

IoT Data Analytics

Examples of Projects

L. Caruccio, AY 2024-25

Batch vs Online Learning

Comparison of batch learning vs online learning models

- ▶ The goal is to evaluate how these models perform in:
 - stationary scenarios
 - scenarios with concept drift, where the underlying data distribution changes over time.
- Several online learning algorithms are provided by different libraries (River, scikit-multiflow, Vowpal Wabbit)

Batch vs Online Clustering

- Comparison between static and online clustering methods and online clustering algorithms when applied to streaming data scenarios.
- Comparison in terms of clustering quality and computational efficiency
 - Evaluation of the trade-offs involved in using batch vs online clustering strategies
- The River library provides different online algorithms

Meta Learning

Meta-learning refers to training a machine learning model on a dataset composed of metadata

- The trained meta-model can provide recommendations basing on the learned past experience
 - (e.g., recommending the best parameters, models etc.)
- This approach has been recently used to provide recommendations based on the input characteristics

Meta Learning: how it works

Meta Learning: Anomaly Detection

 Implementation of a meta-learning approach to identify the best anomaly detector for a given series

The meta-model recommends the best model to use basing on the time series features

Meta Learning: Anomaly Detection

- Comparison of different feature extraction techniques
 - tsfresh
 - tsfel
 - tsfeatures
 - ...
- ▶ Evaluating **E**fficiency vs **©** Accuracy
 - Use of all features
 - Selecting the best features
 - Aggregating groups of features

Meta Learning: data imputation

- Missing values are common in time series data, as they contain data usually collected from sensors
 - ▶ The presence of missing values significantly degrades the performance of any downstream task
- Data imputation refers to filling missing values by identifying potential candidates within the series

Meta Learning: data imputation

- There are several approaches for imputing time series data
 - Interpolation
 - Propagation
 - Deep-Learning
 - ...
- ▶ The performance of data imputers varies significantly according to the series' characteristics
- Development of a meta-model to recommend the best imputer for a given series

Resources

- Several time series repositories are available online.
- One of the most comprehensive ones is TSB-UAD (https://github.com/TheDatumOrg/TSB-UAD) which is focused on univariate time series:
 - It contains **12686 time series with labeled anomalies** spanning different domains with high variability of anomaly types, ratios, and sizes.

► TSB-AD-M, instead, is a recent repository containing multivariate time series data (Download link: https://www.thedatum.org/datasets/TSB-AD-M.zip)

Resources

- Online learning/clustering libraries:
 - River: https://riverml.xyz/latest/
 - Scikit-Multiflow: https://scikit-multiflow.github.io/
 - Vowpal Library: https://vowpalwabbit.org/index.html
- Time series imputation libraries:
 - PyPots: https://github.com/WenjieDu/PyPOTS (Tutorials available at https://github.com/WenjieDu/BrewPOTS)
- Time series Feature Extraction libraries:
 - tsfresh: https://tsfresh.readthedocs.io/en/latest/
 - tsfel: https://tsfel.readthedocs.io/en/latest/
 - tsfeatures: https://github.com/Nixtla/tsfeatures
- Clustering evaluation metrics:
 - https://www.geeksforgeeks.org/clustering-metrics/

Resources

Articles on Google Scholar:

Examples of meta-learning approaches

- Tavares, G. M., & Barbon, S. J. (2023). Matching business process behavior with encoding techniques via meta-learning: An anomaly detection study. *Computer Science and Information Systems*, *20*(3), 1207-1233.
- Sylligardos, E., Boniol, P., Paparrizos, J., Trahanias, P., & Palpanas, T. (2023). Choose wisely: An extensive evaluation of model selection for anomaly detection in time series. Proceedings of the VLDB Endowment, 16(11), 3418-3432.

Time series imputation surveys

- Lepot, M., Aubin, J. B., & Clemens, F. H. (2017). Interpolation in time series: An introductive overview of existing methods, their performance criteria and uncertainty assessment. *Water*, *9*(10), 796.
- Wang, J., Du, W., Yang, Y., Qian, L., Cao, W., Zhang, K., ... & Wen, Q. (2024). Deep learning for multivariate time series imputation: A survey. *arXiv preprint arXiv:2402.04059*.

Online learning approaches survey

Hoi, S. C., Sahoo, D., Lu, J., & Zhao, P. (2021). Online learning: A comprehensive survey. *Neurocomputing*, *459*, 249-289.

Time series anomaly detection approaches survey

Boniol, P., Liu, Q., Huang, M., Palpanas, T., & Paparrizos, J. (2024). Dive into time-series anomaly detection: A decade review. arXiv preprint arXiv:2412.20512.