Product review analysis

ML - Penalized logistic regression modeling

Hampus Nordholm

2024-09-22

Intro

Analyzing iPhone reviews to predict whether a review description corresponds to a five-star rating or not. For classification, a penalized logistic regression model (LASSO) was used to identify which words in the review descriptions influence a five-star rating and which words that pushes against a lower rating. Additionally, exploratory data analysis (EDA) was conducted prior to ML-modeling to understand and explore patterns within the dataset.

Solution summary

The final logistic model achieved an accuracy of 0.689 and a ROC AUC of 0.75 after tuning. The model revealed several important words that influence whether a review receives a five-star rating. The visualization below highlights the 20 most significant words that either support or detract from achieving a five-star rating.

Notably, words like "battery," "heating," and "charging" are associated with lower ratings, indicating areas where improvements can be made to improve the product's performance and customer satisfaction.

Core syntax for analysis

```
# LIBRARIES --
#Data analysis
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4
                        v readr 2.1.5
## v forcats 1.0.0 v stringr 1.5.1
## v ggplot2 3.5.1 v tibble 3.2.1
## v lubridate 1.9.3 v tidyr 1.3.1
## v purrr
              1.0.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(skimr)
library(tidytext)
# Machine learning --
library(tidymodels)
## -- Attaching packages ------ tidymodels 1.2.0 --
## v broom 1.0.6 v rsample 1.2.1
## v dials 1.2.1 v tune 1.2.1
## v infer 1.0.7 v workflows 1.1.4
## v modeldata 1.4.0 v workflowsets 1.1.0
## v parsnip 1.2.1 v yardstick 1.3.1
## v recipes
                 1.0.10
## -- Conflicts ----- tidymodels conflicts() --
## x scales::discard() masks purrr::discard()
## x dplyr::filter() masks stats::filter()
## x recipes::fixed() masks stringr::fixed()
## x dplyr::lag() masks stats::lag()
## x yardstick::spec() masks readr::spec()
## x recipes::step() masks stats::step()
## * Search for functions across packages at https://www.tidymodels.org/find/
library(textrecipes)
library(vip)
##
## Attaching package: 'vip'
## The following object is masked from 'package:utils':
##
##
       vi
```

```
# READ DATA --
iphone_tbl <- read_csv("iphone.csv")

## Rows: 3062 Columns: 11
## -- Column specification ------
## Delimiter: ","
## chr (9): productAsin, country, date, reviewTitle, reviewDescription, reviewU...
## dbl (1): ratingScore
## lgl (1): isVerified
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.

# DATA EXAMINATION --
iphone_tbl %>% skim()
```

Table 1: Data summary

Name Number of rows Number of columns	Piped data 3062 11
Column type frequency:	
character logical	9 1
numeric	1
Group variables	None

Variable type: character

skim_variable	$n_{missing}$	$complete_rate$	min	max	empty	n_unique	whitespace	
productAsin	0	1.00	10	10	0	7	0	
country	0	1.00	5	20	0	7	0	
date	0	1.00	10	10	0	789	0	
reviewTitle	0	1.00	1	150	0	2018	0	
reviewDescription	86	0.97	1	3885	0	2297	0	
reviewUrl	16	0.99	102	108	0	2460	0	
reviewedIn	0	1.00	31	57	0	1255	0	
variant	0	1.00	22	58	0	86	0	
variant Asin	0	1.00	10	10	0	99	0	

Variable type: logical

$skim_variable$	$n_{missing}$	$complete_rate$	mean	count
isVerified	0	1	0.93	TRU: 2850, FAL: 212

Variable type: numeric

skim_variable	n_missing	$complete_rate$	mean	sd	p0	p25	p50	p75	p100	hist
ratingScore	0	1	3.76	1.58	1	3	5	5	5	

```
iphone_tbl %>% glimpse()
```

```
## Rows: 3,062
## Columns: 11
                       <chr> "B09G9BL5CP", "B09G9BL5CP", "B09G9BL5CP", "B09G9BL5C~
## $ productAsin
## $ country
                       <chr> "India", "India", "India", "India", "India", "India"~
                       <chr> "11-08-2024", "16-08-2024", "14-05-2024", "24-06-202~
## $ date
## $ isVerified
                       <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE~
                       <dbl> 4, 5, 4, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 4, 5, 3, 5~
## $ ratingScore
                       <chr> "No charger", "iPhone 13 256GB", "Flip camera option~
## $ reviewTitle
## $ reviewDescription <chr> "Every thing is good about iPhones, there's nothing ~
## $ reviewUrl
                       <chr> "https://www.amazon.in/gp/customer-reviews/R345SEIPU~
                       <chr> "Reviewed in India on 11 August 2024", "Reviewed in ~
## $ reviewedIn
                       <chr> "Colour: MidnightSize: 256 GB", "Colour: MidnightSiz~
## $ variant
                       <chr> "B09G9BQS98", "B09G9BQS98", "B09G9BQS98", "B09G9BQS9~
## $ variantAsin
# EXPLORATORY DATA ANALYSIS -- (EDA)
# Ratingscore distribution --
iphone_tbl %>%
  ggplot(aes(ratingScore))+
 geom_histogram()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
iphone_tbl %>%
  ggplot(aes(ratingScore,fill=isVerified))+
  geom_histogram(alpha=0.7,position="Dodge")
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Joining with `by = join_by(word)`

50 most common words used within reviewdescription


```
# ** PENALIZED LOGISTIC REGRESSION MODEL ** (LASSO)

# Creating binary variable for 5 star rating TRUE/FALSE -- NA removal description --

iphone_tbl <- iphone_tbl %>%
    filter(!is.na(reviewDescription)) %>%
    mutate(toprated=if_else(ratingScore==5,"TRUE","FALSE"))

iphone_tbl %>%
    count(toprated)
```

```
## # A tibble: 2 x 2
## toprated n
## <chr> <int> ## 1 FALSE 1423
## 2 TRUE 1553
```

```
# ML train and testing split **
set.seed(123)
iphone_split <- initial_split(data=iphone_tbl,strata=toprated)
iphone_training <- training(iphone_split)
iphone_testing <- testing(iphone_split)</pre>
```

```
# Model recipe --
iphone_rec <- recipe(toprated ~ reviewDescription,data=iphone_training) %>%
  step_tokenize(reviewDescription) %>%
  step_stopwords(reviewDescription) %>%
  step_tokenfilter(reviewDescription,max_tokens=100) %>%
  step_tfidf(reviewDescription) %>%
  step_normalize(all_predictors())
# Penalized logistic (lasso) model spec --
lasso_spec <- logistic_reg(penalty=tune(),mixture=1) %>%
 set_engine("glmnet")
# Recipe and model spec into workflow --
lasso wf <- workflow() %>%
  add_recipe (iphone_rec) %>%
 add_model (lasso_spec)
lasso_wf
## == Workflow ==============
## Preprocessor: Recipe
## Model: logistic_reg()
## 5 Recipe Steps
## * step_tokenize()
## * step stopwords()
## * step_tokenfilter()
## * step_tfidf()
## * step_normalize()
## -- Model -----
## Logistic Regression Model Specification (classification)
##
## Main Arguments:
##
   penalty = tune()
    mixture = 1
## Computational engine: glmnet
# Model tuning --
lambda_grid <- grid_regular(penalty(),levels=30)</pre>
# Bootstraps resampling --
set.seed(123)
iphone_folds <- bootstraps(iphone_training,strata=toprated)</pre>
```

```
# Lasso grid --
set.seed(2020)
lasso grid <- tune grid(lasso wf,
         resamples=iphone_folds,
         grid=lambda_grid)
## Warning: package 'stopwords' was built under R version 4.3.3
## Warning: package 'glmnet' was built under R version 4.3.3
lasso_grid
## # Tuning results
## # Bootstrap sampling using stratification
## # A tibble: 25 x 4
##
     splits
                        id
                                    .metrics
                                                      .notes
##
     t>
                        <chr>
                                    t>
                                                      t>
## 1 <split [2231/808] > Bootstrap01 <tibble [90 x 5] > <tibble [0 x 3] >
## 2 <split [2231/827]> Bootstrap02 <tibble [90 x 5]> <tibble [0 x 3]>
## 3 <split [2231/809]> Bootstrap03 <tibble [90 x 5]> <tibble [0 x 3]>
## 4 <split [2231/846] > Bootstrap04 <tibble [90 x 5] > <tibble [0 x 3] >
## 5 <split [2231/834]> Bootstrap05 <tibble [90 x 5]> <tibble [0 x 3]>
## 6 <split [2231/843]> Bootstrap06 <tibble [90 x 5]> <tibble [0 x 3]>
## 7 <split [2231/825]> Bootstrap07 <tibble [90 x 5]> <tibble [0 x 3]>
## 8 <split [2231/815]> Bootstrap08 <tibble [90 x 5]> <tibble [0 x 3]>
## 9 <split [2231/821]> Bootstrap09 <tibble [90 x 5]> <tibble [0 x 3]>
## 10 <split [2231/830] > Bootstrap10 <tibble [90 x 5] > <tibble [0 x 3] >
## # i 15 more rows
lasso_grid %>%
 collect_metrics()
## # A tibble: 90 x 7
      penalty .metric
                          .estimator mean
                                             n std_err .config
        <dbl> <chr>
##
                          <chr> <dbl> <int>
                                                   <dbl> <chr>
## 1 1
        e-10 accuracy
                          binary
                                     0.672
                                              25 0.00299 Preprocessor1_Model01
## 2 1 e-10 brier_class binary
                                              25 0.00114 Preprocessor1_Model01
                                     0.215
## 3 1 e-10 roc_auc
                          binary
                                     0.725
                                              25 0.00235 Preprocessor1_Model01
## 4 2.21e-10 accuracy
                          binary
                                     0.672
                                              25 0.00299 Preprocessor1_Model02
## 5 2.21e-10 brier_class binary
                                     0.215
                                              25 0.00114 Preprocessor1_Model02
## 6 2.21e-10 roc_auc
                          binary
                                     0.725
                                              25 0.00235 Preprocessor1_Model02
## 7 4.89e-10 accuracy
                                   0.672
                                              25 0.00299 Preprocessor1_Model03
                          binary
## 8 4.89e-10 brier_class binary
                                     0.215
                                              25 0.00114 Preprocessor1_Model03
## 9 4.89e-10 roc_auc
                          binary
                                     0.725
                                              25 0.00235 Preprocessor1_Model03
## 10 1.08e- 9 accuracy
                          binary
                                     0.672
                                              25 0.00299 Preprocessor1_Model04
## # i 80 more rows
# BEST PENALTY FROM LASSO GRID --
best_auc <- lasso_grid %>%
```

```
select_best(metric="roc_auc")
best_auc
## # A tibble: 1 x 2
    penalty .config
##
       <dbl> <chr>
## 1 0.00853 Preprocessor1_Model24
# Final workflow --
final_lasso <- finalize_workflow(lasso_wf,best_auc)</pre>
# Fit training data --
final_fit <- final_lasso %>%
 fit(iphone_training) %>%
pull_workflow_fit()%>%
vi(lambda=best_auc$penalty)
# Logistic reg model word importance visual --
final_fit %>%
  group_by(Sign) %>%
  top_n(20,wt=abs(Importance)) %>%
  ungroup() %>%
  mutate(Importance=abs(Importance),
         Variable=str_remove(Variable, "tfidf_reviewDescription_"),
         Variable=fct_reorder(Variable,Importance)) %>%
  ggplot(aes(Importance, Variable, fill=Sign))+
  geom_col(show.legend=FALSE)+
  facet_wrap(~Sign,scales="free_y")
```



```
# -- Final logistic model evaluation on testing DATA --
iphone_final <- last_fit(final_lasso,iphone_split)</pre>
#Accuracy , ROC_AUC
iphone_final %>%
  collect_metrics()
## # A tibble: 3 x 4
     .metric
##
                  .estimator .estimate .config
##
     <chr>>
                 <chr>>
                                 <dbl> <chr>
## 1 accuracy
                 binary
                                 0.689 Preprocessor1_Model1
## 2 roc_auc
                 binary
                                 0.750 Preprocessor1_Model1
## 3 brier_class binary
                                 0.202 Preprocessor1_Model1
#Predictions
iphone_final %>%
  collect_predictions()
```

0.671 train/test split

0.927 train/test split

0.504 train/test split

<dbl> <chr>

.row toprated .config

<chr>

Preproces~

Preproces~

Preproces~

<int> <fct>

9 FALSE

21 TRUE

25 TRUE

A tibble: 745 x 7

<fct>

1 TRUE

2 TRUE

3 TRUE

.pred_class .pred_FALSE .pred_TRUE id

<dbl>

0.329

0.0731

0.496

##

##

##

##

```
## 4 TRUE
                    0.436
                                0.564 train/test split
                                                        34 TRUE
                                                                   Preproces~
## 5 FALSE
                     0.785
                                0.215 train/test split
                                                                   Preproces~
                                                        38 FALSE
## 6 TRUE
                     0.349
                                0.651 train/test split
                                                        39 FALSE
                                                                   Preproces~
## 7 TRUE
                     0.492
                                0.508 train/test split
                                                        41 TRUE
                                                                   Preproces~
                                0.772 train/test split
## 8 TRUE
                                                        43 TRUE
                                                                   Preproces~
                     0.228
## 9 FALSE
                     0.583
                                0.417 train/test split
                                                        51 FALSE
                                                                   Preproces~
                                0.596 train/test split
                                                                   Preproces~
## 10 TRUE
                     0.404
                                                        52 FALSE
## # i 735 more rows
```

```
#Confusion matrix
iphone_final %>%
  collect_predictions() %>%
  conf_mat(truth=toprated,estimate=.pred_class)
```

```
## Truth
## Prediction FALSE TRUE
## FALSE 215 91
## TRUE 141 298
```