SV calling

RESEARCH ARTICLE

Whole Genome Sequencing Identifies a 78 kb Insertion from Chromosome 8 as the Cause of Charcot-Marie-Tooth Neuropathy CMTX3

Megan H. Brewer^{1,2*}, Rabia Chaudhry^{1,2}, Jessica Qi^{1,3}, Aditi Kidambi¹, Alexander P. Drew¹, Manoj P. Menezes^{6,5,6}, Monique M. Ryan^{7,8,9}, Michelle A. Farrar^{10,11}, David Mowat^{11,12}, Gopinath M. Subramanian¹³, Helen K. Young^{14,15,16}, Stephan Zuchner^{17,16}, Stephen W. Reddel¹⁹, Garth A. Nicholson^{1,2,20}, Marina L. Kennerson^{1,2,20}

Phenotypic impact of genomic structural variation: insights from and for human disease

Joachim Weischenfeldt^{1*}, Orsolya Symmons^{2*}, François Spitz² and Jan O. Korbel¹

Copy number variations of chromosome 16p13.1 region associated with schizophrenia

A Ingason^{1,2}, D Rujescu³, S Cichon^{4,5}, E Sigurdsson⁶, T Sigmundsson⁶, OPH Pietiläinen⁷, JE Buizer-Voskamp^{8,9}, E Strengman⁹, C Francks¹⁰, P Muglia¹⁰, A Gylfason¹, O Gustafsson¹, Pl Olason¹, S Steinberg¹, T Hansen², KD Jakobsen², HB Rasmussen², I Giegling³, H-J Möller³, A Hartmann³, C Crombie^{1,1}, G Fraser^{1,1}, N Walker¹², J Lonnqvist¹³, J Suvisaari¹³, A Tuulio-Henriksson¹³, E Bramon¹⁴, LA Kiemeney¹⁵, B Franke¹⁶, R Murray¹⁴, E Vassos¹⁴, T Toulopoulou¹⁴, TW Mühleisen⁴, S Tosato¹⁷, M Ruggeri¹⁷, S Djurovic^{18,19}, OA Andreassen^{18,19}, Z Zhang²⁰, T Werge², RA Ophoff^{9,21}, GROUP Investigators²², M Rietschel²³, MM Nöthen^{4,5}, H Petursson⁶, H Stefansson¹, L Peltonen^{7,24,25}, D Collier¹⁴, K Stefansson¹, and DM St Clair¹¹

Copy number variation of E3 ubiquitin ligase genes in peripheral blood leukocyte and colorectal cancer

Haoran Bi¹, Tian Tian¹, Lin Zhu¹, Haibo Zhou¹, Hanqing Hu², Yanhong Liu³, Xia Li⁴, Fulan Hu¹, Yashuang Zhao¹ & Guiyu Wang²

SV short read evidence types

The more the merrier?

DOI:10.1371/journal.pone.0122287

The first diagram (A.) represents the mean number of CNVs shared between tools prior to any filtering based on familial relationship. B. is the mean number of CNVs shared between the tools after filtering for Mendelian inheritance (*i.e.* CNVs that are in both twins and at least one parent). C. is the ratio of lost CNVs when filtering for Mendelian inheritance (). DGV is the Database of Genomic Variants.

1000 Genomes phase 3 SVs

SV class	No. sites	Median size of SV sites (bp)	Median kbp per individual	Median alleles per individual	Site FDR	Biallelic site breakpoint precision (bp)	Genotype concordance (non-ref.)	Sensitivity estimates
Deletion (biallelic)	42,279	2,455	5,615	2,788	2%*-4%†	15 (±50)** 0.7 (±9.5)††	98%¶	88%¶
Duplication (biallelic)	6,025	35,890	518	17	1%*-4%†	683 (±1,350)‡‡	94%¶	65%¶
mCNV	2,929	19,466	11,346	340	1%*-4%†	-	NA	NA
Inversion	786	1,697	78	37	17%§ (9%)‡	32 (±47)	96%§	32%
MEI	16,631	297	691	1,218	4%‡	0.95 (±5.93)	98%	83# -96% *
NUMT	168	157	3	5.3	10%‡	0.25 (±0.43)	86.1%‡	NA

SV caller benchmark (GIAB NA12878 DEL set)

In the framework of the SciLifelab LTS ToolBox we benchmarked a number of callers. A combination of Manta only and Manta & Fermikit yielded the best sensitivity and precision, respectively

TIDDIT

SV caller developed @scilifelab (J. Eisfeldt, F. Vezzi, D. Nilsson et al. submitted)

Uses discordant pairs, read depth & split reads

Includes database feature for filtering

Caller	Sensitivity	Precision	
CNVnator500	0.36	0.2	
CNVnator200	0.18	0.06	
Delly	0.91(0.85)	0.2(0.54)	
FermiKit	0.83(0.77)	0.58(0.65)	
TIDDIT	0.91(0.88)	0.67(0.73)	
Lumpy	0.92	0.32	
Manta	0.9(0.87)	0.66(0.72)	

Removing "dubious" regions

LCR: 2% of the genome | 60-90% of calling errors (Li 2014. doi: 10.1093/bioinformatics/btu356)

Lumpy exclusion regions: Abnormal coverage in Illumina sequencing, probably assembly errors in b37 (Layer 2014. **DOI:** 10.1186/gb-2014-15-6-r84).

Moving to b38 will alleviate some problems

Team Lean

The owner

The coder

The reviewer

The leader

"Adjusting accordingly"

"Maximizing the amount of work NOT done"

Implementation

Best practices workflow ported from make to nextflow

Nextflow:

Data driven pipelines

Portable, parallel, reproducible

Other SciLifeLab nextflow projects:

https://github.com/SciLifeLab/CAW: somatic variation analysis

https://github.com/ewels/NGI-RNAseq: RNA seq best practice

Downstream work

Genotyping SVs for cohorts

Genome strip

Clustering

Remove benign events

Genotyping based on function

Functional annotation and visualization

SNPEff, vep, iAnnotateSV, svviz ...

http://svviz.readthedocs.io/en/latest/