MA1300 Self Practice # 6

- 1. (P138, #81) Find an equation of the normal line to the parabola $y = x^2 5x + 4$ that is parallel to the line x 3y = 5.
- 2. (P138, #82) Where does the normal line to the parabola $y = x x^2$ at the point (1,0) intersect the parabola a second time? Illustrate with a sketch.
 - 3. (P139, #85)
 - **a** Use the Product Rule twice to prove that if f, g, and h are differentiable, then (fgh)' = f'gh + fg'h + fgh'.
 - **b** Taking f = g = h in part **a**, show that

$$\frac{d}{dx}[f(x)]^3 = 3[f(x)]^2 f'(x).$$

- **c** Use part **b** to differentiate $y = (x^4 + 3x^3 + 17x + 82)^3$
- 4. (P139, #95)
 - a For what values of x is the function $f(x) = |x^2 9|$ differentiable? Find a formula for f'.
 - **b** Sketch the graphs of f and f'.
- 5. (P139, #98)
 - a If F(x) = f(x)g(x), where f and g have derivatives of all orders, show that F'' = f''g + 2f'g' + fg''.
 - **b** Find similar formulas for F''' and $F^{(4)}$.
 - **c** Guess a formula for $F^{(n)}$.
- 6. (P146, #8) Differentiate

$$y = u(a\cos u + b\cot u).$$

- 7. (P147, #31)
 - a Use the Quotient Rule to differentiate the function

$$f(x) = \frac{\tan x - 1}{\sec x}.$$

b Simplify the expression for f(x) by writing it in terms of $\sin x$ and $\cos x$, and then find f'(x).

- c Show that your answers to parts a and b are equivalent.
- 8. (P147, #32) Suppose $f(\pi/3) = 4$ and $f'(\pi/3) = -2$, and let

$$g(x) = f(x)\sin x$$

and

$$h(x) = \frac{\cos x}{f(x)}.$$

Find (a) $g'(\pi/3)$, and (b) $h'(\pi/3)$.

- 9. (P147, #36) An elastic band is hung on a hook and a mass is hung on the lower end of the band. When the mass is pulled downward and then released, it vibrates vertically. The equation of motion is $s = 2\cos t + 3\sin t$, $t \ge 0$, where s is measured in centimeters and t in seconds. (Take the positive direction to be downward.)
 - **a** Find the velocity and acceleration at time t.
 - **b** Graph the velocity and acceleration functions.
 - c When does the mass pass through the equilibrium position for the first time?
 - **d** How far from its equilibrium position does the mass travel?
 - **e** When is the speed the greatest?
- 10. (P147, #38) An Object with mass m is dragged along a horizontal plane by a force acting along a rope attached to the object. If the rope makes an angle θ with the plane, then the magnitude of the force is

$$F = \frac{\mu mg}{\mu \sin \theta + \cos \theta},$$

where μ is a constant called the *coefficient of friction*.

- **a** Find the rate of change of F with respect to θ .
- **b** When is this rate of change equal to 0?
- **c** If m = 20 kg, g = 9.8 m/s², and $\mu = 0.6$, draw the graph of F as a function of θ and use it to locate the value of θ for which $dF/d\theta = 0$. Is the value consistent with your answer to part **b**?
- 11. (P154, #12, 13, 37, 40, 45) Find the derivative of the function.

$$f(t) = \sqrt[3]{1 + \tan t},$$
 $y = \cos(a^3 + x^3),$ $y = \cot^2(\sin \theta),$ $y = \sin(\sin(\sin x)),$ $y = \cos\sqrt{\sin(\tan \pi x)}.$

- 12. (P155, #68) Suppose f is differentiable on \mathbb{R} and α is a real number. Let $F(x) = f(x^{\alpha})$ and $G(x) = [f(x)]^{\alpha}$. Find expressions for (a) F'(x) and (b) G'(x).
 - 13. (P155, #71) If F(x) = f(3f(4f(x))), where f(0) = 0 and f'(0) = 2, find F'(0).
- 14. (P155, #76) If the equation of motion of a particle is given by $s = A\cos(\omega t + \delta)$, the particle is said to undergo simple harmonic motion.
 - ${f a}$ Find the velocity of the particle at time t.
 - **b** When is the velocity 0?