1. consider the systems 5, and 52 whose 1Plop relationships are given below:

$$S_1: y[n] = \left(x\left[\frac{3n}{2}\right], n \text{ even}\right)$$

$$S_2$$
: $Y[n] = x[2n]$

a) Let Sa be the following cascade system:

15 Sa invertible? Justify your answer.

b) Let 56 be the following cascade system:

$$\longrightarrow [S_2] \longrightarrow [S_1] \longrightarrow$$

15 Sb invertible? Justify your answer.

2. Below are three 1910p pairs of some system S. The signals are null where unspecified.

$$(i) \xrightarrow{2 \times [n]} \rightarrow \boxed{S} \rightarrow \boxed{9,[n]}$$

(iii)
$$\begin{array}{c} \stackrel{2}{\longrightarrow} X_3[n] \\ \stackrel{\circ}{\longrightarrow} 123 \\ \stackrel{\circ}{\longrightarrow} 123 \\ \end{array}$$

- Soln: It could be, but we need to see all possible 1910P pairs to know for sure that it is.
- b) suppose S is T1. Is it invertible?

 Soln: No. Note that by time-invariance,

 we have $x_2[n-1] \rightarrow y_2[n-1] = y_1[n]$.

 But $x_1[n] \neq x_2[n-1]$, and so the

 System S is not one-to-one, and

 therefore cannot have an inverse.

3.

Consider the signals X [n] and h[n] given below. Assume they are null where unspecified.

Find the

convolution y[n] = x[n] * h[n]

Soln:

4[0] = 0 453 = 2

Slide X[K]

Alternatively, solve using distributive property of convolution:

 $x, [n] = \{ ...0200... \}$ So that $x[n] = x, [n] + x_2[n]$ $\chi_{2}[n] = \{ ...0010... \}$

 \times [N] \times \times [N] = $(\times$, [N] + \times 2[N] \times \times [N] = \times , [N] \times \times [N] \times \times [N] \times (By the sifting property of S[n]) > = 2 h[n-1] + h[n-2] = 25[n-1] * k[n] + 5[n-2] * h[n] 4. Find the convolution of x [n] and h [n] below.

$$x[n] = n(u[n-1]-u[n-5])$$

 $h[n] = u[n+1] - u[n-2]$

Soln:
$$\times [n] = \times [n]$$

 $h[n] = S[n+1] + S[n] + S[n-1]$
 $\times [n] * h[n] = \times [n+1] + \times [n] + \times [n-1]$