附 录 附 一 1

附录 1. AT89 系列单片机简介

AT89 系列单片机是 ATMEL 公司的 8 位 Flash 单片机系列。这个系列单片机的最大特点是在片内含有 Flash 存储器。因此,在应用中有着十分广泛的前途,特别是在便携式、省电及特殊信息保存的仪器和系统中显得更为有用。

1.1 89 系列单片机特点

AT89 系列单片机是以 8051 核构成的, 所以, 它和 8051 系列单片机是兼容的系列。这个系列对于以 8051 为基础的系统来说, 是十分容易进行取代和组成的。故而对于熟悉 8051 的用户来说, 用 ATMEL 公司的 89 系列单片机进行取代 8051 的系统设计是轻而易举的事。

一、89 系列单片机的优点

- (1)内部含 Flash 存储器 在系统的开发过程中可以十分容易进行程序的修改 这就大大缩短了系统的开发周期。同时,在系统工作过程中能有效地保存一些数据信息,即使外界电源损坏也不会影响到信息的保存。
- (2)和 80C51 插座兼容 89 系列单片机的引脚是和 80C51 的引脚一样的,所以,当用 89 系列单片机取代 80C51 时,可以直接进行代换。这时,不管采用 40 引脚或是 44 引脚的产品,只要用相同引脚的 89 系列单片机取代 80C51 的单片机即可。
- (3)静态时钟方式 89 系列单片机采用静态时钟方式 所以可以节省电能 这对于降低便携式产品的功耗十分有用。
- (4)错误编程亦无废品产生 一般的 OTP 产品 一旦错误编程就成了废品。而 89 系列单片机内部采用了 Flash 存储器,所以,错误编程之后仍可以重新编程,直到正确为止,故不存在废品。
- (5)可进行反复系统试验 用 89 系列单片机设计的系统,可以反复进行系统试验;每次试验可以编入不同的程序,这样可以保证用户的系统设计达到最优。而且,随用户的需要和发展,还可以进行修改,使系统不断能追随用户的最新要求。
- 二 89 系列单片机的内部结构
 - 89 系列单片机的内部结构和 80C51 相近, 主要含有如下一些部件:

(1)8031 CPU

(6)片内 RAM

(2)振荡电路

(7)并行 I/0 接口

(3)总线控制部件

(8)定时器

(4)中断控制部件

(9)串行 I/0 接口

(5)片内 Flash 存储器

(10)片内 EEPROM

在 89 系列单片机中,AT89C1051 的 Flash 存储器容量最小,只有 1 K;而 AT89S55 的 Flash 存储器容量最大,有 20K。

在这个系列中,结构最简单的是 AT89C1051, 它内部不含串行接口;最复杂的是 AT89S8252, 它内部不但含标准的串行接口,还含有一个串行外围接口 SPI、Watchdog 定时器、双数据指针、EEPROM、电源下降的中断恢复等功能和部件。

89 系列单片机目前有多种型号,分别为 AT89C1051、AT89C2051、AT89C4051、AT89C51、AT89C51、AT89C52、AT89C52、AT89S8252、AT89LS8252、AT89C55、AT89LV55、AT89S53、AT89LS53、AT89S4D12。 其中,AT89LV51、AT89LV52 和 AT89LV55 分别是 AT89C51、AT89C52 和 AT89C55 的低电压产品,最低电压可以低至 2.7 V;而 AT89C1051 和 AT89C2051 则是低档型低电压产品,它们仅有 20 个引脚,最低电压仅为 2.7 V。

三、89 系列单片机的型号编码

89 系列单片机的型号编码由三个部分组成。它们是前缀、型号和后缀。格式如下:

AT89C XXXXXXXX 其中,AT 是前缀,89CXXXX 是型号,XXXX 是后缀。

下面分别对这三个部分进行说明,并且对其中有关参数的表示和意义作相应的解释。

- (I)前缀 由字母 "AT"组成 表示该器件是 ATMEL 公司的产品。
- (2)型号 由 "89CXXXX"或 "89LVXXXX"或 "89SXXXX"等表示。
- "89CXXXX"中,9是表示内部含 Flash 存储器,C表示为 CMOS产品。
- "89LVXXXX"中, LV 表示低压产品。

"89SXXXX"中、S表示含有串行下载 Flash 存储器。

在这个部分的"XXXX"表示器件型号数。如 51、1051、8252 等。

(3)后缀 由 "XXXX"四个参数组成,每个参数的表示和意义不同。在型号与后缀部分有"一"号隔开。

后缀中的第一个参数 X 用于表示速度。它的意义如下:

X=12,表示速度为 12 MHz。 X=20,表示速度为 20 MHz。 X=16,表示速度为 16 MHz。 X=24,表示速度为 24 MHz。

后缀中的第二个参数 X 用于表示封装 它的意义如下:

X=D,表示陶瓷封装。 X=Q,表示 PQFP 封装。'

X=J,表示 PLCC 封装。 X=A,表示 TQFP 封装。

X=P,表示塑料双列直插 DIP 封装。 X=W,表示裸芯片。

X=S,表示 SOIC 封装。

后缀中第三个参数 X 用于表示温度范围, 它的意义如下:

X=C,表示商业用产品,温度范围为0~十70℃。

X=I,表示工业用产品,温度范围为一40~十 85℃。

X=A, 表示汽车用产品, 温度范围为一40~十 125℃。

X=M,表示军用产品,温度范围为-55~十 150℃。

后缀中第四个参数 X 用于说明产品的处理情况。它的意义如下:

X 为空、表示处理工艺是标准工艺。

X= / 883。表示处理工艺采用 MIL-STD-883 标准。

例如:有一个单片机型号为"AT89C51—12PI",则表示意义为该单片机是 ATMEL 公司的 Flash单片机,内部是 CMOS 结构,速度为 12 MHz,封装为塑封 DIP,是工业用产品,按标准处理工艺生产。

1.2 89 系列单片机分类

AT89 系列单片机可分为标准型号、低档型号和高档型号三类。

标准型有 AT89C51 等六种型号,它们的基本结构和 89C51 是类似的,是 80C51 的兼容产品。低档型有 AT89C1051 等两种型号,它们的 CPU 核和 89C51 是相同的,但并行 I / 0 口较少。高档型有 AT89S8252 等型号,是一种可串行下载的 Flash 单片机,可以用在线方式对单片机进行程序下载

一、标准型单片机

标准型单片机有 89C51、89LV51、89C52、89LV52、89C55、89LV55 六种型号。

标准型 89 系列单片机是和 MCS—51 系列单片机兼容的。在内部含有 4K、8K 或 20K 可重复编程的 Flash 存储器,可进行 1000 次擦写操作。全静态工作为 0—33 MHz,有三级程序存储器加密锁定,有内部含 128—256 字节的 RAM,有 32 条可编程的 I/0 端口,有 2~3 个 16 位定时器/计数器,有6~8 级中断,有通用串行接口,有低电压空闲及电源下降方式。

在这六种型号中,AT89C51 是一种基本型号。AT89LV51 是一种能在低电压范围工作的改进型,可在 $2.7\sim6$ V 电压范围工作,其它功能和 89C51 相同。AT89C52 是在 AT89C51 的基础上,在存储器容量、定时器和中断能力上得到改进的型号。89C52 的 Flash 存储器容量为 8K,16 位定时器/计数器 有 3 个,中断有 8 级。而 89C51 的 Flash 存储器容量为 4K,16 位定时器/计数器有 2 个,中断只有 6 级。AT89LV52 是 89C52 的低电压型号,可在 $2.7\sim6$ V 电压范围内工作。89C55 的 Flash 存储器容量为 20K,16 位定时 / 计数器有 3 个,中断有 8 级。AT89 LV55 是 89C55 的低电压型号,可在 $2.7\sim6$ V 电压范围内工作。

二、低档型单片机

低档型的单片机有 AT89C1051 和 AT89C2051 两种型号。除并行 I/O 端口数较少之外,其它部件结构基本和 AT89C51 差不多。之所以被称为低档型,主要是因为它的引脚只有 20 条,比标准型的 40引脚少得多。

AT89C1051 的 Flash 存储器只有 1K,RAM 只有 64 个字节,内部不含串行接口,内部的中断响应 只有 3 种,保密锁定位只有 2 位。这些也是和标准型的 AT89C51 有区别的地方。AT89C2051 的 Flash 存储器只有 2K,RAM 只有 128 个字节,保密锁定位有 2 位。

也由于在上述有关部件上 AT89C1051、AT89C2051 的功能比标准型 AT89C51 要弱 所以它们就处于低档位置。

附 — 3 附 录

三、高档型单片机

高档型有 AT89S53、AT89S8252、AT89S4D12 等型号,是在标准型的基础上增加了一些功能形成 的。增加的功能主要有如下几点:

- (I) AT89S4D12 有 4K 可下载 Flash 存储器, AT89S8252 有 8K 可下载 Flash 存储器, AT89S53 有 12K 可下载 Flash 存储器。下载功能是由 IBM 微机通过 89 系列单片机的串行外围接口 SPI 执行的。
 - (2)除 8K Flash 存储器外,AT89S8252 还含有一个 2K 的 EEPROM,从而提高了存储容量。
 - (3)含有9个中断响应的能力。
 - (4)含标准型和低档型所不具有的 SPI 接口。
 - (5)含有 Watchdog 定时器(看门狗定时器)。
 - (6)含有双数据指针。
 - (7)含有从电源下降的中断恢复。
- (8) AT89S4D12 除了 4K 可下载 Flash 存储器之外,还有一个 128K 片内 Flash 数据存储器 ,12MHz 内部振荡器 5个可编程 I/0线。

AT91M 系列单片机 附录 2.

AT91M 是基于 ARM7TDMI 嵌入式处理器的 ATMEL 16 / 32 微处理器系列中的一个新成员。该处理器 用高密度的 16 位指令集实现了高效的 32 位 RISC 结构 且功耗很低。此外,内部的工作寄存器很多, 使该器件非常适用于实时控制的应用。该器件使用 ATMEL 公司的高密度 CMOS 技术,通过在一个单片 上集成了 ARM7TDMI 和大量的 ROM 程序区 以及片内 RAM 和广泛的外设功能,使得 ATMEL 的 AT91M 成 为一个强有力的微控制器。为许多需要加强运算的嵌入式控制器提供了高度的灵活性、高性能价格比 的解决方案。

AT91M 使用了基于先进微控制器总线结构(AMBA)的模块化设计方法,具有综合、快速、高性能价 格比的特点。

AT91M 系列单片机目前有 AT91M4020X、AT91M4120X、AT91M00100 等产品。 表 1.2 为 AT91M 系列部分产品的 ROM 大小表。

表 1 AT91M 系列产品的 ROM 大小表

Device	Speed (MHz)	Temp	Flash (Bytes)	Mask ROM (Bytes)	SRAM (Bytes)	Package	Supply Voltage (Volt)	IEEE 1149.1	Power Saving	Additional Features
M40400	25/33	C/I	92	32	4K	TQFP100	2.7-3.6	20	Idle	3 Timers
M40400	12	C/I	15	- 5	4K	TQFP100	1.8-3.6	30	mode	
M40416	25	C/I	2M	::	4K	BGA120	2.7-3.6	80		
M40100	33/40	C/I	12	- 1	1K	TQFP100	2.7-3.6	2)		2 USARTs
M40800	33/40	C/I	15		8K	TQFP100	2.7-3.6	70	CPU and peripheral clock deactivation	Watchdog PDC Multi Processor Interface 6 Timers, 3 USARTs, SPI PDC, Watchdog
R40807	33	C/I	7,2	- 4	8K + 128K	TQFP100	2.7-3.6	40		
M40403	33	C/I	62	32K	4K	TQFP100	2.7-3.6	35		
M40807	33	C/I		128K	8K	TQFP100	2.7-3.6	**		
M63200	25	C/I	82	12	2K	TQFP176	2.7-3.6	у		
M55200	33	C/I	in the		2K	TQFP176	2.7-3.6	у	Clock deactivation, Slow, Standby and	8-ch ADC, 2-ch DAC RTC, Osc + PLL 6 timers, 3 USARTs, SPI PDC, Watchdog
M55800	33	C/I	37	*	8K	TQFP176	2.7-3.6	у	Power down modes	

附录3: AT94K 系列现场可编程系统标准集成电路

AT94K 系列 (FPSLIC family) 整合了Atmel AT40K 系列 SRAM FPGA 和高性能的带标准外设的 Atmel AVR 8位 RISC 微控制器。此器件中包含了扩展数据和指令SRAM 及器件控制和管理逻辑,以 Atmel 0.35 的四层金属 CMOS 工艺制作。10K - 40K 门的 AT40K FPGA带8位微控制器和36K 字节的SRAMAT40K FPGA 核心是一个完全符合 3.3V PCI 标准,带10 ns 分布式同步/异步可编程的全双工口/单工口的 SRAM,8 个全局时钟,Cache Logic 性能(部分或全部可重新设置而不丢失数据)及10,000 至 40,000 的可用门数的基于SRAM的 FPGA。

特点

大规模现场可编程系统标准集成电路

- AT40K 基于SRAM的 FPGA 具有嵌入式高性能的 RISC AVR 核心及 扩展的数据和指令的 SRAM
 10,000到 40,000 门基于专利 SRAM的 AT40K FPGA 带 FreeRAM
- 4.6K至18.4K 位的分布式单/双口 FPGA 的用户 SRAM
- 高性能 DSP 优化的 FPGA 核心单元
- 内置动态可重新编程 可存取设置FPGA

AVR 微控制器核心片内支持 Cache Logic 设计

- 极低静态和动态功耗 最适于轻便及手持式的应用 专利 AVR 扩展 RISC 结构
- 120条功能强大的指令 绝大多数执行周期为单时钟周期
- -基于DSP系统的高性能硬件累乘器
- 可用超过 30 MIPS Performance
- -带32个内部寄存器的"C"代码优化结构
- 低电压休眠 , 省电及掉电模式32K字节动态分配指令和数据 SRAM
- 最多 16K x 16 内部15 ns 指令 SRAM
- -最多 14K x 8 内部15 ns 数据 SRAM AVR Fixed外设
- 工业标准的两线接口
- 两个可编程串行 UART
- 两个带分立预定比例器和 PWM 的 8 位定时器/计数器 和一个带分立预定比例器,比较, 捕获模式及8位,9位,或10位PWM 的16位定时器/计数器 支持 FPGA 标准的外设
- AVR 外设控制 16 解码 AVR 地址线可直接存取 FPGA
- 标准外设的FPGA 宏功能库 16 FPGA给AVR提供内部中断 最多给 AVR 4 个外部中断
 - 8个全局 FPGA 时钟
- 两个从AVR 逻辑驱动的 FPGA 时钟
- 可从FPGA 核心存取FPGA 全局 时钟 复合振荡器电路
- 带片内振荡器的可编程看门狗定时器
- AVR 内部时钟电路振荡器
- 可软件选择时钟频率
- 定时器/计数器实时时钟振荡器

V CC : 3.0V- 3.6V

33V 33 MHz PCI 标准的 FPGA I/O

- 24 mA 下沉/源高性能 I/O 结构
- 所有 FPGA I/O 单独可编程

附 录 附 — 5

引脚与 Atmel AT40K 系列 FPGA 兼容 高性能, 低电压 0.35 CMOS四层金属处理 Stateof-the-art 基于PC的包含协检验的集成软件

表 1. AT94K 系列

器件	AT94K10	AT94K20	AT94K40
FPGA 门数	10K	20K	40K
FPGA 核心单元	576	1024	2304
FPGASRAM 位数	4096	8192	18432
FPGA 寄存器数(全部)	864	1408	2880
最多 FPGA 用户 I/O	144	192	288
可编程 SRAM 字节数	20K - 32K	20K - 32K	20K - 32K
数据 SRAM 字节数	4K - 16K	4K - 16K	4K - 16K
硬件类乘器 (8位)	有	有	有
两线串行接口	有	有	有
UART	2	2	2
看门狗定时器	有	有	有
定时器/计数器	3	3	3
实时时钟	有	有	有
典型的 AVR 吞吐量 @ 40 MHz	30 MIPS	30 MIPS	30 MIPS
工作电压	3.0 - 3.6V	3.0 - 3.6V	3.0 - 3.6V

图 1. AT94K 的结构

附 录 附 — 6

AT94K内嵌 AVR 核心,通过在单个时钟周期内执行指令,实现每 MHz 1 MIPS 的吞吐量以允许系统设计者优化功耗与处理速度。AVR 核心基于一个包含了丰富指令集和32个通用工作寄存器的扩展RISC 结构。所有 32 个寄存器直接与算数逻辑单元 (ALU)联接,在一个时钟周期内执行单条指令时允许存取两个独立的寄存器。当吞吐量达到CLK频率下的普通CISC微控制器十倍时合成的结构可更有效的编码。 AVR 可操作片外SRAM。FPGA 设置 SRAM 和 AVR 指令编码SRAM 都能自动地在系统上电时使用 Atmel 的内置可编程AT17系列EEPROM 设置存储器来装载。State-of-the-art FPSLIC 设计工具 "System Designer"

是为了与FPSLIC结构协调而开发以减少用来集成微控制器开发及调试的整体时间,FPGA 开发和 放置与布线及完成系统协检验的功能集中在易于使用的软件工具中。

附 录 附 — 7

附录 4. 指令综合

ATmega161指令,包括所有 AVR 单片机指令指令

说明:AVR 单片机的指令系统对不同器件有不用指令他们关系如下:(详情见本附录)

- (1) 89 条指令器件:AT90S1200,最基本指令,附录:各种 AVR 器件指令比较表中无标记
- (2) 90 条指令器件(□):Attiny11/12/15/22; 90 条指令=□+89 条基本指令
- (3) 118 条指令器件(◇):AT90S2313/2323/2343/2333,/4414/4433/4434/8515/90S8534/8535

;118 条指令=◇+90 条;

(4) 121 条指令器件(△)ATmega603/103; 121 条指令=△+ 118 条; (5) 130 条指令器件(☆)ATmega161; 130 条指令=☆+121 条

附录 4-1: AVR AT90S1200 器件指令速查表(89条指令)

算术和]逻辑指令	条件	‡转移指令	位指令和位测试指令		
ADD Rd,Rr	加法	SBRC Rr,b	位清零跳行	SBI P,b	置位 I/O 位	
ADC Rd,Rr	带进位加	SBRS Rr,b	位置位跳行	CBI P,b	清零 I/O 位	
SUB Rd,Rr	减法	SBIC P,b	I/O 位清零跳行	LSL Rd	左移	
SUBI Rd,K	减立即数	SBIS P,b	I/O 位置位跳行	LSR Rd	右移	
SBC Rd,Rr	带进位减	BRBS s,k	SREG 位置位转	ROL Rd	带进位左循环	
SBCI Rd,K	带 C 减立即数	BRBC s,k	SREG 位清零转	ROR Rd	带进位右循环	
AND Rd,Rr	与	BREQ k	相等转移	ASR Rd	算术右移	
ANDI Rd,K	与立即数	BRNE k	不相等转移	SWAP Rd	半字节交换	
OR Rd,Rr	或	BRCS k	C 置位转	BSET s	置位 SREG	
ORI Rd,K	或立即数	BRCC k	C 清零转	BCLR s	清零 SREG	
EOR Rd,Rr	异或	BRSH k	≥ 转	BST Rr,b	Rr 的 b 位送 T	
COM Rd	取反	BRLO k	小于转(无符号)	BLD Rd,b	T送Rr的b位	
NEG Rd	取补	BRMI k	负数转移	SEC	置位C	
SBR Rd,K	寄存器位置位	BRPLk	正数转移	CLC	清零C	
CBR Rd,K	寄存器位清零	BRGE k	≥转(带符号)	SEN	置位N	
INC Rd	加 1	BRLT k	小于转(带符号)	CLN	清零N	
DEC Rd	减 1	BRHS k	H 置位转移	SEZ	置位Z	
TST Rd	测试零或负	BRHC k	H 清零转移	CLZ	清零Z	
CLR Rd	寄存器清零	BRTS k	T 置位转移	SEI	置位I	
SER Rd	寄存器置FF	BRTC k	T 清零转移	CLI	清零Ⅰ	
条件车	条件转移指令		V 置位转移	SES	置位S	
RJMP k	相对转移	BRVC k	V 清零转移	CLS	清零S	
RCALL k	相对调用	BRIE k	中断位置位转移	SEV	置位V	
RET	子程序返回	BRID k	中断位清零转移	CLV	清零V	
RETI 中断返回		数据传送指令		SET	置位T	
CPSE Rd,Rr	比较相等跳行	MOV Rd,Rr	寄存器传送	CLT	清零T	
CP Rd,Rr	比较	LDI Rd,K	装入立即数	SEH	置位H	
CPC Rd,Rr	带进位比较	LD Rd,Z	Z 变址间接取数	CLH	清零H	
CPI Rd,K	与立即数比较	STZ,Rr	Z 变址间接存数	NOP	空操作	
		IN Rd,P	从 I/O 口取数	SLEEP	休眠指令	
		OUT P,Rr	存数于 I/O 口	WDR	看门狗复位	

Attiny11/12/15/22 为 90 条指令器件, 比 AT90S1200 多一条指令 LPM 从程序区取数

附 录 附 — 8

附录 4-2: AVR 器件(指令速查表) 118 条指令器件 AT90S2313/2323/2343/2333 ,AT90S4414/4433/4434/8515,AT90S8534/8535

		3,A19054414/4		•	
算术和逻辑指令		BRCC k	C 清零转	位指令和	0位测试指令
ADD Rd,Rr	加法	BRSH k	≥ 转	SBI P,b	置位 I/O 位
ADC Rd,Rr	带进位加	BRLO k	小于转(无符号)	CBI P,b	清零 I/O 位
♦ ADIW Rdl,K	加立即数	BRMI k	负数转移	LSL Rd	左移
SUB Rd,Rr	减法	BRPL k	正数转移	LSR Rd	右移
SUBI Rd,Rr	减立即数	BRGE k	≥转(带符号)	ROL Rd	带进位左循环
SBC Rd,Rr	带进位减	BRLT k	小于转(带符号)	ROR Rd	带进位右循环
SBCI Rd,K	带 C 减立即数	BRHS k	H 置位转移	ASR Rd	算术右移
SBIW Rdl,K	减立即数	BRHC k	H 清零转移	SWAP Rd	半字节交换
AND Rd,Rr	与	BRTS k	T 置位转移	BSET s	置位 SREG
ANDI Rd,K	与立即数	BRTC k	T清零转移	BCLR s	清零 SREG
OR Rd,Rr	或	BRVS k	V 置位转移	BST Rr,b	Rr 的 b 位送 T
ORI Rd,K	或立即数	BRVC k	V 清零转移	BLD Rd	T送 Rr的b位
EOR Rd,Rr	异或	BRIE k	中断位置位转移	SEC	置位 C
COM Rd	取反	BRID k	中断位清零转移	CLC	清零 C
NEG Rd	取补	数据传送		SEN	置位 N
SBR Rd,K	寄存器位置位	MOV Rd,Rr	寄存器传送	CLN	清零 N
CBR Rd,K	寄存器位清零	♦ LDI Rd,Rr	装入立即数	SEZ	置位 Z
INC Rd	加 1	♦ LD Rd, X	X间接取数	CLZ	清零Z
DEC Rd	减 1	♦ LD Rd, X+	X间接取数后+	SEI	置位 I
TST Rd	测试零或负	♦ LD Rd,-X	X间接取数先─	CLI	清零
CLR Rd	寄存器清零	♦ LD Rd,Y	Y间接取数	SES	置位 S
SER Rd	寄存器置 FF	♦ LD Rd,Y+	Y间接取数后+	CLS	清零 S
条件转	移指令	♦ LD Rd,–Y	Y间接取数先─	SEV	置位 V
RJMP k	相对转移	♦ LDD Rd,Y+q	Y间接取数 + q	CLV	清零 ∨
♦ IJMP	间接转移(Z)	♦ LD Rd, Z	Z间接取数	SET	置位T
RCALL k	相对调用	♦ LD Rd, Z+	Z间接取数后+	CLT	清零T
♦ ICALL	间接调用(Z)	♦ LD Rd,–Z	Ζ间接取数先─	SEH	置位 H
RET	子程序返回	♦ LDD Rd, Z+q	Z 间接取数 + q	CLH	清零 H
RETI	中断返回	♦ LDS Rd,K	从 SRAM 装入	NOP	空操作
CPSE Rd,Rr	比较相等跳行	ST X ,Rr	X间接存数	SLEEP	休眠指令
CP Rd,Rr	比较	♦ ST X+ ,Rr	X间接存数后+	WDR	看门狗复位
CPC Rd,Rr	带进位比较	♦ ST –X ,Rr	X间接存数先─	90 🕏	操指令为
CPI Rd,K	与立即数比较	♦ ST Y ,Rr	Y间接存数	1	1/12/15/22=
SBRC Rr,b	位清零跳行	♦ ST Y+ ,Rr	Y间接存数后+	•	以 是基本指令是
SBRS Rr,b	位置位跳行	♦ ST –Y ,Rr	Y间接存数先—		
SBIC P,b	I/O 位清零跳行	♦ STD Y+q ,Rr	Y间接存数+q	AIS	0S1200
SBIS P,b	I/O 位置位跳行	ST Z ,Rr	Z间接存数	1	
BRBS s,k	SREG 位置位转	♦ ST Z+ ,Rr	Z 间接存数后+	118 冬	指令器件=
BRBC s,k	SREG 位清零转	♦ ST –Z ,Rr	Z 间接存数先-	1	条指令器件
BREQ k	相等转移	♦ STD Z+q ,Rr	Z 间接存数+q	V + 90	11日~11日
BRNE k	不相等转移	STS k,,Rr	数据送 SRAM		
BRCS k	C置位转	□ LPM	从程序区取数		
	- ==:	IN Rd,P	从/O 口取数		
		OUT P, Rdr	存数 I/O 口		
		,	17 XV " O H	Ī	
		PUSH Rr	压栈		
		PUSH Rr POP Rd,	压栈 出栈		

附 录 附一9

附录 4-3: 各种 AVR 器件指令比较表(指令速查表)

~	算术和逻辑指令	T	ESPM	扩展存储程序存储器	☆		令和位测试指令
ADD	加法		EICALL	延长间接调用子程序	쑈	SBI	置位 I/O 位
ADC	一		BRCC	C清零转	79	CBI	清零I/O位
ADIW	加立即数	\Diamond	BRSH	<u>○ 月令 17</u>		LSL	
SUB	减法		BRLO			LSR	
SUBI			BRMI	,		ROL	
	减立即数			负数转移			带进位左循环
SBC	带进位减		BRPL	正数转移		ROR	带进位右循环
SBCI	带 C 减立即数		BRGE	≥转(带符号)		ASR	算术右移
SBIW	减立即数	\Diamond	BRLT	小于转(带符号)		SWAP	半字节交换
AND	与		BRHS	H 置位转移		BSET	置位 SREG
ANDI	与立即数		BRHC	H清零转移		BCLR	清零 SREG
OR	或		BRTS	T置位转移		BST	Rr的 b 位送 T
ORI	或立即数		BRTC	T清零转移		BLD	T送 Rr的 b位
EOR	异或		BRVS	V 置位转移		SEC	置位C
COM	取反		BRVC	V 清零转移		CLC	清零C
NEG	取补		BRIE	中断位置位转移		SEN	置位N
SBR	寄存器位置位		BRID	中断位清零转移		CLN	清零N
CBR	寄存器位清零	l		数据传送指令	Δ	SEZ	置位乙
INC	加1		MOV	寄存器传送		CLZ	清零乙
DEC	减1		MOVW	拷贝寄存器字	☆	SEI	
TST	测试零或负		LDI	装入立即数	Ô	CLI	
CLR	寄存器清零		LDX	X间接取数	Ŏ	SES	置位S
SER	寄存器置FF		LD X+	X间接取数后+	Ŏ	CLS	清零S
MUL	乘法	☆	LD-X	X间接取数先-	Ŏ	SEV	置位Ⅴ
MULS	有符号数乘法	坎	LDY	Y间接取数	\diamond	CLV	清零Ⅴ
MULSU	有(无)符号数乘法	☆	LD Y+	Y间接取数后+	ŏ	SET	
FMUL		☆	LD TY	Y间接取数先—	$\stackrel{\vee}{\diamond}$	CLT	
FMULS	小数乘法	☆	LDD Yq		$\stackrel{\vee}{\circ}$	SEH	
FMULSU	有符号数乘法	귰	LDD 14	Y间接取数+q	\vee	CLH	置位H
	有(无)符号小数乘法	Ж	LDZ+	Z间接取数	\Diamond	NOP	清零日
RJMP	条件转移指令			Z间接取数后+		SLEEP	空操作
JMP	相对转移	_	LD-Z	Z间接取数先─	\Diamond		休眠
	间接转移	۰	LDD Zq	Z间接取数+q	> <	WDR	看门狗复位
JMP	长转移	Δ	LDS	从 SRAM 装入	\Diamond		A DD (1) (E1)
RCALL	相对调用	_	STX	X间接存数	Ŏ		令器件(□)
ICALL	间接调用	\Diamond	STX+	X间接存数后+	Ó	Attiny11/	12/15/22
CALL	长调用	Δ	ST-X	X间接存数先─	Ò		
RET	子程序返回		STY	Y间接存数	\diamond	89 条指令	
RETI	中断返回	<u> </u>	STY+	Y间接存数后+	\Diamond	AT90S12	
CPSE	比较相等跳行		ST-Y	Y间接存数先─	\Diamond		(◇)
CP	比较		STD Yq	Y间接存数 + q	\Diamond		13/2323/2343/2333
CPC	带进位比较		STZ	Z间接存数		AT90S44	14/4433/4434/8515
CPI	带立即数比较		ST Z+	Z间接存数后+	\Diamond	AT90S8	534/8535
SBRC	位清零跳行		ST <i>-</i> Z	Z间接存数先─	\Diamond	121 条指	(△)
SBRS	位置位跳行		STD Zq	Z间接存数 + q	\Diamond	ATmega	
SBIC	I/O 位清零跳行		STS	数据送 SRAM	\Diamond		(☆)
SBIS	I/O 位置位跳行		LPM	装程序存储器		ATmega	
BRBS	SREG 位置位转	l	LPM Z	Z	☆	<u>_</u>	令=□+89 条
BRBC	SREG 位清零转		LPM Z+	Z+	☆		冷=◇+90条
BREQ	相等转移		SPM	存储程序存储器	☆		令=∆+ 118 条
BRNE	不相等转移		IN	I/O 口输入	Ô		
BRCS	C置位转		OUT	送1/0口	Ŏ		
ELPM	扩展装载程序存储器	☆	PUSH	<u> </u>	ľ		羊细资料阅
EIJMP	扩展间接跳转	☆	POP	出栈	H	英	文指令表
	3/ /KIPJJXW/44	~		шіх	ш		