Math 244

PSET 1

JAN 24 2025

Contents

Problem 5	2
Problem 6	2
Problem 2	3
Problem 2	3
Problem 6	3

Section 1.2 Problem 5

Ouestion: Section 1.2 Problem 5

Is a "cancellation" possible for the Cartesion Product? That is, if $X \times Y = X \times Z$ holds for some sets, X, Y, and Z, does it follow that Y = Z?

Remark What is the Cartesian Product?

The Cartesian product of X and Y is the set of all ordered pairs of the form (x, y), where $x \in X$ and $y \in Y$

y ∈ Y.

Remark Asnwer

The "cancellation" is not possible for the Cartesian Product unless it is stated that X is not an empty set. For if X is an empty set, then the Cartesian Product of X and another set would always be the empty set. In this scenario, Y and Z could be different and their Cartesian Products with X would still be the empty set.

Section 1.2 Problem 6

Ouestion: Section 1.2 Problem 6

Prove that for any two sets A, B we have

$$(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$$

Section 1.3 Problem 2

Question: Section 1.3 Problem 2

The numbers $F_0, F_1, F_2, F_3, \ldots$ are defined as follows:

$$F_0 = 0, F_1 = 1, F_{n+2} = F_{n+1} + F_n$$
for $n = 0, 1, 2, ...$

Prove that for any $n \geq 0$ we have $F_n \leq \left(\frac{1+\sqrt{5}}{2}\right)^{n-1}$

1.4 Problem 2

Question: Section 1.4 Problem 2

Find an example of:

- (a) A one-to-one function $f: \mathbb{N} \to \mathbb{N}$ that is not onto.
- (b) A function $f: \mathbb{N} \to \mathbb{N}$ that is onto but not one-to-one.

1.4 Problem 6

Question

Prove that the following two statements about a function $g_1:Z\to X$ and $g_2:Z\to X$ the composed functions $f\circ g_1$ and $f\circ g_2$ are also distinct.