Sprawozdanie - Laboratorium nr 6

Poszukiwanie zer wielomianów metodą iterowanego dzielenia (metoda siecznych).

Damian Płóciennik

3 kwietnia 2019

1 Wstęp teoretyczny

1.1 Regula Falsi

W metodzie Regula Falsi wykorzystuje się fałszywe założenie istnienia lokalnej liniowości funkcji. Zakładamy ponadto, że:

- w przedziale [a, b] funkcja ma tylko jeden pierwiastek pojedynczy,
- $f(a) \cdot f(b) < 0$,
- funkcja jest klasy C^2 ,
- pierwsza i druga pochodna nie zmieniają znaku w przedziale [a, b].

Sposób postepowania:

1. przez punkty A i B prowadzimy prosta o równaniu:

$$y - f(a) = \frac{f(b) - f(a)}{b - a} \cdot (x - a) \tag{1}$$

2. punkt x_1 w którym prosta przecina oś Ox przyjmuje się za pierwsze przybliżenie szukanego pierwiastka równania:

$$x_1 = a - \frac{f(a)}{f(b) - f(a)} \cdot (b - a)$$
 (2)

- 3. sprawdzamy warunek, czy: $f(x_1) = 0$, jeśli tak to przerywamy obliczenia,
- 4. jeśli $f(x_1) \neq 0$ to sprawdzamy na końcach którego przedziału ($[A, x_1], [x_1, B]$) wartości funkcji mają różne znaki przez te punkty prowadzimy kolejną prostą powtarzając kroki (1-4).

Wadą tej metody jest wolna zbieżność ciągu przybliżeń, gdzie rząd tej metody określony parametrem p=1.

1.2 Metoda siecznych

Metoda siecznych jest modyfikacją Regula Falsi. Polega na przeprowadzeniu prostej przez dwa ostatnie przybliżenia x_k oraz x_{k-1} . Kolejne przybliżenia w metodzie sieczych można wyznaczyć za pomocą relacji rekurencyhnej:

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$
(3)

Należy dodatkowo przyjąć, że $|f(x_k)|$ mają tworzyć ciąg wartości malejących. Jeśli w kolejnej iteracji $|f(x_k)|$ zaczyna rosnąć, należy przerwać obliczenia i ponownie wyznaczyć punkty startowe zawężając przedział izolacji.

2 Zadanie do wykonania

2.1 Opis problemu

Celem zadania było wyznaczenie zer wielomianu postaci:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0,$$
(4)

który po uwzględnieniu współczynników podanych w treści zadania przyjął postać:

$$f(x) = x^5 + 14x^4 + 33x^3 - 92x^2 - 196x + 240.$$
 (5)

Do wyznaczenia miejsc zerowych wielomianu posłużono się iterowanym dzieleniem przez wyraz $(x-x_j)$, otrzymując:

$$f(x) = (x - x_j)(b_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + b_0) + R_j.$$
(6)

Współczynniki nowego wielomianu $(b_{n-1}x^{n-1}+a_{n-2}x^{n-2}+\cdots+b_0)$ można wyznaczyć rekurencyjnie:

$$b_n = 0$$

 $b_k = a_{k+1} + x_j b_{k+1}$, dla $k = n - 1, n - 2, \dots, 0$ (7)
 $R_j = a_0 + x_j b_0$.

Korzystając z metody siecznych można wyznaczać kolejne przybliżenia zgodnie ze wzorem:

$$x_{j+1} = x_j - \frac{R_j(x_j - x_{j-1})}{R_j - R_{j-1}}. (8)$$

Do wykonania zadania przyjęto wartości startowe $x_0 = 0$ i $x_1 = 0.1$, wartość $IT_MAX = 30$ oraz warunek wcześniejszego opuszczenia pętli $|x_1 - x_0| < 10^{-7}$.

2.2 Wyniki

Do rozwiązania problemu wykorzystano program napisany w języku C. Uzyskane wyniki - poszukiwane zera wielomianu, zostały przedstawione w poniższych tabelach.

\mathbf{L}	it	$\mathbf{x_{it+1}}$	$ m R_{it+1}$
1	1	1.17156	-34.2531
1	2	1.02692	-5.84693
1	3	0.997147	0.628384
1	4	1.00004	-0.00803032
1	5	1	$-1.04741 \cdot 10^{-5}$
1	6	1	$1.75532 \cdot 10^{-10}$

(a) Pierwsze miejsce zerowe: x = 1

L	it	x_{it+1}	$ m R_{it+1}$
2	1	-6.14612	-211.972
2	2	-47.6089	$3.62948 \cdot 10^6$
2	3	-6.14855	-212.305
2	4	-6.15097	-212.637
2	5	-4.60089	-34.2831
2	6	-4.30293	-14.1731
2	7	-4.09294	-3.65601
2	8	-4.01994	-0.732267
2	9	-4.00166	-0.0598706
2	10	-4.00003	-0.00116616
2	11	-4	$-1.93278 \cdot 10^{-6}$
2	12	-4	$-6.27551 \cdot 10^{-11}$

(1	o)	Drugie	miejsce	zerowe:	x	= -	-4
----	----	--------	---------	---------	---	-----	----

3	1	11.7417	3122.3
3	2	0.317661	-57.5873
3	3	0.524549	-54.7308
3	4	4.48854	270.001
3	5	1.19265	-37.8866
3	6	1.59822	-21.4276
3	7	2.12622	7.84603
3	8	1.9847	-0.913902
3	9	1.99947	-0.0320206
3	10	2	0.000139307
3	11	2	$-2.107 \cdot 10^{-8}$
3	12	2	$-1.42109 \cdot 10^{-14}$
	() T		2

 $\mathbf{x_{it+1}}$

 $\mathbf{R_{i\underline{t}+1}}$

(c) Trzecie miejsce zerowe: x = 2

\mathbf{L}	it	x_{it+1}	$ m R_{it+1}$
4	1	-2.29008	5.47346
4	2	-2.79641	1.46656
4	3	-2.98174	0.128181
4	4	-2.99949	0.00360434
4	5	-3	$9.37832 \cdot 10^{-6}$
4	6	-3	$6.89749 \cdot 10^{-10}$
4	7	-3	0

⁽d) Czwarte miejsce zerowe: x = -3

$oxed{\mathbf{L}}$	it	$\mathbf{x_{it+1}}$	$ m R_{it+1}$
5	1	-10	$-3.55271 \cdot 10^{-14}$
5	2	-10	0

(e) Piąte miejsce zerowe: x = -10

Tabela 1: Tabele przybliżeń miejsc zerowych; w kolumnach kolejno: L – numer miejsca zerowego, it – numer iteracji, x_{it+1} – przybliżenie miejsca zerowego w danej iteracji, R_{it+1} – reszta z dzielenia wielomianu w danej iteracji.

Wszystkie wartości wyznaczonych zer wielomianów były zgodne z teoretycznymi. Warto zauważyć, że w każdym przypadku został spełniony warunek wcześniejszego zerwania pętli i pierwiastki zostały wyznaczone w mniejszej ilości iteracji niż IT_MAX .

3 Wnioski

Korzystając z metody iterowanego dzielenia z metodą siecznych udało się uzyskać wyniki zgodne z teoretycznymi. Do każdego kolejnego pierwiastka wykorzystywany jest wielomian o mniejszym stopniu, co może wpływać na ilość iteracji potrzebnych do osiągnęcia przybliżonego wyniku. W każdym przypadku został spełniony warunek wcześniejszego zerwania pętli i pierwiastki zostały wyznaczone w mniejszej ilości iteracji niż IT_MAX , co pozwala zaoszczędzić moc obliczeniową komputera, gdy błąd osiąga pomijalnie małe wartości.