Logics for Artificial Intelligence Assignment 1

Tommie Meyer tmeyer@cs.uct.ac.za

Due date: Friday 7 August 2015 at 11:00pm

Instructions:

- 1. Your assignment should be a single document, preferably a pdf file, with the questions answered in the order given.
- 2. Upload a zip file (with your student number as the file name) containing your assignment to Vula by Friday 7 August at 11pm.
- 3. You may discuss the assignment questions with others, but you need to submit and complete your own assignment. It must be your own work.
- 4. You may consult any source. All sources consulted must be referenced in your assignment. This includes sources from the Internet.
- 5. If you are unsure about anything, send me an email ASAP to resolve the matter.

Questions

- 1. Do the following problems in the notes on Sets, Logic and Relations:
 - (a) Problem 2.4.3 on page 27.
 - (b) Problems 2.13.4 and 2.13.5 on page 31.
 - (c) Problem 2.21.2 on page 38. Note that 2^X is another way to refer to the powerset of X. That is, $2^X = \mathcal{P}(X) = \{Y \mid Y \subseteq X\}$.
 - (d) Problem 2.22.3 on page 42.
 - (e) Problem 4.2.1 and 4.2.2 on page 61.
- 2. Consider the language \mathcal{L} generated from the set of atoms $\mathcal{P} = \{p, q\}$. For each of the following formulas α , write down its set of models $Mod(\alpha)$.
 - (a) $p \vee \neg p$
 - (b) $p \vee q$

- (c) $p \vee \neg q$
- (d) $\neg p \lor q$
- (e) $\neg p \lor \neg q$
- (f) p
- (g) q
- (h) $p \leftrightarrow q$
- (i) $\neg (p \leftrightarrow q)$
- (j) ¬q
- (k) ¬p
- (1) $p \wedge q$
- (m) $p \land \neg q$
- (n) $\neg p \land q$
- (o) $\neg p \land \neg q$
- (p) $p \land \neg p$
- 3. Consider again the language \mathcal{L} generated from the set of atoms $\mathcal{P} = \{p, q\}$. Is there any formula in \mathcal{L} which is not logically equivalent to one of the formulas in question 2 above? If there is, provide an example of such a formula. If there isn't such a formula, prove it. Hint: Use your answers to question 2 as a guide.
- 4. Do Problem 2.9 in Chapter 2 of Ben-Ari.
- 5. Given $\alpha, \beta \in \mathcal{L}$, prove the following:
 - (a) $Mod(\alpha \wedge \beta) = Mod(\alpha) \cap Mod(\beta)$.
 - (b) $Mod(\neg \alpha) = W Mod(\alpha)$.
 - (c) If K is satisfiable and α is valid, then $K \cup \{\alpha\}$ is satisfiable.
 - (d) $\alpha \equiv \beta$ if and only if both $\alpha \models \beta$ and $\beta \models \alpha$.
 - (e) $\alpha \equiv \beta$ if and only if $\models \alpha \leftrightarrow \beta$.
- 6. Prove that entailment has the following properties:
 - (a) \models is reflexive, i.e., for all $\alpha \in \mathcal{L}$, $\alpha \models \alpha$.
 - (b) \models is monotonic, i.e., for any $K \subseteq \mathcal{L}$, if $K \models \alpha$, then $K \cup \{\beta\} \models \alpha$.
 - (c) \models is explosive, i.e., if $p, \neg p \in \mathsf{K}$, then $\mathsf{K} \models \gamma$ for every $\gamma \in \mathcal{L}$.