INVERSIONS IN RANDOMLY LABELLED TREES

Xing Shi Cai, Cecilia Holmgren, Svante Janson, Tony Johansson and Fiona Skerman

OUTLINE

- Inversions in labelled rooted trees;
 definitions, pictures
- Random labelling
 - basic properties
 - tree parameters, total path length
 - results: cumulants, Bernoulli numbers
- Random labelling of random trees

inv(352146)

inv(352146)

$$inv(352146) = 6$$

$$\pi \in S_n$$

$$inv(\pi) = \#inversions in \pi$$

$$inv(352146) = 6$$

$$\pi \in S_n$$
 $inv(\pi) = \#inversions in \pi$

$$inv(352146) = 6$$

$$inv(352146) = 6$$

T rooted tree with n nodes,

write u < v if u is an ancestor of v

$$\pi: V(T) \rightarrow [n]$$

$$inv(352146) = 6$$

T rooted tree with n nodes.

write u < v if u is an ancestor of v

$$\pi:V(T)\to [n]$$

$$\mathit{inv}(\mathcal{T},\pi) = \sum_{u \in \mathcal{U}} \mathbf{1}[\pi(u) > \pi(v)]$$

$$inv(352146) = 6$$

T rooted tree with n nodes.

write u < v if u is an ancestor of v

$$\pi:V(T)\rightarrow [n]$$

$$\mathit{inv}(\mathcal{T},\pi) = \sum_{u < v} \mathbf{1}[\pi(u) > \pi(v)]$$

 P_n path with n vetices,

$$inv(P_n, \pi) = inv(\pi)$$

Inversions in a Permutation/Labelled Tree

$$inv(352146) = 6$$

T rooted tree with n nodes,

write
$$u < v$$
 if u is an ancestor of v
 $\pi: V(T) \rightarrow [n]$

$$\mathit{inv}(\mathcal{T},\pi) = \sum \mathbf{1}[\pi(u) > \pi(v)]$$

 P_n path with n vetices,

$$inv(P_n, \pi) = inv(\pi)$$

Inversions in a Permutation/Labelled Tree

$$inv(352146) = 6$$

T rooted tree with n nodes.

write u < v if u is an ancestor of v

$$\pi:V(T)\to [n]$$

$$inv(T,\pi) = \sum_{u \leq v} \mathbf{1}[\pi(u) > \pi(v)]$$

 P_n path with n vetices,

$$_7$$
 $inv(P_n,\pi) = inv(\pi)$

Inversions in a Permutation/Labelled Tree

$$inv(352146) = 6$$

T rooted tree with n nodes,

write u < v if u is an ancestor of v

$$\pi:V(T)\to [n]$$

$$inv(T,\pi) = \sum_{u < v} \mathbf{1}[\pi(u) > \pi(v)]$$

 P_n path with n vetices,

$$_7$$
 $inv(P_n,\pi) = inv(\pi)$

inversions = 8

Start with fixed tree T, |T| = nChoose $\pi : V(T) \rightarrow [n]$ uniformly

Start with fixed tree T, |T| = nChoose $\pi : V(T) \rightarrow [n]$ uniformly

Start with fixed tree T, |T| = nChoose $\pi : V(T) \rightarrow [n]$ uniformly

$$\mathit{Inv}(T,\pi) = \sum_{u < v} \mathbf{1}[\pi(u) > \pi(v)]$$

Start with fixed tree T, |T| = nChoose $\pi : V(T) \rightarrow [n]$ uniformly

$$\mathit{Inv}(T,\pi) = \sum_{u < v} \mathbf{1}[\pi(u) > \pi(v)]$$

$$\mathbb{E}[Inv(T)] = \sum_{u < v} \frac{1}{2} = \frac{1}{2} \Upsilon(T)$$

 $\Upsilon(T)$ is the **total path length**

 $\Upsilon(T) = \sum_{v} h(v)$, height of v is distance from ρ

Start with fixed tree T, |T| = nChoose $\pi : V(T) \rightarrow [n]$ uniformly

$$\mathit{Inv}(\mathcal{T},\pi) = \sum_{u < v} \mathbf{1}[\pi(u) > \pi(v)]$$

$$\mathbb{E}[Inv(T)] = \sum_{u < v} \frac{1}{2} = \frac{1}{2} \Upsilon(T)$$

 $\Upsilon(T)$ is the **total path length**

 $\Upsilon(T) = \sum_{v} h(v)$, height of v is distance from ρ

RESULTS ON FIXED TREES

For a path P_n , asymptotic normality.

THEOREM FELLER '68,

Let π be uniformly random permutation. Moment generating function

$$\mathbb{E}[e^{tInv(\pi)}] = \prod_{j=1}^n \frac{e^{jt} - 1}{j(e^t - 1)},$$

and

$$rac{\mathit{Inv}(\pi) - \mathbb{E}(\mathit{Inv}(\pi))}{\mathbb{V}(\mathit{Inv}(\pi))} o \mathit{N}(0,1).$$

Cumulant moments of r.v. X, $\kappa_k(X)$: $\ln \mathbb{E}[e^{tX}] = \sum_{k=0}^{\infty} \kappa_k \frac{t^k}{k!}$

For node u, let z_u denote the number of nodes in the tree rooted at u.

 B_k denotes the k-th Bernoulli number.

RESULTS ON FIXED TREES

THEOREM CHJJS '17+

Let T be a fixed tree. Write $X = Inv(T, \pi)$. Let $\kappa_k(X)$ be the k-th cumulant of X. Then

$$\mathbb{E}[X] = \frac{1}{2} \sum_{\nu \in V} (z_{\nu} - 1)$$

$$\mathbb{V}[X] = \sum_{v \in V} (z_v^2 - 1)$$

and more generally,
$$\kappa_k(X) = \frac{B_k}{k} (-1)^k \sum_{v \in V} (z_v^k - 1)^k$$

RESULTS ON FIXED TREES

THEOREM CHJJS '17+

Let T be a fixed tree. Write $X = Inv(T, \pi)$. Let $\kappa_k(X)$ be the k-th cumulant of X. Then

$$\mathbb{E}[X] = \frac{1}{2} \sum_{v \in V} (z_v - 1)$$

$$\mathbb{V}[X] = \sum_{v \in V} (z_v^2 - 1)$$

and more generally, $\kappa_k(X) = \frac{B_k}{k} (-1)^k \sum_{v \in V} (z_v^k - 1)$

$$\mathbb{E}[e^{tX}] = \prod_{v \in V} \frac{e^{z_v t} - 1}{z_v (e^t - 1)}.$$

To express the sum $\sum_{v} z_{v}^{k}$.

Denote number of common ancestors

$$c(v_1,\ldots,v_k)=|\{u:u\leq v_i,\forall i\}|$$

To express the sum $\sum_{v} z_{v}^{k}$.

Denote number of common ancestors

$$c(v_1,\ldots,v_k)=|\{u:u\leq v_i,\forall i\}|$$

To express the sum $\sum_{v} z_{v}^{k}$.

Denote number of common ancestors

$$c(v_1,\ldots,v_k)=|\{u:u\leq v_i,\forall i\}|$$

$$\Upsilon_k(T) := \sum_{v_1, \dots, v_k} c(v_1, \dots, v_k)$$

To express the sum $\sum_{v} z_{v}^{k}$.

Denote number of common ancestors

$$c(v_1,\ldots,v_k) = |\{u : u \le v_i, \forall i\}|$$

$$\Upsilon_k(T) := \sum_{i=1}^k c(v_1,\ldots,v_k) = \sum_{i=1}^k z_i^k$$

For one vertex
$$c(u) = h(u) + 1$$
,
So $\Upsilon_1(T) = \Upsilon(T) + n$.

 $\Upsilon(T)$ is the **total path length**

 $\Upsilon(T) = \sum_{v} h(v)$, height of v is distance from ρ

To express the sum $\sum_{v} z_{v}^{k}$.

Denote number of common ancestors

$$c(v_1,\ldots,v_k) = |\{u : u \le v_i, \forall i\}|$$

$$\Upsilon_k(T) := \sum_{i=1}^k c(v_1,\ldots,v_k) = \sum_{i=1}^k z_i^k$$

For one vertex
$$c(u) = h(u) + 1$$
,
So $\Upsilon_1(T) = \Upsilon(T) + n$.

 $\Upsilon(T)$ is the **total path length**

 $\Upsilon(T) = \sum_{v} h(v)$, height of v is distance from ρ

THEOREM CHJJS '17+

Let T be a fixed tree with n vertices. Write $X = Inv(T, \pi)$. Let $\kappa_k(X)$ be the k-th cumulant of X. Then

$$\mathbb{E}[X] = \frac{1}{2} \sum_{v \in V} (z_v - 1) = \frac{1}{2} \Upsilon(T)$$

$$\mathbb{V}[X] = \sum_{v \in V} (z_v^2 - 1) = \frac{1}{12} (\Upsilon_2(T) - n)$$

and more generally,

$$\kappa_k(X) = \frac{B_k}{L} (-1)^k (\Upsilon_k(T) - n).$$

GALTON WATSON TREES

Begin with one node.

Recursively, each node has a random number of children.

Number of children drawn independently from offspring distribution ξ .

GALTON WATSON TREES

For a unit Brownian excursion e(u), $\eta = \int_{[0,1]^2} \min_{s \leq u \leq t} e(u)$.

THEOREM CHJJS '17+

Suppose T_n is a conditional Galton-Watson tree with offspring distribution ξ such that $\mathbb{E}[\xi] = 1$ and $\mathbb{V}[\xi] = \sigma^2 \in (0, \infty)$, and define

$$X_n = \frac{Inv(T_n, \pi) - \Upsilon(T_n)/2}{n^{5/4}}.$$

Then we have

$$X_n \to^d X \sim 12\sigma^{1/2}\sqrt{\eta} \ \mathcal{N},$$

where ${\mathcal N}$ is a standard normal random variable, independent from the random variable $\eta.$

This strengthen results of Panholtzer and Seitz 2012.

Let
$$Z_u = \sum_{v>u} \mathbf{1}[\pi(u) > \pi(v)].$$

$$Inv(T,\pi) = \sum_{u} Z_{u}.$$

KEY LEMMA

Let $Z_u = \sum_{v>u} \mathbf{1}[\pi(u) > \pi(v)].$ $Inv(T, \pi) = \sum_u Z_u.$

LEMMA

For each node u, $Z_u \sim \textit{Unif} \{0, 1, \dots, z_u - 1\}$ and furthermore the Z_u 's are independent.