EE881 - Princípios de Comunicações I

Henrique Koji Miyamoto

1 Introdução e objetivos

Figura 1: Visão geral do problema de comunicação.

2 Projeto do receptor para observações no tempo discreto: primeira camada

2.1 Introdução

O sistema de comunicação considerado nessa seção é composto pelas seguintes partes:

Figura 2: Sistema de comunicação considerado nessa análise.

- A fonte produz mensagens a serem transmitidas. É modelada como uma variável aleatória H que assume valores no conjunto de índices $\mathcal{H} = \{0, 1, ..., m-1\}$, cada um com probabilidade $P_H(i)$.
- O canal é descrito por um alfabeto de entrada \mathcal{X} , um alfabeto de saída \mathcal{Y} (assumiremos $\mathcal{Y} = \mathbb{R}$) e uma descrição estatística da saída dada a entrada (verossimilhança). Se $Y \in \mathcal{Y}$ é uma variável aleatória discreta, descrevemos a distribuição de probabilidade $P_{Y|X}(\cdot|x)$; se é uma variável aleatória contínua, descrevemos a função densidade de probabilidade $f_{Y|X}(\cdot|x)^1$.
- O transmissor é modelado como uma aplicação do conjunto de mensagens $\mathcal{H} = \{0, ..., m-1\}$ no conjunto de sinais (constelação de sinais) $\mathcal{C} = \{c_0, ..., c_{m-1}\}$, em que $c_i \in \mathcal{X}^n$ para algum n.
- A tarefa do **receptor** é "adivinhar" a realização da hipótese H a partir da realização da saída do canal. O palpite do receptor é denotado \hat{i} e a variável aleatória associada a esse processo aleatório é $\hat{H} \in \mathcal{H}$.

¹Em geral, o canal não tem memória, i.e., a probabilidade da ocorrência de uma sequência de variáveis aletórias na saída é o produto das probabilidades de ocorrência de cada variável.

2.2 Teste de hipóteses

Teste de hipóteses é o problema de "adivinhar" a realização da variável aleatória $H \in \mathcal{H}$ com base na realização da variável aleatória Y (obseravação). É o mesmo que decodificação ou tomada de decisão. Em comunicações, a hipótese H é a mensagem transmitida e a observação Y é a saída do canal.

Objetivo: Queremos estabelecer uma estratégia de decisão que maximiza a probabilidade de acerto $P_c = Pr\{\hat{H} = H\}$, ou, equivalentemente, minimiza a probabilidade de erro $P_e = Pr\{\hat{H} \neq H\} = 1 - P_c$.

Da regra de Bayes, temos

$$P_{H|Y}(i|y) = \frac{P_H(i)f_{Y|H}(y|i)}{f_Y(y)}$$

em que $f_Y(y) = \sum_i P_H(i) f_{Y|H}(y|)$. Ao observar Y = y, a probabilidade de H = i vai do prior (probabilidade a priori) $P_H(i)$ para o posterior (probabilidade a posteriori) $P_{H|Y}(i|y)$.

Regra MAP (máximo a posteriori): A decisão ótima para $\hat{H} = i$, que maximiza a probabilidade de acerto, é a que maximiza a probabilidade a posteriori $P_{H|Y}(i|y)^2$.

$$\hat{H}(y) = \arg\max_{i \in \mathcal{H}} P_{H|Y}(i|y)$$

A probabilidade de acerto da variável aleatória $P_{H|Y}(\hat{H}(Y)|Y)$ é

$$P_c = \mathbb{E}[P_{H|Y}(\hat{H}(Y)|Y)] = \int_y P_{H|Y}(\hat{H}(Y)|Y) f_Y(y) dy$$

Regra ML (máxima verossimilhança): É uma regra de decisão subótima que maximiza a verossimilhança $f_{Y|H}(y|i)$. Pode ser usada quando os *priors* são uniformes (neste caso, MAP \equiv ML) ou quando são desconhecidos.

$$\hat{H}(y) = \arg\max_{i \in \mathcal{H}} f_{Y|H}(y|i)$$

2.2.1 Teste de hipóteses binário

Trata-se do caso particular em que $\mathcal{H} = \{0, 1\}$.

Regra MAP:

$$P_{H|Y}(1|y) = \frac{f_{Y|H}(y|1)P_{H}(1)}{f_{Y}(y)} \stackrel{\hat{H}=1}{\overset{\geq}{\geq}} \frac{f_{Y|H}(y|0)P_{H}(0)}{f_{Y}(y)} = P_{H|Y}(0|y)$$

$$\int_{\hat{H}=0}^{\hat{H}=1} f_{Y|H}(y|1)P_{H}(1) \stackrel{\hat{H}=1}{\overset{\geq}{\geq}} f_{Y|H}(y|0)P_{H}(0)$$

$$\frac{\Lambda(y)}{f_{Y|H}(y|0)} := \frac{f_{Y|H}(y|1)}{f_{Y|H}(y|0)} \stackrel{\hat{H}=1}{\overset{\geq}{\geq}} \frac{P_{H}(0)}{P_{H}(1)} =: \underbrace{\eta}_{\text{limiar}}$$

Regra ML:

$$f_{Y|H}(y|1) \underset{\hat{H}=0}{\overset{\hat{H}=1}{\geq}} f_{Y|H}(y|0)$$

Uma função $\hat{H}: \mathcal{Y} \to \mathcal{H}$ é chamada função de decisão ou função de decodificação. Podemos descrevê-las em função de regiões de decisão:

$$\mathcal{R}_i = \{ y \in \mathcal{Y} : \hat{H}(y) = i \}$$

Dessa forma, a probabilidade de erro pode ser computada:

$$P_e(0) = Pr\{Y \in \mathcal{R}_1 | H = 0\} = \int_{\mathcal{R}_1} f_{Y|H}(y|0) dy$$

$$P_e(1) = Pr\{Y \in \mathcal{R}_0 | H = 1\} = \int_{\mathcal{R}_0} f_{Y|H}(y|1) dy$$

$$P_e = P_e(1)P_H(1) + P_e(0)P_H(0)$$

 $^{^2}$ Se ocorre um empate, não faz diferença por qual hipótese escolhemos, já que elas têm a mesma probabilidade de erro.

2.2.2 Teste de hipóteses m-ário

Esse é o caso mais geral, em que $\mathcal{H} = \{0, 1, ..., m-1\}$.

Regra MAP:

$$\widehat{H}_{MAP}(y) = \arg\max_{i \in \mathcal{H}} P_{H|Y}(i|y) = \arg\max_{i \in \mathcal{H}} f_{Y|H}(y|i) P_{H}(i)$$

Regra ML:

$$\hat{H}_{ML}(y) = \arg\max_{i \in \mathcal{H}} f_{Y|H}(y|i)$$

Regiões de decodificação e probabilidade de erro:

$$\mathcal{R}_{i} := \{ y : \hat{H}(y) = i \}$$

$$P_{e}(i) := Pr\{\hat{H} \neq H | H = i \} = \int_{R_{i}^{c}} f_{Y|H}(y|i) dy = 1 - \underbrace{\int_{R_{i}} f_{Y|H}(y|i) dy}_{P_{c}(i)}$$

$$P_{e} := Pr\{\hat{H} \neq H\} = \sum_{i=0}^{m-1} P_{H}(i) P_{e}(i)$$

2.3 A função Q

A função Q é definida como

$$Q(x) := \frac{1}{\sqrt{2\pi}} \int_{r}^{\infty} e^{-\frac{\xi^2}{2}} d\xi$$

Propriedade básica: Se Z é uma variável aleatória com distribuição normal de média nula e variância unitária, $Z \sim N(0,1)$, então $Pr\{Z \geq x\} = Q(x)$. Se Z tem média m e variância σ^2 , $Z \sim N(m,\sigma^2)$, então $Pr\{Z \geq x\} = Q(\frac{x-m}{\sigma})$.

Figura 3: Distribuição normal de média m e variância σ^2 .

Outras propriedades da função Q:

- Se $Z \sim N(0,1)$, $F_Z := Pr\{Z \le z\} = 1 Q(z)$.
- Q(0) = 1/2, $Q(-\infty) = 1$, $Q(\infty) = 0$.
- Q(-x) + Q(x) = 1

2.4 Projeto de receptor para canal AWGN no tempo-discreto

Considere comunicação por um canal ruidoso no tempo-discreto. A hipótese $H \in \mathcal{H}$ representa uma mensagem gerada aleatoriamente. O transmissor mepeia H = i em uma n-upla $c_i \in \mathbb{R}^n$. O canal adiciona um vetor ruído aleatório Z com média nula e componentes de distribuição gaussiana independentes e identicamente distribuídas de variância σ^2 , i.e., $Z \sim N(0, \sigma^2 I_n)$. A observação é $Y = c_i + Z$.

Figura 4: Diagrama de comunicação por um canal ruidoso.

2.4.1 Decisão binária para observação escalar

Seja a mensagem $H \in \{0,1\}$ com um transmissor que mapeia $H = 0 \mapsto c_0 \in \mathbb{R}$ e $H = 1 \mapsto c_1 \in \mathbb{R}$.

$$\begin{cases} H = 0: \quad Y \sim N(c_0, \sigma^2) \to f_{Y|H}(y|0) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y-c_0)^2}{2\sigma^2}\right\} \\ H = 1: \quad Y \sim N(c_1, \sigma^2) \to f_{Y|H}(y|1) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y-c_1)^2}{2\sigma^2}\right\} \end{cases}$$

Regra MAP:

$$\Lambda(y) = \frac{f_{Y|H}(y|1)}{f_{Y|H}(y|0)} \underset{\hat{H}=0}{\overset{\hat{H}=1}{\geq}} \eta \Rightarrow \ln \Lambda(y) = \frac{(y-c_0)^2 - (y-c_1)^2}{2\sigma^2} \underset{\hat{H}=0}{\overset{\hat{H}=1}{\geq}} \ln \eta \Rightarrow y \frac{c_1 - c_0}{\sigma^2} + \frac{c_0^2 - c_1^2}{2\sigma^2} \underset{\hat{H}=0}{\overset{\hat{H}=1}{\geq}} \ln \eta$$

Sem perda de generalidade, podemos assumir $c_1 > c_0$ e escrever

$$y \underset{\hat{H}=0}{\overset{\hat{H}=1}{\geq}} \frac{\sigma^2}{c_1 - c_0} \ln \eta + \frac{c_0 + c_1}{2} =: \theta$$

Regra ML:

Se $P_H(0) = P_H(1) = \frac{1}{2}$, então MAP \equiv ML. A regra é de distância mínima:

$$y \underset{\hat{H}=0}{\overset{\hat{H}=1}{\geq}} \frac{c_0 + c_1}{2}$$

Probabilidade de erro

$$P_e = P_H(0)P_e(0) + P_H(1)P_e(1) = P_H(0)Q\left(\frac{\theta - c_0}{\sigma}\right) + P_H(1)Q\left(\frac{\theta - c_1}{\sigma}\right)$$

No caso $P_H(0) = P_H(1) = \frac{1}{2}$, temos $\frac{\theta - c_0}{\sigma} = \frac{c_1 - \theta}{\sigma}$, logo:

$$P_e = Q\left(\frac{c_1 - c_0}{2\sigma}\right) = Q\left(\frac{d}{2\sigma}\right)$$

2.4.2 Decisão binária para observação de n-uplas

Nesse caso, $H \in \{0,1\}$ e $c_i \in \mathbb{R}^n$, i = 0,1. O ruído adicionado pelo canal é $Z \sim N(0, \sigma^2 I_n)$.

$$\begin{cases} H = 0: & Y = c_0 + Z \sim N(c_0, \sigma^2 I_n) \to f_{Y|H}(y|0) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\frac{\|y - c_0\|^2}{2\sigma^2}\right\} \\ H = 1: & Y = c_1 + Z \sim N(c_1, \sigma^2 I_n) \to f_{Y|H}(y|1) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\frac{\|y - c_0\|^2}{2\sigma^2}\right\} \end{cases}$$

Regra MAP:

$$\Lambda(y) = \frac{f_{Y|H}(y|1)}{f_{Y|H}(y|0)} = \exp\left\{\frac{\|y - c_0\|^2 - \|y - c_1\|^2}{2\sigma^2}\right\} \Rightarrow \ln\Lambda(y) = \langle y, \frac{c_1 - c_0}{\sigma^2} \rangle + \frac{\|c_0\|^2 - \|c_1\|^2}{2\sigma^2}$$

$$\ln \Lambda(y) \overset{\hat{H}=1}{\underset{\hat{H}=0}{\geq}} \ln \eta \Rightarrow \langle y, \frac{c_1 - c_0}{\sigma^2} \rangle + \frac{\|c_0\|^2 - \|c_1\|^2}{2\sigma^2} \overset{\hat{H}=1}{\underset{\hat{H}=0}{\geq}} \ln \eta \Rightarrow \boxed{\langle y, \underbrace{\frac{c_1 - c_0}{d}}_{\psi} \rangle \overset{\hat{H}=1}{\underset{\hat{H}=0}{\geq}} \frac{\sigma^2}{d} \ln \eta + \frac{\|c_1\|^2 - \|c_0\|^2}{2d} =: \theta}$$

As regiões de decisão \mathcal{R}_0 e \mathcal{R}_1 são delimitadas pelo plano afim $\{y \in \mathbb{R}^n : \langle y, \psi \rangle = \theta\}$.

Figura 5: Visualização geométrica das regiões de decodificação.

É possível mostrar que as distâncias p e q (Figura 5) são tais que

$$p = \frac{d}{2} + \frac{\sigma^2 \ln \eta}{d} e q = \frac{d}{2} - \frac{\sigma^2 \ln \eta}{d}$$

Regra ML: Se $P_H(0) = P_H(1) = \frac{1}{2}$, então MAP \equiv ML. A regra é de distância mínima:

$$||y - c_0|| \stackrel{\hat{H}=1}{\underset{\hat{H}=0}{\geq}} ||y - c_1||$$

Observações:

- Quando $P_H(0) = P_H(1) = \frac{1}{2}$, temos p = q e o plano afim é equidistante de c_0 e c_1 .
- O vetor ψ não é afetado pelos priors, mas o limiar θ é, i.e., os priors afetam a posição, mas não a orientação do plano afim.
- O efeito anterior é aumentado quando a variância σ^2 aumenta.

Probabilidade de erro

Podemos deduzir as probabilidades de erro geometricamente a partir da Figura 5. Lembrando que $\langle Z, \psi \rangle \sim N(0, \sigma^2)$.

$$P_e(0) = Pr\{\langle Z, \psi \rangle \ge p\} = Q\left(\frac{p}{\sigma}\right)$$
$$P_e(1) = Pr\{\langle Z, \psi \rangle \ge q\} = Q\left(\frac{q}{\sigma}\right)$$
$$P_e = P_H(0)\left(\frac{p}{\sigma}\right) + P_H(1)\left(\frac{q}{\sigma}\right)$$

Para o caso $P_H(0) = P_H(1) = \frac{1}{2}$:

$$P_e = P_e(0) = P_e(1) = Pr\{\langle Z, \psi \rangle \ge \frac{d}{2}\} = Q\left(\frac{d}{2\sigma}\right)$$

2.5 Decisão m-ária para observação de n-uplas

Nesse caso, $H=i,\ i\in\{0,...,m-1\}$ e $c_i\in\mathbb{R}^n$. Assumiremos a simplificação $P_H(i)=\frac{1}{m}$. Receptor ML:

$$\hat{H}_{ML} = \arg\max_{i \in \mathcal{H}} f_{Y|H}(y|i) = \arg\max_{i \in \mathcal{H}} \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\frac{\|y - c_i\|^2}{2\sigma^2}\right\} = \left[\arg\min_{i \in \mathcal{H}} \|y - c_i\|\right]$$

Mais uma vez, a regra de decisão para o receptor ML é de distância mínima. A menos de empates, a região de decisão \mathcal{R}_i é a região de Voronoi³.

Exemplo 2.1. Modulação m-PAM (pulse amplitude modulation): a constelação de sinais é $\{c_0, c_1, ..., c_{m-1}\} \in \mathbb{R}$. Para canal AWGN e receptor ML, a regra de decodificação é de distância mínima. A decodificação é errada se o ruído for maior que $d = c_i - c_{i-1}$.

Para os pontos da ponta, c_0 e c_{m-1} :

$$P(i) = Pr\left\{Z > \frac{d}{2}\right\} = Q\left(\frac{d}{2\sigma}\right), \ i = 0, m - 1$$

Para os demais pontos:

$$P(i) = Pr\left\{\left\{Z \ge \frac{d}{2}\right\} \cup \left\{Z < -\frac{d}{2}\right\}\right\} = 2Pr\left\{Z \ge \frac{d}{2}\right\} = 2Q\left(\frac{d}{2\sigma}\right), \ i = 1, ..., m - 2$$

Assim:

$$P_e = \sum_{i=0}^{m-1} \frac{1}{m} P_e(i) = \frac{2}{m} Q\left(\frac{d}{2\sigma}\right) + \frac{m-2}{2} 2Q\left(\frac{d}{2\sigma}\right) = \left(2 - \frac{2}{m}\right) Q\left(\frac{d}{2\sigma}\right)$$

 $^{^3}$ A região de Voronoi do ponto $c_i \in \mathbb{R}^n$ é o conjunto $R(c_i) := \{x \in \mathbb{R}^n : \|c_i - x\| \leq \|c_i - y\| \forall y \in \mathbb{R}^n\}.$

Figura 6: Exemplo de modulação 6-PAM, com regiões de decodificação.

Exemplo 2.2. Modulação m-QAM (quadrature amplitude modulation): a constelação de sinais é formada por conjuntos de $(2n)^2$, $n \in \mathbb{N}^*$ pontos em quadratura no $\mathbb{R}^2 \cong \mathbb{C}$. Para o caso simples 4-QAM (Figura 7), a probabilidade de acerto de cada ponto é

$$P_c(i) = Pr\left\{\left\{Z_1 \le -\frac{d}{2}\right\} \cap \left\{Z_2 \ge -\frac{d}{2}\right\}\right\} = \left[1 - Q\left(\frac{d}{2\sigma}\right)\right]^2, \ i = 0, 1, 2, 3$$

$$P_e = P_e(i) = 1 - P_c(i) = 2Q\left(\frac{d}{2\sigma}\right) - Q^2\left(\frac{d}{2\sigma}\right)$$

Também seria possível calcular a probabilidade de erro como:

$$P_e = Pr\left\{Z_1 \le -\frac{d}{2}\right\} + Pr\left\{Z_2 \le -\frac{d}{2}\right\} - Pr\left\{\left\{Z_1 \le -\frac{d}{2}\right\} \cap \left\{Z_2 \ge -\frac{d}{2}\right\}\right\}$$

Figura 7: Exemplo de modulação 4-QAM.

2.6 Irrelevância e estatística suficiente

Definição 2.1. Três variáveis aleatórias U, V, W formam uma **cadeia de Markov** nesssa ordem, $U \to V \to W$, se a distribuição de W, dados U e V, é independente de U, i.e., $P_{W|U,V}(w|u,v) = P_{W|V}(w|v)$.

Seja Y a observação e T(Y) uma função de Y. Note que $H \to Y \to T(Y)$ é sempre verdade, mas $H \to T(Y) \to Y$ não é.

Definição 2.2. Seja T(Y) uma variável aleatória obtida do processamento da observação Y. Se $H \to T(Y) \to Y$ forma uma cadeia de Markov, então T(Y) é uma **estatística suficiente** para a hipótese H.

Teorema 2.1. Se T(Y) é uma estatística suficiente para H, então um decodificador MAP que estima H a partir de T(Y) obtém a mesma probabilidade de erro que um que estima H a partir de Y, i.e.,

$$P_{H|Y}(i|y) = P_{H|Y,T}(i|y,t) = P_{H|T}(i|t)^4, \quad t = T(y)$$

Exemplo 2.3. Considere o esquema de comunicação mostrado a seguir, em que H, Z_1 , Z_2 são variáveis aleatórias independentes. Um receptor MAP que observa Y_1 obtém a mesma probabilidade de erro que um que observa Y_1 e Y_2 . Nesse caso, Y_1 é uma estatística suficiente e Y_2 é uma estatística irrelevante.

Seja um decodificador MAP que, observando Y, sempre realiza a mesma decisão que se observasse apenas T(Y). Isso não implica que $H \to T(Y) \to Y$, pois, para termos cadeia de Markov, é necessário que $P_{H|Y,T(Y)}(i|y,t) = P_{H|T(Y)}(i|t)$ para todos os valores de i, y, t. Por outro lado, para que y não tenha efeito na decisão MAP, basta que, para todo y, t, o máximo de $P_{H|Y,T(Y)}(\cdot|y,t)$ e de $P_{H|T(Y)}(\cdot|t)$ sejam atingidos para o mesmo i.

Teorema 2.2. (Teorema da fatoração de Fisher-Neyman) Suponha que $g_0, g_1, ..., g_{m-1}$ e h são funções tais que, para cada $i \in \mathcal{H}$, vale

$$f_{Y|H}(y|i) = g_i(T(Y))h(y).$$

 $Ent\~ao\ T\ \'e\ uma\ estat\'estica\ suficiente.$

⁴A primeira igualdade vale, pois T é função de Y. A segunda vale, pois $H \to T(Y) \to Y$.

Figura 8: Esquema de comunicação com estatísticas suficiente e irrelevante.

2.7 Limitantes de probabilidade de erro

2.7.1 Limitante da união

Usaremos o limitante da união para aproximar cálculos de probabilidade de erro em testes de várias hipóteses.

$$P\left(\bigcup_{i=1}^{m} \mathcal{A}_i\right) \leq \sum_{i=1}^{m} P(\mathcal{A}_i).$$

A probabilidade de erro exata é dada pela avaliação da integral abaixo para todo i. No entanto, nem sempre é fácil avaliar a integral.

$$P_e(i) = Pr\{Y \in \mathcal{R}_i^c | H = i\} = \int_{\mathcal{R}_i^c} f_{Y|H}(y|i)dy.$$

Defina

$$\mathcal{B}_{i,j} := \{ y : P_H(j) f_{Y|H}(y|j) \ge P_H(i) f_{Y|H}(y|i) \}, \quad i \ne j$$

o conjunto de y para os quais a decodificação MAP escolhe j sobre i.

Usaremos o fato de que

$$\mathcal{R}_i^c \subseteq \bigcup_{j \neq i} \mathcal{B}_{i,j}^5.$$

Então podemos escrever o limitante da união:

$$P_e(i) = Pr\{Y \in \mathcal{R}_i^c | H = i\} \leq Pr\{Y \in \bigcup_{j \neq i} \mathcal{B}_{i,j} | H = i\} \leq \sum_{j \neq i} Pr\{Y \in \mathcal{B}_{i,j} | H = i\} = \sum_{j \neq i} \int_{\mathcal{B}_{i,j}} f_{Y|H}(y|i) dy$$

O ganho é que é tipicamente mais fácil integrar sobre $\mathcal{B}_{i,j}$ que sobre \mathcal{R}_i^c .

Exemplo 2.4. Modulação m-PSK (phase-shift keying): os pontos distribuiídos em um círculo, de tal forma que $c_i = \sqrt{\mathcal{E}} \left(\cos\left(\frac{2\pi i}{m}\right), \sin\left(\frac{2\pi i}{m}\right)\right)$ para $m \geq 2$. Seja o caso 8-PSK (Figura 9). Para o canal AWGN, H = i: $Y \sim N(c_i, \sigma^2 I_2)$.

Figura 9: Exemplo de modulação 8-PSK com regiões de decodificação.

A probabilidade de erro exata é dada por

$$P_e(i) = \frac{1}{\pi} \int_0^{\pi - \frac{\pi}{m}} \exp\left\{-\frac{\sin^2(\frac{\pi}{m})\mathcal{E}}{\sin^2(\theta)2\sigma^2}\right\} d\theta.$$

Usando o limitante da união, temos

$$P_e(i) = Pr\{Y \in \mathcal{B}_{i,i-1} \cup \mathcal{B}_{i,i+1} | H = i\} \leq Pr\{Y \in \mathcal{B}_{i,i-1} | H = i\} + Pr\{Y \in \mathcal{B}_{i,i+1} | H = i\} = 2Q\left(\frac{\sqrt{\mathcal{E}}}{\sigma} \sin \frac{\pi}{m}\right).$$

 $^{^5\}mathrm{A}$ igualdade só vale se todos os empates forem decididos contra i.

2.7.2 Limitante da união de Bhattacharyya

Ver [1], p. 48-51.

3 Projeto de receptor para canal AWGN no tempo contínuo: segunda camada

3.1 Introdução

Nesse capítulo, tratamos do mesmo problema do capítulo anterior, mas para o canal AWGN no tempo contínuo.

Figura 10: Esquema de comunicação por um canal AWGN no tempo contínuo.

Seja o conjunto de sinais $\mathcal{W} = \{w_0(t), ..., w_{m-1}(t)\}$. São feitas duas exigências sobre esse conjunto:

- 1. A norma quadrática de um sinal $w_i(t)$ é associada à sua energia. Segue que qualquer vetor do espaço vetorial \mathcal{V} gerado por \mathcal{W} é uma função com quadrado integrável.
- 2. Se $v \in \mathcal{V}$ tem norma nula, então v(t) é nulo para todo t.

Juntas, essas condições implicam que V é um espaço vetorial com produto interno de funções com quadrado integrável. Os sinais de comunicação do mundo real são desse tipo: têm energia finita e são contínuos.

Motivos para nos preocuparmos com a energia (ou potência) de um sinal:

- Regulações que limitam a potência dos sinais transmitidos, por motivos de segurança e reusabilidade de espectro.
- Gasto de energia para transmitir sinais (ex.: bateria).
- Seria injusto comparar métodos de transmissão de sinais que não usam a mesma potência.

Trabalharemos com uma decomposição do transmissor e receptor. Consideraremos o transmissor como formado por um codificador que mapeia a mensagem $i \in \mathcal{H}$ em uma n-upla c_i e por um gerador de forma de onda que mapeia c_i em $w_i(t)$. Analogamente, o receptor consiste de um formador de n-uplas e de um decodificador, que funciona como estudado no capítulo anterior.

Figura 11: Decomposição do transmissor e receptor.

3.2 Ruído gaussiano branco

Definição 3.1. N(t) é um ruído gaussiano branco de densidade espectral de potência $\frac{N_0}{2}$ se, para qualquer coleção finita de funções reais \mathcal{L}_2 $g_1(\alpha), ..., g_k(\alpha)$,

$$Z_i = \int N(\alpha)g_i(\alpha)d\alpha \quad i = 1, 2, ..., k$$

é uma coleção de variáveis aleatórias gaussianas de distribuição conjunta de média nula e covariância

$$\operatorname{cov}(Z_i, Z_j) = \mathbb{E}[Z_i Z_j^*] = \frac{N_0}{2} \int g_i(t) g_j^*(t) dt = \frac{N_0}{2} \langle g_i, g_j \rangle.$$

Lema 3.1. Seja $\{g_1(t),...,g_k(t)\}$ um conjunto ortonormal de funções reais. Então $Z=(Z_1,...,Z_k)^T$, com Z_i da definição anterior, é um vetor aleatório de distribuição gaussiana, com média nula, componentes i.i.d. e variância $\sigma^2 = \frac{N_0}{2}$.

O ruído é dito *branco*, pois, como luz branca, o ruído branco gaussiano tem potência igualmente distribuída em todas as frequências. Os ruídos podem ser naturais (térmico, solar, cósmico) ou produzidos pelo homem (rupidos de motores elétricos, linhas de transmissão).

3.3 Observações e estatística suficiente

A saída do canal R(t) (Figuras 10, 11) não pode ser observável, mas sim k-uplas $V = (V_1, ..., V_k)^T$ tais que

$$V_{i} = \int_{-\infty}^{\infty} R(\alpha)g_{i}^{*}(\alpha)d\alpha \quad i = 1, ..., k$$

em que k é um inteiro positivo arbitrário e $g_1(t),...,g_k(t)$ são formas de onda de energia finita arbitrárias.

Seja \mathcal{V} o espaço vetorial com produto interno gerado pelo conjunto de sinais \mathcal{W} e seja $\{\psi_1(t),...,\psi_n(t)\}$ uma base ortonormal de \mathcal{V} . A n-upla $Y=(Y_1,...,Y_n)^T$, com i-ésima componente

$$Y_i = \int R(\alpha) \psi_i^* d\alpha$$

é uma estatística sufcieinte para a hipótese H em uma coleção de medidas que contém Y.

De fato, $Y = c_i + Z_{\parallel \mathcal{V}}$ é uma projeção de R(t) no espaço de sinais \mathcal{V} e $U_{\perp \mathcal{V}}$ é irrelevante e contém somente ruído independente.

3.4 Arquitetura do transmissor e do receptor

O transmissor tem um módulo codificador que produz o conjunto de palavras-código $c_i = (c_{i,1},...,c_{i,n})^T$ e um gerador de forma de onda, que produz sinais $w_i(t) \in \mathcal{W}$ a partir de c_i , usando uma base ortonormal $\psi_1(t),...,\psi_n(t)^{67}$, de forma que o sinal no canal contínuo é $w_i(t) = \sum_j c_{i,j} \psi_j(t)$.

O canal adiciona ruído gaussiano branco N(t) de variância $\sigma^2 = \frac{N_0}{2} I_n$.

A parte do receptor mais próxima do canal é o gerador de n-uplas, que realiza uma redução de dados ao calcular $Y \in \mathbb{R}^n$ a partir de $R(t) = w_i(t) + N(t)$. Para isso, projeta cada componente do sinal no espaço de sinais $\mathcal{V} Y_i = \langle R, \psi_i \rangle$. O decodificador realiza o teste de hipóteses baseado na observação Y:

$$H = i$$
: $Y = c_i + Z$

em que $Z \sim N(0, \frac{N_0}{2}I_n)$ é independente de H, decodificando o vetor $Y = (Y_1, ..., Y_n)^T$. Esse é o mesmo teste de hipósteses estudado no capítulo anterior, para um canal AWGN no tempo discreto.

A decomposição do sistema transmissor/receptor apresentada é completamente geral e permite reduzir o problema ao tempo discreto, conforme já estudado. Além disso, a relação entre tempo discreto e contínuo permite calcular energias e distâncias em qualquer domínio, i.e.:

$$\sum_{j=1}^{n} |c_{i,j}|^2 = ||c_i||^2 = ||w_i(t)||^2 = \int |w_i(t)| dt$$

$$\sqrt{\sum_{j=1}^{n} (c_{i,j} - c_{k,j})^2} = ||c_i - c_k|| = ||w_i(t) - w_k(t)|| = \sqrt{\int [w_i(t) - w_k(t)]^2 dt}$$

Observações:

- Conjuntos de sinais no tempo contínuo podem parecer diferentes, mas compartilhar do mesmo livro de códigos, o que é suficiente para garantir que a probabilidade de erro é a mesma.
- Para constelações binárias, o que importa para a probabilidade de erro é a distânciaentre dois sinais e nada mais.

⁶Como a base é ortonormal, $\langle \psi_i(t), \psi_j(t) \rangle = \delta_{ij}$ e $||\psi_i(t)|| = 1$.

⁷Para produzir uma base ortonormal, podemos usar o método de Gram-Schmidt.

Figura 12: Decomposição detalhada do transmissor e receptor.

Exemplo 3.1. Single-shot PAM: Seja o pulso de energia unitária $\psi(t)$. O sinal transmitido é da forma

$$w_i(t) = c_i \psi(t),$$

em que c_i assume valores em um subconjunto discreto de \mathbb{R} da forma $\{\pm a, \pm 3a, ..., \pm (m-1)a\}$ para um inteiro positivo a.

Exemplo 3.2. Single-shot PSK: Sejam T e f_c números positivos e m inteiro positivos assuma $2f_cT$ inteiro. O sinal é da forma

$$w_i(t) = \sqrt{\frac{2\mathcal{E}}{T}}\cos\left(2\pi f_c t + \frac{2\pi}{m}i\right)\mathbb{1}\{t \in [0, T]\}, \quad i = 1, ..., m - 1$$

Podemos reescrever como

$$w_i(t) = c_{i,1}\psi_1(t) + c_{i,2}\psi_2(t)$$

onde

$$c_{i,1} = \sqrt{\mathcal{E}} \cos\left(\frac{2\pi i}{m}\right), \qquad \psi_1(t) = \sqrt{\frac{2}{T}} \cos(2\pi f_c t) \mathbb{1}\{t \in [0, T]\}$$

$$c_{i,2} = \sqrt{\mathcal{E}} \cos\left(\frac{2\pi i}{m}\right), \qquad \psi_2(t) = -\sqrt{\frac{2}{T}} \sin(2\pi f_c t) \mathbb{1}\{t \in [0, T]\}$$

Exemplo 3.3. Single-shot QAM: Sejam T e f_c números positivos tais que $2f_cT$ seja inteiro e m inteiro positivo par. O sinal é da forma

$$w_i(t) = c_{i,1}\psi_1(t) + c_{i,2}\psi_2(t),$$

em que

$$\psi_1(t) = \sqrt{\frac{2}{T}} \cos(2\pi f_c t) \mathbb{1}\{t \in [0, T]\}$$
$$\psi_2(t) = \sqrt{\frac{2}{T}} \sin(2\pi f_c t) \mathbb{1}\{t \in [0, T]\}$$

 $e \ c_i = (c_{i,1}, c_{i,2})^T, \quad i = 0, ..., m^2 - 1 \ assume \ valores \ discretos \ da \ forma \ \{\pm a, \pm 3a, ..., \pm (m-1)a\}, \ para \ a \ positivo.$

3.5 Generalização e estruturas alternativas de recepção

O teste de hipóteses tem como entradas os priors $P_H(i)$ e a observaçõe Y com distribuição

$$f_{Y|H}(y|i) = \frac{1}{(2\pi\sigma^2)(n/2)} \exp\left(-\frac{\|y - c_i\|^2}{2\sigma^2}\right) = \frac{1}{(\pi N_0)(n/2)} \exp\left(-\frac{\|y - c_i\|^2}{N_0}\right).$$

A regra de decodificação MAP pode ser escrita de três maneiras distintas e equivalentes:

$$\hat{H} = \arg\max_{i \in \mathcal{H}} P_H(i) f_{Y|H}(y|i) = \arg\max_{i \in \mathcal{H}} P_H(i) \exp\left(-\frac{\|y - c_i\|^2}{N_0}\right) = \arg\max_{i \in \mathcal{H}} \ln P_H(i) - \frac{\|y - c_i\|^2}{N_0}$$

$$\hat{H} = \arg\min_{i \in \mathcal{H}} ||y - c_i||^2 - N_0 \ln P_H(i)$$

Usando que $||y - c_i||^2 = ||y||^2 + ||c_i||^2 - 2\Re\{\langle y, c_i \rangle\}$, temos:

$$\hat{H} = \arg\max_{i \in \mathcal{H}} \langle y, c_i \rangle - \frac{\|c_i\|^2}{2} + \frac{N_0}{2} \ln P_H(i)$$

Usando equivalência entre tempo discreto e tempo contínuo, temos:

$$\hat{H} = \arg\max_{i \in \mathcal{H}} \int R(t) w_i^*(t) dt - \frac{\|w_i(t)\|^2}{2} + \frac{N_0}{2} \ln P_H(i)$$

A regra MAP nas três formas acima requer uma operação do tipo

$$\int R(t)b^*(t)dt$$

onde b(t) é uma função $\psi_i(t)$ ou $w_i(t)$. Há duas maneiras de fazer isso:

- 1. Através de um *correlator*, um dispositivo que multiplica e integra dois sinais de entrada (realiza o produto interno entre eles). A saída é $y(t) = R(t)b^*(t)dt$.
- 2. Através de um filtro casado, i.e., um filtro que recebe R(t) na entrada e tem resposta ao impulso $h(t) = b^*(T-t)$ (T é um parâmetro que garante que o h(t) é causal). Nesse caso, a saída em t = T será $y(T) = \int R(\alpha)b^*(\alpha)d\alpha$.

Figura 13: Implementação com correlator (a) e com filtro casado (b).

- 3.6 Canais em tempo contínuo revisitados
- 4 Soluções de compromisso no projeto de sinal
- 4.1 Introdução
- 4.2 Transformações isométricas aplicadas ao livro de códigos

Referências

[1] RIMOLDI, Bixio. *Principles of Digital Communication*: A Top-Down Approach. Cambridge: Cambridge University Press, 2016.