Du 03 au 06 janvier

Programme n°11

ELECTROCINETIQUE

EL3 Les circuits linéaires du premier ordre

Cours et exercices

EL4 Les oscillateurs amortis

Cours et exercices

- Portrait de phase
 - Définitions (rappels)
 - Résultats pour les oscillateurs
 - → Oscillateur harmonique
 - → Oscillateur amorti

EL5 Les dipôles linéaires en régime sinusoïdal forcé, impédances complexes (Cours uniquement)

- Régime sinusoïdal permanent
- · Représentation d'une grandeur sinusoïdale
 - Valeurs instantanées
 - Représentation vectorielle
- → Définition du vecteur de Fresnel
- → Somme de deux grandeurs sinusoïdales de même pulsation
- \rightarrow Interêt
- Représentation complexe
- $\rightarrow \mathsf{D\'efinitions}$
- → Intérêt
- → Lois de Kirchhoff
- Dipôles idéaux R, L et C
 - Résistance R
 - Inductance L
 - Capacité C
- Utilisation des impédances complexes
 - Associations de deux impédances → As
 - → Association série
 - → Association parallèle
 - Modèle générateur → Générateur de tension
 - → Générateur de courant
 - → Passage d'un modèle à l'autre
 - Les diviseurs en régime sinusoïdal
- → Diviseur de tension
- $\rightarrow \text{Diviseur de courant}$
- $\rightarrow \text{Exemples}$

Régime sinusoïdal forcé, impédances complexes.	Établir et connaître l'impédance d'une résistance, d'un condensateur, d'une bobine en régime harmonique.
Association de deux impédances.	Remplacer une association série ou parallèle de deux impédances par une impédance équivalente.

INTRODUCTION A LA MECANIQUE QUANTIQUE

Cours et exercices

ATOMISTIQUE

AT1 Atomes et éléments (Cours et exercices)

- Historique (Ne pas connaitre)
- Elément chimique
 - Définition
 - Isotopes isobares
 - Caractéristiques des composants de l'atome → L'électron
 - → Les nucléons
 - → Dimensions

- Interaction rayonnement matière
 - Présentation
 - Spectres atomiques → Spectre d'émission, spectre d'absorption
 - → Energie d'un atome ; interprétation des spectres
 - Exemple le spectre de l'atome d'hydrogène
- → Résultats, description
 → Niveaux d'énergie de l'atome d'hydrogène
- → Diagramme

AT2 Structure électronique de l'atome (Cours et exercices)

- Notion de fonction d'onde associée à l'électron
- Les nombres quantiques
 - Définition
 - L'état d'un atome
- Diagramme énergétique
 - Cas de l'atome d'hydrogène
 - Cas des autres atomes (Klechkovski)
- Configuration électronique d'un atome dans son état fondamental
 - Edification du cortège électronique : trois règles
 - Irrégularités à ces règles
 - Electrons de cœur, électrons de valence

AT3 Classification périodique (Cours uniquement)

- La classification périodique
 - Historique (à ne pas connaitre)
 - Le tableau de Mendeleïev
 - Métaux et non-métaux, métalloïdes
- Structure en bloc
- Evolution des propriétés atomiques
 - Energie d'ionisation
 - Affinité électronique
 - Electronégativité

- Electronegativite	
Atomes et éléments	
Isotopes, abondance isotopique, stabilité. Ordres de grandeur de la taille d'un atome, des masses et des charges de l'électron et du noyau.	Utiliser un vocabulaire précis : élément, atome, corps simple, espèce chimique, entité chimique.
Nombres quantiques n, l, m _l et m _{s.}	Déterminer la longueur d'onde d'une radiation émise ou absorbée à partir de la valeur de la transition énergétique mise en jeu, et inversement.
Configuration électronique d'un atome et d'un ion monoatomique. Électrons de cœur et de valence.	Établir un diagramme qualitatif des niveaux d'énergie électroniques d'un atome donné. Établir la configuration électronique d'un atome dans son état fondamental (la connaissance des exceptions à la règle de Klechkowski n'est pas exigible). Déterminer le nombre d'électrons non appariés d'un atome dans son état fondamental. Prévoir la formule des ions monoatomiques d'un élément.
Classification périodique des éléments	
Architecture et lecture du tableau périodique.	Relier la position d'un élément dans le tableau périodique à la configuration électronique et au nombre d'électrons de valence de l'atome correspondant. Positionner dans le tableau périodique et reconnaître les métaux et non métaux. Situer dans le tableau les familles suivantes : métaux alcalins, halogènes et gaz nobles. Citer les éléments des périodes 1 à 2 de la classification et de la colonne des halogènes (nom, symbole, numéro atomique).

TP

Mesure de résistances, montage longue ou courte dérivation. Incertitudes de mesure. Charge et décharge d'un condnesateur

Suivi d'une cinétique d'ordre 2 par conductimètrie