Ajay Kumar Garg Engineering College, Ghaziabad

Department of MCA

Sessional Test-2

Course: MCA Session: 2017-18

Subject: OS Max Marks: 50 Semester:

III

Section: Sub Code: MCA-1 & 2 RCA-301

Time: 2

2 hour

Note: Answer all the sections.

Section-A

A. Attempt all the parts.

 $(5 \times 2 = 10)$

1. What is a process? What are attributes of a process?

2. What is context switching?

3. What are necessary conditions for deadlock to occur?

4. Define binary semaphores.

5. What is the relationship between threads and processes?

Section-B

B. Attempt all the parts.

 $(5 \times 5 = 25)$

- 6. Draw the process state diagram and describe the various process states.
- 7. Explain different kinds of threaded models.
- 8. What is PCB? What kind of information is stored in PCB?
- Explain the differences in the degree to which the following scheduling algorithms
 discriminate in favor of short processes: a) First Come First Served b) Round Robin
 c) Multilevel feedback queues.
- 10. Consider the following snapshot of a system:

	Max	Allocation	Available
	АВС	АВС	АВС
P_0	0 0 1	0 0 1	
P_1	1 7 5	1 0 0	
P_2	2 3 5	1 3 5	
P ₃	0 6 5	0 6 3	1
Total		299	1 5 2

Answer the following questions using the banker's algorithm:

a) What is the content of the matrix Need?

Section-C

C. Attempt all the parts.

 $(2 \times 7.5 = 15)$

- 11. Explain readers' writers' problem. Give the solution of this problem with the help of semaphores.
- 12. Consider the following set of processes, with the length of the CPU burst given in milliseconds.

Process	Burst Time	Priority
P1 *	10	3
P2	1	1
P3	2	3
P4	1	4
P5	5	2

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5 all at time 0.

- a) Draw two Gantt charts that illustrate the execution of these processes using the following scheduling algorithms: non-preemptive priority (a smaller priority number implies a higher priority), and RR (quantum = 1).
- b) What is the turnaround time of each process for each of the scheduling algorithms in part a?
- c) Which of the algorithms of part a results in the minimum average waiting time (over all processes)?