α										
$h_{1}^{\#1}$	0	0	0	0	0	0	0	0	0	0
$\Gamma_{1^{-}lpha}^{\#6}$	0	0	0	0	0	$\frac{a_0}{6}$	$-\frac{\sqrt{5} a_0}{6}$	$\frac{a_0}{6\sqrt{2}}$	$\frac{5a_0}{12}$	0
$\Gamma_1^{\#5}$	0	0	0	0	0	$\frac{a_0}{6\sqrt{2}}$	$-\frac{1}{6}\sqrt{\frac{5}{2}}\ a_0$	8 0 <u>v</u>	$\frac{a_0}{6\sqrt{2}}$	0
$\Gamma_{1}^{\#4}$	0	0	0	0	0	$\frac{\sqrt{5} a_0}{6}$	8 0	$-\frac{1}{6}\sqrt{\frac{5}{2}}\ a_0$	$-\frac{\sqrt{5} a_0}{6}$	0
$\Gamma_{1^{-}}^{\#3}{}_{\alpha}$	0	0	0	0	0	$\frac{\varepsilon}{0v}$	$\frac{\sqrt{5} \ a_0}{6}$	$-\frac{a_0}{6\sqrt{2}}$	$\frac{9}{0v}$ -	0
$\Gamma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0
$\Gamma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{a_0}{4}$	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0
$\Gamma_{1}^{\#3}$	0	0	$\frac{a_0}{4}$	0	0	0	0	0	0	0
$\Gamma_{1}^{\#2}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0
$\Gamma_{1}^{\#1}{}_{+}\alpha\beta$	$-\frac{a_0}{4}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0
	$\Gamma_1^{\#1} + \alpha \beta$	$\Gamma_1^{\#2} + \alpha \beta$	$\Gamma_1^{\#3} + ^{\alpha\beta}$	$\Gamma_1^{#1} + \alpha$	$\Gamma_1^{\#2} +^{\alpha}$	$\Gamma_1^{\#3} + \alpha$	$\Gamma_{1}^{\#4} +^{\alpha}$	$\Gamma_1^{\#5} +^{\alpha}$	$\Gamma_1^{\#6} +^{lpha}$	$h_1^{\#1} + \alpha$

Lagrangian density $\begin{array}{c} -\frac{1}{2} a_0 \ \Gamma^{\alpha\beta\chi} \Gamma_{\beta\chi\alpha} + \frac{1}{2} a_0 \ \Gamma^{\alpha}_{\ \alpha} \ \Gamma^{\chi}_{\ \lambda} - \\ \frac{1}{2} a_0 \ \Gamma^{\alpha\beta\chi} \partial_{\beta} h_{\alpha\chi} - \frac{1}{4} a_0 \ \Gamma^{\alpha}_{\ \alpha} \partial_{\beta} h_{\chi}^{\ \chi} + \frac{1}{4} a_0 \ \Gamma^{\alpha\beta} \partial_{\beta} h_{\chi}^{\ \chi} - \\ \frac{1}{2} a_0 \ h^{\chi}_{\ \lambda} \partial_{\beta} \Gamma^{\alpha}_{\ \alpha} + \frac{1}{4} a_0 \ h^{\chi}_{\ \lambda} \partial_{\beta} \Gamma^{\alpha\beta} - \frac{1}{2} a_0 \ h^{\alpha\chi}_{\ \lambda} \partial_{\beta} \Gamma^{\alpha\beta} + \\ \frac{1}{2} a_0 \ h^{\alpha\beta} \partial_{\beta} h_{\chi}^{\ \chi} - \frac{1}{4} a_0 \partial_{\beta} h_{\chi}^{\ \chi} \partial^{\beta} h_{\alpha}^{\ \chi} + \frac{1}{2} a_0 \ h^{\alpha\beta} \partial_{\lambda} h_{\beta}^{\ \chi} - \\ \frac{1}{2} a_0 \partial_{\alpha} h^{\alpha\beta} \partial_{\lambda} h_{\chi}^{\ \chi} + \frac{1}{2} a_0 \partial^{\beta} h^{\alpha}_{\ \alpha} \partial_{\lambda} h_{\beta}^{\ \chi} - a_0 h^{\alpha\beta} \partial_{\lambda} \partial_{\beta} h_{\chi}^{\ \chi} + \\ \frac{1}{2} a_0 \partial_{\beta} h_{\alpha\chi} \partial^{\chi} h_{\alpha\beta} + \frac{1}{2} a_0 \partial^{\beta} h_{\alpha\beta} \partial^{\chi} h_{\alpha\beta} - \frac{1}{2} a_0 h^{\alpha}_{\alpha} \partial_{\lambda} \partial_{\beta} h_{\beta}^{\ \chi} - \\ \frac{1}{4} a_0 \partial_{\beta} h_{\alpha\chi} \partial^{\chi} h^{\alpha\beta} + \frac{1}{2} a_0 \partial^{\chi} h_{\alpha\beta} \partial^{\chi} h^{\alpha\beta} + \frac{1}{2} a_0 h_{\beta\chi} \partial^{\chi} h^{\beta}_{\beta} - \\ \frac{1}{4} a_0 \partial_{\beta} h_{\alpha\chi} \partial^{\chi} h^{\alpha\beta} + \frac{3}{8} a_0 \partial_{\lambda} h_{\alpha\beta} \partial^{\chi} h^{\alpha\beta} + \frac{1}{2} a_0 h_{\beta\chi} \partial^{\chi} h^{\alpha\beta} + \\ \frac{1}{2} a_0 \partial_{\beta} h_{\alpha\chi} \partial^{\chi} h^{\alpha\beta} + \frac{3}{8} a_0 \partial_{\lambda} h^{\alpha\beta} \partial^{\chi} h^{\alpha\beta} + \frac{1}{2} a_0 h_{\beta\chi} \partial^{\chi} h^{\alpha\beta} \partial^{\chi} h^{\alpha\beta} + \\ \frac{1}{4} a_0 \partial_{\beta} h_{\alpha\chi} \partial^{\chi} h^{\alpha\beta} + \frac{3}{8} a_0 \partial_{\lambda} h^{\alpha\beta} \partial^{\chi} h^{\alpha\beta} + \frac{1}{2} a_0 h_{\beta\chi} \partial^{\chi} h^{\alpha\beta} + \\ \frac{1}{2} a_0 \partial_{\beta} h^{\alpha\lambda} \partial^{\chi} h^{\alpha\beta} + \frac{3}{8} a_0 \partial_{\lambda} h^{\alpha\beta} \partial^{\chi} h^{\alpha\beta} + \frac{1}{2} a_0 h_{\beta\chi} \partial^{\chi} h^{\alpha\beta} \partial^{\chi} h^{\alpha\beta} + \\ \frac{1}{2} a_0 \partial_{\beta} h^{\alpha\lambda} \partial^{\chi} h^{\alpha\beta} + \frac{3}{8} a_0 \partial_{\lambda} h^{\alpha\beta} \partial^{\chi} h^{\alpha\beta} + \\ \frac{1}{2} a_0 \partial_{\beta} h^{\alpha\lambda} \partial^{\chi} h^{\alpha\beta} \partial^{\chi} h^{\alpha\beta} \partial^{\chi} h^{\alpha\beta} + \\ \frac{1}{2} a_0 \partial_{\beta} h^{\alpha\lambda} \partial^{\chi} h^{\alpha\beta} \partial^{\chi} h^{\alpha$
--

 $\Gamma_{3^{-}}^{\#1}\alpha\beta\chi$

 $\Delta_{3}^{#1} + \alpha \beta \chi$

	$\Delta_{2}^{\#1}{}_{\alpha\beta}$	$\Delta_{2}^{\#2}_{\alpha\beta}$	$\Delta_{2}^{\#3}_{\alpha\beta}$	$\mathcal{T}^{\#1}_{2^+ \alpha \beta}$	$\Delta_{2}^{\#1}{}_{\alpha\beta\chi}$	$\Delta_{2}^{\#2}{}_{\alpha\beta\chi}$
$\Delta_{2}^{#1}\dagger^{lphaeta}$	$\frac{4}{a_0}$	0	0	0	0	0
$\Delta_{2}^{\#2} \dagger^{\alpha\beta}$	0	$-\frac{2}{a_0}$	0	0	0	0
$\Delta_{2}^{#3} \dagger^{\alpha\beta}$	0	0	$\frac{4}{a_0}$	0	0	0
${\mathcal T}_2^{\sharp 1}\dagger^{lphaeta}$	0	0	0	$-\frac{8}{a_0 k^2}$	0	0
$\Delta_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0	0	$\frac{4}{a_0}$	0
$\Delta_2^{\#2} \dagger^{\alpha\beta\chi}$	0	0	0	0	0	$\frac{4}{a_0}$

- ^a0

Source constraints

SO(3) irreps

3 3 1 1 1 #

 $\Delta_{0+}^{#3} + 2 \Delta_{0+}^{#4} + 3 \Delta_{0+}^{#2} = 0$

 $\mathcal{T}_{1^{\bar{-}}}^{\#1}{}^{\alpha} := 0$

 $2 \Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#4\alpha} + 2 \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha} == 0$

Total #:

<u>a</u>0

Γ₈3 †

 $\frac{a_0}{2}$

Γ#2 †

 $\Gamma_0^{\#1}$ $\frac{a_0}{2}$

 $\Gamma_0^{\#3}$

 $\frac{a_0}{2}$

Γ#4 0+ $\frac{a_0 k^2}{4}$

 $h_0^{\#1}$ †

•										
$\Delta_{1^{\text{-}}\alpha}^{\#6}$	0	0	0	0	0	$-\frac{1}{6a_0}$	$\frac{\sqrt{5}}{6a_0}$	$-\frac{7}{3\sqrt{2}a_0}$	340	0
$\Delta_{1^{^{-}}\alpha}^{\#5}$	0	0	0	0	0	$-\frac{1}{6\sqrt{2}a_0}$	$-\frac{\sqrt{\frac{5}{2}}}{6a_0}$	$\frac{17}{6a_0}$	$-\frac{7}{3\sqrt{2}a_0}$	0
$\Delta_{1^{^{-}}\alpha}^{\#4}$	0	0	0	0	0	$\frac{5\sqrt{5}}{12a_0}$	$\frac{1}{12 a_0}$	$-\frac{\sqrt{\frac{5}{2}}}{6a_0}$	$-\frac{\sqrt{5}}{6a_0}$	0
$\Delta_{1^{^{-}}\alpha}^{\#3}$	0	0	0	0	0	$-\frac{19}{12 a_0}$	$\frac{5\sqrt{5}}{12a_0}$	$-\frac{1}{6\sqrt{2}a_0}$	$-\frac{1}{6a_0}$	0
$\Delta_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2\sqrt{2}}{a_0}$	$\frac{2}{a_0}$	0	0	0	0	0
$\Delta_{1^{\text{-}}}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0
$\Delta_{1}^{\#3}{}_{\alpha\beta}$	0	0	$\frac{4}{a_0}$	0	0	0	0	0	0	0
$\Delta_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{2\sqrt{2}}{a_0}$	$\frac{2}{a_0}$	0	0	0	0	0	0	0	0
$\Delta_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0	0	0	0
	$_{L}^{\sharp 1} + \alpha \beta$	$_{L}^{\#2}$ $+^{\alpha\beta}$	$^{*3}_{L}$ †	$\lambda_{1}^{\#1} +^{lpha}$	$\lambda_1^{\#2} + \alpha$	$\lambda_1^{\#3} + \alpha$	$\lambda_1^{\#4} + \alpha$	$\lambda_1^{\#5} + ^{lpha}$	$\lambda_{1}^{\#6} + \alpha$	$\frac{1}{1}$

$\Delta_{0}^{\#1}$	0	0	0	0	0	0	$-\frac{2}{a_0}$
$\mathcal{T}_{0}^{\#2}$	0	0	0	0	0	0	0
$\mathcal{T}_{0}^{\#1}$	0	0	0	0	$\frac{4}{a_0 k^2}$	0	0
$\Delta_{0^+}^{\#4}$	0	$-\frac{1}{2\sqrt{2}}a_0$	$-\frac{1}{2\sqrt{2}}a_0$	$\frac{1}{2a_0}$	0	0	0
$\Delta_{0}^{#3}$	0	4 a 0	$-\frac{3}{4 a_0}$	$-\frac{1}{2\sqrt{2}a_0}$	0	0	0
$\Delta_0^{\#2}$	0	$-\frac{3}{4 a_0}$	$\frac{5}{4 a_0}$	$-\frac{1}{2\sqrt{2}}a_0$	0	0	0
$\Delta_0^{\#1}$	$-\frac{2}{a_0}$	0	0	0	0	0	0
	$\Delta_{0}^{\#1}$ \dagger	$\Delta_{0}^{#2} +$	$\Delta_{0}^{#3}$ †	$\Delta_{0}^{#4}$ †	$\mathcal{T}_{0}^{\#1}$ †	$\mathcal{T}_{0}^{\#2}$ †	$\Delta_{0^-}^{\#1} \uparrow$

$\alpha eta \chi$						C.
$\Gamma_{2}^{#2}$	0	0	0	0	0	4
$\Gamma_{2^{\text{-}}}^{\#1}_{\alpha\beta\chi}$	0	0	0	0	<u>a</u> 0 4	0
$h_2^{#1}$	0	0	0	$-\frac{a_0 k^2}{8}$	0	0
$\Gamma_{2}^{\#3}$	0	0	<u>a_0</u> 4	0	0	0
$\Gamma_{2}^{\#2}$	0	$-\frac{a_0}{2}$	0	0	0	0
$\Gamma_{2}^{\#1}$	<u>a</u> 0 4	0	0	0	0	0
	$\lceil \frac{\#1}{2} + \alpha \beta \rceil$	$_{2}^{\#2}$ $+^{\alpha\beta}$	$^{+3}_{2}$ $^{+}$	$h_2^{\#1} + \alpha \beta$	$+ \frac{\alpha \beta \chi}{\alpha}$	$_{2}^{\#2}$ $+^{\alpha\beta\chi}$

?		
?	Quadratic pole	<u> </u>
?	Pole residue:	$\left -\frac{1}{a_0}>0\right $
7	Polarisations:	2
?		

Unitarity conditions $a_0 < 0$

(No massive particles)