Elementy statystyki - DEST LIO

Test przykładowy

Zadanie 1. Zmienna Wynik w pliku Z1.txt podaje wyniki odpowiedzi na pytanie: Jak oceniasz sytuację materialną swojej rodziny? Dane pochodzą z 1994 roku. Odpowiedzi zakodowano w następujący sposób: 1 – bardzo dobra, 2 - przeciętna, 3 - zła, 4 - fatalna. Rozkład odpowiedzi dla dziewcząt urodzonych w 1980 roku przedstawia tabela:

	Ocena sytuacji materialnej	% odpowiedzi	
	bardzo dobra	14,09	
(A)	przeciętna	79,08	(B)
	zła	6,68	
	fatalna	0, 15	

Ocena sytuacji materialnej	Liczebność
bardzo dobra	83
przeciętna	450
zła	35
fatalna	1

	Ocena sytuacji materialnej	% odpowiedzi
	bardzo dobra	8,55
(C)	przeciętna	81, 20
	zła	9,40
	fatalna	0,85

Ocena sytuacji materialnej	Liczebność
bardzo dobra	11
przeciętna	95
zła	10
fatalna	1

Zadanie 2. Niech $\mathbf{X} = (X_1, X_2, \dots, X_n)'$ będzie próbą prostą z populacji o rozkładzie opisanym funkcją gęstości f_{θ} , gdzie $\theta \in \Theta$ jest parametrem. Wtedy funkcja wiarogodności wyraża się wzorem:

(D)

(A)
$$L(\theta; \mathbf{x}) = \sum_{i=1}^{n} f_{\theta}(x_i)$$

(B) $L(\theta; \mathbf{x}) = \prod_{i=1}^{n} f_{\theta}(x_i)$
(C) $L(\mathbf{x}; \theta) = \sum_{i=1}^{n} f_{\theta}(x_i)$

(B)
$$L(\theta; \mathbf{x}) = \prod_{i=1}^{n} f_{\theta}(x_i)$$

(C)
$$L(\mathbf{x}; \theta) = \sum_{i=1}^{n} f_{\theta}(x_i)$$

(D)
$$L(\mathbf{x};\theta) = \prod_{i=1}^{n} f_{\theta}(x_i)$$

Zadanie 3. Porównywano długości czasów świecenia dwóch typów żarówek (w h). Wyniki zawarto w pliku Z3. RData. Na poziomie istotności 0,05 zweryfikowano hipotezę zerowa, że wartości przeciętne czasów świecenia żarówek tych typów nie różnią się istotnie (przyjmując założenia o normalności rozkładów badanej cechy i jednorodności wariancji). Prawdziwe jest stwierdzenie:

- (A) wartość statystyki testowej wynosi -0,1461, p-wartość wynosi 0,8866,
- (B) p-wartość wynosi 0,8833, zatem odrzucamy hipoteze zerową,
- (C) p-wartość wynosi 0,8833, zatem nie ma podstaw do odrzucenia hipotezy zerowej,
- (D) p-wartość wynosi 0,8866, zatem przyjmujemy hipotezę zerową.

Zadanie 4. W teorii weryfikacji hipotez statystycznych:

- (A) jeżeli p-wartość jest większa od wartości statystyki testowej, to nie ma podstaw do odrzucenia hipotezy zerowej,
- (B) jeżeli p-wartość jest mniejsza od poziomu istotności testu, to odrzucamy hipotezę zerową,
- (C) p-wartość jest największym poziomem istotności testu, przy którym odrzucamy hipotezę zerowa,
- (D) jeżeli p-wartość jest większa od wartości krytycznej, to nie ma podstaw do odrzucenia hipotezy zerowej.

Zadanie 5. Dane w pliku Z5. RData opisują 5 cech fizycznych 12 minerałów z grupy kryształów jednoosiowych. Podzielono analizowane obiekty na cztery skupienia. Zastosowano metodę hierarchiczną przyjmując jako miarę niepodobieństwa obiektów odległość euklidesową oraz jako metodę aglomeracji metodę średnich połączeń. Skupienia składają się z elementów:

	Skupienie 1:	1, 2, 5, 11	7	Skupienie 1:	1, 3, 5, 11
(A)	Skupienie 2:		$\frac{1}{2}$ (B)	Skupienie 2:	2
	Skupienie 3:	8, 9, 10, 12] (D)	Skupienie 3:	8, 9, 10, 12
	Skupienie 4:	4, 6, 7		Skupienie 4:	4, 6, 7
(C)	Skupienie 1:	1, 5, 11		Skupienie 1:	1, 5, 11
	Skupienie 2:	2	(\mathbf{D})	Skupienie 2:	2
	Skupienie 3:	8, 9, 10, 12	(D)	Skupienie 3:	3, 8, 9, 10, 12
	Skupienie 4:	3, 4, 6, 7		Skupienie 4:	4, 6, 7

Zadanie 6. Badano zależność pomiędzy miesięcznymi dochodami w rodzinie w przeliczeniu na jedna osobę, a miesięczną wartością wydatków konsumpcyjnych w rodzinie w przeliczeniu na jedna osobę. Wyniki zawarto w pliku Z6.RData. Przyjęto liniowy model zależności pomiędzy badanymi dochodami i wydatkami. Następnie oszacowano współczynniki prostej regresji oraz wyznaczono prognozowaną miesięczną wartość wydatków konsumpcyjnych w rodzinie w przeliczeniu na jedna osobę, przy miesięcznym dochodzie równym 350 złotych na jedna osobę. 95% przedział ufności dla tej prognozy ma postać:

.....

Zadanie 7. Napisz funkcję realizującą test istotności dla wariancji w modelu normalnym. Zwracany wynik ma być klasy htest. **Wskazówka:** Hipoteza zerowa ma postać $H_0: \sigma^2 = \sigma_0^2$. Statystyka testowa

$$T = \frac{nS^2}{\sigma_0^2}$$

ma przy prawdziwości hipotezy H_0 rozkład $\chi^2(n-1)$, gdzie n jest liczbą obserwacji a

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

wariancją z próby. Hipotezy alternatywne wraz z odpowiadającymi im obszarami krytycznymi zostały podane w Tabeli 1, gdzie $\alpha \in (0,1)$ jest zadanym poziomem istotności.

Hipoteza alternatywna	Obszar krytyczny
$H_1: \sigma^2 > \sigma_0^2$	$B = \{\mathbf{x} : T(\mathbf{x}) \geqslant \chi^2(1 - \alpha, n - 1)\}$
$H_1: \sigma^2 < \sigma_0^2$	$B = \{ \mathbf{x} : T(\mathbf{x}) \leqslant \chi^2(\alpha, n-1) \}$
$H_1:\sigma^2 eq\sigma_0^2$	$B = \{ \mathbf{x} : T(\mathbf{x}) \geqslant \chi^2 (1 - \alpha/2, n - 1) \text{ lub } T(\mathbf{x}) \leqslant \chi^2 (\alpha/2, n - 1) \}$

Tablica 1. Test istotności dla wariancji w modelu normalnym.

Zadanie 8. W pliku **Z8.**RData zawarto dane z roku 2010, dotyczące ochrony środowiska (emisja zanieczyszczeń, odprowadzanie ścieków, itp.) dla 16 województw. Wykorzystując zebrane dane, przeprowadzono analizę składowych głównych. Dwie pierwsze składowe główne wyjaśniają:

.....% zmienności układu

Odpowiedzi:

- 1. (C) 2. (B) 3. (C) 4. (B)

- 5. (D) 6. (211,5352; 334,1937)
- 7. –
- 8.91,2%