

vGraph: A Generative Model for Joint Community Detection and Node **Representation Learning**

Fan-Yun Sun, Meng Qu, Jordan Hoffman, Chin-Wei Huang, Jian Tang

Mila, CIFAR sunfanyun@gmail.com

BACKGROUND

Graphs are ubiquitous with a variety of applications.

COMMUNITY DETECTION

- ▶ Consider a graph G = (V, E):
 - $V = \{v_1, \dots, v_V\}$ is a set of vertices.
 - $ightharpoonup E = \{e_{ii}\}$ is the set of edges.
- ► Learn community assignment of all nodes. Community assignment of node v_i can be denoted as $F(v_i) \subseteq \{1, ..., K\}$.

Node Representation Learning

- **Consider a graph** G = (V, E):
 - $V = \{v_1, \dots, v_V\}$ is a set of vertices.
 - $ightharpoonup E = \{e_{ii}\}$ is the set of edges.
- ▶ Learn a node embedding $\phi_i \in \mathbb{R}^d$ for each $v_i \in V$ where d is predetermined dimension.

https://ai.googleblog.com/2019/06/innovations-in-graph-representation.html

vGraph: a probabilistic generative model.

- ► Towards Combining Community Detection and Node **Representation Learning:**
 - ► Each node can be represented as a mixture of communities.
 - ► Each community is defined as a multinomial distribution over nodes.

► Generative Process:

- For node w, we first draw a community assignment $z \sim p(z|w)$, representing the social context of w during the generation process.
- ightharpoonup Then, the linked neighbor c is generated based on the assignment zthrough $c \sim p(c|z)$.
- ▶ This generation process can be formulated as $p(c|w) = \sum_{z} p(c|z)p(z|w)$. For hierarchical vGraph, $p(c|w) = \sum_{\vec{z}} p(c|\vec{z})p(\vec{z}|w)$.

► Variational Inference:

- ▶ Objective: maximize the log-likelihood of observed edges.
- ▶ Define approximate posterior: q(z|c, w).
- ▶ Optimize the evidence lower bound (ÉLBO):
 - ψ , φ : two sets of node embeddings.
 - φ: community embeddings.

$$\mathcal{L} = E_{z \sim q(z|c,w)} [\log p_{\psi,\varphi}(c|z)] - \text{KL}(q(z|c,w)) p_{\phi,\psi}(z|w)$$

 $p_{\phi,\psi}(z=j|w)$ | **Softmax** of node embedding over community embeddings

 $p_{\psi,\varphi}(c|z=j)$

Softmax of community embeddings over node embeddings.

 $q_{\phi,\psi}(z=j|w,c)$ **Softmax** of $\phi_w \odot \phi$ over community embeddings.

► Infer overlapping communities:

► Community-smoothness Regularized Optimization:

► Two nodes are similar if they are connected and share similar neighbors.

$$\mathcal{L}_{reg} = \lambda \sum_{(w,c) \in \mathcal{E}} \alpha_{w,c} \cdot d(p(z|c), p(z|w)). \quad \alpha_{w,c} = \frac{|N(w) \cap N(c)|}{|N(w) \cup N(c)|}$$

EXPERIMENT

Overlapping Community Detection:

□ Evaluation Metrics: F1-Score, Jaccard Similarity.

	F1-score								Jaccard						
	Dataset	Bigclam	CESNA	Circles	SVI	vGraph	vGraph+	Bigclam	CESNA	Circles	SVI	vGraph	vGraph+		
	facebook0	0.2948	0.2806	0.2860	0.2810	0.2440	0.2606	0.1846	0.1725	0.1862	0.1760	0.1458	0.1594		
_ f	facebook107	0.3928	0.3733	0.2467	0.2689	0.2817	0.3178	0.2752	0.2695	0.1547	0.1719	0.1827	0.2170		
fa	acebook1684	0.5041	0.5121	0.2894	0.3591	0.4232	0.4379	0.3801	0.3871	0.1871	0.2467	0.2917	0.3272		
fa	acebook1912	0.3493	0.3474	0.2617	0.2804	0.2579	0.3750	0.2412	0.2394	0.1672	0.2010	0.1855	0.2796		
fa	acebook3437	0.1986	0.2009	0.1009	0.1544	0.2087	0.2267	0.1148	0.1165	0.0545	0.0902	0.1201	0.1328		
_ f	facebook348	0.4964	0.5375	0.5175	0.4607	0.5539	0.5314	0.3586	0.4001	0.3927	0.3360	0.4099	0.4050		
fa	acebook3980	0.3274	0.3574	0.3203	NA	0.4450	0.4150	0.2426	0.2645	0.2097	NA	0.3376	0.2933		
f	facebook414	0.5886	0.6007	0.4843	0.3893	0.6471	0.6693	0.4713	0.4732	0.3418	0.2931	0.5184	0.5587		
_ f	facebook686	0.3825	0.3900	0.5036	0.4639	0.4775	0.5379	0.2504	0.2534	0.3615	0.3394	0.3272	0.3856		
f	facebook698	0.5423	0.5865	0.3515	0.4031	0.5396	0.5950	0.4192	0.4588	0.2255	0.3002	0.4356	0.4771		
	Youtube	0.4370	0.3840	0.3600	0.4140	0.5070	0.5220	0.2929	0.2416	0.2207	0.2867	0.3434	0.3480		
	Amazon	0.4640	0.4680	0.5330	0.4730	0.5330	0.5320	0.3505	0.3502	0.3671	0.3643	0.3689	0.3693		
	Dblp	0.2360	0.3590	NA	NA	0.3930	0.3990	0.1384	0.2226	NA	NA	0.2501	0.2505		
	Coauthor-CS	0.3830	0.4200	NA	0.4070	0.4980	0.5020	0.2409	0.2682	NA	0.2972	0.3517	0.3432		
_															

Non-overlapping Community Detection:

□ Evaluation Metrics: NMI, Modularity.

]	NMI		Modularity							
Dataset	MF	deepwalk	LINE	node2vec	ComE	vGraph	MF	deepwalk	LINE	node2vec	ComE	vGraph
cornell	0.0632	0.0789	0.0697	0.0712	0.0732	0.0803	0.4220	0.4055	0.2372	0.4573	0.5748	0.5792
texas	0.0562	0.0684	0.1289	0.0655	0.0772	0.0809	0.2835	0.3443	0.1921	0.3926	0.4856	0.4636
washington	0.0599	0.0752	0.0910	0.0538	0.0504	0.0649	0.3679	0.1841	0.1655	0.4311	0.4862	0.5169
wisconsin	0.0530	0.0759	0.0680	0.0749	0.0689	0.0852	0.3892	0.3384	0.1651	0.5338	0.5500	0.5706
cora	0.2673	0.3387	0.2202	0.3157	0.3660	0.3445	0.6711	0.6398	0.4832	0.5392	0.7010	0.7358
citeseer	0.0552	0.1190	0.0340	0.1592	0.2499	0.1030	0.6963	0.6819	0.4014	0.4657	0.7324	0.7711

► Node Classification:

□ Evaluation Metrics: Micro-F1, Macro-F1.

Macro-F1								Micro-F1						
Datasets	MF	DeepWalk	LINE	Node2Vec	ComE	vGraph	MF	DeepWalk	LINE	Node2Vec	ComE	vGraph		
Cornell	13.05	22.69	21.78	20.70	19.86	29.76	15.25	33.05	23.73	24.58	25.42	37.29		
Texas	8.74	21.32	16.33	14.95	15.46	26.00	14.03	40.35	27.19	25.44	33.33	47.37		
Washington	15.88	18.45	13.99	21.23	15.80	30.36	15.94	34.06	25.36	28.99	33.33	34.78		
Wisconsin	14.77	23.44	19.06	18.47	14.63	29.91	18.75	38.75	28.12	25.00	32.50	35.00		
Cora	11.29	13.21	11.86	10.52	12.88	16.23	12.79	22.32	14.59	27.74	28.04	24.35		
Citeseer	14.59	16.17	15.99	16.68	12.88	17.88	15.79	19.01	16.80	20.82	19.42	20.42		

▶ Visualization:

Figure 1: Result on the facebook107 dataset and Dblp-full dataset using vGraph. The coordinates of the nodes are determined by t-SNE of the node embeddings.

Figure 2: We visualize the result on a subset of Dblp dataset using two-level hierarchical vGraph. In the leftmost panel we visualize the first-tier communities. In the middle panel, we visualize the second-tier communities. In the rightmost panel we show the corresponding hierarchical tree structure.