Started on	Thursday, 28 March 2024, 8:09 PM
State	Finished
Completed on	Thursday, 28 March 2024, 8:10 PM
Time taken	1 min 25 secs
Marks	5.00/5.00
Grade	10.00 out of 10.00 (100 %)

Correct

Mark 1.00 out of 1.00

Adott egy $x=(x_1,\dots,x_n)$ vektor. Matlabbal létre szeretnénk hozni az $y=\left(\frac{x_1}{1+x_1^2},\dots,\frac{x_n}{1+x_n^2}\right)$ vektort. Jelölje meg azt a parancsot, mely ezt a vektort hozza létre, és kizárólag a szükséges helyeken tartalmazza a műveleti jel előtt a pontot.

a. $y=x./(1+x.^2)$ b. $y=x/(1+x.^2)$ c. $y=x/(1+x.^2)$ d. $y=x/(1+x.^2)$ e. $y=x./(1+x.^2)$

The correct answer is: $y=x./(1+x.^2)$

Correct

Mark 1.00 out of 1.00

Feladat

Adott egy vektor: $x=(x_1,\ldots,x_n)$. Elő szeretnénk állítani az

$$y=(x_1-\overline{x},\ldots,x_n-\overline{x})$$

vektort, ahol \overline{x} az x vektor elemeinek átlagát jelenti.

Egészítse ki a lenti ablakban az

y =

kezdetű sort úgy, hogy ezt a vektort kapjuk. Ne használjon for-ciklust!

Ne feledkezzen meg a sorvégi pontosvesszőről!

Kiegészítő információk:

Ennél a feladatnál tilos a for, while ciklusok használata.

For example:

Test	Result
x=[-1,5,0,3]; disp(fun(x))	-2.75 3.25 -1.75 1.25
x=[4,5,-1,0,3,1,6]; disp(fun(x))	1.42857 2.42857 -3.57143 -2.57143 0.428571 -1.57143 3.42857

Answer: (penalty regime: 0 %)

```
function y=fun(x)
y = x - mean(x);
end
```

		Test	Expected		
~	/	x=[-1,5,0,3]; disp(fun(x))	-2.75 3.25 -1.75 1.25	-2.75 3.25 -1.75 1.25	~
~	/	x=[4,5,-1,0,3,1,6]; disp(fun(x))	1.42857 2.42857 -3.57143 -2.57143 0.428571 -1.57143 3.42857	1.42857 2.42857 -3.57143 -2.57143 0.428571 -1.57143 3.42857	~

Correct

Mark 1.00 out of 1.00

Feladat

Adott két vektor: $x=(x_1,\ldots,x_n)$ és $y=(y_1,\ldots,y_n)$. Elő szeretnénk állítani a

$$z=(rac{x_1}{y_1}-1,\ldots,rac{x_n}{y_n}-1)$$

vektort

Egészítse ki a lenti ablakban a

z =

kezdetű sort úgy, hogy ezt a vektort kapjuk. Ne használjon for-ciklust!

Ne feledkezzen meg a sorvégi pontosvesszőről!

Kiegészítő információk:

Az y vektor egyik eleme sem 0.

Ennél a feladatnál tilos a for, while ciklusok használata.

For example:

Test	Result
x=[-1,5,0,3]; y=[3,1,2,1]; disp(fun(x,y))	-1.33333 4 -1 2
x=[4,5,-1,0,3,1,6]; y=[1,2,-1,1,2,1,3]; disp(fun(x,y))	3 1.5 0 -1 0.5 0 1

Answer: (penalty regime: 0 %)

```
| function z=fun(x,y) | z = x./y - 1; | end |
```

Correct

Mark 1.00 out of 1.00

Feladat

Adott egy \boldsymbol{x} oszlopvektor. Egészítse ki a lenti ablakban az

u =

kezdetű sort úgy, hogy y egy olyan oszlopvektor legyen, melyet úgy kapunk, hogy az x vektor végére odaírjuk az x elemei közül a legnagyobbat. Ne feledkezzen meg a sorvégi pontosvesszőről!

For example:

Test	Result
x=[-1;5;0;3;-8];	-1
y=fun(x);	5
disp(y)	0
	3
	-8
	5
x=[1;5;-1;0;2;2];	1
y=fun(x);	5
disp(y)	-1
	0
	2
	2
	5

Answer: (penalty regime: 0 %)

```
1 | function y=fun(x)

2 | y = [x ; max(x)];

end
```

	Test	Expected	Got	
~	x=[-1;5;0;3;-8];	-1	-1	~
	<pre>y=fun(x); disp(y)</pre>	5	5	
	disp(y)	0	0	
		3	3	
		-8	-8	
		5	5	

Correct

Mark 1.00 out of 1.00

Feladat

Adottak az \boldsymbol{x} és \boldsymbol{y} sorvektorok. Egészítse ki a lenti ablakban az

2. =

kezdetű sort úgy, hogy z egy olyan sorvektor legyen, melyet úgy kapunk, hogy az x vektor után három 1-est írunk, majd az y vektort. Ne feledkezzen meg a sorvégi pontosvesszőről!

For example:

Test	Result				
x=[-1,5,0,3,-8]; y=[3,6,1]; disp(fun(x,y));	-1 5 0 3 -8 1 1 1 3 6 1				
x=[4,5,-1,0,2,2]; y=[-1,5,1,0,4,4]; disp(fun(x,y));	4 5 -1 0 2 2 1 1 1 -1 5 1 0 4 4				

Answer: (penalty regime: 0 %)

```
function z=fun(x,y)
    z = [x 1 1 1 y];
end
```

	Test	Expected	Got	
~	x=[-1,5,0,3,-8]; y=[3,6,1]; disp(fun(x,y));	-1 5 0 3 -8 1 1 1 3 6 1	-1 5 0 3 -8 1 1 1 3 6 1	~
~	x=[4,5,-1,0,2,2]; y=[-1,5,1,0,4,4]; disp(fun(x,y));	45-1022111-151044	4 5 -1 0 2 2 1 1 1 -1 5 1 0 4 4	~
~	<pre>x=ones(1,7); y=[3,6,-1]; disp(fun(x,y));</pre>	1 1 1 1 1 1 1 1 1 1 3 6 -1	1 1 1 1 1 1 1 1 1 1 3 6 -1	~