Inledning:

Läs igenom hela instruktionen först!

Tanken är att fräscha upp lite C och börja jobba med bitwise-operationer. För en snabb repetition av det binära talsystemet kan ni kika här:

http://www.matteboken.se/lektioner/matte-1/tal/talsystem

Men man kommer ganska långt bara med denna tabell:

128	64	32	16	8	4	2	1
1	0	1	1	0	1	0	1

Så det binära talet: 10110101 =

$$128 + 0 + 32 + 16 + 0 + 4 + 0 + 1 = 181$$

Vi kan kontrollera detta på räknaren i Windows:

Kalkylatorr	1					- 🗆 X
≡ P	ROGRAN	MERAR	E	Minne		
					181	Det finns inget sparat i minnet
HEX B5 DEC 181						
OCT 265 BIN 101	1 0101					
#	\$ QWORD			MS		
Lsh ↑	Rsh ↑	Or	Xor	Not	And	
1	Mod	CE	С	Ø	÷	
А	В	7	8	9	×	
С	D	4	5	6	_	
Е	F	1	2	3	+	
()	±	0	,	=	

Dessa Bit-operatorer låter oss bearbeta bitar (dvs 1:or och 0:or) istället för hela tal (Se det utdragna avsnittet ur boken C från början av Jan Skansholm som ligger på moodle)

Bit-operatorer Är bara definierade för heltalstyper. Utför alla operationerna bit för bit. byter 0 <-> 1 och, bit för bit eller, bit för bit exclusive or vänsterskift högerskift

ÖvningsUppgifter för bitoperationer med Facit:

- 1. Write a C program to check Least Significant Bit (LSB) of a number is set or not.
- 2. Write a C program to check Most Significant Bit (MSB) of a number is set or not.
- 3. Write a C program to get nth bit of a number.
- 4. Write a C program to set nth bit of a number.
- 5. Write a C program to clear nth bit of a number.
- 6. Write a C program to toggle nth bit of a number.
- 7. Write a C program to get highest set bit of a number.
- 8. Write a C program to get lowest set bit of a number.
- 9. Write a C program to count trailing zeros in a binary number.
- 10. Write a C program to count leading zeros in a binary number.
- 11. Write a C program to flip bits of a binary number using bitwise operator.
- 12. Write a C program to total number of zeros and ones in a binary number.
- 13. Write a C program to convert decimal to binary number system using bitwise operator.
- 14. Write a C program to swap two numbers using bitwise operator.
- 15. Write a C program to check whether a number is even or odd using bitwise operator.

Den faktiskt uppgiften att lämna in (hämtad ur boken):

Övning 15.5

Skriv ett program som läser in ett hexadecimalt heltal till en variabel av typen **unsigned int**. Undersök om det inlästa talet innehåller en etta i den tredje biten från höger. Ändra i så fall biten till en nolla och sätt den första biten från höger till en etta. Skriv sedan ut talet i hexadecimal form.