影像處理 Final Project Report

航太所 李建德 P46081306

一、 問題:

這次的 Final project 的題目要求是,輸入一張斷層掃描的圖片,能自動切割出 Carpal Tunnel, Flexor Tendons, Median nerve 的區域,再將切割的框線疊加到原圖上,並與 ground truth 所切割出的區域進行比較,計算每塊及平均的 DC 值。

二、 方法:

我選用的方法是利用深度學習去進行 Carpal Tunnel, Flexor Tendons, Median nerve 區域的切割,採用的模型是上課有介紹的Unet。

這次的 Final project 要求用 5 fold cross-validation,但我沒有 選用此方法,我將所有的 data 放進去訓練,總共 206 張影像,將 batch 設為 2,steps per epoch 設為 103,epochs 設為 10

依題目需求,我分別訓練 3 個 model,分別為:

- 1. model_1.hdf5: 用來分割 Carpal Tunnel
- 2. model_2.hdf5: 用來分割 Flexor Tendons
- 3. model_3.hdf5: 用來分割 Median nerve

在重疊到原圖的部分,利用跟 HW1 的 overlapping 一樣的方法,先將經過訓練好的網路輸出圖片,並找出其邊緣,再將邊緣的部分換成紅(Carpal Tunnel)、藍(Flexor Tendons)、黃(Median nerve)覆蓋到原圖上。

1. 分割結果

2.影像後處理

3. 邊緣檢測

三、 結果:

四、 討論:

這次的 project,不只用到影像切割,還有上次作業的 edge detection 和 overlapping,另外還要計算與 ground truth 間的 DC 值,來比較準確率的高低。

在 Median nerve 切割的部分,在 t1、t2 準確率都相對較低,要改善需要花比較多的努力去調整網路的架構。

其次,在訓練 model_1.hdf5 與 model_2.hdf5,也就是 Carpal Tunnel 與 Flexor Tendons 的時候,時常遇到 overfitting 的問題,導致輸出為整張灰色的影像,但再訓練一次後,這個問題就順利解決了。

五、 結論:

這次的 project 沒有做到很完整,還需要調整還需要再補強判斷 Median nerve 的準確率。

六、 結果統計:

	CT(DC)	FT(DC)	MN(DC)
Patient0	0.91	0.73	0.67
Patient1	0.9	0.62	0.71
Patient2	0.91	0.82	0.64
Patient3	0.91	0.75	0.72
Patient4	0.9	0.74	0.71
Patient5	0.9	0.8	0.66
Patient6	0.89	0.8	0.7
Patient7	0.9	0.71	0.69
Patient8	0.9	0.8	0.68
Patient9	0.9	0.68	0.71
Avg	0.902	0.745	0.689