Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет»

Кафедра информационных технологий

ОТЧЕТ

о выполнении лабораторной работы №3 по дисциплине «Технологии проектирования программного обеспечения»

Выполнил: ст. гр. 4ИТ

Хижний Е.Г.

Проверил: доц. каф. ИТ

Полетайкин А.Н.

Краснодар

2021

1 Задание

Тема: Техническое задание на создание программного продукта.

Цель: Освоение методики предварительного анализа разрабатываемой программы; освоение задач формулирования функциональных и нефункциональных требований к программной реализации отдельных задач и к программе в целом; выработка навыков разработки технического задания.

Задание

- 1. Установить назначение и общую цель создания программы.
- 2. Определить структуру программы и состав функциональных задач.
- 3. Разработать функциональные требования к программе:
- требования к входным и выходным данным;
- требования к программной реализации задач;
- специальные требования к математическому обеспечению программной реализации задач;
- 4. Разработать модель требований в нотации UML
- 5. Разработать требования к информационному обеспечению (к базе данных).
- 6. Разработать требования к инструментальному программному обеспечению (к системе управления базой данных (СУБД), к средству разработки программ (IDE), средствам автоматизированного проектирования ПО)
- 7. Установить нефункциональные требования к программе:
- требования к надежности;
- требования к эффективности;
- требования к безопасности;
- требования к эргономичности и удобству использования;
- требования к численности и квалификации персонала и режиму его работы;
- требования к переносимости;

- требования к сопровождаемости;
- требования к особенностям поставки;
- требования к защите информации от несанкционированного доступа;
- требования по сохранению информации при авариях;
- требования к соответствию стандартам качества.

2 Назначение и общая цель создания программы

Данное программное обеспечивание направленно на создание правдоподобной трехмерной модели организации дорожного движения (ОДД) на участке улично-дорожной сети (УДС) крупного города.

Целью данного программного продукта является помощь сотрудникам Центра организации дорожного движения (ЦОДД) оценивать поведение транспортных потоков на различных участках УДС при различных внешних факторах. Человек не способен учесть все возможные факторы и просчитать все возможные варианты развития событий, из-за чего данную задачу логичнее всего доверить компьютеру. Он сможет выполнять эту задачу быстрее, тем самым сократит временные затраты сотрудников ЦОДД.

Структура программы: Подсистема заполнения данных должна предоставить удобный интерфейс для ввода данных о транспортных потоках, участке УДС, различных происшествиях на участке УДС. Эта информация сохраняются в базе данных, при необходимости сотрудник ЦОДД может изменить и удалить эти данные. Подсистема построения модели берет данные о транспортных потоках, участке УДС, различных происшествиях на участке УДС и на основе этих данных и некоторых математических и геометрических методов строит трехмерную модель. Подсистема вывода отвечает за просмотр получившейся модели и должна предоставлять удобный интерфейс взаимодействия с нею.

Рисунок 1 — Структура взаимодействия между подсистемами и базой данных

Выделим следующие задачи:

- 1. Заполнение, изменение или удаление информации о транспортных потоках, участках УДС, различных происшествиях на участке УДС в базу данных;
- 2. Анализ данных;
- 3. Построение модели.

Рисунок 2 – Диаграмма вариантов использования

3 Требования к задачам

3.1 Требования к задаче "Заполнение актуальной информации в базу данных"

Для реализации данной задачи программа должна предоставить пользователю удобный интерфейс для занесения, изменения и удаления информации о транспортных потоках, участках УДС, различных происшествиях на участке УДС в базу данных.

3.2 Требования к задаче "Анализ данных"

3.2.1 Требования к задаче "Анализ транспортных потоков"

В данной задаче необходим анализ транспортный поток. Для этого надо проанализировать поведение каждого отдельно взятого объекта транспортного потока, будь то автомобиль, мотоцикл, трамвай или другое. У каждого ТС есть цель: доехать до конца своего маршрута. Каждый водитель будет добиваться данной цели разными способами, используя разный алгоритм или поведение. Поведенческие принципы пользователей транспортной сети предполагают следующие две возможные ситуации, получившие название 1-го и 2-го принципа Вардропа соответственно:

- 1. Пользователи сети независимо друг от друга выбирают маршруты следования, соответствующие их минимальным транспортным расхода. То есть каждый стремится достигнуть конечного пункта своей поездки как можно выгоднее для себя и из имеющихся возможных вариантов следования выбирает тот маршрут, по которому будет нести минимальные затраты (временные, финансовые, моральные и т. п.) на проезд.
- 2. Пользователи сети выбирают маршруты следования исходя из минимизации общих транспортных расходов в сети. Предполагает централизованное управление движением в сети. Такое поведение присуще транспортному средству.

Подавляющее большинство участников дорожного движения любого города составляют легковые автомобили, совершающие преимущественно маятниковые поездки: место проживания— место работы и обратно. Именно такие поездки создают пиковые нагрузки на УДС, вызывают основные потери времени и других ресурсов, повышают аварийность и усложняют социально-экономическую ситуацию

Таким образом, данную задачу можно свести к решению транспортной задачи для каждого субъекта транспортного потока.

3.2.2 Требования к задаче "Анализ УДС"

Для данной задачи необходимо проанализировать данные об УДС, ее состоянии, технических характеристиках, размерах, ограничений на ней, об регулирующих объектах(знаки и/или светофорные объекты). Также данная задача включает в себя анализ происшествий, например ДТП, природных происшествий или другое. Данная задача необходима для моделирования УДС при различных ситуациях.

3.3 Требования к задаче "Построение модели"

ЦОДД наиболее всего заинтересован в моделировании в утренневечерние часы пик.

Модель должна строиться средствами Unity в сцене.

Данная задача включает подзадачу вывода построенной модели. Она решается путем вывода построенной сцены и возможностью пользователя взаимодействовать с ней.

4 Требования к входной базе данных

База данных должна содержать таблицы TC, УДС, состоянии УДС, происшествия на УДС.

5 Требования к выходным данным

Программа должна выводить трехмерную модель. Пользователь должен иметь возможность взаимодействия с ней.

6 Требования к интерфейсу программы

Интерфейс должен быть прост и удобен в использовании для непродвинутого пользователя.

7 Требования к программному обеспечению

Требуемая OC: Windows, macOS, Linux. Требуемый язык программирования: С#, редактор кода для языка: VSCode с расширением для Unity. Требуемый игровой движок: Unity. СУБД: MySQL.