

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ánalisis Funcional

Semestre curso: 2do Semestre

${\bf \acute{I}ndice}$

Ι	Espacios de Banach	3
1.	Introducción a los Espacios de Banach	3

Preliminares

Contenidos

- 1) Espacios de Banach: Definiciones Básicas, Hahn-Banach, Consecuencias del Teorema de Bairi
- 2) Espacios de Hilbert: Definiciones, Bases Hilbertianas, Proyección Dual de un Hilbert, Lax-Milgram
- 3) Topologías débiles: Espacios reflexivos
- 4) Teoría Espectral

Textos

- Reed and Simon (Functional Analysis)
- Rudin (Functional Analysis)
- Hain Brenzin

Interrogaciones

3 Interrogaciones + 1 Examen. Si hay exención sería con 6

Fechas

- I1: Semana 23-27/9
- I2: Semana 14-19/10
- I3: Semena 18-22/11

Ex: Semana 2-6/12

Parte I

Espacios de Banach

1. Introducción a los Espacios de Banach

Definición 1.1 (Espacio de Banach). Sea E un e.v., una función $\|\cdot\|$ tq

- $\|x\| \ge 0 \forall x \in E, \|x\| = 0 \iff x = 0$
- $||x + y|| \le ||x|| + ||y||, \forall x, y, \in R$

Ejemplo: 1.1. En
$$\mathbb{C}^n$$
, si $z \in \mathbb{C}^n$, $z = (z_1, \dots, z_n) ||z||_p = \left(\sum_{j=1}^n |z_j|^p\right)^{1/p}$

Ejemplo: 1.2. Si (X, \mathcal{B}, μ) es e. de medida y si $1 \leq p < \infty$, $E = L^p(X)$; La norma es $||[f]|| = (\int_X |f(x)|^p dx)^{1/p}$

Observación 1.1. Si $\|\cdot\|$ es norma en E, entonces $d_E(x,y) = \|x-y\|$ es una métrica o distancia en E.

Definición 1.2 (Espacio de Banach). E e.v. con norma $\|\cdot\|$ se dice espacio de Banach si es completo con respecto a d_E .

Ejemplo: 1.3. Todos los anteriores son Banach

Ejemplo: 1.4. Sea $\Omega \subseteq \mathbb{R}^n$ abierto, y sea $E = \{f : \Omega \to \mathbb{R}, \text{continúa tq } \int_{\Omega} |f(x)| \, \mathrm{d}x < \infty \}$ en E, $||f||_1 = \int_{\Omega} |f(x)| \, \mathrm{d}x < \infty$ es norma

Ejemplo: 1.5. Sea E un e.v. con norma, y sea $x_n \in E$ tal que $\sum_{k=1}^{\infty} |x_n| < \infty$

Q: Si $s_n = \sum_{k=1}^n x_k$, ¿qué podemos decir de s_n ?

Si $1 \le m < n$ entonces $s_n - s_m = \sum_{k=m+1}^n x_k$, luego $||s_n - s_m|| \le \sum_{k=m+1}^n ||x_k|| \le \sum_{k=m+1}^\infty ||x_k||$

De aquí no es difícil ver que, como $\sum_{k=1}^{\infty} ||x_k|| < \infty$. Entonces s_n es de Cauchy. Ciertamente s_n tiene límite en E cuando E es de Banach.

Definición 1.3 (Convergencia Absoluta). Un E e.v. con norma, si $x_n \in E$ es tq $\sum_{k=1}^{\infty} ||x_k|| < \infty$, diremos que la serie es absolutamente convergente

Definición 1.4 (Convergencia en Norma). Si $s_n = \sum_{k=1}^n x_k$ es convergente en E converge respecto a d_E , diremos que s_n converge en norma

Proposición 1.1. Si E es Banach y $\sum_{k=1}^{\infty} ||x_k|| < \infty$, entonces $s = \lim_{n \to \infty} s_n$ converge en norma. (Notación: $s = \sum_{k=1}^{\infty} x_k$) Recíprocamente si E e.v. con norma y si cada serie absolutamente convergente es también convergente en norma, entonces E es Banach.

 $Demostración. \iff : Listo anteriormente.$

 \Longrightarrow : Sea x_n de Cauchy en E. Claramente, basta encontrar x_{n_k} convergente. Como x_n es de Cauchy, existe x_{n_k} tq $\left\|x_{n_k}-x_{n_{k-1}}\right\| \leq \frac{1}{2^k}$ si esto es verdad.

$$x_{n_k} - x_{n_1} = \sum_{j=2}^k (x_{n_j} - x_{n_{j-1}})$$

Pero $\sum_{j=2}^{\infty} \|x_{n_k} - x_{n_{k-1}}\| \le \sum_{j=2}^{\infty} \frac{1}{2^k} < \infty$ así que $x_{n_k} - n_{n_1} \to x \implies x_{n_k} \to x + n_{n_1}$. Para ver que $\exists x_{n_k}$ con $\|x_{n_k} - x_{n_{k-1}}\| \le \frac{1}{2^k}$, sea k = 1, para $\varepsilon = \frac{1}{2} \exists n_1$ tq $\|x_n - x_m\| \le \frac{1}{2} \forall n, m \ge n_1$, esto da n_1 . Si $1 \le n_1 < \ldots < n_k$ son tq $\|x_{n_j} - x_{n_{j-1}}\| \le \frac{1}{2^j}$, $j = 1, \ldots, k-1$, $\|x_n - x_m\| < \frac{1}{2^k} \forall n, m \ge n_k$, sea $\varepsilon = \frac{1}{2^{k+1}}$. Sea $n_{k+1} > n_k$ tq $\|x_{n_{k+1}} - x_{n_k}\| \le \frac{1}{2^{k+1}}$. Esto construye x_{n_k} .

Ejemplo: 1.6. $M^n(\mathbb{R})$ matrices de $n \times n$ en \mathbb{R} , $A \in M^n(\mathbb{R})$ entonces $||A|| = (\operatorname{tr}(A^T A))^{1/2}$