I Іроизводная через предел

Thousbodhas depes tipedest
$$\frac{1}{1+(x_0)} = x_0^2 + 2x_0 + 2x_0$$

Основные правила нахождения производных

1.
$$(c \cdot f)' = c \cdot f'$$
, $c - \kappa o h c T a h T a$

$$\frac{4}{v} = \frac{u'v - uv'}{v^2}$$

$$\begin{aligned}
& (x^3)' = 3x^2; & (\sqrt{x})' = (x^2)' = 1 \\
& (x^3)' = 3x^2; & (\sqrt{x})' = (x^2)' = 1 \\
& (4x + 6)' = (4x)' + (6)' = 0
\end{aligned}$$

$$\begin{aligned}
& (4x + 6)' = (4x)' + (6)' = 0
\end{aligned}$$

$$\begin{aligned}
& (4x + 6)' = 20x + 6
\end{aligned}$$

Таблица производных

Таблица производных

2.
$$(x^n)' = nx^{n-1}$$

3. $(a^x)' = a^x \cdot \ln a$

— $(x^n)' = nx^{n-1}$

5. $(\log_a x)' = \frac{1}{x \ln a}$

P(x3) = 8in x . if(1 , +AC)=

= SINXO+SINAX

$$\sin^{2}\alpha + \cos^{2}\alpha = 1$$

$$\sin 2\alpha = 2\sin\alpha \cdot \cos\alpha$$

$$\cos 2\alpha = \cos^{2}\alpha - \sin^{2}\alpha$$

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

1.
$$c' = 0$$
, $c = const$

$$2. \left(x^n \right)' = nx^{n-1}$$

$$3. \left(a^{x}\right)' = a^{x} \cdot \ln a$$

$$5. \left(\log_a x\right)' = \frac{1}{x \ln a}$$

6.
$$(\ln x)' = \frac{1}{x}$$

$$7. \left(\sin x \right)' = \cos x$$

$$8. (\cos x) = -\sin x$$

9.
$$\left(\sqrt{x}\right)' - \frac{1}{2\sqrt{x}}$$

10.
$$(tgx)' - \frac{1}{\cos^2 x}$$

11.
$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$

12.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

13.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

14.
$$(\arctan x)' = \frac{1}{1+x^2}$$

15.
$$(\operatorname{arcctg} x)' - \frac{1}{1+x^2}$$

16.
$$(\sinh x)' = \cosh x$$

17.
$$(\cosh x)' - \sinh x$$

18.
$$(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$$

19.
$$(\operatorname{th} x)' = -\frac{1}{\operatorname{sh}^2 x}$$

$$\int (x)' = \lim_{\Delta \to 0} \frac{\Delta y}{2} = \lim_{\Delta \to 0} 2 \sin \frac{\Delta x}{2} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \cos \frac{2x + \Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \frac{\Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \frac{\Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \frac{\Delta x}{2} = 1$$

$$\lim_{\Delta \to 0} \frac{\Delta x}{2} + \lim_{\Delta \to 0} \frac{\Delta x}{2} = 1$$

$$(cosx)' = -sin x$$

$$(tax)' = (sinx)' = cosx$$

$$(cosx)' = -sinx$$

$$(cosx)' = -sin x$$

https://studfile.net/preview/2868310/page:14/

Определение: нормалью к плоской кривой у в т.М_О называется перпендикуляр к касательной к кривой у в этой точке. Угловые коэффициенты двух перпендикулярных прямых связаны соотношение к₂=-1/к₁. Отсюда получаем уравнение нормали к графику f(x) в точке x_O:

$$n:y-y_0=1/f'(x_0)(x-x_0)$$

Пусть u=u(x) и v=v(x)- функции, определенные в некоторой окрестности точки x и имеют производные в этой точке. Обозначим Δ $u=u(x+\Delta x)$ - u(x) и Δ $v=v(x+\Delta x)$ - v(x) приращения этих функций, соответствующие приращению Δx . Эти формулы можно записать в виде $u(x+\Delta x)=u+\Delta u$ и $v(x+\Delta x)=v+\Delta v$

Теорема: производная суммы (разности) равна сумме (разности) производных: (u+v)'= u'+ v'

Производная произведения (uv)'= u'v+ u v', в частности, постоянную можно выносить за знак производной: (Cv)'= Cv'

$$| ((\cdot \cdot \cdot)' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot \cdot)' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot \cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - c \cdot t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - t', c - \text{ KONCTANTA}$$

$$| (\cdot t' - t', c - \text{ KO$$

Правило дифферинцирования сложной функции

Правило дифференцирования обратной функции

1x)E = \/ кривая Am - Kulumeny Max B (.) M (x) yo) (c/(o/) / (o/) = { $\int (X_6) = \int g d \int V$ угол касательной P(K) = 2x $f(x) = x^2, M(-3,9)$ $f(-3) = f(-3) = 2x = 2\cdot (-3) = -6$

$$\frac{\int (x)}{4} = \frac{4x - x^{2}}{4}; \quad M_{1}(0;0); \quad M_{2}(2;0) \quad M_{3}(4;0)$$

$$\frac{\int (x)}{4} = \frac{4x}{4} - \frac{x}{4} = (x - \frac{x}{4})^{2} = 1 - \frac{1}{4}; \quad dx = 1 - \frac{1}{4}x$$

$$\frac{dy}{dx} = \frac{f'(2)}{4} = 0$$

$$\frac{dy}{dx} = \frac{f'(2)}{4} = -1$$