Supervised Learning

Unsupervised Learning

Supervised learning

Reading the book with the goal: Learning ML

Supervised learning

Paying attention with the goal: Learning to paint

Paying attention with the goal: Producing gold

Supervised learning

Supervised Learning

Phenomena under study: Objective distance

Hidrodesulfuration

Temperature, Pressure, Hydrogen Flow rate, Inlet sulfur concentration, equipment operating days ...

Output sulfur concentration

Electromagnetic interaction _____ Energy

Atomic distributions

Energy, Force

New compounds

High Energy Physics

Figure 4. Shape comparison of the main variables of the HOTVR algorithm for signal and background jets, in two different regions of the jet p_T as displayed in the plots.

Detecting of heavy, energetic, Hadronically decaying particles

Astronomy, Galaxies

Galaxy inner structure

Machine Learning Prediction of Electronic Coupling between the Guanine Bases of DNA

J. Phys. Chem. A 2020, 124, 7658-7664

Diabetes mortality

Medical prognosis: Mortality after one year

Medical Diagnosis:

Pulmonary Diseases

Original

Medical treatment:

Effect of drugs combination

Covid-19

Drug discovery and Vaccine development

Automated extraction of chemical synthesis actions from experimental procedures

Nature communications, 11, 3601 (2020)

Thematic analysis of 18 years of physics education research conference proceedings using natural language processing

Phys. Rev. Phys. Education Research 16, 010142 (2020)

UNSUPERVISED LEARNING

						25	15	9	2
1	2	7	8	7	0	3	S	0	8
4	5	8	0	2	3	2	9	7	7
3	Z	3	9		0		2	3	0
1	1	4	0	2	1	5	B	3	
8	6	ಳ	0	4	0	L	5	3	9
8	5				7	1	6	0	9
1	7	0	3			7		7	7
2	6	5	1	6	4	2	2	2	9
4	4	4	ર	0	6	9	4	8	3
- /	5	0	7	4	6	v	2	5	1

Digits clustering

Microstructure clustering

K-means

SOME METHODS FOR CLASSIFICATION AND ANALYSIS OF MULTIVARIATE OBSERVATIONS

J.M_{AC}QUEEN (1987)

The main purpose of this paper is to describe a process for partitioning an N dimensional population into k sets on the basis of a sample. The process, which is called 'k-means,' appears to give partitions which are reasonably efficient in the sense of within-class variance.

The way kmeans algorithm works is as follows:

Specify number of clusters K.

Initialize centroids by first shuffling the dataset and then randomly selecting K data points for the centroids without replacement.

Keep iterating until there is no change to the centroids. i.e assignment of data points to clusters isn't changing.

Compute the sum of the squared distance between data points and all centroid s.

Assign each data point to the closest cluster (centroid).

Compute the centroids for the clusters by taking the average of the all data points that belong to each cluster.

The used metric to detect the clusters is:

$$J = \sum_{i=1}^{m} \sum_{k=1}^{K} w_{ik} ||x^{i} - \mu_{k}||^{2}$$

where w_{ik} = 1 for data point x_i if it belongs to cluster k; otherwise, w_{ik} =0. Also, μ_k is the centroid of x_i 's cluster.

Geyser's Eruptions

	eruptions	waiting
0	3.600	79
1	1.800	54
2	3.333	74
3	2.283	62
4	4.533	85

[[5.1 3.5 1.4 0.2]

[4.9 3. 1.4 0.2]

[4.7 3.2 1.3 0.2]

[4.6 3.1 1.5 0.2]

[5. 3.6 1.4 0.2]]

8 clusters

3 clusters

3 clusters, bad initialization

Digits clustering

0.096	2	4.0000000000000000000000000000000000000				M.C.	S	1251015	8
4	57	8	0	2	3	2	9	7	7
3	B	3	9	5	0	3	2	3	0
1	1	4	0	2	1	5	S	3	6
8	6	४	0	4	0	4	5	3	9
8	5	4	2	2	7	1	6	0	9
1	チ					7			7
2	6	7	7	6	4	2	2	2	9
4	4	4	ર	0	6	9	4		
1	5	0	3	4	6	8	2	5	1

Õ Õ Õ Ø