

Fitting a Logistic Regression Model - Lab

Introduction

In the last lesson you were given a broad overview of logistic regression. This included an introduction to two separate packages for creating logistic regression models. In this lab, you'll be investigating fitting logistic regressions with <code>statsmodels</code>. For your first foray into logistic regression, you are going to attempt to build a model that classifies whether an individual survived the Titanic shipwreck or not (yes, it's a bit morbid).

Objectives

In this lab you will:

- Implement logistic regression with statsmodels
- Interpret the statistical results associated with model parameters

Import the data

Import the data stored in the file 'titanic.csv' and print the first five rows of the DataFrame to check its contents.

```
# Import the data
import pandas as pd

df = pd.read_csv('titanic.csv')
df.head()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

</style>

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Pa
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0
3	4	1	1	Futrelle, Mrs. Jacques Heath	female	35.0	1	0

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Pa
				(Lily May Peel)				
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0

Define independent and target variables

Your target variable is in the column 'Survived'. A @ indicates that the passenger didn't survive the shipwreck. Print the total number of people who didn't survive the shipwreck. How many people survived?

```
# Total number of people who survived/didn't survive
df['Survived'].value_counts()
```

```
549342Name: Survived, dtype: int64
```

Only consider the columns specified in relevant_columns when building your model. The next step is to create dummy variables from categorical variables. Remember to drop the first level for each categorical column and make sure all the values are of type float:

```
# Create dummy variables
relevant_columns = ['Pclass', 'Age', 'SibSp', 'Fare', 'Sex', 'Embarked', 'Survived']
dummy_dataframe = pd.get_dummies(df[relevant_columns], drop_first=True, dtype=float)
dummy_dataframe.shape
```

```
(891, 8)
```

Did you notice above that the DataFrame contains missing values? To keep things simple, simply delete all rows with missing values.

NOTE: You can use the .dropna() method to do this.

```
# Drop missing rows
dummy_dataframe = dummy_dataframe.dropna()
dummy_dataframe.shape

(714, 8)
```

Finally, assign the independent variables to x and the target variable to y:

```
# Split the data into X and y
y = dummy_dataframe['Survived']
X = dummy_dataframe.drop(columns=['Survived'], axis=1)
```

Fit the model

Now with everything in place, you can build a logistic regression model using statsmodels (make sure you create an intercept term as we showed in the previous lesson).

Warning: Did you receive an error of the form "LinAlgError: Singular matrix"? This means that statsmodels was unable to fit the model due to certain linear algebra computational problems. Specifically, the matrix was not invertible due to not being full rank. In other words, there was a lot of redundant, superfluous data. Try removing some features from the model and running it again.

Analyze results

Generate the summary table for your model. Then, comment on the p-values associated with the various features you chose.

Summary table
result.summary()

Logit Regression Results

Dep. Variable:	Survived	No. Observations:	714
Model:	Logit	Df Residuals:	706
Method:	MLE	Df Model:	7
Date:	Wed, 20 Nov 2019	Pseudo R-squ.:	0.3437
Time:	16:18:35	Log-Likelihood:	-316.49
converged:	True	LL-Null:	-482.26
Covariance Type:	nonrobust	LLR p-value:	1.103e-67

	coef	std err	Z	P> z	[0.025	0.975]
const	5.6503	0.633	8.921	0.000	4.409	6.892
Pclass	-1.2118	0.163	-7.433	0.000	-1.531	-0.892
Age	-0.0431	0.008	-5.250	0.000	-0.059	-0.027
SibSp	-0.3806	0.125	-3.048	0.002	-0.625	-0.136
Fare	0.0012	0.002	0.474	0.636	-0.004	0.006
Sex_male	-2.6236	0.217	-12.081	0.000	-3.049	-2.198
Embarked_Q	-0.8260	0.598	-1.381	0.167	-1.999	0.347
Embarked_S	-0.4130	0.269	-1.533	0.125	-0.941	0.115

[#] Based on our P-values, most of the current features appear to be significant based # That said, the 'Embarked' and 'Fare' features were not significant based on their

https://github.com/learn-co-curriculum/dsc-fitting-a-logistic-regression-model-lab/tree/solution

Level up (Optional)

Create a new model, this time only using those features you determined were influential based on your analysis of the results above. How does this model perform?

```
# Your code here
relevant_columns = ['Pclass', 'Age', 'SibSp', 'Sex', 'Survived']
dummy_dataframe = pd.get_dummies(df[relevant_columns], drop_first=True, dtype=float)
dummy_dataframe = dummy_dataframe.dropna()

y = dummy_dataframe['Survived']
X = dummy_dataframe.drop(columns=['Survived'], axis=1)

X = sm.tools.add_constant(X)
logit_model = sm.Logit(y, X)
result = logit_model.fit()

result.summary()
```

Optimization terminated successfully.

Current function value: 0.445882

Iterations 6

Logit Regression Results

Dep. Variable:	Survived	No. Observations:	714
Model:	Logit	Df Residuals:	709
Method:	MLE	Df Model:	4
Date:	Wed, 20 Nov 2019	Pseudo R-squ.:	0.3399
Time:	16:18:50	Log-Likelihood:	-318.36
converged:	True	LL-Null:	-482.26
Covariance Type:	nonrobust	LLR p-value:	1.089e-69

	coef	std err	Z	P> z	[0.025	0.975]
const	5.6008	0.543	10.306	0.000	4.536	6.666
Pclass	-1.3174	0.141	-9.350	0.000	-1.594	-1.041

Age	-0.0444	0.008	-5.442	0.000	-0.060	-0.028
SibSp	-0.3761	0.121	-3.106	0.002	-0.613	-0.139
Sex_male	-2.6235	0.215	-12.229	0.000	-3.044	-2.203

- # Comments:
- # Note how removing the insignificant features had little impact on the \$R^2\$ value
- # of our model.

Well done! In this lab, you practiced using statsmodels to build a logistic regression model. You then interpreted the results, building upon your previous stats knowledge, similar to linear regression. Continue on to take a look at building logistic regression models in Scikit-learn!

Releases

No releases published

Packages

No packages published

Contributors 5

Languages

Jupyter Notebook 100.0%