Examen de seconde session

Automates et langages formels

Exercice 1 – Graphes et languages. Considérons ici un graphe fini G = (V, E) orienté et deux sommets distincts s et t de G. Dans cet exercice, nous appellerons chemin une suite (finie) d'arcs de G: $(u_0, u_1), (u_1, u_2), \ldots, (u_i, u_{i+1}), (u_{i+1}, u_{i+2}), \ldots, (u_{l-1}, u_l)$ de $u_0 = s$ vers $u_l = t$ (ici un chemin va donc de s vers t, en suivant des arcs de G). Attention, ici les chemins considérés ne sont pas nécessairement élémentaires ou simples : cela veut dire qu'un chemin peut "passer" plusieurs fois par un même sommet ou par un même arc.

On note \mathcal{V} l'alphabet contenant chaque arc de G (chaque arc (u, v) de G est donc "vu" ici comme un caractère, noté aussi (u, v), de \mathcal{V}). On note \mathcal{L} le langage, d'alphabet \mathcal{V} , composé de tous les chemins de G de s vers t (un chemin $(s, u_1), (u_1, u_2), \ldots, (u_i, u_{i+1}), \ldots, (u_{l-1}, u_l)$ est associé au $mot (s, u_1)(u_1, u_2) \ldots (u_i, u_{i+1}) \ldots (u_{l-1}, u_l)$ de \mathcal{L}).

- 1. Quel est l'alphabet associé au graphe orienté de la figure 1? Donnez quelques mots du langage \mathcal{L} associé à ce graphe. Est-ce que ce langage est fini ou infini?
- 2. Etant donné un graphe orienté quelconque, est-ce que le langage \mathcal{L} associé est fini ou infini? Est ce que \mathcal{L} est régulier? Justifiez vos réponses.
- 3. Considérons maintenant des chemins (toujours de s vers t dans G) élémentaires (maintenant un chemin ne peut "passer" qu'au plus une seule fois par chaque sommet) :
 - (a) Décrivez maintenant le langage associé au graphe orienté de la figure 1.
 - (b) Etant donné un graphe orienté quelconque, est-ce que le langage \mathcal{L} associé (avec des chemins élémentaires) est régulier? Justifiez votre réponse.

FIG. 1 - Un graphe orienté

Exercice 2 - Questions diverses.

- 1. Soit \mathcal{L} un langage régulier sur un alphabet \mathcal{V} ne contenant pas le caractère a. On construit le langage \mathcal{L} ' en ajoutant à la fin de chaque mot w de \mathcal{L} toutes les suites possibles de a, de longueurs quelconques mais finies : $\mathcal{L}' = \{wa^n : w \in \mathcal{L} \text{ et } n \geq 0\}$. Est ce que le langage \mathcal{L}' sur l'alphabet $\mathcal{V} \cup \{a\}$ est régulier? Justifiez votre réponse.
- 2. Soit \mathcal{L} un langage régulier sur un alphabet \mathcal{V} ne contenant pas le caractère a mais contenant le caractère b. On construit le langage \mathcal{L} ' en remplaçant, dans chaque mot w de \mathcal{L} , chaque caractère b par aaa. Est ce que le langage \mathcal{L} ' est régulier? Justifiez votre réponse.
- 3. Est ce que les phrases suivantes sont vraies ou fausses ; justifiez vos réponses :
 - (a) Aucun langage hors contexte n'est régulier.
 - (b) L'intersection de deux langages hors contextes n'est jamais un langage hors contexte.

Exercice 3 – Machine de Turing. Soit $V = \{a, b\}$. Ecrire une machine de Turing, M, qui accepte tout mot de V^* et tel que l'exécution de M sur un mot m de V^* trie les lettres de m dans l'ordre alphabétique (par exemple, l'exécution de M sur le mot abbaaabaab doit retourner aaaaaabbbb).