Online learning in repeated matrix games

Yoav Freund

January 22, 2018

Outline

Repeated Matrix Games

Fictitious play

Strategy using Hedge

The basic analysis

Proof of minmax theorem

Approximately solving games Fixed Learning rate Variable learning rate

Zero sum games in matrix form

- Game between two players.
- Defined by n x m matrix M
- ▶ Row player chooses $i \in \{1, ..., n\}$
- ▶ Column player chooses $j \in \{1, ..., m\}$
- ▶ Row player gains $M(i,j) \in [0,1]$
- Column player looses M(i, j)
- Game repeated many times.

Pure vs. mixed strategies

- Choosing a single action = pure strategy.
- Choosing a Distribution over actions = mixed strategy.
- Row player chooses dist. over rows P
- Column player chooses dist. over columns Q
- ► Row player gains M(P, Q).
- ► Column player looses M(P, Q).

Mixed strategies in matrix notation

$$(A \times B)_{12} = \sum_{1}^{4} a_{1r}b_{r2} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42}$$

 \mathbf{Q} is a column vector. \mathbf{P}^T is a row vector.

$$\mathbf{M}(\mathbf{P}, \mathbf{Q}) = \mathbf{P}^T \mathbf{M} \mathbf{Q} = \sum_{i=1}^n \sum_{j=1}^m \mathbf{P}(i) \mathbf{M}(i, j) \mathbf{Q}(j)$$

The minmax Theorem

When using pure strategies, second player has an advantage.

John von Neumann, 1928.

$$\min_{\boldsymbol{P}} \max_{\boldsymbol{Q}} \boldsymbol{M}(\boldsymbol{P}, \boldsymbol{Q}) = \max_{\boldsymbol{Q}} \min_{\boldsymbol{P}} \boldsymbol{M}(\boldsymbol{P}, \boldsymbol{Q})$$

In words: for mixed strategies, choosing second gives no advantage.

Minmax is weaker than diminishing regret

- ► The minmax theorem proves the existence of an Equilibrium.
- Learning guarantees no regret with respect to the past.
- If all sides use learning, then game will converge to minmax equilibrium.
- If opponent is not optimally adversarial (limited by knowledge, computationa power...) then learning gives better performance than min-max.
- Our goal is to minimize regret.

Fictitious play

- Choose the best action with respect to the sum of past loss vectors.
- Might not converge to optimal mixed strategy.
- Consider playing the matching coins game against an adversary that alternates HTTHHTTHHTTHH....

Randomized Fictitious play

- Choose the best action with respect to the sum of past loss vectors plus noise.
- Adding noise allows us to choose responses that are slightly worse than best response.
- Hannan 1957 Randomized ficticonverge to regret minimizing strategy.

The basic algorithm

Choose an initial distribution P₁

$$\mathbf{P}_{t+1}(i) = \mathbf{P}_t(i) \frac{e^{-\eta \mathbf{M}(i,\mathbf{Q}_t)}}{Z_t}$$

- Where $Z_t = \sum_{i=1}^n \mathbf{P}_t(i)e^{-\eta \mathbf{M}(i,\mathbf{Q}_t)}$
- $\eta > 0$ is the learning rate.

Generalized regret bound

Regret relative to the best pure strategy i

$$\sum_{t=1}^{T} \mathbf{M}(\mathbf{P}_t, \mathbf{Q}_t) \leq \left(\frac{1}{1 - e^{-\eta}}\right) \ \min_i \left[\eta \ \sum_{t=1}^{T} \mathbf{M}(i, \mathbf{Q}_t) - \ln \mathbf{P}_1(i) \right]$$

regret with respect the the best mixed strategy P:

$$\sum_{t=1}^{T} \mathbf{M}(\mathbf{P}_t, \mathbf{Q}_t) \leq \left(\frac{1}{1 - e^{-\eta}}\right) \min_{\mathbf{P}} \left[\eta \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}, \mathbf{Q}_t) + \text{RE}\left(\mathbf{P} \parallel \mathbf{P}_1\right) \right]$$

Where

RE
$$(1\mathbf{P} \parallel \mathbf{Q}) \doteq \sum_{i=1}^{n} \mathbf{P}(i) \ln \frac{\mathbf{P}(i)}{\mathbf{Q}(i)}$$

Main Theorem

- For any game matrix M.
- Any sequence of mixed strat. Q₁,...,Q_T
- ► The sequence $P_1, ..., P_T$ produced by basic alg using $\eta > 0$ satisfies

$$\sum_{t=1}^{T} \mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t}) \leq \left(\frac{1}{1 - e^{-\eta}}\right) \min_{\mathbf{P}} \left[\eta \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}, \mathbf{Q}_{t}) + \text{RE}\left(\mathbf{P} \parallel \mathbf{P}_{1}\right) \right]$$

Corollary

- ▶ Setting $\eta = \ln\left(1 + \sqrt{\frac{2 \ln n}{T}}\right)$
- the average per-trial loss is

$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}_t, \mathbf{Q}_t) \leq \min_{\mathbf{P}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}, \mathbf{Q}_t) + \Delta_{T,n}$$

Where

$$\Delta_{T,n} = \sqrt{\frac{2 \ln n}{T}} + \frac{\ln n}{T} = O\left(\sqrt{\frac{\ln n}{T}}\right).$$

Main Lemma

On any iteration t

For any mixed strategy P

$$\mathrm{RE}\left(\tilde{\boldsymbol{\mathsf{P}}} \ \| \ \boldsymbol{\mathsf{P}}_{t+1}\right) - \mathrm{RE}\left(\tilde{\boldsymbol{\mathsf{P}}} \ \| \ \boldsymbol{\mathsf{P}}_{t}\right) \leq \eta \boldsymbol{\mathsf{M}}(\tilde{\boldsymbol{\mathsf{P}}}, \boldsymbol{\mathsf{Q}}_{t}) - (1 - e^{-\eta}) \boldsymbol{\mathsf{M}}(\boldsymbol{\mathsf{P}}_{t}, \boldsymbol{\mathsf{Q}}_{t})$$

Visual intuition

$$\operatorname{RE}\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t+1}\right) - \operatorname{RE}\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t}\right) \leq \eta \mathbf{M}(\tilde{\mathbf{P}}, \mathbf{Q}_{t}) - (1 - e^{-\eta})\mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t})$$

Proof of Lemma (1)

$$RE\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t+1}\right) - RE\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t}\right)$$

$$= \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \ln \frac{\tilde{\mathbf{P}}(i)}{\mathbf{P}_{t+1}(i)} - \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \ln \frac{\tilde{\mathbf{P}}(i)}{\mathbf{P}_{t}(i)}$$

$$= \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \ln \frac{\mathbf{P}_{t}(i)}{\mathbf{P}_{t+1}(i)}$$

$$= \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \ln \frac{Z_{t}}{e^{\eta \mathbf{M}(i, \mathbf{Q}_{t})}}$$

Proof of Lemma (2)

$$= \eta \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \mathbf{M}(i, \mathbf{Q}_{t}) + \ln Z_{t}$$

$$\leq \eta \mathbf{M}(\tilde{\mathbf{P}}, \mathbf{Q}_{t}) + \ln \left[\sum_{i=1}^{n} \mathbf{P}_{t}(i) \left(1 - (1 - e^{-\eta}) \mathbf{M}(i, \mathbf{Q}_{t}) \right) \right]$$

$$= \eta \mathbf{M}(\tilde{\mathbf{P}}, \mathbf{Q}_{t}) + \ln \left(1 - (1 - e^{-\eta}) \mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t}) \right)$$

$$\leq \eta \mathbf{M}(\tilde{\mathbf{P}}, \mathbf{Q}_{t}) + (1 - e^{-\eta}) \mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t})$$

The minmax Theorem

John von Neumann, 1928.

$$\min_{\textbf{P}} \max_{\textbf{Q}} \textbf{M}(\textbf{P},\textbf{Q}) = \max_{\textbf{Q}} \min_{\textbf{P}} \textbf{M}(\textbf{P},\textbf{Q})$$

In words: for mixed strategies, choosing second gives no advantage.

Proving minmax Theorem using online learning (1)

Row player chooses \mathbf{P}_t using learning alg. Column player chooses \mathbf{Q}_t after row player so that $\mathbf{Q}_t = \arg\max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}_t, \mathbf{Q})$ Let $\overline{\mathbf{P}} \doteq \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_t$ and $\overline{\mathbf{Q}} \doteq \frac{1}{T} \sum_{t=1}^{T} \mathbf{Q}_t$

$$\begin{aligned} \min_{\mathbf{P}} \max_{\mathbf{Q}} \mathbf{P}^{\mathrm{T}} \mathbf{M} \mathbf{Q} &\leq \max_{\mathbf{Q}} \overline{\mathbf{P}}^{\mathrm{T}} \mathbf{M} \mathbf{Q} \\ &= \max_{\mathbf{Q}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{\mathrm{T}} \mathbf{M} \mathbf{Q} \quad \text{by definition of } \overline{\mathbf{P}} \\ &\leq \frac{1}{T} \sum_{t=1}^{T} \max_{\mathbf{Q}} \mathbf{P}_{t}^{\mathrm{T}} \mathbf{M} \mathbf{Q} \end{aligned}$$

Proving minmax Theorem using online learning (2)

$$= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{\mathrm{T}} \mathbf{M} \mathbf{Q}_{t} \qquad \text{by definition of } \mathbf{Q}_{t}$$

$$\leq \min_{\mathbf{P}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}^{\mathrm{T}} \mathbf{M} \mathbf{Q}_{t} + \Delta_{T,n} \quad \text{by the Corollary}$$

$$= \min_{\mathbf{P}} \mathbf{P}^{\mathrm{T}} \mathbf{M} \overline{\mathbf{Q}} + \Delta_{T,n} \quad \text{by definition of } \overline{\mathbf{Q}}$$

$$\leq \max_{\mathbf{Q}} \min_{\mathbf{P}} \mathbf{P}^{\mathrm{T}} \mathbf{M} \mathbf{Q} + \Delta_{T,n}.$$

but $\Delta_{T,n}$ can be set arbitrarily small.

Solving a game

- to solve a game is to find the min-max mixed strategiesP, Q
- ▶ Suppose that $\mathbf{Hedge}(\eta)$ is playing $\mathbf{P_1}$, $\mathbf{P_2}$, against a worst case adversary that playes second: adversary that plays $\mathbf{Q_1}$, $\mathbf{Q_2}$,... such that $\mathbf{Q_t} = \arg\max_{\mathbf{Q}} \mathbf{M}(\mathbf{P_t}, \mathbf{Q})$.
- Without loss of generality Q_t is a pure strategy (prob. 1 on a single action).
- ▶ Let $\overline{\mathbf{P}} \doteq \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_t$, $\overline{\mathbf{Q}} \doteq \frac{1}{T} \sum_{t=1}^{T} \mathbf{Q}_t$

Fixed Learning rate

Using average distributions

Von Neumann Min/Max Thm:
v = min_P max_Q M(P, Q) = max_Q min_P M(P, Q)

Fixing
$$T$$
 and letting $\eta = \ln \left(1 + \sqrt{\frac{2 \ln n}{T}} \right)$

Two immediate corrolaries of the proof of the min/max Thm:

$$\max_{\mathbf{Q}} \mathbf{M}(\overline{\mathbf{P}}, \mathbf{Q}) \leq v + \Delta_{T,n}. \min_{\mathbf{P}} \mathbf{M}(\mathbf{P}, \overline{\mathbf{Q}}) \geq v - \Delta_{T,n}$$

Using the final row distribution vMW

- Can we make the row distribution converge?
- Suppose we have an upper bound on the value of the game $u \ge v$
- ▶ Good Enough: If $M(P_t, Q_t) \le u$ the row player does nothing $P_{t+1} = P_t$
- ▶ Learn: If $M(P_t, Q_t) > u$ set

$$\eta = \ln \frac{(1-u)\mathbf{M}(\mathbf{P}_t, \mathbf{Q}_t)}{u(1-\mathbf{M}(\mathbf{P}_t, \mathbf{Q}_t))}.$$

Bound for vMW

- Let $\tilde{\mathbf{P}}$ be any mixed strategy for the rows such that $\max_{\mathbf{Q}} \mathbf{M}(\tilde{\mathbf{P}}, \mathbf{Q}) \leq u$
- ▶ Then on any iteration of algorithm vMW in which $M(P_t, Q_t) \ge u$ the relative entropy between \tilde{P} and P_{t+1} satisfies

$$\operatorname{RE}\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t+1}\right) \leq \operatorname{RE}\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t}\right) - \operatorname{RE}\left(u \parallel \mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t})\right)$$
.