King Saud University

College of computer and Information Sciences

CSC 311 - Design and Analysis of Algorithms

جامعة الملك سعود كلية علوم الحاسب والمعلومات 311 عال _

Midterm I Exam, Fall 2018	Saturday October 9 th , 2018	Exam time: 06:00-7:30 P.M.
Student's name:	ID:	Section:

SOLUTION

Problem 1 (8 points)

(a) Give the following functions a number in order of increasing asymptotic growth rate. If two functions have the same asymptotic growth rate, give them the same number.

Function	Rank
$8^{\lg n} + 2n$	3
$5 \lg n^8$	1
$n^3 + 5n^2 - 100$	3
$\frac{n^2}{\lg n}$	2
$\frac{2 \lg n + \lg(\lg n^2)}{3^{2n}}$	1
3 ²ⁿ	4

(b) Using the definition of θ , find g(n), C_1 , C_2 , and n_0 in the following:

$$4n^6-2n^2+n\in\theta(g(n))$$

Sol:
$$C_1=7$$
, $C_2=3$, $n_0=1$

Problem 2 (5 points)

What is the time complexity of the following algorithm? Prove your answer.

```
S(A[], key, imin, imax)
{
   if (imax < imin)
        return KEY_NOT_FOUND;
   else
     {
      imid = midpoint(imin, imax);

      if (A[imid] > key)
        return S(A, key, imin, imid-1);
      else if (A[imid] < key)
        return S(A, key, imid+1, imax);
      else
        return imid;
    }
}</pre>
```


Problem 3 (7 points)

Consider the following recurrence relation:

$$T(n) = 3T(\frac{n}{3}) + 2n.$$

Solve this recurrence relation using recursive substitutions and find its asymptotic performance.

Sol:
$$T(n) = 3 T(n/3) + 2n$$

 $= 3 (3 T (n/9) + 2 n/3) + 2n = 9 T(n/9) + 2n + 2n$
 $= 9 (3 T(n/27) + 2 n/9)) + 2n + 2n$
 $= 27 T(n/27) + 2n + 2n + 2n$
......
 $= 2^k T(\frac{n}{2^k}) + 2 k n$
We stop when $\frac{n}{2^k} = 1 \rightarrow T(n) = n T(1) + n \log(n)$

Then prove that $T(n) = \Theta(n \lg n)$

Problem 3 (4.5 points)

Solve the following recurrences using the Master theorem by giving tight θ -notation bounds. Justify your answers.

(a)
$$T(n) = 4T(n/4) + 5 \log^2(n)$$

Sol: Case 1 $\rightarrow T(n) = \theta(n)$

(b)
$$T(n) = 9T(n/3) + 3n^2$$

Sol: Case 2 \rightarrow $T(n) = \theta(n^2 \log n)$

(c)
$$T(n) = 7T(n/2) + n^3 \log n$$

Sol: Case $3 \rightarrow T(n) = \theta(n^3 \log n)$ NB: verify constraint

Problem 4 (4.5 points)

For each algorithm listed below, give a recurrence that describes its worst-case running time, and give its worst-case running time using O-notation.

You need **not** justify your answers.

(a) Merge sort **Sol:** T(n)=2T(n/2) + n

 $O(n \log n)$

(b) Quicksort algorithm

Sol: T(n) = T(n-1) + n $O(n^2)$

(c) Binary Search

Sol: T(n) = T(n/2) + 1 $O(\log n)$

Problem 5 (5 points)

Consider a variation of MergeSort which divides the list of elements into two lists of size 1/3 and 2/3, recursively at each step, instead of dividing it into halves. The Merge procedure does not change.

(a) Give a recurrence relation for this algorithm

Sol: T(n) = T(n/3) + T(2n/3) + n

(b) Draw a recursion tree for the algorithm

n(1/3)² n(2/4) n(2/4) n(2/3)²
n(1/3)³
n(1/3)³

path length

log₃ⁿ

(c) Using the recursion tree, explain how you can deduce the worst case upper bound.

Sol: The total work at each level is \leq n. The longest root-to-leaf path is n-2n/3-4n/9 ---, which is of length $\log_{3/2} n$ since each level has \leq n work, total work is \leq n $\log_{3/2} n$, which is O(n log n)

Problem 6 (6 points)

Consider the following problem:

There are \mathbf{n} parking spots numbered from 1 to \mathbf{n} and you are told that there are \mathbf{k} cars in the first \mathbf{k} spots (one car in each spot), and all other spots are empty. How to find the value of \mathbf{k} ?

- a- Suggest **TWO** algorithm design techniques and give a high-level description of the **TWO** algorithms to solve the problem (find k)?
- b- Analyze the complexities of your **TWO** algorithms?

Sol:

The first approach is the brute force approach. The basic idea consists of scanning all spots and finding the first empty one:

```
Algorithm findK(A[1..n])
{
  for i← 1..n
    If (A[i] empty) return i end
}
O(n).
```

The second approach is the divide and conquer approach.

```
\label{eq:Algorithm} Algorithm findK(A[l..r]) $$\{$ If(l==r) return l; $$ m = (l+r)/2 $$ If (A[m] empty) findK(A[l..m-1]) $$ else findK(A[m .. r]) $$ end $$\} $$O(log n).
```