# 1 Logistic Regression

```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

In [2]: df = pd.read\_csv('data/data\_cleaned.csv')
 df.head()

### Out[2]:

|   | Unnamed:<br>0 | neo | pha | н    | epoch     | epoch_mjd | epoch_cal  | е        | а        | q        |  |
|---|---------------|-----|-----|------|-----------|-----------|------------|----------|----------|----------|--|
| 0 | 0             | N   | N   | 3.40 | 2458600.5 | 58600     | 20190427.0 | 0.076009 | 2.769165 | 2.558684 |  |
| 1 | 1             | N   | N   | 4.20 | 2459000.5 | 59000     | 20200531.0 | 0.229972 | 2.773841 | 2.135935 |  |
| 2 | 2             | N   | N   | 5.33 | 2459000.5 | 59000     | 20200531.0 | 0.256936 | 2.668285 | 1.982706 |  |
| 3 | 3             | N   | N   | 3.00 | 2458600.5 | 58600     | 20190427.0 | 0.088721 | 2.361418 | 2.151909 |  |
| 4 | 4             | N   | N   | 6.90 | 2459000.5 | 59000     | 20200531.0 | 0.190913 | 2.574037 | 2.082619 |  |

5 rows × 35 columns

In [3]: df.describe()

#### Out[3]:

|       | Unnamed: 0    | н             | epoch        | epoch_mjd     | epoch_cal    | е             |   |
|-------|---------------|---------------|--------------|---------------|--------------|---------------|---|
| count | 932335.000000 | 932335.000000 | 9.323350e+05 | 932335.000000 | 9.323350e+05 | 932335.000000 | 9 |
| mean  | 473165.568655 | 16.890009     | 2.458895e+06 | 58894.728019  | 2.019763e+07 | 0.156221      |   |
| std   | 277616.874797 | 1.801243      | 6.439097e+02 | 643.909665    | 1.775660e+04 | 0.093001      |   |
| min   | 0.000000      | -1.100000     | 2.425052e+06 | 25051.000000  | 1.927062e+07 | 0.000003      |   |
| 25%   | 233084.500000 | 16.000000     | 2.459000e+06 | 59000.000000  | 2.020053e+07 | 0.092159      |   |
| 50%   | 466168.000000 | 16.900000     | 2.459000e+06 | 59000.000000  | 2.020053e+07 | 0.144933      |   |
| 75%   | 716936.500000 | 17.700000     | 2.459000e+06 | 59000.000000  | 2.020053e+07 | 0.200589      |   |
| max   | 958523.000000 | 33.200000     | 2.459000e+06 | 59000.000000  | 2.020053e+07 | 0.999851      |   |

8 rows × 32 columns

```
In [3]: df.drop(['Unnamed: 0'], axis=1, inplace=True)
    df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 932335 entries, 0 to 932334
Data columns (total 34 columns):
```

```
Column
               Non-Null Count
                                Dtype
___
    _____
               -----
                                ____
 0
               932335 non-null
                                object
    neo
               932335 non-null object
 1
    pha
 2
               932335 non-null float64
 3
               932335 non-null float64
    epoch
 4
    epoch mjd 932335 non-null int64
 5
               932335 non-null float64
    epoch cal
 6
               932335 non-null float64
 7
               932335 non-null float64
    a
 8
    q
               932335 non-null float64
 9
     i
               932335 non-null float64
 10
               932335 non-null float64
    om
 11
               932335 non-null float64
    W
 12
               932335 non-null float64
    ma
 13
               932335 non-null float64
    ad
 14
               932335 non-null float64
    n
 15
               932335 non-null float64
    tp
               932335 non-null float64
 16
    tp cal
 17
               932335 non-null float64
    per
 18
               932335 non-null float64
    per y
 19
    moid
               932335 non-null float64
 20 moid ld
               932335 non-null float64
               932335 non-null float64
 21
    sigma e
               932335 non-null float64
 22 sigma a
               932335 non-null float64
 23 sigma q
 24
    sigma i
               932335 non-null float64
               932335 non-null float64
 25 sigma om
    sigma w
 26
               932335 non-null float64
 27
    sigma ma
               932335 non-null float64
 28 sigma ad
               932335 non-null float64
 29 sigma n
               932335 non-null float64
 30 sigma tp
               932335 non-null float64
 31 sigma per 932335 non-null float64
 32
    class
               932335 non-null object
 33
    rms
               932335 non-null
                               float64
dtypes: float64(30), int64(1), object(3)
memory usage: 241.8+ MB
```

```
In [4]: # Address object columns

df['pha'] = df['pha'].map(lambda x: 1 if x == 'Y' else 0)
df['neo'] = df['neo'].map(lambda x: 1 if x == 'Y' else 0)
```

```
In [5]: # Get dummy variables

dummies = pd.get_dummies(df['class'], prefix='class')
df_cleaned = pd.concat([df, dummies], axis=1)
df_cleaned.drop('class', axis=1, inplace=True)
df_cleaned.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 932335 entries, 0 to 932334 Data columns (total 45 columns): # Column Non-Null Count Dtype 0 neo 932335 non-null int64 1 pha 932335 non-null int64 2 932335 non-null float64 3 epoch 932335 non-null float64 4 epoch mjd 932335 non-null int64 5 epoch\_cal 932335 non-null float64 6 932335 non-null float64 7 932335 non-null float64 а 8 932335 non-null float64 q 9 932335 non-null float64 i 10 932335 non-null float64 om11 932335 non-null float64 W 12 ma 932335 non-null float64 13 ad 932335 non-null float64 14 932335 non-null float64 n 15 932335 non-null float64 tp 16 932335 non-null float64 tp cal 17 per 932335 non-null float64 18 932335 non-null float64 per y 19 moid 932335 non-null float64 20 moid ld 932335 non-null float64 21 sigma e 932335 non-null float64 sigma a 22 932335 non-null float64 23 sigma g 932335 non-null float64 24 sigma i 932335 non-null float64 25 sigma om 932335 non-null float64 26 sigma w 932335 non-null float64 932335 non-null float64 27 sigma ma 28 sigma ad 932335 non-null float64 29 932335 non-null float64 sigma n 30 sigma tp 932335 non-null float64 31 sigma per 932335 non-null float64 32 rms 932335 non-null float64 932335 non-null 33 class AMO uint8 34 class APO 932335 non-null uint8 35 class AST 932335 non-null uint8 class ATE 36 932335 non-null uint8 37 class CEN 932335 non-null uint8 38 class IEO 932335 non-null uint8 39 class IMB 932335 non-null uint8 40 class MBA 932335 non-null uint8 class MCA 41 932335 non-null uint8 42 class OMB 932335 non-null uint8 class TJN 43 932335 non-null uint8

932335 non-null

uint8

class TNO

```
dtypes: float64(30), int64(3), uint8(12)
memory usage: 245.4 MB
```

### 1.1 Iteration 1: Baseline

```
In [6]: from sklearn.model_selection import train_test_split, GridSearchCV
         y = df cleaned['pha']
         X = df cleaned.drop('pha', axis=1)
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, r
In [9]: # Perform SMOTE to address class imbalance
         from sklearn.model selection import train test split, GridSearchCV
         from imblearn.over_sampling import SMOTE
         # Previous class distribution
         print('Original class distribution: \n')
         print(y train.value counts())
         smote = SMOTE(random state=42)
         X train resampled, y train resampled = smote.fit sample(X train, y train)
         # Synthetic class distribution:
         print('----')
         print('Synthetic sample class distribution: \n')
         print(y train resampled.value counts())
         Original class distribution:
         0
              697673
         1
               1578
         Name: pha, dtype: int64
         ______
         Synthetic sample class distribution:
         1
              697673
             697673
         Name: pha, dtype: int64
In [10]: # Drop last dummy variable for logistic regression
         X train logit = X train resampled.drop('class TNO', axis=1)
        X test logit = X test.drop('class TNO', axis=1)
In [9]: from sklearn.preprocessing import StandardScaler
         from sklearn.pipeline import Pipeline
         from sklearn.linear model import LogisticRegression
         from sklearn.metrics import classification report
         from sklearn.metrics import confusion matrix
         from sklearn.metrics import plot confusion matrix
```

```
In [12]: log_pipe = Pipeline([('ss', StandardScaler()),
                              ('logreg', LogisticRegression(solver='liblinear', C=1e
         log pipe.fit(X train logit, y train resampled)
         y pred = log pipe.predict(X_test_logit)
```

```
In [13]: # Classification reports for train and test data
         print('Train Report')
         print(classification report(y train resampled, log pipe.predict(X train log
         print('\n')
         print('Test Report')
         print(classification_report(y_test, y_pred))
```

| _ `          |           | \- <u>-</u> | , , ,    |         |
|--------------|-----------|-------------|----------|---------|
| Train Report |           |             |          |         |
|              | precision | recall      | f1-score | support |
|              |           |             |          |         |
| 0            | 1.00      | 1.00        | 1.00     | 697673  |
| 1            | 1.00      | 1.00        | 1.00     | 697673  |
|              |           |             | 1 00     | 1005046 |
| accuracy     |           |             | 1.00     | 1395346 |
| macro avg    | 1.00      | 1.00        | 1.00     | 1395346 |
| weighted avg | 1.00      | 1.00        | 1.00     | 1395346 |
|              |           |             |          |         |
|              |           |             |          |         |
| Test Report  |           |             |          |         |
|              | precision | recall      | f1-score | support |
| 0            | 1.00      | 1.00        | 1.00     | 232596  |
| 1            | 0.39      | 1.00        | 0.56     | 488     |
| 1            | 0.37      | 1.00        | 0.30     | 400     |
| accuracy     |           |             | 1.00     | 233084  |
|              |           |             |          |         |

0.70

1.00

The model is overfit to the training data. This could be do to the manner in which class imbalance was addressed (SMOTE).

1.00

1.00

0.78

1.00

233084

233084

macro avg

weighted avg



# 1.2 Iteration 2

#### 1.2.0.1 Important features of baseline model

Outliers will be removed from features that have the highest weights from Iteration 1.

```
coef[0]
Out[15]: array([-2.75430704e+00, -5.43653653e+00, -7.78820632e-01, -1.32102690e+0
                 2.33771951e+00, 6.54867959e-03, -3.39488698e+00, -1.44150963e+0
         0,
                 7.15747971e-02, -6.58501564e-02, -2.76793872e-02, 5.85260895e-0
         2,
                -3.35830715e+00, -4.22793847e-02, 1.43341066e-01, -3.88102488e-0
         1,
                -8.93861627e-02, -8.93861627e-02, -9.25093889e+01, -9.25093889e+0
         1,
                -5.54324941e+00, 4.25526966e-02, -3.83318327e-01, 1.16895459e+0
         0,
                 5.63493249e-01, 1.60979975e-01, 1.62030876e-01, 3.89900452e-0
         2,
                -8.26688020e-01, 1.62648465e-01,
                                                   7.37491572e-02, 9.84660422e-0
         2,
                                                   1.26272800e-01, -5.11451468e+0
                -2.79944830e+00, -1.47770569e+01,
         0,
                -3.75233068e+00, -3.67205637e-01,
                                                   9.58664865e-01, 4.34974720e+0
```

In [16]: coef\_df = pd.DataFrame(zip(X\_train\_logit.columns, np.transpose(coef[0])), coef\_df.head()

-2.93320930e+00, -3.41215235e+00, 2.73904900e+00])

#### Out[16]:

0,

| coef      | features  |   |
|-----------|-----------|---|
| -2.754307 | neo       | 0 |
| -5.436537 | Н         | 1 |
| -0.778821 | epoch     | 2 |
| -1.321027 | epoch_mjd | 3 |
| 2.337720  | epoch_cal | 4 |

In [15]: coef = log\_pipe.steps[1][1].coef\_

In [17]: coef\_sorted = coef\_df.iloc[coef\_df['coef'].abs().argsort()[::-1]]
coef\_sorted

## Out[17]:

|    | features  | coef       |
|----|-----------|------------|
| 18 | moid      | -92.509389 |
| 19 | moid_ld   | -92.509389 |
| 33 | class_APO | -14.777057 |
| 20 | sigma_e   | -5.543249  |
| 1  | Н         | -5.436537  |
| 35 | class_ATE | -5.114515  |
| 39 | class_MBA | 4.349747   |
| 36 | class_CEN | -3.752331  |
| 41 | class_OMB | -3.412152  |
| 6  | а         | -3.394887  |
| 12 | ad        | -3.358307  |
| 40 | class_MCA | -2.933209  |
| 32 | class_AMO | -2.799448  |
| 0  | neo       | -2.754307  |
| 42 | class_TJN | 2.739049   |
| 4  | epoch_cal | 2.337720   |
| 7  | q         | -1.441510  |
| 3  | epoch_mjd | -1.321027  |
| 23 | sigma_i   | 1.168955   |
| 38 | class_IMB | 0.958665   |
| 28 | sigma_n   | -0.826688  |
| 2  | epoch     | -0.778821  |
| 24 | sigma_om  | 0.563493   |
| 15 | tp_cal    | -0.388102  |
| 22 | sigma_q   | -0.383318  |
| 37 | class_IEO | -0.367206  |
| 29 | sigma_tp  | 0.162648   |
| 26 | sigma_ma  | 0.162031   |
| 25 | sigma_w   | 0.160980   |
| 14 | tp        | 0.143341   |
| 34 | class_AST | 0.126273   |
| 31 | rms       | 0.098466   |

|    | features  | coef      |
|----|-----------|-----------|
| 17 | per_y     | -0.089386 |
| 16 | per       | -0.089386 |
| 30 | sigma_per | 0.073749  |
| 8  | i         | 0.071575  |
| 9  | om        | -0.065850 |
| 11 | ma        | 0.058526  |
| 21 | sigma_a   | 0.042553  |
| 13 | n         | -0.042279 |
| 27 | sigma_ad  | 0.038990  |
| 10 | w         | -0.027679 |
| 5  | е         | 0.006549  |

### 1.2.0.2 Remove outliers

```
In [18]: top = coef_sorted.iloc[:20, 0].to_list()
         top
Out[18]: ['moid',
           'moid_ld',
           'class APO',
           'sigma_e',
           'H',
           'class_ATE',
           'class_MBA',
           'class_CEN',
           'class OMB',
           'a',
           'ad',
           'class_MCA',
           'class_AMO',
           'neo',
           'class TJN',
           'epoch_cal',
           'q',
           'epoch_mjd',
           'sigma_i',
           'class_IMB']
```

```
In [20]: sns.histplot(x=df_cleaned['moid_ld'], data=df_cleaned)
```

```
Out[20]: <AxesSubplot:xlabel='moid_ld', ylabel='Count'>
```



```
In [21]: for i in range(90, 101):
        q = i/100
        print('{} percentile: {}'.format(q, df_cleaned['moid_ld'].quantile(q=q))

        0.9 percentile: 713.2902345
        0.91 percentile: 721.3888622000002
        0.92 percentile: 729.8221761
        0.93 percentile: 739.1350142000001
        0.94 percentile: 749.1872753
        0.95 percentile: 760.4588060099998
        0.96 percentile: 774.096645988
        0.97 percentile: 791.7741484000002
        0.98 percentile: 823.2164380439997
        0.99 percentile: 30929.908422000004
In [22]: df_no_fliers = df_cleaned[df_cleaned['moid_ld'] <= 1400]
```

```
In [23]: sns.histplot(x=df_no_fliers['moid_ld'], data=df_no_fliers)
```

### Out[23]: <AxesSubplot:xlabel='moid\_ld', ylabel='Count'>



```
In [24]: for i in range(90, 101):
        q = i/100
        print('{} percentile: {}'.format(q, df_no_fliers['H'].quantile(q=q)))

0.9 percentile: 18.503
0.91 percentile: 18.6
0.92 percentile: 18.7
0.93 percentile: 18.8
0.94 percentile: 18.8
0.95 percentile: 19.1
0.96 percentile: 19.1
0.96 percentile: 19.3
0.97 percentile: 19.678
0.98 percentile: 20.7
0.99 percentile: 23.9
1.0 percentile: 33.2
```

In [26]: df\_no\_fliers[df\_no\_fliers['a'] > 50]

Out[26]:

|        | neo | pha | н      | epoch     | epoch_mjd | epoch_cal  | е        | а          | q        |                 |
|--------|-----|-----|--------|-----------|-----------|------------|----------|------------|----------|-----------------|
| 65406  | 0   | 0   | 12.300 | 2459000.5 | 59000     | 20200531.0 | 0.954279 | 53.711349  | 2.455753 | 119             |
| 545693 | 0   | 0   | 13.900 | 2459000.5 | 59000     | 20200531.0 | 0.990378 | 258.236026 | 2.484772 | 3(              |
| 547621 | 0   | 0   | 14.000 | 2459000.5 | 59000     | 20200531.0 | 0.955952 | 52.560568  | 2.315170 | 68              |
| 548391 | 0   | 0   | 10.500 | 2459000.5 | 59000     | 20200531.0 | 0.963222 | 90.594428  | 3.331839 | 4!              |
| 558466 | 0   | 0   | 15.300 | 2459000.5 | 59000     | 20200531.0 | 0.995107 | 547.968271 | 2.681115 | 58              |
| 570912 | 0   | 0   | 15.300 | 2459000.5 | 59000     | 20200531.0 | 0.976241 | 99.420445  | 2.362180 | 16              |
| 579052 | 0   | 0   | 13.700 | 2459000.5 | 59000     | 20200531.0 | 0.951859 | 63.065588  | 3.036066 | 67              |
| 586407 | 0   | 0   | 14.100 | 2459000.5 | 59000     | 20200531.0 | 0.994971 | 815.300107 | 4.099865 | 112             |
| 608821 | 0   | 0   | 14.912 | 2459000.5 | 59000     | 20200531.0 | 0.994286 | 467.703829 | 2.672544 | 76              |
| 661281 | 0   | 0   | 14.900 | 2459000.5 | 59000     | 20200531.0 | 0.941033 | 62.903042  | 3.709228 | 108             |
| 662762 | 0   | 0   | 14.600 | 2459000.5 | 59000     | 20200531.0 | 0.962631 | 69.913840  | 2.612622 | 50              |
| 684789 | 0   | 0   | 13.100 | 2459000.5 | 59000     | 20200531.0 | 0.988807 | 278.540566 | 3.117749 | 11(             |
| 695263 | 0   | 0   | 17.570 | 2455890.5 | 55890     | 20111125.0 | 0.967299 | 64.417859  | 2.106512 | 14              |
| 702737 | 0   | 0   | 15.300 | 2459000.5 | 59000     | 20200531.0 | 0.959436 | 62.997346  | 2.555432 | 146             |
| 721402 | 0   | 0   | 17.100 | 2459000.5 | 59000     | 20200531.0 | 0.976448 | 66.256305  | 1.560469 | 10 <sup>-</sup> |
| 729833 | 0   | 0   | 16.900 | 2456398.5 | 56398     | 20130416.0 | 0.976082 | 117.398848 | 2.807932 | 97              |
| 731037 | 0   | 0   | 16.100 | 2459000.5 | 59000     | 20200531.0 | 0.968737 | 81.536772  | 2.549046 | 15₄             |
| 789633 | 0   | 0   | 14.900 | 2459000.5 | 59000     | 20200531.0 | 0.955092 | 72.462607  | 3.254172 | 10 <sup>-</sup> |
| 826504 | 0   | 0   | 14.500 | 2459000.5 | 59000     | 20200531.0 | 0.965619 | 80.206014  | 2.757567 | 9-              |
| 830492 | 0   | 0   | 15.300 | 2459000.5 | 59000     | 20200531.0 | 0.956012 | 54.256063  | 2.386611 | 9-              |
| 848293 | 0   | 0   | 15.100 | 2459000.5 | 59000     | 20200531.0 | 0.957674 | 63.387085  | 2.682937 | 22              |
| 858182 | 0   | 0   | 18.100 | 2459000.5 | 59000     | 20200531.0 | 0.959518 | 67.427405  | 2.729576 | 17(             |
| 885392 | 0   | 0   | 15.600 | 2459000.5 | 59000     | 20200531.0 | 0.984603 | 191.855483 | 2.953986 | 152             |
| 892673 | 0   | 0   | 13.300 | 2459000.5 | 59000     | 20200531.0 | 0.952298 | 66.798336  | 3.186388 | 6               |
| 893922 | 0   | 0   | 17.800 | 2459000.5 | 59000     | 20200531.0 | 0.970597 | 58.970559  | 1.733905 | 94              |
| 899736 | 0   | 0   | 17.900 | 2459000.5 | 59000     | 20200531.0 | 0.992421 | 243.218889 | 1.843290 | 152             |
| 904392 | 0   | 0   | 15.300 | 2459000.5 | 59000     | 20200531.0 | 0.975922 | 130.289321 | 3.137077 | 144             |
| 904408 | 1   | 0   | 21.200 | 2459000.5 | 59000     | 20200531.0 | 0.996476 | 352.628376 | 1.242620 | 108             |
| 909829 | 0   | 0   | 16.200 | 2459000.5 | 59000     | 20200531.0 | 0.983633 | 97.754076  | 1.599953 | 68              |
| 911263 | 0   | 0   | 13.600 | 2459000.5 | 59000     | 20200531.0 | 0.960742 | 94.348891  | 3.703908 | 46              |
| 911901 | 0   | 0   | 15.300 | 2459000.5 | 59000     | 20200531.0 | 0.989302 | 357.957517 | 3.829530 | 68              |
| 914543 | 0   | 0   | 15.400 | 2459000.5 | 59000     | 20200531.0 | 0.980949 | 155.876721 | 2.969552 | 9(              |
| 915765 | 0   | 0   | 15.800 | 2458626.5 | 58626     | 20190523.0 | 0.988976 | 121.506582 | 1.339528 | 16₄             |

|        | neo | pha | Н      | epoch     | epoch_mjd | epoch_cal  | е        | а           | q        |     |
|--------|-----|-----|--------|-----------|-----------|------------|----------|-------------|----------|-----|
| 920616 | 0   | 0   | 16.312 | 2458717.5 | 58717     | 20190822.0 | 0.996659 | 685.920963  | 2.291345 | 159 |
| 925733 | 1   | 0   | 18.167 | 2458728.5 | 58728     | 20190902.0 | 0.978750 | 59.195648   | 1.257886 | 159 |
| 928882 | 0   | 0   | 12.735 | 2458784.5 | 58784     | 20191028.0 | 0.998459 | 1717.507044 | 2.645908 | 11. |
| 929683 | 0   | 0   | 10.278 | 2458868.5 | 58868     | 20200120.0 | 0.999591 | 8850.823836 | 3.622724 | 110 |
| 931029 | 0   | 0   | 21.369 | 2458884.5 | 58884     | 20200205.0 | 0.966594 | 52.316301   | 1.747697 | 18  |
| 932123 | 0   | 0   | 17.641 | 2458975.5 | 58975     | 20200506.0 | 0.994756 | 491.712757  | 2.578756 | 137 |

39 rows × 45 columns

```
In [27]: df_no_fliers = df_no_fliers[df_no_fliers['a'] <= 50]

In [28]: for i in range(90, 101):
        q = i/100
        print('{} percentile: {}'.format(q, df_no_fliers['ad'].quantile(q=q)))

        0.9 percentile: 3.641633351346189
        0.91 percentile: 3.6688832051345863
        0.92 percentile: 3.6982889831120067
        0.93 percentile: 3.7307385573753167
        0.94 percentile: 3.767001220398261
        0.95 percentile: 3.808535392293984
        0.96 percentile: 3.8557661788597186
        0.97 percentile: 3.917206662808669
        0.98 percentile: 4.014537203875679
        0.99 percentile: 4.29638433415904
        1.0 percentile: 93.72990930613251</pre>
```

```
In [29]: df_no_fliers[df_no_fliers['ad'] > 20].count()
Out[29]: neo
                         74
          pha
                         74
          Η
                         74
          epoch
                         74
                         74
          epoch_mjd
          epoch_cal
                         74
                         74
          е
                         74
          а
                         74
          q
                         74
          i
                         74
          om
                         74
          W
                         74
          {\tt ma}
          ad
                         74
                         74
          n
                         74
          tp
                         74
          tp_cal
                         74
          per
          per_y
                         74
          moid
                         74
          moid_ld
                         74
          sigma_e
                         74
                         74
          sigma a
          sigma q
                         74
          sigma_i
                         74
          sigma om
                         74
                         74
          sigma w
          sigma ma
                         74
                         74
          sigma ad
                         74
          sigma n
          sigma_tp
                         74
          sigma per
                         74
                         74
          rms
                         74
          class AMO
          class APO
                         74
                         74
          class AST
          class_ATE
                         74
          class_CEN
                         74
                         74
          class IEO
          class IMB
                         74
                         74
          class MBA
          class MCA
                         74
          class OMB
                         74
          class_TJN
                         74
          class_TNO
                         74
          dtype: int64
```

In [30]: df\_no\_fliers = df\_no\_fliers[df\_no\_fliers['ad'] <= 20]</pre>

```
localhost:8888/notebooks/Logistic-Regression.ipynb
```

```
In [31]: for i in range(90, 101):
             q = i/100
             print('{} percentile: {}'.format(q, df_no_fliers['epoch_cal'].quantile(
         0.9 percentile: 20200531.0
         0.91 percentile: 20200531.0
         0.92 percentile: 20200531.0
         0.93 percentile: 20200531.0
         0.94 percentile: 20200531.0
         0.95 percentile: 20200531.0
         0.96 percentile: 20200531.0
         0.97 percentile: 20200531.0
         0.98 percentile: 20200531.0
         0.99 percentile: 20200531.0
         1.0 percentile: 20200531.0
In [32]: for i in range(90, 101):
             q = i/100
             print('{} percentile: {}'.format(q, df_no_fliers['tp'].quantile(q=q)))
         0.9 percentile: 2459617.208064441
         0.91 percentile: 2459636.95749063
         0.92 percentile: 2459657.527962704
         0.93 percentile: 2459680.955364708
         0.94 percentile: 2459707.446765461
         0.95 percentile: 2459735.3205843735
         0.96 percentile: 2459766.1696941904
         0.97 percentile: 2459804.595133252
         0.98 percentile: 2459858.4804402855
         0.99 percentile: 2459930.309236824
         1.0 percentile: 2464852.8332943683
In [33]: for i in range(90, 101):
             q = i/100
             print('{} percentile: {}'.format(q, df no fliers['q'].quantile(q=q)))
         0.9 percentile: 2.79853431224254
         0.91 percentile: 2.8181881397961766
         0.92 percentile: 2.838484815050618
         0.93 percentile: 2.8597483744264274
         0.94 percentile: 2.8829397479652257
         0.95 percentile: 2.9083376709869504
         0.96 percentile: 2.9364175876479077
         0.97 percentile: 2.9695171128663094
         0.98 percentile: 3.0131733946377546
         0.99 percentile: 3.084404840557823
         1.0 percentile: 4.612030525950536
```

The most outliers were removed based on moid ld, a, and ad.

## In [35]: df\_no\_fliers.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 921430 entries, 0 to 932334
Data columns (total 45 columns):

| #        | Column               |                  | ll Count   | Dtype              |
|----------|----------------------|------------------|------------|--------------------|
| 0        | neo                  | 921430           | non-null   |                    |
| 1        | pha                  | 921430           | non-null   | int64              |
| 2        | H                    | 921430           | non-null   | float64            |
| 3        | epoch                | 921430           | non-null   | float64            |
| 4        | epoch mjd            | 921430           | non-null   | int64              |
| 5        | epoch_cal            | 921430           | non-null   | float64            |
| 6        | e                    | 921430           | non-null   | float64            |
| 7        | a                    | 921430           | non-null   | float64            |
| 8        | q                    | 921430           | non-null   | float64            |
| 9        | i                    | 921430           | non-null   | float64            |
| 10       | om                   | 921430           | non-null   | float64            |
| 11       | W                    | 921430           |            | float64            |
| 12       | ma                   | 921430           |            |                    |
| 13       | ad                   | 921430           |            |                    |
| 14       | n                    | 921430           |            | float64            |
| 15       | tp                   | 921430           |            |                    |
| 16       | tp_cal               | 921430           |            |                    |
| 17       | per                  | 921430           |            | float64            |
| 18       | per_y                | 921430           |            |                    |
| 19       | moid                 | 921430           |            |                    |
| 20       | moid_ld              | 921430           |            |                    |
| 21       | sigma e              | 921430           |            | float64            |
| 22       | sigma a              | 921430           |            | float64            |
| 23       | sigma_q              | 921430           |            | float64            |
| 24       | sigma_i              | 921430           |            | float64            |
| 25       | sigma_r              | 921430           |            | float64            |
| 26       | sigma_Om             | 921430           |            | float64            |
| 27       | sigma_w<br>sigma ma  | 921430           |            |                    |
| 28       | sigma_ma<br>sigma ad | 921430           |            |                    |
| 20<br>29 | sigma_au<br>sigma n  | 921430           |            |                    |
| 30       |                      |                  |            |                    |
| 31       | sigma_tp             | 921430<br>921430 |            |                    |
| 32       | sigma_per            |                  |            | float64<br>float64 |
|          | rms                  | 921430           | non-null   |                    |
| 33       | class_AMO            |                  |            | uint8<br>uint8     |
| 34       | class_APO            |                  |            |                    |
| 35       | class_AST            |                  |            |                    |
| 36       | class_ATE            |                  |            |                    |
| 37       | class_CEN            |                  |            |                    |
| 38       | class_IEO            | 921430           | non-null   | uint8              |
| 39       | class_IMB            | 921430           | non-null   | uint8              |
| 40       | class_MBA            |                  |            |                    |
|          | class_MCA            |                  |            |                    |
|          | class_OMB            |                  |            |                    |
|          | class_TJN            |                  |            |                    |
| 44       | _                    |                  |            |                    |
|          | es: float64          |                  | nt64(3), u | int8(12)           |
| memo     | ry usage: 2          | 49.6 MB          |            |                    |

```
In [63]: |y = df_no_fliers['pha']
         X = df no fliers.drop('pha', axis=1)
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, r
In [37]: # Previous class distribution
         print('Original class distribution: \n')
         print(y_train.value_counts())
         smote = SMOTE(random state=42)
         X train resampled, y train resampled = smote.fit sample(X train, y train)
         # Synthetic class distribution:
         print('----')
         print('Synthetic sample class distribution: \n')
         print(y train resampled.value counts())
         Original class distribution:
         0
              689548
                1524
         Name: pha, dtype: int64
         Synthetic sample class distribution:
              689548
         1
              689548
         Name: pha, dtype: int64
In [38]: # Drop last dummy variable for logistic regression
         X train logit = X train resampled.drop('class TNO', axis=1)
         X test logit = X test.drop('class TNO', axis=1)
In [39]: log_pipe2 = Pipeline([('ss', StandardScaler()),
                              ('logreg', LogisticRegression(solver='liblinear', C=1e
         log pipe2.fit(X train logit, y train resampled)
         y_pred = log_pipe2.predict(X_test_logit)
```

```
In [40]: print('Train Report')
    print(classification_report(y_train_resampled, log_pipe2.predict(X_train_lo
    print('\n')
    print('Test Report')
    print(classification_report(y_test, y_pred))
```

| Train Report |           |        |          |         |
|--------------|-----------|--------|----------|---------|
| •            | precision | recall | f1-score | support |
| 0            | 1.00      | 1.00   | 1.00     | 689548  |
| 1            | 1.00      | 1.00   | 1.00     | 689548  |
| accuracy     |           |        | 1.00     | 1379096 |
| macro avg    | 1.00      | 1.00   | 1.00     | 1379096 |
| weighted avg | 1.00      | 1.00   | 1.00     | 1379096 |
|              |           |        |          |         |
|              |           |        |          |         |
| Test Report  |           |        |          |         |
|              | precision | recall | f1-score | support |
| 0            | 1.00      | 1.00   | 1.00     | 229817  |
| 1            | 0.41      | 1.00   | 0.59     | 541     |
| accuracy     |           |        | 1.00     | 230358  |
| macro avg    | 0.71      | 1.00   | 0.79     | 230358  |
| weighted avg | 1.00      | 1.00   | 1.00     | 230358  |

With the removal of outliers, performance on the test data has improved compared to the previous iteration. However, the model is still overfit to the training data.





# 1.3 Iteration 3: No SMOTE, no outliers

This iteration will address overfitting by using the class\_weight hyperparameter rather than SMOTE.

```
In [12]: print('Train Report')
    print(classification_report(y_train, log_pipe3.predict(X_train)))
    print('\n')
    print('Test Report')
    print(classification_report(y_test, y_pred))
```

|              |           | - ( 2  | , <u>1 _r</u> |         |
|--------------|-----------|--------|---------------|---------|
| Train Report |           |        |               |         |
|              | precision | recall | f1-score      | support |
| 0            | 1.00      | 1.00   | 1.00          | 697673  |
| 1            | 0.42      | 1.00   | 0.59          | 1578    |
|              |           |        |               |         |
| accuracy     |           |        | 1.00          | 699251  |
| macro avg    | 0.71      | 1.00   | 0.80          | 699251  |
| weighted avg | 1.00      | 1.00   | 1.00          | 699251  |
|              |           |        |               |         |
|              |           |        |               |         |
| Test Report  |           |        |               |         |
|              | precision | recall | f1-score      | support |
| 0            | 1.00      | 1.00   | 1.00          | 232596  |
| 1            | 0.39      | 1.00   | 0.56          | 488     |
|              |           |        |               |         |
| accuracy     |           |        | 1.00          | 233084  |
| macro avg    | 0.69      | 1.00   | 0.78          | 233084  |
| weighted avg | 1.00      | 1.00   | 1.00          | 233084  |

The model is no longer overfit to the training data, as the test and train reports have similar scores. It is possible that the minority class samples had enough variation that SMOTE generated synthetic minority samples that were not real neighbors.



This model seems to have missed no phas (very high recall for the positive class), but it has a large number of false positives.

```
In [46]: df_no_fliers.to_csv('data/data_no_fliers.csv')
```

# 1.4 Iterations 4 & 5: Addressing Multicolinearity

Iteration 4 will remove features on the basis of multicolinearity. A new list of important features will be used to remove outliers for an iteration (Iteration 5) that can be compared with Iteration 3, which retains all features.

#### 1.4.0.1 Iteration 4: With outliers, less multicolinearity

```
In [16]: corr = corrFilter(df_cleaned, .94)
         corr
Out[16]: q
                     class TNO
                                  0.945561
         class_TNO
                    moid_ld
                                  0.946813
                    moid
                                  0.946813
                     per
                                  0.981604
                     а
                                  0.981604
         per y
                     ad
                                  0.983439
         per
                     ad
                                  0.983439
         per y
         sigma_a
                     sigma_ad
                                  0.996709
                     tp cal
                                  0.998229
         tp
         sigma tp
                     sigma w
                                  0.998972
                     sigma_ma
                                  0.998973
                                  0.999560
         ad
                     epoch mjd
                                  0.999575
         epoch_cal
                     epoch
                                  0.999575
         moid_ld
                     q
                                  0.999734
         moid
                                  0.999734
                     q
         sigma w
                     sigma_ma
                                  1.000000
         moid ld
                    moid
                                  1.000000
         sigma w
                                  1.000000
                     sigma_w
         per
                                  1.000000
                     per y
                                  1.000000
         epoch_mjd
                    epoch
         neo
                     pha
                                       NaN
         dtype: float64
In [17]: type(corrFilter(df cleaned, .94))
Out[17]: pandas.core.series.Series
In [18]: # Remove some highly correlated features.
         to drop = ['epoch mjd', 'per y', 'moid', 'sigma ma', 'q', 'epoch cal', 'ad'
         df cleaned2 = df cleaned.drop(to drop, axis=1)
In [19]: X = df cleaned2.drop('pha', axis=1)
         y = df cleaned2['pha']
         X train, X test, y train, y test = train test split(X, y, test size=0.25, r
         X train = X train.drop('class TNO', axis=1)
         X test = X test.drop('class TNO', axis=1)
In [20]: log pipe4 = Pipeline([('ss', StandardScaler()),
                               ('logreg', LogisticRegression(solver='liblinear', C=1e
         log pipe4.fit(X train, y train)
         y pred = log pipe4.predict(X test)
```

```
In [21]: print('Train Report')
    print(classification_report(y_train, log_pipe4.predict(X_train)))
    print('\n')
    print('Test Report')
    print(classification_report(y_test, y_pred))
```

| Train Report |           |        |          |         |
|--------------|-----------|--------|----------|---------|
|              | precision | recall | f1-score | support |
|              |           |        |          |         |
| 0            | 1.00      | 1.00   | 1.00     | 697673  |
| 1            | 0.42      | 1.00   | 0.59     | 1578    |
|              |           |        |          |         |
| accuracy     |           |        | 1.00     | 699251  |
| macro avg    | 0.71      | 1.00   | 0.80     | 699251  |
| weighted avg | 1.00      | 1.00   | 1.00     | 699251  |
|              |           |        |          |         |

Test Report precision recall f1-score support 1.00 1.00 1.00 232596 1 0.39 1.00 0.56 488 1.00 233084 accuracy 0.69 1.00 0.78 233084 macro avg

1.00

Simply removing multicolinear features has not improved the model on any metric.

1.00

1.00

233084

```
In [22]: # Find features with the largest weights
         coef = log pipe4.steps[1][1].coef
         coef[0]
Out[22]: array([-3.54723253e+00, -4.85789832e+00, 1.56955003e-01, 7.36451578e-0
                -2.93767604e+01, 1.25427351e-01, -6.50956560e-02, -2.28792891e-0
         2,
                 6.70442569e-02, -9.42148482e-02, -1.98761018e-01, -3.20969372e-0
         1,
                -3.16982152e+02, -3.60264006e+00, 2.56053590e-01, 5.52555044e-0
         1,
                 4.34572721e+00, -6.33564483e+00, -4.04583149e+00, 7.38074848e-0
         1,
                 3.48618071e-01, 8.13635438e-02, -2.12988924e+00, -2.63739432e+0
         0,
                 3.80023383e-01, -9.53309061e-01, -6.60216933e-02, -1.01767824e-0
         1,
                 1.97715077e+00, 4.55573191e+00, -4.84371605e+00, -6.20301473e+0
         0,
                 1.10900365e+01])
```

weighted avg

In [23]: coef\_df = pd.DataFrame(zip(X\_train.columns, np.transpose(coef[0])), columns
coef\_df.head()

## Out[23]:

|   | features | coef       |
|---|----------|------------|
| 0 | neo      | -3.547233  |
| 1 | Н        | -4.857898  |
| 2 | epoch    | 0.156955   |
| 3 | е        | 0.073645   |
| 4 | а        | -29.376760 |

## Out[24]:

|    | features  | coef        |
|----|-----------|-------------|
| 12 | moid_ld   | -316.982152 |
| 4  | а         | -29.376760  |
| 32 | class_TJN | 11.090037   |
| 17 | sigma_om  | -6.335645   |
| 31 | class_OMB | -6.203015   |
| 1  | Н         | -4.857898   |
| 30 | class_MCA | -4.843716   |
| 29 | class_MBA | 4.555732    |
| 16 | sigma_i   | 4.345727    |
| 18 | sigma_n   | -4.045831   |
| 13 | sigma_e   | -3.602640   |
| 0  | neo       | -3.547233   |
| 23 | class_APO | -2.637394   |
| 22 | class_AMO | -2.129889   |
| 28 | class_IMB | 1.977151    |
| 25 | class_ATE | -0.953309   |
| 19 | sigma_tp  | 0.738075    |
| 15 | sigma_q   | 0.552555    |
| 24 | class_AST | 0.380023    |
| 20 | sigma_per | 0.348618    |
| 11 | per       | -0.320969   |
| 14 | sigma_a   | 0.256054    |
| 10 | tp        | -0.198761   |
| 2  | epoch     | 0.156955    |
| 5  | i         | 0.125427    |
| 27 | class_IEO | -0.101768   |
| 9  | n         | -0.094215   |
| 21 | rms       | 0.081364    |
| 3  | е         | 0.073645    |
| 8  | ma        | 0.067044    |
| 26 | class_CEN | -0.066022   |
| 6  | om        | -0.065096   |

|   | features | coef      |
|---|----------|-----------|
| 7 | w        | -0.022879 |

Remove outliers based on new list of important features:

```
In [25]: for i in range(90, 101):
             q = i/100
             print('{} percentile: {}'.format(q, df_cleaned2['moid_ld'].quantile(q=q
         0.9 percentile: 713.2902345
         0.91 percentile: 721.3888622000002
         0.92 percentile: 729.8221761
         0.93 percentile: 739.1350142000001
         0.94 percentile: 749.1872753
         0.95 percentile: 760.4588060099998
         0.96 percentile: 774.096645988
         0.97 percentile: 791.7741484000002
         0.98 percentile: 823.2164380439997
         0.99 percentile: 1465.7542433660003
         1.0 percentile: 30929.908422000004
In [26]: for i in range(90, 101):
             q = i/100
             print('{} percentile: {}'.format(q, df_cleaned2['a'].quantile(q=q)))
         0.9 percentile: 3.1461263054346817
         0.91 percentile: 3.154391291029324
         0.92 percentile: 3.162582433918047
         0.93 percentile: 3.17019134970903
         0.94 percentile: 3.178982879839905
         0.95 percentile: 3.1899532879771173
         0.96 percentile: 3.2034328321728465
         0.97 percentile: 3.22318831974346
         0.98 percentile: 3.4109147143645298
         0.99 percentile: 5.178501664039422
         1.0 percentile: 33488.895954563486
In [27]: df no fliers2 = df cleaned2[df cleaned2['moid ld'] <= 1400]
         df no fliers2 = df no fliers2[df no fliers2['a'] <= 50]</pre>
```

#### 1.4.0.2 Iteration 5: No outliers, less multicolinearity

```
In [28]: X = df_no_fliers2.drop('pha', axis=1)
y = df_no_fliers2['pha']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, r

X_train = X_train.drop('class_TNO', axis=1)
X_test = X_test.drop('class_TNO', axis=1)
```

```
In [29]: log_pipe5 = Pipeline([('ss', StandardScaler()),
                               ('logreg', LogisticRegression(solver='liblinear', C=1e
         log_pipe5.fit(X_train, y_train)
         y pred = log pipe5.predict(X_test)
In [30]:
         print('Train Report')
         print(classification report(y train, log pipe5.predict(X train)))
         print('\n')
         print('Test Report')
         print(classification_report(y_test, y_pred))
         Train Report
                        precision
                                      recall
                                              f1-score
                                                         support
                     0
                                        1.00
                             1.00
                                                  1.00
                                                          689582
                     1
                             0.41
                                        1.00
                                                  0.58
                                                            1546
              accuracy
                                                  1.00
                                                          691128
            macro avg
                             0.71
                                        1.00
                                                  0.79
                                                          691128
         weighted avg
                             1.00
                                        1.00
                                                  1.00
                                                          691128
         Test Report
                        precision
                                     recall
                                              f1-score
                                                         support
                     0
                             1.00
                                        1.00
                                                  1.00
                                                          229856
                     1
                             0.43
                                        1.00
                                                  0.60
                                                             520
                                                  1.00
                                                          230376
              accuracy
            macro avg
                             0.71
                                        1.00
                                                  0.80
                                                          230376
```

Removing multicolinearity features seems to have improved the precision and f1-score of the positive class by 4%. After comparing the classification reports of Iteration 3 to those of a baseline desision tree, it seems that logistic regression will not be the best model for this dataset and I will proceed with other modeling techniques.

1.00

230376

1.00

weighted avg

1.00

