EECS/BioE C106A/206A Introduction to Robotics

Lost Section 4

Oct 23 Fri 7 – 9 PM

Velocities and Twists

- The spatial velocity: \widehat{V}_{ab}^{s}
- The body velocity: \hat{V}_{ab}^{b}
- Adjoint matrix: Ad_g such that

$$V_{ab}^s = \mathrm{Ad}_g V_{ab}^b$$

Linear Algebra and Adjoint Matrix

$$R(\omega_1 \times \omega_2) = (R\omega_1) \times (R\omega_2)$$

$$R\widehat{\omega}R^T = (R\omega)^{\hat{}}$$

$$g\hat{\xi}g^{-1} = \left(\mathrm{Ad}_g\xi\right)^{\hat{}}$$

$$Ad_g = \begin{bmatrix} R & \hat{p}R \\ 0 & R \end{bmatrix}$$

Velocities and Twist Motion

Definition of the spatial velocity:

$$v_{q_a}(t) = \hat{V}_{ab}^s q_a(t)$$

In the book, we have $\hat{V}_{ab}^s = \dot{g}_{ab}g_{ab}^{-1}$.

q(t): moving point

 $q_a(t)$: coordinate of the point w.r.t. $\{a\}$ q_b : coordinate of the point w.r.t. $\{b\}$

 $v_{q_a}(t)$: coordinate of the velocity of the point w.r.t. $\{a\}$ $v_{q_b}(t)$: coordinate of the velocity of the point w.r.t. $\{b\}$

Definition of the body velocity:

$$v_{q_b}(t) = \hat{V}_{ab}^b q_b$$

In the book, we have $\hat{V}_{ab}^b = g_{ab}^{-1} \dot{g}_{ab}$.

$$V_{ab}^s = \operatorname{Ad}_{g_{ab}} V_{ab}^b$$

Velocities and Twist Motion

Definition of the spatial velocity:

$$v_{q_a}(t) = \hat{V}_{ab}^s q_a(t)$$

EX. Constant twist motion between the two frames: $g_{ab}=e^{\widehat{\xi}\theta(t)}$

$$q_a(t) = e^{\hat{\xi}\theta(t)}q_b$$

Then, the velocity of q_a becomes

$$v_{q_a}(t) = \hat{\xi}\dot{\theta}e^{\hat{\xi}\theta(t)}q_b = \hat{\xi}\dot{\theta}q_a(t)$$

Here, we observe that $\hat{\xi}\dot{\theta} = \hat{V}^s_{ab} \in \mathbb{R}^{4\times4}$ and $\xi\dot{\theta} = V^s_{ab} = \begin{bmatrix} v^s_{ab} \\ \omega^s_{ab} \end{bmatrix} \in \mathbb{R}^6$.

The spatial velocity is the multiplication of the twist and the angular speed.

$$V_{ab}^{s} = \xi \dot{\theta}$$

Short Review: Screw Motion and Twist

q': the center of the rotation, or a point on the rotation axis. ω : the direction of the rotation axis.

We can find the twist $\xi = [v, \omega]^T$ using the given q' and ω .

$$v = -\omega \times q' + h\omega$$

By the screw motion, we can find the spatial velocity V_{ab}^s using q' and ω .

$$V_{ab}^{s} = \xi \dot{\theta} = \begin{bmatrix} -\omega \times q' + h\omega \\ \omega \end{bmatrix} \dot{\theta}$$

Example: MLS example 2.5 in pg 56 - 57

Spatial velocity: find V_{ab}^{s}

$$q' = [0, l_1, 0]^T$$

 $\omega' = [0,0,1]^T$
 $v' = -\omega' \times q' = [l_1, 0,0]^T$
Then, $V_{ab}^s = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \dot{\theta}$

Then,
$$V_{ab}^s = \begin{bmatrix} \iota_1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \epsilon$$

Body velocity: find V_{ab}^b

Then,
$$V_{ab}^b = \begin{bmatrix} -l_2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \dot{\theta}$$

Find q^{\dagger} and ω^{\dagger} w.r.t. the frame B.