Tutorial Class 6

Q1.

- (a) Using the characteristics of Fig. 3.8, determine the resulting collector current if $I_E = 3 \text{ mA}$ and $V_{CB} = 10 \text{ V}$.
- (b) Using the characteristics of Fig. 3.8, determine the resulting collector current if I_E remains at 3 mA but V_{CB} is reduced to 2 V.

β

Figure 3.8 Output or collector characteristics for a common-base transistor amplifier.

- (a) Using the characteristics of Fig. 3.14, determine I_C at $I_B = 30 \,\mu\text{A}$ and $V_{CE} = 10 \,\text{V}$.
- (b) Using the characteristics of Fig. 3.14, determine I_C at $V_{BE} = 0.7 \text{ V}$ and $V_{CE} = 15 \text{ V}$.

Figure 3.14 Characteristics of a silicon transistor in the common-emitter configuration: (a) collector characteristics; (b) base characteristics.

- (a) Using the characteristics of Fig. 3.8, determine the resulting collector current if I_E = 4.5 mA and V_{CB} = 4 V.
- (b) Repeat part (a) for $I_E = 4.5$ mA and $V_{CB} = 16$ V.
- (c) How have the changes in V_{CB} affected the resulting level of I_C ?
- (d) On an approximate basis, how are I_E and I_C related based on the results above?

β

Figure 3.8 Output or collector characteristics for a common-base transistor amplifier.

- (a) Using the characteristics of Figs. 3.7 and 3.8, determine I_C if $V_{CB} = 10 \text{ V}$ and $V_{BE} = 800 \text{ mV}$.
- (b) Determine V_{BE} if $I_C = 5$ mA and $V_{CB} = 10$ V.

Figure 3.7 Input or driving point characteristics for a common-base silicon transistor amplifier.

Figure 3.8 Output or collector characteristics for a common-base transistor amplifier.

Using the characteristics of Fig. 3.14:

- (a) Find the value of I_C corresponding to $V_{BE} = +750 \text{ mV}$ and $V_{CE} = +5 \text{ V}$.
- (b) Find the value of V_{CE} and V_{BE} corresponding to $I_C = 3$ mA and $I_B = 30$ μ A.

Figure 3.14 Characteristics of a silicon transistor in the common-emitter configuration: (a) collector characteristics; (b) base characteristics.

Q6.

Calculate the voltage gain $(A_v = V_L/V_i)$ for the network of Fig. 3.12 if $V_i = 500 \text{ mV}$ and $R = 1 \text{ k}\Omega$. (The other circuit values remain the same.)

Figure 3.12 Basic voltage amplification action of the common-base configuration.

Calculate the voltage gain $(A_v = V_L/V_i)$ for the network of Fig. 3.12 if the source has an internal resistance of 100 Ω in series with V_i .

Figure 3.12 Basic voltage amplification action of the common-base configuration.

Q8.

For the fixed-bias configuration of Fig. 4.73, determine:

- (a) I_{B_Q}
- (b) I_{CQ}.
- (c) V_{CEQ}.
- (d) V_C.
- (e) V_B.
- (f) V_E.

Figure 4.73

Given the information appearing in Fig. 4.74, determine:

- (a) I_C.
- (b) R_C.
- (c) R_B.
- (d) V_{CE}.

Figure 4.74 Problem 2

Q10.

Given the information appearing in Fig. 4.75, determine:

- (a) I_C .
- (b) V_{CC}.
- (c) β.
- (d) R_B .

Figure 4.75 Problem 3