Department of Electrical and Computer Engineering University of Victoria

ELEC 300 - Linear Circuits II

LABORATORY REPORT

Experiment No.: 2

Title: Frequency response of linear systems

Date of experiment: 19 February, 2016

Report submitted on: 26 February, 2016

To: TA, B07

Names: M. Drinnan (V00755525)

T. Mulligan (V00819591)

T. Stephen (V00812021)

1 Objective

This experiment will create a type of RC circuit called a *phase lag circuit*. The circuit's transfer function will be used to determine the component values in the circuit for pre-defined frequency responses. The magnitude and phase responses of the circuit will be examined for a range of input frequencies.

2 Introduction

The transfer function of an electric circuit holds important information about the circuit's response to excitation by different frequencies. A transfer function has the form of:

$$H(s) = K \frac{s-z}{s-p} \tag{1}$$

where the values of K, p and z are determined the the circuit configuration. The values of s=z and s=p are the *poles* and *zeros* of the transfer function and correspond to frequencies that will alter the frequency response of the circuit.

This experiment examines the frequency response of the circuit shown in Fig. 1

Figure 1: Schematic of a phase lag circuit

The transfer function of this circuit is:

$$H(s) = \frac{R_2 + \frac{1}{sC}}{R_1 + R_2 + \frac{1}{sC}} = \frac{R_2}{R_1 + R_2} \frac{s + \frac{1}{CR_2}}{s + \frac{1}{C(R_1 + R_2)}}.$$
 (2)

Comparing (1) with (2) gives:

$$K = \frac{R_2}{R_1 + R_2}$$

$$|z| = \frac{1}{CR_2}$$

$$|p| = \frac{1}{C(R_1 + R_2)}.$$
(3)

$$|p| = \frac{1}{C(R_1 + R_2)}. (4)$$

The lab manual specified that the circuit would be designed such that there was a pole at $f=1000\,\mathrm{Hz}$ and a zero at $f=10\,000\,\mathrm{Hz}$. Using these values and the constraint $C=0.01\,\mathrm{nF},$ (3) and (4) yield $R_1=1.591\,\mathrm{k}\Omega$ and $R_2=14.324\,\mathrm{k}\Omega$. R_1 can be realized with a standard $1.6\,\mathrm{k}\Omega$ resistor and R_2 can be realized from a $10\,\mathrm{k}\Omega$ resistor in series with a $10\,\mathrm{k}\Omega$ potentiometer tuned to 4324Ω .

3 Results

The circuit from Fig. 1 was constructed using R_1 and R_2 as determined in Section 2. The voltages were recorded for 500 Hz to 12.5 kHz and are recorded in Table 1.

f (kHz)	V_y (V)	$ H\left(j\omega\right) _{dB}$	ϕ_{lag} (°)
0.5	0.882	-1.065	-22.6
1.0	0.708	-2.973	-38
2.0	0.46	-6.719	-50.4
3.0	0.337	-9.421	-53.4
4.0	0.267	-11.444	-53
5.0	0.224	-12.969	-51.1
6.0	0.196	-14.129	-48.4
7.0	0.178	-14.966	-45.6
8.0	0.166	-15.572	-43
9.0	0.156	-16.111	-41
10.0	0.147	-16.628	-38
11.0	0.141	-16.990	-36
12.0	0.136	-17.303	-33

Table 1: Response of Fig. 1 to frequency change $(V_x = 1 \text{ V})$

The magnitude of the frequency response is given by:

$$|H\left(j\omega\right)|_{dB} = 20 \times \log\left(\frac{V_y}{V_x}\right).$$

The phase response is given by:

$$\phi_{lag} = \phi_x - \phi_y.$$

The waveforms in Fig. 2, show the phase offset of the 2 waveforms, visible by the offset in vertical cursors demonstrating a time shift.

Figure 2: $V_y(t)$ (top) lags $V_x(t)$ (bottom) by 34.1° at 12 kHz

3.1 Analysis

Fig. 3 shows the data from Table 1 overlaying the ideal frequency response as predicted by (2).

Figure 3: Experimental data overlaying the ideal response

4 Discussion

In our pre-lab we simulated the phase and amplitude response of the phase-lag system. As can be seen in Fig. 3, the simulated results closely matched experimentally generated values. The phase plots in Fig. 3(b) both demonstrate a minimum phase of -55° occurring at 3kHz.

The measured phase response is slightly less negative than the simulated response, likely due to the ESR of the capacitors.

A phase-lag circuit receives its name from the characteristics exhibited by the circuit's transfer function. The output voltage's phase is shifted negatively by the circuit, resulting in a lagging phase.

5 Conclusion

Our results confirm a sinusoid is negatively shifted by a capacitor, as well as the low-pass filter nature of the voltage across a capacitor: when the frequency of the sinusoid across the capacitor the capacitor is low it acts similar to an open circuit, and when the frequency is high the capacitor acts like a short circuit. The negative phase shift behaviour of a capacitor justifies the circuit's *phase lag* denomination.