Лабораторная работа 1.04 ИССЛЕДОВАНИЕ РАВНОУСКОРЕННОГО ВРАЩЕТЕЛЬНОГО ДВИЖЕНИЯ (МАЯТНИК ОБЕРБЕКА)

Цель работы:

Проверка основного закона динамики вращения.

Проверка зависимости момента инерции от положения масс относительно оси вращения.

Требуемое оборудование

- 1. Лабораторный стенд для исследования вращательного движения.
- 2. Цифровой секундомер.

Краткое теоретическое введение

Груз m (см. рис. 1.) подвешен на нити, которая перекинута через неподвижный блок Бл и намотана на ступицу Ст крестовины Кр. В ступице закреплены четыре спицы Сп, на каждой из которых размещен грузутяжелитель $m_{\rm yr}$. Расстояние R утяжелителей от оси вращения крестовины одинаково для всех утяжелителей. Это расстояние, можно изменять, изменяя тем самым момент инерции крестовины с утяжелителями.

Рис. 1. Схема измерительного стенда

Груз m, опускаясь, раскручивает крестовину. Если пренебречь силой сопротивления воздуха, то груз движется равноускорено под действием векторной суммы силы тяжести mg и силы T натяжения нити. Его ускорение a определяется вторым законом Ньютона:

$$ma = mg - T. (1)$$

Это ускорение можно вычислить по формуле

$$a = \frac{2h}{t^2},\tag{2}$$

где h расстояние, пройденное грузом за время t от начала движения.

Нить не проскальзывает по ступице, поэтому угловое ускорение є крестовины согласовано с линейным ускорением груза. Это угловое ускорение вычисляется по формуле

$$\varepsilon = \frac{2a}{d},\tag{3}$$

где d диаметр ступицы.

Используя уравнение (1) выразим силу натяжения нити:

$$T = m(g - a), \tag{4}$$

и найдем момент этой силы:

$$M = \frac{md}{2}(g - a). \tag{5}$$

Предполагая, что кроме момента силы натяжения на раскручивание крестовины влияет тормозящий момент силы трения, запишем основной закон динамики вращения для крестовины в виде

$$I\varepsilon = M - M_{\rm TD}. \tag{6}$$

Здесь I момент инерции крестовины с утяжелителями.

В соответствии с теоремой Штейнера момент инерции крестовины зависит от расстояния между центрами грузов и осью вращения по формуле

$$I = I_0 + 4m_{yr}R^2, (7)$$

где I_0 сумма моментов инерции стержней крестовины, момента инерции ступицы и собственных центральных моментов инерции утяжелителей.

Порядок выполнения работы

- 1. Списать или сфотографировать данные об установке на рабочем месте.
- 2. Ознакомится с лабораторным стендом (см. рис.2). Отвернуть рукоятку 2 сцепления крестовин, так чтобы передняя крестовина вращалась независимо от задней.
- 3. Положение каждого утяжелителя на крестовине задается номером риски (канавки на спице), по которой выравнивается грань утяжелителя, ближайшая к оси вращения. Установить все утяжелители на первую риску
- 4. Установить в качестве подвешенного груза каретку 10 с одной шайбой 9 . остальные три шайбы 9 закрепить наверху трубчатой направляющей 6. Измерить три раза время прохождения кареткой из неподвижного положения пути от отметки $h_1 = 700$ мм до отметки $h_2 = 0$. При этом $h = h_1 h_2 = 700$ мм. Массу m_1 каретки с одной шайбой и результаты измерения времени t_1 , t_2 , t_3 занести в соответствующие ячейки таблицы 1.

Рис. 2. Стенд лаборатории механики (общий вид):

I — основание; 2 — рукоятка сцепления крестовин; 3 — устройство принудительного трения; 4 — поперечина; 5 — груз крестовины; 6 — трубчатая направляющая; 7 — передняя крестовина; 8 — задняя крестовина; 9 — шайбы каретки; 10 — каретка; 11 — система передних стоек.

Таблица 1. Протокол измерений времени падения груза при разной массе груза и разном положении утяжелителей на крестовине

Масса груза, г	Положение утяжелителей					
	1.риска	2.риска	3.риска	4.риска	5.риска	6.риска
m_1	t_1					
	t_2					
	t_3					
	$t_{ m cp}$					
m_2						
m_3						
m_4						

- 5. Не изменяя положение утяжелителей крестовины повторить п. 4 для каретки с двумя шайбами (масса m_2), тремя шайбами (масса m_3) и четырьмя шайбами (масса m_4).
- 6. Повторить измерения пп. 4,5 при положении утяжелителей на второй, третьей, ..., шестой рисках.
- 7. Найти среднее время падения гири для всех масс гири и всех положениях утяжелителей на крестовине. Для первого значения $t_{\rm cp}$ рассчитать погрешность среднего значения времени Δt .
- 8. Используя найденные значения $t_{\rm cp}$ рассчитать ускорение a груза, угловое ускорение ϵ крестовины и момент M силы натяжения нити. Результаты оформить в виде таблицы. Для первых значений a, ϵ и M вычислить их погрешности и записать соответствующие доверительные интервалы.
- 9 Для каждого положения утяжелителей на крестовине в координатах M(ордината) ε (абсцисса) на одном рисунке нанести точки найденных зависимостей $M(\varepsilon)$. Отметить значения погрешностей $\Delta \varepsilon$ и ΔM , вычисленные в п. 8, у тех точек, для которых они найдены.
- 10. Для каждого положения утяжелителей на основе таблицы M и ε по методу наименьших квадратов (МНК) рассчитать момент I инерции крестовины с утяжелителями и момент силы трения $M_{\rm Tp}$. Из формулы (6) следует, что теоретическая связь между моментом силы натяжения нити и угловым ускорением крестовины описывается уравнением

$$M = M_{\rm TD} + I\varepsilon, \tag{8}$$

- т.е. зависимость $M(\varepsilon)$ является линейной, а величины I и $M_{\rm тp}$ коэффициенты этой зависимости. Формулы расчета коэффициентов линейной зависимости по МНК приведены в разделе «6.5. Обработка совместных измерений. Метод наименьших квадратов» пособия «Обработка экспериментальных данных» (см. список литературы).
- 11. Используя вычисленные в п. 10 значения I и $M_{\rm тр}$, на том же рисунке, что и точки п. 9., построить графики зависимости (8) для всех положений утяжелителей.
- 12. Для каждого положения утяжелителей найти расстояние (см. рис.3) между осью O вращения и центром C утяжелителя по формуле

$$R = l_1 + (n-1)l_0 + \frac{1}{2}b. \tag{9}$$

Здесь l_1 – расстояние от оси вращения до первой риски; n – номер риски, на которой установлены утяжелители; l_0 – расстояние между соседним рисками; b – размер утяжелителя вдоль спицы. Вычислить R^2 .

Рис. 3. К определению расстояния от центра груза-утяжелителя до оси вращения.

- 13. Объединить значения R, R^2 , I в таблицу и на основе этой таблицы в координатах I(ордината) R^2 (абсцисса) отметить экспериментальные точки зависимости $I(R^2)$.
- 14. На основе найденных значений I и R^2 с помощью МНК определить значения I_0 и $m_{\rm yr}$, а также их погрешности ΔI_0 и $\Delta m_{\rm yr}$. В соответствии с формулой (7) величина I_0 —свободное слагаемое в линейной зависимости $I(R^2)$, $m_{\rm yr}$ четверть от углового коэффициента наклона этой зависимости. Формулы расчета по МНК коэффициентов линейной зависимости и их погрешностей приведены в разделе «6.5. Обработка совместных измерений. Метод наименьших квадратов» пособия «Обработка экспериментальных данных» (см. список литературы).
- 15. Построить график зависимости (7), используя значения I_0 и m_{yr} , вычисленные в п. 14, на том же рисунке, что и точки п. 13.

Литература

- 1. Детлаф А. А., Яворский Б. М. Курс физики.— 8-е изд., стер. М. : Издательский центр "Академия", 2009 .
- 2. Курепин В.В., Баранов И.В. Обработка экспериментальных данных: Методические указания к лабораторным работам. СПб, 2003.–57 с.