UACE Page 1 of 19

CANDIDATE'S NAME:	•••••	• • • •	• • • •	•••	••	
SIGNATURE:	RANDOM NUMBER					
SIGNATURE	PERSONAL NUMBER					

(Do not write your School/Centre Name or Number anywhere in this booklet.)

P525/1

CHEMISTRY

Paper 1

July/August, 2023

2 ¾ hours

GLORISO EXAMINATIONS BOARD (GEB)-KAMPALA SECONDARY SCHOOLS JOINT MOCK EXAMINATIONS, 2023

Uganda Advanced Certificate of Education

CHEMISTRY

Paper 1

2 HOURS 45 MINUTES

INSTRUCTIONS TO CANDIDATES:

- \checkmark Attempt all questions in section A and six questions in section B.
- ✓ All questions are to be answered in the spaces provided.
- ✓ A Periodic Table, with relative atomic masses, is supplied/attached at the end of the paper.
- ✓ Mathematical tables (3-figures) and non-programmable silent scientific calculators may be used.
- ✓ Where necessary use: Molar gas constant, $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$

						F	or E	xami	ner's	Use	Only	7					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

1

UACE Page 2 of 19

SECTION A: (46 marks)

Answer all questions in this section

(a) (i) Explain the term sparingly soluble salt.	(½ mark)
(ii) Write an equation for the reaction for solubility equilibrium (of silver (I)
Chromate. Deduce the expression for Ksp.	(1½ marks)
	,
	•••••
(b) Calculate the solubility of silver (I) chromate in potassium chrom	
	2 ½ marks)
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
Question 2:	
Name the following compounds.	
(a) $(CH_4CH_2CH_2)_2$ N-N=0	(01 mark)
(4) (01401120112)/21(1)	(OI mark)

(b) CH ₃ CH ₂ CH ₂ C	CH = NOH	(01 mark)
(c) CH ₃ CH	HCH_3	(01 mark)
Ċŀ	H ₃	
(d) (CH) ₂ C		(01 mark)
	(CH ₂ C=CHCH ₂) _n	(01 mark)
	$\mathfrak{C}H_3$	
Question 3:		
A mixture of aqueou	s ammonia and ammonium chlo	oride acts a buffer solution.
(a) Define the term	m Buffer solution	(1 mark)
(b) Describe what	happens to the mixture if small	
added: (i) Sodium	hydroxide solution	(1½ marks)
(ii) Sulphur	ic acid	(1½ marks)

UACE Page 4 of 19

(c)	Calculate the composition of alkaline buffer solution of $pH = 9$.75 made by
mixir	ng aqueous ammonia and ammonium chloride of both same conc	entration.
(Base	e dissociation constant of ammonia solution at 25°C is 1.78×10 ⁻⁵ n	$noldm^{-3}$)
		(2½ marks)
•••••		
•••••		
(d)	State one biological application of buffer solution	(½ mark)
	stion 4:	
(a	n) Copper, like other transitional elements forms compounds in ox	xidation states
	+1 and +2. Write the electronic configuration of	
(i)) Copper (I) ions	(½ mark)
(ii	i) Copper (II) ions	(½ mark)
(b	b) The enthalpies of reduction of copper (I) and copper (II) ions to	copper are -
	602 and -795 KJmol ⁻¹ respectively.	
(i)	Calculate the enthalpy of disproportionation of copper (I) ions	to copper (II)
	ions and copper.	(2 ½ marks)

UAC	E Company of the Comp	Page 5 of 19
• • • • • •		
• • • • • •		
• • • • • •		
• • • • • •		
• • • • • •		
• • • • • •		•••••
• • • • • •		
• • • • • •		•••••
	••••••	
(ii)	Comment on the stability of copper (I) ions with respect to copp	
(11)	Give a reason for your answer.	(01 mark)
	Give a reason for your answer.	·
••••		
• • • • • •		
(c)) State any two properties that make copper a typical transition me	etal.
		(01 mark)
• • • • • •		
• • • • • •		•••••
Ques	stion 5:	
	vapour density of a mixture containing nitrogen dioxide and dinitroxide is 38.2 at 27°C.	ogen
(a)	Calculate the number of moles of nitrogen dioxide in 100g mixtu	ire.
		(1½ marks)
• • • • • •		••••••

© GEB Kampala-2023

			Page 6 of 1
(b)	(i)	Explain the term mole fraction	(½ mark)
	(ii)	Show that the sum of mole fraction is one for the mix	xture in (a) (1½ marks)
	•••••		
Que	stion 6	onoxide undergoes disproportionation reaction. Explain the term disproportionation reaction	(½ mark)
	(ii)	Write the equation of reaction for disproportionation carbon monoxide	reaction of (1½ marks)
(b)	Usin (i	g equation(s) of reaction(s) only, show that germanium) basic	n (II) oxide is: (1½ marks)
• • • • • •			

UACE Page 7 of 19

	(ii)		(1½ marks)
	stion 7:		•••••
(a)		what would be observed and write equation for the reaction of	on that would
	(i)	Ethanal is mixed with saturated solution of sodium hydr	(1½ marks)
• • • • •	(ii)	Methanol added to a mixture of benzoic acid and concer sulphuric acid and the mixture warmed.	ntrated (1½ marks)
(b)	Write	the mechanism for the reaction in (a) (ii)	(2½ marks)

UACE		Page 8 of 1 9
Question	8:	
	would be observed and write the equation of t if dilute sulphuric acid is reacted with:	he reaction that would
` '	Lead (IV) Oxide.	
, ,	Observation	(01 mark)
(ii)	Equation.	(1 ½ marks)
(b)	Aqueous sodium chromate (VI) Observation	(01 mark)
•••••		
(ii) E	quation.	(1 ½ marks)
Question	9 :	
Name the	reagent used to distinguish the following comp	oounds and in each case,
state what	would be observed if each is treated with the r	eagent.
(a) HCOC	OCH ₂ CH ₃ and CH ₃ COOCH ₂ CH ₃ .	(2 ½ marks)
Reagent (s	s): 	
Observation	on (s):	

UACE	Page 9 of 19
(b) CHCH ₃ and OH	2CH ₂ OH (2 ½ marks)
Reagent (s):	
Observation (s):	
SECTION D (54 month)	>
SECTION B (54 mark Answer only six questions from t	
Question 10:	
Use equations to show how the following conversions of	can be effected.
(a) 2, 2-dobromopropane to propan-1-ol	(02 marks)

UACE	Page 10 of 19
(b) Ethanoic acid to 4-methyl pentan-2-one	(02 marks)
(c) Iodomethane to iodoethane.	(02 marks)

UACE	Page 11 of 19
Question 11:	
(a) State any three chemical properties to show the anomalous behav	iour of
flourine.	(1 ½ marks)
(b) Describe the chemical reactions of chlorine and flourine with:-	
(i) Hot concentrated potassium hydroxide solution.	(02 marks)
	• • • • • • • • • • • • • • • • • • • •
(ii) Carbon.	(02 marks)
(ii) Carbon.	(02 marks)
	(02 marks)

UACE	Page 12 of 1 9
(i) State the conditions for the reaction between hydrochloric acid potassium manganate (VII). (ii) Write the equation for the reaction.	(01 mark)
Question 12:	
5333Pa. At the same temperature, a solution of 5g of sulp carbon disulphide has a vapour pressure of 52230 Pa whe carbon disulphide is 1.27 gcm-3. Calculate the molecular	ohur is 63 cm ³ of on the density of r mass of sulphur in

UACE	Page 13 of 19			
(c) State	ate any two assumptions made in your calculations in (b) above. (01 mark) tion 13: imethylamine partially ionises in water to form alkaline solution. Write an quation for the ionization of dimethylamine in water. (01 mark) ne pH of OF 0.02M dimethylamine solution was found to be 11.52 at 20°C. Calculate the molar concentration of the hydroxide ions in the solution . (The ionic product of water at the same temperature is 6.82 x 10 -15 mol² dm²-6). (1½ marks)			
		vo assumptions made in your calculations in (b) above. (01 mark) nine partially ionises in water to form alkaline solution. Write an rethe ionization of dimethylamine in water. (01 mark) DF 0.02M dimethylamine solution was found to be 11.52 at 20°C. alate the molar concentration of the hydroxide ions in the solution ionic product of water at the same temperature is 6.82 x 10 ⁻¹⁵ mol ² (1½ marks) The marks of dimethylamine from your		
(b) The p	Calculate the molar concentration of the hydroxide ion (The ionic product of water at the same temperature is	is in the solution . $6.82 \times 10^{-15} \text{ mol}^2$		
(ii)	•	•		
	••••••	•••••		

UACE Page 14 of 19

(c) Explain why the ionization constant for ammonia is low	er than the value
obtained in b(ii) above.	(01 mark)
	•••••
(d) Calculate the mass of dimethylammonium chloride that	should be added to
obtained in b(ii) above. (d) Calculate the mass of dimethylammonium chloride that should dimethylamine to maintain the same pH.	(1 ½ marks)
(e) State one application of the mixture in (d) above.	(½ mark)

Question 14:

(a) Benzaldehyde can be prepared by hydrolysis of benzyl chloride on heating with lead (II) nitrate solution for about 3 hours according to the equation:

$$\begin{array}{c|c} CH_2Cl \\ + Pb(NO_3)_2 \end{array} + Pb(OH)Cl + 2NO_2$$

Benzaldehyde is obtained by steam distillation from the reaction mixture and extracted by ether from the distillate. State the reason(s) why:-

4

UACE Page 15 of 19

		Etner is used to extract benzalydenyde from the distillate.	(01 mark)
((ii)	The basic chloride of lead is not found in the steam distillate.	(01 mark)
(b) I (Benza dilute (i)	alydehyde is seperately treated with cold potassium hydroxide for hydrochloric acid and hydroxylamine in acidic medium. Write an equation for the reaction between benzaldehyde and hydroxide followed by dilute hydrochloric acid.	Followed by potassium (01 mark)
••••			
	(ii)	Suggest a suitable mechanism for the reaction between benzal	
• • • •	• • • • • •		
• • • •			•••••

UACE	Page 16 of 19
Question 15:	•••••
With equations where necessary, explain each of the following obse	rvations:
(a) In conductrimetric titration of aluminium sulphate solution agains hydroxide solution, the electrolytic conductivity of the mixture deminimum value, then increases gradually and finally increases rapexcess base added.	ecreases to a
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
(b) Trimethylamine and aminopropane have almost the same molar nutrimethylamine has a lower boiling point than aminopropane.	nass, however, (02 marks)
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
(c) Tin (II) sulphate and iron (III) sulphate can not exist together in a solution.	queous (02 marks)
	• • • • • • • • • • • • • • • • • • • •
0 16	••••••
Question 16:	

UACE Page 17 of 19

	d (II) lead (IV) oxide is one of the mixed oxides of lead whered from lead (II) oxide.	ich can be
	rite equation leading to the formation of dilead (II) lead (IV)) oxide. (01 mark)
(i)	Vrite equation for the reaction between lead (II) lead (IV) ox hot concentrated hydrochloric acid.	(01 mark)
(ii)	hot aqueous sodium hydroxide solution	(01 mark)
(c) Ex	plain why lead (II) oxide is almost insoluble in dilute hydrodily dissolves in concentrated hydrochloric acid.	ochloric acid but (02 marks)
Quest For ea	tion 17: ach of the following experiments, state what would be obserted on for each of the reaction that takes place. To 1cm³ of barium nitrate solution, 2 spatula end-fulls of z followed by excess sodium hydroxide solution were added mixture heated. (i) Observation.	inc powder and the resultant
	(ii) Equation of reaction.	(01 mark)

18

THE PERIODIC TABLE

1	2			e								3	4	5	6	7	8
1.0 H 1							************	- 4				la accession d			•	1.0 H 1	4.0 He 2
6.9 Li 3	9.0 Be 4											10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
Na	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 Ar 18
39.1 K 19	40.1 Ca 20		47.9 Ti 22	50.9 V 23	52.0 Cr 24	54.9 Mn 25		58.9 Co 27	1	63.5 Cu 29		69.7 Ga 31	72.6 Ge 32	1	79.0 Se 34		83.8 Kr 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40		95.9 Mo 42	98.9 Tc 43	101 Ru 44			108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56		178 Hf 72	181 Ta 73	184 W 74	186 Re 75		1		197 Au <i>7</i> 9		204 TI 81	207 Pb 82	1	Po	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89			L			1	1		L	L		.	1	1	
			139 La 57				147 Pm 61	150 Sm 62	152 Eu 63				1		(175 Lu 71
			227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93		243 Am 95	247 Cm 96	247 Bk 97	251 Cf 98	254 Es 99		Md	No	260 Lw 103

THE END