MSBA7003 Quantitative Analysis Methods

06 Linear Programming II

Agenda

- Worker Scheduling
- Portfolio Selection
- Transportation Planning
- Efficiency Evaluation
- Risk Management

• A post office requires different numbers of full-time employees on different days of the week. Union rules states that each full-time employee must work five consecutive days and then receive two days off. The post office wants to meet its daily requirements using only full-time employees, while minimizing the total number of full-time employees on its payroll.

Day of Week	Minimum Number of Employees Required
Monday	17
Tuesday	13
Wednesday	15
Thursday	19
Friday	14
Saturday	16
Sunday	11

Decision variables:

- X_1 : the number of employees whose first working day is Monday
- X_2 : the number of employees whose first working day is Tuesday
- X_3 : the number of employees whose first working day is Wednesday
- X_4 : the number of employees whose first working day is Thursday
- X_5 : the number of employees whose first working day is Friday
- X_6 : the number of employees whose first working day is Saturday
- X_7 : the number of employees whose first working day is Sunday

Objective:

• Minimize: $X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7$

Constraints:

• Monday constraint:
$$X_1 + X_4 + X_5 + X_6 + X_7 \ge 17$$

• Tuesday constraint:
$$X_1 + X_2 + X_5 + X_6 + X_7 \ge 13$$

• Wednesday constraint:
$$X_1 + X_2 + X_3 + X_6 + X_7 \ge 15$$

• Thursday constraint:
$$X_1 + X_2 + X_3 + X_4 + X_7 \ge 19$$

• Friday constraint:
$$X_1 + X_2 + X_3 + X_4 + X_5 \ge 14$$

• Saturday constraint:
$$X_2 + X_3 + X_4 + X_5 + X_6 \ge 16$$

• Sunday constraint:
$$X_3 + X_4 + X_5 + X_6 + X_7 \ge 11$$

• Non-negativity:
$$X_1, X_2, X_3, X_4, X_5, X_6, X_7 \ge 0$$

Worker Scho	Vorker Scheduling Model										
Decision Variables		Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Total	No. of FT E	Employees
No. of FT E	mployees:	6.333333333	3.333333333	2	7.333333333	0	3.333333333	0			22.33333
Constraints											RHS
	Monday	1			1	1	1	1	17	>=	17
	Tuesday	1	1			1	1	1	13	>=	13
W	ednesday/	1	1	1			1	1	15	>=	15
	Thursday	1	1	1	1			1	19	>=	19
	Friday	1	1	1	1	1			19	>=	14
	Saturday		1	1	1	1	1		16	>=	16
	Sunday			1	1	1	1	1	12.66667	>=	11

- To get integer solutions
 - Add integer constraints
 - Round the solutions to the nearest integers

- The Heinlein and Krampf Brokerage firm is instructed by a client to invest \$250,000, with guidelines:
 - Municipal bonds should constitute at least 20% of the investment
 - At least 40% of the investment should be placed in a combination of electronic firms, aerospace firms, and drug manufacturers
 - No more than 50% of the amount invested in municipal bonds should be placed in a high-risk, high-yield nursing home stock
- The goal is to maximize the projected return.

Investment	Los Angeles municipal bonds	Thompson Electronics, Inc.	United Aerospace Corp.	Palmer Drugs	Happy Days Nursing Homes
Projected Return (%)	5.3	6.8	4.9	8.4	11.8

Portfolio Selection

1	Α	В	С	D	Е	F	G	Н	I
			Thompson	United		Happy Days			
		LA Municipal	Electronics,	Aerospace		Nursing			
1	Investment	Bonds	Inc.	Corp.	Palmer Drugs	Homes			
2	Projected Return (%)	5.3	6.8	4.9	8.4	11.8			
3	Amount	50000	0	0	175000	25000			
4									
5	Total Return	20300							
6									
7	Constraints								
8		1	1	1	1	1	250000	<=	250000
9		1					50000	>=	50000
10			1	1	1		175000	>=	100000
11						1	25000	<=	25000
		I							

Question: How to set cells I9 and I10?

Portfolio Selection: Sensitivity Report

Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$3	Amount LA Municipal Bonds	50000	0	0.053	0.014	0.406
\$C\$3	Amount Thompson Electronics, Inc.	0	-0.016	0.068	0.016	1E+30
\$D\$3	Amount United Aerospace Corp.	0	-0.035	0.049	0.035	1E+30
\$E\$3	Amount Palmer Drugs	175000	0	0.084	0.034	0.009333333
\$F\$3	Amount Happy Days Nursing Homes	25000	0	0.118	0.028	0.034

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$G\$8	Total Amount Constraint	250000	0.0812	250000	1E+30	250000
\$G\$9	Municipal Bond Constraint	50000	-0.014	0	50000	50000
\$G\$10	E.A.D. Constraint	175000	0	0	75000	1E+30
\$G\$11	Nursing Home Constraint	25000	0.034	0	75000	25000

Question: What is the marginal return rate?

Transportation Problem

• The Executive Furniture Corporation is faced with the following transportation problem and is trying to minimize the daily transportation cost. How to optimize the shipping plan, while the demand must be satisfied?

Transportation Problem

4	Α	В	С	D	Е	F
1	Executive Fu	rniture Corpor	ation			
2						
3	Source		Des Moines	Evansville	Fort Lauderdale	Demand Sum
4	Destination	Albuquerque	100	0	200	300
5		Boston	0	200	0	200
6		Cleveland	0	100	100	200
7		Supply Sum	100	300	300	
8						
9	Model Paran	neters	Des Moines	Evansville	Fort Lauderdale	Demand
10		Albuquerque	\$ 5.00	\$ 8.00	\$ 9.00	300
11		Boston	\$ 4.00	\$ 4.00	\$ 7.00	200
12		Cleveland	\$ 3.00	\$ 3.00	\$ 5.00	200
13		Supply	100	300	300	
14						
15	Total Cost	\$ 3,900.00				

• The following table shows the sensitivity analysis of the transportation problem. If you can expand the supply by 100, which plant would you choose?

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$C\$7	Supply Sum Des Moines	100	-4	100	200	0
\$D\$7	Supply Sum Evansville	300	-2	300	100	0
\$E\$7	Supply Sum Fort Lauderdale	300	0	300	1E+30	0
\$F\$4	Albuquerque Demand Sum	300	9	300	0	200
\$F\$5	Boston Demand Sum	200	6	200	0	100
\$F\$6	Cleveland Demand Sum	200	5	200	0	100

- Reconsider the Transportation Problem.
- Suppose each source can supply more than its capacity by outsourcing at price $p_i=3$, and demand can be unsatisfied with a revenue loss of $r_j=10$ per unit. What is the optimal outsourcing and transportation plan? Formulate the LP.

- Reconsider the Transportation Problem.
- Suppose each source can supply more than its capacity by outsourcing at price $p_i=3$, and demand can be unsatisfied with a revenue loss of $r_j=10$ per unit. What is the optimal outsourcing and transportation plan? Solve the problem.

Efficiency Evaluation

- How to compare and evaluate the efficiencies of different individuals or business units?
- Absolute efficiency = Output value / Input value
- If we cannot directly measure the values of outputs and inputs, then we cannot obtain the absolute efficiency.
- Pinevalley Bank has three different branches. The management board now wants to evaluate the operational efficiency of each branch. Each branch has inputs from three aspects: 1) the number of workers, 2) the size of the business hall (in 100 sq. m.), and 3) consumption of stationary supplies (1000 dollars per month). The outputs also have three dimensions: 1) monthly new accounts, 2) monthly new loans, and 3) monthly new deposit value.
- Due to multiple inputs and outputs, the branch efficiency cannot be measured directly.

Pinevalley Bank

• Pinevalley Bank branch information for a given month:

Branch	Input #1: # of Workers		Input #3: Stationary Supplies (\$1000)	Output #1: New Accounts	Output #2: Number of New Loan	Output #3: New Deposit Value (10 mils)
Α	27	3.5	15	11	9	1
В	15	2	10	10	8	0.4
С	43	7	39	24	20	5

Efficiency Evaluation

- There are two possible assumptions:
- 1. <u>Constant returns to scale</u>: For each unit, every dollar of input value will always create the same amount of output value.
 - Group A has 4 workers and can process 8 units of product per hour. Group B has 8 workers and can process 12 units per hour. Group B is relatively less efficient, because Group A can process 16 units if we double the number of workers.
- 2. Non-constant returns to scale: For each unit, the return to scale may change, but the performance of different units can be linearly combined.
 - Group A has 4 workers and can process 8 units of product per hour. Group B has 8 workers and can process 12 units per hour. Neither group is necessarily inefficient. If Group C has 6 workers and can process 9 units per hour, then Group C is relatively less efficient, because the average efficiency of A and B is higher (i.e., 6 workers process 10 units per hour).

Data Envelopment Analysis (DEA)

Constant Returns to Scale:

• The larger the slope, the higher the efficiency.

- When there are multiple inputs and outputs, the goal is to find a vector of input weights and a vector of output weights which can make a unit look as good as possible in terms of the ratio of TOV/TIV. Given these weights, if a unit is not the best among all the units, then it is inefficient.
- Constraints: 1) weights cannot be negative; 2) the ratio of TOV/TIV cannot be bigger than 1; 3) the TIV of the focal unit is normalized to 1.

DEA: Pinevalley Bank

• Constant Returns to Scale:

	Α	В	C	D	Е	F	G	Н	I	J	K	L	M	N	0
1	Branch	Input 1	Input 2	Input 3	Output 1	Output 2	Output 3		Branch	Input 1	Input 2	Input 3	Output 1	Output 2	Output 3
2	Α	27	3.5	15	11	9	1		Α	27	3.5	15	11	9	1
3	В	15	2	10	10	8	0.4		В	15	2	10	10	8	0.4
4	С	43	7	39	24	20	5		С	43	7	39	24	20	5
5	Weights	0	0	0.066667	0	0.071667	0.233333		Weights	0.066667	0	0	0.1	0	0
6															
7															
8	Branch A E	valuation:							Branch B E	valuation:					
9	Branch	TOV		TIV		Efficiency			Branch	TOV		TIV		Efficiency	
10	Α	0.878333	<=	1	Fixed as 1	88%			Α	1.1	<=	1.8		61%	
11	В	0.666667	<=	0.666667		100%			В	1	<=	1	Fixed as 1	100%	
12	С	2.6	<=	2.6		100%			С	2.4	<=	2.866667		84%	

Data Envelopment Analysis (DEA)

Non-Constant Returns to Scale:

• After matching the input, the higher the output, the higher the efficiency.

- For each focal unit, the goal is to construct a virtual unit based on the linear combination of all existing units such that the virtual unit has lower or the same input values in all aspects. If the virtual unit can beat the focal unit in every aspect of output, then the focal unit is inefficient.
- Constraints: 1) weights cannot be negative and must sum up to 1; 2) the input values for the virtual unit cannot exceed the focal unit.

DEA: Pinevalley Bank

Non-Constant Returns to Scale:

	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q
1	Branch A E	Evaluation	:							Branch B	Evaluation:						
2	Branch	Input 1	Input 2	Input 3	Output 1	Output 2	Output 3	Weights		Branch	Input 1	Input 2	Input 3	Output 1	Output 2	Output 3	Weights
3	Α	27	3.5	15	11	9	1	0		Α	27	3.5	15	11	9	1	0
4	В	15	2	10	10	8	0.4	0.827586		В	15	2	10	10	8	0.4	1
5	С	43	7	39	24	20	5	0.172414		С	43	7	39	24	20	5	0
6	Virtual	19.82759	2.862069	15	12.41379	10.06897	1.193103	Sum		Virtual	15	2	10	10	8	0.4	Sum
7				Co	nstraint 1:	Weights s	um up to 1	1					Co	nstraint 1:	Weights s	um up to 1	1
8																	
9	Constraint	t 2: Lower	inputs		Constrain	t 3: Higher	than k-mu	ltiple outp	uts	Constrain	t 2: Lower	inputs		Constrain	t 3: Higher	than k-mu	ltiple output
10		<=	<=	<=	>=	>=	>=	Multiple k	(<=	<=	<=	>=	>=	>=	Multiple k
11	Branch A	27	3.5	15	12.30651	10.06897	1.118774	1.118774		Branch B	15	2	10	10	8	0.4	1

Branch Output \times Multiple k

- Goal: maximize multiple k
- Focal branch efficiency = 1/k

• Your company HR plans to develop a model to identify inefficient salespeople. Given the following data, which worker(s) could be labelled as being inefficient?

		Inputs		Outputs				
Salesperson	Expense (\$k)	Years of Experience	# of Days Working	Lead Conversion	Sales Value (\$k)	# of Clients		
Jimmy	34	8	288	0.82	550	5		
Mike	30	5	330	0.67	400	3		
Shirley	52	4	340	0.92	680	4		

- The Heinlein and Krampf Brokerage firm is instructed by a client to invest \$250,000 among the five securities. It is okay to hold cash. Assume that the return rate of each security is an independent normal random variable. The table below gives the expected return rate and the standard deviation of the return rate for each security.
- The goal is to maximize the conditional value at risk below the 10% quantile. How to allocate the money?

Investment	Los Angeles municipal bonds	Thompson Electronics, Inc.	United Aerospace Corp.	Palmer Drugs	Happy Days Nursing Homes
Projected Return (%)	5.3	6.8	4.9	8.4	11.8
Standard Deviation	1.2	4.4	5.2	12.0	19.9

• In risk management, we care about the tail risk. For the target random return X, the **value** at risk (VaR) at level β is the β -quantile of X. The **conditional value at risk** (CVaR) falling short of an β -level VaR cutoff is the expected return of X given it is below the β -quantile.

- How to maximize the β -level conditional value at risk?
- Suppose $X(\varepsilon,D)$ depends on random factor ε and decision D.
 - Step 1: Obtain S sample values of ϵ and index them by s.
 - Step 2: Introduce auxiliary decision variables μ and z_s for all s.
 - Step 3: Solve the following optimization problem.
 - Maximize $Y = \mu \frac{\sum_{S} z_{S}}{S\beta}$
 - Subject to $z_s \ge \mu X(\varepsilon_s, D)$ and $z_s \ge 0$ for all s.
 - Interpret Y as the β -level CVaR and μ as the β -level VaR.


```
# Prepare the data
sec data = {
  'security': ['LA Municipal Bonds', 'Thompson Electronics', 'United Aerospace',
          'Palmer Drugs', 'Nursing Homes'],
  'return': [5.3, 6.8, 4.9, 8.4, 11.8],
CovM = {
  'LA Municipal Bonds': [1.44, -0.528, -1.248,
                                                    -4.32,
                                                              -9.552],
  'Thompson Electronics': [-0.528, 19.36, 9.152,
                                                      5.28,
                                                             17.512],
  'United Aerospace': [-1.248, 9.152,
                                           27.04,
                                                     18.72,
                                                              10.348],
  'Palmer Drugs':
                                                           119.4],
                      [-4.32, 5.28,
                                        18.72, 144,
                                                                                    securities.
  'Nursing Homes':
                       [-9.552, 17.512, 10.348, 119.4,
                                                               396.01]
budget = 250000; beta = 0.1; simulation = 1000
# Prepare data frames
from pandas import DataFrame
df_sec = DataFrame(data=sec_data)
df_sec.set_index(['security'], inplace=True) #This line replace the default index
securities = df sec.index
df_cov = DataFrame(data=CovM, index=securities, columns=securities)
# Choleski decomposition of the Covariance Matrix
import numpy as np
                                                        The Choleski decomposition: \Omega = L'L
Cov_Matrix = df_cov.to_numpy()
L = np.linalg.cholesky(Cov_Matrix)
```

The covariance matrix captures the correlation between any two securities.

```
# Define the model
from pulp import *
prob = LpProblem('Portfolio_Risk_Management',LpMaximize)
# Define decision variables
investment = LpVariable.dicts('Invested_Value', securities, lowBound=0)
VaR = LpVariable('VaR')
Z = LpVariable.dicts('Shortfall',range(simulation),lowBound=0)
# Define the objective
prob += VaR - lpSum([Z[i] for i in range(simulation)])/beta/simulation, 'CVaR'
# Define the constraints
from numpy import random
prob += lpSum([investment[j] for j in securities]) <= budget
for i in range(simulation):
  r = L.dot(random.normal(0,1,len(securities))) + df_sec['return'].to_numpy()
  prob += Z[i] >= (
     VaR - IpSum([investment[securities[j]]*r[j] for j in range(len(securities))])/100)
prob.solve()
print('The CVaR =',value(prob.objective))
```

Simulate the return rate vector:

$$r = L \cdot u + r_e$$

wherein u is a vector of independent standard normal random numbers and r_e is the vector of expected return rates.