UNIVERSIDADES DE CASTILLA-LEÓN / EBAU – JULIO 2022 /ENUNCIADOS

CUESTIÓN 1.- Dados los elementos A (Z = 20), B (Z = 35), C (Z = 23) y D (Z = 39) responde a las siguientes cuestiones:

- a) Escribe sus configuraciones electrónicas ordenadas.
- b) Razona cual será el ión más estable de los elementos A y B.
- c) Explica el compuesto y tipo de enlace que tendría lugar entre los átomos de los elementos A y B e indica tres propiedades del compuesto.
- d) Define energía de ionización .Que elemento de los dados presenta la mayor energía de ionización? Explícalo razonadamente.

CUESTIÓN 2.- Se han obtenido los siguientes datos para la reacción $2A + B \rightarrow C$ a una determinada temperatura:

Experimento	$[A]o (mol \cdot L^{-1})$	B]o (mol \cdot L ⁻¹)	$vo(M \cdot s^{-1})$
1	0,2	0,2	$5,40 \cdot 10^{-3}$
2	0,4	0,2	$1,08 \cdot 10^{-2}$
3	0,4	0,4	$2,16 \cdot 10^{-2}$.

- a) Determina el orden de reacción respecto de cada uno de los reactivos, la ecuación de velocidad y la constante de velocidad incluyendo sus unidades.
 - b) Explica como afecta a la velocidad de la reacción un aumento de la temperatura del sistema.
- c) Podríamos aumentar la velocidad de reacción sin modificar la concentración de los reactivos y la temperatura? Justifica la respuesta.

PROBLEMA 3.- A cierta temperatura la constante K_c del equilibrio de disociación $PCl_5(g) \leftrightarrow PCl_3(g) + Cl_2(g)$ es $7.93 \cdot 10^{-3}$. En un recipiente de 3L se ponen 15 g de PCl_5 , 5 g de PCl_3 y 3 g de PCl_3 .

- a) Determina el sentido de la reacción química en las condiciones dadas.
- b) Determina las concentraciones molares de las especies en el equilibrio.

DATOS: Ar (Cl) = 35,5 u; Ar (P) = 31 u; R = 0,082 atm \cdot L \cdot mol⁻¹ \cdot K⁻¹.

Resultado: a) Se desplaza a la derecha; b) $[PCl_5] = 0.023 \text{ M}$; $[PCl_3] = 0.0126 \text{ M}$; $[Cl_2] = 0.0146 \text{ M}$.

PROBLEMA 4.- Se tiene 50 mL de una disolución 0,2 M de ácido metanoico, ácido débil, de $Ka = 1,7 \cdot 10^{-4}$.

- a) Calcula el pH de la disolución inicial de ácido metanoico.
- b) Determina el volumen de una disolución de NaOH 0,3M necesario para neutralizar el ácido anterior.
 - c) Razona si el pH de la disolución neutralizada seria mayor, menor o igual a 7.

Resultado: a) pH = 2,24; b) V = 33 mL.

CUESTIÓN 5.- A partir de los siguientes compuestos:

- i) Etilpropileter, ii) 4-hidroxibutanal, iii) 4-metil-1-hexanol, iv) m-nitroanilina (3-nitroanilina)
 - a) Formula todas las sustancias.
 - b) Formula y nombra un isómero de función de los compuestos i) y ii).
 - c) Formula y nombra un isómero de cadena del compuesto iii).
- d) Propón a partir del compuesto iii) una reacción de oxidación y otra de sustitución y nombra los productos.

CUESTIÓN 6.- Haz el estudio de las moléculas NH3 y CO2 en los términos que se indican:

- a) Escribe la estructura de Lewis.
- b) A partir de la TRPECV, indica su forma espacial.
- c) Que moléculas tienen momento dipolar distinto de cero?
- d) Qué tipo de hibridación presentan sus átomos centrales?
- e) Indica el tipo de fuerzas intermoleculares en cada una de las sustancias.

CUESTIÓN 7.- Responde a las siguientes cuestiones:

a) Ajusta por el método ion-electrón la siguiente reacción redox, razonando que agente es el oxidante y que agente es el reductor y expresando los pares redox:

 $Br_2 + KOH \rightarrow KBr + KBrO + H_2O$.

b) Se dispone de una pila Daniell con electrodos de Zn y Cu. Explica su funcionamiento hablando de cátodo, ánodo, potencial estándar de reducción y puente salino.

DATOS: $E^{\circ}(Zn^{2+}/Zn) = -0.76V$; $E^{\circ}(Cu^{2+}/Cu) = +0.15V$.

PROBLEMA 8.- A 25°C, el producto de solubilidad del cloruro de plata, AgCl, es $1,7 \cdot 10^{-10}$. Determina:

- a) La solubilidad del compuesto en agua, expresando el resultado en mg/L.
- b) La solubilidad del compuesto en una disolución de NaCl 0,1M y justifica la diferencia encontrada con respecto al apartado anterior.

Resultado: a) [AgCl] = S = $1.87 \cdot 10^{-3} \text{ g} \cdot \text{L}^{-1}$; b) S (AgCl) = $1.7 \cdot 10^{-11} \text{ moles} \cdot \text{L}^{-1}$.

PROBLEMA 9.- Responde a las siguientes cuestiones:

- a) Se tiene un compuesto B que puede actuar como base dando la especie BH⁺. Calcula la K_b de esa base débil sabiendo que para una concentración inicial 0,2 M se ioniza al 2,5%.
 - b) Calcula el pH de la disolución anterior.
 - c) Calcula la concentración de una disolución de NaOH que tenga un pH = 11,7.

Resultado: a)
$$K_b = 1.28 \cdot 10^{-4}$$
; b) [NaOH] = $1.99 \cdot 10^{-12}$ M.

CUESTIÓN 10.- Escribe las siguientes reacciones orgánicas, nombrando los productos que se obtienen en cada una de ellas e indicando a qué tipo de reacciones pertenece:

- a) Acido propanoico con 1-butanol.
- b) 2-buteno con hidrogeno, y platino como catalizador.
- c) 1-pentanol con cloruro de hidrogeno.
- d) etanal con un agente reductor.