WOJEWÓDZKI KONKURS MATEMATYCZNY Model odpowiedzi i schemat punktowania

Nie przyznaje się połówek punktów.

Schemat punktowania – zadania zamknięte

Za każdą poprawną odpowiedź uczeń otrzymuje 1 punkt.

Nr zad.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Poprawna odpowiedź	В	A	С	D	С	D	A	A	В	C	В	С	В	D	С	В	C	C	В	D

Przykładowe rozwiązania i schemat punktowania – zadania otwarte

W zadaniach, za które przewidziano maksymalnie jeden punkt, wymagana jest odpowiedź w pełni poprawna.

Za poprawne obliczenia będące konsekwencją zastosowania błędnej metody nie przyznaje się punktów.

Jeżeli uczeń poprawnie rozwiązał zadanie inną metodą niż metoda podana w schemacie, otrzymuje za to zadanie maksymalną liczbę punktów.

Numer zadania	Rozwiązania	Liczba punktów					
	Obliczenie pól ćwierćkół o promieniu a i o promieniu b $P_1 = \frac{1}{4}\pi \cdot a^2$ $P_2 = \frac{1}{4}\pi \cdot b^2$	1					
21	Uzasadnienie, że pole ćwierćkoła zbudowanego na przeciwprostokątnej jest równe sumie pól ćwierćkół zbudowanych na przyprostokątnych $P_1 + P_2 = \frac{1}{4}\pi \cdot a^2 + \frac{1}{4}\pi \cdot b^2 = \frac{1}{4}\pi \left(a^2 + b^2\right) = \frac{1}{4}\pi \cdot c^2 = P_3,$ ponieważ na mocy twierdzenia Pitagorasa $a^2 + b^2 = c^2$ c.n.u.	1					
	Uwaga: Jeżeli zostaną zastosowane poprawne metody rozwiązania, ale uczeń p błędy rachunkowe, to otrzymuje 1 p.						
22	Obliczenie ilości soli w trzecim naczyniu 4% z 5 kg = 0,04 · 5 kg = 0,2 kg = 200 g	2 p.					
	Ułożenie równania zgodnego z warunkami zadania $x - ilość soli w pierwszym naczyniu$ $x + 20 - ilość soli w drugim naczyniu$ $x + x + 20 = 200$	1					
	Obliczenie ilości soli w pierwszym i drugim naczyniu 2x = 180 x = 90 g - ilość soli w pierwszym naczyniu 90 + 20 = 110 g - ilość soli w drugim naczyniu	1					

WOJEWÓDZKIE KONKURSY PRZEDMIOTOWE 2020/2021 STOPIEŃ WOJEWÓDZKI

	Obliczenie stężenia procentowego każdego roztworu:								
	$\frac{90}{3000} = \frac{3}{100} = 3\% - \text{stężenie pierwszego roztworu}$	1							
	$\frac{110}{2000} = \frac{5.5}{100} = 5.5\% - \text{stężenie drugiego roztworu}$								
	Uwaga: Jeżeli zostaną zastosowane poprawne metody rozwiązania, ale uczeń popełni błędy rachunkowe, to otrzymuje 3 p.								
	Razem	4 p.							
	Wyznaczenie pola trójkąta EBC i pola trapezu AECD								
	$P_1 = \frac{1}{2} EB \cdot h - pole trójkąta EBC$								
	$P_2 = \frac{1}{2} \cdot (AE + CD) \cdot h - \text{pole trapezu AECD}$	1							
	$P_1 = P_2$, stąd								
	$\frac{1}{2} EB \cdot h = \frac{1}{2} \cdot (AE + CD) \cdot h$								
	Z tego wynika, że: EB = AE + CD								
	Obliczenie długości boku EB trójkąta.								
	Odcinek CE rozcina trapez na dwie figury o równych polach, w związku z tym pole trapezu ABCD jest 2 razy większe od pola trójkąta EBC								
23	$P_1 = \frac{1}{2} EB \cdot h - pole trójkąta EBC$								
	$P_3 = \frac{1}{2} \cdot (AB + CD) \cdot h - \text{pole trapezu ABCD}$	1							
	$2 \cdot P_1 = P_3$, stad								
	$ EB \cdot h = \frac{1}{2} \cdot (AB + CD) \cdot h / : h$								
	$ EB = \frac{1}{2} \cdot (36 + 14)$								
	EB = 25								
	Obliczenie długości odcinka AE								
	AE = AB - EB	1							
	AE = 36 - 25 = 11								
	Uwaga: Jeżeli zostaną zastosowane poprawne metody rozwiązania, ale uczeń popełni błędy rachunkowe, to otrzymuje 2 p.								
	Razem	3 p.							

WOJEWÓDZKIE KONKURSY PRZEDMIOTOWE 2020/2021 STOPIEŃ WOJEWÓDZKI

	Obliczenie długości promieni dużego i małego koła								
	R = 28 : 2 = 14 m								
	12,5% z $28 = 3,5$ m – szerokość pasa z lawendą								
	r = 14 m - 3.5 m = 10.5 m								
	Obliczenie pola dużego koła								
	$P_1 = \pi R^2 = \pi \cdot 14^2 = 3\frac{1}{7} \cdot 196 = 616 \text{ m}^2$								
	Obliczenie pola małego koła:								
	$P_2 = \pi r^2 = \pi \cdot 10.5^2 = 3\frac{1}{7} \cdot 110.25 = 346.5 \text{ m}^2$								
24	Obliczenie powierzchni, na której należy posadzić lawendę								
	$P_1 - P_2 = 616 - 346,5 = 269,5 \text{ m}^2$	1							
	Uwaga:								
	1. Jeżeli zostaną zastosowane poprawne metody rozwiązania, ale uczeń po	pełni							
	błędy rachunkowe, to otrzymuje 2 p.	_							
	2. Jeżeli uczeń błędnie liczy promień małego koła, a dalej konsekwentnie do								
	swojego wyniku wylicza pola obu kół i powierzchnię lawendy, otrzymuje całe zadanie 1p.	za							
	cute 2adame 1p.								
	Razem	3 p.							
	Wyznaczenie współrzędnych punktów A i B	э р.							
	2a-1=-(-a+2)								
	$\underline{a=-1}$								
	-b+5=-2a-4								
	$\begin{vmatrix} -b+5=-2\cdot(-1)-4 \end{vmatrix}$								
	b=7								
	wiec: $A = \begin{pmatrix} 2 & 2 \end{pmatrix}$								
	A = (-2, -3) B = (-2, 3)								
	Obliczenie pola trójkąta ABC								
25	1	1							
	$P = \frac{1}{2} \cdot 6 \cdot 6 = 18$								
	Obliczenie długości boków trójkąta ABC								
	AB = 6								
	$ BC ^2 = 3^2 + 6^2$	4							
	$ BC ^2 = 45$,	1							
		1							
	$ BC ^2 = 45,$	1							
	$ BC ^2 = 45,$ $ BC = 3\sqrt{5}$	1							

WOJEWÓDZKIE KONKURSY PRZEDMIOTOWE 2020/2021 STOPIEŃ WOJEWÓDZKI

Uwaga:

- 1. Jeżeli zostaną zastosowane poprawne metody rozwiązania, ale uczeń popełni błędy rachunkowe, to otrzymuje 3 p.
- 2. Jeżeli uczeń błędnie wyznacza współrzędne punktów A i B, i dalej konsekwentnie do swojego wyniku wylicza pole i obwód trójkąta może otrzymać za całe zadanie 2p.
- 3. Jeżeli uczeń wyznacza tylko długości boków lub pole trójkąta to za całe zadanie może otrzymać 1p.

	moze otrzymac 1p.	
	Razem	4 p.
	Wyznaczenie wysokości trójkąta BDK $ SC = \frac{ AB \sqrt{2}}{2} = \frac{6\sqrt{2}}{2} = 3\sqrt{2} \text{ cm}$ $ KC = \frac{1}{2} AB = \frac{1}{2} \cdot 6 = 3 \text{ cm}$ $ SK = \sqrt{ SC ^2 + KC ^2} = \sqrt{(3\sqrt{2})^2 + 3^2} = 3\sqrt{3} \text{ cm}$	1
	Obliczenie pola trójkąta BDK $ BD = AB \sqrt{2} = 6\sqrt{2} \text{ cm}$ $P_{BDK} = \frac{1}{2} \cdot BD \cdot SK = \frac{1}{2} \cdot 6\sqrt{2} \cdot 3\sqrt{3} = 9\sqrt{6} \text{ cm}^2$	1
26	Obliczenie pól poszczególnych ścian wielościanu $P_{ABD} = \frac{1}{2} BC \cdot CD = 18 \text{ cm}^2$ $P_{BKGF} = P_{DKGH} = \frac{1}{2} \cdot (BF + GK) \cdot FG = \frac{1}{2} \cdot (6+3) \cdot 6 = 27 \text{ cm}^2$ $P_{ABFE} = P_{ADHE} = P_{EFGH} = AB ^2 = 6^2 = 36 \text{ cm}^2$	1
	Obliczenie pola wielościanu $P = 3 \cdot P_{ABFE} + 2 \cdot P_{BKGF} + P_{ABD} + P_{BDK} = 3 \cdot 36 + 2 \cdot 27 + 18 + 9\sqrt{6} = 180 + 9\sqrt{6} \text{ cm}^2$	1
	Uwaga: Jeżeli zostaną zastosowane poprawne metody rozwiązania, ale uczeń p błędy rachunkowe, to otrzymuje 3 p.	oopełni
	Razem	4 p.

Razem 40 punktów