AMENDMENTS TO THE CLAIMS

Please amend the claims as indicated:

1-20 Canceled.

1	21.	(previously presented) A method of petrophysical evaluation of an earth formation		
2		using a logging tool conveyed in a borehole in said formation, the method		
3		comprising:		
4		(a) obtaining values of a horizontal and vertical resistivity of said earth		
5		formation using said logging tool; and		
6		(b) determining a horizontal and vertical permeability of said earth formation		
7		using said horizontal and vertical resistivities, said horizontal and vertical		
8		permeabilities having a ratio different from a ratio of said vertical and		
9		horizontal resistivities.		
10				
1	22.	(previously presented) The method of claim 21 wherein said earth formation		
2		comprises a sand component and a shale component.		
3				
1	23.	(previously presented) The method of claim 21 wherein determining said		
2		horizontal and vertical permeabilities further comprises determining a water		
3		content of said formation from said horizontal and vertical resistivities.		
4				
1	24.	(previously presented) The method of claim 23 wherein determining said		
	10/75	7,051 3		
	-44	·,		

2		horizo	ontal and vertical permeabilities further comprises determining an estimate			
3		of bul	k irreducible water content of the formation from NMR measurements.			
4						
1	25.	(curre	ntly amended) The method of claim 23 wherein determining said water			
2		content of said formation further comprises:				
3		(i)	inverting said values of horizontal and vertical resistivities of the			
4			formation using a petrophysical model to give a first estimate of fractional			
5			volume of laminated shale in the formation;			
6		(ii)	obtaining measurements of density and/or neutron porosity of the			
7		٠	formation and using a volumetric model for deriving therefrom a second			
8			estimate of fractional volume of laminated shale; and			
9		(iii)	if said second estimate of fractional shale volume is greater than said first			
0			estimate of fractional shale volume; inverting said horizontal and vertical			
1			resistivities using a petrophysical model including said second estimate of			
2			fractional shale volume and obtaining therefrom a water content of the			
3	٠		formation.			
L 4						
1	26.	(previ	iously presented) The method of claim 21 further comprising determining a			
2		vertic	al and horizontal resistivity of an anisotropic sand component of the			
3		forma	formation, and determining therefrom and from at least one additional			
4		meası	urement selected from the group consisting of: (i) NMR measurements of the			
5		formation, and, (ii) a bulk permeability of the sand component, a parameter of				

U		motost of a coarse and a kine Brain perdent of the state compensation.
7		
1	27.	(previously presented) The method of claim 21 further comprising using a
2		transverse induction logging tool for obtaining said values of horizontal and
3		vertical resistivities of the formation.
4		
1	28.	(previously presented) The method of claim 21 further comprising using an
2		induction logging tool for obtaining said values of horizontal resistivities and a
3		focused current logging tool for obtaining said values of vertical resistivities
4		
1	29.	(previously presented) The method of claim 25 wherein using said volumetric
2		model further comprises using at least one of: (i) the Thomas-Stieber model, and,
3		(ii) the Waxman-Smits model.
4		
1	30.	(currently amended) The method of claim 21 wherein further comprising
2		determining a parameter of interest is selected selected from the group consisting
3		of: (A) a fractional volume of said coarse grain component, (B) a fractional
4		volume of said fine grain component, (C) a water saturation of said coarse grain
5		component, (D) a water saturation of said fine grain component, (E) a
6		permeability of said coarse grain component, and, (F) a permeability of said fine
7		grain component.
8		

1	31.	(previously presented) The method of claim 20 wherein the at least one additional			
2		measurement comprises an NMR measurement, and deriving the parameter of			
3		interest further comprises deriving a distribution of relaxation times from said			
4		NMR measurements and obtaining therefrom a distribution of components of said			
5		anisotropic sand.			
6					
1	32.	(previously presented) The method of claim 26 wherein the at least one additional			
2		measurement comprises a bulk permeability measurement of the anisotropic sand			
3		and deriving the parameter of interest further comprises:			
4		A. obtaining a family of possible distributions of volume fractions and bulk			
5		irreducible water content (BVI) for the coarse and fine sand components;			
6		B. determining horizontal, vertical and bulk permeability values associated			
7		with said family of possible distributions; and			
8		C. selecting from said family of possible distributions the one distribution			
9 ·		that has a determined bulk permeability substantially equal to the			
10		measured bulk permeability.			
11		•			
ĭ	33.	(previously presented) The method of claim 32 wherein said bulk permeability is			
2		obtained from the group consisting of (I) NMR diffusion measurements, (II) a			
3		formation testing instrument, (III) a pressure buildup test, and, (IV) a pressure			
4		drawdown test.			
5					

- 1 34. (previously presented) The method of claim 32 wherein determining the
- 2 horizontal and vertical permeability values associated with said family of
- distributions for the coarse and fine sand components further comprises using the
- 4 Coates-Timur equation

$$k = \left(\frac{\phi}{C}\right)^a \cdot \left(\frac{\phi - BVI}{BVI}\right)^b$$

6

- where k is a permeability, ϕ is a porosity, BVI is the bound volume irreducible,
- 8 and a, b, and C are fitting parameters.

9

- 1 35. (previously presented) The method of claim 32 wherein determining horizontal,
- vertical and bulk permeability values further comprises using a relationship of the
- 3 form
- $k = C \phi^a T^b$
- where k_e is a permeability, ϕ is a porosity and T is a NMR relaxation time, and a,
- 6 b, and C are fitting parameters.

7

- 1 36. (previously presented) The method of claim 35 wherein T is a longitudinal NMR
- 2 relaxation time.

3

- 1 37. (previously presented) The method of claim 32 wherein the coarse sand portion of
- 2 the selected distribution is characterized by an irreducible water saturation less

10/757,051

than an irreducible water saturation of the fine grain sand portion of the selected 3 4 distribution.

5

- (previously presented) The method of claim 32 wherein the determined bulk 38. 1
- permeability is a spherical permeability related to the horizontal and vertical 2
- permeability values by a relationship of the form 3

Fax:7132668510

 $k_{sph} = \left(k_h^2 k_v\right)^{\frac{1}{3}}$