Chapitre 29

Groupe symétrique

29	Groupe symétrique
	29.26Lemme 26
	29.29Propriété fondamentale de la signature
	29.35 Décomposition d'une transposition à l'aide des τ_i
	29.37Caractère générateur des transpositions
	29.40Effet de la conjugaison sur un cycle
	29.41 Corollaire 29.41
	29.42Unicité de la signature
	29.52Décomposition en cycle d'une permutation
	29.62Décomposition d'un cycle en transpositions
	29.63Signature d'un cycle
	29.64 Détermination de ϵ par le type cyclique
	29.69Exemple

29.26 Lemme 26

Lemme 29.26

Soit $\sigma \in \mathcal{S}_n$. On a :

$$\left| \prod_{1 \le i < j \le n} (\sigma(i) - \sigma(j)) \right| = \prod_{X \in \mathcal{P}_2(\llbracket 1, n \rrbracket)} \delta_{\sigma}(X) = \prod_{1 \le i < j \le n} (j - i)$$

- La première égalité est justifiée car on a une bijection entre $\{(i,j) \mid 1 \le i < j \le n\}$ et $\mathcal{P}_2(\llbracket 1,n \rrbracket)$.
- La seconde égalité est justifiée d'après (28.23).

29.29 Propriété fondamentale de la signature

Théorème 29.29

La signature est un morphisme de groupe de (S_n, \circ) dans $(\{-1, 1\}, \times)$.

Montrons que $\epsilon(\sigma \circ \xi) = \epsilon(\sigma) \times \epsilon(\xi)$. Pour $\sigma, \xi \in \mathcal{S}_n$:

$$\begin{split} \epsilon(\sigma \circ \xi) &= \frac{\prod\limits_{1 \leq i < j \leq n} (\sigma \circ \xi(j) - \sigma \circ \xi(i))}{\prod\limits_{1 \leq i < j \leq n} (j - i)} \times \frac{\prod\limits_{1 \leq i < j \leq n} (\xi(j) - \xi(i))}{\prod\limits_{1 \leq i < j \leq n} (\xi(j) - \xi(i))} \\ &= \epsilon(\xi) \times \prod\limits_{X \in \mathcal{P}([\![1,n]\!])} \tau_{\sigma}(\xi(X)) \\ &= \epsilon(\xi) \times \prod\limits_{X \in \mathcal{P}([\![1,n]\!])} \tau_{\sigma}(X) \\ &= \epsilon(\xi) \times \epsilon(\sigma) \end{split}$$

29.35 Décomposition d'une transposition à l'aide des τ_i

Propostion 29.35

soit $1 \le i < j \le n$ et $\tau = (i, j)$. Alors :

$$\tau = \tau_{j-1} \circ \cdots \circ \tau_{i+1} \circ \tau_i \circ \tau_{i+1} \circ \cdots \circ \tau_{j-1}$$

- Si k > j, alors pour tout $p \in [i, j-1]$, $\tau_p(k) = k$. Donc $\sigma(k) = k$.
 - Cela reste vrai si k < i.
- On a :

$$\sigma(i) = \tau_{j-1} \circ \tau_{j-2} \circ \cdots \circ \tau_{i+1} \circ \tau_{i}$$

$$= \tau_{j-1} \circ \cdots \circ \tau_{i+1} (i+1)$$

$$= \tau_{j-1} (j-1)$$

$$= j$$

$$\sigma(j) = \tau_{j-1} \circ \cdots \tau_{i} \circ \cdots \circ \tau_{j-1} (j)$$

$$= \tau_{j-1} \circ \cdots \tau_{i} \circ \cdots \tau_{j-2} (j-1)$$

$$= \tau_{j-1} \circ \cdots \tau_{i} (i+1)$$

$$= \tau_{j-1} \circ \cdots \tau_{i+1} (i)$$

$$= i$$

— Si i < k < j, alors:

$$\sigma(k) = \tau_{j-1} \circ \cdots \circ \tau_i \circ \cdots \tau_k(k)$$

$$= \tau_{j-1} \circ \cdots \circ \tau_i \circ \cdots \tau_{k-1}(k+1)$$

$$= \tau_{j-1} \circ \cdots \circ \tau_k(k+1)$$

$$= \tau_{j-1} \circ \cdots \tau_{k+1}(k)$$

$$= k$$

29.37 Caractère générateur des transpositions

Théorème 29.37

Toute permutation $\sigma \in \mathcal{S}_n$ est un produit de transposition.

On prouve le résultat par récurrence sur $\mathbb{N} \setminus \{0, 1\}$.

- pour n = 2, $S_2 = \{id, (1 \ 2)\}\$ et $id = (1 \ 2)^2$.
- On suppose le résultat vrai pour $n \geq 2$. Soit $\sigma \in \mathcal{S}_{n+1}$.
 - Si $\sigma(n+1) = n+1$, σ induit naturellement une permutation $\tilde{\sigma}$ sur S_n , donc $\tilde{\sigma}$ est un produit de transpositions $\tilde{\tau}$, et chaque $\tilde{\tau}$ se relève en une transposition τ de S_{n+1} .
 - Si $\sigma(n+1) = i \in [1, n]$, alors:

$$\varphi = (i \quad n+1) \circ \sigma \in \mathcal{S}_{n+1}$$

et $\varphi(n+1) = n+1$.

D'après le point précédent, φ est un produit de transposition.

Donc $\sigma = (i + 1) \circ \varphi$ est aussi un produit de transposition.

29.40 Effet de la conjugaison sur un cycle

Théorème 29.40

Soit $\sigma \in \mathcal{S}_n$ et $(a_1 \cdots a_k)$ un cycle. Alors :

$$\sigma \circ (a_1 \quad \cdots \quad a_k) \circ \sigma^{-1} = (\sigma(a_1) \quad \cdots \quad \sigma(a_k))$$

- Si $\sigma^{-1}(i) \notin \{a_1, \dots, a_n\}$ alors $\sigma \circ (a_1 \cdots a_k) \circ \sigma^{-1}(i) = \sigma \circ \sigma^{-1}(i) = i$.
- Si $\sigma^{-1}(i) = a_j$, alors $\sigma \circ (a_1 \cdots a_k) \circ \sigma^{-1}(i) = \sigma(a_{j+1})$.

29.41 Corollaire 29.41

Corollaire 29.41

Soit $\varphi: \mathcal{S}_n \to \{-1,1\}$ un morphisme. Soit $\alpha \in \{1-,1\}$. S'il existe une transposition τ_0 telle que $\varphi(\tau_0) = \alpha$, alors pour toute transposition τ , on a $\varphi(\tau) = \alpha$. Ainsi, φ prend une valeur constante sur les transpositions.

Par conjugaison. Soit $\tau_0 = \begin{pmatrix} i & j \end{pmatrix}$ et $\tau = \begin{pmatrix} k & l \end{pmatrix}$. On a :

$$\tau = \sigma \circ \tau_0 \circ \sigma^{-1}$$

avec $\sigma = (i \quad k \quad j \quad l)$. Alors:

$$\varphi(\tau) = \varphi(\sigma \circ \tau_0 \circ \sigma^{-1})$$

$$= \varphi(\sigma) \times \varphi(\tau_0) \times \varphi(\sigma^{-1})$$

$$= \varphi(\tau_0) \times \varphi(\sigma)^2$$

$$= \varphi(\tau_0)$$

29.42 Unicité de la signature

La signature est l'unique morphisme de groupe non trivial de S_n dans $\{-1,1\}$.

Soit φ un morphismede groupes de \mathcal{S}_n dans $\{\pm 1\}$. Soit $\sigma \in \mathcal{S}_n$. D'après (29.37), $\sigma = \tau_1 \circ \cdots \circ \tau_k$.

— Si la valeur prise par φ sur les transpositions et 1 (29.40), alors :

$$\varphi(\sigma) = \prod_{i=1}^{k} \varphi(\tau_i) = 1$$

Donc φ est triviale.

Si la valeur prise par φ sur les transpositions est -1 (29.41), alors :

$$\varphi(0) = \prod_{i=1}^{k} \varphi(\tau_i) = (-1)^k = \epsilon(\sigma)$$

Donc $\varphi = \epsilon$.

29.52Décomposition en cycle d'une permutation

Soit σ une permutation de \mathcal{S}_n . A permutation près des facteurs, il existe une unique décomposition de σ en produit de cycle à supports disjoints.

$$\sigma = C_1 \circ \cdots \circ C_k$$

telles que les supports des cycles forment un partition de [1, n]. De plus, l'unique cycle de cette décomposition contenant x est égale à C_x .

— Existence: On note $\{\overline{C_1}, \ldots, \overline{C_k}\} = [1, n]/\equiv_{\sigma}$.

On note (29.49) c_i la permutation induite par σ sur $\overline{C_i}$ ($C_i = (p \quad \sigma(p) \quad \cdots \quad \sigma^j(p))$).

On pose $\varphi = C_1 \circ \ldots \circ C_k$. Soit $i \in [1, n]$, alors $i \in \overline{C_q}$ avec $q \in [1, k]$.

D'après (29.51), $\varphi(i) = C_q(i) = \sigma(i)$.

Donc $\varphi = \sigma$.

<u>Unicité</u>: On suppose que $\sigma = C_1 \circ \ldots \circ C_k = U_1 \circ \ldots \circ U_q$.

Soit $i \in [1, n]$. $i \in supp(C_1) \in supp(U_1)$ (quitte à permuter les rôles).

On a donc $\sigma(i) = C_1(i) = U_1(i)$ et $\sigma^2(i) = C_1^2(i) = U_1^2(i)$ et

Donc $C_1 = U_1$.

29.62 Décomposition d'un cycle en transpositions

Soit (i_1, \ldots, i_k) des entiers deux à deux distincts de [1, n]. Alors :

$$(i_1 \quad i_2 \quad \cdots \quad i_k) = (i_1 \quad i_k) \circ (i_1 \quad i_{k-1}) \circ \cdots \circ (i_1 \quad i_2)$$

On note $\sigma = \begin{pmatrix} i_1 & i_k \end{pmatrix} \cdots \begin{pmatrix} i_1 & i_2 \end{pmatrix}$. Soit $p \notin \{i_1, \ldots, i_k\}$. On a bien $\sigma(p) = p$.

Soit $i_j \in \{i_1, ..., i_k\}$. $(j \neq k)$

$$\sigma(i_1) = \begin{pmatrix} i_1 & i_k \end{pmatrix} \cdots \begin{pmatrix} i_1 & i_2 \end{pmatrix} \begin{pmatrix} i_1 \end{pmatrix}$$
$$= \begin{pmatrix} i_1 & i_k \end{pmatrix} \cdots \begin{pmatrix} i_1 & i_3 \end{pmatrix} \begin{pmatrix} i_2 \end{pmatrix}$$
$$= i_2$$

$$\sigma(i_j) = \begin{pmatrix} i_1 & i_k \end{pmatrix} \cdots \begin{pmatrix} i_1 & i_2 \end{pmatrix} \begin{pmatrix} i_j \end{pmatrix}$$

$$= \begin{pmatrix} i_1 & i_k \end{pmatrix} \cdots \begin{pmatrix} i_1 & i_j \end{pmatrix} \begin{pmatrix} i_j \end{pmatrix}$$

$$= \begin{pmatrix} i_1 & i_k \end{pmatrix} \cdots \begin{pmatrix} i_1 & i_{j+1} \end{pmatrix} \begin{pmatrix} i_1 \end{pmatrix}$$

$$= i_{j+1}$$

$$\sigma(i_k) = \begin{pmatrix} i_1 & i_k \end{pmatrix} (i_k)$$
$$= i_1$$

29.63 Signature d'un cycle

Propostion 29.63

Soit C un cucle et $\ell(C)$ sa longueur. Alors :

$$\epsilon(C) = (-1)^{\ell(C)-1}$$

Avec ce qui précède :

$$\epsilon(\sigma) = \prod_{j=2}^{k} \epsilon((i_1 \quad i_j))$$
$$= (-1)^{k-1}$$
$$= (-1)^{\ell(C)-1}$$

29.64 Détermination de ϵ par le type cyclique

Théorème 29.64

Soit σ une permutation de S_n et $c(\sigma)$ le nombre de parts dans son support cyclique (ou de façon équivalente dans son type cyclique). Alors :

$$\epsilon(\sigma) = (-1)^{n - c(\sigma)}$$

Soit $\sigma = C_1 \circ \cdots \circ C_{c(\sigma)}$. On a:

$$\epsilon(0) = \prod_{i=1}^{c(\sigma)} \epsilon(C_i) \text{ (ϵ morphisme)}$$

$$= \prod_{i=1}^{c(\sigma)} (-1)^{\ell(C_i)-1} \text{ (29.63)}$$

$$= (-1)^{\sum_{i=1}^{c(\sigma)} [\ell(C_i)-1]}$$

$$= (-1)^{\sum_{i=1}^{c(\sigma)} \ell(C_i)-c(\sigma)}$$

$$= (-1)^{n-c(\sigma)}$$

29.69 Exemple

Exemple 29.69

Calculer la signature de la permutation suivante :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \cdots & n & n+1 & n+2 & \cdots & 2n \\ 2 & 4 & 6 & \cdots & 2n & 1 & 3 & \cdots & 2n-1 \end{pmatrix}$$

Pour chaque $i \in [\![1,n]\!]$, le couple (i,k+n) donne une inversion avec $k \in [\![1,i]\!]$. On dénombre donc :

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

 ${\bf Donc}:$

$$\epsilon(\sigma) = (-1)^{\frac{n(n+1)}{2}}$$