Wykonawca: Sebastian Franczak											
Laboratorium Podstaw Informatyki											
Temat: Metody dostępu do danych Nr.lab.: 5											
Rok akademicki	termin	Rodz. studiów	grupa	Data lab.	Data oddania sprawozdania	prowad	Izący	ocena			
2011/2012 semestr letni		dzienne	2	31.05	14.06	Robert Tutajev					

1)
Przygotowano zbiór z danymi w skład których wchodzi 200 wygenerowanych losowo liczb. Wśród nich szukać będziemy 100 liczb.

63 71 927 298 67 899 417 145 465 609 47 40 354 604 112 609 366 288 648 864 515 273 161 319 971 167 247 485 725 854 685 794 396 445 878 248 650 321 751	33 219 691 493 621 521 511 111 570 59 152 604 644 318 179 752 275 990 398 586 328 688 119 612 912 578 996 977 876 274 693 729 831 395 861 620 819 332 141 957	524 785 93 358 237 280 298 544 481 637 646 427 274 775 568 119 695 405 985 775 18 157 110 546 176 345 480 674 919 183 198 644 269 478 624 569 122 124 993 228	244 623 251 523 25 919 0 170 552 971 49 853 722 353 458 616 197 373 524 440 101 503 588 707 525 825 977 457 457 457 457 457 457 457 457 457 4
751	141	993	

2)

Wynik dla eksperymentu z metodą przeszukiwania sekwencyjnego:

Dla danych nie posortowanych : Wyszukiwano 100 elementów. Min = 1, Max = 197, średnio 91,23 Dla danych posortowanych : Wyszukiwano 100 elementów. Min = 1, Max = 194, średnio 100,11

Wniosek: Brak znaczącej różnicy dla obu metod.

3)

Wynik dla eksperymentu wyszukiwania metodą podziałów dychotomicznych : Wyszukiwano 100 elementów. Min = 1, Max = 8, średnio 6,36

Wniosek: Zauważono znaczącą różnicę, poprawę optymalizacji działania eksperymentu w porównaniu do podpunktu drugiego. W metodzie tej maksymalna liczba dostępów do pamięci jest zdecydowanie mniejsza. Jest to metoda wyraźnie lepsza od przeszukiwania sekwencyjnego.

4)

Drzewo (nie wywarzone): Wyszukiwano 100 elementów. Min = 1, Max = 13, średnio 8,56 Drzewo (wyważone): Wyszukiwano 100 elementów. Min = 1, Max = 8, średnio 6,36

Wniosek: Lepsze okazały się jednak nieznacznie drzewa wyważone. Średni dostęp do danych był o krótszy oraz maksymalny potrzebny dostęp do pamięci zmniejszył się prawie dwukrotnie.

5)

Elementy należy wpisać w kolejności: 16, 8, 24, 4, 12, 20, 28, 2, 6, 10, 14, 18, 22, 26, 30, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31. Wyważone drzewo binarne powinno wówczas wyglądać tak:

6)

Zad 6		Rozmiar strony 2	Rozmiar strony 5	Rozmiar strony 10	Rozmiar strony 50	Rozmiar strony 150	Rozmiar strony 200	
Dostęp do Pamięci	Min	4	3	3	3	2	2	
Dostęp do Pamięci	Max	9	9	9 9 8		8	8	
Dostęp do Pamięci	Średnio	6,58	7,34	6,81	6,86	6,56	6,56	
Dostęp do Dysku	Min	2	2	1	2	1	1	
Dostęp do Dysku	Max	4	3	2	2	1	1	
Dostęp do Dysku	średnio	3,56	2,93	1,94	2	1	1	

Wniosek: Z obserwacji możemy wywnioskować że im większy rozmiar strony podajemy tym mniej dostępów do dysku otrzymujemy, co oznacza mniejszy czas wyszukiwania. Wówczas optymalnym ze względu na czas wyszukiwania rozmiarem strony jest 200. Rozwiązanie to jest jednak sprzeczne z ideą B-drzew. Przecież w B-drzewach nie chodzi o to żeby wszystkie dane znajdowałyby się w pamięci operacyjnej lecz jedynie ich część. Wówczas optymalnym rozwiązaniem staje się rozmiar strony równy 10. Zajęta wtedy pamięć operacyjna jak i ilość dostępów do dysku jest stosunkowo niska.

7)Minimalną i maksymalną liczba elementów jakie można umieścić w B-drzewie klasy t(h,m) :

$$N \leq (2*m+1)^{h-1}$$

$$N \geq 2 * (2 * m + 1)^{h-2}$$

Zad 8		Rozmiar strony 2	Rozmiar strony 5	Rozmiar strony 10	Rozmiar strony 50	Rozmiar strony 150	Rozmiar strony 200
Dostęp do Pamięci	Min	5	5	4	3	2	2
Dostęp do Pamięci	Max	10	9	8	8	8	8
Dostęp do Pamięci	Średnio	7,79	6,77	6,79	6,74	6,56	6,56
Dostęp do Dysku	Min	4	3	2	2	1	1
Dostęp do Dysku	Max	4	3	2	2	1	1
Dostęp do Dysku	średnio	4	3	2	2	1	1

Na podstawie eksperymentu możemy powiedzieć że wraz ze wzrostem rozmiaru strony spada ilość dostępów do dysku. Również należy zwrócić uwagę iż liczba ta jest stała dla każdego rozmiaru strony – brak tutaj wartości minimalnej i maksymalnej. Natomiast jeśli chodzi o dostęp do pamięci, to najmniejszy jest on w przypadku rozmiaru strony 150 oraz 200. Wartości te możemy przyjąć za najbardziej optymalne. Jest to bardzo podobne do B-drzewa gdzie również zwiększanie rozmiaru strony powoduje zmniejszenie czasu wyszukiwania. Jeżeli jednak chcielibyśmy ograniczyć zajęcie pamięci operacyjnej, wówczas powinniśmy wybrać rozmiar strony równy 10, dla którego liczba dostępów do dysku i do pamięci jest stosunkowo najmniejsza.

9)

Minimalnie lepsze okazały się B-drzewa. Różnica jest jednak niewielka. Pod względem ilości dostępów do dysku, dla każdej testowanej wielkości rozmiaru strony B-drzewa okazały się bardziej wydajne. Zwróćmy jednak uwagę na to że wraz ze wzrostem rozmiaru strony różnica ta maleje. Biorąc natomiast pod uwagę ilość dostępów do pamięci, sytuacja wygląda tak samo. Tutaj również B-drzewo jest bardziej wydajne, a różnica maleje wraz ze wzrostem rozmiaru strony.

Wielkość	Dzielenie przez			Podział, składanie i			Wycię	Mieszanie					
tablicy 250	ro	zmiar t	ablicy	dzielenie			r	normalizacja			Fibonacciego		
Sondowanie liniowe z	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	
krokiem 1	1	13	1,9	1	10	1,8	1	197	91,23	1	30	2,17	
Sondowanie liniowe z	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	
krokiem 7	1	10	2,02	1	10	1,85	1	30	28,34	1	16	3,59	
Podwójne mieszanie	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	
zależne	1	32	2,33	1	9	1,51	1	197	91,23	brak	brak	brak	
Podwójne mieszanie	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	
niezależne	1	11	1,73	1	11	1,73	brak	brak	brak	1	14	2,6	

Wielkość	Dzielenie przez			Podział, składanie i			Wycięcie 3cyfr klucza i			Mieszanie			
tablicy 300	ro	zmiar t	ablicy	dzielenie			r	normalizacja			Fibonacciego		
Sondowanie liniowe z	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	
krokiem 1	1	10	2,23	1	10	2,23	1	197	91,23	1	4	1,17	
Sondowanie liniowe z	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	
krokiem 7	1	9	2,01	1	9	2,01	1	30	28,34	1	6	1,35	
Podwójne mieszanie	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	
zależne	1	14	2,62	1	9	2,62	1	197	91,23	1	12	1,41	
Podwójne mieszanie	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	
niezależne	1	6	1,53	1	6	1,53	brak	brak	brak	1	8	1,37	

Wielkość	Dzielenie przez			Podział, składanie i			Wycięcie 3cyfr klucza i			Mieszanie			
tablicy 400	rozmiar tablicy			dzielenie			r	normalizacja			Fibonacciego		
Sondowanie liniowe z	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	
krokiem 1	1	9	1,72	1	9	1,72	1	197	91,23	1	8	1,37	
Sondowanie liniowe z	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	
krokiem 7	1	4	1,46	1	4	1,46	1	197	91,23	1	5	1,24	
Podwójne mieszanie	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	
zależne	1	7	1,66	1	7	1,66	1	197	91,23	1	4	1,22	
Podwójne mieszanie	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	Min	Max	Średnia	
niezależne	1	4	1,08	1	4	1,08	brak	brak	brak	1	4	1,16	

Wniosek: Dla tablicy o różnej wielkości, większej niż ilości danych zauważono:

- Dla dzielenia przez rozmiar tablicy: wartość minimum jest zawsze równa 1, wartość maksimum wraz ze wzrostem tablicy znacznie maleje, wartość średnia nie aż tak bardzo rażąco różni się w zależności od sposobu rozwiązywania kolizji.
- Dla podziału, składania i dzielenia: wartość minimum zawsze wynosi 1, wartość maksimum nieznacznie maleje bądź jest taka sama w zależności od rozmiaru tablicy, średnia nie aż tak bardzo rażąco różni się w zależności od sposobu rozwiązywania kolizji.
- Dla wycięcia 3 cyfr klucza i normalizacji: wszystkie wyniki są takie same, brak różnic, jedynie dla
 podwójnego mieszania niezależnego nie udało się przeprowadzić eksperymentu z powodu braku miejsca o
 którym poinformował nas program. Sprawdzono że dla danych w ilości danych ze sprawozdania przy
 wielkości tablicy równej 500 dopiero program pozwoli na wykonanie eksperymentu.
- Dla mieszania Fibonacciego: wartość minimum jest zawsze równa 1, wartość maksimum wraz ze wzrostem tablicy znacząco maleje wraz ze wzrostem wielkości tablicy, wartość średnia widocznie maleje wraz ze wzrostem tablicy. Nie udało się przeprowadzić eksperymentu dla wielkości tablicy 250 i sposobu rozwiązywania kolizji podwójne mieszanie zależne.

Na podstawie przeprowadzonego eksperymentu stwierdzam że najbardziej optymalnym wynikiem było zastosowanie tablicy o rozmiarze 400 i większym dla "dzielenia przez rozmiar tablicy i "podziału, składania i dzielenia" wraz ze sposobem rozwiązywania kolizji Podwójne mieszanie niezależne oraz dla metody mieszanie Fibonacciego ze sposobem rozwiązywania kolizji Podwójne mieszanie zależne i niezależne.

Zwiększenie rozmiaru tablicy znacząco zmniejsza liczbę występujących kolizji jednak prowadzi do znaczącego marnotrawstwa zasobów. Przy bardzo dużych rozmiarach tablic liczba kolizji przestaje spadać i osiąga stały poziom równy 1, natomiast tak jak napisałem wcześniej im większa tablica tym więcej zasobów marnujemy.