EACH - Escola de Artes, Ciências e Humanidades Trabalho prático da disciplina de MVGA

Considere t um triângulo no plano, definido pelos vértices a,b e c. O problema de determinar se um ponto p está dentro ou fora do triângulo t, é equivalente a encontrar as "coordenadas baricentricas" de p em relação a t. Em outras palavras, pode-se escrever

$$p = \alpha_1 a + \alpha_2 b + \alpha_3 c$$
$$\sum_{i=1}^{3} \alpha_i = 1$$

Onde os α_{its} são as chamadas coordenadas baricentricas do ponto p. Se todas elas forem positivas, isto significa que p está dentro do triângulo t, caso contrário, p estará do lado da aresta oposta ao vértice de coordenada mais negativa. Isto é, se α_1 for negativo e menor que α_2 e α_3 , significa que p se encontra do lado da aresta \overrightarrow{bc} .

A proposta deste trabalho, é implementar um programa que, dada uma triangulação de um subconjunto Ω do plano (como na figura 1) e um ponto $p \in \Omega$, descubra dentro de qual triângulo o ponto p se encontra.

OBS: Isto deve ser feito sem que haja necessidade de varrer todos os triângulos.

Figure 1: Triangulação de um mapa do Brasil