Модуль 2

14. Способы задания множеств. Универсальное, конечное, пустое, равные множества. Включения и подмножества. Диаграмма Эйлера–Венна. Мощность конечного множества.

Способы задания множества:

• Перечисление элементов:

$$A = \{1, 2, a, c\}$$

 $B = \{a_1, a_2, \dots, a_n\}$

• Указание общего характеристического свойства:

$$A=\{x:x\in\mathbb{R}$$
 и $\sqrt{x^2+1}<3\}$

Опр. Множества, состоящие из конечного числа элементов, называются **конечными**. Конечно множество такое, у которого нет равномощного ему собственного подмножества.

Опр. Множества, состоящие из бесконечного числа элементов, называются **бесконечными**.

Опр. Множества, не содержащие ни одного элемента, называются **пустыми**. (\varnothing)

Опр. Множества, состоящие из элементов, образующие все возможные множества данной задачи, называются **универсальными** (℧)

Опр. Множества, состоящие из одинаковых элементов, называются равными.

Опр. Множество В называется **подмножеством** множества A, если каждый элемент B является элементом A. $B \subseteq A$. (Говорят, что A включает B).

Если $B \subset A$, то множество В называется **собственным** подмножеством множества A.

Свойства включений:

- $A \subseteq A$
- $A \subseteq B, B \subseteq C \Rightarrow A \subseteq C$

Мощность множества (первичное понимание): Мощностью конечного множества А называется количество элементов этого множества.

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Для изображения операций над множествами используются диаграммы Эйлера-Венна.

15. Операции над множествами. Свойства операций над множествами.

Над множествами определены следующие операции:

- Объединение: $A \cup B = \{x: (x \in A) \lor (x \in B)\}$
- Пересечение: $A \cup B = \{x : (x \in A) \land (x \in B)\}$
- Дополнение: $\overline{A} = \{x : x \notin A\}$
- $\bullet \ \ A\setminus B=\{x:(x\in A)\wedge (x\not\in B)\}$
- $A \bigoplus B = \{x: \Big((x \in A) \land (x \not\in B)\Big) \lor \Big((x \not\in A) \land (x \in B)\Big)\}$ (Не на пересечении двух множеств).

Свойства операций над множествами:

- Коммутативность:
 - $A \cup B = B \cup A$
 - $A \cap B = B \cap A$
- Ассоциативность:
 - $(A \cup B) \cup C = A \cup (B \cup C)$
 - $(A \cap B) \cap C = A \cap (B \cap C)$
- Дистрибутивность:
 - $\bullet \ \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- Идемпотентность:
 - $A \cup A = A$
 - ullet $A\cap A=A$
- Поглощение:
 - $A \cup (A \cap B) = A$
 - $A \cap (A \cup B) = A$
- Законы де Моргана:
 - $\overline{A \cup B} = \overline{A} \cap \overline{B}$
 - $\bullet \ \ \overline{A\cap B}=\overline{A}\cup \overline{B}$
- Законы нуля и единицы:
 - $\bullet \ \ A \cup \varnothing = A$
 - $A \cap \varnothing = \varnothing$
 - $\bullet \ \ A \cup U = U$
 - $\bullet \ \ A\cap U=A$
- Дополнительные свойства:

•
$$A \cup \varnothing = A$$

•
$$A \cap \varnothing = \varnothing$$

•
$$A \cup \mho = \mho$$

•
$$A \cap \mho = A$$

•
$$\overline{\overline{A}} = A$$

$$ullet$$
 $A\cup\overline{A}=U$

$$\bullet \ \ A\cap \overline{A}=\varnothing$$

•
$$A \bigoplus B = B \bigoplus A$$

•
$$(A \bigoplus B) \bigoplus C = A \bigoplus (B \bigoplus C)$$

•
$$A \bigoplus A = \emptyset$$

•
$$A \bigoplus A \bigoplus A = A$$

• Частные случаи:

•
$$A \bigoplus \varnothing = A$$

•
$$A \bigoplus \mho = \overline{A}$$

•
$$A \bigoplus \overline{A} = \mho$$

•
$$\overline{A \bigoplus B} = A \bigoplus B \bigoplus \mho$$

16. Упорядоченные пары и кортежи. Прямое (декартово) произведение множеств, его свойства и геометрическая интерпретация.

Пусть есть множества A и B ($A \neq B$). $a \in A, b \in B$

Тогда:

- $\{a,b\} = \{b,a\}$ неупорядоченные пары (порядок элементов не важен).
- $(a,b) \neq (b,a)$ упорядоченные пары (важен порядок элементов).

Опр. Если $(a_1,a_2,\ldots,a_n):\{a_1\in A_1,a_2\in A_2,\ldots,a_n\in A_n\}$, то такое упорядоченное множество называется **кортежем**.

Опр. Множество все кортежей длины n на множествах A_1, A_2, \ldots, A_n называется прямым или **декартовым произведением** множеств A_1, A_2, \ldots, A_n .

Обозначение.
$$A_1 imes A_2 imes \ldots imes A_n=\left\{(x_1,x_2,\ldots,x_n):x_1\in A_1,x_2\in A_2,\ldots,x_n\in A_n
ight\}$$

Свойства декартового произведения:

- Дистрибутивность относительно объединения:
 - $A \times (B \cup C) = (A \times B) \cup (A \times C)$
 - $(A \cup B) \times C = (A \times C) \cup (B \times C)$
- Дистрибутивность относительно пересечения:
 - $A \times (B \cap C) = (A \times B) \cap (A \times C)$
 - $(A \cap B) \times C = (A \times C) \cap (B \times C)$
- Свойства пустого множества:
 - $A \times \emptyset = \emptyset$
 - $\varnothing \times B = \varnothing$
- Декартово произведение с самим собой:
 - $A \times A \times \ldots \times A = A^n$ (n pas)

Геометрический смысл.

Пусть $A = [a_1, a_2], B = [b_1, b_2]$ - отрезки.

Геометрический смысл декартового произведения $A \times B$ заключается в том, что $A \times B$ - множество координат всех точек заштрихованного прямоугольника, таких, что абсциссы являются элементами множества A, а ординаты - элементы множества B.

17. Отображения и соответствия. Инъективное, сюръективное, биективное отображения. Обратное соответствие. Сечение соответствия.

Опр. Отображение f из множества A во множество B задано, если каждому $x \in A$ соответствует единственный элемент $y \in B$.

Обозначение. $f:A \to B$

Каждое отображение однозначно задаёт множество упорядоченных пар:

$$\{(x,y):x\in A,y=f(x)\}\subseteq A imes B$$

Опр. В общем случае, когда для отображения f могут \exists несколько различных элементов из множества A, имеющих один и тот же образ y_0 , такие элементы x называются **прообразами** элемента y_0 при отображении f.

Пример прообразов. $y = \cos(x), 0 \le y_0 \le 1.$

Тогда прообразы $\{x: x=rccos y\pm 2\pi n, n\in \mathbb{N}\}$

Виды отображений:

• Отображение $f:A\to B$ называется **инъективным**, если $\forall y\in$ область значения отображения f $\exists !$ прообраз.

Пример.
$$y_1 = f(x_1), y_2 = f(x_2)$$
. Тогда верно: $(y_1 = y_2) \Rightarrow (x_1 = x_2)$.

- Отображение $f: A \to B$ называется **сюръективным**, если область значения отображения f полностью совпадает со множеством B.
- Отображение $f:A \to B$ называется **биективным**, если оно одновременно инъективно и сюръективно.

Пример.
$$y=\arctan(x)$$
 - биекция на $(-\frac{\pi}{2};\frac{\pi}{2})$

Опр. Если отображение не однозначно, то есть некоторым элементам $x \in A$ соответствует не по одному элементу $y \in B$, то есть несколько образов, то имеет место **соответствие** из множества A во множество B.

- $ho \subseteq A imes B$ задание соответствия из A в B.
- ho=arnothing частый случай.
- ho = A imes B универсальное соответствие.

Опр. Для соответствия определена область определения:

- $Def(\rho)$ множество всех первых компонент упорядоченных пар, составляющих ρ . $Def(\rho) = \{x: (\exists y \in B), (x,y) \in \rho\}$
- Ref(
 ho) множество всех вторых компонент упорядоченных пар, составляющих ho. $Ref(
 ho)=\{y: (\exists x\in A), (x,y)\in
 ho\}$

Опр. Сечением соответствия ρ **по элементу** $x_0 \in A$ называется множество $\rho(x_0) = \{y: (x_0,y) \in \rho\}$ всех вторых компонентов пар соответствия ρ таких, что первым компонентом является x_0 .

Опр. Сечением соответствия ρ **по множеству** $E\subseteq A$ называется множество $\rho(E)=\{y:(x,y)\in\rho,x\in E\}$ всех вторых компонентов пар соответствия ρ таких, что первым компонентом является элемент множества E.

Опр. Обратным соответствием $ho^{-1}\subseteq B imes A$ называется соответствие, определенное как множество пар (y,x) таких, что $(x,y)\in
ho.$

Обозначение. $ho^{-1}=\{(y,x):(x,y)\in
ho\}$ $(
ho^{-1})^{-1}=
ho$ - инволюция.

18. Способы задания соответствий. Бинарные отношения. Способы задания бинарных отношений.

Пусть дано соответствие $\rho \subseteq A \times B$.

Способы его задания:

• Один к одному.

$$A = \{a_1, a_2, a_3\}, B = \{b_1, b_2\} \
ho = \Big\{(a_1, b_1), (a_1, b_2), (a_2, b_2), (a_3, b_2)\Big\}$$

• Табличный.

Def(ho)	a_1	a_2	a_3
$\rho\big(Def(\rho)\big)$	$\{b_1,b_2\}$	$\{b_2\}$	$\{b_2\}$

• Матричный.

A\B	b_1	b_2
a_1	1	1
a_2		1
a_3		1

• Двудольным орграфом.

Опр. Соответствие $R\subseteq A\times A$ называется бинарным отношением на множестве A. Обозначение. $R\subseteq A^2$ Пример.

- $ullet x,y\in \mathbb{N}$
- $x \leq y$ бинарное отношение (инфиксная запись).
- $(x,y) \in \le$ имя бинарного выражения. (постфиксная запись)
- $x,y\in R$ или xRy в общем виде.

Опр. Бинарное отношение R, в каждой паре которого компоненты совпадают, равномощное множеству A, называется диагональю множества A.

Обозначение. id_A

Способы задания бинарных отношений:

• Перечисление пар.

$$A=\{a_1,a_2,a_3\}$$

$$R = \{(a_1,a_1),(a_1,a_2),(a_1,a_3),(a_2,a_3)\}$$

• Табличный.

R(Def(R))	a_1	a_2
R(Res(R))	$\{a_1,a_2,a_3\}$	$\{a_3\}$

• Матрицей бинарного отношения.

	a_1	a_2	a_3
a_1	1	1	1
a_2			1
a_3			

• Двудольным орграфом

19. Свойства бинарных отношений: рефлексивность, иррефлексивность, симметричность, антисимметричность, транзитивность, плотность. График отношения.

Свойства бинарных отношений.

Пусть дано множество A с $n=\mid A\mid$ и $R\subseteq A^2$

1. Рефлексивность.

- ullet БО R называется **рефлексивным**, если $\forall x \in A: xRx$, то есть $(x,x) \in R \iff id_A \in R$
- Если диагональ множества A (id_A) полностью отсутствует в БО R, то есть (x, x) $\notin R$, то такое БО называется **иррефлексивным**.
- Если часть элементов диагонали присутствует в БО, а часть отсутствует, то такое БО называется **нерефлексивным**.

Пример. БО "=" - рефлексивно, а БО " \neq "- иррефлексивно.

2. Симметричность.

- БО R называется **симметричным**, если $\forall (x,y) \in R: (y,x) \in R$, то есть $xRy \Rightarrow yRx$
- Если хотя бы для одной пары условие симметричности не выполняется, то БО R называется **несимметричным.**
- Матрица симметричного БО симметрична относительно id_A .
- $R = R^{-1}$

3. Антисимметричность.

- БО R называется **антисимметричным**, если: $(xRy \text{ и } yRx) \Rightarrow x = y$.
- Антисимметричность совместима с любыми вариантами рефлексии.

4. Транзитивность.

- БО R называется **транзитивным**, если: $\forall x,y,z\in A:(xRy$ и $yRz)\Rightarrow xRz$
- Если хотя бы для одного набора $x,y,z\in A:(xRy$ и $yRx)\Rightarrow xRz$, то БО R называется **нетранзитивным**.

5. Плотность.

• БО R называется **плотным**, если $\forall x,y \in A: xRy, x \neq y \ \exists z \in A: xRz \ u \ zRy$, то есть для любых различных элементов множества A можно указать третий элемент из A, который "встраивается" между первыми двумя.

• **Пример.** Отношение строго неравенства на $\mathbb R$ "<" является плотным (на $\mathbb N$ не является).

График БО - график соответствия R, абсциссой и ординатой которого являются элементы множества A.

20. Классы отношений: эквивалентность, толерантность. Отношения порядка.

Отношение\Свойства	Ирреф- ть	Рефл- ть	Симметр- ть	Антисимм- ть	Транз- ть
Эквивалентность		+	+		+
Толерантность		+	+		
Частичный порядок		+		+	+
Предварительный		+			+
порядок(квазипорядок)					
Строгий порядок	+			+	+
Строгий предпорядок	+				+

Дальше про эти классы в 21 и 22 вопросах.

21. Разбиение множества. Классы эквивалентности. Фактормножество. Связь понятий отображения, разбиения, эквивалентности.

Опр. Пусть A - некоторое множество. Семейство *попарно непересекающихся* множеств $C_i, i=\overline{1,n}$ называется **разбиением** множества A, если их объединение даёт A: $\bigcup_{i=1}^n C_i = A$

Опр. Пусть R - отношение эквивалентности на множестве A и $x \in A$. **Классом эквивалентности** $[x]_R$ по отношению R называется множество всех вторых компонентов пар отношения R, у которых первым компонентом является x. (Сечение отношения эквивалентности по элементу x).

Теорема. Для любого отношения эквивалентности на множестве A, множество классов эквивалентности образует разбиение множества A. Обратная теорема также верна.

Опр. Множество всех классов эквивалентности по данному отношению эквивалентности R на множестве A называется фактор-множеством множества A по отношению R. **Обозначение.** A/R

Пример.

$$A = \{a, b, c, d, e\}$$

Зададим БО с помощью матрицы:

	а	b	С	d	е
а	1	1			
b	1	1			
С			1		
d				1	1
е				1	1

$$[a]_R = \{a,b\}$$

$$[b]_R = \{a,b\}$$

$$[c]_R = \{c\}$$

$$[d]_R = \{d,e\}$$

$$[e]_R = \{d,e\}$$

$$C_1 = \{a, b\}$$

$$C_2 = \{c\}$$

$$C_3 = \{d,e\}$$

Тогда
$$A=C_1\cup C_2\cup C_3$$
 $A/R=\{C_1,C_2,C_3\}$

Существует связь между эквивалентностью, разбиением и отображением.

 $\forall R\subseteq A^2\ \exists f:A\to A/R$, то есть для любого БО на множестве A можно задать отображение множества A в его фактор-множество A/R.

Если считать, что $f(x), x \in A$ - класс эквивалентности для элемента x, то получим, что $\forall x \in A$ отображение f сопоставляет единственный класс эквивалентности, содержащий этот элемент. Отображение f- сюръективное.

• Связь между разбиением и эквивалентностью:

• Каждое отношение эквивалентности на множестве A порождает разбиение множества A на классы эквивалентности.

• Связь между отображением и эквивалентностью:

• Отображение f может также задавать отношение эквивалентности на множестве A: $(a,b) \in R$ тогда и только тогда, когда f(a) = f(b). В этом случае отношение эквивалентности порождает разбиение множества A на классы эквивалентности, которые совпадают с прообразами элементов из B.

22. Отношения порядка и сопоставленные им отношения. Упорядоченные множества.

Опр. Множества заданного отношения порядка называются упорядоченными множествами.

Обозначение. (A, \leq) (не больше)

Каждому отношению порядка на A можно сопоставить следующие БО:

- Отношения строго порядка (<) (строго меньше) Получено путем удаления из классического id_A . Записывается так: $\forall x,y\in A: \{x< y\Leftrightarrow x\leq y\ \text{if } x\neq y\}$
- Отношение, двойственное к классическому порядку (\geq) (не меньше) $\forall x,y\in A:\{x\geq y\Leftrightarrow y\leq x\}$
- Отношение, двойственное к строгому (>) (строго больше) $\forall x,y\in A:\{x>y\Leftrightarrow x\geq y\ \mathrm{if}\ x\neq y\}$
- Доминированное отношение ($\not<$) $x \not> y$, если x < y и $\not\exists z \in A: x < z < y$, то есть не существует элемента между x и y.

23. Наибольший, максимальный, наименьший, минимальный элементы упорядоченного множества. Верхние и нижние грани множества. Точные верхняя и нижняя грани. Принцип двойственности для упорядоченных множеств.

Опр. Элемент $a \in A$ называется **наибольшим** элементом множества A, если $\forall x \in A : x \leq a$.

Опр. Элемент $b \in A$ называется **максимальным** элементом множества A, если $\forall x \in A : x \leq b$ или x и b несравнимы.

Аналогично вводятся понятия наименьшего и минимального элемента.

Опр. Пусть (A, \leq) и $B \subseteq A$. Элемент $a \in A$ называется верхней (нижней) гранью множества B, если $\forall x \in B : x \leq a \ (x \geq a)$.

Грани образуют множества, значит среди них можно выделить наибольший и наименьший элемент.

Опр. Наименьший элемент всех верхних граней множества B называется **точной верхней гранью** множества B ($\sup B$).

Опр. Наибольший элемент всех нижних граней множества B называется **точной нижней гранью** множества B (inf B).

Примечание. Точная грань может не принадлежать самому множеству, и может даже не существовать.

Можно считать, что для упорядоченных множеств работает **принцип двойственности**: Если есть (A, \leq) и есть свойство, доказанное для этого порядка, то это свойство будет справедливо для двойственного порядка, если:

- Заменить ≤ на ≥ и наоборот.
- Максимальный элемент заменить на минимальный.
- inf заменить на sup и наоборот.

24. Вполне упорядоченное множество. Индуктивное упорядоченное множество. Теорема о неподвижной точке.

Опр. (A, \leq) называется **вполне упорядоченным**, если его любое непустое подмножество имеет наименьший элемент.

Опр. Упорядоченное множество (A, \leq) называется **индуктивным**, если:

- Оно содержит наименьший элемент
- Всякая неубывающая последовательность этого множества имеет точную верхнюю грань.

Пример. [0;1] на $\mathbb R$

При ≤ наименьший элемент 0 и всегда есть верхняя грань

Опр. Пусть имеются 2 индуктивных упорядоченных множества (A_1, \leq) и (A_2, \leq) . Отображение $f: A_1 \to A_2$ называется **непрерывным**, если \forall неубывающей последовательности элементов множества A_1 $a_1, a_2, \ldots, a_n, \ldots$ образ её точной верхней грани равен точной верхней грани последовательности $f(a_1), f(a_2), \ldots, f(a_n), \ldots$ То есть: $f(\sup\{a_n\}) = \sup\{f(a_n)\}$.

Опр. Элемент $a\in A, (A,\leq)$ называется **неподвижной точкой** отображения $f:A\to A,$ если f(a)=a.

Теорема (о неподвижной точке). Любое непрерывное отображение f индуктивного упорядоченного множества в себя имеет наименьшую неподвижную точку. То есть уравнение f(x)=x имеет решение $x_0=f(x_0)$. И множество решений этого уравнения образует множество неподвижный точек, которое имеет наименьший элемент.

25. Диаграммы Хассе для конечных упорядоченных множеств.

Любое упорядоченное множество можно представить в виде схемы, в которой каждый элемент изображается точкой на плоскости. Если элемент y покрывает элемент x, то x и y соединяются отрезком, причем точка x располагается ниже точки y. Такие схемы называют диаграммами Хассе.

Короче говоря, диаграмма Хассе - орграф доминированного отношения. На этом орграфе не отмечаются стрелки, а доминированность элементов определяется расположением выше/ниже.

26. Мощность множеств. Отношение равномощности. Счетные множества. Нумерации.

Опр. Множество A равномощно (\sim) множеству B, если существует биекция $f:A\leftrightarrow B$ или $f^{-1}:B\leftrightarrow A$ (т.е. $B\sim A$)

- Отношение равномощности относится к классу эквивалентности.
- Если $\mid A \mid$ обозначение класса эквивалентности по отношению равномощности, то получим мощность множества A.

Опр. Мощность множества - класс эквивалентности по отношению равномощности.

Опр. Любое множество, равномощное множеству $\mathbb N$ называется **счетным**.

Опр. Биекцию множества M со множеством $\mathbb N$ называют нумерацией $\varphi: M \leftrightarrow \mathbb N$ (присваивание элементам любого множества числовые значения.)

Пусть даны бесконечные множества A и B. Считается, что $\mid A \mid \leq \mid B \mid$, если A равномощно некоторому подмножеству множества B.

Тогда имеем: $|A| \le |B|$ и $|B| \le |A| \Rightarrow |A| = |B|$ ($A \sim B$).

27. Свойства счетных множеств. Равномощные множества.

Свойства счетных множеств:

- Любое бесконечное множество содержит счетное подмножество.
- Для любого бесконечного множества можно выделить 2 непересекающихся между собой счетных подмножества.
- Любое подмножество счетного множества конечно, либо счетно.
- Объединение любого конечного или счетного семейства счетных множеств является счетным.
- Объединение конечного и счетного множества счетно.
- Следующие множества равномощны:
 - a) $[0;1]\in\mathbb{R}$
 - б) $(0;1)\in\mathbb{R}$
 - в) $[a;b]\in\mathbb{R}$
 - $\digamma)(a;b)\in\mathbb{R}$
 - $\mathbf{J})\mathbb{R}$
 - $e)2^{\mathbb{N}}$ (все подмножества множества \mathbb{N})
- Теорема о квадрате:

Для произвольного множества A верно: $\mid A \mid = \mid A^2 \mid$ (т.е. $A \sim A^2$)

• Теорема Кантора-Бернштейна:

Для любых двух множеств A и B верно одно из трех:

- 1. |A| < |B|
- $2.\mid B\mid <\mid A\mid$
- 3. $A \sim B$
- Для любого множества A верно неравенство: $\mid 2^{\mathbb{N}} \mid > \mid A \mid$ То есть мощность любого счетного множества ограничена, в частности, мощностью булеана.
- Следствие из теоремы о квадрате.

Множество рациональных чисел ℚ счетно.

Доказательство:

- Каждому рациональному числу $\frac{a}{b}$ однозначно соответствует упорядоченная пара (a,b).
- Следовательно, множество \mathbb{Q} эквивалентно некоторому бесконечному подмножеству декартового квадрата \mathbb{Z}^2 .
- Согласно теореме о квадрате: $\mathbb{Z} \sim \mathbb{Z}^2$
- Т.к. множества \mathbb{Z} и \mathbb{Z}^2 счетны, а любое подмножество счетного множества конечно или счетно, то множество \mathbb{Q} счетно. \triangle

28. Свойства счетных множеств при сравнении их мощностей. Теорема Кантора– Бернштейна. Теорема о квадрате.

См. 27 вопрос.

29. Композиция соответствий: понятие и порядок построения.

Опр. Пусть у нас есть два соответствия $R \subseteq A \times B$ и $S \subseteq B \times C$.

Композиция соответствия: $S\circ R=\Big\{(x,y): (\exists z\in B), \big((x,z)\in R \text{ и } (z,y)\in S\big)\Big\}$, то есть пара (x,y)принадлежит композиции $S\circ R$, если существует такой элемент $z\in B$, что x связан с z через R и z связано с y через S.

Пример построения:

Пусть у нас есть три множества $A=\{a_1,a_2\},\,B=\{b_1,b_2\},\,C=\{c_1,c_2\}.$ Определим соответствие $R\subseteq A\times B: R=\{(a_1,b_1),(a_2,b_2)\}.$ Определим соответствие $S\subseteq B\times C: R=\{(b_1,c_1),(b_2,c_2)\}.$

Теперь найдём сечение соответствия R по элементам из A:

```
1. R(a_1)=\{b_1\} После этого ищем сечение соответствия S по элементам сечения из 1): S(b_1)=\{c_1\} Нашли пару (a_1,c_1), то есть: R\circ S(a_1)=\{c_1\}. Дальше аналогично. 2. R(a_2)=\{b_2\} S(b_2)=\{c_2\} Нашли пару (a_2,c_2), то есть: R\circ S(a_2)=\{c_2\}.
```

Тогда композиция соответствия $R \circ S = \{(a_1, c_1), (a_2, c_2)\}.$

Другой пример был представлен на семинаре.

30. Обобщенная композиция соответствий. Свойства композиции соответствий. Композиция бинарных отношений.

Обобщенная композиция соответствий - это композиция соответствий $R\subseteq A\times B$ и $S\subseteq C\times D$, где множества B и C не обязательно равны.

В этом случае ищем $B \cap C$ и работает также, как и с обычной композицией соответствий.

Пусть также определено соответствие $G\subseteq E imes F$, тогда свойства композиции соответствий:

- $(R \circ S) \circ G = R \circ (S \circ G)$
- $R \circ \varnothing = \varnothing \circ R = \varnothing$
- $R \circ (S \cup G) = (R \circ S) \cup (R \circ G)$

Опр(возможно). Композицией бинарных отношений $R\subseteq A\times B$ и $S\subseteq B\times C$ называется такое отношение $(R\circ S)\subseteq A\times C$, что:

 $orall a \in A, c \in C: a(R \circ S)c \Leftrightarrow \exists b \in B: (aRb) \cap (bSc).$