Elmozdulás-, közelítés- és szintérzékelők

Programozható irányítóberendezések és szenzorrendszerek

> KOVÁCS Gábor gkovacs@iit.bme.hu

Elmozdulásérzékelők

- Elmozdulás (displacement): a helyzet megváltozása
 - Transzlációs (lineáris) a pozíció megváltozása, elmozdulás
 - Rotációs a szöghelyzet (orientáció)
 megváltozása, elfordulás
 - Egy adott szögű elfordulás egy kör kerületén végzett elmozdulásnak felel meg – az alkalmazott érzékelők nagyon hasonlók!

Mértékegységek

- Méter m
 - SI alapegység
 - Fénysebesség alapján definiált
 - Jól használható további egységek
- Angolszász egységek
 - Hüvelyk (inch,") 1"=2.54 cm
 - Láb (foot, ') -1'=12'=0.3048m
 - Yard (yd) 1yd=3'=91,4 cm

Rezisztív elmozdulásérzékelők

- Ellenálláson mozgó csúszka potenciométer
- Az ellenállás a pozíció függvénye
- Régóta használt, kiforrott technika

Forgó potenciométer

(Rotary potentiometer)

- Az ellenállás az elfordulás arányában nő
- Kivezetések bekötésétől függően óramutató járásával megegyező vagy ellentétes irány

Több fordulatú potenciométer

- A mechanikai határoló hiányzik, a csúszka tetszőlegesen körbefordulhat
- Szigetelő holtsáv: végtelen ellenállás – nulla feszültség
- Szigetelő és ellenállás sáv határ átlépésekor fel- vagy lefutó él
- Éleket számlálva a körülfordulások száma meghatározható
- Probléma: nullpont meghatározása

Helikális potenciométer

Kivezetések

- A csúszka spirális pályán mozog
- Több teljes körülfordulást is megtehet
- Megfelelő kialakítással lineáris karakterisztika
- A körülfordulások száma nem végtelen
- Abszolút elfordulásinformáció

Lineáris potenciométer

(Linear potentiometer)

- Az ellenállás a transzlációs elmozdulás függvénye
- Lineáris mellett akár más függvény is lehet (pl. logaritmikus)
- Hossz: akár 400mm

Mérőhuzalos potenciométer

(String potentiometer, yo-yo pot)

 A csúszka stabil, az ellenállás a dobra csévélt ellenálláshuzal hosszának függvénye

 Akár 100 méteres elmozdulás

Potenciométerek ellenállás-elemeinek kialakítása

- Huzal potenciométerek
 - Korlátozott felbontás
 - Nagy teljesítmény (disszipáció)
- Réteg potenciométerek
 - Végtelen kis felbontás
 - Korlátozott teljesítmény
 - Környezetre érzékeny
- Cermet: kerámia-fém kompozit
 - Végtelen kis felbontás
 - Nagy teljesítmény, kis zaj
 - Környezetre érzékeny
- Karbon kompozit
 - Olcsó
 - Környezetre rendkívül érzékeny

Huzal potenciométer

Potenciométerek bekötése

Teljes ellenállás (ρ : adott keresztmetszetű vezető fajlagos ellenállása $[\Omega/m]$):

$$R_0 = R_{AC} = \rho l$$

Az elmozduláshoz tartozó ellenállás:

$$R = R_{AB} = \rho x$$

$$\Rightarrow \frac{R}{R_0} = \frac{x}{l}$$

$$U_{KI}$$
 • A mérendő feszültség:
$$U_{KI}=U_{AB}=\frac{R_{AB}}{R_{AB}+R_{BC}}U_T=\frac{R}{R0}U_T$$

$$U_{KI} = \frac{x}{l} U_T$$

A hőmérsékletváltozás és mechanikai feszültség hatása

$$U_{KI} = \frac{\rho_0 (1 + \pi \sigma)(1 + \alpha \Delta \vartheta)x}{\rho_0 (1 + \pi \sigma)(1 + \alpha \Delta \vartheta)l} U_T = \frac{x}{l} U_T$$

Terhelő ellenállás hatása

$$U_{KI} = \frac{\frac{R_{AB}R_L}{R_{AB}+R_L}}{R_{BC} + \frac{R_{AB}R_L}{R_{AB}+R_L}}$$

 Használjunk végtelen nagy terhelést: erősítő

Rezisztív elmozdulásérzékelők

- Jelentős probléma: mechanikai kontaktus
 - Súrlódás akadályozza a mért elmozdulást
 - Hiszterézis (kotyogás)
 - Rezgésérzékenység
- Élettartam: 1-10 millió ciklus
 - 1 ciklus / másodperc
 - 86400 ciklus / nap
 - 10 millió ciklus ≈ 115 nap!

Rezisztív elmozdulásérzékelők

- + Egyszerű felépítés
- + Alacsony ár
- + Zavarokra nem érzékeny
- + Egyszerű illesztő áramkör

- Mechanikai
 kontaktus igénye
- Súrlódás
- Rövid élettartam
- Kis pontosság

Induktív elmozdulásérzékelés

- Elektromágneses induktivitáson alapul
- Kontaktusmentes technológia
- Nagy mérési tartomány

Nyílt mágneses hurkú átalakító

(Linear variable inductor)

- A ferromágneses mag mozgatásával a tekercs induktivitása megváltozik
- Az induktivitás változása érzékelhető
- Probléma: nemlinearitás, jelentős hőmérsékletfüggés, kis érzékenység

Nyílt mágneses hurkú átalakító

- A hídkapcsolással az érzékenység jelentősen javul
- Jó méretezéssel viszonylag tág linearitási tartomány
- Egyszerű konstrukció
- A hőmérsékletfüggés jelentős
- Kb. 1%-os pontosság

Lineáris differenciál-transzformátor – LVDT

(Linear Variable Difference Transformer)

Lineáris differenciál-transzformátor – LVDT

(Linear Variable Difference Transformer)

LVDT

- $U_P = U \sin(\omega t)$
- $U_{S1} = \frac{N_1}{N}U\sin(\omega t)$
- $U_{S2} = \frac{N_2}{N} \operatorname{Usin}(\omega t)$

N : a primer tekercs menetszáma

 N_1, N_2 : a szekunder tekercsek effektív menetszáma

LVDT

$$U_{KI} = U_{S1} - U_{S2}$$

LVDT

Középhelyzet

$$-N_1=N_2\Rightarrow U_{KI}=0$$

Pozitív elmozdulás

$$- N_1 > N_2 \Rightarrow U_{KI} = \frac{N_1 - N_2}{N} U \sin(\omega t)$$

Negatív elmozdulás

$$-N_1 < N_2 \Rightarrow U_{KI} = \frac{N_1 - N_2}{N} U \sin(\omega t) < 0$$

$$- U_{KI} = (N_1 - N_2)U\sin(\omega t - \pi)$$

A kimeneti feszültség

$$- |U_{KI}| = \frac{|N_1 - N_2|}{N} U$$

$$- \varphi_{U_{KI}} = \begin{cases} 0 \text{ ha } x \ge 0 \\ -\pi \text{ ha } x < 0 \end{cases}$$

Fázisérzékeny demodulátor

Az egyenirányított feszültségek (U_{R1} és U_{R2}) iránya ellentétes!

Forgó differenciáltranszformátor – RVDT

(Rotary Variable Difference Transformer)

- Működési elve és módja az LVDT-vel azonos
- Speciális kialakítású tekercsek és vasmag
- Csak korlátozott szögelfordulást (kb. ± 40°) érzékel

LVDT - gerjesztés

- AC gerjesztést igényel
- Általában DC bemenet + oszcillátor
- Gerjesztés frekvenciája
 - Minél gyorsabb elmozdulást mérünk, annál nagyobb frekvenciára van szükség
 - 50Hz 10kHz
 - Tipikus: 250Hz-1kHz
 - Lassú mozgás esetén hálózati váltófeszültséggel is üzemeltethető (50Hz)

Induktív elmozdulásérzékelők

- + Robusztus felépítés
- + Kontaktus nélküli érzékelés
- + 0.2-0.5%-os pontosság
- + Vibrációra érzéketlen
- + Végtelen kis felbontás

- AC gerjesztés igénye
- Komplex elektronika
- Korlátozott mérési tartomány (tipikusan 500mm alatt)

Mágneses elmozdulásérzékelők

- Állandó mágnes használatát igényelik
- A mágneses térhez kapcsolódó különféle jelenségeket használják ki

Hall effektus

- Lorentz-erő: $F = q(E + v \times B)$
- $E = \frac{U_H}{w}$
- $v = \frac{l}{T}$
- $I = \frac{Q}{T}$
- $Q = l \cdot w \cdot t \cdot n \cdot e$
- $U_H = -\frac{IB}{n \cdot t \cdot \epsilon}$
- $R_H = -\frac{1}{nte}$
- $U_H = R_H IB$
- n: töltéshordozó-sűrűség
- e: elemi töltés

Hall érzékelő

(Hall effect sensor, Hall sensor)

- Egyszerű félvezető lap
- Problémák:
 - Hőmérsékletfüggés
 - Mechanikai feszültségből eredő piezorezisztív hatás
- Offszethiba
 - A Hall-feszültséghez adódik, értéke nem ismert
 - A szenzort akár hídként is tekinthetjük, így az offszetet magyarázhatjuk annak kiegyensúlyozatlanságával

Offszethiba kompenzálása

$$U_1 + U_2 = 2U_H$$

Két, egymáshoz képest 90°-os szögben elforgatott Hall-szenzort használva az offszethiba kompenzálható.

Hall érzékelő unipoláris térben

Hall érzékelő bipoláris térben

Hall szenzoros elfordulás-érzékelés

Hall érzékelők alkalmazása

- Végálláskapcsolóként
 - Hiszterézis komparátor
 - Mozgó tárgyon elhelyezett állandó mágnes
 - Tipikus alkalmazás:
 pneumatikus munkahenger
- Diszkrét pozíciók mérésére
 - Több Hall-szenzor
 elhelyezése a pálya mentén

Hall érzékelők

- + Egyszerű és robusztus felépítés
- + Teljesen kontaktus nélküli érzékelés
- + Egyszerű illesztés
- + Rendkívül olcsó

- Kis mérési tartomány (20mm)
- Nemlineáris karakterisztika
- Kis pontosság (3-5%)

Magnetorezisztív érzékelők

- AMR anisotropic magnetoresistance
- Permalloy (81Ni-19Fe)
- $\rho(\varphi) = \rho_{\perp} + (\rho_{\parallel} \rho_{\perp}) \cos^2 \varphi$
 - φ : az áram és a mágneses térerősség irányának különbsége
 - $-\rho_{\perp}$: ellenállás $\varphi=90^{\circ}$ esetén
 - $-\rho_{\parallel}$: ellenállás $\varphi=0^{\circ}$ esetén
- Amennyiben a mágneses térerősség elég nagy, hogy az érzékelőt telítésbe vigye (kb. 30-50 Gauss), az ellenállásváltozás a mágneses tér nagyságától nem, csak az irányától függ!

Magnetorezisztív híd

$$U_{KI} = -U_T S \sin(2\Theta)$$

Magnetorezisztív híd

- Érzékelési tartomány: ±45°
- Jó linearitás
 ± 30°-os
 tartományban 0°
 körül

Magnetorezisztív hidak

- Két azonos híd 45°-ban elforgatva
- $U_{KI,A} = -U_T S \sin(2\Theta)$
- $U_{KI,B} =$ $= -U_T S \sin(2(\Theta 45^\circ)) =$ $= -U_T S \cos(2\Theta)$
- A mérési tartomány ±90°-ra nő
- A linearitási tartomány szinte teljes

•
$$\Theta = 0.5 \operatorname{atan} \frac{U_{KI,A}}{U_{KI,B}}$$

Magnetorezisztív érzékelés

Kis elmozdulás ($\approx \pm 15 \mathrm{mm}$) esetén közel lineáris $d-U_{KI}$ összefüggés

Magnetorezisztív érzékelés

- Érzékelési tartomány növelése: egymástól kb. 15mm-re elhelyezett érzékelők sora
- Érzékelés a szenzorok jelei alapján
 - Elmozdulás okozta
 jelszintváltozásokat figyelve
 meghatározható, melyik
 érzékelő közelében van a
 mágnes
 - Az adott érzékelő lineáris kimeneti jeléből a szenzorhoz képesti pozíció meghatározható

Magnetorezisztív érzékelősor

Magnetorezisztív elfordulás-érzékelés

- Két érzékelő
- Átfedő elhelyezés, így valamelyik szenzor mindig a lineáris érzékelési tartományban dolgozik

Magnetorezisztív érzékelők

Magnetorezisztív érzékelők

- + Egyszerű és robusztus felépítés
- + Teljesen kontaktus nélküli érzékelés

- Kis mérési tartomány (25mm)
- Illesztése nem kézenfekvő
- Kis pontosság (3-5%)

Magnetostrikció

- Domainek rendeződése mágneses tér hatására
- Ferromágneses anyagokban
- Népszerű anyagok:
 - Terfenol-D: Terbium-Vas-Diszprózium
 - Metglas

Magnetostrikciós effektusok

 Villari-effektus: egy magnetostriktív anyagra ható mechanikai feszültség megváltoztatja annak mágneses tulajdonságait (permeabilitás, szuszceptibilitás)

 Wiedemann-effektus: ha egy magnetostriktív rúdon áram folyik és axiális (a rúd tengelyével megegyező irányú) mágneses térbe helyezzük, akkor ott torziós feszültség keletkezik.

Ha magnetostriktív vezetőn áramot vezetünk át, akkor mellette megfelelő orientációval egy állandó mágnest helyezünk el, akkor a mágneses terek merőleges komponenseinek hatására a rúdra torziós feszültség hat

Ha az áram csak impulzusszerű, akkor a torziós feszültség is csak egy impulzus, mely hullámként terjed a rúd (hullámvezető) mentén

- A torziós feszültség hullámának megérkezését a hullámvezető végén elhelyezett detektor érzékeli a Villari-effektust kihasználva: a mechanikai feszültség hatására megváltoznak a mágneses tulajdonságai, így villamos feszültség indukálódik a tekercsben
- A hullámvezető másik végén csillapítás, így nincs visszavert második hullám

- Mérjük az áramimpulzus és a feszültséghullám megérkezése közti időt
- Az áramimpulzus fénysebességgel halad, így terjedési ideje elhanyagolható
- Az idő és a hullámvezetőre jellemző hullámterjedési sebesség alapján a torziós feszültség keletkezésének helye (a pozíciómágnes helyzete) számítható: $d = \tau/v$

Magnetostrikciós érzékelő felépítése

- + Teljesen kontaktus nélküli érzékelés
- + Környezeti zavarokra és vibrációra érzéketlen
- + Akár 4kHz-es frekvencia
- + 0.1% alatti hiba
- + Akár 20m-es átfogás

- Komplex felépítés
- Magas ár

Kapacitív elmozdulásérzékelők

Kapacitív elmozdulásérzékelők

•
$$C = \varepsilon_0 \varepsilon_r \frac{A}{d}$$

- ε_0 : vákuum dielektromos állandója
- ε_r : dielektrikum relatív dielektromos állandója
- *A*: fegyverzetek felülete
- *d*: fegyverzetek távolsága

Kapacitás mérése

•
$$U_{KI} = -U_T \frac{Z}{Z_{ref}} = -U_T \frac{\frac{1}{j\omega C}}{\frac{1}{j\omega C_{ref}}} = -U_T \frac{C_{ref}}{C}$$

 A kapacitás egy fix referencia-kapacitáshoz relatívan meghatározható

Kapacitás mérése – AC híd

•
$$U_{KI} = \frac{U_T}{2} - U_T \frac{Z_2}{Z_1 + Z_2} = \frac{U_T}{2} \frac{Z_1 - Z_2}{Z_1 + Z_2} = \frac{U_T}{2} \frac{C_2 - C_1}{C_2 + C_1}$$

Fegyverzetek távolságán alapuló érzékelés

Kapacitás:

•
$$C = \frac{\varepsilon A}{d}$$

- Az elmozdulás nemlineáris függvénye
- Impedancia:

•
$$Z = \frac{d}{j\omega\varepsilon A}$$

 Az elmozdulás lineáris függvénye

Fegyverzetek távolságán alapuló érzékelés

- Problémák
 - Billegés
 - X és Y irányú elmozdulás megoldás: átlapolódó fegyverzetek

Tipikus alkalmazás

• Erő- és nyomásmérés

Három fegyverzetes kialakítás

Kapacitás:

•
$$C_{AC} = \frac{\varepsilon A}{d_{AC}}$$

•
$$C_{BC} = \frac{\varepsilon A}{d_{BC}}$$

• Kimeneti feszültség:

$$U_{KI} = -U_T \frac{C_{AC}}{C_{BC}} = -U_T \frac{d_{BC}}{d_{AC}}$$

Három fegyverzetes kialakítás

 A fegyverzetek felülete és a dielektromos állandók megegyeznek

•
$$C_{AC} = \frac{\varepsilon A}{d+x}$$

•
$$C_{BC} = \frac{\varepsilon A}{d-x}$$

Differenciális érzékelés

•
$$U_{KI} = -U_T + (U_T - (-U_T)) \frac{Z_{BC}}{Z_{AC} + Z_{BC}} = U_T \left(2 \frac{Z_{BC}}{Z_{AC} + Z_{BC}} - 1\right) = U_T \frac{Z_{BC} - Z_{AC}}{Z_{BC} + Z_{AC}} = U_T \frac{1}{\frac{C_{BC}}{C_{AC}} - \frac{1}{C_{AC}}} = U_T \frac{C_{AC} - C_{BC}}{C_{AC} + C_{BC}}$$

$$\boldsymbol{U_{KI}} = U_T \frac{\frac{\varepsilon A}{d+x} - \frac{\varepsilon A}{d-x}}{\frac{\varepsilon A}{d+x} + \frac{\varepsilon A}{d-x}} = U_T \frac{(d-x) - (d+x)}{(d-x) + (d+x)} = -\boldsymbol{U_T} \frac{\boldsymbol{x}}{\boldsymbol{d}}$$

Differenciális érzékelés $|U_{KI}| = U_T \frac{|x|}{d}$ $\varphi_{U,U_{KI}} = 0^{\circ}$ Gerjesztés: ellenfázisú négyszögjel

Differenciális érzékelés

• $|U_{KI}| = U_T \frac{x}{d}$ - csúcsegyenirányító

•
$$\varphi_{U,U_{KI}} = \begin{cases} -180^\circ : x > 0 \\ 0^\circ : x < 0 \end{cases}$$
 - fázisdetektor (XOR)

Felületváltozáson alapuló érzékelés

- Kapacitás:
 - $C = \frac{\varepsilon A}{d}$
 - Az elmozdulás lineáris függvénye
- Impedancia

•
$$Z = \frac{d}{j\omega\varepsilon A}$$

 Az elmozdulás nemlineáris függvénye

Három fegyverzetes kialakítás

•
$$A_{AC} = (l/2 + x)w$$

•
$$A_{BC} = (l/2 - x)w$$

•
$$d_{AC} = d_{BC}$$

•
$$\varepsilon_{AC} = \varepsilon_{BC}$$

$$\frac{C_{AC}}{C_{BC}} = \frac{A_{AC}}{A_{BC}} = \frac{l/2 + x}{l/2 - x}$$

Differenciális érzékelés

$$\begin{array}{c} + U_{T} \\ \bullet \\ C_{AC} \end{array} \longrightarrow \begin{array}{c} \bullet \\ U_{KI} = -U_{T} + \left(U_{T} - (-U_{T})\right) \frac{Z_{BC}}{Z_{AC} + Z_{BC}} = = \\ U_{T} \left(2 \frac{Z_{BC}}{Z_{AC} + Z_{BC}} - 1\right) = U_{T} \frac{Z_{BC} - Z_{AC}}{Z_{BC} + Z_{AC}} = = \\ U_{T} \frac{\frac{1}{C_{BC}} - \frac{1}{C_{AC}}}{\frac{1}{C_{BC}} + \frac{1}{C_{AC}}} = U_{T} \frac{C_{AC} - C_{BC}}{C_{AC} + C_{BC}} \end{array}$$

$$\boldsymbol{U_{KI}} = U_T \frac{\frac{\varepsilon(\frac{l}{2} + x)w}{d} - \frac{\varepsilon(\frac{l}{2} - x)w}{d}}{\frac{\varepsilon(\frac{l}{2} + x)w}{d} + \frac{\varepsilon(\frac{l}{2} - x)w}{d}} = U_T \frac{(\frac{l}{2} + x) - (\frac{l}{2} - x)}{(\frac{l}{2} + x) + (\frac{l}{2} - x)} = U_T \frac{2x}{l}$$

Probléma a háromfegyverzetes kialakítással

Fegyverzetek kialakítása – V alak

- A végpontokon kívül lineáris kimenet
- Billenésre, fordulásra érzéketlen

Vezeték nélküli kialakítás

Dielektrikum változásán alapuló érzékelés

 Párhuzamosan kapcsolt kondenzátorok

•
$$C = \frac{\left(\varepsilon_1 \frac{x}{l} + \varepsilon_2 \frac{l - x}{l}\right)A}{d}$$

Dielektrikum változásán alapuló érzékelés

•
$$C_1 = \frac{\left(\varepsilon_1 \frac{x}{l} + \varepsilon_2 \frac{l-x}{l}\right)A}{d}$$

•
$$C_2 = \frac{\left(\varepsilon_1 \frac{l-x}{l} + \varepsilon_2 \frac{x}{l}\right)A}{d}$$

• Ha $\varepsilon_1 \approx \varepsilon_0$:

•
$$C_1 = \varepsilon_0 (\frac{x}{l} + \varepsilon_r \frac{l-x}{l}) \frac{A}{d}$$

•
$$C_2 = \varepsilon_0 \left(\frac{l-x}{l} + \varepsilon_r \frac{x}{l}\right) \frac{A}{d}$$

Kapacitív érzékelők árnyékolása

csökkenti

Kapacitív érzékelők

- + Teljesen kontaktus nélküli érzékelés
- + Környezeti zavarokra és vibrációra érzéketlen
- + 0.1% alatti hiba
- + Akár szubmikronos pontosság

- Zavarérzékenység
- Kis átfogás (0-10mm)
- Magas ár

Kódadók

(Encoder)

Kódadók típusai

- Transzlációs kódadó (linear encoder)
 - Mozgás egy egyenes mentén
 - A mozgás jól meghatározott véghelyzetekkel rendelkezik
 - A végállásokban az abszolút pozíció egyszerűen érzékelhető (pl. kapcsolókkal)
- Elfordulás-adó (rotary encoder)
 - Szöghelyzetet (elfordulást) mér
 - Abszolút pozícióinformáció csak 360°-os tartományon (egy körülfordulás) belül határozható meg egyértelműen
 - Egy körülforduláson belül "kiterítve" megfelel egy transzlációs kódadónak

Kódadók típusai

- Abszolút adó
 - Magát az abszolút helyzetet méri
- Inkrementális adó
 - Elmozdulást mér, ezeket összegezve kapható meg a helyzet
 - Relatív pozíciót mér
 - Csak a bekapcsolás (vagy nullázás) óta történt elmozdulás ismert

Kódadók működési elve

- Jól elkülöníthető sávokkal ellátott tárcsa (rotációs kódadó) vagy léc (transzlációs kódadó)
- Elkülöníthető sávok kialakítása
 - Mágneses / nem mágneses
 - Átlátszó / átlátszatlan
 - Fehér vagy tükröző / fekete
- Sávokat figyelő szenzor
 - Mágneses (Hall)
 - Fénykapu
 - Visszavert fény érzékelése

Inkrementális adó

- Az érzékelő kimenete a váltakozó (mágneses / nem mágneses, világos / sötét stb.) sávok következtében komparálás után egy négyszögjel
- A négyszögjel felfutó éleit számolva az elfordulás meghatározható
- Ha a tárcsán n sávpárt helyezünk el, akkor egy felfutó élhez $360^{\circ}/n$ elfordulás tartozik
- Ha a lefutó éleket is számláljuk, akkor az azonos mechanikai kialakítású szenzor felbontása $360^{\circ}/2n$ kétszeres felbontás
- Probléma: a forgásirány nem meghatározható

Kvadratúra enkóder

- Helyezzünk el egy második sávsorozatot, az elsőhöz képes negyed fázis (tárcsa esetén $360/4n^{\circ}$ -os) eltolással!
- A két érzékelő (A és B) legyen egy vonalban (sugárirányban)
- Az érzékelők fel- és lefutó éleit mindkét sávsorozaton számlálva négyszeres felbontás érhető el
- A jelek fázisa alapján a mozgásirány meghatározható

Mozgásirány meghatározása

- Óramutató járásával ellentétes forgás:
 - B felfutó éle A pozitív szintje alatt
 - A felfutó éle B negatív szintje alatt

Mozgásirány meghatározása

- Óramutató járásával ellentétes forgás:
 - B felfutó éle A negatív szintje alatt
 - A felfutó éle B pozitív szintje alatt

Rotációs kódadó indexjele

- A kódtárcsa kiegészítése egy plusz sávval: indexjel (index channel, Z channel)
- Egyetlen 1 értékű sáv a kerület mentén
- Az indeximpulzus (nullimpulzus) egy fordulaton belül abszolút helyzetmeghatározást tesz lehetővé

Abszolút kódadó

- Egy tárcsára vagy lécre kettőnél több sávsorozat is elhelyezhető
- A sávok együttesen egy bináris kódot határoznak meg
- A bináris kód abszolút pozíciót ad meg
- Minél több csatorna, annál jobb felbontás (pl. 8 csatorna: 1/256 felbontás)

Abszolút kódadó

- Probléma: tranziensek
- Ha több csatornán nem egyszerre történik meg a jelváltás, akkor rövid időre hamis pozícióinformációt kapunk
- Megoldás: mindig csak egy csatorna jele váltson (Gray-kód)

Decimális	Bináris	Gray
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Gray kód

Gray-bináris konverzió

- Szokásos még: look-up-table
- Nagy bitszám esetén gyorsabb lehet

Kódadók

- + Teljesen kontaktus nélküli érzékelés
- + Elektromágneses zavarokra érzéketlen
- + Nagy pontosság
- + Közvetlen digitális kimenet

- Abszolút adónál korlátozott felbontás
- Relatív adónál nem áll rendelkezésre abszolút információ
- Vibrációra,
 mechanikai
 behatásokra érzékeny

Közelítésérzékelők

- Nem egy adott tárgy pontos helyzetéről adnak információt, hanem arról, hogy egy helyen jelen van-e egy tárgy
- Elsősorban gyártásautomatizálásban használt érzékelők

Végálláskapcsolók

(Limit switch)

- A közelítő tárgy mechanikus kapcsolót aktivál
- Többféle kivitel
- Nyitó, záró és nyitó-záró kapcsolók

Karos - görgős végálláskapcsoló

(Side rotary)

Ütközős (nyomógombos) végálláskapcsolók (Side / Top push)

Rugószáras végálláskapcsoló

(Wobble stick / cat whisker)

Tetszőleges irányba billentve kapcsol

Végálláskapcsolók

- + Egyszerű felépítés
- + Alacsony ár
- + Környezeti paraméterekre érzéketlen
- + Zajokra érzéketlen
- + Tetszőleges jelet képes kapcsolni (AC, DC, nagyfeszültség)

- Mechanikai kontaktust igényel
- Az érzékelt tárgy mozgására jelentős hatással lehet
- Rövid élettartam
- Karbantartásigényes

Fotoelektromos érzékelők

(Photoelectric proximity switch)

Fotoelektromos érzékelők

- Fényforrás: LED
 - Látható (ált. vörös) vagy infravörös fény
 - Lézer
 - Modulálás (PWM) a melegedés elkerülésére
- Fényérzékelő
 - Fotodióda vagy fototranzisztor
 - Spektrális érzékenység
- Optika
 - Fényforrás és fényérzékelő oldalán is

Érzékenység

- Az érzékenység nagyban függ a fényforrás vetítési képétől
- A vetítési kép optika használatával befolyásolható

Távolság [m (hüvelyk)]

Érzékenység

Működési küszöb (operating margin):

érzékelt fénymennyiség

kapcsoláshoz szükséges minimális fénymennyiség

Működési távolság [mm (hüvelyk)]

Közvetlen fényérzékelők

 Fényforrás (S) és fényérzékelő (R) külön egységben

 Nagy távolságú érzékelést tesz lehetővé

 Rálátás biztosítása problémás lehet

Reflektív érzékelők

- Fényforrás és fényérzékelő egy házban
- Fényvisszaverő a szenzorral szemben ($\pm 15^{\circ}$)
- Olcsóbb, egyszerűbb vezetékezés
- Csillogó tárgyak becsaphatják

Polarizált reflektív érzékelők

- Polárszűrő a fényforrás és az érzékelő előtt
- Speciális prizma: megváltoztatja a fénysugár polaritását
- Csillogó tárgyat is érzékel: arról azonos polaritású fény verődik vissza, amit a szenzor nem érzékel

Fotoelektromos érzékelők

- + Egyszerű felépítés
- + Kontaktusmentes
- + Alacsony ár
- + Zajokra érzéketlen
- + Közvetlen digitális kimenet
- + Nagy érzékelési tartomány

- Környezeti hatásokra érzékeny
- Fényviszonyokra érzékeny
- Karbantartásigényes (tisztítás)

Induktív közelítésérzékelők

(Inductive proximity switch)

Örvényáram

- Akkor keletkezik, amikor egy vezető és a mágneses tér között relatív elmozdulás lép fel
 - A vezető mozog statikus mágneses térben
 - A mágneses tér változik
- A Lorentz-erő hatására áram indukálódik
- A Lenz-törvény értelmében ez úgy örvénylik, hogy az őt kiváltó térrel ellentétes irányú legyen

Rezisztív veszteségként jelentkezik

Örvényáram

- Nagysága függ
 - A mágneses térerősség nagyságától
 - A frekvenciától
 - A vezető fajlagos ellenállásától
 - A hőmérséklettől
- Visszahat az őt gerjesztő mágneses térre: veszteséget okoz

Induktív közelítésérzékelők felépítése

- A mágneses teret egy tekercs hozza létre
- Árnyékolt és árnyékolatlan kivitel

Induktív közelítésérzékelők felépítése

- A tekercs táplálásáért az oszcillátor felelős
- Az oszcillátor szinuszos kimenetét egy LC-kör részeként a tekercs alakítja ki

Az érzékelés elve

- A tekercs terébe egy vezető kerül
- A vezetőben örvényáram indukálódik
- Az örvényáram az oszcillátor LC-körében rezisztív terhelésként jelentkezik
- Az oszcillátor csillapítása megnő
- Az oszcillátor kimenetének frekvenciája és amplitúdója csökken, majd az oszcillátor leáll

Induktív közelítésérzékelők felépítése

- A demodulátor feladata az oszcillátor AC kimenetéből DC feszültség előállítása
- Felépítés
 - Egyenirányító
 - Aluláteresztő szűrő

Induktív közelítésérzékelők felépítése

- Trigger: a DC feszültség szintjének figyelése
- Hiszterézis
- Schmitt-trigger

Induktív közelítésérzékelők felépítése

- Tápfeszültség biztosítása a többi modul számára
- Trigger kimenet jelillesztése
- Ritka: analóg kimenet

Induktív közelítésérzékelők érzékenysége

- Függ
 - Gerjesztési frekvencia (2kHz 10MHz)
 - Árnyékolás
 - Érzékelt tárgy anyaga
- Adatlapon: általában acél érzékelési távolsága
- Egyéb anyagokra: korrekciós tényező
 - Rozsdamentes acél: 0.9
 - Bronz: 0.5
 - Réz: 0.4
- Ökölszabály: az adatlapon megadott érték felével dolgozzunk
- Érzékelési távolság: 1-100 mm (ökölszabály: kb. a szenzor átmérője)

Induktív közelítésérzékelők

- + Kontaktusmentes
- + Hosszú élettartam
- + Környezeti paraméterekre érzéketlen
- + Közepes érzékelési távolság
- + Alacsony ár

- Csak vezető anyagokat érzékel
- Fémes környezetben a zavarokra ügyelni kell

Kapacitív közelítésérzékelők

(Capacitive proximity switch)

Kapacitív közelítésérzékelők

- Az érzékelés elve: kapacitásváltozás
- Fegyverzetek:
 - Szenzor
 - Érzékelendő tárgy
- Az érzékelés függ
 - A tárgy távolságától
 - A tárgy nagyságától
 - A tárgy anyagától
 - A környezeti hatásoktól

- A kapacitás egyik fegyverzete a szenzoron
- Árnyékolt és árnyékolatlan kialakítás

 Az oszcillátor szinuszos kimenetét egy RC-kör részeként a kondenzátor alakítja ki

Az érzékelés elve

- Amíg nincs tárgy a szenzor közelében, addig a kondenzátor kapacitása nulla, az oszcillátor nem működik
- A tárgyat közelítve a kapacitás egyre nő
- A növekvő kapacitás növeli az oszcillátor frekvenciáját és amplitúdóját

- A detektor feladata az oszcillátor AC kimenetéből DC feszültség előállítása
- Felépítés
 - Egyenirányító + aluláteresztő szűrő
 - Frekvencia feszültség átalakító
 - Frekvencia kimenet

- Trigger: a DC feszültség szintjének figyelése vagy frekvencia-komparálás
- Hiszterézis
- A trigger szint egyes típusoknál állítható (anyaghoz igazítás)

- Tápfeszültség biztosítása a többi modul számára
- Trigger kimenet jelillesztése
- Ritka: analóg kimenet

Kapacitív közelítésérzékelők

- + Kontaktusmentes
- + Vezető és nem vezető, mágneses és nem mágneses tárgyakat is érzékel
- + Hosszú élettartam
- + Megfelelő beállítás esetén képes "átlátni" egyes anyagokon (ld. tejesdoboz)

- Kis érzékelési távolság (2-10mm)
- Környezeti hatásokra (pl. páratartalom) különösen érzékeny
- Költséges

Szintérzékelők

(level sensors)

Szintérzékelés

- Érzékelendő közegek
 - Tiszta folyadék
 - Szennyezett folyadék
 - Iszap
 - Szemcsés anyag
 - Határfelületek
- Extrém tulajdonságok
 - Magas hőmérséklet
 - Korrozív anyag
 - Robbanásveszély
 - Szilárd szennyeződések

Szintérzékelés

- Feladat
 - Szintjelzés
 - Szintszabályozás (állásos/analóg)
 - Készletezés, receptúra
- Érzékelés típusa
 - Logikai
 - Diszkrét
 - Folytonos

Szintkapcsolók

(Level switch)

- Logikai kimenetű érzékelők
- Egy adott szint elérésekor kapcsolnak/engednek el
- Egyszerűbb szintszabályozási feladatokra
- Vészjelzésre

Mechanikus szintkapcsolók

(Float switch)

- Hermetikusan zárt műanyag burkolat
- Orientációtól függően záró/nyitó mechanikus kapcsoló
- Nagy teljesítmény kapcsolására is képes

Mechanikus szintkapcsolók

Úszós szintkapcsolók

(Displacer switch)

- Működés alapja: reed kapcsoló
 - Inert gázzal töltött kapszulában átlapolódó ferromágneses kontaktusok
 - Mágneses tér hatására zár
 - Csak korlátozott teljesítményt képes kapcsolni
- Villamos rész hermetikusan zárt
- A reed kapcsolót a mágneses úszó működteti

Úszós szintkapcsolók

Úszós szintkapcsolók

Felszerelési irány szerint

- Horizontális
- Vertikális

Felszerelés helye alapján

- Oldalsó
- Felső
- Alsó

Rögzítés helye alapján

- Belső
- Külső
- Lebegő

Úszós és mechanikus szintkapcsolók

- + Rendkívül egyszerű felépítés
- + Megbízható érzékelés
- + Nagy nyomáson is üzembiztos
- + Alacsony ár

- Közegbe merített érzékelő
- Egyes kialakításoknál a jelvezeték is a közegbe merül
- Darabos szennyeződésekre érzékeny
- Sűrű (viszkózus)
 folyadékok esetén
 megszorulhat
- Csak folyadékszint érzékelésére használható

Rezgővillás szintkapcsoló

(Vibrating fork level switch)

- Levegőben sajátfrekvenciáján rezgetett villa
- A közeg megváltoztatja a rezgés frekvenciáját, amit a detektor érzékel
- A rezgés frekvenciája a sűrűségtől függ (minél sűrűbb az anyag, annál kisebb)
- Rezgés következtében lerakódásra kevésbé érzékeny

Rezgővillás szintkapcsoló

- + Mozgó alkatrész nélküli felépítés
- + Nagy nyomáson és hőmérsékleten is üzemeltethető
- Áramlásra,
 buborékképződésre,
 közeg paramétereinek
 változására érzéketlen

- Úszós kapcsolókhoz képest magasabb ár
- Közegbe merített érzékelő
- Sűrű (viszkózus) folyadékok lerakódást okozhatnak a villán, meghamisítva az érzékelést
- Csak folyadékszint érzékelésére használható

Forgólapátos szintérzékelő

(Rotary paddle level switch)

- Szemcsés anyagok szintérzékelésére
- Alacsony nyomatékú és sebességű motor forgólapátot forgat
- Ha az anyag szintje eléri az érzékelőt, a motor lelassul illetve megáll
- Ezt figyelve a szint elérése jelezhető

Diszkrét szintérzékelő

- Szintkapcsoló-sor (általában úszós)
- Ellenállás-létra fokait kapcsolja, így diszkrét feszültségértékeket szolgáltat az egyes szinttartományokhoz
- Rendkívül korlátozott felbontás

Úszós szintérzékelők

- Feladat: lebegő úszó helyzetének mérése
- A villamos részeket el kell szigetelni a közegtől
- Kulcs: megfelelő jelátalakító
- Probléma: kicsatolás, jelátalakító közegbe merülő része jelentős zavarást jelenthet
- Előny: megfelelő úszó használatával határfelület szintje is mérhető

Erőmérésen alapuló úszós szintérzékelő

(Displacer level transmitter)

• A testre ható felhajtóerő:

$$F_f = \rho g V' = \gamma V'$$

- ρ : a közeg sűrűsége
- g: nehézségi gyorsulás
- V': a közegbe merülő térfogat
- γ: közeg fajsúlya
- Mért erő:

$$F = mg - F_f = mg - \rho g V'$$

• Szint:

$$V' = Ah \Rightarrow h = mg - \frac{F}{\rho A}$$

Erőmérésen alapuló úszós szintérzékelő

- + Nagy nyomáson és hőmérsékleten is üzemeltethető
- + Emulzív rétegek jelenléte esetén is alkalmazható

- Közegbe merített érzékelő
- Csak állandó és ismert sűrűség esetén alkalmazható
- Kalibrálást igényel
- Karbantartásigényes
- 5m feletti szintváltozás esetén nehézkesen alkalmazható
- Csak folyadékszint érzékelésére használható
- Szennyeződésre érzékeny

Magnetostrikciós szintérzékelő

(magnetostrictive level sensor)

- Magnetostrikciós hullámvezető a közegbe merítve, villamosan szigetelve
- Az úszóban merőlegesen elhelyezett állandó mágnes
- A mágnes pozíciója pontosan érzékelhető

Magnetostrikciós érzékelő felépítése

Magnetostrikciós szintérzékelő

- + Kimagasló pontosság (akár 1 mm)
- + Közeg sűrűségétől független mérés
- + Nagy átfogás (akár 20m)

- Közegbe merített érzékelő
- Hosszú hullámvezető turbulenciára érzékeny
- Csak folyadékszint érzékelésére használható
- Magas hőmérsékleten és nyomáson nem alkalmazható
- Szennyeződésre érzékeny (fémes szennyeződést összegyűjti)

Hidrosztatikai nyomás

• Hidrosztatikai nyomás: $P = \rho g h = \gamma h$

 ρ : közeg sűrűsége

h: folyadékoszlop magassága

g: nehézségi gyorsulás

γ: közeg fajsúlya

- Relatív (légköri nyomáshoz viszonyított) nyomásérték
- Csak nyitott tartályra igaz

Hidrosztatikai nyomás zárt tartályban

Hidrosztatikai nyomás:

$$P = \rho g h + P_v = \gamma h + P_v$$

 ρ : közeg sűrűsége

h: folyadékoszlop magassága

g: nehézségi gyorsulás

 P_{v} : páratér nyomása

 γ : közeg fajsúlya

Nyomáskülönbségen alapuló szintérzékelés

(Differential pressure, dP)

$$P_d = P - P_v = (\rho g h + P_v) - P_v = \rho g h = \gamma h$$
$$h = \frac{P_d}{\rho g} = \frac{P_d}{\gamma}$$

Ismeretlen sűrűségű közeg mérése

- $P_d = (\rho gh + P_v) P_v = \rho gh = \gamma h$
- $P_{d0} = (\rho gh + P_v) (\rho g(h h_0) + P_v) = \rho gh_0 = \gamma h_0$
- h_0 pontosan ismert

$$\bullet \ \frac{P_d}{P_{d0}} = \frac{h}{h_0}$$

Csak h_0 -t meghaladó szintek mérésére alkalmazható!

Nyomáskülönbségen alapuló szintérzékelés problémái

- Nagy tartályok esetén hosszú kapilláris kivezetésekre van szükség
- A kapilláris szennyeződés hatására eltömődhet
- Jelentősen eltérő közeg- és környezeti hőmérséklet esetén fagyásveszély a kapillárisban

Digitális korrekció

$$\rho = \frac{1}{gh_0}$$

$$h = \frac{P - P_v}{\rho g}$$

Határfelület szintjének mérése

$$P_d = \rho_1 h_1 g + \rho_2 h_2 g = \rho_1 h_1 g + \rho_2 (h_0 - h_1) g$$

= $h_1 (\rho_1 - \rho_2) g + \rho_2 h_0 g = h_1 (\gamma_1 - \gamma_2) + h_0 \gamma_2$

Ha $\rho_1 g$ és $\rho_2 g$ (γ_1 és γ_2) ismert (differenciális nyomásméréssel mérhető!), akkor

$$h_{1} = \frac{P_{d} - h_{0}\rho_{2}g}{\rho_{1}g - \rho_{2}g}$$

$$= \frac{P_{d} - h_{0}\gamma_{2}}{\gamma_{1} - \gamma_{2}}$$

$$h_{2} = h_{0} - h_{1}$$

Nyomáskülönbségen alapuló szintérzékelés

- + Tág hőmérséklet- és nyomástartományban üzemeltethető
- + Nagy átfogás
- + Nincs közegbe merülő alkatrész
- + Tartály kialakításától függetlenül használható
- + Tetszőleges folyadékra alkalmazható (iszapra is)
- Határfelületek érzékelésére alkalmas
- + Habképződésre és turbulenciára érzéketlen

- Egyszerű kialakításokban a sűrűségváltozás problémát okozhat
- Szilárduló közegek mérése nem lehetséges
- Kapilláris kivezetésekben a hőtágulás mérési hibát okozhat
- Csak folyadékszint érzékelésére használható

Kapacitív szintérzékelők

(Capacitance level sensors)

•
$$C = \frac{\left(\varepsilon_1 \frac{h}{H} + \varepsilon_2 \frac{H - h}{H}\right)A}{d}$$

- ε_1 : közeg dielektromos állandója
- ε_2 : levegő vagy inert gáz dielektromos állandója
- *h*: folyadékszint
- H: tartály teljes magassága
- A: elektródák felülete
- d: elektródák távolsága

Kapacitív szintérzékelés

Kapacitív szintérzékelés

Nem vezető folyadék

- Kalibrálás:
 - $C_{empty} = C|_{h=0} = H\varepsilon_{air}\alpha$
 - $C_{full} = C|_{h=H} = H\varepsilon_{liquid}\alpha$
- Mérés:

•
$$C = \alpha \left(h \varepsilon_{liquid} + (H - h) \varepsilon_{air} \right) = \frac{h}{H} C_{full} + C_{empty} - \frac{h}{H} C_{empty} = C_{empty} + \frac{h}{H} (C_{full} - C_{empty})$$

•
$$h = H \frac{C - C_{empty}}{C_{full} - C_{empty}}$$

Határfelület érzékelése

Nem vezető folyadékok

Kalibrálás:

- $C_1 = C|_{h_1=H} = H\varepsilon_1\alpha$
- $C_2 = C|_{h_2=H} = H\varepsilon_2\alpha$

Mérés:

•
$$C = \alpha(h_1\varepsilon_1 + (H - h_1)\varepsilon_2) = \frac{h_1}{H}C_1 + C_2 - \frac{h_1}{H}C_1 = C_1 + \frac{h_1}{H}(C_2 - C_1)$$

$$\bullet \quad h_1 = H \frac{c - c_1}{c_2 - c_1}$$

Kapacitív szintérzékelés

- + Tág hőmérséklet- és nyomástartományban üzemeltethető
- + Nagy átfogás
- + Mozgó alkatrész nélküli kialakítás
- + Tetszőleges folyadékra és szemcsés anyagra alkalmazható
- + Határfelületek érzékelésére alkalmas
- + Alacsony ár

- Helyszíni kalibrációt (és gyakori újrakalibrációt) igényel
- Közeg dielektromos állandójának változása mérési hibát okoz
- Elektródákon lerakódó közeg vagy szennyeződés mérési hibát okoz

Ultrahangos szintérzékelők

(Ultasonic level sensors)

- Ultrahang-forrás a tartály tetején
- Az ultrahang-hullámok a közegről visszaverődnek
- Mérjük a hullám kibocsátása és a visszavert hullám érkezése között eltelt időt

Ultrahangos szintérzékelők

- $\tau = \frac{2d}{v}$, ahol v a hangsebesség
- $d = \frac{\tau v}{2}$
- h = H d
- H beépítéskor a szenzorral mérhető

Ultrahangos szintérzékelők problémái

Visszaverődés

- Jelentős hab- és páraképződés mérési hibát okozhat
- Jelentős hullámzás mérési hibát okozhat
- A tartályban lévő akadályokról (keverőlapát, merevítések, csővezeték) visszaverődő hullámok mérési hibát okozhatnak – intelligens szenzorok kalibráció során felveszik a tartály karakterisztikáját és kiszűrik ezeket a méréseket
- A mérési tartományt a sugárzási szög behatárolja

Hangterjedés

- Vákuumos környezetben nem használható
- A hangsebesség függ a hőmérséklettől digitális hőmérsékletkompenzáció

Ultrahangos szintérzékelés

- + Kontaktusmentes, mozgó alkatrész nélküli érzékelés
- + Nagy átfogás
- + Közeg paramétereinek változására érzéketlen
- + Tetszőleges folyadékra és szemcsés anyagra alkalmazható
- + Egyszerű beüzemelés

- Magas ár
- Szűk hőmérséklet- és nyomástartományban használható
- Közeg felszínének minősége befolyásolja a mérést
- Komplex elektronikát igényel

Vezetett radaros (mikrohullámú) szintérzékelők

(Guided wave radar sensors, GWR)

- A tartály tetején elhelyezett forrástól a radarhullámimpulzusok a hullámvezetőben haladnak a tartály feneke felé
- A vezetőnek köszönhetően nincs szóródás
- A hullámok egy része a folyadék határfelületéről visszaverődik
- Szintmérés a visszaverődés ideje alapján

Határfelületek mérése

- A radarhullámok egy része a felső közeghatárról visszaverődik
- A tovább haladó hullámok egy része a határfelületről verődik vissza
- A visszaverő hullámok idejének különbségéből a határfelület helyzete számítható

Sugárzott radaros (mikrohullámú) szintérzékelők

(Non-contacting radar level sensors)

- A tartály tetejéről indított radarhullám szabadon terjed
- Impulzus üzemű radar
 - Rövid hullámimpulzusok kiadása
 - Visszaverődés idejének mérése
- Frekvenciamodulált radar (FMCW)
 - Folyamatos, változó frekvenciájú hullámkibocsátás
 - Visszavert hullám keverése az éppen kibocsátottal, visszaverődés ideje a frekvenciakülönbséggel arányos

Radaros szintérzékelés

- + Részben/teljesen
 kontaktusmentes, mozgó alkatrész nélküli érzékelés
- + Nagy átfogás
- + Közeg paramétereinek változására érzéketlen
- Tetszőleges folyadékra és szemcsés anyagra alkalmazható
- + Egyszerű beüzemelés

- Magas ár
- Alacsony dielektromos állandójú folyadékok elnyelik a radarhullámokat
- Hullámvezetőben lerakódás léphet fel
- Hullámvezető elhelyezése nehézkes lehet
- Sugárzott radaros
 megoldásnál az akadályok és
 a hullámzás meghamisíthatják
 a mérést

Egyéb megoldások

- Súlymérésen alapuló szintérzékelés
- Nukleáris szintérzékelés
- Vezetőképességen alapuló szintérzékelés
- Lézeres szintérzékelés