Гомоморфизм и изоморфизм колец

Определение. Гомоморфизмом колец A и B называется отображение $\varphi:A\to B$, сохраняющее константы 0,1:

$$\varphi(0_A) = 0_B, \qquad \varphi(1_A) = 1_B,$$

а также операции сложения и умножения:

$$\varphi(\alpha + \alpha') = \varphi(\alpha) + \varphi(\alpha'), \qquad \varphi(\alpha \cdot \alpha') = \varphi(\alpha) \cdot \varphi(\alpha').$$

Определение. Ядром ($\ker(\varphi)$) гомоморфизма $\varphi:A\to B$ называется подмножество в A, которое переводится под действием φ в 0_B . То есть $\ker(\varphi)=\{a\in A\mid \varphi(a)=0_B\}.$

Определение. Образом $(im(\varphi))$ гомоморфизма $\varphi : A \to B$ называется подмножество в B, которое является множеством всех образов элементов из A. То есть $im(\varphi) = \{b \in B \mid \varphi(a) = b, a \in A\}$.

- **1.** Докажите, что свойство $\varphi(0_A) = 0_B$ следует из остальных.
- **2.** Докажите равенства: а) $\varphi(-a) = -\varphi(a)$, б) $\varphi(a^{-1}) = (\varphi(a))^{-1}$.
- **3.** Верно ли, что любой изоморфизм колец является гомоморфизмом? Верно ли обратное?
- **4.** Определите, является ли отображение φ гомоморфизмом. Если является, то найдите его ядро и образ:

a)
$$\varphi: \mathbb{Z} \to \mathbb{Z}$$
, $\varphi(n) = 5n$,

$$\varphi : \mathbb{Z}_3 \to \mathbb{Z}_{12}, \quad \varphi(x) = 4x,$$

B)
$$\varphi: \mathbb{Z}_p \to \mathbb{Z}_p$$
, $\varphi(n) = n^p$,

p — простое.

$$\Gamma$$
) φ : $\mathbb{Z} \to \mathbb{Z}$, $\varphi(x) = x \pmod{10}$,

д)
$$\varphi : \mathbb{C} \to \mathbb{C}$$
, $\varphi(a+bi) = a-bi$,

e)
$$\varphi : \mathbb{R} \to \mathbb{Z}$$
, $\varphi(x) = [x]$,

$$\ddot{e}$$
) $\varphi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $\varphi(x, y) = x + y$,

ж)
$$\varphi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
, $\varphi(x, y) = xy$,

3)
$$\varphi$$
 : $\mathbb{R}[x] \to \mathbb{R}$, $\varphi(p) = p(1)$,

и)
$$\varphi : \mathbb{Z} \to \mathbb{Z}$$
, $\varphi(n) = n^k$.

к)
$$\varphi : \mathbb{C} \to \mathbb{R}^{2 \times 2}$$
, $\varphi(a+bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$.

$$\pi$$
) $\varphi: M_2(\mathbb{Z}) \to \mathbb{Z}$, $\varphi\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = a$.

$$M$$
 $\varphi : \mathscr{F}(\mathbb{R}, \mathbb{R}) \to \mathbb{R}, \quad \varphi(f) = f(1),$

- **5.** Существует ли гомоморфизм а) $\mathbb{Z} \to \mathbb{Z}_n$? б) $\mathbb{Z}_n \to \mathbb{Z}$?
- **6.** Докажите, что не существует гомоморфизма $\mathbb{C} \to \mathbb{R}$
- 7. Докажите, что из $\mathbb Z$ в $\mathbb Z$ существует лишь тождественный гомоморфизм.
- **8.** Докажите, что отображение $\varphi: \mathbb{C} \to \mathbb{R}^{2 \times 2}$, где $\varphi(a+bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ является гомоморфизмом, найдите его ядро.
- **9.** Пусть $f: A \to B$ гомоморфизм. Докажите, что f изоморфизм тогда, и только тогда, когда найдется $g: B \to A$, такое, что fg и gf тождества.
- **10.** Докажите, что множество матриц $R = \left\{ \begin{pmatrix} n & 0 \\ 0 & n \end{pmatrix}, n \in \mathbb{Z} \right\}$ является кольцом, изоморфным \mathbb{Z} .
- **11.** Докажите, что ядро гомоморфизма $\varphi : A \to B$ идеал кольца A.
- **12.** Докажите, что образ гомоморфизма $\varphi: A \to B$ подкольцо кольца B.
- **13.** Пусть I идеал кольца A. Докажите, что отображение $\varphi: A \to A/I$, которое ставит в соответствие элементам кольца их классы эквивалентности в A/I является гомоморфизмом. То есть $\varphi(a) = a + I$. Такой гомоморфизм называется каноническим.

Теорема. Факторкольцо по ядру гомоморфизма φ изоморфно образу φ , то есть $A/\mathrm{Ker}\,\varphi\cong\mathrm{Im}\,\varphi$.

- **14.** Пусть φ канонический гомоморфизм. Докажите, что если J идеал кольца A, содержащий I (т.е. $I \subset J$), то $\varphi(J)$ идеал в A/I.
- **15.** Покажите, что из предыдущей задачи следует, что если I максимальный идеал, то A/I поле.
- 16. Пользуясь результатом задачи 16, постройте поле из 8 элементов.