Lecture # 11

Dynamic Programming

- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . where each number is the sum of the two preceding numbers.
- More formally: The Fibonacci numbers F_n are defined as follows:

$$F0 = 0$$

 $F1 = 1$
 $F_n = F_{n-1} + F_{n-2}$

The recursive definition of Fibonacci numbers gives us a recursive algorithm for computing them:

```
\begin{array}{ll} \operatorname{FIB}(\mathfrak{n}) \\ 1 & \text{if } (\mathfrak{n} < 2) \\ 2 & \text{then return } \mathfrak{n} \\ 3 & \text{else return } \operatorname{FIB}(\mathfrak{n} - 1) + \operatorname{FIB}(\mathfrak{n} - 2) \end{array}
```

Following Figure shows four levels of recursion for the call fib(8):

- A single recursive call to fib(n) results in one recursive call to fib(n - 1),
- two recursive calls to fib(n 2),
- three recursive calls to fib(n 3),
- five recursive calls to fib(n 4) and, so on....
- For each call, we're recomputing the same fibonacci number from scratch
- We can avoid this unnecessary repetition by writing down the results of recursive calls and looking them up again if we need them later.
- This process is called memoization.

Here is the algorithm with memoization.

```
 \begin{aligned} & \text{MEMOFIB}(n) \\ & 1 \quad \text{if } (n < 2) \\ & 2 \quad \text{then return } n \\ & 3 \quad \text{if } (F[n] \text{ is undefined}) \\ & 4 \quad \text{then } F[n] \leftarrow \text{MEMOFIB}(n-1) + \text{MEMOFIB}(n-2) \\ & 5 \quad \text{return } F[n] \end{aligned}
```

■ If we trace through the recursive calls to MEMOFIB, we find that array F[] gets filled from bottom up. I.e., first F[2], then F[3], and so on, up to F[n]. We can replace recursion with a simple for-loop that just fills up the array F[] in that order.

This gives us our first explicit dynamic programming algorithm.

```
ITERFIB(n)

1 F[0] ← 0

2 F[1] ← 1

3 for i ← 2 to n

4 do

5 F[i] ← F[i − 1] + F[i − 2]

6 return F[n]
```

■ This algorithm clearly takes only O(n) time to compute Fn.By contrast, the original recursive algorithm takes $\Theta(\Phi^n)$, $\Phi = (1+\sqrt{5})/2 \approx 1.618$. ITERFIB achieves an exponential speedup over the original recursive algorithm.

Dynamic Programming

- Dynamic programming is essentially recursion without repetition (of same sub problem). Developing a dynamic programming algorithm generally involves two separate steps:
- Formulate problem recursively. Write down a formula for the whole problem as a simple combination of answers to smaller sub problems.
- Build solution to recurrence from bottom up. Write an algorithm that starts with base cases and works its way up to the final solution.

- Dynamic programming algorithms need to store the results of intermediate sub problems. This is often but not always done with some kind of table
- Dynamic Programming, like divide and conquer, solves the problems by combining the solutions to sub problems. (programming here refers to a tabular method; not to write a computer code).
- In contrast, Dynamic Programming is applicable when the sub problems are dependent i.e. when sub problems share sub-sub problems.

- Dynamic programming takes advantage of the duplication and arrange to solve each sub problem only once, saving the solution (in table or something) for later use.
- The underlying idea of dynamic programming is: avoid calculating the same stuff twice, usually by keeping a table of known results of sub problems
- Dynamic Programming is typically applied to optimization problems. In such problems there are many possible solutions. Each solution has a value and we wish to find a solution with the optimal value.

- The development of a Dynamic Programming algorithm can be broken into sequence of four steps.
- Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution in a bottom-up fashion.
- 4. Construct an optimal solution from computed information
 - For step 4, We sometimes maintains additional information during step 3 for easy construction.

Properties of a problem that can be solved with dynamic programming

The problems which are candidates, to be solved using dynamic programming approach must have following elements in that.

1. Optimal Substructure of the problems

The solution to the problem must be a composition of subproblem solutions

2. Overlapping Sub problems

Optimal subproblems to unrelated problems can contain subproblems in common

1. Optimal Substructure of the problems

- First step in solving in an optimization problem by dynamic programming is to characterize the structure of an optimal solution.
- Problem exhibits Optimal Substructure if an optimal solution to the problem contains within it optimal solutions to sub problems. (good clue to apply dynamic programming).
- In dynamic programming, we build an optimal solution to the problem from optimal solutions to sub problems

2. <u>Overlapping Sub problems</u>

- The space of the sub problems must be "small" in the sense that a recursive algorithm for the problem solves the same sub problems over and over, rather than always generating new sub problems.
- When a recursive algorithm revisits the same problem over and over again we say that the optimization problem has Overlapping Sub problems.

- In contrast, a problem for which divide and conquer approach is suitable usually generates brand new problems at each step of the recursion.
- Dynamic Programming algorithms typically take advantage of overlapping sub problems by solving each sub problem once and storing the solution in a table (may be) where it can be looked up when needed, using constant time per lookup.

Dynamic Programming Example 1:

Shortest Path Problem

Consider the following graph. For each stage j and location s, we have

$$f_j(s) = Min_{(all z of stage j+1)} \{ C_{sz} + f_{j+1}(z) \}$$

- We have five stages in previous figure, namely S1, S2, S3 S4 S5 and contains following nodes
- \blacksquare C_{sz} means cost (length) of arc s \rightarrow z
- We will be solving our problem in bottom up fashion. i.e. we will be moving from stage S5 to stage S1
- By above definition, for stage S5 we will have $f_5(J) = 0$

S 4	C _{sz} +	f ₅ (z)	f ₄ (S4)	Decision to
				go
		,		
Н	3+0	= 3	3	J
ı	4+0)= 4	4	J
S 3	C _{sz} +	f ₄ (z)	f ₃ (S3)	Decision to
				go
	Н	I		
Е	1+3 = 4	4+4 = 8	4	Н
F	6+3 = 9	3+4 = 7	7	
				10

6

3+3=6 | 3+4=7 |

G

19

S2	$C_{sz} + f_3(z)$			f ₂ (S2)	Decision to go			
	E	F	G					
В	11	11	9	9	G			
С	6	11	8	6	Е			
D	6	8	11	6	Ε			
S1	$C_{sz} + f_2(z)$			f ₁ (S1)	Decision to			
					go			
	В	С	D					
8 0 1	rom al	oo ve c	P app	roa <mark>8</mark> h w	e foun <mark>d</mark> that			

A D E H J is the shortest possible path.

Time complexity

- What it should be?
- stages :- m
- nodes :- n

let us say, at every stage we have nlocations and for that we calculated values from all previous stage values.

So we have O(n²) for every stage. And if we have m stages then for all stages it should be O(mn²).

Space complexity

What it should be?

Space complexity = O(n), as we calculate n - locations at every stage. So stage doesn't matter actually but the number of nodes does matter at every stage.

Dynamic Programming Example 2:

Longest Common Subsequence (LCS)

- Longest common subsequence (LCS) problem:
 - Given two sequences x[1..m] and y[1..n], find the longest subsequence which occurs in both
 - Ex: $x = \{A B C B D A B\}, y = \{B D C A B A\}$
 - {B C} and {A A} are both subsequences of both
 - What is the LCS?
 - Brute force (unthinking) algorithm: For every subsequence of x, check if it's a subsequence of y
 - How many subsequences of x are there?
 - What will be the running time of the brute-force algorithm?

- Brute-force algorithm: 2^m subsequences of x to check against n elements of y: $O(n \ 2^m)$
- We can do better: for now, let's only worry about the problem of finding the *length* of LCS
 - When finished we will see how to backtrack from this solution back to the actual LCS
- Notice LCS problem has optimal substructure property: solutions of subproblems are parts of the final solution.
- Let $X = \{ x_1, x_2, ... x_m \}$, we define the ith prefix of X, for i = 0,1,2...m as

$$X_{i} = \{ x_{1}, x_{2}, ..., x_{i} \}$$

■ For example $X = \{A, B, C, B, D, A, B\}$ then $X_4 = \{A, B, C, B\}$

Theorem (optimal substructure of an LCS)

- Let $X = \{x_1, x_2, \dots x_m\}$, and $Y = \{y_1, y_2, \dots y_n\}$ be sequences and let $Z = \{z_1, z_2, \dots z_k\}$ be any LCS of X and Y then
- 1. If $x_m = y_n$ then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- If $x_m = y_n$ then $z_k = x_m$ implies that Z is an LCS of X_{m-1} and Y.
- If $x_m != y_n$ then $z_k != y_n$ implies that Z is an LCS of X and Y_{n-1} .

■ We can see the overlapping – sub problems property in the LCS problem. To find the LCS of X and Y, we may need to find the LCS's of X and Y_{n-1} and of X_{m-1} and Y. but each of these sub problems has subsub problems of finding of the LCS of X_{m-1} and of Y_{n-1} .

W

Finding LCS Length

- Lets define c[i,j] to be the length of the LCS of X_i and of Y_j . The optimal sub structure of LCS problem gives the recursive formula.
- Theorem:

What is this really saying?

v

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- We start with i = j = 0 (empty substrings of x and y)
- Since X_0 and Y_0 are empty strings, their LCS is always empty (i.e. c[0,0] = 0)
- LCS of empty string and any other string is empty, so for every i and j: c[0, j] = c[i, 0] = 0

v

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- When we calculate c[i,j], we consider two cases:
- **First case:** x[i] = y[j]: one more symbol in strings X and Y matches, so the length of LCS X_i and Y_j equals to the length of LCS of smaller strings X_{i-1} and Y_{i-1} , plus 1

LCS recursive solution

- **Second case:** x[i] != y[j]
- As symbols don't match, our solution is not improved, and the length of $LCS(X_i, Y_j)$ is the same as before (i.e. maximum of $LCS(X_i, Y_{j-1})$ and $LCS(X_{i-1}, Y_j)$

Why not just take the length of LCS(X_{i-1} , Y_{j-1})?

LCS Length Algorithm

```
LCS-Length(X, Y)
1. m = length(X) // get the # of symbols in X
2. n = length(Y) // get the # of symbols in Y
3. for i = 1 to m c[i,0] = 0 // special case: Y_0
4. for j = 1 to n c[0,j] = 0 // special case: X_0
5. for i = 1 to m // for all x_i
       for j = 1 to n // for all y_i
6.
7. if (x_i == y_i)
8. c[i,j] = c[i-1,j-1] + 1
       else c[i,j] = max(c[i-1,j], c[i,j-1])
9.
```

10. return c

32

LCS Example

We'll see how LCS algorithm works on the following example:

- $\mathbf{X} = \mathbf{ABCB}$
- \blacksquare Y = BDCAB

What is the Longest Common Subsequence of X and Y?

$$LCS(X, Y) = BCB$$

 $X = A B C B$
 $Y = B D C A B$

ABCB LCS Example (0) 3 Yj B D B Xi A B B

$$X = ABCB$$
; $m = |X| = 4$
 $Y = BDCAB$; $n = |Y| = 5$
Allocate array c[5,4]
column row

LCS Example (1) ABCB BDCAB

	j	0	1	2	3	4	5
i	,	Yj	В	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0					
2	В	0					
3	C	0					
4	В	0					

for i = 1 to m
$$c[i,0] = 0$$

for j = 1 to n $c[0,j] = 0$

LCS Example (2)

BDCAB

BCB

						_	
	j	0	1	2	3	4	5 ^L
i		Yj	$\left(\mathbf{B}\right)$	D	C	A	В
0	Xi	0		0	0	0	0
	A	0	0				
2	В	0					
3	C	0					
4	В	0					

if
$$(x_i == y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (3)

BDCAB

	i	0	1	2	3	4	5
i	J	Yj	В	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0		
2	В	0					
3	C	0					
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (4)

BDCAB

BCB

							\vdash	
	j	0	1	2	3	4	5	
i		Yj	В	D	C	(A)	В	
0	Xi	0	0	0	0 、	0	0	
	A	0	0	0	0	1		
2	В	0						
3	C	0						
4	В	0						

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (5) ABC

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (6)

BDCAB

						-	7
	j	0		2	3	4	5 -
i		Yj	$\left(\mathbf{B}\right)$	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0 _	0	0	0	1	1
2	В	0	1				
3	C	0					
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (7)

BDCAB

	j	0	1	2	3	4	5	DUCE
i		Yj	В	D	C	A	B	
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1	1	
	$egin{pmatrix} \mathbf{B} \end{pmatrix}$	0	1	1	1	1		
3	C	0						
4	В	0						

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (8) A Yj B D Xi B B

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (10) ABCB

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (11) ABCB

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (12) Yj B D B Xi A B B

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (13) ABCB

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (14) ABCB

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (15) A Yj B D Xi B

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Algorithm Running Time

- LCS algorithm calculates the values of each entry of the array c[m,n]
- So what is the running time?

O(m*n)

since each c[i,j] is calculated in constant time, and there are m*n elements in the array

How to find actual LCS

- So far, we have just found the *length* of LCS, but not LCS itself.
- We want to modify this algorithm to make it output Longest Common Subsequence of X and Y

Each c[i,j] depends on c[i-1,j] and c[i,j-1] or c[i-1,j-1]

For each c[i,j] we can say how it was acquired:

For example, here c[i,j] = c[i-1,j-1] + 1 = 2+1=3

How to find actual LCS

Remember that

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- So we can start from c[m,n] and go backwards
- Whenever c[i,j] = c[i-1, j-1]+1, remember x[i] (because x[i] is a part of LCS)
- When i=0 or j=0 (i.e. we reached the beginning), output remembered letters in reverse order

Finding LCS

Finding LCS (2)

LCS (reversed order): **B C B**

LCS (straight order): B C B

Read book page number 350 to 355 for details of LCS problem