Quiz: pool de questions

Général:

- 1. Q1: Que vaut $Cov(X + \mu)$ pour tout $\mu \in \mathbb{R}^p$ déterministe, et tout vecteur aléatoire $X \in \mathbb{R}^p$?
- 2. Q2: Que vaut Cov(AX), pour toute matrice $A \in \mathbb{R}^{m \times p}$ et tout vecteur aléatoire $X \in \mathbb{R}^p$?
- 3. Q3: Quel est un modèle naturel pour "un lancer de dé"?
- 4. Q4: Que vaut le biais de $\frac{1}{n}\sum_{i=1}^n (y_i-\overline{y}_n)^2$ (\overline{y}_n est la moyenne empirique) pour des y_i i.i.d, gaussiens, centrés et de variance σ^2 ?
- 5. Q5: On suppose que l'on observe y_1, \ldots, y_n , des variables réelles i.i.d., gaussiennes, centrées et de variance σ^2 .

Quel est le risque quadratique de l'estimateur $rac{1}{n}\sum_{i=1}^n (y_i-\overline{y}_n)^2$ de

- σ^2 (\overline{y}_n est la moyenne empirique)?
- 6. Q6: Quelle est la projection du vecteur $\mathbf{y} \in \mathbb{R}^n$ sur $\mathrm{Vect}(\mathbf{1}_n)$, avec $\mathbf{1}_n = (1,\dots,1)^{\top} \in \mathbb{R}^n$?
- 7. Q7: Quels sont les vecteurs $\mathbf{y} \in \mathbb{R}^n$ tels que $\mathrm{var}_n(\mathbf{y}) = 0$ (var_n est la variance empirique)?

Moindres carrés unidimensionnels: on observe $\mathbf{y}=(y_1,\ldots,y_n)^{ op}$ et $\mathbf{x}=(x_1,\ldots,x_n)^{ op}$

1. Q8: La fonction $(heta_0, heta_1) o rac{1}{2}\sum_{i=1}^n(y_i- heta_0- heta_1x_i)^2$ est elle convexe ou concave?

2. Q9: Donner la formule $(\hat{\theta}_0, \hat{\theta}_1)$ des estimateurs des moindres carrés où $\hat{\theta}_0$ correspond au coefficient des constantes et $\hat{\theta}_1$ correspond à l'influence de \mathbf{x} sur \mathbf{y} . On les exprimera en fonction des $x_i, y_i, \overline{x}_n, \overline{y}_n$

Moindres carrés:
$$\mathbf{y} = (y_1, \dots, y_n)^ op$$
 et $X \in \mathbb{R}^{n imes p}$

- 1. Q10: Écrire un pseudo-code de descente de gradient pour résoudre le problème des moindres carrés.
- 2. Q11: Pour une matrice $X \in \mathbb{R}^{n \times p}$, que vaut $\operatorname{Ker}(X^{\top}X)$?
- 3. Q12: Si la matrice $X \in \mathbb{R}^{n \times p}$ est de plein rang, donner une formule exacte de l'estimateur des moindres carrés.
- 4. Q13: Si la matrice $X \in \mathbb{R}^{n \times p}$ est de plein rang, donner la matrice de covariance de l'estimateur des moindres carrés (dans l'hypothèse d'un bruit $\epsilon = \mathbf{y} X\theta^*$ centré et de matrice de covariance $\sigma^2 \mathrm{Id}_n$).
- 5. Q14: Donner la formulation de la pseudo inverse si la SVD de X peut s'écrire $X = \sum_{i=1}^r s_i \mathbf{v}_i \mathbf{u}_i^{\top}$.
- 6. Q15: Donner une formule explicite du problème $\arg\min_{\theta} \frac{1}{2} (\mathbf{y} X\theta)^{\top} \Omega (\mathbf{y} X\theta)$ pour une matrice $\Omega = \mathrm{diag}(w_1, \ldots, w_n)$ définie positive.

Ridge:

On note
$$\hat{ heta} = \arg\min_{ heta} rac{1}{2} \|\mathbf{y} - X heta\|_2^2 + rac{\lambda}{2} \| heta\|_2^2$$
 l'estimateur ridge.

- 1. Q16: Donner une formule explicite pour l'estimateur Ridge en fonction de y et λ quand $X=\mathrm{Id}_n$.
- 2. Q17: Donner une formule explicite pour l'estimateur Ridge en fonction de X,y et λ .
- 3. Q18: Donner la variance de l'estimateur Ridge sous l'hypothèse que le bruit $\mathbf{y} X\theta^*$ est centré et de variance $\sigma^2 \mathrm{Id}_n$.

4. Q19: Donner une formule explicite pour l'estimateur Ridge généralisé:

$$\hat{ heta} = rg \min_{ heta} rac{1}{2} \|\mathbf{y} - X heta\|_2^2 + rac{\lambda}{2} \|D heta\|_2^2,$$
 en fonction de $X, y, D \in \mathbb{R}^{p imes p}$ et λ .

Lasso:

- 1. Q20: Calculer $\eta_\lambda(Z)=rg\min_{x\in\mathbb{R}}x\mapsto rac{1}{2}(z-x)^2+\lambda|x|$ en fonction du signe de x et de la partie positive $(\cdot)_+$
- 2. Q21: Donner en tout point la sous-différentielle de la fonction réelle $x\mapsto (x)_+=\max(x,0).$
- 3. Q22: Donner l'étape de mise à jour principale en descente par coordonnée pour résoudre le problème de l'*Elastic Net*:

$$\hat{ heta}_{\lambda} = rg\min_{ heta \in \mathbb{R}^p} \left[rac{1}{2} \|\mathbf{y} - X heta\|_2^2 + \lambda \left(lpha \| heta\|_1 + (1-lpha) rac{\| heta\|_2^2}{2}
ight)
ight].$$

4. Q23: Donner l'étape de mise à jour principale en descente par coordonnée pour résoudre le problème du *Lasso Positif*:

$$\hat{ heta}_{\lambda} = rg\min_{ heta \in \mathbb{R}^{p}_{+}} rac{1}{2} \|\mathbf{y} - X heta\|_{2}^{2} + \lambda \| heta\|_{1}.$$

5. Q24: On suppose que l'on dispose d'un solveur $\mathbf{Lasso}(X,y,\lambda)$ qui résout le problème du Lasso

 $\hat{\theta}_{\lambda} = \arg\min_{\theta \in \mathbb{R}^p} \frac{1}{2} \|\mathbf{y} - X\theta\|_2^2 + \lambda \|\theta\|_1$. En utilisant ce solveur comment résoudre le problème suivant:

$$\hat{ heta}_{\lambda} = rg\min_{ heta \in \mathbb{R}^p} rac{1}{2} \|\mathbf{y} - X heta\|_2^2 + \lambda \sum_{j=1}^p w_j | heta_j|$$
 , pour des $w_j \geq 0$?

ACP/SVD

1. Q25: Que vaut
$$\Big\{\max_{u\in\mathbb{R}^n,v\in\mathbb{R}^p}u^ op Xv ext{ s.c. }|u|_2^2=1 ext{ et }|v|_2^2=1$$
 ?

Test:

- 1. Q26: Pour des X_1, \ldots, X_n identiquement distribuées à valeur dans $\{0,1\}$, décrire une procédure de test de l'hypothèse $p=P(X_1=1)=1/2$ contre son contraire.
- 2. Q27: Soient X_1,\ldots,X_n des variables aléatoires i.i.d selon des lois gaussiennes de moyenne μ et de variance connue σ , i.e., $X_i \sim \mathcal{N}(0,\sigma^2)$. Décrire une procédure de test de l'hypothèse $\mu=1$ contre son contraire.
- 3. Q28: Soient X_1,\ldots,X_n des variables aléatoires indépendantes et distribuées selon des lois gaussiennes de moyenne μ et de variances connues σ_i^2 , i.e., $X_i \sim \mathcal{N}(0,\sigma_i^2)$. Décrire une procédure de test de l'hypothèse $\mu=1$ contre son contraire.

Bootstrap

- 1. Q29: Soient X_1, \ldots, X_n des variables aléatoires i.i.d selon des lois gaussiennes de moyenne μ et de variance connue σ , i.e., $X_i \sim \mathcal{N}(0, \sigma^2)$. Écrire un pseudo code de bootstrap pour le test sur la moyenne $\mu = 1$.
- 2. Q30: Soient X_1, \ldots, X_n des variables aléatoires i.i.d et w_1, \ldots, w_n une suite de variables i.i.d. de moyenne 1 et de variance 1. A l'aide des X_i et des w_i construire un intervalle de confiance à 99% pour la quantité $\mathbb{P}(X_1 \geq 10)$.
- 3. Q31: Proposer une procédure bootstrap pour estimer l'écart quadratique moyen de la méthode des moindres carrées dans le cas d'une régression linéaire.