Gilda Aparecida de Assis

- É uma representação computacional de uma entidade, real ou imaginária, contendo:
 - Descrição geométrica ou formulação matemática
 - Atributos de apresentação
 - Atributos dependentes da aplicação
- Podem ser:
 - Simples
 - Hierárquicos

- Uma forma de descrever o objeto gráfico é a partir de equações matemáticas.
- Outra forma é descrever o objeto gráfico a partir de amostras do mundo real ou de uma simulação.
- A forma como um objeto gráfico deve ser descrito depende tanto a natureza do objeto gráfico como das características da aplicação.

```
Objeto Gráfico = Geometria = \{ (0,0) (4,0) (4,6) (2,10) (0,6) (0,0) \}

Cor_{RGB} = \{ 0.0, 0.0, 1.0 \}
```


■ GLUT Shapes

Objeto Gráfico =

```
glPushMatrix();
    glTranslated(-2.4, 1.2, -6);
    qlRotated(60,1,0,0);
    qlRotated(a, 0, 0, 1);
    glutSolidSphere (1, slices, stacks);
glPopMatrix();
                     raio
glPushMatrix();
    qlTranslated(0,1.2,-6);
    glRotated(60,1,0,0); altura
    qlRotated(a, 0, 0, 1);
    glutSolidCone (1, 1, slices, stacks);
glPopMatrix();
                 raio de base
```

Objeto Gráfico - Equações

- A principal vantagem de descrever os objetos gráficos a partir de equações matemáticas é que seu armazenamento precisa de pouca memória.
- A principal desvantagem é que as equações se tornam complexas à medida em que se simula os detalhes do mundo real.

Objeto Gráfico - Geometria

- A vantagem da descrição por geometria é que a sua complexidade não depende do grau de realismo, permitindo que objetos do mundo real sejam simulados sem sobrecarregar o processamento.
- A desvantagem é que utiliza muito armazenamento para descrever o objeto gráfico.

Geometria: vértices e arestas

Sistemas de Coordenadas

- Dado um sistema de coordenadas (sistema de referência) é possível definir o tamanho e posição dos objetos gráficos.
- Existem diversos sistemas de coordenadas:
 - Coordenadas esféricas
 - Coordenadas polares

Coordenadas cartesianas

Coordenadas Esféricas (raio, ângulo γ, ângulo φ)

Sistemas de Coordenadas de Computação Gráfica

- Utilizamos diferentes sistemas de coordenadas para descrever os objetos (SRO, SRU, SRC, SRD)
 - Objetos devem ser especificados independentemente do sistema de coordenadas do dispositivo
 - o Por que?
 - Pessoas preferem definir os objetos com seus tamanhos reais (metros, centímetros, ...).
 - Portabilidade de um dispositivo de saída para outro...

Sistema de Referência do Universo

- SRU é onde as instâncias dos objetos são colocadas.
 - Pode ser coordenadas cartesianas com metro ou centímetros (ex. CAD de arquitetura) ou nanômetro (ex. CAD de mecânica de precisão) ou coordenadas polares (ex. Localização de aviação, radar).

Sistemas de Referência do Objeto

- Sistemas de Referência do Objeto (SRO) é utilizado para a descrição de cada objeto gráfico.
- Trata o objeto como um mini universo individual
- Centro do SRO pode ser o centro de massa do objeto.
 - Na modelagem de sólidos, o centro de massa é o pivô.

Sistemas de Referência Normalizado

- Sistemas de Referência Normalizado (SRN) utiliza coordenadas com valores entre 0 e 1.
- Sistema de referência intermediário entre o SRU e o SRD (Sistema de referência do dispositivo).
- Objetiva gerar imagens independente do dispositivo

Sistemas de Referência do Dispositivo

- Sistema de Referência do Dispositivo (SRD), onde as imagens são exibidas.
- Podem ser o número máximo de pixels (640x480, 800x600, ...) ou indicar a resolução especificada no Sistema Operacional (ex. 800x600xTrue Color-32 bits)

Transformação entre Sistemas de Coordenadas

Sistemas de Coordenadas

Sistemas de Coordenadas

