Sławomir Kulesza

Wykład dla studentów III roku Informatyki

Rodziny układów logicznych

Rodziny układów bipolarnych:

TTL – Transistor-Transistor Logic

ECL – Emiter-Coupled Logic

I²L – Integrated Injection Logic

Rodziny układów unipolarnych:

MOS – Metal-Oxide Semiconductor

CMOS – Complementary MOS

CTD – Charge Transfer Device

MESFET - Metal Semiconductor Field

Effect Transistor

Czas życia generacji układów logicznych

Porównanie parametrów układów

ZESTAWIENIE PORÓWNAWCZE PARAMETRÓW GŁÓW	VNYCH KLAS CYI	FROWYCH U	KLADÓW SCALONYCH			Tablica 5.1
Klasa lub rodzina Parametr	ECL SSI	TTL SSI	MOS LSI, VLSI	CMOS SSI	I ² L LSI	GaAs MSI
Czas propagacji t _{p typ} [ns]	0.3÷2	1.7÷33	0.2÷50	3÷125	7÷50	0.05 ÷ 0.2
Moc strat na bramkę P_{typ} [mW]	25÷60	1÷23	0.1÷15	1 μW statyczna, ~ 1 mW przy 1 MHz	4÷300 μW	0.1÷1
Współczynnik dobroci D _{15p} [pJ]	15÷60	4÷138		10 ⁻² statyczna, 50÷150° przy 1 MHz	0.2÷2	0.01 ÷ 0.2
Obciążalność statyczna wyjściowa $N_{\rm max}$	60÷90	10	>20	50	1÷10	- B E
Margines zakłóceń M _{typ} [V]	~0.2	1	0.7÷1.5	0.45 U _{DD}	0.45 U _{DD}	A B W
Impedancja wyjściowa [Ω]	6÷10	10	0.5÷10k	800		
Częstotliwość zegarowa f _{max} [MHz]	150÷1200	3÷150	2÷30	5÷150	1÷20	1÷10 GHz
Zasilanie [V]	-5.2±10%	5±10%	Jedno do trzech napięć w zakresie -15 V +15 V typowo tylko +5 V (NMOS)	utswampiedering di busya efsende Gape essue tara p	erosikaitasa Juna obaa Japanasiasa	property of
Asortyment	średni	bardzo duży	duży	duży	mały	mały

CMOS vs. TTL

PORÓWNANIE PARAMETRÓW UKŁADÓW TTL I CMOS (WARTOŚCI TYPOWE PRZY $U_{cc}=5$ V, $C_L=50$ pF i $T_a=+25$ °C)

Tablica 7.4

			<u> </u>					
Rodzina	TTL				CMOS			
Parametr	LS	ALS	F	4000B	НС	АНС	AC FACT	
Napięcie zasilające U_{cc} (V)	5±5%	5 ± 10%	5±5%	3–18	2–6	2-5.5	2–6	
Moc strat na bramkę w stanie statycznym P_{typ} (mW) Czas propagacji t_{ptyp} (ns)	2	1	5.5	0.001	0.0025	0.0025	0.0025	
przy $C_L = 50 \text{ pF}$	9	5	3.5	125	8	5.2	5.5	
Maksymalna częstotliwość		}						
pracy $f_{\text{max}}(\text{MHz})$	33	50	150	4	50	115	160	
Prądy wyjściowe (mA):								
$-I_{OH_{\text{max}}}$ przy $U_{OH_{\text{min}}}$	0.4	0.4	1	2.1 mA	4 mA	8 mA	24 mA	
$I_{OL_{ m max}}$ przy $U_{OL_{ m max}}$	8	8	20	przy 2.5V 0.44 mA przy 0.4V	4 mA	przy 4.5V 8 mA przy 0.4V	24 mA	
Prądy wejściowe (μA):						F J	FJ ····	
$I_{IH ext{max}}$	20	20	20	0.1	1	1	1	
$I_{IL ext{max}}$	400	200	600	0.1	1	1	1	
Margines zakłóceń $M_{\min}(V)$	0.3	0.4	0.3	$0.3~U_{CC}$	$0.28~U_{cc}~{\rm czy}$	yli 1.25V przy	$U_{CC} = 4.5 \text{V}$	
					oraz 1.	4V przy U_{cc}	= 5.0V	

Parametry nominalne układów CMOS

Dogomotore	Rodzina			
Parametry	LV	LVC	ALVC	
Napięcie zasilające U _{CC} [V]	2-5,5	1,2 - 3,6	1,2-3,6	
Czas propagacji t _{ptyp} [ns] przy C _L = 50 pF	9	6,5	3	
Maksymalna częstotliwośćpracy f _{max} [MHz]	70	150	300	
Prąd wyjściowy [mA]: I _{OLmax} (I _{OHmax})	8 (8)	24 (24)	24 (24)	
Technologia [μm]	2	0,8	0,6	
Temperatura pracy [°C]	-40 ÷ +125	-40 ÷ +85	-40 ÷ +85	

Tranzystor MOSFET

Tranzystor MOSFET

Tranzystor MOS z kanałem zubożanym (normally ON)

Tranzystor MOS z kanałem wzbogacanym (normally OFF)

Tranzystor z kanałem zubożanym

Rodzina układów CMOS

- CD4000 CMOS B-Series Integrated Circuits
- HC / HCT High Speed CMOS Logic
- AC / ACT Advanced CMOS Logic
- AHC / AHCT Advanced High Speed CMOS Logic
- FCT Fast CMOS TTL Logic
- LV Low-Voltage CMOS Technology Logic
- LVC Low-Voltage CMOS Technology Logic
- ALVC Advanced Low-Voltage CMOS Technology Logic
- AVC Advanced Very-Low-Voltage CMOS Logic
- AUC Advanced Ultra-Low-Voltage CMOS Logic

Zastosowania układów CMOS

- 1. Układy do zastosowań masowych, o niewielkiej szybkości działania. Typowymi przykładami są układy zegarkowe i proste, nieprogramowane układy kalkulatorowe. Napięcie zasilania tych układów wynosi typowo 1÷1.5 V. Układy te nie są objęte ogólnie przyjętą standaryzację typów.
 - 2. **Układy programowalne** (takie jak układy PLD i FPGA) i **specjalizowane** (ASIC Application-Specific Integrated Circuits). Układy te są omówione w rozdziale 9.
 - 3. Uniwersalne układy cyfrowe LSI i VLSI, głównie układy mikroprocesorowe (rozdz. 10) i pamięciowe (p. 8.4).
 - 4. Uniwersalne układy cyfrowe SSI i MSI, stanowiące funkcjonalne odpowiedniki układów TTL.

Inwerter CMOS

Rys. 7.70. Schemat inwertera CMOS

Rys. 7.71 Charakterystyka przejściowa inwertera CMOS

I:
$$0 \leqslant U_I \leqslant U_{TN}$$
,

II:
$$U_{\mathit{TN}} \leqslant U_{\mathit{I}} \leqslant U_{\mathit{O}} - |U_{\mathit{TP}}|$$
,

III:
$$U_O - |U_{TP}| \leq U_I \leq U_O + U_{TN}$$

$$\text{IV:} \quad \boldsymbol{U_{O}} + \boldsymbol{U_{TN}} \leqslant \boldsymbol{U_{I}} \leqslant \boldsymbol{U_{DD}} - |\boldsymbol{U_{TP}}|,$$

$$V: \quad U_{DD} - |U_{TP}| \leqslant U_I \leqslant U_{DD},$$

Bramka NOR CMOS

Bramka NAND CMOS

Buforowana bramka NOR CMOS

Zgodność łączeniowa TTL - CMOS

Zgodność łączeniowa TTL - CMOS

Zgodność łączeniowa TTL - CMOS

	wejście							
wyjście	TTL	HCT, ACT	HC, AC	HC, AC dla 3,3V	4000B, 74C dla 5V	4000B. 74C dla 10V		
TTL	tak	tak	A	tak	A	В		
HCT, ACT	tak	tak	tak	nie	tak	В		
HC, AC	tak	tak	tak	nie	tak	В		
HC, ACdla 3,3V	tak	tak	nie	tak	В	В		
4000B, 74C dla 5V	tak	tak	tak	nie	tak	В		
4000B, 74C dla 10V	С	C	С	С	С	tak		

Tab. 6.1 Kompatybilność pomiędzy poszczególnymi seriami; A - rezystor podciągający do 5V lub stopień pośredni układu HCT,B - zalecane stosowanie układu z otwartym kolektorem i rezystora kolektorowego dolączonego do źródla napięcia 10V, C – zalecane zastosowanie translatora poziomu

Sprzęganie TTL - CMOS

Sprzęganie CMOS - TTL

Charakterystyki elektryczne serii układów 74xx

Technologia TTL				
N	Normal Logic 74xx			
LS	Low-Power Schottky Logic			
A	Advanced Low-Power Schottky Logic			
S	Schottky Logic			
AS	Advanced Schottky Logic			
F	Fast Logic			
Technologi	ia CMOS			
AC/ACT	Advanced CMOS Logic			
HC(T)	High-Speed CMOS Logic			
AHC(T)	Advanced High-Speed CMOS Logic			
BCT	BiCMOS Bus-Interface Technology			
ABT	Advanced BiCMOS Technology			
C	CMOS Logic			
LV/LVC	Low-Voltage CMOS Technology			
LVT	Low-Voltage BiCMOS Technology			
ALVT	Advanced Low-Voltage BiCOMS			
	Technology			

Charakterystyki elektryczne serii układów 74xx

LV/LVC

LVT

ALVT

Technologia TTL				
N	Normal Logic 74xx			
LS	Low-Power Schottky Logic			
A	Advanced Low-Power Schottky Logic			
S	Schottky Logic			
AS	Advanced Schottky Logic			
F	Fast Logic			
Technologia CMOS				
AC/ACT	Advanced CMOS Logic			
HC(T)	High-Speed CMOS Logic			
AHC(T)	Advanced High-Speed CMOS Logic			
BCT	BiCMOS Bus-Interface Technology			
ABT	Advanced BiCMOS Technology			
C	CMOS Logic			
i				

Low-Voltage CMOS Technology

Low-Voltage BiCMOS Technology

Advanced Low-Voltage BiCOMS

Technology