

TEMA 1: ESPACIOS AFINES

Problema 1. Sean los puntos (1,0), (3,2) y (2,-1) en $\mathbb{A}^2_{\mathbb{R}}$.

- a) Demuestra que forman una referencia afín.
- b) Calcula las coordenadas baricéntricas del origen de coordenadas respecto de esta referencia afín

Problema 2. Sean los puntos (1,0,0), (-1,-1,2) y (3,0,1) en $\mathbb{A}^3_{\mathbb{R}}$.

- a) Completa una referencia afín con un cuarto punto y calcula las coordenadas baricéntricas del origen de coordenadas respecto de la referencia afín.
- b) Calcula la matriz de cambio de referencia de esta referencia afín a la referencia afín estándar y comprueba que transforma las coordenadas baricéntricas del origen respecto de ambas referencias.

Problema 3. Prueba que el subconjunto de matrices de traza igual a 3

$$B = \{ M \in \mathcal{M}_{2 \times 2}(\mathbb{R}) : \operatorname{tr}(M) = 3 \}$$

es un subespacio afín de dimensión 3, con dirección las matrices de traza nula.

Problema 4. Demuestra que el subconjunto de polinomios con coeficientes reales, que toman un determinado valor b en un punto a es un subespacio afín. Por ejemplo, muestra que

$$C = \{ p(X) \in \mathcal{P}_n[X] : p(a) = b \}$$

es un subespacio afín con dirección

$$W = \{p(X) \in \mathcal{P}_n[X] : p(a) = 0\}.$$

Calcula su dimensión y unas ecuaciones cartesianas que lo definan.

Problema 5. Prueba que si dos subespacios B_1 , B_2 tienen intersección no vacía, se puede eliminar el término $\mathcal{L}\{\overrightarrow{P_1P_2}\}$ de la definición de suma de subespacios, y tenemos

$$B_1 + B_2 = P_1 + (W_1 + W_2).$$

Problema 6. Prueba que dos planos distintos en $\mathbb{A}^3_{\mathbb{R}}$ que no son paralelos intersecan en una recta.

Problema 7. Dado un subespacio afín B de dimensión m y un punto $P \notin B$, demuestra que el subespacio afín $\{P\} + B$ tiene dimensión m + 1.

Problema 8. Dado un punto P y una recta L contenidos en $\mathbb{A}^2_{\mathbb{R}}$, $P \notin L$, demuestra que existe una única recta L' paralela a L que pasa por P.

Problema 9. Dado un punto P y un plano H contenidos en $\mathbb{A}^3_{\mathbb{R}}$, $P \notin H$, demuestra que existe un único plano H' paralelo a H que pasa por P.

Problema 10. Muestra, con ayuda de la fórmula de Grassmann, que una recta y un plano no se pueden cruzar en $\mathbb{A}^3_{\mathbb{R}}$.

Problema 11. Demuestra que dado $H \subset A$ hiperplano y otro subespacio $B \subset A$, con $B \cap H = \emptyset$, entonces $B \setminus H$ son paralelos.

Problema 12. Calcula unas ecuaciones implícitas de la recta $L \subset \mathbb{A}^3_{\mathbb{R}}$ que pasa por el punto (0,1,0) y es paralela al vector (2,-1,1).

Problema 13. Calcula unas ecuaciones implícitas de la recta $L \subset \mathbb{A}^3_{\mathbb{R}}$ que pasa por el punto (1,1,1) y es paralela a la intersección de los planos $\{x+y=1\}$ y $\{y-z=-1\}$.

Problema 14. Calcula ecuaciones paramétricas e implícitas del plano $H \subset \mathbb{A}^3_{\mathbb{R}}$ que pasa por P = (0,0,1) y es paralelo a $\{x - 2y - 3z = 5\}$.

Problema 15. Dadas dos rectas en $\mathbb{A}^3_{\mathbb{R}}$, L_1 que pasa por los puntos P = (-1, -1, -1) y Q = (2, 0, 1), y L_2 dada en ecuaciones implícitas

$$L_2: \left\{ \begin{array}{ccccc} 2x & -y & -z & = & -1 \\ x & +y & +3z & = & 1 \end{array} \right.$$

calcula su suma y su intersección, calculando ecuaciones de ambas.

Problema 16. Dadas dos rectas en $\mathbb{A}^3_{\mathbb{R}}$, L_1 que pasa por los puntos P = (1, 1, 0) y Q = (2, 0, 2), y L_2 dada en ecuaciones implícitas

$$L_2: \left\{ \begin{array}{rcl} x & -2y & = & -1 \\ & 3y & +z & = & 3 \end{array} \right.$$

calcula su suma y su intersección, calculando ecuaciones de ambas.

Problema 17. Dadas los dos planos en $\mathbb{A}^3_{\mathbb{R}}$ de ecuaciones implícitas $H_1: \{x-y+z=2\}$ y $H_2: \{2x+y-2z=-1\}$. Calcula su suma y su intersección, calculando ecuaciones de ambas.