

Entwicklung eines Tools zur Auswertung medizinischer Messdaten für eine Pilotstudie im Bereich der Stress-Regulationsfähigkeit des Menschen

Studienarbeit

Bachelor of Science

des Studiengangs Informatik an der Dualen Hochschule Baden-Württemberg Stuttgart

von

Jona Krumrein, Tim Weiss

10.06.2022

Bearbeitungszeitraum Matrikelnummer, Kurs Ausbildungsfirma Betreuer 22.10.2022 - 10.06.2022 3857223, 8336074, TINF19ITA Robert Bosch GmbH, Stuttgart Mario Babilon

Abstract

 $TODO: deutscher \ Abstract....$

Stand: 25. März 2022 Seite I von VIII

Inhaltsverzeichnis

Αŀ	bkürzungsverzeichnis	Ш
Αŀ	bbildungsverzeichnis	IV
Ta	abellenverzeichnis	V
Fo	ormelgrößenverzeichnis	VI
Fo	ormelverzeichnis	VII
Lis	stings	VII
1	Einleitung	1
2	Informatikthemen 2.1 Auswertung von Messdaten mit MATLAB und Python	2
Ar	nhang	Α
GI	lossar	В

Abkürzungsverzeichnis

BSP Board Support Package

Stand: 25. März 2022 Seite III von VIII

Abbildungsverzeichnis

Stand: 25. März 2022 Seite IV von VIII

Tabellenverzeichnis

2.1	Ubersicht der technischen Daten des Testmediums	3
2.2	Technische Daten	3

Stand: 25. März 2022 Seite V von VIII

Formelgrößenverzeichnis

a rad Bedeutung von a

b rad Bedeutung von b

 λ rad Bedeutung von lambda

 ϕ rad Bedeutung von phi

Formelverzeichnis

Stand: 25. März 2022 Seite VII von VIII

Listings

2.1	MATLAB Implementierung			 								 	 		2
2.2	Python Implementierung	_	_	 	 _		_		_					_	3

1 Einleitung

Stand: 25. März 2022 Seite 1 von 4

2 Informatikthemen

2.1 Auswertung von Messdaten mit MATLAB und Python

2.1.1 MATLAB vs. Python

2.1.2 Performance-Vergleich

Um einen besseren Überblick über die Performance der beiden Programmiersprachen zur Auswertung von Messdaten zu erhalten, wurden mehrere Speedtests durchgeführt. Im ersten Schritt wird dazu ein kleiner Datensatz geöffnet und ein einfache Line-Plot erstellt. Geplottet wurde jeweils die durchschnittliche Herzfrequenz aus dem normalen Datensatz der Auswertung ohne Samples. Hierbei handelt es sich um 41 Werte, welche als Line-Plot ohne weitere Konfiguration dargestellt werden. In der Python Umgebung wurden die Bibliotheken pandas und h5py verwendet, da diese für ihre jeweiligen Aufgaben, Erstellen von Data Frames und Laden von mat-Files, als State-Of-The-Art gelten. Zum Plotten wurde auf die matplotlib zurückgegriffen, da diese der MATLAB Darstellung am nächsten kommt. MATLAB ermöglicht die Auswertung ohne zusätzliche Bibliotheken. Die Zeit wurde in beiden Fällen mit nativen Funktionen ausgewertet. Getestet wurde auf einem MacBook mit folgenden technischen Daten. Dabei wurden beide Skripts jeweils dreimal abwechselnd hintereinander ausgeführt, während sich das MacBook im Akku-betriebenem Modus befand.

Die Implementierungen der einzelnen Programmiersprachen, sowie die berechneten Programmlaufzeiten sind im Folgenden dargestellt. Die beiden Skripte werden jeweils fünf mal ausgeführt und der Mittelwert der berechneten Zeiten bestimmt.

```
tic;
load('../dat/11-48-21_hrv.mat');
plot(Res.HRV.TimeVar.mean_HR);
```

PEA4-Fe – betriebliche Ausbildung technische Studiengänge der DHBW © Alle Rechte bei Robert Bosch GmbH, auch für den Fall von Schutzrechtsanmeldungen. Jede Verfügungsbefugnis, wie Kopier- und Weitergaberecht bei uns.

Stand: 25. März 2022

Seite 2 von 4

Technische Daten

Model	MacBook Pro (Retina, 13-inch, Early 2015)								
Betriebssystem	macOS Montery Version 12.1								
Prozessor	2,7 GHz Dual-Core Intel Core i5								
Arbeitsspeicher	8 GB 1867 MHz DD3								
Grafikchip	Intel Iris Graphics 6100 1536 MB								

Tabelle 2.1: Übersicht der technischen Daten des Testmediums

Tabelle 2.2: Technische Daten

Durchlauf	MATLAB	Python
1	$0.303867 \mathrm{\ s}$	$0.359526 \mathrm{\ s}$
2	$0.307696 \mathrm{\ s}$	$0.351593 \mathrm{\ s}$
3	0.295474 s	0.354158 s
4	0.301647 s	$0.352104 \mathrm{\ s}$
5	0.299218 s	0.350182 s
Mittelwert	0.301580 s	0.353512 s

tac;

Listing 2.1: MATLAB Implementierung

```
import time
import pandas as pd
import h5py
import matplotlib.pyplot as plt

start = time.time()
f = h5py.File('../dat/11-48-21_hrv.mat')
df = pd.DataFrame(f.get('Res/HRV/TimeVar/mean_HR')).T

df.plot(y=0, kind='line')
end = time.time()
print(end - start)
plt.show()
```

Listing 2.2: Python Implementierung

PEA4-Fe – betriebliche Ausbildung technische Studiengänge der DHBW © Alle Rechte bei Robert Bosch GmbH, auch für den Fall von Schutzrechtsanmeldungen. Jede Verfügungsbefugnis, wie Kopier- und Weitergaberecht bei uns.

Stand: 25. März 2022 Seite 3 von 4

MATLAB ist bei jeder Ausführung um ca. 17% schneller als das Python Skript. Zudem muss die Komplexität der beiden Skripte betrachtet werden. In MATLAB benötigt man lediglich zwei Zeilen Code und keine zusätzlichen Bibliotheken, während das Python Skript vier Code Zeilen und drei zusätzlichen Bibliotheken in Anspruch nimmt. Außerdem muss hier beachtet werden, dass das Anzeigen des Plots unter Python nicht mit in die Berechnung der Zeit aufgenommen werden kann, da alle Code-Zeilen nach "plt.showäuch erst nach dem Schließen des Plot-Fensters angezeigt werden.

2.2 Vergleich der Exportmöglichkeiten

Anhang

Stand: 25. März 2022 Seite A von B

Glossar

Glossareintrag

Ein Glossar beschreibt verschiedenste Dinge in kurzen Worten.

Stand: 25. März 2022 Seite B von B