Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3209	К работе допущен	
Студент	Кулагин Вячеслав	Работа выполнена	12/12/2024
Преподава	тель Агабабаев В. А.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе № 1.03

Изучение центрального соударения двух тел.
Проверка второго закона Ньютона

1. Цель работы.

- 1. Исследование упругого и неупругого центрального соударения тел на примере тележек, движущихся с малым трением.
 - 2. Исследование зависимости ускорения тележки от приложенной силы и массы тележки.

2. Задачи, решаемые при выполнении работы.

- 1. Измерение скоростей тележек до и после соударения.
- 2. Измерение скорости тележки при ее разгоне под действием постоянной силы.
- Исследование потерь импульса и механической энергии при упругом и неупругом соударении двух тележек.
- 4. Исследование зависимости ускорения тележки от приложенной силы и массы тележки. Проверка второго закона Ньютона.

3. Объект исследования.

Упругие и неупругие соударения тележек.

Движение тележки под действием постоянной силы.

4. Метод экспериментального исследования.

Замер таких величин как: масса тележек, скорость тележек.

5. Рабочие формулы и исходные данные.

$$p_{10x} = m_1 v_{10x}$$
, $p_{1x} = m_1 v_{1x}$, $p_{2x} = m_2 v_{2x}$ – импульсы тел;

$$\delta_p = \frac{(p_{1x} + p_{2x}) - 1}{p_{10x}} -$$
формула относительного изменения импульса системы при соударении;

$$\delta_W = \frac{m_1 v_{1x}^2 + m_2 v_{2x}^2}{m_1 v_{10x}^2} - 1$$
 — формула относительного изменения кинетической системы при соударении;

$$\overline{\delta_p} = \frac{\sum_{i=1}^N \delta_{pi}}{N}; \ \overline{\delta_W} = \frac{\sum_{i=1}^N \delta_{Wi}}{N}$$
 — средние значения относительных изменений импульса и энергии;

$$\Delta ar{\delta}_p = t_{lpha_{ exttt{дов}}, \ N} \sqrt{rac{\sum_{i=1}^N (\delta_{pi} - \overline{\delta}_p)^2}{N(N-1)}}$$
 — доверительный интервал для $\delta_p, t_{lpha_{ exttt{дов}}, \ N}$ — коэффициент

Стьюдента для доверительной вероятности $\alpha = 0,95$, количества измерений N и i – номер опыта;

$$arDeltaar{\delta}_W=\ t_{lpha_{ ext{dob}},\ N}\sqrt{rac{\sum_{i=1}^N(\delta_{Wi}-\overline{\delta}_W)^2}{N(N-1)}}$$
 — доверительный интервал для $\delta_p;$

$$p_{10} = m_1 v_{10}$$
 – импульс системы до соударения;

$$p = (m_1 + m_2)v$$
 – импульс системы после соударения;

$$\delta_p = rac{p_1}{p_{10}} - 1$$
 — относительное изменение импульса;

 $\delta_W^{(3)} = \frac{(m_1 + m_2)v_2^2}{m_1v_{10}^2} - 1$ – экспериментальное значение относительного изменения механической энергии, вычисляемое по формуле;

 $\delta_W^{(\mathrm{T})} = -\frac{m_2}{m_1 + m_2}$ – теоретическое значение относительного изменения механической энергии, вычисляемое по формуле;

$$a=rac{v_2^2-v_1^2}{2(x_2-x_1)}$$
; $T=m(g-a)$ – ускорение тележки и сила натяжения нити.

6. Измерительные приборы.

Таблица 1: измерительные приборы

Наименование средства измерения	Предел измерений	Цена деления	Погрешность	
Линейка на	1,3 м	1 см/дел	0,5 см/дел	
рельсе	1,0 101	т ом/дол	0,0 ом/дол	
ПКЦ-3 в				
режиме	9,99 м/с	0,01 м/с	0,01 м/с	
измерения	9,99 W/C		O,O I W/C	
скорости				
Электронные	250 г	1 г	0,5 г	
весы	2301	11	0,51	

7. Схема установки (перечень схем, которые составляют Приложение 1).

Экспериментальная установка

Рис. 3. Общий вид экспериментальной установки

Общий вид экспериментальной установки для первой части работы изображен на Рис. 3. В состав установки входят:

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Сталкивающиеся тележки
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3

Рисунок 1: схема установки

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1.1

№ опыта	m_1 , г	m_2 , г	v_{10x} , м/с	v_{1x} , m/c	v_{2x} , M/c
1			0,66	0	0,52
2			0,58	0	0,47
3	49,36	50,67	0,58	0	0,46
4			0,59	0	0,47
5			0,63	0	0,50

Таблица 1.2

№ опыта	m_1 , г	m_2 , Γ	v_{10x} , M/c	v_{1x} , M/c	v_{2x} , m/c
1			0,59	-0,10	0,30
2			0,54	-0,23	0,27
3	49,36	102,24	0,63	-0,12	0,29
4			0,63	-0,12	0,35
5			0,55	-0,11	0,30

Таблица 2.1

№ опыта	m_1 , г	m_2 , г	v_{10} , m/c	υ, м/с
1			0,52	0,20
2			0,57	0,20
3	52,24	52,85	0,56	0,19
4			0,57	0,22
5			0,59	0,22

Таблица 2.2

		1		
№ опыта	m_1 , Γ	m_2 , г	v_{10} , m/c	υ, м/c
1			0,62	0,16
2			0,58	0,11
3	52,24	104,42	0,56	0,11
4			0,60	0,10
5			0,60	0,10

Таблица 3.1. Разгоняемое тело – тележка. ${\rm M_1}=47{,}50~{\rm r}$

№ опыта	Состав гирьки	т, г	<i>v</i> ₁ , м/с	v ₂ , м/с
1	подвеска	1,84	0,25	0,55
2	подвеска + одна шайба	2,73	0,32	0,72
3	подвеска + две шайбы	3,55	0,37	0,84
4	подвеска + три шайбы	4,41	0,42	0,96
5	подвеска + четыре шайбы	5,24	0,46	1,04
6	подвеска + пять шайб	6,07	0,46	1,07
7	подвеска + шесть шайб	6,71	0,44	1,18

Таблица 3.2. Разгоняемое тело – тележка. $M_2 = 99,08 \, \mathrm{r}$

№ опыта	Состав гирьки	т, г	v ₁ , м/с	v_2 , $\mathrm{M/c}$
1	подвеска	1,84	0,08	0,23
2	подвеска + одна шайба	2,58	0,22	0,47
3	подвеска + две шайбы	3,35	0,24	0,53
4	подвеска + три шайбы	4,23	0,29	0,64
5	подвеска + четыре	5,10	0,32	0,72
3	шайбы			
6	подвеска + пять шайб	5,95	0,36	0,79
7	подвеска + шесть шайб	6,76	0,32	0,70

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Таблица 4.1

№ опыта	p_{10x} , мН $*$ с	p_{1x} , мН $*$ с	p_{2x} , мН $*$ с	δ_p	δ_W
1	32,58	0	26,35	-0,19 ± 0,01	-0,36 ± 0,01
2	28,63	0	23,81	-0,17 ± 0,01	-0,33 ± 0,01
3	28,63	0	23,31	-0,19 ± 0,01	-0,35 ± 0,01
4	29,12	0	23,81	-0,18 ± 0,01	-0,35 ± 0,01
5	31,10	0	25,34	-0,19 ± 0,01	-0,35 ± 0,01

Таблица 4.2

№ опыта	p_{10x} , мН $*$ с	p_{1x} , мН $*$ с	p_{2x} , мН $*$ с	δ_p	δ_W
1	29,12	-4,94	30,67	-0,12 ± 0,18	-0,44 ± 0,12
2	26,65	-11,35	27,60	-0,39 ± 0,18	-0,30 ± 0,12
3	31,10	-5,92	29,65	-0,24 ± 0,18	-0,52 ± 0,12
4	31,10	-5,92	35,78	-0,04 ± 0,18	-0,32 ± 0,12
5	27,15	-5,43	30,67	-0,07 ± 0,18	-0,34 ± 0,12

Таблица 5.1

№ опыта	p_{10} , мН $*$ с	<i>p</i> , мН * с	δ_p	$\delta_W^{(\mathfrak{I})}$	$\delta_W^{ ext{(T)}}$
1	27,16	21,02	-0,23 ± 0,17	-0,70 ± 0,04	
2	29,78	21,02	-0,29 ± 0,17	-0,75 ± 0,04	
3	29,25	19,97	-0,32 ± 0,17	-0,77 ± 0,04	-0,50
4	29,78	23,12	-0,22 ± 0,17	-0,70 ± 0,04	
5	30,82	23,12	-0,25 ± 0,17	-0,72 ± 0,04	

Таблица 5.2

№ опыта	<i>р</i> ₁₀ , мН ∗ с	<i>p</i> , мН * с	δ_p	$\delta_W^{(\mathfrak{I})}$	$\delta_W^{^{(\mathrm{\scriptscriptstyle T})}}$
1	32,39	25,07	-0,23 ± 0,17	-0,80 ± 0,06	
2	30,30	17,23	-0,43 ± 0,17	-0,89 ± 0,06	
3	29,25	17,23	-0,41 ± 0,17	-0,88 ± 0,06	-0,67
4	31,34	15,67	-0,50 ± 0,17	-0,92 ± 0,06	
5	31,34	15,67	-0,50 ± 0,17	-0,92 ± 0,06	

Таблица 6.1

№ опыта	т, г	а,м/c ²	Т, мН
1	1,84	0,18	17,74
2	2,73	0,32	25,94
3	3,55	0,44	33,30
4	4,41	0,57	40,79
5	5,24	0,67	47,95
6	6,07	0,72	55,24
7	6,71	0,92	59,72

 $T = 60,33 \times a + 7,18$

Таблица 6.2

№ опыта	т, г	а, м/c ²	Т, мН
1	1,84	0,04	18,00
2	2,58	0,13	25,00
3	3,35	0,17	32,33
4	4,23	0,25	40,48
5	5,10	0,32	48,45
6	5,95	0,38	56,17
7	6,76	0,30	64,36

 $T = 129,23 \times a + 11,33$

11. Графики (перечень графиков, которые составляют Приложение 2).

12. Окончательные результаты.

1) Упругий удар для двух легких тележек:

$$\bar{\delta}_p = -0.18 \pm 0.01 \ \bar{\delta}_W = -0.35 \pm 0.01$$

Упругий удар для легкой и тележки с утяжелителем:

$$\bar{\delta}_p = -0.17 \pm 0.18 \ \bar{\delta}_W = -0.38 \pm 0.12$$

2) Неупругий удар для двух легких тележек:

$$\bar{\delta_p} = -0.26 \pm 0.17 \ \delta_W^{(3)} = -0.73 \pm 0.04$$

Неупругий удар для легкой и тележки с утяжелителем:

$$\bar{\delta}_p = -0.41 \pm 0.07 \ \delta_W^{(3)} = -0.88 \pm 0.06$$

- 3) $\delta_W^{(\mathrm{T})}=-0,49$ для 2 легких тележек; $\delta_W^{(\mathrm{T})}=-0,65$ одна тележка с утяжелителем 4) $M_1=60,31\pm8,17$ г; $M_2=129,14\pm39,62$ г

13. Выводы и анализ результатов работы.

В ходе выполнения лабораторной работы были проведены эксперименты с законами упругого/неупругого соударения тел.

Теоретическое значение в экспериментальные доверительные интервалы не попадает. Табличные значения масс тележек совпадают с доверительными интервалами лишь во втором случае (для M_2). ($M_1 = 47,50 \, \text{г}, \, M_2 = 99,08 \, \text{г}$)