Neural Graphics: An Architceture's Perspective

Muhammad Husnain Mubarik, Prof. Rakesh Kumar

Muhammad Husnain Mubarik

- PhD ECE UIUC 5th year
 - Computer Architecture, Hardware Accelerators
 - Hardware for graphics, real-time / energy efficient rendering (HPC and energy efficiency)
 - Hardware for ML/DL
 - Advised by: Rakesh Kumar
- Research Experience
 - Hardware Acceleration of Neural Graphics (ISCA 2023)
 - Domain specific hardware design for Neural Radiance Fields
 - Cloud System Research Lab (CSR), Intel Labs, Dec 2021 May 2021.
 - Graphics Research Organization (GRO), Intel, June 2022 Present.
 - RASR/LOU-E (Ongoing)
 - Hardware software co-design for Deep Learning based Super Resolution
 - Heterogeneous Platforms Lab (HPL), Intel Labs, May 2021 Aug 2021
 - DASICS/MASICS (Ongoing)
 - Model/Data-specific Design of Deeply-Embedded Tiny Neural Network Accelerators
 - Encryption in Flexible Electronics (DATE 2023)
 - Rethinking Programmable Earable Processors (ISCA 2022)
 - Earable Computing "Powerful" Earbuds!! applications / architecture
 - Architectural Support for Supply Chain Resilience (Ongoing)
 - Enabling Strong Encryption On Flexible Devices (Ongoing)
 - o Printed Machine Learning Classifiers (MICRO 2020) IEEE Micro Top Picks Honorable Mention 2021
 - Printed Microprocessors (ISCA 2020)

Contents

- About Me
- Conventional Computer Graphics VS Neural Graphics (NG)
- An overview of NG
- State of the art in NG: HW/SW optimizations
- Motivation to accelerate NG in hardware
- NGPC: An accelerator for NG
- Conclusion
- Discussion / Questions

Conventional Computer Graphics VS Neural Graphics 1/3

- Goal: Synthesize photo-realistic and controllable imagery.
- Challenges: Rendering and inverse rendering algorithms are computationally demanding.
- Can neural networks be used to approximate algorithms used in classical computer graphics?
- Neural graphics: Approximating entire or parts of computer graphics using neural networks.
- Benefits: Compact representation, Simpler data structures, Deterministic rendering time, observations to image synthesis.

Conventional Computer Graphics VS Neural Graphics 2/3

Conventional Computer Graphics VS Neural Graphics 3/3

Representing Scenes as Neural Radiance Fields

- → Neural networks learn scene representations
- → Query the network to get color and densities
- → Accumulate color and densities using volumetric rendering
- → (position, view direction) (color, volume density)

Gist of Neural Graphics

Structure of a Typical NG Application

a) Structure of a typical neural graphics application

b) Neural graphics application with input encoding - Loss function may or may not update encoding parameters

How does NG Work (images)?

- Ray generation and sampling
 - Representing the scene as a continuous 5D function
 - Can not capture the high frequency details
 - Blurry output frames
 - Positional Encoding
- MLP queries
 - Neural Network replaces large N-d array
 - 100s of times for each pixel
- Volumetric rendering

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \sigma(\mathbf{r}(t)) \mathbf{c}(\mathbf{r}(t), \mathbf{d}) dt \,, \text{ where } T(t) = \exp\biggl(-\int_{t_n}^t \sigma(\mathbf{r}(s)) ds\biggr) \,.$$

$$\begin{pmatrix} \sin(\mathbf{x}), \cos(\mathbf{x}) \\ \sin(2\mathbf{x}), \cos(2\mathbf{x}) \\ \sin(4\mathbf{x}), \cos(4\mathbf{x}) \\ \vdots \\ \sin(2^{N}\mathbf{x}), \cos(2^{N}\mathbf{x}) \end{pmatrix} \longrightarrow (\mathbf{c})$$

Sampling analogous to ray-marching

How does NG Work (videos)?

- Deformation based approaches
 - Canonical representation of the network
- Modulation based approaches
 - Learned latent codes
 - Network embeddings
- Research questions to ask!
 - Can compression be used to
 - Accelerate the inference by skipping some work?
 - How much can the memory footprint be reduced without a significant dent on visual fidelity?
 - Speedup vs memory vs visual fidelity tradeoff.

Representative NG Applications/Benchmarks

- Neural radiance and density fields (NeRF)
- Neural signed distance functions (NSDF)
- Gigapixel image approximation (GIA)
- Neural volume rendering (NVR)

NG Applications

- Neural radiance and density fields (NeRF): The MLP learns the 3D density and 5D light field of a given scene from image observations and corresponding perspective transforms
- Novel view synthesis from a few photos
 - Rendering: Capable of rendering extremely high resolution images!
 - Data Compression: 3D Geometry structures ~2MB Network
- Virtual tourism on VR headsets
 - Realestate, Tourism etc
- Educational purposes
 - Students looking at NeRF rendered organs (medical), machine parts (mechanical), building structures (civil) etc
- Gaming
 - A combination of classical rendering and NeRF
- Gigapixel image: The MLP learns the mapping from 2D coordinates to RGB colors of a high-resolution image.
- Neural signed distance functions (SDF): The MLP learns the mapping from 3D coordinates to the distance to a surface.
- Neural radiance caching (NRC): The MLP learns the 5D light field of a given scene from a Monte Carlo path tracer.

Algorithmic Optimizations

- Problems with NG
 - Inference cost of MLP:
 - 8 layers, 256 hidden neurons each
 - o 100s of millions of MLP queries
 - 128 356 samples for each pixel (2k resolution)?
- Algorithmic solutions
 - Reduce the number of queries
 - Auxiliary geometric structures (voxels, trees etc)
 - Depth prediction (NNs to predict important samples)
 - Goal: Early Ray Termination (ERT), Empty Space Skipping (ESS).
 - Reduce the size of MLP
 - Learn parts of scene in tiny MLPs then query unique (smaller) MLP for subset of rays.
 - Learn neural network embeddings to generate inputs for MLPs.

Hierarchical Sampling - coarse/fine grained queries.

- Coarse grained MLP
 - Uniform sampling
- Fine grained MLP
 - Non-Uniform sampling
- Number of samples/ray
 - o 128 356

Classical data structures + Neural representations

- Neural Sparse Voxel Fields
 - Skip empty space using sparse voxel grid
 - + Efficient sampling, better quality, ~10x speedup
 - prior knowledge of the geometry of the scene, complicated training
 - bigger memory footprint
 - MLP query is still required for every sample

Smaller MLPs

kiloNeRF

- + ~ 3 OOM speedup (20 msec) RTX2080
- + Smaller model + less samples with EST+ERT trees
- 100MB instead of 2MB
- Bounded scenes

Caching – memoization of NeRF

- FastNeRF
 - + ~3 OOM speedup (<10 msec rendering time)
 - o 0.34-10 GB cache not scalable increases with resolution
- Fast NeRF is memory bottlenecked instead of compute

NNs for depth estimation

DONeRF

- Coarse grained MLP replaced with Depth Oracle Network
- Use a ground truth depth texture to place samples during training
 - What is the best quality-speed tradeoff that can possibly be reached?
- Skip empty space using depth prediction depth oracle network
- Sampling placement strategy log + warp
- Oracle net solves the classification task
- DO MLP: One query for each ray; 8 layers, 256 nodes/layer
- NeRF MLP: One query for each sample
- 2-16 MLP queries are still required for every pixel

Instant NGP - multi resolution hash encoding

- Positional enc. multi-res. hash enc.
- Trainable encoding parameters
 - Multi-res. voxel vertices
 - 20X fewer parameters vs dense voxel grids
 - Predictable mem. layout of hash tables good caching
- 3 25 samples per ray
- Linear interpolation to find nearest vertices
- ~1 OOM smaller MLP
 - o 1 to 3 layers, 16 to 256 nodes / layer
- Memory: ~200kB to 100MB; Speedup ~ 100s msec
- Potentially, much more suited for in-memory, near-memory architecture.

Does NG Need HW Support?

Extended Reality Systems Have Strict PPA Requirements

Metric	Varjo VR-3 [19]	Ideal VR [17], [20]	Microsoft HoloLens 2	Ideal AR [17], [20], [21]
Resolution (MPixels)	15.7	200	4.4 [22]	200
	115	Full:	52 diagonal	Full:
Field-of-view		165×175	[23], [24]	165×175
(Degrees)		Stereo:		Stereo:
		120×135		120×135
Refresh rate (Hz)	90	90 - 144	120 [25]	00 144
Motion-to-photon	< 20	< 20	< 9 [26]	< 5
latency (ms)				
Power (W)	N/A	1 - 2	> 7 [27]–[29]	0.1 - 0.2
Silicon area (mm^2)	N/A	100 - 200	> 173 [27], [30]	< 100
Weight (grams)	944	100 - 200	566 [22]	10s

Component	Parameter	Range	Tuned	Deadline
Camera (VIO)	Frame rate Resolution Exposure	15 – 100 Hz VGA – 2K 0 2 – 20 ms	15 Hz VGA 1 ms	66.7 ms - -
IMU (Linegrator)	Frame rate	≤ 800 Hz	500 Hz	Zinc
Display (Visual pipeline + Application)	Frame rate Resolution Field-of-view	30 – 144 Hz ≤ 2K ≤ 180°	120 Hz 2K 90°	8.33 ms - -
Audio (Encoding + Playback)	Framo rato Block size	49 00Hz 256 – 1024	48 Hz 1024	20.8 ms -

Approximate	Current	Desired	
Res (Mpixels)	4	200	
Power (W)	10	0.1	
Weight (g)	500	10	

<u>Table taken from the illixr project.</u>

Illixr is an open source extended reality prototyping and evaluation tool

Many different deadlines need to be met to ensure a high-quality user experience!

Performance on RTX 3090

Neural Graphics on RTX3090

AppKernel	Grid Size/Block Size	Comp. Util. per kernel call	Mem. Util. per kernel call	Kernel Calls	Comp. Util. avg. across application	Mem. Util. avg. across application
NeRF multi res. hashgrid	(3853;16;1)/(512;1;1)	61.73	72.85	59	40.63	72.02
NeRF MLP	(3853;16;1)/(512;1;1)	34.3	65.2	118	33.36	63.07
NSDF multi res. hashgrid	(1823;16;1)/(512;1;1)	73.08	43.54	256	15.97	30.8
NSDF MLP	(1823;16;1)/(512;1;1)	38.13	71.74	256	9.76	18.28
NVR multi res. hashgrid	(403;16;1)/(512;1;1)	52.5	59.03	48	18.67	30.36
NVR MLP	(403;16;1)/(512;1;1)	36.51	67.01	48	11.51	21.05
GIA multi res. hashgrid	(4050;16;1)/(512;1;1)	82.87	62.23	1	82.87	62.23
GIA MLP	(4050;16;1)/(512;1;1)	39.1	72.22	1	39.1	72.22
NeRF multi res. densegrid	(3966;8;1)/(512;1;1)	71.39	91.81	45	57.37	72.31
NeRF MLP	(3966;8;1)/(512;1;1)	39.53	68.4	90	34.51	62.31
NSDF multi res. densegrid	(1823;8;1)/(512;1;1)	76.1	48.25	244	18.38	21.28
NSDF MLP	(1823;8;1)/(512;1;1)	41.66	73.49	244	11.06	19.41
NVR multi res. densegrid	(403;8;1)/(512;1;1)	57.38	56.8	48	17.41	22.43
NVR MLP	(403;8;1)/(512;1;1)	39.83	67.67	48	12.17	20.59
GIA multi res. densegrid	(4050;8;1)/(512;1;1)	78.53	65.83	1	78.53	65.83
GIA MLP	(4050;8;1)/(512;1;1)	42.89	73.07	1	42.89	73.07
NeRF low res. densegrid	(3980;2;1)/(512;1;1)	53.83	49.74	43	31.17	59.57
NeRF MLP	(3980;2;1)/(512;1;1)	39.41	68.17	86	35.5	64.1
NSDF low res. densegrid	(1823;2;1)/(512;1;1)	55.88	45.52	260	7.21	20.07
NSDF MLP	(1823;2;1)/(512;1;1)	41.37	72.98	260	10.34	18.14
NVR low res. densegrid	(403;2;1)/(512;1;1)	22.71	69.16	48	6.29	22.71
NVR MLP	(403;2;1)/(512;1;1)	39.2	66.58	48	12.11	20.48
GIA low res. densegrid	(4050;2;1)/(512;1;1)	66.15	59.12	1	66.15	59.12
GIA MLP	(4050;2;1)/(512;1;1)	42.87	73.02	1	42.87	73.02

Waiting for Long Scoreboard to Resolve Global Mem. req.

Neural Fields Processor

Evaluation

App.	Input BW (GB/s)	Output BW (GB/s)	Totoal BW (GB/s)	Access time (ms)
NeRF	69.523	46.349	231.743	4.126
NSDF	34.761	34.761	69.523	1.238
GIA	34.761	34.761	69.523	1.238
NVR	34.761	34.761	69.523	1.238

Estimated Performance Improvements

Estimated FPS improvements

Conclusion

- "If not NeRF, some form of Neural Rendering is here to stay" Anton Kaplan
- XR has stringent PPA requirements
 - Latency, Power, Energy
 - Power gap is ~200MX
 - Performance gap for unbounded scenes is ~100M 200M
- Rendering high quality images is difficult even on high end systems
- NG is a promising recent alternative to classical rendering methods
- We proposed "a solution" to accelerate NG in HW
 - o Configurable enough to run a wide class of NG algorithms
 - Scalable architecture
 - Integrated on edge, desktop and/or embedded devices depending upon the use-case/application
 - Further SW/HW optimizations are required to minimize power and energy footprints for HMDs.

Discussion / Questions!?