TD 3 - Estimation Bayésienne.

- Exercice 3.1. Estimateur bayésien. On considère une variable aléatoire X de loi conditionnelle à θ , $X|\theta \sim \mathcal{N}(\theta, \sigma^2)$ où le paramètre θ est lui-même distribué selon la loi $\mathcal{N}(\mu, \tau^2)$. On parle de modèle hiérarchique.
 - 1. Donner la loi a posteriori de θ et en déduire l'estimateur bayésien de θ .
 - 2. Étudier et commenter les régimes $\sigma^2 \to +\infty$ et $\tau^2 \to +\infty$, les autres paramètres étant fixés
 - 3. Reprendre la question 1) avec cette fois l'observation d'un échantillon constitué de variables X_1, \dots, X_n indépendantes conditionnellement à θ et de même loi que X conditionnellement à θ .
 - 4. Étudier et commenter le régime asymptotique $n \to +\infty$, les autres paramètres étant fixés.

Solution:

1. La loi jointe de X_1 et θ est

$$p_{(X_1,\theta)}(x, u) = p(X_1|\theta = u)(x)p_{\theta}(u)$$

et est donc proportionnelle à

$$\exp(-\frac{1}{2\sigma^2}(x_1-u)^2)\exp(-\frac{1}{2\tau^2}(u-\mu)^2)$$
.

La distribution a posteriori s'obtient en effectuant le rapport $p_{(X_1,\theta)}/p_X$ donc s'écrit génériquement $C(x)p_{X|\theta=u}(x)p_{\theta}(u)$. En incluant dans la constante générique C(x) tout ce qui ne dépend pas de u, on trouve après calculs

$$p_{\theta|X_1=x}(u) = C(x) \exp\left[-\frac{1}{2}\left(\frac{1}{\sigma^2} + \frac{1}{\tau^2}\right)\left(u^2 - 2u\frac{x/\sigma^2 + \mu/\tau^2}{1/\sigma^2 + 1/\tau^2}\right)\right]$$

On trouve donc une loi gaussienne de moyenne $\frac{x/\sigma^2 + \mu/\tau^2}{1/\sigma^2 + 1/\tau^2}$ et de variance $\frac{1}{1/\sigma^2 + 1/\tau^2}$

Ce sont respectivement l'espérance conditionnelle et la variance conditionnelle de θ sachant $X_1=x_1$:

On peut donc prendre pour estimateur bayésien ponctuel $\hat{\theta}^B$ l'espérance de la distribution a posteriori (pour la fonction de perte quadratique):

$$\hat{\theta}^B = \frac{X_1/\sigma^2 + \mu/\tau^2}{1/\sigma^2 + 1/\tau^2}$$

Cet estimateur ponctuel a donc pour espérance:

$$\mathbb{E}\left(\hat{\theta}^{B}\right) = \frac{\mu/\sigma^{2} + \mu/\tau^{2}}{1/\sigma^{2} + 1/\tau^{2}} = \mu$$

- 2. Lorsque $\sigma \to \infty$, $\hat{\theta}^B$ tend vers μ (c'est-à-dire la moyenne a priori) ce qui s'interprète par le fait que l'observation est très dispersée, donc peu informative par rapport au prior. Au contraire, si c'est la variance de la distribution a priori qui tend vers l'infini, c'est l'observation qui devient déterminante et on obtient pour $\hat{\theta}^B$ la valeur observée X_1 .
- 3. La loi jointe de $S=(X_1,\cdots,X_n)$ et θ est

$$p_{(S,\theta)}(s, u) = p_{S|\theta=u}(s)p_{\theta}(u)$$

et est donc proportionnelle à

$$\exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-u)^2\right)\exp\left(-\frac{1}{2\tau^2}(u-\mu)^2\right).$$

La distribution a posteriori s'obtient en effectuant le rapport $p_{(S,\theta)}/p_S(s)$ donc s'écrit génériquement $C(s)p_{S|\theta}(s)$. En incluant dans la constante générique C(s) tout ce qui ne dépend pas de u, on trouve après calculs

$$p_{\theta|S=s}(\theta) = C(s) \exp\left[-\frac{1}{2} \left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right) \left(u^2 - 2u \frac{n\overline{x}_n/\sigma^2 + \mu/\tau^2}{n/\sigma^2 + 1/\tau^2}\right)\right]$$

Solution: (suite) On reconnait le noyau gaussien de moyenne $\frac{n\overline{x}_n/\sigma^2 + \mu/\tau^2}{n/\sigma^2 + 1/\tau^2}$ qui est donc l'espérance a posteriori et donc l'estimateur bayésien est

$$\hat{\theta}_n^B = \frac{n\overline{X}_n/\sigma^2 + \mu/\tau^2}{n/\sigma^2 + 1/\tau^2}.$$

- 4. Lorsque n tend vers l'infini, l'estimateur bayésien est équivalent à l'estimateur fréquentiste \overline{X}_n et converge en probabilité vers $\mathbb{E}(X_1)$, ce qui est attendu: le poids de l'a priori devient négligeable devant celui des observations.
- Exercice 3.2. Estimation bayésienne pour la roue de la fortune. Un premier joueur fait tourner une roue graduée (du type roue de la fortune) aléatoirement et obtient l'angle α , $\alpha \in [0,2\pi]$. N autres joueurs (N connu) font à leur tour tourner la roue. Parmi ceuxci, x obtiennent un score (un angle) inférieur à celui du premier joueur. Déterminer la distribution de probabilité a posteriori de α .

Solution:

Modèle pour la vraisemblance: Soit X, la variable aléatoire correspondant au nombre de joueurs obtenant un score inférieur au premier joueur. On a que $X|\alpha \sim B\left(N,\alpha/2\pi\right)$. Donc $P(X=x|\alpha)=C_N^x\left(\frac{\alpha}{2\pi}\right)^x\left(1-\frac{\alpha}{2\pi}\right)^{N-x}$.

Prior: on suppose qu'il n'y a pas de triche a priori et que $\alpha \sim \mathcal{U}_{[0,2\pi]}$.

Posterior: par la formule de Bayes, nous obtenons alors:

$$P(a < \alpha < b \text{ et } X = x) = P(a < \alpha < b \mid X = x)P(X = x)$$
$$= P(X = x \mid a < \alpha < b)P(a < \alpha < b)$$

(On passe par un intervalle [a,b] pour simplifier, car sinon il faut prendre des précautions dans le conditionnement continue vs discrète). Soit:

$$P(a < \alpha < b \mid X = x) = \frac{P(X = x , a < \alpha < b)}{P(X = x)}$$

Avec P(X = x) la constante de normalisation:

$$P(X=x) = \int_0^{2\pi} C_N^x \left(\frac{\alpha}{2\pi}\right)^x \left(1 - \frac{\alpha}{2\pi}\right)^{N-x} \frac{d\alpha}{2\pi}$$

et

$$P(X = x , a < \alpha < b) = \int_{a}^{b} P(X = x | \alpha) p(\alpha) d\alpha$$
$$= \int_{a}^{b} C_{N}^{x} \left(\frac{\alpha}{2\pi}\right)^{x} \left(1 - \frac{\alpha}{2\pi}\right)^{N-x} \frac{d\alpha}{2\pi}$$

Soit finalement en posant $U = \alpha/2\pi$:

$$P(\frac{a}{2\pi} < U < \frac{b}{2\pi} \mid X = x) \propto \int_{\frac{a}{2\pi}}^{\frac{b}{2\pi}} u^x (1 - u)^{N-x} du$$

On reconnaît une fonction proportionnelle à la densité d'une loi bêta, donc $U|X=x\sim \mathcal{B}(x+1,N-x+1)$.

Exercice 3.3. Distribution a priori de Jeffreys. Dans l'estimation bayésienne, quand il n'y a pas de connaissance a priori disponible dont on peut déduire un prior $p(\theta)$ pour le paramètre θ , on peut utiliser des priors dits 'non-informatifs'. Une méthode intéressante pour leur construction est celle de Jeffreys: si $\theta \in \mathbb{R}$, on choisit

$$p(\theta) \propto I(\theta)^{1/2}$$

et si $\theta \in \mathbb{R}^p$, on prend

$$p(\theta) \propto [\det I(\theta)]^{1/2}$$
,

où $I(\theta)$ est la matrice d'information de Fisher pour l'observation x, c'est à dire (sous

certaines conditions de régularité):

$$I(\theta) = E_{\theta} \left[\left(\frac{\partial \ln p(x|\theta)}{\partial \theta} \right)^{2} \right] = -E_{\theta} \left[\frac{\partial^{2} \ln p(x|\theta)}{\partial \theta^{2}} \right]$$

Déterminer les distributions a priori de Jeffreys pour θ pour:

- 1) la loi binomiale, $X \sim B(n, \theta)$,
- 2) la loi normale, $X \sim \mathcal{N}(\mu, \sigma^2)$, en prenant $\theta = (\mu, \sigma)$.

Solution:

1)

$$p(x|\theta) = C_n^x \theta^x (1-\theta)^{n-x}$$

Et donc

$$\frac{\partial^2 \ln p(x|\theta)}{\partial \theta^2} = -\frac{x}{\theta^2} - \frac{n-x}{(1-\theta)^2}$$

En prenant l'espérance et en se rappelant que $E(x) = n\theta$, nous obtenons:

$$I(\theta) = \frac{n}{\theta} + \frac{n}{1-\theta} = \frac{n}{\theta(1-\theta)}$$
.

On a donc le prior de Jeffreys:

$$p(\theta) \propto (\theta(1-\theta))^{-1/2}$$

où l'on reconnait une fonction proportionnelle à la densité d'une loi bêta $\mathcal{B}e(1/2,1/2)$, on prend donc comme prior une $\mathcal{B}e(1/2,1/2)$.

2) lci on a en prenant les dérivées partielles secondes et croisées (pour μ et σ):

$$I(\theta) = E_{\theta} \left[\begin{pmatrix} 1/\sigma^2 & 2(x-\mu)/\sigma^3 \\ 2(x-\mu)/\sigma^3 & 3(\mu-x)^2/\sigma^4 - 1/\sigma^2 \end{pmatrix} \right] .$$

Comme $E_{\theta}(x-\mu)=0$ et $E_{\theta}(x-\mu)^2=\sigma^2$, finalement:

$$I(\theta) = \left(\begin{array}{cc} 1/\sigma^2 & 0\\ 0 & 2/\sigma^2 \end{array}\right) \ .$$

et on obtient en prenant la racine du déterminant:

$$p(\theta) \propto \frac{1}{\sigma^2}$$

C'est un prior impropre ...