Patent Claims

- Method for the temperature management in a
 network (1) having a ring topology,
 - control devices (2) exchanging data by way of the network (1) by means of transmitting/receiving units (5),

characterized in that

- 10 the temperature is measured close to the transmitting/receiving unit (5) of at least one control device (2) and
 - as soon at the temperature at the transmitting/receiving unit (5) of the control device (2) exceeds a defined critical temperature T_{krit} ,
 - the transmitting/receiving unit (5) is switched off and
 - prompting requests to the network (1) on the part of the control units (2) are blocked.

20

25

15

- Method according to Claim 1, characterized in that
- as soon as the temperature of the transmitting/receiving unit (5) exceeds the defined critical temperature $T_{\rm krit}$, the control unit (2) is driven into an energy saving mode, in which
 - the prompting readiness mode of the control unit (2) and

- the temperature measurement close to the transmitting/receiving unit (5) of the control unit (2) are ensured.
- 5 3. Method according to Claim 1, characterized in that
 - the blocking of the prompting requests is
- as soon as, within a defined time period, the temperature of the transmitting/receiving unit (5) has fallen to a temperature below the defined critical temperature $T_{\rm krit}$ and below a defined threshold value temperature $T_{\rm th}$, the threshold value temperature $T_{\rm th}$ being below the critical temperature $T_{\rm krit}$.

15

- Method according to Claim 1, characterized in that
- when a defined temperature T_{inf} is reached which is below the defined critical temperature T_{krit} and above a defined threshold temperature T_{th} ,
- the additional control devices (2), the driver as well external servicing locations are informed of a possible overheating, and/or
 - preventive protective measures are taken.

25

20

5. Method according to Claim 4, characterized in that the preventive protective measures comprise

- activating the automatic air-conditioning system and/or
 - switching off heat sources and/or
 - activating heat protection devices and/or
- 5 activating an emergency running function of a control device which can be used without any network functionality.
 - 6. Method according to Claim 1,
- 10 characterized in that

20

- when the critical temperature T_{krit} is reached, the additional control devices (2) are notified, and
- after receiving this message, the additional control devices (2) switch off the transmitting/receiving units (5) or themselves.
 - 7. Method according to Claim 1, characterized in that the control device (2) is changed into a readiness mode or is switched off when the temperature of the transmitting/receiving unit (5) during a defined time period is above the critical temperature $T_{\rm krit}$ or is identical with the critical temperature $T_{\rm krit}$.
- 8. Method according to Claim 1, characterized in that

Attorney Docket No.: 095309.55962US

- 19 -

- the network (1) is designed as an optical databus network (1) with an electric prompting line, and

- the blocking of the prompting request takes
 place in that the prompting line is grounded.
- 9. Method according to Claim 1, characterized in that, when the critical temperature T_{krit} is reached, an error code is stored for diagnostic purposes.
- 10. Method according to Claim 1, characterized in that the critical temperature $T_{\rm krit}$ corresponds to the maximal operating temperature of the transmitting/receiving units.
 - 11. Databus system in ring topology
- having at least one control device (2) with a transmitting/receiving unit (5) which is used for
 coupling the control device to the databus (1),
 - having an analog-to-digital converter (7) for converting the analog sensor signals of a sensor (6) to digital measuring signals which are processed in the microcomputer (8) of a control device,
- 25 characterized in that
 - the sensor is a temperature sensor (6) positioned close to the transmitting/receiving unit (5),

- prompting devices for the databus and transmitting/receiving unit switch-off devices are present, and
- a device (8) is present which interacts with the prompting device, and the transmitting/receiving unit switch-off device and the digital temperature signal in order to switch-off the transmitting/receiving unit (5) and to block the prompting device when a defined critical temperature Tkrit is exceeded.
 - 12. Databus system according to Claim 11, characterized in that, when the defined critical temperature $T_{\rm krit}$ is exceeded, the device (8) switches the control device (2) into an energy saving mode in which the prompting readiness of the control device (2) as well as the temperature measurement at the transmitting/receiving unit (5) of the control device (2) are ensured.

20

15

- 13. Databus system according to Claim 11 or 12, characterized in that the device (8) is a software-and/or hardware-implemented program.
- 25 14. Databus system according to Claim 11 for use in a control device (2).