

Theoretical Backgrounds of Audio & Graphics

Additional Material: Maths Notes

Prof. Dr.-Ing. Angela Brennecke Creative Technologies I CTech

Motivation

Practical

 Mathematical models and representations are central ingredient of digital audio & graphics processing — to understand them, know their maths

General

- Learn to use mathematics as a formalistic tool to describe & share ideas
- Identify the underlying concepts in different application scenarios
- Develop an intuition for the language of mathematics

Contents

- The real numbers system
- Sequences & series
- Functions & their properties

The Real Numbers System

- The real numbers system is defined by a set of numbers R and a set of operations & properties on R
 - Addition "+"
 - Subtraction "—"
 - Multiplication " * "
 - Division ":"

Geometric representation by points on the real axis

Specific Subsets

The Real Numbers System

Subsets of numbers of the real numbers system

Natural numbers

$$\mathbb{N} = \{0, 1, 2, 3, ...\}$$
 $\mathbb{N}^* = \{1, 2, 3, ...\}$

Integers

$$\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$$

Rational numbers

$$\mathbb{Q} = \left\{ x \mid x = \frac{a}{b} \text{ with } a \in \mathbb{Z} \& b \in \mathbb{N}^* \right\}$$

Real numbers

 $\mathbb{R} = \{x \mid x \text{ is a rational or an irrational number}\}\$

Natural Numbers

The Real Numbers System

Natural numbers

$$\mathbb{N} = \{0, 1, 2, 3, ...\}$$
 $\mathbb{N}^* = \{1, 2, 3, ...\}$

- Natural numbers are
 - **closed** under addition & multiplication
 - Adding natural numbers yields a natural number
 - Multiplying natural numbers yields a natural number
 - **not closed** under subtraction & division
 - a = 2-5 a does not exist in the set of natural numbers
 - b = 3/6 b does not exist in the set of natural numbers

Integers The Real Numbers System

Integers
$$\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$$

- Integers are
 - closed under addition, subtraction & multiplication
 - Adding integers yields an integer
 - Subtracting integers yields an integer
 - Multiplying natural numbers yields a natural number
 - not closed under division
 - b = 3/6 b does not exist in the set of integers

Rational Numbers

The Real Numbers System

Rational numbers

$$\mathbb{Q} = \left\{ x \mid x = \frac{a}{b} \text{ with } a \in \mathbb{Z} \& b \in \mathbb{N}^* \right\}$$

- Rational numbers are
 - closed under addition, subtraction, multiplication & division
 - ratios of integers, i.e., b = 3/6 is the ratio of integers 3 & 6
- Rational numbers can be expressed as fractions or decimals
 - The decimal expansion either terminates or repeats periodically:

$$\frac{17}{10}$$
=1,7 $\frac{1}{7}$ =0,142857 142857 ...

Irrational & Real Numbers

The Real Numbers System

Real numbers

 $\mathbb{R} = \{x \mid x \text{ is a rational or an irrational number}\}\$

- Irrational numbers are
 - non-rational numbers —
 <u>no ratio</u> of any two integers can yield an irrational number
- The decimal expansion of an irrational number need not terminate nor repeat periodically
- Famous examples of irrational numbers $\sqrt{2}$ =1,41423... π =3,14159... e =2,71828...

Irrational Numbers—Example

The Real Numbers System

• The diagonale of a square with side length I can only be described with the irrational number $\sqrt{2}$

Set of Pythagoras: $l^2+l^2=2$

• Length of diagonale: $\sqrt{2}$

• $\sqrt{2}$ can not be represented by the ratio of two integers — it can only be approached

$$a_n$$
 $1 < \sqrt{2} < 2$ b_n a_{n+1} $1,4 < \sqrt{2} < 1,5$ b_{n+1} a_{n+2} $1,41 < \sqrt{2} < 1,42$ b_{n+2} a_{n+3} $1,414 < \sqrt{2} < 1,415$ b_{n+3}

• • •

Irrational Numbers—Example

The Real Numbers System

 The circumference of a circle can only be described with the irrational number π

- π can be approached, for example, following Archimedes' algorithm:
 - surround the circle with a square
 - place another square inside the circle which has a diagonale equal to the side of the surrounding square
 - calculate the perimeters
 - increase the sides of the inner and outer squares and repeat

Irrational Numbers—Example

The Real Numbers System

- Irrational numbers can be characterized by nested intervals
 - Infinite sequences of intervals
 - Each interval is contained in the preceding one
 - The irrational number is approached consecutively

Take Home

- The real numbers system is a formal description to express
 - Existence & non-existence of objects (natural numbers)
 - Lack of objects (integers)
 - Ratios & fractions of objects (rational numbers)
 - Approximations of objects (real numbers)

Sequences

Sequences & series

 A sequence a is a set of numbers, its terms, in a definite order of arrangement or pattern of the sequence

$$\langle a_n \rangle = a_1, a_2, a_3, \ldots, a_n, \ldots \qquad n \in \mathbb{N}^* \ a_n \in \mathbb{R}$$

The limit g of a sequence is a number to which all terms converge

$$\lim_{n\to\infty} a_n = g$$

the pattern of the sequence

$$\langle a_n \rangle = \left\langle 1 - \frac{1}{n} \right\rangle = 0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots \Rightarrow g = \lim_{n \to \infty} \left(1 - \frac{1}{n} \right) = 1$$

 An (infinite) series s is a special kind of sequence of the partial sums of an (infinite) sequence

 $\langle a_n \rangle = a_1, a_2, a_3, \ldots, a_n, \ldots$

$$\langle s_n
angle = s_1, \quad s_2, \quad s_3, \quad s_4, \quad \dots \qquad n \in \mathbb{N}^* \quad \mathbf{S}_n \in \mathbb{R}$$
 Partial sums: $s_1 = a_1$ $s_2 = a_1 + a_2$ $s_3 = a_1 + a_2 + a_3$ \vdots \vdots E.g., the nth partial sum is a finite series: $s_n = a_1 + a_2 + a_3 + \dots + a_n = \sum_{k=1}^n a_k$ \vdots \vdots (Infinite) series: $\sum_{n=1}^\infty a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$

 $n \in \mathbb{N}^*$ $a_n \in \mathbb{R}$

Series — Example

Sequences & series

The **limit** of a series is the value of its sum s — if one exists

$$\lim_{n\to\infty} s_n = \lim_{n\to\infty} \sum_{k=1}^n a_k = s$$

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^n a_k = s \qquad \sum_{n=1}^\infty a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots = s$$

The geometric series $\sum_{k=0}^{\infty} \frac{1}{2^k}$ tends towards 2

$$S_{1} = \sum_{k=0}^{0} \frac{1}{2^{k}} = 1 = 1$$

$$S_{2} = \sum_{k=0}^{1} \frac{1}{2^{k}} = 1 + \frac{1}{2} = 1,5$$

$$S_{3} = \sum_{k=0}^{2} \frac{1}{2^{k}} = 1 + \frac{1}{2} + \frac{1}{4} = 1,75$$

$$S_{4} = \sum_{k=0}^{3} \frac{1}{2^{k}} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = 1,875$$

$$S_{5} = \sum_{k=0}^{4} \frac{1}{2^{k}} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = 1,9375$$

Series — Example

Sequences & series

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

The harmonic series

Image credit: https://en.wikipedia.org/wiki/Harmonic_series_(music) (17/10/16)

Take Home

- Sequences allow to
 - relate numbers through a pattern
 - make assumptions about how the sequence will or will not continue (in the case of a limit)

- Series allow to
 - approximate a value through a partial sum
 - express how a value is composed of several values

Functions

 Functions are used to clearly describe the functional dependency / relationship between (sets of) numbers

- Sequences & series can also be expressed as functions
- Every positive integer $n \in \mathbb{N}^*$ is assigned a real number $a_n \in \mathbb{R}$

$$\langle a_n \rangle = 0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots$$

$$a_n = 1 - \frac{1}{n} \qquad (n \in \mathbb{N}^*)$$

Functions

- Functions are basically composed of
 - a domain & co-domain with elements represented by x & y
 - a range or image with elements represented by y or f(x)
 - a rule of correspondence or **mapping** $f: x \mapsto y = f(x)$ or y = f(x)

Graphical Representations

Functions

- The functional relationship between x & y = f(x) can be visualized graphically with a function graph
- Graphs help us to immediately see specific curve points e.g., maxima, minima, zeros, turning points, poles

Image source [6]

Properties — Symmetry

Functions

- A function is called **even** if f(-x) = f(x)
- The function graph is called mirror-symmetrical

The function graph is called point-symmetrical

Properties — Monotonicity

Functions

A function is called monotonic if it expresses an ordered set

$$f(x_1) \le f(x_2)$$

 $f(x_1) < f(x_2)$
 $f(x_1) \ge f(x_2)$
 $f(x_1) > f(x_2)$

Properties — Inverse

Functions

Every strictly monotonic function has an inverse

$$y = f(x) \implies x = f^{-1}(y)$$

 The independent variable x is exchanged with the dependent variable y = f(x) and the domain and range are changed likewise

Properties — Periodicity

Functions

A function is called **periodic** if it expresses repetition

$$f(x \pm p) = f(x)$$

Properties — Zeros

Functions

- The **zero** of a function denotes that at x_0 the value of $f(x_0) = 0$
- The function graph **crosses or touches** the x-axis at x_0
- The zeros of a function can be found by resolving f(x) = 0

Double zero at $x_1 = 1$

Properties — Limits & Continuity

Functions

- The limit of a function is used to make an assumption about the function's behavior in a specific area
- It denotes that whenever x approaches a number x_o , the value of f(x) approaches the limit g

$$\lim_{n\to\infty} \langle x_n \rangle = x_0 \qquad \Longrightarrow \qquad \lim_{n\to\infty} f(x_n) = g$$

This is symbolically expressed by writing

$$\lim_{x \to x_0} f(x) = g$$

Properties — Limits & Continuity

Functions

 $x \rightarrow x_0$

- A function is called **continuous** if a limit g exists, the function is defined at x_0 & the value of the function at x_0 equals the limit
- Otherwise, the function is called discontinuous

Properties — Limits & Continuity

Functions

$$f(x) = \frac{1}{x}, x > 0$$

$$\lim_{x \to \infty} \left(\frac{1}{x} \right) = 0$$

$$f(x) = \frac{1}{(x-3)^2}$$

$$\lim_{x \to 3} \frac{1}{\left(x - 3\right)^2} = +\infty$$

Types of Functions

Functions

Polynomial functions	$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$	
	with constan a_0, \ldots, a_n polynomial	and \emph{n} called the degree of the
Exponential functions	$f(x) = a^x, a \neq 0$	$y = e^{-x}$ $y = e^{x}$
Logarithmic functions	$f(x) = \log_a x, a \neq 0$	$y = \ln x$ $y = \ln x$ $y = \log_{0.5} x$ $y = \log_{0.5} x$
Trigonometric functions	$\beta \Pi \lambda$, $\zeta G S \lambda$, $\zeta \Pi \lambda =$	$y = \cos x$ $-\frac{\pi}{2} - \frac{\pi}{2}$ $\frac{3}{2}\pi$ $\frac{5}{2}\pi$ x

Take Home

- Functions allow to
 - generalize the concept of a sequence of numbers
 - relate two independent domain sets of numbers usually in R
 and create a functional dependency between both of them
 - provide certain properties that further describe the relationship of the two domain sets

 Different types of functions allow to express different types of relationships, i.e., linear, algebraic, geometric relationships, ...

Further Reading

Literature used for this lecture:

- Courant, R. & Robbins, H. (1973): Was ist Mathematik? 3. Aufl., Berlin u.a.:
 Springer.
- Papula, Lothar (2014): Mathematik für Ingenieure & Naturwissenschaftler
 Band 1. 14. überarb. Aufl., Wiesbaden: Springer Vieweg.
- Wrede, R. & Spiegel, M. (2010): Schaum's Outlines Advanced Calculus. 3. Ed., New York u.a.: McGrawHill.
- https://betterexplained.com (17/10/22)

Image references

- If not noted otherwise, all image are taken from
 Papula, Lothar (2014): Mathematik für Ingenieure & Naturwissenschaftler
 Band 1. 14. überarb. Aufl., Wiesbaden: Springer Vieweg.
- [1] Image credit: https://upload.wikimedia.org/wikipedia/commons/6/69/ Construction of square root of 2 on the line number.svg (17/10/18)
- [2] Image credit: https://betterexplained.com/articles/prehistoric-calculus-discovering-pi/ 17/10/07
- [3] Image credit: https://en.wikipedia.org/wiki/Pi 17/10/07
- [4] Image credit: https://en.wikipedia.org/wiki/Geometric_series (17/10/22)
- [5] Image credit: https://en.wikipedia.org/wiki/Codomain (17/10/14)
- [6] Image credit: Wrede, R. & Spiegel, M. (2010): Schaum's Outlines —
 Advanced Calculus. Page 47, 3. Ed., New York u.a.: McGrawHill.