7장. 조합논리회로

02. 비교기

03. 디코더

04. 인코더

05. 멀티플렉서

06. 디멀티플렉서

07. 코드 변환기

- 1 -

08. 패리티 발생기/검출기

개요

- - ❖ 조합논리회로는 **논리곱**, **논리합**, **논리 부정**의 세 가지 기본 논리 회로를 조 합하여 구성한 논리 회로
 - ❖ 조합논리회로는 **입력변수**, 논리 게이트, 그리고 출력변수들로 구성

반가산기(half-adder, HA)

$$\begin{array}{c}
A \\
+ B \\
\hline
C S
\end{array}$$

입	력	출	력
A	В	S	C
0	0		
0	1		
1	0		
1	1		

$$S =$$

$$C =$$

<진리표와 논리식>

전가산기(full-adder, FA)

❖ 자리 올림수(carry)를 고려하여 만든 덧셈 회로

$$\begin{array}{c}
C_{in} \\
A \\
+ B \\
\hline
C_{out} S
\end{array}$$

	입력		출	력
A	В	C_{in}	S	C_{out}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

$$S = ABC_{in} + ABC_{in} + ABC_{in} + ABC_{in}$$

$$= A(BC_{in} + BC_{in}) + A(BC_{in} + BC_{in})$$

$$= A(B \oplus C_{in}) + A(B \oplus C_{in})$$

$$= A \oplus (B \oplus C_{in}) = (A \oplus B) \oplus C_{in}$$

$$C_{out} = \overline{ABC}_{in} + A\overline{BC}_{in} + A\overline{BC}_{in} + A\overline{BC}_{in}$$

$$= C_{in}(\overline{AB} + \overline{AB}) + A\overline{B}(\overline{C}_{in} + \overline{C}_{in})$$

$$= C_{in}(A \oplus B) + A\overline{B}$$

$$S = A \oplus B \oplus C_{in}$$

 $C_{out} = C_{in} (A \oplus B) + AB$

❖ 전가산기는 **반가산기** 2**개**와 OR **게이트**를 이용하여 구성

병렬가감산기(parallel-adder/subtracter)

전가산기를 이용한 병렬가산기

병렬가감산기

고속가산기(high-speed-adder)

- ❖ 아랫단에서 윗단으로 전달되는 자리올림수 때문에 병렬가산기는 속도가 매우 느리다는 단점이 있음.
- ❖ 이것을 해결하기 위한 방법으로 캐리예측가산기(carry-look-ahead-adder, CLA)를 사용

5. BCD 가산기

- ❖ BCD 코드는 2진수와 달리 표현범위가 0에서 9까지이다.
- ❖ 그러므로 BCD 계산을 하려면 결과를 보정해 주어야 한다.
- ❖ 2진수 합의 결과가 1010~1111인 경우 보정
- ❖ 6+7=13인 경우

$$\begin{array}{c}
0 & 1 & 1 & 0 \\
+ & 0 & 1 & 1 & 1 \\
\hline
1 & 1 & 0 & 1
\end{array}$$

[01 가산기

BCD 덧셈표

		2지 한	-			E	3CD ē	ŀ		10진
K	Z_8	Z_4	Z_2	Z_1	C	S_8	S_4	S_2	S_1	값
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0		0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
	0	0	1	1	1	1	0	0	1/	19

$\sqrt{Z_2Z_2}$,				
Z_8Z_4	00	01	11	10	
00	0	0	0	0	
01	0	0	0	0	
11	1	1	1	1	
10	0	0	1	1	

BCD 가산기

❖ 2진 비교기(comparator) : 두 개의 2진수의 크기를 비교하는 회로

□ 1비트 비교기

입	려		출	력	
A	В	$A=B$ F_1	$egin{pmatrix} A eq B \\ F_2 \end{pmatrix}$	$A>B$ F_3	$A < B F_4$
0	0	1	0	0	0
0	1	0	1	0	1
1	0	0	1	1	0
1	1	1	0	0	0

□ 2비트 비교기

입	력		출 ⁹	<u> </u>	
A	В	A=B	$A\neq B$	A>B	A < B
A_1A_2	B_1B_2	F_1	F_2	F_3	F_4
	0 0	1	0	0	0
0 0	0 1	0	1	0	1
0 0	1 0	0	1	0	1
	1 1	0	1	0	1
	0 0	0	1	1	0
0 1	0 1	1	0	0	0
0 1	1 0	0	1	0	1
	1 1	0	1	0	1
	0 0	0	1	1	0
1 0	0 1	0	1	1	0
1 0	1 0	1	0	0	0
	1 1	0	1	0	1
	0 0	0	1	1	0
1 1	0 1	0	1	1	0
1 1	1 0	0	1	1	0
	1 1	1	0	0	0

02 비교기

$$F_2 = (A_1 \oplus B_1) + (A_2 \oplus B_2)$$

$$F_4 = \overline{A_1}B_1 + \overline{A_1}\overline{A_2}B_2 + \overline{A_2}B_1B_2$$

2비트 비교기 회로

□ 디코더(decoder)

❖ 디코더: 입력선에 나타나는 n비트의 2진 코드를 최대 2"개의 서로 다른 정보로 바꿔주는 조합논리회로 2n Decoder

디코더와 인코터의 기능

1×2 디코더

❖ 1개의 입력에 따라서 2개의 출력 중 하나가 선택

입력	출력 -				
A	Y_{I}	Y_{0}			
0	0	1			
1	1	0			

$$Y_0 = \overline{A}$$
 $Y_1 = A$

□ 인에이블이 있는 1×2 디코더

	입력 <i>E</i> A 0 0 0 1 1 0			출	렫		
	E	\boldsymbol{A}		Y_1		Y_{0}	
7	0	0					
	0	1					
	1	0					
	1	1					
		$Y_0 = E$	\overline{A}	$Y_1 = E_2$	4		,

인에이블(enable)

함수 또는 회로를 허락 하거나 또는 동작하게 한다.

디스에이블(disable)

함수 또는 회로를 허락 하지 않거나 또는 동작 하지 못하게 한다.

2×4 디코더

❖ 2개의 입력에 따라서 4개의 출력 중 하나가 선택

입	력		출력					
В	$B A Y_3$		Y_2	Y_1	Y_0			
0	0	0	0	0	1			
0	1	0	0	1	0			
1	0	0	1	0	0			
1	1	1	0	0	0			

$$Y_0 = \overline{B} \overline{A}$$
 $Y_1 = \overline{B} A$

$$Y_2 = BA$$
 $Y_3 = BA$

2×4 NAND 디코더

❖ 실제 IC들은 AND게이트가 아닌, NAND 게이트로 구성

입	력	출력					
В	A	<i>Y</i> ₃	Y_2	Y_1	Y_0		
0	0	1	1	1	0		
0	1	1	1	0	1		
1	0	1	0	1	1		
1	1	0	1	1	1		

$$Y_0 = \overline{B} \overline{A} \qquad Y_1 = \overline{B} \overline{A}$$

$$Y_2 = \overline{B} \overline{A} \qquad Y_3 = \overline{B} \overline{A}$$

 $Y_2 = BA$ $Y_3 = BA$ 2×4 NAND 디코더 진리표와 논리식

2×4 NAND **디코더 회로**

□ 인에이블이 있는 2×4 디코더

- ❖ 대부분의 IC 디코더들은 인에이블(enable) 입력이 있어서 회로를 제어한다.
- ❖ E=1일 때만 출력이 동작.

(입랻	‡ 1	출력				
\boldsymbol{E}	E B A		Y_3	Y_2	Y_1	Y_0	
0	X	×	0	0	0	0	
1	0	0	0	0	0	1	
1	0	1	0	0	1	0	
1	1	0	0	1	0	0	
1	1	1	1	0	0	0	

$$Y_0 = E \overline{B} \overline{A}$$
 $Y_1 = E \overline{B} A$
 $Y_2 = EB \overline{A}$ $Y_3 = EBA$

진리표와 논리식

회로도

❖ 3개의 입력에 따라서 8개의 출력 중 하나가 선택

입력		출력						
C B A	Y_7	Y_6	Y_5	Y_4	Y_3	Y_2	Y_1	Y_0
0 0 0	0	0	0	0	0	0	0	1
0 0 1	0	0	0	0	0	0	1	0
0 1 0	0	0	0	0	0	1	0	0
0 1 1	0	0	0	0	1	0	0	0
1 0 0	0	0	0	1	0	0	0	0
1 0 1	0	0	1	0	0	0	0	0
1 1 0	0	1	0	0	0	0	0	0
1 1 1	1	0	0	0	0	0	0	0

$$Y_0 = \overline{C} \overline{B} \overline{A}, \quad Y_1 = \overline{C} \overline{B} A, \quad Y_2 = \overline{C} \overline{B} \overline{A}, \quad Y_3 = \overline{C} \overline{B} A$$

$$Y_4 = \overline{C} \overline{B} \overline{A}, \quad Y_5 = \overline{C} \overline{B} \overline{A}, \quad Y_6 = \overline{C} \overline{B} \overline{A}, \quad Y_7 = \overline{C} \overline{B} \overline{A}$$

 3×8 디코더 진리표와 논리식, 회로도

4×16 디코더

D	C	В	A	<i>Y</i> ₁₅	<i>Y</i> ₁₄	<i>Y</i> ₁₃	<i>Y</i> ₁₂	<i>Y</i> ₁₁	<i>Y</i> ₁₀	Y_9	Y_8	Y_7	Y_6	Y_5	Y_4	Y_3	Y_2	Y_1	Y_0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

 4×16 디코더 진리표

□ 2개의 3×8 디코더로 4×16 디코더를 구성

D=0 상위 디코더만 enable되어 출력은 $Y_0 \sim Y_7$ 중의 하나가 1로 되고, 아래의 디코더 출력들은 모두 0이 된다.

하위 디코더만 enable 되어 출력은 $Y_8 \sim Y_{15}$ 중의 하나가 1로 되고, 상위 디코더 출력들은 모두 0이 된다.

2×4 디코더 5개를 이용한 4×16 디코더

D C B A	<i>Y</i> ₁₅	<i>Y</i> ₁₄	<i>Y</i> ₁₃	<i>Y</i> ₁₂	<i>Y</i> ₁₁	Y_{10}	Y_9	Y_8	<i>Y</i> ₇	Y_6	Y_5	Y_4	Y_3	Y_2	Y_1	Y_0
0 0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0 0 0 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0 0 1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0 0 1 1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0 1 0 0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0 1 0 1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0 1 1 0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0 1 1 1	0	0	0	0	0	0	0	0	_1_	0	0	0	0	0	0	0
1 0 0 0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1 0 0 1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1 0 1 0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1 0 1 1	0	0	0	0	_1_	0	0	<u> </u>	0	0	0	0	0	0	0	0
1 1 0 0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
1 1 0 1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
1 1 1 0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 1 1 1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

 4×16 디코더 진리표

BCD-7-세그먼트 디코더

❖ 7세그먼트: 숫자 표시 전용 장치

7-세그먼트 구성

7-세그먼트와 디코더의 연결

7-세그먼트의 숫자 표시

7-세그먼트 디코더 진리표

	입	력		출력									
D	C	В	A	-a	_ b	_ c	$\frac{-}{d}$	— е	$\left(\begin{array}{c} - \\ f \end{array}\right)$				
0	0	0	0	0	0	0	0	0	0	1			
0	0	0	1	1	0	0	1	1	1	1			
0	0	1	0	0	0	1	0	0	1	0			
0	0	1	1	0	0	0	0	1	1	0			
0	1	0	0	1	0	0	1	1	0	0			
0	1	0	1	0	1	0	0	1	0	0			
0	1	1	0	1	1	0	0	0	0	0			
0	1	1	1	0	0	0	1	1	1	1			
	0	0	0	0	0	0	0	0	0	0			
1	0	0	1	0	0	0	1	1	0	0			
1	0	1	0	Х	Х	Х	Х	Х	Х	Х			
1	0	1	1	Х	Х	X	X	X	X	X			
1	1	0	0	X	X	×	×	X	X	X			
1	1	0	1	Χ	Χ	Х	Х	Х	Χ	X			
1	1	1	0	Χ	×	×	Х	Χ	Χ	X			
1	1	1	1	Χ	Х	Х	Х	Х	Χ	X			

03 디코더

$DC \setminus BA$	00	01	11	10
00				
01		1		1
11	Х	х	Х	x
10			Х	Х

$$\overline{b} = C \overline{B} A + C \overline{B} \overline{A} = C (B \oplus A)$$

$$a = DCBA + CA$$

$$\frac{-}{f} = BA + CB + DCA$$

회로도

- ❖ 인코더(encoder)는 디코더의 반대기능을 수행하는 장치로써, 2"개의 입력신호 로부터 n개의 출력신호를 만든다.
- ❖ 인코더의 역할은 2ⁿ 개중 활성화된 하나의 1비트입력 신호를 받아서 그 숫자에 해당하는 n 비트 2진 정보를 출력한다.

▶ 인코더 (Encoder)

- · 디코더의 역기능
- · 입력 2ⁿ 개 => 출력 *n* 개

2×1 인코더

❖ 입력의 신호에 따라 1개의 2진 조합으로 출력된다.

입	력	출력				
D_{I}	D_0	B_0				
0	1	0				
1	0	1				

$$B_0 = D_1$$

회로도

4×2 인코더

❖ 입력의 신호에 따라 2개의 2진 조합으로 출력된다.

	입	출력				
D_3	D_2	D_1	D_0	B_1	B_0	
0	0	0	1	0	0	
0	0	1	0	0	1	
	<u> </u>	0	0	1	0	
1	0	0	0	1	1	
I	$B_1 = D_2$	$+D_3$,	$B_0 = D_1 + D_3$			

회로도

8×3 인코더

❖ 8(=2³)개의 입력과 3개의 출력을 가지며, 입력의 신호에 따라 3개의 2진 조합으로 출력

			입	력				출력			
D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	B_2	B_1	B_0	
0	0	0	0	0	0	0	1	0	0	0	
0	0	0	0	0	0	1	0	0	0	1	
0	0	0	0	0	1	0	0	0	1	0	
0	0	0	0	1	0	0	0	0	1	1	
0	0	0	1	0	0	0	0		0	0	
0	0	1	0	0	0	0	0	1	0	1	
0	1	0	0	0	0	0	0	1	1	0	
1	0	0	0	0	0	0	0	1	1	1	

$$B_2 = D_4 + D_5 + D_6 + D_7$$

$$B_1 = D_2 + D_3 + D_6 + D_7$$

$$B_0 = D_1 + D_3 + D_5 + D_7$$

8×3 우선순위 인코더

❖ 우선순위 인코더(priority encoder)는 입력에 우선순위를 정하여 여러 개의 입력이 있을 때 우선순위가 높은 입력값에 해당되는 출력신호를 만들어 내는 회로

		출력								
D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	B_2	B_1	B_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	X	0	0	1
0	0	0	0	0	1	X	X	0	1	0
0	0	0	0	1	X	X	X	0	1	1
0	0	0	1	X	X	X	X	1	0	0
0	0	1	Х	Х	Х	Х	Х	1	0	1
0	1	Х	Х	Х	Х	Х	Х	1	1	0
1	X	Χ	Χ	Χ	Χ	Χ	Χ	1	1	1

회로도

$$B_2 = D_7 + D_6 + D_5 + D_4$$

$$B_1 = D_7 + D_6 + D_5 D_4 D_3 + D_5 D_4 D_2$$

$$B_0 = D_7 + D_6 D_5 + D_6 D_4 D_3 + D_6 D_4 D_2 D_1$$

05 멀티플렉서

- - ❖ 멀티플렉서(multiplexer or selector)는 여러 개의 입력선들 중에서 하나를 선택 하여 출력선에 연결하는 조합논리회로이다. 선택선들의 값에 따라서 특별한 입력선이 선택되다.
 - ❖ 멀티플렉서는 많은 입력들 중 하나를 선택하여 선택된 입력선의 2진 정보를 출력선에 넘겨주기 때문에 데이터 선택기(data selector)라 부르기도 한다.
 - ❖ 디멀티플렉서는 정보를 한 선으로 받아서 2ⁿ 개의 가능한 출력 선들 중 하나를 선택하여, 받은 정보를 전송하는 회로다. 디멀티플렉서는 n 개의 선택선 (selection line)의 값에 의해 하나의 출력선이 선택된다.

05 멀티플렉서

2×1 멀티플렉서

❖ 2(=2¹)개의 입력중의 하나를 선택선 S에 입력된 값에 따라서 출력으로 보내주는 조합회로

선택선	출력
S	F
0	D_0
1	D_1

진리표

$$F = \overline{SD}_0 + SD_1$$

논리식

회로도

4×1 멀티플렉서

❖ $4(=2^2)$ 개의 입력중의 하나를 선택선 S_0 와 S_1 에 입력된 값에 따라서 출력으로 보내주는 조합회로

선퇴	택선	출력
S_1	S_0	F
0	0	D_0
0	1	$egin{array}{c} D_0 \ D_1 \ D_2 \ D_3 \end{array}$
1	0	D_2
1	1	D_3

진리표

$$F = S_1 S_0 D_0 + S_1 S_0 D_1 + S_1 S_0 D_2 + S_1 S_0 D_3$$

$$= 244$$

05 멀티플렉서

8×1 멀티플렉서

❖ 8(=2³)개의 입력중의 하나를 출력으로 보내주는 조합논리회로

선택선			출력	
S_2	S_1	S_0	F	
0	0	0	D_0	
0	0	1	$egin{array}{c} D_0 \ D_1 \end{array}$	
0	1	0	$egin{array}{c} D_2 \ D_3 \ D_4 \end{array}$	
0	1	1	D_3	
1	0	0	D_4	
1	0	1	D_5	
1	1	0	$egin{array}{c} D_4 \ D_5 \ D_6 \ D_7 \end{array}$	
1	1	1	D_7	

진리표

논리식

\square 4×1 멀티플렉서 5개를 이용한 16×1 멀티플렉서

멀티플렉서를 이용한 조합회로 구현

- $\Box F(A,B,C) = \sum m(0,1,5,7)$ 를 8×1 멀티플렉서로 구현하는 경우
 - ❖ 3개의 선택선을 입력 *A*, *B*, *C* 로 사용

A	В	C	F
0	0	0	$1(D_0)$
0	0	1	$1(D_1)$
0	1	0	$0(D_2)$
0	1	1	$0(D_3)$
1	0	0	$0(D_4)$
1	0	1	$1(D_5)$
1	1	0	$0(D_6)$
1	1	1	$1(D_7)$

진리표

회로도

05 멀티플렉서 (생략)

� A, B 는 선택선으로 $C 는 D_0, D_1, D_2, D_3$ 을 조합하여 사용

A	В	C	F		
0	^	0	$D_0=1$	1	
	0	1		1	
0	1	0	$D_1 = 0$	0	
Ü	ı	1		0	
1	0	0	$D_2 = C$	0	
		1		1	
1	4	0	$D_3 = C$	0	
		1		1	

진리표

회로도

06 디멀티플렉서

- ❖ 1개의 인에이블 입력을 가지고 있는 디코더는 디멀티플렉서로서의 기능을 수 행
- ❖ 디멀티플렉서는 정보를 한 선으로 받아서 2"개의 가능한 출력 선들 중 하나를 선택하여, 받은 정보를 전송하는 회로이다. 디멀티플렉서는 n개의 선택선 (selection line)들을 이용하여 출력을 제어.

07 코드 변환기

BCD 코드 - 3초과 코드 변환

입력			출력				
B_3	B_2	B_1	B_0	E_3	E_2	E_1	E_0
	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	Х	Х	Х	Х
1	0	1	1	X	X	X	Х
1	1	0	0	X	X	X	Х
1	1	0	1	X	X	X	Х
1	1	1	0	X	X	X	Х
1	1	1	1	Х	X	X	X

BCD는 10개의 숫자만 가지므로 1010 이후의 6개의 코드는 BCD에 존재하지 않는 코드이며, 입력으로서 사용될 수 없기 때문에 무관항으로 처리한다.

07 코드 변환기

Χ

10

$$E_3 = B_3 + B_2 B_1 + B_2 B_0$$

$$E_{2} = B_{2}B_{1} + B_{2}B_{0} + B_{2}B_{1}B_{0}$$

$$E_1 = \overline{B}_1 \overline{B}_0 + B_1 B_0 = \overline{B}_1 \oplus \overline{B}_0$$

$$E_0 = B_0$$

07 코드 변환기

회로도

08 패리티 발생기/검출기

□ 8비트 짝수/홀수 패리티 발생회로

$$P = A_0 \oplus A_1 \oplus A_2 \oplus A_3 \oplus A_4 \oplus A_5 \oplus A_6 \oplus A_7$$

짝수 패리티 발생회로

 $P = A_0 \oplus A_1 \oplus A_2 \oplus A_3 \oplus A_4 \oplus A_5 \oplus A_6 \oplus A_7$

홀수 패리티 발생회로

기출문제

9. 다음 중 조합논리 회로가 아닌 것은

- ② 반가산기
- 亞 멀티플렉서

- **U** 디코더
- 라 플립플롭

11. 마이크로프로세서 내에서 산술 연산의 기본 연산은?

⑦ 덧셈

⊕ 뺄셈

라 곱셈

☞ 나눗셈

16. 아래의 논리회로는?

- ② 반가산기
- 전가산기
- 亞 반감산기
- 라 전감산기

34. 전가산기 회로(full adder)의 구성으로 옳은 것은?

- ② 입력 2개, 출력 4개로 구성
- ① 입력 2개, 출력 3개로 구성
- 다 입력 3개, 출력 2개로 구성
- 라 입력 3개, 출력 3개로 구성

35. 전가산기의 회로 구성은?

- ⑦ 2개의 반가산기와 1개의 OR 게이트로 구성
- ④ 2개의 반가산기와 1개의 NOR 게이트로 구성
- ④ 2개의 반가산기와 1개의 AND 게이트로 구성
- ② 2개의 반가산기와 1개의 NAND 게이트로 구성

46. 다음은 전가산기이다. A=1, B=1, $C_i=0$ 일 때 출력 S_0 , C_0 는? (단, S_0 는 sum, C_0 는 carry이다.)

②
$$S_0 = 0, C_0 = 0$$

$$S_0 = 1, C_0 = 0$$

$$S_0 = 0, C_0 = 1$$

$$S_0 = 1, C_0 = 1$$

58. 두 개의 데이터를 비교하는데 적합한 논리 연산은?

3 AND

⊕ OR

NOR

E XOR

75. 인코더의 입력선이 8개이면, 출력선은 몇 개가 되는가?

3 1

⊕ 2

3

P 4

77. 그림과 같이 2³ 개(0~7)의 십진수 입력을 넣었을 때 출력이 2진수 (000~111)로 나오는 회로의 명칭은?

- ∄ 디코더 회로
- ⊕ A/D 변환회로
- ⊕ D/A 변환회로
- 🗈 인코더 회로

80. 부호화된 데이터를 해독하여 정보를 찾아내는 조합논리회로는?

- ② 인코더
- 다 디멀티플렉서

- **U** 디코더
- 라 멀티플렉서

115. 다음 회로의 기능은?

- ⊕ 4×1 multiplexer
- ⊕ 6×1 multiplexer
- 4×1 decoder
- ⊕ 6×1 encoder

118. 다음 회로에서 출력 F로 나올 수 없는 것은?

- $\bigcirc B$
- $\bigcirc \overline{AB} + A\overline{B}$
- \bigcirc A + B

