- Compléter avec le symbole mathématique qui convient :
 - 1. 4...N

 $4. \ \frac{1}{3} \dots \mathbb{D}$

 $2. 2, 5 \dots \mathbb{N}$

 $5. \mathbb{N} \dots \mathbb{D}$

 $3. -6 \dots \mathbb{Z}$

- $6. 4, 5 \dots \mathbb{Q}$
- Indiquer l'ensemble minimum auquel appartient chaque nombre suivant parmi \mathbb{N} , \mathbb{Z} , \mathbb{Q} ou \mathbb{R} :
 - $\bullet \ \frac{5-11}{2}$

- $\sqrt{16} 1$
- 3, 14 159

- - Compléter avec le symbole d'appartenance \in ou de non-appartenance \notin :
 - 1. 3...] -1; 5]
 - [2. -2...] 1; 0
 - 3. $10^{-3} \dots [0; +\infty[$
 - 4. 7...] $-\infty$; 7]
 - 5. π ...]3,14;3,15[
 - 6. $0 \dots [-\sqrt{3}; \sqrt{3}[$
- 4 On considère la droite des réels représentée cidessous.

- 1. Indiquer les abscisses (exactes) des points M, N et P:
- 2. Placer sur la droite, le plus précisément possible, les points A, B et C ayant respectivement pour abscisses -2; $\frac{5}{3}$ et 3, 5.
- Quels sont les réels qui appartiennent à la partie de la droite numérique représentée en « foncé » ? Écrire leur ensemble sous forme d'intervalle :

- Dans chacun des cas suivants, représenter l'ensemble des nombres vérifiant la condition donnée sur une droite graduée puis écrire cet ensemble sous forme d'intervalle :
 - 1. $-4 < x \le 1$
 - 2. $x > \frac{3}{2}$
 - 3. $x \leq -1$
- Déterminer l'ensemble, sous forme d'union ou d'intersection d'intervalles, auquel appartient le nombre réel x dans chacun des cas suivants. Simplifier l'ensemble quand cela est possible. :
 - 1. -2x < 8 ou $x \le -10$.
 - 2. $x \le 3 \text{ et } x \ge -1.$
- Traduire chacune des informations ci-dessous par une ou des inégalités :
 - 1. $x \in [-1; 7]$
 - 2. $x \in]-\infty; -5]$
 - 3. $x \in [-2; +\infty[$
- Soit I = [-1; 5] et J = [3; 10]. Dire si chacun des nombres suivants appartient à I, à J, à $I \cap J$, à $I \cup J$:
 - a. 4

c. 10

b. -1

- d. 8
- Représenter les intervalles I et J de deux couleurs différentes sur la même droite réelle. Donner ensuite leur réunion et leur intersection.
 - 1. I = [-6; 7] et J = [-2; 9]
 - 2. I =]-3; 8] et J =]-5; 6]
 - 3. $I =]-\infty$; 2] et J = [3; 5]
 - 4. $I =]-\infty$; 3] et $J = [0; +\infty[$
- 1. Sur un même axe, et avec des couleurs différentes, représenter les intervalles I = [-3; 5], J =]0; 2] et $K = [0; +\infty[$.
 - 2. Parmi ces affirmations ci-dessous, lesquelles sont justes?
 - (a) $I \subset J$
- (c) $J \subset K$
- (b) $J \subset I$
- (d) $I \subset K$
- Soit $A = \{a; k; d; f; m; u\}, B = \{u; d; m; b\}$ et $C = \{a; d; f\}.$
 - 1. B est-il inclus dans A? Justifier.
 - 2. Écrire avec des accolades les ensembles : $A \cup B, \ A \cup C$ et $A \cap B$ et $A \cap C$.

Dans chacun des cas suivants, proposer une écriture plus simple:

1.
$$A = 4x \times (-2)$$

$$2. B = n + 5 \times n \times n$$

3.
$$C = + + 5 \times y$$

4.
$$D = z \times (-3) \times z$$

5.
$$E = 2s \times 4t \times (-5u)$$

$$6. \ F = 3 \times x \times 4 \times x \times x$$

4.
$$D = \left(\frac{x^{-3}}{x^7}\right)^3$$

18 Les nombres a et b étant non nuls, écrire plus simplement:

1.
$$(a^{-2}b^3)^{-4}$$

2.
$$a^2b^{-2}a^{-3}b^3$$

3.
$$\left(\frac{a}{b}\right)^{-}$$

3.
$$\left(\frac{a}{b}\right)^{-1}$$

4. $a^{-6}(a^3 \times b^{-2})^2$

Compléter le tableau suivant :

Inéquation	Représentation	Intervalle
	$ \begin{array}{cccc} & & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	
$2 \leqslant x < 7$	x	
	x	$]-2;+\infty[$

Compléter le tableau suivant :

Inéquation	Représentation	Intervalle
	$ \begin{array}{ccc} & & \downarrow & \\ \hline 0 & & 9 & \\ \end{array} $	
$2 < x \leqslant 9$	x	
	x	$]-\infty;6]$

Simplifier:

1.
$$x \times x^2$$

2.
$$(3u)^2$$

$$3. \left(\frac{x}{4}\right)^2$$

4.
$$(2x)^3 \times (4u)^2$$

5.
$$\frac{10^2 \times 10^{-4}}{10^{-7}}$$

x est un nombre réel non nul. Écrire les nombres suivants sous la forme x^n avec n un entier relatif.

$$1. \ A = \left(\frac{1}{x^{-2}}\right)^3$$

2.
$$B = \frac{x^{-8} \times x^5}{x^3 \times x^{-10}}$$

3.
$$C = ((x^2)^3)^4$$