Complexity Theory (class 7 of 15)

Álvaro Moreira alvaro.moreira@inf.ufrgs.br

Instituto de Informática Universidade Federal do Rio Grande do Sul Porto Alegre, Brasil http://www.inf.ufrgs.br

Relation between NP and P

• Recall that:

• Now let's define

$$\mathsf{EXP} = \bigcup_{c\geqslant 1} \mathsf{DTIME}(2^{\mathfrak{n}^c})$$

The following relation between P and NP and EXP is trivial:

Claim 2.4
$$P \subseteq NP \subseteq EXP$$

Relation between P and NP (II)

Proof of P \subseteq NP:

Suppose $L \in P$ is decided in polynomial-time by a TM N. Then $L \in NP$ since we can take N as the machine M in **Definition 2.1** and make p(|x|) the zero polynomial (in other words, u is an empty string).

Proof of $NP \subseteq EXP$:

Suppose $L \in NP$ and suppose TM M and the polynomial p are as in **Definition 2.1** . We can **decide** L, i.e. we can **decide** if a string $x \in L$, by enumerating **all** possible strings u of size at most p(|x|) (i.e all $u \in \{0,1\}^{p(|x|)}$), and by using M to check whether one of these strings is a **certificate** for the input x. If there is such a string then $x \in L$ otherwise if all strings u are tested by M and none of them is a certificate, the conclusion is that $x \not\in L$.

Relation between P and NP (III)

Note that the machine M used above runs in polynomial time (see **Definition 2.1**) but it might have to check all possible strings u.

The size of each $\mathfrak u$ (according to **Definition 2.1**) is at most polynomial in the size $\mathfrak n$ of the input $\mathfrak x$. In other words the size of each $\mathfrak u$ is $O(\mathfrak n^c)$ for some c>1.

Since the number of strings $\mathfrak u$ of size $O(\mathfrak n^c)$ in $\{0,1\}^*$ is $2^{O(\mathfrak n^c)}$ (exponential), and since M might have to check all of them, the number of times that we might have to run M do decide L is exponential. Hence $L \in EXP$

Reduction (I)

- The independent set problem is an example of a problem at least as hard as any other language in NP
- That means that, if independent set problem has a polynomial-time algorithm then so do all the problems in NP.
- This property is called NP-hardness.
- How can we prove that a language B is at least as hard as some other language A? (or, equivalently, how can we prove that a problem B is at least as hard as some other problem A?)
- The crucial tool is the notion of a polynomial reduction

Reduction (II)

Definition 2.7 (Reductions, NP-hardness and NP-completeness)

- We say that a language L ⊆ {0,1}* is polynomial-time Karp reducible to a language L' ⊆ {0,1}*, denoted by L ≤_p L', if there is a polynomial-time computable function f: {0,1}* → {0,1}* such that for every x ∈ {0,1}*, x ∈ L iff f(x) ∈ L'.
- We say that L' is **NP-hard** i $L \leq_p L'$ for every $L \in NP$.
- We say that L' is **NP-complete** if L' is NP-hard and L' \in NP.

Reduction (III)

The figure below illustrates the process of reduction of a language L to a language L^\prime :

Observe that if $L\leqslant_p L'$ and if $L'\in P$ (i.e. the algorithm for L' in the figure above is polynomial) then $L\in P$

Reduction and NP-Completeness

For proving the theorem below note that if p and q are two functions that grow at most n^c and n^d respectively, then the function $p\circ q$ grows at most n^c d

Theorem 2.8

- 1. (Transitivity) If $L \leq_p L'$ and $L' \leq_p L''$, then $L \leq_p L''$.
- 2. If language L is NP-hard and $L \in P$ then P = NP.
- 3. If language l is NP-complete then $L \in P$ if and only if P = NP.

Polynomial reduction is transitive

Below is the proof that if $L \leq_p L'$ and $L' \leq_p L''$, then $L \leq_p L''$:

- If f_1 is a polynomial-time reduction from L to L' and f_2 is a polynomial-time reduction from L' to L'' then the function $f_2 \circ f_1$ is a polynomial-time reduction from L to L'' since:
 - (i) given x, $f_2\circ f_1$ takes polynomial-time to compute $(f_2\circ f_1)(x)$ (see observation before **Theorem 2.8**), and
 - (ii) since $x \in L$ iff $f_1(x) \in L'$ and since $f_1(x) \in L'$ iff $f_2(f_1(x)) \in L'$, we have that $x \in L$ iff $f_2(f_1(x)) \in L'$

Exercise: Prove 2 and 3 of Theorem 2.8

NP-Completeness (I)

- According to **Definition 2.7** a language is NP-Complete if it is NP — Hard and if is in NP.
- Stephen Cook and Leonid Levin independently were the first to prove that a problem is NP-Complete (the problem SAT)
- They did that by proving that
 - (i) all problems in NP can be reduced to SAT (i.e that SAT is NP-Hard), and that
 - (ii) SAT is a problem in NP

NP-Completeness (II)

- Later Karp showed that many problems of practical interest are NP-Complete problems
- To prove that a language L is NP-Complete, Karp didn't use the approach used by Cook and Levin, but instead he
 - (i) proved that L is in NP and
 - (ii) picked a language L' already known to be NP-Complete and showed that $L'\leqslant_{p}L$

Exercise: Reflect on why the strategy used by Karp works for proving that a language L is NP-Complete

The Cook-Levin Theorem

Karp's work popularized the notion of NP-Completeness and by using his strategy thousands of other problems have been proved to be to NP-Complete

Hence the fundamental importance of the work of Cook and Levin since they established the **first** NP-Complete problem (which could then be used in Karp's reductions)

Theorem 2.10 (Cook-Levin Theorem [Coo71, Lev73])

- 1. SAT is NP-Complete
- 2. 3SAT is NP-Complete

Before proving this theorem lets take a look at the problems \overline{SAT} and $\overline{3SAT}$

The SAT Problem (I)

A Boolean formula consists of variables $x_1, \dots x_n$ and the logical operators AND (\land) , NOT (\neg) and OR (\lor)

If φ is a Boolean formula over variables $x_1, \ldots x_n$, and $z \in \{0, 1\}^n$, then $\varphi(z)$ denotes the value of φ when the variables of φ are assigned the values in z (1 is true and 0 is false)

A formula φ is **satisfiable** if there there exists some assignment z such that $\varphi(z)$ is true, otherwise we say that it is **unsatisfiable**.

The formula $(x_1 \wedge x_2) \vee (x_2 \wedge x_3) \vee (x_3 \wedge x_1)$ with 3 variables, for instance, is satisfiable since the assignment $x_1 = 1$, $x_2 = 0$, and $x_3 = 1$ satisfies it

The SAT Problem (II)

- Any Boolean formula can be put in the CNF form (shorthand for Conjunctive Normal Form)
- A formula is in CNF if it is a conjunction of clauses, each clause is a disjunction of literals (variables and negation of variables). Example: $(x_1 \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee \overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee x_3 \vee \overline{x_4})$, where \overline{x} denotes the negation of the variable x
- The SAT language consists of all satisfiable Boolean formulas in the CNF format
- The 3SAT language consists of all satisfiable formula in the 3CNF form (CNF form in which all clauses have at most 3 literals)

Proving that SAT is NP-Complete

In order to show that SAT is NP-Complete we have to show that SAT is in NP and that SAT is NP-Hard.

The most difficult part of the proof that SAT is NP-Complete is to prove that SAT is NP-hard, i.e, to prove that all problems in NP can be reduced to SAT (this proof will be done later). The proof that SAT is in NP is easy:

Exercise: Prove that SAT is in NP

Exercise: Assuming the fact that SAT has already been proved to be NP-Complete explain what could be a stategy to prove that 3SAT is NP-Complete