

### AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

# Teoria sygnałów

Wykład 4

Dr inż. Przemysław Korohoda Katedra Elektroniki, AGH, Kraków

home.agh.edu.pl/~korohoda/rok 2022 2023 zima/TS EL 2

**UPEL: TS 2022** 



## Plan wykładu

- 1. Transformata CFT sygnału stałego -> delta Diraca.
- 2. Kilka ważnych par "sygnał-transformata".
- 3. Parzystości CFT (cd.).
- 4. Transformowanie sygnałów zespolonych.
- 5. Splot definicja, przykłady, własności.
- 6. Więcej par "sygnał-transformata".
- 7. Szereg Fouriera (grzebień Diraca).



## Transformata sygnału stałego

### Wyliczenie bezpośrednio z def. jest nieskuteczne:

$$x(t) = c \quad \stackrel{CFT}{\longleftarrow} \quad X(f) = ?$$

$$X(f) = \int_{-\infty}^{+\infty} c \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot t} dt = c \cdot \int_{-\infty}^{+\infty} e^{-j \cdot 2 \cdot \pi \cdot f \cdot t} dt =$$

$$= c \cdot \int_{-\infty}^{+\infty} \cos(2 \cdot \pi \cdot f \cdot t) dt - j \cdot c \cdot \int_{-\infty}^{+\infty} \sin(2 \cdot \pi \cdot f \cdot t) dt = ?$$

### Przypomnienie, wartość główna całki:

$$V.p. \int_{-\infty}^{+\infty} \sin(2 \cdot \pi \cdot f \cdot t) dt = \lim_{a \to +\infty} \int_{-a}^{a} \sin(2 \cdot \pi \cdot f \cdot t) dt = 0$$



# Transformata CFT(f) sygnału stałego

### Rozważmy ciąg funkcji (sygnałów):

$$a \to +\infty$$

$$a \to 0$$

$$x_a(t) = \Pi\left(\frac{t}{a}\right) \xrightarrow{CFT} X_a(f) = a \cdot \text{sinc}(\pi \cdot f \cdot a)$$

Oczywiście: 
$$\lim_{a\to +\infty} x_a(t) = 1 \quad \longleftrightarrow \quad \lim_{a\to +\infty} X_a(f) = \delta(f)$$
 
$$\lim_{a\to +\infty} x_a(t) = 1 \quad \longleftrightarrow \quad \lim_{a\to +\infty} X_a(f) = \delta(f)$$
 ... ale można to łatw sprawdzić z użycien

### Pseudo-funkcja (dystrybucja) delta Diraca:

$$\delta(f) = \begin{cases} +\infty & dla & f = 0 \\ 0 & dla & f \neq 0 \end{cases} \land \int_{-\infty}^{+\infty} \delta(f) df = 1$$

### Analogicznie można określić $\delta(t)$ czy $\delta(\omega)$ .

#### Bez dowodu:

$$\int_{-\infty}^{+\infty} \operatorname{sinc}(\pi \cdot f) \, df = 1$$

ale można to łatwo sprawdzić z użyciem Matlaba.



# Transformata CFT(f) sygnału stałego

### Można też i tak:

$$x_{a}(t) = \operatorname{sinc}\left(\pi \cdot \frac{t}{a}\right) \xrightarrow{CFT} X_{a}(f) = a \cdot \Pi(f \cdot a)$$

#### Bez dowodu:

$$\lim_{a \to +\infty} x_a(t) = 1 \quad \xleftarrow{CFT} \quad \lim_{a \to +\infty} X_a(f) = \delta(f)$$

... ale można to łatwo sprawdzić z użyciem Matlaba.

#### Oczywiście:

$$\int_{-\infty}^{+\infty} \Pi(f) \, df = 1$$



## Transformata $CFT(\omega)$ sygnału stałego

$$x_{a}(t) = \operatorname{sinc}\left(\pi \cdot \frac{t}{a}\right) \xrightarrow[ICFT]{CFT} X_{a}(\omega) = a \cdot \Pi\left(\frac{\omega \cdot a}{2 \cdot \pi}\right)$$

$$\lim_{a \to +\infty} x_{a}(t) = 1 \xrightarrow[ICFT]{CFT} \lim_{a \to +\infty} X_{a}(\omega) = 2 \cdot \pi \cdot \delta(\omega)$$

### Kolejna para sygnał-transformata:

$$x(t) = 1 \quad \stackrel{CFT}{\longleftarrow} \quad X(f) = \delta(f)$$

$$x(t) = 1 \quad \stackrel{CFT}{\longleftarrow} \quad X(\omega) = 2 \cdot \pi \cdot \delta(\omega)$$



## Kolejne pary sygnał-transformata

### W podobny sposób możemy pokazać, że:

$$x(t) = \delta(t) \quad \stackrel{CFT}{\longleftarrow} \quad X(f) = 1$$

$$x(t) = \delta(t) \quad \stackrel{CFT}{\longleftarrow} \quad X(\omega) = 1$$

dla dowolnych 
$$\varepsilon_1, \varepsilon_2 > 0$$
: 
$$\int_{t_d - \varepsilon_1}^{t_d + \varepsilon_2} \delta(t - t_d) dt = 1 \qquad \delta(t - t_d) \cdot x(t) = \delta(t - t_d) \cdot x(t_d)$$

dlatego: 
$$\int_{t_d-\varepsilon_1}^{t_d+\varepsilon_2} \delta(t-t_d) \cdot x(t) dt = x(t_d)$$



# Potwierdzenie wyznaczonych par sygnał-transformata

$$X(f) = \delta(f): \quad x(t) = \int_{-\infty}^{+\infty} \delta(f) \cdot e^{j \cdot 2 \cdot \pi \cdot f \cdot t} df = \int_{-\infty}^{+\infty} \delta(f) \cdot e^{j \cdot 2 \cdot \pi \cdot 0 \cdot t} df = 1 \cdot \int_{-\infty}^{+\infty} \delta(f) df = 1$$

$$X(\omega) = 2 \cdot \pi \cdot \delta(\omega): \quad x(t) = \frac{1}{2 \cdot \pi} \cdot \int_{-\infty}^{+\infty} 2 \cdot \pi \cdot \delta(\omega) \cdot e^{j \cdot \omega \cdot t} \ d\omega = \int_{-\infty}^{+\infty} \delta(\omega) \cdot e^{j \cdot 0 \cdot t} \ d\omega = 1 \cdot \int_{-\infty}^{+\infty} \delta(\omega) \ d\omega = 1$$

$$x(t) = \delta(t): \quad X(f) = \int_{-\infty}^{+\infty} \delta(t) \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot t} dt = \int_{-\infty}^{+\infty} \delta(t) \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot 0} dt = 1 \cdot \int_{-\infty}^{+\infty} \delta(t) dt = 1$$

$$x(t) = \delta(t): \quad X(\omega) = \int_{-\infty}^{+\infty} \delta(t) \cdot e^{-j \cdot \omega \cdot t} \ dt = \int_{-\infty}^{+\infty} \delta(t) \cdot e^{-j \cdot \omega \cdot 0} \ dt = 1 \cdot \int_{-\infty}^{+\infty} \delta(t) \ dt = 1$$



## Przykłady innych par sygnał-transformata

# Korzystając z definicji lub odpowiednich twierdzeń można pokazać, że:

$$c \leftarrow CFT \longrightarrow c \cdot \delta(f)$$

$$c \cdot \delta(t) \quad \stackrel{CFT}{\longleftarrow} \quad c$$

$$e^{j \cdot 2 \cdot \pi \cdot f_0 \cdot t} \quad \stackrel{CFT}{\longleftarrow} \quad \delta(f - f_0)$$

$$\delta(t-t_d) \quad \stackrel{CFT}{\longleftarrow} \quad e^{-j\cdot 2\cdot \pi\cdot f\cdot t_d}$$

$$c \leftarrow \xrightarrow{CFT(\omega)} c \cdot 2 \cdot \pi \cdot \delta(\omega)$$

$$c \cdot \delta(t) \stackrel{CFT(\omega)}{\longleftrightarrow} c$$

$$e^{j\cdot\omega_0\cdot t} \leftarrow \xrightarrow{CFT(\omega)} 2\cdot\pi\cdot\delta(\omega-\omega_0)$$

$$\delta(t-t_d) \quad \stackrel{CFT(\omega)}{\longleftarrow} \quad e^{-j\cdot\omega\cdot t_d}$$



# Graficzna ilustracja dla delty Diraca





$$X(f) = 1$$
  $\downarrow$ 

$$Re(X(f)) = 1; Im(X(f)) = 0;$$



$$|X(f)| = 1; \quad \Phi(X(f)) = 0$$





# Graficzna ilustracja dla delty Diraca (cd.)

$$t_0 = 1,5$$

$$X(f) = e^{-j \cdot 2 \cdot \pi \cdot f \cdot t_0}$$

$$x(t) = \delta(t - t_0)$$



$$\operatorname{Re}(X(f)) = \cos(2 \cdot \pi \cdot f \cdot t_0)$$
$$\operatorname{Im}(X(f)) = -\sin(2 \cdot \pi \cdot f \cdot t_0)$$

$$\operatorname{Im}(X(f)) = -\sin(2 \cdot \pi \cdot f \cdot t_0)$$

$$|X(f)| = 1$$

$$|X(f)| = 1$$

$$\Phi(X(f)) = -2 \cdot \pi \cdot f \cdot t_0$$







# Typowe operacje na delcie Diraca

... przesuwanie, mnożenie przez liczbę, dodawanie itd.:

$$x(t) = \delta(t - t_0)$$

$$x(t) = \delta(t) + \cos(2 \cdot \pi \cdot f_0 \cdot t)$$

$$x(t) = 3 \cdot \delta(t) - 2 \cdot \delta(t - t_0) + \cos(2 \cdot \pi \cdot f_0 \cdot t)$$

... analogicznie w dziedzinie f, czy  $\omega$  .



# Przykład ilustracji transformaty z deltami Diraca na płaszczyźnie zespolonej

$$X(f) = \left(\frac{1}{2} + j \cdot \frac{1}{2}\right) \cdot \delta(f+1,5) + \left(\frac{1}{2} - j \cdot \frac{1}{2}\right) \cdot \delta(f-1,5)$$

$$X(f) = a \cdot \delta(f+1,5) + b \cdot \delta(f-1,5)$$









# Dowód z wykorzystaniem nowych narzędzi

$$\int_{-\infty}^{+\infty} \left[ \int_{-\infty}^{+\infty} x(t) \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot t} dt \right] \cdot e^{+j \cdot 2 \cdot \pi \cdot f \cdot t} df = \int_{-\infty - \infty}^{+\infty + \infty} x(\tau) \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot \tau} \cdot e^{+j \cdot 2 \cdot \pi \cdot f \cdot t} df d\tau$$

### ...i następnie:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(\tau) \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot \tau} \cdot e^{+j \cdot 2 \cdot \pi \cdot f \cdot t} df d\tau = \int_{-\infty}^{+\infty} x(\tau) \cdot \int_{-\infty}^{+\infty} e^{-j \cdot 2 \cdot \pi \cdot f \cdot \tau} \cdot e^{+j \cdot 2 \cdot \pi \cdot f \cdot t} df d\tau = \begin{cases} y(t) = \delta(t - \tau) & \longleftrightarrow \\ ICFT & Y(f) = e^{-j \cdot 2 \cdot \pi \cdot f \cdot \tau} \end{cases}$$

$$= \int_{-\infty}^{+\infty} x(\tau) \cdot \left[ \int_{-\infty}^{+\infty} Y(f) \cdot e^{+j \cdot 2 \cdot \pi \cdot f \cdot t} df \right] d\tau = \int_{-\infty}^{+\infty} x(\tau) \cdot \delta(t - \tau) d\tau = x(t)$$



# Inne ważne pary sygnał-transformata

# Korzystając z definicji lub odpowiednich twierdzeń można także pokazać, że:

$$\cos(2 \cdot \pi \cdot f_0 \cdot t) \quad \xleftarrow{CFT} \quad \frac{1}{2} \cdot \left[ \delta(f + f_0) + \delta(f - f_0) \right]$$

$$\sin(2 \cdot \pi \cdot f_0 \cdot t) \quad \xleftarrow{CFT} \quad j \cdot \frac{1}{2} \cdot \left[ \delta(f + f_0) - \delta(f - f_0) \right]$$

$$\cos(\omega_0 \cdot t) \quad \stackrel{CFT(\omega)}{\longleftarrow} \quad \pi \cdot \left[ \delta(\omega + \omega_0) + \delta(\omega - \omega_0) \right]$$

$$\sin(\omega_0 \cdot t) \leftarrow \xrightarrow{CFT(\omega)} j \cdot \pi \cdot \left[ \delta(\omega + \omega_0) - \delta(\omega - \omega_0) \right]$$



# Przykładowe wykresy dla sygnałów cos/sin





# Inne ważne pary sygnał-transformata

### Analogicznie "w drugą stronę":

$$\frac{1}{2} \cdot \left[ \delta(t + t_0) + \delta(t - t_0) \right] \quad \stackrel{CFT}{\longleftrightarrow} \quad \cos(2 \cdot \pi \cdot f \cdot t_0)$$

$$j \cdot \frac{1}{2} \cdot \left[ \delta(t - t_0) - \delta(t + t_0) \right] \quad \stackrel{CFT}{\longleftarrow} \quad \sin(2 \cdot \pi \cdot f \cdot t_0)$$

$$\frac{1}{2} \cdot \left[ \delta(t + t_0) + \delta(t - t_0) \right] \quad \stackrel{CFT(\omega)}{\longleftarrow} \quad \cos(\omega \cdot t_0)$$

$$j \cdot \frac{1}{2} \cdot \left[ \delta(t - t_0) - \delta(t + t_0) \right] \quad \stackrel{CFT(\omega)}{\longleftarrow} \quad \sin(\omega \cdot t_0)$$



# Parzystości i nieparzystości (ogólnie)

Po rozdzieleniu sygnału <u>zespolonego</u> oraz jego transformaty Fouriera na część parzystą i nieparzystą:

$$x(t) = x_{parz}(t) + x_{niep}(t) \quad \stackrel{CFT}{\longleftarrow} \quad X(f) = X_{parz}(f) + X_{niep}(f)$$

Uwaga –  $X_{parz}$  to parzysta część transformaty, a nie transformata parzystej części sygnału!

można stwierdzić, że zachodzą następujące zależności:

$$x(t) = \operatorname{Re}(x_{parz}(t)) + j \cdot \operatorname{Im}(x_{parz}(t)) + \operatorname{Re}(x_{niep}(t)) + j \cdot \operatorname{Im}(x_{niep}(t))$$

$$X(f) = \operatorname{Re}(X_{parz}(f)) + j \cdot \operatorname{Im}(X_{parz}(f)) + \operatorname{Re}(X_{niep}(f)) + j \cdot \operatorname{Im}(X_{niep}(f))$$

Dla sygnału rzeczywistego wystarczy pominąć odpowiednie wartości urojone.

Wykazanie wybranego powiązania stanowi bardzo dobre ćwiczenie rachunkowe.

Dokładnie tak samo można określić zależności dla CFT( $\omega$ ).



# Transformowanie sygnałów zespolonych

### Dla zespolonego sygnału oraz jego transformaty Fouriera:

$$x(t) \leftarrow CFT \longrightarrow X(f)$$

$$x(-t) \quad \stackrel{CFT}{\longleftarrow} \quad X(-f)$$

### zachodzą następujące związki:

$$\overline{x(t)} \quad \stackrel{CFT}{\longleftrightarrow} \quad \overline{X(-f)}$$

$$\overline{x(-t)} \quad \stackrel{CFT}{\longleftrightarrow} \quad \overline{X(f)}$$

#### Dla <u>zespolonego</u> sygnału oraz jego transformaty Fouriera:

$$x(t) \leftarrow \frac{CFT(\omega)}{ICFT(\omega)} \rightarrow X(\omega)$$

$$x(-t) \leftarrow CFT(\omega) \longrightarrow X(-\omega)$$

#### zachodzą następujące związki:

$$\overline{x(t)} \quad \stackrel{CFT(\omega)}{\longleftarrow} \quad \overline{X(-\omega)}$$

$$\overline{x(-t)} \quad \stackrel{CFT(\omega)}{\longleftarrow} \quad \overline{X(\omega)}$$



# Zależności między transformatą w przód oraz odwrotną

Rozpisując odpowiednio wzory na transformaty można dojść do następujących obserwacji:

$$p(t) \xrightarrow{CFT} q(f)$$

$$\downarrow \downarrow$$

$$q(t) \leftarrow \downarrow$$

$$p(f)$$

$$p(f)$$

$$p(t) \xrightarrow{CFT(\omega)} q(\omega)$$

$$\downarrow \downarrow$$

$$\frac{1}{2 \cdot \pi} \cdot \overline{q(t)} \leftarrow \overline{ICFT(\omega)} \overline{p(\omega)}$$



### Na razie tylko w dziedzinie czasu:

$$y(t) = \int_{-\infty}^{+\infty} x_1(\tau) \cdot x_2(t-\tau) d\tau$$

### Interpretacja graficzna – patrz tablica...

### Oznaczenie splotu:

$$y(t) = \int_{-\infty}^{+\infty} x_1(\tau) \cdot x_2(t-\tau) d\tau = (x_1 * x_2)(t) = x_1(t) * x_2(t)$$

### Przemienność splotu:

$$y(t) = \int_{-\infty}^{+\infty} x_1(\tau) \cdot x_2(t-\tau) \, d\tau = \int_{-\infty}^{+\infty} x_1(t-\tau) \cdot x_2(\tau) \, d\tau$$

$$x_1(t) * x_2(t) = x_2(t) * x_1(t)$$



# Przykład oraz definicja funkcji lambda

$$x_1(t) = \Pi(t)$$

$$x_2(t) = \Pi(t)$$

$$x_1(t) * x_2(t) = \int_{-\infty}^{+\infty} \Pi(\tau) \cdot \Pi(t - \tau) d\tau = \Lambda(t)$$

$$\Lambda(t) = \begin{cases} t+1 & dla & -1 < t \le 0 \\ -t+1 & dla & 0 < t \le 1 \\ 0 & dla & pozost. t \end{cases}$$



# Dygresja: Funkcja lambda -> delta Diraca

$$\lim_{a \to 0+} \left( \frac{1}{a} \cdot \Lambda \left( \frac{t}{a} \right) \right) = \delta(t)$$

### W tym przypadku całka także jest "łatwa":

### Dla porównania:

$$\frac{1}{a} \cdot \int_{-\infty}^{+\infty} \Lambda\left(\frac{t}{a}\right) dt = \frac{1}{a} \cdot a \cdot \int_{-\infty}^{+\infty} \Lambda(\tau) d\tau = 1$$

# $\lim_{a \to 0+} \left( \frac{1}{a} \cdot \Pi \left( \frac{t}{a} \right) \right) = \delta(t)$

$$\lim_{a \to 0+} \left( \frac{1}{a} \cdot \operatorname{sinc}\left(\frac{\pi \cdot t}{a}\right) \right) = \delta(t)$$

$$\frac{1}{a} \cdot \int_{-\infty}^{+\infty} \Pi\left(\frac{t}{a}\right) dt = \frac{1}{a} \cdot a \cdot \int_{-\infty}^{+\infty} \Pi(\tau) d\tau = 1$$

$$\lim_{a \to 0+} \left( \frac{1}{a} \cdot \operatorname{sinc}\left(\frac{\pi \cdot t}{a}\right) \right) = \delta(t) \qquad \int_{-\infty}^{+\infty} \frac{1}{a} \cdot \operatorname{sinc}\left(\frac{\pi \cdot t}{a}\right) dt = \begin{cases} \tau = \frac{t}{a} \\ dt = a \cdot d\tau \\ t \to \pm \infty \Leftrightarrow \tau \to \pm \infty \end{cases} = \frac{1}{a} \cdot a \cdot \int_{-\infty}^{+\infty} \operatorname{sinc}\left(\pi \cdot \tau\right) d\tau = 1$$

$$\int_{-\infty}^{+\infty} \operatorname{sinc}\left(\pi \cdot t\right) dt = 1$$



# Wnioski (kolejna dygresja)

$$\lim_{a \to 0+} \left( \frac{1}{a} \cdot \Lambda \left( \frac{t}{a} \right) \right) = \delta(t) \implies X(f) = \lim_{a \to 0+} \left( \operatorname{sinc}^2 \left( \pi \cdot f \cdot a \right) \right) = 1$$

$$\lim_{a \to 0+} \left( \frac{1}{a} \cdot \Pi\left(\frac{t}{a}\right) \right) = \delta(t) \quad \Rightarrow \quad X(f) = \lim_{a \to 0+} \left( \operatorname{sinc}\left(\pi \cdot f \cdot a\right) \right) = 1$$

$$\lim_{a \to 0+} \left( \frac{1}{a} \cdot \operatorname{sinc}\left(\frac{\pi \cdot t}{a}\right) \right) = \delta(t) \quad \Rightarrow \quad X(f) = \lim_{a \to 0+} \left( \Pi(f \cdot a) \right) = 1$$



# Właściwości splotu

### Łączność splotu:

$$x_1(t) * x_2(t) * x_3(t) = [x_1(t) * x_2(t)] * x_3(t) = x_1(t) * [x_2(t) * x_3(t)]$$

### Dwuliniowość splotu:

$$[a \cdot x_1(t) + b \cdot x_2(t)] * x_3(t) = a \cdot [x_1(t) * x_3(t)] + b \cdot [x_2(t) * x_3(t)]$$

$$x_1(t) * [a \cdot x_2(t) + b \cdot x_3(t)] = a \cdot [x_1(t) * x_2(t)] + b \cdot [x_1(t) * x_3(t)]$$

### Twierdzenie o splocie:

$$x_1(t) * x_2(t) \quad \stackrel{CFT}{\longleftarrow} \quad X_1(f) \cdot X_2(f)$$

$$x_1(t) * x_2(t) \leftarrow \xrightarrow{CFT(\omega)} X_1(\omega) \cdot X_2(\omega)$$



## Splatanie z deltą Diraca

$$x(t) * \delta(t - t_d) = \int_{-\infty}^{+\infty} \delta(\tau - t_d) \cdot x(t - \tau) d\tau =$$

$$= \int_{-\infty}^{+\infty} \delta(\tau - t_d) \cdot x(t - t_d) d\tau = x(t - t_d) \cdot \int_{-\infty}^{+\infty} \delta(\tau - t_d) d\tau =$$

$$= x(t - t_d)$$

### czyli np.:

$$x(t) * \sum_{n=1}^{3} \delta(t - n \cdot \Delta t) = \sum_{n=1}^{3} x(t - n \cdot \Delta t) =$$
$$= x(t - \Delta t) + x(t - 2 \cdot \Delta t) + x(t - 3 \cdot \Delta t)$$



## Kolejna para sygnał-transformata

$$\Pi(t) * \Pi(t) \longleftrightarrow \frac{CFT}{ICFT} \times \operatorname{sinc}(\pi \cdot f) \cdot \operatorname{sinc}(\pi \cdot f)$$

czyli:

$$x(t) = \Lambda(t) \quad \stackrel{CFT}{\longleftarrow} \quad X(f) = \text{sinc}^{2}(\pi \cdot f)$$

$$\Pi(t) * \Pi(t) \xrightarrow{CFT(\omega)} \operatorname{sinc}(\omega/2) \cdot \operatorname{sinc}(\omega/2)$$

czyli:

$$x(t) = \Lambda(t) \quad \xleftarrow{CFT(\omega)} \quad X(\omega) = \text{sinc}^{2}(\omega/2)$$



## Splot w dziedzinie Fouriera

### Definiujemy go analogicznie:

$$Y(f) = \int_{-\infty}^{+\infty} X_1(v) \cdot X_2(f - v) \, dv = X_1(f) * X_2(f)$$

$$Y(\omega) = \int_{-\infty}^{+\infty} X_1(w) \cdot X_2(\omega - w) \, dw = X_1(\omega) * X_2(\omega)$$

Splot w tych dziedzinach posiada te same właściwości, co w dziedzinie t: przemienność, łączność, dwuliniowość, itd.

### Odwrócone twierdzenie o splocie:

$$x_1(t) \cdot x_2(t) \quad \stackrel{CFT}{\longleftarrow} \quad X_1(f) * X_2(f)$$

$$x_1(t) \cdot x_2(t) \leftarrow \xrightarrow{CFT(\omega)} \frac{1}{2 \cdot \pi} \cdot X_1(\omega) * X_2(\omega)$$



# Wniosek: interpretacja Fouriera dla modulacji amplitudy

$$y(t) = x(t) \cdot \cos(2 \cdot \pi \cdot f_c \cdot t) \quad \xleftarrow{CFT} \quad Y(f) = X(f) * \left(\frac{1}{2} \cdot \left[\delta(f + f_c) + \delta(f - f_c)\right]\right)$$

$$X(f) * \left(\frac{1}{2} \cdot \left[\delta(f + f_c) + \delta(f - f_c)\right]\right) = \frac{1}{2} \cdot \left[X(f) * \delta(f + f_c)\right] + \frac{1}{2} \cdot \left[X(f) * \delta(f - f_c)\right]$$

### Twierdzenie o modulacji (amplitudy):

$$y(t) = x(t) \cdot \cos(2 \cdot \pi \cdot f_c \cdot t) \quad \stackrel{CFT}{\longleftarrow} \quad Y(f) = \frac{1}{2} \cdot X(f + f_c) + \frac{1}{2} \cdot X(f - f_c)$$

$$y(t) = x(t) \cdot \cos(\omega_c \cdot t) \quad \stackrel{CFT(\omega)}{\longleftarrow} \quad Y(\omega) = \frac{1}{2} \cdot X(\omega + \omega_c) + \frac{1}{2} \cdot X(\omega - \omega_c)$$



## Sygnał okresowy

$$x(t) = x(t + n \cdot T)$$
  $T$  – okres podstawowy (zwykle zakładamy  $T$ >0)  $n = ... - 2, -1, 0, 1, 2...$ 

$$x(t) = \sum_{n = -\infty}^{+\infty} x_0(t - n \cdot T)$$

 $x_0(t)$  – wzorzec okresu. Można założyć, że  $x_0(t)$  jest zerowe poza przyjętym odcinkiem t o długości T, ale w ogólności nie jest to konieczne.



# Przykłady sygnałów okresowych

T=1





$$x_0(t+T)$$

 $x_0(t)$ 

$$x_0(t-T)$$

 $x_0(t-2\cdot T)$ 

 $x_0(t-3\cdot T)$ 

x(t)









# Sygnał okresowy

$$x(t) = x(t + n \cdot T)$$
  
 $n = ... - 2, -1, 0, 1, 2...$ 

T – okres podstawowy (zwykle zakładamy T>0)

$$x(t) = \sum_{n=-\infty}^{+\infty} x_0(t-n\cdot T) = x_0(t) * \sum_{n=-\infty}^{+\infty} \mathcal{S}(t-n\cdot T) = x_0(t) * g_T(t)$$
 pseudo-funkcja: grzebień Diraca



## Szereg Fouriera (wersja zespolona)

### Sygnał musi spełniać warunki Dirichleta!

$$x(t) = \sum_{n = -\infty}^{+\infty} x_0 (t - n \cdot T)$$

$$x(t) = \sum_{n = -\infty}^{+\infty} c_n \cdot e^{+j \cdot 2 \cdot \pi \cdot n \cdot f_T \cdot t} \quad : \quad f_T = \frac{1}{T}$$

$$x(t) = \sum_{n = -\infty}^{+\infty} c_n \cdot e^{+j \cdot 2 \cdot \pi \cdot f_n \cdot t} \quad : \quad f_n = n \cdot f_T$$

### czyli:

$$f_1 = f_T$$

$$c_n = \frac{1}{T} \cdot \int_{t_0}^{t_0 + T} x(t) \cdot e^{-j \cdot 2 \cdot \pi \cdot f_n \cdot t} dt$$



# Szereg Fouriera (wersja zespolona)

$$x(t) = \sum_{n = -\infty}^{+\infty} x_0 (t - n \cdot T)$$

$$x(t) = \sum_{n = -\infty}^{+\infty} c_n \cdot e^{+j \cdot n \cdot \omega_T \cdot t} : \omega_T = \frac{2 \cdot \pi}{T}$$

$$x(t) = \sum_{n = -\infty}^{+\infty} c_n \cdot e^{+j \cdot \omega_n \cdot t} : \omega_n = n \cdot \omega_T$$

$$c_n = \frac{1}{T} \cdot \int_{t_0}^{t_0+T} x(t) \cdot e^{-j \cdot \omega_n \cdot t} dt$$



# Przykład aproksymacji szeregiem Fouriera dla sygnałów schodkowych z okresem *T*







# Szereg Fouriera w dziedzinie f

$$X(f) = \sum_{n = -\infty}^{+\infty} X_0(f - n \cdot F)$$

$$X(f) = \sum_{n = -\infty}^{+\infty} c_n \cdot e^{+j \cdot 2 \cdot \pi \cdot f \cdot n \cdot t_F} \quad : \quad t_F = \frac{1}{F}$$

$$X(f) = \sum_{n = -\infty}^{+\infty} c_n \cdot e^{+j \cdot 2 \cdot \pi \cdot f \cdot t_n} \quad : \quad t_n = n \cdot t_F$$

$$c_n = \frac{1}{F} \cdot \int_{f_0}^{f_0 + F} X(f) \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot t_n} df$$



## Szereg Fouriera w dziedzinie $\omega$

$$X(\omega) = \sum_{n = -\infty}^{+\infty} X_0(\omega - n \cdot \Omega)$$

$$X(\omega) = \sum_{n=-\infty}^{+\infty} c_n \cdot e^{+j \cdot \omega \cdot n \cdot t_{\Omega}} : t_{\Omega} = \frac{1}{\Omega}$$

$$X(\omega) = \sum_{n = -\infty}^{+\infty} c_n \cdot e^{+j \cdot \omega \cdot t_n} \quad : \quad t_n = n \cdot t_{\Omega}$$

$$c_n = \frac{1}{\Omega} \cdot \int_{\omega_0}^{\omega_0 + \Omega} X(\omega) \cdot e^{-j \cdot \omega \cdot t_n} d\omega$$



## **Przykład**

$$x_0(t) = \Pi\left(\frac{t}{\Delta t}\right)$$
 :  $\Delta t < T$ 

$$x(t) = \sum_{n = -\infty}^{+\infty} x_0(t - n \cdot T)$$

 $n \neq 0$ :

$$c_n = \frac{1}{T} \cdot \int_{-\Delta t/2}^{+\Delta t/2} e^{-j \cdot 2 \cdot \pi \cdot n \cdot t/T} dt = \frac{1}{T} \cdot \left[ \frac{e^{-j \cdot 2 \cdot \pi \cdot n \cdot t/T}}{-j \cdot 2 \cdot \pi \cdot n/T} \right]_{-\Delta t/2}^{+\Delta t/2} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n \cdot \Delta t/T} - e^{+j \cdot \pi \cdot n \cdot \Delta t/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n \cdot \Delta t/T} - e^{+j \cdot \pi \cdot n \cdot \Delta t/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n \cdot \Delta t/T} - e^{+j \cdot \pi \cdot n \cdot \Delta t/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n \cdot \Delta t/T} - e^{+j \cdot \pi \cdot n \cdot \Delta t/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n \cdot \Delta t/T} - e^{+j \cdot \pi \cdot n \cdot \Delta t/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n \cdot \Delta t/T} - e^{+j \cdot \pi \cdot n \cdot \Delta t/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n \cdot \Delta t/T} - e^{+j \cdot \pi \cdot n \cdot \Delta t/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n \cdot \Delta t/T} - e^{-j \cdot \pi \cdot n \cdot \Delta t/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n \cdot \Delta t/T} - e^{-j \cdot \pi \cdot n \cdot \Delta t/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n \cdot \Delta t/T} - e^{-j \cdot \pi \cdot n \cdot \Delta t/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n \cdot \Delta t/T} - e^{-j \cdot \pi \cdot n \cdot \Delta t/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n \cdot \Delta t/T} - e^{-j \cdot \pi \cdot n/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n \cdot \Delta t/T} - e^{-j \cdot \pi \cdot n/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{T} \cdot \frac{e^{-j \cdot \pi \cdot n/T}}{-j \cdot 2 \cdot \pi \cdot n/T} = \frac{1}{$$

$$= \frac{\Delta t}{T} \cdot \frac{e^{j \cdot \pi \cdot n \cdot \Delta t/T} - e^{-j \cdot \pi \cdot n \cdot \Delta t/T}}{j \cdot 2 \cdot \pi \cdot n \cdot \Delta t/T} = \frac{\Delta t}{T} \cdot \frac{\sin(\pi \cdot n \cdot \Delta t/T)}{\pi \cdot n \cdot \Delta t/T}$$

$$n = 0$$
:

$$c_0 = \frac{1}{T} \cdot \int_{-\Delta t/2}^{+\Delta t/2} e^{-j \cdot 2 \cdot \pi \cdot 0 \cdot t/T} dt = \frac{1}{T} \cdot \int_{-\Delta t/2}^{+\Delta t/2} 1 dt = \frac{\Delta t}{T}$$

## Czyli:

$$c_n = \frac{\Delta t}{T} \cdot \operatorname{sinc}(\pi \cdot n \cdot \Delta t / T)$$



## Porównanie szeregu i CFT

### Dla ostatniego przykładu:

$$c_n = \frac{\Delta t}{T} \cdot \operatorname{sinc}(\pi \cdot n \cdot \Delta t / T) \qquad \qquad \Pi\left(\frac{t}{\Delta t}\right) \quad \stackrel{CFT}{\longleftarrow} \quad \Delta t \cdot \operatorname{sinc}(\pi \cdot f \cdot \Delta t)$$

$$c_n = \frac{1}{T} \cdot X_0(f_n)$$

Porównując odpowiednie wzory bez trudu stwierdzamy, że jest to ogólna zależność

– w pierwszym podejściu można założyć, że sygnał  $x_0$  jest niezerowy tylko na odcinku o długości okresu, po którym całkujemy wyznaczając  $c_n$ .

Czyli dla sygnału rzeczywistego wartości  $c_n$  i  $c_{-n}$  są zawsze sprzężone. Można to także wykazać wprost ze wzoru na  $c_n$ .



## Interpretacja szeregu Fouriera dla sygnału rzeczywistego

$$x(t) = \sum_{n = -\infty}^{+\infty} c_n \cdot e^{+j \cdot 2 \cdot \pi \cdot f_n \cdot t} \quad : \quad f_n = n \cdot f_T$$

$$c_n = |c_n| \cdot e^{j \cdot \varphi_n}$$

$$e^{j \cdot 2 \cdot \pi \cdot f_n \cdot t} = \cos(2 \cdot \pi \cdot f_n \cdot t) + j \cdot \sin(2 \cdot \pi \cdot f_n \cdot t)$$

$$c_n \cdot e^{j \cdot 2 \cdot \pi \cdot f_n \cdot t} + c_{-n} \cdot e^{j \cdot 2 \cdot \pi \cdot f_{-n} \cdot t} = c_n \cdot e^{j \cdot 2 \cdot \pi \cdot f_n \cdot t} + \overline{c_n} \cdot e^{-j \cdot 2 \cdot \pi \cdot f_n \cdot t} =$$

$$= |c_n| \cdot e^{j \cdot \varphi_n} \cdot \cos(2 \cdot \pi \cdot f_n \cdot t) + |c_n| \cdot e^{j \cdot \varphi_n} \cdot j \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) + |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \cos(2 \cdot \pi \cdot f_n \cdot t) - |c_n| \cdot e^{-j \cdot \varphi_n} \cdot j \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \cos(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \cos(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \cos(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-j \cdot \varphi_n} \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) = |c_n| \cdot e^{-$$

$$= 2 \cdot \left| c_n \right| \cdot \left[ \cos(\varphi_n) \cdot \cos(2 \cdot \pi \cdot f_n \cdot t) - \sin(\varphi_n) \cdot \sin(2 \cdot \pi \cdot f_n \cdot t) \right]$$



## Interpretacja szeregu Fouriera dla sygnału rzeczywistego

$$x(t) = \sum_{n = -\infty}^{+\infty} c_n \cdot e^{+j \cdot 2 \cdot \pi \cdot f_n \cdot t} \quad : \quad f_n = n \cdot f_T$$

$$c_n = \left| c_n \right| \cdot e^{j \cdot \varphi_n}$$

$$2 \cdot |c_n| \cdot [\cos(\varphi_n) \cdot \cos(2 \cdot \pi \cdot f_n \cdot t) - \sin(\varphi_n) \cdot \sin(2 \cdot \pi \cdot f_n \cdot t)] =$$

$$= 2 \cdot |c_n| \cdot \cos(2 \cdot \pi \cdot f_n \cdot t + \varphi_n)$$

$$x(t) = |c_0| \cdot e^{j \cdot \varphi_0} + \sum_{n=1}^{+\infty} 2 \cdot |c_n| \cdot \cos(2 \cdot \pi \cdot f_n \cdot t + \varphi_n) =$$

$$= d_0 + \sum_{n=1}^{+\infty} d_n \cdot \cos(2 \cdot \pi \cdot f_n \cdot t - \beta_n)$$

## Ważny wzorek:

 $\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$ 

**Dla** *n*>0: 
$$d_n = 2 \cdot |c_n|; \qquad \beta_n = -\varphi_n$$

$$\beta_n = -\varphi_n$$

$$d_0 = c_0; |d_0| = \pm d_0 \land (\beta_0 = 0 \lor \beta_0 = \pm \pi); \beta_0 = \pm \varphi_0$$



## Interpretacja szeregu Fouriera

$$x(t) = \sum_{n = -\infty}^{+\infty} c_n \cdot e^{+j \cdot 2 \cdot \pi \cdot f_n \cdot t} \quad : \quad f_n = n \cdot f_T$$

$$x(t) = d_0 + \sum_{n=1}^{+\infty} d_n \cdot \cos(2 \cdot \pi \cdot f_n \cdot t - \beta_n)$$

$$x(t) = a_0 + \sum_{n=1}^{+\infty} a_n \cdot \cos(2 \cdot \pi \cdot f_n \cdot t) + b_n \cdot \sin(2 \cdot \pi \cdot f_n \cdot t)$$

Dla 
$$n>0$$
:  $a_n = 2 \cdot |c_n| \cdot \cos(\varphi_n)$ ;  $b_n = -2 \cdot |c_n| \cdot \sin(\varphi_n)$ 

## Ważny wzorek:

 $a_n = d_n \cdot \cos(\beta_n);$   $b_n = d_n \cdot \sin(\beta_n)$ 

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$



## Przykład wyznaczania szeregu Fouriera dla sygnału kosinusoidalnego o całkowitej liczbie okresów w odcinku *T*

$$x(t) = \begin{cases} \cos(2 \cdot \pi \cdot f_s \cdot t + \varphi_s) & dla \quad t \in (0, T) \\ \text{z war. Dirichleta} & dla \quad t = 0 \text{ lub } t = T \end{cases}$$

$$f_s = 3 \cdot f_T; \quad \varphi_s = 0; \quad T = 5s:$$







# Przykład wyznaczania szeregu Fouriera dla sygnału sinusoidalnego o całkowitej liczbie okresów w odcinku *T*

$$x(t) = \begin{cases} \cos(2 \cdot \pi \cdot f_s \cdot t + \varphi_s) & dla \quad t \in (0, T) \\ \text{z war. Dirichleta} & dla \quad t = 0 \text{ lub } t = T \end{cases}$$

$$f_s = 3 \cdot f_T; \quad \varphi_s = -\frac{\pi}{2}; \quad T = 5s:$$







## Przykład wyznaczania szeregu Fouriera dla sygnału schodkowego









## Wyliczenie pomocnicze

## Założenie, że (ko)sinusoida o częstotliwości $f_s$ ma w całkowanym odcinku całkowitą liczbę okresów bardzo ułatwia całkowanie!

$$t_2 - t_1 = T$$

$$\int_{t_1}^{t_2} \cos^2(2 \cdot \pi \cdot n \cdot f_s \cdot t) dt = \frac{1}{2} \cdot \int_{t_1}^{t_2} \cos(4 \cdot \pi \cdot n \cdot f_s \cdot t) + 1 dt =$$

$$= \frac{1}{2} \cdot \left(t_2 - t_1\right) = \frac{T}{2}$$

## Ważny wzorek:

$$\cos^2(\alpha) = \frac{\cos(2 \cdot \alpha) + 1}{2}$$



## Przykład

$$x(t) = \cos(2 \cdot \pi \cdot f_s \cdot (t - t_d))$$

$$T = \frac{1}{f_T}$$
  $f_T = f_s$ 

$$f_T = f_s$$

$$t_d = \frac{\varphi_d}{2 \cdot \pi \cdot f_s}$$

$$c_n = \frac{1}{T} \cdot \int\limits_{-T/2}^{+T/2} \cos(2 \cdot \pi \cdot f_s \cdot (t - t_d)) \cdot e^{-j \cdot 2 \cdot \pi \cdot n \cdot f_T \cdot t} \ dt =$$

$$= \frac{1}{T} \cdot \int_{-T/2}^{+T/2} \cos(2 \cdot \pi \cdot f_s \cdot t - \varphi_d)) \cdot [\cos(2 \cdot \pi \cdot n \cdot f_T \cdot t) - j \cdot \sin(2 \cdot \pi \cdot n \cdot f_T \cdot t)] dt =$$

$$= \frac{1}{T} \cdot \int_{-T/2}^{+T/2} [\cos(\varphi_d) \cdot \cos(2 \cdot \pi \cdot f_s \cdot t) + \sin(\varphi_d) \cdot \sin(2 \cdot \pi \cdot f_s \cdot t)] \cdot [\cos(2 \cdot \pi \cdot n \cdot f_T \cdot t) - j \cdot \sin(2 \cdot \pi \cdot n \cdot f_T \cdot t)] dt = \begin{cases} \tan(e_j) \\ tylko \\ dla \\ n = 1 \end{cases}$$

$$=\frac{\cos(\varphi_d)}{T}\cdot\int\limits_{-T/2}^{+T/2}\cos^2(2\cdot\pi\cdot f_s\cdot t)\;dt-j\cdot\frac{\sin(\varphi_d)}{T}\cdot\int\limits_{-T/2}^{+T/2}\sin^2(2\cdot\pi\cdot f_s\cdot t)\;dt=\left[\frac{\cos(\varphi_d)}{T}-j\cdot\frac{\sin(\varphi_d)}{T}\right]\cdot\frac{T}{2}=$$

$$=\frac{1}{2}\cdot e^{-j\cdot\varphi_d}$$

47



## Przykład (cd.)

$$x(t) = \cos(2 \cdot \pi \cdot f_s \cdot (t - t_d))$$

$$f_T = f_1 = f_s$$

$$c_{1} = \frac{1}{2} \cdot e^{-j \cdot \varphi_{d}}; \quad c_{-1} = \frac{1}{2} \cdot e^{+j \cdot \varphi_{d}}$$

$$dla \ n \neq 1 \ i \ n \neq -1 : \quad c_{n} = 0$$

$$t_d = \frac{\varphi_d}{2 \cdot \pi \cdot f_s}$$

$$\begin{split} x(t) &= \sum_{n=-\infty}^{+\infty} c_n \cdot e^{+j \cdot 2 \cdot \pi \cdot f_n \cdot t} &= \frac{1}{2} \cdot e^{-j \cdot \varphi_d} \cdot e^{+j \cdot 2 \cdot \pi \cdot f_1 \cdot t} + \frac{1}{2} \cdot e^{+j \cdot \varphi_d} \cdot e^{-j \cdot 2 \cdot \pi \cdot f_1 \cdot t} = \\ &= \frac{e^{+j \cdot (2 \cdot \pi \cdot f_1 \cdot t - \varphi_d)} + e^{-j \cdot (2 \cdot \pi \cdot f_1 \cdot t - \varphi_d)}}{2} = \cos(2 \cdot \pi \cdot f_1 \cdot t - \varphi_d) = \cos(2 \cdot \pi \cdot f_1 \cdot (t - t_d)) \end{split}$$



# Przykład wyznaczania szeregu Fouriera dla sygnału kosinusoidalnego o niecałkowitej liczbie okresów w odcinku *T*

$$x(t) = \begin{cases} \cos(2 \cdot \pi \cdot f_s \cdot t + \varphi_s) & dla \quad t \in (0, T) \\ \text{z war. Dirichleta} & dla \quad t = 0 \text{ lub } t = T \end{cases}$$

$$f_s = 2.5 f_T; \quad \varphi_s = 0; \quad T = 5s:$$







## Transformata CFT szeregu Fouriera Transformata sygnału okresowego

## Wyznaczmy transformatę dla szeregu Fouriera:

$$x(t) = \sum_{n = -\infty}^{+\infty} c_n \cdot e^{+j \cdot 2 \cdot \pi \cdot f_n \cdot t} \qquad \underbrace{CFT}_{ICFT} \qquad X(f) = \sum_{n = -\infty}^{+\infty} c_n \cdot \delta(f - f_n)$$

a zatem dla sygnału okresowego:

$$c_n = \frac{1}{T} \cdot X_0(f_n)$$

$$x(t) = \sum_{n = -\infty}^{+\infty} x_0(t - n \cdot T) \quad \stackrel{CFT}{\longleftarrow} \quad X(f) = \frac{1}{T} \cdot \sum_{n = -\infty}^{+\infty} X_0(f_n) \cdot \delta(f - f_n)$$

Można założyć wstępnie, że sygnał  $x_0$  jest niezerowy tylko na odcinku o długości T, ale generalnie nie jest to konieczne.



## Analogiczne zależności "w drugą stronę"

$$x(t) = \sum_{n = -\infty}^{+\infty} c_n \cdot \delta(t + t_n) \qquad \stackrel{CFT}{\longleftarrow} \qquad X(f) = \sum_{n = -\infty}^{+\infty} c_n \cdot e^{+j \cdot 2 \cdot \pi \cdot f \cdot t_n}$$

#### a zatem:

(po uwzględnieniu różnic wynikających z faktu stosowania tym razem ICFT, a nie – jak poprzednio – CFT)

$$x(t) = \frac{1}{F} \cdot \sum_{n = -\infty}^{+\infty} x_0(t_n) \cdot \delta(t - t_n) \quad \stackrel{CFT}{\longleftarrow} \quad X(f) = \sum_{n = -\infty}^{+\infty} X_0(f - n \cdot F)$$

Tym razem można wstępnie dla ułatwienia założyć, że transformata  $X_0(f)$  jest niezerowa tylko na odcinku o długości F, ale wzory są poprawne także w innym przypadku.



## Transformata grzebienia Diraca

$$g_T(t) = \sum_{n=-\infty}^{+\infty} \delta(t - t_n)$$
 :  $t_n = n \cdot T$ 

$$c_n = \frac{1}{T} \cdot \int_{t_0}^{t_0 + T} \delta(t) \cdot e^{-j \cdot 2 \cdot \pi \cdot f_n \cdot t} dt = \frac{1}{T} \cdot \int_{t_0}^{t_0 + T} \delta(t) \cdot e^{-j \cdot 2 \cdot \pi \cdot f_n \cdot 0} dt = \frac{1}{T}$$

$$g_T(t) = \sum_{n = -\infty}^{+\infty} \frac{1}{T} \cdot e^{+j \cdot 2 \cdot \pi \cdot f_n \cdot t} \quad \stackrel{CFT}{\longleftarrow} \quad G_T(f) = \frac{1}{T} \cdot \sum_{n = -\infty}^{+\infty} \delta(f - n/T)$$

 $\Delta f = 1/T$ 

$$g_T(t) = \sum_{n = -\infty}^{+\infty} \delta(t - n \cdot T) \qquad \underbrace{CFT}_{ICFT} \qquad G_T(f) = \Delta f \cdot \sum_{n = -\infty}^{+\infty} \delta(f - n \cdot \Delta f)$$



## **Podsumowanie**

- 1. Transformaty: sygnału stałego, delty Diraca, sygnału harmonicznego oraz cos/sin.
- 2. Delta Diraca jako pseudo-funkcja graniczna ciągu funkcji definicja i właściwości.
- 3. Splot: definicja, twierdzenie o splocie, splot z deltą Diraca, transformata sygnału  $\Lambda(t)$ , twierdzenie o modulacji.
- 4. Szereg Fouriera: różne wersje, efekt okresowości.
- 5. Zależność szeregu i transformaty dla sygnału okresowego.
- 6. Transformata szeregu Fouriera.
- 7. Transformata pseudo-funkcji grzebienia Diraca.



# Zapraszam na ćwiczenia ... lub do laboratorium ...