WS 2019/20 Shestakov

Übungsaufgaben zur Vorlesung "Analysis I"

Blatt 5

Aufgabe 1. Beweisen Sie mittels der $\varepsilon-N$ -Definition, dass $\lim_{n\to\infty}\frac{2-n}{2+n}=-1$. Geben Sie in diesem Fall zu $\varepsilon=\frac{1}{10}$ ein $N\in\mathbb{N}$ wie in der Definition einer konvergenten Folge an.

Aufgabe 2. Untersuchen Sie die Folgen $(a_n)_{n\in\mathbb{N}}$ auf Konvergenz und bestimmen Sie gegebenenfalls ihren Grenzwert:

a)
$$a_n = \frac{1}{n(\sqrt{n^2+1}-n)}$$

b)
$$a_n = \frac{n^3}{n^2+3} - \frac{2n^2}{2n+1}$$

c)
$$a_n = \sqrt[n]{n^2 + 13^n - 1}$$

d)
$$a_n = \frac{n!}{2^n}$$

Aufgabe 3. Sei $P(x) := a_l x^l + ... + a_1 x + a_0$, $a_l \neq 0$, ein Polynom vom Grad l und $Q(x) := b_m x^m + ... + b_1 x + b_0$, $b_m \neq 0$, ein Polynom vom Grad m. Zeigen Sie:

a)
$$\exists N \in \mathbb{N} \, \forall n \geq N : Q(n) \neq 0$$

b)
$$\lim_{n\to\infty} \frac{P(n)}{Q(n)} = \begin{cases} \frac{a_l}{b_m}, & \text{falls} \quad l=m, \\ 0, & \text{falls} \quad l< m, \\ \pm \infty, & \text{falls} \quad l>m \end{cases}$$

Aufgabe 4. Untersuchen Sie jeweils, ob $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge ist (Beweis oder Gegenbeispiel), wenn für alle $\varepsilon > 0$ ein $N \in \mathbb{N}$ existiert, sodass für alle $n \geq N$ gilt:

- a) $|a_n| < \frac{1}{6}$
- b) $|a_n| < n\varepsilon$
- c) $|a_{n+1}| < \varepsilon |a_n|$

Abgabe: Bis 22. November vor Vorlesungsbeginn in das Postfach Ihrer Tutorin bzw. Ihres Tutors.

Aufgabe	1	2				3		4			
		a	b	c	d	a	b	a	b	c	
Punkte	2	2	2	2	2	2	3	1	2	2	20

Präsenzaufgaben

1. Beweisen Sie mittels der $\varepsilon - N$ -Definition, dass $\lim_{n \to \infty} \frac{1}{n^3 + n + 5} = 0$.

2. Sei $a \in \mathbb{R}$. Welche Folgen $(a_n)_{n \in \mathbb{N}}$ werden durch folgende Bedingungen charakterisiert? Formulieren Sie die charakterisierende Eigenschaft möglichst einfach.

a)
$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n : |a_n - a| < \varepsilon$$

b)
$$\exists \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N : |a_n - a| < \varepsilon$$

c)
$$\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \forall n \ge N : |a_n - a| < \varepsilon$$

d)
$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N : |a_n - a| < \varepsilon$$

e)
$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \; \exists n \geq N : |a_n - a| \leq \varepsilon$$

f)
$$\exists N \in \mathbb{N} \ \forall \varepsilon > 0 \ \forall n \ge N : |a_n - a| < \varepsilon$$

3. Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge nichtnegativer Zahlen mit $a_n\to a$. Dann ist $a\geq 0$ und es gilt $\sqrt{a_n}\to \sqrt{a}$.

4. Berechnen Sie $\lim_{n\to\infty} x_n$, falls:

a)
$$x_n = \sqrt{n^2 - 1} - n - 1$$

b)
$$x_n = (\frac{2019}{n})^n$$

c)
$$x_n = \sqrt[n]{n^3 - 3n + 13}$$

d)
$$x_n = \frac{n^3}{\binom{2n}{n}}$$

e)
$$x_n = \frac{1 + \frac{1}{2} + \dots + \frac{1}{2n}}{1 + \frac{1}{3} + \dots + \frac{1}{3n}}$$

f)
$$x_n = \frac{(-1)^n 6^n - 5^{n+1}}{5^n - (-1)^{n+1} 6^{n+1}}$$

5. Beweisen oder widerlegen Sie:

a) ? Sei $(x_n)_{n\in\mathbb{N}}$ eine konvergente und $(y_n)_{n\in\mathbb{N}}$ eine divergente Folge. Dann divergiert die Folge $(x_ny_n)_{n\in\mathbb{N}}$. ?

b) ? Sei $(x_n)_{n\in\mathbb{N}}$ eine konvergente und $(y_n)_{n\in\mathbb{N}}$ eine divergente Folge. Dann divergiert die Folge $(x_n+y_n)_{n\in\mathbb{N}}$. ?

c) ? Wenn die Folge $(|x_n|)_{n\in\mathbb{N}}$ konvergiert, dann konvergiert auch die Folge $(x_n)_{n\in\mathbb{N}}$.?

d) ? Konvergiert die Folge $(x_n)_{n\in\mathbb{N}}$ gegen a, so konvergiert die Folge $(|x_n|)_{n\in\mathbb{N}}$ gegen |a|. ?

e) ? Wenn die Folge $(x_n)_{n\in\mathbb{N}}$ konvergiert und $x_n \neq 0$ für alle $n \in \mathbb{N}$, dann konvergiert die Folge $\left(\frac{x_{n+1}}{x_n}\right)_{n\in\mathbb{N}}$. ?

2