第八章历年期末试题

 $(A) \ \ \textcircled{3} \Rightarrow \textcircled{2} \Rightarrow \textcircled{1} \quad (B) \ \ \textcircled{3} \Rightarrow \textcircled{4} \Rightarrow \textcircled{1} \quad (C) \ \ \textcircled{3} \Rightarrow \textcircled{1} \Rightarrow \textcircled{4} \quad (D) \ \ \textcircled{2} \Rightarrow \textcircled{3} \Rightarrow \textcircled{1}$

1. (2017年)考虑二元函数 f(x, y)的下面四条性质:

②f(x,y) 在点 (x_0,y_0) 处两个偏导数都连续;

④ f(x,y) 在点 (x_0,y_0) 处两个偏导数都存在。

若用" $P \Rightarrow Q$ " 表示性质 P 推出性质 Q,则有 ()

①f(x,y)在点 (x_0,y_0) 处连续;

③ f(x,y) 在点 (x_0,y_0) 处可微;

2 .	2. (2016年) 二元函数 $z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 的极大值点是 ().			
	(A) (1,0)	(B) (-3, 2)	(C) (-3,0)	(D) (1,2)
		a ~		
3 .	(2014 年)设 $z = \sin z$	(xy) , 则 $\frac{\partial z}{\partial x} = ($)	•	
			(C) $y \cos(x y)$	(D) $-y\cos(xy)$
4.		$(x_0, y_0) = f_y'(x_0, y_0) =$: 0, 则二元函数 <i>z</i> =	f(x,y) 在点 (x ₀ ,y ₀)
	处().		(D) 一字位巳粉左右	-
	(A) 一定连续		(B) 一定偏导数存在	Ī
	(C) 一定可微		(D) 一定有极值	
5 .	(2013 年)设 z = xe	(x,y) ,则 $\frac{\partial z}{\partial x}$ 等于 ()		
	$(A) x y e^{xy}$	(B) e^{xy}	(C) $x^2 e^{xy}$	(D) $(1 + xy)e^{xy}$
		v ∂z		
6.	(2012 年)设 $z = arc$	$ \tan \frac{y}{x}$,则 $\frac{\partial z}{\partial x}$ 等于	().	
	$(\mathbf{A}) - \frac{y}{x^2 + y^2}$	$(B) \frac{y}{x^2 + y^2}$	$(\mathbf{C}) \; \frac{x}{x^2 + y^2}$	$\mathbf{(D)} - \frac{x}{x^2 + y^2}$
7 .	(2011 年) 函数 $f(x,$	y)在点(x ₀ ,y ₀)连续;	是 $f(x,y)$ 在点 (x_0,y_0))偏导数存在的()

(A) 充分条件 (B) 必要条件 (C) 充要条件 (D) 无关条件

- 8. (2011年) 函数 $f(x,y) = x^2 y^2$ 在其定义域上().
 - (A) 有极大值无极小值

(B) 无极大值有极小值

(C) 有极大值有极小值

(D) 无极大值无极小值

[另附] 函数 f(x,y) = xy 在其定义域上().

(A) 有极大值无极小值

(B) 无极大值有极小值

(C) 有极大值有极小值

- (D) 无极大值无极小值
- 9. (2010年) 设 $z = \sqrt{\ln(xy)}$, 则 $\frac{\partial z}{\partial x}$ 等于 ().

$$(A) \frac{1}{x\sqrt{\ln(xy)}}$$

(B)
$$\frac{1}{2y\sqrt{\ln(xy)}}$$

(A)
$$\frac{1}{x\sqrt{\ln(xy)}}$$
 (B) $\frac{1}{2y\sqrt{\ln(xy)}}$ (C) $\frac{1}{2x\sqrt{\ln(xy)}}$ (D) $\frac{1}{2\sqrt{\ln(xy)}}$

$$(D) \frac{1}{2\sqrt{\ln(xy)}}$$

- **10.** (2017年)设 $z = x^2 e^y + y^2 \sin x$,则 $dz|_{(\pi,0)} =$ _______
- **11.** (2017年) 设二元函数 $z = \int_1^{xy} \ln t \, dt$, 则 $\frac{\partial^2 z}{\partial x \partial y} = \underline{\hspace{1cm}}$.
- 12. (2016年) 设 $f(x,y) = \frac{x}{v^2}$, 则 $df(x,y)|_{x=1,y=1} = \underline{\hspace{1cm}}$.
- **13.** (2015年)设z = f(3x-2y, xy),且f(u, v)可微,则全微分dz =
- **14.** (2014 年) 设 $z = f(x \ln y, y x)$, 且 f 具有一阶连续偏导数,则全微分 dz =
- **15.** (2013年) 已知函数 $z = \ln(1 + x^2 y^2)$, 则 $dz|_{(1,1)} =$
- **16.** (2012年) 函数 $z = x^2y + \frac{x}{y}$ 的全微分 dz =
- 17. (2011年) 设函数 $z = e^x \sin y$, 则 $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \underline{\qquad}$.
- **18.** (2010 年) 函数 $z = \sqrt{1-x^2} + \sqrt{y^2-1}$ 的定义域是

- 19. (2017年) 求二元函数 $z=3x^2-4xy+5y^2-2x-6y+1$ 的极值.
- **20.** (2016年)设 $x+2y+z-2\sqrt{xyz}=0$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.
- **21.** (2015年) 设函数 z = f(x, y) 由方程 $e^z = xyz$ 所确定,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 及 $\frac{\partial^2 z}{\partial x \partial y}$
- **22.** (**2015**年) 求二元函数 f(x,y) = xy 在附加条件 x + y = 1 下的极大值.
- **23.** (2014年) 设函数 z = f(x, y) 由方程 $e^z = x^3 y^2 + z$ 所确定,求 $\frac{\partial^2 z}{\partial x \partial y}$
- **24.** (**2014** 年) 设二元函数 $f(x,y) = 3x + 4y ax^2 2ay^2 2bxy$, 试讨论参数 a,b 满足什么条件时, f(x,y) 有唯一极大值,或有唯一极小值。
- **25.** (2013 年) 已知 f 具有二阶连续偏导数,且 $z = f(x^2 y^2, xy)$,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x^2}$.
- **26.** (2013年) 设 $x^3 + y xyz^5 = 0$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$
- **27**. (**2013**年) 已知直角三角形斜边长为 l,试求两条直角边等于何值时,直角三角形的周长最大?
- 28. (2012 年) (本题满分 7 分) 已知 f 具有二阶连续偏导数,且 $z = f(xy, \frac{y}{x})$,求 $\frac{\partial^2 z}{\partial x \partial y}$.
- **29.** (2012 年) (本题满分 8 分) 设函数 z = f(x, y) 由方程 $x^2 + y^2 + z^2 4z = 0$ 所确定, 求 $\frac{\partial^2 z}{\partial x^2}$.
- **30.** (**2012** 年) 求抛物线 $y = x^2$ 和直线 x y 2 = 0 之间的最短距离.
- 31. (2011年)设 $z = \arctan(xy)$,求 $\frac{\partial^2 z}{\partial x \partial y}$.

[另附] 设
$$z = \arctan(\frac{y}{x})$$
, 求 $\frac{\partial^2 z}{\partial x \partial y}$.

- 32. (2011 年) 设 z = z(x, y) 由方程 $\frac{y}{z} = \ln \frac{z}{x}$ 所确定, 求 dz.
- **33.** (2010年) 已知求函数 $z = \ln(y + \sqrt{x^2 + y^2})$, 求 $\frac{\partial^2 z}{\partial y^2}$.

34. (2017年) 设二元函数 F(x,y) 在 (x_0,y_0) 某邻域内具有二阶连续的偏导数,且 $F(x_0,y_0)=0, F_x(x_0,y_0)=0, F_{xx}(x_0,y_0)\cdot F_y(x_0,y_0)\neq 0.$

证明: 由方程 F(x,y) = 0 在 (x_0, y_0) 某邻域内确定的隐函数 y = y(x) 在点 $x = x_0$ 处取得极值.

- **35.** (2016 年) 设 $z = f[x + \varphi(y)]$, 其中 f 二次可导, φ 可导, 证明 $\frac{\partial z}{\partial x} \cdot \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial^2 z}{\partial x^2}$.
- **36**. (**2010** 年) 设 y = f(x, t), 而 t 是由方程 F(x, y, t) = 0 所确定的 x, y 的函数, 其中 f, F 都具有一阶连续偏导数, 试证

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\partial f}{\partial x} \cdot \frac{\partial F}{\partial t} - \frac{\partial f}{\partial t} \cdot \frac{\partial F}{\partial x}}{\frac{\partial f}{\partial t} \cdot \frac{\partial F}{\partial y} + \frac{\partial F}{\partial t}}.$$