# Follow-Me 자율주행 시스템 개발

2025. 8. 9

박정우



### **Contents**

- I. 배경: Follow-Me 자율주행 시스템의 활용
- Ⅱ. 시스템 개발의 개요
- Ⅲ. 시스템의 개념적 구성
- IV. 시스템 아키텍처
- V. 라이다 센서 데이터의 처리 흐름
- VI. 시스템의 자율적 차량 제어 프로세스
- VII. 실제 LIMO 자동차를 이용한 테스트 결과
- VIII. Future Work 시스템의 추가 개발



# I. 배경: Follow-Me 자율주행 시스템의 산업별 활용 가능성





#### 물류 및 창고 자동화

피커 추종 시스템 - 작업자가 물품을 피킹하는 동안 자율이동 로봇이 자동으로 따라다니며 선별된 물품을 수집. 작업자가 무거운 카트를





작업자가 조립 작업을 진행하는 동안 필요한 부품과 공구를 적시에 공급하는 '움직이는 공구함' 역할

을 통한 생산성 향상



트럭 플래투닝(선두 트럭을 여러 자율주행 트럭이 뒤따라 군집 주행)으로 연비 20% 개선

제조업













#### 의료 및 헬스케어

의사나 간호사가 회진할 때 의료기기, 약품, 환자 기록을 자동으로 운반하는 의료진 추종 시스템을 통한 의료 지원





## II. Follow-Me 자율주행 시스템 개발의 개요



#### ○ 목표

■ ROS(Robot Operating System) 환경에서 LiDAR 센서 데이터만을 이용해 가장 가까운 물체를 인식하고, 일정한 거리를 유지하며 따라가는 자율 추적 기능을 구현

#### ○ 배경

■ 학습한 ROS, SLAM 등 자율주행 이론을 실제 로봇(LIMO)에 적용하여 실무 역량을 증명하는 최종 프로젝트





### Ⅲ. 시스템의 개념적 구성





추종 알고리즘

라이다 데이터를 기반으로 객체를 추종



ROS 프레임워크

로봇 소프트웨어 개발 프레임워크



라이다 센서

환경 인식을 위한 환경 스캐너



LIMO 차량

ROS1이 설치된 로봇 플랫폼



### Ⅳ.시스템 아키텍처





### V. 라이다 센서 데이터의 처리 흐름





연속성 기반 필터링(: 이전 스캔 데이터와 비교하여 갑자기 나타난 센서 노이즈는 무시하고, 연속적으로 관측되는 객체만 신뢰함)을 통해 장애물을 일관되게 추적 가능 초기 노이즈 제거를 위해 로봇 자체나 바닥에서 반사되는 10cm 미만의 초근접 값은 무시



# VI. Follow-Me 자율주행 시스템의 자율적 차량 제어 프로세스





#### 객체 위치 추정

라이다 데이터를 사용하여 추종 대상 객체의 위치를 결정



오차 계산

LIMO 차량과 추종 대상 간의 각도 및 거리의 차이를 계산



제어 명령 생성

오차를 기반으로 PID 제어

➡ 부드러운 움직임 구현



차량 제어

- 비례 제어(P): 현재 오차에 즉각적으로 반응
- 적분 제어(I): 누적 오차를 보정하여 정상상태 오차 제거
- 미분 제어(D): 오차 변화율로 오버슈트 방지

생성된 명령을 사용하여 LIMO 차량의 움직임을 제어



#### VII. 실제 LIMO 자동차를 이용한 Follow-Me 자율주행 시스템의 테스트 결과 및 시연













# VIII.Future Work: Follow-Me 자율주행 시스템의 추가 개발





#### ROS 프레임워크 개발

자율 주행 시스템을 자율 주행을 위해 위한 기반 구축 SLAM 기술 구현 (R) 환경 인식 구현 센서 융합 8 환경 인식을 위해 라이다 데이터를 사용 하여 주변 환경 인식 비전 센서 통합 7 2 3 / \ / \\ 장애물 회피 개선 추종 알고리즘 개발 차량이 리더를 정확하게 안전을 위해 장애물 추종하도록 보장 <u>S</u> S 회피 능력 강화

추종 알고리즘 개선

추종 정확도 및 효율성 향상

#### 시스템 성능 검증

실제 LIMO 차량에서 시스템의 안정성 테스트

