May 30

P29 #5 Use Monotone Seq. Thm Proof: ① Induction

Base case $x_1 = \sqrt{2} < 2$ Inductive step $x_{k+1} = \sqrt{2} + x_k < \sqrt{2} + 2 = 2$ So $x_k < 2$

② To show $\chi_k < \chi_{k+1}$ $\chi_{k+1} = \sqrt{\chi_k + 2}$ $\chi_{k+1} = \chi_k + 2 > 2\chi_k > \chi_k^2$ $\chi_{k+1} > \chi_k$

Then use Monotone Seq. Thm.

 $\lim_{k\to\infty} \chi_{k+1} = \lim_{k\to\infty} \sqrt{2+\chi_k}$ $\sqrt{2+\alpha}$ $\lim_{\chi\to\infty} \chi_{k+1} = \lim_{\chi\to\infty} \sqrt{2+\chi_k}$ $\lim_{\chi\to\infty} \chi_{k+1} = \lim_{\chi\to\infty} \sqrt{2+\chi_k}$ $\lim_{\chi\to\infty} \chi_{k+1} = \lim_{\chi\to\infty} \chi_{k+1}$ $\lim_{\chi\to\infty} \chi_{k+1} = \lim_{\chi\to\infty} \chi_{k+1}$

P33. #2

(a) give an e.g. of a bounded set $SCR \setminus \{0\}$ and a real-valued function f that is defined and continuous on $R \setminus \{0\}$ s.t. f(S) is not bounded.

16). However, if $f \mathbb{R}^n \to \mathbb{R}^m$ is cont. everywhere, $S \subset \mathbb{R}^n$ is bounded then f(S) is bounded.

ナ(x)=対、S=(0,1]

f(S)=[1,60)

P38 #3

Sps I is an interval $.f:I \rightarrow \mathbb{R}$ continuous & 1-1. Show .f must be mono -tone on I.

Use IVT as a contraposition.

Proof: Sps not

a<b.c<d fa>(b) f(c)>f(d)

a < b < c < d

Case 1 fcc)>f(b)

IVT 3 d>max(f(b), f(d))

St. d is advised by a point x, in (b, c).

by a point x2 in (c, d)

 $f(x_i) = f(x_2)$

Similarly - Case 2

$$\chi$$
 (a,b)
 χ z,.... (b,c)
 $f(\chi) = f(\chi)$
both $\Rightarrow \xi$.

