Information & Data Modelling Query Optimization – Join Orders

Christoph Lofi

Query Optimization

Query optimizer rewrites the naïve (canonical)
 query plan into a more efficient evaluation plan

Join Order Optimization

- Basic join order optimization
- Join cost and size estimations
- Left-deep join trees
- Dynamic programming
- Greedy strategy
- Randomized algorithms

Introduction

- Joins are commutative and associative
 - $R \bowtie S \equiv S \bowtie R$
 - $R \bowtie (S \bowtie T) \equiv (S \bowtie R) \bowtie T$
- This allows to evaluate individual joins in any order
 - Results in join trees
 - Different join trees may show very different evaluation performance
 - Join trees have different shapes
 - Within a shape, there are different relation assignments possible
- Example: $R \bowtie S \bowtie T \bowtie U$

- Number of possible join trees grows rapidly with number of join relations
 - For n relations, there are T(n) different tree shapes
 - T(1) = 1
 - $T(n) = \sum_{i=1}^{n-1} T(i)T(n-i)$
 - "Any number of 1 ≤ i ≤ n-1 relations may be in the left subtree and ordered in T(i) shapes while the remaining n-i relations form the right subtree and can be arranged in T(n-i) shapes."

- This number sequence is called Catalan Numbers
 - Named after Belgian mathematician
 Eugène Charles Catalan (1814–1894)
 - Can be rewritten as

$$T(n) = C(n) = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)!n!}$$

– Example: Shapes for n=4

- Example: The 22 first Catalan Numbers:
 - 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020
 - Grows quite quickly....

- For each shape, the relations can be assigned in n! ways to the tree nodes
 - Example: Left-deep tree shape for n=3

• There are T(n)*n! different join trees for n relations!

n = 2 : 1*2! = 2	n = 6:42*6! = 30,240
n = 3 : 2*3! = 12	<i>n</i> = 9 : 1,430*12! = 518E6
n = 4 : 5*4! = 120	<i>n</i> = 12 : 58,786*12! = 28E12
n = 5 : 14*5! = 1,680	<i>n</i> = 15 : 2,674,440*15! = 3.49E18

Basic Join Order Optimization

- Finding the "most efficient" join tree and join implementation is a challenging problem
 - Number of possible join trees grows extremely with number of join relations
 - Problem was shown to be NP-hard in the general case
 - *O(n!)*, with *n* as number of join relations
 - Estimating cost of all trees is not feasible for larger joins
 - Some join implementations are asymmetric
 - Performance varies greatly depending on relation order
 - E.g., BNL join
- Query optimizer has to find a good plan in sensible time

Basic Join Order Optimization

- Naming convention
 - Left: Build Relation
 - Right: Probe Relation
- Desirable Join Cases
 - Attention: Role (inner/outer relation) of build and probe depends on chosen algorithm
 - Block Nested Loop Join
 - Build relation is in **inner loop**, probe relation is in **outer loop**
 - Good when build relation significantly smaller than probe
 - "Single Pass Join"
 - Deteriorated case if BNL Join
 - Block Nested Loop Join for which build relation fits completely into main memory
 - Index Join
 - Build relation is in outer loop, probe relation is in inner loop
 - Index on probe relation (probe relation = the one where you are "probing" for a match)
 - Build relation small (because you probe for each row in build relation)

Basic Join Order Optimization

- Optimizer has 3 choices
 - Consider all possible join trees
 - Usually not possible

- Consider a subset of all trees
 - i.e. restrict to trees of certain shapes

Use heuristics to pick a certain shape

Join Metrics

- Remember the join costs from last week:
 - Size Estimate:
 - $| R \bowtie S | = | R | * | S | / \Pi_i (\max(\#dv(R, A_i), \#dv(S, A_i)))$
 - Block Access Costs:
 - Block-Nested-Loop Join

-
$$Costs_{BNL}(R\bowtie S) = b_R + (b_R * b_S) + Costs_{Result}(R\bowtie S)$$

- Indexed Block-Nested Loop Join
 - $Costs_{IXL}(R\bowtie S) = b_R + (|R| * (C_{ix}+1)) + Costs_{Result}(R\bowtie S)$
- Merge-Join
 - Only when sorted correctly!
 - $Costs_{SMI}(R \bowtie S) = b_R + b_S + Costs_{Result}(R \bowtie S)$

Left-deep Join Trees

- A simple heuristic for reducing the search space size is using left-deep join trees
 - Introduced by System R optimizer
 - Considers only one tree shape: left-deep tree
 - In left-deep trees, all right children are leafs

Left-deep Join Trees

- Left-deep join trees incorpate well with most join algorithms as they aim for decreasing the size of the build relation
 - Usually, left-deep join tree yield good performance
 - Optimized buffer usage
- Left-deep plans allow output of each operator to be pipelined into the next operator
 - No need to store results in a temporary relation
 - Careful: not for sort-merge joins

Left-deep Join Trees

 The number of possible left-deep join trees is significantly smaller than the number of all join trees

n	All join trees	Left-deep trees
3	12	6
6	30,240	720
9	518E6	362,880
12	28E12	479E6

- But...
 - Still a considerable amount (impractical for >15 joins)
 - Parallel execution of joins is not possible!

Exploring Join Order Options

- Exploring all possible join orders is not possible
 - Employ techniques for reducing search space which still deliver **best solution**
 - Dynamic Programming
 - Branch and Bound
 - Employ approximate techniques that deliver a sufficiently good solution
 - Greedy Strategies
 - Randomized Strategies
 - Genetic Algorithms

- Dynamic programming techniques are frequently used to explore the search space more efficiently
 - Break the problem into smaller sub-problems
 - Solve these sub-problems optimally recursively and remember the best solutions
 - Memorization
 - Use these optimal solutions to construct an optimal solution for the original problem

- For finding a join plan, DP is often implemented with a cost table
 - Table stores lowest costs for joins of subsets of all relations
 - Only good sub-solutions are remembered
 - Use an adequate cost function for joins
 - In the following we assume intermediate result sizes as costs
 - Storing the table uses up buffer space!

- The table contains columns for
 - The relation subset described by the row
 - The **estimated size** of the join result
 - The estimated lowest costs for performing the join
 - i.e. estimated intermediate result size, estimated IO cost, estimated CPU cost, etc.
 - We use intermediate result set size in the following
 - The expression (i.e. tree shape and assignment) which produced the lowest costs

	Subset	Size	Costs	Expression
$\{R,S,T,U\}$		2,500	25,750	(U⋈ (S⋈T))⋈R

 Table is build inductively on the subsets of relations

• Claim:

 Table always contains join expressions with lowest costs for given relation subsets

GUW 16.6.4

Basics:

- For each **single relation subset** $\{R_a\}$, table contains one row with size of R_a , with size $|R_a|$, costs 0 and expression R_a
- For each **relation subset of size two** $\{R_{o}, R_{b}\}$, the table contains one row
 - Estimated size as described in previous section
 - In the following examples, the size is simply given; it results from the reduction factors
 of the join which are not shown in the example
 - Costs 0 (⇒ no temp files!)
 - Either expression $(R_a \bowtie R_b)$ or $(R_b \bowtie R_a)$; use heuristic to choose which expression is better: usually, order smaller relation to the left

Subse	Size	Costs	Expression
$\{R_1\}$	2000	0	R_1
$\{R_2\}$	1000	0	R_2
$\{R_{1}, R_{2}\}$	500	0	$R_2 \bowtie R_1$

• Induction:

- For each **relation subset of size** n **Rs**={ R_a , R_b , ..., R_z }, create a table row
- Find two subsets $\mathbf{Rs}_1 \cup \mathbf{Rs}_2 = \mathbf{Rs}$ within the table such that $\mathsf{Cost}(\mathbf{Rs}_1 \bowtie \mathbf{Rs}_2)$ are minimal
 - For deep-left trees, only subsets with $|\mathbf{R}\mathbf{s}_1| = n-1$ and $|\mathbf{R}\mathbf{s}_2| = 1$ need to be considered

Fill row with

- Rs as subset identifier
- Estimated size|Rs₁⋈Rs₂|
- Estimated costsCost(Rs₁⋈Rs₂)
- Concatenation of the expressions of Rs₁ and Rs₂
 - For deep-left join trees, always place expression of Rs₁ to the left (no nesting)
 - otherwise, place expression with smaller result size to the left

Subset	Size	Costs	Expression
{R ₁ }	2000	0	R_1
$\{R_2\}$	1000	0	R_2
$\{R_3\}$	3000	0	R_3
$\{R_{1}, R_{2}\}$	500	0	$R_2 \bowtie R_1$
$\{R_{1,}R_{3}\}$	1200	0	$R_1 \bowtie R_3$
$\{R_{2}, R_{3}\}$	1800	0	$R_2 \bowtie R_3$
$\{R_{1,}R_{2,}R_{3}\}$	200	500	$(R_2 \bowtie R_1) \bowtie R_3$

Here: $Rs_1 = \{R_{1,} R_2\}$ $Rs_2 = \{R_3\}$

- Find optimal join order restricted to left-deep join trees
 - WE ONLY CONSIDER NATURAL JOINS
- 4 Relations
 - R with attributes a and b
 - S with attributes b and c
 - T with attributes c and d
 - U with attributes d and a
 - Each relation has size of 1000
 - Following Table: #dV(Relation, attribute)
 - Number of distinct values for attributes and relations

Note: These are made-up numbers and can be used for the size estimation formula $| R \bowtie S | = |R|^* |S| / \Pi_i (max(\#dv(R, A_i), \#dv(S, A_i))$

#dV	R	S	Т	U
а	100			50
b	200	100		
С		500	20	
d			50	1000

- Start with subsets of size one
 - Use intermediate result set size as cost metric
- Fill table with subsets of size two
 - Still no costs because of intermediate result cost metric
 - Heuristic: Smaller relation to the left side of join

Subset	Size	Costs	Expression
{R}	1,000	0	R
{S}	1,000	0	S
{T}	1,000	0	Т
{U}	1,000	0	U

{R, S}	5,000	0	R⋈S
{R, T}	1 M	0	$R \bowtie T$
{R, U}	10,000	0	R⋈U
{S, T}	2,000	0	S⋈T
{S, U}	1 M	0	S⋈U
{T, U}	1,000	0	T⋈U

- Fill table with subsets of size
 three
 - Use previous table entries and combine a subset result of size two with a result of size one
 - Always select pairs smallest size
 - Single relation to the right side due to left-deep join tree restriction
 - For {R, S, T} consider:

• $(R \bowtie S) \bowtie T : Costs 5,000$

• $(R\bowtie T)\bowtie S$: Costs 1,000,000

• $(S\bowtie T)\bowtie R$: Costs 2,000

Subset	Size	Costs	Expression
{R}	1,000	0	R
{S}	1,000	0	S
{T}	1,000	0	Т
{U}	1,000	0	U
{R, S}	5,000	0	R⋈S
{R, T}	1 M	0	$R \bowtie T$
{R, U}	10,000	0	R⋈U
{S, T}	2,000	0	S⋈T
{S, U}	1 M	0	S⋈U
{T, U}	1,000	0	T⋈U

{R, S, T}	10,000	2,000	(S⋈T)⋈R
{R, S, U}	50,000	5,000	(R⋈S)⋈U
{R, T, U}	10,000	1,000	(T⋈U)⋈R
{S, T, U}	2,000	1,000	(T⋈U)⋈S

- Subsets of size four
 - Subsets of size four can be found by combining a triple and a single relation
 - Again, single to the right
 - For {R, S, T, U} consider:
 - ((S⋈T)⋈R)⋈U: 12,000
 - ((R⋈S)⋈U)⋈T:55,000
 - ((T⋈U)⋈R)⋈S: 11,000
 - ((T⋈U)⋈S)⋈R: 3,000

Subset	Size	Costs	Expression
{R}	1,000	0	R
{S}	1,000	0	S
{T}	1,000	0	Т
{U}	1,000	0	U
{R, S}	5,000	0	R⋈S
{R, T}	1 M	0	$R \bowtie T$
{R, U}	10,000	0	R⋈U
{S, T}	2,000	0	S⋈T
{S, U}	1 M	0	S ⋈ U
{T, U}	1,000	0	T⋈U
{R, S, T}	10,000	2,000	(S⋈T)⋈R
{R, S, U}	50,000	5,000	(R⋈S)⋈U
{R, T, U}	10,000	1,000	(T⋈U)⋈R
{S, T, U}	2,000	1,000	(T⋈U)⋈S

- Adapting DP to arbitrary join orders
 - Previously, a larger relation set of size n was computed by finding the optimal solution for size n-1 and joining another relation
 - The new relation is always placed to the right side of the join to form a deep-left tree, e.g., $((T\bowtie U)\bowtie S)\bowtie R$
 - Significantly reduced search space per step

- If any shape of join tree is possible, for computing a solution for subset of size n, all combinations of smaller subsets have to be considered
 - e.g., for n=5 consider
 - All subsets of size 4 with all valid subsets of size 1
 - All subsets of size 3 with all valid subsets of size 2
 - All subsets of size 2 with all valid subsets of size 3
 - All subsets of size 1 with all valid subsets of size 4

- Based on the previous example:
 - For {R, S, T, U} consider:
 - Triple with Single
 - {S, T, R}⋈ {U}
 - {R,S,U} \bowtie {T}
 - {T,U,R} \bowtie {S}
 - {T,U,S} ⋈ {R}
 - Pair with Pair
 - {T, U} \bowtie {R, S}
 - {R, T} \bowtie {S, U}
 - {S, T} \bowtie {R, U}
 - Single with Triple
 - {U} \bowtie {S, T, R}
 - $\{T\} \bowtie \{R,S,U\}$
 - {S} \bowtie {T,U,R}
 - {R} \bowtie {T,U,S}
 - Optimal solution for join order is not a deep-left tree, but R⋈((T⋈U)⋈S)
 - Same intermediate result costs, but lower estimated execution costs as **build** and **probe** relations are ordered better (smaller to the left)

Summary Dynamic Programming

- Guarantees "best" join order
 - Use of "" because it is the best order based on our very rough cost estimates
- Search effort still exponential, but strongly limited
 - compared to exhaustive search
 - Complexity O(2ⁿ)
 - Useful up to 10-15 joins only
- Additional space consumption for storing the cost table

- For larger joins dynamic programming will be too expensive...
 - Remember: O(2ⁿ)

- Idea: Heuristic Greedy Join Order Algorithm
 - Quickly construct only left-deep join trees
 - Result not necessarily optimal

Algorithm

- Start with tree containing a join pair with cheapest costs
 - Smaller relation to the left
- While not all relations in tree
 - Join current tree with relation promising cheapest join costs by attaching new relation to the right side of the tree

- Find "good" join order restricted to left-deep join trees
- 4 Relations
 - R with attributes a and b
 - S with attributes b and c
 - T with attributes c and d
 - U with attributes d and a
 - Each relation has size of 1000
 - Following Table: #dV(Relation, attribute)
 - Number of distinct values for attributes and values

#dV	R	S	Т	U
а	100			50
b	200	100		
С		500	20	
d			50	1000

- Start with T⋈U promising the smallest result
 - Intermediate Result Cost 1000
- Consider $(T \bowtie U) \bowtie R$ and $(T \bowtie U) \bowtie S$
 - (T⋈U)⋈S better with costs 2000
- Join in R
 - Result $((T \bowtie U) \bowtie S) \bowtie R$ with costs 3000

Note: These are made-up numbers and can be used for the size estimation formula $| R \bowtie S | = |R|^* |S| / \Pi_i (max(\#dv(R, A_i), \#dv(S, A_i))$

Randomized Algorithms

- These algorithms so far have some drawbacks:
 - DP algorithms are optimal, but very heavy weight
 - Especially memory consumption is high
 - Greedy heuristics are still only extremely simple heuristics
 - Will probably not find the optimal solution
- Sometimes a light-weight algorithm is needed
 - Low memory consumption
 - Can stop when time runs out and still has an result
 - Usually finds a good solution

- Solutions to the join order problems can be seen as points in a solution space
 - Connect these point by a set of edges transforming the solutions into each other
 - Edges are called moves
- Randomized algorithms perform a random walk through the solution space along the edges
 - Random walk moves into the direction of better solutions
 - The walk can be stopped at any time, or if a (local) minimum is reached

• If the search is restricted to **left-deep plans only**, the solutions are simple sequences of the relations R_1 , ..., R_n

Sequences can be transformed into each other by

two different moves

 Swap: exchange the positions of two arbitrary positions in the sequence

 3Cycle: cyclic rotations of three arbitrary positions in the sequence

R₁, R₂, R₃, R₄, R₅

R₅, R₂, **R**₁, R₄, **R**₃

3Cycle

Swap

R₁, **R₄**, R₃, **R₂**, R₅

If also bushy trees are considered, add four

additional moves:

Commutativity

Associativity

Typical Moves

Left Join Exchange Right Join Exchange

- Typical algorithms are
 - Iterative Improvement
 - Simulated Annealing
- Each of these algorithms can return some result at all times, but can improve them with more time
 - i.e. optimize until a good enough solution is reached and stop
 - Either stop after a certain time span, or once a local minimum is detected

Iterative Improvement

- The set of solutions will not contain only a single global cost minimum reachable via all paths
 - But local minima are often sufficient
 - Remember: The optimizer does not need the optimal plan, but has to avoid crappy ones
- Simple hill climbing would
 - Start at some random point
 - Determine the neighboring node with smallest costs
 - Carry out the respective move
 - Until no smaller neighbor can be found

Iterative Improvement

- But finding the minimum cost of all possible neighbors is expensive
- Iterative improvement
 - Starts at some random point
 - Randomly applies a move
 - Checks whether the new solution is less costly
 - If yes, start new iteration from current solution
 - If no, undo last move and start new iteration
 - If no better move is found for several iterations, the solution is considered a local minimum; algorithm stops

Iterative Improvement

- Iterative improvement performs a random walk through the solution space by taking every possible improvement
 - Quite efficient procedure
 - Constant improvement during the walk
 - No possibility to leave local minima, even if there is a global minimum near
 - Local minima may still have high cost

- Simulated annealing is a refinement of iterative improvement
 - Moves do not always have to result in lower costs
 - Simulated annealing does not get caught in local minima so easily

- The algorithm simulates the natural annealing process of crystals
 - simply stated: first heating and then slowly cooling a liquid will result in crystallization
 - One large crystal is of lower energy than several smaller

ones combined

- The system eventually reaches a state of minimum energy
 - The slower the cool down, the lower the final energy

- Basic algorithm with cost function c
 - Start with a random tree and a high temperature
 - Apply a random move
 - Proceed with the new solution, if it is less expensive
 - Proceed with the new solution anyway with a probability of

$$e^{-(\frac{c(newsolution)-c(oldsolution)}{temperatur e})}$$

 Reduce temperature and apply new random move until an equilibrium is reached or the temperature is at freezing point

- It is very hard to determine the best parameters
 - Starting temperature, temperature reduction, stopping condition, etc.
- Often a two-phase version is used
 - Do iterative improvements for several random solutions
 - Use the least expensive result solution for a simulated annealing process
 - Since the initial solution is already better, the process can start with a lower temperature

- If the solution space cannot be enumerated, randomized algorithms are generally most appropriate
 - If good solutions are of primary importance use simulated annealing
 - If short optimization times are of primary importance use iterative improvement
 - Results for both are far better than in the heuristic case

Summary

- Basic join order optimization
- Join cost and size estimations
- Left-deep join trees
- Dynamic programming
- Greedy strategy
- Randomized algorithms

