Tópico 4 - Estudo do plano

Tópico 4

Site: [Moodle PUC-SP]
Curso: 2015.1 - Geometria Analítica (GA)
Livro: Tópico 4 - Estudo do plano
Impresso por: ANA LUIZA PORTELLO BASTOS
Data: sábado, 11 Nov 2017, 03:02

Sumário

- 4. Estudo do plano
- 4.1 Equação vetorial
- 4.2 Equações paramétricas do plano
 - 4.3 Equação geral
 - 4.4 Equações gerais especiais
 - 4.5 Vetor normal a um plano
 - 4.6 Equação segmentária

Exercícios de familiarização

Avaliação 4 - estudo do plano

Dúvidas

Geometria Analítica

Estudo do plano

4. Estudo do plano

Nesta semana estudaremos as equações do plano em sua forma vetorial, paramétrica, geral e segmentária. Trataremos também de vetor normal a um plano e faremos a análise de algumas equações gerais especiais. As orientações continuam as mesmas: estude o conteúdo, faça os exercícios de familiarização e só então as tarefas de avaliação. Sempre que tiver dúvidas apresente-as no fórum.

4.1 Equação vetorial

Sejam um sistema de coordenadas ortonormal no espaço, X um ponto qualquer do plano $\pi \subset \mathbb{R}^3$ e (\vec{u}, \vec{v}) linearmente independente (LI) paralelos ao plano π , como mostra a figura 29.

Nessas condições os três vetores \overrightarrow{AX} , \overrightarrow{u} \overrightarrow{e} \overrightarrow{v} são sempre linearmente dependentes (porque são coplanares) e, portanto, existe um único par de números reais λ e μ , tais que $\overrightarrow{AX} = \lambda \overrightarrow{u} + \mu \overrightarrow{v}$ e como $\overrightarrow{OX} = \overrightarrow{OA} + \overrightarrow{AX}$, isto é $\overrightarrow{AX} = \overrightarrow{OX} - \overrightarrow{OA}$ vem que $\overrightarrow{OX} = \overrightarrow{OA} + \lambda \overrightarrow{u} + \mu \overrightarrow{v}$. Assim, quando λ e μ percorrem o conjunto dos números reais, o ponto X percorre o plano π . A igualdade $\overrightarrow{OX} = \overrightarrow{OA} + \lambda \overrightarrow{u} + \mu \overrightarrow{v}$, λ , $\mu \in \mathbb{R}$ é chamada **equação vetorial** do plano π .

Exemplo 1

Dados o ponto A(1, 0, 1) e os vetores $\vec{u} = (1, 1, -2)$ e $\vec{v} = (0, -1, -1)$, a equação vetorial do plano π que passa pelo ponto A e é paralelo às direções dos vetores \vec{u} e \vec{v} é: π : $\overrightarrow{OX} = (1, 0, 1) + \lambda(1, 1, -2) + \mu(0, -1, -1)$.

Reciprocamente, o conjunto dos pontos X do espaço, que satisfazem a equação $\overrightarrow{OX} = \overrightarrow{OA} + \lambda \overrightarrow{u} + \mu \overrightarrow{v} \operatorname{com} \lambda$, $\mu \in \mathbb{R}$ e $(\overrightarrow{u}, \overrightarrow{v})$ LI é um plano que passa pelo ponto A e é paralelo às direções dos vetores \overrightarrow{u} e \overrightarrow{v} .

No caso de o plano π ser determinado por três pontos distintos A, B e C **não colineares**, a direção do plano π pode ser dada pelo par de vetores $\vec{u} = \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ e $\vec{v} = \overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}$, LI (porque os pontos não são colineares) e a **equação vetorial** do plano π é dada por $\overrightarrow{OX} = \overrightarrow{OA} + \lambda (\overrightarrow{AB}) + \mu (\overrightarrow{AC})$ com λ , $\mu \in \mathbb{R}$. Os vetores \vec{u} e \vec{v} são chamados vetores diretores do plano π .

Exemplo 2

Dados três pontos distintos e não colineares A(2, 1, 1), B(3, -1, 1) e C(4, 1, -1) que nos dão os vetores diretores $\overrightarrow{u} = \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (1, -2, 0)$ e $\overrightarrow{v} = \overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = (2, 0, -2)$, então a equação vetorial do plano é dada por: $\overrightarrow{OX} = \overrightarrow{OA} + \lambda(\overrightarrow{AB}) + \mu(\overrightarrow{AC})$ ou seja, $\overrightarrow{OX} = (2, 1, 2) + \lambda(1, -2, 0) + \mu(1, -2, 0)$, com λ , $\mu \in \mathbb{R}$.

Observe que outras equações equivalentes podem ser determinadas.

4.2 Equações paramétricas

Sejam π um plano que passa pelo ponto $A(x_0, y_0, z_0)$ e tem vetores diretores (\vec{u}, \vec{v}) LI de coordenadas $\vec{u} = (a, b, c) e \vec{v} = (m, n, p)$ e um ponto genérico do plano X = (x, y, z).

Sabendo que $\overrightarrow{OX} = \overrightarrow{OA} + \lambda \overrightarrow{u} + \mu \overrightarrow{v}$ com λ , $\mu \in \mathbb{R}$, em relação ao sistema fixado temos:

$$(x, y, z) = (x_0, y_0, z_0) + \lambda(a, b, c) + \mu(m, n, p)$$

 $(x, y, z) = (x_0 + \lambda a + \mu m, y_0 + \lambda b + \mu n, z_0 + \lambda c + \mu p)$

Dessa forma obtemos: $\begin{cases} x = x_0 + \lambda a + \mu m \\ y = y_0 + \lambda b + \mu n & \cos \lambda, \ \mu \in \mathbb{R} \text{ que são denominadas equações paramétricas do plano} \\ z = z_0 + \lambda c + \mu p \end{cases}$

π.

Reciprocamente, dado o sistema de equações lineares, nas condições do sistema acima, ele representa o plano π do espaço que contém o ponto $A(x_0, y_0, z_0)$ e tem a direção dos vetores $\vec{u} = (a, b, c)$ e $\vec{v} = (m, n, p)$, em relação ao sistema de coordenadas fixado. Para outro sistema de coordenadas, as mesmas equações podem representar outro plano.

Exemplo 3

Dada a equação vetorial do plano do exemplo 1, π : $\overrightarrow{OX} = (1, 0, 1) + \lambda(1, 1, -2) + \mu(0, -1, -1)$ com $\lambda, \mu \in \mathbb{R}$ temos:

$$(x, y, z) = (1, 0, 1) + \lambda(1, 1, -2) + \mu(0, -1, -1).$$

$$\log_{z} \begin{cases} x = 1 + \lambda \\ y = \lambda - \mu \\ z = 1 - 2\lambda - \mu \end{cases}$$

Analogamente, no caso do plano π ser determinado por três pontos A, B e C **distintos**, **não colineares**, de coordenadas $A(x_1, y_1, z_1)$, $A(x_1, y_1, z_1)$, $A(x_2, y_2, z_2)$, $A(x_3, y_3, z_3)$ temos: $A(x_1, y_1, z_1)$, $A(x_2, y_3, z_3)$ temos: $A(x_1, y_1, z_1)$, $A(x_2, y_3, z_3)$ temos: $A(x_1, y_2, z_1)$, $A(x_2, z_1)$, $A(x_1, y_2, z_1)$, $A(x_2, z_1)$, $A(x_1, y_2, z_1)$,

Exemplo 4

Dados $A(2,\ 1,\ 1)$, $B(3,\ -1,\ 1)$ e $C(4,\ 1,\ -1)$, três pontos, distintos e não colineares do exemplo 2. A equação vetorial do plano é, tal como determinamos: $\overrightarrow{OX} = \begin{bmatrix} 2,\ 1,\ 1 \end{bmatrix} + \lambda(2,\ 0,\ -2) + \mu(1,\ -2,\ 0) \cos \lambda,\ \mu \in \mathbb{R}$. As equações paramétricas, portanto, são: $\begin{cases} x = 2 + 2\lambda + \mu \\ y = 1 - 2\mu \\ z = 1 - 2\lambda \end{cases}$

4.3 Equação geral

Sejam um sistema de coordenadas ortonormal do espaço e um plano π que passa pelo ponto $A(x_0, y_0, z_0)$ e tem a direção dos vetores $\vec{u} = (r, s, t)$ e $\vec{v} = (m, n, p)$ LI. Para que um ponto X(x, y, z) pertença ao plano π é necessário e suficiente que a sequência de vetores $(\overrightarrow{AX}, \vec{u}, \vec{v})$ seja LD (coplanares) e, portanto, que o produto misto deles seja nulo. Isto é, $(\overrightarrow{AX}, \vec{u}, \vec{v}) = 0$. Logo, o determinante das coordenadas dos vetores deve ser igual a zero, ou

seja:
$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ r & s & t \\ m & n & p \end{vmatrix} = 0$$

$$(x-x_0)\begin{vmatrix} s & t \\ n & p \end{vmatrix} - (y-y_0)\begin{vmatrix} r & t \\ m & p \end{vmatrix} + (z-z_0)\begin{vmatrix} r & s \\ m & p \end{vmatrix} = 0$$

Daí vem que:

Fazendo
$$a = \begin{vmatrix} s & t \\ n & p \end{vmatrix}$$
, $b = \begin{vmatrix} r & t \\ m & p \end{vmatrix}$ e $c = \begin{vmatrix} r & s \\ m & n \end{vmatrix}$ e $d = -x_0 \begin{vmatrix} s & t \\ n & p \end{vmatrix} + y_0 \begin{vmatrix} r & t \\ m & p \end{vmatrix} - z_0 \begin{vmatrix} r & s \\ m & n \end{vmatrix} = 0$

$$ax + by + cz + d = 0$$
 que é chamada **equação geral** do plano π com a , b , c , d reais, nem todos nulos pois (\vec{u}, \vec{v}) é LI.

Reciprocamente, o conjunto dos pontos X(X, Y, Z) do espaço cujas coordenadas, em relação ao sistema fixado, satisfazem a equação ax + by + cz + d = 0 com a, b, c, d reais, nem todos nulos, representam um plano.

Exemplo 5

Dados $\vec{u} = (1, 1, -2), \vec{v} = (0, -1, -1) e A(1, 0, 1)$ determine a equação geral do plano que passa por A e é paralelo a esses vetores.

No caso do plano π ser definido por três pontos $A(x_1, \ V_1, \ Z_1)$, $B(x_2, \ V_2, \ Z_2)$, $C(x_3, \ V_3, \ Z_3)$ não colineares, a direção do plano π será dada pelos vetores: $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (x_2 - x_1, \ V_2 - V_1, \ Z_2 - Z_1)$ e $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = (x_3 - x_1, \ V_3 - V_1, \ Z_3 - Z_1)$ LI e para um ponto $X(x, \ V, \ Z)$ pertencer ao plano π os vetores $(\overrightarrow{AX}, \ \overrightarrow{AB}, \ \overrightarrow{AC})$ devem ser LD.

Assim a **equação geral** do plano ficaria:
$$\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} = 0, \text{ aplicando-se algumas propriedades dos}$$
 determinantes obtém-se o equivalente a:
$$\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \end{vmatrix} = 0 \text{ que é uma fórmula útil para se obter a equação de um}$$

plano conhecendo-se três de seus pontos não colineares, em relação ao sistema de coordenadas fixado.

Exemplo 6

Dados A(2, 1, 1), B(3, -1, 1) e C(4, 1, -1), três pontos, distintos e não colineares, encontre a equação geral do plano determinado por estes pontos. |x-2|y-1|z-1|

do plano determinado por estes pontos.
$$\begin{vmatrix} x-2 & y-1 & z-1 \\ 1 & -2 & 0 \\ 2 & 0 & -2 \end{vmatrix} = 0 \Rightarrow 4(x-2) + 2(y-1) + 4(z-1) = 0 \Rightarrow 4x + 2y + 4z - 14 = 0$$

4.4 Equações gerais especiais

1. Análise da equação ax + by + cz + d = 0 quando $a \cdot b \cdot c \cdot d = 0$

1° caso: $a = 0, b \neq 0, c \neq 0$, plano by + cz + d = 0

2° caso:
$$a \ne 0$$
, $b = 0$, $c \ne 0$, plano $ax + cz + d = 0$

3° caso: $a \ne 0$, $b \ne 0$, c = 0, plano ax + by + d = 0

4° caso: $a \neq 0, b = 0, c = 0$ plano ax + d = 0 com $d \neq 0$

5° caso:
$$a = 0$$
, $b \ne 0$, $c = 0$, plano $by + d = 0$, $d \ne 0$

O plano intercepta o eixo y não interceptando os eixos x e z. Se d=0, isto é by=0 ou y=0 é a equação do plano xz.

6° caso: a = 0, b = 0, $c \ne 0$, plano cz + d = 0, $d \ne 0$

O plano intercepta o eixo z, não interceptando os eixos x e y. Se d=0, isto é cz=0 ou z=0 é a equação do plano xy.

7° caso: $a \ne 0$, $b \ne 0$, $c \ne 0$, plano ax + by + cz + d = 0 com $d \ne 0$

O plano intercepta os três eixos.

Se d=0 o plano ax+by+cz=0 passa pela origem, não contendo e nem interceptando nenhum dos eixos.

Exemplo 1

Observe a representação do ponto F (2,3,4) e identifique as equações dos planos que contém as faces do prisma representado e as equações das retas r e s.

Plano (DCE): X = 2

Plano (GBC): y = 3

plano (HEG): Z=4

Plano (HAB): $\overrightarrow{OX} = (0, 0, 0) + \lambda(0, 1, 0) + \mu(0, 0, 1) \operatorname{com} \lambda, \mu \in \mathbb{R}$

Plano (HAD): $\overrightarrow{OX} = (0, 0, 0) + a(1, 0, 0) + b(0, 0, 1) \cos a, b \in \mathbb{R}$

Plano (ADC): $\overrightarrow{OX} = (2, 0, 0) + m(1, 0, 0) + n(0, 1, 0) \text{ com } m, n \in \mathbb{R}$

 $r: \overrightarrow{OX} = (0, 0, 0) + \alpha(2, 3, 0) \operatorname{com} \alpha \in \mathbb{R}$

 $S: \overrightarrow{OX} = (0, 0, 4) + \beta(2, 3, 0) \operatorname{com} \beta \in \mathbb{R}$

4.5 Vetor normal a um plano

Chama-se vetor normal a um plano π , qualquer vetor não nulo, **ortogonal** a π , como mostra a figura 30.

Assim, $\vec{n} \neq \vec{0}$ é um vetor normal ao plano π se, e somente se, \vec{n} é ortogonal a qualquer vetor paralelo a π . Então, dado um plano π por sua equação vetorial $\overrightarrow{OX} = \overrightarrow{OA} + \lambda \overrightarrow{u} + \mu \overrightarrow{v} \operatorname{com} \lambda$, $\mu \in \mathbb{R}$ um vetor normal a esse plano é dado por $\vec{n} = \vec{u} \times \vec{v}$

Vejamos como obter uma equação geral do plano π , conhecendo um ponto $A(x_0, y_0, z_0)$ e um vetor $\vec{n} = (a, b, c)$ normal a π , Qualquer que seja X(x, y, z), $X \in \pi$ se, e somente se, $\overrightarrow{AX} \perp \overrightarrow{n}$, logo $X \in \pi$ se, e somente se, $(x-x_0, y-y_0, z-z_0) \circ (a, b, c) = 0$

$$\overrightarrow{AX} \circ \overrightarrow{n} = 0$$
. Assim: $(x - x_0)a + (y - y_0)b + (z - z_0)c = 0$

$$ax + by + cz + (-ax_0 - by_0 - cz_0) = 0$$

 $ax + by + cz + \left(-ax_0 - by_0 - cz_0\right) = 0$ Chamando $-ax_0 - by_0 - cz_0 = d$ temos: ax + by + cz + d = 0. Nessa equação vemos que os coeficientes de x, y e z são as **coordenadas do vetor normal** ao plano, na ordem adequada e sendo d dado como acima.

Reciprocamente, se o plano for dado pela sua expressão geral ax + by + cz + d = 0 um vetor normal a esse plano será $\vec{n} = (a, b, c)$. O produto escalar entre \vec{n} e um vetor \vec{v} qualquer paralelo ao plano é nulo, isto é, $\vec{n} \circ \vec{v} = 0$ ou ainda $\vec{n} \circ \overrightarrow{AB} = 0, \forall A, B \in \pi$.

Assim, sendo $A(x_1, y_1, z_1)$ e $B(x_2, y_2, z_2)$ se $A \in \pi$ temos $ax_1 + by_1 + cz_1 + d = 0$ e se $B \in \pi$ temos $ax_2 + by_2 + cz_2 + d = 0$. Subtraindo-se membro a membro temos: $a(x_1 - x_2) + b(y_1 - y_2) + c(z_1 - z_2) = 0$.

Exemplo 2

Sejam $\vec{n} = (-1, 3, 2)$ um vetor normal ao plano π e $A(0, 2, 1) \in \pi$. A equação geral do plano será dada por ax + by + cz + d = 0. Assim, temos: $(-1)x + 3y + 2z + d = 0 \Rightarrow -x + 3y + 2z + d = 0$.

Como
$$A(0, 2, 1) \in \pi$$
 temos que $(-1)0 + 3 \times 2 + 2 \times 1 + d = 0$, logo $d = -8$.

Portanto, a equação geral do plano π é: -x + 3y + 2z - 8 = 0.

*O plugin do software Cabri é um recurso externo ao Ambiente Virtual de Aprendizagem da PUC-SP, **não faz parte da** plataforma Moodle. Informações sobre instalação, manutenção e padrões de uso devem ser esclarecidas diretamente com a empresa fornecedora. Para mais detalhes sobre o software acesse: http://www.cabri.com/es e/ou http://www.cabri.com/es/descargar-cabri-3d.html.

4.6 Equação segmentária

Consideremos um plano α cuja equação geral é ax + by + cz + d = 0 com a, b, c, $d \neq 0$. Os pontos onde o plano intercepta os eixos coordenados, como mostra a figura 31 são: P(p, 0, 0), Q(0, q, 0) e R(0, 0, r) que substituídos na equação geral nos dão:

Figura 31 - Plano interceptando os eixos coordenados

$$P \in \alpha \Rightarrow ap + d = 0 \Rightarrow p = -\frac{d}{a}$$

$$Q \in \alpha \Rightarrow bq + d = 0 \Rightarrow q = -\frac{d}{b}$$

$$R \in \alpha \Rightarrow cr + d = 0 \Rightarrow r = -\frac{d}{c}$$

Diremos que *p*, *q* e *r* são as medidas algébricas dos segmentos que o plano determina nos três eixos coordenados. Vamos agora explicitar p, q e r na equação geral do plano:

$$ax + by + cz + d = 0 \Rightarrow ax + by + cz = -d$$

$$\frac{ax}{-d} + \frac{by}{-d} + \frac{cz}{-d} = 1 \Rightarrow \frac{x}{-\frac{d}{a}} + \frac{y}{-\frac{b}{d}} + \frac{z}{-\frac{c}{d}} = 1 \Rightarrow \frac{x}{p} + \frac{y}{q} + \frac{z}{r} = 1$$

Essa é a equação segmentária do plano Q

Exemplo 3

No exemplo anterior a reta tem equação geral -x + 3y + 2z - 8 = 0. A equação segmentária desse plano será dada por:

$$-x + 3y + 2z - 8 = 0$$

$$-x + 3y + 2z = 8$$

$$\frac{-x}{8} + \frac{3y}{8} + \frac{2z}{8} = 1$$

$$\frac{x}{-8} + \frac{y}{\frac{8}{3}} + \frac{z}{4} = 1$$

Essa equação nos diz que o plano intercepta o eixo x no ponto $\left(-8, 0, 0\right)$, o eixo y no ponto $\left(0, \frac{8}{3}, 0\right)$ e o eixo z no ponto $\left(0, 0, 4\right)$.

Exercícios de familiarização

Exercício 1

Escreva as equações vetorial, paramétrica e geral do plano que passa pelo ponto A(2, 1, 3) e é paralelo aos vetores $\vec{u} = (-3, -3, 1)$ e $\vec{v} = (2, 1, -2)$, Determine também um ponto P qualquer desse plano.

Exercício 2

Determine as equações vetorial, paramétricas e geral do plano determinado pelos pontos A(5, 7, -2), B(8, 2, -3) e A(1, 2, 4).

Exercício 3

Em cada caso, que lugar geométrico representa a equação dada?

a.
$$\overrightarrow{OX} = \overrightarrow{OA} + m\overrightarrow{v}$$
 se $m \in \mathbb{R}$ e $\overrightarrow{v} = \overrightarrow{0}$

a.

b.

b.
$$\overrightarrow{OX} = \overrightarrow{OA} + \overrightarrow{mu} + \overrightarrow{mv} \text{ se } \overrightarrow{m} \in \mathbb{R} \text{ e} (\overrightarrow{u}, \overrightarrow{v})_{LI}$$

$$\vec{OX} = \vec{OA} + \vec{mu} + \vec{t} \vec{v} \text{ se } \vec{m}, \ t \in \mathbb{R} \text{ e } \vec{u} = \vec{0}$$

d.
$$\overrightarrow{OX} = \overrightarrow{OA} + \overrightarrow{mv} + \overrightarrow{tv}$$
 se \overrightarrow{m} , $t \in \mathbb{R}$ e $\overrightarrow{u} / / \overrightarrow{v}$

Exercício 4

Verifique se $\pi_1 = \pi_2$ nos seguintes casos: π_1 : $\overrightarrow{OX} = (1, 2, 1) + \lambda(1, -1, 2) + \mu(-\frac{1}{2}, \frac{2}{3}, -1)$ e π_2 : $\overrightarrow{OX} = (1, 2, 1) + \lambda(-1, 1, -2) + \mu(-3, 4, -6)$

 $\pi_1: \overrightarrow{OX} = (0, 0, 0) + \lambda(1, 1, 0) + \mu(0, 1, 0)e$

 π_2 : $\overrightarrow{OX} = (1, 1, 0) + \lambda(1, 2, 1) + \mu(0, -1, 1)$

Exercício 5

Dadas as equações paramétricas de um plano π : $x=-1+2\lambda-3\mu$, $y=1+\lambda+\mu$ e $z=\lambda$ com λ , $\mu\in\mathbb{R}$ obtenha uma equação geral para esse plano.

Exercício 6

Uma reta r é dada como intersecção de dois planos Γ : $\begin{cases} x+y+z-1=0 \\ x+y-z=0 \end{cases}$. Dê as equações paramétricas de r.

Exercício 7

Sendo Γ : $\begin{cases} x=1-\lambda \\ y=2+2\lambda \text{ , determine as equações de dois planos onde r \'e a intersecção deles.} \\ z=3+\lambda \end{cases}$

Exercício 8

Determine a equação segmentaria do plano cuja equação geral é 2x + 3y + 4z - 12 = 0 e dê os pontos de intersecção desse plano com os eixos coordenados.

Exercício 9

Determine a equação geral do plano que passa pelo ponto P(3, 1, 5) e que determina segmentos iguais nos eixos coordenados.

Exercício 10

Determine uma equação geral do plano que passa pelo ponto A(1, 0, 2) e tem vetor normal $\vec{n} = (1, -1, 4)$.

Exercício 11

Dadas as retas r: $\frac{x-1}{2} = \frac{y}{2} = z e s$: x-1 = y = z determine uma equação geral para o plano determinado por r e s.

Exercício 12

Represente as superfícies dos sólidos delimitados por:

a.
$$z = x + y \operatorname{com} 0 \le x \le 5 \operatorname{e} 0 \le y \le 3.$$

b. plano que intercepta os eixos em
$$x = 6$$
, $y = 8$, $z = 4$ e os planos $x = 3$ e $y = 2$.

c.
$$x = 0, y = 0, z = 0 e 2x + y + z = 4$$
.

Avaliação

O próximo passo é resolver os exercícios que preparamos para esse tópico. Clique na atividade para acessá-la e resolver os exercícios propostos.

Responda sucintamente às questões propostas

Dúvidas e outras questões poderão ser esclarecidas por meio do Fórum de dúvidas.