접지설비 계획 및 유지관리에 관한 기술지침

2017. 10.

한국산업안전보건공단

안전보건기술지침의 개요

o 제정자 : 한국산업안전보건공단 류보혁 o 개정자 : 한국산업안전보건공단 이형수

o 개정자 : 한국산업안전보건공단 산업안전보건연구원 안전시스템연구실

o 개정자: 서울과학기술대학교 류보혁

o 제·개정 경과

- 1997년 3월 전기안전분야 제정위원회 심의
- 1997년 4월 총괄제정위원회 심의
- 2007년 4월 전기안전분야 제정위원회 심의
- 2007년 5월 총괄제정위원회 심의
- 2011년 12월 전기안전분야 제정위원회 심의(개정)
- 2017년 10월 전기안전분야 제정위원회 심의(개정)

o 관련규격 및 자료

- IEEE Std. 142: 전력계통시스템의 접지 (Grounding of industrial and commercial power system)
- IEEE Std. 80 : IEEE 변전설비 접지지침 (IEEE guide for safety in AC substation grounding)
- 미국 전기설비기술기준 (NEC)
- 미국 연방직업안전보건국(OSHA) CFR 1910-S(Safeguarding of employees in their workplace)
- o 관련법령·고시 등
 - 산업안전보건기준에 관한 규칙 제302조 (전기기계·기구의 접지)
- o 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2017년 10월 31일

제 정 자 : 한국산업안전보건공단 이사장

E - 92 - 2017

접지설비 계획 및 유지관리에 관한 기술지침

1. 목 적

이 지침은 산업안전보건기준에 관한 규칙(이하 "안전보건규칙"이라 한다) 제302조 (전기기계·기구의 접지)의 규정에 의거 접지설비의 계획 및 유지관리에 관한 사항을 정함을 목적으로 한다.

2. 적용 범위

- (1) 이 지침은 사업장 내 전기설비의 사고를 최소화시키기 위한 다음의 접지방식에 대하여 적용한다.
 - (가) 지락전류 또는 과전압으로부터 전기설비를 보호하기 위한 계통접지
 - (나) 인명을 보호하기 위한 외함 접지
 - (다) 낙뢰 등에 의한 기기 및 구조물 손상방지를 위한 피뢰 접지
 - (라) 정전기 장해방지를 위한 설비, 장치 등의 접지
 - (마) 기타 등전위용 접지(Equipotential earthing) 등

3. 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "접지전극선(Grounding electrode conductor)"이라 함은 접지전극과 접지선 또는 중성선을 연결하는 도체를 말한다. 접지전극을 단독으로 설치하는 경우 에는 접지전극에서 다른 접지선을 접속하는 점까지의 도체를 말한다.
 - (나) "접지도체"라 함은 피접지물과 접지전극 또는 접지모선을 연결하는 도체를 말한다.
 - (다) "접지전극"이라 함은 피접지물과 대지를 전기적으로 접속하기 위하여 지중에

E - 92 - 2017

매설한 도체를 말한다.

- (라) "대지저항률"이라 함은 접지전극 주위 대지의 전류가 흐르기 어려운 정도를 나타내는 상수로서, 토양의 단위입방 미터당의 고유저항을 말한다.
- (마) "그물망(Mesh)접지"라 함은 보폭전압 및 접촉전압이 문제가 되는 경우 접지 선을 그물망으로 매설하여 구내 외에 극단적인 전위경도가 생기지 않도록 하는 방식이다.
- (바) "단독접지"라 함은 큰 전류를 흘리거나 정밀을 요하는 전자기기 등에서 기기 별로 접지하는 것을 말하며, 피뢰침, 전산실 등에 쓰이는 방식이다.
- (사) "봉상전극"이라 함은 접지전극이 막대모양으로 된 것을 말한다.
- (아) "그물망(Mesh)전극"이라 함은 접지전극이 그물모양으로 된 것을 말한다.
- (자) "병렬접지"라 함은 동일한 형상의 여러 전극들을 적절한 배열형태로 매설하여 이들을 상호 연결하는 접지방식을 말한다.
- (차) "서지보호장치(Surge protection device)"라 함은 과도적 과전압을 제한하고 서지전류를 분류하는 것을 목적으로 하는 장치를 말한다.
- (카) "보폭전압"이라 함은 접지전극에서 대지로 전류가 흐를 때 접지전극 주위의 지표면에 형성되는 전위분포로 인해, 사람의 양발 사이에 발생되는 전위차를 말한다.
- (2) 기타 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고 는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업안전보건기준에 관한 규칙에서 정하는 바에 의한다.

4. 접지설비계획 수립시 고려 사항

접지설비계획은 다음의 조건을 고려하여, 해당 접지목적에 적합하도록 수립한다.

- (1) 인체에 대한 허용전류
- (2) 고장전류의 유입에 의하여 국부적으로 발생하는 대지전위의 상승, 고장시간, 접촉전압 및 보폭전압의 계산방법과 그 허용치
- (3) 부록(접지선의 굵기 및 접지저항 값의 계산)에 의거 필요한 접지저항의 결정

E - 92 - 2017

- (4) 대지저항률 및 접지저항의 측정
- (5) 접지전극과 접지선의 크기 및 형상
- (6) 인건비, 재료비, 유지보수 등을 고려한 접지공법 등

5. 접지계통

5.1 접지계통의 구성

- (1) 접지계통은 대지전위의 상승을 억제하고 접촉전압과 보폭전압을 고려하여 다음 과 같이 구성한다.
 - (가) 건물, 구조물, 전기설비, 변전실 등을 포함한 모든 접지설비는 계통적으로 이루어져야 한다.
 - (나) 피뢰용 접지 및 약전 회로용 접지계통은 단독접지방식으로 구성한다.
 - (다) 접지계통의 등전위(Equipotential) 분포를 위하여 각각의 도체는 상호 본딩 (Bonding)한다. 단, 타 접지계통과 멀리 떨어진 기기 등에 대한 접지는 단독 접지로 할 수 있다.
- (2) 지락사고시 또는 피뢰기가 동작하는 경우에는 대지전위 상승으로 타 기기에도 영향을 미칠 우려가 있으므로, 기기의 종류에 따라 사고발생 정도를 고려하여 다음과 같이 접지계통을 구성한다.
 - (가) 전기기기 및 제어함

변압기, 차단기, 발전기, 전동기 등 접지를 필요로 하는 기기류와 제어함은 모두 연결하여 접지한다.

(나) 피뢰기

낙뢰 등으로 인한 피뢰기의 동작 시에는 방전전류에 의해 대지전위의 상승 우려가 있으므로 피뢰기의 접지는 별도 계통으로 구성한다.

(다) 옥외 철구

E - 92 - 2017

변전소 등에 설치되어 있는 기기 등의 외함은 주접지계통과 상호 연결한다.

(라) 케이블

구내의 단거리용 동력케이블의 금속외피는 부하측을 접지하고 구외에서 인입되는 워거리용 케이블의 금속외피는 양단을 접지한다.

(마) 경계 울타리

변전소 경계 울타리 접지는 일반 통행인에 대한 위험이 없도록 변전소 접지계 통과는 분리시킨다.

(바) 전산실

전산실 등은 타 기기 등의 사고에 의하여 간섭받지 않도록 단독 접지하는 것을 원칙으로 한다.

5.2 계통 중성점 접지

계통 중성점 접지는 지락사고 등에 의한 선로의 일시적인 과전압 상승을 억제하기 위한 것으로, 각 전압별 중성점 접지는 다음과 같이 실시한다.

5.2.1 특별고압 계통

- (1) 특별고압용 변압기의 1차측 중성점은 불규칙적인 과전압으로부터 변압기의 권선을 보호하고 사고전류를 신속히 차단하기 위하여 직접 접지한다.
- (2) 특별고압용 변압기의 2차측 중성점은 과전류와 불규칙적인 과전압으로부터 권선을 보호하기 위해 저항 접지한다.

5.2.2 고압계통

6.6 kV 및 3.3 kV 계통의 변압기 중성점은 과전류와 불규칙적인 과전압으로부터 권선을 보호하기 위하여 고저항 접지하는 것이 바람직하다.

5.2.3 저압계통

1차측 전압이 고압 이상이고, 2차측이 저압(440 V, 220 V 등)인 계통의 저압 변압기

E - 92 - 2017

중성점은 변압기의 1차측 권선과 2차측 권선의 혼촉사고로 인한 과전압 위험을 최소화하기 위하여 직접 접지한다. 다만, 혼촉방지판이 내장되어 있는 변압기의 경우에는 고저항 접지 또는 비접지 방식으로 할 수 있다.

5.3 전기기기의 접지

- (1) 전기기기와 연결되는 철제 구조물, 전선과 케이블 트레이 및 닥트 등은 전기적으로 상호 접속한다.
- (2) 케이블 등의 차폐용 외피(Shield) 말단에는 접지를 시행한다.

5.4 계측설비 접지

계측설비에 대한 접지는 단독접지로 한다.

5.5 정전기 장해 방지용 접지

정전기 방전에 의한 화재·폭발 및 전격을 방지하기 위하여, 정전기 대전이 우려되는 설비의 경우는 다음 조건에 따라 접지한다.

- (1) 설비와 구조물의 금속 등 도전성의 물질은 5.3(1)항에 의한 접지를 정전기용 접지로 활용할 수 있다.
- (2) 인화성 물질 등을 수송하는 배관의 연결부분이 플랜지(Flange) 등으로 인하여, 정전기적으로 절연된 경우에는 플랜지의 양단을 서로 본딩(Bonding)한다.

5.6 이상 전압 방지용 접지

차단기 개폐시의 서지, 외부 사고 또는 낙뢰로 인하여 이상전압의 발생이 우려되는 경우에는 이상전압 발생원에 근접된 적절한 위치에 피뢰기 또는 서지보호장치 (Surge protection device)를 설치하여 접지한다.

E - 92 - 2017

6. 접지공사

6.1 일반사항

- (1) 모든 전기기기, 배선관 류(트레이 및 닥트)의 노출 금속부분 및 전력계통의 중성선은 관련 도면, 적용 법규 및 시방서에 따라 접지한다.
- (2) 노출된 접지 접속점 등 부식의 우려가 있는 곳은 적절한 방식물질로 도포하거나 테이핑 처리한다.
- (3) 기기 또는 장치 및 철 구조물에 대한 접지선은 용융, 용접, 압착형 볼트 등을 사용하여 접속한다.
- (4) 상기의 모든 접속은 전기적, 기계적으로 완전히 접속되어야 한다.
- (5) 접지공사 완료 후에는 접지저항을 측정하여 기록 · 관리한다.

6.2 접지계통의 공사

- (1) 접지계통은 접지전극과 접지 단자(Bus-bar)를 연결하는 접지전극선으로 구성된다.
- (2) 접지망을 구성하는 구리도체는 최소한 지하 75 cm 이상의 깊이에 매설한다.
- (3) 접지전극선은 KOSHA GUIDE E-102"저압용 전기설비의 접지설비 선정 및 설치에 관한 기술지침"에 따른다.
- (4) 보폭전압의 경감이 필요한 경우에는 접지봉 또는 접지판을 매설하여 주접지망에 접속하다.

6.3 접지전극과 접지선

(1) 접지전극은 가스, 산 등에 의하여 부식의 우려가 없는 장소에 설치한다.

E - 92 - 2017

- (2) 접지선과 접지전극은 전기적, 기계적으로 확실하게 접속한다.
- (3) 접지선에는 퓨즈 등의 과전류 차단기를 설치하여서는 아니 된다.
- (4) 전산실의 접지계통은 특별히 정하지 않는 한, 주 접지망과는 별도로 구성하는 것이 바람직하며, 독립된 실별로 전용단자에 접속한 후 피복된 절연 케이블에 의하여 접지계통에 연결한다.
- (5) 접지선을 연결하는 부분은 도장이 되어 있지 않아야 하고, 페인트칠 등이 있는 경우에 페인트를 깨끗이 제거한 후 접속한다.

6.4 전기기기의 접지

- (1) 발전기 외함은 주접지 계통과 전기적, 기계적으로 확실하게 접속한다.
- (2) 배전반, 전동기 제어반 등에는 최소한 양단에서 주접지 계통과 접속된 접지모선 이 설치되어야 한다.
- (3) 전동기의 전원 단자함 또는 본체 외함에 접지선을 접속하기 위한 전용단자를 설치한다.
- (4) 지상에 설치되는 모든 접지선은 녹색 비닐 절연전선을 사용한다.
- (5) 콘센트 및 플러그는 별도로 분리된 접지전극을 구비하여야 한다.

6.5 전동기 접지

- (1) 전동기 외함은 가까운 접지망에 연결하여 접지한다.
- (2) 파이프 지지대가 접지계통과 접속되었을 경우 전동밸브는 별도 접지할 필요가 없으나, 접지계통과 연결되지 않은 경우에는 접지를 한다.

E - 92 - 2017

6.6 변압기 접지

- (1) 전력용 변압기의 외함은 대각선 방향의 2개소에서 각각 접지망과 연결한다.
- (2) 외함 접지선은 변압기 2차 측의 차단기 정격전류 값에 따라 굵기를 결정한다.

6.7 배선관류 접지

- (1) 케이블 트레이, 맨홀, 지하 닥트 등을 접지하기 위한 접지선의 굵기는 60 m² 이 상으로 한다.
- (2) 비금속성 전선관과 연결되는 강관은 적어도 한쪽 끝을 적합한 접속 금구를 사용하여 접지 계통과 연결한다.
- (3) 모든 케이블 트레이는 확실한 방법으로 전기적인 연속성이 보장되도록 접지되어 야 하다.

6.8 철 구조물 접지

- (1) 철 구조물은 볼트 조임만으로는 전기적으로 완전히 접속된 것으로 볼 수 없으므로, 확실한 방법으로 전기적으로 연속성을 보장할 수 있도록 접지한다.
- (2) 철 구조물에 직접 연결되지 않은 난간대는 용접에 의해 고정된 경우는 한쪽에만 접지하고, 용접되지 않은 경우에는 각 부분마다 접지하여야 한다.
- (3) 철 구조물 기둥 접지선의 접속점은 바닥에서 최소한 30 cm 높이로 한다.
- (4) 격리된 철 구조물은 가장 가까이 접지된 철 구조물에 접속하거나 직접 소내 접 지망에 연결한다.

6.9 정전기 장해 방지용 접지

E - 92 - 2017

- (1) 정전기 제거용 접지를 필요로 하는 기기는 정전기 대전이 우려되는 생산장비, 저장용 장치, 수송용 배관 및 부속장치, 열 교환기, 호퍼, 탑류 등이다.
- (2) 철제 구조물, 탱크, 대형용기 등은 정전기의 대전전위와 낙뢰전류로부터 보호되 도록 적어도 1개소 이상 접지 계통에 연결한다.
- (3) 각종 본딩을 위한 도체의 최소 굵기는 14 ㎡ 로 한다.
- (4) 정전기 대전 방지용 접지설비의 접지저항은 가급적 1,000 ♀ 이하로 한다.
- (5) 충분한 바닥면적을 가진 탱크나 대형 용기류는 접지계통과 연결된 것으로 간주되며, 이에 접속된 배관류도 정전기 접지가 된 것으로 본다. 다만, 배관이 정전기적으로 절연된 플랜지로 접속되는 경우에는 연속접지가 되도록 플랜지 양단을 본딩하고 접지한다.
- (6) 접지된 구조물에 견고히 부착 설치된 배관 지지물은 접지된 것으로 본다.
- (7) 파이프 랙의 철제 지지물은 일정 간격으로 접지모선과 연결하여 접지시킨다.
 - 비고 보다 자세한 사항은 "KOSHA GUIDE E-89(정전기 재해예방에 관한 기술지침)을 참고한다.

6.10 배관 접지

건축물 밖에 설치되는 노출된 금속배관은 30 m마다 접지하고 배관의 접속 부분이 정전기적으로 절연된 경우는 본딩을 실시한다.

6.11 탱크 접지

인화성 액체를 취급하는 도전성 탱크를 옥외에 설치하는 경우에는 다음에 따른다.

(1) 콘크리트 슬래브 위에 설치되는 탱크설비는 대각으로 2개소 이상을 접지하며, 탱크 의 저장용량에 따라 접지 개소의 수를 증가시킨다.

E - 92 - 2017

(가) 1,000 kℓ 이하 : 2개소 이상

(나) 5,000 kℓ 이하 : 3개소 이상

(다) 20,000 kℓ 이하: 5개소 이상

(라) 20,000 kl 초과 : 8개소 이상

(2) 기타 열 교환기, 탑조류 등은 최소 1개소 이상 접지한다.

7. 접지도체

7.1 접지도체의 설치

접지도체의 설치는 KOSHA GUIDE E-102"저압용 전기설비의 접지설비 선정 및 설치에 관한 기술지침"에 따른다.

7.2 접지도체 및 접지선의 녹색 표시

- (1) 접지도체 또는 접지선에는 다음의 경우를 제외하고는 녹색표시를 하여야 한다. 다심케이블, 다심 캡타이어 케이블 또는 다심 코드의 1심선을 접지선으로 사용 하는 경우로서 그 심선이 나전선 또는 녹황색 얼룩무늬 모양으로 되어 있을 경우
- (2) 부득이 녹색 또는 녹황색 얼룩무늬 모양인 것 이외의 절연전선을 접지선으로 사용하는 경우에는 말단 및 적절한 위치에 녹색테이프 등으로 접지선임을 표시하여야 한다.

7.3 기타 사항

이항에서 규정하지 않은 사항은 KS C IEC 60173 (유연성 케이블 및 코드의 선심색상) 및 KSC IEC 61138(접지선 및 단락설비용 케이블)에 따른다.

E - 92 - 2017

8. 접지전극

접지전극의 설치는 KOSHA GUIDE E-102"저압용 전기설비의 접지설비 선정 및 설치에 관한 기술지침"에 따른다.

9. 피뢰설비 접지

피뢰설비의 선정 및 설치는 KOSHA GUIDE E-102"건축물 등의 피뢰설비 설치에 관한 기술지침"에 따른다.

10. 접지저항의 측정과 안전점검

- 10.1 접지저항의 측정관리
 - (1) 다음의 경우에는 접지저항을 측정하고 기록을 유지한다.
 - (가) 전기설비의 준공 후 사용하기 전
 - (나) 점검 주기에 따른 정기적인 측정
 - (다) 기기의 이동이나 증설, 개보수의 확인 등 필요시
 - (라) 기기 사용 중에 전격 등과 같은 이상요인이 감지된 경우
 - (2) 정기 접지저항 측정은 1년에 1회 이상을 실시하여. 접지저항의 변화추이 및 규정 치 내의 적합여부를 판정하여 필요한 경우에는 보수한다.
- 10.2 접지전극의 유지관리

매설된 접지전극 및 접속개소는 〈표 1〉을 참조하여 정기적으로 점검한다.

〈표 1〉정기점검 사항

점검부위	점검 사항	점검 결과
접지전극 매설부	 굴착작업 또는 지형변경작업 유무 접지전극 또는 접지선 연결부의 부식 접지전극 또는 접지선 연결부의 절단 접지전극 위치 표시판의 설치 유무 	
점검 항목	○ 동판 및 단자의 부식 유무 ○ 접속부 연결 상태(이완해체) 등 ○ 접지선의 오손, 단선 유무	
접속 및 접지 개소	○ 연결부 조임 상태 ○ 접지 개소의 부식, 접촉부 상태 ○ 접지선의 유지관리 상태	

<부록>

접지선의 굵기 및 접지저항 계산

1. 계산 목적

이 계산의 목적은 전기설비의 안전운전을 위하여, 접지선의 굵기 및 접지저항의 적절한 값을 선정하는데 있다.

2. 접지선의 굵기 선정

접지선에 지나치게 큰 전류가 흐르면 주울 열에 의하여 절연피복이 연소되거나 주 위의 가연물에 화재위험을 미치게 되고, 최악의 경우 접지선 자체가 용단될 수도 있 으므로, 전로로서의 그 기능을 만족하기 위하여 충분한 전류용량, 즉 도체의 충분한 단면적이 필요하다.

접지선의 단면적은 통전전류, 통전시간, 온도, 재료의 특성 값 등을 감안하여 식 (2-1)과 같은 미국 전기전자공학회(IEEE)의 표준식으로 구한다.

$$A = I \sqrt{\frac{\frac{t_c \alpha_r \rho_r \times 10^4}{T_{cap}}}{\ln\left\{1 + \left(\frac{T_m - T_a}{K_0 + T_a}\right)\right\}}}$$
 (2-1)

단, /: 접지선에 흐르는 전류 (kA)

A: 접지선 단면적 (mm²) T_m : 최대 허용온도 ($^{\circ}$ C)

Ta : 주위온도 (℃)

Tr: 물리정수의 기준온도 ($^{\circ}$ C) $a_0:$ 0[$^{\circ}$ C]일 때 도체의 열 저항율 $a_r:$ T $_r$ 일 때 도체의 열 저항율

 ρ_r : T_r일 때 도체의 저항율 ($\mu\Omega/cm^3$)

 K_0 : $1/\alpha_0$

t_c : 통전시간 (s)

T_{cap} : 용량 계수 (J/cm³ · C)

〈그림 1〉 접지선의 전류용량

<표 2-1> 재료의 물리정수

전선재료	<그림 1>의 대응번호	도전률(%)	$\begin{array}{c}\alpha_r\\ (\text{at }20^\circ\!\!C)\end{array}$	$K_0(1/_{a0})$ (at 0° C)	용융온도 (℃)	$\rho_r(\mu\Omega/cm^3)$ (at $20^{\circ}C$)	TCAP (J/cm³ · C)
연 동 선	1	100.0	0.00393	234	1083	1.7241	3.422
경 동 선	2	97.0	0.00381	242	1084	1.7774	3.422
동복 강선	3	40.0	0.00378	245	1084/1300	4.397	3.846
동복 강선	4	30.0	0.00378	245	1084/1300	5.862	3.846
알루미늄선	5	61.0	0.00403	228	657	2.862	2.556
내식알루미늄 # 5005	6	53.5	0.00353	263	660	3.2226	2.598
내식알루미늄 # 6201	7	52.5	0.00347	268	660	3.2840	2.598
알루미늄 피복강선	8	20.3	0.00360	258	660/1300	8.4805	2.670
아연도금강선	9	8.5	0.00320	293	419/1300	20.1	3.931
스테인리스강 # 304	10	2.4	0.00130	749	1400	72.0	4.032

$$A = I\sqrt{\frac{t_c \times 8 \times 10^{-3}}{T_m - T_a}}$$
 (2-2)

단, A: 접지선 단면적 (mm²)

/: 접지선에 흐르는 전류 (A)

T_m : 최대 허용온도 (℃)

 T_a : 주위온도 (\mathbb{C}) t_c : 통전시간 (s)

식(2-2)를 이용하여 계산하는 경우는 전원측 과전류차단기의 동작특성과 관계되고, 다음과 같은 조건이 필요하다.

- (1) 접지선의 고장전류 크기는 전원측 과전류차단기 정격전류의 20배
- (2) 과전류차단기의 동작감도는 정격전류 20배의 전류에서 0.1초 이하
- (3) 고장전류가 흐를 때의 접지선 주위 온도 30 ℃
- (4) 고장전류가 흐를 때 접지선의 최대 허용온도 Tm은 150 ℃

따라서 최대 허용온도 $T_m=150$ \mathbb{C} , 주위 온도 $T_a=30$ \mathbb{C} 를 식(2-2)에 대입하고, 통전시간을 파라미터로 한 전류와 단면적 관계를 보면 〈그림 2〉와 같다.

〈그림 2〉 고장전류와 접지선 굵기의 관계

3. 접지저항의 계산

(1) 봉전극의 접지저항

막대모양 전극의 접지저항 계산식 중 대표적인 것은 다음과 같으며, 여기서 ρ 는 대지저항률 $(\Omega-m)$, ℓ 은 전극길이 (m), r은 전극반지름 (m), t (m)는 매설깊이 이다.

① Tagg & Ollendorff 계산은 식(3-1)과 같다

$$R_1 = \frac{\rho}{2\pi l} \ln \frac{2l}{r} \dots \tag{3-1}$$

② Sunde & Dwight 계산은 식(3-2)와 같다

$$R_2 = \frac{\rho}{2\pi l} \left(\ln \frac{4l}{r} - 1 \right) \qquad \dots \tag{3-2}$$

(2) 선상 전극의 접지저항

선모양 전극(매설지선)의 접지저항 계산식 중 대표적인 것은 다음과 같으며, 여기서 ρ 는 대지저항률 (Ω -m), ℓ 은 전극 길이 (m), r은 전극 반지름 (m), t(m)는 매설깊이이다.

① Rűdenberg & Zingraff 계산은 식(3-3)과 같다

$$R_1 = \frac{\rho}{2\pi l} \ln \frac{l}{r} \left[1 + \frac{\ln \frac{l}{2t}}{\ln \frac{l}{a}} \right]$$
 (3-3)

② Tagg & Dwight 계산은 식(3-4)와 같다

$$R_2 = \frac{\rho}{2\pi l} \left(\ln \frac{2l}{r} + \ln \frac{l}{t} - 2 + \frac{2t}{l} - \frac{t^2}{l^2} + \frac{t^4}{8l^2} \right)$$
 (3-4)

③ Sunde & Schwartz 계산은 식(3-5)와 같다

$$R_3 = \frac{\rho}{\pi l} \left[\ln \frac{2l}{\sqrt{2rt}} - 1 \right] \quad \dots \tag{3-5}$$

(3) 그물망(Mesh) 전극의 접지저항은 〈그림 3〉과 같다

〈그림 3〉 그물망 전극의 형태

그물망 전극에서의 접지저항 계산식은 매설깊이에 따라 약간의 차이가 있는데, 매설깊이가 0.25 (m) 이하일 때에는 식(3-6)을, 0.25~2.5 (m)에서는 식(3-7), 식(3-8)을 주로 이용한다. 여기에서, 식(3-6), 식(3-7) 및 식(3-8)은 간략화한 계산식이다.

① Laurent & Niemann 계산은 식(3-6)과 같다

$$R_1 = \frac{\rho}{4} \sqrt{\frac{\pi}{A}} + \frac{\rho}{L} \qquad (3-6)$$

② Sverak 계산은 식(3-7)과 같다

$$R_2 = \rho \left[\frac{1}{L} + \frac{1}{\sqrt{20A}} \left(1 + \frac{1}{1 + h\sqrt{20/A}} \right) \right] \qquad (3-7)$$

③ Schwarz 계산은 식(3-8)과 같다

$$R_{3} = \frac{\rho}{\pi L} \left(\ln \frac{2L}{h^{1}} + K_{1} \frac{L}{\sqrt{A}} - K_{2} \right) \qquad (3-8)$$

E - 92 - 2017

여기에서,

L: 매설된 접지선의 전체길이 (m) A : 그물망 전극의 전체 면적 (m²)

 h^1 : $\sqrt{2rh}$ (전극의 매설 깊이가 h일 경우, 지표면일 경우에는 $h^1 = r$)

h: 그물망전극의 매설 깊이 (m)

ρ : 대지 저항률 (Ω-m) r: 접지선의 반지름 (m)

 K_1 , K_2 : 길이, 가로폭, 매설 깊이에 따라 결정되는 상수 〈그림 4〉참조

A $(h = 0) : y_A = -0.04X + 1.41$

A $(h = 0) : y_A = -0.15X + 5.50$

B (h = $1/10\sqrt{A}$): $y_A = -0.05X + 1.20$ B (h = $1/10\sqrt{A}$): $y_A = -0.10X + 4.68$

C (h = $1/6\sqrt{A}$): $y_A = -0.05X + 1.13$ C (h = $1/6\sqrt{A}$): $y_A = -0.05X + 4.40$

(a) 계수 *K*₁

(b) 계수 K₂

〈그림 4〉 Schwarz식에서의 계수 K_1 , K_2