Varieties in more general settings

1 Varieties

Definition 1. A variety over an algebraically closed field k is an integral separated scheme of finite type over Spec k.

Yang: Suppose that **k** is not algebraically closed, let **k**' be an algebraic extension of **k**. What is the relation between X, $X_{\mathbf{k}'}$, $X(\mathbf{k}')$ and $X_{\mathbf{k}'}(\mathbf{k}')$?

2 Geometric properties

Definition 2. Let **k** be a field and X a separated scheme of finite type over Spec **k**. We say that X has a geometric property p if X_k has the property p for the algebraic closure k of k.

Definition 3. A variety over a field \mathbf{k} is a separated geometrically integral scheme of finite type over Spec \mathbf{k} .

3 Points in varieties

Proposition 4. Let k be a field and l an extension of k. Let X be a variety over k. Then we have the following:

- (a) there is a natural bijection between X(l) and $X_l(l)$;
- (b) let m/l be an extension, then there is a natural inclusion $X(l) \subseteq X(m)$;
- (c) suppose that $X = \operatorname{Spec} k[T_1, \dots, T_n]/I$ is an affine variety, then there is a natural bijection between X(l) and the set $\{(x_1, \dots, x_n) \in l^n | f(x_1, \dots, x_n) = 0, \forall f \in I\}$.

Date: September 14, 2025, Author: Tianle Yang, My Homepage