运动对象视频修改流程手册

一、 计算过程部分

电子表格[1px=Yours]中 根据计算可以得到实际屏幕尺寸下 0.1 m/s 的基准视频的占用时间(s),来制作基本视频素材。

序号	速度计算 (m/s)	屏幕实际运动距离为:	时间(s)	辅助计算:	比例尺(mm/px) 1 px= ? mm	比例尺(m/px)	屏幕宽度 px	实际尺寸m	
1	0.1	0.43945	4.39	基准	0.29296875	0.000292969	1280	0.375	
2	0.2	0.43945	2.20					↑填写此处	
3	0.3	0. 43945	1.46				屏幕实际	屏幕实际	
4	0.4	0. 43945	1.10		起始位置 px	终止位置 px	运动距离	运动距离	
5	0.5	0.43945	0.88				(mm)	(m)	
6	0.6	0.43945	0.73		1400.0	-100.0	439.45	0.44	
7	0.7	0. 43945	0.63		车牌宽度	车牌高度	遮罩宽度	遮罩高度	
- 8	0.8	0. 43945	0.55	实际(mm)	440	140			
9	0.9	0. 43945	0.49	像素(px)	1501.87	477.87			
10	1.0	0.43945	0.44	绘制大小(px)	440	140	900	600	
11	1.1	0. 43945	0.40	实际大小(mm)	128. 91	41.02	263. 67	175.78	
12	1.2	0. 43945	0.37						
13	1.3	0.43945	0.34						
14	1.4	0.43945	0.31						

(上图为假设参数,下文依照此图计算数据)

特别注意:

控制时间的要素是:

- A. 屏幕宽度像素值(px)、实际尺寸(m)
- B. 视频[文字运动]中起始位置(px)与终止位置(px)

现在无关化处理车牌对象的大小,如果需要调整大小就在[文字运动]序列中调整即可

计算速度公式: V=S/t

我们通过固定距离,改变时间从而改变速度。因此距离的确定十分关键。

像素是矩阵概念,矩阵元素与元素间没有距离概念,因此确定实际长度,需要联系实际播放设备尺寸以及实际播放设备的像素,进而求得比例尺 R(mm/px)。

举例:

	第一行示意: 24 个像素																						
本行示意: 实际距离 S (mm)																							

因此比例尺 R = S (mm) / 24 (px)

计算过程为:

- 1) 得到 展示设备实际尺寸后 比例尺(m/px)=实际尺寸/px
- 2) 得到 比例尺(mm/px)=比例尺(m/px)*1000
- 3) 得到 屏幕运动距离(mm)=(终止位置(px)-起始位置(px))*比例尺(mm/px)
- 4) 得到 屏幕运动距离(m)= 屏幕运动距离(mm)/1000
- 5) 根据要求速度计算得到视频片段时间(s) = 屏幕运动距离(m)/要求速度(m/s)
- 6) 得到基准时间

Ps: 基准时间就是最低速率下的片段的时间,也是最长时间;通过变化这个片段就可以得到任何速度片段。

二、 视频制作部分 [2017.04.20 方案]

我们视频采用嵌套模式,(所谓嵌套就是将重复的特效让他在序列层面完成,例如将多个车牌对象 Title 的速度设置转移到整个序列的调整部分)。

我们的视频素材层级关系为:

解释: (项目序列以 1280*1080 30 帧格式为例, 之后讲解新建序列)

1. 车牌使用 Title 制作而成,包括背景矩形(宽度、高度)与文字(黑体、字体大小)

1:矩形大小修改: Width 与 Height 的值;

2:矩形颜色修改: Color 处修改 3:从 Center 处,让矩形居中显示 B. Title 中文字设置:

注意字体选择,一定要让中文显示正确!推荐使用 SimHei、Adobe Heiti Std 字体;字体颜色一般默认即可;字体大小调整差不多后,居中处理就完成了。

2. 文字序列有 40 个轨道,用于存放 40 个不同内容的车牌 Title,需要设置时间长度,不需要设置动画:

Step 1:首先将之前做的车牌 Title 拖入[文字]序列中:

Step 2:然后根据表格计算的时间,调整素材长度,并截取: 我们得到 0.1m/s 的时间是 4.39 s ,因为我们是 30 帧每秒,所以约等于 4 秒 12 帧;

Step 3:然后用鼠标选择车牌 Title 尾部,拖拽至时间播放线处(4 秒 12 帧处):

Step 4:之后增加轨道数量:

在轨道左侧的轨道名称部分点击右键选择增加轨道(Add Tracks...)

Step 5:之后在新建的轨道上增加 Title 文件即可(Title 文件复制之前做的 Title 文件, 然后修改内容就可以快速的生成新的 Title 文件了)。之后依旧需要调整到(结束位置: 4秒 12 帧处)

技巧:

- 1. 先复制出来 39 个新的 Title, 然后分别修改内容;
- 2. 然后将 39 个新的 Title 文件分别放入视频轨道中,一个轨道一个;
- 3. 使用快捷键 [Ctrl+A] 全选,然后按住 Shift 点击编辑好时间长度的第一轨道素材,完成排除第一轨道素材的其他新加入素材的选择;

- 4. 整体拖到第一轨道素材的结束处完成批量素材时间修改;
- 5. 按住 Shift 点击轨道左侧的小眼睛处就可以实现**全部开启**或者**全部关闭。**

3. 文字运动序列包括文字序列以及 Mask(用于参照确定运动起止位置用, 渲染时关闭轨道的眼睛)

Step 1:首先新建[文字运动]序列:

提醒:新建完序列后,序列名称与之前名称一致,所以需要修改新生成序列的名称,变为[文字运动]序列。

Step 2:然后制作 Mask:

1. 制作大的黑色背景矩形:

本步骤制作的矩形与之前制作背景矩形步骤相同,但是要注意的是,黑色背景矩形尺寸一定要大过序列尺寸(尺寸>1280*1080),而且颜色一定是纯黑色!

关于遮罩原理:

黑色像素值为 0, 白色像素值为 1。用遮罩乘以其他图像,则只有白色的部分可以显示,其余黑色的部分则不显示。因此一定要纯黑色与纯白色!

2. 制作小的可见部分矩形:

本步骤制作的矩形与之前制作背景矩形步骤相同,但是要注意的是,根据遮罩大小设置矩形,例如(900*600),而且颜色一定是纯白色,最好要记得居中处理。 Step 3:为[文字]序列制作运动效果:

1. 将[文字]序列拖入第二轨道,然后将 Mask 放入第一轨道,为文字提供背景参考:

2. 设置[文字]序列的起止位置 Position 关键帧: 选中[文字]序列,然后在效果控制中修改 Position 属性:

提示:

- 1. 绿色框中的小闹钟(计时器)开启关键帧记录功能,不打开不会记录关键帧;
- 2. 黄色框部分是 X 轴的坐标(px), 打开小闹钟后只要变动 X 轴坐标便会记录关键 帧:
- 3. 粉色框中是关键帧的便捷操作,向左箭头功能为迅速将播放时间线打到上一个 关键帧处,向右箭头表示迅速将播放时间线打到下一个关键帧处。中间的点功 能为添加关键帧;

我们从最开始(0 秒 0 帧处)的地方打一个关键帧,然后调整 X 轴坐标使得[文字]序列完全不在 Mask 白色部分之上;然后我们找到终止时间(4 秒 12 帧),同样修改 X 轴坐标使得[文字]序列完全不在 Mask 白色部分之上,于是当点击 Motion 时得到如下图:

[文字运动]序列到此制作完毕!

4. 制作 0.1m/s 序列,以及其他速度序列:

Step 1:制作 0.1m/s 序列:

同样的,将[文字运动]序列拖入新建图标,生成一个新的序列,并重命名为[0.1m/s]序列,然后在第二轨道中拖入 Mask 素材,并调整素材长度与[文字运动]序列一致:

在特效中找到: Video Effect -> Keying -> Track Matte Key 特效(轨道遮罩特效)

将特效拖入[文字运动]素材中:

提示:

- 1. Matte 表示选择要当遮罩层的轨道,目前我们将 Mask 素材放到了 Video 2 轨道上了,所以选择"Video 2"
- 2. Composite Using 表示遮罩方法,我们选择 Matter Luma(亮度遮罩),也就是白色的地方保留,黑色的地方不保留

于是我们就得到了这样给的效果:

Step 2:制作其他速度序列:

同样的,将[0.1m/s]序列拖入新建图标,生成一个新的序列,并重命名为[0.2m/s]序列(举例,其他的以此类推),然后右键点击轨道上的[0.1m/s]素材,选择"Speed/Duration...":

提示:调整速度百分比就可以获取到其他速度了。100%是原速度,200%是 2 倍速度 (0.2m/s),300%是三倍速度(0.3m/s)…… 以此类推。

5. 新建序列设置

第一页是序列格式预设,没有我们需要的格式,所以我们直接选择"Setting"进入详细设置页面。

为了满足实验要求, 我们自定义视频格式。

6. 渲染设置

经过测试 H.264 1080 P 25 利用这个修改得到的渲染模式效果最好

提示:

- A. Queue 是队列整体输出,用呆了 Adobe Media Encoder 软件,可以完成批量输出的功能
- B. Export 是直接输出,即单个文件输出
- 7 输出队列

当使用 Queue 队列输出后,就会弹出 Adobe Media Encoder 软件:

点击右上角的绿色箭头按钮就可以开始批量视频渲染导出了。