Department of Electrical and Computer Engineering North South University

Senior Design Project

A Minimum-Cost Flow Model for achieving fault-tolerance in Web Application on Cloud using Spot Instance.

Inzamamul Haque Rafat	131 1105 043
Faiza Tasmin Tarjee	141 0283 042
Ayesha Siddika Farhana	141 0991 042
Ayvee Nusreen Anika	151 1059 642
Saadman Musaddic Alam	151 1958 042

Faculty Advisor
Dr. Mohammad Ashrafuzzaman Khan - AZK
Assistant Professor
Department of Electrical and Computer Engineering

LETTER OF TRANSMITTAL

12th September, 2019

To

Prof. Dr. K. M. A. Salam

Professor and Chairman,

Department of Electrical and Computer Engineering,

North South University, Dhaka.

Subject: Submission of Capstone Project on "A Minimum-Cost Flow Model for achieving

Fault-Tolerance in Web Application on Cloud using Spot Instance".

Dear Sir,

With due respect, we would like to submit our Capstone Project Report on "A Minimum-Cost

Flow Model for achieving Fault-Tolerance in Web Application on Cloud using Spot Instance"

as a part of our BSc program. The report deals with a minimum-cost flow model to use in

conjunction with 'Spot Instance' for provisioning availability-critical web-application

efficiently. We tried our level best to make the report meaningful and informative.

The Capstone project was very much valuable to us as it helped us to gain experience from

practical field. It was a great learning experience for us. We tried to the maximum competence

to meet all the dimensions required from this report.

We will be highly obliged if you are kind enough to receive this report and provide your valuable judgment. It would be our immense pleasure if you find this report useful and informative to have an apparent perspective on the issue.

Sincerely Yours,
Inzamamul Haque Rafat Department of ECE North South University, Bangladesh
Faiza Tasmin Tarjee Department of ECE North South University, Bangladesh
Ayesha Siddika Farhana Department of ECE North South University, Bangladesh
Ayvee Nusreen Anika Department of ECE North South University, Bangladesh
Saadman Musaddic Alam Department of ECE North South University, Bangladesh

APPROVAL

The capstone project entitled "A Minimum-Cost Flow Model for achieving Fault-Tolerance in Web Application on Cloud using Spot Instance" by Inzamamul Haque Rafat (131 1105 043), Faiza Tasmin Tarjee (141 0283 042), Ayesha Siddika Farhana (141 0991 042), Ayvee Nusreen Anika (151 1059 642) and Saadman Musaddic Alam (151 1958 042), is approved in partial fulfillment of the requirement of the Degree of Bachelor of Science in Computer Science and Engineering or Electrical and Electronic Engineering on June, 2018 and has been accepted as satisfactory.

Supervisor:
Dr. Mohammad Ashrafuzzaman Khan
Assistant Professor
Department of Electrical and Computer Engineering
North South University
Dhaka, Bangladesh.
Department Chair:

Prof. Dr. K. M. A. Salam

Professor and Chairman,

Department of Electrical and Computer Engineering

North South University

Dhaka, Bangladesh.

DECLARATION

This is our truthful declaration that the "Capstone Project Report" we have prepared is not a copy of any "Capstone Project Report" previously made by any other team. We also express our honest confirmation in support of the fact that the said "Capstone Project Report" has neither been used before to fulfill any other course related purpose nor it will be submitted to any other team or authority in future.

Inzamamul Haque Rafat Department of ECE North South University, Bangladesh
Faiza Tasmin Tarjee
Department of ECE
North South University, Bangladesh
Ayesha Siddika Farhana Department of ECE North South University, Bangladesh
A NT A 1
Ayvee Nusreen Anika
Department of ECE
North South University, Bangladesh
Saadman Musaddic Alam
Department of ECE
North South University, Bangladesh

ACKNOWLEDGEMENT

First of all, we wish to express our gratitude to the Almighty for giving us the strength to perform our responsibilities and complete the report. The accomplishment of this project report benefits of the help and direction from our supervisor Dr. Mohammad Ashrafuzzaman Khan. He was always glad and willing to help and solve the confusions and direct us to the final result of the project. We would also like to share our gratitude towards Khalid Bin A Quadir who helped us through all difficulties while accomplishing this project.

Lastly we are grateful towards all our teachers for guiding us in every steps of life and thankful to our family members for supporting us to work for this project.

ABSTRACT

Cloud providers like Amazon AWS, Google Cloud and Microsoft Azure sell their idle computing capacity at steep discounts through an auction system to maximize the return on investment (ROI). These 'Spot Instances' can be used to deploy Web Applications which require high computing capacity and dynamic scaling. Though the Spot-Instance-based approach can reduce cost of Web Application significantly, the management of auto-scaling can be challenging as the 'Spot Instance' can be terminated by the provider when the bidding price goes below the market standard rate. We describe here a minimum-cost flow model to use in conjunction with 'Spot Instance' for provisioning availability-critical web-application efficiently. Our suggested provisioning system considers real-time prices for Spot Instances based on availability zones, smart Spot Instance selection using application metrics, reversion to the on-demand virtual instance when the price of the Spot Instance exceeds a threshold level. The proposed model was implemented via a simulated framework in AWS. The simulation shows that the proposed model can significantly reduce resource cost and still achieve fault-tolerance in Web Application.

TABLE OF CONTENTS

Chapter 1: Introduction	1
Chapter 2: Literature Review	. 4
2.1 Horizontal Approach of Auto-Scaling for Web Application	. 5
2.2 Auto-Scaling Utilizing Spot Instance.	. 8
Chapter 3: Proposed Auto-Scaling System Model	. 10
3.1 Auto-Scaling Architecture using Spot Instance	11
3.2 Fault-tolerance Strategy	12
3.3 Reliability and cost efficiency of proposed model	14
Chapter 4: Auto-scaling policy	17
4.1 Scaling up Algorithm	18
4.2 Spot Instance bidding price algorithm	18
4.3 Scaling down of on-demand Instance algorithm	19
Chapter 5: Preference evolution of the proposed model	20
5.1 Simulation Environment on AWS	21
Chapter 6: Conclusion	23
APPENDIX	25
Reference.	61