source: NVIDIA GPU Teaching Kit

IF3230 Sistem Paralel dan Terdistribusi CUDA

Achmad Imam Kistijantoro (imam@informatika.org)

Judhi Santoso (judhi@staff.stei.itb.ac.id)

Anggrahita Bayu Sasmita (angga@staff.stei.itb.ac.id)

Februari 2022 Informatika – STEI – ITB

Objective

- To learn to effectively use the CUDA memory types in a parallel program
 - Importance of memory access efficiency
 - Registers, shared memory, global memory
 - Scope and lifetime

Review: Image Blur Kernel.

```
// Get the average of the surrounding 2xBLUR SIZE x 2xBLUR SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {</pre>
  for(int blurCol = -BLUR SIZE; blurCol < BLUR SIZE+1; ++blurCol) {</pre>
    int curRow = Row + blurRow;
    int curCol = Col + blurCol;
    // Verify we have a valid image pixel
    if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
      pixVal += in[curRow * w + curCol];
      pixels++; // Keep track of number of pixels in the accumulated total
// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal / pixels);
```

How about performance on a GPU

- All threads access global memory for their input matrix elements
 - One memory accesses (4 bytes) per floating-point addition
 - 4B/s of memory bandwidth/FLOPS
- Assume a GPU with
 - Peak floating-point rate 1,500 GFLOPS with 200 GB/s DRAM bandwidth
 - -4*1,500 = 6,000 GB/s required to achieve peak FLOPS rating
 - The 200 GB/s memory bandwidth limits the execution at 50 GFLOPS
- This limits the execution rate to 3.3% (50/1500) of the peak floating-point execution rate of the device!
- Need to drastically cut down memory accesses to get close to the1,500 GFLOPS

Example - Matrix Multiplication

A Basic Matrix Multiplication

```
global void MatrixMulKernel(float* M, float* N, float* P, int Width) {
// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;
// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;
if ((Row < Width) && (Col < Width)) {
  float Pvalue = 0:
  // each thread computes one element of the block sub-matrix
  for (int k = 0; k < Width; ++k) {
    Pvalue += M[Row*Width+k]*N[k*Width+Col];
  P[Row*Width+Col] = Pvalue;
```

Example – Matrix Multiplication

```
global void MatrixMulKernel(float* M, float* N, float* P, int Width) {
// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;
// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;
if ((Row < Width) && (Col < Width)) {
  float Pvalue = 0:
  // each thread computes one element of the block sub-matrix
  for (int k = 0; k < Width; ++k) {
    Pvalue += M[Row*Width+k]*N[k*Width+Col];
  P[Row*Width+Col] = Pvalue;
```

A Toy Example: Thread to P Data Mapping

Calculation of $P_{0,0}$ and $P_{0,1}$ $M_{0.0} | M_{0.1} | M_{0.2} | M_{0.3}$ $M_{1,0} M_{1,1} M_{1,2} M_{1,3}$

Memory and Registers in the Von-Neumann Model

Programmer View of CUDA Memories

Declaring CUDA Variables

Variable declaration	Memory	Scope	Lifetime
int LocalVar;	register	thread	thread
deviceshared int SharedVar;	shared	block	block
device int GlobalVar;	global	grid	application
deviceconstant int ConstantVar;	constant	grid	application

- __device__ is optional when used with __shared__, or __constant__
- Automatic variables reside in a register
 - Except per-thread arrays that reside in global memory

Example: Shared Memory Variable Declaration

```
void blurKernel(unsigned char * in, unsigned char * out, int w, int h)
{
    __shared___ float ds_in[TILE_WIDTH][TILE_WIDTH];
    ...
}
```


Where to Declare Variables?

Shared Memory in CUDA

- A special type of memory whose contents are explicitly defined and used in the kernel source code
 - One in each SM
 - Accessed at much higher speed (in both latency and throughput) than global memory
 - Scope of access and sharing thread blocks
 - Lifetime thread block, contents will disappear after the corresponding thread finishes terminates execution
 - Accessed by memory load/store instructions
 - A form of scratchpad memory in computer architecture

Hardware View of CUDA Memories

Objective

- To understand the motivation and ideas for tiled parallel algorithms
 - Reducing the limiting effect of memory bandwidth on parallel kernel performance
 - Tiled algorithms and barrier synchronization

Global Memory Access Pattern of the Basic Matrix Multiplication Kernel

Global Memory

Tiling/Blocking - Basic Idea

Global Memory

Divide the global memory content into tiles

Focus the computation of threads on one or a small number of tiles at each point in time

Tiling/Blocking - Basic Idea

Global Memory

Basic Concept of Tiling

- In a congested traffic system, significant reduction of vehicles can greatly improve the delay seen by all vehicles
 - Carpooling for commuters
 - Tiling for global memory accesses
 - drivers = threads accessing their memory data operands
 - cars = memory access requests

Some Computations are More Challenging to Tile

- Some carpools may be easier than others
 - Car pool participants need to have similar work schedule
 - Some vehicles may be more suitable for carpooling
- Similar challenges exist in tiling

Carpools need synchronization.

Good: when people have similar schedule

Carpools need synchronization.

Bad: when people have very different schedule

Same with Tiling

Good: when threads have similar access timing

Bad: when threads have very different timing

Barrier Synchronization for Tiling

Outline of Tiling Technique

- Identify a tile of global memory contents that are accessed by multiple threads
- Load the tile from global memory into on-chip memory
- Use barrier synchronization to make sure that all threads are ready to start the phase
- Have the multiple threads to access their data from the on-chip memory
- Use barrier synchronization to make sure that all threads have completed the current phase
- Move on to the next tile

Objective

- To understand the design of a tiled parallel algorithm for matrix multiplication
 - Loading a tile
 - Phased execution
 - Barrier Synchronization

Matrix Multiplication

- Data access pattern
 - Each thread a row of M and a column of N
 - Each thread block a strip of M and a strip of N

M

WIDTH

Tiled Matrix Multiplication

- Break up the execution of each thread into phases
- so that the data accesses by the thread block in each phase are focused on one tile of M and one tile of N
- The tile is of BLOCK_SIZE elements in each dimension

Row

Ν

Loading a Tile

- All threads in a block participate
 - Each thread loads one M element and one N element in tiled code

Phase 0 Load for Block (0,0)

Phase 0 Use for Block (0,0) (iteration 0)

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	$M_{0,3}$
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	$M_{1,3}$
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$
$M_{3,0}$	$M_{3,1}$	$M_{3,2}$	

Phase 0 Use for Block (0,0) (iteration 1)

$N_{0,0}$	N _{0,1}	N _{0,2}	N _{0,3}
$N_{1,0}$	N _{1,1}	N _{1,2}	
		N _{2,2}	
N _{3,0}	N _{3,1}	$N_{3,2}$	$N_{3,3}$

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	$M_{0,3}$
			$M_{1,3}$
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$
			$M_{3,3}$

Phase 1 Load for Block (0,0)

Phase 1 Use for Block (0,0) (iteration 0)

$N_{0,0}$	N _{0,1}	N _{0,2}	$N_{0,3}$
$N_{1,0}$			
N _{2,0}	N _{2,1}	N _{2,2}	
$N_{3,0}$		$N_{3,2}$	

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	$M_{0,3}$
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	$M_{1,3}$
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$
$M_{3,0}$	$M_{3,1}$	$M_{3,2}$	$M_{3,3}$

Phase 1 Use for Block (0,0) (iteration 1)

$N_{0,0}$	N _{0,1}	$N_{0,2}$	N _{0,3}
N _{1,0}		N _{1,2}	
$N_{2,0}$		N _{2,2}	N _{2,3}
		N _{3,2}	

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	$M_{0,3}$
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	$M_{1,3}$
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$
$M_{3,0}$	$M_{3,1}$	$M_{3,2}$	

Execution Phases of Toy Example

	Phase	0		Phase 1		
thread _{0,0}	$M_{0,0}$ \downarrow $Mds_{0,0}$	$egin{array}{c} \mathbf{N_{0,0}} \\ \downarrow \\ \mathbf{Nds_{0,0}} \end{array}$	$PValue_{0,0} += \\ Mds_{0,0}*Nds_{0,0} + \\ Mds_{0,1}*Nds_{1,0}$	$\mathbf{M}_{0,2}$ \downarrow $\mathbf{Mds}_{0,0}$	$N_{2,0}$ \downarrow $Nds_{0,0}$	$PValue_{0,0} += \\ Mds_{0,0}*Nds_{0,0} + \\ Mds_{0,1}*Nds_{1,0}$
thread _{0,1}	$M_{0,1}$ \downarrow $Mds_{0,1}$	$egin{array}{c} \mathbf{N_{0,1}} \\ \downarrow \\ \mathbf{Nds_{1,0}} \end{array}$	$PValue_{0,1} += \\ Mds_{0,0}*Nds_{0,1} + \\ Mds_{0,1}*Nds_{1,1}$	$\mathbf{M_{0,3}}$ \downarrow $\mathbf{Mds_{0,1}}$	$N_{2,1}$ \downarrow $Nds_{0,1}$	$PValue_{0,1} += \\ Mds_{0,0}*Nds_{0,1} + \\ Mds_{0,1}*Nds_{1,1}$
thread _{1,0}	$M_{1,0}$ \downarrow $Mds_{1,0}$	$egin{array}{c} \mathbf{N_{1,0}} \\ \downarrow \\ \mathbf{Nds_{1,0}} \end{array}$	$PValue_{1,0} += \\ Mds_{1,0}*Nds_{0,0} + \\ Mds_{1,1}*Nds_{1,0}$	$\mathbf{M}_{1,2}$ \downarrow $\mathbf{M}ds_{1,0}$	$N_{3,0}$ \downarrow $Nds_{1,0}$	$PValue_{1,0} += \\ Mds_{1,0}*Nds_{0,0} + \\ Mds_{1,1}*Nds_{1,0}$
thread _{1,1}	$\mathbf{M}_{1,1}$ \downarrow $\mathbf{M}_{1,1}$ $\mathbf{M}_{1,1}$	$N_{1,1}$ \downarrow $Nds_{1,1}$	$PValue_{1,1} += \\ Mds_{1,0}*Nds_{0,1} + \\ Mds_{1,1}*Nds_{1,1}$	$\mathbf{M}_{1,3}$ \downarrow $\mathbf{M}ds_{1,1}$	$N_{3,1}$ \downarrow $Nds_{1,1}$	$PValue_{1,1} += \\ Mds_{1,0}*Nds_{0,1} + \\ Mds_{1,1}*Nds_{1,1}$

time

Execution Phases of Toy Example (cont.)

	Phase 0		Phase 1			
thread _{0,0}	$M_{0,0}$ \downarrow $Mds_{0,0}$	$N_{0,0}$ \downarrow $Nds_{0,0}$	$PValue_{0,0} += Mds_{0,0} *Nds_{0,0} + Mds_{0,1} *Nds_{1,0}$	$\mathbf{M_{0,2}}$ \downarrow $\mathbf{Mds_{0,0}}$	$ \begin{array}{c} \mathbf{N_{2,0}} \\ \downarrow \\ \mathbf{Nds}_{0,0} \end{array} $	$PValue_{0,0} += \\ Mds_{0,0}*Nds_{0,0} + \\ Mds_{0,1}*Nds_{1,0}$
thread _{0,1}	$M_{0,1}$ \downarrow $Mds_{0,1}$	$\begin{matrix} \mathbf{N_{0,1}} \\ \downarrow \\ \mathbf{Nds_{1,0}} \end{matrix}$	$PValue_{0,1} += Mds_{0,0}*Nds_{0,1} + Mds_{0,1}*Nds_{1,1}$	$\mathbf{M_{0,3}}$ \downarrow $\mathbf{Mds_{0,1}}$	$ \begin{array}{c} \mathbf{N_{2,1}} \\ \downarrow \\ \mathbf{Nds}_{0,1} \end{array} $	$PValue_{0,1} += \\ Mds_{0,0}*Nds_{0,1} + \\ Mds_{0,1}*Nds_{1,1}$
thread _{1,0}	$M_{1,0}$ \downarrow $Mds_{1,0}$	$\begin{matrix} \mathbf{N_{1,0}} \\ \downarrow \\ \mathbf{Nds_{1,0}} \end{matrix}$	$PValue_{1,0} += \\ Mds_{1,0}*Nds_{0,0} + \\ Mds_{1,1}*Nds_{1,0}$	$M_{1,2}$ \downarrow $Mds_{1,0}$	$N_{3,0}$ \downarrow $Nds_{1,0}$	$PValue_{1,0} += \\ Mds_{1,0}*Nds_{0,0} + \\ Mds_{1,1}*Nds_{1,0}$
thread _{1,1}	$M_{1,1}$ \downarrow $Mds_{1,1}$	$\begin{matrix} \mathbf{N_{1,1}} \\ \downarrow \\ \mathbf{Nds_{1,1}} \end{matrix}$	PValue _{1,1} += Mds _{1,0} *Nds _{0,1} + Mds _{1,1} *Nds _{1,1}	$\mathbf{M}_{1,3}$ \downarrow $\mathbf{M}ds_{1,1}$	$\begin{matrix} \mathbf{N_{3,1}} \\ \downarrow \\ \mathbf{Nds_{1,1}} \end{matrix}$	$PValue_{1,1} += \\ Mds_{1,0}*Nds_{0,1} + \\ Mds_{1,1}*Nds_{1,1}$

time

Shared memory allows each value to be accessed by multiple threads

Barrier Synchronization

- Synchronize all threads in a block
 - __syncthreads()
- All threads in the same block must reach the __syncthreads() before any of the them can move on
- Best used to coordinate the phased execution tiled algorithms
 - To ensure that all elements of a tile are loaded at the beginning of a phase
 - To ensure that all elements of a tile are consumed at the end of a phase

Objective

- To learn to write a tiled matrix-multiplication kernel
 - Loading and using tiles for matrix multiplication
 - Barrier synchronization, shared memory
 - Resource Considerations
 - Assume that Width is a multiple of tile size for simplicity

Loading Input Tile 0 of M (Phase 0)

 Have each thread load an M element and an N element at the same relative position as its P element.

```
int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
2D indexing for accessing Tile 0:
```

M[Row][tx] N[ty][Col]

Loading Input Tile 0 of N (Phase 0)

 Have each thread load an M element and an N element at the same relative position as its P element.

Loading Input Tile 1 of M (Phase 1)

Loading Input Tile 1 of N (Phase 1)

M and N are dynamically allocated - use 1D indexing

- M[Row][p*TILE_WIDTH+tx]

 M[Row*Width + p*TILE_WIDTH + tx]
- N[p*TILE_WIDTH+ty][Col]
 N[(p*TILE_WIDTH+ty)*Width + Col]

where p is the sequence number of the current phase

Tiled Matrix Multiplication Kernel

global void MatrixMulKernel(float* M, float* N, float* P, Int Width) shared float ds M[TILE WIDTH][TILE WIDTH]; shared float ds N[TILE WIDTH][TILE WIDTH]; int bx = blockIdx.x; int by = blockIdx.y; int tx = threadIdx.x; int ty = threadIdx.y; int Row = by * blockDim.y + ty; int Col = bx * blockDim.x + tx; float Pvalue = 0;Loop over the M and N tiles required to compute the P for (int p = 0; p < n/TILE WIDTH; ++p) {</pre> // Collaborative loading of M and N tiles into shared memory ds M[ty][tx] = M[Row*Width + p*TILE WIDTH+tx]; $ds_N[ty][tx] = N[(t*TILE WIDTH+ty)*Width + Col];$ syncthreads(); for (int i = 0; i < TILE WIDTH; ++i) Pvalue += ds M[ty][i] * ds N[i][tx]; __synchthreads(); P[Row*Width+Col] = Pvalue;

Tiled Matrix Multiplication Kernel

```
_global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
__shared__ float ds M[TILE WIDTH][TILE WIDTH];
shared float ds N[TILE WIDTH][TILE WIDTH];
int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;
int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
 float Pvalue = 0;
  Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE WIDTH; ++p) {
  // Collaborative loading of M and N tiles into shared memory
  ds M[ty][tx] = M[Row*Width + p*TILE WIDTH+tx];
  ds N[ty][tx] = N[(t*TILE WIDTH+ty)*Width + Col];
   syncthreads();
   for (int i = 0; i < TILE WIDTH; ++i) Pvalue += ds M[ty][i] * ds N[i][tx];
   synchthreads();
 P[Row*Width+Col] = Pvalue;
```


Tiled Matrix Multiplication Kernel

```
_global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
__shared__ float ds M[TILE WIDTH][TILE WIDTH];
shared float ds N[TILE WIDTH][TILE WIDTH];
 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x; int ty = threadIdx.y;
 int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
 float Pvalue = 0;
// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE WIDTH; ++p) {
   // Collaborative loading of M and N tiles into shared memory
   ds M[ty][tx] = M[Row*Width + p*TILE WIDTH+tx];
   ds N[ty][tx] = N[(t*TILE WIDTH+ty)*Width + Col];
   syncthreads();
   for (int i = 0; i < TILE WIDTH; ++i) Pvalue += ds M[ty][i] * ds N[i][tx];
    synchthreads();
 P[Row*Width+Col] = Pvalue;
```


Tile (Thread Block) Size Considerations

- Each thread block should have many threads
 - TILE_WIDTH of 16 gives 16*16 = 256 threads
 - TILE_WIDTH of 32 gives 32*32 = 1024 threads
- For 16, in each phase, each block performs 2*256 = 512 float loads from global memory for 256 * (2*16) = 8,192 mul/add operations. (16 floating-point operations for each memory load)
- For 32, in each phase, each block performs 2*1024 = 2048 float loads from global memory for 1024 * (2*32) = 65,536 mul/add operations. (32 floating-point operation for each memory load)

Shared Memory and Threading

- For an SM with 16KB shared memory
 - Shared memory size is implementation dependent!
 - For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.
 - For 16KB shared memory, one can potentially have up to 8 thread blocks executing
 - This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)
 - The next TILE_WIDTH 32 would lead to 2*32*32*4 Byte= 8K Byte shared memory usage per thread block, allowing 2 thread blocks active at the same time
 - However, in a GPU where the thread count is limited to 1536 threads per SM, the number of blocks per SM is reduced to one!
- Each __syncthread() can reduce the number of active threads for a block
 - More thread blocks can be advantageous

Objective

- To learn to handle arbitrary matrix sizes in tiled matrix multiplication
 - Boundary condition checking
 - Regularizing tile contents
 - Rectangular matrices

Handling Matrix of Arbitrary Size

- The tiled matrix multiplication kernel we presented so far can handle only square matrices whose dimensions (Width) are multiples of the tile width (TILE_WIDTH)
 - However, real applications need to handle arbitrary sized matrices.
 - One could pad (add elements to) the rows and columns into multiples of the tile size, but would have significant space and data transfer time overhead.
- We will take a different approach.

Phase 1 Loads for Block (0,0) for a 3x3 Example

Threads (0,1) and (1,1) need special treatment in loading M tile

Phase 1 Use for Block (0,0) (iteration 0)

$N_{0,0}$	N _{0,1}	$N_{0,2}$	
N _{1,0}	N _{1,1}	$N_{1,2}$	
N _{2,0}	N _{2,1}	$N_{2,2}$	

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	
		$M_{1,2}$	
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	

Phase 1 Use for Block (0,0) (iteration 1)

$N_{0,0}$	N _{0,1}	N _{0,2}	
$N_{1,0}$	N _{1,1}	N _{1,2}	
N _{2,0}	N _{2,1}	N _{2,2}	

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	
		$M_{1,2}$	
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	

All Threads need special treatment. None of them should introduce invalidate contributions to their P elements.

Phase 0 Loads for Block (1,1) for a 3x3 Example

Threads (0,1) and (1,1) need special treatment in loading N tile

Threads (1,0) and (1,1) need special treatment in loading M tile

Major Cases in Toy Example

- Threads that do not calculate valid P elements but still need to participate in loading the input tiles
 - Phase 0 of Block(1,1), Thread(1,0), assigned to calculate non-existent P[3,2] but need to participate in loading tile element N[1,2]
- Threads that calculate valid P elements may attempt to load nonexisting input elements when loading input tiles
 - Phase 0 of Block(0,0), Thread(1,0), assigned to calculate valid P[1,0] but attempts to load non-existing N[3,0]

A "Simple" Solution

- When a thread is to load any input element, test if it is in the valid index range
 - If valid, proceed to load
 - Else, do not load, just write a 0
- Rationale: a 0 value will ensure that that the multiply-add step does not affect the final value of the output element
- The condition tested for loading input elements is different from the test for calculating output P element
 - A thread that does not calculate valid P element can still participate in loading input tile elements

Phase 1 Use for Block (0,0) (iteration 1)

$N_{0,0}$	N _{0,1}	N _{0,2}	
N _{1,0}	N _{1,1}	N _{1,2}	
N _{2,0}		N _{2,2}	

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	
$M_{1,0}$			
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	
·			

Boundary Condition for Input M Tile

- Each thread loads
 - M[Row][p*TILE_WIDTH+tx]
 - M[Row*Width + p*TILE_WIDTH+tx]
- Need to test
 - (Row < Width) && (p*TILE_WIDTH+tx < Width)</p>
 - If true, load M element
 - Else, load 0

Boundary Condition for Input N Tile

- Each thread loads
 - N[p*TILE_WIDTH+ty][Col]
 - N[(p*TILE_WIDTH+ty)*Width+ Col]
- Need to test
 - (p*TILE_WIDTH+ty < Width) && (Col< Width)</p>
 - If true, load N element
 - Else, load 0

Loading Elements – with boundary check

```
for (int p = 0; p < (Width-1) / TILE WIDTH + 1; ++p) {
          if(Row < Width && t * TILE WIDTH+tx < Width) {
   ++
               ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];
          } else {
              ds_M[ty][tx] = 0.0;
    ++
          if (p*TILE_WIDTH+ty < Width && Col < Width) {
   ++
   10
              ds N[ty][tx] = N[(p*TILE WIDTH + ty) * Width + Col];
          } else {
   ++
              ds N[ty][tx] = 0.0;
   ++
   ++
          __syncthreads();
- 11
```


Inner Product – Before and After

Some Important Points

- For each thread the conditions are different for
 - Loading M element
 - Loading N element
 - Calculating and storing output elements
- The effect of control divergence should be small for large matrices

Handling General Rectangular Matrices

- In general, the matrix multiplication is defined in terms of rectangular matrices
 - A j x k M matrix multiplied with a k x l N matrix results in a j x l P matrix
- We have presented square matrix multiplication, a special case
- The kernel function needs to be generalized to handle general rectangular matrices
 - The Width argument is replaced by three arguments: j, k, l
 - When Width is used to refer to the height of M or height of P, replace it with j
 - When Width is used to refer to the width of M or height of N, replace it with k
 - When Width is used to refer to the width of N or width of P, replace it with I

67 3/2/2022