

Dominando Big Data com o uso de Plataformas Gratuitas (nível intermediário)

Aula 6

Bem-vindo! – Agenda da aula 6

- ✓ Desafio Lending Club
- ✓ Visualização de dados
- ✓ Intervalo
- ✓ Próximos passos

Exercício prático:

Treine e avalie um modelo de análise de risco de pedido de empréstimo

 Considere a aplicação de aprendizagem supervisionada

Visualização de dados

Extract, Transform, Load

Ferramentas de visualização

A plataforma HPCC Systems disponibiliza ferramentas de visualização para dados de saída via gráficos e mapas.

Ferramentas de visualização (cont.)

Os dados podem ser visualizados por meio de três métodos:

- Via a ferramenta de visualização do Playground.
- Via a aba "Visualize" em qualquer workunit.
- Via a aba "Resources" em conjunto com o pacote de Visualização ECL.

```
Instalação:
```

```
ecl bundle install https://github.com/hpcc-systems/Visualizer.git
```


Gerando a visualização

A utilização do pacote de visualização envolve basicamente quatro passos.

- 1. Faça OUTPUT dos seus dados usando o atributo NAMED.
- 2. Defina os campos a serem visualizados.
- 3. Customize a aparência do gráfico.
- 4. Compartilhe o gráfico.

https://cdn.hpccsystems.com/releases/CE-Candidate-8.4.14/docs/EN_US/VisualizingECL_EN_US-8.4.14-1.pdf https://hpccsystems.com/blog/visualizing-ecl-and-sharing-your-results-hpcc-systems-visualizer

Tutorial de visualização de dados

Bundle Visualizer

- Biblioteca de visualização de resultados gerados por código ECL
- Gráficos bidimensionais
 - Visualizer.TwoD.__test e Visualizer.TwoDLinear.__test
- Gráficos multidimensionais
 - Visualizer.MultiD.__test
- Gráficos geoespaciais
 - Visualizer.Choropleth.__test
- Gráficos relacionais
 - Visualizer.Relational.__test
- Tabelas genéricas
 - Visualizer.Any.__test

Próximos passos

Próximos passos

- ✓ Enviar badges de certificação e exemplos de Código
- ✓ Certificado USP
- ✓ Playground / Treinamento online / documentação / fórum
- ✓ Conferência HPCC Systems (Outubro/22)
 - ✓ https://hpccsystems.com/community/events/hpcc-systems-summit-2022

Opções de uso: play.hpccsystems.com

√ https://hpccsystems.com/pt-br/try-now

Cursos online: +170 aulas (learn.lexisnexis.com/hpcc)

- Introdução ao ECL (parte 1)
 - Conceitos e consultas
- Introdução ao ECL (parte 2)
 - ETL com ECL
- ECL Avançado (parte 1)
 - Dados relacionais
- ECL Avançado (parte 2)
 - Superarquivos, XML/JSON e PLN
- ECL Aplicado
 - Geração e automação de código ECL

ROXIE ECL (parte 1)

• Índices e consultas

ROXIE ECL (parte 2)

Otimização de consultas

Machine Learning com HPCC Systems

Fundamentos para uso dos plugins

Administração de Sistemas

• Conceitos e operação básica

HPCC para gestores

• Visão geral e aplicações da plataforma

Links úteis

- Site principal: hpccsystems.com
- Primeiros passos: hpccsystems.com/Why-HPCC-Systems
- Canal do youtube: <u>youtube.com/user/HPCCSystems</u>
- Fórum da Comunidade: hpccsystems.com/forums

Benchmark

Table 1. HPCC vs Hadoop vs Spark

Topic	HPCC	Hadoop	Spark
Topic Parallelism Paradigm	Dataflow Three parallel execution modes: • Data: Data partitioned across nodes; Compute occurs on each node in parallel	MapReduce Data parallelism only, and only in the Map phase.	RDD (Resilient Distributed Dataset)
	 Pipeline: Consecutive operations on the same dataset at the same time; Data processed by one operation immediately passed to the next System: Independent operations try to execute in parallel 		

Topic	НРСС	Hadoop	Spark
Compilation	Yes. The C++ generated by the ECL Compiler is com- piled for execution	No. JVM-based	No. JVM-based
Built-in End User Query Support	Yes. Roxie clusters deliver thousands of concurrent end-user transactions per second (actual numbers dependent on the number of nodes in the cluster and the complexity of the queries themselves)	quired.	No. Third party tools required.
Production Monitoring	Yes. Ganglia and Nagios included as part of the plat- form.	No. Third party tools required.	No. Third party tools required.
Language(s) Supported	ECL built in with any other language embeddable in- line. C++, Java, Javascript, Python, SQL, and R cur- rently supported. More em- bed languages can be added by the community	Java, Hive, Pig	API allows JVM-based lan- guage programming (like Java, Python, Scala, and R)

Desempenho comparativo

https://cdn.hpccsystems.com/whitepapers/hpccsystems thor spark.pdf

Relacionamento com Academia

https://hpccsystems.com/community/academics

Projetos de Pesquisa

https://wiki.hpccsystems.com/display/hpcc/Available+Projects

Até o próximo curso!!!

