11/22/2019	
	back to ch 10!
	Exceptions to the octet rule
	1. Odd e species (radicals)
	ex: NO
	5+6=11 :N-0:
	ey: NO $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
	9
	9 -6/3/3/4/ :N=0:
	7-3/4/
	* · · ·
	2. Electron déficient / incomplets octets.
	Be (4) ex: BeH2 H-Be-H
	B (6)
	/ H
	BH ₃ H-B-H
	BF ₃ (1+)
	3+"7+3=24e" :F:
	_6
	18 : F - B - F: : F + B + F: -18 -18 -18 -18 -18 -18 -18 -1
	- <u>18</u> ··· (-) ··
	= XPT: BF is ~ single bond in length!

Bond energies + AHrxn - When we break bonds - When we make bonds ATP = ADP - P. H20 = H0 - H ATP+ HO -> ADP+ Pi ADPZP; ADP-OH ADP-OH P:-H BREAK (costs E release E

Average Bond Energies

Bond	Bond Energy (kJ/mol)	Bond	Bond Energy (kJ/mol)	Bond	Bond Energy (kJ/mol)
H-H	436	N-N	163	Br—F	237
н-с	414	N=N	418	Br—Cl	218
H-N	389	N≡N	946	Br—Br	193
н-о	464	N-O	222	I—CI	208
H-S	368	N=0	590	I—Br	175
H-F	565	N-F	272	1—1	151
H-Cl	431	N-CI	200	Si—H	323
H—Br	364	N—Br	243	Si—Si	226
H—I	297	N-I	159	Si—C	301
c-c	347	0-0	142	s-o	265
C = C	611	0=0	498	Si=O	368
C≡C	837	O-F	190	s=o	523
C-N	305	o-cl	203	Si-Cl	464
C=N	615	0-I	234	s=s	418
C≡N	891	F-F	159	s-F	327
c-o	360	CI-F	253	s-cl	253
C=O	736*	CI—CI	243	S—Br	218
C≡O	1072			s-s	266
c-cl	339				
*799 in CO ₂					

Pearson

Copyright © 2020 Pearson Education, Inc. All Rights Reserved

88

Using Bond Energies to Estimate ΔH_{rxn}°

- The actual bond energy depends on the surrounding atoms and other factors.
- We often use average bond energies to estimate the ΔH_{rxn} .
 - Works best when all reactants and products in gas state
- Bond breaking is endothermic, ΔH(breaking) = +.
- Bond making is exothermic, $\Delta H(\text{making}) = -$.

Pearson

Copyright © 2020 Pearson Education, Inc. All Rights Reserved

89

(average)

(ologiage)
Bond Bond "energy"
(AH, KJ/mol)
$C-C \qquad 347$ $C=C \qquad 611$
C=C 611
N=N 946
N-H 389
H-H 436
Can use to predict Attran
How? AHren = Si Bonds broken @ Z bonds made
÷
endothermic exothermic
ex: $N_2(g) + 3H_2(g) \longrightarrow 2NH_2(g) \Rightarrow \Delta H_{orn} = ??$
→ H≠H → H
:N≠N: H>H -> H-N-H H-N-H
break HZH
break
mal mal mal
AHm = 1 x N=N + 3 x H-H] - 6 x N-H
= [946K] + 3mol x 436K] - [6mol x 389K]
= -80.KJ (xpt: -92KJ, 13%. essor)

ch 11
The effect of lp upon geom.
the of upon geom.
ex:
NH ₃
Lewis H-N-H -tetrahidal.
Lewis H-N-H tetaled
hewis H-N-H tetrahidad.
ideal: 109,50 H
real: 107°
e pair geom: tetrahedral
molecular geom: trigonal pyramidal N (where the atoms are) H ///// H.
Cooking the above on 11/1/1/4.
TWO ME A TOWN S ATC)
H