Decision Trees in Apache Spark

By

Max Karl Hafiz Mujadid Khalid

Today's Agenda

- Intro to classification
- Decision Tree
- Intro to Apache Spark ML
- Flight delay prediction
 - Explain data
 - Explain code
 - Explain results

Supervised Learning

 Supervised learning is where you have input variables (x) and an output variable (Y) and you use an algorithm to learn the mapping function from the input to the output.

$$Y = f(X)$$

• The goal is to approximate the mapping function so well that when you have new input data (x) that you can predict the output variables (Y) for that data.

Supervised Learning

Supervised learning problems can be further grouped into regression and classification problems.

- Classification: Label denotes some categorical class like rainy, sunny, cloudy
- Regression: Label donates real value like income or house price

Decision Tree

Training Data

Decision Tree Classification

Test Set

Apply model on Test Data

Decision Tree Induction

Hunt's Algorithm (one of the earliest)

Let D_t be the set of training records that reach a node t

General Procedure:

- If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
- If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
- If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

Hunt's Algorithm

Tid	Refund	Marital Taxable Status Income		Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

How to determine the Best Split

- Greedy approach
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity

C0:5 C1:5

Non-homogeneous,

High degree of impurity

C0:9

C1:1

Homogeneous,

Low degree of impurity

Measures of Node Impurity

Gini Index

Entropy

Misclassification error

Measure of Impurity: GINI

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

C1	0/
C2	6
Gini=	0.000

C1	1
C2	5
Gini=	0.278

C1	2
C2	4
Gini=0	0.444

C1	3
C2	3
Gini=	0.500

Entropy

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j|t) \log p(j|t)$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Measures homogeneity of a node.
 - Maximum (log n_c) when records are equally distributed among all classes implying least information
 - Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are similar to the GINI index computations

Examples for computing Entropy

$$Entropy(t) = -\sum_{j} p(j|t) \log_2 p(j|t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

Classification Error

Classification error at a node t:

$$Error(t) = 1 - \max_{i} P(i|t)$$

Measures misclassification error made by a node.

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Examples for Computing Error

$$Error(t) = 1 - \max_{i} P(i|t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Advantages of Decision Trees?

- Easy to interpret
- Handle categorical variables
- (Multi-class) classification and regression
- No feature scaling
- Capture non-linearities and feature interactions
- Handle missing values

Disadvantages of Decision Trees?

- Time Complexity
- Over-fitting
- Instability The decision tree changes by perturbing the dataset a bit. This is not desirable as we want our classification algorithm to be pretty robust to noise and be able to generalize well to future observed data.
- Decision Tree's do not work best if you have a lot of un-correlated variables

Spark's Machine Learning Library

- Consists of common learning algorithms and utilities, including:
 - Classification
 - Regression
 - Clustering
 - Collaborative filtering
 - Dimensionality reduction
- Two packages
 - spark.mllib
 - spark.ml

ML: Transformer

- A Transformer is a class which can transform one DataFrame into another DataFrame
- A Transformer implements transform()
 - Examples
 - HashingTF
 - Bucketizer
 - LogisticRegressionModel
 - PipelineModel
 - Binarizer

ML: Estimator

- An Estimator is a class which can take a DataFrame and produce a Transformer
- An Estimator implements fit()
- Examples
 - RandomForestClassifier
 - CrossValidator
 - + IDF
 - Pipeline
 - StandardScaler

ML: Pipelines

A Pipeline is an estimator that contains stages representing a reusable work-flow Pipeline stages can be either estimators or transformers.

Pipeline

ML: PipelineModel

Train Model

PipelineModel

Datasource

 Flight data from Bureau of Transportation Statistics

Dataset

- All US flights from January to March 2017
- 1.35 Million flights
- 154063 flight with a delay of more than 40 minutes (11% of flights are delayed)

Data

DAY_OF_MONTH	DAY_OF_WEEK	CARRIER	TAIL_NUM				_			ARR_DELAY_NEW	
1	7	EV	N12563	4100	ORD	ABE	1855	0.00	2200	0.00	655.00
1	7	00	N453SW	4515	DTW	ABE	1527	0.00	1658	0.00	425.00
1	7	EV	N153PQ	5333	ATL	ABE	2136	10.00	2326	17.00	692.00
2	1	00	N439SW	4487	DTW	ABE	2057	50.00	2143	34.00	425.00
2	1	00	N487CA	4493	DTW	ABE	1355	0.00	1526	2.00	425.00
2	1	EV	N200PQ	5267	ATL	ABE	1452	47.00	1604	32.00	692.00
2	1	EV	N228PQ	5333	ATL	ABE	2356	150.00	2328	126.00	692.00
2	1	EV	N12900	3981	ORD	ABE	1522	97.00	1640	97.00	655.00
3	2	EV	N27200	3981	ORD	ABE	1528	103.00	1640	86.00	655.00
3	2	EV	N16559	4100	ORD	ABE	1807	22.00	2040	21.00	655.00
3	2	EV	N607LR	5267	ATL	ABE	1435	30.00	1604	16.00	692.00
3	2	EV	N232PQ	5333	ATL	ABE	2121	0.00	2328	0.00	692.00
3	2	00	N8828D	4487	DTW	ABE	2006	0.00	2143	0.00	425.00
3	2	00	N440SW	4493	DTW	ABE	1353	0.00	1526	0.00	425.00
4	3	00	N437SW	4487	DTW	ABE	2006	0.00	2143	18.00	425.00
4	3	00	N426SW	4493	DTW	ABE	1351	0.00	1526	7.00	425.00
4	3	EV	N200PQ	5267	ATL	ABE	1400	0.00	1604	0.00	692.00
4	3	EV	N538CA	5333	ATL	ABE	2135	9.00	2328	5.00	692.00
4	3	EV	N14542	4100	ORD	ABE	1734	0.00	2040	0.00	655.00
5	4	EV	N14542	3981	ORD	ABE	1344	0.00	1642	0.00	655.00
5	4	EV	N21154	4100	ORD	ABE	2254	309.00	2040	301.00	655.00
5	4	EV	N232PQ	5267	ATL	ABE	1400	0.00	1604	0.00	692.00
5	4	EV	N132EV	5333	ATL	ABE	2120	0.00	2328	0.00	692.00
5	4	00	N910EV	4487	DTW	ABE	2006	0.00	2143	0.00	425.00
5	4	00	N453SW	4493	DTW	ABE	1404	8.00	1526	5.00	425.00
6	5	EV	N134EV	5267	ATL	ABE	1409	4.00	1604	0.00	692.00

The Fastest Airlines

Each major airline ranked by the time it shaved off a typical flight relative to other airlines, October 2014 through September 2015

1	Virgin	-0:07 •
2	Alaska	-0:06
3	Delta	-0:04
4	Hawaiian	-0:03
5	US Airways*	-0:03 •
6	JetBlue	-0:03 •
7	Southwest	-0:01
8	American	• +0:03
9	Frontier	• +0:04
10	United	• +0:04
11	Spirit	• +0:09
	•	

^{*}Because of its ongoing merger with American Airlines, US Airways' flights were classified as American Airlines flights starting in July 2015.

The problem

- Use given data
- Predict if flights will be delayed or not
- Measure the error rate of the prediction

→ use Databricks notebook to share program

Code

Pre-processing

```
1 from pyspark.sql.functions import col # for indicating a column using a string in the line below
   from pyspark.sql.functions import udf
   from pyspark.sql.types import *
   def toID (value):
     return ''.join(str(ord(a)) for a in value)
   udftoID = udf(toID, StringType())
   df = df.withColumn("CARRIERID", udftoID("CARRIER"))
   df = df.na.drop()
12 df = df.select([col(c).cast("double").alias(c) for c in
   df.select("DAY_OF_MONTH", "DAY_OF_WEEK", "ORIGIN_AIRPORT_ID", "DEST_AIRPORT_ID", "CRS_DEP_TIME", "DEP_DELAY_NEW", "CRS_ARR_TIME", "CRS_ELAPSED_TIME",
    "CARRIERID").columns])
   def delayed (value):
      if value > 40:
14
15
         return 1.0
16
      return 0.0
17
   udfdelayed = udf(delayed, DoubleType())
19 df = df.withColumn("DELAYED", udfdelayed("DEP_DELAY_NEW"))
```

Define features array

Code

Split data into traning and testing

```
1 # Split the dataset randomly into 75% for training and 25% for testing.
 2 train, test = df.randomSplit([0.75, 0.25])
 3 # print "We have %d training examples and %d test examples." % (train.count(), test.count())
   from pyspark.ml.feature import VectorAssembler, VectorIndexer
   featuresCols = df.columns
   # remove labeled data from the features
 8 featuresCols.remove('DELAYED')
   featuresCols.remove('DEP_DELAY_NEW')
   # This concatenates all feature columns into a single feature vector in a new column "rawFeatures".
   vectorAssembler = VectorAssembler(inputCols=featuresCols, outputCol="rawFeatures")
   # This identifies categorical features and indexes them.
15 vectorIndexer = VectorIndexer(inputCol="rawFeatures", outputCol="features", maxCategories=4)
```

Model layout

Build pipeline and train & evaluate model

```
▶- ∨ - x
```

```
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.ml import Pipeline
dt = DecisionTreeClassifier(labelCol="DELAYED", featuresCol="features",impurity='entropy')
pipeline = Pipeline(stages=[vectorAssembler, vectorIndexer, dt])
pipelineModel = pipeline.fit(train)
predictions = pipelineModel.transform(test)

from pyspark.ml.evaluation import BinaryClassificationEvaluator

# Evaluate model
evaluator = BinaryClassificationEvaluator(labelCol="DELAYED", rawPredictionCol="rawPrediction")
evaluator.evaluate(predictions)
```

Results

DELAYED	prediction	DAY_OF_MONTH	DAY_OF_WEEK	ORIGIN_AIRPORT_ID	DEST_AIRPORT_ID	CRS_DEP_TIME	CRS_ARR_TIME	CRS_ELAPSED_TIME	CARRIERID
0.0	0.0	1.0	7.0	10136.0	11298.0	1248.0	1345.0	57.0	6986.0
0.0	0.0	1.0	7.0	10140.0	11259.0	635.0	915.0	100.0	8778.0
0.0	0.0	1.0	7.0	10140.0	11259.0	1045.0	1325.0	100.0	8778.0
1.0	0.0	1.0	7.0	10140.0	11259.0	2025.0	2255.0	90.0	8778.0
0.0	0.0	1.0	7.0	10140.0	11292.0	545.0	710.0	85.0	8565.0
0.0	0.0	1.0	7.0	10140.0	11298.0	500.0	749.0	109.0	6565.0
0.0	0.0	1.0	7.0	10140.0	11298.0	800.0	1047.0	107.0	6565.0
0.0	0.0	1.0	7.0	10140.0	11298.0	1637.0	1922.0	105.0	6565.0
0.0	0.0	1.0	7.0	10140.0	12191.0	630.0	930.0	120.0	8778.0
0.0	0.0	1.0	7.0	10140.0	12191.0	1605.0	1905.0	120.0	8778.0
0.0	0.0	1.0	7.0	10140.0	12266.0	1110.0	1415.0	125.0	6986.0
0.0	0.0	1.0	7.0	10140.0	12266.0	1705.0	2010.0	125.0	6986.0
0.0	0.0	1.0	7.0	10140.0	12478.0	2359.0	551.0	232.0	6654.0
0.0	0.0	1.0	7.0	10140.0	12889.0	1455.0	1535.0	100.0	8778.0
0.0	0.0	1.0	7.0	10140.0	12889.0	1630.0	1705.0	95.0	8778.0
0.0	0.0	1.0	7.0	10140.0	12892.0	731.0	842.0	131.0	7979.0
0.0	0.0	1.0	7.0	10140.0	13796.0	1340.0	1510.0	150.0	8778.0
0.0	0.0	1.0	7.0	10140.0	14057.0	1205.0	1410.0	185.0	8778.0
0.0	0.0	1.0	7.0	10140.0	14107.0	625.0	753.0	88.0	7979.0
0.0	0.0	1.0	7.0	10140.0	14107.0	1030.0	1150.0	80.0	8778.0
0.0	0.0	1.0	7.0	10140.0	14107.0	1520.0	1646.0	86.0	7979.0
1.0	1.0	1.0	7.0	10140.0	14747.0	1635.0	1845.0	190.0	6583.0
0.0	0.0	1.0	7.0	10158.0	11697.0	1955.0	2239.0	164.0	7875.0
0.0	0.0	1.0	7.0	10158.0	13204.0	600.0	836.0	156.0	7875.0

Results

- Small dataset (just January) 37% error rate
- Big dataset (January to March) 42% error rate
 We got better results with GBT
- Small dataset 10% error rate
- Big dataset 8,7% error rate
- Compared to 11% error rate if we just set all values to not delayed

Predicted and real values

Scalability of Spark

n	Time (sec)	RAM (GB)	AUC
10K	1	1	66.6
100K	2	1	70.2
1M	5	2	70.9
10M	35	10	70.9

Scalability of Spark

n	Time (s) A	AUC A	RAM (GB) A	Time (s) B	AUC B	RAM (GB) B
10K	180000	66.4	30	700	67.8	10
100K	-	<u>-</u>	<u>-</u>	1200	72.3	30
1M	-	<u>-</u>	-	6000	73.8	30
10M	<u>-</u>	-	<u>-</u>	(60000)	(74.1)	crash

Conclusion

- Accuracy depends on classification algorithm
 - Affects the runtime
- Features influence the accuracy

References

- http://www-users.cs.umn.edu/~kumar/dmbook/index.php
- https://spark-summit.org/2014/scalable-distributed-decision-trees-in-spark-mllib/
- https://spark.apache.org/docs/2.0.2/ml-classification-regression.html#classification
- https://docs.databricks.com/spark/latest/mllib/decision-trees.html#decision-trees
- https://mapr.com/blog/apache-spark-machine-learning-tutorial/
- https://projects.fivethirtyeight.com/flights/
- https://github.com/szilard/benchm-ml

Thank you for your attention Questions?