

Memory Forensics: A Brief Introduction

UNO GenCyber Program – July 30, 2015

Joe T. Sylve, M.S.

Senior Research Developer, Blackbag Technologies Ph.D. Candidate, University of New Orleans

#whoami

- UNO Alumnus
 - B.S., Computer Science 2010
 - M.S., Computer Science 2011
 - Ph.D., Computer Science 2016???
- Digital Forensic & Computer Security Researcher and Practitioner
 - Blackbag Technologies
 - 504ENSICS Labs
- Co-Organizer
 - NOLASec
 - BSidesNOLA

Grab a Copy of These Slides

https://github.com/jtsylve/slides

- Traditional Analysis Deals w/ Non-Volatile Data
 - Hard Drives
 - Removable Media
 - Etc.
- Live Forensics Deals with Volatile Data
 - RAM Mostly
 - Must be Collected From a Running Machine
 - Not as Much Control Over Enviornment

- RAM Dumps Contain Both Structured and Unstructured Information
 - Unstructured
 - Strings
 - Application Data
 - Fragments of Communication
 - Encryption Keys
 - Structured
 - Kernel and Application Structures

- With This Data We Can Gather Information About
 - Processes
 - Open Files
 - Network Connections
 - "In-Memory-Only" Application Data
 - Private Browsing Mode
 - Unencrypted Data
 - Webmail
 - Etc.

- Advanced Malware
- Encrypted or Temporary File Systems
- "Live" Computing Environments
- Analysis
 - Volatility
 - Rekall
 - Redline
 - Blacklight 2015 R4 (Late 2015)

How It Works

- Two Approaches
 - Signature-Based Data Carving
 - Structured Analysis
- We'll Discuss Both

Signature-Based Data Carving

- Simply Scan the Raw Memory Dump for Patterns
 - Ex. Firefox Porn Private Browsing History
 - Search for "HTTP-memory-only-PB"
 - Strings afterwards will be URLs
 - Can use Regular Expressions
 - Ex. Email Addresses: .*@.*\..*

 Bulk Extractor is a Good Example of This Technique

Signature-Based Data Carving

- Pros
 - Reasonably Fast
 - Easy to Implement
 - Strings, Grep, & Awk
 - Sometimes All You Need

Signature-Based Carving

- Cons
 - Not Context-Aware
 - Which Process or File?
 - Fragmented Data is Hard to Recover
 - Physical Memory is Essentially a "Random" Collection of 4KB Pages
 - Fails on Compressed Images
 - Pagefile.sys
 - OS X

- Attempts to Recreate the OS Runtime State
 - Locate Kernel
 - Parse Structured Kernel Information
 - Perform Address Translation
 - Parse All the Things!
- Tool Examples
 - Volatility
 - Rekall
 - Blacklight (Late 2015)

- Why the Kernel?
 - Managing Codebase of the OS
 - References Information About Everything
 - Processes
 - Files
 - Sockets
 - Drivers

- Locate the Kernel
 - Memory Dump Format
 - Crash Dump
 - Hiberfile.sys
 - Register State
 - Some Registers Point to Key Kernel Structures
 - Data Carving
 - Look for "Known Signatures" inside the kernel

- Parse Structured Kernel Information
 - Look for Structured Data That Should Live at Known Positions in the Kernel
 - Ex. Linked List of Processes
 - nt!PsActiveProcessHead
 - Parsing This Data Will Give Us Virtual Addresses of Artifacts

- Perform Address Translation
 - Physical Memory is a "Random" Collection of Pages
 - Usually 4KB
 - Each Process Has It's Own "Virtual Memory"
 - Linear Addresses
 - Ordered
 - Each Process Has a Table That Maps Virtual to Physical Addresses

*** Grossly Simplified

- Parse All the Things!
 - Now We Know Where Things "Live" in Physical Memory
 - We Can Look at Physical Pages "in Order"
 - Decompress (if Needed)
 - Parse Artifacts
 - Data Carving
 - Structured Application Analysis

Pros

- An Incredible Amount of Information Can be Found
- Handles "Fragmented" Data Well
- Context Aware
 - Results Can be Associated With Specific Processes, Files, and Possibly Users
- Very Hard to Hide From

- Cons
 - Requires More Sophisticated Tools
 - Currently Available Tools Are Slow
 - This Will Change in Late 2015;-)

Volatility Demo (Time Permitting)

That's All for Now!

- Thoughts?
- Questions?
- Comments?

joe.sylve@gmail.com @jtsylve

https://github.com/jtsylve/slides