Numerikus módszerek 1.

előadás: QR-felbontás: Gram–Schmidt ortogonalizáció,
 Householder-transzformációk és alkalmazásaik

Dr. Bozsik József

ELTE IK

Tartalomjegyzék

- 1 Ortogonális mátrixokról
- QR-felbontás
- 3 Gram-Schmidt-féle ortogonalizáció
- 4 Householder-féle mátrixok
- 5 Householder-transzformációk alkalmazásai
- 6 Műveletigény

Tartalomjegyzék

- 1 Ortogonális mátrixokról
- QR-felbontás
- 3 Gram-Schmidt-féle ortogonalizáció
- 4 Householder-féle mátrixok
- 5 Householder-transzformációk alkalmazása
- 6 Műveletigény

Definíció: ortogonális mátrix

Egy $Q \in \mathbb{R}^{n \times n}$ mátrix *ortogonális*, ha az inverze a transzponáltja, azaz

$$Q^{\top}Q = I$$
.

Megj.: Ekkor
$$QQ^{\top} = I$$
 is teljesül. $(Q^{-1} = Q^{\top})$

Definíció: ortogonális mátrix

Egy $Q \in \mathbb{R}^{n \times n}$ mátrix *ortogonális*, ha az inverze a transzponáltja, azaz

$$Q^{\top}Q = I$$
.

Megj.: Ekkor $QQ^{\top} = I$ is teljesül. $(Q^{-1} = Q^{\top})$

Definíció: skaláris szorzat

Az $x, y \in \mathbb{R}^n$ vektorok *skaláris szorzata*

$$\langle x, y \rangle := y^{\top} x = \sum_{k=1}^{n} x_k \cdot y_k.$$

Definíció: ortonormált rendszer

A $q_1, \ldots, q_n \in \mathbb{R}^n$ vektorok *ortonormált rendszert* alkotnak, ha

$$\langle q_i,q_j
angle = \left\{egin{array}{ll} 0 & ext{ha } i
eq j, \ 1 & ext{ha } i = j. \end{array}
ight.$$

Állítás: ortogonális mátrixok oszlopvektorairól

A $Q \in \mathbb{R}^{n \times n}$ ortogonális mátrix oszlopai, mint vektorok ortonormált rendszert alkotnak.

Definíció: ortonormált rendszer

A $q_1, \ldots, q_n \in \mathbb{R}^n$ vektorok *ortonormált rendszert* alkotnak, ha

$$\langle q_i,q_j
angle = \left\{egin{array}{ll} 0 & ext{ha } i
eq j, \ 1 & ext{ha } i = j. \end{array}
ight.$$

Állítás: ortogonális mátrixok oszlopvektorairól

A $Q \in \mathbb{R}^{n \times n}$ ortogonális mátrix oszlopai, mint vektorok ortonormált rendszert alkotnak.

Biz.: Gondoljunk bele:
$$Q^{\top}Q = I$$
.

Ortogonális rendszerek

Definíció: ortogonális rendszer

A $q_1, \ldots, q_n \in \mathbb{R}^n$ vektorok *ortogonális rendszert* alkotnak, ha

$$\langle q_i, q_j \rangle = 0$$
 $(i \neq j).$

Ortogonális rendszerek

Definíció: ortogonális rendszer

A $q_1,\ldots,q_n\in\mathbb{R}^n$ vektorok *ortogonális rendszert* alkotnak, ha

$$\langle q_i, q_j \rangle = 0$$
 $(i \neq j).$

Állítás: ortogonális rendszerekből álló mátrixokról

Ha a $q_1,\ldots,q_n\in\mathbb{R}^n$ vektorok ortogonális rendszert alkotnak, akkor a $Q:=(q_1,\ldots,q_n)\in\mathbb{R}^{n\times n}$ mátrix esetén a $Q^\top Q$ szorzatmátrix diagonális. $(QQ^\top$ általában nem.)

Ortogonális rendszerek

Definíció: ortogonális rendszer

A $q_1, \ldots, q_n \in \mathbb{R}^n$ vektorok *ortogonális rendszert* alkotnak, ha

$$\langle q_i, q_j \rangle = 0$$
 $(i \neq j).$

Állítás: ortogonális rendszerekből álló mátrixokról

Ha a $q_1,\ldots,q_n\in\mathbb{R}^n$ vektorok ortogonális rendszert alkotnak, akkor a $Q:=(q_1,\ldots,q_n)\in\mathbb{R}^{n\times n}$ mátrix esetén a $Q^\top Q$ szorzatmátrix diagonális. $(QQ^\top$ általában nem.)

Biz.: Gondoljunk bele: $Q^{T}Q = D$ diagonális mátrix.

Elnevezések:

- $\langle q_i, q_j \rangle = \delta_{ij}$ (Kronecker-féle delta).
- $q_i \perp q_j \Leftrightarrow \langle q_i, q_j \rangle = 0$ $(i \neq j)$: az oszlopok merőlegesek, avagy ortogonálisak egymásra
- $\langle q_i,q_i \rangle=1$: minden oszlopvektor hossza 1, avagy *normált* $\|q_i\|_2:=\sqrt{\langle q_i,q_i \rangle}$: "hossz", avagy "kettes norma"

Elnevezések:

- $\langle q_i, q_j \rangle = \delta_{ij}$ (Kronecker-féle delta).
- $q_i \perp q_j \Leftrightarrow \langle q_i, q_j \rangle = 0$ $(i \neq j)$: az oszlopok merőlegesek, avagy ortogonálisak egymásra
- $\langle q_i,q_i\rangle=1$: minden oszlopvektor hossza 1, avagy *normált* $\|q_i\|_2:=\sqrt{\langle q_i,q_i\rangle}$: "hossz", avagy "kettes norma"

Példa: ortogonális mátrixok

Az alábbi mátrixok ortogonálisak:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \qquad \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}.$$

Ortogonális mátrixok szorzata

Állítás: ortogonális mátrixok szorzata

Ha $Q_1, Q_2 \in \mathbb{R}^{n \times n}$ ortogonális mátrixok, akkor a szorzatuk, $Q_1 Q_2$ is ortogonális.

Ortogonális mátrixok szorzata

Állítás: ortogonális mátrixok szorzata

Ha $Q_1, Q_2 \in \mathbb{R}^{n \times n}$ ortogonális mátrixok, akkor a szorzatuk, $Q_1 Q_2$ is ortogonális.

Biz.: Tudjuk, hogy $Q_1^\top Q_1 = I$ és $Q_2^\top Q_2 = I$.

Kell, hogy Q_1Q_2 is ortogonális.

Ortogonális mátrixok szorzata

Állítás: ortogonális mátrixok szorzata

Ha $Q_1, Q_2 \in \mathbb{R}^{n \times n}$ ortogonális mátrixok, akkor a szorzatuk, $Q_1 Q_2$ is ortogonális.

Biz.: Tudjuk, hogy $Q_1^{\top}Q_1 = I$ és $Q_2^{\top}Q_2 = I$.

Kell, hogy Q_1Q_2 is ortogonális.

Vizsgáljuk:

$$(Q_1Q_2)^{\top}(Q_1Q_2) = Q_2^{\top}\underbrace{Q_1^{\top}Q_1}_{I}Q_2 = Q_2^{\top}Q_2 = I.$$

Tartalomjegyzék

- Ortogonális mátrixokról
- QR-felbontás
- Gram-Schmidt-féle ortogonalizáció
- 4 Householder-féle mátrixok
- 5 Householder-transzformációk alkalmazása
- 6 Műveletigény

QR-felbontás

Definíció: QR-felbontás

Az $A \in \mathbb{R}^{n \times n}$ mátrix QR-felbontásának nevezzük a $Q \cdot R$ szorzatot, ha A = QR, ahol $Q \in \mathbb{R}^{n \times n}$ ortogonális mátrix, $R \in \mathcal{U}$ pedig felső háromszögmátrix.

Definíció: QR-felbontás

Az $A \in \mathbb{R}^{n \times n}$ mátrix QR-felbontásának nevezzük a $Q \cdot R$ szorzatot, ha A = QR, ahol $Q \in \mathbb{R}^{n \times n}$ ortogonális mátrix, $R \in \mathcal{U}$ pedig felső háromszögmátrix.

Tétel: QR-felbontás létezése és egyértelműsége

Ha det $A \neq 0$, (vagyis az A oszlopvektorai lineárisan függetlenek), akkor A-nak létezik QR-felbontása.

Ha még feltesszük, hogy $r_{ii} > 0 \ \forall i$ -re, akkor egyértelmű is.

Definíció: QR-felbontás

Az $A \in \mathbb{R}^{n \times n}$ mátrix QR-felbontásának nevezzük a $Q \cdot R$ szorzatot, ha A = QR, ahol $Q \in \mathbb{R}^{n \times n}$ ortogonális mátrix, $R \in \mathcal{U}$ pedig felső háromszögmátrix.

Tétel: QR-felbontás létezése és egyértelműsége

Ha det $A \neq 0$, (vagyis az A oszlopvektorai lineárisan függetlenek), akkor A-nak létezik QR-felbontása.

Ha még feltesszük, hogy $r_{ii} > 0 \ \forall i$ -re, akkor egyértelmű is.

Biz.: Létezés: A bizonyítást a Gram–Schmidt-féle ortogonalizációs eljárás adja: az A mátrix oszlopaiból – amelyek a feltétel értelmében lineárisan függetlenek – előállítjuk a Q oszlopait és R ismeretlen elemeit.

Tekintsük a $Q \cdot R = A$ mátrixszorzást, ahol A-t és Q-t az oszlopaival adtuk meg:

$$\begin{bmatrix} q_1 & q_2 & \dots & q_n \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ 0 & r_{22} & \dots & r_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & r_{nn} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}.$$

Tekintsük a $Q \cdot R = A$ mátrixszorzást, ahol A-t és Q-t az oszlopaival adtuk meg:

$$\begin{bmatrix} q_1 & q_2 & \dots & q_n \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ 0 & r_{22} & \dots & r_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & r_{nn} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}.$$

Tekintsük először A első oszlopát, a_1 -et. A mátrixszorzásból

$$r_{11} \cdot q_1 = a_1, \Rightarrow q_1 = \frac{1}{r_{11}} \cdot a_1.$$

Mivel q_1 -től azt várjuk el, hogy normált legyen, ezért $r_{11} := ||a_1||_2$.

Tegyük fel, hogy A első k-1 oszlopát már felhasználtuk, és így előállítottuk Q első k-1 oszlopát, melyek normáltak és egymásra ortogonálisak, valamint R első k-1 oszlopának elemeit is ismerjük.

Tegyük fel, hogy A első k-1 oszlopát már felhasználtuk, és így előállítottuk Q első k-1 oszlopát, melyek normáltak és egymásra ortogonálisak, valamint R első k-1 oszlopának elemeit is ismerjük.

Tekintsük most a_k -t. A mátrixszorzásból felírhatjuk a_k -t, majd kifejezhetjük q_k -t:

$$a_k = \sum_{j=1}^k r_{jk} \cdot q_j \quad \Longrightarrow \quad q_k = \frac{1}{r_{kk}} \left(a_k - \sum_{j=1}^{k-1} r_{jk} \cdot q_j \right)$$

Tegyük fel, hogy A első k-1 oszlopát már felhasználtuk, és így előállítottuk Q első k-1 oszlopát, melyek normáltak és egymásra ortogonálisak, valamint R első k-1 oszlopának elemeit is ismerjük.

Tekintsük most a_k -t. A mátrixszorzásból felírhatjuk a_k -t, majd kifejezhetjük q_k -t:

$$a_k = \sum_{j=1}^k r_{jk} \cdot q_j \quad \Longrightarrow \quad q_k = \frac{1}{r_{kk}} \left(a_k - \sum_{j=1}^{k-1} r_{jk} \cdot q_j \right)$$

Az r_{jk} értékek meghatározásához szorozzuk be skalárisan mindkét oldalt q_i -vel rögzített i értékre $(i=1,2,\ldots,k-1)$ és használjuk ki, hogy $\langle q_i,q_j\rangle=\delta_{ij}$, valamint q_k -tól is azt várjuk, hogy merőleges legyen az összes eddigi q_i vektorra:

$$egin{aligned} q_k &= rac{1}{r_{kk}} \left(a_k - \sum_{j=1}^{k-1} r_{jk} \cdot q_j
ight) & |\cdot q_i
angle & (i=1,\ldots,k-1) \ 0 &= \langle q_k,q_i
angle &= rac{1}{r_{kk}} \left(\langle a_k,q_i
angle - \sum_{j=1}^{k-1} r_{jk} \underbrace{\langle q_j,q_i
angle}_{\delta_{ij}}
ight) = \ &= rac{1}{r_{kk}} \left(\langle a_k,q_i
angle - r_{ik}
ight) & \Rightarrow r_{ik} &= \langle a_k,q_i
angle \,. \end{aligned}$$

$$egin{aligned} q_k &= rac{1}{r_{kk}} \left(a_k - \sum_{j=1}^{k-1} r_{jk} \cdot q_j
ight) & | \cdot q_i
angle & (i = 1, \ldots, k-1) \ 0 &= \langle q_k, q_i
angle &= rac{1}{r_{kk}} \left(\langle a_k, q_i
angle - \sum_{j=1}^{k-1} r_{jk} \underbrace{\langle q_j, q_i
angle}_{\delta_{ij}}
ight) = \ &= rac{1}{r_{kk}} \left(\langle a_k, q_i
angle - r_{ik}
ight) & \Rightarrow r_{ik} &= \langle a_k, q_i
angle \, . \end{aligned}$$

Továbbá q_k -tól még azt várjuk el, hogy normált legyen, ezért

$$r_{kk} = \left\| a_k - \sum_{j=1}^{k-1} r_{jk} \cdot q_j \right\|_2.$$

Így megkaptuk az R mátrix k-adik oszlopának ismeretlen értékeit, az előállított q_k ortogonális az eddigi q_i -kre, valamint normált. \square

Így megkaptuk az R mátrix k-adik oszlopának ismeretlen értékeit, az előállított q_k ortogonális az eddigi q_i -kre, valamint normált. \square

Biz.: Egyértelműség: Tegyük fel indirekt, hogy legalább két különböző *QR*-felbontásunk van

$$A=Q_1R_1=Q_2R_2,$$

melyekre a R_1 és R_2 diagonális elemi pozitívak.

Így megkaptuk az R mátrix k-adik oszlopának ismeretlen értékeit, az előállított q_k ortogonális az eddigi q_i -kre, valamint normált. \square

Biz.: Egyértelműség: Tegyük fel indirekt, hogy legalább két különböző *QR*-felbontásunk van

$$A=Q_1R_1=Q_2R_2,$$

melyekre a R_1 és R_2 diagonális elemi pozitívak.

A-t szorozzuk balról $Q_2^{-1} = Q_2^{ op}$ -tal és jobbról R_1^{-1} -zel

$$\underbrace{(Q_2^\top Q_1)}_{\text{ortogonális}} = \underbrace{(R_2 R_1^{-1})}_{\in \mathcal{U}}.$$

Így megkaptuk az R mátrix k-adik oszlopának ismeretlen értékeit, az előállított q_k ortogonális az eddigi q_i -kre, valamint normált. \square

Biz.: Egyértelműség: Tegyük fel indirekt, hogy legalább két különböző *QR*-felbontásunk van

$$A=Q_1R_1=Q_2R_2,$$

melyekre a R_1 és R_2 diagonális elemi pozitívak.

A-t szorozzuk balról $Q_2^{-1} = Q_2^{ op}$ -tal és jobbról R_1^{-1} -zel

$$\underbrace{\left(Q_2^\top Q_1\right)}_{\text{ortogonális}} = \underbrace{\left(R_2 R_1^{-1}\right)}_{\in \mathcal{U}}.$$

Legyen $R:=R_2R_1^{-1}$, mivel $Q:=Q_2^\top Q_1$ ortogonális mátrix (R=Q),

$$Q^{\top}Q = I = R^{\top}R.$$

Az $R^{\top}R = I$ szorzatot felírva:

Az $R^{\top}R = I$ szorzatot felírva:

$$\begin{bmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ 0 & r_{22} & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & r_{nn} \end{bmatrix}$$

$$\begin{bmatrix} r_{11} & 0 & \dots & & \\ r_{12} & r_{22} & 0 & & \\ \vdots & & \ddots & \vdots \\ r_{1n} & 0 & \dots & r_{nn} \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & \dots & \\ 0 & 1 & 0 & \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

Az $R^{\top}R = I$ szorzatot felírva:

$$\begin{bmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ 0 & r_{22} & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & r_{nn} \end{bmatrix}$$

$$\begin{bmatrix} r_{11} & 0 & \dots & & & \\ r_{12} & r_{22} & 0 & & & \\ \vdots & & \ddots & \vdots & \\ r_{1n} & 0 & \dots & r_{nn} \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & \dots & \\ 0 & 1 & 0 & \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

 $r_{11} \cdot r_{11} = 1$, amiből $r_{11} > 0$ miatt $r_{11} = 1$.

Az $R^{\top}R = I$ szorzatot felírva:

$$\begin{bmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ 0 & r_{22} & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & r_{nn} \end{bmatrix}$$

$$\begin{bmatrix} r_{11} & 0 & \dots & & \\ r_{12} & r_{22} & 0 & & \\ \vdots & & \ddots & \vdots \\ r_{1n} & 0 & \dots & r_{nn} \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & \dots & \\ 0 & 1 & 0 & \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

 $r_{11} \cdot r_{11} = 1$, amiből $r_{11} > 0$ miatt $r_{11} = 1$. $j \neq 1$ -re

$$r_{11} \cdot r_{1j} = 0 \quad \Rightarrow \quad r_{1j} = 0.$$

R második sorára: $r_{22} \cdot r_{22} = 1$, amiből $r_{22} > 0$ miatt $r_{22} = 1$.

R második sorára: $r_{22} \cdot r_{22} = 1$, amiből $r_{22} > 0$ miatt $r_{22} = 1$.

A szorzat mátrix (2, j)-edik elemére $j \neq 2$ -re

$$r_{22} \cdot r_{2j} = 0 \quad \Rightarrow \quad r_{2j} = 0.$$

R második sorára: $r_{22} \cdot r_{22} = 1$, amiből $r_{22} > 0$ miatt $r_{22} = 1$.

A szorzat mátrix (2, j)-edik elemére $j \neq 2$ -re

$$r_{22} \cdot r_{2j} = 0 \quad \Rightarrow \quad r_{2j} = 0.$$

A többi sorra ehhez hasonlóan ellenőrizhetjük, hogy

$$R = I \Leftrightarrow R_1 = R_2, Q_1 = Q_2.$$

Ezzel ellentmondásra jutottunk.

R második sorára: $r_{22} \cdot r_{22} = 1$, amiből $r_{22} > 0$ miatt $r_{22} = 1$.

A szorzat mátrix (2, j)-edik elemére $j \neq 2$ -re

$$r_{22}\cdot r_{2j}=0 \quad \Rightarrow \quad r_{2j}=0.$$

A többi sorra ehhez hasonlóan ellenőrizhetjük, hogy

$$R=I \; \Leftrightarrow \; R_1=R_2, \;\; Q_1=Q_2.$$

Ezzel ellentmondásra jutottunk.

 $\begin{array}{l} \textbf{Megj.:} \text{ K\'et k\"ul\"onb\"oz\'o } \textit{QR-} \text{felbont\'as eset\'en l\'etezik olyan} \\ \textit{D} := \text{diag} \left(\pm 1, \ldots, \pm 1\right) \text{ m\'atrix, melyre } \textit{A} = \overbrace{\textit{Q} \cdot \textit{D}} \cdot \overbrace{\textit{D} \cdot \textit{R}} = \widetilde{\textit{Q}} \cdot \widetilde{\textit{R}}. \end{array}$

Miért jó a *QR*-felbontás?

Tegyük fel, hogy

- az Ax = b LER megoldható, és
- rendelkezésünkre áll az A = QR felbontás.

Ekkor
$$Ax = Q \cdot \underbrace{R \cdot x}_{V} = b$$
 helyett

- **1** a Qy = b LER megoldása: $y = Q^{T}b$,
- 2 az Rx = y LER-t oldjuk meg.

Együtt is írható: oldjuk meg az $Rx = Q^{T}b$ LER-t.

Miért jó a *QR*-felbontás?

Tegyük fel, hogy

- az Ax = b LER megoldható, és
- rendelkezésünkre áll az A = QR felbontás.

Ekkor
$$Ax = Q \cdot \underbrace{R \cdot x}_{Y} = b$$
 helyett $(\frac{2}{3}n^{3} + \mathcal{O}(n^{2}))$

1 a
$$Qy = b$$
 LER megoldása: $y = Q^{T}b$, $(2n^{2} + \mathcal{O}(n))$

2 az
$$Rx = y$$
 LER-t oldjuk meg. $(n^2 + \mathcal{O}(n))$

Együtt is írható: oldjuk meg az $Rx = Q^{T}b$ LER-t.

Tegyük fel, hogy

- az Ax = b LER megoldható, és
- rendelkezésünkre áll az A = QR felbontás.

Ekkor
$$Ax = Q \cdot \underbrace{R \cdot x}_{y} = b$$
 helyett $(\frac{2}{3}n^{3} + \mathcal{O}(n^{2}))$

1 a
$$Qy = b$$
 LER megoldása: $y = Q^{T}b$, $(2n^{2} + \mathcal{O}(n))$

2 az
$$Rx = y$$
 LER-t oldjuk meg. $(n^2 + \mathcal{O}(n))$

Együtt is írható: oldjuk meg az $Rx = Q^{T}b$ LER-t.

Persze valamikor elő kell állítani a QR-felbontást. $(2n^3 + \mathcal{O}(n^2))$ Előnyös, ha sokszor ugyanaz A, lásd QR-algoritmus (Num. mód. 2A). Így numerikusan stabilabb a LER megoldása.

Tartalomjegyzék

- Ortogonális mátrixokról
- QR-felbontás
- 3 Gram-Schmidt-féle ortogonalizáció
- 4 Householder-féle mátrixok
- 5 Householder-transzformációk alkalmazása
- 6 Műveletigény

Feladat: adott $a_1, \ldots, a_n \in \mathbb{R}^n$ lineárisan független vektorrendszer, készítsünk belőlük egy $q_1, \ldots, q_n \in \mathbb{R}^n$ ortonormált vektorrendszert úgy, hogy q_k csak a_1, \ldots, a_k -tól függ $(k = 1, 2, \ldots, n)$.

Feladat: adott $a_1, \ldots, a_n \in \mathbb{R}^n$ lineárisan független vektorrendszer, készítsünk belőlük egy $q_1, \ldots, q_n \in \mathbb{R}^n$ ortonormált vektorrendszert úgy, hogy q_k csak a_1, \ldots, a_k -tól függ $(k = 1, 2, \ldots, n)$.

Másképp, mátrixszorzás alakban: QR = A, avagy

$$\begin{bmatrix} q_1 & q_2 & \dots & q_n \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ & r_{22} & \dots & r_{2n} \\ & & \ddots & \vdots \\ & & & r_{nn} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$$

Adott: A, keressük: Q, R.

Feladat: adott $a_1,\ldots,a_n\in\mathbb{R}^n$ lineárisan független vektorrendszer, készítsünk belőlük egy $q_1,\ldots,q_n\in\mathbb{R}^n$ ortonormált vektorrendszert úgy, hogy q_k csak a_1,\ldots,a_k -tól függ $(k=1,2,\ldots,n)$.

Másképp, mátrixszorzás alakban: QR = A, avagy

$$\begin{bmatrix} q_1 & q_2 & \dots & q_n \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ & r_{22} & \dots & r_{2n} \\ & & \ddots & \vdots \\ & & & r_{nn} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$$

Adott: A, keressük: Q, R.

Levezetés: lásd a QR-felbontás létezés bizonyítását (illetve Linalg).

Definíció: Gram-Schmidt-féle ortogonalizáció

Adott az $a_1, \ldots, a_n \in \mathbb{R}^n$ lineárisan független vektorrendszer.

- 2 $q_1 := \frac{1}{r_{11}} a_1$ ("lenormáljuk").

A k-adik lépésben (k = 2, ..., n):

- $\mathbf{4} \ s_k := a_k \sum_{j=1}^{k-1} r_{jk} \cdot q_j,$
- **5** $r_{kk} := \|s_k\|_2$ (s_k segédvektor hossza),

Az így nyert $q_1, \ldots, q_n \in \mathbb{R}^n$ vektorrendszer ortonormált.

Definíció: Gram-Schmidt-ortogonalizáció (normálás nélkül)

Adott az $a_1, \ldots, a_n \in \mathbb{R}^n$ lineárisan független vektorrendszer.

- $\mathbf{1}$ $\widetilde{q_1} := a_1$,

A k-adik lépésben (k = 2, ..., n):

$$\widehat{r_{jk}} := \frac{\langle \mathsf{a}_k, \widetilde{q_j} \rangle}{\langle \widetilde{q_j}, \widetilde{q_j} \rangle} \quad (j = 1, \dots, k-1),$$

$$\mathbf{4} \ \widetilde{q_k} := a_k - \sum_{j=1}^{k-1} \widetilde{r_{jk}} \cdot \widetilde{q_j},$$

6 $\widetilde{r_{kk}} := 1$ (nem normálunk),

Az így nyert $\widetilde{q_1}, \ldots, \widetilde{q_n} \in \mathbb{R}^n$ vektorrendszer ortogonális.

Definíció: Gram-Schmidt-ortogonalizáció (normálás nélkül)

Adott az $a_1, \ldots, a_n \in \mathbb{R}^n$ lineárisan független vektorrendszer.

- $\mathbf{0}$ $\widetilde{q_1} := a_1$,
- **2** $\widetilde{r_{11}} := 1$

A k-adik lépésben (k = 2, ..., n):

$$\widehat{r_{jk}} := \frac{\langle a_k, \widetilde{q}_j \rangle}{\langle \widetilde{q}_j, \widetilde{q}_j \rangle} \quad (j = 1, \dots, k-1),$$

$$\mathbf{4} \ \widetilde{q_k} := a_k - \sum_{j=1}^{k-1} \widetilde{r_{jk}} \cdot \widetilde{q_j},$$

 $\mathbf{5} \ \widetilde{r_{kk}} := 1 \quad \text{(nem normálunk)},$

Az így nyert $\widetilde{q_1}, \dots, \widetilde{q_n} \in \mathbb{R}^n$ vektorrendszer ortogonális.

Megj.: Levezetése teljesen hasonló. Kézi számolásra alkalmasabb. Ne felejtsünk el normálni...

Normálás utólag:

- $A = \widetilde{Q}\widetilde{R}$,
- $D := \widetilde{Q}^{\top} \widetilde{Q}$, azaz $D = \operatorname{diag}(\langle \widetilde{q_1}, \widetilde{q_1} \rangle, \ldots \langle \widetilde{q_n}, \widetilde{q_n} \rangle)$,
- $A = \underbrace{\widetilde{Q} \cdot \sqrt{D}^{-1}}_{Q} \cdot \underbrace{\sqrt{D} \cdot \widetilde{R}}_{R} = Q \cdot R,$

azaz Q oszlopait, mint vektorokat leosztjuk azok hosszával (normáljuk őket), \widetilde{R} sorait pedig szorozzuk ugyanezekkel az értékekkel.

• Közvetlenül a $\sqrt{D}=\operatorname{diag}\left(\|\widetilde{q_1}\|_2,\ldots,\|\widetilde{q_n}\|_2\right)$ alakkal is dolgozhatunk.

Tétel: A Gram-Schmidt-ortogonalizáció műveletigénye

A szorzások és osztások száma

$$2n^3 + \mathcal{O}(n^2),$$

valamint *n* darab négyzetgyökvonás is szükséges.

Tétel: A Gram-Schmidt-ortogonalizáció műveletigénye

A szorzások és osztások száma

$$2n^3 + \mathcal{O}(n^2),$$

valamint n darab négyzetgyökvonás is szükséges.

Biz.: A k-adik lépésben:

skaláris szorzatok
$$(r_{jk})$$
 $(k-1)(2n-1)$ ortogonális vektor (s_k) $(k-1)n+(k-1)n=(k-1)2n$ hossz (r_{kk}) $2n-1$ osztás (g_k) n

Tétel: A Gram-Schmidt-ortogonalizáció műveletigénye

A szorzások és osztások száma

$$2n^3 + \mathcal{O}(n^2),$$

valamint n darab négyzetgyökvonás is szükséges.

Biz.: A k-adik lépésben:

skaláris szorzatok
$$(r_{jk})$$
 $(k-1)(2n-1)$ ortogonális vektor (s_k) $(k-1)n+(k-1)n=(k-1)2n$ hossz (r_{kk}) $2n-1$ osztás (q_k) n

Összesen:

$$(k-1)(4n-1)+3n-1=4kn-4n-k+1+3n-1=4kn-n-k$$

$$\sum_{k=1}^{n} (4kn - n - k) = 4n \sum_{k=1}^{n} k - n^2 - \sum_{k=1}^{n} k =$$

$$= 4n \cdot \frac{n(n+1)}{2} - n^2 - \frac{n(n+1)}{2} = 2n^3 + \mathcal{O}(n^2).$$

$$\begin{split} \sum_{k=1}^{n} \left(4kn - n - k \right) &= 4n \sum_{k=1}^{n} k - n^2 - \sum_{k=1}^{n} k = \\ &= 4n \cdot \frac{n(n+1)}{2} - n^2 - \frac{n(n+1)}{2} = 2n^3 + \mathcal{O}(n^2). \end{split}$$

Példa: QR, Gram-Schmidt

Készítsük el a következő mátrix *QR*-felbontását Gram–Schmidt-ortogonalizációval.

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

Gram-Schmidt ortogonalizációval normálással:

$$A = \begin{bmatrix} a_1 & a_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} q_1 & q_2 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} \\ 0 & r_{22} \end{bmatrix} = Q \cdot R.$$

Gram-Schmidt ortogonalizációval normálással:

$$A = \begin{bmatrix} \mathbf{a_1} & \mathbf{a_2} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{q_1} & \mathbf{q_2} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{r_{11}} & \mathbf{r_{12}} \\ \mathbf{0} & \mathbf{r_{22}} \end{bmatrix} = Q \cdot R.$$

1. lépés: $a_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ -ből meghatározzuk r_{11}, q_1 -et:

$$r_{11} = \|a_1\|_2 = \sqrt{1^2 + 2^2} = \sqrt{5}$$
$$q_1 = \frac{1}{r_{11}} a_1 = \frac{1}{\sqrt{5}} a_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\2 \end{bmatrix}$$

2. lépés:

$$A = \begin{bmatrix} a_1 & a_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} q_1 & q_2 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} \\ 0 & r_{22} \end{bmatrix} = Q \cdot R$$

2. lépés:

$$A = \begin{bmatrix} a_1 & a_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} q_1 & q_2 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} \\ 0 & r_{22} \end{bmatrix} = Q \cdot R$$

$$a_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
-ből meghatározzuk r_{12}, r_{22}, q_2 -t:

$$r_{12} = \langle a_2, q_1
angle = \left\langle \begin{bmatrix} 2 \\ 1 \end{bmatrix}, rac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}
ight
angle = rac{1}{\sqrt{5}} (2 \cdot 1 + 1 \cdot 2) = rac{4}{\sqrt{5}}$$

2. lépés:

$$A = \begin{bmatrix} a_1 & a_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} q_1 & q_2 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} \\ 0 & r_{22} \end{bmatrix} = Q \cdot R$$

$$a_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
-ből meghatározzuk r_{12}, r_{22}, q_2 -t:

$$r_{12} = \langle a_2, q_1
angle = \left\langle \begin{bmatrix} 2 \\ 1 \end{bmatrix}, rac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}
ight
angle = rac{1}{\sqrt{5}} (2 \cdot 1 + 1 \cdot 2) = rac{4}{\sqrt{5}}$$

$$s_{2} = a_{2} - r_{12}q_{1} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} - \frac{4}{\sqrt{5}} \cdot \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix} =$$

$$= \frac{1}{5} \begin{bmatrix} 10 - 4 \\ 5 - 8 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 6 \\ -3 \end{bmatrix} = \frac{3}{5} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$\left\| r_{22} = \left\| s_2 \right\|_2 = \left\| \frac{3}{5} \begin{bmatrix} 2 \\ -1 \end{bmatrix} \right\|_2 = \frac{3}{5} \cdot \sqrt{2^2 + (-1)^2} = \frac{3}{5} \cdot \sqrt{5} = \frac{3}{\sqrt{5}}$$

$$r_{22} = \|s_2\|_2 = \left\|\frac{3}{5} \begin{bmatrix} 2\\ -1 \end{bmatrix}\right\|_2 = \frac{3}{5} \cdot \sqrt{2^2 + (-1)^2} = \frac{3}{5} \cdot \sqrt{5} = \frac{3}{\sqrt{5}}$$
$$q_2 = \frac{1}{r_{22}} s_2 = \frac{3}{5} \cdot \frac{\sqrt{5}}{3} \begin{bmatrix} 2\\ -1 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\ -1 \end{bmatrix}$$

$$r_{22} = \|s_2\|_2 = \left\|\frac{3}{5} \begin{bmatrix} 2\\-1 \end{bmatrix}\right\|_2 = \frac{3}{5} \cdot \sqrt{2^2 + (-1)^2} = \frac{3}{5} \cdot \sqrt{5} = \frac{3}{\sqrt{5}}$$
$$q_2 = \frac{1}{r_{22}} s_2 = \frac{3}{5} \cdot \frac{\sqrt{5}}{3} \begin{bmatrix} 2\\-1 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\-1 \end{bmatrix}$$

Tehát a Q és R mátrixok a következők:

$$Q = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}, \ R = \begin{bmatrix} \sqrt{5} & \frac{4}{\sqrt{5}} \\ 0 & \frac{3}{\sqrt{5}} \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 5 & 4 \\ 0 & 3 \end{bmatrix}$$

Tartalomjegyzék

- 1 Ortogonális mátrixokról
- QR-felbontás
- 3 Gram-Schmidt-féle ortogonalizáció
- 4 Householder-féle mátrixok
- 5 Householder-transzformációk alkalmazása
- 6 Műveletigény

Definíció: vektorok "hossza"

Az \mathbb{R}^n -beli v vektorok hagyományos értelemben vett hosszát, avagy "kettes normáját" jelölje $\|.\|_2$.

A következőképpen számolható:

$$\|v\|_2 := \sqrt{\langle v, v \rangle} = \sqrt{v^\top v} = \left(\sum_{k=1}^n v_i^2\right)^{\frac{1}{2}}$$

Definíció: Householder-mátrix

A $H = H(v) \in \mathbb{R}^{n \times n}$ mátrixot *Householder-mátrixnak* nevezzük, ha

$$H(v) = I - 2vv^{\top},$$

ahol $v \in \mathbb{R}^n$ és $\|v\|_2 = 1$.

Definíció: Householder-mátrix

A $H = H(v) \in \mathbb{R}^{n \times n}$ mátrixot *Householder-mátrixnak* nevezzük, ha

$$H(v) = I - 2vv^{\top},$$

ahol $v \in \mathbb{R}^n$ és $||v||_2 = 1$.

Megjegyzés:

 A H(v) transzformációs mátrixot nem kell előállítani, enélkül alkalmazzuk vektorokra, ez a Householder-transzformáció:

Definíció: Householder-mátrix

A $H = H(v) \in \mathbb{R}^{n \times n}$ mátrixot *Householder-mátrixnak* nevezzük, ha

$$H(v) = I - 2vv^{\top},$$

ahol $v \in \mathbb{R}^n$ és $||v||_2 = 1$.

Megjegyzés:

- A H(v) transzformációs mátrixot nem kell előállítani, enélkül alkalmazzuk vektorokra, ez a Householder-transzformáció:
- $x \in \mathbb{R}^n$ -re $H(v)x = (I 2vv^\top)x = x 2v\underbrace{(v^\top x)}_{\in \mathbb{R}}$.

Definíció: Householder-mátrix

A $H = H(v) \in \mathbb{R}^{n \times n}$ mátrixot Householder-mátrixnak nevezzük, ha

$$H(v) = I - 2vv^{\top},$$

ahol $v \in \mathbb{R}^n$ és $||v||_2 = 1$.

Megjegyzés:

- A H(v) transzformációs mátrixot nem kell előállítani, enélkül alkalmazzuk vektorokra, ez a Householder-transzformáció:
- $x \in \mathbb{R}^n$ -re $H(v)x = (I 2vv^\top)x = x 2v\underbrace{(v^\top x)}_{\in \mathbb{R}}$.
- $y \in \mathbb{R}^n$ -re $y^\top H(v) = y^\top (I 2vv^\top) = y^\top 2\underbrace{(y^\top v)}_{\in \mathbb{P}} v^\top$.

Definíció: Householder-mátrix

A $H = H(v) \in \mathbb{R}^{n \times n}$ mátrixot Householder-mátrixnak nevezzük, ha

$$H(v) = I - 2vv^{\top},$$

ahol $v \in \mathbb{R}^n$ és $||v||_2 = 1$.

Megjegyzés:

- A H(v) transzformációs mátrixot nem kell előállítani, enélkül alkalmazzuk vektorokra, ez a Householder-transzformáció:
- $x \in \mathbb{R}^n$ -re $H(v)x = (I 2vv^\top)x = x 2v\underbrace{(v^\top x)}_{\in \mathbb{R}}$.
- $y \in \mathbb{R}^n$ -re $y^\top H(v) = y^\top (I 2vv^\top) = y^\top 2\underbrace{(y^\top v)}_{\in \mathbb{R}} v^\top$.
- Mindkét esetben 4n művelet kell a mátrixszal való szorzás $2n^2 + \mathcal{O}(n)$ -es műveletigénye helyett.

Állítás: Householder-mátrixok tulajdonságai

Állítás: Householder-mátrixok tulajdonságai

- $\mathbf{0} \ H^{\top} = H \text{ (szimmetrikus)},$
- 2 $H^2 = I$, azaz $H^{-1} = H$ (ortogonális),

Állítás: Householder-mátrixok tulajdonságai

- 2 $H^2 = I$, azaz $H^{-1} = H$ (ortogonális),

Householder-féle mátrixok

Állítás: Householder-mátrixok tulajdonságai

- 2 $H^2 = I$, azaz $H^{-1} = H$ (ortogonális),
- $4 \forall y \bot v : \quad H(v) \cdot y = y.$

- $\mathbf{0} \ H^{\top} = H \text{ (szimmetrikus)},$
- 2 $H^2 = I$, azaz $H^{-1} = H$ (ortogonális),
- $4 \forall y \bot v : \quad H(v) \cdot y = y.$

$$(I - 2vv^{\top})^{\top} = I^{\top} - 2(v^{\top})^{\top}v^{\top} = I - 2vv^{\top},$$

- $\mathbf{0} \ H^{\top} = H \text{ (szimmetrikus)},$
- 2 $H^2 = I$, azaz $H^{-1} = H$ (ortogonális),
- $4 \forall y \bot v : \quad H(v) \cdot y = y.$

- $(I 2vv^{\top})^{\top} = I^{\top} 2(v^{\top})^{\top}v^{\top} = I 2vv^{\top},$
- $(I 2vv^{\top})(I 2vv^{\top}) = I 2vv^{\top} 2vv^{\top} + 4v \underbrace{v^{\top}v} v^{\top} = I,$

- $\mathbf{0} \ H^{\top} = H \text{ (szimmetrikus)},$
- 2 $H^2 = I$, azaz $H^{-1} = H$ (ortogonális),
- $4 \forall y \bot v : \quad H(v) \cdot y = y.$

- $(I 2vv^{\top})^{\top} = I^{\top} 2(v^{\top})^{\top}v^{\top} = I 2vv^{\top},$
- $(I 2vv^{\top})(I 2vv^{\top}) = I 2vv^{\top} 2vv^{\top} + 4v \underbrace{v^{\top}v} v^{\top} = I,$
- $(I 2vv^{\top})v = v 2v v^{\top}v = v 2v = -v,$

- $\mathbf{0} \ H^{\top} = H$ (szimmetrikus),
- 2 $H^2 = I$, azaz $H^{-1} = H$ (ortogonális),
- $H(v) \cdot v = -v,$
- $4 \forall y \bot v : \quad H(v) \cdot y = y.$

$$(I - 2vv^{\top})^{\top} = I^{\top} - 2(v^{\top})^{\top}v^{\top} = I - 2vv^{\top},$$

$$(I - 2vv^{\top})(I - 2vv^{\top}) = I - 2vv^{\top} - 2vv^{\top} + 4v \underbrace{v^{\top}v} v^{\top} = I,$$

$$(I - 2vv^{\top})v = v - 2v \underbrace{v^{\top}v} = v - 2v = -v,$$

Householder-féle mátrixok

Megjegyzés:

• H(v) tükröző mátrix, a v-re merőleges (azaz v normálvektorú) n-1 dimenziós altérre (0-n átmenő egyenesre, síkra stb.) tükröz.

Meg jegyzés:

- H(v) tükröző mátrix, a v-re merőleges (azaz v normálvektorú) n-1 dimenziós altérre (0-n átmenő egyenesre, síkra stb.) tükröz.
- Legyen $v \in \mathbb{R}^n$ és $\|v\|_2 = 1$, tetszőleges $x \in \mathbb{R}^n$ vektort bontsunk v-re merőleges és v-vel párhuzamos komponensekre: x = a + b, ahol $a \perp v$ és b||v. Ekkor az előző tétel utolsó két állítása alapján

$$H(v)x = H(v)a + H(v)b = a - b.$$

Meg jegyzés:

- H(v) tükröző mátrix, a v-re merőleges (azaz v normálvektorú) n-1 dimenziós altérre (0-n átmenő egyenesre, síkra stb.) tükröz.
- Legyen $v \in \mathbb{R}^n$ és $\|v\|_2 = 1$, tetszőleges $x \in \mathbb{R}^n$ vektort bontsunk v-re merőleges és v-vel párhuzamos komponensekre: x = a + b, ahol $a \perp v$ és b||v. Ekkor az előző tétel utolsó két állítása alapján

$$H(v)x = H(v)a + H(v)b = a - b.$$

• Mivel H(v) ortogonális mátrix, $||H(v)x||_2 = ||x||_2$, vagyis a transzformáció a vektor hosszát nem változtatja meg.

Householder-féle mátrixok

Tétel: tetszőleges tükrözés Householder-mátrixszal

Legyen
$$a, b \in \mathbb{R}^n$$
, $a \neq b$ és $||a||_2 = ||b||_2 \neq 0$. Ekkor a

$$v = \pm \frac{a-b}{\|a-b\|_2}$$
 választással $H(v) \cdot a = b$.

Tétel: tetszőleges tükrözés Householder-mátrixszal

Legyen $a,b\in\mathbb{R}^n,\ a\neq b$ és $\|a\|_2=\|b\|_2\neq 0$. Ekkor a

$$v = \pm \frac{a-b}{\|a-b\|_2}$$
 választással $H(v) \cdot a = b$.

Biz.: Ismerve, hogy $H(v) = I - 2vv^{\top}$, számoljuk végig a $H(v) \cdot a$ szorzatot. Közben használjuk ki, hogy $\|a\|_2 = \|b\|_2$, azaz $a^{\top}a = b^{\top}b$, valamint a skaláris szorzás kommutatív, azaz $a^{\top}b = b^{\top}a$.

Householder-féle mátrixok

$$\left(I - 2\frac{(a-b)(a-b)^{\top}}{\|a-b\|_{2}^{2}}\right) \cdot a = a - \frac{2(a-b)(a^{\top}a-b^{\top}a)}{(a-b)^{\top}(a-b)} =
= a - \frac{2(a-b)(a^{\top}a-b^{\top}a)}{a^{\top}a-a^{\top}b-b^{\top}a+b^{\top}b} = a - \frac{2(a-b)(a^{\top}a-b^{\top}a)}{2(a^{\top}a-b^{\top}a)} =
= a - (a-b) = b.$$

Householder-féle mátrixok

$$\left(I - 2\frac{(a-b)(a-b)^{\top}}{\|a-b\|_{2}^{2}}\right) \cdot a = a - \frac{2(a-b)(a^{\top}a-b^{\top}a)}{(a-b)^{\top}(a-b)} =
= a - \frac{2(a-b)(a^{\top}a-b^{\top}a)}{a^{\top}a-a^{\top}b-b^{\top}a+b^{\top}b} = a - \frac{2(a-b)(a^{\top}a-b^{\top}a)}{2(a^{\top}a-b^{\top}a)} =
= a - (a-b) = b.$$

Tehát valóban, két különböző, de azonos hosszúságú vektor átvihető egymásba egy Householder-transzformáció által.

$$\left(I - 2\frac{(a-b)(a-b)^{\top}}{\|a-b\|_{2}^{2}}\right) \cdot a = a - \frac{2(a-b)(a^{\top}a-b^{\top}a)}{(a-b)^{\top}(a-b)} =
= a - \frac{2(a-b)(a^{\top}a-b^{\top}a)}{a^{\top}a-a^{\top}b-b^{\top}a+b^{\top}b} = a - \frac{2(a-b)(a^{\top}a-b^{\top}a)}{2(a^{\top}a-b^{\top}a)} =
= a - (a-b) = b.$$

Tehát valóban, két különböző, de azonos hosszúságú vektor átvihető egymásba egy Householder-transzformáció által.

Megjegyzés: Egyébként $H(v) \cdot b = a$ is teljesül.

Példa: Householder-féle tükrözés

Határozzuk meg azt a Householder-féle transzformációt, amely az azonos hosszúságú a,b vektorhoz előállítja azt a v vektort, melyre $H(v) \cdot a = b$. Ellenőrzésképpen végezzük is el a transzformációt.

$$a = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, \qquad b = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}.$$

Példa

$$a - b = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

$$a - b = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
$$\|a - b\|_2 = \sqrt{1^2 + (-2)^2 + 1^2} = \sqrt{6}$$

$$a-b=\begin{bmatrix}2\\0\\1\end{bmatrix}-\begin{bmatrix}1\\2\\0\end{bmatrix}=\begin{bmatrix}1\\-2\\1\end{bmatrix}$$

$$\|a-b\|_2=\sqrt{1^2+(-2)^2+1^2}=\sqrt{6}$$

$$\text{Tehát }v=\frac{a-b}{\|a-b\|_2}=\frac{1}{\sqrt{6}}\begin{bmatrix}1\\-2\\1\end{bmatrix}\text{ jó választás.}$$

$$a-b = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

$$||a-b||_2 = \sqrt{1^2 + (-2)^2 + 1^2} = \sqrt{6}$$

Tehát
$$v = \frac{a-b}{\|a-b\|_2} = \frac{1}{\sqrt{6}} \begin{vmatrix} 1\\-2\\1 \end{vmatrix}$$
 jó választás.

Ellenőrizzük végezzük el a transzformációt a-n:

$$H(v) \cdot a = a - 2v \underbrace{(v^{\top}a)}_{\in \mathbb{R}} = a - 2(v^{\top}a)v.$$

$$H(v) \cdot a = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} - 2 \cdot \frac{1}{\sqrt{6}} \begin{bmatrix} 1 & -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \cdot \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} =$$

$$H(v) \cdot a = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} - 2 \cdot \frac{1}{\sqrt{6}} \underbrace{\begin{bmatrix} 1 & -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}} \cdot \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} - \frac{6}{6} \cdot \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = b \quad \checkmark$$

Példa: Householder-féle tükrözés

Határozzuk meg azt a Householder-féle transzformációt, amely a következő a vektort $b=k\cdot e_1$ alakúra hozza. Ellenőrzésképpen végezzük is el a transzformációt.

$$a = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$$

A jó előjel választás σ -nak -1, mert a első eleme pozitív.

$$\sigma = -\|a\|_2 = -\sqrt{2^2 + (-2)^2 + 1^2} = -3$$

Ezzel az előjel választással stabilabb lesz az osztásunk *v* előállításban.

A jó előjel választás σ -nak -1, mert a első eleme pozitív.

$$\sigma = -\|a\|_2 = -\sqrt{2^2 + (-2)^2 + 1^2} = -3$$

Ezzel az előjel választással stabilabb lesz az osztásunk v előállításban.

$$a - \sigma e_1 = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} - (-3) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}$$

Látjuk, hogy valójában egyetlen műveletet kellett elvégeznünk a vektor első elemén. Ezzel a σ előjelválasztással elérjük, hogy $\|a-\sigma e_1\|_2 \geq \|a\|_2$.

A jó előjel választás σ -nak -1, mert a első eleme pozitív.

$$\sigma = -\|a\|_2 = -\sqrt{2^2 + (-2)^2 + 1^2} = -3$$

Ezzel az előjel választással stabilabb lesz az osztásunk v előállításban.

$$a - \sigma e_1 = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} - (-3) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}$$

Látjuk, hogy valójában egyetlen műveletet kellett elvégeznünk a vektor első elemén. Ezzel a σ előjelválasztással elérjük, hogy $||a - \sigma e_1||_2 \ge ||a||_2$.

$$\|a - \sigma e_1\|_2 = \sqrt{5^2 + (-2)^2 + 1^2} = \sqrt{30}$$

$$v = \frac{a - \sigma e_1}{\|a - \sigma e_1\|_2} = \frac{1}{\sqrt{30}} \begin{bmatrix} 5\\ -2\\ 1 \end{bmatrix} \text{ jó választás.}$$

Ellenőrizzük végezzük el a transzformációt *a*-n:
$$H(v) \cdot a = a - 2v\underbrace{(v^{\top}a)}_{\in \mathbb{R}} = a - 2(v^{\top}a)v.$$

Ellenőrizzük végezzük el a transzformációt a-n:

$$H(v) \cdot a = a - 2v \underbrace{(v^{\top}a)}_{\in \mathbb{R}} = a - 2(v^{\top}a)v.$$

$$H(v) \cdot a = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} - 2 \cdot \frac{1}{\sqrt{30}} \begin{bmatrix} 5 & -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} \cdot \frac{1}{\sqrt{30}} \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} =$$

Ellenőrizzük végezzük el a transzformációt a-n:

$$H(v) \cdot a = a - 2v \underbrace{(v^{\top}a)}_{\in \mathbb{R}} = a - 2(v^{\top}a)v.$$

$$H(v) \cdot a = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} - 2 \cdot \frac{1}{\sqrt{30}} \begin{bmatrix} 5 & -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} \cdot \frac{1}{\sqrt{30}} \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} =$$

$$= \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} - \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix} = \sigma \cdot e_1 \quad \checkmark$$

Tartalomjegyzék

- 1 Ortogonális mátrixokról
- QR-felbontás
- Gram-Schmidt-féle ortogonalizáció
- 4 Householder-féle mátrixok
- 5 Householder-transzformációk alkalmazásai
- 6 Műveletigény

Módszer:

- Legyen adott az $A \in \mathbb{R}^{n \times n}$ invertálható mátrix, első oszlopát jelölje a_1 .
- ullet Egy lépésben egy oszlopot kinullázunk a főátló alatt. (\sim GE)
- Így n-1 lépésben felső háromszög alakot nyerünk.

Módszer:

- Legyen adott az $A \in \mathbb{R}^{n \times n}$ invertálható mátrix, első oszlopát jelölje a_1 .
- ullet Egy lépésben egy oszlopot kinullázunk a főátló alatt. (\sim GE)
- Így n-1 lépésben felső háromszög alakot nyerünk.

Definíció: előjel függvény

$$\operatorname{sgn}:\mathbb{R} o\mathbb{R},\qquad \operatorname{sgn}(x)=\left\{egin{array}{ll} 1 & \operatorname{ha} \ x>0 \\ 0 & \operatorname{ha} \ x=0 \\ -1 & \operatorname{ha} \ x<0 \end{array}
ight.$$

Módszer:

- Legyen adott az $A \in \mathbb{R}^{n \times n}$ invertálható mátrix, első oszlopát jelölje a_1 .
- ullet Egy lépésben egy oszlopot kinullázunk a főátló alatt. (\sim GE)
- Így n-1 lépésben felső háromszög alakot nyerünk.

Definíció: előjel függvény

$$\operatorname{sgn}: \mathbb{R} \to \mathbb{R}, \qquad \operatorname{sgn}(x) = \left\{ egin{array}{ll} 1 & \operatorname{ha} x > 0 \\ 0 & \operatorname{ha} x = 0 \\ -1 & \operatorname{ha} x < 0 \end{array} \right.$$

Megjegyzés: most, a Householder-transzformációknál nem engedhetjük meg a 0 értéket, helyette akár +1-et, akár -1-et választhatunk.

1. lépés:

$$egin{aligned} \mathbf{a}_1 &\Rightarrow \sigma_1 \cdot e_1 ext{, ahol } \sigma_1 := - \mathrm{sgn}\left(\mathbf{a}_{11}
ight) \cdot \left\| \mathbf{a}_1
ight\|_2 ext{(tehát } \left| \sigma_1
ight| = \left\| \mathbf{a}_1
ight\|_2 ext{)}, \ & v_1 := rac{\mathbf{a}_1 - \sigma_1 e_1}{\left\| \mathbf{a}_1 - \sigma_1 e_1
ight\|_2}, & H_1 := H(v_1). \end{aligned}$$

1. lépés:

$$a_1 \Rightarrow \sigma_1 \cdot e_1$$
, ahol $\sigma_1 := - \mathsf{sgn}\left(a_{11}\right) \cdot \left\|a_1\right\|_2$ (tehát $\left|\sigma_1\right| = \left\|a_1\right\|_2$),

$$v_1 := \frac{a_1 - \sigma_1 e_1}{\|a_1 - \sigma_1 e_1\|_2}, \qquad H_1 := H(v_1).$$

Ekkor

$$H_1 \cdot A = H(v_1) \cdot A = \begin{pmatrix} \sigma_1 & * & \dots & * \\ 0 & & & \\ \vdots & & B & \\ 0 & & & \end{pmatrix}.$$

1. lépés:

$$a_1 \Rightarrow \sigma_1 \cdot e_1$$
, ahol $\sigma_1 := - \mathsf{sgn}\left(a_{11}\right) \cdot \left\|a_1\right\|_2$ (tehát $\left|\sigma_1\right| = \left\|a_1\right\|_2$),

$$v_1 := \frac{a_1 - \sigma_1 e_1}{\|a_1 - \sigma_1 e_1\|_2}, \qquad H_1 := H(v_1).$$

Ekkor

$$H_1 \cdot A = H(v_1) \cdot A = egin{pmatrix} \sigma_1 & * & \dots & * \ 0 & & & \ dots & & B \ 0 & & & \end{pmatrix}.$$

Megjegyzés: σ_1 megválasztásáról... így stabilabb.

2. lépés:

$$b_1 \Rightarrow \sigma_2 \cdot e_1$$
, ahol $\sigma_2 := - \mathrm{sgn}\left(b_{11}
ight) \cdot \left\|b_1
ight\|_2$ (tehát $\left|\sigma_2
ight| = \left\|b_1
ight\|_2$), $\widetilde{v_2} := rac{b_1 - \sigma_2 e_1}{\left\|b_1 - \sigma_2 e_1
ight\|_2} \in \mathbb{R}^{n-1}$

Ekkor

$$H(\widetilde{v_2}) \cdot B = \begin{pmatrix} \sigma_2 & * & \dots & * \\ 0 & & & \\ \vdots & & C & \\ 0 & & & \end{pmatrix} \in \mathbb{R}^{(n-1) \times (n-1)}$$

2. lépés (teljes méretben $(n \times n)$ felírva):

$$v_2:=egin{pmatrix} 0\ \widetilde{v_2} \end{pmatrix}, \quad H_2:=H(v_2)=egin{pmatrix} 1 & 0 & \dots & 0\ 0 & & & \ dots & & H(\widetilde{v_2}) \ 0 & & & \end{pmatrix}.$$

Felső háromszög alakra hozás

2. lépés (teljes méretben $(n \times n)$ felírva):

$$v_2:=egin{pmatrix} 0\ \widetilde{v_2} \end{pmatrix}, \quad H_2:=H(v_2)=egin{pmatrix} 1 & 0 & \dots & 0\ 0 & & & \ dots & & H(\widetilde{v_2}) & \ 0 & & & \end{pmatrix}.$$

Ekkor

$$H_2 \cdot H_1 \cdot A = \begin{pmatrix} \sigma_1 & * & * & \dots & * \\ 0 & \sigma_2 & * & \dots & * \\ 0 & 0 & & & \\ \vdots & \vdots & & C \\ 0 & 0 & & & \end{pmatrix}.$$

Felső háromszög alakra hozás

Általában, k. lépés:

kinullázzuk az elemeket a főátló alatt a k. oszlopban.

Az ezt megvalósító transzformáció:

$$v_k := \begin{pmatrix} 0_{(1.)} \\ \vdots \\ 0_{(k-1).} \\ \widetilde{v_k} \end{pmatrix} \in \mathbb{R}^n, \quad H_k := H(v_k) = \begin{pmatrix} I_{k-1} & 0 \\ 0 & H(\widetilde{v_k}) \end{pmatrix}.$$

A gyakorlatban csak az $(n-k+1) \times (n-k+1)$ -s mátrix részen dolgozunk a k. lépésben, mint a GE-nál. Az (n-1)-edik lépés után felső háromszög alakot kapunk.

Egyetlen LER megoldása:

$$Ax = b$$

$$H_1 \cdot A \cdot x = H_1 \cdot b$$

$$\vdots$$

$$\underbrace{H_{n-1} \cdots H_1 \cdot A}_{R} \cdot x = \underbrace{H_{n-1} \cdots H_1 \cdot b}_{d}$$

$$R \cdot x = d \rightarrow x \text{ (visszahelyettesítés)}$$

Egyetlen LER megoldása:

$$Ax = b$$

$$H_1 \cdot A \cdot x = H_1 \cdot b$$

$$\vdots$$

$$\underbrace{H_{n-1} \cdots H_1 \cdot A}_{R} \cdot x = \underbrace{H_{n-1} \cdots H_1 \cdot b}_{d}$$

$$R \cdot x = d \rightarrow x \text{ (visszahelyettesítés)}$$

Ugyanúgy dolgozunk, mint a GE-nál. Végrehajtjuk a transzformációt az oszlopokon:

$$[A|b]
ightarrow ext{n-1} ext{db H-trf.}
ightarrow [R|d]
ightarrow ext{visszahely.}$$

Mindig egyre kisebb méretű mátrixon dolgozunk a transzformációk során.

QR-felbontás készítése:

$$\underbrace{H_{n-1}\cdots H_2\cdot H_1}_{Q^{-1}=Q^\top}\cdot A=R$$

QR-felbontás készítése:

$$\underbrace{H_{n-1}\cdots H_2\cdot H_1}_{Q^{-1}=Q^{\top}}\cdot A=R$$

$$A = \underbrace{H_1 \cdot H_2 \cdots H_{n-1}}_{Q} \cdot R = Q \cdot R$$

QR-felbontás készítése:

$$\underbrace{H_{n-1}\cdots H_2\cdot H_1}_{Q^{-1}=Q^{\top}}\cdot A=R$$

$$A = \underbrace{H_1 \cdot H_2 \cdots H_{n-1}}_{Q} \cdot R = Q \cdot R$$

Megfigyelhetjük, hogy Q előállításakor mindig a jobb oldalról végezzük a transzformációt, ekkor sorokra alkalmazzuk.

Az algoritmus: Q előállítására

$$Q_0 = I$$
 $k = 1, \dots, n-1$: $Q_k := Q_{k-1}H_k$ $Q := Q_{n-1}$

Tétel: QR-felbontás Householder-módszerrel

Invertálható mátrixok QR-felbontása elkészíthető n-1 db Householder-transzformáció segítségével.

Tétel: QR-felbontás Householder-módszerrel

Invertálható mátrixok QR-felbontása elkészíthető n-1 db Householder-transzformáció segítségével.

Biz.: Láttuk.

Tétel: QR-felbontás Householder-módszerrel

Invertálható mátrixok QR-felbontása elkészíthető n-1 db Householder-transzformáció segítségével.

Biz.: Láttuk.

Összefoglalva: A k. lépésben kinullázzuk a k. oszlop főátló alatti elemeit egy H_k ortogonális transzformáció segítségével, melyet a mátrix oszlopaira alkalmazunk a jobb alsó $(n-k+1)\times (n-k+1)$ -s mátrix részen.

À Q mátrixot úgy kapjuk, hogy egy egységmátrixból indulva a k. lépésben a H_k transzformációt jobbról alkalmazzuk a sorokra csak a jobb alsó $(n-k+1)\times (n-k+1)$ -s mátrix részen.

n-1 lépés után megkapjuk felső háromszög alakot (R) és Q-t.

Tartalomjegyzék

- 1 Ortogonális mátrixokról
- QR-felbontás
- 3 Gram-Schmidt-féle ortogonalizáció
- 4 Householder-féle mátrixok
- 5 Householder-transzformációk alkalmazása
- 6 Műveletigény

Tétel: A Householder-trf. műveletigénye LER-re

A LER megoldásának műveletigénye Householder-transzformációkkal:

$$\frac{4}{3}n^3+\mathcal{O}(n^2),$$

valamint 2(n-1) darab négyzetgyökvonásra is szükség van.

Műveletigény

Biz.:

Biz.:

$$\begin{array}{ll} \operatorname{hossz}\left(\sigma\right) & 2h_{k}-1, \\ \operatorname{norm\'alvektor}\left(a-\sigma e_{1},\left\|.\right\|_{2},v\right) & 1+\left(2h_{k}-1\right)+h_{k}=3h_{k}, \\ \operatorname{transzform\'aci\'o}\left(\left(h_{k}-1\right)+1 \text{ vektorra}\right) & h_{k}\cdot 4h_{k}. \end{array}$$

Biz.:

A k-adik lépésben $(n - k + 1 =: h_k \text{ hosszú vektorokkal dolgozunk}):$

hossz
$$(\sigma)$$
 $2h_k-1$, normálvektor $(a-\sigma e_1,\|.\|_2,v)$ $1+(2h_k-1)+h_k=3h_k$, transzformáció $((h_k-1)+1$ vektorra) $h_k\cdot 4h_k$.

Összesen: $4h_k^2 + 5h_k - 1$, (n - k =: s)

$$\sum_{k=1}^{n-1} \left(4h_k^2 + 5h_k - 1 \right) = \sum_{s=2}^{n} 4s^2 + \sum_{s=2}^{n} s + (n-1) = \frac{4}{3}n^3 + \mathcal{O}(n^2).$$

A visszahelyettesítés műveletigénye $n^2 + \mathcal{O}(n)$, belefér az előző alakba.

Tétel: A Householder-trf. műveletigénye *QR*-felbontásra

A *QR*-felbontás előállításának műveletigénye Householder-transzformációkkal:

$$\frac{8}{3}n^3+\mathcal{O}(n^2),$$

valamint 2(n-1) darab négyzetgyökvonásra is szükség van.

Műveletigény

Biz.:

Műveletigény

Biz.:

```
\begin{array}{ll} \text{hossz } (\sigma) & 2h_k-1, \\ \text{normálvektor } (a-\sigma e_1,\|.\|_2\,,v) & 1+(2h_k-1)+h_k=3h_k, \\ \text{transzformáció } ((h_k-1)+h_k \text{ vektorra}) & (2h_k-1)\cdot 4h_k. \end{array}
```

Biz.:

$$\begin{array}{ll} \text{hossz } (\sigma) & 2h_k-1, \\ \text{normálvektor } (a-\sigma e_1,\|.\|_2\,,\nu) & 1+(2h_k-1)+h_k=3h_k, \\ \text{transzformáció } ((h_k-1)+h_k \text{ vektorra}) & (2h_k-1)\cdot 4h_k. \end{array}$$

Összesen:
$$(8h_k^2 - 4h_k) + (5h_k - 1) = 8h_k^2 + h_k - 1$$
, $(n - k =: s)$

$$\sum_{k=1}^{n-1} \left(8h_k^2 + h_k - 1 \right) = \sum_{s=2}^{n} 8s^2 + \sum_{s=2}^{n} s - (n-1) = \frac{8}{3}n^3 + \mathcal{O}(n^2).$$

Biz.:

A k-adik lépésben ($n - k + 1 =: h_k$ hosszú vektorokkal dolgozunk):

$$\begin{array}{ll} \text{hossz } (\sigma) & 2h_k-1, \\ \text{normálvektor } (a-\sigma e_1,\|.\|_2\,,v) & 1+(2h_k-1)+h_k=3h_k, \\ \text{transzformáció } ((h_k-1)+h_k \text{ vektorra}) & (2h_k-1)\cdot 4h_k. \end{array}$$

Összesen:
$$(8h_k^2 - 4h_k) + (5h_k - 1) = 8h_k^2 + h_k - 1$$
, $(n - k =: s)$

$$\sum_{k=1}^{n-1} \left(8h_k^2 + h_k - 1 \right) = \sum_{s=2}^{n} 8s^2 + \sum_{s=2}^{n} s - (n-1) = \frac{8}{3}n^3 + \mathcal{O}(n^2).$$

Megjegyzés: Ez kicsit több, mint a Gram-Schmidt-féle ortogonalizációnál, viszont ez a módszer numerikusan stabilabb.

4□▶ 4□▶ 4□▶ 4□▶ □ 900

Példák Matlab-ban

- **1** A Gram–Schmidt-féle ortogonalizációs eljárás működésének szemléltetése \mathbb{R}^3 -beli vektorrendszer esetén.
- 2 Példák Householder-mátrixokra ($n \approx 3, 10, 20, 50$).
- 3 Példák Householder-transzformációra.
- **4** QR-felbontás készítése Householder módszerével $(n \approx 3, 7, 50, 100)$.