Assignment 1 Report

ECS 427: Multi-Agent Reinforcement Learning

Name: Rahul Kulkarni

Roll No: 21150

Question 1

i. Design a finite MDP by writing down the possible combinations of states, actions, transition probability from one state to another for a given action, and rewards in a tabular form.

State (s)	Action (a)	Next State (s')	Transition Probability P(s' s,a)	Rewards (s,a,s')
Hostel	Study	Hostel	0.5	-1
Hostel	Study	Academic Building	0.5	3
Academic Building	Eat	Academic Building	0.2	3
Academic Building	Study	Academic Building	0.7	3
Academic Building	Study	Canteen	0.3	1
Academic Building	Eat	Canteen	0.8	1
Canteen	Study	Canteen	0.1	1
Canteen	Study	Academic Building	0.6	3
Canteen	Eat	Canteen	1	1
Canteen	Study	Hostel	0.3	-1
Hostel	Eat	Canteen	1	1

ii. Also, draw a diagram of the MDP from the information mentioning the probability and rewards.

Discussions:

Value Iteration

After Value Iteration, the optimal value of each state:

V(Hostel) = 16.0556977

V(Academic_Building) = 21.84597336

V(Canteen) = 18.82616452

Policy Iteration

The Optimal Policy after Policy iterations:

 $\pi(Hostel) = Attend Classes$

 π (Academic_Building) = Attend Classes

 π (Canteen) = Attend Classes

Action Set = (Attend Classes, Eat Food)

For both value iteration and policy iteration, there is convergence at gamma=0.9. The optimal policy at hostel is to attend class, at academic building is to attend class and at canteen is to attend class.

Question 2

Value Iteration

Policy Actions:

U = Up

D = Down

L = Left

R = Right NOTE:

where ever the Value of a State is 0, it is the obstacle/wall where the robot agent can't travel

Policy Iteration

					Values				
8-									3.333e-01
7 -									3.333e-01
6-							5.208e-03		8.333e-02
5.	5.086e-06								0.000e+00
4 -		5.086e-06							3.104e-10
3 -	8.138e-05								1.242e-09
2 -									4.967e-09
1 -	8.138e-05				5.086e-06				1.987e-08
0 -				8 138e-05					7.947e-08
	ò	i	2	3	4	ś	é	7	8

Policy Actions: U = Up D = Down L = Left R = Right NOTE:

Where ever the Value of a State is 0, it is the obstacle/wall where the robot agent can't travel