Natural variation in teosinte at the domestication locus

$teosinte\ branched1\ (tb1)$

- ${\bf 3}$ Laura Vann¹, Thomas Kono¹,², Tanja Pyhäjärvi¹,³, Matthew B. Hufford*¹,⁴, and
- 4 Jeffrey Ross-Ibarra^{†1,5}

 $\mathbf{2}$

- ¹Department of Plant Sciences, University of California Davis
- 6 ²Department of Agronomy and Plant Genetics, University of Minnesota Twin Cities
- ³Department of Biology, University of Oulu
- 8 ⁴Department of Ecology, Evolution, and Organismal Biology, Iowa State University
- 9 ⁵Center for Population Biology and Genome Center, University of California Davis

10 May 20, 2014

^{*}mhufford@iastate.edu

[†]rossibarra@ucdavis.edu

ı Abstract

- 2 The teosinte branched1 (tb1) gene, a repressor of lateral organ growth, is a major QTL
- 3 involved in branching differences between maize and its wild progenitor, teosinte.
- 4 Previous work has shown that the insertion of a transposable element (Hopscotch)
- 5 upstream of tb1 enhances the gene's expression, causing much of the reduction in tillering
- 6 observed in domesticated maize. Observations of the maize tb1 allele in teosinte
- 7 individuals, coupled with estimates of an age of insertion of the Hopscotch element that
- 8 predates domestication, led us to investigate its prevalence and potential role in teosinte.
- 9 Results from genotyping across many natural populations suggest that the Hopscotch
- 10 element is segregating at a higher than expected frequency in a number of populations of
- 11 two subspecies of teosinte, Zea mays ssp. parviglumis and Zea mays ssp. mexicana.
- 12 Analysis of linkage disequilibrium between the *Hopscotch* element and variation in
- 13 surrounding regions does not support a hypothesis of recent introgression from maize into
- 14 teosinte. Population genetic signatures, however, are consistent with selection on this
- 15 locus and suggest the *Hopscotch* insertion at tb1 may play an ecological role in teosinte.
- 16 Finally, two greenhouse experiments with Zea mays ssp. parviglumis do not suggest tb1
- 17 controls tillering in natural populations of this subspecies. Our findings suggest that the
- 18 role of the Hopscotch in tillering in teosinte differs from domesticated maize, and that
- 19 other loci may play a role in observed variation in this trait.

INTRODUCTION

2	Domesticated crops and their wild progenitors provide an excellent system in which to
3	study adaptation and genomic changes associated with human-mediated selection
4	(Ross-Ibarra et al., 2007). Perhaps the central focus of the study of domestication has
5	been the identification of genetic variation underlying agronomically important traits
6	such as fruit size and plant architecture (Olsen and Gross, 2010). Additionally, many
7	domesticates show reduced genetic diversity when compared to their wild progenitors,
8	and an understanding of the distribution of diversity in the wild and its phenotypic
9	effects has become increasingly useful to crop improvement (Kovach and McCouch, 2008)
10	But while some effort has been invested into understanding how wild alleles behave in
11	their domesticated relatives (e.g. Bai and Lindhout, 2007), very little is known about the
12	role that alleles found most commonly in domesticates play in natural populations of
13	their wild progenitors (Whitton J, 1997).
14	Maize ($Zea\ mays\ ssp.\ mays$) was domesticated from the teosinte $Zea\ mays\ ssp.$
15	parviglumis (hereafter, $parviglumis$) roughly 9,000 B.P. in southwest Mexico (Piperno
16	et al., 2009; Matsuoka et al., 2002). Domesticated maize and the teosintes are an
17	attractive system in which to study domestication due to the abundance of genetic tools
18	${\it developed for maize and well-characterized domestication loci (Hufford et al., 2012a;}$
19	Doebley, 2004; Hufford et al., 2012b). Additionally, large naturally occurring populations
20	of both Zea mays ssp. parviglumis (the wild progenitor of maize) and Zea mays ssp.
21	mexicana (highland teosinte; hereafter $mexicana$) can be found throughout Mexico
22	(Wilkes, 1977; Hufford et al., 2013), and genetic diversity of these taxa is estimated to be
23	high (Ross-Ibarra et al., 2009).
24	Many morphological changes are associated with maize domestication, and
25	understanding the genetic basis of these changes has been a focus of maize research for a
26	number of years (Doebley, 2004). One of the most dramatic changes is found in plant
27	architecture: domesticated maize is characterized by a central stalk with few tillers and

- 1 lateral branches terminating in a female inflorescence, while teosinte is highly tillered and
- 2 bears tassels (male inflorescences) at the end of its lateral branches. The teosinte
- 3 branched1 (tb1) gene, a repressor of organ growth, was identified as a major QTL
- 4 involved in branching (Doebley et al., 1995) and tillering (Doebley and Stec, 1991)
- 5 differences between maize and teosinte. A 4.9 kb retrotransposon (Hopscotch) insertion
- 6 into the upstream control region of tb1 in maize acts to enhance expression of tb1, thus
- 7 repressing lateral organ growth (Doebley et al., 1997; Studer et al., 2011). Dating of the
- 8 Hopscotch retrotransposon suggests that its insertion predates the domestication of
- 9 maize, leading to the hypothesis that it was segregating as standing variation in ancient
- 10 populations of teosinte and increased to high frequency in maize due to selection during
- 11 domestication (Studer et al., 2011). The effects of the *Hopscotch* insertion have been
- 12 studied in maize (Studer et al., 2011), and analysis of teosinte alleles at tb1 has identified
- 13 functionally distinct allelic classes (Studer and Doebley, 2012), but little is known about
- 14 the role of tb1 or the Hopscotch insertion in natural populations of teosinte.
- 15 In teosinte and other plants that grow at high population density, individuals detect
- 16 competition from neighbors via the ratio of red to far-red light. An increase in far-red
- 17 relative to red light accompanies shading and triggers the shade avoidance syndrome: a
- 18 suite of physiological and morphological changes such as reduced tillering, increased plant
- 19 height and early flowering (Kebrom and Brutnell, 2007). The tb1 locus appears to play
- 20 an important role in the shade avoidance pathway in Zea mays and other grasses and
- 21 may therefore be crucial to the ecology of teosinte (Kebrom and Brutnell, 2007; Lukens
- 22 and Doebley, 1999). In this study we aim to characterize the distribution of the
- 23 Hopscotch insertion in parviglumis, mexicana, and landrace maize, and to examine the
- 24 phenotypic effects of the insertion in parviglumis. We use a combination of PCR
- 25 genotyping for the *Hopscotch* element in our full panel and sequencing of two small
- 26 regions upstream of tb1 in a subset of teosinte populations to explore patterns of genetic
- 27 variation at this locus. Finally, we test for an association between the *Hopscotch* element

1 and tillering phenotypes in a population of parviglumis.

MATERIALS AND METHODS

3 Sampling and genotyping

 $\mathbf{2}$

- 4 We sampled 1,110 individuals from 350 accessions (247 maize landraces, 17 mexicana
- 5 populations, and 86 parviglumis populations) and assessed the presence or absence of the
- 6 Hopscotch insertion (Table S1 and Table S2). DNA was extracted from leaf tissue using a
- 7 modified CTAB approach (Doyle and Doyle, 1990; Maloof et al., 1984). We designed
- 8 primers using PRIMER3 (Rozen and Skaletsky, 2000) implemented in Geneious (Kearse
- 9 et al., 2012) to amplify the entire *Hopscotch* element, as well as an internal primer
- 10 allowing us to simultaneously check for possible PCR bias between presence and absence
- 11 of the Hopscotch insertion. Two PCRs were performed for each individual, one with
- 12 primers flanking the Hopscotch (HopF/HopR) and one with a flanking primer and an
- 13 internal primer (HopF/HopIntR). Primer sequences are HopF,
- 14 5'-TCGTTGATGCTTTGATGGATGG-3'; HopR, 5'-AACAGTATGATTTCATGGGACCG-3';
- and HopIntR, 5'-CCTCCACCTCTCATGAGATCC-3' (Fig. S1, Fig. S2) Primers in Fig. S1 should
- 16 be labeled. Homozygotes show a single band for absence of the element (~ 300 bp) and two
- 17 bands for presence of the element (~5kb and XX LV, please add the size of the second band),
- 18 whereas heterozygotes are three-banded (Fig. S2). When only one PCR resolved well, we
- 19 scored one allele for the individual. We used Phusion High Fidelity Enzyme (Thermo
- 20 Fisher Scientific Inc., Waltham, Massachusetts, USA) and the following conditions for
- 21 amplifications: 98°C for 3 min, 30 cycles of 98°C for 15 s, 65°C for 30 s, and 72°C for 3
- 22 min 30 s, with a final extension of 72°C for 10 min. PCR products were visualized on a
- 23 1% agarose gel and scored for presence/absence of the *Hopscotch* based on band size.

1 Sequencing

- 2 In addition to genotyping, we chose a subset of parviglumis individuals for sequencing.
- 3 We chose twelve individuals from each of four populations from Jalisco state, Mexico
- 4 (San Lorenzo, La Mesa, Ejutla A, and Ejutla B). For amplification and sequencing, we
- 5 selected two regions approximately 600bp in size from within the 5' UTR of tb1 (Region
- 6 1) and from 1,235bp upstream of the start of the Hopscotch (66,169bp upstream from the
- 7 start of the tb1 ORF; Region 2). We designed the following primers using PRIMER3
- 8 (Rozen and Skaletsky, 2000): for the 5' UTR, 5-'GGATAATGTGCACCAGGTGT-3' and
- 9 5'-GCGTGCTAGAGACACYTGTTGCT-3'; for the 66kb upstream region,
- 10 5'-TGTCCTCGCCGCAACTC-3' and 5'-TGTACGCCCGCCCCTCATCA-3' (Fig. S1). We
- 11 used Taq polymerase (New England Biolabs Inc., Ipswich, Massachusetts, USA) and the
- 12 following thermal cycler conditions to amplify fragments: 94°C for 3 min, 30 cycles of
- 13 92°C for 40 s, annealing for 1 min, 72°C for 40 s, and a final 10 min extension at 72°C.
- 14 Annealing temperatures for Region 1 and Region 2 were 59.7°C and 58.8°C, respectively.
- 15 To clean excess primer and dNTPs we added two units of Exonuclease1 and 2.5 units of
- 16 Antarctic Phosphatase to 8.0 μ L of amplification product. This mix was placed on a
- 17 thermal cycler with the following program: 37°C for 30 min, 80°C for 15 min, and a final
- 18 cool-down step to 4°C.
- 19 We cloned cleaned fragments into a TOPO-TA vector (Life Technologies, Grand
- 20 Island, New York, USA) using OneShot TOP10 chemically competent E. coli cells, with
- 21 an extended ligation time of 30 min for a complex target fragment. We plated cells on LB
- 22 agar plates containing kanamycin, and screened colonies using vector primers M13
- 23 Forward and M13 Reverse under the following conditions: 96°C for 5 min; then 35 cycles
- 24 at 96°C for 30 s, 53°C for 30 s, 72°C for 2 min; and a final extension at 72°C for 4 min.
- 25 We visualized amplification products for incorporation of our insert on a 1% agarose TAE
- **26** gel.
- 27 Amplification products with successful incorporation of our insert were cleaned using

- 1 Exonuclease 1 and Antarctic Phosphatase following the procedures detailed above, and
- 2 sequenced with vector primers M13 Forward and M13 Reverse using Sanger sequencing at
- 3 the College of Agriculture and Environmental Sciences (CAES) sequencing center at UC
- 4 Davis. We aligned and trimmed primer sequences from resulting sequences using the
- 5 software Geneious (Kearse et al., 2012). Following alignment, we verified singleton SNPs
- 6 by sequencing an additional one to four colonies from each clone. If the singleton was not
- 7 present in these additional sequences it was considered an amplification or cloning error,
- 8 and we replaced the base with the base of the additional sequences. If the singleton
- 9 appeared in at least one of the additional sequences we considered it a real variant and
- 10 kept it for further analyses.

11 Genotyping analysis

- 12 We examined discrepancies between observed and expected genotype frequencies by
- 13 calculating Hardy-Weinberg Equilibrium (HWE). To calculate differentiation between
- 14 populations (F_{ST}) and subspecies (F_{CT}) we used HierFstat (Goudet, 2005). These
- 15 analyses only included populations in which 8 or more individuals were sampled. To test
- 16 the hypothesis that the Hopscotch insertion may be adaptive under certain environmental
- 17 conditions, we looked for significant associations between the *Hopscotch* frequency and
- 18 environmental variables using BayEnv (Coop et al., 2010). BayEnv creates a covariance
- 19 matrix of relatedness between populations and then tests a null model that allele
- 20 frequencies in populations are determined by the covariance matrix of relatedness alone
- 21 against the alternative model that allele frequencies are determined by a combination of
- 22 the covariance matrix and an environmental variable, producing a posterior probability
- 23 (i.e., Bayes Factor; Coop et al. 2010). We used genotyping and covariance data from
- 24 Pyhäjärvi et al. (2013) for BayEnv, with the Hopscotch insertion coded as an additional
- 25 SNP (Table S3). Environmental data were obtained from www.worldclim.org, the
- 26 Harmonized World Soil Database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) and

- 1 www.harvestchoice.org and summarized by principle component analysis following
- **2** Pyhäjärvi et al. (2013).

3 Sequence analysis

- 4 For population genetic analyses of sequenced Region 1 and sequenced Region 2 we used
- 5 the Libsequence package (Thornton, 2003) to calculate pairwise F_{ST} between populations
- 6 and to calculate standard diversity statistics (number of haplotypes, haplotype diversity,
- 7 Watterson's estimator $\hat{\theta}_W$, pairwise nucleotide diversity $\hat{\theta}_{\pi}$, and Tajima's D). To produce
- 8 a visual representation of differentiation between sequences and examine patterns in
- 9 sequence clustering by *Hopscotch* genotype we used Phylip
- 10 (http://evolution.genetics.washington.edu/phylip.html), creating
- 11 neighbor-joining trees with bootstrap-supported nodes (100 repetitions). For creation of
- 12 trees we also included homologous sequence data from Maize HapMapV2 (Chia et al.,
- 13 2012) for teosinte inbred lines (TILs), some of which are known to be homozygous for the
- 14 Hopscotch insertion (TIL03, TIL17, TIL09), as well as 59 lines of domesticated maize.

15 Introgression analysis

- 16 In order to assess patterns of linkage disequilibrium (LD) around the Hopscotch element
- 17 in the context of chromosomal patterns of LD we used Tassel (Bradbury et al., 2007) and
- 18 calculated LD between SNPs across chromosome 1 using previously published data from
- 19 twelve plants each of the Ejutla A (EjuA), Ejutla B (EjuB), San Lorenzo (SLO), and La
- 20 Mesa (MSA) populations (Pyhäjärvi et al., 2013). We chose these populations because we
- 21 had both genotyping data for the *Hopscotch* as well as chromosome-wide SNP data for
- 22 chromosome 1. For each population we filtered the initial set of 5,897 SNPs on
- 23 chromosome 1 to accept only SNPs with a minor allele frequency of at least 0.1, resulting
- 24 in 1,671, 3,023, 3,122, and 2,167 SNPs for SLO, EjuB, EjuA, and MSA, respectively. We
- 25 then used Tassel (Bradbury et al., 2007) to calculate linkage disequilibrium (r^2) across

- 1 chromosome 1 for each population.
- 2 We examined evidence of introgression on chromosome 1 in these same four
- 3 populations (EjuA, EjuB, MSA, SLO) using STRUCTURE (Falush et al., 2003) and
- 4 phased data from Pyhäjärvi et al. (2013), combined with the corresponding SNP data
- 5 from a diverse panel of 282 maize lines (Cook et al., 2012). SNPs were anchored in a
- 6 modified version of the IBM genetic map (Gerke et al., 2013). We created haplotype
- 7 blocks using a custom Perl script that grouped SNPs separated by less than 5kb into
- 8 haplotypes. We ran STRUCTURE at K=2 under the linkage model, performing 3
- 9 replicates with an MCMC burn-in of 10,000 steps and 50,000 steps post burn-in.

10 Phenotyping of parviglumis

- 11 To investigate the phenotypic effects of the *Hopscotch* insertion in teosinte, we conducted
- 12 an initial phenotyping trial (Phenotyping 1). We germinated 250 seeds of parviglumis
- 13 collected in Jalisco state, Mexico (population San Lorenzo) (Hufford, 2010) where the
- 14 Hopscotch is segregating at highest frequency (0.44) in our initial genotyping sample set.
- 15 In order to maximize the likelihood of finding the *Hopscotch* in our association
- 16 population we selected seeds from sites where genotyped individuals were homozygous or
- 17 heterozygous for the insertion. We chose between 10-13 seeds from each of 23 sampling
- 18 sites. We treated seeds with fungicide and germinated them in petri dishes with filter
- 19 paper. Following germination, 206 successful germinations were planted into one-gallon
- 20 pots with potting soil and randomly spaced one foot apart on greenhouse benches. Plants
- 21 were watered three times a day by hand and with an automatic drip containing 10-20-10
- 22 fertilizer.
- 23 Starting on day 15, we measured tillering index as the ratio of the sum of tiller
- 24 lengths to the height of the plant (Briggs et al., 2007). Following initial measurements,
- 25 we phenotyped plants for tillering index every 5 days through day 40, and then on day 50
- 26 and day 60. On day 65 we measured culm diameter between the third and fourth nodes

- 1 of each plant. Culm diameter is not believed to be correlated with tillering index or
- 2 variation at tb1. Following phenotyping we extracted DNA from all plants using a
- 3 modified SDS extraction protocol (http://www.ars.usda.gov). what is this url? We
- 4 genotyped individuals for the *Hopscotch* insertion following the protocols listed above.
- 5 Based on these initial data, we conducted a post hoc power analysis using data from day
- 6 40 of Phenotyping 1, indicating that a minimum of 71 individuals in each genotypic class
- 7 would be needed to detect the observed effect of the *Hopscotch* on tillering index.
- 8 We performed a second phenotyping experiment (Phenotyping 2) in which we
- 9 germinated 372 seeds of parviglumis, choosing equally between sites previously
- 10 determined to have or not have the *Hopscotch* insertion. Seeds were germinated and
- 11 planted on day 7 post fruit-case removal into two gallon pots. Plants were watered twice
- 12 daily, alternating between fertilized and non-fertilized water. We began phenotyping
- 13 successful germinations (302 plants) for tillering index on day 15 post fruit-case removal,
- 14 and phenotyped every five days until day 50. At day 50 we measured culm diameter
- 15 between the third and fourth nodes. We extracted DNA and genotyped plants following
- 16 the same guidelines as in Phenotyping 1.
- 17 Tillering index data for each genotypic class did not meet the criteria for a repeated
- 18 measures ANOVA, so we transformed the data using a Box-Cox transformation ($\alpha = 0$
- 19 what is the alpha value here?; Car Package for R, Fox and Weisberg 2011) to improve the
- 20 normality and homogeneity of variance among genotype classes. We analyzed
- 21 relationships between genotype and tillering index and tiller number using a repeated
- 22 measures ANOVA through a general linear model function implemented in SAS v.9.3
- 23 (SAS Institute Inc., Cary, NC, USA). Additionally, in order to compare any association
- 24 between Hopscotch genotype and tillering and associations at other presumably unrelated
- 25 traits, we performed an ANOVA between culm diameter and genotype using the same
- 26 general linear model in SAS.

Figure 1: Map showing the frequency of the *Hopscotch* allele in populations of *parviglumis* where we sampled more than 6 individuals. Size of circles reflects number of alleles sampled.

RESULTS

2 Genotyping

1

- 3 Genotype of the *Hopscotch* insertion was confirmed with two PCRs for 837 individuals.
- 4 Among the 247 maize landrace accessions genotyped, all but eight were homozygous for
- 5 the presence of the insertion (Table S1 and Table S2). Within our parviglumis and
- 6 mexicana samples we found the Hopscotch insertion segregating in 37 and 4 populations,
- 7 respectively, and at highest frequency in the states of Jalisco, Colima, and Michoacán in
- 8 central-western Mexico (Fig. 1).
- 9 Using our *Hopscotch* genotyping, we calculated differentiation between populations
- 10 (F_{ST}) and subspecies (F_{CT}) for populations in which we sampled 8 or more alleles. We
- 11 found that $F_{CT} = 0$, and levels of F_{ST} among populations within each subspecies (0.22)
- 12 and among all populations (0.23) are these an average of pairwise or is this calculated among all pops?
- 13 are similar to those reported genome-wide in previous studies (Pyhäjärvi et al. 2013;
- 14 Table 1). Although we found large variation in *Hopscotch* allele frequency among our

- 1 populations, BayEnv analysis did not indicate a correlation between the Hopscotch
- 2 insertion and environmental variables (all Bayes Factors < 1; Table S3).

Table 1: Pairwise F_{ST} values from sequence and *Hopscotch* genotyping data

Comparison	Region 1	Region 2	Hopscotch
EjuA & EjuB	0	0	0
EjuA & MSA	0.326	0.328	0.186
EjuA & SLO	0.416	0.258	0.280
EjuB & MSA	0.397	0.365	0.188
EjuB & SLO	0.512	0.290	0.280
MSA & SLO	0.007	0	0.016

3 Sequencing

- 4 To investigate patterns of sequence diversity and linkage disequilibrium (LD) in the tb1
- 5 region, we sequenced two small (<1kb) regions upstream of the tb1 ORF in four
- 6 populations. After alignment and singleton checking we recovered 48 and 40 segregating
- 7 sites for the 5' UTR region (Region 1) and the 66kb upstream region (Region 2),
- 8 respectively. For Region 1, Ejutla A has the highest values of haplotype diversity, and θ_{π} ,
- 9 while Ejutla B and La Mesa have comparable values of these summary statistics, and San
- 10 Lorenzo has much lower values. Additionally, Tajima's D is strongly negative in the two
- 11 Ejutla populations and La Mesa, but is less negative in San Lorenzo (Table 2). need to
- 12 reference Hopscotch frequencies in supplemental table somewhere For Region 2, haplotype diversity
- 13 and θ_{π} , are similar for Ejutla A and Ejutla B, while La Mesa and San Lorenzo have
- 14 slightly lower values for these statistics (Table 2). Tajima's D is positive in all
- 15 populations except San Lorenzo, is the table wrong? MSA is the only negative value in the table
- 16 indicating an excess of low frequency variants in this population (Table 2). Pairwise

- 1 values of F_{ST} within population pairs Ejutla A/Ejutla B and San Lorenzo/La Mesa are 0
- 2 for both sequenced regions as well as for the Hopscotch table 1 shows 0.016 for hopscotch, not 0.
- 3 which is right?, while they are high for other population pairs (Table 1). Neighbor joining
- 4 trees of our sequence data and data from the teosinte inbred lines (TILs; data from Maize
- 5 HapMapV2, Chia et al. 2012) do not reveal any clear clustering pattern with respect to
- 6 population or *Hopscotch* genotype (Figure S3); individuals within our sample that have
- 7 the Hopscotch insertion do not group with the teosinte inbred lines or domesticated maize
- 8 that have the *Hopscotch* insertion.

Table 2: Population genetic statistics from resequenced regions near the tb1 locus

Population	# Haplotypes	Hap. Diversity	$\hat{ heta}_{\pi}$	Tajima's D			
Region 1(5' UTR)							
EJUA	8	0.859	0.005	-1.650			
EJUB	5	0.709	0.004	-1.831			
MSA	6	0.682	0.004	-1.755			
SLO	3	0.318	0.001	-0.729			
	Region	2 (66kb upstream)					
EJUA	8	0.894	0.018	0.623			
EJUB	8	0.894	0.016	0.295			
MSA	3	0.682	0.011	-0.222			
SLO	4	0.742	0.014	0.932			

9 Evidence of introgression

- 10 The highest frequency of the *Hopscotch* insertion in teosinte was found in *parviglumis*
- 11 sympatric with cultivated maize. Our initial hypothesis was that the high frequency of
- 12 the Hopscotch element in these populations could be attributed to introgression from

- 1 maize into teosinte. To investigate this possibility we examined overall patterns of linkage
- 2 disequilibrium across chromosome one and specifically in the tb1 region. If the Hopscotch
- 3 is found in these populations due to recent introgression we would expect to find large
- 4 blocks of linked markers near this element. We find no evidence of elevated linkage
- 5 disequilibrium between the *Hopscotch* and SNPs surrounding the *tb1* region in our
- 6 resequenced populations (Fig. 2), and r^2 in the tb1 region does not differ significantly
- 7 between populations with (average r^2 of 0.085) and without (average $r^2 = 0.082$) the
- 8 Hopscotch genotype. In fact, average r^2 is lower in the tb1 region ($r^2 = 0.056$) than
- 9 across the rest of chromosome 1 ($r^2 = 0.083$) (3). LV, please go through and make sure the data
- 10 entered into all the tables is correct. In Table 3, both sequenced regions were labeled as "Region 1". I changed the
- 11 second to Region 2 but don't know if the data in this column are really from Region 2

Table 3: r^2 values between SNPs on chromosome 1, in the broad tb1 region, within the 5' UTR of tb1 (Region 1), and 66kb upstream of tb1 (Region 2).

Population	Chr. 1	tb1 region	Region 1	Region 2
Ejutla A	0.095	0.050	0.747	0.215
Ejutla B	0.069	0.051	0.660	0.186
La Mesa	0.070	0.053	0.914	0.766
San Lorenzo	0.101	0.067	0.912	0.636

- 12 The lack of clustering of *Hopscotch* genotypes in our NJ tree as well as the lack of LD
- 13 around tb1 does not support the hypothesis that the Hopscotch insertion in these
- 14 populations of parviglumis is the result of recent introgression. However, to further
- 15 explore this hypothesis we performed a STRUCTURE analysis using Illumina
- 16 MaizeSNP50 data from four of our parviglumis populations (EjuA, EjuB, MSA, and
- 17 SLO) and the maize 282 diversity panel (Cook et al., 2012; Pyhäjärvi et al., 2013). The
- 18 linkage model implemented in STRUCTURE can be used to identify ancestry of blocks of

Figure 2: Linkage disequilibrium for SNPs in Mb 261-268 on chromosome 1. The yellow rectangle indicates the location of the *Hopscotch* insertion and the green represents the *tb1* ORF. A) Ejutla A; B) Ejutla B; C) La Mesa; D). San Lorenzo

this needs description of what upper and lower triangle are

- 1 linked variants, which would arise as a result of recent admixture between populations. If
- 2 the Hopscotch insertion is present in populations of parviglumis as a result of recent
- 3 admixture with domesticated maize, we would expect the insertion and linked variants in
- 4 surrounding sites to be assigned to the "maize" cluster in our STRUCTURE runs, not
- 5 the "teosinte" cluster. In all runs, assignment to maize in the tb1 region across all four
- 6 parviglumis populations is low (average 0.017) and much below the chromosome-wide

Figure 3: STRUCTURE assignment to maize across a section of chromosome 1. The dotted lines mark the beginning of the sequenced region 50kb upstream (Sequenced region 2) and the end of the tb1 ORF.

1 average (0.20; Table 4; Fig. 3).

Table 4: Assignments to maize and teosinte in the tb1 and chromosome 1 regions from STRUCTURE

	tb1	region	\mathbf{C}	hr 1
Population	Maize	Teosinte	Maize	Teosinte
Ejutla A	0.022	0.978	0.203	0.797
Ejutla B	0.019	0.981	0.187	0.813
La Mesa	0.012	0.988	0.193	0.807
San Lorenzo	0.016	0.984	0.205	0.795

1 Phenotyping

- 2 To assess the contribution of tb1 to phenotypic variation in tillering in a natural
- 3 population, we grew plants from seed sampled from the San Lorenzo population of
- 4 parviglumis, which had a high mean frequency (0.44) of the Hopscotch insertion based on
- 5 our initial genotyping. We measured tillering index (TI), the ratio of the sum of tiller
- 6 lengths to plant height, for 216 plants (Phenotyping 1) from within the San Lorenzo
- 7 population, and genotyped plants for the *Hopscotch* insertion. We found the *Hopscotch*
- 8 segregating at a frequency of 0.65 with no significant deviations from expected
- 9 frequencies under Hardy-Weinberg equilibrium. After performing a repeated measures
- 10 ANOVA between our transformed tillering index data and Hopscotch genotype we find a
- 11 weak positive correlation between presence of the *Hopscotch* and tillering index on day 40
- 12 (p=0.0848), a result indicating the *Hopscotch* may actually increase tillering in
- 13 parviglumis in contrast to its phenotypic effect in maize. We find no correlation between
- 14 tillering index and genotype on any other day (4). Additionally we find no significant
- 15 correlation between tiller number and Hopscotch genotype, or culm diameter and
- 16 Hopscotch genotype in Phenotyping 1.
- We performed a second grow-out of *parviglumis* from San Lorenzo (Phenotyping 2)
- 18 to assess whether lighting conditions or sample size may have affected our ability to
- 19 detect an effect of tb1. For the second grow-out we measured tillering index every five
- 20 days through day 50 for 302 plants. We found the Hopscotch allele segregating at a
- 21 frequency of 0.69, is it in HWE in this pop? with a 0.6 frequency of Hopscotch homozygotes,
- 22 and a 0.2 frequency of both heterozygotes and homozygotes for the teosinte allele. We
- 23 found similar patterns, with a weak positive correlation between tillering index and
- 24 Hopscotch genotype at day 40 (p<0.0611), with no significant correlation on any day.
- 25 Similarly, relationships between Hopscotch genotype and tiller number and Hopscotch
- 26 genotype and culm diameter were not significant.

Figure 4: Box-plots showing tillering index in greenhouse grow-outs for Phenotyping 1 (A) and Phenotyping 2 (B). White indicates individuals homozygous for the *Hopscotch*, light grey represents heterozygotes, and dark grey represents homozygotes for the teosinte (No *Hopscotch*) allele. Within boxes, dark black lines represent the median, and the edges of the boxes are the first and third quartiles. *please explain whiskers and dots on figure too*.

DISCUSSION

2	Adaptation occurs due to selection on standing variation or de novo mutations.
3	Adaptation from standing variation has been well-described in a number of systems; for
4	example, selection for lactose tolerance in humans (Plantinga et al., 2012 ; Tishkoff et al.,
5	2007), variation at the Eda locus in three-spined stickleback (Kitano et al., 2008;
6	Colosimo et al., 2005), and pupal diapause in the Apple Maggot fly (Feder et al., 2003).
7	Although the adaptive role of standing variation has been described in many systems, its
8	importance in domestication is not as well studied.
9	In maize, alleles at domestication loci ($RAMOSA1$, Sigmon and Vollbrecht 2010;
10	barren stalk1, Gallavotti et al. 2004; and grassy tillers1, Whipple et al. 2011) are thought
11	to have been selected from standing variation, suggesting that diversity already present in
12	teosinte may have played an important role in maize domestication. The $teosinte$
13	branched1 gene is one of the best characterized domestication loci, and, while previous
14	studies have suggested that differences in plant architecture between maize and teosinte
15	are a result of selection on standing variation at this locus, little is known about natural
16	variation at this locus and its ecological role in teosinte (Clark et al., 2006; Studer et al.,
17	2011). Studer et al. (2011) genotyped 90 accessions of teosinte (inbred and outbred),
18	providing the first evidence that the $Hopscotch$ insertion is segregating in teosinte (Studer
19	et al., 2011).
20	Given that the $Hopscotch$ insertion has been estimated to predate the domestication
21	of maize, it is not surprising that it can be found segregating in populations of teosinte.
22	However, by widely sampling across teosinte populations our study provides greater
23	insight into the distribution and prevalence of the $Hopscotch$ in teosinte. While our
24	findings are consistent with Studer et al. (2011) in that we identify the $Hopscotch$ allele
25	segregating in teosinte, we find it at higher frequency than previously suggested (Studer
26	et al., 2011). Many of our populations with high frequency of the <i>Hopscotch</i> allele fall in
27	the Jalisco cluster identified by Fukunaga (2005), suggesting a different history of the $tb1$

- 1 locus in this region than in the Balsas River Basin where maize was domesticated
- 2 (Matsuoka et al., 2002). Potential explanations for the high frequency of the Hopscotch
- 3 element in parviglumis from the Jalisco cluster include gene flow from maize, genetic
- 4 drift, and natural selection.
- 5 While gene flow from crops into their wild relatives is well-known, (Ellstrand et al.,
- 6 1999; Zhang et al., 2009; Thurber et al., 2010; Baack et al., 2008; Hubner et al., 2012;
- 7 Wilkes, 1977; van Heerwaarden et al., 2011; Barrett, 1983), our results are more
- 8 consistent with Hufford et al. (2013) who found resistance to introgression from maize
- 9 into teosinte. Furthermore, Hufford et al. (2013) showed that domestication loci, such as
- 10 tb1, are particularly resistant to introgression in both directions of gene flow (i.e., maize
- 11 to teosinte and teosinte to maize). We find no evidence of recent introgression in our
- 12 analyses. Clustering patterns in our NJ trees do not reflect a pattern expected if maize
- 13 alleles at the tb1 locus had introgressed into populations of teosinte. Moreover, there is
- 14 no signature of elevated LD in the tb1 region relative to the rest of chromosome 1, and
- 15 Bayesian assignment to a maize cluster in this region is lower than the chromosome-wide
- 16 average (Fig. 3, Table 4). Together, these data point to an explanation other than recent
- 17 introgression for the high observed frequency of Hopscotch in a subset of our parviglumis
- 18 populations.
- 19 Although recent introgression seems unlikely, we cannot rule out ancient introgression
- 20 as an explanation for the presence of the Hopscotch in these populations. If the
- 21 Hopscotch allele was introgressed in the distant past, recombination may have broken up
- 22 LD, a process that would be consistent with our data. We find this scenario less
- 23 plausible, however, as there is no reason why gene flow should have been high in the past
- 24 but absent in present-day sympatric populations. In fact, early generation maize-teosinte
- 25 hybrids are common in these populations today (MB Hufford, pers. observation), and
- 26 genetic data support ongoing gene flow between domesticated maize and both mexicana
- 27 and parviglumis in a number of sympatric populations (Hufford et al., 2013; Ellstrand

- 1 et al., 2007; van Heerwaarden et al., 2011).
- 2 Remaining explanations for differential frequencies of the *Hopscotch* among teosinte
- 3 populations include both genetic drift and natural selection. Drift may have played a role
- 4 in the San Lorenzo parviglumis population. Previous studies using both SSRs and
- 5 genome-wide SNP data have found evidence for a population bottleneck in the San
- 6 Lorenzo population (Hufford, 2010; Pyhäjärvi et al., 2013), and the lower levels of
- 7 sequence diversity in this population in the 5' UTR (Region 1) coupled with more
- 8 positive values of Tajima's D are consistent with these earlier findings suggesting a
- 9 bottleneck. deviations from HWE may be consistent too if we see excess of homozygotes. do we? Such
- 10 population bottlenecks can exaggerate the effects of genetic drift through which the
- 11 Hopscotch allele may have risen to high frequency entirely by chance. This bottleneck,
- 12 however, does not explain the high frequency of the *Hopscotch* in multiple populations in
- 13 the Jalisco cluster. Moreover, available information on diversity and population structure
- 14 among Jaliscan populations (Hufford, 2010; Pyhäjärvi et al., 2013) is not suggestive of
- 15 recent colonization or other demographic events that would predict a high frequency of
- 16 the allele across populations. Finally, values of the Tajima's D statistic in the 5' UTR of
- 17 tb1 are suggestive of natural selection acting upon the gene in natural population of
- 18 parviglumis. Whereas the genome-wide average of Tajima's D in genic regions of
- 19 parviglumis is 0.45 (Hufford et al., 2012b), the statistic is quite negative in the 5' UTR of
- 20 tb1 (Table 2). This result is consistent with repeated selective sweeps near tb1 and a
- 21 putative ecological role for the gene in parviglumis.
- 22 do we know the Hop genotype for sequenced lines? can we separate the sequences into hop/no hop and look
- 23 for differences? it wasn't until we did this that gt1 stuff really popped out. we should know for some of them, i
- 24 will check I've added a few sentences on selection. Do we still want to compare sequences with and without
- 25 Hopscotch? I agree its a good idea and could end up being really interesting. Perhaps something we could look at
- ${\bf 26} \quad {\it after submission and incorporate during revisions?}$
- 27 Significant effects of the *Hopscotch* insertion on lateral branch length, number of

- 1 cupules, and tillering index in domesticated maize have been well documented (Studer
- 2 et al., 2011). Weber et al. (2007) have described significant phenotypic associations
- 3 between markers in and around tb1 and lateral branch length and female ear length in a
- 4 sample from 74 natural populations of parviglumis (Weber et al., 2007); however, these
- 5 data did not include markers from the *Hopscotch* region 66kb upstream of tb1. Our study
- 6 is the first to explicitly examine the phenotypic effects of the *Hopscotch* insertion across a
- 7 wide collection of individuals sampled from natural populations of teosinte. We have
- 8 found no significant effect of the *Hopscotch* insertion on tillering index or tiller number, a
- 9 result that is discordant with its clear phenotypic effects in maize. One interpretation of
- 10 this result would be that the *Hopscotch* controls tillering in maize (Studer et al., 2011),
- 11 but tillering in teosinte is affected by variation at other loci. Consistent with this
- 12 interpretation, tb1 is thought to be part of a complex pathway controlling branching,
- 13 tillering and other phenotypic traits (Kebrom and Brutnell, 2007; Clark et al., 2006). A
- 14 recent study by Studer and Doebley (2012) examined variation across traits in a
- 15 three-taxa allelic series at the tb1 locus. Studer and Doebley (2012) introgressed nine
- 16 unique teosinte tb1 segments (one from Zea diploperennis, and four each from mexicana
- 17 and parviglumis) into an inbred maize background and investigated phenotypic effects.
- 18 Phenotypes were shown to cluster by taxon, indicating tb1 may underlie morphological
- 19 diversification of Zea. Additional analysis in Studer and Doebley (2012) suggested
- 20 tillering index was controlled both by tb1 and loci elsewhere in the genome. Clues to the
- 21 identity of these loci may be found in QTL studies that have identified loci controlling
- 22 branching architecture (e.q., Doebley and Stec 1991, 1993). Many of these loci (qrassy
- 23 tillers, gt1; tassel-replaces-upper-ears1, tru1; terminal ear1, ter1) have been shown to
- 24 interact with tb1 (Whipple et al., 2011; Li, 2012), and both tru1 and ter1 affect the same
- 25 phenotypic traits as tb1 (Doebley et al., 1995). tassel-replaces-upper-ears1 (tru1), for
- 26 example, has been shown to act either epistatically or downstream of tb1, affecting both
- 27 branching architecture (decreased apical dominance) and tassel phenotypes (shortened

- 1 tassel and shank length and reduced tassel number; Li 2012). Variation in these
- 2 additional loci may have affected tillering in our collections and contributed to the lack of
- 3 correlation we see between *Hopscotch* genotype and tillering.
- 4 In conclusion, our findings demonstrate that the *Hopscotch* allele is more widespread
- 5 in populations of parviglumis and mexicana than previously thought. Analysis of linkage
- 6 using SNPs from across chromosome 1 does not suggest that the *Hopscotch* allele is
- 7 present in these populations due to recent introgression; however, it seems unlikely that
- 8 the insertion would have drifted to high frequency in multiple populations. We do,
- 9 however, find preliminary evidence of selection on the tb1 locus in parviglumis; this
- 10 coupled with our observation of high frequency of the Hopscotch insertion in a number of
- 11 populations suggests that the locus plays an ecological role in teosinte. In contrast to
- 12 domesticated maize, the Hopscotch insertion in parviglumis does not appear to reduce
- 13 tillering. Other loci involved in branching architecture may regulate tillering in teosinte.
- 14 Future studies should examine expression levels of tb1 in teosinte with and without the
- 15 Hopscotch insertion and further characterize the effects of additional loci involved in
- 16 branching architecture (e.g. gt1, tru1, and ter1). These data, in conjunction with more
- 17 exhaustive phenotyping, should help reveal the ecological significance of the domesticated
- 18 tb1 allele in natural populations of teosinte. why not Phyb and phya? Are they necessary to
- 19 include? I'd had them in before in a paragraph but had been voted out. I'd ditch qt1 tru1 ter1 and maybe just cite
- 20 some people including phyb etc.
- 21 please check format of supp figs and tables; some are running off the page. you can use "longtable" to fix that
- 22 (ask Paul for example). check fig/table references, bibliography, etc. what does "rotation" mean in supp. table 3?
- 23 it isn't mentioned in methods, please check that all the tables and figs (including supplement) are referenced in the
- 24 text.

1 References

- 2 Baack, E., Y. Sapir, M. Chapman, J. Burke, and L. Rieseberg. 2008. Selection
- 3 on domestication traits and quantitative trait loci in crop-wild sunflower hybrids. *Mol*
- 4 Ecol 17: 666–677.
- 5 BAI, Y. AND P. LINDHOUT. 2007. Domestication and breeding of tomatoes: What have
- 6 we gained and what can we gain in the future? Annals of Botany 100: 1085–1094.
- 7 Barrett, S. 1983. Crop mimicry in weeds. Econ Bot 37: 255–282.
- 8 Bradbury, P., Z. Zhang, D. Kroon, T. Casstevens, Y. Ramdoss, and
- 9 E. Buckler. 2007. Tassel: software for association mapping of complex traits in
- diverse samples. *Bioinformatics* 23: 2633–2635.
- 11 Briggs, W., M. McMullen, B. Gaut, and J. Doebley. 2007. Linkage mapping of
- domestication loci in a large maize-teosinte backcross resource. Genetics 177:
- **13** 1915–1928.
- 14 Chia, J., C. Song, P. Bradbury, D. Costich, N. De, Leon, J. Doebley,
- 15 R. Elshire, B. Gaut, L. Geller, J. Glaubitz, M. Gore, K. Guill,
- J. HOLLAND, M. HUFFORD, J. LAI, M. LI, X. LIU, Y. LU, R. McCOMBIE,
- 17 R. Nelson, J. Poland, B. Prasanna, T. Pyhäjärvi, T. Rong, R. Sekhon,
- 18 Q. Sun, M. Tenaillon, F. Tian, J. Wang, X. Xu, Z. Zhang, S. Kaeppler,
- 19 J. Ross-Ibarra, M. McMullen, E. Buckler, G. Zhang, Y. Xu, and D. Ware.
- 20 2012. Maize hapmap2 identifies extant variation from a genome in flux. Nat Genet 44:
- **21** 803–U238.
- 22 Clark, R., T. Wagler, P. Quijada, and J. Doebley. 2006. A distant upstream
- enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and
- inflorescent architecture. Nat Genet 38: 594–597.

- 1 COLOSIMO, P., K. HOSEMANN, S. BALABHADRA, G. VILLARREAL, M. DICKSON,
- 2 J. Grimwood, J. Schmutz, R. Myers, D. Schluter, and D. Kingsley. 2005.
- 3 Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin
- 4 alleles. Science 307: 1928–1933.
- 5 COOK, J., M. McMullen, J. Holland, F. Tian, P. Bradbury, J. Ross-Ibarra,
- 6 E. Buckler, and S. Flint-Garcia. 2012. Genetic architecture of maize kernel
- 7 composition in the nested association mapping and inbred association panels. *Plant*
- 8 Physiol 158: 824–834.
- 9 Coop, G., D. Witonsky, A. Di, Rienzo, and J. Pritchard. 2010. Using
- 10 environmental correlations to identify loci underlying local adaptation. Genetics 185:
- **11** 1411–1423.
- 12 Doebley, J. 2004. The genetics of maize evolution. Annu Rev Genet 38: 37–59.
- 13 Doebley, J. and A. Stec. 1991. Genetic-analysis of the morphological differences
- between maize and teosinte. Genetics 129: 285–295.
- 15 DOEBLEY, J. AND A. STEC. 1993. Inheritance of the morphological differences between
- maize and teosinte: Comparison of results for two f₂ populations. Genetics 134:
- **17** 559–570.
- 18 Doebley, J., A. Stec, and C. Gustus. 1995. teosinte branched1 and the origin of
- maize: Evidence for epistasis and the evolution of dominance. Genetics 141: 333–346.
- 20 Doebley, J., A. Stec, and L. Hubbard. 1997. The evolution of apical dominance in
- 21 maize. Nature 386: 485–488.
- 22 Doyle, J. and J. Doyle. 1990. A rapid total dna preparation procedure for small
- quantities of fresh tissue. Phytochemical Bulletin 19: 11–15.

- 1 Ellstrand, N., L. Garner, S. Hedge, R. Guadagnuolo, and L. Blancas. 2007.
- 2 Spontaneous hybridization between maize and teosinte. Journal of Heredity 98:
- **3** 183–187.
- 4 Ellstrand, N., H. Prentice, and J. Hancock. 1999. Gene flow and introgression
- 5 from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30: 539–563.
- 6 Falush, D., M. Stephens, and J. Pritchard. 2003. Inference of population structure
- 7 using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics
- **8** 164: 1567–1587.
- 9 FAO/IIASA/ISRIC/ISSCAS/JRC. 2012. Harmonized World Soil Database, version
- 10 1.2. FAO, Rome, Italy and IIASA, Laxenburg, Austria.
- 11 Feder, J., S. Berlocher, J. Roethele, H. Dambroski, J. Smith, W. Perry,
- 12 V. GAVRILOVIC, K. FILCHAK, J. RULL, AND M. ALUJA. 2003. Allopatric genetic
- origins for sympatric host-plant shifts and race formation in rhagoletis. P Natl Acad
- 14 Sci Usa 100: 10314–10319.
- 15 Fox, J. and S. Weisberg. 2011. An R Companion to Applied Regression, vol. Second
- 16 Edition. Sage, Thousand Oaks, CA.
- 17 FUKUNAGA, N.-W. T. L. B. Z. Q. V. Y. F. M. B. K. L. L. D. J., K. 2005. Genetic
- diversity and population structure of teosinte. Genetics 169: 2241–2254.
- 19 Gallavotti, A., Q. Zhao, J. Kyozuka, R. Meeley, M. Ritter, J. Doebley,
- 20 M. PE, AND R. SCHMIDT. 2004. The role of barren stalk1 in the architecture of maize.
- **21** Nature 432: 630–635.
- 22 Gerke, J., J. Edwards, G. KE, J. Ross-Ibarra, and M. McMullen. 2013. The
- 23 genomic impacts of drift and selection for hybrid performance in maize. arXiv
- **24** 1307.7313.

- 1 GOUDET, J. 2005. Hierfstat, a package for r to compute and test hierarchical f-statistics.
- 2 Mol Ecol Notes 5: 184–186.
- 3 Hubner, S., T. Gunther, A. Flavell, E. Fridman, A. Graner, A. Korol, and
- 4 K. Schmid. 2012. Islands and streams: clusters and gene flow in wild barley
- 5 populations from the levant. Mol Ecol 21: 1115–1129.
- 6 Hufford, M. 2010. Genetic and ecological approaches to guide conservation of teosinte
- 7 (zea mays ssp. parviglumis), the wild progenitor of maize. *PhD Dissertation*: 130pp.
- 8 Hufford, M., P. Bilinski, T. Pyhäjärvi, and J. Ross-Ibarra. 2012a. Teosinte as a
- 9 model system for population and ecological genomics. Trends in Genetics 12: 606–615.
- 10 Hufford, M., P. Lubinsky, T. Pyhäjärvi, M. Devengenzo, N. Ellstrand, and
- 11 J. Ross-Ibarra. 2013. The genomic signature of crop-wild introgression in maize.
- 12 PLoS Genetics 9: e1003477.
- 13 Hufford, M., X. Xu, J. van, Heerwaarden, T. Pyhäjärvi, J. Chia,
- 14 R. Cartwright, R. Elshire, J. Glaubitz, K. Guill, S. Kaeppler, J. Lai,
- 15 P. Morrell, L. Shannon, C. Song, N. Springer, R. Swanson-Wagner,
- 16 P. Tiffin, J. Wang, G. Zhang, J. Doebley, M. McMullen, D. Ware,
- 17 E. Buckler, S. Yang, and J. Ross-Ibarra. 2012b. Comparative population
- genomics of maize domestication and improvement. Nat Genet 44: 808–U118.
- 19 Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock,
- 20 S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton,
- 21 P. MEINTJES, AND A. DRUMMOND. 2012. Geneious basic: An integrated and
- 22 extendable desktop software platform for the organization and analysis of sequence
- **23** data. *Bioinformatics* 28: 1647–1649.
- 24 Kebrom, T. and T. Brutnell. 2007. The molecular analysis of the shade avoidance
- 25 syndrome in the grasses has begun. Journal of Experimental Botany 58: 3079–3089.

- 1 KITANO, J., D. BOLNICK, D. BEAUCHAMP, M. MAZUR, S. MORI, T. NAKANO, AND
- 2 C. Peichel. 2008. Reverse evolution of armor plates in the threespine stickleback.
- **3** Curr Biol 18: 769–774.
- 4 KOVACH, M. AND S. McCouch. 2008. Leveraging natural diversity: back through the
- 5 bottleneck. Genome studies and Molecular Genetics 11: 193–200.
- 6 Li, W. 2012. Tassels replace upper ears1 encodes a putative transcription factor that
- 7 regulates maize shoot architecture by multiple pathways. *PhD Dissertation*: 122.
- 8 Lukens, L. and J. Doebley. 1999. Epistatic and environmental interactions for
- 9 quantitative trait loci involved in maize evolution. Genet Res 74: 291–302.
- 10 Maloof, M., K. Soliman, R. Jorgensen, and R. Allard. 1984. Ribosomal dna
- spacer length polymorphisms in barley mendelian inheritance, chromosomal location,
- and population dynamics. P Natl Acad Sci Usa 81: 8014–8018.
- 13 Matsuoka, Y., Y. Vigouroux, M. Goodman, G. Sanchez, E. Buckler, and
- 14 J. Doebley. 2002. A single domestication for maize shown by multilocus
- microsatellite genotyping. P Natl Acad Sci Usa 99: 6080–6084.
- 16 OLSEN, K. AND B. GROSS. 2010. Genetic perspectives on crop domestication. Trends in
- 17 Plant Science 15: 529–537.
- 18 PIPERNO, D., A. RANERE, I. HOLST, J. IRIARTE, AND R. DICKAU. 2009. Starch grain
- 19 and phytolith evidence for early ninth millennium by maize from the central balsas
- 20 river valley, mexico. P Natl Acad Sci Usa 106: 5019–5024.
- 21 Plantinga, T., S. Alonso, N. Izagirre, M. Hervella, R. Fregel, J. van der
- 22 Meer, M. Netea, and C. de la Rua. 2012. Low prevalence of lactase persistence in
- neolithic south-west europe. Eur J Hum Genet 20: 778–782.

- 1 Pyhäjärvi, T., M. Hufford, and J. Ross-Ibarra. 2013. Complex patterns of local
- adaptation in the wild relatives of maize. Genome Biology and Evolution 5: 1594–1609.
- 3 Ross-Ibarra, J., P. Morrell, and B. Gaut. 2007. Plant domestication, a unique
- 4 opportunity to identify the genetic basis of adaptation. P Natl Acad Sci Usa 104:
- **5** 8641–8648.
- 6 Ross-Ibarra, J., M. Tenaillon, and B. Gaut. 2009. Historical divergence and gene
- 7 flow in the genus zea. *Genetics* 181: 1399–1413.
- 8 ROZEN, S. AND H. SKALETSKY. 2000. Primer3 on the www for general users and for
- 9 biologist programmers. Methods in Molecular Biology: 365–386.
- 10 Sigmon, B. and E. Vollbrecht. 2010. Evidence of selection at the ramosal locus
- during maize domestication. Mol Ecol 19: 1296–1311.
- 12 Studer, A. and J. Doebley. 2012. Evidence for a natural allelic series at the maize
- domestication locus teosinte branched1. Genetics 19: 951–958.
- 14 Studer, A., Q. Zhao, J. Ross-Ibarra, and J. Doebley. 2011. Identification of a
- functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:
- **16** 1160–U164.
- 17 Thornton, K. 2003. libsequence: a c++ class library for evolutionary genetic analysis.
- 18 Bioinformatics 19: 2325–2327.
- 19 Thurber, C., M. Reagon, B. Gross, K. Olsen, Y. Jia, and A. Caicedo. 2010.
- 20 Molecular evolution of shattering loci in us weedy rice. Mol Ecol 19: 3271–3284.
- 21 TISHKOFF, S., F. REED, A. RANCIARO, B. VOIGHT, C. BABBITT, J. SILVERMAN,
- 22 K. Powell, H. Mortensen, J. Hirbo, M. Osman, M. Ibrahim, S. Omar,
- 23 G. Lema, T. Nyambo, J. Ghori, S. Bumpstead, J. Pritchard, G. Wray, and

- 1 P. Deloukas. 2007. Convergent adaptation of human lactase persistence in africa and
- **2** europe. *Nat Genet* 39: 31–40.
- 3 VAN HEERWAARDEN, J., J. DOEBLEY, W. BRIGGS, J. GLAUBITZ, M. GOODMAN,
- 4 J. GONZALEZ, AND J. ROSS-IBARRA. 2011. Genetic signals of origin, spread, and
- 5 introgression in a large sample of maize landraces. P Natl Acad Sci Usa 108:
- **6** 1088–1092.
- 7 Weber, A., R. Clark, L. Vaughn, J. Sanchez-Gonzalez, J. Yu, B. Yandell,
- 8 P. Bradbury, and J. Doebley. 2007. Major regulatory genes in maize contribute to
- 9 standing variation in teosinte (zea mays ssp parviglumis). Genetics 177: 2349–2359.
- 10 Whipple, C., T. Kebrom, A. Weber, F. Yang, D. Hall, R. Meeley,
- 11 R. Schmidt, J. Doebley, T. Brutnell, and D. Jackson. 2011. grassy tillers1
- 12 promotes apical dominance in maize and responds to shade signals in the grasses. P
- 13 Natl Acad Sci Usa 108: E506–E512.
- 14 WHITTON J, A. D. S. A. R. L., WOLF DE. 1997. The persistence of cultivar alleles in
- wild populations of sunflowers fiver generations after hybridization. Theoretical and
- **16** Applied Genetics 95: 33–40.
- 17 WILKES, H. 1977. Hybridization of maize and teosinte, in mexico and guatemala and the
- improvement of maize. Economic Botany 31: 254–293.
- 19 Zhang, L., Q. Zhu, Z. Wu, J. Ross-Ibarra, B. Gaut, S. Ge, and T. Sang. 2009.
- 20 Selection on grain shattering genes and rates of rice domestication. New Phytol 184:
- **21** 708–720.
- 22 Supplementary Materials

Accession	USDA Accession ID	Locality	Number alleles sampled	Hopscotch
RIHY0009	N/A	N/A	2	
RIMME0006	566673	Durango, Mexico	2	
RIMME0007	566680	Guanajuato, Mexico	2	
RIMME0008	566681	Michoacan, Mexico	2	
RIMME0009	566682	Distrito Federal, Mexico	2	
RIMME0011	566685	Mexico, Mexico	2	
RIMME0014	714151	Breeders line; Puga: 11066	6	
RIMME0017	699874	Ayotlan, Mexico	8	
RIMME0021	N/A	El Porvenir, Mexico	69	0
RIMME0026	N/A	Opopeo, Mexico	42	0
RIMME0028	N/A	Puruandiro, Mexico	28	0
RIMME0029	N/A	Ixtlan, Mexico	35	
RIMME0030	N/A	San Pedro, Mexico	27	
RIMME0031	N/A	Tenango del Aire, Mexico	25	
RIMME0032	N/A	Nabogame, Mexico	24	
RIMME0033	N/A	Puerta Encantada, Mexico	25	
RIMME0034	N/A	Santa Clara, Mexico	23	
RIMME0035	N/A	Xochimilco, Mexico	25	
RIMPA0001	87168	El Salado, Mexico	4	
RIMPA0003	87171	Mazatlan, Mexico	8	
RIMPA0017	87200	N/A	4	
RIMPA0019	87213	El Salado, Mexico	2	
RIMPA0029	87244	N/A	2	
RIMPA0031	87249	N/A	2	
RIMPA0035	87288	Jalisco, Mexico	4	
RIMPA0040	288185	Mexico, Mexico	4	
RIMPA0042	288187	Guerrero, Mexico	4	
RIMPA0043	288188	34 Guerrero, Mexico	4	
RIMPA0045	288193	Guerrero, Mexico	4	
RIMPA0055	714152	Breeders line	2	
RIMPA0056	714153	Breeders line	2	
RIMPA0057	714154	Breeders line	2	
RIMPA0058	N/A	N/A	4	

Accession	Number of alleles sampled	Hopscotch Frequency
RIMMA0066	2	1
RIMMA0075	2	1
RIMMA0077	2	1
RIMMA0079	2	1
RIMMA0081	2	1
RIMMA0084	2	1
RIMMA0086	2	1
RIMMA0088	2	1
RIMMA0089	2	1
RIMMA0090	2	1
RIMMA0092	4	1
RIMMA0094	4	1
RIMMA0097	2	1
RIMMA0099	2	1
RIMMA0100	2	1
RIMMA0101	2	1
RIMMA0104	2	1
RIMMA0108	2	1
RIMMA0111	6	1
RIMMA0115	2	1
RIMMA0117	2	1
RIMMA0130	2	1
RIMMA0133	2	1
RIMMA0134	2	1
RIMMA0135	2	1
RIMMA0142	2	0.5
RIMMA0143	4	1
RIMMA0146	4 35	1
RIMMA0149	2	1
RIMMA0152	2	1
RIMMA0153	2	1
RIMMA0154	2	1
RIMMA0155	2	1

PC		PC5		PC4		PC3		PC2		PC1
Va	Rot	Var	Rot	Var	Rot	Var	Rot	Var	Rot	Var
bio	0.38	bio2	0.41	ts_clay	0.287	prec7	0.244	bio4	0.146	bio1
x_mc	0.328	sq4	0.359	v_mod	0.276	prec8	0.241	bio3	0.146	tmean11
SC	0.289	ts_loam	0.329	ts_sand	0.262	prec11	0.241	bio7	0.145	tmean12
bio	0.266	ts_sand	0.272	bio15	0.247	bio13	0.237	prec6	0.145	bio11
v_mc	0.231	sq7	0.259	prec4	0.246	prec1	0.218	sq7	0.145	tmax12
precl	0.213	bio18	0.244	x_mod	0.242	bio16	0.217	prec9	0.145	tmin5
bio1	0.207	bio13	0.226	prec3	0.24	prec12	0.207	sq3	0.145	tmean1
SC	0.183	prec11	0.21	sq3	0.238	bio19	0.207	prec12	0.145	tmean2
SC	0.17	bio7	0.21	prec5	0.231	bio12	0.204	bio12	0.145	an 14
ts_sar	0.163	bio16	0.19	prec7	0.222	prec2	0.196	bio19	0.145	tmax1
bio	0.157	bio4	0.186	sq4	0.221	bio18	0.188	prec2	0.145	tmean4
pred	0.156	bio12	0.185	bio3	0.2	sq4	0.185	prec1	0.144	tmin11
tmax	0.155	bio3	0.178	bio18	0.18	prec9	0.184	prec10	0.144	tmax11
tmax	0.154	prec6	0.132	sq7	0.171	prec10	0.183	bio16	0.144	tmin12
bio	0.152	x_mod	0.116	bio14	0.161	prec5	0.17	prec8	0.144	tmin2
tmax	0.144	prec9	0.099	bio13	0.154	prec4	0.165	prec5	0.144	tmean5
bio	0.143	prec8	0.095	bio16	0.147	sq3	0.158	bio14	0.144	tmean10
ts_loa:	0.142	v_mod	0.09	prec8	0.143	bio2	0.151	bio13	0.144	bio6
$\mathrm{ts_cla}$	0.136	bio15	0.077	bio7	0.129	bio17	0.149	bio17	0.144	tmax2
tmir	0.112	prec7	0.075	bio4	0.127	ts_loam	0.144	prec3	0.144	tmean3
tmir	0.108	prec4	0.074	bio2	0.123	v_{mod}	0.141	ts_clay	0.143	an 1
pred	0.096	bio14	0.074	prec2	0.113	prec3	0.129	bio2	0.143	tmin10
tmin1	0.093	tmax7	0.068	bio19	0.111	x_mod	0.108	prec7	0.143	Altitude
tmin1	0.092	tmax8	0.056	prec12	0.099	bio14	0.107	tmax6	0.143	bio9
tmir	0.091	prec1	0.053	ts_loam	0.07	bio4	0.106	x_mod	0.143	tmin3
tmear	0.086	prec2	0.047	tmax12	0.067	tmax3	0.098	bio15	0.142	bio10
tmax	0.086	tmin11	0.047	bio17	0.065	ts_clay	0.088	ts_loam	0.142	tmax10
tmax	0.082	prec5	0.043	bio9	0.056	bio15	0.085	tmean6	0.142	tmax3
tmear	0.082	bio17	0.042	tmax8	0.055	tmax2	0.082	tmin7	0.142	tmax4
bio	0.08	tmin12	0.041	tmax1	0.052	tmean3	0.082	bio5	0.142	tmin6
tmin	0.078	prec3	0.039	tmax5	0.05	ts_sand	0.081	tmean7	0.141	tmean9
pre	0.078	tmax9	0.039	tmax7	0.048	prec6	0.08	prec4	0.141	tmin9

Ejutla A	4	0.15217	0.11902	0.76191
Ejutla B	5	0.15258	0.14877	0.07412
La Mesa	3	0.12802	0.08926	1.09209
San Lorenzo	3	0.09098	0.08926	0.04845