Logarithmes

Soit a > 0

$$a^x \times a^y = a^{x+y}$$

$$\frac{a^x}{a^y} = a^{x-y}$$

$$(a^x)^y = a^{xy}$$

$$\frac{1}{a^x} = a^{-x}$$

$$a^0 = 1$$

$$a^{x} \times a^{y} = a^{x+y}$$
 $\frac{a^{x}}{a^{y}} = a^{x-y}$ $(a^{x})^{y} = a^{xy}$ $\frac{1}{a^{x}} = a^{-x}$
 $a^{0} = 1$ $a^{1} = a$ $a^{-1} = \frac{1}{a}$ $a^{x} > 0$

$$a^{-1} = \frac{1}{a}$$

$$a^x > 0$$

Définition. log(c) est la puissance de 10 qui donne c. C'est le nombre x tel que $10^x = c$.

Exemples. $\log(1000) = 3 \cot 10^3 = 1000$. $\log(10) = 1 \cot 10^1 = 10$. $\log(1) = 0 \cot 10^0 = 1$. $\log(0,001) = -3$.

Propriété.

Si $c \le 0$, l'équation $a^x = c$ n'a pas de solution.

Si c > 0, l'équation $a^x = c$ a une unique solution x.

Ce nombre est
$$x = \frac{\log c}{\log a}$$

$$a^x = c \iff x = \frac{\log c}{\log a}$$

Exemple. Résoudre $2^x = 3$. On a $x = \frac{\log(3)}{\log(2)} \approx 1,585$.

Vérification : $2^{1,585} \approx 3$

Exemple. Résoudre $3^x = -10$. Il n'y a pas de solution car -10 < 0.

Exemple. Résoudre $7^x = 1000$. On a $x = \frac{\log 1000}{\log 7} = 3,55$ Vérification : $7^{3,55} \approx 1000$

Propriété. Si c > 0: $x^a = c \Leftrightarrow x = c^{\frac{1}{a}}$

Exemple. Résoudre $x^{10} = 3$. Alors $x = 3^{\frac{1}{10}}$

Propriété.

Si
$$c > 0$$
 et $a > 1$: $a^x < c \Leftrightarrow x < \frac{\log c}{\log a}$
Si $c > 0$ et $a < 1$: $a^x < c \Leftrightarrow x > \frac{\log c}{\log a}$

 $a^{x} > c \iff x > \frac{\log c}{\log a}$ $a^{x} > c \iff x < \frac{\log c}{\log a}$ (même sens)

$$a^x < c \iff x > \frac{\log c}{\log a}$$

(sens contraire)

Exemple. Résoudre $5^x > 2$. Alors $x > \frac{\log(2)}{\log(5)}$

Exemple. Résoudre $0.5^x > 3$. Alors $x < \frac{\log(3)}{\log(0.5)}$ car 0.5 < 1

Propriété. Si c > 0 et x > 0: $x^a < c \Leftrightarrow x < c^{\frac{1}{a}}$

Exemple. Résoudre $x^3 < 10$. Alors $x < 10^{\frac{1}{3}}$

Propriété. La fonction $\log:]0, \infty[\to \mathbb{R}$ est croissante sur $]0, \infty[$

Propriétés. Pour tous réels x, y > 0 et tout entier relatif $n \in \mathbb{Z}$ on a :

$$\log xy = \log x + \log y$$
$$\log \frac{x}{y} = \log x - \log y$$

$$\log \frac{1}{x} = -\log x$$

$$\log 1 = 0$$

 $\log x^n = n \, \log x$

Remarque. $\log(10^k) = k$ et $10^{\log(c)} = c$