

Richiami di programmazione lineare e teoria della dualità

ver 2.0.0

Fabrizio Marinelli

fabrizio.marinelli@univpm.it tel. 071 - 2204823

Perché?

- Alcuni problemi combinatorici (modellati con Programmazione Lineare Intera) possono essere risolti anche nel continuo e quindi con algoritmi per la Programmazione Lineare.
- In alcuni casi (per esempio nell'ottimizzazione su reti) alcuni algoritmi utilizzati sono specializzazioni dell'algoritmo del simplesso
- Negli algoritmi enumerativi generali per la Prog. Lineare Intera, la Prog. Lineare è utilizzata per calcolare una stima del valore ottimo del problema intero
- Le condizioni di ottimalità, derivanti dalla teoria della dualità, sono utilizzate per progettare algoritmi esatti per problemi combinatorici

- Programmazione Lineare
- Geometria della PL
- Sistemi di equazioni lineari e PL
- Algoritmo del simplesso
- Teoria della dualità

- Programmazione Lineare
- Geometria della PL
- Sistemi di equazioni lineari e PL
- Algoritmo del simplesso
- Teoria della dualità

Riferimento: C. Vercellis – capitolo 3.1

Programmazione Lineare

$$\max z = \mathbf{c}^{\mathrm{T}} \mathbf{x}$$
$$\mathbf{A} \mathbf{x} \le \mathbf{b}$$

- $\mathbf{c}^{\mathrm{T}}\mathbf{x}$ funzione obiettivo
- $X = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \leq \mathbf{b} \}$ regione ammissibile

Incognite del problema

- $\mathbf{x} \in \mathbb{R}^n$ vettore delle *variabili decisionali*. Ogni $\mathbf{x} \in X$ è una soluzione ammissibile (cioè un vettore che soddisfa <u>tutti</u> i vincoli) mentre ogni $\mathbf{y} \notin X$ è una soluzione inammissibile.
- $\chi \in \mathbb{R}$ valore che assume la funzione obiettivo in corrispondenza di una soluzione $\mathbf{x} \in X$

Parametri del problema

- $\mathbf{c} \in \mathbb{R}^n$ vettore dei coefficienti (di *costo* o di *profitto*) della f.o.
- $\mathbf{b} \in \mathbb{R}^m$ vettore dei *termini noti* dei vincoli
- $A \in \mathbb{R}^{m \times n}$ matrice dei coefficienti dei vincoli (matrice tecnologica)

Programmazione lineare (PL): esempio

Un esempio di problema di programmazione lineare con 2 variabili e 4 vincoli:

```
max z = x_1 + 3x_2

C1: 6x_1 + 10x_2 \le 30

C2: 3x_1 + 2x_2 \ge 6

C3: x_1 - 2x_2 \ge -1

C4: x_2 \ge 1/2

Possiamo rappresentare graficamente il problema...
```

Esempio: un problema di PL in R²

Esempio: un problema di PL in R²

[Definizioni]

- La soluzione y rende attivo il vincolo $\mathbf{a}^{\mathrm{T}}\mathbf{x} \leq b$ se $\mathbf{a}^{\mathrm{T}}\mathbf{y} = b$
- La soluzione y rende inattivo il vincolo $\mathbf{a}^{\mathrm{T}}\mathbf{x} \leq b$ se $\mathbf{a}^{\mathrm{T}}\mathbf{y} \leq b$
- Il vincolo $\mathbf{a}^T \mathbf{x} \leq b$ è ridondante rispetto al sistema di vincoli $\mathbf{A} \mathbf{x} \leq \mathbf{b}$ se ogni soluzione di $\mathbf{A} \mathbf{x} \leq \mathbf{b}$ è anche una soluzione di $\mathbf{a}^T \mathbf{x} \leq b$

Soluzione di un problema di PL

- Un problema di PL (in forma di massimo) può
 - 1. essere *ammissibile* con una o più *soluzioni ottime finite*. La soluzione $\mathbf{x} \in X$ è ottima se $\forall \mathbf{y} \in X$ $\mathbf{c}^T\mathbf{x} \geq \mathbf{c}^T\mathbf{y}$.
 - 2. essere vuoto o *inammissibile* $(X = \emptyset)$
 - 3. essere *illimitato* superiormente; ciò accade quando $\forall \delta \in \mathbb{R} \ \exists \mathbf{x} \in X : \mathbf{c}^T \mathbf{x} > \delta$

Risolvere un problema di PL significa determinare se è *illimitato* o *inammissibile*, ovvero produrre **una** soluzione *ottima finita*.

Equivalenza tra problemi di PL

Due problemi di PL, P_1 con regione ammissibile X_1 e P_2 con regione ammissibile X_2 , sono equivalenti se e solo se

- sono entrambi inammissibili, oppure se
- sono entrambi illimitati, oppure se
- esistono due trasformazioni $\theta: X_1 \to X_2$ e $\sigma: X_2 \to X_1$ tali che $\forall \mathbf{x} \in P_1$ esiste una soluzione $\theta(\mathbf{x})$ di P_2 di pari costo e $\forall \mathbf{x} \in P_2$ esiste una soluzione $\sigma(\mathbf{x})$ di P_1 di pari costo

[Nota] L'equivalenza dei problemi di PL non riguarda la dimensione dei problemi (numero di variabili e vincoli)

Trasformazioni (1)

Le seguenti regole trasformano un problema di PL in uno equivalente che tuttavia può avere un **numero diverso** di variabili e vincoli.

[Regola 1]

$$\max \mathbf{c}^{\mathrm{T}} \mathbf{x} \equiv -\min (-\mathbf{c})^{\mathrm{T}} \mathbf{x}$$

Un problema di massimo si trasforma in un problema di minimo equivalente cambiando il segno ai coefficienti di costo

[Regola 2]

$$\mathbf{a}^{\mathrm{T}}\mathbf{x} \le b \equiv \begin{cases} \mathbf{a}^{\mathrm{T}}\mathbf{x} + s = b \\ s \ge 0 \end{cases}$$

Un vincolo di \leq si trasforma in un vincolo di uguaglianza <u>sommando</u> a $\mathbf{a}^{T}\mathbf{x}$ una variabile non negativa (detta *variabile di slack*)

• [Regola 3]

$$\mathbf{a}^{\mathrm{T}}\mathbf{x} \ge b \equiv \begin{cases} \mathbf{a}^{\mathrm{T}}\mathbf{x} - s = b \\ s \ge 0 \end{cases}$$

Un vincolo di \geq si trasforma in un vincolo di uguaglianza <u>sottraendo</u> a $\mathbf{a}^{\mathrm{T}}\mathbf{x}$ una variabile non negativa (detta *variabile di surplus*)

Trasformazioni (2)

[Regola 4]

$$\mathbf{a}^{\mathrm{T}}\mathbf{x} \ge b \equiv (-\mathbf{a})^{\mathrm{T}}\mathbf{x} \le -b$$

Un vincolo di \geq si trasforma in un vincolo di \leq (e viceversa) cambiando il segno dei coefficienti e del termine noto

[Regola 5]

$$\mathbf{a}^{\mathrm{T}}\mathbf{x} = b \equiv \begin{cases} \mathbf{a}^{\mathrm{T}}\mathbf{x} \leq b \\ \mathbf{a}^{\mathrm{T}}\mathbf{x} \geq b \end{cases}$$

Un vincolo di uguaglianza può essere sostituito da una coppia di vincoli di \leq e \geq

[Regola 6]

$$x \in \mathbf{R} \equiv \begin{cases} x = x^{+} - x^{-} \\ x^{+} \ge 0, x^{-} \ge 0 \end{cases}$$

Una variabile non vincolata può essere rimpiazzata dalla differenza di due variabili vincolate. In alternativa *x* può essere ricavata da una equazione e sostituita negli altri vincoli.

Forme dei problemi di PL

- Problema in forma generale: $z = \max\{\mathbf{c}^T\mathbf{x}: \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{x} \in \mathbb{R}^n\}$ $z = \min\{\mathbf{c}^T\mathbf{x}: \mathbf{A}\mathbf{x} \geq \mathbf{b}, \mathbf{x} \in \mathbb{R}^n\}$
- Problema in forma standard: $z = \max/\min\{\mathbf{c}^T\mathbf{x}: \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}, \mathbf{x} \in \mathbb{R}^n\}$

▶ Utilizzando le Regole 1 – 6, un problema in forma generale può sempre essere posto in forma standard e viceversa.

[Proposizione] Ogni problema di PL può essere posto in forma generale o standard.

La Programmazione Lineare (PL)

Un modello di Programmazione Lineare

Riferimento: C. Vercellis – capitoli 3.2 e 7.3

Geometria della PL

poliedri e politopi: rappresentazione esterna

[Definizione] Un poliedro è l'intersezione di un numero finito m di semispazi affini di \mathbb{R}^n .

[Definizione] Un politopo è un poliedro limitato.

Un insieme $S \subset \mathbb{R}^n$ si dice limitato se esiste una costante M tale che ogni componente di ogni elemento di S è limitato, in valore assoluto, da M.

poliedri e politopi: rappresentazione esterna

[Osservazione] Ogni sistema di equazioni/disequazioni lineari definisce un poliedro. In particolare:

- \emptyset , \mathbb{R}^n sono poliedri;
- la regione ammissibile $X = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \leq \mathbf{b} \} \subseteq \mathbb{R}^n$ di un problema di PL è un poliedro indicato con $P(\mathbf{A},\mathbf{b})$;
- una sfera <u>non è</u> un poliedro.

vertici

[Definizione] un punto \mathbf{v} di un poliedro P si dice vertice di P se esiste un vettore \mathbf{c} tale che $\mathbf{c}^{\mathrm{T}}\mathbf{v} < \mathbf{c}^{\mathrm{T}}\mathbf{x}$ per tutti gli $\mathbf{x} \in P$ diversi da \mathbf{v}

In altre parole \mathbf{v} è un vertice di P se esiste **una qualche** funzione obiettivo $\mathbf{c}^{\mathrm{T}}\mathbf{x}$ per la quale \mathbf{v} è **l'unica** soluzione ottima del problema di PL associato a P.

Insiemi convessi

[Definizione] un insieme $Q \subseteq \mathbb{R}^n$ è convesso se $\forall x, y \in Q$ con $x \neq y$ ogni loro *combinazione convessa* appartiene a Q, cioè:

$$\mathbf{z} = \lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in Q$$
 per ogni $\lambda \in [0,1]$

in generale un vettore \mathbf{w} è combinazione convessa di m vettori $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ se

$$\mathbf{w} = \sum_{i=1}^{m} \lambda_i \mathbf{x}_i \quad \text{con} \quad \sum_{i=1}^{m} \lambda_i = 1, \ \lambda_1, ..., \lambda_m \ge 0$$

Involucro convesso

[Definizione] L'involucro convesso di $S = \{\mathbf{x}_1, ..., \mathbf{x}_m\} \subseteq \mathbb{R}^n$ è l'insieme $conv(S) \subseteq \mathbb{R}^n$ di tutte le combinazioni convesse di vettori in S.

Funzioni convesse

[Definizione] una funzione $f: \mathbb{R}^n \to \mathbb{R}^n$ è convessa se $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\lambda \in [0,1]$ e $\mathbf{z} = \lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$ si ha

[Proposizione] Un problema di PL è un problema di ottimizzazione convessa.

Ottimizzazione convessa

Consideriamo un problema P di ottimizzazione convessa, cioè un problema in cui la funzione obiettivo $f: X \to \mathbf{R}$ è convessa e la regione ammissibile X è un insieme convesso

$$z = \min f(\mathbf{x})$$
$$\mathbf{x} \in X$$

[Proposizione] Ogni ottimo locale \mathbf{x}' di P è anche un ottimo globale.

Teorema fondamentale della PL

[Teorema] di rappresentazione *interna* (Weyl-Minkowski, 1936) (caso limitato):

Un poliedro *P* non vuoto e limitato (*politopo*) coincide con l'<u>involucro</u> convesso dei suoi vertici

[Teorema] fondamentale della PL

Se un problema di PL ammette un ottimo finito allora esiste una soluzione ottima che è un vertice di *P*.

Osservazioni

- Il teorema fondamentale della PL richiede la conoscenda della *rappresentazione interna* del poliedro. In generale però un problema di PL è descritto da un sistema di equazioni/disequazioni lineari (*rappresentazione esterna*).
- Se il problema è posto in forma standard $P: \max\{\mathbf{c}^T\mathbf{x}: \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}, \mathbf{x} \in \mathbb{R}^n\}$, una qualsiasi soluzione ammissibile di P è anche una soluzione del <u>sistema di equazioni lineari</u> $\mathbf{A}\mathbf{x} = \mathbf{b}$ (ma attenzione! non vale il viceversa)

Sistemi di equazioni lineari e Programmazione lineare

Sistemi di equazioni lineari

Un sistema di equazioni lineari in m equazioni e n incognite (con $m \le n$) ha la seguente forma:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots, + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots, + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots, + a_{mn}x_n = b_m \end{cases}$$

Sistemi di equazioni lineari

In forma compatta il sistema si scrive

$$\mathbf{A}\mathbf{x} = \mathbf{b} \qquad \text{con } \mathbf{A}(m \times n), \mathbf{x} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}$$

$$\mathbf{A}_{1} \times_{1} + \mathbf{A}_{2} \times_{2} + \dots + \mathbf{A}_{n} \times_{n} = \mathbf{b}$$

o anche

oppure

$$\begin{cases} \mathbf{a}_1^{\mathrm{T}} \mathbf{x} = b_1 \\ \vdots \\ \mathbf{a}_m^{\mathrm{T}} \mathbf{x} = b_m \end{cases}$$

La matrice **A** | **b** ottenuta giustapponendo il vettore **b** alla matrice **A** viene detta matrice estesa (o completa).

Soluzione di un sistema di equazioni lineari

$$\begin{cases} x_1 + 2x_2 + x_4 = 7 \\ x_2 + x_3 + x_4 + x_5 = 24 \\ x_1 - 3x_3 + 2x_5 = 8 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + x_4 = 7 \\ x_3 + 4/5 x_2 + 3/5 x_4 = 47/5 \\ x_5 + 1/5 x_2 + 2/5 x_4 = 73/5 \end{cases}$$

Matrice di base

[Definizione] Una matrice di base è una sottomatrice quadrata **B** di $\mathbf{A}(m \times n)$ non singolare, cioè con $\det(\mathbf{B}) \neq 0$, e di ordine m.

Si dice che $\mathbf{B}(m \times m)$ è una matrice *di base* perché è formata da *m* vettori linearmente indipendenti che quindi costituiscono una base per lo spazio vettoriale \mathbb{R}^m .

$\mathbf{A}(3\times5)$					b
1	2	0	1	0	7
0	1	1	1	1	24
1	0	-3	0	2	8
x_1	\mathcal{X}_2	χ_3	\mathcal{X}_4	χ_5	

$$\mathbf{B}(\mathbf{3} \times \mathbf{3}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -3 & 2 \end{bmatrix}$$

B è una matrice *di base* perché è quadrata di ordine 3 e non singolare

Una volta individuata una matrice di base **B**, la matrice **A** può essere riscritta separando le colonne in base dalle colonne fuori base:

$$\mathbf{A} = [\mathbf{B} \mid \mathbf{N}]$$
 con $\mathbf{B}(m \times m)$ e $\mathbf{N}(m \times n - m)$

$$\mathbf{B}(3\times3)$$
 $\mathbf{N}(3\times2)$
 \mathbf{b}

 1
 0
 0
 2
 1
 7

 0
 1
 1
 1
 1
 24

 1
 -3
 2
 0
 0
 8

 x_1
 x_3
 x_5
 x_2
 x_4

Coerentemente, il vettore x delle incognite può essere scritto come:

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_{\mathrm{B}} & m \text{ componenti:} & \text{variabili di base} \\ \mathbf{x}_{\mathrm{N}} & n - m \text{ componenti:} & \text{variabili fuori base} \end{bmatrix}$$

B	(3×3)		N (3	8×2)	b
1	0	0	2	1	7
0	1	1	1	1	24
1	-3	2	0	0	8
\mathcal{X}_1	χ_3	χ_5	χ_2	χ_4	

Con questa notazione, il sistema lineare Ax = b può essere riscritto come:

$$\begin{bmatrix} \mathbf{B} \mid \mathbf{N} \end{bmatrix} \begin{vmatrix} \mathbf{x}_{\mathbf{B}} \\ \mathbf{x}_{\mathbf{N}} \end{vmatrix} = \mathbf{b} \quad \text{cioè}$$

$$\mathbf{B} \cdot \mathbf{x}_{\mathrm{B}} + \mathbf{N} \cdot \mathbf{x}_{\mathrm{N}} = \mathbf{b}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_5 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 7 \\ 24 \\ 8 \end{bmatrix}$$

Applicare il metodo di Gauss-Jordan equivale a invertire **B** (l'inversa **B**⁻¹ esiste perché **B** è non singolare). Analiticamente:

$$\mathbf{B} \cdot \mathbf{x}_{\mathrm{B}} + \mathbf{N} \cdot \mathbf{x}_{\mathrm{N}} = \mathbf{b}$$
 pre-moltiplicando per \mathbf{B}^{-1}
$$\mathbf{B} \cdot \mathbf{x}_{\mathrm{B}} + \mathbf{B}^{-1} \, \mathbf{N} \cdot \mathbf{x}_{\mathrm{N}} = \mathbf{B}^{-1} \, \mathbf{b}$$
 cioè

$$\mathbf{I} \cdot \mathbf{x}_{\mathrm{B}} + \mathbf{B}^{-1} \, \mathbf{N} \cdot \mathbf{x}_{\mathrm{N}} = \mathbf{B}^{-1} \, \mathbf{b}$$

$$(\mathbf{A}^{(3)}|\mathbf{b}^{(3)}) = \begin{bmatrix} \mathbf{I} & \mathbf{B}^{-1}\mathbf{N} & \mathbf{B}^{-1}\mathbf{b} \\ 1 & 0 & 0 & 2 & 1 & 7 \\ 0 & 1 & 0 & 4/5 & 3/5 & 47/5 \\ 0 & 0 & 1 & 1/5 & 2/5 & 73/5 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_5 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 4/5 & 3/5 \\ 1/5 & 2/5 \end{bmatrix} \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 7 \\ 47/5 \\ 73/5 \end{bmatrix}$$

$$x_1 \quad x_3 \quad x_5 \quad x_2 \quad x_4$$

$$\mathbf{I} \cdot \mathbf{x}_{\mathrm{B}} + \mathbf{B}^{-1} \, \mathbf{N} \cdot \mathbf{x}_{\mathrm{N}} = \mathbf{B}^{-1} \, \mathbf{b} \qquad \text{da cui}$$
$$\mathbf{x}_{\mathrm{B}} = \mathbf{B}^{-1} \, \mathbf{b} - \mathbf{B}^{-1} \, \mathbf{N} \cdot \mathbf{x}_{\mathrm{N}}$$

Segue che la soluzione del sistema associata alla base B è:

$$\mathbf{x} = \begin{bmatrix} \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{\mathbf{N}} \\ \mathbf{x}_{\mathbf{N}} \end{bmatrix}$$

Il sistema ha n-m>0 gradi di libertà (e quindi infinite soluzioni) dato che le n-m componenti non in base di $\mathbf{x_N}$ possono assumere valori arbitrari.

Ponendo
$$\mathbf{x_N} = \mathbf{0}$$
 si ottiene la soluzione: $\mathbf{x} = \begin{bmatrix} \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} \end{bmatrix}$

Soluzione di Base (Ammissibile) – SBA

[**Definizione**] La particolare soluzione $\mathbf{x} = [\mathbf{B}^{-1}\mathbf{b}, \mathbf{0}]$ del sistema, che si ottiene annullando le componenti fuori base, è detta soluzione di base associata alla matrice di base \mathbf{B}

Considerando il problema di PL in forma standard

$$P: \max\{\mathbf{c}^{\mathrm{T}}\mathbf{x}: \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}, \mathbf{x} \in \mathbb{R}^n\}$$

allora

[Definizione] Se $\mathbf{B}^{-1}\mathbf{b} \geq \mathbf{0}$ allora $\mathbf{x} = [\mathbf{B}^{-1}\mathbf{b}, \mathbf{0}]$ è *anche* una soluzione del problema P e per questo è detta soluzione di base ammissibile, in breve SBA, di P

Soluzione di Base (Ammissibile) – SBA

Il sistema finale rispetto alla Base
$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -3 & 2 \end{bmatrix}$$
 è:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_5 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 4/5 & 3/5 \\ 1/5 & 2/5 \end{bmatrix} \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 7 \\ 47/5 \\ 73/5 \end{bmatrix}$$

$$\begin{cases} x_1 + 2x_2 + x_4 = 7 \\ x_3 + 4/5 x_2 + 3/5 x_4 = 47/5 \\ x_5 + 1/5 x_2 + 2/5 x_4 = 73/5 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + x_4 = 7 \\ x_3 + 4/5 x_2 + 3/5 x_4 = 47/5 \\ x_5 + 1/5 x_2 + 2/5 x_4 = 73/5 \end{cases}$$

Ponendo
$$x_N = 0$$
 si ottiene

Ponendo
$$\mathbf{x_N} = \mathbf{0}$$
 si ottiene
$$\begin{cases} x_1 = 7 \\ x_3 = 47/5 \\ x_5 = 73/5 \end{cases}$$

La soluzione di base è
$$\mathbf{x} = \begin{bmatrix} 7 & 47/5 & 73/5 & 0 & 0 \end{bmatrix}$$

La soluzione è anche una soluzione di base ammissibile

Il ponte tra geometria e algebra

Il teorema fondamentale della PL afferma che se esiste una soluzione ottima, esiste un vertice ottimo.

Se il problema è posto in forma standard, il metodo di Gauss-Jordan permette di calcolare analiticamente una soluzione (ammissibile) di base

Qual è il legame tra **vertici** e **SBA**?

Vertici e SBA

[Teorema] Un vettore \mathbf{v} è una SBA di un problema P di PL $\underline{\mathbf{se}}$ e $\underline{\mathbf{solo}}$ $\underline{\mathbf{se}}$ è un vertice del poliedro associato $P(\mathbf{A}, \mathbf{b})$.

Enumerare le SBA di P <u>equivale</u> a enumerare i <u>vertici</u> del poliedro P(**A**, **b**)

Nonostante le variabili siano continue, un problema di PL ha una struttura discreta: se esiste, si può ottenere una soluzione ottima generando <u>esplicitamente</u> tutte le SBA

Un algoritmo per la PL

Il numero di basi (e di SBA) è <u>al più</u> pari ai possibili modi di scegliere m tra le n colonne della matrice $\mathbf{A}(m \times n)$ – le combinazioni semplici. Questa quantità è data dal coefficiente binomiale

$$C_{(n,m)} = \binom{n}{m} = \frac{n!}{m!(n-m)!}$$

Il coefficiente binomiale è un numero che cresce molto velocemente

Riferimento: C. Vercellis – capitolo 4

Algoritmo del simplesso

Algoritmi iterativi di ottimizzazione

Schema di ricerca iterativo

<u>Idea generale</u>: determinare una successione di soluzioni ammissibili che converga a un punto stazionario (o a una soluzione che soddisfi un criterio di ottimalità prestabilito)

Algoritmi iterativi di ottimizzazione

- Algoritmo iterativo di discesa (o di ascesa):
 - 1. Si parte da una soluzione ammissibile x (se esiste)
 - 2. Si esplora un opportuno intorno di x allo scopo di individuare una direzione d che sia *ammissibile* e *migliorante* rispetto alla funzione obiettivo
 - 3. se \mathbf{d} esiste ci si sposta di una certa ampiezza lungo tale direzione in un nuovo punto ammissibile \mathbf{x}' e si torna al punto 2.
 - 4. se d non esiste, x' è un minimo locale; l'algoritmo termina.

Esempio: direzioni ammissibili e miglioranti

- $\mathbf{d_1}$ è una direzione non ammissibile
- d₂ è una direzione ammissibile ma non migliorante
- d_3 è una direzione ammissibile e migliorante

Algoritmi iterativi e algoritmo del simplesso

Algoritmo del simplesso (Dantzig, 1947)

algoritmo iterativo di discesa in cui:

- le soluzioni ammissibili esplorate sono i vertici del poliedro;
- le direzioni ammissibili sono gli spigoli del poliedro.

► Caratteristiche principali

- termina sempre in un numero finito di passi;
- Oltre al calcolo della soluzione ottima, è in grado di individuare i casi di inammissibilità e illimitatezza;
- anche se di natura esponenziale, è mediamente efficiente (risolve problemi con milioni di variabili e vincoli in pochi secondi)

Algoritmo del simplesso

- 1. Inizializzazione: Si individua (se esiste) un vertice v di partenza.
- 2. Valutazione dell'intorno: Si valutano le direzioni **d** corrispondenti agli spigoli che toccano **v** (intorno di **v**)
 - a) Illimitatezza: Se una di queste è un «raggio del poliedro» lungo il quale la funzione obiettivo migliora, il problema è illimitato.
 - b) Spostamento: se esiste una direzione **d** che conduce a un vertice **w** in cui la funzione obiettivo migliora, **w** diventa il nuovo vertice corrente e si torna al punto 2.
 - c) Ottimalità: se tale direzione non esiste, v è la soluzione ottima del problema.

Forma canonica

$$\max z = \mathbf{c}^{\mathrm{T}} \mathbf{x}$$
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
$$\mathbf{x} \ge \mathbf{0}$$

Una volta individuata una matrice di base **B**, il problema può essere riscritto in funzione di **B** come (*problema ridotto*)

$$\begin{aligned} \mathbf{c_B}^T \mathbf{B}^{-1} \mathbf{b} + \max \ (\mathbf{c_N}^T - \mathbf{c_B}^T \mathbf{B}^{-1} \mathbf{N}) \mathbf{x_N} \\ \mathbf{I} \cdot \mathbf{x_B} + \mathbf{B}^{-1} \, \mathbf{N} \cdot \mathbf{x_N} &= \mathbf{B}^{-1} \, \mathbf{b} \\ \mathbf{x_B}, \, \mathbf{x_N} \, \geq \, \mathbf{0} \end{aligned}$$

Ponendo
$$\mathbf{x_N} = \mathbf{0}$$
 si ottiene la soluzione di base: $\mathbf{x} = \begin{bmatrix} \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} \end{bmatrix}$

Tabella canonica

I dati del problema in forma canonica possono essere organizzati in una tabella detta *tabella canonica* o *tableau*

$$\max \mathbf{0}^{\mathrm{T}} \mathbf{x}_{\mathbf{B}} + (\mathbf{c}_{\mathbf{N}}^{\mathrm{T}} - \mathbf{c}_{\mathbf{B}}^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}) \mathbf{x}_{\mathbf{N}} = -\mathbf{c}_{\mathbf{B}}^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b}$$

$$\mathbf{I}_{\mathbf{X}_{\mathbf{B}}}$$
 + $\mathbf{B}^{-1}\mathbf{N}_{\mathbf{X}_{\mathbf{N}}} = \mathbf{B}^{-1}\mathbf{b}$
 $\mathbf{x}_{\mathbf{B}}, \mathbf{x}_{\mathbf{N}} \geq \mathbf{0}$

Tabella canonica

I dati del problema in forma canonica possono essere organizzati in una tabella detta *tabella canonica* o *tableau*

$$\max \mathbf{0}^{T}\mathbf{x}_{\mathbf{B}} + (\mathbf{c}_{\mathbf{N}}^{T} - \mathbf{c}_{\mathbf{B}}^{T}\mathbf{B}^{-1}\mathbf{N})\mathbf{x}_{\mathbf{N}} = -\mathbf{c}_{\mathbf{B}}^{T}\mathbf{B}^{-1}\mathbf{b}$$

$$\mathbf{I}\mathbf{x}_{\mathbf{B}} + \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{\mathbf{N}} = \mathbf{B}^{-1}\mathbf{b}$$

$$\mathbf{x}_{\mathbf{B}}, \mathbf{x}_{\mathbf{N}} \geq \mathbf{0}$$

Tabella canonica

I dati del problema in forma canonica possono essere organizzati in una tabella detta *tabella canonica* o *tableau*

Illimitatezza, ottimalità, spostamento

Sia **B** una base ammissibile e $\mathbf{x} = [\mathbf{B}^{-1}\mathbf{b}, \mathbf{0}]$ la corrispondente SBA.

[Teorema (prob. di max)] Se $\pi \le 0$ allora \mathbf{x} è ottima.

[Teorema (prob. di max)] Se esiste un $\pi_j > 0$ e $(\mathbf{B}^{-1}\mathbf{N})_j \leq \mathbf{0}$ allora il problema è illimitato superiormente.

Se la base corrente non è ottima e il problema non è illimitato allora esiste una base **B**' adiacente a **B** (cioè che differisce di una sola colonna) alla quale corrisponde una SBA **x**' non peggiore di **x**.

Il passaggio da **B** a **B**' (lo spostamento o *cambiamento di base*) si effettua mediante una *operazione di pivot*

Riferimento: C. Vercellis – capitolo 5

Teoria della dualità

Programmazione Lineare e dualità

Dato un programma lineare P (problema primale)

P)
$$z^* = \max \mathbf{c}^T \mathbf{x} \mid \mathbf{x} \in \mathbf{P}$$

si può definire un programma lineare associato D (problema duale)

$$D) w^* = \min \mathbf{y}^{\mathrm{T}} \mathbf{b} \mid \mathbf{x} \in \boldsymbol{D}$$

che soddisfa belle e utili proprietà

Motivazione

$$z = \max 4x_1 + x_2 + 5x_3 + 3x_4$$

$$x_1 - x_2 - x_3 + 3x_4 \le 1$$

$$5x_1 + x_2 + 3x_3 + 8x_4 \le 55$$

$$-x_1 + 2x_2 + 3x_3 - 5x_4 \le 3$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Errore
$$E \le (z_U^1 - z_L^3)$$

disuguaglianze valide e combinazioni coniche

[Definizione] $\mathbf{h}^T \mathbf{x} \leq d$ è una disuguaglianza valida per un poliedro $P(\mathbf{A}, \mathbf{b}) \subseteq \mathbb{R}^n$ se $P(\mathbf{A}, \mathbf{b}) \subseteq \{\mathbf{x} \in \mathbb{R}^n : \mathbf{h}^T \mathbf{x} \leq d\}$.

Una disuguaglianza $\mathbf{h}^T\mathbf{x} \leq d$ valida per $P(\mathbf{A}, \mathbf{b})$ è soddisfatta da ogni punto di $P(\mathbf{A}, \mathbf{b})$, cioè $\mathbf{h}^T\mathbf{x} \leq d$ è un vincolo <u>ridondante</u> di $P(\mathbf{A}, \mathbf{b})$

disuguaglianze valide e combinazioni coniche

[Teorema] Ogni combinazione conica dei vettori riga della matrice estesa ($\mathbf{A} \mid \mathbf{b}$) è una disuguaglianza valida per $P(\mathbf{A}, \mathbf{b})$.

[Recall] una disequazione $\mathbf{d}^{\mathrm{T}}\mathbf{x} \leq \delta$ è combinazione conica delle m disequazioni del sistema $\{\mathbf{a}_{i}^{\mathrm{T}}\mathbf{x} \leq b_{i}, i=1,...m\}$ se

$$\mathbf{d} = \sum_{i=1}^{m} \lambda_i \mathbf{a}_i$$

$$\delta = \sum_{i=1}^{m} \lambda_i b_i$$

$$\lambda_1, \dots, \lambda_m \ge 0$$

Disuguaglianze valide: esempio

Consideriamo il poliedro P(A, b) definito dal seguente sistema di disequazioni

$$\begin{cases} x_1 & \leq 1 \\ x_2 \leq 1 & \text{che in forma matriciale} \\ -x_1 & \leq 0 \\ -x_2 \leq 0 \end{cases}$$
 che in forma matriciale assume la seguente forma
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

La <u>combinazione conica</u> dei vettori riga di $P(\mathbf{A}, \mathbf{b})$ con coefficienti $\lambda = (1,1,0,0)$ produce la disuguaglianza valida $x_1 + x_2 \le 2$

$$1 (1, 0, 1) +
1 (0, 1, 1) +
0 (-1, 0, 0) +
0 (0, -1, 0) =
(1, 1, 2)$$

Bound duale

$$z = \max 4x_1 + x_2 + 5x_3 + 3x_4$$

$$x_1 - x_2 - x_3 + 3x_4 \le 1$$

$$5x_1 + x_2 + 3x_3 + 8x_4 \le 55$$

$$-x_1 + 2x_2 + 3x_3 - 5x_4 \le 3$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Una combinazione conica dei vincoli che «domina la funzione obiettivo termine a termine», può essere utilizzata per derivare un bound duale

$$\lambda_1 = 0$$
 (1, -1, -1, 3, 1) + $\lambda_2 = 2$ (5, 1, 3, 8, 55) + $\lambda_3 = 1/2$ (-1, 2, 3, -5, 3) =

(9.5, 3, 7.5, 13.5, 108.5)

dominanza termine a termine e $x_i \ge 0$

$$z = 4x_1 + x_2 + 5x_3 + 3x_4 \le 9.5x_1 + 3x_2 + 7.5x_3 + 13.5x_4 \le 108.5$$

$$z^* \le 108.5 = z_{\rm U}$$

Problema duale

Il problema duale D di un problema di PL P (detto problema primale) consiste nel determinare i coefficienti λ che, tra tutte le disuguaglianze valide che dominano la funzione obiettivo di P, generano quella che produce il miglior bound duale per P.

Regole generali per la costruzione del duale

Supponiamo il primale in forma di minimo
 (il caso in forma di massimo è perfettamente speculare)

Regola 1: Il duale è in forma di massimo.

Regola 2: Esiste una variabile duale y_i per ogni vincolo primale: y_i sarà

- ≥ 0 se il vincolo primale è di \ge
- ≤ 0 se il vincolo primale è di \leq
- non vincolata in segno se il vincolo primale è di =

Regole generali per la costruzione del duale

Regola 3: i coefficienti della funzione obiettivo duale sono i termini noti del primale. I termini noti del duale sono i coefficienti della funzione obiettivo primale.

Regola 4: Esiste un vincolo duale per ogni variabile primale x_j : il vincolo sarà

- di \leq se x_i è \geq 0
- $\operatorname{di} \ge \operatorname{se} x_i \, \hat{\mathbf{e}} \le 0$
- di = se x_i è non vincolata in segno.
- I coefficienti dell'*i*-esimo vincolo del duale sono i coefficienti della variabile x_i nel primale (la matrice dei coefficienti del duale e la trasposta della matrice dei coefficienti del primale)

Schema riassuntivo

PRIMALE (P)	min	max	DUALE (D)
Coeff. costo	c	c	Termini noti
Termini noti	b	b	Coeff. costo
	$\geq b_i$	≥ 0	
Vincoli	$\leq b_i$	≤ 0	Variabili
	$=b_i$	libera	
	≥ 0	$\leq c_j$	
Variabili	≤ 0	$\geq c_j$	Vincoli
	libera	$=c_j$	
Coefficienti	a_{ij}	a_{ji}	Coefficienti
	$\mathbf{A}(m \times n)$	$\mathbf{A}^{\mathrm{T}}(n \times m)$	

Un esempio

Problema primale P)
$$\min_{y_1: x_1 + 4x_2 - 6x_3 \le 0} 5x_1 - x_2 + 2x_3 \le 6$$

 $y_2: 2x_1 - x_3 \le 4$
 $y_3: 2x_1 + 3x_2 \ge 0$

Il duale è un problema di massimizzazione con variabili y_1, y_2, y_3 .

- 1° vincolo del primale è \leq quindi $y_1 \leq 0$.
- 2° vincolo del primale è = quindi y_2 è libera.
- 3° vincolo del primale è \geq quindi $y_3 \geq 0$.

Problema primale P) min
$$5x_1 - x_2 + 2x_3$$

 y_1 : $x_1 + 4x_2 - 6x_3 \le 6$
 y_2 : $2x_1 - x_3 = 4$
 y_3 : $2x_1 + 3x_2 \ge 5$
 $x_2, x_3 \ge 0$

- I coeff. della f. obiettivo del duale sono i termini noti del primale.
- i termini noti del duale sono i coeff. della f. obiettivo del primale.
- x_1 è libera, quindi il 1° vincolo del duale è di =.
- $x_2, x_3 \ge 0$, quindi il 2° e 3° vincolo del duale sono di \le .

Problema primale P) min
$$5x_1 - x_2 + 2x_3$$

 $x_1 + 4x_2 - 6x_3 \le 6$
 $2x_1 - x_3 = 4$
 $2x_1 + 3x_2 \ge 5$
 $x_2, x_3 \ge 0$

- I coeff. del 1° vincolo del duale sono i coeff. di x_1 .
- I coeff. del 2° vincolo del duale sono i coeff. di x_2 .
- I coeff. del 3° vincolo del duale sono i coeff. di x_3 .

Problema primale P) min
$$5x_1 - x_2 + 2x_3$$

 $x_1 + 4x_2 - 6x_3 \le 6$
 $2x_1 - x_3 = 4$
 $2x_1 + 3x_2 \ge 5$
 $x_2, x_3 \ge 0$

Problema duale D)
$$\max 6y_1 + 4y_2 + 5y_3$$

 $y_1 + 2y_2 + 2y_3 = 5$
 $4y_1 + 3y_3 \le -1$
 $-6y_1 - y_2 \le 2$
 $y_1 \le 0, y_3 \ge 0$

La teoria della dualità in una slide

Si consideri una coppia primale-duale di problemi di PL

$$\max z = \mathbf{c}^{\mathrm{T}} \mathbf{x} \mid \mathbf{x} \in P \qquad \min w = \mathbf{y}^{\mathrm{T}} \mathbf{b} \mid \mathbf{y} \in D$$

[Teorema] reciprocità (o idempotenza)

Il problema P è il duale del problema D

[Teorema] dualità debole

Per ogni coppia di soluzioni $\mathbf{x} \in P$, $\mathbf{y} \in D$ si ha $\mathbf{y}^{\mathrm{T}}\mathbf{b} \geq \mathbf{c}^{\mathrm{T}}\mathbf{x}$

[Corollario]

Se $\mathbf{x} \in P$, $\mathbf{y} \in D$ e $\mathbf{y}^{\mathrm{T}}\mathbf{b} = \mathbf{c}^{\mathrm{T}}\mathbf{x}$, allora \mathbf{x} e \mathbf{y} sono soluzioni ottime rispettivamente per P e per D.

[Corollario]

- Se P è illimitato superiormente allora D non ammette soluzione.
- Se D è *illimitato inferiormente* allora P non ammette soluzione.

La teoria della dualità in una slide... due slide

Si consideri una coppia primale-duale di problemi di PL

$$\max z = \mathbf{c}^{\mathrm{T}} \mathbf{x} \mid \mathbf{x} \in P \qquad \min w = \mathbf{y}^{\mathrm{T}} \mathbf{b} \mid \mathbf{y} \in D$$

$$\mathbf{z}^* = \mathbf{w}^* = \mathbf{y}^{*T}\mathbf{b} = \mathbf{c}^{T}\mathbf{x}^* \qquad \text{gap} = 0$$

[Teorema] dualità forte

Se $\mathbf{x}^* \in P$ è una soluzione ottima per il problema primale, <u>allora esiste</u> una soluzione ottima $\mathbf{y}^* \in D$ per il problema duale, e

$$\mathbf{y}^{*\mathrm{T}}\mathbf{b} = \mathbf{c}^{\mathrm{T}}\mathbf{x}^{*}.$$

valori duali **y^Tb**

Prospetto riassuntivo

	P illimitato	$P = \emptyset$	P ammette ottimo finito
D illimitato	impossibile	possibile	impossibile
$D = \emptyset$	possibile	possibile	impossibile
D ammette ottimo finito	impossibile	impossibile	possibile

Condizioni di ortogonalità

P:
$$\chi^* = \max \mathbf{c}^T \mathbf{x}$$
 D: $w^* = \min \mathbf{y}^T \mathbf{b}$

$$\mathbf{A} \mathbf{x} \leq \mathbf{b}$$

$$\mathbf{x} \geq \mathbf{0}$$
 $\mathbf{y} \geq \mathbf{c}$

- $p_i = b_i \mathbf{a}_i^T \mathbf{x}$ slack dell'*i*-esimo vincolo di *P*
- $s_j = \mathbf{y}^T \mathbf{A}_j c_j$ surplus del *j*-esimo vincolo di *D*

[Teorema] ortogonalità o complementarità

 $\mathbf{x} \in P \text{ e } \mathbf{y} \in D \text{ sono ottime se e solo se}$

$$\mathbf{x}^{\mathrm{T}}\mathbf{s} = 0$$
$$\mathbf{y}^{\mathrm{T}}\mathbf{p} = 0$$

<u>All'ottimo</u>, non possono essere contemporaneamente > 0

- una variabile primale x_j e la surplus $s_j = \mathbf{y}^T \mathbf{A}_j c_j$ del vincolo corrispondente duale (quindi se $x_j > 0$, l'*i*-esimo vincolo del duale deve essere attivo);
- una variabile duale y_i e la slack $p_j = b_i \mathbf{a}_i^T \mathbf{x}$ del vincolo corrispondente primale (quindi se $y_i > 0$, l'*i*-esimo vincolo del primale deve essere attivo).

Testi di approfondimento

- A. Sassano
 Modelli e Algoritmi della Ricerca Operativa
 Franco Angeli, Milano, 1999
- M. Fischetti
 Lezioni di Ricerca Operativa
 Edizioni Libreria Progetto Padova, 1999
- 3. D. Bertsimas and J.N. Tsitsiklis *Introduction to Linear Optimization*Athena Scientific, Belmont, Massachusetts
- 4. Nemhauser G.L. and L. A. Wolsey *Integer and Combinatorial Optimization*John Wiley & Sons, Inc, New York, 1988.