterialLaw;
@Material Inconel600;
@Law
        YoungModulus :
@Input TK;
TK. setGlossaryName ("Temperature");
@Output E:
@PhysicalBounds TK in [0:*[;
@Bounds TK in [0:*[;
@Function
  const real TC = TK-273.15:
  E=(-3.1636e-3*TC*TC-3.8654*TC+2.1421e+4)*1e7;
```


gestion des contraintes planes

- algorithme globa
- 6 KtgtFrom
- lois particulières
 - loi de Hayhurst
 - loi de Mazars
 - un exemple de loi cristalline
 - loi meta-lema-ani
- Propriétés matériau
- g contraintes planes
- 10 fonctionnement adao

contraintes planes (généralisées) —1/3

- exemple de la loi de NORTON.
- nouvelle variable interne : déformation axiale ϵ_z^{to} ,
- contrainte imposée variable externe

```
@StateVariable < PlaneStress > strain etozz;
PlaneStress :: etozz . setGlossaryName ( " AxialStrain " );
@StateVariable < AxisymmetricalGeneralisedPlaneStress > strain etozz;
AxisymmetricalGeneralisedPlaneStress :: etozz . setGlossaryName ( " AxialStrain " );
@ExternalStateVariable < AxisymmetricalGeneralisedPlaneStress > stress sigzz;
AxisymmetricalGeneralisedPlaneStress :: sigzz . setGlossaryName ( " AxialStress " );
```

contraintes planes (généralisées) —2/3

Partie spécifique auxe contraintes planes :

```
@Integrator < PlaneStress, Append, AtEnd > {
  // the plane stress equation is satisfied at the end
   of the time
  // step
  const stress szz = (lambda+2*mu)*(eel(2)+deel(2))+
   lambda*(eel(0)+deel(0)+eel(1)+deel(1));
  fetozz = szz/young;
  // modification of the partition of strain
  feel(2) = detozz:
  // jacobian
  dfeel ddetozz(2)=-1;
  dfetozz ddetozz = real(0);
  dfetozz ddeel(2) = (lambda+2*mu)/young;
  dfetozz ddeel(0) = lambda/young;
  dfetozz ddeel(1) = lambda/young;
```

contraintes planes (généralisées) —3/3

Partie spécifique aux contraintes planes généralisées :

```
@Integrator < Axisymmetrical Generalised Plane Stress, Append,
   AtEnd>{
  // plane stress equation is satisfied at end
  const stress szz = (lambda+2*mu)*(eel(1)+deel(1))+
   lambda*(eel(0)+deel(0)+eel(2)+deel(2));
  fetozz = (szz-sigzz-dsigzz)/young;
  // modification of the partition of strain
  feel(1) = detozz;
  // jacobian
  dfeel ddetozz(1)=-1;
  dfetozz ddetozz = real(0);
  dfetozz ddeel(1) = (lambda+2*mu)/young;
  dfetozz ddeel(0) = lambda/young;
  dfetozz ddeel(2) = lambda/young;
```


adao

- algorithme globa
- 6 KtgtFrom
- lois particulières
 - loi de Hayhurst
 - loi de Mazars
 - un exemple de loi cristalline
 - loi meta-lema-ani
- 8 Propriétés matériau
- g contraintes planes
- 10 fonctionnement adao

principe d'Adao

- algorithmes d'optimisation pour trouver les paramètres X;
- qui minimisent l'écart $F = Y^{obs} H(X)$;
- Y^{obs} valeurs observées (expérimentales, ou autre);
- H(X) valeurs simulées (par mtest ou Code_Aster ...);

appel de mtest(python) par Adao

```
m = MTest()
setVerboseMode(VerboseLevel.VERBOSE_QUIET)
m. setPredictionPolicy(PredictionPolicy.
LINEARPREDICTION)
m. setBehaviour('aster','src/libAsterBehaviour.so','
asterburger');
m. setMaterialProperty('young',31000.e6);
m. setMaterialProperty('nu', 0.2);
```

```
m. setImposedStress('SXX', {0.:0.,1.: 4E6,3.E7:4E6})
s = MTestCurrentState()
wk = MTestWorkSpace()
m. completeInitialisation()
m. initializeCurrentState(s)
m. initializeWorkSpace(wk)
YY1 = [0]
for i in range(0,len(t)-1):
    m. execute(s,wk,t[i],t[i+1])
    YY1.append(s.e1[0])
return numpy.array(YY1)
```