SWEST21 セッションs5b 組込みAI技術の最前線

~AISingのEdge向けAIアルゴリズムの紹介と、FPGAによるAI実装 LUT-Networkの開発記

名古屋大学 山本 椋太

アジェンダ

- 自己紹介
- FPGA × 深層学習
- LUT-Network とは
- 実際にやってみた
- ・ 色々な比較

自己紹介

• 名前: 山本 椋太 (やまもと りょうた)

所属: 名古屋大学大学院 情報学研究科 博士後期課程 3年

• 研究内容:

- 高位合成による機械学習フレームワークの開発
- C言語から状態遷移表をリバースで抽出する ツールの開発
 - たまに、展示会などで講演させていただいています。
- 要求仕様書から曖昧さを抽出する研究

深層学習

- 深層学習は様々な分野から注目を集めている.
 - もちろん,組込みでも!
- 組込みで動かそうと思うと、大変…
 - メモリが足りない!
 - MB・GBオーダーの訓練済みデータが必要になることもある
 - 電力を抑えたい!
 - (最近は省電力GPUデバイスもあるが) GPUは電力が大きい.
 - 速度がほしい!
 - リアルタイム性が要求されるシステムもある.

組込み × 深層学習

色々なデバイスで、DNNを動かす取り組みが盛んである.

- Jetson (GPU, Nvidia社)
 - 最近では, IoT向けにJetson nano が登場した.
- PYNQ (SoC, Xilinx社)
 - BNN-PYNQ (FINN) とともに,Pythonを用いて簡単にDNNができる.
 - Weight や Activation を 量子化 (1bit / 2bit)

FPGA × 深層学習!

- FPGA向けHDLの設計は専門性が高いため, 様々なフレームワークが研究・開発されている.
 - GUINNESS (GUI based Nerural Network)
 - 東工大 中原先生らによって開発されている.
 - Weight / Activation は 1bit に量子化される.
 - https://github.com/HirokiNakahara/GUINNESS
 - BNN-PYNQ
 - Xilinx社によって開発されている。
 - Weight / Activation は 1bit または 2bit に量子化される.
 - https://github.com/Xilinx/BNN-PYNQ
- 今回は, LUT-Networkを使ってみよう!

LUT-Network 用の環境 BinaryBrain

- BinaryBrain とは
 - 渕上氏 (@Ryuz88) による LUT(Look-up Table)-Network用の学習・推論を行う環境
 - (2値化なので、精度の悪さは認識して始めた)
- 特徴
 - バイナリ入力・多値出力
 - ニューラルネットワークのFPGA化
 - バイナリネットだが変調技術により回帰分析が可能
 - 独自の確率的LUTのモデルにより、高速に学習
 - C++で記述
 - GPU(CUDA)に対応
 - 高速かつ微小リソースなFPGAアクセラレータを生成
 - MNISTコア単体

動いている様子: 動画

動いている様子: 出力例

- MNIST (手書きの数字 0から9)
- 正しい位置で画像を読み込んだ場合のみ正しい 結果を得られている
- 出力結果の色は抵抗のカラーコードと対応している

入力画像

出力画像

通常のDNN と LUT-Network の違い (1/2)

- ニューロン を使うか LUT を使うか
- LUTは, 特定の入力パターンに対して割り当てられた 出力結果を渡すだけ

Primitive: 6-Input Lookup Table with General Output

通常のDNN と LUT-Network の違い (2/2)

テーブル化

- 入力の組み合わせ全てに対して、計算結果を表にする
- テーブル化の例
 - 例) バイナリネットワークは各レイヤの入出力が 2 値
 - 32bit入力のパターン数は, 4Gである.
 - 出力も32bitだとすれば、 $4G \times 32$ bit = 128 Gbitのテーブルがあれば良い.

 $f(x) = x^2$ (ただし, xは0から3の整数) $\rightarrow x$ に値を代入して計算せず, 対応表から答えを引く.

入力	出力
0	0
1	1
2	4
3	9

バイナリ変調

- DNN部分は入力から出力まですべてバイナリ
- DNNの入力前にオーバーサンプリングでバイナリ変調して、2値化した値を入力
 - 浮動小数点の入力をオーバーサンプリングしつつ PWM変調など施したバイナリに変換するクラス
 - BinaryToRealクラスというオーバーサンプリングされたバイナリを数えて浮動小数点に戻すクラス
- 回帰問題を解けるようになる!
 https://www.slideshare.net/HirokiNakahara1/fpgax2019/16
- 出口でまた積算して、多値に戻す
 - 一般の1bit ADCなどでも行われている方式

確率的LUTモデル

Stochastic 演算による乗算

• 例えばビット長 10 のビット列A が以下を考える.

$$A = 00 \ 0110 \ 0111$$

- 1の出現回数は5回であるので, 0.5を表す.
- ビット列B を考える.

$$B = 00\ 0101\ 1100$$

- 1の出現回数は2回であるので, 0.4を表す.
- ここで、A×Bは、A と B の論理積から求められる.
 - $A \text{ and } B = 00 \ 0100 \ 0100$
 - このとき1の出現確率は 0.2 であり, 乗算できている.
 - 誤差が出るため,高精度が要求される場合には注意

実際にやってみた

- Github から clone する
 - https://github.com/ryuz/BinaryBrain
- 基本は書いてある手順通りにすすめる.
- ただし、今回試した環境が RTX2080Tiで、 CUDAが想定されているバージョンと異なるため、
 - g++ のバージョン問題
 - CUDAのバージョン問題
- に対応する必要があった。
- ツールインストールは割愛

学習の様子 (1/2)

```
[Sequential]
     [StochasticLut6]
      input shape : {3, 3, 64} output shape : {256}
     [StochasticLut6]
     input shape: {256} output shape: {64}
   [ConvolutionCol2Im]
    input shape : {64} output shape : {8, 8, 64}
 [StochasticMaxPooling2x2]
  filter size : (2, 2)
  input shape : {8, 8, 64} output shape : {4, 4, 64}
 [StochasticLut6]
  input shape : {4, 4, 64} output shape : {1024}
 [StochasticLut6]
  input shape : {1024} output shape : {360}
 [StochasticLut6]
  input shape: {360} output shape: {60}
 [StochasticLut6]
  input shape: {60} output shape: {10}
epoch_size
mini_batch_size : 32
lut_binarize
                 : 1
file_read
fitting start : MnistStochasticLutCnn
[4% (2880/60000)] loss: 2.177 accuracy: 0.269792
```

Ryota Yamamoto 16

学習の様子 (2/2)

```
fitting start : MnistStochasticLutCnn
   122.93s epoch[ 1] test accuracy : 0.7233 train accuracy : 0.7190
   359.22s epoch[
                   2] test accuracy: 0.8250 train accuracy: 0.8192
   596.50s epoch[
                   3] test accuracy : 0.7637 train accuracy :
                                                             0.7568
   833.67s epoch[
                   4] test accuracy: 0.8130 train accuracy: 0.8123
  1070.93s epoch[
                   5] test accuracy: 0.8254 train accuracy:
                                                             0.8182
  1308.10s epoch[
                   6] test accuracy: 0.8688 train accuracy: 0.8637
  1545.35s epoch[ 7] test accuracy : 0.8098 train accuracy : 0.8045
                   8] test accuracy: 0.8212 train accuracy: 0.8158
  1782.51s epoch[
fitting end
```

Ryota Yamamoto 17

実行

- シミュレーションはできており、実機もカメラを 購入すれば、動作させられる。
 - シミュレーションはVivado シミュレータを使用した
 - シミュレーションしてくれるスクリプトも用意されている
 - vsdファイルが生成されているため,波形ビューワをインストールして確認できる
- ここまでのフローは、非常に簡単である。

性能

- ネットワーク構成は7段
- 遅延も7サイクルのみで, LUT使用数は 1182個

Ryota Yamamoto 19

今後

- Intel (旧Altera) 対応
- シミュレーションはできており、実機もカメラを 購入すれば、動作させられる。
- ここまでのフローは、非常に簡単である.

今後の発表予定

- 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin)
 - Sep. 8-11
- Fast and Light-weight Binarized Neural Network Implemented in an FPGA using LUT-based Signal Processing and its Time-domain Extension for Multi-bit Processing
- Ryuji Fuchikami ((Personal), Japan); Fumio Issiki (Finekit, Japan)
- https://edas.info/p25749#S1569571697