

Tu universidad de postgrado

Your university for graduate studies

Tu universidad para una formación permanente

Your lifelong learning university

Tu universidad para una enseñanza innovadora

Your innovative education university

La universidad para tu futuro

The university for your future

ma

UNIVERSIDAD

DE MÁLAGA

Reinforcement Learning

Marco A. Formoso

Introducción

Dónde un agente aprende de su propia experiencia.

Introducción

Diferente de aprendizaje supervisado y no supervisado. El agente aprende en base a una recompensa solamente interactuando con su entorno.

Ejemplo ajedrez: si lo tomamos como supervisado, difícilmente podremos obtener una función Estado - Acción ya que virtualmente los estados son infinitos.

AlphaStar:

Creado para jugar a StarCraft II

<u>Video</u>

Introducción

Blog AlphaStar

Blog StarCraft Entorno

AlphaGo: Creado para jugar a Go

Blog

Introducción

Agente:

Entidad que es capaz de percibir su entorno mediante sensores, actuar en ese medio y recibir recompensas por ello.

Introducción

Entorno:

Problema para el que el agente es solución. Se comunica con el agente mediante las recompensas, observaciones, y acciones.

- Observable vs Parcialmente
 Observable
- Determinista vs Estocástico
- Episódico vs Secuencial
- Estático vs Dinámico

Acción:

Respuestas o decisiones a las observaciones del agente. Discretas o continuas,

Introducción

Observación:

Información que el agente obtiene del entorno y capta mediante sus sensores (Estado ≠ Observación). Puede llevar la recompensa ofuscada.

Recompensa:

"Estímulo" que recibe el agente. Positivo o negativo.

Procesos de decisión de Markov

Conjunto de estados:

Estados en el que el sistema puede estar.

Cadenas de Markov

Matriz de transición:

Nos indica las probabilidades de pasar de un estado a otro. Los procesos de Markov son estacionarios (la matriz de transición no cambia con el tiempo)
Normalmente no es conocida. Solo tenemos episodios de transiciones.

Hipótesis de Markov:

Los valores y decisiones solo son dependientes del estado actual.

Cadenas de Markov

	Trabajar	Café	Móvil
Trabajar	0,6	0,2	0,2
Café	0,6	0,1	0,3
Móvil	0,5	0,1	0,4

Introducción

Universidad Internacional de Andalucía

Recompensas:

Procesos de decisión de Markov Aditivas: $U_t = R_{t+1} + R_{t+2} + R_{t+3} + \ldots = \sum_{k=0}^{\infty} R_{t+k+1}$

Con descuento: $U_t=R_{t+1}+\gamma R_{t+2}+\gamma^2 R_{t+3}+\ldots=\sum_{k=0}^{\infty}\gamma^k R_{t+k+1}$

Factor descuento: 0 < Y < 1

Procesos de decisión de Markov

	Trabajar	Café	Móvil
Trabajar	0,6 / 5	0,2/1	0,2 / -3
Café	0,6/3	0,1/1	0,3 / 2
Móvil	0,5/3	0,1/1	0,4 / -1

Universidad Internaciona de Andalucía

Procesos de decisión de Markov

Valor de un estado:

Medida que indica la bondad de un determinado estado.

$$V(s) = \mathbb{E}[U|S_t = s]$$

En el ejemplo anterior (si Y = 0): V(Trabajar) = 0.6 * 5 + 0.2 * 1 + 0.2 * -3 = 2.6 V(movil) = 0.4 * -1 + 0.5 * 3 + 0.1 * 1 = 1.2

Acciones:

Conjunto finito en cada estado.

Procesos de decisión de Markov

Proceso de decisión de Markov:

• Conjunto de estados: **S**

• Conjunto de acciones: A

Modelo de transición: P(s | s,a)

• Función de recompensa: R(s,a,s')

Universidad Internacional de Andalucía

Procesos de decisión de Markov

Política:

Acciones a realizar por el agente en cada estado. Π

Valor del estado:

$$V^\pi(s) = \mathbb{E}[\sum_{t=0}^\infty \gamma^t R(S_t,\pi(S_t),S_{t+1})]$$

Política óptima:

$$\pi^* = rg \max_{\pi} V^{\pi}(s)$$

Universidad Internaciona de Andalucía

Procesos de decisión de Markov

Procesos de decisión de Markov

$$\pi^*(s) = rg \max_{a \in A} \sum_{s'} P(s'|s,a) \left[R(s,a,s') + \gamma V(s')
ight]$$

Ecuación de Bellman (Richard Bellman, 1957):

$$V(s) = \max_{a \in A} \sum_{s'} P(s'|s,a) \left[R(s,a,'s) + \gamma V(s')
ight]$$

$V(s) = \max_{a \in A} \sum_{s'} P(s'|s,a) \left[R(s,a,'s) + \gamma V(s') ight]$

Procesos de decisión de Markov

Acción Arriba:

$$0.8 * 1 + 0.1 * 2 + 0.1 * 4 = 1,4$$

Acción Abajo:

$$0.8 * 3 + 0.1 * 2 + 0.1 * 4 = 3$$

Acción Derecha:

$$0.8 * 4 + 0.1 * 1 + 0.1 * 3 = 3.6$$

Acción Izquierda:

$$0.8 * 2 + 0.1 * 3 + 0.1 * 1 = 2$$

Q-function:

$$V(s) = \max_a Q(s,a) \qquad \pi^*(s) = rg \max_a Q(s,a)$$

Procesos de decisión de Markov

Ecuación de Bellman para Q:

$$Q(s,a) = \sum_{s'} P(s'|s,a) \left[R(s,a,s') + \gamma \max_{a'} Q(s',a')
ight]$$

$Q(s,a) = \sum_{s'} P(s'|s,a) \left[R(s,a,s') + \gamma \max_{a'} Q(s',a') ight]$

Procesos de decisión de Markov

	S1 / 1	
S2 / 2	S0	S4 / 4
	S3 / 3	

Acción Arriba : Q(S0, Arriba)

$$0.8 * 1 + 0.1 * 2 + 0.1 * 4 = 1,4$$

Acción Abajo: Q(S0, Abajo)

$$0.8 * 3 + 0.1 * 2 + 0.1 * 4 = 3$$

Acción Derecha: Q(S0, Derecha)

$$0.8 * 4 + 0.1 * 1 + 0.1 * 3 = 3.6$$

Acción Izquierda: Q(S0, Izquierda)

$$0.8 * 2 + 0.1 * 3 + 0.1 * 1 = 2$$

Universidad Internacional de Andalucía

Procesos de decisión de Markov

Tabular Learning

$$Q(s,a) = \sum_{s'} P(s'|s,a) \left[R(s,a,s') + \gamma \max_{a'} Q(s',a')
ight]$$

Acción/Estado	Estado 1	Estado 2	Estado N
Acción 1			
Acción 2			
Acción 3			
Acción N			

Universidad Internaciona de Andalucía

Procesos de decisión de Markov

Algoritmo de Iteración de Valores:

Bellman Update:

$$V_{t+1}(s) \leftarrow \max_{a \in A} \sum_{s'} P(s'|s,a) \left[R(s,a,s') + \gamma V_t(s')
ight]$$

- 1. Inicializar variables a un valor inicial.
- 2. Realizar Bellman Update para cada estado.
- 3. Repetir para un número determinado de iteraciones o hasta que los cambios Δ sean mínimos.

Sigue en Colab: IntroGYM_ValueIteration.ipynb

Temporaldifference learning

Temporaldifference learning Consideremos la transición - (1,3) -> (2,3): Si la transición ocurre la mayoría de veces, el valor esperable de V(1,3) sería entonces:

$$V(1,3) = -0.04 + V(2,3) = -0.04 + 0.9078 = 0.8678$$

Error:
$$[R(s, \pi(s), s') + \gamma V^{\pi}(s') - V^{\pi}(s)]$$

$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') - V^{\pi}(s) \right]$$

Universidad Internaciona de Andalucía

Temporaldifference learning

QLearning

Bellman Update:

$$egin{aligned} Q(s,a) \leftarrow Q(s,a) + lpha \left[R(s,a,s') + \gamma \underset{a'}{max} Q(s',a') - Q(s,a)
ight] \ Q(s,a) \leftarrow (1-lpha) Q(s,a) + lpha \left[R(s,a,s') + \gamma \underset{a'}{max} Q(s',a')
ight] \end{aligned}$$

- 1. Inicializar valores Q(s,a)
- 2. Obtenemos (s,a,r,s')
- 3. Bellman update
- 4. Repetir desde 2 si no se cumple la condición de parada

Sigue en Colab: TD_QLearning.ipynb

Temporaldifference learning

Problemas:

Aunque ya no tengamos que iterar sobre todos los estados, el número de estados puede seguir siendo muy alto:

- 1. estados representados por números reales
- 2. Atari: 160 x 192 pixels, 128 colors 128^(160*192)

Podemos usar una función no lineal de un estado y una acción y que nos devuelva un valor -> Regresión.

Deep QLearning

MNIH, Volodymyr, et al. Human-level control through deep reinforcement learning. nature, 2015

Deep

QLearning

Usemos una NN para la regresión.

Algoritmo:

- 1. Iniciamos Q(s,a)
- 2. Obtenemos la transición (s,a,r,s')
- 3. Calculamos la función de pérdida:

$$egin{aligned} \mathscr{L} &= (Q(s,a) - r)^2 \ \mathscr{L} &= (Q(s,a) - (r + \gamma \underset{a'}{max} Q(s',a'))^2 \end{aligned}$$

- 4. Actualizamos usando SGD
- 5. Repetimos

Deep QLearning

Algoritmo básico problemas:

Exploration vs Exploitation Con cierta probabilidad ϵ seleccionamos una acción aleatoria. $0 \le \epsilon \le 1$ EPSILON-GREEDY

SGD requiere que los datos sean independientes y uniformemente distribuidos:

- Muestras pertenecientes al mismo episodio
- 2. La política va cambiando según entrenemos

REPLAY BUFFER

Estados consecutivos Q(s,a) - Q(s',a') casi iguales. Al actualizar el valor de Q(s,a) indirectamente cambiamos el de Q(s',a').

USAR DOS NN

Algoritmo básico problemas: Propiedad de Markov

Universidad Internacional de Andalucía

Algoritmo básico problemas: Propiedad de Markov

Deep QLearning

CONCATENAMOS VARIOS ESTADOS EN UNO

Usemos una NN para la regresión.

Deep QLearning

Algoritmo:

- 1. Iniciamos las redes Q(s,a) y Q(s',a'). ϵ <- 1. Buffer vacío.
- 2. Con probabilidad \in elegimos acción aleatoria, si no argmaxQ(s,a)
- 3. Obtenemos la transición (s,a,r,s') y la guardamos en el buffer.
- 4. Extraemos del buffer un minibatch
- 5. Calculamos la función de pérdida:

$$egin{aligned} \mathscr{L} &= (Q(s,a) - r)^2 \ \mathscr{L} &= (Q(s,a) - (r + \gamma \underset{a'}{max} Q(s',a'))^2 \end{aligned}$$

- 6. Actualizamos la red Q(s,a) usando SGD
- 7. Cada N pasos copiamos los pesos de Q(s,a) a Q(s',a')
- 8. Repetimos

Deep QLearning

Mejoras:

- N-steps DQN: Desenrollar la ecuación de Bellman. Sutton, 1988,
 Learning To Predict by The Methods of Temporal Differences
- **Double DQN**: DQN sobreestima los valores. Usar las acciones dadas por la red primaria pero tomando los valores de la secundaria. *Van Hasselt et al., 2015, Deep Reinforcement Learning with Double Q-Learning*
- Noisy networks: Exploration vs Exploitation. Añadimos ruido a las capas FC de la red. Fortunato et al., 2017, Noisy Networks for Exploration
- **Prioritized replay buffer:** Entrenar en data que te "sorprenda" más. Proporcional al loss. *Tom Schaul et al., 2015, Prioritized Experience Replay*
- **Dueling DQN:** Separar la ventaja de una acción y el valor del estado al final de la red. Q(s,a) = V(s) + A(s,a). Ziyu et al., 2015, Dueling Network Architectures for Deep Reinforcement Learning
- Categorical DQN: QValues distribution. Bellemare et al., 2017, A Distributional Perspective on Reinforcement Learning

Referencias usadas:

Artificial Intelligence: A Modern Approach, 4th Global ed., Russell, Norvig. Capítulos 16, 23

Deep Reinforcement Learning Hands On, Maxim Lapan, Capítulos 1-6