

32 位 MCU ES32F0654 ES32F0653

数据手册

- □产品简介
- ☑ 数据手册
- □参考手册

上海东软载波微电子有限公司

2021-02-08

基于ARM Cortex-M0 的ES32F065x系列微控制器

内核

- ARM 32 位 Cortex-M0 CPU
 - 最高频率可达 48MHz

存储

- 最大 256K Byte FLASH 存储器
- 最大 32K Byte SRAM 数据存储

电源、复位

- 芯片工作电压范围:
 - 2.2V≤VDD≤5.5V
- POR, BOR (支持 16 个阈值选择), LVD

时钟

- 外部高速晶体振荡器: 1~24MHz
- 内部高速 RC 振荡器: 24 MHz 输出
- 外部低速晶体振荡器: 32.768KHz
- 内部低速 RC 振荡器: 32.768KHz
- 内部超低速 RC 振荡器: 10KHz

低功耗模式

- 支持以下低功耗模式
 - SLEEP
 - STOP1
 - STOP2
 - STANDBY

系统外设

- 调试: SWD 串口调试协议
- 调试配置控制模块(DBGC)
- DMA: 支持 6 个多路复用通道
- PIS: 支持 8 个外设互联通道
- 看门狗定时器: IWDT 和 WWDT
- 系统节拍定时器

接口资源

● 通用 I/O: 多达 88 个通用 I/O

安全及运算加速单元

- CRC
- AES128 加密
- 真随机数发生器
- 运算加速器

模拟

- 1 路 12 位 ADC: 1MSPS, 支持 16 个外部 模拟通道
- 2路模拟比较器
- 温度传感器

定时器

- 1 路高级定时器: 支持 4 个输入捕捉和输出 比较通道,支持 3 个死区可编程 PWM 互 补输出通道,支持刹车功能
- 3路通用定时器: 1路定时器支持4个输入 捕捉和输出比较通道; 2路定时器支持2个 输入捕捉和输出比较通道,支持1个死区 可编程PWM互补输出通道,支持刹车功能
- 4路基本定时器
- RTC: 支持日历,闹钟等功能

通信接口

- 2路 I2C接口:支持多主模式和总线仲裁
- 2 路 SPI 接口
- 2 路 USART (可支持 ISO7816, IrDA 等)
- 4路 UART: 带 4级深度 FIFO, 可支持自动波特率检测, 红外调制功能
- 1 路 CAN (支持 CAN2.0B)

产品系列代码	产品代号
	ES32F0654LX
	ES32F0653LX
	ES32F0654LT
	ES32F0653LT
ES32F065x	ES32F0654NQ
LOOZI OOOX	ES32F0653NQ
	ES32F0654LQ
	ES32F0653LQ
	ES32F0654LTE
	ES32F0653LTE

目录

基于 ARM C	ortex	k-M0 的	ES32F065x 系列微控制器	. 2
第1章	简介	·		8
第2章	概述	<u> </u>		9
2. 1	器件	资源		9
2. 2	器件	-资源概	述	12
2. 2	2. 1	ES32F	-065x 系列微控制器内核	12
	2. 2.	. 1. 1	ARM Cortex-M0 内核	12
	2. 2.	. 1. 2	嵌套向量中断控制器(NVIC)	
	2. 2.	. 1. 3	系统节拍定时器(SysTick)	12
	2. 2.	. 1. 4	串行线调试(SWD)	12
2. 2	2. 2	存储器	· · · · · · · · · · · · · · · · · · ·	12
	2. 2.	. 2. 1	闪存(FLASH)	
	2. 2.	. 2. 2	静态随机存取存储器(SRAM)	
	2. 2.	. 2. 3	存储器保护	
		. 2. 4	启动方式	
2. 2	2. 3	系统管	理	
	2. 2.	. 3. 1	电源	
		. 3. 2	电源监视	
		. 3. 3	稳压器	
	2. 2.	. 3. 4	低功耗模式	
	2. 2.	. 3. 5	时钟管理	
	2. 2.	. 3. 6	直接存储器访问(DMA)	
		. 3. 7	外设互联 (PIS)	
		. 3. 8	看门狗定时器(WDT)	
2. 2			П	
		. 4. 1	通用端口(GPIO)	
2. 2			理及运算加速	
		. 5. 1	循环冗余校验(CRC)	
		. 5. 2	加密处理(CRYPT)	
		. 5. 3	真随机数发生器(TRNG)	
		. 5. 4	运算加速器(CALC)	
2. 2				
		. 6. 1	高级定时器(AD16C4T)	
		. 6. 2	通用定时器(GP16C4T)	
		6.3	通用定时器(GP16C2T)	
		. 6. 4	基本定时器 (BS16T)	
<u> </u>		. 6. 5	实时时钟计数器(RTC)	
2. 2				
		. 7. 1	内部集成电路总线(I2C)	
		. 7. 2	串行外设接口(SPI)	
		. 7. 3	通用异步收发器(UART)	
	2. 2.	. 7. 4	通用异步同步收发器(USART)	19

			2.	2. 7. 5 基本扩展控制器局域网络(BxCAN)	19
		2. 2	2. 8	模拟	20
			2.	2. 8. 1 模数转换器(ADC)	20
			2.	2. 8. 2 模拟比较器(ACMP)	20
			2.	2. 8. 3 温度传感器(TSENSE)	20
第3	3 章		管	脚说明	21
	3. 1		管	脚图	21
		3.	1. 1	LQFP100	21
		3.	1. 2	LQFP64	22
		3.	1. 3	LQFP48	23
		3.	1. 4	QFN48	24
	3. 2		管	脚功能定义	25
第4	章		存	储器映射图	30
第5	章		电	气特性	31
	5. 1		最	小值和最大值、典型值	31
	5. 2		芯	片电源	31
	5. 3		电	流测量	32
	5. 4		芯	片极限参数	33
		5. 4	4. 1	电压参数	33
		5. 4	4. 2	电流参数	33
		5. 4	4. 3	热参数	33
	5. 5		运	行条件	34
		5. 5	5. 1	运行条件	34
		5. 5	5. 2	上电和掉电参数条件	34
		5. 5	5. 3	复位和电源管理模块电气参数	34
		5. 5	5. 4	电流特性	35
		5. 5	5. 5	外部时钟源电气参数	39
		5. 5	5. 6	内部时钟源电气参数	42
		5. \$	5. 7	锁相环电气参数	43
		5. \$	5. 8	存储电气参数	43
		5. \$	5. 9	电磁兼容性	44
				5. 9. 1 电磁敏感性	
		5. \$	5. 10) 电气最大额定值	44
			5.	5. 10. 1 静电释放	44
			5.	5. 10. 2 静态闩锁	44
		5. \$	5. 11	I/O 端口电气特性	45
			5.	5. 11. 1 芯片端口特性图	47
		5. \$	5. 12	2 MRST 电气特性	55
		5. 5	5. 13	B 定时器特性参数	56
		5. 5	5. 14	l 通信特性参数	56
			5.	5. 14. 1 内部集成电路总线特性参数	56
			5.	5. 14. 2 串行外设接口特性参数	57
		5. 5	5. 15	5 低功耗模式转换特性参数	57
		5. 5	5. 16	6 模数转换器特性参数	58

	5. 5	. 17	模拟比较器特性参数	59
			温度传感器特性参数	
第6章		封装作	言息	60
			P100 封装尺寸图	
6. 2		LQFF	°64 封装尺寸图	61
6. 3		LQFF	248 封装尺寸图	62
6. 4		QFN4	18 封装尺寸图	63
第7章		产品作	言息	64
第8章		修订员	历史	65

图目录

图	2-1	ES32F065x 系列系统框图	10
图	2-2	时钟树	11
图	3-1	ES32F065x LQFP100 顶视图	21
图	3-2	ES32F065x LQFP64 项视图	22
图	3-3	ES32F065x LQFP48 项视图	23
图	3-4	ES32F065x QFN48 项视图	24
图	4-1	存储器映射	30
图	5-1	芯片电源	31
图	5-2	电流测量	32
图	5-3	外部高速振荡器连接图	40
图	5-4	外部低速振荡器连接图	41
图	5-5	MRST 应用电路 1	55
タ	5-6	MRST 应用由路 2	55

表目录

表	2-1	器件资源列表	9
表	2-2	定时器功能	. 17
表	3-1	ES32F065x 的管脚功能定义	. 29
表	5-1	极限电压参数	. 33
表	5-2	极限电流参数	. 33
表	5-3	极限热参数	. 33
表	5-4	芯片通常运行条件	. 34
表	5-5	芯片在上电和掉电时的参数条件	. 34
表	5-6	复位和电源管理模块电气参数	. 35
表	5–7	程序在 FLASH 上运行时的电流特性	. 36
表	5–8	程序在 SRAM 上运行时的电流特性	. 36
表	5–9	SLEEP 模式电流特性,程序在 FLASH 或 SRAM	. 37
表	5-10	STOP1 模式下电流特性	.37
表	5–11	STOP2 模式下电流特性	
表	5-12	STANDBY 模式下电流特性	
表	5-13	模块在典型应用场合下的电流特性	. 38
表	5-14	外部输入高速时钟特性参数	. 39
表	5-15	外部输入低速时钟特性参数	. 39
表	5–16	外部高速振荡时钟特性参数	.40
表	5–17	外部低速振荡时钟特性	.41
表	5-18	内部高速 RC 振荡器特性	.42
表	5-19	内部低速 RC 振荡器特性	.42
表	5–20		
表	5-21	PLL 电气参数	
	5-22	存储器特性	
表	5-23	EMS 参数	
	5-24	ESD 最大额定值	
	5-25	LU 最大额定值	
		I/O 端口电气特性	
		I/O 端口的 AC 特性	
		MRST 电气特性	
		定时器特性参数	
		I2C 特性参数	
		SPI 特性参数	
		低功耗模式唤醒特性	
		ADC 特性	
		ADC 精度特性 1	
		ADC 精度特性 2	
		ACMP 特性参数	
表	5-37	温度传感器特性	. 59

第1章 简介

该数据手册为 ES32F065x 系列微控制器提供订单信息以及器件物理特性。阅读数据手册时请配合用户手册(ES32F065x 用户手册)一起使用。

关于 Cortex-M0 可参考《Cortex-M0 技术参考手册》,可从 ARM 官网(*http://infocenter.arm.com*)获得。

第2章 概述

ES32F065x 系列微控制器最大支持 256KB FLASH 和 32KB SRAM, 多达 88 个 I/O, 支持 1 个 12 位 ADC, 两通道 ACMP, RTC 日历、闹钟等功能。带丰富的定时器资源: 1 路高级定时器(AD16C4T), 1 路通用定时器(GP16C4T), 2 路通用定时器(GP16C2T), 4 路基本定时器(BS16T)。丰富的通信资源: 2 路 I2C, 2 路 SPI, 2 路 USART(支持智能卡模式)、4 路 UART 和 1 路 CAN 通信。

ES32F065x 系列微控制器支持最高 48MHz 系统时钟频率。工作温度范围支持-40℃~85℃或-40℃ ~105℃。

主要用于高端家电、智能家电、智能家居、仪器仪表、工业控制等。

2.1 器件资源

		ES32F0654LX	ES32F0653LX	ES32F0654LT	ES32F0653LT	ES32F0654LQ	ES32F0653LQ	ES32F0654NQ	ES32F0653NQ	
	(KBytes)	256	128	256	128	256	128	256	128	
	(KBytes)	32	16	32	16	32	16	32	16	
_	YIO 数量	8	8	5	4		3	8		
	位 ADC					1				
	交器(ACMP)				2	2				
	度传感器 SENSE)	1								
	高级 AD16C4T		1							
定	通用 GP16C4T	1								
时 器	通用 GP16C2T			2						
	基本 BS16T				2	1				
	I2C				2	2				
7岁	SPI				2	2				
通信	UART		4	4			3	3		
1百	USART				2	2				
	CAN				,	1				
内核	运行频率				481	ЛHz				
工作	电压范围		2.2V~5.5V							
	封装	LQFI	P100	LQF	P64	LQF	P48	QFI	N48	

表 2-1 器件资源列表

9/65

图 2-1 ES32F065x 系列系统框图

图 2-2 时钟树

2.2 器件资源概述

2. 2. 1 ES32F065x系列微控制器内核

2. 2. 1. 1 ARM Cortex-M0 内核

ARM Cortex-M0 提供了高性能,低功耗,低成本的平台来满足微控制器的实现要求。具备出色的计算性能,并能够快速响应中断。

2. 2. 1. 2 嵌套向量中断控制器(NVIC)

ES32F065x 系列微控制器的嵌套向量中断控制器 NVIC (Nested Vectored Interrupt Controller) 可支持 4 个优先级设定。并具备以下特性:

- ◇ NVIC 与内核紧密配合支持快速中断响应时间
- ◇ 中断向量表直接传递至内核
- ◇ 支持中断嵌套, 咬尾和迟来

2. 2. 1. 3 系统节拍定时器(SysTick)

SysTick 定时器被捆绑在 NVIC 中,用于产生 SysTick 中断(向量号: 15)

2.2.1.4 串行线调试(SWD)

支持标准 SWD(Serial Wire Debug)协议的调试接口。系统时钟不低于 **24MHz** 时,支持调试的最大通信速率可达 **5MHz**。

调试通信口为 SWDIO 和 SWCLK。SWCLK 默认为下拉,SWDIO 默认为上拉。

2.2.2 存储器

2. 2. 2. 1 闪存 (FLASH)

最大 256KByte FLASH 存储空间用于存放程序和数据。

2. 2. 2. 2 静态随机存取存储器(SRAM)

支持最大 32KByte SRAM, 支持内核单周期访问。

2. 2. 2. 3 存储器保护

用户可通过配置读保护配置字选择相应的读保护或写保护模式。

- ◇ 全局读保护
 - Level 0: 无保护
 - Level 1: FLASH 无法通过调试接口读出,也无法通过运行在 SRAM 中的程序读出
 - Level 2: 所有调试接口访问被禁止,也无法通过运行在 SRAM 中的程序读出
- ◇ 私有代码读出保护
 - 可配置 FLASH 某一块连续的区域为私有代码读出保护区,用户无法通过调试接口读出,也无法通过运行在该区域外的程序读出
- ◇ FLASH 写保护

- 可配置 FLASH 某一块连续的区域为写保护区,用户无法对该区域进行页擦除和编程操作,但全擦除操作可以不受写保护的约束。

2. 2. 2. 4 启动方式

在芯片上电之后,通过判断 BOOT 管脚输入电平和芯片配置字中 BOOT 配置,选择以下 三种方式启动:

- ◇ 从用户程序启动(地址为 0x00000000)
- ◇ 从用户 Boot 启动(ES32F0654 系列地址为 0x0003E000, ES32F0653 系列地址 为 0x0001E000)
- ◇ 从 Boot Rom 启动(地址为 0x11000000)

2.2.3 系统管理

2. 2. 3. 1 电源

VDD: 2.2V~5.5V 电源,通过管脚 VDD 为所有 I/O 及内部稳压器供电。

2. 2. 3. 2 电源监视

- ◇ 上电复位 (POR): 当 VDD 低于 V_{POR} 时,器件处于复位状态。
- ◇ 欠压复位 (BOR): 上电期间,欠压复位将使器件保持复位状态,直到电源电压达到 1.8V。BOR 默认为开启状态,复位完成后,可通过软件选择 BOR 复位电压阈值 V_{BOR},或可将 BOR 禁止。芯片支持 16 个复位电压阈值选择。当电源电压 (VDD) 降至所选复位电压阈值以下时,将使器件复位。
- ◆ 低电压监测(LVD): LVD 可用于监视 VDD 电源,通过设置 LVDEN 使能 LVD,将 VDD 电压和 LVDS 所选择的电压阈值(V_{LVD})进行比较,可产生 LVD 中断。也可 通过 LVDS 选择为外部 LVDIN 端口与内部固定 1.2V 电压比较,此时可监视外部电 压工作情况。

2.2.3.3 稳压器

主电源域稳压器:

在 STANDBY 模式下,主电源域稳压器被关闭。内部逻辑掉电,没有能量损耗。

在 STOP 模式下,如需追求更低的功耗,可配置主电源域稳压器在进入 STOP 模式后工作在维持模式。注意此时处于主电源域的 HRC、HOSC 关闭,备份电源域的 LOSC、LRC、RTC、TSENSE 可工作,少数主电源域的外设(ACMP、LVD、IWDT等)可工作。

其余模式下, 主电源域稳压器处于正常工作模式。

备份电源域稳压器:

在芯片所有功耗模式下可工作,并且消耗极小电流。

2.2.3.4 低功耗模式

ES32F065x 系列微控制器支持以下低功耗模式来实现低功耗,快速唤醒时间以及可支持唤醒源的组合选择。

◇ SLEEP 模式

在 SLEEP 模式下,内核时钟被关闭。所有外设可以继续工作并通过中断或事件唤醒内核。

◇ STOP1 模式

在 STOP1 模式下,内核和大部分外设时钟被关闭,HOSC 和 HRC 时钟可通过软件配置为使能。DMA 可以继续动作,配合一些低功耗外设在局部小系统内完成较简单的工作。可根据不用应用场景需求,来配置主电源域稳压器在进入 STOP1 模式后处于何种低功耗模式。

◇ STOP2 模式

在 STOP2 模式下,内核和大部分外设时钟被关闭,HOSC 和 HRC 可通过软件配置为使能。DMA 被关闭。只有一些低功耗外设还能继续工作,并通过中断唤醒芯片。可根据需求,来配置主电源域稳压器在进入 STOP2 模式后处于何种低功耗模式。

◇ STANDBY 模式

STANDBY 模式消耗最少的功耗。主电源域稳压器被关闭,内核逻辑掉电。备份电源域 稳压器开启,LOSC、RTC等可工作。备份电源域 RAM 维持保存数据。

2. 2. 3. 5 时钟管理

时钟控制器可对内核和外设分配不同的时钟源,同时管理外设总时钟门控以及低功耗模式的时钟门控。

◇ 时钟分频

通过权衡系统的运行速度和功耗,可以调整内核和外设的时钟分频比,选择合适的时钟频率。

◇ 时钟安全控制

HOSM(HOSC Security Management)可以实时监测 HOSC 时钟的工作情况,当发生时钟停止时,可自动为其切换为 HRC 时钟。

PULM (PLL Unlock Management) 可以实时监测 PLL 时钟的工作情况,当发生时钟失锁时,可自动为其切换为 HRC 时钟。

◇ 时钟门控

内核、部分外设和存储器时钟都可被单独门控,可减少功耗消耗。

◇ 时钟源

- 1~24MHz 外部高速晶体振荡器 (HOSC)
- 2 或 24MHz 内部高速 RC 振荡器 (HRC)
- 32768Hz 外部低速晶体振荡器(LOSC)
- 32768Hz 内部低速 RC 振荡器 (LRC)
- 10KHz 内部超低速 RC 振荡器 (ULRC)
- 最高 48MHz 内部锁相环倍频时钟(PLL)

2.2.3.6 直接存储器访问(DMA)

DMA(Direct Memory Access)控制器能够独立于内核进行内存操作,以降低功耗和内核的工作负载。它包含 6 个 DMA 通道,每个 DMA 通道分别对应一个 DMA 多路复用器。

多路复用器可选择片上所有的 DMA 请求源。DMA 控制器可支持存储器到存储器、存储器到外设或外设到存储器之间的数据传输。

DMA 可以在 STOP1 模式下进行存储器到存储器的数据传输。 DMA 使用的是从 ARM 公司授权的 PL230uDMA。

2.2.3.7 外设互联 (PIS)

PIS(Peripheral Interaction System)在微控制器中作为外设互联的桥接口使用,利用 PIS 可实现外设之间的相互触发、控制及自动化工作,提高系统的实时性和快速响应能力,可避免占用过多的内核工作负载并简化软件工作,为各种应用扩展提供便捷。送出信号的外设模块被称为生产端,PIS 把这些信号传递到被称为消费端的外设进行使用。 PIS 信号可以是电平或脉冲的形式,并支持异步触发信号。

2.2.3.8 看门狗定时器(WDT)

◇ 独立看门狗定时器(IWDT)

IWDT(Independent Watchdog), 当使用芯片配置字使能 IWDT 时, 时钟强制为 32768Hz LRC 时钟, 可用于检测软件和硬件异常, 如主时钟停振, 程序跑飞等。

在调试模式下, 定时器可被冻结。

◇ 窗口看门狗定时器(WWDT)

WWDT (Window Watchdog),使用系统时钟 PCLK 作为计数时钟,对于过早或过晚喂 狗都将产生 WWDT 复位,可用于检测软件没有喂狗或过早的喂狗行为,防止程序跑至 不可控状态。

在调试模式下, 定时器可被冻结。

2. 2. 4 外部接口

2.2.4.1 通用端口(GPIO)

每组通用端口包含 16 个独立的引脚。这些引脚可单独配置为输入或输出。每个引脚有独立的开漏输出控制,驱动能力选择控制,上拉或下拉选择,CMOS/TTL 输入选择以及输入滤波使能控制。大部分端口可以与模拟功能及其他数字外设功能复用。每个端口可分别支持中断,映射到 16 个中断向量中。另外每个端口还可支持触发 DMA 数据传输的功能。

2.2.5 安全管理及运算加速

2. 2. 5. 1 循环冗余校验(CRC)

CRC(Cyclic Redundancy Check)发生器可以执行带可编程多项式设定的 CRC 计算。

支持四个常用的多项式: CRC-CCITT, CRC-8, CRC-16 和 CRC-32

- \Diamond CRC-CCITT: $X^{16} + X^{12} + X^{5} + 1$
- \Diamond CRC-8: $X^8 + X^2 + X + 1$
- \Diamond CRC-16: $X^{16} + X^{15} + X^2 + 1$
- \Diamond CRC-32: $X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X^4 + X^5 + X^6 + X^6$

2. 2. 5. 2 加密处理(CRYPT)

硬件加密模块主要用于由硬件对数据进行加密或解密操作,支持的标准有 AES (Advanced Encryption Standard)。

2. 2. 5. 3 真随机数发生器(TRNG)

TRNG(True Random Numer Generator)可生产 1 位串行真随机数或 8/16/32 位并行真随机数。

2.2.5.4 运算加速器 (CALC)

CALC(Calculator)可以执行平方根的硬件运算加速以及带符号的除法的硬件运算加速。

2.2.6 定时器

ES32F065x 系列微控制器包含了 1 个高级定时器, 3 个通用定时器和 4 个基本定时器。功能比较如下表所示:

	定时器计数 位宽度	计数类型	预分频比	DMA 请求	输入捕捉/输 出比较通道	互补输出
高级定时器 (AD16C4T)	16 位	白 白 下 上	1~65536	支持	4	支持
通用定时器 (GP16C4T)	16 位	白 白 白 上	1~65536	支持	4	不支持
通用定时器 (GP16C2T)	16 位	向上	1~65536	支持	2	支持
基本定时器 (BS16T)	16 位	向上	1~65536	支持	0	不支持

表 2-2 定时器功能

2. 2. 6. 1 高级定时器(AD16C4T)

支持1路高级定时器(AD16C4T0)。AD16C4T可被视为复用在6个通道上的3相PWM。PWM互补输出的死区时间可配。另外高级定时器兼具通用定时器的所有功能。

在调试模式下,高级定时器可被冻结,并禁止 PWM 输出。

高级定时器可与其他定时器连接,一起配合使用,以达到同步或事件串联的目的。

2. 2. 6. 2 通用定时器 (GP16C4T)

支持 1 路通用定时器 (GP16C4T0)。GP16C4T包含 4 个独立通道, 具备以下功能:

- ◇ 输入捕捉
- ◇ 输出比较
- ◇ PWM 生成(边缘或中间对齐模式)
- ◇ 单脉冲输出

通用定时器可与其他定时器连接,一起配合使用,以达到同步或事件串联的目的。

在调试模式下, 定时器可被冻结。

2. 2. 6. 3 通用定时器(GP16C2T)

支持 2 路通用定时器 (GP16C2T0, GP16C2T1)。GP16C2T 包含 2 个独立通道, 具备以下功能:

- ◇ 输入捕捉
- ◇ 输出比较
- ◇ PWM 生成(边缘或中间对齐模式)

V1.4 17/65

◇ 单脉冲输出

还支持:

- ◇ 1 通道 PWM 互补输出
- ◇ 刹车输入

通用定时器可与其他定时器连接,一起配合使用,以达到同步或事件串联的目的。

在调试模式下, 定时器可被冻结。

2. 2. 6. 4 基本定时器 (BS16T)

支持 4 路基本定时器 (BS16T0, BS16T1, BS16T2, BS16T3)。BS16T 可用于 16 位时基计数器或者产生事件触发其他外设工作。

在调试模式下, 定时器可被冻结。

2. 2. 6. 5 实时时钟计数器 (RTC)

RTC(Real Time Clock)备份电源域在芯片 STANDBY 模式下仍可通过独立的备份电源域稳压器获取电源。

支持 128Byte 备份寄存器,可在 STANDBY 模式下保存数据。

系统复位(除备份电源域上电复位外)不会对 RTC 产生影响。

RTC 采用外部 32768Hz 晶体振荡器时钟源,支持日历功能,并支持产生定时中断,闹钟中断等。

2.2.7 通信接口

2.2.7.1 内部集成电路总线(I2C)

支持 2 路 I2C(I2C0,I2C1)。I2C(Inter-Intergrated Circuit)总线接口用作微控制器和 I2C 串行总线之间的接口。它支持多主模式功能,可以控制所有 I2C 总线特定的序列、协议、仲裁和时序。它支持标准和快速模式。它还与 SMBus 2.0 兼容。它可以用于多种用途,包括 CRC 生成和验证、SMBus (系统管理总线)以及 PMBus (电源管理总线)。

I2C 支持 DMA 对所发送和接收数据进行传输。

2. 2. 7. 2 串行外设接口(SPI)

支持 2 路 SPI 接口(SPI0,SPI1)。SPI(Serial Peripheral Interface)可与外部器件进行半双工/全双工的同步串行通信。该接口可配置为主模式,在这种情况下,它可为外部从器件提供通信时钟(SCK)。该接口还能够在多主模式配置下工作。它可用于多种用途,包括基于双线的单工同步传输,其中一条可作为双向数据线,或使用 CRC 校验实现可靠通信。

SPI 支持 DMA 对所发送和接收数据进行传输。

2. 2. 7. 3 通用异步收发器(UART)

支持 4 路 UART 接口(UART0,UART1,UART2,UART3)。UART(Universal Asynchronous Receiver Transmitter)支持与外部设备进行全双工数据通信和单线半双工通信。UART 支持波特率自动测量功能,并且提供了 4 级深度 FIFO 可提高发送或接收的效率,可减少产生中断请求的次数。UART 还支持多点通信(RS-485)、局域互联网络(LIN)、红外通信协议(IrDA SIR),以及自动硬件流控制(CTS/RTS)。

UART 支持 DMA 对所发送和接收数据进行传输。

2. 2. 7. 4 通用异步同步收发器(USART)

支持 2 路 USART 接口(USART0,USART1)。USART(Universal Synchronous Asynchronous Receiver Transmitter)支持与外部设备进行全双工数据通信和单线半双工通信。USART 还支持智能卡通信(ISO7816)、多点通信(RS-485)、红外通信协议(IrDA SIR),以及自动硬件流控制(CTS/RTS)。

USART 支持 DMA 对所发送和接收数据进行传输。

2. 2. 7. 5 基本扩展控制器局域网络(BxCAN)

支持 1路 BxCAN 总线接口(BxCAN0)。BxCAN(Basic Extended Controller Area Network) 支持 2.0A 和 2.0B(Active)协议规范,最高通信速率可以达到 1Mbit/s。

2.2.8 模拟

2.2.8.1 模数转换器 (ADC)

支持 1 路模数转换器(ADC0)。ADC(Analog to Digital Convertor)是 12 位分辨率的逐次逼近型模数转换器。它具有多达 19 个复用通道,可测量从管脚输入的 16 个外部信号、3 个内部信号。这些通道的模数转换可在单次、扫描或不连续采样模式下进行。ADC的结果存储在一个左对齐或右对齐的 16 位数据寄存器中。

ADC 模块具有模拟看门狗特性,允许应用检测输入电压是否超过了用户自定义的阈值上限或下限。

ADC 支持触发 DMA 数据传输的功能。

2.2.8.2 模拟比较器 (ACMP)

支持 2 路模拟比较器(ACMP0,ACMP1)。ACMP(Analog Comparator)用于比较两个模拟信号电压的大小。当正极输入大于负极输入时比较器输出逻辑 1,否则输出 0。当比较器输出值有变化时,两个比较器都可以配置产生中断。

ACMP 带迟滞功能。

ACMP 可在 STOP 模式下工作。

2. 2. 8. 3 温度传感器(TSENSE)

TSENSE(Temprature Sensor)可生成与温度成线性变化的电压,并将电压转换为实际温度值输出。

第3章 管脚说明

3.1 管脚图

3. 1. 1 LQFP100

图 3-1 ES32F065x LQFP100 顶视图

3. 1. 2 LQFP64

图 3-2 ES32F065x LQFP64 顶视图

3. 1. 3 LQFP48

图 3-3 ES32F065x LQFP48 顶视图

3. 1. 4 QFN48

图 3-4 ES32F065x QFN48 顶视图

3.2 管脚功能定义

Pin	Pin Number									
LQFP48/ QFN48	LQFP64	LQFP100	Pin Name	ALTO (复位后功能)	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6
1	1	1	PE2	_	PE2	_	UART2_TX	ACMP0_OUT	_	_
1	1	2	PE3	_	PE3	1	UART2_RX	ACMP1_OUT	_	_
1	1	3	PE4	_	PE4	1	UART2_CTS	1	_	
1	1	4	PE5	_	PE5	-	UART2_RTS	1	_	_
1	1	5	PE6	_	PE6	1	USART0_CK	ı	_	-
1	1	6	VDD_2	_	_	1	_	1	_	
2	2	7	PC13-TAMPER0_RT C	_	PC13_TAMPER0_RTC	ı	_	ı	_	-
3	3	8	PC14/LOSC_IN	LOSC_IN	PC14	_	_	_	_	_
4	4	9	PC15/LOSC_OUT	LOSC_OUT	PC15	_	_	_	_	_
1	1	10	VSS_2	_	_	_	_	_	_	_
1	1	11	PF4	_	PF4	_	_	_	_	_
5	5	12	PH0/HOSC_IN	HOSC_IN	PH0	_	UART0_TX	_	I2C1_SCL	ACMP0_OUT
6	6	13	PH1/HOSC_OUT	HOSC_OUT	PH1	_	UART0_RX	_	I2C1_SDA	ACMP1_OUT
7	7	14	MRST	MRST	_	-	_	1	_	_
1	8	15	PC0	ADC_IN0 ACMP0_IN0	PC0	1	UART1_TX	SPI1_NSS	_	-
1	9	16	PC1	ADC_IN1 ACMP0_IN1	PC1	-	UART1_RX	SPI1_SCK	-	RTCO
1	10	17	PC2	ADC_IN2 ACMP0_IN2	PC2	-	UART1_CTS	SPI1_MISO	-	-

V1.4 25/65

Pin	Num	ber								
LQFP48/ QFN48	LQFP64	LQFP100	Pin Name	ALT0 (复位后功能)	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6
1	11	18	PC3	ADC_IN3 ACMP0_IN3	PC3	-	UART1_RTS	SPI1_MOSI	-	-
1		19	PF6	_	PF6	_	_	_	_	_
8	12	20	VREFN/PH3	VREFN	PH3	_	_	_	_	_
9	13	21	VREFP/PH4	VREFP	PH4	_	_	_	_	_
1		22	PF7	_	PF7	_	_	_	_	_
10	14	23	PA0-WKUP	ADC_IN4 ACMP0_IN4	PA0-WKUP-TAMPER 1_RTC	GP16C2T0_CH1	USART1_CTS	-	-	-
11	15	24	PA1	ADC_IN5 ACMP0_IN5	PA1	GP16C2T0_CH2	USART1_RTS	-	-	-
12	16	25	PA2	ADC_IN6 ACMP0_IN6	PA2	-	USART1_TX	-	-	GP16C2T0_CH1N
13	17	26	PA3	ADC_IN7 ACMP0_IN7	PA3	-	USART1_RX	-	-	GP16C2T0_BRK
1	18	27	PF0	_	PF0	_	_	_	_	_
1	19	28	PF1	_	PF1	_	_	_	_	_
14	20	29	PA4	ADC_IN8	PA4	_	USART1_CK	_	_	SPI0_NSS
15	21	30	PA5	ADC_IN9	PA5	_	_	_	I2C1_SCL	SPI0_SCK
16	22	31	PA6	ADC_IN10	PA6	_	GP16C2T1_CH1	AD16C4T0_BRK	I2C1_SDA	SPI0_MISO
17	23	32	PA7	ADC_IN11	PA7	_	GP16C2T1_CH2	AD16C4T0_CH1N	I2C1_SMBA	SPI0_MOSI
1	24	33	PC4	ADC_IN12	PC4	_	_	UART3_TX	_	GP16C2T1_CH1N
1	25	34	PC5	ADC_IN13	PC5	1	_	UART3_RX	1	GP16C2T1_BRK
18	26	35	PB0	ADC_IN14	PB0	Ι	_	UART3_CTS	-	AD16C4T0_CH2N

V1.4 26/65

Pin	Num	ber								
LQFP48/ QFN48	LQFP64	LQFP100	Pin Name	ALT0 (复位后功能)	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6
19	27	36	PB1	ADC_IN15	PB1	_	ı	UART3_RTS	_	AD16C4T0_CH3N
20	28	37	PB2	_	PB2	_	-	-	_	_
1	1	38	PE7	_	PE7	AD16C4T0_ET	-	USART0_CK	_	_
1	/	39	PE8	_	PE8	AD16C4T0_CH1N		_	_	_
1	/	40	PE9	_	PE9	AD16C4T0_CH1	I	ı	_	_
1	1	41	PE10		PE10	AD16C4T0_CH2N	I	USART0_TX	UART3_TX	PIS_CH0P
1	1	42	PE11	_	PE11	AD16C4T0_CH2	_	USART0_RX	UART3_RX	PIS_CH1P
1	1	43	PE12	_	PE12	AD16C4T0_CH3N	_	USART0_CTS	UART3_CTS	PIS_CH2P
1	1	44	PE13	_	PE13	AD16C4T0_CH3	_	USART0_RTS	UART3_RTS	PIS_CH3P
1	1	45	PE14	_	PE14	AD16C4T0_CH4	_	_	_	_
1	1	46	PE15	_	PE15	AD16C4T0_BRK	_	_	_	_
21	29	47	PB10	_	PB10	_	UART0_TX	_	I2C1_SCL	_
22	30	48	PB11	_	PB11	_	UART0_RX	_	I2C1_SDA	_
23	31	49	VSS_3	_	_	_	-	_	_	_
24	32	50	VDD_3	_	_	_	_	_	_	_
25	33	51	PB12	_	PB12	AD16C4T0_BRK	_	SPI1_NSS	I2C1_SMBA	
26	34	52	PB13	_	PB13	AD16C4T0_CH1N	UART0_CTS	SPI1_SCK	_	_
27	35	53	PB14	_	PB14	AD16C4T0_CH2N	UART0_RTS	SPI1_MISO	_	_
28	36	54	PB15	_	PB15	AD16C4T0_CH3N		SPI1_MOSI	_	_
1	1	55	PD8	_	PD8	_	_	_	UART0_TX	_
1	1	56	PD9	_	PD9	_	_	_	UART0_RX	_
1	1	57	PD10	_	PD10	_	-	_	_	_

V1.4 27/65

Pin	Num	ber								
LQFP48/ QFN48	LQFP64	LQFP100	Pin Name	ALT0 (复位后功能)	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6
1	1	58	PD11	_	PD11	_	_	_	UART0_CTS	_
1	1	59	PD12	_	PD12	GP16C4T0_CH1			UART0_RTS	_
1	1	60	PD13	_	PD13	GP16C4T0_CH2	_	UART3_RX	_	_
1	1	61	PD14		PD14	GP16C4T0_CH3		UART3_TX	_	_
1	1	62	PD15	_	PD15	GP16C4T0_CH4	_		_	_
1	37	63	PC6	_	PC6	_	GP16C2T1_CH1	_	_	PIS_CH0P
1	38	64	PC7	_	PC7	_	GP16C2T1_CH2	_	_	PIS_CH1P
1	39	65	PC8	_	PC8	_	_	_	_	PIS_CH2P
1	40	66	PC9	_	PC9	_	_	_	_	PIS_CH3P
29	41	67	PA8	_	PA8	AD16C4T0_CH1	_	ACMP0_OUT	USART0_CK	RTCO
30	42	68	PA9	_	PA9	AD16C4T0_CH2	_	ACMP1_OUT	UART0_TX	LSCO
31	43	69	PA10	_	PA10	AD16C4T0_CH3	_		UART0_RX	HSCO
32	44	70	PA11	_	PA11	AD16C4T0_CH4	_	CAN0_RX	UART0_CTS	_
33	45	71	PA12	_	PA12	AD16C4T0_ET	_	CAN0_TX	UART0_RTS	_
34	46	72	PA13-SWDIO	SWDIO	PA13	UART1_TX	_	_	_	_
1	1	73	NC	_	_	_	_	_	_	_
35	47	74	VSS_4	_	_	_	_	_	_	_
36	48	75	VDD_4	_	_	_	_	_	_	_
37	49	76	PA14-SWCLK	SWCLK	PA14	UART1_RX	_	_	_	_
38	50	77	PA15	_	PA15	GP16C2T0_CH1	_	SPI0_NSS	_	_
1	51	78	PC10	_	PC10	_	UART1_TX	_	UART2_RTS	GP16C2T0_CH1N
1	52	79	PC11	_	PC11	_	UART1_RX	_	UART2_CTS	GP16C2T0_BRK

V1.4 28/65

Pin l	Num	ber								
LQFP48/ QFN48	LQFP64	LQFP100	Pin Name	ALT0 (复位后功能)	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6
1	53	80	PC12	_	PC12	_	UART1_RTS	1	UART2_TX	_
1	/	81	PD0	_	PD0	_	_	-	_	_
1	1	82	PD1	_	PD1	_	_	ı	_	_
1	54	83	PD2	LVDIN	PD2	_	UART1_CTS	_	UART2_RX	_
1	/	84	PD3	_	PD3	_	_	SPI0_SCK	USART1_CTS	_
1	1	85	PD4	_	PD4	_	_	SPI0_MISO	USART1_RTS	_
1	/	86	PD5	_	PD5	_	UART1_TX	_	USART1_TX	_
1	1	87	PD6	_	PD6	_	UART1_RX	_	USART1_RX	_
1	1	88	PD7	_	PD7	_	_	SPI0_MOSI	USART1_CK	_
39	55	89	PB3	_	PB3	GP16C2T0_CH2	_	SPI0_SCK	UART2_TX	_
40	56	90	PB4	_	PB4	GP16C2T1_CH1	_	SPI0_MISO	UART2_RX	PIS_CH0P
41	57	91	PB5	_	PB5	GP16C2T1_CH2	_	SPI0_MOSI	I2C0_SMBA	PIS_CH1P
42	58	92	PB6	_	PB6	GP16C4T0_CH1	USART0_TX	_	I2C0_SCL	PIS_CH2P
43	59	93	PB7	_	PB7	GP16C4T0_CH2	USART0_RX	_	I2C0_SDA	PIS_CH3P
44	60	94	PH2-BOOT0	_	BOOT0/PH2	_	_	_	_	_
45	61	95	PB8	_	PB8	GP16C4T0_CH3	CAN0_RX	USART1_RX	I2C0_SCL	GP16C2T1_CH1N
46	62	96	PB9	_	PB9	GP16C4T0_CH4	CAN0_TX	USART1_TX	I2C0_SDA	GP16C2T1_BRK
1	1	97	PE0	_	PE0	GP16C4T0_ET	USART0_CTS	USART1_CK	I2C0_SMBA	-
1	/	98	PE1	_	PE1	_	USART0_RTS	_	_	_
47	63	99	VSS_1	_	_	_	_	_	_	-
48	64	100	VDD_1	_	_	_	_	_	_	_

表 3-1 ES32F065x 的管脚功能定义

V1.4

第4章 存储器映射图

图 4-1 存储器映射

第5章 电气特性

5.1 最小值和最大值、典型值

最大值和最小值是在指定温度范围内测试所有元器件后,在最差条件下(包括环境温度,电源电压以及测试频率等)应能够保证的数据。

典型值为温度 25℃, 电源电压 VDD=5V(电压范围 2.2V≤VDD≤5.5V)条件下的电气值。

5.2 芯片电源

图 5-1 芯片电源

- 注 1: 每一组电源必须连接如图所示的陶瓷耦合电容。这些电容必须尽可能地靠近芯片的相应管脚,才能保证芯片的运行性能。
- 注 2: 图中 4.7μF 的电容必须连接到 VDD_1。
- 注 3: VREFP 和 VREFN 管脚在复用为 ADC 外部参考时才需要外接电容。

31/65

5.3 电流测量

图 5-2 电流测量

5.4 芯片极限参数

以下表格为芯片耐受的极限电气参数值,超过范围可能导致芯片永久性破坏。

5. 4. 1 电压参数

标号	参数	条件	最小值	最大值	单位
VDD	芯片主电源	-	-0.3	7.5	V
VIN	端口输入电压	-	-0.3	VDD+0.3	V
△VDDx	各 VDD 电源端口的差值	-	-	50	mV
VSSx - VSS	各 VSS 端口之间的差值	-	-	50	mV
V_{ESD}	静电释放电压	-	请参考 5. 5. 10	0.1静电释放	V

表 5-1 极限电压参数

5. 4. 2 电流参数

标号	参数	条件	最小值	最大值	单位
I_{VDD}	流经 VDD 的总电流	-	ı	100	mA
I _{VSS}	流经 VSS 的总电流	-	-	100	mA
	拉电流(输出高)	非大电流 I/O	-	5	mA
I _{IO}	灌电流(输出低)	非大电流 I/O	-	20	mA
I _{LATCH}	I/O 闩锁电流	-	100	ı	mA

表 5-2 极限电流参数

5.4.3 热参数

标号	参数	条件	最小值	最大值	単位
T _{STG}	储存温度	-	-65	150	$^{\circ}$
TJ	结温	-	-	125	$^{\circ}$

表 5-3 极限热参数

5.5 运行条件

5.5.1 运行条件

标号	参数	条件	最小值	最大值	单位
f _{HCLK}	内部 AHB 总线时钟频率	ı	-	48	MHz
f _{PCLK1}	内部 APB1 总线时钟频率	ı	-	48	MHz
f _{PCLK2}	内部 APB2 总线时钟频率	-	_	48	MHz
VDD	电源电压	-	2.2	5.5	V
_	环境温度(针对其余产品型号)	-	-40	85	$^{\circ}$
T _A	环境温度(针对 ES32F065xLTE 产品)	-	-40	105	$^{\circ}$
TJ	结温	_	-40	125	$^{\circ}$

表 5-4 芯片通常运行条件

5.5.2 上电和掉电参数条件

标号	参数	条件	最小值	最大值	单位
t _{VDD}	VDD 上升速率	参考 5.2 章节	1	8	us/V
	VDD 下降速率	参考 5.2 章节	20	8	us/V

表 5-5 芯片在上电和掉电时的参数条件

5.5.3 复位和电源管理模块电气参数

标号	参数	条件	最小值	典型值	最大值	单位	
\/	上电复位和掉电复	上电	_	2.0	_	V	
V_{POR}	位的阈值	掉电	_	1.9	_	V	
$V_{PORHYST}$	POR 迟滞	-	_	40	-	mV	
		BORVS=0001	1.90	2.00	2.10		
		BORVS=0010	2.00	2.10	2.20		
		BORVS=0011	2.10	2.20	2.30		
		BORVS=0100	2.20	2.30	2.40		
		BORVS=0101	2.30	2.40	2.50	2.50 2.60 2.70	
		BORVS=0110	2.40	2.50	2.60		
		BORVS=0111	2.50	2.60	2.70		
V_{BOR}	V _{BOR} 电压档位选择	BORVS=1000	2.70	2.80	2.90	V	
		BORVS=1001	2.90	3.00	3.10		
		BORVS=1010	3.00	3.10	3.20		
		BORVS=1011	3.20	3.30	3.40		
		BORVS=1100	3.50	3.60	2.70		
		BORVS=1101	3.60	3.70	3.80		
		BORVS=1110	3.90	4.00	4.10	1	
		BORVS=1111 4.20		4.30	4.40		
V _{BORHYST}	V _{BOR} 电压迟滞	-		50	_	mV	
V_{LVD}	LVD 电压阈值选择	LVDS=0010(上升沿)	2.20	2.25	2.30	V	

V1.4 34/65

标号	参数	条件	最小值	典型值	最大值	単位
		LVDS=0010 (下降沿)	2.15	2.20	2.25	
		LVDS=0011(上升沿)	2.40	2.45	2.50	
		LVDS=0011 (下降沿)	2.35	2.40	2.45	
		LVDS=0100 (上升沿)	2.60	2.65	2.70	
		LVDS=0100 (下降沿)	2.55	2.60	2.65	
		LVDS=0101 (上升沿)	2.80	2.85	2.90	
		LVDS=0101 (下降沿)	2.75	2.80	2.85	
		LVDS=0110(上升沿)	3.00	3.05	3.10	
		LVDS=0110(下降沿)	2.95	3.00	3.05	
		LVDS=0111(上升沿)	3.60	3.65	3.70	
		LVDS=0111(下降沿)	3.55	3.60	3.65	
		LVDS=1000(上升沿)	4.00	4.05	4.10	
		LVDS=1000 (下降沿)	3.95	4.00	4.05	
		LVDS=1001 (上升沿)	4.60	4.65	4.70	
		LVDS=1001 (下降沿)	4.55	4.60	4.65	
		LVDS=1010(上升沿)	2.30	2.35	2.40	
		LVDS=1010(下降沿)	2.25	2.30	2.35	
V _{LVDHYST}	V _{LVD} 电压迟滞	-		50	-	mV
V _{RSTTEMPO}	POR 复位输出迟延	-	_	200	-	us

表 5-6 复位和电源管理模块电气参数

5. 5. 4 电流特性

芯片消耗的电流涉及到电源电压,环境温度,端口负载,器件软件配置,运行频率和模式等。

典型电流值和最大电流值在以下条件下测得:

- ◇ 所有 I/O 处于关闭状态或者输入状态(固定电平输入), 无负载
- ◇ 无特别说明情况下所有外设关闭
- ◇ FLASH 的访问为 3 周期 (2wait)
- ◇ FLASH 预取指开启
- ◇ 当外设使能时,f_{PCLK1}=f_{HCLK},f_{PCLK2}=f_{HCLK}/2

标号	参数	条件		典型值		最大值		単位
你亏	少 级	余件	f _{HCLK}	VDD=5V	T _A =25℃	T _A =85℃	T _A =105℃	平位
			48MHz	12.72	12.73	12.83	12.54	
		HOSC 时	32MHz	8.71	8.72	8.85	8.68	
		钟源	24MHz	6.67	6.68	6.83	6.76	
		所有外设	20MHz	5.64	5.65	5.79	5.73	
	DUN	使能	8MHz	2.47	2.5	2.61	2.64	
l ,	RUN		4MHz	1.45	1.47	1.61	1.63	mΛ
I _{VDD}	模式电流		48MHz	8.37	8.39	8.53	8.37	mA
		HOSC 时	32MHz	5.77	5.79	5.93	5.85	
		钟源	24MHz	4.46	4.48	4.62	4.61	
		所有外设	20MHz	3.8	3.82	3.95	3.93	
		禁止	8MHz	1.73	1.75	1.86	1.9	
			4MHz	1.08	1.1	1.23	1.27	

表 5-7 程序在 FLASH 上运行时的电流特性

标号	参数	条件	•	典型值		最大值		单位
你亏	少 级	宋件	f _{HCLK}	VDD=5V	T _A =25℃	T _A =85℃	T _A =105℃	半仏
			48MHz	11.11	11.12	11.26	11.03	
		HOSC 时	32MHz	7.6	7.62	7.76	7.64	
		钟源	24MHz	5.85	5.87	6	6.01	
		所有外设	20MHz	4.95	4.96	5.11	5.07	
	DUN	使能	8MHz	2.2	2.21	2.33	2.37	
١,	RUN		4MHz	1.31	1.33	1.47	1.5	m A
I_{VDD}	模式电流		48MHz	6.73	6.75	6.9	6.8	mA
	电机	HOSC 时	32MHz	4.67	4.69	4.84	4.79	
		钟源	24MHz	3.64	3.65	3.79	3.84	
		所有外设	20MHz	3.1	3.12	3.25	3.26	
		禁止	8MHz	1.46	1.48	1.59	1.63	
			4MHz	0.93	0.95	1.09	1.13	

表 5-8 程序在 SRAM 上运行时的电流特性

标号	参数	条件		典型值		最大值		单位
你亏	多剱	余件	f _{HCLK}	VDD=5V	T _A =25℃	T _A =85℃	T _A =105℃	平位
			48MHz	8.25	8.26	8.41	8.27	
	HOSC 时	32MHz	5.67	5.7	5.83	5.76		
	钟源	24MHz	4.4	4.42	4.55	4.55		
		所有外设	20MHz	3.74	3.76	3.9	3.88	
	SLEE	使能	8MHz	1.71	1.73	1.85	1.88	
	P模		4MHz	1.07	1.09	1.22	1.26	mΛ
I _{VDD}	式电		48MHz	3.83	3.85	4.01	3.97	mA
	流	HOSC 时	32MHz	2.72	2.74	2.88	2.89	
		钟源	24MHz	2.17	2.19	2.32	2.37	
		所有外设	20MHz	1.88	1.9	2.02	2.07	
		禁止	8MHz	0.96	0.98	1.09	1.15	
			4MHz	0.69	0.71	0.84	0.89	

表 5-9 SLEEP 模式电流特性,程序在 FLASH 或 SRAM

标号 参数		条件	典型值 VDD=5V	最大值			
			VDD-5V	T _A =25℃	T _A =85℃	T _A =105℃	位
		HRC 开启 外设开启	358.6	360	385	407.7	uA
	STOP1 模	HRC 关闭 LRC 开启 外设开启	28.1	30	50.3	78.7	uA
I _{VDD}	式电流	HRC 开启 外设关闭	338.2	338.2	362	385	uA
		HRC 关闭 LRC 开启 外设关闭	7.7	7.9	27.5	55.3	uA

表 5-10 STOP1 模式下电流特性

标号	参数	条件	典型值 条件 VDD=5V		最大值			
			VDD-3V	T _A =25℃	T _A =85℃	TA=105℃	位	
	LDO 工作在	38.5	39.4	63.3	94.8	uA		
lunn	STOP2 模	普通模式						
definition 式电流	式电流	LDO 工作在	6	6.2	26.2	56	uA	
		低功耗模式	U	0.2	20.2	50	uA	

表 5-11 STOP2 模式下电流特性

		数条件		典型值			最大值		
标号	参数		T _A =25℃			T _A =25 ℃	T _A =85 ℃	T _A =105 ℃	単位
			VDD=	VDD=	VDD=		VDD=5.5V		
			2.5V	3.3V	5V	VBB-3.3 V			
	STANDBY	RTC,LOSC 工作	3	3.1	3.3	3.4	6	13.6	u A
I _{VDD}	模式电流	RTC,LOSC 不工作	2.1	2.2	2.4	2.5	5.6	13.1	u A

表 5-12 STANDBY 模式下电流特性

标号	参数	电流	単位
I _{HOSC}	HOSC 电流 4MHz	280	
1	HRC 电流 24MHz	370	
I _{HRC}	HRC 电流 2MHz	50	
I _{LOSC}	LOSC 电流	1.2	
I _{LRC}	LRC 电流	1.0	uA
I _{ADC}	ADC 电流	30	
I _{TSENSE}	温度传感器电流	60	
	ACMP 电流(普通模式)	40	
ГАСМР	ACMP 电流(低功耗模式)	8	

表 5-13 模块在典型应用场合下的电流特性

5.5.5 外部时钟源电气参数

◆ 外部输入高速时钟特性如下表所示:

标号	参数	条件	最小值	典型值	最大值	单位
f _{HOSC_EXT}	外部输入高速时钟 频率	_	1	-	24	MHz
V _{HOSC_HIGH}	HOSC_IN 输入时 钟的高电平电压	-	0.7×VDD	-	VDD	V
V _{HOSC_LOW}	HOSC_IN 输入时 钟的低电平电压	-	VSS	-	0.3×VDD	٧
twidth_Hosc	HOSC_IN 的输入 时钟高电平或低电 平时间	-	20	-	-	ns
I _{LEAKAGE_HOSC}	HOSC_IN 输入漏 电	VSS≤HOSC_IN ≤VDD	-	-	1	uA

表 5-14 外部输入高速时钟特性参数

◆ 外部输入低速时钟特性如下表所示:

标号	参数	条件	最小值	典型值	最大值	单位
f _{LOSC_EXT}	外部输入低速时 钟频率	-	-	32.768	-	KHz
V _{LOSC_HIGH}	LOSC_IN 输入 的高电平电压	-	0.7×VDD	-	VDD	V
V _{LOSC_LOW}	LOSC_IN 输入 的低电平电压	-	VSS	-	0.3×VDD	V
t _{width_losc}	LOSC_IN 的高 电平或低电平时 间	ı	100	-	ı	ns
ILEAKAGE_LOSC	LOSC_IN 输入 漏电	VSS≤LOSC_IN ≤VDD	-	-	1	uA

表 5-15 外部输入低速时钟特性参数

◆ 外部高速振荡时钟(晶体或陶瓷振荡)

外部高速振荡时钟可由 1MHz 到 24MHz 范围的晶体或陶瓷振荡器提供。在应用中,振荡器与负载电容的距离必须放置得尽可能近,以使输出信号失真和发振稳定时间最小。

标号	参数	条件	最小值	典型值	最大值	単位
f _{HOSC_IN}	外部高速振荡时钟频率	_	1	-	24	MHz
C _L	建议根据晶体自身的电阻 值,采用相应的电容负载	R _S =25Ω	-	15	_	pF
I	外部高速振荡器的驱动电流	VDD= 3.3V HOSC_IN= VSS 30pF 负载	-	ı	300	uA
g _m	振荡器跨导	启动	-	3.7	_	mA/V
t _{START_HOSC}	振荡器启动时间	VDD 稳定 4MHz 晶振	-	5.0	_	ms

表 5-16 外部高速振荡时钟特性参数

- 注 1: 在潮湿环境下使用晶体或陶瓷振荡器的注意要点,比如建议如何配置电阻等参数。
- 注 2: t_{START_OSC} 是振荡器的发振稳定时间,指的是从软件使能振荡器到稳定输出某一频率时钟这段期间。该值会因晶体或陶瓷的制造商不同而显著改变。
- 注 3: 外接振荡器参数请参考晶体或陶瓷振荡器制造商。

下图为外部高速振荡器的典型应用连接:

图 5-3 外部高速振荡器连接图

注: REXT 阻值取决于晶振自身特性。

◆ 外部低速振荡时钟(晶体或陶瓷振荡)

外部低速振荡时钟由 32.768KHz 的晶体或陶瓷振荡器提供。在应用中,振荡器与负载电容的距离必须放置得尽可能近,以使输出信号失真和发振稳定时间最小。

标号	参数	条件	最小值	典型值	最大值	単位
f _{LOSC_IN}	外部低速振荡时钟频率	_	-	32.768	-	KHz
C _L	电容负载	-	-	12	-	pF
I	外部低速振荡器的驱动 电流	VDD= 3.3V LOSC_IN= VSS	-	-	0.5	uA
g _m	振荡器跨导	-	-	5	-	uA/V
+	振荡器启动时间	VDD 稳定,T _A =25℃	-	20	-	ms
t _{START_LOSC}	1水初命四约则門	VDD 稳定,T _A =-40℃		100	_	ms

表 5-17 外部低速振荡时钟特性

- 注 1: t_{START_LOSC} 是振荡器的发振稳定时间,指的是从软件使能振荡器到稳定输出某一频率时钟这段期间。该值会因晶体或陶瓷的制造商不同而显著改变。
- 注 2: 外接振荡器参数请参考晶体或陶瓷振荡器制造商。

下图为外部低速振荡器的典型应用连接:

图 5-4 外部低速振荡器连接图

5.5.6 内部时钟源电气参数

◆ 内部高速 RC 振荡器

标号	参数	条件	最小值	典型值	最大值	单位
f	频率	24MHz	-	24	_	MHz
f _{HRC}	频率	2MHz	_	2	最大值 51 1.0 1.5 3.0 3.0 1.0 1.5 3.0 3.0	MHz
Duty	占空比	_	49	50	51	%
		T _A =25°C	_	ı	1.0	%
ACC _{HRC24M}	HRC24MHz 精度	T _A =-10 to 85°C	-	ı	1.5	%
ACCHRC24M	TRU24WITZ 相/支	T _A =-40 to 85°C	_	ı	3.0	%
		T _A =-40 to 105°C	_	ı	3.0	%
		T _A =25°C	-	ı	1.0 %	%
ACC _{HRC2M}	HRC 2MHz 精度	T _A =-10 to 85°C	_		%	
ACCHRC2M	TRU ZIVITIZ 相反	T _A =-40 to 85°C	-	ı	3.0	%
		T _A =-40 to 105°C	_	ı	3.0	%
	起振稳定时间	2MHz	_	40	50	us
t _{START_HRC}	是3水花足时间	24MHz	_	20	30	us
	HRC 电流	24MHz		350	_	uA
I _{DD}	HRC 电流	2MHz	_	40	-	uA

表 5-18 内部高速 RC 振荡器特性

◆ 内部低速 RC 振荡器 (32.768KHz)

标号	参数	条件	最小值	典型值	最大值	单位
f _{LRC}	频率	-	ı	32.768	ı	KHz
	LRC 精度	T _A =25°C	ı	ı	2.0	%
ACC_{LRC}		T _A =-40 to 85 °C	ı	ı	5.0	%
		T _A =-40 to 105 °C	ı	ı	5.0	%
t _{START_LRC}	启振稳定时间	-	ı	60	ı	us
I_{DD}	LRC 电流	-	-	0.8	-	uA

表 5-19 内部低速 RC 振荡器特性

◆ 内部超低速 RC 振荡器 (10KHz)

标号	参数	条件	最小值	典型值	最大值	単位
f _{ULRC}	频率	-	-	10	-	KHz
		T _A =25°C	-	-	3.0	%
ACC _{ULRC}	ULRC 精度	T _A =-40 to 85°C	-	-	10.0	%
		T _A =-40 to 105°C	-	-	10.0	%
t _{START_ULRC}	启振稳定时间	-	-	200	ı	us
I_{DD}	ULRC 电流	_	_	0.1	_	uA

表 5-20 内部超低速 RC 振荡器特性

5. 5. 7 锁相环电气参数

标号	参数	条件	最小值	典型值	最大值	单位
	PLL 输入时钟	4MHz 模式	3.8	4.0	4.2	MHz
f_{PLL_IN}	FLL 相/\P\ tr	32KHz 模式	31.130	32.768	34.406	KHz
	PLL 输入时钟占空比	_	45	50	55	%
f	PLL 倍频输出时钟	8倍频	30.4	32.0	33.6	MHz
f _{PLL_OUT}	PLL 倍频输出时钟	12 倍频	45.6	48.0	50.4	MHz
t _{LOCK}	PLL 锁定时间	_	_	100	_	us
t _{JITTER}	时钟抖动	_	_	20	_	ps

表 5-21 PLL 电气参数

注: t_{JITTER} 值为设计指标,实际情况根据输入时钟抖动可能会略大于此值。

5. 5. 8 存储电气参数

标号	参数	条件	最小值	典型值	最大值	单位	
4	字编程时间	T _A =-40 to 85°C	-	20	-	us	
t _{PROG}		T _A =-40 to 105°C	-	20	-	us	
4	五複吟吐词	T _A =-40 to 85°C	-	2	-	ms	
t _{ERASE}	页擦除时间 	T _A =-40 to 105°C	-	2	-	ms	
4	44~~~	T _A =-40 to 85°C	-	10	-	ms	
t _{ME}	块擦除 	T _A =-40 to 105°C	-	10	-	ms	
		读取模式					
		48MHz	-	- 5	-	mA	
		VDD=5V					
		编程模式		3		mΛ	
١.,	冰	VDD=5V	_	3	_	mA	
I _{DD}	消耗电流	页擦除模式		3		mΛ	
		VDD=5V	_	3	_	mA	
		块擦除模式		3		m Λ	
		VDD=5V	_	3	_	mA	
		掉电模式	-	1	-	uA	
N	七元 [7.4] 14.12	T _A =-40 to 85°C	100K	-	-	Cycles	
N _{END}	擦除/编程次数	T _A =-40 to 105°C	100K	-	-	Cycles	
t _{RET}	数据保持时间	T _{RET} =-40 to 125°C	10		_	Years	

表 5-22 存储器特性

5.5.9 电磁兼容性

5. 5. 9. 1 电磁敏感性

标号	参数	条件	等级
V _{FESD}	导致系统紊乱的 I/O 印加极限 电压	VDD=5V,LQFP100,T _A =25°C,f _{HCLK} =24MHz, 遵循标准 IEC 61000-4-2	2A
V _{EFT}	电快速瞬变脉冲群	VDD=5V,LQFP100,T _A =25°C,f _{HCLK} =24MHz, 遵循标准 IEC 61000-4-4	4A

表 5-23 EMS 参数

5. 5. 10 电气最大额定值

5. 5. 10. 1 静电释放

标号	参数	条件	等级	最大值	単位
V _{ESDHBM}	静电释放电压(人体模型)	T _A =25°C,遵循标准 MIL-STD-883J	3A	4000	٧
V _{ESDCDM}	静电释放电压(充电器件模型)	T _A =25°C,遵循标准 JEDEC JS-002-2014	C3	1000	V

表 5-24 ESD 最大额定值

5. 5. 10. 2 静态闩锁

I	标号	参数	条件	等级
	LU	静态闩锁等级	T _A =25°C,遵循标准 JESD78E	Class I Level A

表 5-25 LU 最大额定值

5. 5. 11 I/O端口电气特性

标号	参数	条件	最小值	典型值	最大值	单位
	I/O 输入低电平	T _A =-40 to 85°C VDD=5V	-	-	0.3×VDD	V
V _{IL}	电压(CMOS)	T _A =-40 to 105°C VDD=5V	-	-	0.3×VDD	V
V IL	I/O 输入低电平 电压(TTL)	T _A =-40 to 85°C VDD=5V	-	0.8	1.2	V
		T _A =-40 to 105°C VDD=5V	-	0.8	1.2	V
	I/O 输入高电平	T _A =-40 to 85°C VDD=5V	0.7×VDD	-	-	V
V _{IH}	电压(CMOS) I/O 输入高电平 电压(TTL)	T _A =-40 to 105°C VDD=5V	0.7×VDD	-	-	V
V IH		T _A =-40 to 85°C VDD=5V	1.8	2.0	-	V
		T _A =-40 to 105°C VDD=5V	1.8	2.0	-	V
	I/O 输出低电平 (普通端口)	VDD=2.5V VOL=0.2V 驱动 0	2	3	4	mA
		VDD=5V VOL=0.4V 驱动 0	7	9	11	mA
I _{OL1}		VDD=2.5V VOL=0.2V 驱动 1	4	5	7	mA
		VDD=5V VOL=0.4V 驱动 1	13	15	20	mA
1	I/O 输出高电平	VDD=2.5V VOH=2.3V 驱动 0	0.3	0.4	0.6	mA
I _{OH1}	(普通端口)	VDD=5V VOH=4.6V 驱动 0	3.0	3.5	4.0	mA
ı	I/O 输出低电平	VDD=2.5V VOL=0.2V 驱动 1	7	9	11	mA
I _{OL2}	(大电流端口)	VDD=5V VOL=0.4V 驱动 1	21	25	30	mA
I _{IOLEAK}	端口漏电流	I/O 处于高阻态,接	-	10	_	nA

标号	参数	条件	最小值	典型值	最大值	単位
		VDD 或 VSS				
R _{PU}	I/O 上拉电阻	-	25	35	45	ΚΩ
R_{PD}	I/O 下拉电阻	-	25	35	45	ΚΩ
t _{IOGLITCH}	I/O 滤波脉宽	-	_	10	-	ns

表 5-26 I/O 端口电气特性

5. 5. 11. 1 芯片端口特性图

- ◆ 芯片 I/O 端口输出特性(驱动 0)
 - ◇ I_{OL} vsV_{OL} @VDD=2.5V (驱动 0)

◇ I_{OH} vsV_{OH} @VDD=2.5V(驱动 0)

◇ I_{OL}vsV_{OL} @VDD=3.5V(驱动 0)

V1.4 47/65

◇ I_{OH}vsV_{OH} @VDD=3.5V(驱动 0)

◇ I_{OL}vsV_{OL} @VDD=5.0V(驱动 0)

◇ I_{OH}vsV_{OH} @VDD=5.0V(驱动 0)

♦ I_{OL}vsV_{OL}@VDD=5.5V(驱动 0)

◇ I_{OH}vsV_{OH} @VDD=5.5V (驱动 0)

- ◆ 芯片 I/O 端口输出特性(普通端口驱动 1)
 - ◇ I_{OL}vs V_{OL}@VDD=2.5V(普通端口驱动 1)

◇ I_{OL}vsV_{OL} @VDD=3.5V (普通端口驱动 1)

◇ I_{OL}vsV_{OL}@VDD=5.0V(普通端口驱动 1)

◇ I_{OL}vsV_{OL}@VDD=5.5V(普通端口驱动 1)

- ◆ 芯片 I/O 端口输出特性(大电流端口 PE10、PD14 驱动 1)
 - ◇ I_{OL}vs V_{OL}@VDD=2.5V(大电流端口驱动 1)

◇ I_{OL}vsV_{OL} @VDD=3.5V (大电流端口驱动 1)

◇ I_{OL}vsV_{OL} @VDD=5.0V (大电流端口驱动 1)

◇ $I_{OL}vsV_{OL}$ @VDD=5.5V (大电流端口驱动 1)

标号	参数	条件	最小值	典型值	最大值	単位
f _{IOOUT_MAX}	最大输出频率	I _{OL} 驱动 0,C= 50pF VDD = 2V to 5.5V	-	1	8	MHz
t _{IOFALL}	输出电平从高变低的 下降时间	I _{OL} 驱动 0,C= 50pF VDD = 2V to 5.5V	-	ı	25	ns
t _{IORISE}	输出电平从低变高的 上升时间	I _{OL} 驱动 0,C= 50pF VDD = 2V to 5.5V	-	1	25	ns
f _{IOOUT_MAX}	最大输出频率	I _{OL} 驱动 1,C= 50pF VDD = 2V to 5.5V	-	-	12	MHz
t _{IOFALL}	输出电平从高变低的 下降时间	I _{OL} 驱动 1,C= 50pF VDD = 2V to 5.5V	-	-	25	ns
t _{iORISE}	输出电平从低变高的 上升时间	I _{OL} 驱动 1,C= 50 pF VDD = 2V to 5.5V	-	-	25	ns
t _{IOPULSE}	I/O 输入检测脉宽	_	20	_	_	ns
t _{EXTI}	GPIO 中断检测宽度	_	100	ı	1	us

表 5-27 I/O 端口的 AC 特性

5. 5. 12 MRST电气特性

标号	参数	条件	最小值	典型值	最大值	単位
V_{ILMRST}	MRST 输入低电平电压	-	0	-	1.1	V
V_{IHMRST}	MRST 输入高电平电压	-	2.0	-	VDD	V
R_{PU}	MRST 上拉电阻	-	25	35	45	ΚΩ
V _{HSTMRST}	MRST 迟滞电压	_	-	800	-	mV
t _{PULSEMRST}	MRST有效宽度	_	0.2	-	-	ms

表 5-28 MRST 电气特性

以下为 MRST 参考应用电路:

图 5-5 MRST 应用电路 1

注:采用 RC 复位,其中 47KΩ≤R1≤100KΩ,电容 C1=0.1 μ F,R2 为限流电阻,0.1KΩ≤R2≤1KΩ。

图 5-6 MRST 应用电路 2

注: 采用 PNP 三极管复位,通过 R1(2KΩ)和 R2(10KΩ)分压作为基极输入,发射极接 VDD,集电极一路通过 R3(20KΩ)接地,另一路通过 R4(1KΩ)和 C1(0.1 μ F)接地,C1 另一端作为 MRST 输入。

5. 5. 13 定时器特性参数

标号	参数	条件	最小值	典型值	最大值	单位
f_{TIMEXT}	定时器外部输入时钟频率	-	-	f _{TIMER_CLK} /2	25	MHz

表 5-29 定时器特性参数

5. 5. 14 通信特性参数

5. 5. 14. 1 内部集成电路总线特性参数

に 見	会 ₩	标准	Ė模式	快速	単位	
标号	参数	最小值	最大值	最小值	最大值	半江
t _{WSCLL}	SCL 时钟低电平时间	4.5	-	1.3	-	us
t _{wsclh}	SCL 时钟高电平时间	4.0	-	0.6	-	us
t _{SUSDA}	SDA 建立时间	4.5	-	1.5	-	us
t _{HSDA}	SDA 保持时间	-	1×t _{PCLK1}	-	1×t _{PCLK1}	ns
t _{RSDA}	SDA 和 SCL 上升时间	-	1000	-	500	ns
t _{FSDA}	SDA 和 SCL 的下降时间	-	300	-	300	ns
t _{HSTA}	START 条件的保持时间	4.0	-	0.7	-	us
t _{SUSTA}	重复 START 条件的建立时间	4.5	-	0.7	-	us
t _{SUSTO}	STOP 条件的建立时间	4.0	-	0.8	-	us
t _{wstosta}	STOP 至 START 条件的总线空闲时间	4.5	-	1.3	-	us
C _{BUS}	总线电容负载(注意: SCL 和 SDA 电容负载应尽量保持一致)	-	400	-	400	pF

表 5-30 I2C 特性参数

5. 5. 14. 2 串行外设接口特性参数

标号	参数	条件	最小值	最大值	単位
f	SPI 时钟频率	主模式	_	10	MHz
f _{SCK}	OFI 时 种 频平	从模式	_	9	MHz
t _{RSCK}	SPI 时钟上升和下降时间	 电容负载 30pF	_	8	ns
t _{FSCK}	31 1 时 47 工 7 7 7 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1	电骨页载 30pi		0	113
DUTY _{SCK}	SPI 输入时钟占空比	从模式	30	70	%
t _{SUNSS}	NSS 建立时间	从模式	$4 \times t_{PCLK1}$	-	ns
t _{HNSS}	NSS 保持时间	从模式	$2 \times t_{PCLK1}$	_	ns
t		主模式			
t _{wsck}	SCK 高电平和低电平时间	f _{PCLK} =24MHz	50	60	ns
twsckl		4 分频			
SUMI	输入数据建立时间	主模式	5	-	ns
t _{susi}	输入数据建立时间	从模式	5	_	ns
t _{HMI}	输入数据保持时间	主模式	5	_	ns
t _{HSI}	输入数据保持时间	从模式	4	-	ns
t _{ASO}	输出数据访问时间	从模式	0	$3 \times t_{PCLK1}$	ns
t _{DISSO}	输出数据禁止时间	从模式	2	10	ns
t _{VSO}	输出数据有效时间	从模式	_	25	ns
t _{VMO}	输出数据有效时间	主模式	_	5	ns
t _{HSO}	输出数据保持时间	从模式	15	_	ns
t _{HMO}	输出数据保持时间	主模式	2	_	ns

表 5-31 SPI 特性参数

5. 5. 15 低功耗模式转换特性参数

◆ 从低功耗模式恢复的时间

标号	参数	条件	最小值	典型值	最大值	単位
t _{wusleep}	SLEEP 模式唤醒时间	f _{HCLK} =24MHz	-	170	-	us
t _{wustop1}	STOP1 模式唤醒时间	f _{HCLK} =8MHz	-	700	-	us
t _{wustop2}	STOP2 模式唤醒时间	f _{HCLK} =2MHz	-	1.0	-	ms
twustandby	STANDBY 模式唤醒时间	f _{HCLK} =2MHz	-	2.1		ms

表 5-32 低功耗模式唤醒特性

5.5.16 模数转换器特性参数

标号	参数	条件	最小值	典型值	最大值	単位
VDD	模拟电源	_	2.5	5	5.5	V
V _{REFP}	正端参考电压	_	2	-	VDD	V
V_{REFN}	负端参考电压	_	0	_	0.5×VDD	V
I _{VREF}	V _{REF} 端口电流	_	-	1	-	mA
f _{ADC}	ADC 时钟频率	_	-	16	48	MHz
f _{SAMPLING}	采样率	_	-	1	-	MSPS
f _{TRIG}	外部触发频率	_	-	_	1	MHz
V_{AIN}	转换电压范围	_	V_{REFN}	_	V_{REFP}	V
		t _{SAMPLING} =1us	-	_	10	
R _{AIN}	R _{AIN} 外部输入阻抗	t _{SAMPLING} =2us	_	_	15	ΚΩ
MAIN	21. 日14日177月7月	t _{SAMPLING} =4us	-	_	30	1/77
		t _{SAMPLING} =15us	-	_	100	
R _{ADC}	采样开关电阻	_	-	0.7	-	ΚΩ
C _{ADC}	内部采样保持 电容	-	-	15.7	-	pF
t _{SAMPLING}	采样时间	-	1	-	15	ADC 时钟 周期数
t _{PWRUP}	ADC 上电稳定 时间	参考电压稳定时 间	1	25	-	us
t _{CONV}	总体转换时间 (包括采样时 间)	-	-	T _{SAMPLING} +12	_	ADC 时钟 周期数

表 5-33 ADC 特性

- 注 1: V_{REFP} 与 V_{REFN} 的差值不可小于 2V。
- 注 2: R_{AIN}的计算公式: R_{AIN}< t_{SAMPLING}/ (C_{ADC}×In (2^{N+2})) R_{ADC}
- 注 3: 上述公式用于计算外部输入阻抗的最大值使误差低于 1/4 LSB, 其中 N=12。

标号	参数	条件	典型值	最大值	単位
ERR _{OFFSET}	失调误差	f -40MH- D 440KO	-	1	LSB
ERR _{GAIN}	增益误差	f_{ADC} =16MHz, R_{AIN} <10K Ω	-	1	LSB
ERR _{DNL}	差分线性误差	VREF=VDD=5V	1	2	LSB
ERR _{INL}	积分线性误差	VNLI - VDD-3V	1	2	LSB

表 5-34 ADC 精度特性 1

注: VDD 作为内部参考时,在 VSS+20mV~VDD-100mV 之间的精度特性;

建议对可能有负电流注入的模拟端口增加对地的肖特基二极管。因为负注入电流会明显降低 ADC 的转换精度。

标号	参数	条件	典型值	最大值	単位
ERR _{OFFSET}	失调误差	f -40MH- D 440KO	-	1	LSB
ERR _{GAIN}	增益误差	f_{ADC} =16MHz, R_{AIN} <10K Ω	-	1	LSB
ERR _{DNL}	差分线性误差	T _A =25℃ VREF=VREF EXT	1	3	LSB
ERR _{INL}	积分线性误差	VKLI -VKLI _LXI	1	3	LSB

表 5-35 ADC 精度特性 2

注:采用外部参考时,在 VSS+10mV~VREF-10mV 之间的精度特性;

5. 5. 17 模拟比较器特性参数

标号	参数	条件	最小值	典型值	最大值	单位
V _{ACMPIN}	输入电压范围	-	0	_	VDD	V
	I _{ACMP} 动态电流	低功耗模式(ACMP_CR 的 LP=1)	2	5	10	uA
IACMP		普通模式(ACMP_CR 的 LP=0)	5	10	15	uA
V _{ACMPOFFSET}	失调电压	_	-	1	-	mV
V _{ACMPHYST}	模拟比较器迟滞	内部可调	-	50	-	mV
	模拟比较器的启动	低功耗模式(ACMP_CR 的 LP=1)	1.5	2.8	12.0	us
^L ACMPSTART	tacmpstart 时间(初始化)	普通模式(ACMP_CR 的 LP=0)	0.6	1.2	8.0	us
4	比较转换时间	低功耗模式(ACMP_CR 的 LP=1)	0.6	1.2	1.5	us
t _{DELAY}		普通模式(ACMP_CR 的 LP=0)	0.2	0.4	0.6	us

表 5-36 ACMP 特性参数

5.5.18 温度传感器特性参数

标号	参数	条件	最小值	典型值	最大值	单位
ACC _{TSENSE}	温度精度	-	1	1	2	$^{\circ}$
I _{TSENSE}	动态电流	-	-	60	-	uA

表 5-37 温度传感器特性

V1.4 59/65

第6章 封装信息

6.1 LQFP100 封装尺寸图

七旦	公制(mm)				英制(inch)	
标号	MIN	NOM	MAX	MIN	NOM	MAX
Α	ı	_	1.6	-	_	0.063
A1	0.05	_	0.15	0.002	_	0.006
A2	1.35	1.4	1.45	0.053	0.06	0.057
А3	0.59	0.64	0.69	0.023	0.03	0.027
b	0.18	-	0.26	0.007	-	0.010
С	0.13	-	0.17	0.005	-	0.007
D	15.8	16	16.2	0.622	0.63	0.638
D1	13.9	14	14.1	0.547	0.55	0.555
Е	15.8	16	16.2	0.622	0.63	0.638
E1	13.9	14	14.1	0.547	0.55	0.555
е	0.50BSC				0.020BSC	
L	0.45	-	0.75	0.018	-	0.030
L1	1.00REF				0.039REF	
θ	0	_	7°	0	_	7°

6. 2 LQFP64 封装尺寸图

 = =	公制 (mm)				英制(inch)	
标号	MIN	NOM	MAX	MIN	NOM	MAX
Α	-	-	1.60	_	_	0.063
A1	0.05	-	0.20	0.002	-	0.008
A2	1.35	1.40	1.45	0.053	0.055	0.057
A3	0.59	0.64	0.69	0.023	0.025	0.027
b	0.19	-	0.27	0.007	_	0.011
С	0.13	-	0.18	0.005	_	0.007
D	11.80	12.00	12.20	0.465	0.472	0.480
D1	9.90	10.00	10.10	0.390	0.394	0.398
Е	11.80	12.00	12.20	0.465	0.472	0.480
E1	9.90	10.00	10.10	0.390	0.394	0.398
е	0.50BSC				0.020BSC	
L	0.45	-	0.75	0.018	-	0.030
L1	1.00BSC				0.039BSC	
θ	0	_	7°	0	_	7°

6.3 LQFP48 封装尺寸图

卡旦	公制(mm)			英制(inch)		
标号	MIN	NOM	MAX	MIN	NOM	MAX
Α	_	-	1.60	I	_	0.063
A1	0.05	-	0.15	0.002	-	0.006
A2	1.35	1.40	1.45	0.054	0.056	0.058
A3	0.59	0.64	0.69	0.024	0.026	0.028
b	0.18	-	0.26	0.007	-	0.010
b1	0.17	0.20	0.23	0.007	0.008	0.009
С	0.13	-	0.17	0.005	-	0.007
c1	0.12	0.13	0.14	0.005	0.005	0.006
D	8.80	9.00	9.20	0.352	0.360	0.368
D1	6.90	7.00	7.10	0.276	0.280	0.284
Е	8.80	9.00	9.20	0.352	0.360	0.368
E1	6.90	7.00	7.10	0.276	0.280	0.284
eВ	8.10	-	8.25	0.324	-	0.330
е	0.50BSC				0.020BSC	
L	0.40	_	0.65	0.016	-	0.026
L1	1.00REF			0.039.00REF		
θ	0	-	7°	0	-	7°

6. 4 QFN48 封装尺寸图

누므	公制 (mm)				英制(inch)	
727 5	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.7	0.75	0.8	0.028	0.030	0.031
A1	_	0.01	0.05	_	0.000	0.002
A3	0.18	0.2	0.23	0.007	0.008	0.009
D	5.9	6	6.1	0.232	0.236	0.240
Е	5.9	6	6.1	0.232	0.236	0.240
D1	4.10REF 0.161REF					
E1		4.10REF			0.161REF	
b	0.18	0.22	0.28	0.007	0.009	0.011
е	0.40BSC				0.016BSC	
L	0.35	0.4	0.45	0.014	0.016	0.018

第7章 产品信息

第8章 修订历史

版本	修订日期	修订内容
V1.0	2019-02-22	发布
V1.1	2019-03-19	1.更新电气参数
V 1.1	2019-03-19	2.更新 LOGO
V1.2	2019-09-09	温度工作范围由-45℃修改为-40℃
		1.修改芯片电源电路及部分电气参数
V1.3	2020-08-05	2.修改从用户 Boot 启动时 ES32F0654 系列地址为
		0x0003E000,ES32F0653 系列地址为 0x0001E000
		1.增加 105 度产品型号 ES32F0654LTE 和
V1.4	2021-02-08	ES32F0653LTE
		2.修改 ADC 电气参数