Exploring Resolution(s) in Aerial Photography vs. Planet Cubesat Data

Nicolas Vuille-dit-Bille 22.06.2020

Reference:

http://mil.library.ucsb.edu/ap indexes/FrameFinder/

https://earthexplorer.usgs.gov/

https://www.planet.com/

Outilining process

1) Acquiring and georeferencing historic aerial photography

2) Creating mosaic dataset from cubesat data

1) Acquiring and georeferencing historic aerial photography

Coordinate system of the

WGS 1984 UTM Zone 11N

Photography information

Scale: 1:12 000

Date: 05.03.1972

Location: Santa Barbara

Data type: scan (gray scale, visible range)

Cell size X: 0,567580020828276

Cell size Y: 0,536554341119776

Pixel depth: 8 Bit

Reference:

http://mil.library.ucsb.edu/ap_images/hb-

ti/hb-ti 102.tif

2) Creating mosaic dataset from cubesat data

<u>Coordinate system of the project:</u>

WGS 1984 Web Mercator (auxiliary sphere)

Photography information

- Date: 12.04.2020

- Location: Hormoz, Iran

Data type: gray-scale
panchromatic image (satellite
image): Red, Green, Blue and
Near-infared red bands

- Cell size X : 0,659563199808266

Cell size Y: 0,659563199808249

Pixel depth: 16 Bit

- Reference:

https://www.planet.com/

Summary

 Aerial photography showed in this case higher spatial resolution but the spectral resolution is higher in satellite data (higher spectral range including near-infared red spectrum)

• Radiomectric calibration is therefore higher in satellite data (16 bit compared to 8 bit in aerial photography)

Data sources

- http://mil.library.ucsb.edu/ap indexes/FrameFinder/
- https://earthexplorer.usgs.gov/
- https://www.planet.com/