GRAPH SCATTERING CONVOLUTIONAL NETWORK

WCAI/EARTH NETWORKS CHECK-IN 3

Damian Owerko, Fernando Gama, Alejandro Ribeiro

Best results so far

	Missed detection rate	False alarm rate	Average error rate
Pressure	0.0000	0.0501	0.0250
Pressure, Temperature, Wind Speed	0.0690	0.3203	0.1946
Pressure	0.0000	0.055755	0.0279
PCA w/o SCN	0.0000	0.0388	0.0139

- Two layers
- Filter bank of 5 Morlet wavelets
 - j = 1, 2, ..., 5
- From the NY weather dataset
 - 5206 training samples
 - 571 testing samples

Morlet wavelet family

Progress since last check-in

Debugged and Tested implementation with multiple fields

- The results were not satisfactory
- Using multiple fields reduces classification accuracy
 - Pressure continues to be the best predictor of outage

Compared results with and without transforming the data

- Compared against classification using PCA
- PCA performed slightly better than our classifier (96.22% vs 96.11% accuracy)
 - Reminder: so far the architecture of the network was decided a priori not learnt

The Scattering Transform architecture is fixed → It is not learned from data

Graph Neural Networks

- Adapt architecture to data → Train parameters using dataset
- Recent developments on Graph Neural Networks (GNN)
- Exploit underlying geographical proximity information

Goals

- Train dataset to find optimal architecture parameters
- Test different GNN architectures on data
- Keep testing different sensor measurements