Soil Profile Average Ece of DA784 field

ECe(ave) dS/m

• < 1

3 - 5

> 5

Coord System UTM (m)

X: Easting Y: Northing

Using ESAP-Calibrate and ESAP-SaltMapper

HOW TO CREATE EFFECTIVE
CALIBRATIONS OF EMI READINGS TO
OTHER SOIL CHARACTERISTICS

Open ESAP-Calibrate from the main ESAP menu

Import Survey Data File

Import .svy file generated from ESAP-RSSD

Create New Profile Data File

Input Lab Data as .csv in correct format. Under "Data Input File Format" click "Generic"

Fill in boxes with appropriate values and press "OK"

At the main menu, go to the Regression Modelling module

At the menu under "File" go to "Edit of Validate Profile Data"

Compute summary statistics, then save your results

At the main menu, go to the Regression Modelling module

Select Response Variable and Merge

Data. Accept Results.

"Model" → "Identify model parameters" → "Auto-Select an appropriate model" → "Analyze all possible models" → Invoke

View Results (optional) to obtain PRESS score rankings, and then accept selection

"Model" → "Estimate calibration equation" → Check both boxes → "Estimate"

MLR Model Estimation

Н

"Model" → "Advanced modeling options" → "View model summary statistics" → "Specify Output File Name" → "Finished"

THIS FILE HAS THE REGRESSION EQUATION COEFFICIENTS FOR EACH DEPTH AND AVERAGE

Optional: View prediction plots for

"Predict" → "Calculate field summary statistics" → Specify Soil Variable → Specify Cut-off values → "Calculate Statistics"

Specify Output File Name \rightarrow Save File \rightarrow Finished

"Predict" → "Manipulate prediction data" → "Save output Predictions" → "Specify output file name" → "Finished"

MLR Model Form: ECe = b0 + b1(z1)

Calibration is Now Complete!

Additional options from here:

Yield loss predictions

Mean-Shift Tests to see if salt content in a field has changed from one EM38 survey to another

Net-Flux tests to see if salt content in a single sample site location has changed via additional soil samples

To view calibration equations directly:

Find the project folder in the file explorer and open the file created in slide 16. An example of an equation is shown

AOV Table and	Parameter	Estimates	for dept	h: 0.15		
Source	DF	SS		MS	F value	Prob >F
Model Error C-Total	2 9 11	41.0054 11.7220 52.7274		0.5027 1.3024	15.74	0.0012
model R-squa	are =	0.7777 1.1412				
press score	=	25.380				
Parameter	Estimate		Standard Error	t value para=0	Prob >	tl
intercept z1 z1^2	0.4374 0.9874 0.8948		0.5011 0.2918 0.2720	0.87 3.38 3.29	0.4054 0.0081 0.0094	

The ESAP-Calibrate Predictions are Now Ready for Use for ESAP-SaltMapper

Select ESAP-SaltMapper from the "Programs" and "Analysis Software" menus.

Select Specify/Input File Info from the "File" menu.

Specify the project and input file location

Select 2-D Raster Image Map from "Graphics" menu.

Initialize the Raster Window, then Show the Grid/Survey Sites

Clip the grid to the appropriate field shape. Yellow indicates clipped area.

Press, "Done"

Set the Kernel Size Dense survey grid (6%) Sparse survey grid (10%+)

Press "Done"
Press "Perform Interpolation"

Accept
Interpolation
Grid After
Checking
Boundaries

Select Specify Map Variable from the "Plot" menu.

Customize Variable, Map Features, and Map Appearance. Sample sites may also be overlaid.

Press "OK"

Select Create Map from the "Plot" menu

You can now view your salinity map. Select Enlarge Map for Output from the "Plot" menu to view or print your map.

Final Product!

Questions