1 不定项选择题 (每题 3 分)

- 1. 下面不是永假式的是(注: ⊕ 为异或)
 - (A) $(\boldsymbol{p} \oplus \boldsymbol{q}) \wedge (\boldsymbol{p} \wedge \boldsymbol{q})$
 - (B) $(\boldsymbol{p} \wedge \boldsymbol{q}) \rightarrow \boldsymbol{T}$
 - (C) $\neg (\boldsymbol{p} \vee \boldsymbol{q}) \wedge (\boldsymbol{q} \vee \boldsymbol{p})$
 - (D) $\boldsymbol{p} \vee \neg \boldsymbol{p}$
 - (E) $\boldsymbol{p} \oplus \neg \boldsymbol{p}$
- 2. 下列集合中, 是完备集的是
 - $(A) \{\neg, \wedge\}$
 - (B) $\{\neg, \rightarrow\}$
 - (C) $\{\neg, \leftrightarrow\}$
 - (D) $\{\uparrow\}$
 - (E) $\{\land,\lor\}$
- 3. 下列等值式不正确的是
 - (A) $\neg(\forall x)A = (\exists x)\neg A$
 - (B) $(\forall x)(B \to A(x)) = B \to (\forall x)A(x)$
 - (C) $(\exists x)(A(x) \land B(x)) = (\exists x)A(x) \land (\exists x)B(x)$
 - (D) $(\forall x)(\forall y)(A(x) \to B(y) = (\exists x)A(x) \to (\forall y)B(y)$
 - (E) $\neg (\exists x)(\exists y)(F(x) \land F(y) \land \neg G(x,y)) = (\forall x)(\forall y)(F(x) \land F(y) \rightarrow G(x,y))$
- 4. 定义如下命题:
 - i. F(x): x 是女性
 - ii. *S(x)*: x 是学生
 - iii. K(x,y): x 认识 y

则对命题"Jack 认识每一个女生"的正确的形式化为

- (A) $\forall x (K(\operatorname{Jack}, x) \to F(x) \land S(x))$
- (B) $\neg \exists x (F(x) \land S(x) \land \neg K(Jack, x))$
- (C) $\forall x (\neg F(x) \lor \neg S(x) \lor K(Jack, x))$
- (D) $\forall x ((F(x) \land S(x)) \rightarrow K(Jack, x))$
- (E) $\neg \exists x (F(x) \land S(x) \land K(Jack, x))$
- 5. 设 B(x,y) 表示命题: " $y \in x$ 的朋友". 下列选项哪个表示了命题: "每一个人都有且仅有一个朋友"

- (A) $\forall x \exists y \forall z ((B(x,y) \land B(x,z)) \rightarrow (y=z))$
- (B) $\forall x \exists y \exists z (((x \neq y) \rightarrow B(x, y)) \land ((x \neq z) \rightarrow \neg B(x, z)))$
- (C) $\forall x \exists y (B(x,y) \land \forall z ((z \neq y) \rightarrow \neg B(x,z)))$
- (D) $\exists x \forall y (B(x,y) \land \forall z ((z \neq y) \rightarrow \neg B(x,z)))$
- (E) $\forall x \exists y \forall z ((B(x,y) \land (B(x,z) \rightarrow (y=z))))$

2 填空题 (每题 2 分)

- 1. 设 p,r 为真命题, q,s 为假命题, 则复合命题 $(p \to q) \leftrightarrow (\neg r \to s)$ 的真值为
- 2. 公式 $P \wedge (F \vee (\neg P \wedge Q))$ 的对偶式为 _____
- 3. 将 $\neg p \land (\neg q \land r)$ 化成等值的并且仅含 \uparrow 联结词的公式为 _____
- 4. 已知命题公式 $G = \neg (P \rightarrow Q) \land R$, 则 G 的主析取范式是 _____
- 5. $\forall x((\exists y P(x,y) \to \forall y R(y)) \to (\exists z Q(z) \to S(x)))$ 的 Skolem 标准形 (仅保留全称量词的前束形) 是

3 解答题(每题 5 分)

1. 已知: $\{\neg p \land q, r \rightarrow p, \neg r \rightarrow s, s \rightarrow t\}$, 求证: t

2. 证明: $(\neg (P \to Q) \to \neg (R \lor S)) \land ((Q \land \neg P) \to \neg R) \land R \Rightarrow (P \leftrightarrow Q)$

3. 证明: $(\forall x(W(x) \to Q(x))) \land (\exists x(R(x) \land S(x))) \land (\forall x(R(x) \land \neg Q(x))) \Rightarrow \exists x(S(x) \land \neg W(x))$	
4. 任何人如果他喜欢美术,他就不喜欢体育。每个人或喜欢体育,或喜欢音乐,有的人不喜欢音乐,因而有喜欢美术。要求:将自然语言形式化,用谓词逻辑表达上述已知条件,再证明。	有的人不
5. 张三说李四在说谎,李四说王五在说谎,王五说张三和李四都在说谎。问张三、李四、王五三人,到底说话,谁说假话? 要求: 将自然语言形式化,用命题逻辑表达上述推理前提,再运用推理演算求解。	主在说真