PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-246812

(43) Date of publication of application: 05.09.2003

(51)Int.Cl.

C08F 2/44 5/44 CO8F CO8F 20/06

(21)Application number : 2002-366968

(71)Applicant: NIPPON SHOKUBAI CO LTD

(22)Date of filing:

18.12.2002

(72)Inventor: KANTO TERUYUKI

ISHIZAKI KUNIHIKO

(30)Priority

Priority number: 2001385730

Priority date: 19.12.2001

Priority country: JP

(54) WATER ABSORBING RESIN AND PRODUCTION METHOD THEREOF

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a method for generating no massive gel itself when aqueous polymerization is applied in the production of a water absorbing resin, and also to provide a method for calmly controlling the polymerization to stably produce the resin when reverse phase suspension polymerization or standing polymerization is applied.

SOLUTION: In the production method of the water absorbing resin comprising a polymerization process of subjecting an aqueous solution of water-soluble unsaturated monomers comprising an acrylic acid (salt) to perform crosslinking polymerization, and simultaneously subdividing obtained water-containing gel, in the production method of the water absorbing resin comprising a process of subjecting an aqueous solution of water-soluble unsaturated monomers comprising an acrylic acid (salt) to perform crosslinking polymerization, and a process of subdividing an obtained water-containing gel, and in the production method of the water absorbing resin comprising a polymerization process of subjecting an aqueous solution of water-soluble unsaturated monomers comprising an acrylic acid (salt) to perform crosslinking polymerization, and simultaneously obtaining a subdivided water gel, the water-soluble unsaturated monomers are designed to contain furfural of 11-1,000 mass ppm (to the monomers).

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-246812 (P2003-246812A)

(43)公開日 平成15年9月5日(2003.9.5)

(51) Int.Cl. ⁷		識別記号	FI					テーマコード(参考)
C08F	2/44		C 0	8 F	2/44		В	3B029
A61F	5/44		A 6	1 F	5/44		н	4 C O O 3
	13/49		C 0	8 F	2/10			4C098
	13/53				2/18			4J011
A61L	15/60				20/06			4J100
		審査請求	未請求	請求	項の数12	OL	(全 15 頁)	最終頁に続く
(21) 出願番号		特願2002-366968(P2002-366968)	(71)	出願人	. 0000040	628		
					株式会	社日本	触媒	
(22)出願日		平成14年12月18日(2002.12.18)			大阪府:	大阪市	中央区高麗橋	4丁目1番1号
			(72)	発明者	神頭	照幸	•	
(31)優先権主張番号		特願2001-385730(P2001-385730)	:		兵庫県	姫路市:	網干区興浜字	西沖992番地の
(32)優先日		平成13年12月19日(2001.12.19)			1 株	式会社	日本触媒内	
(33)優先権主張国		日本 (JP)	(72)	発明者	石▲崎	▼ 邦	彦	
					兵庫県	炬路市	網干区興浜字	西沖992番地の
					1 株	式会社	日本触媒内	
			(74)	代理人	1000734	161		
					弁理士	松本	武彦	
								最終頁に続く

(54) 【発明の名称】 吸水性樹脂およびその製造方法

(57)【要約】

【課題】 吸水性樹脂の製造において、水溶液重合を適用する際に粗大ゲルそのものを発生させない方法、また、逆相懸濁重合や静置重合を適用する際に温和に重合を制御して安定的に製造する方法を提供する。

【解決手段】 アクリル酸(塩)を含む水溶性不飽和単量体の水溶液を架橋重合すると同時に得られた含水ゲルを細分化する重合工程を含む吸水性樹脂の製造方法、アクリル酸(塩)を含む水溶性不飽和単量体の水溶液を架橋重合する工程と得られた含水ゲルを細分化する工程を含む吸水性樹脂の製造方法、アクリル酸(塩)を含む水溶性不飽和単量体の水溶液を架橋重合すると同時に細分化された含水ゲルを得る重合工程を含む吸水性樹脂の製造方法において、前記水溶性不飽和単量体がフルフラールを11~1000質量ppm(対単量体)含有するようにする。

【特許請求の範囲】

【請求項1】アクリル酸(塩)を含む水溶性不飽和単量体の水溶液を架橋重合すると同時に得られた含水ゲルを細分化する重合工程を含む吸水性樹脂の製造方法において、

前記水溶性不飽和単量体がフルフラールを11~100 0質量ppm(対単量体)含有することを特徴とする、 吸水性樹脂の製造方法。

【請求項2】アクリル酸(塩)を含む水溶性不飽和単量 体の水溶液を架橋重合する工程と得られた含水ゲルを細 10 分化する工程を含む吸水性樹脂の製造方法において、

(A) 前記水溶性不飽和単量体がフルフラールを11~ 1000質量ppm (対単量体) 含有すること、

(B1) 重合開始温度が30℃以上であること、および、(B2) 前記水溶性不飽和単量体が遷移金属を含有すること、の2つから選ばれる少なくとも1つであること、および、

(C) 得られた細分化された含水ゲルが、質量平均粒子径0.3~4mmで且つ粒子径10mm以上の粗大ゲルの割合が5質量%以下であること、を特徴とする、吸水 20性樹脂の製造方法。

【請求項3】アクリル酸(塩)を含む水溶性不飽和単量体の水溶液を架橋重合すると同時に細分化された含水ゲルを得る重合工程を含む吸水性樹脂の製造方法において、

前記水溶性不飽和単量体がフルフラールを11~100 0質量ppm (対単量体) 含有することを特徴とする、 吸水性樹脂の製造方法。

【請求項4】前記架橋重合が水溶液重合であり、細分化 された含水ゲルが剪断力を有する重合容器中で重合と同 30 時に得られる、請求項1に記載の製造方法。

【請求項5】前記架橋重合が水溶液重合であり、細分化された含水ゲルが可動ベルト上での静置重合後の細分化で得られる、請求項2に記載の製造方法。

【請求項6】前記架橋重合が逆相懸濁重合であり、細分 化された含水ゲルが有機溶媒中での懸濁重合と同時に得 られる、請求項3に記載の製造方法。

【請求項7】前記重合工程が、前記水溶性不飽和単量体の水溶液が連続供給および含水ゲルが連続排出される連続重合である、請求項1から6までの何れかに記載の製造方法。

【請求項8】前記水溶性不飽和単量体の水溶液の濃度が40質量%以上である、請求項1から7までの何れかに記載の製造方法。

【請求項9】前記水溶性不飽和単量体の水溶液の重合開始温度が40℃以上である、請求項1から8までの何れかに記載の製造方法。

【請求項10】前記水溶性不飽和単量体の水溶液がメトキシフェノール類をさらに含有する、請求項1から9までの何れかに記載の製造方法。

【請求項11】請求項1から10までの何れかに記載の 製造方法により得られた、生理食塩水に対する4.9k Pa加圧下吸収倍率が20g/g以上の吸水性樹脂。

【請求項12】請求項11に記載の吸水性樹脂を含む衛 生用品。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は吸水性樹脂の製造方法に関する。さらに、詳しくは、アクリル酸(塩)を含む水溶性不飽和単量体の水溶液を架橋重合すると同時に得られた含水ゲルを細分化する重合工程を含む吸水性樹脂の製造方法において、均一なゲルの細分化を行うことで諸物性や重合速度や乾燥速度を向上させた吸水性樹脂の製造方法に関する。

[0002]

【従来の技術】近年、高度の吸水性を有する吸水性樹脂が開発され、紙おむつ、生理用ナプキンなどの吸収物品、さらには、農園芸用保水剤、工業用止水材などとして、主に使い捨て用途に多用されている。かかる吸水性樹脂は親水性高分子を僅かに架橋することで水膨潤性・水不溶性としたものであり、一般にその製法方法として、アクリル酸などの水溶性不飽和単量体を重合し、重合中または重合後に架橋することで粉末として得られている。そこで、粉末状の吸水性樹脂を得るための重合方法としては、従来より、多くが提案され、逆相懸濁重合、水溶液重合、さらには、溶媒中に重合体を析出される沈殿重合、実質無溶媒で重合するバルク重合、気相中で重合する噴霧重合、などが提案されているが、これらの重合方法の中では、性能面や重合の制御の容易さから、水溶液重合または逆相懸濁重合が主流である。

【0003】逆相懸濁重合とは、単量体水溶液を疎水性有機溶媒に1~0.1mm程度の粒子状で懸濁させる重合法であり、重合と同時に製品粒径のゲル粒子が得られる利点がある(例えば、米国特許第4093776号明細書、米国特許第4367323号明細書、米国特許第4683274号明細書などに記載されているが、特に特許文献1参照。)。しかしながら、多量の溶媒に分散させる逆相懸濁重合においては、重合温度の制御が難しく、特に、高濃度(例えば、単量体水溶液濃度で40質量%以上)にすると重合の際の爆発の危険性があるため、スケールアップによる生産性の向上を十分に図ることができないという問題があった。

【0004】また、水溶液重合とは分散溶媒を用いずに 単量体水溶液を重合する方法であり、水のみで重合でき るのでコスト面や生産性、製品の安全性に優れており、 これら水溶液重合は、さらにベルト重合など静置重合す る方法(例えば、米国特許第6174978号明細書、 米国特許第4857610号明細書などに記載されてい るが、特に特許文献2参照。)と、ニーダーなどで攪拌

50

しながら重合する方法(攪拌重合)に大別される。かかる水溶液重合では逆相懸濁重合とは異なり、製品粒径を遥かに越えた塊状ゲルが重合で得られるので、乾燥や製品化のためにゲルの細分化が必要である。かかる攪拌重合において、重合機としてニーダーなど剪断力を有する重合容器を用いると、重合と同時にゲルの細分化がなされるために、重合後のゲルの細分化工程が不要であり、かつ重合時のゲルの比表面積が大きいため、重合熱の除去が容易で生産性も高いという利点を有する。

【0005】かかるニーダーなどによる攪拌重合は、剪断力を有する重合容器中に水溶性不飽和単量体の水溶液を供給し、架橋重合すると同時に得られた含水ゲルを細分化する重合工程を含む吸水性樹脂の製造方法である

(例えば、日本触媒による米国特許第4625001号明細書、米国特許第4985514号明細書、米国特許第5124416号明細書や、BASFによる国際公開第01/38402号パンフレット、米国特許第5149750号明細書、米国特許第4769427号明細書、米国特許第4873299号明細書などに例示されているが、特に特許文献3および特許文献4参照)。

【0006】しかし、上記の架橋重合すると同時に得られた含水ゲルを細分化する重合工程を含む吸水性樹脂の製造方法において、重合時にはゲルは1mm前後の粒子径に細分化されるが、重合と同時に行なわれるゲルの細分化は重合時間に比べて長時間を要する場合が多く、十分な細分化を行うために、必要以上に重合時間が長くなったり、長時間のゲル細分化(剪断)のため物性低下が起こったりする場合があった。さらに、こうして重合容器から排出される含水ゲルは、重合時の剪断力で数mm(好ましくは1~3mm前後)の粒子状ゲルに細分化さるが、通常、重合時のゲル細分化を100%行うことは困難であり、得られた細分化ゲル中には数cmを越えるような粗大ゲルが数質量%~10質量%程度混在する場合があった。

【0007】特に粗大ゲルの副生は、重合開始温度を上 昇させたり、水溶性不飽和単量体の濃度を上昇させた り、吸水性樹脂の可溶分を低減させたりしようとすると 増加する傾向がある。よって、上記の架橋重合すると同 時に得られた含水ゲルを細分化する重合工程を含む吸水 性樹脂の製造方法において、吸水性樹脂の可溶分を低減 40 させたり、また、生産性や物性を向上させるために、重 合開始温度や水溶性不飽和単量体の濃度を上げたりしよ うとすると、粗大ゲルの副生という制約が発生すること があった。また、細分化ゲルの乾燥時間はその比表面積 に依存するため、僅か数%の粗大ゲルの混入は、細分化 ゲル全体の乾燥速度を大きく低下させ、長時間の乾燥が 必要であるのみならず、かかる必要以上の乾燥は物性の 低下を引起こしたり、ゲル粒子径によって乾燥後の物性 が変動ないし低下したりするという問題を有していた。 また、かかる数%の粗大ゲルは乾燥後にも未乾燥物とな 50 る場合があり、乾燥物に混入する未乾燥物 (ゲル) の付着によって、乾燥後の粉砕工程や分級工程が停止してしまうなど、乾燥後の粉砕や分級などの操作を不可能とすることもあった。

【0008】そこで、細分化されたゲルに混入する粗大ゲルについて、重合後に分級して除去する方法(例えば、特開平6-107800号公報などに記載があるが、特に特許文献5参照。)や、乾燥後に未乾燥物を分級する方法(例えば、米国特許第6291636号明細書に記載があるが、特に特許文献6参照。)も提案されている。しかし、かかる重合後に粗大ゲルや未乾燥物を除去する方法では、装置的に複雑でかつ分級効率も低いのみならず、分級された粗大ゲル由来の廃棄物や廃棄に伴う収率低下の問題も発生するのであった。また、その他の問題として、逆相懸濁重合、ベルト重合など静置重合を含めて、高温重合や遷移金属存在下の重合を行う場合では、重合前または調整時でも、単量体の安定性が悪いという問題を有していた。また、得られた吸水性樹脂における着色の問題も存在していた。

20 [0009]

【特許文献1】米国特許第5244735号明細書 【0010】

【特許文献2】米国特許第6241928号明細書 【0011】

【特許文献3】米国特許第5250640号明細書 【0012】

【特許文献4】特許2966539号公報

[0013]

【特許文献5】特開平6-142612号公報

【特許文献 6】国際公開第00/24810号パンフレット

[0015]

【発明が解決しようとする課題】本発明は上記現状に鑑みなされたものである。すなわち、本発明の課題は、吸水性樹脂を製造する際に水溶液重合(攪拌重合や静置重合など)または逆相懸濁重合を行う場合の、従来からの上記問題点を一気に解決できる方法を提供することにある。

[0016]

【課題を解決するための手段】上記課題を解決するために、本発明者は鋭意検討した。その結果、アクリル酸(塩)を含む水溶性不飽和単量体の水溶液を架橋重合すると同時に得られた含水ゲルを細分化する重合工程を含む吸水性樹脂の製造方法、アクリル酸(塩)を含む水溶性不飽和単量体の水溶液を架橋重合する工程と得られた含水ゲルを細分化する工程を含む吸水性樹脂の製造方法、アクリル酸(塩)を含む水溶性不飽和単量体の水溶液を架橋重合すると同時に細分化された含水ゲルを得る重合工程を含む吸水性樹脂の製造方法において、前記水

溶性不飽和単量体がフルフラールを11~1000質量 ppm (対単量体) 含有することにより、上記課題が一 気に解決できることを見出した。

【0017】すなわち、本発明にかかる吸水性樹脂の製 造方法は、アクリル酸(塩)を含む水溶性不飽和単量体 の水溶液を架橋重合すると同時に得られた含水ゲルを細 分化する重合工程を含む吸水性樹脂の製造方法におい て、前記水溶性不飽和単量体がフルフラールを11~1 000質量ppm(対単量体)含有することを特徴とす る。また、本発明にかかる別の吸水性樹脂の製造方法 は、アクリル酸(塩)を含む水溶性不飽和単量体の水溶 液を架橋重合する工程と得られた含水ゲルを細分化する 工程を含む吸水性樹脂の製造方法において、(A)前記 水溶性不飽和単量体がフルフラールを11~1000質 量ppm(対単量体)含有すること、(B1)重合開始 温度が30℃以上であること、および、(B2) 前記水 溶性不飽和単量体が遷移金属を含有すること、の2つか ら選ばれる少なくとも1つであること、および、(C) 得られた細分化された含水ゲルが、質量平均粒子径0. 3~4mmで且つ粒子径10mm以上の粗大ゲルの割合 が5質量%以下であること、を特徴とする。

【0018】また、本発明にかかるさらに別の吸水性樹脂の製造方法は、アクリル酸(塩)を含む水溶性不飽和単量体の水溶液を架橋重合すると同時に細分化された含水ゲルを得る重合工程を含む吸水性樹脂の製造方法において、前記水溶性不飽和単量体がフルフラールを11~1000質量ppm(対単量体)含有することを特徴とする。

[0019]

【発明の実施の形態】以下、本発明をさらに詳細に説明 30 する。なお、本明細書において「質量」という語は、従来から「重さ」の意味で用いられる場合の「重量」なる語と同義である。

(1) 吸水性樹脂

本発明において、吸水性樹脂とは、重合体に架橋構造を導入した水膨潤性・水不溶性樹脂のことを言い、その水膨潤性とは必須に無荷重下で自重の3倍以上、好ましくは5~200倍、より好ましくは20~100倍という多量の生理食塩水を吸収できる能力を指し、また、その水不溶性とは、樹脂中の水可溶分が必須に50質量(重 40量)%以下、好ましくは25質量%以下、より好ましくは15質量%以下、さらに好ましくは10質量%以下の実質水不溶性のことを示す。なお、これらの測定法は後述の実施例で規定する。

【0020】(2)水溶性不飽和単量体

また、本発明において、吸水性樹脂は物性面から水溶性 不飽和単量体として、アクリル酸および/またはその塩 を単量体として含み、さらに主成分とすることが好まし く、重合に用いられる総単量体(架橋剤を除く)で、ア クリル酸および/その塩の合計モル%が必須に30モル 50 %以上を指し、好ましくは50モル%、より好ましくは70モル%以上、さらに好ましくは90モル%以上、特に好ましくは実質100モル%のものが用いられる。なお、水溶性単量体とは、室温の水に必須に1質量%以上、好ましくは10質量%以上、より好ましくは30質量%以上溶解する単量体を指す。

【0021】本発明で用いられるアクリル酸塩として は、物性面から好ましくは、アルカリ金属塩、アンモニ ウム塩, アミン塩からなるアクリル酸の1価塩、さらに 好ましくはアクリル酸アルカリ金属塩、より好ましく は、ナトリウム塩、リチウム塩、カリウム塩から選ばれ るアクリル酸塩が用いられる。吸水性樹脂としては重合 体の酸基の20~99モル%、好ましくは50~95モ ル%、より好ましくは60~90モル%が中和されてい る。この中和は、重合前の単量体で行っても良いし、重 合中や重合後に重合体に対して行っても良い。さらに は、単量体の中和と重合体の中和を併用しても良いが、 好ましくはアクリル酸に対して中和がなされる。中和に 用いられる塩基性物質としては、例えば、炭酸(水素) 塩、アルカリ金属の水酸化物、アンモニア、有機アミン などが例示されるが、より重合性を改善し且つより高物 性の吸水性樹脂を得るためには、強アルカリ処理、すな わち、水酸化ナトリウム、水酸化カリウム、水酸化リチ ウムなどのアルカリ金属の水酸化物が好ましく、水酸化 ナトリウムが特に好ましい。

【0022】上記のように単量体としてアクリル酸および/またはその塩を主成分とすることが好ましいが、その他の単量体を併用してもよいし、それを主成分としてもよい。併用される単量体としては、メタクリル酸、

(無水)マレイン酸、フマール酸、クロトン酸、イタコン酸、ビニルスルホン酸、2ー(メタ)アクリルアミドー2ーメチルプロパンスルホン酸、(メタ)アクリロキシアルカンスルホン酸およびそのアルカリ金属塩やアンモニウム塩、Nービニルー2ーピロリドン、Nービニルアセトアミド、(メタ)アクリルアミド、N,Nージメチル(メタ)アクリルアミド、2ーヒドロキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、イソブチレン、ラウリル(メタ)アクリレート等の水溶性または疎水性不飽和単量体等を共重合成分とするものも含まれる。

【0023】本発明で用いられる架橋方法としては特に制限なく、例えば、(a) アクリル酸および/またはアクリル酸塩を重合して、必要により上記水溶性または疎水性不飽和単量体を共重合成分として、親水性重合体を得た後、重合中や重合後に架橋剤を添加して後架橋する方法、(b) ラジカル重合開始剤によるラジカル架橋、

(c)電子線等による放射線架橋する方法等も挙げられるが、(d)予め所定量の内部架橋剤をアクリル酸およ

U/またはアクリル酸塩、または共重合成分としての上記水溶性または疎水性不飽和単量体に添加して重合を行い、重合と同時または重合後に架橋反応させることが好ましい。勿論、(d)の架橋方法と、(a)~(c)を併用してもよい。

【0024】かかる手法(d)で用いられる内部架橋剤 としては、例えば、N, N'ーメチレンビス (メタ) ア クリルアミド、(ポリ) エチレングリコールジ (メタ) アクリレート、(ポリ)プロピレングリコールジ(メ タ) アクリレート、(ポリオキシエチレン) トリメチロ 10 ールプロパントリ (メタ) アクリレート、トリメチロー ルプロパンジ (メタ) アクリレート、ポリエチレングリ コールジ (β-アクリロイルオキシプロピオネート)、 トリメチロールプロパントリ(β-アクリロイルオキシ プロピオネート)、ポリ(メタ)アリロキシアルカン、 ポリエチレングリコールジグリシジルエーテル、エチレ ングリコール、ポリエチレングリコール、グリセリン等 の内部架橋剤の1種または2種以上が用いられる。な お、1種以上の内部架橋剤を使用する場合には、得られ る吸水性樹脂の吸収特性等を考慮して、2個以上の重合 20 性不飽和基を有する化合物を重合時に必須に用いること が好ましい。

【0025】内部架橋剤の使用量としては、前記単量体成分に対して、0.005~2モル%とするのが好ましく、より好ましくは0.01~1モル%、さらに好ましくは0.05~0.2モル%の範囲である。上記内部架橋剤の使用量が0.005モル%よりも少ない場合、または、2モル%よりも多い場合には、所望の吸収特性が得られない恐れがある。本発明で、水溶性不飽和単量体を水溶液とする場合、該水溶液(以下、水溶性不飽和単量体の水溶液とする場合、該水溶液(以下、水溶性不飽和単量体の水溶液とかする)中の単量体の濃度は、特に限定されるものではないが、物性面から15~70質量%の範囲内が好ましく、特に粗大ゲルが発生しやすかった高濃度条件がより好ましく、具体的にはさらに好ましくは20質量%以上、特に好ましくは30質量%以上、最も好ましくは40質量%以上の単量体の濃度で本発明は好適に適用される。

【0026】また、水以外の溶媒を必要に応じて併用してもよく、併用して用いられる溶媒の種類は特に限定されるものではない。なお、重合に際して、各種の発泡 40 剤、親水性高分子、界面活性剤、キレート剤、吸水性樹脂の微粉末などを添加して吸水性樹脂の諸物性を改善したり、吸水性樹脂の微粉をリサイクルしてもよい。本発明の重合工程の一つでは、架橋重合すると同時に得られた含水ゲルを細分化するので、重合時に攪拌ないし剪断が行なわれ、これらの混合も容易であるので好ましい。例えば、重合前ないし重合時に添加される化合物として、炭酸(水素)塩、二酸化炭素、窒素、アゾ化合物、不活性有機溶媒などの各種発泡剤を0~5質量%(対単量体固形分);澱粉・セルロース、澱粉・セルロースの 50

誘導体、ポリビニルアルコール、吸水性樹脂の微粉末や そのゲル、などの親水性高分子を0~30質量%

(同);各種界面活性剤;次亜燐酸(塩)等の連鎖移動剤を0~1質量%(同)添加してもよい。

【0027】(3) アルデヒド化合物(フルフラール)本発明では、上記水溶性不飽和単量体中にフルフラールを含むアルデヒド化合物を添加しておくこと必須とする。これらフルフラールの添加量は、水溶性不飽和単量体に対して必須に $11\sim1000$ 質量ppmの範囲、好ましくは $25\sim900$ 質量ppmの範囲、より好ましくは $30\sim600$ 質量ppmの範囲、さらに好ましくは $50\sim400$ 質量ppmの範囲、特に好ましくは $100\sim300$ 質量ppmの範囲である。なお、水溶性不飽和単量体の質量(重量)には必要に添加される架橋剤などを含まない。

【0028】フルフラールなどのアルデヒド化合物の使 用量が少ないと、すなわち、11質量ppm未満、さら には10質量ppm以下、さらには5質量ppm以下、 さらには1質量ppm以下のフルフラールでは、本発明 の課題である重合時に副生する少量の粗大ゲルの防止効 果が不十分であり、よって、重合時間や乾燥時間が必要 以上に延び、さらに物性低下を引起こすのみならず、場 合によっては、乾燥後の未乾燥物の発生とその付着のた めに、乾燥後の粉砕工程や分級工程が停止してしまうこ とがある。また、逆相懸濁重合を含めて、重合温度の制 御が困難になり、特に、高濃度(例えば、単量体水溶液 濃度で40質量%以上)条件下での重合の際の爆発の危 険性が高くなり、特に、多量の有機溶媒を使用する逆相 懸濁重合ではその危険性は増大する。さらに、高温重合 や遷移金属存在下の重合を行う場合には、重合前や単量 体調整中を含めて、単量体の安定性が悪くなる。

【0029】また、フルフラールなどのアルデヒドの使用量が過剰である場合、場合により物性を低下させることがある。なお、本発明で、フルフラールの添加によって、粗大ゲルの防止効果が見られたり、重合温度が温和に制御できたり、高温重合や遷移金属存在下の重合を行う場合において単量体の安定性が良好になるメカニズムは不明であるが、例えば、剪断、重合で得られる含水ゲルの粘弾性、重合速度などを好適に制御しているのではないかと推定される。また、本発明ではフルフラール以外のアルデヒド化合物をさらに併用してもよい。すなわち、前記水溶性不飽和単量体の水溶液がフルフラール以外のアルデルド化合物をさらに含有していてもよい。

【0030】併用されるアルデヒド化合物としては、脂肪族ジアルデヒド、脂肪族不飽和アルデヒド、芳香族アルデヒド、複素環式アルデヒドから選ばれる化合物が例示されるが、本発明では効果の面から分子量としては、低分子のアルデヒド化合物を併用することが好ましく、より好ましくはC3~C10のアルデヒド化合物が併用される。好ましくは、

アルデヒド化合物として不飽和アルデヒド、芳香族アル デヒド、複素環式アルデヒドから選ばれる水溶性アルデ ヒド化合物が好適に併用され、最も好ましくは、ベンズ アルデヒド、アクロレインから選ばれるアルデヒド化合 物が単独で使用、さらには併用される。

【0031】これらの併用されるアルデヒド化合物の使 用量は、水溶性不飽和単量体に対して0~1000質量 ppmの範囲、好ましくは0.1~300質量ppmの 範囲、さらに好ましくは0.5~100質量ppmの範 囲であり、また、必須成分であるフルフラールに対して は、質量比で、フルフラール100に対して、好ましく は100~0、より好ましくは80~1、さらに好まし くは50~2である。また、上記したアルデヒド化合物 以外にも、水溶性不飽和単量体中にはさらにメトキシフ ェノール類を含有することが好ましい。すなわち、前記 水溶性不飽和単量体の水溶液がメトキシフェノール類を さらに含有することが好ましい。メトキシフェノール類 としては、具体的には、o、m、p-メトキシフェノー ルや、それらにさらにメチル基、 t ーブチル基、水酸基 などの1個または2個以上の置換基を有するメトキシフ ェノール類が例示される。特にpーメトキシフェノール を含有することが好ましい。メトキシフェノール類の含 有量は0~500質量ppmの範囲が好ましく、より好 ましくは5~200質量ppmの範囲、さらに好ましく は10~160質量ppmの範囲、さらに好ましくは2 0~140質量ppmの範囲、さらに好ましくは30~ 120質量ppmの範囲、さらに好ましくは40~10 0質量ppmの範囲、特に好ましくは50~90質量p pmの範囲である。

【0032】本発明では、水溶性不飽和単量体にフルフ 30 ラールを含むアルデヒド化合物を含有されることを必須 とするが、①かかるフルフラールは調整時の水溶性不飽 和単量体に添加してもよいし、②フルフラールを所定量 含有する単量体を用いて本発明の水溶性不飽和単量体を 調整してもよいし、③それらを併用してもよい。具体的 に、上記②として、本発明では、フルフラールを所定量 含んだアクリル酸を用いて本発明の水溶性不飽和単量体 を調整してもよい。すなわち、本発明では、意図的にフ ルフラールを含んだアクリル酸を合成して、フルフラー ルを所定量含んだアクリル酸によって本発明の水溶性不 40 飽和単量体を調整することも好ましい。

【0033】すなわち、従来、アクリル酸を製造する方 法としては、プロピレン気相酸化法、エチレンシアンヒ ドリン法、高圧レッペ法、改良レッペ法、ケテン法、ア クリロニトリル加水分解法等が工業的製造法として知ら れている。中でもプロピレンないしプロパンの気相酸化 法が最も多く採用されているが、その場合に副生物や不 純物として、アクリル酸の製造工程の中間体には、酢 酸、ホルムアルデヒド、アクロレイン、プロピオン酸、 マレイン酸、アセトン、フルフラール、ベンズアルデヒ 50 静置重合を併用してもよいが、好ましくは重合時間の3

ド等が含まれている。これら不純物は、重合を阻害した り重合後の物性を低下させるので、次に、このアクリル 酸中間体(粗製アクリル酸)を十分精製することによっ て、これら重合を阻害する副生成物や不純物が出来る限 り除去され、実質的にフルフラールを含まない (1 p p m未満)精製アクリル酸がアクリル酸として市販され、 そして、精製アクリル酸が吸水性樹脂の原料として使用 されている。また、吸水性樹脂の重合に際して、アクリ ル酸を精製して重合禁止剤やアクリル酸ダイマーなどの 不純物を除去する技術(例えば、特開平6-21193 4号公報、特開平3-31306号公報、欧州特許第9 42014号明細書、欧州特許第574260号明細書 など)も知られている。かかる従来技術に対して、本発 明では、意図的にフルフラールを含んだアクリル酸を合 成して、フルフラールを所定量含んだアクリル酸によっ て本発明の水溶性不飽和単量体を調整することも好まし

【0034】また、アクリル酸では、アクリル酸中の微 量成分であるプロトアネモニンの含有量が20質量pp m以下であることがさらに好ましい。プロトアネモニン 含有量が増加するに従って、重合時間(重合ピーク温度 までの時間)が伸びて残存モノマーが増加するのみなら ず、吸水倍率の若干の増加に比べて水可溶分が大きく増 加して相対的に物性が低下する。そこで、吸水性樹脂の 物性や特性向上と言う観点からは、アクリル酸中のプロ トアネモニン含有量はより好ましくは10質量ppm以 下、さらに好ましくは5質量ppm以下、特に好ましく は3質量ppm以下、最も好ましくは1質量ppm以下 とされる。

【0035】(4) 重合する工程

本発明にかかる吸水性樹脂の製造方法の一つでは、前述 の多くの吸水性樹脂の重合方法の中でも、特定の重合方 法、すなわち、剪断力を有する重合容器中に水溶性不飽 和単量体の水溶液を供給し、架橋重合すると同時に得ら れた含水ゲルを細分化する重合工程を含む吸水性樹脂の 製造方法が適用される。かかる重合方法は、前述したよ うに、米国特許第4625001号明細書、米国特許第 4985514号明細書、米国特許第5124416号 明細書、米国特許第5250640号明細書、日本登録 の特許2966539号公報や、国際公開第01/38 402号パンフレット、米国特許第5149750号明 細書、米国特許第4769427号明細書、米国特許第 4873299号明細書に例示されている。

【0036】なお、本発明で架橋重合すると同時に得ら れた含水ゲルを細分化するとは、水溶液重合が進行中の 重合ゲルを複数に分割する操作を差し、通常、ニーダー などの剪断力を有する重合容器中で回転翼の回転などで なされる。本発明での細分化は重合中に絶えずなされる 必要はなく、回転攪拌軸を停止などで細分化を停止した

0%以上、より好ましくは70%以上、さらに好ましく は90%以上の時間に含水ゲルに回転攪拌軸が回転され て含水ゲルに剪断力が与えられる。本発明で剪断力を有 する重合容器としては、一軸攪拌機でも可能であるが、 例えば双腕型ニーダーなどの複数攪拌軸の攪拌機が好ま しく用いられる。さらに好ましくは、重合容器中に水溶 性不飽和単量体の水溶液が連続供給および含水ゲルが連 続排出されるような回転攪拌軸を有するもの、なかでも 複数の回転攪拌軸を有するものが用いられる。例えば、 攪拌翼2本と排出用スクリュー1本を有する3軸ニーダ 10 ー (ニーダールーダー) や、2軸押し出し混練または混 合機などが挙げられる。最も好ましくは、重合容器中に 水溶性不飽和単量体の水溶液が連続供給および含水ゲル が連続排出されるような2つの回転攪拌軸を有するもの で、ピストンフロー性を有する連続ニーダーである。な お、本発明で用いることができる重合容器は、上記の特 許文献にも例示ないし図示されている。

【0037】さらに、これら重合容器の内面はテフロン (登録商標) などで樹脂コーティングないし電解研磨さ れて表面粗さが低減されていることが好ましく、特に内 20 面がステンレス製の重合容器が好適に使用される。さら に、重合容器内面や攪拌軸はジャケットで冷却ないし加 熱されることが好ましい。その重合容器の容積は適宜決 定され、通常0.001~10㎡、さらには0.01 ~5 m の範囲であり、その容積に対して単量体水溶液 が好ましくは10~90%、さらに好ましくは20~7 0%で仕込まれる。また、これら重合容器にある回転攪 拌軸は、重合中に少なくとも一定時間は回転されて含水 ゲルの細分化がなされるが、その回転速度は一定でもよ いし、可変でもよく、また、一時ないし間欠的に回転を 停止させてもよい。すなわち、剪断力を有する重合容器 中で静置重合と回転重合(剪断重合)を併用してもよ い。さらに、複数の攪拌軸を用いる場合、これらの攪拌 軸は同じ方向に回転してもいいし、異なる方向(双方 向) に回転してもよいが、好ましくは複数の回転軸が内 向き双方向で回転される。また、互いの回転速度は同じ であってもよいし異なってもよい。

【0038】剪断作用を生ずる(剪断力を有する) 重合 容器の具体例を以下に挙げる。

双腕型ニーダー(KNEADER (株) 栗本鉄工所) 双腕型ニーダールーダー(KNEADER-RUDER (株)モリヤマ)

コンティニュアースニーダー (CONTINUOUS KNEADER (株) ダルトン)

パドルドライヤー (PADDLE DRYER (株) 奈 良機械製作所)

KRC=-9- (KURIMOTO-READCO C ONTINUOUS KNEADER (株) 栗本鉄工

エクストルーダー(EXTRUDER (株) 栗本鉄工 50 所) ホンダ・デイ・エアリング・エクストルーダー (HON DA DE-AIRING EXTRUDER 本田鉄

工(株))

チョッパー (CHOPPER (株) 平賀工作所) ツイン・ドーム グラン (TWIN・DOME GRA N 不二パウダル(株))

バイボラック (BIVOLAK 住友重機械工業 (株))

さらに、本発明ではフルフラールを用いることで、架橋 重合すると同時に得られた含水ゲルを細分化する工程に おいて、重合時のゲルの細分化が容易で粗大ゲル(例え ば、1 c m以上)が殆ど発生しない。したがって、粗大 ゲルが従来発生し易かった高温開始での重合や高濃度開 始での重合に、より好適である。

【0039】具体的には、重合開始温度は好ましくは2 0℃以上、より好ましくは30℃以上、さらに好ましく は40℃以上、特に好ましくは50℃以上で行なわれ、 さらに、水溶性不飽和単量体の濃度は好ましくは20質 量%以上、より好ましくは30質量%以上、特に好まし くは40質量%以上の単量体の濃度で本発明は好適に適 用される。本発明では、従来粗大ゲルが副生し易かった かかる高温開始での重合や高濃度開始での重合を行って も、また、粗大ゲルが副生し易くなった低可溶分の吸水 性樹脂を得ても、均一にゲルの細分化が可能であり、殆 ど粗大ゲルを副生しないという優れた利点を有する。す なわち、本発明では、従来粗大ゲルが副生し易かった水 可溶分の少ない吸水性樹脂の製造に好適であり、その好 ましい水可溶分は前述の範囲、特に15質量%以下であ

【0040】本発明で得られる細分化された含水ゲルは 重合容器から排出されて次工程に配送されるが、かかる 含水ゲルは均一な粒子径と非常に少ない粗大ゲル量であ り、通常、質量平均粒子径0.3~4mmで且つ粒子径 10mm以上の粗大ゲルの割合が5質量%以下である。 すなわち、本発明で好ましくは質量平均粒子径0.3~ 4mm、より好ましくは0.5~3mm、さらに好まし くは0.8~2mmにまで含水ゲルは細分化される。ま た、低減される粗大ゲルとは5cm以上(好ましくは1 c m以上) の状態を指し、排出される細分化ゲル中でそ の粗大ゲルの含有量も好ましくは全体の7質量%以下、 より好ましくは5質量%以下、さらに好ましくは3質量 %以下、特に好ましくは1質量%以下とされる。従来、 数%~数10%の粗大ゲルが発生していたものを本発明 では如何なる重合条件(温度、濃度、可溶分など)でも 大幅に低減できるので好ましい。

【0041】重合の圧力(重合容器の内圧)は常圧、減 圧、加圧と適宜選ばれ、これらが併用されてもよく、沸 騰温度を下げるために減圧下に水を留去しながら行うの も好ましい態様であるが、操作の容易さ等のため、より

好ましくは実質常圧下で行う。また、かかる常圧下重合 は気流下で行なわれ、重合熱の一部が蒸発で除去される ことが好ましく、窒素などの気流が用いられる。上記単 量体水溶液を重合する際には、例えば、過硫酸カリウ ム、過硫酸アンモニウム、過硫酸ナトリウム、 t ーブチ ルハイドロパーオキサイド、過酸化水素、2,2'-ア ゾビス (2-アミジノプロパン) 二塩酸塩、2-ヒドロ キシー1-フェニループロパン-1-オン、ベンゾイン メチルエーテル等の重合開始剤の1種または2種以上を 用いることができる。さらに、これら重合開始剤の分解 を促進する還元剤を併用し、両者を組み合わせることに よりレドックス系開始剤とすることもできる。上記の環 元剤としては、例えば、亜硫酸ナトリウム、亜硫酸水素 ナトリウム等の(重)亜硫酸(塩)、L-アスコルビン 酸(塩)、第一鉄塩等の還元性金属(塩)、アミン類等 が挙げられるが、特に限定されるものではない。好まし くは、過硫酸塩および/または過酸化水素とのレドック ス重合が適用される。また、これらの重合開始剤や還元 剤の使用量は、単量体に対して、通常0.001~2モ ル%、好ましくは0.01~0.5モル%である。

【0042】また、重合される前記単量体水溶液は重合 促進の面から、さらに微量の遷移金属を含むことが好ま しく、特に好ましくは微量の鉄の存在下で重合される。 用いられる遷移金属の含有量は0~5質量ppm (対単 量体/カチオン換算)の範囲が好ましく、さらに好まし くは0.1~2質量ppmの範囲、特に好ましくは0. 2~1質量ppmの範囲である。遷移金属が過剰だと残 存モノマーや水可溶分が増加する傾向にあり、また、遷 移金属が少ないと重合速度が低下する傾向にある。ま た、重合開始剤を用いる代わりに、反応系に放射線、電 30 子線、紫外線などの活性エネルギー線を照射することに より重合反応を行ってもよいし、それらを重合開始剤と 併用してもよい。なお、上記重合反応における反応温度 や反応時間も特に限定されるものではなく、親水性単量 体や重合開始剤の種類、反応温度などに応じて適宜決定 すればよいが、通常、沸点以下で3時間以内、好ましく は1時間以内、さらに好ましくは0.5時間以内であ り、ピーク温度で150℃以下、さらに好ましくは90 ~120℃で重合がなされる。

【0043】(5) その他の重合方法 さらに11~1000質量ppmのフルフラールを用いる本発明において、せん断力を有する重合器で細分化する重合以外のその他の特定の重合方法への適用も可能であり、具体的に、高温重合や遷移金属共存下での重合に本願発明は好適に応用できる。すなわち、前記(4)に記載の条件は下記特定の重合にも適用できる。すなわち、本発明は、アクリル酸(塩)を含む水溶性不飽和単量体の水溶液を架橋重合する工程と得られた含水ゲルを細分化する工程を含む吸水性樹脂の製造方法において、

(A) 前記水溶性不飽和単量体がフルフラールを11~ 50 チレンアルキルエーテル、ポリオキシエチレンアルキル

1000質量ppm (対単量体) 含有すること、(B1) 重合開始温度が30℃以上であること、および、

(B2) 前記水溶性不飽和単量体が遷移金属を含有すること、の2つから選ばれる少なくとも1つであること、および、(C) 得られた細分化された含水ゲルが、質量平均粒子径0.3~4mmで且つ粒子径10mm以上の粗大ゲルの割合が5質量%以下であること、を特徴とする、吸水性樹脂の製造方法をも提供する。

【0044】従来の重合において、重合開始温度が常温よりも高い30℃以上であること、および、重合開始剤が遷移金属を含有すること、の2つから選ばれる少なくとも一つである場合、重合前の単量体の安定性が悪かったが、フルフラールを11~1000質量ppmを用いる本願発明ではかかる問題も解決される。用いられる水溶性不飽和単量体や重合条件は前述の範囲であり、ベルト重合など静置重合する方法(米国特許第6241928号明細書、米国特許第4857610号明細書)も適用が可能であるが、重合時の細分化が行なわれることが好ましい。

【0045】さらに、本発明は逆相懸濁重合にも好適に適用できる。すなわち、本発明は、アクリル酸(塩)を含む水溶性不飽和単量体の水溶液を架橋重合すると同時に細分化された含水ゲルを得る重合工程を含む吸水性樹脂の製造方法において、前記水溶性不飽和単量体がフルフラールを11~1000質量ppm(対単量体)含有することを特徴とする、吸水性樹脂の製造方法を提供し、その際の重合方法として好ましくは、前記架橋重合が逆相懸濁重合であり、細分化された含水ゲルが有機溶媒中での懸濁重合と同時に得られる製造方法である。

【0046】逆相懸濁重合とは、単量体水溶液を疎水性有機溶媒に質量平均粒子径1~0.1mm程度の粒子状で懸濁させる重合法であり、重合と同時に製品粒径のゲル粒子が得られる利点があり、例えば、米国特許第4093776号明細書、米国特許第4367323号明細書、米国特許第446261号明細書、米国特許第4683274号明細書、米国特許第5244735号明細書などの米国特許に記載されている。本発明において、水溶性不飽和単量体の水溶液中に必要により界の面活性剤や保護コロイドから選ばれる分散剤を溶解あるいは分散して含有させてもよい。特に逆相懸濁重合を本発明に採用する場合、この分散剤を単量体水溶液中に含用させることによって、疎水性有機溶剤での単量体ないし重合体の粒子形状での分散がより均一に起こり、最終的に得られる吸水性樹脂の粒子径分布がより狭くなる。

【0047】これらの界面活性剤の例としては、ポリオキシエチレンオクチルフェニルエーテル燐酸エステルやポリオキシエチレントリデシルエーテル燐酸エステル(いずれも第一工業製薬製:商品名プライサーフ)などの(ポリオキシエチレン)燐酸エステル、ポリオキシエチレンスルギルエーデル、ポリオキシエ

フェノールエーテル、ポリオキシエチレンアルキルエス テル、ソルビタン脂肪酸エステル、ポリオキシエチレン ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル等の 非イオン系界面活性剤や、高級アルコール硫酸エステ ル、アルキルナフタレンスルホン酸塩、アルキルポリオ キシエチレンサルフェート塩、ジアルキルスルホコハク 酸塩等のアニオン系界面活性剤等の中から一種又は二種 以上を分割選択して用いることができ、これらは一括ま たは分割して重合系に添加できる。さらに、高分子保護 コロイドとしては、エチルセルロース、エチルヒドロキ 10 シセルロース、 (無水) マレイン酸-エチレン共重合 体、(無水)マレイン酸ーブタジエン共重合体等が例示 できる。中でも脂肪酸エステル系の界面活性剤、さらに はHLBが8以上の非イオン系界面活性剤又はアニオン 系界面活性剤が好ましい。界面活性剤ないし分散剤の使 用量は、一般に水溶性不飽和単量体に対し0.05~1 0質量%、好ましくは0.5~5質量%である。

【0048】本発明で使用される疎水性有機溶剤としては、単量体水溶液と混和せず二相を形成するものであれば特に制限なく、例えば、nーペンタン、nーへキサン、nーへプタン、nーオクタン等の脂肪族炭化水素類;シクロへキサン、シクロオクタン、メチルシクロへキサン、デカリン等の置換基を有してもよい脂環族炭化水素類;ベンゼン、エチルベンゼン、トルエン、キシレン等の置換基を有してもよい芳香族炭化水素水等があげられ、これらの1種または2種以上の混合物を使用できる。特に好ましくはnーへキサン、nーへプタン、シクロへキサン、メチルシクロへキサン、トルエンまたはキシレンである。疎水性有機溶剤と単量体水溶液の比率は3:2~4:1程度が好ましい。重合中あるいは重合後に分散剤や疎水性有機溶剤を加えてもよい。

【0049】これらの溶媒中に単量体を一括ないし分割で分散させ、単量体ないしその重合体の分散した溶媒を好ましくは40~90℃の範囲、より好ましくは50~80℃の範囲で加熱して、好ましくは0.5~10時間の範囲、より好ましくは1~5時間の範囲で重合すればよい。分散時の質量平均粒子径は通常 $10~2000\mu$ mの範囲、物性面から好ましくは $100~1000\mu$ mの範囲、さらに好ましくは $200~600\mu$ mの範囲であり、さらに850 μ m以上および 150μ m以下の微 40粉末の含有量は少ないほど、具体的には各々10質量%以下、さらには5質量%以下が好ましい。これらは分散剤や溶媒の種類や量、攪拌動力、さらには造粒などで適宜調整すればよい。

【0050】本発明で逆相懸濁重合を行うことで、重合も温和に制御され、さらに驚くべき特徴として実質着色もない、白色の吸水性樹脂粒子が得られる。すなわち、11~1000質量ppmのフルフラール存在下で重合する方法において、吸水性樹脂の着色を改善することに逆相懸濁重合が好適であることが見出された。従来、多 50

16 量の溶媒に分散させる逆相懸濁重合は高濃度(例えば、 単量体水溶液で40質量%以上) にすると、重合の暴発 の危険性からスケールアップ (例えば、1 m³以上、特 に5m³以上での反応容器)での工業的製造が困難とな り、生産性が低いものであったが、11~1000質量 p p mのフルフラール存在下で重合することで、かかる 問題も解決し、フルフラールを共存させるとさらに重合 時に適度の粒子の凝集(造粒)が起こって、微粒子の少 ない粒子径の制御された逆相懸濁重合による吸水性樹脂 が得られる。また、逆相懸濁重合の大きな利点として、 フルフラールを用いても吸水性樹脂の着色がなく、実質 白色、すなわちYellow-Index (YI)で好 ましくは $0\sim10$ 、より好ましくは $0\sim8$ 、さらに好ま しくは0~6という吸水性樹脂が得られる。なお、色の 測定法は、例えば、特開平11-322846号公報 (欧州特許第9420914号明細書) および特開平1 1-71529号公報に記載されている。

【0051】すなわち、本発明は、アクリル酸(塩)および11~1000質量ppm(対単量体)のフルフラールを含む水溶性不飽和単量体の水溶液を架橋重合して得られた吸水性樹脂であって、YIが0~10の吸水性樹脂をも提供する。かかる吸水性樹脂は例えば上記の逆相懸濁重合で得られるが、水溶液重合を用いる場合、重合後に水や親水性有機溶媒で洗浄したり、市販の脱色剤や漂白剤などを添加するなどしても得られる。また、かかる吸水性樹脂は、さらに好ましくは、前述ないしは後述の諸特性を示す。

(6) 重合後の好ましい工程(重合後の乾燥・粉砕・表面架橋)

重合工程で得られたゲル状架橋重合体は、必要によりミートチョッパーや特願2001-232734号に例示のゲル粉砕機などで細分化される。さらに好ましくは乾燥され、必要により粉砕や分級される。本発明の吸水性樹脂は高物性であるため、かかる工程を経ることでさらに物性が改良される。

【0052】本発明で乾燥とは水分を除去する操作のことであり、その乾燥減量(粉末1gを180℃で3時間加熱)から求められる樹脂固形分が、好ましくは80質量%以上、より好ましくは85~99質量%の範囲、特に好ましくは90~98質量%の範囲、特に好ましくは92~97質量%の範囲に調整される。また、乾燥温度は特に限定されるものではないが、例えば、100~300℃の範囲内が好ましく、より好ましくは150~250℃の範囲内とすればよい。乾燥方法としては、加熱乾燥、熱風乾燥、減圧乾燥、赤外線乾燥、マイクロ波乾燥、ドラムドライヤー乾燥、疎水性有機溶媒との共沸による脱水、高温の水蒸気を用いた高湿乾燥等、種々の方法を採用することができ、特に限定されるものではないが、水溶液重合を適用する場合、好ましくは露点40℃~100℃、より好ましくは露点50~90℃の水蒸

気を含有する気体での熱風乾燥がより好ましい。また、 逆相懸濁重合には共沸脱水が好適に適用される。

【0053】本発明の方法で得られる吸水性樹脂の形状については、特に制限がなく、不定形破砕状や球状等の粉末、ゲル状、シート状、棒状、繊維状、フィルム状であってもよく、また、繊維基材などに複合化や担持させてもよい。吸水性樹脂が粉末の場合、その質量平均粒子径としては、通常 $10\sim2000\mu$ mの範囲、物性面から好ましくは $100\sim1000\mu$ mの範囲、さらに好ましくは $200\sim600\mu$ mの範囲であり、さらに850 μ m以上および 150μ m以下の微粉末の含有量は少ないほど、具体的には各 $\alpha10$ 質量%以下、さらには5質量%以下が好ましい。

【0054】次いで、本発明の表面架橋についてさらに 説明する。吸水性樹脂の表面架橋とは、重合体内部に均 一な架橋構造を吸水性樹脂の表面層にさらに架橋密度の 高い部分を設けることである。本発明で得られる吸水性 樹脂は水可溶分が少なく、また吸収倍率が高いため、優 れた表面架橋効果が得られ、さらに高い物性や特性を発 揮することが出来るので好ましい。ここに、表面架橋と は、樹脂内部の均一な架橋構造の他にさらに表面層に架 橋密度の高い部分を設けることであり、後述の表面架橋 剤を用いて行われる。表面架橋剤が樹脂表面に浸透した り樹脂表面を被覆したりするのでもよい。樹脂を表面架 橋することによって、加圧下吸収倍率や加圧下通液性が 高まる。

【0055】本発明にかかる吸水性樹脂は、生理食塩水に対する加圧下吸収倍率(4.9kPa)が好ましくは20g/g以上、さらに好ましくは25g/g以上である。また、生理食塩水に対する加圧下吸収倍率(1.9Pa)は好ましくは20g/g以上、さらに好ましくは25g/g以上、さらに好ましくは28g/g以上、さらに好ましくは28g/g以上、特に好ましくは32g/g以上であり、無荷重下での吸水倍率は好ましくは25g/g以上であり、無荷重下での吸水倍率は好ましくは25g/g以上、さらには好ましくは28g/g以上、特に好ましくは32g/g以上という高物性の吸水性樹脂を、本発明の方法では容易且つ安定的に製造することができる。また、加圧下通液量(SFC)は好ましくは10×10 7 以上、さらに好ましくは50×10 7 以上とされる。なお、これらの測定法は、後述の実施例で規定する。

【0056】上記表面架橋を行うための架橋剤としては、種々のものがあるが、物性の観点から、一般的には、多価アルコール化合物、エポキシ化合物、多価アミン化合物またはそのハロエポキシ化合物との縮合物、オキサゾリン化合物、モノ、ジ、またはポリオキサゾリジノン化合物、多価金属塩、アルキレンカーボネート化合物等が用いられている。本発明で用いられる表面架橋剤としては、具体的には、米国特許第6228930号明細書、米国特許第6071976号明細書、米国特許第50

6254990号明細書などに例示されている。例え ば、モノ、ジ、トリ、テトラまたはポリエチレングリコ ール、モノプロピレングリコール、1,3-プロパンジ オール、ジプロピレングリコール、2,3,4ートリメ チルー1, 3-ペンタンジオール、ポリプロピレングリ コール、グリセリン、ポリグリセリン、2ーブテンー 1, 4 - ジオール、1, 4 - ブタンジオール、1, 3 -ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノー ルなどの多価アルコール化合物; エチレングリコールジ グリシジルエーテルやグリシドールなどのエポキシ化合 物;エチレンジアミン、ジエチレントリアミン、トリエ チレンテトラミン、テトラエチレンペンタミン、ペンタ エチレンヘキサミン、ポリエチレンイミン、ポリアミド ポリアミン等の多価アミン化合物;エピクロロヒドリ ン、エピブロムヒドリン、αーメチルエピクロロヒドリ ン等のハロエポキシ化合物;上記多価アミン化合物と上 記ハロエポキシ化合物との縮合物; エチレンカーボネー トなどのアルキレンカーボネート化合物;2ーオキサゾ リジノンなどのモノ、ジ、ポリオキサゾリジノン化合 物;2-オキソテトラハイドロ-1,3-オキジネン化 合物、エチレンビスオキサゾリンなどのオキサゾリジン 化合物;3-メチルーオキセタン-3-メタノールなど のオキセタン化合物;等の1種または2種以上が挙げら れるが、特に限定されるものではない。また、これらの 2種以上を併用してもよい。本発明の効果を最大限にす るために、これらの架橋剤の中でも少なくとも多価アル コールを用いることが好ましく、好ましくは炭素数2~ 10、より好ましくは炭素数3~8の多価アルコールが 用いられる。

【0057】表面架橋剤の使用量は、用いる化合物やそ れらの組み合わせ等にもよるが、樹脂の固形分100質 量部に対して、0.001質量部~10質量部の範囲内 が好ましく、0.01質量部~5質量部の範囲内がより 好ましい。本発明において、表面架橋には水を用いるこ とが好ましい。この際、使用される水の量は、使用する 吸水性樹脂の含水率にもよるが、通常、吸水性樹脂10 0質量部に対し、好ましくは0.5~20質量部の範 囲、より好ましくは0.5~10質量部の範囲である。 また、本発明において、水以外に親水性有機溶媒を用い てもよい。使用される親水性有機溶媒の量は、吸水性樹 脂100質量部に対して、好ましくは0~10質量部の 範囲、より好ましくは0~5質量部の範囲、さらに好ま しくは0~3質量部の範囲である。架橋剤溶液の温度は 混合性や安定性から、好ましくは0℃~沸点、より好ま しくは5~50℃、さらに好ましくは10~30℃にさ せる。また、混合前の吸水性樹脂粉末の温度は、混合性 から、好ましくは0~80℃、さらに好ましくは40~ 70℃の範囲である。

【0058】さらに、本発明では種々の混合方法のう

ち、必要により水及び/または親水性有機溶媒とを予め 混合した後、次いで、その水溶液を吸水性樹脂に噴霧あ るいは滴下混合する方法が好ましく、噴霧する方法がよ り好ましい。 噴霧される液滴の大きさは、300μm以 下が好ましく、200μm以下がより好ましい。また混 合に際し、本発明の効果を妨げない範囲で水不溶性微粒 子粉体や界面活性剤を共存させてもよい。前記混合に用 いられる好適な混合装置は、均一な混合を確実にするた め大きな混合力を生み出せることが必要である。本発明 に用いることのできる混合装置としては種々の混合機が 10 使用されるが、好ましくは、高速攪拌形混合機、特に高 速攪拌形連続混合機であり、例えば、商品名タービュラ イザー(細川ミクロン社製)や商品名レディゲミキサー (ドイツ・レディゲ社製) などが用いら用いられる。

19

【0059】架橋剤を混合後の吸水性樹脂は好ましくは 加熱処理される。上記加熱処理を行う際の条件として は、加熱温度は、好ましくは100~250℃、より好 ましくは150~250℃であり、加熱時間は、好まし くは1分~2時間の範囲である。温度と時間の組み合わ せの好適例としては、180℃で0.1~1.5時間、 200℃で0.1~1時間である。加熱処理は、通常の 乾燥機又は加熱炉を用いて行うことができる。乾燥機と しては、例えば、溝型混合乾燥機、ロータリー乾燥機、 ディスク乾燥機、流動層乾燥機、気流型乾燥機、赤外線 乾燥機等が挙げられる。また、加熱後の吸水性樹脂は必 要に応じて冷却してもよい。

【0060】なお、これらの表面架橋方法は、欧州特許 第0349240号明細書、欧州特許第0605150 号明細書、欧州特許第0450923号明細書、欧州特 許第0812873号明細書、欧州特許第045092 4号明細書、欧州特許第0668080号明細書などの 各種欧州特許や、日本における特開平7-242709 号公報、特開平7-224304号公報などの各種日本 特許、米国特許第5409771号明細書、米国特許第 5597873号明細書、米国特許第5385983号 明細書、米国特許第5610220号明細書、米国特許 第5633316号明細書、米国特許第5674633 号明細書、米国特許第5462972号明細書などの各 種米国特許、国際公開第99/42494号パンフレッ ト、国際公開第99/43720号パンフレット、国際 40 公開第99/42496号パンフレットなどの各種国際 公開特許にも記載されており、これらの表面架橋方法も 本発明に適用できる。

【0061】(7)本発明の吸水性樹脂の用途 本発明の吸水性樹脂に、消毒剤、抗菌剤、香料、各種の 無機粉末、発泡剤、顔料、キレート剤、染料、親水性短 繊維、肥料、酸化剤、還元剤、水、塩類等を好ましくは 20質量部以下、より好ましくは10質量部以下の量で 製造工程途中や製造後に添加し、これにより、種々の機 能を付与させることもできる。好ましく添加される化合 50

物として、キレート剤、水不溶性無機粉末および/また はポリアミンが挙げられる。本発明の方法によれば、無 加圧下の吸収倍率、加圧下の吸収倍率、可溶分のバラン スに優れた良好な吸収特性を備えた吸水性樹脂を簡便に 製造することができ、農園芸保水剤、工業用保水剤、吸 湿剤、除湿剤、建材、などで広く用いられるが、その吸 水性樹脂は紙おむつ、生理用ナプキンなどの衛生材料に 特に好適に用いられる。さらに、本発明の吸水性樹脂は 上記3つの物性にバランスよく優れるため、衛生材料は 一般に吸水性樹脂の濃度(吸水性樹脂および繊維基材の 合計に対する吸水性樹脂の質量比)として高濃度、例え ば30~100質量%、好ましくは40~100質量% の範囲、さらに好ましくは50~95質量%で使用可能 である。

[0062]

【実施例】以下、実施例に従って発明を説明するが、本 発明は実施例に限定され解釈させるものではない。ま た、本発明の特許請求の範囲や実施例に記載の諸物性 は、以下の測定法に従って求めた。

(1) 生理食塩水に対する無荷重下での吸収倍率 米国特許第5164459号明細書に準じて吸収倍率を 求めた。すなわち、吸水性樹脂200mgを不織布製袋 (60×60mm) に均一に入れシールをして、25 (±3) ℃の0.9質量%生理食塩水100gに浸漬し た。60分後に袋を引き上げ、遠心分離機を用いて25 OG (250×9. 81m/sec²) で3分間水切り を行った後、袋の質量W1 (mg) を測定した。同様の 操作を吸水性樹脂を用いないで行い、そのときの質量W 2 (mg) を求め、下記の式で吸収倍率を算出した。 【0063】無荷重下の吸収倍率(g/g)=(W1-W2) / 200

(2) 水可溶性分

吸水性樹脂500mgを1,000mlの室温の脱イオ ン水に分散し、40mmのマグネテックスターラーで1 6時間攪拌後、ろ紙(TOYO、No. 6)で膨潤ゲル を分離し、ろ過した。次いで、吸水性樹脂から溶出した 濾液中の水溶性ポリアクリル酸塩を、メチルグリコール キトサンとポリビニル硫酸カリウムを用いてコロイド滴 定することで、吸水性樹脂中の水可溶分の質量%(対吸 水性樹脂)を求めた。

【0064】(3)残存モノマー

上記(2)において、別途、調整した2時間攪拌後の濾 液を液体クロマトクラフィーでUV分析することで、吸 水性樹脂の残存モノマー量(質量 p p m/対吸水性樹 脂)も分析した。

(4) 加圧下吸収倍率

米国特許第6228930号明細書、米国特許第607 1976号明細書、米国特許第6254990号明細書 を参照して、生理食塩水に対する加圧下の吸収倍率を測 定した。

【0065】吸水性樹脂0.900gを前記米国特許記載の方法で、所定の荷重(4.9kPa)をかけて、60分にわたって経時的に吸水性樹脂が吸水した生理食塩水の質量Wa(g)を天秤の測定値から求めた。別途、同様の操作を吸水性樹脂を用いないで行い、吸水性樹脂以外の、例えば、濾紙等が吸水した生理食塩水の質量Wb(g)を天秤の測定値から求めブランク値とし、下記の式で吸収倍率を算出した。

4. 9 k P a 加圧下の吸収倍率 (g/g) = (W a - W b) / 0. 900

(5) 加圧下通液性(生理食塩水流れ誘導性:SFC)加圧下通液性の測定方法としては、国際公開第95/22356号パンフレットに従って、吸水性樹脂0.9gを20g/ cm^2 (約1.9kPa)の荷重下で1時間膨潤させたのち、0.0018M-NaCl溶液(20~25°C)による20g/ cm^2 (約1.9kPa)での膨潤ゲルの生理食塩水流れ誘導性(Saline Flow Conductivity/SFCと略する)を求めた。なお、単位は $[cm^3 \cdot s \cdot g^{-1}]$ であり、数値が大きいほど、通液性が大きい。

【0066】(6)ピーク時間および誘導時間 重合中の単量体ないし重合ゲルの温度を温度計で測定 し、開始剤添加から温度の上昇までの時間(分)を誘導 時間、さらに、重合系の最高温度までの時間をピーク時間とした。

(7) 粗大ゲル

重合して得られた細分化された含水ゲル状架橋重合体を温度60~80℃に保ち、目開き10mmのテフロン(登録商標)コートされた格子で含水ゲルを分級する事で、格子上に残った粗大ゲルの質量%(対全含水ゲル)を求めた。

【0067】(8)含水ゲルの質量平均粒子径 含水ゲルを湿式分級して粒度分布を求めて、対数確率紙 にプロットすることで、質量平均粒子径D50を求め た。

(9) 吸水性樹脂粉末の色

特開平11-322846 号公報(欧州特許第9420 14 号明細書)および特開平11-71529 号公報を参考にして吸水性樹脂粉末の色を以下に測定した。すなわち、得られた吸水性樹脂記粉末約3 gをペースト試料 40 台 $(30\,\mathrm{mm}\,\Phi)$ にすべて充填して、その着色度(Y I)について、日本電色工業株式会社(製)分光式色差計 $SZ-\Sigma80$ COLOR MEASURING S YSTEMを用いて、設定条件(反射測定/付属の粉末・ペースト試料台($30\,\mathrm{mm}\,\Phi$)/標準として粉末・ペースト用・標準丸白板 $NO2/30\Phi$ 投光パイプ)にて、吸水性樹脂の表面色を測定した。

【0068】 [実施例1] アクリル酸451.7g、アクリル酸ナトリウムの37質量%の水溶液4780.3g、内部架橋剤としてポリエチレングリコールジアクリ 50

22 レート(平均ポリエチレングリコールユニット数8) 8. 5481g、フルフラール201. 6質量ppm (対単量体固形分) および水275.4gから成る、濃 度40質量%の水溶性不飽和単量体の水溶液(1)を調 整した。フルフラール201.6質量ppmを含有する 該水溶性不飽和単量体の水溶液 (1) を、剪断力を有す る重合容器として内容量10Lでシグマ型羽根を2本有 するジャケット付きステンレス性双腕型ニーダーに蓋を 付けた反応器に供給し、該水溶液を25℃に保ちながら 20分間窒素置換を行った。次いで、窒素気流下で25 ℃の温水を通じて羽根を回転させながら、過硫酸ナトリ ウムの20質量%水溶液22.6gとLーアスコルビン 酸の1.0質量%水溶液を12.5g添加したところ、 20秒後に重合が開始した。重合開始と同時にジャケッ トの温水を70℃まで昇温させ、重合しながら含水ゲル 状架橋重合体の剪断を行ない、10.5分後に反応系は ピーク温度に達し、ピーク温度を示してから20分後に

重合を終了させた。

[実施例2] アクリル酸513.6g、アクリル酸ナトリウムの37質量%の水溶液4544.5g、内部架橋剤としてポリエチレングリコールジアクリレート(平均ポリエチレングリコールユニット数8)8.5481g、フルフラール205.3質量ppm(対単量体固形分)および水393.4gから成る、濃度40質量%の水溶性不飽和単量体の水溶液(2)を調整した。

【0070】フルフラール205.3質量ppmを含有する該単量体水溶液(2)を実施例1と同様の重合容器に供給し、該水溶液を40℃に保ちながら20分間窒素置換を行った。次いで、40℃の温水を通じて羽根を回転させながら過硫酸ナトリウムの20質量%水溶液22.6gとLーアスコルビン酸の1.0質量%水溶液を12.5g添加したところ、10秒後に重合が開始した。重合開始と同時に温水を60℃まで昇温させ、重合しながら含水ゲル状架橋重合体の剪断を行ない、9.0分後に反応系はピーク温度に達した後、ピークから20分後に重合を終了させた。

【0071】得られた含水ゲル状架橋重合体(2)は粒子状に細分化されており、粒径が10mm以上の粗大ゲルは全体の0質量%であった。以下、実施例1と同様に乾燥および粉砕・分級することで吸水性樹脂粉末(2)

を得た。結果を表1に示す。

[比較例1]実施例1において調整する水溶性不飽和単量体の水溶液を変更する事で、フルフラール量を0.3 質量ppm(対単量体固形分)とした、濃度40質量%の比較水溶性単量体水溶液(1)を調整した。フルフラール0.3質量ppmを含有する該比較水溶性単量体水溶液(1)を実施例1の重合容器に供給し、以下、実施例1と同様に窒素置換し、同様に過硫酸ナトリウムおよびレーアスコルビン酸を添加したところ、10秒後に重合が開始した。重合開始と同時に温水を60℃まで昇温 10させ、8.5分後に反応系はピーク温度に達した。その後、実施例1と同様に重合しながら含水ゲル状架橋重合体の剪断を行ない、ピーク温度を示してから20分後に重合を終了させた。

23

【0072】得られた比較含水ゲル状重合体(1)はその大部分が実施例1と同様の1mm前後の粒子状であったが、十分には細分化されておらず、一部塊状ゲルが見られ、粒径が10mm以上の含水ゲル(粗大ゲル)が全体の8.0質量%存在した。次いで、粒子状の比較含水ゲル状架橋重合体(1)を実施例1と同様に1時間乾燥20したが、混入した粗大ゲルが十分は乾燥できず、1時間の乾燥時間では未乾燥物が乾燥重合体中に数%混入しており、乾燥は不完全であり、また未乾燥物の付着のためにその後の粉砕および分級操作が不可能であった。結果を表1に示す。

【0073】 [比較例2] 比較例1において、未乾物を数%含む乾燥重合体をさらに1時間の乾燥を行なった。 すなわち、粒子状の比較含水ゲル状架橋重合体(1)を 2時間乾燥後、実施例1と同様に粉砕することで比較吸* * 水性樹脂粉末(2)を得た。結果を表1に示す。

[実施例3] アクリル酸447.6g、アクリル酸ナトリウムの37質量%の水溶液4736.5g、内部架橋剤としてポリエチレングリコールジアクリレート(平均ポリエチレングリコールユニット数8)8.4657g、フルフラール205.3質量ppm(対単量体固形分)および水270.5gから成る、濃度40質量%の水溶性不飽和単量体の水溶液(3)を調整した。フルフラール205.3ppmを含有する該単量体水溶液

(3) を実施例1と同様の重合容器に供給し、該水溶液を25℃に保ちながら20分間窒素置換を行った。

【0074】次いで、25℃の温水を通じて羽根を回転させながら、先ず対単量体固形分で1質量ppm(Fe換算)になる様に3価のFeイオン標準液の0.1質量%水溶液を2.2g加え、さらに開始剤として過硫酸ナトリウムの20質量%水溶液を22.4gとLーアスコルビン酸の1.0質量%水溶液を12.4g添加したところ、20秒後に重合が開始した。重合開始と同時に温水を60℃まで昇温させ、重合しながら含水ゲル状架橋重合体の剪断を行ない、11.5分後に反応系はピーク温度に達した後、ピークから20分後に重合を終了させた。得られた含水ゲル状架橋重合体(3)は粒子状に細分化されており、粒径が10mm以上の粗大ゲルは全体の0質量%であった。以下、実施例1と同様に乾燥および粉砕・分級することで吸水性樹脂粉末(3)を得た。結果を表1に示す。

[0075]

【表1】

	フルフラール (質量ppm)	温度	粗大ゲル (質量%)	吸収倍率 (g/g)	水可溶分 (質量%)	
実施例1	203.4	25	0	39.7	11.6	
実施例2	205. 3	40	0	40, 2	12.2	
実施例3	205. 3	25	0	39.4	14.3	
比較例1	0. 3	2 5	8. 0	(十分に乾燥ないし粉 砕できず)		
比較例2	0, 3	25	8. 0	41.0	12.0	

【0076】表1で示されるように、アクリル酸(塩)を含む水溶性不飽和単量体の水溶液を架橋重合すると同時に得られた含水ゲルを細分化する重合工程を含む吸水性樹脂の製造方法において、単量体水溶液にフルフラー 40ルを11~1000質量ppm(対単量体固形分)含有することで、重合時の粗大ゲルが全く或いは殆ど生成せず、結果的に、重合時間や乾燥時間が短縮され、さらに、物性も向上し、かつ未乾物由来の乾燥後の粉砕工程や分級工程が停止してしまうことも防止できる。

[実施例4] 実施例1で得られた吸水性樹脂粉末(1) 500gに、1,4ーブタンジオール/プロピレングリコール/水=0.32/0.5/2.73質量%(対粉末)からなる表面架橋剤水溶液を添加して、得られた混合物を212℃のオイルバスで加熱されたミキサー中で50

35分間加熱攪拌することで、表面架橋された吸水性樹脂粉末(4)を得た。結果を表2に示す。

[0077]

【表2】

	吸収倍率	加圧下吸収倍率
	(g/g)	(g/g)
実施例4	33. 2	26.6

【0078】表2で示されるように、優れた表面架橋効果を示す。

[実施例5] アクリル酸21.62g、アクリル酸ナトリウムの37質量%の水溶液228.77g、内部架橋剤としてポリエチレングリコールジアクリレート(平均ポリエチレングリコールユニット数8)0.292g、

フルフラール203.5質量ppm(対単量体固形分) および水13.11gから成る、濃度40質量%の水溶 性不飽和単量体の水溶液 (5) を調整した。次いで該水 溶液を、40℃に保ちながら30分間窒素置換を行った 後、内容積約500mlの円筒形ポリプロピレン製容器 に入れた。該重合容器は蓋をして窒素雰囲気下、40度 で保温され、重合開始剤として、過硫酸ナトリウムの1 0質量%水溶液1.44gとL-アスコルビン酸の0. 5質量%水溶液を0.43g添加したところ、10秒後 に重合が開始し、11分でピーク温度を示した。ピーク 温度を示してから10分後に重合を終了させた。

【0079】得られた含水ゲル状架橋重合体(5)を数 mmに裁断し、170℃の熱風で30分間乾燥を行った 後、乾燥物を振動ミルを用いて粉砕し、さらにJIS標 準850μm篩で分級する事で吸水性樹脂粉末(5)を 得た。結果を表3に示す。

[比較例3] 実施例5において、水溶性不飽和単量体

- (5) を温度を40℃から20℃に変更する以外は、同 様に窒素置換した。以下、20℃の水溶性不飽和単量体
- (5) に実施例3と同様に重合開始剤を添加したとこ ろ、30秒後に重合が開始し、重合熱で昇温したもの の、ピーク温度まで達するのに84分を要し

*度を示してから10分後に重合を終了させた。得られた 比較含水ゲル状架橋重合体(3)を実施例5と同様に裁 断、乾燥したのち、同様に粉砕および分級する事で、比 較吸水性樹脂粉末(3)を得た。結果を表3に示す。

26

【0080】[実施例6]実施例5において、水溶性不 飽和単量体(5)を温度を40℃から20℃に変更する 以外は、同様に窒素置換した。以下、20℃の水溶性不 飽和単量体(6)に、対単量体固形分に対して3価のF eイオンとして1質量ppmになる様に市販のFe標準 溶液 (Feイオン濃度;100質量ppm)を1.06 3 g 添加した後、重合開始剤として、過硫酸ナトリウム の10質量%水溶液1.44gとL-アスコルビン酸の 0.5質量%水溶液を0.43g添加したところ、10 秒後に重合が開始し、34分でピーク温度を示した。ピ ーク温度を示してから10分後に重合を終了させた。

【0081】得られた含水ゲル状架橋重合体(6)を実 施例5と同様に裁断、乾燥したのち、同様に粉砕および 分級する事で、吸水性樹脂粉末 (6) を得た。結果を表 3に示す。

[0082]

【表3】

するのにひも力を安し、ヒーク温を							
	温度 (℃)	遷移金属 (質量 ppm)	誘導時間 (秒)	ピーク時間(分)	吸収倍率 (g/g)	水可溶分 (質量%)	
実施例5	40	なし	10	11	47. 2	15. 7	
比較例3	20	なし	30	84	45, 3	15. 9	
実施例6	20	1	10	34	50.0	21.4	

30

【0083】表3で示されるように、フルフラールを用 いることで高温重合や遷移金属存在下での重合も安定的 に行える。

[実施例7] アクリル酸18.0 g及びフルフラール含 有量が70質量ppm(対固形分)のアクリル酸ナトリ ウムの37質量%水溶液190.6g、ポリエチレング リコールジアクリレート(平均エチレングリコールユニ ット数8) 0. 2435g、イオン交換水43. 1gを 用いて、モノマー濃度35質量%、中和率75%の水溶 性不飽和単量体の水溶液 (7) を得、この単量体水溶液 (7)に過硫酸ナトリウム0.048gを溶解させ、窒 素ガスを吹き込んで溶存酸素を追い出した。

【0084】撹拌機、還流冷却器、温度計、窒素ガス導 40 入管および滴下ロートを付した四つロセパラブルフラス コ中にシクロヘキサン389.5gを取り、分散剤とし てエチルセルロース (ハーキュレス社製 品番N-20 0) 1. 77gを加えて溶解させ、窒素ガスを吹き込ん で溶存酸素を追い出した。次いで、単量体水溶液 (7) を上記セパラブルフラスコに加えて225 r p m で攪拌 させることにより分散させた。その後、浴温を65℃に 昇温して重合反応を開始させた後、2時間この温度に保 持して重合を完結させた。重合終了後、シクロヘキサン との共沸脱水により含水ゲル中の大部分の水を留去した 50

後、濾過し、更に80℃で減圧乾燥することにより球状 の吸水性樹脂粉末(7)を得た。結果を表4に示す。

【0085】 [実施例8] フルフラール含有量250p pmのアクリル酸18.0g及びフルフラール含有量が 190質量ppm (対固形分) のアクリル酸ナトリウム の37質量%水溶液190.6g、ポリエチレングリコ ールジアクリレート(平均エチレングリコールユニット 数8) 0. 2435g、イオン交換水11. 0gを用い て、モノマー濃度40質量%、中和率75%の水溶性不 飽和単量体の水溶液(8)を得、この単量体水溶液

(8) に過硫酸ナトリウム 0. 072 g を溶解させ、窒 素ガスを吹き込んで溶存酸素を追い出した。

【0086】撹拌機、還流冷却器、温度計、窒素ガス導 入管および滴下ロートを付した四つロセパラブルフラス コ中にシクロヘキサン389.5gを取り、分散剤とし てエチルセルロース(ハーキュレス社製 品番N-20 0) 1. 77gを加えて溶解させ、窒素ガスを吹き込ん で溶存酸素を追い出した。次いで、単量体水溶液 (8) を上記セパラブルフラスコに加えて225rpmで攪拌 させることにより分散させた。その後、浴温を65℃に 昇温して重合反応を開始させた後、2時間この温度に保 持して重合を完結させた。重合終了後、シクロヘキサン との共沸脱水により含水ゲル中の大部分の水を留去した

27

後、濾過し、更に80℃で減圧乾燥することにより球状 *【0087】 の吸水性樹脂粉末(8)を得た。結果を表4に示す。 * 【表4】

•		2C I (C)	120 11			
		温度	吸収倍率	水可溶分	ΥI	
		(ී)	(g/g)	(質量%)		
	実施例7	6 5	40.9	11.2	4.39	
ĺ	実施例8	65	41.6	17.1	5. 21	

【0088】表4で示されるように、フルフラールを用 いることで高温重合や高濃度重合も温和に重合でき、さ 吸水性樹脂が得られる。

[0089]

【発明の効果】本発明によれば、アクリル酸(塩)を含 む水溶性不飽和単量体の水溶液を架橋重合すると同時に 得られた含水ゲルを細分化する重合工程を含む吸水性樹 脂の製造方法や、アクリル酸(塩)を含む水溶性不飽和 単量体の水溶液を架橋重合する工程と得られた含水ゲル※

※を細分化する工程を含む吸水性樹脂の製造方法におい て、粗大ゲルそのものを発生させない製造方法を提供す らに、逆相懸濁重合では実質着色もなく、Y I ≦ 1 0 の 10 ることができる。また、逆相懸濁重合を適用すると、吸 水性樹脂の重合も温和に制御され、さらに実質着色もな い。さらに、アクリル酸(塩)を含む水溶性不飽和単量 体の水溶液を架橋重合する工程と得られた含水ゲルを細 分化する工程を含む吸水性樹脂の製造方法においては、 高温重合や遷移金属存在下の重合を行う場合において単 量体の安定性が悪いという問題を解決できる製造方法を 提供することができる。

フロントページの続き

(51) Int. C1.

識別記号

FΙ A 6 1 F 13/18 テーマコート'(参考)

C08F 2/10 2/18 20/06

A 4 1 B 13/02

307A В

Fターム(参考) 3B029 BA17

4C003 AA16 AA23

4C098 AA09 CC02 DD05 DD21 DD27

DD28

4J011 AA03 AA05 AC03 HA02 JB09 JB12 JB30 PA25 PB24 PB40

PC02

4J100 AK01P AK08P DA37 EA03 FA02 FA19 FA21 FA28 FA41 TA60

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第3部門第3区分

【発行日】平成17年10月27日(2005.10.27)

【公開番号】特開2003-246812(P2003-246812A)

【公開日】平成15年9月5日(2003.9.5)

【出願番号】特願2002-366968(P2002-366968)

【国際特許分類第7版】

C 0 8 F 2/44 A 6 1 F 5/44 A 6 1 F 13/49 A 6 1 F 13/53 A 6 1 L 15/60 C 0 8 F 2/10 C 0 8 F 2/18 C 0 8 F 20/06

[FI] C 0 8 F 2/44 \mathbf{B} A 6 1 F 5/44 Η C 0 8 F 2/10 C 0 8 F 2/18 C 0 8 F 20/06 3 0 7 A A 6 1 F 13/18 A 4 1 B 13/02

【手続補正書】

【提出日】平成17年7月14日(2005.7.14)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】

アクリル酸(塩)を含む水溶性不飽和単量体の水溶液を架橋重合すると同時に得られた 含水ゲルを細分化する重合工程を含む吸水性樹脂の製造方法において、

前記水溶性不飽和単量体がフルフラールを11~1000質量ppm(対単量体)含有 することを特徴とする、吸水性樹脂の製造方法。

【請求項2】

アクリル酸(塩)を含む水溶性不飽和単量体の水溶液を架橋重合する工程と得られた含 水ゲルを細分化する工程を含む吸水性樹脂の製造方法において、

(A) 前記水溶性不飽和単量体がフルフラールを11~1000質量ppm (対単量体) 含有すること、

(B1) 重合開始剤添加前の水溶液温度である重合開始温度が30℃以上であること、 および、(B2)重合開始剤添加前の前記水溶性不飽和単量体が遷移金属を含有すること 、の2つから選ばれる少なくとも1つであること、および、

(C) 得られた細分化された含水ゲルが、質量平均粒子径 0. 3~4mmで且つ粒子径 10mm以上の粗大ゲルの割合が5質量%以下であること、

を特徴とする、吸水性樹脂の製造方法。

【請求項3】

アクリル酸(塩)を含む水溶性不飽和単量体の水溶液を架橋重合すると同時に細分化された含水ゲルを得る重合工程を含む吸水性樹脂の製造方法において、

前記水溶性不飽和単量体がフルフラールを11~1000質量ppm(対単量体)含有することを特徴とする、吸水性樹脂の製造方法。

【請求項4】

前記架橋重合が水溶液重合であり、細分化された含水ゲルが剪断力を有する重合容器中で重合と同時に得られる、請求項1に記載の製造方法。

【請求項5】

前記架橋重合が水溶液重合であり、細分化された含水ゲルが可動ベルト上での静置重合後の細分化で得られる、請求項2に記載の製造方法。

【請求項6】

前記架橋重合が<u>疎水性有機溶媒中での</u>逆相懸濁重合であり、細分化された含水ゲルが有機溶媒中での逆相懸濁重合と同時に得られる、請求項3に記載の製造方法。

【請求項7】

前記重合工程が、前記水溶性不飽和単量体の水溶液が連続供給および含水ゲルが連続排出される連続重合である、請求項1から6までの何れかに記載の製造方法。

【請求項8】

前記水溶性不飽和単量体の水溶液の濃度が40質量%以上である、請求項1から7までの何れかに記載の製造方法。

【請求項9】

前記水溶性不飽和単量体の水溶液の重合開始温度が 4 0 ℃以上である、請求項 1 から 8 までの何れかに記載の製造方法。

【請求項10】

前記水溶性不飽和単量体の水溶液がメトキシフェノール類をさらに含有する、請求項1から9までの何れかに記載の製造方法。

【請求項11】

重合ないし細分化後に得られた含水ゲルをさらに乾燥および表面架橋する、請求項1か ら10までの何れかに記載の製造方法。

【請求項12】

前記水溶性不飽和単量体の水溶液がさらにフルフラール以外のアルデヒド化合物を 0. 1~300質量ppm含む、請求項1から11までの何れかに記載の製造方法。

【請求項13】

重合開始剤添加前の前記水溶性不飽和単量体の水溶液が遷移金属を 0. 1 ~ 2 p p m 含む、請求項 1 から 1 2 までの何れかに記載の製造方法。

【請求項14】

請求項1から1<u>3</u>までの何れかに記載の製造方法により得られ、アクリル酸および/またはその塩を主成分(その他の単量体は30モル%以下)とする単量体を重合した架橋構造を有し、生理食塩水に対する4.9kPa加圧下吸収倍率が20g/g以上の吸水性樹脂。

【請求項15】

請求項14に記載の吸水性樹脂を含む衛生用品。