Practice III

Text classification

Specification

In teams of 3-4 members do the following

- 1) Load the corpus arxiv_normalized_corpus.csv generated in practice II
 - Title and Abstract columns must be concatenated and will be used as features
 - Section colum will be used as target (class)
- 2) Split the corpus in train an test sets using 80% for training and 20% for testing
- 3) Create different text representations of the corpus using unigrams
- 4) Use different machine learning methods to train a model and predict test instances
- 5) Evaluate predictions of models

Corpus split

- Use train_test_split function of scikit-learn
- Instance of corpus should be shuffled (shuffled = True)
- Set random seed (random_state=0)

Text representation

- Use the following text representation methods:
 - Binary
 - Frequency
 - TF-IDF

Machine learning methods

- Try different machine learning (ML) algorithms. The following algorithms are known to perform well in text classification:
 - Naïve Bayes Multinomial (MultinomialNB)
 - Logistic Regression (LogisticRegression)
 - Support Vector Machines (SVC)
 - Multi-layer Perceptron (*MLPClassifier*)
- At least 3 ML algorithms should be tested
- It would help if you tuned the algorithm hyperparameters to improve the results

Evaluation metrics

- A classification report (classification_report) should be applied to the predictions on the test set for each variation of:
 - Text representation
 - Machine learning method
 - Classifier hyperparameters

Evidence

- Source code
- A report in PDF format describing the following:
 - Task to be solved
 - Selected machine learning methods
 - Adjusted hyperparametersl
 - Classification report of each experiment

Evidence

A table describing the experiments performed showing the best configuration of each ML method

Machine learning method	ML method parameters	Text representation	Average f-score macro
Logistic regression	max_iter = 200	binarized	0.85
Naïve Bayes	default	frequency	0.88
Multilayer perceptron	hidden_layer_si zes = (200, 100)	Tf-idf	0.9