

一背影

二 獎鉅降鉤概念与性质

三 盛 別

到 小结

一、背景

1、数 在数的运算中,当数 $\alpha \neq 0$ 时,有 $aa^{-1} = a^{-1}a = 1$,

则 a^{-1} 和 的倒数, (或称为 a的逆);

2、矩阵 在矩阵的运算中,单位阵 E相当于数的

乘法运算中的1,那么,对于矩阵A,如果存在一

个矩阵
$$A^{-1}$$
, $AA^{-1} = A^{-1}A = E$,

则矩阵 A 称为的可逆矩阵,

 A^{-1} 称为A的逆阵.

二、逆矩阵的概念和性质

1、定义

对于 你矩阵 A 如果有一个 阶矩阵 AB = BA = E,

则称矩阵A是可逆的, 并把矩阵 脉为 的逆矩阵.

A 的逆矩阵记作 A^{-1} .

例
$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, B = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$AB = BA = E$$
,

:B是A的逆矩阵.

说明 若 是可逆矩阵,则 的逆矩阵是唯一的.

$$AB = BA = E$$
, $AC = CA = E$,
于是 $B = EB = (CA)B = C(AB) = CE = C$
所以 A 的逆矩阵是唯一的,即 $B = C = A^{-1}$.

例1 设
$$A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$$
,求 **的**逆.

$$\mathbf{P} \quad \mathbf{P} \quad$$

定理1 若矩阵 A可逆,则 $|A| \neq 0$.

若矩阵 A可逆,则即有 A^{-1} ,使得 $AA^{-1} = E$. 两边求行列式,有 $|A| \cdot |A^{-1}| = |E| = 1$, $|A| \neq 0$.

定理2 矩阵 A可逆的充要条件是 $|A| \neq \mathbf{U}$

 $A^{-1} = \frac{1}{|A|}A^*$,其中 A^* 为矩阵A 的伴随矩阵. 因为矩阵与其伴随矩阵有 $AA^* = A^*A = |A|E$

又因为 $|A| \neq 0$,故有 $A\left(\frac{1}{|A|}A^*\right) = \left(\frac{1}{|A|}A^*\right)A = E$ 所以,按逆矩阵的定义,即有 $A^{-1} = \frac{1}{|A|}A^*$.

推论 若 AB = E 或 BA = E , 则 $B = A^{-1}$

证明 只证 AB = E 时,

易知
$$|A| \cdot |B| = |E| = 1 \Rightarrow |A| \neq 0 \Rightarrow A^{-1} \exists$$

于是
$$B = EB = (A^{-1}A)B = A^{-1}(AB) = A^{-1}E = A^{-1}$$
.

2、奇异矩阵与非奇异矩阵

当|A|=时, 称为奇异矩阵;

当 | A | 和 , 称为非奇异矩阵.

3、运算规律 (设 A, 均是 阶可逆方阵)

1) 若
$$A^{-1}$$
 $\exists \Rightarrow (A^{-1})^{-1}$ $\exists , \quad \mathbf{L}(A^{-1})^{-1} = A.$

2) 若
$$A^{-1}$$
 ∃, $\lambda \neq 0 \Rightarrow (\lambda A)^{-1}$ ∃,且 $(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$.

3) 若
$$A^{-1}$$
 ∃ $,B^{-1}$ ∃ $,$ 且 $A,$ 同阶 $,$ ⇒ $(AB)^{-1}$ ∃ $,$ 且 $(AB)^{-1}$ = $B^{-1}A^{-1}$.

证明
$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AEA^{-1} = AA^{-1} = E$$

由推论,即有 $(AB)^{-1} = B^{-1}A^{-1}$.

推广
$$(A_1A_2\cdots A_n)^{-1}=A_n^{-1}\cdots A_2^{-1}A_1^{-1}$$
.

4) 若
$$A^{-1}$$
 $\exists \Rightarrow (A^T)^{-1}$ $\exists , \mathbf{L}(A^T)^{-1} = (A^{-1})^T$.

证明 $: A^T(A^{-1})^T = (A^{-1}A)^T = E^T = E$

$$\therefore \left(A^{T}\right)^{-1} = \left(A^{-1}\right)^{T}.$$

5) 若
$$A^{-1}$$
 \exists $\Rightarrow |A^{-1}| = |A|^{-1}$

$$:: AA^{-1} = E : |A||A^{-1}| = 1, \Rightarrow |A^{-1}| = |A|^{-1}.$$

6) 若
$$A^{-1}$$
 \exists , \Rightarrow $\left(A^*\right)^{-1}$ \exists , 且 $\left(A^*\right)^{-1} = \left(A^{-1}\right)^* = \frac{A}{|A|}$.

证明 因为
$$A^{-1} = \frac{1}{|A|}A^* \Rightarrow A^* = |A|A^{-1}$$

所以
$$(A^*)^{-1} = (|A|A^{-1})^{-1} \Rightarrow (A^*)^{-1} = \frac{A}{|A|}$$

$$\therefore \left(A^*\right)^{-1} = \left(A^{-1}\right)^* = \frac{A}{|A|}.$$

7) 其它的一些公式

$$AA^* = A^*A = |A|E$$

$$|A^*| = |A|^{n-1}$$

$$(A^*)^* = |A|^{n-2}A$$

$$(AB)^* = B^*A^*$$

$$A^* = |A|A^{-1}$$
 $A = |A|(A^*)^{-1}$.
 $(kA)^* = k^{n-1}|A|A^{-1} = k^{n-1}A^*$

四、应用

例2 求下列矩阵的逆,其中

$$A = \begin{pmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & & a_n \end{pmatrix}, B = \begin{pmatrix} & & & a_1 \\ & & a_2 & \\ & & & \\ a_n & & & \end{pmatrix}, \left(\prod a_i \neq 0\right)$$

解1)
$$: |A| = \prod a_i \neq 0$$
 $: A^{-1}$ \exists

解2)
$$: |B| = (-1)^{\frac{n(n-1)}{2}} \prod a_i \neq 0$$
 $: B^{-1} \exists$

依矩阵的逆的定义,必有 $BB^{-1} = B^{-1}B = E$

$$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

例 3 计算 $(4E+A)^T (4E-A)^{-1} (16E-A^2)$ 的行列式.

其中
$$A = \begin{pmatrix} 1 & 0 & 0 \\ -1 & -2 & 0 \\ 3 & 0 & 2 \end{pmatrix}$$
.

$$\begin{aligned}
& | (4E+A)^T (4E-A)^{-1} (16E-A^2) | \\
&= | (4E+A)^T (4E-A)^{-1} (4E-A)(4E+A) | \\
&= | (4E+A)^T E (4E+A) | = | (4E+A)^T | | (4E+A) | \\
&= | 4E+A |^2 = \begin{vmatrix} 5 & 0 & 0 \\ -1 & 2 & 0 \\ 3 & 0 & 6 \end{vmatrix}^2 = 60^2 = 3600
\end{aligned}$$

例 4 设
$$A = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 4 \end{pmatrix}$$
, 且满足 $AX = A + 2X$, 求 X .

$$\pi A - 2E = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 1 & 2 \end{bmatrix} \quad \because |A - 2E| = -2$$

$$\overrightarrow{\text{fft}} A - 2E = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 1 & 2 \end{pmatrix} \quad \therefore |A - 2E| = -2 \neq 0 \\
\therefore (A - 2E)^{-1} \exists \\
X = (A - 2E)^{-1} A, \quad (A - 2E)^{-1} = \begin{pmatrix} -2 & 0 & 0 \\ -2 & 2 & 0 \\ 2 & -1 & -1 \end{pmatrix} \\
= \begin{pmatrix} -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -2 & 0 & 0 \\ -2 & 2 & 0 \\ 2 & -1 & -1 \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \\ 2 & -1 & 0 \\ -2 & 1 & 2 \end{pmatrix}$$

$$= \left(-\frac{1}{2}\right) \begin{vmatrix} -2 & 0 & 0 \\ -2 & 2 & 0 \\ 2 & -1 & -1 \end{vmatrix} \begin{vmatrix} 3 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 4 \end{vmatrix} = \begin{vmatrix} 3 & 0 & 0 \\ 2 & -1 & 0 \\ -2 & 1 & 2 \end{vmatrix}$$

例5 设 $A_{3\times 3}$, 其中 A^* 为矩阵A 的伴随矩阵. $|A| = \frac{1}{2}$

求
$$\left| \left(3A \right)^{-1} - 2A^* \right|$$
.

$$|(3A)^{-1}-2A^*|$$

$$= \left| 3^{-1}A^{-1} - 2|A|A^{-1} \right| = \left| -\frac{2}{3}A^{-1} \right| = \left(-\frac{2}{3} \right)^3 |A^{-1}| = -\frac{16}{27}$$

$$\begin{pmatrix} 1 & 4 \\ -1 & 2 \end{pmatrix} X \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 0 & -1 \end{pmatrix}$$

$$\begin{array}{c} \mathbf{H} \\ \mathbf$$

例7 设方阵 A 满足方程 $A^2-A-2E=0$, 证明 A, A + 2E 可逆,并求它们的逆矩阵.

证明 由 $A^2 - A - 2E = 0$, 得 A(A - E) = 2E

$$\Rightarrow A \overbrace{\frac{A-E}{2}} = E \Rightarrow |A| \left| \frac{A-E}{2} \right| = 1 \Rightarrow |A| \neq 0,$$

所以 A可逆. $\therefore A^{-1} = \frac{1}{2}(A - E).$

由 $A^2 - A - 2E = 0 \Rightarrow (A + 2E)(A - 3E) + 4E = 0$

$$\Rightarrow (A+2E) \left[-\frac{1}{4}(A-3E) \right] = E$$

$$\Rightarrow |A+2E| \left| -\frac{1}{4}(A-3E) \right| = 1 \Rightarrow |A+2E| \neq 0,$$

$$\Rightarrow |A+2E| -\frac{1}{4}(A-3E) = 1 \Rightarrow |A+2E| \neq 0$$

例8: 设
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 4 & 5 \end{bmatrix}$$
求 $(A^*)^{-1}, A^{-1}$

例9: 设A, B, A + B都为n阶可逆矩阵。证明: $A^{-1} + B^{-1}$ 也可逆, 并求其逆

i.EB:
$$(A^{-1} + B^{-1})[A(A+B)^{-1}B]$$

$$= A^{-1}A(A+B)^{-1}B + B^{-1}A(A+B)^{-1}B$$

$$= (A+B)^{-1}B + B^{-1}A(A+B)^{-1}B$$

$$= (E+B^{-1}A)[(A+B)^{-1}B]$$

$$= B^{-1}(B+A)(A+B)^{-1}B$$

= E

五、小结

逆矩阵的概念及运算性质.

逆矩阵 A存在 $\Leftrightarrow |A| \neq 0$.

逆矩阵的计算方法

定义法

利用公式 $A^{-1} = \frac{A^*}{|A|}$

初等变换法 (后面介绍)