Introduction to Partial Differential Equations (PDEs)

Definition

A Partial Differential Equation (PDE) involves partial derivatives of an unknown function dependent on two or more variables.

Key Concepts

- 1. Order:
 - Determined by the highest-order derivative in the equation.
 - ullet Example: $u_{xx}+u_{yy}=0$ is a second-order PDE.
- 2. Linearity:
 - A PDE is linear if the unknown function and its derivatives appear to the first degree.
 - Example: $u_{xx}+u_{yy}=0$ is linear; $u_{xx}u_{yy}=0$ is nonlinear.
- 3. Homogeneity:
 - A PDE is homogeneous if every term contains the unknown function or its derivatives.
 - Example: $u_{xx} + u_{yy} = 0$ (homogeneous), $u_{xx} + u_{yy} = f(x, y)$ (nonhomogeneous).

Examples of PDEs

- 1. Heat Equation: $u_t = c^2 u_{xx}$
 - · Describes the dispersion of heat in a one-dimensional rod.
- 2. Wave Equation: $u_{tt} = c^2 u_{xx}$
 - Models vibrations of strings or sound waves.
- 3. Laplace Equation: $u_{xx} + u_{yy} = 0$
 - Governs potential fields in electrostatics or fluid flow.

Methods of Solving PDEs

Separation of Variables

- 1. Assume a solution: u(x,t) = X(x)T(t).
- 2. Substitute into the PDE and separate variables:
 - $\frac{T'(t)}{c^2T(t)} = \frac{X''(x)}{X(x)} = -\lambda$ (constant).
- 3. Solve the resulting ODEs for X(x) and T(t).
- 4. Combine solutions to find u(x,t).

Example: Heat Equation

- Solve $u_t = c^2 u_{xx}, \ u(0,t) = u(L,t) = 0, \ u(x,0) = f(x)$:
 - 1. Separate variables: u(x,t) = X(x)T(t).
 - 2. $X'' + \lambda X = 0$, $T' + c^2 \lambda T = 0$.
 - 3. Solutions: $X(x)=\sin\left(\frac{n\pi x}{L}\right),\ T(t)=e^{-n^2\pi^2c^2t/L^2}.$
 - 4. Combine: $u(x,t) = \sum_{n=1}^{\infty} c_n e^{-n^2 \pi^2 c^2 t/L^2} \sin\left(\frac{n\pi x}{L}\right)$.

The Superposition Principle

• If $u_1(x,t)$ and $u_2(x,t)$ solve a homogeneous linear PDE, then:\$\$ $u(x,t) = c_1u_1(x,t) + c_2u_2(x,t)$, \quad c_1 , $c_2 \in \mathbb{R}$

is also a solution.

Example: Laplace Equation

- $\bullet \quad \mathsf{PDE} \ldotp u_{xx} + u_{yy} = 0.$
- Solutions: $u_1(x,y) = x^2 y^2, \, u_2(x,y) = x \cos y$.
- General solution: $u(x,y) = c_1(x^2 y^2) + c_2x \cos y$.

Applications of PDEs

- 1. Heat Transfer:
 - PDE: $u_t = c^2 u_{xx}$.
 - Boundary/Initial Conditions: $u(0,t)=u(L,t)=0,\,u(x,0)=f(x).$
- 2. Wave Propagation:
 - PDE: $u_{tt}=c^2u_{xx}$.
 - Models vibrations and oscillations.
- 3. Fluid Flow:
 - PDE: $u_{xx}+u_{yy}=0$.
 - Governs steady-state flows and electric potentials.