Table 1. Unimodal Benchmark Functions.

Function Name	Function	D	S	F _{min}
Sphere	$f_{\mathbf{I}}(\mathbf{X}) = \sum_{i=1}^{D} X_i^2$	30	[-100,100] ^D	0
Schwefel's 2.22	$f_2(x) = \sum_{i=1}^{D} x_i + \prod_{i=1}^{D} x_i $	30	[-10,10] ^D	0
Schwefel's 1.20	$f_3(x) = \sum_{i=1}^{D} \left(\sum_{j=1}^{D} x_j\right)^2$	30	[-100,100] ^D	0
Schwefel's 2.21	$f_4(x) = max_i\{ x_i , 1 \le i \le D\}$	30	[-100,100] ^D	0
Rosenbrock	$f_5(x) = \sum_{i=1}^{D-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]$	30	[-30,30] ^D	0
Step	$f_6(x) = \sum_{i=1}^{D} (x_i + 0.5)^2$	30	[-100,100] ^D	0
Quartic Noise	$f_{\gamma}(x) = \sum_{i=1}^{n} i x_{i}^{4} + random[0,1)$	30	[-1.28,1.28] ^D	0

Table 2. Multimodal Benchmark Functions.

Function Name	Function	D	S	F _{min}
Schwefel's 2.26	$f_8(x) = \sum_{i=1}^{D} -x_i \sin(\sqrt{ x_i })$	30	[-500,500] ^D	-12569.5
Rastrigin	$f_9(x) = \sum_{i=1}^{D} [x_i^2 - 10\cos(2\pi x_i + 10)]$	30	[-5.12,5.12] ^D	0
Ackley	$f_{10}(X) = -20\exp\left(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}}\right)$	30	[-32,32] ^D	0
	$-\exp\left(\frac{1}{n}\sum_{i=1}^{n}\cos(2\pi x_{i})\right)+20+e$			
Griewank	$f_{11}(X) = \frac{1}{4000} \sum_{i=1}^{n} X_i^2 - \prod_{i=1}^{n} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1$	30	[-600,600] ^D	0
Pendlized	$f_{12}(x) = \sum_{i=1}^{D} u(x_i, 10, 100, 4)$	30	[-50,50] ^D	0
	$\left. + \frac{\pi}{D} \left\{ 10 \sin^2(3\pi y_{_{i}}) + \sum_{_{l=1}}^{D-1} (y_{_{l}} - 1)^2 [1 + \sin^2(3\pi y_{_{l+1}})] + (y_{_{D}} - 1)^2 \right\}$			
	$y_i = 1 + \frac{1}{4}(X_i + 1)$ $\begin{cases} x_i \times x_i > a, \\ x_i \times x_i > a, \end{cases}$			
	$u(x_{i}, a, k, m) = \begin{cases} k(x_{i} - 1)^{m}, & x_{i} > a, \\ 0, & -a \le x_{i} \le a, \\ k(-x_{i} - 1)^{m}, & x_{i} < -a, \end{cases}$			
	$\left\{k(-x_i-1)^m, x_i<-a,\right.$			