Unitary Evolution RNN

Nikola Jovanović Ognjen Đuričić

29/07/2017

Problems with RNN

Vanishing and exploding gradients

Gradient clipping

Minimal amount of LinAlg

$$W_h = Q^{-1} * \Lambda * Q$$

$$W_h^n = Q^{-1} * \Lambda^n * Q$$

Making it stay unitary

- iRNN
- Projecting back when it drifts away

• Fix Q, learn parameter ϕ to generate Λ

$$W_h = Q^{-1} * \Lambda * Q$$

uRNN - the key idea

- M. Arjovsky, A. Shah, Y. Bengio, *Unitary Evolution* Recurrent Neural Networks, 2015
- Unitary * Unitary = Unitary
- Generate W as a product of several unitary matrices!
- 4 matrix types with linear number of parameters

$$\mathbf{W} = \mathbf{D}_3 \mathbf{R}_2 \mathcal{F}^{-1} \mathbf{D}_2 \mathbf{\Pi} \mathbf{R}_1 \mathcal{F} \mathbf{D}_1.$$

- Makes gradients work
- O(n) parameters to learn in total
 - Larger depth, deeper temporal connections

Project goals

- Figure out the paper
- Devise an implementation
- Compare with LSTM/SimpleRNN
- Confirm the results
- Try new problems and extensions

Copying Memory Problem

 Good for testing the understanding of very distant temporal connections

• We can tune the "lag" to test the model's limits

Adding Problem

Pixel-by-pixel MNIST

- RNN way of solving MNIST classification
- Results from the paper

The PSI:ML Triangle of Misery ™

Finish your project

Follow the lectures

Get some sleep

Major takeaways

- Learned a lot:
 - Read a relevant paper -> understand -> implement
 - Tensorflow
 - First step towards proper ML intuition

Questions?

Thanks!