Implementação de Inferência Nebulosa - Controle de Velocidade do Ventilador

Bruna Marechal Melido Couceiro¹

¹Centro Universitário do Estado do Pará (CESUPA) Belém – PA – Brazil

melidobru@gmail.com

Abstract. This paper describes the implementation of a fuzzy inference system for controlling the fan speed based on environmental conditions. The system considers three input variables: temperature, humidity, and CO₂ concentration, and outputs the appropriate fan speed. The implementation uses the Python Scikit-Fuzzy library, and results are presented to demonstrate its efficacy.

Resumo. Este trabalho descreve a implementação de um sistema de inferência nebulosa para o controle da velocidade de um ventilador com base em condições ambientais. O sistema considera três variáveis de entrada: temperatura, umidade e concentração de CO₂, e gera como saída a velocidade ideal do ventilador. A implementação utiliza a biblioteca Scikit-Fuzzy em Python, e os resultados são apresentados para demonstrar sua eficácia.

1. Introdução e Problema

O controle do conforto térmico em ambientes fechados é um desafio essencial tanto para o bem-estar humano quanto para a eficiência energética. Fatores como temperatura, umidade e qualidade do ar impactam diretamente o conforto dos ocupantes e a eficiência de sistemas de ventilação e resfriamento. Tradicionalmente, o controle desses fatores utiliza abordagens determinísticas, que frequentemente não conseguem capturar a subjetividade das condições ambientais.

Neste contexto, a lógica Fuzzy se destaca como uma solução ideal, pois permite lidar com a imprecisão e subjetividade inerentes aos conceitos de "temperatura alta", "umidade moderada" ou "nível aceitável de dióxido de carbono (CO₂)". Este trabalho implementa um sistema baseado em inferência nebulosa para controlar a velocidade de um ventilador com base nesses três fatores ambientais, utilizando a biblioteca Scikit-Fuzzy em Python.

O sistema foi projetado para responder de maneira adaptativa às condições variáveis, ajustando a velocidade do ventilador conforme a necessidade, contribuindo assim para um maior conforto térmico e eficiência no consumo energético.

2. Modelagem de Variáveis

O sistema fuzzy foi modelado utilizando três variáveis de entrada e uma variável de saída, cada uma com funções de pertinência bem definidas. As variáveis representam aspectos importantes para o controle de conforto térmico em ambientes fechados.

2.1 Variáveis de Entrada

2.1.1 Temperatura (°C)

Domínio: [0, 40]Conjuntos Fuzzy:

o Baixa: 0 a 20°C.

Média: Sobreposição entre 15 e 35°C.

o Alta: Valores acima de 30°C.

• Função de Pertinência: Triangular (TriMF).

• Descrição: A variável "temperatura" determina a sensação térmica ambiente. Temperaturas abaixo de 20°C são consideradas baixas, enquanto temperaturas acima de 30°C são classificadas como altas. Entre 15°C e 35°C, ocorre a transição gradual entre "média" e "alta".

2.1.2 Umidade (%)

• Domínio: [0, 100]

Conjuntos Fuzzy:

o Baixa: 0 a 50%.

o Média: Sobreposição entre 30% e 70%.

• Alta: Valores acima de 60%.

• Função de Pertinência: Triangular (TriMF).

• Descrição: A "umidade" reflete a sensação de abafamento no ambiente. Baixa umidade (menos de 50%) está associada a maior conforto em temperaturas amenas, enquanto alta umidade (acima de 70%) acentua o desconforto térmico em temperaturas elevadas.

2.1.3 Nível de CO₂ (ppm)

Domínio: [0, 1000]Conjuntos Fuzzy:

Baixo: 0 a 500 ppm.

o Médio: Sobreposição entre 400 ppm e 800 ppm.

o Alto: Valores acima de 700 ppm.

• Função de Pertinência: Triangular (TriMF).

 Descrição: O nível de dióxido de carbono no ambiente afeta diretamente a sensação de sufocamento. Valores baixos indicam boa ventilação, enquanto níveis acima de 800 ppm sugerem ventilação insuficiente.

2.2 Variável de Saída

2.2.1 Velocidade do Ventilador (%)

Domínio: [0, 100]Conjuntos Fuzzy:

o Lenta: 0 a 50%.

o Média: Sobreposição entre 30% e 70%.

o Rápida: Valores acima de 60%.

• Função de Pertinência: Triangular (TriMF).

• Descrição: A variável "velocidade" controla a intensidade de funcionamento do ventilador. Velocidade "lenta" é usada em ambientes confortáveis, enquanto "rápida" é ativada em condições extremas de temperatura, umidade e CO₂.

3. Base de Regras

A base de regras fuzzy foi desenvolvida com base no comportamento esperado para o sistema. A seguir, estão as 20 regras implementadas:

Temperatura	Umidade	CO ₂	Velocidade
Baixa	Baixa	Baixo	Lenta
Baixa	Média	Baixo	Lenta
Baixa	Alta	Baixo	Lenta
Média	Baixa	Baixo	Média

Média	Média	Baixo	Média
Média	Alta	Baixo	Média
Alta	Baixa	Baixo	Rápida
Alta	Média	Baixo	Rápida
Alta	Alta	Baixo	Rápida
Baixa	Baixa	Médio	Lenta
Baixa	Média	Médio	Lenta
Baixa	Alta	Médio	Média
Média	Baixa	Médio	Média
Média	Média	Médio	Média
Média	Alta	Médio	Rápida
Alta	Baixa	Médio	Rápida
Alta	Média	Médio	Rápida
Alta	Alta	Médio	Rápida
Média	Média	Alto	Média
Alta	Alta	Alto	Rápida

As regras foram formuladas com base no comportamento esperado de um ventilador. Quando a temperatura, umidade e CO2 aumentam, a velocidade tende a aumentar para melhorar o conforto térmico e a ventilação. As combinações foram ajustadas para diferentes cenários, como ambientes frios, secos ou quentes.

4. Análise das Superfícies

Cenários: O sistema foi testado em três cenários predefinidos:

• Cenário 1: Temperatura = 25°C, Umidade = 50%, CO_2 = 500 ppm \rightarrow Velocidade = 50%.

- Cenário 2: Temperatura = 35°C, Umidade = 80%, CO_2 = 800 ppm \rightarrow Velocidade = 85%.
- Cenário 3: Temperatura = 10° C, Umidade = 30%, $CO_2 = 200$ ppm \rightarrow Velocidade = 15%.

Gráfico de Resultados: O gráfico de barras compara a velocidade calculada para cada cenário.

5. Testes Realizados

Cenários Testados

Teste	Temperatura (°C)	Umidade (%)	CO ₂ (ppm)	Velocidade do Ventilador (%)
1	25	50	500	50
2	35	80	800	85
3	10	30	200	15

5. Gráficos dos Resultados

Figura 2: Gráfico de barras comparando a velocidade do ventilador nos três cenários.

Testes Pré Definidos:

• Cenário 1:

o Temperatura: 25°C

o Umidade: 50%

○ CO₂: 500 ppm

○ **Resultado:** Velocidade ≈ 50%

• Cenário 2:

o Temperatura: 35°C

o Umidade: 80%

○ CO₂: 800 ppm

○ **Resultado:** Velocidade ≈ 85%

Cenário 3:

o Temperatura: 10°C

o Umidade: 30%

o inidade. 30 /

○ CO₂: 200 ppm

Resultado: Velocidade ≈ 15%

Avaliação:

- Os resultados obtidos estão coerentes com o comportamento esperado do sistema.
- O código imprime os resultados no console e gera um **gráfico de barras** para visualização.

6. Conclusão

O código foi desenvolvido de forma estruturada, com comentários e mensagens no console que facilitam sua compreensão e execução. Além disso, as visualizações das funções de pertinência e dos resultados, incluindo gráficos de barras e superfícies, auxiliaram na validação e análise do modelo fuzzy.

Este trabalho demonstra a eficácia da lógica nebulosa em aplicações práticas, como o controle de dispositivos adaptativos, mostrando como é possível lidar com variáveis imprecisas e subjetivas de maneira eficiente. O sistema pode ser expandido no futuro para integrações com dispositivos IoT e para situações dinâmicas com sensores em tempo real, ampliando ainda mais sua aplicabilidade.