El mundo de Wumpus:

El mundo de Wumpus:

Descripción PAGE del agente cazador

Percepciones (restringidas a la casilla que ocupa):

- ▶ El agente percibe si en su casilla se encuentra el wumpus
- ► En los cuadros adyacentes al wumpus, percibe su hedor
- ▶ En los cuadros adyacentes a un pozo, percibe la brisa
- Donde está el oro, percibe su brillo
- Si avanza hasta un muro, percibe el choque
- Cuando mata al wumpus, percibe un grito

La percepción es representable por cinco símbolos (hedor,brisa,brillo,choque,grito)

Descripción PAGE del agente cazador

- Acciones:
 - Avanzar,
 - ▶ Girar 90° grados a izq. o der.,
 - Lanzar una flecha (la flecha llega hasta el wumpus o a la pared), y
 - ▶ salir (si se encuentra en la casilla de salida)
- ► El agente muere si entra en un pozo, u ocupa una casilla en la que está un wumpus vivo
- Objetivo: encontrar el oro y volver a la salida lo más rápidamente posible (vivo, claro)

Ejecución

Supongamos que el agente ha visitado ya las casillas (1,1), (1,2) y (2,1), encontrándose en esta última:

Salida

Representación y funcionamiento

- La sucesión de percepciones ha sido (con respecto a (hedor,brisa,brillo,choque,grito)): (0,0,0,0,0), (0,1,0,0,0), (1,0,0,0,0)
- Si el agente cazador es un agente basado en conocimiento, su comportamiento estará determinado por la base de conocimiento de que dispone.
- La base de conocimiento contendrá un conocimiento inicial, pero su contenido irá variando con el funcionamiento del agente.
- ► El bucle de funcionamiento básico será:
 - Percibir y <u>añadir</u> la información obtenida a la base de conocimiento.
 - 2. **Deducir** qué acción llevar a cabo, de acuerdo con el conocimiento disponible.
 - Llevar a cabo la acción seleccionada y <u>añadir</u> esta información en la base de conocimiento.

Representación y funcionamiento (II)

Tras visitar las casillas (1,1), (1,2) y (2,1) en la base de conocimiento tiene (entre otras) la siguientes fórmulas:

¿Puede deducir el agente que Wumpus está en W_{13} ?

Conocimiento y modelos posibles

Dada una base de conocimiento K, hay que considerar tres clases de modelos:

- 1. Los modelos lógicos de K.
- 2. Los modelos que representan entornos *reales*.
- 3. El modelo que representa al entorno en el que está el agente.

Percepción nueva = refinamiento de la clase de modelos

- Cada nuevo conocimiento percibido refina el conjunto de modelos.
- ► Si los modelos del tipo (2) se reducen a uno, entonces tenemos conocimiento perfecto.
- Este proceso se puede localizar para una propiedad concreta:
 - ► Si con respecto a una propiedad concreta, sólo hay un modelo de tipo (2), entonces está determinada.

Modelos posibles para K después del segundo movimiento

El agente no sabe en cuál de estos mundos está:

Refinamiento

Razonamiento: refinar el conjunto de mundos posibles.

▶ Ahora sabe que en (2,2) no hay pozo: Los modelos de esta propiedad son:

	?	?	?	?
	?	?	?	?
			?	?
	ķ	~		?
Salida				

▶ Refina su conocimiento: está en el mundo:

Esquemas de razonamiento

- Esquema de razonamiento deductivo (algunas ideas):
 - Si demuestra que una casilla esta libre de peligro, entonces puede visitarla para percibir.
 - ▶ Si *demuestra* que $W_{i,j}$, entonces dispara.
 - ▶ Si demuestra que tiene un pozo la evita.
- ▶ Pero, ¿Qué hace si no demuestra que una casilla es segura?
 - Opción cauta: elegir las casillas demostrablemente seguras.
 Problema: puede quedarse bloqueado.
 - Opción atrevida: elegir, si es necesario, entre las casillas que no son demostrablemente peligrosas.
 Problema: puede morir.
- Problema: ¿Cómo planificar la búsqueda?
 - ¿Cuándo aplicar una opción atrevida o cauta?

Ejemplo

Supongamos que un robot está navegando por un parque, y debe llegar a la salida de éste.

- Percepciones: Su entorno.
- Acciones: Deplazarse (paso a paso).
- Objetivo: Alcanzar la salida.
- ► Entorno: Estático, discreto, determinista, episódico.
 - Entorno absoluto: Guarda en memoria el mapa completo del lugar (accesible).
 - ► Entorno local: Guarda la información sólo de su entorno físico más próximo (efectivamente accesible).
- Obstáculos: Río, árboles.

Gráfico

Representación del ejemplo

Representando el ejemplo (I)

Variables:

- ▶ A_{ij} = En la casilla (i, j) hay un árbol.
- ▶ R_{ij} = Por la casilla (i,j) pasa el río.
- ▶ $D_{i,j}^t$ = En el momento t es posible desplazarse i casillas horizontales, j verticales $(i, j \in \{-1, 0, 1\})$.
- ightharpoonup $\mathrm{E}_{i,j}^{\mathsf{t}} = \mathsf{EI}$ robot se encuentra el la casilla (i,j) en el momento t.

Base de conocimiento:

- Hechos: $\{E_{44}^1\}$ $\cup \{\neg A_{11}, \dots, A_{41}, \dots, R_{21}, \dots\}$
- ► Condiciones: Para cada (i, j) y cada $(k, h) \neq (i, j)$:

$$\neg (\mathtt{E}_{\mathtt{i}\,\mathtt{j}}^{\mathtt{t}} \wedge \mathtt{E}_{\mathtt{k}\mathtt{h}}^{\mathtt{t}})$$

Representando el ejemplo (II)

Componente pensante:

- ▶ Acciones (reglas E-C-A): $E_{34}^{t} \land \neg (R_{35} \lor A_{35}) \rightarrow D_{01}^{t}$
- ▶ Restricciones: ¬(A₁₁ ∧ E^t₁₁)
- ▶ Prohibiciones: $E_{11}^t \rightarrow \neg D_{-1,-1}^t$
- Definiciones: La casilla (i,j) está libre (Lij)

$$\mathtt{L}_{\mathtt{i}\mathtt{j}}^{\mathtt{t}} \leftrightarrow \neg (\mathtt{R}_{\mathtt{i}\mathtt{j}} \vee \mathtt{E}_{\mathtt{i}\mathtt{j}}^{\mathtt{t}} \vee \mathtt{A}_{\mathtt{i}\mathtt{j}})$$

ightharpoonup Creencia: por ejemplo, $E_{11}^{t}
ightharpoonup L_{12}^{t}$ (¿falsa?)

Representando el ejemplo (III)

- Resultado de la acción (mandato a los sensores; movimiento):
 - ▶ $D_{10}^{t} \wedge E_{22}^{t} \rightarrow E_{32}^{t+1}$ (¡No es disparable!).
 - $E_{34}^{t} \wedge D_{01}^{t} \rightarrow E_{35}^{t+1}$
- ► Estado: {E^t_{ij}} (entorno representado localmente).
- ▶ Estado: $\{E_{ij}^t, A_{21}, ...\}$ (entorno global).
- La componente reactiva está formada por reglas E-C-A.

Representando el ejemplo (IV)

Componente racional:

- Objetivo: E⁸₇₁
- Planificación: Obtener un conjunto adecuado de reglas del tipo:

$$\mathtt{E}_{\mathtt{i}\mathtt{j}}^{\mathtt{t}} \to \mathtt{D}_{\mathtt{k}\mathtt{h}}^{\mathtt{t}}$$

para ejecutarlas ordenadamente.

Componente pro-activa: Si $\mathrm{E}^{\mathrm{t}}_{34}$ entonces Objetivo : $\mathrm{E}^{\mathrm{t}+1}_{44}$

Ejercicio: Elegir una base de conocimiento K relativamente pequeña y **natural** de tal modo que $K \models E_{71}^8$. ¿Se puede extraer de la prueba por tableros el camino que debe seguir el robot?

Limitaciones de la lógica proposicional para el problema

Grado de autonomía:

Se puede diseñar un conjunto de reglas para alcanzar la salida, si se puede, para ese parque, independientemente del sitio donde se encuentra el robot.

Si se cambia a otro parque, ya no sirve el sistema.

Expresividad deficiente.

En el ejemplo anterior, el tamaño de la base de conocimiento es O(n) (siendo n el número de casillas), pues el entorno es accesible en su totalidad (con respecto al conocimiento del agente).

Ventajas y Limitaciones

- La lógica proposicional es muy útil si no es importante el contenido de cada proposición, sólo es importante la estructura de la información
- En estos casos, muy manejable.
- Los problemas fundamentales son decidibles.
- ► Es una lógica Bivalente, pero se puede alterar la semántica para obtener lógicas multivaloradas.
- ► En algunos casos no es importante que sean deducibles todas las tautologías.

Bibliografía

- ▶ M. Ben-Ari: *Mathematical Logic for Computer Science*. 2 ed. (2001), Capítulos 1 y 2.
- Russell & Norvig: Inteligencia Artificial: Un enfoque moderno. Capítulo 7. Disponible en la web: http://aima.cs.berkeley.edu/newchap07.pdf