MAR 2 1 2005 WAR 2 NANE MARY 10>

SEQUENCE LISTING

LEY, Arthur C. GUTERMAN, Sonia K. MARKLAND, William KENT, Rachel B. ROBERTS, Bruce L. LADNER, Robert C. <120> ITI-D1 KUNITZ DOMAIN MUTANTS AS HNE INHIBITORS <130> D0617.7005US01 <140> 10/038,722 <141> 2002-01-08 <150> US 08/849,406 <151> 1999-07-21 <150> PCT/US95/16349 <151> 1995-12-15 <150> US 08/358,160 <151> 1994-12-16 <150> US 08/133,031 <151> 1992-02-28 <160> 140 <170> PatentIn version 3.1 <210> 1 <211> 276 <212> DNA <213> Artificial Sequence <220> <223> IIIsp::bpti::matureIII (initial fragment) <400> 1 gtgaaaaaat tattattcgc aattccttta gttgttcctt tctattctgg cgcccgtccg 60 , gatttctgtc tcgagccacc atacactggg ccctgcaaag cgcgcatcat ccgctatttc 120

tacaatgcta aagcaggcct gtgccagacc tttgtatacg gtggttgccg tgctaagcgt

aacaacttta aatcggccga agattgcatg cgtacctgcg gtggcgccgc tgaaactgtt

180

240

276

<210> 2 <211> 92 <212> PRT <213> Artificial Sequence

gaaagttgtt tagcaaaacc ccatacagaa aattca

<220>

```
IIIsp::bpti::matureIII (initial fragment)
<400> 2
Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser
                                    10
Gly Ala Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys
                                25
Lys Ala Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys
Gln Thr Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys
Ser Ala Glu Asp Cys Met Arg Thr Cys Gly Gly Ala Ala Glu Thr Val
Glu Ser Cys Leu Ala Lys Pro His Thr Glu Asn Ser
<210> 3
<211> 285
<212> DNA
<213> Artificial Sequence
<220>
<223> IIIsp::itiD1::mature III fusion gene
<400> 3
gtgaaaaaat tattattege aatteettta gttgtteett tetattetgg egecaaagaa
                                                                      60
gactettgee agetgggeta eteggeeggt eeetgeatgg gaatgaceag eaggtattte
                                                                     120
tataatggta catccatggc ctgtgagact ttccagtacg gcggctgcat gggcaacggt
                                                                     180
aacaacttcg tcacagaaaa ggagtgtctg cagacctgcc gaactgtggg cgccgctgaa
                                                                     240
                                                                     285
actgttgaaa gttgtttagc aaaaccccat acagaaaatt cattt
<210> 4
<211> 95
<212> PRT
<213> Artificial Sequence
<220>
<223> IIIsp::itiD1::mature III fusion gene
<400> 4
Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser
```

Gly Ala Lys Glu Asp Ser Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys

Met Gly Met Thr Ser Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys 40

Glu Thr Phe Gln Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val

Thr Glu Lys Glu Cys Leu Gln Thr Cys Arg Thr Val Gly Ala Ala Glu

Thr Val Glu Ser Cys Leu Ala Lys Pro His Thr Glu Asn Ser Phe 90

<210> 5 <211> 58 <212> PRT

<213> Artificial Sequence

<220>

<223> Consensus Kunitz domain

<400> 5

Arg Pro Asp Phe Cys Leu Leu Pro Ala Glu Thr Gly Pro Cys Arg Ala

Met Ile Pro Arg Phe Tyr Tyr Asn Ala Lys Ser Gly Lys Cys Glu Pro

Phe Ile Tyr Gly Gly Cys Gly Gly Asn Ala Asn Asn Phe Lys Thr Glu

Glu Glu Cys Arg Arg Thr Cys Gly Gly Ala

<210> 6

<211> 58

<212> PRT

<213> Bos Taurus

<400> 6

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Lys Ala

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

```
<210> 7
<211> 58
<212> PRT
<213> Artificial Sequence
<220>
<223> Epi-HNE-1
<400> 7
Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Ile Ala
Phe Phe Pro Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr
Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Lys Ser Ala
Glu Asp Cys Met Arg Thr Cys Gly Gly Ala
<210> 8
<211> 62
<212> PRT -
<213> Artificial Sequence
<220>
<223> Epi-HNE-2
<400> 8
Glu Ala Glu Ala Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly
Pro Cys Ile Ala Phe Phe Pro Arg Tyr Phe Tyr Asn Ala Lys Ala Gly
             20
Leu Cys Gln Thr Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn
Phe Lys Ser Ala Glu Asp Cys Met Arg Thr Cys Gly Gly Ala
                         55
<210> 9
 <211> 58
<212> PRT
<213> Artificial Sequence
<220>
 <223> EpiNE7
 <400> 9
 Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Val Ala
```

10

Met Phe Pro Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr 20 25 30

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Lys Ser Ala 35 40 45

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala 50 55

<210> 10

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> EpiNE3

<400> 10

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Val Gly 1 5 10 15

Phe Phe Ser Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr 20 25 30

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Lys Ser Ala 35 40 45

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala 50 55

<210> 11

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> EpiNE6

<400> 11

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Val Gly 1 5 10 15

Phe Phe Gln Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr 20 25 30

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Lys Ser Ala 35 40 45

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala 50 55

<210> 12

<211> 58

<212> PRT

```
<213> Artificial Sequence
<220>
<223> EpiNE4
<400> 12
Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Val Ala
Ile Phe Pro Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr
Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Lys Ser Ala
Glu Asp Cys Met Arg Thr Cys Gly Gly Ala
<210> 13
<211> 58
<212> PRT
<213> Artificial Sequence
<220>
<223> EpiNE8
<400> 13
Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Val Ala
Phe Phe Lys Arg Ser Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr
Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Lys Ser Ala
Glu Asp Cys Met Arg Thr Cys Gly Gly Ala
    50
<210> 14
<211> 58
<212> PRT
<213> Artificial Sequence
<220>
<223> EpiNE5
<400> 14
Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Ile Ala
```

Phe Phe Gln Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr 20 25 30

10

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Lys Ser Ala 40 Glu Asp Cys Met Arg Thr Cys Gly Gly Ala <210> 15 <211> 58 <212> PRT <213> Artificial Sequence <220> <223> EpiNE2 <400> 15 Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Ile Ala Leu Phe Lys Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr 25 Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Lys Ser Ala Glu Asp Cys Met Arg Thr Cys Gly Gly Ala 55 <210> 16 <211> 58 <212> PRT <213> Homo sapiens <400> 16 Lys Glu Asp Ser Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Met Gly 5 Met Thr Ser Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr 25 Phe Gln Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu Lys Asp Cys Leu Gln Thr Cys Arg Thr Val 55

<210> 17 <211> 58 <212> PRT <213> Artificial Sequence

<223> BITI-E7-141

<220>

Arg Pro Asp Phe Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Val Ala 1 5 10 15

Met Phe Pro Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Gln Thr 20 25 30

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu 35 40 45

Lys Asp Cys Leu Gln Thr Cys Arg Gly Ala 50

<210> 18

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> MUTT26A

<400> 18

Arg Pro Asp Phe Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Val Ala 1 5 10 15

Met Phe Pro Arg Tyr Phe Tyr Asn Gly Ala Ser Met Ala Cys Gln Thr 20 25 30

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu

Lys Asp Cys Leu Gln Thr Cys Arg Gly Ala 50 55

<210> 19

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> MUTQE

<400> 19

Arg Pro Asp Phe Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Val Ala 1 5 10 15

Met Phe Pro Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu 35 40 45

Lys Asp Cys Leu Gln Thr Cys Arg Gly Ala 50 55

```
<210> 20
<211> 58
<212> PRT
<213> Artificial Sequence
<220>
<223> MUT1619
<400> 20
Arg Pro Asp Phe Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Val Gly
Met Phe Ser Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Gln Thr
Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu
Lys Asp Cys Leu Gln Thr Cys Arg Gly Ala
<210> 21
<211> 58
<212> PRT
<213> Artificial Sequence
<220>
<223> ITI-D1E7
<400> 21
Lys Glu Asp Ser Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Val Ala
Met Phe Pro Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr
            20
Phe Gln Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu
Lys Asp Cys Leu Gln Thr Cys Arg Gly Ala
                        55
    50
<210> 22
<211> 58
<212> PRT
<213> Artificial Sequence
<220>
<223> AMINO1
<400> 22
Lys Glu Asp Phe Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Val Ala
```

10

Met Phe Pro Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr 25

Phe Gln Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu 40

Lys Asp Cys Leu Gln Thr Cys Arg Gly Ala

<210> 23 <211> 58 <212> PRT

<213> Artificial Sequence

<220>

<223> AMINO2

<400> 23

Lys Pro Asp Ser Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Val Ala

Met Phe Pro Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr

Phe Gln Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu

Lys Asp Cys Leu Gln Thr Cys Arg Gly Ala

<210> 24

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> MUTP1

<400> 24

Arg Pro Asp Phe Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Ile Gly

Met Phe Ser Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr

Phe Gln Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu

Lys Asp Cys Leu Gln Thr Cys Arg Gly Ala 55

<210> 25

<211> 58

<212> PRT

```
<213> Homo sapiens
```

Thr Val Ala Ala Cys Asn Leu Pro Ile Val Arg Gly Pro Cys Arg Ala
1 10 . 15

Phe Ile Gln Leu Trp Ala Phe Asp Ala Val Lys Gly Lys Cys Val Leu 20 25 30

Phe Pro Tyr Gly Gly Cys Gln Gly Asn Gly Asn Lys Phe Tyr Ser Glu 35 40 45

Lys Glu Cys Arg Glu Tyr Cys Gly Val Pro 50 55

<210> 26

<211> 56

<212> PRT

<213> Artificial Sequence

<220>

<223> Epi-HNE-3

<400> 26

Ala Ala Cys Asn Leu Pro Ile Val Arg Gly Pro Cys Ile Ala Phe Phe 1 5 10 15

Pro Arg Trp Ala Phe Asp Ala Val Lys Gly Lys Cys Val Leu Phe Pro 20 25 30

Tyr Gly Gly Cys Gln Gly Asn Gly Asn Lys Phe Tyr Ser Glu Lys Glu 35 40 45

Cys Arg Glu Tyr Cys Gly Val Pro

<210> 27

<211> 56

<212> PRT

<213> Artificial Sequence

<220>

<223> Epi-HNE-4

<400> 27

Glu Ala Cys Asn Leu Pro Ile Val Arg Gly Pro Cys Ile Ala Phe Phe 1 5 10 15

Pro Arg Trp Ala Phe Asp Ala Val Lys Gly Lys Cys Val Leu Phe Pro 20 25 30

Tyr Gly Gly Cys Gln Gly Asn Gly Asn Lys Phe Tyr Ser Glu Lys Glu 35 40 45

```
Cys Arg Glu Tyr Cys Gly Val Pro
<210> 28
<211> 58
<212> PRT
<213> Homo sapiens
<400> 28
Val Arg Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala
Met Ile Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro
Phe Phe Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu
Glu Tyr Cys Met Ala Val Cys Gly Ser Ala
<210> 29
<211> 58
<212> PRT
<213> Artificial Sequence
<220>
<223> DPI.1.1
<400> 29
Val Arg Glu Val Cys Ser Glu Gln Ala Tyr Thr Gly Pro Cys Ile Ala
Phe Phe Pro Arg Tyr Tyr Phe Asp Val Thr Glu Gly Lys Cys Gln Thr
Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Asp Thr Glu
Glu Tyr Cys Met Ala Val Cys Gly Ser Ala
                         55
    50
<210> 30
<211> 58
<212> PRT
<213> Artificial Sequence
 <220>
 <223> DPI.1.2
 <400> 30
 Val Arg Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Ile Ala
```

Met Phe Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro 20 25 30

Phe Val Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu 35 40 45

Glu Tyr Cys Met Ala Val Cys Gly Ser Ala 50 55

<210> 31

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.1.3

<400> 31

Val Arg Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Ile Ala 1 5 10 15

Phe Phe Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Thr 20 25 30

Phe Val Tyr Gly Gly Cys Met Gly Asn Arg Asn Asn Phe Asp Thr Glu 35 40 45

Glu Tyr Cys Met Ala Val Cys Gly Ser Ala 50 55

<210> 32

<211> 58

<212> PRT

<213> Homo sapiens

<400> 32

Asn Ala Glu Ile Cys Leu Leu Pro Leu Asp Tyr Gly Pro Cys Arg Ala 1 5 10 15

Leu Leu Leu Arg Tyr Tyr Tyr Asp Arg Tyr Thr Gln Ser Cys Arg Gln
20 25 30

Phe Leu Tyr Gly Gly Cys Glu Gly Asn Ala Asn Asn Phe Tyr Thr Trp 35 40 45

Glu Ala Cys Asp Asp Ala Cys Trp Arg Ile
50 55

<210> 33

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

```
<223> DPI.2.1
```

Asn Ala Glu Ile Cys Leu Leu Pro Leu Tyr Thr Gly Pro Cys Ile Ala 1 5 10 15

Phe Phe Pro Arg Tyr Tyr Tyr Asp Arg Tyr Thr Gln Ser Cys Gln Thr 20 25 . 30

Phe Val Tyr Gly Gly Cys Met Gly Asn Ala Asn Asn Phe Tyr Thr Trp 35 40 45

Glu Ala Cys Asp Asp Ala Cys Trp Arg Ile 50 55

<210> 34

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.2.2

<400> 34

Asn Ala Glu Ile Cys Leu Leu Pro Leu Asp Tyr Gly Pro Cys Ile Ala 1 5 10 15

Leu Phe Leu Arg Tyr Tyr Tyr Asp Arg Tyr Thr Gln Ser Cys Arg Gln 20 25 30

Phe Val Tyr Gly Gly Cys Glu Gly Asn Ala Asn Asn Phe Tyr Thr Trp 35 40 45

Glu Ala Cys Asp Asp Ala Cys Trp Arg Ile 50 55

<210> 35

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.2.3

<400> 35

Asn Ala Glu Ile Cys Leu Leu Pro Leu Asp Thr Gly Pro Cys Ile Ala 1 5 10 15

Phe Phe Leu Arg Tyr Tyr Tyr Asp Arg Tyr Thr Gln Ser Cys Gln Thr 20 25 30

Phe Val Tyr Gly Gly Cys Met Gly Asn Ala Asn Asn Phe Tyr Thr Trp 35 40 45

Glu Ala Cys Asp Asp Ala Cys Trp Arg Ile <210> 36 <211> 61 <212> PRT <213> Homo sapiens <400> 36 Val Pro Lys Val Cys Arg Leu Gln Val Ser Val Asp Asp Gln Cys Glu Gly Ser Thr Glu Lys Tyr Phe Phe Asn Leu Ser Ser Met Thr Cys Glu Lys Phe Phe Ser Gly Gly Cys His Arg Asn Arg Ile Glu Asn Arg Phe Pro Asp Glu Ala Thr Cys Met Gly Phe Cys Ala Pro Lys <210> 37 <211> 58 <212> PRT <213> Artificial Sequence <220> <223> DPI.3.1 <400> 37 Val Pro Lys Val Cys Arg Leu Gln Val Val Arg Gly Pro Cys Ile Ala Phe Phe Pro Arg Trp Phe Phe Asn Leu Ser Ser Met Thr Cys Val Leu Phe Pro Tyr Gly Gly Cys Gln Gly Asn Gly Asn Arg Phe Pro Asp Glu Ala Thr Cys Met Gly Phe Cys Ala Pro Lys <210> 38 <211> 61 <212> PRT <213> Artificial Sequence <220> <223> DPI.3.2

Val Pro Lys Val Cys Arg Leu Gln Val Ser Val Asp Asp Gln Cys Ile 1 5 10 15

<400> 38

Gly Ser Phe Glu Lys Tyr Phe Phe Asn Leu Ala Ser Met Thr Cys Glu 20 25 30

Thr Phe Val Ser Gly Gly Cys His Arg Asn Arg Ile Glu Asn Arg Phe 35 40 45

Pro Asp Glu Ala Thr Cys Met Gly Phe Cys Ala Pro Lys 50 55 60

<210> 39

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.3.3

<400> 39

Val Pro Lys Val Cys Arg Leu Gln Val Val Ala Gly Pro Cys Ile Gly
1 5 10 15

Phe Phe Lys Arg Tyr Phe Phe Ala Leu Ser Ser Met Thr Cys Glu Thr 20 25 30

Phe Val Ser Gly Gly Cys His Arg Asn Arg Asn Arg Phe Pro Asp Glu 35 40 45

Ala Thr Cys Met Gly Phe Cys Ala Pro Lys 50 55

<210> 40

<211> 58

<212> PRT

<213> Homo sapiens

<400> 40

Ile Pro Ser Phe Cys Tyr Ser Pro Lys Asp Glu Gly Leu Cys Ser Ala 1 5 10 15

Asn Val Thr Arg Tyr Tyr Phe Asn Pro Arg Tyr Arg Thr Cys Asp Ala 20 25 30

Phe Thr Tyr Thr Gly Cys Gly Gly Asn Asp Asn Asn Phe Val Ser Arg 35 40 45

Glu Asp Cys Lys Arg Ala Cys Ala Lys Ala 50 55

<210> 41

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

```
<223> DPI.4.1
```

Ile Pro Ser Phe Cys Tyr Ser Pro Lys Ser Ala Gly Pro Cys Val Ala 1 5 10 15

Met Phe Pro Arg Tyr Tyr Phe Asn Pro Arg Tyr Arg Thr Cys Glu Thr 20 25 30

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Ser Arg 35 40 45

Glu Asp Cys Lys Arg Ala Cys Ala Lys Ala 50 55

<210> 42

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.4.2

<400> 42

Ile Pro Ser Phe Cys Tyr Ser Pro Lys Asp Glu Gly Leu Cys Ile Ala 1 5 10 15

Phe Phe Thr Arg Tyr Tyr Phe Asn Pro Arg Tyr Arg Thr Cys Asp Ala 20 25 30

Phe Thr Tyr Thr Gly Cys Gly Gly Asn Asp Asn Asn Phe Val Ser Arg 35 40 45

Glu Asp Cys Lys Arg Ala Cys Ala Lys Ala

<210> 43

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.4.3

<400> 43

Ile Pro Ser Phe Cys Tyr Ser Pro Lys Asp Thr Gly Pro Cys Ile Ala 1 5 10 15

Phe Phe Thr Arg Tyr Tyr Phe Asn Pro Arg Tyr Arg Thr Cys Asp Thr 20 25 30

Phe Val Tyr Gly Gly Cys Gly Gly Asn Asp Asn Asn Phe Val Ser Arg

```
Glu Asp Cys Lys Arg Ala Cys Ala Lys Ala
<210> 44
<211> 58
<212> PRT
<213> Homo sapiens
<400> 44
Met His Ser Phe Cys Ala Phe Lys Ala Asp Asp Gly Pro Cys Lys Ala
                        10 . 15
Ile Met Lys Arg Phe Phe Phe Asn Ile Phe Thr Arg Gln Cys Glu Glu
Phe Ile Tyr Gly Gly Cys Glu Gly Asn Gln Asn Arg Phe Glu Ser Leu
Glu Glu Cys Lys Lys Met Cys Thr Arg Asp
<210> 45
<211> 58
<212> PRT
<213> Artificial Sequence
<220>
<223> DPI.5.1
<400> 45
Met His Ser Phe Cys Ala Phe Lys Ala Ser Ala Gly Pro Cys Val Ala
Met Phe Pro Arg Tyr Phe Phe Asn Ile Phe Thr Arg Gln Cys Glu Thr
Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Arg Phe Glu Ser Leu
Glu Glu Cys Lys Lys Met Cys Thr Arg Asp
                        55
<210> 46
<211> 58
<212> PRT
<213> Artificial Sequence
<220>
<223> DPI.5.2
<400> 46
```

Met His Ser Phe Cys Ala Phe Lys Ala Asp Asp Gly Pro Cys Ile Ala

10 .

Ile Phe Lys Arg Phe Phe Phe Asn Ile Phe Thr Arg Gln Cys Glu Glu 25

Phe Ile Tyr Gly Gly Cys Glu Gly Asn Gln Asn Arg Phe Glu Ser Leu 40

Glu Glu Cys Lys Lys Met Cys Thr Arg Asp

<210> 47

<211> 58

<212> PRT <213> Artificial Sequence

<220>

<223> DPI.5.3

<400> 47

Met His Ser Phe Cys Ala Phe Lys Ala Tyr Thr Gly Pro Cys Ile Ala

Phe Phe Lys Arg Phe Phe Phe Asn Ile Phe Thr Arg Gln Cys Glu Thr 20

Phe Ile Tyr Gly Gly Cys Glu Gly Asn Gln Asn Arg Phe Glu Ser Leu

Glu Glu Cys Lys Lys Met Cys Thr Arg Asp 55

<210> 48

<211> 58

<212> PRT

<213> Homo sapiens

<400> 48

Lys Pro Asp Phe Cys Phe Leu Glu Glu Asp Pro Gly Ile Cys Arg Gly

Tyr Ile Thr Arg Tyr Phe Tyr Asn Asn Gln Thr Lys Gln Cys Glu Arg

Phe Lys Tyr Gly Gly Cys Leu Gly Asn Met Asn Asn Phe Glu Thr Leu

Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly

<210> 49

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

```
<223> DPI.6.1
```

Lys Pro Asp Phe Cys Phe Leu Glu Glu Ser Ala Gly Pro Cys Val Ala 1 5 10 15

Met Phe Pro Arg Tyr Phe Tyr Asn Asn Gln Thr Lys Gln Cys Glu Thr 20 25 . 30

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Glu Thr Leu 35 40 45

Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly
50 55

<210> 50

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.6.2

<400> 50

Lys Pro Asp Phe Cys Phe Leu Glu Glu Asp Pro Gly Ile Cys Val Gly 1 5 10 15

Tyr Phe Thr Arg Tyr Phe Tyr Asn Asn Gln Thr Lys Gln Cys Glu Arg 20 25 30

Phe Lys Tyr Gly Gly Cys Leu Gly Asn Met Asn Asn Phe Glu Thr Leu 35 40 45

Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly

<210> 51

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.6.3

<400> 51

Lys Pro Asp Phe Cys Phe Leu Glu Glu Asp Pro Gly Ile Cys Val Gly 1 5 10 15

Phe Phe Thr Arg Tyr Phe Tyr Asn Asn Gln Thr Lys Gln Cys Glu Arg 20 25 30

Phe Val Tyr Gly Gly Cys Leu Gly Asn Met Asn Asn Phe Glu Thr Leu 35 40 45

Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly <210> 52 <211> 58 <212> PRT <213> Artificial Sequence <220> <223> DPI.6.4 <400> 52 Lys Pro Asp Phe Cys Phe Leu Glu Glu Asp Pro Gly Ile Cys Val Gly Phe Phe Thr Arg Tyr Phe Tyr Asn Ala Gln Thr Lys Gln Cys Glu Arg Phe Val Tyr Gly Gly Cys Leu Gly Asn Met Asn Asn Phe Glu Thr Leu Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly <210> 53 <211> 58 <212> PRT <213> Artificial Sequence <220> <223> DPI.6.5 <400> 53 Lys Pro Asp Phe Cys Phe Leu Glu Glu Asp Pro Gly Pro Cys Val Gly Phe Phe Gln Arg Tyr Phe Tyr Asn Ala Gln Thr Lys Gln Cys Glu Arg Phe Val Tyr Gly Gly Cys Gln Gly Asn Met Asn Asn Phe Glu Thr Leu Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly 55 50 <210> 54 <211> 58 <212> PRT <213> Artificial Sequence

<220>

<223> DPI.6.6

Lys Pro Asp Phe Cys Phe Leu Glu Glu Asp Pro Gly Pro Cys Val Gly 1 5 10 15

Phe Phe Thr Arg Tyr Phe Tyr Asn Asn Gln Thr Lys Gln Cys Glu Arg 20 25 30

Phe Val Tyr Gly Gly Cys Gln Gly Asn Met Asn Asn Phe Glu Thr Leu 35 40 45

Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly
50 55

<210> 55

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.6.7

<400> 55

Lys Pro Asp Phe Cys Phe Leu Glu Glu Asp Pro Gly Pro Cys Ile Gly 1 5 10 . 15

Phe Phe Pro Arg Tyr Phe Tyr Asn Asn Gln Thr Lys Gln Cys Glu Arg 20 25 30

Phe Val Tyr Gly Gly Cys Gln Gly Asn Met Asn Asn Phe Glu Thr Leu 35 40 45

Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly 50 55

<210> 56

<211> 58

<212> PRT

<213> Homo sapiens

<400> 56

Gly Pro Ser Trp Cys Leu Thr Pro Ala Asp Arg Gly Leu Cys Arg Ala 1 5 10 15

Asn Glu Asn Arg Phe Tyr Tyr Asn Ser Val Ile Gly Lys Cys Arg Pro 20 25 30

Phe Lys Tyr Ser Gly Cys Gly Gly Asn Glu Asn Asn Phe Thr Ser Lys 35 40 45

Gln Glu Cys Leu Arg Ala Cys Lys Lys Gly 50 55

<210> 57

<211> 58

<212> PRT <213> Artificial Sequence

<220>

<223> DPI.7.1

<400> 57

Gly Pro Ser Trp Cys Leu Thr Pro Ala Val Arg Gly Pro Cys Ile Ala

Phe Phe Pro Arg Trp Tyr Tyr Asn Ser Val Ile Gly Lys Cys Val Leu

Phe Pro Tyr Gly Gly Cys Gln Gly Asn Gly Asn Asn Phe Thr Ser Lys

Gln Glu Cys Leu Arg Ala Cys Lys Lys Gly

<210> 58

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.7.2

<400> 58

Gly Pro Ser Trp Cys Leu Thr Pro Ala Asp Arg Gly Leu Cys Val Ala

Asn Phe Asn Arg Phe Tyr Tyr Asn Ser Val Ile Gly Lys Cys Arg Pro

Phe Lys Tyr Ser Gly Cys Gly Gly Asn Glu Asn Asn Phe Thr Ser Lys

Gln Glu Cys Leu Arg Ala Cys Lys Lys Gly

<210> 59

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.7.3

<400> 59

Gly Pro Ser Trp Cys Leu Thr Pro Ala Asp Arg Gly Leu Cys Val Ala

Phe Phe Asn Arg Phe Tyr Tyr Asn Ser Val Ile Gly Lys Cys Arg Pro 25

Phe Lys Tyr Ser Gly Cys Gly Gly Asn Glu Asn Asn Phe Lys Ser Lys 40

Gln Glu Cys Leu Arg Ala Cys Lys Lys Gly

<210> 60

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.7.4

<400> 60

Gly Pro Ser Trp Cys Leu Thr Pro Ala Val Arg Gly Pro Cys Val Ala

Phe Phe Asn Arg Phe Tyr Tyr Asn Ser Val Ile Gly Lys Cys Arg Pro

Phe Lys Tyr Gly Gly Cys Gly Gly Asn Glu Asn Asn Phe Lys Ser Lys

Gln Glu Cys Leu Arg Ala Cys Lys Lys Gly

<210> 61

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.7.5

<400> 61

Gly Pro Ser Trp Cys Leu Thr Pro Ala Asp Arg Gly Pro Cys Ile Ala

Phe Phe Pro Arg Trp Tyr Tyr Asn Ser Val Ile Gly Lys Cys Gln Thr 20

Phe Val Tyr Gly Gly Cys Gly Gly Asn Glu Asn Asn Phe Ala Ser Lys

Gln Glu Cys Leu Arg Ala Cys Lys Lys Gly

<210> 62

<211> 58 <212> PRT

```
<213> Homo sapiens
```

Glu Thr Asp Ile Cys Lys Leu Pro Lys Asp Glu Gly Thr Cys Arg Asp

Phe Ile Leu Lys Trp Tyr Tyr Asp Pro Asn Thr Lys Ser Cys Ala Arg

Phe Trp Tyr Gly Gly Cys Gly Gly Asn Glu Asn Lys Phe Gly Ser Gln

Lys Glu Cys Glu Lys Val Cys Ala Pro Val

<210> 63 <211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.8.1

<400> 63

Glu Thr Asp Ile Cys Lys Leu Pro Lys Val Arg Gly Pro Cys Ile Ala

Phe Phe Pro Arg Trp Tyr Tyr Asp Pro Asn Thr Lys Ser Cys Val Leu

Phe Pro Tyr Gly Gly Cys Gln Gly Asn Gly Asn Lys Phe Gly Ser Gln

Lys Glu Cys Glu Lys Val Cys Ala Pro Val 55

<210> 64

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.8.2

<400> 64

Glu Thr Asp Ile Cys Lys Leu Pro Lys Asp Glu Gly Thr Cys Ile Ala

Phe Phe Leu Lys Trp Tyr Tyr Asp Pro Asn Thr Lys Ser Cys Ala Arg

Phe Val Tyr Gly Gly Cys Gly Gly Asn Glu Asn Lys Phe Gly Ser Gln

```
Lys Glu Cys Glu Lys Val Cys Ala Pro Val
<210> 65
<211> 58
<212> PRT
<213> Artificial Sequence
<220>
<223> DPI.8.3
<400> 65
Glu Thr Asp Ile Cys Lys Leu Pro Lys Asp Glu Gly Pro Cys Ile Ala
Phe Phe Leu Arg Trp Tyr Tyr Asp Pro Asn Thr Lys Ser Cys Ala Arg
Phe Val Tyr Gly Gly Cys Gly Gly Asn Glu Asn Lys Phe Gly Ser Gln
Lys Glu Cys Glu Lys Val Cys Ala Pro Val
<210> 66
<211> 58
<212> PRT
<213> Homo sapiens
<400> 66
Leu Pro Asn Val Cys Ala Phe Pro Met Glu Lys Gly Pro Cys Gln Thr
Tyr Met Thr Arg Trp Phe Phe Asn Phe Glu Thr Gly Glu Cys Glu Leu
Phe Ala Tyr Gly Gly Cys Gly Gly Asn Ser Asn Asn Phe Leu Arg Lys
Glu Lys Cys Glu Lys Phe Cys Lys Phe Thr
    50
<210> 67
<211> 58
<212> PRT
<213> Artificial Sequence
<220>
<223> DPI.9.1
<400> 67
Leu Pro Asn Val Cys Ala Phe Pro Met Val Arg Gly Pro Cys Ile Ala
                                      10
```

Phe Phe Pro Arg Trp Phe Phe Asn Phe Glu Thr Gly Glu Cys Val Leu 25

Phe Val Tyr Gly Gly Cys Gln Gly Asn Gly Asn Asn Phe Leu Arg Lys 40

Glu Lys Cys Glu Lys Phe Cys Lys Phe Thr

<210> 68 <211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.9.2

<400> 68

Leu Pro Asn Val Cys Ala Phe Pro Met Glu Lys Gly Pro Cys Ile Ala

Tyr Phe Thr Arg Trp Phe Phe Asn Phe Glu Thr Gly Glu Cys Glu Leu 25

Phe Ala Tyr Gly Gly Cys Gly Gly Asn Ser Asn Asn Phe Leu Arg Lys

Glu Lys Cys Glu Lys Phe Cys Lys Phe Thr

<210> 69

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.9.3

<400> 69

Leu Pro Asn Val Cys Ala Phe Pro Met Glu Lys Gly Pro Cys Ile Ala

Tyr Phe Pro Arg Trp Phe Phe Asn Phe Glu Thr Gly Glu Cys Val Leu

Phe Val Tyr Gly Gly Cys Gly Gly Asn Ser Asn Asn Phe Leu Arg Lys

Glu Lys Cys Glu Lys Phe Cys Lys Phe Thr

<210> 70

<211> 8157

<212> DNA

<213> Artificial Sequence

<220>

<223> Plasmid pHIL-D2

<400> 70 agatcgcggc cgcgatctaa catccaaaga cgaaaggttg aatgaaacct ttttgccatc 60 120 cgacatccac aggtccattc tcacacataa gtgccaaacg caacaggagg ggatacacta 180 gcagcagacc gttgcaaacg caggacctcc actcctcttc tcctcaacac ccacttttgc 240 catcgaaaaa ccagcccagt tattgggctt gattggagct cgctcattcc aattccttct attaggetae taacaccatg actttattag cetgtetate etggeeceee tggegaggte 300 atgtttgttt atttccgaat gcaacaagct ccgcattaca cccgaacatc actccagatg 360 agggctttct gagtgtgggg tcaaatagtt tcatgttccc aaatggccca aaactgacag 420 tttaaacgct gtcttggaac ctaatatgac aaaagcgtga tctcatccaa gatgaactaa 480 gtttggttcg ttgaaatgct aacggccagt tggtcaaaaa gaaacttcca aaagtcgcca 540 600 taccgtttgt cttgtttggt attgattgac gaatgctcaa aaataatctc attaatgctt agegeagtet etetateget tetgaaceeg gtggeacetg tgeegaaaeg caaatgggga 660 aacaacccgc tttttggatg attatgcatt gtcctccaca ttgtatgctt ccaagattct 720 ggtgggaata ctgctgatag cctaacgttc atgatcaaaa tttaactgtt ctaaccccta 780 cttgacaggc aatatataaa cagaaggaag ctgccctgtc ttaaaccttt ttttttatca 840 tcattattag cttactttca taattgcgac tggttccaat tgacaagctt ttgattttaa 900 960 cgacttttaa cgacaacttg agaagatcaa aaaacaacta attattcgaa acgaggaatt cgccttagac atgactgttc ctcagttcaa gttgggcatt acgagaagac cggtcttgct 1020 agattctaat caagaggatg tcagaatgcc atttgcctga gagatgcagg cttcattttt 1080 gatacttttt tatttgtaac ctatatagta taggattttt tttgtcattt tgtttcttct 1140 1200 cgtacgagct tgctcctgat cagcctatct cgcagctgat gaatatcttg tggtaggggt ttgggaaaat cattcgagtt tgatgttttt cttggtattt cccactcctc ttcagagtac 1260 agaagattaa gtgagaagtt cgtttgtgca agcttatcga taagctttaa tgcggtagtt 1320 1380 tatcacagtt aaattgctaa cgcagtcagg caccgtgtat gaaatctaac aatgcgctca togtcatect eggcacegte accetggatg etgtaggeat aggettggtt atgeeggtae 1440 tgccgggcct cttgcgggat atcgtccatt ccgacagcat cgccagtcac tatggcgtgc 1500 1560 tgctagcgct atatgcgttg atgcaatttc tatgcgcacc cgttctcgga gcactgtccg 1620 accgctttgg ccgcccca gtcctgctcg cttcgctact tggagccact atcgactacg

cgatcatggc	gaccacaccc	gtcctgtgga	tctatcgaat	ctaaatgtaa	gttaaaatct	1680
ctaaataatt	aaataagtcc	cagtttctcc	atacgaacct	taacagcatt	gcggtgagca	1740
tctagacctt	caacagcagc	cagatccatc	actgcttggc.	caatatgttt	cagtccctca	1800
ggagttacgt	cttgtgaagt	gatgaacttc	tggaaggttg	cagtgttaac	tccgctgtat	1860
tgacgggcat	atccgtacgt	tggcaaagtg	tggttggtac	cggaggagta	atctccacaa	1920
ctctctggag	agtaggcacc	aacaaacaca	gatccagcgt	gttgtacttg	atcaacataa	1980
gaagaagcat	tctcgatttg	caggatcaag	tgttcaggag	cgtactgatt	ggacatttcc	2040
aaagcctgct	cgtaggttgc	aaccgatagg	gttgtagagt.	gtgcaataca	cttgcgtaca	2100
atttcaaccc	ttggcaactg	cacagcttgg	ttgtgaacag	catcttcaat	tctggcaagc	2160
tccttgtctg	tcatatcgac	agccaacaga	atcacctggg	aatcaatacc	atgttcagct	2220
tgagcagaag	gtctgaggca	acgaaatctg	gatcagcgta	tttatcagca	ataactagaa	2280
cttcagaagg	cccagcaggc	atgtcaatac	tacacagggc	tgatgtgtca	ttttgaacca	2340
tcatcttggc	agcagtaacg	aactggtttc	ctggaccaaa	tattttgtca	cacttaggaa	2400
cagtttctgt	tccgtaagcc	atagcagcta	ctgcctgggc	gcctcctgct	agcacgatac	2460
acttagcacc	aaccttgtgg	gcaacgtaga	tgacttctgg	ggtaagggta	ccatccttct	2520
taggtggaga	tgcaaaaaca	atttctttgc	aaccagcaac	tttggcagga	acacccagca	2580
tcagggaagt	ggaaggcaga	attgcggttc	caccaggaat	atagaggcca	actttctcaa	2640
taggtcttgc	aaaacgagag	cagactacac	cagggcaagt	ctcaacttgc	aacgtctccg	2700
ttagttgagc	ttcatggaat	ttcctgacgt	tatctataga	gagatcaatg	gctctcttaa	2760
cgttatctgg	caattgcata	agttcctctg	ggaaaggagc	ttctaacaca	ggtgtcttca	2820
aagcgactcc	atcaaacttg	gcagttagtt	ctaaaagggc	tttgtcacca	ttttgacgaa	2880
cattgtcgac	aattggtttg	actaattcca	taatctgttc	cgttttctgg	ataggacgac	2940
gaagggcatc	ttcaatttct	tgtgaggagg	ccttagaaac	gtcaattttg	cacaattcaa	3000
tacgaccttc	agaagggact	tctttaggtt	tggattcttc	tttaggttgt	tccttggtgt	3060
atcctggctt	ggcatctcct	ttccttctag	tgacctttag	ggacttcata	tccaggtttc	3120
tctccacctc	gtccaacgtc	acaccgtact	tggcacatct	aactaatgca	aaataaaata	3180
agtcagcaca	ttcccaggct	atatcttcct	tggatttagc	ttctgcaagt	tcatcagctt	3240
cctccctaat	tttagcgttc	aacaaaactt	cgtcgtcaaa	taaccgtttg	gtataagaac	3300
cttctggagc	: attgctctta	cgatcccaca	. aggtgcttcc	atggctctaa	gaccctttga	3360
ttggccaaaa	caggaagtgo	gttccaagtg	acagaaacca	acacctgttt	gttcaaccac	3420
aaatttcaag	g cagtctccat	cacaatccaa	ttcgataccc	: agcaactttt	gagttcgtcc	3480

3540 agatgtagca cctttatacc acaaaccgtg acgacgagat tggtagactc cagtttgtgt ccttatagcc tccggaatag actttttgga cgagtacacc aggcccaacg agtaattaga 3600 3660 agagtcagcc accaaagtag tgaatagacc atcggggcgg tcagtagtca aagacgccaa 3720 caaaatttca ctgacaggga actttttgac atcttcagaa agttcgtatt cagtagtcaa ttgccgagca tcaataatgg ggattatacc agaagcaaca gtggaagtca catctaccaa 3780 3840 ctttgcggtc tcagaaaaag cataaacagt tctactaccg ccattagtga aacttttcaa 3900 atcgcccagt ggagaagaaa aaggcacagc gatactagca ttagcgggca aggatgcaac 3960 tttatcaacc agggtcctat agataaccct agcgcctggg atcatccttt ggacaactct 4020 ttctgccaaa tctaggtcca aaatcacttc attgatacca ttatacggat gactcaactt gcacattaac ttgaagctca gtcgattgag tgaacttgat caggttgtgc agctggtcag 4080 cagcataggg aaacacggct tttcctacca aactcaagga attatcaaac tctgcaacac 4140 4200 ttgcgtatgc aggtagcaag ggaaatgtca tacttgaagt cggacagtga gtgtagtctt gagaaattct gaagccgtat ttttattatc agtgagtcag tcatcaggag atcctctacg 4260 ceggacgcat egtggcegge atcaceggeg ceaeaggtge ggttgetgge geetatateg 4320 ccgacatcac cgatggggaa gatcgggctc gccacttcgg gctcatgagc gcttgtttcg 4380 gcgtgggtat ggtggcaggc cccgtggccg ggggactgtt gggcgccatc tccttgcatg 4440 4500 caccatteet tgeggeggeg gtgeteaacg geeteaacet actaetggge tgetteetaa tgcaggagtc gcataaggga gagcgtcgag tatctatgat tggaagtatg ggaatggtga 4560 tacccgcatt cttcagtgtc ttgaggtctc ctatcagatt atgcccaact aaagcaaccg 4620 gaggaggaga tttcatggta aatttctctg acttttggtc atcagtagac tcgaactgtg 4680 agactatete ggttatgaca geagaaatgt eettettgga gacagtaaat gaagteeeac 4740 caataaagaa atccttgtta tcaggaacaa acttcttgtt tcgaactttt tcggtgcctt 4800 4860 gaactataaa atgtagagtg gatatgtcgg gtaggaatgg agcgggcaaa tgcttacctt ctggaccttc aagaggtatg tagggtttgt agatactgat gccaacttca gtgacaacgt 4920 4980 tgctatttcg ttcaaaccat tccgaatcca gagaaatcaa agttgtttgt ctactattga tccaagccag tgcggtcttg aaactgacaa tagtgtgctc gtgttttgag gtcatctttg 5040 5100 tatgaataaa tctagtcttt gatctaaata atcttgacga gccaaggcga taaataccca 5160 aatctaaaac tcttttaaaa cgttaaaagg acaagtatgt ctgcctgtat taaaccccaa 5220 atcagctcgt agtctgatcc tcatcaactt gaggggcact atcttgtttt agagaaattt 5280 gcggagatgc gatatcgaga aaaaggtacg ctgattttaa acgtgaaatt tatctcaaga 5340 tcgcggccgc gatctcgaat aataactgtt atttttcagt gttcccgatc tgcgtctatt

tcacaatacc	aacatgagtc	agcttatcga	tgataagctg	tcaaacatga	gaattaattc	5400
gatgataagc	tgtcaaacat	gagaaatctt	gaagacgaaa	gggcctcgtg	atacgcctat	5460
ttttataggt	taatgtcatg	ataataatgg	tttcttagac	gtcaggtggc	acttttcggg	5520
gaaatgtgcg	cggaacccct	atttgtttat	ttttctaaat	acattcaaat	atgtatccgc	5580
tcatgagaca	ataaccctga	taaatgcttc	aataatattg	aaaaaggaag	agtatgagta	5640
ttcaacattt	ccgtgtcgcc	cttattccct	tttttgcggc	attttgcctt	cctgtttttg	5700
ctcacccaga	aacgctggtg	aaagtaaaag	atgctgaaga	tcagttgggt	gcacgagtgg	5760
gttacatcga	actggatctc	aacagcggta	agatccttga	gagttttcgc	cccgaagaac	5820
gttttccaat	gatgagcact	tttaaagttc	tgctatgtgg	cgcggtatta	tcccgtgttg	5880
acgccgggca	agagcaactc	ggtcgccgca	tacactattc	tcagaatgac	ttggttgagt	5940
actcaccagt	cacagaaaag	catcttacgg	atggcatgac	agtaagagaa	ttatgcagtg	6000
ctgccataac	catgagtgat	aacactgcgg	ccaacttact	tctgacaacg	atcggaggac	6060
cgaaggagct	aaccgctttt	ttgcacaaca	tgggggatca	tgtaactcgc	cttgatcgtt	6120
gggaaccgga	gctgaatgaa	gccataccaa	acgacgagcg	tgacaccacg	atgcctgcag	6180
caatggcaac	aacgttgcgc	aaactattaa	ctggcgaact	acttactcta	gcttcccggc	6240
aacaattaat	agactggatg	gaggcggata	aagttgcagg.	accacttctg	cgctcggccc	6300
ttccggctgg	ctggtttatt	gctgataaat	ctggagccgg	tgagcgtggg	tctcgcggta	6360
tcattgcagc	actggggcca	gatggtaagc	cctcccgtat	cgtagttatc	tacacgacgg	6420
ggagtcaggc	aactatggat	gaacgaaata	gacagatcgc	tgagataggt	gcctcactga	6480
ttaagcattg	gtaactgtca	gaccaagttt	actcatatat	actttagatt	gatttaaatt	6540
gtaaacgtta	atattttgtt	aaaattcgcg	ttaaattttt	gttaaatcag	ctcattttt	6600
aaccaatagg	ccgaaatcgg	caaaatccct	tataaatcaa	aagaatagac	cgagataggg	6660
ttgagtgttg	ttccagtttg	gaacaagagt	ccactattaa	agaacgtgga	ctccaacgtc	6720
aaagggcgaa	aaaccgtcta	tcagggcgat	ggcccactac	gtgaaccatc	accctaatca	6780
agttttttgg	ggtcgaggtg	ccgtaaagca	ctaaatcgga	accctaaagg	gagcccccga	6840
tttagagctt	gacggggaaa	gccggcgaac	gtggcgagaa	aggaagggaa	gaaagcgaaa	6900
ggagcgggcg	ctagggcgct	ggcaagtgta	gcggtcacgc	tgcgcgtaac	caccacaccc	6960
gccgcgctta	atgcgccgct	acagggcgcg	taaaaggatc	taggtgaaga	tcctttttga	7020
taatctcatg	accaaaatcc	cttaacgtga	gttttcgttc	cactgagcgt	cagaccccgt	7080
agaaaagatc	aaaggatctt	cttgagatcc	tttttttctg	cgcgtaatct	gctgcttgca	7140
aacaaaaaa	ccaccgctac	cagcggtggt	ttgtttgccg	gatcaagagc	taccaactct	7200

ttttccgaag	gtaactggct	tcagcagagc	gcagatacca	aatactgtcc	ttctagtgta	7260
gccgtagtta	ggccaccact	tcaagaactc	tgtagcaccg	cctacatacc	tcgctctgct	7320
aatcctgtta	ccagtggctg	ctgccagtgg	cgataagtcg	tgtcttaccg	ggttggactc	7380
aagacgatag	ttaccggata	aggcgcagcg	gtcgggctga	acggggggtt	cgtgcacaca	7440
gcccagcttg	gagcgaacga	cctacaccga	actgagatac	ctacagcgtg	agcattgaga	7500
aagcgccacg	cttcccgaag	ggagaaaggc	ggacaggtat	ccggtaagcg	gcagggtcgg	7560
aacaggagag	cgcacgaggg	agcttccagg	gggaaacgcc	tggtatcttt	atagtcctgt	7620
cgggtttcgc	cacctctgac	ttgagcgtcg	atttttgtga	tgctcgtcag	gggggcggag	7680
cctatggaaa	aacgccagca	acgcggcctt	tttacggttc	ctggcctttt	gctggccttt	7740
tgctcacatg	ttctttcctg	cgttatcccc	tgattctgtg	gataaccgta	ttaccgcctt	7800
tgagtgagct	gataccgctc	gccgcagccg	aacgaccgag	cgcagcgagt	cagtgagcga	7860
ggaagcggaa	gagcgcctga	tgcggtattt	tctccttacg	catctgtgcg	gtatttcaca	7920
ccgcatatgg	tgcactctca	gtacaatctg	ctctgatgcc	gcatagttaa	gccagtatac	7980
actccgctat	cgctacgtga	ctgggtcatg	gctgcgcccc	gacacccgcc	aacacccgct	8040
gacgcgccct	gacgggcttg	tctgctcccg	gcatccgctt.	acagacaagc	tgtgaccgtc	8100
teegggaget	gcatgtgtca	gaggttttca	ccgtcatcac	cgaaacgcgc	gaggcag	8157

<210> 71

<220>

<223> Plasmid pHIL-D2 (MFalphaPrePro::EPI-HNE-3)

<400> 71 agatcgcggc cgcgatctaa catccaaaga cgaaaggttg aatgaaacct ttttgccatc 60 cgacatccac aggtccattc tcacacataa gtgccaaacg caacaggagg ggatacacta 120 gcagcagacc gttgcaaacg caggacctcc actcctcttc tcctcaacac ccacttttgc 180 catcgaaaaa ccagcccagt tattgggctt gattggagct cgctcattcc aattccttct 240 attaggetae taacaccatg actttattag cetgtetate etggeecece tggegaggte 300 atgtttgttt atttccgaat gcaacaagct ccgcattaca cccgaacatc actccagatg 360 agggetttet gagtgtgggg teaaatagtt teatgtteee aaatggeeea aaaetgaeag 420 tttaaacgct gtcttggaac ctaatatgac aaaagcgtga tctcatccaa gatgaactaa 480 gtttggttcg ttgaaatgct aacggccagt tggtcaaaaa gaaacttcca aaagtcgcca 540

<211> 8584

<212> DNA

<213> Artificial Sequence

taccgtttgt	cttgtttggt	attgattgac	gaatgctcaa	aaataatctc	attaatgctt	600
agcgcagtct	ctctatcgct	tctgaacccg	gtggcacctg	tgccgaaacg	caaatgggga	660
aacaacccgc	tttttggatg	attatgcatt	gtcctccaca	ttgtatgctt	ccaagattct	720
ggtgggaata	ctgctgatag	cctaacgttc	atgatcaaaa	tttaactgtt	ctaaccccta	780
cttgacaggc	aatatataaa	cagaaggaag	ctgccctgtc	ttaaaccttt	ttttttatca	840
tcattattag	cttactttca	taattgcgac	tggttccaat	tgacaagctt	ttgattttaa	900
cgacttttaa	cgacaacttg	agaagatcaa	aaaacaacta	attattcgaa	acgatgagat	960
tcccatctat	cttcactgct	gttttgttcg	ctgcttcctc	tgctttggct	gctccagtta	1020
acaccactac	tgaagacgag	actgctcaaa	ttcctgctga	ggctgtcatc	ggttactctg	1080
acttggaagg	tgacttcgac	gtcgctgttt	tgccattctc	taactctact	aacaacggtt	1140
tgttgttcat	caacactacc	atcgcttcta	tcgctgctaa	ggaggaaggt	gtttccttgg	1200
acaagagagc	tgcttgtaac	ttgccaatcg	tcagaggtcc	atgcattgct	ttcttcccaa	1260
gatgggcttt	cgacgctgtt	aagggtaagt	gcgtcttgtt	cccatacggt	ggttgtcaag	1320
gtaacggtaa	caagttctac	tctgagaagg	agtgtagaga	gtactgtggt	gttccatagt	1380
aagaattcgc	cttagacatg	actgttcctc	agttcaagtt	gggcattacg	agaagaccgg	1440
tcttgctaga	ttctaatcaa	gaggatgtca	gaatgccatt	tgcctgagag	atgcaggctt	1500
catttttgat	acttttttat	ttgtaaccta	tatagtatag	gattttttt	gtcattttgt	1560
ttcttctcgt	acgagcttgc	tcctgatcag	cctatctcgc	agctgatgaa	tatcttgtgg	1620
taggggtttg	ggaaaatcat	tcgagtttga	tgtttttctt	ggtatttccc	actcctcttc	1680
agagtacaga	agattaagtg	agaagttcgt	ttgtgcaagc	ttatcgataa	gctttaatgc	1740
ggtagtttat	cacagttaaa	ttgctaacgc	agtcaggcac	cgtgtatgaa	atctaacaat	1800
gcgctcatcg	tcatcctcgg	caccgtcacc	ctggatgctg	taggcatagg	cttggttatg	1860
ccggtactgc	cgggcctctt	gcgggatatc	gtccattccg	acagcatcgc	cagtcactat	1920
ggcgtgctgc	tagcgctata	tgcgttgatg	caatttctat	gcgcacccgt	tctcggagca	1980
ctgtccgacc	gctttggccg	ccgcccagtc	ctgctcgctt	cgctacttgg	agccactatc	2040
gactacgcga	tcatggcgac	cacacccgtc	ctgtggatct	atcgaatcta	aatgtaagtt	2100
aaaatctcta	aataattaaa	taagtcccag	tttctccata	cgaaccttaa	cagcattgcg	2160
gtgagcatct	agaccttcaa	cagcagccag	atccatcact	gcttggccaa	tatgtttcag	2220
tccctcagga	gttacgtctt	gtgaagtgat	gaacttctgg	aaggttgcag	tgttaactcc	2280
gctgtattga	cgggcatatc	: cgtacgttgg	caaagtgtgg	ttggtaccgg	g aggagtaatc	2340
tccacaactc	: tctggagagt	aggcaccaac	aaacacagat	ccagcgtgtt	gtacttgatc	2400

aacataagaa	gaagcattct	cgatttgcag	gatcaagtgt	tcaggagcgt	actgattgga	2460
catttccaaa	gcctgctcgt	aggttgcaac	cgatagggtt	gtagagtgtg	caatacactt	2520
gcgtacaatt	tcaacccttg	gcaactgcac	agcttggttg	tgaacagcat	cttcaattct	2580
ggcaagctcc	ttgtctgtca	tatcgacagc	caacagaatc	acctgggaat	caataccatg	2640
ttcagcttga	gcagaaggtc	tgaggcaacg	aaatctggat	cagcgtattt	atcagcaata	2700
actagaactt	cagaaggccc	agcaggcatg	tcaatactac	acagggctga	tgtgtcattt	2760
tgaaccatca	tcttggcagc	agtaacgaac	tggtttcctg	gaccaaatat	tttgtcacac	2820
ttaggaacag	tttctgttcc	gtaagccata	gcagctactg _.	cctgggcgcc	tcctgctagc	2880
acgatacact	tagcaccaac	cttgtgggca	acgtagatga	cttctggggt	aagggtacca	2940
tccttcttag	gtggagatgc	aaaaacaatt	tctttgcaac	cagcaacttt	ggcaggaaca	3000
cccagcatca	gggaagtgga	aggcagaatt	gcggttccac	caggaatata	gaggccaact	3060
ttctcaatag	gtcttgcaaa	acgagagcag	actacaccag	ggcaagtctc	aacttgcaac	3120
gtctccgtta	gttgagcttc	atggaatttc	ctgacgttat.	ctatagagag	atcaatggct	3180
ctcttaacgt	tatctggcaa	ttgcataagt	tcctctggga	aaggagcttc	taacacaggt	3240
gtcttcaaag	cgactccatc	aaacttggca	gttagttcta	aaagggcttt	gtcaccattt	3300
tgacgaacat	tgtcgacaat	tggtttgact	aattccataa	tctgttccgt	tttctggata	3360
ggacgacgaa	gggcatcttc	aatttcttgt	gaggaggcct	tagaaacgtc	aattttgcac	3420
aattcaatac	gaccttcaga	agggacttct	ttaggtttgg	attcttcttt	aggttgttcc	3480
ttggtgtatc	ctggcttggc	atctcctttc	cttctagtga	cctttaggga	cttcatatcc	3540
aggtttctct	ccacctcgtc	caacgtcaca	ccgtacttgg	cacatctaac	taatgcaaaa	3600
taaaataagt	cagcacattc	ccaggctata	tcttccttgg	atttagcttc	tgcaagttca	3660
tcagcttcct	ccctaatttt	agcgttcaac	aaaacttcgt	cgtcaaataa	ccgtttggta	3720
taagaacctt	ctggagcatt	gctcttacga	tcccacaagg	tgcttccatg	gctctaagac	3780
cctttgattg	gccaaaacag	gaagtgcgtt	ccaagtgaca	gaaaccaaca	cctgtttgtt	3840
caaccacaaa	tttcaagcag	tctccatcac	aatccaattc	gatacccagc	aacttttgag	3900
ttcgtccaga	tgtagcacct	ttataccaca	aaccgtgacg	acgagattgg	tagactccag	3960
tttgtgtcct	tatagcctcc	ggaatagact	ttttggacga _.	gtacaccagg	cccaacgagt	4020
aattagaaga	gtcagccacc	aaagtagtga	atagaccatc	ggggcggtca	gtagtcaaag	4080
acgccaacaa	aatttcactg	acagggaact	ttttgacatc	ttcagaaagt	tcgtattcag	4140
tagtcaattg	ccgagcatca	ataatgggga	ttataccaga	agcaacagtg	gaagtcacat	4200
ctaccaactt	tgcggtctca	gaaaaagcat	aaacagttct	actaccgcca	ttagtgaaac	4260

4320 ttttcaaatc gcccagtgga gaagaaaaag gcacagcgat actagcatta gcgggcaagg 4380 atgcaacttt atcaaccagg gtcctataga taaccctagc gcctgggatc atcctttgga 4440 caactettte tgecaaatet aggteeaaaa teaetteatt gataceatta taeggatgae tcaacttgca cattaacttg aagctcagtc gattgagtga acttgatcag gttgtgcagc 4500 4560 tggtcagcag catagggaaa cacggctttt cctaccaaac tcaaggaatt atcaaactct 4620 gcaacacttg cgtatgcagg tagcaaggga aatgtcatac ttgaagtcgg acagtgagtg tagtcttgag aaattctgaa gccgtatttt tattatcagt gagtcagtca tcaggagatc 4680 ctctacgccg gacgcatcgt ggccggcatc accggcgcca caggtgcggt tgctggcgcc 4740 4800 tatatcgccg acatcaccga tggggaagat cgggctcgcc acttcgggct catgagcgct 4860 tgtttcggcg tgggtatggt ggcaggcccc gtggccgggg gactgttggg cgccatctcc ttgcatgcac cattccttgc ggcggcggtg ctcaacggcc tcaacctact actgggctgc 4920 ttcctaatgc aggagtcgca taagggagag cgtcgagtat ctatgattgg aagtatggga 4980 5040 atggtgatac ccgcattctt cagtgtcttg aggtctccta tcagattatg cccaactaaa 5100 qcaaccggag gaggagattt catggtaaat ttctctgact tttggtcatc agtagactcg 5160 aactgtgaga ctatctcggt tatgacagca gaaatgtcct tcttggagac agtaaatgaa 5220 gtcccaccaa taaagaaatc cttgttatca ggaacaaact tcttgtttcg aactttttcg gtgccttgaa ctataaaatg tagagtggat atgtcgggta ggaatggagc gggcaaatgc 5280 5340 ttaccttctg gaccttcaag aggtatgtag ggtttgtaga tactgatgcc aacttcagtg 5400 acaacgttgc tatttcgttc aaaccattcc gaatccagag aaatcaaagt tgtttgtcta 5460 ctattgatcc aagccagtgc ggtcttgaaa ctgacaatag tgtgctcgtg ttttgaggtc 5520 atctttgtat gaataaatct agtctttgat ctaaataatc ttgacgagcc aaggcgataa 5580 atacccaaat ctaaaactct tttaaaacgt taaaaggaca agtatgtctg cctgtattaa 5640 accccaaatc agctcgtagt ctgatcctca tcaacttgag gggcactatc ttgttttaga 5700 gaaatttgcg gagatgcgat atcgagaaaa aggtacgctg attttaaacg tgaaatttat 5760 ctcaagatcg cggccgcgat ctcgaataat aactgttatt tttcagtgtt cccgatctgc 5820 gtctatttca caataccaac atgagtcagc ttatcgatga taagctgtca aacatgagaa 5880 ttaattcgat gataagctgt caaacatgag aaatcttgaa gacgaaaggg cctcgtgata 5940 cgcctatttt tataggttaa tgtcatgata ataatggttt cttagacgtc aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt tctaaataca ttcaaatatg 6000 6060 tatccgctca tgagacaata accctgataa atgcttcaat aatattgaaa aaggaagagt 6120 atgagtattc aacatttccg tgtcgccctt attccctttt ttgcggcatt ttgccttcct

gtttttgctc	acccagaaac	gctggtgaaa	gtaaaagatg	ctgaagatca	gttgggtgca	6180
cgagtgggtt	acatcgaact	ggatctcaac	agcggtaaga [.]	tccttgagag	ttttcgcccc	6240
gaagaacgtt	ttccaatgat	gagcactttt	aaagttctgc	tatgtggcgc	ggtattatcc	6300
cgtgttgacg	ccgggcaaga	gcaactcggt	cgccgcatac	actattctca	gaatgacttg	6360
gttgagtact	caccagtcac	agaaaagcat	cttacggatg	gcatgacagt	aagagaatta	6420
tgcagtgctg	ccataaccat	gagtgataac	actgcggcca	acttacttct	gacaacgatc	6480
ggaggaccga	aggagctaac	cgcttttttg	cacaacatgg	gggatcatgt	aactcgcctt	6540
gatcgttggg	aaccggagct	gaatgaagcc	ataccaaacg	acgagcgtga	caccacgatg	6600
cctgcagcaa	tggcaacaac	gttgcgcaaa	ctattaactg	gcgaactact	tactctagct	6660
tcccggcaac	aattaataga	ctggatggag	gcggataaag	ttgcaggacc	acttctgcgc	6720
tcggcccttc	cggctggctg	gtttattgct	gataaatctg _.	gagccggtga	gcgtgggtct	6780
cgcggtatca	ttgcagcact	ggggccagat	ggtaagccct	cccgtatcgt	agttatctac	6840
acgacgggga	gtcaggcaac	tatggatgaa	cgaaatagac	agatcgctga	gataggtgcc	6900
tcactgatta	agcattggta	actgtcagac	caagtttact	catatatact	ttagattgat	6960
ttaaattgta	aacgttaata	ttttgttaaa	attcgcgtta	aatttttgtt	aaatcagctc	7020
attttttaac	caataggccg	aaatcggcaa	aatcccttat	aaatcaaaag	aatagaccga	7080
gatagggttg	agtgttgttc	cagtttggaa	caagagtcca	ctattaaaga	acgtggactc	7140
caacgtcaaa	gggcgaaaaa	ccgtctatca	gggcgatggc	ccactacgtg	aaccatcacc	7200
ctaatcaagt	tttttggggt	cgaggtgccg	taaagcacta	aatcggaacc	ctaaagggag	7260
cccccgattt	agagcttgac	ggggaaagcc	ggcgaacgtg	gcgagaaagg	aagggaagaa	7320
agcgaaagga	gcgggcgcta	gggcgctggc	aagtgtagcg	gtcacgctgc	gcgtaaccac	7380
cacacccgcc	gcgcttaatg	cgccgctaca	gggcgcgtaa	aaggatctag	gtgaagatcc	7440
tttttgataa	tctcatgacc	aaaatccctt	aacgtgagtt	ttcgttccac	tgagcgtcag	7500
accccgtaga	aaagatcaaa	ggatcttctt	gagatccttt	ttttctgcgc	gtaatctgct	7560
gcttgcaaac	aaaaaaacca	ccgctaccag	cggtggtttg	tttgccggat	caagagctac	7620
caactcttt	tccgaaggta	actggcttca	gcagagcgca	gataccaaat	actgtccttc	7680
tagtgtagco	gtagttaggc	caccacttca	agaactctgt	agcaccgcct	acatacctcg	7740
ctctgctaat	cctgttacca	gtggctgctg	ccagtggcga	taagtcgtgt	cttaccgggt	7800
tggactcaag	g acgatagtta	ccggataagg	cgcagcggtc	gggctgaacg	gggggttcgt	7860
gcacacagco	cagcttggag	gegaecgaect	acaccgaact	gagataccta	a cagcgtgagc	7920
attgagaaag	g cgccacgctt	cccgaaggga	gaaaggcgga	caggtatccg	g gtaagcggca	7980

gggtcggaac	aggagagcgc	acgagggagc	ttccaggggg	aaacgcctgg	tatctttata	8040
gtcctgtcgg	gtttcgccac	ctctgacttg	agcgtcgatt	tttgtgatgc	tcgtcagggg	8100
ggcggagcct	atggaaaaac	gccagcaacg	cggccttttt	acggttcctg	gccttttgct	8160
ggccttttgc	tcacatgttc	tttcctgcgt	tatcccctga	ttctgtggat	aaccgtatta	8220
ccgcctttga	gtgagctgat	accgctcgcc	gcagccgaac	gaccgagcgc	agcgagtcag	8280
tgagcgagga	agcggaagag	cgcctgatgc	ggtattttct	ccttacgcat	ctgtgcggta	8340
tttcacaccg	catatggtgc	actctcagta	caatctgctc	tgatgccgca	tagttaagcc	8400
agtatacact	ccgctatcgc	tacgtgactg	ggtcatggct _.	gcgccccgac	acccgccaac	8460
acccgctgac	gcgccctgac	gggcttgtct	gctcccggca	tccgcttaca	gacaagctgt	8520
gaccgtctcc	gggagctgca	tgtgtcagag	gttttcaccg	tcatcaccga	aacgcgcgag	8580
gcag						8584

<210> 72

<211> 141

<212> PRT

<213> Artificial Sequence

<220>

<223> Plasmid pHIL-D2 (MFalphaPrePro::EPI-HNE-3)

<400> 72

Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser 1 5 10 15

Ile Pro Ala Glu Ala Val Ile Gly Tyr Ser Asp Leu Glu Gly Asp Phe 35 40 45

Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu 50 55 60

Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val 70 75 80

Ser Leu Asp Lys Arg Ala Ala Cys Asn Leu Pro Ile Val Arg Gly Pro 85 90 95

Cys Ile Ala Phe Phe Pro Arg Trp Ala Phe Asp Ala Val Lys Gly Lys 100 105 110

Cys Val Leu Phe Pro Tyr Gly Gly Cys Gln Gly Asn Gly Asn Lys Phe 115 120 125

Tyr Ser Glu Lys Glu Cys Arg Glu Tyr Cys Gly Val Pro 130 135 140

60

120

180

240

300

360

420

444

```
73
<210>
<211>
      444
<212>
      DNA
<213>
      Artificial Sequence
<220>
      BstBI-AatII-EcoRI cassette for expression of Epi-HNE-4
<223>
<400>
ttcgaaacga tgagattccc atctatcttc actgctgttt tgttcgctgc ttcctctgct
ttggctgctc cagttaacac cactactgaa gacgagactg ctcaaattcc tgctgaggct
gtcatcggtt actctgactt ggaaggtgac ttcgacgtcg ctgttttgcc attctctaac
tctactaaca acggtttgtt gttcatcaac actaccatcg cttctatcgc tgctaaggag
gaaggtgttt ccttggacaa gagagaggct tgtaacttgc caatcgtcag aggtccatgc
attgctttct tcccaagatg ggctttcgac gctgttaagg gtaagtgcgt cttgttccca
tacggtggtt gtcaaggtaa cggtaacaag ttctactctg agaaggagtg tagagagtac
tgtggtgttc catagtaaga attc
<210>
      74
<211>
      141
<212>
      PRT
<213> Artificial Sequence
<220>
      BstBI-AatII-EcoRI cassette for expression of Epi-HNE-4
<223>
<400> 74
Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser
                5
Ala Leu Ala Ala Pro Val Asn Thr Thr Thr Glu Asp Glu Thr Ala Gln
Ile Pro Ala Glu Ala Val Ile Gly Tyr Ser Asp Leu Glu Gly Asp Phe
        35
                             40
Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr. Asn Asn Gly Leu Leu
Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val
                     70
Ser Leu Asp Lys Arg Glu Ala Cys Asn Leu Pro Ile Val Arg Gly Pro
Cys Ile Ala Phe Phe Pro Arg Trp Ala Phe Asp Ala Val Lys Gly Lys
                                 105
            100
Cys Val Leu Phe Pro Tyr Gly Gly Cys Gln Gly Asn Gly Asn Lys Phe
                             120
        115
```

Tyr Ser Glu Lys Glu Cys Arg Glu Tyr Cys Gly Val Pro 130 135 140

<210> 75

<211> 8590

<212> DNA

<213> Artificial Sequence

<220>

<223> pD2pick (MFalphaPrePro::EPI-NHE-3) circular dsDNA

<400> 75 agatcgcggc cgcgatctaa catccaaaga cgaaaggttg aatgaaacct ttttgccatc 60 120 cgacatccac aggtccattc tcacacataa gtgccaaacg caacaggagg ggatacacta 180 gcagcagacc gttgcaaacg caggacctcc actcctcttc tcctcaacac ccacttttgc 240 catcgaaaaa ccagcccagt tattgggctt gattggagct cgctcattcc aattccttct 300 attaggctac taacaccatg actttattag cctgtctatc ctggcccccc tggcgaggtc atgtttgttt atttccgaat gcaacaagct ccgcattaca cccgaacatc actccagatg 360 agggctttct gagtgtgggg tcaaatagtt tcatgttccc aaatggccca aaactgacag 420 480 tttaaacgct gtcttggaac ctaatatgac aaaagcgtga tctcatccaa gatgaactaa 540 gtttggttcg ttgaaatgct aacggccagt tggtcaaaaa gaaacttcca aaagtcgcca taccgtttgt cttgtttggt attgattgac gaatgctcaa aaataatctc attaatgctt 600 agcgcagtct ctctatcgct tctgaacccg gtggcacctg tgccgaaacg caaatgggga 660 aacaacccgc tttttggatg attatgcatt gtcctccaca ttgtatgctt ccaagattct 720 ggtgggaata ctgctgatag cctaacgttc atgatcaaaa tttaactgtt ctaaccccta 780 840 cttgacaggc aatatataaa cagaaggaag ctgccctgtc ttaaaccttt tttttatca 900 tcattattag cttactttca taattgcgac tggttccaat tgacaagctt ttgattttaa 960 cgacttttaa cgacaacttg agaagatcaa aaaacaacta attattcgaa acgatgagat. 1020 toccatctat cttcactgct gttttgttcg ctgcttcctc tgctttggct gctccagtta 1080 acaccactac tgaagacgag actgctcaaa ttcctgctga ggctgtcatc ggttactctg acttggaagg tgacttcgac gtcgctgttt tgccattctc taactctact aacaacggtt 1140 tgttgttcat caacactacc atcgcttcta tcgctgctaa ggaggaaggt gtttccttgg 1200 1260 acaagagagc tgcttgtaac ttgccaatcg tcagaggtcc atgcattgct ttcttcccaa gatgggcttt cgacgctgtt aagggtaagt gcgtcttgtt cccatacggt ggttgtcaag 1320 gtaacggtaa caagttctac tctgagaagg agtgtagaga gtactgtggt gttccatagt 1380 1440 aagaattcgc cttagacatg actgttcctc agttcaagtt gggcattacg agaagaccgg

tcttgctaga	ttctaatcaa	gaggatgtca	gaatgccatt	tgcctgagag	atgcaggctt	1500
catttttgat	acttttttat	ttgtaaccta	tatagtatag	gattttttt	gtcattttgt	1560
ttcttctcgt	acgagcttgc	tcctgatcag	cctatctcgc	agctgatgaa	tatcttgtgg	1620
taggggtttg	ggaaaatcat	tcgagtttga	tgtttttctt.	ggtatttccc	actcctcttc	1680
agagtacaga	agattaagtg	agaagttcgt	ttgtgcaagc	ttatcgataa	gctttaatgc	1740
ggtagtttat	cacagttaaa	ttgctaacgc	agtcaggcac	cgtgtatgaa	atctaacaat	1800
gcgctcatcg	tcatcctcgg	caccgtcacc	ctggatgctg	taggcatagg	cttggttatg	1860
ccggtactgc	cgggcctctt	gcgggatatc	gtccattccg	acagcatcgc	cagtcactat	1920
ggcgtgctgc	tagcgctata	tgcgttgatg	caatttctat.	gcgcacccgt	tctcggagca	1980
ctgtccgacc	gctttggccg	ccgcccagtc	ctgctcgctt	cgctacttgg	agccactatc	2040
gactacgcga	tcatggcgac	cacacccgtc	ctgtggatct	atcgaatcta	aatgtaagtt	2100
aaaatctcta	aataattaaa	taagtcccag	tttctccata	cgaaccttaa	cagcattgcg	2160
gtgagcatct	agaccttcaa	cagcagccag	atccatcact	gcttggccaa	tatgtttcag	2220
tccctcagga	gttacgtctt	gtgaagtgat	gaacttctgg	aaggttgcag	tgttaactcc	2280
gctgtattga	cgggcatatc	cgtacgttgg	caaagtgtgg	ttggtaccgg	aggagtaatc	2340
tccacaactc	tctggagagt	aggcaccaac	aaacacagat	ccagcgtgtt	gtacttgatc	2400
aacataagaa	gaagcattct	cgatttgcag	gatcaagtgt	tcaggagcgt	actgattgga	2460
catttccaaa	gcctgctcgt	aggttgcaac	cgatagggtt	gtagagtgtg	caatacactt	2520
gcgtacaatt	tcaacccttg	gcaactgcac	agcttggttg	tgaacagcat	cttcaattct	2580
ggcaagctcc	ttgtctgtca	tatcgacagc	caacagaatc	acctgggaat	caataccatg	2640
ttcagcttga	gcagaaggtc	tgaggcaacg	aaatctggat	cagcgtattt	atcagcaata	2700
actagaactt	cagaaggccc	agcaggcatg	tcaatactac	acagggctga	tgtgtcattt	2760
tgaaccatca	tcttggcagc	agtaacgaac	tggtttcctg	gaccaaatat	tttgtcacac	2820
ttaggaacag	tttctgttcc	gtaagccata	gcagctactg	cctgggcgcc	tcctgctagc	2880
acgatacact	tagcaccaac	cttgtgggca	acgtagatga	cttctggggt	aagggtacca	2940
tccttcttag	gtggagatgc	aaaaacaatt	tctttgcaac	cagcaacttt	ggcaggaaca	3000
cccagcatca	gggaagtgga	aggcagaatt	gcggttccac	caggaatata	gaggccaact	3060
ttctcaatag	gtcttgcaaa	acgagagcag	actacaccag	ggcaagtctc	aacttgcaac	3120
gtctccgtta ctcttaacgt	gttgagcttc tatctggcaa	atggaattto ttgcataagt	ctgacgttat tcctctggga	ctatagagag aaggagcttc	atcaatggct taacacaggt	3180 3240
gtcttcaaag	g cgactccatc	: aaacttggca	gttagttcta	aaagggcttt	gtcaccattt	3300

tgacgaacat	tgtcgacaat	tggtttgact	aattccataa	tctgttccgt	tttctggata	3360
ggacgacgaa	gggcatcttc	aatttcttgt	gaggaggcct	tagaaacgtc	aattttgcac	3420
aattcaatac	gaccttcaga	agggacttct	ttaggtttgg	attcttcttt	aggttgttcc	3480
ttggtgtatc	ctggcttggc	atctcctttc	cttctagtga	cctttaggga	cttcatatcc	3540
aggtttctct	ccacctcgtc	caacgtcaca	ccgtacttgg	cacatctaac	taatgcaaaa	3600
taaaataagt	cagcacattc	ccaggctata	tcttccttgg	atttagcttc	tgcaagttca	3660
tcagcttcct	ccctaatttt	aġcgttcaac	aaaacttcgt	cgtcaaataa	ccgtttggta	3720
taagaacctt	ctggagcatt	gctcttacga	tcccacaagg	tgcttccatg	gctctaagac	3780
cctttgattg	gccaaaacag	gaagtgcgtt	ccaagtgaca	gaaaccaaca	cctgtttgtt	3840
caaccacaaa	tttcaagcag	tctccatcac	aatccaattc	gatacccagc	aacttttgag	3900
ttcgtccaga	tgtagcacct	ttataccaca	aaccgtgacg	acgagattgg	tagactccag	3960
tttgtgtcct	tatagcctcc	ggaatagact	ttttggacga	gtacaccagg	cccaacgagt	4020
aattagaaga	gtcagccacc	aaagtagtga	atagaccatc	ggggcggtca	gtagtcaaag	4080
acgccaacaa	aatttcactg	acagggaact	ttttgacatc	ttcagaaagt	tcgtattcag	4140
tagtcaattg	ccgagcatca	ataatgggga	ttataccaga	agcaacagtg	gaagtcacat	4200
ctaccaactt	tgcggtctca	gaaaaagcat	aaacagttct	actaccgcca	ttagtgaaac	4260
ttttcaaatc	gcccagtgga	gaagaaaaag	gcacagcgat	actagcatta	gcgggcaagg	4320
atgcaacttt	atcaaccagg	gtcctataga	taaccctagc	gcctgggatc	atcctttgga	4380
caactctttc	tgccaaatct	aggtccaaaa	tcacttcatt	gataccatta	tacggatgac	4440
tcaacttgca	cattaacttg	aagctcagtc	gattgagtga	acttgatcag	gttgtgcagc	4500
tggtcagcag	catagggaaa	cacggctttt	cctaccaaac	tcaaggaatt	atcaaactct	4560
gcaacacttg	cgtatgcagg	tagcaaggga	aatgtcatac	ttgaagtcgg	acagtgagtg	4620
tagtcttgag	aaattctgaa	gccgtatttt	tattatcagt	gagtcagtca	tcaggagatc	4680
ctctacgccg	gacgcatcgt	ggccggcatc	accggcgcca	caggtgcggt	tgctggcgcc	4740
tatatcgccg	acatcaccga	tggggaagat	cgggctcgcc	acttcgggct	catgagcgct	4800
tgtttcggcg	tgggtatggt	ggcaggcccc	gtggccgggg	gactgttggg	cgccatctcc	4860
ttgcatgcac	: cattccttgc	ggcggcggtg	ctcaacggcc	: tcaacctact	actgggctgc	4920
ttcctaatgo	: aggagtcgca	taagggagag	cgtcgagtat	ctatgattgg	aagtatggga	4980
atggtgatac gcaaccggag	ccgcattctt ggaggagattt	cagtgtcttg catggtaaat	aggtctccta ttctctgact	tcagattato	cccaactaaa agtagactcg	5040 5100
aactgtgaga	ctatctcggt	: tatgacagca	gaaatgtcct	tcttggagac	agtaaatgaa	5160

gtcccaccaa	taaagaaatc	cttgttatca	ggaacaaact	tcttgtttcg	cgaacttttt	5220
cggtgccttg	aactataaaa	tgtagagtgg	atatgtcggg	taggaatgga	gcgggcaaat	5280
gcttaccttc	tggaccttca	agaggtatgt	agggtttgta,	gatactgatg	ccaacttcag	5340
tgacaacgtt	gctatttcgt	tcaaaccatt	ccgaatccag	agaaatcaaa	gttgtttgtc	5400
tactattgat	ccaagccagt	gcggtcttga	aactgacaat	agtgtgctcg	tgttttgagg	5460
tcatctttgt	atgaataaat	ctagtctttg	atctaaataa	tcttgacgag	ccaaggcgat	5520
aaatacccaa	atctaaaact	cttttaaaac	gttaaaagga	caagtatgtc	tgcctgtatt	5580
aaaccccaaa	tcagctcgta	gtctgatcct	catcaacttg [.]	aggggcacta	tcttgtttta	5640
gagaaatttg	cggagatgcg	atatcgagaa	aaaggtacgc	tgattttaaa	cgtgaaattt	5700
atctcaagat	cgcggccgcg	atctcgaata	ataactgtta	tttttcagtg	ttcccgatct	5760
gcgtctattt	cacaatacca	acatgagtca	gcttatcgat	gataagctgt	caaacatgag	5820
aattaattcg	atgataagct	gtcaaacatg	agaaatcttg	aagacgaaag	ggcctcgtga	5880
tacgcctatt	tttataggtt	aatgtcatga	taataatggt	ttcttagacg	tacgtcaggt	5940
ggcacttttc	ggggaaatgt	gcgcggaacc	cctatttgtt	tatttttcta	aatacattca	6000
aatatgtatc	cgctcatgag	acaataaccc	tgataaatgc	ttcaataata	ttgaaaaagg	6060
aagagtatga	gtattcaaca	tttccgtgtc	gcccttattc	ccttttttgc	ggcattttgc	6120
cttcctgttt	ttgctcaccc	agaaacgctg	gtgaaagtaa	aagatgctga	agatcagttg	6180
ggtgcacgag	tgggttacat	cgaactggat	ctcaacagcg	gtaagatcct	tgagagtttt	6240
cgccccgaag	aacgttttcc	aatgatgagc	acttttaaag	ttctgctatg	tggcgcggta	6300
ttatcccgtg	ttgacgccgg	gcaagagcaa	ctcggtcgcc	gcatacacta	ttctcagaat	6360
gacttggttg	agtactcacc	agtcacagaa	aagcatctta	cggatggcat	gacagtaaga	6420
gaattatgca	gtgctgccat	aaccatgagt	gataacactg.	cggccaactt	acttctgaca	6480
acgatcggag	gaccgaagga	gctaaccgct	tttttgcaca	acatggggga	tcatgtaact	6540
cgccttgatc	gttgggaacc	ggagctgaat	gaagccatac	caaacgacga	gcgtgacacc	6600
acgatgcctg	cagcaatggc	aacaacgttg	cgcaaactat	taactggcga	actacttact	6660
ctagcttccc	ggcaacaatt	aatagactgg	atggaggcgg	ataaagttgc	aggaccactt	6720
ctgcgctcgg	cccttccggc	tggctggttt	attgctgata [,]	aatctggagc	cggtgagcgt	6780
gggtctcgcg	gtatcattgc	agcactgggg	ccagatggta	agccctcccg	tatcgtagtt	6840
		ggcaactatg ttggtaactg				6900 6960
attgatttaa	attgtaaacg	ttaatatttt	gttaaaattc	gcgttaaatt	tttgttaaat	7020

cagctcattt	tttaaccaat	aggccgaaat	cggcaaaatc	ccttataaat	caaaagaata	7080
gaccgagata	gggttgagtg	ttgttccagt	ttggaacaag	agtccactat	taaagaacgt	7140
ggactccaac	gtcaaagggc	gaaaaaccgt	ctatcagggc	gatggcccac	tacgtgaacc	7200
atcaccctaa	tcaagttttt	tggggtcgag	gtgccgtaaa	gcactaaatc	ggaaccctaa	7260
agggagcccc	cgatttagag	cttgacgggg	aaagccggcg.	aacgtggcga	gaaaggaagg	7320
gaagaaagcg	aaaggagcgg	gcgctagggc	gctggcaagt	gtagcggtca	cgctgcgcgt	7380
aaccaccaca	cccgccgcgc	ttaatgcgcc	gctacagggc	gcgtaaaagg	atctaggtga	7440
agatcctttt	tgataatctc	atgaccaaaa	tcccttaacg	tgagttttcg	ttccactgag	7500
cgtcagaccc	cgtagaaaag	atcaaaggat	cttcttgaga	tcctttttt	ctgcgcgtaa	7560
tctgctgctt	gcaaacaaaa	aaaccaccgc	taccagcggt.	ggtttgtttg	ccggatcaag	7620
agctaccaac	tctttttccg	aaggtaactg	gcttcagcag	agcgcagata	ccaaatactg	7680
tccttctagt	gtagccgtag	ttaggccacc	acttcaagaa	ctctgtagca	ccgcctacat	7740
acctcgctct	gctaatcctg	ttaccagtgg	ctgctgccag	tggcgataag	tcgtgtctta	7800
ccgggttgga	ctcaagacga	tagttaccgg	ataaggcgca	gcggtcgggc	tgaacggggg	7860
gttcgtgcac	acageceage	ttggagcgaa	cgacctacac	cgaactgaga	tacctacagc	7920
gtgagcattg	agaaagcgcc	acgcttcccg	aagggagaaa	ggcggacagg	tatccggtaa	7980
gcggċagggt	cggaacagga	gagcgcacga	gggagcttcc	agggggaaac	gcctggtatc	8040
tttatagtcc	tgtcgggttt	cgccacctct	gacttgagcg	tcgatttttg	tgatgctcgt	8100
caggggggcg	gagcctatgg	aaaaacgcca	gcaacgcggc	ctttttacgg	ttcctggcct	8160
tttgctggcc	ttttgctcac	atgttctttc	ctgcgttatc	ccctgattct	gtggataacc	8220
gtattaccgc	ctttgagtga	gctgataccg	ctcgccgcag	ccgaacgacc	gagcgcagcg	8280
agtcagtgag	cgaggaagcg	gaagagcgcc	tgatgcggta	ttttctcctt	acgcatctgt	8340
gcggtatttc	acaccgcata	tggtgcactc	tcagtacaat	ctgctctgat	gccgcatagt	8400
taagccagta	tacactccgc	tatcgctacg	tgactgggtc.	atggctgcgc	cccgacaccc	8460
gccaacaccc	gctgacgcgc	cctgacgggc	ttgtctgctc	ccggcatccg	cttacagaca	8520
agctgtgacc	gtctccggga	gctgcatgtg	tcagaggttt	tcaccgtcat	caccgaaacg	8580
cgcgaggcag				•		8590

<210> 76 <211> 141 <212> PRT <213> Artificial Sequence

<220>

<223> EPI-HNE-3 fusion protein

<400> 76

Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser 1 5 10 15

Ala Leu Ala Ala Pro Val Asn Thr Thr Thr Glu Asp Glu Thr Ala Gln 20 25 30

Ile Pro Ala Glu Ala Val Ile Gly Tyr Ser Asp Leu Glu Gly Asp Phe 35 40 45

Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu 50 55 60

Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val 65 70 75 80

Ser Leu Asp Lys Arg Ala Ala Cys Asn Leu Pro Ile Val Arg Gly Pro 85 90 95

Cys Ile Ala Phe Phe Pro Arg Trp Ala Phe Asp Ala Val Lys Gly Lys 100 105 110

Cys Val Leu Phe Pro Tyr Gly Gly Cys Gln Gly Asn Gly Asn Lys Phe 115 120 125

Tyr Ser Glu Lys Glu Cys Arg Glu Tyr Cys Gly Val Pro 130 135 . 140

<210> 77

<211> 147

<212> PRT

<213> Homo sapiens

<400> 77

Ala Val Leu Pro Gln Glu Glu Glu Gly Ser Gly Gly Gln Leu Val

Thr Glu Val Thr Lys Lys Glu Asp Ser Cys Gln Leu Gly Tyr Ser Ala 20 25 30

Gly Pro Cys Met Gly Met Thr Ser Arg Tyr Phe Tyr Asn Gly Thr Ser 35 40 45

Met Ala Cys Glu Thr Phe Gln Tyr Gly Gly Cys Met Gly Asn Gly Asn 50 .55 60

Asn Phe Val Thr Glu Lys Glu Cys Leu Gln Thr Cys Arg Thr Val Ala 65 70 75 80

Ala Cys Asn Leu Pro Ile Val Arg Gly Pro Cys Arg Ala Phe Ile Gln 85 90 95

Leu Trp Ala Phe Asp Ala Val Lys Gly Lys Cys Val Leu Phe Pro Tyr 100 105 110

```
Gly Gly Cys Gln Gly Asn Gly Asn Lys Phe Tyr Ser Glu Lys Glu Cys
                            120
Arg Glu Tyr Cys Gly Val Pro Gly Asp Gly Asp Glu Glu Leu Leu Arg
                        135
Phe Ser Asn
145
<210>
      78
<211>
      249
<212>
      DNA
<213> Artificial Sequence
<220>
      M13_III_signal::Human_LACI-D2::mature_M13_III
<223>
<400> 78
atgaagaagc ttctcttcgc cattcctctg gtggtacctt tctattccgg cgccaagcct
                                                                       60
gacttctgct tcctcgagga ggatcccggg atttgccgcg gttatattac gcgttatttc
                                                                      120
tataataacc agactaagca atgtgagcgg ttcaagtatg gtggttgcct aggtaatatg
                                                                      180
aacaacttcg agactctaga agagtgtaag aacatatgtg aggatggtgg tgctgagact
                                                                      240
                                                                      249
gttgagtct
<210> 79
<211> 83
<212>
      PRT
<213> Artificial Sequence
<220>
<223> LACI-D2 fusion protein
<400> 79
Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser
Gly Ala Lys Pro Asp Phe Cys Phe Leu Glu Glu Asp Pro Gly Ile Cys
Arg Gly Tyr Ile Thr Arg Tyr Phe Tyr Asn Asn Gln Thr Lys Gln Cys
        35
Glu Arg Phe Lys Tyr Gly Gly Cys Leu Gly Asn Met Asn Asn Phe Glu
Thr Leu Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly Gly Ala Glu Thr
                    70
Val Glu Ser
```

```
<210> 80
<211> 189
<212>
      DNA
<213> Artificial Sequence
<220>
<223> laci-dl with cloning sites
<400> 80
geggeegaga tgeatteett etgegettte aaagetgatg aeggteegtg taaagetate
                                                                      60
                                                                     120
atgaaacgtt tcttcttcaa cattttcacg cgtcagtgcg aggaattcat ttacggtggt
tgtgaaggta accagaaccg gttcgaatct ctagaggaat gtaagaagat gtgcactcgt
                                                                     180
                                                                     189
gacggcgcc
<210> 81
<211>
      63
<212> PRT
<213> Artificial Sequence
<220>
<223> laci-d1 with linkers
<400> 81
Ala Ala Glu Met His Ser Phe Cys Ala Phe Lys Ala Asp Asp Gly Pro
Cys Lys Ala Ile Met Lys Arg Phe Phe Phe Asn Ile Phe Thr Arg Gln
                                25
Cys Glu Glu Phe Ile Tyr Gly Gly Cys Glu Gly Asn Gln Asn Arg Phe
        35
Glu Ser Leu Glu Glu Cys Lys Lys Met Cys Thr Arg Asp Gly Ala
                        55
<210> 82
<211> 189
<212> DNA
<213> Artificial sequence
<220>
<223> LACI-D1 hNE library
<220>
<221> misc_feature
<222> (37)..(37)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (38)..(38)
<223> n is a or g
```

```
<220>
<221> misc_feature 
<222> (40)..(40)
<223> n is a or g
<220>
<221> misc_feature
<222>
      (41)..(41)
<223> n is a, c or g
<220>
<221> misc_feature
<222> (42)..(42)
<223> n is c or g
<220>
<221> misc_feature
<222> (47)..(47)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (52)..(52)
<223> n is a or g
<220>
<221> misc_feature
<222> (56)..(56)
<223> n is c or g
<220>
<221> misc feature
<222> (58)..(58)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (64)..(64)
<223> n is a or c
<220>
<221> misc feature
<222> (65)..(65)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (66)..(66)
<223> n is c or g
<220>
<221> misc_feature
<222>
      (71)..(71)
<223> n is a, g or t
<220>
<221> misc feature
<222> (72)..(72)
<223> n is c or g
<220>
```

```
<221> misc_feature
<222> (100)..(100)
<223> n is c or g
<220>
<221> misc_feature
<222> (101)..(101)
<223> n is a or t
<220>
<221> misc_feature
<222> (103)..(103)
<223> n is a, c or g
<220>
<221> misc feature
<222> (104)..(104)
<223> n is a, c or t
<220>
<221> misc feature
<222> (109)..(109)
<223> n is a, c or g
<220>
<221> misc_feature
<222> (110)..(110)
<223> n is a, c or t
<220>
<221> misc_feature
<222> (124)..(124)
<223> n is a, c or g
<220>
<221> misc_feature
<222> (125)..(125)
<223> n is a, c or t
<220>
<221> misc_feature
<222> (128)..(128)
<223> n is c or g
<220>
<221> misc_feature
<222>
       (133)..(133)
<223> n is c or g
<220>
<221> misc feature
<222>
       (134)..(134)
<223> n is a or g
gcggccgaga tgcattcctt ctgcgctttc aaagctnntn nnggtcnttg tnttgntntc
                                                                        60
ttennnegtt nnttetteaa catttteaeg egteagtgen ngnnattenn ataeggtggt
                                                                       120
tgtnnggnta acnngaaccg gttcgaatct ctagaggaat gtaagaagat gtgcactcgt
                                                                       180
```

```
189
gacggcgcc
<210> 83
<211>
      63
<212>
      PRT
<213> Artificial Sequence
<220>
<223> LACI-D1 hNE library
<220>
<221> misc_feature
<222>
      (13)..(13)
<223> Xaa is Cys, Arg, Ser, Gly, Tyr, His, Asp or Asn
<220>
<221> misc_feature
<222>
      (14)..(14)
<223> Xaa is Thr, Asn, Lys, Arg, Ser, Ala, Glu, Gly or Asp
<220>
<221> misc_feature
<222> (16)..(16)
<223> Xaa is His, Arg, Pro or Leu
<220>
<221> misc feature
<222> (18)..(18)
<223> Xaa is Val or Ile
<220>
<221> misc feature
<222> (19)..(19)
<223> Xaa is Ala or Gly
<220>
<221> misc_feature
<222> (20)..(20)
<223> Xaa is Phe, Leu, Ile or Val
<220>
<221> misc feature
<222> (22)..(22)
<223> Xaa is Ser, Thr, Asn, Ile, Met, Gln, His, Leu, Pro, Lys or Arg
<220>
<221> misc feature
<222> (24)..(24)
<223> Xaa is Cys, Tyr, Trp, Phe or Leu
<220>
<221> misc_feature
<222> (34)..(34)
<223> Xaa is Leu, Gln, Glu or Val
<220>
<221> misc_feature
<222> (35)..(35)
<223> Xaa is Gln, Leu, Pro, Thr, Lys, Val, Ile, Glu or Ala
```

```
<220>
<221> misc_feature
<222>
      (37)..(37)
<223> Xaa is Gln, Leu, Pro, Thr, Lys, Val, Glu, Ile or Ala
<220>
<221> misc_feature
<222>
      (42)..(42)
<223> Xaa is Gln, Leu, Pro, Thr, Lys, Val, Met, Glu or Ala
<220>
<221> misc_feature
<222> (43)..(43)
<223> Xaa is Gly or Ala
<220>
<221> misc_feature
<222> (45)..(45)
<223> Xaa is Glu, Gly, Gln or Arg
<400> 83
Ala Ala Glu Met His Ser Phe Cys Ala Phe Lys Ala Xaa Xaa Gly Xaa
Cys Xaa Xaa Xaa Phe Xaa Arg Xaa Phe Phe Asn Ile Phe Thr Arg Gln
                                25
Cys Xaa Xaa Phe Xaa Tyr Gly Gly Cys Xaa Xaa Asn Xaa Asn Arg Phe
Glu Ser Leu Glu Glu Cys Lys Lys Met Cys Thr Arg Asp Gly Ala
<210> 84
<211> 201
<212> DNA
<213> Artificial sequence
<220>
<223> LACI-D2 hNE library
<220>
<221> misc_feature
<222> (34)..(34)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (35)..(35)
<223> n is a or g
<220>
<221> misc_feature
<222> (37)..(38)
<223> n is a, c or g
<220>
<221> misc_feature
```

```
<222> (39)..(39)
<223> n is c or g
<220>
<221> misc_feature
<222>
      (43)..(43)
<223> n is a or c
<220>
<221> misc_feature
<222> (44)..(44)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (49)..(49)
<223> n is a or g
<220>
<221> misc feature
<222> (53)..(53)
<223> n is c or g
<220>
<221> misc_feature
<222> (55)..(55)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (56)..(56)
<223> n is a or t
<220>
<221> misc feature
<222> (61)..(61)
<223> n is a or c
<220>
<221> misc_feature
<222> (62)..(62)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (63)..(63)
<223> n is c or g
<220>
<221> misc feature
<222> (68)..(68)
<223> n is a, g or t
<220>
<221> misc_feature
<222> (69)..(69)
<223> n is c or g
<220>
<221> misc_feature 
<222> (97)..(97)
```

```
<223> n is c or g
<220>
<221> misc_feature 
<222> (98)..(98)
<223> n is a or t
<220>
<221> misc_feature
<222>
      (100)..(100)
<223> n is a, c or g
<220>
<221> misc_feature
<222> (101)..(101)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (106)..(106)
<223> n is a, c, or g
<220>
<221> misc_feature
<222> (107)..(107)
<223> n is a, c, or t
<220>
<221> misc feature
<222> (121)..(121)
<223> n is a, c, or g
<220>
<221> misc feature
<222> (122)..(122)
<223> n is a, c, or t
<220>
<221> misc feature
<222> (125)..(125)
<223> n is c or g
<220>
<221> misc feature
<222> (130)..(130)
<223> n is a, c or g
<220>
<221> misc_feature
<222> (131)..(131)
<223> n is c, g or t
<400> 84
ggcgccaagc ctgacttctg cttcctcgag gagnntnnng ggnnttgcnt tgntnntttt
                                                                       60
nnncqttnnt tctataataa ccaggctaag caatgtnngn nattcnnata tggtggttgc
                                                                      120
                                                                      180
nnggntaatn ngaacaactt cgagactcta gaagagtgta agaacatatg tgaggatggt
                                                                      201
ggtgctgaga ctgttgagtc t
```

```
<210> 85
      67
<211>
<212> PRT
<213> Artificial Sequence
<220>
<223> LACI-D2 hNE library
<220>
<221> misc_feature
<222>
      (12)..(12)
<223> Xaa is Cys, Arg, Ser, Gly, Tyr, His, Asp or Asn
<220>
<221> misc_feature
<222> (13)..(13)
<223> Xaa is Pro, His, Thr, Asn, Lys, Arg, Ser, Ala, Glu, Gly, Asp or
<220>
<221> misc_feature
<222> (15)..(15)
<223> Xaa is His, Arg, Pro, Leu, Asn, Ser, Ile or Thr
<220>
<221> misc_feature
<222> (17)..(17)
<223> Xaa is Val or Ile
<220>
<221> misc feature
<222> (18)..(18)
<223> Xaa is Gly or Ala
<220>
<221> misc feature
<222> (19)..(19)
<223> Xaa is Phe, Leu, Ile, Val, Tyr, His, Asn or Asp
<220>
<221> misc feature
<222> (21)..(21)
<223> Xaa is Ile, Asn, Gln, Met, Leu, His, Lys, Pro, Thr or Arg
<220>
<221> misc feature
<222> (23)..(23)
<223> Xaa is Cys, Phe, Leu, Tyr or Trp
<220>
<221> misc feature
<222> (33)..(33)
<223> Xaa is Leu, Gln, Glu or Val
<220>
<221> misc_feature
<222> (34)..(34)
<223> Xaa is Gln, Gly, Leu, Pro, Thr, Lys, Val, Ile, Glu, Ala or Arg
```

```
<220>
<221> misc feature
<222> (36)..(36)
<223> Xaa is Gln, Leu, Pro, Thr, Val, Glu, Ile, Ala or Lys
<220>
<221> misc feature
<222>
      (41)..(41)
<223> Xaa is Gln, Pro, Thr, Lys, Val, Met, Glu, Ala or Leu
<220>
<221> misc_feature <222> (42)..(42)
<223> Xaa is Gly or Ala
<220>
<221> misc_feature
<222>
      (44)..(44)
<223> Xaa is Arg, Gly, Lys, Glu, Leu, Gln, Met or Val
<400> 85
Gly Ala Lys Pro Asp Phe Cys Phe Leu Glu Glu Xaa Xaa Gly Xaa Cys
Xaa Xaa Xaa Phe Xaa Arg Xaa Phe Tyr Asn Asn Gln Ala Lys Gln Cys
Xaa Xaa Phe Xaa Tyr Gly Gly Cys Xaa Xaa Asn Xaa Asn Asn Phe Glu
Thr Leu Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly Gly Ala Glu Thr
Val Glu Ser
65
<210> 86
<211> 51
<212> PRT
<213> Artificial Sequence
<220>
<223> definition of aprotonin-like Kunitz domain (p. 11)
<220>
<221> misc_feature
<222> (2)..(7)
<223> Xaa is any amino acid
<220>
<221> misc feature
<222> (9)..(9)
<223> Xaa is any amino acid
<220>
<221> misc feature
```

```
<222> (11)..(18)
<223> Xaa is any amino acid
<220>
<221> misc_feature
<222>
       (19)..(19)
<223> Xaa is any Tyr or Phe
<220>
<221> misc_feature <222> (20)..(25)
<223> Xaa is any amino acid
<220>
<221> misc_feature
<222>
      (27)..(28)
<223> Xaa is any amino acid
<220>
<221> misc_feature
<222> (30)..(30)
<223> Xaa is any amino acid
<220>
<221> misc_feature
<222> (31)..(31)
<223> Xaa is Tyr, Trp or Phe
<220>
<221> misc feature
<222> (32)..(32)
<223> Xaa is any amino acid
<220>
<221> misc feature
<222> (35)..(38)
<223> Xaa is any amino acid
<220>
<221> misc_feature
<222> (39)..(39)
<223> Xaa is Asn or Gly
<220>
<221> misc feature
<222> (40)..(40)
<223> Xaa is any amino acid
<220>
<221> misc feature
<222> (41)..(41)
<223> Xaa is Phe or Tyr
<220>
<221> misc_feature
<222> (42)..(46)
<223> Xaa is any amino acid
<220>
<221> misc feature
<222> (48)..(50)
<223> Xaa is any amino acid
```

<400> 86

Cys Xaa Xaa Xaa Xaa Xaa Gly Xaa Cys Xaa Xaa Xaa Xaa Xaa 1 10 15

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Phe Xaa Xaa Xaa 20 $25 \qquad \qquad 30$

Xaa Xaa Cys 50

<210> 87

<211> 58

<212> PRT

<213> Bos Taurus

<400> 87

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Lys Ala 1 5 10 15

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr 20 25 30

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala 35 40 45

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala
50 55

<210> 88

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> Engineered B-PTI from MARK87

<400> 88

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Thr Lys Ala 1 5 10 15

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr 20 25 30

Phe Val Tyr Gly Gly Thr Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala 35 40 45

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala 50 55

<210> 89

```
<211> 58
<212> PRT
<213> Artificial Sequence
<220>
<223> Engineered B-PTI from MARK87
<400> 89
Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Ala Lys Ala
Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr
Phe Val Tyr Gly Gly Ala Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala
Glu Asp Cys Met Arg Thr Cys Gly Gly Ala
<210> 90
<211> 67
<212> PRT
<213> Bos taurus (Bovine Colostrum)
<400> 90
Phe Gln Thr Pro Pro Asp Leu Cys Gln Leu Pro Gln Ala Arg Gly Pro
Cys Lys Ala Ala Leu Leu Arg Tyr Phe Tyr Asn Ser Thr Ser Asn Ala
Cys Glu Pro Phe Thr Tyr Gly Gly Cys Gln Gly Asn Asn Asn Phe
Glu Thr Thr Glu Met Cys Leu Arg Ile Cys Glu Pro Pro Gln Gln Thr
Asp Lys Ser
65
<210> 91
<211> 60
<212> PRT
<213> Bos Taurus (Bovine serum)
<400> 91
Thr Glu Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys
Lys Ala Ala Met Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Phe Cys
            20
                                25
```

Glu Thr Phe Val Tyr Gly Gly Cys Arg Ala Lys Ser Asn Asn Phe Lys

Ser Ala Glu Asp Cys Met Arg Thr Cys Gly Gly Ala 55

<210> 92

<211> 58

<212> PRT <213> Artificial Sequence

<220>

<223> Semisynthetic BPTI, TSCH87

<400> 92

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Val Ala

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

<210> 93

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> Semisynthetic BPTI, TSCH87

<400> 93

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Gly Ala

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

<210> 94

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> Semisynthetic BPTI, TSCH87

<400> 94

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Ala Ala 1 5 10 15

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr 20 25 30

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala 35 40 45

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala 50 55

<210> 95

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> Semisynthetic BPTI, TSCH87

<400> 95

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Leu Ala 1 10 15

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr 20 25 30

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala 35 40 45

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala 50 55

<210> 96

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> Semisynthetic BPTI, TSCH87

<400> 96

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Ile Ala
1 10 15

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr 20 25 30 Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala Glu Asp Cys Met Arg Thr Cys Gly Gly Ala <210> 97 <211> 58 <212> PRT <213> Artificial Sequence <220> <223> Engineered BPTI, AUER87 <400> 97 Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Lys Ala Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala Glu Asp Cys Glu Arg Thr Cys Gly Gly Ala <210> 98 <211> 60 <212> PRT <213> Dendroaspis polylepis polylepis (Black mamba venom I) <400> 98 Gln Pro Leu Arg Lys Leu Cys Ile Leu His Arg Asn Pro Gly Arg Cys Tyr Gln Lys Ile Pro Ala Phe Tyr Tyr Asn Gln Lys Lys Gln Cys Glu Gly Phe Thr Trp Ser Gly Cys Gly Gly Asn Ser Asn Arg Phe Lys Thr Ile Glu Glu Cys Arg Arg Thr Cys Ile Arg Lys <210> 99 <211> 57 <212> PRT <213> Dendroaspis polylepis polylepis (Black mamba venom K) <400> 99

Ala Ala Lys Tyr Cys Lys Leu Pro Leu Arg Ile Gly Pro Cys Lys Arg

10

Lys Ile Pro Ser Phe Tyr Tyr Lys Trp Lys Ala Lys Gln Cys Leu Pro 20 25 30

Phe Asp Tyr Ser Gly Cys Gly Gly Asn Ala Asn Arg Phe Lys Thr Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Glu Glu Cys Arg Arg Thr Cys Val Gly
50 55

<210> 100

<211> 57

<212> PRT

<213> Hemachatus hemachates

<400> 100

Arg Pro Asp Phe Cys Glu Leu Pro Ala Glu Thr Gly Leu Cys Lys Ala
1 . 5 . 10 . 15

Tyr Ile Arg Ser Phe His Tyr Asn Leu Ala Ala Gln Gln Cys Leu Gln 20 25 30

Phe Ile Tyr Gly Gly Cys Gly Gly Asn Ala Asn Arg Phe Lys Thr Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Asp Glu Cys Arg Arg Thr Cys Val Gly 50 55

<210> 101

<211> 57

<212> PRT

<213> Naja nivea

<400> 101

Arg Pro Arg Phe Cys Glu Leu Pro Ala Glu Thr Gly Leu Cys Lys Ala 1 5 10 15

Arg Ile Arg Ser Phe His Tyr Asn Arg Ala Ala Gln Gln Cys Leu Glu 20 25 30

Phe Ile Tyr Gly Gly Cys Gly Gly Asn Ala Asn Arg Phe Lys Thr Ile $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Asp Glu Cys His Arg Thr Cys Val Gly 50 55

<210> 102

<211> 60

<212> PRT

<213> Vipera russelli

<400> 102

His Asp Arg Pro Thr Phe Cys Asn Leu Pro Pro Glu Ser Gly Arg Cys
1 10 15

```
Arg Gly His Ile Arg Arg Ile Tyr Tyr Asn Leu Glu Ser Asn Lys Cys
Lys Val Phe Phe Tyr Gly Gly Cys Gly Gly Asn Ala Asn Asn Phe Glu
Thr Arg Asp Glu Cys Arg Glu Thr Cys Gly Gly Lys
<210> 103
<211> 64
<212> PRT
<213> Caretta sp. (Red sea turtle egg white)
<220>
<221> misc_feature
<222>
      (1)..(1)
<223> Xaa is Glu or Gln
<400> 103
Xaa Gly Asp Lys Arg Asp Ile Cys Arg Leu Pro Pro Glu Gln Gly Pro
Cys Lys Gly Arg Leu Pro Arg Tyr Phe Tyr Asn Pro Ala Ser Arg Met
Cys Glu Ser Phe Ile Tyr Gly Gly Cys Lys Gly Asn Lys Asn Asn Phe
Lys Thr Lys Ala Glu Cys Val Arg Ala Cys Arg Pro Pro Glu Arg Pro
<210> 104
<211> 58
<212> PRT
<213> Helix pomania
<220>
<221> misc_feature
<222> (1)..(1)
<223> Xaa is Glu or Gln
<400> 104
Xaa Gly Arg Pro Ser Phe Cys Asn Leu Pro Ala Glu Thr Gly Pro Cys
Lys Ala Ser Ile Arg Gln Tyr Tyr Tyr Asn Ser Lys Ser Gly Gly Cys
Gln Gln Phe Ile Tyr Gly Gly Cys Arg Gly Asn Gln Asn Arg Phe Asp
```

Thr Thr Gln Gln Cys Gln Gly Val Cys Val

```
<210> 105
<211> 57
<212> PRT
<213> Dendroaspis angusticeps (Eastern green mamba C13 S1 C3 toxin)
<400> 105
Ala Ala Lys Tyr Cys Lys Leu Pro Val Arg Tyr Gly Pro Cys Lys Lys
Lys Phe Pro Ser Phe Tyr Tyr Asn Trp Lys Ala Lys Gln Cys Leu Pro
Phe Asn Tyr Ser Gly Cys Gly Gly Asn Ala Asn Arg Phe Lys Thr Ile
Glu Glu Cys Arg Arg Thr Cys Val Gly
<210> 106
<211> 59
<212> PRT
<213> Dendroaspis angusticeps (Eastern green mamba C13 S2 C3 toxin)
<220>
<221> misc_feature
<222> (1)..(1)
<223> Xaa is Glu or Gln
<400> 106
Xaa Pro Arg Arg Lys Leu Cys Ile Leu His Arg Asn Pro Gly Arg Cys
Tyr Asp Lys Ile Pro Ala Phe Tyr Tyr Asn Gln Lys Lys Gln Cys
Glu Arg Phe Asp Trp Ser Gly Cys Gly Gly Asn Ser Asn Arg Phe Lys
Thr Ile Glu Glu Cys Arg Arg Thr Cys Ile Gly
                       55
<210> 107
<211> 57
<213> Dendroaspis polylepis polylepis (Black mamba B toxin)
Arg Pro Tyr Ala Cys Glu Leu Ile Val Ala Ala Gly Pro Cys Met Phe
Phe Ile Ser Ala Phe Tyr Tyr Ser Lys Gly Ala Asn Lys Cys Tyr Pro
Phe Thr Tyr Ser Gly Cys Arg Gly Asn Ala Asn Arg Phe Lys Thr Ile
```

Glu Glu Cys Arg Arg Thr Cys Val Val

```
<210> 108
<211>
      59
<212> PRT
<213> Dendroaspis polylepis polylepis (Black mamba E toxin)
<400> 108
Leu Gln His Arg Thr Phe Cys Lys Leu Pro Ala Glu Pro Gly Pro Cys
Lys Ala Ser Ile Pro Ala Phe Tyr Tyr Asn Trp Ala Ala Lys Lys Cys
Gln Leu Phe His Tyr Gly Gly Cys Lys Gly Asn Ala Asn Arg Phe Ser
Thr Ile Glu Lys Cys Arg His Ala Cys Val Gly
<210> 109
<211> 61
<212> PRT
<213> Vipera ammodytes TI toxin
<220>
<221> misc feature
<222> (1)..(1)
<223> Xaa is Glu or Gln
<400> 109
Xaa Asp His Pro Lys Phe Cys Tyr Leu Pro Ala Asp Pro Gly Arg Cys
Lys Ala His Ile Pro Arg Phe Tyr Tyr Asp Ser Ala Ser Asn Lys Cys
Asn Lys Phe Ile Tyr Gly Gly Cys Pro Gly Asn Ala Asn Asn Phe Lys
Thr Trp Asp Glu Cys Arg Gln Thr Cys Gly Ala Ser Ala
                        55
<210> 110
<211> 62
<212> PRT
<213> Vipera ammodytes CTI toxin
<400> 110
Arg Asp Arg Pro Lys Phe Cys Tyr Leu Pro Ala Asp Pro Gly Arg Cys
               5
Leu Ala Tyr Met Pro Arg Phe Tyr Tyr Asn Pro Ala Ser Asn Lys Cys
            20
                                25
```

Glu Lys Phe Ile Tyr Gly Gly Cys Arg Gly Asn Ala Asn Asn Phe Lys
35 40 45

Thr Trp Asp Glu Cys Arg His Thr Cys Val Ala Ser Gly Ile 50 55 60

<210> 111

<211> 62

<212> PRT

<213> Bungarus fasciatus VIII B toxin

<400> 111

Lys Asn Arg Pro Thr Phe Cys Asn Leu Leu Pro Glu Thr Gly Arg Cys
1 10 15

Asn Ala Leu Ile Pro Ala Phe Tyr Tyr Asn Ser His Leu His Lys Cys 20 25 30

Gln Lys Phe Asn Tyr Gly Gly Cys Gly Gly Asn Ala Asn Asn Phe Lys 35 40 45

Thr Ile Asp Glu Cys Gln Arg Thr Cys Ala Ala Lys Tyr Gly
50 55 60

<210> 112

<211> 59

<212> PRT

<213> Anemonia sulcata

<400> 112

Arg Phe Pro Arg Tyr Tyr Asn Ser Ser Ser Lys Arg Cys Glu Lys 20 25 30

Phe Ile Tyr Gly Gly Cys Gly Gly Asn Ala Asn Asn Phe His Thr Leu 35 40 \cdot 45

Glu Glu Cys Glu Lys Val Cys Gly Val Arg Ser 50 55

<210> 113

<211> 56

<212> PRT

<213> Homo sapiens

<400> 113

Lys Glu Asp Ser Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Met Gly
1 10 15

Met Thr Ser Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr 20 25 30

Phe Gln Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu
35 40 45

Lys Glu Cys Leu Gln Thr Cys Arg 50 55

<210> 114

<211> 61

<212> PRT

<213> Homo sapiens

<400> 114

Thr Val Ala Ala Cys Asn Leu Pro Val Ile Arg Gly Pro Cys Arg Ala 1 5 10 15

Phe Ile Gln Leu Trp Ala Phe Asp Ala Val Lys Gly Lys Cys Val Leu 20 25 30

Phe Pro Tyr Gly Gly Cys Gln Gly Asn Gly Asn Lys Phe Tyr Ser Glu 35 40 45

Lys Glu Cys Arg Glu Tyr Cys Gly Val Pro Gly Asp Glu
50 55 60

<210> 115

<211> 60

<212> PRT

<213> Bungarus multicinctus (beta bungarotoxin B1)

<400> 115

Arg Gln Arg His Arg Asp Cys Asp Lys Pro Pro Asp Lys Gly Asn Cys 1 10 15

Gly Pro Val Arg Ala Phe Tyr Tyr Asp Thr Arg Leu Lys Thr Cys Lys 20 25 30

Ala Phe Gln Tyr Arg Gly Cys Asp Gly Asp His Gly Asn Phe Lys Thr 35 40 45

Glu Thr Leu Cys Arg Cys Glu Cys Leu Val Tyr Pro 50 55 60

<210> 116

<211> 60

<212> PRT

<213> Bungarus multicinctus (beta bungarotoxin B2)

<400> 116

Gln Thr Val Arg Ala Phe Tyr Tyr Lys Pro Ser Ala Lys Arg Cys Val 20 25 30 Gln Phe Arg Tyr Gly Gly Cys Asp Gly Asp His Gly Asn Phe Lys Ser 35 40 45

Asp His Leu Cys Arg Cys Glu Cys Glu Leu Tyr Arg 50 55 60

<210> 117

<211> 58

<212> PRT

<213> Bos taurus

<400> 117

Lys Met Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Phe Cys Glu Thr 20 25 30

Phe Val Tyr Gly Gly Cys Lys Ala Lys Ser Asn Asn Phe Arg Ser Ala 35 40 45

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala 50 55

<210> 118

<211> 61

<212> PRT

<213> Tachypleus tridentatus

<400> 118

Thr Glu Arg Gly Phe Leu Asp Cys Thr Ser Pro Pro Val Thr Gly Pro 1 5 10 15

Cys Arg Ala Gly Phe Lys Arg Tyr Asn Tyr Asn Thr Arg Thr Lys Gln 20 25 30

Cys Glu Pro Phe Lys Tyr Gly Gly Cys Lys Gly Asn Gly Asn Arg Tyr 35 40 45

Lys Ser Glu Gln Asp Cys Leu Asp Ala Cys Ser Gly Phe 50 55 60

<210> 119

<211> 62

<212> PRT

<213> Bombyx mori

<220>

<221> misc_feature

<222> (14)..(14)

<223> Xaa is Phe or Gly

<400> 119

Asp Glu Pro Thr Thr Asp Leu Pro Ile Cys Glu Gln Ala Xaa Asp Ala 1 5 10 15 Gly Leu Cys Phe Gly Tyr Met Lys Leu Tyr Ser Tyr Asn Gln Glu Thr

Lys Asn Cys Glu Glu Phe Ile Tyr Gly Gly Cys Gln Gly Asn Asp Asn

Arg Phe Ser Thr Leu Ala Glu Cys Glu Gln Lys Cys Ile Asn

<210> 120

<211> 56 <212> PRT <213> Bos taurus

<400> 120

Lys Ala Asp Ser Cys Gln Leu Asp Tyr Ser Gln Gly Pro Cys Leu Gly

Leu Phe Lys Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr

Phe Leu Tyr Gly Gly Cys Met Gly Asn Leu Asn Asn Phe Leu Ser Gln

Lys Glu Cys Leu Gln Thr Cys Arg

<210> 121

<211> 61

<212> PRT <213> Bos taurus

<400> 121

Thr Val Glu Ala Cys Asn Leu Pro Ile Val Gln Gly Pro Cys Arg Ala

Phe Ile Gln Leu Trp Ala Phe Asp Ala Val Lys Gly Lys Cys Val Arg

Phe Ser Tyr Gly Gly Cys Lys Gly Asn Gly Asn Lys Phe Tyr Ser Gln

Lys Glu Cys Lys Glu Tyr Cys Gly Ile Pro Gly Glu Ala

<210> 122

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> Engineered BPTI (KR15, ME52)

<400> 122

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Arg Ala 1 5 10 15

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr 20 25 30

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala 35 40 45

Glu Asp Cys Glu Arg Thr Cys Gly Gly Ala 50 55

<210> 123

<211> 59

<212> PRT

<213> Artificial Sequence

<220>

<223> Isoaprotinin G-1

<220>

<221> misc_feature

<222> (1)..(1)

<223> Xaa is Glu or Gln

<400> 123

Ala Arg Met Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln 20 25 30

Pro Phe Val Tyr Gly Gly Cys Arg Ala Lys Ser Asn Asn Phe Lys Ser 35 40 45

Ala Glu Asp Cys Met Arg Thr Cys Gly Gly Ala 50 55

<210> 124

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> Isoaprotinin 2

<400> 124

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Lys Ala 1 5 10 . 15

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Pro

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ser 35 40 45

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala 50 55

<210> 125

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> Isoaprotinin G-2

<400> 125

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Lys Ala 1 5 10 15

Arg Met Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Pro 20 25 30

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala 35 40 45

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala 50 55

<210> 126

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> Isoaprotinin 1

<400> 126

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Lys Ala 1 5 10 15

Lys Met Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Phe Cys Glu Thr 20 25 30

Phe Val Tyr Gly Gly Cys Lys Ala Lys Ser Asn Asn Phe Arg Ser Ala 35 40 45

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala 50 55

<210> 127

<211> 11

<212> DNA

<213> Artificial Sequence

<220>

```
<223> PfMI restriction site
<220>
<221> misc_feature
<222> (4)..(8)
<223> n is a, c, g or t
<400> 127
                                                                    11
ccannnnntg g
<210> 128
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> XcmI restriction site
<220>
<221> misc feature
<222> (4)..(12)
<223> n is a, c, g or t
<400> 128
                                                                    15
ccannnnnn nntgg
<210> 129
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acids 13-21 of EpiNE alpha
<400> 129
Pro Cys Val Ala Met Phe Gln Arg Tyr
<210> 130
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acids 15-20 of EpiNE-7
<400> 130
Val Ala Met Phe Pro Arg
```

```
<210> 131
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acids 35-38 of HNE
<400> 131
Tyr Gly Gly Cys
<210> 132
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acids 13-21 of BPTI
<400> 132
Pro Cys Lys Ala Arg Ile Ile Arg Tyr
                5
<210> 133
<211>
      9
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acids 13-21 of EpiNE3
<400> 133
Pro Cys Val Gly Phe Phe Ser Arg Tyr
                5
<210> 134
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acids 13-21 of EpiNE6
<400> 134
Pro Cys Val Gly Phe Phe Gln Arg Tyr
                 5
```

```
<210> 135
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acids 13-21 of EpiNE7
<400> 135
Pro Cys Val Ala Met Phe Pro Arg Tyr
<210> 136
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acids 13-21 of EpiNE4
<400> 136
Pro Cys Val Ala Ile Phe Pro Arg Tyr
               5
<210> 137
<211>
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acids 13-21 of EpiNE8
<400> 137
Pro Cys Val Ala Ile Phe Lys Arg Ser
           5
<210> 138
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acids 13-21 of EpiNE1
<400> 138
```

Pro Cys Ile Ala Phe Phe Pro Arg Tyr

Pro Cys Ile Ala Leu Phe Lys Arg Tyr 1 $\,\,$ 5

<400> 140