

Pontifícia Universidade Católica de Minas Gerais (Unidade São Gabriel)

Programa de Pós-graduação – Mestrado em Informática

Disciplina: Fundamentos Teóricos da Computação

PUC Minas Professor : Zenilton Kleber Gonçalves do Patrocínio Júnior

Exercícios Extra (2ª AVALIAÇÃO – 2º sem/2012)

Nome:		
1)	Construa AP (apenas o diagrama) e GLC para as seguintes linguagens:	
	a) $L_1 = \{ w \in \{a,b\}^* \mid \text{tamanho de } w \text{ \'e impar e o símbolo do meio \'e } a \}$	(03 pontos)
	b) $L_2 = \{ a^n b^k \mid k > 2n \}$	(03 pontos)
	c) $L_3 = \{ a^k b^m c^n k > m + n, m \notin par, n \notin impar \}$	(03 pontos)
	d) $L_2L_3 \cup L_1^*$	(02 pontos)
2)	Considere a seguinte GLC $G = (\{E, R\}, \{a, (,), +, *\}, R, E)$, em que R contém as se	guintes regras :
	$E \rightarrow aR \mid (E)R$ $R \rightarrow +ER \mid *ER \mid \lambda$	
	Pede-se:	
	a) Construa um AP M (apenas o diagrama) que reconheça $L_4 = L(G)$;	(03 pontos)
	b) Mostre que G é ambígua.	(02 pontos)
3)	REMOVIDA (pois o tema não faz mais parte do plano de ensino)	(03 pontos)
4)	Sabe-se que $L_5 = \{ a^n \mid n \text{ \'e primo } \}$ não \acute{e} LLC. Pede-se:	
	a) Mostre que se L é LLC e R é L.Regular então L – R é LLC;	(03 pontos)
	b) Use isso para mostrar que $L_6 = \{ a^n \mid n \text{ \'e par ou primo } \}$, não \'e uma LLC .	(03 pontos)