1.9, 1.10, 1.13, 1.14, 1.15, 1.21, 1.24

Exercise 1.9 Let E_1 and E_2 be subsets of a metric space (X, d). Prove that

$$\operatorname{Lim}_X(E_1 \cup E_2) = \operatorname{Lim}_X(E_1) \cup \operatorname{Lim}_X(E_2).$$

For \subset , assume $x \in \operatorname{Lim}_X(E_1 \cup E_2)$ and U is a neighborhood of x in X. So, $\emptyset \neq U \cap (E_1 \cup E_2) \setminus \{x\}$. $U \cap [(E_1 \setminus \{x\}) \cup (E_2 \setminus \{x\})] = [U \cap (E_1 \setminus \{x\}) \cup U \cap (E_2 \setminus \{x\})] = \operatorname{Lim}_X(E_1) \cup \operatorname{Lim}_X(E_2)$. For \supset , using Proposition 1.8, $E_1 \subset E_1 \cup E_2 \to \operatorname{Lim}_X(E_1) \subset \operatorname{Lim}_X(E_1 \cup E_2)$. Similarly, $E_2 \subset E_1 \cup E_2 \to \operatorname{Lim}_X(E_2) \subset \operatorname{Lim}_X(E_1 \cup E_2)$. So, $\operatorname{Lim}_X(E_1 \cup E_2) = \operatorname{Lim}_X(E_1) \cup \operatorname{Lim}_X(E_2)$.

Part A: Problem C We defined addition of rational numbers in terms of representatives: $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$. Show that the addition of rational numbers is well-defined.