Improved Masking for Tweakable Blockciphers with Applications to Authenticated Encryption

Robert Granger, Philipp Jovanovic, <u>Bart Mennink</u>, Samuel Neves EPFL, EPFL, KU Leuven, University of Coimbra

Dagstuhl — January 12, 2016

Tweakable Blockciphers

Tweakable Blockciphers

- Tweak: flexibility to the cipher
- Each tweak gives different permutation

Tweakable Blockciphers in OCBx

- Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- ullet Internally based on tweakable blockcipher \widetilde{E}
 - ullet Tweak (N, tweak) is unique for every evaluation

Tweakable Blockciphers in OCBx

- Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- ullet Internally based on tweakable blockcipher \widetilde{E}
 - Tweak (N, tweak) is unique for every evaluation
- Change of tweak should be efficient

Masking-Based Tweakable Blockciphers

Blockcipher-Based

Permutation-Based

Masking-Based Tweakable Blockciphers

Blockcipher-Based

Permutation-Based

much larger: 256-1600 bits

Powering-Up Masking (XEX)

• XEX by Rogaway [Rog04]:

ullet $(lpha, eta, \gamma, N)$ is tweak (simplified)

Powering-Up Masking (XEX)

• XEX by Rogaway [Rog04]:

- $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- Used in OCB2 and in various CAESAR candidates

Powering-Up Masking (XEX)

XEX by Rogaway [Rog04]:

- Used in OCB2 and in various CAESAR candidates
- Permutation-based variants in Minalpher and Prøst

- Update of mask:
 - Shift and conditional XOR
- Variable time computation
- Expensive on certain platforms

Word-Based Powering-Up Masking

Chakraborty and Sarkar [CS06]:

- $z \in \{0,1\}^w$ is a generator, (i,N) is tweak
- ullet Tower of fields: $z^i \in \mathbb{F}_{2^w}[z]/g$ instead of $x^i \in \mathbb{F}_2[x]/f$

Word-Based Powering-Up Masking

Chakraborty and Sarkar [CS06]:

- $z \in \{0,1\}^w$ is a generator, (i,N) is tweak
- Tower of fields: $z^i \in \mathbb{F}_{2^w}[z]/g$ instead of $x^i \in \mathbb{F}_2[x]/f$
 - "Word-based powering-up"
 - Similar drawbacks as regular powering-up

Gray Code Masking

• OCB1 and OCB3 use Gray Codes:

- ullet (i,N) is tweak
- Updating: $G(i) = G(i-1) \oplus 2^{\mathsf{ntz}(i)}$

Gray Code Masking

OCB1 and OCB3 use Gray Codes:

- (i, N) is tweak
- Updating: $G(i) = G(i-1) \oplus 2^{\mathsf{ntz}(i)}$
 - Single XOR
 - Logarithmic amount of field doublings (precomputed)
- More efficient than powering-up [KR11]

High-Level Contributions

Masked Even-Mansour

- Improved masking of tweakable blockciphers
- Simpler to implement and more efficient
- Constant time (by default)
- Relies on breakthroughs in discrete log computation

High-Level Contributions

Masked Even-Mansour

- Improved masking of tweakable blockciphers
- Simpler to implement and more efficient
- Constant time (by default)
- Relies on breakthroughs in discrete log computation

Application to Authenticated Encryption

- Nonce-respecting AE in 0.55 cpb
- Misuse-resistant AE in 1.06 cpb

Masked Even-Mansour (MEM)

Masked Even-Mansour (MEM):

• φ_i are fixed LFSRs, $(\alpha, \beta, \gamma, N)$ is tweak (simplified)

Masked Even-Mansour (MEM)

Masked Even-Mansour (MEM):

- φ_i are fixed LFSRs, $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- Combines advantages of:
 - Powering-up masking
 - Word-based LFSRs

Masked Even-Mansour (MEM)

Masked Even-Mansour (MEM):

- φ_i are fixed LFSRs, $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- Combines advantages of:
 - Powering-up masking
 - Word-based LFSRs
- Simpler, constant-time (by default), more efficient

Design Considerations

- Particularly suited for large states (permutations)
- Low operation counts by clever choice of LFSR

Design Considerations

- Particularly suited for large states (permutations)
- Low operation counts by clever choice of LFSR
- Sample LFSRs (state size b as n words of w bits):

b	w	n	arphi
128	8	16	$(x_1,\ldots,x_{15},(x_0 \ll 1) \oplus (x_9 \gg 1) \oplus (x_{10} \ll 1))$
128	32	4	$(x_1,\ldots,x_3,\ (x_0\ll 5)\oplus x_1\oplus (x_1\ll 13))$
128	64	2	$(x_1, (x_0 \ll 11) \oplus x_1 \oplus (x_1 \ll 13))$
256	64	4	$(x_1,\ldots,x_3,\ (x_0\ll 3)\oplus (x_3\gg 5))$
512	32	16	$(x_1,\ldots,x_{15},(x_0 \ll 5) \oplus (x_3 \gg 7))$
512	64	8	$(x_1,\ldots,x_7,\ (x_0\ll 29)\oplus (x_1\ll 9))$
1024	64	16	$(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$
1600	32	50	$(x_1,\ldots,x_{49},(x_0\ll 3)\oplus(x_{23}\gg 3))$
	:		
	·		•

Design Considerations

- Particularly suited for large states (permutations)
- Low operation counts by clever choice of LFSR
- Sample LFSRs (state size b as n words of w bits):

b	w	n	φ
128	8	16	$(x_1,\ldots,x_{15},(x_0\ll 1)\oplus(x_9\gg 1)\oplus(x_{10}\ll 1))$
128	32	4	$(x_1,\ldots,x_3,\ (x_0\ll 5)\oplus x_1\oplus (x_1\ll 13))$
128	64	2	$(x_1, (x_0 \ll 11) \oplus x_1 \oplus (x_1 \ll 13))$
256	64	4	$(x_1,\ldots,x_3,\ (x_0\ll 3)\oplus (x_3\gg 5))$
512	32	16	$(x_1,\ldots,x_{15},(x_0 \ll 5) \oplus (x_3 \gg 7))$
512	64	8	$(x_1,\ldots,x_7,\ (x_0\ll 29)\oplus (x_1\ll 9))$
1024	64	16	$(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$
1600	32	50	$(x_1,\ldots,x_{49},(x_0\ll 3)\oplus(x_{23}\gg 3))$
	:		
·	·		•

Work exceptionally well for ARX primitives

Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any
$$(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

solved in this work using breakthroughs in discrete log computation

"Bare" Implementation Results

- Mask computation in cycles per update
- In most pessimistic scenario (for ours):

Masking	Sandy Bridge	Haswell
Powering-up	13.108	10.382
Gray code	6.303	3.666
Ours	2.850	2.752

• Differences may amplify/diminish in a mode

Application to AE: OPP

- Offset Public Permutation (OPP)
- Generalization of OCB3:
 - Permutation-based
 - More efficient MEM masking
- Security against nonce-respecting adversaries
- 0.55 cpb with reduced-round BLAKE2b

Application to AE: MRO

- Misuse-Resistant OPP (MRO)
- Fully nonce-misuse resistant version of OPP
- 1.06 cpb with reduced-round BLAKE2b

Implementation

- State size b = 1024
- LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$$

• P: BLAKE2b permutation with 4 or 6 rounds

Implementation

- State size b = 1024
- LESR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$$

- P: BLAKE2b permutation with 4 or 6 rounds
- Main implementation results (more in paper):

		nonc	e-respectin	misuse-resistant		
Platform	AES-GCM	ОСВ3	Deoxys≠	OPP ₄	OPP ₆	
Cortex-A8	38.6	28.9	=	4.26	5.91	
Sandy Bridge	2.55	0.98	1.29	1.24	1.91	
Haswell	1.03	0.69	0.96	0.55	0.75	

Implementation

- State size b = 1024
- LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$$

- P: BLAKE2b permutation with 4 or 6 rounds
- Main implementation results (more in paper):

		nonc	e-respectin	g	misu se-resistant				
Platform	AES-GCM	ОСВ3	Deoxys≠	OPP_4	OPP ₆	GCM-SIV	Deoxy s=	MRO_4	MRO ₆
Cortex-A8	38.6	28.9	=	4.26	5.91	=	=	8.07	11.32
Sandy Bridge	2.55	0.98	1.29	1.24	1.91	-	2.58	2.41	3.58
Haswell	1.03	0.69	0.96	0.55	0.75	1.17	1.92	1.06	1.39

• LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$$

• LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$$

• Begin with state $L_i = [x_0, \dots, x_{15}]$ of 64-bit words

$$egin{array}{ccccccc} x_0 & x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 & x_7 \\ x_8 & x_9 & x_{10} & x_{11} \\ x_{12} & x_{13} & x_{14} & x_{15} \\ \end{array}$$

• LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$$

ullet Begin with state $L_i=[x_0,\ldots,x_{15}]$ of $64 ext{-bit}$ words

• $x_{16} = (x_0 \ll 53) \oplus (x_5 \ll 13)$

• LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$$

ullet Begin with state $L_i=[x_0,\ldots,x_{15}]$ of $64 ext{-bit}$ words

- $x_{16} = (x_0 \ll 53) \oplus (x_5 \ll 13)$
- $x_{17} = (x_1 \ll 53) \oplus (x_6 \ll 13)$

• LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$$

ullet Begin with state $L_i=[x_0,\ldots,x_{15}]$ of $64 ext{-bit}$ words

- $x_{16} = (x_0 \ll 53) \oplus (x_5 \ll 13)$
- $x_{17} = (x_1 \ll 53) \oplus (x_6 \ll 13)$
- $x_{18} = (x_2 \ll 53) \oplus (x_7 \ll 13)$

• LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$$

ullet Begin with state $L_i=[x_0,\ldots,x_{15}]$ of 64-bit words

- $x_{16} = (x_0 \ll 53) \oplus (x_5 \ll 13)$
- $x_{17} = (x_1 \ll 53) \oplus (x_6 \ll 13)$
- $x_{18} = (x_2 \ll 53) \oplus (x_7 \ll 13)$
- $x_{19} = (x_3 \ll 53) \oplus (x_8 \ll 13)$

• LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$$

• Begin with state $L_i = [x_0, \dots, x_{15}]$ of 64-bit words

- $x_{16} = (x_0 \ll 53) \oplus (x_5 \ll 13)$
- $x_{17} = (x_1 \ll 53) \oplus (x_6 \ll 13)$
- $x_{18} = (x_2 \ll 53) \oplus (x_7 \ll 13)$
- $x_{19} = (x_3 \ll 53) \oplus (x_8 \ll 13)$
- Parallelizable (AVX2) and word-sliceable

Conclusion

Masked Even-Mansour

- Simpler, constant-time (by default), more efficient
- Justified by breakthroughs in discrete log computation
- MEM-based AE outperforms its closest competitors

More Info

- https://eprint.iacr.org/2015/999
- https://github.com/MEM-AEAD

Thank you for your attention!