NAME (FIRST LAST)

ID#:

WRITE THE ANSWERS IN THE TABLE

- 1. (14 points) A cache has 32 KB, each cache block is 16 B. The address is 44 bits.
 - 1.a. (12 points) Indicate the size in bits of each of the fields for the four cache architectures listed (in the table).
 - 1.b. (1 points) Which of these cache architectures would have the lowest miss rate?
 - 1.c. (1 points) Which will have the lowest hit time?

CACHE ARCHITECTURE		tag	index	byte offset	lowest miss rate	lowest hit time
A	direct mapped					
В	2-way set associative					
С	4-way set associative					
D	fully associative					

CS 161 - HW 3 - Summer 2019

NAME (FIRST LAST)

- 2. (10 points) A CPU has an instruction and a data cache. The I\$ miss rate is 4% and the D\$ miss is 12%. The miss penalty for both is 80 cycles.
 - a. (6 points) Compute the miss cycles due to the I\$ and D\$ respectively
 - b. (4 points) How does the CPI with the caches compare to the ideal CPI (assuming perfect caches)

miss cycles due to I\$	
miss cycles due to D\$	
ideal CPI	
actual CPI	

ID#:

Instruction class	Instruction frequentcy	Cycles/ inst
ALU	28%	2
Load	<mark>25%</mark>	4
Store	11%	2
Cond. Branch	34%	4
Jump	2%	2

CS 161 - HW 3 - Summer 2019

NAME	(FIRST	LAST)
------	--------	-------

ID#:

3. (6 points) Since the CPU need not wait for the result of a store instruction, we change the design of the cache to use a store buffer. The data is written by the CPU in a store buffer and then moved to the cache and/or main memory by the memory system. What is the speedup of this new design?

miss cycles due to D\$	
new actual CPI	
speedup	