Localização de empresas

Prof. Ramon Gomes da Silva

Localização de empresas

- 1. Medida de capacidade
- 2. Tipos de localização
- 3. Localização da empresa industrial

1. Medida de capacidade

- → A capacidade é a máxima produção (ou saída) de um empreendimento. A capacidade pode ser explicada como o nível máximo de atividade de valor adicionado que pode ser conseguido, em condições normais de operação e por um determinado período de tempo.
- → A capacidade pode ser vista como:
 - capacidade do projeto, capacidade teórica ou capacidade nominal: aquela que o fornecedor ou fabricante dos equipamento apresentam para o produto;
 - capacidade efetiva ou real: a que o equipamento apresenta após o desconto de todos os tempos de parada tecnicamente necessários para que o equipamento ou sistema implantado funcione adequadamente.

2. Tipos de localização

Determinando a capacidade a ser instalada na empresa, buscam-se então as alternativas para localização da empresa e os fatores que influenciam essa escolha;

- → Cluster: nome utilizado para caracterizar um agrupamento natural de empresas similares em determinada região geográfica, com as mesmas características econômicas e com um objetivo comum de competitividade.
 - Ex.: Santa Efigênia em São Paulo, como um cluster de lojas de produtos eletrônicos; Vale do Silício nos EUA; Brasil com um cluster global da indústria do suco de suco de laranja.

- → Condomínio industrial: caracteriza-se pela localização dos fornecedores dentro da planta da montadora, ou adjacente a ela. Os fornecedores são escolhidos pela montadora, que determina as características da planta do fornecedor e orienta estrategicamente todos os participantes do condomínio;
 - ◆ Ex.: Montadoras de automóveis na década de 1990 no Brasil; Sistema just-in-time;
- → Consórcio modular: é uma ampliação do conceito de condomínio industrial. No consórcio modular. o fornecedor se localiza dentro da planta da montadora e é responsável por todas as etapas de montagem de seus itens no veículo. O fornecedor é visto como um parceiro da montadora.

2. Tipos de localização

→ Cooperativas: são muito comuns na indústria agrícola de produção de grãos, aves ou leite. Basicamente, a cooperativa é a união de diversas propriedades da mesma região geográfica para um objetivo comum, como a distribuição da produção agrícola, negociação de financiamentos e insumos. Algumas etapas de processamento da produção, que necessitam de um investimento elevado, são realizadas pela cooperativa. A associação das propriedades numa cooperativa aumenta o poder de negociação dos associados na compra e venda de seus produtos, assegurando a valorização dos produtos no mercado.

3. Localização da empresa industrial

- 1. Método do centro de gravidade;
- 2. Método dos momentos;
- 3. Método do ponto de equilíbrio;
- 4. Avaliação de fatores qualitativos.

3.1. Método do centro de gravidade

No **modelo do centro de gravidade**, procura-se avaliar o local de menor custo para a instalação da empresa, considerando o fornecimento de matérias-primas e os mercados consumidores.

Exemplo: Na rede a seguir, MP é um ponto de fornecimento de matérias-primas e PA é um ponto de consumo de produtos acabados.

A localização horizontal (LH) e a localização (LV) são calculados como mostrado nas Tabelas 01 e 02.

3.1. Método do centro de gravidade

Tabela 1

		DISTRIBUIÇÃO DOS LOCAIS					
km	500	MP1			PA1	PA2	
	400		MP2	PA3			
	300	PA4					
	200						
	100	PA5				МР3	
km	0	100	200	300	400	500	

Tabela 2

CUSTOS/QUANTIDADES						
	DADOS					
LOCAL	QUANTIDADE (t)	CUSTO DE TRANSPORTE (\$ POR T POR KM)	LOCALIZAÇÃO (HORIZONTAL E VERTICAL)			
MP1	200	3	100	500		
MP2	400	2	200	400		
MP3	300	2	500	100		
PA1	150	4	400	500		
PA2	300	3	500	500		
PA3	50	5	300	400		
PA4	250	4	100	300		
PA5	50	3	100	100		

3.1. Método do centro de gravidade

$$ext{Localização horizontal} = rac{\displaystyle\sum_{i=1}^n t_i imes CT_i imes LH_i}{\displaystyle\sum_{i=1}^n t_i imes CT_i}$$

$$ext{Localização vertical} = rac{\displaystyle\sum_{i=1}^n t_i imes CT_i imes LV_i}{\displaystyle\sum_{i=1}^n t_i imes CT_i}$$

$$LH = 1.400.000/4.900 = 285,7$$

$$LV = 1.845.000/4.900 = 376, 5$$

O método dos momentos, é semelhante ao método do centro de gravidade, com a seguinte particularidade: a ponderação de um determinado centro (cidade) contra os demais centros existentes em uma determinada região geográfica. Para ada centro, calcula-se o momento que as demais cidade somadas possuem. O momento (M) é:

M = (custo unitário de transporte X quantidade X distância)

O centro que tiver a menor soma de momento será o escolhido.

Exemplo: Em um estudo de localização industrial, foi selecionada a região a seguir, que abrange as cidades A, B, C e D. Dado que os demais fatores de localização não favorecem nenhuma das cidades com relação às outras, determinar a localização de mínimo custo de transporte. Supõe-se que o custo unitário de transporte é o mesmo para qualquer tipo de carga transportada e é independente da origem ou do destino da carga, sendo igual a \$2,00 por tonelada por quilômetro transportado (\$2,00/t.km).

Cálculo dos momentos:

A:
$$$2,00 \times 3t \times 100$$
km + $2 \times 5 \times 400 + 2 \times 5 \times 200 = $6.600,00$

B:
$$2 \times 10 \times 100 + 2 \times 5 \times 400 + 2 \times 5 \times 150 = $6.500,00$$

C:
$$2 \times 10 \times 400 + 2 \times 3 \times 300 + 2 \times 5 \times 450 = $14.300,00$$

D:
$$2 \times 10 \times 200 + 2 \times 3 \times 150 + 2 \times 5 \times 450 = $9.400,00$$

Portanto, a menor soma de momentos corresponde à cidade B.

No **método do ponto de equilíbrio**, são comparadas diferentes localidades em função dos custos totais de operação (custos fixos + custos variáveis).

Exemplo: Uma empresa reduziu a provável localização de sua nova fábrica a três localidades: A, B e C. Com os dados de custos fixos e de custos variáveis, determinar a melhor localização.

LOCALIDADE	CUSTOS FIXOS POR ANO	CUSTO VARIÁVEL UNITÁRIO
A	\$120.000,00	\$64,00
В	\$300.000,00	\$25,00
С	\$400.000,00	\$15,00

Inicialmente. vamos representar as retas dos custos totais para cada localidade. O primeiro ponto de cada reta de custo é calculado para a quantidade Q = 0, e é o próprio custo fixo de cada localidade. Vamos calcular o custo total para uma quantidade, Q = 20.000 unidades. Temos:

Custo total de A (em \$1.000,00) = $120 + 64 \times 20 = $1.400,00$

Custo total de A (em \$1.000,00) = $300 + 25 \times 20 = $800,00$

Custo total de A (em \$1.000,00) = $400 + 15 \times 20 = $700,00$

Calculando os pontos de intersecção das retas, temos:

Entre A e B: $120 + 64 \times Q = 300 + 25 \times Q$, e Q = 4.615 unid.

Entre B e C: $300 + 25 \times Q = 400 + 15 \times Q$, e Q = 10.000 unid.

Solução

Para uma produção de até 4.615 unidades, a melhor localização é A; entre 4.615 unidades e 10.000 unidades, a melhor localização é B; e acima de 10.000 unidades a produzir, a melhor localização é C. Nos pontos de intersecção não há vantagem de custo de uma localidade com relação à outra.

3.4. Avaliação de fatores qualitativos

Uma empresa deseja ponderar os fatores qualitativos de quatro cidades candidatas para sediar sua nova unidade. A empresa, inicialmente, definiu os fatores a serem considerados e atribuiu a cada um deles um peso sendo que o total dos pesos soma 100. Posteriormente pediu a seus principais executivos que atribuíssem a cada uma das cidades uma nota, entre 0 (pior condição) e 10 (melhor condição), para cada um dos fatores. Para cada cidade, tomou-se a nota média, e a tabela para a decisão final apresentou os resultado que seguem. Que cidade deve ser escolhida?

FATORES					
PESO	FATOR	NOTAS MÉDIAS POR FATOR			
		Α	В	С	D
10	Disponibilidade de pessoal	7,5	8,0	6,5	5,0
15	Aspectos sindicais	10,0	5,0	7,0	9,5
20	Restrições ambientais	5,0	7,5	9,0	6,5
15	Qualidade de vida	9,0	8,0	9,5	8,5
15	Suprimentos de materiais	6,5	6,0	7,5	8,5
15	Isenção de impostos	5,0	8,0	8,0	8,5
10	Desenvolvimento regional	5,0	6,0	8,0	6,5
Total		682,5	695,0	805,0	770,0

Exercício 01

Uma empresa é abastecida com materiais de dois fornecedores - F1 e F2 - e deve distribuir seus produtos acabados em três mercados consumidores - M1, M2 e M3. A tabela abaixo apresenta os dados e as coordenadas horizontal (H) e vertical (V) de cada local. Determinar a posição da empresa pelo método de centro de gravidade.

LOCAL	QUANTIDADE (t)	CUSTO DE TRANSPORTE (\$/T.KM)	H KM	V KM
F1	100	0,50	100	900
F2	100	0,50	900	900
M1	50	1,00	100	100
M2	50	1,00	300	500
М3	50	1,00	700	300

Exercício 02

Dada a rede de transportes, as cargas e os custos unitários de transporte, determine se a localização de uma empresa deve ser na cidade A, B, C ou D. Utilize o método dos momentos para análise. Os custos de transporte são em \$ por tonelada por km percorrido.

Dúvidas e orientação do trabalho da 1ª bimestral

Prof. Ramon Gomes da Silva, MSc.

ramongs1406@gmail.com https://ramongss.github.io

