MATH 229 Worksheet Integrals using substitution

A

Integrate

1.
$$\int (5x+4)^5 dx$$

2.
$$\int 3t^2(t^3+4)^5 dt$$

3.
$$\int \sqrt{4x-5} \, dx$$

4.
$$\int t^2(t^3+4)^{-1/2} dt$$

5.
$$\int \cos(2x+1) dx$$

6.
$$\int \sin^{10} x \cos x \, dx$$

7.
$$\int \frac{\sin x}{(\cos x)^5} dx$$

8.
$$\int \frac{(\sqrt{x}-1)^2}{\sqrt{x}} dx$$

9.
$$\int \sqrt{x^3 + x^2} (3x^2 + 2x) dx$$

10.
$$\int_{-1}^{1} \frac{x+1}{(x^2+2x+2)^3} dx$$

11.
$$\int_0^{\pi} \cos x \sqrt{\sin x} \, dx$$

12.
$$\int (x+1)\sin(x^2+2x+3)\,dx$$

13.
$$\int \left(1 + \frac{1}{t}\right)^3 \frac{1}{t^2} dt$$

14.
$$\int_{-1}^{1} x^2 \sqrt{x^3 + 1} \, dx$$

15.
$$\int \frac{2}{\sqrt{3x-7}} \, dx$$

16.
$$\int_1^4 \frac{1}{\sqrt{x}(\sqrt{x+1})^2} dx$$

17.
$$\int_0^1 \frac{x}{\sqrt{x+1}} dx$$

18.
$$\int x\sqrt{2x+1}\,dx$$

19.
$$\int \sqrt{x} \sqrt{x\sqrt{x+1}} \, dx$$

$$20. \int x^3 \sqrt{x^2 - 1} \, dx$$

21.
$$\int (x^2+1)\sqrt{x-2}\,dx$$

22.
$$\int \frac{x^2 + 2x}{x^2 + 2x + 1} dx$$

$$23. \int \frac{1}{x^2 + 6x + 9} dx$$

24.
$$\int \frac{\sec^2 x}{(1+\tan x)^3} dx$$

$$25. \int \frac{\sin x}{(2+3\cos x)^2} dx$$

26.
$$\int x \tan(x^2) \sec(x^2) dx$$

27.
$$\int 3t^3(t^2+4)^5 dt$$

28.
$$\int (\tan 2x + \cot 2x)^2 dx$$

1.
$$\frac{1}{30}(5x+4)^6+C$$

2.
$$\frac{1}{6}(t^3+4)^6+C$$

3.
$$\frac{1}{6}(4x-5)^{3/2}+C$$

4.
$$\frac{2}{3}(t^3+4)^{1/2}+C$$

5.
$$\frac{1}{2}\sin(2x+1) + C$$

6.
$$\frac{1}{11}\sin^{11}x + C$$

7.
$$\frac{1}{4}(\cos x)^{-4} + C$$

8.
$$\frac{2}{3}x^{3/2} - 2x + 2x^{1/2} + C$$

9.
$$\frac{2}{3}(x^3+x^2)^{3/2}+C$$

10.
$$-\frac{1}{4}(x^2+2x+2)^{-2}\Big|_{x=1}^{1}=\frac{6}{25}$$

11.
$$\frac{2}{3}(\sin x)^{3/2}\Big|_0^\pi=0$$

12.
$$-\frac{1}{2}\cos(x^2+2x+3)+C$$

13.
$$-\frac{1}{4}(1+\frac{1}{t})^4+C$$

14.
$$\frac{2}{9}(x^3+1)^{3/2}\Big|_{1}^{1}=\frac{4\sqrt{2}}{9}$$

15.
$$\frac{4}{3}(3x-7)^{1/2}+c$$

16.
$$-2(\sqrt{x}+1)^{-1}\Big|_{1}^{4}=\frac{1}{3}$$

17.
$$\frac{2}{3}(x+1)^{3/2} - 2(x+1)^{1/2}\Big|_{0}^{1} = \frac{4-2\sqrt{2}}{3}$$

18.
$$\frac{1}{10}(2x+1)^{5/2} - \frac{1}{6}(2x+1)^{3/2} + C$$

19.
$$\frac{4}{5}(x^{3/2}+1)^{3/2}+C$$

20.
$$\frac{1}{5}(x^2-1)^{5/2}+\frac{1}{3}(x^2-1)^{3/2}+C$$

21.
$$\frac{2}{7}(x-2)^{\frac{7}{2}} + \frac{8}{5}(x-2)^{\frac{5}{2}} + \frac{10}{2}(x-2)^{\frac{3}{2}} + C$$

22.
$$x + (x+1)^{-1} + C$$

23.
$$-(x+3)^{-1}+C$$

24.
$$-\frac{1}{2}(1+\tan x)^{-2}+C$$

25.
$$\frac{1}{3}(2+3\cos x)^{-1}+C$$

26.
$$\frac{1}{2}\sec(x^2) + C$$

27.
$$\frac{3}{14}(t^2+4)^7-(t^2+4)^6+C$$

28.
$$\frac{1}{2} \tan 2x - \frac{1}{2} \cot 2x + C$$

Integration by Parts

Evaluate each integral using integration by parts with the indicated choices of u and dv. I.

1.
$$\int x \ln(x) dx$$
;

$$u = \ln(x), \quad dv = xdx$$

2.
$$\int x \cos x \, dx \; ;$$

2.
$$\int x \cos x \, dx$$
; $u = x$, $dv = \cos x \, dx$

3.
$$\int x \cdot 2^x dx \; ; \; u = x, \quad dv = 2^x dx$$

4.
$$\int \sqrt{x} \ln(x) dx$$

4.
$$\int \sqrt{x} \ln(x) dx$$
; $u = \ln(x)$, $dv = \sqrt{x} dx$

II. Evaluate the following integrals

5.
$$\int xe^{-x} dx$$

6.
$$\int x \sin(3x) dx$$

$$7. \int (\ln x)^2 dx$$

8.
$$\int \sin^{-1}(x) dx$$

$$9. \int x^2 \cos(3x) dx$$

$$10. \int \frac{x^2}{e^{2x}} dx$$

11.
$$\int x^2 e^{5x} dx$$

12.
$$\int (x-3)\sec^2 x \, dx$$

ANSWERS: 1.

$$\int x \ln(x) dx = \frac{1}{2} x^2 \ln x - \int \frac{1}{2} x dx$$
$$= \frac{1}{2} x^2 \ln x - \frac{1}{4} x^2 + C$$

2.

$$\int x \cos x \, dx = x \sin x - \int \sin x \, dx$$
$$= x \sin x + \cos x + C$$

$$\int x \cdot 2^{x} dx = \frac{x \cdot 2^{x}}{\ln 2} - \int \frac{2^{x}}{\ln 2} dx$$
$$= \frac{x \cdot 2^{x}}{\ln 2} - \frac{2^{x}}{(\ln 2)^{2}} + C$$

$$\int \sqrt{x} \ln(x) dx = \frac{2}{3} x^{\frac{3}{2}} \ln x - \int \frac{2}{3} x^{\frac{1}{2}} dx$$
$$= \frac{2}{3} x^{\frac{3}{2}} \ln x - \frac{4}{9} x^{\frac{3}{2}} + C$$

5.

$$\int xe^{-x} dx = -xe^{-x} + \int e^{-x} dx$$
$$= -xe^{-x} - e^{-x} + C$$

6.

$$\int xe^{-x} dx = -xe^{-x} + \int e^{-x} dx \qquad \int x\sin(3x) dx = -\frac{1}{3}x\cos(3x) + \frac{1}{3}\int\cos(3x) dx$$
$$= -xe^{-x} - e^{-x} + C \qquad \qquad = -\frac{1}{3}x\cos(3x) + \frac{1}{9}\sin(3x) + C$$

7.

$$\int (\ln x)^2 dx = x(\ln x)^2 - 2 \int \ln x \, dx$$

$$= x(\ln x)^2 - 2 \left[x \ln x - \int dx \right]$$

$$= x(\ln x)^2 - 2x \ln x + 2x + C$$

$$\int \sin^{-1}(x) dx = x \sin^{-1}(x) - \int \frac{x}{\sqrt{1 - x^2}} dx$$
* use a $u - substitution$ *
$$= x \sin^{-1}(x) + \sqrt{1 - x^2} + C$$

$$\int x^{2} \cos(3x) dx = \frac{x^{2} \sin(3x)}{3} - \int \frac{2x \sin(3x)}{3} dx$$
use IBP again
$$= \frac{x^{2} \sin(3x)}{3} - \left[-\frac{2x \cos(3x)}{9} - \int \frac{2 \cos(3x)}{9} dx \right]$$

$$= \frac{x^{2} \sin(3x)}{3} + \frac{2x \cos(3x)}{9} - \frac{2 \sin(3x)}{27} + C$$

10.

$$\int x^{2}e^{-2x} dx = -\frac{1}{2}x^{2}e^{-2x} + \int xe^{-2x} dx$$

$$* use \quad IBP \quad again *$$

$$* = -\frac{1}{2}x^{2}e^{-2x} + \left[-\frac{1}{2}xe^{-2x} - \int -\frac{1}{2}e^{-2x} dx \right]$$

$$= -\frac{1}{2}x^{2}e^{-2x} - \frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x} + C$$

$$= \frac{1}{5}x^{2}e^{5x} - \frac{2}{25}xe^{5x} - \int \frac{2}{25}e^{5x} dx$$

$$= \frac{1}{5}x^{2}e^{5x} - \frac{2}{25}xe^{5x} - \frac{2}{125}e^{5x} + C$$

11.

$$\int x^{2}e^{5x} dx = \frac{1}{5}x^{2}e^{5x} - \int \frac{2}{5}xe^{5x} dx$$
* use IBP again*
$$= \frac{1}{5}x^{2}e^{5x} - \left[\frac{2}{25}xe^{5x} - \int \frac{2}{25}e^{5x} dx\right]$$

$$= \frac{1}{5}x^{2}e^{5x} - \frac{2}{25}xe^{5x} + \frac{2}{125}e^{5x} + C$$

12

$$\int (x-3)\sec^2 x \, dx = \int x \sec^2 x \, dx - 3 \int \sec^2 x \, dx$$
$$= x \tan x - \int \tan x \, dx - 3 \int \sec^2 x \, dx$$
$$= x \tan x - \ln|\sec x| - 3 \tan x + C$$

Integration by Parts: Part 2

Evaluate the following integrals using the "table" method. I.

$$1. \int x \cos(2x) dx$$

$$2. \int x^2 e^x dx$$

2.
$$\int x^2 e^x dx$$
 3. $\int (x^3 + 2x)e^{2x} dx$

4.
$$\int x^2 \cos x dx$$

Evaluate the following integrals. II.

1.
$$\int e^{3x} \cos(2x) dx$$
 2. $\int \sin(\ln x) dx$ 3. $\int \cos(\sqrt{x}) dx$

2.
$$\int \sin(\ln x) dx$$

3.
$$\int \cos(\sqrt{x})dx$$

$$4. \int e^{\sqrt{x}} dx$$

I.
$$1. \frac{1}{2}x\sin(2x) + \frac{1}{4}\cos(2x) + C$$

3.
$$\frac{x^3 + 2x}{2}e^{2x} - \frac{3x^2 + 2}{4}e^{2x} + \frac{6x}{8}e^{2x} - \frac{6}{16}e^{2x} + C$$

2.
$$x^2e^x - 2xe^x + 2e^x + C$$

$$4. \quad x^2 \sin x + 2x \cos x - 2 \sin x + C$$

II. 1.
$$\frac{3}{13}e^{3x}\cos(2x) + \frac{2}{13}e^{3x}\sin(2x) + C$$

2.
$$\frac{1}{2}x\sin(\ln x) - \frac{1}{2}x\cos(\ln x) + C$$

3.
$$2\sqrt{x}\sin(\sqrt{x})+2\cos(\sqrt{x})+C$$

4.
$$2\sqrt{x}e^{\sqrt{x}} - 2e^{\sqrt{x}} + C$$

I. Simplify the following polynomials using long division.

1.
$$\frac{x^2-7x-11}{x-8}$$

2.
$$\frac{x^2-28}{x-5}$$

3.
$$\frac{2x^3+4x^2-5}{x+3}$$

4.
$$\frac{3x^3 + 4x + 11}{x^2 - 3x + 2}$$

Complete the square for the following quadratics. II.

1.
$$x^2 + 4x + 1$$

2.
$$x^2 - 12x + 41$$

1.
$$x^2 + 4x + 11$$
 2. $x^2 - 12x + 41$ 3. $x^2 - 5x + 10$ 4. $3x^2 + 6x + 4$

4.
$$3x^2 + 6x + 4$$

III. Integrate the following rational functions.

$$1. \int \frac{1}{x^2 + 4} dx$$

2.
$$\int \frac{7}{x^2 + 5} dx$$

1.
$$\int \frac{1}{x^2 + 4} dx$$
 2. $\int \frac{7}{x^2 + 5} dx$ 3. $\int \frac{1}{9x^2 + 1} dx$ 4. $\int \frac{2}{x - 3} dx$ 5. $\int \frac{2x}{x - 3} dx$

4.
$$\int \frac{2}{x-3} dx$$

5.
$$\int \frac{2x}{x-3} dx$$

6.
$$\int \frac{x}{x^2 + 4} dx$$

7.
$$\int \frac{x-1}{x^2+4} dx$$

8.
$$\int \frac{x^2 - x + 7}{x^2 + 4} dx$$

6.
$$\int \frac{x}{x^2 + 4} dx$$
 7. $\int \frac{x - 1}{x^2 + 4} dx$ 8. $\int \frac{x^2 - x + 7}{x^2 + 4} dx$ 9. $\int \frac{2x^3 - 9x^2 + 14x - 8}{x - 3} dx$

10.
$$\int \frac{x^3 + 3x^2 - 10}{x^2 + 1} dx$$
 11. $\int \frac{1}{x^2 + 2x + 5} dx$ 12. $\int \frac{x + 3}{x^2 + 2x + 10} dx$

11.
$$\int \frac{1}{x^2 + 2x + 5} dx$$

12.
$$\int \frac{x+3}{x^2+2x+10} dx$$

I. 1.
$$x+1-\frac{3}{x-8}$$

2.
$$x+5-\frac{3}{x-5}$$

I. 1.
$$x+1-\frac{3}{x-8}$$
 2. $x+5-\frac{3}{x-5}$ 3. $2x^2-2x+6-\frac{23}{x+3}$ 4. $3x+9+\frac{25x-7}{x^2-3x+2}$

4.
$$3x + 9 + \frac{25x - 7}{x^2 - 3x + 2}$$

II. 1.
$$(x+2)^2 + 7$$

2.
$$(x-6)^2+5$$

II. 1.
$$(x+2)^2 + 7$$
 2. $(x-6)^2 + 5$ 3. $\left(x-\frac{5}{2}\right)^2 + \frac{15}{4}$ 4. $3(x+1)^2 + 1$

4.
$$3(x+1)^2+1$$

III. 1.
$$\frac{1}{2} \tan^{-1} \left(\frac{x}{2} \right) + C$$

1.
$$\frac{1}{2} \tan^{-1} \left(\frac{x}{2} \right) + C$$
 2. $\frac{7}{\sqrt{5}} \tan^{-1} \left(\frac{x}{\sqrt{5}} \right) + C$ 3. $\frac{1}{3} \tan^{-1} (3x) + C$ 4. $2 \ln |x - 3| + C$

3.
$$\frac{1}{3} \tan^{-1}(3x) + C$$

4.
$$2 \ln |x - 3| + C$$

5.
$$2x + 6 \ln |x - 3| + C$$

6.
$$\frac{1}{2} \ln |x^2 + 4| + C$$

5.
$$2x + 6\ln|x - 3| + C$$
 6. $\frac{1}{2}\ln|x^2 + 4| + C$ 7. $\frac{1}{2}\ln|x^2 + 4| - \frac{1}{2}\tan^{-1}\left(\frac{x}{2}\right) + C$

8.
$$x - \frac{1}{2} \ln |x^2 + 4| + \frac{3}{2} \tan^{-1} \left(\frac{x}{2}\right) + 6$$

8.
$$x - \frac{1}{2} \ln |x^2 + 4| + \frac{3}{2} \tan^{-1} \left(\frac{x}{2} \right) + C$$
 9. $\frac{2}{3} x^3 - \frac{3}{2} x^2 + 5x + 7 \ln |x - 3| + C$

10.
$$\frac{1}{2}x^2 + 3x - \frac{1}{2}\ln|x^2 + 1| - 13\tan^{-1}(x) + C$$
 11. $\frac{1}{2}\tan^{-1}(\frac{x+1}{2}) + C$

11.
$$\frac{1}{2} \tan^{-1} \left(\frac{x+1}{2} \right) + C$$

12.
$$\frac{1}{2}\ln|x^2+2x+10|+\frac{2}{3}\tan^{-1}\left(\frac{x+1}{3}\right)+C$$

Yartial Fraction Decomposition

Part I: Two Linear Factors with no sepation repetition

Find the values of the constants A and B in each identity.

a
$$\frac{2}{(x+1)(x+3)} \equiv \frac{A}{x+1} + \frac{B}{x+3}$$

$$\mathbf{b} \quad \frac{x-3}{x(x-1)} \equiv \frac{A}{x} + \frac{B}{x-1}$$

c
$$\frac{x+1}{(x-3)(x-5)} \equiv \frac{A}{x-3} + \frac{B}{x-5}$$
 d $\frac{x+10}{(1+x)(2-x)} \equiv \frac{A}{1+x} + \frac{B}{2-x}$

d
$$\frac{x+10}{(1+x)(2-x)} \equiv \frac{A}{1+x} + \frac{B}{2-x}$$

$$e \frac{4x-1}{x^2+x-2} \equiv \frac{A}{x+2} + \frac{B}{x-1}$$

$$f \frac{x-9}{x^2-4x+3} \equiv \frac{A}{x-1} + \frac{B}{x-3}$$

Express in partial fractions

$$a \quad \frac{8}{(x-1)(x+3)}$$

b
$$\frac{x-1}{(x+2)(x+3)}$$
 c $\frac{10x}{(x+4)(x-1)}$

c
$$\frac{10x}{(x+4)(x-1)}$$

d
$$\frac{5x+7}{x^2+x}$$

e
$$\frac{x+2}{x^2-5x+4}$$

$$f = \frac{4x+6}{x^2-9}$$

$$g = \frac{3x+2}{x^2-2x-24}$$

h
$$\frac{38-x}{12-x-x^2}$$

i
$$\frac{4x-5}{(2x+1)(x-3)}$$

j
$$\frac{1-3x}{(3x+4)(2x+1)}$$
 k $\frac{x+1}{x-3x^2}$

$$k = \frac{x+1}{x-3x^2}$$

$$1 \frac{5}{2x^2 + 3x - 2}$$

$$\frac{2(x+5)}{8x^2+10x-3}$$

$$\frac{3x-7}{x^2-2x-3}$$

$$0 \quad \frac{1-3x}{1-x-2x^2}$$

Part II: Multiple Linear Terms with Repetition

Find the values of the constants A, B and C in each identity.

b
$$\frac{2x^2 - 6x + 20}{(x+1)(x+2)(x-6)} = \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{x-6}$$

$$c \frac{9x-14}{(x+4)(x-1)^2} \equiv \frac{A}{x+4} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$$

H. Express in partial fractions

a
$$\frac{2x^2+4}{x(x-1)(x-4)}$$

a
$$\frac{2x^2+4}{x(x-1)(x-4)}$$
 b $\frac{9}{(x-2)(x+1)^2}$

$$\frac{x^2+11x-21}{(2x+1)(x-2)(x-3)}$$

d
$$\frac{10x+9}{(x-4)(x+3)^2}$$
 e $\frac{x^2+4x+5}{(x+1)(x+2)^2}$ f $\frac{16-2x}{(x-3)(x^2-4)}$

e
$$\frac{x^2+4x+5}{(x+1)(x+2)^2}$$

$$f = \frac{16-2x}{(x-3)(x^2-4)}$$

g
$$\frac{2-9x}{(x-3)(2x-1)^2}$$
 h $\frac{3+24x-4x^2}{(x+1)(x-4)^2}$

h
$$\frac{3+24x-4x^2}{(x+1)(x-4)^2}$$

i
$$\frac{9x^2-2x-12}{x^3+x^2-6x}$$

Part #: Long Division First

Express in partial fractions

$$5_{i}$$
 a $\frac{x^2+3}{(x-3)(x+1)}$

b
$$\frac{x^3 - 3x^2 - x + 2}{x^2 - 4}$$
 c $\frac{2x^2 + 7x}{x^2 + 6x + 8}$

$$\frac{2x^2 + 7x}{x^2 + 6x + 3}$$

Part IV: Quadratic Factors

Express the following as a sum of partial fractions

6. a)
$$\frac{x^2-3x-7}{(x^2+x+2)(2x-1)}$$
 b) $\frac{13}{(2x+3)(x^2+1)}$ c) $\frac{x}{(x^2-x+1)(3x-2)}$

b)
$$\frac{13}{(2x+3)(x^2+1)}$$

c)
$$\frac{x}{(x^2-x+1)(3x-2)}$$

$$0 = \frac{2}{x-3} + \frac{3}{x-9}$$

Inswers:
$$|a| = \frac{1}{x+1} + \frac{1}{x+3} = \frac$$

e)
$$\frac{3}{x+2} + \frac{1}{x-1}$$

e)
$$\frac{3}{x+2} + \frac{1}{x-1}$$
 f) $\frac{4}{x-1} - \frac{3}{x-3}$

$$20\frac{2}{x-1} - \frac{2}{x+3}$$
 b) $\frac{4}{x+3} - \frac{3}{x+2}$ c) $\frac{8}{x+4} + \frac{2}{x-1}$ d) $\frac{7}{x} - \frac{2}{x+1}$

$$f)\frac{1}{x+3} + \frac{3}{x-3}$$

e)
$$\frac{2}{x-4} - \frac{1}{x-1}$$
 f) $\frac{1}{x+3} + \frac{3}{x-3}$ g) $\frac{2}{x-6} + \frac{1}{x+4}$ h) $\frac{6}{4+x} + \frac{5}{3-x}$

$$2 + \frac{1}{x-3} + \frac{3}{x-3} + \frac{3}{2x+1} + \frac{3}{3x+4} + \frac{4}{x+1-3x} + \frac{4}{2x-1} + \frac{1}{x+2}$$

m)
$$\frac{3}{4x-1} - \frac{1}{2x+3}$$

n)
$$\frac{\frac{5}{2}}{x+1} + \frac{\frac{1}{2}}{x-3}$$

m)
$$\frac{3}{4x-1} - \frac{1}{2x+3}$$
 n) $\frac{5}{x+1} + \frac{1}{x-3}$ o) $\frac{43}{1+x} - \frac{1}{1-2x}$

$$\frac{4}{x+1} + \frac{5}{x+2} + \frac{1}{x-6}$$

$$302 - 1 - \frac{1}{x+2}$$
 $\frac{1}{x+1} + \frac{5}{x+2} + \frac{1}{x-6}$ $\frac{1}{x+4} + \frac{2}{x-1} - \frac{1}{(x-1)^2}$

$$0 \frac{1}{x-4} - \frac{1}{x+3} + \frac{3}{(x+3)^2} + \frac{3}{(x+3)^2} + \frac{1}{x+2} - \frac{3}{x+2} + \frac{1}{x+2} - \frac{3}{x-2}$$

$$y = \frac{1}{x-3} + \frac{2}{2x+1} + \frac{1}{(2x-1)^2} + \frac{1}{x+1} - \frac{3}{x-4} + \frac{7}{(x-4)^2} + \frac{5}{x+3} + \frac{2}{x-2}$$

h)
$$-\frac{1}{x+1} - \frac{3}{x-4} + \frac{7}{(x-4)^2}$$

$$501 + \frac{3}{x-3} - \frac{1}{x+1}$$
 b) $x-3 + \frac{4}{x+2} - \frac{1}{x-2}$ c) $2 - \frac{3}{x+2} - \frac{2}{x+4}$

$$\frac{2x+1}{x^2+x+2} - \frac{3}{2x-1} \quad b) \quad \frac{4}{2x+3} - \frac{2x-3}{x^2+1} \quad c) \quad \frac{-\frac{2}{7}x+\frac{3}{7}}{x^2-x+1} + \frac{\frac{6}{7}}{3x-2}$$

b)
$$\frac{4}{2x+3} - \frac{2x-3}{x^2+1}$$

c)
$$\frac{-2}{x^2-x+1} + \frac{6}{3x-2}$$

Express the following in Partial Fractions

$$1. \ \frac{3x}{(x+2)(x-1)}$$

1.
$$\frac{3x}{(x+2)(x-1)}$$
 2. $\frac{2x-1}{(x+1)(x-2)(x+3)}$ 3. $\frac{2x}{x^2-25}$

3.
$$\frac{2x}{x^2 - 25}$$

4.
$$\frac{4}{x(x^2+4)}$$

4.
$$\frac{4}{x(x^2+4)}$$
 5. $\frac{3x^2+2x}{(x+2)(x^2+4)}$ 6. $\frac{x^2+1}{x(x^2-1)}$

6.
$$\frac{x^2+1}{x(x^2-1)}$$

7.
$$\frac{2}{(x-1)^2(x+1)^2}$$

8.
$$\frac{x^2 + 3x}{x^2 - 4}$$

7.
$$\frac{2}{(x-1)^2(x+1)}$$
 8. $\frac{x^2+3x}{x^2-4}$ 9. $\frac{5x-3}{(x-2)(x-3)^2}$

10.
$$\frac{x^4+1}{x^3+2x}$$

11.
$$\frac{1}{x(x-1)(x+1)}$$

10.
$$\frac{x^4+1}{x^3+2x}$$
 11. $\frac{1}{x(x-1)(x+1)}$ 12. $\frac{16}{(x-1)^2(x+1)^3}$

1.
$$\frac{2}{x+2} + \frac{1}{x-1}$$

3.
$$\frac{1}{x-5} + \frac{1}{x+5}$$

5.
$$\frac{1}{x+2} + \frac{2x-2}{x^2+4}$$

7.
$$\frac{1}{(x-1)^2} - \frac{1}{2(x-1)} + \frac{1}{2(x+1)}$$
 8. $1 + \frac{5}{2(x-2)} + \frac{1}{2(x+2)}$

9.
$$\frac{12}{(x-3)^2} - \frac{7}{x-3} + \frac{7}{x-2}$$
 10. $x + \frac{1}{2x} - \frac{5x}{2(x^2+2)}$

11.
$$\frac{1}{2(x-1)} + \frac{1}{2(x+1)} - \frac{1}{x}$$

2.
$$\frac{1}{2(x+1)} + \frac{1}{5(x-2)} - \frac{7}{10(x+3)}$$

4.
$$\frac{1}{x} - \frac{x}{x^2 + 4}$$

6.
$$\frac{1}{x+1} + \frac{1}{x-1} - \frac{1}{x}$$

8.
$$1+\frac{5}{2(x-2)}+\frac{1}{2(x+2)}$$

10.
$$x + \frac{1}{2x} - \frac{5x}{2(x^2 + 2)}$$

11.
$$\frac{1}{2(x-1)} + \frac{1}{2(x+1)} - \frac{1}{x}$$
 12. $\frac{2}{(x-1)^2} - \frac{3}{x-1} + \frac{4}{(x+1)^3} + \frac{4}{(x+1)^2} + \frac{3}{x+1}$

Integration by Partial Fractions

Evaluate the following integrals

1.
$$\int \frac{1}{r^2 - 4} dx$$

2.
$$\int \frac{2x+3}{x^2-9} dx$$

$$3. \int \frac{2-x}{x^2+5x} dx$$

4.
$$\int \frac{x^2-1}{x^2-16} dx$$

1.
$$\int \frac{1}{x^2 - 4} dx$$
 2. $\int \frac{2x + 3}{x^2 - 9} dx$ 3. $\int \frac{2 - x}{x^2 + 5x} dx$ 4. $\int \frac{x^2 - 1}{x^2 - 16} dx$ 5. $\int \frac{x^4 + x^3 + x^2 + 1}{x^2 + x - 2} dx$

6.
$$\int \frac{x^2 + x - 1}{x^3 - x} dx$$

7.
$$\int \frac{x+7}{x^2(x+2)} dx$$

8.
$$\int \frac{x^5 + 1}{x^4 + 2x^3} dx$$

9.
$$\int \frac{1}{x^4 - 16} dx$$

6.
$$\int \frac{x^2 + x - 1}{x^3 - x} dx$$
 7. $\int \frac{x + 7}{x^2(x + 2)} dx$ 8. $\int \frac{x^5 + 1}{x^4 + 2x^3} dx$ 9. $\int \frac{1}{x^4 - 16} dx$ 10. $\int \frac{\cos x}{\sin^3 x + \sin x} dx$

1.
$$-\frac{1}{4}\ln|x+2| + \frac{1}{4}\ln|x-2| + C$$

2.
$$\frac{1}{2}\ln|x+3| + \frac{3}{2}\ln|x-3| + C$$
 3. $\frac{2}{5}\ln|x| - \frac{7}{5}\ln|x+5| + C$

3.
$$\frac{2}{5}\ln|x| - \frac{7}{5}\ln|x+5| + C$$

4.
$$x - \frac{15}{8} \ln |x+4| + \frac{15}{8} \ln |x-4| + C$$

5.
$$\frac{x^3}{3} + 3x - \frac{13}{3} \ln|x + 2| + \frac{4}{3} \ln|x - 1| + C$$

6.
$$\ln|x| - \frac{1}{2}\ln|x+1| + \frac{1}{2}\ln|x-1| + C$$

7.
$$-\frac{5}{4}\ln|x| - \frac{7}{2}x^{-1} + \frac{5}{4}\ln|x+2| + C$$

8.
$$\frac{x^2}{2} - 2x + \frac{1}{8}\ln|x| + \frac{1}{4}x^{-1} - \frac{1}{4}x^{-2} + \frac{31}{8}\ln|x + 2| + C$$

9.
$$-\frac{1}{32}\ln|x+2| + \frac{1}{32}\ln|x-2| - \frac{1}{16}\tan^{-1}\left(\frac{x}{2}\right) + C$$

$$u = \sin x$$

10.
$$du = \cos x dx$$

$$\ln\left|\sin x\right| - \frac{1}{2}\ln\left|\sin^2 x + 1\right| + C$$

TRIGONOMETRY IDENTITIES REVIEW

A

Identities

1. Quotient Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

2. Reciprocal Identities

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\csc\theta = \frac{1}{\sin\theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

$$\cos\theta = \frac{1}{\sec\theta}$$

$$\sin\theta = \frac{1}{\csc\theta}$$

$$\tan \theta = \frac{1}{\cot \theta}$$

3. The Pythagorean Identities

$$\sin^2\theta + \cos^2\theta = 1$$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

4. Double Angle Identities

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$
$$= 2\cos^2 \theta - 1$$
$$= 1 - 2\sin^2 \theta$$

$\sin 2\theta = 2\sin\theta\cos\theta$

Trigonometric Identities Review

- 1. If $\sin \theta = \frac{4}{5}$ in QI determine
 - a) $\cos\theta$
- b) tan θ
- c) sin 20
- d) θ
- 2. If $\sec \alpha = \frac{\sqrt{5}}{2}$ in QI, determine the value of the following
 - a) $\sin \alpha$
- b) tan α
- c) cos a
- d) sin 2α
- e) α
- 3. If $\sin \theta = \frac{x}{4}$ and θ is in quadrant I, than calculate the following in terms of x.
 - a) $\tan \theta$
- b) sin2θ
- c) $\sec \theta$
- d) θ
- 4. If $\tan \theta = \frac{x}{3}$ and θ is in quadrant I, than calculate the following in terms of x.
 - a) $\sin \theta$
- b) $\cos \theta$
- c) θ
- d) sec θ

- e) $\ln |\sec \theta + \tan \theta|$
- f) $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$
- g) $\ln |\sec \theta| + \tan \theta + \theta$

ANSWERS:

1.a)
$$\frac{3}{5}$$

b)
$$\frac{4}{3}$$

1.a)
$$\frac{3}{5}$$
 b) $\frac{4}{3}$ c) $2\left(\frac{4}{5}\right)\left(\frac{3}{5}\right) = \frac{24}{25}$ d) $\theta = \sin^{-1}\left(\frac{4}{5}\right)$

d)
$$\theta = \sin^{-1}\left(\frac{4}{5}\right)$$

2. a)
$$\frac{1}{\sqrt{5}}$$

b)
$$\frac{1}{2}$$

c)
$$\frac{2}{\sqrt{5}}$$

2. a)
$$\frac{1}{\sqrt{5}}$$
 b) $\frac{1}{2}$ c) $\frac{2}{\sqrt{5}}$ d) $2\left(\frac{4}{5}\right)\left(\frac{3}{5}\right) = \frac{24}{25}$ e) $\alpha = \sec^{-1}\left(\frac{\sqrt{5}}{2}\right)$

e)
$$\alpha = \sec^{-1}\left(\frac{\sqrt{5}}{2}\right)$$

3. a)
$$\frac{x}{\sqrt{16-x^2}}$$

3. a)
$$\frac{x}{\sqrt{16-x^2}}$$
 b) $2\left(\frac{x}{4}\right)\left(\frac{\sqrt{16-x^2}}{4}\right) = \frac{x\sqrt{16-x^2}}{8}$ c) $\frac{4}{\sqrt{16-x^2}}$ d) $\theta = \sin^{-1}\left(\frac{x}{4}\right)$

c)
$$\frac{4}{\sqrt{16-x^2}}$$

d)
$$\theta = \sin^{-1}\left(\frac{x}{4}\right)$$

4. a)
$$\frac{x}{\sqrt{x^2+9}}$$

b)
$$\frac{3}{\sqrt{x^2+9}}$$

4. a)
$$\frac{x}{\sqrt{x^2 + 9}}$$
 b) $\frac{3}{\sqrt{x^2 + 9}}$ c) $\theta = \tan^{-1}\left(\frac{x}{3}\right)$ d) $\frac{\sqrt{x^2 + 9}}{3}$

d)
$$\frac{\sqrt{x^2+9}}{3}$$

e)
$$\ln \left| \frac{\sqrt{x^2 + 9}}{3} + \frac{x}{3} \right|$$

e)
$$\ln \left| \frac{\sqrt{x^2 + 9}}{3} + \frac{x}{3} \right|$$
 f) $\frac{1}{2} \tan^{-1} \left(\frac{x}{3} \right) + \frac{1}{4} \left[2 \left(\frac{x}{\sqrt{x^2 + 9}} \right) \left(\frac{3}{\sqrt{x^2 + 9}} \right) \right]$

$$= \frac{1}{2} \tan^{-1} \left(\frac{x}{3} \right) + \frac{3x}{2(x^2 + 9)}$$

g)
$$\ln \left| \frac{\sqrt{x^2 + 9}}{3} \right| + \frac{x}{3} + \tan^{-1} \left(\frac{x}{3} \right)$$

Evaluate the following integrals I.

1. $\int \cos^2 x \, dx$ 2. $\int \sin^3 x \, dx$ 3. $\int \sin^4 x \, dx$ 4. $\int \sin^3 x \cos^2 x \, dx$

5. $\int \sin^6 x \cos^3 x \, dx$ 6. $\int (1 + \cos x)^2 \, dx$

$$6. \quad \int (1+\cos x)^2 \, dx$$

Π. Evaluate the following integrals.

1.
$$\int \sec^4 x \tan^4 x \, dx$$
 2. $\int \tan^2 x \, dx$ 3. $\int \tan^5 x \sec x \, dx$ 4. $\int \sec^2 x \tan x \, dx$

5.
$$\int \sec^6 x \tan^5 x \, dx$$

5. $\int \sec^6 x \tan^5 x \, dx$ 6. $\int \sec^4 x \, dx$ 7. $\int \tan^3 x \sec^4 x \, dx$

I. 1.
$$\frac{1}{2}x + \frac{1}{4}\sin(2x) + C$$

2.
$$\frac{\cos^3 x}{2} - \cos x + C$$

I. 1.
$$\frac{1}{2}x + \frac{1}{4}\sin(2x) + C$$
 2. $\frac{\cos^3 x}{3} - \cos x + C$ 3. $\frac{3}{8}x - \frac{1}{4}\sin(2x) + \frac{1}{32}\sin(4x) + C$

4.
$$\frac{\cos^5 x}{5} - \frac{\cos^3 x}{3} + C$$

5.
$$\frac{\sin^7 x}{7} - \frac{\sin^9 x}{9} + C$$

4.
$$\frac{\cos^5 x}{5} - \frac{\cos^3 x}{3} + C$$
 5. $\frac{\sin^7 x}{7} - \frac{\sin^9 x}{9} + C$ 6. $\frac{3}{2}x + \frac{1}{4}\sin(2x) + 2\sin x + C$

II. 1.
$$\frac{1}{7} \tan^7 x + \frac{1}{5} \tan^5 x + C$$
 2. $\tan x - x + C$ 3. $\sec x - \frac{2}{3} \sec^3 x + \frac{1}{5} \sec^5 x + C$

$$2. \tan x - x + C$$

3.
$$\sec x - \frac{2}{3}\sec^3 x + \frac{1}{5}\sec^5 x + C$$

4.
$$\frac{1}{2} \tan^2 x + C$$
 or $\frac{1}{2} \sec^2 x + C$

$$\frac{1}{10}\sec^{10}x - \frac{1}{4}\sec^8x + \frac{1}{6}\sec^6x + C$$
5. or

$$\frac{1}{10}\tan^{10}x + \frac{1}{4}\tan^8x + \frac{1}{6}\tan^6x + C$$

6.
$$\frac{1}{3} \tan^3 x + \tan x + C$$

6.
$$\frac{1}{3}\tan^3 x + \tan x + C$$
 7. $\frac{1}{6}\tan^6 x + \frac{1}{4}\tan^4 x + C$

Trigonometric Substitution

Evaluate the following integrals.

$$1. \qquad \int \sqrt{9-x^2} \ dx$$

1.
$$\int \sqrt{9-x^2} \, dx$$
 2. $\int \frac{\sqrt{x^2-1}}{x} \, dx$ 3. $\int \frac{1}{\sqrt{x^2+1}} \, dx$

$$3. \int \frac{1}{\sqrt{x^2+1}} dx$$

Answers:

1.
$$\frac{9}{2}\sin^{-1}\left(\frac{x}{3}\right) + \frac{9}{2}\left(\frac{x}{3}\right)\left(\frac{\sqrt{9-x^2}}{3}\right) + C$$

2.
$$\sqrt{x^2 - 1} - \sec^{-1} x + C$$

2.
$$\sqrt{x^2 - 1} - \sec^{-1} x + C$$
 3. $\ln \left| \sqrt{x^2 + 1} + x \right| + C$

Integration by Trigonometric Substitution: Part 2

Evaluate the following integrals

$$1. \int \frac{dx}{x^2 \sqrt{x^2 - 16}}$$

$$2. \int \frac{1}{\sqrt{x^2 + 25}} dx$$

$$3. \int x^3 \sqrt{4-x^2} \, dx$$

$$4. \int \frac{x^2}{\sqrt{36-x^2}} dx$$

$$5. \int \frac{\sqrt{25x^2 - 1}}{x^2} \, dx$$

ANSWERS:

1.
$$\frac{\sqrt{x^2-16}}{16x}+6$$

2.
$$\ln \left| \sqrt{x^2 + 25} + \frac{x}{5} \right| + C$$

1.
$$\frac{\sqrt{x^2 - 16}}{16x} + C$$
 2. $\ln \left| \sqrt{x^2 + 25} + \frac{x}{5} \right| + C$ 3. $-32 \left[\frac{1}{3} \left[\frac{\sqrt{4 - x^2}}{2} \right]^3 - \frac{1}{5} \left[\frac{\sqrt{4 - x^2}}{2} \right]^5 \right] + C$

4.
$$36 \left[\frac{1}{2} \sin^{-1} \left(\frac{x}{6} \right) - \frac{1}{2} \left(\frac{6}{x} \right) \left(\frac{\sqrt{36 - x^2}}{6} \right) \right] + C$$

5. First let
$$u = 5x$$
; $\frac{1}{5}du = dx$

$$-\frac{\sqrt{25x^2 - 1}}{x} + 5\ln|5x + \sqrt{25x^2 - 1}| + C$$