

CONTENTS

- 1. Procedure
- 2. Mean shift clustering
- 3. K-means clustering
- 4. Compare

01. Procedure

1. 사진 데이터 선택

2. Mean shift clustering & K-means clustering

- Mean shift clustering
- 1. h값을 갖는 윈도우에 포함되는 데이터들의 Mode 값으로 윈도우의 중심을 이동하는 과정을 반복
- 2. 수렴하면, 수렴하는 값을 클러스터의 mode 값으로 선택
- ✓ 적절한 파라미터 h를 실험적으로 선택

- K-means clustering
- 1. 각 좌표를 가장 가까운 centroid의 클러스 터로 분류
- 2. 클러스터의 centroid 값을 재계산
- 이전 centroid 값에서 변화가 적어, 수렴한 다고 판단할 수 있을 때까지, 1,2를 반복 수 행
- 4. 수렴하면, 클러스터의 centroid를 클러스터 의 값으로 선택

2

01. Procedure

3. 클러스터 결과 출력 및 복원 사진 비교(목표 결과물)

LAB 공간의 클러스터 시각화

■ 원본, 복원사진(mean shift, kmeans) 비교

사진별 window size 선택

Image1

Window size	# of clusters	
7	158	
9	60	
11	26	
13	16	
15	12	

Fig 1. Recovery with h=13

Fig 3. Cluster with h=13

Estimated number of clusters: 12

Image1

Estimated number of clusters: 16

Fig 2. Recovery with h=15

Fig 4. Cluster with h=13

Fig 5. Cluster with h=15

Fig 3. Cluster with h=9

- ✓ h 크기가 증가할 수록, 클러스 터의 개수가 적음
- → 클러스터링으로 복원하는 이미 지의 색상의 개수가 적어짐

16개의 클러스터를 갖는 h=13 선택

■ 사진별 window size 선택

❖ Image1

Window size	# of clusters	
7	158	
9	60	
11	26	
13	16	
15	12	

❖ Image2

Window size	# of clusters	
7	37	
9	17	
11	11	
13	7	
15	4	

❖ Image3

Window size	# of clusters	
5	30	
6	21	
7	14	
8	11	
9	10	

사진별로 윈도우 사이즈에 따른 cluster개수가 다름

→ 3개의 사진에 다른 h적용

Image	Image1	Image2	Image3
h	13	9	7

14개 이상의 클러스터를 갖는 적절한 window size h를 선정

Fig 1. Cluster with h=13

Fig 2. Recovery with h=13

Image2

Fig 4. Recovery with h=9

Image3

Fig 6. Recovery with h=7

03. K-means clustering

Image1

Original

Fig 1. Cluster with k=16

Fig 2. Recovery with k=16

Image2

Fig 3. Cluster with k=17

Fig 4. Recovery with k=17

Image3

Fig 5. Cluster with k=16

Fig 6. Recovery with k=16

04. Compare

Image1

Recover by Mean shift clustering

Fig 1. Recovery by Mean shift clustering

Recover by K-means clustering

Fig 2. Recovery by K-means clustering

Fig 3. Cluster by mean shift clustering

Fig 4. Cluster by K-means clustering

이미지를 지배하는 색상이라도 single mode를 갖는 분포를 가지고 있는 경우, Means shift는 동일한 클러스터에 포함시킴

04. Compare

Image2

Recover by Mean shift clustering

Fig 1. Recovery by Mean shift clustering

Fig 2. Recovery by K-means clustering

Estimated number of clusters: 17

Fig 4. Cluster by K-means clustering

정해진 window size에 window의 중심을 이동시키는 means shift의 경우, 유사한 색상이라도 locally maximum probability를 갖는 색상으로 수렴

04. Compare

Image3

Recover by Mean shift clustering

Fig 1. Recovery by Mean shift clustering

Fig 2. Recovery by K-means clustering

이미지를 지배하는 색상이라도 single mode를 갖는 분포를 가지고 있는 경우, Means shift는 동일한 클러스터에 포함시킴 K-means는 에러를 최소화 하기 위해, 다른 클러스터로 구분