第十章作业

2015011313 徐鉴劲 计54

运行代码验证实验

python hw5.py即可。

MLE可能非常慢,需要五分钟左右。

Kmeans的实现方法

通过sklearn的库函数sklearn.cluster.KMeans实现。

MLE的原理与实现

原理推导

假设数据的产生是 $x\sim P(x|\theta)=\sum P(x|\omega_i,\theta_i)P(\omega_i)$,即是每一个类又一个产生概率,然后乘上每一个类的先验概率。

以最大化似然函数转化成最大化 $!:l = \sum_{i} ln(P(x_i| heta))$

对参数求导:
$$\nabla_{\theta_i} l = \sum_k rac{P(\omega_i)}{P(x_k|\theta)} \nabla_{\theta_i} P(x_k|\omega_i, \theta_i) = \sum_k P(\omega_i|x_k, \theta) \nabla_{\theta_i} P(x_k|\omega_i, \theta_i)$$

前一项
$$P(\omega_i|x_k,\theta) = rac{P(x_k|\omega_i,\theta_i)P(\omega_i)}{\sum P(x_k|\omega_i,\theta_i)P(\omega_i)}$$
°

后一项是具体建模函数的求导。

进行更加具体化的实现,我们假定建模函数是 $f_i(x;\theta_i)=P(x_k|\omega_i,\theta)=\mathcal{N}(\mu_i,\sigma_i^2)$,同时还有一个先验系数 t_i 。

整体的函数就是 $f(x;\theta) = \sum f_i(x)t_i = P(x|\theta)$,表示一个数据点的概率。

所以
$$l = \sum_{i} ln(f(x_i; \theta))$$

$$abla_{ heta_i} l = \sum_k rac{t_i}{f(x_k; heta)}
abla_{ heta_i} f_i(x_k; heta_i)$$

同样, 还有对于先验的求导:

$$\nabla_{t_i} l = \sum_k \frac{f_i(x_k; \theta_i)}{f(x_k; \theta)}$$

由于
$$f_i(x; heta_i)=\mathcal{N}(x;\mu_i,\sigma_i^2)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu_i)^2}{2\sigma_i^2}}$$

所以
$$abla_{\mu_i}f_i(x; heta_i)=rac{x-\mu_i}{\sigma_i^2}f_i(x; heta_i), \;\;
abla_{\sigma_i}f_i(x; heta_i)=rac{(x-\mu_i)^2}{4\sigma_i^3}f_i(x; heta_i)$$

MLE 的算法实现

在题目中,假定(x, y, z)三个变量是相互独立的,可以每次对一个坐标进行MLE,然后再综合起来,不然计算量大大增加。

我们首先随机初始化各个参数,包括 μ_i , σ_i , t_i 。

然后使用梯度下降对参数进行优化:

$$\nabla_{t_i} l = \sum_k \frac{f_i(x_k; \theta_i)}{f(x_k; \theta)}$$

$$abla_{\mu_i} l = \sum_k rac{t_i}{f(x_k; heta)} rac{x_k - \mu_i}{\sigma_i^2} f_i(x_k; heta_i)$$

$$abla_{\sigma_i}l = \sum_k rac{t_i}{f(x_k; heta)} rac{(x-\mu_i)^2}{4\sigma_i^3} f_i(x_k; heta_i)$$

MLE 代码

关于MLE的代码一共有:

 $\mathsf{get_fi}$: 计算 f_i 函数。

dataset_loss: 计算log likelihood的数据集合损失函数。

练习1

Kmeans(N=2)

按照上述方法进行Kmeans分类,结果如下:

参数	x	У	z
μ_1	2.70767	2.70005	1.26561
σ_1	3.85410	4.20658	3.74709
μ_2	7.79693	9.30730	13.16293
σ_2	5.98297	5.69897	6.16273

可以调用代码中KMeans函数进行验证。

MLE (N=2)

随机选定了一个值作为参数初始化,采用0.2学习率进行最优化,得到参数如下:

参数	x	у	Z
t_1	0.515	0.491	0.469
t_2	0.485	0.509	0.531
μ_1	1.36	1.29	0.867
σ_1	3.43	3.24	3.38
μ_2	6.87	7.22	7.55
σ_2	4.96	5.14	6.43

训练loss曲线如下:

MLE(N=2)经过KMeans初始化

训练loss曲线如下:

对比分析

MLE的结果比Kmeans准确,经过初始化后的MLE结果更加准确。

练习2

Kmeans(N=3)

参数	x	у	Z
μ_1	1.84897	1.79317	1.67362
μ_2	6.60972	7.38586	17.31791
μ_3	9.04562	10.96022	3.87745
σ_1	2.76104	2.77064	3.35083
σ_2	5.69546	5.65530	5.53523
σ_3	5.36132	4.61385	5.52803

准确率是43.7%.

MLE (N=3)

参数 x	у	z
------	---	---

 $\begin{aligned} |\mu_1| &1.34249 |1.26025 |0.74879| &|\mu_2| |4.83537 |4.88901 |4.93523| &|\mu_3| \\ |10.88278 |10.98627 |11.74815| &|\sigma_1| |3.06363 |3.00015 |3.40527| &|\sigma_2| \\ |2.40334 |2.32590 |2.19743| &|\sigma_3| |3.10318 |3.23603 |4.34140| \end{aligned}$

准确率是90%

MLE(N=3)经过KMeans初始化

参数	Х	у	z
μ_1	1.96196	1.84134	1.70183
μ_2	6.61506	7.38438	17.30537
μ_3	9.06733	10.97672	3.88240
σ_1	3.46472	3.46753	3.85795
σ_2	5.87325	5.84069	5.74550
σ_3	5.54480	4.81557	5.84515

准确率是95%

结果比较

Kmeans的结果最差,MLE未经过初始化的次之,最好的是经过初始化的MLE.