Programozáselmélet - minta 2. ZH

1.
$$A = (x:\mathbb{N}, n:\mathbb{N}, y:\mathbb{N})$$

 $B = (x':\mathbb{N}, n':\mathbb{N})$
 $Q = (x = x' \land n = n' \land x > 0)$
 $R = (Q \land y = x^n)$

Az S program alap-állapottere $(x:\mathbb{N}, n:\mathbb{N}, y:\mathbb{N})$. $b:\mathbb{N}$ és $i:\mathbb{N}$ segédváltozói a programnak.

S	
y, b, i := 1, x, n	
i > 0	
$2 \mid i$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$i,b := i / 2, b^2$	$i, y := i - 1, y \cdot b$

Legyen $Q' = (Q \land y = 1 \land b = x \land i = n)$ a szekvencia közbülső állítása, $P = (Q \land y \cdot b^i = x^n)$ ciklusinvariáns és t:i terminálófüggvény. Bizonyítsd be hogy az S program megoldja a specifikált feladatot.

2. Legyen A = [1..6] és legyenek $S_1, S_2 \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ a következő programok:

$$S_{1} = \begin{cases} 1 \to < 1, 4, 3 > & 1 \to < 1, 2, 4 > & 2 \to < 2, 2, \dots > \\ 2 \to < 2, 1, 4, 6 > & 3 \to < 3, 5, 1 > & 4 \to < 4, 5, 3 > \\ 5 \to < 5, 1, fail > & 6 \to < 6, 3, 1, 5 > \end{cases}$$

$$S_{2} = \begin{cases} 1 \to < 1, 3, 2 > & 1 \to < 1, 2, 4 > & 2 \to < 2, 6 > \\ 3 \to < 3, 4 > & 4 \to < 4, fail > & 4 \to < 4, 5, 1 > \\ 5 \to < 5 > & 6 \to < 6, 4, 3, 2 > & 4 \to < 4, 5, 1 > \end{cases}$$

- Határozd meg az $(S_1; S_2)$ szekvenciát.
- Legyenek $\pi_1, \pi_2 \in A \to \mathbb{L}$ logikai függvények, úgy hogy $\pi_1 = \{(1, igaz), (2, igaz), (4, igaz), (5, hamis), (6, hamis)\}$ és $\pi_2 = \{(1, igaz), (2, hamis), (3, igaz), (4, igaz), (5, hamis)\}$. Határozd meg a $(\pi_1:S_1, \pi_2:S_2)$ elágazást.
- 3. Legyen A=[1..5], $S_0\subseteq A\times (\bar{A}\cup\{fail\})^{**}$ program, továbbá $\pi\colon A\to \mathbb{L}$ úgy hogy $\lceil\pi\rceil=\{1,2,3,4\}.$

$$S_0 = \begin{cases} 1 \to <1, 2, 4 > & 2 \to < 2 > & 3 \to <3, 4, 2 > \\ 3 \to <3, 5 > & 3 \to <3, 3, 3, \dots > & 4 \to <4, 5, 3, 4 > \\ 4 \to <4, 1, 3 > & 5 \to <5, 5, \dots > \end{cases}$$

Határozd meg a (π, S_0) ciklust.

```
4. A=(x:\mathbb{N},n:\mathbb{N},z:\mathbb{N})

B=(x':\mathbb{N},n':\mathbb{N})

Q=(x=x'\wedge n=n'\wedge x>0)

R=(z=x'^{n'})
```

Jelölje S a következő programot:

```
egin{array}{l} \{x>0\} \ z:=1; \ \{Inv\} \ \mathbf{parbegin} \ S_1 \| S_2 \ \mathbf{parend} \ \{z=x'^{n'}\} \end{array}
```

```
S_1:  \{Inv\}  while n \neq 0 do  \{Inv \land n \neq 0\}  n, z := n-1, z \cdot x od  \{z = x'^{n'} \land n = 0\}
```

```
S_2: \{Inv\} while n \neq 0 do \{Inv\} await even(n) then x, n := x \cdot x, n/2 ta od \{z = x'^{n'} \land n = 0\}
```

Inv jelöli a ciklusok invariánsát: $Inv = (z \cdot x^n = x'^{n'})$ A ciklusok termináló függvénye: t: n

Bizonyíts
d be hogy az S program megoldja a specifikált feladatot.