Maths for Computing

Lecture 3: The inverse of a matrix

Manuele Leonelli

School of Human Sciences and Technology, IE University

Today's Objective

- Introduce functions
- ▶ Define various components of a function
- ► Discuss properties of functions

Inverse Matrix

Given a matrix \boldsymbol{A} , we say that \boldsymbol{A}^{-1} is its inverse if

$$A^{-1}A = AA^{-1} = I$$

Then **A** is said to be invertible.

3/10

Only square matrices can have inverses.

Inverse

Not all square matrices have an inverse. The inverse exists if and only if $det(\mathbf{A}) \neq 0$. If an inverse exists, this is unique.

Exercise

Show that **A** and **X** are inverse of each other.

$$\mathbf{A} = \begin{pmatrix} 5 & 6 \\ 5 & 10 \end{pmatrix} \quad \mathbf{X} = \begin{pmatrix} 1/2 & -3/10 \\ -1/4 & 1/4 \end{pmatrix}$$

Properties of the Inverse

Let **A** and **B** be invertible $n \times n$ matrices. Then

- ightharpoonup A^{-1} is invertible and $(A^{-1})^{-1} = A$
- ▶ **AB** is invertible and $(AB)^{-1} = B^{-1}A^{-1}$
- lacktriangle The transpose $m{A}^t$ is invertible and $(m{A}^t)^{-1}=(m{A}^{-1})^t$
- $(cA)^{-1} = c^{-1}A^{-1}$ for $c \neq 0$.

Computing the Inverse of a 2 by 2 Matrix

Provided that $|\mathbf{A}| \neq 0$,

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \longrightarrow \mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Computing the Inverse

Any $n \times n$ square matrix **A** has an inverse **A**⁻¹ given by

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \operatorname{adjoint}(\mathbf{A}),$$

with

adjoint(
$$\mathbf{A}$$
) =
$$\begin{pmatrix} C_{1,1} & C_{2,1} & \cdots & C_{n,1} \\ C_{1,2} & C_{2,2} & \cdots & C_{n,2} \\ \vdots & \vdots & \vdots & \vdots \\ C_{1,n} & C_{2,n} & \cdots & C_{n,n} \end{pmatrix}$$

where $C_{i,j}$ is the (i,j) cofactor.

Minor of a Matrix

A submatrix of \boldsymbol{A} is a matrix obtained by deleting some rows and/or some columns.

$$\begin{pmatrix}
12 & 1 & -7 & 0.5 \\
\frac{3}{4} & -4 & 8 & 1 \\
0 & -2 & \frac{-2}{7} & 9
\end{pmatrix}$$

Minor

A minor of a matrix \boldsymbol{A} is the determinant of a square submatrix of \boldsymbol{A} .

The minor is of *order* k if it is the determinant of a submatrix $k \times k$.

Example

$$A = \begin{pmatrix} 1 & 3 & 0 \\ 4 & 2 & 1 \\ 5 & 0 & 4 \end{pmatrix}$$

Some minors:

- ightharpoonup det(1) = 1 is a minor of order 1, as well as $3, 0, 4, 2, \dots$
- ▶ $\det \begin{pmatrix} 4 & 1 \\ 5 & 4 \end{pmatrix} = \dots$ is a minor of order 2.
- ightharpoonup det(A) is the only minor of order 3.

Rank

Rank

The rank of a matrix is the order of largest non-zero minor. The rank of \boldsymbol{A} is denoted as $rank(\boldsymbol{A})$.

Properties

- ▶ $1 \le rank(A) \le \max\{m, n\}$ for all $m \times n$ matrices different from $\mathbf{0}$
- ▶ Let **A** be a $n \times n$ matrix. If $|\mathbf{A}| \neq 0$ then $rank(\mathbf{A}) = n$