Misura della caratteristica di due diodi a giunzione p-n

Bertasi Leonardo, Perniola Davide

Quarto turno

1 Introduzione

Una giunzione p-n è composta da due regioni con drogaggio differente, di tipo p e di tipo n, di un semiconduttore a contatto tra di loro. Quando ai suoi capi è applicato una differenza di potenziale si parla di diodo. La prova è consistita nel misurare la caratteristica I-V di due diodi a semiconduttore, uno al silicio e uno al germanio, con l'obiettivo di ricavare il valore della corrente inversa I_0 e del prodotto ηV_T (η fattore di idealità, V_T equivalemte in volt della temperatura della giunzione). Sono stati utilizzati, inoltre, un alimentatore di bassa tensione, un multimetro digitale, un oscilloscopio, un potenziometro da $1k\Omega$ oltre che dai due diodi in esame. Il circuito realizzato è riporato in Figura 1.

Figura 1: Circuito realizzato e una sua rappresentazione schematica.

2 Risultati

In Tabella 1 e 2 sono riportati i valori misurati di I e V utilizzati per i fit in Figura 2 e 3. Gli errori sui valori misurati con l'oscilloscopio sono stati ricavati considerando la somma quadratica dell'errore sulla lettura, sullo zero e del costruttore, secondo la relazione

$$\sigma = \sqrt{(\sigma_L + \sigma_Z)^2 + \sigma_C^2}$$

Considerando i grafici, il parametro p_1 rappresente il valore di ηV_T mentre $p_0=\eta V_T \ln I_0$. Risulta allora che per il diodo al silicio

$$I_0 = (1,07 \pm 1.20)nA$$

$$\eta V_T = (46.26 \pm 3.21) mV$$

F.S(mV/div)	V(mV)	I(mA)
100	665 ± 22	1.74 ± 0.04
100	650 ± 22	1.50 ± 0.03
100	645 ± 22	1.25 ± 0.03
100	635 ± 22	0.98 ± 0.02
100	625 ± 21	0.69 ± 0.02
100	605 ± 21	0.53 ± 0.02
100	590 ± 20	0.36 ± 0.02
100	565 ± 20	0.22 ± 0.01
100	525 ± 19	0.10 ± 0.01
100	500 ± 18	0.05 ± 0.01
100	445 ± 17	0.02 ± 0.01
100	430 ± 16	0.01 ± 0.01

Tabella 1: Risultati delle misure effettuate con il diodo al silicio e utilizzate per il fit. Sono riportate i valori di corrente e delle differenze di potenziale corrispettive, oltre che il fondo scale scelto per ogni misura

F.S(mV/div)	V(mV)	I(mA)
50	285 ± 10	1.28 ± 0.03
50	275 ± 10	1.01 ± 0.03
50	255 ± 9	0.73 ± 0.02
50	245 ± 9	0.58 ± 0.02
50	225 ± 8	0.42 ± 0.02
50	212 ± 8	0.32 ± 0.01
50	182 ± 7	0.18 ± 0.01
50	155 ± 7	0.10 ± 0.01
50	135 ± 6	0.06 ± 0.01
20	100 ± 4	0.02 ± 0.01
20	85 ± 3	0.01 ± 0.01

Tabella 2: Risultati delle misure effettuate con il diodo al germanio e utilizzate per il fit. Sono riportate i valori di corrente e delle differenze di potenziale corrispettive, oltre che il fondo scale scelto per ogni misura

e per il diodo al germanio

$$I_0 = (1.36 \pm 0.36)\mu A$$

$$\eta V_T = (39.28 \pm 1.07) mV$$

C'è da considerare che gli errori sui valori della corrente inversa I_0 sono stati calcolati propagando le incertezze sui valori di p_0 e p_1 e sono da considerarsi come errori massimi.

 $\label{eq:continuous} \begin{tabular}{ll} Figura~2:~Grafici,~dall'alto~verso~il~basso,~della~retta~di~calibrazione,~della~caratteristica~V-I~del~diodo~al~silicio~e~della~stessa~in~scala~semilogaritmica~\\ \end{tabular}$

Figura 3: Grafici della caratteristica V-I del diodo al germanio e della stessa in scala semilogaritmica

3 Conclusioni

Grazie ai grafici del fit ai dati sperimentali e ai valori calcolati di I_0 e ηV_T è stato possibile verificare, almeno qualitativamente, la bontà delle previsioni teoriche sull'andamento della caratteristica V-I di diodi al silicio e al germanio. Per migliorare i risultati si sarebbero potuti ad esempio effettuare un maggior numero di misure o migliorare l'accuratezza di quelle effettuate con l'oscilloscopio.