2.4. Functions

2.4.1. Correspondences. Suppose that to each element of a set A we assign some elements of another set B. For instance, $A = \mathbb{N}$, $B = \mathbb{Z}$, and to each element $x \in \mathbb{N}$ we assign all elements $y \in \mathbb{Z}$ such that $y^2 = x$ (fig. 2.11).

FIGURE 2.11. Correspondence $x \mapsto \pm \sqrt{x}$.

This operation can be interpreted as a relation, but when we want to stress the fact that it is an assignment of some elements to other elements, we call it a *correspondence*.

2.4.2. Functions. A function or mapping f from a set A to a set B, denoted $f: A \to B$, is a correspondence in which to each element x of A corresponds exactly one element y = f(x) of B (fig. 2.12).

Figure 2.12. Function.

Sometimes we represent the function with a diagram like this:

$$f: A \to B$$
 or $A \xrightarrow{f} B$ $x \mapsto y$

For instance, the following represents the function from \mathbb{Z} to \mathbb{Z} defined by f(x) = 2x + 1:

$$f: \mathbb{Z} \to \mathbb{Z}$$
$$x \mapsto 2x + 1$$

The element y = f(x) is called the *image* of x, and x is a *preimage* of y. For instance, if f(x) = 2x + 1 then $f(7) = 2 \cdot 7 + 1 = 15$. The set A is the *domain* of f, and B is its *codomain*. If $A' \subseteq A$, the image of A' by f is $f(A') = \{f(x) \mid x \in A'\}$, i.e., the subset of B consisting of all images of elements of A'. The subset f(A) of B consisting of all images of elements of A is called the *range* of f. For instance, the range of f(x) = 2x + 1 is the set of all integers of the form 2x + 1 for some integer x, i.e., all odd numbers.

Example: Two useful functions from \mathbb{R} to \mathbb{Z} are the following:

1. The *floor* function:

|x| = greatest integer less than or equal to x.

For instance: |2| = 2, |2.3| = 2, $|\pi| = 3$, |-2.5| = -3.

2. The *ceiling* function:

 $\lceil x \rceil$ = least integer greater than or equal to x.

For instance: $\lceil 2 \rceil = 2$, $\lceil 2.3 \rceil = 3$, $\lceil \pi \rceil = 4$, $\lceil -2.5 \rceil = -2$.

Example: The *modulus operator* is the function mod : $\mathbb{Z} \times \mathbb{Z}^+ \to \mathbb{Z}$ defined:

 $x \mod y = \text{ remainder when } x \text{ is divided by } y.$

For instance 23 mod 7 = 2 because $23 = 3 \cdot 7 + 2$, $59 \mod 9 = 5$ because $59 = 6 \cdot 9 + 5$, etc.

Graph: The *graph* of a function $f: A \to B$ is the subset of $A \times B$ defined by $G(f) = \{(x, f(x)) \mid x \in A\}$ (fig. 2.13).

2.4.3. Types of Functions.

1. One-to-One or Injective: A function $f: A \to B$ is called one-to-one or injective if each element of B is the image of at most one element of A (fig. 2.14):

$$\forall x, x' \in A, \ f(x) = f(x') \Rightarrow x = x'.$$

Figure 2.13. Graph of $f(x) = x^2$.

For instance, f(x) = 2x from \mathbb{Z} to \mathbb{Z} is injective.

FIGURE 2.14. One-to-one function.

2. Onto or Surjective: A function $f:A\to B$ is called onto or surjective if every element of B is the image of some element of A (fig. 2.15):

$$\forall y \in B, \ \exists x \in A \text{ such that } y = f(x).$$

For instance, $f(x) = x^2$ from \mathbb{R} to $\mathbb{R}^+ \cup \{0\}$ is onto.

FIGURE 2.15. Onto function.

3. Bijective Function or Bijection: A function $f: A \to B$ is said to be bijective or a bijection if it is one-to-one and onto (fig. 2.16). For instance, f(x) = x + 3 from \mathbb{Z} to \mathbb{Z} is a bijection.

FIGURE 2.16. Bijection.

2.4.4. Identity Function. Given a set A, the function $1_A : A \to A$ defined by $1_A(x) = x$ for every x in A is called the *identity function* for A.

2.4.5. Function Composition. Given two functions $f: A \to B$ and $g: B \to C$, the *composite function* of f and g is the function $g \circ f: A \to C$ defined by $(g \circ f)(x) = g(f(x))$ for every x in A:

$$A \xrightarrow{f} B \xrightarrow{g} C$$

$$x \xrightarrow{y=f(x)} \longrightarrow z=g(y)=g(f(x))$$

For instance, if $A = B = C = \mathbb{Z}$, f(x) = x + 1, $g(x) = x^2$, then $(g \circ f)(x) = f(x)^2 = (x+1)^2$. Also $(f \circ g)(x) = g(x) + 1 = x^2 + 1$ (the composition of functions is not commutative in general).

Some properties of function composition are the following:

- 1. If $f: A \to B$ is a function from A to B, we have that $f \circ 1_A = 1_B \circ f = f$.
- 2. Function composition is associative, i.e., given three functions

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$$
,

we have that $h \circ (g \circ f) = (h \circ g) \circ f$.

2.4.6. Inverse Function. If $f: A \to B$ is a bijective function, its inverse is the function $f^{-1}: B \to A$ such that $f^{-1}(y) = x$ if and only if f(x) = y.

For instance, if $f: \mathbb{Z} \to \mathbb{Z}$ is defined by f(x) = x + 3, then its inverse is $f^{-1}(x) = x - 3$.

The arrow diagram of f^{-1} is the same as the arrow diagram of f but with all arrows reversed.

A characteristic property of the inverse function is that $f^{-1} \circ f = 1_A$ and $f \circ f^{-1} = 1_B$.

2.4.7. Operators. A function from $A \times A$ to A is called a binary operator on A. For instance the addition of integers is a binary operator $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$. In the usual notation for functions the sum of two integers x and y would be represented +(x,y). This is called prefix notation. The infix notation consists of writing the symbol of the binary operator between its arguments: x+y (this is the most common). There is also a postfix notation consisting of writing the symbol after the arguments: xy+.

Another example of binary operator on \mathbb{Z} is $(x,y) \mapsto x \cdot y$.

A monary or unary operator on A is a function from A to A. For instance the change of sign $x \mapsto -x$ on \mathbb{Z} is a unary operator on \mathbb{Z} . An example of unary operator on \mathbb{R}^* (non-zero real numbers) is $x \mapsto 1/x$.