Raport 1 Analiza opisowa danych CHURN

Jan Solarz 243889 Szymon Suszek 237288

13 kwietnia 2020

1

Spis treści

1

1 Krótki opis przeprowadzonej analizy

2	Etap 1. Podstawowe informacje i przygotowanie danych	1				
3	Etap 2. Analiza opisowa danych					
	3.1 Analiza danych ilościowych	2				
	3.2 Interpretacja wyników zmienych ilościowych					
	3.3 Analiza danych jakościowych	15				
	3.4 Interpretacja wyników zmienych jakościowych	18				
4	Etap 3. Analiza skupiająca się na podgrupach Churn.					
	4.1 Analiza zmiennych ilościowych	18 18				
	4.2 Analiza zmiennych jakościowych Churn					
5	Etap 4. Podsumowanie	24				
	5.1 Ogólne wnioski	24				
	5.2 Wnioski dotyczące podgrup Churn					
	5.3 Ewentualne rozwiązania, działania	0.4				

Krótki opis przeprowadzonej analizy

- Analizować będziemy grupę 3333 klientów sieci telefonii komórkowej charakteryzujących się 21 zmiennymi (cechami)
- Naszym zadaniem jest bliższe przyjrzenie się poszczególnym cechom i na ich podstawie wyciągnięcie wniosków, które pomogą nam zrozumieć ich odejście z sieci oraz znalezienie rozwiązań, które przyniłyby się do polepszeń statystyk.

2 Etap 1. Podstawowe informacje i przygotowanie danych

• Na tym etapie interesuje nas wielkość analizowanych danych, ich typ oraz to czy nie występują brakujące obserwacje.

```
#liczba zmiennych
ncol(dane)
## [1] 21
#liczba obserwacji
nrow(dane)
## [1] 3333
# sprawdzenie, ktore zmienne sa typu jakosciowego
jakosciowe <- which(sapply(dane, is.factor))</pre>
jakosciowe
##
        State
                    Phone Int.1.Plan VMail.Plan
                                                       Churn.
                        4
             1
                                    5
                                                6
                                                           21
##
# sprawdzenie typu ilosciowego zmiennych
ilosciowe <- which(sapply(dane,is.numeric))</pre>
ilosciowe
## Account.Length
                        Area.Code VMail.Message
                                                                         Day.Calls
                                                          Day.Mins
                                                 7
##
                         Eve.Mins
                                         Eve.Calls
       Day.Charge
                                                        Eve.Charge
                                                                        Night.Mins
                                                                                 14
##
                10
                                11
                                                12
                                                                13
      Night.Calls
                     Night.Charge
                                         Intl.Mins
                                                        Intl.Calls
                                                                       Intl.Charge
                                16
                                                17
                                                                18
                                                                                 19
## CustServ.Calls
                2.0
#usuniecie zmiennej identyfikacyjnej numer telefonu
dane < -dane[, -4]
# brakujace wartosci
czy_brak <- is.na(dane)</pre>
#liczba wszystkich brakujacych wartosci
l_brakujacych <- sum(czy_brak)</pre>
1_brakujacych
## [1] 0
#indeksy obserwacji brakujacych
indeksy <- which(czy_brak, arr.ind = TRUE)</pre>
indeksy
##
        row col
#brak indeksów
```

- Analizujemy 3333 klientów (liczba obserwacji) i 21 cech. Zmienna "Phone" nie jest istotna
 w dalszej analizie dlatego możemy ją usunąć. Po sprawdzeniu dane nie posiadają żadnych
 brakujących obserwacji.
- Mamy do czynienia z 16 zmiennymu ilościowymi i 5 jakościowymi (jedna z nich została usunięta). Istotna dla nas jest cecha "Churn.", na której skupimy się w dalszym etapie.

3 Etap 2. Analiza opisowa danych

3.1 Analiza danych ilościowych

- Wyznaczymy podstawowe wskaźniki sumaryczne (miary położenia i rozproszenia) w celu skupiania się na tych cechach, z których otrzymamy porządane przez nas informacje.
- Następnie zajmujemy się dokładniejszą wizualizacją danych

		A T 1	773.6 · 3 · 3.6	D W: D G 1	L D GI
##		Account.Length	•	Day.Mins Day.Call	, ,
##	minimum	1.00000	0.00000	0.00000 0.0000	
##	Q1	74.00000	0.00000	143.70000 87.0000	
##		101.00000	0.00000	179.40000 101.0000	
##	średnia	101.06481	8.09901	179.77510 100.4356	
##	Q3	127.00000	20.00000	216.40000 114.0000	
##	maksimum	243.00000	51.00000	350.80000 165.0000	
##	rozstęp	242.00000	51.00000	350.80000 165.0000	00 59.640000
##	IQR	53.00000	20.00000	72.70000 27.0000	00 12.360000
##	odch. stand.	39.82211	13.68837	54.46739 20.0690	08 9.259435
##	wariancja	1585.80012	187.37135	2966.69649 402.7683	14 85.737128
##		Eve.Mins Eve.	Calls Eve.Char	ge Night.Mins Night	t.Calls
##	minimum	0.00000 0.	0.0000	000 23.20000 33	3.00000
##	Q1	166.60000 87.	00000 14.1600	00 167.00000 87	7.00000
##	mediana	201.40000 100.	00000 17.1200	000 201.20000 100	0.0000
##	średnia	200.98035 100.	11431 17.0835	40 200.87204 100	0.10771
##	Q3	235.30000 114.	00000 20.0000	00 235.30000 113	3.00000
##	maksimum	363.70000 170.	00000 30.9100	00 395.00000 175	5.00000
##	rozstęp	363.70000 170.	00000 30.9100	00 371.80000 142	2.00000
##	IQR	68.70000 27.	00000 5.8400	00 68.30000 26	3.00000
##	odch. stand.	50.71384 19.	92263 4.3106	68 50.57385 19	9.56861
##	wariancja	2571.89402 396.	91100 18.5818	356 2557.71400 382	2.93047
##		Night.Charge In	ntl.Mins Intl.C	Salls Intl.Charge Cu	ıstServ.Calls
##	minimum	1.040000 0	0.00	0.000000	0.000000
##	Q1	7.520000 8	3.500000 3.00	00000 2.3000000	1.000000
##	mediana	9.050000 10	0.300000 4.00	0000 2.7800000	1.000000
##	średnia	9.039325 10	0.237294 4.47	9448 2.7645815	1.562856
##	Q3	10.590000 12	2.100000 6.00	00000 3.2700000	2.000000
##	maksimum	17.770000 20	0.000000 20.00	0000 5.4000000	9.000000
##	rozstęp	16.730000 20	0.000000 20.00	0000 5.4000000	9.000000
##	IQR	3.070000 3	3.600000 3.00	0000 0.9700000	1.000000
##	odch. stand.	2.275873 2	2.791840 2.46	1214 0.7537726	1.315491

- W celu lepszego zestawienia cech i dokonania wyboru na które z nich powinniśmy zwrócić szczególną uwagę posłużymy się biblioteką DataExplorer.
- Pierwsze zestawienie ze sobą wszystkich zmiennych

plot_histogram(dane)

Rysunek 1: Histogramy dla wszystkich zmiennych ilościowych

• Przypatrujemy się bliżej pierwszej zmiennej Account.Length

```
library(ggplot2)
library(MASS)
sapply(dane[c(2)] , function(x) my.summary(as.numeric(x)) )
##
                 Account.Length
## minimum
                        1.00000
## Q1
                       74.00000
                      101.00000
## mediana
  średnia
                      101.06481
                      127.00000
##
  Q3
```

Histogram of Account.Length

Rysunek 2: Wykres zmiennej Account.Length

```
#Jest to rozkład normalny jednomodalny
round(median(Account.Length)) == round(mean(Account.Length))
## [1] TRUE
#Symetryczny
```

Po zbadaniu zmiennej Account. Length. wiemy, że jest ona rozkładem normalny, jednomodalnym, symetrycznym z dominantą w przedziale 80-120. Min: 1 dzień, Maks: 243 dni

- Przyjrzenie się Day.Mins i Day.Charge
- Następnie zestawienie poszczególnych cech w stosunku do pory dnia

```
sapply(dane[c(7,9)] , function(x) my.summary(as.numeric(x)) )
##
                  Day.Mins Day.Charge
                   0.00000
                             0.000000
## minimum
## Q1
                 143.70000
                            24.430000
## mediana
                 179.40000 30.500000
## średnia
                 179.77510 30.562307
## Q3
                 216.40000
                            36.790000
## maksimum
                 350.80000 59.640000
## rozstep
                 350.80000 59.640000
## IQR
                  72.70000 12.360000
                  54.46739
## odch. stand.
                             9.259435
## wariancja
                2966.69649
                            85.737128
par(mfrow=c(2,2))
hist(Day.Mins)
hist(Day.Charge)
boxplot(Day.Mins, main="Day.Mins")
boxplot(Day.Charge, main="Day.Charge")
```


Wykresy te charakteryzują również rozkłady normalne, widzimy że tak samo zachowuja sie boxploty obu zmiennych.

```
## mediana
                            201.40000
                 179.40000
                                        201.20000
## średnia
                            200.98035
                 179.77510
                                        200.87204
## Q3
                 216.40000
                            235.30000
                                        235.30000
## maksimum
                 350.80000
                            363.70000
                                        395.00000
## rozstep
                 350.80000
                            363.70000
                                        371.80000
                  72.70000
                              68.70000
## IQR
                                         68.30000
## odch. stand.
                  54.46739
                              50.71384
                                         50.57385
                2966.69649 2571.89402 2557.71400
## wariancja
par(mfrow=c(2,3))
hist(Day.Mins, main="Day.Mins", col="blue")
hist(Eve.Mins, main="Eve.Mins", col="yellow")
hist(Night.Mins, main="Night.Mins", col="purple")
boxplot(Day.Mins, main="Day.Mins", col="blue")
boxplot(Eve.Mins, main="Eve.Mins", col="yellow")
boxplot(Night.Mins, main="Night.Mins", col="purple")
```


Rysunek 3: Wykresy minut połączeń o różnych porach dnia

Wszystkie zmienne charakteryzują rozkłady normalne, są symetryczne, jednomodalne. Kolejno wartości przedziałów: 350.8, 363.7, 371.8 Kolejno Średnie: 180, 201, 201

```
par(mfrow=c(1,2))

d11 <- density(Day.Mins)
d22 <- density(Eve.Mins)</pre>
```

```
d33 <- density(Night.Mins)
plot(d11, col="green", ylim=c(0,0.008), lwd=2, main="Porownanie gestosci")
lines(d22, col="red", lwd=2)
lines(d33, col="blue", lwd=2)
legend(x = "topleft", legend=c('Day'), fill=c("green"))

d1 <- density(Day.Calls)
d2 <- density(Eve.Calls)
d3 <- density(Night.Calls)
plot(d1, col="green", lwd=2, main="Porownanie gestosci")
lines(d2, col="red", lwd=2)
lines(d3, col="blue", lwd=2)</pre>
```


Rysunek 4: Porównanie gestości

```
#Badamy zestawione ze soba ilości wykonanych telefonów o różnych porach dnia
sapply(dane[c(8,11,14)] , function(x) my.summary(as.numeric(x)) )
##
                Day. Calls Eve. Calls Night. Calls
                  0.00000
                            0.00000
                                       33.00000
## minimum
## Q1
                 87.00000 87.00000
                                       87.00000
## mediana
                101.00000 100.00000
                                      100.00000
## średnia
                100.43564 100.11431
                                      100.10771
## Q3
                114.00000 114.00000
                                      113.00000
## maksimum
             165.00000 170.00000 175.00000
```

```
## rozstęp 165.00000 170.00000 142.00000
## IQR 27.00000 27.00000 26.00000
## odch. stand. 20.06908 19.92263 19.56861
## wariancja 402.76814 396.91100 382.93047
```


Rysunek 5: Wykresy liczby połączeń o różnych porach dnia

Wszystkie zmienne charakteryzują rozkłady normalne, są symetryczne, jednomodalne. Kolejno wartości przedziałów: 165, 170, 142 Kolejno Średnie: 100.5, 100, 100

```
#Badamy zestawione ze sobą ilości pobranych opłat o różnych porach dnia
sapply(dane[c(9,12,15)] , function(x) my.summary(as.numeric(x)) )
##
                Day. Charge Eve. Charge Night. Charge
                  0.000000
                              0.000000
                                            1.040000
## minimum
                 24.430000
## Q1
                             14.160000
                                            7.520000
## mediana
                 30.500000
                             17.120000
                                            9.050000
                             17.083540
                                            9.039325
## średnia
                 30.562307
## Q3
                 36.790000
                             20.000000
                                           10.590000
                             30.910000
                                           17.770000
## maksimum
                 59.640000
                                           16.730000
## rozstep
                 59.640000
                             30.910000
## IQR
                 12.360000
                              5.840000
                                            3.070000
## odch. stand.
                  9.259435
                              4.310668
                                            2.275873
## wariancja
                 85.737128
                             18.581856
                                            5.179597
```


Rysunek 6: Wykresy opłat połączeń o różnych porach dnia

Wszystkie zmienne charakteryzują rozkłady normalne, są symetryczne, jednomodalne. Kolejno wartości przedziałów: 60, 31, 17 Kolejno Średnie: 30.5, 17, 9

barplot(table(VMail.Message[VMail.Plan=="yes"]), main="CustServ.Calls", col="brown")
grid()

Rysunek 7: Histogram ilości wiadomości głosowych

```
barplot(table(CustServ.Calls), main="CustServ.Calls", col=rainbow(10))
grid()
```


Rysunek 8: Wykres słupkowy ilości połączeń do biura obsługi klienta

```
sapply(dane[c(16,17,18)] , function(x) my.summary(as.numeric(x)) )
##
                Intl.Mins Intl.Calls Intl.Charge
                                        0.0000000
## minimum
                 0.00000
                             0.000000
## Q1
                 8.500000
                             3.000000
                                        2.3000000
                             4.000000
## mediana
                10.300000
                                        2.7800000
## średnia
                10.237294
                             4.479448
                                        2.7645815
## Q3
                12.100000
                             6.000000
                                        3.2700000
## maksimum
                20.000000
                            20.000000
                                        5.4000000
                20.000000
                            20.000000
                                        5.4000000
## rozstep
## IQR
                 3.600000
                             3.000000
                                        0.9700000
## odch. stand.
                 2.791840
                             2.461214
                                        0.7537726
## wariancja
                 7.794368
                             6.057576
                                        0.5681732
par(mfrow=c(1,3))
hist(Day.Charge, main="Intl.Charge", col="blue")
hist(Eve.Charge, main="Intl.Charge", col="yellow")
hist(Night.Charge, main="Intl.Charge", col="purple")
```


Rysunek 9: Histogramy planu międzynarodowego

• Wykresy rozrzutu dla par zmiennych ciągłych

Rysunek 10: Korelacje między cechami charakteryzującymi rozmowy podczas dnia

pairs(cbind(Day.Calls,Day.Charge, Day.Mins), col=Churn., pch=16, cex=0.5)

Rysunek 11: Korelacje między cechami charakteryzującymi rozmowy podczas dnia

Wspóczynniki korelacji między cechami charakteryzującymi rozmowy podczas dnia

3.2 Interpretacja wyników zmienych ilościowych

- Zakres możliwych wartości
 - 1. Account.Length: 1-243
 - 2. Vmail.Message: 0-51
 - 3. Day.Mins: 0-360
 - 4. Day.Calls: 0-165
 - 5. Day.Charge: 0-60
 - 6. Eve.Mins: 0-364
 - 7. Eve.Calls: 0-170
 - 8. Eve.Charge: 0-31
 - 9. Night.Mins: 23-395
 - 10. Night.Calls: 33-175

11. Night.Charge: 1-18

Intl.Mins: 0-20
 Intl.Calls: 0-20
 Intl.Charge: 0-5
 CustServ.Calls: 0-9

- Rozkłady zmiennych Account.Length, Day.Calls, Day.Charge, Day.Mins, Eve.Calls, Eve.Charge, Eve.Mins, Intl.Charge, Intl.Mins, Night.Calls, Night.Charge oraz Night.Mins charakteryzują sie rozkładymi normalnymi i są symetryczne(wynika to z przyrównania średniej i mediany)
- Największe zmienności możemy zauważyć przy zmiennych ilości minut wykonanych połączeń o różnych porach dnia oraz długości konta. (wynika to z odchylenia standardowego)

3.3 Analiza danych jakościowych

- Wyznaczymy podstawowe wskaźniki sumaryczne (miary położenia i rozproszenia) w celu skupiania się na tych cechach, z których otrzymamy porządane przez nas informacje.
- Następnie zajmujemy się dokładniejszą wizualizacją danych

```
# wykresy slupkowe dla wszystkich zmiennych jakosciowych
plot_bar(dane)

## 1 columns ignored with more than 50 categories.
## State: 51 categories
```


Rysunek 12: Wykresy cech jakościowych

```
library(descr)
par(mfrow=c(1,1))
crosstab(Int.1.Plan, VMail.Plan, col=c("blue","yellow", prop.t = TRUE))
```


Rysunek 13: Wykres zestaiwenia klientów z planem międzynarodowym i poczty głosowej

```
## Cell Contents
               Count |
## |-----|
## ==============
##
           VMail.Plan
           no yes Total
## Int.l.Plan
           2180 830 3010
## yes
            231
                 92
                      323
## Total
           2411 922
                    3333
## ============
```

```
library(plotrix)
lbls <- c("Lojalni", "Odeszli")
pct <- round(table(Churn.)/sum(table(Churn.))*100)</pre>
```

```
lbls <- paste(lbls, pct) # add percents to labels
lbls <- paste(lbls, "%", sep="") # ad % to labels
pie3D(table(Churn.), labels=lbls, explode=0.1,
    main="Wykres lojalnosci klientow")</pre>
```

Wykres lojalnosci klientow


```
table(State)
## State
    AK
                ΑZ
                      CA
                          CO
                               CT
                                            FL
                                                                           KS
                                                                               ΚY
##
        AL
             AR
                                   DC
                                       DE
                                                GA
                                                     ΗI
                                                         ΙA
                                                              ID
                                                                  IL
                                                                       IN
                                                                                    LA
                                                                                         MA
##
    52
        80
             55
                 64
                      34
                          66
                               74
                                   54
                                        61
                                            63
                                                 54
                                                     53
                                                         44
                                                              73
                                                                   58
                                                                       71
                                                                           70
                                                                                59
                                                                                    51
                                                                                         65
##
    MD
        ME
                 MN
                      MO
                          MS
                               MT
                                        ND
                                                              NV
                                                                  NY
                                                                       OH
                                                                           OK
                                                                                OR
                                                                                    PA
             MI
                                   NC
                                            NE
                                                NH
                                                     NJ
                                                         NM
                                                                                         RI
    70
        62
             73
                 84
                      63
                          65
                               68
                                   68
                                        62
                                            61
                                                 56
                                                     68
                                                         62
                                                              66
                                                                  83
                                                                       78
                                                                           61
                                                                                78
                                                                                    45
                                                                                         65
##
    SC
        SD
             TN
                 TX
                      UT
                          VA
                               VT
                                   WA
                                        WI
                                            WV
                                                WY
    60
        60
             53
                72
                     72 77
                               73
                                       78 106
##
                                   66
                                                77
max(table(State))
## [1] 106
min(table(State))
## [1] 34
max(table(State)) - min(table(State))
## [1] 72
```

3.4 Interpretacja wyników zmienych jakościowych

- W przypadku planów jakie klienci mogli wykupić to najwięcej z nich nie zdecydowało się na jakikolwiek z nich-¿ 65.4 procent. Drugą podgrupę stanowili Ci co zasięgneli po plan Vmail.Plan, jednak bez Intl.l.Plan-¿ 24.9 procent.
- 14 na 100 klientów postanowiło odejść z sieci
- Jeśli chodzi o podział na Stany to maksymalna ilość klientów z danego Stanuto 106, minimalna 34. Rozbieżności moga tu być przypadkowe.

4 Etap 3. Analiza skupiająca się na podgrupach Churn.

4.1 Analiza zmiennych ilościowych

```
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
##
##
      select
## The following objects are masked from 'package:stats':
##
      filter, lag
##
## The following objects are masked from 'package:base':
##
      intersect, setdiff, setequal, union
##
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
      combine
```

```
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
```


Rysunek 14: Histogramy liczby minut o różnych porach dnia oraz połączęń międzynarodowych.

Użytkownicy o dluższych rozmowach w dzien czesciej opuszczaja operatora, zaczyna sie to powyzej 200 minut. Wśród rozmów podczas wieczorów i w nocy nie widac silnego powiazania odchednia klientow z zalezności od liczby minut. Rozmów międzynarodowych jest około 20 razy mniej, brak znaczących zależności.

```
# Zmienna Calls
p5 <- ggplot() +
 geom_histogram(data = dane, aes(x=Day.Calls, fill=Churn.), color="#e9ecef", alpha=0.6;
  scale_fill_manual(values=c("red", "blue")) +
 labs( x = "Day Calls", y = "Count", title ="") +
 labs(fill="")
p6 <- ggplot() +
  geom_histogram(data = dane, aes(x=Night.Calls, fill=Churn.), color="#e9ecef", alpha=0.
  scale_fill_manual(values=c("red", "blue")) +
 labs( x = "Night Calls", y = "Count", title ="") +
 labs(fill="")
p7 <- ggplot() +
  geom_histogram(data = dane, aes(x=Eve.Calls, fill=Churn.), color="#e9ecef", alpha=0.6;
  scale_fill_manual(values=c("red", "blue")) +
 labs( x = "Evening Calls", y = "Count", title ="") +
 labs(fill="")
p8 <- ggplot() +
```

```
geom_histogram(data = dane, aes(x=Intl.Calls, fill=Churn.), color="#e9ecef",
scale_fill_manual(values=c("red", "blue")) +
labs( x = "International Calls", y = "Count", title ="") +
labs(fill="")

PC <- grid.arrange(p5, p6,p7, p8, ncol=2)

## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.</pre>
```


Rysunek 15: Histogramy liczby połączeń o różnych porach dnia oraz międzynarodowych.

Rysunek 16: Liczba połączeń serwisu klienta.

Z wykresu widac ze kategoria osób odchodzących jest duża dla powyżej trzech polączeń. Zmienna wykazuje duże powiązanie z odejściem klienta.

4.2 Analiza zmiennych jakościowych Churn.

Rysunek 17: Uczestnictwo klientów w planie poczty głosowej Częściej rezygnują osoby, które nie uczestniczą w kontakcie mailowym.

Rysunek 18: Rezygancje klientów w zależności od stanu.

Odejścia w poszczególnych stanach nie są mocno zróżnicowane, lecz charakteryzują się zmiennością. Na podstawie wizualizacji można wybrać stany o największej liczbie rezygnacji.

Rysunek 19: Uczestnictwo klientów w planie międzynarodowym

Osoby biorą udział w planie międzynarodowym częściej opuszczają operatora względem klientów bez tego planu.

Klienci z dużą liczbą minut w dzień jak i wieczorem charakteryzują się większym ryzykiem odejścia.

5 Etap 4. Podsumowanie

5.1 Ogólne wnioski

- Klienci posiadają większą ilość (wydzwonionych) minut o porach wieczornych i nocnych niż w porze dziennej. Zakres wartości tez ma tendencje zwyżkowe. Pokazują nam to parametry położenia oraz wykres gęstości. Natomiast ilość połączeń jest o każdej porze bardzo bliska siebie
- Bardzo wielu klientów nie zdecydowało się na wykupienie żadnego z planów/pakietów, jedynie 9.7 procent z nich skorzystało z planu międzynarodowego
- Istnieje silna korelacja między opłatami a wydzwonionymi minutami opdowiednio o każdej porze dnia
- Jeśli chodzi o zmienną CustServ.Calls dowiadujemy się że najczęstrzą liczbą wykonanych połączeń do biura obsługi klienta jest 1. Aż 75 procent klientów wykonuje 2 lub mnie połączeń, przy średniej długości konta 101 ¡dni?¿
- Występują jedynie 3 numery kierunkowe wśród klientów

5.2 Wnioski dotyczące podgrup Churn.

- Klienci z planem miedzynarodowym i planem poczty głosowej czesciej opuszczaja operatora
- Klienci z powyzej czterech polaczeniami z serwisem klienta rezygnuja na podobnym poziomie
- Klienci z dużą liczbą minut w dzień cześciej rezygnują niz pozostali, zjawisko takie nie występuje jednak wśród minut o innych porach dnia
- Osoby z planem poczty głosowej rzadziej opuszczają operatora

5.3 Ewentualne rozwiązania, działania

- Można obserwować klientów którzy przekraczaja liczbę 200 minut i oferowac im specjalne bonusy, promocje, pakiety
- Powinno sie przeanalizowac dlaczego w tym momencie klienci rezyguja, moze na rynku jest operator oferujacy promocje
- Powinno się monitorować liczbe polaczen wykonanych pomiedzy serwisem a kazdym klientem
- Mozna rozwazyc wprowadzenie ofert specjalnych podczas polaczen z klientami jesli mialo to miejsce wiecej niz trzy razy poniewaz pradopodobienstwo odejscia wzrasta znacznie
- Powinno się zbadać dlaczego klienci z planem miedzynarodowym czesciej odchodza

- Powinno sie zwiększyć uwage i rozwinąć program planu mailowoego lub ułatwić dostep do dołączenia, może to zwiekszyć lojalność klientów
- $\bullet\,$ Łatwiejszy dostep dolaczenia do planu Poczy głosowej- moze to zwiekszyc lojalnosc klientow

Literatura

[1] dr inż. Adam Zagdański, http://prac.im.pwr.wroc.pl/~zagdan/polish_ver/ED2020/index.html, 2020.