LØST OPPGAVE 6.347

6.347

Vi har målt sammenhørende verdier av trykket p og volumet V i en avstengt gassmengde der temperaturen blir holdt konstant. Resultatene ble:

<i>p</i> /kPa	400	200	100	50
V/cm ³	0,26	0,51	1,00	1,98

- a) Bruk tabellen til å lage en graf der trykket er en funksjon av volumet. Bruk gjerne et digitalt hjelpemiddel.
- b) Lag også en graf der 1/p er en funksjon av V.Gir denne grafen grunnlag for å sette opp en matematisk sammenheng mellom p og V? I så fall: Hvilken?

Løsning:

a) Vi plotter punktene i tabellen inn i et *p*–*V*-diagram og trekker en utjevningskurve:

b) Vi lager oss en tabell med $\frac{1}{p}$ og V:

$\frac{1}{p}/(kPa)^{-1}$	0,0025	0,0050	0,010	0,020
V/cm ³	0,26	0,51	1,00	1,98

Vi plotter punktene i tabellen inn i et 1/p–V-diagram:

Vi ser at en god utjevningskurve for 1/p som funksjon av V er en rett linje gjennom origo. Det betyr at 1/p er proporsjonal med V. Da er sammenhengen mellom 1/p og V

$$\frac{1}{p}$$
 = konstant · V

Vi omformer denne likningen ved å multiplisere med p på begge sider av likhetstegnet, og får

$$pV = \text{konstant}$$

Dette er tilstandslikningen for isoterme prosesser – se side 165 i grunnboka – slik vi kunne vente.