EE7207 Week 9

Attention Mechanisms and Transformers

Bottleneck of encoder-decoder network

- Encoding of input sequence: a fixed length vector h_t
- Need to capture all necessary information of input sequence
- Information bottleneck, especially when input sequence is long

Attention: thinking process

How to solve the bottleneck problem?

Instead of only using only h_4 , let's use all encoder hidden states!

How do we deal with variable length input sequence?

Let's do a weighted sum of all encoder hidden states!

$$a_1$$
 b_2 b_3 b_4 context vector a_1 b_4 b

How do we get the weights α_i ?

$$s_t$$
 h_1 s_t s_t

$$\mathbf{s_t}$$
 $\mathbf{h_2}$

$$\mathbf{s_t}$$

$$\mathbf{h_2}$$

$$\mathbf{s_t}$$

$$\mathbf{h_2}$$

$$\mathbf{h_2}$$

$$\mathbf{s_t}$$

$$\mathbf{h_2}$$

$$\mathbf{h_2}$$

$$\mathbf{h_2}$$

Step 1: dot product
$$s_t$$
 h_1 s_t h_2 s_t h_3 s_t h_4 s_t $s_$

$$s_t$$
 h_4

$$score_4$$

$$\alpha_i = \frac{\exp(score_i)}{\sum_{j=1}^4 \exp(score_j)}$$

Another way to compute attention score: key-query-value attention

Inspired by information retrieval

Limitation of dot-product attention:

- What if the dimensions of decoder hidden states and encoder hidden states differ
- Question for later: Can dot-product attention support multi-head attentions?

Key-Query-Value attention:

Transformers

Attention Is All You Need

Figure 1: The Transformer - model architecture.

https://doi.org/10.48550/arXiv.1706.03762

Encoder

Positional Encoding Matrix for the sequence 'I am a robot'

$$P(k,2i)=\sin\left(rac{k}{n^{2i/d}}
ight)$$
 $P(k,2i+1)=\cos\left(rac{k}{n^{2i/d}}
ight)$ input sequence of length

Here:

k: Position of an object in the input sequence, $0 \le k < L/2$

d: Dimension of the output embedding space

P(k,j): Position function for mapping a position k in the input sequence to index (k,j) of the positional matrix

n: User-defined scalar, set to 10,000 by the authors of Attention Is All You Need.

i: Used for mapping to column indices $0 \le i < d/2$, with a single value of i maps to both sine and cosine functions

Encoder

Multi-head attention

Encoder

Encoder

Layer Norm

Name	Age	Height
Alice	19	158
Bob	21	172
Claire	22	163
David	20	166

Batch Norm

- Each feature, normalize across all data points in the batch
- For example, for Age, normalize across 19, 21, 22, 20

Layer Norm

- Each data point, normalize across all features
- For example, for Alice, normalize across 19, 158

Encoder

Decoder

Encoder and Decoder

- Let's ignore this for now, will discuss later.
- The rest are very similar to encoder

Masked Multi-head Attention

Masked Multi-head Attention

Cross Attention

Cross Attention

Pigeonhole for Q&A

https://pigeonhole.at/EE7207WEEK9