5480. Minimum Number of Vertices to Reach All Nodes

omissions (/contest/biweekly-contest-33/problems/minimum-number-of-vertices-to-reach-all-nodes/submissions/)

o Contest (/contest/biweekly-contest-33/)

Given a **directed acyclic graph**, with n vertices numbered from 0 to n-1, and an array edges where edges[i] = [from_i, to_i] represents a directed edge from node from_i to node to_i.

Find the smallest set of vertices from which all nodes in the graph are reachable. It's guaranteed that a unique solution exists.

Notice that you can return the vertices in any order.

User Accepted:	2463
User Tried:	2851
Total Accepted:	2499
Total Submissions:	3536
Difficulty:	Medium

Example 1:

Input: n = 6, edges = [[0,1],[0,2],[2,5],[3,4],[4,2]]

Output: [0,3]

Explanation: It's not possible to reach all the nodes from a single vertex. From 0 we can

Example 2:


```
Input: n = 5, edges = [[0,1],[2,1],[3,1],[1,4],[2,4]]
Output: [0,2,3]
Explanation: Notice that vertices 0, 3 and 2 are not reachable from any other node, so we
```

Constraints:

- 2 <= n <= 10⁵
- 1 <= edges.length <= $min(10^5, n * (n 1) / 2)$
- edges[i].length == 2
- $0 \le from_i$, $to_i < n$
- All pairs (from_i, to_i) are distinct.

Help Center (/support/) | Terms (/terms/) | Privacy Policy (/privacy/)

States (/region/)