ACCOLITE UNIVERSITY, JULY 2020

SQL Concepts & Fundamentals

Assignment Submission

By: Ayush Malik

The following problem description and assumptions have been taken into consideration while designing the database of the hospital system.

PROBLEM DESCRIPTION AND ASSUMPTIONS:

- The hospital management system handles 3 types of records: Patient, Doctor and Department.
- Every time a patient is admitted to the hospital, a new record is created. Even if the same patient gets admitted multiple times, a different record for him/her will be created each time. Once admitted, the patient can be visited by different doctors any number of times before he/she is discharged.
- A patient is admitted to only one department of the hospital.
- A doctor can belong to only one department of the hospital.
- A doctor can treat a patient from any department.
- A patient can be treated/visited by any number of doctors from any department.
- A patient's record consists of the following: patient id, name, identity proof number, contact person one, contact person two, date of admission, date of discharge, hospital charges, date of birth, department id, medical condition, phone number, blood group, the doctors he/she has been treated by along with the corresponding dates of visit/treatment, hospital fee.
 - o Patient's id uniquely identifies each patient.
 - o For both contact persons of the patient, the following information will be stored: name, phone number and address.
 - o It is assumed that the visiting dates of the doctors will be between the date of admission and date of discharge of the patient (both inclusive).
 - Hospital Fee is further divided into the following types of fee: Doctor Fee, Room Charges, Medicine, Food and Miscellaneous.
 - o It is assumed that the date of admission is always before the date of discharge or the same as the date of discharge.
 - o A patient can be visited by the same doctor multiple times.
- A doctor's record consists of the following: doctor's id, name, identity proof number, department id, contact number and visiting charges.
 - o A doctor's id uniquely identifies each doctor.
 - Visiting timings of the doctors have not been taken into consideration.
- A department's record consists of the following: department id, department name, phone and address.
 - o A department's id uniquely identifies each department.
 - O Visiting timings of the department/ hospital have not been taken into consideration.

- o It is assumed that a doctor's visiting charges are the same for every visit.
- It is assumed that no photos are to be stored in the database.
- It is assumed that each address is a simple string value instead of being a composite attribute.

RELATIONAL MODEL OF THE HOSPITAL SYSTEM:

The normalized relational model of the system consists of 4 tables:

1. PATIENT

Patient_ID	Patient_Name	ID_Proof_Number
Phone	Date_of_Admission	Date_of_Discharge
Medical_Condition	Blood_Group	Department_ID
Contact Person 1 Name	Contact Person 1 Phone	Contact Person 1 Address
Contact Person 2 Name	Contact Person 2 Phone	Contact Person 1 Address
Medicine Fee	Room Charges	Food Charges
Miscellaneous_Charges	Address	Date of Birth

- Patient ID is the primary key.
- Department_ID is a foreign key to the primary key (Department_ID) of the Department table.

2. DEPARTMENT

Department ID	Department Name	Department Address	Phone

• Department ID is the primary key.

3. DOCTOR

Doctor_ID	Doctor_Name	ID_Proof_Number
Visiting Charge	Department ID	Phone

- Doctor ID is the primary key.
- Department_ID is a foreign key to the primary key (Department_ID) of the Department table.

4. PATIENT DOCTOR

Patient_ID Doctor_ID Date_of_Visit

- Patient_ID, Doctor_ID and Date_of_Visit together form the primary key.
- Patient_ID is a foreign key to the primary key (Patient_ID) of the Patient table.
- Doctor ID is a foreign key to the primary key (Doctor ID) of the Doctor table.

1. Create a database for the Hospital Management System based on your ER. Create appropriate tables & relationships.

For easy demonstration, many attributes which should ideally be NOT NULL, have not been constrained.

The size of the datatype of attributes i.e. the number of bytes they occupy, have been adjusted for demonstration.

As already stated, it is assumed that each address is a simple string value instead of being a composite attribute.

DDL QUERIES

```
CREATE TABLE `hospital`.`department` (
 `Department ID` VARCHAR(15) NOT NULL,
 `Department_Name` VARCHAR(40) NULL,
 `Department_Address` VARCHAR(80) NULL,
 PRIMARY KEY (`Department_ID`));
CREATE TABLE `hospital`.`doctor` (
 `Doctor ID` VARCHAR(15) NOT NULL,
 `Doctor_Name` VARCHAR(40) NOT NULL,
 `Doctor Phone` VARCHAR(20) NULL,
 `Department ID` VARCHAR(15),
 `Visiting Charges`FLOAT NULL,
 `ID Proof Number` VARCHAR(20) NOT NULL,
 PRIMARY KEY (`Doctor_ID`),
 CONSTRAINT `Doctor_To_Department`
   FOREIGN KEY (`Department ID`)
   REFERENCES `hospital`.`department` (`Department_ID`)
   ON DELETE SET NULL
   ON UPDATE CASCADE);
CREATE TABLE `hospital`.`patient` (
 `Patient_ID` VARCHAR(15) NOT NULL,
 `Patient_Name` VARCHAR(40) NOT NULL,
```

```
`ID_Proof_Number` VARCHAR(20) NULL,
  `Phone` VARCHAR(20) NULL,
  `Contact_Person_1_Name` VARCHAR(40) NULL,
  `Contact_Person_1_Phone` VARCHAR(20) NULL,
  `Contact Person 1 Address` VARCHAR(80) NULL,
  `Address` VARCHAR(80) NULL,
  `Contact_Person_2_Name` VARCHAR(40) NULL,
  `Contact Person 2 Phone` VARCHAR(20) NULL,
  `Department_ID` VARCHAR(15) NOT NULL,
  `Date_of_Admission` DATE NOT NULL,
  `Date of Discharge` DATE NULL,
  `Blood_Group` CHAR(3) NULL,
  `Contact_Person_2_Address` VARCHAR(80)NULL,
  `Miscellaneous Charges` FLOAT NULL,
  `Food_Charges` FLOAT NULL,
  `Room_Charges` FLOAT NULL,
  `Medical Condition` VARCHAR(80) NULL,
  `Medicine_Fee` FLOAT NULL,
 PRIMARY KEY (`Patient_ID`),
 CONSTRAINT `Patient_to_Department`
    FOREIGN KEY (`Department_ID`)
   REFERENCES `hospital`.`department` (`Department ID`)
   ON DELETE NO ACTION
   ON UPDATE NO ACTION);
------ TABLE------CREATING patient doctor TABLE
CREATE TABLE `hospital`.`patient doctor` (
  `Patient ID` VARCHAR(15) NOT NULL,
  `Doctor ID` VARCHAR(15) NOT NULL,
  `Date_of_Visit` DATE NOT NULL,
 PRIMARY KEY (`Patient_ID`, `Doctor_ID`, `Date_of_Visit`),
 CONSTRAINT `Patient Doctor to Patient`
    FOREIGN KEY (`Patient_ID`)
   REFERENCES `hospital`.`patient` (`Patient_ID`)
   ON DELETE NO ACTION
   ON UPDATE CASCADE,
 CONSTRAINT `Patient_Doctor_to_Doctor`
    FOREIGN KEY (`Doctor_ID`)
   REFERENCES `hospital`.`doctor` (`Doctor_ID`)
   ON DELETE NO ACTION
   ON UPDATE CASCADE);
```

DML QUERIES

```
------ DATA-----INSERTING DEPARTMENTS' DATA------
INSERT INTO `hospital`.`department` (`Department_ID`, `Department_Name`,
`Department Address`) VALUES ('D1', 'Cardiology', 'First Floor');
INSERT INTO `hospital`.`department` (`Department_ID`, `Department_Name`,
`Department_Address`) VALUES ('D2', 'ICU', 'Second Floor');
INSERT INTO `hospital`.`department` (`Department_ID`, `Department_Name`,
`Department_Address`) VALUES ('D3', 'Emergency', 'Third Floor');
INSERT INTO `hospital`.`department` (`Department_ID`, `Department_Name`,
`Department_Address`) VALUES ('D4', 'Gynaecology', 'Ground Floor');
INSERT INTO `hospital`.`department` (`Department_ID`, `Department_Name`,
`Department_Address`) VALUES ('D5', 'Neurology', 'East Wing');
INSERT INTO `hospital`.`doctor` (`Doctor_ID`, `Doctor_Name`,
`Department_ID`) VALUES ('Doc7', 'Ayush', 'D2');
----- DATA-----INSERTING DOCTORS' DATA-----
INSERT INTO `hospital`.`doctor` (`Doctor ID`, `Doctor Name`,
`Department_ID`) VALUES ('Doc1', 'Ramesh', 'D1');
INSERT INTO `hospital`.`doctor` (`Doctor_ID`, `Doctor_Name`,
`Department_ID`) VALUES ('Doc2', 'Suresh', 'D3');
INSERT INTO `hospital`.`doctor` (`Doctor_ID`, `Doctor_Name`,
`Department_ID`) VALUES ('Doc3', 'Rajesh', 'D1');
INSERT INTO `hospital`.`doctor` (`Doctor_ID`, `Doctor_Name`,
`Department_ID`) VALUES ('Doc4', 'Jignesh', 'D5');
INSERT INTO `hospital`.`doctor` (`Doctor_ID`, `Doctor_Name`,
`Department_ID`) VALUES ('Doc5', 'Aarti', 'D3');
INSERT INTO `hospital`.`doctor` (`Doctor_ID`, `Doctor_Name`,
`Department_ID`) VALUES ('Doc6', 'Aswani', 'D4');
```

```
INSERT INTO `hospital`.`patient` (`Patient_ID`, `Patient_Name`,
`Department_ID`, `Date_of_Admission`, `Date_of_Discharge`) VALUES ('P1',
'Arvind', 'D1', '2020-07-13', '2020-07-19');
INSERT INTO `hospital`.`patient` (`Patient_ID`, `Patient_Name`,
`Department_ID`, `Date_of_Admission`) VALUES ('P2', 'Mukesh', 'D2', '2020-
06-11');
INSERT INTO `hospital`.`patient` (`Patient_ID`, `Patient_Name`,
`Department_ID`, `Date_of_Admission`, `Date_of_Discharge`) VALUES ('P3',
'Vikas', 'D5', '2020-07-16', '2020-07-18');
INSERT INTO `hospital`.`patient` (`Patient ID`, `Patient Name`,
`Department ID`, `Date of Admission`, `Date of Discharge`) VALUES ('P4',
'Swati', 'D1', '2020-06-11', '2020-07-15');
INSERT INTO `hospital`.`patient` (`Patient_ID`, `Patient_Name`,
`Department_ID`, `Date_of_Admission`, `Date_of_Discharge`) VALUES ('P5',
'Vineeta', 'D5', '2020-06-10', '2020-07-05');
INSERT INTO `hospital`.`patient` (`Patient_ID`, `Patient_Name`,
`Department_ID`, `Date_of_Admission`, `Date_of_Discharge`) VALUES ('P6',
'Aryan', 'D3', '2020-05-15', '2020-07-18');
INSERT INTO `hospital`.`patient` (`Patient ID`, `Patient Name`,
`Department_ID`, `Date_of_Admission`) VALUES ('P7', 'Vipin', 'D4', '2020-
07-08');
INSERT INTO `hospital`.`patient` (`Patient_ID`, `Patient_Name`,
`Department ID`, `Date of Admission`, `Date of Discharge`) VALUES ('P8',
'Shweta', 'D1', '2020-07-09', '2020-07-19');
·-----DATA-----INSERTING PATIENT-DOCTOR DATA-------
INSERT INTO `hospital`.`patient doctor` (`Patient ID`, `Doctor ID`,
`Date_of_Visit`) VALUES ('P1', 'Doc2', '2020-07-14');
INSERT INTO `hospital`.`patient_doctor` (`Patient_ID`, `Doctor_ID`,
`Date of Visit`) VALUES ('P2', 'Doc7', '2020-07-13');
INSERT INTO `hospital`.`patient_doctor` (`Patient_ID`, `Doctor_ID`,
`Date_of_Visit`) VALUES ('P3', 'Doc2', '2020-07-16');
```

2. Design a query to provide a list of doctors, which department they belong to and patients treated by them (if any).

SELECT Doctor_Name, Doctor_ID, NULL AS Patient_Name, Department_Name
FROM hospital.doctor DOC, hospital.department DPT
WHERE DOC.Department_ID = DPT.Department_ID and Doctor_ID NOT IN
(SELECT Doctor_ID FROM hospital.patient_doctor)
UNION

SELECT Doctor_Name, PD.Doctor_ID, Patient_Name, Department_Name
FROM hospital.Department AS DPT, hospital.doctor AS
D,hospital.patient_doctor as PD ,hospital.patient as P
WHERE PD.patient_id = P.Patient_ID AND D.doctor_id = PD.Doctor_ID
AND D.Department_ID=DPT.Department_ID
ORDER BY Doctor ID;

Doctor_Name	Doctor_ID	Patient_Name	Department_Name
Ramesh	Doc1	Swati	Cardiology
Suresh	Doc2	Arvind	Emergency
Suresh	Doc2	Vikas	Emergency
Rajesh	Doc3	NULL	Cardiology
Jignesh	Doc4	Shweta	Neurology
Aarti	Doc5	Aryan	Emergency
Aswani	Doc6	NULL	Gynaecology
Ayush	Doc7	Mukesh	ICU
Ayush	Doc7	Vineeta	ICU

3. Query to provide the count of patients discharged per day in the last week.

SELECT Count(*) as Count, Date_of_Discharge
FROM hospital.patient
WHERE Date_of_Discharge BETWEEN '2020-07-13' and '2020-07-20'
GROUP BY Date_of_Discharge;

Count	Date_of_Discharge
2	2020-07-19
2	2020-07-18
1	2020-07-15

For missing Dates of the week Count=0;