<u> </u>	
Ĭ≣	Model Test
61.	One ball is dropped while another ball is thrown downward with 10 m/s simultaneously then the separation of two bodies will be 18 m after (2 marks)
	○ 1.8 s
	○ 9 s
	○ 3.6 s
62.	A body crosses the topmost point of a vertical circle with critical speed. The radial acceleration of body when it reaches at horizontal position is (2 marks)
	O g
	O 2g
	○ 3g
	○ 4g
63.	A large block of ice of 10 m thick has a hole drilled on it. This block is floating on surface of water on lake then minimum length of rope required to scoop up a bucket full of water through hole is (density of ice = 0.9 g/cc) (2 marks)
	○ 10 m
	○ 9 m
	O 1 m
	○ 5 m
64.	Two cylinders A & B are fitted with pistons contains equal number of moles of of ideal monoatomic gas at 400 K. The piston of A is free to move and piston of B is fixed. When equal amount of heat is given to each cylinder. Then rise in temperature of A is 42 K then rise in temperature of B will be (2 marks)
	○ 21 K

	35 K
	42 K
	70 K
	ly cools from 70°C to 50°C in 5 minutes. The temperature of surrounding is 20°C then temperature in next 10 tes will be ks)
	25°C
	30°C
0	35°℃
	45°C
6. A ch a	rge Q is placed at each corner of a cube of side 'a'. The potential at the centre of cube will be
0	$rac{8Q}{\pi\epsilon_0 a}$
0	$rac{4Q}{4\pi\epsilon_0 a}$
	$rac{4Q}{\sqrt{3}\pi\epsilon_0 a}$
	$rac{2Q}{\pi\epsilon_0 a}$
It is m	no string of length 1.25 m long is made of steel of density $8000kg/m^3$ and Young's modulus $2 imes10^{11}N/m^2$ value at a tension which produce an elastic strain of 1% in the string. The fundamental frequency of string will be ks) $_{ m ks}$)
	150 Hz
0	150 Hz 200 Hz
0	
B. A por water (2 mar	200 Hz $250 \ \text{Hz}$ and of water is 5 m deep A flame is held 3m above the surface of water. A fish is at 4m depth from surface of the refractive index of water is $\frac{4}{3}$ then the height of flame from eyes of fish is

\bigcirc										
	9 m		 	 	 	 	 			

			 	-												
\bigcirc	12 m	1														

69. A slit of width 'd' is is placed in front of a lens of focal length 0.5 m and is illuminated normally with light of wavelength $5.89\times 10^{-7}m$. The first diffraction maxima on either side of central maxima are at $2\times 10^{-3}m$. The width of shit is

(2 marks)

1.47	~	10-	4 m
1.41	X	ΤÜ	TIU

$$\bigcirc$$
 2.9 $imes$ 10⁻⁴ m

$$\bigcirc$$
 1.47 $imes$ 10 ^{-7}m

$$\bigcirc$$
 2.9 $imes$ 10 ^{-7}m

70. The equivalent resistance from fig across AB is

(2 marks)

0	10R						
`		 	 	 	 	 	

\bigcirc	2R				

\bigcirc	-	7R																		

\bigcirc	0														

Next

2022 \circledcirc **engineeringdote**, a product of Studydote Pvt. Ltd - Online study portal