Approfondissements sur le TME 3

1. Images des μ

Affichez, pour chaque chiffre de 0 à 9, l'image obtenue lorsque vous interprétez comme des teintes de pixels les $[\mu 0,...,\mu 255]$ que vous avez calculés à la question 3 pour la classe de ce chiffre.

UMPC MAPSI Rapport N°1

2. Images des σ 2

Faites de même avec vos $[\sigma 0,...,\sigma 255]$.

UMPC MAPSI Rapport N°1

Approfondissements sur le TME 4

1. Courbe de vraisemblance

Tracez la courbe de la vraisemblance en fonction de l'itération de votre algorithme EM.

2. Courbe d'évolution des paramètres

Pour chaque paramètre, $\mu x 0, \mu z 0, \sigma x 0, \sigma z 0, \rho 0, \pi 0, \mu x 1, \mu z 1, \sigma x 1, \sigma z 1, \rho 1, \pi 1$, tracez la courbe de son évolution en fonction de l'itération de votre algorithme EM.

3. Convergence

Choisissez 10 points de départ Θ 0 au hasard et indiquez la vitesse de convergence de EM pour chaque point de départ (on considérera qu'il y a convergence dès lors que la vraisemblance varie de moins de 1% d'une itération à l'autre de EM).

```
convergence hasard No.0
point hasard: [ 4.567 77. ]
17 étapes de iteration
convergence hasard No.1
point hasard: [ 3.767 83. ]
17 étapes de iteration
convergence hasard No.2
point hasard: [ 4.45 83. ]
17 étapes de iteration
convergence hasard No.3
point hasard: [ 1.8 51.]
18 étapes de iteration
convergence hasard No.4
point hasard: [ 2.25 60. ]
17 étapes de iteration
convergence hasard No.5
point hasard: [ 2.233 60. ]
17 étapes de iteration
convergence hasard No.6
point hasard: [ 3.833 78. ]
17 étapes de iteration
convergence hasard No.7
```

UMPC MAPSI Rapport N°1

point hasard: [4.083 78.] 17 étapes de iteration

convergence hasard No.8
point hasard: [4.567 77.]
17 étapes de iteration

convergence hasard No.9
point hasard: [4.833 80.]
17 étapes de iteration

Approfondissements sur le TME 5

1. Structure du réseau agaricus-lepiota

Affichez l'image de la structure graphique que vous avez trouvée pour la base agaricus-lepiota. Indiquez le nombre de paramètres de votre réseau bayésien.

BN{nodes: 23, arcs: 39, domainSize: $10^14.387$, **parameters: 31062,** compression ratio: $100-10^7.8948\%$ }

2. Calculs de probabilité

Calculez les probabilités suivantes :

- P (class = p), p signifie que votre champignon est vénéneux P (class = p) = **0.4849**
- P (gill spacing | class = p) = | **0.8611 0.1389** |
- P (class | ring_number = o, gill size = n, cap shape = b), autrement dit, la distribution de probabilité de l'état du champignon (p = vénéneux, e = comestible) conditionnellement au fait que l'on observe que le champignon a 1 anneau, que ses lamelles sont serrées et que son chapeau est en forme de cloche.

P (class | ring_number = 0, gill size = n, cap shape = b) = | **0.8850 0.1150** |