CSE7850/CX4803 Machine Learning in Computational Biology

Lecture 16: Protein Language Models

Yunan Luo

Protein language models

Autoregressive language models

$$p(x) = \prod_{i=1}^{L} p(x_i|x_1 \dots x_{i-1})$$

Masked language models

$$p(x) = \prod_{i=1}^{L} p(x_i|x_1 ... x_{i-1}, x_{i+1} ... x_L)$$

How to train a protein LM?

- Given a protein sequence $x = (x_1, x_2, ..., x_L)$
 - Mask a token x, randomly (or multiple tokens)
 - Use other tokens as input
 - \circ Train the neural network to predict x_i
 - Objective: $\mathbb{E}_{x \sim X} \mathbb{E}_M \sum_{i \in M} -log p(x_i | x_{/M})$
- This training strategy is called self-supervised learning
 - Given only data (X), no labels (Y)
 - Simulate labels from the X itself
 - The model trains itself to learn one part of the input
 from another part of the input

Processes whole sequence

Application of protein language models

Protein Regression (e.g., stability prediction)

Attribute-Guided Generation (e.g. CATH structural codes) Output: MTDNNT...VFELT ProGeny Input: 1.10.10.10 (CATH code: Winged helix) Predicted Structure

Protein Classification (e.g., remote homology detection)

Span Generation (e.g. clamp loader helices)

Application: generating novel functional protein sequences

Application of protein language models

Protein Regression (e.g., stability prediction)

Attribute-Guided Generation (e.g. CATH structural codes)

Protein Classification (e.g., remote homology detection)

Fill in the Blanks using LMs

Fill in the Blanks using LMs

Fill in the blanks?

Consider the following sentence with blanks:

She ate for	

To fill in the blanks, one needs to consider both preceding and subsequent text (in this case, "She ate" and "for"). There can be many reasonable ways to fill in the blanks:

She ate leftover pasta for lunch

She ate chocolate ice cream for dessert

She ate toast for breakfast before leaving for school

She ate rather quickly for she was in a hurry that evening

The task of filling in the blanks is known as text infilling in the field of Natural Language Processing (NLP). It is the task of predicting blanks (or missing spans) of text at any position in text.

- This is exactly what LM does!
 - The model trains itself to learn one part of the input from another part of the input

Fill in the Blanks using LMs

Input: I love peanut butter and __ sandwiches

Fill in Blanks in Protein Sequences!

Application: antibody design

Application: Antibody Design

"Cure" COVID-19 using PLM

How SARS-CoV-2 gets into human cells?

Blocking the virus using a "placeholder"

Design artificial binders

Using PLM to generate binder sequences

