Module EA4 – Éléments d'Algorithmique II Outils pour l'analyse des algorithmes

Dominique Poulalhon dominique.poulalhon@irif.fr

Université Paris Diderot L2 Informatique & Math-Info Année universitaire 2019-2020

Prochaines dates diverses

Vendredi 28 février, 10h-12h, salle 1021 (Sophie Germain) : débat sur la réforme des retraites avec Michaël Zemmour, économiste spécialiste du financement de la protection sociale

Contrôle nº 1 mercredi 4 mars après le cours

Amphis 8C et 13E de 16h à 17h30

Jeudi 5 mars : journée « l'université et la recherche s'arrêtent »

ALGORITHMES POUR LES ENSEMBLES

recherche(x, L)

recherche(x, L)

```
def recherche_sequentielle(x, L) :
   for elt in L :
    if elt == x : return True
   return False

(remarque : c'est ce que fait le test (x in L))
```

recherche(x, L)

```
variante : retourner une position où x apparaît
def recherche_sequentielle(x, L) :
   for (i, elt) in enumerate(L) :
     # liste des couples (position, contenu)
   if elt == x : return i
   return -1
```

recherche(x, L)

```
variante : retourner une position où x apparaît

def recherche_sequentielle(x, L) :
    for (i, elt) in enumerate(L) :
        # liste des couples (position, contenu)
        if elt == x : return i
        return -1

(remarque : c'est très exactement ce que fait L.index(x))
```

occurrences(x, L)

Étant donné une liste L et un élément x, compter les occurrences de x dans L

occurrences(x, L)

Étant donné une liste L et un élément x, compter les occurrences de x dans L

```
def occurrences(x, L) :
    res = 0
    for elt in L :
        if elt == x : res += 1
    return res

(remarque : c'est ce que fait L.count(x))
```

max(L)

Étant donné une liste L contenant des éléments *comparables*, déterminer le plus grand élément qui apparaît dans L

max(L)

Étant donné une liste L contenant des éléments *comparables*, déterminer le plus grand élément qui apparaît dans L

```
def max(L) :
  tmp = L[0]
  for elt in L :
    if elt > tmp : tmp = elt
  return tmp
```

opération(s) élémentaire(s)

- déplacements dans la liste
- comparaisons d'éléments
- (parfois) affectations, incrémentations de compteurs

opération(s) élémentaire(s)

- déplacements dans la liste
- comparaisons d'éléments
- (parfois) affectations, incrémentations de compteurs

toutes effectuées en nombre équivalent

⇒ pour simplifier, on ne compte que les comparaisons

opération(s) élémentaire(s)

• comparaisons d'éléments

$$\max(L)$$
 $\implies n-1=\Theta(n)$ comparaisons

opération(s) élémentaire(s)

• comparaisons d'éléments

$$\max(L)$$
 $\implies n-1 = \Theta(n)$ comparaisons

occurrences(x, L)
$$\Longrightarrow n = \Theta(n)$$
 comparaisons

opération(s) élémentaire(s)

• comparaisons d'éléments

recherche_sequentielle(x, L) \implies selon les cas, entre 1 et n comparaisons

opération(s) élémentaire(s)

• comparaisons d'éléments

$$\max(L)$$
 $\Longrightarrow n-1=\Theta(n)$ comparaisons

occurrences(x, L) $\Longrightarrow n = \Theta(n)$ comparaisons

recherche_sequentielle(x, L)

⇒ selon les cas, entre 1 et n comparaisons

⇒ on ne peut plus parler de « la » complexité

opération(s) élémentaire(s)

• comparaisons d'éléments

$$\max(L)$$
 $\implies n-1 = \Theta(n)$ comparaisons

occurrences(x, L) \Longrightarrow n =

 \implies $n = \Theta(n)$ comparaisons

recherche_sequentielle(x, L)

 \implies selon les cas, entre 1 et n comparaisons

⇒ on ne peut plus parler de « la » complexité

ullet $\Theta(n)$ comparaisons au pire – en particulier dans le cas défavorable

opération(s) élémentaire(s)

• comparaisons d'éléments

$$\max(L)$$
 $\implies n-1 = \Theta(n)$ comparaisons

occurrences(x, L)
$$\Longrightarrow$$
 $n = \Theta(n)$ comparaisons

recherche_sequentielle(x, L)

 \implies selon les cas, entre 1 et n comparaisons

- ⇒ on ne peut plus parler de « la » complexité
 - ullet $\Theta(n)$ comparaisons au pire en particulier dans le cas défavorable
 - n+1/2 = Θ(n) en moyenne dans le cas favorable (sous l'hypothèse que la position de l'élément cherché suit la probabilité uniforme)

opération(s) élémentaire(s)

• comparaisons d'éléments

$$\max(L)$$
 $\implies n-1 = \Theta(n)$ comparaisons

occurrences(x, L)
$$\Longrightarrow$$
 $n = \Theta(n)$ comparaisons

recherche_sequentielle(x, L)

 \implies selon les cas, entre 1 et n comparaisons

 \Longrightarrow on ne peut plus parler de « la » complexité

- ullet $\Theta(n)$ comparaisons au pire en particulier dans le cas défavorable
- $\frac{n+1}{2} = \Theta(n)$ en moyenne dans le cas *favorable*
- $\Theta(n)$ comparaisons en moyenne

Peut-on faire mieux que $\Theta(n)$?

max(T)

Étant donné un tableau T $tri\acute{e}$, déterminer le plus grand élément qui apparaı̂t dans T

max(T)

Étant donné un *tableau* T *trié*, déterminer le plus grand élément qui apparaît dans T

```
def max_si_trie(T) :
   if len(T) == 0 : return None
   return T[-1]
```

max(T)

Étant donné un tableau T $tri\acute{e}$, déterminer le plus grand élément qui apparaît dans T

```
def max_si_trie(T) :
   if len(T) == 0 : return None
   return T[-1]
```

 $\implies \Theta(1)$ comparaisons

recherche(x, T)

Étant donné un tableau T $tri\acute{e}$ et un élément x, déterminer si x apparaît dans T

recherche(x, T)

Étant donné un tableau T $tri\acute{e}$ et un élément x, déterminer si x apparaît dans T

Idée 1 : interrompre la recherche séquentielle

```
def recherche_sequentielle(x, L) :
  for elt in L :
    if elt == x : return True
    else if elt > x : return False
    return False
```

recherche(x, T)

Étant donné un tableau T $tri\acute{e}$ et un élément x, déterminer si x apparaît dans T

Idée 1 : interrompre la recherche séquentielle

```
def recherche_sequentielle(x, L) :
  for elt in L :
    if elt == x : return True
    else if elt > x : return False
    return False
```

 \implies cas favorable inchangé, et tout de même $\Theta(n)$ comparaisons au pire et en moyenne dans le cas défavorable

recherche(x, T)

Étant donné un tableau T $tri\acute{e}$ et un élément x, déterminer si x apparaît dans T

```
Idée 2 : la dichotomie (stratégie « diviser pour régner »)

def recherche_dicho(x, T) : # ATTENTION version trop naïve
  if len(T) == 0 : return False
  milieu = len(T)//2
  if x == T[milieu] : return True
  elif x < T[milieu] : return recherche_dicho(x, T[:milieu])
  else : return recherche_dicho(x, T[milieu+1:])</pre>
```

```
def recherche_dicho(x, T) : # ATTENTION version trop naïve
  if len(T) == 0 : return False
  milieu = len(T)//2
  if x == T[milieu] : return True
  elif x < T[milieu] : return recherche_dicho(x, T[:milieu])
  else : return recherche_dicho(x, T[milieu+1:])</pre>
```

Quelle complexité?

Recherche dans un tableau trié

```
def recherche_dicho(x, T) : # ATTENTION version trop naïve
  if len(T) == 0 : return False
  milieu = len(T)//2
  if x == T[milieu] : return True
  elif x < T[milieu] : return recherche_dicho(x, T[:milieu])
  else : return recherche_dicho(x, T[milieu+1:])</pre>
```

Quelle complexité?

$$C(n) = 2 + C(\lfloor \frac{n}{2} \rfloor)$$
 comparaisons (au pire) pour T de taille n

```
def recherche_dicho(x, T) : # ATTENTION version trop naïve
  if len(T) == 0 : return False
  milieu = len(T)//2
  if x == T[milieu] : return True
  elif x < T[milieu] : return recherche_dicho(x, T[:milieu])
  else : return recherche_dicho(x, T[milieu+1:])</pre>
```

Quelle complexité?

 $C(n) = 2 + C(\lfloor \frac{n}{2} \rfloor)$ comparaisons (au pire) pour T de taille n

 $\implies \Theta(\log n)$ comparaisons au pire

```
def recherche_dicho(x, T) : # ATTENTION version trop naïve
  if len(T) == 0 : return False
  milieu = len(T)//2
  if x == T[milieu] : return True
  elif x < T[milieu] : return recherche_dicho(x, T[:milieu])
  else : return recherche_dicho(x, T[milieu+1:])</pre>
```

Quelle complexité?

$$C(n) = 2 + C(\left\lfloor \frac{n}{2} \right\rfloor)$$
 comparaisons (au pire) pour T de taille n

 $\implies \Theta(\log n)$ comparaisons au pire

mais cette implémentation n'est pas de complexité $\Theta(\log n)$ à cause des recopies de tableaux \implies il faut être plus soigneux

sans_doublons(L)

Étant donné une liste L, construire une liste contenant une et une seule occurrence de chaque élément apparaissant dans L

sans_doublons(L)

Étant donné une liste L, construire une liste contenant une et une seule occurrence de chaque élément apparaissant dans L

```
def sans_doublons(L) :
   res = []
   for elt in L :
     if not recherche(elt, res) : res += [elt]
   return res
```

sans_doublons(L)

Étant donné une liste L, construire une liste contenant une et une seule occurrence de chaque élément apparaissant dans L

```
def sans_doublons(L) :
   res = []
   for elt in L :
     if not recherche(elt, res) : res += [elt]
   return res
```

n tours de boucle, le i^e faisant $\Theta(i)$ comparaisons (au pire)

sans_doublons(L)

Étant donné une liste L, construire une liste contenant une et une seule occurrence de chaque élément apparaissant dans L

```
def sans_doublons(L) :
   res = []
   for elt in L :
      if not recherche(elt, res) : res += [elt]
   return res
```

n tours de boucle, le i^e faisant $\Theta(i)$ comparaisons (au pire)

```
\Longrightarrow \Theta(n^2) comparaisons (au pire)
```

Supprimer les doublons d'une liste triée

sans_doublons(L)

Étant donné une liste L tri'ee, construire une liste contenant une et une seule occurrence de chaque élément apparaissant dans L

Supprimer les doublons d'une liste triée

sans_doublons(L)

Étant donné une liste L *triée*, construire une liste contenant une et une seule occurrence de chaque élément apparaissant dans L

```
def sans_doublons(L) :
  if len(L) == 0 : return []
  res = [L[0]]
  for elt in L[1:] :
    if elt != res[-1] : res += [elt]
    # res[-1] : dernier élément de res
  return res
```

Supprimer les doublons d'une liste triée

sans_doublons(L)

Étant donné une liste L *triée*, construire une liste contenant une et une seule occurrence de chaque élément apparaissant dans L

```
def sans_doublons(L) :
   if len(L) == 0 : return []
   res = [L[0]]
   for elt in L[1:] :
      if elt != res[-1] : res += [elt]
      # res[-1] : dernier élément de res
   return res
```

 $\Longrightarrow \Theta(n)$ comparaisons dans tous les cas

RÉCAPITULONS...

	liste chaînée		tableau	
	non triée	triée	non trié	trié
minimum/maximum	$\Theta(\mathfrak{n})$	Θ(1)	$\Theta(\mathfrak{n})$	Θ(1)
test d'appartenance	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$\Theta(\log n)$
nombre d'occurrences	$\Theta(\mathfrak{n})$	$\Theta(n)$	$\Theta(\mathfrak{n})$	$\Theta(\log n)$
sans doublons	$\Theta(\mathfrak{n}^2)$	$\Theta(n)$	$\Theta(n^2)$	$\Theta(n)$
sélection du k ^e	$\Theta(kn)$	$\Theta(k)$	Θ(kn)	Θ(1)

RÉCAPITULONS...

	liste chaînée		tableau	
	non triée	triée	non trié	trié
minimum/maximum	$\Theta(\mathfrak{n})$	Θ(1)	$\Theta(\mathfrak{n})$	Θ(1)
test d'appartenance	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$\Theta(\log n)$
nombre d'occurrences	$\Theta(\mathfrak{n})$	$\Theta(n)$	$\Theta(\mathfrak{n})$	$\Theta(\log n)$
sans doublons	$\Theta(n^2)$	$\Theta(n)$	$\Theta(n^2)$	$\Theta(n)$
sélection du k ^e	Θ(kn)	$\Theta(k)$	Θ(kn)	Θ(1)

Moralité...

peut-être que ça vaut le coup de trier les listes!

TRIER UNE LISTE

tri(L)

Étant donné une liste L d'éléments comparables, construire la liste des éléments de L classés en ordre croissant

TRIER UNE LISTE

tri(L)

Étant donné une liste L d'éléments comparables, construire la liste des éléments de L classés en ordre croissant

tri_en_place(L)

Étant donné une liste L d'éléments comparables, réordonner les éléments de L en ordre croissant

(sans création de liste supplémentaire)

Exemple:

3 5 1 7 4 6 2

Exemple:

 $oxed{2}$

Exemple:

5 7 4 6

 $egin{bmatrix} m{1} \end{bmatrix} m{2} m{3}$

Exemple:

 $egin{bmatrix} 1 \ \end{bmatrix} egin{bmatrix} 2 \ \end{bmatrix} egin{bmatrix} 3 \ \end{bmatrix}$

Exemple:

5 [7]

 $oxed{1} oxed{2} oxed{3} oxed{4}$

Exemple:

 $egin{pmatrix} oldsymbol{1} egin{pmatrix} oldsymbol{2} oldsymbol{3} egin{pmatrix} oldsymbol{4} \end{pmatrix}$

Exemple:

 $\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix}$

Exemple:

 $oxed{1} oxed{2} oxed{3} oxed{4} oxed{5}$

Exemple:

 $egin{bmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ \end{bmatrix}$

Exemple:

7

 $\boxed{1}\boxed{2}\boxed{3}\boxed{4}\boxed{5}\boxed{6}$

Exemple:

1234567

tri(L)

Étant donné une liste L d'éléments comparables, construire la liste des éléments de L classés en ordre croissant

```
def tri_selection(L) :
  res = []
  while(L != []) :
    m = minimum(L)
    L.remove(m)
    res.append(m)
  return res
```

Tri par sélection

tri_en_place(L)

Étant donné une liste L d'éléments comparables, réordonner les éléments de L en ordre croissant

```
def tri_selection(T) :
  for i in range(len(T)) :
    min = indice_minimum(T, i)
    # indice du plus petit élément de T[i:]
    T[i], T[min] = T[min], T[i]
  return T
```

TRIER UNE LISTE

tri(L)

Étant donné une liste L d'éléments comparables, construire la liste des éléments de L classés en ordre croissant

Taille de l'entrée

= longueur de la liste

Opérations élémentaires prises en compte

- comparaisons entre éléments de la liste
- échanges d'éléments de la liste

Exemple:

 $\boxed{3\ 5\ 1\ 7\ 4\ 6\ 2}$

```
def tri_insertion(L) :
  res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:

3 5 1 7 4 6 2

```
def tri_insertion(L) :
  res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:

 $oxed{3}$

```
def tri_insertion(L) :
  res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:

```
5 1 7 4 6 2
```

 $oxed{3}$

```
def tri_insertion(L) :
  res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:

3 5

```
def tri_insertion(L) :
  res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:

 $oxed{3} oxed{5}$

```
def tri_insertion(L) :
  res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:

7 4 6 2


```
def tri_insertion(L) :
  res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:


```
def tri_insertion(L) :
  res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:

 $oxed{4} oxed{6} oxed{2}$


```
def tri_insertion(L) :
  res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:

4 6 2


```
def tri_insertion(L) :
  res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:

6 2

```
\begin{array}{|c|c|c|c|c|c|}\hline 1 & 3 & \color{red} \color{red} \color{red} \color{blue} \color{blu
```

```
def tri_insertion(L) :
  res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:

6 2

 $oxed{1} oxed{3} oxed{4} oxed{5} oxed{7}$

```
def tri_insertion(L) :
  res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:

2

1 3 4 5 6 7

```
def tri_insertion(L) :
  res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:

2

1 3 4 5 6 7

```
def tri_insertion(L) :
   res = []
   for elt in L : insertion_triee(elt, res)
   return res
```

Exemple:

```
1 2 3 4 5 6 7
```

```
def tri_insertion(L) :
  res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

Exemple:

1234567

```
def tri_insertion(L) :
  res = []
  for elt in L : insertion_triee(elt, res)
  return res
```

```
def tri_insertion(L) :
 res = []
 for elt in L : insertion_triee(elt, res)
 return res
def insertion_triee(x, L) :
 for elt in L:
   if x < elt : break
  ## insertion de x avant elt dans L
  return res
```

```
def insertion_triee(x, L) :
   for elt in L :
    if x < elt : break
## insertion de x avant elt dans L
   return res</pre>
```

Cas d'une liste chaînée

insertion par modification du chaînage

Cas d'un tableau

insertion par déplacements multiples

```
def insertion_triee(x, L) :
   for elt in L :
    if x < elt : break
## insertion de x avant elt dans L
   return res</pre>
```

Cas d'une liste chaînée

insertion par modification du chaînage

 \implies coût constant

Cas d'un tableau

insertion par déplacements multiples

 \implies coût linéaire

$$\boxed{3\ 5\ 1\ 7\ 4\ 6\ 2}$$

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
3 5 1 7 4 6 2
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
3 1 5 7 4 6 2
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
1 3 4 5 6 7 2
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
1 3 4 5 6 7 2
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
1 3 4 5 6 2 7
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
1345267
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
1 3 4 2 5 6 7
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
1 3 2 4 5 6 7
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

```
    1
    2
    3
    4
    5
    6
    7
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

(ajout par rapport aux slides projetés en cours)

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

Remarque : pour avoir un « meilleur cas » en $\Theta(n)$, il est important d'effectuer le parcours de droite à gauche – sinon la complexité serait $\Theta(n^2)$ dans tous les cas.

COMPLEXITÉ

Tri par sélection $\Theta(n^2)$ comparaisons dans tous les cas

Tri par insertion

 $\Theta(n^2)$ comparaisons au pire

Questions

- peut-on être plus précis pour le tri par insertion?
- peut-on faire mieux que $\Theta(n^2)$ au pire?