

Practical Assignment № 3

Digital and Microcontroller Devices

variant number: 6

Student Name: Xu Miao, Zhou Haojie

HDU Number: 19322103, 19322233

ITMO number: 293687, 293806

Practical Task 3

1) experimental values (Group 6)

1) Table 1:

Variant	z_1	z_2	z_3	z_4	z_{p1}	z_{p2}	b_1	b_2	T_u	T_G	$\frac{T_0}{T}$	r
6	0,56	0,65	0, 98	0,18	0, 34	0,64	1	8	2	8	0.5	0.25

2) Calculate parameters of digital PID controller via pole-assignment design. Desired poles of closed-loop system and process parameters are in Table 1.

The parameters of a PID-control algorithm for process III are to be determined in such a way that the poles are located as follows:

$$z_1 = 0.56, z_2 = 0.65, z_3 = 0.98, z_4 = 0.18$$

The poles of the process ate $z_1=0.34, z_2=0.64$. Since m=2 (4) is satisfied so that the controller:

$$G_R(z) = \frac{q_0 + q_1 z^{-1} + q_2 z^{-2}}{(1 - z^{-1})(1 + \gamma_1 z^{-1})}$$

can be used. This leads to the following characteristic equation:

$$(1-z^{-1})(1+\gamma z^{-1})(1+a_1z^{-1}+a_2z^{-2})+(q_0+q_1z^{-1}+q_2z^{-2})(b_1z^{-1}+b_2z^{-2})=0.$$

1

Following multiplying and comparing the coefficients with the characteristic equation (3) one obtains:

$$\begin{array}{ll} \gamma + q_0b_1 & = -(z_1+z_2+z_3+z_4) + 1 - a_1 \\ \gamma(a_1-1) + q_0b_2 + q_1b_1 & = z_1z_2 + z_3z_4 + (z_1+z_2)(z_3+z_4) - a_2 + a_1, \\ \gamma(a_2-a_1) + q_1b_2 + q_2b_1 & = -z_1z_2(z_3+z_4) - z_3z_4(z_1+z_2) + a_2 \\ q_2b_2 - \gamma a_2 & = z_1z_2z_3z_4 \end{array}$$

This equation system can be first solved for γ and then for the q_i :

$$\gamma = -0.3606$$
, $q_0 = -0.2707$, $q_1 = 0.4801$, $q_2 = -0.1955$.

The step response of the controller becomes:

$$u(0) = -0.2707, u(1) = -0.1588, u(2) = -0.1046,$$

$$u(3) = -0.0712, u(4) = -0.0452, u(5) = -0.0219.$$

The expected PID behavior is then achieved.

3) Calculate parameters of digital PID controller via measured step function method using figures. Parameters for calculation are in Table 1.

In a low-pass process $T_u=14{\rm sec}$, $T_G=45{\rm sec}$ and $K_p=2$ were obtained from the measured step function. Sample time $T_0=10{\rm sec}$.

- 1 $T_u/T_G = 0.25$.
- 2 $T_0/T = 0.5$.
- 3 r = 0.25,

4
$$K_0 = 1.2, c_I = 0.175, c_D = 0.8.$$

5
$$K = 1.2/2 = 0.6, q_0 = 1.08, q_1 = -1.4550, q_2 = 0.48.$$

conclusion:

- We can use two methods to obtain the parameters of digital PID controller:
 - O Pole-assignment method
 - O Measured step function method
- Through these two methods, we will get different controller parameters.