

#### **SFU**

Beedie School of Business BUS 865 Market Risk Management

# Back Testing:

#### VaR and ES Backtesting For Nintendo

Presented By: Xinwen Dong

# **Company Introduction**



- 34.858B MKT CAP
- Multinational consumer electronics and video game company
- Switch; Zelda, Super Mario



#### **Methodology For Backtest**

Select Estimation/Test Window



Estimate ARMA/GARCH models



Simulate Paths for 1-day VaR for Each Test



Compute 95% VaR/ES for Each Test



Find Violations; Compute VR, Std ES, Ave Std ES



Test the Significance of VR



- Compute Violation Ratio/Standardized ES
- Mean of the Standardized ES
- Bernoulli coverage test/Independence of the Violations

#### **Data Source/Processing**

- Download & import 5-year historical daily data from Yahoo Finance.
- Convert adjusted closing price into returns.
- Plot the returns

```
data = readtable('NTDOY.csv');
ninR = price2ret(data.AdjClose);
%%
plot(data.Date(2:end),ninR);
xlabel('Dates');ylabel('Returns');title('Historical Returns');
datetick('x',12);xlim([dates(1) dates(end)]);
```

| Date       | Open    | High    | Low     | Close   | AdjClose | Volume |
|------------|---------|---------|---------|---------|----------|--------|
| 2014-04-02 | 14.6600 | 14.6600 | 14.5500 | 14.6100 | 13.8791  | 26400  |
| 2014-04-03 | 14.4900 | 14.5000 | 14.3600 | 14.3900 | 13.6701  | 41600  |
| 2014-04-04 | 14.4500 | 14.4500 | 14.2200 | 14.2500 | 13.5371  | 28800  |
| 2014-04-07 | 14.2500 | 14.3500 | 14.2500 | 14.2800 | 13.5656  | 15600  |
| 2014-04-08 | 13.9600 | 14.0900 | 13.9600 | 14.0400 | 13.3376  | 36700  |



#### Define Variables & Compute VaR/ES

- Set up ARMA(1,1)-GARCH(1,1) model; Define other variables
- For loop to estimate each estimation window and simulate 1-day forward returns
- Cal and record VaR&ES for each tests.

```
%%
%%
                                                                for t = EstWin + 1:T
MdI = arima('ARLags',1,'MALags',1,'Variance',garch(1,1));
                                                                   try
T = length(ninR);
                                                                      EstMdl = estimate(Mdl,ninR(t-EstWin:t-1));
EstWin = 500;
                                                                      [Innovations, Variances] = infer(EstMdl, ninR(t-EstWin:t-1));
p = 0.05;
                                                                      Simu(t,:) = simulate(EstMdl,NumObs,'NumPaths',NumPaths,...
NumObs = 1;
                                                                        'E0',Innovations,'V0',Variances);
NumPaths = 1000:
                                                                     VaR(t) = min(prctile(Simu(t,:), 5));
VaR = NaN(T,1);
                                                                      ES(t) = mean(prctile(Simu(t,:),1:5));
ES = NaN(T,1);
                                                                   catch
Simu = NaN(T,NumPaths);
                                                                     VaR(t) = min(prctile(ninR, 5));
                                                                      ES(t) = mean(prctile(ninR,1:5));
                                                                   end
```

end

# Plot VaRs & Corresponding Violations



```
dates = data.Date(EstWin + 1:T);
figure(1)
plot(dates,ninR_TstWin,'r--', dates, VaR_TstWin,'b');
hold on
plot(dates(index),ninR_TstWin(index),'r.','markersize',20)
xlabel('Dates');ylabel('Returns & VaR');title('VaR &
Violations');
datetick('x',12);xlim([dates(1) dates(end)]);
```



# Calculate Violation Ratio & Significance Test

VR = length(find(index))/(p \*(T - EstWin));% **Violation Ratio** s = std(VaR(EstWin + 1:T));% **Volatility** ber = bern\_test(p,v); % **p** is significant level,5%; v is 0-logical vector indicating violations ind = ind\_test(v);

- Violation Ratio is close to 1.
   This indicates the model performs well in capturing extreme outcomes.
- For a 95% significant level, the statistics should be greater than 3.84 based on a Chi^2(1)

| Violaiton Ratio | 0.9775 |
|-----------------|--------|
| Volatility      | 0.0298 |
|                 |        |

With no comparison, we can not conclude if it is high or low. But from the previous plot, we can see a higher volatility in VaR corresponding to higher volatile returns.

|            | Coverage Tesi  |         |  |
|------------|----------------|---------|--|
| ARMA(1,1)- | Test Statistic | P-value |  |
| GARCH(1,1) | 0.0202         | 0.8869  |  |
|            |                |         |  |

Coverage Test

| 7 | Eest Statistic | P-value |
|---|----------------|---------|
|   | 0.4251         | 0.5144  |
|   |                |         |

*Independence Test* 

- Bernoulli coverage test is not significant.
   We can not reject the hypothesis of VaR
   = 1 at 5% for this model.
- Independence test is not significant. We can not reject the hypothesis that VaR is dependent on the volatility of 1-day before for this model.

$$VR = \frac{\text{Observed number of violations}}{\text{Expected number of violations}} = \frac{v_1}{p \times W_T}.$$

#### Plot ESs & Standardized ESs for Violations



$$NS_t = \frac{y_t}{ES_t}$$

Average Standardized ES = 1.2139

- This model slightly underestimate the ES for violations, which in hypothethis should have an expectation of 1.
- The Standardized ES for violations are more clustered in recent years.
- It also shows a wider range.

#### **Conclusions & Improvements**

- ARMA(1,1)-GARCH(1,1) model captures extreme results quite well as indicated by the 0.9775 VR.
- By testing, we can not reject VR = 1.
- More violations clusters in recent years.
- VaRs calculated from conditional model show a simultaneous volatility with the returns.
- There is a slightly underestimation for ES as shown in Ave Std ES > 1.

- The returns of Nintendo is relatively steady without many breaks. It remains unknown if this model applicable for other assets.
- There are more violations clustering in recent years. We can choose these years as a separate back testing dataset to see if this model still works well.



# Thank you!

Q & A

