HERMITIAN MODULAR FORMS FOR FIELDS OF LOW DISCRIMINANT

DIPLOMA THESIS in Mathematics

by Albert Zeyer

 $\label{eq:submitted} submitted to the \\ Faculty of Mathematics, Computer Science and Natural Science of \\ RWTH Aachen University$

October 2012 revised version from January 20, 2013

Supervisor: Prof. Dr. Aloys Krieg Second examiner: Dr. Martin Raum

written at the Lehrstuhl A für Mathematik Prof. Dr. A. Krieg

Contents

1	Introduction	3
2	Preliminaries	4
	2.1 Siegel modular forms	4
	2.2 Elliptic modular forms	5
	2.3 Hermitian modular forms	5
3	Theory	7
4	Implementation	9
5	Conclusion	10
6	References	11

Introduction

We develop an algorithm to compute Fourier expansions of Hermitian modular forms of degree 2 over $\operatorname{Sp}_2(\mathcal{O})$ for $\mathcal{O}\subseteq\mathbb{Q}(\sqrt{-\Delta})$, $\Delta\in\{3,4,8\}$.

In [PY07], spaces of Siegel modular cusp forms are calculated.

A similar algorithm is also [Rau12, Algorithm 4.3] for Jacobi forms.

We are doing the same for Hermitian modular forms.

4 2 PRELIMINARIES

Chapter 2

Preliminaries

 \mathbb{N} denotes the set $\{1,2,3,\ldots\}$, $\mathbb{N}_0=\mathbb{N}\cup\{0\}$ and \mathbb{Z} are all **integers**. \mathbb{Q} are all the **rational numbers**, \mathbb{R} are the **real numbers** and \mathbb{C} are the **complex numbers**. $\mathbb{R}^+:=\{x\in\mathbb{R}\mid x>0\}$, \mathbb{R}^\times and \mathbb{C}^\times denotes all non-zero numbers.

Let $\operatorname{Mat}_n(R)$ be the set of all $n \times n$ matrices over some commutative ring R. Likewise, $\operatorname{Mat}_n^T(R)$ are the symmetric $n \times n$ matrices. X^T is the transposed matrix of $X \in \operatorname{Mat}_n(R)$. \overline{Z} is the conjugated matrix of $Z \in \operatorname{Mat}_n(\mathbb{C})$. A matrix $Y \in \operatorname{Mat}_n(\mathbb{C})$ is greater 0 if and only if $\forall x \in \mathbb{C}^n - \{0\} : Y[x] := \overline{x}^T Y x \in \mathbb{R}^+$. Such symmetric matrices are called the **positive definitive matrices**, defined by $\mathcal{P}_n(R) = \{X \in \operatorname{Mat}_n^T(R) \mid X > 0\}$. For $A, X \in \operatorname{Mat}_n(\mathbb{C})$, we define $A[X] := \overline{X}^T A X$. For $Z \in \operatorname{Mat}_n(\mathbb{C})$, we call $\Re(Z) = \frac{1}{2}(Z + \overline{Z}^T) \in \operatorname{Mat}_n(\mathbb{C})$ the real part and $\Im(Z) = \frac{1}{2i}(Z - \overline{Z}^T) \in \operatorname{Mat}_n(\mathbb{C})$ the imaginary part of Z and we have $Z = \Re(Z) + i\Im(Z)$. The denominator of a matrix $Z \in \operatorname{Mat}_n(\mathbb{Q})$ is the smallest number $x \in \mathbb{N}$ such that $xZ \in \operatorname{Mat}_n(\mathbb{Z})$.

We say that some function $f: \mathcal{A} \to \mathcal{B}$ with $\mathcal{A} \subseteq \operatorname{Mat}_n(R)$, $\mathcal{B} \subseteq R$ is k-invariant under some $\mathcal{X} \subseteq \operatorname{Mat}_n(R)$ where $\mathcal{A}[\mathcal{X}] \subseteq \mathcal{A}$ if and only if $\det(U)^k f(T[U]) = f(T)$ for all $T \in \mathcal{A}$, $U \in \mathcal{X}$.

Let S be a set with G-action. Then the set of G-invariants S^G is the set of all $s \in S$ satisfying gs = s for all G. We can equip the set of functions $\mathcal{F} \to \mathbb{C}$ with the action $(gf)(T) = det(g)^k f(T[g])$ and this lead to the definition that we need.

The **general linear group** is defined by $GL_n(R) = \{X \in Mat_n(R) \mid det(X) \text{ is a unit in } R\}$ and the **special linear group** by $SL_n(R) = \{X \in Mat_n(R) \mid det(X) = 1\}$. The **orthogonal group** is defined by $O_n(R) = \{X \in GL_n(R) \mid X^T 1_n X = 1_n\}$.

For $R \subseteq \mathbb{C}$, $\overline{R} \subseteq R$, the set of **Hermitian matrices** in R is defined as $\operatorname{Her}_n(R) := \left\{ Z \in \operatorname{Mat}_n(R) \ \middle| \ \overline{Z}^T = Z \right\}$. The **symplectic group** is defined by $\operatorname{Sp}_n(R) = \left\{ X \in \operatorname{GL}_{2n}(R) \ \middle| \ \overline{X}^T J_n X = J_n \right\}$ where $J_n := \begin{pmatrix} 0 & 1_n \\ -1_n & 0 \end{pmatrix} \in \operatorname{SL}_{2n}(R)$. Sp_n(R) is also called the **unitary group**.

2.1 Siegel modular forms

Let $\mathcal{H}_n := \{Z \in \operatorname{Mat}_n^T(\mathbb{C}) \mid \Im(Z) > 0\}$ be the **Siegel upper half space**. Thus, \mathcal{H}_1 is the **Poincaré upper half plane**. We call $\operatorname{Sp}_n(\mathbb{Z})$ the **Siegel modular group**.

5

A Siegel modular cusp form of degree $n \in \mathbb{N}$ for some $\Gamma \subseteq \operatorname{Sp}_n(\mathbb{Z})$, Γ subgroup of $\operatorname{Sp}_n(\mathbb{Z})$, is a holomorphic function

$$f \colon \mathcal{H}_n \to \mathbb{C}$$

with

(1)
$$f|_k y = f \ \forall \ y \in \Gamma$$

(2) for
$$n = 1$$
: $f(Z) = O(1)$ for $Z \to i\infty$

where

$$\left(f|_k \left(\begin{array}{cc} A & B \\ C & D \end{array}\right)\right)(Z) = f((AZ+B)(CZ+D)^{-1}) \cdot \det(CZ+D)^{-k}$$

with $Z \in \mathcal{H}_n$, $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma$.

2.2 Elliptic modular forms

We define

$$\Gamma_0(l) := \left\{ \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) \in \operatorname{Sp}_n(\mathbb{Z}) \,\middle|\, C = 0 \mod l \right\} \subseteq \operatorname{Sp}_n(\mathbb{Z})$$

as a subgroup of $\mathrm{Sp}_n(\mathbb{Z})$.

Elliptic modular forms are Siegel modular cusp forms of degree 1 over $\Gamma_0(l)$ for some $l \in \mathbb{N}$.

2.3 Hermitian modular forms

Let $\mathbb{H}_n := \{Z \in \operatorname{Mat}_n(\mathbb{C}) \mid \Im(Z) > 0\}$ be the **Hermitian upper half space**.

Let $\Delta \in \mathbb{N}$ so that we have the field $\mathbb{Q}(\sqrt{-\Delta})$. Then, let $\mathcal{O} \subseteq \mathbb{Q}(\sqrt{-\Delta})$ be the maximum order. We call $\operatorname{Sp}_n(\mathcal{O})$ the **Hermitian modular group**. Let Γ be a subgroup of $\operatorname{Sp}_n(\mathcal{O})$. Let $\nu \colon \Gamma \to \mathbb{C}^\times$ be an abel character of $\operatorname{Sp}_n(\mathcal{O})$.

A **Hermitian modular form** of degree $n \in \mathbb{N}$ with weight $k \in \mathbb{Z}$ over Γ and ν is a holomorphic function

$$f: \mathbb{H}_n \to \mathbb{C}$$

with

(1)
$$f(M \cdot Z) = \nu(M) \det(CZ + D)^k f(Z), \quad M = \begin{pmatrix} * & * \\ C & D \end{pmatrix} \in \Gamma, Z \in \mathbb{H}_n,$$

(2) for n = 1: f is holomorphic in all cusps.

6 2 PRELIMINARIES

 $[\Gamma,k,\nu]$ denotes the vector space of such Hermitian modular forms.

In this work, we will concentrate on Hermitian modular forms of degree 2. We will start with $\Delta \in \{3,4,8\}$.

Note that if Δ is fundamental (see [Der01]), we have

$$\begin{split} \mathcal{O} &= \mathbb{Z} + \mathbb{Z} \frac{-\Delta + \sqrt{-\Delta}}{2}, \\ \mathcal{O}^{\#} &= \mathbb{Z} \frac{i}{\sqrt{-\Delta}} + \mathbb{Z} \frac{1 + \sqrt{-\Delta}}{2}. \end{split}$$

From now on, we will always work with Hermitian modular forms of degree 2, i.e. we will always have n=2, except if otherwise stated.

Theory

Lemma 3.1. Let $f: \mathbb{H}_2 \to \mathbb{C}$ be a Hermitian modular form of weight k. Let $S \in \mathcal{P}_2(\mathbb{C})$. Then, $f(S\tau): \mathbb{H}_1 \subseteq \mathbb{C} \to \mathbb{C}$ is an elliptic modular form of weight 2k to $\Gamma_0(l)$, where l is the denominator of S^{-1} .

Lemma 3.2. Prop 7.3. von Poor für herm Modulformen. $\Gamma(\mathcal{L}) \supseteq \Gamma_0(l)$ for $l \in \mathbb{Z}^+, ls^{-1} \in \mathcal{P}_n(\mathcal{O})$.

We want to calculate a generating set for the Fourier expansions of Hermitian modular forms. Now we will formulate the main algorithm of our work.

Algorithm 3.3. We have the Hermitian modular form degree n=2 fixed, as well as some Δ (for now, $\Delta \in \{3,4,8\}$). Then we select some form weight $k \in \mathbb{Z}$ ($k \in \{1,\ldots,20\}$ or so), some $\mathcal{O} \subseteq \mathbb{Q}(\sqrt{-\Delta})$ and some subgroup Γ of $\mathrm{Sp}_2(\mathcal{O})$. Then we select an abel character $\nu \colon \Gamma \to \mathbb{C}^\times$ of $\mathrm{Sp}_2(\mathcal{O})$.

We define the index set

$$\Lambda := \left\{ 0 \le \begin{pmatrix} a & b \\ \overline{b} & c \end{pmatrix} \in \operatorname{Mat}_2(\mathcal{O}^{\#}) \,\middle|\, a, c \in \mathbb{Z} \right\}.$$

Fix $B \in \mathbb{N}$ as a limit. Select a precision

$$\mathcal{F} := \left\{ \left(\begin{array}{cc} a & b \\ \overline{b} & c \end{array} \right) \,\middle|\, 0 \leq a, c < B, b \in \mathcal{O}^\# \right\} \subseteq \Lambda.$$

- 1. We start with l = 1 and increase it but only use the square-free numbers.
- 2. Set $S = \{\}$,
- 3. Enumerate matrices $S \in \operatorname{Mat}_2^T(\mathbb{Z})$, and set $\mathcal{S} \leftarrow \mathcal{S} \cup \{S\}$ and for each time you add a new matrix perform the following steps.

8 3 THEORY

4. We set

$$\mathcal{M}^H_{k,\mathcal{S},\mathcal{F}} := \left\{ (f[S])_{S \in \mathcal{S}} \ \middle| \ f \in \mathbb{Q}^{\mathcal{F}} \text{ is } \mathrm{GL}_2(\mathcal{O}) \text{ invariant} \right\} \subseteq \bigoplus_{S \in \mathcal{S}} \mathbb{Q}^{\mathcal{F}(S)},$$

where

$$f[S] := \mathbb{H}_1 \to \mathbb{Q}, \tau \mapsto f(S\tau),$$

and

$$\mathcal{M}_{k,\mathcal{S},\mathcal{F}} := \bigoplus_{S \in \mathcal{S}} \mathcal{FE}_{\mathcal{F}(S)}(M_k(\Gamma(l_S)))$$

where \mathcal{M}_k is the vector space of elliptic modular forms.

5. If

$$\dim \mathcal{M}^{H}_{k,\mathcal{S},\mathcal{F}} \cap \mathcal{M}_{k,\mathcal{S},\mathcal{F}} = \dim[\Gamma, k, \nu],$$

then we are ready and we can reconstruct the Fourier expansion in the following way:

•••

If not, then return to step 3, and enlarge S.

Implementation

In this chapter, we are describing the implementation.

10 5 CONCLUSION

Chapter 5

Conclusion

Blub

References

- [Der01] T. Dern. Hermitesche Modulformen zweiten Grades. Mainz, 2001.
- [PY07] C. Poor and D.S. Yuen. Computations of spaces of siegel modular cusp forms. *Journal of the Mathematical Society of Japan*, 59(1):185–222, 2007.
- [Rau12] M. Raum. Computing Jacobi Forms and Linear Equivalences of Special Divisors. *ArXiv e-prints*, December 2012.