第四章 组合逻辑电路

4.1 概 述

主要要求:

■ 掌握组合逻辑电路和时序逻辑电路的概念。

□ 了解组合逻辑电路的特点与描述方法。

一、组合逻辑电路的概念

数字电路根据逻辑功能特点的不同分为

组合逻辑电路

指任何时刻的输出仅取决于 该时刻输入信号的组合,而与电 路原有的状态无关的电路。

时序逻辑电路

指任何时刻的输出不仅取决 于该时刻输入信号的组合,而且 与电路原有的状态有关的电路。

二、组合逻辑电路的特点与描述方法

● 组合逻辑电路的逻辑功能特点:

没有存储和记忆功能。

● 组合电路的组成特点:

由门电路构成,不含记忆单元,只存在从输入到输出的通路,没有反馈回路。

组合电路的描述方法主要有逻辑表达式、 真值表、卡诺图和逻辑图等。

4.2 组合逻辑电路的分析和设计

一、组合逻辑电路的基本分析方法

分析思路:

根据给定逻辑电路,找出输出输入间的逻辑关系,从而确定电路的逻辑功能。

基本步骤:

根据给定逻辑图写出输出逻辑式,并进行必要的化简

★ [例] 分析下图所示逻辑 电路的功能。

解: (1)写出输出逻辑函数式

$$Y_{1} = A \oplus B$$

$$Y = A \oplus B \oplus C$$

$$= (A \oplus B)C' + (A \oplus B)' \cdot C$$

$$= A'B'C + A'BC' + AB'C' + ABC \Longrightarrow$$

(3)分析逻辑功能

(2) 列逻辑函数真值表

箱		λ	输出
\boldsymbol{A}	B	\boldsymbol{C}	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

A、B、C三个输入变量中,有奇数个1时,输出为1,否则输出为0。因此,图示电路为三位判奇电路,又称奇校验电路。

☀ [例] 分析下图电路的逻辑功能。

解: (1)写出输出逻辑函数式

$$S_i = A_i \oplus B_i \oplus C_{i-1}$$

$$C_i = (A_i \oplus B_i)C_{i-1} + A_iB_i$$

$$= A_iB_i'C_{i-1} + A_i'B_iC_{i-1} + A_iB_i$$

(3)分析逻辑功能

将两个一位二进制数 A_i 、 B_i 与低位来的进位 C_{i-1} 相加, S_i 为本位和, C_i 为向高位产生的进位。这种功能的电路称为全加器。

(2)列真值表

新	前	输	出	
A_i	B_i	C_{i-1}	S_i	C_i
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

二、组合逻辑电路的基本设计方法

设计思路:

分析给定逻辑要求,设计出能实现该功能的组合逻辑电路。

基本步骤:

分析设计要求并列出真值表→求最简输出逻辑式→画逻辑图。

首先分析给定问题,弄清楚输入变量和输出变量是哪些,并规定它们的符号与逻辑取值(即规定它们何时取值 0 ,何时取值 1)。然后分析输出变量和输入变量间的逻辑关系,列出真值表。

根据真值表用代数法或卡诺图法求最简与或式,然后根据题中对门电路类型的要求,将最简与或式变换为与门类型对应的最简式。

(一)单输出组合逻辑电路设计举例

☀ [例] 设计一个A、B、C三人表决电路。当表决某个提案时, 多数人同意,则提案通过,但A具有否决权。用与非门实现。

解: (1)分析设计要求,列出真值表

设 A、B、C 同意提案时取值 为 1,不同意时取值为 0; Y表示 表决结果,提案通过则取值为 1, 否则取值为 0。可得真值表如右。

(2)化简输出函数,并求最简与非式

$\setminus BC$										
$A \setminus$	00	01	11	10						
0	0	0	0	0						
1	0	1	1	1						

$$Y=AC+AB$$

$$=((AC+AB)')'=((AC)'\cdot(AB)')'$$

箱		λ	输出
A	B	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

(3)根据输出逻辑式画逻辑图

(二)多输出组合逻辑电路设计举例

- ☀ [例] 试设计半加器电路。
- 解: (1)分析设计要求, 列真值表。

输	入	输	出
A_{i}	B_i	S_i	C_i
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

(2) 求最简输出函数式

$$S_i = A_i \oplus B_i$$
$$C_i = A_i B_i$$

将两个1位二进制数相加,而不考虑低位进位的运算电路,称为半加器。

(3) 画逻辑图

4.3 若干常用的组合逻辑电路

4.3.1 编码器

主要要求:

- 理解编码的概念。
- 理解常用编码器的类型、逻辑功能和使用方法。

一、编码器的概念与类型

编码

将具有特定含义的信息编成相应二进制代码的过程。

编码器(即Encoder) 实现编码功能的电路

一、普通编码器

特点:任何时刻只允

许输入一个编码信号。

例:三位二进制 普通编码器

		イ			入			新	前上	<u>H</u>
Io	I ₁	l ₂	I ₃	I ₄	I ₅	I ₆	I ₇	Y ₂	Y ₁	Y 0
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

$$Y_{0} Y_{2} = I'_{7}I'_{6}I'_{5}I_{4}I'_{3}I'_{2}I'_{1}I'_{0} + I'_{7}I'_{6}I_{5}I'_{4}I'_{3}I'_{2}I'_{1}I'_{0} + I'_{7}I'_{6}I'_{5}I'_{4}I'_{3}I'_{2}I'_{1}I'_{0} + I'_{7}I'_{6}I'_{5}I'_{4}I'_{3}I'_{2}I'_{1}I'_{0}$$

利用无关项化简,得:

$$Y_2 = I_4 + I_5 + I_6 + I_7$$

 $Y_1 = I_2 + I_3 + I_6 + I_7$
 $Y_0 = I_1 + I_3 + I_5 + I_7$

二、优先编码器

允许同时输入数个编码信号,并只对其中 优先权最高的信号进行编码输出的电路。

普通编码器在任 何时刻只允许一个输 入端请求编码,否则 输出发生混乱。

			输			入			输出		
	I_0	I_1	I_2	I_3	I_4	I_5	I_6	I_7	Y_2	Y_1	Y_0
Ī	1	0	0	0	0	0	0	0	0	0	0
	0	1	0	0	0	0	0	0	0	0	1
	0	0	1	0	0	0	0	0	0	1	0
	0	0	0	1	0	0	0	0	0	1	1
	0	0	0	0	1	0	0	0	1	0	0
	0	0	0	0	0	1	0	0	1	0	1
	0	0	0	0	0	0	1	0	1	1	0
	0	0	0	0	0	0	0	1	1	1	1

例: 8线-3线优先 编码器 (设/7优先权最高 /₀优先权最低)

		车	俞		λ			弁	俞	出
I ₀	I ₁	l ₂	I ₃	I ₄	I ₅	I ₆	I ₇	Y ₂	Y	Y ₀
×	×	×	×	X	X	X	1	1	1	1
×	X	×	×	×	X	1	0	1	1	0
×	×	×	×	X	1	0	0	1	0	1
×	×	×	×	1	0	0	0	1	0	0
×	×	×	1	0	0	0	0	0	1	1
×	×	1	0	0	0	0	0	0	1	0
×	1	0	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	0	0	0

$$Y_2 = I_7 + I_7 I_6 + I_7 I_6 I_5 + I_7 I_6 I_5 I_4$$

$$Y_2 = I_7 + I_6 + I_5 + I_4$$

A + A'B = A + B

编码器

8线—3线优先编码器74HC148

优先编码

优先编码器允许几个输入端同时加上信号,电路只对其中优先级别最高的信号进行编码。

管脚定义:

 $I_0 \sim I_7$:输入,低电平有效,优先级别依次为 $I_7 \sim I_0$ 。

 $\overline{Y}_2 \sim \overline{Y}_0$: 编码输出端。

 \overline{S} : 使能输入端; $\overline{S} = 0$ 时,编码,

 $\overline{S} = 1$ 时,禁止编码。

 \overline{Y}_{s} : 使能输出端, Y_{s} =0,表示芯片已经开始工作, 但因所有的输入都无效, 输出固定为111,允许其他芯片工作。

 \overline{Y}_{EX} : 扩展输出端,编码状态下($\overline{S}=0$),若有输入信号,

 Y_{EX} =0。 表示芯片已经开始工作,且有优先码输出。

74HC148的功能表

			输		入					,	输出	出	
s'	I_0	$I_1^{'}$	$I_{2}^{'}$	$I_{3}^{'}$	$I_4^{'}$	$I_{5}^{'}$	$I_6^{'}$	$I^{'}_{7}$	Y_{2}'	Y_1	Y_0	Y_{S}	Y_{EX}'
1	X	X	X	X	X	X	X	X	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	0	1
0	X	X	X	X	X	X	X	0	0	0	0	1	0
0	X	X	X	X	X	X	0	1	0	0	1	1	0
0	X	X	X	X	X	0	1	1	0	1	0	1	0
0	X	X	X	X	0	1	1	1	0	1	1	1	0
0	X	X	X	0	1	1	1	1	1	0	0	1	0
0	X	X	0	1	1	1	1	1	1	0	1	1	0
0	X	0	1	1	1	1	1	1	1	1	0	1	0
0	0	1	1	1	1	1	1	1	1	1	1	1	0

控制端扩展功能举例:

例: 用两片8-3线优先编码器构成

16-4优先编码器

其中, A15'的优先权最高。

输出是原码

4.3.2 译码器

主要要求:

- 理解译码的概念。
- 掌握二进制译码器 74HC138 的逻辑功能和 使用方法。
- 理解其他常用译码器的逻辑功能和使用方法。
- 掌握用二进制译码器实现组合逻辑电路的方法。

一、译码的概念与类型

译码是编码的逆过程。

将表示特定意义信息的 二进制代码翻译出来。

译码器(即 Decoder)

实现译码功能的电路

数码显示译码器

二、二进制译码器

将输入二进制代码译成相应输出信号的电路。

译码	输入	译	码	输	出
A_1	A_0	Y_0	Y_1	Y_2	Y_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

译码	输入	译	码	输	出
A_1	A_0	Y_0	$Y_{1}^{'}$	$Y_{2}^{'}$	$Y_3^{'}$
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

译码输出高电平有效

译码输出低电平有效

怎样写出输出端表达式