পরিষাণগত রুসায়ুন

NCTB কর্তৃক অনুমোদিত বইয়ের অনুশীলনীর বহুনির্বাচনী প্রশ্ন ঃ সঞ্জিত কুমার গুহ স্যার

01. Fe₃O₄ অণুতে Fe পরমাণুর জারণ মান-

A. + 1.5

C. +2.67

D. +3

TINUT: Fe₃O₄ ∴ $3x + (-2) \times 4 = 0 \Rightarrow .3x - 8 = 0 \Rightarrow x = +2.67$

02. কোন ক্ষার দ্রবণের P^H পরিসর 8.3-10 হলে টাইট্রেশনের ক্ষেত্রে উপযুক্ত নির্দেশক-

A. ফেনল রেড

B. মিথাইল অরেঞ্জ

C. ফেনফথ্যালিন

D. মিথাইল রেড

ব্যাখ্যা: টাইট্রেশনের ক্ষেত্রে নির্দেশক:

মিথাইল অরেঞ্জ -3.4-4.2

মিথাইল রেড -4.2-6.3

ফেনল রেড -6.8-8.4

ফেনফথ্যালিন -8.3-10

 $03. \ IO_3^- + 5I^- + 6H^+ \rightarrow 3I_2 + 3H_2O$; এখানে জারণ ঘটেছে-

A. IO_3^- B. I^- C. H^+

D. IO₃⁻ ও উভয়ের

ব্যাখ্যা : $IO_3^- + 5I^- + 6H^+ \rightarrow 3I_2 + 3H_2O$; এই রাসায়নিক বিক্রিয়ায় I^- বিজারক হিসেবে কাজ করেছে। কারণ \mathbf{I}^- ইলেক্ট্রন ত্যাগ করে \mathbf{I}_2 এ পরিণত হয়েছে। যেহেতু I⁻ আয়ন ইলেক্ট্রন ত্যাগ করেছে তাই I⁻ বিজারক, জারিত হয়েছে।

- 🔲 নিচের উদ্দীপকটি পড় এবং 04 ও 05 নং প্রশ্নের উত্তর দাও : একজন শিক্ষার্থী ল্যাবরেটরীতে $2.5 \times 10^{-3} g~Na_2CO_3$ পানিতে দ্রবীভূত করে 250mL দ্রবণ প্রস্তুত করল।
- 04. দ্রবণের ঘনমাত্রা মোলারিটিতে হিসাব করার সময় শিক্ষার্থীকে লক্ষ্য রাখতে হবে-

i. দ্রবের পরিমাণ

ii. দ্রবণের মোট আয়তন

iii. দ্রাবকের পরিমাণ

নিচের কোনটি সঠিক?

A. i

B. ii

C. i & ii

D. i, ii & iii

ব্যাখ্যা: 1000mL বা 1L দ্রবণে দ্রবীভূত দ্রব্যের মোল সংখ্যাকে ঐ দ্রবণের মোলারিটি বলে। সুতরাং মোলারিটি দ্রবণের আয়তন ও দ্রব্যের মোল সংখ্যার/পরিমাণের উপর নির্ভরশীল কিন্তু দ্রাবকের কোন সংখ্যার উপর নির্ভরশীল নয়।

05. ক্ষার দ্রবনের মাত্রা ppm এককে-

A. 1 ppm

B. 10 ppm

C. 100 ppm

D. 1000 ppm

ব্যাখ্যা : 250 mL দ্ৰবীভূত Na₂CO₃ = 2.5×10⁻³×10³ = 1L/1000 mL এ দ্রবীভূত $Na_2CO_3 = 2.5 \times 4 = 10$ ppm

01.C

02.C

03.B

04.C

05.B

সরোজ কান্তি সিংহ হাজারী ও হারাধন নাগ স্যার

01. 10% Na₂CO₃ দ্রবনের মোলার ঘনমাত্রা হবে-

A. 0.9434 mol kg⁻¹

B. 0.9434 M

C. 0.9434 mol L⁻¹

D. $904340 \text{ mol } L^{-1}$

ব্যাখ্যা:
$$S = \frac{\% \times 10}{M} = \frac{10 \times 10}{106} = 0.9433M$$

02. K₄ [Fe(CN)₆] জটিল যৌগে Fe এর জারণ সংখ্যা কত?

A. +2 B. +3 C. +4

D. +6

ব্যাখ্যা:
$$K_4$$
 [Fe(CN)₆] = 0 \Rightarrow +1×4+x+(-1)×6 = 0

 $\Rightarrow +4+x-6=0 \Rightarrow x=+2$

03. নিচের কোনটির বেলায় সচল মাধ্যমরূপে হিলিয়াম ব্যবহৃত হয়?

A. TCL

B. HPLC

C. GLCP

D. CC

ব্যাখ্যা : স্থির মাধ্যম (stationary phase) হলো তরল পদার্থ এবং সচল মাধ্যম (mobile phase) হলো নিষ্ক্রিয় হিলিয়াম অথবা ক্রিয়াহীন N_2 গ্যাস।

04. 500 mL 0.5 M কস্টিকসোডা দ্রবণ থেকে কত mL ডেসি মোলার দ্রবণ তৈরী করা যাবে?

A. 2500 mL

B. 2000 mL

C. 5000 mL

D. 1350 mL

ব্যাখ্যা : $V_1S_1e_1=V_2S_2e_2 \Rightarrow 500\times0.5\times1 = v_2\times0.1\times1 \Rightarrow v_2=2500 \text{mL}$

05. স্পেকট্রোমিটার 1cm দৈর্ঘ্যবিশিষ্ট সেলে একটি দ্রবণ রেখে এর বিশোধন 0.156 পাওয়া গেল। দ্রবের মোলার শোষণ সহগ $1.2 \times 10^4 mol^{-1} cm^{-1}$ হলে দ্রবণটির ঘনমাত্রা কোনটি হবে?

A. 1.30×10^{-5} M

B. 1.30×10⁻⁴M

C. 1.2×10⁻⁴M

D. 1.3×10^{-15} M

ব্ৰাখ্যা :
$$A = \in Cl \Rightarrow C = \frac{A}{\in I} = \frac{0.156}{1.2 \times 10^4 \times 1} = 1.3 \times 10^{-5} M$$

NB: সহগ ও দৈর্ঘ্য উভয়ে cm তে থাকবে।

ii. ppm

06. বিভিন্ন প্রকার দ্রবণ তৈরীতে মোল পরিমাণে দ্রব ব্যবহার করে নিম্নোক্ত দ্রবণ তৈরী করা হলো–

i. মোলার দ্রব কোন ঘনমত্রার দ্রবণ তাপমাত্রা নির্ভরশীল নয়?

A. i & ii

B. ii & iii D. i, ii & iii

iii. মোল ভগ্নাংশ ঘনমাত্রা

C. i & iii 07. রিডক্স টাইট্রেশনে ব্যবহৃত KMnO4 দ্রবণের ক্ষেত্র প্রযোজ্য-

- i. KMnO4 প্রাইমারী স্ট্যান্ডার্ড পদার্থ
- ii. স্থনির্দেশকরূপে কাজ করে
- iii. KMnO₄ এর অম্লীয় মাধ্যমের জন্য HCl এসিড ব্যবহার করা যায় না নিচের কোনটি সঠিক ?

A. i & ii

B. ii & iii

C. i & iii

D. i, ii & iii

ব্যাখ্যা : KMnO4 একটি ম্বনির্দেশক। সেকেন্ডারি পদার্থ হওয়া সত্ত্বেও KMnO4 ব্যবহারে সুবিধা হলো $\mathrm{KMnO_4}$ দারা টাইট্রেশনে কোনো নির্দেশকের প্রয়োজন হয় না।

- 08. ক্রোমটোগ্রাফিতে HPLC এর বেলায় মূলনীতি অনুসারে প্রযোজ্য তথ্য হলো
 - i. সক্রিয়া শোষক কলামটি $2-50~\mu m$ সাইজের সিলিকা পূর্ণ থাকে
 - ii. সচল গ্যাস মাধ্যমের উপর $50-350~{
 m bar}$ চাপ থাকে
 - iii. UV-Vis ডিটেক্টর ব্যবহৃত হয়

নিচের কোনটি সঠিক?

A. i & ii

B. ii & iii

C. i & iii

D. i, ii & iii

ব্যাখ্যা: HPLC এর বেলায় সক্রিয় শোষ কলামটি সূক্ষ্ম কণাবস্তু যেমন- 2-50 মাইক্রোমিটার (um) সাইজের সিলিকন বা পলিমার বস্তু (আয়ন বিনিময় রেজিন)

দ্বারা তৈরি করা হয়। HPLC এর বেলায় উচ্চ চাপ যেমন- 50-350 bar চাপে সচল মাধ্যম তরল দ্রাবকরূপে বিশুদ্ধ পানি ও মিথানল অথবা অ্যাসিটো নাইট্রাইল এর মিশ্রণ ব্যবহৃত হয়। UV-Vis ডিটেক্টরে বিয়ার-ল্যাম্পার্ট সূত্র মতে নির্গত যৌগের শনাক্তকরণ ও পরিমাণ রেকর্ড হয়ে থাকে।

- নিচের তথ্যের আলোকে 09 ও 10 নং প্রশ্নের উত্তর দাও :
 6 mol FeSO₄ সম্পূর্ণ জারিত করতে 1 mol K₂Cr₂O₇ প্রয়োজন হয়।
 [FeSO₄ এর আ. ভর = 152. K₂Cr₂O₇ এর আ. ভর =294]
- 09. 15.2g FeSO₄ কে এর সম্পূর্ণ জারিত করতে কত গ্রাম K₂Cr₂O₇ দরকার হবে?

A. 8.15g B. 8.25g C. 4.0g D. 4.25g

ব্যাখ্যা: 6 mol FeSO₄ = 1 mol K₂Cr₂O₇

 (6×152) g FeSO₄ কে জারিত করতে লাগে = 294g K₂Cr₂O₇

 $15.2 ext{g FeSO}_4$ জারিত করতে লাগে = $\frac{294 \times 15.2}{6 \times 152}$ =4.9 \text{g K}_2 \text{Cr}_2 \text{O}_7

- 10. নিচের কোন তথ্যটি $K_2Cr_2O_7$ এর বেলায় প্রয়োজ্য নয়?
 - A. প্রাইমারী স্ট্যান্ডার্ড পদার্থ
 - B. অশ্লীয় মাধ্যমে HCl এসিড ব্যবহার করা যায়
 - C. রিডক্স টাইট্রেশনে স্বনির্দেশক
 - D. KMnO₄ থেকে দুর্বল জারক

ব্যাখ্যা : KMnO4 স্বনির্দেশক , K2Cr2O7 স্বনির্দেশক নয়। প্রাইমারি স্ট্যান্ডার্ড পদার্থ।

- □ নিচের তথ্যের আলোকে 11 ও 12 নং প্রশ্নের উত্তর দাও: দ্বাদশ শ্রেণির ছাত্রী রাই 20ml HCl দ্রবণে সামান্য মিথাইল অরেঞ্জ যোগ করায় দ্রবণটি লাল বর্ণ ধারণ করল। রাই দ্রবণটিতে 1g CaCO₃ কে সম্পূর্ণরূপে দ্রবীভূত করায় দ্রবণটি হলুদ বর্ণ ধারণ করল। এই দ্রবণকে প্রশমনের জন্য সে 20ml 1M NaOH দ্রবণ ব্যবহার করল।
- 11. উদ্দীপকে রাই কতটি CaCO3 অণু ব্যবহার করেছিল?
 - A. 6.023×10^{21}
- B. 6.023×10^{23}
- C. 6.023×10^{22}
- D. 6.023×10²⁴

ব্যাখ্যা : CaCO3 এর 100g এ অণুর সংখ্যা 6.023×10²³ টি

$$1\mathrm{g}$$
 এ অণুর সংখ্যা $\frac{6.023 \times 10^{23}}{100}\,6.023 \times 10^{21}$

- 12. রাই যে HCl দ্রবণ ব্যবহার করেছিল তার ঘনমাত্রা কত ছিল?
 - A. 0.1M

B. 1.0M

C. 0.5M

D. 2.0M

ব্যাখ্যা :
$$e_1V_1S_1 = \Rightarrow V_2 = \frac{20 \times 1}{20} = 1M$$

01.B	02.A	03.C	04.A	05.A	06.D
07.B	08.D	09.D	10.C	11.A	12.B

মনিমুল হক, আনিকা আনি ও আবু ইউসুফ স্যার

- 01. 1.0g পানিতে কতটি হাইড্রোজেন পরমাণু আছে?
 - A. 5.5×10^{23}
- B. 3.3×10^{22}
- C. 6.6×10^{22}
- D. 5.5×10^{21}

ব্যাখ্যা : 18g H₂O তে হাইড্রোজেন পরমাণুর সংখ্যা $6.02{ imes}10^{23}$ টি

 $1{
m g~H_2O}$ তে হাইড্রোজেন পরমাণুর সংখ্যা $\frac{6.02\times 10^{23}}{18} = 3.346\times 10^{22}$ টি

 ${
m H_{2}O}$ অণুতে দুইটি হাইড্রোজেন পরমাণু বিদ্যমান, তাই ${
m 1g~H_{2}O}$ অণুতে হাইড্রোজেন পরমাণুর সংখ্যা ${
m 3.346}{ imes10^{22}}{ imes2}=6.69{ imes10^{22}}$ টি

- 02. একটি রাসায়নিক সমীকরণের তাৎপর্য হিসেবে নিচের কোনটি বিবেচনা করা যায় না?
 - A. বিক্রিয়ায় সংশ্লিষ্ট বিক্রিয়ক ও উৎপাদনের মোল সংখ্যার অনুপাত জানা যায়
 - B. বিক্রিয়ায় সংশ্লিষ্ট বিক্রিয়ক ও উৎপাদের ভরের অনুপাত জানা যায়
 - C. বিক্রিয়ায় কোন গ্যাস উৎপন্ন হলে উৎপন্ন গ্যাসের আয়তন জানা যায়
 - D. টাইট্রেশন প্রক্রিয়ায় অজানা দ্রবণের ঘনমাত্রা জানা যায়।
- 03. 15.0g খড়ি মাটিকে অধিক তাপে পোড়ানো হলে কত গ্রাম চুন পাওয়া যায়?

A. 8.4g B. 1.5g C. 4.2g D. 0.75g

ব্যাখ্যা : $CaCO_3 \longrightarrow CaO + CO_2$

100g খড়ি মাটিকে পোড়ালে পাওয়া যায় 56g CaO

- 15.0g খড়ি মাটিকে পোড়ালে পাওয়া যায় = $\frac{56 \times 15}{100} = 8.4$ g CaO
- 04. নিচের কোন নির্দেশকটি উদ্ভিদ থেকে আহরিত?
 - A. লিটমাস
- B. ফেনলফেথেলিন
- C. মিথাইল অরেঞ্জ
- D. মিথাইল রেড

ব্যাখ্যা : লিটমাস হলো লাইকেন নামক শৈবাল জাতীয় উদ্ভিদ থেকে নিষ্কাশিত এক ধরনের যৌগ।

- 05. নিচের কোনটির পরিমাণগত বিশ্লেষণে Beers Lamberts সূত্রের প্রয়োগ নেই?
 - A. Atomic absorption
- B. দৃশ্যমান রশ্মির বর্ণালি
- C. অবলোহিত রশ্মির বর্ণালি
- D. HPLC
- 06. দ্রবণের ঘনমাত্রা প্রকাশের জন্য যে সকল একক ব্যবহার করা হয় সেগুলো হলো–
 - i. মোলারিটি (M)
- ii. শতকরা (%)(m)
- iii. পিপিএম (ppm)

1.0 লিটার দ্রবণে 1.0 মোল পরিমাণ দ্রব দ্রবীভূত থাকলে দ্রবণটির ঘনমাত্রার একক হবে–

নিচের কোনটি সঠিক?

A. i

B. ii

C. iii

- D. ii ଓ iii
- 07. দ্রবণের মোলার ঘনমাত্রাকে লঘুকরণ করার পর তাদেরকে প্রকাশের জন্য যে

সকল একক ব্যবহার করা হয় সেগুলো হলো-

- i. সেমিমোলার দ্রবণ
- ii. ডেসিমোলার দ্রবণ
- iii. সেন্টিমোলার দ্রবণ
- iv. মিলিমোলার দ্রবণ
- 1.0 মোলার $100~\mathrm{mL}$ দ্রবণের আয়তনের বিশুদ্ধ পানি যোগ করে $200~\mathrm{mL}$ করা হলে সে দ্রবণের ঘনমাত্রা হবে–

ব্যাখ্যা :
$$S_1V_1 = S_2V_2 \Rightarrow S_2 = \frac{1 \times 100}{200} = 0.5 M$$
 সেমিমোলার দ্রবণ

- 08. দ্রবেণের অম্রত্ব/ক্ষারকত্ব চিহ্নিতকরণের যে সকল যৌগ ব্যবহার করা হয় তাদেরকে নির্দেশক বলা হয়। এ ধরনের কিছু নির্দেশকের মধ্যে নিচের কোনটি প্রকৃতি থেকে আহরিত?
 - A. লিটমাস
- B. ফেনলফেথেলিন
- C. মিথাইল অরেঞ্জ
- D. মিথাইল রেড

ব্যাখ্যা : লিটমাস হলো লাইকেন নামক শৈবাল জাতীয় উদ্ভিদ থেকে নিষ্কাশিত এক ধরনের যৌগ।

01.C | 02.D | 03.A | 04.A | 05.D | 06.A | 07.A | 08.A

সুভাষ, মহিবুর, বিমলেন্দু ও আনোয়ার স্যার

- 01. প্রমাণ তাপমাত্রা ও চাপে $50g\ CaCO_3$ কে উত্তপ্ত করলে কত আয়তনের CO_2 পাওয়া যাবে?
 - A. 44.8 L
- B. 22.4 L
- C. 11.2 L
- D. 20 L
- <u>खाभा</u>: CaCO₃ → CaO + CO₂ / 22.4L

100g CaCO $_3$ থেকে উৎপন্ন হয় = 22.4L CO $_2$

50g $CaCO_3$ থেকে উৎপন্ন হয় = $\dfrac{22.4 \times 50}{100}$ = $11.2 L~CO_2$

- 02. প্রমাণ তাপমাত্রা ও চাপে এক মোল অক্সিজেন পাবার জন্য কত গ্রাম HgO দগ্ধ করা প্রয়োজন?
 - A. 216g
- B. 432g

C. 250g

D. 150g

<u>ব্যাখ্যা</u>: 2HgO → 2HgO + O₂

- =432g
- 03. 0.01M ঘনমাত্রার 100ml দ্রবণ প্রস্তুত করতে 0.5M দ্রবণের কত mL দরকার ?
 - A. 5mL B. 2mL C. 4mL
- D. 10mL

 $\underline{\underline{\mathfrak{AIIWI}}}:V_1S_1e_1=V_2S_2e_2\Rightarrow 100mL\times 0.01=0.5\times v_2$ [একই যৌগ বলে e= সমান] \Rightarrow $V_2=2mL$

- 04. নিচের কোনটি জারণ-বিজারণ বিক্রিয়া হিসেবে গণ্য করা যেতে পারে?
 - A. $Cu^{2+} + 4NH_3 \rightarrow [Cu(NH_3)_4]^{2+}$
 - B. $Cl_2 + 2OH \rightarrow Cl^- + ClO^- + H_2O$
 - C. $NH_3 + H^+ \rightarrow NH_4^+$
- D. $Ca_2++2F-\rightarrow CaF_2$

ব্যাখ্যা : B অপশন সঠিক। এটি একটি অসমাপ্ত বিক্রিয়া। এই বিক্রিয়ায় CI জারণ বিজারণ বিক্রিয়া।

- m A
 ightarrow অপশনে m Cu এই জারণ মান অপরিবর্তিত।
- C → এখানে নাইট্রোজেনের জারণ মান অপরিবর্তিত।
- D
 ightarrow Ca এর জারণ মান অপরিবর্তিত।
- $05. \ \mathrm{CuSO_4} + \mathrm{KI} \rightarrow \mathrm{Cu_2I_2} + \mathrm{I_2} + \mathrm{K_2SO_4}$ এই বিক্রিয়ায়–
 - $i.~Cu^{2+}$ জারিত হয়েছে $ii.~I^-$ জারিত হয়েছে $iii.~I^-$ বিজারক নিচের কোনটি সঠিক?
 - A. i & ii

B. ii હ iii

- C. i & iii
- D. i, ii & iii

ব্যাখ্যা :
$$\overset{+2}{\text{CuSO}_4}^{-2}\overset{+1}{\text{KI}^{-1}} \to \overset{\text{(জারত)}}{\text{Cu}_2} I_2 + I_2{}^0 + K_2 \text{SO}_4$$

বিশেষ দ্রষ্টব্য এখানে I^- জারিত হয়েছে (জারণ মান -1 হতে শূণ্য)। যেহেত I^- বিজারক তাই জারিত হয়।

- 06. FeSO₄ + KMnO₄ + H₂SO₄ → Fe₂(SO₄)₃ + K₂SO₄ + H₂O + MnSO₄ বিক্রিয়ায়−
- $m MnSO_4$ বিক্রিয়ায়extstyle -i. $m F_eSO_4$ একটি জারক পদার্থ $m ii.~KM_nO_4$ একটি জারক পদার্থ
 - $iii.\ 1mol\ KM_nO_5\ 5mol\ F_eSO_4$ এর সাথে বিক্রিয়া করে নিচের কোনটি সঠিক?
 - A. i & ii

B. ii & iii

C. i & iii

D. i, ii & iii

ব্যাখ্যাঃ

 $2 {\rm K}^{+7} {\rm MnO_4} + 10 {\rm F}^{+2} {\rm FeSO_4} + 8 {\rm H_2SO_4} \rightarrow 2 {\rm M}^{+2} {\rm nSQ} + 5 {\rm F}^{+3} {\rm e_2(SO_4)_3} + {\rm K_2SO_4} + 8 {\rm H_2O_4} + 8$

বিজারিত হয়েছে (জারক)

এখানে $1 mol\ KMnO_4$ এর সাথে $5 mol\ FeSO_4$ বিক্রিয়া করে। সুতরাং B অপশন সঠিক।

🔲 নিচের তথ্যের আলোকে 07 ও 08 নং প্রশ্নের উত্তর দাও :

 $CaCl_2$ দ্রবণের দুইটি বোতলের একটির লেভেলে $0.015~{
m M}$ এবং অপরটিতে $200~{
m ppm}$ লেখা আছে।

- 07. প্রথম বোতলের CaCl₂ এরঘনমাত্রা ppm এককে কত হবে?
 - A. 600 ppm
- B. 500 ppm
- C. 1665 ppm
- D. 550 ppm

ব্যাখ্যা : 0.015M CaCl₂ = (0.015×111×10³)ppm = 1665 ppm

- 08. দ্বিতীয় বোতলের ঘনমাত্রা শতকরা এককে কত হবে?
 - A. 0.2%
- B. 0.02%
- C. 0.002%
 - % D. 0.0002%

ব্যাখ্যা : 200×10⁻⁴ = 0.02 [ppm এক শতকরায় প্রকাশ]

01.C | 02.B | 03.B | 04.B | 05.B | 06.B | 07.C | 08.B

আহসানুল কবির ও রবিউল ইসলাম স্যার

- 01. একটি পাত্রে রাখা 16g মিথেন গ্যাসকে NTP তে 11.21 গ্যাস নির্গত হয়ে গেলে ঐ পাত্রে আর কত গ্যাস অণু অবশিষ্ট থাকে?
 - A. 6.023×10^{22}
- B. 3.0115×10^{22}
- C. 3.011×10^{23}
- D. 5.023×10^{23}

<u>ব্যাখ্যা</u> : 16g CH₄ এর আয়তন 22.4L

- 11.2Lমিথেন নিৰ্গতহয়ে গেলে অবশিষ্ট থাকে=(22.4–11.2)L=11.2L CH₄
- 22.4L CH4 এর অণুর সংখ্যা 6.02×10²³ টি
- 11.2L CH₄ এর অণুর সংখ্যা = $\frac{6.02 \times 10^{23} \times 11.2}{22.4}$ 3.01×10^{23} টি
- $02.~{
 m CH}{\it l}$ এর একটি দ্রবণকে টাইট্রেট করার জন্য তোমাকে একটি 10% দ্রবণ দেওয়া আছে । ${
 m Na_2CO_3}$ দ্রবণটির ঘনমাত্রা অন্যান্য এককে দেওয়া আছে নিম্নরূপ :
 - i. $0.943 \text{ mol } L^{-1}$
- ii. 1.06×10^6 ppm
- iii. 1.0×10^5 ppm

নিচের কোনটি সঠিক?

- A. i ଓ ii
- B. ii ଓ iii
- C. i & iii
- D. i, ii ଓ iii

ব্যাখ্যা :
$$s = \frac{\% \times 10}{M} = \frac{10 \times 10}{106} = 0.943M$$

$$ppm = \% \times 10^4 = 10 \times 10^4 = 10^5 ppm$$

- 03. নিম্নের বিক্রিয়াটি লক্ষ্য কর। 1.0 L আয়তনের পাত্রে বিক্রিয়াটি ঘটে-
 - $Na_2CO_3 + 2HCl = 2NaCl + CO_2 + H_2O$
 - (1) নিম্নের কোনটি সঠিক?
 - A. এটি একটি প্রশমন বিক্রিয়া
 - B. এ বিক্রিয়ায় Na_2CO_3 এবং HCl সমমোলার পরিমাণে বিক্রিয়া করে
 - $C.~1.06\times10^6~ppm~Na_2CO_3$ এর সঙ্গে $7.3\times10^6~ppm~HCl$ বিক্রিয়া করে
 - D. এ বিক্রিয়া ঘটলে বাহ্যিক কোন পরিবর্তন পরিলক্ষিত হয় না
 - (2) এ বিক্রিয়ায়–
- 3

i. ফেনফথেলিনকে নির্দেশক হিসেবে ব্যবহার করা যায়

ii. এ বিক্রিয়ার শেষ বিন্দতে P^H এর মান 7 এর চেয়ে কম

iii. जना ফুलের নির্যাসকে এ বিক্রিয়ার প্রশমন বিন্দু নির্ণয়ে নির্দেশক হিসেবে ব্যবহার করা যায়।

নিচের কোনটি সঠিক?

A. i & ii

B. ii & iii

C. i & iii

D. i, ii & iii

<u> वाधाः</u> : Na₂CO₃ + 2HCl = 2NaCl + CO₂ + H₂O

HCl তীব্র এসিড ও Na_2CO_3 মৃদু ক্ষারক। এটি একটি অম্লীয় বিক্রিয়া। p^H এর মান <7। এজন্য মিথাইল অরেঞ্জ ও মিথাইল রেড ব্যবহার করা হয়।

04. নিম্নের বিক্রিয়াটির জন্য কোনটি সঠিক?

 $Mg + 2H^+ = Mg^{2+} + H_2$

A. একটি প্রশমন বিক্রিয়া

B. একটি জারণ-বিজারণ বিক্রিয়া

C. একটি প্রতিস্থাপন বিক্রিয়া

D. একটি সংযোজন বিক্ৰিয়া

সূতরাং জারণ-বিজারণ বিক্রিয়া।

 $05.\ 2I^- + Cl_2 = I_2 + 2CI^-$ এ বিক্রিয়াটি একটি জারণ-বিজারণ বিক্রিয়া। কারণ-

i. I⁻ ইলেক্ট্রন ত্যাগ করে I₂ তে পরিণত হয়

ii. Cl₂ ইলেক্ট্রন ত্যাগ করে CI⁻ তে পরিণত হয়

iii. Cl₂ ইলেক্ট্রন গ্রহণ করে CI⁻ তে পরিণত হয়

নিচের কোনটি সঠিক?

A. i & ii

B. ii & iii

C. i & iii

D. i, ii & iii

 $06. \ C_2O_4{}^{2-} o CO_2$ এ বিক্রিয়ায় $C_2O_4{}^{2-}$ আয়ন :

A. বিজারিত হয়

B. ইলেক্ট্রন ত্যাগ করে

C. ইলেক্ট্রন গ্রহণ করে

D. অক্সিজেন ত্যাগ করে

এখানে কার্বনের জারণমান +3 হতে +4 হয়েছে। অক্সালেট আয়নে কার্বনের জারণ মান বৃদ্ধি হওয়ায় কার্বন বিজারক। সুতরাং সঠিক অপশন ightarrow B

07. সমীকরণটি লক্ষ্য কর : CH₃COOH + NaOH = CH₃COONa + H₂O

(1) নিম্নের কোনটি সঠিক?

A. CH₃COOH এর ক্ষারত্ব 2

B. CH₃COOH একটি তীব্র এসিড

C. এসিডটি ভিনেগারে থাকে

D. উপরের বিক্রিয়াটির শেষ বিন্দুতে pH এর মান 7 এ থাকে

(2) উদ্দীপকে উল্লেখিত প্রশমন বিক্রিয়ার উপযুক্ত নির্দেশক ফেনফথেলিন।

i. শেষ বিন্দুতে pH > 7

ii. ফেনফথেলিন এর বিয়োজন ঘটে ক্ষারীয় মাধ্যমে

iii. শেষ বিন্দুতে ফেনফথেলিন থেকে একটি রঙ্গিন যৌগ উৎপন্ন করে

নিচের কোনটি সঠিক?

A. i & ii

B. ii & iii

C. i & iii

D. i, ii & iii

ব্যাখ্যা: (I) A. CH3COOH এর ক্ষারকত্ব B. CH3COOH একটি মৃদু এসিড

C. CH₃COOH এর 6–10% জলীয় দ্রবণকে ভিনেগার বলে।

D. pH>7 NaOH তীব্র ক্ষার। সুতরাং এটি ক্ষারীয় মাধ্যম।

(II) তীব্র ক্ষারক ও মৃদু এসিড এর দ্রবণ অর্থাৎ ক্ষারীয় মাধ্যমে ফেনফথালিন বিয়োজিত হয়। ক্ষারীয় মাধ্যমে ফেনফথালিনের বর্ণ লালচে বেগুণী। সুতরাং অপশন \rightarrow D

08. Fe₂O₃ এর অমুত্ব কত?

A. 2

B. 3

D. 7

ব্যাখ্যা : $Fe_2O_3 + 6HCl \rightarrow 2FeCl_3 + 3H_2O$

০৯. Na₂CO₃ এবং HCl প্রশমনের জন্য উপযুক্ত নির্দেশক কী?

C. 6

A. মিথাইল অরেঞ্জ

B. লিটমাস

C. ফেনফথোলিন

D. কোনটিই নয়

10. H₂SO₄ এর মোলার ঘরমাত্রা নরমাল ঘনমাত্রার-

A. দ্বিগুণ

B. সমান

C. অর্ধেক

D. কোনটিই নয়

<u>ব্যাখ্যা</u> : s (মোলারিটি $)=rac{N($ নরমালিটি $)}{e($ তুল্য সংখ্যা $)}$ সুতরাং C
ightarrow অর্ধেক।

11. 1.008g H2 এর অণুর সংখ্যা-

A. 6.023×10^{23}

B. 12.046×10^{23}

C. 3.0115×10^{23}

D. কোনটিই নয়

12. 2.0L দ্রবনে 80g NaOH দ্রবীভূত থাকবে দ্রবণের ঘনমাত্রা-

A. 0.1 M

B. 2.0 M

C. 0.5 M

D. কোনটিই নয়

ব্ৰাখ্যা :
$$s = \frac{1000W}{MV} = \frac{1000 \times 80}{40 \times 2000} = 1M$$

13. 6.023×10²³টি CO₂ অণুর NTP তে আয়তন–

A. 22.4L

B. 2.24L

C. 0.224L

D. কোনটিই নয়

ব্যাখ্যা : 6.023×10²³টি CO₂ অণুর NTP তে আয়তন 22.4L

14. 10cm³ 0.1M HCl দ্রবণ প্রশমনের জন্য প্রয়োজন NaOH এর ডেসিমোলার দ্রবণ–

A. 10cm³

B. 20cm³

C. 15cm³

D. কোনটিই নয়

ব্যাখ্যা :
$$e_1S_1V_1=e_2S_2V_2 \Rightarrow V_2=\frac{1\times 10\times 0.1}{0.1}=10cm^3$$

15. দুটি ভিন্ন পাত্রে $25 cm^3$ করে HCl এর মোলার দ্রবণ Na_2CO_3 এর মোলার দ্রবণ আছে-

(1) নিম্নের কোনটি সঠিক?

A. দুটি দ্রবণের উপস্থিতিতে HCl এবং Na₂CO₃ এর মোলার ঘনমাত্রা

B. দ্রবণদ্বয় HCl এবং Na2CO3 এর ভর সমান

C. 10cm^3 HCl দ্রবণ প্রশমিত করার জন্য একই আয়তনের অর্থাৎ 10cm³ Na₂CO₃ দ্রবণ প্রয়োজন হয়।

D. এ এসিড ক্ষার দুটো ট্রাইটেশনের যে কোন নির্দেশক ব্যবহার করা যায়

ব্যাখ্যা : যেহেতু HCl ও Na₂CO₃ উভয়ে যথাক্রমে তীব্র এসিড ও মৃদু ক্ষার। তাই যে কোন নির্দেশক ব্যবহার করা যাবে না।

(2) 2Na₂CO₃ এর ক্ষারত্ব 2 কারণ-

i. Na₂CO এর CO₃²⁺ আয়নের চার্জ '_L'

ii. প্রতিমোল Na₂CO₃ প্রশমনের জন্য 2 মোল HCl প্রয়োজন হয়।

iii. 10mol Na₂CO₃ প্রশমিত করতে এক ক্ষারীয় এসিডের 2mol HCl মোল প্রয়োজন হয়

নিচের কোনটি সঠিক?

A. i & ii B. ii & iii C. i & iii D. i, ii & iii

						` '	C(II) D
08.C	09.A	10.C	11.C	12.D	13.A	14.A	15.A,D

জয়নাল আবেদীন, সায়েম উদ্দীন, ওয়াহিদুজ্জামান ও মান্নান স্যার

- 01. রাসায়নিক বিক্রিয়ায় বিক্রিয়ক ও উৎপাদ অণুর সংখ্যা কত?
 - A. বিক্রিয়ক এবং উৎপাদের অণুর সংখ্যা সমান থাকে
 - B. বিক্রিয়কের অণু সংখ্যা বেশি C. উৎপাদক অণু সংখ্যা বেশি
 - D. প্রথমে বিক্রিয়কের অণু সংখ্যা বেশি পরে উৎপাদ অণুর সংখ্যা বেশি

ব্যাখ্যা : কোন রাসায়নিক বিক্রিয়া কোন পরমাণুর সৃষ্টি বা বিনাশ হয় না।

02. এসিড ক্ষারক প্রশমন বিক্রিয়ায় লবণের সহ-উৎপাদ কোনটি?

A. H₂O

 $B. SO_2$

C. H₂S D. CHI

ব্যাখ্যা : Acid + Base = Water + Salt

03. NaCl এর সোডিয়ামের জারণ সংখ্যা কত?

A. +1

B. -1

C. 0

D. + 1

04. অ্যাভোগেড্রোর সংখ্যা ক্ষেত্রে–

i. একে N_A দারা প্রকাশ করা হয় ii. এর মান 6.023×10^{23}

iii. সংখ্যাটি এক মোল আয়তনের ক্ষেত্রে প্রযোজ্য

নিচের কোনটি সঠিক?

A. i & ii

B. i & iii

C. ii & iii

D. i, ii & iii

🔲 উদ্দীপকটি পড় এবং পরবর্তী দুটি প্রশ্নের উত্তর দাও:

- প্রফেসর ড. সালমা রশিদ রসায়ন শ্রেণিতে বললেন অক্সিজেন অত্যান্ত সক্রিয় মৌল। কোন পদার্থের সাথে অক্সিজেন যুক্ত হলে তা জারণ বিক্রিয়া এবং অক্সিজেনযুক্ত যৌগ থেকে অক্সিজেন অপসারণ করলে তা বিজারণ বিক্রিয়া হয়। রসায়নবিদগণ এ ধারণা আগে প্রদান করে।
- 05. উদ্দীপক অনুসারে জারণ বিক্রিয়ায় ব্যবহৃত উপাদান কোনটি?

A. ওজোন

B. কার্বন

C. সোডিয়াম

D. কার্বন মনোক্সাইড

ব্যাখ্যা: $C+O_2 \rightarrow CO_2$ (জারণ বিক্রিয়া), $2CO_2 \rightarrow 2CO+O_2$ (বিজারণ বিক্রিয়া)

06. উদ্দীপকের জারণ বিজারণ ধারণাটি-

i. সাধারণ বা পুরাতন ii. আধুনিক iii. ইলেকট্রনীয়

নিচের কোনটি সঠিক?

A. i

B. ii

C. iii

D. i, ii & iii

01.A 02.A 04.D 05.B 03.A 06.A

জয়নুল, তোফায়েল, রেয়াজুল ও আফজাল স্যার

- 01. মৃদু অমু ও তীব্ৰ ক্ষারের ট্রাইটেশনে কোন নির্দেশক ব্যবহৃত হয়?
 - A. লিটমাস

B. মিথাইর অরেঞ্জ

C. মিথাইর রেড

D. ফেনফথ্যালিন

02. মোলার এককে 10% Na₂CO₃ দ্রবণের শক্তিমাত্রা কত?

A. 1.916 M

B. 0.191 M

C. 1.06 M

D. 1.0 M

ব্যাখ্যা : শক্তিমাত্রা = $\frac{10 \times 10}{106}$ = 0.94 [অপশনে সঠিক উত্তর নেই]

- 03. মোলার দ্রবণের ক্ষেত্রে
 - i. দ্রবণকে আয়তনে প্রকাশ করা হয়।
 - ii. নির্দিষ্ট পরিমাণ দ্রব নির্দিষ্ট আয়তনে নিয়ে দ্রবণ প্রস্তুত করা হয়
 - iii. দ্রব ও দ্রাবকে ওজন কমে নেওয়া হয়

নিচের কোনটি সঠিক?

A. i & ii

B. i & iii

C. ii & iii

D. iii

বিক্রিয়াটি লক্ষ্য কর এবং পরবর্তী দুটি প্রশ্নের উত্তর দাও :

 $KMnO_4 + FeSO_4 + H_2SO_2 \rightarrow K_2SO_4 + MnSO_4 + Fe(SO_4)_3 + H_2O_4$

04 কোনটি বিজারক পদার্থ?

A. KMnO₄

B. FeSO₄

C. H₂SO₄

D. FeSO₄ & H₂SO₄

 $\overline{\text{MNO}_4} + \text{FeSO}_4 + \text{H}_2\text{SO}_2 \rightarrow \text{K}_2\text{SO}_4 + \text{MnSO}_4 + \text{Fe}(\text{SO}_4)_3 + \text{H}_2\text{O}_4$

এখানে $\overset{+7}{\text{KMnO}_4} \rightarrow \overset{+2}{\text{MnSO}_4}$ (KMnO₄ জারক)

 $\stackrel{+2}{\text{FeSO}_4} \rightarrow \stackrel{+3}{\text{Fe}_2(\text{SO}_4)_3} (\text{FeSO}_4$ বিজারক)

 H_2^{+1} \rightarrow H_2^{+1} (জারণমান অপরিচিত)

05. উদ্দীপকে 10 মোল FeSO₄ বিক্রিয়ায় অংশগ্রহণ করলে কত গ্রাম পানি উৎপন্ন হবে?

A. 184g

B. 144g

C. 74g

D. 114g

ব্যাখ্যা : 10 mol FeSO₄ বিক্রিয়ায় করলে 8×18g H₂O পানি = 144g পানি

01.D	02. নেই	03.A	04.B	05.B

লিংকন, আব্দুল করিম ও নুরুল ইসলাম স্যার

01. H₂SiF₆ যৌগটিতে সিলিকনের জারণ মান কত?

A. +2

B. +3

C. +4

D. +5

31 ★ $H_2SiF_6 \Rightarrow 2 + x - 6 = 0$ ∴ x = +4

02. এসিডীয় দ্রবণে KMnO₄ দ্বারা নিচের কোনটি জারিত হয়?

A. PbO₂

B. H₂O₂

C. FeCl₃

D. H₂S

03. স্ট্যানাস ক্লোরাইড ও মারকিউরিক ক্লোরাইডের ক্ষেত্রে কোনটি সঠিক?

A. $Sn^{4+} + 2Hg^{2+} = Sn^{2+} + 2Hg^{+}$

B. $Sn^{2+} + 2Hg^{2+} = Sn^{4+} + 2Hg^{2+}$

C. $Sn^{2+} + 2Hg^{2+} = Sn^{4+} + 2Hg^{+}$

D. $Sn^{4+} + 2Hg^{4+} = Sn^{2+} + 2Hg^{2+}$

04. দ্রবণের ঘনমাত্রার জন্য ব্যবহৃত হয়-

i. মোলারিটি

ii. শতকরা হার

iii. মোলাংশ (মোল ভগ্নাংশ)

নিচের কোনটি সঠিক?

A. i ଓ ii

B. i & iii

C. ii & iii

D. iii

- 🔲 নিচের উদ্দীপকটি পড় এবং 05 ও 06 দুটি প্রশ্নের উত্তর দাও : পরীক্ষাগারে লঘু H_2SO_4 এসিড দ্রবণে KI এবং $FeSO_4$ মিশালে একটি বিশেষ বিক্রিয়া সংঘটিত হয়।
- 05. বিশেষ বিক্রিয়ায় বিকারক হিসেবে কাজ করে কোনটি?

A. H₂SO₄

B. KMnO₄ C. FeSO₄

D. HCl

06. উদ্দীপকের বিক্রিয়াটির সমতাকরণের উৎপাদ হিসেবে কত অণু পানি পাওয়া

A. 8 H ₂ O B. 10 H ₂ O		H_2O	C. 12 H ₂ O D. 14 H ₂ O		
01.C	02.D	03.C	04.D	05.A	06.A

মহসীন, সুবীর ও জ্যোতির্ময় স্যার

01. STP তে মোলার আয়তন কত?

A. 24.8L C. 22.4L

B. 24.4L

D. 22.789L 02. 0.0001M Ag NO₃ দ্রবণে কত ppm Ag⁺ আছে?

A. 108 C. 180 B. 120 D. 228

ব্যাখ্যা : ppm = $SM \times 10^4 = 0.0001 \times 108 \times 10^4 = 108$

03. H₂SO₄ যৌগে S এর জারণ মান কত?

A. +4 B. +6

C. +2

D. +5

ব্যাখ্যা : $2 + x - 8 = 0 \Rightarrow x = 6$

04. 2.5M NaOH দ্রবণের ঘনমাত্রা শতকরা কত?

B. 15% $\left(\frac{W}{V}\right)$

C. 20% $\left(\frac{W}{V}\right)$ D. 30% $\left(\frac{W}{V}\right)$

ব্যাখ্যা : 2.5M NaOH = $\left(\frac{2.5 \times 40}{10}\right)$ % = 10% $\left(\frac{W}{V}\right)$

05. বিয়োজন ছাড়াই বাষ্পায়িত হয় এমন পদার্থের পৃথকীকরণ ও বিশ্লেষণ যে পদ্ধতিতে হয়-

i. Gas Chromatography

ii. High-performance liquid chromatography

iii. Ultraviolet-visible spectroscopy

নিচের কোনটি সঠিক?

A. i & ii

C. ii & iii

D. i. ii & iii

🔲 নিচের বিক্রিয়াটি লক্ষ্য কর এবং 06 ও 07 দুটি প্রশ্নের উত্তর দাও :

 $2CuSO_4 + 4KI \rightarrow Cu_2I_2 + 2K_2SO_4 + I_2$

06. উপরের বিক্রিয়া থেকে-

i. CuSO₄ জারক ও KI বিজারক হিসেবে ক্রিয়া করে

ii. পটাশিয়ামের জারণ সংখ্যার কোন পরিবর্তন হয় না

iii. 2টি ইলেক্ট্রনের আদান প্রদান ঘটে

নিচের কোনটি সঠিক?

A. i & ii

B. i & iii

C. ii & iii

D. i, ii & iii

ব্যাখ্যা: এই বিক্রিয়ায় 2টি ইলেক্ট্রনের আদান প্রদান হয়েছে।

07. উপরের বিক্রিয়ায় উৎপন্ন ${
m I}_2$ কে নিচের কোন প্রমাণ দ্রবণ দ্বারা ট্রাইটেশন করে Cu^{2+} এর পরিমাণ নির্ণয় করা যাবে?

A. KMnO₄

B. K2Cr2O2

C. $Na_2S_2O_3$

D. COOH-COOH

01.C 02.A 03.B 04.A 05.A 06.D 07.C

স্বপন কুমার মিন্ত্রী স্যার

01. ব্রু-ভিট্রিওলে পানির শতকরা পরিমাণ কত?

A. 30%

B. 35%

C. 18%

D. 36.08%

ব্যাখ্যা : শতকরা পরিমাণ = $\frac{18 \times 5}{249.5} \times 100\%$ (CuSO₄ $5H_2O$) = 36.07%

02. তাপমাত্রার পরিবর্তনের সাথে কোনটির পরিবর্তন হয় না?

A. মোলারিটি

B. নরমালিটি

C. মোলালিটি

D. ফরমালিটি

ব্যাখ্যা : মোলালিটিকে g এবং মোলারিটিকে L এ প্রকাশ করা হয়। L অর্থাৎ আয়তন তাপমাত্রা নির্ভর। অতএব মোলালিটি তাপমাত্রার উপর নির্ভর করে না।

03. 16g মিথেন গ্যাস বলতে কী বুঝ?

i. এক মোল মিথেন

ii. অ্যাভোগেড্রো সংখ্যার সমান মিথেন অণু

ii. 22.4L মিথেন গ্যাস

নিচের কোনটি সঠিক?

A. i

B. ii

C. iii

D. i, ii & iii

ব্যাখ্যা : CH_4 এর 1 মোল = $16g = 22.4L = 6.02 \times 10^{23}$

04. একটি জারণ বিজারণ বিক্রিয়া নিমুরূপ-

 $K_2Cr_2O_7 + 7H_2SO_4 + 6FeSO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 +$

Fe₂(SO₄)₃ + 7H₂O; এই বিক্রিয়ায় K₂Cr₂O₇

i. জারণ ঘটে

ii. বিজারণ ঘটে

iii. জারিত হয়

নিচের কোনটি সঠিক?

A. i

B. i & ii

C. ii & iii

D. iii

 $\overline{\text{gylvjj}}: K_2Cr_2O_7$ এ $\overset{+6}{Cr}$ 3টি ইলেক্ট্রন গ্রহণ করে $Cr_2(SO_4)_3$ তে +3 তে পরিণত হয়েছে। তাই বিজারণ ঘটেছে। উত্তরের অপশন ভূল আছে।

01.D 02.C 03.D 04. নেই

আজমতগীর ও ইকবাল হোসেন স্যার

01. নিচের কোন যৌগটিকে অতিরিক্ত বায়ুর উপস্থিতিতে পোড়ালে কেবল 3মোল কার্বন-ডাই-অক্সাইড ও 3 মোল পানি উৎপন্ন হবে?

A. C_3H_8

B. C₂H₂OH

C. C₂H₃OCH₃

D. CH₃CO₂CH₃

ব্যাখ্যা : $CH_3COOCH_3 + \frac{7}{2}O_2 \rightarrow 3CO_2 + 3H_2O$

02. ক্যালসিয়াম ও পানির বিক্রিয়ায়

 $Ca(s) + 2H_2O(I) \rightarrow Ca(OH)_2(aq) + H_2(g)$

40g ক্যালসিয়াম 100g পানির সাথে বিক্রিয়া করলে দ্রবণের কত ভর অবশিষ্ট থাকবে?

A. 58g

B. 73g

C. 13g

D. 140g

 $03.~Mg+Cr^{3+}
ightarrow Mg^{2+}+Cr~$ জারণ-বিজারণ বিক্রিয়াটি সমতা করা হলে আয়নগুলোর সমষ্টির কত হবে?

A. 2 B. 5

C. 7

D. 10

04. একটি H_2SO_4 নমুনার 24.0 mL পরিমাণকে টাইট্রেট করতে 0.24 MNaOH এর 42.2 mL প্রয়োজন হয়। H2SO4 এর ঘনমাত্রা কত?

A. 0.20M

B. 0.21M

C. 0.41M

D. 0.42M

<u>ব্যাখ্যা</u> : e ₁ S ₁ V ₁ =	$= e_2 S_2 V_2 \Rightarrow s_2 = e_2 S_2 V_2 \Rightarrow s_2 S_2 V_2 \Rightarrow s_2 = e_2 S_2 V_2 \Rightarrow s_2 S_2 V_2 A_2 A_2 V_2 \Rightarrow s_2 S_2 V_2 A_2 V_2 V_2 A_2 V_2 A_2 V_2 A_2 V_2 V_2 A_2 V_2 A_2 V_2 A_2 V_2 A_2 V_2 A_2 V_2 A_2 V_2 V_2 A_2 V_2 $	$=\frac{0.25\times42.22}{25\times2}$	$\frac{\times 1}{}$ = 0.211M
		23 ^ 2	
01 D	02 C	03 B	04.B

বিপ্লব কুমার দেব ও প্রমোদ এলেন গোমেজ স্যার

- 01. KOH ও CH3COOH এর ট্রাইটেশনের উপযুক্ত নির্দেশক কোনটি?
 - A. মিথাইল অরেঞ্জ
- B. ফেনফথ্যালিন
- C. মিথাইল রেড
- D. ফেনল রেড

ব্যাখ্যা : সবল ক্ষার ও দূর্বল এসিড দ্রবণ ক্ষারীয় তাই নির্দেশক অশ্লীয় ফেনফথ্যালিন হবে?

- 02. 250cm³ 0.04M Na₂CO₃ দ্রবণে কত গ্রাম Na₂CO₃ আছে?
 - A. 26.5

B. 10.6

C. 8.6

D. 1.06

ব্রাখ্যা :
$$W = \frac{SMV}{1000} = \frac{0.04 \times 106 \times 250}{1000} = 1.06g$$

- 03. প্রাইমারী স্ট্যান্ডার্ড পদার্থ কোনটি?
 - A. NaOH
- B. HNO₃
- $C. H_2C_2O_4$
- D. H₂SO₄

ব্যাখ্যা : প্রাইমারী স্ট্যান্ডার্ড পদার্থ H₂C₂O₄

- 04. KMnO₄
 - i. একটি বিজারক
- ii. প্রাইমারী স্ট্যান্ডার্ড পদার্থ
- iii. যৌগটিতে Mn এর জারণ মান +7

নিচের কোনটি সঠিক?

A. i & ii

- B. i & iii
- C. ii & iii
- D. i, ii & iii

ব্যাখ্যা : KMnO4 এবং KMnO4একটি জারক।

$$\Rightarrow$$
 $+1+x+(-2) imes 4=0 \Rightarrow x=+7$ অপশনে উত্তর নেই।

- 05. HNO3 ও NaOH এ ট্রাইটেশনের
 - i. প্রশমন বিন্দুর $P^{H}=7$
 - ii. ফেনোফথ্যালিন নির্দেশক হিসেবে কাজ করা যাবে না
 - iii. HNO3 দ্রবণে মিথাইল অরেঞ্জ লাল বর্ণ ধারণ করবে

নিচের কোনটি সঠিক?

A. i & ii

- B. i & iii
- C. ii & iii
- D. i. ii & iii

ব্যাখ্যা: (HNO3) তীব্র এসিড ও তীব্র ক্ষার (NaOH) এ যেকোন নির্দেশক ব্যবহার করা যায় এবং $P^{H}=7$ হয়। এসিডীয় দ্রবণে মিথাইল অরেঞ্জ গোলাপী বর্ণ ধারণ করে।

- 06. 5g পানিতে অক্সিজেন পরমাণুর সংখ্যা কত?
 - A. 1.573×10^{23}
- B. 1.673×10^{23}
- C. 3.346×10^{23}
- D. 6.023×10²³

ব্ৰাখ্যা:
$$\frac{m}{M} = \frac{x}{N_A} \Rightarrow \frac{5}{18} = \frac{x}{6.02 \times 10^{23}} \Rightarrow x = 1.673 \times 10^{23}$$

- 07. 250mL 0.1M Na₂CO₃ দ্রবণ তৈরী করতে কত গ্রাম Na₂CO₃ লাগবে?
 - A. 2.65

B. 2.86

C. 26.5

D. 30.9

ব্ৰাখ্যা:
$$\frac{m}{M} = VS \Rightarrow \frac{m}{106} = 0.250 \times 0.1 \Rightarrow m = 2.65$$

- 08. STP তে 432g HgO উত্তপ্ত করলে কত L অক্সিজেন পাওয়া যাবে?
 - A. 11.2

B. 22.4

D. 32

ব্যাখ্যা :
$${}^{2\text{HgO}}_{432\text{g}} \rightarrow 2\text{Hg} + {}^{0}_{22.4\text{L}}$$

- 09. STP তে 1 মি.লি অ্যামোনিয়াতে প্রাপ্ত অণুর সংখ্যা কত?
 - A. 1.7×10^{12}
- B. 2.7×10^{13}
- C. 3.9×10^{16}
- D. 2.7×10^{19}

ব্যাখ্যা:
$$\frac{v}{22.4} = \frac{x}{N_A} \Rightarrow \frac{1}{22400} = \frac{x}{6.02 \times 10^{23}} \Rightarrow x = 2.7 \times 10^{19}$$

- 10. একটি হাইড্রোজেন পরমাণুর ভর কত?
 - A. 1.67×10^{-24} g
- B. 1.67×10^{-27} g
- C. 3.67×10^{-24} g
- D. 4.67×10^{-27} g

ব্যাখ্যা : একটি হাইড্রোজেন প্রমাণুর ভর $= 1.67 \times 10^{-24} \mathrm{g}$

- একটি অক্সিজেনের পরমাণুর ভর = 2.65×10^{-23}
- একটি কার্বন প্রমাণুর ভর $= 2.99 \times 10^{-23} g$
- 11. সোডিয়াম টেট্রোথায়োনেট যৌগে কেন্দ্রীয় পরমাণুর জারণ মান কত?
 - B. 2.5 C. 3.0
- **311111:** Na₂ S₄O₆ = 0 ⇒ + 1×2 + 4×x + 6 × (-2) = 0

$$\Rightarrow 4x + 2 - 12 = 0$$
 : $x = +2.5$

- 12. জারক বিজারক উভয়রূপে ক্রিয়া করে কোনটি?
 - A. Sn²⁺ B. Sn⁴⁺
- C. Fe²⁺ D. Zn²⁺
- 13. NaOH ফেনোফথ্যালিন যোগ করলে দ্রবণের বর্ণ কী হবে?
 - A. Red

B. Blue

D. 3.5

C. Pink

D. Colorless

ব্যাখ্যা: ফেনোফথ্যালিন ক্ষারীয় দ্রবণে গোলাপী (Pink) বর্ণ তৈরী করে।

- 14. $MnO_4^- + 8H^+? = Mn^{2+} + 4H_2O$;
 - A. 3e

B. 5e

C. 6e

- D. 7e
- 15. H₂SO₄ ও NH₄OH এর ট্রাইটেশনে উপযুক্ত নির্দেশক কোনটি?
 - A. মিথাইল অরেঞ্জ
- B. ফেনফথ্যালিন
- C. ডাই মিথাইল কার্বাজাইড
- D. ফিনাইল হাইড্রোজিন

ব্যাখ্যা: তীব্র এসিড ও মৃদু ক্ষারে মিথাইল অরেঞ্জ ও মিথাইল রেড ব্যবহৃত হয়।

- 16. $Sn^{4+} + 2Fe^{2+} = Sn^{2+} + 2Fe^{3+}$ বিক্রিয়াটিতে কোনটি জারণ ঘটে?
 - A. Sn⁴⁺

B. Fe²⁺

C. Sn²⁺

- $17.\ 35mL\ 0.2M\ Na_2S_2O_3$ দ্রবণকে জারিত করতে কত গ্রাম আয়োডিন প্রয়োজন?
 - A. 0.69
- B. 0.79 C. 0.89

ব্যাখ্যা:
$$s = \frac{1000W}{MV}$$
, $W = \frac{SMV}{1000} = \frac{0.2 \times 174 \times 35}{1000} = 1.218g$

 $I_2 \equiv 2NaS_2O_3$

 $2 \times 174 g \text{ Na}_2 \text{S}_2 \text{O}_3$ জারিত করতে প্রয়োজন = $2 \times 126 g \text{I}_2$

1.218g $Na_2S_2O_3$ জারিত করতে প্রয়োজন $=\frac{2\times126\times1.218}{2\times174}=0.89$ g

01.B	02.D	03.C	04. নেই 13.C	05.B	06.B	07.A	08.B	09.1
10.A	11.B	12.C	13.C	14.B	15.A	16.B	17.C	