

Grafos

Aplicações de Grafos

grafo	vértices	arestas
Cronograma	tarefas	restrições de preferência
Malha viária	interseções de ruas	ruas
Rede de água (telefônica,)	Edificações (telefones,)	Canos (cabos,)
Redes de computadores	computadores	linhas
Software	funções	chamadas de função
Web	páginas Web	links
Redes Sociais	pessoas	relacionamentos

Grafo não dirigido

Um *grafo não dirigido* é um par G = (V,E), onde V é um conjunto de *nós* ou *vértices* e E é um conjunto de *arestas*

uma *aresta* é um conjunto de 2 vértices

Exemplos

vértices: $V = \{0,1,2,3\}$

arestas: $E = \{\{0,1\},\{0,2\},\{0,3\},\{1,2\},\{1,3\},\{2,3\}\}$

vértices : $V = \{0,1,2,3,4,5,6\}$

arestas: $E = \{\{0,1\},\{0,2\},\{1,3\},\{1,4\},\{2,5\},\{2,6\}\}$

Grafo dirigido (orientado, ou Digrafo)

Federal de Santa Man:
1960

Um *grafo dirigido* é um par G = (V,E), onde V é um conjunto de *n nós* ou *vértices* e E é um conjunto de *m arcos*

um *arco* é um par ordenado de vértices

Exemplo

vértices: $V = \{0, 1, 2\}$

arcos: $E = \{(0,1), (1,0), (1,2)\}$

Grafo dirigido (orientado, ou Digrafo)

Exemplo - Digrafo com auto-arco

vértices: $V = \{0,1,2,3\}$

arcos: $E = \{(0,0), (0,1), (0,2), (1,3), (2,3)\}$

Grafo ponderado

Um *grafo ponderado* é uma tripla G = (V,E,p), onde V é um conjunto de *n nós* ou *vértices* e E é um conjunto de *m arcos* p é uma função que atribui a cada arco um *peso*

Exemplo

Multigrafo

rederal de Santa Mar. 1960

Um *multigrafo* é um grafo onde dois nós podem estar conectados por mais de uma aresta

Exemplo

Vértices adjacentes

Vértices conectados por arestas

0 e 1

0 e 2

1 e 3

2 e 3

Subgrafo

Grafo completo

Um grafo não direcionado é *completo* sse cada vértice está conectado a cada um dos outros vértices por uma aresta

Quantas arestas há em um grafo completo de n vértices? n (n-1)/2

Grafo conectado

Um grafo não direcionado é *conectado* ou *conexo* sse existe um caminho entre quaisquer dois vértices

Componente conexa de um grafo

Grau

Um vértice possui *grau n* sse há exatamente *n* arestas incidentes ao vértice

Exemplo:

grau do vértice 1: 3

grau de entrada do vértice 1: 1

grau de saída do vértice 1: 2

Caminhos

Caminho

de comprimento 1 entre A e C
de comprimento 2 entre B e G, passando por H
de comprimento 2 entre B e G, passando por F
de comprimento 3 de A a F
Ciclos

Ciclos

Um *ciclo* é um caminho de um nó

para ele mesmo

exemplo: B-F-G-B

Grafo cíclico

contém um ou mais ciclos

Grafo acíclico

não contém ciclos

em grafos direcionados e não direcionados

Árvore Geradora

subgrafo acíclico contendo todos os vértice com caminhos entre quaisquer 2 vértices

De um modo geral, obtém-se uma árvore geradora removendo arestas até eliminar os ciclos, mas mantendo a conexidade. É fácil ver que se um grafo tem n nós, então uma árvore geradora do grafo terá exatamente n — 1 arestas.

Observe-se ainda que um grafo pode admitir diferentes árvores geradoras, conforme a escolha de arestas a eliminar.

Representações de grafo - Matriz de adjacências

mat[i][j] =
$$\begin{cases} 1, \text{ se houver uma aresta do nó i para o nó j} \\ 0, \text{ caso contrário} \end{cases}$$

Representações de grafo - Matriz de adjacências

Representações de grafo - Listas de adjacências

Um grafo não dirigido com 6 vértices e 7 arestas.

O grafo da figura acima tem essa representação de lista de adjacência:

1	adjacente a	2,5
2	adjacente a	1,3,5
3	adjacente a	2,4
4	adjacente a	3,5,6
5	adjacente a	1,2,4
6	adjacente a	4

Lista de adjacências do grafo acima como encontrada em Cormen el al..

Códigos – Matriz e Listas de adjacências

• MatrizDeAdjacências.c

• ListaDeAdjacências.c

- ∘ void GRAPHremoveArc(Graph G, vertex v, vertex w); // implementar
- o void GRAPHshow(Graph G); // implementar
- ∘ void GRAPHshowAll(Graph G); // implementar

o Implementar o algoritmo de 8.2: "proc profr (v:nó)_", versão recursiva.

Percursos em grafos

em profundidade (depth-first search - dfs)

 arestas que partem do vértice visitado por último

em largura (breadth-first search - bfs)

 arestas que partem do vértice visitado primeiro

guloso (greedy)

- arestas de menor custo (tipicamente procurando menor caminho) Uma forma bem mais simples do procedimento para percurso em profundidade é a forma recursiva (como já foi visto antes, a utilização de pilhas é um modo de obter o efeito de chamadas recursivas):

```
proc profr (v:nó)__

var w:nó;
início
execute visite (v);
execute marque (v);
para cada w adjacente a v faça
se ¬ marcado (w) então execute profr (w)
tim
```

Percursos em grafos

```
proc ampl (v:nó)
   var t, w: nó;
   var f: fila;
   início
      execute visite (v);
      execute marque (v);
      execute enfileire (v, f);
      enquanto T fila vazia (f) faça
         início
            t ← frente (f);
            execute desenfileire (f);
            para cada w adjacente a t faça
               se marcado (w) então
                  início
                    execute visite (w);
                    execute marque (w);
                    execute enfileire (w, f)
                 fim
        fim
  fim
```

```
proc prof (v: nó)_
   var t, w: nó;
   var p: pilha;
   início
      execute visite (v):
      execute marque (v);
      execute empilhe (v, p);
  enquanto pilha_vazia (p) faça
     início
        t + topo (p);
        execute desempilhe (p);
        para cada w adjacente a t faça
           se marcado (w) então
              início
                 execute visite (w);
                 execute marque (w);
                 execute empilhe (t, p);
                 t +w
              fim
     fim
fim
```


Percursos em grafos

• Vídeo:

• Algoritmos de busca em largura e profundidade em grafos.

Problemas comuns

Federal de Santa Mar.
1960

- ∘ Árvores geradoras
- ° Caminho mais curto: caminho entre nós i e j com menor peso total de arcos

Algoritmo de Dijkstra

Entradas:

Um grafo ponderado G = (V,E,p) Um vértice V do grafo

Saída:

Menor caminho entre V e cada um dos nós do grafo

- roteamento em redes
- deslocamento de caminhões em trânsito pesado
- desenho de chips
- roteamento de mensagens em telecomunicações

• ...

• Vídeo.

Códigos – Percursos e Dijkstra

- BuscaEmProfundidade.c
- BuscaEmLargura.c
- ArvoreDeBuscaEmLargura.c
- Dijkstra.c

Atividades

- ∘ Revisar códigos em aberto
- ∘ Amanhã, 06/11, atividade em modo EAD.

