R@SSMANN

Store Sales Prediction

Paul Marten

Context

Rossmann operates over 3,000 drug stores in 7 European countries. Currently, Rossmann store managers are tasked with predicting their daily sales for up to six weeks in advance. Store sales are influenced by many factors, including promotions, competition, school and state holidays, seasonality, and locality. With thousands of individual managers predicting sales based on their unique circumstances, the accuracy of results can be quite varied.

The Problem

How can we best predict the Rossmann stores' daily sales up to six weeks in advance, through means of using data about each location and past sales to formulate a regression model that will minimize percentage error?

Key Data Sources

The data is obtained from the Kaggle competition titled "Rossmann Store Sales." The data can be found here: https://www.kaggle.com/c/rossmann-store-sales/data

- train.csv historical data including sales (9 features).
- store.csv supplemental information about the stores (10 features).

Data Wrangling

★ Loading★ Cleaning★ Transforming

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 1017209 entries, 2015-07-31 to 2013-01-01
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype				
0	Store	1017209 non-null	int64				
1	DayOfWeek	1017209 non-null	int64				
2	Sales	1017209 non-null	int64				
3	Customers	1017209 non-null	int64				
4	Open	1017209 non-null	int64				
5	Promo	1017209 non-null	int64				
6	StateHoliday	1017209 non-null	object				
7	SchoolHoliday	1017209 non-null	int64				
dtypes: int64(7), object(1)							

memory usage: 69.8+ MB

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1115 entries, 0 to 1114
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype			
0	Store	1115 non-null	int64			
1	StoreType	1115 non-null	object			
2	Assortment	1115 non-null	object			
3	CompetitionDistance	1112 non-null	float64			
4	CompetitionOpenSinceMonth	761 non-null	float64			
5	CompetitionOpenSinceYear	761 non-null	float64			
6	Promo2	1115 non-null	int64			
7	Promo2SinceWeek	571 non-null	float64			
8	Promo2SinceYear	571 non-null	float64			
9	PromoInterval	571 non-null	object			

dtypes: float64(5), int64(2), object(3)

memory usage: 87.2+ KB

Exploratory Data Analysis

- ★ Understand how the sales are distributed given the influence of various features.
- ★ Determine if the data has consistent patterns that imply predictable outcomes.
- ★ Investigate how correlated the features are with the target variable as well as one another.

Exploratory Data Analysis

Exploratory Data Analysis

Feature Correlations

The darker the color of the tile, the more correlated the intersecting features are. The important part here is the third column of tiles, showing relations between sales and the other numeric variables.

Feature Engineering

- Remove any leftover columns that would not be useful for modeling (for example, store id).
- Create dummy variables via one-hot encoding for the remaining categorical variables (example shown).
- Ended this process with 37
 features, and further reduced the
 dimensionality during
 preprocessing.

	353		35.6	Day: _Thur	353	127
1	0	0	0	0	0	0
0	0	0	0	1	0	0
0	0	0	0	0	0	1
0	0	0	0	0	1	0
0	1	0	0	0	0	0

Feature Engineering

Day: _Fri	Day: _Mon		Day: _Sun	100.000	Day: _Tues	Day: _Wed	State Holiday: _christmas	2.55	State Holiday: _public
1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	1	0	0	0	0
0	1	0	0	0	0	0	0	0	0

Preprocessing

To process my data for modeling, I filtered the features using a variance inflation factor function, which accepts the dataframe as input, and compares the VIF thresholds of the features in order to determine which features have high correlation with one another. In a regression model, this is referred to as multicolinearity, and hinders the predictability of the model.

Final Features

I was left with 25 features. Using these 25, I subset the dataframe to only include those features. With the final dataframe, I split my data into the train/test split I would be using for modeling, opting for a test size of 25%.

Modeling

Models:

- Linear Regression
- Lasso Regression
- Random Forest Regression
- XG Boost Regression

Evaluation:

RMSPE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{y_i} \right)^2}$$

Model Results

	Linear Regression	Lasso Regression	Random Forest Regression	XGBoost Regression
Metrics/ Model				
RMSPE (Test data)	0.194	0.364	0.143	0.084

The lower the RMSPE, the lower the percentage error, and the better the model performed. The XG Boost regressor was the victor, almost twice as good as the next best model.

SHAP Analysis

SHAP (SHapley Additive exPlanations) is used to determine a feature's role in the predictability of a model. From top to bottom, the features are ranked in importance. Their color indicates how strong their impact is. Their horizontal position indicates whether this impact was positive or negative.

SHAP Analysis

Conclusions

- The top 4 features driving sales are **Customers**, **StoreType**: _d, **Promo**, and **CompetitionDistance**. More customers means more sales. Store type d has the highest average sale per customer. Promotions attract more customers, which means more sales. Close competition can hinder a store's sales.
- The XG Boost regressor did a great job of predicting sales, with a very low RMSPE score. It would be in the best of interest of Rossmann to consider implementing such a model for their predictions.
- For a more accurate prediction, it would be useful to have more information on the top features, that being how the store types vary, how competition operates, etc.
- For future scope, I would like to perform a time series analysis on the data to further understand how sales have evolved over time and will continue to evolve.