

Dictionaries

- The dictionary is the data structure for storing the term vocabulary.
- Term vocabulary: the data
- Dictionary: the data structure for storing the term vocabulary

A naïve dictionary

▶ An array of struct:

term	document	pointer to
	frequency	postings list
а	656,265	\longrightarrow
aachen	65	\longrightarrow
zulu	221	\longrightarrow
char[20] 20 bytes	int 4/8 bytes	Postings * 4/8 bytes

- ▶ How do we store a dictionary in memory efficiently?
- ▶ How do we quickly look up elements at query time?

Data structures for looking up term

- Two main classes of data structures:
 - hashes
 - trees
- Some IR systems use hashes, some use trees.

Hashes

- Each vocabulary term is hashed into an integer.
- Try to avoid collisions
- At query time, do the following: hash query term, resolve collisions, locate entry in fixed-width array
- Pros: Lookup in a hash is faster than lookup in a tree.
 - Lookup time is constant.
- Cons
 - no way to find minor variants (resume vs. résumé)
 - no prefix search (all terms starting with *automat*)
 - need to rehash everything periodically if vocabulary keeps growing

Trees

- Simplest: binary tree
- More usual: B-trees
- ► Trees require a standard ordering of characters and hence strings ... but we standardly have one
- Pros:
 - Solves the prefix problem (terms starting with *hyp*)
- Cons:
 - ▶ Slower: O(log N) [and this requires balanced tree]
 - ▶ Rebalancing binary trees is expensive
 - ▶ But B-trees mitigate the rebalancing problem

Trie (Keyword Tree)

- A tree-based data structure, name comes from "retrieval"
- Each node stores a letter from the alphabet and each word corresponds to a path in this tree.
- · Can be used to store the Dictionary.
 - Mark nodes corresponding to end of words and store link (pointer) to the associated postings.
 - Can be used to answer prefix searches such as in Auto-complete

	Creating a Trie	
>		

Root	Dictionary
	banana
	ban
	pan
	nab
	antenna
	bandana
	ananas
	nana
•	

Complexity of Trie Construction:

- ▶ O(|Dictionary|) or O(m*N)
 - ightharpoonup m longest word in the Dictionary
 - \blacktriangleright N total number of words in the Dictionary

References

- ▶ Introduction to Information Retrieval, chapter 3
 - ▶ http://nlp.stanford.edu/IR-book/information-retrieval-book.html
- ▶ Some slides adapted from Dr. Christopher Manning and Dr. Pandu Nayak
- ▶ Trie slides adapted from the lecture notes of Bioinformatics Algorithms: An Active Learning Approach, Volume 2, Chapter 9.

Ξ