

Fourth Industrial Summer School

Advanced Machine Learning

Introduction and Fundamentals

Session Objectives

- ✓ Introduction
- ✓ Fundamentals
- ✓ Regression exercise
- **✓** Summary

Machine Learning

- Arthur Samuel (1959): Field of study that gives computers the ability to learn without being explicitly programmed.
- Tom Mitchell (1998): Well-posed Learning Problem: A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.
- Machine learning vs. algorithms?

4

Machine Learning Topics

- Unsupervised Learning
- Supervised Learning
 - KNNs
 - Linear and logistic regression
 - SVMs
 - Generative models
 - Decision trees and random forests
 - Artificial neural networks and deep learning
- Reinforcement Learning

Supervised Machine Learning

- Regression: Continuous output space
- Classification : Discrete output space

Prediction Models

- Types of Models
 - Discriminative models
 - Generative models
- Decision boundary
 - Linear decision boundaries
 - Non-linear decision boundaries

Linear Regression

Regression problem:

- Response $y \in \mathbb{R}$
- predictor variables $x \in \mathbb{R}^{d}$

Solution:

- Given: data $(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})$
- Return: Linear function of d variables (+ bias):

$$- f(x) = w_1 x_1 + w_2 x_2 + \dots + w_d x_d + b$$

- Goal: minimize the loss function
- Penalize error using squared loss

$$-J(w,b) = \sum_{i=1}^{n} (y - (w \cdot x + b))^{2}$$

Linear Regression

Linear Regression: Closed-form solution

Then the loss function is minimized at:

$$w = (X^T X)^{-1} (X^T y)$$

• Where, w are the weight including the bias term.

Linear Regression: Regularization

Regularization: Minimize squared loss plus a term that penalizes "complex" w:

Ridge:

- $L(w,b) = \sum_{i=1}^{n} (y (w.x + b))^2 + \lambda ||w||^2$
- Solution: $w = (X^TX + \lambda I)^{-1}(X^Ty)$

Lasso: tends to produce sparse w

•
$$L(w,b) = \sum_{i=1}^{n} (y - (w \cdot x + b))^2 + \lambda ||w||$$

Classifier Training

- Loss function
- Minimizing loss (optimization problem)
- Distance measures
- Regularization

Loss Function

- Mean-squared error
- Cross-entropy loss

Minimizing Loss

Training the model

- Analytic solution vs. iterative solution
- Gradient descent and its variants

Distance Measures

- LP Norm
- Edit distance
- KL-Divergence (relative entropy)

• ...

• When is a distance measure a metric?

Bias and Variance

- Train/dev/test
- Parameters vs. hyper-parameters

Case Study-Exercise

References

- Sanjoy Dasgupta, Machine Learning Fundamentals, UC San Diego
- Andrew Ng, Machine Learning, Stanford University
- Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, Foundations of Machine Learning, second edition, The MIT Press
- Andrew Ng, Machine Learning Yearning, deeplearning.ai