

Vernel PCA:

Dah: $\{x_1,...,x_N\}$ Apply feat xform: $x_1 \rightarrow \phi(x_1)$ $\{x_1,...,x_N\} = X \rightarrow \emptyset$ = $\{\phi(x_1) ... \phi(x_N)\}$

- · Assume x famed data is centered: Ξφ(xi) = 0
- Covariance motrix in high-sim space: $C = \frac{1}{N} \sum_{i=1}^{N} \phi(x_i) \phi(x_i)^{T}$ (Note: Zers mean)
- · Find (xi, vi) eigenvalue/eigenvactors.

$$C_{V_j} = \lambda_j V_j$$

$$L_{N_{m=1}}^{N} \phi(x_m) \phi(x_m)^T V_j = \lambda_j V_j$$

$$A_{m,j}$$

Hence, v; has the form $v_j = \sum_{i=1}^{N} a_{ij} \Phi(x_i) = \overline{\Phi} a_j$ where $a_j = \begin{bmatrix} a_{ij} \\ a_{NS} \end{bmatrix}$

i.e. eigennector is a linear combo of $\phi(x_i)$'s.

We need to find a;

$$\frac{1}{N} = \frac{1}{N} = \frac{1}$$

An equivalent set of equisions to project into the coordinates of span of I, a solve there.

) Kernul trick

Then solve:

(2) if K is not invertible, the only difference is there eigenvectors $\omega/\lambda j=0$, but these are not PC's because $\lambda=0$.

Solve ① anyways.

Verify: suppose
$$(a_{ij}, \lambda_{ij})$$
 are eigenvector/value of K

s.t. $Ka_{ij} = N\lambda_{ij}a_{ij}$, $\lambda_{ij} \neq 0$, $\alpha_{ij} = 1$

original egyn,

 $K \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$
 $N \times (a_{ij} = N\lambda_{ij}) \times (a_{ij} + 1)$

Kernel Centering

How to center the feature space?

centred feature?

$$\frac{\lambda}{\lambda}(x_0) = \lambda(x_0) - \frac{1}{\lambda} \sum_{k=1}^{\infty} \lambda(x_k)$$

$$= \lambda(x_0) - \frac{1}{\lambda} \sum_{k=1}^{\infty} \lambda(x_k)$$

contered data:

Centerer Kernel matrix

fest Kernel:

Summony: KPCA

- i) calculate kernel matrix: K=[k(xi,xj)]ij
- 2) center the kernel: K = (I 11)K(I 11)
- 3) Find the by D eigenvectors: Kaj = 1-aj j=1...D
- 4) Scale: aj = Ki aj
- 5) project data x_* : $z_{*,j} = \tilde{K}_* Ta_j$ $z_{*,j} = \tilde{Z} a_{i,j} \tilde{K} (x_*, x_i)$

Note: original problem needs 2-din eigenvecher Kernel problem 11 N-din eigenvecher

PTCK problem that is more efficient.

PS 10-17: Kernelized FLD-> Kernel disc. anelysis.

2, ve au reconstruct \hat{x} , en. Ginn PCA coeff Jeroising x.

What about KPCA?

What about FPCA!

- Given 2, what is the high-din feature?

$$\hat{\theta} = \sum_{j} v_{j}^{2} z_{j}^{2} = \sum_{j} \hat{q}_{ij}^{2} z_{j}^{2} = \hat{q}_{ij}^{2} \hat{z}_{j}^{2} \hat{z}_{$$

BUT, not all points span (\$) have a corresponding x.

Example: let
$$\phi(x) = \begin{bmatrix} x^2 \\ x^2 \end{bmatrix}$$

$$X = 1 \Rightarrow \phi(X) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\chi_{2}=2 \Rightarrow \phi(\chi_{2})=\begin{bmatrix} \psi \\ 2 \end{bmatrix}$$

Let
$$\hat{\phi} = \phi(x_i) + \phi(x_i) = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$
, what is \hat{x} s.t $\hat{\phi} = \phi(\hat{x})$?
Here is no \hat{x} possible.

Approximate Pre-Image

general problem: $\hat{\phi} = \bar{\phi} x = \sum_{i} x_{i} \phi(x_{i})$

Find: $\hat{\chi}$ = argmin $\|\phi(x) - \hat{\phi}\|^2$ = find the x that gives the closest ϕ in the f.s.

? = agum k(x,x) - 2 Zx; k(x,xi) + Z Zxix; k(xix;)

$$\hat{x} = argmn k(x,x) - 2 \tilde{z} x : k(x,xi)$$

Soln 2: nearest neighbors select x EX (training data)

Soln 2: Silve optimization problem numerically w/ package.

Solu 3: Suppose k(x,x)=1, $k(x_0,x_1)>0$ (e.g. Grussian)

$$\hat{\chi} = \operatorname{argmin} - \operatorname{Zai} k(x_1 x_1) = \operatorname{argmay} \operatorname{Zai} k(x_1 x_2) = \operatorname{argmax} \left(\operatorname{Zai} k(x_1 x_2) \right)$$

$$\langle \phi(x), \phi \rangle$$

assume homogeneurs kernel, k(11x-x1112)

$$\hat{x} \leftarrow \frac{Z_{x_i} k'(\|x_i - \hat{x}\|^2) x_i}{Z_{x_i} k'(\|x_i - \hat{x}\|^2)}$$

Similar to meth-shift w/ weights or on each point x;