TASK 5 NAIVE BAYES

1. Get The Dataset Number 8x8

_4	Α	В	С	D	Е	F	G	Н	I	J
- 1	input1	input2	input3	input4	input5	input6	input7	input8	input9	input10
2	0	0	0	1	1	0	0	0	0	
3	0	0	0	1	1	0	0	0	0	
4	0	0	1	1	1	0	0	0	0	
5	0	0	0	1	1	0	0	0	0	
6	0	0	0	1	1	0	0	0	0	
7	0	0	0	1	1	0	0	0	0	
8	0	0	0	1	0	0	0	0	0	
9	0	0	0	1	0	0	0	0	0	
10	0	0	0	1		0	0	0	0	
11	0	0	0	1	1	0	0	0	0	
12	0	0	0	1	1	0	0	0	0	
13	0	0	1	1	0	0	0	0	0	
14	0	0	0	1	1	0	0	0	0	
15	0	0	0	1	1	1	0	0	0	
16	0	0	0	1	1	0	0	0	0	
17	0	0	0	0	1	1	0	0	0	
18	0	0	0	1	1	1	0	0	0	
19	0	0	0	1	1	0	0	0	0	
20	0	0	0	1		0	0	0	0	
21	0	0	0	1	1	1	0	0	0	
22	0	0	0	0	1	1	0	0	0	
23	0	0	0	0	1	1	0	0	0	
24	0	0	0	1		0	0	0	0	
25	0	0	0	0	1	1	0	0	0	
26	0	0	0	1	1	1	0	0	0	
27	0	0	0	1	1	1	0	0	0	
28	0	0	0	1	1	0	0	0	0	
29	0	0	0	0	1	1	0	0	0	
30	0	0	0	0	1	1	0	0	0	
31	0	0	0	0	1	1	0	0	0	
32	0	0	0	0	1	1	0	0	0	
	Data_Training_15		(+)							

• •		1 07	.0							
4	Α	В	С	D	Е	F	G	Н	1	J
1	input1	input2	input3	input4	input5	input6	input7	input8	input9	input10
2	0	0	1	1	1	0	0	0	0	
3	0	0	0	1	1	0	0	0	0	
4	0	0	1	1	1	0	0	0	0	
5	0	0	0	1	1	0	0	0	0	
6	0	0	0	1	1	0	0	0	0	
7	0	0		1	1	0	0	0	0	
8	0	0		1	1	0	0	0	0	
9	0	0		1	1	0	0	0	0	
10	0	0		1	1	0	0	0	0	
11	0	0		1	1	0	0	0	0	
12	0	0		0	1	1	0	0	0	
13	0	0	0	0	1	0	0	0	0	
14	0	0	0	0	1	1	0	0	0	
15	0	0	0	0	1	0	0	0	0	
16	0	0	0	0	1	0	0	0	0	
17	0	0	1	1	1	1	1	0	0	
18	0	0	0	1	1	1	0	0	0	
19 20	0	0		1	1	1	1	0	0	
21	0	0	0	0	0	1	1	0	0	
22	0	0		0	1	0	0	0	0	
23	0	0		0	1	0	0	0	0	
24	0	0	0	1	1	0	0	0	0	
25	0	0	0	1	0	0	0	0	0	
26	0	0	0	1	1	0	0	0	0	
27	0	0	1	0	0	0	0	0	0	
28	0	0	0	1	1	1	0	0	0	
29	0	0		1	1	1	0	0	0	
30	0	0		1	1	1	0	0	0	
31	0	0	1	1	1	1	0	0	0	
32	0	0		1	1	1	0	0	0	
Data_Testing_5		Data_T	esting_5	(+)						

CODING WITH PYTHON

3. Import Libraries Needed

```
In [15]:

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
```

4. Import Dataset for Training (150 Data)

5. Get Input for Dataset Training

6. Get Output for Dataset Training

7. Show Dataset Training (Optional)

CODING WITH PYTHON

8. Call Classification Bernoulli Naïve Bayes

9. Import Dataset for Testing (50 Data)

10. Get Input for Dataset Testing

```
In [23]: 1 # TESTING Independent Variable
2 x_test = test.drop(["class"], axis = 1)
3 x_test

Out[23]: input1 input2 input3 input4 input5 input6 input7 input8 input9 input10 ... input55 input56 in

0 0 0 1 1 1 1 0 0 0 0 0 0 ... 0 0

1 0 0 0 1 1 1 0 0 0 0 0 0 ... 0 0

2 0 0 1 1 1 0 0 0 0 0 0 0 ... 0 0

3 0 0 0 1 1 1 0 0 0 0 0 0 0 ... 0 0

4 0 0 0 1 1 0 0 0 0 0 0 0 0 ... 0 0
```

11. Get Output for Dataset Testing

12. Show Dataset Training (Optional)

CODING WITH PYTHON

13. Predict Testing Data

14. Real Output Testing Data

15. Show Probability of Prediction

```
In [31]:
           1 # Probabilitas Prediction
           2 nbtrain.predict proba(x test)
Out[31]: array([[9.99998851e-01, 1.83938596e-14, 6.37498121e-08, 2.03980428e-08,
                 3.56142865e-12, 3.75058387e-07, 1.56885473e-08, 2.37589209e-11,
                 1.12736016e-07, 5.61498378e-07],
                [9.9999999e-01, 1.27562048e-11, 1.67256683e-12, 4.47250563e-11,
                 6.30483549e-11, 1.35874465e-11, 2.99681181e-11, 9.74726074e-13,
                 6.97028208e-09, 1.57839720e-10],
                [9.9999997e-01, 1.07323839e-14, 6.29628496e-11, 1.38321279e-11,
                 4.43308747e-12, 2.30805426e-09, 1.14423724e-11, 6.06496226e-13,
                 1.89746569e-10, 3.80757972e-10],
                [9.99994617e-01, 2.59109018e-12, 1.12897654e-08, 9.38028472e-07,
                 6.58626595e-12, 1.34579699e-10, 1.48750041e-06, 1.85318799e-10,
                 2.57681230e-06, 3.68658991e-07],
                [9.99999989e-01, 8.00822008e-14, 1.03221267e-10, 6.14969522e-10,
                 1 35706758e-12 3 31194008e-10 1 64192205e-12 3 58062638e-11
```

16. Classification Report & Confusion Matrix

```
1 # Classification Report
 3 from sklearn.metrics import classification report
 4 print(classification_report(y_test, y_pred))
             precision
                          recall f1-score
                                           support
                  0.83
                            1.00
                                      0.91
                  0.80
                            0.80
                                      0.80
                  0.71
                            1.00
                                      0.83
                  0.57
                                      0.67
                  1.00
                            1.00
                                      1.00
                                      0.89
                  1.00
                                      1.00
                  1.00
                                      1.00
                  0.80
                            0.80
                                      0.80
                                      0.84
   accuracy
  macro avg
                  0.87
                            0.84
                                      0.82
weighted avg
                  0.87
                            0.84
                                      0.82
                                                  50
```

:	3 y_pre	ua: d nfi	l = = p usi	d.S	d.S Ser	er: ie:	ies s(y	_pr	red	, r	nam	ame = "actual") e = "prediction") ctual, y_pred)
	prediction actual	0	1	2	3	4	5	6	7	8	9	
	0	5	0	0	0	0	0	0	0	0	0	
	1	0	4	1	0	0	0	0	0	0	0	
	2	0	0	5	0	0	0	0	0	0	0	
	3	0	0	0	4	0	0	0	0	1	0	
	4	0	0	0	0	5	0	0	0	0	0	
	5	0	0	0	1	0	4	0	0	0	0	
	6	0	0	0	0	0	0	5	0	0	0	
	7	0	0	0	0	0	0	0	5	0	0	
	8	0	1	0	0	0	0	0	0	4	0	
	9	1	0	1	2	0	0	0	0	0	1	

DATA REPORT

(DATA TRAINING - DATA TESTING)

(15 - 5)

0 1 2 3 4 5 6

(16-4)

(17 - 3)

prediction	0	1	2	3	4	5	6	7	8	9
actual										
0	5	0	0	0	0	0	0	0	0	0
1	0	4	1	0	0	0	0	0	0	0
2	0	0	5	0	0	0	0	0	0	0
3	0	0	0	4	0	0	0	0	1	0
4	0	0	0	0	5	0	0	0	0	0
5	0	0	0	1	0	4	0	0	0	0
6	0	0	0	0	0	0	5	0	0	0
7	0	0	0	0	0	0	0	5	0	0
8	0	1	0	0	0	0	0	0	4	0
9	1	0	1	2	0	0	0	0	0	1

prediction	0	1	2	3	4	5	6	7	8	9
actual										
0	4	0	0	0	0	0	0	0	0	0
1	0	4	0	0	0	0	0	0	0	0
2	0	0	4	0	0	0	0	0	0	0
3	0	0	0	4	0	0	0	0	0	0
4	0	0	0	0	4	0	0	0	0	0
5	0	0	0	0	0	4	0	0	0	0
6	0	0	0	0	0	0	4	0	0	0
7	0	0	0	0	0	0	0	4	0	0
8	0	1	0	0	0	0	0	0	3	0
9	1	0	0	2	0	0	0	0	0	1

			A L								
predictio	n	0	1	2	3	4	5	6	7	8	9
actu	al										
	0	3	0	0	0	0	0	0	0	0	0
	1	0	3	0	0	0	0	0	0	0	0
	2	0	0	3	0	0	0	0	0	0	0
	3	0	0	0	3	0	0	0	0	0	0
	4	0	0	0	0	3	0	0	0	0	0
	5	0	0	0	0	0	3	0	0	0	0
	6	0	0	0	0	0	0	3	0	0	0
	7	0	0	0	0	0	0	0	3	0	0
	8	0	1	0	0	0	0	0	0	2	0
	9	1	0	0	1	0	0	0	0	0	1
precision			са	11	1	f1-	sc	or	e	s	upp

Classification Report

Confusion Matrix

		precision	recall	f1-score	support	precision	recall	f1-score	support	precision	recall	f1-score	support
	0	0.83	1.00	0.91	5	0.80	1.00	0.89	4	0.75	1.00	0.86	3
	1	0.80	0.80	0.80	5	0.80	1.00	0.89	4	0.75	1.00	0.86	3
	2	0.71	1.00	0.83	5	1.00	1.00	1.00	4	1.00	1.00	1.00	3
	3	0.57	0.80	0.67	5	0.67	1.00	0.80	4	0.75	1.00	0.86	3
n	4	1.00	1.00	1.00	5	1.00	1.00	1.00	4	1.00	1.00	1.00	3
	5	1.00	0.80	0.89	5	1.00	1.00	1.00	4	1.00	1.00	1.00	3
	6	1.00	1.00	1.00	5	1.00	1.00	1.00	4	1.00	1.00	1.00	3
	7	1.00	1.00	1.00	5	1.00	1.00	1.00	4	1.00	1.00	1.00	3
	8	0.80	0.80	0.80	5	1.00	0.75	0.86	4	1.00	0.67	0.80	3
	9	1.00	0.20	0.33	5	1.00	0.25	0.40	4	1.00	0.33	0.50	3
	accuracy			0.84	50			0.90	40			0.90	30
	macro avg	0.87	0.84	0.82	50	0.93	0.90	0.88	40	0.93	0.90	0.89	30
	weighted avg	0.87	0.84	0.82	50	0.93	0.90	0.88	40	0.93	0.90	0.89	30

ANALYSIS

- The library naive bayes that we are using here is scikit-learn libraries. There are 5 kind of naive bayes, and we are using Bernoulli Naive Bayes, because the input is a binary number ("0" or "1")
- We are using 3 experiments, 15 Data Training 5 Data Testing, 16 Data Training 4 Data Testing and 17 Data Training 3 Data Testing. The error of each experiments are different. When the amount of data training is added and the data testing is subtracted, the model is become better, so the error is less.

	Error (Training – Testing)											
Number	15	- 5	16	- 4	17 - 3							
	True	False	True	False	True	False						
Number "0"	5	-	4	-	3	-						
Number"1"	4	1	4	-	3	-						
Number "2"	5	-	4	-	3	-						
Number "3"	4	1	4	-	3	-						
Number "4"	5	-	4	-	3	-						
Number "5"	4	1	4	-	3	-						
Number "6"	5	-	4	-	3	-						
Number "7"	5	-	4	-	3	-						
Number "8"	4	1	3	1	2	1						
Number "9"	1	4	1	3	1	2						
Total Error	16	5%	10)%	10%							