KUMAR SANATAN ROLL NO – 2211AI24

CS 564 Foundations of Machine Learning ASSIGMENT 2:

INDIAN INSTITUTE OF TECHNOLOGY PATNA

Date: 1st Sept 2022 Deadline: 13th Sept 2022

OBJECTIVE

The assignment targets to implement DBSCAN algorithms to cluster the 3 datasets with blob, moon and circle structures.

CODE SUMMARY:

We have imported the required libraries and read the data for cluster blobs, cluster circles and cluster moons provided and further cleaning the data.

```
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.cluster import DBSCAN, KMeans
from sklearn import metrics

# Taking input
clusterBlobData=pd.read_csv("C:\\Users\\HP\\Desktop\\IIT_Patna_MTech_AI\\sem_1\\ML\\assignment2\\cluster_blobs.csv")
clusterCirclesData=pd.read_csv("C:\\Users\\HP\\Desktop\\IIT_Patna_MTech_AI\\sem_1\\ML\\assignment2\\cluster_circles.csv")
clusterMoonsData=pd.read_csv("C:\\Users\\HP\\Desktop\\IIT_Patna_MTech_AI\\sem_1\\ML\\assignment2\\cluster_moons.csv")

# Data cleaning
clusterBlobData.fillna(method = 'ffill', inplace = True)
clusterCirclesData.fillna(method='ffill', inplace = True)
clusterMoonsData.fillna(method='ffill', inplace = True)
```

Implementation of DBSCAN algorithm for cluster blob data and calculating the silhoutte score for the same.

```
# Cluster blobs using DBSCAN
mainClusterBlobDataDbscan = pd.DataFrame(clusterBlobData)
dbscan= DBSCAN(eps = 1.5, min_samples = 3).fit(mainClusterBlobDataDbscan).labels_
plt.figure(figsize =(10, 10))
mainClusterBlobDataDbscan.columns=['X1','X2']
plt.scatter(mainClusterBlobDataDbscan['X1'], mainClusterBlobDataDbscan['X2'],c=dbscan, cmap ='rainbow')
plt.title("DBSCAN")
plt.show()
print("The Silhoutte score of the dataset cluster_blobs using DBScan is => ",
metrics.silhouette_score(mainClusterBlobDataDbscan,dbscan))
```


The Silhoutte score of the dataset cluster_blobs using DBScan is => 0.8625486425630479

Implementation of Kmeans algorithm for cluster blob data and calculating the silhoutte score for the same.

```
# Cluster blobs using Kmeans
mainClusterBlobDataKmeans = pd.DataFrame(clusterBlobData)
kmeans= KMeans(3).fit(mainClusterBlobDataKmeans).labels_
plt.figure(figsize = (10, 10))
mainClusterBlobDataKmeans.columns=['X1','X2']
plt.scatter(mainClusterBlobDataKmeans['X1'], mainClusterBlobDataKmeans['X2'],c=kmeans, cmap ='rainbow')
plt.title("Kmeans")
plt.show()
print("The Silhoutte score of the dataset cluster_blobs using Kmeans is => ",
metrics.silhouette_score(mainClusterBlobDataKmeans,kmeans))
```


The Silhoutte score of the dataset cluster_blobs using Kmeans is => 0.8625486425630479

Implementation of DBSCAN algorithm for cluster circle data and calculating the silhoutte score for the same.

```
# Cluster circles using DBSCAN
mainClusterCirclesDataDbscan = pd.DataFrame(clusterCirclesData)
dbscan= DBSCAN(eps = 0.15, min_samples = 3).fit(mainClusterCirclesDataDbscan).labels_
plt.figure(figsize = (10, 10))
mainClusterCirclesDataDbscan.columns=['X1','X2']
plt.scatter(mainClusterCirclesDataDbscan['X1'], mainClusterCirclesDataDbscan['X2'],c=dbscan, cmap = 'rainbow')
plt.title("DBSCAN")
plt.show()
print("The Silhoutte score of the dataset cluster_circles using DBScan => ",
metrics.silhouette_score(mainClusterCirclesDataDbscan,dbscan))
```


The Silhoutte score of the dataset cluster_circles using DBScan => 0.20829174427109967

Implementation of Kmeans algorithm for cluster circle data and calculating the silhoutte score for the same.

```
# Cluster circles using Kmeans
mainClusterCirclesDataKmeans = pd.DataFrame(clusterCirclesData)
kmeans_1= KMeans(2).fit(mainClusterCirclesDataKmeans).labels_
plt.figure(figsize = (10, 10))
mainClusterCirclesDataKmeans.columns=['X1','X2']
plt.scatter(mainClusterCirclesDataKmeans['X1'], mainClusterCirclesDataKmeans['X2'],c=kmeans_1, cmap = 'rainbow')
plt.title("Kmeans")
plt.show()
print("The Silhoutte score of the dataset cluster_circles using Kmeans is => ",
metrics.silhouette_score(mainClusterCirclesDataKmeans,kmeans_1))
```


The Silhoutte score of the dataset cluster_circles using Kmeans is => 0.29549709057676377

Implementation of DBSCAN algorithm for cluster moons data and calculating the silhoutte score for the same.

```
# Cluster moons using DBSCAN
mainClusterMoonsDataDbscan = pd.DataFrame(clusterMoonsData)
dbscan= DBSCAN(eps = 0.15, min_samples = 3).fit(mainClusterMoonsDataDbscan).labels_
plt.figure(figsize =(10, 10))
mainClusterMoonsDataDbscan.columns=['X1','X2']
plt.scatter(mainClusterMoonsDataDbscan['X1'], mainClusterMoonsDataDbscan['X2'],c=dbscan, cmap ='rainbow')
plt.title("DBSCAN")
plt.show()
print("The Silhoutte score of the dataset cluster_moons using DBScan is => ",
metrics.silhouette_score(mainClusterMoonsDataDbscan,dbscan))
```


The Silhoutte score of the dataset cluster_moons using DBScan is => 0.33344160815186463

Implementation of DBSCAN algorithm for cluster moons data and calculating the silhoutte score for the same.

```
# Cluster moons using Kmeans
mainClusterMoonsDataKmeans = pd.DataFrame(clusterMoonsData)
kmeans_2= KMeans(2).fit(mainClusterMoonsDataKmeans).labels_
plt.figure(figsize =(10, 10))
mainClusterMoonsDataKmeans.columns=['X1','X2']
plt.scatter(mainClusterMoonsDataKmeans['X1'], mainClusterMoonsDataKmeans['X2'],c=kmeans_2, cmap ='rainbow')
plt.title("Kmeans")
plt.show()
print("The Silhoutte score of the dataset cluster_moons using Kmeans is => ",
metrics.silhouette_score(mainClusterMoonsDataKmeans,kmeans_2))
```


The Silhoutte score of the dataset cluster_moons using Kmeans is => 0.49041236609392724

OBSERVATIONS SUMMARY:

We have assumed all the hyperparameters via referring to the scale of the outputs projected and the efficiency in the measuring index with respect to the assumed hyperparameter value.

SILHOUTTE SCORE	DBSCAN	KMEANS
Cluster blobs	0.8625486425630479	0.8625486425630479
Cluster circles	0.20829174427109967	0.29549709057676377
Cluster moons	0.33344160815186463	0.49041236609392724