projekat

May 10, 2020

0.1 Bank Marketing Data Set

Podaci se odnose na direktne marketinške kampanje (telefonski pozivi) portugalske banke. Cilj klasifikacije je da predvidi da li će se klijent pretplatiti na oročeni depozit.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
```

0.2 ### Priprema i analiza podataka

```
[2]: dataset = pd.read_csv('bank-full.csv', sep = ';')
dataset.replace(('yes', 'no'), (1, 0), True)

benchmark = False
if not benchmark:
    dataset = dataset.drop('duration', axis = 1)

dataset.head(11)
```

```
[2]:
                                marital
                                          education
                                                      default
                                                                balance
                         job
                                                                          housing
                                                                                     loan
         age
           58
                 management
                                married
                                           tertiary
                                                             0
                                                                    2143
                                                                                  1
     1
           44
                                                             0
                                                                      29
                                                                                 1
                                                                                        0
                 technician
                                 single
                                          secondary
     2
           33
               entrepreneur
                                married
                                          secondary
                                                             0
                                                                       2
                                                                                 1
                                                                                        1
     3
           47
                                            unknown
                                                             0
                                                                                  1
                                                                                        0
                blue-collar
                                married
                                                                    1506
     4
           33
                     unknown
                                 single
                                            unknown
                                                             0
                                                                       1
                                                                                 0
                                                                                        0
     5
           35
                 management
                                married
                                           tertiary
                                                             0
                                                                     231
                                                                                        0
     6
           28
                 management
                                 single
                                           tertiary
                                                             0
                                                                     447
                                                                                 1
                                                                                        1
     7
                                                                       2
           42
               entrepreneur
                               divorced
                                           tertiary
                                                             1
                                                                                 1
                                                                                        0
     8
           58
                                                             0
                                                                     121
                                                                                 1
                                                                                        0
                     retired
                                married
                                            primary
     9
           43
                                          secondary
                                                             0
                                                                     593
                                                                                 1
                                                                                        0
                 technician
                                 single
```

```
10
          41
                      admin.
                              divorced secondary
                                                            0
                                                                    270
                                                                                1
                                                                                       0
         contact
                   day month
                               campaign
                                          pdays
                                                  previous poutcome
                      5
                                       1
                                              -1
     0
         unknown
                          may
                                                             unknown
         unknown
                      5
                                       1
                                              -1
                                                             unknown
                                                                       0
     1
                          may
                     5
     2
         unknown
                                       1
                                              -1
                                                          0
                                                             unknown
                                                                       0
                          may
                                              -1
                                                             unknown
     3
         unknown
                     5
                                       1
                                                                       0
                          may
     4
                                       1
         unknown
                     5
                          may
                                              -1
                                                             unknown
                                                                       0
     5
         unknown
                                       1
                     5
                                              -1
                                                          0
                                                             unknown
                                                                       0
                          may
     6
         unknown
                     5
                                       1
                                              -1
                                                          0
                                                             unknown
                                                                       0
                          may
     7
         unknown
                     5
                                       1
                                                             unknown
                          may
                                              -1
                                                                       0
     8
         unknown
                     5
                                       1
                                              -1
                                                             unknown
                          may
     9
         unknown
                     5
                          may
                                       1
                                              -1
                                                             unknown
                                                                       0
                      5
     10
         unknown
                                       1
                                              -1
                                                          0
                                                             unknown
                                                                       0
                          may
     dataset.describe()
[3]:
                                  default
                                                  balance
                                                                  housing
                       age
                                                                                     loan
                            45211.000000
                                                            45211.000000
                                                                            45211.000000
             45211.000000
                                             45211.000000
     mean
                40.936210
                                 0.018027
                                              1362.272058
                                                                 0.555838
                                                                                0.160226
     std
                10.618762
                                0.133049
                                              3044.765829
                                                                 0.496878
                                                                                0.366820
     min
                18.000000
                                0.000000
                                             -8019.000000
                                                                 0.000000
                                                                                0.000000
     25%
                33.000000
                                0.000000
                                                72.000000
                                                                 0.00000
                                                                                0.00000
     50%
                39.000000
                                0.000000
                                               448.000000
                                                                 1.000000
                                                                                0.00000
     75%
                48.000000
                                0.000000
                                              1428.000000
                                                                 1.000000
                                                                                0.00000
     max
                95.000000
                                 1.000000
                                            102127.000000
                                                                 1.000000
                                                                                1.000000
                                 campaign
                                                               previous
                       day
                                                   pdays
                                                                                       У
             45211.000000
                            45211.000000
                                           45211.000000
                                                           45211.000000
                                                                           45211.000000
     count
                15.806419
                                 2.763841
                                               40.197828
                                                                0.580323
                                                                               0.116985
     mean
     std
                 8.322476
                                 3.098021
                                              100.128746
                                                               2.303441
                                                                               0.321406
                                                                               0.00000
     min
                 1.000000
                                 1.000000
                                               -1.000000
                                                               0.00000
     25%
                 8.000000
                                               -1.000000
                                                               0.000000
                                                                               0.00000
                                1.000000
     50%
                                 2.000000
                16.000000
                                               -1.000000
                                                                0.000000
                                                                               0.000000
     75%
                21.000000
                                 3.000000
                                               -1.000000
                                                                0.000000
                                                                               0.000000
     max
                31.000000
                               63.000000
                                              871.000000
                                                             275.000000
                                                                               1.000000
[4]: ages, x = np.arange(3), np.arange(3)
     for age in dataset['age']:
          if age >= 18 and age <= 44:
              ages[0] += 1
         elif age >= 45 and age <= 65:
              ages[1] += 1
         elif age >= 66:
              ages[2] += 1
     plt.figure(figsize = (7, 5))
```

```
sns.barplot(x, ages)
plt.xticks(x, ('odrasle osobe 18-44', 'srednjih godina 45-65', 'stari > 65'))
plt.xlabel('Starostna grupa')
plt.ylabel('Broj')
plt.show()
```



```
[5]: plt.figure(figsize = (15, 5))
    sns.countplot(x = 'job', data = dataset)
    plt.xlabel('Posao')
    plt.ylabel('Broj')
    plt.show()
```



```
[6]: sns.countplot(x = 'default', data = dataset)
  plt.xticks(x, ('Da', 'Ne'))
  plt.xlabel('Kreditno zaduzenje')
  plt.ylabel('Broj')
  plt.show()
```



```
[7]: sns.countplot(x = 'housing', data = dataset)
plt.xticks(x, ('Da', 'Ne'))
plt.xlabel('Stambeni kredit')
plt.ylabel('Broj')
plt.show()
```



```
[8]: sns.countplot(x = 'loan', data = dataset)
plt.xticks(x, ('Da', 'Ne'))
plt.xlabel('Licni zajam')
plt.ylabel('Broj')
plt.show()
```


0.3 ### Korelacije atributa

```
[9]: correlations = dataset.corr()

plt.figure(figsize = (15, 10))
    sns.heatmap(correlations, annot = True)
    plt.xticks(fontsize = 10)
    plt.yticks(fontsize = 10)
    plt.title('Korelacije atributa')
    plt.show()
```


0.4 ### Priprema seta za trening i predikciju

```
[10]: cat_features = [[feature, .0] for feature in list(dataset.select_dtypes(object).

→columns)]

num_features = [[feature, .0] for feature in list(dataset.select_dtypes(exclude_u →= object).columns)]

del num_features[-1]
```

0.5 ### Trening

```
[11]: clf = RandomForestClassifier(warm_start = True, oob_score = True)
      min_estimators = 100
      max_estimators = 2000
      oob_errors = []
      min_oob_error = 1.0
      min_oob_estimator = min_estimators
      plt.figure(figsize = (15, 5))
      for index in range(min_estimators, max_estimators + 1, 100):
          clf.set_params(n_estimators = index)
          clf.fit(dataset_train, y)
          oob error = 1 - clf.oob score
          oob_errors.append((index, oob_error))
          if (oob_error < min_oob_error):</pre>
              min_oob_error = oob_error
              min_oob_estimator = index
              importances = clf.feature_importances_
          xoob, yoob = zip(*oob_errors)
          plt.plot(xoob, yoob)
      plt.plot(min_oob_estimator, min_oob_error, 'o')
```

```
plt.xlim(min_estimators, max_estimators)
plt.title('Stopa 00B gresaka')
plt.xlabel('broj estimatora')
plt.ylabel('stopa greske')
```

[11]: Text(0, 0.5, 'stopa greske')

0.6 ### Izracunavanje vaznosti kategorijalnih i numerickih atributa

```
[12]: if first_run:
          index, cat_feature_index, num_feature_index = (0,) * 3
          last_cat_feature = cat_features[0][0]
          for feature in list(dataset_train):
              if feature.startswith(tuple(cat_feature.rsplit('_', 1)[0] for_
       →cat_feature, importance in cat_features)):
                  if not feature.startswith(last_cat_feature):
                      last_cat_feature = feature.rsplit('_', 1)[0]
                      cat_feature_index += 1
                  cat_features[cat_feature_index][1] += importances[index]
                  num_features[num_feature_index][1] = importances[index]
                  num_feature_index += 1
              index += 1
          feature_importances = num_features + cat_features
          first_run = False
      plt.figure(figsize = (15, 5))
```

```
xfi, yfi = zip(*feature_importances)
plt.bar(xfi, yfi)
plt.xticks(rotation = 90)
plt.title('Vaznost atributa')
plt.xlabel('ime atributa')
plt.ylabel('vaznost')
```

[12]: Text(0, 0.5, 'vaznost')

0.7 ### Predikcija

```
[13]: test_y = clf.predict(dataset_test)

dataset_test_original['y'] = test_y

dataset_test_original.loc[dataset_test_original['y'] == 1].head(10)
```

[13]:		age	job	${ t marital}$	education	default	balance	housing	loan	\
	41828	30	management	single	tertiary	0	536	0	0	
	24088	37	admin.	${\tt married}$	secondary	0	1967	0	0	
	43708	65	retired	married	unknown	0	679	0	0	
	39774	33	management	married	tertiary	0	1323	0	0	
	40429	28	management	single	tertiary	0	492	0	0	
	44583	24	student	single	secondary	0	431	0	0	
	29183	36	management	married	tertiary	0	82	0	0	
	44501	56	technician	divorced	secondary	0	3450	0	0	
	43013	36	technician	married	tertiary	0	341	0	0	
	42269	46	management	married	tertiary	0	2671	0	0	

contact day month campaign pdays previous poutcome y 41828 cellular 15 oct 1 105 1 success 1

```
24088 telephone
                  27
                       oct
                                   1
                                        -1
                                                   0 unknown 1
43708
                                   2
       cellular
                  13
                                       178
                                                   1 success
                       may
39774
       cellular
                   1
                       jun
                                   1
                                        -1
                                                   0 unknown 1
40429
       cellular
                   2
                       jul
                                   1
                                        -1
                                                   0 unknown 1
44583
       cellular
                                 11
                                                   5 success 1
                  19
                       aug
                                       185
       cellular
29183
                   2
                       feb
                                   1
                                       178
                                                   4 success 1
44501
       cellular
                  10
                                   1
                                                   2 success 1
                       aug
                                       181
43013
                                   2
       cellular
                  12
                       feb
                                       183
                                                   1 success 1
42269
       cellular
                                   3
                                        91
                  13
                                                   4 success 1
                       nov
```

0.8 # # # Analiza predikcije gde je y = 1 (pretplatio se na oročeni depozit)

```
[14]: dataset_deposited = dataset_test_original.loc[dataset_test_original['y'] == 1]
[15]: ages, x = np.arange(3), np.arange(3)
for age in dataset_deposited['age']:
    if age >= 18 and age <= 44:
        ages[0] += 1
    elif age >= 45 and age <= 65:
        ages[1] += 1
    elif age >= 66:
        ages[2] += 1

plt.figure(figsize = (7, 5))
sns.barplot(x, ages)
```

plt.xticks(x, ('odrasle osobe 18-44', 'srednjih godina 45-65', 'stari > 65'))

plt.xlabel('Starostna grupa')

plt.ylabel('Broj')

plt.show()


```
[16]: plt.figure(figsize = (15, 5))
    sns.countplot(x = 'job', data = dataset_deposited)
    plt.xlabel('Posao')
    plt.ylabel('Broj')
    plt.show()
```



```
[17]: sns.countplot(x = 'default', data = dataset_deposited)
  plt.xticks(x, ('Da', 'Ne'))
  plt.xlabel('Kreditno zaduzenje')
  plt.ylabel('Broj')
  plt.show()
```



```
[18]: sns.countplot(x = 'housing', data = dataset_deposited)
  plt.xticks(x, ('Da', 'Ne'))
  plt.xlabel('Stambeni kredit')
  plt.ylabel('Broj')
  plt.show()
```



```
[19]: sns.countplot(x = 'loan', data = dataset_deposited)
   plt.xticks(x, ('Da', 'Ne'))
   plt.xlabel('Licni zajam')
   plt.ylabel('Broj')
   plt.show()
```

