Intégration de Données

Manipulation, récriture de requêtes

Source : Anhai DOAN et al, Principles of Data Integration

Introduction

- Comment un système d'intégration décide quelles sources sont pertinentes pour une requête ? Lesquelles sont redondantes ? Comment les combiner pour répondre à une requête ?
- Réponse : en raisonnant sur le contenu des sources de données.
 - Les sources sont souvent décrites par des requêtes/vues.
- On va étudier les outils fondamentaux pour la manipulation d'expressions de requêtes.

SQL

Entretien

candidat, date, recruteur, décision, note

EvalEmploye

IDemp, nom, evalTrimestre, note, examinateur

select recruteur, candidat from Entretien , EvalEmploye where recruteur=nom AND note < 2.5

3

Requêtes Conjonctives

Q(X,T):- Entretien(X,D,Y,H,F), EvalEmploye(E,Y,T,W,Z), W < 2.5.

Noter l'expression des jointures avec les occurrences de la même variable (ici Y)

select recruteur, candidat from Entretien, EvalEmploye where recruteur=nom AND note < 2.5

Requêtes Conjonctives (prédicats interprétés)

Q(X,T):

Entretien(X,D,Y,H,F), EvalEmploye(E,Y,T,W,Z), W < 2.5.

Prédicats interprétés (comparaison) : on peut retrouver aussi des variables (w)

select recruteur, candidat from Entretien, EvalEmploye where recruteur=nom AND note < 2.5

5

Requêtes Conjonctives (sous-but négatif)

Q(X,T):-

Entretien(X,D,Y,H,F), EvalEmploye(E,Y,T,W,Z), —OffreEmploi(X, date).

Toute variable de tête doit apparaitre dans un sous-but positif.

Union de Requêtes Conjonctives

L'union est exprimée avec plusieurs règles avec le même prédicat de tête

Q(X,T):

Entretien(X,D,Y,H,F), EvalEmploye(E,Y,T,W,Z), W < 2.5.

Q(X,T):

Entretien(X,D,Y,H,F), EvalEmploye(E,Y,T,W,Z), Manager(y), W > 3.9.

Dépliage de requêtes

 $Q_1(X,Y)$: -Vol(X,Z), Hub(Z), Vol(Z,Y)

 $Q_2(X,Y)$: -Hub(Z), Vol(Z,X), Vol(X,Y)

 $Q_3(X,Z):-Q_1(X,Y),Q_2(Y,Z)$

Le dépliage de Q₃ est :

 $Q'_3(X,Z)$: -Vol(X,U), Hub(U), Vol(U,Y), Hub(W), Vol(W,Y), Vol(X,Z)

Dépliage de requêtes : Algorithme

- Trouver un sous-but $p(X_1,...,X_n)$ tel que p est défini par une règle r.
- Unifier $p(X_1,...,X_n)$ avec la tête de r.
- Remplacer $p(X_1,...,X_n)$ par le résultat de l'application de l'unification à tous les sous-buts de r.
- Itérer jusqu'à épuiser les unifications.
- Si p est défini par une union de r_1 , ..., r_n , créer n règles, une pour chaque règle r_i .

9

Inclusion de requêtes : Motivation (I)

Intuitivement, le dépliage de Q₃ est équivalent à Q₄:

$$Q'_3(X,Z)$$
: $-Vol(X,U)$, $Hub(U)$, $Vol(U,Y)$, $Hub(W)$, $Vol(W,Y)$, $Vol(X,Z)$

$$Q_4(X,Z)$$
: $-Vol(X,U)$, $Hub(U)$, $Vol(U,Y)$, $Vol(X,Z)$

Comment justifier formellement cette intuition?

Inclusion de requêtes : Motivation (2)

De plus, Q_5 qui utilise 2 hubs est *incluse* dans Q'_3

$$Q_5(X,Z)$$
:- $Vol(X,U)$, $Hub(U)$, $Vol(U,Y)$,
 $Hub(Y)$, $Vol(Y,Z)$

$$Q'_3(X,Z)$$
: $-Vol(X,U)$, $Hub(U)$, $Vol(U,Y)$, $Vol(X,Z)$

Besoin d'algorithmes pour détecter ces inclusions

Inclusion de requêtes et équivalence : définitions

$$Q_1$$
 est incluse dans Q_2 si pour **toute** base de données D $Q_2(D) \supseteq Q_1(D)$

$$Q_1$$
 est équivalente à Q_2 si $Q_1(D) \supseteq Q_2(D)$ and $Q_2(D) \supseteq Q_1(D)$

Note: l'inclusion et l'équivalence sont des propriétés des requêtes et non de la base de données!

Exemple 1

$$Q_1(X,Z) : -p(X,Y,Z)$$

$$Q_{\gamma}(X,Z):-p(X,X,Z)$$

$$Q_1 \supseteq Q_2$$

13

Exemple 2

$$Q_1(X,Y)$$
: $-p(X,Z), p(Z,Y)$

$$Q_2(X,Y):-p(X,Z),p(Z,Y),p(X,W)$$

$$Q_1 \supseteq Q_2$$

Inclusion: le pourquoi?

- Si les sources sont décrites par des vues, on utilise l'inclusion pour les comparer.
- Si on peut supprimer des sous-buts dans une requête, on peut l'évaluer plus efficacement.

15

Reprise de l'exemple

Relations: Vol(source, destination)
Hub(ville)

Vues:

 $Q_1(X,Y) := Vol(X,Z), Hub(Z), Vol(Z,Y)$ $Q_2(X,Y) := Hub(Z), Vol(Z,X), Vol(X,Y)$

Requête:

 $Q_3(X,Z) := Q_1(X,Y), Q_2(Y,Z)$

Dépliage:

 $Q'_3(X,Z) :- Vol(X,U), Hub(U), Vol(U,Y), Hub(W), Vol(W,Y), Vol(Y,Z)$

Supprimer les sous-buts redondants

sous-buts redondants?

 $Q'_3(X,Z)$:- Vol(X,U), Hub(U), Vol(U,Y), Hub(W), Vol(W,Y), Vol(Y,Z)

 \Rightarrow Q''₃(X,Z):- Vol(X,U), Hub(U), Vol(U,Y),

Est-ce que Q''₃ est équivalente à Q'₃?

 $Q'_3(X,Z) :- Vol(X,U), Hub(U), Vol(U,Y)$ Hub(W), Vol(W,Y), Vol(Y,Z)

Inclusion: Requêtes Conjonctives

$$Q_1(\overline{X}):-g_1(\overline{X_1}),...,g_n(\overline{X_n})$$

Sans prédicats interprétés (≥,≠) Ni négation.

Sémantique:

si φ mappe les sous-buts du corps de la requête sur des tuples dans D *alors,* $\varphi(\overline{X})$ est une réponse.

Mappings d'inclusion

$$Q_1(\overline{X}):-g_1(\overline{X_1}),...,g_n(\overline{X_n})$$

$$Q_2(\overline{Y}):-h_1(\overline{Y_1}),...,h_m(\overline{Y_m})$$

 $φ: Vars(Q_1) \rightarrow Vars(Q_2)$ est un mapping d'inclusion si:

$$\varphi(g_i(\overline{X_i})) \in Corps(Q_2)$$
et
$$\varphi(\overline{X}) = \overline{Y}$$

19

Exemple de mappings d'inclusion

 $Q'_3(X,Z) := Vol(X,U), Hub(U), Vol(U,Y), Hub(W), Vol(W,Y), Vol(Y,Z)$

$$Q''_{3}(X,Z)$$
:- $Vol(X,U)$, $Hub(U)$, $Vol(U,Y)$, $Vol(Y,Z)$

mapping identité sur toutes les variables, sauf:

$$W \to U$$

Théorème

[Chandra and Merlin, 1977]

 Q_1 inclut Q_2 ssi il existe un mapping d'inclusion de Q_1 vers Q_2 .

21

Union de Requêtes Conjonctives

```
Q_{1}(X,Y):-Vol(X,Z),Vol(Z,Y)
Q_{1}(X,Y):-Vol(X,Z),Vol(Y,Z),Hub(Z)
Q_{2}(X,Y):-Vol(X,Z),Vol(Z,Y),Hub(Z)
```

Théorème : une RC est incluse dans une union de RC ssi elle est incluse dans *une* des requêtes conjonctives.

RC avec prédicats de comparaison

Une vérification des mappings d'inclusions fournit une condition suffisante :

$$\begin{aligned} Q_{1}(\overline{X}) :& -g_{1}(\overline{X_{1}}), ..., g_{n}(\overline{X_{n}}), C_{1} \\ Q_{2}(\overline{Y}) :& -h_{1}(\overline{Y_{1}}), ..., h_{m}(\overline{Y_{m}}), C_{2} \\ \phi : & Vars(Q_{1}) \rightarrow Vars(Q_{2}) : \\ \varphi(g_{i}(\overline{X_{i}})) \in Corps(Q_{2}) \\ \varphi(\overline{X}) &= \overline{Y} \\ et & C_{2} \models \varphi(C_{1}) \end{aligned}$$

23

Exemple de mappings d'inclusion

$$Q_1(X,Y):-Vol(X,Z), Vol(Z,Y),$$

$$Population(Z,P), P \leq 100,000$$

$$Q_{2}(U,V):-Vol(U,W),Vol(W,V),Hub(W),$$

$$Population(W,S),S \leq 500,000$$

$$X \rightarrow U,Y \rightarrow V,Z \rightarrow W$$

$$P \leq 100,000 \models P \leq 500,000$$

Les mappings d'inclusion ne suffisent pas

$$Q_1(X,Y): -R(X,Y), S(U,V), U \le V$$

$$Q_{2}(X,Y):-R(X,Y),S(U,V),S(V,U)$$

Pas de mappings d'inclusion, mais

$$Q_1 \supseteq Q_2$$

25

Raffinement de requête

$$Q_1(X,Y): -R(X,Y), S(U,V), U \le V$$

$$Q_2(X,Y): -R(X,Y), S(V,U)$$

On considère les 2 raffinements de Q₂

$$Q_2(X,Y): -R(X,Y), S(U,V), S(V,U), U \le V$$

 $Q_2(X,Y): -R(X,Y), S(U,V), S(V,U), V < U$

Les mappings rouge s'appliquent au premier raffinement et les bleus au second.

Construction des raffinements de requêtes

- Considérer les regroupements complets de toutes les variables et constantes de la requête
- Pour chaque regroupement complet, créer une requête conjonctive.
- Résultat final = union de requêtes conjonctives.

2

Regroupement Complet

Soit

C une conjonction d'atomes interpétés sur un ensemble de variables $X_1,...,X_n$ un ensemble de constantes $a_1,...,a_m$

 C_T est un regroupement complet si: $C_T = C$, et

$$\begin{aligned} \forall d_1, d_2 &\in \{X_1, ..., X_n, a_1, ..., a_m\} \\ C_T &\models d_1 < d_2 \quad or \quad C_T \models d_1 > d_2 \quad or \quad C_T \models d_1 = d_2 \end{aligned}$$

Raffinement de requête

$$Q_1(\overline{X}):-g_1(\overline{X_1}),...,g_n(\overline{X_n}),C_1$$

Soit C_T un regroupement complet de C_1

Alors:

$$Q_1(\overline{X}):-g_1(\overline{X_1}),...,g_n(\overline{X_n}),C_T$$

est un raffinement de Q₁

29

Théorème:

[Requêtes avec prédicats interprétés]

[Klug, 88, van der Meyden, 92]

 Q_1 inclut Q_2 ssi il existe un mapping d'inclusion de Q_1 vers tout raffinement de Q_2 .

Requêtes avec négation

$$Q_{1}(\overline{X}):-g_{1}(\overline{X_{1}}),...,g_{n}(\overline{X_{n}}),$$

$$\neg h_{1}(\overline{Y_{1}}),...,\neg h_{k}(\overline{Y_{k}})$$

Requêtes sûres :

toute variable de tête apparait dans un sous-but positif du corps.

Mappings d'inclusions :

sous-buts négatifs de Q_1 sont mappés sur des sous-buts négatifs de Q_2 .

→ condition suffisante, mais pas nécessaire.

Inclusion de requêtes sans mappings d'inclusion

$$Q_2()$$
: $-a(X,Y), a(Y,Z), \neg a(X,Z)$

$$Q_1():-a(A,B),a(C,D),\neg a(B,C)$$

$$Q_1 \supseteq Q_2$$

Théorème [Requêtes avec négation]

Soit B le nombre total de variables et de constantes dans Q_2 .

 Q_1 inclut Q_2 ssi $Q_1(D) \supseteq Q_2(D)$ pour tout base de données D ayant au plus B constantes.

33

Exemple (I)

Film(ID,titre,année,genre) réalisateur(ID,réalisateur) acteur(ID, acteur)

$$Q(T,Y,D)$$
: $-Film(I,T,Y,G),Y \ge 1950,G = "comédie"$
 $Réalisateur(I,D),Acteur(I,D)$

$$V_1(T,Y,D)$$
: $-Film(I,T,Y,G),Y \ge 1940,G = "comédie"$
 $Réalisateur(I,D),Acteur(I,D)$

$$V_1 \supseteq Q$$
 \Rightarrow $Q'(T,Y,D): -V_1(T,Y,D), Y \ge 1950$

L'inclusion suffit pour montrer que V_1 peut servir pour répondre à Q.

Exemple (2)

$$Q(T,Y,D)$$
: $-Film(I,T,Y,G),Y \ge 1950,G = "comédie"$
 $Réalisateur(I,D),Acteur(I,D)$

$$V_2(I,T,Y):-Film(I,T,Y,G),Y\geq 1950,G="com\acute{e}die"$$

$$V_3(I,D)$$
: -Réalisateur (I,D) , Acteur (ID,D)

Pas d'inclusion mais intutivement, V_2 et V_3 servent pour répondre à Q.

$$Q''(T,Y,D): -V_2(I,T,Y), V_3(I,D)$$

Comment exprimer cette intuition?

Récriture de requêtes avec des vues !35

Récriture: formalisation

Input: Requête Q

Des vues: $V_1,...,V_n$

Récriture = une requête Q'composée des vues et des prédicats interprétés

Récriture équivalente de Q avec $V_1,...,V_n$ = récriture Q', tel que $Q' \Leftrightarrow Q$.

Exemple (3)

Film(ID,titre,année,genre) réalisateur(ID,réalisateur) acteur(ID, acteur)

Q(T,Y,D): $-Film(I,T,Y,G),Y \ge 1950,G = "comédie"$ Réalisateur(I,D),Acteur(I,D)

 $V_4(I,T,Y)$: $-Film(I,T,Y,G), Y \ge 1960, G = "comédie"$ $V_3(I,D)$: -Réalisateur(I,D), Acteur(I,D)Q'''(T,Y,D): $-V_4(I,T,Y), V_3(I,D)$

Récriture maximalement incluse

3

Récriture maximalement incluse

Input: Requête Q *L* langage de (récriture

L langage de (récriture de) requête Vues $V_1, ..., V_n$

Q' = récriture maximalement incluse de Q si:

- 1. Q' ∈ *L*,
- 2. $Q' \subseteq Q$, and
- 3. Il n'existe pas de Q'' dans

L tel que

 $Q'' \subseteq Q \text{ et } Q' \subset Q''$

Justification (pratique)

- Integration LAV (Local-as-View)
 - Besoin de récritures maximalement incluses
- Optimisation de requêtes
 - Besoin de récritures maximalement incluses
 - Implanté dans la plupart des SGBD industriels
- Conception physique de la base de données
 - Description des structures de stockage comme des vues

39

Exercice : quelles vues peuvent servir à la récriture de Q ?

$$Q(T,Y,D):-Film(I,T,Y,G),Y\geq 1950,G="com\'edie"$$

$$Directeur(I,D),Acteur(I,D)$$

$$V_2(I,T,Y):-Film(I,T,Y,G),Y\geq 1950,G="com\'edie"$$

$$V_3(I,D):-Directeur(I,D),Acteur(I,D)$$

$$V_6(T,Y):-Film(I,T,Y,G),Y\geq 1950,G="com\'edie"$$

$$V_7(I,T,Y)$$
: $-Film(I,T,Y,G),Y \ge 1950$,
 $G = "comédie", Prix(I,W)$

 $V_8(I,T)$: $-Film(I,T,Y,G), Y \ge 1940, G = "comédie"$