

Spécialité : Data Scientist

PROJET 7:

IMPLÉMENTEZ UN MODÈLE DE SCORING

Soutenance de :

Fatoumata Binta DIALLO

CONTEXTE

Data Scientist au sein de "Prêt à depenser", société financière proposant des crédits à la consommation pour des personnes ayant peu ou pas du tout d'historique de prêt;

→ Problème de classification supervisée binaire à résoudre

Missions:

Construire u	ın modèle d	e scoring d	le prédiction	de la	probabilité	de	défaut
de paiement	d'un client	•					

☐ Développer un dashboard interactif pour l'aide à la prise de décision.

Données:

☐ Historiques des clients de la société financière disponible sur le lien suivant: https://www.kaggle.com/c/home-credit-default-risk/data

PLAN DE L'EXPOSÉ

I/ Description des données et méthodologie utilisée

II/versionnage des codes avec git/github

III / Présentation du tableau de bord et de son fonctionnement

IV/ Conclusion

I. DESCRIPTION DES DONNÉES ET MÉTHODOLOGIE UTILISÉE

DESCRIPTION DES DONNÉES

■ 10 fichiers .csv hébergés sur **Kaggle**

(https://www.kaggle.com/c/home-credit-default-risk/data)

→ Fichier d'entraînement : *variable cible "TARGET"

[0 pour client en règle1 sinon]

	files_stats - DataFrame								
	Indice	Taille	Nbre ligne	Nbre colonne	Nbre NaN	Pourcentage de NaN			
1	application_train.csv	37516342	307511	122	9152465	24.4			
	application_test.csv	5898024	48744	121	1404419	23.81			
	bureau.csv	29179276	1716428	17	3939947	13.5			
	bureau_balance.csv	81899775	27299925	3	0	0			
	credit_card_balance.csv	88327176	3840312	23	5877356	6.65			
	HomeCredit_columns_description.csv	876	219	4	133	15.18			
	installments_payments.csv	108843208	13605401	8	5810	0.01			
	POS_CASH_balance.csv	80010864	10001358	8	52158	0.07			
	previous_application.csv	61797918	1670214	37	11109336	17.98			
	sample_submission.csv	97488	48744	2	0	0			

- Contenu:
 - ◆ Informations générales sur le client (Age, sexe, statut familiale,..)
 - ◆ Informations relatives au crédit (crédit, annuité,..)

MÉTHODOLOGIE: FEATURE ENGINEERING

Travaux:

- Analyse succincte des données
- Prétraitement des données
 Kernel Kaggle (<u>LightGBM with Simple Features</u>)
 - → Bon score dans la compétition (1900)
 - → Feature engineering performant
 - → Codage de l'entraînement des données avec LightGM
- Traitement des valeurs manquantes
 - → Fichier finale: (307507, 608)

MÉTHODOLOGIE: ÉVALUATION DES MODÈLES

Analyse de la variable 'TARGET'

MÉTHODOLOGIE: ÉVALUATION DES MODÈLES

Échantillonnage des données :

80 % ~> training & **20** % ~> testing

Recherche du meilleur modèle :

- Métriques ROC_AUC & F1: RandomForest
- Métrique recall : Xgboost

MÉTHODOLOGIE: ÉVALUATION DES MODÈLES

Optimisation par l'adaptation des hyperparamètres :

II. VERSIONNING DES CODES AVEC Git/GitHub

VERSIONNING CODES AVEC 'Git/GitHub'

https://github.com/DIALLOFatoumataBinta/Projet 7 Openclassroom

□ Création compte sur GitHub : DIALLOFatoumataBinta
 □ Création du projet sur 'repositorie':Projet_7_Openclassroom
 □ Initialisation de Git (configuration d'identité) et du dépôt Git
 □ Indexer et commiter vos fichiers
 □ Envoie du commit sur le dépôt distant par commande ssh
 □ Création de plusieurs branches

III. PRÉSENTATION DU TABLEAU DE BORD ET DE SON FONCTIONNEMENT

TABLEAU DE BORD : OUTILS

API de prédiction du score

Tableau de bord du projet (dashboard)

IV. CONCLUSION

Travailler sur le projet 7 m'a permis :

- → d'étudier un problème de classification binaire et de créer un modèle de 'scoring'
- → de faire du versionning de code avec Git/GitHub
- → de comprendre le concept d'API et le déploiement de modèle
- → d'utiliser Flask et Streamlit pour créer une webb application (dashboard)

