

Scaling Relations for the Geometry of Wire-to-Airfoil Atmospheric Ionic Thrusters

Omar Kahol 04/05/2023

- Introduction
- Scaling Analysis
- 3 Experimental Setup
- 4 Results
- 6 Conclusions and Future Developments

- Introduction
- 2 Scaling Analysis
- 3 Experimental Setup
- 4 Results
- 6 Conclusions and Future Developments

- Positive or negative voltage applied between the electrodes
- Collisions generate airflow and thrust

Geometrical Parameters

- Gap, d
- Collector chord, c
- Collector thickness, t
- \blacksquare Inter-collector spacing, S
- Airfoil span, b

Goal

Create a model for the performance of the thruster and optimize the performance

Research Parameters, Airfoil Shape

Airfoil Nomenclature

Each airfoil is called using CxxTyy where xx indicates the chord in mm and yy the thickness in mm

Research Parameters, Supplementary Tests

Double Emitter Configuration

Supplementary Tests

The C25 airfoils were also tested at variable spacings and the C25T6 airfoil at different gaps.

- Introduction
- Scaling Analysis
- Setup
 Setup
- 4 Results
- 6 Conclusions and Future Developments

Governing Equations

$$\begin{cases} \nabla \cdot \mathbf{E} = \rho_q / \epsilon_0 & 1. \text{ Maxwell's law} \\ \nabla \cdot \rho_q \left(\mu_q \mathbf{E} + \mathbf{u} \right) = 0 & 2. \text{ Charge Conservation} \\ \rho \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P + \mu \nabla^2 \mathbf{u} + \rho_q \mathbf{E} & 3. \text{ Momentum conservation} \\ \mathbf{E}(r_E) = E_i \mathbf{n} & + \text{ Peek's boundary condition} \end{cases}$$

Scaling Variables

- Reference Length, d
- \blacksquare Reference Potential, V_a

Equations

- + Peek's boundary condition

Performance Indicators

Thrust and Power coefficients

$$\begin{cases} \frac{T_e}{b} = \int_{\Omega} \rho_q E_{\rm x} \ \mathrm{d}x - \frac{1}{2} \rho u_0^2 c \ C_D \ \rightarrow \ \epsilon_0 \frac{V_a^2}{d} \ C_{Te} \\ \frac{P}{b} = \int_{\Omega} \mathbf{j} \cdot \mathbf{E} \ \mathrm{d}\Omega \ \rightarrow \ \mu_q \epsilon_0 \frac{V_a^3}{d^2} \ C_P \end{cases}$$

Derived indicators

Name	Symbol	Reference Value	Coefficient
Thrust to Power Ratio	$\frac{T_e}{P}$	$\frac{\mu_q d}{V_2}$	$\frac{C_{Te}}{C_{P}}$
Surface Thrust Density	$\frac{T_e}{A}$	$\epsilon_0 \frac{V_a^2}{d^2}$	$\frac{d}{S}C_{Te}$

- Introduction
- Scaling Analysis
- Setup
 Setup
- 4 Results
- (5) Conclusions and Future Developments

Measurement Chain

HBM PW6 Specifications

- 0.75 kg full scale
- 0.1 gram precision
- Output 0-10 V for 0-1 kg

Circuit Specifications

- $Rb = 0.996M\Omega$
- Rs = 1.16k Ω
- voltage divider gain of 1/1000

Multiple 50 kHz 2 s acquisitions at 11 bit per point

- Introduction
- Scaling Analysis
- Setup
 Setup
- 4 Results
- 6 Conclusions and Future Developments

$$\begin{cases} \frac{T_e}{P} = \frac{\mu_q d}{V_a} \ C_{TPe} \\ \frac{T_e}{A} = \epsilon_0 \frac{V_a^2}{d^2} \ C_{TAe} \end{cases}$$

Focusing on the reference values only

Tests at S = 35 mm for the C25T6 airfoil

Effective Thrust to Power

Effective Thrust Density

Hypothesis

Negligible convection, 1D geometry

1D Equations and boundary conditions

$$egin{cases} rac{\partial \hat{\mathcal{E}}}{\partial \hat{x}} = \hat{
ho}_q \ rac{\partial}{\partial \hat{x}} \; \hat{
ho}_q \hat{\mathcal{E}} = 0 \end{cases} + egin{cases} \hat{\mathcal{E}}(0) = \hat{V} \ \int_0^1 \hat{\mathcal{E}} \; \mathrm{d}\hat{x} = 1 \end{cases}$$

Series solution for $\hat{V} = V_a/V_i$

$$\mathsf{Model} \to f(\hat{V}) = (c_1 + c_2) - \frac{c_1}{\hat{V}} - \frac{c_2}{\hat{V}^2}$$

Data for the C25T6 airfoil at S=35 mm and d=20 mm. C_{Te} in blue and C_P in red

Effective Thrust Coefficient

$$C_{Te} = C_T - \frac{1}{2} \frac{c}{d} C_D$$

Tests at S = 35 mm, d = 20 mm, V = 20 kV.

$$\mathsf{Model} \to f\left(\frac{\mathcal{S}}{d}\right) = k_1 \ \left[1 - \exp\left(-k_2\left(\frac{\mathcal{S}}{d} - k_3\right)\right)\right]$$

Data

Tests at d = 20 mm, V = 20 kV for the C25 airfoils.

Arrows indicate the direction of increasing spacing between units

S10SE, small spacing

S40DE, large spacing

Configuration	C _{TAe}	T/A	C_{TP}	T/P	P/A
S10SE	0.39	$4.42{\rm N/m^2}$	0.55	3.5 N/kW	$1.25\mathrm{kW/m^2}$
S40DE	0.22	1.94N/m^2	0.79	$5.06\mathrm{N/kW}$	$0.38 kW/m^2$

- Introduction
- Scaling Analysis
- 3 Experimental Setup
- 4 Results
- **5** Conclusions and Future Developments

Conclusions 23/

Achievements

- 1. A scaling model
- 2. Detailed study of the effects of the dimensionless coefficients
- 3. Two optimized configurations

Ideas

- 1. Increase the temperature of the emitter
- 2. Effect of a mean flow
- 3. Design of an airship powered by EHD thrusters

Thank you for your attention

6 Scaling Analysis, Supplementary material

Dimensionless Equations

$\begin{cases} \nabla \cdot \mathbf{E} = \hat{\rho_q} & \text{1. Charge density: } \rho_0 = \epsilon \\ \hat{\nabla} \cdot \hat{\rho_q} \left(\hat{\mathbf{E}} + R_v \hat{\mathbf{u}} \right) = 0 & \text{2. Velocity: } u_0 = \frac{V_s}{d} \sqrt{\frac{\epsilon_0}{\rho}} \\ \hat{\mathbf{u}} \cdot \hat{\nabla} \hat{\mathbf{u}} = -\hat{\nabla} \hat{P} + \hat{\rho}_q \hat{\mathbf{E}} + \frac{1}{Re_d} \hat{\nabla}^2 \hat{\mathbf{u}} & \text{3. Pressure: } P_0 = \epsilon_0 \frac{V_s^2}{d^2} \\ \hat{\mathbf{E}} (\hat{r}_E) = \hat{V} \mathbf{n} & \text{3.} \end{cases}$

Reference Varibles

- 1. Charge density: $\rho_0 = \epsilon_0 \frac{V_a}{d^2}$

Dimensionless Numbers

$$Re_d=rac{V_a}{
u}\sqrt{rac{\epsilon_0}{
ho}}, \; {
m Gap \; Reynolds \; Number}$$
 $R_v=rac{1}{\mu_q}\sqrt{rac{\epsilon_0}{
ho}}, \; {
m Ratio \; between \; mean \; flow \; and \; ion \; velocity}$ $\hat{V}=rac{V_a}{V_i}, \; {
m Dimensionless \; voltage}$