Math 29: Computability Theory

Spring 2024

$\mathbf{Mid\text{-}Term\ Exam\ 05/03/2024}$

Prof. Miller Student: Amittai Siavava

Problem 1.

Give a register machine which, when given a natural number n in R_0 at **start**, halts and outputs x + 1 in R_1 if there is some natural x satisfying $x^2 + n^2 = 2nx$, and returns 0 otherwise.

Problem 2.

Prove that no index set is immune.

Definition 2.1. A set S is *immune* if A is infinite but contains no infinite c.e. subset.

To show that no index set is immune, we will show that every index set must contain some infinite c.e. subset.

Let I be an index set. Here are some facts about I:

- 1. Since I is an index set, I is either empty or infinite.
- **2.** For all $e, f \in \mathbb{N}$, if $\varphi_e = \varphi_f$, then $e \in I \iff f \in I$.

Problem 3.

Give an example of a partial computable function i(x, y) such that:

- $i(x,y) \downarrow \text{implies } i(x,y) = 0 \text{ or } i(x,y) = 1.$
- If A is computable, then there exists an e such that $i(e,n)=\chi_A(n)$ for all n.
- $I_x := \{y \mid i(x,y) \downarrow > 0\}$ is computable for all x.

Why does i(x, y) not contradict Homework 3, Question 2?

Definition of i(x,y)

Let i(x, y) be the following partial computable function:

$$i(x,y) = \begin{cases} 1 & \text{if } \varphi_x(y) \downarrow = 1 \\ 0 & \text{if } \varphi_x(y) \downarrow = 0 \end{cases}$$

Problem 4.

Let M be the set

$$\{x \mid \forall \ y < x \, (\varphi_x \neq \varphi_y)\}.$$

That is, M is the set of minimal indices of computable functions: the smallest indices which define a given (partial) computable function.

Problem 5.

Prove that $W_e \leq_1 H$ for all e, then prove that $H \leq_1 K$.

Let e be given. Define the function $f: \mathbb{N} \to \mathbb{N}$ by

$$f(n) = \begin{cases} n & \text{if } n \in W_e \\ 0 & \text{otherwise.} \end{cases}$$

Then f is computable, and $W_e = f^{-1}(\mathbb{N})$. Therefore, $W_e \leq_1 H$.

Now, let $f: \mathbb{N} \to \mathbb{N}$ be the function defined by

$$f(n) = \begin{cases} n & \text{if } n \in K \\ 0 & \text{otherwise.} \end{cases}$$

Then f is computable, and $K = f^{-1}(\mathbb{N})$. Therefore, $H \leq_1 K$.

Problem 6.

Suppose C is the set of valid codes for machines based on our coding scheme defined in class. Give a total, computable bijection from ω to C, i.e. a computable function which associates every natural number to a unique machine.

Since C is c.e., we can enumerate it as $C = \{e_1, e_2, e_3, \ldots\}$. Define the function $f : \mathbb{N} \to C$ by $f(n) = e_n$. Then f is total, computable, and bijective.

Problem 7.

Show that there is an e such that

$$W_e = \{e+1, e^2+4, e^3+9, \ldots\}.$$

Let f be the function defined by

$$f: \mathbb{N}^2 \to \mathbb{N}$$

 $(a,b) \mapsto a^b + b^2.$

Since f is computable, $f = \varphi_k$ for some k.

Consider the following Turing Machine:

TM 1: Compute $\psi(n): \mathbb{N} \to \mathbb{N}$

1 Let e be the code for this machine.

2 for
$$i = 1, 2, 3, \dots$$
 do

$$\begin{array}{c|c} \mathbf{3} & y_i \leftarrow \varphi_k(e,i) \\ \mathbf{4} & \text{if } y_i = n \text{ then} \\ \mathbf{5} & \text{output } 1 \end{array}$$

The machine passes its own code to φ_k , with successive integers $1, 2, 3, \ldots$ as the second argument. It converges and outputs 1 if and only if $\varphi_k(e, i)$ returns some value equal to n, meaning $n \in \{e+1, e^2+4, e^3+9, \ldots\}$. Otherwise, it diverges as it will keep searching forever.

$$\varphi_e(n) = \psi(n) = \begin{cases} 1 & \text{if } n = \varphi_k(e, i) \text{ for some } i \in \mathbb{N}_{>0} \\ \uparrow & \text{otherwise.} \end{cases}$$

Then $W_e = \{e+1, e^2+4, e^3+9, \ldots\}.$