Exploring the Excited-States of Squaraine Dyes with TD-DFT, SOS-CIS(D) and ADC(2): Supplementary Materials

Fadel Bassal,† Adèle D. Laurent,† Boris Le Guennic,‡ and Denis Jacquemin*,†,¶

Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, 263 Av. du General Leclerc, 35042 Rennes Cedex, France, and Institut Universitaire de France, 1, Rue Descartes, F-75231 Paris Cedex 05, France.

E-mail: Denis.Jacquemin@univ-nantes.fr

^{*}To whom correspondence should be addressed

[†]CEISAM, Nantes

[‡]ISCR, Rennes

[¶]IUF, Paris

Additional geometrical parameters

Figure S-1: Selected (TD-)DFT bond lengths for the GS (in black, on the r.h.s.) and ES (in right on the l.h.s.) for one of the two dyes represented in Figure 1 in the main text.

Complete data set for vertical absorption

Scheme 1: Representation of the dyes reported in Table S-I.

Table S-I: Comparison between theoretical 0-0 energies and experiment λ_{max} . All values in eV. Experimental references taken from Refs. 1–9

Molecule	Substituents	Solvent	Exp.	TD-DFT	SOS-CIS(D)	ADC(2)
I	R=Et	$CHCl_3$	2.214	2.526	2.019	2.154
	R=COMe	$\mathrm{CH_{2}Cl_{2}}$	2.183	2.526	2.007	2.117
		$\mathrm{CH_{3}CN}$	2.194	2.533	2.013	2.123
\mathbf{II}	R=Naphthyl	CHCl_3	2.023	2.282	1.848	1.945
	R=Ph	CHCl_3	1.996	2.305	1.835	1.968
	R=m-OMe-Ph	CHCl_3	1.987	2.300	1.830	1.959
	R=p-OMe-Ph	CHCl_3	1.928	2.238	1.750	1.888
	R=CH=CH-Ph	CHCl_3	1.784	2.068	1.672	1.771
III		CHCl_3	1.896	2.241	1.735	1.927
\mathbf{IV}	R=Me; R'=Ph	$\mathrm{CH_2Cl_2}$	1.703	2.012	1.552	1.541
	R=PEG; R'=Me	$\mathrm{CH_2Cl_2}$	1.802	2.097	1.634	1.678
${f V}$		$\mathrm{CH_{2}Cl_{2}}$	1.813	2.133	1.539	1.694
\mathbf{VI}	R=Me	MeOH	1.916	2.249	1.638	1.741
	R=Et	MeOH	1.907	2.234	1.615	1.721
\mathbf{VII}	$R=CH_2PhCOOH$	H_2O	1.922	2.297	1.664	1.718
	R=nPr	$\mathrm{CH_2Cl_2}$	1.949	2.320	1.704	1.754
	R=nBu	$\mathrm{CH_2Cl_2}$	1.856	2.308	1.693	1.743
VIII	R=nPr	Toluene	1.829	2.109	1.540	1.620
	R=nBu	Toluene	1.779	2.107	1.538	1.616
IX	R=Me; R'=H	$\mathrm{CH_2Cl_2}$	1.974	2.420	1.877	1.898
	R=Et; R'=H	$\mathrm{CH_2Cl_2}$	1.955	2.381	1.823	1.837
	R=nPr; R'=H	$\mathrm{CH_2Cl_2}$	1.941	2.368	1.811	1.820
	R=nBu; R'=H	Toluene	1.949	2.354	1.803	1.800
	R=Me; R'=Me	$\mathrm{CH_2Cl_2}$	1.928	2.314	1.764	1.802
	R=Et; R'=Me	$\mathrm{CH_2Cl_2}$	1.904	2.277	1.712	1.744
	R=nBu; R'=Me	$\mathrm{CH_2Cl_2}$	1.887	2.260	1.698	1.595
	R=Me; R'=OH	$\mathrm{CH_2Cl_2}$	1.949	2.410	1.773	1.838
	R=Et; R'=OH	$\mathrm{CH_2Cl_2}$	1.934	2.389	1.741	1.799
	R=nBu; R'=OH	$\mathrm{CH_2Cl_2}$	1.913	2.364	1.721	1.769
	R=Me; R'=Et	$\mathrm{CH_2Cl_2}$	1.928	2.284	1.729	1.768
	R=Me; R'=OMe	$\mathrm{CH_2Cl_2}$	1.962	2.338	1.786	1.820
	R=nBu; R'=OMe	$\mathrm{CH_2Cl_2}$	1.927	2.301	1.739	1.769
${f X}$		$\mathrm{CH_2Cl_2}$	1.968	2.365	1.880	1.849
XI		$\mathrm{CH_2Cl_2}$	1.876	2.322	1.748	1.761
XII	R=H	CHCl_3	2.142	2.513	2.013	2.008
	R=OH	CHCl_3	2.180	2.565	2.026	2.022
XIII		$CHCl_3$	2.112	2.474	1.969	1.948
XIV		Toluene	1.805	2.088	1.634	1.669
XV		CH_3CN	1.876	2.291	1.681	1.732

Additional vibronic information

Figure S-2: Excited-state vibrational model n^o 10 of compound 4.

Figure S-3: Excited-state vibrational model no 167 of compound 4.

Figure S-4: Excited-state vibrational model no 168 of compound 4.

Figure S-5: Excited-state vibrational model no 17 of compound 5.

Figure S-6: Excited-state vibrational model no 168 of compound 5.

Figure S-7: Comparison between experimental (dashed lines) and theoretical (full lines and stick contribution) for compound **2**. The experimental spectra si taken from Ref. 3. The blue (red) curves correspond to the absorption (emission). The most important modes (14 and 108) are displayed in Figures S-8 and S-9.

Figure S-8: Excited-state vibrational model n^o 14 of compound 2.

Figure S-9: Excited-state vibrational model n^o 108 of compound 2.

References

- (1) Law, K. Y. Squaraine Chemistry: Effects of Structural Changes on the Absorption and Multiple Fluorescence Emission of Bis[4-(Dimethylamino)Phenyl]Squaraine and Its Derivatives. J. Phys. Chem. 1987, 91, 5184–5193.
- (2) Law, K. Y.; Bailey, F. C. Squaraine chemistry. Synthesis, characterization, and optical properties of a class of novel unsymmetrical squaraines: [4-(dimethylamino)phenyl](4'-methoxyphenyl)squaraine and its derivatives. J. Org. Chem. 1992, 57, 3278–3286.
- (3) Patrick, B.; George, M. V.; Kamat, P. V.; Das, S.; Thomas, K. G. Photochemistry of Squaraine Dyes: Excited States and Reduced and Oxidized Forms of 4-(4-Acetyl-3,5-Dimethylpyrrolium-2-Ylidene)-2-(4-Acetyl-3,5-Dimethylpyrrol-2-Yl)-3-Oxocyclobut-1-En-1-Olate. J. Chem. Soc., Faraday Trans. 1992, 88, 671-676.
- Kamat, P. V.; Das, S.; Thomas, K. G.; George, M. V. Photochemistry of Squaraine Dyes.
 Excited Singlet, Triplet, and Redox States of Bis[4-(Dimethylamino)Phenyl]Squaraine and Bis[4-(Dimethylamino)-2-Hydroxyphenyl]Squaraine. J. Phys. Chem. 1992, 96, 195–199.
- (5) Kukrer, B.; Akkaya, E. U. Red to near {IR} fluorescent signalling of carbohydrates. Tetrahedron Lett. 1999, 40, 9125–9128.
- (6) Santos, P.; Reis, L.; Almeida, P.; Oliveira, A.; Ferreira, L. V. Singlet oxygen generation ability of squarylium cyanine dyes. J. Photochem. Photobiol. A: Chem. 2003, 160, 159 161.
- (7) Bonnett, R.; Motevalli, M.; Siu, J. Squaraines based on 2-arylpyrroles. *Tetrahedron* **2004**, 60, 8913–8918.
- (8) Beverina, L.; Abbotto, A.; Landenna, M.; Cerminara, M.; Tubino, R.; Meinardi, F.;

- Bradamante, S.; Pagani, G. A. New -Extended Water-Soluble Squaraines as Singlet Oxygen Generators. *Org. Lett.* **2005**, *7*, 4257–4260.
- (9) Peceli, D.; Hu, H.; Fishman, D. A.; Webster, S.; Przhonska, O. V.; Kurdyukov, V. V.; Slominsky, Y. L.; Tolmachev, A. I.; Kachkovski, A. D.; Gerasov, A. O. et al. Enhanced Intersystem Crossing Rate in Polymethine-Like Molecules: Sulfur-Containing Squaraines versus Oxygen-Containing Analogues. J. Phys. Chem. A 2013, 117, 2333–2346.