PENDING CLAIMS AS AMENDED

Please amend the claims as follows:

1. (Original) A method for estimating a signal to interference-plus-noise ratio (SINR) of a

wireless channel, wherein frames having a pilot portion and a non-pilot portion are transmitted

over the wireless channel, said method comprising:

adapting an adaptive equalizer using the pilot portion of a frame;

applying said adaptive equalizer to the non-pilot portion of said frame, resulting in an

output;

determining a parameter using said output; and

estimating the SINR of the wireless channel using said parameter.

2. (Original) The method of claim 1, wherein said non-pilot portion comprises a control

portion having a plurality of control symbols, said output comprises a soft estimate of said

control symbols, and said determining comprises:

applying a hard decision to said soft estimate, resulting in a hard estimate of said control

symbols; and

calculating said parameter using said soft estimate and said hard estimate.

3. (Original) The method of claim 2, wherein said parameter comprises a mean squared

error (MSE).

4. (Original) The method of claim 2, wherein said parameter comprises a bias.

5. (Original) The method of claim 1, wherein said non-pilot portion comprises a data

portion, said method further comprising decoding said output resulting in a plurality of data bits,

and wherein said determining comprises:

re-encoding said data bits; and

calculating said parameter using said output and said re-encoded data bits.

Attorney Docket No.: 010224

Customer No.: 23696

6. (Original) The method of claim 5, wherein said parameter comprises a mean squared

error (MSE).

7. (Original) The method of claim 5, wherein said parameter comprises a bias.

8. (Currently Amended) The method of claim 1, wherein said adapting results in a pilot

output; said estimating results in a non-pilot SINR estimate, said parameter comprises a first

parameter, and wherein said method further comprises:

A method for estimating a signal to interference-plus-noise ratio (SINR) of a wireless

channel, wherein frames having a pilot portion and a non-pilot portion are transmitted over the

wireless channel, said method comprising:

adapting an adaptive equalizer using the pilot portion of a frame, resulting in a pilot

output;

applying said adaptive equalizer to the non-pilot portion of said frame, resulting in an

output;

determining a parameter using said output, wherein said parameter comprises a first

parameter;

estimating the SINR of the wireless channel using said parameter, resulting in a non-pilot

SINR estimate;

determining a second parameter using said pilot output;

estimating the SINR of the wireless channel using said second parameter, resulting in a

pilot SINR estimate;

calculating an SINR compensation factor using said non-pilot SINR estimate and said

pilot SINR estimate;

smoothing said SINR compensation factor over a plurality of frames; and

adjusting said pilot SINR estimate according to said smoothed SINR compensation

factor.

9. (Original) The method of claim 8, wherein said smoothing comprises:

 $F(n) = \lambda F(n-1) + (1-\lambda) \frac{PilotSINR}{NonpilotSINR}$

Attorney Docket No.: 010224

Customer No.: 23696

wherein F represents said smoothed SINR compensation factor, and λ represents a real

positive number less than one.

10. (Original) The method of claim 8, wherein said smoothing comprises:

$$F(n) = \frac{\sum_{m=1}^{M} F(n-m)}{M}$$

wherein F represents said smoothed SINR compensation factor, and M represents the number of said plurality of frames.

11. (Original) The method of claim 1, wherein said parameter comprises a first parameter,

wherein said method further comprises determining a second parameter using said output, and

wherein said estimating comprises estimating the SINR of the wireless channel using said first

and second parameters.

12. (Original) The method of claim 11, wherein said first parameter comprises a mean

squared error (MSE) and said second parameter comprises a bias.

13. (Original) The method of claim 1, wherein said adapting results in a pilot output, said

parameter comprises a first parameter, said method further comprising determining a second

parameter using said pilot output, and said estimating comprising estimating the SINR of the

wireless channel using said first and second parameters.

14. (Original) A method for estimating a signal to interference-plus-noise ratio (SINR) of a

wireless channel, wherein frames having a pilot portion are transmitted over the wireless channel,

said method comprising:

applying an adaptive equalizer to the pilot portion of a current frame, wherein said

adaptive equalizer was adapted during a previous frame, resulting in an output;

determining a parameter using said output; and

estimating the SINR of the wireless channel using said parameter.

Attorney Docket No.: 010224

Customer No.: 23696

15. (Original) The method of claim 14, wherein said parameter comprises a mean squared

error (MSE).

16. (Original) The method of claim 14, wherein said parameter comprises a bias.

17. (Original) A method for selecting a rate for the transmission of data over a wireless

channel, wherein frames having a pilot portion and a non-pilot portion are transmitted over the

wireless channel, said method comprising:

adapting an adaptive equalizer using the pilot portion of a frame;

applying said adaptive equalizer to the non-pilot portion of said frame, resulting in an

output;

determining a parameter using said output;

estimating a signal to interference-plus-noise ratio (SINR) of the wireless channel using

said parameter; and

selecting the rate for the transmission of data using said SINR estimate.

18. (Original) The method of claim 17, wherein said parameter comprises a mean squared

error (MSE).

19. (Original) The method of claim 17, wherein said parameter comprises a bias.

20. (Original) An apparatus for estimating a signal to interference-plus-noise ratio (SINR) of

a wireless channel, wherein frames having a pilot portion and a non-pilot portion are received via

the wireless channel, said apparatus comprising:

an adaptive equalizer that is adapted using the pilot portion of a frame, and applied to the

non-pilot portion of said frame, resulting in an output;

means for determining a parameter using said output; and

means for estimating a SINR of the wireless channel using said parameter.

21. (Original) The apparatus of claim 20, wherein said non-pilot portion comprises a control

portion having a plurality of control symbols, wherein the output of said adaptive equalizer

Attorney Docket No.: 010224

Customer No.: 23696

during said control portion comprises a soft estimate of said control symbols, and said means for

determining comprises:

means for applying a hard decision to said soft estimate, resulting in a hard estimate of

said control symbols; and

means for calculating said parameter using said soft estimate and said hard estimate.

22. (Original) The apparatus of claim 21, wherein said parameter comprises a mean squared

error (MSE).

23. (Original) The apparatus of claim 21, wherein said parameter comprises a bias.

24. (Original) The apparatus of claim 20, wherein said non-pilot portion comprises a data

portion having a plurality of encoded data bits, wherein the output of said adaptive equalizer

during said data portion comprises a soft estimate of said encoded data bits, wherein said

apparatus further comprises a channel decoder configured to decode said soft estimate resulting

in a plurality of decoded data bits, and wherein said means for determining comprises:

means for re-encoding said decoded data bits; and

means for calculating said parameter using said soft estimate and said re-encoded data

bits.

25. (Original) The apparatus of claim 24, wherein said parameter comprises a mean squared

error (MSE).

26. (Original) The apparatus of claim 24, wherein said parameter comprises a bias.

27. (Currently Amended) The apparatus of claim 20, wherein the output of said adaptive

equalizer during said pilot portion results in a pilot output, said SINR estimate comprises a non-

pilot SINR estimate, said parameter comprises a first parameter, and wherein said apparatus

further comprises:

An apparatus for estimating a signal to interference-plus-noise ratio (SINR) of a wireless

channel, wherein frames having a pilot portion and a non-pilot portion are received via the

wireless channel, said apparatus comprising:

an adaptive equalizer that is adapted using the pilot portion of a frame, resulting in a pilot output, and applied to the non-pilot portion of said frame, resulting in an output;

means for determining a parameter using said output, wherein said parameter comprises a first parameter;

means for estimating a SINR of the wireless channel using said parameter, wherein said SINR estimate comprises a non-pilot SINR estimate;

means for determining a second parameter using said pilot output;

means for estimating the SINR of the wireless channel using said second parameter, resulting in a pilot SINR estimate;

means for calculating an SINR compensation factor using said non-pilot SINR estimate and said pilot SINR estimate;

means for smoothing said SINR compensation factor over a plurality of frames; and means for adjusting said pilot SINR estimate according to said smoothed SINR compensation factor.

28. (Original) The apparatus of claim 27, wherein said means for smoothing is configured

$$F(n) = \lambda F(n-1) + (1-\lambda) \frac{PilotSINR}{NonpilotSINR}$$

according to:

wherein F represents said smoothed SINR compensation factor, and λ represents a real positive number less than one.

29. (Original) The apparatus of claim 27, wherein said means for smoothing is configured

$$F(n) = \frac{\sum_{m=1}^{M} F(n-m)}{M}$$

according to:

wherein F represents said smoothed SINR compensation factor, and M represents the number of said plurality of frames.

30. (Original) An apparatus for estimating a signal to interference-plus-noise ratio (SINR) of

a wireless channel, wherein said apparatus comprises a receiver that receive frames via the

wireless channel, said frames having a pilot portion and a non-pilot portion, wherein said

receiver includes an adaptive equalizer that is adapted using said pilot portion and applied to said

non-pilot portion resulting in an output, wherein said receiver is configured to determine a

parameter using said output, and wherein said receiver is further configured to estimate the SINR

of the wireless channel using said parameter.

31. (Original) The apparatus of claim 30, wherein said non-pilot portion comprises a control

portion having a plurality of control symbols, wherein the output of said adaptive equalizer

during said control portion comprises a soft estimate of said control symbols, wherein said

receiver is configured to apply a hard decision to said soft estimate, resulting in a hard estimate

of said control symbols, and wherein said receiver is further configured to calculate said

parameter using said soft estimate and said hard estimate.

32. (Original) The apparatus of claim 31, wherein said parameter comprises a mean squared

error (MSE).

33. (Original) The apparatus of claim 31, wherein said parameter comprises a bias.

34. (Original) The apparatus of claim 30, wherein said non-pilot portion comprises a data

portion having a plurality of encoded data bits, wherein the output of said adaptive equalizer

during said data portion comprises a soft estimate of said encoded data bits, wherein said receiver

further includes a channel decoder configured to decode said soft estimate resulting in a plurality

of decoded data bits, wherein said receiver is configured to re-encode said decoded data bits, and

wherein said receiver is further configured to calculate said parameter using said soft estimate

and said re-encoded data bits.

35. (Original) The apparatus of claim 34, wherein said parameter comprises a mean squared

error (MSE).

36. (Original) The apparatus of claim 34, wherein said parameter comprises a bias.

Attorney Docket No.: 010224

Customer No.: 23696

37. (Original) A wireless communication system comprising:

a wireless channel;

a transmitter to transmit frames having a pilot portion and a non-pilot portion over said wireless channel at a data rate; and

a receiver to receive said frames via said wireless channel, wherein said receiver includes:

an adaptive equalizer that is adapted using said pilot portion, and applied to said non-pilot portion resulting in an output,

means for estimating a signal to interference-plus-noise ratio (SINR) of said wireless channel using said output,

means for selecting a data rate control (DRC) value using said SINR, and means for transmitting said DRC value to said transmitter via said wireless channel.

Attorney Docket No.: 010224

Customer No.: 23696