```
import pandas as pd
from google.colab import drive
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
import zipfile
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion matrix, classification report, plot confusion matrix, accuracy score
from sklearn import tree
drive.mount('/content/gdrive/', force_remount = True)
    Mounted at /content/gdrive/
zf = zipfile.ZipFile("/content/gdrive/MyDrive/stroke/us perm visas.csv.zip")
df = pd.read_csv(zf.open('us_perm_visas.csv'))
    Exception ignored in: <function ZipFile. del at 0x7f4999ede700>
    Traceback (most recent call last):
      File "/usr/lib/python3.8/zipfile.py", line 1821, in del
      File "/usr/lib/python3.8/zipfile.py", line 1843, in close
      File "/usr/lib/python3.8/zipfile.py", line 1953, in _fpclose
    OSError: [Errno 107] Transport endpoint is not connected
    /usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py:3326: DtypeWarning: Columns (0,1,2,3,4,5,6,7,10,11,16,17,20,21,22,25,26,27,28,29,30,31,32,33,34
      exec(code obj, self.user global ns, self.user ns)
```

df

df2

	add_these_pw_job_title_9089	agent_city	agent_firm_name	agent_state	application_type	case_no	case_number	case_received_date	case_status	class_of_admission
0	NaN	NaN	NaN	NaN	PERM	A-07323- 97014	NaN	NaN	Certified	J-1
1	NaN	NaN	NaN	NaN	PERM	A-07332- 99439	NaN	NaN	Denied	B-2
2	NaN	NaN	NaN	NaN	PERM	A-07333- 99643	NaN	NaN	Certified	H-1B
df1 = df[['class_of_admission', 'us_economic_sector', 'wage_offer_from_9089', 'case_status']]										
						A 0704E				
df2 = df1.dr	ropna()									

	class_of_admission	us_economic_sector	wage_offer_from_9089	case_status	1
0	J-1	IT	75629.0	Certified	
1	B-2	Other Economic Sector	37024.0	Denied	
2	H-1B	Aerospace	47923.0	Certified	
3	B-2	Other Economic Sector	10.97	Certified	
4	L-1	Advanced Mfg	100000.0	Certified	
20571	H-2B	Other Economic Sector	23.73	Certified	
20572	EWI	Other Economic Sector	26.59	Withdrawn	
20573	E-2	Aerospace	45.0	Withdrawn	
20574	Not in USA	Agribusiness	8.1	Denied	
20575	B-2	Transportation	39894.0	Certified-Expired	

18741 rows x 4 columns

```
X = pd.get_dummies(df2.drop('case_status',axis=1),drop_first=True)
Y = df2['case_status']

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.20, random_state=100)

CLF = tree.DecisionTreeClassifier(max_depth=3)

CLF.fit(X_train,y_train)

DecisionTreeClassifier(max_depth=3)

plt.figure(figsize = (20,8))
tree.plot_tree(CLF,feature_names = X.columns )
```

```
[Text(0.5769230769230769, 0.875, 'class of admission H-1B <= 0.5\ngini = 0.5\nsamples = 14992\nvalue =
[8669, 3574, 1809, 940]'),
  Text(0.3076923076923077, 0.625, 'class of admission EWI <= 0.5\ngini = 0.663\nsamples = 2392\nvalue =
[1142, 463, 616, 171]'),
  Text(0.15384615384615385, 0.375, 'class of admission L-1 <= 0.5\ngini = 0.656\nsamples = 2178\nvalue =
[1077, 453, 495, 153]'),
  Text(0.07692307692307693, 0.125, 'gini = 0.662 \times 139 \times
    Text(0.23076923076923078, 0.125, 'gini = 0.593\nsamples = 439\nvalue = [243, 131, 40, 25]'),
   \texttt{Text} (0.46153846153846156, \ 0.375, \ 'us\_economic\_sector\_Construction <= 0.5 \\ \texttt{\ngini = 0.579} \\ \texttt
214\nvalue = [65, 10, 121, 18]'),
   Text(0.38461538461538464, 0.125, 'gini = 0.586\nsamples = 164\nvalue = [61, 6, 85, 12]'),
   Text(0.5384615384615384, 0.125, 'gini = 0.454\nsamples = 50\nvalue = [4, 4, 36, 6]'),
   Text(0.8461538461, 0.625, 'wage offer from 9089 44799.0 <= 0.5\ngini = 0.569\nsamples = 12600\nvalue
= [7527, 3111, 1193, 769]'),
  Text(0.7692307692307693, 0.375, 'us_economic_sector_IT <= 0.5\ngini = 0.567\nsamples = 12545\nvalue =
[7527, 3111, 1138, 769]'),
   Text(0.6923076923076923, 0.125, 'gini = 0.532\nsamples = 7666\nvalue = [4867, 1821, 602, 376]'),
    Text(0.8461538461538461, 0.125, 'qini = 0.614\nsamples = 4879\nvalue = [2660, 1290, 536, 393]'),
    Text(0.9230769230769231, 0.375, 'gini = 0.0\nsamples = 55\nvalue = [0, 0, 55, 0]')]
```


The largest leaf has a sample size of 7666, which is about 41% of our data. The gini for the largest leaf is closer to 1 which implies that there is missclassification in our predictions.

```
depth = []
for i in range(1,10):
    tree = DecisionTreeClassifier(max_depth=i)
    tree.fit(X_train,y_train)
    score = tree.score(X_test, y_test)
    depth.append(score)

plt.plot(range(1,10), depth)
```


Colab paid products - Cancel contracts here

✓ 18s completed at 4:12 PM

×