Hacettepe Üniversitesi Bilgisayar Mühendisliği Bölümü BBM341 Sistem Programlama 1. Ara sınav – 12 Kasım 2014

Soru 1. C pr a) 8bit	•	-	tanımındaki p d) 64bit	değişkeninin boyu x86-64 mimarisi için ne e) Hiçbiri	edir?
Soru 2. C pra a) 8bit	_		' tanımındaki i d) 64bit	i değişkeninin boyu x86-64 mimarisi için r e) Hiçbiri	nedir?
Soru 3. Aşağ	gıdaki biri 32bit d	iğeri 8bit olan	iki <u>işaretli</u> say	yıyı toplayınız.	
a=0x0012340	00 b=0xFF	a+b=?			
Soru 4. Aşağ	gıdaki biri 32bit d	iğeri 8bit olan	iki <u>işaretli</u> say	yıyı toplayınız.	
a=0x0012340	00 b=0x7F	a+b=?			
leal (%e sall \$2,	eax,%eax,2), %	eax		x+x*2 rn t << 2;	
	arıdaki örnekte % arpan kodu yazını	-	12 ₁₀ ile çarpıln	maktadır. Benzer biçimde %eax yazmacını	ı 72 ₁₀
,					
				•••••••	
Soru 6. %ear	x yazmacını 48 ₁₀ i	, 1	•		
Soru 7. Aşağ	ıda onlu tabanda v	verilen sayılar	ın ikili tabanda	la karşılıklarını yazınız.	
5.5 =	=				
10.25					
15.825 =					
5.3		•			

Normalized Values	Denormalized	Bias = $2^{k-1} - 1$				
Condition: $\exp \neq 000\cdots 0$	Values Condition:		s	exp	frac	
and $\exp \neq 111\cdots 1$ $E = \exp - Bias$	exp = 0000		1	4-bits	3-bits	
L - CAP Blas	E = -Bias + 1					

So	ru	8	3.	Y	Ί	ıŀ	ζ2	ır	10	da	al	K	i	b	il	g	ξi	16	eı	r.	k	a	p	S	a	n	1	11	10	d	a	3	3()	1(0		S	a	ιy	/1	S	11	n	1	8	3	b	i	tl	il	ζ	k	a	У	a	n	1	10	0	k	ta	ıl	1	S	a	y	1	o	la	aı	ra	ιk		k	00	1	la	ιy	/1	n	Z	•				
• • •										۰			0						۰		۰			0				۰			0				۰	0				۰				0				0	0				0		۰					۰			۰		۰		۰								0 1	۰			0	•							
• • •		• •	• •		• •					۰			0						۰		۰			۰							0	0			۰	0				۰				0				0					۰		۰					۰					۰		۰			0 1					0 1					۰							
• • •		• •	• •		• •	0		0		۰	0 (0						۰		۰	0 (0				0	0 0		0	0			۰	0	0 0	• •		۰	0 0			0		0 0		0			0		0		0	0 0		0 0		۰	0 0		0		0		۰			0		۰	0 0			۰			0	۰							
																																																																											_												
So						-		-		_	-		-		_	-			_		_	-	-	_	a	n	1	-	-		-	_		_	-	-			_	-	-		_	-	_			_			_		_			-			-	_		-	-		_	ta	ıl		-	-		_	-		aı	a	k	:]	k	0	dl	a	y	11	11	z.	
	ru	9).	Y	Ί	ıŀ	ζ2	ır	10	da	al	k:	i	b	il	g	Ţi	16	e 1	r .	k	a	p	S				11	10	d	a	1	1 :	5	1(0/	1	16	5	10)		S	a	у	1	S	11	11	l	8	t	i	tl	iŀ	ζ.	k	a	У	a	ın	1 1	n	o	k			1	S	a	у	1	O	1		a	k	: 1	k	0	dl	a	у	1ľ	11	Z.	
So	ru	9). 	Y	ζι	ıŀ	ζ2	ır	10	da	al	k	i	b	il	g	gi	16	e1	r.	k	a	p	S				11	10	d	a		1.5	5	1(0/	′1	l 6	5	10)		S	a	y	71	S		11	1	8	t	• •	tl	iŀ	ζ	k	a	У	a	n	1 1	n	O	k	• •		1	S	a	У	1	O	1:	0 (• •	:]	k	0	dl	a	У	11	11	Z.	

Soru 10. %ebp yazmacında başlangıç adresi bulunan ve 32 bitlik sayılardan oluşan bir dizinin bir elemanını okuyup %eax yazmacına aktaran komutu yazınız. Dizinin kaçıncı elemanına erişileceği bilgisi %esi yazmacındadır.

Soru 11. Aşağıdaki fonksiyon için derleme işlemi yaparak simgesel dille (Intel 32 bit mimari) komutları yazınız.

```
int arith(int x, int y)
{
  return x+y;
}
```

Soru 12. Soru 11'deki fonksiyonu çağıran kod kesimi için simgesel dille (Intel 32 bit mimari) komutları yazınız.