12/9/22, 12:30 AM bbp_review

Review of Weight Uncertainty in Neural Network

Some useful links:

- 1. Paper can be found here
- 2. Implementation by Pytorch on Github

Bayes by Backprop (BBP) Framework

A probabilistic model: P(y|x, w): given an input $x \in \mathbb{R}^p, y \in \mathcal{Y}$, using the set of parameters or weights w.

$$P(w|x,y) = \frac{P(y|x,w)p(w)}{P(y)}$$

Loss Function

The weights can be learnt by MLE given a set of training samples $\mathcal{D} = \{x_i, y_i\}_i$

$$egin{aligned} w^{MLE} &= rg\max_{w} \log P(\mathcal{D}|w) \ &= rg\max_{w} \log \sum_{i}^{n} P(y_{i}|x_{i},w) \end{aligned}$$

Regularization can be done by add a prior on the weights \boldsymbol{w} and finding the MAP, i.e.,

$$egin{aligned} w^{MAP} &= rg\max_{w} \log P(w|\mathcal{D}) \ &= rg\max_{w} \log P(\mathcal{D}|w) p(w) \end{aligned}$$

Inference is intractable because it needs to consider each configuration of w.

$$P(\hat{y}|\hat{x}) = \mathbb{E}_{p(w|D)}[P(\hat{y}|\hat{x}, w)]$$

12/9/22, 12:30 AM bbp_review

Minimization of KL Divergence (ELBO)

$$\begin{split} \theta^* &= \arg\min_{\theta} KL[q(w|\theta)|P(w|\mathcal{D})] \\ &= \arg\min_{\theta} \int q(w|\theta) \log \frac{q(w|\theta)}{P(w|\mathcal{D})} dw \\ &= \arg\min_{\theta} \int q(w|\theta) \log \frac{q(w|\theta)}{P(w)P(\mathcal{D}|w)} dw \\ &= \arg\min_{\theta} \underbrace{KL[q(w|\theta)|P(w)]}_{\text{complexity cost}} - \underbrace{\mathbb{E}_{q(w|\mathcal{D})}[\log P(\mathcal{D}|w)]}_{\text{likelihood cost}} \end{split}$$

We denote it as:

$$\mathcal{F}(\mathcal{D}, \theta) = KL[q(w|\theta)|P(w)] - \mathbb{E}_{q(w|\theta)}[\log P(\mathcal{D}|w)] \tag{1}$$

$$pprox rac{1}{n} \sum_{i=1}^n \log q(w^i| heta) - \log P(w^i) - \log P(\mathcal{D}|w^i)$$
 (2)

where w^i is a sample from variational posterior $q(w|\theta)$. Note that the parameters require gradient is θ instead of w in MLE or MAP. Note that in the original paper there is no $\frac{1}{n}$. I think it is probably a typo.

Unbiased Monte Carlo Gradients

Proposition 1. Let ϵ be a random variable having probability density given by $q(\epsilon)$ and let $w=t(\theta,\epsilon)$ where t is a deterministic function. Suppose further that the marginal probability density of $w,q(w|\theta)$, is such that $q(\epsilon)d\epsilon=q(w|\theta)dw$. Then for aa function f with derivative in w: $\frac{\partial}{\partial \theta}\mathbb{E}_{q(w|\theta)}[f(w,\theta)]=\mathbb{E}_{q(\epsilon)}[\frac{\partial f(w,\theta)}{\partial w}\frac{\partial w}{\partial \theta}+\frac{\partial f(w,\theta)}{\partial \theta}]$

Our objective function in Eq. (1) can be written as

$$egin{aligned} \mathcal{F}(\mathcal{D}, heta) &= \mathbb{E}_{q(w| heta)}[\log q(w| heta) - \log P(w) - \log P(\mathcal{D}|w)] \ &= \mathbb{E}_{q(w| heta)}[f(w, heta)] \end{aligned}$$

We need the gradient

12/9/22, 12:30 AM

$$egin{align}
abla_{ heta} \mathbb{E}_{q(w| heta)}[f(w, heta)] &=
abla_{ heta} \int f(w, heta) q(w| heta) dw \ &=
abla_{ heta} \int f(w, heta) q(\epsilon) d\epsilon \ &= \mathbb{E}_{q(\epsilon)}[
abla_{ heta}f(w, heta)] \end{aligned}$$

Leibniz integral rule can also used here.

Why re-parameterization trick

Some useful links:

- 1. Introduction about MC gradient
- 2. Why re-parameterization trick

Normally, we use Monte Carlo (MC) gradient estimator to approximate the gradient. It is used to solve the problem $\nabla_{\theta}\mathbb{E}_{q(w)}[f(w,\theta)] = \mathbb{E}_{q(w)}[\nabla_{\theta}f(w,\theta)]$. Note that there is no parameter θ in the expectation distribution q(w), which is the difference between this case and the case we are facing.

If we still use MC gradient estimator on $\nabla_{\theta} \mathbb{E}_{q(w|\theta)}[f(w,\theta)]$:

$$egin{aligned}
abla_{ heta} \mathbb{E}_{q(w| heta)}[f(w, heta)] &= \int
abla_{ heta}[q(w| heta)f(w, heta)]dw \ &= \int
abla_{ heta}[q(w| heta)]f(w, heta)dw + \int q(w| heta)
abla_{ heta}[f(w, heta)]dw \ &= \int q(w| heta)
abla_{ heta}[\log q(w| heta)]f(w, heta)dw + \mathbb{E}_{q(w| heta)}[
abla_{ heta}[f(w, heta)]] \ &= \mathbb{E}_{q(w| heta)}\Big[
abla_{ heta}[\log q(w| heta)]f(w, heta)\Big] + \mathbb{E}_{q(w| heta)}[
abla_{ heta}[f(w, heta)]]. \end{aligned}$$

The problem is that the distribution in the first term is coupled with both w and θ . The value of the first term also depends on θ but θ is what we are tunning. We need to detach θ from the distribution. Then, we can apply the MC gradient estimator.

Why
$$q(\epsilon)d\epsilon=q(w|\theta)dw$$
?

For deterministic mapping $w=t(\epsilon,\theta)$, $q(\epsilon)d\epsilon=q(w|\theta)dw$ holds.

12/9/22, 12:30 AM bbp_revie

$$q(w|\theta) rac{dw}{d\epsilon} = q(\epsilon)$$
 $q(w|\theta) = Kq(\epsilon)$ $G(\epsilon) = Kq(\epsilon)$

Leibniz integral rule

Leibniz integral rule:

$$egin{split} rac{d}{dx} \left(\int_{a(x)}^{b(x)} f(x,t) \, dt
ight) &= fig(x,b(x)ig) \cdot rac{d}{dx} b(x) - fig(x,a(x)ig) \cdot rac{d}{dx} a(x) + \int_{a(x)}^{b(x)} rac{\partial}{\partial x} f(x,t) \, dt \end{split}$$

Mini-batches

For each epoch of optimization, the training set is equally and randomly split into M batches $\mathcal{D}_1,...,\mathcal{D}_M$. The loss can be rewritten as

$$\mathcal{F}_i(\mathcal{D}, heta)_= rac{1}{M} KL[q(w| heta)|P(w)] - \mathbb{E}_{q(w| heta)}[\log P(\mathcal{D}|w)]$$

I'll update more details later.