Instability Problem

```
float x, z;
x = input();
                                       x: 1.84089642
 z = x^*x^*x^*x-4^*x^*x
+6*x*x-4*x+1;
                               z: 0.49 z = (x-1)^4 0...01129
4 if (z > 0.5)
                                                       hit
     printf ("hit");
   else
                                      miss
     printf ("miss");
                                                      ideal
                                     actual
                                   execution
                                                    execution
```

Unstable Execution

actual execution (w/ limited precision)

ideal execution
(w/ infinite precision)

discrete differences

- Control flow differences (predicate outcome)
 - if (z > 0.5) ... else ...
- Array index differences (type cast)
 - k = (int) f(x); z = A[k];

Possible Solutions:

```
doabk, z; z;
                               double x, z;
  x=input();
                               x=input();
                                 Z=(X-1)*(X-1)*
(X-1)*(X-1);
 Z=X^*X^*X^*X-4^*X^*X^*X+
     6*x*x-4*x+1;
4 if (z>0.5)
                               4 if (z>0.5)
  printf("hit");
                                 printf("hit");
  else
                                  else
   printf("miss");
                               7 printf("miss");
```

x: 1.840896415...

actual execution

differs

ideal execution

float x, z; (a)
 x = input();
 z = x*x*x*x 4*x*x*x +6*x*x 4*x+1;
 if (z > 0.5)
 printf ("hit");
 else
 printf ("miss");

double x, z; (b)
x = input();
z = x*x*x*x4*x*x*x + 6*x*x4*x+1;
if (z > 0.5)
printf ("hit");
else
printf ("miss");

100,000 billion samples

Observations

The instability problem cannot be completely evaded.

- A FP program only suffers from the instability problem for a very small input range.
- For a particular input, we can evade the problem by using high precision.

Our idea

- Using lightweight runtime predictor to predict if an execution is stable. If not, we switch to the high precision on demand.
 - This is different from handling traditional functional bugs.

Our approach

- Execute the program in normal precision;
- Monitor the growth of the relative error at runtime.

$$\hat{x} = x + \widehat{\Delta_x}$$
0.9997 = 0.999700009822 + (-0.000000009822)
ideal value actual value error

Def.1: The relative error of a variable x, denoted by Δ_x , is computed as $|\widehat{\Delta_x}/x|$.

$$\Delta_x$$
: relative error of x , i.e. $\left|\frac{\widehat{\Delta_x}}{x}\right|$

$$z_1 = x^*x^*x^*x - 4^*x^*x^*x;$$

•
$$Z_2 = Z_1 + 6 * X * X;$$

•
$$z_3 = z_2 - 4 x;$$

•
$$Z_4 = Z_3 + 1;$$

$$z_5 = z_4 - 0.5;$$

$$_{5}$$
 if $(z_{5} > 0)...$

 z_5 Δ_x is large z_1 Δ_x is small

Report unstable if it may lead to discrete differences.

Relative Error Inflation in Addition/Subtraction

 e_x : the exponent of x

The relative error may likely become 2^d times larger than the relative errors of the operands.

$$d = \max(e_x, e_y) - e_z$$

3
$$Z_1 = x^*x^*x^*x - 4^*x^*x^*x;$$

• $Z_2 = Z_1 + 6^*x^*x;$
• $Z_3 = Z_2 - 4^*x;$
• $Z_4 = Z_3 + 1;$
4 $Z_5 = Z_4 - 0.5;$ $Z_4 = 0.4999...,$ $Z_5 = 0.0000019...$
5 if $(Z_5 > 0)...$

Our approach is to detect and propagate the relative error inflation.

Propagation Rules

Case 1: Both of the operands are tagged red.

 e_x : the exponent of x

Propagation Rules (cont.)

Case 3: Only one of the operands is tagged red.

•
$$z = x + y$$
;

z if
$$(e_x - e_y > \tau_s)$$
;

z otherwise.

$$z_{6} = z_{5} - 90; z_{5} = 1E-10$$
4 if $(z_{6} > 0)...$

 $\tau_s = 4$

Effectiveness

approach	# of cases	%	detected range
	1E+14		[0.5900, 0.6000]
HPL	849	8.49E-10%	[0.596265750063108, 0.596265750064926]
ours (τ_C =36)	59457611	5.95E-5%	[0.5962657 20335802 , 0.5962657 79793411]
ours (τ_C =40)	2716295	2.72E-6%	[0.5962657 48204800 , 0.59626575 1922657]
ours (τ_C =44)	232165	2.32E-7%	[0.5962657 49946110 , 0.596265750 181511]
ours (τ_C =48)	12613	1.26E-8%	[0.5962657500 56901 , 0.59626575006 6600]
ours (τ_C =52)	296	2.96E-10%	[0.596265750063 257 , 0.59626575006 5373] †

187.facerec

