

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

CKE 2013	UZUP	EŁNIA ZDAJĄCY	miejsce
0	KOD	PESEL	miejsce na naklejkę
Jkład graficzny			

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM ROZSZERZONY

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 20 stron (zadania 1–11). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Ш	Ш	Ш	Ш		Ш	Ш		Ш
Ш	Ш	Ш	Ш	ш		Ш		Ш
ш	ш							ш

UZUPEŁNIA ZESPÓŁ
NADZORUJĄCY

Uprawnienia zdającego do:

	dostosowania kryteriów oceniania
	nieprzenoszenia
	zaznaczeń na karte

9 MAJA 2018

Godzina rozpoczęcia: 9:00

Czas pracy: 180 minut

Liczba punktów do uzyskania: 50

MMA-R1 **1**P-182

Zadanie 1. (4 pkt) Rozwiąż równanie 3|x+2| = |x-3|+11.

Odpowiedź:

aggaminator	Nr zadania	1.
	Maks. liczba pkt	4
	Uzyskana liczba pkt	

Zadanie 2. (5 pkt)

Liczby a, b, c, spełniające warunek 3a+b+3c=77, są odpowiednio pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego. Ciąg (a,b+1,2c) jest geometryczny. Wyznacz liczby a, b, c oraz podaj wyrazy ciągu geometrycznego.

aggaminator	Nr zadania	2.
	Maks. liczba pkt	5
	Uzyskana liczba pkt	

Zadanie 3. (5 pkt)

Dany jest czworokąt wypukły ABCD, w którym |AD| = |AB| = |BC| = a, $| \not \prec BAD | = 60^{\circ}$ i $| \not \prec ADC | = 135^{\circ}$. Oblicz pole czworokąta ABCD.

aggaminator	Nr zadania	3.
	Maks. liczba pkt	5
	Uzyskana liczba pkt	

Zadanie 4. (4 pkt)

Z liczb ośmioelementowego zbioru $Z = \{1, 2, 3, 4, 5, 6, 7, 9\}$ tworzymy ośmiowyrazowy ciąg, którego wyrazy nie powtarzają się. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że żadne dwie liczby parzyste nie są sąsiednimi wyrazami utworzonego ciągu. Wynik przedstaw w postaci ułamka zwykłego nieskracalnego.

	Nr zadania	4.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 5. (3 pkt)

Trójkąt ABC jest ostrokątny oraz |AC| > |BC|. Dwusieczna d_C kąta ACB przecina bok AB w punkcie K. Punkt L jest obrazem punktu K w symetrii osiowej względem dwusiecznej d_A kąta BAC, punkt M jest obrazem punktu L w symetrii osiowej względem dwusiecznej d_C kąta ACB, a punkt N jest obrazem punktu M w symetrii osiowej względem dwusiecznej d_B kąta ABC (zobacz rysunek).

Udowodnij, że na czworokącie KNML można opisać okrąg.

Zadanie 6. (3 pkt)

Udowodnij, że dla każdej liczby całkowitej k i dla każdej liczby całkowitej m liczba $k^3m - km^3$ jest podzielna przez 6.

	Nr zadania	5.	6.
Wypełnia	Maks. liczba pkt	3	3
egzaminator	Uzyskana liczba pkt		

Zadanie 7. *(4 pkt)*

Rozwiąż równanie $2\cos^2 x + 3\sin x = 0$ w przedziale $\left\langle -\frac{\pi}{2}, \frac{3\pi}{2} \right\rangle$.

Zadanie 8. (5 pkt)

Liczba $\frac{2}{5}$ jest pierwiastkiem wielomianu $W(x) = 5x^3 - 7x^2 - 3x + p$. Wyznacz pozostałe pierwiastki tego wielomianu i rozwiąż nierówność W(x) > 0.

Odpowiedź:

	Nr zadania	7.	8.
	Maks. liczba pkt	4	5
Wypelnia egzaminator	Uzyskana liczba pkt		

Zadanie 9. (6 pkt)

Wyznacz wszystkie wartości parametru m, dla których równanie $x^2 + (m+1)x - m^2 + 1 = 0$ ma dwa rozwiązania rzeczywiste x_1 i x_2 ($x_1 \neq x_2$), spełniające warunek $x_1^3 + x_2^3 > -7x_1x_2$.

aggaminator	Nr zadania	9.
	Maks. liczba pkt	6
	Uzyskana liczba pkt	

Zadanie 10. *(6 pkt)*

Punkt A = (7, -1) jest wierzchołkiem trójkąta równoramiennego ABC, w którym |AC| = |BC|. Obie współrzędne wierzchołka C są liczbami ujemnymi. Okrąg wpisany w trójkąt ABC ma równanie $x^2 + y^2 = 10$. Oblicz współrzędne wierzchołków B i C tego trójkąta.

	Nr zadania	10.
aggaminator	Maks. liczba pkt	6
	Uzyskana liczba pkt	

Zadanie 11. *(5 pkt)*

Przekrój ostrosłupa prawidłowego trójkątnego *ABCS* płaszczyzną przechodzącą przez wierzchołek *S* i wysokości dwóch ścian bocznych jest trójkątem równobocznym. Krawędź

boczna tego ostrosłupa ma długość $\frac{4\sqrt{3}}{3}$. Oblicz objętość tego ostrosłupa.

Egzamin maturalny z matematyki Poziom rozszerzony

Wypelnia egzaminator	Nr zadania	11.
	Maks. liczba pkt	5
	Uzyskana liczba pkt	

BRUDNOPIS (nie podlega ocenie)