Programming Languages and Computation

Week 11: Undecidability and Reductions

* 1.	[Trick question.] Is it decidable whether God exists?
* 2.	
	1. Is the set ∅ decidable?
	2. Is the set ℕ decidable?
** 3.	Show that if $f: U \lesssim V$ and $g: V \lesssim W$ then $g \circ f: U \lesssim W$.
*** 4.	Prove that the set $ZERO = \{ \ \lceil S \rceil \mid \llbracket S \rrbracket_{\mathtt{x}} (0) \downarrow \}$
	is undecidable by reduction from HALT.
*** 5.	Prove that the predicate ZERO is undecidable, but using Rice's theorem instead.
**** 6.	Show that the predicate $U = \{ \langle \lceil S \rceil, \lceil T \rceil \rangle \mid [\![S]\!]_x(0) \simeq [\![T]\!]_x(0) \}$
	is undecidable, by reduction from HALT.
*** 7 .	Is it possible to prove that the predicate U from the previous exercise is undecidable using Rice's theorem? If so, prove it. If not, explain why not.
**** 8.	[Trick question.] Is the predicate
	$V = \{ \lceil S \rceil \mid \forall n \in \mathbb{N}. \ [\![S]\!]_{x}(n) \downarrow \}$
	from the last lecture semi-decidable? Why or why not?