six_classify

September 3, 2020

```
[1]: # Load the TensorBoard notebook extension
     %load_ext tensorboard
[2]: import tensorflow as tf
     from keras import layers
     from keras.preprocessing import image
     from keras.preprocessing.image import ImageDataGenerator
     import keras.backend as K
     K.set_image_data_format('channels_last')
     import numpy as np
     import matplotlib.pyplot as plt
     from matplotlib.pyplot import imshow
     import datetime
     from alexnet import AlexNet
[3]: # Set the GPU growth in order to avoid the sudden stop of the runtime.
     gpus = tf.config.experimental.list_physical_devices('GPU')
     for gpu in gpus:
         tf.config.experimental.set_memory_growth(gpu, True)
[4]: # Give the global constants. Please notify BATCH_SIZE for model.fit() and
     \rightarrowBatch_Size for
     # model.evaluate() and model.predict()
     EPOCHS = 6
     BATCH_SIZE = 32
     Batch_Size = 1
     image_width = 227
     image height = 227
     channels = 3
     num_classes = 6
[5]: # Call the alexnet model in alexnet.py
     model = AlexNet((image_width,image_height,channels), num_classes)
[6]: # Compile the model
     model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
```

loss='categorical_crossentropy', metrics=['accuracy'])

[7]: # It will output the AlexNet model after executing the command model.summary()

Model: "alex_net"

Output Shape	Param #
(None, 55, 55, 96)	34944
(None, 27, 27, 96)	0
(None, 27, 27, 256)	614656
(None, 13, 13, 256)	0
(None, 13, 13, 384)	885120
(None, 13, 13, 384)	1327488
(None, 13, 13, 256)	884992
(None, 6, 6, 256)	0
(None, 9216)	0
(None, 4096)	37752832
(None, 4096)	0
(None, 4096)	16781312
(None, 4096)	0
(None, 1000)	4097000
(None, 6)	6006
	(None, 55, 55, 96) (None, 27, 27, 96) (None, 27, 27, 256) (None, 13, 13, 256) (None, 13, 13, 384) (None, 13, 13, 384) (None, 13, 13, 256) (None, 6, 6, 256) (None, 9216) (None, 4096) (None, 4096) (None, 4096) (None, 4096) (None, 4096)

Total params: 62,384,350 Trainable params: 62,384,350 Non-trainable params: 0

[8]: train_dir = '/home/mike/Documents/Six_Classify_AlexNet/seg_train/seg_train' test_dir = '/home/mike/Documents/Six_Classify_AlexNet/seg_test/seg_test'

```
predict_dir = '/home/mike/Documents/Six_Classify_AlexNet/seg_pred/'
[9]: # keras.preprocessing.image.ImageDataGenerator
     train_datagen = ImageDataGenerator(rescale=1.0/255)
     # keras.preprocessing.image.DirectoryIterator
     train_generator = train_datagen.flow_from_directory(train_dir,
      →target_size=(image_width,image_height),
                                                  class_mode='categorical')
     train_num = train_generator.samples
    Found 14034 images belonging to 6 classes.
[10]: # Start Tensorboard --logdir logs/fit
     log_dir="logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
     tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir)
     callback_list = [tensorboard_callback]
[11]: | # Set verbose=1 (or verbose=0) for visibale (or invisible) training procedure.
     model.fit(train_generator,
              epochs=EPOCHS,
              steps_per_epoch=train_num//BATCH_SIZE,
              callbacks=callback_list,
              verbose=1)
    Epoch 1/6
    accuracy: 0.4466
    Epoch 2/6
    438/438 [============= ] - 16s 36ms/step - loss: 0.9922 -
    accuracy: 0.6154
    Epoch 3/6
    accuracy: 0.6619
    Epoch 4/6
    438/438 [============= ] - 16s 36ms/step - loss: 0.8150 -
    accuracy: 0.7030
    Epoch 5/6
    438/438 [============== ] - 16s 37ms/step - loss: 0.7367 -
    accuracy: 0.7302
    Epoch 6/6
    438/438 [=============== ] - 16s 37ms/step - loss: 0.6516 -
    accuracy: 0.7675
[11]: <tensorflow.python.keras.callbacks.History at 0x7fcd8025ccd0>
```

```
[12]: %tensorboard --logdir logs/fit
     <IPython.core.display.HTML object>
[13]: # It is the test generator as similar as the above.
     test datagen = ImageDataGenerator(rescale=1.0/255)
     test_generator = test_datagen.flow_from_directory(test_dir,
      →target_size=(image_width,image_height),
                                                      class_mode='categorical')
     test_num = test_generator.samples
     Found 3000 images belonging to 6 classes.
[14]: # Evalute the trained model and return both the loss and the test accuracy.
     test_num = test_generator.samples
     preds = model.evaluate(test_generator,
                            verbose=1,
                            batch_size=Batch_Size,
                            steps=test_num//Batch_Size)
     print("Loss = " + str(preds[0]))
     print("Test Accuracy = " + str(preds[1]))
     3000/3000 [============ ] - 84s 28ms/step - loss: 0.6953 -
     accuracy: 0.7533
     Loss = 0.6952937245368958
     Test Accuracy = 0.7533106207847595
[15]: # Give the implicit steps=7301 for selecting the specific image number.
     predict_datagen = ImageDataGenerator(rescale=1.0/255)
     predict_generator = predict_datagen.flow_from_directory(predict_dir,
      →target_size=(image_width,image_height),
                                                            batch_size=Batch_Size,
      predict_num = predict_generator.samples
     Found 7301 images belonging to 1 classes.
[16]: # Make the prediction for any one of the predicted images
     predictions = model.predict(predict_generator,
```

verbose=1,
batch_size=Batch_Size,
steps=predict_num//Batch_Size)

7301/7301 [============] - 18s 3ms/step

[17]: # Plot the discriptive diagram
imshow(predict_generator[5800][0][0])
plt.imsave("predicted1.png",predict_generator[5800][0][0])

[18]: predictions [5800]

[18]: array([8.7253749e-03, 4.4545028e-04, 2.4701746e-01, 1.2168474e-01, 6.1795282e-01, 4.1741696e-03], dtype=float32)

[19]: print(predictions[5800])

[8.7253749e-03 4.4545028e-04 2.4701746e-01 1.2168474e-01 6.1795282e-01 4.1741696e-03]

[20]: imshow(predict_generator[4800][0][0])

[20]: <matplotlib.image.AxesImage at 0x7fce43302290>


```
axs[1][0].imshow(predict_generator[3300][0][0])
axs[1][0].set_title(get_category(predictions[3300]))

axs[1][1].imshow(predict_generator[7002][0][0])
axs[1][1].set_title(get_category(predictions[7002]))

axs[1][2].imshow(predict_generator[512][0][0])
axs[1][2].set_title(get_category(predictions[512]))
```

[24]: Text(0.5, 1.0, 'forest')

