Fig. 1 (PRIOR ART)

Fig. 2A

Fig. 4A

Fig. 4B

26

26

29

29

24

Title: UNDERWATER LASER PROCESSING APPARATUS AND UNDERWATER LASER PROCESSING METHOD Inventor(s): Masataka TAMURA et al. DOCKET NO.: 016910-0498

Fig. 5

LASER	WAVELENGTH	OUTPUT	PROCESS	WELDING	WIRE FEEDING
OSCILLATOR		POWER	SPEED	Wire	SPEED
YAG LASER	1.06	0.5~	0.1∼5	Ø 0.4 ~	0.5 ~ 8
	µm	4.0 kW	m∕min	1.0 mm	m/min

Fig. 7A

Fig. 8A

