第23届全国青少年信息学奥林匹克联赛模拟题解

CCF-NOIP-2018

提高组(复赛)第二试

竞赛时间: 2018年11月5日8:00-11:30

题目名称	凯旋而归	生死之境	走向巅峰
题目类型	传统型	传统型	传统
目录	ak	life	winer
可执行文件名	ak	life	winer
输入文件名	ak.in	life.in	winer.in
输出文件名	ak.out	life.out	winer.out
每个测试点时限	1 秒	2 秒	1 秒
内存限制	512MB	512MB	128MB
测试点数目	10	10	20
每个测试点分值	10	10	5

提交源程序文件名

对于 pascal 语言	ak.pas	life.pas	winer.pas
对于 C 语言	ak.c	life.c	winer.c
对于 C++语言	ak.cpp	life.cpp	winer.cpp

编译选项

7/14 1 1 0 71			
对于 C 语言	-lm	-lm	-lm
对于 C++语言	-lm	-lm	-lm

注意事项:

- 1、文件名(程序名和输入输出文件名)必须使用小写。
- 2、除非特殊说明,结果比较方式均为忽略行末空格及文末回车的全文比较。
- 3、 C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 4、全国统一评测时采用的机器配置为: CPU AMD Athlon(tm)II x2 240 processor, 2.8GHz, 内存 4G, 上述时限以此配置为准。
- 5、只提供 Linux 格式附加样例文件。
- 6、评测在 NOI Linux 下进行。
- 7、编译时不打开任何优化选项。

1. 凯旋而归

算法 1

记录前缀异或和,根据题目定义 $O(n^2)$ 计算帅气值,期望得分50.

算法 2

记a序列的前缀异或和为b,那么对于每个i,我们便是要求解一个j($0 \le j \le i$)使得 b_i xor $b_i + b_i$ 最大。

现在一个显然的结论就是如果 b_i 在二进制下的某位是1的话,那么 b_j 在该位的值不会对答案 贡献有任何的影响,也就是说我们只需要关心 b_i 在二进制下是0的位。

记 f_i 表示满足i and $b_j = i$ 的最小的j,现在从高位往低位贪心,记当前找到的 $b_j = now$,我们现在想把第k位的贡献从 $0 \times 2^{k-1}$ 变成 $2 \times 2^{k-1}$,只需判断 $f_{now \ xor \ 2^{k-1}}$ 是否小于等于 i,若是,则 $now = now \ xor \ 2^{k-1}$,贡献便多了 $2 \times 2^{k-1}$,否则不作修改。时间复杂度 $O((n + max(a_i)) \log max(a_i))$,期望得分100。

2. 生死之境

生死之境~Border of Life

- · Source: Codeforces 886F
- 定位: 中等题, 需要一定的观察能力
- 虽然说NOIP不考计算几何但是并不需要用到多高深的几何知识

Subtask 1

- N<=10
- 我也不知道怎么做[划掉]
- N!枚举对称的顺序然后判断
- 复杂度O(n!n)

Subtask 2

- N<=500
- 根据人类智慧我们可以发现,对称中心一定是原点集的重心
- 枚举两个点,令其对称,可以得到O(n^2)条直线,显然只有这些 直线可能成为答案
- 有了上面的性质判断一次是O(n)的
- 复杂度O(n^3)

Subtask 3

- N<=2000
- 首先把原本就关于重心对称的点删去
- 如果剩余的点数<=2就是-1
- · 否则我们找出这O(n^2)条直线
- •注意到一条直线要合法必须出现>=n/2次
- 这样的直线最多O(n)条,暴力判断即可
- 复杂度O(n^2 log n^2)

3. 走向巅峰

题目大意

对于一棵树,每次随机染黑一个叶子(可能会重复染黑),期望多少次后直径变小

Solution 5

先考虑直径 R 为偶数的情况:

这种情况下,显然可以找到一个点 root,使得所有的直径都经过它,以这个点为根给每个点定深度 dp_x ,

那么,只有 $dp_x = R/2$ 的点才有可能为直径端点,剩下的 $dp_x < R/2$ 的叶子为无关点,先统计出来设有 m1 个,

把所有 $dp_r = R/2$ 的点接他是 root 的哪一棵子树分成几个集合,

直径改变了,当且仅当只剩下一个集合的点没有被删完,(染黑)

对于 R 为单数的情况:

显然有必经边,那么就以这条边切开两半,也就是只有两个集合,集合中的点为 $dp_x = \lfloor \frac{R}{2} \rfloor$,m1 也一样统计,这样就和偶数的一样了

有一个值是可以先预处理的:可以推出,当全局还剩 x 个叶子没被删时,再删掉一个没被删的点的代价为 $\frac{m}{n}$,m 为全部叶子数,

对于无关点,我们可以视作,这些点已经被删掉了,也就是一开始就已经删掉 ո 1个点,

那么现在问题就转化成:每次删掉一个没有删掉的点(带权),求删剩一个集合的期望,这个可以用(所有方案代价总和)/(方案数)的方法算概率,

枚举一个集合(大小为 d),假设最后剩下它,其他的集合全选完,再枚举这个集合最后选了 i 个,贡献为:(d0 为所有集合大小)

$$\sum_{i=0}^{d-1} C_d^i * (d0 - d + i - 1)! * (d0 - d) * (\sum_{j=d-i+1}^{d0} \frac{m}{j}) * (d-i)! * \frac{1}{d0!}$$

(注意:要保证最后一个选的一定不是当前集合的点,要不会算重) 因为无限次的染色一定会全部染上黑色,后边的(d-i)!表示剩下的乱选,d0!表示全部的方案。

复杂度: O(n log (n)) (计算逆元要个 log)