Lecture Notes for **Machine Learning in Python**

Professor Eric Larson **Basic Convolutional Neural Networks**

Logistics and Agenda

- Logistics
 - Wide/Deep due soon!
 - Remember: late turn in...
- · Agenda
 - Wide/Deep Finish Demo and Town Hall
 - Basic CNN architectures and Demo

Class Overview, by topic

Last Time:

- Deep refers to increasingly smaller hidden layers
- Embed into sparse representations via ReLU

Wide and Deep

"Finish"

Demo

10. Keras Wide and Deep.ipynb

The awful dataset:

Toy Census Data Example

Other tutorials:

https://www.tensorflow.org/tutorials/wide and deep

Town Hall, Wide and Deep Networks

When p < 0.05

Convolutional Neural Networks

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

Reminder: Convolution

$$\sum \left(\mathbf{I} \left[i \pm \frac{r}{2}, j \pm \frac{c}{2} \right] \odot \mathbf{k} \right) = \mathbf{O}[i, j] \quad \text{output image at pixel i,j}$$

input image at $r \times c$ range of pixels centered in i,j

kernel of size, $r \times c$ usually r=c

0	0	0	0	0	0	0	0	0
0	1	2	3	4	12	9	8	0
0	5	2	3	4	12	9	8	0
0	5	2	1	4	10	9	8	0
0	7	2	1	4	12	7	8	0
0	7	2	1	4	14	9	8	0
0	5	2	3	4	12	7	8	0
0	5	2	1	4	12	9	8	0
0	0	0	0	0	0	0	0	0

kernel filter, k					
1	2	1			
2	4	2			

3x3

20	21	36		 	
			•••	 	
				 	:

input image, I

output image, O

Reminder: Convolution

Observe: Can also express the convolution as matrix multiplication with a reshaped input and filter!

What we did before

What we did before

take normalized histogram at point u,v

$$\widetilde{\mathbf{h}}_{\Sigma}(u,v) = \left[\mathbf{G}_{1}^{\Sigma}(u,v), \dots, \mathbf{G}_{H}^{\Sigma}(u,v)\right]^{\top}$$

$$\mathcal{D}(u_0, v_0) =$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(u_0,v_0),$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_1(u_0, v_0, R_1)), \cdots, \widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_T(u_0, v_0, R_1)),$$

$$\widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_1(u_0,v_0,R_2)),\cdots,\widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_T(u_0,v_0,R_2)),$$

Tola et al. "Daisy: An efficient dense descriptor applied to widebaseline stereo." Pattern Analysis and Machine Intelligence, IEEE Transactions

Anatomy of a convolutional network

Blue Tensors: Outputs of Each Layer

Learned Params: Weights in Each Filter and Fully Connected Layer

Convolution in a CNN

CNNs: Putting it together

One channel output

CNN Overview

- Initial layer(s):
 - convolution
 - activation
 - pooling

- 128x128x3 64 128 128 1x1x4096 1x1x4096
- Each pooling layer can make the input image "smaller"
 - · allows for "Information Distillation"
 - · less dependence on exact pixels
- Final layers are densely connected
 - typically multi-layer perceptrons

Simple Example: From Fully Connected to CNN

If image is 9x9, and each fully connected layer is 20 hidden neurons wide, how many parameters are in this NN (ignore bias)?

$$(K^2 \times 20) + (20 \times 10) = 200 + 20 K^2$$

for
$$9x9 = 200 + 20x9^2 = 1,820$$
 parameters

Simple Example: From Fully Connected to CNN

Simple Example: From Fully Connected to CNN

CNN gradient

Last Time: CNNs, Putting it together

Structure of Each Tensor: Channels x Rows x Columns

Reminder: Convolution

Gradient of Convolution

$$\frac{\partial L}{\partial X} = \frac{\partial L}{\partial O} \frac{\partial O}{\partial X}$$
 for back propagation

$$\frac{\partial L}{\partial F} = \frac{\partial L}{\partial O} \frac{\partial O}{\partial F}$$
 for weight updates

$$O_{11} = X_{11}F_{11} + X_{12}F_{12} + X_{21}F_{21} + X_{22}F_{22}$$

Finding derivatives with respect to F_{11} , F_{12} , F_{21} and F_{22}

$$\frac{\partial \mathcal{O}_{11}}{\partial F_{11}} = \ \boldsymbol{X_{11}} \quad \frac{\partial \mathcal{O}_{11}}{\partial F_{12}} = \ \boldsymbol{X_{12}} \quad \frac{\partial \mathcal{O}_{11}}{\partial F_{21}} = \ \boldsymbol{X_{21}} \quad \frac{\partial \mathcal{O}_{11}}{\partial F_{22}} = \ \boldsymbol{X_{22}}$$

$$\frac{\partial L}{\partial \vec{r}_{11}} = \frac{\partial L}{\partial O_{1}} * \frac{\partial O_{1}}{\partial F_{11}} * \frac{\partial L}{\partial O_{2}} * \frac{\partial O_{2}}{\partial F_{11}} * \frac{\partial L}{\partial O_{2}} * \frac{\partial O_{2}}{\partial F_{11}} * \frac{\partial L}{\partial O_{2}} * \frac{\partial O_{2}}{\partial F_{11}}$$

$$\frac{\partial L}{\partial \vec{r}_{12}} = \frac{\partial L}{\partial O_{1}} * \frac{\partial O_{1}}{\partial F_{12}} * \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{2}}{\partial F_{22}} * \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{21}}{\partial F_{12}} * \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{12}}$$

$$\frac{\partial L}{\partial \vec{r}_{22}} = \frac{\partial L}{\partial O_{1}} * \frac{\partial O_{11}}{\partial F_{21}} * \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{22}}{\partial F_{21}} * \frac{\partial L}{\partial O_{21}} * \frac{\partial O_{22}}{\partial F_{21}} * \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{21}}$$

$$\frac{\partial L}{\partial \vec{r}_{22}} = \frac{\partial L}{\partial O_{1}} * \frac{\partial O_{11}}{\partial F_{22}} * \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{22}}{\partial F_{22}} * \frac{\partial L}{\partial O_{21}} * \frac{\partial O_{22}}{\partial F_{22}} * \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{22}}$$

$$\frac{\partial L}{\partial \vec{r}_{22}} = \frac{\partial L}{\partial O_{11}} * \frac{\partial O_{11}}{\partial F_{22}} * \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{22}}{\partial F_{22}} * \frac{\partial L}{\partial O_{21}} * \frac{\partial O_{22}}{\partial F_{22}} * \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{22}}$$

$$\frac{\partial L}{\partial I_{11}^{E}} = \frac{\partial L}{\partial O_{11}} * X_{11} + \frac{\partial L}{\partial O_{12}} * X_{12} + \frac{\partial L}{\partial O_{21}} * X_{21} + \frac{\partial L}{\partial O_{22}} * X_{22}$$

$$\frac{\partial L}{\partial I_{12}^{E}} = \frac{\partial L}{\partial O_{11}} * X_{12} + \frac{\partial L}{\partial O_{12}} * X_{13} + \frac{\partial L}{\partial O_{22}} * X_{22} + \frac{\partial L}{\partial O_{22}} * X_{23}$$

$$\frac{\partial L}{\partial I_{21}^{E}} = \frac{\partial L}{\partial O_{11}} * X_{21} + \frac{\partial L}{\partial O_{12}} * X_{22} + \frac{\partial L}{\partial O_{21}} * X_{31} + \frac{\partial L}{\partial O_{22}} * X_{32}$$

$$\frac{\partial L}{\partial I_{22}^{E}} = \frac{\partial L}{\partial O_{11}} * X_{22} + \frac{\partial L}{\partial O_{12}} * X_{23} + \frac{\partial L}{\partial O_{21}} * X_{32} + \frac{\partial L}{\partial O_{22}} * X_{33}$$

ðL

∂0,,

дL

 ∂O_{2n}

Filter updates

Sensitivity from next layer

ðL

дО.

дL

∂Q,

https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c

Input

Gradient of Convolution

$$\frac{\partial L}{\partial X} = \frac{\partial L}{\partial O} \frac{\partial O}{\partial X}$$
 for back propagation

$$\frac{\partial L}{\partial F} = \frac{\partial L}{\partial O} \frac{\partial O}{\partial F}$$

for weight updates

$$O_{11} = X_{11}F_{11} + X_{12}F_{12} + X_{21}F_{21} + X_{22}F_{22}$$

Differentiating with respect to X_{11} , X_{12} , X_{21} and X_{22}

$$\frac{\partial \textit{Q}_{11}}{\partial X_{11}} = \frac{\textbf{F}_{11}}{\partial X_{12}} - \frac{\partial \textit{Q}_{11}}{\partial X_{12}} = \frac{\partial \textit{Q}_{11}}{\partial X_{21}} = \frac{\partial \textit{Q}_{11}}{\partial X_{22}} = \frac{\partial \textit{Q}_{11}}{\partial X_{22}} = \frac{\partial \textit{Q}_{11}}{\partial X_{22}} = \frac{\partial \textit{Q}_{12}}{\partial X_{22}} = \frac{\partial \textit{Q}_{13}}{\partial X_{22}} = \frac{\partial \textit{Q}_{13}}{\partial X_{23}} = \frac{\partial \textit{Q}_{14}}{\partial X_{2$$

Similarly, we can find local gradients for O_{12} , O_{21} and O_{22}

∂L	∂L	∂L	/			
∂X_{ii}	∂X_{12}	∂X_{in}	/	F22	P.	
∂L	аL	∂L	= Full Convolution	P 22	F21	
∂X_{21}	ðΧ	∂X_{21}	Convolution	17	ID.	
θL	дL	ðΣ	l \	F 12	F 11	
∂X_{31}	∂X ₃₂	∂X_{33}	١ ١	Ro	tated	
				Filt	er	

New sensitivity

$$\frac{\partial L}{\partial X_{n}} = -\frac{\partial L}{\partial Q_{n}} * P_{n} -$$

$$\frac{\partial L}{\partial X_{n2}} = -\frac{\partial L}{\partial Q_{n1}} * F_{n2} + \frac{\partial L}{\partial Q_{n2}} * F_{n2}$$

$$\frac{\partial L}{\partial X_{_{12}}} = \frac{\partial L}{\partial B_{_{12}}} \cdot F_{_{12}}$$

$$\frac{\partial \underline{L}}{\partial X_{in}} = \frac{\partial \underline{L}}{\partial Q_{in}} \cdot F_{in} + \frac{\partial \underline{L}}{\partial Q_{in}} \cdot F_{in}$$

$$\frac{\partial \mathbf{L}}{\partial \mathbf{A}_{n}} = \frac{\partial \mathbf{L}}{\partial \mathbf{Q}_{n}} + \mathbf{P}_{n1} + \frac{\partial \mathbf{L}}{\partial \mathbf{Q}_{n}} + \mathbf{P}_{21} + \frac{\partial \mathbf{L}}{\partial \mathbf{Q}_{n}} + \mathbf{F}_{12} + \frac{\partial \mathbf{L}}{\partial \mathbf{Q}_{n}} + \mathbf{F}_{11}$$

$$\frac{\partial L}{\partial X_{xx}} = -\frac{\partial L}{\partial Q_{xx}} * F_{xx} + -\frac{\partial L}{\partial Q_{xx}} * F_{xx}$$

$$\frac{\partial L}{\partial X_0} = \frac{\partial L}{\partial Q_1} * F_{21}$$

$$-\frac{\partial L}{\partial X_{s_2}} = -\frac{\partial L}{\partial Q_{j_1}} \star F_{22} + \frac{\partial L}{\partial Q_{j_2}} \star F_{23}$$

$$\frac{\partial L}{\partial X_{g_2}} = -\frac{\partial L}{\partial Q_{g_2}} * F_{g_2}$$

F_{22}	F21
F 12	F ₁₁

	L
\	
1	

Sensitivity from next layer (zero padded)

0	0	0	0
0	<u>al</u>	<u>∂C</u> ∂O ₁₂	0
0	<u>aL</u> a021	<u>∂</u> L ∂0 ₂₂	0
0	0	0	0

https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c

Summary

CNN Gradient

- Takeaways:
 - Derivative of a convolutional layer is calculated through two additional convolutions
 - One for filter updates
 - One for calculating a new sensitivity
 - We need to run convolution fast in order to speed up both:
 - feedforward operations (inference and training)
 - back propagation (training)
- Another great resource:
 - https://becominghuman.ai/back-propagation-in-convolutionalneural-networks-intuition-and-code-714ef1c38199

Next Lecture

More CNN architectures and CNN history