Iterative methods for solutions of linear systems of equations

Lets say we have an equation of the form Ax = b, we can decompose the matrix A into the following form:

...and an upper triangular matrix; that I am not going to write but you get the idea.

Theorem: If A is a diagonally dominant matrix then jacobi iteration converges to the solution of Ax = b.

$$\begin{split} & x_1 = D^{-1}(b - (L + U)x_0) \\ & x_{k+1} = D^{-1}(b - (L + U)x_k) \\ & x_{k+m} = D^{-1}(b - (L + U)x_k) = D^{-1}(b - (L + D + U)x_k + Dx_k) \\ & \to = D^{-1}(b - Ax_k + Dx_k) = D^{-1}r_k + x_k = x_k + D^{-1}r_k \end{split}$$

Note: $b - Ax_k$ is he residual vector. Recall the residual is defined as:

$$Ax = b \rightarrow r = b - Ax$$

We can use this to create the conditional: if $||r_k||_2 \leq tol \rightarrow STOP$.

 $Jacobi\ Iteration$

Inputs: A, x_0

Loop:

$$\begin{split} r &= b - Ax \quad \text{ for all } k = 0, 1, 2, .. \\ x_{k+1} &= x_k + D^{-1} r_k \\ \text{error} &= \|b - Ax_k\| \\ x_k &= x_{k+1} \end{split}$$

Since D is a diagonal matrix, D^{-1} will just be $\frac{1}{D}$, which gives us our x_{k+1} modified matrix.

Lets talk more about some tricks with the residual:

$$r_{k+1} = b - Ax_{k+1} = b - A(x_k + D^{-1}r_k)$$

 $\rightarrow = (b - Ax_k) - AD^{-1}r_k$

Guass-Seidel

$$\begin{split} A &= (L + D + U) \\ Ax &= b \\ (D + U)x &= b - Lx \\ (D + U)x_{k+1} &= (b - Lx) \rightarrow (D + U)x_{k+1} = (b - Lx_k) \\ x &= (D + U)^{-1}(b - Lx) \\ x^{(k+1)} &= (D + U)^{-1}(b - Lx^k) \end{split}$$

We can use our Back-substitution routine to find $(D + U)^{-1}$

November 20

Shifted Power Method

Power Method finds λ_1 , inverse power method finds λ_n , and shift on the eigenvalue.

Lets say: $A\nu = \lambda\nu$ $A\nu - \mu\nu = \lambda\nu - \mu\nu = (\lambda - \mu)\nu$ $(A - \mu I)\nu = (\lambda - \mu)\nu$

From this, we can find $\lambda-\mu$ is an eigenvalue of $(A-\mu I)$

Example: Let $\lambda_1 = 10, \lambda_n = 0.1$ Find λ_n apply the power method to A^{-1}

let $\lambda-\mu\approx\lambda_{\frac{n}{2}}$ Now, apply the power method to $(A-\mu I)\to\lambda-\mu$

This technique allows us to find eigenvalues between λ_n and λ_1 by iteratively checking values between the min and max eigenvalue.

eigenvalue review

Properties:

- $Ax = \lambda x$ for all $x \neq 0$
- lol that is it.