Durée: 1h30

Physique: Interrogation n°1 - corrigé - barème

Jeudi 22 octobre 2015

Exercice 1 : Etude d'un filtre basé sur un circuit «bouchon »

QP

(Noter la fréquence à 5kHz et l'amplitude crête à crête de 1V)

Harmonique à f_1 filtrée, il ne reste que l'harmonique à f_2 d'amplitude $0.5\mathrm{V}$

L'impédance du circuit bouchon s'écrit :

$$Z = \frac{1}{\frac{1}{R} + jC\omega + \frac{1}{jL\omega}}$$
, ou encore $Z = \frac{jL\omega}{\frac{jL\omega}{R} + 1 - LC\omega^2}$

- **2** Cas limites: $\omega \rightarrow 0: Z \rightarrow 0$ et $\omega \rightarrow +\infty: Z \rightarrow 0$
- Pour $\omega_0: Z = R$

4

(Noter l'allure de la courbe, l'indication de la pulsation ω_0 et la valeur de l'impédance associée)

Le rapport des tensions s'écrit $G = |\underline{H}(j\omega)| = |\overline{Z_u}|$ (pont diviseur de tension)

Pour $\omega \to 0$ et $\omega \to +\infty$: $G \to 1$. Pour $\omega_0 : G \to \frac{Z_u}{Z_u + R}$

On obtient donc le graphe suivant :

6	Pour diviser par deux la tension d'entrée $(20\log_{10}(G(\omega_0)) = -6\text{dB})$, il faut choisir $R = R_u = 10 \Omega$.
	Pour avoir une fréquence de résonance à 785 Hz, avec $LC\omega_0^2 = 1$, il faut choisir
	$C = \frac{1}{L\omega_0^2} = \frac{1}{0.1 \times 10^{-3} \times (2 \times \pi \times 785)^2} = 411 \mu\text{F}$
	T-4-1.75

	Total: 7,5			
Exercice 2 : Les boucles magnétiques du soleil				
1	Conservation du flux : $\underline{div}(\vec{B}) = 0$ _ou $\iint \vec{B} \cdot d\vec{S} = 0$			
	(S) fermée			
2	$ \iint_{\Sigma_1} \overrightarrow{B} \cdot \overrightarrow{dS} = \iint_{\Sigma_1} \overrightarrow{B} \cdot \overrightarrow{dS_1} + \iint_{\Sigma_2} \overrightarrow{B} \cdot \overrightarrow{dS_2} + \iint_{(S) latérale} \overrightarrow{B} \cdot \overrightarrow{dS_l} = \iint_{\Sigma_1} \overrightarrow{B} \cdot \overrightarrow{dS_1} + \iint_{\Sigma_2} \overrightarrow{B} \cdot \overrightarrow{dS_2} = 0 car \overrightarrow{dS_l} \perp \overrightarrow{B}. $			
	$\Phi_{sortant(\Sigma_1)} = -\Phi_{sortant(\Sigma_2)} = -\Phi_{entrant(\Sigma_1)} \Leftrightarrow \Phi_{sortant(\Sigma_1)} = \Phi_{entrant(\Sigma_1)}$			
	(Exiger que les normales soient représentées sur le schéma, sinon 0,5/1)			
	Le flux rentrant à travers Σ_1 est égal au flux sortant à travers Σ_2			
	Commentaire : La norme de B est plus petite sur Σ_2 que sur Σ_1 (si Σ_2 est plus grande que Σ_1			
	comme sur le schéma) car le flux est le même.			
3	$\overrightarrow{rot}(\overrightarrow{B}) = \mu_0 \overrightarrow{j} + \mu_0 \varepsilon_0 \frac{\partial \overrightarrow{E}}{\partial t} = \mu_0 \overrightarrow{j}$ en régime stationnaire			
	$-\frac{\partial B_{1,z}}{\partial r} \overrightarrow{u_{\theta}} = \mu_0 \overrightarrow{j_1}$			
	$\overrightarrow{j_1} = -\frac{1}{\mu_0} \frac{\partial B_{1,z}}{\partial r} \overrightarrow{u_\theta}$			
	$\overrightarrow{j_1} \text{ est orthoradial suivant } + \overrightarrow{u_\theta} \text{ car } \frac{\partial B_{1,z}}{\partial r} < 0$ $\overrightarrow{dF_1} = \overrightarrow{j_1} \wedge \overrightarrow{B_1} d\tau = j_1 \overrightarrow{u_\theta} \wedge B_{1,z} \overrightarrow{u_z} d\tau = j_1 B_{1,z} d\tau \overrightarrow{u_r}$			
4	$\overrightarrow{dF}_1 = \overrightarrow{j_1} \wedge \overrightarrow{B_1} d\tau = j_1 \overrightarrow{u_\theta} \wedge B_{1,z} \overrightarrow{u_z} d\tau = j_1 B_{1,z} d\tau \overrightarrow{u_r}$			
	$\overrightarrow{dF}_{1} = -\frac{1}{\mu_{0}} \frac{\partial B_{1,z}}{\partial r} B_{1,z} d\tau \overrightarrow{u_{r}}$			
	$\mu_0 \partial r \stackrel{D_{1,z}}{=} u v u_r$			
	$\overline{dF_1}$ est orienté vers l'extérieur $(+\overrightarrow{u_r})$ car $\frac{\partial B_{1,z}}{\partial r} < 0$			
	Cette force tend à « évaser / élargir » le tube de champ			
5	Maintenant $\vec{j}_2 = j_{2,z}(\mathbf{r}) \vec{u}_z$			
	Tous les plans contenant Oz sont des plans de symétrie de la distribution des courants et B est			
	perpendiculaire aux plans de symétrie \rightarrow or, tout point M est sur un plan de symétrie \rightarrow $\overline{B}(r,\theta,z)$			
	est alors orthoradial			
	Invariance par rotation et translation autour de Oz $\rightarrow \vec{B} = \vec{B}(r)\vec{u_{\theta}}$			
6	Application du théorème d'Ampère : $\iint_{\Gamma^+} \overrightarrow{B_2} \cdot \overrightarrow{dl} = \mu_0 \sum_{\text{algébrique}} I_{\text{enlacé}}$			
	Contour = $\underline{\text{cercle de rayon r}}$ et $\underline{\text{orient\'e selon}}$ $\underline{u_{\theta}}$			
	$\iint_{\text{cercle de}} \overrightarrow{B_2} \cdot \overrightarrow{dl} = \iint_{\Theta_2} B_2(r) \overrightarrow{u_{\theta}} \cdot dl \overrightarrow{u_{\theta}} = 2\pi r B_2(r) \text{ (exiger détail des calculs avec vecteurs unitaires, sinon 0)}$			
	rayon r			

	Soit $\overrightarrow{B_2(r)} = \frac{\mu_0 I(r)}{2\pi r} \overrightarrow{u_\theta}$
	Courant traversant la couronne : $dI(r) = 2\pi r dr j_{2,z}(r)$
	D'où: $\frac{dI(r)}{dr} = 2\pi \operatorname{r} j_{2,z}(r)$ $\overrightarrow{dF}_{2} = \overrightarrow{j_{2,z}} \wedge \overrightarrow{B_{2}} d\tau = j_{2,z} \overrightarrow{u_{z}} \wedge B_{2} \overrightarrow{u_{\theta}} d\tau = -j_{2,z} B_{2} d\tau \overrightarrow{u_{r}}$
7	$\overrightarrow{dF}_2 = \overrightarrow{j_{2,z}} \wedge \overrightarrow{B_2} d\tau = j_{2,z} \overrightarrow{u_z} \wedge B_2 \overrightarrow{u_\theta} d\tau = -j_{2,z} B_2 d\tau \overrightarrow{u_r}$
	$\overrightarrow{dF}_{2} = -\frac{1}{2\pi r} \frac{dI(r)}{dr} \frac{\mu_{0}I(r)}{2\pi r} d\tau \overrightarrow{u_{r}}$
	Par identification avec $\overrightarrow{dF}_2 = \beta(\mathbf{r}) \cdot \mathbf{I}(\mathbf{r}) \cdot \frac{dI(r)}{dr} \stackrel{\longrightarrow}{u} : \begin{cases} \beta(r) = -\frac{\mu_0}{4\pi^2 r^2} \\ \overrightarrow{u} = \overrightarrow{u}_r \end{cases}$
	\overrightarrow{dF}_2 est orienté vers l'intérieur $(-\overrightarrow{u_r})$ car $\frac{dI(r)}{dr} = 2\pi r j_{2,z} > 0$
	Cette force tend à « resserrer » le tube de champ
8	On considère maintenant la superposition : $\vec{j} = \vec{j_1} + \vec{j_2} = j_1 \ \vec{u_\theta} + j_{2,z} \ \vec{u_z}$ et
	$\overrightarrow{B} = \overrightarrow{B_1} + \overrightarrow{B_2} = B_{1,z} \ \overrightarrow{u_z} + B_2 \ \overrightarrow{u_\theta}$
	On a équilibre entre \overrightarrow{dF}_1 (vers l'extérieur) et \overrightarrow{dF}_2 (vers l'intérieur) si :
	$\vec{dF}_1 = j_1 B_{1,z} d\tau \vec{u}_r = -j_{2,z} B_2 d\tau \vec{u}_r$
	Soit $\left \frac{j_1}{j_{2,z}} \right = \left \frac{B_2}{B_{1,z}} \right $
	Si \vec{j} est colinéaire à \vec{B} alors $\vec{j} \wedge \vec{B} = \vec{0}$
	$\begin{vmatrix} 0 & 0 & j_1 \cdot B_{1,z} - j_{2,z} \cdot B_2 = 0 \\ j_{2,z} & B_{1,z} & 0 \\ 0 & 0 & 0 \end{vmatrix}$
	$\begin{vmatrix} j_1 & \wedge B_2 & = 0 \end{vmatrix}$
	$igg ig j_{2,z} ig B_{1,z} ig 0$
	On retrouve la condition précédente
	Total: 12,5