

Mark Scheme (Results)

October 2020

Pearson Edexcel International A Level in Statistics S2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020
Publications Code WST02_01_2010_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Question Number		Scheme	Marks
1 (a)	$\int_{1}^{2} k \left(\frac{1}{2} x \right)^{2}$	$(3-3x^2+ax+1)dx[=1]$	M1
	$k\left[\frac{1}{8}x^4-\right]$	$\left[x^{3} + \frac{1}{2}ax^{2} + x\right]_{1}^{2} \left[=1\right]$	A1
	k(2-8+	$-2a+2$) $-k$ $\left(\frac{1}{8}-1+\frac{1}{2}a+1\right)=1$ or $k(2a-4)-k\left(\frac{1}{8}+\frac{1}{2}a\right)=1$	dM1
	$-\frac{33}{8}k+$	$\frac{3}{2}ka = 1 : k(12a - 33) = 8*$	A1 *
			(4)
(b)		$k\left(\frac{3}{2}x^2 - 6x + a\right)$	M1
		$6x + 5 = 0$ or $\frac{4}{9}x^2 - \frac{16}{9}x + \frac{40}{27} = 0$	dM1
	$x = \frac{6 \pm \sqrt{6^2 - 4 \times 1.5 \times 5}}{3}$		M1
	$x = 2 - \frac{\sqrt{6}}{3}$ oe or 1.183 A1		A1
			(4)
		Notes	Total 8
1(a)	M1	Attempting to integrate $f(x)$, (at least one term $x^n \to x^{n+1}$). Ignore limits. No Need to	equate to 1
	A1	Fully correct integration. Allow not simplified. Ignore limits and accept any letters. A No Need to equate to 1	
	dM1	Dep on 1 st M1. Subst in correct limits, subtracting results and equate to 1 Allow if the C the use of $F(2) = 1$ and $F(1) = 0$ to form 2 equations and solve to eliminate	+ <i>C</i>
		Answer is given. Correct solution only. At least one correct line of working required	between
	A1*	$k(2a-4)-k(\frac{1}{8}+\frac{1}{2}a)=1$ and the final given answer.	
(b)	M1	Attempting to differentiate $f(x)$, (at least one term $x^n \to x^{n-1}$). Condone missing k or i value for k	
	dM1	Dependent on first Method mark being awarded. Putting their differential (or multipl May be implied by awrt 1.18 or awrt 2.82	e of) = 0
	M1	Correct method for solving their 3 term quadratic equation. May be implied by awrt	1.18 or
		awrt 2.82 Minimum for method if final answer is incorrect is of the form $\frac{6 \pm \sqrt{6}}{3}$	
	A1	Allow equivalent exact answer. awrt 1.18 Must eliminate the 2.816 or clearly indi	4 1 1

Question Number		Scheme	Marks
2(a)	$f(w) = \begin{cases} \frac{1}{8} & -1.4 < w < 6.6\\ 0 & \text{otherwise} \end{cases}$		M1 A1
(b)	E(W)=	2.6 oe	(2) B1 (1)
(c)	$(1.6-\alpha)$	$) \times "\frac{1}{8}" = 0.35$	M1
,		$\alpha = -1.2$ oe	A1cso (2)
(d)	P(1.2 <)	$W < 2.4$) = $(2.4 - 1.2) \times "\frac{1}{8}"$	M1
		$W < 2.4$) = $(2.4 - 1.2) \times "\frac{1}{8}"$ = $\frac{3}{20}$ or 0.15 oe	A1ft
			(2)
(e)	P(W > 2)	$2 \mid 1.2 < W < 2.4 \right) = \frac{0.4 \times "\frac{1}{8}"}{"0.15"}$	M1
		$=\frac{1}{3}$ awrt 0.333	A1
(f)		dom variable Y is the number of days the train is between 1.2 minutes and 2.4 minutes $B(40, "0.15")$	(2) M1
	$P(Y \ge 10^{\circ})$	$(1) = 1 - P(Y \le 9)$ or $1 - 0.9328$	M1
		= 0.0672 awrt 0.0672	A1 (3)
2(a)	M1	Positive set $[f(w)] = \begin{cases} p & -1.4 < w < 6.6 \\ 0 & \text{otherwise} \end{cases}$ where p is a probability allow use of one/both $<$ signs. Allow equivalent otherwise. Allow any letter/mix of $[f(w)] = [f(w)] = [f($	ent for the 0
	A1	Fully correct allow use of \leq instead of one/both \leq signs. Allow any letter but must be of	consistent.
(b)	B1	2.6 oe 7 2.8	
(c)	M1	setting up equation $(1.6 - \alpha) \times$ " their p " = 0.35 with $0 or \frac{7}{20} = \frac{2.8}{8} and \alpha = 1.6 - 6 or F(1.6) - F(\alpha) = 0.35 using their F(w) in the form bw + c where 0 < b < 1 Allow for \int_{\alpha}^{1.6} "their f(w)" dw = 0.35 oe with an attempt to integrate (at least one term of a).$	
	A1 cso	If using $F(1.6) - F(\alpha) = 0.35$ then $F(w)$ must be correct. Allow different letters	
(d)	M1	$(2.4-1.2) \times$ "their p " where "their $\frac{1}{8}$ " is a probability or $F(2.4) - F(1.2)$ using their $F(w)$ form $bw + c$ where $0 < b < 1$ Implied by 0.15 Allow for $\int_{1.2}^{2.4}$ "their $f(w)$ " dw with an attempt to integrate (at least one term correct).) in the
	A1ft	Ft their p as long as the answer is a probability	
(e)	M1	$\frac{0.4 \times \text{"their } \frac{1}{8}\text{"their } (d)\text{"}}{\text{"their } (d)\text{"}} \text{ or } \frac{0.4}{\text{"}1.2\text{"}} \text{ implied by } \frac{1}{3} \text{ Allow for } \int_{2}^{2.4} \text{"their } f(w)\text{"d}w \text{ with an attempt to their } (w) \text{"their } (w)\text{"their } (w)"their $	o integrate
	A1	(at least one term correct) for numerator Allow 0.3 or 0.33	
(f)	M1	Writing or using B(40, " their 0.15") Implied by mean of 40×"their (d)"	
(-)	M1	Writing or using $1 - P(Y \le 9)$ Allow for $1 - P\left(z \le \frac{9.5 \text{ or } 9 - \text{"their mean"}}{\text{"their sd"}}\right)$	
	A1	awrt 0.0672	

Question Number		Scheme	Marks
3(a)(i)	<i>X</i> ~ B(1	0, 0.45)	M1
3(4)(1)	`	y = 0.0233 awrt 0.0233	A1
	$I(X \subseteq I)$	awit 0.0233	AI
(ii)	$P(X \ge 6$	$(x) = 1 - P(X \le 5)$ or $1 - 0.7384$	M1
	·	= 0.2616 awrt 0.262	A1
			(4)
(b)	<i>F</i> ∼N(54,	29.7)	M1A1
	c + 0.5 -	$\frac{54}{5} \le -1.6449$ or $\frac{d - 0.5 - 54}{\sqrt{29.7}} \ge 1.6449$	M1M1B1
	$\sqrt{29.7}$	$\sqrt{29.7}$	A1
	$c = 44 \mathrm{ar}$	and $d=64$	Alcso
			(7)
(c)	$H_0: p = 0$	<u> </u>	B1
	$Y \sim B(30)$	$(0,0.45)$ therefore $P(Y \le 8) = 0.03$ or $CR Y \le 8$	B1
	8 is in th	e critical region or Reject H ₀ oe or significant	dM1
	therefore	the data collected supports the manufacturer's claim.	A1
			(4)
2 3 243	7.7.1	Notes	Total 15
(a)(i)	M1	Writing or using B(10, 0.45) in (i) or (ii) implied by a correct answer to (i) or	(11)
(**)	A1	awrt 0.0233	
(ii)	M1	For writing or using $1 - P(X \le 5)$ oe	
(1.)	A1	awrt 0.262	
(b)	M1	For writing or using N(54,)	
(0)	A1	For writing or using N(54, 29.7)	ua where
(0)		For writing or using N(54, 29.7) For standardising (allow \pm) using their "54" and "29.7" and putting = to z val	ue where
(6)	A1 M1	For writing or using N(54, 29.7) For standardising (allow \pm) using their "54" and "29.7" and putting = to z val $1 < z < 2$ Condone missing ± 0.5	
(6)	A1	For writing or using N(54, 29.7) For standardising (allow \pm) using their "54" and "29.7" and putting = to z val $1 < z < 2$ Condone missing ± 0.5 M1 for using a continuity correction ± 0.5 in standardisation. No need to put	to z value
(6)	A1 M1	For writing or using N(54, 29.7) For standardising (allow \pm) using their "54" and "29.7" and putting = to z val $1 < z < 2$ Condone missing ± 0.5 M1 for using a continuity correction ± 0.5 in standardisation. No need to put = For using 1.6449 or better (calc gives) 1.64485 Allow if written then gone of	to z value
(6)	M1 M1 B1	For writing or using N(54, 29.7) For standardising (allow \pm) using their "54" and "29.7" and putting = to z val $1 < z < 2$ Condone missing ± 0.5 M1 for using a continuity correction ± 0.5 in standardisation. No need to put = For using 1.6449 or better (calc gives) 1.64485 Allow if written then gone of 1.65 or 1.64 or better in equation	to z value on to use
(6)	M1 M1 B1 A1	For writing or using N(54, 29.7) For standardising (allow \pm) using their "54" and "29.7" and putting = to z val $1 < z < 2$ Condone missing ± 0.5 M1 for using a continuity correction ± 0.5 in standardisation. No need to put = For using 1.6449 or better (calc gives) 1.64485 Allow if written then gone of 1.65 or 1.64 or better in equation One correct inequality. Allow written as an equation. Allow with 1.65/1.64 or	to z value on to use
(6)	M1 M1 B1	For writing or using N(54, 29.7) For standardising (allow \pm) using their "54" and "29.7" and putting = to z val $1 < z < 2$ Condone missing ± 0.5 M1 for using a continuity correction ± 0.5 in standardisation. No need to put = For using 1.6449 or better (calc gives) 1.64485 Allow if written then gone 0.1.65 or 1.64 or better in equation One correct inequality. Allow written as an equation. Allow with 1.65/1.64 or All previous marks awarded. Both c and d correct integers	to z value on to use
	M1 M1 B1 A1 A1cso	For writing or using N(54, 29.7) For standardising (allow \pm) using their "54" and "29.7" and putting = to z val $1 < z < 2$ Condone missing ± 0.5 M1 for using a continuity correction ± 0.5 in standardisation. No need to put = For using 1.6449 or better (calc gives) 1.64485 Allow if written then gone 0.1.65 or 1.64 or better in equation One correct inequality. Allow written as an equation. Allow with 1.65/1.64 or All previous marks awarded. Both c and d correct integers NB: c and d correct with no working can be awarded full marks	to z value on to use
(c)	M1 M1 B1 A1	For writing or using N(54, 29.7) For standardising (allow \pm) using their "54" and "29.7" and putting = to z val $1 < z < 2$ Condone missing ± 0.5 M1 for using a continuity correction ± 0.5 in standardisation. No need to put = For using 1.6449 or better (calc gives) 1.64485 Allow if written then gone 0.65 or 1.64 or better in equation One correct inequality. Allow written as an equation. Allow with 1.65/1.64 or All previous marks awarded. Both c and d correct integers NB: c and d correct with no working can be awarded full marks Both hypotheses correct in terms of p or π Must be attached to H ₀ and H ₁	= to z value on to use better
	M1 M1 B1 A1 A1cso	For writing or using N(54, 29.7) For standardising (allow \pm) using their "54" and "29.7" and putting = to z val $1 < z < 2$ Condone missing ± 0.5 M1 for using a continuity correction ± 0.5 in standardisation. No need to put = For using 1.6449 or better (calc gives) 1.64485 Allow if written then gone 0.65 or 1.64 or better in equation One correct inequality. Allow written as an equation. Allow with 1.65/1.64 or All previous marks awarded. Both c and d correct integers NB: c and d correct with no working can be awarded full marks Both hypotheses correct in terms of p or π Must be attached to H ₀ and H ₁ 0.03 or better (0.03120) or CR stated as $Y \le 8$ oe do not accept $P(Y \le 8) = 1$	= to z value on to use better
	M1 M1 B1 A1 A1cso	For writing or using N(54, 29.7) For standardising (allow \pm) using their "54" and "29.7" and putting = to z val $1 < z < 2$ Condone missing ± 0.5 M1 for using a continuity correction ± 0.5 in standardisation. No need to put = For using 1.6449 or better (calc gives) 1.64485 Allow if written then gone 0.65 or 1.64 or better in equation One correct inequality. Allow written as an equation. Allow with 1.65/1.64 or All previous marks awarded. Both c and d correct integers NB: c and d correct with no working can be awarded full marks Both hypotheses correct in terms of p or π Must be attached to H ₀ and H ₁ 0.03 or better (0.03120) or CR stated as $Y \le 8$ oe do not accept $P(Y \le 8) = 0.00$. Condone 0.97 or better (0.96879)	= to z value on to use better
	M1 M1 B1 A1 A1cso B1 B1	For writing or using N(54, 29.7) For standardising (allow \pm) using their "54" and "29.7" and putting = to z val $1 < z < 2$ Condone missing ± 0.5 M1 for using a continuity correction ± 0.5 in standardisation. No need to put = For using 1.6449 or better (calc gives) 1.64485 Allow if written then gone 0.65 or 1.64 or better in equation One correct inequality. Allow written as an equation. Allow with 1.65/1.64 or All previous marks awarded. Both c and d correct integers NB: c and d correct with no working can be awarded full marks Both hypotheses correct in terms of p or π Must be attached to H ₀ and H ₁ 0.03 or better (0.03120) or CR stated as $Y \le 8$ oe do not accept $P(Y \le 8) = 1$	= to z value on to use better
	M1 M1 B1 A1 A1cso B1 B1 dM1	For writing or using N(54, 29.7) For standardising (allow \pm) using their "54" and "29.7" and putting = to z val $1 < z < 2$ Condone missing ± 0.5 M1 for using a continuity correction ± 0.5 in standardisation. No need to put = For using 1.6449 or better (calc gives) 1.64485 Allow if written then gone of 1.65 or 1.64 or better in equation One correct inequality. Allow written as an equation. Allow with 1.65/1.64 or All previous marks awarded. Both c and d correct integers NB: c and d correct with no working can be awarded full marks Both hypotheses correct in terms of p or p Must be attached to p 0 and p 1 0.03 or better (0.03120) or CR stated as p 2 8 oe do not accept p 3 (p 4 solution of p 5 or p 6 better (0.96879) Dep on p 7 Dep on p 8 1 A correct statement – need not be contextual but do not allow contradicting non contextual comments. Allow opposite conclusion if 2-tail hypotheses given.	to z value on to use betterfor CR
	M1 M1 B1 A1 A1cso B1 B1	For writing or using N(54, 29.7) For standardising (allow \pm) using their "54" and "29.7" and putting = to z val $1 < z < 2$ Condone missing ± 0.5 M1 for using a continuity correction ± 0.5 in standardisation. No need to put = For using 1.6449 or better (calc gives) 1.64485 Allow if written then gone of 1.65 or 1.64 or better in equation One correct inequality. Allow written as an equation. Allow with 1.65/1.64 or All previous marks awarded. Both c and d correct integers NB: c and d correct with no working can be awarded full marks Both hypotheses correct in terms of p or π Must be attached to H ₀ and H ₁ 0.03 or better (0.03120) or CR stated as $Y \le 8$ oe do not accept $P(Y \le 8) = 1$. Condone 0.97 or better (0.96879) Dep on $P(Y \le 8) = 1$. Contain the proposition of their H ₁ . If H ₁ is 2- tail the opposite conclusion must be correct conclusion for their H ₁ . If H ₁ is 2- tail the opposite conclusion must be	= to z value on to use better for CR
	M1 M1 B1 A1 A1cso B1 B1 dM1	For writing or using N(54, 29.7) For standardising (allow \pm) using their "54" and "29.7" and putting = to z val $1 < z < 2$ Condone missing ± 0.5 M1 for using a continuity correction \pm 0.5 in standardisation. No need to put = For using 1.6449 or better (calc gives) 1.64485 Allow if written then gone 0.1.65 or 1.64 or better in equation One correct inequality. Allow written as an equation. Allow with 1.65/1.64 or All previous marks awarded. Both c and d correct integers NB: c and d correct with no working can be awarded full marks Both hypotheses correct in terms of p or p Must be attached to H ₀ and H ₁ 0.03 or better (0.03120) or CR stated as $Y \le 8$ oe do not accept $P(Y \le 8) = 0.00$. Condone 0.97 or better (0.96879) Dep on p B1 A correct statement – need not be contextual but do not allow contradicting non contextual comments. Allow opposite conclusion if 2-tail hypotheses given. Correct conclusion for their H ₁ . If H ₁ is 2- tail the opposite conclusion must be hypotheses or H ₁ $p > 0.45$ is A0. Allow belief instead of claim. Allow the date	to z value on to use better for CR e given. No a collected
	M1 M1 B1 A1 A1cso B1 B1 dM1	For writing or using N(54, 29.7) For standardising (allow \pm) using their "54" and "29.7" and putting = to z val $1 < z < 2$ Condone missing ± 0.5 M1 for using a continuity correction ± 0.5 in standardisation. No need to put = For using 1.6449 or better (calc gives) 1.64485 Allow if written then gone of 1.65 or 1.64 or better in equation One correct inequality. Allow written as an equation. Allow with 1.65/1.64 or All previous marks awarded. Both c and d correct integers NB: c and d correct with no working can be awarded full marks Both hypotheses correct in terms of p or π Must be attached to H ₀ and H ₁ 0.03 or better (0.03120) or CR stated as $Y \le 8$ oe do not accept $P(Y \le 8) = 1$. Condone 0.97 or better (0.96879) Dep on $P(Y \le 8) = 1$. Contain the proposition of their H ₁ . If H ₁ is 2- tail the opposite conclusion must be correct conclusion for their H ₁ . If H ₁ is 2- tail the opposite conclusion must be	to z value on to use better for CR e given. No a collected

Question		Scheme	Mai	rks
Number				IKS
4(a)	Common	Spotted-orchids occur singly/randomly/independently	B1	(1)
(b)(i)	$S \sim \text{Po}(4$	5)		(1)
(0)(1)		$= \frac{e^{-4.5} \cdot 4.5^6}{6!} \text{ or } P(S \le 5) - P(S \le 5)$	M1	
	:	= 0.1281 awrt 0.128	A1	
(ii)	P(4 < S <	$(10) = P(S \le 9) - P(S \le 4)$ or $0.9829 - 0.5321$	M1	
		= 0.4508 awrt 0.451	A1	
	TT 4			(4)
(c)		$9 \text{ H}_1: \lambda > 9$	B1	
	$M \sim Po($	(9) $P(M \ge 11) = 1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$	M1	
		$= 0.294 \qquad \text{or } CR M \ge 15$	A1	
		or insignificant or 11 does not lie in the critical region	dM1	
	I nere is i	nsufficient evidence to support Juan's belief	A1	(5)
(d)	$T \sim N(90)$. 90)	B1	(3)
	`	$O(0) = P\left(Z < \pm \left(\frac{69.5 - 90}{\sqrt{90}}\right)\right) \text{ or } P(Z < \pm 2.160)$ awrt 2.16	M1	
		= 0.0154 awrt 0.0154	A1	
				(3)
(e)	$V \sim \text{Po}(20)$	00×0.012) = Po(2.4) $V \sim = Po(2.4)$	M1	
	P(V=0)	$+P(V=1)=e^{-2.4}(1+2.4)$	dM1	
	/	= 0.30844 awrt 0.308	A1	
				(3)
		Notes	Tot	al 16
4(a)	B1	One of the given reasons. No context needed		
(b)(i)	M1	For $\frac{e^{-\lambda}\lambda^{\circ}}{6!}$ with any value for λ or writing or using $P(S \le 6) - P(S \le 5)$		
		**		
(**)	A1	awrt 0.128		
(ii)	M1	awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$		
	M1 A1	awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451	1	
(ii) (c)	M1	awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ . Allow 4.5		
	M1 A1	awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ . Allow 4.55 Writing or using $Po(9)$ and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ oe Implied by correct.		
	M1 A1 B1	awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ . Allow 4.5 is Writing or using $Po(9)$ and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ oe Implied by correct awrt 0.3 or 0.29 or better (0.2940)		
	M1 A1 B1	awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ . Allow 4.5 in Writing or using $Po(9)$ and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ on Implied by corrections or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940)		
	M1 A1 B1 M1 A1	awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ . Allow 4.5 is Writing or using $P(S)$ and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ oe Implied by corresponding to 0.3 or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or $M \ge 15$ oe SC: Condone $P(X \le 10) = 0.7$ or better (0.705988) for M1A1	ect CR	
	M1 A1 B1 M1	awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ . Allow 4.5 is Writing or using $P(S) = 0.0415$ or $P(M \le 15) = 0.0415$ or Implied by corresponding to $P(S) = 0.0415$ or $P(S) = 0.04$	ect CR	
. ,	M1 A1 B1 M1 A1	awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ . Allow 4.5 is Writing or using $Po(9)$ and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ oe Implied by corresponding to 0.3 or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or $M \ge 15$ oe SC: Condone $P(X \le 10) = 0.7$ or better (0.705988) for M1A1 Dep on M1 A1. A correct statement—no context needed but do not allow contradicting contextual comments. Allow opposite conclusion if 2-tail hypotheses given.	ng non	or
	M1 A1 B1 M1 A1 A1 A1 A1	awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ . Allow 4.5 in Writing or using $Po(9)$ and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ on Implied by correct awrt 0.3 or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or $M \ge 15$ on SC: Condone $P(X \le 10) = 0.7$ or better (0.705988) for M1A1 Dep on M1 A1. A correct statement—no context needed but do not allow contradicting contextual comments. Allow opposite conclusion if 2-tail hypotheses given. Correct conclusion. If H_0 is 2- tail the opposite conclusion must be given. No hypothese	ng non esses or]	or
	M1 A1 B1 M1 A1	awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ . Allow 4.5 is Writing or using $P(S)$ and $S = P(M \le 10)$ or $P(M \ge 15) = 0.0415$ oe Implied by corresponding to $S = 0.29$ or better $S = 0.2940$ or $S = 0.29$ or better $S = 0.2940$ or $S = 0.29$ or better $S = 0.2940$ for $S = 0.2940$ or $S = 0.2940$ for $S = 0.2940$ fo	ng non eses or lince to	or H ₀
(c)	M1 A1 B1 M1 A1 A1 A1 A1	awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ . Allow 4.5 in Writing or using $P(9)$ and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ on Implied by corrections or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or $M \ge 15$ on SC: Condone $P(X \le 10) = 0.7$ or better (0.705988) for M1A1 Dep on M1 A1. A correct statement—no context needed but do not allow contradicting contextual comments. Allow opposite conclusion if 2 -tail hypotheses given. Correct conclusion. If H_0 is 2 -tail the opposite conclusion must be given. No hypother $\lambda < 9$ gets A0. Allow claim instead of belief. Alternative: There is insufficient evided support hat the number of Common Spotted- orchids has increased // is not 9/has characteristics (with the bold words included).	ng non eses or lince to	or H ₀
	M1 A1 B1 M1 A1 A1 A1 A1 B1	awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ . Allow 4.5 in Writing or using $P(9)$ and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ on Implied by corrections or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or $M \ge 15$ on SC: Condone $P(X \le 10) = 0.7$ or better (0.705988) for M1A1 Dep on M1 A1. A correct statement—no context needed but do not allow contradicting contextual comments. Allow opposite conclusion if 2 -tail hypotheses given. Correct conclusion. If H_0 is 2 -tail the opposite conclusion must be given. No hypothese $\lambda < 9$ gets A0. Allow claim instead of belief. Alternative: There is insufficient evident support hat the number of Common Spotted-orchids has increased / is not 9/has characteristic or using N(90, 90)	ng non eses or lince to	or H ₀
(c)	M1 A1 B1 M1 A1 A1 A1 A1 B1 M1	awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ . Allow 4.5 is Writing or using $Po(9)$ and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ oe Implied by correct awrt 0.3 or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or $M \ge 15$ oe SC: Condone $P(X \le 10) = 0.7$ or better (0.705988) for M1A1 Dep on M1 A1. A correct statement—no context needed but do not allow contradicting contextual comments. Allow opposite conclusion if 2-tail hypotheses given. Correct conclusion. If H_0 is 2- tail the opposite conclusion must be given. No hypothese $\lambda < 9$ gets A0. Allow claim instead of belief. Alternative: There is insufficient evided support hat the number of Common Spotted- orchids has increased // is not 9/has cha (with the bold words included). Writing or using $N(90, 90)$ Standardising with 68.5 or 69.5 or 70.5 and their mean and sd	ng non eses or lince to	or H ₀
(c) (d)	M1 A1 B1 M1 A1 A1 A1 A1 A1 A1 A1	writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ . Allow 4.55 Writing or using $P(9)$ and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ oe Implied by correavrt 0.3 or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or $M \ge 15$ oe SC: Condone $P(X \le 10) = 0.7$ or better (0.705988) for M1A1 Dep on M1 A1. A correct statement—no context needed but do not allow contradicting contextual comments. Allow opposite conclusion if 2-tail hypotheses given. Correct conclusion. If H_0 is 2- tail the opposite conclusion must be given. No hypothe $\lambda < 9$ gets A0. Allow claim instead of belief. Alternative: There is insufficient evident support hat the number of Common Spotted-orchids has increased//is not 9/has characteristic or using N(90, 90) Standardising with 68.5 or 69.5 or 70.5 and their mean and sd awrt 0.0154 NB Poisson gives 0.01275	ng non eses or lince to	or H ₀
(c)	M1 A1 B1 M1 A1 A1 A1 A1 A1 A1 A1 M1	writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ . Allow 4.55 Writing or using $Po(9)$ and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ oe Implied by correavit 0.3 or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or $M \ge 15$ oe SC: Condone $P(X \le 10) = 0.7$ or better (0.705988) for M1A1 Dep on M1 A1. A correct statement—no context needed but do not allow contradicting contextual comments. Allow opposite conclusion if 2-tail hypotheses given. Correct conclusion. If H_0 is 2-tail the opposite conclusion must be given. No hypothe $\lambda < 9$ gets A0. Allow claim instead of belief. Alternative: There is insufficient evident support hat the number of Common Spotted-orchids has increased//is not 9/has characteristic or using N(90, 90) Standardising with 68.5 or 69.5 or 70.5 and their mean and sd awrt 0.0154 NB Poisson gives 0.01275 Writing or using $Po(200 \times 0.012)$ Allow $Po(200 \times "their d")$	ng non eses or lance to anged of	H ₀
(c) (d)	M1 A1 B1 M1 A1	awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ . Allow 4.5 is Writing or using $P(9)$ and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ oe Implied by correavrt 0.3 or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or $M \ge 15$ oe SC: Condone $P(X \le 10) = 0.7$ or better (0.705988) for M1A1 Dep on M1 A1. A correct statement—no context needed but do not allow contradicting contextual comments. Allow opposite conclusion if 2-tail hypotheses given. Correct conclusion. If H_0 is 2- tail the opposite conclusion must be given. No hypothe $\lambda < 9$ gets A0. Allow claim instead of belief. Alternative: There is insufficient evident support hat the number of Common Spotted-orchids has increased //is not 9/has characteristic or using N(90, 90) Standardising with 68.5 or 69.5 or 70.5 and their mean and sd awrt 0.0154 NB Poisson gives 0.01275 Writing or using $P(0.200 \times 0.012)$ Allow $P(0.200 \times "their d")$ Dependent on using Poison. For using / writing $P(V = 0) + P(V = 1)$ or $e^{-\lambda}(1 + \lambda)$ or	ng non eses or lance to anged of	H ₀
(c) (d)	M1 A1 B1 M1 A1 A1 A1 A1 A1 A1 A1 M1	writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ . Allow 4.55 Writing or using $Po(9)$ and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ oe Implied by correavit 0.3 or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or $M \ge 15$ oe SC: Condone $P(X \le 10) = 0.7$ or better (0.705988) for M1A1 Dep on M1 A1. A correct statement—no context needed but do not allow contradicting contextual comments. Allow opposite conclusion if 2-tail hypotheses given. Correct conclusion. If H_0 is 2-tail the opposite conclusion must be given. No hypothe $\lambda < 9$ gets A0. Allow claim instead of belief. Alternative: There is insufficient evident support hat the number of Common Spotted-orchids has increased//is not 9/has characteristic or using N(90, 90) Standardising with 68.5 or 69.5 or 70.5 and their mean and sd awrt 0.0154 NB Poisson gives 0.01275 Writing or using $Po(200 \times 0.012)$ Allow $Po(200 \times "their d")$	ng non eses or lance to anged of	H ₀

$ \begin{aligned} & S(a) & E(T^2) = \int_0^s \frac{1}{50} (18t^2 - 2t^2) dt + \int_0^s \frac{1}{20} t^2 dt \\ & = \left[\frac{1}{50} \left(6t^3 - \frac{t^2}{2} \right) \right]_0^s + \left[\frac{t^2}{60} \right]_0^s \text{or} = \left[\frac{3}{25} t^3 - \frac{t^3}{100} \right]_0^s + \left[\frac{t^2}{60} \right]_0^s \text{oe} \\ & = \frac{1}{50} \left(6x^3 \cdot \frac{3^4}{2} \right) + \left(\frac{125}{60} - \frac{27}{60} \right) \text{or} = \frac{1}{50} \left(162 - \frac{81}{2} \right) + \left(\frac{25}{12} - \frac{9}{20} \right) \text{oe} \\ & = \frac{12.19}{300} = 4.063 \dots \\ & Var(T) = \frac{4.063 \dots}{200} - \left(1.66 \right)^2 \\ & = 1.3077 \dots \\ $	Question Number		Scheme	Marks
$ = \frac{1}{50} \left(6 \times 3^3 - \frac{3^4}{2} \right) + \left(\frac{125}{60} - \frac{27}{60} \right) \text{ or } = \frac{1}{50} \left(162 - \frac{81}{2} \right) + \left(\frac{25}{22} - \frac{9}{20} \right) \text{ oe } $ M1d $ = \frac{1219}{300} = 4.063$ $Var(T) = ^4.063 (1.66)^2 \qquad M1$ $ = 1.3077 \qquad \text{awrt } 1.31 \text{A1} $ (5) $ \frac{1}{3} \frac{1}{20} \text{dx} + C \text{ where } C = 0.9 \text{ or } \int_0^1 \frac{1}{50} \left(18 - 2t \right) \text{ dt} \text{or using } F(5) = 1 \text{ to find } C $ M1 $ = \frac{1}{50} \left(18t - t^2 \right) \text{ or } 1.62 - \frac{(18 - 2t)^2}{200} 0 \le t \le 3 $ A1 $ = \frac{1}{20} t + 0.75 3 < t \le 5 $ A1 $ = \frac{1}{20} t + 0.75 3 < t \le 5 $ A1 $ = \frac{9}{25} \text{ or } 0.36 $ A2 $ = \frac{9}{25} \text{ or } 0.36 $ A2 $ = \frac{9}{25} \text{ or } 0.36 $ A2 $ = \frac{9}{25} \text{ or } 0.36 $ A2 $ = \frac{9}{25} \text{ or } 0.36 $ A2 $ = \frac{9}{25} \text{ or } 0.36 $ A2 $ = \frac{9}{25} \text{ or } 0.36 $ A2 $ = \frac{9}{25} \text{ or } 0.36 $ A2 $ = \frac{9}{25} \text{ or } 0.36 $ A2 $ = \frac{9}{25} \text{ or } 0.36 $ A2 $ = \frac{9}{25} \text{ or } 0.36 $ A3 $ = \frac{9}{25} \text{ or } 0.36 $ A1 $ = \frac{9}{25} \text{ or } 0.36 $ A2 $ = \frac{9}{25} \text{ or } 0.36 $ A2 $ = \frac{9}{25} \text{ or } 0.36 $ A2 $ = \frac{9}{25} \text{ or } 0.36 $ A2 $ = \frac{9}{25} \text{ or } 0.36 $ A2 $ = \frac{9}{25} \text{ or } 0.36 $ A2 $ = \frac{9}{25} \text{ or } 0.36 $ A2 $ = \frac{9}{25} \text{ or } 0.36 $ A3 $ = \frac{9}{25} \text{ or } 0.36 $ A1 $ = \frac{9}{25} \text{ or } 0.36 $ A2	5(a)	$\mathrm{E}(T^2)$	$0 = \int_0^3 \frac{1}{50} \left(18t^2 - 2t^3 \right) dt + \int_3^5 \frac{1}{20} t^2 dt$	M1
			$= \left[\frac{1}{50} \left(6t^3 - \frac{t^4}{2}\right)\right]_0^3 + \left[\frac{t^3}{60}\right]_3^5 \text{ or } = \left[\frac{3}{25}t^3 - \frac{t^4}{100}\right]_0^3 + \left[\frac{t^3}{60}\right]_3^5 \text{ oe}$	A1
$Var(T) = ^4.063^* - (1.66)^2 = 1.3077 awrt 1.31 $			$= \frac{1}{50} \left(6 \times 3^3 - \frac{3^4}{2} \right) + \left(\frac{125}{60} - \frac{27}{60} \right) \text{ or } = \frac{1}{50} \left(162 - \frac{81}{2} \right) + \left(\frac{25}{12} - \frac{9}{20} \right) \text{ oe}$	M1d
$Var(T) = ^4.063^* - (1.66)^2 = 1.3077 awrt 1.31 $			$=\frac{1219}{300}=4.063$	
$ \begin{array}{c} = 1.3077 & \text{awrt 1.31} & \text{A1} \\ \hline (5) \\ \hline \\ \text{(b)} & \int_{1}^{t} \frac{1}{20} dx + C \text{ where } C = 0.9 \text{ or } \int_{0}^{3} \frac{1}{50} (18-2t) dt & \text{or using } F(5) = 1 \text{ to find } C \\ \hline \\ & & & & & & & & & & & & & & & & &$		Var(7		M1
(b) $ \int_{3}^{t} \frac{1}{20} dx + C \text{ where } C = 0.9 \text{ or } \int_{0}^{3} \frac{1}{50} (18 - 2t) dt \qquad \text{or using } F(5) = 1 \text{ to find } C $				
(b)		1	. 1	
(c) $P(T > 2) = 1 - \frac{1}{50} (18 \times 2 - 2^{2})^{n} \text{ or } 1 - \int_{0}^{1} \frac{1}{50} (18 - 2t) dt$ $= \frac{9}{25} \text{ or } 0.36$ $= 0.933$ (d) $P(0 < T < 3.66) = F(3.66)$ $= 0.933$ A1 (2) $Notes$ $Total 13$ (a) $M1$ Intention to find $E(T^{2})$ correctly. They must add the 2 integrals and attempt to integrate (at least one term $x^{n} \rightarrow x^{n+1}$). Algebraic integration must be seen. Ignore limits. Allow as part of $Var(T)$ condone " $-(1.66)^{2n}$ occurring twice. If no algebraic integration shown it is $M0$ $A1$ Correct integration $M1d$ dep on previous M being awarded for correct limits and attempt to substitute. If no working shown An attempt may be implied by a correct answer or $1219/300$ or $243/100$ or $49/30$ oe $M1$ For their $E(T^{2}) - 1.66^{2}$ $A1$ awrt 1.31 Allow $2452/1875$ oe $M1$ For a correct method to find the 3^{rd} line including limits unless using $F(5) = 1$ method. $B1$ 2^{nd} line correct—any letter. Ignore missing inequality $A1$ 3^{rd} line correct—any letter. Ignore missing inequality $A1$ Fully correct CDF All in terms of the same letter (Ignore LHS). Allow < instead of \le and vice versa. Allow "otherwise" for the range on the 1^{st} or last line but not both. C $M1$ For finding $1 - F(2)$ using their second line or starting again. Must subst in 2 $A1$ cao $M1$ For realising they need $F(3.66)$ Allow $F(3.66)$ $[-F(0)]$ allow $F(0)$ allow $F(0)$ $[-F(0)]$	(b)			MI
(c) $P(T > 2) = 1 - \frac{1}{50} (18 \times 2 - 2^{2})^{n} \text{ or } 1 - \int_{0}^{1} \frac{1}{50} (18 - 2t) dt$ $= \frac{9}{25} \text{ or } 0.36$ $= 0.933$ (d) $P(0 < T < 3.66) = F(3.66)$ $= 0.933$ A1 (2) $Notes$ $Total 13$ (a) $M1$ Intention to find $E(T^{2})$ correctly. They must add the 2 integrals and attempt to integrate (at least one term $x^{n} \rightarrow x^{n+1}$). Algebraic integration must be seen. Ignore limits. Allow as part of $Var(T)$ condone " $-(1.66)^{2n}$ occurring twice. If no algebraic integration shown it is $M0$ $A1$ Correct integration $M1d$ dep on previous M being awarded for correct limits and attempt to substitute. If no working shown An attempt may be implied by a correct answer or $1219/300$ or $243/100$ or $49/30$ oe $M1$ For their $E(T^{2}) - 1.66^{2}$ $A1$ awrt 1.31 Allow $2452/1875$ oe $M1$ For a correct method to find the 3^{rd} line including limits unless using $F(5) = 1$ method. $B1$ 2^{nd} line correct—any letter. Ignore missing inequality $A1$ 3^{rd} line correct—any letter. Ignore missing inequality $A1$ Fully correct CDF All in terms of the same letter (Ignore LHS). Allow < instead of \le and vice versa. Allow "otherwise" for the range on the 1^{st} or last line but not both. C $M1$ For finding $1 - F(2)$ using their second line or starting again. Must subst in 2 $A1$ cao $M1$ For realising they need $F(3.66)$ Allow $F(3.66)$ $[-F(0)]$ allow $F(0)$ allow $F(0)$ $[-F(0)]$				B1
(c) $P(T > 2) = 1 - \frac{1}{50} (18 \times 2 - 2^{2})^{n} \text{ or } 1 - \int_{0}^{1} \frac{1}{50} (18 - 2t) dt$ $= \frac{9}{25} \text{ or } 0.36$ $= 0.933$ (d) $P(0 < T < 3.66) = F(3.66)$ $= 0.933$ A1 (2) $Notes$ $Total 13$ (a) $M1$ Intention to find $E(T^{2})$ correctly. They must add the 2 integrals and attempt to integrate (at least one term $x^{n} \rightarrow x^{n+1}$). Algebraic integration must be seen. Ignore limits. Allow as part of $Var(T)$ condone " $-(1.66)^{2n}$ occurring twice. If no algebraic integration shown it is $M0$ $A1$ Correct integration $M1d$ dep on previous M being awarded for correct limits and attempt to substitute. If no working shown An attempt may be implied by a correct answer or $1219/300$ or $243/100$ or $49/30$ oe $M1$ For their $E(T^{2}) - 1.66^{2}$ $A1$ awrt 1.31 Allow $2452/1875$ oe $M1$ For a correct method to find the 3^{rd} line including limits unless using $F(5) = 1$ method. $B1$ 2^{nd} line correct—any letter. Ignore missing inequality $A1$ 3^{rd} line correct—any letter. Ignore missing inequality $A1$ Fully correct CDF All in terms of the same letter (Ignore LHS). Allow < instead of \le and vice versa. Allow "otherwise" for the range on the 1^{st} or last line but not both. C $M1$ For finding $1 - F(2)$ using their second line or starting again. Must subst in 2 $A1$ cao $M1$ For realising they need $F(3.66)$ Allow $F(3.66)$ $[-F(0)]$ allow $F(0)$ allow $F(0)$ $[-F(0)]$			$ \lceil F(t) = \rceil \begin{cases} \frac{1}{50} (18t - t^2) \text{ or } 1.62 - \frac{(18 - 2t)^2}{200} & 0 \le t \le 3 \end{cases} $	A1
(c) $P(T > 2) = 1 - \frac{1}{50} (18 \times 2 - 2^{2})^{n} \text{ or } 1 - \int_{0}^{1} \frac{1}{50} (18 - 2t) dt$ $= \frac{9}{25} \text{ or } 0.36$ $= 0.933$ (d) $P(0 < T < 3.66) = F(3.66)$ $= 0.933$ A1 (2) $Notes$ $Total 13$ (a) $M1$ Intention to find $E(T^{2})$ correctly. They must add the 2 integrals and attempt to integrate (at least one term $x^{n} \rightarrow x^{n+1}$). Algebraic integration must be seen. Ignore limits. Allow as part of $Var(T)$ condone " $-(1.66)^{2n}$ occurring twice. If no algebraic integration shown it is $M0$ $A1$ Correct integration $M1d$ dep on previous M being awarded for correct limits and attempt to substitute. If no working shown An attempt may be implied by a correct answer or $1219/300$ or $243/100$ or $49/30$ oe $M1$ For their $E(T^{2}) - 1.66^{2}$ $A1$ awrt 1.31 Allow $2452/1875$ oe $M1$ For a correct method to find the 3^{rd} line including limits unless using $F(5) = 1$ method. $B1$ 2^{nd} line correct—any letter. Ignore missing inequality $A1$ 3^{rd} line correct—any letter. Ignore missing inequality $A1$ Fully correct CDF All in terms of the same letter (Ignore LHS). Allow < instead of \le and vice versa. Allow "otherwise" for the range on the 1^{st} or last line but not both. C $M1$ For finding $1 - F(2)$ using their second line or starting again. Must subst in 2 $A1$ cao $M1$ For realising they need $F(3.66)$ Allow $F(3.66)$ $[-F(0)]$ allow $F(0)$ allow $F(0)$ $[-F(0)]$			$\frac{1}{20}t + 0.75 3 < t \le 5$	A1
(c) $P(T > 2) = 1 - \frac{1}{50} (18 \times 2 - 2^{2})^{n} \text{ or } 1 - \int_{0}^{1} \frac{1}{50} (18 - 2t) dt$ $= \frac{9}{25} \text{ or } 0.36$ $= 0.933$ (d) $P(0 < T < 3.66) = F(3.66)$ $= 0.933$ A1 (2) $Notes$ $Total 13$ (a) $M1$ Intention to find $E(T^{2})$ correctly. They must add the 2 integrals and attempt to integrate (at least one term $x^{n} \rightarrow x^{n+1}$). Algebraic integration must be seen. Ignore limits. Allow as part of $Var(T)$ condone " $-(1.66)^{2n}$ occurring twice. If no algebraic integration shown it is $M0$ $A1$ Correct integration $M1d$ dep on previous M being awarded for correct limits and attempt to substitute. If no working shown An attempt may be implied by a correct answer or $1219/300$ or $243/100$ or $49/30$ oe $M1$ For their $E(T^{2}) - 1.66^{2}$ $A1$ awrt 1.31 Allow $2452/1875$ oe $M1$ For a correct method to find the 3^{rd} line including limits unless using $F(5) = 1$ method. $B1$ 2^{nd} line correct—any letter. Ignore missing inequality $A1$ 3^{rd} line correct—any letter. Ignore missing inequality $A1$ Fully correct CDF All in terms of the same letter (Ignore LHS). Allow < instead of \le and vice versa. Allow "otherwise" for the range on the 1^{st} or last line but not both. C $M1$ For finding $1 - F(2)$ using their second line or starting again. Must subst in 2 $A1$ cao $M1$ For realising they need $F(3.66)$ Allow $F(3.66)$ $[-F(0)]$ allow $F(0)$ allow $F(0)$ $[-F(0)]$			$\begin{array}{c c} & & \\ & &$	(4)
(d) P(0 < T < 3.66) = F(3.66)	(c)	P(T >	$(-2) = 1 - \frac{1}{50} (18 \times 2 - 2^2)$ " or $1 - \int_0^2 \frac{1}{50} (18 - 2t) dt$	M1
(d) P(0 < T < 3.66) = F(3.66) M1 = 0.933 A1 (2) Notes Total 13 (a) M1 Intention to find E(T²) correctly. They must add the 2 integrals and attempt to integrate (at least one term x" → x"¹¹). Algebraic integration must be seen. Ignore limits. Allow as part of Var(T) condone " − (1.66)²" occurring twice. If no algebraic integration shown it is M0 A1 Correct integration M1d dep on previous M being awarded for correct limits and attempt to substitute. If no working shown An attempt may be implied by a correct answer or 1219/300 or 243/100 or 49\30 oe M1 For their E(T²) − 1.66² A1 awrt 1.31 Allow 2452/1875 oe (b) M1 For a correct method to find the 3 rd line including limits unless using F(5) = 1 method. B1 2 nd line correct − any letter. Ignore missing inequality A1 3 rd line correct − any letter. Ignore missing inequality A1 Fully correct CDF All in terms of the same letter (Ignore LHS). Allow < instead of ≤ and vice versa. Allow "otherwise" for the range on the 1 st or last line but not both. (c) M1 For finding 1 − F(2) using their second line or starting again. Must subst in 2 A1 cao (d) M1 For realising they need F(3.66) Allow F(3.66) [− F(0)] allow F("their mean +2") [− F(0)]			$=\frac{9}{25}$ or 0.36	A1
a Solution Solu	(1)	D(0	T. 2.60 F(2.60	
Notes Total 13 (a) M1 Intention to find E(T²) correctly. They must add the 2 integrals and attempt to integrate (at least one term x² → x²¹¹). Algebraic integration must be seen. Ignore limits. Allow as part of Var(T) condone " − (1.66)²" occurring twice. If no algebraic integration shown it is M0 A1 Correct integration M1d dep on previous M being awarded for correct limits and attempt to substitute. If no working shown An attempt may be implied by a correct answer or 1219/300 or 243/100 or 49\30 oe M1 For their E(T²) − 1.66² A1 awrt 1.31 Allow 2452/1875 oe (b) M1 For a correct method to find the 3¹¹d line including limits unless using F(5) = 1 method. B1 2¹¹d line correct – any letter. Ignore missing inequality A1 3¹¹d line correct – any letter. Ignore missing inequality A1 Fully correct CDF All in terms of the same letter (Ignore LHS). Allow < instead of ≤ and vice versa. Allow "otherwise" for the range on the 1⁵¹ or last line but not both. (c) M1 For finding 1 – F(2) using their second line or starting again. Must subst in 2 A1 cao (d) M1 For realising they need F(3.66) Allow F(3.66) [- F(0)] allow F("their mean +2") [- F(0)]	(d)	P(0 <	· · · · · ·	
Notes Total 13 (a) M1 Intention to find $E(T^2)$ correctly. They must add the 2 integrals and attempt to integrate (at least one term $x^n \to x^{n+1}$). Algebraic integration must be seen. Ignore limits. Allow as part of $Var(T)$ condone "− $(1.66)^{2n}$ occurring twice. If no algebraic integration shown it is M0 A1 Correct integration M1d dep on previous M being awarded for correct limits and attempt to substitute. If no working shown An attempt may be implied by a correct answer or $1219/300$ or $243/100$ or $49/30$ oe M1 For their $E(T^2) - 1.66^2$ A1 awrt 1.31 Allow $2452/1875$ oe (b) M1 For a correct method to find the 3^{rd} line including limits unless using $F(5) = 1$ method. B1 2^{nd} line correct – any letter. Ignore missing inequality A1 3^{rd} line correct – any letter. Ignore missing inequality A1 Fully correct CDF All in terms of the same letter (Ignore LHS). Allow < instead of ≤ and vice versa. Allow "otherwise" for the range on the 1^{st} or last line but not both. (c) M1 For finding $1 - F(2)$ using their second line or starting again. Must subst in 2 A1 cao (d) M1 For realising they need $F(3.66)$ Allow $F(3.66)$ [– $F(0)$] allow $F(0)$ allow			- 0.733	
one term $x^n \to x^{n+1}$). Algebraic integration must be seen. Ignore limits. Allow as part of Var(T) condone " − (1.66)²" occurring twice. If no algebraic integration shown it is M0 A1 Correct integration M1d dep on previous M being awarded for correct limits and attempt to substitute. If no working shown An attempt may be implied by a correct answer or 1219/300 or 243/100 or 49\30 oe M1 For their E(T²) − 1.66² A1 awrt 1.31 Allow 2452/1875 oe (b) M1 For a correct method to find the 3 rd line including limits unless using F(5) = 1 method. B1 2 nd line correct – any letter. Ignore missing inequality A1 3 rd line correct – any letter. Ignore missing inequality A1 Fully correct CDF All in terms of the same letter (Ignore LHS). Allow < instead of ≤ and vice versa. Allow "otherwise" for the range on the 1 st or last line but not both. (c) M1 For finding 1 – F(2) using their second line or starting again. Must subst in 2 A1 cao (d) M1 For realising they need F(3.66) Allow F(3.66) [– F(0)] allow F("their mean +2") [– F(0)]				Total 13
condone "-(1.66)²" occurring twice. If no algebraic integration shown it is M0 A1 Correct integration M1d dep on previous M being awarded for correct limits and attempt to substitute. If no working shown An attempt may be implied by a correct answer or 1219/300 or 243/100 or 49\30 oe M1 For their E(T²) - 1.66² A1 awrt 1.31 Allow 2452/1875 oe (b) M1 For a correct method to find the 3 rd line including limits unless using F(5) = 1 method. B1 2 nd line correct – any letter. Ignore missing inequality A1 3 rd line correct—any letter. Ignore missing inequality A1 Fully correct CDF All in terms of the same letter (Ignore LHS). Allow < instead of ≤ and vice versa. Allow "otherwise" for the range on the 1 st or last line but not both. (c) M1 For finding 1 − F(2) using their second line or starting again. Must subst in 2 A1 cao (d) M1 For realising they need F(3.66) Allow F(3.66) [− F(0)] allow F("their mean +2") [− F(0)]	(a)	M1	Intention to find $E(T^2)$ correctly. They must add the 2 integrals and attempt to integrate	(at least
 A1 Correct integration M1d dep on previous M being awarded for correct limits and attempt to substitute. If no working shown An attempt may be implied by a correct answer or 1219/300 or 243/100 or 49\30 oe M1 For their E(T²) - 1.66² A1 awrt 1.31 Allow 2452/1875 oe (b) M1 For a correct method to find the 3rd line including limits unless using F(5) = 1 method. B1 2nd line correct – any letter. Ignore missing inequality A1 3rd line correct – any letter. Ignore missing inequality A1 Fully correct CDF All in terms of the same letter (Ignore LHS). Allow < instead of ≤ and vice versa. Allow "otherwise" for the range on the 1st or last line but not both. (c) M1 For finding 1 – F(2) using their second line or starting again. Must subst in 2 A1 cao (d) M1 For realising they need F(3.66) Allow F(3.66) [- F(0)] allow F("their mean +2") [- F(0)] 				Var(T)
 M1d dep on previous M being awarded for correct limits and attempt to substitute. If no working shown An attempt may be implied by a correct answer or 1219/300 or 243/100 or 49\30 oe M1 For their E(T²) - 1.66² A1 awrt 1.31 Allow 2452/1875 oe (b) M1 For a correct method to find the 3rd line including limits unless using F(5) = 1 method. B1 2nd line correct – any letter. Ignore missing inequality A1 3rd line correct—any letter. Ignore missing inequality A1 Fully correct CDF All in terms of the same letter (Ignore LHS). Allow < instead of ≤ and vice versa. Allow "otherwise" for the range on the 1st or last line but not both. (c) M1 For finding 1 – F(2) using their second line or starting again. Must subst in 2 A1 cao (d) M1 For realising they need F(3.66) Allow F(3.66) [- F(0)] allow F("their mean +2") [- F(0)] 				
An attempt may be implied by a correct answer or 1219/300 or 243/100 or 49\30 oe M1 For their E(T²) - 1.66² A1 awrt 1.31 Allow 2452/1875 oe (b) M1 For a correct method to find the 3 rd line including limits unless using F(5) = 1 method. B1 2 nd line correct – any letter. Ignore missing inequality A1 3 rd line correct – any letter. Ignore missing inequality A1 Fully correct CDF All in terms of the same letter (Ignore LHS). Allow < instead of ≤ and vice versa. Allow "otherwise" for the range on the 1 st or last line but not both. (c) M1 For finding 1 – F(2) using their second line or starting again. Must subst in 2 A1 cao (d) M1 For realising they need F(3.66) Allow F(3.66) [– F(0)] allow F("their mean +2") [– F(0)]			Č	ing shown
 M1 For their E(T²) - 1.66² A1 awrt 1.31 Allow 2452/1875 oe (b) M1 For a correct method to find the 3rd line including limits unless using F(5) = 1 method. B1 2nd line correct – any letter. Ignore missing inequality A1 3rd line correct—any letter. Ignore missing inequality A1 Fully correct CDF All in terms of the same letter (Ignore LHS). Allow < instead of ≤ and vice versa. Allow "otherwise" for the range on the 1st or last line but not both. (c) M1 For finding 1 – F(2) using their second line or starting again. Must subst in 2 A1 cao (d) M1 For realising they need F(3.66) Allow F(3.66) [-F(0)] allow F("their mean +2") [-F(0)] 		WIIU		ing shown
 (b) M1 For a correct method to find the 3rd line including limits unless using F(5) = 1 method. B1 2nd line correct – any letter. Ignore missing inequality A1 3rd line correct—any letter. Ignore missing inequality A1 Fully correct CDF All in terms of the same letter (Ignore LHS). Allow < instead of ≤ and vice versa. Allow "otherwise" for the range on the 1st or last line but not both. (c) M1 For finding 1 – F(2) using their second line or starting again. Must subst in 2 A1 cao (d) M1 For realising they need F(3.66) Allow F(3.66) [– F(0)] allow F("their mean +2") [– F(0)] 		M1	For their $E(T^2) - 1.66^2$	
 (b) M1 For a correct method to find the 3rd line including limits unless using F(5) = 1 method. B1 2nd line correct – any letter. Ignore missing inequality A1 3rd line correct—any letter. Ignore missing inequality A1 Fully correct CDF All in terms of the same letter (Ignore LHS). Allow < instead of ≤ and vice versa. Allow "otherwise" for the range on the 1st or last line but not both. (c) M1 For finding 1 – F(2) using their second line or starting again. Must subst in 2 A1 cao (d) M1 For realising they need F(3.66) Allow F(3.66) [– F(0)] allow F("their mean +2") [– F(0)] 		A1	awrt 1.31 Allow 2452/1875 oe	
 A1 3rd line correct—any letter. Ignore missing inequality A1 Fully correct CDF All in terms of the same letter (Ignore LHS). Allow < instead of ≤ and vice versa. Allow "otherwise" for the range on the 1st or last line but not both. (c) M1 For finding 1 – F(2) using their second line or starting again. Must subst in 2 A1 cao (d) M1 For realising they need F(3.66) Allow F(3.66) [– F(0)] allow F("their mean +2") [– F(0)] 	(b)			
 A1 Fully correct CDF All in terms of the same letter (Ignore LHS). Allow < instead of ≤ and vice versa. Allow "otherwise" for the range on the 1st or last line but not both. (c) M1 For finding 1 – F(2) using their second line or starting again. Must subst in 2 A1 cao (d) M1 For realising they need F(3.66) Allow F(3.66) [– F(0)] allow F("their mean +2") [– F(0)] 		B1		
versa. Allow "otherwise" for the range on the 1 st or last line but not both. (c) M1 For finding 1 – F(2) using their second line or starting again. Must subst in 2 A1 cao (d) M1 For realising they need F(3.66) Allow F(3.66) [– F(0)] allow F("their mean +2") [– F(0)]				
(c) M1 For finding 1 – F(2) using their second line or starting again. Must subst in 2 A1 cao (d) M1 For realising they need F(3.66) Allow F(3.66) [– F(0)] allow F("their mean +2") [– F(0)]		A1		nd vice
A1 cao (d) M1 For realising they need F(3.66) Allow F(3.66) [-F(0)] allow F("their mean +2") [-F(0)]	(c)	М1		
(d) M1 For realising they need $F(3.66)$ Allow $F(3.66)$ [$-F(0)$] allow $F("their mean +2")$ [$-F(0)$]	(5)			
	(d)]
	(\$)	A1	Cao allow answer as a fraction	ı

Question Number		Scheme	Marks
6(a)	<u>probabi</u>	ing distribution is <u>all</u> the <u>values</u> of a <u>statistic</u> and the associated <u>lities</u> robability distribution of the <u>statistic</u> .	B1
			(1)
(b)		(40)) = 0.5, $P(medium(80)) = 0.3$, $P(large(150)) = 0.2$	B1
	Range (I	R) 0, 40, 70, 110	B1
	[P(R=0)]	$0) =]"0.5"^3 + "0.3"^3 + "0.2"^3 = 0.16$	M1
	(80,80,1	0) (40,80,80) 50) (80,150,150) 50) (40,80,150) (40,150,150)	B1
		$40) = 3 \times (0.5 \times 0.3)^{2} + 3 \times (0.5 \times 0.3)^{2} + 3 \times (0.5 \times 0.3)^{2}$	
	P(R =	$70) = 3 \times (0.3^{2} \times 0.2) + 3 \times (0.3^{2} \times 0.2) = 0.09$	M1 M1
	P(R=1)	$10) =]3 \times ("0.5"^2 \times "0.2") + 3 \times ("0.5" + "0.2"^2) + 6 \times ("0.5" \times "0.3" \times "0.2") = 0.39$	
	R	0 40 70 110 0.16 0.36 0.09 0.39	Alcao
		0.10 0.50 0.07 0.57	(7)
(c)	(1-"0.0	$9")^n < 0.2$ or $("0.91")^n < 0.2$	M1
	n > 17.	, , ,	M1
	n=18		Al
	n-10)	(3)
		Notes	Total 11
6(a)	B1	A correct explanation with the words in bold. Allow equivalent words eg out	
(1.)	D1	values	1 1 111
(b)	B 1	Correct probabilities – may be seen in an equation or implied by a correct profer $R = 0$ or for 2 correct probabilities from those for $R = 40$, $R = 70$, $R = 110$	bability
	D1	for $R = 0$ or for 2 correct probabilities from those for $R = 40$, $R = 70$, $R = 110$	
	B1 M1	All four ranges correct with no extra. Correct method for finding $P(R = 0)$	
	IVII	All the correct combinations for $R = 40$, 70 and 110. $R = 0$ combinations are no	ot
		required but no incorrect combinations must be seen (may use bag size rather	
	B1	numbers in bag) May be implied by a correct probability for $P(R = 40)$, $P(R = 40)$	
	D1	P(R = 110) or by correct working seen for each of the 7 combinations (no need	
		number of ways of arranging ie $3 \times$ or $6 \times$) eg $(40,40,80) = 0.5^2 \times 0.3$	
	M1	Correct method for one of the probabilities for $P(R = 40)$, $P(R = 70)$, $P(R = 11)$	0)
		Correct method for a second probability for $P(R = 40)$, $P(R = 70)$, $P(R = 110)$	
	M1	probabilities add up to 1.	
	A1	Correct answer only. Allow answers as a fraction. Need not be in a table but	
		probabilities must be attached to the correct range	
(c)	M1	Setting up a correct inequality using their 0.09 Allow written as an equation.	
		For 17.1 or better allow $\frac{\log 0.2}{\log" 0.91"}$ or $\log_{"0.91"}0.2$ oe If inequality/equation is	incorrect
	M1		
		but of the form $(p)^n < 0.2$ $(p)^n = 0.2$ where $0 this mark can be award$	acu II
		but of the form $(p)^n < 0.2$ $(p)^n = 0.2$ where $0 this mark can be award working is shown$	ieu II
	A1	but of the form $(p)^n < 0.2$ $(p)^n = 0.2$ where $0 this mark can be award working is shown 18 do not accept n > 18 or n < 18 if final answer$	ieu II

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom