Overview

Data structures and associated operations

Data structures	Associated operations			
Linked list	insert, delete, makenull			
Stacks	push, pop			
Queues	remove from head, insert from tail			
Trees	insert, delete, traverse			
Graphs	traverse, shortest path, strong components, etc.			

 Data structures and associated operations are "tools" for building programs

Overview (cont.)

Algorithm design

- □ A sequence of operations which are
 - clearly defined (no ambiguity as to what to do next)
 - effective (component operations done in finite time)
 - > terminate
- □ E.g. Sorting
 - > Data structures: an array of length *n*
 - > Algorithms: comparing & swapping elements (bubble sort, insertion sort, selection sort, quick sort, merge sort, etc.)
- □ Programs = Algorithms + Data structures

Overview (cont.)

- General principles
 - □ Divide-and-conquer
 - □ Greedy
 - Dynamic programming
 - Backtracking
 - Branch-and-bound
 - Randomized algorithms

Caveats

- There are a lot more principles for algorithm designs that we do not cover
 - □ Numerical algorithms
 - □ Graph algorithms
 - □ Geometrical algorithms (e.g., vision, graphics)
 - Probabilistical algorithms
- Multi-stage, discrete, countably many, unique

Divide-and-Conquer

* Input A(1:n): n elements stored in an array Procdure DandC(p,q) if Small(p,q) then return (G(p,q))else $m \leftarrow Divide(p,q)$ return Combine(DandC(p, m), DandC(m + 1, q)) end if end DandC

Divide-and-Conquer (cont.)

- * Divide: split a larger problem into subproblems of smaller size
- * Combine: merge the solutions of subproblems into that of a larger problem
- * *Small*: is the problem small enough?
- G(p,q): easy solutions to small problems

Hanoi Towers

- * Three pegs, A has *n* disks of different sizes stacked with smaller ones on top of bigger ones
- Move disks one at a time
- Never place a larger disk on top of a smaller one
- Move all disks onto B
- Trivial problem, the rule of the game dictates divide-andconquer

Hanoi(n, A, B, C)

- n: number of disks
- □ A: starting peg
- □ B: end peg
- □ C: temporary peg

- * Movement steps of m disks will be used in moving n disks (n>m)
- Problem is decomposable

$$Hanoi(n,A,B,C) = Hanoi(n-1,A,C,B)$$

- + Hanoi(1,A,B,C)
- + Hanoi(n-1,C,B,A)

- ❖ Divide: two sub-problems of size n-1 and one sub-problem of size 1
- \bullet *Small*(p,q): when the problem size is 1
- G(p,q): move a disk from peg to peg
- Combine: sequential concatenation of moves

Time complexity

$$T(n) = T(n-1) + c + T(n-1) = 2T(n-1) + c$$

$$= 2\{2T(n-2) + c\} + c = 2^{2}T(n-2) + (1+2)c$$

$$= 2^{2}\{2T(n-3) + c\} + (1+2)c = 2^{3}T(n-3) + (1+2+2^{2})c$$
...
$$= 2^{n-1}T(1) + (1+2+...+2^{n-2})c$$

$$= (1+2+...+2^{n-2} + 2^{n-1})c$$

$$= O(2^{n})$$

Binary Search

- Input:
 - a list of elements sorted in *nondecreasing* order
 - \square an element x
- Output
 - \Box determine whether x is present
 - \Box if so, the position index j

* Divide:

$$BS(n, a_1, a_2, ..., a_n, x) =$$

$$BS(\left\lfloor \frac{n+1}{2} \right\rfloor - 1, a_1, a_2, ..., a_{\left\lfloor \frac{n+1}{2} \right\rfloor - 1}, x) +$$

$$BS(1, a_{\left\lfloor \frac{n+1}{2} \right\rfloor}, x) +$$

$$BS(n - \left\lfloor \frac{n+1}{2} \right\rfloor, a_{\left\lfloor \frac{n+1}{2} \right\rfloor + 1}, ..., a_n, x)$$

– two problems of size approximately n/2, and one problem of size 1

- * Small(p,q): when the size of problem is 1
- G(p,q): compare the single element in the list with the search element
- * Combine:

$$x = a_{\left\lfloor \frac{n+1}{2} \right\rfloor} \quad j = \left\lfloor \frac{n+1}{2} \right\rfloor$$

$$x < a_{\lfloor \frac{n+1}{2} \rfloor}$$
 solve the first sub - problem

$$x > a_{\left|\frac{n+1}{2}\right|}$$
 solve the third sub - problem

found j=9

$$x = 30$$

Time complexity

Properties of binary search trees

- □ balanced (root corresponds to the middle element, two subtrees are of approximately equal size)
- \square with n elements $2^{k-1} \le n < 2^k$

Tree dept h (k)	Min capa city (2 ^{k-1})	Max capa city (2 ^k)		
1	1	2		
2	2	4		
3	4	8		
4	8	16		

- \triangleright internal nodes at levels of 0 to k-1
- (successful searches make at most *k* comparisons)
- \triangleright external nodes at levels k-1 and k
- (failed searches make at least *k-1* ad at most *k* comparisons)
- \square worst case is O(k) or O(logn) for both successful and failed searches
- \square best case is O(1) for successful and O(logn) for failed searched

Average case - slightly more complicated

Average performance = $prob(S) \times average performance$ $prob(F) \times average performance$ of successful searches + of failed searches average # of comparisons average # of comparisons in successful searches in failed searches average internal path length + 1 average external path length total internal path length (I) total external path length (E) # of internal nodes (i) # of external nodes (e)

* # of internal (i) and external (e) nodes

total internal (I) and external (E) path length

If i is n
$$\downarrow \downarrow$$

$$I = E - 2i \approx (n+1)\log n - 2n$$

$$\downarrow \downarrow$$

$$\frac{I}{n} + 1 \approx \frac{(n+1)\log n - 2n}{n} + 1$$

$$\approx \log n - 1 = O(\log n)$$

$$\Rightarrow$$

More Examples: Sorting

- brute force methods
 - □ bubble sort
 - selection sort
 - □ insertion sort
 - $O(n^2)$

- "smart" methods
 - quick sort
 - merge sort $O(n \log n)$
 - based on Divideand-Conquer

Bubble sort

- Each iteration places one element correctly
- Many elements are involved in many iterations
- Size of subproblems decrease very slowly through iterations

Sorting based on Divide-and-Conquer

- Quick sort
 - uneven division
 - simple concatenation

- Merge sort
 - even division
 - elaborate merge

Quick Sort

- ❖ Input: a list of *n* elements
- Output: a list of the same elements sorted in nondecreasing order

Divide

$$QS(n, a_1, a_2, ..., a_n) =$$
 $partition(1, n) +$
 $QS(i, a_1, a_2, ..., a_i) +$
 $QS(n - i, a_{i+1}, ..., a_n)$

- Small(p,q): when the problem size becomes I
- G(p,q): nothing
- *Combine:* simple concatenation of solutions of two sorted lists

 $\begin{aligned} & partition\ (p,q) \to i, such\ that\ a_i\ is\ the\ pivot\\ & a_p, a_{p+1}, ..., a_i \leq a_i\\ & a_{i+1}, a_{i+2}, ..., a_q > a_i \end{aligned}$

65	8 <i>5</i>	70	75	80	60	55	50	45 î
65	45	70 ↓	75	80	60	55	50 → ∩	85
65	45	50	75 ↓	80	60	<i>55</i> ⊸ ↑	70	85
65	45	50	55	80 **	60 _↑↑	75	70	85
65	45	50	55		80 ↑	75	70	85
60 ←	45	50	55	65 →	80	75	70	85

- left pointer moves right, until *(left) > pivot
- * right point moves left, until $*(right) \le pivot$
- if left<right, swap *(left) and *(right)</p>

• else

Data Structures and Algorithms II

- Array is scanned only once, at a particular location
 - no action is taken (advance pointer), or
 - swap elements and advance pointer
 - \square partition is $O(array\ length)$

Time complexity - worst case

$$\sum_{1}^{n-1} (\text{# of elements in the array})$$

$$= n + (n-1) + (n-2) + \dots + 2$$

$$= O(n^2)$$

Time complexity - average case

- □ Assumptions:
 - > the *n* elements are distinct
 - > the pivot element can be equally likely the *ith* element in the sorted array

$$T(n) = \frac{1}{n} \sum_{i=1}^{n} \{T(i) + T(n-i)\} + cn$$

= $O(n \log n)$

Merge Sort

- ❖ Input: a list of *n* elements
- Output: a list of the same elements sorted in nondecreasing order

Divide

$$MS(n, a_1, a_2, ..., a_n) =$$

$$MS(\left\lfloor \frac{n+1}{2} \right\rfloor, a_1, a_2, ..., a_{\left\lfloor \frac{n+1}{2} \right\rfloor}) +$$

$$MS(n - \left\lfloor \frac{n+1}{2} \right\rfloor, a_{\left\lfloor \frac{n+1}{2} \right\rfloor + 1}, ..., a_n) +$$
merge the two sublists properly

- Small(p,q): when the problem size becomes I
- G(p,q): nothing
- *Combine:* trace down the two sublists and merge them properly

if *(pt_A) is NULL, append B to A+B
else if *(pt_B) is NULL, append A to A+B
else if *(pt_A) < *(pt_B),
append *(pt_A) to A+B, increment pt_A
else

append * (pt_B) to A+B, increment pt_B end if

O(/A/+/B/) operations

Time complexity

$$MS(n, a_{1}, a_{2}, ..., a_{n})$$

$$= MS(\left\lfloor \frac{n+1}{2} \right\rfloor, a_{1}, a_{2}, ..., a_{\left\lfloor \frac{n+1}{2} \right\rfloor})$$

$$+ MS(n - \left\lfloor \frac{n+1}{2} \right\rfloor, a_{\left\lfloor \frac{n+1}{2} \right\rfloor + 1}, ..., a_{n})$$

$$+ \text{merge}$$

$$T(n) = T(\frac{n}{2}) + T(\frac{n}{2}) + cn = 2T(\frac{n}{2}) + cn$$

$$= 2(2T(\frac{n}{4}) + c\frac{n}{2}) + cn = 2^{2}T(\frac{n}{4}) + 2cn$$

$$= 2^{2}(2T(\frac{n}{8}) + c\frac{n}{4}) + 2cn = 2^{3}T(\frac{n}{8}) + 3cn$$
...
$$= 2^{k}T(1) + kcn \qquad n = 2^{k}$$

$$= an + cn\log n$$

$$= O(n\log n)$$

Convex Hull

- \bullet Input: a collection of n points
- Output: the smallest convex polygon that encloses the set of points
 - 2D case: points as nails sticking out on a table, put a rubberband around them

Properties

- □ Use given points as vertices
- Contain all extreme points in the set
- Points of smallest and largest x and y coordinates are included
- Traverse the edge of the hull
 - > counterclockwise, all points must be on the left
 - > clockwise, all points must be on the right

Graham's Scan (package wrapping)

- Start at some point that guaranteed to be on the convex hull (e.g., point with smallest y coordinate)
- From that point, compute theta (see previous slide) for all remaining points
- Sort by theta and consider each point in turn
- ❖ After examining *i-1* points
 - \square p[1..M] are on the convex hull
- * After examining *i* points
 - □ p[M] is *recursively* eliminated if p[M], p[M-1] and P[i] make the wrong turn

Example

- □ 0 is the base
- □ 1,2,3,4 will be included in the hull (all make left turns)
- □ when 5 is considered
 - > 4 is eliminated (3,4,5 right turn)
 - > 3 is eliminated (2,3,5 right turn)
 - > 2 is eliminated (1,2,5 right turn)
 - > 1 is kept (0, 1,5 left turn)
 - > 5 is added

Complexity

- Angular sorting O(nlogn)
- With n vertices
 - □ Loop: add vertices to the CH
 - □ Loop: delete vertices from the CH
 - Each vertex can be added and/or deleted only once
 - □ Each add/delete operation takes constant time (inner product)
 - \Box O(n) total
- Whole operation: O(nlogn)

Divide-and-Conquer

- □ Upper hull and lower hull division (not essential)
- Recursive division

Merge

- Intuition: connecting extreme points (points with the largest *y* coordinate on two hulls)
- > Or more precisely, move the connecting lines are high (low) as possible for upper hull (lower hull)
- \triangleright sort by y, too expensive (O(nlogn))
- hill climbing (binary search on sorted x)

- ❖ If H1 and H2 are two upper hulls with at most m points each. If p is any point on H1, its point of tangency, q, with H2 can be found on O(logm) time
- ❖ If H1 and H2 are two upper hulls with at most m points each, their common tangent can be found on O(log^2 m) time
- * The Divide-and-Conquer convex hull algorithm has a complexity of O(*nlogn*)

UpperTangent(HA; HB):

- (1)Let a be the rightmost point of HA.
- (2)Let b be the leftmost point of HB.
- (3) While ab is not a upper tangent for HA and HB do
 - (a) While ab is not a upper tangent to HA do a = a 1 (move a counterclockwise).
 - (b) While ab is not a upper tangent to HB do b = b + 1 (move b clockwise).
- (4) Return ab.

□ Line connecting two highest points in component hulls is NOT necessarily the common tangent

Time complexity

- Upper and lower hulls division
 - \triangleright largest and smallest x points O(n)
 - \triangleright partition points into two halves O(n)
- □ Recursive division
 - \triangleright sort points by x O(nlogn)
 - > main step

$$T(n) = 2T(\frac{n}{2}) + merge = 2T(\frac{n}{2}) + O(\log^2 n)$$
$$= O(n\log n)$$

Yet Another Divide-and-Conquer Algorithm (QuickHull)

Graphical Illustration

* Three possibilities O(n) time:

Complexity

- If points are uniformly distributed in a unit square, expected # of points on the hull is O(logn)
- Quickhull discards interior points very quickly and narrows in peripheral points
- Like Quicksort, average time is O(nlogn) but worst case performance is O(n^2)

Complexity

- Quick sort
 - □ Select pivot (O(1))
 - □ Partition into two parts O(n)
 - Recursive division
 - □ Trivial concatenation
 - T(n) = T(i) + T(n-i) + O(n)

- Quick hull
 - □ Select furthest point (O(n))
 - Partition into three parts O(n)
 - □ Recursive division
 - □ Trivial concatenation
 - T(n) = T(i) + T(n-i) + O(n)

Moral of the story

- Algorithm design is an art. We have seen three different convex hull algorithms
 - One based on domain knowledge only
 - □ Two based on divide-and-conquer

Multiplying Long Integers

- ❖ Input: two *n*-bit integer *x* and *y*
- Output: a 2n-bit integer $x \times y$
- Divide-and-Conquer strategy

$$x = A2^{\frac{n}{2}} + B$$

$$y = C2^{\frac{n}{2}} + D$$

$$x \times y = (A2^{\frac{n}{2}} + B)(C2^{\frac{n}{2}} + D)$$

$$= AC2^{n} + (AD + BC)2^{\frac{n}{2}} + BD$$

- * *Divide:* multiply 2 *n*-bit integers
 - = 4 multiplies of 2 n/2-bit integers
 - + 3 additions of integers (2*n* bits)
 - + 2 shifts
- \bullet *Small*(p,q): when the length becomes 1
- G(p,q): 1-bit AND
- * Combine: shift and addition

University of california Same Barbara

Time complexity

$$x \times y = (A2^{\frac{n}{2}} + B)(C2^{\frac{n}{2}} + D)$$

$$= AC2^{n} + (AD + BC)2^{\frac{n}{2}} + BD$$

$$T(n) = 4T(\frac{n}{2}) + cn$$

$$= 4(4T(\frac{n}{4}) + c\frac{n}{2}) + cn = 4^{2}T(\frac{n}{4}) + cn(1+2)$$
...
$$= 4^{k}T(1) + cn(1+2+...+2^{k-1})$$

$$= 4^{\log n}a + cn(2^{\log n} - 1)$$

$$= O(n^{2})$$

• cf. brute force method $O(n^2)$

- Why no improvement using divide-andconquer?
 - □ in quick sort
 - > elements in S1 do not compare with those in S2
 - \triangleright elements in S11 do not compare with those in S12
 - > problems are decomposable and independent

In integer multiplication

- problems are decomposable but not independent
- the number of multiplications is not reduced
- □ The fancy way of decomposing the solution still requires every digit in one number to "touch" every digit in the other number (*no* sharing, *no* reuse)

Possible improvements: through sharing

$$x \times y = (A2^{\frac{n}{2}} + B)(C2^{\frac{n}{2}} + D)$$

$$= AC2^{n} + (AD + BC)2^{\frac{n}{2}} + BD \qquad 4 \times 3 + 2 \leftarrow$$

$$= AC2^{n} + \{(A - B)(D - C) + AC + BD\}2^{\frac{n}{2}} + BD$$

$$T(n) = 3T(\frac{n}{2}) + cn = O(n^{\log_2 3}) = O(n^{1.59})$$

$$3 \times 6 + 2 \leftarrow$$

Maximum Sum

- * Just to confuse you more, it is not to say that the subproblems must be totally independent for divide-and-conquer to work
- ❖ Given: an array of *n* numbers, possibly negative
- * Find: maximum subsequence sum (if all numbers are negative, then the maximum sum is 0)
- \bullet -4, $\overline{10, 12, -5, -7, 8, 3, 1}$ is 22

- How does divide-and-conquer work?
 - □ Divide the array into two parts
 - □ Compute the maximum sum in each part
 - □ The global maximum sum is the largest of the two
 - □ but ...
- What happens if the maximum sum sequence straddles the boundary?

Start from the middle

- □ Accumulate from middle moving leftward, keep the largest sum
- Accumulate from middle moving rightward, keep the largest sum
- □ The largest partial sum across two parts must be the sum of the above two

Need a third term which captures the maximum sum of straddling sequence

❖ Then the maximum sum is the largest of three terms: two from left and right, one bl+br

Complexity

$$T(n) = 2T(\frac{n}{2}) + n = O(n\log n)$$

Bruteforce method

```
for (f=1; f <= n; f++) 		— All possible first pos

for (l=f; l <= n; l++) 		— All possible last pos

for (k=f; k <= l; k++) 		— Sum from first to last

Add up all the a[k]

will be O(n^3)
```


Closest Pair of Points

- * Given a set of points on a plane, find the two points which are closest to each other
- Brute force method is O(n^2)
- Can divide-and-conquer do better?
- Obvious solution:
 - partition data sets into two halves (recursively)
 - closest pair of points are in
 - > the left half or right half
 - > one each in each half

- The closest points in the left and right halves can be found recursively
- But how to find points across boundary?
 - □ Obvious solution: check each n/2 points in the left against each n/2 points in the right
 - □ The solution will be O(n^2), no better than brute force method
- Again, the problem is that two problems are not entirely independent and combining subsolutions can be tricky.

- ❖ Goal: if we want an O(nlogn) solution, then the combination step must be of O(n)
- * What is the linear solution in combination?
- * A clever trick

 $d = \min(d_l, d_r)$

- Q: How many points do you $d = \min(d_f, d_r)$ have to check?
- A: No blue (green) point can lie inside the circle of radius d around another blue (green) point

Figure 3.3

Summary

- How to divide?
 - □ 1 to 2
 - > equal size, e.g. merge sort
 - > unequal size, e.g. quick sort
 - □ 1 to many
 - binary search, Tower of Hanoi (1 to 3)
 - > integer multiply, matrix multiply (1 to many)

Summary (cont.)

- * When to terminate recursion?
 - depend on the problem at hand
 - simple comparison (binary search)
 - > simple move (Hanoi tower)
- How to combine partial results?
 - nothing (binary search)
 - concatenation (quick sort)
 - merge (merge sort)
 - addition and shift (integer multiplication)

