Exercice 1.

1. À l'aide de l'algorithme d'Euclide, on a successivement :

$$405 = 351 \times 1 + 54$$
$$351 = 54 \times 6 + 27$$

$$54 = 27 \times 2 + 0$$

Le dernier reste non nul est 27 donc le pgcd de 351 et 405 est 27.

2. Si d est un diviseur commun de 351 et 405 alors d doit donc diviser leur pgcd donc d divise 27. Tous les diviseurs positifs de 27 donc : 1; 3; 9 et 27.

On en déduit alors que les diviseurs positifs communs de 351 et 405 sont 1; 3; 9 et 27.

Exercice 2.

1. Facile $\frac{b-a}{c-a}$ = i qui est un imaginaire pur.

2.
$$\frac{b-a}{c-a} = i \operatorname{donc} \frac{b-a}{c-a} = e^{i\frac{\pi}{2}}.$$

3. On a $\left| \frac{b-a}{c-a} \right| = \frac{AB}{AC} = 1$ donc AB = AC et le triangle ABC est isocèle en A.

De plus $\arg\left(\frac{b-a}{c-a}\right) = \arg(e^{i\frac{\pi}{2}}) = \frac{\pi}{2} [2\pi] \operatorname{donc}(\overrightarrow{AC}; \overrightarrow{AB}) = \frac{\pi}{2} [2\pi] \operatorname{ce} \operatorname{qui} \operatorname{prouve} \operatorname{que} \operatorname{le} \operatorname{triangle} ABC$ est également rectangle en A : il est donc rectangle isocèle en A.

Exercice 3.

1. On a $(1+i)^2 = 2i$ donc $(1+i)^4 = (2i)^2 = -4$.

2.
$$z^4 = -4 \iff \left(\frac{z}{1+i}\right)^4 = 1 \iff \frac{z_k}{1+i} = e^{i\frac{k\pi}{2}}, k \in [0; 3] \iff z_k = (1+i)e^{i\frac{k\pi}{2}}, k \in [0; 3].$$

— Si
$$k = 0$$
 on obtient $z = 1 + i$.

— Si
$$k = 1$$
 on obtient $z = -1 + i$.

— Si
$$k = 2$$
 on obtient $z = -1 - i$.

— Si
$$k = 3$$
 on obtient $z = 1 - i$.

D'où
$$S_{\mathbb{C}} = \{1 + i; -1 + i; -1 - i; 1 - i\}.$$

Exercice 4.

On pose $\omega = e^{i\frac{2\pi}{7}}$, $A = \omega + \omega^2 + \omega^4$ et $B = \omega^3 + \omega^5 + \omega^6$.

1. $1 + A + B = 1 + \omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6$.

Or, vu que $\omega \neq 0$ (somme de suite géométrique) :

$$1 + A + B = \frac{1 - \omega^7}{1 - \omega}$$
$$= \frac{1 - e^{2i\pi}}{1 - \omega}$$
$$= 0$$

De plus,

$$AB = (\omega + \omega^{2} + \omega^{4})(\omega^{3} + \omega^{5} + \omega^{6})$$

$$= \omega^{4} + \omega^{6} + \omega^{7} + \omega^{5} + \omega^{7} + \omega^{8} + \omega^{7} + \omega^{9} + \omega^{10}$$

$$= \omega^{4}(1 + \omega^{2} + \omega^{3} + \omega + \omega^{3} + \omega^{4} + \omega^{3} + \omega^{5} + \omega^{6})$$

$$= \omega^{4}(1 + A + B + 2\omega^{3}) \text{ vu que } 1 + A + B = 0$$

$$= 2\omega^{7}$$

$$= 2$$

2. On a AB = 2 et 1 + A + B = 0 donc B = -1 - A et donc A(-1 - A) = 2 soit $A^2 + A + 2 = 0$ qui est une équation du second degré dont le discriminant est $\Delta = -7 < 0$ donc cette équation a deux solutions complexes conjugués qui sont :

$$A_1 = \frac{-1 - \sqrt{7}i}{2}$$
 ou $A_2 = \frac{-1 + \sqrt{7}i}{2}$.

Or $A = \omega + \omega^2 + \omega^4$ donc $A = e^{i\frac{2\pi}{7}} + e^{i\frac{4\pi}{7}} + e^{i\frac{8\pi}{7}}$.

On a Im(A) =
$$\sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{4\pi}{7}\right) + \sin\left(\frac{8\pi}{7}\right)$$
.
Or $\sin\left(\frac{8\pi}{7}\right) = -\sin\left(\frac{\pi}{7}\right)$ donc Im(A) = $\sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{4\pi}{7}\right) - \sin\left(\frac{\pi}{7}\right)$.

La fonction sin étant croissante, positive sur $\left[0; \frac{\pi}{2}\right]$ et que $\frac{2\pi}{7}$ et $\frac{\pi}{7}$ sont des éléments de cet intervalle $\sin\left(\frac{2\pi}{7}\right) > \sin\left(\frac{\pi}{7}\right) > 0$ et enfin $\sin\left(\frac{4\pi}{7}\right) > 0$ vu que $\frac{4\pi}{7} \in \left]0; \pi\right[$ on a $\operatorname{Im}(A) > 0$.

Ainsi
$$A = \frac{-1 + \sqrt{7}i}{2}$$
 et $B = -1 - A = \frac{-1 - \sqrt{7}i}{2} = \overline{A}$.