Econometrics 710 Final Exam, Spring 2012 Sample Answers

1. The estimator $\hat{\sigma}^2$ is not appropriate, as the LS residuals $\hat{e} = Y - \hat{X}\hat{\beta}$ are not appropriate estimates of the errors $e = Y - X\beta$. Instead, we want to use the residuals $\hat{e} = Y - X\hat{\beta}$ and the estimator

$$\widetilde{\sigma}^2 = \frac{1}{n}\widetilde{e}'\widetilde{e}$$

One way to see this is to think of the just-identified case, and write the moment conditions

$$\mathbb{E}\left(z_i\left(y_i - x_i'\beta\right)\right) = 0$$

$$\mathbb{E}\left(\left(y_i - x_i'\beta\right)^2 - \sigma^2\right) = 0$$

Then the moment estimator of the parameters (β, σ^2) are the solutions to the two empirical analogs. The solution to the first equation is $\hat{\beta}$, and the solution to the second equation is $\hat{\sigma}^2$, not $\hat{\sigma}^2$.

Another way to see this is write out the estimators. Suppose for extreme simplicity there was no estimation error, so that $\hat{\beta} = \beta$ and $\hat{\Gamma} = \Gamma$. Then if we write the reduced form as $X = Z\Gamma + u$, then $\hat{X} = Z\Gamma = X - u$, and

$$\widehat{e} = Y - \widehat{X}\widehat{\beta} = e + X\beta - (X - u)\beta = e + u\beta \neq e$$

and $\hat{\sigma}^2 = \frac{1}{n}\hat{e}'\hat{e}$ is clearly estimating $\operatorname{var}(e_i + u_i'\beta) \neq \operatorname{var}(e_i)$.

2.

(a) The GMM/IV/2SLS estimators for β_1 and β_2 are

$$\widehat{\beta}_1 = (Z_1'X_1)^{-1} (Z_1'Y_1)$$

$$\widehat{\beta}_2 = (Z_2'X_2)^{-1} (Z_2'Y_2)$$

with asymptotic distributions

$$\sqrt{n}\left(\widehat{\beta}_1 - \beta_1\right) \xrightarrow{d} N(0, V_1)$$

$$\sqrt{n}\left(\widehat{\beta}_2 - \beta_2\right) \xrightarrow{d} N(0, V_2)$$

where the two normal distributions are independent,

$$V_{1} = Q_{1}^{-1}\Omega_{1}Q_{1}^{-1\prime}$$

$$V_{2} = Q_{2}^{-1}\Omega_{2}Q_{2}^{-1\prime}$$

$$Q_{1} = \mathbb{E}(z_{1i}x'_{1i})$$

$$Q_{2} = \mathbb{E}(z_{2i}x'_{2i})$$

$$\Omega_{1} = \mathbb{E}(z_{1i}z'_{1i}e_{1i}^{2})$$

$$\Omega_{2} = \mathbb{E}(z_{2i}z'_{2i}e_{2i}^{2})$$

Thus

$$\sqrt{n}\left(\left(\widehat{\beta}_1 - \beta_1\right) - \left(\widehat{\beta}_2 - \beta_2\right)\right) \xrightarrow{d} N(0, V_1 + V_2)$$

A Wald-type test for $H_0: \beta_1 = \beta_2$ is

$$W_n = n\left(\widehat{\beta}_1 - \widehat{\beta}_2\right)' \left(\widehat{V}_1 + \widehat{V}_2\right)^{-1} \left(\widehat{\beta}_1 - \widehat{\beta}_2\right)$$

where

$$\hat{V}_{1} = \hat{Q}_{1}^{-1} \hat{\Omega}_{1} \hat{Q}_{1}^{-1'}
\hat{V}_{2} = \hat{Q}_{2}^{-1} \hat{\Omega}_{2} \hat{Q}_{2}^{-1'}
\hat{Q}_{1} = \frac{1}{n} \sum_{i=1}^{n} z_{1i} x'_{1i}
\hat{Q}_{2} = \frac{1}{n} \sum_{i=1}^{n} z_{2i} x'_{2i}
\hat{\Omega}_{1} = \frac{1}{n} \sum_{i=1}^{n} z_{1i} z'_{1i} \hat{e}_{1i}^{2}
\hat{\Omega}_{2} = \frac{1}{n} \sum_{i=1}^{n} z_{2i} z'_{2i} \hat{e}_{2i}^{2}
\hat{e}_{1i} = y_{1i} - x'_{1i} \hat{\beta}_{1}
\hat{e}_{2i} = y_{2i} - x'_{2i} \hat{\beta}_{2}$$

- (b) Since $\widehat{V}_1 \stackrel{p}{\longrightarrow} V_1$ and $\widehat{V}_2 \stackrel{p}{\longrightarrow} V_2$, under H_0 , $W_n \stackrel{d}{\longrightarrow} \chi_k^2$, the chi-square distribution with k degrees of freedom.
- (c) We select a significance level α (typically 5%) and set the critical value c to be the $1-\alpha$ quantile of the χ_k^2 distribution. We compute W_n , and reject H_0 if $W_n > c$ and do not reject H_0 if $W_n < c$. Equivalently, we compute the p-value $p_n = 1 F_k(W_n)$, where $F_k(u)$ is the χ_k^2 distribution function, and reject if $p_n < \alpha$.

3.

(a) The model is a linear projection. Thus the appropriate estimator for (β_1, β_2) is least-squares

$$y_i = x_{1i}\widehat{\beta}_1 + x_{2i}\widehat{\beta}_2 + \widehat{e}_i$$

The plug-in estimator for θ is

$$\widehat{\boldsymbol{\theta}} = \widehat{\boldsymbol{\beta}}_1 \widehat{\boldsymbol{\beta}}_2$$

(b) By standard asymptotic theory

$$\sqrt{n}\left(\widehat{\beta} - \beta\right) \stackrel{d}{\longrightarrow} N(0, V)$$

where $V = Q^{-1}\Omega Q^{-1}$ in the standard notation. By the delta method

$$\sqrt{n}\left(\widehat{\theta}-\theta\right) \stackrel{d}{\longrightarrow} N(0,V_{\theta})$$

where $V_{\theta} = h'Vh$ and

$$h = \left(\begin{array}{c} \frac{\partial}{\partial \beta_1} \beta_1 \beta_2 \\ \\ \frac{\partial}{\partial \beta_2} \beta_1 \beta_2 \end{array}\right) = \left(\begin{array}{c} \beta_2 \\ \\ \beta_1 \end{array}\right)$$

It is important that you calculate what h is! You can also write $V_{\theta} = \beta_2^2 V_{11} + 2\beta_1 \beta_2 V_{21} + \beta_1^2 V_{22}$ after partitioning V.

- (c) $C_{asy} = \widehat{\theta} \pm 2s(\widehat{\theta})$ where $s(\widehat{\theta}) = \sqrt{n^{-1}\widehat{h}'\widehat{V}\widehat{h}}$, with \widehat{V} the standard estimator for V (write it out) and $\widehat{h}' = (\widehat{\beta}_2 \widehat{\beta}_1)'$.
- (d) The percentile bootstrap method:

- i. Draw n iid observations $(y_i^*, x_{1i}^*, x_{2i}^*)$ randomly with replacement from the original sample $\{y_i, x_{1i}, x_{2i}\}$
- ii. Compute $\widehat{\beta}_1^*$ and $\widehat{\beta}_2^*$ by least-squares regression of y_i^* on (x_{1i}^*, x_{2i}^*) . Set $\widehat{\theta}^* = \widehat{\beta}_1^* \widehat{\beta}_2^*$
- iii. Repeat this B times, where B is a large number $(B \ge 1000)$. Let $\widehat{\theta}_b^*$, b = 1, ..., B be the results of the B simulations
- iv. Compute the $\alpha/2$ and $1-\alpha/2$ empirical quantiles of the $\widehat{\theta}_b^*$, say $\widehat{q}_{\alpha/2}$ and $\widehat{q}_{1-\alpha/2}$
- v. The bootstrap percentile interval is $C_{boot} = [\widehat{q}_{\alpha/2}, \widehat{q}_{1-\alpha/2}]$
- 4. There are a number of approaches. You can estimate the reduced form by nonparametric series method, either a power series or a spline. The number of terms can be determined by cross-validation on the reduced form. Then the predicted value \hat{x}_i can be used as an instrument to yield $\hat{\beta} = (\sum_i \hat{x}_i x_i)^{-1} \sum_i \hat{x}_i y_i$. Or, once the series terms for the reduced form have been determined, β can be estimated by GMM. Alternatively, you could use a kernel regression estimator for g. The bandwidth could be selected by cross-validation on the reduced form. Then the predicted value \hat{x}_i could be computed from the kernel estimator and used as an instrument. For either IV approach (series or kernel) the predicted value could be computed using a leave-one-out estimator, yielding a JIVE (jacknife instrumental variables estimator).

An answer should carefully explain the estimator you recommend, and all steps.