1

CONTENTS

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/codes

1 Phase Margin

1.1. Find the Phase Margin of G(s) in degrees where

$$G(s) = \frac{2}{(s+1)(s+2)}$$
 (1.1.1)

Solution: Phase Margin:It is the difference between phase of the system and -180° at the gain crossover frequency,(the gain crossover frequency being the frequency at which the open-loop gain first reaches 1).

Phase Margin is given by,

$$P.M = \phi - \angle G(j\omega)|_{\omega = \omega_{nc}} = \phi + 180^{\circ}$$
 (1.1.2)

where,

$$\phi = \angle G(j\omega)|_{\omega = \omega_{gc}} \tag{1.1.3}$$

 ω_{pc} is the Phase crossover frequency (The frequency at which the phase of open-loop transfer function reaches -180°).

 ω_{gc} is the Gain crossover frequency (The frequency at which the gain of the open-loop transfer fuction reaches 1).

Given,

$$G(s) = \frac{2}{(s+1)(s+2)}$$
 (1.1.4)

$$G(j\omega) = \frac{1}{(j\omega+1)(j\omega+2)}$$
 (1.1.5)

We can find magnitude and phase as

$$|G(j\omega)| = \frac{2}{(\sqrt{\omega^2 + 1})(\sqrt{\omega^2 + 4})}$$
 (1.1.6)

$$\angle G(j\omega) = -tan^{-1}(\omega) - tan^{-1}(\frac{\omega}{2}) \qquad (1.1.7)$$

We know that, Gain in dB = 0 at $\omega = \omega_{gc}$

$$20log_{10}|G(j\omega_{gc})| = 0 (1.1.8)$$

$$|G(j\omega_{gc})| = 1 \tag{1.1.9}$$

$$\frac{2}{(\sqrt{\omega_{gc}^2 + 1})(\sqrt{\omega_{gc}^2 + 4})} = 1 \tag{1.1.10}$$

Solving we get,

$$\omega_{gc}^2(\omega_{gc}^2 + 5) = 0 (1.1.11)$$

$$\Rightarrow \omega_{gc} = 0, + i\sqrt{5}, -i\sqrt{5}$$
 (1.1.12)

As frequency is a real quantity Hence, $\omega_{gc} \neq \text{Imaginary}$

$$\therefore \omega_{gc} = 0 \tag{1.1.13}$$

From (??) and (??)

$$\phi = \angle G(j\omega_{gc}) = -tan^{-1}(\omega_{gc}) - tan^{-1}(\frac{\omega_{gc}}{2})$$
(1.1.14)

$$=> \phi = 0^{\circ}$$
 (1.1.15)

$$\therefore P.M = 180^{\circ} + 0^{\circ} = 180^{\circ}$$
 (1.1.16)

1.2. We can verify the above result using phase plot. The following code plots Fig(??)

codes/ee18btech11017.py

1.3. The Phase plot is as shown, We can observe

Fig. 1.3

that at
$$\omega_{gc} = 0$$
, $\phi = 0^{\circ}$

$$P.M = 180^{\circ}$$
 (1.3.1)

1.4. **Application:** Phase margin is measure of stability in closed-loop, dynamic-control systems.(i.e, For stability of a system both gain margin and phase margin should be positive.)