Problem Set 0

Recalling Some Basic Results from Real Analysis With Proof

NOTE: Earlier problems may be useful in proving later problems

Question 1 - A vital chain of inequalities

For all $x, y \in \mathbb{R}$, show the following chain of inequalities.

$$|x| - |y| \le ||x| - |y|| \le |x - y| \le |x| + |y|$$

Question 2- A Useful Triangle Inequality Type Result:

Let x, y, p be real numbers satisfying $x, y \ge 0$ and $p \in (0, 1]$. Show that

$$(x+y)^p \le (x)^p + (y)^p$$

Hint: Since $p \in (0,1)$, there exists $m \in (0,1)$ such that p = 1 - m.

Question 3 - Limits Preserve Order

- (a) Let $\{a_n\}$ and $\{b_n\}$ be sequence of real numbers such that $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$. Show that if there exists an $N \in \mathbb{N}$ such that $a_n \leq b_n$ for all $n \geq N$ then $a \leq b$.
- (b) Give an example to show that $a_n < b_n \forall n$ and $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$, but $a \le b$, as opposed to a < b.

Question 4 - Useful Properties of Integrals

Show the following:

- (a) Let $f:[a,b]\to\mathbb{R}$ be Riemann integrable with $f(x)\geq 0$ for all $x\in[a,b]$. Show that $\int_a^b f(x)dx\geq 0$.
- (b) Let $f,g:[a,b]\to\mathbb{R}$ be Riemann integrable with $f(x)\geq g(x)$ for all $x\in[a,b]$. Show that $\int_a^bf(x)dx\geq\int_a^bg(x)dx$.

(c) Let $f:[a,b]\to\mathbb{R}$ be Riemann integrable. Let $d\in\mathbb{R}$ satisfy a< b< d. Show that $\int_a^b f(x)dx \leq \int_a^d f(x)dx$.

Question 5 - Series Small Tails Theorem

Question 5 - Series Small Tails Theorem Let $a_n \in \mathbb{R}$ for all $n \in \mathbb{N}$ and assume that $\sum_{n=1}^{\infty} a_n < \infty$, that is assume that the series $\sum_{n=1}^{\infty} a_n$ converges. Show that $\lim_{n \to \infty} \sum_{k=n+1}^{\infty} a_k = 0$.

Question 6: The ϵ definition of the supremum

Let S be a non-empty set of real numbers that is bounded above. Show that a is the supremum of S if and only if for all $\epsilon > 0$ there exists $s \in S$ such that $a - \epsilon < s$.