Notes on the project Parametric Acoustic Array

Jiaxin Zhong

October 19, 2018

Contents

1	List	t of Symbols		
2	Theoretical Model and Analytical Solutions			
	2.1	KZK Equation		
		2.1.1 Rectangular profile		
	2.2	Spectral Solutions		
	2.3	Coupled PDEs		
		2.3.1 Rectangular Profile		
	2.4	Boundary Conditions		
		2.4.1 Circular Profile		
		2.4.2 Rectangular Profile		
	2.5	Sound Power of Waves		
3	Numerical Methods			
	3.1	Discretization		
		3.1.1 Rectangular Profile		
	3.2	Matrix Form		
		3.2.1 Rectangular Profile		
Į	Test	t Data		
	4.1	Circular Profile		
		4.1.1 Kamakura 1989		

1 List of Symbols

Symbols	Descriptions
a	radius of the source
c_0	isentropic speed of sound at ambient values of pressure and density
f_1, f_2	$f_1 = N_1 f_{\rm b}, f_2 = N_2 f_b$, primary frequencies
$f_{ m b}$	$f_1 = f_1, f_2 = f_2, f_3, \text{ primary frequences}$ = $\gcd f_2 - f_1, \text{ basic frequency}$
$f_{ m m}$	= $(f_1 + f_2)/2$, mean primary frequency
<i>J</i> m <i>k</i> :	$=(f_1+f_2)/2$, mean primary frequency = $2\pi f/c_0$ wavenumber
$k_{ m m}$	$=(k_1+k_2)/2$ wavenumber of the mean primary frequency
$l_{ m D}$	
	$= (\beta k \epsilon)^{-1}$, shock formation distance of a plane wave
L_x, L_y	the size of the rectangular transducer in x, y direction, and $L_y \geqslant L_y$
$N_{ m m}$	$L_x = (N_1 + N_2)/2$
p	pressure
-	ambient pressure
$rac{p_0}{ar{p}}$	= $(p - p_0)/P_0$, acoustic pressure normalized to P_0
P_0	$\rho_0 c_0 v_0$, acoustic pressure peak amplitude on the source
$R_{ m D}$	$p_0c_0c_0$, acoustic pressure peak amplitude on the source $=ka^2/2=\pi a^2/\lambda$, Rayleigh distance of primary frequency
	$=k_{\rm m}a^2/2=\pi a^2/\lambda_{\rm m}$, Rayleigh distance of mean primary fre-
$R_{ m Dm}$	
+	quency
<i>t</i>	time $(x_1, x_2) = \pi/I$ $(x_1, x_2)/I$
u	$=(u_x, u_y) = \mathbf{r}/L_y = (x, y)/L_y$
v_0	characteristic velocity peak amplitude on the source
x, y, z	dimensional coordinates, z along the direction of propagation
r	(x,y)
r	r sharmtion coefficient in Nonen non motor
α	absorption coefficient, in Neper per meter
eta	parameter of nonlinearity
ϵ	$= u_0/c_0$, Mach number
σ	$=z/R_{\rm D}$, nondimensional z
$\sigma_{ m D}$	$=l_{ m D}/R_{ m D}$
$\sigma_{ m Dm}$	$=l_{ m Dm}/R_{ m Dm}$
χ	$=x/R_{\mathrm{Dm}}$
ψ	$=y/R_{ m Dm}$
γ	$=L_y/L_x$, the aspect ratio
$ abla^2_{x,y}$	$= \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ $\frac{\partial^2}{\partial \mathbf{u}^2} = \frac{1}{u} \frac{\partial}{\partial u} \left(u \frac{\partial}{\partial u} \right)$ $= \frac{\partial^2}{\partial \chi^2} + \frac{\partial^2}{\partial \psi^2}$
	$\frac{\partial x^2}{\partial x^2} = \frac{\partial y^2}{\partial x^2}$
∇_u^2	$\frac{\partial}{\partial u^2} = \frac{1}{2} \frac{\partial}{\partial u} \left(u \frac{\partial}{\partial u} \right)$
	$\partial \mathbf{u}^{-} u \partial u \setminus \partial u f$ $\partial u = \partial u + \partial u + \partial u f$
$ abla^2_{\chi,\psi}$	$=\frac{\sigma}{2}+\frac{\sigma}{2}$
A) T	$O\chi^2 - O\psi^2$

2 Theoretical Model and Analytical Solutions

2.1 KZK Equation

Nonlinear propagation of finite amplitude sound waves in dissipative and homogenous fluid is decribed by the following KZK equation:

$$\frac{\partial^2 \bar{p}}{\partial \sigma \partial \tau} = \alpha R_{\rm D} \frac{\partial^3 \bar{p}}{\partial \tau^3} + \frac{1}{4} \nabla_{\perp}^2 \bar{p} + \frac{1}{2\sigma_{\rm D}} \frac{\partial^2 (\bar{p})^2}{\partial \tau^2}$$
 (1)

If the source is bifrequency, i.e.

$$f_i = N_i f_b, \quad N_i \in \mathbb{N}^+, \quad i = 1, 2$$
 (2)

2.1.1 Rectangular profile

The Eq. (1) is written as

$$\frac{\partial^2 \bar{p}}{\partial \sigma \partial \tau} = \alpha R_{\rm D} \frac{\partial^3 \bar{p}}{\partial \tau^3} + \frac{1}{\pi \gamma} \nabla_u^2 \bar{p} + \frac{1}{2\sigma_{\rm D}} \frac{\partial^2 (\bar{p})^2}{\partial \tau^2}$$
(3)

The transformations are:

$$\sigma_{\rm m} = z/R_{\rm Dm}, \quad T = (1 + \sigma_{\rm m})\bar{p}, \quad \tau_{\rm m} = \tau - \frac{\pi\gamma}{4} \frac{\xi^2}{N_{\rm m}(1 + \sigma_{\rm m})}, \quad (\chi, \psi) = \frac{(u_x, u_y)}{1 + \sigma_{\rm m}}$$
 (4)

Then, the transformed KZK equation is obtained by Eq. (3)

$$\frac{\partial^2 T}{\partial \sigma_{\rm m} \partial \tau_{\rm m}} = \frac{\alpha_{\rm m}}{N_{\rm m}^2} R_{\rm Dm} \frac{\partial^3 T}{\partial \tau_{\rm m}^3} + \frac{N_{\rm m}}{\pi \gamma (1 + \sigma_{\rm m})^2} \nabla_{\chi,\psi}^2 T + \frac{1}{2N_{\rm m} \sigma_{\rm Dm} (1 + \sigma_{\rm m})} \frac{\partial^2 (T^2)}{\partial \tau_{\rm m}^2}$$
(5)

2.2 Spectral Solutions

A solution of Eq. (3) is sought in the form of a Fourier series

$$\bar{p} = \sum_{n=1}^{\infty} (g_n \sin n\tau + h_n \cos n\tau) = \sum_{n=1}^{\infty} \bar{p}_n$$
(6)

where g_n and h_n are functions of spatial coordinates.

The solution of Eq. (5) is

$$T = \sum_{n=1}^{\infty} [g_n(\chi, \psi, \sigma_{\rm m}) \sin n\tau_{\rm m} + h_n(\chi, \psi, \sigma_{\rm m}) \cos n\tau_{\rm m}] = \sum_{n=1}^{\infty} T_n$$
 (7)

2.3 Coupled PDEs

We thus obtain the following set of coupled partial differential equations for g_n and h_n .

2.3.1 Rectangular Profile

$$\frac{\partial g_{n}}{\partial \sigma} = -\alpha_{n} R_{\text{Dm}} g_{n} + \frac{1}{\pi \gamma n (1 + \sigma_{\text{m}})^{2}} \nabla_{\chi,\psi}^{2} h_{n} + \frac{n}{2N_{\text{m}} \sigma_{\text{Dm}} (1 + \sigma_{\text{m}})} \\
\times \left[\frac{1}{2} \sum_{m=1}^{n-1} (g_{m} g_{n-m} - h_{m} h_{n-m}) - \sum_{m=n+1}^{\infty} (g_{m-n} g_{m} + h_{m-n} h_{m}) \right] \qquad (8)$$

$$\frac{\partial h_{n}}{\partial \sigma} = -\alpha_{n} R_{\text{Dm}} h_{n} - \frac{1}{\pi \gamma n (1 + \sigma_{\text{m}})^{2}} \nabla_{\chi,\psi}^{2} g_{n} + \frac{n}{2N_{\text{m}} \sigma_{\text{Dm}} (1 + \sigma_{\text{m}})} \\
\times \left[\sum_{m=1}^{n-1} g_{m} h_{n-m} + \sum_{m=n+1}^{\infty} (h_{m-n} g_{m} - g_{m-n} h_{m}) \right] \qquad (9)$$

2.4 Boundary Conditions

The boundary condition for g_n and h_n at $\sigma = \sigma_{\rm m} = 0$ is

$$g_n = \frac{1}{\pi} \int_{-\pi}^{\pi} c \sin n\tau_{\rm m} \, d\tau_{\rm m}$$
$$h_n = \frac{1}{\pi} \int_{-\pi}^{\pi} c \cos n\tau_{\rm m} \, d\tau_{\rm m}$$

2.4.1 Circular Profile

The boundary condition at $\sigma = \sigma_{\rm m} = 0$ is

$$\bar{p}(\sigma_{\rm m} = 0, \boldsymbol{\xi}, \tau) = c(\boldsymbol{\xi}, \tau) \tag{10}$$

Suppose it is

$$\bar{p}(\sigma_{\rm m} = 0, \boldsymbol{\xi}, \tau) = c_1(\boldsymbol{\xi}) \sin N_1 \tau + c_2(\boldsymbol{\xi}) \sin N_2 \tau \tag{11}$$

2.4.2 Rectangular Profile

The boundary condition at $\sigma = \sigma_{\rm m} = 0$ is

$$\bar{p}(\sigma_{\rm m} = 0, \mathbf{u}, \tau) = c(\mathbf{u}, \tau)$$
 (12)

Suppose it is

$$\bar{p}(\mathbf{u}, \sigma_{\mathrm{m}} = 0, \tau) = c_{1}(\mathbf{u}) \sin N_{1}\tau + c_{2}(\mathbf{u}) \sin N_{2}\tau
= c_{1}(\mathbf{u}) \left[\cos \left(\frac{\pi \gamma N_{1}}{4N_{\mathrm{m}}} \xi^{2} \right) \sin N_{1}\tau_{\mathrm{m}} + \sin \left(\frac{\pi \gamma N_{1}}{4N_{\mathrm{m}}} \xi^{2} \right) \cos N_{1}\tau_{\mathrm{m}} \right]
+ c_{2}(\mathbf{u}) \left[\cos \left(\frac{\pi \gamma N_{1}}{4N_{\mathrm{m}}} \xi^{2} \right) \sin N_{2}\tau_{\mathrm{m}} + \sin \left(\frac{\pi \gamma N_{1}}{4N_{\mathrm{m}}} \xi^{2} \right) \cos N_{2}\tau_{\mathrm{m}} \right]$$
(13)

Then

$$g_{N_i}(\chi, \psi, \sigma_{\rm m} = 0) = c_i(\chi, \psi) \cos \left[\frac{\pi \gamma N_i}{4N_{\rm m}} (\chi^2 + \psi^2) \right], \quad i = 1, 2$$
 (15)

$$h_{N_i}(\chi, \psi, \sigma_{\rm m} = 0) = c_i(\chi, \psi) \sin\left[\frac{\pi \gamma N_i}{4N_{\rm m}} (\chi^2 + \psi^2)\right], \quad i = 1, 2$$
 (16)

$$g_n(\chi, \psi, \sigma_{\rm m} = 0) = h_n(\chi, \psi, \sigma_{\rm m} = 0) = 0, \quad n \neq N_1, N_2$$
 (17)

2.5 Sound Power of Waves

The overall power of a wave is found by integrating the intensity across the entire field. Within the parabolic approximation the linear plane wave impedance relation is valid [1], and the nondimensional power of a wave is given by (Eq. (2.6) in [2])

$$\overline{\mathcal{P}}(\sigma_{\rm m}) = \frac{1}{2\pi} \int_0^{2\pi} \int_0^{\infty} \bar{p}^2(\xi, \sigma_{\rm m}, \tau) \xi \, \mathrm{d}\xi \, \mathrm{d}\tau$$

The nondimensional power of an individual harmonic component is given by (Eq (2.7) in [2])

$$\overline{\mathcal{P}}_n(\sigma_{\rm m}) = \frac{1}{2\pi} \int_0^{2\pi} \int_0^{\infty} \overline{p}_n^2(\xi, \sigma_{\rm m}, \tau) \xi \, \mathrm{d}\xi \, \mathrm{d}\tau \tag{18}$$

Transform the coordinates into (ζ, σ_m) , Eq. (18) can be written into

$$\overline{\mathcal{P}}_{n}(\sigma_{\mathrm{m}}) = \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{\infty} [g_{n}(\zeta, \sigma_{\mathrm{m}}) \sin n\tau_{\mathrm{m}} + h_{n}(\zeta, \sigma_{\mathrm{m}}) \cos n\tau_{\mathrm{m}}]^{2} \,\mathrm{d}\zeta \,\mathrm{d}\tau \\
= \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{\infty} [(g_{n}(\zeta, \sigma_{\mathrm{m}}) \cos \varphi_{n} + h_{n}(\zeta, \sigma_{\mathrm{m}}) \sin \varphi_{n}) \sin n\tau \\
+ (-g_{n}(\zeta, \sigma_{\mathrm{m}}) \sin \varphi_{n} + h_{n}(\zeta, \sigma_{\mathrm{m}}) \cos \varphi_{n}) \cos n\tau]^{2} \,\zeta \,\mathrm{d}\zeta \,\mathrm{d}\tau \qquad (19) \\
= \frac{1}{2} \int_{0}^{\infty} \left[(g_{n}(\zeta, \sigma_{\mathrm{m}}) \cos \varphi_{n} + h_{n}(\zeta, \sigma_{\mathrm{m}}) \sin \varphi_{n})^{2} \\
+ (-g_{n}(\zeta, \sigma_{\mathrm{m}}) \sin \varphi_{n} + h_{n}(\zeta, \sigma_{\mathrm{m}}) \cos \varphi_{n})^{2} \right] \,\zeta \,\mathrm{d}\zeta \qquad (20)$$

where

$$\varphi_n = \frac{n}{N_{\rm m}} (1 + \sigma_{\rm m}) \zeta^2$$

3 Numerical Methods

3.1 Discretization

3.1.1 Rectangular Profile

$$\sigma_i = i\Delta\sigma, \quad i = 0, 1, \cdots, I - 1, I, \quad \sigma_0 = 0, \quad \sigma_I = \sigma_{\max}, \quad \Delta\sigma = \frac{\sigma_{\max}}{I}$$

$$\chi_{j} = j\Delta\chi, \quad j = 0, 1, \cdots, J - 1, J, \quad \chi_{0} = 0, \quad \chi_{J} = \chi_{\max}, \quad \Delta\chi = \frac{\chi_{\max}}{J}$$

$$\psi_{k} = k\Delta\psi, \quad k = 0, 1, \cdots, K - 1, K, \quad \psi_{0} = 0, \quad \psi_{K} = \psi_{\max}, \quad \Delta\psi = \frac{\psi_{\max}}{K}$$

For $\partial g_n/\partial \sigma$ or $\partial h_n/\partial \sigma$, we adopt Backward Implicit Finite Difference

$$\frac{\partial g_n(\chi, \psi, \sigma_{\mathbf{m}})}{\partial \sigma_{\mathbf{m}}} \bigg|_{i,j,k} = \frac{g_n^{i,j,k} - g_n^{i-1,j,k}}{\Delta \sigma_{\mathbf{m}}}, \quad i = 1, 2, \cdots, I \tag{21}$$

where

$$g_n^{i,j,k} \approx g_n(\chi_j, \psi_k, \sigma_{m,i})$$

$$h_n^{i,j,k} \approx h_n(\chi_j, \psi_k, \sigma_{m,i})$$
(22)

For $\nabla^2_{\chi,\psi}g_n$ or $\nabla^2_{\chi,\psi}h_n$, 4 cases are considered: (1) $j=1,2,\cdots,J-1$, and $k=1,2,\cdots,K-1$

$$\nabla_{\chi,\psi}^{2}\big|_{i,j,k} = \frac{g_{n}^{i,j-1,k} - 2g_{n}^{i,j,k} + g_{n}^{i,j+1,k}}{(\Delta\chi)^{2}} + \frac{g_{n}^{i,j,k-1} - 2g_{n}^{i,j,k} + g_{n}^{i,j,k+1}}{(\Delta\psi)^{2}}$$
(23)

(2) $j = 1, 2, \dots, J - 1$, and k = 0

$$\nabla_{\chi,\psi}^2\big|_{i,j,0} = \frac{g_n^{i,j-1,0} - 2g_n^{i,j,0} + g_n^{i,j+1,0}}{(\Delta\chi)^2} + \frac{-2g_n^{i,j,0} + 2g_n^{i,j,1}}{(\Delta\psi)^2}$$
(24)

(3) j = 0, and $k = 1, 2, \dots, K - 1$

$$\nabla_{\chi,\psi}^2\big|_{i,0,k} = \frac{-2g_n^{i,0,k} + 2g_n^{i,1,k}}{(\Delta\chi)^2} + \frac{g_n^{i,0,k-1} - 2g_n^{i,0,k} + g_n^{i,0,k+1}}{(\Delta\psi)^2}$$
(25)

(4) j = 0, and k = 0

$$\nabla_{\chi,\psi}^{2}\big|_{i,0,0} = \frac{-2g_{n}^{i,0,0} + 2g_{n}^{i,1,0}}{(\Delta\chi)^{2}} + \frac{-2g_{n}^{i,0,0} + 2g_{n}^{i,0,1}}{(\Delta\psi)^{2}}$$
(26)

where the symmetric conditions are used

$$\frac{\partial g_n}{\partial \chi}\Big|_{\chi=0} = \frac{\partial h_n}{\partial \chi}\Big|_{\chi=0} = 0, \quad n = 1, 2, \dots, N$$

$$\frac{\partial g_n}{\partial \psi}\Big|_{\psi=0} = \frac{\partial h_n}{\partial \psi}\Big|_{\psi=0} = 0, \quad n = 1, 2, \dots, N$$
(27)

Discrete Eq. (8) and Eq. (9), we have

(1) $j = 1, 2, \dots, J - 1$, and $k = 1, 2, \dots, K - 1$

$$g_n^{i,j,k} - g_n^{i-1,j,k} = -\Delta \sigma_{\rm m} \alpha_n R_{\rm Dm} g_n^{i,j,k} + \mathcal{G}_n^{i-1,j,k} + \frac{\Delta \sigma_{\rm m}}{\pi \gamma n (1 + \sigma_{\rm m,i})^2} \times \left[\frac{h_n^{i,j-1,k} - 2h_n^{i,j,k} + h_n^{i,j+1,k}}{(\Delta \chi)^2} + \frac{h_n^{i,j,k-1} - 2h_n^{i,j,k} + h_n^{i,j,k+1}}{(\Delta \psi)^2} \right]$$
(28)

$$h_{n}^{i,j,k} - h_{n}^{i-1,j,k} = -\Delta \sigma_{m} \alpha_{n} R_{Dm} h_{n}^{i,j,k} + \mathcal{H}_{n}^{i-1,j,k} - \frac{\Delta \sigma_{m}}{\pi \gamma n (1 + \sigma_{m,i})^{2}} \times \left[\frac{g_{n}^{i,j-1,k} - 2g_{n}^{i,j,k} + g_{n}^{i,j+1,k}}{(\Delta \chi)^{2}} + \frac{g_{n}^{i,j,k-1} - 2g_{n}^{i,j,k} + g_{n}^{i,j,k+1}}{(\Delta \psi)^{2}} \right]$$
(29)

(2)
$$j = 1, 2, \dots, J - 1$$
, and $k = 0$

$$g_n^{i,j,0} - g_n^{i-1,j,0} = -\Delta \sigma_{\rm m} \alpha_n R_{\rm Dm} g_n^{i,j,0} + \mathcal{G}_n^{i-1,j,0} + \frac{\Delta \sigma_{\rm m}}{\pi \gamma n (1 + \sigma_{\rm m,i})^2} \times \left[\frac{h_n^{i,j-1,0} - 2h_n^{i,j,0} + h_n^{i,j+1,0}}{(\Delta \chi)^2} + \frac{-2h_n^{i,j,0} + 2h_n^{i,j,1}}{(\Delta \psi)^2} \right]$$
(30)

$$h_n^{i,j,0} - h_n^{i-1,j,0} = -\Delta \sigma_{\rm m} \alpha_n R_{\rm Dm} h_n^{i,j,0} + \mathcal{H}_n^{i-1,j,0} - \frac{\Delta \sigma_{\rm m}}{\pi \gamma n (1 + \sigma_{{\rm m},i})^2} \times \left[\frac{g_n^{i,j-1,0} - 2g_n^{i,j,0} + g_n^{i,j+1,0}}{(\Delta \chi)^2} + \frac{-2g_n^{i,j,0} + 2g_n^{i,j,1}}{(\Delta \psi)^2} \right]$$
(31)

(3) j = 0, and $k = 1, 2, \dots, K - 1$

$$g_n^{i,0,k} - g_n^{i-1,0,k} = -\Delta \sigma_{\rm m} \alpha_n R_{\rm Dm} g_n^{i,0,k} + \mathcal{G}_n^{i-1,0,k} + \frac{\Delta \sigma_{\rm m}}{\pi \gamma n (1 + \sigma_{\rm m,i})^2} \times \left[\frac{-2h_n^{i,0,k} + 2h_n^{i,1,k}}{(\Delta \chi)^2} + \frac{h_n^{i,0,k-1} - 2h_n^{i,0,k} + h_n^{i,0,k+1}}{(\Delta \psi)^2} \right]$$
(32)

$$h_n^{i,0,k} - h_n^{i-1,0,k} = -\Delta \sigma_{\rm m} \alpha_n R_{\rm Dm} h_n^{i,0,k} + \mathcal{H}_n^{i-1,0,k} - \frac{\Delta \sigma_{\rm m}}{\pi \gamma n (1 + \sigma_{\rm m,i})^2} \times \left[\frac{-2g_n^{i,0,k} + 2g_n^{i,1,k}}{(\Delta \chi)^2} + \frac{g_n^{i,0,k-1} - 2g_n^{i,0,k} + g_n^{i,0,k+1}}{(\Delta \psi)^2} \right]$$
(33)

(4) j = 0, and k = 0

$$g_n^{i,0,0} - g_n^{i-1,0,0} = -\Delta \sigma_{\rm m} \alpha_n R_{\rm Dm} g_n^{i,0,0} + \mathcal{G}_n^{i-1,0,0} + \frac{\Delta \sigma_{\rm m}}{\pi \gamma n (1 + \sigma_{\rm m,i})^2} \times \left[\frac{-2h_n^{i,0,0} + 2h_n^{i,1,0}}{(\Delta \chi)^2} + \frac{-2h_n^{i,0,0} + 2h_n^{i,0,1}}{(\Delta \psi)^2} \right]$$

$$\times \left[\frac{-2h_n^{i,0,0} + 2h_n^{i,1,0}}{(\Delta \chi)^2} + \frac{-2h_n^{i,0,0} + 2h_n^{i,0,1}}{\pi \gamma n (1 + \sigma_{\rm m,i})^2} \right]$$

$$\times \left[\frac{-2g_n^{i,0,0} + 2g_n^{i,1,0}}{(\Delta \chi)^2} + \frac{-2g_n^{i,0,0} + 2g_n^{i,0,1}}{(\Delta \psi)^2} \right]$$

$$(35)$$

where

$$\mathcal{G}_{n}^{i,j,k} = \frac{n\Delta\sigma_{\rm m}}{2N_{\rm m}\sigma_{\rm Dm}(1+\sigma_{\rm m,i})} \left[\frac{1}{2} \sum_{m=1}^{n-1} (g_{m}^{i,j,k}g_{n-m}^{i,j,k} - h_{m}^{i,j,k}h_{n-m}^{i,j,k}) - \sum_{m=n+1}^{N} (g_{m}^{i,j,k}g_{m-n}^{i,j,k} + h_{m}^{i,j,k}h_{m-n}^{i,j,k}) \right]$$
(36)

$$\mathcal{H}_{n}^{i,j,k} = \frac{n\Delta\sigma_{\rm m}}{2N_{\rm m}\sigma_{\rm Dm}(1+\sigma_{\rm m,i})} \left[\sum_{m=1}^{n-1} g_{m}^{i,j,k} h_{n-m}^{i,j,k} + \sum_{m=n+1}^{N} (g_{m}^{i,j,k} h_{m-n}^{i,j,k} - h_{m}^{i,j,k} g_{m-n}^{i,j,k}) \right]$$
(37)

3.2 Matrix Form

3.2.1 Rectangular Profile

$$\begin{bmatrix} \mathbf{E}_{n} & -\mathbf{A}_{n}^{i} \\ \mathbf{A}_{n}^{i} & \mathbf{E}_{n} \end{bmatrix} \begin{bmatrix} \mathbf{G}_{n}^{i} \\ \mathbf{H}_{n}^{i} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_{n}^{i-1} \\ \mathbf{H}_{n}^{i-1} \end{bmatrix} + \begin{bmatrix} \mathcal{G}_{n}^{i-1} \\ \mathcal{H}_{n}^{i-1} \end{bmatrix}$$
(38)

where

$$\mathbf{E}_n = (1 + \Delta \sigma_{\mathrm{m}} \alpha_n R_{\mathrm{Dm}}) \mathbf{I}_{JK \times JK}$$

$$\mathbf{G}_n^i = \begin{bmatrix} \mathbf{g}_n^{i,0,\cdot} \\ \mathbf{g}_n^{i,1,\cdot} \\ \vdots \\ \mathbf{g}_n^{i,J-1,\cdot} \end{bmatrix}, \quad \mathbf{g}_n^{i,j,\cdot} = \begin{bmatrix} \mathbf{g}_n^{i,j,0} \\ \mathbf{g}_n^{i,j,1} \\ \vdots \\ \mathbf{g}_n^{i,j,K-1} \end{bmatrix}, \quad \mathbf{H}_n^i = \begin{bmatrix} \mathbf{h}_n^{i,0,\cdot} \\ \mathbf{h}_n^{i,1,\cdot} \\ \vdots \\ \mathbf{h}_n^{i,J-1,\cdot} \end{bmatrix}, \quad \mathbf{h}_n^{i,j,\cdot} = \begin{bmatrix} \mathbf{h}_n^{i,j,0} \\ \mathbf{h}_n^{i,j,1} \\ \vdots \\ \mathbf{h}_n^{i,j,K-1} \end{bmatrix}$$

$$\mathcal{G}_{n}^{i} = \begin{bmatrix} \mathcal{G}_{n}^{i,0,\cdot} \\ \mathcal{G}_{n}^{i,1,\cdot} \\ \vdots \\ \mathcal{G}_{n}^{i,1,\cdot} \end{bmatrix}, \quad \mathcal{G}_{n}^{i,j,\cdot} = \begin{bmatrix} \mathcal{G}_{n}^{i,j,0} \\ \mathcal{G}_{n}^{i,j,1} \\ \vdots \\ \mathcal{G}_{n}^{i,j,1} \end{bmatrix}, \quad \mathcal{H}_{n}^{i} = \begin{bmatrix} \mathcal{H}_{n}^{i,0,\cdot} \\ \mathcal{H}_{n}^{i,1,\cdot} \\ \vdots \\ \mathcal{H}_{n}^{i,j,-1} \end{bmatrix}, \quad \mathcal{H}_{n}^{i,j,\cdot} = \begin{bmatrix} \mathcal{H}_{n}^{i,j,0} \\ \mathcal{H}_{n}^{i,j,1} \\ \vdots \\ \mathcal{H}_{n}^{i,j,1} \end{bmatrix}$$

$$\mathbf{A}_{n}^{i} = \frac{\Delta \sigma_{\mathbf{m}}}{\pi \gamma n (1 + \sigma_{\mathbf{m},i})^{2} (\Delta \chi)^{2}} \mathbf{A}_{n,\chi} + \frac{\Delta \sigma_{\mathbf{m}}}{\pi \gamma n (1 + \sigma_{\mathbf{m},i})^{2} (\Delta \psi)^{2}} \mathbf{A}_{n,\psi}$$

$$\mathbf{A}_{n,\chi} = \begin{bmatrix} \mathbf{B} & \mathbf{0} \\ \vdots \\ \mathbf{0} & \mathbf{B} \end{bmatrix}_{JK \times JK}, \quad \mathbf{B} = \begin{bmatrix} -2 & 2 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}_{K \times K}$$

$$\mathbf{A}_{n,\psi} = \begin{bmatrix} -2\mathbf{I}_{K \times K} & 2\mathbf{I}_{K \times K} \\ \mathbf{I}_{K \times K} & -2\mathbf{I}_{K \times K} & \mathbf{I}_{K \times K} \\ 0 & K \end{bmatrix}_{JK \times JK}$$

$$\mathbf{A}_{n,\psi} = \begin{bmatrix} -2\mathbf{I}_{K \times K} & 2\mathbf{I}_{K \times K} & \mathbf{I}_{K \times K} \\ \mathbf{I}_{K \times K} & -2\mathbf{I}_{K \times K} & \mathbf{I}_{K \times K} \\ 0 & K \end{bmatrix}_{JK \times JK}$$

4 Test Data

4.1 Circular Profile

4.1.1 Kamakura 1989

Fig. 6

$$\Delta \sigma = 3 \times 10^{-4}$$
, $\sigma_{\text{max}} = 10$, $\Delta \xi = 0.03$, $\xi_{\text{max}} = 6$, $T = 23.7^{\circ}\text{C}$, $h_{\text{r}} = 65.2\%$
 $M = 18$, $f_{1} = 25\text{kHz}$, $f_{2} = 30\text{kHz}$, $P_{0}(25\text{kHz}) = 109.5\text{dB}$, $P_{0}(30\text{kHz}) = 108.5\text{dB}$
 $a = 0.21\text{m}$

References

- [1] Jacqueline Naze Tjotta and Sigve Tjotta. Nonlinear equations of acoustics, with application to parametric acoustic arrays. *The Journal of the Acoustical Society of America*, 69(6):1644–1652, 1981.
- [2] Erlend Vefring. Nonlinear Propagation and Interaction of Collinear Sound Beams. PhD thesis, University of Bergen, 1989.