

Contents

Ι	Sets and Relations	5
1	Sets Exercises	7 7
2	Relations and Operations	9
II	Number Systems	11
3	The Natural Numbers	13
4	The Integers	15
5	Some Properties of Integers	17
6	The Rational Numbers	19
7	The Real Numbers	21
8	The Complex Numbers	23
II	I Groups, Rings, and Fields	25
9	Groups 9.1 Groups	27 27 27
10	Further Topics on Group Theory	29
11	Rings	31
12	Integral Domains, Division Rings, and Fields	33
13	Polynomials	35
14	Vector Spaces	37

4	CONTENTS
15 Matrices	39
16 Matrix Polynomials	41
17 Linear Algebras	43
18 Boolean Algebras	45

Part I Sets and Relations

Sets

I don't have much to write here as far as notes go.

Exercises

Q1.1. Exhibit in tabular form:

- (a) $A = \{a : a \in \mathbb{N}, 2 < a < 6\}$
- (b) $B = \{p : p \in \mathbb{N}, p < 10, p \text{ is odd}\}\$
- (c) $C = \{x : x \in \mathbb{Z}, 2x^2 + x 6 = 0\}$

A1.1.

- (a) $A = \{3, 4, 5\}$
- (b) $B = \{9, 7, 5, 3, 1\}$
- (c) $C = \{-2\}$

Q1.2. Let $A = \{a, b, c, d\}$, $B = \{a, c, g\}$, $C = \{c, g, m, n, p\}$. Then $A \cup B = \{a, b, c, d, g\}$, $A \cup C = \{a, b, c, d, g, m, n, p\}$, $B \cup C = \{a, c, g, m, n, p\}$;

A1.2. WHAT IS THE QUESTION?

Q1.3. Consider the subsets $K = \{2, 4, 6, 8\}$, $L = \{1, 2, 3, 4\}$, $M = \{3, 4, 5, 6, 8\}$ of $U = \{1, 2, 3, \dots, 10\}$.

- (a) Exhibit K', L', M' in tabular form.
- (b) Show that $(K \cup L)' = K' \cap L'$

A1.3.

8 CHAPTER 1. SETS

(a)
$$K' = \{1, 3, 5, 7, 9, 10\}$$

 $L' = \{5, 6, 7, 8, 9, 10\}$
 $U' = \{1, 2, 7, 9, 10\}$

(b)
$$K \cup L = \{1, 2, 3, 4, 6, 8\}$$
, so $(K \cup L)' = \{5, 7, 9, 10\}$. Using the above, $K' \cap L' = \{5, 7, 9, 10\}$.

Q1.4.

Q1.5.

Q1.6.

Q1.7.

Q1.8. Prove
$$(A \cup B) \cup C = A \cup (B \cup C)$$

A1.8. Any element x belongs to the left hand side if $(x \in A \lor x \in B) \lor x \in C$. It belongs to the right hand side if $x \in A \lor (x \in B \lor x \in C)$. Both expressions are logically equivalent.

Q1.9. Prove
$$(A \cap B) \cap C = A \cap (B \cap C)$$

A1.9. Similar answer as the previous–follows from the associativity of \wedge

Q1.10. Prove
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

A1.10. Follows from \land distributing over \lor

Q1.11. Prove
$$(A \cap B)' = A' \cap B'$$

A1.11. Follows from DeMorgan's laws

Q1.12. Prove
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

A1.12. Follows from \vee distributing over \wedge

Q1.13. Prove
$$A - (B \cup C) = (A - B) \cap (A - C)$$

A1.13. Follows again from DeMorgan's laws

Relations and Operations

Part II Number Systems

The Natural Numbers

The Integers

Some Properties of Integers

The Rational Numbers

The Real Numbers

The Complex Numbers

Part III Groups, Rings, and Fields

Groups

9.1 Groups

DEFINITION 9.1: A non-empty set \mathcal{G} equipped with a binary operation \circ is a *group* if

 \mathbf{P}_1 : $(a \circ b) \circ c = a \circ (b \circ c)$ (Associativity)

P₂: There exists an element $1 \in \mathcal{G}$ such that $1 \circ a = a \circ 1 = a$ for all $a \in \mathcal{G}$ (Unit)

 \mathbf{P}_3 : For all $a \in \mathcal{G}$, there exists an element a^{-1} such that $a \circ a^{-1} = a^{-1} \circ a = 1$ (Inverse)

9.2 Simple Properties of Groups

THEOREM I. (Left Cancellation) Let $a, b, c \in \mathcal{G}$. Then $a \circ b = a \circ c$ implies b = c.

THEOREM II. (Latin Square Property)

Further Topics on Group Theory

Rings

Integral Domains, Division Rings, and Fields

Polynomials

Vector Spaces

Matrices

Matrix Polynomials

Linear Algebras

Boolean Algebras