به نام خدا

دانشگاه تهران دانشکده مهندسی برق و کامپیوتر هوش مصنوعی

گزارش تمرین کامپیوتری صفر

نام و نامخانوادگی: نرگس غلامی

شماره دانشجویی: ۸۱۰۱۹۸۴۴۷

هدف پروژه:

در این پروژه ما میخواهیم که نواقص یک دیتا را با پیشبینیهایی که به کمک تحلیل آماری انجام میشود پر کنیم و طرز استفاده از vectorization را یاد بگیریم.

توضيح پروژه:

در این پروژه ما ابتدا یک داده اولیه در مورد یک سری ماشین داریم که با استفاده از این اطلاعات ما قرار است پیشبینی کنیم که هر ماشین چقدر کربن دی اکسید تولید می کند. در ابتدای پروژه با دیتافریم آشنا می شویم و انواع توابع مربوط به آن آن را بررسی می نماییم، سپس پس از visualize کردن داده ها بهترین ویژگی را انتخاب می کنیم و با استفاده از یک تقریب خطی نواقص دیتا را پیشبینی می نماییم.

بخش اول:

```
data = pd.read_csv('FuelConsumptionCo2.csv')
fuelData = pd.DataFrame(data)
print(fuelData.head())
print(fuelData.describe())
print(fuelData.tail())
```

ابتدا فایل csv.FuelConsumptionCo2 را باز می کنیم. این فایل حاوی دیتای مربوط به ماشینها است. ما با استفاده از این دیتا می خواهیم نواقص دادههای داخل همین دیتا را پیشبینی کنیم.

تابع head : این تابع ردیفهای بالای یک DataFrame یا سری را برمی گرداند که n مقدار ورودی کاربر است. در این بخش ما برای head ورودی تعیین نکردیم در نتیجه فقط ۵ تا از ردیفها را بر می گرداند.(مقدار دیفالت آن ۵ ردیف است) خروجی این بخش:

_									
		Unnamed: 6	MODELYEA	R MAKE	MODEL	VEHICLECLASS	ENGINESIZE		
	0	(ə 201	.4 ACURA	ILX	COMPACT	2.0		
	1	:	1 201	.4 ACURA	ILX	COMPACT	2.4		
		:	2 201	.4 ACURA	ILX HYBRID	COMPACT	1.5		
			3 201	.4 ACURA	MDX 4WD	SUV - SMALL	3.5		
	4	4	4 201	.4 ACURA	RDX AWD	SUV - SMALL	3.5		
		CYLINDERS	TRANSMISS	ON FUELT	YPE FUELCON	SUMPTION_CITY	FUELCONSUMP	TION_HWY	
	0	4.0	Į.	S5	Z	9.9		6.7	
	1	4.0		M6	Z	11.2		7.7	
		4.0	Į.	.V7	Z	6.0		5.8	
		6.0	Į.	S6	Z	12.7		9.1	
	4	6.0	Į.	S6	Z	12.1		8.7	
		FUELCONSU	MPTION_COME	FUELCO	NSUMPTION_CO	MB_MPG CO2EMI	SSIONS		
	0		8.5			33	196.0		
	1		9.6			29	221.0		
			5.9			48	136.0		
			11.1			25	NaN		
	4		10.6			27	244.0		

تابع describe: از این تابع برای مشاهده برخی اطلاعات آماری دیتای وارد شده استفاده می شود.

همان طور که در خروجی زیر دیده می شود اطلاعاتی مانند میانگین، انحراف معیار، مینیموم و ماکسیمم داده ها، چارک اول و دوم و سوم و... در خروجی این تابع ارائه می شود. (چند ستون اول خروجی آورده شده است)

	Unnamed: 0	MODELYEAR	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_CITY	\
count	1067.000000	1067.0	1040.000000	1033.000000	1067.000000	
mean	533.000000	2014.0	3.324038	5.797677	13.296532	
std	308.160672	0.0	1.411400	1.807262	4.101253	
min	0.000000	2014.0	1.000000	3.000000	4.600000	
25%	266.500000	2014.0	2.000000	4.000000	10.250000	
50%	533.000000	2014.0	3.300000	6.000000	12.600000	
75%	799.500000	2014.0	4.200000	8.000000	15.550000	
max	1066.000000	2014.0	8.400000	12.000000	30.200000	

تابع tail: این تابع ردیفهای پایین یک DataFrame یا سری را برمی گرداند که n مقدار ورودی کاربر است. در این بخش ما برای tail ورودی تعیین نکردیم در نتیجه فقط ۵ تا از ردیفها را بر می گرداند.(مقدار دیفالت آن ۵ ردیف است) خروجی این بخش:

	Unnamed: 0	MODELYEAR	MAKE	MODEL	VEHICLECLASS	ENGINESIZE	\
1062	1062	2014	VOLVO XC	60 AWD	SUV - SMALL	3.0	
1063	1063	2014	VOLVO XC	60 AWD	SUV - SMALL	3.2	
1064	1064	2014	VOLVO XC	70 AWD	SUV - SMALL	3.0	
1065	1065	2014	VOLVO XC	70 AWD	SUV - SMALL	3.2	
1066	1066	2014	VOLVO XC	90 AWD	SUV - STANDARD	3.2	
	CYLINDERS T	RANSMISSION	FUELTYPE	FUELCO	ONSUMPTION_CITY	\	
1062	6.0	AS6	Х		13.4		
1063	6.0	AS6	Х		13.2		
1064	6.0	AS6	Х		13.4		
1065	6.0	AS6	Х		12.9		
1066	6.0	AS6	Х		14.9		
	FUELCONSUMP	TION_HWY FL	JELCONSUMP	TION_C	OMB FUELCONSUMP	TION_COMB_MPG	\
1062		9.8		11	1.8	24	
1063		9.5		11	1.5	25	
1064		9.8		11	1.8	24	
1065		9.3		11	L.3	25	
1066		10.2		12	2.8	22	

بخش دوم:

```
fuelData.info(verbose=True)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1067 entries, 0 to 1066
Data columns (total 14 columns):
                               Non-Null Count Dtype
    Unnamed: 0
                               1067 non-null
                                               int64
                               1067 non-null
    MODELYEAR
    MΔKF
                               1067 non-null
                                               object
    MODEL
                                               obiect
    VEHICLECLASS
                               1067 non-null
                                               object
    ENGINESIZE
                               1040 non-null
                                               float64
   CYLINDERS
                               1033 non-null
                                               float64
    TRANSMISSION
                               1067 non-null
                                               object
    FUELTYPE
                               996 non-null
                                               object
    FUELCONSUMPTION CITY
                               1067 non-null
                                               float64
10 FUELCONSUMPTION_HWY
                               1067 non-null
                                               float64
```

با استفاده از تابع info کتابخانه pandas نوع هر کدام ستونهای داده نشان داده شده است. بعضی ستون ها از نوع دستهای و بعضی دیگر از نوع عددی هستند.

در قسمت بعد ستون دستهای با نام FUELTYPE را که شامل مقادیر X ,E ,D, Z می باشد، به گونه ای تغییر دادیم که هر کدام از این مدلها به یکی از اعداد بازه ی صفر تا سه نگاشت شوند.

```
fuelData['FUELTYPE'] = fuelData['FUELTYPE'].astype('category')
fuelData['FUELTYPE'] = fuelData['FUELTYPE'].cat.codes
fuelData.tail(n = 50)
```

خروجی این بخش به صورت زیر است. ۵۰ ردیف آخر چاپ شده است و همانطور که در ستون FUELTYPE مشاهده می کنید FUELTYPE به یکی از اعداد ۱و ۱و ۲و ۳ نگاشت شده است. برای این کار از تابع astype برای تبدیل ستون به نوع دسته ای استفاده کرده ایم. سپس از cat.codes برای نگاشت FUELTYPE استفاده می نماییم. این تابع هر یک از نوعهای FUELTYPE را به یک عدد نگاشت می کند (منفی یک برای داده ی Nan است) در صفحه ی بعد داده ی اصلی را مشاهده می نمایید. مثلا سوخت Z به عدد ۳ مپ شده است.

fuel fuel	<pre>fuelData['FUELTYPE'] = fuelData['FUELTYPE'].astype('category') fuelData['FUELTYPE'] = fuelData['FUELTYPE'].cat.codes fuelData.tail(n = 50)</pre>								
V	Unnamed:	MODELYEAR	MAKE	MODEL	VEHICLECLASS	ENGINESIZE	CYLINDERS	TRANSMISSION	FUELTYPE F
1017	1017	2014	VOLKSWAGEN	BEETLE	COMPACT	2.0	4.0	М6	3
1018	1018	2014	VOLKSWAGEN	BEETLE	COMPACT	2.5	5.0	A6	2
1019	1019	2014	VOLKSWAGEN	BEETLE	COMPACT	2.5	5.0	M5	2
1020	1020	2014	VOLKSWAGEN	BEETLE CONVERTIBLE	SUBCOMPACT	1.8	4.0	A6	-1
1021	1021	2014	VOLKSWAGEN	BEETLE CONVERTIBLE	SUBCOMPACT	2.0	4.0	A6	3
1022	1022	2014	VOLKSWAGEN	BEETLE CONVERTIBLE	SUBCOMPACT	2.0	4.0	M6	3
1023	1023	2014	VOLKSWAGEN	BEETLE CONVERTIBLE	SUBCOMPACT	2.5	5.0	A6	2
1024	1024	2014	VOLKSWAGEN	BEETLE TDI CLEAN	COMPACT	2.0	4.0	A6	0

	Unnamed: 0	MODELYEAR	MAKE	MODEL	VEHICLECLASS	ENGINESIZE	CYLINDERS	TRANSMISSION	FUELTYPE	F
1017	1017	2014	VOLKSWAGEN	BEETLE	COMPACT	2.0	4.0	М6	Z	
1018	1018	2014	VOLKSWAGEN	BEETLE	COMPACT	2.5	5.0	A6	Х	
1019	1019	2014	VOLKSWAGEN	BEETLE	COMPACT	2.5	5.0	M5	Х	
1020	1020	2014	VOLKSWAGEN	BEETLE CONVERTIBLE	SUBCOMPACT	1.8	4.0	A6	NaN	
1021	1021	2014	VOLKSWAGEN	BEETLE CONVERTIBLE	SUBCOMPACT	2.0	4.0	A6	Z	
1022	1022	2014	VOLKSWAGEN	BEETLE CONVERTIBLE	SUBCOMPACT	2.0	4.0	М6	Z	
1023	1023	2014	VOLKSWAGEN	BEETLE CONVERTIBLE	SUBCOMPACT	2.5	5.0	A6	х	
1024	1024	2014	VOLKSWAGEN	BEETLE TDI CLEAN DIESEL	COMPACT	2.0	4.0	A6	D	
1025	1025	2014	VOLKSWAGEN	BEETLE TDI CLEAN DIESEL	COMPACT	2.0	4.0	M6	D	

بخش سوم:

ابتدا با استفاده از کد زیر برای هر ستون تعداد سطرهایی را که مقدار آن ستون برای آنها خالی است نشان میدهیم. ابتدا با استفاده از len مقدار طول دیتافریم را بدست می آوریم و سپس تعداد دیتاهای پر را از آن کم می کنیم. تعداد دیتاهای خالی بدست می آید.

<pre>count_nan = len(fuelData print(count_nan) </pre>	a) - fuelData.count()
Unnamed: 0	0
MODELYEAR	0
MAKE	0
MODEL	9
VEHICLECLASS	0
ENGINESIZE	27
CYLINDERS	34
TRANSMISSION	0
FUELTYPE	71
FUELCONSUMPTION_CITY	0
FUELCONSUMPTION_HWY	0
FUELCONSUMPTION_COMB	0
FUELCONSUMPTION_COMB_MPG	0
CO2EMISSIONS	103

سپس با استفاده از تکه کد زیر مقدار دادههای عددی را با میانگینشان و دادههای دستهای را با مدشان پر مینماییم.

```
numeric_columns = fuelData.select_dtypes(include=['number']).columns.difference(['CO2EMISSIONS'])
fuelData[numeric_columns] = fuelData[numeric_columns].fillna(fuelData.mean())

Categorical_columns = fuelData.select_dtypes(exclude=['number']).columns
fuelData[Categorical_columns] = fuelData[Categorical_columns].transform(lambda a: a.fillna(a.mode()[0]))
```

در خط اول دادههای عددی (به جز ستون هدف) را جدا کرده، سپس مقدار میانگین را در مقادیر Nan این ستونها قرار میدهیم.

در خط بعد دادههای دستهای را جدا می کنیم و مقدار مد را در مقادیر Nan آن جایگذاری می کنیم. چون بعضی از دادهها چند مد داشتند، در داخل پرانتز تاکید کردیم که اولین مد را برای هر کدام بریزد.

سپس دوباره تعداد خانههای Nan را حساب می کنیم. همان طور که میبینید جز ستون هدف بقیهی خانهها پر شدهاند.

Unnamed: 0	0
MODELYEAR	0
MAKE	0
MODEL	0
VEHICLECLASS	0
ENGINESIZE	0
CYLINDERS	0
TRANSMISSION	0
FUELTYPE	0
FUELCONSUMPTION_CITY	0
FUELCONSUMPTION_HWY	0
FUELCONSUMPTION_COMB	0
FUELCONSUMPTION_COMB_MPG	0
CO2EMISSIONS	103

مزایای این کار:

این روش زمانی مناسب است که حجم داده ها کوچک باشد.

معایب این کار:

این روش واریانس مجموعه داده را تغییر می دهد و در نتیجه ما برآورد کمتری نسبت به واریانس دیتای واقعی داریم.

در مقایسه با سایر روشها ضعیف عمل می کند.

یکی دیگر از معایب احتمالی استفاده از میانگین برای مقادیر از دست رفته این است که دلیل از دست رفتن مقادیر در مرحله اول می تواند به خود مقادیر گم شده بستگی داشته باشد. مثلا اگر در سطح شهر بخواهیم یک آزمایش در مورد سلامتی افراد بگیریم افرادی که از سلامتی کمتری برخوردارند به علت عدم علاقه به ابراز آن در آزمایش شرکت نمی کنند و اگر ما میانگین را در مقادیر از دست رفته جایگذاری بکنیم پیشبینی مناسبی انجام نداده ایم.

در آخر این بخش نیز سطرهایی که مقدار ستون هدف آنها NaN است را از دیتافریم اصلی جدا کرده و در دیتافریم جدیدی ذخیره می کنیم.

با استفاده از تکه کد زیر:

```
NanNumber = fuelData['CO2EMISSIONS'].isnull()
NotNanNumber = ~fuelData['CO2EMISSIONS'].isnull()
fuelDataNan = fuelData[NanNumber]
fuelDataNotNan = fuelData[NotNanNumber]
fuelDataNan
fuelDataNotNan
```

خروجی تکه کد بالا دو دیتافریم است که اندازه یکی ۱۴ ۱۰۳% است و اندازه دیگری ۱۴ ۱۴% است.

آن دیتافریمی که ۱۰۳ ردیف دارد همان است که دارای دادههای Nan میباشد و دادهی تست ما میباشد. (شکل پایین)

	Unnamed: 0	MODELYEAR	MAKE	MODEL	VEHICLECLASS	ENGINESIZE	CYLINDERS	TRANSMISSION	FUELTYPE
3		2014	ACURA	MDX 4WD	SUV - SMALL	3.5	6.000000	AS6	
20		2014	AUDI	A4 QUATTRO	COMPACT	2.0	4.000000	AS8	
30	30	2014	AUDI	A8	MID-SIZE	3.0	6.000000	AS8	
42	42	2014	AUDI	Q7	SUV - STANDARD	3.0	5.797677	AS8	
43		2014	AUDI	Q7 TDI CLEAN DIESEL	SUV - STANDARD	3.0	6.000000	AS8	
1022	1022	2014	VOLKSWAGEN	BEETLE CONVERTIBLE	SUBCOMPACT	2.0	4.000000	М6	
1027	1027	2014	VOLKSWAGEN	CC	COMPACT	2.0	4.000000	M6	
1051	1051	2014	VOLKSWAGEN	TIGUAN	SUV - SMALL	2.0	4.000000	A6	
1052	1052	2014	VOLKSWAGEN	TIGUAN	SUV - SMALL	2.0	4.000000	M6	
1053	1053	2014	VOLKSWAGEN	TIGUAN 4MOTION	SUV - SMALL	2.0	4.000000	A6	
103 row	s × 14 colum	ns							

دیتافریم زیر نیز دادهی ترین ما میباشد.

	Unnamed: 0	MODELYEAR	MAKE	MODEL	VEHICLECLASS	ENGINESIZE	CYLINDERS	TRANSMISSION	FUELTYPE	FUELCON
0		2014	ACURA	ILX	COMPACT	2.0	4.0	AS5		
1		2014	ACURA	ILX	COMPACT	2.4	4.0	M6		
2		2014	ACURA	ILX HYBRID	COMPACT	1.5	4.0	AV7		
4		2014	ACURA	RDX AWD	SUV - SMALL	3.5	6.0	AS6		
5		2014	ACURA	RLX	MID-SIZE	3.5	6.0	AS6		
1062	1062	2014	VOLVO	XC60 AWD	SUV - SMALL	3.0	6.0	AS6		
1063	1063	2014	VOLVO	XC60 AWD	SUV - SMALL	3.2	6.0	AS6		
1064	1064	2014	VOLVO	XC70 AWD	SUV - SMALL	3.0	6.0	AS6		
1065	1065	2014	VOLVO	XC70 AWD	SUV - SMALL	3.2	6.0	AS6		
1000	1055	2014	V01V0	XC90	SUV -	2.2	C 0	۸۵۵	,	

بخش چهار:

با استفاده از تکه کد زیر میانگینهای مورد نظر این بخش محاسبه شد.

همان طور که مشاهده می شود مقدار این میانگین برای قسمت اول که کربن دی اکسید خروجیشان کمتر از ۲۴۰ بود ۱۰.۰۳ می شد و برای قسمت بعد که کربن دی اکسید خروجیشان بیشتر از ۳۰۰ بود ۱۸.۶۶ می باشد.

بخش ينج

در این قسمت با روش حلقه میانگین را حساب می کنیم. خروجی مانند بخش قبل است.

```
count1 = 0
 sum1 = 0
 for i in range(len(fuelData)):
     if fuelData['CO2EMISSIONS'][i] < 240:</pre>
         sum1 += fuelData['FUELCONSUMPTION_CITY'][i]
         count1 += 1
 print(sum1 / count1)
 count2 = 0
 sum2 = 0
 for i in range(len(fuelData)):
     if fuelData['CO2EMISSIONS'][i] > 300:
         sum2 += fuelData['FUELCONSUMPTION_CITY'][i]
         count2 += 1
 print(sum2 / count2)
 ✓ 0.6s
10.037819025522042
18.663255813953487
```

حال به مقایسهی زمانهای این دو راه حل میپردازیم.

برای محاسبه زمان صرفشده برای این دو از کتابخانه time کمک گرفته شده است به طوری که اول هر عملیات زمان شروع و پایان عملیاتها زمان پایان ثبت شده است و در نهایت از یکدیگر مقدارشان را کم می کنیم.

همان طور که مشاهده می شود زمان عملیات با حلقه چند برابر عملیات با vectorization است.

بخش شش:

fuelDataNotNan.hist(bins=25, grid=False, figsize=(15,12), color='#86bf92', zorder=2, rwidth=0.9)

نمودار هیستوگرام هر ستون از داده را مشاهده مینمایید. دو نمودار اول مربوط به ایندکسها میباشند.

بخش هفت:

نتیجه نرمالسازی دادهها:

	ewNumericFuelData = (fuelDataNotNan2 - fuelDataNotNan2.mean()) / fuelDataNotNan2.std() ewNumericFuelData					
✓	0.7s					Python
	CO2EMISSIONS	CYLINDERS	ENGINESIZE	FUELCONSUMPTION_CITY	FUELCONSUMPTION_COMB	FUELCONSUMPTION_COMB_MPI
0	-0.960111	-1.024099	-0.973622	-0.833605	-0.888216	0.88628
1	-0.564949	-1.024099	-0.683744	-0.519842	-0.576247	0.35288
2	-1.908498	-1.024099	-1.335970	-1.774893	-1.625596	2.88655
3	-0.201401	0.100355	0.113422	-0.302621	-0.292640	0.08618
4	-0.422691	0.100355	0.113422	-0.350893	-0.462804	0.21953
959	0.225373	0.100355	-0.248926	0.011141	0.047690	-0.31387
960	0.114728	0.100355	-0.103987	-0.037130	-0.037393	-0.18052
961	0.225373	0.100355	-0.248926	0.011141	0.047690	-0.31387
962	0.051502	0.100355	-0.103987	-0.109537	-0.094114	-0.18052
963 964 ro	0.588921 ws × 10 columns	0.100355	-0.103987	0.373175	0.331297	-0.58057

بخش هشت:

الف) با استفاده از تابع matplot.pyplot.scatter نمودارها را رسم مىنماييم.

از آن جایی که از داده نرمالایز شده برای کشیدن پلاتها استفاده کردهایم و مقادیر نرمالایز NAN ، MODELYEAR شدهاند(به علت صفر بودن انحراف معیار) در نتیجه پلات آن نیز خالی است.

ب) ویژگی FUELCONSUMPTION_COMB بیشترین همبستگی را دارد زیرا میبینیم نسبت به بقیه ی ویژگیها نسبت خطیاش واضح تر است. به صورت منطقی هم که فکر بکنیم میزان مصرف کربن دی اکسید با نسبتی که سوخت مصرف می شود رابطه دارد و این میزان ارتباط در جمع سوخت شهر و اتوبان واضح تر است.

بخش نه: دادهی جدید توسط خط زیر جدا شد.

```
fuelDataNew = fuelDataNotNan2[['CO2EMISSIONS', 'FUELCONSUMPTION_COMB']]
```

بخش ده: تابع تخمین گر توسط تکه کد زیر نوشته شد.

```
A = np.arange(1*2.00).reshape(2, 1)

X = np.arange(len(fuelDataNew)*2.00).reshape(len(fuelDataNew), 2)

X[:, 0] = 1

X[:, 1] = fuelDataNew['FUELCONSUMPTION_COMB']

Y = fuelDataNew['CO2EMISSIONS']

X_pinv = np.linalg.pinv(X)

A = np.dot(X_pinv,Y)

A

    0.2s

array([1.99493200e-17, 8.88687103e-01])
```

ابتدا آرایه ایکس که یک آرایهی طول دیتا ضربدر دو است ساخته می شود که ستون اول آن را عدد یک تشکیل می دهد و ستون دوم آن اطلاعات FUELCONSUMPTION_COMB است. معکوس این ماتریس در ایگرگ که همان اطلاعات CO2EMMISION است، ضرب می شود و حاصل این ضرب یک ماتریس دو در یک است که ضرایب معادلهی تخمین گر ما می باشد. عضو اول آرایه عرض از مبدا و عضو دوم آن شیب می باشد.

حال با توجه به این مقادیر MSE را محاسبه مینماییم.

مشاهده می شود که مقدار خطا از ۵.۰ کمتر است پس دادهای که انتخاب کردیم مناسب می باشد.

بخش یازده:

پلات قرمز رنگ نشاندهنده رابطه بین CO2EMMISION و FUELCONSUMPTION_COMB است و خط سیاه، رابطه بین حدسی که ما زدیم و FUELCONSUMPTION_COMB است.

از آن جایی که ویژگی مورد نظر با CO2 همبستگی دارد پس تقریبی که زدیم هم تقریبا با واقعیت همخوانی دارد و به همین علت است که این دو نمودار تقریبا روی هم میافتند.

بخش دوازده:

نتیجههای بدست آمده از طریق تابع تخمین گر را در عکس پایین مشاهده می کنید.مقادیر همان طور که حدس زده می شد بین ۲۰۰ تا ۳۰۰ هستند.

fuelDataNan['CO2EMISSIONS'] = (A2[1]*fuelDataNan['FUELCONSUMPTION_COMB'] + A2[0])

	CO2EMISSIONS
3	248.261254
20	230.721434
30	249.855783
42	281.746366
43	245.072196
1022	221.154259
1027	227.532375
1051	241.883138
1052	256.233900
1053	241.883138

نتیجه گیری کلی: با توجه به این پروژه دانستیم که می توان با انتخاب یک متغیر همبسته مقدار خانههای گمشده یک دیتا را با تقریب خوبی یر کرد.

ارائه راهکارهایی برای توسعه و بهبود پروژه:

اول خسته نباشید عرض می کنم بابت این پروژه مفید. پروژه در ابتدا بسیار سخت بنظر می آمد ولی کم کم دستمان در کد زدن تندتر شد و با قواعد آشناتر شدیم که بنظرم ویژگی خوبی بود. ولی در کل بنظرم برای پروژه صفر حجم زیادی داشت D:

منابع استفاده شده:

https://stackoverflow.com

https://pandas.pydata.org

https://www.geeksforgeeks.org

https://analyticsindiamag.com/5-ways-handle-missing-values-machine-learning-datasets/

https://stackoverflow.com/questions/35077507/how-to-right-align-and-justify-align-in-markdown

https://www.pythontutorial.net/python-basics/python-write-csv-file/

https://stackoverflow.com/questions/1557571/how-do-i-get-time-of-a-python-programs-execution

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.std.html

https://stackoverflow.com/questions/46377331/solving-ax-b-for-a-non-square-matrix-a-using-python

 $\underline{https://www.geeksforgeeks.org/pandas-dataframe-hist-function-in-python/}$

 $\underline{https://towardsdatascience.com/an-easy-way-to-divide-your-dataset-based-on-data-types-with-pandas-4625411a57b}$

https://appdividend.com/2020/05/26/pandas-dataframe-head-method-in-

python/#:~:text=Pandas% 20DataFrame% 20head()% 20method% 20returns% 20top% 20n% 20rows% 20of, type% 20of% 20data% 20in% 20it.

https://www.geeksforgeeks.org/python-pandas-dataframe-describe-

 $\underline{method/\#:\sim:text=Pandas\%20 describe()\%20 is\%20 used, shown\%20 in\%20 the\%20 examples\%20 below.\&text=Return\%20 type\%3A\%20 Statistical \%20 summary\%20 of\%20 data\%20 frame.$

https://www.w3resource.com/pandas/dataframe/dataframe-

 $\underline{tail.php\#:\sim:text=The\%\,20tail()\%\,20function\%\,20is,after\%\,20sorting\%\,20or\%\,20appending\%\,20rows.\&text=Number\%\,20of\%\,20rows\%\,20to\%\,20selec}\,\underline{t}.$

and ...