Disparity Compensated View Filters (DCVF): Experiments and Results

Pravin Kumar Rana

Sound and Image Processing Lab.(SIP)

KTH - Royal Institute of Technology

SE-10044 Stockholm, Sweden

Outline

- Unidirectional DCVF
- Bidirectional DCVF

Unidirectional DCVF

2009-03-27

Experiment with Unidirectional DCVF

$$d = \int f \cdot l \left(\frac{v}{255} \left(\frac{1.0}{Z_{near}} - \frac{1.0}{Z_{far}} \right) - \frac{1.0}{Z_{far}} \right) - \Delta d$$
 | $l = \text{Camera interval}$

= Disparity vector field

= Depth map intensity

= Camera focal length

 Δd = Camera offset

 Z_{near} = Farthest clipping plane

 Z_{far} = Nearest clipping plane

DCVF on the Modified Pantomime

Energy ratio = 0.46 %

DCVF on the Pantomime

Energy ratio = 0.42 %

DCVF on the dog

Energy ratio = 2.41 %

DCVF On the Champagne tower

Energy ratio = 2.01 %

Bidirectional Disparity Compensated View Filter

- Takes sequence of 3 views
- Consider up to two disparity vector fields per view
- Energy concentrated into two common views and one error view

Experiment-(1) with Bidirectional DCVF

(Legacy of the disparity field estimation tool)

Bidirectional Disparity Vector Field

DVF between Pantomime view 39 and 40

DVF between Pantomime view 40 and 41

Experiment -(1) Results

Energy ratio = 0.37 %

Error view

Common view between view 40 and 41

Common view between view 39 and 40

Experiment-(2) with Bidirectional DCVF

$$d = \int f \cdot l \cdot \left(\frac{v}{255} \left(\frac{1.0}{Z_{near}} - \frac{1.0}{Z_{far}} \right) - \frac{1.0}{Z_{far}} \right) - \Delta d \right)$$

Experiment –(2) Results

Energy ratio = 0.18 %

Error view

Common view between view 40 and 41

Common view between view 39 and 40

Experiment-(3) with Bidirectional DCVF

$$d = \int f \cdot l \cdot \left(\frac{v}{255} \left(\frac{1.0}{Z_{near}} - \frac{1.0}{Z_{far}} \right) - \frac{1.0}{Z_{far}} \right) - \Delta d \right)$$

Experiment –(3) Results

Energy ratio = 0.92%

Error view

Common view between view 40 and 41

Common view between view 39 and 40

Results

DVF Estimation Method	Test Data	Energy Ratio (%)
Unidirectional DCVF		
Experiment with UDCVF	Pantomime	0.42
Experiment with UDCVF	Modified Pantomime	0.46
Experiment with UDCVF	Dog	2.41
Experiment with UDCVF	Champagne Tower	2.01
Bidirectional DCVF		
Experiment -1	Pantomime	0.37
Experiment -2	Pantomime	0.18
Experiment -3	Pantomime	0.92

Conclusion

DVF extraction from the NDE reference software has its limitations due to depth map representation.

Future Directions

Explore more efficient DVF representation for the multiresolution analysis and synthesis.