2nd Place Solution for ICDAR 2021 Competitionon Scientific Literature Parsing,Task B: Table Recognition to HTML

Xianbiao Qi

Ping An Property and Casualty Insurance Company¹

July 20, 2021

金融・科技

¹Jiaquan Ye, Me, Yelin He, Yihao Chen, Dengyi Gu, Peng Gao, Rong Xiao

Outline

- ► Introduction to Table Recognition to HTML
- ▶ Our Solution²
 - ► Text Line Detection (TLD)
 - ► Table Structure Reconstruction (TSR)
 - ► Text Line Recognition (TLR)
 - Association Assignment

Experiments

²Ye, Jiaquan, et al. "PingAn-VCGroup's Solution for ICDAR 2021 Competition on Scientific Literature Parsing Task B: Table Recognition to HTML." arXiv preprint arXiv:2105.01848 (2021).

Table2HTML

Company	2019	2021	
Microsoft	11	13	
Apple	13 12		11
Google	11	13	12

```
<thead>
Company
2019-2020
2021
</thead>
Microsoft
11
12
13
Apple
13
12
11
Google
11
13
12
```

Table2HTML


```
<thead>
1
2
3
5
6
</thead>
7
8
9
```

PSENet³

Label Correction

Original Box Annotations

Rectified Box Annotations

³Wang, Wenhai, et al. "Shape robust text detection with progressive scale expansion network." CVPR. 2019.

Two key problems:

- ► Can we predict the item sequence?
- ▶ where is each item?

Table Structure Reconstruction

39 classes used for TSR

1. <thead></thead>	11. rowspan="3"	21. colspan="4"	31. > >
2.	12. <u>rowspan</u> ="4"	22. colspan="5"	32. > <sep></sep> >
3.	13. <u>rowspan</u> ="5"	23. colspan="6"	33. >
4.	14. rowspan="6"	24. colspan="7"	34. > <i></i>
5.	15. <u>rowspan</u> ="7"	25. colspan="8"	35. <i><!--</td--></i>
6.	16. <u>rowspan</u> ="8"	26. colspan="9"	36. > <i></i>
7.	17. rowspan="9"	27. colspan="10"	37. <i></i>
8. < <u>td</u>	18. <u>rowspan</u> ="10"	28.	38. <sep></sep>
9. >	19. colspan="2"	29.	39.
10. rowspan="2"	20. colspan="3"	30. 	

Our model structure, a customed Master⁴ model

⁴Lu, N., Yu, W., Qi, X., Chen, Y., Gong, P., Xiao, R., and Bai, X. (2021). Master: Multi-aspect non-local network for scene text recognition. PR 2021.

How to encode the table structue into a sequence?

_				
Company	2019	2021		
Microsoft	11	13		
Apple	13 12		11	
Google	11	13	12	

<thead></thead>	
<th< td=""><td>class="tg-0lax">Company</td></th<>	class="tg-0lax">Company
	class="tg-0lax" colspan="2">2019-2020
<th< td=""><td>class="tg-0lax">2021</td></th<>	class="tg-0lax">2021
	class="tg-0lax">Microsoft
	class="tg-0lax">11
	class="tg-0lax">12
	class="tg-0lax">13
	class="tg-0lax">Apple
	class="tg-0lax">13 class="tg-0lax">12
	class="tg-vlax">12 class="tg-vlax">11
	Class= tg-btax >114/tu>
	class="tq-0lax">Google
	class="tq-0lax">11
	class="tq-0lax">13
	class="tg-0lax">12
	ctass- ty otan - 11-7 ta-

1. <thead></thead>	11. rowspan="3"	21. colspan="4"	31.
2.	12. rowspan="4"	22. colspan="5"	32. <sep></sep>
3.	13. rowspan="5"	23. colspan="6"	33.
4.	14. rowspan="6"	24. colspan="7"	34. <i></i>
5.	15. rowspan="7"	25. colspan="8"	35. <i><!--</td--></i>
6.	16. rowspan="8"	26. colspan="9"	36. <i></i>
7.	17. rowspan="9"	27. colspan="10"	37. <i> </i>
8. <td< td=""><td>18. rowspan="10"</td><td>28.</td><td>38. <sep></sep></td></td<>	18. rowspan="10"	28.	38. <sep></sep>
9. >	19. colspan="2"	29.	39.
10. rowspan="2"	20. colspan="3"	30. 	

Structure Sequence:

<u>SOS-</u>>1->5->7->19->7->6->2->3->5->7->7->6->5->7->7->7->6->5->7->7->7->6->5->7->7->6->5->7->7->6->5->7->7->6->6->6->4->EOS

Text Line Recognition

Master OCR

- ► Training stage: text images with multiple lines
- ► Testing stage: text image with single line (output by PSENet)

Comparator	0.18 (7/40)	n = 70 (control $n = 35$, intervention $n = 35$)	% of patients with FT between
Favretto et al. (2013)	Group I	Fermented milk without problet- ics	0.30-0.70
n = 17 (cross-over design)	Specificity	Beneficial effects on self-reported severity of constipation and stool consistency	Negative Predictive Value

Association Assignment

Three steps consists of:

- ▶ Center Point Rule
- ► IOU
- Distance Rule

Ablation Study

TSR

- ► TSR: Adam vs Ranger
- Evaluation of SyncBN and Feature Concatenation for TSR and TLR

Optimizer	Structure prediction Acc.
Adam	0.7784
Ranger	0.7826

Feature Concatenation	Text line recognition Acc.
No	0.9313
Yes	0.9347

⁽b) Comparison of with or without feature concatenation.

SyncBN	FC	Structure prediction Acc.
		0.7734
√		0.7750
✓	✓	0.7785

(c) Evaluation of label encoding, SyncBN and feature concatenation.

⁽a) Comparison of optimizer.

Ablation Study

TEDS

- ► Text Line Detection (TLD)
- ► Table Structure Recognition (TSR)
- ► Text Line Recognition (TLR)
- ► Model Ensemble (ME)
- ► Empty Space Box (ESB)
- Synchronized BN (SyncBN)
- ► Feature Concatenate (FeaC)
- Format Correction (ForC)

TLD		TSR		TLR	BA	ME	ForC	TEDS
PSE	ESB	SyncBN	FeaC	FeaC	Extra Insert		Torc	ILDS
√								0.9385
\checkmark	✓	✓	√		✓			0.9621
√	✓	✓	√	√	✓			0.9626
√	√	✓	√	√	✓	√		0.9635
√	√	√	√	√	✓	√	√	0.9684

Final Result

Team Name	TEDS Simple	TEDS Complex	TEDS all
Davar-Lab-OCR	97.88	94.78	96.36
VCGroup	97.90	94.68	96.32
XM	97.60	94.89	96.27
YG	97.38	94.79	96.11
DBJ	97.39	93.87	95.66
TAL	97.30	93.93	95.65
PaodingAI	97.35	93.79	95.61
anyone	96.95	93.43	95.23
LTIAYN	97.18	92.40	94.84

Table 4. Task B top TEDS results. The overall result (TEDS all) is decompose into simple and complex tables [16]

Error Analysis

Root canal part	Section	RaCe	M-two	K- Flexofile
Coronal	Irregular	1	5	5
Coronal	"Acceptable	19	15	15
Medial	Irregular	3	4	7
Medial	Acceptable	17	16	13
	Irregular	2	1	3
Apical	Acceptable	18	19	17

canal	Section	касе	M-twc	K- Flexofil		
Coronal	rregular 'Acceptable	10	2	1 ;		
Medial	Irregular Acceptable	3 1-	16	1.		
Apical	Acceptable	18	19	<u>.</u>		
de Norden de la companya de la compa						

ſ	<	<		<
	<rsp=2></rsp=2>		<	
١	<rsp=2></rsp=2>		<	
١	<rsp=2></rsp=2>		</th <th><</th>	<

(a) input image

(b) v	(b) visuization of structure prediction						
<	<		<				
			<				

(d) structure prediction

(c) structure GT <thead><tb>Root canal partSection d>K-Flexofile</thea d>Coronal >55444</td 15td>rowspan="2">Medi allrregular3< td>444 ptable17164d> >13Api callrregular2 13Acc d>17

(e) HTML code GT

(f) HTML code prediction

Our Code is Released

https://github.com/wenwenyu/MASTER-pytorch

