Medusa: Microarchitectural Data Leakage via Automated Attack Synthesis

- Daniel Moghimi
- Moritz Lipp
- Berk Sunar
- Michael Schwarz


```
char secret = *(char *) 0xfffffff81a0123;
printf("%c\n", secret);
```


char secret = *(char *) 0xfffffff81a0123;

char secret = *(char *) 0xfffffff81a0123;


```
char secret = *(char *) 0xffffffff81a0123;
char x = oracle[secret * 4096];
```



```
char secret = *(char *) 0xffffffff81a0123;
char x = oracle[secret * 4096];
```



```
char secret = *(char *) 0xffffffff81a0123;
char x = oracle[secret * 4096];
```



```
char secret = *(char *) 0xffffffff81a0123;
char x = oracle[secret * 4096];
```



```
char secret = *(char *) 0xffffffff81a0123;
char x = oracle[secret * 4096];
```



```
char secret = *(char *) 0xffffffff81a0123;
char x = oracle[secret * 4096];
```


Microarchitecture Data Sampling (MDS)

Meltdown is fixed but you can still leak on the fix hardware.

```
char secret = *(char *) 0xffwhateverla0123;
```

Which part of the CPU leak the data?!

Why does it leak?

VFN	Offset
-----	--------

VFN	Offset
-----	--------

Р	RW	US		A		Physical Page Number	
---	----	----	--	---	--	----------------------	--

VFN Offset

Р	RW US		A		Physical Page Number	
---	-------	--	---	--	----------------------	--

VFN	Offset
-----	--------

Р	RW	US		A		Physical Page Number	
---	----	----	--	---	--	----------------------	--

VFN	Offset
-----	--------

Р	RW US		A		Physical Page Number	
---	-------	--	---	--	----------------------	--

	VFN		Offset			
PTE						
Р	RW	US	 Α	 Physical Pag	e Number	

Challenges with MDS Testing?

- Reproducing attacks is not reliable. It may depend on:
 - massaging the pipeline with other instructions
 - CPU configuration (generation, frequency, microcode patch and etc)

- Reproducing attacks is not reliable. It may depend on:
 - massaging the pipeline with other instructions
 - CPU configuration (generation, frequency, microcode patch and etc)
- No public tool to find new variants or to verify hardware patches:
 - Too many things to test (Addressing mode, cache state, assists, and faults)
 - Previous POCs may not work after MC update, but what does it mean?

- Reproducing attacks is not reliable. It may depend on:
 - massaging the pipeline with other instructions
 - CPU configuration (generation, frequency, microcode patch and etc)
- No public tool to find new variants or to verify hardware patches:
 - Too many things to test (Addressing mode, cache state, assists, and faults)
 - Previous POCs may not work after MC update, but what does it mean?

- Impossible to quantify the impact of leakage:
 - We should care about leakage rate and what data is leaked.
 - My POC is faster than your POC!!

Transynther

Stores Same Thread: 0x41424344

Loads Same Thread: 0x51525354 Stores Hyper Thread: 0x61626364

Loads Hyper thread Thread: 0x71727374

char x = oracle[secret * 4096];

256 different CPU Cache Line

Step 1:

Step 2:

Step 3:

Stores Same Thread: 0x41424344

Loads Same Thread: 0x51525354 **Stores Hyper** Thread: 0x61626364

Loads Hyper thread Thread: 0x71727374

P Branch: master ▼

danielmgmi committed 05ce08d 3 days ago		(History
i3-7100_9_0x84_notsx.log_1_1835.asm	init	3 days ago
i3-7100_9_0x84_notsx.log_21829_473.asm	init	3 days ago
i7-7700_9_0x48.log_17_1764.asm	init	3 days ago
17-7700_9_0x48.log_1_247.asm	init	3 days ago
i7-7700_9_0x48.log_21829_1025.asm	init	3 days ago
i7-7700_9_0x48.log_21829_1240.asm	init	3 days ago
17-7700_9_0x48.log_21829_2188.asm	init	3 days ago
i7-7700_9_0x48.log_21829_2547.asm	init	3 days ago
i7-7700_9_0x48.log_21829_653.asm	init	3 days ago
i7-7700_9_0xca.log_21829_1175.asm	init	3 days ago
i7-7700_9_0xca.log_21829_541.asm	init	3 days ago
17-7700_9_0xca.log_21829_561.asm	init	3 days ago

Table 2: Leakage variants discovered by Transynther.

Case	Preparation	Store	Load	Name
1	(access ∅, random instructions)		< + ⊕ / ∰ / ⊘	MLPDS
2	(access (acces	-	AVX < + ⊕ / ७ / ⊘	MLPDS
2 3 4 5 6 7 8	(access Q, random instructions)		AVX + ♠ / ७ / <×>	Medusa
4	(access Q, random instructions)	-	AVX → + ⊕ / ७ / ⊘ / <*>/ ✓	Medusa
(3)	-	store (to load)	⊕ / m/< x> /✓	S2L
6	(rep mov + store, store + fence + load)	store (to load)	⊕/ [™] /< x> /✓	-
7	-	store (4K Aliasing) + ⊕ / ⊕ / ⊘ / <×>/ ✓	₼/₾	MSBDS
8	-	store (4K Aliasing, to load) + ♠ / [/] / <×>/	AVX → + 🔂 / 🛅 / ⊘ / <*> / ✓	MSBDS, S2L
		~		
9	(Sibling on/off)	store (random address) + ⊘	⊕ / < x >	MSBDS
(10)	(Sibling on/off + clflush (store address))	store (Cache Offset of Load) + 🕢	⊕ / < x >	MSBDS
9 10 11	(Sibling on/off + repmov (to Load))	store (to Load)	AVX → + 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1	Medusa,
_	Notice Consider the Constitution of the Consti	Soft word a Post speed of the Soft		MLPDS
(12)		Store (Unaligned to Load)	⊕ / [m / < x >	Medusa
12	(random instructions)	AVX Store (to Load)	< x >	Medusa,
\circ		•		MLPDS,
				MSBDS
14	-	random fill stores	< x>	MSBDS

MDS Attacks - Insights

- Almost any exception/assist can leak from any buffer
- The CPU must flush the pipeline before executing an assist.
- Upon an Exception/Fault/Assist on a Load, Intel CPUs:
 - Execute the load until the last stage.
 - Flush the pipeline at the retirement stage (Cheap Recovery Logic).
 - Continue the load with some data to reach the retirement stage.
- Which data? (Fill buffer, Store Buffer, Load Buffer)
- Which one will be leaked first? (First come first serve)

- Medusa only leaks the Write Combining Data
- Implicit WC, i.e., 'rep mov', 'rep sto', can be leaked.
 - Memory Copy Routines
 - File IO
- Served by a Write Combining Buffer (or just the the Fill Buffer).

- Advantages:
 - Prefiltered data
 - Less Noise
 - More targeted

Cache Line Index

An invalid (Non-canon) address: 0x55500000000000008-20

Cache Line Index

An invalid (Non-canon) address: 0x55500000000000008-20

Cache Line Index

An invalid (Non-canon) address: 0x55500000000000008-20

Cache Line Index

Common Data Bus?!

Medusa Attack - V2 Unaligned S2L Forwarding

Cache Line Index

Faulty Load

44

Medusa Attack - V3 Shadow REP MOV

- A REP MOV that fault on the load leaks:
 - the data from the legitimate store address
 - but also the data from the REP MOV running on the hyper thread

HT 1: REP MOV Valid Store, Faulty Load

HT 1: REP MOV Valid Store, Faulty Load

> ABCDEFGHIJKLMNOP AAAAAAAAAAAAAAA

- A REP MOV that fault on the load leaks:
 - the data from the legitimate store address
 - but also the data from the REP MOV running on the hyper thread

zombieload-v3-victim-repmov.perf.csv zombieload-v3-victim-fr-nofence.perf.csv zombieload-v3-victim-fr-mfence.perf.csv zombieload-v2-taa-victim-repmov.perf.csv zombieload-v2-taa-victim-fr-nofence.perf.csv zombieload-v2-taa-victim-fr-mfence.perf.csv zombieload-v1-victim-repmov.perf.csv zombieload-v1-victim-fr-nofence.perf.csv zombieload-v1-victim-fr-mfence.perf.csv ridl-victim-repmov.perf.csv ridl-victim-fr-nofence.perf.csv ridl-victim-fr-mfence.perf.csv medusa-v3-shadowREPMOV-victim-repmov.perf.csv medusa-v3-shadowREPMOV-victim-fr-nofence.perf.csv medusa-v3-shadowREPMOV-victim-fr-mfence.perf.csv medusa-v3-shadowREPMOV-fh-victim-repmov.perf.csv medusa-v2-unalignedSTL-victim-repmov.perf.csv medusa-v2-unalignedSTL-victim-nofence.perf.csv medusa-v2-unalignedSTL-victim-mfence.perf.csv medusa-v2-unalignedSTL-fh-victim-repmov.perf.csv medusa-v1-addresscan-victim-repmov.perf.csv medusa-v1-addresscan-victim-fr-nofence.perf.csv medusa-v1-addresscan-victim-fr-mfence.perf.csv medusa-v1-addresscan-fh-victim-repmov.perf.csv

Table 1: The performance counters used in Transynther to identify the active microarchitectural elements.

Counter	Description
MEM_LOAD_RETIRED.FB_HIT	Data loaded from a line-fill-buffer entry.
MEM_LOAD_RETIRED.L1_HIT	Data loaded from the L1 data cache.
MEM_LOAD_RETIRED.L2_HIT	Data loaded from the L2 data cache.
L1D_PEND_MISS.FB_FULL	Data is neither in L1 nor in fill buffer.
LD_BLOCKS.STORE_FORWARD	Store buffer blocks load.
LD_BLOCKS_PARTIAL.ADDRESS_ALIAS	Load blocked by partial address match.
MEM_INST_RETIRED.SPLIT_LOADS	Data spans across two cache lines.

OpenSSL RSA Key Recovery

- OpenSSL Base64 Decoder uses inline Memcpy(-oS)
- Triggered during the RSA Key Decoding from the PEM format:

-----BEGIN RSA PRIVATE KEY-----MIICXQIBAAKBgQDmTvQjjtGtnlqMwmmaLW+YjbYTsNR8PGKXr78iYwrMV5Ye4VGy BwS6qLD4s/EzCzGIDwkWCVx+gVHvh2wGW15Ddof0gVAtAMkR6gRABy4TkK+6YFSK AyjmHvKCfFHvc9loeFGDyjmwFFkfdwzppXnH1Wwt0OlnyCU1GbQ1w7AHuwIDAQAB AoGBAMyDri7pQ29NBIfMmGQuFtw8c0R3EamlIdQbX7qUguFEoe2YHqjdrKho5oZj nDu8o+Zzm5jzBSzdf7oZ4qaeekv0fO+ZSz6CKYLbuzG2IXUB8nHJ7NuH3lacfivD V4Cfg0yFnTK+MDG/xTVqywrCTsslkTCYC/XZOXU5Xt5z32FZAkEA/nLWQhMC4YPM OLqMtgKzfgQdJ7vbr43WVVNpC/dN/ibUASI/3YwY0uUtqSjillghIY7pRohrPJ6W ntSJw0UAhQJBAOe2b9cfiOTFKXxyU4j315VkulFfTyL6GwXi/7mvpcDCixDLNRyk uRigmdKjtlUrAX0pwjgXa6niqJ691jExez8CQQCcMZZAvTbZhHSn9LwHxqS0SIY1 K+ZxX5ogirFDPS5NQzyE7adSsntSioh6/LQKBX6BAR9FwtxBPACtwz5F9geZAkA8 a3z0SlvG04aC1cjkgUPsx6wxxbl79F2RhmSKRbvh7JiYk3RQ+L7vJgmWPGu5AcLM oVPsjmbbkKfJZNTyVOW/AkABepEi++ZQQW0FXJWZ3nM+2CNcXYCtTgi4bGkvnZPp /1pAy9rjeVJYhb8acTRnt+dU+uZ74CTtfuzUTZLOIuVe ----END RSA PRIVATE KEY-----

OpenSSL RSA Key Recovery

- OpenSSL Base64 Decoder uses inline Memcpy(-oS)
- Triggered during the RSA Key Decoding from the PEM format:

```
-----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQDmTvQjjtGtnlqMwmmaLW+YjbYTsNR8PGKXr78iYwrMV5Ye4VGy
BwS6qLD4s/EzCzGIDwkWCVx+gVHvh2wGW15Ddof0gVAtAMkR6gRABy4TkK+6YFSK
AyjmHvKCfFHvc9loeFGDyjmwFFkfdwzppXnH1Wwt0OlnyCU1GbQ1w7AHuwIDAQAB
AoGBAMyDri7pQ29NBIfMrmGQuFtw8c0R3EamlIdQbX7qUguFEoe2YHqjdrKho5oZj
nDu8o+Zzm5jzBSzdf7oZ4qaeekv0fO+ZSz6CKYLbuzG2IXUB8nHJ7NuH3lacfivD
V4Cfg<mark>0yFnTK+</mark>MDG/xTVqywrCTsslkTCYC/XZOXU5Xt5z32FZAkEA/nLWQhMC4YPM
OLqMtgKzfgQdJ7vbr43WVVNpC/dN/ibUASI/3Yw<mark>Y0uUtqS</mark>jillghIY7pRohrPJ6W
ntSJw0UAhQJBAOe<mark>2b9cfiOT</mark>FKXxyU4j315VkulF<mark>fTyL6Gw</mark>Xi/7mvpcDCixDLNRyk
uRigmdKjtlUrAX0pwjgXa6niqJ691jExez8CQQCcMZZAvTbZhHSn9LwHxqS0SIY1
K+ZxX5ogirFDPS5NQzyE7adSsntSioh6/LQKBX6BAR9FwtxBPACtwz5F9geZAkA8
a3z0SlvG04aC1cjkgUPsx6wxxbl79F2RhmSKRbvh7JiYk3RQ+L7vJgmWPGu5AcLM
oVPsjmbbkKfJZNTyVOW/AkABepEi++ZQQW0FXJWZ3nM+2CNcXYCtTgi4bGkvnZPp
/1pAy9rjeVJYhb8acTRnt+dU+uZ74CTtfuzUTZLOIuVe
----END RSA PRIVATE KEY-----
```

OpenSSL RSA Key Recovery

- OpenSSL Base64 Decoder uses inline Memcpy(-oS)
- Triggered during the RSA Key Decoding from the PEM format:

OpenSSL RSA Key Recovery - Coppersmith

- Knowledge of at least $\frac{1}{3}$ of P+Q
- Create a n dimensional hidden number problem where n is relative to the number of recovered chunks
- Feed it to the lattice-based algorithm to find the short vector

OpenSSL RSA Key Recovery - Coppersmith Attack

- Knowledge of at least $\frac{1}{3}$ of P+Q.
- Creating a n dimensional hidden number problem where n is relative to the number of recovered chunks.
- Feeding it to the lattice-based algorithm to find the short vector.

Responsible Disclosure

- Medusa
 - June 24, 2019: Reported initial findings to Intel
 - Intel confirmed that WC is part of the fill buffer, but embargoed due to TAA
 - Nov 12, 2019: \$\$\$ Awarded

Conclusion

- Automated Testing for CPU Attacks
 - helps us to understand the root cause of these issues better.
 - can be used to verify hardware mitigations.
 - can help us to improve the leakage rate and understand the impact of attacks better.
- The impact of attacks depend also on the exploitation technique.

Conclusion

- Automated Testing for CPU Attacks
 - helps us to understand the root cause of these issues better.
 - can be used to verify hardware mitigations.
 - can help us to improve the leakage rate and understand the impact of attacks better.
- The impact of attacks depend also on the exploitation technique.

Conclusion

- Automated Testing for CPU Attacks
 - helps us to understand the root cause of these issues better.
 - can be used to verify hardware mitigations.
 - can help us to improve the leakage rate and understand the impact of attacks better.

The impact of attacks depend also on the exploitation technique.

- MSBDS (Fallout) on Ice Lake
 - November 2019: Intel sent us an Ice Lake Machine (Hardware mitigations)

- MSBDS (Fallout) on Ice Lake
 - November 2019: Intel sent us an Ice Lake Machine
 - March 2019: Tested Transyther on the Ice Lake CPU

- MSBDS (Fallout) on Ice Lake
 - November 2019: Intel sent us an Ice Lake Machine
 - March 2019: Tested Transyther on the Ice Lake CPU

```
11 /** asm.S **/
      . global s_faulty_load
13 s_faulty_load:
   lea address_normal+0x4822, %r14 // Store address
   lea address_supervisor +0x822, %r15 // Load address (4K alias)
16 // clflush (%r14)
                           // Uncomment to modify cache state
17 // lock; incl (%r14)
                                     // Uncomment to modify cache state
   movb $0x41, (%r14)
                                      // Store
   movb (%r15), %al
                                      // Faulty Load
                                      // Encode
  lea oracles, %r13
   and $0xff, %rax
   shlq $12, %rax
   movb (%r13,%rax,1), %al
   ret
```

- MSBDS (Fallout) on Ice Lake
 - November 2019: Intel sent us an Ice Lake Machine
 - March 2019: Tested Transyther on the Ice Lake CPU
 - Mar 27, 2020: Reported MSBDS Leakage on Ice Lake
 - May 5, 2020: Intel Completed triage
 - MDS mitigations are not deployed properly
 - Chicken bits were not enabled for all mitigations.
 - OEMs shipped with old/wrong microcode.
 - Embargoed till July
 - July 13, 2020: MDS advisory and list of affected CPUs were updated.
 - \$\$\$ Awarded

Torsion	MC Date	Vulnerable Leakage (bytes/s) clflush lock inc Unm			ytes/s)
MC Version	MCD	Vulnera	clflush	lock inc	Unmodified
0x32 (stock)	2019-07-05	/	577.87	754.99	1.58
0x36	2019-07-18	✓	148.24	529.84	0.62
0x46	2019-09-05	✓	130.15	695.80	0.11
0x48	2019-09-12	✓	271.69	620.07	0.59
0x50	2019-10-27	✓	96.54	542.10	0.25
0x56	2019-11-05	✓	145.46	751.40	0.08
0x5a	2019-11-19	✓	532.40	645.32	0.70
0x66	2020-01-09	X	0	0	0
0x70	2020-02-17	X	0	0	0
0x82	2020-04-22	X	0	0	0
0x86	2020-05-05	X	0	0	0

Processor	Steppolet All Underted Underted	Wetteelike turke or 2 tot 23
		Intel Guidance: Microarchitectural Data Sampling Deep Dive
06_7EH	5	Hardware+MCU

Table 6: List of MDS-affected processors by Family/Model

Family_Model		Processor Families / Processor Number Series	MFBDS	MSBDS	MLPDS
06_7EH	5	10th Generation Intel® Core™ Processor Family based on <mark>Ice Lake</mark> (U, Y) microarchitecture	No	Yes	No

057	MDS_NO Bit in IA32_ARCH_CAPABILITIES MSR is Incorrectly Set
Problem	MDS_NO bit (bit 5) in IA32_ARCH_CAPABILITIES MSR (10Ah) is set, incorrectly indicating full activation of all MDS (microarchitectural data sampling) mitigations.
Implication	Due to this erratum, the IA32_ARCH_CAPABILITIES MDS_NO bit incorrectly reports the activation of all MDS mitigations actions.
Workaround	It is possible for the BIOS to contain a workaround for this erratum.
Status	For the steppings affected, refer to the <u>Summary Table of Changes</u> .

Moritz Lipp @mlqxyz

Berk Sunar @berksunar

Michael Schwarz @misc0110

https://github.com/ VernamLab/Medusa

https://github.com/
danielmgmi/IceBreak

