

Tool: Summary Stats and Testing Reference

Test the Hypothesis

Instructions:

Use the tables below to remind yourself of the formulae and testing procedures for hypothesis testing.

Steps in the Hypothesis Testing Process		
Using a Test Statistic (TS)	Using a Confidence Interval (CI)	
Step 1: Define H ₀ and H _a .	Step 1: Define H ₀ and H _a .	
Step 2: Use data to calculate a Test Statistic (TS).	Step 2: Use a sample statistic and standard error to build a Confidence Interval (CI).	
Step 3: Given H ₀ , how likely is TS?	Step 3: Is the null value within the Confidence Interval?	
Step 4:		
Reject or accept H ₀ .	Step 4: Reject or accept H ₀ .	

Calculating Standard Error			
Statistic	Formula	Notes	
Standard Error for Qualitative (Categorical) Variables	$SE_{\hat{p}} = \sqrt{\frac{p_0(1-p_0)}{n}}$	Use the null proportion, not the sample proportion.	
Standard Error for any variable	$SE_{\bar{x}} = \frac{S}{\sqrt{n}}$	Use the sample standard deviation, p-value calculated using T-distribution.	
Test Statistic (TS)	$TS = \frac{\bar{x} - x_0}{SE_{\bar{x}}}$ $TS = \frac{\hat{p} - p_0}{SE_{\hat{p}}}$	Shows how many standard errors away from the null the sample statistic is.	
Confidence	P	±3 <i>SE</i> for 99% CI	
Interval (CI)	for 95%: $CI = \bar{x} \pm 2SE_{\bar{x}}$ for 95%: $CI = \hat{p} \pm 2SE_{\hat{p}}$	±1 <i>SE</i> for 68% CI	

Tailed Testing Options			
Tail	When to Use	Visual Reference	
Right Tail	When the alternative you're trying to support has a value greater than the null. e.g. $H_0=\mu_0$ and $H_a>\mu_0$ or $H_0=p_0$ and $H_a>p_0$	TS	
Left Tail	When the alternative you're trying to support has a value less than the null. e.g. $H_0=\mu_0$ and $H_a<\mu_0$ or $H_0=p_0$ and $H_a< p_0$	TS	
Two Tail	When the alternative you're trying to support has a value greater than or less than the null. e.g. $H_0=\mu_0$ and $H_a\neq\mu_0$ or $H_0=p_0$ and $H_a\neq p_0$	-TS +TS	