Algoritmo de Strassen

Nuevos resultados y aplicaciones

Tania Patiño
Víctor Peña
Javier Sagastuy
Ernesto Valdés

El problema y su solución

Se utilizó una condición de paro para la cual el algoritmo se vuelve ineficiente.

Utilizando una nueva condición de paro de 8 o 16 [1] el problema se resuelve.

Utilizando como condición de paro 8 en Python

	Recursión completa		Recursión truncada en matrices de 8x8	
Dimensión matriz	np.dot()	Strassen	np.dot()	Strassen
4 x 4	0.00004 seg	0.00225 seg	0.00002 seg	0.0002 seg
10 x 10	0.00003 seg	0.02366 seg	0.00002 seg	0.00026 seg
100 x 100	0.00089 seg	7.5384 seg	0.0015 seg	0.0461 seg
1000 x 1000	2.7978 seg	2596.5664 seg	13.7685 seg	16.0488 seg
4000 x 4000	1450.2125 seg	Más de 12 horas	1450.2125 seg	758.5871 seg

Utilizando como condición de paro 8 en Java

	Recursión completa		Recursión truncada en matrices de 8x8	
Dimensión matriz	Producto tradicional	Strassen	Producto tradicional	Strassen
4 x 4	0 seg	0.002 seg		
10 x 10	0 seg	0.017 seg	0 seg	0.026 seg
100 x 100	0.002 seg	1.324 seg	0.002 seg	0.082 seg
1000 x 1000	20.429 seg	252.179 seg	19.991 seg	5.143 seg
4000 x 4000	3180.524 seg	13802.893 seg	2753.416 seg	220.649 seg

Utilizando como condición de paro 16 en Python

	Recursión truncada en matrices de 8x8		Recursión truncada en matrices de 16x16	
Dimensión matriz	np.dot()	Strassen	np.dot()	Strassen
4 x 4	0.00002 seg	0.0002 seg	0.00002 seg	0.000105 seg
10 x 10	0.00002 seg	0.00026 seg	0.00002 seg	0.00012 seg
100 x 100	0.0015 seg	0.0461 seg	0.00155 seg	0.008996 seg
1000 x 1000	13.7685 seg	16.0488 seg	13.666 seg	3.186 seg
4000 x 4000	1450.2125 seg	758.5871 seg	1406.5 seg	156.5 seg

Utilizando como condición de paro 16 en Java

	Recursión truncada en matrices de 8x8		Recursión truncada en matrices de 16x16	
Dimensión matriz	Producto tradicional	Strassen	Producto tradicional	Strassen
4 x 4				
10 x 10	0 seg	0.026 seg	0.001 seg	0.024 seg
100 x 100	0.002 seg	0.082 seg	0.001 seg	0.077 seg
1000 x 1000	19.991 seg	5.143 seg	18.026 seg	2.815 seg
4000 x 4000	2753.416 seg	220.649 seg	2646.278 seg	107.474 seg

Algunas aplicaciones

1. Procesamiento de gráficos utilizando GPU's, (Animaciones Pixar).

^{*} Tuning Strassen's Matrix Multiplication for Memory Efficiency [4]. Matriz rectangular de dimensiones 1024x256

Algunas aplicaciones

2. CUDA Data Parallel Primitives Library (CUDPP).

Algunas aplicaciones

3. Algoritmo es adecuado para funcionar en entornos paralelos. Explotar diferentes aproximaciones paralelas sobre arquitectura hipercubo.

Aplicación de Strassen a Astronomía

 Permite la creación de mapas en tiempo real.

 Creación de mapas para conocer clima

Aplicación de Strassen a la astronomía(2)

 Se usa para calcular efemérides, calendarios y posiciones (navegación satelital).

Brinda la posición de un objeto.

Aplicación a astronomía(3)

 Movimientos astronómicos del objeto en cuestión, de los planetas, frecuencia de sus satélites, de los asteroides. [7]

GPS(Sistema de Posicionamiento Global)
 [6]

Para saber más

- [1] Dumitrescu B., Roch J.L., Trystram D. *Fast Matrix Multiplication Algorithms on Mind Arquitectures*. International Journal of Parallel, Emergent and Distributed Systems, 1994.
- [2] Bjørstad P., Manne F., Sørevik T., and Vajteršic M. *Efficient Matrix Multiplication on SIMD Computers*. SIAM. J. Matrix Anal. & Appl., 13 (1), 386–401. (16 pages).
- [3] Bailey H David., *Extra High Speed Matrix Multiplication on the Cray-2*. SIAM J. Sci. and Stat. Comput., 9(3), 603–607. (5 pages).
- [4] Thottethodi Mithuna., Lebeck R, Alvin, *Tuning Strassen's Matrix Multiplication for Memory Efficiency*. Duke University, Durham, NC Siddhartha Chatterjee The University of North Carolina, Chapel Hill, NC, Duke University, Durham, NC, Pages 1-14, IEEE Computer Society Washington, DC, USA ©1998
- [5] http://www.accuweather.com/en/lu/strassen/228742/astronomy-weather/228742
- [6] ftp://ftp.unsj.edu.ar/agrimensura/Redes/AJUSTE%20DE%20REDES%20GPS_Actualizado_.pdf
- [7] http://en.wikipedia.org/wiki/Fundamental_ephemeris