Semana 4 - Ejercicios de grupo

Métodos algorítmicos en resolución de problemas II Facultad de Informática - UCM

	Nombres y apellidos de los componentes del grupo que participan	ID Juez
1	Daniel Hernández Martínez	MAR246
2	Jorge Arévalo Echevarría	MAR205
3	Miguel Verdaguer Velázquez	MAR285
4		

Instrucciones:

- 1. Para editar este documento, es necesario hacer una copia de él. Para ello:
 - Alguien del grupo inicia sesión con la cuenta de correo de la UCM (si no la ha iniciado ya)
 y accede a este documento.
 - Mediante la opción Archivo → Hacer una copia, hace una copia del documento en su propia unidad de Google Drive.
 - Abre esta copia y, mediante el botón Compartir (esquina superior derecha), introduce los correos de los demás miembros del grupo para que puedan participar en la edición de la copia.
- 2. La entrega se realiza a través del Campus Virtual. Para ello:
 - Alguien del grupo convierte este documento a PDF (dándole como nombre el número del grupo, 1.pdf, 2.pdf, etc...). Desde Google Docs, puede hacerse mediante la opción Archivo → Descargar → Documento PDF.
 - Esta misma persona sube el fichero PDF a la tarea correspondiente del *Campus Virtual*.
 Solo es necesario que uno de los componentes del grupo entregue el PDF.

Precondicionamiento

Dado el alfabeto Σ = {a,b,c} y el patrón P = abcabcabcabc de longitud m=12.

1. Calculad la función π para P:

p.	
q	π
1	0
2	0
3	0
4	1
5	2
6	3
7	4
8	5
9	6
10	7
11	8
12	9

2. Calculad los conjuntos π^+ y E_q^- para P:

q	π^+	E_q
1	{0}	8
2	{0}	{}
3	{0}	{0}
4	{1,0}	{1}
5	{2,0}	{2}
6	{3,0}	{3,0}
7	{4,1,0}	{4,1}
8	{5,2,0}	{5,2}
9	{6,3,0}	{6,3,0}
10	{7,4,1,0}	{7,4,1}
11	{8,5,2,0}	{8,5,2}
12	{9,6,3,0}	-

3. Rellenad la siguiente tabla, que representa la función de transición δ del autómata finito determinista asociado a P y pegad debajo un dibujo del autómata.

Para ayudaros a calcular más rápidamente δ (q,x) siendo q un estado y x un carácter del alfabeto rellenad lo que falta:

Podemos distinguir dos casos:

- 1. $q < m \ y \ P[q+1] = x$. En este caso $\delta (q,x) = q+1$ 2. $q = m \ \delta \ P[q+1] \ne x$. En este caso $\delta (q,x) = \delta (0,x)$

estado	а	b	С
0	1	0	0
1	1	2	0
2	1	0	3
3	4	0	0
4	1	5	0
5	1	0	6
6	7	0	0
7	1	8	0
8	1	0	9
9	10	0	0
10	1	11	0
11	1	0	12
12	10	0	0

Negro = a

Azul = b

Rojo = c

- 4. Un patrón es una q-repetición si está formado por una cadena s repetida q veces de forma consecutiva. Por ejemplo, P es una 4-repetición porque está formada por la repetición de la cadena abc 4 veces. También es una 2-repetición porque está formada por la repetición de la cadena abcabc 2 veces.
- 4.1 Razonando sobre el resultado obtenido en el apartado 1 responded a la siguiente pregunta. Dado un patrón P que es una q-repetición de una cierta cadena s, calcular la función π para P.

 π para P, usando la q-repetición de mayor q y siendo 'v' el estado

$$\pi = 0$$
 si v < longitud(s) Caso may perfectles $\pi = v - longitud(s)$ si v >= longitud(s)

Como esto solo funciona para la q-repetición de mayor q, podemos crear un algoritmo que determine el valor de esta q. Para esto hay que obtener el mayor divisor de m (al que llamaremos d) que cumpla que la cadena es una d-repetición. Para comprobar si la cadena es una d-repetición, dividiremos esta en d segmentos y comprobaremos que todos ellos sean iguales. Recorreremos los divisores de mayor a menor y cuando uno cumpla la condición

utilizaremos ese valor y dejaremos de comprobar más divisores, ya que este será el mayor. Ahora ya podemos aplicar la función π antes descrita.

4.2 Supongamos que de un patrón P desconocido sí conocemos su función π . Utilizándola, ¿cómo podríamos saber si P es una q-repetición para un cierto q? Solo con π no podemos saber si P es una n-repetición a menos que sea n la mayor n-repetición posible. Para saberlo necesitaríamos al menos π