Régime transitoire

Table des matières

1	Circ	Circuit RC série soumis à un échelon de tension			
	1.1	1.1 Echelon de tension			
	1.2	Charg	e d'un condensateur	2	
		1.2.1	Conditions initiales	2	
		1.2.2	Expression de $u(t)$ et $i(t)$	3	
		1.2.3	Régime transitoire-temps de relaxation	4	
		1.2.4	Temps de monté	4	
		1.2.5	Aspect énergétique	4	
	1.3	Décha	rge d'un condensateur - Régime libre	Ę	
		1.3.1	Régime libre d'un circuit R,C	Ę	
		1.3.2	Aspect énergétique	6	
2	Régime transitoire d'un circuit RL			6	
	2.1	_	se d'un circuit RL à un échelon de tension	6	
	2.2	Régim	ue libre du circuit RL	8	
3 R	Rég	tégime libre d'un circuit RLC			
	3.1	Condi	tions initiales	Ć	
	3.2		ion différentielle - Facteur de qualité - Pulsation propre	Ć	
	3.3	Divers	s régimes de variation	10	
		3.3.1	Régime apériodique	10	
		3.3.2	Régime critique	11	
		3.3.3	Régime pseudo-périodique	11	
4	Rér	Réponse d'un circuit RLC série à un échelon de tension			
	4.1 Régime transitoire-Régime libre			13 13	
	4.2	_	t énergétique		

Dans ce chapitre on va s'intéresser à l'effet d'une brusque variation de tension sur un système lineaire . Cette variation sera modélisée par une fonction appelée échelon de tension .

1 Circuit RC série soumis à un échelon de tension

1.1 Echelon de tension

Il s'agit d'un signal électrique produit par une source libre de tension de la forme :

$$u(t) = \begin{cases} u_0, t \geqslant 0 \\ 0, t < 0 \end{cases}$$

On peut réaliser cet échelon de tension par un basculement de l'interrupteur K à t=0

1.2 Charge d'un condensateur

1.2.1 Conditions initiales

Pour t < 0 l'interrupteur k est ouvert et le condensateur est non chargé .

$$q(0^-) = 0, u(0^-) = 0, i(0^-) = 0$$

on ferme l'interrupteur k à t=0, la continuité de la tension aux bornes du condensateur se traduit par

$$u(0^{-}) = u(0^{+}) = 0$$

de même la continuité de la charge

$$q(0^-) = q(0^+) = 0$$

1.2.2 Expression de u(t) et i(t)

Pour t > 0 la loi des mailles : E = u + Ri avec $i = C \frac{du}{dt}$ donc

$$RC\frac{du}{dt} + u = E$$

On pose $\tau = RC$: constante du temps du circuit RC

$$\tau \frac{du}{dt} + u = E$$

La solution de cette équation s'écrit sous la forme

$$u(t) = u_1(t) + u_2(t)$$

 u_1 : solution générale de l'équation : équation sans séconde membre u_2 : solution particulier de l'équation complète

$$u_1(t) = k \exp(-\frac{t}{\tau})$$

 $u_2 = cte \Rightarrow u_2 = E$ donc

$$u(t) = k \exp(-\frac{t}{\tau}) + E$$

on détermine la constante k par les conditions initales à t=0 $u(0)=0 \Rightarrow k+E=0 \Rightarrow k=-E$ finalement

$$u(t) = E(1 - \exp(-\frac{t}{\tau}))$$

$$i(t) = C\frac{du}{dt} = \frac{E}{R}\exp(-\frac{t}{\tau})$$

- Remarque : on observe :
 - \blacktriangleright une continuité de la tension $\mathbf{u}(t)$ en t=0
 - \blacktriangleright Une discontinuité du courant i(t) en t=0

1.2.3 Régime transitoire-temps de relaxation

- \bullet Pour $t>>\tau\ u\approx E$ le système se trouve alors en un régime établi indépendant du temps .
- \bullet Soit t_n la durée nécessaire au système pour approcher le régime établi

$$u_t = E \text{ à } 10^{-n} \text{ prés } (n = 2.3...)$$

$$\frac{u_t - u(t_n)}{u_t - u(0)} = 10^{-n} = \frac{E - u(t_n)}{E} = \exp(-\frac{t_n}{\tau})$$

$$t_n = 2, 3n\tau$$

 τ : de l'ordre de grandeur du régime transitoire est appelée temps de relaxation

• ordre de grandeur

$$R = 10^3 \Omega, C = 0, 1 \mu F \Rightarrow \tau = 10^{-4} s$$

1.2.4 Temps de monté

On appelle le temps de montée du signal la durée t_m nécessaire à la tension pour passer de $10^0/_0$ à $90^0/_0$ de sa valeur finale.

$$u(t_1) = E(1 - \exp(-\frac{t_1}{\tau})) = 10^0 / {}_0E = 0, 1E \Rightarrow \exp(-\frac{t_1}{\tau}) = 0, 9 \Rightarrow t_1 = 0, 1\tau$$
$$u(t_2) = E(1 - \exp(-\frac{t_2}{\tau})) = 90^0 / {}_0E = 0, 9E \Rightarrow t_2 = 2, 3\tau$$

$$t_m = t_2 - t_1 = 2, 2\tau$$

1.2.5 Aspect énergétique

u + Ri = E en multipliant par $i = C \frac{du}{dt}$

$$\frac{d}{dt}(\frac{1}{2}Cu^2) + Ri^2 = Ei$$

Ei: puissance fournie par le générateur

 Ri^2 : puissance liée à l'effet joule dans la résistance

 $\frac{1}{2}Cu^2 = E_e$: énérgie électrique emmagasinée dans le condensateur

$$\int_{0}^{E} d(\frac{1}{2}Cu^{2}) + \int_{0}^{\infty} Ri^{2}dt = \int_{0}^{\infty} Eidt = \int_{0}^{E} ECdu = CE^{2}$$

$$w_J = \int_0^\infty Ri^2 dt = CE^2 - \frac{1}{2}CE^2 = \frac{1}{2}CE^2$$

1.3 Décharge d'un condensateur - Régime libre

1.3.1 Régime libre d'un circuit R,C

Le régime libre (ou propre) caractérise l'évolution du circuit RC en l'absence de la source .

à t<0 k se trouve dans la position (1) qui permet la charge du condensateur . Aprés quelques τ u atteint la valeur de E

à t=0 k b
scule vers la position (2) , le circuit RC se trouve dans le régime libre la continuité de u aux bornes de $C:u(0^+)=u(0^-)=u_0=E$

$$i = C \frac{du}{dt}$$
 et $u + Ri = 0 \Rightarrow$

$$u + \tau \frac{du}{dt} = 0$$

avec $\tau = RC$

la solution de cette équation s'écrit sous la forme $u(t)=k\exp(-\frac{t}{\tau})$, avec u(0)=E=k donc

$$u(t) = E \exp(-\frac{t}{\tau})$$

$$i = C\frac{du}{dt} = -\frac{E}{R}\exp(-\frac{t}{\tau})$$

1.3.2 Aspect énergétique

En multipliant l'équation u+Ri=0 par idt=Cdu $Cudu+Ri^2dt=d(\frac{1}{2}Cu^2)+Ri^2dt=0$

l'intégration entre $\overset{\angle}{t}=0$ et $t=\infty$ (quelques τ) on obtient :

$$w_J = \int_0^\infty Ri^2 dt = \frac{1}{2} CE^2$$

Le condensateur restitue ,au cours de la décharge ,sous forme d'effet Joule l'énergie qu'il avait emmagasinée pendant la charge .

2 Régime transitoire d'un circuit RL

2.1 Réponse d'un circuit RL à un échelon de tension

Pour t<0, le courant circulant dans le circuit RL est supposé nul . k est placé en position (1) à t=0 la continuité du courant dans la bobine se traduit par $i(0^-)=i(0^+)=0$ pour $t\geqslant 0$: $E=Ri+u=Ri+L\frac{di}{dt}$

$$i + \tau \frac{di}{dt} = \frac{E}{R}$$

avec $\tau = \frac{L}{R}$ temps de relaxation la solution de cette équation s'écrit sous la forme

$$i(t) = \frac{E}{R} + k \exp(-\frac{t}{\tau})$$

$$i(0) = 0 \Rightarrow k = -\frac{E}{R}$$

$$i(t) = \frac{E}{R}(1 - \exp(-\frac{t}{\tau}))$$

$$u(t) = L\frac{di}{dt} = E\exp(-\frac{t}{\tau})$$

continuité de i(t) en t=0

discontinuité de u(t) en t=0

• Aspect énergétique

En multipliant $E = Ri + L\frac{di}{dt}$ par idt

$$Eidt = Ri^2 dt + d(\frac{1}{2}Li^2)$$

$$\int_{0}^{\infty} Eidt = \int_{0}^{\infty} Ri^{2}dt + \int d(\frac{1}{2}Li^{2})$$

$$w_g = w_J + \frac{1}{2}Li_M^2$$

avec : $i_M = \frac{E}{R}$

 w_g : l'énergie fournie par le générateur

 w_J : l'énergie dissipée par effet Joule dans la résistance

2.2 Régime libre du circuit RL

à t < 0 k est dans la position (1), on attend l'établissement du courant $i_M = \frac{E}{R}$ dans le circuit .

à t=0 on bascule l'interrupteur k vers la position (2) , le circuit se trouve à $t\geqslant 0$ dans le régime libre .

La continuité du courant en $0: i(0^-) = i(0^+) = i_M$.

$$u + Ri = L\frac{di}{dt} + Ri = 0 \Rightarrow \tau \frac{di}{dt} + i = 0, \tau = \frac{L}{R}$$

$$i(t) = k \exp(-\frac{t}{\tau})$$
 avec $i(0) = i_M = k$

$$i(t) = i_M \exp(-\frac{t}{\tau})$$

$$u = L\frac{di}{dt} = -Ri_M \exp(-\frac{t}{\tau})$$

• Bilan énergétique

Multiplions $L\frac{di}{dt} + Ri = 0$ par idt on obtient $d(\frac{1}{2}Li^2) + Ri^2dt = 0$ par intégration entre t = 0 et $t_1 >> \tau$:

$$w_J = \frac{1}{2} L i_M^2$$

L'énergie électromagnétique initiale dans la bobine est totalement dissipée par effet Joule dans la résistance .

3 Régime libre d'un circuit RLC

3.1 Conditions initiales

Pour résoudre les équations d'un circuit RLC il es nécessaire d'utilser les conditions initiales et les deux conditions suivantes :

- ► La continuité du courant i (circulant dans la bobine)
- \blacktriangleright La continuité de la tension u aux bornes du condensateur

3.2 Equation différentielle - Facteur de qualité - Pulsation propre

$$L\frac{di}{dt} + Ri + u = 0; i = c\frac{du}{dt}$$
$$\frac{d^2u}{dt^2} + \frac{R}{L}\frac{du}{dt} + \frac{1}{Lc}u = 0$$

$$\frac{d^2u}{dt^2} + 2\lambda \frac{du}{dt} + \omega_0^2 u = 0$$

 $\lambda = \frac{R}{2L_1}$: Coefficient d'amortissement

 $\omega_0 = \frac{1}{\sqrt{Lc}}$: pulsation propre

On définit le facteur de qualité du circuit RLC par

$$Q = \frac{L\omega_0}{R} = \frac{1}{Rc\omega_0} = \frac{1}{R}\sqrt{\frac{L}{c}}$$

$$\boxed{\frac{d^2u}{dt^2} + \frac{\omega_0}{Q}\frac{du}{dt} + \omega_0^2 u = 0}$$

de même l'équation en charge q:q=cu

$$\frac{d^2q}{dt^2} + \frac{\omega_0}{Q}\frac{dq}{dt} + \omega_0^2 q = 0$$

3.3 Divers régimes de variation

l'équation caractéristique de l'équation différentielle $r^2+2\lambda r+\omega_0^2=0$ avec $\lambda=\frac{\omega_0}{2Q}$ $\Delta' = \lambda^2 - \omega_0^2 = \omega_0^2 (\frac{1}{4Q^2} - 1)$

Régime apériodique 3.3.1

Pour un amortissement élevé $\Delta' > 0 \Rightarrow \lambda > \omega_0 \Rightarrow Q < \frac{1}{2} \Rightarrow R > 2\sqrt{\frac{L}{c}}$ $r_{1,2} = -\lambda \pm \sqrt{\lambda^2 - \omega_0^2} \text{ donc}$

$$u(t) = \exp(-\lambda t)\left(a\exp(\sqrt{\lambda^2 - \omega_0^2}t) + b\exp(-\sqrt{\lambda^2 - \omega_0^2}t)\right)$$

• Portrait de phase

C'est la représentation de $\frac{du}{dt}$ en fonction de u(t). Pour un signal sinusoidal le portrait de phase est un éllipse

Les trajectoires de phase montrent un retour sans oscillation vers le point attracteur à l'origine.

• Ordre de grandeur de la durée du régime libre

Pour t suffisament élevé : $u(t)\approx a\exp(-(\lambda-\sqrt{\lambda^2-\omega_0^2})t)=a\exp(-\frac{t}{\tau})$

$$\tau = \frac{1}{\lambda - \sqrt{\lambda^2 - \omega_0^2}} = \frac{\lambda + \sqrt{\lambda^2 - \omega_0^2}}{\omega_0^2}$$

La durée du régime libre est de quelques au varie avec le facteur de qualité Q .

3.3.2 Régime critique

$$\Delta' = 0, \lambda_c = \omega_0, Q_c = \frac{1}{2}, R_c = 2\sqrt{\frac{L}{c}}$$
$$u(t) = (a + bt) \exp(-\omega_0 t)$$

• Ordre de grandeur du régime libre

$$\tau_c = \frac{1}{\omega_0}$$

Portrait de phase

Le système tente encore à contourner l'origine dans le sens horaire mais ne peut y parvenir : il échoue rapidement au point o .

3.3.3 Régime pseudo-périodique

Pour un amortissement faible :
$$\Delta' < 0$$
; $\lambda < \omega_0$; $Q > \frac{1}{2}$; $R < 2\sqrt{\frac{L}{c}}$
 $r_{1,2} = -\lambda \pm i\sqrt{\omega_0^2 - \lambda^2} = -\lambda \pm i\Omega$

$$\Omega = \sqrt{\omega_0^2 - \lambda^2}$$

 Ω : pseudo-pulsation la solution est :

$$u(t) = a \exp(-\lambda t) \cos(\Omega t + \varphi)$$

 $a;\varphi$ sont des constantes d'intégration $\lambda=\frac{\omega_0}{}$

$$\Omega = \omega_0 \sqrt{1 - \frac{1}{4Q^2}} < \omega_0$$

• Pseudo-période T la période propre $T_0 = \frac{2\pi}{\omega_0}$ la pseudo-période :

$$T = \frac{2\pi}{\Omega} = \frac{T_0}{\sqrt{1 - \frac{1}{4Q^2}}} > T_0$$

• Décrément logarithmique $u(t+T) = \exp(-\lambda T)u(t)$

$$\delta = \lambda T = \frac{\omega_0}{2Q} \frac{T_0}{\sqrt{1 - \frac{1}{4Q^2}}} = \frac{2\pi}{\sqrt{4Q^2 - 1}}$$

$$\delta = \ln[\frac{u(t)}{u(t+T)}]$$

la durée du régime pseudo-périodique

$$\tau = \frac{1}{\lambda} = \frac{2Q}{\omega_0}$$

•Portrait de phase

4 Réponse d'un circuit RLC série à un échelon de tension

4.1 Régime transitoire-Régime libre

l'équation différentielle :

$$\frac{d^2u}{dt^2} + \frac{\omega_0}{Q}\frac{du}{dt} + \omega_0^2 u = \omega_0^2 E$$

la solution de cette équation s'écrit sous la forme :

$$u(t) = u_1(t) + E$$

avec:

► E : solution particulière

 $ightharpoonup u_1(t)$: solution générale

 $u_1(t)$ correspond au régime libre (apériodique-critique-pseudo-périodique) . Pendant la durée de l'existence du régime libre le circuit RLC se trouve en régime transitoire ,cependant au bout de quelques τ on parvient à un régime établi indépendant du temps $u_1=0; u=E$.

Le régime établi ne dépend pas des conditions initiales (i_0,u_0) car $u_1(t)\to 0$ lorsque $t\to\infty$.

4.2 Aspect énergétique

En multipliant l'équation $E = L\frac{di}{dt} + Ri + u$ par idt = cdu

$$Eidt = d(\frac{1}{2}Li^2 + \frac{1}{2}cu^2) + Ri^2dt = dE + \delta w_J$$

l'intégration entre t = 0 et $t = \infty$

$$E \int_{q(0)}^{q(\infty)} dq = \frac{1}{2} L(i_{\infty}^2 - i_{(0)}^2) + \frac{1}{2} c(u_{(\infty)}^2 - u_{(0)}^2) + \int_0^{\infty} Ri^2 dt$$
avec : $q(0) = u(0) = i(0) = 0$ et $q(\infty) = cE$; $u(\infty) = E$; $i(\infty) = 0$

$$cE^2 = \frac{1}{2} cE^2 + w_J \Rightarrow w_J = \frac{1}{2} cE^2$$

- \blacktriangleright La bobine n'intervient pas dans le bilan énergétique globale de la charge du condensateur .
- ▶ L'énergie fournie par le générateur se répartit à égalité entre la résistance (effet Joule) et le condensateur .