INTRO TO DATA SCIENCE MODEL EVALUATION

INTRO TO DATA SCIENCE, REGRESSION & REGULARIZATION

DATA SCIENCE IN THE NEWS

DATA SCIENCE IN THE NEWS

LAST TIME:

I. DATA FORMATS
II. APIS

EXERCISES:
III. EXTENDED HANDS-ON LAB

QUESTIONS?

WHAT WAS THE MOST INTERESTING THING YOU LEARNT?

WHAT WAS THE HARDEST TO GRASP?

I. REVIEW: EVALUATION SO FAR, CROSS VALIDATION II. ERROR RATES & CONFUSION MATRIX III. ROC CURVES IV. IMBALANCED CLASSES

REVIEW

Q: What steps does a classification problem require?

- 1) split dataset
- 2) train model
- 3) test model
- 4) make predictions

Q: What steps does a classification problem require?

- 1) split dataset
- 2) train model
- 3) test model
- 4) make predictions

1) training error

- 1) training error
- 2) generalization error

- 1) training error
- 2) generalization error
- *3) 00S error*

- 1) training error
- 2) generalization error
- *3) 00S error*

III. CROSS VALIDATION

1) Randomly split the dataset into n equal partitions.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.
- 3) Find generalization error.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.
- 3) Find generalization error.
- 4) Repeat steps 2-3 using a different partition as the test set at each iteration.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.
- 3) Find generalization error.
- 4) Repeat steps 2-3 using a different partition as the test set at each iteration.
- 5) Take the average generalization error as the estimate of OOS accuracy.

5-Fold Generalization Error = $(k_1 + k_2 + k_3 + k_4 + k_5) / 5$

1) More accurate estimate of OOS prediction error.

- 1) More accurate estimate of OOS prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.

- 1) More accurate estimate of OOS prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.
- 3) Presents tradeoff between efficiency and computational expense.
 - 10-fold CV is 10x more expensive than a single train/test split

- 1) More accurate estimate of OOS prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.
- 3) Presents tradeoff between efficiency and computational expense.
 - 10-fold CV is 10x more expensive than a single train/test split
- 4) Can be used for model selection.

A MOTIVATING EXAMPLE

Cancer Screen => classify cancer scans for doctor to review No Cancer Cancer

ISSUE I: Many more healthy brain scans

- Imbalance confuses classifiers => only perform well on dominant class
- Situation is very common in other fields (e.g. fraud detection)

ISSUE 2: Not all errors are equal...

Error 1

Classifier Label: Cancerous

Permissable, because a physician will review it

Error 2

Classifier Label: Non-Cancerous

Not permissable, because this data will be discarded

ERROR RATES

To deal with issue 2 we need a more sophisticated definition of error rates in a binary classification problem

True Positive: An Example that is **positive** and is classified as **positive**

Label: positive

To deal with issue 2 we need a more sophisticated definition of error rates in a binary classification problem

True Positive: An Example that is **positive** and is classified as **positive**

True Negative: An Example that is **negative** and is classified as **negative**

Label: positive

Label: negative

To deal with issue 2 we need a more sophisticated definition of error rates in a binary classification problem

True Positive: An Example that is **positive** and is classified as **positive**

True Negative: An Example that is **negative** and is classified as **negative**

False Positive: An Example that is **negative** and is classified as **positive**

Label: positive

Label: negative

Label: positive

To deal with issue 2 we need a more sophisticated definition of error rates in a binary classification problem

True Positive: An Example that is **positive** and is classified as **positive**

True Negative: An Example that is **negative** and is classified as **negative**

False Positive: An Example that is **negative** and is classified as **positive**

False Negative: An Example that is **positive** and is classified as **negative**

Label: positive

Label: negative

Label: positive

Label: negative

Confusion Matrix

Condition Positive

Condition Negative

Test Positive

TRUE POSITIVE

FALSE POSITIVE (Type I error)

Test Negative

FALSE NEGATIVE (Type II error)

TRUE NEGATIVE

Confusion Matrix

n = 165	Condition Positive	Condition Negative
Test Positive	100	10
Test Negative	5	50

How many classes are there?
How many patients?
How many times is disease
predicted?
How many patients actually
have the disease?

Confusion Matrix

		Condition (as determined by "Gold standard")			
	Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\sum \text{Total population}}$	
Test	Test outcome positive	True positive	False positive (Type I error)	Positive predictive value (PRV), Precision = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$	False discovery rate (FDR) $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Test outcome positive}}$
outcome	Test outcome negative	False negative (Type II error)	True negative	False omission rate (FOR) $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}}$	$\begin{aligned} & \text{Negative predictive value (NPV)} \\ &= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Test outcome negative}} \end{aligned}$
	Accuracy (ACC) =	Sensitivity, Recall $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$	Diagnostic odds ratio (DOR)
	Σ True positive + Σ True negative Σ Total population	False negative rate (FNR), $\text{Miss rate} = \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC) Σ True negative Σ Condition negative	Negative likelihood ratio (LR–) $= \frac{FNR}{TNR}$	= LR+ LR-

n = 165	Condition Positive	Condition Negative
Test Positive	100	10
Test Negative	5	50

Accuracy:

Overall, how often is it **correct**?

(TP + TN) / total = 150/165 = 0.91

Precision:

When test is positive, how often is prediction correct?

TP / test yes = 100/110 = 0.91

Sensitivity/Recall/TPR:

When actual value is positive, how often is prediction correct?

TP / actual yes = 100/105 = 0.95

Specificity/TNR:

When actual value is negative, how often is prediction correct?

TN / actual no = 50/60 = 0.83

n = 165	Condition Positive	Condition Negative
Test Positive	100	10
Test Negative	5	50

Precision:

When test is positive, how often is prediction correct?

TP / test yes = 100/110 = 0.91

Sensitivity/Recall/TPR:

When actual value is positive, how often is prediction correct?

TP / actual yes = 100/105 = 0.95

F score
$$F = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

ROC CURVES

TP Rate = True Positives / All positives

FP Rate = False Positives / All Negatives

Email Score	True Label
0.99	Spam
0.82	Spam
0.65	Spam
0.65	Ham
0.52	Spam
0.22	Spam
0.11	Ham
0.02	Ham

Every email is assigned a "spamminess" score by our classification algorithm. To actually make our predictions, we choose a numeric cutoff for classifying as spam.

An ROC curve will help us to visualize how well our classifier is doing without having to choose a cutoff!

Email Score	True Label	Predicted Label Using 0.5 Cutoff
0.99	Spam	Spam
0.82	Spam	Spam
0.65	Spam	Spam
0.65	Ham	Spam
0.52	Spam	Spam
0.22	Spam	Ham
0.11	Ham	Ham
0.02	Ham	Ham

Specificity: When true label is **ham**, how often is the prediction **correct**?

<u>Sensitivity</u>: When true label is **spam**, how often is the prediction **correct**?

Email Score	True Label
0.99	Spam
0.82	Spam
0.65	Spam
0.65	Ham
0.52	Spam
0.22	Spam
0.11	Ham
0.02	Ham

Cutoff	Specificity	Sensitivity
1		
0.9		
8.0		
0.6		
0.5	2/3 = 0.66	4/5 = 0.8
0.2		
0.1		
0		

Specificity: When true label is **ham**, how often is the prediction **correct**?

<u>Sensitivity</u>: When true label is **spam**, how often is the prediction **correct**?

Email Score	True Label
0.99	Spam
0.82	Spam
0.65	Spam
0.65	Ham
0.52	Spam
0.22	Spam
0.11	Ham
0.02	Ham

Cutoff	Specificity	Sensitivity
1	3/3 = 1	0/5 = 0
0.9	3/3 = 1	1/5 = 0.2
8.0	3/3 = 1	2/5 = 0.4
0.6	2/3 = 0.66	3/5 = 0.6
0.5	2/3 = 0.66	4/5 = 0.8
0.2	2/3 = 0.66	5/5 = 1
0.1	1/3 = 0.33	5/5 = 1
0	0/3 = 0	5/5 = 1

Specificity: When true label is **ham**, how often is the prediction **correct**?

<u>Sensitivity</u>: When true label is **spam**, how often is the prediction **correct**?

Email Score	True Label
0.99	Spam
0.82	Spam
0.65	Spam
0.65	Ham
0.52	Spam
0.22	Spam
0.11	Ham
0.02	Ham

Cutoff	FPR (x-axis)	TPR (y-axis)
1	0	0
0.9	0	0.2
8.0	0	0.4
0.6	0.33	0.6
0.5	0.33	0.8
0.2	0.33	1
0.1	0.66	1
0	1	1

$$\underline{FPR}(x-axis) = 1-Specificity$$

Q: On the ROC curve, can you see the cutoff that was used to generate a point?

A: No, that information is not visible.

ROC Curves show the relationship between the TP Rate and the FP Rate as we vary the decision threshold for the classifier

Cut off	TPR (y)	FPR (x)	Cut off	TPR (y)	FPR (x)
0	1	1	0.50	0.75	0.25
0.05	1	0.75	0.65	0.5	0
0.15	1	0.5	0.85	0.25	0
0.25	1	0.25	1	0	0

Area Under the Curve (AUC)

We evaluate a classifier by measuring the Area Under the Curve for its ROC curve. The Greater area under the curve, the more effective the classifier.

Then for our chosen classifer, we pick an appropriate decision threshold. In general, we pick the decision threshold that gets us closest to the upper left corner

IMBALANCED CLASSES

I. Undersampling the dominant class - remove some the majority class so it has less weight

- Undersampling the dominant class remove some the majority class so it has less weight
- 2. Oversampling the minority class add more of the minority class so it has more weight.

- I. Undersampling the dominant class remove some the majority class so it has less weight
- 2. Oversampling the minority class add more of the minority class so it has more weight.
- 3. **Hybrid** doing both

- I. Undersampling the dominant class remove some the majority class so it has less weight
- 2. Oversampling the minority class add more of the minority class so it has more weight.
- 3. Hybrid doing both

Undersampling

Randomly remove elements from the majority class.

Undersampling

Randomly remove elements from the majority class.

Undersampling

Randomly remove elements from the majority class.

Undersampling

Randomly remove elements from the majority class.

Drawback: Removing data points could lose important information

Duplicate elements of your minority class

Drawback: Just replicating randomly minority classes could cause overfit

OTHER EVALUATION METRICS

REGRESSION METRICS

RMSE

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

- Used for regression problems
- Square root of the mean of the squared errors
- Easily interpretable (in the "y" units)
- "Punishes" larger errors

RMSE

$$ext{RMSE} = \sqrt{rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

Example:

```
y_true = [100, 50, 30]
y_preds = [90, 50, 50]
RMSE = np.sqrt((10**2 + 0**2 + 20**2) / 3) = 12.88
```

EXPLAINED VARIANCE

$$\texttt{explained_variance}(y, \hat{y}) = 1 - \frac{Var\{y - \hat{y}\}}{Var\{y\}}$$

Example:

y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]
explained_variance(y_true, y_pred) = 0.957

Mean Absolute Error

$$MAE(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} |y_i - \hat{y}_i|.$$

Example:

```
y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]
mean_absolute_error(y_true, y_pred) = 0.5
```

Median Absolute Error

$$MedAE(y, \hat{y}) = median(|y_1 - \hat{y}_1|, \dots, |y_n - \hat{y}_n|).$$

Particularly interesting because it's robust to outliers.

Classification Metrics

Accuracy Score

$$accuracy(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} 1(\hat{y}_i = y_i)$$

i.e. the relative frequency of accurate predictions.