

Recognition and Catching of a Throwing Ring Using High-speed Visions

Xiao LIANG, Yanlong CHEN, Hairui ZHU, Yuji YAMAKAWA Yamakawa Laboratory, the University of Tokyo

Introduction

A. Related Research

two ball juggling

We want to challenge a larger universality and rapidity of object manipulation

B. Task

Catching of a Throwing Ring

C. Challenge

Specialty of Ring:

- Position (p) and Orientation (n), SE(3)
- Linear velocity(v) and angular velocity(ω)
- Phenomena of Nutation

High Speed of Task:

- Appearance duration in the view of camera is less than 1 second
- Preparation duration from appearing in view to catching is less then 1.5 second

Methodology

C. Visual Localization

Methodology

Performance:

Speed: Global mode 50 Hz Local mode 200 Hz

Ratio of local mode: 97.1%

Successful rate of find all markers: 89.7%.

D. Trajectory Prediction

Reason: Motion planning and execution needs time

Trajectory Model:

$$x = \theta_0 + \theta_1 t \qquad n_1 = \theta_7 \sin(\theta_8 t + \theta_9)$$

$$y = \theta_2 + \theta_3 t \qquad n_2 = \theta_{10} \sin(\theta_{11} t + \theta_{12})$$

$$z = \theta_4 + \theta_5 t + \theta_6 t^2 \qquad n_3 = \theta_{13} \sin(\theta_{14} t + \theta_{15})$$
World Coordinates

To catch the ring, its position and its normal vector is considered

E. Catching Point Planning

Position of ring = (x, y, z)

Normal vector of ring = (n_1, n_2, n_3)

Methodology

1. Position Condition:

 $P_{\text{cat}ch} \in Working Space$

$$\begin{cases}
(x - x_{robot}^{\circlearrowleft})^2 + (y - y_{robot})^2 + (z - z_{robot})^2 < R_{ws}^2 \\
z > z_{robot}
\end{cases}$$

2. Orientation Condition:

$$\langle \overrightarrow{v_c}, -\overline{b_3} \rangle < \alpha_{threshold}$$

This condition guarantees the orientation of ring and its velocity is close.

Experiment

Due to the COVID-19, we are sorry that we cannot conduct experiments in the laboratory. Instead, we conduct the experiment in the simulation. View our demonstration at this website: https://youtu.be/sY5x89v5OrQ

> Predicted Trajectory at t = 0.408 ••• predict trajectory

