

PREDICEON BEGGES

SERGIO CHALELA

QUE PROBLEMA RESOLVENOS?

Nuestro objetivo principal fue construir un modelo de Machine Learning que permita predecir el precio estimado de un vehículo basado en sus características, de manera eficiente y confiable.

Este enfoque también destaca por la combinación de:

- Modelos supervisados: Para entrenar el modelo en un dataset robusto.
- Clustering no supervisado: Para encontrar patrones ocultos que mejoren la precisión.

EXPLORACIÓN INICIAL DE DATOS

KM vs Año vs Precio

Fabricantes más Comunes

Cantidad de Vehiculos por Estado

EXPLORACIÓN DE DATOS PROCESADOS

EXPLORACION DE DATOS CLUSTERIZADOS

MODELOS SUPERVISADOS

Regresión Lineal

Decision Trees

Random Forest

Gradient Boosting

KNN

MODELO NO SUPERVISADO

Porque K-Means

- Aplicamos K-Means para segmentar los datos en grupos homogéneos.
- Los clusters revelan patrones latentes que no eran evidentes en el análisis inicial

Resultado

- El algoritmo identificó X clusters basados en variables como Año, Kilometraje, y otras características.
- Cada cluster representa un grupo de vehículos con características similares, lo que mejora la precisión del modelo supervisado.

MODELO FINAL


```
hyperparameters:
  algorithm: auto
 metric: minkowski
 n_neighbors: 5
 weights: uniform
model_name: K-Nearest Neighbors (KNN)
performance:
 MAE: 2368.780735220772
 MSE: 18919220.428636175
  R2: 0.8970978654746379
preprocessing:
  clustering: KMeans (k=4)
  encoding: LabelEncoder
```


PUNTOS CLAVE

- Facil de interpretar
- Tiempo de entrenamiento eficiente
- Mejora en las metricas al incorporar "clustering"

scaling: MinMaxScaler

IGRAGIAS!

