ثانياً: الهندسة

السؤال الأول: اختر الإجابة الصحيحة من بين القوسين

(١) الزاوية المحيطية المرسومة في نصف دائرة

{ حادة ؛؛ منفرجة ؛؛ مستقيمة ؛؛ قائمة }

{٢} في الشكل المقابل: دائرة مركزها م،

{ 10, 11 1, 11 0, 11 to }

{٣} عدد محاور التماثل لأي دائرة هو { صفر ؟؟ ١ ؟؟ ٢ ؟؟ عدد لا نهائي }

{٤} إذا كان المستقيم مماساً للدائرة التي طول قطرها ٨ سم فإنه يبعد عن مركزها بمقدار

..... سم { ۳ ؛؛ ۶ ؛؛ ۲ ؛؛ ۸ }

 $\{ o \}$ سطح الدائرة م \bigcap سطح الدائرة ن = $\{ A \}$ ، وطول نصف قطرها أحدهما \bigcap سم ، م ن = \bigcap سم فإن طول نصف قطر الدائرة الآخري = سم $\{ o \}$ ؛ $\{ o \}$ ؛ $\{ o \}$ ، $\{ o$

 $^{\circ}$ ۱۲۰ = ($^{\circ}$ ک) في الشكل المقابل: إذا كان $^{\circ}$ كان الشكل المقابل المق

فإن: ٠ (حج) = ١٨٠ ؛ ١٢٠ ؛ ١٢٠ ؛ ١٨٠ }

٧} قياس القوس الذي يمثل نصف قياس الدائرة = (٣٦٠ ؛؛ ١٨٠ ؛؛ ٩٠؛ ٩٠؛ ٩٠؛ ٩٠؛ ٩٠؛ ٩٠؛

 $\{\Lambda\}$ عدد المماسات المشتركة لدائرتين متماستين من الخارج \dots $\{$ صفر $\{\Lambda\}$

{٩} عدد المماسات المشتركة لدائرتين متداخلتان أو متحدي المركز = { صفر ؟؛ ١ ؟؛ ٣ ؟؛ ٣ }

(١٠) عدد المماسات المشتركة لدائرتين متماستين من الداخل = { صفر ؟؛ ١ ؟؛ ٣ ؟؛ ٣

{١١} عدد المماسات المشتركة لدائرتين متقاطعتين = { صفر ؟؛ ١ ؟؛ ٢ ؟ ٢ كا

{١٢} عدد المماسات المشتركة لدائرتين متباعدتان = { صفر !! ١ !! ٢ !! ٤ }

{١٣} فياس الزاوية المحيطية المرسومة في نصف دائرة =

```
{١٤} الزاوية المماسية هي زاوية محصورة بين .
                                                                    { وترین ؛؛ مماسین ؛؛ وتر ومماس ؛؛ وتر وقطر }
             ^{\circ} ۱۹ م ب ج و شکل رباعی دائری فیه : ^{\circ} ( ^{\circ} ا ^{\circ} فإن : ^{\circ} ( ^{\circ} ا ^{\circ} ا
                                                                                                      {١٦} دائرتان م ، ن متماستان من الداخل طولا نصفى قطريهما ٥ سم ، ٩ سم فإن : م ن =
                                                                                                                                ..... سم { ۱۶ ؛؛ ۶ ؛؛ ٥
                                                                                               { 9 !!
{١٧} أكبر الأوتار طولاً في الدائرة يسمي ..... [الوتر ؛؛ القطر ؛؛ نصف القطر ؛؛ المماس }
   {١٨} مساحة المعين الذي طولا قطريه ٦ سم ، ٨ سم = .... سم (٢ ؛ ١٤؛ ١٤؛ ٢٤ ؛ ٨٤}
    {۱۹} م ، به دائرتان متباعدتان فإذا كان طولا نصفى قطريهما ٨ سم ، ٦ سم على الترتيب
                                                                    فإن م به ..... ١٤ سم { < ١٠ > ١٠ = ١٠ ﴾
  { ٢٠ } قياس الزاوية المحيطية يساوى ..... قياس الزاوية المركزية المشتركة معها في نفس
                                                                                       القوس { نصف ؛؛ ربع ؛؛ ضعف ؛؛ ثلث }
                        {٢١} طول الضلع المقابل للزاوية ٣٠° في المثلث القائم الزاوية = .... طول الوتر
                                                                                                                       { \( \frac{7}{V}\) \( \frac{9}{4}\) \( \frac{9}{4}\) \( \frac{7}{V}\) \( \
 {۲۲} الزاوية التي قياسها ٤٠° تتمم زاوية قياسها ..... ( ٣٢٠ ؛ ١٤٠ ؛ ٢٠ ؛ ٠٠ }
                                            \{\Upsilon\Upsilon\} \{ \psi \neq \varphi \in \mathcal{V} \mid \psi \neq \varphi \in \mathcal{V} \} و باعي دائري فيه : \psi \in \mathcal{V} = \mathcal{V}
                                    فإن من (ح ﴿ ) = ....... ﴿ ١٠ ؛؛ ٢٠ ؛؛ ١٢٠ }
                            { ٢٤ } إذا كانت النسبة بين محيطي مربعي ١: ٢ فإن النسبة بين مساحتيهما =
                                                                                         { 1: £ 55 £: 1 55 1: 7 55 7:1}
                                                    \{ \circ Y \} في الشكل المقابل: \{ \circ \} \rightarrow \emptyset ب جوشكل رباعي دائري \{ \circ \} \rightarrow \emptyset \rightarrow \emptyset
```

```
(\angle +) = 7س فإن قيمة س = .....
```

{٢٦} متوسط المثلث يقسم سطحه إلي مثلثين

{ متطابقين ؟؛ متساويين في المساحة ؟؛ متساويي الساقين ؟؛ قائمي الزاوية }

{٢٧} عدد المثلثات في الشكل المقابل:

{ 7 45 0 44 4 44 8 }

{٢٩} يمكن رسم دائرة تمر برؤوس (معين ؛ متوازي أضلاع ؛ شبه منحرف ؛ مستطيل }

 $\{ ^{9} \}$ إذا كان سطح الدائرة م \bigcap سطح الدائرة ن = $\{ ^{9} \}$ ، فإن م ن تكونان

{ متباعدتين ؟؛ متحدي المركز ؟؛ متماستين من الخارج ؟؛ متقاطعتين }

{ ٣١} محور تماثل الدائرة القطر؛ الوتر؛ المستقيم المار بالمركز؛ المماس}

{٣٢} مربع طول قطره (١٠سم) فإن مساحة سطحه = سم (١٠٤ ؛ ١٠٠ ؛ ١٠٠ ؛

{٣٣} دائرة أكبر وتر فيها طوله = ١٢ سم فإن محيط الدائرة = سم

{ ٣٤} يحتوي المثلث علي زاويتين... علي الأقل { حادتين ؛؛ منفرجتين ؛؛ قائمتين ؛؛ منعكستين }}

م ، به دائرتان متقاطعتان طولا نصفي قطريهما ٣ سم ، ٥ سم فإن م به \in

{٣٦} قياس أي زاوية داخلة في المضلع السداسي المنتظم = (٩٠؛ ١٠٠١) ٢٠؛٠٦١}

{٣٧} طول مسقط قطعة مستقيمة على مستقيم معلوم طول القطعة المستقيمة

{ ≥ " > " ≤ " < }

 $^{\circ}$ إذا كان Δ س ص ع \simeq Δ أ ب ج ، $\mathcal{V}(\angle \infty) = ^{\circ}$ ، $\mathcal{V}(\angle +) = ^{\circ}$ ،

 $\{ \quad 1 \quad 1 \quad \cdots \quad \{ \quad 1 \quad 1 \quad \cdots \quad 1 \quad$

{ ٣٩ } في الشكل المقابل: م دائرة فإذا كان ٢٩ ل م ب

فإن ق (ح ا ج ب) = ٢

{ ٠ ٤ } النسبة بين قياسي الزاوية المركزية والزاوية المحيطية المشتركتين في نفس القوس في دائرة واحدة هي { ٤ : ٢ : ٢ : ٢ : ٣ : ٢ : ٣ }

(٤١) في الشكل المقابل: ٩ ب = ٨ سم ، م ب = ٥ سم

فإن م و = سم (٥ ؛؛ ٤ ؛؛ ١٠ ؛ ٣ }

{ ٤ ٢ } قياس الزاوية المركزية المرسومة في ب دائرة = °

 $^{\circ}\Lambda \cdot = (\rightarrow \uparrow >)$ في الشكل المقابل: م دائرة ، $(< \uparrow >)$ ب $) = ^{\circ}\Lambda$

فإن م (أب) =

{ ٤٤ } م ، م دائرتان متماستان من الخارج فإذا كان طول نصف قطر أحدهما ٣ سم

م ن = ٨ سم فإن طول نصف قطر الدائرة الآخري = ... سم { ٥ ؟؛ ٦ ؟؛ ١١ ؟؛ ١٦ }

 $\{\alpha\}$ مساحة سطح الدائرة $\{\pi\}$ نفی $\{\pi\}$ نفی $\{\pi\}$ نفی $\{\alpha\}$ مساحة سطح الدائرة $\{\alpha\}$

 $\{ 1, 1 \}$ في الشكل المقابل : $\{ 1, 1 \}$ ، $\{ 1, 1 \} \}$

فإن س (ح و اه) = = (۱۰۰ ؛؛ ۲۰۰ ؛؛ ۲۰۰ ؛ ۲۰۰)

{٤٧} في الشكل المقابل: إذا كان م ب ، م ج مماسين للدائرة عند ب ، ج

سم ، ع سم ، س سم فإن س = سم $\{ 8, 4 \}$ مثلث له محور تماثل واحد ، وأضلاعه هي $\{ 8, 4 \}$

```
{٩٤} مجموع قياسات الزوايا الداخلية للمثلث = .... ° { ١٨٠ ؟؛ ٩٠ ؛؛ ١٠٠ ؛؛ ٣٦٠ }
                                                                                                                                       \{\cdot \circ\} في الشكل المقابل: م دائرة ، (\angle =) = \cdot 
               \mathcal{P}_{\mathsf{P}}فإن من ( egin{array}{c} \mathsf{P} & \mathsf{P} & \mathsf{P} & \mathsf{P} \\ \mathsf{P} & \mathsf{P} & \mathsf{P} & \mathsf{P} \\ \mathsf{P} & \mathsf{P} \\ \mathsf{P} & \mathsf{P} & \mathsf{P} \\ \mathsf{P} \\ \mathsf{P} & \mathsf{P} \\ \mathsf{P} \\ \mathsf{P} & \mathsf{P} \\ \mathsf{P} & \mathsf{P} \\ \mathsf{P} \\ \mathsf{P} & \mathsf{P} \\ \mathsf{P} & \mathsf{P} \\ \mathsf{P} \\ \mathsf{P} & \mathsf{P} \\ \mathsf{P} & \mathsf{P} \\ \mathsf{P} \\ \mathsf{P} & \mathsf{P} \\ \mathsf{P} \\ \mathsf{P} & \mathsf{P} \\ \mathsf{P} \\ \mathsf{P} \\ \mathsf{P} & \mathsf{P} \\ \mathsf{P} & \mathsf{P} \\ \mathsf{P
{٥١} عدد محاور التماثل نصف الدائرة هو ..... { صفر ؟؛ ١ ؟؛ ٢ ؟؛ عدد لا نهائى }
                             {٥٢} طول نصف قطر الدائرة التي مركزها نقطة الأصل والمارة بالنقطة (٣٠، ٤)
                                                                                                                                  = ..... وحدات طول { ٣ ؟؛ ٤ ؟؛ ٥ ؟؛ ٧ }
                                                                                                                     {٣٥} في الشكل الرباعي الدائري كل زاويتين متقابلتين .....
                                                                                                      { متساویتین ؛؛ متتامتان ؛؛ متکاملتان ؛؛ متبادلتان }
              {٥٤} مربع مساحته ١٠٠ سم فإن محيطه = ... سم { ١٠ ؟؛ ٣٠ ؟؛ ٠٠ ؟؛ ٥٠
                                                      {٥٥}مثلث مساحته ٣٥ سم٢،وارتفاعه ٧ سم ، فأن طول قاعدته = ..... سم
                                                                                                                                                                                 { Y · · · · · · · · · · · · }
{٥٦} مربع محيطه ٢٠ سم فإن مساحة سطحه = ..... { ٥٠سم ؟؟٠٥سم ؟؟٥٢سم ؟ ٢٥٢ سم }
                                                                                                                  {٧٥} مركز الدائرة الخارجة للمثلث هو نقطة تقاطع ......
            { منصفات زواياه الداخلية ؛؛ منصفات زواياه الخارجة ؛؛ ارتفاعاته ؛؛ محاور تماثل أضلاعه }
                                                              { ٥٨ } محور التماثل للوتر المشترك [ ب لدائرتين متقاطعتين م ، م هو ...
                                                                                                                                                                            { | N " N C " + C " | C }
                                                                                                                                                  {٩٥ } عدد المستطيلات في الشكل هي .....
                                                                                                                                                                                                     { 1. 55 V 55 T 55 T }
                                                                                 { ٠٠ } قياس الزاوية الخارجة عن المثلث المتساوي الأضلاع = ...... °
```

```
140 66 14 66 1.4 66 1.
    سم فإن طول نصف قطرها \pi ۱۸ سم فإن طول نصف قطرها \pi سم الدائرة هو \pi ۱۸ سم فإن طول نصف قطرها
                                     { 7 :: 7 :: 9 :: V }
 {٦٢} القطر هو .... يمر بمركز الدائرة { مستقيم ؛؛ شعاع ؛؛ مماس ؛؛ وتر }
 {٦٣} إذا كان △ س ص ع فيه: و منتصف س م نتصف س ف فإن وه = .... ص ع
                                     {٢٤} مساحة سطح المثلث الذي طول قاعدته ٩ سم، ارتفاعه ١٢ سم = ..... سم
                               { of ii TT ii Tt ii th }
           فإن ق (∠ب ع ج ) = ..... = ( ب ۲۰ ؛ ۱۲۰ ؛ ۲۰ ؛ ۳۰ }
                 \{77\} في الشكل المقابل: \overline{4} ج قطر في الدائرة م ، (-) = - °°
                    فإن ق ( ح ا ) = ..... و ۱۲۰ ؛ ۲۰ ؛ ۹۰ ؛ ۶۰ ا
       {۲۷} عدد محاور تماثل المستطيل = ..... { ۱ ؟؛ ۲ ؟؛ ۳ ؟؛ ٤ }
{ ٦٨ }إذا كانت م دائرة طول قطرها ٧ سم ، ٩ نقطة في مستوي الدائرة وكان م ٩ = ٤ سم
فأن موضع نقطة ٩ بالنسبة للدائرة ... الدائرة { داخل ؟؛ خارج ؟؛ على ؟؛ تنطبق على المركز م }
                     {٦٩} المماسان المرسومان من نهايتي قطر في دائرة .....
                  { متوازیان ؛؛ متساویان ؛؛ متطابقان ؛؛ متقاطعان }
(٧٠) إذا كانت أب قطعة مستقيمة فإن عدد الدوائر التي يمكن رسمها لكي تمر بالنقطتين
                   ٩، ب = ..... { ١ ؟؛ ٣ ؟؛ عدد لا نهائي }
                 الدائرة م\emptyset = \emptyset فإن المستقيم ل\emptyset الدائرة م
```

```
{ خارج الدائرة ؛؛ قاطع للدائرة ؛؛ مماس للدائرة ؛؛ محوراً للدائرة }
       \{YY\} قوس من دائرة طوله \pi ن فإنه يقابل زاوية مركزية قياسها \pi
                                    { Y£ · !! | Y · !! | Y · | }
{٧٣} النسبة بين قياسى الزاوية المحيطية والزاوية المركزية المشتركتين في نفس القوس
            فى دائرة واحدة هى ..... { ١ : ٢ ؛ ٢ : ١ ؛ ١ : ١ ؛ ٢ : ٣
           { ٤٧ } عدد الدوائر التي تمر بثلاث نقاط ليست على استقامة واحدة = .....
                                         { ۳ ؛ ۲ ؛؛ ۱ ؛؛ صفر <sub>}</sub>

    إذا كان طول قطر دائرة ٨سم والمستقيم ل يبعد عن مركزها ٤ سم فإن ل يكون .....

     { مماساً للدائرة ؟؛ قاطع للدائرة ؟؛ يقع خارج الدائرة ؟؛ محور تماثل للدائرة }
                                 \frac{\overline{(27)}}{6}  في الشكل المقابل :  \overline{(27)}  ،  \overline{(27)}  وتران متوازيان
                                       ص (عب) = ۳۰ فإن ص (عم هج) = ......
                                       { No : " : " : " : ! ! . }
                       {٧٧} الزاوية المحيطية التي تقابل قوساً أصغر في الدائرة ......
                             { قائمة ؛ منفرجة ؛ حادة ؛ منعكسة إ
                        {٧٨} الزاوية المحيطية التي تقابل قوساً أكبر في الدائرة ......
                             { قائمة ؟؛ منفرجة ؟؛ حادة ؟؛ منعكسة }
                       \{ Y \} في الشكل المقابل: دائرة م، \{ Y \} ب \{ Y \} م س
                             م ص oldsymbol{\perp} ج و فإن م س \dots م ص oldsymbol{\perp}
  {٨٠} الوتر المار بمركز الدائرة يسمي ..... { مماساً ؛؛ قطراً ؛؛ نصف قطر ؛؛ ضلعاً }
                { ٨١} عدد محاور التماثل للمربع ...... { ٢ ؛ ٣ ؛؛ ٤ ؛؛ ٥ }
```

```
^{\circ} 
                                                                                                              { ٨٤ } قياس القوس الذي يمثل ثلث قياس الدائرة =.... ° { ٦٠ ؟؛ ٩٠ ؟؛ ١٢٠ ؟؛ ٢٤٠ }
                                                        {٥٨} عدد الدوائر التي تمر بثلاث نقط على استقامة واحدة = ......
                                                                                                                       { ۳ ؟؛ ۲ ؟؛ ۱ ؟؛ صفر }
                 {٨٦} خط المركزين لدائرتين متقاطعتين يكون عموديا على ..... المشترك وينصفه
                                                                                   { القطر ؟؛ المماس ؟؛ الوتر ؟؛ القوس }
                {٨٧} المستقيمان المتوازيان لثالث ..... { متخالفان ؛؛ متوازيان ؛؛ متقاطعان }
                   {٨٨} نقطة تلاقى متوسطات المثلث تقسم كلا منها بنسبة ...... من جهة القاعدة
                                                                            { Y: W !! W: 1 !! 1: Y !! Y: 1 }
{ ٨٩} قياس القوس الذي يُمثل سدس قياس الدائرة = ..... ° { ٢٠ ؛؛ ٩٠ !؛ ٢٠٠ ؛
                                        الشكل المقابل: \overline{q} ب، \overline{q} جماسان، \mathfrak{O}(\times q) = 7° فإذا كان \overline{q} ب = ٤سم \{q,q\}
                                                                                        ، فإن ب ج = ....سم { ٣ ؛؛ ٤ ؛؛ ٥ ؛؛ ٨ }
        \{9,9,1\} إذا كان طولا نصفى قطري الدائرتين م ، ن هما نؤر ، ، نؤر وكان م ن > نؤر ، + نؤر ،
فإن الدائرتين .... { متماستين من الخارج ؛؛ متباعدتان ؛؛ متقاطعتين ؛؛ متماستين من الداخل}
                                                    {٩٢} القطعتان المماستان المرسومتان من نقطة خارج الدائرة تكونان .....
                                                  { متوازیتان ؛؛ متعامدان ؛؛ متساویتان ؛؛ غیر متساویتان }
{٩٣} وياس الزاوية المركزية ..... قياس القوس المقابل لها { ضعف ؛؛ نصف ؛؛ يساوي ؛؛ اكبر من }
```

```
{ ٤ ٩ } القطران متساويان في الطول وغير متعامدين في .... { المربع ؛ المستطيل ؛ المعين }
                    (٩٥) الزاويتان ٥، ب في △ ٥ ب ج القائم الزاوية في ج يكونان ....
                    { متكاملتين ؛ متتامتين ؛؛ متجاورتين ؛؛ متقابلتين بالرأس }
{٩٦} النسبة بين طول ضلع المربع إلي محيطه = .... { ١ : ٤ ؛؛ ٤ : ١ ؛؛ ٢ : ١ ؛ ٣ : ١ }
{٩٧} قياس الزاوية المنعكسة للزاوية التي قياسها ١٠٠ ° =.... ° { ٨٠؛ ٩٠؛ ٢٠٠ ؛ ٢٦٠ }
          {٩٨} إذا كانت النقطة م تقع على الدائرة م التي قطرها ٨ سم فإن م م = ..... سم
                                        {٩٩} عدد محاور تماثل متوازي أضلاع هو ...... { صفر ؟؛ ١ ؟؛ ٣ }
 {١٠٠} إذا كان قياس إحدي زاويتي قاعدة مثلث المتساوي الساقين ٤٠ فإن قياس زاوية الرأس
                \overline{\Psi}_{\sim}=0 جیث س قیاس زاویهٔ حاده فإن : س \overline{\Psi}_{\sim}=0 حیث س قیاس زاویهٔ حاده فإن : س
                      { T. !! O. !! £O !! T. }
     {١٠٢} نقطة تقاطع متوسطات المثلث تقسم كل متوسط بنسبة ....: من جهة الرأس
                       17. 11 2. 11 0. 11 9. }
                                               {١٠٤} في الشكل المقابل:
                    فإن م و = ..... سم { ۱۲ ؛؛ ٦ ؛؛ ٣ }
       (٥٠١ } مربع مساحته ٥٠ سم فإن طول قطره = ...... سم { ٥٠؛ ١٠١ ؛ ٥٠ }
    ( \angle 4 )  ، ( \angle 4 ) ، ( \angle 4 ) = \frac{1}{4} ( \angle 4 ) = \frac{1}{4} ( \angle 4 ) فإن ( \angle 4 )
```

```
{ 9, !! 7, !! £0 !! T, }°.....
```

$$\{1\cdot V\}$$
 مرح قائم الزاوية في ب ، $m{v}$ $($ $m{z}$ $m{v}$ ، م $m{v}$ $m{v}$ ، م $m{v}$ المراوية في ب ، $m{v}$ $m{v}$

$$`` ... = 1 \cdot \cdot - (>) + ($$

$$\longleftrightarrow$$
 اسطح الدائرة م $=$

$$\overline{(111)}$$
 γ ب ح مثلث متساوي الاضلاع فإن عدد محاور تماثل الضلع $\overline{\gamma}$

{١١٣} طول نصف الدائرة =

$$\{ \pi \vartheta \ ' \ :: \pi \vartheta \frac{1}{7} \ :: \ "1 \land " :: \ \vartheta \pi \}$$


```
{١١٦} مجموع قياسات الزوايا المتجمعة حول نقطة واحدة = .....
                                                                                                            {١١٧} قياس الزاوية المحيطية المرسومة في ربع دائرة = ........ °
                                                                                                             ٤٥}
     {١١٨} وتر طوله ٨سم في دائرة طول نصف قطرها ٥ سم فإنه يبعد عن مركزها ..... سم
                                                                                                                         { ١١٩ } القطران متعامدان وغير متساويين في الطول في .....
                                                { المعين ؟؛ شبه المنحرف ؟؛ المربع ؟؛ متوازي الأضلاع }
         \{ 1 \ 1 \ \} في المثلث \{ 1 \ 2 \ = (1 \ 4)^{\prime} = (1 \ 4)^{\prime} + (1 \ 
                                                                                                 { حادة ؟؛ قائمة ؟؛ منفرجة ؟؛ مستقيمة }

    ١٢١ في المثلث ١ سح إذا كان (١ ح) > (١ س) + (سح) فإن زاوية ١ سح تكون .....

                                                                                                 { حادة ؟؛ قائمة ؟؛ منفرجة ؟؛ مستقيمة }
{١٢٢} مكعب مساحته الجانبية ٣٦ سم تكون مساحته الكلية ... { ١٨ ؛؛ ٤٥ ؛؛ ١٨؛ ٢١٦}
         {١٢٣} عدد محاور تماثل المثلث المتساوي الساقين = .... { ٣ ؛ ٢ ؟ ؛ ١ ؟ صفر }
         {١٢٤} معين مساحته ٣٠ سم طول أحد قطريه ١٢ سم فإن طول القطر الاخر ..... سم
                                                                                                                 {٥٢١}مجموع طولى أي ضلعيين في مثلث ..... طول الضلع الثالث
                                                                                     { أصغر من ؟؛ يساوي ؟؛ أكبر من ؟؛ ضعف }
                                                          {١٢٦} طول الضلع الثالث ...... مجموع طولي أي ضلعيين في مثلث
                                                                                       { أصغر من ؟؛ يساوي ؟؛ أكبر من ؟؛ ضعف }
           {۱۲۷} مجموع قياسى الزاويتين المتكاملتين = .... ° { ٩٠ ؟؛ ١٨٠ ؛؛ ٢٧٠ ؛؛ ٣٦٠ }
```

```
{١٢٨} مجموع قياسي الزاويتين المتتامتين = .... ° { ٩٠ ؟؛ ١٨٠ ؟؛ ٢٧٠ ؟؛ ٣٦٠ }
                                        (1 \leq 1)  (1 \leq 1) 
                                 فإن ف ( حر) = ........ ° ( ١٢٠ ؛؛ ٩٠ ؛؛ ٩٠ ؛ ١٢٠ }
    المثلث q - - = 1 کان : \omega(-q) = 1 ، \omega(-q) = 1 في المثلث q - - = 1 کان : \omega(-q) = 1 ، \omega(-q) = 1
                                                         هذا المثلث = ...... { ١ ؛؛ ٣ ؛؛ ٣ ؛؛ ٤
                              `` : " ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( >  ) + ( 
                                                                                            { YV . !! IA . !! IY . !! 9 . }
  {١٣٢} قياس القوس الذي يُمثل لِ قياس الدائرة = .... ° { ٣٦٠ ؛؛ ٢٧٠ ؛؛ ١٨٠ ؛؛ ٩٠ }
                           {١٣٣} إذا كانت الدائرة م ∩ الدائرة ن = { ١ ، ب } فإن الدائرتين م ، ن ......
                            { متباعدتان ؛؛ متحدتا المركز ؛؛ متماستان من الخارج ؛؛ متقاطعتان }
         {١٣٤} عدد محاور تماثل المثلث المتساوي الأضلاع = .... { ٣ ؛ ؟ ٢ ؛ ١ ؛ صفر }
{٥٣٥} مجموع قياسات الزوايا الداخلة للشكل الرباعي = ... ° { ٩٠ ؛ ١٨٠ ؛ ٢٧٠ ؛ ٣٦٠}
               (\frac{\gamma\gamma}{\nu} = \pi) سم فإن مساحة الدائرة = 13 سم فإن مساحة الدائرة = ..... سم ( \pi
                                                                               10£ 10£ 11 AA 11 £9 11 YY
{١٣٧} مستطيل طوله ٣ سم ، وعرضه ٢ سم فإن مساحة سطحه .... سم { ٤ ؟؟ ٥ ؟؟ ٦ ؟؟ ١٠ }
            الشكل المقابل: 1 - 2 مثلث قائم في - 3 منتصف 1 - 3 ، - 3 سم فإن - 3 سم فإن
                                                                                           ٩ ح = ..... سم { ٣ ؛؛ ٦ ؛؛ ٩ ؛؛ ١٢ }
                                                    عريد المضلعان المتشابهان زواياهما المتناظرة ..... في القياس
                                                  { مختلفة ؛؛ متكاملة ؛؛ متبادلة ؛؛ متساوية }
                                       { . ٤ . } صورة النقطة ( - ٣ ، ٤) بالانعكاس في محور الصادات هي ......
```

السؤال الثاني: اجب عن ما يلي

{١} اذكر حالتين يكون فيهما الشكل الرباعي دائرياً

{٢}في الشكل المقابل:

م ب ، ب ج وتران في دائرة م التي طول نصف قطرها ه سم ،

أوجد {١} ص(ح ٢٥ س)

{٢} طول و ه

م دائرة ، ٩ ب // ج ء ، س منتصف ٩ ب ، رسم س م فقطع ج ء

في ص: أثبت أن: ص منتصف ج ع

م ب ، م ج و تران في الدائرة م يحصران زاوية قياسها ١٢٠ و ، ه

منتصفا م ب ، م ج علي الترتيب ،رسم عم ، هم فقطعا الدائرة س ، ص علي الترتيب . أثبت أن : المثلث س ص م متساوي الاضلاع

[٥] في الشكل المقابل: م دائرة طول نصف قطرها ه سم ، س ص = ٢ اسم ،

م $\overline{0}$ الدائرة م $\{3\}$ ، ع $\overline{0}$ سم

أثبت أن: س ص مماس للدائرة م عند س

 $\{7\}$ في الشكل المقابل: \overline{q} ب مماس للدائرة γ عند q ، γ $q=\Lambda$ \overline{q} \overline{q}

(٧) في الشكل المقابل: م ، ن دائرتان متقاطعتان في

[٨] في الشكل المقابل: أب ج مثلث مرسوم داخل دائرة م فيه:

 $\overline{\psi}(\angle \psi) = \psi(\angle \varphi)$ ، س منتصف $\overline{\psi}$ ، م ص $\overline{\psi}$

أثبت أن : م س = م ص

٩} في الشكل المقابل: ٩ ب، ٩ جوتران متساويان في الطول في الدائرة م

 $^{\circ}$ ۷۰ = (\checkmark ج $^{\circ}$ ب $^{\circ}$ ص منتصف $^{\circ}$ ج $^{\circ}$ ب $^{\circ}$ ب $^{\circ}$

 $\{1\}$ احسب: $\{1\}$ اثبت أن: س $\{2\}$ $\{3\}$ اثبت أن: س $\{3\}$

{١٠} في الشكل المقابل:

م دائرة $\stackrel{\longleftarrow}{=}$ مماس لدائرة عند $\stackrel{}{=}$ ، $\stackrel{\bigcirc}{=}$ ، $\stackrel{\bigcirc}{=}$ ه و

وتران في الدائرة حيث: $\frac{1}{4}$ ب $\frac{1}{4}$ ه و $\frac{1}{4}$ ج و أثبت أن: حه = حو

{١١} في الشكل المقابل:

٩ ب ج ع مستطیل مرسوم داخل دائرة ، رسم الوتر جه

بحيث ٥ (جَهُ) = ٥ (جَعُ) أثبت أن: ٩ هـ = بج

0

(١٢) في الشكل المقابل:

{ ٣ } } في الشكل المقابل:

 $^{\circ}$ $^{\circ}$

أوجد كلاً من : \mathfrak{V} (حَجْمِ) \mathfrak{V} (حَجْمِب)

 $\stackrel{\longleftrightarrow}{=}$ $\frac{}{}$ $\stackrel{\longleftrightarrow}{=}$ $\frac{}{}$ $\stackrel{\longleftrightarrow}{=}$ $\stackrel{\longleftrightarrow}{=}$

أثبت أن: المثلث ج م ب متساوي الاضلاع

 $\overline{+}$ الشكل المقابل : $\overline{+}$ وتر في الدائرة م ، $\overline{+}$ $\overline{+}$ $\overline{+}$ $\overline{+}$ $\overline{+}$

أثبت أن: ق (حم ﴿ ج) = ق (ح ﴿ و ب)

(١٥) في الشكل المقابل:

 $abla \cdot = (\widehat{s} + \widehat{\psi}) \cdot \partial \cdot \widehat{s} \cdot = (\widehat{s} + \widehat{\psi}) \cdot \partial \cdot \widehat{s} \cdot \widehat{s}$

أوجد {١} ٥ (ه ج) {٢} ١٠ (ب ج)

 $\{A\} = \overline{A} \cap \overline{A} \cap A$ في الشكل المقابل: $\{A\}$

ه (= ه و ، أثبت أن : هب = ه ج

(١٧) في الشكل المقابل:

A s ، ب ه وتران متساويان في الطول في الدائرة كم

﴿ ع ∩ ب ه = {ج} ، أثبت أن : ج ﴿ = ج ب

(١٨) في الشكل المقابل:

 \overline{q} ب قطر في الدائرة م ، ج \overline{q} الدائرة ، \overline{q} (\overline{q} ج \overline{q} ب) \overline{q}

 $(\Rightarrow s \lor \bot)$ و منتصف $(\Rightarrow) \land (\Rightarrow$

، ص (ع ع) {٢} اثبت أن : ع ب //جع

مراجعة ليلة الامتحان تالتة اعدادي

المستر في الرياضيات

 $^{\circ}$ ه $^{\circ}$ ه $^{\circ}$ ه الشكل المقابل : $^{\circ}$ ب $^{\circ}$ و ، $^{\circ}$ ه $^{\circ}$ ($^{\circ}$ ب $^{\circ}$ ، $^{\circ}$ ، $^{\circ}$ الشكل المقابل : $^{\circ}$

أثبت أن: النقط (، ب ، ج ، ى تمر بها دائرة واحدة

 $\{ \cdot, \cdot \}$ في الشكل المقابل : $\{ \cdot, \cdot \} \oplus \{ \cdot, \cdot \}$ ، $\{ \cdot, \cdot \}$

٧ (∠ ج ب ه) = ٥ ٨°

أوجد: ٠٠ (∠ ب و ج)

{۲۱} في الشكل المقابل: م (ح إبه) = ١٠٠ °

° £ · = (5 | + \(\) \(\)

أثبت أن: ٥ (ج ٤) = ١٠ (٩ ٤)

{٢٢} في الشكل المقابل: A ب قطر في الدائرة م، جُو مماس للدائرة عند ج

{٣٣} في الشكل المقابل: س و ، س ب مماسان للدائرة عند و ، ب

٠ (∠ ٩ س ب) = ، ° ، ٠ (∠ ۶ ج ب) = ٥ ١٢ °

أثبت أن {١} أب ينصف حو إس {٢} س ب أثبت أن {١} أو // س ب

 $\frac{\sqrt{7}}{\sqrt{7}}$ في الشكل المقابل: $\frac{\sqrt{7}}{\sqrt{7}}$ ، $\frac{\sqrt{7}}{\sqrt{7}}$ قطعتان مماستان للدائرة م ، $\frac{\sqrt{7}}{\sqrt{7}}$

س (∠ب م ۶) = ۱۳۰°

 (\land) أثبت أن : جب ينصف \angle أج و $\{\Upsilon\}$ أوجد : (\checkmark)

{٥٢} في الشكل المقابل:

م ب ، م ج قطعتان مماستان لدائرة عند ب ، ج

° 70 = (> 5 + >)

أوجد بالبرهان: ٥٠ (٧ ب ١ ج)

٢٦} في الشكل المقابل: ٩ب جمثلث مرسوم داخل دائرة ، ب في مماس للدائرة عند ب

أثبت أن: الشكل إس ص جرباعي دائري

{٢٧} في الشكل المقابل: س ص، سع مماسان للدائرة من نقطة س

{٢٨} في الشكل المقابل:

دائرتان متماستان في نقطة ب ، ﴿ بَ مماس مشترك للدائرتين

٩ ب = (٢ س ـ ٣) سم ، ٩ و = (ص ـ ٢) سم ، أوجد كلاً من : س ، ص

(٢٩ } في الشكل المقابل:

أثبت أن: ٩ ج مماس للدائرة المارة برؤوس المثلث ٩ ب ء

أوجد: ٥٠ (حب ه ٤) ، ٥٠ (١٥٠)

(*) ني الشكل المقابل: $(\angle) =$ ، $(\angle) =$ ، $(\triangle) =$ ، $(\triangle) =$ ، $(\triangle) =$

أوجد {١} : ق (ب ع) ، {٢} أثبت أن : ﴿ ب = ﴿ ع

$$\circ$$
7 · = (\Rightarrow \searrow) \circ · ° ° · = ($s \mapsto \beta \searrow$) \circ

أثبت أن: الشكل إبج و رباعي دائري

 $\overline{ } \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{}} \stackrel{}{} \stackrel{}{} \stackrel{}{} \stackrel{}}{} \stackrel$

{٣٤} في الشكل المقابل:

المثلث ٩ ب ج مرسوم خارج الدائرة م التي تمس أضلاعه

ب ه = ٤ سم ، ج و = ٣ سم ، أوجد محيط المثلث م ب ج

سم ،
$$\{\circ\}$$
 م ن $\{\circ\}$ م ن $\{\circ\}$ م ن $\{\circ\}$ م ن

{٣٦} في الشكل المقابل:

م دائرة فيها $(2 + 4 + 2) = 4 ^{\circ}$ ، $(4 + 4 + 2) = 4 ^{\circ}$ ، (4 +

{٣٧} في الشكل المقابل:

 $\stackrel{\longrightarrow}{=}$ ، $\stackrel{\longrightarrow}{=}$

أوجد ق (ح ١٩ ٦ ب)

{٣٨} في الشكل المقابل: $\overline{|}$ ب مماس للدائرة م عند |

م ا = ۸ سم ، ق (🔀 اب م) = ۳۰ °

(۱) أوجد طول م ب (۲) قياس (ج ۱)

{ ٣٩ } في الشكل المقابل: في الدائرة م.

م س ⊥ ۱ ب م ص ⊥ ۱ ج ، م ر ∠ ب) = ۷۰ ° أثبت أن : $\frac{1}{m}$ $\frac{1}{m}$ $\frac{1}{m}$ أوجد $\frac{1}{m}$

(، ٤) في الشكل المقابل:

<u>م ب ، ج قطعتان مماستان للدائرة عند ب ، ج</u>

 $(\angle) = \cdot \, ;$ أوجد بالبرهان $(\angle 5)$

{ ٤ } في الشكل المقابل: A ب قطر في الدائرة م

فيه م (ح ج ع م) = ۱۲۰°

أوجد ف (حج اب)

{٢٤} في الشكل المقابل: م دائرة طول نصف قطرها ١٣ سم

٩ ب وتر فيها طوله ٢٤ سم ، م ج لـ ٩ ب

{ ٣ } } في الشكل المقابل: س ص ، س ع مماسان للدائرة من نقطة س

ں (∠ عوہ) = ۱۱° ، ں (∠ س) = ، ه°

أثبت أن: ع 🏔 = ع ص

ن (< س) = ، ٤ أوجد : ن (< ص ۶ ج)

(٥٤) في الشكل المقابل:

۵ ۲ ب ج فیه ج ب = ۲ ج ، ع (< ۶ ۲ ب) = ۲۰۰°

(٤٦) في الشكل المقابل: (€ مماس للدائرة)

$$\mathcal{V}(\dot{\varphi},\dot{\varphi}) = \mathcal{V}(\dot{\varphi},\dot{\varphi}) = \mathcal{V}(\dot{\varphi},\dot{\varphi})$$

أوجد بالبرهان م (ح ب ع ع)

أثبت أن: △ م س ص متساوي الأضلاع

$$(2.5)$$
 $\psi = (5.4)$ $\psi = (4.5)$ ψ

أوجد :اولاً : ق (ح ج م ع) ، ثانياً : ق (ح ج ه ع)

 $\{9\}$ أوجد قياس القوس الذي يمثل $\frac{1}{2}$ الدائرة ثم أحسب طول هذا القوس إذا كان طول نصف قطر الدائرة $\pi=\pi$

اب ، اح قطعتان مماستان للدائرة م عند ب ، ح

(マイタン) ひ(ノチト) ひ

(١٥) اب طولها ٤ سم . ارسم الدائرة التي تمر بالنقطتين ١، ب وطول نصف قطرها ٣ سم كم دائرة مكن رسمها ؟ باستخدام الأدوات الهندسية

41

(٢٥) في الشكل المقابل:

أوجد بالبرهان

(ひ \) ひ { * }

(٥٣) في الشكل المقابل: إذا كان: أبُّ مماساً عند ب

اح يقطع الدائرة في ح ، و ،
$$v(\dot{p}) = 11^\circ$$

{ ع ه } في الشكل المقابل: م ، ن دائرتان متقاطعتان في P ، ب

 $\frac{}{a} \stackrel{}{\text{m}}$ $\frac{}{a} \stackrel{}{\text{m}}$ $\frac{}{a} \stackrel{}{\text{m}}$ $\frac{}{a} \stackrel{}{\text{m}}$ $\frac{}{a} \stackrel{}{\text{m}}$

أثبت أن: الشكل هس مصرباعي دائري

{ ٥٥} في الشكل المقابل: آب، آح وتران في الدائرة م

و منتصف آب ، ه منتصف اح

ن (عام) = ۲° ، أوجد ن (عام)

{ ٥٦ } في الشكل المقابل:

آب ، آح وتران في الدائرة م

 $\upsilon(1-\varepsilon) = \upsilon(1-\varepsilon)$, $\upsilon(2-\varepsilon)$

{٥٧} في الشكل المقابل: ٩٥ // ٥٠

* 1 = (4 / 1 ×) U

أوجد: ٥ (٧ - ١٥)

اب ح مثلث مرسوم داخل دائرة

(al->) اثبت أن (al->)

(٩ ه } في الشكل المقابل:

<u>اح</u> قطر في الدائرة ، حب = حر

أثبت أن: ١٠ (١٦) = ١٠ (١٤)

م دائرة طول نصف قطرها ۷ سم ، v(1-)=0

 $(\frac{\gamma\gamma}{\gamma} = \pi)$ أوجد طول

(٦١ } في الشكل المقابل:

اب د و متوازي أضلاع فيه ا د= ب د

أثبت أن: حَرَّ مماس للدائرة الخارجة للمثلث ابح

(٦٢) في الشكل المقابل: 1ب قطر في الدائرة م، ح ∈ للدائرة م

رسم مماس للدائرة عند ح قطع المماسين المرسومين

لها عند ۱، ب في س، ص فإذا كان: ١٠ = ١٠ سم

، س ح = ٥ سم ، ص ب = ٨ سم

أوجد محيط الشكل: ١ س ص ب

{٦٣} في الشكل المقابل:

دائرة مركزها م فيها: بر حبم ح) = ١٣٠°

أوجد: {١} ١٤ (١١) {٢} الرحا)

{٦٤} في الشكل المقابل:

وح قطر في الدائرة التي مركزها م ، ب آ مماس للدائرة

عند نقطة ب ، س (١٠١٥) = ١٣٥°

ثبت أن: وح // ١٠٠

*ハイ・= (マウトン)ひ、

أثبت أن: المثلث باح متساوي الأضلاع

{٦٦} في الشكل المقابل:

دائرتان متحدتا المركز م ، آح ، آب قطعتان

مماستان للدائرة الصغري في ه ، ء ، v(-1) = 0

وتقطعان الدائرة الكبرى في ح، ب على الترتيب

 $\{1\}$ أثبت أن : $1 = 1 + \{7\}$ أوجد $v(\angle A \cap Z)$

 $\{77\}$ في الشكل المقابل : Δ 1 سح قائم الزاوية في 1 ، $\odot($ ح 1 س) = ٦ ° $(\angle) = ^{\circ}$ ، أثبت أن : $\overline{ 12 }$ مماس للدائرة المارة بالنقط $1, \dots, \infty$

{ ٦ ٨ } في الشكل المقابل: آب قطر في الدائرة م ، ه منتصف آح

بع مماس للدائرة عند ب

برهن أن: الشكل هم بورباعي دائري

{ ٩ ٦ } في الشكل المقابل:

١ - ح و متوازي أضلاع ، ١ - ١ هـ

أثبت أن: ١ هدورباعي دائري

(٧٠) في الشكل المقابل: ١- حو شكل رباعي مرسوم داخل دائرة فيه

اب = وح أثبت أن : اح = بو

*10=(メリン)の、11 上面で

أوجد بالبرهان: ٥ (١٠١٥)

 $^{\circ \circ \cdot } = \widehat{(\cdot)} : 0 : 0$ في الشكل المقابل $^{\circ \circ \cdot } = 0$

أوجد بالبرهان : $\{1\}$ $v(\angle 12-)$

(4s1)v {Y}

{٧٣} في الشكل المقابل: ١- حو شكل رباعي مرسوم داخل دائرة م

~ € // 2~ · · · (∠ & ~ e)= ° 7°

س (∠١١٥)=١٢٠ أوجد: س (∠١٥ح)

(٧٤) في الشكل المقابل: ١، ب، ح ثلاث نقاط تقع علي دائرة م

الأضلاع $(\angle 1 - \gamma)$ المح متساوي الأضلاع $\{ 1 \}$

(٥٧) في الشكل المقابل:

 $(\angle A \angle e)$ = ٥٥° أثبت أن : ١٠ حو رباعي دائري

 $^\circ$ اسكل المقابل : Δ اب ح مرسوم داخل الدائرة م ، υ (\sim 1)= $^\circ$

(١) أوجد: ١٥ حرم ح)

 $\{Y\}$ أثبت أن : Δ م \sim متساوي الأضلاع

°0.=(>51≥)U

أوجد: ب(∠حبو)

ى (∠احب)=، ٥° اثبت أن: اسحورباعي دائري

{٧٩} في الشكل المقابل: ١ح، سرَّح وتران في الدائرة م

°11.=(sat≥)v . {a} = 5- ∩ -1

° ∧ · =(~ ×) ·

أوجد: ١٥(١٥) ، ١٥ (١٥)

مراجعة ليلة الامتحان تالتة اعدادي

7

المستر في الرياضيات

(٨) في الشكل المقابل:

°11.
°11. =(>-|>) ∪ · ° T° =(|> >) ∪ · s = | A

أحماس للدائرة عند ب، υ ($\angle 2\upsilon - 2\upsilon$) ، ' الدائرة عند ب، υ ($\angle 4\upsilon - 2\upsilon$) ($\angle 4\upsilon$) أوجد بالبرهان $\{1\}$ υ ($\angle 4\upsilon - 2\upsilon$) $\{7\}$ υ ($\angle 4\upsilon$)

(٨٢) في الشكل المقابل:

 $\overline{\omega}$ قطر في الدائرة م، σ (Δ σ σ) قطر

أوجد بالبرهان {١} ق (حسعص) {٢} ق (حصع ل)

م ب ح و شكل رباعي دائري فيه: م ح ينصف ح ب و ،

س (عام ح)= ٥٠ أوجد بالبرهان: س (عام ح)

د حرم عند قطران في الدائرة م ، σ (Δ حرم ع)= ٠٤°

(2a) اوجد بالبرهان (1) (2a) (2a)

(٥٨) في الشكل المقابل:

م س ، ص قطعتان مماستان للدائرة م عند س ، ص علي الترتيب

أوجد بالبرهان {١} طول آص {٢} ٥٠ (١٩٥٥)

(かりいと) ひ { *}

مراجعة ليلة الامتحان تالتة اعدادى

المستر في الرياضيات

{٨٦} في الشكل المقابل:

° € · =(& | 5 ×) U · 5///~ |

أوجد بالبرهان: ق (١٩٠٥)

أثبت أن: الشكل ٩ ب حرو رباعي دائري

أوجد بالبرهان: ٥٠ (١٩٠٥)

{٨٩} في الشكل المقابل:

أوجد بالبرهان: ق (حدم م)

(, ٩ } في الشكل المقابل:

دائرتان متحدتا المركزم، آب وترفى الدائرة الكبرى

(٩١) في الشكل المقابل:

٩ ب ح مثلث فيه : ٩ ب = ٩ ح

بس ینصف ≤ 1 بر و یقطع $\frac{\sqrt{1-2}}{1-2}$ فی س

حص ینصف ≤ 1 حب ویقطع $\frac{1}{1}$ فی ص

أثبت أن: الشكل بحس صرباعي دائري

(٩ ٢) في الشكل المقابل:

<u>م ب</u> قطر في الدائرة م ، بحد مماس للدائرة عند ب

م م الم الح ، م م = عسم ، ب ح = ٢سم

(١) أثبت أن: الشكل هم بحرباعي دائري (٢) أوجد: طول ١ح

{٩٣} في الشكل المقابل:

٩ - قطر في الدائرة م ، و و ١ - ، و و ١ - ،

°V · =(54 P\) U

{ ٩ ٤ } في الشكل المقابل:

 $\frac{\overline{q}}{\overline{q}}$ ، حرى وتران في الدائرة م ، $\frac{\overline{q}}{\overline{q}}$

أوجد: طول <u>١ - ٦</u>

(ه ۹) في الشكل المقابل:

أب ، حرة كل منهما مماس مشترك للدائرتين م ، ن

 $\{A\} = \overrightarrow{5} \rightarrow \overrightarrow{0} \rightarrow \overrightarrow{0}$

أثبت أن: ١ - = حو

(٩٦) في الشكل المقابل:

Pu = u = = > P () | (5 P)

أثبت أن: ﴿ وَ مَاسَ للدائرة التي تمر برؤوس △ ١ بح

{٩٧} في الشكل المقابل:

م، ن دائرتان طولا نصفي قطريهما ١٠سم، ٦سم

علي الترتيب ومتماستان من الداخل في م ، أب مماس مشترك

إذا كانت مساحة Δ ب م ن = 3 سم ، أوجد طول $\frac{1}{4}$ ب

(٩٨) في الشكل المقابل:

م ، ن دائرتان متقاطعتان في م ، ب ، رسم م و و

يقطع الدائرة م في ه و الدائرة ن في و ، ورسم سح

يقطع الدائرة م في ه والدائرة ن في ح ، م (< = > >)

(∠و) ، (۲) أثبت أن : حَوَ // هَوَ

{٩٩} في الشكل المقابل:

م و مماس للدائرة م عند م ، $oldsymbol{v}$ ($oldsymbol{\angle}$ و مماس للدائرة م عند م

أوجد بالبرهان: ق (حب)

مراجعة ليلة الامتحان في الهندسة

★ أولاً : الدائرة :

أولاً: أسئلة الاختيار من متعدد

هو	لأي دائرة	التماثل	عدد محاور	1
----	-----------	---------	-----------	---

(5) عدد لا نهائي

Y (~)

(۱) صفر (۱)

ن في الشكل المقابل:

Y (5)

م ، مع لـ الدائرة م ، مع لـ م م ا ،

ع ب = ۸ سم ، م ب = ٥ سم فإن : م ع = سم ع ب = ٨ سم ، م ب = ٥ سم فإن : م ع = سم على الم

إذا كانت م دائرة طول نصف قطر ها كلسم ، م نقطة في مستوي الدائرة وكان مم = كلسم فإن: موضع نقطة م بالنسبة للدائرة الدائرة () على مركز () تقع داخل () تقع خارج (ح) على (5) على مركز

اذا کان المستقیم ل مماساً للدائرة طول قطرها Λ سم فإنه یبعد عن مرکزها بمقدار.... سم $(\ \)$ $(\ \)$ $(\ \)$ $(\ \)$ $(\ \)$ $(\ \)$ $(\ \)$ $(\ \)$ $(\ \)$ $(\ \)$

في الشكل المقابل:
 أ مماس للدائرة م عند ب ، فإذا كان م ب = ٥ سم
 أ م ح = ٨ سم
 فإن: ١ ب = سم
 ١ (٥) ٥ (٢) ١٠ (ح) ١٢ (ح) ١٢ (ح) ١٢ (ح)

دائرتان م ، م طولا نصفي قطریهما ۹ سم ، ۶ سم فإذا کان م م = ٥ سم فإن : الدائرتین تکونان

(۲) متماستان من الخارج (۲) متماستان من الداخل (۲) متماستان من الداخل (۲) متفاطعتان (۲) متفاطعتان

- إذا كانت الدائرتان م ، م متماستين من الخارج ،وطول نصف قطر أحدهما ٥ سم
 - ، مره = ٩ سم فإن: طول نصف قطر الدائرة الأخرى = سم

 - Y(z) Y(z) $\xi(z)$ Y(z)
- م ، به دائرتان متقاطعتان ، طولا نصفي قطريهما ٣سم ، ٥سم فإن: مرب ∈

- $] \land \land \Upsilon[(s)] \qquad] \Upsilon \land \lnot[(s)] \qquad] \otimes \land \Upsilon[(s)] \qquad \land \land [(s)]$

 - عدد المماسات المشتركة لدائرتين متباعدتين يساوى
 - ٤ (٥)
- $\Upsilon(>)$ $\Upsilon(\sim)$ $\Upsilon(\uparrow)$
- 🔐 عدد الدوائر التي تمر بثلاث نقط تقع على استقامة واحدة هو
- (۶)عدد لا نهائي
- () واحد
 () ثلاث
- 🔐 عدد الدوائر التي تمر بثلاث نقط ليست على استقامة واحدة هو
- (۶) عدد لا نهائي

- (۲) صفر () ۲

ثانيًا: الأسئلة المقالية

* تعاريف ومفاهيم أساسية :

في الشكل المقابل:

 $\overline{-}$ ، $\overline{-}$ وتران في الدائرة م يحصران بينهما زاوية قياسها ١٢٠°، و، ه منتصفا ١٦٠، م ح على الترتيب

، رسم ومم ، هم فقطعا الدائرة في س ، ص على الترتيب

أثبت أن: △سصم متساوي الأضلاع

البرهان :

- $^{\circ}$ 9 · = ($^{\circ}$ 5 · $^{\circ}$ $^{\circ}$ · $^{\circ}$ ·

- · · · (∠) & (> · · ·
- ·· ه منتصف آح ·· مه ــ اح
- · : مجموع قياسات زوايا الشكل الرباعي = ٣٦٠٠
- $^{\circ} \mathsf{I} \cdot = (^{\circ} \mathsf{I} \mathsf{I} \cdot + ^{\circ} \mathsf{I$
- - ∴ م س ص متساوي الأضلاع

اليماني في الرياضيات في الشكل المقابل:

م دائرة ، أب // حو ، س منتصف أب

، رسم سم فقطع حرى في ص

أثبت أن: ص منتصف حء

البرهان :

: التداخل : على العداخل العلى العداخل العلى ا

.. م ص <u>ل</u> ح و .. ص منتصف ح و ا

٣ في الشكل المقابل:

م دائرة طول نصف قطر ها ١٣ سم

، \overline{q} وتر فيها طوله ٢٤سم ، ح منتصف \overline{q} و

أوجد بالبرهان: مساحة △ ٢ و ب

 $\sim \Delta^{7}$ د قائم الزاوية في ح $\sim \gamma \sim = \sqrt{(17)^{7} - (17)^{7}} = 0$ سم $\sim \Delta^{7}$

.: حو = ۱۳ = ۵ = ۸ سم

ن. مساحة $\triangle 9 > - = \frac{1}{7} \times 4$ طول القاعدة \times الارتفاع $= \frac{1}{7} \times 7 \times \times = \boxed{99}$

الشكل المقابل:

وتر في الدائرة م ، $\overline{4-}$ ينصف $(\angle P - P - Q)$ ويقطع الدائرة م في ح ، إذا كان و منتصف م ب $\frac{\overline{}}{}$ أثبت أن : $\overline{}$

البرهان :

من (۱ ، $\mathfrak{O}: : \mathfrak{O}(\angle -1) = \mathfrak{O}(\angle -1)$ و هما في وضع التبادل $\mathfrak{O}: \mathfrak{O}: \mathfrak{O}: \mathfrak{O}: \mathfrak{O}$ من

$$\overline{}$$
 $\overline{}$ $\overline{\phantom{$

△ في الشكل المقابل:

م ، به دائرتان متقاطعتان في م ، ب ، ح و الم

، و ∈ الدائرة م ، ن (∠ممو) = ١٢٥°

°00=(5>4≥)v ,

أثبت أن: حو مماساً للدائرة م عند و

البرهان :

 $\frac{1}{\sqrt{6}}$ خط المركزين ، $\frac{1}{\sqrt{6}}$ الوتر المشترك

· : مجموع قياسات زوايا الشكل الرباعي = ٣٦٠

$$\therefore \sqrt{5} \perp \sqrt{5}$$
 $\therefore \sqrt{5} \perp \sqrt{5} = \frac{1}{5}$

أوجد : طول كل من <u>١٦٠</u> ، ١٠ ح

البرهان :

$$\cdot \cdot \overline{1}$$
 مماس للدائرة م عند $1 \cdot \cdot \overline{1} + \overline{1}$ $\therefore \upsilon(\angle 1) = 9$

$$^{\circ}$$
 $\mathbf{T} \cdot = (\mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r}) \cup \mathbf{r} \cdot \mathbf{r}$

$$\therefore q \sim = \sqrt{(77)^7 - (17)^7} = 14\sqrt{7} \text{ and } \therefore q \sim = \sqrt{17}\sqrt{7} \text{ and } \Rightarrow 17\sqrt{7} \text$$

 $\sqrt{}$ باستخدام الأدوات الهندسية : ارسم $\sqrt{}$ طولها ٤ سم

ثم ارسم دائرة تمر بالنقطتين ٩ ، ب

وطول نصف قطرها ٣سم

كم عدد الحلول الممكنة ؟ (لا تمح الأقواس)

الحل:

عدد الحلول الممكنة ٢

الشكل المقابل:

A بح مثلث مرسوم داخل دائرة م

 $\overline{+}$ فیه $\upsilon(\angle -) = \upsilon(\angle -)$ ، س منتصف

البرهان :

$$\Rightarrow \mathbb{P} = \neg \mathbb{P} : (\Rightarrow \angle) \cup = (\neg \angle) \cup :$$

:
$$\sqrt{-1}$$
 ن مس $\sqrt{-1}$ ن مس

٩ في الشكل المقابل:

 $\sqrt{100} \pm \sqrt{10}$ and $\sqrt{100} \pm \sqrt{100}$ and $\sqrt{100} \pm \sqrt{100}$

أثبت أن: ١ - = حو

البرهان :

$$\therefore \overline{\rho_{00}} \perp \overline{\rho_{10}} \quad \Rightarrow \overline{\rho_{10}} \perp \overline{$$

في الشكل المقابل:

- م ، به دائرتان متقاطعتان في ١ ، ب
- رسم $\frac{\sqrt{1000}}{\sqrt{1000}}$ ويقطع $\frac{1}{\sqrt{1000}}$ في س ويقطع الدائرة م
- في ص ، رسم مرس يقطع ال في و ويقطع الدائرة م في ه
 - فإذا كان : $q = q \frac{1}{2}$ فإذا كان : $q = q \frac{1}{2}$

البرهان :

- $\frac{1}{\sqrt{600}}$ $\frac{1$

الله في الشكل المقابل:

م ، سہ دائرتان متطابقتان ، ۴ ب = ح و

5- 1 mm · 47 1 mg

أثبت أن: الشكل م س ص م مستطيل

البرهان :

ن. مس = مه و (أبعاد) ، مس $//\sqrt{n}$ ناشكل مس من متوازي أضلاع

ن. الشكل مس *س به* مستطيل

٠٩٠= (٧ م ص ص ٤)٠٠ :

۱۱ في الشكل المقابل:

قطرها بح قطعت مب في ٤ ، مح في ه

 $\overline{}$ ، $\overline{}$ ، $\overline{}$ ، $\overline{}$ ، $\overline{}$ ، $\overline{}$ ، $\overline{}$

البرهان :

$$(> >) \circ = (< >) \circ :$$

∴ ۵۵ برمس ، حرص فیهما:

★ ثانيًا : الزوايا والأقواس في الدائرة :

أولاً: أسئلة الاختيار من متعدد

▲ قياس القوس الذي يمثل ثلث الدائرة =

°7: (s) °1: (s) °9: (c) °7: (p)

🕜 طول القوس الذي يمثل ربع محيط الدائرة يساوي

 $\Im \pi \frac{1}{Y}(S)$ $\Im \pi (S)$ $\Im \pi (S)$ $\Im \pi (S)$

قوس من دائرة طوله $\frac{1}{2}$ می یقابل زاویة مرکزیة قیاسها π

°75. (5) °17. (5) °7. (6)

المراجعة النهائية في الهندسة

اليماني في الرياضيات

- قياس الزاوية المحيطية يساوي قياس الزاوية المركزية المشتركة معها في نفس القوس (۱) نصف (-) ضعف (ح)ربع (ء) ثلث
 - قياس الزاوية المحيطية المرسومة في نصف دائرة =
 - °1 / (5) °17. (~)
- °9. () °£0 (P)

🚯 في الشكل المقابل:

$$\frac{9}{4}$$
قطر للدائرة $\frac{9}{4}$
 $\frac{9$

₩ في الشكل المقابل:

دائرتان متحدتا المرکز في م ، فإذا کان $\sigma(\widehat{-2}) = \Lambda^{\circ}$ فإن: ١٠ (٦٦) = °\(\cdot\) (\(\sigma\) (\(\sig

🔥 في الشكل المقابل:

م ح و قرران متوازیان ، $\sigma(\angle - \alpha z) = 0$

في الشكل المقابل:

- إذا كان: ن(< مم ب) = ٥٥٠
- فإن: ٥٠ (١١٥ ح ١٠) =
 - °\(\cdot\) (\sigma\) (\sigma\) (\sigma\) (\sigma\) (\sigma\) (\sigma\) (\sigma\)

🕦 في الشكل المقابل:

 $^{\circ}$ 1 · · = $(\widehat{-5})_{\mathcal{O}}$ · $^{\circ}$ · = $(\widehat{-1})_{\mathcal{O}}$ فإن: ١٠ < < ١ هـ <) = °1··(-) °Y0 (5) °17. (>)

مراجعة ليلة الامتحان في الهندسة

🔬 في الشكل المقابل:

ثانيًا: الأسئلة المقالية

1 في الشكل المقابل:

<u>٩ - ، حَوَ</u> وتران في الدائرة م ، ٩ - ٠ <u>٩ - ٥ حو = { ه</u>}

أوجد: ب(∠ ٥ حب)

البرهان :

من الشكل المقابل:

م ب قطر في الدائرة م

، حرى مماس للدائرة عند ح ، حرى الم

 \bullet أثبت أن : 1 = - = 0 أوجد : 0 (> 0)

البرهان :

$$\cdot \cdot \overline{1}$$
 قطر في الدائرة م $\cdot \cdot = \cdot \cdot \circ$

<u> قى الشكل المقابل:</u>

حري مماس للدائرة عند ح، حري الم

** (マトト) (· \Gamma) (

أثبت أن : $\triangle 1$ حب متساوي الأضلاع

 $^{\circ}$ ۱۲۰ = ($^{\vee}$ م $^{\vee}$) $^{\circ}$ البرهان:

$$(\mathbf{y}) \leftarrow \mathbf{y} = \mathbf{y} \Rightarrow \mathbf{x} \cdot (\widehat{\mathbf{y}} \Rightarrow \mathbf{y}) \mathbf{y} = (\widehat{\mathbf{y}} \Rightarrow \mathbf{y}) \mathbf{y} \cdot \mathbf{x} \qquad \overline{\mathbf{y}} = (\widehat{\mathbf{y}} \Rightarrow \mathbf{y}) \mathbf{y} \cdot \mathbf{x}$$

م نقطة خارج الدائرة م ، من مماس للدائرة عند ب

، مم قطع الدائرة م في ح ، و على الترتيب

 $(\widehat{-})_{\mathcal{O}} \circ (\angle) = ()_{\mathcal{O}} \circ (\angle)_{\mathcal{O}} \circ ()_$

$$\circ \circ \cdot = (\circ \xi \cdot + \circ \circ \cdot) - \circ 1 \land \cdot = (\land \circ \smile \smile) \circ : \smile \circ \land \triangle :$$

$$\circ$$
 \circ (\leq \sim ح) المحیطیة = $\frac{1}{7}$ \circ (\leq \sim \sim) المرکزیة = \circ \circ

$$\upsilon \circ (- c) = \upsilon (\angle - c)$$
 المركزية = $\dot{\upsilon} \circ \dot{\upsilon} = \dot{\upsilon} \circ \dot{\upsilon} = \dot$

م الشكل المقابل:

$$^{\circ}$$

 $(\sim \sim \sim \sim \sim)$ أوجد: $\upsilon(\approx \sim)$ ، $\upsilon(\sim \sim \sim \sim)$

$$[(\widehat{-5})_{\mathcal{O}} - (\widehat{-4})_{\mathcal{O}}] \stackrel{1}{\uparrow} = (\widehat{+} \times)_{\mathcal{O}} : \{\widehat{+}\} = \stackrel{\leftarrow}{\leftarrow} - \stackrel{\leftarrow}{\rightarrow} \cap \stackrel{\leftarrow}{\rightarrow} :$$

$$(2 \times 1)^{-1} = (2 \times 1)^{-1} = (2$$

$$\{ \smile \} = \overline{a} \smile \cap \overline{c} :$$

1 في الشكل المقابل:

 Δ و ب ح متساوي الأضلاع ، و = و ه

أثبت أن: △ ٢٥ و ه متساوي الأضلاع

$$..$$
 $v(< 9 > -)$ Ilacedus = $v(< 9 - -)$ Ilacedus = -9

∨ في الشكل المقابل:

≥ 5 = 5 **:**

A ب حرى مستطيل مرسوم داخل دائرة

، رسم الوتر سه بحيث وحدوه

أثبت أن : - = 4

البرهان:

\$5=>5 **∵**

$$v : v(\widehat{A}) = v(\widehat{A})$$
 بإضافة $v(\widehat{A})$ للطرفين :

$$\widehat{S \upharpoonright = A \smile} : \widehat{(SA \upharpoonright)} \cup = \widehat{(A \upharpoonright \smile)} \cup :$$

∧ في الشكل المقابل:

 $(\angle \circ) = (\angle \circ) = (\angle \circ)$ أثبت أن : $(\angle \circ) = (\angle \circ)$

 $(\widehat{a})_{\mathcal{O}} = (\widehat{a})_{\mathcal{O}} : \widehat{a}_{\mathcal{O}} = \widehat{a}_{\mathcal{O}} : \widehat{a}_{\mathcal{O}$

ن. v(> 1) المحيطية = v(> 1) المحيطية :

بإضافة $\upsilon(\angle -1 - 1)$ للطرفين : $\upsilon(\angle -1 - 1) = \upsilon(\underline{\angle -1 - 1}$ ها

٩ في الشكل المقابل:

ج ، به وتران متساويان في الطول في الدائرة م

 $\{z\} = \{z\}$ أثبت أن : حو= حه $\{z\}$

البرهان: ۲۰۱۱ : ۱۵ = ۱۰ ه

 $(\widehat{A} \cup) \cup = (\widehat{S}) \cup :$

 $(5 \vdash \smile) \circ = (3 \vdash) \circ : (5 \land \smile) \circ = (35 \vdash) \circ :$

(1) > y = > ↑ ∴

· ۲ ۶ = به (۲ بطرح (۲ من (۱ : .. ح ع = ح ها

بإضافة ب (عهر) للطرفين

★ ثَالثاً : الشكل الرباعي الدائري :

أولاً: أسئلة الاختيار من متعدد

- (۲) متساویتان (ب) متتامتان (ح) متکاملتان (۶) متبادلتان
- - ن أي من الأشكال الآتية يسمي رباعيًا دائريًا ؟
- (٩) المعين () المربع (ح) متوازي الأضلاع (٥) شبه المنحرف

🗿 في الشكل المقابل:

🚯 في الشكل المقابل:

في الشكل المقابل:

ثانيًا: الأسئلة المقالية

في الشكل المقابل:

· ひ(∠ ~ ~ &)

أوجد: ٥(∠ ٢٥٠)

البرهان: تا الشكل ١ - حورباعي دائري

.. الخارجة المقابلة للمجاورة لها ..

$$\circ \circ \circ = (\widehat{-})$$
 المحيطية $= \frac{1}{7} \circ \circ (\widehat{-}) = \circ \circ \circ$

أي الشكل المقابل:

 $\widehat{(\mathfrak{s})}_{\mathfrak{O}} = \widehat{(\mathfrak{s})}_{\mathfrak{O}} : \widehat{\mathfrak{o}}_{\mathfrak{O}}$

- - $^{\circ}\xi \cdot = (^{\circ}\xi \cdot + ^{\circ}) \cdot \cdot) ^{\circ}\lambda \wedge = (5 \rightarrow 7) \circ : \rightarrow 5 \uparrow \triangle :$
- $\widehat{(s \ P)} \cup = \widehat{(s \ P)} \cup \cdots \qquad {}^{\circ} \xi \cdot = (s \ P \ P \ P) \cup = (s \ P \ P \ P) \cup \cdots$

الشكل المقابل:

م ب ح و شكل رباعي مرسوم داخل دائرة م

(> >) وجد : (> >) (> >)

العمل: نرسم بع

البرهان: نالشكل و سرء رباعي دائري نن
$$(\angle) = 180 - 180 =$$

 \bullet عن قطر في الدائرة م \bullet نن \bullet قطر في الدائرة م \bullet

٤ في الشكل المقابل:

 $\omega(\angle \gamma) = \omega(\angle \beta) = \gamma \omega^{\circ}$

 $(! \succeq)$ اوجد

 $(\angle) \cup Y = Y - 0$ البرهان:

(٣÷) °1∧ · = ° ~ ٣ ∴ .. ۲ س° + س° = ۱۸۰°

∴ س° = ۲۰ .. v(∠1) = 7~° = |· 11°|

في الشكل المقابل:

م ، له دائرتان متقاطعتان في ١ ، ب

،رسم أَ يَ ، بَحَ يقطعان الدائرة س في ء ، ح

الدائرة م في α ، و على الترتيب ، $\omega(\angle - - z) = \cdot \lor$

 \bullet أوجد: $\upsilon(\angle e)$ برهن أن: $\overline{-2}$ // هو \bullet

العمل: نرسم م ب

البرهان: الشكل ٩ - ح و رباعي دائري

 \cdots $\upsilon(\angle e) + \upsilon(\angle \neg e) = 1 \wedge e$ وهما في تداخل \cdots $\neg e = 1 \wedge e$

1 في الشكل المقابل:

°~ = (5 - 1 - 1) · 5 1 = - 1

 $\circ \circ \circ = (>>) \circ \circ$

برهن أن: الشكل ١ ب حورباعي دائري

البرهان :

 ${}^{\circ}\mathsf{T} \cdot = (\smile \mathsf{S} \, \mathsf{P} \, \succeq) \, \upsilon = (\mathsf{S} \, \smile \, \mathsf{P} \, \succeq) \, \upsilon \, \ldots \quad \mathsf{S} \, \mathsf{P} = \smile \, \mathsf{P} \, \cdots \, \mathsf{P} \, \mathsf{P$

ن الشكل ١ - ح و رباعي دائري

∨ في الشكل المقابل:

°9·=(->7 ×)∪ :

°9·=(Þ5/ ≥)v ∴

مماس للدائرة م ، $\frac{1}{4}$ يقطع الدائرة في $\frac{1}{4}$ ، ح

() أثبت أن: الشكل م هم و رباعي دائري

(∠ ۶ م هـ) اوجد: ٠٠ (∠ ۶ م هـ)

البرهان: نه منتصف بح نن مه ⊥ بح

 $\overline{5}$ مماس للدائرة م عند ء $\overline{6}$ مماس للدائرة م

 $: \upsilon(\angle \land a) + \upsilon(\angle \land c) = 1$ (وهما زاویتان متقابلتان ومتکاملتان)

في الشكل المقابل:

دائرتان متقاطعتان في ١، ٠، ح ح يمر بالنقطة ب ويقطع الدائرتين في ح ، ۶ ، حه \cap و $= \{ -\infty \}$ برهن أن: الشكل م وس م رباعي دائري

العمل: انرسم اب

البرهان :

- ن الشكل q c = (1 c) المقابلة للمجاورة c = c
- : الشكل q 2e رباعي دائري $\therefore o(\angle e)$ الخارجة $= o(\angle q 2)$ المقابلة للمجاورة
 - $^{\circ}$ ۱۸۰ = (ح م ب ، و على استقامة واحدة $\cdot \cdot \cdot \cdot \cdot ($
- ن $\omega(\angle \omega = 1) + \omega(\angle \omega = 1)$ (و هما زاویتان متقابلتان ومتکاملتان) :. $\omega(\angle \omega = 1)$
 - . الشكل ٩ وس ه رباعي دائري

9 في الشكل المقابل:

- <u>٩ و</u> تر في الدائرة م ، حرى قطر فيها عمودي على ٩ - $\{\omega\} = \overline{\{\omega\}} \cap \overline{\{\omega\}}$
 - برهن أن: 1 الشكل سسه حرباعي دائري
 - $(\neg \neg s \times) \circ = (\neg \circ s \times) \circ \circ$

البرهان:

- °9·=(P≥>>)· ٠٠ ـ ١ ـ ٢ ـ ٢ ٢ ٢ ٢ ٢
- $v(z \sim 0) + v(z \sim 0)$ (و هما زاویتان متقابلتان و متکاملتان) $v(z \sim 0)$

ن الشكل س م ح رباعي دائري ..

ن. $v(\leq 2 \circ v)$ الخارجة = $v(\leq v \circ v)$ المقابلة للمجاورة

 $: \mathfrak{o}(\angle \neg \neg \neg \neg)$ llacedus = $\mathfrak{o}(\angle \neg \neg \neg)$ llacedus :

 $(\cdot) \circ (\times)$ ینتج آن : $(\cdot) \circ (\times) = (\times)$

الشكل المقابل:

٩ = ٩ ح ، ٩ و ينصف (< ٩)

أثبت أن: الشكل وبوه رباعي دائري

البرهان: ك∆ ١ وه، ١ وح فيهما:

مشترك مشترك ما ع σ مشترك ما ع σ مشترك مشترك ما ع σ مشترك ما ع

 $: \upsilon(\angle 9 \ e^{-}) \ \text{llacudus} = \upsilon(\angle 9 \ e^{-}) \ \text{llacudus}$

من () ، (\mathbf{v} ينتج أن : $\mathbf{v}(\angle 1 \circ \mathbf{s})$ الخارجة $\mathbf{v}(\angle 0)$ المقابلة للمجاورة لها

ن الشكل وبوه رباعي دائري

الله في الشكل المقابل:

°97=(>&~ \)∪,

أثبت أن: الشكل ١ - حرو رباعي دائري

البرهان:

بالتبادل $^{\circ}$ ٤٢ = (-5) $\rightarrow (-5)$ $\rightarrow (-5)$ $\rightarrow (-5)$ $\rightarrow (-5)$ $\rightarrow (-5)$

· △ & ~ ~ : ひ(∠ & ~ ~) = · ^ (「 P ° + 7 3 °) = 7 3 °

ن الشكل م ب حرو رباعي دائري ··

١٢ في الشكل المقابل:

أثبت أن: الشكل م بعد رباعي دائري

البرهان :

من () ، () ینتج أن : v(z - 4) = v(z - 4) و هما زاویتان مرسومتان علی \overline{v}

.: الشكل ١ ب ٥ هرباعي دائري

الشكل المقابل:

 $\overline{-a} \perp \overline{\uparrow} \overline{\downarrow}$ کے $\overline{\downarrow} \overline{\downarrow}$ ویقطع الدائرۃ فی س

برهن أن: 🕦 الشكل ٩ هوح رباعي دائري

🕜 حب ينصف (🗅 ه حس)

البرهان :

$$^{\circ} \mathbf{q} \cdot = (\mathbf{p} \cdot \mathbf{p} \cdot$$

ن $v(\angle 1 \land -1) = v(\angle 1 \land -1)$ وهما زاویتان مرسومتان علی القاعدة $\overline{1 \leftarrow 1}$

$$(>5)^{2} > (>5)^{2} = (>3)^{2} > \cdots$$

 $\upsilon (\leq a \leq b) = \upsilon (\leq a \leq b)$ لأنهما مرسومتان على القاعدة \overline{a} $(\mathbf{1})$

 $(\cdot \cup) \cup (\cup$

من () ، () ينتج أن $: : \mathcal{U}(\angle A - 2) = \mathcal{U}(\angle P - C)$

ن حب ينصف (٨ ه حس) ..

العلاقة بين مماسات الدائرة :

أولاً: أسئلة الاختيار من متعدد

🕦 الزاوية المماسية هي زاوية محصورة بين

(۲)وترین (<mark>-)</mark>مماسین (ح)وتر ومماس (۶)وتر وقطر

(ب)ار تفاعاته

(٩)متوسطاته

(5)محاور تماثل أضلاعه

(ح)منصفات زواياه الداخلة

مركز الدائرة الخارجة لأي مثلث هو نقطة تقاطع

(ب)منصفات زوایاه الخارجة

(P)منصفات زوایاه الداخلة

(5)محاور تماثل أضلاعه

(ح) ارتفاعاته

ن الشكل المقابل: \overline{q} ، \overline{q} مماس ، $\sigma(\langle q \rangle) = 7$ °

، م ب = ٥ سم فإن : طول حرب = سم

o (-) Y,o (P)

10(5) 1.(5)

اليماني في الرياضيات

<u>ہ فی الشکل المقابل: بح</u> مماس للدائرة م

- $\omega(\angle | \gamma \gamma) = (| \gamma \gamma \gamma) = (| \gamma \gamma \gamma) = \dots$
 - °11.(~)
 - °Y' (5) °Y' (>)

الشكل المقابل: وحد مماس للدائرة م

- °70 (P) °Y• (-)
- °12.(s) °11.(>)

ا ثانيًا: الأسئلة المقالية

أي الشكل المقابل:

عند س ، ص ، ع ، فإذا كان : ١ س = ٣ سم

، س ب = ٤ سم ، ١ ح = ٨ سم أوجد : طول ب ح

ن حص ، حع قطعتان مماستان ندح
$$\alpha = \alpha = \alpha$$
سم ن

أي الشكل المقابل:

م ب ، ح و قطعتان مماستان للدائرة عند ب ، و

 $(\land \bot) \circ \lor = (\gt \bot) \circ \lor \circ$ أوجد: $\circ \lor \lor = (\gt \bot) \circ \lor \circ$

البرهان: به ماس للدائرة عند ب

$$^{\circ}\mathsf{V} \cdot = (\smile \mathsf{S} \upharpoonright \succeq) \cup = (\mathsf{S} \smile \mathsf{P} \succeq) \cup :.$$

الشكل المقابل:

<u>م ب م ح</u> قطعتان مماستان للدائرة م عند ب ، ح

- °17,=(5~4×)0, 55 // 47,
- (١٥٠٥ أثبت أن: حب ينصف (١٥٠٥ حو)
 - ◊ أوجد: ٠٠(∠١)

$$\mathcal{I} \circ = (\mathsf{I} \circ \mathsf{I}) \circ = (\mathsf{I} \circ \mathsf{I} \circ \mathsf{I}) \circ \mathsf{I} \circ \mathsf{$$

$$(5 - 7 \times) = 0$$

$$\therefore 0 = (5 - 7 \times) \cup = (4 - 7 \times) \cup \therefore$$

ع في الشكل المقابل:

م م م ماسان للدائرة عند ب ، ح

أثبت أن: ١٠ و ح ينصف (١٥ ٩ و ١٥)

البرهان: نا الشكل بحوه رباعي دائري نن (∠ ح - a) = 110 - 1010 = 070

$$\circ \circ \circ = \frac{\circ \circ \cdot - \circ \circ \wedge \cdot}{?} = (\smile \smile ? \searrow) \cup = (\smile \smile ? \searrow) \cup :$$

<u>٥</u> **في الشكل المقابل:** أو مماس للدائرة عند م

، أو المحمد

برهن أن: الشكل وهب حرباعي دائري

البرهان: $\overline{9}$ $\overline{9}$ $\overline{8}$ $\overline{9}$ $\overline{9}$

من (\cdot) ، (\cdot) المقابلة للمجاورة من (\cdot) ، (\cdot) المقابلة للمجاورة

ن الشكل وهبح رباعي دائري

🚺 في الشكل المقابل:

دائرتان متماستان من الداخل في ٢

، أس مماس مشترك لهما

أثبت أن: برع // حه

البرهان: أص مماس مشترك للدائرتين

ن. في الدائرة الكبرى: v(z - a) المحيطية = v(z - a) المماسية

من $oldsymbol{\circ}$ ، $oldsymbol{\circ}$ ينتج أن : $oldsymbol{\circ}(oldsymbol{\circ})=oldsymbol{\circ}(oldsymbol{\diamond})=oldsymbol{\circ}(oldsymbol{\diamond})$ من $oldsymbol{\circ}$ ، $oldsymbol{\circ}$ ينتج أن : $oldsymbol{\circ}(oldsymbol{\diamond})=oldsymbol{\circ}(oldsymbol{\diamond})$

في الشكل المقابل:

، س ∈ اب ، ص ∈ احد حيث س س ال باح

أثبت أن: أح كم مماس للدائرة التي تمر بالنقط م، س، ص

البرهان: ١٠٠٠ ماس للدائرة عند ٩

$$\therefore \overline{\neg \neg \sigma} / | \overline{\neg \neg \sigma} / | \overline{\neg \neg \sigma} / | \overline{\neg \sigma} / | \overline{\sigma} / | \overline{\sigma}$$

ن ح و مماس للدائرة المارة بالنقط م ، س ، ص

أثبت أن: حرة مماس للدائرة الخارجة للمثلث ١ - ح

البرهان: ٢٠٠١ متوازي أضلاع

$$(\smile \bot)\upsilon = (s \multimap F \bot)\upsilon$$
 من () بنتج أن: $\upsilon(\bot F \multimap S)$

.: حرَّ مماس للدائرة الخارجة للمثلث م بح


```
إعداد / عدالت العدا
                                                   ساعتان قبل الامتحان
                              هندسة اع ت
ه القياس الذي يمثل ثلث قباس الدائرة = ... ( ٦٠ ك م ٩٠ ١٠ ك ١٠٠ ك
١٦ قوس من دائرة طوله علم ١٦ نع فإنه يقابل زاوية مركزية فياسما = ... " ( ٢٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠
٧ عددالدواثر التي تمر لبلات نقط على استقامت واحدة = ...
      ١١ إذا كان ٢ دائرة طول نصف قطرها نعرم فايه طول نصف (لدائرة ليساوى ... سم
١٩ مركز الدائرة الداخلة للمثلث عن نقطة تقالم (محاور أخلامه كالتفاعاته كامتوسطاته كانتصنان زولاه)
آ إذا كام على = ٧ سم فام محيط رُصغر دا تُرت تر ما النقطين على = ... م (١٤) ٢٦ م 3٤ م ١١
١٦ وترطوله ٢٦ مرس داخل دائرة طول قطها ١٠ سم غامه بعد الوترعن مركز الدائرة = ٢٠٠٠
                   المانت الدائرة ٦ ١ الدائرة ١٠ = [١١ م أفايم الدائرين ٢٥ م
   (متعاسمًا بهمن الخارج كم متحد المركز كم متقاطعتان كم سياعيدًا بد
١١ الزاوية الماسية عن زاوية محصرة بسيم .... (وترس كا عاسيم) وتروفارة وتروفاس
          ١٤ إذا كام المستقيم ل ١١ الدائرة م = كا فايم المستقيم ل يكوم ... للوائرة
(قَا لَمِنَا ٤ خَارِجًا 6 عاسًا 6 محورتَانِ )
٥٠ قياس الزاوية المركزية .... قياس العرض لمقابل لها (ضعف كا نفيف كا يساوي كا دلبرس)
٦ الماسا بدا لمروما من تحاية قطرف الدائرة ... (متعاملا كامتوازمام كامتعاطها كا منطبقام )
٢٧ عدد المحاسات المشتركة لدائريس سياعد الله يساوى .... ( ١ ٥ ١ ٥ ٢ ٥ ٤ )
١٩ في المناكل الدائرى كل زاويتن متعابلتيم ... (مقياويتام كا متكاملتام) متعاملام كامبيادلقام)
 ، دائرة طول قطها ٨ م فإذا كام المستقيم ل يبعد عن رازها ٣٠ فإم المستقيم ل
( नाना हिन्दी अध्वात कि निष्
( 50 6 9. 6 15. 6 150) = -- = 0 1 3 ... = 15 15
( 5 6 1 6 ) -= : // was 1 5 1 6 mg
 ٢٤ عدد الدوائرالت عيسر ممولتربلوني وت = - ( ١ ١ ١ ١ ٥ ٢ ٥ عدد الافاغ
 وا قياس التوس الذي عِنك سدس قيار الدائرة = - " ( ، ، ) م . ٩ . ١٠٠ ١٠٠ م
```

```
إعداد عبدالنتاع جمعة
                                                                                                                  ساعتان قبل الامتحان
                                                                    هندسة ٣ع ت
                                                                                      النياء اخترالصحيح سمايين النوسين د
( 2 6 7 6 7 6 )
1 Jrs 6 12 6 1 ) 5 --- = gle del oly rich 15 of alle 1
 ( 58 6 5. 6 11 1. ) F -- - 10 10 F & rips 36 5 5 alge of the or
 ٤ المستقمام الموازمام لشالت --- شعاطهام)
٥ عدد أخيان المنياح المنتظم الذي قياس زاويت الداخله ١٠ صو ... (خيلاح ( ٤ ك ٢ ك ٨ ك ١٠ )
 (97612621 (27612) F. John Marie 1262 1186 (27 6 15 6 15)
 ٧ المقاليد متعامله ومتساوله في اللوك في .... (المعسم كالمربع كالمنان كالمستطيل)
 وإذا كام، سرجيع مثلثا قانم الزاوية في عن فايه سي ... حدى ( ح ك ) = 6 منعنه )
١٠ المصلعام المنشا بحام زوايا هما المتناظمة ... (متنامية ، متباولة ، مختلفة لِعَيَاك ، مساوية لِعَياك ) .
ال نقطة تلا من منوسطان المثلث تقسر كلا منها بنسيه مدس جهة القاعدة (1:1 ك 1:1 ك 1:1 ك 7:1)
 ١١ في الشكل المقابل: ١ و ح تسبه منه م الم الم على ١١ م ١١ م ١٥ قطر في الدائرة م فايد
( 55 % 6 V. 6 V. ) _ F _ diell Ed almode
11 الدائرة التى محيطها . 7 17 - م تكوير ساحتى ... 6 1. 6 1. 6 1. 2 6 ... 5
١٤ الزاوسًا ١٠ ٢٥ ع ١٥ ع ١ الفائم الزاوية في حبط عنام ... (متكامليس متماميس متما ورسيم متباوتيا فيا
١٠ إذا كان مسقط قطعة مستقيمة على مستقيم هو ننفة فإم القطعيل تعيم (1/ 1/ 1/ 1/ 1/ 6 6 6)
١٦ الشكل المقابل يمثل نصن دان و من الق مرتزهام وطول نفس قطها نعر و حدة طول
فيكون محيط الشكل المرسوم = ... وحة طول (١١٦ نعم ١٨ نعم ١٨ نعم ١٨ تعم ٢٠ تعم ٢٠ تعم ٢٠ تعم ٢٠ تعم ١
١٧عددالزوايا الحارة بالاعلى على الما ١٠٠٠ على ١٠٠ على ١٠٠٠ على ١١٠٠ على ١٠٠٠ على ١٠٠
(76065 6 T) ...= Lide Jeil 5 1/2 1/2
    [7] إذا كانت النقلة [ 3 للمستقيرل فايم حررتما بالانعكاس فال حى .... ( م 6 ) م 6 ك ، ب
```

Jest / Jul / shel ساعتان قبل الامتحان هندسة "ع ت تاكتا اجب عمايلي: ا ادرس كلا من الأشكال الاتية تمر ألمل المن ١٤ ح قطعتا بر ما ستاب في الشكل المقابل: م دائرة ، مد يخ المنشكل المقابل: T.= (vu) 26 V.= (Ev) 20 للعائرة م ، نفر= ٤٤ ، معر (دام) (دام) (دام د) = ١١٠ فارد: =.T elu/10 = = c. (L10 =) = فايم: مر (١٥ = ... = (50)20+(21)20 e (الدوهر س) = ...

(عداد/عبدالفتاع جمعة ساعتان قبل الامتحان هندسة اع ت الشكل المقابل ا الشكل المقابل: اع دائرة نصف قطها ال علم وتران في الدائرة م 1 6/15=0006 pms de = P6 uPlinain 265 الترتيب ، ور (دراح) = ١٢٠ . = { على = ١ سم (ثبت أن شمق عاس للنوَعن اثبت أن ١ سرص متساوى الخونالوع في المتعلم المقايل: ٢ في الشكل المقابل! المدح مثلث عنواداخل الدانة عد قطرية الدائرة م ، 29-5 Price 2/2 While 2018 حوماس للدائرة عندج عهدا انبت (ندر عهد واح بحيث عه // بدر (ثبت أن، (التسعل اكهر دباعي دائري إلى عاس للدائرة المارة بروي ١٥١٥م 79=A9(D) ع في الشكل المقابل: في في المنتكل المقابل: عاس لليائرة م ، الاد و دشكل رباعي فيه: الديم يقبلع الدائرة ع في 70=(5-17-1)=07° مر (دج) = ۲۰ ، (ثبت أن: Juania D6 260 er(29)=10,916=10(15) الشيك الديد وراعي دائري على المقابل: إن قطر في المقابل: إن قطر في المقابل المرة من المقابل المقابل المقابل المقابلة على المقابلة المرة من المرة م في الشكل المقابل · 6 > P= = P: UB 13] ح رسمن عماسًا للدائرة يقطع احفى ح 2PLap60PLsp (ثبت (ن : حس = هص رسم هم يقلع الدائرة في س (تبت (ن: في الشكل المقابل: الشيك م ه دب رباعي دائرى مردد)= احد (دراس) 15-16 Edulus -P6-1 ف الشك المقابل:

(عداد/عبدالفين جمهة

هندسة "ع ت

ساعتال قبل الامتحال

45 = Ps: - = 1/2 White is 1 Ps:

(PUSS) = en(LZU) :.

(U>P1)~= (20P1)~: = P=UP: =UPA 2

: مد (۱ کام) لماسيم = مد (۱۹ حب) لمسلم : ox(Lzus) = ox(Lqus) in (Lzs) = ox(Lugs) : احد عماس للوائرة المارة بودي م عمار

> 19. رم م قد ۱۹ ب نغ العائرة السري

غ الدائرة العين : مهد لاحرة : ه منتصف حرة ، م هد اه د

بالطمع يسوامه ١ح = وب

٠٠٠ العائرتام متماستام مو العافل : مرد =١٠١-٦= ١٤

· マ・マハレン = ナメロハメタン

FIF=UP UPX & X == CE :

(1) : er(2) = = er(02) = - u 2 90 = (P1)

11. = (2) + cr(2) = :1

٠٠٠٠ - ٢٠٠٠ (١٠٠٠ - ١٠٠٠ (

う・ニュー °1n・ニ シーグ

: بے در (دراح) = نے مر (درع در) (درع در) (درع در) = نے ۱۲۰ = ۱۲۰ ا

40 العقين = - X7X = 33 7

 إذا وجدت زاوتناه متسا وتناد في القياس وموسومتاه
 على خديع من د خيلامه كقاعت و يوميم واحدة من حدا له فلع wither wet the wist see 13! @

(SU) = (SP) N: 5=1/UP = (S)

٠٠ در (١٦هد) = مر (١هد) بإخلانه ص (١٦هد) للطريئه

١١ ١٠٠ وترمنترك ٤ مريد خطالمراس

。 4·= (レントム) ニー エートント: 。 4·= (レントム) ニー アントムシ

トリニカレレニット トーをニューロリニントッ

三し上5P:· 15 Zu circio s : 0 JP circio so .. 五上一:

>UPD 2 (1/1/25: 4/1/2 = = PC = Cliation & 65 :

JUPA上二日SAALE GIEIQU

-PIPP :: 12 = PP 6 = 1/2 JUNE -P: 12

F10 = 95+90 = = 01 = 9.=(P1)20: فالدائرة م ي من قطر فالدائرة

٠٠ مر (۱۹ ع س) = ٩٠٠ (ويتطبيم نظريم اتطبير)

 $r = \frac{1}{100} = sP$

curil de Us 6 UP Clientin NGP: 45PAZ ドバフ= コトーールアン

: در (دسوامع) = در (دس دص)

وهامر ويتاه على بقاسة سدفن

: اسوس و راعي دائري

(Us)n=(s=)n=(sp)=o(20)=o(20)

(5 r > 1) = " 7 = (5 -) no ::

T. = (52) n= = (52)

ن مر (على) =مر (حم) وبإطانه ره للطونيم

(20) = (ap) = or(uZ)

