CS355 Worksheet 1

Joshua Williams - 19507359

February 2023

1 DFA Definition

1.1 Two DFAs

1.1.1 M_1

- What is the start state? q_1 .
- What is the set of accept states? $\{q_2\}$
- What sequence of states does the machine go through on input aabb? $\{q_1 \ \underline{a}, q_2 \ \underline{a}, q_3 \ \underline{b}, q_1 \ \underline{b}, \underline{q_1}\}$
- Does the machine accept the string aabb?
 No.
- Does the machine accept the string ϵ ?

1.1.2 M_2

- What is the start state? q_1 .
- What is the set of accept states? $\{q_1, q_4\}$
- What sequence of states does the machine go through on input aabb? $\{q_1 \ \underline{a}, q_1 \ \underline{b}, q_1 \ \underline{b}, q_2 \ \underline{b}, q_4 \}$
- Does the machine accept the string aabb?
- Does the machine accept the string ϵ ? Yes.

1.2 Formal Descriptions

1.2.1 M_1

- $Q = \{ q_1, q_2, q_3 \}$
- $\Sigma = \{ a,b \}$
- δ =

	a	b
q_1	q_2	q_1
q_2	q_3	q_3
q_3	q_2	q_1

- $q_0 = q_1$
- $F = \{ q_2 \}$

1.2.2 M_2

- $Q = \{ q_1, q_2, q_3, q_4 \}$
- $\Sigma = \{ a,b \}$
- \bullet $\delta =$

	a	b
q_1	q_1	q_2
q_2	q_3	q_4
q_3	q_2	q_1
q_4	q_3	q_4

- $\bullet \ q_0 = q_1$
- $F = \{ q_1, q_4 \}$

1.3 DFA Construct

2 DFA Exercise

2.1

	1	2	3
f_1	x	\boldsymbol{x}	\boldsymbol{x}
f_2	x	\boldsymbol{x}	y
f_3	x	y	\boldsymbol{x}
f_4	y	\boldsymbol{x}	\boldsymbol{x}
f_5	x	y	y
f_6	y	y	\boldsymbol{x}
f_7	y	\boldsymbol{x}	y
f_8	x	y	\boldsymbol{x}
f_9	y	y	y

2.2

Num of states = s = 4 Size of alphabet = a = 3 $s*s^{as}*2^s = ans$ $4*4^{3*4}*2^4 = 1073741824$

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

