Web-based Supplementary Materials for for "Penalized Generalized Estimating Equations for High-dimensional Longitudinal Data Analysis" by Lan Wang, Jianhui Zhou and Annie Qu

Web Appendix A: A Remark

It is easy to see that equation (2) in Section 2.1 follows directly from equation (1) when the marginal distribution of Y_{ij} is from a canonical exponential family(common assumption for GEE): $\frac{\partial \boldsymbol{\mu}_i(\boldsymbol{\beta}_n)}{\partial \boldsymbol{\beta}_n} = \phi \mathbf{A}_i \mathbf{X}_i$ and $\mathbf{V}_i = \mathbf{A}_i^{1/2} \mathbf{R} \mathbf{A}_i^{1/2}$.

Web Appendix B: Proof of Theorem 1

Throughout the proof, we use C to denote a generic constant, which is independent of n and may vary from line to line.

Let

$$\overline{\mathbf{S}}_n(\boldsymbol{\beta}_n) = n^{-1} \sum_{i=1}^n \mathbf{X}_i^T \mathbf{A}_i^{1/2}(\boldsymbol{\beta}_n) \overline{\mathbf{R}}^{-1} \mathbf{A}_i^{-1/2}(\boldsymbol{\beta}_n) (\mathbf{Y}_i - \boldsymbol{\mu}_i(\boldsymbol{\beta}_n)).$$

We write $\overline{\mathbf{S}}_n(\boldsymbol{\beta}_n) = (\overline{S}_{n1}(\boldsymbol{\beta}_n), \dots, \overline{S}_{np_n}(\boldsymbol{\beta}_n))^T$, where $\overline{S}_{nk}(\boldsymbol{\beta}_n) = \mathbf{e}_k^T \overline{\mathbf{S}}_n(\boldsymbol{\beta}_n)$, and \mathbf{e}_k is a p_n dimensional basis vector with the kth element being one and all the other elements being zero, $1 \leq k \leq p_n$. In the following, we first present a useful lemmas.

Lemma 0.1 Assume conditions (A1)-(A7) in Section 4 hold, then

$$\frac{\partial \overline{S}_{nk}(\boldsymbol{\beta}_n)}{\partial \boldsymbol{\beta}_n^T} = \mathbf{H}_{nk}(\boldsymbol{\beta}_n) + \mathbf{E}_{nk}(\boldsymbol{\beta}_n) + \mathbf{G}_{nk}(\boldsymbol{\beta}_n), \tag{1}$$

where

$$\mathbf{H}_{nk}(\boldsymbol{\beta}_n) = -n^{-1} \sum_{i=1}^n \mathbf{e}_k^T \mathbf{X}_i^T \mathbf{A}_i^{1/2}(\boldsymbol{\beta}_n) \overline{\mathbf{R}}^{-1} \mathbf{A}_i^{1/2}(\boldsymbol{\beta}_n) \mathbf{X}_i,$$

$$\mathbf{E}_{nk}(\boldsymbol{\beta}_n) = -(2n)^{-1} \sum_{i=1}^n \mathbf{e}_k^T \mathbf{X}_i^T \mathbf{A}_i^{1/2}(\boldsymbol{\beta}_n) \overline{\mathbf{R}}^{-1} \mathbf{A}_i^{-3/2}(\boldsymbol{\beta}_n) \mathbf{C}_i(\boldsymbol{\beta}_n) \mathbf{F}_i(\boldsymbol{\beta}_n) \mathbf{X}_i,$$

$$\mathbf{G}_{nk}(\boldsymbol{\beta}_n) = (2n)^{-1} \sum_{i=1}^n \mathbf{e}_k^T \mathbf{X}_i^T \mathbf{A}_i^{1/2}(\boldsymbol{\beta}_n) \mathbf{F}_i(\boldsymbol{\beta}_n) \mathbf{J}_i(\boldsymbol{\beta}_n) \mathbf{X}_i,$$

with

$$\mathbf{C}_{i}(\boldsymbol{\beta}_{n}) = diag(Y_{i1} - \mu_{i1}(\boldsymbol{\beta}_{n}), \dots, Y_{im} - \mu_{im}(\boldsymbol{\beta}_{n})),$$

$$\mathbf{F}_{i}(\boldsymbol{\beta}_{n}) = diag(\ddot{\mu}(\mathbf{X}_{i1}^{T}\boldsymbol{\beta}_{n}), \dots, \ddot{\mu}(\mathbf{X}_{im}^{T}\boldsymbol{\beta}_{n})),$$

$$\mathbf{J}_{i}(\boldsymbol{\beta}_{n}) = diag(\overline{\mathbf{R}}^{-1}\mathbf{A}_{i}^{-1/2}(\boldsymbol{\beta}_{n})(\mathbf{Y}_{i} - \boldsymbol{\mu}_{i}(\boldsymbol{\beta}_{n}))).$$

In the above, for $\mathbf{a} = (a_1, \dots, a_m)^T$, $diag(a_1, \dots, a_m)$ and $diag(\mathbf{a})$ both denote an $m \times m$ diagonal matrix with diagonal entries a_1, \dots, a_m .

The derivation of Lemma 1 can be found in Wang (2011). Lemma 2 below can be found in van der Vaart and Wellner (1996, Lemma 2.2.11).

Lemma 0.2 (Bernstein's inequality) Let Z_1, \ldots, Z_n be independent random variables with mean zero and satisfy

$$E|Z_i|^l \le l! M^{l-2} V_i / 2$$

for every $l \geq 2$ and all i and some positive constants M and V_i . Then

$$P(|Z_1 + \ldots + Z_n| > t) \le 2 \exp\left(-\frac{1}{2} \frac{t^2}{V + Mt}\right),$$

for $V > V_1 + \ldots + V_n$.

Proof of Theorem 1. We prove the theorem by construction. Let $\widehat{\boldsymbol{\beta}}_n = (\widehat{\boldsymbol{\beta}}_{n1}^T, \mathbf{0}^T)^T$ be the oracle estimator. We'll show that $\widehat{\boldsymbol{\beta}}_n$ satisfies properties (1)-(3). Properties (2) and (3) follow from the definition of $\widehat{\boldsymbol{\beta}}_n$ and the results in Wang (2011). In what follows, we

verify that $\hat{\boldsymbol{\beta}}_n$ satisfies (6) and (7).

Proof of (6). We have $S_{nj}(\hat{\boldsymbol{\beta}}_n) = 0$, $j = 1, ..., s_n$, from the definition of $\hat{\boldsymbol{\beta}}_n$. It thus suffices to show that $P(|\hat{\beta}_{nj}| \geq a\lambda_n, j = 1, ..., s_n) \to 1$, as this implies the penalty function to be zero with probability approaching one. Note that $\min_{1 \leq j \leq s_n} |\hat{\beta}_{nj}| \geq \min_{1 \leq j \leq s_n} |\beta_{n0j}| - \max_{1 \leq j \leq s_n} |\beta_{n0j} - \hat{\beta}_{nj}| \geq \min_{1 \leq j \leq s_n} |\beta_{n0j}| - ||\boldsymbol{\beta}_{n10} - \hat{\boldsymbol{\beta}}_{n10}||$. From Wang (2010),

$$||\boldsymbol{\beta}_{n10} - \widehat{\boldsymbol{\beta}}_{n10}|| = \sqrt{s_n/n}.$$
 (2)

Therefore, we have

$$P(\min_{1 \le j \le s_n} |\beta_{n0j}| - ||\beta_{n10} - \hat{\beta}_{n10}|| \ge a\lambda_n)$$

$$= P(||\beta_{n10} - \hat{\beta}_{n10}|| \le \min_{1 \le j \le s_n} |\beta_{n0j}| - a\lambda_n) \to 1$$

since $\min_{1 \leq j \leq s_n} |\beta_{n0j}|/\lambda \to \infty$ and $||\boldsymbol{\beta}_{n10} - \hat{\boldsymbol{\beta}}_{n10}|| = o(\lambda_n)$. Thus $P(\min_{1 \leq j \leq s_n} |\hat{\boldsymbol{\beta}}_{nj}| \geq a\lambda_n) \to 1$ as $n \to \infty$.

Proof of (7). We have $\hat{\beta}_{nk} = 0$, thus $q_{\lambda_n}(\hat{\beta}_{nk}) \operatorname{sign}(\hat{\beta}_{nk}) = 0$, for $k = s_n + 1, \dots, p_n$, from the definition of $\hat{\beta}$. To prove (7), it suffices to verify that

$$P\left(\max_{s_n+1\leq k\leq p_n} |S_{nk}(\widehat{\boldsymbol{\beta}}_n)| \leq \frac{\lambda_n}{\log(n)}\right) \to 1.$$
 (3)

The statement in (3) is implied by

$$P\Big(\max_{s_n+1\leq k\leq p_n}|S_{nk}(\widehat{\boldsymbol{\beta}}_n) - \overline{S}_{nk}(\widehat{\boldsymbol{\beta}}_n)| > \frac{\lambda_n}{2\log(n)}\Big) \to 0.$$
 (4)

$$P\Big(\max_{s_n+1\leq k\leq p_n}|\overline{S}_{nk}(\widehat{\boldsymbol{\beta}}_n)| > \frac{\lambda_n}{2\log(n)}\Big) \to 0.$$
 (5)

The left side of (4) is bounded from above by

$$\begin{split} &P\Big(\max_{s_n+1\leq k\leq p_n} n^{-1}\sum_{i=1}^n \left|\mathbf{e}_k^T\mathbf{X}_i^T\mathbf{A}_i^{1/2}(\widehat{\boldsymbol{\beta}}_n)[\widehat{\mathbf{R}}^{-1}-\overline{\mathbf{R}}^{-1}]\mathbf{A}_i^{-1/2}(\widehat{\boldsymbol{\beta}}_n)(\mathbf{Y}_i-\boldsymbol{\mu}_i(\widehat{\boldsymbol{\beta}}_n))\right| > \frac{\lambda_n}{2\log(n)}\Big) \\ &\leq &P\Big(\max_{s_n+1\leq k\leq p_n} n^{-1}\sum_{i=1}^n ||\mathbf{e}_k^T\mathbf{X}_i^T\mathbf{A}_i^{1/2}(\widehat{\boldsymbol{\beta}}_n)||\cdot||\widehat{\mathbf{R}}^{-1}-\overline{\mathbf{R}}^{-1}||\cdot||\mathbf{A}_i^{-1/2}(\widehat{\boldsymbol{\beta}}_n)(\mathbf{Y}_i-\boldsymbol{\mu}_i(\widehat{\boldsymbol{\beta}}_n))||\\ &> &\frac{\lambda_n}{2\log(n)}\Big) \\ &\leq &P\Big(||\widehat{\mathbf{R}}^{-1}-\overline{\mathbf{R}}^{-1}||n^{-1}\sum_{i=1}^n \Big(\max_{s_n+1\leq k\leq p_n} ||\mathbf{e}_k^T\mathbf{X}_i^T\mathbf{A}_i^{1/2}(\widehat{\boldsymbol{\beta}}_n)||\Big)||\mathbf{A}_i^{-1/2}(\widehat{\boldsymbol{\beta}}_n)(\mathbf{Y}_i-\boldsymbol{\mu}_i(\widehat{\boldsymbol{\beta}}_n))||\\ &> &\frac{\lambda_n}{2\log(n)}\Big) \\ &\leq &P\Big(n^{-1}\sum_{i=1}^n ||\epsilon_i(\widehat{\boldsymbol{\beta}}_n)||> \frac{\lambda_n\sqrt{n}}{2\sqrt{s_n}\log(n)}\Big) \\ &\leq &C\frac{n^{-1}\sum_{i=1}^n E(||\epsilon_i(\widehat{\boldsymbol{\beta}}_n)||)\sqrt{s_n}\log n}{\lambda_n\sqrt{n}} = O(\frac{\sqrt{s_n}\log n}{\lambda_n\sqrt{n}}) = o(1), \end{split}$$

where the third inequality follows from conditions (A1), (A4) and (A6), and it follows from condition (A7) that $\sqrt{s_n} \log n/(\sqrt{n}\lambda_n) \to 0$. To prove (5), we consider the following Taylor expansion:

$$\overline{S}_{nk}(\widehat{\boldsymbol{\beta}}_n) = \overline{S}_{nk}(\boldsymbol{\beta}_{n0}) + \frac{\partial \overline{S}_{nk}(\boldsymbol{\beta}_n)}{\partial \boldsymbol{\beta}_n^T} (\widehat{\boldsymbol{\beta}}_n - \boldsymbol{\beta}_{n0}) + (\widehat{\boldsymbol{\beta}}_n - \boldsymbol{\beta}_{n0})^T \frac{\partial^2 \overline{S}_{nk}(\boldsymbol{\beta}_n^*)}{\partial \boldsymbol{\beta}_n \partial \boldsymbol{\beta}_n^T} (\widehat{\boldsymbol{\beta}}_n - \boldsymbol{\beta}_{n0}), \quad (6)$$

where $\boldsymbol{\beta}_n^*$ is between $\boldsymbol{\beta}_{n0}$ and $\hat{\boldsymbol{\beta}}_n$. Let $\nabla_k(\boldsymbol{\beta}_n)$ denote $\frac{\partial \overline{S}_{nk}(\boldsymbol{\beta}_n)}{\partial \boldsymbol{\beta}_n^T}$ and let $\mathbf{D}_k(\boldsymbol{\beta}_n)$ denote $\frac{\partial^2 \overline{S}_{nk}(\boldsymbol{\beta}_n)}{\partial \boldsymbol{\beta}_n}$. Let $\nabla_{k1}(\boldsymbol{\beta}_n)$ be the subvector that consists of the first s_n elements of $\nabla_k(\boldsymbol{\beta}_n)$, and let $\mathbf{D}_{k1}(\boldsymbol{\beta}_n)$ denote the $s_n \times s_n$ submatrix in the upper-left corner of $\mathbf{D}_k(\boldsymbol{\beta}_n)$. Since $\hat{\boldsymbol{\beta}}_n - \boldsymbol{\beta}_{n0} = ((\hat{\boldsymbol{\beta}}_{n1} - \boldsymbol{\beta}_{n10})^T, \mathbf{0}^T)^T$, (6) becomes

$$\overline{S}_{nk}(\widehat{\boldsymbol{\beta}}_n) = \overline{S}_{nk}(\boldsymbol{\beta}_{n0}) + \nabla_{k1}(\boldsymbol{\beta}_{n0})(\widehat{\boldsymbol{\beta}}_{n1} - \boldsymbol{\beta}_{n10}) + (\widehat{\boldsymbol{\beta}}_{n1} - \boldsymbol{\beta}_{n10})^T \mathbf{D}_{k1}(\boldsymbol{\beta}_n^*)(\widehat{\boldsymbol{\beta}}_{n1} - \boldsymbol{\beta}_{n10}).$$

Note that

$$P\left(\max_{s_n+1 \le k \le p_n} |\overline{S}_{nk}(\widehat{\boldsymbol{\beta}}_n)| > \frac{\lambda_n}{2\log(n)}\right)$$

$$\leq P\left(\max_{s_n+1\leq k\leq p_n}|\overline{S}_{nk}(\boldsymbol{\beta}_{n0})| > \frac{\lambda_n}{6\log(n)}\right) + P\left(\max_{s_n+1\leq k\leq p_n}|\nabla_{k1}(\boldsymbol{\beta}_{n0})(\widehat{\boldsymbol{\beta}}_{n1} - \boldsymbol{\beta}_{n10})| > \frac{\lambda_n}{6\log(n)}\right) + P\left(\max_{s_n+1\leq k\leq p_n}|(\widehat{\boldsymbol{\beta}}_{n1} - \boldsymbol{\beta}_{n10})^T\mathbf{D}_{k1}(\boldsymbol{\beta}_n^*)(\widehat{\boldsymbol{\beta}}_{n1} - \boldsymbol{\beta}_{n10})| > \frac{\lambda_n}{6\log(n)}\right) = I_{n1} + I_{n2} + I_{n3}.$$

Thus (5) is implied by $I_{ni} = o(1)$, i = 1, 2, 3, which is verified below.

First, we'll show that $I_{n1} = o(1)$. We have

$$I_{n1} \le \sum_{k=s-1}^{p_n} P(|\overline{S}_{nk}(\boldsymbol{\beta}_{n0})| > \frac{\lambda_n}{6\log(n)}).$$

We can write $\overline{S}_{nk}(\boldsymbol{\beta}_{n0}) = n^{-1} \sum_{i=1}^{n} Z_i$, where $Z_i = \mathbf{e}_k^T \mathbf{X}_i^T \mathbf{A}_i^{1/2}(\boldsymbol{\beta}_{n0}) \overline{\mathbf{R}}^{-1} \boldsymbol{\epsilon}_i(\boldsymbol{\beta}_{n0})$ are independent mean zero random variables. Note that $\forall l \geq 2$, we have

$$E|Z_{i}|^{l} \leq E[||\mathbf{e}_{k}^{T}\mathbf{X}_{i}^{T}\mathbf{A}_{i}^{1/2}(\boldsymbol{\beta}_{n0})\overline{\mathbf{R}}^{-1}||^{l} \cdot ||\boldsymbol{\epsilon}_{i}(\boldsymbol{\beta}_{n0})||^{l}]$$

$$\leq C^{l}E[||\boldsymbol{\epsilon}_{i}||^{l}] = C^{l}E[\left(\sum_{j=1}^{m} \epsilon_{ij}^{2}\right)^{l/2}]$$

$$\leq C^{l}m^{l/2-1}\sum_{j=1}^{m} E|\epsilon_{ij}|^{l} \leq C^{l}m^{l/2-1}\sum_{j=1}^{m} l!M_{2}^{-l}E(\exp(M_{2}|\epsilon_{ij}|))$$

$$\leq C^{l}m^{l/2-1}ml!M_{3} \leq l!M^{l-2}\delta/2,$$

for some constants M > 0 and $\delta > 0$. In the above derivation, the second inequality follows from conditions (A1), (A4) and (A6), the third inequality follows from the fact $|\sum_{i=1}^m a_i|^p \le m^{p-1} \sum_{i=1}^m |a_i|^p$ for $m \ge 1$ and $p \ge 1$ (a result of Jensen's inequality); the fourth inequality follows from the Taylor expansion of the exponential function and the second last inequality follows from condition (A5). Thus the Z_i satisfy the conditions of Bernstein's inequality. By Lemma 2, we have

$$P(|\overline{S}_{nk}(\boldsymbol{\beta}_{n0})| > \frac{\lambda_n}{6\log(n)}) \leq 2\exp\left[-\frac{1}{2}\frac{n^2\lambda_n^2/(36(\log n)^2)}{n\delta + M^*n\lambda_n/(6\log n)}\right]$$

$$\leq 2\exp\left[-C\frac{n\lambda_n^2}{(\log n)^2}\right].$$

Therefore

$$I_{n1} \le 2 \exp\left[\log p_n - C \frac{n\lambda_n^2}{(\log n)^2}\right] = o(1),$$

because $\log p_n = o(n\lambda_n^2/(\log n)^2)$ and $n\lambda_n^2/(\log n)^2 \to \infty$ as $n \to \infty$ by condition (A7). This verifies $I_{n1} = o(1)$.

Next we'll prove that $I_{n2} = o(1)$. We have

$$\begin{split} I_{n2} &= P\Big(\max_{s_{n}+1 \leq k \leq p_{n}} |\nabla_{k1}(\boldsymbol{\beta}_{n0})(\widehat{\boldsymbol{\beta}}_{n1} - \boldsymbol{\beta}_{n10})| > \frac{\lambda_{n}}{6 \log(n)}\Big) \\ &= P\Big(\max_{s_{n}+1 \leq k \leq p_{n}} |\nabla_{k1}(\boldsymbol{\beta}_{n0})(\widehat{\boldsymbol{\beta}}_{n1} - \boldsymbol{\beta}_{n10})| > \frac{\lambda_{n}}{6 \log(n)}, \ ||\widehat{\boldsymbol{\beta}}_{n1} - \boldsymbol{\beta}_{n10}|| \leq \sqrt{s_{n}/n} \log n\Big) \\ &+ P(||\widehat{\boldsymbol{\beta}}_{n1} - \boldsymbol{\beta}_{n10}|| > \sqrt{s_{n}/n} \log n\Big) \\ &\leq P(\max_{s_{n}+1 \leq k \leq p_{n}} ||\nabla_{k1}(\boldsymbol{\beta}_{n0})|| > \frac{\lambda_{n}\sqrt{n}}{6\sqrt{s_{n}}(\log n)^{2}}) + o(1) \\ &\leq P(\max_{s_{n}+1 \leq k \leq p_{n}} ||\mathbf{H}_{nk1}(\boldsymbol{\beta}_{n0})|| > \frac{\lambda_{n}\sqrt{n}}{18\sqrt{s_{n}}(\log n)^{2}}) \\ &+ P(\max_{s_{n}+1 \leq k \leq p_{n}} ||\mathbf{E}_{nk1}(\boldsymbol{\beta}_{n0})|| > \frac{\lambda_{n}\sqrt{n}}{18\sqrt{s_{n}}(\log n)^{2}}) \\ &P(\max_{s_{n}+1 \leq k \leq p_{n}} ||\mathbf{G}_{nk1}(\boldsymbol{\beta}_{n0})|| > \frac{\lambda_{n}\sqrt{n}}{18\sqrt{s_{n}}(\log n)^{2}}) + o(1) \\ &= I_{n21} + I_{n22} + I_{n23} + o(1), \end{split}$$

where $\mathbf{H}_{nk1} = (H_{nk1}, \dots, H_{nks_n})^T$ denotes the subvector of \mathbf{H}_{nk} which consists its first s_n elements, \mathbf{E}_{nk1} and \mathbf{G}_{nk1} are defined similarly, the first inequality uses (2), the second inequality uses Lemma 1, and the definition of I_{n2i} (i = 1, 2, 3) should be clear from the context. To evaluate I_{n21} , we observe that

$$I_{n21} \leq P(\max_{s_{n}+1 \leq k \leq p_{n}} ||\mathbf{H}_{nk1}(\boldsymbol{\beta}_{n0})||^{2} > C \frac{n\lambda_{n}^{2}}{s_{n}(\log n)^{4}})$$

$$\leq P(\max_{s_{n}+1 \leq k \leq p_{n}} |||\mathbf{H}_{nk1}(\boldsymbol{\beta}_{n0})||^{2} - E||\mathbf{H}_{nk1}(\boldsymbol{\beta}_{n0})||^{2}|$$

$$+ \max_{s_{n}+1 \leq k \leq p_{n}} E||\mathbf{H}_{nk1}(\boldsymbol{\beta}_{n0})||^{2} > C \frac{n\lambda_{n}^{2}}{s_{n}(\log n)^{4}}).$$

By conditions (A1), (A4) and (A6), $|H_{nkj}(\boldsymbol{\beta}_{n0})|$ is uniformly bounded by a positive constant. Thus $\max_{s_n+1\leq k\leq p_n} E||\mathbf{H}_{nk1}(\boldsymbol{\beta}_{n0})||^2 = \max_{s_n+1\leq k\leq p_n} E(\sum_{j=1}^{s_n} H_{nkj}^2(\boldsymbol{\beta}_{n0})) \leq Cs_n$. Since $s_n^2(\log n)^4 = o(n\lambda_n^2)$ and $p_n s_n^3(\log n)^8/(n^2\lambda_n^4) = o(1)$ by condition (A7), for n sufficiently large, we have

$$I_{n21} \leq P\left(\max_{s_{n}+1 \leq k \leq p_{n}} |||\mathbf{H}_{nk1}(\boldsymbol{\beta}_{n0})||^{2} - E||\mathbf{H}_{nk1}(\boldsymbol{\beta}_{n0})||^{2}| > \frac{C}{2} \frac{n\lambda_{n}^{2}}{s_{n}(\log n)^{4}}\right)$$

$$\leq \sum_{k=s_{n}+1}^{p_{n}} P\left(|||\mathbf{H}_{nk1}(\boldsymbol{\beta}_{n0})||^{2} - E||\mathbf{H}_{nk1}(\boldsymbol{\beta}_{n0})||^{2}| > \frac{C}{2} \frac{n\lambda_{n}^{2}}{s_{n}(\log n)^{4}}\right)$$

$$\leq C \sum_{k=s_{n}+1}^{p_{n}} \frac{E\left[\sum_{j=1}^{s_{n}} (H_{nkj}^{2}(\boldsymbol{\beta}_{n0}) - E(H_{nkj}^{2}(\boldsymbol{\beta}_{n0}))\right]^{2} s_{n}^{2}(\log n)^{8}}{n^{2}\lambda_{n}^{4}}$$

$$= O(p_{n}s_{n}^{3}(\log n)^{8}/(n^{2}\lambda_{n}^{4})) = o(1),$$

where the third inequality applies Markov's inequality. Similarly as above, we can show that $I_{n22} = o(1)$ and $I_{n23} = o(1)$. And this verifies $I_{n2} = o(1)$.

Finally, we verify that $I_{n3} = o(1)$. We have

$$I_{n3} \leq P\left(\max_{s_{n}+1 \leq k \leq p_{n}} |(\hat{\boldsymbol{\beta}}_{n1} - \boldsymbol{\beta}_{n10})^{T} \mathbf{D}_{k1}(\boldsymbol{\beta}_{n}^{*})(\hat{\boldsymbol{\beta}}_{n1} - \boldsymbol{\beta}_{n10})| > \frac{\lambda_{n}}{6 \log(n)}\right)$$

$$\leq P\left(\max_{s_{n}+1 \leq k \leq p_{n}} |(\hat{\boldsymbol{\beta}}_{n1} - \boldsymbol{\beta}_{n10})^{T} \mathbf{D}_{k1}(\boldsymbol{\beta}_{n}^{*})(\hat{\boldsymbol{\beta}}_{n1} - \boldsymbol{\beta}_{n10})| > \frac{\lambda_{n}}{6 \log(n)},$$

$$||\hat{\boldsymbol{\beta}}_{n1} - \boldsymbol{\beta}_{n10}|| \leq \sqrt{s_{n}/n} \log n\right) + P(||\hat{\boldsymbol{\beta}}_{n1} - \boldsymbol{\beta}_{n10}|| > \sqrt{s_{n}/n} \log n)$$

$$\leq \sum_{k=s_{n}+1}^{p_{n}} P\left(\operatorname{tr}(\mathbf{D}_{k1}(\boldsymbol{\beta}_{n}^{*})) > \frac{n\lambda_{n}}{s_{n}(\log n)^{3}}\right) + o(1)$$

$$\leq C \sum_{k=s_{n}+1}^{p_{n}} \frac{E\left[\operatorname{tr}(\mathbf{D}_{k1}(\boldsymbol{\beta}_{n}^{*})^{2}]s_{n}^{2}(\log n)^{6}}{n^{2}\lambda_{n}^{2}} + o(1),$$

where the third inequality uses (2) and the last inequality applies Markov's inequality..

Note that

$$E[\operatorname{tr}(\mathbf{D}_{k1}(\boldsymbol{\beta}_n^*)^2] = E\Big[\sum_{j=1}^{s_n} \frac{\partial^2 \overline{S}_{nk}}{\partial \beta_{nj}^2} (\boldsymbol{\beta}_n^*)\Big]^2 \le Cs_n^2,$$

uniformly in k, by conditions (A1), (A4), (A5) and (A6). Thus $I_{n3} = O(p_n s_n^4 (\log n)^6 / (n^2 \lambda_n^2)) + o(1) = o(1)$ since $p_n s_n^4 (\log n)^6 / (n^2 \lambda_n^2) = o(1)$ by condition (A7).

Putting the above together, we have proved Theorem 1. \Box

Additional References

van der Vaart, A. and Wellner, J. (1996) Weak convergence and empirical processes: with applications to statistics. Springer: New York.