ANL L3

19 October, 2023 11:35

 $\mathbf{a)} \ \ (x^3 + \sqrt{x^6 + 2023^2})^{-1}, \qquad \mathbf{b)} \ \ \log_2 x - 2, \qquad \mathbf{c)} \ \ x^{-3}(\pi/2 - x - \mathrm{arcctg}(x))$

może wiązać się z utratą cyfr znaczących wyniku? Zaproponuj sposoby obliczenia wyniku dokładniejszego. Pokaż, że sposoby te działają w praktyce.

L3.2. [Włącz komputer!] 1 punkt Podaj (w miarę) bezpieczny numerycznie algorytn obliczania zer równania kwadratowspo $ax^2 + bx + c = 0$ ($a \neq 0$). Przeprowadź testy dla odpowiednio dobranych wartości a, b i e pokazujące, że Twój algorytm jest lepsyc od metody szkolnej bazującej jedynie na dobrze znanych wzorach $x_{1,2} = (-b \pm \sqrt{b^2 - 4ac})/(2a)$.

J.3.3. 1 punkt Wyprowadź wzór na wskaźnik uwarunkowania zadania obliczania wartości tunkcji f w punkcie x.

L3.4. $\fbox{2}$ punkty] Sprawdź dla jakich wartości xzadanie obliczania wartości funkcji f jest źle uwarunkowane, jeśli:

a) $f(x) = (x + 2023)^7$, b) $f(x) = \cos(3x)$, c) $f(x) = (1 + x^6)^{-1}$.

L3.5. [2 punkty] Zalóżmy, że dla każdego $x\in X_{fl}$ zachodzi fl
(tg(x)) = tg(x)(1+\varepsilon_x), gdzie | $\varepsilon_x|\leq 2^{-l}$, natomiast
t oznacza liczbę bitów przeznaczoną na zapamiętanie mantysy. Nich dane będą liczby maszynowe y_t, y_x, y_t, y_t oraz taka liczba maszynowa x, że x · 2 · 8 też jest ficzbą maszynową. Sprawdź czy poniższy algorytm obiczania wartości wyrażenia
t.

 $\sum_{i=1}^{4} y_i \operatorname{tg}(4^{-i}x) \text{ jest numerycznie poprawny:}$

S:=0;

for i from 1 to 4 do S:=S+y[i]*tg(4^(-i)*x) od;

Return(S

L3.6. Tpunkt Sprawdź czy następujący algorytm obliczania wartości wyrażenia $w(x):=x+4x^{-1}$ $(x\neq 0)$ jest algorytmem numerycznie poprawnym:

u:=x; v:=4/x;

. . .

W rozważaniach przyjmij, że \boldsymbol{x} jest liczbą maszynową.

L3.7. $\boxed{2}$ punkty Zbadaj czy podany niżej algorytm wyznaczania iloczynu liczb maszynowych x_1,x_2,\dots,x_n (zakładamy zatem, że rd $(x_k)=x_k,\,1\le k\le n$) jest algorytmem numerycznie poprawnym.

I:=x[n];

for k=n-1 downto 1

do I:=I*x[k] end;

return(I)

200. 1 2 3 9 5 6 7 011 elct. 12 1 2 1 2 10