Ex.No.5 ASSOCIATION RULE MINING – APRIORI ALGORITHM

Date: 29-08-23

Aim

To implement Apriori algorithm in finding the frequent data sets through R programming.

Procedure

- 1. To do programming in R, first install "RStudio" and "R" in the system. RStudio is an integrated development environment [IDE] for R and python.
- 2. Select the File in taskbar \rightarrow open New file \rightarrow R script or use shortcut "ctrl+shift+N"
- 3. Install the 'arules, arules Viz, RColorBrewer' package and load it in R.
- 4. Import the built-in dataset 'groceries'.
- 5. Apply the Apriori Algorithm on the groceries dataset.
- 6. Write the program in the script and save it using the extension R.
- 7. Run the program by clicking Run option or use the shortcut "ctrl+enter".
- 8. See the output in the console tab.

Concepts Involved

• Applying the Apriori's algorithm -Association rule mining on the data set.

APRIORI ALGORITHM

Apriori algorithm is related to the frequent itemset generation. The primary requirements to find the association rules in data mining are:

• **Brute Force:** Analyze all the rules and find the support and confidence levels for the individual rule. Afterward, eliminate the values which are less than the threshold support and confidence levels.

A. Generate:

Create a table containing support count of each item present in dataset – Called candidate set.(C1)

Compare candidate set item's support count with minimum support count. This gives us item set.(L1)

B. Join:

Generate candidate set C2 using L1 (this is called join step). Condition of joining Lk-1 and Lk-1 is that it should have (K-2) elements in common.

C. Prune:

Check all subsets of an itemset are frequent or not and if not frequent remove that itemset.

compare candidate (C2) support count with minimum support count(here min_support=2 if support_count of candidate set item is less than min_support then remove those items) this gives us itemset L2.

Like this, do the same process until there are no frequent data sets.

#create a list of basket

```
market_basket <-
 list(
  c("apple", "beer", "rice", "meat"),
  c("apple", "beer", "rice"),
  c("apple", "beer"),
  c("apple", "pear"),
  c("milk", "beer", "rice", "meat"),
  c("milk", "beer", "rice"),
  c("milk", "beer"),
  c("milk", "pear"))
#set transaction names
names(market basket) <- paste("T", c(1:8), sep = "")
#transform data
trans <- as(market basket, "transactions")</pre>
#inspect data
dim(trans)
itemLabels(trans)
summary(trans)
image(trans)
```

```
[1] 8 6
```

[1] "apple" "beer" "meat" "milk" "pear" "rice"

transactions as itemMatrix in sparse format with 8 rows (elements/itemsets/transactions) and 6 columns (items) and a density of 0.4583333

most frequent items:

element (itemset/transaction) length distribution: sizes

2 3 4 4 2 2

Min. 1st Qu. Median Mean 3rd Qu. Max. 2.00 2.50 2.75 3.25 2.00 4.00

includes extended item information - examples:

labels

apple

2 beer

meat

includes extended transaction information - examples: transactionID

T1 2 3 T2 Т3

#display relative item frequency
itemFrequencyPlot(trans, topN=10, cex.names=1)

Output

Script

inspect(rules)

```
> summary(rules)
set of 10 rules
rule length distribution (lhs + rhs):sizes
4 6
   Min. 1st Qu.
                   Median
                              Mean 3rd Ou.
                                                Max.
             1.0
                      2.0
                               1.6
                                                 2.0
    1.0
                                        2.0
summary of quality measures:
                                                              lift
                     confidence
    support
                                         coverage
count
                   Min.
 Min.
         :0.375
                           :0.5000
                                     Min.
                                              :0.5000
                                                         Min.
                                                                 :1.000
Min.
        :3.0
 1st Qu.:0.375
                   1st Qu.:0.5000
                                     1st Qu.:0.5625
                                                         1st Qu.:1.000
1st Qu.:3.0
 Median :0.500
                   Median :0.5833
                                     Median :0.7500
                                                         Median :1.000
Median:4.0
 Mean
        :0.475
                   Mean
                          :0.6417
                                     Mean
                                              :0.7750
                                                         Mean
                                                                 :1.067
Mean
        :3.8
 3rd Qu.:0.500
                   3rd Qu.:0.7500
                                      3rd Qu.:1.0000
                                                         3rd Qu.:1.000
3rd Qu.:4.0
        :0.750
                           :1.0000
                                     Max.
                                              :1.0000
                                                                 :1.333
 Max.
                   Max.
                                                         Max.
        :6.0
Max.
mining info:
  data ntransactions support confidence
                     8
                            0.3
 trans
call.
apriori(data = trans, parameter = list(supp = 0.3, conf = 0.5,
maxlen = 10, target = "rules"))
> inspect(rules)
     lhs
                  rhs
                          support confidence coverage lift
                                                                    cou
nt
                 {apple} 0.500
[1]
     {}
{}
                                   0.5000000
                                                1.00
                                                          1.000000 4
              =>
[̈́2̄]
                  {milk}
                          0.500
                                   0.5000000
                                                1.00
                                                          1.000000 4
              =>
[3]
     {}
                          0.500
                                                1.00
                                                          1.000000 4
                                   0.5000000
                  {rice}
              =>
                                   0.7500000
[4]
                          0.750
                                                1.00
                                                          1.000000 6
                  {beer}
              =>
[5]
      {apple} =>
                          0.375
                                   0.7500000
                                                0.50
                  {beer}
                                                          1.000000
                  {apple} 0.375
[6]
      {beer}
                                   0.5000000
                                                0.75
                                                          1.000000 3
              =>
[7]
      {milk}
                                   0.7500000
                                                0.50
                                                          1.000000 3
                  {beer}
                          0.375
              =>
                          0.375
[81
      {beer}
                  {milk}
                                   0.5000000
                                                0.75
                                                          1.000000 3
              =>
Ē9]
                                                0.50
                  {beer}
                          0.500
                                   1.0000000
                                                          1.333333 4
      {rice}
              =>
                                   0.6666667
                                                          1.333333 4
Γ10٦
     {beer}
              => {rice}
                          0.500
                                                0.75
```

```
#Min Support 0.3, confidence as 0.5.
rules <- apriori(trans,
         parameter = list(supp=0.3, conf=0.5,
                  maxlen=10,
                  minlen=2,
                  target= "rules"))
inspect(rules)
Output
> inspect(rules)
                             support confidence coverage lift
                   rhs
     1hs
                                                                             coun
     {apple} => {beer}
                             0.375
                                       0.7500000
                                                     0.50
                                                                 1.000000 3
                   {apple} 0.375
                                       0.5000000
     {beer}
                                                     0.75
                                                                 1.000000 3
               =>
[3]
               =>
                             0.375
                                                     0.50
     {milk}
                                       0.7500000
                                                                 1.000000
                   {beer}
[4]
     {beer}
                             0.375
                                       0.5000000
                                                     0.75
                                                                 1.000000 3
               =>
                   {milk}
     {rice}
               => {beer}
                             0.500
                                       1.0000000
                                                     0.50
                                                                 1.333333 4
    {beer}
               => {rice}
                             0.500
                                       0.6666667
                                                     0.75
                                                                 1.333333 4
Script
#Set LHS and RHS
beer rules rhs <- apriori(trans,
             parameter = list(supp=0.3, conf=0.5,
                      maxlen=10.
                      minlen=2),
             appearance = list(default="lhs", rhs="beer"))
inspect(beer rules rhs)
beer rules lhs <- apriori(trans,
             parameter = list(supp=0.3, conf=0.5,
                      maxlen=10,
                      minlen=2),
             appearance = list(lhs="beer", default="rhs"))
inspect(beer rules lhs)
```

```
> inspect(beer_rules_rhs)
                         support confidence coverage lift
    1hs
                 rhs
                                                                   count
    {apple} =>
                 {beer}
                         0.375
                                  0.75
                                               0.5
                                                         1.000000
[2] {milk}
                 {beer} 0.375
                                  0.75
                                               0.5
                                                         1.000000 3
             =>
[3] {rice}
             \Rightarrow \{beer\} 0.500
                                               0.5
                                  1.00
                                                         1.333333 4
> inspect(beer_rules_lhs)
                         support confidence coverage lift
    1hs
                rhs
                                                                   count
[1] {beer} => {apple}
[2] {beer} => {milk}
    {beer} => {apple}
                         0.375
                                  0.5000000
                                               0.75
                                                         1.000000 3
                         0.375
                                  0.5000000
                                               0.75
                                                         1.000000 3
[3] {beer} => {rice}
                         0.500
                                  0.6666667
                                              0.75
                                                         1.333333 4
```

Script

#Visualizing association Rules

plot(rules)

Output

Script

```
#Confidence as a measure of interest
plot(rules, measure = "confidence")
plot(rules, method = "two-key plot")
```


Script

#Interactive Scatter Plot
plot(rules, engine = "plotly")

Script

#Graph based Visualization

subrules <- head(rules, n = 10, by = "confidence")

plot(subrules, method = "graph", engine = "htmlwidget")

Output

#Parallel coordinate plot
plot(subrules, method="paracoord")

Output

Parallel coordinates plot for 6 rules

Result

Thus the Apriori algorithm has been successfully implemented using R programming.