QCM n° 10

Un peu de calcul.

Échauffement n°1 Soit $P = X^6 - 3X^5 - 6X^4 + 6X^3 + 9X^2 - 6X + 1$ Calculez P(4) et donnez le quotient et le reste de la division euclidienne de P par (X - 4).

Échauffement n°2 Effectuez la division euclidienne de $A = X^7 - X^6 + X^5 + 2X^2 + 1$ par $B = X^3 - X - 1$.

QCM - cocher une case si la phrase qui suit est correcte.

Question n°1 Soit f une fonction continue sur $[0,1[$.
\square Si $\forall x \in [0, 1], f(x) > 0$, alors $\exists a > 0$ tel que $\forall x \in [0, 1], f(x) \geqslant a$.
\square Si f admet une limite finie en a alors f est prolongeable par continuité en a
\square Si $\lim_{x\to 1} f(x) = +\infty$, alors f est minorée sur $[0,1[$.
\square Alors $\frac{f(x)-f\left(\frac{1}{2}\right)}{x-\frac{1}{2}}$ admet une limite quand x tend vers $\frac{1}{2}$.
Question n°2 Soit f une fonction définie et continue sur $]0,1]$.
\square Si f admet une limite en 0, alors f est prolongeable par continuité en 0. \square Alors f est bornée sur $]0,1]$.
\square Alors pour tout réel c de $]0,1]$, f est bornée sur $[c,1]$.
\square Si f est croissante et majorée sur $[0,1]$, alors f est bornée sur $[0,1]$.
is j est croissance et majoree sur jo, ij alois j est bornee sur jo, ij.
Question n°3 Soit f une fonction pérodique sur \mathbb{R} .
\square Alors f est bornée.
\square Si f admet une limite finie en $+\infty$, alors f est constante.
\square Si f admet une limite finie en $+\infty$ et est continue, alors f est constante.
\square Si f est continue, f est non seulement bornée, mais en plus elle atteint ses bornes.
Question n^4 Soit f une application continue sur un intervalle I de \mathbb{R} .
\square Si $I = [a, b]$ alors f est bornée sur I
\square Si $I = \mathbb{R}$ et f est bornée, alors f admet une limite en $+\infty$.
\square Si $I = \mathbb{R}$ et f admet une limite en $-\infty$ et en $+\infty$, alors f est bornée.

Question $n^{\circ}5$ Soit f une application continue.
\square Si f ne s'annule pas, elle est de signe constant.
\Box f est bornée et atteint ses bornes.
$\Box f$ admet un sup dans $\bar{\mathbb{R}}$.
\square Si elle est monotone, elle admet une limite en tout point de son ensemble de définition
Question n°6 Soit $f: I \to \mathbb{R}$, et $a, b \in I$ tels que $a < b$.
\square Si f est croissante, $f([a,b]) = [f(a), f(b)].$
\square Si f est continue, $f([a,b]) = [f(a),f(b)].$
\square Si f est décroissante et continue, f admet une limite en $+\infty$.
\square Si f est décroissante et continue, f admet une limite à gauche en b .
\square Si f est décroissante et continue, $f([a,b]) = [f(a), \lim_{b \to a} f[a,b])$
\square Si f est décroissante et continue, $f([a,b[)=]\lim_{b-}f,f(a)]$.
Question $n^{\circ}7$ Soit A et B deux polynômes.
\square Si deg $A > \deg B$, alors deg $(A + B) = \deg A$.
$\Box \deg(A+B) \geqslant \min(\deg A, \deg B).$
$\Box \deg(A \circ B) = (\deg A) \times (\deg B).$
\square Si $A B$, alors deg $A \leq \deg B$.
\square Si $A B$, toute racine de A est racine de B .
\square Si toute racine de A est racine de B, alors $A B$.