Indefinite Canonical Systems. Theory and Examples

Harald Woracek

joint work with Michael Kaltenbäck, Matthias Langer and Henrik Winkler

CONTENTS

- Review of the positive definite theory
- Some examples of canonical systems
- Indefinite analogue of canonical systems
- A short account on the literature

REVIEW OF THE POSITIVE DEFINITE THEORY

Hamiltonians and canonical systems

A *Hamiltonian* is a function

- $H: [\sigma_0, \sigma_1) \to \mathbb{R}^{2 \times 2}$ defined a.e., measurable;
- $H(t) \ge 0, H \in L^1_{loc}((\sigma_0, \sigma_1));$
- $\int_{\sigma_0}^{\sigma_0+\epsilon} \operatorname{tr} H(t) dt < \infty$ (initial value problem);
- \blacksquare H does not vanish on any set of positive measure.

Hamiltonians and canonical systems

A *Hamiltonian* is a function

- $H: [\sigma_0, \sigma_1) \to \mathbb{R}^{2 \times 2}$ defined a.e., measurable;
- $H(t) \ge 0, H \in L^1_{loc}((\sigma_0, \sigma_1));$
- $\int_{\sigma_0}^{\sigma_0+\epsilon} \operatorname{tr} H(t) dt < \infty$ (initial value problem);
- \blacksquare H does not vanish on any set of positive measure.

The canonical system with Hamiltonian H is the differential equation

$$y'(x) = z \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} H(x)y(x), \ x \in [\sigma_0, \sigma_1).$$

limit circle case vs. limit point case

A Hamiltonian H is said to be in the

- limit circle case if $\int_{\sigma_1-\epsilon}^{\sigma_1} \operatorname{tr} H(t) dt < +\infty$;
- *limit point case* if $\int_{\sigma_1-\epsilon}^{\overline{\sigma_1}} \operatorname{tr} H(t) dt = +\infty$.

Summary

 $\begin{array}{c} \text{Hamiltonian} \\ H(t) \end{array}$

Summary

Summary

Summary (limit point case)

Summary (limit point case)

Summary (limit point case)

The Inverse Spectral Theorem

The assignment

$$H(t) \mapsto q_H(z)$$

yields a bijection between the set of all Hamiltonians (up to reparameterization) and the Nevanlinna class \mathcal{N}_0 .

SOME EXAMPLES OF CANONICAL SYSTEMS

Positive definite functions

Let $a \in (0, \infty)$. A function $f: (-2a, 2a) \to \mathbb{C}$ is called positive definite, if $f(-t) = \overline{f(t)}$ and if the kernel

$$K_f(s,t) = f(t-s), \ s,t \in (-a,a),$$

is positive definite. The set of all continuous positive definite functions on the interval (-2a, 2a) is denoted by $\mathcal{P}_{0,a}$.

Positive definite functions

Continuation problem: Let $f \in \mathcal{P}_{0,a}$. Do there exist continuations $\tilde{f} \in \mathcal{P}_{0,\infty}$?

Positive definite functions

Continuation problem: Let $f \in \mathcal{P}_{0,a}$. Do there exist continuations $\tilde{f} \in \mathcal{P}_{0,\infty}$?

Solution: There exists either a unique continuation or infinitely many continuations. In the second case the set of all continuations is parameterized by

$$i\int_0^\infty e^{izt}\tilde{f}(t)\,dt = W_f(z) \star \tau(z)$$

where W_f is a certain entire 2×2 -matrix function and the parameter τ runs through the Nevanlinna class \mathcal{N}_0 .

Pos.def. functions & can. systems

Let $f \in \mathcal{P}_{0,\infty}$. Assume that the set

 $I_f := \{a > 0 : f|_{(-2a,2a)} \text{ has infinitely many continuations} \}$

is nonempty.

Pos.def. functions & can. systems

Then the family

$$W_t(z) := \begin{cases} \begin{pmatrix} 1 & 0 \\ -(f(0)^{-1} + t)z & 1 \end{pmatrix} &, t \in [-f(0)^{-1}, 0) \\ W_{f|(-2t, 2t)}(z) &, t \in I_f \end{cases}$$

is the matrix chain of a certain Hamiltonian H_f .

The Bessel equation

The Bessel equation is the eigenvalue problem with singular endpoint 0

$$-u''(x) + \frac{\nu^2 - \frac{1}{4}}{x^2}u(x) = \lambda u(x), \ x > 0$$

Here ν is a parameter $\nu > \frac{1}{2}$ and λ is the eigenvalue parameter.

Bessel equation & can. systems

Rewriting this equation as a first-order-system, making a substitution in the independent variable, and setting $\alpha := 2\nu - 1$, $\lambda = z^2$, yields an equation of the form of a canonical system with

$$H_{\alpha}(x) = \begin{pmatrix} x^{\alpha} & 0 \\ 0 & x^{-\alpha} \end{pmatrix}$$

In order that H_{α} is integrable at 0, we need that $\alpha < 1$, i.e. $\nu < 1$. In this case the matrix chain $(W_{\alpha,t})_{t \in [0,\infty)}$ and the Weyl coefficient $q_{H_{\alpha}}$ can be computed explicitly:

Bessel equation & can. systems

Let $\alpha \in (0,1)$. Then

$$W_{\alpha,t}(z) =$$

$$= \begin{pmatrix} 2^{\nu_1} \Gamma(\nu) z^{-\nu_1} t^{-\nu_1} J_{\nu_1}(tz) & 2^{\nu_1} \Gamma(\nu) z^{-\nu_1} t^{\nu} J_{\nu}(tz) \\ -2^{-\nu} \Gamma(-\nu_1) z^{\nu} t^{-\nu_1} J_{-\nu_1}(tz) & 2^{-\nu} \Gamma(-\nu_1) z^{\nu} t^{\nu} J_{-\nu}(tz) \end{pmatrix}$$

with
$$\nu_1 := \frac{\alpha - 1}{2} = \nu - 1$$
, and

$$q_{H_{\alpha}}(z) = c_{\alpha} z^{-\alpha}$$

with
$$c_{\alpha}:=\frac{2^{\alpha}}{\pi}\Gamma(\nu)^2\sin\nu e^{i\nu\pi}$$
.

INDEFINITE ANALOGUE OF CANONICAL SYSTEMS

	POSITIVE DEFINITE	
S_{-}	Hamiltonian	
CONCEPTS	Matrix chain	
ONC	Boundary triplet	
Ŭ	Nevanlinna class \mathcal{N}_0	

	POSI	ITIVE DEFINITE	
\mathbb{S}	Har	niltonian	
CONCEPTS	Mat	trix chain	
ONC	Bou	indary triplet	
C	Nev	vanlinna class \mathcal{N}_0	
I.S.T.	{Ha	$amiltonians \} \overset{WC}{\leftrightsquigarrow} \mathcal{N}_0$	

	POSITIVE DEFINITE	D	I	L	D]	El	FI)	ΝI	(T)	E				
\sim	Hamiltonian	11	n	n	i	aı	n							
CONCEPTS	Matrix chain	1	cł	ch	18	ai	n							
ONC	Boundary triplet	y	ry	ry	y	tı	[1]	pl	lei	t				
	Nevanlinna class \mathcal{N}_0	n	n	nı	n	a	C	la	as	S	Λ	\int_{0}		
I.S.T.	{Hamiltonians} $\longleftrightarrow \mathcal{N}_0$)1	О	: O)1]	ni	ar	1S	5}	- (·~~	^	Л	$\sqrt{0}$
	Positive def.functions	d	C	d	de	ef	î.f	u	n	ct	ic	on	ıs	
(IPL)	Bessel equation $\alpha < 1$	ր	cg	q	Įυ	18	ıti	O 1	n	C	γ <	<	1	_
EXAMPLES														
田														

	POSI	ITIVE DEFINITE	
S_{-}	Har	niltonian	
CONCEPTS	Mat	rix chain	
ONC	Bou	ındary triplet	
C	Nev	vanlinna class \mathcal{N}_0	
I.S.T.	{Ha	$amiltonians\} \leftrightsquigarrow \mathcal{N}_0$	
	Pos	itive def.functions	
APL)	Bes	sel equation $\alpha < 1$	
EXAMPLES	Mo	ment problems	
田	Stri	ngs	

	POSI	TIVE DEFINITE	INDEFINITE
LS	Har	niltonian	
CEP	Mat	rix chain	
CONCEPTS	Bou	ındary triplet	
C	Nev	vanlinna class \mathcal{N}_0	
I.S.T.	{Ha	$\{$ miltonians $\} \iff \mathcal{N}_0$	
\mathbb{Z}	Pos	itive def.functions	
APL.	Bes	sel equation $\alpha < 1$	
EXAMPLES	Mo	ment problems	
П	Stri	ngs	

	POSI	ITIVE DEFINITE	INDEFINITE
LS	Har	niltonian	
CEP	Mat	trix chain	
CONCEPTS	Bou	ındary triplet	
C	Nev	vanlinna class \mathcal{N}_0	generalized Nev.class \mathcal{N}_{κ}
I.S.T.	{Ha	$miltonians\} \leftrightsquigarrow \mathcal{N}_0$	
	Pos	itive def.functions	
APL.	Bes	sel equation $\alpha < 1$	
EXAMPLES	Mo	ment problems	
田	Stri	ngs	

	POSITIVE DEFINITE	INDEFINITE
\sim	Hamiltonian	
CEP	Matrix chain	
CONCEPTS	Boundary triplet	B.triplet in Pontryagin space
C	Nevanlinna class \mathcal{N}_0	generalized Nev.class \mathcal{N}_{κ}
I.S.T.	{Hamiltonians} $\longleftrightarrow \mathcal{N}_0$	
	Positive def.functions	
APL	Bessel equation $\alpha < 1$	
EXAMPLES	Moment problems	
H	Strings	

	POSITIVE DEFINITE	INDEFINITE
\sim	Hamiltonian	
CONCEPTS	Matrix chain	
ONC	Boundary triplet	B.triplet in Pontryagin space
	Nevanlinna class \mathcal{N}_0	generalized Nev.class \mathcal{N}_{κ}
I.S.T.	{Hamiltonians} $\longleftrightarrow \mathcal{N}_0$	
ES	Positive def.functions	Hermitian indef.functions
EXAMPLES	Bessel equation $\alpha < 1$	
	Moment problems	
	Strings	

	POSITIVE DEFINITE	INDEFINITE
~	Hamiltonian	
EPT	Matrix chain	
CONCEPTS	Boundary triplet	B.triplet in Pontryagin space
C	Nevanlinna class \mathcal{N}_0	generalized Nev.class \mathcal{N}_{κ}
I.S.T.	{Hamiltonians} $\longleftrightarrow \mathcal{N}_0$	
	Positive def.functions	Hermitian indef.functions
EXAMPLES	Bessel equation $\alpha < 1$	Bessel equation $\alpha \in \mathbb{R}^+$
XAN	Moment problems	
田	Strings	

	DOCUTIVE DEFINITE	INDEPIME
	POSITIVE DEFINITE	INDEFINITE
LS	Hamiltonian	
CEP'	Matrix chain	
CONCEPTS	Boundary triplet	B.triplet in Pontryagin space
	Nevanlinna class \mathcal{N}_0	generalized Nev.class \mathcal{N}_{κ}
L.S.T.	{Hamiltonians} $\longleftrightarrow \mathcal{N}_0$	
\mathbf{S}	Positive def.functions	Hermitian indef.functions
EXAMPLES	Bessel equation $\alpha < 1$	Bessel equation $\alpha \in \mathbb{R}^+$
XAN	Moment problems	indefinite moment problems
日	Strings	

	POSITIVE DEFINITE	INDEFINITE
\sim	Hamiltonian	
EP	Matrix chain	
CONCEPTS	Boundary triplet	B.triplet in Pontryagin space
Ŭ	Nevanlinna class \mathcal{N}_0	generalized Nev.class \mathcal{N}_{κ}
I.S.T.	{Hamiltonians} $\longleftrightarrow \mathcal{N}_0$	
\sim	Positive def.functions	Hermitian indef.functions
(PL)	Bessel equation $\alpha < 1$	Bessel equation $\alpha \in \mathbb{R}^+$
EXAMPLES	Moment problems	indefinite moment problems
田田	Strings	generalized strings

	POSI	TIVE DEFINITE	INDEFINITE
$\Gamma_{\rm S}$	Har	niltonian	general Hamiltonian
CONCEPTS	Mat	rix chain	maximal chain of matrices
ONC	Bou	ındary triplet	B.triplet in Pontryagin space
C	Nev	anlinna class \mathcal{N}_0	generalized Nev.class \mathcal{N}_{κ}
I.S.T.	{Ha	$miltonians\} \leftrightsquigarrow \mathcal{N}_0$	
\mathbf{N}	Pos	itive def.functions	Hermitian indef.functions
EXAMPLES	Bes	sel equation $\alpha < 1$	Bessel equation $\alpha \in \mathbb{R}^+$
	Mo	ment problems	indefinite moment problems
田	Stri	ngs	generalized strings

	POSITIVE DEFINITE	INDEFINITE
CONCEPTS	Hamiltonian	general Hamiltonian
	Matrix chain	maximal chain of matrices
	Boundary triplet	B.triplet in Pontryagin space
	Nevanlinna class \mathcal{N}_0	generalized Nev.class \mathcal{N}_{κ}
I.S.T.	{Hamiltonians} $\iff \mathcal{N}_0$	$\left\{ \begin{array}{l} \text{general} \\ \text{Hamiltonians} \end{array} \right\} \leftrightsquigarrow \bigcup_{\kappa \geq 0} \mathcal{N}_{\kappa}$
EXAMPLES	Positive def.functions	Hermitian indef.functions
	Bessel equation $\alpha < 1$	Bessel equation $\alpha \in \mathbb{R}^+$
	Moment problems	indefinite moment problems
	Strings	generalized strings

Indefinite can.systems / Motivation

	POSITIVE DEFINITE	INDEFINITE
CONCEPTS	Hamiltonian	general Hamiltonian
	Matrix chain	maximal chain of matrices
	Boundary triplet	B.triplet in Pontryagin space
	Nevanlinna class \mathcal{N}_0	generalized Nev.class \mathcal{N}_{κ}
I.S.T.	{Hamiltonians} $\iff \mathcal{N}_0$	$\left\{ \begin{array}{l} \text{general} \\ \text{Hamiltonians} \end{array} \right\} \leftrightsquigarrow \bigcup_{\kappa \geq 0} \mathcal{N}_{\kappa}$
EXAMPLES	Positive def.functions	Hermitian indef.functions
	Bessel equation $\alpha < 1$	Bessel equation $\alpha \in \mathbb{R}^+$
	Moment problems	indefinite moment problems✓
	Strings	generalized strings

A general Hamiltonian consists of the data

$$\sigma_0, \dots, \sigma_{n+1} \in \mathbb{R} \cup \{\pm \infty\}, \ \sigma_0 < \sigma_1 < \dots < \sigma_{n+1},$$

$$H_i: (\sigma_i, \sigma_{i+1}) \to \mathbb{R}^{2 \times 2}, \ i = 0, \dots, n,$$

$$E \subseteq \bigcup_{i=0}^n (\sigma_i, \sigma_{i+1}) \cup \{\sigma_0, \sigma_{n+1}\} \text{ finite}$$

$$d_{i,0},\ldots,d_{i,2\Delta_i-1}\in\mathbb{R},\quad \ddot{o}_i\in\mathbb{N}_0,b_{i,1},\ldots,b_{i,\ddot{o}_i+1}\in\mathbb{R}$$

subject to certain conditions.

- $\sigma_0 = \text{starting point}$
- $\sigma_{n+1} = \text{endpoint}$
- $\sigma_1, \ldots, \sigma_n = \text{singularities}$

- $H_0, \ldots, H_n = \text{Hamiltonians, not integrable at}$ $\sigma_1, \ldots, \sigma_n \ (\sigma_1, \ldots, \sigma_n \ \text{singularities})$
- $\blacksquare H_0$ integrable at 0 (initial value problem)
- $ullet H_n$ integrable/not at σ_{n+1} (limit circle/point case)
- \blacksquare growth of H_i towards singularity is restricted

- $d_{i,j} = d_{i,j} = d_{i,j}$ interface conditions at a singularity
- **E** quantitative measurement of 'local at a singularity'

 $\ddot{\boldsymbol{b}}_{i,j} = \ddot{o}_{i,j} = \ddot{o}_{i,j} = \ddot{o}_{i,j}$ contribution concentrated in the singularity

Maximal chains of matrices

Axiomization of 'fundamental solution'

- $W_0 = I \text{ and } W_t \in \bigcup_{\kappa \ge 0} \mathcal{M}_{\kappa} \text{ for } t \in [\sigma_0, \sigma_1) \cup (\sigma_1, \sigma_2) \cup \ldots \cup (\sigma_n, \sigma_{n+1})$
- $W_s^{-1}W_t \in \bigcup_{\kappa \geq 0} \mathcal{M}_{\kappa} \text{ and}$ $\operatorname{ind}_{-}W_t = \operatorname{ind}_{-}W_s + \operatorname{ind}_{-}W_s^{-1}W_t$
- If $W \in \bigcup_{\kappa \geq 0} \mathcal{M}_{\kappa}$, $W^{-1}W_t \in \bigcup_{\kappa \geq 0} \mathcal{M}_{\kappa}$ and $\operatorname{ind}_{-} W_t = \operatorname{ind}_{-} W + \operatorname{ind}_{-} W^{-1}W_t$ then $W = W_t$ for some t
- some technical conditions

Theory of indefinite can.systems

general Hamiltonian h

Maximal chain (W_t)

Model space $\mathfrak{P}(\mathfrak{h})$

Weyl coefficient $q_{\mathfrak{h}}(z)$

Theory of indefinite can.systems

Theory of indefinite can.systems

The Inverse Spectral Theorem

The assignment

$$\mathfrak{h} \mapsto q_{\mathfrak{h}}(z)$$

yields a bijection between the set of all general Hamiltonians (up to reparameterization) and $\bigcup_{\kappa>0} \mathcal{N}_{\kappa}$.

Fitting our examples

In our examples we had obtained generalized Nevanlinna function which seemed to be the 'Weyl coefficient of the underlying indefinite canonical system', namely:

- $q_f(z) = \frac{i}{z^2} \frac{1}{z} \in \mathcal{N}_1$ from the hermitian indefinite function f(t) = 1 |t|.
- $q_{\alpha}(z) = c_{\alpha}z^{-\alpha} \in \mathcal{N}_{\kappa(\alpha)} \text{ where } \kappa(\alpha) := \left[\frac{\alpha+1}{2}\right], \text{ from the Bessel equation with parameter } \alpha \in \mathbb{R}^+ \setminus \{1, 3, 5, \ldots\}.$

Fitting our examples

In our examples we had obtained generalized Nevanlinna function which seemed to be the 'Weyl coefficient of the underlying indefinite canonical system', namely:

- $q_f(z) = \frac{i}{z^2} \frac{1}{z} \in \mathcal{N}_1$ from the hermitian indefinite function f(t) = 1 |t|.
- $q_{\alpha}(z) = c_{\alpha}z^{-\alpha} \in \mathcal{N}_{\kappa(\alpha)} \text{ where } \kappa(\alpha) := \left[\frac{\alpha+1}{2}\right], \text{ from the Bessel equation with parameter } \alpha \in \mathbb{R}^+ \setminus \{1, 3, 5, \ldots\}.$

In order to fit these examples, we have to find the general Hamiltonian whose Weyl coefficient is q_f or q_α , and see how it is related to the 'Hamiltonians' H_f and H_α .

A SHORT ACCOUNT ON THE LITERATURE

References (positive definite)

- L.DE BRANGES: Hilbert spaces of entire functions, Prentice-Hall, London 1968.
- I.GOHBERG, M.G.KREIN: *Theory and applications of Volterra operators in Hilbert space*, Translations of Mathematical Monographs, AMS. Providence, Rhode Island, 1970.
- S.HASSI, H.S.V.DE SNOO, H.WINKLER: *Boundary-value problems for two-dimensional canonical systems*, Integral Equations Operator Theory 36 (4) (2000), 445–479.
- I.S.KAC: On the Hilbert spaces generated by monotone Hermitian matrix functions (Russian), Kharkov, Zap.Mat.o-va, 22 (1950), 95–113.
- L.SAKHNOVICH: Spectral theory of canonical systems. Method of operator identities, Oper. Theory Adv. Appl. 107, Birkhäuser Verlag, Basel 1999.

References (indefinite)

This lecture was based on:

- M.Kaltenbäck, H.Woracek: *Pontryagin spaces of entire functions I*, Integral Equations Operator Theory 33 (1999), 34–97.
- M.Kaltenbäck, H.Woracek: *Pontryagin spaces of entire functions II*, Integral Equations Operator Theory 33 (1999), 305–380.
- M.Kaltenbäck, H.Woracek: Pontryagin spaces of entire functions III, Acta Sci.Math. (Szeged) 69 (2003), 241–310.
- M.Kaltenbäck, H.Woracek: *Pontryagin spaces of entire* functions IV, Acta Sci.Math. (Szeged) (2006), 791–917.
- M.Kaltenbäck, H.Woracek: *Pontryagin spaces of entire functions V,* manuscript in preparation.

References (indefinite)

- M.G.KREIN, H.LANGER: On some extension problems which are closely connected with the theory of hermitian operators in a space Π_{κ} . III. Indefinite analogues of the Hamburger and Stieltjes moment problems (Part 1,2), Beiträge zur Analysis 14 (1979), 25–40, Beiträge zur Analysis 15 (1981), 27–45.
- J.ROVNYAK, L.SAKHNOVICH: Spectral problems for some indefinite cases of canonical differential equations, J. Operator Theory 51 (1) (2004), 115–139.
- J.Rovnyak, L.Sakhnovich: Inverse problems for canonical differential equations with singularities, preprint.

References (her.indef. functions)

- M.Kaltenbäck, H.Woracek: On extensions of hermitian functions with a finite number of negative squares, J. Operator Theory 40 (1998), 147–183.
- M.G.KREIN, H.LANGER: On some continuation problems which are closely related to the theory of operators in spaces Π_{κ} . IV. Continuous analogues of orthogonal polynomials on the unit circle with respect to an indefinite weight and related continuation problems for some classes of functions, J. Operator Theory 13 (1985), 299–417.
- M.G.KREIN, H.LANGER: Continuation of Hermitian positive definite functions and related questions, unpublished manuscript.
- H.Langer, M.Langer, Z.Sasvari: Continuations of Hermitian indefinite functions and corresponding canonical systems: an example, Methods Funct. Anal. Topology 10 (2004), no. 1, 39–53.

References (Bessel equation)

- A. DIJKSMA, Y. SHONDIN: Singular point-like perturbations of the Bessel operator in a Pontryagin space, J. Differential Equations 164 (2000), 49–91.
- M.Langer, H.Woracek: A Pontryagin space model for a canonical system connected with the Bessel equation, manuscript in preparation.
- C.Fulton, H.Langer: Sturm-Liouville operators with singularities and generalized Nevanlinna functions, preprint.
- P. Kurasov, A. Luger: Singular differential operators: *Titchmarsh–Weyl coefficients and operator models*, preprint.

References (strings)

- I.S.KAC, M.G.KREIN: On spectral functions of a string, in F.V.Atkinson, Discrete and Continuous Boundary Problems (Russian translation), Moscow, Mir, 1968, 648–737 (Addition II). I.C.Kac, M.G.Krein, On the Spectral Function of the String. Amer. Math. Soc., Translations, Ser.2, 103 (1974), 19–102.
- M.Kaltenbäck, H.Winkler, H.Woracek: Strings, dual strings, and related canonical systems, Math.Nachr., to appear.
- M.KALTENBÄCK, H.WINKLER, H.WORACEK: Diagonal general Hamiltonians. A full indefinite analogue of the theory of strings, manuscript in preparation.
- H.LANGER, H.WINKLER: *Direct and inverse spectral problems for generalized strings*, Integral Equations Operator Theory 30 (1998), 409–431.

THE END

The matrix chain (W_t)

Let H be a Hamiltonian defined on $[\sigma_0, \sigma_1)$. Then W_t , $t \in [\sigma_0, \sigma_1)$, denotes the unique solution of the initial value problem

$$\frac{d}{dt}W_t(z)\begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} = zW_t(z)H(t), \ x \in [\sigma_0, \sigma_1),$$

$$W_0(z) = I.$$

The Weyl coefficient $q_H(z)$

For
$$W = (w_{ij})_{i,j=1}^2 \in \mathbb{C}^{2\times 2}$$
 and $\tau \in \mathbb{C}$ denote

$$W \star \tau := \frac{w_{11}\tau + w_{12}}{w_{21}\tau + w_{22}}$$

The assignment $\tau \mapsto W \star \tau$ maps the upper half plane to some (general) disk:

The Weyl coefficient $q_H(z)$

Let $(W_t)_{t \in [\sigma_0, \sigma_1)}$ be the matrix chain associated with the Hamiltonian H. The assignments $\tau \mapsto W_t \star \tau$ map \mathbb{C}^+ to a nested sequence of disks contained in \mathbb{C}^+ . The disk $W_t \star \mathbb{C}^+$ is contained in the upper half plane and its radius is $[\int_{\sigma_0}^t \operatorname{tr} H(x) \, dx]^{-1}$.

The Weyl coefficient $q_H(z)$

Let $(W_t)_{t \in [\sigma_0, \sigma_1)}$ be the matrix chain associated with the Hamiltonian H. The assignments $\tau \mapsto W_t \star \tau$ map \mathbb{C}^+ to a nested sequence of disks contained in \mathbb{C}^+ . The disk $W_t \star \mathbb{C}^+$ is contained in the upper half plane and its radius is $[\int_{\sigma_0}^t \operatorname{tr} H(x) \, dx]^{-1}$.

Thus the limit $q_H(z) := \lim_{t \nearrow \sigma_1} W_t(z) \star \tau$ exists, does not depend on $\tau \in \mathbb{C}^+$, and belongs to \mathcal{N}_0 .

The model space $L^2(H)$

Supressing some technicalities which arise from 'indivisible intervals', we have

$$L^{2}(H) := \left\{ f : (\sigma_{0}, \sigma_{1}) \to \mathbb{C}^{2} : \int_{\sigma_{0}}^{\sigma_{1}} f(t)^{T} H(t) f(t) dt < \infty \right\}$$

$$T_{max}(H) := \left\{ (f;g) \in L^2(H)^2 : f \text{ absolutely continuous}, \right\}$$

$$f(t) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} H(t)g(t), \text{ a.e.}$$

$$\Gamma(H)(f;g) := f(\sigma_0), \ (f;g) \in T_{max}(H)$$

W_t from defect elements

Let $y_1(z,x) = (y_1(z,x)_2, y_1(z,x)_2)^T$ and $y_2(z,x) = (y_2(z,x)_2, y_2(z,x)_2)^T$ be the elements of $\ker(T_{max}(H|_{(\sigma_0,t)}-z), \text{ such that } y_1(z,\sigma_0)=(1,0)^T \text{ and } y_2(z,\sigma_0)=(0,1)^T.$ Then

$$W_t(z) = \begin{pmatrix} y_1(z,t)_1 & y_1(z,t)_2 \\ y_2(z,t)_1 & y_2(z,t)_2 \end{pmatrix}$$

W_t as resolvent matrix

Consider

$$S_1 := \left\{ (x; y) \in T_{max}(H|_{(\sigma_0, t)}) : \atop \pi_{l, 1} \Gamma(H|_{(\sigma_0, t)})(x; y) = 0, \pi_r \Gamma(H|_{(\sigma_0, t)})(x; y) = 0 \right\}$$

$$u: (x; y) \mapsto \pi_{l,2}\Gamma(H|_{(\sigma_0,t)})(x; y), (x; y) \in T_{max}(H|_{(\sigma_0,t)})$$

Then S_1 is symmetric with defect 1 and $u|_{S_1^*}$ is continuous. The matrix function W_t is a u-resolvent matrix of S_1 .

The reproducing kernel space of W_t

The kernel

$$K_{W_t}(w,z) := \frac{W_t(z) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} W_t(w)^* - \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}{z - \overline{w}}$$

is positive definite, thus generates a reproducing kernel Hilbert space $\Re(W_t)$. The elements of $\Re(W_t)$ are entire 2-vector-functions.

The operator $S(W_t)$ of multiplication by z is a symmetry with defect 2. The map $\Gamma(W_t): f \mapsto f(0)$ is a boundary map for $S(W_t)$.

The reproducing kernel space of W_t

The boundary triplet

$$\langle L^2(H|_{(\sigma_0,t)}), T_{min}(H|_{(\sigma_0,t)}), \Gamma(H|_{(\sigma_0,t)}) \rangle$$
 is isomorphic to $\langle \mathfrak{K}(W_t), \mathcal{S}(W_t), \Gamma(W_t) \rangle$. The isomorphism of $L^2(H|_{(\sigma_0,t)})$ to $\mathfrak{K}(W_t)$ is given by

$$f(x) \mapsto \int_{\sigma_0}^t W_x(z) H(x) f(x) dx$$
.

The Fourier transform

The Weyl coefficient admits an integral representation of the form

$$q_H(z) = a + bz + \int_{\mathbb{R}} \left(\frac{1}{t-z} - \frac{t}{1+t^2}\right) d\sigma(t).$$

Assuming b = 0, the map

$$f(x) \mapsto \int_{\sigma_0}^{\sigma_1} (0, 1) W_x(z) H(x) f(x) dx$$

is an isomorphism of $L^2(H)$ onto $L^2(\sigma)$.

The class \mathcal{N}_0

Denote by \mathcal{N}_0 the set of all functions τ , which are analytic in $\mathbb{C} \setminus \mathbb{R}$, satisfy $\tau(\overline{z}) = \overline{\tau(z)}$, and are such that the Nevanlinna kernel

$$Q_{\tau}(w,z) := \frac{\tau(z) - \overline{\tau(w)}}{z - \overline{w}}$$

is nonnegative definite. This means that each of the quadratic forms

$$q_{ au}ig(\xi_1,\ldots,\xi_mig):=\sum_{i,j=1}^mQ_f(z_j,z_i)\xi_i\overline{\xi_j}$$

is nonnegative definite.

The class \mathcal{N}_0

A more classical approach to this class of functions is given by the following result:

A function τ which is analytic in $\mathbb{C} \setminus \mathbb{R}$ and satisfies $\tau(\overline{z}) = \overline{\tau(z)}$ belongs to the class \mathcal{N}_0 , if and only if it maps the open upper half plane into the closed upper half plane.

Hermitian indefinite functions

Let $a \in (0, \infty)$. A function $f: (-2a, 2a) \to \mathbb{C}$ is called hermitian indefinite, if $f(-t) = \overline{f(t)}$ and if the kernel

$$K_f(s,t) = f(t-s), \ s,t \in (-a,a),$$

has a finite number of negative squares. The set of all continuous hermitian indefinite functions with κ negative squares on the interval (-2a, 2a) is denoted by $\mathcal{P}_{\kappa,a}$.

Hermitian indefinite functions

Continuation problem: Let $f \in \mathcal{P}_{\kappa_0,a}$. Do there exist continuations $\tilde{f} \in \mathcal{P}_{\kappa,\infty}$?

Clearly, for the existence of a continuation $\tilde{f} \in \mathcal{P}_{\kappa,\infty}$, it is necessary that $\kappa \geq \kappa_0$.

Hermitian indefinite functions

Solution: There exists a number $\Delta(f) \in \mathbb{N} \cup \{0, \infty\}$:

- If $\Delta(f) = 0$, then f has infinitely many continuations in each of the classes $\mathcal{P}_{\kappa,\infty}$, $\kappa \geq \kappa_0$.
- If $0 < \Delta(f) < \infty$, then f has a unique continuation in $\mathcal{P}_{\kappa_0,\infty}$, no continuations in $\mathcal{P}_{\kappa,\infty}$ with $\kappa_0 < \kappa < \kappa_0 + \Delta(f)$, and infinitely many continuations in each of the classes $\mathcal{P}_{\kappa,\infty}$, $\kappa \geq \kappa_0 + \Delta(f)$.
- If $\Delta(f) = \infty$, then f has a unique continuation in $\mathcal{P}_{\kappa_0,\infty}$, and no continuations in any of the classes $\mathcal{P}_{\kappa,\infty}$, $\kappa > \kappa_0$.

Hermitian indefinite functions

Assume that $\Delta(f) < \infty$. Then there exists an entire 2×2 -matrix function W_f such that the formula

$$i \int_0^\infty e^{izt} \tilde{f}(t) dt = W_f(z) \star \tau(z)$$

parameterizes the continuations of f in $\bigcup_{\kappa \geq \kappa_0} \mathcal{P}_{\kappa,\infty}$. Thereby continuations $\tilde{f} \in \mathcal{P}_{\kappa,\infty}$ correspond to parameters τ in the class $\mathcal{K}_{\kappa-\kappa_0}^{\Delta(f)}$. If $\Delta(f)>0$, the unique solution in $\mathcal{P}_{\kappa_0,\infty}$ is given by the parameter $\tau=\infty$.

Her.indef. functions & can. systems

An example: The function f(t) := 1 - |t| belongs to $\mathcal{P}_{1,\infty}$. Again consider the restrictions $f|_{(-2t,2t)}$. Then

$$\Delta(f|_{(-2t,2t)}) = \begin{cases} 0 & , \ 0 < t < 1 \text{ or } t > 1 \\ 1 & , \ t = 1 \end{cases}$$

$$f|_{(-2t,2t)} \in \mathcal{P}_{0,t}, 0 < t < 1, f|_{(-2t,2t)} \in \mathcal{P}_{1,t}, t > 1,$$
and

$$W_{f|_{(-2t,2t)}}(z) =$$

$$= \begin{pmatrix} \frac{\sin tz - z\cos tz}{(t-1)z} & \left(\frac{1}{z^2} - (t-1)\right)\sin tz - \frac{t\cos tz}{z} \\ \frac{z\cos tz}{t-1} & (t-1)z\sin tz + \cos tz \end{pmatrix}$$

Her.indef. functions & can. systems

The family

$$W_t(z) := \begin{cases} \begin{pmatrix} 1 & 0 \\ -(1+t)z & 1 \end{pmatrix} &, t \in [-1,0] \\ W_{f|(-2t,2t)}(z) &, t \in (0,1) \cup (1,\infty) \end{cases}$$

satisfies a differential equation of the form of a canonical system with

$$H_f(t) = \begin{cases} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} & , t \in (-1, 0) \\ \begin{pmatrix} (t-1)^2 & 0 \\ 0 & \frac{1}{(t-1)^2} \end{pmatrix} & , t \in (0, 1) \cup (1, \infty) \end{cases}$$

Her.indef. functions & can. systems

The function H_f is locally integrable on $[-1,1) \cup (1,\infty)$, but NOT at the point 1. Moreover, $\int_T^\infty \operatorname{tr} H_f(x) \, dx = +\infty$ for T>1, i.e. the 'limit point case' prevails at infinity.

If we formally carry out the construction of the Weyl coefficient, we obtain

$$q_{H_f}(z) = \frac{i}{z^2} - \frac{1}{z}, \ z \in \mathbb{C}^+$$

This function belongs to \mathcal{N}_1 .

Bessel equation ($\alpha \geq 1$)

The function $H_{\alpha}(t)$ and the matrices $W_{\alpha,t}(z)$ are well-defined for $\alpha \in \mathbb{R}^+ \setminus \{1,3,5,\ldots\}$. Moreover, $W_{\alpha,t}$ satisfies a differential equation of the form of a canonical system with H_{α} . The function H_{α} is locally integrable on $(0,\infty)$, but NOT at the point 0. Moreover,

 $\int_{T}^{\infty} \operatorname{tr} H_{\alpha}(x) dx = +\infty$ for T > 0, i.e. the 'limit point case' prevails at infinity.

If we formally carry out the construction of the Weyl coefficient, we obtain

$$q_{H_{\alpha}}(z) = c_{\alpha}z^{-\alpha}, \ z \in \mathbb{C}^+$$

This function belongs to $\mathcal{N}_{\kappa(\alpha)}$ with $\kappa(\alpha) := \left[\frac{\alpha+1}{2}\right]$.

The class $\mathcal{K}_{ u}^{\Delta}$

For ν , $\Delta \in \mathbb{N}_0$, denote by $\mathcal{K}^{\Delta}_{\nu}$ the set of all functions τ , which are meromorphic in $\mathbb{C} \setminus \mathbb{R}$, satisfy $\tau(\overline{z}) = \overline{\tau(z)}$, and are such that the maximal number of negative squares of quadratic forms

$$q_{\tau}(\xi_{1}, \dots, \xi_{m}; \eta_{0}, \dots, \eta_{\Delta-1}) :=$$

$$= \sum_{i,j=1}^{m} \frac{\tau(z_{i}) - \overline{\tau(z_{j})}}{z_{i} - \overline{z_{j}}} \xi_{i} \overline{\xi_{j}} + \sum_{k=0}^{\Delta-1} \sum_{i=1}^{m} \operatorname{Re}(z_{i}^{k} \xi_{i} \overline{\eta_{k}})$$

is ν . Note that $\mathcal{K}_{\nu}^{\Delta} = \mathcal{N}_{\nu}$.

The class \mathcal{N}_{κ}

For $\kappa \in \mathbb{N}_0$, denote by \mathcal{N}_{κ} the set of all functions $\underline{\tau}$, which are meromorphic in $\mathbb{C} \setminus \mathbb{R}$, satisfy $\tau(\overline{z}) = \overline{\tau(z)}$, and are such that the Nevanlinna kernel

$$Q_f(w,z) := \frac{\tau(z) - \overline{\tau(w)}}{z - \overline{w}}$$

has κ negative squares. This means that the maximal number of negative squares of quadratic forms

$$q_{\tau}(\xi_1,\ldots,\xi_m) = \sum_{i,j=1}^m Q_f(z_j,z_i)\xi_i\overline{\xi_j}$$

is equal to κ .

The Weyl coefficient $q_{\mathfrak{h}}(z)$

The limit

$$q_{\mathfrak{h}}(z) := \lim_{t \nearrow \sigma_n} W_t(z) \star \tau$$

exists as a meromorphic function locally uniformly on $\mathbb{C} \setminus \mathbb{R}$ and does not depend on $\tau \in \mathbb{C}^+$.

The maximal chain (W_t)

The matrix function W_t , $t \in \bigcup_{i=1}^n (\sigma_{i-1}, \sigma_i)$, is for every $i = 1, \dots, n$ a solution of the differential equation

$$\frac{d}{dt}W_t(z)\begin{pmatrix}0 & -1\\1 & 0\end{pmatrix} = zW_t(z)H_i(t), \ x \in (\sigma_{i-1}, \sigma_i)$$

On the interval $[\sigma_0, \sigma_1)$ it is uniquely determined by its initial value $W_{\sigma_0} = I$.

The reproducing kernel space of W_t

The kernel

$$K_{W_t}(w,z) := \frac{W_t(z) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} W_t(w)^* - \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}{z - \overline{w}}$$

has a finite number of negative squares, thus generates a reproducing kernel Pontryagin space $\Re(W_t)$. The elements of $\Re(W_t)$ are entire 2-vector-functions.

The operator $S(W_t)$ of multiplication by z is a symmetry with defect 2. The map $\Gamma(W_t): f \mapsto f(0)$ is a boundary map for $S(W_t)$.

The reproducing kernel space of W_t

There exists an isomorphism Φ_t of the boundary triplets $\langle \mathfrak{K}(W_t), \mathcal{S}(W_t), \Gamma(W_t) \rangle$ and $\langle \mathfrak{P}^2(\mathfrak{h}|_{(\sigma_0,t)}), \mathcal{S}(\mathfrak{h}|_{(\sigma_0,t)}), \Gamma(\mathfrak{h}|_{(\sigma_0,t)}) \rangle$

If $J := [s_-, s_+] \subseteq (\sigma_{i-1}, \sigma_i)$, then the map

$$\lambda_J: f(x) \mapsto \int_{s_-}^{s_+} W_x(z) H(x) f(x) \, dx$$

is an isomorphism of $L^2(H_i|_{[s_-,s_+]})$ onto $\mathfrak{K}(W_{s_+})[-]\mathfrak{K}(W_{s_-}).$ We have

The Fourier transform

The Weyl coefficient admits a representation of the form

$$q_{\mathfrak{h}}(z) = \phi\left(\frac{1}{t-z}\right)$$

with some distribution on \mathbb{R} . This distribution generates a Pontryagin space $\Pi(\phi)$. There exists an isomorphism of $\mathfrak{P}(\mathfrak{h})$ onto $\Pi(\phi)$.

W_t as resolvent matrix

For $t \in I$ consider

$$S_1 := \left\{ (x; y) \in T(\mathfrak{h}|_{(\sigma_0, t)}) : \atop \pi_{l, 1} \Gamma(\mathfrak{h}|_{(\sigma_0, t)})(x; y) = 0, \pi_r \Gamma(\mathfrak{h}|_{(\sigma_0, t)})(x; y) = 0 \right\}$$

$$u: (x; y) \mapsto \pi_{l,2}\Gamma(\mathfrak{h}|_{(\sigma_0,t)})(x; y), (x; y) \in T(\mathfrak{h}|_{(\sigma_0,t)})$$

Then S_1 is symmetric with defect 1 and $u|_{S_1^*}$ is continuous. The matrix function W_t is a u-resolvent matrix of S_1 .

W_t from defect elements

Let $\phi_z, \psi_z \in \ker(T(\mathfrak{h}|_{(\sigma_0,t)}))$ be such that

$$\pi_l\Gamma(\mathfrak{h}|_{(\sigma_0,t)})(\phi_z;z\phi_z) = \begin{pmatrix} 1\\0 \end{pmatrix}, \ \pi_l\Gamma(\mathfrak{h}|_{(\sigma_0,t)})(\psi_z;z\psi_z) = \begin{pmatrix} 0\\1 \end{pmatrix}$$

Then

$$W_t(z) = \begin{pmatrix} \pi_r \Gamma(\mathfrak{h}|_{(\sigma_0,t)}) (\phi_z; z\phi_z)^T \\ \pi_r \Gamma(\mathfrak{h}|_{(\sigma_0,t)}) (\psi_z; z\psi_z)^T \end{pmatrix}$$

The model space $\mathfrak{P}(\mathfrak{h})$

Given a general Hamiltonian h we construct an operator model, which is a Pontryagin space boundary triplet

$$\langle \mathfrak{P}(\mathfrak{h}), T(\mathfrak{h}), \Gamma(\mathfrak{h}) \rangle$$

The actual construction is quite involved and too complicated to be elaborated here.

The model space $\mathfrak{P}(\mathfrak{h})$

If $J = [s_-, s_+] \subseteq (\sigma_i, \sigma_{i+1})$, there exists an isometric and homeomorphic embedding

$$\iota_J:L^2(H_i|_J) o \mathfrak{P}(\mathfrak{h})$$

If $J \subseteq J'$, then

$$L^{2}(H_{i}|_{J}) \xrightarrow{\iota_{J}} \mathfrak{P}(\mathfrak{h})$$

$$\subseteq \downarrow \qquad \qquad \downarrow_{\iota_{J'}}$$

$$L^{2}(H_{i}|_{J'})$$

Hamiltonian for q_f

The general Hamiltonian made up of the data

$$\sigma_0 = -1, \sigma_1 = 1, \sigma_2 = +\infty, \quad E = \{-1, 0, 2, +\infty\}$$

$$H_0(t) = \begin{cases} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} & , t \in (-1, 0) \\ \begin{pmatrix} (t-1)^2 & 0 \\ 0 & (t-1)^{-2} \end{pmatrix} & , t \in (0, 1) \end{cases}$$

$$H_1(t) = \begin{pmatrix} (t-1)^2 & 0 \\ 0 & (t-1)^{-2} \end{pmatrix}$$

$$\ddot{\sigma}_1 = 1, b_{1,1} = 2, b_{1,2} = 0, \quad d_0 = -2, d_1 = 0$$

has Weyl coefficient q_f .

Hamiltonian for q_{α}

The general Hamiltonian made up of the data

$$\sigma_0 = -1, \sigma_1 = 0, \sigma_2 = +\infty, \quad E = \{-1, 1, +\infty\}$$

$$H_0(t) = rac{1}{t^2} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \ H_1(t) = \begin{pmatrix} t^{lpha} & 0 \\ 0 & t^{-lpha} \end{pmatrix}$$

$$\ddot{o}_1 = 0, \quad d_0 = \frac{1}{\alpha - 1}, d_1 = 0$$

has Weyl coefficient q_{α} .

The class \mathcal{M}_{κ}

$$W \in \mathcal{M}_{\kappa}$$
 if

- W is entire 2×2 -matrix function
- $\mathbf{W}(0) = I$
- The kernel

$$K_W(w,z) := \frac{W(z) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} W(w)^* - \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}{z - \overline{w}}$$

has κ negative squares

