Worksheet #27; date: 04/26/2018 MATH 53 Multivariable Calculus

1. (Stewart 16.7.9) Evaluate the surface integral

$$\iint_{S} x^{2}yz \, dS,$$

where S is the part of the plane 2x+2y+z=4 that lies above the rectangle $[0,3]\times[0,2].$

2. (Stewart 16.7.17) Evaluate the surface integral

$$\iint_{S} (x^2z + y^2z) \, dS,$$

where S is the hemisphere $x^2 + y^2 + z^2 = 4$, $z \ge 0$.

3. (Stewart 16.7.25) Evaluate the surface integral (a.k.a. flux) $\iint_S \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z^2\mathbf{k}$, and S is the sphere with radius 1 and center the origin, oriented outwards.

4. (Stewart 16.7.27; setup only) Evaluate the surface integral (a.k.a. flux) $\iint_S \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = y\mathbf{j} - z\mathbf{k}$, and S consists of the paraboloid $y = x^2 + z^2$, $0 \le y \le 1$, and the disk $x^2 + y^2 \le 1$, y = 1, oriented outwards.

5. What are the conditions for Stokes'?

6. Similarity between Stokes' and Green's: $\operatorname{curl} \mathbf{F} \approx Q_x - P_y$. For Green's, think about $\langle P, Q, 0 \rangle$. This similarity shows up in verifying conservativeness too!

7. (Stewart 16.8.5) Use Stokes' Theorem to evaluate $\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F} = xyz\mathbf{i} + xy\mathbf{j} + x^2yz\mathbf{k}$, and S consists of the top and the four sides (but not the bottom) of the cube with vertices $(\pm 1, \pm 1, \pm 1)$, oriented outwards.

8. (Stewart 16.8.9) Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = xy\mathbf{i} + yz\mathbf{j} + zx\mathbf{k}$, and C is the boundary of the part of the paraboloid $z = 1 - x^2 - y^2$ in the first octant, oriented counterclockwise as viewed from above.