Отмеченные выше свойства операции сложения (I) и умножения на число (II) НЕ ЯВЛЯ-ЮТСЯ независимыми. Они связаны двумя законами ДИСТРИБУТИВНОСТИ (приставка ди означает двойной):

 $\lambda \bar{a} + \lambda \bar{b} = \lambda (\bar{a} + \bar{b})$ – первый закон дистрибутивности;

 $\lambda \bar{a} + \mu \bar{a} = (\lambda + \mu) \bar{a}$ – второй закон дистрибутивности.

Доказательства этих законов не сложное, но довольно громоздкое и здесь мы их рассматривать не будем.

Отмеченные свойства линейных операций (I),(II) собираем в единый список, вводя сквозную нумерацию:

нумерацию:
$$\begin{array}{c} (1) \ \bar{a} + \bar{b} = \bar{b} + \bar{a} \\ (2) \ \bar{a} + (\bar{b} + \bar{c}) = (\bar{a} + \bar{b}) + \bar{c} \\ (3) \ \exists \bar{0} : \bar{a} + \bar{0} = \bar{a} \\ (4) \ \forall \bar{a} \ \exists (-\bar{a}) : \bar{a} + (-\bar{a}) = \bar{0} \\ \end{array} \right\}$$
 свойства операции (I)
$$\begin{array}{c} (5) \ 1\bar{a} = \bar{a} \\ (6) \ (\lambda\mu)\bar{a} = \lambda(\mu\bar{a}) \\ (7) \ \lambda\bar{a} + \lambda\bar{b} = \lambda(\bar{a} + \bar{b}) \\ (8) \ \lambda\bar{a} + \mu\bar{a} = (\lambda + \mu)\bar{a} \end{array} \right\}$$
 свойства операции (II)
$$\begin{array}{c} (7) \ \lambda\bar{a} + \lambda\bar{b} = \lambda(\bar{a} + \bar{b}) \\ (8) \ \lambda\bar{a} + \mu\bar{a} = (\lambda + \mu)\bar{a} \end{array} \right\}$$
 дистрибутивность

Конечно, это не полный список всех свойств линейных операций. Можно отметить и другие свойства. Например, $0\bar{a}=\bar{0},\,\alpha\bar{0}=\bar{0},\,(-1\bar{a})=(-\bar{a})$ и т.д. Однако выделяют именно восемь перечисленных свойств, т.к. они будут базовыми в определении (абстрактного) векторного пространства с которым вы скоро встретитесь в курсе АЛГЕБРА.

Доказанные свойства обосновывают правило, что в рамках выполнения операций (I) и (II) мы имеем право "работать" с векторами также как с числами.

Например: $7\bar{a} - 3(8\bar{b} - 4\bar{a}) + \bar{c} = 19\bar{a} - 24\bar{b} + \bar{c}$ и т.д.

1.2 Базисы, координаты вектора в базисе. Линейные операции в координатной форме

Вводим понятие пропорциональности векторов: говорим, что два вектора \bar{a} и \bar{b} пропорциональны, если существует такое $\alpha \in \mathbb{R}$, что $\bar{b} = \alpha \bar{a}$ и/или существует такое $\beta \in \mathbb{R}$, что $\bar{a} = \beta \bar{b}$.

Утверждение 1.3. Нулевой вектор пропорционален любому другому.

Доказательство. Рассмотрим три случая:

Случай 1. Пусть $\bar{a} = \bar{0}$ (нулевой вектор), $\bar{b} \neq \bar{0}$. Пропорциональность векторов следует из равенства $\bar{a} = \beta \bar{b}$, которое выполняется при значении $\beta = 0$: $\bar{a} = \bar{0} = 0 \cdot \bar{b}$.

<u>Случай 2</u>. Пусть $\bar{a} \neq \bar{0}$, $\bar{b} = \bar{0}$. Пропорциональность следует из равенства $\bar{b} = \alpha \bar{a}$, которое выполняется при значении $\alpha = 0$: $\bar{b} = \bar{0} = 0 \cdot \bar{a}$.

Случай 3. Если $\bar{a} = \bar{0}$, $\bar{b} = \bar{0}$, то пропорциональность следует, например, из равенства $\bar{b} = \alpha \bar{a}$, которое выполнено для любого значения α : $\bar{0} = \alpha \bar{0}$.

Теорема 1.1 (Критерий коллинеарности векторов). Два вектора \bar{a} и \bar{b} коллинеарны ($\bar{a} \parallel \bar{b}$) тогда и только тогда, когда они пропорциональны.

Так как теорема является критерием, то надо доказать два утверждения: необходимость и достаточность. Предварительно маленькое замечание. Если хотя бы один из двух векторов нулевой: $\bar{a} = \bar{0}$ и/или $\bar{b} = \bar{0}$, то оба условия необходимости и достаточности выполнены, что с очевидностью следует из соглашения 2 (стр. 2) и утверждения 1.3 поэтому при доказательстве теоремы можно считать, что оба вектора ненулевые

Доказательство. 1. Необходимость. Надо доказать, что из $\bar{a} \parallel \bar{b}$ следует, что \bar{a} и \bar{b} пропорциональны, т.е $\exists \alpha$, такое что $\bar{b} = \alpha \bar{a}$ и/или $\exists \beta$ такое, что $\bar{a} = \beta \bar{b}$. Докажем вариант существования α (для β аналогично). Покажем, что в качестве α можем взять число:

$$\alpha = \begin{cases} \frac{|\bar{b}|}{|\bar{a}|}, & \text{если } \bar{b} \uparrow \uparrow \bar{a} & (*) \\ -\frac{|\bar{b}|}{|\bar{a}|}, & \text{если } \bar{b} \uparrow \downarrow \bar{a} & (**) \end{cases}$$

Пусть $\bar{b} \uparrow \uparrow \bar{a}$. Тогда $|\alpha \bar{a}| = |\alpha| |\bar{a}| = (*) = \frac{|\bar{b}|}{|\bar{a}|} |\bar{a}| = |\bar{b}|$, т.е. $|\bar{b}| = |\alpha \bar{a}|$. Так как $\alpha = \frac{|\bar{b}|}{|\bar{a}|} > 0$, то $\alpha \bar{a} \uparrow \uparrow \bar{a}$. Поскольку $\bar{b} \uparrow \uparrow \bar{a}$, то $\bar{b} \uparrow \uparrow \alpha \bar{a}$. Из определения равенства векторов следует, что $\bar{b} = \alpha \bar{a}$.

Пусть теперь $\bar{b} \uparrow \downarrow \bar{a}$. Тогда $|\alpha \bar{a}| = |\alpha||\bar{a}| = (**) = \frac{|b|}{|\bar{a}|}|\bar{a}| = |\bar{b}|$, т.е. $|\bar{b}| = |\alpha \bar{a}|$. Так как $\alpha = -\frac{|\bar{b}|}{|\bar{a}|} < 0$, то $\alpha \bar{a} \uparrow \downarrow \bar{a}$. Поскольку $\bar{b} \uparrow \downarrow \bar{a}$, то $\bar{b} \uparrow \uparrow \alpha \bar{a}$. Из определения равенства векторов следует, что $\bar{b} = \alpha \bar{a}$.

Определение 1.4. Множество векторов с введенными операциями (I), (II) будем обозначать как V (от слова vector) и называть ВЕКТОРНЫМ ПРОСТРАНСТВОМ V или просто пространством V.

Например:

- (1) Множество всех векторов, лежащих на некоторой прямой l есть векторное пространство, которое обозначим как V^1 .
- (2) Множество всех векторов, лежащих на некоторой плоскости π (планиметрия) есть векторное пространство, которое обозначим как V^2 .
- (3) Множество всех векторов в «пространстве» (стереометрия) обозначим как V^3 . Слово «пространство» здесь принимаем как в школьной стереометрии.

Все три случая V^1 , V^2 , V^3 объединяем одним словом ПРОСТРАНСТВО.

Определение 1.5. Совокупность векторов $\bar{a}_1, \bar{a}_2, \dots, \bar{a}_n$ входящих в V называем СИСТЕ-МОЙ векторов из V и обозначаем $A = \{\bar{a}_1, \bar{a}_2, \dots, \bar{a}_n\}$.

Рассмотрим n чисел $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R}$.

Определение 1.6. Линейной комбинацией векторов системы называем сумму $\alpha_1 \bar{a}_1 + \alpha_2 \bar{a}_2 + \dots + \alpha_n \bar{a}_n$, а числа $\alpha_1, \alpha_2, \dots, \alpha_n$ – коэффициентами линейной комбинации.

Определение 1.7. Если некоторый вектор $\bar{a} \in V$ может быть представлен в виде линейной комбинации векторов системы A: $\bar{a} = \alpha_1 \bar{a}_1 + \alpha_2 \bar{a}_2 + \ldots + \alpha_n \bar{a}_n$, то говорим, что вектор \bar{a} РАЗЛОЖЕН по системе A.

Используя введённые термины, введём понятие БАЗИСА в пространстве $V^1,\,V^2,\,V^3.$

Определение 1.8.

Базисом пространства V^1 (прямая l) называем систему $E_1=\{\bar{e}_1\},$ содержащую некоторый НЕНУЛЕВОЙ вектор $\bar{e}_1\in V^1,\ \bar{e}_1\neq \bar{0}$ (рис.8).

Теорема 1.2. Любой вектор $\bar{a} \in V^1$ можно разложить по базису E_1 : $\bar{a} = \alpha_1 \bar{e}_1$. Коэффициент α_1 определен однозначно.

Доказательство. Так как $\bar{a} \in V^1$, $\bar{e}_1 \in V^1$, то из критерия коллинеарности векторов следует, что $\exists \alpha_1$ такой, что $\bar{a} = \alpha_1 \bar{e}_1$. Коэффициент α_1 определен однозначно. Действительно, если существует еще разложение $\bar{a} = \alpha_1' \bar{e}_1$, то из равенств $\bar{a} = \alpha_1 \bar{e}_1$ и $\bar{a} = \alpha_1' \bar{e}_1$ следует, что $\bar{0} = (\alpha_1 - \alpha_1') \bar{e}_1$. Так как $\bar{e}_1 \neq \bar{0}$, то $\alpha_1 - \alpha_1' = 0$ из чего следует, что $\alpha_1 = \alpha_1'$.

Определение 1.9. Базисом в пространстве V^2 (плоскость π) называем УПОРЯДОЧЕН-НУЮ пару НЕКОЛЛИНЕАРНЫХ векторов \bar{e}_1, \bar{e}_2 : $E_2 = \{\bar{e}_1, \bar{e}_2\}$ и $\bar{e}_1 \not | \bar{e}_2$.

Замечание 1.5. По соглашению 2 (стр. 3) $\bar{0} \parallel \bar{a}$ для любого $\bar{a} \in V$. поэтому из условия $\bar{e}_1 \not | \bar{e}_2$ следует, что $\bar{e}_1 \neq \bar{0}$ и $\bar{e}_2 \neq \bar{0}$, т.е. $E_2 = \{\bar{e}_1, \bar{e}_2\}$ не содержит нулевых векторов.

Теорема 1.3. Любой вектор $\bar{a} \in V^2$ можно разложить по базису E_2 : $\bar{a} = \alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2$. Коэффициенты α_1 и α_2 определены однозначно.

Доказательство.

Так как векторы свободны, то начала векторов можно перенести в некоторую точку O (рис. 9). Пусть $\bar{a} = \overline{OA}$. Через точку O проводим две прямые l_1 и l_2 , проходящие по векторам \bar{e}_1 и \bar{e}_2 соответственно. Через точку Aпроводим две прямые, параллельные l_1 и l_2 так, чтобы получился параллелограмм OA_1AA_2 (см. рис. 9).

Вектор $\overline{OA_1}$ называем ПРОЕКЦИЕЙ \bar{a} на \bar{e}_1 параллельно l_2 .

Обозначение: $OA_1 = \prod_{\bar{e}_1} \bar{a} \ (\| \ l_2)$. Аналогично определяется проекция \bar{a} на \bar{e}_2 параллельно l_1 : $\overline{OA_2} = \overline{\prod}_{\bar{e}_2} \bar{a} \ (\parallel l_1)$. По правилу параллелограмма $\bar{a} = \overline{OA_1} + \overline{OA_2}$. Далее:

 $\overline{OA_1} \parallel \bar{e}_1$ и по теореме 1.2 существует α_1 такое, что $\overline{OA_1} = \alpha_1 \bar{e}_1$,

 $\overline{OA_2} \parallel \bar{e}_2$ и по теореме 1.2 существует α_2 такое, что $\overline{OA_2} = \alpha_2 \bar{e}_2$,

т.е. $\bar{a} = \alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2$ и по теореме 1 коэффициенты α_1 и α_2 определены однозначно.

Определение 1.10. Если три вектора в пространстве V^3 параллельным переносом можно расположить в некоторой плоскости π , то они называются КОМПЛАНАРНЫМИ. В противном векторы НЕ компланарны.

Определение 1.11. Базисом в пространстве V^3 называем упорядоченную тройку не компланарных векторов $E_3 = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\}.$

Замечание 1.6. Если векторы $\bar{e}_1, \bar{e}_2, \bar{e}_3$ не компланарны, то они попарно не коллинеарны: $\bar{e}_1 \not\parallel \bar{e}_2, \bar{e}_1 \not\parallel \bar{e}_3, \bar{e}_2 \not\parallel \bar{e}_3$ и, в частности, ни один из этих векторов не нулевой: $\bar{e}_1, \bar{e}_2, \bar{e}_3 \neq \bar{0}$. Следовательно, система $E_3 = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ не содержит нулевых и коллинеарных векторов.

Теорема 1.4. Любой вектор $\bar{a} \in V^3$ можно разложить по базису E_3 : $\bar{a} = \alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2 + \alpha_3 \bar{e}_3$. Коэффициенты α_1 , α_2 и α_3 определены однозначно.

Доказательство.

Можем считать, что векторы $\bar{e}_1, \bar{e}_2, \bar{e}_3$ имеют общее начало – точку O (рис. 10). Прямая l проходит через \bar{e}_3 , $l' \parallel l$ и $A \in l'$, π – плоскость векторов $\bar{e}_1, \bar{e}_2, \pi' \parallel \pi$ и $A \in \pi'$. Точка A' – точка пересечения прямой l' и плоскости π и A_3 – точка пересечения прямой l и плоскости π' . Рассмотрим параллелограмм $OA'AA_3$. Имеем $\bar{a} = \overline{OA'} + \overline{OA_3}$. Вектор $\overline{OA'}$ есть проекция \bar{a} на π параллельно l: $\overline{OA'} = \overline{\Pi} \overline{p}_{\pi} \bar{a} (\parallel l)$ Вектор $\overline{OA_3}$ есть проекция \bar{a} на l параллельно π :

 $\overline{OA_3} = \overline{\Pi p_l} \overline{a} \ (\parallel \pi)$. По теореме 1.3 $\overline{OA'} = \alpha_1 \overline{e}_1 + \alpha_2 \overline{e}_2$.

По теореме 1.2 имеем $\overline{OA_3} = \alpha_3 \bar{e}_3$. Получаем, что $\bar{a} = \alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2 + \alpha_3 \bar{e}_3$, причем коэффициенты $\alpha_1, \alpha_2, \alpha_3$ определены однозначно.

Теоремы 1.2, 1.3, 1.4 можно объединить в одну:

Теорема 1.5. Любой вектор $\bar{a} \in V$ (где $V = V^1, V^2, V^3$) можно разложить по базису и это разложение единственно.

Определение 1.12. Координаты вектора в базисе – коэффициенты разложения вектора по данному базису.

Координатная запись вектора $\bar{a} \in V$:

- (1) $\bar{a} \in V^1$, $E_1 = \{\bar{e}_1\} \Rightarrow \bar{a} = \alpha_1 \bar{e}_1$ и координатная запись $\bar{a} = \{\alpha_1\}$.
- (2) $\bar{a} \in V^2$, $E_2 = \{\bar{e}_1, \bar{e}_2\} \Rightarrow \bar{a} = \alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2$ и координатная запись $\bar{a} = \{\alpha_1, \alpha_2\}$.
- (3) $\bar{a} \in V^3$, $E_3 = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\} \Rightarrow \bar{a} = \alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2 + \alpha_3 \bar{e}_3$ и координатная запись $\bar{a} = \{\alpha_1, \alpha_2, \alpha_3\}$. Координаты вектора в базисе определены ОДНОЗНАЧНО, это следует из теорем 1.2, 1.3 и 1.4 (или теоремы 1.5).

Рассмотрим вопрос о линейных операциях к координатной форме, причем будем «работать» в пространстве V^3 . В случае пространств V^2 , V^1 все результаты будут аналогичны.

Пусть $\bar{a}, \bar{b} \in V^3$ и в базисе E_3 координаты этих векторов:

$$\bar{a} = \{\alpha_1, \alpha_2, \alpha_3\}, \ \bar{b} = \{\beta_1, \beta_2, \beta_3\}.$$

Теорема 1.6 (О сложении векторов в координатной форме). При сложении векторов одноименные координаты складываются: $\bar{a} + \bar{b} = \{\alpha_1 + \beta_1, \alpha_2 + \beta_2, \alpha_3 + \beta_3\}.$

Доказательство. Расписываем векторы \bar{a}, \bar{b} :

$$\bar{a} = \alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2 + \alpha_3 \bar{e}_3$$

$$\bar{b} = \beta_1 \bar{e}_1 + \beta_2 \bar{e}_2 + \beta_3 \bar{e}_3$$

Тогда $\bar{a} + \bar{b} = (\alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2 + \alpha_3 \bar{e}_3) + (\beta_1 \bar{e}_1 + \beta_2 \bar{e}_2 + \beta_3 \bar{e}_3) =$ на основании свойств операций (I) и (II) (см. стр. 7) = $(\alpha_1 + \beta_1)\bar{e}_1 + (\alpha_2 + \beta_2)\bar{e}_2 + (\alpha_3 + \beta_3)\bar{e}_3$. По определению координат вектора это означает, что: $\bar{a} + \bar{b} = \{\alpha_1 + \beta_1, \alpha_2 + \beta_2, \alpha_3 + \beta_3\}$.

Теорема 1.7 (Об умножении вектора на число в координатной форме). При умножении вектора на число $\lambda \in \mathbb{R}$ все координаты вектора умножаются на это число: $\lambda \bar{a} = \{\lambda \alpha_1, \lambda \alpha_2, \lambda \alpha_3\}$.

Доказательство. Расписываем вектор \bar{a} : $\bar{a} = \alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2 + \alpha_3 \bar{e}_3$.

Тогда $\lambda \bar{a} = \lambda(\alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2 + \alpha_3 \bar{e}_3) =$ на основании свойств операций (I) и (II) (см. стр. 7) $= (\lambda \alpha_1) \bar{e}_1 + (\lambda \alpha_2) \bar{e}_2 + (\lambda \alpha_3) \bar{e}_3$. По определению координат вектора это означает, что: $\lambda \bar{a} = \{\lambda \alpha_1, \lambda \alpha_2, \lambda \alpha_3\}$.

Докажем еще одно утверждение:

Теорема 1.8 (Критерий коллинеарности векторов в координатной форме). Два вектора $\bar{a} = \{\alpha_1, \alpha_2, \alpha_3\}$ и $\bar{b} = \{\beta_1, \beta_2, \beta_3\}$ коллинеарны тогда и только тогда, когда их координаты пропорциональны.

Доказательство. 1. Необходимость. Пусть $\bar{a} \parallel \bar{b}$. По критерию коллинеарности векторов (см. стр. 7) векторы \bar{a} и \bar{b} пропорциональны. Пусть $\bar{b} = \alpha \bar{a}$. По теореме об умножении вектора на число в координатной форме $\alpha \bar{a} = \{\alpha \alpha_1, \alpha \alpha_2, \alpha \alpha_3\}$. Тогда из однозначности разложения вектора по базису следует, что $\{\beta_1, \beta_2, \beta_3\} = \{\alpha \alpha_1, \alpha \alpha_2, \alpha \alpha_3\}$, то есть $\beta_1 = \alpha \alpha_1$, $\beta_2 = \alpha \alpha_2$, $\beta_3 = \alpha \alpha_3$. Это и есть условие пропорциональности координат.

2. <u>Достаточность.</u> Пусть координаты векторов \bar{a} и b пропорциональны, т.е. $\beta_1 = \alpha \alpha_1$, $\beta_2 = \alpha \alpha_2$, $\beta_3 = \alpha \alpha_3$. Тогда $\bar{b} = \{\beta_1, \beta_2, \beta_3\} = \{\alpha \alpha_1, \alpha \alpha_2, \alpha \alpha_3\} =$ по теореме об умножении вектора на число в координатной форме = $\alpha\{\alpha_1, \alpha_2, \alpha_3\} = \alpha \bar{a}$. И по критерию коллинеарности векторов (см. стр. 7) $\bar{a} \parallel \bar{b}$.

Замечание 1.7. Условие пропорциональности координат часто записывают в виде

$$\frac{\beta_1}{\alpha_1} = \frac{\beta_2}{\alpha_2} = \frac{\beta_3}{\alpha_3}.$$

Пусть, например, $\alpha_1 = 0$. Тогда это будет означать запись $\frac{\beta_1}{0} = \frac{\beta_2}{\alpha_2} = \frac{\beta_3}{\alpha_3}$?

Запишем по-другому:
$$\begin{cases} \beta_1 = \alpha \cdot 0 \\ \beta_2 = \alpha \alpha_2 \\ \beta_3 = \alpha \alpha_3 \end{cases}$$

Запишем по-другому: $\begin{cases} \beta_1 = \alpha \cdot 0 \\ \beta_2 = \alpha \alpha_2 \\ \beta_3 = \alpha \alpha_3 \end{cases}$ Таким образом, $\beta_1 = 0$ и из записи: $\frac{\beta_1}{0} = \frac{\beta_2}{\alpha_2} = \frac{\beta_3}{\alpha_3}$ следует, что $\beta_1 = 0$, т.е. получаем правило, если в «знаменателе» $\alpha_1 = 0$, то и «числитель» $\beta_1 = 0$. Аналогично: $\frac{\beta_1}{\alpha_1} = \frac{\beta_2}{0} = \frac{\beta_3}{\alpha_3} \Rightarrow \beta_2 = 0$ и $\frac{\beta_1}{\alpha_1} = \frac{\beta_2}{\alpha_2} = \frac{\beta_3}{0} \Rightarrow \beta_3 = 0$. Легко проверить, что если два «знаменателя» нулевые, то соответствующие «числители»

$$\frac{\beta_1}{\alpha_1} = \frac{\beta_2}{0} = \frac{\beta_3}{\alpha_3} \Rightarrow \beta_2 = 0$$
 и $\frac{\beta_1}{\alpha_1} = \frac{\beta_2}{\alpha_2} = \frac{\beta_3}{0} \Rightarrow \beta_3 = 0$.

Легко проверить, что если два «знаменателя» нулевые, то соответствующие «числители» равны нулю.

Суть замечания в том, что условие пропорциональности это НЕ равенство дробей. Поэтому слова «знаменатель» и «числитель» берем в кавычки. В отличие от обычных дробей здесь «знаменатели» могут быть равными нулю и соответствующие «числители» надо также брать равными нулю.

В заключении данного параграфа подчеркием, что введение базисов в V^1, V^2, V^3 позволяет задавать векторы не геометрические (вектор-стрелки) а набором чисел – координат вектора. В координатной форме можно выполнять линейные операции (I), (II) и не только их (см. далее), судить о коллинеарности векторов и т.п. Тем самым геометрическое задание векторов и операций над ними базис «переведет» на алгебраический язык, что можно изобразить условной схемой:

ВЕКТОРНАЯ АЛГЕБРА

Геометрическое определение векторов и операций над ними

базис

Алгебраический подход: "работа" в координатной форме

Базисы (алгебраическая точка зрения) 1.3

Рассмотрим векторные пространства $V = V^1, V^2, V^3$ и остановимся еще раз на определении базисов, введенных в предыдущем параграфе.

- (1) В пространстве V^1 (прямая) базис $E_1 = \{\bar{e}_1\}$ есть вектор (вектор-стрелка) ненулевой длины: $|\bar{e}_1| \neq 0 \Rightarrow \bar{e}_1 \neq \bar{0}$.
- (2) В пространстве V^2 (планиметрия) базис $E_2 = \{\bar{e}_1, \bar{e}_2\}$ есть пара не коллинеарных векторов, $\bar{e}_1 \not | \bar{e}_2$, т.е. пара векторов не лежащих на одной или параллельных прямых.
- (3) В пространстве V^3 (стереометрия) базис $E_3 = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ есть тройка не компланарных векторов, т.е. тройка векторов, которые нельзя разместить на одной плоскости.

Обратите внимание(!): определение базисных систем E_1 , E_2 , E_3 в V^1 , V^2 , V^3 дано в наивной, геометрической форме – это векторы ненулевые, неколлинеарные, некомпланарные.

В данном параграфе мы «уйдем» от геометрических характеристик в описании базисных систем E_1, E_2, E_3 , но будем определять их с иной, АЛГЕБРАИЧЕСКОЙ точки зрения. Первым шагом на этом пути является определение ЛИНЕЙНО НЕЗАВИСИМЫХ и ЛИНЕЙНО ЗАВИСИМЫХ систем векторов.

Рассмотрим в векторном пространстве V некоторую систему векторов A:

$$A = \{\bar{a}_1, \bar{a}_2, \dots, \bar{a}_n\}$$
 (где $\bar{a}_i \in V, i = 1, 2, \dots, n$)

Пусть $\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2 + \ldots + \lambda_n \bar{a}_n$ есть линейная комбинация векторов этой системы. Говорят, что линейная комбинация НУЛЕВАЯ или ТРИВИАЛЬНАЯ, если все коэффициенты равны нулю: $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$. Далее будет удобно использовать очевидный факт: $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0 \Leftrightarrow \lambda_1^2 + \lambda_2^2 + \ldots + \lambda_n^2 = 0$.

$$\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0 \Leftrightarrow \lambda_1^2 + \lambda_2^2 + \ldots + \lambda_n^2 = 0.$$