Resumo Estatística e Probabilidade

RESUMO DE ESTATÍSTICA E PROBABILIDADE

William Cardoso Barbosa

Porto Velho-Ro 2023

Resumo Estatística e Probabilidade

RESUMO DE ESTATÍSTICA E PROBABILIDADE

William Cardoso Barbosa

resumo

Sumário

1	MOTIVAÇÃO 5
2 2.1	COJUNTOS
2.1.1	Espaço Amostral e Eventos
2.1.2	Operações entre Conjuntos
3	PROBABILIDADE 7
3.0.1	Primeiro Axioma
3.0.2	
3.0.2	Ü
3.0.4	
3.0.5	Regra da Multiplicação 7 Regra da Probabilidade Total 7
3.0.6	3
3.1	Probabilidade Condicional
3.1.1	Definição
3.2	Probabilidade Independente
3.2.1	Definição
3.3	Teorema de Bayes
3.3.1	Teorema de Bayes
3.4	Variáveis Aleatórias Discretas
3.4.1	Função de Distribuição Cumulativa
3.4.2	Medidas Estatísticas
3.5	Esperança Matemática, Média, Variância e Desvio Padrão 9
3.5.1	Esperança Matemática (Média) 9
3.5.2	Desvio Padrão
3.5.3	Variância
3.5.4	Cálculo de $E[X^2]$
3.6	Distribuição de Probabilidade Discreta
3.6.1	Função de Probabilidade
3.7	Distribuição Binomial
3.7.1	Função de Probabilidade Binomial
3.7.2	Média e Variância
3.7.3	Desvio Padrão
3.8	Distribuição de Poisson
3.8.1	Função de Probabilidade de Poisson

3.8.2	Parâmetros	11
3.9	Distribuição Uniforme Contínua	11
3.9.1	Função de Densidade de Probabilidade (PDF)	11
3.9.2	Valor Esperado (Média)	11
3.9.3	Variância	12
3.9.4	Operações Comuns	12
3.9.4.1	Soma de Variáveis Aleatórias	12
3.9.4.2	Multiplicação por Constante	12
3.10	Distribuição Exponencial	12
3.10.1	Função de Densidade de Probabilidade (PDF)	12
3.10.2	Valor Esperado (Média)	12
3.10.3	Variância	12
3.10.4	Operações Comuns	13
3.10.4.1	Soma de Variáveis Aleatórias	13
3.10.4.2	Falha na Memória	13
3.11	Distribuição de Probabilidade Normal (Gaussiana)	13
3.11.1	Função de Densidade de Probabilidade (PDF)	13
3.11.2	Valor Esperado (Média)	13
3.11.3	Variância	14
3.11.4	Operações Comuns	14
3.11.4.1	Padronização	14
3.11.4.2	Soma de Variáveis Aleatórias	14
4	INFERÊNCIA ESTAÍSTICA	15
4.0.1	Resumo de Conceitos	15
4.0.1.1	População	15
4.0.1.2	Amostra	15
4.0.1.3	Parâmetro	15
4.0.1.4	Estatística	15
4.0.1.5	Estimativa	15
4.0.1.6	Teste de Hipóteses	15
4.0.1.7	Intervalo de Confiança	16
4.0.1.8	Erro Tipo I e Erro Tipo II	16
4.1	Média, Variância e Desvio Padrão	16
4.1.1	Média	16
4.1.2	Variância	16
4.1.3	Desvio Padrão	16
4.1.4	Operações Comuns	17
4.1.4.1	Adição ou Subtração de Constantes	17
4.1.4.2	Multiplicação por Constante	17

4.1.4.3	Soma de Variáveis Aleatórias	17
4.2	Estimativa Estatística	17
4.2.1	Resumo de Conceitos	17
4.2.1.1	Estimador	17
4.2.1.2	Estimativa Pontual	17
4.2.1.3	Intervalo de Confiança	17
4.2.1.4	Erro Padrão	18
4.2.1.5	Tamanho da Amostra	18
4.3	Estimadores de Tendência	18
4.3.1	Resumo de Conceitos	18
4.3.1.1	Média Amostral (\bar{x})	18
4.3.1.2	Mediana (Me)	18
4.3.1.3	Moda (Mo)	18
4.3.1.4	Média Ponderada	19
4.3.1.5	Quantis	19
4.4	Distribuições Amostrais	19
4.4.1	Distribuição Amostral da Média	19
4.4.1.1	Média da Distribuição Amostral $(\mu_{ar{x}})$	19
4.4.1.2	Variância da Distribuição Amostral $(\sigma_{ar{x}}^2)$	19
4.4.1.3	Desvio Padrão da Distribuição Amostral $(\sigma_{\bar{x}})$	19
4.4.2	Operações Comuns	20
4.4.2.1	Teorema do Limite Central (TLC)	20
4.4.2.2	Intervalo de Confiança para a Média	20
4.5	Intervalo de Confiança	20
4.5.1	Resumo de Conceitos	20
4.5.1.1	Nível de Confiança $(1-\alpha)$	20
4.5.1.2	Nível de Significância (α)	20
4.5.1.3	Erro Padrão (SE)	21
4.5.1.4	Intervalo de Confiança para a Média (μ)	21
4.5.1.5	Intervalo de Confiança para a Proporção (p)	21
	REFERÊNCIAS	22

1 Motivação

Informações que motivaram

2 Cojuntos

2.1 Teoria dos Conjuntos

2.1.1 Espaço Amostral e Eventos

Espaço Amostral (S): É o conjunto de todos os resultados possíveis em um experimento aleatório.

Evento (E): Qualquer subconjunto do espaço amostral que representa uma informação que pode acontecer.

2.1.2 Operações entre Conjuntos

União $(A \cup B)$: Representa a combinação de informações presentes em dois conjuntos distintos.

Interseção $(A \cap B)$: Contém os elementos que são comuns a ambos os conjuntos $A \in B$.

Complementar (A^c): Representa os elementos do espaço amostral que não pertencem ao conjunto A.

$$A^c = S - A$$

3 Probabilidade

A teoria da probabilidade inclui vários conceitos e regras fundamentais.

3.0.1 Primeiro Axioma

Axioma da Probabilidade Total:

$$P(S) = 1$$

3.0.2 Segundo Axioma

Axioma da Não-Negatividade:

$$0 \le P(E) \le 1$$
 para todo evento E .

3.0.3 Terceiro Axioma

Axioma da Aditividade de Eventos Disjuntos:

$$P(E_1 \cap E_2) = P(E_1) + P(E_2)$$
 se $E_1 \cap E_2 = \emptyset$

3.0.4 Quarto Axioma

Axioma da Aditividade Geral:

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

3.0.5 Regra da Multiplicação

Regra da Multiplicação:

$$P(E_1 \cap E_2) = P(E_1) \cdot P(E_2|E_1)$$

3.0.6 Regra da Probabilidade Total

Regra da Probabilidade Total:

$$P(E_2) = P(E_2 \cap E_1) + P(E_2 \cap E_1^c) = P(E_2|E_1) \cdot P(E_1) + P(E_2|E_1^c) \cdot P(E_1^c)$$

3.1 Probabilidade Condicional

A probabilidade condicional é uma medida da probabilidade de um evento ocorrer, dado que outro evento já ocorreu.

3.1.1 Definição

Probabilidade Condicional:

$$P(E_2|E_1) = \frac{P(E_1 \cap E_2)}{P(E_1)}$$
 se $P(E_1) > 0$

3.2 Probabilidade Independente

Dois eventos são independentes se a ocorrência de um não afeta a probabilidade de ocorrência do outro.

3.2.1 Definição

Probabilidade Independente: Dois eventos E_1 e E_2 são independentes se e somente se:

$$P(E_2|E_1) = P(E_2)$$
 ou $P(E_1|E_2) = P(E_1)$ ou $P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$

3.3 Teorema de Bayes

O Teorema de Bayes é uma ferramenta fundamental na teoria da probabilidade para calcular probabilidades condicionais invertendo a condição.

3.3.1 Teorema de Bayes

Teorema de Bayes:

$$P(E_1|E_2) = \frac{P(E_2|E_1) \cdot P(E_1)}{P(E_2)}$$

onde $P(E_2) > 0$.

3.4 Variáveis Aleatórias Discretas

Variáveis aleatórias discretas são aquelas que podem assumir um conjunto finito ou enumerável de valores.

3.4.1 Função de Distribuição Cumulativa

A função de distribuição cumulativa F(x) para uma variável aleatória discreta é definida como:

- 1. $F(x) \ge 0$, para $x \in \mathbb{R}$
- 2. $\sum_{x} f(x) = 1$

3.4.2 Medidas Estatísticas

Média:

$$\mathbb{E}[X] = \mu = \bar{x} = \sum_{x} x \cdot f(x)$$

Variância:

$$\sigma^2 = \sum_{x} (x - \bar{x})^2 \cdot f(x)$$

Desvio Padrão:

$$\sigma = \sqrt{\sigma^2}$$

3.5 Esperança Matemática, Média, Variância e Desvio Padrão

A esperança matemática, a média, a variância e o desvio padrão são medidas importantes para caracterizar uma variável aleatória.

3.5.1 Esperança Matemática (Média)

A esperança matemática (ou média) de uma variável aleatória X é denotada por $\mathbb{E}[X]$ ou μ , e é calculada como:

Esperança Matemática:

$$\mathbb{E}[X] = \sum_{x} x \cdot f(x)$$

3.5.2 Desvio Padrão

O desvio padrão de uma variável aleatória X é denotado por σ_X e é calculado como a raiz quadrada da variância:

Desvio Padrão:

$$\sigma_X = \sqrt{\operatorname{Var}(X)}$$

3.5.3 Variância

A variância de uma variável aleatória X é denotada por Var(X) e é calculada como:

Variância:

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$Var(X) = \mathbb{E}[X^2] - [\mathbb{E}[X]]^2$$

3.5.4 Cálculo de $E[X^2]$

O cálculo de $E[X^2]$ é dado por:

Cálculo de $E[X^2]$:

$$\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 f(x) \, dx$$

3.6 Distribuição de Probabilidade Discreta

A distribuição de probabilidade discreta descreve as probabilidades associadas aos diferentes valores que uma variável aleatória discreta pode assumir.

3.6.1 Função de Probabilidade

A função de probabilidade F(x) para uma variável aleatória discreta é definida como:

Função de Probabilidade:

$$F(x) = P(X = x_i) = k = x$$

3.7 Distribuição Binomial

A distribuição binomial é uma distribuição de probabilidade discreta que descreve o número de sucessos em um número fixo de tentativas independentes.

3.7.1 Função de Probabilidade Binomial

A função de probabilidade P(X = k) para a distribuição binomial é definida como:

Função de Probabilidade Binomial:

$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}, \quad k = 0, 1, 2, \dots$$

3.7.2 Média e Variância

Média:

$$\mu = \mathbb{E}[X] = n \cdot p$$

Variância:

$$\operatorname{Var}(X) = n \cdot p \cdot (1 - p)$$

3.7.3 Desvio Padrão

O desvio padrão da distribuição binomial é dado por:

Desvio Padrão:

$$\sigma_X = \sqrt{n \cdot p \cdot (1 - p)}$$

3.8 Distribuição de Poisson

A distribuição de Poisson é uma distribuição de probabilidade discreta que modela a ocorrência de eventos raros em um intervalo de tempo ou espaço.

3.8.1 Função de Probabilidade de Poisson

A função de probabilidade P(X = k) para a distribuição de Poisson é definida como:

Função de Probabilidade de Poisson:

$$P(X = k) = \frac{e^{-\lambda} \cdot \lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

3.8.2 Parâmetros

Média:

$$\mu = \mathbb{E}[X] = \lambda$$

Variância:

$$Var(X) = \lambda^2$$

Desvio Padrão:

$$\sigma_X = \sqrt{\operatorname{Var}(X)} = \sqrt{\lambda^2} = \lambda$$

3.9 Distribuição Uniforme Contínua

A distribuição uniforme contínua, também conhecida como distribuição retangular, é um modelo de probabilidade em que todos os valores entre dois limites a e b têm a mesma probabilidade de ocorrência em um intervalo.

3.9.1 Função de Densidade de Probabilidade (PDF)

A função de densidade de probabilidade da distribuição uniforme contínua é dada por:

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{se } a \le x \le b, \\ 0, & \text{caso contrário.} \end{cases}$$

onde a e b são os limites do intervalo.

3.9.2 Valor Esperado (Média)

A média da distribuição uniforme contínua é calculada como:

$$\mu = \frac{a+b}{2}$$

3.9.3 Variância

A variância da distribuição uniforme contínua é calculada como:

$$\sigma^2 = \frac{(b-a)^2}{12}$$

3.9.4 Operações Comuns

3.9.4.1 Soma de Variáveis Aleatórias

Se X e Y são variáveis aleatórias independentes com distribuição uniforme em intervalos $[a_1,b_1]$ e $[a_2,b_2]$ respectivamente, então a distribuição da soma Z=X+Y é uniforme no intervalo $[a_1+a_2,b_1+b_2]$.

3.9.4.2 Multiplicação por Constante

Se X é uma variável aleatória uniforme no intervalo [a,b] e c é uma constante, então a distribuição da variável Y=cX é uniforme no intervalo [ca,cb].

3.10 Distribuição Exponencial

A distribuição exponencial é um modelo de probabilidade utilizado para descrever o tempo que devemos esperar até que um evento ocorra, em um processo de Poisson.

3.10.1 Função de Densidade de Probabilidade (PDF)

A função de densidade de probabilidade da distribuição exponencial é dada por:

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x}, & \text{se } x \ge 0, \\ 0, & \text{se } x < 0, \end{cases}$$

onde λ é a taxa do processo de Poisson.

3.10.2 Valor Esperado (Média)

A média da distribuição exponencial é dada por:

$$\mu = \frac{1}{\lambda}$$

3.10.3 Variância

A variância da distribuição exponencial é dada por:

$$\sigma^2 = \frac{1}{\lambda^2}$$

3.10.4 Operações Comuns

3.10.4.1 Soma de Variáveis Aleatórias

Se X_1, X_2, \ldots, X_n são variáveis aleatórias independentes e exponenciais com parâmetro λ , então a soma $S = X_1 + X_2 + \ldots + X_n$ tem uma distribuição gama com parâmetros n e λ .

3.10.4.2 Falha na Memória

A distribuição exponencial é sem memória, o que significa que a probabilidade de uma falha ocorrer após um certo tempo t é a mesma, independentemente do tempo que já passou. Matematicamente, isso é expresso como:

$$P(X > s + t | X > t) = P(X > s)$$

para s, t > 0.

3.11 Distribuição de Probabilidade Normal (Gaussiana)

A distribuição de probabilidade normal, também conhecida como distribuição gaussiana, é amplamente utilizada para modelar uma variedade de fenômenos na estatística e na ciência.

3.11.1 Função de Densidade de Probabilidade (PDF)

A função de densidade de probabilidade (PDF) da distribuição normal é dada por:

$$f(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

onde:

 μ é a média da distribuição, σ é o desvio padrão da distribuição.

3.11.2 Valor Esperado (Média)

A média da distribuição normal é igual à média dos dados, ou seja, μ .

$$\mu = \int_{-\infty}^{\infty} x f(x; \mu, \sigma) dx$$

3.11.3 Variância

A variância da distribuição normal é igual ao quadrado do desvio padrão, ou seja, σ^2 .

$$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x; \mu, \sigma) dx$$

3.11.4 Operações Comuns

3.11.4.1 Padronização

Para padronizar uma variável aleatória X com média μ e desvio padrão σ em uma variável aleatória Z com média 0 e desvio padrão 1 (conhecida como variável normal padrão), usamos a seguinte transformação:

$$Z = \frac{X - \mu}{\sigma}$$

3.11.4.2 Soma de Variáveis Aleatórias

Se X_1, X_2, \ldots, X_n são variáveis aleatórias independentes e normalmente distribuídas com médias $\mu_1, \mu_2, \ldots, \mu_n$ e desvios padrão $\sigma_1, \sigma_2, \ldots, \sigma_n$, então a soma $S = X_1 + X_2 + \ldots + X_n$ é também normalmente distribuída com média $\mu_S = \mu_1 + \mu_2 + \ldots + \mu_n$ e variância $\sigma_S^2 = \sigma_1^2 + \sigma_2^2 + \ldots + \sigma_n^2$.

4 InferÊncia Estaística

A Inferência Estatística é um ramo da estatística que se concentra em fazer inferências ou conclusões sobre populações com base em amostras. É uma parte fundamental da análise estatística que nos permite tirar conclusões sobre características desconhecidas de uma população com base em informações limitadas.

4.0.1 Resumo de Conceitos

Aqui estão alguns conceitos-chave relacionados à Inferência Estatística:

4.0.1.1 População

A população é o conjunto completo de todos os elementos que estamos estudando. Por exemplo, se estamos interessados na altura de todos os indivíduos em um país, a população seria a altura de todas as pessoas nesse país.

4.0.1.2 Amostra

Uma amostra é um subconjunto representativo da população. É impraticável medir ou observar todos os elementos de uma população, então usamos amostras para fazer inferências sobre a população.

4.0.1.3 Parâmetro

Um parâmetro é uma medida descritiva ou numérica de uma característica da população. Exemplos comuns de parâmetros incluem a média, desvio padrão e proporção.

4.0.1.4 Estatística

Uma estatística é uma medida descritiva ou numérica calculada a partir de uma amostra. Elas são usadas para fazer inferências sobre os parâmetros da população.

4.0.1.5 Estimativa

A estimativa é o processo de usar estatísticas de amostra para fazer conjecturas ou inferências sobre os parâmetros da população.

4.0.1.6 Teste de Hipóteses

Os testes de hipóteses são procedimentos estatísticos usados para tomar decisões sobre afirmações ou hipóteses feitas sobre parâmetros da população.

4.0.1.7 Intervalo de Confiança

Um intervalo de confiança é uma faixa de valores que é usada para estimar o valor de um parâmetro da população com um certo nível de confiança.

4.0.1.8 Erro Tipo I e Erro Tipo II

Erro Tipo I ocorre quando rejeitamos uma hipótese nula verdadeira. Erro Tipo II ocorre quando não rejeitamos uma hipótese nula falsa. O controle desses erros é importante em testes de hipóteses.

4.1 Média, Variância e Desvio Padrão

4.1.1 Média

A média é uma medida de tendência central que representa o valor médio de um conjunto de dados. A média de um conjunto de n observações é calculada da seguinte forma:

Média
$$(\mu) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

onde x_i são os valores individuais das observações.

4.1.2 Variância

A variância é uma medida de dispersão que representa a média dos quadrados das diferenças entre cada valor e a média. A fórmula da variância é:

Variância
$$(\sigma^2) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

onde μ é a média e x_i são os valores individuais das observações.

4.1.3 Desvio Padrão

O desvio padrão é uma medida de dispersão que representa a raiz quadrada da variância. É frequentemente usado para medir a dispersão em torno da média. A fórmula do desvio padrão é:

Desvio Padrão
$$(\sigma) = \sqrt{\text{Variância}(\sigma^2)}$$

4.1.4 Operações Comuns

4.1.4.1 Adição ou Subtração de Constantes

Se uma constante a é adicionada ou subtraída de todos os valores de um conjunto de dados, a média não é afetada. A variância e o desvio padrão também não são afetados.

4.1.4.2 Multiplicação por Constante

Se todos os valores de um conjunto de dados são multiplicados por uma constante c, a média é multiplicada por c. A variância é multiplicada por c^2 e o desvio padrão é multiplicado por |c|.

4.1.4.3 Soma de Variáveis Aleatórias

Se X_1, X_2, \dots, X_n são variáveis aleatórias independentes, a média da soma é a soma das médias. A variância da soma é a soma das variâncias.

4.2 Estimativa Estatística

A Estimativa Estatística envolve o uso de dados amostrais para fazer conjecturas ou inferências sobre parâmetros desconhecidos de uma população.

4.2.1 Resumo de Conceitos

Aqui estão alguns conceitos-chave relacionados à Estimativa Estatística:

4.2.1.1 Estimador

Um estimador é uma estatística calculada a partir de uma amostra que é usada para estimar um parâmetro da população. Exemplos comuns de estimadores incluem a média amostral, a proporção amostral e a variância amostral.

4.2.1.2 Estimativa Pontual

Uma estimativa pontual é um valor específico calculado a partir de dados amostrais que é usado como uma única estimativa do parâmetro da população. Por exemplo, a média amostral \bar{x} é uma estimativa pontual da média populacional μ .

4.2.1.3 Intervalo de Confiança

Um intervalo de confiança é um intervalo de valores dentro do qual acredita-se que o valor do parâmetro populacional esteja com uma determinada probabilidade. É uma maneira de quantificar a incerteza na estimativa.

4.2.1.4 Erro Padrão

O erro padrão é uma medida da variabilidade da estimativa. É frequentemente usado para calcular intervalos de confiança. O erro padrão da média amostral $(\sigma_{\bar{x}})$ é calculado como:

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

onde σ é o desvio padrão populacional e n é o tamanho da amostra.

4.2.1.5 Tamanho da Amostra

O tamanho da amostra (n) é o número de observações na amostra. O tamanho da amostra desempenha um papel importante na precisão da estimativa. Quanto maior a amostra, menor será o erro padrão e, portanto, maior será a precisão da estimativa.

4.3 Estimadores de Tendência

Os estimadores de tendência são estatísticas usadas para estimar a tendência central de um conjunto de dados, ou seja, um valor que representa onde a maioria dos dados se concentra.

4.3.1 Resumo de Conceitos

Aqui estão alguns conceitos-chave relacionados a estimadores de tendência:

4.3.1.1 Média Amostral (\bar{x})

A média amostral é um estimador de tendência central que calcula a média aritmética dos dados em uma amostra. A fórmula para a média amostral é:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

onde n é o tamanho da amostra e x_i são os valores individuais da amostra.

4.3.1.2 Mediana (*Me*)

A mediana é o valor do meio quando os dados são organizados em ordem crescente. É um estimador de tendência robusto que não é afetado por valores extremos. Se o tamanho da amostra for ímpar, a mediana é o valor do meio. Se o tamanho da amostra for par, a mediana é a média dos dois valores do meio.

4.3.1.3 Moda (*Mo*)

A moda é o valor que ocorre com maior frequência em um conjunto de dados. Pode haver mais de uma moda (bimodal, trimodal, etc.). A moda é útil para dados categóricos ou discretos.

4.3.1.4 Média Ponderada

A média ponderada leva em consideração os pesos atribuídos a cada valor. É calculada como:

Média Ponderada =
$$\frac{\sum_{i=1}^{n} (x_i \cdot w_i)}{\sum_{i=1}^{n} w_i}$$

onde x_i são os valores individuais e w_i são os pesos associados a esses valores.

4.3.1.5 Quantis

Os quantis são estimadores de tendência que dividem os dados em partes iguais. O quartil é um exemplo comum de quantil, dividindo os dados em quatro partes iguais.

4.4 Distribuições Amostrais

As distribuições amostrais são usadas na estatística para descrever o comportamento das estatísticas calculadas a partir de diferentes amostras de uma população.

4.4.1 Distribuição Amostral da Média

A distribuição amostral da média é uma distribuição que descreve as médias amostrais de todas as possíveis amostras de tamanho n de uma população. É uma parte fundamental da inferência estatística.

4.4.1.1 Média da Distribuição Amostral ($\mu_{\bar{x}}$)

A média da distribuição amostral da média é igual à média da população.

$$\mu_{\bar{x}} = \mu$$

4.4.1.2 Variância da Distribuição Amostral $(\sigma_{\bar{x}}^2)$

A variância da distribuição amostral da média é calculada como:

$$\sigma_{\bar{x}}^2 = \frac{\sigma^2}{n}$$

onde σ^2 é a variância da população e n é o tamanho da amostra.

4.4.1.3 Desvio Padrão da Distribuição Amostral ($\sigma_{\bar{x}}$)

O desvio padrão da distribuição amostral da média é a raiz quadrada da variância da distribuição amostral da média.

$$\sigma_{\bar{x}} = \sqrt{\frac{\sigma^2}{n}}$$

4.4.2 Operações Comuns

4.4.2.1 Teorema do Limite Central (TLC)

O Teorema do Limite Central afirma que, para amostras suficientemente grandes (n grande), a distribuição das médias amostrais se aproxima de uma distribuição normal, independentemente da forma da população original.

$$\bar{x} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

4.4.2.2 Intervalo de Confiança para a Média

Para calcular um intervalo de confiança de $1-\alpha$

$$\bar{x} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

onde $Z_{\alpha/2}$ é o valor crítico da distribuição normal padrão correspondente ao nível de confiança $1-\alpha$

4.5 Intervalo de Confiança

Um intervalo de confiança é uma faixa de valores que é usada para estimar um parâmetro populacional com um certo nível de confiança. É uma parte importante da inferência estatística.

4.5.1 Resumo de Conceitos

Aqui estão alguns conceitos-chave relacionados a intervalos de confiança:

4.5.1.1 Nível de Confiança $(1 - \alpha)$

O nível de confiança é a probabilidade de que o intervalo de confiança contenha o parâmetro populacional. É frequentemente expresso como $1-\alpha$, onde α é o nível de significância (a probabilidade de erro).

4.5.1.2 Nível de Significância (α)

O nível de significância é a probabilidade de cometer um erro ao rejeitar uma afirmação nula verdadeira. É a probabilidade de que o intervalo de confiança não contenha o parâmetro populacional.

4.5.1.3 Erro Padrão (*SE*)

O erro padrão é uma medida da variabilidade da estimativa. No contexto do intervalo de confiança para a média, o erro padrão é calculado como:

$$SE = \frac{\sigma}{\sqrt{n}}$$

onde σ é o desvio padrão populacional e n é o tamanho da amostra.

4.5.1.4 Intervalo de Confiança para a Média (μ)

O intervalo de confiança para a média é calculado como:

$$\bar{x} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

onde \bar{x} é a média da amostra, σ é o desvio padrão populacional, n é o tamanho da amostra e $Z_{\alpha/2}$ é o valor crítico da distribuição normal padrão correspondente ao nível de confiança $1-\frac{\alpha}{2}$.

4.5.1.5 Intervalo de Confiança para a Proporção (p)

O intervalo de confiança para a proporção é calculado como:

$$\hat{p} \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$P\left[\text{m\'edia} - Z_{\alpha/2}\tfrac{\sigma}{\sqrt{n}}, \text{m\'edia} + Z_{\alpha/2}\tfrac{\sigma}{\sqrt{n}}\right]$$

onde \hat{p} é a proporção da amostra e n é o tamanho da amostra.

Referências