d'où : f' = u'v + uv'; $u'(x) = -e^{-x}$ et $v'(x) = \cos x$ ainsi $f'(x) = -e^{-x} \sin x + e^{-x} \cos x$. $f'(x) = e^{-x} (\cos x - \sin x).$

• g = u + v avec u(x) = x et $v(x) = e^x$ d'où : g' = u' + v' ; u'(x) = 1 et $v'(x) = e^x$

62 • $f = uv \text{ avec } u(x) = e^{-x} \text{ et } v(x) = \sin x$

ainsi : $g'(x) = 1 + e^x$.

$$f'(x) = e^{-x} (\cos x - \sin x).$$
• $g = u + 3v$ avec $u(x) = \cos 2x$ et $v(x) = \sin 2x$ d'où $g' = u' + 3v'$; $u'(x) = -2 \sin 2x$ et $v'(x) = 2 \cos 2x$ ainsi $g'(x) = -2 \sin 2x + 6 \cos 2x$.

65
$$f = 3 \times \frac{1}{u} \text{ avec } u(x) = 1 + 2x;$$

 $f' = 3 \times \left(\frac{-u'}{u^2}\right); u'(x) = 2 \text{ ainsi } f'(x) = \frac{-6}{(1+2x)^2}.$

70 $f'(x) = -xe^{-\frac{x^2}{2}}; g'(x) = \frac{2x}{x^2 + 1}.$

72
$$f'(x) = 12\sqrt{2}\cos\left(3x + \frac{\pi}{6}\right);$$

 $g'(x) = -\frac{1}{2}e^{-\frac{x}{2}}\cos 2x - 2e^{-\frac{x}{2}}\sin 2x.$

75
$$f'(x) = \frac{1}{2} \left(3\sqrt{x} - \frac{1}{\sqrt{x}} \right)$$
.

79
$$f'(x) = \frac{2}{x(\ln x + 1)^2}$$

$$x(\ln x + 1)$$

2.
$$x - 3 - 2 0 1,5 3$$
 $f(x)$ $f(x)$

$$f'(x) > 0$$
 sur tout intervalle où f est croissante;
 $f'(x) > 0$ sur les intervalles $]-2$; $[0]$ et $]1,5$; $[3]$.
3. $f'(-1) = 2$; équation de la tangente : $y = 2x + 2$.

87 $f'(x) = 4x + 4e^{-x}$; f'(x) > 0; f est croissante.