HW3. 3.2 证明 2扩参数W. 11) y= 1+e-(wがx+b) 是非凸函数. (2) ((月) = (-4)月7分十1月(1+e月7分)是凸函数 首联于 · 马函数的定理: * 若fix)=阶连续可微,那么fix)是D上的凸函数的充要条件是,fix)的 Hesse 矩阵在D上是半正定的。 11) 对生,求集 Hessian 矩阵。要证生非凸,证明该矩阵非半正定即可 28 -- [1+e-(wtx+b)]-> e-(wtx+b). (-x) = 7(4-4)x = x(4-4) = xT(y-y2) (x-2xy) 二 xx (1-24)(y-y²)
-: y的值域为(0,1) xx 相当于 x 倍单泛阵 且当少((0.5,1)时,少少一)(1-沙)(0, 在如(如)半负定 综上 好为非凸函数.

= XPXT 其中×为(n.m)左号车每一列对应一个样本,P的文摘矩阵 THE PINE P. CALL BY THE STITE ON THE SERVE SERVE CAN XPOXT 对任意向量2者情:。的第五半是土口五里的类。 ZTXPXTZ = (xTZ)TP(XTZ) =VTPOV 园战战 Hessian 矩阵半起 L(B)对于参数W是凸函数 3.7 63长为9, 类别数为4. 求最佳 ECOC=元码. 好的情况应该达到行话高、列场高、且两个分类器的编码不至为反码。 fi t2 t3 f4 tx f6 f7 t8 tq. C1 -> +1 +1 +1 +1 +1 +1 -1 -1 (2-> -1 -1 +1+1 +1 +1+1 C3 -> -1 -1 +1 - (1+41) (+1-1/2) = C4 -> 水平下给外井(十二十二十十十十年) (10.5,1)日本、早時一)、1-34) 40元(元)半夜定

如上的 Ecoc 二元码, 不存在编码员为反码的分类器
如上的 Ecoc =元码, 不管在编码3200 次分配为关系。 任意两组分类器之间的海明距离, 均大于等于5 任意两组分类器之间的海明距离, 均大于等于5
任意两组分类器之间的海明起器以为人了等了。
少人类中不存在 fi新了,从每个小人的一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个
下面证明这种情况为最优,分为20步;
下面证明这种情况为最优,为为2.节: ①证明不存在任意两组分类器间海明距离均太于等于7的纠错码。 ②证明不存在任意两组分类器间海明距离均为6的纠错码,但其不满足。
②证明存在任意两组分类器间汉明距离物为6的纠结码,但其不满足。
①:以Ci为标准,若C≥与Ci海明EE离为了,则有了位编码相异,
- 4 for ht 7 ht: 12 1 ~ t- 1/5 2 500 62 AUTS
由(、和(、海图105系为7)、石台长为9 引发,一多个一个
(7+7-9)=5位编码相同,但此时(3和62的海明距离至多为4,
大块送到10
故命题得证. Anon= TA Anon= (EMTA) short =
是平, 园设 客 m 以 = (左 m i) u .
包. 同口的分析,以C的标准,若海明距离为6. R) C, 与C2、C3、C4分别
为有6位编码相异。图 知识 处 0年(知识) 四至 99
fi f2 f3 f4 fs f6 f7 f8 f9.
C2 [17/11/11/11/11] 1-11 = 22 2/2021
C3 17/11/1 11/11/11
(4) 11111111111
上图为1例, 阴影部分表示与C.相解的6位编码位置。

可以看出,其满足任意两组分类器编码的海明距离的6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
综上, 如如最开始的任意两组分类器编码的海明是高大于等于5
66 CUC地区从上代
BO 列表 200 121/10。
礼充题! 在LDA多分类情形下计算类间散度矩阵Sb的秩并证明.
$C_i - \frac{1}{2} m_i (u_i - u) (u_i - u)$
1m = (u-u)
= [u,-u, u2-u,, un-u] (usu)
= [u,-u, u2-u,, un-u] (mn) (u,-u) (u,-w) (un-w)
22 M = diag (m, m2,, mn)
A = (u,-u, u2-u,, UN-U) T = = = = = = = = = = = = = = = = = =
121 rank Sb = rank ATMA = rank ATM = A = rank (ATM =) (ATM)
= rank (ATM=) = rank AT = rank (u1-u, u2-u, un-u)
其中,因为 Nmiui = (於 mi)u.
6 月のあるは、山上衛子院 生花園は東京に 2 m 当 5 cm C 1 cm
開か mi(ui-u)=0,to rank (ローロ, ロール, ー, ルルール) ミルー1
4 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12
rank Sb N-1
THE THE PARTY OF T
Ci III I I I I I I I I I I I I I I I I I

近这样的向量。我们假设d<n用所有特征的线性天关。则×张成的空间是个d维度空间。真实值 y是 个n×1的向量,处于n维空间中。多元线性则是大d维度空间,真实值 y是 个n×1的向量,处于n维空间中。多元线性则是

回転車の配属。他は、全方表示の中在屋

4.1 决策树的递归停止条件为: 小当前结点包含的样本属于同一类别,无 HW4 需划分。(2) 当前的属性集为空,或是当前样本在所有属性上的取值相 同,无法划分。 (3) 当前结点的样本集合为空,不能划分。 1段设对于训练得到的决策对存在结点,该结点中有无法划分的数据。 即存在冲突数据,训练误差不为0,与原假设矛盾。 因此,对于不含冲突数据的训练集,必存在与训练集一致的决策 树。 4.9 给定训练集D和属性a,全页表示D中在属性a上没有缶灰失 值的样本子集。假没 a有 V个可取值 fa', a', -- , a'} 全分°表示分上a属性取值为 a° 的样本子集, Dx表示方中属于 第k类 (k=1,--, 1YI) 的样本子集。 显然有 $\mathcal{O} = U_{k=1}^{||Y||} \mathcal{O}_k$ $\mathcal{O} = U_{v=1}^{||Y||}$ 为每个样本赋予一个权重 Us Exed Wx 表示在企业无缺失值的样本的例 表示无缺失值样本中 a属性取 a 的 样本权重性的 则由 Gini 指数定义: 141 Gini (D) = 1- 三队 即排除了所有随机抽取两样标。 其类到标记一般的情况的概率 ●采用类似的符号表示,属性a的基尼指数定义为 aini_index (D.a) = (\$\frac{1}{2} \tag{7} aini (BV) (相当于原定义中的门) 换为了介)

神死版 $|| X = \{1, 2, \dots, K\}|$ || P(X = K)| = PK $|| K\}|$ $|| H(P)| = -\frac{1}{2} PK \log_2 PK$ $|| S = K \log_2 PK|$ $|| S = K \log_2 FK|$ $|| S = K \log_2 FK|$

```
补充题 2.
   P(类别="-")===
       Ent(D) = - (= log2 = + = log2 = )= 1
  b) 以属性A来分析,有"丁"、1"F"两个取值.
      D'= {1,2,3,8} D'中有3万"+",117~"
      D= {4,5,6,7,9,10} 0中有2个"+",4个"-"
     Ent(D') = - ( 3 69. 3 + 4 69.4)
     = 2 - \frac{2}{4} \log_2 3
Ent (D²) = -( \frac{2}{5} \log_2 \frac{2}{5} + \frac{2}{5} \log_2 \frac{2}{5})
    = \log_2 3 - \frac{2}{3} \qquad 2 \qquad \frac{10^{v_1}}{|D|} \text{ Gut } (D^{v})
Clain (D, A) = Ent(D) - \sum_{v \in I} |D| Ent (D<sup>v</sup>)
         = 1 - \frac{2}{5} (2 - \frac{2}{5} (\log_2 3) - \frac{2}{5} (\log_2 3 - \frac{2}{5})
     的根循连。又用为这样的是没有一个一切无接给这是所求的
   以属性 B来分析, 有"T"、"F"、两个取值,是的大品。数本人的图
      D'= {1, 2, 5, 6, 9} D'中有2个"+", 3个"-"
     = 1 lug25 - = - 3 lug23
    Ent (D^2) = -(\frac{3}{5}\log_2\frac{3}{5} + \frac{2}{5}\log_2\frac{2}{5})
= \log_25 - \frac{2}{5} - \frac{2}{5}\log_23
```

```
Gain (D, B) = Ent(D) - \( \subseteq \frac{1D'}{1D} \) Ent(D')
                 = 1- (log25-====log23)
                  = \frac{7}{5} + \frac{3}{5} \log_2 \frac{3}{5} - \log_2 \frac{5}{5}.
(C) 统计 C类,共8种取值, 1.0、2.0、3.0、4.0、5.0、6.0、7.0、8.0
 THER 划分点分别为 1.5、25、3.5、4.5、5.5、6.5、7.5、1
   ①划的点为15
    D'= {1} % "+"
    D= { 2.3. 4.5.6.7.8.9} 4万为"+",5个为"-"
    Ent (D') = - \log_2 1 = 0

Ent (D') = - (\frac{4}{9}\log_2 \frac{7}{9} + \frac{5}{9}\log_2 \frac{5}{9}) = \frac{8}{9} - \frac{5}{9}\log_2 5 + 2\log_2 5
  Crain (D, C) = Ent (D) - = 101 Ent (D')

= 1- 10x0 + 10 [8+ 5 log25 - 2hgi3]
                     = = + + log25 - = log23
 回划分点为 2.5
      ローイ1,103 2行物的"+"
     D= 12.3.4,5,6,7,8,93 +37 カ"+", とケカ"-" と 3+3=10
     Ent (0') = 0 "_____
     Ent (1)2) = - (\frac{3}{8}\log_2\frac{3}{8} + \frac{5}{8}\log_2\frac{5}{8}) = \frac{3}{8}\log_23\theta - \frac{5}{8}\log_25\theta
 Gain (D,C)2 = Ent (D) - = 101 Ent (D) = (3 - 3 log 2) + 1 log 25 - 5
```

```
③ 戈川的1点为 3.5
D'={1,6,10} 2行为"+",17为"-"
   D= {2,3,4,5,7,8,93 3/7 あ +", 4/7 カ"ー"
   Ent (D') = - [ = log2 = + = log2 = ] = log2 = = =
   Ent (D2) = - [3/6923 + 4/6924] = Log27 - 3/6923 - 8
   1 Gain (D,C)3 = Ent (D) - Ent (D) ≥ [D] Ent (D)
  0.8 0.7 0.8 0 = 01 - 10 ( lug 23 - 3) - 10 (lug 27 - 3 log 23 - 8)
  A- REXX 21 = 2 - 10 log 27 100 26
   划场点的 4.5
D'= } 1, 4, 6,103 3/7的"十" 1217的"二"
 ④ 划场点的 4.5
   Ent (0") = - [ ] Log2 + + 4 Log = 4] = z- 4 Log23
   Ent (D2) = -[ = bg2 + + 6692 +] = log23 -= 3
   Cain (D.C)4 = Ent(D) - 5 101 Ent(D)
              = 3 = 13 log = 3 2 pol ++
图划分点为5.5
   D'= {1,3,4,6,9,10} 3个あ"+",3个あ"-"
   Z Ent (D') = - Log2 = 1+ 3 Pol =) -
  Ent (D^2) = (-Lg_2 \frac{1}{2} = 1)

Cain (D, C)_s = Ent(D) - \frac{2}{5} |D| Ent(D^0) = 0
```


