Lab work #3

Process Control Analysis

1- Unitary step input

No.	$W_1(s)$	$\frac{\mathbf{W_2(s)}}{\frac{2}{0.5s+1}}$	
1	$\frac{2}{0.5s+1}$		
2	$\frac{10}{0.5s+1}$	$\frac{2}{0.5s+1}$	

No.	$W_1(s)$	$\frac{1}{0.5s}$	
3	$\frac{2}{0.5s+1}$		
4	$\frac{10}{0.5s+1}$	$\frac{1}{0.5s}$	

STEP RESPONSE

Overshoot = C(ts)-final value/final value $\times 100 = 0.960 - 0.800 = 0.160 / 0.8 \times 100 = 20 = \frac{\%20}{100}$

Settling Time = 1.832 s (according to <u>Tolerance Band</u>)

$$(2 / 0.5s +1) * (2 / 0.5s +1) / 1 + (2 / 0.5s +1) * (2 / 0.5s +1) = 0.64$$

0.8 * 0.64 = 0.512 steady state value

STEP RESPONSE

Overshoot = C(ts)-final value/final value x 100 = 1.409 - 0.951 = 0.458 $0.458 / 0.951 \times 100 = 48.16 = \%48.16$

Settling Time = 1.537 s (acording to Tolerance Band)

(10 / 0.5s +1) * (2 / 0.5s +1) / 1 + (10 / 0.5s +1) * (2 / 0.5s +1) = 0.97799511

0.951 * 0.997799511 = 0.9300733496 steady state value

Step Response

Overshoot = C(ts)-final
value/final
value x 100 =
$$1.431 - 1 = 0.431$$
 0.431 / 1 x 100 = $43.1 = \%43.1$

Settling Time = 0.775 s (acording to Tolerance Band)

$$(2 / 0.5s +1) * (2 / 0.5s) / 1 + (2 / 0.5s +1) * (2 / 0.5s) = 0.8421052632$$

1 * 0.8421052632 = 0.8421052632 steady state value

STEP RESPONSE

Overshoot = C(ts)-finalvalue/finalvalue x
$$100 = 1.675 - 1 = 0.675$$

 $0.675 / 1 \times 100 = 67.5 = \%67.5$

Settling Time = 2.268 s (acording to Tolerance Band)

$$(10 / 0.5s +1) * (2 / 0.5s) / 1 + (10 / 0.5s +1) * (2 / 0.5s) = 0.9638554217$$

1 * 0.9638554217 = 0.9638554217 steady state value

2- Unitary Step distarbance input

No.	W ₁ (s)	W ₂ (s)	
1	$\frac{2}{0.5s+1}$	$\frac{2}{0.5s+1}$	
2	$\frac{10}{0.5s+1}$	$\frac{2}{0.5s+1}$	
3	$\frac{1}{0,25s}$	$\frac{2}{0.5s+1}$	

No.	W ₁ (s)	W ₂ (s)	
4	$\frac{1}{0,05s}$	$\frac{2}{0,5s+1}$	
5	$\frac{2}{0.5s+1}$	$\frac{1}{0,25s}$	
6	$\frac{10}{0,5s+1}$	$\frac{1}{0,25s}$	

Overshoot = C(ts)-final value/final value x 100 = 0.760 – 0.4 = 0.360 0.360 / 0.4 x 100 = 90 = %90

Settling Time = 1.565 s (acording to Tolerance Band)

$$(2 / 0.5s +1) * (2 / 0.5s +1) / 1 + (2 / 0.5s +1) * (2 / 0.5s +1) = 0.64$$

0.4 * 0.64 = 0.256 steady state value

Settling Time = 2.350 s (acording to Tolerance Band)

$$(10 / 0.5s +1) * (2 / 0.5s +1) / 1 + (10 / 0.5s +1) * (2 / 0.5s +1) = 0.97799511$$

1 * 0.97799511= 0.97799511 steady state value

Overshoot = C(ts)-final value/final value x 100 = 0.700 - 4.371e-04 = -15.18160987 - 15.18160987 / 1 x 100 = <math>-15.18 = -15.18%

Settling Time = 3.090 s (acording to Tolerance Band)

(1/0.25s)*(2/0.5s+1)/1+(1/0.25s)*(2/0.5s+1)=0.8421052632

4.371e-04 * 0.8421052632= 6.637145156 steady state value

STEP RESPONSE

Overshoot = C(ts)-final
value/final
value x 100 =
$$0.377 - 0 = 0.377$$

 $0.377 / x 100 = 37.7\%$

Settling Time = 2.794 s (acording to Tolerance Band)

$$(1 / 0.05s) * (2 / 0.5s +1) / 1 + (1 / 0.05s) * (2 / 0.5s +1) = 0.9638554217$$

0 * 0.9638554217= 0 steady state value

UNUSUAL SCOPE RESPONSE, CANT FIND SETLING TIME BECAUSE IT DOESNT SET

Overshoot = C(ts)-final value/final value x 100 = 0.167 - 0.1 = 0.067 0.067 / 0.1 x 100 = 67%

Settling Time = 0.072 s (acording to Tolerance Band)

(10 / 0.5s+1) * (1 / 0.25) / 1 + (10 / 0.5s+1) * (1 / 0.25) = 0.96385542170.1 * 0.9638554217 steady state value