Листок №ГО 02.02.2019

Вычислимость

Определение. $f \colon \mathbb{N}^k \to \mathbb{N}^s$ вычислима, если существует машина Тьюринга, на любом входе (n_1,\ldots,n_k) вычисляющая $m=f(n_1,\ldots,n_k)$. Функция f может быть частичной, если $\mathrm{Dom}(f) \subsetneq \mathbb{N}^k$; тогда на остальных входах машина Тьюринга зацикливается.

Определение. Множество $P \subseteq \mathbb{N}^k$ *перечислимо*, если существует вычислимая функция f такая, что область её определения равна P.

Задача Г0.1. Докажите, что $P \subseteq \mathbb{N}^k$ перечислимо тогда и только тогда, когда существует вычислимая f такая, что область её значений равна P.

Задача Г0.2. Докажите, что $\varnothing \neq P \subseteq \mathbb{N}^k$ перечислимо тогда и только тогда, когда существует тотальная вычислимая f такая, что область её значений равна P.

Задача Г0.3 (Теорема о графике). Докажите, что функция f вычислима тогда и только тогда, когда её график $\Gamma_f = \{(x,y) \mid f(x) = y\}$ перечислим.

Определение. Множество $P \subseteq \mathbb{N}^k$ разрешимо, если её характеристическая функция вычислима, то есть алгоритм, способный проверить произвольный вход из \mathbb{N}^k на принадлежность P.

Задача Го.4. Приведите пример перечислимого, но не разрешимого множества.

Задача Г0.5 (Теорема Поста). Докажите, что $P \subseteq \mathbb{N}^k$ — разрешимо тогда и только тогда, когда P и $\mathbb{N}^k \backslash P$ одновременно перечислимы.