

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 «Синхронные одноступенчатые триггеры со статическим и динамическим управлением записью»

Студент Пермякова Екатерина Дмитриевна

Группа ИУ7 – 32Б

Преподаватель

ЦЕЛЬ РАБОТЫ

Изучить схемы асихнроного RS-тригера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

1 ИССЛЕДОВАТЬ РАБОТУ АСИНХРОННОГО RS-ТРИГГЕРА С ИНВЕРСНЫМИ ВХОДАМИ В СТАТИЧЕСКОМ РЕЖИМЕ

not S _n	not R _n	Q _{n+1}
0	0	Qn
0	1	1
1	0	0
1	1	X

2 ИССЛЕДОВАТЬ РАБОТУ СИНХРОННОГО RS-ТРИГГЕРА В СТАТИЧЕСКОМ РЕЖИМЕ

С	Sn	R _n	Q _{n+1}
0	0	0	Qn
	0	1	Qn
	1	0	Qn
	1	1	Qn
	0	0	Qn
1	0	1	0
	1	0	1
	1	1	X

С = 0 – хранение

C = 1 – работает как RS-тригер

т е С разрешает изменения

З ИССЛЕДОВАТЬ РАБОТУ СИНХРОННОГО D-ТРИГГЕРА В СТАТИЧЕСКОМ РЕЖИМЕ

D-триггер - элемент задержки (хранения) входных сигналов на один такт.

4. Исследовать схему синхронного D-триггера с динамическим управлением записью в статическом режиме

С	D	Q _{n+1}
0	0	0
0	1	1
1	0	0
1	1	1

Характерной особенностью синхронных триггеров с динамическим управлением записью является то, что прием информационных сигналов и передача на выход принятой информации выполняются в момент изменения синхросигнала на С -входе из "0" в "I" или из "I" в "0", т.е. перепадом синхросигнала.

5 ИССЛЕДОВАТЬ СХЕМУ СИНХРОННОГО DV-ТРИГГЕРА С ДИНАМИЧЕСКИМ УПРАВЛЕНИЕМ ЗАПИСЬЮ В ДИНАМИЧЕСКОМ РЕЖИМЕ

Синхронный DV-триггер. Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации. При C=0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. $Q_{n+1} = Q_n$. При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DV-триггер сохраняет предыдущее внутреннее состояние, т.е. $Q_{n+1} = Q_n$.

1

External (C) Qualifier (Q)

Trigger

Set...

Qualifier (T)

Clock

Clocks/Div

8000

8000

53.900 ms

53.900 ms

0.000 s

Trigg_Qua

Stop

Reset

Reverse

T2

T2-T1

6 ИССЛЕДОВАТЬ РАБОТУ DV-ТРИГГЕРА, ВКЛЮЧЕННОГО ПО СХЕМЕ TV-ТРИГГЕРА

Т-триггер. Т-триггер имеет один информационный вход Т, называемый счетным входом. Асинхронный Т-триггер переходит в противоположное состояние каждый раз при подаче на Т-вход единичного сигнала. Таким образом Т-триггер реализует счет по модулю 2, т.е. $Q_{n+1} = T_n \oplus Q_n = (\overline{T}Q \vee T\overline{Q})_n$. Синхронный Т-триггер имеет вход С и вход Т. Синхронный Т-триггер переключается в противоположное состояние сигналом С, если на счетном входе Т действует сигнал логической 1.

1. Что называется триггером?

Триггер является запоминающим элементом с двумя устойчивыми состояниями, которые кодируются цифрами 0 и 1.

2. Какова структурная схема триггера?

два **выхода**: прямой Q и инверсный -Q несколько физических **входов**, на которые могут подаваться сигналы, закодированные цифрами 0 и I

запоминающей ячейки (ЗЯ) и схемы управления (СУ)

х - информационные входы

СУ преобразует информационные сигналы, поступающие на ее входы, в сигналы S ' и R', действующие на входы ЗЯ.

Сигнал по входу S ' устанавливает 3Я в состояние "1", а по входу R' - в состояние "0"

3. По каким основным признакам классифицируют триггеры?

- І. По способу организации логических связей
 - а) с раздельной установкой состояний "0" и "1" (RS-триггеры);
 - b) со счетным входом (Т-триггеры);
 - с) универсальные с раздельной установкой состояний "0" и "1" (JK- триггеры);
 - d) с приемом информации по одному входу (D триггеры);
 - e) универсальные с управляемым приемом информации по одному входу (DV -
 - f)триггеры);
 - g) комбинированные (например, RST-, JKRS, DRS триггеры) и т.д.

- II. По способу запаси информации различают триггеры
 - асинхронные (несинхронизируемые)

Запись информации в асинхронный триггер осуществляется непосредственно с поступлением информационных сигналов на его входы

• синхронные (синхронизируемые), или тактируемые.

Запись информации в синхронные триггеры осуществляется только при подаче разрешающего импульса на вход синхронизации С

(В зависимости от числа тактирующих сигналов, необходимых для перевода триггера)

- о однотактовые
- о многотактовые
- II. По способу синхронизации различают триггеры
 - синхронные со статическим
 - управлением записью; синхронные с динамическим управлением записью
- III. По способу передачи информации с входов на выход
 - одноступенчатым
 - двухступенчатым запоминанием информации

2. Каково функциональное назначение входов триггеров?

Функциональное назначение входов триггера указывают на его условном графическом обозначении (УГО) при помощи специальных меток согласно

Номер п/п	Наименование входов	Обозначение
1	S-вход — вход для раздельной установки триггера в состояние "1" (Set – установка)	S
2	R-вход — вход для раздельной установки триггера в состояние "0" (Reset – сброс, очистка)	R
3	Ј-вход – вход для установки состояния "1" в универсальном ЈК-триггере (Jerk – внезапное включение)	J
4	К-вход — вход для установки состояния "0" в универсальном JK-триггере (Kill – внезапное отключение)	K
5	Т -вход -счетный вход (Toggle - релаксатор)	T
6	D-вход –информационный вход для установки триггера в состояния "1" или "0" (Data – данные, Delay – задержка)	D
7	V-вход — подготовительный управляющий вход для разрешения приема информации (Valve –клапан, вентиль)	V
8	С-вход - исполнительный управляющий (командный) вход для осуществления приема информации, вход синхронизации (Clock – источник синхросигналов)	С

3. Что такое асинхронный и синхронный триггеры?

По способу запаси информации различают триггеры

- асинхронные (несинхронизируемые)
- Запись информации в асинхронный триггер осуществляется непосредственно с поступлением информационных сигналов на его входы
- синхронные (синхронизируемые), или тактируемые.

Запись информации в синхронные триггеры осуществляется только при подаче разрешающего импульса на вход синхронизации С

(В зависимости от числа тактирующих сигналов, необходимых для перевода триггера)

4. Что такое таблица переходов?

таблица переходов - отражает зависимость выходного сигнала триггера в момент времени tn+1 от входных сигналов и от состояния триггера в предыдущий момент времени tn

5. Как работает асинхронный RS-триггер?

Асинхронный RS -триггер - это простейший триггер, который используется как запоминающая ячейка

Состояния RS-триггера, соответствующие различным сочетаниям сигналов на его входах R и S, приведены в таблице переходов

S=0 и R = I триггер устанавливается в состояние "0"

S = 1 и R = 0 - в состояние "1"

S = 0 и R = 0, то в триггере сохраняется предыдущее внутреннее состояние S=R=1 состояние триггера является неопределенным

запрещающего условия SR= 0.

характеристическим уравнением (функцией переходов):

$$Q_{n+1} = \overline{Q}_n S_n \overline{R}_n \wedge Q_n \overline{S}_n \overline{R}_n \wedge Q_n S_n \overline{R}_n$$
, $S_n R_n = 0$.

Таблица2

Время t_n			Время t_{n+1}	
S_n	R _n	Qn	Q_{n+1}	$\overline{\boldsymbol{Q}}_{n+1}$
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	X	X
1	1	1	X	X

RS-триггер на логических элементах (ЛЭ) ИЛИ-НЕ

УГО асинхронного RS -триггера на ЛЭ И-НЕ. (кружок на входе - инверсия)

Q

 \overline{Q}

Время t_n		Время t_{n+1}
\overline{S}_n	\overline{R}_n	Q_{n+1}
0	0	X
0	1	1
1	0	0
1	1	Q_n

6. Как работает синхронный RS -триггер? Какова его таблица переходов?

С	R	S	Q_{t+1}	\overline{Q}_{t+1}	COC
0	0	0	Q_t	\overline{Q}_t	хр 🤏
0	0	1	Q_t	\overline{Q}_t	хр
0	1	0	Q_t	\overline{Q}_t	хр
0	1	1	Q_t	\overline{Q}_t	хр
1	0	0	Q_t	\overline{Q}_t	хр
1	0	1	1	0	уст
1	1	0	0	1	сбр
1	1	1	*	*	3. K.

С = 0 - хранение

C = 1 – работает как RS-тригер

т е С разрешает изменения

7. Что такое D-триггер?

элемент задержки (хранения) входных сигналов на один такт.

8. Объясните работу синхронного D-триггера.

9. ЧТО ТАКОЕ D-ТРИГГЕР?

Синхронный D -триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы

представляют собой задержанные входные сигналы. Поэтому D - триггер — элемент задержки (хранения) входных сигналов на один такт.

10. Объясните РАБОТУ СИНХРОННОГО D-ТРИГГЕРА.

Схему синхронного D -триггера можно получить из схемы синхронного RS — триггера, подавая сигнал D на вход S, а сигнал !D, т.е. с выхода инвертора сигнала D, на вход R. В результате на входах RS-триггера возможны только наборы сигналов SR =01 при D=0 или SR =10 при D=1, что соответствует записи в триггер логического 0 или 1. Путем логических преобразований инвертор можно исключить и получить схему синхронного D —триггера. Синхронный D-триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т. е. выходные сигналы представляют собой задержанные входные сигналы.

11. YTO TAKOE DV -TPULLEP?

Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации.

12. Объясните РАБОТУ DV-ТРИГГЕРА.

При C=0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. Qn+1=Qn . При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DV-триггер сохраняет предыдущее внутреннее состояние, т.е. Qn+1=Qn .

13. ЧТО ТАКОЕ Т-ТРИГГЕР? КАКОВА ЕГО ТАБЛИЦА ПЕРЕХОДОВ?

Т-триггер имеет один информационный вход Т, называемый счетным входом. Асинхронный Т-триггер переходит в противоположное состояние каждый раз при подаче на Т-вход единичного сигнала. Таким образом Т-триггер реализует счет по модулю 2: . Синхронный Т-триггер имеет вход С и вход Т. Синхронный Т-триггер переключается в противоположное состояние сигналом С, если на счетном входе Т действует сигнал логической 1

14. Объясните работу схемы синхронного RS-триггера со статическим управлением.

При С=0 триггеры переходят в режим хранения, запоминая последнее состояние

15. Какова характерная особенность переключения синхронных триггеров с динамическим управлением записью?

Характерной особенностью синхронных триггеров с динамическим управлением записью является то, что прием информационных сигналов и передача на выход принятой информации выполняются в момент изменения синхросигнала на С -входе из "0" в "I" или из "I" в "0", т.е. перепадом синхросигнала.

16. Как работает схема синхронного D -триггера c динамическим управлением записью на основе трех RS -триггеров?

Триггер имеет асинхронные входы Sa и Ra начальной установки в состояния 1 и 0. Если схему D -триггера дополнить входом V, то получим структуру DV-триггера. Временные диаграммы D -триггера соответствуют временным диаграммам DV- триггера при V= 1

17. Составьте временные диаграммы работы синхронного D-триггера с динамическим управлением записью.

В практической части

18. Какова структура и принцип действия синхронного DV-триггера с динамическим управлением записью?

Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации.

При C=0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. $Q_t = Q_{t-1}$. При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DV-триггер сохраняет предыдущее внутреннее состояние.

19. Составьте временные диаграммы синхронного DV-триггера.

В практической части

20. Объясните режимы работы D-триггера.

Синхронный D-триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т. е. выходные сигналы представляют собой задержанные входные сигналы.