1/88

SEQUENCE LISTING

<110> Lovejoy, David

Chewpoy, R.B.

Barsyte, Dalia

Rotzinger, Susan

<120> Tereuin C-Terminal Associated Peptides (TCAP)

<130> 2223-159

<150> US 60/376,879

<151> 2002-05-02

<150> US 60/377,231

<151> 2002-05-03

<150> US 60/424,016

<151> 2002-11-06

<160> 136

<170> PatentIn version 3.1

<210> 1

<211> 1490

<212> DNA

<213> Artificial Sequence

<220>

<223> Rainbow Trout Ten M3 carboxy termini'

<400> 1 tccatctcgg	gggtgcaaca	ggaagtgacc	cggcaagcca	aggctttcct	gtccttcgag	60
aggatgccgg	agatccagct	gagccgccgg	cgctccaacc	gggagaaacc	ctggctgtgg	120
ttcgccaccg	ccaagtctct	gatcggtaag	ggtgtcatgt	tggcggtgac	gcagggccgt	180
gtggtcacca	acgctctgaa	catcgccaac	gaggactgca	tcaaggtcgc	cgccgtcctc	240
aacaatgcgt	tctacctgga	ggacctgcac	ttcacggtgg	agggacgcga	cacgcactac	300
ttcatcaaga	ccagcctccc	ggagagcgac	ctgggagcgc	tgaggctgac	aagcgggagg	360
aagtcgctgg	agaacggaag	tcaacgtgac	tgtgtcccag	tccaccaccg	tggtgaacgg	420
cagaaccggc	gcttcgccga	cgtggagctg	cagtacggcg	ctctagcgct	ccacgtgcgc	480
tatggcatga	ctctggacga	ggagaaggcg	cgtgtgctgg	agcaggccag	gcagaaggcg	540
ttgtcgagtg	cctggtccag	ggagcaacaa	cgggtgaggg	agggggagga	gggggtgagg	600
ctgtggacgg	agggggagaa	gaggcagctg	ctgagcggga	ggaaggttct	gggctacgac	660
gggtactacg	tcctctccat	agagcagtac	cccgagctag	cagactccgc	taacaacatc	720
cagttcctca	ggcagagcga	aatagggaag	aggtaacaga	cagaatcctc	ggcactggcc	780
gccaaagaga	. ctaccccctc	caaatcctgc	ccccaacct	ccctcgcctc	ccccttttc	840
tctaaaaagg	gggagggtcc	aggctagtgc	tgtgtttagc	gccgactagc	tgaaacaaac	900
agtaaaatgt	: agaatatctt	aaactgaact	atacctaata	ctaccactgt	ggggcctgaa	960
aatcaaacaa	aacggctcca	actgacgcaa	atgtttgtcc	catgtgctat	: acagcgttga	1020
atggactgtg	gactctcttg	aaaagagaga	aaaaaaagtc	aaaactctcg	g gtttgtgaaa	1080
ggagaaaaa	a acgttttttt	: ttttttaaa	tagacttcct	gaatttgctt	tcggaaaaaa	1140
tattttaaaa	a agaaagaaga	aatgtgttta	a catacgcata	acactacaa	acgtctggac	1200
taatagaaga	a aaagccttct	ggtttctta	c acaggacaac	gtctataat	c tgattctaca	1260
tcctgacga	c tgacctttga	a ttgacctttg	g cgtactgaaa	a aaggtagtg	t tgttgttcgc	1320
agtaggacca	a tgggtctcca	a atggtggta	a ctagacagtt	aaaaccact	t gttgaaacca	1380
cttgcttgt	t cttctgctti	tctttccaa	a agggacaaaa	a cagctccca	c caagtgactt	1440
ctttaccaa	t actagatca	a agtgggacg	t tttgggctco	g tgccgaatt	С	1490

<210> 2

<211> 756

<212> DNA

3/88

<213> Artificial Sequence

<220>						
<223> Rai	nbow Trout	Ten M3 codir	ng sequence	of carboxy	termini of	Ten M3
<400> 2 tccatctcgg	gggtgcaaca	ggaagtgacc	cggcaagcca	aggctttcct	gtccttcgag	60
aggatgccgg	agatccagct	gagccgccgg	cgctccaacc	gggagaaacc	ctggctgtgg	120
ttcgccaccg	ccaagtctct	gatcggtaag	ggtgtcatgt	tggcggtgac	gcagggccgt	180
gtggtcacca	acgctctgaa	catcgccaac	gaggactgca	tcaaggtcgc	cgccgtcctc	240
aacaatgcgt	tctacctgga	a ggacctgcac	ttcacggtgg	agggacgcga	cacgcactac	300
		ggagagcgac				360
		g tcaacgtgac				
		a cgtggagctg				
		a ggagaaggcg				
		g ggagcaacaa				
		a gaggcagctg				
		t agagcagtac				
		a aatagggaag				756

<210> 3

<211> 251

<212> PRT

<213> Artificial Sequence

<220>

<223> Rainbow Trout Ten M3 carboxy termini of Ten M3

<400> 3

Ser Ile Ser Gly Val Gln Gln Glu Val Thr Arg Gln Ala Lys Ala Phe 1 5 10 15

Leu Ser Phe Glu Arg Met Pro Glu Ile Gln Leu Ser Arg Arg Arg Ser 20 25 30

- Asn Arg Glu Lys Pro Trp Leu Trp Phe Ala Thr Ala Lys Ser Leu Ile 35 40 45
- Gly Lys Gly Val Met Leu Ala Val Thr Gln Gly Arg Val Val Thr Asn 50 55 60
- Ala Leu Asn Ile Ala Asn Glu Asp Cys Ile Lys Val Ala Ala Val Leu 65 70 75 80
- Asn Asn Ala Phe Tyr Leu Glu Asp Leu His Phe Thr Val Glu Gly Arg 85 90 95
- Asp Thr His Tyr Phe Ile Lys Thr Ser Leu Pro Glu Ser Asp Leu Gly 100 105 110
- Ala Leu Arg Leu Thr Ser Gly Arg Lys Ser Leu Glu Asn Gly Val Asn 115 120 125
- Val Thr Val Ser Gln Ser Thr Thr Val Val Asn Gly Arg Thr Arg Arg 130 135 140
- Phe Ala Asp Val Glu Leu Gln Tyr Gly Ala Leu Ala Leu His Val Arg 145 150 155 160
- Tyr Gly Met Thr Leu Asp Glu Glu Lys Ala Arg Val Leu Glu Gln Ala 165 170 175
- Arg Gln Lys Ala Leu Ser Ser Ala Trp Ser Arg Glu Gln Gln Arg Val 180 185 190
- Arg Glu Gly Glu Gly Val Arg Leu Trp Thr Glu Gly Glu Lys Arg 195 200 205
- Gln Leu Leu Ser Gly Arg Lys Val Leu Gly Tyr Asp Gly Tyr Tyr Val 210 215 220
- Leu Ser Ile Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile 225 230 235 240
- Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg 245 250

5/88

<211> 252

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse Ten M1

<400> 4

Met Ile Leu Gly Ile Gln Cys Glu Leu Gln Lys Gln Leu Arg Asn Phe 1 5 10 15

Ile Ser Leu Asp Gln Leu Pro Met Thr Pro Gln Tyr Asn Glu Gly Arg 20 25 30

Cys Leu Glu Gly Gly Lys Gln Pro Arg Phe Ala Ala Val Pro Ser Val 35 40 45

Phe Gly Lys Gly Ile Lys Phe Ala Ile Lys Glu Gly Ile Val Thr Ala 50 55 60

Asp Ile Ile Gly Val Ala Asn Glu Asp Ser Arg Arg Leu Ala Ala Ile 65 70 75 80

Leu Asn Asn Ala His Tyr Leu Glu Asn Leu His Phe Thr Ile Glu Gly 85 90 95

Arg Asp Thr His Tyr Phe Ile Lys Leu Gly Ser Leu Glu Glu Asp Leu 100 105 110

Val Leu Ile Gly Asn Thr Gly Gly Arg Arg Ile Leu Glu Asn Gly Val 115 120 125

Asn Val Thr Val Ser Gln Met Thr Ser Val Leu Asn Gly Arg Thr Arg 130 135 140

Arg Phe Ala Asp Ile Gln Leu Gln His Gly Ala Leu Cys Phe Asn Ile 145 150 155 160

Arg Tyr Gly Thr Thr Val Glu Glu Glu Lys Asn His Val Leu Glu Met 165 170 175

Ala Arg Gln Arg Ala Val Ala Gln Ala Trp Thr Gln Glu Gln Arg Arg

6/88

180 185 190

Leu Gln Glu Gly Glu Gly Thr Arg Val Trp Thr Glu Gly Glu Lys 195 200 205

Gln Gln Leu Leu Gly Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe 210 215 220

Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn 225 230 235 240

Ile His Phe Met Arg Gln Ser Glu Ile Gly Arg Arg 245 250

<210> 5

<211> 253

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse Ten M2

<400> 5

Leu Ile Thr Gly Val Gln Gln Thr Thr Glu Arg His Asn Gln Ala Phe 1 5 10 15

Leu Ala Leu Glu Gly Gln Val Ile Thr Lys Lys Leu His Ala Ser Ile 20 25 30

Arg Glu Lys Ala Gly His Trp Phe Ala Thr Thr Thr Pro Ile Ile Gly 35 40 45

Lys Gly Ile Met Phe Ala Ile Lys Glu Gly Arg Val Thr Thr Gly Val 50 60

Ser Ser Ile Ala Ser Glu Asp Ser Arg Lys Val Ala Ser Val Leu Asn 65 70 75 80

Asn Ala Tyr Tyr Leu Asp Lys Met His Tyr Ser Ile Glu Gly Lys Asp 85 90 95

7/88

Thr His Tyr Phe Val Lys Ile Gly Ala Ala Asp Gly Asp Leu Val Thr 100 105 110

Leu Gly Thr Thr Ile Gly Arg Lys Val Leu Glu Ser Gly Val Asn Val 115 120 125

Thr Val Ser Gln Pro Thr Leu Leu Val Asn Gly Arg Thr Arg Arg Phe 130 135 140

Thr Asn Ile Glu Phe Gln Tyr Ser Thr Leu Leu Leu Ser Ile Arg Tyr 145 150 155 160

Gly Leu Thr Pro Asp Thr Leu Asp Glu Glu Lys Ala Arg Val Leu Asp 165 170 175

Gln Ala Gly Gln Arg Ala Leu Gly Thr Ala Trp Ala Lys Glu Gln Gln 180 185 190

Lys Ala Arg Asp Gly Arg Glu Gly Ser Arg Leu Trp Thr Glu Gly Glu
195 200 205

Lys Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr 210 215 220

Tyr Val Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser 225 230 235 240

Asn Ile Gln Phe Leu Arg Gln Asn Glu Met Gly Lys Arg 245 250

<210> 6

<211> 251

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse Ten M3

<400> 6

Pro Ile Phe Gly Val Gln Gln Gln Val Ala Arg Gln Ala Lys Ala Phe 1 5 10 15

PCT/CA03/00622 WO 03/093305

8/88

Leu	Ser	Leu	Gly 20	Lys	Met	Ala	Glu	Val 25	Gln	Val	Ser	Arg	Arg 30	Lys	Ala
Gly	Ala	Glu 35	Gln	Ser	Trp	Leu	Trp 40	Phe	Ala	Thr	Val	Lys 45	Ser	Leu	Ile
Gly	Lys 50	Gly	Val	Met	Leu	Ala 55	Val	Ser	Gln	Gly	Arg 60	Val	Gln	Thr	Asn
Val 65	Leu	Asn	Ile	Ala	Asn 70	Glu	Asp	Cys	Ile	Lys 75	Val	Ala	Ala	Val	Leu 80
Asn	Asn	Ala	Phe	Туг 85	Leu	Glu	Asn	Leu	His 90	Phe	Thr	Ile	Glu	Gly 95	Lys
Asp	Thr	His	Tyr 100	Phe	Ile	Lys	Thr	Thr 105	Thr	Pro	Glu	Ser	Asp 110	Leu	Gly
Thr	Leu	Arg 115		Thr	Ser	Gly	Arg 120	Lys	Ala	Leu	Glu	Asn 125	Gly	Ile	Asn
Val	Thr 130		Ser	Gln	Ser	Thr 135		Val	Val	Asn	Gly 140	Arg	Thr	Arg	Arg
Phe 145		Asp	Val	Glu	Met 150		Phe	Gly	Ala	. Leu 155	Ala	Leu	His	Val	Arg 160
Тух	Gly	Met	: Thr	Leu 165		Glu	Glu	Lys	Ala 170	Arg	, Ile	Leu	Glu	Gln 175	Ala
Arg	g Glr	ı Arg	7 Ala 180		Ala	Arg	Ala	Trp 185	Ala	a Arg	g Glu	Glr	190	a Arg	val
Arg	J As <u>r</u>	Gl _y 19		ı Glu	Gly	/ Ala	Arg 200	Leu)	Tr	Thr	c Glu	Gl ₃ 205	y Glu S	ı Lys	arg
Glr	n Let 21		ı Sei	c Ala	a Gly	7 Lys 215	s Val	. Glr	ı Gly	у Туз	Asp 220	o Gly	у Туз	: Туз	Val
Le	ı Se:	r Va	l Gl	u Glr	туз	r Pro	o Glu	ı Leı	ı Ala	a Ası	o Sei	c Ala	a Ası	n Ası	n Ile 240

235

Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg 245

230

225

9/88

<210> 7

<211> 243

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse Ten M4

<400> 7

Ser Ile Leu Gly Val Gln Cys Glu Val Gln Lys Gln Leu Lys Ala Phe 1 5 10 15

Val Thr Leu Glu Arg Phe Asp Gln Leu Tyr Gly Ser Thr Ile Thr Ser 20 25 30

Cys Gln Gln Ala Pro Glu Thr Lys Lys Phe Ala Ser Ser Gly Ser Ile 35 40 45

Phe Gly Lys Gly Val Lys Phe Ala Leu Lys Asp Gly Arg Val Thr Thr 50 55 60

Asp Ile Ile Ser Val Ala Asn Glu Asp Gly Arg Arg Ile Ala Ala Ile 65 70 75 80

Leu Asn Asn Ala His Tyr Leu Glu Asn Leu His Phe Thr Ile Asp Gly 85 90 95

Val Asp Thr His Tyr Phe Val Lys Pro Gly Pro Ser Glu Gly Asp Leu 100 105 110

Ala Ile Leu Gly Leu Ser Gly Gly Arg Arg Thr Leu Glu Asn Gly Val 115 120 125

Asn Val Thr Val Ser Gln Ile Asn Thr Met Leu Ile Gln Leu Gln Tyr 130 135 140

Arg Ala Leu Cys Leu Asn Thr Arg Tyr Gly Thr Thr Val Asp Glu Glu 145 150 155 160

Lys Val Arg Val Leu Glu Leu Ala Arg Gln Arg Ala Val Arg Gln Ala

10/88

165 170 175

Trp Ala Arg Glu Gln Gln Arg Leu Arg Glu Gly Glu Gly Leu Arg 180 185 190

Ala Trp Thr Asp Gly Glu Lys Gln Gln Val Leu Asn Thr Gly Arg Val 195 200 205

Gln Gly Tyr Asp Gly Phe Phe Val Thr Ser Val Glu Gln Tyr Pro Glu 210 215 220

Leu Ser Asp Ser Ala Asn Asn Ile His Phe Met Arg Gln Ser Glu Met 225 230 235 240

Gly Arg Arg

<210> 8

<211> 252

<212> PRT

<213> Artificial Sequence

<220>

<223> Human Ten M1

<400> 8

Thr Ile Leu Gly Ile Gln Cys Glu Leu Gln Lys Gln Leu Arg Asn Phe 1 5 10 15

Ile Ser Leu Asp Gln Leu Pro Met Thr Pro Arg Tyr Asn Asp Gly Arg 20 25 30

Cys Leu Glu Gly Gly Lys Gln Pro Arg Phe Ala Ala Val Pro Ser Val 35

Phe Gly Lys Gly Ile Lys Phe Ala Ile Lys Asp Gly Ile Val Thr Ala 50 55

Asp Ile Ile Gly Val Ala Asn Glu Asp Ser Arg Arg Leu Ala Ala Ile 65 70 75 80

11/88

Leu Asn Asn Ala His Tyr Leu Glu Asn Leu His Phe Thr Ile Glu Gly 85 90 95

Arg Asp Thr His Tyr Phe Ile Lys Leu Gly Ser Leu Glu Glu Asp Leu 100 105 110

Val Leu Ile Gly Asn Thr Gly Gly Arg Arg Ile Leu Glu Asn Gly Val 115 120 125

Asn Val Thr Val Ser Gln Met Thr Ser Val Leu Asn Gly Arg Thr Arg 130 135 140

Arg Phe Ala Asp Ile Gln Leu Gln His Gly Ala Leu Cys Phe Asn Ile 145 150 155 160

Arg Tyr Gly Thr Thr Val Glu Glu Glu Lys Asn His Val Leu Glu Ile 165 170 175

Ala Arg Gln Arg Ala Val Ala Gln Ala Trp Thr Lys Glu Gln Arg Arg 180 185 190

Leu Gln Glu Gly Glu Gly Ile Arg Ala Trp Thr Glu Gly Glu Lys 195 200 205

Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe 210 215 220

Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn 225 230 235 240

Ile His Phe Met Arg Gln Ser Glu Ile Gly Arg Arg 245 250

<210> 9

<211> 253

<212> PRT

<213> Artificial Sequence

<220>

<223> Human Ten M2

<400> 9

12/88

Leu 1	Ile	Thr	Gly	Val 5	Gln	Gln	Thr	Thr	Glu 10	Arg	His	Asn	Gln	Ala 15	Phe
Met	Ala	Leu	Glu 20	Gly	Gln	Val	Ile	Thr 25	Lys	Lys	Leu	His	Ala 30	Ser	Ile
Arg	Glu	Lys 35	Ala	Gly	His	Trp	Phe 40	Ala	Thr	Thr	Thr	Pro 45	Ile	Ile	Gly
Lys	Gly 50	Ile	Met	Phe	Ala	Ile 55	Lys	Glu	Gly	Arg	Val 60	Thr	Thr	Gly	Val
Ser 65	Ser	Ile	Ala	Ser	Glu 70	Asp	Ser	Arg	Lys	Val 75	Ala	Ser	Val	Leu	Asn 80
Asn	Ala	Tyr	туr	Leu 85	Asp	Гуs	Met	His	Туг 90	Ser	Ile	Glu	Gly	Lys 95	Asp
Thr	His	Tyr	Phe 100	Val	Lys	Ile	Gly	Ser 105	Ala	Asp	Gly	Asp	Leu 110	Val	Thr
Leu	Gly	Thr 115		·Ile	Gly	Arg	Lys 120	Val	Leu	Glu	Ser	Gly 125	Val	Asn	Val
Thr	Val 130		Glr	ı Pro	Thr	Leu 135	Leu	. Val	. Asn	ı Gly	Arg 140	Thr	Arg	Arg	Phe
Thr 145		ılle	e Glu	ı Phe	Gln 150	Tyr	Ser	Thr	Lev	155	ı Lev	ı Ser	: Ile	a Arg	160
Gly	Lev	ı Thr	Pro	Asp 165		. Leu	ı Asp	Glu	1 Glu 170	ı Lys)	s Ala	a Arg	y Val	175	ı Asp
Glr	n Alá	a Arg	g Gli 180	n Arg	J Ala	a Lei	ı Gly	7 Thi 185	ala S	a Tr <u>r</u>	Ala ç	a Ly:	s Glu 190	ı Glr	n Glr
Ьys	s Alá	a Arg		o Gl	y Arg	g Glı	ı Gly 200	y Sei)	r Ar	g Le	ı Tr	20!	r Glu 5	ı Gly	y Glu
Lys	s Gl: 21		n Le	u Le	ı Se:	r Th:	r Gly 5	y Ar	g Va	l Gl	n Gl; 22	у Ту: 0	r Gl	u Gly	у Ту

Tyr Val Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser 225 235 240

13/88

Asn Ile Gln Phe Leu Arg Gln Asn Glu Met Gly Lys Arg 245 250

<210> 10

<211> 251

<212> PRT

<213> Artificial Sequence

<220>

<223> Human Ten M3

<400> 10

Pro Ile Phe Gly Val Gln Gln Gln Val Ala Arg Gln Ala Lys Ala Phe 1 5 10 15

Leu Ser Leu Gly Lys Met Ala Glu Val Gln Val Ser Arg Arg Ala 20 25 30

Gly Gly Ala Gln Ser Trp Leu Trp Phe Ala Thr Val Lys Ser Leu Ile 35 40 45

Gly Lys Gly Val Met Leu Ala Val Ser Gln Gly Arg Val Gln Thr Asn 50 55

Val Leu Asn Ile Ala Asn Glu Asp Cys Ile Lys Val Ala Ala Val Leu 65 70 75 80

Asn Asn Ala Phe Tyr Leu Glu Asn Leu His Phe Thr Ile Glu Gly Lys 85 90 95

Asp Thr His Tyr Phe Ile Lys Thr Thr Thr Pro Glu Ser Asp Leu Gly 100 105 110

Thr Leu Arg Leu Thr Ser Gly Arg Lys Ala Leu Glu Asn Gly Ile Asn 115 120 125

Val Thr Val Ser Gln Ser Thr Thr Val Val Asn Gly Arg Thr Arg Arg 130 135 140

Phe Ala Asp Val Glu Met Gln Phe Gly Ala Leu Ala Leu His Val Arg

14/88

145 150 155 160

Tyr Gly Met Thr Leu Asp Glu Glu Lys Ala Arg Ile Leu Glu Gln Ala 165 170 175

Arg Gln Arg Ala Leu Ala Arg Ala Trp Ala Arg Glu Gln Gln Arg Val 180 185 190

Arg Asp Gly Glu Glu Gly Ala Arg Leu Trp Thr Glu Gly Glu Lys Arg 195 200 205

Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr Val 210 215 220

Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile 225 230 235 240

Gln Phe Leu Arg Gln Ser Glu Ile Gly Arg Arg 245 250

<210> 11

<211> 252

<212> PRT

<213> Artificial Sequence

<220>

<223> Human Ten M4

<400> 11

Ser Ile Leu Gly Val Gln Cys Glu Val Gln Lys Gln Leu Lys Ala Phe 1 5 10 15

Val Thr Leu Glu Arg Phe Asp Gln Leu Tyr Gly Ser Thr Ile Thr Ser 20 25 30

Cys Leu Gln Ala Pro Lys Thr Lys Lys Phe Ala Ser Ser Gly Ser Val 35 40 45

Phe Gly Lys Gly Val Lys Phe Ala Leu Lys Asp Gly Arg Val Thr Thr 50 55 60

15/88

Asp Ile Ile Ser Val Ala Asn Glu Asp Gly Arg Arg Val Ala Ala Ile 65 70 75 80

Leu Asn His Ala His Tyr Leu Glu Asn Leu His Phe Thr Ile Asp Gly 85 90 95

Val Asp Thr His Tyr Phe Val Lys Pro Gly Pro Ser Glu Gly Asp Leu 100 105 . 110

Ala Ile Leu Gly Leu Ser Gly Gly Arg Arg Thr Leu Glu Asn Gly Val 115 120 125

Asn Val Thr Val Ser Gln Ile Asn Thr Val Leu Ser Gly Arg Thr Arg 130 135 140

Arg Tyr Thr Asp Ile Gln Leu Gln Tyr Gly Ala Leu Cys Leu Asn Thr 145 150 155 160

Arg Tyr Gly Thr Thr Leu Asp Glu Glu Lys Ala Arg Val Leu Glu Leu 165 170 175

Ala Arg Gln Arg Ala Val Arg Gln Ala Trp Ala Arg Glu Gln Gln Arg 180 185 190

Leu Arg Glu Gly Glu Gly Leu Arg Ala Trp Thr Glu Gly Glu Lys
195 200 205

Gln Gln Val Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe 210 215 220

Val Ile Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn 225 230 235 240

Ile His Phe Met Arg Gln Ser Glu Met Gly Arg Arg 245 250

<210> 12

<211> 252

<212> PRT

<213> Artificial Sequence

<220>

16/88

<223> Zebrafish Ten M3

<400> 12

Ser Ile Ser Gly Val Gln Gln Glu Val Met Arg Gln Ala Lys Ala Phe 1 5 10 · 15

Leu Ser Phe Glu Arg Met Pro Glu Ile Gln Leu Ser Arg Arg Arg Ser 20 25 30

Ser Arg Glu Lys Pro Trp Leu Trp Phe Ala Thr Val Lys Ser Leu Ile 35

Gly Lys Gly Val Met Leu Ala Ile Thr Ser Lys Gly Gln Val Ala Thr 50 55 60

Asn Ala Leu Asn Ile Ala Asn Glu Asp Cys Ile Lys Val Val Thr Val 65 70 75 80

Leu Asn Asn Ala Phe Tyr Leu Glu Asp Leu His Phe Thr Val Glu Gly 85 90 95

Arg Asp Thr His Tyr Phe Ile Lys Thr Ser Leu Pro Glu Ser Asp Leu 100 105 110

Gly Ala Leu Arg Leu Thr Ser Gly Arg Lys Ser Leu Glu Asn Gly Val 115 120 125

Asn Val Thr Val Ser Gln Ser Thr Thr Val Val Asn Gly Arg Thr Arg 130 135 140

Arg Phe Ala Asp Val Glu Leu Gln Tyr Gly Ala Leu Ala Leu His Val 145 150 155 160

Arg Tyr Gly Met Thr Leu Asp Glu Glu Lys Ala Arg Val Leu Glu Gln 165 170 175

Ala Arg Gln Arg Ala Leu Ser Ser Ala Trp Ala Arg Glu Gln Gln Arg 180 185 190

Val Arg Asp Gly Glu Glu Gly Val Arg Leu Trp Thr Glu Gly Glu Lys 195 200 205

Arg Gln Leu Leu Ser Ser Gly Lys Val Leu Gly Tyr Asp Gly Tyr Tyr 210 215 220

17/88

Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn 230 225 Val Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg 245 <210> 13 <211> 40 <212> PRT <213> Artificial Sequence <220> <223> Rainbow Trout TCAP3 (40a.a.) <400> 13 Gln Leu Leu Ser Gly Arg Lys Val Leu Gly Tyr Asp Gly Tyr Tyr Val 15 10 Leu Ser Ile Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile Gln Phe Leu Arg Gln Ser Glu Ile 35 <210> 14 <211> 41 <212> PRT

<220>

<223> Rainbow Trout TCAP 3 (41a.a.)

<213> Artificial Sequence

<400> 14

Arg Gln Leu Leu Ser Gly Arg Lys Val Leu Gly Tyr Asp Gly Tyr Tyr 1 5 10 15

Val Leu Ser Ile Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn

18/88

20 25 30

Ile Gln Phe Leu Arg Gln Ser Glu Ile 35 40

<210> 15

<211> 43

<212> PRT

<213> Artificial Sequence

<220>

<223> Rainbow Trout preTCAP3 (43 a.a.)

<400> 15

Gln Leu Leu Ser Gly Arg Lys Val Leu Gly Tyr Asp Gly Tyr Tyr Val 1 5 10 15

Leu Ser Ile Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile 20 25 30

Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg 35 40

<210> 16

<211> 44

<212> PRT

<213> Artificial Sequence

<220>

<223> Rainbow Trout preTCAP3 (44 a.a.)

<400> 16

Arg Gln Leu Leu Ser Gly Arg Lys Val Leu Gly Tyr Asp Gly Tyr Tyr 1 5 10 15

Val Leu Ser Ile Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn 20 25 30

```
Ile Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg
               . 40
<210> 17
<211> 120
<212> DNA
<213> Artificial Sequence
<220>
<223> Rainbow Trout TCAP3 (120 n.a.)
<400> 17
cagctgctga gcgggaggaa ggttctgggc tacgacgggt actacgtcct ctccatagag
                                                                  60
cagtaccccg agctagcaga ctccgctaac aacatccagt tcctcaggca gagcgaaata
                                                                   120
<210> 18
<211> 123
<212> DNA
<213> Artificial Sequence
<220>
<223> Rainbow Trout TCAP3 (123 n.a.)
<400> 18
aggcagctgc tgagcgggag gaaggttctg ggctacgacg ggtactacgt cctctccata
                                                                   60
gagcagtacc ccgagctagc agactccgct aacaacatcc agttcctcag gcagagcgaa
                                                                   120
                                                                   123
 ata
 <210> 19
 <211> 129
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Rainbow Trout preTCAP3 (129 n.a.)
```

<400> 19 cagctgctga gcgggaggaa ggttctgggc tacgacgggt actacgtcct ctccatagag	60
cagtaccccg agctagcaga ctccgctaac aacatccagt tcctcaggca gagcgaaata	120
gggaagagg	129
<210> 20	
<211> 132	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Rainbow Trout preTCAP3 (132 n.a.)	
<400> 20 aggcagctgc tgagcgggag gaaggttctg ggctacgacg ggtactacgt cctctccata	60
gagcagtacc ccgagctagc agactccgct aacaacatcc agttcctcag gcagagcgaa	120
atagggaaga gg	132
<210> 21	
<211> 40	
<212> PRT	
<213> Artificial Sequence	
<220>	
<223> Zebrafish TCAP3 (40 a.a.)	
<400> 21	
Gln Leu Leu Ser Ser Gly Lys Val Leu Gly Tyr Asp Gly Tyr Tyr Val 1 5 10 15	
Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Val 20 25 30	
Gln Phe Leu Arg Gln Ser Glu Ile 35 40	

21/88

<210> 22 <211> 41 <212> PRT <213> Artificial Sequence <220> <223> Zebrafish TCAP3 (41 a.a.) <400> 22 Arg Gln Leu Leu Ser Ser Gly Lys Val Leu Gly Tyr Asp Gly Tyr Tyr Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn 25 20 Val Gln Phe Leu Arg Gln Ser Glu Ile 35 <210> 23 <211> 43 <212> PRT <213> Artificial Sequence <220> <223> Zebrafish preTCAP3 (43 a.a.) <400> 23 Gln Leu Leu Ser Ser Gly Lys Val Leu Gly Tyr Asp Gly Tyr Tyr Val 10 5 Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Val 25 20 Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg 40 <210> 24

<211> 44

```
<212> PRT
<213> Artificial Sequence
<220>
<223> Zebrafish preTCAP3 (44 a.a.)
<400> 24
Arg Gln Leu Leu Ser Ser Gly Lys Val Leu Gly Tyr Asp Gly Tyr Tyr
Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn
                                25
Val Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg
<210> 25
<211> 120
<212> DNA
<213> Artificial Sequence
<220>
<223> Zebrafish TCAP3 (120 n.a.)
<400> 25
cagttgctca gctctgggaa ggtgctgggt tacgatggtt actatgtact atcagtggag
                                                                     60
caataccctg aactggccga cagtgccaac aatgtccagt tcttgaggca gagtgagata
<210> 26
<211> 123
<212> DNA
<213> Artificial Sequence
<220>
<223> Zebrafish TCAP3 (123 n.a.)
```

<400> aggcagt	26 tgc tcagctctgg gaaggtgctg ggttacgatg gttactatgt actatcagtg	60
gagcaat	acc ctgaactggc cgacagtgcc aacaatgtcc agttcttgag gcagagtgag	120
ata		123
<210>	27	
<211>	129	
<212>	DNA	
<213>	Artificial Sequence	-
<220>		
<223>	Zebrafish TCAP3 (129 n.a.)	
<400>	27 ctca gctctgggaa ggtgctgggt tacgatggtt actatgtact atcagtggag	60
caatac	cctg aactggccga cagtgccaac aatgtccagt tcttgaggca gagtgagata	120
gggaag	agg	129
<210>	28	
<211>	132	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Zebrafish preTCAP3 (132 n.a.)	
<400> aggcag	28 sttgc tcagctctgg gaaggtgctg ggttacgatg gttactatgt actatcagtg	60
gagcaa	atacc ctgaactggc cgacagtgcc aacaatgtcc agttcttgag gcagagtgag	120
ataggg	gaaga gg	132
<210>	29	
<211>	40	
<212>	PRT	
<213>	Artificial Sequence	

```
<220>
<223> Zebrafish TCAP4 (40 a.a.)
<400> 29
Gln Leu Leu Ser Ser Gly Arg Val Gln Gly Tyr Glu Gly Phe Tyr Ile
Val Ser Val Asp Gln Phe Pro Glu Leu Thr Asp Asn Ile Asn Asn Val
            20
His Phe Trp Arg Gln Thr Glu Met
        35
<210> 30
<211> 41
<212> PRT
<213> Artificial Sequence
<220>
<223> Zebrafish TCAP4 (41 a.a.)
<400> 30
Gln Gln Leu Leu Ser Ser Gly Arg Val Gln Gly Tyr Glu Gly Phe Tyr
Ile Val Ser Val Asp Gln Phe Pro Glu Leu Thr Asp Asn Ile Asn Asn
                                25
            20
 Val His Phe Trp Arg Gln Thr Glu Met
         35
 <210> 31
 <211> 43
 <212> PRT
 <213> Artificial Sequence
```

```
<220>
<223> Zebrafish preTCAP4 (43 a.a.)
<400> 31
Gln Leu Leu Ser Ser Gly Arg Val Gln Gly Tyr Glu Gly Phe Tyr Ile
Val Ser Val Asp Gln Phe Pro Glu Leu Thr Asp Asn Ile Asn Asn Val
His Phe Trp Arg Gln Thr Glu Met Gly Arg Arg
<210> 32
<211> 44
<212> PRT
<213> Artificial Sequence
<220>
<223> Zebrafish preTCAP4 (44 a.a.)
<400> 32
Gln Gln Leu Leu Ser Ser Gly Arg Val Gln Gly Tyr Glu Gly Phe Tyr
                                   10
    5
Ile Val Ser Val Asp Gln Phe Pro Glu Leu Thr Asp Asn Ile Asn Asn
                                25
                                                   30
            20
Val His Phe Trp Arg Gln Thr Glu Met Gly Arg Arg
        35
 <210> 33
 <211> 120
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Zebrafish TCAP4 (120 n.a.)
```

<400> cagctcc	33 taa gctctggacg tgtacagggc tacgaaggct tctacatagt atcagtcgac	60
	cag agttgactga caacataaat aacgtccatt tctggcgaca gactgagatg	120
	34	
<211>	123	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Zebrafish TCAP4 (123 n.a.)	
<400>	34 ctcc taagctctgg acgtgtacag ggctacgaag gcttctacat agtatcagtc	60
	ttcc cagagttgac tgacaacata aataacgtcc atttctggcg acagactgag	120
atg		123
<210>	35	
<211>	129	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Zebrafish preTCAP4 (129 n.a.)	
	35 ectaa getetggaeg tgtaeaggge taegaagget tetaeatagt ateagtegae	60
cagtto	ccag agttgactga caacataaat aacgtccatt tetggcgaca gactgagatg	120
ggacgo	cagg	129
<210>	36	
<211>	132	
<212>	DNA	
<213>	Artificial Sequence	

220>	
223> Zebrafish preTCAP4 (132 n.a.)	
:400> 36 cagcagetee taagetetgg aegtgtaeag ggetaegaag gettetaeat agtateagte	60
gaccagttcc cagagttgac tgacaacata aataacgtcc atttctggcg acagactgag	120
atgggacgca gg	132
<210> 37	
<211> 40	
<212> PRT	
<213> Artificial Sequence	
<220>	
<223> Mouse TCAP1 (40 a.a.)	
<400> 37	
Gln Leu Leu Gly Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe Val 1 5 10 15	
Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn Ile 20 25 30	
His Phe Met Arg Gln Ser Glu Ile 35 40	
<210> 38	
<211> 41	
<212> PRT	
<213> Artificial Sequence	
<220>	
<223> Mouse TCAP1 (41 a.a.)	
<400> 38	
Gln Gln Leu Leu Gly Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe	

28/88

15 10 5 1 Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn Ile His Phe Met Arg Gln Ser Glu Ile <210> 39 . <211> 43 <212> PRT <213> Artificial Sequence <220> <223> Mouse preTCAP1 (43 a.a.) <400> 39 Gln Leu Leu Gly Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn Ile His Phe Met Arg Gln Ser Glu Ile Gly Arg Arg

<210> 40

<211> 44

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse preTCAP1 (44 a.a.)

<400> 40

Gln Gln Leu Leu Gly Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe 1 5 10 15

29/88

Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn 25 Ile His Phe Met Arg Gln Ser Glu Ile Gly Arg Arg <210> 41 <211> 120 <212> DNA <213> Artificial Sequence <220> <223> Mouse TCAP1 (120 n.a.) <400> 41 cagcttttgg gcaccgggag ggtgcagggg tatgatgggt attttgtctt gtctgttgag 60 cagtatttag aactttcaga cagtgccaac aatattcact tcatgagaca gagtgaaata 120 <210> 42 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> Mouse TCAP1 (123 n.a.) <400> 42 cagcagettt tgggcaccgg gagggtgcag gggtatgatg ggtattttgt ettgtetgtt 60 gagcagtatt tagaactttc agacagtgcc aacaatattc acttcatgag acagagtgaa 123 ata <210> 43 <211> 129 <212> DNA <213> Artificial Sequence

<220>	
<223> Mouse preTCAP1 (129 n.a.)	
<400> 43 cagcttttgg gcaccgggag ggtgcagggg tatgatgggt attttgtctt gtctgttgag	60
cagtatttag aactttcaga cagtgccaac aatattcact tcatgagaca gagtgaaata	120
ggcaggagg	129
<210> 44	
<211> 132	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Mouse preTCAP1 (132 n.a.)	
<400> 44 cagcagettt tgggcacegg gagggtgcag gggtatgatg ggtattttgt ettgtetgtt	60
gagcagtatt tagaactttc agacagtgcc aacaatattc acttcatgag acagagtgaa	120
ataggcagga gg	132
<210> 45	
<211> 40	
<212> PRT .	
<213> Artificial Sequence	
<220>	
<223> Mouse TCAP2 (40 a.a.)	
<400> 45	
Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr Val 1 5 10 15	
Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Asn Ile 20 25 30	

31/88

Gln Phe Leu Arg Gln Asn Glu Ile 35 40

<210> 46

<211> 41

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse TCAP2 (41 a.a.)

<400> 46

Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr 1 5 10 15

Val Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Asn 20 25 30

Ile Gln Phe Leu Arg Gln Asn Glu Met 35 40

<210> 47

<211> 43

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse preTCAP2 (43 a.a)

<400> 47

Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr Val 1 5 10 15

Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn Ile 20 25 30

Gln Phe Leu Arg Gln Asn Glu Met Gly Lys Arg 35 40

```
<210> 48
<211> 44
<212> PRT
<213> Artificial Sequence
<220>
<223> Mouse preTCAP2 (44 a.a.)
<400> 48
Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr
                                    10
Val Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn
Ile Gln Phe Leu Arg Gln Asn Glu Met Gly Lys Arg
<210> 49
<211> 120
<212> DNA
<213> Artificial Sequence
 <220>
 <223> Mouse TCAP2 (120 n.a.)
 <400> 49
 caacteetga geaegggaeg ggtacaaggt tatgaggget attacgtact teeggtggaa
                                                                     60
 cagtacccgg agctggcaga cagtagcagc aacatccagt tcttaagaca gaatgagagg
                                                                     120
 <210> 50
 <211> 123
 <212> DNA
 <213> Artificial Sequence
```

<220>	
<223> Mouse TCAP 2 (123 n.a.)	
<400> 50 cagcaactec tgagcacggg acgggtacaa ggttatgagg gctattacgt acttccggtg	60
gaacagtacc cggagctggc agacagtagc agcaacatcc agttcttaag acagaatgag	120
atg ,	123
040 51	
<210> 51	
<211> 129	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Mouse preTCAP2 (129 n.a.)	
<400> 51 caactcctga gcacgggacg ggtacaaggt tatgagggct attacgtact tccggtggaa	60
cagtacccgg agctggcaga cagtagcagc aacatccagt tcttaagaca gaatgagatg	120
ggaaagagg	129
<210> 52	
<211> 132	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Mouse preTCAP2 (132 n.a.)	
<400> 52 cagcaactcc tgagcacggg acgggtacaa ggttatgagg gctattacgt acttccggtg	60
gaacagtacc cggagctggc agacagtagc agcaacatcc agttcttaag acagaatgag	120
	132
atgggaaaga gg	
<210> 53	
<211> 40	

34/88

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse TCAP3 (40 a.a.)

<400> 53

Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr Val 1 5 10 15

Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile 20 25 30

Gln Phe Leu Arg Gln Ser Glu Ile 35 40

<210> 54

<211> 41

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse TCAP3 (41 a..a)

<400> 54

Arg Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr 1 5 10 15

Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn 20 25 30

Ile Gln Phe Leu Arg Gln Ser Glu Ile 35 40

<210> 55

<211> 43

<212> PRT

```
<213> Artificial Sequence
<220>
<223> Mouse preTCAP3 (43 a.a.)
<400> 55
Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr Val
                                  10
Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile
Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg
<210> 56
<211> 44
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Mouse preTCAP3 (44 a.a.)
 <400> 56
 Arg Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr
                                    10
 1 5
 Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn
                                25
             20
 Ile Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg
         35
 <210> 57
 <211> 120
 <212> DNA
 <213> Artificial Sequence
```

<220>		
<223>	Mouse TCAP3 (120 n.a.)	
<400> cagctgo	57 ctga gcgctggcaa ggtgcagggc tacgatgggt actacgtact gtcggtggag	60
cagtaco	cccg agctggctga cagtgccaac aacatccagt tcttgcgaca aagtgagatc	120
<210>	58	
<211>	123	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Mouse TCAP3 (123 n.a.)	
<400> cggcag	58 otgc tgagcgctgg caaggtgcag ggctacgatg ggtactacgt actgtcggtg	60
gagcag	rtacc cegagetgge tgacagtgce aacaacatce agttettgeg acaaagtgag	120
atc		123
<210>	59	
<211>	129	
<212>	DNA	
<213>	Artificial Sequence	
<220>	•	
	Mouse preTCAP3 (129 n.a.)	
<400> cagct	59 gctga gcgctggcaa ggtgcagggc tacgatgggt actacgtact gtcggtggag	60
cagta	ccccg agctggctga cagtgccaac aacatccagt tcttgcgaca aagtgagatc	120
ggcaa	gagg	129
<210>	- 60	
~211 >	. 132	

<212>	DNA
<213>	Artificial Sequence
<220>	
<223>	Mouse preTCAP3 (132 n.a.)
<400> cggcag	60 ctgc tgagcgctgg caaggtgcag ggctacgatg ggtactacgt actgtcggtg 60
	tacc ccgagctggc tgacagtgcc aacaacatcc agttcttgcg acaaagtgag 120
	aaga gg
<210>	61
<211>	40
<212>	PRT
<213>	Artificial Sequence
<220>	
<223>	Mouse TCAP4 (40 a.a.)
<400>	61
Gln Va 1	al Leu Asn Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe Val 5 10 15
Thr S	er Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn Ile 20 25 30
His P	he Met Arg Gln Ser Glu Met 35 40
<210>	62
<211>	41
<212>	PRT
<213>	Artificial Sequence
<220>	
<223>	Mouse TCAP4 (41 a.a.)

38/88

<400> 62 Gln Gln Val Leu Asn Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe Val Thr Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn 25 Ile His Phe Met Arg Gln Ser Glu Met <210> 63 <211> 43 <212> PRT <213> Artificial Sequence <220> <223> Mouse preTCAP4 (43 a.a.) <400> 63 Gln Val Leu Asn Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe Val Thr Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn Ile 25 His Phe Met Arg Gln Ser Glu Met Gly Arg Arg <210> 64 <211> 44 <212> PRT <213> Artificial Sequence <220> <223> Mouse preTCAP4 (44 a.a.)

<400> 64

39/88

Gln Gln Val Leu Asn Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe Val Thr Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn 25 Ile His Phe Met Arg Gln Ser Glu Met Gly Arg Arg <210> 65 <211> 120 <212> DNA <213> Artificial Sequence <220> <223> Mouse TCAP4 (120 n.a.) <400> 65 caggtgctga acacggggcg ggtgcaaggc tacgacggct tctttgtgac ctcggtcgag 60 cagtacccag aactgtcaga cagcgccaac aatatccact tcatgagaca gagcgagatg 120 <210> 66 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> Mouse TCAP4 (123 n.a.) cagcaggtgc tgaacacggg gcqggtgcaa ggctacgacg gcttctttgt gacctcggtc 60 gagcagtacc cagaactgtc agacagcgcc aacaatatcc acttcatgag acagagcgag 120 123 atg <210> 67 · <211> 129 <212> DNA

<213>	Artificial Sequence	
	<u>.</u>	
<220>		
<223>	Mouse preTCAP4 (129 n.a.)	
<400> caggtg	67 ctga acacggggcg ggtgcaaggc tacgacggct tctttgtgac ctcggtcgag	60
cagtac	ccag aactgtcaga cagcgccaac aatatccact tcatgagaca gagcgagatg	120
ggccga	agg	129
<210>	68	
<211>	132	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Mouse preTCAP4 (132 n.a.)	
<400> cagcag	68 ggtgc tgaacacggg gcgggtgcaa ggctacgacg gcttctttgt gacctcggtc	60
gagcag	gtacc cagaactgtc agacagcgcc aacaatatcc acttcatgag acagagcgag	120
atggg	ccgaa gg	132
<210>	69	
<211>	40	
<212>	PRT	
<213>	Artificial Sequence	
<220>		
<223>	Human TCAP1 (40 a.a.)	
<400>		
Gln L	eu Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe Val	

41/88

Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn Ile 20 25 30

His Phe Met Arg Gln Ser Glu Ile 35 40

<210> 70

<211> 41

<212> PRT

<213> Artificial Sequence

<220>

<223> Human TCAP1 (41 a.a.)

<400> 70

Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe 1 5 10 15

Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn 20 25 30

Ile His Phe Met Arg Gln Ser Glu Ile 35 40

<210> 71

<211> 43

<212> PRT

<213> Artificial Sequence

<220>

<223> Human preTCAP1 (43 a.a.)

<400> 71

Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe Val 1 5 10 15

Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn Ile 20 25 30

```
His Phe Met Arg Gln Ser Glu Ile Gly Arg Arg
<210> 72
<211> 44
<212> PRT
<213> Artificial Sequence
<220>
<223> Human preTCAP1 (44 a.a.)
<400> 72
Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe
Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn
                                25
            20
Ile His Phe Met Arg Gln Ser Glu Ile Gly Arg Arg
<210> 73
<211> 120
<212> DNA
 <213> Artificial Sequence
 <220>
 <223> Human TCAP1 (120 n.a.)
 <400> 73
 cagettttga geactgggeg ggtacaaggt tacgatgggt attttgtttt gtetgttgag
                                                                     60
 cagtatttag aactttctga cagtgccaat aatattcact ttatgagaca gagcgaaata
                                                                     120
 <210> 74
 <211> 123
 <212> DNA
```

<213>	Artificial Sequence	
<220>		
<223>	Human TCAP1 (123 n.a.)	
<400> cagcago	74 Ettt tgagcactgg gegggtacaa ggttacgatg ggtattttgt tttgtetgtt	60
gagcagt	att tagaacttte tgacagtgee aataatatte aetttatgag acagagegaa	120
ata		123
<210>	· 75	
<211>	129	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Human preTCAP1 (129 n.a.)	
<400>	75 ttga gcactgggcg ggtacaaggt tacgatgggt attttgtttt gtctgttgag	60
	ttag aactttetga cagtgecaat aatatteact ttatgagaca gagegaaata	120
ggcagg		129
990-95		
<210>	76	
<211>	132	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Human preTCAP1 (132 n.a.)	
<400> cagca	76 gcttt tgagcactgg gcgggtacaa ggttacgatg ggtattttgt tttgtctgtt	60
	gtatt tagaactttc tgacagtgcc aataatattc actttatgag acagagcgaa	120
	caqqa gg	132

```
<210> 77
<211> 40
<212> PRT
<213> Artificial Sequence
<220>
<223> Human TCAP2 (40 a.a.)
<400> 77
Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr Val
Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn Ile
                               25
Gln Phe Leu Arg Gln Asn Glu Met
<210> 78
<211> 41
<212> PRT
<213> Artificial Sequence
<220>
<223> Human preTCAP2 (41 a.a.)
 <400> 78
 Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr
 Val Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn
 Ile Gln Phe Leu Arg Gln Asn Glu Met
 <210> 79
```

45/88

<211> 43 <212> PRT <213> Artificial Sequence <220> <223> Human preTCAP2 (43 a.a.) <400> 79 Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr Val Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn Ile Gln Phe Leu Arg Gln Asn Glu Met Gly Lys Arg <210> 80 <211> 44 <212> PRT <213> Artificial Sequence <220> <223> Human preTCAP2 (44 a.a.) <400> 80 Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr 5 Val Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn 25 20 Ile Gln Phe Leu Arg Gln Asn Glu Met Gly Lys Arg 35 <210> 81 <211> 120

<212> DNA

<213> Artificial Sequence	
<220>	
<223> Human TCAP2 (120 n.a.)	
<400> 81 cagcttctga gcaccgggcg cgtgcaaggg tacgagggat attacgtgct tcccgtggag	60
caatacccag agcttgcaga cagtagcagc aacatccagt ttttaagaca gaatgagatg	120
<210> 82	
<211> 123	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Human TCAP2 (123 n.a.)	
<400> 82 cagcagette tgagcacegg gegegtgeaa gggtacgagg gatattacgt getteeegtg	60
gagcaatacc cagagcttgc agacagtagc agcaacatcc agtttttaag acagaatgag	120
atg	123
<210> 83	
<212> DNA <213> Artificial Sequence	
Altilitial Sequence . . .	
<220>	
<223> Human preTCAP2 (129 n.a.)	
<400> 83 cagcttctga gcaccgggcg cgtgcaaggg tacgagggat attacgtgct tcccgtggag	60
caatacccag agcttgcaga cagtagcagc aacatccagt ttttaagaca gaatgagatg	120
ggaaagagg	129

<210>	84	
<211>	132	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Human preTCAP2 (132 n.a.)	
	84 cttc tgagcaccgg gcgcgtgcaa gggtacgagg gatattacgt gcttcccgtg	60
gagcaa	tacc cagagettge agacagtage agcaacatee agtttttaag acagaatgag	120
atggga	aaga gg	132
<210>	85	
<211>	40	
<212>	PRT	
<213>	Artificial Sequence	
<220>		
<223>	Human TCAP3 (40 a.a.)	
<400>	85	
Gln Le	eu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr Val 5 10 . 15	
Leu S	er Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile 20 25 30	
Gln P	he Leu Arg Gln Ser Glu Ile 35 40	
<210>	86	
<211>	41	
<212>	PRT	
~213×	Artificial Sequence	

48/88

<220> <223> Human TCAP3 (41 a.a.) <400> 86 Arg Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr 5 · Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn 25 Ile Gln Phe Leu Arg Gln Ser Glu Ile <210> 87 <211> 43 <212> PRT <213> Artificial Sequence <220> <223> Human preTCAP3 (43 a.a.) <400> 87 Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile 25 Gln Phe Leu Arg Gln Ser Glu Ile Gly Arg Arg <210> 88 <211> 44 <212> PRT <213> Artificial Sequence

<220>

49/88

<223> Human preTCAP3 (44 a.a.) <400> 88 Arg Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr 15 Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile Gln Phe Leu Arg Gln Ser Glu Ile Gly Arg Arg <210> 89 <211> 120 <212> DNA <213> Artificial Sequence <220> <223> Human TCAP3 (120 n.a.) <400> 89 cagctgctga gcgccggcaa ggtgcagggc tacgacgggt actacgtact ctcggtggag 60 cagtaccccg agctggccga cagcgccaac aacatccagt tcctgcggca gagcgagatc 120 <210> 90 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> Human TCAP3 (123 n.a.) eggeagetge tgagegeegg caaggtgeag ggetaegaeg ggtaetaegt aeteteggtg 60 gagcagtacc ccgagctggc cgacagcgcc aacaacatcc agttcctgcg gcagagcgag 120 123 atc

<210> 91

<211>	129	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Human preTCAP (129 n.a.)	
<400> cagctgo	91 etga gegeeggeaa ggtgeaggge taegaegggt aetaegtaet eteggtggag	60
	cccg agctggccga cagcgccaac aacatccagt teetgcggca gagcgagatc	120
ggcagga	agg	129
<210>	92	
<211>	132	
<212>	DNA	
<213>	.Artificial Sequence	
<220>		
<223>	Human preTCAP3 (132 n.a.)	
<400> cggcag	92 octgo tgagogoogg caaggtgoag ggotaogaog ggtactaogt actotoggtg	60
	tacc ccgagctggc cgacagcgcc aacaacatcc agttcctgcg gcagagcgag	120
atcggc	cagga gg	132
<210>	93	
<211>	40	
<212>	PRT	
<213>	Artificial Sequence	
<220>		
<223>	Human TCAP4 (40 a.a.)	
<400>	93	

PCT/CA03/00622 WO 03/093305

51/88

Gln Val Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe Val Ile Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn Ile His Phe Met Arg Gln Ser Glu Met <210> 94 <211> 41 <212> PRT <213> Artificial Sequence <220> <223> Human TCAP4 (41 a.a.) <400> 94 Gln Gln Val Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe Val Ile Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn 30 25 Ile His Phe Met Arg Gln Ser Glu Met <210> 95 <211> 43 <212> PRT <213> Artificial Sequence <220> <223> Human preTCAP4 (43 a..a) <400> 95

Gln Val Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe Val 10

5

52/88

Ile Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn Ile 25 20 His Phe Met Arg Gln Ser Glu Met Gly Arg Arg <210> 95 <211> 44 <212> PRT <213> Artificial Sequence <220> <223> Human preTCAP4 (44 a.a.) <400> 96 Gln Gln Val Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe Val Ile Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn 25 20 Ile His Phe Met Arg Gln Ser Glu Met Gly Arg Arg 35 <210> 97 <211> 120 <212> DNA <213> Artificial Sequence <220> <223> Human TCAP4 (120 n.a.) <400> 97 caggtgctga gcacagggcg ggtgcaaggc tacgacggct ttttcgtgat ctctgtcgag 60 cagtacccag aactgtcaga cagcgccaac aacatccact tcatgagaca gagcgagatg 120

<210> 98

<211>	123	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Human TCAP4 (123 n.a.)	
<400> cagcago	98 gtgc tgagcacagg gcgggtgcaa ggctacgacg gctttttcgt gatctctgtc	60
gagcagt	cacc cagaactgtc agacagcgcc aacaacatcc acttcatgag acagagcgag	120
atg		123
<210>	99	
<211>	129	
<212>	DNA	
<213>	Artificial Sequence	
<220> <223>	Human preTCAP4 (129 n.a.)	
<400>	99 ctga gcacagggcg ggtgcaaggc tacgacggct ttttcgtgat ctctgtcgag	60
	ccag aactgtcaga cagcgccaac aacatccact tcatgagaca gagcgagatg	120
		129
ggccgg	ragg	
<210>	100	
<211>	132	
<212>	DNA	
<213>	Artificial Sequence	
•		
<220>		
<223>	Human preTCAP4 (132 n.a.)	
<400>	100 qqtqc tgagcacagg gcgggtgcaa ggctacgacg gctttttcgt gatctctgtc	60

54/88

gagcagtacc cagaactgtc agacagcgcc aacaacatcc acttcatgag acagagcgag 132 atgggccgga gg <210> 101 <211> 41 <212> PRT <213> Artificial Sequence <220> <223> G. gallus TCAP-1 <400> 101 Gln Gln Leu Leu Asn Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn Ile His Phe Met Arg Gln Ser Glu Ile <210> 102 <211> 41 <212> PRT <213> Artificial Sequence <220> <223> Zebrafish TCAP-4 <400> 102 Gln Gln Leu Leu Ser Ser Gly Arg Val Gln Gly Tyr Glu Gly Phe Tyr Ile Val Ser Val Asp Gln Phe Pro Glu Leu Thr Asp Asn Ile Asn Asn Val His Phe Trp Arg Gln Thr Glu Met

55/88

<210> 103

<211> 37

<212> PRT

<213> Artificial Sequence

<220>

<223> D. melanogaster Ten-m gene product

<400> 103

Glu Leu Val Gln His Gly Asp Val Asp Gly Trp Asn Gly Asp Ile His 1 5 10 15

Ser Ile His Lys Tyr Pro Gln Leu Ala Asp Pro Gly Asn Val Ala Phe 20 25 30

Gln Arg Asp Ala Lys 35

<210> 104

<211> 41

<212> PRT

<213> Artificial Sequence

<220>

<223> Human CRF TCAP like region

<400> 104

Ser Glu Glu Pro Pro Ile Ser Leu Asp Leu Thr Phe His Leu Leu Arg 1 5 10 15

Glu Val Leu Glu Met Ala Arg Ala Glu Gln Leu Ala Gln Gln Ala His 20 25 30

Ser Asn Arg Lys Leu Met Glu Ile Ile 35 40

<210> 105

56/88

<211> 40

<212> PRT

<213> Artificial Sequence

<220>

<223> Human urocortin TCAP-like region

<400> 105

Asp Asn Pro Ser Leu Ser Ile Asp Leu Thr Phe His Leu Leu Arg Thr 1 5 10 15

Leu Leu Glu Leu Ala Arg Thr Gln Ser Gln Arg Glu Arg Ala Glu Gln 20 25 30

Asn Arg Ile Ile Phe Asp Ser Val 35 40

<210> 106

<211> 38

<212> PRT

<213> Artificial Sequence

<220>

<223> Human urocortin 2 TCAP-like region

<400> 106

Ile Val Leu Ser Leu Asp Val Pro Ile Gly Leu Leu Gln Ile Leu Leu 1 5 10 15

Glu Gln Ala Arg Ala Arg Ala Ala Arg Glu Gln Ala Thr Thr Asn Ala 20 25 30

Arg Ile Leu Ala Arg Val 35

<210> 107

<211> 38

57/88

<212> PRT

<213> Artificial Sequence

<220>

<223> Human urocortin 3 TCAP=like region

<400> 107

Phe Thr Leu Ser Leu Asp Val Pro Thr Asn Ile Met Asn Leu Leu Phe 1 5 10 15

Asn Ile Ala Lys Ala Lys Asn Leu Arg Ala Gln Ala Ala Ala Asn Ala 20 25 30

His Leu Met Ala Gln Ile 35

<210> 108

<211> 46

<212> PRT

<213> Artificial Sequence

<220>

<223> L. migratoria DP

<400> 108

Met Gly Met Gly Pro Ser Leu Ser Ile Val Asn Pro Met Asp Val Leu 1 10 15

Arg Gln Arg Leu Leu Leu Glu Ile Ala Arg Arg Arg Leu Arg Asp Ala 20 25 30

Glu Glu Gln Ile Lys Ala Asn Lys Asp Phe Leu Gln Gln Ile 35 40 45

<210> 109

<211> 46

<212> PRT

<213> Artificial Sequence

58/88

<220>

<223> A. domesticus DP

<400> 109

Thr Gly Ala Gln Ser Leu Ser Ile Val Ala Pro Leu Asp Val Leu Arg
1 5 10 15

Gln Arg Leu Met Asn Glu Leu Asn Arg Arg Arg Met Arg Glu Leu Gln 20 25 30

Gly Ser Arg Ile Gln Gln Asn Arg Gln Leu Leu Thr Ser Ile 35 40 45

<210> 110

<211> 39

<212> PRT

<213> Artificial Sequence

<220>

<223> T. molitor DP

<400> 110

Ser Pro Thr Ile Ser Ile Thr Ala Pro Ile Asp Val Leu Arg Lys Thr 1 5 10 15

Trp Glu Gln Glu Arg Ala Arg Lys Gln Met Val Ala Gln Asn Asn Arg 20 25 30

Glu Phe Leu Asn Ser Leu Asn 35

<210> 111

<211> 41

<212> PRT

<213> Artificial Sequence

59/88

<220>

<223> M. sexta DP-1

<400> 111

Arg Met Pro Ser Leu Ser Ile Asp Leu Pro Met Ser Val Leu Arg Gln 1 5 10 15

Lys Leu Ser Leu Glu Lys Glu Arg Lys Val His Ala Leu Arg Ala Ala 20 25 30

Ala Asn Arg Asn Phe Leu Asn Asp Ile 35 40

<210> 112

<211> 30

<212> PRT

<213> Artificial Sequence

·<220>

<223> M. sexta DP-II

<400> 112

Ser Leu Ser Val Asn Pro Ala Val Asp Ile Leu Gln His Arg Tyr Met 1 5 10 15

Glu Lys Val Ala Gln Asn Asn Arg Asn Phe Leu Asn Arg Val 20 25 30

<210> 113

<211> 45

<212> PRT

<213> Artificial Sequence

<220>

<223> P. Americana

<400> 113

Thr Gly Ser Gly Pro Ser Leu Ser Ile Val Asn Pro Leu Asp Val Leu

60/88

1 5 10 15

Arg Gln Arg Leu Leu Glu Ile Ala Arg Arg Arg Met Arg Gln Ser 20 25 30

Gln Asp Gln Ile Gln Asn Arg Glu Ile Leu Gln Thr Ile 35

<210> 114

<211> 41

<212> PRT

<213> Artificial Sequence

<220>

<223> O. keta CRP

<400> 114

Ser Asp Asp Pro Pro Ile Ser Leu Asp Leu Thr Phe His Met Leu Arg 1 5 10 15

Gln Met Asn Glu Met Ser Arg Ala Glu Gln Leu Gln Gln Gln Ala His 20 25 30

Ser Asn Arg Lys Met Met Glu Ile Phe 35 40

<210> 115

<211> 40

<212> PRT

<213> Artificial Sequence

<220>

<223> R. norvegicus

<400> 115

Asp Asp Pro Pro Leu Ser Ile Asp Leu Thr Phe His Leu Leu Arg Thr 1 5 10 15

61/88

Leu Leu Glu Leu Ala Arg Thr Gln Ser Gln Arg Glu Arg Ala Glu Gln 20 25 30

Asn Arg Ile Ile Phe Asp Ser Val 35 40

<210> 116

<211> 37

<212> PRT

<213> Artificial Sequence

<220>

<223> P. sauvageii

<400> 116

Gln Gly Pro Pro Ile Ser Ile Asp Leu Ser Leu Glu Leu Leu Arg Lys 1 5 10 15

Met Ile Glu Ile Glu Lys Gln Glu Lys Glu Lys Gln Gln Ala Ala Asn 20 25 30

Asn Arg Leu Leu Leu 35

<210> 117

<211> 41

<212> PRT

<213> Artificial Sequence

<220>

<223> C. carpio US

<400> 117

Asn Asp Asp Pro Pro Ile Ser Ile Asp Leu Thr Phe His Leu Leu Arg 1 5 10 15

Asn Met Ile Glu Met Ala Arg Asn Glu Asn Gln Arg Glu Gln Ala Gly 20 25 30

62/88

Leu Asn Arg Lys Tyr Leu Asp Glu Val 35 40

<210> 118

<211> 38

<212> PRT

<213> Artificial Sequence

<220>

<223> M. Musculus UCN2

<400> 118

Val Ile Leu Ser Leu Asp Val Pro Ile Gly Leu Leu Arg Ile Leu Leu 1 5 10 15

Glu Gln Ala Arg Tyr Lys Ala Ala Arg Asn Gln Ala Ala Thr Asn Ala 20 25 30

Gln Ile Leu Ala His Val

<210> 119

<211> 38

<212> PRT

<213> Artificial Sequence

<220>

<223> R. dano UCN2

<400> 119

Leu Thr Leu Ser Leu Asp Val Pro Thr Asn Ile Met Asn Val Leu Phe 1 5 10 15

Asp Val Ala Lys Ala Lys Asn Leu Arg Ala Lys Ala Ala Glu Asn Ala 20 25 30

Arg Leu Leu Ala His Ile 35

63/88

<210> 120	
<211> 305	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Hamster 305bp urocortin cDNA probe examples "cloning mRNA"	
<400> 120 attcaccgcc gctcgggatc tgagcctgca ggcgagcggc agcgacggga agaccttccg	60
ctgtccatcg acctcacatt ccacctgcta cggaccctgc tggagatggc ccggacacag	120
agccaacgcg agcgagcaga gcagaaccga atcatactca acgcggtggg caagtgatcg	180
gcccggtgtg ggaccccaaa aggctcgacc ctttccccta cctaccccgg ggctgaagtc	240
acgcgaccga agtcggctta gtcccgcggt gcagcgcctc ccagagttac cctgaacaa	300
eeege	305
<210> 121	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> TCAP1 fwd primer	
<400> 121 acgtcagtgt tgatgggagg acta	24
<210> 122	
<211> 27	
<212> DNA	
<213> Artificial Sequence	

<220>

<223>	TCAP1 rvs primer	
<400>	122 gcct atttcactct gtctcat	27
CCLCCL		
<210>	123	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	TCAP2 Fwd primer	
<400>	123 gcaa ggacacacac tactt	25
009433		
<210>	124	
<211>	26	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	TCAP2 rvs primer	
<400>	124 etgga tgttgctgct actgtc	26
<210>	125	
<211>	25	
<212>		
<213>	Artificial Sequence	
<220>		•
<223>	TCAP3 fwd primer	
<400> caaca	· 125 acgcc ttctacctgg agaac	25

<210>	126	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	TCAP3 rvs primer	
	126 tggc actgtcagcc a	21
<210>	127	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	TCAP4 fwd primer	
<400> tttgcc	127 ctcca gtggttccat ctt	23
<210>	128	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	TCAP4 rvs primer	
<400> tggat	128 attgt tggcgctgtc tgac	24
<210>	129	
<211>	6	

66/88

<212> PRT

<213> Artificial Sequence

<220>

<223> Conserved motif between CRF and TCAP I/L S X X (X)-L/V at amino terminus

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> X=I or L

<220>

<221> MISC_FEATURE

<222> (3)..(3)

<223> X=T or A

<220>

<221> MISC_FEATURE

<222> (4)..(4)

<223> X=L, I or G

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> X=D, R or K

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> X=L or V

```
<400> 129
Xaa Ser Xaa Xaa Xaa Xaa
<210> 130
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Conserved motif between CRF and TCAP - In middle L/V-L/I-X-V/ali
       phatic residue
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> X=V or L
 <220>
 <221> MISC_FEATURE
 <222> (4)..(4)
 <223> X=M, L Q, I or V
 <220>
 <221> MISC_FEATURE
 <222> (2)..(2)
 <223> X=L, I or F
 <220>
 <221> MISC_FEATURE
 <222> (3)..(3)
```

```
<223> X=E, N, S or P
<400> 130
Xaa Xaa Xaa Xaa
<210> 131
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Conserved motif between CRF and TCAP N/I/A-H/basic residue -I/L/F
       /-aliphatic at carboxy terminus
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> X=R, A or I
 <220>
 <221> MISC_FEATURE
 <222> (3)..(3)
 <223> X=H or basic residues, K, I, R or Q
 <220>
 <221> MISC_FEATURE
 <222> (4)..(4)
 <223> X=I, L or F
 <400> 131
 Asn Xaa Xaa Xaa
```

1													-			
<210>	13	2														
<211>	- 89	64														
<212>	- DN	ΙA														
<213>	• Mu	ıs mu	scul	us												
<220	>															
<221	> ez	con														
<222	> (:	50).	. (819	97)												
<223	>															
<400 aagt	> 1 tcta	32 ag a	agcc	ggac	c ga	tgtg	caca	gag	aagg	aat	gaag	gaag	t at Me 1	g ga t As	t gtg p Val	58
aag Lys	gaa Glu 5	ege Arg	agg Arg	cct Pro	Tyr	tgc Cys 10	tcc Ser	ttg Leu	acc Thr	aag Lys	agc Ser 15	aga Arg	cgg Arg	gaa Glu	aag Lys	106
gaa Glu 20	agg Arg	cgc Arg	tat Tyr	aca Thr	aat Asn 25	tcg Ser	tcc Ser	gcg Ala	gac Asp	aat Asn 30	gag Glu	gag Glu	tgt Cys	agg Arg	gtc Val 35	154
ccc Pro	acg Thr	cag Gln	aag Lys	tcc Ser 40	tat Tyr	agt Ser	tcc Ser	agt Ser	gaa Glu 45	acc Thr	ttg Leu	aaa Lys	gct Ala	ttc Phe 50	gat Asp	202
cat His	gat Asp	tat Tyr	tca Ser 55	cgg Arg	ctg Leu	ctt Leu	tat Tyr	gga Gly 60	aac Asn	aga Arg	gta Val	aag Lys	gat Asp 65	ttg Leu	gtc Val	250
cac His	aga Arg	gaa Glu 70	gcc Ala	gac Asp	gag Glu	tat Tyr	act Thr 75	aga Arg	caa Gln	gga Gly	cag Gln	aat Asn 80	ttt Phe	acc Thr	cta Leu	298
agg Arg	cag Gln 85	tta Leu	gga Gly	gtg Val	tgt Cys	gaa Glu 90	tcc Ser	gca Ala	act Thr	cga Arg	aga Arg 95	gga Gly	gtg Val	gca Ala	ttc Phe	346
tgt Cys 100	Ala	gaa Glu	atg Met	GJA aaa	ctc Leu 105	Pro	cac His	aga Arg	ggt Gly	tac Tyr 110	Ser	atc Ile	agt Ser	gca Ala	ggg Gly 115	394
tca Ser	gat Asp	gcg Ala	gat Asp	acg Thr 120	GLu	aac Asn	gaa Glu	gca Ala	gtg Val 125	Met	tcc Ser	cct Pro	gag Glu	cat His 130	gcc Ala	442

atg Met	aga Arg	ctt Leu	tgg Trp 135	ggc Gly	agg Arg	GJA aaa	gtc Val	aaa Lys 140	tcg Ser	ggc	cgc Arg	agt Ser	tcc Ser 145	tgc Cys	ctg Leu	490
tca Ser	agc Ser	cgg Arg 150	tcc Ser	aac Asn	tcc Ser	gcc Ala	ctc Leu 155	acc Thr	ctg Leu	aca Thr	gac Asp	acg Thr 160	gag Glu	cac His	gag Glu	538
aac Asn	agg Arg 165	tcg Ser	gac Asp	agt Ser	gag Glu	agc Ser 170	gag Glu	caa Gln	cct Pro	tca Ser	aac Asn 175	aac Asn	cca Pro	gjà aaa	caa Gln	586
ccc Pro 180	acc Thr	ctg Leu	cag Gln	cct Pro	ttg Leu 185	ccg Pro	cca Pro	tcc Ser	cac His	aag Lys 190	cag Gln	cac His	ccg Pro	gcg Ala	cag Gln 195	634
cat His	cac His	ccg Pro	tcc Ser	atc Ile 200	act Thr	tcc Ser	ctc Leu	aat Asn	aga Arg 205	aac Asn	tcc Ser	ctg Leu	acc Thr	aat Asn 210	aga Arg	682
agg Arg	aac Asn	cag Gln	agt Ser 215	ccg Pro	gcc Ala	ccg Pro	ccg Pro	gct Ala 220	gct Ala	ttg Leu	ccc Pro	gcc Ala	gag Glu 225	ctg Leu	caa Gln	730
acc Thr	aca Thr	ccc Pro 230	gag Glu	tcc Ser	gtc Val	cag Gln	ctg Leu 235	cag Gln	gac Asp	agc Ser	tgg Trp	gtc Val 240	ьеи	ggc	agt Ser	778
aat Asn	gta Val 245	cca Pro	ctg Leu	gaa Glu	agc Ser	agg Arg 250	His	ttc Phe	cta Leu	ttc Phe	aaa Lys 255	THE	Gly	aca Thr	GJÀ GGG	826
acg Thr 260	Thr	cca Pro	ctg Leu	ttc Phe	agt Ser 265	acg Thr	gca Ala	acc Thr	ccg Pro	gga Gly 270	Tyr	aca Thr	atg Met	gca Ala	tct Ser 275	874
ggc Gly	tct Ser	gtt Val	tat Tyr	tct Ser 280	Pro	cct Pro	acc Thr	cgg Arg	cca Pro 285	Leu	cct Pro	aga Arg	aac Asn	acc Thr 290	cta Leu	922
tca Ser	. aga · Arg	agt Ser	gct Ala 295	Phe	aaa Lys	tto Phe	aag Lys	aag Lys 300	Ser	tca Ser	aag Lys	з лАх	tgo Cys 305	s ser	tgg Trp	970
agg Arg	tgc Cys	acc Thr	Ala	ctg Lev	tgt Cys	gct Ala	gta Val	Γ GT?	gto Val	tca Ser	gtg Val	g cto L Leu 320	т пе	g gco 1 Ala	att a Ile	1018
cto Lev	cto Lev 325	Ser	tat Tyr	ttt Phe	ata lle	gca Ala 330	a Me	g cat t His	cta Lev	a tti 1 Phe	gg Gl 33!	у гет	c aad 1 Asi	tgg Tr	g cac p His	1066
tta Lei 340	ı Glr	g cag n Glr	g aco	g gaa Glu	a aat 1 Asr 345	ı Ası	c aca	a tto r Phe	e gag e Glu	g aat 1 Asi 350	u GT	a aaa y Ly:	a gte s Va	g aa l As	t tct n Ser 355	1114
gad Asj	c acc	gtg	g cca l Pro	a aca	a aac r Ası	e act	t gt r Va	a tcg 1 Se:	g tta r Le	a cc	t tc o Se	t gg r Gl	c ga y As	c aa p As:	t gga n Gly	1162

								•	1700	,						
				360					365					370		
aaa Lys :	tta Leu	ggt Gly	gga Gly 375	ttt Phe	aca Thr	cat His	gaa Glu	aat Asn 380	aac Asn	acc Thr	ata Ile	gat Asp	tcc Ser 385	gga Gly	gaa Glu	1210
ctt Leu .	gat Asp	att Ile 390	ggc Gly	cgg Arg	aga Arg	Ala	att Ile 395	caa Gln	gag Glu	gtt Val	ccc Pro	ccc Pro 400	GJÀ āāā	atc Ile	ttc Phe	1258
tgg Trp	aga Arg 405	tcg Ser	cag Gln	ctc Leu	ttt Phe	att Ile 410	gat Asp	cag Gln	cca Pro	cag Gln	ttt Phe 415	ctt Leu	aag Lys	ttc Phe	aac Asn	1306
atc Ile 420	tct Ser	ctt Leu	cag Gln	aag Lys	gat Asp 425	gca Ala	ttg Leu	atc Ile	gga Gly	gtg Val 430	tac Tyr	ggc	cgg Arg	aag Lys	ggc Gly 435	1354
tta Leu	ccg Pro	cct Pro	tcc Ser	cat His 440	act Thr	cag Gln	tac Tyr	gac Asp	ttt Phe 445	gtg Val	gaa Glu	cta Leu	ctg Leu	gat Asp 450	ggt Gly	1402
agc Ser	agg Arg	tta Leu	att Ile 455	gcg Ala	aga Arg	gag Glu	cag Gln	cgg Arg 460	aac Asn	ctg Leu	gtg Val	gag Glu	tcc Ser 465	014	aga Arg	1450
gcc Ala	ggg	cgg Arg 470	Gln	gcg Ala	aga Arg	tct Ser	gtc Val 475	Ser	ctg Leu	cac His	gaa Glu	gct Ala 480	GIY	ttc Phe	atc Ile	1498
cag Gln	tac Tyr 485	Leu	gat Asp	tct Ser	gga Gly	atc Ile 490	tgg Trp	cat His	ctg Leu	gct Ala	ttt Phe 495	TAT	aac Asn	gac Asp	Gly gag	1546
aaa Lys 500	Asn	cca Pro	gag Glu	cag Gln	gtc Val 505	Ser	ttt Phe	aac Asn	acg Thr	ato Ile 510	vaı	ata Ile	gag Glu	g tct L Ser	gtg Val 515	1594
gtg Val	gaa Glu	tgo Cys	c ccc s Pro	cga Arg 520	Asn	tgc Cys	cat His	gga Gly	aat Asr 525	1 GIZ	gaç Glu	g tgt 1 Cys	gtt Val	tct L Sei 530	gga Gly	1642
act Thr	tgc Cys	cat His	tgt Cys 535	Phe	ccc Pro	ggg Gly	ttt Phe	cta Leu 540	GT2	ccg Pro	g gat o As <u>r</u>	tgt Cys	tca Ser 545	- AT	a gca g Ala	1690
gcc Ala	tgt Cys	cce Pro	o Vai	g cto l Lev	tgt Cys	agt Ser	ggg Gl ₃ 555	/ Asr	. Glž	g caa / Gli	a tao	tco r Sei 560	c mā:	g ggo s Gl	c cgc y Arg	1738
tgc Cys	cto Let 565	з Су	c tto s Pho	c agt e Ser	Gly	tgg Tri) Ly	g ggo	aco Th	c gag r Gl	g tg u Cy 57	S AS	c gt p Va	g cc	g acg o Thr	1786
acc Thr 580	Gl:	g tg n Cy	c at s Il	t gad e Ası	c ccg Pro 58!	o Gli	g tgo n Cy:	c ggg s Gly	y Gl	t cg y Ar 59	g GI	g at y Il	t tg e Cy	c at s Il	c atg e Met 595	1834
ggo	e te	t tg	c gc	t tg	t aa	e te	g gg	a ta	c aa	a gg	a ga	a aa	c tg	t ga	g gaa.	1882

Gly	Ser	Суз	Ala	Cys 600	Asn	Ser	Gly	Tyr	Lys 605	Gly	Glu	Asn	Cys	Glu 610	Glu	
gcg Ala	gac Asp	tgt Cys	cta Leu 615	gac Asp	cct Pro	gga Gly	tgt Cys	tct Ser 620	aat Asn	cac Hiŝ	GJÀ GGA	gtg Val	tgt Cys 625	atc Ile	cat His	1930
Gly ggg	gaa Glu	tgt Cys 630	cac His	tgc Cys	aat Asn	cca Pro	ggc Gly 635	tgg Trp	ggt Gly	ggc Gly	agc Ser	aac Asn 640	tgt Cys	gaa Glu	ata Ile	1978
ctg Leu	aag Lys 645	act Thr	atg Met	tgt Cys	gca Ala	gac Asp 650	cag Gln	tgc Cys	tca Ser	ggc Gly	cac His 655	GJA aaa	act Thr	tac Tyr	ctt Leu	2026
caa Gln 660	gaa Glu	agc Ser	ggc Gly	tcc Ser	tgc Cys 665	act Thr	tgc Cys	gac Asp	cca Pro	aat Asn 670	tgg Trp	act Thr	ggc Gly	ccc Pro	gac Asp 675	2074
tgc Cys	tca Ser	aat Asn	gaa Glu	ata Ile 680	tgt Cys	tca Ser	gtg Val	gac Asp	tgc Cys 685	ggc Gly	tca Ser	cac His	ggc Gly	gtc Val 690	tgc C y s	2122
atg Met	eja aaa	Gly	tcc Ser 695	tgt Cys	cgc Arg	tgt Cys	gaa Glu	gaa Glu 700	ggc	tgg Trp	acc Thr	ggc Gly	ccg Pro 705	gcg Ala	tgt Cys	2170
aat Asn	cag Gln	aga Arg 710	Ala	tgc Cys	cac His	cct Pro	cgc Arg 715	Суѕ	gct Ala	gag Glu	cac His	ggg Gly 720	acg Thr	tgc Cys	aag Lys	2218
gac Asp	ggc Gly 725	Lys	tgc Cys	gag Glu	tgc Cys	agc Ser 730	. Gln	gga Gly	tgg Trp	aac Asn	gga Gly 735	GIU	cac His	tgc Cys	aca Thr	2266
att Ile 740	Ala	cac His	tat Tyr	ttg Leu	gat Asp 745	Lys	ata Ile	gtt Val	aaa Lys	gag Glu 750	GTA	tgo Cys	ccc Pro	Gly ggc	ttg Leu 755	2314
tgo Cys	aac Asn	ago Ser	aat Asn	ggg Gly 760	Arg	tgc Cys	aca Thr	ctg Leu	gac Asp 765	GIL	aac Asr	ggc Gly	tgg Trp	r cac His	tgc Cys	2362
gtt Val	tgo L Cys	caç Glr	g cca n Pro 775	Gly	tgg Tr	aga Arg	g Gly	a gca / Ala 780	r GTZ	tgt Cys	gac S Asp	gta o Val	gco L Ala 785	1 110	g gag : Glu	2410
acc Thi	c cto	tgt 1 Cys 790	s Thi	a gad : Asp	ago Sei	aaa Lys	a gad s Ası 79!	o Asr	gaa Glu	a gga ı Gly	a gad 7 As]	gga g Gly 800	Lher	ati ı Ile	t gac e Asp	2458
tg:	c ato s Met	t As	t cct p Pro	gat Ası	tgo Cy:	tgo S Cy:	s Le	c cag u Gli	g ago n Sei	c tco c Sei	tge c Cy: 81	s GI	a aad n Asi	c cag	g ccc n Pro	2506
ta Ty: 82	r Cy	t cg s Ar	t ggo g Gl	c tto y Le	g cc u Pro 82	o As	t cc p Pr	t caq o Gli	g gat n Asj	t ato p Ilo 83	е тт	t ag e Se	c caa r Gl	a ag n Se	c ctt r Leu 835	2554

cag Gln	aca Thr	cca Pro	tct Ser	cag Gln 840	caa Gln	gct Ala	gcc Ala	aag Lys	tcc Ser 845	ttc Phe	tat Tyr	gac Asp	cga Arg	atc Ile 850	agt Ser	2602
ttc Phe	ctg Leu	att Ile	gga Gly 855	tcg Ser	gat Asp	agc Ser	acc Thr	cac His 860	gtg Val	ctc Leu	cct Pro	gga Gly	gaa Glu 865	agt Ser	ccg Pro	2650
ttc Phe	aat Asn	aag Lys 870	agt Ser	ctt Leu	gcg Ala	tcc Ser	gtc Val 875	atc Ile	aga Arg	ggc Gly	caa Gln	gta Val 880	cta Leu	aca Thr	gct Ala	2698
gat Asp	gga Gly 885	acc Thr	cca Pro	ctt Leu	att Ile	ggc Gly 890	gtc Val	aac Asn	gtg Val	tcg Ser	ttt Phe 895	ьeu	cac His	tac Tyr	tcg Ser	2746
gaa Glu 900	tat Tyr	gga Gly	tat Tyr	acc Thr	att Ile 905	acc Thr	cgc Arg	cag Gln	gat Asp	gga Gly 910	atg Met	ttt Phe	gac Asp	ttg Leu	gtg Val 915	2794
gca Ala	aat Asn	ggt Gly	ggc Gly	gct Ala 920	tct Ser	ctg Leu	act Thr	ttg Leu	gta Val 925	Pne	gag Glu	cgt Arg	tcc Ser	Pro 930	ttc Phe	2842
ctc Leu	act Thr	cag Gln	tac Tyr 935	cac His	act Thr	gtg Val	tgg Trp	att Ile 940	Pro	tgg Trp	aat Asn	gtc Val	ttt Phe 945	TAT	gtg Val	2890
atg Met	gat Asp	acc Thr 950	Leu	gtc Val	atg Met	aag Lys	aaa Lys 955	Glu	gag Glu	aac Asn	gac Asp	att Ile 960	Pro	ago Sei	tgt Cys	2938
gac Asp	ctc Leu 965	Ser	ggc	ttt Phe	gtg Val	agg Arg 970	Pro	agt Ser	ecc Pro	ato Ile	att 11e 975	e val	g tct L Ser	tca Sei	a ccg r Pro	2986
tta Leu 980	Ser	acc	ttc Phe	ttc Phe	agg Arg 985	Ser	tcc Ser	cct Pro	gag Glu	g gad 1 As <u>r</u> 990	Sei	e eco	ato Ile	ato	c ccc e Pro 995	3034
gag Glu	aca Thr	cag Gln	gtc Val	ctg Leu 100	ı Hi	ıt ga .s Gl	ia ga .u Gl	aa ao Lu Ti	ar Th		[le]		gga a Bly :	Thr I		3079
ttg Leu	aaa Lys	ctt Lev	tcc Ser	tac Tyr 101	. Le	g ag eu Se	gt to er Se	cc ag er A	rg A.	eg 9 la 2 020	gca (Ala (gly , aaa ,	tac a Tyr 1	Lys :	tca Ser 1025	3124
gtt Val	ctt Lev	aag Lys	g att s Ile	acc Thr 103	: Me	g ac et Tl	ec ca nr Gi	ag go ln A	la V	tc a al :	ata (Ile	ccg Pro	ttt a Phe a	Asn	ctc Leu 1040	3169
at <u>c</u> Met	aag Lys	g gto s Val	cat L His	cto Lev 104	1 Me 15	et Va	al A	la V	al V	aı (сту .	Arg	Leu	riie	1055	3214
aag Lys	g tgg s Trp	g tti p Pho	cct Pro	gco Ala 10	a S	cg co er P:	ca a ro A	ac t sn L	eu A	сс 1а 065	tac Tyr	acg Thr	ttc Phe	Ile	tgg Trp 1070	3259

gat Asp	aag Lys	acg Thr	gac Asp	gca Ala 1075	tat Tyr	aat Asn	cag Gln	aaa Lys	gtc Val 1080	tac Tyr	Gly	ttg Leu	Ser	gag Glu 1085	3304
gca Ala	gtt Val	gtg Val	tcc Ser	gtc Val 1090	gga Gly	tac Tyr	gag Glu	tac Tyr	gag Glu 1095	tcg Ser	tgc Cys	ttg Leu	gac Asp	ctg Leu 1100	3349
act Thr	ctc Leu	tgg Trp	gaa Glu	aag Lys 1105	agg Arg	act Thr	gcc Ala	gtt Val	ttg Leu 1110	caa Gln	ggc Gly	tat Tyr	gag Glu	ttg Leu 1115	3394
gat Asp	gct Ala	tcg Ser	aac Asn	atg Met 1120	ggc Gly	Gly	tgg Trp	acg Thr	ttg Leu 1125	gac Asp	aag Lys	cac His	cat His	gta Val 1130	3439
ctg Leu	gac Asp	gtt Val	cag Gln	aac Asn 1135	ggt Gly	ata Ile	cta Leu	tac Tyr	aaa Lys 1140	gga Gly	aat Asn	gga Gly	gaa Glu	aat Asn 1145	3484
cag Gln	ttc Phe	atc Ile	tct Ser	cag Gln 1150	cag Gln	cct Pro	ccg Pro	gtg Val	gtc Val 1155	agc Ser	agc Ser	atc Ile	atg Met	ggt Gly 1160	3529
aat Asn	ggt Gly	cgg Arg	agg Arg	cgt Arg 1165	Ser	atc Ile	tca Ser	tgc Cys	cca Pro 1170	Ser	tgc Cys	aat Asn	ggt Gly	caa Gln 1175	3574
gct Ala	gac Asp	Gly	aac Asn	aaa Lys 1180	Leu	ctg Leu	gca Ala	ccc Pro	gtg Val 1185	Ala	ctt Leu	gcc Ala	tgt Cys	ggg Gly 1190	3619
ato Ile	gac Asp	ggc Gly	agt Ser	cta Leu 1195	Tyr	gta Val	. Gly	gat Asp	ttc Phe 1200	ADI.	tac Tyr	gtc Val	cgg Arg	cgg Arg 1205	3664
ata Ile	tto Phe	cco Pro	g tct Ser	ggg Gly 1210	Asn	gtg Val	aca Thr	agt Ser	gtt Val 1215	ьес	a gaa 1 Glu	a cta 1 Leu	aga Arg	aat Asn 1220	3709
aaa Lys	a gat s Asp	ttt Phe	aga Arg	cat His 1225	Ser	ago Ser	aac Asr	c cca	gct Ala 1230	Hls	c aga s Arg	a tad g Tyl	tac Tyr	ctg Leu 1235	3754
gct Ala	acg a Thi	g gad Asl	c cca o Pro	gtc Val 1240	Thr	gga Gly	a gat / Asp	t ttg p Lei	g tac ı Tyr 124	va.	c tc: l Se:	t gai r Ası	act Thi	aac Asn 1250	3799
aco Th:	c cgo r Aro	age g Are	a ato g Ilo	c tat e Tyr 125!	Arg	g CC	g aaa o Lys	a tca s Sei	a ctc r Leu 126	Th	g gg r Gl	a gco y Ala	c aaa a Ly:	a gac s Asp 1265	3844
ct: Le	g act	t aa r Ly	a aa s Asi	c gct n Ala 127	Glı	a gte	g gt	g gc	a ggg a Gly 127	T'n	c gg r Gl	g ga y Gl	a cag u Gli	g tgc n Cys 1280	3889
ct Le	t cc u Pr	c tt o Ph	t ga e As	c gag p Glu	gc: Ala	a ag	g tg g Cy	t gg s Gl	g gat y Asp	ej aa	a gg y Gl	c aa y Ly	g gc s Al	t gtg a Val	3934

1	.285	1290		1295
gaa gca acg ctc a Glu Ala Thr Leu M 1	atg agt ccc Met Ser Pro L300	aaa gga atg Lys Gly Met 1305	gca atc gat aag Ala Ile Asp Lys	aac 3979 Asn 1310
gga ctg atc tac t Gly Leu Ile Tyr I	ctt gtt gat Phe Val Asp 1315	gga acc atg Gly Thr Met 1320	atc aga aag gtt Ile Arg Lys Val	gat 4024 Asp 1325
caa aat gga atc a Gln Asn Gly Ile i	ata tca act Ile Ser Thr 1330	ctc ctg ggc Leu Leu Gly 1335	tcc aac gac ctc Ser Asn Asp Leu	acg 4069 Thr 1340
tca gct cga cct (Ser Ala Arg Pro)	tta acc tgt Leu Thr Cys 1345	gat act agc Asp Thr Ser 1350	Wet HIS ITE SET	cag 4114 Gln 1355
gtg cgt ctg gaa Val Arg Leu Glu	tgg ccc act Trp Pro Thr 1360	gac ctc gcg Asp Leu Ala 1365	Tie way bio wec	gat 4159 Asp 1370
aac tcc atc tac Asn Ser Ile Tyr	gtc ctg gat Val Leu Asr 1375	aat aac gta Asn Asn Val 1380	gtt tta cag atc Val Leu Gln Ile	act 4204 Thr 1385
Glu Asn Arg Gln	gtc cgc ato Val Arg Ile 1390	gct gcc ggg Ala Ala Gly 1395	cgg ccc atg cac Arg Pro Met His	tgt 4249 Cys 1400
cag gtc cct gga Gln Val Pro Gly	gtg gaa tad Val Glu Ty 1405	c ccg gtg ggg Pro Val Gly 1410	aag cac gcg gtt Lys His Ala Val)	cag 4294 Gln 1415
acc acc ctg gag Thr Thr Leu Glu	tca gcc acg Ser Ala Thr 1420	g gcc att gct Ala Ile Ala 142	gtg tcc tac ago Val Ser Tyr Ser	ggg 4339 Gly 1430
gtc ctt tac atc Val Leu Tyr Ile	acg gaa ac Thr Glu Th 1435	t gat gag aag r Asp Glu Lys 144	aag atc aac cga Lys Ile Asn Arg O	ata 4384 g Ile 1445
agg cag gtc acg Arg Gln Val Thr	aca gac gg Thr Asp Gl 1450	g gag atc tcc y Glu Ile Ser 145	tta gtg gct ggg Leu Val Ala Gly 5	g ata 4429 g Ile 1460
cct tcg gaa tgt Pro Ser Glu Cys	gac tgc aa Asp Cys Ly 1465	g aac gac gcc s Asn Asp Ala 147	aac tgt gac tgo Asn Cys Asp Cys 0	e tac 4474 s Tyr 1475
caa agc gga gac Gln Ser Gly Asp	ggc tac go Gly Tyr Al 1480	c aaa gat gcc a Lys Asp Ala 148	aaa ctc aat gc Lys Leu Asn Al 5	g ccg 4519 a Pro 1490
tcc tcc ctg gcc Ser Ser Leu Ala	gcc tcg co Ala Ser Pr 1495	a gat ggc act o Asp Gly Thr 150	ctg tac att gc Leu Tyr Ile Al	a gat 4564 a Asp 1505
ctg gga aat atc	agg atc co	gg gcc gtt tcc	g aag aat aaa cc	t tta 4609

Leu	Gly	Asn	Ile	Arg 1510	Ile	Arg	Ala	Val	Ser 1515	Lys	Asn	Lys	Pro	Leu 1520	
ctg Leu	aac Asn	tca Ser	atg Met	aac Asn 1525	ttt Phe	tac Tyr	gaa Glu	gtt Val	gcc Ala 1530	tct Ser	cca Pro	act Thr	gat Asp	caa Gln 1535	4654
gag Glu	ctc Leu	tac Tyr	atc Ile	ttt Phe 1540	gac Asp	atc Ile	aac Asn	ggt Gly	act Thr 1545	cac His	cag Gln	tac Tyr	acc Thr	gtg Val 1550	4699
agc Ser	ctg Leu	gtc Val	acg Thr	ggt Gly 1555	gac Asp	tac Tyr	cta Leu	tat Tyr	aat Asn 1560	ttt Phe	agt Ser	tac Tyr	agc Ser	aat Asn 1565	4744
gac Asp	aat Asn	gac Asp	gtc Val	acc Thr 1570	gct Ala	gta Val	act Thr	gac Asp	agc Ser 1575	aat Asn	ggc Gly	aac Asn	acc Thr	ctc Leu 1580	4789
cga Arg	atc Ile	cga Arg	agg Arg	gat Asp 1585	ccg Pro	aat Asn	cgg Arg	atg Met	ccg Pro 1590	gtg Val	cgg Arg	gtg Val	gtg Val	tct Ser 1595	4834
cct Pro	gat Asp	aac Asn	cag Gln	gtg Val 1600	ata Ile	tgg Trp	ttg Leu	acc Thr	ata Ile 1605	ggc Gly	acc Thr	aac Asn	ggg Gly	tgt Cys 1610	4879
ctg Leu	aaa Lys	ago Ser	atg Met	acc Thr 1615	Ala	cag Gln	ggc Gly	ctg Leu	gaa Glu 1620	nec	gtt Val	tto Lev	ttt i Phe	act Thr 1625	4924
tac Tyr	cat His	ggc Gly	aac Asn	agt Ser 1630	Gly	ctt Leu	tta Leu	gcc Ala	acc Thr 1635	Lys	a agt s Sei	gao Asi	gaa Glu	a act Thr 1640	4969
gga Gly	tgg Tr	g aca	a aca	ttt Phe 1645	Phe	gac Asp	tat Tyr	gac Asp	agt Ser 1650	GIL	a ggt ı Gl	t cg	c cto g Lev	g acg i Thr 1655	5014
aat Asr	gtt n Val	aco L Thi	c tto	c ccc Pro 1660	Thr	: ggg	g gtg y Val	g gtt L Val	aca Thr 1665	ASI	c ct n Le	g ca u Hi	c ggg	g gac y Asp 1670	5059
ato Mei	g gad t Asj	c aag	g gci s Ala	t atc a Ile 1679	Thi	g gte c Val	g gad l Ası	c ato p Ile	gag Glu 1680	5e.	a tc r Se	c ag r Se	c ag r Ar	a gag g Glu 1685	5104
ga: Gl:	a ga u As	t gt p Va	c age	c atc r Ile 1690	Th:	t tc r Se	g aad r Asi	c tto n Len	g tcc u Ser 169	56	c at r Il	c ga e As	t tc p Se	c ttc r Phe 1700	5149
ta Ty	c ac r Th	c at r Me	g gt t Va	c caa l Gln 170	As	c ca p Gl	g tt n Le	a ag u Ar	a aac g Asn 171	Se	t ta r Ty	c ca r Gl	g at n Il	t ggg e Gly 1715	5194
ta Ty	t ga r As	t gg p Gl	c tc y Se	c ctt r Leu 172	Ar	a at g Il	c tt e Ph	c ta e Ty	t gcc r Ala 172	Se	rt gg er Gl	jt ct .y L∈	g ga eu As	c tct sp Ser 1730	5239

cac f	tac Tyr	cag Gln	aca Thr	gag Glu 1735	ccc Pro	cac His	gtt Val	ctg Leu	gct Ala 1740	ggc Gly	acg Thr	gcg Ala	aat Asn	ecc Pro 1745	5284
aca Thr	gta Val	gcc Ala	aaa Lys	aga Arg 1750	aac Asn	atg Met	act Thr	ctt Leu	ccc Pro 1755	ggt Gly	gag Glu	aac Asn	Gly ggg	cag Gln 1760	5329
aat Asn	ctg Leu	gtg Val	gag Glu	tgg Trp 1765	aga Arg	ttc Phe	cga Arg	aaa Lys	gaa Glu 1770	caa Gln	gcc Ala	cag Gln	ggc Gly	aaa Lys 1775	5374
gtc Val	aac Asn	gta Val	ttc Phe	ggc Gly 1780	cgg Arg	aag Lys	ctc Leu	agg Arg	gtc Val 1785	aat Asn	GJÀ aaa	cgc Arg	aac Asn	cta Leu 1790	5419
ctc Leu	tca Ser	gtg Val	gac Asp	ttt Phe 1795	gat Asp	cgg Arg	acc Thr	acc Thr	aag Lys 1800	acg Thr	gaa Glu	aag Lys	atc Ile	tat Tyr 1805	5464
gat Asp	gac Asp	cac His	cgg Arg	aaa Lys 1810	ttt Phe	ctc Leu	ctg Leu	agg Arg	atc Ile 1815	Ата	tac Tyr	gac Asp	acg Thr	tcg Ser 1820	5509
Gly ggg	cac His	ccg Pro	act Thr	ctc Leu 1825	tgg Trp	ctg Leu	ccg Pro	agt Ser	agc Ser 1830	пуз	cta Leu	atg Met	gca Ala	gtg Val 1835	5554
aac Asn	gtc Val	acc Thr	tac Tyr	tca Ser 1840	Ser	acc Thr	ggt Gly	caa Gln	att Ile 1845	Ala	ago Ser	ato Ile	cag Gln	aga Arg 1850	5599
GJA āāā	acc Thr	acg Thr	agc Ser	gaa Glu 1855	Lys	gtg Val	gac Asp	tat Tyr	gac Asp 1860	Ser	cag Glr	r Glž i aad	g agg 7 Arg	gatc gIle 1865	5644
gta Val	tct Ser	cgg Arg	g gto g Val	ttt Phe 1870	Ala	gat Asp	Gly ggg	aaa Lys	a aca Thr 1875	TIL	g agt o Sei	tac Ty	acg Thi	tac Tyr 1880	5689
ttg Leu	gaa Glu	aaq Ly:	g tco s Sei	atg Met 1885	Val	ctt Lei	cto Lev	g cto Lei	cat His 1890	se	c Cag	g cg	g cag g Gli	tac n Tyr 1895	5734
atc Ile	tto Phe	gaa Gl	a tad u Ty	gac Asp 1900	Met	tg: Tr	g gad o Ası	c cgo p Arg	c ctg g Leu 1909	se.	c gce r Ala	c at a Il	c ace e Thi	c atg r Met 1910	5779
ccc Pro	agt Sei	t gte c Va	g gc	t cgc a Arg 191!	His	c ac	c ato	g cag t Gl	g acc n Thr 192	11	c cg e Ar	g tc g Se	c at r Il	t ggc e Gly 1925	5824
tac Tyr	tac Ty	c cg r Ar	c aa g As	c atc n Ile 193	Ty:	c aa r As	t cc n Pr	c cc o Pr	a gaa o Glu 193	se	c aa r As	t gc n Al	c tc a Se	t atc r Ile 1940	5869
ato Ile	c ace	c ga r As	c ta p Ty	c aac r Asn 194	Gl	g ga u Gl	a gg u Gl	g ct y Le	g ctt u Leu 195	. ье	g ca u Gl	a ac n Th	a go r Al	t ttc a Phe 1955	5914

ctg (gga Gly	acg Thr	Ser	cgg Arg 1960	agg Arg	gtc Val	tta Leu	Pne	aag Lys 1965	tat Tyr	aga Arg	agg Arg	cag Gln	acc Thr 1970	5959
agg Arg	cta Leu	tca Ser	gaa Glu	att Ile 1975	tta Leu	tac Tyr	gac Asp	agc Ser	aca Thr 1980	aga Arg	gtc Val	agt Ser	ttt Phe	acc Thr 1985	6004
tac Tyr	gac Asp	gaa Glu	aca Thr	gcg Ala 1990	gga Gly	gtc Val	ctg Leu	aaa Lys	aca Thr 1995	gta Val	aac Asn	ctt Leu	cag Gln	agt Ser 2000	6049
gat Asp	ggt Gly	ttt Phe	att Ile	tgc Cys 2005	acc Thr	att Ile	aga Arg	tac Tyr	agg Arg 2010	caa Gln	att Ile	ggt Gly	ccc Pro	ctg Leu 2015	6094
att Ile	gac Asp	aga Arg	cag Gln	att Ile 2020	ttc Phe	cgc Arg	ttc Phe	agc Ser	gag Glu 2025	gat Asp	gga Gly	atg Met	gta Val	aat Asn 2030	6139
gcg Ala	aga Arg	ttt Phe	gac Asp		agc Ser	tac Tyr	gac Asp	aac Asn	agc Ser 2040	ttt Phe	cga Arg	gtg Val	acc Thr	agc Ser 2045	6184
atg Met	cag Gln	ggt Gly	gtc Val	atc Ile 2050	Asn	gaa Glu	aca Thr	cca Pro	ctg Leu 2055	Pro	att Ile	gat Asp	cta Leu	tac Tyr 2060	6229
cag Gln	ttt Phe	gat Asp	gac Asp	atc Ile 2065	Ser	ggc	aaa Lys	gtc Val	gag Glu 2070	GII	ttt Phe	gga Gly	aaa Lys	ttc Phe 2075	6274
gga Gly	gtg Val	ata Ile	tac Tyr	tac Tyr 2080	Asp	atc Ile	aac Asn	caa Gln	atc Ile 2085	Ile	tcc Ser	acg Thr	gcc Ala	gtg Val 2090	6319
atg Met	act Thr	tat Tyr	aca Thr	aag Lys 2095	His	ttt Phe	gat Asp	gct Ala	cat His 2100	GT7	g cgo / Arg	ato JIle	aag Lys	gag Glu 2105	6364
atc Ile	caa Gln	tat Tyr	gag Glu	ata Ile 2110	Phe	agg Arg	g tca g Ser	cto Lev	atg Met 2115	тУ	tgg Tr	g att p Ile	aca Thi	att Ile 2120	6409
caa Gln	tat Tyr	gat Ası	aat Asr	atg Met 2125	Glz	cgg Arg	g gta g Val	a aco	aag Lys 2130	Ar	a gag g Gli	g ati u Ile	aaa Lys	a att s Ile 2135	6454
Gly ggg	g cct Pro	tt! Pho	t gco e Ala	a aac a Asn 2140	Thi	aco Thi	c aaa c Lys	a tao	gcg r Ala 214	Ty:	c ga r Gl	g ta u Ty:	c gad r Asj	gtc Val 2150	6499
gat Asp	gga Gly	a cag	g cto n Lev	c caa ı Gln 215	Th	a gt: c Vai	t ta l Ty	c cta r Le	a aac u Asn 216	G1	a aa u Ly	g at s Il	c at e Me	g tgg t Trp 2165	6544
cgg	tao Ty:	c aa r As	c tac n Ty:	c gac r Asp	ct: Le	a aa u As	t gg n Gl	a aa y As	c ctc n Leu	ca Hi	c tt s Le	g ct u Le	c aa u As	c ccc n Pro	6589

				2170					2175					2180	
agc Ser	agc Ser	agc Ser	gcc Ala	cgc Arg 2185	ctg Leu	acc Thr	cct Pro	ctg Leu	cgc Arg 2190	tat Tyr	gac Asp	ctg Leu	cgc Arg	gac Asp 2195	6634
aga Arg	atc Ile	acc Thr	cgc Arg	ctg Leu 2200	ggc Gly	gat Asp	gtt Val	cag Gln	tac Tyr 2205	cgg Arg	ctg Leu	gat Asp	gaa Glu	gat Asp 2210	6679
ggt Gly	ttc Phe	ctg Leu	cgt Arg	cag Gln 2215	agg Arg	ggc	act Thr	gaa Glu	att Ile 2220	ttt Phe	gaa Glu	tac Tyr	agc Ser	tcc Ser 2225	6724
aaa Lys	Glà aaa	ctt Leu	ctg Leu	act Thr 2230	cga Arg	gtc Val	tac Tyr	agt Ser	ааа Lys 2235	ggc	agt Ser	ggc Gly	tgg Trp	aca Thr 2240	6769
gtg Val	atc Ile	tat Tyr	cgg Arg	tac Tyr 2245	gac Asp	ggc Gly	ctg Leu	gga Gly	aga Arg 2250	cgt Arg	gtt Val	tct Ser	agc Ser	aaa Lys 2255	6814
acc Thr	agc Ser	ctg Leu	gga Gly	cag Gln 2260	cac His	ctt Leu	cag Gln	ttt Phe	ttc Phe 2265	JĀI	gcc Ala	gac Asp	ctg Leu	aca Thr 2270	6859
tac Tyr	ccc Pro	acg Thr	aga Arg	att Ile 2275	act Thr	cac His	gtc Val	tac Tyr	aac Asn 2280	Hls	tcc Ser	agt Ser	tca Ser	gaa Glu 2285	6904
				tac Tyr 2290	Tyr	gac Asp	ctc Leu	caa Gln	gga Gly 2295	His	cto Leu	tto Phe	gcc Ala	atg Met 2300	6949
gag Glu	ato Ile	ago Ser	agt Ser	ggg Gly 2305	Asp	gag Glu	ttc Phe	tac Tyr	atc Ile 2310	Ala	tcg Ser	gac Asp	aac Asn	acg Thr 2315	6994
G1y ggg	aca Thr	ccg Pro	g cto Lev	gct Ala 2320	Val	ttc Phe	agc Ser	ago Ser	aac Asn 2325	G13	g cto / Let	ato 1 Met	g cto Lev	aaa Lys 2330	7039
cag Glr	aco Thr	cag Glr	tao n Tyn	act Thr 2335	Ala	tat Tyr	ggt Gly	gaq Glu	g atc i Ile 2340	TY :	c tti r Phe	c gad e Ası	c tco p Sei	aac Asn 2345	7084
gto Val	gac Asp	tti Phe	t cag e Gli	g ctg n Leu 2350	۷a.	a att	gga Gly	a tto / Pho	c cac e His 235	GT.	y Gl	c tte	g tai u Tyi	gac Asp 2360	7129
cco	g cto Le	ace 1 Th:	c aaa r Lya	a cta s Leu 236!	Ile	c cad e His	c ttt s Phe	t gga	a gaa y Glu 237	Ar	a ga g As	t ta p Ty	t gad r Asj	c att p Ile 2375	7174
tt: Le:	g gc	g gg a Gl	a ag y Ar	a tgg g Trp 238	Th	c ace	a cce	g ga o As	c att p Ile 238	Gl	a at u Il	c tg e Tr	g aa p Ly	a agg s Arg 2390	7219
at	c gg	a aa	g ga	c cct	gc	t cc	t tt	t aa	c ctg	ta	t at	g tt	t cg	g aat	7264

Ile	Gly	Гуs		Pro 2395	Ala	Pro	Phe	Asn	Leu 2400	Tyr	Met	Phe	Arg	Asn 2405	
aac Asn	aac Asn	ccc Pro	gcg Ala	agc Ser 2410	aaa Lys	atc Ile	cat His	gat Asp	gtg Val 2415	aaa Lys	gat Asp	tac Tyr	atc Ile	acg Thr 2420	7309
gat Asp	gtt Val	aac Asn	agc Ser	tgg Trp 2425	ctg Leu	gtg Val	acg Thr	ttt Phe	ggc Gly 2430	ttc Phe	cat His	ctg Leu	cac His	aat Asn 2435	7354
gct Ala	att Ile	cct Pro	gga Gly	ttc Phe 2440	cct Pro	gtt Val	ccc Pro	aaa Lys	ttt Phe 2445	gat Asp	tta Leu	act Thr	gag Glu	cct Pro 2450	7399
tcc Ser	tat Tyr	gag Glu	ctt Leu	gtg Val 2455	aag Lys	agt Ser	caa Gln	cag Gln	tgg Trp 2460	gaa Glu	gat Asp	gtg Val	ccg Pro	ccc Pro 2465	7444
atc Ile	ttt Phe	gga Gly	gtt Val	cag Gln 2470	cag Gln	caa Gln	gtg Val	gca Ala	agg Arg 2475	caa Gln	gcc Ala	aag Lys	gcc Ala	ttc Phe 2480	7489
ttg Leu	tcc Ser	ctg Leu	Gly	aag Lys 2485	atg Met	gcc Ala	gag Glu	gtg Val	cag Gln 2490	Val	agc Ser	cga Arg	. cgc Arg	aaa Lys 2495	7534
gct Ala	ggc Gly	gcc Ala	gag Glu	cag Gln 2500	tcg Ser	tgg Trp	ctg Leu	tgg Trp	ttc Phe 2505	Ala	acg Thr	gto Val	aag Lys	tcg Ser 2510	7579
ctc Leu	atc Ile	ggo	aag Lys	ggc Gly 2515	۷al	atg Met	ctg Leu	gcc Ala	gtg Val 2520	Ser	caa Glr	ggo Gly	cgc Arg	gtg Val 2525	7624
cag Gln	acc Thr	aac Asr	gtg Val	ctc Leu 2530	Asn	ato Ile	gco Ala	aac Asr	gag Glu 2535	ASI	tgo Cys	ato Ile	c aag e Lys	gtg Val 2540	7669
gcg Ala	g gcg	g gtg a Val	g cto Lev	aac Asn 2545	Asn	gcc Ala	tto Phe	tac Tyr	ctg Leu 2550	Glı	g aad 1 Asi	c cto	g cad u His	ttc Phe 2555	7714
aco Thi	ato	gaç Glı	ı Gly	: aag , Lys 2560	Asr	aca Thi	a cad	tao Tyi	ttc Phe 256	11.	c aag e Ly:	g ac	c acc	aca Thr 2570	7759
cco	gaç Glı	g ago u Se:	c gad r Ası	c ctg Leu 2575	GT7	aca 7 Thi	a cto	ı Ar	g ctg g Leu 258	111	g ag r Se	c gg r Gl	t cg y Ar	c aag g Lys 2585	7804
gc: Al:	c ct a Le	g ga u Gl	g aad u Asi	ggg Gly 2590	Ile	c aac e Asi	c gt n Va	g ace l Thi	c gtg r Val 259	Se	t ca r Gl	g to n Se	c ac r Th	c acg r Thr 2600	7849
gt Va	g gt l Va	g aa l As	c gg n Gl	c agg y Arg 260	Th:	t cg	c ag g Ar	g tt g Ph	c gcc e Ala 261	AS	c gt p Va	g ga 1 Gl	g at u Me	g cag t Gln 2615	7894

81/88

ttc ggt gcc ctg gca ctg cat gtg cgc tat ggc atg acg ctg gac Phe Gly Ala Leu Ala Leu His Val Arg Tyr Gly Met Thr Leu Asp 2620 2625 2630	7939
gag gag aag gcg cgc att ctg gag cag gcg cgc cag cgc gcg ctc Glu Glu Lys Ala Arg Ile Leu Glu Gln Ala Arg Gln Arg Ala Leu 2635 2640 2645	7984
gcc cgg gcg tgg gca cgg gag cag cag cgc gtg cgc gac ggc gag Ala Arg Ala Trp Ala Arg Glu Gln Gln Arg Val Arg Asp Gly Glu 2650 2655 2660	8029
gag ggt gcg cgc ctc tgg acg gag ggt gag aaa cgg cag ctg ctg Glu Gly Ala Arg Leu Trp Thr Glu Gly Glu Lys Arg Gln Leu 2665 2670 2675	8074
agc gct ggc aag gtg cag ggc tac gat ggg tac tac gta ctg tcg Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr Val Leu Ser 2680 2685 2690	8119
gtg gag cag tac ccc gag ctg gct gac agt gcc aac aac atc cag Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile Gln 2695 2700 2705	8164
ttc ttg cga caa agt gag atc ggc aag agg taa cccccgggcc Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg 2710 2715	8207
accectgtge agatteteet gtageacaat ecaaacegga etetecaaag ageetteeaa	8267
aatgacactg ctctgcagac agacacatcg cagatacaca cgcaacacaa accagaaaca	8327
aagacaactt ttttttttt ctgaatgacc ttaaaggtga tcggctttaa agaatatgtt	8387
tacatacgca tatcgctgca ctcaattgga ctggaagtat gagaaaggaa aaaaaagcat	8447
taaaaaaggc aacgttttgc catgacccct ctgtaccttc gaggcactgt atttaacaaa	8507
ggttttaaaa aggaaaaaa aatgcgtaca atgtttccag atattactga attgtcgacc	8567
tttgcttaca ggaagtaatc tctacttagg atgtgatata tatagatctg ttcattttaa	8627
aatgtggggc aaagttactg tttatagaac ccaactgctt tcccgtgctg ctttgtaaaa	8687
ggacactggc acaagggacg tctgcttcgg cggggattta ataatggatt ttactaacat	8747
ggcttgccct gggagggaaa aactgacgaa tagaatcctt gtcactgata agcaaaggaa	8807
accctgattt ttttgtaaat tatgtgagac aagttgttta tggattttta tatgaattac	8867
aatttactgt acatcaaata ttagtctcag aggagttaat ttatgtaaag tgtttaaaaa	8927
gtttatactt aaaaataaaa tgataaaaac aaaaaaa	8964

<210> 133

<211> 2253

82/88

<212> DNA <213> Homo sapiens <220> exon <221> (107)..(1090) <222> <223> <400> 133 gtgccccgga tgtgcccagc tggctcctgg ccccacccct cgggcctttg ggctggacca 60 gccacctctg cctgagacct ccggtcgccg caagaagctg gagagg atg tac agc 115 Met Tyr Ser 1 gtt gac cgt gtg tct gac gac atc cct att cgt acc tgg ttc ccc aag 163 Val Asp Arg Val Ser Asp Asp Ile Pro Ile Arg Thr Trp Phe Pro Lys 10 gaa aat ctt ttc agc ttc cag aca gca acc aca act atg caa gcg gtg 211 Glu Asn Leu Phe Ser Phe Gln Thr Ala Thr Thr Thr Met Gln Ala Val ttc agg ggc tac gcg gag agg aag cgc cgg aaa cgg gag aat gat tcc 259 Phe Arg Gly Tyr Ala Glu Arg Lys Arg Lys Arg Glu Asn Asp Ser gcg tct gta atc cag agg aac ttc cgc aaa cac ctg cgc atg gtc ggc 307 Ala Ser Val Ile Gln Arg Asn Phe Arg Lys His Leu Arg Met Val Gly 55 age egg agg gtg aag gee eag aeg tte get gag egg ege gag egg age 355 Ser Arg Arg Val Lys Ala Gln Thr Phe Ala Glu Arg Arg Glu Arg Ser 70 ttc agc cgg tcc tgg agc gac ccc acc ccc atg aaa gcc gac act tcc 403 Phe Ser Arg Ser Trp Ser Asp Pro Thr Pro Met Lys Ala Asp Thr Ser 85 90 cac gac tee ega gac age age tee eac tge acg etg 451 His Asp Ser Arg Asp Ser Ser Asp Leu Gln Ser Ser His Cys Thr Leu 115 110 105 100 gac gag gcc ttc gag gac ctg gac tgg gac act gag aag ggc ctg gag 499 Asp Glu Ala Phe Glu Asp Leu Asp Trp Asp Thr Glu Lys Gly Leu Glu 125 120 get gtg gcc tgc gac acc gaa ggc ttc gtg cca cca aag gtc atg ctc 547 Ala Val Ala Cys Asp Thr Glu Gly Phe Val Pro Pro Lys Val Met Leu 140

att Ile	tcc Ser	tcc Ser 150	aag Lys	gtg Val	ccc Pro	aag Lys	gct Ala 155	gag Glu	tac Tyr	atc Ile	ccc Pro	act Thr 160	atc Ile	atc Ile	cgc Arg	595
cgg Arg	gat Asp 165	gac Asp	ccc Pro	tcc Ser	atc Ile	atc Ile 170	ccc Pro	atc Ile	ctc Leu	tac Tyr	gac Asp 175	cat His	gag Glu	cac His	gca Ala	643
acc Thr 180	ttc Phe	gag Glu	gac Asp	atc Ile	ctt Leu 185	gag Glu	gag Glu	ata Ile	gag Glu	agg Arg 190	aag Lys	ctg Leu	aac Asn	gtc Val	tac Tyr 195	691
cac His	aag Lys	gga Gly	gcc Ala	aag Lys 200	atc Ile	tgg Trp	aaa Lys	atg Met	ctg Leu 205	att Ile	ttc Phe	tgc Cys	cag Gln	gga Gly 210	ggt Gly	739
cct Pro	gga Gly	cac His	ctc Leu 215	tat Tyr	ctc Leu	ctc Leu	aag Lys	aac Asn 220	aag Lys	gtg Val	gcc Ala	acc Thr	ttt Phe 225	gcc Ala	aaa Lys	787
gtg Val	gag Glu	aag Lys 230	gaa Glu	gag Glu	gac Asp	atg Met	att Ile 235	cac His	ttc Phe	tgg Trp	aag Lys	cgg Arg 240	Leu	agc Ser	cgc Arg	835
ctg Leu	atg Met 245	Ser	aaa Lys	gtg Val	aac Asn	cca Pro 250	gag Glu	ccg Pro	aac Asn	gtc Val	ato 11e 255	: nrs	atc Ile	atg Met	Gly	883
tgc Cys 260	Tyr	att Ile	ctg Leu	ggg Gly	aac Asn 265	Pro	aat Asn	gga Gly	gag Glu	aag Lys 270	тег	tto Phe	cag Gln	aac Asn	ctc Leu 275	931
agg Arg	acc Thr	cto Leu	atg Met	act Thr 280	Pro	tat Tyr	agg Arg	gto Val	acc Thr 285	Phe	gag Glu	g tca 1 Ser	ccc Pro	ctg Lev 290	gag Glu	979
ctc Leu	tca Ser	gcc Ala	caa Glr 295	ı Gly	aag Lys	cag Glr	, atg Met	300	GTr	g acg n Thr	tao Ty	c ttt c Phe	gac Asp 305) FIIC	c cgg e Arg	1027
ttg Lev	f tat L Tyr	c cgc Arg 310	J Lei	g tgg ı Tr <u>p</u>	g aag b Lys	g ago s Ser	cgc Arg 315	d GTI	g cad n His	c tco s Sei	g aag C Lys	g cto s Lei 320	т пес	g gad 1 As <u>r</u>	ttt Phe	1075
gac As <u>r</u>	gao Asi 32	y Va.	c cto L Leu	g tga	a ggg	ggcag	gagg	cct	eeged	cca g	gtca	ccato	ca gg	gcca	ctccc	1130
tct	gca	ccgg	gac	ctgg	ggc 1	tggg	ccgc	ct c	gtgc	tccc	c gg	gact	gtgt	agc	tccggtc	1190
															gttccgg	1250
to	ctcg	ctgc	acc	cgtg	gcc	gcag	aggc	tg c	agtc	cctg	g gg	gccg	ggag	gat	cccgccc	1310
tg	tggc	ccgt	gga	tgct	cag	cggc	cagg	ca c	tgac	ctgc	c at	gcct	cgcc	tgg	aggctca	1370
															ccgaaac	1430
aa	ttca	aagg	gaa	gcag	cat	ttct	tgtt	aa c	tagt	taag	c ac	tatg	ctgc	tag	ttacagt	1490

84/88

gtaggcaccc	cggcccagca	gcccagcagc	ccacatgtgt	tcaggaccct	ccctgcccac	1550
			agggtggccc			1610
			ctggccgagt			1670
gccgagtctc	cgactgtctg	tgctttcact	tacactcctc	ttgccacccc	ccatccctgc	1730
ttacttagac	ctcagccggc	gccggacccg	gtaggggcag	tctgggcagc	aggaaggaag	1790
ggcgcagcgt	ccctccttc	agaggaggct	ctgggtgggg	cctgctcctc	atcccccaa	1850
gcccacccag	cactctcatt	gctgctgttg	agttcagctt	ttaccagcct	cagtgtggag	1910
gctccatccc	agcacacagg	cctggggctt	ggcaggggcc	cagctggggc	tgggccctgg	1970
gttttgagaa	actcgctggc	accacagtgg	gcccctggac	ccggccgcgc	agctggtgga	2030
ctgtaggggc	tcctgactgg	gcacaggagc	tcccagcttt	tgtccacggc	cagcaggatg	2090
ggctgtcgtg	tatatagctg	gggcgagggg	gcaggccccc	cttgtgcaga	gccaggggtc	2150
tgagggcacc	tggctgtgtt	cccagctgag	ggagggctgg	ggcgggggcc	gggcttggaa	2210
cgatgtacga	taccctcata	gtgaccatta	aacctgatcc	tcc		2253

<210> 134

<211> 2253

<212> DNA

<213> Danio rerio

<220>

<221> exon

<222> (1)..(298)

<223>

<400 gtg Val 1	~~~	~~~	atg Met	tgc Cys 5	cca Pro	gct Ala	ggc Gly	tcc Ser	tgg Trp 10	ccc Pro	cac His	ccc Pro	tcg Ser	ggc Gly 15	ctt Leu	48
tgg Trp	gct Ala	gga Gly	cca Pro 20	gcc Ala	acc Thr	tct Ser	gcc Ala	tga	gac Asp 25	Leu	cgg Arg	tcg Ser	ccg Pro	caa Gln 30	gaa Glu	96
gct Ala	gga Gly	gag Glu	gat Asp	gta Val	cag Gln	cgt Arg	tga	ccg Pro	tgt Cys	gtc Val	tga	cga Arg	cat His	ccc Pro	tat Tyr	144

35		40		45
tcg tac ctg gtt co Ser Tyr Leu Val Pr	cc caa gga aaa t ro Gln Gly Lys S O	cct ttt cag o Ser Phe Gln I 55	ett cca gac agc Leu Pro Asp Ser 60	aac 192 Asn
cac aac tat gca ag His Asn Tyr Ala Sc 65	er Gly Val Gln G	ggg cta cgc g Gly Leu Arg (70	gga gag gaa gcg Gly Glu Glu Ala 75	ccg 240 Pro
gaa acg gga gaa t Glu Thr Gly Glu 80	Phe Arg Val (ngt aat cca (Cys Asn Pro (35	gag gaa ctt ccg Glu Glu Leu Pro 90	caa 288 Gln
aca cct gcg c atg Thr Pro Ala 95	ıgtcggca gccggagg	ggt gaaggeee	ag acgttcgctg	338
agcggcgcga gcggag	jette ageeggteet	ggagcgaccc	cacccccatg aaag	geegaea 398
cttcccacga ctcccg	gagac agcagtgacc	tgcagagctc	ccactgcacg ctgg	gacgagg 458
ccttcgagga cctgga	actgg gacactgaga	agggcctgga	ggctgtggcc tgcg	gacaccg 518
aaggcttcgt gccacc	caaag gtcatgctca	tttcctccaa	ggtgcccaag gctq	gagtaca 578
tececactat cateeg				
acgcaacctt cgagga				
gagccaagat ctggaa				
tcaagaacaa ggtggc				
ggaagcggct gagccg				
tgggctgcta cattct				
tcatgactcc ttatag				
agatgatcga gacgta				
cgaagctgct ggact				
caggecacte cetet				
gtagctccgg tctcg				
tgtgggttcc ggtcc				.99 550
aggatecege eetgt				
cctggaggct cagct				
cacccccgaa acaat				
gctagttaca gtgta				
ctccctgccc acccc	ctece tgeegtate	g atcaccagca	ccagggtggc ccg	gtgtgcgt 1598

86/88

ggggccagcg tegeeggget geeeageetg getetgteta eaetggeega gtetetgggt	1658
ctgtctacac tggccgagtc tccgactgtc tgtgctttca cttacactcc tcttgccacc	1718
ccccatccct gcttacttag acctcagccg gcgccggacc cggtaggggc agtctgggca	1778
gcaggaagga agggcgcagc gtcccctcct tcagaggagg ctctgggtgg ggcctgctcc	1838
tcatccccc aagcccaccc agcactctca ttgctgctgt tgagttcagc ttttaccagc	1898
ctcagtgtgg aggetecate ccagcacaca ggeetgggge ttggcagggg eccagetggg	1958
getgggeeet gggttttgag aaactegetg geaceaeagt gggeeeetgg acceggeege	2018
	2078
gcagctggtg gactgtaggg gctcctgact gggcacagga gctcccagct tttgtccacg	2138
gccagcagga tgggctgtcg tgtatatagc tggggcgagg gggcaggccc cccttgtgca	
gagccagggg tetgagggca cetggetgtg tteecagetg agggaggget ggggeggggg	2198
ccgggcttgg aacgatgtac gataccctca tagtgaccat taaacctgat cctcc	2253

<210> 135

<211> 40

<212> PRT

<213> Artificial Sequence

<220>

<223> TCAP 3 General Motif

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> X=G, S or A

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> X=G or R

87/88

<221> MISC_FEATURE

<222> (9)..(9)

<223> X=L or Q

<220>

<221> MISC_FEATURE

<222> (19)..(19)

<223> X=V or I

<220>

<221> MISC_FEATURE

<222> (32)..(32)

<223> X=V or I

<400> 135

Gln Leu Leu Ser Xaa Xaa Lys Val Xaa Gly Tyr Asp Gly Tyr Tyr Val

Leu Ser Xaa Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Xaa 20 25 30

Gln Phe Leu Arg Gln Ser Glu Ile 35 40

<210> 136

<211> 36

<212> PRT

<213> Artificial Sequence

<220>

<223> G. gallus TCAP2

<400> 136

88/88

Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr Val Leu Pro Val Glu 15

Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn Ile Gln Phe Leu Arg 20 25 30

Gln Asn Glu Met 35