3조 도서관 자리인식 프로젝트 계획서

2025년 9월 19일

주제: 카메라 기반 실시간 좌석 점유 감지 & 시각화	
개인 역할 분담 및 실행	
이하은	• OpenCV 기반 UI 오버레이 및 좌석 현황 시각화 개발
	• 사용자 시나리오별 테스트(혼잡·가림·야간 등) 진행 • 데모 영상 제작 및 최종 발표 자료 정리
	• SQLite 데이터베이스 설계 및 이벤트·세션 저장 처리
정은진	• Occupancy FSM(상태머신) 구현 및 로직 안정화 • Linux/WSL 환경 세팅, 패키지 관리 및 배포 스크립트 작성
	• YOLO11 모델 세팅 및 추론 파이프라인 구축
최지은	• 좌석 매핑·트래킹 로직 구현 및 정확도 개선
	• 성능 튜닝(ROI, 프레임 스키핑, 해상도 최적화) 좌석 단위 점유 판정 정확도 ≥ 95%, 재현율 ≥ 93% (샘플 데이터셋 기준)
과제 목표 수행 계획서	지역 < 300ms/frame (CPU), < 5 FPS 유지(720p, YOLO11n/s + ROI 최적화)
	OpenCV UI에서 실시간 좌석 색상 표시 및 상태 패널 제공
	SQLite에 좌석 이벤트/집계 저장 및 간단 쿼리 리포트 제공 1. 프로젝트 요구사항 정의 및 목표 확정
	2. 카메라 설치 및 동영상 입력 환경 구축
	3. 좌석 폴리곤 라벨링 및 좌표 매핑 설정
	4. YOLO11 모델 환경 세팅 및 기본 추론 테스트
	5. 객체 추적 알고리즘(SORT/ByteTrack) 연동
	6. 좌석 매핑과 점유 판정 로직(히스테리시스) 구현
	7. SQLite 데이터베이스 설계 및 연동
	8. OpenCV 기반 UI 오버레이 및 시각화 개발
	9. 성능 최적화(ROI, 프레임 스키핑, 해상도 조정)
	10. 현장 테스트 및 데모 시연, 결과 평가 및 개선
시행 목적	11. 좌석 이용 현황 자동화
	카메라 영상을 기반으로 좌석별 사용 여부를 자동으로 인식하여, 관리자의 수동 점검
	부담을 줄임.
	12. 실시간 정보 제공
	빈자리와 사용 중인 좌석을 직관적인 UI로 시각화하여 이용자가 쉽게 좌석 현황을 확
	인할 수 있도록 지원.
	13. 효율적인 공간 활용
	빈자리 탐색 문제를 해결하고, 좌석 회전율 및 이용률을 높여 도서관·스터디카페의
	운영 효율성을 개선. 운영체제/배포: Linux (Ubuntu), WSL(Windows Subsystem for Linux) 지원
사용 환경 및 사용 기술	입력 장치: Logitech 720p USB 카메라 & 동영상 파일(.mp4/.avi)
	실행 환경: Python3 가상환경(venv), CPU 기반 추론 우선
	UI 실행: OpenCV HighGUI 창에서 실시간 좌석 상태 시각화
	DB 관리: SQLite (단일 파일 DB, 가볍고 이식성 높음)
	YOLO11 (Ultralytics) - 사람/가방 감지
	OpenCV(영상 처리, 좌석 폴리곤 매핑, UI 오버레이)
	객체 추적: SORT 또는 ByteTrack (ID 유지, 가림 대응)
	작석 매핑: OpenCV 호모그래피 변환 + 좌석 폴리곤 JSON
	저장소: SQLite (좌석 이벤트, 세션 기록) UI/시각화: OpenCV 오버레이 + 상태 패널 (FPS, 좌석 현황 표시)
	• 노트북/데스크톱(일반 CPU, RAM 8GB 이상 권장)
사용 장비	• 촬영용 스마트폰(연사/짧은 영상 캡처 가능)
	• 로지텍 웹캠