Final exam for CMPE 3403 (Electronics for Computer Engineering)

1:15pm-3:00pm 5/5/2020

You have 15 minutes for uploading your answer sheets to Blackboard, so please finish uploading by 3:15pm.

Name:	. ID#:
	,

<u>Note:</u> this exam is an online exam with open-book and open-notes. For your convenience of uploading, you can write your solutions (including reasonable details) on papers and scan/take pictures, upload to Blackboard in the same way as you did for homework assignments. **Please be sure to write you name, and ID# on the first page of your submission**, and to submit your work to Blackboard **by 3:15 pm**.

- I. Multiple Choice (30 points)
- 1. The *i-v* curve of the diode in Fig.1(a) is plotted in Fig.1.(b), then the value of v_o in Fig.1(a) is
 - a) 0 V
 - b) 0.5 V
 - c) 1 V
 - d) 10 V

Fig.1 (a)

Fig.1 (b)

- 2. The 3D structure of a MOSFET is shown in Fig.2. The channel width of the transistor is
 - a) 1.8 um
 - b) 0.18 um
 - c) Not shown
 - d) Could be any

Fig.2 the structure of a transistor

- 3. The voltage gain of the circuit in Fig.3 is defined as v_o/v_l . What is the voltage gain?
 - a) 1
 - b) 2
 - c) 3
 - d) 4

Fig.3

- 4. In Fig.3, the value of i_0 is
 - a) 1 mA
 - b) 2 mA
 - c) 3 mA
 - d) 4 mA

- 5. The PMOS transistor has Vtp=-1 V. If the voltages of three terminals are: Vg=2 V, Vs=5V, Vd=1V, then the transistor is operated in
 - a) Cut off region
 - b) Triode region
 - c) Saturation region
 - d) Unknown
- 6. The voltage transfer characteristic of a CMOS inverter is shown in Fig.4. Threshold voltages $V_{tn} = |V_{tp}| = 0.5V$. If the input v_i =1V, then
 - a) Both PMOS and NMOS in triode region
 - b) Both PMOS and NMOS in saturation
 - c) PMOS in triode region, and NMOS in saturation
 - d) PMOS in saturation, and NMOS in triode

II. (20 points) For the circuit in Fig.5, find the value of R that results in $V_D=1V$. The PMOS transistor has $V_{tp}=-0.5$ V, $u_pC_{ox}=100uA/V^2$, W/L=7.2um/0.18um, and $\lambda=0$.

Fig.5

- III. (20 points) Logic gate design at transistor level:
 - 1) Find the Pull-up network (PUN) that corresponds to the Pull-down network (PDN) shown in Fig.6.
 - 2) Draw the complete CMOS logic circuit using the PUN and PDN.
 - 3) Find the logic function for the circuit you derived in 2).

Fig.6

- IV. (30 points) The circuit in Fig.7 utilizes an ideal operational amplifier.
 - a) Find I_1 , I_2 , I_3 , I_L , and V_x .
 - b) If V_{o} is not to be lower than -13 V, find the maximum allowed value for R_{L} .
 - c) If R_L is varied in the range 100 Ω to 1 $k\Omega$, what is the corresponding change in I_L and in V_o ?

Fig.7