Alfabetos, Cadenas y Lenguajes

Juan Mendivelso

Universidad Nacional de Colombia Facultad de Ciencias Departamento de Matemáticas

Presentación basada en las Notas de Clase del Profesor Rodrigo De Castro

Outline

- Alfabetos y Cadenas
 - Definiciones Básicas de Alfabetos y Cadenas
 - Definiciones y Demostraciones Recursivas
- 2 Lenguajes
 - Definición
 - Operaciones entre Lenguajes
- 3 Lenguajes Regulares
 - Lenguajes y Expresiones Regulares
 - Expresiones Regulares en UNIX
 - Aplicaciones de de Expresiones Regulares

Outline

- Alfabetos y Cadenas
 - Definiciones Básicas de Alfabetos y Cadenas
 - Definiciones y Demostraciones Recursivas
- 2 Lenguajes
 - Definición
 - Operaciones entre Lenguajes
- 3 Lenguajes Regulares
 - Lenguajes y Expresiones Regulares
 - Expresiones Regulares en UNIX
 - Aplicaciones de de Expresiones Regulares

Alfabeto

Alfabeto

Conjunto finito no vacío cuyos elementos se llaman símbolos.

- Notación de Símbolos: a, b, c, d, e, . . .
- Notación de Alfabetos: Σ, Γ, Π, . . .

Ejercicio

¿ Qué alfabetos conoces?

Cadena o Palabra (String)

Una **cadena** sobre un alfabeto Σ es cualquier sucesión (secuencia) finita de elementos de Σ .

Definiciones Básicas de Alfabe-

tos y Cadenas

• *Notación: u*, *v*, *w*, *x*, *y*, *z*, . . .

Cadena Vacía

La **cadena vacía** es la única cadena que no tiene símbolos y está dada sobre cualquier alfabeto Σ .

• Notación: λ . e. ϵ . o Λ .

Cadena

Cadena No Vacía

Una cadena no vacía u definida sobre un alfabeto Σ es de la forma $u=a_1a_2a_3\cdots a_n$, donde $a_i\in \Sigma$ para $1\leq i\leq n$. Además,

- u es una función $u: \{1, 2, \ldots, n\} \mapsto \Sigma$.
- El valor de u(j), para $1 \le j \le n$, es el símbolo en la j-ésima posición of u, i.e. $u(j) = a_j$.
- Notar que el símbolo $\alpha \in \Sigma$ puede aparecer en diferentes posiciones de u; a cada una de estas se les llama **ocurrencias** de α en u.

Cadena

Longitud de una Cadena

La **longitud** de una cadena $u \in \Sigma^*$, denotada como |u|, se define como el número de símbolos de u incluyendo los repetidos. Más precisamente, la longitud de u es el número de posiciones que esta tiene. Es decir,

$$|u| = \begin{cases} 0, & \text{si } u = \lambda \\ n, & \text{si } u = a_1 a_2 \cdots a_n. \end{cases}$$

Conjunto de todas las Cadenas

El conjunto de todas las cadenas sobre el alfabeto Σ , incluyendo la cadena vacía, se denota como Σ^* .

Concatenación de Cadenas

Definición Descriptiva

Dado un alfabeto Σ y dos cadenas $u, v \in \Sigma^*$, la concatenación de u y v, denotada como $u \cdot v$ o uv, se define descriptivamente como :

- 2 Si $u = a_1 a_2 \cdots a_n$ y $v = b_1 b_2 \cdots b_m$, entonces

$$u \cdot v = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m.$$

tos y Cadenas

Más formalmente, w = uv si y solo si:

- |w| = |u| + |v|,
- w(j) = u(j) para $1 \le j \le |u|$, y
- w(|u|+j) = v(j) para $1 \le j \le |v|$.

Concatenación de Cadenas

Propiedades de la Concatenación

• La concatenación **es asociativa**, i.e., si $u, v, w \in \Sigma^*$, entonces

$$(uv)w = u(vw)$$

tos y Cadenas

• La concatenación **no es conmutativa**. Es decir, si $u, v \in \Sigma^*$, en general $uv \neq vu$.

Ejercicio

Demostrar que la concatenación es asociativa usando la definición descriptiva.

tos y Cadenas

Potenciación de Cadenas

Definición Descriptiva

Dada $u \in \Sigma^*$ y $n \in \mathbb{N}$, la cadena u^n se define descriptivamente como:

$$u^{n} = \begin{cases} \lambda, & \text{si } n = 0\\ uuu \cdots u \text{ (n veces)}, & \text{si } n \geq 1. \end{cases}$$

Ejercicio

Usando la definición descriptiva, mostrar que $|w^{n+m}| = |w^n| + |w^m|$.

Reflexión de Cadenas

Definición Descriptiva

La **reflexión** o **inversa** de una cadena $u \in \Sigma^*$, denotada como u^R o u^{-1} , se define descriptivamente como:

Definiciones Básicas de Alfabe-

tos y Cadenas

$$u^{R} = \begin{cases} \lambda, & \text{si } u = \lambda \\ a_{n}a_{n-1} \cdots a_{2}a_{1}, & \text{si } u = a_{1}a_{2} \cdots a_{n-1}a_{n} \end{cases}$$

Propiedades

- ② $(uv)^R = v^R u^R$ para todas las cadenas $u, v \in \Sigma^*$

Ejercicio

Generalizar la Propiedad 2 a la concatenación de n cadenas, $n \ge 2$.

Outline

- Alfabetos y Cadenas
 - Definiciones Básicas de Alfabetos y Cadenas
 - Definiciones y Demostraciones Recursivas
- - Definición
 - Operaciones entre Lenguajes
- - Lenguajes y Expresiones Regulares
 - Expresiones Regulares en UNIX
 - Aplicaciones de de Expresiones Regulares

Conjunto

Definición Recursiva

Un conjunto se define recursivamente por medio de 3 cláusulas:

- Cláusula Básica: Se especifican los elementos más sencillos (o básicos) de S.
- 2 Cláusula Recursiva: Se especifican reglas para la formación de nuevos elementos de S a partir de elementos ya conocidos de S.
- **Oláusula de Exclusión:** Establece que los elementos de *S* se pueden obtener únicamente utilizando las Cláusulas 1 y 2.

Conjunto de todas las Cadenas

Definición Recursiva

Dado un alfabeto Σ , el conjunto de todas las cadenas Σ^* se define como:

- $\mathbf{0} \ \lambda \in \Sigma^*.$
- ② Si $u \in \Sigma^*$, entonces $ua \in \Sigma^*$ para todo $a \in \Sigma$.

Concepto sobre Cadena

Definición Recursiva

Dado un alfabeto Σ , para definir un concepto C sobre todas las cadenas en Σ^* se utilizan dos cláusulas:

- Se define $C(\lambda)$.
- ② Se define C(ua) en términos de C(u) para toda $u \in \Sigma^*$ y para todo $a \in \Sigma$.

Ejercicio

Defina longitud de cadena de manera recursiva.

Recursión sobre Cadenas

Definición Recursiva

Dado un alfabeto Σ , es posible demostrar recursivamente que todas las cadenas en Σ^* satisfacen una propiedad P. A este tipo de razonamiento recursivo se le conoce como **recursión sobre cadenas** y consta de dos pasos:

- Se demuestra $P(\lambda)$.
- ② Se demuestra $P(u) \Rightarrow P(ua)$ para toda $u \in \Sigma^*$ y para todo $a \in \Sigma$.

Concatenación de Cadenas

Definición Recursiva

Sea $u \in \Sigma^*$. La concatenación de cadenas se define recursivamente como:

- ② $u \cdot (va) = (u \cdot v)a$, donde $a \in \Sigma$ y $v \in \Sigma^*$.

Ejercicio

Usando la definición recursiva, demostrar que la concatenación es asociativa: si $u, v, w \in \Sigma^*$, entonces (uv)w = u(vw).

Potenciación de Cadenas

Definición Recursiva

Dada $u \in \Sigma^*$ y $n \in \mathbb{N}$, la cadena u^n se define inductivamente como:

- **1** $u^0 = \lambda$.
- 2 $u^{n+1} = u^n u$ para n > 0.

Alfabetos, Cadenas y Lenguajes

Reflexión de Cadenas

Ejercicio

Dar una definición recursiva de u^R .

19 / 63

Subcadena

Subcadena o Subpalabra (Substring)

Sean $u, v \in \Sigma^*$. La cadena v es una **subcadena** o **subpalabra** de u si existen cadenas $x, y \in \Sigma^*$ tales que u = xvy.

Prefijo

Sean $u, v \in \Sigma^*$. Un **prefijo** de u es una cadena v tal que u = vw para alguna cadena $w \in \Sigma^*$. Además v es un **prefijo propio** de u si $u \neq v$.

Sufijo

Sean $u, v \in \Sigma^*$. Un **sufijo** de u es una cadena v tal que u = wv para alguna cadena $w \in \Sigma^*$. Además v es un **sufijo propio** de u si $u \neq v$.

Orden Lexicográfico de Cadenas

- Sea $\Sigma = \{s_1, s_2, \dots, s_k\}$ un alfabeto en el que los símbolos tienen un orden predeterminado: $s_1 < s_2 < \dots < s_k$.
- En el conjunto Σ^* se define el **orden lexicográfico** de las cadenas, denotado como <, de la siguiente manera.
- Sea $u, v \in \Sigma^*$ tales que

$$u = a_1 a_2 \cdots a_m$$
, where $a_i \in \Sigma$, for i in $1 \le i \le m$
 $v = b_1 b_2 \cdots b_n$, where $b_i \in \Sigma$, for i in $1 \le i \le n$.

- Entonces, se define u < v si
 - **1** |u| < |v|, i.e. m < n, or
 - 2 |u| = |v| y para algún índice i, $1 \le i \le m$, se cumple que

$$a_1 = b_1, a_2 = b_2, \ldots, a_{i-1} = b_{i-1}, a_i < b_i.$$

 $3 \lambda < u, \forall u \in \Sigma^* : |u| > 0.$

Orden Lexicográfico de Cadenas

Ejercicio

Sea $\Sigma = \{a, b, c, d\}$ un alfabeto en el que los símbolos tienen un orden predeterminado: a < b < c < d. Hallar la cadena que sigue a u en el orden lexicográfico:

- \bullet u = dbd
- u = dabcdd
- u = acbd
- u = dcaddd
- \bullet u = bbb

Outline

Lenguaies

- Alfabetos y Cadenas
 - Definiciones Básicas de Alfabetos y Cadenas
 - Definiciones y Demostraciones Recursivas
- 2 Lenguajes
 - Definición
 - Operaciones entre Lenguajes
- 3 Lenguajes Regulares
 - Lenguajes y Expresiones Regulares
 - Expresiones Regulares en UNIX
 - Aplicaciones de de Expresiones Regulares

Lenguaies

- - Definiciones Básicas de Alfabetos y Cadenas

Lenguajes Regulares

- Lenguajes
 - Definición
 - Operaciones entre Lenguajes
- - Lenguajes y Expresiones Regulares
 - Expresiones Regulares en UNIX
 - Aplicaciones de de Expresiones Regulares

Lenguaje

- Un lenguaje L sobre un alfabeto Σ es un subconjunto $L \subseteq \Sigma^*$.
- Todo lenguaje L satisface $\emptyset \subseteq L \subseteq \Sigma^*$ y es finito o infinito.
- **Notación:** *A*, *B*, *C*, ..., *L*, *M*, *N*, ...
- Si P es una propiedad de las cadenas de Σ*, el lenguaje L de las cadenas que satisfacen la propiedad P se denota como L = {u ∈ Σ* : P(u)}.

Figura 1: Lenguaje (Tomado de [1])

Outline

- Alfabetos y Cadenas
 - Definiciones Básicas de Alfabetos y Cadenas
 - Definiciones y Demostraciones Recursivas
- 2 Lenguajes
 - Definición
 - Operaciones entre Lenguajes
- 3 Lenguajes Regulares
 - Lenguajes y Expresiones Regulares
 - Expresiones Regulares en UNIX
 - Aplicaciones de de Expresiones Regulares

Operaciones entre Lenguajes

Operaciones Conjuntistas o Booleanas

Sean $A, B \subseteq \Sigma^*$. Los siguientes también son lenguajes sobre Σ :

- **Unión:** $A \cup B = \{ u \in \Sigma^* : u \in A \lor u \in B \}.$
- Intersección: $A \cap B = \{u \in \Sigma^* : u \in A \land u \in B\}.$
- **Diferencia:** $A B = A \setminus B = \{ u \in \Sigma^* : u \in A \land u \notin B \}.$
- **Diferencia Simétrica:** $A \triangle B = \{ u \in \Sigma^* : u \in A \veebar u \in B \}.$
- Complemento: $\overline{A} = \Sigma^* A = \{u \in \Sigma^* : u \notin A\}.$

Operaciones entre Lenguajes

Operaciones Lingüísticas

Las operaciones lingüísticas sobre los lenguajes son:

- Concatenación.
- Potenciación.
- Reflexión.
- Clausura.

Concatenación de Lenguajes

Definición

Sean $A, B \subseteq \Sigma^*$. La concatenación de A y B, denotada como $A \cdot B$ o AB, se define como:

$$A \cdot B = AB = \{uv : u \in A, v \in B\}.$$

En general, $AB \neq BA$.

Sean $A, B, C \subseteq \Sigma^*$. Entonces,

- **3** Propiedad Asociativa: $A \cdot (B \cdot C) = (A \cdot B) \cdot C$.
- O Distributividad con respecto a la Unión:

$$A \cdot (B \cup C) = A \cdot B \cup A \cdot C,$$

 $(B \cup C) \cdot A = B \cdot A \cup C \cdot A.$

3 Distributividad Generalizada con respecto a la Unión: Sea $\{B_i\}_{i\in\mathcal{I}}$ una familia indexada de lenguajes sobre Σ , i.e. $B_i\subseteq\Sigma^*$, entonces:

$$A \cdot \bigcup_{i \in \mathcal{I}} B_i = \bigcup_{i \in \mathcal{I}} (A \cdot B_i)$$
 y $\left(\bigcup_{i \in \mathcal{I}} B_i\right) \cdot A = \bigcup_{i \in \mathcal{I}} (B_i \cdot A).$

Propiedades de la Concatenación

Sean $A, B, C \subseteq \Sigma^*$. Entonces,

- La propiedad asociativa permite escribir concatenaciones sin paréntesis, i.e. ABC.
- En general, **no se cumple** que $A \cdot (B \cap C) = A \cdot B \cap A \cdot C$. **Contraejemplo:** $\Sigma = \{a\}, A = \{a, \lambda\}, B = \{\lambda\} \text{ y } C = \{a\}$.

Propiedades de la Concatenación

Ejercicio

- **1** Dar un ejemplo de un alfabeto Σ y dos lenguajes diferentes $A, B \subseteq \Sigma^*$ tales que AB = BA.
- ② Dar un ejemplo de un alfabeto Σ y tres lenguajes A, B y C sobre Σ , diferentes entre sí, tales que $A \cdot (B \cap C) = AB \cap AC$.
- **3** Demuestre que $A \cdot (B \cap C) \subseteq AB \cap AC$. Muestre un ejemplo.
- **③** Muestre que $AB \cap AC \subseteq A \cdot (B \cap C)$ no se cumple en el caso general a través de un contraejemplo.

Potencias de un Lenguaje

Definición Descriptiva

Dado un lenguaje $A \subseteq \Sigma^*$ y un número $n \in \mathbb{N}$, se define A^n de la siguiente forma:

- **1** $A^0 = \{\lambda\}.$
- $2 A^n = AA \cdots A(n \text{ veces}) = \{u_1 \cdots u_n : (\forall i)(u_i \in A), 1 \le i \le n\}.$

Definición Recursiva

Dado un lenguaje $A \subseteq \Sigma^*$ y un número $n \in \mathbb{N}$, se define A^n de la siguiente forma:

- **1** $A^0 = \{\lambda\}.$
- $A^{n+1} = A^n \cdot A, \text{ para todo } n > 0.$

Clausura de Kleene de un Lenguaje

Definición Descriptiva

La clausura de Kleene, estrella de Kleene o estrella de un lenguaje $A \subseteq \Sigma^*$, denotada como A^* es la unión de todas las potencias de A, i.e.

$$A^* = \bigcup_{n\geq 0} A^n = A^0 \cup A^1 \cup A^2 \cup \cdots$$

= $\{u_1 \cdots u_n : (\forall i)(u_i \in A), 1 \leq i \leq n, n \geq 0\}.$

Alfabetos, Cadenas y Lenguajes

Definición Recursiva

La **estrella** de un lenguaje $A \subseteq \Sigma^*$, denotada como A^* , se define recursivamente como:

- $\Delta \lambda \in A^*$.
- ② Si $u \in A^*$ y $v \in A$, entonces $u \cdot v \in A^*$.

Clausura Positiva de un Lenguaje

Definición Descriptiva

La **clausura positiva** de un lenguaje $A \subseteq \Sigma^*$, denotado como A^+ es:

$$A^{+} = \bigcup_{n \geq 1} A^{n} = A^{1} \cup A^{2} \cup \cdots$$
$$= \{u_{1} \cdots u_{n} : (\forall i)(u_{i} \in A), 1 \leq i \leq n, n \geq 1\}.$$

Definición Recursiva

La **clausura positiva** de un lenguaje $A \subseteq \Sigma^*$, denotada como A^+ , se define recursivamente como:

- **1** Si $u \in A$, entonces $u \in A^+$.
- \bullet Si $u \in A^+$ y $v \in A$, entonces $u \cdot v \in A^+$.

Propiedades de las Clausuras

Sea $A \subseteq \Sigma^*$. Entonces,

- **1** $A^* = A^+ \cup \{\lambda\}.$
- ② $A^* = A^+$ si y solamente si $\lambda \in A$.
- $A^+ = A^* \cdot A = A \cdot A^*.$
- $A^* \cdot A^* = A^*.$
- **1** $(A^*)^n = A^*$, para todo $n \ge 1$.
- \bullet $A^+ \cdot A^+ \subseteq A^+$. En general, $A^+ \cdot A^+ \neq A^+$.
- $(A^*)^* = A^*.$
- $(A^*)^+ = A^*.$
- $(A^+)^* = A^*.$
- $(A^+)^+ = A^+$.

Sea $A, B \subseteq \Sigma^*$. Entonces,

- Si $A \subseteq B$, entonces $A^* \subseteq B^*$.
- $(A \cup B)^* = (A^*B^*)^* = (B^*A^*)^*.$

En general, la igualdad $(A \cup B)^* = A^* \cup B^*$ no es válida.

Ejercicio

- 1 Demostrar las propiedades 1 y 2.
- Mostrar ejemplos de las propiedades 1 y 2.
- **3** Mostrar un ejemplo en que se cumpla $(A \cup B)^* = A^* \cup B^*$.
- **4** Mostrar un contrajeemplo de $(A \cup B)^* = A^* \cup B^*$.

Reflexión o Inverso de un Lenguaje

Sea $A \subseteq \Sigma^*$. Se define como la **reflexión**, **reverso** o **inverso** de A, denotado como A^R , así:

$$A^R = \{ u^R : u \in A \}.$$

Propiedades de la Reflexión

- $(A \cup B)^R = A^R \cup B^R.$
- $(A \cap B)^R = A^R \cap B^R.$
- $(A^R)^R = A.$
- $(A^*)^R = (A^R)^*.$
- $(A^+)^R = (A^R)^+.$

Ejercicio

- Demostrar estas propiedades.
- ② ¿Se pueden extender las Propiedades 2 y 3 a uniones/intersecciones de un número arbitrario de lenguajes?

Outline

- Alfabetos y Cadenas
 - Definiciones Básicas de Alfabetos y Cadenas
 - Definiciones y Demostraciones Recursivas
- 2 Lenguajes
 - Definición
 - Operaciones entre Lenguajes
- 3 Lenguajes Regulares
 - Lenguajes y Expresiones Regulares
 - Expresiones Regulares en UNIX
 - Aplicaciones de de Expresiones Regulares

Outline

Lenguaies

- Alfabetos y Cadenas
 - Definiciones Básicas de Alfabetos y Cadenas
 - Definiciones y Demostraciones Recursivas
- 2 Lenguajes
 - Definición
 - Operaciones entre Lenguajes
- 3 Lenguajes Regulares
 - Lenguajes y Expresiones Regulares
 - Expresiones Regulares en UNIX
 - Aplicaciones de de Expresiones Regulares

Lenguajes Regulares

Definición Recursiva

La colección de todos los **lenguajes regulares** sobre un alfabeto Σ se define como:

- **1** \emptyset , $\{\lambda\}$ y $\{a\}$, $a \in \Sigma$, son **lenguajes regulares básicos** sobre Σ .
- $oldsymbol{\circ}$ Si A y B son lenguajes regulares sobre Σ , también lo son:
 - $A \cup B$.
 - A ⋅ B.
 - A*.

Lenguajes Regulares

Operaciones Regulares

- Unión.
- Concatenación.
- Estrella de Kleene.

Propiedades

- Todo lenguaje finito es regular ya que se puede obtener a partir de una unión finita.
- Si $\{A_i\}_{i\in\mathcal{I}}$ es una familia infinita de lenguajes regulares, la unión de estos, i.e. $\bigcup_{i\in\mathcal{I}} A_i$, no necesariamente es regular.

Lenguajes Regulares

Ejercicio

Sea $\Sigma = \{a, b\}$. Muestre que los siguientes lenguajes son regulares:

- Lenguaje de todas las cadenas en Σ^* .
- 2 Lenguaje de todas las cadenas en Σ^+ .
- Lenguaje de todas las cadenas que tienen exactamente una a.
- Lenguaje de todas las cadenas que comienzan con una b.
- **5** Lenguaje de todas las cadenas que contienen la subcadena *ba*.
- lacktriangle Lenguaje de las cadenas sobre Σ que tienen exactamente longitud 2.
- $oldsymbol{0}$ Lenguaje de las cadenas sobre Σ que tienen al menos longitud 2.
- **3** Lenguaje de las cadenas sobre Σ que tienen máximo longitud 2.

Definición Recursiva

Las **expresiones regulares** sobre un alfabeto Σ se definen como:

- Expresiones Regulares Básicas:
 - ullet es una expresión regular que representa al lenguaje \emptyset .
 - λ es una expresión regular que representa al lenguaje $\{\lambda\}$.
 - a es una expresión regular que representa al lenguaje $\{a\}$, para cada $a \in \Sigma$.
- ② Si R y S son expresiones regulares sobre Σ que representan a los lenguajes regulares A y B, respectivamente, entonces:
 - $(R \cup S)$ es una expresión regular que representa al lenguaje $A \cup B$.
 - (RS) es una expresión regular que representa al lenguaje $A \cdot B$.
 - $(R)^*$ es una expresión regular que representa al lenguaje A^* .

Otra Notación

Denótese con L[R] al lenguaje representado por la expresión regular R. Las expresiones regulares se pueden presentar como:

- **1 Expresiones Regulares Básicas:** \emptyset , λ y a (donde $a \in \Sigma$) son expresiones regulares tales que:
 - $L[\emptyset] = \emptyset$.
 - $L[\lambda] = {\lambda}.$
 - $L[a] = \{a\}$, para cada $a \in \Sigma$.
- 2 Si R y S son expresiones regulares entonces:
 - $L[(R \cup S)] = L[R] \cup L[S]$.
 - $L[(RS)] = L[R] \cdot L[S]$.
 - $L[(R)^*] = (L[R])^*$.

Ejercicio

Sea $\Sigma = \{a, b\}$. Construya expresiones regulares para los siguientes lenguajes:

- **1** Lenguaje de todas las cadenas en Σ^* .
- 2 Lenguaje de todas las cadenas en Σ^+ .
- Lenguaje de todas las cadenas que tienen exactamente una a.
- Lenguaje de todas las cadenas que comienzan con una b.
- Lenguaje de todas las cadenas que contienen la subcadena ba.
- **\odot** Lenguaje de las cadenas sobre Σ que tienen exactamente longitud 2.
- ${\bf O}$ Lenguaje de las cadenas sobre ${\bf \Sigma}$ que tienen al menos longitud ${\bf 2}$.
- **8** Lenguaje de las cadenas sobre Σ que tienen máximo longitud 2.

Algunas Propiedades

- La representación de lenguajes regulares por medio de expresiones regulares no es única.
- En expresiones regulares también se permite el uso de potencias.
- Por la propiedad $A^+ = A^* \cdot A = A \cdot A^*$, se permite el uso de la clausura positiva en expresiones regulares.

Ejercicio

Encuentre otras expresiones regulares que representen el mismo lenguaje que las siguientes:

- \bullet $(a \cup b)^*$
- **2** $(a^+ \cup b)ab^+$
- **3** $(a \cup b)^+ \cup a^+b^+$

Ejercicio

Sea $\Sigma = \{a, b\}$. Construya expresiones regulares para los siguientes lenguajes de las cadenas u sobre Σ tales que:

Alfabetos, Cadenas y Lenguajes

- $\mathbf{0} \quad u \in \Sigma^*$.
- tienen exactamente una a.
- comienzan con a.
- terminan con a.
- contienen la subcadena ba.
- tienen longitud par.
- tienen longitud impar.
- su longitud es múltiplo de 3.
- **9** su longitud cumple que |u| mód 3=2.

49 / 63

Algunas Propiedades

- En las expresiones regulares se usan reglas de precedencia. El orden es:
 - * Estrella de Kleene.
 - Concatenación.
 - Unión.
- Sean L,R y S expresiones regulares. La propiedad $L[R(S \cup T)] = L[RS \cup RT]$ permite distribuir o "factorizar" para obtener nuevas expresiones regulares.

Ejercicio

Sea $\Sigma = \{a, b, c\}$. Construya expresiones regulares para los siguientes lenguajes:

Alfabetos, Cadenas y Lenguajes

- 1 su penúltimo símbolo es una a.
- 2 su número de aes es exactamente 2.
- su número de aes es al menos 2.
- su número de aes es máximo 2.
- su número de aes es par.
- no contienen dos aes consecutivas.
- no contienen la subcadena bc.
- empiezan y terminan con el mismo símbolo.
- empiezan y terminan con diferentes símbolos.

51/63

Outline

- - Definiciones Básicas de Alfabetos y Cadenas
- - Definición
 - Operaciones entre Lenguajes
- Lenguajes Regulares
 - Lenguajes y Expresiones Regulares
 - Expresiones Regulares en UNIX
 - Aplicaciones de de Expresiones Regulares

Alfabetos, Cadenas y Lenguajes

52 / 63

grep

- Globally search for a Regular Expression and Print matching lines.
- Funciona de forma similar a egrep.

egrep

- Extended Global search for a Regular Expression and Print matching lines.
- Usualmente usado en consolas de Unix.
- Dado un archivo de texto archivo.txt, y una expresión regular re, ejecutar el comando: egrep 're' archivo.txt.
- La ejecución de este comando muestra las líneas que satisfacen la expresión regular señalando las partes exactas que la satisfacen.

Concatenación

Escribir caracteres o palabras concatenadas uno a continuación del otro.

Unión

	cualquier caracter
\w	caracteres que forman palabras
\W	caracteres que no forman palabras
[a+d]	cualquier caracter en $a \cup + \cup d$
[a-c]	cualquier caracter en $a \cup b \cup c$
[^abd]	cualquier caracter que no pertenezca a $(a \cup b \cup d)$
[^a-c]	cualquier caracter que no pertenezca a $(a \cup b \cup c)$
a b	cualquier caracter en $(a \cup b)$
Homero Marge	que sea Homero o Marge

Más de Unión

Los conjuntos de caracteres de POSIX agrupan grupos de caracteres:

[:alpha:]	caracteres alfabéticos
[:lower:]	caracteres alfabéticos en minúscula
[:upper:]	caracteres alfabéticos en mayúscula
[:digit:]	dígitos
[:xdigit:]	dígitos incluyendo hexadecimales
[:alnum:]	caracteres alfanuméricos
[:punct:]	signos de puntuación
[:space:]	espacios en blanco
[:blank:]	espacios en blanco, tabulaciones, etc
[:print:]	caracteres imprimibles

Repetición

p?	cero o una ocurrencia de p
p+	una o más ocurrencias consecutivas de <i>p</i>
p*	cero o más ocurrencias consecutivas de <i>p</i>
(pa)*	cero o más ocurrencias consecutivas de <i>pa</i>
p{2}	dos <i>p</i> es consecutivas
p{2,4}	de 2 a 4 <i>p</i> es consecutivas
p{2,}	mínimo dos <i>p</i> es consecutivas
p{,4}	máximo dos <i>p</i> es consecutivas
$(pp){,4}$	máximo 4 ocurrencias consecutivas de pp

Caracteres de escape

- Algunos caracteres tienen una función especial en la búsqueda de expresiones regulares. Por ejemplo: [](){}.*?.
- Para referirse a estos como tal, se deben preceder de \

Palabras y Líneas

^a	líneas que comiencen por a
a\$	líneas que terminen en a
\< a	palabras que comienzan por a
a \>	palabras que terminan en <i>a</i>

Outline

- Alfabetos y Cadenas
 - Definiciones Básicas de Alfabetos y Cadenas
 - Definiciones y Demostraciones Recursivas
- 2 Lenguajes
 - Definición
 - Operaciones entre Lenguajes
- 3 Lenguajes Regulares
 - Lenguajes y Expresiones Regulares
 - Expresiones Regulares en UNIX
 - Aplicaciones de de Expresiones Regulares

Análisis Léxico

Analizador Léxico

- Un analizador léxico realiza las siguientes operaciones:
 - Examina el código fuente.
 - Reconoce los tokens: subcadenas de caracteres que constituyen una unidad lógica; por ejemplo, palabras reservadas e identificadores.
- Las expresiones regulares son útiles para describir los tokens.
- Antes de estas herramientas basadas en expresiones regulares, la implementación de analizadores léxicos tomaba meses; ahora días.
- La modificación del analizador léxico usualmente consiste en la modificación de alguna de las expresiones regulares.

Análisis Léxico

Los comandos lex y flex de Unix/GNU convierten expresiones regulares en autómatas finitos deterministas para generar una función eficiente que parte el código fuente en tokens.

Figura 2: Fragmento de entrada para lex. (Tomado de [3])

Análisis Léxico

- Las expresiones regulares también son útiles para el análisis léxico de números de punto flotante, cadenas de caracters, comentario y palabras reservadas.
- Se construye un autómata que acepte la unión de estas expresiones regulares, de manera que se pueda:
 - saber si algún elemento se reconoce.
 - determinar qué se reconoció.
 - priorizar a qué categoría se asigna a un elemento. Por ejemplo, else.

Búsqueda de Patrones en Texto

- Las expresiones regulares útiles para definir patrones de interés.
- No se han desarrollado herramientas tan potentes como las del análisis léxico.
- Se empieza por una definición general del patrón a buscar. Luego se refina con casos más específicos.
- Se puede usar para
 - reconocer páginas Web.
 - crear listas de correo.
 - clasificar negocios por su locación.
 - reconocer direcciones.

```
'[0-9]+[A-Z]? [A-Z][a-z]*( [A-Z][a-z]*)*
(Street|St\.|Avenue|Ave\.|Road|Rd\.)'
```

- Rodrigo De Castro Korgi. Notas de Clase de Introducción a la Teoría de la Computación. 2023.
- Warry R. Lewis, Christos H. Papadimitriou. Elements of the Theory of Computation. Prentice Hall. 1998.
- John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. Introduction to Automata Theory, Languages and Computation, Third Edition. Pearson. 2006.
- http://manpages.ubuntu.com/manpages/focal/es/man1/grep.1.html