

CITY UNIVERSITY OF HONG KONG STUDENTS' UNION Name - CHAN King Young

STAT 4003

Assignment 3

http://www.cityusu.net/ SID: 1155119394

Question | a) $(nPo:(x), f(y) = \frac{x^4e^{-x}}{y!}$ $= e^{-x} \cdot y! \cdot e^{y\ln(x)}$

 $(a/1) = e^{-2}; b(y) = y!; c(\lambda) = \ln(\lambda); d(y) = y$ $\therefore Y \text{ belongs to exponential family}$

b) Yab(n,p), fly) = (y) py (1-p)n-y
= (1-p)n (y) e yln(zp)

a(p) = (1-p)n; b(y) = (y); c(p) = ln(zp); d(y) = y

if belongs to exponential family

c) Yn NB(k,p), $f(y) = {\binom{y-1}{k-1}} p^{k} (1-p)^{y+k}$ $= (\frac{p-1}{k-1})^{k} \cdot {\binom{y-1}{k-1}} \cdot e^{y\ln(1-p)}$ $\therefore a(p) = {\binom{p-1}{k-1}} \cdot b(y) = {\binom{y-1}{k-1}} \cdot c(p) = \ln(1-p); d(y) = y$ $\therefore belongs to exponential family$

d) $Y \sim \Pi(0, k)$, $f(y) = \frac{y^{0-1} e^{-\frac{y}{k}}}{\Pi(0) \times 0}$ $= \frac{1}{\Pi(0) \times 0} \cdot \frac{e^{-\frac{y}{k}}}{y} \cdot e^{-\frac{y}{k}} \cdot e^{-\frac{y}{k}}$ $\therefore a(0) = \frac{1}{\Pi(0) \times 0}; b(y) = \frac{e^{-\frac{y}{k}}}{y}; e(0) = 0; d(y) = \ln(y)$ $\therefore Y \text{ belongs to exponential tamily}$

e) $Y \sim N(0,1)$, $f(y) = \frac{1}{1273} e^{-\frac{(y-0)^2}{2}}$ $= e^{-\frac{y^2}{2}} \frac{1}{1273} e^{-\frac{y^2}{2}} e^{-\frac{y^2}{2}}$ $= a(0) = e^{-\frac{y^2}{2}}; b(y) = \frac{1}{1273} e^{-\frac{y^2}{2}}; c(0) = 0; d(y) = y$ $\therefore Y \text{ belongs to exponential tamily}$

f) $Y \sim N(0,0)$, $f(y) = \overline{12200} e^{-\frac{y^2}{250}}$ $= \overline{16} \cdot \overline{12} \cdot 1_{(y \in R)} \cdot e^{-\frac{y^2}{250}}$ $\therefore a(0) = \overline{10} ; b(y) = \overline{12} \cdot 1_{(y \in O)} ; c(0) = -\overline{10} ; d(y) = y^2$ $\therefore Y \text{ belongs to exponential } family$

Question 2

Given $X \sim Exp(6)$, we know $Y = EX_i$ is sufficient and complete since it belongs to exponential tamily.

We have $Y \sim P(n, 6)$. Let $g(y) = \frac{n-1}{y}$

Con't $E[g(y)] = (n-1)E(\frac{1}{y})$ $E(\frac{1}{y}) = \int_{0}^{\infty} \frac{1}{y} \frac{G^{n}}{|\overline{I}(n)|} \frac{g^{n-1} - yb}{g} dy$ $= (n-1)\frac{G}{n-1}$ $= \frac{G^{n}}{|\overline{I}(n)|} \frac{|\overline{I}(n-1)|}{|\overline{I}(n)|}$ $= \frac{G}{n-1}$

By Lehmann - Schedté therom, g(y) is UMVUE of O Since Y is sufficient and g(y) is 1-to-1 function, g(y) is also sufficient.

Let f be any function and h = fog where h is also arbitrary. We have $0 = EEH[g(y)]^2 = E[fog(y)] = E[h(y)] = 0$ Since Y is complete and P[f(g(y))] = P[f(g(y))] = 0] = P[h(y) = 0] = 1, g(y) is also complete.

 \Rightarrow $\frac{n-1}{7}$ is the best statistic for 0

Question 3

Tiven $X \sim Exp(\frac{1}{\theta})$, we know $Y=20 \times \sim \mathcal{X}_{12}$, where $\mathcal{M}_{20x}(t)=\mathcal{M}_{x}(20t)=(1-2t)^{-1}$ for $g(X_{1},0)=IY_{1}\sim \mathcal{X}_{(2n)}^{2}$, we have $P(\mathcal{X}_{2n;a_{12}}^{2}<20 \times (\mathcal{X}_{2n;1\sim d_{12}}^{2})=I\sim d$ => 100(1-d)40 confidence interval of $\frac{2n\pi}{\mathcal{X}_{2n;1\sim d_{12}}}$, $\frac{2n\pi}{\mathcal{X}_{2n;\alpha_{12}}^{2}}$)

Similar to above, $100(1-\alpha)\%$ confidence interval at 6^{-1} s $\left(\left(\frac{2n\bar{x}}{\bar{x}_{2n;1-\alpha 12}^2}\right)^2, \left(\frac{2n\bar{x}}{\bar{x}_{2n;\alpha 12}^2}\right)^2\right)$

571) Since the CI of B is independent of that of B2, the probability covers both true mean and true variance is (1-d)2

iv) P(a < b < b) = 1-d $P(-\frac{1}{a} < -b < -\frac{1}{b}) =$ $P(e^{-\frac{1}{a}} < e^{-\frac{1}{b}} =$

=) 100(1-d) % confidence interval for 2 is $\left(e^{\frac{\chi^2_{2N;1-d/2}}{2n\chi}}, e^{\frac{\chi^2_{2N;d/2}}{2n\chi}}\right)$

Question 4

a) Sine $ML\bar{E}$ of p is \bar{x} , by invariant property, the $ML\bar{E}$ of 0 is $(1-\bar{x})^2$ b) $E(\hat{\theta}) = E[(1-\bar{x})^2]$ $= E(1-2\bar{x}+\bar{x}^2)$

· L(p)= Ix/n(p) + (n+Ix) In(1-p)

Question 6

95% confidence intend for $U_1 - U_2^2$ (74.5-71.8) ± 2.074 $\int_{22}^{12(83.6)+10(112.6)} (\frac{1}{13} + \frac{1}{11})$ $\approx (5.6352, 11.0352)$

 $= E(1-2x+x^{2})$ $= 1-2p+\frac{p(i-p)}{n}+p^{2}$ $= (1-p)^{2} \quad \text{if} \quad x_{1}+x_{2}=0, \quad \frac{p(i-p)}{n}=0$ = 0 $\therefore \hat{0} \quad \text{is an biased}$

90% contidence interval for $\frac{\sigma_{1}}{\sigma_{2}}$ ($\frac{32.6}{112.6}$), $\frac{32.6}{112.6}$) $\frac{82.6}{112.6}$) \approx (0.5021, 1.4203)

c) Since X belongs to exponential family, IX: is sufficient and complete. By Lehmann-Scheffe theram, $\hat{\theta} = (1-\bar{x})^2$

is the UNIVE of O

Question 5

Ho= $\sigma \dot{x} = \sigma^{2}_{4} \text{ vs. Hr} \quad \sigma \dot{x} \neq \sigma^{2}_{4}$ $X_{0}^{2} = \frac{8742}{3411} \quad \text{p-value } \approx 0.4022$ ≈ 0.9289

Since p-volve > 0.05, we do not reject to at a=0.05

The approximate 90 % contridence interval for 4x-4x is $(984-1121)\pm 1.645$ $\sqrt{\frac{14}{4}(8142)+51(9411)}(\frac{1}{45}+\frac{1}{52})$ $\approx (-168.95)$ We are 90% contrident that the difference of 2 population means is within (-168.95)5, -105.0485) Since the sample size is large enough, we can apply CLT such that the underlying distribution approximate to normality.