EE463

STATIC POWER CONVERSION – I

HARDWARE PROJECT PRESENTATION

METEHAN KÜÇÜKLER

OUTLINE

- Project Requirements
- Proper Topologies
- Simulation Results
- Analytical Calculations
- Component Selections
- Conclusion

Project Requirements

Power input with 3-phase or 1-phase
 AC grid (Adjustable with variac)

 Output: Adjustable DC output (Vout,max = 180V)

Proper Topologies

- Thyristor rectifier
 - Better for high power applications
 - Phase control is possible
 - Control circuitry is complex and costly
- Dimmer circuit
 - Easier to control output voltage level
 - Easier to utilize four-quadrant operation
 - Control circuitry is complex and costly
 - Requires high filtering components
- Diode rectifier and buck converter
 - Easier to construct
 - Easier to control output voltage level
 - Basic control circuitry
 - Lacks phase control

Selected Topology

Diode Rectifier and Buck Converter with manual Duty Cycle and Switching Frequency Control

Simulation Results (with RL load)

0.2 Duty Cycle – 10 kHz switching frequency

Simulation Results (with RL load)

0.9 Duty Cycle – 2 kHz switching frequency

Analytical Calculations

$$V_{d,max} = 1.35 * V_{l-l,rms} * \sqrt{2}$$
,

$$for V_{l-l,rms} = 140 V, V_{d,max} = 198V$$

$$P_{out} = V_{out} * I_{out}$$
 for efficiency of 70%
$$I_{out} = \frac{2kW}{180V * 0.7} = 16A$$

$$\Delta i_L = \frac{V_o * (1 - D)}{L * f_s}$$
 $for V_o = 180 V, D = 0.2,$
 $L = 12.5mH, f_s = 2kHz$
 $\Delta i_L = 1.44 A$
 $for V_o = 180 V, D = 0.9,$
 $L = 12.5mH, f_s = 10kHz$
 $\Delta i_L = 1.30 A$

Component Selection

IGBT	>400V	>25A
RECTIFIER	>400V	>25A
CAPACITOR	400V	3 x 470µF
POTENTIOMETER		1-100kΩ
Schottky Diode	>400V	>25A
Microcontroller Raspberry Pi Pico		

Conclusion

Testing

Integration

PCB Design