GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA

Electrónica Analógica

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Quinto Semestre	170503	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante el conocimiento, la habilidad y la aptitud para entender, manipular y diseñar circuitos electrónicos analógicos de dc y ac, para resolver problemas que se presentan en el campo de la ingeniería electrónica.

TEMAS Y SUBTEMAS

1. Componentes electrónicos

- 1.1 Símbolos en la electrónica (resistencias, condensadores, bobinas, diodos, transistores, transformadores, fusibles, C. Integrados, Reles, LCD, Potenciómetro.
- 1.2 Identificación de resistores por código de colores.
- 1.3 Tipos de resistores, (potencia).
- 1.4 Identificación de condensadores por código de colores.
- 1.5 Tipos de capacitares, (voltaje).
- 1.6 Identificación de Inductores por código de colores.

2. Instrumentos de medición

- 2.1 Galvanómetro de D'Arsoval.
- 2.2 Ohmetro.
- 2.3 Voltímetro.
- 2.4 Amperimetro.
- 2.5 Puente Wheatstone (resistencias y capacitores).
- 2.6 Puente Maxwell-Wien. (Inductancias).
- 2.7 Osciloscopio.

3. Diodo semiconductor

- 3.1 Características físicas.
- 3.2 Diodo ideal vs. Diodo real.
- 3.3 Estructura física de la unión P-N abrupta. *
- 3.4 Diagrama de bandas de energía. *
- 3.5 Potencial de contacto, aproximación de vaciamiento.
- 3.6 La unión P-N como rectificadora de la corriente.
- 3.7 Características V-I del diodo semiconductor.
- 3.8 Modificaciones al modelo ideal.
- 3.9 Circuito equivalente de pequeña señal.
- 3.10 El diodo como elemento de circuito.
- 3.11 Especificaciones de los diodos.
- 3.12 Diodo Zener.
- 3.13 Aplicaciones elementales: recortadores, sujetador, doblador, rectificadores y regulador de voltaje.

4. Transistor Bipolar

- 4.1 Estructuras y tipos.
- 4.2 El transistor bipolar ideal.
- 4.3 Modos de funcionamiento: estudio cualitativo.
- 4.4 Configuraciones. Análisis cuantitativo de las corrientes.

COORDINACIÓN GENERAL DE EDUCACIÓN

MEDIA SUPERIOR Y SUPERIOR

- 4.5 Características de entrada y de salida.
- 4.6 Modelo equivalente de DC.
- 4.7 Polarización del transistor bipolar de unión.
- 4.8 Elección del punto de polarización.
- 4.9 Recta de carga.
- 4.10 Análisis de circuitos de polarización para un punto de trabajo específico.
- 4.11 Transistor de efecto de campo FET.

5. Amplificador operacional 🗸

- 5.1 Generalidades.
- 5.2 Amplificador Inversor.
- 5.3 Amplificador No Inversor.
- 5.4 Sumador.
- 5.5 Sumador-Restador.
- 5.6 Amplificador de Instrumentación.
- 5.7 Relación de Rechazo de Modo Común.
- 5.8 Rectificador Ideal.
- 5.9 Fuentes de tensión y de corriente.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor tanto en el aula como en el laboratorio con un constante uso de aparatos y equipos de cómputo en los aspectos teóricos y prácticos, fuerte trabajo extraclase de los alumnos con los aparatos y el equipo de cómputo, generando solución a problemas sobre los temas del curso. Las sesiones se desarrollaran utilizando medios de apoyo didáctico como son los retroproyectores, las videocaseteras, los programas de cómputo educativo, etc.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales y un examen final. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso. Además se considerará el trabajo extraclase, la participación durante las sesiones del curso y la asistencia a las asesorías. Esto tendrá una equivalencia del 100% en la calificación final.

BIBLIOGRAFÍA

Libros Básicos:

- 1. Electrónica Digital Integrada, Taub, H. y Schilling, D., Ed. Marcombo. 1984.
- Electrónica: Teoría de Circuitos, Boylestad L. Robert, Nashelsky Louis, Prentice-Hall, 1997 TK7867 B69-2000.
- 3. Amplificadores Operacionales y Circuitos Integrados Lineales, Coughlin, Robert F. \ Driscoll, Frederick F. México: Prentice Hall Hispanoamericana, 2000. TK7871.2 C68-2000.
- Instrumentación Electrónica Moderna y Técnicas de Medición, William D. Cooper y Albert D. Helfrick. Prentice Hall Hispanoamericana, 1991.

Libros de Consulta:

- Principios De Electrónica, Malvino, Albert Paul, México: MCGRAW-HILL, 1995. TK7815 M34-1995.
- Dispositivos Electrónicos y Amplificación de Señales, SEDRA, ADEL S. \ SMITH KENNETH C, México Mcgraw-Hill 1992.
- 3. Electrónica, Publicaciones, Bolgert, P. A., Marcombo, México 1983.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero en Electrónica, Maestría o Doctorado en Electrónica o Áreas Afines.

