Statistics Assignment No. 4

Q.1 Is gender independent of education level? A random sample of 395 people were surveyed and each person was asked to report the highest education level they obtained. That data that resulted from the survey is summoured in the following table:

U	High School	Bacheloss	Masters	Phd	Total	-
Temale	60	54	46	41	201	
Male	40	44	53	57	194	
Total	100	98	99	98	395	
			24	. y		A

9. Are gender & education level dependent at 5% level of significance? In other words, given the data collected above, is there a relationship b/w the gender of an individual of the level of education that They have obtained?

Note: To test the indépendence of 2 catégorical features, me use CHI-Square Test of indépendence.

We can summarize 2 categorical variables within a 2-way table, also called a $r \times c$ contingency table, where r = no. of rows

c = no. of columns

Ho: The two calegorical variables are independent H, i The two categorical variables are dépendent.

CHI-Square Test Statistics
$$X^2 = \sum (O - E)^2$$
E

0 -> Observed frequency E => Expected frequency under the null hypothin

here sample size is >395

Note: We will compare the value of test statistics to the critical value of χ^2 with degree of freedom = (v-1)(c-1), & reject the null hypothesis if $X^2 > X_2^2$.

here, degree of freedom =
$$(2-1)(4-1)$$

=> 3

Here, is the table of expected counts!
(by using Eq. (1))

-
TAL
4
5

So, working this out,

$$\chi^2 = \frac{\left(60 - 50.886\right)^2}{50.886} + \frac{\left(57 - 48.132\right)^2}{48.132}$$

= 8.006

The vritical value of X2 with 3 degree of freedom is 7.815.

Since 8.006 > 7.815, me reject the null hypothesis & conclude that the education level hypothesis on gender at a 5% level of significance, depends on gender at a 5% level of significance.

Statistice Assignment No. -4

Q.3 Calculate F Test for given 10, 20, 30, 40, 50 and 5,10,15,20,25.

For 10, 20, 30, 40, 50:

F Test is generally defined as ratio of the variances of the given ituro set of values.

1st calculate standard deviation and variation of the given

set of values. Standard Deviation Formula (σ) : $\left|\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\overline{x})^2\right|$

Variance: Γ^2

F-Test FORMULA

 $F = \frac{\text{estimate}}{\text{estimate}} \text{ of } r^2 \text{ from means}$

F = variance between Treatments Variance within Treatments

F = Variance of Freatments Variance of Errors.

Calculate Variance of 1st set

Formal Inputs (N) = (10,20,30,40,50)

Total Inputs (N) = 5

Mean (Xm) =
$$\frac{x_1+x_2+x_2+x_4-...x_n}{N} = \frac{150}{5} = 30$$

Standard deviation (SD) = $\frac{1}{N-1} \stackrel{?}{=} (x_1-\overline{x})^2$

$$\Rightarrow \frac{1}{(5-1)} \left((10-30)^2 + (20-30)^2 + (30-30)^2 + (40-30)^2 + (50-30)^2 \right)$$

$$\Rightarrow \frac{1}{4} \left((4m+1m+1m+0) + (10m+4m) \right) \Rightarrow \sqrt{250}$$

$$\Rightarrow 15.8114$$

Variance = SD² = 250.

Calculate Variance of 2nd set

Inputs = (5,10,15,20,25)

Total Inputs (N) = 5

(Xm) Mean = $\frac{5}{10} + 10 + 15 + 20 + 25$

= $\frac{75}{5} = 15$

Standard deviation (SD) =
$$\frac{1}{N-1} \stackrel{\geq}{=} (\pi_i - \bar{\pi})^2$$

$$SD = \frac{1}{5-1} \left[(5-15)^2 + (10-15)^2 + (15-15)^2 + (20-15)^2 + (25-15)^2 \right]$$

$$= \sqrt{\frac{1}{4} \left[100 + 25 + 0 + 25 + 100 \right]} = \sqrt{62.5}$$

Variance =
$$SD^2 \Rightarrow 62.5$$

$$\Rightarrow \frac{250}{62.5} \Rightarrow 4$$

Problem Statement 2:

Using the following data, perform a oneway analysis of variance using α=.05. Write up the results in APA format.

[Group1: 51, 45, 33, 45, 67] [Group2: 23, 43, 23, 43, 45] [Group3: 56, 76, 74, 87, 56]

SOLUTION:

	Group 1	Group 2	Group 3
	51	23	56
	45	43	76
	33	23	74
	45	43	87
	67	45	56
means	48.2	35.4	69.8

Calculate within group variances:

Group 1

	value	mean	deviations	sq deviations
	51	48.2	2.8	7.84
	45	48.2	-3.2	10.24
	33	48.2	-15.2	231.04
	45	48.2	-3.2	10.24
	67	48.2	18.8	353.44
SS		•		612.8

Mean Square (Error or within group)155.07Degrees of Freedom (Error or within group)12Sum of Squares (Within Group)1860.8

Group 2

Group 2					Group 3				
	value	mean	deviations	sq deviations		value	mean	deviations	sq deviations
	23	35.4	-12.4	153.76		56	69.8	-13.8	190.44
	43	35.4	7.6	57.76		76	69.8	6.2	38.44
	23	35.4	-12.4	153.76		74	69.8	4.2	17.64
	43	35.4	7.6	57.76		87	69.8	17.2	295.84
	45	35.4	9.6	92.16		56	69.8	-13.8	190.44
SS				515.2	SS				732.8

	Group 1	Group 2	Group 3
	51	23	56
	45	43	76
	33	23	74
	45	43	87
	67	45	56
means	48.2	35.4	69.8

group means	grand mean	deviations	sq deviations
48	2 51.13	-2.93	8.60
35	4 51.13	-15.73	247.54
69.	51.13	18.67	348.44

Sum of squares (means) 604.59
Mean Square (Between Groups) 1511.47
Degree of Freedom (Group) 2
SS (Group) 3022.93

Test statistic and critical value

F 9.75 Fcritical(2,12) 3.89

ANOVA Table

Source of Variation	SS	df	MS	F	P-value	F crit
Data and Consumer	2022.02		4544.47	0.75	0.00206	2.00
Between Groups	3022.93	2	1511.47	9.75	0.00306	3.89
Within Groups	1860.80	12	155.07			
Total	4883.73	14				

Decision

Reject Ho since F > F-critical

Effect size

 $\eta 2$ 0.62

APA writeup

 $F(2, 12) = 9.75, p < 0.05, \eta 2 = 0.62$