2-3 Trees with Recursive Algorithms for Elementary Opertaions

Coordinator: Mihaescu Cristian,Phd Student: Stefan Cristian Mladin

University of Craiova - Faculty of Automatics, Computers and Electronics

Computer Engineering

DCTI IT Companies Seminary, April 2014

Generalities

2-3 Tree Definition
Search Algorithm and Complexity of 2-3 Tree Operations

Algorithms for Elementary Operations

Key Insertion Algorithm for Key Deletion

C Implementation

Source Code Example of Key Insertion Example of Key Deletion Experimental Results

References

Definition

A 2-3 search tree t is either:

internal 2 node: K, $[t_l, t_r]$ where t_l, t_r are 2-3 trees, every key in t_l is lesser than K, every key in t_r is greater than K.

internal 3 node: $[K_1, K_2]$, $[t_l, t_m, t_r]$ where t_l, t_m, t_r are 2-3 trees, $K_2 > K_1$, every key in t_l is lesser than K_1 , every key in t_m is greater than K_1 and lesser than K_2 , every key in t_r is greater than K_2 .

leaf 2 node a 2 node with one key and an empty tree list.

leaf 3 node a 3 node with 2 keys: K_1 , K_2 and empty tree list where $K_2 > K_1$.

[4, 3, 1, 2]


```
Data: A 2-3 tree t and a key K
Result: The node in the tree t containing the key K or O(NULL)
if K = K_1 or K = K_2 then
   ⊳RETURN t;
else
   if t leaf then
       ⊳RETURN 0;
   else
       \trianglerightRETURN search(next(t, K), K);
   end
end
```

Procedure search(t,K)

The worst case scenario is when the key that is being searched for is located at leaf level.

Because a 2-3 tree has a height between log_3N and log_2N the complexity of the search operation in a 2-3 tree is $O(\log N)$. Since insertion and deletion are done at leaf level they will also have a complexity of $O(\log N)$.

Algorithm for Key Insertion

DOWNWARD PHASE: next slide

```
Data: t a node from the insert path. K the key.
Result: Returns 0 if t is not root, or the root of the tree resulting
         from inserting K, if t is root.
if \triangleright t is empty tree then
   \triangleright RETURN created tree with the value K; Empty tree case
end
if \triangleright t is leaf then
    LEAF PHASE: recursion to the apropriate leaf
    t' \leftarrow push(t, K);
    if \triangleright t' is 4 node then
        excessSplit \leftarrow split(t');
        excessInsert(t, K) \leftarrow excessSplit; (4)leaf 3 node case
    else
       t \leftarrow t':
       excessInsert(t, K) \leftarrow 0;
                                                  (1)leaf 2 node case
    end
else
```

```
if \triangleright t is leaf then
   LEAF PHASE: see previous slide
else
   DOWNWARD PHASE: recursing downwards towards leaf
   INSERT(next(t, K), K);
   UPWARDS PHASE: adding the excess from the lower
   levels and computing the excess for the upper
   levels
   if excessInsert(next(t, K), K) = 0) then
       excessInsert(t, K) \leftarrow 0; (2)no excess received case
   else
       t' \leftarrow push(t, excessInsert(next(t, K), K));
       if \triangleright t' is 3 node then
          t \leftarrow t':
          excessInsert(t, K) \leftarrow 0; (3)upwards excess stop
           case
       else
           (5)upwards excess continuation case:next
           slide
                                            4□ → 4□ → 4 = → 4 = → 9 < 0</p>
```

```
if \triangleright t is leaf then
   LEAF PHASE: see previous slide
else
   DOWNWARD PHASE: see previous slide
   UPWARDS PHASE
   if excessInsert(next(t, K), K) = 0) then
       (2)no excess received case: see previous slide
   else
       if \triangleright t' is 3 node then
           (3) upwards excess stop case: previous slide
       else
           excessSplit \leftarrow split(t');
           excessInsert(t, K) \leftarrow excessSplit; (5)upwards excess
           continuation case
       end
   end
end
if \triangleright t is root then
   Reaching the root: next slide.
                                             4 D > 4 B > 4 B > 4 B > B | 990
```

```
if \triangleright t is root then
   Reaching the root
   if excessInsert(t, K) = 0 then
      \triangleright RETURN t; There was no split in the root.
      The root remains the same.
   else
      \triangleright RETURN excessInsert(t, k); There was a split in
      the root. The new root is the split result of
      the current one.
   end
else
end
```

Procedure INSERT(t,K)

Algorithm for Key Deletion

The algorithm for key deletion here.

Insertion Example

In the following example the insertion algorithm and it's cases will be illustrated by inserting the keys 1,2,3...7 in that order, in an empty 2-3 tree.

When inserting 1 the insertion is called once. It's in the empty tree case.

Call Stack:

 $insert_rec(t = 0x00000000, K = 1, excessInsert = 0x00000000)$

1

When inserting 2 the insertion is called. It's the 2 leaf case non-excess generating case. Since the tree is non empty the key is pushed in the root.

Call Stack:

 $insert_rec(t = 0 \times 005 f 0660, K = 2, excessInsert = 0 \times 00000000)$ $pushSorted(t = 0 \times 005 f 0660, tK, loc)$

1 2

When inserting 3 the insertion is called once. It's the 3 leaf case excess generating case. The excess is at root level so the tree increases it's level with 1.

Call Stack:

$$insert_rec(t = 0 \times 005 f 0660, K = 3, excessInsert = 0 \times 00000000)$$
 $pushSorted(t = split(t = 0 \times 005 f 2ce0, loc = 0))$

 $0 \times 005 f 2 d 88$

 $0 \times 005 f 0660, tK, loc = 0 \times 005 f 2 ce0)$

 $0 \times 005 f2ce0$)

1 2 3

Since the tree has 2 levels now the insertion function is called twice for inserting 4. It's put in a leaf 2 node.

Call Stack:

 $insert_rec(t = 0x005f2d88, K = 4, excessInsert = 0x00000000)$ $insert_rec(t = 0x005f2e28, K = 4, excessInsert = 0x0041f808)$ pushSorted(t = 0x005f2e28, tK, loc)

Since the tree has 2 levels now the insertion function is called twice for inserting 5. It's put in a leaf 3 node so the split function is called. The excess is then pushed in the root.

Call Stack:

$$insert_rec(t = 0x005f2d88, K = 5, excessInsert = 0x00000000)$$

 $insert_rec(t = 0x005f2e28, K = 5, excessInsert = 0x0041f808)$
 $split(t = 0x005f2d30, loc = 0.005f2d30, loc =$

pushSorted(t = 0x005f2e28, tK, loc = 0x005f2d30)

Returning to the first insertion call in the call stack where excessInsert = 0x0041f808 was allocated for the second call:

Call Stack:

$$insert_rec(t = 0 \times 005 f2 d88, K = 5, excessInsert = 0 \times 000000000)$$

 $pushSorted(t = 0 \times 005 f2 d88, tK = (0 \times 0041 f808) = 0 \times 005 f2 ce0^{1}, loc = 0 \times 005 f2 d30)$

¹Note that $(0\times0041f808) = 0\times005f2ce0$. In the C implementation excessInsert is a pointer to a 2-3 tree pointer.

When inserting 6 the insertion is called 2 times to the appropriate leaf where the key is added.

Call Stack:

 $insert_rec(t = 0x005f2d88, K = 6, excessInsert = 0x00000000)$ $insert_rec(t = 0x005f2f18, K = 6, excessInsert = 0x0041f808)$ pushSorted(t = 0x005f2f18, tK, loc)

When inserting 7 the insertion is called 2 times to the appropriate leaf where the key is added. Since it's a 3 leaf node a split is required pushing excess to the first call of the insertion function.

Call Stack:

 $0 \times 005 f2 ce0$

$$insert_rec(t = 0x005f2d88, K = 7, excessInsert = 0x00000000)$$

 $insert_rec(t = 0x005f2f18, K = 7, excessInsert = 0x0041f808)$
 $pushSorted(t = split(t = 0x005f2ce0, loc = 0x005f2f18, tK, loc = 0x005f2e78)$

1 3 5 6 7

Returning to the first insertion call in the call stack where excessInsert = 0x0041f808 was allocated for the second call:

Call Stack:

$$insert_rec(t = 0 \times 005f2d88, K = 7, excessInsert = 0 \times 000000000)$$
 $pushSorted(t = split(t = 0 \times 005f2ce0, loc = 0 \times 005f2f18, tK = 0 \times 005f2d38)$
 $(0 \times 0041f808) = 0 \times 005f2e78, loc = 0 \times 005f2ce0)$

4

2 4 6

2 7 6

Since the split was done at root level, the tree will increase height by 1 with the new root being the result of the split.

Experimental Results

A series of tests were generated each consisting in creating a tree with a number of nodes between 1000 and 20000. For each test the time it took to create the tree was measured and plotted.

References

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. *Data Structures and Algorithms*.

11 edition.

Dumitru Dan Burdescu and Marian Cristian Mihaescu. Algorithms and Data Structures.

Robert Sedgewick and Kevin Wayne.

Algorithms.

Addison-Wesley, 4 edition, March 2011.

Wikipedia.

Tree (data structure) — wikipedia, the free encyclopedia, 2013.

http://en.wikipedia.org/w/index.php?title=Tree_ (data_structure)&oldid=586195126.