Kort om konfidensintervall

Andreas Rasmusson

November 14, 2024

Definition

Låt

- 1. X vara en slumpvariabel med (okänt) väntevärde $\mu < \infty$ och (okänd) standardavvikelse $0 < \infty$
- 2. $\{X_i\}_{i=1}^n$ vara ett i.i.d stickprov för X.
- 3. \bar{X}_n vara slumpvariabeln definierad genom $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$
- 4. S vara slumpvariabeln definierad genom $S_n = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2}$
- 5. $\delta \in [0, 1]$
- 6. z_{δ} vara det reella tal för vilket gäller att en standardiserad normalfördelad slumpvariabel Zuppfyller $\mathbb{P}(-z_{\delta} \leq Z \leq z_{\delta}) = \delta$
- 7. $Y_{1,n}$ vara slumpvariabeln $\bar{X}_n z_\delta \cdot \frac{S_n}{\sqrt{n}}$
- 8. $Y_{2,n}$ vara slumpvariabeln $\bar{X}_n + z_{\delta} \cdot \frac{S_n}{\sqrt{n}}$

Vi kallar slumpvektorn $(Y_{1,n}, Y_{2,n})$ för ett konfidensinterval av ordning n med konfidensgrad δ för μ . Ett observerat konfidensintervall av ordning n med konfidensgrad δ är ett talpar $(Y_{1,n}(\omega), Y_{2,n}(\omega))$ för något $\omega \in \Omega$ där $(\Omega, \mathcal{F}, \mathbb{P})$ är det underliggande sannolikhetsrummet.

Sats

Låt X vara en slumpvariabel med väntevärde $-\infty < \mu < \infty$ och standardavvikelse $0 < \sigma < \infty$. Låt vidare, för varje $n \geq 1$, $(Y_{1,n}, Y_{2,n})$ vara ett konfidensintervall av ordning n med konfidensgrad $0 < \delta < 1$ för μ . Då gäller att

$$\lim_{n \to \infty} \mathbb{P}(Y_{1,n} \le \mu \le Y_{2,n}) = \delta$$

Anmärkning

Observera att teoremet ovan är ett uttalande om kvantiteter som varierar slumpmässigt i förhållande till en fix kvantitet μ . Teoremet säger inte att i efterhand, när man fått sitt observerade konfidensintervall I, gäller att " μ tillhör I med sannolikhet nära δ ". Faktum är att det senare uttalandet är falskt eftersom $0 < \delta < 1$ och såväl μ som I är fixa. Det finns ingen icketrivial sannolikhet involverad i huruvida μ tillhör I. Det vore som att säga "Sannolikheten att $2 \le 3 \le 4$ är 0.95" eller "Sannolikheten att 2 < 8 < 4 är 0.95". På samma sätt är det inte korrekt att säga att "I täcker μ med sannolikhet nära δ ". Båda dessa påståenden är alltså falska. Däremot är det, under ovanstående definition av konfidensintervall, korrekt att säga att "För stora stickprov gäller att ett konfidensintervall med konfidensgrad δ täcker μ med sannolikhet nära δ " eller "För stora stickprov tillhör μ ett konfidensintervall med konfidensgrad δ med sannolikhet nära δ " eftersom det är uttalanden om en slumpvektor och inte om fixa kvantiteter.

Bevis av satsen

Vi har att

$$\mathbb{P}(Y_{1,n} \le \mu \le Y_{2,n}) = \mathbb{P}\left(\bar{X}_n - z_\delta \cdot \frac{S_n}{\sqrt{n}} \le \mu \le \bar{X}_n + z_\delta \cdot \frac{S_n}{\sqrt{n}}\right)$$

=

$$\mathbb{P}\left(\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \le z_{\delta} \frac{S_n}{\sigma} \& \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \ge -z_{\delta} \frac{S_n}{\sigma}\right)$$

=

$$\mathbb{P}\left(-z_{\delta}\frac{S_n}{\sigma} \le \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \le z_{\delta}\frac{S_n}{\sigma}\right)$$

Eftersom S_n är en konsistent skattning av σ , vet vi att S_n konvergerar mot σ i sannolikhet och därmed också i fördelning. Vidare vet vi från centrala gränsvärdessatsen att $\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma}$ konvergerar i fördelning mot Z. Således måste det gälla att

$$\lim_{n\to\infty} \mathbb{P}(Y_{1,n} \le \mu \le Y_{2,n}) = \lim_{n\to\infty} \mathbb{P}\left(-z_\delta \frac{S_n}{\sigma} \le \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \le z_\delta \frac{S_n}{\sigma}\right) = \mathbb{P}(-z_\delta \le Z \le z_\delta) = \delta$$

, precis som utlovat. Beviset är nu färdigt. \Diamond