

- **月** *博弈(games)*
- 2 博弈中的优化决策(Optimal Solution)
- **α-**β剪枝(Alpha-Beta Pruning)
- 4 其他改进(Improvement)
 - 5 博弈的发展情况(State-of-the-Art)

α-β是什么?

- α是MAX至今为止的路径上所有选择点中发现的最好选择的值,即是最大值。如果v比α差, MAX会避免它,即发生剪枝。
- 类似的, β是给MIN记录的最好结果即 是最小值。
 - ·如果v比β差, MIN会避免它, 即发生剪枝。

- 假设博弈树的分支因子为b
 - 则极大极小算法检测 $O(b^h)$ 个节点,最坏情况下 α - β 剪枝也是一样的。
 - 以下情况下α-β剪枝比极大极小算法优异:
 - a. 一个MAX节点的MIN孩子们是按降序排列的。
 - b. 一个MIN节点的MAX孩子们是按升序排列的。
 - 这种情况下α-β剪枝算法检测O(b^{h/2}) 个节点。[Knuth and Moore, 1975]
 - •但这需要一个神谕(如果我们知道节点的完美排序,我们就不需要搜索博弈树了)。
- •如果节点是按随机排序的,那么α-β剪枝算法检测O(b³h/4)个节点。
- 启发式极小极大值: 节点的启发式排序
 根以下的节点排序依照前一次循环所得到的倒推值进行。

其他改进方法

- 采用适应深度限制+循环加深
- 扩大搜索范围:保留k>1条的路径,代替仅保留一条,并且在大于设置深度的叶子节点下扩展博弈树(帮着对付水平线效应——指当前的后继都是差不多的状态)。
- •特别情况扩展:在设置深度h时,如果一个节点明显地比其他的 节点好,则沿着这个移动继续扩展几步。
- 用对照表法对付重复状态。
- 另外还有诸如当a≥b虽然不成立,但a不比b小多少时,仍然采用剪枝,特别是在开局初期。

其他

- 多玩家游戏, 联盟或不联盟
- 随机游戏(如掷骰子),采用预期极大极小算法
- 不完全可观察状态空间,采用搜索信任空间的方法

- 博弈(games)
- 2 博弈中的优化决策(Optimal Solution)
- **α-6**剪枝(Alpha-Beta Pruning)
- 其他改进(Improvement)

博弈的发展情况(State-of-the-Art)

Game Playing Algorithms Today 博弈算法的进展

Computers are better than humans 计算机优于人类

Checkers	Solved in 2007
西洋跳棋	2007年已解决
Chess	IBM Deep Blue defeated Kasparov in 1997
国际象棋	IBM深蓝于1997年战胜了卡斯帕罗夫
Go	Google AlphaGo beat Lee Sedol, a 9 dan professional in Mar. 2016
围棋	谷歌AlphaGo于2016年3月战胜了9段职业棋手李世乭

Computers are competitive with top human players 计算机与顶级人类玩家媲美

Backgammon 西洋双陆棋	TD-Gammon used reinforcement learning to learn evaluation function TD-Gammon使用了强化学习方法来得到评价函数
Bridge 桥牌	Top systems use Monte-Carlo simulation and alpha-beta search 顶级的系统使用蒙特卡罗仿真和alpha-beta搜索

n, Al

博弈程序发展现状

- 西洋跳棋: Chinook 在1994年打败了人类冠军 Marion Tinsley。
- 黑白棋: The Logistello software 在1997年6: 0完败世界冠军。
- 国际象棋: Deep Blue 1997打败了人类冠军 Garry Kasparov.
- 围棋: 2016年7月18日,GoRatings公布最新世界排名,AlphaGo以3612分,超越3608分的柯洁成为新的世界第一。
- 2017年10月19日国际学术期刊《自然》(Nature)阿尔法元**100: 0**战胜哥哥阿尔法狗

Secrets

- Many game programs are based on alpha-beta + iterative deepening + extended/singular search + transposition tables + huge databases + ...
- For instance, Chinook searched all checkers configurations with 8 pieces or less and created an endgame database of 444 billion board configurations
- The methods are general, but their implementation is dramatically improved by many specifically tuned-up enhancements (e.g., the evaluation functions) like an F1 racing car

扩展阅读: Go vs. Chess 围棋与国际象棋

 Go has long been viewed as one of most complex game and most challenging of classic games for AI.

围棋一直被视为最复杂的博弈之一、而且是最具挑战性的AI经典博弈。

Chess (b \approx 35, d \approx 80)

 $8 \times 8 = 64$, possible games $\approx 10^{120}$

Go (b \approx 250, d \approx 150)

19 x 19 = 361, possible games $\approx 10^{170}$

Algorithm of AlphaGo AlphaGo的算法

- □ Deep neural networks 深度神经元网络
 - value networks: used to evaluate board positions 价值网络: 用于评估棋局
 - policy networks: used to select moves.

策略网络: 用于选择走子

- □ Monte-Carlo tree search (MCTS) 蒙特卡罗树搜索 (MCTS)
 - Combines Monte-Carlo simulation with value networks and policy networks.

将蒙特卡罗仿真与价值和策略网络相结合

- □ Reinforcement learning 强化学习
 - used to improve its play. 用于改进它的博弈水平。

Source: Mastering Go with deep networks and tree search Nature, Jan. 28, 2016

About Monte-Carlo Methods 关于蒙特卡罗方法

Monte-Carlo methods are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results.

蒙特卡罗方法是一大类计算算法,它凭借重复随机采样来获得数值结果。

They tend to follow a particular pattern:

它们往往遵循如下特定模式:

define a domain of possible inputs;
 定义一个可能的输入域;

- generate inputs randomly from a probability distribution over the domain; 从该域的一个概率分布随机地生成输入;
- perform a deterministic computation on the inputs; 对该输入进行确定性计算;
- aggregate the results.
 将结果聚合。

Example: Approximating π by Monte-Carlo Method 用蒙特卡罗方法估计 π

Given that circle and square have a ratio of areas that is π/4, the value of π can be approximated using a Monte-Carlo method:

鉴于圆形与正方形面积之比为π/4,则π的值可采用蒙特卡罗方法近似得出:

- a) Draw a square on the ground, then inscribe a circle within it. 先画出一个正方形,然后在其中画一个圆弧。
- b) Uniformly scatter some objects of uniform size over the square. 将尺寸大小一致的小颗粒散落在正方形上。
- c) Count the number of objects inside the circle and the square. 计算圆形和正方形中小颗粒的数量和总的数量。
- d) The ratio of the two counts is an estimate of the ratio of the two areas, which is $\pi/4$. Multiply the result by 4 to estimate π . 两个数量之比为两个面积的估算,即 $\pi/4$ 。结果乘以4得出 π 。

Family of Monte-Carlo Methods 蒙特卡罗方法的家族

是一种覆盖系统各种状态的概率分布、 概率测量或者频率分布。来获得热力学 性质和最小能量结构的方法

- □ Classical Monte-Carlo: 经典蒙特卡罗 samples are drawn from a probability distribution, often the classical Boltzmann distribution; 样本来自于概率分布,往往是经典的玻兹曼分布;
- Quantum Monte-Carlo: 量子蒙特卡罗 random walks are used to compute quantum-mechanical energies and wave functions; 采用随机走查方法来计算量子力学的能量和波函数;
- Volumetric Monte-Carlo: 容积式蒙特卡罗 random number generators are used to generate volumes per atom or to perform other types of geometrical analysis;

采用随机数生成的方法产生每个原子的容量、或进行其它类型的几何分析。

■ Kinetic Monte-Carlo: 动力学蒙特卡罗 simulate processes using scaling arguments to establish timescales or by introducing stochastic effects into molecular dynamics.

仿真过程采用尺度分析来建立时间尺度、或者将随机效应引入分子动力学。

Monte-Carlo Tree Search (MCTS) 蒙特卡罗树搜索 (MCTS)

- MCTS combines Monte-Carlo simulation with game tree search.
 MCTS将蒙特卡罗仿真与博弈树搜索相结合。
- □ Like minimax, each node corresponds to a single state of game.
 和minimax一样,每个节点对应于一个的博弈状态。
- Unlike minimax, the values of nodes are estimated by Monte-Carlo simulation.

不同于minimax, 节点的值通过蒙特卡罗仿真来估值。

W(a)/N(a) = the value of action a 动作a的值

where: 其中

W(a) = the total reward 总的奖励

N(a) = the number of simulations 仿真的数量

Source: Communications of the ACM, Mar. 2012, 55(3), pp. 106-113

Algorithm of AlphaGo AlphaGo的算法

It uses a combination of machine learning and tree search techniques, combined with extensive training, both from human and computer play.

采用机器学习和树搜索技术相结合的方式,并且用人类和计算机走棋的棋局进行大量的训练。

- Two deep neural networks 两个深度神经网络
 - value networks to evaluate board positions and policy networks to select moves. 价值网络来评价棋盘位置、策略网络来选择走棋。
- □ Tree search 树搜索
 - Monte Carlo tree search (MCTS). 蒙特卡罗树搜索 (MCTS)
- □ Reinforcement learning 强化学习
 - be used to improve its play. 用于改善其走棋。

Monte-Carlo Tree Search in AlphaGo AlphaGo的蒙特卡罗树搜索

(a) Selection: Each simulation traverses the tree by selecting edge with maximum action value Q + bonus u(P) that depends on a stored prior probability P for that edge.

选择:每次仿真通过选择边与最大动作值Q+奖励u(P)对搜索树进行遍历,依赖于该条边存储的先验概率P。

(b) Expansion: The leaf node may be expanded; the new node is processed once by the policy network p_σ and the output probabilities are stored as prior probabilities P for each action.

扩展: 叶节点可以扩展; 新的节点先由策略网络 p_o处理, 然后其输出概率存储为每个动作的先验概率P。

Monte-Carlo Tree Search in AlphaGo

(c) Evaluation (Simulation): The leaf node is evaluated in two ways: 1) using the value network v_{θ} ; 2) by running a rollout to the end of the game with the fast rollout policy p_{π} , then computing the winner with function r.

评价 (仿真):叶节点用两种方法评价: 1)使用价值网络 ν_{θ} ; 2)使用快速走子策略 ρ_{π} 运行到博弈结束,然后用函数r计算出胜者。

(d) Backup (Back propagation): Action values Q are updated to track the mean value of all evaluations r(·) and v_θ(·) in the subtree below that action.

后援(反向传播): 更新动作值Q来跟踪在该动作下面 子树的所有评价函数 $r(\cdot)$ 和 $v_{\theta}(\cdot)$ 的平均值。

Neural Network Training Pipeline in AlphaGo AlphaGo的神经网络训练管线

A fast rollout policy p_{π} and supervised learning (SL) policy network p_{σ} are trained to predict human expert moves in a data set of positions.

快速走子策略 p_{π} 与有监督学习 (SL) 策略 网络 p_{σ} 用棋局数据集进行训练,来预测人类的走棋。

A reinforcement learning (RL) policy network p_ρ is initialized to the SL policy network, and then improved by policy gradient learning to maximize the outcome. 强化学习 (RL) 策略网络p_ρ 被初始化为SL 策略网络,然后通过策略梯度学习使输出最大化。

- □ A new data set is generated by playing games of self-play with the RL policy network. 经过自我对弈和PL策略网络生成一个新的数据集。
- \square A value network v_{θ} is trained by regression to predict the expected outcome. 通过回归训练价值网络 v_{θ} 来预测所期望的输出。

Neural Network Architecture in AlphaGo AlphaGo的神经网络架构

- The policy network 策略网络
 - input: the board position s 输入: 棋盘位置s
 - passes s through convolutional layers with parameters σ or ρ 将s穿过具有参数σ或ρ的卷积层
 - outputs: a probability distribution over legal moves a.
 输出: 一个合法走子a的概率分布。
- □ The value network 价值网络
 - input: the board position s' 输入: 棋盘位置s'
 - similarly uses many convolutional layers with parameters θ
 同样采用具有参数θ的卷积层
 - output: a scalar value $v_{\theta}(s')$ that predicts the expected outcome. 输出: 一个预测期望输出的标量值 $v_{\theta}(s')$

Final Project 参考选题

- (1) 采用α-β 算法实现井字棋游戏。
- (2) 采用本章技术实现自选游戏。

要求:

- (1) 图形化界面。
- (2) 随机选取先手后手。
- (3) 可以人-计算机或计算机-计算机

