SOSC 5340: Overview of Statistical Inference and Prediction

Han Zhang

Feb 8, 2021

Outline

Logistics

Probability

Statistics

Estimation

Inference

Prediction

Summary

Instructor: ZHANG, Han

• Office: 2379

Instructor: ZHANG, Han

• Office: 2379

• Email: zhangh@ust.hk

Instructor: ZHANG, Han

• Office: 2379

• Email: zhangh@ust.hk

• Office Hour: Mon 10-11AM

Instructor: ZHANG, Han

• Office: 2379

• Email: zhangh@ust.hk

Office Hour: Mon 10-11AM

In office

Instructor: ZHANG, Han

• Office: 2379

• Email: zhangh@ust.hk

Office Hour: Mon 10-11AM

In office

Zoom: https://hkust.zoom.us/j/6522716568

Instructor: ZHANG, Han

• Office: 2379

• Email: zhangh@ust.hk

Office Hour: Mon 10-11AM

In office

Zoom: https://hkust.zoom.us/j/6522716568

Teaching Assistant: Lam, Pak Hung

• Office: 3001

Instructor: ZHANG, Han

• Office: 2379

• Email: zhangh@ust.hk

Office Hour: Mon 10-11AM

In office

Zoom: https://hkust.zoom.us/j/6522716568

Teaching Assistant: Lam, Pak Hung

• Office: 3001

Email: phlamae@connect.ust.hk

Instructor: ZHANG, Han

• Office: 2379

• Email: zhangh@ust.hk

Office Hour: Mon 10-11AM

In office

Zoom: https://hkust.zoom.us/j/6522716568

Teaching Assistant: Lam, Pak Hung

Office: 3001

Email: phlamae@connect.ust.hk

Office Hour: TBD

Self Introduction

• Second course in SOSC's statistics sequence for research graduate students (after SOSC 5090);

- Second course in SOSC's statistics sequence for research graduate students (after SOSC 5090);
- Three core goals of social sciences:

- Second course in SOSC's statistics sequence for research graduate students (after SOSC 5090);
- Three core goals of social sciences:
 - 1. Description: describing one variable

- Second course in SOSC's statistics sequence for research graduate students (after SOSC 5090);
- Three core goals of social sciences:
 - 1. Description: describing one variable
 - 2. Prediction: correlation between two social phenomena.

- Second course in SOSC's statistics sequence for research graduate students (after SOSC 5090);
- Three core goals of social sciences:
 - 1. Description: describing one variable
 - 2. Prediction: correlation between two social phenomena.
 - 3. Explanation: are the correlation causal?

- Second course in SOSC's statistics sequence for research graduate students (after SOSC 5090);
- Three core goals of social sciences:
 - 1. Description: describing one variable
 - 2. Prediction: correlation between two social phenomena.
 - 3. Explanation: are the correlation causal?
- Three set of knowledge/skills

- Second course in SOSC's statistics sequence for research graduate students (after SOSC 5090);
- Three core goals of social sciences:
 - 1. Description: describing one variable
 - 2. Prediction: correlation between two social phenomena.
 - 3. Explanation: are the correlation causal?
- Three set of knowledge/skills
 - 1. Statistical estimation and inference

- Second course in SOSC's statistics sequence for research graduate students (after SOSC 5090);
- Three core goals of social sciences:
 - 1. Description: describing one variable
 - 2. Prediction: correlation between two social phenomena.
 - 3. Explanation: are the correlation causal?
- Three set of knowledge/skills
 - 1. Statistical estimation and inference
 - 2. Applied regression modeling

- Second course in SOSC's statistics sequence for research graduate students (after SOSC 5090);
- Three core goals of social sciences:
 - 1. Description: describing one variable
 - 2. Prediction: correlation between two social phenomena.
 - 3. Explanation: are the correlation causal?
- Three set of knowledge/skills
 - 1. Statistical estimation and inference
 - 2. Applied regression modeling
 - 3. Causal inference (second half of the semester)

Grading

Attendance	10% 40%
Assignments	40%
Presentation of your final paper (20 min)	15%
Write-up of your final paper	35%

Attendance

• Please turn on your video

Attendance

- Please turn on your video
- Online teaching can be challenging; please do ask questions whenever you are not clear!

 Homework assignment: short coding homework to make sure that you know how to run models we covered in the lectures.

- Homework assignment: short coding homework to make sure that you know how to run models we covered in the lectures.
 - 5-6 times

- Homework assignment: short coding homework to make sure that you know how to run models we covered in the lectures.
 - 5-6 times
- Our TA will hold tutorial sections to teach you

- Homework assignment: short coding homework to make sure that you know how to run models we covered in the lectures.
 - 5-6 times
- Our TA will hold tutorial sections to teach you
 - how to run these models before assignments.

- Homework assignment: short coding homework to make sure that you know how to run models we covered in the lectures.
 - 5-6 times
- Our TA will hold tutorial sections to teach you
 - how to run these models before assignments.
 - discuss solutions of previous assignment

- Homework assignment: short coding homework to make sure that you know how to run models we covered in the lectures.
 - 5-6 times
- Our TA will hold tutorial sections to teach you
 - how to run these models before assignments.
 - discuss solutions of previous assignment
 - 4 times

 As a researcher, you will need to apply what you have learnt to a real social science problem, and write an academic article.

- As a researcher, you will need to apply what you have learnt to a real social science problem, and write an academic article.
- It is very important to write and present your own work.

- As a researcher, you will need to apply what you have learnt to a real social science problem, and write an academic article.
- It is very important to write and present your own work.
- You need to

- As a researcher, you will need to apply what you have learnt to a real social science problem, and write an academic article.
- It is very important to write and present your own work.
- You need to
 - Present your own final paper to the class (15%)

- As a researcher, you will need to apply what you have learnt to a real social science problem, and write an academic article.
- It is very important to write and present your own work.
- You need to
 - Present your own final paper to the class (15%)
 - Write it down (35%)

- As a researcher, you will need to apply what you have learnt to a real social science problem, and write an academic article.
- It is very important to write and present your own work.
- You need to
 - Present your own final paper to the class (15%)
 - Write it down (35%)
- Treat this as a real paper that has the potential to be published at academic journals/presented at academic conferences.

Materials

Other books that inspired the slides

Materials

- Other books that inspired the slides
 - Aronow, Peter M., and Benjamin T. Miller. Foundations of Agnostic Statistics . Cambridge University Press, 2019. (more mathematical; mostly used for the first half of the class).

Materials

- Other books that inspired the slides
 - Aronow, Peter M., and Benjamin T. Miller. Foundations of Agnostic Statistics. Cambridge University Press, 2019. (more mathematical; mostly used for the first half of the class).
 - Joshua D. Angrist and Jorn-Steffen Pischke. Mostly Harmless Econometrics: An Empiricists Companion. Princeton University Press, 2009. (more applied; mostly used for the second half of the class).

Materials

- Other books that inspired the slides
 - Aronow, Peter M., and Benjamin T. Miller. Foundations of Agnostic Statistics. Cambridge University Press, 2019. (more mathematical; mostly used for the first half of the class).
 - Joshua D. Angrist and Jorn-Steffen Pischke. Mostly Harmless Econometrics: An Empiricists Companion. Princeton University Press, 2009. (more applied; mostly used for the second half of the class).
 - Hansen, Bruce. Econometrics, 2020. Free at the author's website
 - https://www.ssc.wisc.edu/~bhansen/econometrics/

Coding

• We will use R for lectures and tutorials

Coding

- We will use R for lectures and tutorials
- If you prefer Stata, that is okay

Social science's goals

- 1. Description: describing one variable
- 2. Prediction: correlation between two social phenomena.
- 3. Explanation: are the correlation causal?
- Today's lecture focuses on the first two

Social science's goals

- 1. Description: describing one variable
- 2. Prediction: correlation between two social phenomena.
- 3. Explanation: are the correlation causal?
- Today's lecture focuses on the first two
- How do we use statistics to do description and prediction

• Random variable: abstraction of some concept we care about.

- Random variable: abstraction of some concept we care about.
- Examples:

- Random variable: abstraction of some concept we care about.
- Examples:
 - define random variable X as gender; it can take several values from male, female, transgender,...

- Random variable: abstraction of some concept we care about.
- Examples:
 - define random variable X as gender; it can take several values from male, female, transgender,...
 - define random variable X as height; it can take numeric values.

• Probability density function (PDF): f(x)

- Probability density function (PDF): f(x)
 - How likely does random variable X take a particular value x

- Probability density function (PDF): f(x)
 - How likely does random variable X take a particular value x
 - f(x) = P(X = x)

- Probability density function (PDF): f(x)
 - How likely does random variable X take a particular value x
 - $\bullet \ \ f(x) = P(X = x)$
- Cumulative distribution function (CDF): $F(X) = P(X \le x)$

- Probability density function (PDF): f(x)
 - How likely does random variable X take a particular value x
 - f(x) = P(X = x)
- Cumulative distribution function (CDF): $F(X) = P(X \le x)$
 - What is the probability that a random variable X takes a value equal to or less than x?

$$f(x) = P(X = x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

Probability density function of the normal distribution

$$f(x) = P(X = x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

Two key parameters

$$f(x) = P(X = x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

- Two key parameters
 - μ , mean

$$f(x) = P(X = x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

- Two key parameters
 - μ , mean
 - σ, standard deviation

$$f(x) = P(X = x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

- Two key parameters
 - μ , mean
 - σ , standard deviation
 - Hence normal density is often written as $X \sim N(\mu, \sigma)$; \sim means follows.

$$f(x) = P(X = x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

- Two key parameters
 - μ , mean
 - σ , standard deviation
 - Hence normal density is often written as $X \sim N(\mu, \sigma)$; \sim means follows.
- Standard normal: $\mu = 0, \sigma = 1$

• Joint probability density function: f(X = x, Y = y)

- Joint probability density function: f(X = x, Y = y)
 - Probability that X takes value x and Y takes value y

- Joint probability density function: f(X = x, Y = y)
 - Probability that X takes value x and Y takes value y
- Conditional probability density function

- Joint probability density function: f(X = x, Y = y)
 - Probability that X takes value x and Y takes value y
- Conditional probability density function
 - Probability that Y takes value y, give that X takes value x.

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

• Two treatments for kidney stones

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

• X is whether the patient is cured (1) or not (0)

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- X is whether the patient is cured (1) or not (0)
- What is the conditional probability of being cured, given treatment A and B?

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- X is whether the patient is cured (1) or not (0)
- What is the conditional probability of being cured, given treatment A and B?
 - P(X = 1 | treatment = A)

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- X is whether the patient is cured (1) or not (0)
- What is the conditional probability of being cured, given treatment A and B?
 - P(X = 1 | treatment = A)
 - P(X = 1 | treatment = B)

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- X is whether the patient is cured (1) or not (0)
- What is the conditional probability of being cured, given treatment A and B?
 - P(X = 1 | treatment = A)
 - P(X = 1 | treatment = B)
- P(X = 1 | treatment = A) = 273/350 = 78%

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- X is whether the patient is cured (1) or not (0)
- What is the conditional probability of being cured, given treatment A and B?
 - P(X = 1 | treatment = A)
 - P(X = 1 | treatment = B)
- P(X = 1 | treatment = A) = 273/350 = 78%
- P(X = 1 | treatment = B) = 289/350 = 83%

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- X is whether the patient is cured (1) or not (0)
- What is the conditional probability of being cured, given treatment A and B?
 - P(X = 1 | treatment = A)
 - P(X = 1 | treatment = B)
- P(X = 1 | treatment = A) = 273/350 = 78%
- P(X = 1 | treatment = B) = 289/350 = 83%
- treatment B is more effective in the entire population

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

• What is the conditional probability of being cured, conditional on treatment status and stone size?

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- What is the conditional probability of being cured, conditional on treatment status and stone size?
- Small Kidney Stone:

	Treatment A		Treatm	nent B
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- What is the conditional probability of being cured, conditional on treatment status and stone size?
- Small Kidney Stone:
 - P(X = 1 | treatment = A, size = small) = 81/87 = 93%

	Treatment A		Treatm	ent B
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- What is the conditional probability of being cured, conditional on treatment status and stone size?
- Small Kidney Stone:
 - P(X = 1 | treatment = A, size = small) = 81/87 = 93%
 - P(X = 1 | treatment = B, size = small) = 234/270 = 87%

	Treatment A		Treatm	ent B
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- What is the conditional probability of being cured, conditional on treatment status and stone size?
- Small Kidney Stone:
 - P(X = 1 | treatment = A, size = small) = 81/87 = 93%
 - P(X = 1 | treatment = B, size = small) = 234/270 = 87%
- Large Kidney Stone:

	Treatment A		Treatm	ent B
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- What is the conditional probability of being cured, conditional on treatment status and stone size?
- Small Kidney Stone:
 - P(X = 1 | treatment = A, size = small) = 81/87 = 93%
 - P(X = 1 | treatment = B, size = small) = 234/270 = 87%
- Large Kidney Stone:
 - P(X = 1 | treatment = A, size = large) = 192/263 = 73%

	Treatment A		Treatm	ent B
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- What is the conditional probability of being cured, conditional on treatment status and stone size?
- Small Kidney Stone:
 - P(X = 1 | treatment = A, size = small) = 81/87 = 93%
 - P(X = 1 | treatment = B, size = small) = 234/270 = 87%
- Large Kidney Stone:
 - P(X = 1 | treatment = A, size = large) = 192/263 = 73%
 - P(X = 1 | treatment = B, size = large) = 55/80 = 69%

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- What is the conditional probability of being cured, conditional on treatment status and stone size?
- Small Kidney Stone:
 - P(X = 1 | treatment = A, size = small) = 81/87 = 93%
 - P(X = 1 | treatment = B, size = small) = 234/270 = 87%
- Large Kidney Stone:
 - P(X = 1 | treatment = A, size = large) = 192/263 = 73%
 - P(X = 1 | treatment = B, size = large) = 55/80 = 69%
- B is more effective in the entire population, but A is more effect for both patients with small and large kidney stones.

	Treatment A		Treatm	ent B
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- What is the conditional probability of being cured, conditional on treatment status and stone size?
- Small Kidney Stone:
 - P(X = 1 | treatment = A, size = small) = 81/87 = 93%
 - P(X = 1 | treatment = B, size = small) = 234/270 = 87%
- Large Kidney Stone:
 - P(X = 1 | treatment = A, size = large) = 192/263 = 73%
 - P(X = 1 | treatment = B, size = large) = 55/80 = 69%
- B is more effective in the entire population, but A is more effect for both patients with small and large kidney stones.
- This is known as the Simpson's Paradox. Why?

• Expectation (expected value) E(X):

$$E(X) = \int x \cdot f(x) dx$$

- Expectation (expected value) E(X):
 - The average value of a random variable X

$$E(X) = \int x \cdot f(x) dx$$

- Expectation (expected value) E(X):
 - The average value of a random variable X
- Categorical variable's expectation:

$$E(X) = \int x \cdot f(x) dx$$

- Expectation (expected value) E(X):
 - The average value of a random variable X
- Categorical variable's expectation:
 - Let X be a random variable with a finite number of finite outcomes x_1, x_2, \ldots, x_k occurring with probabilities p_1, p_2, \ldots, p_k

$$E(X) = \int x \cdot f(x) dx$$

- Expectation (expected value) E(X):
 - The average value of a random variable X
- Categorical variable's expectation:
 - Let X be a random variable with a finite number of finite outcomes x_1, x_2, \ldots, x_k occurring with probabilities p_1, p_2, \ldots, p_k
 - E(X) is the weighted average of X, with probability as weights

$$E(X) = \int x \cdot f(x) dx$$

- Expectation (expected value) E(X):
 - The average value of a random variable X
- Categorical variable's expectation:
 - Let X be a random variable with a finite number of finite outcomes x_1, x_2, \ldots, x_k occurring with probabilities p_1, p_2, \ldots, p_k
 - E(X) is the weighted average of X, with probability as weights
 - $E[X] = x_1p_1 + x_2p_2 + \cdots + x_kp_k = \sum_{i=1}^k x_i p_i$

$$E(X) = \int x \cdot f(x) dx$$

- Expectation (expected value) E(X):
 - The average value of a random variable X
- Categorical variable's expectation:
 - Let X be a random variable with a finite number of finite outcomes x_1, x_2, \ldots, x_k occurring with probabilities p_1, p_2, \ldots, p_k
 - E(X) is the weighted average of X, with probability as weights
 - $E[X] = x_1p_1 + x_2p_2 + \cdots + x_kp_k = \sum_{i=1}^k x_i p_i$
- Continuous variable's expectation

$$E(X) = \int x \cdot f(x) dx$$

Expected Value (exercise)

• What is the E(X) of the random variable X?

Χ	P(X)
0	0.8
1	0.1
2	0.06
3	0.03
4	0.04

• Useful formula of expected values

- Useful formula of expected values
 - 1. Linearity of expectation: E(aX + bY + c) = aE(X) + bE(Y) + c

- Useful formula of expected values
 - 1. Linearity of expectation:

$$E(aX + bY + c) = aE(X) + bE(Y) + c$$

2. Constant's expectation is constant: E(c) = c

• Conditional expectation E(Y|X=x):

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]] = \begin{cases} \sum_{x} \mathbb{E}[Y|X = x]P(X = x) & \text{discrete } X \\ \int_{-\infty}^{\infty} \mathbb{E}[Y|X = x]f(x)dx & \text{continuous } X \end{cases}$$
(1)

- Conditional expectation E(Y|X=x):
 - On average, what is the value of a random variable Y, give that we already know that random variable X takes value x

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]] = \begin{cases} \sum_{x} \mathbb{E}[Y|X = x]P(X = x) & \text{discrete } X \\ \int_{-\infty}^{\infty} \mathbb{E}[Y|X = x]f(x)dx & \text{continuous } X \end{cases}$$
(1)

- Conditional expectation E(Y|X=x):
 - On average, what is the value of a random variable Y, give that we already know that random variable X takes value x
 - Note that X is fixed to a determined value x (e.g., X is gender and x is male).

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]] = \begin{cases} \sum_{x} \mathbb{E}[Y|X = x]P(X = x) & \text{discrete } X \\ \int_{-\infty}^{\infty} \mathbb{E}[Y|X = x]f(x)dx & \text{continuous } X \end{cases}$$
(1)

- Conditional expectation E(Y|X=x):
 - On average, what is the value of a random variable Y, give that we already know that random variable X takes value x
 - Note that X is fixed to a determined value x (e.g., X is gender and x is male).
- Useful formula 3: Law of Iterated Expectation (Law of Total Expectation)

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]] = \begin{cases} \sum_{x} \mathbb{E}[Y|X = x]P(X = x) & \text{discrete } X \\ \int_{-\infty}^{\infty} \mathbb{E}[Y|X = x]f(x)dx & \text{continuous } X \end{cases}$$
(1)

- Conditional expectation E(Y|X=x):
 - On average, what is the value of a random variable Y, give that we already know that random variable X takes value x
 - Note that X is fixed to a determined value x (e.g., X is gender and x is male).
- Useful formula 3: Law of Iterated Expectation (Law of Total Expectation)

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]] = \begin{cases} \sum_{x} \mathbb{E}[Y|X = x]P(X = x) & \text{discrete } X \\ \int_{-\infty}^{\infty} \mathbb{E}[Y|X = x]f(x)dx & \text{continuous } X \end{cases}$$
(1)

• Basically, this theorem says that if we have knowledge about P(X), and the conditional probability of P(Y|X), we can calculate the average of Y.

 The variance measures the dispersion or the "spread" of a probability distribution.

- The variance measures the dispersion or the "spread" of a probability distribution.
- The variance of a random variable X, denoted V(Y), is the expected value of the square of the deviation of Y from its mean:

- The variance measures the dispersion or the "spread" of a probability distribution.
- The variance of a random variable X, denoted V(Y), is the expected value of the square of the deviation of Y from its mean:
- $V(X) = E[(X E(X))^2]$

- The variance measures the dispersion or the "spread" of a probability distribution.
- The variance of a random variable X, denoted V(Y), is the expected value of the square of the deviation of Y from its mean:
- $V(X) = E[(X E(X))^2]$
- Standard deviation: $\sigma = \sqrt{V(X)}$

Definition (Alternative Formula for Variance)

$$V(X) = E[X^2] - E[X]^2$$

Proof.

$$V(X) = E\left[\left(X - E(X)\right)^{2}\right] \tag{2}$$

$$= E[X^2 - 2XE(X) + E(X)^2]$$
 (3)

$$= E(X^{2}) - 2E[XE(X)] + E[E(X)^{2}]$$
 (4)

$$= E(X^{2}) - 2E(X)E(X) + E(X)^{2}$$
 (5)

$$= E(X^2) - E(X)^2 (6)$$

Probability is defined on population

- Probability is defined on population
- Probability of population is often very hard to obtain;

- Probability is defined on population
- Probability of population is often very hard to obtain;
 - We need to have information of every unit in the population

- Probability is defined on population
- Probability of population is often very hard to obtain;
 - We need to have information of every unit in the population
 - But it's often unrealistic

- Probability is defined on population
- Probability of population is often very hard to obtain;
 - We need to have information of every unit in the population
 - But it's often unrealistic
- Goal of Statistics: inferring properties of population from samples

I.I.D. random variables

 Example: X is height and we want its probability distribution of all HK residents

I.I.D. random variables

- Example: X is height and we want its probability distribution of all HK residents
- We can collect every HKer's height and tabulate as we did earlier; this costs a lot of money

I.I.D. random variables

- Example: X is height and we want its probability distribution of all HK residents
- We can collect every HKer's height and tabulate as we did earlier; this costs a lot of money
- Or we can sample a HKer and record his/her height X_1 , and then sample another HKer get height X_2 .

- Example: X is height and we want its probability distribution of all HK residents
- We can collect every HKer's height and tabulate as we did earlier; this costs a lot of money
- Or we can sample a HKer and record his/her height X_1 , and then sample another HKer get height X_2 .
- This process continues 100 times, we get $(X_1, X_2, \dots, X_{100})$

- Example: X is height and we want its probability distribution of all HK residents
- We can collect every HKer's height and tabulate as we did earlier; this costs a lot of money
- Or we can sample a HKer and record his/her height X_1 , and then sample another HKer get height X_2 .
- This process continues 100 times, we get $(X_1, X_2, \cdots, X_{100})$
- $(X_1, X_2, \dots, X_{100})$ are independent and identically distributed (I.I.D.)

- Example: X is height and we want its probability distribution of all HK residents
- We can collect every HKer's height and tabulate as we did earlier; this costs a lot of money
- Or we can sample a HKer and record his/her height X_1 , and then sample another HKer get height X_2 .
- This process continues 100 times, we get $(X_1, X_2, \dots, X_{100})$
- $(X_1, X_2, \dots, X_{100})$ are independent and identically distributed (I.I.D.)
 - independent: our i th draw does not depend on the j th draw;

- Example: X is height and we want its probability distribution of all HK residents
- We can collect every HKer's height and tabulate as we did earlier; this costs a lot of money
- Or we can sample a HKer and record his/her height X_1 , and then sample another HKer get height X_2 .
- This process continues 100 times, we get $(X_1, X_2, \cdots, X_{100})$
- $(X_1, X_2, \dots, X_{100})$ are independent and identically distributed (I.I.D.)
 - independent: our *i* th draw does not depend on the *j* th draw;
 - in math: $P(X_i, X_j) = P(X_i)P(X_j)$

- Example: X is height and we want its probability distribution of all HK residents
- We can collect every HKer's height and tabulate as we did earlier; this costs a lot of money
- Or we can sample a HKer and record his/her height X_1 , and then sample another HKer get height X_2 .
- This process continues 100 times, we get $(X_1, X_2, \cdots, X_{100})$
- $(X_1, X_2, \dots, X_{100})$ are independent and identically distributed (I.I.D.)
 - independent: our *i* th draw does not depend on the *j* th draw;
 - in math: $P(X_i, X_j) = P(X_i)P(X_j)$
 - identically distributed: they all come from the same probability distribution: HKer's height.

- Example: X is height and we want its probability distribution of all HK residents
- We can collect every HKer's height and tabulate as we did earlier; this costs a lot of money
- Or we can sample a HKer and record his/her height X_1 , and then sample another HKer get height X_2 .
- This process continues 100 times, we get $(X_1, X_2, \cdots, X_{100})$
- $(X_1, X_2, \dots, X_{100})$ are independent and identically distributed (I.I.D.)
 - independent: our *i* th draw does not depend on the *j* th draw;
 - in math: $P(X_i, X_j) = P(X_i)P(X_j)$
 - identically distributed: they all come from the same probability distribution: HKer's height.
 - They are not coming from a different distribution, say, heights of desks

• When the independent assumption may be violated?

- When the independent assumption may be violated?
 - e.g., samples are not random, but HKUST students.

- When the independent assumption may be violated?
 - e.g., samples are not random, but HKUST students.
- When the identically distributed assumption may be violated?

- When the independent assumption may be violated?
 - e.g., samples are not random, but HKUST students.
- When the identically distributed assumption may be violated?
 - e.g., population changes during the sampling process.

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X

Definition (Sample Mean)

The sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Theorem (The Expected Value of the Sample Mean is the Population Mean)

$$E(\bar{X}) = E(X)$$

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X

Definition (Sample Mean)

The sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Theorem (The Expected Value of the Sample Mean is the Population Mean)

$$E(\bar{X}) = E(X)$$

Implication:

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X

Definition (Sample Mean)

The sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Theorem (The Expected Value of the Sample Mean is the Population Mean)

$$E(\bar{X}) = E(X)$$

- Implication:
 - Expectation of the sample mean equals population mean, which we cannot directly obtain

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X

Definition (Sample Mean)

The sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Theorem (The Expected Value of the Sample Mean is the Population Mean)

$$E(\bar{X}) = E(X)$$

- Implication:
 - Expectation of the sample mean equals population mean, which we cannot directly obtain
 - Sample mean is something we can obtain

The Expected Value of the Sample Mean is the Population Mean.

$$E(\bar{X}) = E(\frac{1}{n}(X_1 + \dots + X_n)) \tag{7}$$

$$= \frac{1}{n}E(X_1 + \dots + X_n)$$
(8)
= $\frac{1}{n}[E(X_1) + \dots + E(X_n)]$ (9)

$$=\frac{1}{n}[E(X_1)+\cdots+E(X_n)] \tag{9}$$

$$=\frac{1}{n}[E(X)+\cdots E(X)] \tag{10}$$

$$= E(X) \tag{11}$$

Sampling Variance of the Sample Mean

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X, with finite variance V(X)

Theorem (Sampling Variance of the Sample Mean)

The sampling variance of the sample mean is $V(\bar{X}) = \frac{V(X)}{n}$

Sampling Variance of the Sample Mean

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X, with finite variance V(X)

Theorem (Sampling Variance of the Sample Mean) The sampling variance of the sample mean is $V(\bar{X}) = \frac{V(X)}{n}$

That is, sampling variance of the same mean decreases, as n increases.

Sampling Variance of the Sample Mean

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X, with finite variance V(X)

Theorem (Sampling Variance of the Sample Mean)

The sampling variance of the sample mean is $V(\bar{X}) = rac{V(X)}{n}$

- That is, sampling variance of the same mean decreases, as n increases.
- Note that population variance V(X) is an unknown but fixed quantity.

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X

Theorem (Weak Law of Large Numbers, Jacob Bernoulli, 1713)

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X

Theorem (Weak Law of Large Numbers, Jacob Bernoulli, 1713)

The sample mean \bar{X} converges in probability to the population mean E(X), as $n \to \infty$.

Convergence in probability:

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X

Theorem (Weak Law of Large Numbers, Jacob Bernoulli, 1713)

- Convergence in probability:
 - If a and b convergence in probability, it is very likely that their difference will be very small.

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X

Theorem (Weak Law of Large Numbers, Jacob Bernoulli, 1713)

- Convergence in probability:
 - If a and b convergence in probability, it is very likely that their difference will be very small.
 - $\lim_{n\to\infty} P(|a-b| \le \epsilon) = 1$, for all $\epsilon > 0$.

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X

Theorem (Weak Law of Large Numbers, Jacob Bernoulli, 1713)

- Convergence in probability:
 - If a and b convergence in probability, it is very likely that their difference will be very small.
 - $\lim_{n\to\infty} P(|a-b| \le \epsilon) = 1$, for all $\epsilon > 0$.
- Implication of the Weak Law of Large Numbers:

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X

Theorem (Weak Law of Large Numbers, Jacob Bernoulli, 1713)

- Convergence in probability:
 - If a and b convergence in probability, it is very likely that their difference will be very small.
 - $\lim_{n\to\infty} P(|a-b| \le \epsilon) = 1$, for all $\epsilon > 0$.
- Implication of the Weak Law of Large Numbers:
 - As n gets large, the sample mean X becomes increasingly closer to the population mean E(X).

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X

Theorem (Weak Law of Large Numbers, Jacob Bernoulli, 1713)

- Convergence in probability:
 - If a and b convergence in probability, it is very likely that their difference will be very small.
 - $\lim_{n\to\infty} P(|a-b| \le \epsilon) = 1$, for all $\epsilon > 0$.
- Implication of the Weak Law of Large Numbers:
 - As n gets large, the sample mean X becomes increasingly closer to the population mean E(X).
 - It suggests that we can use sample mean to estimate population mean

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X

Theorem (Weak Law of Large Numbers, Jacob Bernoulli, 1713)

- Convergence in probability:
 - If a and b convergence in probability, it is very likely that their difference will be very small.
 - $\lim_{n\to\infty} P(|a-b| \le \epsilon) = 1$, for all $\epsilon > 0$.
- Implication of the Weak Law of Large Numbers:
 - As n gets large, the sample mean X becomes increasingly closer to the population mean E(X).
 - It suggests that we can use sample mean to estimate population mean
 - And perhaps other sample quantities to population quantities?

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X

Definition (Estimate and Estimator)

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X
- We care about some population quantity of interest θ (e.g., mean, variance, median, etc)

Definition (Estimate and Estimator)

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X
- We care about some population quantity of interest θ (e.g., mean, variance, median, etc)

Definition (Estimate and Estimator)

Estimator of a population quantity θ is a function of the samples, $\hat{\theta} = h(X_1, \dots, X_n)$; $\hat{\theta}$ is the estimate of θ .

 In a nutshell, statistics uses estimator to provide estimate of population quantity

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X
- We care about some population quantity of interest θ (e.g., mean, variance, median, etc)

Definition (Estimate and Estimator)

- In a nutshell, statistics uses estimator to provide estimate of population quantity
- Example: an estimator of population mean E(X) is sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X
- We care about some population quantity of interest θ (e.g., mean, variance, median, etc)

Definition (Estimate and Estimator)

- In a nutshell, statistics uses estimator to provide estimate of population quantity
- Example: an estimator of population mean E(X) is sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- Note: there are usually many different estimators of the same quantity.

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X
- We care about some population quantity of interest θ (e.g., mean, variance, median, etc)

Definition (Estimate and Estimator)

- In a nutshell, statistics uses estimator to provide estimate of population quantity
- Example: an estimator of population mean E(X) is sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- Note: there are usually many different estimators of the same quantity.
 - E.g., X_1 is also an estimator of E(X). But intuitively it is not as good as the sample mean.

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X
- We care about some population quantity of interest θ (e.g., mean, variance, median, etc)

Definition (Estimate and Estimator)

- In a nutshell, statistics uses estimator to provide estimate of population quantity
- Example: an estimator of population mean E(X) is sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- Note: there are usually many different estimators of the same quantity.
 - E.g., X_1 is also an estimator of E(X). But intuitively it is not as good as the sample mean.
 - How can we say one estimator is better than the other? What properties should good estimators have?

Desirable Property: Unbiasedness

• For an estimator $\hat{\theta}$, its bias is $E(\hat{\theta}) - \theta$

Definition (Unbiased Estimator)

An estimator $\hat{\theta}$ of θ is an unbiased estimator if $E(\hat{\theta}) = \theta$ or bias is 0

see proof here

Desirable Property: Unbiasedness

• For an estimator $\hat{\theta}$, its bias is $E(\hat{\theta}) - \theta$

Definition (Unbiased Estimator)

An estimator $\hat{\theta}$ of θ is an unbiased estimator if $E(\hat{\theta}) = \theta$ or bias is 0

• Question: sample mean \bar{x} is an unbiased estimator of population mean E(X). Why?

see proof here

Desirable Property: Unbiasedness

• For an estimator $\hat{\theta}$, its bias is $E(\hat{\theta}) - \theta$

Definition (Unbiased Estimator)

An estimator $\hat{\theta}$ of θ is an unbiased estimator if $E(\hat{\theta}) = \theta$ or bias is 0

- Question: sample mean \bar{x} is an unbiased estimator of population mean E(X). Why?
- Answer: because the expectation of sample mean equals to population mean $(E(\bar{X}) = E(X))$

see proof here

Desirable property: Consistency

Definition (Consistent Estimator)

An estimator $\hat{\theta}$ is an consistent estimator if $\hat{\theta}$ converges in probability to θ , as $n \to \infty$.

 Question: sample mean is an consistent estimator of population mean. Why?

Desirable property: Consistency

Definition (Consistent Estimator)

An estimator $\hat{\theta}$ is an consistent estimator if $\hat{\theta}$ converges in probability to θ , as $n \to \infty$.

- Question: sample mean is an consistent estimator of population mean. Why?
- Answer: because of the Law of Large Numbers.

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X with variance V(X)

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X with variance V(X)
- We see that sample mean \bar{X} is an unbiased and consistent estimator of population mean E(X)

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X with variance V(X)
- We see that sample mean \bar{X} is an unbiased and consistent estimator of population mean E(X)
- It is tempting to extend this method to other population quantities, by:

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X with variance V(X)
- We see that sample mean \bar{X} is an unbiased and consistent estimator of population mean E(X)
- It is tempting to extend this method to other population quantities, by:
 - 1. express the (unestimated) poulation quantity as some population quantity that are estimatable.

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X with variance V(X)
- We see that sample mean \bar{X} is an unbiased and consistent estimator of population mean E(X)
- It is tempting to extend this method to other population quantities, by:
 - 1. express the (unestimated) poulation quantity as some population quantity that are estimatable.
 - 2. plug-in the sample estimator.

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X with variance V(X)
- We see that sample mean \bar{X} is an unbiased and consistent estimator of population mean E(X)
- It is tempting to extend this method to other population quantities, by:
 - 1. express the (unestimated) poulation quantity as some population quantity that are estimatable.
 - 2. plug-in the sample estimator.
- This is called plug-in principle.

• We want to apply the plug-in principle to estimate population variance V(X).

Definition (Plug-in Variance Estimator) $\hat{V}(X) = \overline{X^2} - \overline{X}^2$

- We want to apply the plug-in principle to estimate population variance V(X).
- Step 1: express $V(X) = E[X^2] E[X]^2$, because we already know how to estimate E(X): \bar{X}

Definition (Plug-in Variance Estimator)
$$\hat{V}(X) = \overline{X^2} - \overline{X}^2$$

- We want to apply the plug-in principle to estimate population variance V(X).
- Step 1: express $V(X) = E[X^2] E[X]^2$, because we already know how to estimate E(X): \bar{X}
- Step 2: plug-in \bar{X} in place of E(X)

Definition (Plug-in Variance Estimator) $\hat{V}(X) = \overline{X^2} - \overline{X}^2$

- We want to apply the plug-in principle to estimate population variance V(X).
- Step 1: express $V(X) = E[X^2] E[X]^2$, because we already know how to estimate E(X): \bar{X}
- Step 2: plug-in \bar{X} in place of E(X)

Definition (Plug-in Variance Estimator)

$$\hat{V}(X) = \overline{X^2} - \overline{X}^2$$

• Is this plug-in variance estimator a good estimator?

- We want to apply the plug-in principle to estimate population variance V(X).
- Step 1: express $V(X) = E[X^2] E[X]^2$, because we already know how to estimate E(X): \bar{X}
- Step 2: plug-in \bar{X} in place of E(X)

Definition (Plug-in Variance Estimator)

$$\hat{V}(X) = \overline{X^2} - \overline{X}^2$$

- Is this plug-in variance estimator a good estimator?
 - As we have learned, an good estimator should have two good properties

- We want to apply the plug-in principle to estimate population variance V(X).
- Step 1: express $V(X) = E[X^2] E[X]^2$, because we already know how to estimate E(X): \bar{X}
- Step 2: plug-in \bar{X} in place of E(X)

Definition (Plug-in Variance Estimator)

$$\hat{V}(X) = \overline{X^2} - \overline{X}^2$$

- Is this plug-in variance estimator a good estimator?
 - As we have learned, an good estimator should have two good properties
 - unbiased?

- We want to apply the plug-in principle to estimate population variance V(X).
- Step 1: express $V(X) = E[X^2] E[X]^2$, because we already know how to estimate E(X): \bar{X}
- Step 2: plug-in \bar{X} in place of E(X)

Definition (Plug-in Variance Estimator)

$$\hat{V}(X) = \overline{X^2} - \overline{X}^2$$

- Is this plug-in variance estimator a good estimator?
 - As we have learned, an good estimator should have two good properties
 - unbiased?
 - consistent?

Plug-in estimator for population variance

• Unbiased estimator means $E(\hat{\theta}) - \theta = 0$

$$E(\widehat{V(X)}) = E\left[\overline{X^2} - \bar{X}^2\right] = E[\overline{X^2}] - E\left[\bar{X}^2\right]$$
 (12)

$$= \mathrm{E}\left[X^{2}\right] - \left(\mathrm{E}[X]^{2} + \mathrm{V}[\bar{X}]\right) \qquad (13)$$

$$= \left(\operatorname{E}\left[X^2 \right] - \operatorname{E}[X]^2 \right) - \frac{\operatorname{V}[X]}{n} \quad (14)$$

$$= V[X] - \frac{V[X]}{n} \tag{15}$$

$$=\frac{n-1}{n}V[X] \tag{16}$$

Plug-in estimator for population variance

- Unbiased estimator means $E(\hat{ heta}) heta = 0$
- Our variance estimator of V(X) is $\widehat{V(X)} = \overline{X^2} \overline{X}^2$

$$E(\widehat{V(X)}) = E\left[\overline{X^2} - \overline{X}^2\right] = E[\overline{X^2}] - E\left[\overline{X}^2\right]$$
 (12)

$$= \mathrm{E}\left[X^{2}\right] - \left(\mathrm{E}[X]^{2} + \mathrm{V}[\bar{X}]\right) \qquad (13)$$

$$= \left(\operatorname{E}\left[X^2 \right] - \operatorname{E}[X]^2 \right) - \frac{\operatorname{V}[X]}{n} \quad (14)$$

$$= V[X] - \frac{V[X]}{n} \tag{15}$$

$$=\frac{n-1}{n}V[X] \tag{16}$$

Plug-in estimator for population variance

- Unbiased estimator means $E(\hat{\theta}) \theta = 0$
- Our variance estimator of V(X) is $\widehat{V(X)} = \overline{X^2} \overline{X}^2$
- Unbiasedness:

$$E(\widehat{V(X)}) = E\left[\overline{X^2} - \bar{X}^2\right] = E[\overline{X^2}] - E\left[\bar{X}^2\right]$$
(12)

$$= \mathrm{E}\left[X^{2}\right] - \left(\mathrm{E}[X]^{2} + \mathrm{V}[\bar{X}]\right) \qquad (13)$$

$$= \left(\operatorname{E}\left[X^2 \right] - \operatorname{E}[X]^2 \right) - \frac{\operatorname{V}[X]}{n} \quad (14)$$

$$= V[X] - \frac{V[X]}{n} \tag{15}$$

$$=\frac{n-1}{n}V[X] \tag{16}$$

Unbiased Estimator for Population Variance

• Plug-in population variance estimator $\hat{V}(X) = \overline{X^2} - \overline{X}^2$ is biased

Theorem (Unbiased Estimator of Population Variance) $\hat{V}(X) = \frac{n}{n-1}(\overline{X^2} - \overline{X}^2)$ is an unbiased and consistent estimator of population variance V(X)

4□ > 4□ > 4 = > 4 = > = 900

Unbiased Estimator for Population Variance

- Plug-in population variance estimator $\hat{V}(X) = \overline{X^2} \overline{X}^2$ is biased
- Plug-in population variance estimator $\hat{V}(X) = \overline{X^2} \overline{X}^2$ is consistent (as $n \to \infty$, $\frac{n-1}{n}$ goes to 1)

Theorem (Unbiased Estimator of Population Variance) $\hat{V}(X) = \frac{n}{n-1}(\overline{X^2} - \overline{X}^2)$ is an unbiased and consistent estimator of population variance V(X)

Unbiased Estimator for Population Variance

- Plug-in population variance estimator $\hat{V}(X) = \overline{X^2} \overline{X}^2$ is biased
- Plug-in population variance estimator $\hat{V}(X) = \overline{X^2} \overline{X}^2$ is consistent (as $n \to \infty$, $\frac{n-1}{n}$ goes to 1)
- In general, plug-in estimator is consistent, but may be biased (advanced topic).

Theorem (Unbiased Estimator of Population Variance) $\hat{V}(X) = \frac{n}{n-1} (\overline{X^2} - \overline{X}^2)$ is an unbiased and consistent estimator of population variance V(X)

• The previous slides derives $\hat{V}(X)$, the estimator for population variance.

$$\hat{V}(\bar{X}) = \frac{\hat{V}(X)}{n}$$

- The previous slides derives $\hat{V}(X)$, the estimator for population variance.
- But it is not estisampling mator of the variance of the sample mean $V(\bar{X})$

$$\hat{V}(\bar{X}) = \frac{\hat{V}(X)}{n}$$

- The previous slides derives $\hat{V}(X)$, the estimator for population variance.
- But it is not estisampling mator of the variance of the sample mean $V(\bar{X})$
- Try plug-in estimator thisampling s time

$$\hat{V}(\bar{X}) = \frac{\hat{V}(X)}{n}$$

- The previous slides derives $\hat{V}(X)$, the estimator for population variance.
- But it is not estisampling mator of the variance of the sample mean $V(\bar{X})$
- Try plug-in estimator thisampling s time
 - Step 1: express the quantity of interest $V(\bar{X}) = \frac{V(X)}{n}$

$$\hat{V}(\bar{X}) = \frac{\hat{V}(X)}{n}$$

- The previous slides derives $\hat{V}(X)$, the estimator for population variance.
- But it is not estisampling mator of the variance of the sample mean $V(\bar{X})$
- Try plug-in estimator thisampling s time
 - Step 1: express the quantity of interest $V(\bar{X}) = \frac{V(X)}{n}$
 - Step 2: plug-in (since we just shown how to estimate V(X) in the previous slide)

$$\hat{V}(\bar{X}) = \frac{\hat{V}(X)}{n}$$

- The previous slides derives $\hat{V}(X)$, the estimator for population variance.
- But it is not estisampling mator of the variance of the sample mean $V(\bar{X})$
- Try plug-in estimator thisampling s time
 - Step 1: express the quantity of interest $V(\bar{X}) = \frac{V(X)}{n}$
 - Step 2: plug-in (since we just shown how to estimate V(X) in the previous slide)

Theorem (Estimator of the Sampling Variance of the Sample Mean)

$$\hat{V}(\bar{X}) = \frac{\hat{V}(X)}{n}$$

 Plug-in estimator is an unbiased and consistent estimator this time (proof omitted)

- The previous slides derives $\hat{V}(X)$, the estimator for population variance.
- But it is not estisampling mator of the variance of the sample mean $V(\bar{X})$
- Try plug-in estimator thisampling s time
 - Step 1: express the quantity of interest $V(\bar{X}) = \frac{V(X)}{n}$
 - Step 2: plug-in (since we just shown how to estimate V(X) in the previous slide)

$$\hat{V}(\bar{X}) = \frac{\hat{V}(X)}{n}$$

- Plug-in estimator is an unbiased and consistent estimator this time (proof omitted)
- $\sqrt{\hat{V}(\bar{X})}$ is called standard error.

• Estimation is about getting the (point) estimate $\hat{\theta}$ of quantity of interest θ

- Estimation is about getting the (point) estimate $\hat{\theta}$ of quantity of interest θ
 - With unbiased estimator, $\hat{\theta}$ on average equals to θ

- Estimation is about getting the (point) estimate $\hat{\theta}$ of quantity of interest θ
 - With unbiased estimator, $\hat{\theta}$ on average equals to θ
 - With consistent estimator, $\hat{\theta}$ converges to θ with more and more sample data

- Estimation is about getting the (point) estimate $\hat{\theta}$ of quantity of interest θ
 - With unbiased estimator, $\hat{\theta}$ on average equals to θ
 - With consistent estimator, $\hat{\theta}$ converges to θ with more and more sample data
 - But in reality, we have only one $\hat{\theta}$

- Estimation is about getting the (point) estimate $\hat{\theta}$ of quantity of interest θ
 - With unbiased estimator, $\hat{\theta}$ on average equals to θ
 - With consistent estimator, $\hat{\theta}$ converges to θ with more and more sample data
 - But in reality, we have only one $\hat{ heta}$
- Inference is about how certain we are about the estimate $\hat{ heta}$

Central Limit Theorem

• Let X_1, \cdots, X_n be i.i.d. random samples of random variable X, with finite $E(X) = \mu$ and $V(X) = \sigma^2 > 0$

Definition (Standardized Sample Mean)
$$Z = \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma}$$

Theorem (Central Limit Theorem)

Central Limit Theorem

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X, with finite $E(X) = \mu$ and $V(X) = \sigma^2 > 0$

Definition (Standardized Sample Mean)

$$Z = \frac{\sqrt{n}(X-\mu)}{\sigma}$$

• E(Z) = 0; $V(Z) = \sigma(Z) = 1$; hence the name standardized sample mean.

Theorem (Central Limit Theorem)

Central Limit Theorem

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X, with finite $E(X) = \mu$ and $V(X) = \sigma^2 > 0$

Definition (Standardized Sample Mean)

$$Z = \frac{\sqrt{n}(X-\mu)}{\sigma}$$

• E(Z) = 0; $V(Z) = \sigma(Z) = 1$; hence the name standardized sample mean.

Theorem (Central Limit Theorem)

• The distribution of Z converges to a standard normal distribution ($Z \sim N(0,1)$), as $n \to \infty$.

Central Limit Theorem

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X, with finite $E(X) = \mu$ and $V(X) = \sigma^2 > 0$

Definition (Standardized Sample Mean)

$$Z = \frac{\sqrt{n}(X-\mu)}{\sigma}$$

• E(Z) = 0; $V(Z) = \sigma(Z) = 1$; hence the name standardized sample mean.

Theorem (Central Limit Theorem)

- The distribution of Z converges to a standard normal distribution ($Z \sim N(0,1)$), as $n \to \infty$.
- Or equivalently, $\sqrt{n}(\bar{X} \mu) \sim N(0, \sigma^2)$

Central Limit Theorem

 Question: what's the difference between Law of Large Numbers and the Central Limit Theorem?

- Question: what's the difference between Law of Large Numbers and the Central Limit Theorem?
- Answer:

- Question: what's the difference between Law of Large Numbers and the Central Limit Theorem?
- Answer:
 - Law of large numbers suggests that sample mean converges to population mean. It's a property of the sample mean.

- Question: what's the difference between Law of Large Numbers and the Central Limit Theorem?
- Answer:
 - Law of large numbers suggests that sample mean converges to population mean. It's a property of the sample mean.
 - Central limit theorem suggest that (sample mean population mean) roughly follows a normal distribution centered around 0.
 It's a property of the distribution of sample mean

- Question: what's the difference between Law of Large Numbers and the Central Limit Theorem?
- Answer:
 - Law of large numbers suggests that sample mean converges to population mean. It's a property of the sample mean.
 - Central limit theorem suggest that (sample mean population mean) roughly follows a normal distribution centered around 0.
 It's a property of the distribution of sample mean
- CLT is a stronger statement that LLN.

- Question: what's the difference between Law of Large Numbers and the Central Limit Theorem?
- Answer:
 - Law of large numbers suggests that sample mean converges to population mean. It's a property of the sample mean.
 - Central limit theorem suggest that (sample mean population mean) roughly follows a normal distribution centered around 0.
 It's a property of the distribution of sample mean
- CLT is a stronger statement that LLN.
- Sampling distribution of the sample mean will tend to be approximately normal, even when the population distribution is not distributed normally;

- Question: what's the difference between Law of Large Numbers and the Central Limit Theorem?
- Answer:
 - Law of large numbers suggests that sample mean converges to population mean. It's a property of the sample mean.
 - Central limit theorem suggest that (sample mean population mean) roughly follows a normal distribution centered around 0.
 It's a property of the distribution of sample mean
- CLT is a stronger statement that LLN.
- Sampling distribution of the sample mean will tend to be approximately normal, even when the population distribution is not distributed normally;
- Thus, central limit theorem provides a general way for us to infer the uncertainty around our estimate of sample mean (and other quantities)

 Central Limit Theorem means that sampling distribution of the sample mean will tend to be approximately normal

Definition (Asymptotic Normal Estimator)

An estimator $\hat{\theta}$ is an asymptotically normal estimator, if $\sqrt{n}(\hat{\theta}-\theta)\sim N(0,\phi^2)$ for finite $\phi>0$, as $n\to\infty$.

- Central Limit Theorem means that sampling distribution of the sample mean will tend to be approximately normal
- This is another desirable property of estimator, called asymptotic normal

Definition (Asymptotic Normal Estimator)

An estimator $\hat{\theta}$ is an asymptotically normal estimator, if $\sqrt{n}(\hat{\theta}-\theta) \sim N(0,\phi^2)$ for finite $\phi > 0$, as $n \to \infty$.

- Central Limit Theorem means that sampling distribution of the sample mean will tend to be approximately normal
- This is another desirable property of estimator, called asymptotic normal

Definition (Asymptotic Normal Estimator)

An estimator $\hat{\theta}$ is an asymptotically normal estimator, if $\sqrt{n}(\hat{\theta}-\theta)\sim N(0,\phi^2)$ for finite $\phi>0$, as $n\to\infty$.

Many estimators you will learn in this course is asymptotically normal

- Central Limit Theorem means that sampling distribution of the sample mean will tend to be approximately normal
- This is another desirable property of estimator, called asymptotic normal

Definition (Asymptotic Normal Estimator)

An estimator $\hat{\theta}$ is an asymptotically normal estimator, if $\sqrt{n}(\hat{\theta}-\theta) \sim N(0,\phi^2)$ for finite $\phi > 0$, as $n \to \infty$.

- Many estimators you will learn in this course is asymptotically normal
 - But not all estimators have this good property

- Central Limit Theorem means that sampling distribution of the sample mean will tend to be approximately normal
- This is another desirable property of estimator, called asymptotic normal

Definition (Asymptotic Normal Estimator)

An estimator $\hat{\theta}$ is an asymptotically normal estimator, if $\sqrt{n}(\hat{\theta} - \theta) \sim N(0, \phi^2)$ for finite $\phi > 0$, as $n \to \infty$.

- Many estimators you will learn in this course is asymptotically normal
 - But not all estimators have this good property
- The good thing about asymptotically normal estimator is that we can obtain confidence interval easily

Definition (Confidence interval)

A α confidence interval for quantity of interest θ is an estimated interval that covers the true value of θ with at least α probability

• Example: in social sciences, we often uses $\alpha = 95\%$ confidence interval that looks like $[\theta_{min}, \theta_{max}]$. The probability that the true θ falls between $[\theta_{min}, \theta_{max}]$ is at least 95%.

Definition (Confidence interval)

A α confidence interval for quantity of interest θ is an estimated interval that covers the true value of θ with at least α probability

- Example: in social sciences, we often uses $\alpha = 95\%$ confidence interval that looks like $[\theta_{min}, \theta_{max}]$. The probability that the true θ falls between $[\theta_{min}, \theta_{max}]$ is at least 95%.
- Note 1: wide confidence intervals are valid, but not useful

Definition (Confidence interval)

A α confidence interval for quantity of interest θ is an estimated interval that covers the true value of θ with at least α probability

- Example: in social sciences, we often uses $\alpha = 95\%$ confidence interval that looks like $[\theta_{min}, \theta_{max}]$. The probability that the true θ falls between $[\theta_{min}, \theta_{max}]$ is at least 95%.
- Note 1: wide confidence intervals are valid, but not useful
 - e.g., θ is the average height of HKers; [0, 2.5] is a valid confidence interval but it is not very useful.

Definition (Confidence interval)

A α confidence interval for quantity of interest θ is an estimated interval that covers the true value of θ with at least α probability

- Example: in social sciences, we often uses $\alpha = 95\%$ confidence interval that looks like $[\theta_{min}, \theta_{max}]$. The probability that the true θ falls between $[\theta_{min}, \theta_{max}]$ is at least 95%.
- Note 1: wide confidence intervals are valid, but not useful
 - e.g., θ is the average height of HKers; [0, 2.5] is a valid confidence interval but it is not very useful.
- Note 2: confidence interval does not need to be symmetric

A normal approximation-based confidence interval for $\boldsymbol{\theta}$ can be estimated by:

$$\left(\hat{\theta} - z_{\frac{1+\alpha}{2}}\sqrt{\hat{V}(\hat{\theta})}, \hat{\theta} + z_{\frac{1+\alpha}{2}}\sqrt{\hat{V}(\hat{\theta})}\right)$$

 Intuition: the standarized sample mean follows a standard normal distribution, given the Central Limit Theorem.

$$\left(\hat{\theta} - z_{\frac{1+\alpha}{2}}\sqrt{\hat{V}(\hat{\theta})}, \hat{\theta} + z_{\frac{1+\alpha}{2}}\sqrt{\hat{V}(\hat{\theta})}\right)$$

- Intuition: the standarized sample mean follows a standard normal distribution, given the Central Limit Theorem.
- z is the quantile function of a standard normal distribution

$$\left(\hat{\theta} - z_{\frac{1+\alpha}{2}}\sqrt{\hat{V}(\hat{\theta})}, \hat{\theta} + z_{\frac{1+\alpha}{2}}\sqrt{\hat{V}(\hat{\theta})}\right)$$

- Intuition: the standarized sample mean follows a standard normal distribution, given the Central Limit Theorem.
- z is the quantile function of a standard normal distribution

•
$$\alpha = 0.95$$
; $z_{0.975} = 1.96$

$$\left(\hat{\theta} - z_{\frac{1+\alpha}{2}}\sqrt{\hat{V}(\hat{\theta})}, \hat{\theta} + z_{\frac{1+\alpha}{2}}\sqrt{\hat{V}(\hat{\theta})}\right)$$

- Intuition: the standarized sample mean follows a standard normal distribution, given the Central Limit Theorem.
- z is the quantile function of a standard normal distribution
 - $\alpha = 0.95$; $z_{0.975} = 1.96$
 - $\alpha = 0.99$; $z_{0.995} = 2.58$

$$\left(\hat{\theta} - z_{\frac{1+\alpha}{2}}\sqrt{\hat{V}(\hat{\theta})}, \hat{\theta} + z_{\frac{1+\alpha}{2}}\sqrt{\hat{V}(\hat{\theta})}\right)$$

- Intuition: the standarized sample mean follows a standard normal distribution, given the Central Limit Theorem.
- z is the quantile function of a standard normal distribution
 - $\alpha = 0.95$; $z_{0.975} = 1.96$
 - $\alpha = 0.99$; $z_{0.995} = 2.58$
- Normal Approximation-based Confidence Interval is valid for asymptotically normal estimators

Illustration

 Steps to estimate the Normal Approximation-based Confidence Interval for sample mean in a given sample

$$\left(\bar{X}-z_{\frac{1+\alpha}{2}}\sqrt{\hat{V}(\bar{X})},\bar{X}+z_{\frac{1+\alpha}{2}}\sqrt{\hat{V}(\bar{X})}\right)$$

$$\left(\bar{X}-1.96\sqrt{\hat{V}(\bar{X})},\bar{X}+1.96\sqrt{\hat{V}(\bar{X})}\right)$$

- Steps to estimate the Normal Approximation-based
 Confidence Interval for sample mean in a given sample
- Step 1: calculate sample mean \bar{X} and sampling variance of the sample mean $\hat{V}(\bar{X})$

$$\left(\bar{X}-z_{\frac{1+\alpha}{2}}\sqrt{\hat{V}(\bar{X})},\bar{X}+z_{\frac{1+\alpha}{2}}\sqrt{\hat{V}(\bar{X})}\right)$$

$$\left(\bar{X}-1.96\sqrt{\hat{V}(\bar{X})},\bar{X}+1.96\sqrt{\hat{V}(\bar{X})}\right)$$

- Steps to estimate the Normal Approximation-based
 Confidence Interval for sample mean in a given sample
- Step 1: calculate sample mean \bar{X} and sampling variance of the sample mean $\hat{V}(\bar{X})$
- Step 2: construct confidence interval as

$$\left(ar{X}-z_{rac{1+lpha}{2}}\sqrt{\hat{V}(ar{X})},ar{X}+z_{rac{1+lpha}{2}}\sqrt{\hat{V}(ar{X})}
ight)$$

$$\left(\bar{X}-1.96\sqrt{\hat{V}(\bar{X})},\bar{X}+1.96\sqrt{\hat{V}(\bar{X})}\right)$$

- Steps to estimate the Normal Approximation-based Confidence Interval for sample mean in a given sample
- Step 1: calculate sample mean \bar{X} and sampling variance of the sample mean $\hat{V}(\bar{X})$
- Step 2: construct confidence interval as

$$\left(ar{X} - z_{rac{1+lpha}{2}}\sqrt{\hat{V}(ar{X})}, ar{X} + z_{rac{1+lpha}{2}}\sqrt{\hat{V}(ar{X})}
ight)$$

• E.g., for 95% confidence interval

$$\left(\bar{X}-1.96\sqrt{\hat{V}(\bar{X})},\bar{X}+1.96\sqrt{\hat{V}(\bar{X})}\right)$$

 Normal Approximation is not the only way to construct valid confidence intervals

- Normal Approximation is not the only way to construct valid confidence intervals
 - Reason 1: it only works for asymptotic normal estimator

- Normal Approximation is not the only way to construct valid confidence intervals
 - Reason 1: it only works for asymptotic normal estimator
 - Reason 2: you have to know what $\hat{V}(\bar{X})$.

- Normal Approximation is not the only way to construct valid confidence intervals
 - Reason 1: it only works for asymptotic normal estimator
 - Reason 2: you have to know what $\hat{V}(\bar{X})$.
- The Bootstrap is more general method to construct confidence intervals; one of the most important modern statistical concept (Efron, 1979)

- Normal Approximation is not the only way to construct valid confidence intervals
 - Reason 1: it only works for asymptotic normal estimator
 - Reason 2: you have to know what $\hat{V}(\bar{X})$.
- The Bootstrap is more general method to construct confidence intervals; one of the most important modern statistical concept (Efron, 1979)
 - Drawback of Bootstrap: it's a data-driven method; slow; no analytical solutions.

Bootstrap procedures

Assume we already have X_1, \dots, X_n be i.i.d. random samples of random variable X). We are interested in estimating a α confidence interval for a population quantity θ

- 1. Take a with replacement sample of size n from X_1, \dots, X_n
- 2. Calculate the sample analog of θ
- 3. Repeat 1 and 2 for m times. We end up having m estimates of θ , $(\hat{\theta}_1, \dots, \hat{\theta}_m)$
- 4. Take the $\frac{1-\alpha}{2}$ and $\frac{1+\alpha}{2}$ quantile of the values $(\hat{\theta}_1, \dots, \hat{\theta}_m)$. These two quantiles give us the bootstrap confidence intervals.

Confidence Interval: Interpretations

• Interpretating confidence intervals carefully

Confidence Interval: Interpretations

- Interpretating confidence intervals carefully
- a 95% confidence interval $[\theta_{min}, \theta_{max}]$ contains the population quantity θ with at least 95% probability.

- Interpretating confidence intervals carefully
- a 95% confidence interval $[\theta_{min}, \theta_{max}]$ contains the population quantity θ with at least 95% probability.
- In reality, we are estimating confidence intervals $[\theta_{min}, \theta_{max}]$.

- Interpretating confidence intervals carefully
- a 95% confidence interval $[\theta_{min}, \theta_{max}]$ contains the population quantity θ with at least 95% probability.
- In reality, we are estimating confidence intervals $[\theta_{\min}, \theta_{\max}]$.
- How should we interpret 95% estimated confidence interval $[\hat{\theta}_{min}, \hat{\theta}_{max}]$ then?

- Interpretating confidence intervals carefully
- a 95% confidence interval $[\theta_{min}, \theta_{max}]$ contains the population quantity θ with at least 95% probability.
- In reality, we are estimating confidence intervals $[\theta_{min}, \theta_{max}]$.
- How should we interpret 95% estimated confidence interval $[\hat{\theta}_{min}, \hat{\theta}_{max}]$ then?
 - Through repeated samples (each time we sample n units), 95% of estimated confidence intervals would contain the population quantity θ

- Interpretating confidence intervals carefully
- a 95% confidence interval $[\theta_{min}, \theta_{max}]$ contains the population quantity θ with at least 95% probability.
- In reality, we are estimating confidence intervals $[\theta_{min}, \theta_{max}]$.
- How should we interpret 95% estimated confidence interval $[\hat{\theta}_{min}, \hat{\theta}_{max}]$ then?
 - Through repeated samples (each time we sample n units), 95% of estimated confidence intervals would contain the population quantity θ
 - If we know $[\theta_{min}, \theta_{max}]$, we do not need repeated sampling

- Interpretating confidence intervals carefully
- a 95% confidence interval $[\theta_{min}, \theta_{max}]$ contains the population quantity θ with at least 95% probability.
- In reality, we are estimating confidence intervals $[\theta_{min}, \theta_{max}]$.
- How should we interpret 95% estimated confidence interval $[\hat{\theta}_{min}, \hat{\theta}_{max}]$ then?
 - Through repeated samples (each time we sample n units), 95% of estimated confidence intervals would contain the population quantity θ
 - If we know $[\theta_{min}, \theta_{max}]$, we do not need repeated sampling
 - note that in reality we only have one sample (of *n* units)

• Now let us move on to two variable setting

- Now let us move on to two variable setting
- Given two variables Y and X, and we observed X takes the value x.

- Now let us move on to two variable setting
- Given two variables Y and X, and we observed X takes the value x.
- A prediction of Y given X is a function g(X) that approximate Y

- Now let us move on to two variable setting
- Given two variables Y and X, and we observed X takes the value x.
- A prediction of Y given X is a function g(X) that approximate Y
- For instance, E(Y|X) is a prediction of Y given X

- Now let us move on to two variable setting
- Given two variables Y and X, and we observed X takes the value x.
- A prediction of Y given X is a function g(X) that approximate Y
- For instance, E(Y|X) is a prediction of Y given X
- Again, there are tons of ways to predict Y given X (e.g., median of Y given X)

Prediction (example)

• Predicting son's height with father's height

• If g(X) = E(Y|X), that is, we use the conditional expectation as the prediction

Property 1: $E(\epsilon) = 0$.

$$E(\epsilon) = E[Y - E(Y|X)] \tag{17}$$

$$= E(Y) - E[E(Y|X)] \tag{18}$$

$$= E(Y) - E(Y)$$
, (Law of Iterated Expectation) (19)

$$=0 (20)$$

- If g(X) = E(Y|X), that is, we use the conditional expectation as the prediction
- The prediction error is $\epsilon = Y E(Y|X)$

Property 1: $E(\epsilon) = 0$.

$$E(\epsilon) = E[Y - E(Y|X)] \tag{17}$$

$$= E(Y) - E[E(Y|X)] \tag{18}$$

$$= E(Y) - E(Y)$$
, (Law of Iterated Expectation) (19)

$$=0 (20)$$

- If g(X) = E(Y|X), that is, we use the conditional expectation as the prediction
- The prediction error is $\epsilon = Y E(Y|X)$
- This prediction error has some good properties

Property 1: $E(\epsilon) = 0$.

$$E(\epsilon) = E[Y - E(Y|X)] \tag{17}$$

$$= E(Y) - E[E(Y|X)] \tag{18}$$

$$= E(Y) - E(Y)$$
, (Law of Iterated Expectation) (19)

$$=0 (20)$$

Conditional Expectation as Prediction (cont'd)

Property 2: $E(\epsilon|X) = 0$.

$$E(\epsilon|X) = E[Y - E(Y|X)|X]$$
(21)
= $E(Y|X) - E[E(Y|X)|X]$ (22)
= $E(Y|X) - E(Y|X)$, (Law of Iterated Expectation) (23)
= 0 (24)

 Property 2 means that on conditional on X, the mean of prediction error is 0

- Property 2 means that on conditional on X, the mean of prediction error is 0
- This property is also called mean independent because $E(\epsilon|X) = E(\epsilon) = 0$

- Property 2 means that on conditional on X, the mean of prediction error is 0
- This property is also called mean independent because $E(\epsilon|X) = E(\epsilon) = 0$
 - That is, we only assume that on average X and error are independent

- Property 2 means that on conditional on X, the mean of prediction error is 0
- This property is also called mean independent because $E(\epsilon|X) = E(\epsilon) = 0$
 - That is, we only assume that on average X and error are independent
 - Recall independence means that $P(\epsilon|X) = P(\epsilon)$

• Independent: P(XY) = P(X)P(Y)

- Independent: P(XY) = P(X)P(Y)
- Mean independent: P(Y|X) = E(Y)

- Independent: P(XY) = P(X)P(Y)
- Mean independent: P(Y|X) = E(Y)
- Uncorrelated: E(XY) = E(X)E(Y)

- Independent: P(XY) = P(X)P(Y)
- Mean independent: P(Y|X) = E(Y)
- Uncorrelated: E(XY) = E(X)E(Y)
- In general, we have the following relationship (the reverse is not true):

• Property 3 says g(X) and error is uncorrelated; it can be derived from Property 2 (mean independence) and Property 1 $(E(\epsilon)=0)$

Property 3: $E(g(X)\epsilon) = 0$, for any g(X).

$$E[g(X)\epsilon] = E[g(X)(Y - E(Y|X))]$$

$$= E[g(X)Y - g(X)E(Y|X)]$$

$$= E[g(X)Y] - E[g(X)E(Y|X)]$$

$$= E[g(X)Y] - E[E(g(X)Y|X)], (g(X) \text{ is a constant given } X)$$

$$(28)$$

$$= E[g(X)Y] - E[g(X)Y], (\text{Law of Iterated Expectation})$$

$$(29)$$

$$= 0$$

$$(30)$$

• We have seen that E(Y|X) is a good guess for Y:

- We have seen that E(Y|X) is a good guess for Y:
 - Property 1: mean error is 0

- We have seen that E(Y|X) is a good guess for Y:
 - Property 1: mean error is 0
 - Property 2: error and prediction g(X) is mean independent

- We have seen that E(Y|X) is a good guess for Y:
 - Property 1: mean error is 0
 - Property 2: error and prediction g(X) is mean independent
 - Property 3: error and prediction g(X) is uncorrelated

- We have seen that E(Y|X) is a good guess for Y:
 - Property 1: mean error is 0
 - Property 2: error and prediction g(X) is mean independent
 - Property 3: error and prediction g(X) is uncorrelated
- But Mean error $E(\epsilon) = E(Y g(X))$ has one drawback: insensitive to the sign of error

- We have seen that E(Y|X) is a good guess for Y:
 - Property 1: mean error is 0
 - Property 2: error and prediction g(X) is mean independent
 - Property 3: error and prediction g(X) is uncorrelated
- But Mean error $E(\epsilon) = E(Y g(X))$ has one drawback: insensitive to the sign of error
- e.g., Y = 0; our guesses g(X) are -100, 100, -100, 100

- We have seen that E(Y|X) is a good guess for Y:
 - Property 1: mean error is 0
 - Property 2: error and prediction g(X) is mean independent
 - Property 3: error and prediction g(X) is uncorrelated
- But Mean error $E(\epsilon) = E(Y g(X))$ has one drawback: insensitive to the sign of error
- e.g., Y = 0; our guesses g(X) are -100, 100, -100, 100
 - Intuitively these guesses are not good

- We have seen that E(Y|X) is a good guess for Y:
 - Property 1: mean error is 0
 - Property 2: error and prediction g(X) is mean independent
 - Property 3: error and prediction g(X) is uncorrelated
- But Mean error $E(\epsilon) = E(Y g(X))$ has one drawback: insensitive to the sign of error
- e.g., Y = 0; our guesses g(X) are -100, 100, -100, 100
 - Intuitively these guesses are not good
 - But $E(\epsilon) = 0$

• Mean Absolute Error (MAE): E[|Y - g(X)|]

- Mean Absolute Error (MAE): E[|Y g(X)|]
- Mean Square Error (MSE): $E[(Y g(X))^2]$

- Mean Absolute Error (MAE): E[|Y g(X)|]
- Mean Square Error (MSE): $E[(Y g(X))^2]$
- MSE make sure that you get penalized more, if the absolute error is large.

- Mean Absolute Error (MAE): E[|Y g(X)|]
- Mean Square Error (MSE): $E[(Y g(X))^2]$
- MSE make sure that you get penalized more, if the absolute error is large.
 - MSE is perhaps the most widely used error metric

MAE and MSE

- Mean Absolute Error (MAE): E[|Y g(X)|]
- Mean Square Error (MSE): $E[(Y g(X))^2]$
- MSE make sure that you get penalized more, if the absolute error is large.
 - MSE is perhaps the most widely used error metric
- Both MAE and MSE ≥ 0; a good estimation thus should minimize MAE or MSE

• There are some even better properties of E(Y|X) that make it the best predictor, given Mean Squared Error

Theorem (Conditional Expectation as the Best Predictor) Conditional Expectation Function E(Y|X) is the best predictor of Y because it minimizes Mean Squared Error

• There are some even better properties of E(Y|X) that make it the best predictor, given Mean Squared Error

Theorem (Conditional Expectation as the Best Predictor)

Conditional Expectation Function E(Y|X) is the best predictor of Y because it minimizes Mean Squared Error

• We have two predictions for Y, E(Y|X) and any other g(X)

• There are some even better properties of E(Y|X) that make it the best predictor, given Mean Squared Error

Theorem (Conditional Expectation as the Best Predictor)

Conditional Expectation Function E(Y|X) is the best predictor of Y because it minimizes Mean Squared Error

- We have two predictions for Y, E(Y|X) and any other g(X)
- We want to show that the MSE of any other g(X) not smaller than the MSE of E(Y|X)

• There are some even better properties of E(Y|X) that make it the best predictor, given Mean Squared Error

Theorem (Conditional Expectation as the Best Predictor)

Conditional Expectation Function E(Y|X) is the best predictor of Y because it minimizes Mean Squared Error

- We have two predictions for Y, E(Y|X) and any other g(X)
- We want to show that the MSE of any other g(X) not smaller than the MSE of E(Y|X)
- In math term: $E[(Y g(X))^2] \ge E[(Y E(Y|X))^2]$

• There are some even better properties of E(Y|X) that make it the best predictor, given Mean Squared Error

Theorem (Conditional Expectation as the Best Predictor)

Conditional Expectation Function E(Y|X) is the best predictor of Y because it minimizes Mean Squared Error

- We have two predictions for Y, E(Y|X) and any other g(X)
- We want to show that the MSE of any other g(X) not smaller than the MSE of E(Y|X)
- In math term: $E[(Y g(X))^2] \ge E[(Y E(Y|X))^2]$
- Hint: use the conditional expectation error $\epsilon = Y E(Y|X)$

Conditional Expectation as the Best Predictor.

$$E[(Y - g(X))^{2}] = E[(\epsilon + E(Y|X) - g(X))^{2}]$$
(31)

$$= E[\epsilon^{2} + 2\epsilon(E(Y|X) - g(X)) + (E(Y|X) - g(X))^{2}]$$
(32)

$$= E[\epsilon^{2}] + 2E[\epsilon(E(Y|X) - g(X))] + E[(E(Y|X) - g(X))^{2}$$
(33)

$$= E[\epsilon^{2}] + E[(E(Y|X) - g(X))^{2}], (Property 3)$$
(34)

$$\geq E[\epsilon^{2}]$$
(35)

$$= E[(Y - E(Y|X))^{2}]$$
(36)

 Note that this says that the conditional expectation gives an upper bound on how well we can make a guess of Y based on X, if we want to minimize MSE

- Note that this says that the conditional expectation gives an upper bound on how well we can make a guess of Y based on X, if we want to minimize MSE
- If the conditional expectation itself is not a very good predictor, we can still make lots of errors

- Note that this says that the conditional expectation gives an upper bound on how well we can make a guess of Y based on X, if we want to minimize MSE
- If the conditional expectation itself is not a very good predictor, we can still make lots of errors
 - But in this case, other predictions can only be worse

Population/sample

- Population/sample
- Estimator; three good properties of estimator

- Population/sample
- Estimator; three good properties of estimator
- Inference; confidence interval; normal approximation vs. Bootstrap

- Population/sample
- Estimator; three good properties of estimator
- Inference; confidence interval; normal approximation vs. Bootstrap
- Conditional expectation is the best predictor in minimizing MSE

 Aronow, Peter M., and Benjamin T. Miller. Foundations of Agnostic Statistics. Cambridge University Press, 2019. (Chapter 2 - 4)

- Aronow, Peter M., and Benjamin T. Miller. Foundations of Agnostic Statistics. Cambridge University Press, 2019. (Chapter 2 - 4)
- Joshua D. Angrist and Jorn-Steffen Pischke. *Mostly Harmless Econometrics: An Empiricists Companion*. Princeton University Press, 2009.

- Aronow, Peter M., and Benjamin T. Miller. Foundations of Agnostic Statistics. Cambridge University Press, 2019. (Chapter 2 - 4)
- Joshua D. Angrist and Jorn-Steffen Pischke. Mostly Harmless Econometrics: An Empiricists Companion. Princeton University Press, 2009.
 - Discuss Conditional expectation is the best predictor (Chapter 3.1)

- Aronow, Peter M., and Benjamin T. Miller. Foundations of Agnostic Statistics. Cambridge University Press, 2019. (Chapter 2 - 4)
- Joshua D. Angrist and Jorn-Steffen Pischke. Mostly Harmless Econometrics: An Empiricists Companion. Princeton University Press, 2009.
 - Discuss Conditional expectation is the best predictor (Chapter 3.1)
 - Motivated differently from Aronow and Miller