Predicting the cross-population portability of human expression quantitative trait loci (eQTLs)

Isobel J Beasley, Christina B Azodi and Irene Gallego Romero
The University of Melbourne / St Vincent's Institute of Medical Research

#ABACBS2021

Martin et al., 2019, Nature Genetics

Outline

1. eQTLs

2. Building machine learning models

3. Findings (expected and puzzling)

eQTLs (expression Quantitative Trait Loci)

Outline

1. eQTLs

2. Building machine learning models

Azodi, Tang and Shiu, 2020, *Trends in Genetics*

The training data

European (n = 471, Lepik et al. 2017)

European (n = 379, GTEx. 2020)

European (n = 195, TwinsUK 2015)

Indonesian (n = 115, Natri et al. 2020)

eQTLs

CC

"Labels"

Populationshared

eQTLs

Populationspecific

Properties

Populationshared

Populationspecific

Populationshared

Evolutionary, regulatory, and functional properties

"Features"

- eQTL effect size
- Allele frequency
- Gene and SNP Conservation
- Gene Expression
- SNP Genomic location
- % Nucleotide
- Gene Ontology

Populationspecific

Evolutionary, regulatory, and functional properties

Outline

1. eQTLs

2. Building machine learning models

3. Findings (expected and puzzling)

Prediction Performance

Prediction Performance

Test set: Chromosomes 8,16

Prediction Performance across Algorithms

Test set: Chromosomes 8,16

Population-specific eQTLs have higher effect sizes in their discovery population

Feature Importance rank: 1

Population-specific eQTLs have different allele frequencies across populations

Population-specific eGenes are more highly conserved

LOEUF = Upper bound of the confidence interval observed over expected number of loss of function variants

Gene Conservation Feature Importance rank: 3

Population-specific eGenes are more highly conserved ... but not eSNPs

SNP Conservation Feature Importance rank: 131

... toward the future 🕃

Conclusions

 Machine learning models could improve the transferability of eQTLs from Europeans to underrepresented populations

Conclusions

- Machine learning models could improve the transferability of eQTLs from Europeans to underrepresented populations
- Some properties are different between shared and specific eQTLs

Conclusions

- Machine learning models could improve the transferability of eQTLs from Europeans to underrepresented populations
- Some properties are different between shared and specific eQTLs
- Eurocentric biases prevent equitable research translation

Thank you!

Irene Gallego Romero^{1,2}

Christina B Azodi^{1,3}

Gallego Romero + Bioinformatics and Cellular Genomics Groups

1. Melbourne Integrative Genomics

2. School of BioSciences

3. Bioinformatics and Cellular Genomics

