Powers of Elements

Eg {2,4,6,83 under mult mod 10

Checker board Game.

IVHD	eH order
TUHUDH	I 1
HUTUH	V 2
VIDHUT	H 2
VIDHUT	D) 2

10 Order of a Group: 161 Number of etts in a group.

Def: The order of an element x in a group G, denoted Izl;

- is said to be finite if x = e for some n>0, choose the least such n as the order of the element

- if no such n exists the it has infinite order.

$$G = (Z_{+}): |I| = \infty : |H| = 2$$

 $2+1=3$
 $|0|=1 : 0=0$
 $3+1=4$

Fact: lel=1 in any group. e=e

Z=e iff N=0 ~ to e. -> 2 Knik order ett of n, x = e A NN Let xe & have (mhnike order) a Nisaninkgor. Then XN=C iff N=O. 15.15 N=0 -> xN=C. If N=0 then x" = x0 = e by def. of: (If x"=e) then N=0. 13: Since it's oo order ett, then by det. N cannot be >0. But if x=e -> x"=(x")"=e"=e « Noonnot be 60 either.

2. Summary: 1 Inhinik order ett:

2. Let x have a fink order n a let N ke an	inlege.	E.g. n=3
Then X = e iff n divides into N, i.e,	n N.	$x^{N} = C \Rightarrow 0,3,6,-3,-6$
Proof: $1S: 15 n N \rightarrow x^{N} = e$. Proof: $1S: 15 n N \rightarrow x^{N} = e$. Proof: $1S: 15 n N \rightarrow x^{N} = e$.	G	
$\chi^{N} = \chi^{N \cdot s}$ $= (\chi^{r})^{s}$	40n	2 2 3 3 2
Stylf xn=e then n/N		
Prost. If In = e > and we can always write	N=gn+r	When OSrzn.
N 20+1	But if (=0	then N=90+0

This If an elt has finite order, no, then $x^r = z^s$ iff $r = s \pmod{n}$, so powers repeat consecutively in cycles of length n.

Proof: If <=: If r=s(modn) then x'=s's

=> If r=s(modn), then s=kn+r

 $\frac{\chi^{3}}{\chi^{5}} = \chi^{5}$ $\chi^{5} = \chi^{5}$

 $Of: \rightarrow H x=x^{s} = x^{r-s} = e$

or r = 5 mod n.

Z- N

 $2 = 17 \pmod{5}$ $2 = 17 \pmod{5}$ 17 = k.5 + 25 | 17 - 2