

Optimisation de performance bénéfice ou sacrifice?

Emmanuel-Lin TOULEMONDE

24.01.2025

SnowCamp

SNOWCAMP

Qui suis-je?

Emmanuel-Lin TOULEMONDE

~10 ans de Data Science, Data Eng, MLOps

https://eltoulemonde.fr/

Il était une fois la loi de Eroom proposée par Tristan Nitot

L'évolution du numérique

Puissance de calcul des machines

Usage actuel

Hardware

Software

L'évolution du numérique

Loi de Moore

Puissance produite

Puissance de calcul des machines

Hardware

x Tous les 2 ans

Usage actuel

Software

L'évolution du numérique

Loi de Moore

Puissance produite

Puissance de calcul des machines

Hardware

Besoins supplémentaires de calcul

Software

x Tous les 2 ans

Loi de Writh

Les impacts du numérique en France

%	Énergie	GES	Eau	Ressources
Fabrication	41%	83%	88%	100%
Utilisation	59%	17%	12%	0%

Source: étude iNum2020, 30 janvier 2021 — https://www.greenit.fr/impacts-environnementaux-du-numerique-en-france/

Une proposition : La loi de Eroom

Loi d'erooM

Effort Radicalement Organisé d'Optimisation en Masse

Optimiser le logiciel d'un facteur 2 tous les 2 ans

En optimisant le logiciel d'un facteur 2 tous les deux ans, on libère de la puissance informatique avec laquelle on peut inventer de nouveaux usages.

C'est comme la loi de Moore, mais **sans changer le matériel** !

O Pourquoi je vous en parle?

Mon expérience à développer des applications me convainc que

Les **dix premières années de Eroom**, une division par 32 de la puissance nécessaire est **accessible** dans toutes nos organisations.

Ce talk est une illustration de comment faire sur une application.

Proposition : Une grille de lecture pour l'ensemble des optimisations

4 volets à creuser

Architecture Stockage des données Code Algorithmie

Afficher des indicateurs

- Parlons d'architecture

O Un exemple pour illustrer

La tâche à réaliser est de collecter des données depuis un système opérationnel, de calculer des statistiques et de les afficher à l'ensemble des visiteurs.

Évaluer la complexité algorithmique

Elle peut être temporelle (~CPU) ou spatiale (~mémoire).

Architecture minimaliste

Architecture avec un cache

Architecture découplant système analytiques et opérationnels

O

Architecture challengeant le besoin de temps réel

Architecture redistribuant les rôles Back / ETL

Architecture redistribuant les rôles FRONT / ETL

O Architecture site statique

O Bilan des opérations

Ente ordre de grandeur (grand O)

Architecture	Opérations internes	Requêtes externes
Minimaliste		N _{chargement} x N _{graphes} x N _{sources}
Avec Cache	N _{charaement} x N _{graphes} x N _{sources}	$N_{appelsuniques} x N_{graphes} x N_{sources}$
Découplant (event)	Sources Sources	N _{sources} x N _{changements}
Découplant (cron)		
Redistribution back / ETL	N _{chargement} x N _{graphes} + N _{graphes} x N _{cron}	NN
Redistribution ETL - Front	N _{chargement} x N _{graphes} + N _{graphes} x N _{cron}	N _{sources} X N _{cron}
Site statique	N _{graphes} x N _{cron}	

Bilan des opérations avec des chiffres

Ente ordre de grandeur (grand O)

100 utilisateurs / jours, 10 graphes, 3 sources par graphe, 1 update par min, cron 1 x par heure

Architecture	Opérations internes	Requêtes externes
Minimaliste		3 000
Avec Cache	3 000	Entre 30 et 3 000
Découplant (event)		43 200
Découplant (cron)		
Redistribution back / ETL	1000 + 240	720
Redistribution ETL - Front	1000 + 240	720
Site statique	240	

12 fois moins 7 ans de Eroom

4 fois moins 4 ans de Eroom

Bilan des opérations avec des chiffres

Ente ordre de grandeur (grand O)

1M utilisateurs / jours, 20 graphes, 3 sources par graphe, 1 update par seconde, cron 1 x par min

Architecture	Opérations internes	Requêtes externes
Minimaliste		60 000 000
Avec Cache	60 000 000	Entre 60 et 60 000 000
Découplant (event)		5 140 000
Découplant (cron)		
Redistribution back / ETL	20 000 000 + 28 800	84 400
Redistribution ETL - Front	20 000 000 + 28 800	86 400
Site statique	28 800	

2 083 fois moins 22 ans de Eroom

694 fois moins 9 ans de Eroom

Les pratiques sur la grille de performance vs ...

Calculer des statistiques sur des grosses données!

- Parlons code

Un exemple pour illustrer

La tâche à réaliser est :

- 1. Calculer la moyenne de "numeric"
- 2. Calculer la proportion de "a"

numeric (float32)	letter (category)	partition (int16)
0.99828804	b	54
0.7377946	С	31
0.7337601	С	9
0.29893994	b	25
0.2920279	b	75
0.22539395	b	26
0.99200934	а	89

x 50 millions de lignes

3 indicateurs à suivre

Max mémoire utilisée Avec memray

Temps de calcul Comme proxy de l'usage CPU

Plus gros objet Avec sys.getsizeof

Version développeur qui ne connait pas les packages data

Pic mémoire	Plus gros objet	Temps
48 Mb	104 b	82s

Avantages :

- Pas de framework,
- ~Même code dans tous les langages
- Parcimonieux en RAM

Très lent

```
1 def naive approach(csv path: str):
2    df = pd.read_csv(csv_path)
3    mean = df["numeric"].mean()
4    share_of_a = sum(df["letter"] == "a") / df.shape[0]
5    return mean, share_of_a
```

Pic mémoire	Plus gros objet	Temps
3 100 Mb	3 700 Mb	43s

Avantages :

- Simple et efficace!
- o On a tous déjà écrit cela
- Code très découplé

Valeurs de référence!

C'est coûteux en mémoire et en temps

Version frugale

```
def frugal approach(csv path: str):
   df = pd.read csv(csv path, usecols=["numeric", "letter"])
  mean = df["numeric"].mean()
   share of a = sum(df["letter"] == "a") / df.shape[0]
   return mean, share of a
```

Pic mémoire	Plus gros objet	Temps
2 700 Mb	3 300 Mb	38s
-13%	-11%	-12%

Avantages :

Gain facile de mémoire et de temps de calcul

X Inconvénients :

•

```
1 def parquet approach(parquet path: str):
2    df = pd.read_parquet(parquet_path, columns=["numeric", "letter"])
3    mean = df["numeric"].mean()
4    share_of_a = sum(df["letter"] == "a") / df.shape[0]
5    return mean, share_of_a
```

Pic mémoire	Plus gros objet	Temps
1400 Mb	250 Mb	16s
-55%	-93%	-63%

Avantages :

- 3 fois moins d'espace disque pris
- Pas d'inférence des types
- Temps de lecture / écriture accélérée

X Inconvénients:

Ne peut plus ouvrir les données dans Excel

```
def chunk approach(parquet path: str):
     all partitions = glob.glob(f"{parquet path}/*")
     total = 0
     n lines = 0
     number of a = 0
     for partition in all partitions:
         chunk = pd.read parquet (partition, columns=["numeric", "letter"])
         total += chunk["numeric"].sum()
         n lines += chunk.shape[0]
9
         number of a += (chunk["letter"] == "a").sum()
10
     return total / n lines, number of a / n lines
11
```

Pic mémoire	Plus gros objet	Temps
168 Mb	2,53 Mb	20s
-95%	-99,9%	-53%

Avantages :

Réduction drastique de l'usage mémoire

X Inconvénients:

- Le code est plus complexe
- Couplage plus fort entre les 2 calculs, la lecture

Version parallélisée

```
def sum and count(file path: str):
     df = pd.read parquet(file path, columns=["numeric", 'letter'])
3
     return df["numeric"].sum(), df.shape[0], (df["letter"] == "a").sum()
5
  def parallel mean(file path: str):
     all partitions = glob.glob(f"{file path}/*")
     n core = 8
8
9
     with Pool(n core) as p:
10
         result = p.map(sum and count, all partitions)
11
     return sum([r[0] for r in result]) / sum([r[1] for r in result]),
12
            sum([r[2] for r in result]) / sum([r[1] for r in result])
```

Pic mémoire	Plus gros objet	Temps
49.4 Mib	2,53 Mb * 8	9,5s
-98%	-99,4%	-78%

🔽 Avantages :

Plus rapide

X Inconvénients:

- Le code est plus complexe
- Il y a un couplage plus fort entre les 2 calculs, la lecture
- Gourmand en CPU

```
1 def pyspark approach(parquet path: str):
2    spark = SparkSession.builder.appName("Code Example").getOrCreate()
3    df = spark.read.parquet(parquet path)
4    average_value = df.selectExpr("avg(numeric)").collect()[0][0]
5    total rows = df.count()
6    rows equal a = df.filter(col("letter") == "a").count()
7    share_of_a = rows_equal_a / total_rows
8    spark.stop()
9    return average_value, share_of_a
```

Pic mémoire	Plus gros objet	Temps	
?	?	35,4s	
		-18%	

🔽 Avantages :

Scale très bien à des données trop grosses pour un disque

X Inconvénients :

- Un autre style avec des compétences différentes
- Plus difficile à observer
- Le temps est consacré à de la "plomberie"

```
1 def polars approach(parquet path: str):
2    df = pl.read_parquet(parquet_path, columns=["letter", "numeric"])
3    average numeric = df['numeric'].mean()
4    proportion_a = df.filter(pl.col('letter') == 'a').height / df.height
5    return average_numeric, proportion_a
```

Pic mémoire	Plus gros objet	Temps
?	381 Mb	1,03s
	-90%	-98%

🔽 Avantages :

- o Permet d'intégrer du rust dans du python
- ça pulse

X Inconvénients:

- Un autre style avec des compétences différentes
- Framework moins mature

En résumé, les gains de performance

Version	Pic mémoire	Plus gros objet	Temps de calcul	Quand?	Années Eroom
Dev	48 Mb	104 b	82s	Jamais ?	
Naïve	3 100 Mb	3 700 Mb	43s	Prototype / minidonnées	Référence
Frugale	-13%	-11%	-12%	Toujours	0,35
Parquet	-55%	-93%	-63%	Toujours	2
Chunk	-95%	-99,9%	-53%	Données > Mémoire	8
Parallélisé	-98%	-99,4%	-78%	Calculs lourds & CPU disponible	12
Pyspark	?	?	-18%	>> 10Gb / jours	?
Polars	?	-90%	-98%	Si besoin vraiment spécifique	11

Les différentes optimisations sur la grille perfromance vs ...

Des exemples de la vraie vie!

Explorons la console de coût d'une data plateforme

Catégorie bonne pratique

- KMS un gestionnaire de secret
- S3 du stockage

Morale: Explorez vos coûts!

En Bl, tu as fait du mauvais boulot quand c'est lent!

Catégorie bonne pratique

Avant

Côté data engineering :

- Insert 50 millions de lignes dans PowerBI
- Le lendemain, 51 millions de lignes
- Le sur-lendemain, 52 millions de lignes

Côté BI:

Calculer des indicateurs dessus

Après

Côté Data engineering :

- Calcul les agrégats et stock les résultat
- Ingère (éventuellement) en incrémental dans PowerBI

Côté BI:

Affiche l'indicateur

Un job d'agrégation de time series

Catégorie bonnes pratiques!

Contexte

Sur des times series assez volumineuses, il faut calculer des indicateurs toutes les minutes.

Après

Un script python incrémental idempotent qui réalise les calculs de la dernière minute et l'append au fichier parquet.

Le job tourne en quelques secondes.

Avant

Un job spark qui calcule les indicateurs de 00:00 à maintenant.

Écrase la journée d'aujourd'hui.

Le job ne tourne pas assez vite en fin de journée.

Morale

Rendre le code efficient plutôt que de mettre plus de puissance

Optimisation de la concaténation

Catégorie bonne pratique

Avant

```
def a super function(df: pd.DataFrame) -> pd.DataFrame:
  result df = pd.DataFrame(...)
      sub df = ...
```

Après

```
def a super function(df: pd.DataFrame) -> pd.DataFrame:
  list sub df = []
      list sub df.append(sub df)
  return pd.concat(list sub df, axis=1)
```

Contexte: Vu au fin fond d'un job de data eng.

Résultat : Gain de 30% de temps de calculs dans ce cas

O

Optimisation de la gestion des connections

Catégorie choix conscient

Contexte

```
list df = []
for file in big list of files:
    df = blob_handler.read_bronze_file(ile_path=file)
```

Avant

```
class BlobHandler(...):

def get container client(self) -> ContainerClient:
    if self._container_client is None:
        self._container_client = ContainerClient(...)
    return self._container_client

def read bronze_file(self, file_path: str) ->
pd.DataFrame:
    container_client = self.get_container_client()
    return pd.read_json(BytesIO(
        container_client.download_blob(file_path).readall(
        )))
```

Après

Dans le cas particulier de très nombreuses petite intéraction avec le stockage, cacher la connection divise par 2 le temps de calcul

Conclusion

Rappel de ce que l'on veut faire

À produire x Tous les 2 ans Besoins futurs Besoins futurs Disponible Utilisation Disponible actuelle Utilisation actuelle

DADT OF ACCENITIBE® 202% - All rights regerees

À l'échelle d'une application, c'est possible

- L'architecture pour faire les bons calculs
- Le stockage pour stocker, modifier, récupérer les données efficacement
- Le code pour faire les choses efficacement
- L'algorithmie pour utiliser les maths au service de notre problème

À l'échelle de l'organisation...

Reprendre l'existant

- Appliquer la loi de Pareto : trouver les applications, les fonctionnalités les plus gourmandes en ressources
- Les refactorer
- En tirer des best practice
- Identifier des besoins d'expertise et monter une cellule, contribuer à des librairies open sources...

Améliorer le futur

- Mettre en place les bonnes pratiques dès maintenant
- Penser aux refactoring de performance futurs

Et moi développeur, DE, DA, DS, etc?

- o Ce qui ne se mesure pas ne s'améliore pas... J'apprends à profiler
- o Je prends du recul sur la gourmandise en CPU / RAM de ce que j'écris
- o Je regarde les nouveaux outils / framework sous l'angle parcimonieux

MERCI

Convaincu? On en parle?
Pas convaincu? On en parle?

Linked'in

https://eltoulemonde.fr/

There a Better Way