Software Engineering

Modern Approaches

Fric Braude and Michael Bernstein

Chapter 10: Principles of Requirements Analysis

Phase most relevant to this chapter is shown in bold

© 2010 John Wiley & Sons Ltd.

© 2010 John Wiley & Sons Ltd.

Learning goals of this chapter

- · Why the term requirements analysis?
- What is the value of writing down requirements?
- · Where do requirements come from?
- What is the difference between highlevel and detailed requirements?
- What is the difference between functional and non-functional requirements?
- · How do you document requirements?
- · What does traceability mean?
- How do agile methods handle requirements?
- What are good tips for student project requirements analysis?

The Meaning of Requirements Analysis

- The process of understanding what's wanted and needed in an application. For example, you may know that you want a colonial house in New England, but you may not know that you will probably need a basement for it.
- We express requirements in writing to complete our understanding and to create a contract between developer and customer.

© 2010 John Wiley & Sons Ltd

Sources of Requirements:

People vs. Other (adapted from Brackett [Br]) decision support system for military tactics O unconstrained Encounter video game 0 corporate payroll system O factory control system Type of application enhancement to corporate payroll system flight control system for airliner missile guidance system highly constrained Relatively Approximate % of requirements Relatively low gathered from people high

High-level versus Detailed Requirements

- High-level requirements (market requirements): an overview, which is relatively readable and well suited to customers.
 - Anyone wanting to get an idea of what the application is all about reads the high-level requirements. For instance, considering the video store
 - The Video Store application shall enable clerks to check DVDs in and out.
 - The following shows a sketch of the main user interface: . . .
- Detailed requirements: specially useful for developers, who need to know precisely
 what they have to build. They also should be understandable to the customer, and
 should not contain developer jargon where possible.
 - The daily late charge o n a D V D shall be computed at half the regular two-day rental rate, up to
 the value of the DVD listed in the "Intergalactic Video Catalog," When the amount owed reaches
 this value, the total I ate charge is computed as this amount plus \$5.
 - When the "commit" button is pressed on CUI 37, the CUI shall disappear and CUI 15 shall appear with a superimposed green border (RGB = 6, 32, 8) and the name and address fields filled with the data for the customer.

2010 John Wiley & Sons Ltd.

Functional vesus Non-Functional Requirements

- · Functional requirement: also known as behavioral requirement, specify services that the application must provide. For example:
 - The application allows clerks to check out DVDs
 - The application allows clerks to display the customer's account status
- · Non-functional requirement: any requirement that does not specify functionality. It qualifies a service or services. It needs to be specific, quantifiable, and testable.
 - The system shall retrieve user information quickly
 - · What does retrieve means? (vague)
 - · What does quickly means? (not quantifiable)
 - Once the Ok button is pressed on the "Retrieve account information" screen, the user's account information shall be displayed in less than 3 seconds.

Requirements Quality attributes Reliability and Availability (observed faults, average up time)

Non-Functional

- Performance (speed, throughput, storage)
- Security (malicious and non-malicious compromise of data or functionality)
- Maintainability (cost to maintain)
- Portability (move to a different operating environment)
- Constraints on the application or its development
- External interfaces that the application "talks to"
 - Hardware
 - Other software
 - Communication with external agents
- User interfaces
- Error handling

© 2010 John Wiley & Sons Ltd.

Examples of Constraints

Platform

© 2010 John Wiley & Sons Ltd.

. e.g., the application must execute on any 1GH Linux computer

Development Media

- e.g., the application must be implemented in Java
- e.g., Rational Rose must be used for the design

External Interface Requirements

- Hardware
 - e.g., "the application must interface with a model 1234 bar code reader
- Software
 - e.g., "the application shall use the company's payroll system to retrieve salary information"
 - . e.g., "the application shall use version 1.1 of the Apache
- Communications
 - e.g., "the application shall communicate with human resources applications via the company intranet'
 - . e.g., "the format used to transmit "article expected" messages to cooperating shipping companies shall use XML standard 183.34 published at http://...'

© 2010 John Wiley & Sons Ltd

© 2010 John Wiley & Sons Ltd

Steps for Constructing User Interfaces¹

Step 1: Know your user (H²) Step 2: Understand the business function in question Step 3: Apply principles of good screen design (H, D3) Step 4: Select the appropriate kind of windows (H, D) Step 5: Develop system menus (H, D) Step 6: Select the appropriate device-based controls (H) Step 7: Choose the appropriate screen-based controls (H) Step 8: Organize and lay out windows (H, D) Step 9: Choose appropriate colors (D) Step 10: Create meaningful icons

Step 11: Provide effective message, feedback, & guidance (D)

1 adapted from Galitz 2a high-level requirement process 3a detailed requirement process

Examples of Error Handling Options

- Ignore
- Warn user
- Allow unlimited retries
- Log and proceed anyway
- Substitute default values
- Shut down

(H, D)

2

IEEE 830-1998 SRS Table of Contents

1. Introduction 2.1.6. Memory constraints 2.1.7. Operations 1.1. Purpose 2.1.8. Site adaptation requirements 1.2. Scope 2.2. Product functions 1.3. Definitions, acronyms User characteristics 2.3. & abbreviations 1.4. References 2.4. Constraints 2.5. Assumptions and 1.5. Overview dependencies 2. Overall description 2.6 Apportioning of requirements 2.1. Product perspective 3. Specific requirements 2.1.1. System interfaces - see Figure 9 2.1.2. User interfaces 2.1.3. Hardware interfaces Appendixes 2.1.4. Software interfaces 2.1.5. Communications interfaces

Replaced by ISO/IEC/IEEE 29148:2011

© 2010 John Wiley & Sons Ltd.

© 2010 John Wiley & Sons Ltd.

© 2010 John Wiley & Sons Ltd.

Traceability requirement accommodates design element relates to implements verifies verifies verifies verifies

Agile Requirements Analysis Develop common vision Each cycle: Specify user stories and acceptance tests beginning Each Write tests for test detailed requirement Each cycle: Code end detailed requirement

IEEE 830-1998 Detailed Requirements

A Change In a Requirement Causes Changes In Other Artifacts

Artifact	Original version	Revised version
Requirement	The title of a DVD shall consist of between 1 and 15 English characters.	The title of a DVD shall consist of between 1 and 15 characters, available in English, French and Russian.
Design element		
Code	class DVD { String title }	class DVD { Title title } class Title
Inspection report	Inspection # 672: 4 defects; Follow-up inspection #684.	Inspection # 935: 1 defect; no follow-up inspection required.
Test report	Test # 8920	Test # 15084

© 2010 John Wiley & Sons Ltd.

Updating Project Plan After Obtaining High-Level Requirements

	Status after initial draft	Status after obtaining high-level requirements
Milestones	Initial	More milestones; more specific
Risks	Identify initial risks	Retire risks identified previously; identify more risks now that more is known about the project
Schedule	Very rough	Preliminary project schedule
Personnel	Designate high-level requirements engineers	Designated engineers for detailed requirements analysis
Cost Estimation	Very rough	First estimates based on job content

© 2010 John Wiley & Sons Ltd.

Typical Schedule Following High-Level Requirements Analysis

© 2010 John Wiley & Sons Ltd.