An Elementary Construction of Constant-Degree Expanders

Noga Alon, Oded Schwartz & Asaf Shapira

CS6845 presentation by **Amit Roy**

Department of Computer Science & Engineering Indian Institute of Technology - Madras

Definition

A d-regular graph G(V,E) is δ -edge expander if $\forall S\subseteq V$ of atmost size $\frac{|V|}{2}$,

$$e(S, \overline{S}) \ge \delta d|S|$$

Definition

We will say that a graph is $[n, d, \delta]$ -expander if it is an n-vertex d-regular δ -expander.

Motivation

Why do we need constant degree expanders?

Motivation

If we have constant -sized object then we can freely use it without having to find a nice description for it. Also we can always find constant size in constant time by brute force approach.

Main Result

There exists a fixed $\delta>0$ such that for any integer $q=2^t$ and for any $\frac{q^4}{40}\leq r\leq \frac{q^4}{2}$, there is a polynomial time construtible $[q^{4r+12},12,\delta]-expander.$

Construction

Theorem[Replacement Product]

If E_1 is an $[n, D, \delta_1]$ -expander and E_2 is an $[D, d, \delta_2]$ -expander then $E_1 \circ E_2$ is $[nD, 2d, \frac{1}{80}\delta_1^2\delta_2]$ -expander

Construction

- Take graph E_1 as $[q^2, 3, \delta]$ -expander (By enumerating all possible graphs)
- 2 Take graph E_2 as $[q^6, q^2, \frac{1}{4}]$ -expander
- **3** Obtain $E' = E_2 \circ E_1$ which is $[q^8, 6, \delta']$ -expander
- Take E_3 as $[q^{4r+4}, q^8, \frac{1}{4}]$ -expander
- **5** Finally obtain $E_4 = E_3 \circ E'$ which will be $[q^{4r+12}, 12, \delta']$ -expander

Definition

Let G be a D-regular D-edge colorable graph on n-vertices and H be a d-regular graph on D-vertices. Replace every vertex v_i of G with a cluster of D vertices , which we denote $C_i = \{v_1^i, v_2^i, \dots v_D^i\}$. For $1 \leq i \leq n$, we will put an edge between (v_p^i, v_q^i) , iff $(p,q) \in E(H)$. For every $(p,q) \in E(G)$, which is colored t, we will put d parallel edges between (v_p^i, v_q^i)

Claim : The resultant graph $G \circ H$ is 2d-regular on nD-vertices

Example

$$H[3, 2, \delta_2]$$

Theorem

If E_1 is an $[n, D, \delta_1]$ -expander and E_2 is an $[D, d, \delta_2]$ -expander then $E_1 \circ E_2$ is $[nD, 2d, \frac{1}{80}\delta_1^2\delta_2]$ -expander

Proof Sketch: Take a set of vertices $X \subseteq V$ of atmost size $\frac{nD}{2}$ and show that $e(X, \overline{X})$ has either many edges within the same cluster C_i or between them.

Proof: Now we can see all the vertices as n-clusters of vertices $C_1, C_2 \dots C_n$ each of size D.

Goal:
$$e(X, \overline{X}) \ge \frac{1}{80} \delta_1^2 \delta_2.2d.|X|$$

Definition Let $X \subseteq V$ of size atmost $\frac{nD}{2}$

$$X_{i} = C_{i} \cap X$$

$$I' = \{i \mid |X_{i}| \leq (1 - \frac{1}{4}\delta_{1})D\}$$

$$I'' = \{i \mid |X_{i}| > (1 - \frac{1}{4}\delta_{1})D\}$$

$$X' = \bigcup_{i \in I'} X_{i}$$

$$X'' = \bigcup_{i \in I''} X_{i}$$

- Consider an X_i , $i \in I'$
- Since E_2 is an δ_2 expander , we have

$$e(X, C_i \setminus X_i) \ge \frac{1}{4} \delta_1 \delta_2 d|X_i|$$

• $e(X', \overline{X}) \geq \frac{1}{4}\delta_1\delta_2 d|X'|$

Observation

If $|X'| \ge \frac{1}{10}\delta_1|X|$ then $e(X,\overline{X}) \ge \frac{1}{80}\delta_1^2\delta_2.2d.|X|$ and we are done.

Suppose

$$|X'| < \frac{1}{10}\delta_1 X$$

then we will show that there are enough number of edges between the clusters.

Proof Contd..

- We have $|X''| \ge (1 \frac{1}{10}\delta_1)|X|$
- $|X''| \leq |X| \leq \frac{1}{2}nD$
- $|I''| \leq \frac{2}{3}n$
- There is a set of edges $|M| \geq \frac{1}{2} \delta_1 D |I''|$ connecting vertices from I'' to I'

Proof Contd....

- The corresponding $d|M| \ge \frac{1}{2}\delta_1 dD|I''|$ edges connect vertices from $\bigcup_{i \in I''} C_i$ with vertices of $\bigcup_{i \in I'} C_i$
- At most $\frac{1}{4}\delta_1 dD|I''|$ of d|M| many edges connect $C_i \setminus X_i$ with vertices of $\bigcup_{i \in I'} C_i$. Why??
- $Size(|C_i \setminus X_i|) \ge \frac{1}{4}\delta_1 D$ (times d.|I''|)-many edges
- Hence at least $\frac{1}{4}\delta_1 dD|I''|$ of d|M| edges connect $\bigcup_{i\in I''} X_i$ to $\bigcup_{i\in I'} C_i$

Proof Contd...

- No of d|M| edges that connects vertices from $\bigcup_{i \in I''} C_i$ with vertices of X' is clearly at most d|X'|
- Since $|X'| \leq \frac{1}{10}\delta_1|X| \leq \frac{1}{6}\delta_1 D|I''|$, there are $\frac{1}{6}\delta_1 dD|I''|$ edges from $\bigcup_{i \in I''} C_i$ to X'
- $\frac{1}{4}\delta_1 dD|I''| \frac{1}{6}\delta_1 dD|I''| = \frac{1}{12}\delta_1 dD|I''|$ edges connect vertices of $\bigcup_{i \in I''} X_i$ with vertices of $\bigcup_{i \in I'} C_i \setminus X_i$.

Proof Contd..

• AS $|I''| \ge \frac{|X''|}{D}$ and $|X''| \ge \frac{1}{2}|X|$, we have at least $\frac{1}{48}\delta_1 2d|X|$ edges as required.

Conclusion

We have constructed a constant degree expanders by applying replacement product twice.

THANK YOU ALL

