Tópicos em modelagem computacional

Teoria do controle supervisório -Rafael Soares Cavalcante

Proposta

Solução de controle para ambientes inteligentes de sensores como serviço através do uso da teoria "o controle supervisório".

Abordagem

- Variáveis contínuas:
 - Evoluem com o decorrer do tempo
 - Ex: Aceleração e velocidade.

Equações diferenciais

- Os problemas não são bem definidos
 - Variáveis não contínuas

Noções básicas de controle do sistema

- Sistema:
 - o Combinação de componentes que agem em conjunto para executar uma função
 - Interação de componentes
 - Desempenho de uma função

- Comportamento dos sistemas:
 - Definição:
 - Leis de Controle
 - Teorias de controle supervisório

Processo de modelagem

Busca por um modelo de sistema real

Desenvolvimento de meios matemáticos

- Definição de um conjunto de variáveis mensuráveis associados ao sistema
 - Seleção do conjunto de variáveis de entrada e saída
 - Variáveis de saída suprimidas:
 - Não tem resposta

Obtenção do modelo de sistema na forma matemática

$$y = g(u) = [g_1(u_1(t), ..., u_p(t)), ..., g_m(u_1(t), ..., u_p(t))]^T$$

Processo de modelagem simples

Conceito de Estados

- Descreve um comportamento em um dado momento de forma mensurável.
 - Representa a informação necessária
 - Variáveis variam em instantes determinados os valores seguintes são calculados diretamente dos valores prévios sem considerar o tempo.
 - Possíveis estados:
 - Valores de um conjunto discreto
 - Transações baseados em declarações lógicas
 - Análise de equações diferenciais
 - Soluções técnicas

Conceito de controle

- Garantia do comportamento desejado
 - Feedback
 - Uso da informação disponível
 - Ajuste da entrada de controle
 - Correções na presença de perturbações

Sistemas de eventos discretos

- Classificação dos sistemas em categorias
- Perspectiva para interpretação e compreensão do sistema
 - Sistema dinâmico a variáveis contínuas
 - Espaço de estados é contínuo
 - Comportamento regido pelo tempo
 - Baseado nas equações diferenciais
 - Sistemas dinâmicos a eventos discretos
 - Baseado nas equações diferenciais

Razões para adoção da abordagem discreta

- Opera de modo e tempo discreto os controles avaliados somente em um dado tempo correspondente
- Flexibilidade, velocidade e baixo custo
- Base de dados registrada apenas em intervalos discretos regulares
- Os eventos podem depender de fatores alheios ao sistema, o que dificulta o processo de previsão dos eventos.

Razões para adoção da abordagem discreta

Adaptação:

- Tratamento de eventos
 - Estado de falhas
- A ocorrência de eventos é assíncrona no tempo
- O estado de eventos permanece imutável até que ocorra um evento.
- A ocorrência do evento não implica na mudança de estado

Sistemas de Eventos Discretos(SEDs)

• Dinâmico:

- Evolui de acordo com a ocorrência abrupta de eventos físico
- Transição ou mudança de estados
- o O mesmo evento pode levar o sistema a diferentes estados.
 - O número total de eventos é finito

Modelos de (SEDs)

- Redes de Petri com ou sem temporização
- Redes de Petri controladas com e sem temporização
- Cadeias de Markov
- Lógica temporal e lógica temporal de tempo real
- Teoria de linguagens e autômatos
 - Teoria do controle supervisório

Sistemas Híbridos

- Considera simultaneamente característica contínuas e discretas de seus componentes e suas interligações
 - Modelo de rede de Petri
 - Teoria de linguagens e autômatos

Eventos

- Se o estado inicial for definido pode haver uma representação da sequência de eventos.
- Percepção do ambiente através de estímulos
 - Ocorre instantaneamente e gera uma transição entre os estados
 - Eventos controláveis
 - Podem ser habilitados ou desabilitados pelo controlador supervisório
 - Eventos incontroláveis
 - Não são controláveis pelo controlador supervisório

Autômatos e linguagens formais como Modelo para sistemas discretos

- Comportamento lógico da SED:
 - Modelagem por meio de linguagens formais de autômatos
 - Qualquer SED tem um conjunto associado
 - Alfabeto
 - Sequência de eventos
 - interpretação dos sinais que a máquina pode emitir
 - O SED é responsável por reconhecer o evento e dar a interpretação apropriada a qualquer sequência recebida.

Linguagem Recebida

- Descreve o comportamento lógico de um SED
- Conjunto de todas as palavras possíveis factíveis formadas pelos eventos constituintes deste alfabeto.
 - Conjunto de operações (Características de cada ação)
 - Fechamento de Kleene
 - União de todas as possíveis palavras
 - Concatenação de duas linguagens
 - Gera uma linguagem maior
 - Prefixo
 - Conjunto de todos os prefixos da linguagem incluindo o vazio

Autômatos como modelos para SEDs

- Representação da linguagem através da transição dos estados
 - Verificar propriedades
 - Sintetizar controladores

- Representação do sistema por meio dos vários subsistemas que o compõe
 - o Preocupa com a sequência dos estados e os eventos associados que causam a transição

Autômatos como modelos para SEDs

A Teoria de Controle Supervisório representa o comportamento livre de um SED através de um autômato na forma $(Q, \Sigma, \delta, q_0, Q_m)$, onde:

- Q representa o conjunto de estados utilizados para descrever o comportamento do sistema segundo a abstração empregada.
- Σ representa o conjunto de eventos relevantes, usualmente denominado alfabeto de eventos.
- q₀ − representa o estado inicial do sistema, sendo que q₀ ∈ Q.
- δ : Q × Σ → Q − representa a função de transição de estados, sendo que esta função pode ser definida para apenas alguns pares ordenados em Q.
- Q_m representa um conjunto de estados marcados, sendo que $Q_m \subseteq Q$.

Autômatos como modelos para SEDs

- Quando o autômato é finito é possível realizar sua representação através de uma máquina de estados que aceita um dado alfabeto.
- O evento pode ocorrer sem mudança de estados.
- Dois eventos diferentes podem ocorrer em um estado levando a mesma transição.
- Não é necessário uma função ser definida para cada evento ou para cada estado.

Modelo de Autômato Finito

Operações sobre Autômatos

- Acessibilidade
 - Estado que pode ser alcançado através de qualquer cadeia.
- Co-acessibilidade
 - A partir de qualquer cadeia pode-se chegar a um estado final
- Trim
 - Autômato acessível e co-acessível
 - Ausência de bloqueios do sistema
 - Sempre existirá um caminho que conduz a um marcado
- Composição paralela
 - Comportamento sincronizado entre dois autômatos
 - o É possível configurar um mesmo evento ocorra em um autômato

Operações sobre Autómatos

Acessibilidade

Operações sobre Autómatos

• Trim

A composição paralela de dois autômatos G_1 e G_2 , e formalmente definida como:

$$G_1||G_2:=Ac(Q_1\times Q_2,\sigma_1\cup \sigma_2,\delta,(q_01,q_02),Q_m1\times Q_m2),$$
 Onde:

$$f((x_1,x_2),e) := \begin{cases} (f_1(x_1,e),f_2(x_2,e)), & \text{se } e \in \Gamma_1(x_1) \cap \Gamma_2(x_2) \\ (f_1(x_1,e),x_2), & \text{se } e \in \Gamma_1(x_1) \backslash \Sigma_2 \\ (x_1,f_2(x_2,e)), & \text{se } e \in \Gamma_2(x_2) \backslash \Sigma_1 \\ & \text{indefinida para qualquer outro caso} \end{cases} \tag{2.7}$$

Operações sobre Autómatos

• Ex¹:

- Ex¹:
 - Autômato composto:

• Ex²:

- Ex²:
 - o Autômato resultante da combinação paralela

Composição de Autômatos Para Modelagem SEDs

 Composição de subsistemas sobre a gerência de um controlador aplicando as restrições de controle.

Linguagem Gerada e Linguagem Marcada

- Linguagem gerada:
 - o Todas as sequências de eventos possíveis a serem executadas a partir do estado inicial

- Linguagem marcada:
 - Sequência pertence a linguagem gerada que leva o sistema a um estado marcado.

Teoria do Controle Supervisório

Modelagem do sistema por meio de um conjunto de restrições

 "A estrutura do controlador observa a sequência de eventos gerados no sistema a ser controlado e instantaneamente determina o conjunto de eventos concatenados a sequência preservando o sistema no comportamento desejado."

Teoria do Controle Supervisório

- O subconjunto define um entrada de controle:
 - Especifica todos os eventos que podem ocorrer e os que não estão habilitados ficam desabilitados.
 - Após o evento de entrada o controle de eventos é utilizado e um novo subconjunto de eventos é habilitado
- Coordena todos os subsistemas que compõem o modelo para diminuir o tempo de execução das operações e garantir a ausência de bloqueios e não violar as especificações de segurança.

Supervisão

- Supervisão centralizada
 - Toda tarefa do sistema supervisório é executada por um único supervisor
 - Tem as informações completas das ocorrências
- Supervisão modular
 - o Divisão de toda tarefa do sistema supervisório em dois ou mais supervisores
 - Informações parciais das ocorrências

Propósito

- Projetar um único controlador cuja função é habilitar ou desabilitar eventos controláveis, conforme a sequência de eventos.
- O SED é utilizado para particionar o sistema em eventos controláveis e não controláveis
- Os eventos podem ser desabilitados sem que isso afete a ação do controlador

Arquitetura Monolítica

 Os eventos controláveis e não controláveis são gerados e o supervisor da ação desabilita somente os eventos controláveis.

Arquitetura Monolítica

