Computer Architecture

Practice - Single cycle processor design

Extend the single-cycle data-path shown below to support the following instructions. Add any necessary functional unites and control signals. Also, redesign the truth tables below (next page) and drive the new signals expressions.

```
Lwr $rd, $rs, $rt # Reg[rd] <— Mem[4*rs + rt]</li>
jalr r # $ra <— PC+4 # PC <— $r</li>
Cas # Reg[rd] <— Max(Reg[rs], Reg[rt])</li>
```


Ор	RegDst	RegWr	ExtOp	ALUSrc	MemRd	MemWr	WBdata
R-type	1 = Rd	1	Х	0 = <u>BusB</u>	0	0	0 = ALU
ADDI	0 = <u>Rt</u>	1	1 = sign	1 = <u>lmm</u>	0	0	0 = ALU
SLTI	0 = Rt	1	1 = sign	1 = <u>lmm</u>	0	0	0 = ALU
ANDI	0 = Rt	1	0 = zero	1 = <u>lmm</u>	0	0	0 = ALU
ORI	0 = Rt	1	0 = zero	1 = <u>lmm</u>	0	0	0 = ALU
XORI	0 = Rt	1	0 = zero	1 = <u>lmm</u>	0	0	0 = ALU
LW	0 = Rt	1	1 = sign	1 = <u>lmm</u>	1	0	1 = <u>Mem</u>
SW	Х	0	1 = sign	1 = <u>lmm</u>	0	1	Х
BEQ	Х	0	1 = sign	0 = BusB	0	0	Х
BNE	Х	0	1 = sign	0 = BusB	0	0	Х
J	Х	0	Х	Х	0	0	Х

Ор	funct	ALUOp	4-bit Coding
R-type	AND	AND	0001
R-type	OR	OR	0010
R-type	XOR	XOR	0011
R-type	ADD	ADD	0100
R-type	SUB	SUB	0101
R-type	SLT	SLT	0110
ADDI	Χ	ADD	0100
SLTI	Χ	SLT	0110
ANDI	Χ	AND	0001
ORI	Χ	OR	0010
XORI	Χ	XOR	0011
LW	Χ	ADD	0100
SW	Χ	ADD	0100
BEQ	Χ	SUB	0101
BNE	Χ	SUB	0101
J	X	X	X

Ор	Zero flag	PCSrc
R-type	X	0 = Increment PC
J	Х	1 = Jump Target Address
BEQ	0	0 = Increment PC
BEQ	1	2 = Branch Target Address
BNE	0	2 = Branch Target Address
BNE	1	0 = Increment PC
Other than Jump or Branch	Х	0 = Increment PC