

PLANO DE ENSINO

1. DADOS DE IDENTIFICAÇÃO:

CURSO: Bacharelado em Ciência da Computação			
MODALIDADE: Ensino presencial	CÓDIGO: CCB0712		
COMPONENTE CURRICULAR: Cálculo Diferencial Integral II			
CARGA HORÁRIA (HS): 60	NÚMERO DE AULAS: 80		
ANO/SEMESTRE LETIVO: 2022/1	TURMA: 2021/1		
PROFESSOR: Carlos Roberto da Silva			
CONTATO DO PROFESSOR: carlos.silva@ifc.edu.br			

2. EMENTA DA DISCIPLINA:

Integrais Simples, Integral Indefinida, Métodos de Integração, Integral Definida e Aplicações.

3. OBJETIVOS DA DISCIPLINA:

3.1. **GERAL**:

Proporcionar ao educando embasamento teórico para aplicar os conhecimentos de Cálculo Diferencial e Integral II, bem como aplicar esses conceitos em situações concretas conforme suas necessidades profissionais.

3.2. ESPECÍFICOS:

- Reconhecer os diferentes tipos de integrais;
- Aplicar conceitos e resolver problemas que envolvam integral definida;
- Resolver as integrais, através das técnicas de integração por substituição, integração por partes e integrais trigonométricas;

• Identificar o domínio de funções de várias variáveis;

Reconhecer as curvas de níveis;

Calcular derivadas parciais;

Resolver certos problemas que envolvam áreas e volumes.

4. JUSTIFICATIVA DO COMPONENTE CURRICULAR:

Justifica-se a disciplina de Cálculo Diferencial e Integral II no curso da Ciência da Computação porque deve-se oferecer aos discentes as ferramentas matemáticas básicas para que os mesmos desenvolvam um vocabulário preciso, recursos para notação, abstração e raciocínio formal. Estas ferramentas deverão auxiliar os estudantes na resolução de problemas, principalmente aqueles que utilizam o computador como ferramenta.

5. CONTEÚDO PROGRAMÁTICO: (Temas Transversais)

5.1 Integral Indefinida (AER)

Introdução;

Propriedades de integral indefinida;

• Tabela de integrais imediatas;

Método de Integração por Substituição ou Mudança de Variáveis para a Integração;

5.2 Integral Definida (AER)

Definição de Integral Definida;

• Teorema Fundamental do Cálculo e Propriedades;

Cálculo de áreas da Integral Definida.

5.3 Método de Integração (AER)

- Integração de Funções Trigonométricas;
- Método de Integração por Partes;
- Integração de funções racionais por frações parciais.

5.4 Aplicações de Integrais Definidas

- Área em Coordenadas Cartesianas;
- Área de uma Região Regiões Plana;
- Volume de Sólido de Revolução;

5.5 Integrais Duplas

- Funções de várias variáveis e derivadas parciais;
- Aplicações de derivadas parciais;
- Integrais duplas.

6. METODOLOGIAS DE ENSINO:

6.1. PROCEDIMENTOS METODOLÓGICOS:

O desenvolvimento dos conteúdos de Cálculo Integral e Diferencial II será abordado aos discentes procurando relacionar os conceitos teóricos quando possível modelando-os à Ciência da Computação.

Sempre que for abordado um novo conteúdo, o mesmo será trabalhado visando os conhecimentos prévios dos estudantes procurando desenvolver a noção de conceitos básicos e essenciais ao curso.

As aulas serão conduzidas de maneira expositivo-dialogadas, com discussão dos tópicos em sala de aula e estudo extraclasse.

Os principais recursos didáticos a serem utilizados serão o quadro e projetor multimídia.

Durante o período de atividades remotas, que ocorre no início desse semestre letivo, seguimos a Em

situações de impossibilidade para a realização de aulas presenciais, serão realizadas atividades pedagógicas não presenciais, em conformidade com a portaria normativa 6 de 2022 de 21/02/2022. Neste caso, serão utilizados o "Google classroom" e o Sigaa como ferramentas de envio de vídeo, textos, slides e atividades em geral. Para as aulas, será utilizado, preferencialmente, o "meet". Caso ocorra alguma falha de sistema, será usada qualquer outra plataforma compatível com o "meet", como o "team" ou "moodle".

Este plano de ensino é passível de modificações futuras.

7. INSTRUMENTOS DE AVALIAÇÃO E PESOS:

Serão realizadas no mínimo duas avaliações, em que poderão ser avaliações individuais e/ou em dupla e trabalhos em aula ou extraclasse.

As avaliações terão os seguintes conteúdos e pesos:

- 1ª Avaliação: prova sobre integrais definidas. Peso 25.
- 2ª Avaliação: prova sobre integrais definidas. Peso 25.
- 3ª Avaliação: prova sobre aplicações de integrais definidas. Peso 30.
- **4ª Avaliação:** Trabalhos e atividades, em forma de listas de exercícios e/ou desafios, resolvidos em classe e/ou extraclasse no decorrer do semestre letivo Peso 20

O aluno que não obtiver a média semestral (MS) igual ou superior a 7,0 (sete) terá direito a prestar exame final (EF), tendo a média final (MF) resultante da seguinte fórmula: MF = (MS + EF) / 2. Após o exame, será considerado aprovado se obtiver média final igual ou superior a 5,0 (cinco) e frequência igual ou superior a 75% (setenta e cinco por cento).

O aluno que faltar nas avaliações, somente terá direito em realizar a mesma em segunda chamada, que será marcado posteriormente pela secretaria, mediante atestado médico até 48 horas.

8. REFERÊNCIAS:

8.1. BÁSICAS:

- [1] GUIDORIZZI, Hamilton L. Um curso de cálculo. 5a Ed. Rio de Janeiro: LTC, 2010. 4v. ISBN 9788521612803 (v.2).
- [2] FLEMMING, Diva M; GONÇALVES, Mirian B. Cálculo A: funções, limite, derivação, integração..São Paulo: Pearson Prentice Hall, 2006. ISBN 9788576051152.
- [3] STEWART, James. Cálculo. 7a Ed. São Paulo: Cengage Learning, 2015. 2v. ISBN 9788522112586 (v.1).

8.2. COMPLEMENTARES

- [1] ANTON, Howard; BIVENS, Irl; STEPHEN, Davis. Cálculo. 8a Ed. Porto Alegre:Bookman, 2007. 680 p. 2v. ISBN 9788560031634 (v.1).
- [2] GONÇALVES, Mírian Buss; FLEMMING, Diva Marilia. Cálculo B: funções de várias variáveis, integrais múltiplas, integrais curvilíneas e de superfície. 2. ed. rev. ampl. São Paulo: Pearson Prentice Hall, 2007. 435 p. ISBN 9788576051169.
- [3] HUGHES-HALLETT, Deborah et al. Cálculo e aplicações. São Paulo: E.Blücher, c1999. xii, 329 p. ISBN 9788521201786.
- [4] STEWART, James. Cálculo. 7a Ed. São Paulo: Cengage Learning, 2015. 2v. ISBN 9788522112593 (v.2).
- [5] LEITHOLD, Louis. O cálculo com geometria analítica. 3. Ed. São Paulo: HARBRA, 1994. 2 v. ISBN 8529400941 (v.1).

9. CRONOGRAMA DE AULAS (OPCIONAL)

10. ASSINATURAS:	
Carlos Roberto Silva	Manassés Ribeiro
Professor(a) do Componente Curricular	Coordenador do Curso
IFC Campus Videira	Campus Videira
SIAPE: 2276402	Portaria nº 57/2021 - DOU de 10/02/2021

11. REVISÕES:

Versão	Data	Ação	Assinaturas
		Entrega ao Coordenador	
		Revisão pelo NDB	
		Devolução ao professor	

Versão	Data	Ação	Assinaturas
		Entrega ao Coordenador	
		Revisão pelo NDB	
		Devolução ao professor	

Videira, 22 de março de 2022.

