LINEU ALBERTO CAVAZANI DE FREITAS

TESTES DE HIPÓTESE EM MODELOS MULTIVARIADOS DE COVARIÂNCIA LINEAR GENERALIZADA (MCGLM)

(versão pré-defesa, compilada em 4 de abril de 2021)

Documento apresentado como requisito parcial ao exame de qualificação de Mestrado no Programa de Pós-Graduação em Informática, Setor de Ciências Exatas, da Universidade Federal do Paraná.

Área de concentração: Ciência da Computação.

Orientador: Prof. Dr. Wagner Hugo Bonat.

Coorientador: Prof. Dr. Marco Antonio Zanata Alves.

CURITIBA PR

RESUMO

O resumo deve conter no máximo 500 palavras, devendo ser justificado na largura da página e escrito em um único parágrafo¹ com um afastamento de 1,27 cm na primeira linha. O espaçamento entre linhas deve ser de 1,5 linhas. O resumo deve ser informativo, ou seja, é a condensação do conteúdo e expõe finalidades, metodologia, resultados e conclusões.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id, nonummy sed, ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas, pede pede pretium lorem, quis consectetuer tortor sapien facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam non quam. Aliquam porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo.

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis congue nulla arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

Palavras-chave: Palavra-chave 1. Palavra-chave 2. Palavra-chave 3.

¹E também não deve ter notas de rodapé; em outras palavras, não siga este exemplo... ;-)

ABSTRACT

The abstract should be the English translation of the "resumo", no more, no less.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id, nonummy sed, ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas, pede pede pretium lorem, quis consectetuer tortor sapien facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam non quam. Aliquam porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo.

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis congue nulla arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

Keywords: Keyword 1. Keyword 2. Keyword 3.

LISTA DE FIGURAS

LISTA DE TABELAS

Funções implementadas

LISTA DE ACRÔNIMOS

GLM Modelos Lineares Generalizados

McGLM Modelos Multivariados de Covariância Linear Generalizada

ANOVA Análise de Variância

MANOVA Análise de Variância Multivariada

GEE Equações de Estimativas Generalizadas

LISTA DE SÍMBOLOS

α	alfa, primeira letra do alfabeto grego
β	beta, segunda letra do alfabeto grego
γ	gama, terceira letra do alfabeto grego
ω	ômega, última letra do alfabeto grego
π	pi
au	Tempo de resposta do sistema
heta	Ângulo de incidência do raio luminoso

SUMÁRIO

1	INTRODUÇÃO	9
2	MODELOS MULTIVARIADOS DE COVARIÂNCIA LINEAR GENERA-	
	LIZADA	12
2.1	GLM	12
2.2	CGLM	13
2.3	MCGLM	14
2.3.1	Estimação e inferência	14
3	TESTE WALD NO CONTEXTO DOS MCGLM	17
3.1	O TESTE WALD	17
3.2	ADAPTAÇÃO DO TESTE PARA OS MCGLM	17
3.3	EXEMPLOS DE HIPÓTESES	19
3.3.1	Exemplo 1	19
3.3.2	Exemplo 2	20
3.3.3	Exemplo 3	21
3.4	ANOVA E MANOVA VIA TESTE WALD	21
4	FUNÇÕES IMPLEMENTADAS	23
4.1	MC_ANOVA_I()	24
4.2	MC_ANOVA_II()	24
4.3	MC_ANOVA_III()	24
4.4	MC_ANOVA_DISP()	24
4.5	MC_MANOVA_I()	24
4.6	MC_MANOVA_II()	24
4.7	MC_MANOVA_III()	24
4.8	MC_MANOVA_DISP()	24
4.9	MC_LINEAR_HYPOTHESIS()	24
	REFERÊNCIAS	25

1 INTRODUÇÃO

Podemos entender como Ciência de Dados o estudo sistemático de conjuntos de dados com o objetivo de gerar conhecimento sobre determinado assunto. Em suma, o objetivo da Ciência de Dados é extrair informação. Seu processo é caracterizado por etapas como a definição do problema, planejamento do estudo, coleta e análise dos dados e, por fim, a interpretação dos resultados.

Trata-se de um campo de estudo extremamente interdisciplinar que envolve técnicas de áreas como Estatística, Ciência da Computação e Matemática. É uma área que vem ganhando destaque nos últimos anos devido a fatores tais como a popularização do uso de dados nas tomadas de decisão em diversos cenários, difusão do uso de grandes bancos de dados, desenvolvimento e propagação de técnicas modernas e eficientes de análise, sem mencionar o desenvolvimento computacional que permitiu a implementação de técnicas mais complexas para solução de problemas e também que mais pessoas tivessem acesso às técnicas e ferramentas necessárias para se analisar dados.

Alguns dos campos de interesse na Ciência de Dados são: métodos de amostragem, mineração de dados, bancos de dados, técnicas de análise exploratória, probabilidade, inferência, otimização, infraestrutura computacional, plataformas de Big Data, modelos estatísticos, dentre outros.

No contexto de modelos estatísticos, existem os chamados modelos de regressão, dentre os quais podemos citar: os modelos lineares, lineares generalizados, aditivos generalizados, de efeitos aleatórios, aditivos generalizados para locação, escala e forma e ainda os multivariados.

Os modelos de regressão são indicados a problemas nos quais temos interesse em verificar a associação entre uma ou mais variáveis resposta e um conjunto de variáveis explicativas; podemos ainda, além de verificar associação, utilizar o modelo para realizar predições para uma população.

Nos casos univariados mais gerais, estes modelos associam uma única variável resposta, também chamada de variável dependente, a uma ou mais variáveis explicativas, conhecidas como variáveis independentes, covariáveis ou preditoras.

De forma geral, um modelo de regressão é uma expressão matemática que relaciona a média da variável resposta às variáveis preditoras, em que a variável resposta segue uma distribuição de probabilidade condicional às covariáveis e a média é descrita por um preditor linear.

O caso mais conhecido é o modelo linear normal, no qual um dos pressupostos é de que a variável resposta, condicional às variáveis explicativas, siga distribuição Normal. Todavia, não são raras as situações em que a suposição de normalidade não é atendida. Uma alternativa, por muito tempo adotada, foi buscar uma transformação da variável resposta a fim de atender

os pressupostos do modelo, tal como a família de transformações Box-Cox (Box e Cox, 1964). Contudo, este tipo de solução leva a dificuldades na interpretação dos resultados.

Neste contexto, a proposta de maior renome para contornar tais restrições foram os Modelos Lineares Generalizados (GLM) propostos por Nelder e Wedderburn (1972). Essa classe de modelos permitiu a flexibilização da distribuição da variável resposta de tal modo que esta pertença à família exponencial de distribuições. Em meio aos casos especiais de distribuições possíveis nesta classe de modelos estão a Bernoulli, Binomial, Poisson, Normal, Gama, Normal inversa, entre outras. Trata-se portanto, de uma classe de modelos de regressão univariados para dados de diferentes naturezas, tais como: dados contínuos simétricos e assimétricos, contagens, proporções, assim por diante. Tais características tornam esta classe uma flexível ferramenta de modelagem aplicável a diversos tipos de problema.

Embora as técnicas citadas sejam úteis, há casos em que são coletadas mais de uma resposta por unidade experimental e há o interesse de modelá-las em função de um conjunto de variáveis explicativas. Para problemas com essa estrutura, uma alternativa são os modelos lineares multivariados, nos quais associa-se um conjunto de respostas a uma ou mais covariáveis. Porém, por maior que seja seu potencial de aplicação, essa classe apresenta limitações como a necessidade de normalidade multivariada, homogeneidade das matrizes de variâncias e covariâncias, além de independência entre as observações.

Uma alternativa para solucionar tais limitações são os Modelos Multivariados de Covariância Linear Generalizada (McGLM) propostos por Bonat e Jørgensen (2016). Essa classe permite lidar com múltiplas respostas de diferentes naturezas e, de alguma forma, correlacionadas. Além disso, não há nesta classe suposições quanto à independência entre as observações da amostra, pois a correlação entre observações pode ser modelada por um preditor linear matricial que envolve matrizes conhecidas.

De forma geral, o McGLM é uma estrutura para modelagem de múltiplas respostas, de diferentes naturezas, em que não há necessidade de observações independentes. Estas características tornam o McGLM uma classe flexível ao ponto de ser possível chegar a extensões multivariadas para modelos de medidas repetidas, séries temporais, dados longitudinais, espaciais e espaço-temporais.

Quando trabalhamos com modelos de regressão, por diversas vezes há o interesse em avaliar os parâmetros do modelo. Isto é, verificar se os valores que associam as variáveis explicativas às variáveis respostas são iguais a determinados valores de interesse. Isto é feito através dos chamados testes de hipótese.

Em geral, existe o interesse em avaliar se há evidência suficiente para afirmar que o parâmetro que associa a variável explicativa à variável resposta é igual a 0, pois, caso esta afirmação seja verdadeira, podemos concluir que a variável explicativa não está associada à variável resposta. Contudo, através dos testes de hipótese podemos avaliar outros valores diferentes de 0.

Para o caso dos modelos lineares tradicionais existem técnicas como a Análise de Variância (ANOVA), na qual o objetivo é analisar o efeito de cada uma das variáveis explicativas, isto é, avaliar se a retirada de cada variável gera perda ao modelo ajustado. Em outras palavras, na Análise de Variância realizamos sucessivos testes de hipótese para verificar se o parâmetro que associa a variável explicativa à variável resposta é igual a 0.

Quando se está na classe de modelos multivariados para dados gaussianos, extende-se o conceito de Análise de Variância (ANOVA) para a Análise de Variância Multivariada (Smith et al., 1962), a MANOVA. E dentre os testes de hipótese multivariados já discutidos na literatura, destacam-se o λ de Wilk's (Wilks, 1932), traço de Hotelling-Lawley (Lawley, 1938) e (Hotelling, 1951), traço de Pillai (Pillai et al., 1955) e maior raiz de Roy (Roy, 1953).

No entanto, considerando o cenário com múltiplas respostas não gaussianas, são escassas as discussões na literatura a respeito de testes de hipótese sobre os parâmetros do modelo. Deste modo, nosso objetivo geral é o desenvolvimento destes testes de hipótese para os Modelos Multivariados de Covariância Linear Generalizada (McGLM) por se tratar de uma classe de modelos flexível e com alto poder de aplicação a problemas práticos em que se fazem necessários tais testes para avaliação do modelo.

Portanto, este trabalho tem os seguintes objetivos específicos:

- 1. Adaptar o teste Wald para realização de testes de hipótese gerais sobre parâmetros de Modelos Multivariados de Covariância Linear Generalizada (McGLM).
- 2. Implementar funções para efetuar tais testes, bem como funções para efetuar Análises de Variância e Análises de Variância Multivariadas para os McGLM.
- Demonstrar as propriedades e comportamento dos testes propostos com base em estudos de simulação.
- 4. Demonstrar o potencial de aplicação das metodologias discutidas com base na aplicação a conjuntos de dados reais.

Este trabalho está organizado em sete capítulos: na atual seção foi exposto o tema de forma a enfatizar as características dos modelos lineares e testes de hipóteses. O Capítulo 2 é dedicado à revisão bibliográfica da estrutura dos McGLM. No Capítulo 3 são apresentados e discutidos os testes de hipótese já no contexto dos McGLM. No capítulo 4 são mostradas as funções implementadas. O Capítulo 5 apresenta o escopo do estudo de simulação para verificar as principais propriedades dos testes propostos. O Capítulo 6 apresenta os conjuntos de dados que serão usados no trabalho com o objetivo de discutir a aplicação do método a conjuntos de dados reais. E, por fim, no Capítulo 7 são apresentados os comentários finais e são discutidos os resultados esperados do estudo.

2 MODELOS MULTIVARIADOS DE COVARIÂNCIA LINEAR GENERALIZADA

Os Modelos Linerares Generalizados (GLM), propostos por Nelder e Wedderburn (1972), são uma forma de modelagem univariada para dados de diferentes naturezas, tais como respostas contínuas, binárias e contagens. Tais características tornam essa classe de modelos uma flexível ferramenta de modelagem aplicável a diversos tipos de problema. Contudo, por mais flexível e discutida na literatura, essa classe apresenta duas principais restrições:

- 1. A incapacidade de lidar com observações dependentes.
- 2. E/ou a incapacidade de lidar com múltiplas respostas simultaneamente.

Com o objetivo de contornar estas restrições, foi proposta por Bonat e Jørgensen (2016), uma estrutura geral para análise de dados não gaussianos com múltiplas respostas em que não se faz suposições quanto à independência das observações: os chamados Modelos Multivariados de Covariância Linear Generalizada (McGLM).

Vamos discutir os McGLM como uma extensão dos GLM. Vale ressaltar que é usada uma especificação menos usual de um Modelo Linear Generalizado, porém trata-se de uma notação mais conveniente para chegar à uma especificação melhor construída de um Modelo Multivariado de Covariância Linear Generalizada.

2.1 GLM

Seja Y um vetor $N \times 1$ de valores observados da variável resposta, X uma matriz de delineamento $N \times k$ e β um vetor de parâmetros de regressão $k \times 1$, um GLM pode ser descrito da forma

$$E(\mathbf{Y}) = \boldsymbol{\mu} = g^{-1}(\mathbf{X}\boldsymbol{\beta}),$$

$$Var(\mathbf{Y}) = \Sigma = V(\boldsymbol{\mu}; p)^{1/2} (\tau_0 \mathbf{I}) V(\boldsymbol{\mu}; p)^{1/2},$$
(2.1)

em que g(.) é a função de ligação, $V(\mu; p)$ é uma matriz diagonal em que as entradas principais são dadas pela função de variância aplicada ao vetor μ , p é o parâmetro de potência, τ_0 o parâmetro de dispersão e I é a matriz identidade de ordem $N \times N$.

Os GLM fazem uso de apenas duas funções, a função de variância e de ligação. Diferentes escolhas de funções de variância implicam em diferentes suposições a respeito da distribuição da variável resposta. Dentre as funções de variância conhecidas, podemos citar:

1. A função de variância potência, que caracteriza a família Tweedie de distribuições, em que a função de variância é dada por $\vartheta(\mu; p) = \mu^p$, na qual destacam-se a distribuições: Normal (p=0), Poisson (p=1), gama (p=2) e Normal inversa (p=3). Para mais informações consulte Jørgensen (1987) e Jørgensen (1997).

- 2. A função de dispersão Poisson–Tweedie, a qual caracteriza a família Poisson-Tweedie de distribuições, que visa contornar a inflexibilidade da utilização da função de variância potência para respostas discretas. A família Poisson-Tweedie tem função de dispersão dada por $\vartheta(\mu; p) = \mu + \mu^p$ e tem como casos particulares os mais famosos modelos para dados de contagem: Hermite (p=0), Neyman tipo A (p=1), binomial negativa (p=2) e Poisson–inversa gaussiana (p=3) (Jørgensen e Kokonendji, 2015).
- 3. A função de variância binomial, dada por $\vartheta(\mu) = \mu(1 \mu)$, utilizada quando a variável resposta é binária, restrita a um intervalo ou quando tem-se o número de sucessos em um número de tentativas.

Lembre-se que o GLM é uma classe de modelos de regressão univariados em que um dos pressupostos é a indepenência entre as observações. Esta independência é especificada na matriz identidade no centro da equação que define a matriz de variância e covariância. Podemos imaginar que, substituindo esta matriz identidade por uma matriz qualquer que reflita a relação entre os indivíduos da amostra teremos uma extensão do Modelo Linear Generalizado para observações dependentes. É justamente essa a ideia dos Modelos de Covariância Linear Generalizada, o cGLM.

2.2 CGLM

Os cGLM são uma alternativa para problemas em que a suposição de independência entre as observações não é atendida. Neste caso, a solução proposta é substituir a matriz identidade I da equação que descreve a matriz de variância e covariância por uma matriz não diagonal $\Omega(\tau)$ que descreva adequadamente a estrutura de correlação entre as observações. Trata-se de uma ideia similar à proposta de Liang e Zeger (1986) nos modelos GEE (Equações de Estimativas Generalizadas), em que utiliza-se uma matriz de correlação de trabalho para considerar a dependência entre as observações. A matriz $\Omega(\tau)$ é descrita como uma combinação de matrizes conhecidas tal como nas propostas de Anderson et al. (1973) e Pourahmadi (2000), podendo ser escrita da forma

$$h\left\{\Omega(\tau)\right\} = \tau_0 Z_0 + \ldots + \tau_D Z_D,\tag{2.2}$$

em que h(.) é a função de ligação de covariância, Z_d com d=0,..., D são matrizes que representam a estrutura de covariância presente nos dados e $\tau=(\tau_0,\ldots,\tau_D)$ é um vetor $(D+1)\times 1$ de parâmetros de dispersão. Tal estrutura pode ser vista como um análogo ao preditor linear para a média e foi nomeado como preditor linear matricial. A especificação da função de ligação de covariância é discutida por Pinheiro e Bates (1996) e é possível selecionar combinações de matrizes para se obter os mais conhecidos modelos da literatura para dados longitudinais, séries temporais, dados espaciais e espaço-temporais. Maiores detalhes são discutidos por Demidenko (2013).

Com isso, substituindo a matriz identidade pela equação do preditor linear matricial, temos uma classe com toda a flexibilidade dos GLM, porém contornando a restrição da independência entre as observações desde que o preditor linear matricial seja adequadamente especificado.

Deste modo, é contornada a primeira restrição dos GLM. A segunda restrição diz respeito às múltiplas respostas e, resolvendo esta restrição, chegamos ao McGLM.

2.3 MCGLM

O McGLM pode ser entendido como uma extensão multivariada do cGLM e contorna as duas principais restrições presentes nos GLM, pois além de permitir a modelagem de dados com estrutura de covariância, permite modelar múltiplas respostas.

Considre $Y_{N\times R} = \{Y_1, \dots, Y_R\}$ uma matriz de variáveis resposta e $M_{N\times R} = \{\mu_1, \dots, \mu_R\}$ uma matriz de valores esperados. Cada uma das variáveis resposta tem sua própria matriz de variância e covariância, responsável por modelar a covariância dentro de cada resposta, sendo expressa por

$$\Sigma_r = V_r (\mu_r; p)^{1/2} \Omega_r (\tau) V_r (\mu_r; p)^{1/2}.$$
 (2.3)

Além disso, é necessária uma matriz de correlação Σ_b , de ordem $R \times R$, que descreve a correlação entre as variáveis resposta. Para a especificação da matriz de variância e covariância conjunta é utilizado o produto Kronecker generalizado, proposto por Martinez-Beneito (2013).

Finalmente, um MCGLM é descrito como

$$E(Y) = M = \{g_1^{-1}(X_1\boldsymbol{\beta}_1), \dots, g_R^{-1}(X_R\boldsymbol{\beta}_R)\}$$

$$Var(Y) = C = \boldsymbol{\Sigma}_R \overset{G}{\otimes} \boldsymbol{\Sigma}_b,$$
(2.4)

em que $\Sigma_R \overset{G}{\otimes} \Sigma_b = \operatorname{Bdiag}(\tilde{\Sigma}_1, \dots, \tilde{\Sigma}_R)(\Sigma_b \otimes I)\operatorname{Bdiag}(\tilde{\Sigma}_1^\top, \dots, \tilde{\Sigma}_R^\top)$ é o produto generalizado de Kronecker, a matriz $\tilde{\Sigma}_r$ denota a matriz triangular inferior da decomposição de Cholesky da matriz Σ_r , o operador Bdiag denota a matriz bloco-diagonal e I uma matriz identidade $N \times N$.

Toda metodologia do McGLM está implementada no pacote *mcglm* (Bonat, 2018) do software estatístico R (R Core Team, 2020a).

2.3.1 Estimação e inferência

Os McGLMs são ajustados baseados no método de funções de estimação descritos em detalhes por Bonat e Jørgensen (2016) e Jørgensen e Knudsen (2004). Nesta seção é apresentada uma visão geral do algoritmo e da distribuição assintótica dos estimadores baseados em funções de estimação.

As suposições de segundo momento dos McGLM permitem a divisão dos parâmetros em dois conjuntos: $\boldsymbol{\theta} = (\boldsymbol{\beta}^{\mathsf{T}}, \boldsymbol{\lambda}^{\mathsf{T}})^{\mathsf{T}}$. Desta forma, $\boldsymbol{\beta} = (\boldsymbol{\beta}_1^{\mathsf{T}}, \dots, \boldsymbol{\beta}_R^{\mathsf{T}})^{\mathsf{T}}$ é um vetor $K \times 1$ de

parâmetros de regressão e $\lambda = (\rho_1, \dots, \rho_{R(R-1)/2}, p_1, \dots, p_R, \boldsymbol{\tau}_1^\top, \dots, \boldsymbol{\tau}_R^\top)^\top$ é um vetor $Q \times 1$ de parâmetros de dispersão. Além disso, $\boldsymbol{\mathcal{Y}} = (\boldsymbol{Y}_1^\top, \dots, \boldsymbol{Y}_R^\top)^\top$ denota o vetor empilhado de ordem $NR \times 1$ da matriz de variáveis resposta $\boldsymbol{Y}_{N \times R}$ e $\boldsymbol{\mathcal{M}} = (\boldsymbol{\mu}_1^\top, \dots, \boldsymbol{\mu}_R^\top)^\top$ denota o vetor empilhado de ordem $NR \times 1$ da matriz de valores esperados $\boldsymbol{M}_{N \times R}$.

Para estimação dos parâmetros de regressão é utilizada a função quasi-score (Liang e Zeger, 1986), representada por

$$\psi_{\beta}(\beta, \lambda) = \mathbf{D}^{\mathsf{T}} \mathbf{C}^{-1} (\mathcal{Y} - \mathcal{M}), \tag{2.5}$$

em que $D = \nabla_{\beta} \mathcal{M}$ é uma matriz $NR \times K$, e ∇_{β} denota o operador gradiente. Utilizando a função quasi-score a matriz $K \times K$ de sensitividade de ψ_{β} é dada por

$$S_{\beta} = E(\nabla_{\beta\psi\beta}) = -\mathbf{D}^{\mathsf{T}}\mathbf{C}^{-1}\mathbf{D},\tag{2.6}$$

enquanto que a matriz $K \times K$ de variabilidade de ψ_{β} é escrita como

$$V_{\beta} = VAR(\psi \beta) = \mathbf{D}^{\top} \mathbf{C}^{-1} \mathbf{D}. \tag{2.7}$$

Para os parâmetros de dispersão é utilizada a função de estimação de Pearson, definida da forma

$$\psi_{\lambda_i}(\boldsymbol{\beta}, \lambda) = \operatorname{tr}(W_{\lambda_i}(\boldsymbol{r}^\top \boldsymbol{r} - \boldsymbol{C})), i = 1, ..., Q,$$
(2.8)

em que $W_{\lambda i} = -\frac{\partial C^{-1}}{\partial \lambda_i}$ e $\mathbf{r} = (\mathbf{\mathcal{Y}} - \mathbf{\mathcal{M}})$. A entrada (i, j) da matriz de sensitividade $Q \times Q$ de ψ_{λ} é dada por

$$S_{\lambda_{ij}} = E\left(\frac{\partial}{\partial \lambda_i} \psi \lambda_j\right) = -tr(W_{\lambda_i} C W_{\lambda_j} C). \tag{2.9}$$

Já a entrada (i, j) da matriz de variabilidade $Q \times Q$ de ψ_{λ} é definida por

$$V_{\lambda_{ij}} = Cov\left(\psi_{\lambda_{i}}, \psi_{\lambda_{j}}\right) = 2tr(W_{\lambda_{i}}CW_{\lambda_{j}}C) + \sum_{l=1}^{NR} k_{l}^{(4)}(W_{\lambda_{i}})_{ll}(W_{\lambda_{j}})_{ll},$$
 (2.10)

em que $k_l^{(4)}$ denota a quarta cumulante de \mathcal{Y}_l . No processo de estimação dos McGLM são usadas as versões empíricas.

Para se levar em conta a covariância entre os vetores β e λ , Bonat e Jørgensen (2016) obtiveram as matrizes de sensitividade e variabilidade cruzadas, denotadas por $S_{\lambda\beta}$, $S_{\beta\lambda}$ e $V_{\lambda\beta}$, mais detalhes em Bonat e Jørgensen (2016). As matrizes de sensitividade e variabilidade conjuntas de ψ_{β} e ψ_{λ} são denotados por

$$S_{\theta} = \begin{bmatrix} S_{\beta} & S_{\beta\lambda} \\ S_{\lambda\beta} & S_{\lambda} \end{bmatrix} e \ V_{\theta} = \begin{bmatrix} V_{\beta} & V_{\lambda\beta}^{\top} \\ V_{\lambda\beta} & V_{\lambda} \end{bmatrix}. \tag{2.11}$$

Seja $\hat{\theta}=(\hat{\beta}^\mathsf{T},\hat{\lambda}^\mathsf{T})^\mathsf{T}$ o estimador baseado em funções de estimação de θ . Então, a distribuição assintótica de $\hat{\theta}$ é

$$\hat{\boldsymbol{\theta}} \sim N(\boldsymbol{\theta}, J_{\boldsymbol{\theta}}^{-1}), \tag{2.12}$$

em que J_{θ}^{-1} é a inversa da matriz de informação de Godambe, dada por $J_{\theta}^{-1} = S_{\theta}^{-1} V_{\theta} S_{\theta}^{-\top}$, em que $S_{\theta}^{-\top} = (S_{\theta}^{-1})^{\top}$.

Para resolver o sistema de equações $\psi_{\beta}=0$ e $\psi_{\lambda}=0$ faz-se uso do algoritmo Chaser modificado, proposto por Jørgensen e Knudsen (2004), que fica definido como

$$\boldsymbol{\beta}^{(i+1)} = \boldsymbol{\beta}^{(i)} - S_{\boldsymbol{\beta}}^{-1} \boldsymbol{\psi} \boldsymbol{\beta}(\boldsymbol{\beta}^{(i)}, \boldsymbol{\lambda}^{(i)}),$$

$$\boldsymbol{\lambda}^{(i+1)} = \boldsymbol{\lambda}^{(i)} \alpha S_{\boldsymbol{\lambda}}^{-1} \boldsymbol{\psi} \boldsymbol{\lambda}(\boldsymbol{\beta}^{(i+1)}, \boldsymbol{\lambda}^{(i)}).$$
 (2.13)

3 TESTE WALD NO CONTEXTO DOS MCGLM

3.1 O TESTE WALD

O teste Wald é um teste de hipóteses amplamente difundido para análises de Modelos Lineares e Modelos Lineares Generalizados para verificar suposições sobre os parâmetros do modelo, isto é, verificar se a estimativa do parâmetro é ou não estatísticamente igual a um valor qualquer.

A grosso modo, é um teste que avalia a distância entre a estimativa do parâmetro e o valor postulado sob a hipótese nula. Esta diferença é ainda ponderada por uma medida de precisão da estimativa do parâmetro e, quanto mais distante de 0 for o valor da distância ponderada, menor é a chance da hipótese de igualdade ser verdadeira, ou seja, do valor postulado ser igual ao valor estimado.

Além destes elementos o teste pressupõe que os estimadores dos parâmetros do modelo sigam distribuição assintótica Normal. Para avaliação da estatística de teste e verificação de significância estatística utiliza-se distribuição assintótica Qui-quadrado (χ^2).

Quando trabalhamos com modelos de regressão, estes tipos de teste são extremente úteis quando usados para avaliar o efeito das variáveis explicativas sobre a(s) variável(is) resposta do modelo. Por exemplo: se ajustarmos um modelo com uma variável resposta e uma variável explicativa numérica, vamos estimar um único parâmetro de regressão; este parâmetro associa a variável explicativa à variável resposta. Através de um teste de hipótese podemos avaliar o efeito desta variável explicativa, basta verificar se existe evidência que permita afirmar que o valor que associa as variáveis é igual a 0.

Existe também a possibilidade de formular hipóteses para mais de um parâmetro de regressão e ainda testar valores diferentes de 0, tudo depende do objetivo do estudo e do interesse do pesquisador.

3.2 ADAPTAÇÃO DO TESTE PARA OS MCGLM

Quando trabalhamos na classe dos McGLM estimamos parâmetros de regressão, dispersão e potência. Os parâmetros de regressão são aqueles que associam a variável explicativa à variável resposta. Os parâmetros de dispersão estão associados ao preditor matricial e, em geral, cada matriz do preditor matricial diz respeito a uma estrutura de correlação existente entre as unidades amostrais do conjunto de dados, deste modo, os parâmetros de dispersão podem ser usados para avaliar se existe efeito da relação entre as unidades amostrais tal como foi especificado pelo preditor matricial. Já os parâmetros de potência nos fornecem um indicativo de qual distribuição de probabilidade melhor se adequa ao problema.

Nossa adaptação do teste Wald tradicional visa uma forma de formular e testar hipóteses para todos esses parâmetros estimados na classe dos McGLM para responder questões comuns de analistas no contexto de modelagem, como: quais variáveis influenciam a resposta? Existe efeito da estrutura de correlação entre indivíduos no meu estudo? Qual a distribuição de probabilidade que melhor se adequa ao meu problema? Dentre outras.

Vale ressaltar que por si só, o McGLM já contorna importantes restrições encontradas nas classes clássicas de modelos, como a impossibilidade de modelar múltiplas respostas e modelar a dependência entre indivíduos. Nossa contribuição vai no sentido de fornecer ferramentas para uma melhor interpretação dos parâmetros estimados.

As hipóteses a serem testadas podem ser escritas como:

$$H_0: \boldsymbol{L}\boldsymbol{\theta}_{\boldsymbol{\beta},\boldsymbol{\tau},\boldsymbol{p}} = \boldsymbol{c} \ vs \ H_1: \boldsymbol{L}\boldsymbol{\theta}_{\boldsymbol{\beta},\boldsymbol{\tau},\boldsymbol{p}} \neq \boldsymbol{c}. \tag{3.1}$$

Em que L é a matriz de especificação das hipóteses a serem testadas, tem dimensão $s \times h$, $\theta_{\beta,\tau,p}$ é o vetor de dimensão $h \times 1$ de parâmetros de regressão, dispersão e potência do modelo, c é um vetor de dimensão $s \times 1$ com os valores sob hipótese nula.

A generalização da estatística de teste do teste Wald para verificar a validade de uma hipótese sobre parâmetros de um McGLM é dada por:

$$W = (L\hat{\theta}_{\beta,\tau,p} - c)^T (L J_{\beta,\tau,p}^{-1} L^T)^{-1} (L\hat{\theta}_{\beta,\tau,p} - c).$$
(3.2)

Em que L é a mesma matriz da especificação das hipóteses a serem testadas, tem dimensão $s \times h$; $\hat{\theta}_{\beta,\tau,p}$ é o vetor de dimensão $h \times 1$ com todas as estimativas dos parâmetros de regressão, dispersão e potência do modelo; c é um vetor de dimensão $s \times 1$ com os valores sob hipótese nula; e $J_{\beta,\tau,p}^{-1}$ é a inversa da matriz de informação de Godambe desconsiderando os parâmetros de correlação, de dimensão $h \times h$.

Cada coluna da matriz L corresponde a um dos h parâmetros do modelo e cada linha a uma hipótese. Sua construção consiste basicamente em preencher a matriz com 0, 1 e eventualmente -1 de tal modo que o produto $L\theta_{\beta,\tau,p}$ represente corretamente a hipótese de interesse.

A correta especificação da matriz permite testar qualquer parâmetro individualmente ou até mesmo formular hipóteses para diversos parâmetros simultaneamente, sejam eles de regressão, dispersão ou potência. Independente do número de parâmetros testados, a estatística de teste W é um único valor que segue assintóticamente distribuição χ^2 com graus de liberdade dados pelo número de parâmetros testados, isto é, o número de linhas da matriz L, denotado por s.

3.3 EXEMPLOS DE HIPÓTESES

Em um contexto prático, um analista após a obtenção dos parâmetros do modelo pode estar interessado em 3 tipos de hipótese: a primeira delas diz respeito a quando o interesse está em avaliar se existe evidência que permita afirmar que apenas um único parâmetro é igual a um valor postulado; a segunda delas ocorre quando há interesse em avaliar se existe evidência para afirmar que mais de um parâmetro simultâneamente são iguais a um vetor de valores postulado; e a terceira hipótese diz respeito a situações em que o analista está interessado em saber se a diferença entre os efeitos de duas variáveis é igual a 0.

Para fins de ilustração dos tipos de hipótese mencionadas, considere um problema qualquer em que deseja-se investigar se uma variável numérica x_1 possui efeito sobre duas variáveis resposta, denotadas por y_1 e y_2 . Para tal tarefa coletou-se uma amostra com n indivíduos e para cada indivíduo observou-se o valor de x_1 , y_1 e y_2 . Com base nos dados coletados ajustou-se um modelo bivariado, com preditor dado por:

$$g_r(\mu_r) = \beta_{r0} + \beta_{r1} x_1. \tag{3.3}$$

Em que o índice r denota a variável resposta, r = 1,2; β_{r0} representa o intercepto; β_{r1} um parâmetro de regressão associado a uma variável x_1 . Considere que cada resposta possui apenas um parâmetro de dispersão: τ_{r1} e que os parâmetros de potência foram fixados. Portanto, trata-se de um problema em que há duas variáveis resposta e apenas uma variável explicativa. Como existe apenas um parâmetro de dispersão isso quer dizer que nossas unidades amostrais são independentes.

Neste cenário poderiam ser perguntas de interesse: será que a variável x_1 tem efeito apenas sobre a primeira resposta? Ou apenas sobre a segunda resposta? Será que a variável x_1 possui efeito sobre as duas respostas ao mesmo tempo? Será que o efeito da variável é o mesmo para ambas as respostas? Todas essas perguntas podem ser respondidas através de um teste de hipóteses sobre os parâmetros do modelo.

3.3.1 Exemplo 1

Considere o primeiro tipo de hipótese: o analista deseja saber se existe efeito da variável x_1 apenas na primeira resposta. A hipótese pode ser escrita da seguinte forma:

$$H_0: \beta_{11} = 0 \text{ vs } H_1: \beta_{11} \neq 0.$$
 (3.4)

Esta mesma hipótese pode ser reescrita na notação mais conveniente para aplicação da estatística do teste Wald:

$$H_0: L\theta_{\beta,\tau,p} = c \text{ vs } H_1: L\theta_{\beta,\tau,p} \neq c. \tag{3.5}$$

Em que:

•
$$\theta_{\beta,\tau,p}^T = \left[\beta_{10} \, \beta_{11} \, \beta_{20} \, \beta_{21} \, \tau_{11} \, \tau_{21} \right].$$

•
$$\boldsymbol{L} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$
.

•
$$c = [0]$$
, é o valor da hipótese nula.

Note que o vetor $\theta_{\beta,\tau,p}$ possui 6 elementos, consequentemente a matriz L contém 6 colunas (uma para cada elemento) e apenas uma linha, pois apenas um único parâmetro está sendo testado. Essa única linha é composta por zeros, exceto a coluna referente ao parâmetro de interesse que recebe 1. É simples verificar que o produto $L\theta_{\beta,\tau,p}$ representa a hipótese de interesse inicialmente postulada.

3.3.2 Exemplo 2

Imagine agora que o interesse neste problema genérico não é mais testar o efeito da variável explicativa apenas em uma resposta. Imagine que o analista tem interesse em avaliar se existe evidência suficiente para afirmar que há efeito da variável explicativa x_1 em ambas as respostas simultâneamente. Neste caso teremos que testar 2 parâmetros: β_{11} , que associa x_1 à primeira resposta; e β_{21} , que associa x_1 à segunda resposta. Podemos escrever a hipótese da seguinte forma:

$$H_0: \beta_{r1} = 0 \text{ vs } H_1: \beta_{r1} \neq 0.$$
 (3.6)

Ou, de forma equivalente:

$$H_0: \begin{pmatrix} \beta_{11} \\ \beta_{21} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} vs H_1: \begin{pmatrix} \beta_{11} \\ \beta_{21} \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

A hipótese pode ainda ser reescrita na notação conveniente para o teste Wald:

$$H_0: L\theta_{\beta,\tau,p} = c \text{ vs } H_1: L\theta_{\beta,\tau,p} \neq c. \tag{3.7}$$

Em que:

•
$$\theta_{\beta,\tau,p}^T = \left[\beta_{10} \; \beta_{11} \; \beta_{20} \; \beta_{21} \; \tau_{11} \; \tau_{21} \right].$$

•
$$L = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

•
$$c = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, é o valor da hipótese nula.

O vetor $\theta_{\beta,\tau,p}$ mantém 6 elementos e a matriz L 6 colunas. Neste caso estamos testando 2 parâmetros, portanto a matriz L possui 2 linhas. Novamente, essas linhas são composta por

zeros, exceto nas colunas referentes ao parâmetro de interesse. É simples verificar que o produto $L\theta_{\beta,\tau,p}$ representa a hipótese de interesse inicialmente postulada.

3.3.3 Exemplo 3

Imagine agora que a hipótese de interesse não envolve testar se o valor do parâmetro é igual a um valor postulado mas sim verificar se, no caso deste problema genérico, o efeito da variável x_1 é o mesmo independente da resposta. Nesta situação formularíamos uma hipótese de igualdade entre os parâmetros, ou em outros termos, se a diferença dos efeitos é nula:

$$H_0: \beta_{11} - \beta_{21} = 0 \text{ vs } H_1: \beta_{11} - \beta_{21} \neq 0.$$
 (3.8)

Esta hipótese pode ser reescrita na seguinte notação:

$$H_0: L\theta_{\beta,\tau,p} = c \text{ vs } H_1: L\theta_{\beta,\tau,p} \neq c.$$

Em que:

•
$$\theta_{\beta,\tau,p}^T = \left[\beta_{10} \ \beta_{11} \ \beta_{20} \ \beta_{21} \ \tau_{11} \ \tau_{21} \right].$$

•
$$\boldsymbol{L} = \begin{bmatrix} 0 & 1 & 0 & -1 & 0 & 0 \end{bmatrix}$$
.

•
$$c = [0]$$
, é o valor da hipótese nula.

Como existe apenas uma hipótese, a matriz L possui apenas uma linha. Para a matriz L ser corretamente especificada no caso de uma hipótese de igualdade precisamos colocar 1 na coluna referente a um parâmetro, e -1 na coluna referente ao outro parâmetro, de tal modo que o produto $L\theta_{\beta,\tau,p}$ representa a hipótese de interesse inicialmente postulada.

É possível testar qualquer parâmetro individualmente, formular hipóteses para diversos parâmetros simultaneamente (sejam eles de regressão, dispersão, potência), formular hipóteses para combinações entre estes parâmetros e testar valores diferentes de zero. Como explicitado nos exemplos, basta uma correta especificação da matriz \boldsymbol{L} . Independente do número de parâmetros testados, a estatística de teste W é um único valor que segue assintóticamente distribuição χ^2 em que os graus de liberdade são dados pelo número de hipóteses, isto é, o número de linhas da matriz \boldsymbol{L} , denotado por s.

3.4 ANOVA E MANOVA VIA TESTE WALD

Quando trabalhamos com modelos univariados, uma das formas de avaliar a significância de cada uma das variáveis de uma forma procedural é através da análise de variância (ANOVA). Este método consiste em efetuar testes sucessivos impondo restrições ao modelo original. O objetivo é testar se a ausência de determinada variável gera perda ao modelo. Os resultados

destes sucessivos testes são sumarizados numa tabela, o chamado quadro de análise de variância, que contêm em cada linha: a variável, o valor de uma estatística de teste referente à hipótese de nulidade de todos os parâmetros associados à esta variável, os graus de liberdade desta hipótese, e um p-valor associado à hipótese testada naquela linha do quadro.

Trata-se de um interessante procedimento para avaliar a relevância de uma variável ao problema, contudo, cuidados devem ser tomados no que diz respeito à forma como o quadro foi elaborado. Como já mencionado, cada linha do quadro refere-se a uma hipótese e estas hipóteses podem ser formuladas de formas distintas. Formas conhecidas de se elaborar o quadro são as chamadas ANOVAs do tipo I, II e III. Esta nomenclatura vem do software estatístico SAS (Institute, 1985), contudo as implementações existentes em outros softwares que seguem esta nomenclatura não necessariamente correspondem ao que está implementado no SAS. No software R (R Core Team, 2020a) as implementações dos diferentes tipos de análise de variância podem ser obtidas e usadas no pacote *car* (Fox e Weisberg, 2019). Em geral, recomenda-se ao usuário estar seguro de qual tipo de análise está sendo utilizada pois, caso contrário, interpretações equivocadas podem ser feitas.

Testar se a ausência de determinada variável gera perda ao modelo quer dizer, em outros termos, realizar um teste para verificar a nulidade dos parâmetros que associam esta variável à resposta. Isto geralmente é feito através de uma sequência de testes de Razão de Verossimilhança, contudo é possível gerar quadros de Análise de Variância utilizando o teste Wald pois sempre estarão sendo comparados o modelo completo e o modelo sem determinada ou determinadas variáveis.

Ou seja, no contexto dos McGLM basta então, para cada linha do quadro de Análise de Variância, especificar corretamente uma matriz *L* que represente de forma adequada a hipótese a ser testada.

Do mesmo modo que é feito para um modelo univariado, podemos chegar também a uma Análise de Variância Multivariada (MANOVA) realizando sucessivos testes do tipo Wald em que estamos interessados em avaliar o efeito de determinada variável em todas as respostas simultaneamente. Portanto, a pergunta que a ser respondida seria: esta variável tem efeito diferente de 0 para todas as respostas?

A MANOVA clássica (Smith et al., 1962) é um assunto com vasta discussão na literatura e possui diversas propostas com o objetivo de verificar a nulidade dos parâmetros de um modelo de regressão multivariado, como o lambda de Wilk's (Wilks, 1932), traço de Hotelling-Lawley (Lawley, 1938); (Hotelling, 1951), traço de Pillai (Pillai et al., 1955) e maior raiz de Roy (Roy, 1953).

Tal como no caso univariado basta, para cada linha do quadro de Análise de Variância, especificar corretamente uma matriz L que represente de forma adequada a hipótese a ser testada.

4 FUNÇÕES IMPLEMENTADAS

No capítulo anterior vimos que podemos chegar a um teste de hipóteses sobre qualquer um dos parâmetros de uma classe de modelos em que podemos especificar modelos para lidar com múltiplas respostas, de diferentes naturezas, modelando também a correlação entre indivíduos da amostra, os McGLM (Bonat e Jørgensen, 2016). Deste modo um dos objetivos deste trabalho consiste em implementar, tais testes no software R (R Core Team, 2020a) com o objetivo de complementar as já possíveis análises permitidas pelo pacote *mcglm* (Bonat, 2018).

No que diz respeito à implementações do teste Wald em outros contextos no R, o pacote *lmtest* (Zeileis e Hothorn, 2002) possui uma função genérica para realizar testes de Wald para comparar modelos lineares e lineares generalizados aninhados. Já o pacote *survey* (Lumley, 2020); (Lumley, 2004);(Lumley, 2010) possui uma função que realiza teste de Wald que, por padrão, testa se todos os coeficientes associados a um determinado termo de regressão são zero, mas é possível especificar hipóteses com outros valores. O já mencionado pacote *car* (Fox e Weisberg, 2019) possui uma implementação para testar hipóteses lineares sobre parametros de modelos lineares, modelos lineares generalizados, modelos lineares multivariados, modelos de efeitos mistos, etc; nesta implementação o usuário tem total controle de que parâmetros testar e com quais valores confrontar na hipótese nula. Quanto às tabelas de análise de variância, o R possui a função anova no pacote padrão *stats* (R Core Team, 2020b) aplicável a modelos lineares e lineares generalizados. Já o pacote *car* (Fox e Weisberg, 2019) possui uma função que retorna quadros de análise variância dos tipos II e III para diversos modelos.

Contudo, quando se trata de Modelos Multivariados de Covariância Linear Generalizada ajustados no pacote *mcglm* (Bonat, 2018), não existem opções para realização de testes de hipóteses lineares gerais nem de análises de variância utilizando a estatística de Wald. Deste modo, baseando-nos nas funcionalidades do pacote *car* (Fox e Weisberg, 2019), implementamos funções que permitem a realização de Análises de Variância por variável resposta (ANOVA), bem como Análises de Variância multivariadas (MANOVA). Note que no caso da MANOVA os preditores devem ser iguais para todas as respostas sob análise. Foram implementadas também funções que geram quadros como os de análise de variância focados no preditor linear matricial, ou seja, quadros cujo objetivo é verificar a significância dos parâmetros de dispersão. Estas funções recebem como argumento apenas o objeto que armazena o modelo devidamente ajustado através da função mcglm do pacote mcglm.

Por fim, foi implementada uma função para hipóteses lineares gerais especificadas pelo usuário, na qual é possível testar hipóteses sobre parâmetros de regressão, dispersão ou potência. Também é possível especificar hipóteses sobre múltiplos parâmetros e o vetor de valores da hipótese nula é definido pelo usuário. Esta função recebe como argumentos o modelo, um vetor com os parâmetros que devem ser testados e o vetor com os valores sob hipótese nula. Com

algum trabalho, através da função de hipóteses lineares gerais, é possível replicar os resultados obtidos pelas funções de análise de variância.

Todas as funções geram resultados mostrando graus de liberdade e p-valores baseados no teste Wald aplicado aos modelos multivariados de covariância linear generalizada (McGLM). Todas as funções implementadas podem ser acessadas em . A Tabela 4.1 mostra os nomes e descrições das funções implementadas.

Função	Descrição
mc_anova_I()	ANOVA tipo I (imita uma sequencial)
mc_anova_II()	ANOVA tipo II (nao bate com o car)
mc_anova_III()	ANOVA tipo III
mc_anova_disp()	ANOVA tipo III para dispersão
mc_manova_I()	MANOVA tipo I (imita uma sequencial)
mc_manova_II()	MANOVA tipo II (nao bate com o car)
mc_manova_III()	MANOVA tipo III
mc_manova_disp()	MANOVA tipo III para dispersão
<pre>mc_linear_hypothesis()</pre>	Hipóteses lineares gerais especificadas pelo usuário

Tabela 4.1: Funções implementadas

- 4.1 MC_ANOVA_I()
- 4.2 MC_ANOVA_II()
- 4.3 MC_ANOVA_III()
- 4.4 MC_ANOVA_DISP()
- 4.5 MC_MANOVA_I()
- 4.6 MC_MANOVA_II()
- 4.7 MC_MANOVA_III()
- 4.8 MC_MANOVA_DISP()
- 4.9 MC_LINEAR_HYPOTHESIS()

REFERÊNCIAS

- Anderson, T. et al. (1973). Asymptotically efficient estimation of covariance matrices with linear structure. *The Annals of Statistics*, 1(1):135–141.
- Bonat, W. H. (2018). Multiple response variables regression models in R: The mcglm package. *Journal of Statistical Software*, 84(4):1–30.
- Bonat, W. H. e Jørgensen, B. (2016). Multivariate covariance generalized linear models. *Journal* of the Royal Statistical Society: Series C (Applied Statistics), 65(5):649–675.
- Box, G. E. e Cox, D. R. (1964). An analysis of transformations. *Journal of the Royal Statistical Society. Series B (Methodological)*, páginas 211–252.
- Demidenko, E. (2013). Mixed models: theory and applications with R. John Wiley & Sons.
- Fox, J. e Weisberg, S. (2019). *An R Companion to Applied Regression*. Sage, Thousand Oaks CA, third edition.
- Hotelling, H. (1951). A generalized t test and measure of multivariate dispersion. Relatório técnico, UNIVERSITY OF NORTH CAROLINA Chapel Hill United States.
- Institute, S. (1985). SAS user's guide: Statistics, volume 2. Sas Inst.
- Jørgensen, B. (1987). Exponential dispersion models. *Journal of the Royal Statistical Society: Series B (Methodological)*, 49(2):127–145.
- Jørgensen, B. (1997). The theory of dispersion models. CRC Press.
- Jørgensen, B. e Knudsen, S. J. (2004). Parameter orthogonality and bias adjustment for estimating functions. *Scandinavian Journal of Statistics*, 31(1):93–114.
- Jørgensen, B. e Kokonendji, C. C. (2015). Discrete dispersion models and their tweedie asymptotics. *AStA Advances in Statistical Analysis*, 100(1):43–78.
- Lawley, D. (1938). A generalization of fisher's z test. *Biometrika*, 30(1/2):180–187.
- Liang, K.-Y. e Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. *Biometrika*, 73(1):13–22.
- Lumley, T. (2004). Analysis of complex survey samples. *Journal of Statistical Software*, 9(1):1–19. R package verson 2.2.
- Lumley, T. (2010). *Complex Surveys: A Guide to Analysis Using R: A Guide to Analysis Using R.* John Wiley and Sons.

- Lumley, T. (2020). survey: analysis of complex survey samples. R package version 4.0.
- Martinez-Beneito, M. A. (2013). A general modelling framework for multivariate disease mapping. *Biometrika*, 100(3):539–553.
- Nelder, J. A. e Wedderburn, R. W. M. (1972). Generalized Linear Models. *Journal of the Royal Statistical Society. Series A (General)*, 135:370–384.
- Pillai, K. et al. (1955). Some new test criteria in multivariate analysis. *The Annals of Mathematical Statistics*, 26(1):117–121.
- Pinheiro, J. C. e Bates, D. M. (1996). Unconstrained parametrizations for variance-covariance matrices. *Statistics and computing*, 6(3):289–296.
- Pourahmadi, M. (2000). Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix. *Biometrika*, 87(2):425–435.
- R Core Team (2020a). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria.
- R Core Team (2020b). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria.
- Roy, S. N. (1953). On a heuristic method of test construction and its use in multivariate analysis. *The Annals of Mathematical Statistics*, páginas 220–238.
- Smith, H., Gnanadesikan, R. e Hughes, J. (1962). Multivariate analysis of variance (manova). *Biometrics*, 18(1):22–41.
- Wilks, S. S. (1932). Certain generalizations in the analysis of variance. *Biometrika*, páginas 471–494.
- Zeileis, A. e Hothorn, T. (2002). Diagnostic checking in regression relationships. *R News*, 2(3):7–10.