K Means Clustering Algorithm

How to determine

The correct number of clusters (k)?

SSE = Sum of Squared Errors

Hierarchical Clustering Algorithm

We asked **people** how many **hours a** week they spend on social media platforms and in the gym.

	Social media	Gym
Alan	2	3
Lisa	5	2
Joe	5	3
Max	1	4
Caro	4	5

	Social media	Gym
Alan	2	3
Lisa	5	2
Joe	5	3
Max	1	4
Caro	4	5

First step

Assign a cluster to each individual point

Measuring the distance between two points

Euclidean distance

$$d = \sqrt{4^2 + 1^2} = 3,162$$

Manhattan distance

$$d = 4 + 1 = 5$$

Maximum distance

$$d = max(4, 1) = 4$$

Measuring the distance between two clusters

Single-linkage uses the distance between the **closest elements** in the cluster.

So, the distance between Caro and Joe.

Complete Linkage uses the distance between the most distant elements of the cluster.

So, between Max and Joe.

Average linkage uses the average of all pairwise distances.

From each combination the distance is calculated and from it the average value.

The distance matrix

The distance between **Alan** and **Lisa** is given by:

$$d = \sqrt{(5-2)^2 + (2-3)^2} = 3.16$$

	Social media	Gym
Alan	2	3
Lisa	5	2
Joe	5	3
Max	1	4
Caro	4	5

	Alan	Lisa	Joe	Max	Caro
Alan	0				
Lisa	3,16	0			
Joe	3,00	1,00	0		
Max	1,41	4,47	4,12	0	
Caro	2,83	3,16	2,24	3,16	0

Now we can **merge** the **first clusters**.

For this, we look at which two clusters have the **smallest distance** between them.

	Alan	Lisa	Joe	Max	Caro
Alan	0				
Lisa	3,16	0			
Joe	3,00	1,00	0		
Max	1,41	4,47	4,12	0	
Caro	2,83	3,16	2,24	3,16	0

With this, we now connect Joe and Lisa to form a cluster.

In our **tree diagram** or **dendrogram** we can draw the first connection.

	Alan	Lisa, Joe	Max	Caro
Alan	0			
Lisa, Joe	3,00	0		
Max	1,41	4,12	0	
Caro	2,83	2,24	3,16	0

5 4 3 2 1 1 2 3 4 5 Social media

Now we **update** the **distance matrix** again.

We calculate the distance between

	Lisa, Joe	Max, Alan	Caro
Lisa, Joe	0		
Max, Alan	3,00	0	
Caro	2,24	2,83	0

So, we **connect** these **two clusters**

and draw the **third connection** in the **tree diagram**.

Finished dendrogram

Agglomerative and Divisive Clustering

Example

