

# **EEE 51: Second Semester 2017 – 2018**Lecture 25

# Analog Computation and Course Summary

## **Analog Computation Circuits**

- Translinear Circuits
  - Nonlinear Function Synthesis

- Addition
- Subtraction



#### The Square-Root Circuit



#### The Square-Law Circuit



$$V_{BE1} + V_{BE5} + V_{BE2} = V_{BE3} + V_{BE4} + V_{BE6}$$
 
$$V_{BE} = V_T \ln \left( \frac{I_C}{I_{S1}} \right)$$

$$\ln\left(\frac{I_{B1}}{I_{S1}}\frac{I_i}{I_{S5}}\frac{I_i}{I_{S2}}\right) = \ln\left(\frac{I_{B2}}{I_{S3}}\frac{I_{B2}}{I_{S4}}\frac{I_o}{I_{S6}}\right)$$

$$I_o = I_i^2 \frac{I_{B1}}{I_{B2}^2} \frac{I_{S3}}{I_{S1}} \frac{I_{S4}}{I_{S5}} \frac{I_{S6}}{I_{S2}}$$

#### The tanh<sup>-1</sup> Circuit



#### Linearization





$$V_{od} = \alpha I_{TAIL} R_C \tanh \left( -\frac{V_{id}}{2V_T} \right)$$

Vid/VT

Can this function be made linear?

# **Analog Addition**



# **Analog Addition**



#### Subtraction





#### **COURSE SUMMARY**

#### EEE 51 – Linear Transistor Amplifiers

- Transistor Models
  - Large signal → Biasing
  - Small signal → Linearization → 2-port equivalents
- Basic Amplifiers
  - Single-stage amplifiers
  - Current mirrors
  - Differential amplifiers
- Cascaded Amplifiers
  - Operational amplifiers

#### EEE 51 – Linear Transistor Amplifiers

- Frequency Response
  - Capacitances (and inductances)
  - Poles, zeros, Bode plots (magnitude/phase)
- Feedback
  - Basic topologies, loop gain, closed-loop gain
  - Advantages → input/output impedances, bandwidth, linearity
  - Cost → Stability

#### EEE 51 – Linear Transistor Amplifiers

#### Stability

- Positive feedback vs. negative feedback
- Metrics → phase margin, gain margin
- Effect of the loop gain

#### Oscillators

- Barkhausen's Criteria
- Phase-shift model, generalized (LC) model, negative resistance
- Crystal oscillators

#### Translinear Circuits

- Analog computation → examples: square-root, square-law, tanh<sup>-1</sup>
- Addition, subtraction, etc.

#### Example: AM Receiver

#### Receiving Antenna



Figure (a): Block Diagram of a Typical AM Communication Receiver

[www.daenotes.com]

#### Example: GPS Receiver



#### Example: 1V 12.8 GHz Low Noise Amplifier



[www.sciencedirect.com]

#### Example: 1.8V 3.1 – 10.6 GHz LNA



[www.sciencedirect.com]

## Example: Integrator-Based Active Filter



#### Example: High-Speed Wired Communications



[www.doe.carleton.ca]



#### End of EEE 51!

- Final Exam:
  - Thursday May 24, 2018
  - -1-4 pm
  - Bring: pen, calculator