

- have died out. At t = 0, the switch moves instantaneously to position b.
 - a. At $t=0^-$ (the last instant that the switch is in position a), what is the current through the capacitor? 1 = D
 - $\mathbf{\hat{a}}$ b. At $t=0^-$ (the last instant that the switch is in position a), what is the voltage across the capacitor? -16 V
 - d. At $t=0^+$ (the first instant that the switch is in position b), the current through the capacitor is the same as in Part a. True (False)
 - 4d. At t=0+ (the first instant that the switch is in position b), the voltage across the inductor is the same as at $t=0^-$. True (False)
 - e. At $t=0^+$ (the first instant that the switch is in position b), what is the voltage across the inductor?

EE3 Fall 2020 Practice Problems 4

2. This is a second-order circuit. There is an initial voltage on the capacitor $v(0^-)=12$ V, and an initial current in the inductor $i_L(0^-)=30$ mA. In order to solve the differential equation for v(t), the following values must be found:

- a. $i_C(0^+)$
- b. $i_{R}(0^{+})$

c. $dv(t)/dt|_{t=0}$

Using what you know about inductors, capacitors, and KCL, find these values.

- a. -90 mA
- b. 60 mA
- c. -450 KV/s

V(t)

PRCLATICE ON DELLE ON

de - Lai

EE3 Fall 2020 Practice Problems 4

- 3a. Find the time constant τ of this circuit. This will require solving the differential equation for the circuit.
- 3b. Then, find only the Thévenin resistance R_{th}of the circuit to the left of the capacitor (consider the capacitor to be the load).
- 3c. Then, compute $R_{th}*C$ and compare to the τ from 3a.

$$\frac{\sqrt{-3.3}}{10000} + \frac{\sqrt{22000}}{22000} + i = \frac{2000}{1000}$$

$$\frac{1}{2} = \frac{10 \text{ kg}}{10 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}}$$

$$\frac{10 \text{ kg}}{22 \text{ kg}} = \frac{10 \text{ kg}}{10.01 \text{ μF}}$$

$$\frac{10 \text{ kg}}{22 \text{ kg}} = \frac{10.01 \text{ μF}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{10 \text{ kg}} = \frac{10.01 \text{ kg}}{10.01 \text{ kg}}$$

$$\frac{10 \text{ kg}}{$$

$$\frac{7.2}{7.2} = \frac{22 \times 100 \times 0.01 \times 10^{2}}{3.2}$$

EE3 Fall 2020

Practice Problems 4

- 4. The switch has been in the position shown for a <u>long time</u>. Find:
 - a. $i_L(0^+)$
 - b. $i_0(0^+)$
 - c. $v_0(0^+)$
 - d. τ for t=0+
 - e. i_L(0+) for all t>0 (HINT: refer to the Lecture 4 video at 22 minutes.)

0.15

- a. $i_L(0^+) = 20 \text{ A}$ b. $i_O(0^+) = -4 \text{ A}$
- $0. \ \iota_O(0) = 4 \text{ A}$
- c. $v_o(0^+) = -160 \text{ V}$
- d. $\tau = 0.2 \text{ s}$
- e. $i_L(t) = 20e^{-5t}$

d)

$$\frac{1}{\sqrt{1000}} = \frac{1000}{\sqrt{1000}} = \frac{10000}{\sqrt{1000}} = \frac{10000}{\sqrt{1000$$

EE3 Fall 2020 **Practice Problems 4**

- 5. The switch has been open for a long time. Find:
 - a. $v_{C}(0^{-})$
 - b. v_C(0⁺) 1. ン
 - c. v_C(∞) **%**√
 - d. $i_{C}(0^{-})$ 0^{-}
 - e. $i_{C}(0^{+})$

$$V_{c} = \frac{60}{100} \times 12 = 7.2(0)$$
 $V_{c} = \frac{60}{100} \times 12 = 7.2(0)$
 $V_{c} = \frac{7.20}{100} = \frac{7.20}{100}$

