Contents

1	Def	inizione	1
2	2.1	anche l'antitrasformata Quest'altra sequenza che useremo poi	2 2 2
3		$f iodicit \hat a$ Anche x[n] è periodica	3
4	Propietà della trasformata		
	4.1	Linearità	3
	4.2	Teorema del ritardo	3
	4.3	Traslazione in frequenza	3
		Inversione temporale	
		Teorema di parceval	

1 Definizione

è un campionamento della trasformata di fourier per sequenze

se x[n] fosse infinita prenderemmo campioni infinitamente fitti, non propio un'ottima idea data la trasformata per sequenze, X(F) è periodica, dato che è un campionamento, X[k] è periodica

$$X[k] = X(F)|_{F = \frac{k}{N}}$$

la DFT si applica a sequenze periodiche o di durata finita.

$$x[n] \Rightarrow X(F) = \sum_{n=-\infty}^{\infty} x[n]e^{-j2\pi Fn}$$

visto che il segnale è finito, per quanto detto sopra

$$x[n] \Rightarrow X(F) = \sum_{n=0}^{N-1} x[n]e^{-j2\pi Fn}$$

$$X[k] = X(F)|_{F = \frac{k}{N}} = \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{k}{N}n}$$

2 C'è anche l'antitrasformata

2.1 Quest'altra sequenza che useremo poi

Iniziamo enunciando sto risultato parziale, prendetela per buona, tra un paio di sezioni si capisce perché dovrebbe avere senso¹ introdurre questa cosa. si definisca la serie

$$\Phi[m] = \sum_{k=0}^{N-1} e^{-j2\pi \frac{k}{N}m}$$

si dimostra che

$$\Phi[m] = \begin{cases} N & \text{se } m = 0, m = \pm N, m = \pm 2N... \\ 0 & \text{altrimenti} \end{cases}$$

mi faceva fatica scrivere i calcoli in LATEX in tempo reale, vedi gli appunti del deste. c'è qualche $e^{j2\pi \times \text{intero}} = 1$, poi fa una serie geometrica parziale

2.2 Formula dell'antitrasformata

Senza provare a far capire perché si definisce in questo modo, ecco la formula dell'antitrasformata, per spiegare senza spiegare²

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j2\pi \frac{k}{N}n}$$

facendo qualche sostituzione del cazzo possiamo dimostrare che funziona una sottospecie di processo per dimostrare ciò è sotto riportato, partendo da

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]e + j2\pi \frac{k}{N}n$$

riscriviamo X[k] come trasformata di x[n], visto che la lettera n è già occupata useremo la lettera r per la sommatoria interna

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} (\sum_{r=0}^{N-1} x[r]e^{-j2\pi \frac{k}{N}r})e^{+j2\pi \frac{k}{N}n}$$

poi succede un miracolo, e torna

¹nei modi e nei limiti delle capacità esplicative dell' Argetnti

²cit. Marco de Stefano

3 Periodicità

3.1 Anche x[n] è periodica

se metti x[n+N] nella formula di x[n] ottenuta a partire da X[k] ti ritorna x[n], quindi è periodica, se la cosa magari ti interessava.

4 Propietà della trasformata

4.1 Linearità

Grazialcazzo

4.2 Teorema del ritardo

Visto che stiamo lavorando con sequenze periodiche al ritardo $x[n-n_0]$ corrisponderà un *ritardo deluxe* che viene definito come *traslazione circolare*.

Tanto la tesi è la stessa

$$x[n] \iff X[k]$$

 $x[n-n_0] \iff X[n]e^{-j2\pi\frac{k}{N}n_0}$

4.3 Traslazione in frequenza

Qui non prova neanche a dimostrarla, ecco la tesi, au revoir

$$x[n]e^{j\frac{2\pi k_0}{N}n}\iff X[k-k_0]$$

4.4 Inversione temporale

abbiamo y[n] = x[-n]

$$x[n] \iff X[k]$$

 $y[n] \iff ?$

qualcosa, mi sono perso mentre lo stavate scrivendo

4.5 Teorema di parceval

facendo il solito cazzo di risultato intermedio

$$\sum_{n=0}^{N-1} x[n]y^*[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]Y^*[k]$$

metti y[n] = x[n]

$$\sum_{n=0}^{N-1} x[n]x^*[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]X^*[k]$$

$$\sum_{n=0}^{N-1} x[n]x^*[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]X^*[k]$$

$$\sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2$$