Homological Inference of Embedding Dimensions in Neural Networks

Luciano Melodia

Friedrich-Alexander University

Chair of Computer Science 6 Martensstraße 3, 91058 Erlangen luciano melodia@fau.de

January 11, 2021

Overview

- 1 Motivation
 - The manifold of data
 - The manifold of a neural network
- 2 Simplicial structures
 - Simplicial complexes
 - Persistent homology
- 3 Counting betti numbers
 - Experiments with connected abelian Lie group assumption
 - Outlook

Manifolds and Lie groups

Smooth manifold

Let X be a topological space. A pair (X,\mathcal{A}) , consisting of a second countable Hausdorff space X and a differentiable structure on X given by $\mathcal{A}=(U_i,\phi_i)_{i\in I}$, the family of pair-wise compatible coordinate charts such that $X=\bigcup_{i\in I}U_i$, is said to be a differentiable manifold. If $\varphi(U)\subseteq\mathbb{R}^n$ for all $(U,\varphi)\in\mathcal{A}$, then we say $\dim X=n$.

Lie group

A Lie group is a smooth manifold G equipped with a group structure so that the maps $\mu:(x,y)\mapsto xy,\ G\times G\to G$ and $\iota:x\mapsto x^{-1}$ are smooth.

Luciano Melodia FAU

The manifold of data

Manifold assumption

A set of points in Euclidean space \mathbb{R}^d is underlain by a manifold, which can be embedded in ibid. Euclidean space and on which the points lie.

Decomposition of connected abelian Lie groups

Every connected commutative (abelian) Lie group G is isomorphic to a product space $\mathbb{R}^p \times \mathbb{T}^q \cong G$ with $p+q=\dim G$.

Embedding Dimension of Neural Networks

The manifold of data

$$r = 0$$

$$r = 0.2$$

$$r = 0.4$$

r = 0.6

r = 0.8

Idea:

- 1 Estimate a suitable structure.
- 2 Estimate one of its invariants.
- 3 Relate the invariant to the dimension.

How many dimensions do I need to represent the manifold that I suspect underlies the above set of points?

How many and which neurons are needed to represent this manifold?

The manifold of a neural network

Coordinate systems $x^{(I)} := \varphi^{(I-1)} \circ \cdots \circ \varphi^{(1)} \circ \varphi^{(0)} \circ x^{(0)}$ of a deep neural network induced by change of coordinate charts $\varphi^{(I)} : x^{(I)}(M) \mapsto (\varphi^{(I)} \circ x^{(I)})(M)$ learned by the neural network acting on the data.

Following Michael Hauser and Asok Ray: Principles of Riemannian Geometry in Neural Networks.

Luciano Melodia

Realise a good representation

Question: How can we adjust the neuromanifold to fit the data manifold?

- Take suitable assumptions on the dataset and its manifold.
- 2 Measure invariants on the filtration of a dataset to get a descriptor.
- 3 Infere possible manifolds from these measured invariants.
- 4 Relate the invariants to the dimension of the manifold.
- **5** Seek for approximate solutions if assumptions may not hold.

Building blocks: simplices

Consider the set of points $X := \{v_0, v_1, \dots, v_n\} \subset \mathbb{R}^d$. They are said to be **affinely independent** if the points $\{v_0 - v_n, v_1 - v_n, \dots, v_{n-1} - v_n\}$ are linearly independent. The **convex closure** of these points is a **simplex** and written as

$$[v_0, v_1, \dots, v_n] = \left\{ \sum_{i=0}^{n-1} \lambda_i (v_i - v_n) \mid \sum_{i=0}^{n-1} \lambda_i = 1 \text{ and } \lambda_i \ge 0 \right\}.$$
 (1)

The dimension of the simplex is n.

The *i*-th face of a simplex $[v_0, v_1, \ldots, v_n]$ (with an ommitted element \hat{v}_i) is defined by

$$d_i[v_0, v_1, \dots, v_n] = [v_0, v_1, \dots, \hat{v}_i, \dots, v_n].$$
 (2)

Examples

Simplicial complexes

The coefficients λ_i are chosen from the **field** $\mathbb{Z}_2 := \mathbb{Z}/2\mathbb{Z}$, such that we can **neglect the orientation** of the simplices. This is used for highly efficient computations.

Definition of simplicial complexes

A **simplicial complex** K is a finite union of simplices satisfying that every face of a simplex in K is in K and that the non-empty intersection of two simplices in K is a face of each.

A **filtration** is a nested sequence of complexes K_i , which induce an ordering of the sublevel complexes. These complexes, together with the inclusion $K_i \hookrightarrow K_j$ for $0 \le i \le j \le n$ are called a filtration and denoted by \mathbb{K} :

$$\mathbb{K}: \quad \emptyset = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n = K. \tag{3}$$

The inclusion on the filtration induces a homomorphism of groups $f_k^{i,j}: H_k(K_i) \to H_k(K_j)$, in this case H_k are the k-th homology groups.

Simplicial complexes

Filtered simplicial complexes

Vastly used complexes to create a filtration on a point set X are:

Čech complex: $(v_0, v_1, \cdots, v_n) \in \check{\mathsf{Cech}}_r(X) \iff \bigcap_{i=0}^n B_r(x_i) \neq \emptyset.$

Vietoris-Rips complex: $(v_0, v_1, \cdots, v_n) \in \text{Rips}_r(X) \iff ||v_i - v_j|| \le r$.

Luciano Melodia

Isomorphism of homology theories

Isomorphic homology theories

For a trianguliable smooth manifold X and a simplicial complex K, forming its triangulation, the following holds for the homology groups from a field of coefficients \mathbb{F} :

$$H_k(K; \mathbb{F}) \cong H_k(X; \mathbb{F}) \cong H_k^{\infty}(X; \mathbb{F}) \cong H_{\mathsf{deRham}}^k(X; \mathbb{F}).$$
 (4)

Proof of $H_k(K; \mathbb{F}) \cong H_k(X; \mathbb{F})$: Allen Hatcher: Algebraic Topology.

Proof of $H_k(X;\mathbb{F})\cong H_k^\infty(X;\mathbb{F})$: John Lee: Introduction to smooth manifolds.

Proof of $H_k^\infty(X;\mathbb{F})\cong H_{\operatorname{deRham}}^k(X;\mathbb{F})$: John Lee: Introduction to smooth manifolds.

Persistent homology

A persistence module is a family of \mathbb{F} -vectorspaces V(s) for every real number s together with \mathbb{F} -linear maps $f_{st}:V(s)\to V(t)$. These are called structure maps. For each pair $s\leq t$, satisfying that $r\leq s\leq t$, then $f_{rt}=f_{st}\circ f_{rs}$.

Let $\{X(s)\}_{s\in\mathbb{R}}$ be a set of ordered simplicial complexes together with simplicial maps $f_{st}: X(s) \to X(t)$ for each pair $s \leq t$, such that $r \leq s \leq t$ implies $f_{rt} = f_{st} \circ f_{rs}$. An example is the aforementioned filtered simplicial complex. Then the persistence module with coefficients in \mathbb{F} is given by

$$H_{\star}(X(s);\mathbb{F}), \quad H_{\star}(f_{st}): H_{\star}(X(s);\mathbb{F}) \to H_{\star}(X(t);\mathbb{F}).$$
 (5)

Persistent landscapes

Functional representation of persistence diagrams as a sequence of functions $\lambda_k : \mathbb{R} \to [-\infty, \infty]$ with $\lambda_k(x)$ being the kth largest value of $\min(x - b_i, d_i - x)$. It is stable with respect to Bottleneck distance and lies in a Banach space.

Taken from Peter Bubenik: Statistical Topological Data Analysis using Persistence Landscapes.

Commutative abelian Lie groups

Main assumption: $H_k(G) \cong H_k(\mathbb{R}^p \times S_1^1 \times \cdots \times S_q^1)$ with $p + q = \dim G$.

Goal: Sufficiently good representation of the topological structure of input space.

Künneth's Theorem

$$H_k(X \times Y) \cong \bigoplus_{i+j=k} H_i(X) \otimes H_j(Y)),$$
 thus

$$H_k(\mathbb{R}^p \times S^1_1 \times \cdots \times S^1_q) \cong \bigoplus_{i_1 + \cdots + i_r = k} H_{i_1}(\mathbb{R}^p) \otimes H_{i_2}(S^1_1) \otimes \cdots \otimes H_{i_r}(S^1_q).$$

Computing dimensions

We get

$$H_0(S^1) = H_1(S^1) = \mathbb{Z},$$
 (6)

$$H_i(S^1) = 0$$
, for all $i \ge 2$. (7)

Applying Künneth's formula only indices for $i_i \in \{0, 1\}$ remain, thus we get

$$H_0(\mathbb{R}^p) \cong \mathbb{Z},$$
 (8)

$$H_k(\mathbb{T}^q) \cong H_k(S_1^1 \times \cdots S_q^1) \cong \mathbb{Z}^{\binom{q}{k}}.$$
 (9)

Experiments with connected abelian Lie group assumption

Experimental results on cifar10 & cifar100

Experiments with connected abelian Lie group assumption

Results for the Betti numbers

	ŀ	Homology groups						pprox embedding dimension						
	H_0	H_1	H_2	<i>H</i> ₃	H ₄		р	$q H_1$	$q H_2$	$q H_3$	$q H_4$	$\dim U$		
cifar10	12	16	40	59	50		12	16	9±4	8±3	7±15	92±44		
cifar100	13	18	34	46	48		13	18	$9{\pm}2$	8 ± 10	$7{\pm}13$	$97{\pm}50$		

Problem: It becomes apparent, that this can't be a torus. Further, it might be, that the components are not connected. Our theory does give us results for *connected* abelian Lie groups.

Luciano Melodia FAU

Results for the Betti numbers

	ŀ	Homology groups						pprox embedding dimension						
	H_0	H_1	H_2	<i>H</i> ₃	H_4		р	$q H_1$	$q H_2$	$q H_3$	$q H_4$	$\dim U$		
cifar10	12	16	40	59	50		12	16	9±4	8±3	7±15	92±44		
cifar100	13	18	34	46	48		13	18	$9{\pm}2$	$8{\pm}10$	$7{\pm}13$	$97{\pm}50$		

Solution: Choose a dimension being capable of embedding *n*-tori according to the rank of *every single* persistent homology group.

FΔII

Losses on cifar10 & cifar100

cifar10: $\bullet \in [2, 148], \bullet \in [150, 198], \bullet \in [200, 270] \text{ and } \bullet \in [272, 784],$ (10)

cifar100: $\bullet \in [2, 148], \bullet \in [150, 198], \bullet \in [200, 292] \text{ and } \bullet \in [294, 784].$ (11)

Luciano Melodia

Outlook

Outlook

- Sliding window embeddings investigated by Jose Perea et al. [PersHS2016, SliWi2015] – embed time series as a curve on or a curve dense on a torus. For these embeddings our method is an accurate estimate.
- 2 For arbitrary datasets we do not yield an exact solution for the binomial coefficient. The assumption of a connected structure fails. How could one generalize this?
- We use vanilla neural networks. If we know the homology groups we want to represent, we can assign a commutative Lie group structure to the neural network itself, so that the **neuromanifold** has the same invariants as the **data manifold**.

References

Jose Perea (2016)
Persistent Homology of Toroidal Sliding Window Embeddings

IEEE International Conference on Acoustics, Speech and Signal Processing.

Jose Perea, John Harer (2015)
Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis
Foundations of Computational Mathematics.

Peter Bubenik (2015) Statistical Topological Data Analysis using Persistence Landscapes Journal of Machine Learning Research.

Thank you.

Got interested?

Drop a line to luciano.melodia@fau.de

or follow karhunenloeve on GitHub

.