

ICPP HARVEST 2025

First International Workshop on Applications of HPC and AI in Agriculture

September 10

Nathan Balcarcel¹, <u>Paola Pesantez-Cabrera</u>¹, Kristen Goebel², Markus Keller¹, Lav Khot¹, Alan Fern², Ananth Kalyanaraman¹

Crop Phenology

- What's phenology?
 - Annual developmental cycle
 - Driven by environmental and internal genotype factors
- Why predict phenological stages?
 - Accurate forecasting Supports timely management and mitigation strategies Prevent crop loss
 - Goal: Track developmental progress
- Key predictive challenges:
 - Limited data
 - Cultivar variability
 - Seasonal dependency

Example of grapevine phenology

Tracking phenological stages: Problem abstraction

Process-Based Approaches

- Past solutions [Parker et al. 2011 and Zapata et al. 2017] focus primarily on growing degree days (GDD)
 - Accumulate heat units above a baseline
 - Use fixed start date
 - Once the sum reaches a certain threshold is when an stage is predicted to take place
 - Only factor in temperature, which paints an incomplete picture
 - Individual cultivars are handled entirely independently, no internal overlap

PhenoTracker Model Overview

GRU Model

Weather Data

- air temperature
- relative humidity
- dew point
- precipitation
- wind speed

Cultivar ID

Predicted LTE [optional] (from GrapeHardiNET model)

Lowest Chill [optional]

1. Stage Probability (most likely stage on any given day)

2. Phenology Progress (measured in % of days in current state)

Method: Model Architecture

Method: Output Example

- Each season (year) is split into stages
 - Each stage represents the time leading up its respective event
- Prediction variables
 - Stage probability: one-hot encoding set to 1.0 if corresponding stage is active and 0.0 otherwise
 - Phenology Progress: increases linearly from 0.0 to 1.0 from the start of a stage until the end. Predicted in real-time daily
 - Linearity for phenology progress is just an assumption

Experimental Setup: Data

- One season starts on October 1st and ends on September 30th
- Phenology data
 - Real-world dataset from the vineyards of the WSU IAREC, Prosser, WA
 - Up to 20 genetically diverse cultivars/genotypes
 - Recorded since 1988
- WSU AgWeatherNet
 - Parker and Zapata model predictions
 Meteorological/environmental daily data from two weather stations
 - Prosser.NE
 - Roza.2

Cultivar	Start Season End Season		No. Years
			Data
Barbera	2015-2016	2022-2023	7
Cabernet Franc	1989-1990	2022-2023	20
Cabernet Sauvignon	1989-1990	2022-2023	21
Chardonnay	1989-1990	2022-2023	25
Chenin Blanc	1990-1991	2022-2023	19
Concord	1991-1992	2020-2021	19
Gewurztraminer	1992-1993	2022-2023	18
Grenache	1992-1993	2022-2023	16
Lemberger	1989-1990	2022-2023	18
Malbec	1989-1990	2022-2023	17
Merlot	1989-1990	2022-2023	25
Mourvedre	2015-2016	2022-2023	7
Nebbiolo	2015-2016	2022-2023	7
Pinot Gris	1992-1993	2022-2023	21
Riesling	1990-1991	2022-2023	19
Sangiovese	2015-2016	2022-2023	6
Sauvignon Blanc	2004-2005	2022-2023	10
Semillon	1990-1991	2022-2023	20
Viognier	2015-2016	2022-2023	8
Zinfandel	1992-1993	2022-2023	16

Seasons used for each cultivar

Experimental Setup: Training & Testing

- Weather data normalized based on their respective minimums and maximums
- For each cultivar with n seasons
 - Validation: 2 seasons
 - Training: n-2 seasons
- Model was retrained 9 independent times
 - Choosing a different set of validation seasons each time
 - Leading to 18 validation seasons per cultivar
- Note that each day in the season has its own predicted $E_t^{s,c}$
 - o It is simply a date
 - No associated stage
 - Must be used with the stage vector to determine which stage the predicted date is for

Experimental Evaluation

- PhenoTracker was analyzed individually as well as comparatively using root mean square error (RMSE)
- Models were compared by the error in days of their predictions for an stage's date vs the ground-truth
- Results are focused on 4 commonly known cultivars:
 - Red varieties: Cabernet Sauvignon, Merlot
 - White varieties: Chardonnay, Riesling

Results: Prediction Error

- Certain cultivar/stage combinations appear to be slightly skewed in different ways
- The earlier the prediction, the larger the error. Variance decreases and begins to converge around the true date
- Winter weather provides significant insights to help improve budbreak prediction
- The sooner this precision can be achieved, the earlier the farmer can start planning

Day 0 (far right) is the true day of stage transition

Results: Prediction Error

 Certain cultivar/stage combinations appear to be slightly skewed in different ways

Budbreak

 All cultivars tend to overestimate for most of the stage before centering

Bloom

- Chardonnay and Merlot tend to underestimate
- Riesling overestimates

Veraison

- Cabernet Sauvignon and Riesling seem to overestimate
- Merlot seems to underestimate

Prediction Timeline Errors Cabernet Sauvignon Prediction Timeline Errors Chardonnay Prediction Timeline Errors Merlot Prediction Timeline Errors Riesling

Day 0 (far right) is the true day of stage transition

Results: RMSE (in days) Comparison

- PhenoTracker significantly outperforms the Zapata and Parker models in every case except budbreak for Riesling
- PhenoTracker RMSE tends to remain under 7 days, showing a reliable amount of variance
- PhenoTracker provides a daily prediction; hence, we used the "most-voted day"

	Cabernet	Chardonnay	Merlot	Riesling
Budbreak				
PhenoTracker	5.88	4.98	5.88	8.61
Zapata	6.61	9.13	8.62	5.50
Parker	-	-	_	_
Bloom				
PhenoTracker	1.22	4.80	2.61	2.11
Zapata	5.25	6.00	4.47	3.84
Parker	8.55	6.64	8.78	7.11
Veraison				
PhenoTracker	4.38	3.37	2.24	3.42
Zapata	12.06	7.75	7.72	10.27
Parker	9.91	8.01	9.01	11.98

Results: Comparison Scatter Plot

 Each stage across all seasons are plotted

Left: BudbreakCenter: BloomRight: Veraison

 PhenoTracker (green) adheres closer to the line than the other models

Results: Performance Profiles

- X-axis: number of days a given model deviates from the best performing model
- Y-axis: fraction of predictions for which this behavior holds
- The closer a model is to the Y-axis and for a higher fraction of predictions, the better it is
- PhenoTracker is the best overall performing model given all seasons of all cultivars
 - For budbreak, for over 95% of the predictions, PhenoTracker outperforms Zapata

Remarks

- PhenoTracker is machine learning approach outperforms traditional GDD-based approaches
- PhenoTracker factors in more environmental variables than traditional methods, capturing a more complete picture of grape phenology
- Unified training approach that addresses several cultivars with one model
- Historical patterns can be remembered and referenced later in the season for decision making
- Automatically discovers importance of each input feature, rather than having to be manually discovered

Future Work

- Model deployment on the publicly accessible WSU AgWeatherNet website to provide live predictions for future growing seasons
- 2. Model refinement implementing functionalities for finetuning the trained model
- 3. Integration with the WOFOSTGym crop simulator
- 4. Addition of other locations to address generalization

Acknowledgements

- Keller lab members, Lynn Mills and Zilia Khaliullina, for their support in collecting grape phenology data
- WSU AgWeatherNet for their support on providing environmental data
- This research was supported by USDA NIFA award No. 2021-67021-35344 (AgAID AI Institute).
- The model code is accessible at https://github.com/AgAIDInstitute/PhenoTracker
- Contact: Ananth Kalyanaraman (ananth@wsu.edu)

