Výroková a predikátová logika - II

Petr Gregor

KTIML MFF UK

ZS 2019/2020

Univerzálnost spojek

Jazyk výrokové logiky obsahuje *základní* spojky \neg , \wedge , \vee , \rightarrow , \leftrightarrow . Můžeme zavést obecně n-ární spojku pro libovolnou Booleovu funkci. Např.

$$p \downarrow q$$
 "ani p ani q " (NOR, Peirceova spojka) $p \uparrow q$ "ne $(p \ a \ q)$ " (NAND, Shefferova spojka)

Množina spojek je *univerzální*, pokud lze každou Booleovskou funkci reprezentovat nějakým z nich (dobře) vytvořeným výrokem.

Tvrzení $\{\neg, \wedge, \vee\}$ je univerzální.

Důkaz Funkci
$$f\colon\{0,1\}^n\to\{0,1\}$$
 reprezentuje výrok $\bigvee_{v\in f^{-1}[1]}\bigwedge_{i=1}^n p_i^{v_i}$, kde $p_i^{v_i}$ značí prvovýrok p_i pokud $v_i=1$, jinak výrok $\neg p_i$. Pro $f^{-1}[1]=\emptyset$ zvolíme výrok \bot .

Tvrzení $\{\neg, \rightarrow\}$ je univerzální.

Důkaz
$$(p \land q) \sim \neg (p \rightarrow \neg q), \ (p \lor q) \sim (\neg p \rightarrow q).$$

CNF a DNF

- Literál je prvovýrok nebo jeho negace. Je-li p prvovýrok, označme p^0 literál $\neg p$ a p^1 literál p. Je-li l literál, označme \bar{l} literál opačný k l.
- Klauzule je disjunkce literálů, prázdnou klauzulí rozumíme ⊥.
- Výrok je v konjunktivně normálním tvaru (CNF), je-li konjunkcí klauzulí. Prázdným výrokem v CNF rozumíme ⊤.
- Elementární konjunkce je konjunkce literálů, prázdnou konjunkcí je ⊤.
- Výrok je v disjunktivně normálním tvaru (DNF), je-li disjunkcí elementárních konjunkcí. Prázdným výrokem v DNF rozumíme 1.

Poznámka Klauzule nebo elementární konjunkce je zároveň v CNF i DNF.

Pozorování Výrok v CNF je pravdivý, právě když každá jeho klauzule obsahuje dvojici opačných literálů. Výrok v DNF je splnitelný, právě když aspoň jedna jeho elementární konjunkce neobsahuje dvojici opačných literálů.

Převod tabulkou

Tvrzení Nechť $K \subseteq \mathbb{P}2$ pro \mathbb{P} konečné. Označme $\overline{K} = \mathbb{P}2 \setminus K$. Pak

$$M^{\mathbb{P}}\Big(\bigvee_{v\in K}\bigwedge_{p\in\mathbb{P}}p^{v(p)}\Big)=K=M^{\mathbb{P}}\Big(\bigwedge_{v\in\overline{K}}\bigvee_{p\in\mathbb{P}}\overline{p^{v(p)}}\Big)$$

Důkaz První rovnost plyne z $\overline{w}(\bigwedge_{p\in\mathbb{P}}p^{v(p)})=1$ právě když w=v, kde

$$w\in {}^{\mathbb{P}}$$
2. Druhá obdobně z $\overline{w}(\bigvee_{p\in \mathbb{P}}\overline{p^{\nu(p)}})=1$ právě když $w\neq v$. $\ \ \, \Box$

Např.
$$K = \{(1,0,0), (1,1,0), (0,1,0), (1,1,1)\}$$
 namodelujeme

$$(p \land \neg q \land \neg r) \lor (p \land q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (p \land q \land r) \sim (p \lor q \lor r) \land (p \lor q \lor \neg r) \land (p \lor q \lor \neg r)$$

$$(p \lor q \lor 1) \land (p \lor q \lor \neg 1) \land (p \lor \neg q \lor \neg 1) \land (\neg p \lor q \lor \neg 1)$$

Důsledek Každý výrok je ekvivalentní nějakému výroku v CNF/DNF.

Důkaz Hodnota výroku φ závisí pouze na ohodnocení jeho proměnných, kterých je konečně. Lze tedy použít tvrzení pro $K = M^{\mathbb{P}}(\varphi)$ a $\mathbb{P} = \text{var}(\varphi)$.

Převod úpravami

Tvrzení Nechť φ' je výrok vzniklý z výroku φ nahrazením některých výskytů podvýroku ψ za výrok ψ' . Jestliže $\psi \sim \psi'$, pak $\varphi \sim \varphi'$.

Důkaz Snadno indukcí dle struktury formule.

(1)
$$(\varphi \to \psi) \sim (\neg \varphi \lor \psi)$$
, $(\varphi \leftrightarrow \psi) \sim ((\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi))$

(2)
$$\neg\neg\varphi\sim\varphi$$
, $\neg(\varphi\wedge\psi)\sim(\neg\varphi\vee\neg\psi)$, $\neg(\varphi\vee\psi)\sim(\neg\varphi\wedge\neg\psi)$

(3)
$$(\varphi \lor (\psi \land \chi)) \sim ((\psi \land \chi) \lor \varphi) \sim ((\varphi \lor \psi) \land (\varphi \lor \chi))$$

(3)'
$$(\varphi \land (\psi \lor \chi)) \sim ((\psi \lor \chi) \land \varphi) \sim ((\varphi \land \psi) \lor (\varphi \land \chi))$$

Tvrzení Každý výrok lze pomocí (1), (2), (3)/(3)' převést na CNF / DNF.

Důkaz Snadno indukcí dle struktury formule.

Tvrzení Nechť výrok φ obsahuje pouze spojky \neg , \land , \lor . Pak pro výrok φ^* vzniklý z φ záměnou \wedge a \vee a znegováním všech literálů platí $\neg \varphi \sim \varphi^*$.

Důkaz Snadno indukcí dle struktury formule.

Problém splnitelnosti a řešiče

- Problém SAT: Je daná výroková formule splnitelná?
- Příklad Lze šachovnici bez dvou protilehlých rohů perfektně pokrýt kostkami domina?
 - Snadno vytvoříme výrokovou formuli, která je splnitelná, právě když to lze. Pak ji můžeme zkusit ověřit pomocí nějakého SAT řešiče.
- Nejlepší řešiče pro SAT: www.satcompetition.org.
- Řešič v ukázce: Glucose, formát pro CNF soubory: DIMACS.
- Obecnější otázka: Lze celou matematiku převést do logických formulí?
 Al, strojové dokazování, Peano: Formulario (1895-1908), Mizar system
- Proč to lidé (většinou) nedělají?
 Jak vyřešíme uvedený příklad elegantněji? V čem náš postup spočívá?

- Výrok je v k-CNF, je-li v CNF a každá jeho klauzule má nejvýše k literálů.
- k-SAT je následující problém (pro pevné k > 0)

INSTANCE: $V \acute{y} rok \varphi v k$ -CNF.

OTÁZKA: Je arphi splnitelný?

Zatímco už pro k=3 jde o NP-úplný problém, ukážeme, že 2-SAT lze řešit v *lineárním* čase (vzhledem k délce φ).

Vynecháme implementační detaily (výpočetní model, reprezentace v paměti) a využijeme následující znalosti, viz [ADS I].

Tvrzení Rozklad orientovaného grafu (V, E) na silně souvislé komponenty lze nalézt v čase $\mathcal{O}(|V| + |E|)$.

- Orientovaný graf G je silně souvislý, pokud pro každé dva vrcholy u a v existují v G orientované cesty jak z u do v, tak i z v do u.
- ullet Silně souvislá *komponenta* grafu G je maximální silně souvislý podgraf G.

7/9

Implikační graf

Implikační graf výroku φ v 2-CNF je orientovaný graf G_{ω} , v němž

- vrcholy jsou proměnné výroku φ nebo jejich negace,
- klauzuli $l_1 \lor l_2$ výroku φ reprezentujeme dvojicí hran $\overline{l_1} \to l_2$, $\overline{l_2} \to l_1$,
- klauzuli l_1 výroku φ reprezentujeme hranou $\overline{l_1} \to l_1$.

Tvrzení φ je splnitelný, právě když žádná silně souvislá komponenta v G_{ω} neobsahuje dvojici opačných literálů.

Důkaz Každé splňující ohodnocení ohodnotí všechny literály ze stejné komponenty stejně. Implikace zleva doprava tedy platí.

8/9

Nalezení ohodnocení

Naopak, označme G_{φ}^* graf vzniklý z G_{φ} kontrakcí silně souvislých komponent.

Pozorování G_{φ}^{*} je acyklický, má tedy topologické uspořádání <.

- Orientovaný graf je acyklický, neobsahuje-li orientovaný cyklus.
- Lineární uspořádání < vrcholů orientovaného grafu je topologické, pokud p < q pro každou hranu z p do q.

Nyní pro každou komponentu v rostoucím pořadí dle <, nejsou-li její literály dosud ohodnocené, nastav je na 0 a literály v opačné komponentě na 1.

Zbývá ukázat, že takto získané ohodnocení v splňuje φ . Kdyby ne, existovaly by v G_{φ}^* hrany $p \to q$ a $\overline{q} \to \overline{p}$ s v(p) = 1 a v(q) = 0. To je ve sporu s pořadím nastavení komponent na 0 resp. 1, neboť p < q a $\overline{q} < \overline{p}$.

Důsledek 2-SAT je řešitelný v lineárním čase.

