FINAL PROJECT Stats 415

Andrew Mashhadi Spring 2023

Introduction

- Stack Exchange is a network of Q & A websites.
- Since 2008, they have grown as one of the most used networks for programming and mathematics questions.
- Every posted question may contain various tags to help locate other interested users.
- Time Series Analysis:
 - Topic within mathematics and statistics that encompasses techniques for examining or modeling data points arranged in chronological order.
 - o The recent surge in machine learning and data science has sparked a renewed interest in this subject.
 - o Also happens to be the topic of this course ©.
- In this study, we aim to analyze and model the monthly count of Stack Exchange questions tagged with "timeseries".

Data

- The Stack Exchange provides an open source tool known as the Stack Exchange Data Explorer for running arbitrary SQL queries against public data from the Stack Exchange network.
- We collected the monthly counts of Stack Exchange questions tagged with "time-series". In other words, our data is the number of time series related questions for each available month.
- The data consisted of monthly counts from January 2009 to May 2023 (n=173), with no missing entries.
- First 90% (Jan. 2009 Nov. 2021) used for training and remaining 10% (Dec. 2021 May 2023) was used as "unseen" testing set.

Data

- Large ACF values displayed in the top plot indicate that the data is currently being dominated by the trend.
- Assuming our data is trend stationary, the strong trend will likely obscure the behavior of the associated stationary process and introduce extremely low frequency components in a periodogram.

Removing Trend

- Trend must be removed before we can conduct much of our analysis and modeling.
- Fit a linear model and a 3rd degree polynomial.
- Found that the 3rd degree polynomial has a significantly better fit

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	78.948	1.263	62.525	≈ 0
time	651.295	15.720	41.431	≈ 0
${ t time}^2$	-16.894	15.720	-1.075	0.284
${ t time}^3$	-66.857	15.720	-4.253	≈ 0

Residual standard error: 15.72 on 151 df Multiple R-squared: 0.92 F-statistic: 578.6 on 3 and 151 df

p-value: ≈ 0

Polynomial Regression Summary

Fit	Resid. Df	RSS	DF	Sum. Sq.	F	$\Pr(>F)$
Linear Fit	153	42070				
Poly Deg. 3	151	37315	2	4755.2	9.621	< 0.001

Analysis of Variance Table

Removing Trend

Spectral Analysis

 We estimated the spectrum of our detrended training data to help us determine predominant periods and to obtain approximate confidence intervals for the identified periods.

95% C.I.	Freq. \times 12	Lower	Upper
Two-Sided	≈ 0.3	18.68	96.92
Two-Sided	≈ 1	38.08	197.61
Two-Sided	≈ 3	19.26	99.95
One-Sided	≈ 0.3	20.71	∞
One-Sided	≈ 1	42.23	∞
One-Sided	≈ 3	21.36	∞

Confidence Intervals (Non-Parametric)

Spectral Analysis

- Also used autoregressive spectral estimator, with an AR(15).
- Autoregressive spectral estimators generally have superior resolution in problems when several closely spaced narrow spectral peaks are present, giving us more confidence in our identification of the 40-month cycle.
- We assessed the possibility that the apparent 4-month cycle is a harmonic.

Spectral Analysis

• Iteratively removed **all three** cycles by subtracting the associated monthly averages from the detrended data.

Modeling

- We proceeded to fit ARMA models on the detrended and cycle-removed training data.
- Used grid search with the Akaike Information Criterion (AIC) as the tuning metric.
- The ARMA(3, 8) model achieved the lowest AIC score of 1197.51.

Final Model:

$$r_{t} = 0.107 - 0.407r_{t-1} + 0.470r_{t-2} + 0.631r_{t-3} + w_{t} + 0.763w_{t-1} - 0.279w_{t-2} - 0.754w_{t-3} - 0.060w_{t-4} + 0.030w_{t-5} - 0.073w_{t-6} - 0.334w_{t-7} - 0.311w_{t-8}$$

Modeling

No discernible patterns and only one outlier > 3 in 2020

No deviations from our model assumptions

Reasonable adherence to the assumption of normality

Q-statistics remained nonsignificant across the lags

Predictions & Forecasting

- Generated predictions from our ARMA(3, 8) model for both the training data and the testing data, with trend and cycles added back.
- Predictions for the test set used an 18step *long-term forecast horizon*.
- Predictions fit the data well, with slightly larger error over the testing range.
- Training RMSE = 10.34 counts
- Testing RMSE = 23.25 counts
- COVID-19 pandemic may have introduced an unanticipated increase in time-series interest.

Predictions & Forecasting

- Retrained model using all available data to generate forecasts extending up to May 2026.
- Retrained with testing data to maximize data utilization and ensure the model's up-to-dateness prior to forecasting.
- Another long-term, 36-step, forecast horizon.
- Our 3-year forecast indicates that the number of questions tagged as "timeseries" will plateau within the next year and will gradually decline until May 2026.

Conclusion

- In summary, we collected the data from the Stack Exchange Data Explorer, removed trend, removed the three observed cycles, then found the optimal ARMA model using the minimum AIC.
- We assessed our fitted model's performance using a variety of plots, diagnostics, tests, and performance metrics. The RMSE scores reported for the training and testing data were 10.34 counts and 23.25 counts, respectively.
- These scores, coupled with the generated figures discussed earlier, indicated an excellent fit of our model and reasonable predictive capability for future counts of "time-series" tagged questions.

Future Work

- 1. Stack Exchange has only been around since 2008, limiting available data to just n = 173:
 - ❖ Future studies should consider exploring additional data sources with a longer time span or higher frequency of collection (e.g., daily or weekly).
- 2. COVID-19 clearly impacted the monthly counts of "time-series" tagged questions:
 - It would be interesting to conduct a similar analysis specifically for the period after 2020 in order to compare it with our existing model and to assess the impact COVID-19 had on the interest in "time-series".
- 3. The slight downward trend observed in our forecasts may be attributed to the polynomial fit of the trend in our data:
 - Polynomial fits typically struggle with extrapolation, as they tend to diverge rapidly when extending beyond the observed time range.
 - Future work should consider alternative methods for trend fitting to mitigate this limitation.