Hardness vs. Randomness

Nisan and Wigderson '89

Presented by Daniel Lee

19, April 2021

1/38

Table of Contents

- Motivation and Overview
- 2 PRG ⇒ derandomization
- \bigcirc Hardness \Longrightarrow PRG
- 4 Finishing touches
- Conclusion

Table of Contents

- Motivation and Overview
 - How useful is Randomness?
- 2 PRG ⇒ derandomization
- \bigcirc Hardness \Longrightarrow PRG
- 4 Finishing touches
- Conclusion

 Randomness is provably useful in alternative computation models such as Communication, Query, and Streaming

4/38

- Randomness is provably useful in alternative computation models such as Communication, Query, and Streaming
- What about in the general TM computation?

4/38

- Randomness is provably useful in alternative computation models such as Communication, Query, and Streaming
- What about in the general TM computation?
 - Historically believed to be powerful; interpolates between deterministic and nondeterministic computation

4 / 38

- Randomness is provably useful in alternative computation models such as Communication, Query, and Streaming
- What about in the general TM computation?
 - Historically believed to be powerful; interpolates between deterministic and nondeterministic computation
 - 2 But many (often surprising) instances of derandomization

4 / 38

- EQ (communication complexity)
- PCPs and IPs

5/38

- EQ (communication complexity)
- PCPs and IPs
- Quicksort
- Primality testing
- Undirected ST-reachability

- EQ (communication complexity)
- PCPs and IPs
- Quicksort
- Primality testing
- Undirected ST-reachability
- Polynomial Identity Testing ??

Main Corollaries (Informal)

Under...

• Extremely reasonable (think $P \neq NP$) hardness assumptions, $BPP \subset SUBEXP$

6/38

Main Corollaries (Informal)

Under...

- Extremely reasonable (think $P \neq NP$) hardness assumptions, $BPP \subset SUBEXP$
- Still very reasonable hardness assumptiions, $BPP \subseteq QuasiP$

6/38

Main Corollaries (Informal)

Under...

- Extremely reasonable (think $P \neq NP$) hardness assumptions, $BPP \subset SUBEXP$
- Still very reasonable hardness assumptiions, $BPP \subseteq QuasiP$
- Moderately reasonable hardness assumptions, BPP = P

6/38

Main Corollaries (Informal)

Under...

- Extremely reasonable (think $P \neq NP$) hardness assumptions, $BPP \subset SUBEXP$
- ullet Still very reasonable hardness assumptiions, $BPP \subseteq QuasiP$
- Moderately reasonable hardness assumptions, BPP = P

("reasonableness" to be defined, and up to individual interpretation)

6/38

Main Theorem

If there exists a function $f \in EXPTIME$ with hardness $H_f(\ell) \geq S(\ell^c)$ for some c > 0, then there exists some d > 0 s.t. for all time constructable bounds $t : \mathbb{N} \to \mathbb{N}$, $BPTIME(S(t^d)) \subseteq DTIME(2^{O(t^d)})$

Table of Contents

- Motivation and Overview
- \bigcirc PRG \Longrightarrow derandomization
- ∃ Hardness ⇒ PRG
- 4 Finishing touches
- Conclusion

(Informal) Definition

A pseudorandom generator G is a *quickly computable* function which takes a (short) random string and outputs a *longer string* which is *indistinguishable* from random for every *polynomial* size circuit family.

9/38

(Informal) Definition

A pseudorandom generator G is a *quickly computable* function which takes a (short) random string and outputs a *longer string* which is *indistinguishable* from random for every *polynomial* size circuit family.

• quickly computable: G(x) runs in 2^{ℓ} steps. (where $\ell = |x|$)

(Informal) Definition

A pseudorandom generator G is a *quickly computable* function which takes a (short) random string and outputs a *longer string* which is *indistinguishable* from random for every *polynomial* size circuit family.

- quickly computable: G(x) runs in 2^{ℓ} steps. (where $\ell = |x|$)
- *longer string:* Let $S: \mathbb{N} \to \mathbb{N}$ (polytime computable, monotone). $|G(x)| = S(\ell)$
 - The goal will be S (close to) exponential

(Informal) Definition

A pseudorandom generator G is a *quickly computable* function which takes a (short) random string and outputs a *longer string* which is *indistinguishable* from random for every *polynomial* size circuit family.

- quickly computable: G(x) runs in 2^{ℓ} steps. (where $\ell = |x|$)
- *longer string:* Let $S: \mathbb{N} \to \mathbb{N}$ (polytime computable, monotone). $|G(x)| = S(\ell)$
 - The goal will be S (close to) exponential
- indistinguishable: For every circuit family $C \lesssim S(\ell)^2$:

$$\Pr_{z \sim U_{\ell}}[C(G(z)) = 1] - \Pr_{x \sim U_{S(\ell)}}[C(x) = 1] < 0.1$$

9/38

PRG ⇒ derandomization

Lemma 2.1

If there exists a quick pesudorandom generator $G: \ell \to S(\ell)$, then for any time constructible bound t = t(n):

$$BPTIME(S(t)) \subseteq DTIME(2^{O(t)})$$

10 / 38

PRG \implies derandomization proof

Lemma 2.1

If there exists a quick pesudorandom generator $G:\ell\to S(\ell)$, then for any time constructible bound t=t(n):

$$BPTIME(S(t))$$

$$\subseteq DTIME(2^{O(t)})$$

M & BPTFME(S(t)) accepts L

- M can use at most S(t) and.

Define N'(w, p & \(\frac{5}{3}\), 13t) >= M(w, b(p))

Claim: w \(\text{L})

Claim:
$$W \in L$$

Pr [$N'(w, p) = 1$) $\geq \frac{2}{3} - \frac{1}{10} > \frac{1}{2}$

Proble

Assume otherwise, Fix $w \in L$; then the machine which thus in $r \in \Sigma_0, 13^{S(e)}$

and outputs $M(w, r)$ is a detector for G .

PRG ⇒ derandomization proof ctn...

Lemma 2.1

If there exists a quick pesudorandom generator $G:\ell\to S(\ell)$, then for any time constructible bound t=t(n):

$$BPTIME(S(t))$$

 $\subset DTIME(2^{O(t)})$

Since N' uses only to Sits of ourdonness, we can brute force 't.

PRG \implies derandomization proof ctn...

Lemma 2.1

```
If there exists a
quick
pesudorandom
generator
G: \ell \to S(\ell),
then for any time
constructible
bound t = t(n):
 BPTIME(S(t))
\subseteq DTIME(2^{O(t)})
```

13 / 38

Corollaries

Lemma 2.1

If there exists a quick pesudorandom generator $G: \ell \to S(\ell)$, then for any time constructible bound t = t(n):

$$BPTIME(S(t))$$

 $\subseteq DTIME(2^{O(t)})$

Corollaries

If there exists a __-pseudorandom generator then __:

- $2^{\ell^{\epsilon}} \dots BPP \subseteq QuasiP$
- **③** $\forall c, \ell^c \dots BPP \subseteq SUBEXP$

The above lemma now gives us a goal for what we need from a pseudorandom generator.

15/38

The above lemma now gives us a goal for what we need from a pseudorandom generator.

"Long enough" stretch. Ideally exponential.

15 / 38

The above lemma now gives us a goal for what we need from a pseudorandom generator.

- "Long enough" stretch. Ideally exponential.
- "Hard enough." In particular, hard for any circuit of size $S(\ell)^2$.

The above lemma now gives us a goal for what we need from a pseudorandom generator.

- "Long enough" stretch. Ideally exponential.
- "Hard enough." In particular, hard for any circuit of size $S(\ell)^2$.

The next step is to show how to construct such a generator from circuit lowerbound assumptions.

Table of Contents

- Motivation and Overview
- 2 PRG ⇒ derandomization
- \bigcirc Hardness \Longrightarrow PRG
- 4 Finishing touches
- Conclusion

Hardness

Definition

Let $f_m: \{0,1\}^m \to \{0,1\}$ be a boolean valued function family. The hardness of f, denoted $H_f(m)$, is the maximum integer h_m s.t. for all circuits of size at most h_m :

$$|\Pr_{x \in U_m}[C(x) = f(x)] - \frac{1}{2}| < \frac{1}{h_m}$$

"No small circuit can approximate f"

Daniel Lee Hardness vs Randomness Apr 2021 17 / 38

Hardness

Definition

Let $f_m: \{0,1\}^m \to \{0,1\}$ be a boolean valued function family. The hardness of f, denoted $H_f(m)$, is the maximum integer h_m s.t. for all circuits of size at most h_m :

$$|\Pr_{x \in U_m}[C(x) = f(x)] - \frac{1}{2}| < \frac{1}{h_m}$$

"No small circuit can approximate f"

Lemma (Yao) Informal

Hardness on average can be amplified to worst case hardness.

Daniel Lee Hardness vs Randomness Apr 2021 17 / 38

Baby steps

How can we generate one pseudorandom bit?

18/38

Baby steps

How can we generate one pseudorandom bit?

Lemma (Yao)

The following are equivalent (fixing length n, size s, indistinguishability parameter ϵ):

• *G_n* is pseudorandom. For any circuit *C* smaller than *s*:

$$\Pr_{z \sim G_n}[C(z) = 1] - \Pr_{x \sim U_n}[C(x) = 1] < \epsilon$$

• G_n is unpredictable. For any circuit C smaller than s:

$$\Pr_{\substack{z \sim G_n \\ i \in [n]}} [C(z_1, z_2, \dots, z_{i-1}) = z_i] < \frac{1}{2} + \epsilon/n$$

Daniel Lee Hardness vs Randomness Apr 2021 18 / 38

Baby steps

How can we generate one pseudorandom bit?

Lemma (Yao)

The following are equivalent (fixing length n, size s, indistinguishability parameter ϵ):

• *G_n* is pseudorandom. For any circuit *C* smaller than *s*:

$$\Pr_{z \sim G_n}[C(z) = 1] - \Pr_{x \sim U_n}[C(x) = 1] < \epsilon$$

• G_n is unpredictable. For any circuit C smaller than s:

$$\Pr_{\substack{z \sim G_n \\ i \in [n]}} [C(z_1, z_2, \dots, z_{i-1}) = z_i] < \frac{1}{2} + \epsilon/n$$

Goal becomes: hard ⇒ unpredictable

Daniel Lee Hardness vs Randomness Apr 2021 18 / 38

Pause for ideation

Goal:
$$G: L \to L+1$$

 $\times \mapsto \times, f(\times) \to \text{any "predictor" must be asked to compate }$
 $f \omega / \text{non-negligible }$
 polynoisity.

But how to generalize --Lowe can split x into smaller pieces

Lowe can split x into smaller pieces

Lower can split x into smaller pi

Pause for ideation

Daniel Lee Hardness vs Randomness Apr 2021 20 / 38

Nisan Wigderson Pseudorandom Generator

Let $\mathcal{Q}^{\ell} = \{Q_1, \dots, Q_n\}$ where $Q_i \subseteq [\ell]$.

Let f be a boolean function.

Then we define $\mathit{NW}^f_\mathcal{Q}:\{0,1\}^\ell \to \{0,1\}^n$ as

$$NW_{Q}^{f}(x) = f(x|_{Q_1}).f(x|_{Q_2})...f(x|_{Q_n})$$

Daniel Lee Hardness vs Randomness Apr 2021 21 / 38

Nisan Wigderson Pseudorandom Generator

Let $\mathcal{Q}^{\ell} = \{Q_1, \dots, Q_n\}$ where $Q_i \subseteq [\ell]$.

Let f be a boolean function.

Then we define $\mathit{NW}_\mathcal{Q}^f: \{0,1\}^\ell \to \{0,1\}^n$ as

$$NW_{Q}^{f}(x) = f(x|_{Q_1}).f(x|_{Q_2})...f(x|_{Q_n})$$

Goal: Define Q so that (if f is hard) NW is pseudorandom.

21/38

Nisan Wigderson Pseudorandom Generator

Let $\mathcal{Q}^{\ell} = \{Q_1, \dots, Q_n\}$ where $Q_i \subseteq [\ell]$.

Let f be a boolean function.

Then we define $\mathcal{NW}_{\mathcal{Q}}^f:\{0,1\}^\ell \to \{0,1\}^n$ as

$$NW_{Q}^{f}(x) = f(x|_{Q_1}).f(x|_{Q_2})...f(x|_{Q_n})$$

Goal: Define Q so that (if f is hard) NW is pseudorandom. The idea will be to maximize size of each Q_i while minimizing dependence/overlap.

21/38

(k, m)-design

Define Q^{ℓ} as above. Q^{ℓ} is a (k, m)-design if:

- $\forall i \neq j, |Q_i \cap Q_j| \leq k$

The goal being to bound the dependence between sets.

22 / 38

Hardness ⇒ PRG. Main Lemma

Lemma 2.4

Let f have hardness $H_f(m) > n^2$. Let \mathcal{Q}^{ℓ} be a $(\log n, m)$ -design. Then $NW_{\Delta}^f: \ell \to n$ is a pseudorandom generator.

Daniel Lee Hardness vs Randomness Apr 2021 23 / 38

Hardness ⇒ PRG. Main Lemma

Lemma 2.4

Let f have hardness $H_f(m) > n^2$. Let \mathcal{Q}^{ℓ} be a $(\log n, m)$ -design. Then $NW_A^f: \ell \to n$ is a pseudorandom generator.

Some notes:

- log *n* overlap is going to be important
- ullet We'll come back to figuring out how to actually construct \mathcal{Q}^ℓ

23 / 38

$\mathsf{Hardness} \implies \mathsf{PRG}. \mathsf{Proof}...$

Lemma 2.4

Let have hardness $H_f(m) > n^2$. Let \mathcal{Q}^ℓ be a $(\log n, m)$ -design. Then $NW_A^f: \ell \to n$ is a pseudorandom generator.

24 / 38

Hardness ⇒ PRG. Proof...

Lemma 2.4

Let have hardness $H_f(m) > n^2$. Let \mathcal{Q}^ℓ be a $(\log n, m)$ -design. Then $NW_A^f: \ell \to n$ is a pseudorandom generator.

$$f(x_{i}') = f(x_{i}', x_{i}') = f(x_{i}', x_$$

25 / 38

$\mathsf{Hardness} \implies \mathsf{PRG}. \; \mathsf{Proof}...$

Lemma 2.4

Let have hardness $H_f(m) > n^2$. Let \mathcal{Q}^ℓ be a $(\log n, m)$ -design. Then $NW_A^f: \ell \to n$ is a pseudorandom generator.

Define
$$D(\omega)$$

- replace each input j of C

with b'_j

- set $\times|_{Q_j} = \times$

Then clearly $|D| \not\sim Cl \leq m^2$

And $Pr[D(\omega) = f(\omega)]$

= $Pr[C(P'_i(x_i), -, P'_{or}(x_{i-1})) \neq f(x_i)]$
 $\frac{1}{2} - \frac{1}{10n^2}$

(submoditing Hardness, D

$\mathsf{Hardness} \implies \mathsf{PRG}.\ \mathsf{Proof}...$

Lemma 2.4

Let $f \in EXPTIME$ have hardness $H_f(m) > n^2$. Let \mathcal{Q}^{ℓ} be a $(\log n, m)$ design. Then $NW_A^f:\ell \to n$ is a pseudorandom generator.

Daniel Lee Hardness vs Randomness Apr 2021 27 / 38

Table of Contents

- Motivation and Overview
- 2 PRG ⇒ derandomization
- \bigcirc Hardness \Longrightarrow PRG
- 4 Finishing touches
 - Constructing combinatorial designs
 - Connecting the bounds
- 5 Conclusion

Constructing combinatorial designs

Lemma 2.5

Let $\log n \le m \le n$, and $\ell = O(m^2)$. Then there exists a $(\log n, m)$ -design of size n on input length ℓ . This design is $DSPACE(\log n)$ computable (and therefore polytime computable).

Daniel Lee Hardness vs Randomness Apr 2021 29 / 38

Constructing combinatorial designs

Lemma 2.5

Let $\log n \le m \le n$, and $\ell = O(m^2)$. Then there exists a $(\log n, m)$ -design of size n on input length ℓ . This design is $DSPACE(\log n)$ computable (and therefore polytime computable).

Really nice proof for this, but first to motivate the parameters...

29 / 38

Connecting the bounds

Theorem

If there exists a function $f \in EXPTIME$ with hardness $H_f(\ell) \geq S(\ell^c)$ for some c > 0, then there exists an $S(\ell^d)$ -pseudorandom generator for some d > 0.

30 / 38

Connecting the bounds

Lemma 2.4

Let $f \in EXPTIME$ have hardness $H_f(m) > n^2$. Let \mathcal{Q}^{ℓ} be a $(\log n, m)$ -design. Then $NW_{\Lambda}^{f}: \ell \rightarrow n$ is a pseudorandom generator.

Lemma 2.5

Let $\log n < m < n$, and $\ell = O(m^2)$. Then there exists a $(\log n, m)$ -design of size non input length ℓ . This design is polytime computable (in n).

Theorem

If there exists a function $f \in EXPTIME$ with hardness $H_f(\ell) \geq S(\ell^c)$ for some c > 0, then there exists an $S(\ell^d)$ -pseudorandom generator for some d > 0.

$$d = \frac{c}{4} \qquad l = m^{2}$$

$$H_{\xi}(m) \geq S(m^{c}) = S(m^{4}d)$$

$$= S(l^{2}d)$$

$$\geq S(l^{d})^{2}$$

The big payoff

Main Theorem

If there exists a function $f \in EXPTIME$ with hardness $H_f(\ell) \geq S(\ell^c)$ for some c > 0, then there exists some d > 0 s.t. for all time constructable bounds $t : \mathbb{N} \to \mathbb{N}$, $BPTIME(S(t^d)) \subseteq DTIME(2^{O(t^d)})$

Main corollaries

K EXP TEME

If there exists a function f s.t. $H_f \ge$ __ then __:

- $2^{\ell^{\epsilon}} \dots BPP \subseteq QuasiP$
- **3** $\forall c, \ell^c \dots BPP \subseteq SUBEXP$

V Just replace - pseudomdom

Back to combinatorial designs

Lemma 2.5

Let $\log n < m < n$, and $\ell = O(m^2)$. Then there exists a $(\log n, m)$ -design of size *n* on input length ℓ . This design is $DSPACE(\log n)$ computable (and therefore polytime computable).

Back to combinatorial designs

Lemma 2.5

Let $\log n < m < n$ and $\ell = O(m^2)$. Then there exists a $(\log n, m)$ -design of size *n* on input length ℓ . This design is $DSPACE(\log n)$ computable (and therefore polytime computable).

2.5

$$T_{i}(\omega) = Y_{j}(\omega) \langle S \rangle = S \rangle = N \rangle$$

So we restrict:

 $T_{i}(\omega) = Y_{j}(\omega) \langle S \rangle = S$

Table of Contents

- Motivation and Overview
- 2 PRG ⇒ derandomization
- ∃ Hardness ⇒ PRG
- 4 Finishing touches
- Conclusion
 - Summary
 - A sampling of corollaries
 - Some followups/questions

• Goal: Show that circuit lower bounds imply derandomization

35 / 38

- Goal: Show that circuit lower bounds imply derandomization
- Step 1: PRG implies derandomization, via brute force simulation

35 / 38

- Goal: Show that circuit lower bounds imply derandomization
- Step 1: PRG implies derandomization, via brute force simulation
 - showed that if an $S(\ell)$ -pseudorandom generator exists, then $BPTIME(S(t)) \subseteq DTIME(2^{O(t)})$

35 / 38

- Goal: Show that circuit lower bounds imply derandomization
- Step 1: PRG implies derandomization, via brute force simulation
 - showed that if an $S(\ell)$ -pseudorandom generator exists, then $BPTIME(S(t)) \subseteq DTIME(2^{O(t)})$
- Step 2: Hardness implies PRG, via combinatorial designs

- **Goal:** Show that circuit lower bounds imply derandomization
- Step 1: PRG implies derandomization, via brute force simulation
 - showed that if an $S(\ell)$ -pseudorandom generator exists, then $BPTIME(S(t)) \subseteq DTIME(2^{O(t)})$
- Step 2: Hardness implies PRG, via combinatorial designs
 - constructed a pseudorandom generator from a hard function and a combinatorial design

- Goal: Show that circuit lower bounds imply derandomization
- Step 1: PRG implies derandomization, via brute force simulation
 - showed that if an $S(\ell)$ -pseudorandom generator exists, then $BPTIME(S(t)) \subseteq DTIME(2^{O(t)})$
- Step 2: Hardness implies PRG, via combinatorial designs
 - constructed a pseudorandom generator from a hard function and a combinatorial design
 - constructed a combinatorial design via polynomials on a finite field

The main corollary was a conditional result. But some nice unconditional results fall out as well.

Daniel Lee Hardness vs Randomness Apr 2021 36 / 38

The main corollary was a conditional result. But some nice unconditional results fall out as well.

• $BPAC^0 \subseteq \bigcup_c DSPACE(\log^c n)$ (using parity)

36 / 38

The main corollary was a conditional result. But some nice unconditional results fall out as well.

- $BPAC^0 \subseteq \bigcup_c DSPACE(\log^c n)$ (using parity)
- \bullet almost-PH = PH

36 / 38

The main corollary was a conditional result. But some nice unconditional results fall out as well.

- $BPAC^0 \subseteq \bigcup_c DSPACE(\log^c n)$ (using parity)
- almost-PH = PH
- $BPP \subseteq \Sigma_2 \cap \Pi_2$ (not new, just a new proof)

36 / 38

Questions

- Can we relax this to uniform circuits?
- Do we get any nice followup results by applying Yao's minimax principle?
- Can this generator be used to convert public randomness to private randomness in two party-communication?

37 / 38

References

N. Nisan. A. Wigderson.

Hardness vs Randomness

29th Annual Symposium on Foundations of Computer Science (1988)

S. Arora. B. Barak.

Computational Complexity: A Modern Approach, 403-413