Practical Exercises for Monday, July 22, 2019, Day 1

Sonja Hartnack, Terence Odoch & Muriel Buri

July 2019

Exercise 1: Statistical terminologies

Group the following terminology items into the three categories:

- (1) sample & variables
- (2) hypothesis testing & statistical modelling
- (3) descriptive statistics

alternative	• degree of	• intercept	• paired sam-	• single-sided
hypothesis	freedom	• IQR	ples	test
• anova	• dependent	 linear model 	poisson	 skewed data
barplot	variable	• linear regres-	population	• slope
binary	• effect size	sion	predictor	 standard devi-
• binomial	• error	• logistic re-	proportion	ation
Bonferroni	explanatory	gression	• p-value	• standard er-
boxplot	variable	• mean	QQ-plot	ror
categorical	• factor	• median		• student t -
• Chisquare test	• Fisher's exact	• multiple com-	quantile	distribution
 confounding 	test	parison	• range	• treatment ef-
contingency	histogram	nominal	• regression co-	fect
table	hypothesis	normal	efficient	• t-test
• continuous	testing	• null hypothe-	residuals	
 correlation 	hypothesis	sis	• response	 two-sided test
coefficient	tests	• numeric	• sample	unpaired
• count	 independent 	observation	sampling vari-	samples
• data format	variable	• odds ratio	ation	variable
• data point	integer	ordinal	 scatter plot 	• variance
 data type 	interaction	• outcome	 significance 	• vector

Exercise 2: Getting to know R and chickwts

- (a) Open R Studio.
- (b) Open a new R-Script.
- (c) Load data set chickwts.

```
# ?chickwts
data("chickwts")
head(chickwts)
```

Exercise 3: Summary statistics for the chickwts data set

(a) Do summary statistics (numerically and graphically).

```
### Numerical Statistics
summary(chickwts)
mean(chickwts$weight)
median(chickwts$weight)
sd(chickwts$weight)
# tapply(chickwts$weight, chickwts$feed, mean)
# tapply(chickwts$weight, chickwts$feed, median)
# tapply(chickwts$weight, chickwts$feed, sd)
### Graphics
table(chickwts$feed)
barplot(table(chickwts$feed))
boxplot(chickwts$weight ~ chickwts$feed)
boxplot(weight ~ feed, data = chickwts)
hist(chickwts$weight)
hist(chickwts$weight, freq = FALSE)
lines(density(chickwts$weight), col = "red", lwd = 3)
boxplot(weight ~ feed, data = chickwts, col = "lightgray",
        varwidth = TRUE, main = "chickwt data",
        ylab = "Weight at six weeks (gm)")
barplot(table(chickwts$feed))
```

(b) For advanced R users: Try an anova (are the assumptions fulfilled?) and a Tukey-Anscombe plot.

Try a histogram with a density line on top. ...

```
lm.mod <- lm(weight ~ feed, data = chickwts)
summary(lm.mod)
anova <- aov(weight ~ feed, data = chickwts)
TukeyHSD(anova)
summary(anova)
par(mfrow=c(2,2))
plot(lm.mod)</pre>
```

Exercise 4: Data import to R and summary statistics perulung_ems.csv

- (a) Import the data set perulung_ems.csv (taken from Kirkwood and Sterne, 2nd edition) into R. Data from a study of lung function among children living in a deprived suburb of Lima, Peru. Variables:
 - fev1: in liter, "Forced Expiratory Volume in 1 second" measured by a spirometer. This is the maximum volume of air which the children could breath out in 1 second
 - age: in years
 - height: in cm
 - sex: 0 = girl, 1 = boy
 - respsymp: respiratory symptoms experienced by the child over the previous 12 months
- (b) What delimiter do you need to choose?

```
perulung_ems <- read.csv("data/perulung_ems.csv", sep = ";")
lung <- perulung_ems
head(lung)
str(lung)</pre>
```

(c) Do summary statistics (numerically and graphically).

```
# summary(lung)
# lung$sex <- factor(lung$sex, levels = c("0", "1"))
# levels(lung$sex) <- c("female", "male")
# lung$respsymptoms <- factor(lung$respsymptoms, levels = c("0", "1"))
# Continuous and factor
tapply(lung$height, lung$sex, mean)
tapply(lung$height, lung$respsymptoms, mean)
# Factor and factor
table(lung$respsymptoms, lung$sex)</pre>
```

```
prop.table(table(lung$respsymptoms, lung$sex))
# Continuous and factor
tapply(lung$age, lung$sex, mean)
tapply(lung$age, lung$respsymptoms, mean)
# Continuous and factor
tapply(lung$fev1, lung$sex, mean)
tapply(lung$fev1, lung$respsymptoms, mean)
```

(d) Plot a boxplot.

```
boxplot(lung$fev1 ~ lung$sex)
boxplot(lung$fev1)
boxplot(lung$age)
boxplot(lung$height)
```