DataScience for Development and Social Change, 2015

Science

Getting information from your datasets. Truthfully.

Machine Learning

* Build a model that extract patterns from data

* Use those patterns to predict missing or future data

Do it automatically

(part of artificial intelligence)

Example Uses

- * Search engines: producing results tailored to you
- * Spam filters: learning what should go into your spam folder (and not)
- * Handwritten character recognition: recognizing "2"
- * Gap-filling: estimating missing data values
- * Prediction

Why Use Machine Learning?

- * You don't have all the features you want in your data.
 - Some features don't exist
 - * Some features have missing data

* You want to predict an outcome (eg. loan default) based on previous examples

Machine Learning Areas

- * Classification: predict classes
- * Regression: predict numerical values
- * Clustering: predict group membership

Classification

Classification is the allocation of a piece of information to a category (e.g. male, female, other).

- * Often need to automate this:
 - e.g. huge dataset, specialist knowledge (e.g. Tagalog, non-obvious connections), regularly-updated data etc.

Classification: Practice

- * Which of these people are male or female?
 - 1. She previously worked at Kings College London.
 - 2. Bayani advises the UN on the use of drones.
 - 3. Kim is a leading scholar on text classification.
 - 4. His work on sand eels is renowned.
 - 5. Diwata Jones.
 - 6. He works closely with Sandra Smith and her work on fish.

Classification: Practice

- 1. Female: "She" at start of description.
- 2. Male: male first name (look in <u>babynames.ch</u>)
- 3. Unknown: "Kim" is male or female first name.
- 4. Male: "His" at start of description.
- 5. Female: female first name (look in <u>babynames.ch</u>)
- 6. Male: "He" at start of description, but note the "her" later in the text.
- * Alternative gender classification methods include:
 - * GenderAnalyzer: guesses gender of writer (has API)
 - * Name endings: Names ending in a, e and i are more likely to be female, while names ending in k, o, r, s and t are more likely to be male

The Scikit.learn Library

- * Python library
- Contains most common machine learning algorithms
- * import "sklearn"

Scikit.learn: classification

Feature Selection

- * For classification to work, you need a feature set that's useful, e.g.
 - * First names
 - First name endings
 - Personal pronouns in text
 - * Not: department (e.g. Engineering)
- * A "training set": a set of pre-classified examples, for the classifier to learn from
- * A "test set": a smaller set of pre-classified examples, for the classifier to check its predictions

Regression

- Finds the best-fit line between points
- Because: you need to know the relationship between 2 or more features
- * Needs:
 - * 1) data points, in 2 or more dimensions
 - * 2) "best-fit" equation, e.g. city-block metric, least-squares, edit distance etc

Logistic Regression

* Because: you want to predict the class of a datapoint

Unsupervised Learning

- * Supervised learning:
 - * We 'teach' the computer how to do a task
 - * E.g. we tag male/female names until the machine can do this reliably (i.e. low number of misclassifications) for itself

- Unsupervised learning:
 - * The computer learns for itself, without teaching
 - * E.g. the computer separates a dataset into classes of closely-related data points, without being told what or where these are

Clustering

- * Divide a dataset up into n related "clusters" or classes
 - * **Because**: you want to know if groups exist in your data (so you can investigate further / use characteristics of those groups to advantage)
 - * Issue: knowing "n"
 - * Algorithms: k-nearest neighbours
 - * Python module: sklearn.cluster

k-Means

Hypothesis Testing

- * Data scientists often mention "p-values"
 - * Part of hypothesis testing:
 - Null hypothesis = no relationship between two items
 - * significance level = lowest value we can reject null hypothesis at, e.g. 1%, 5% etc. (below this = sampling error)
 - * p-value: calculated strength of relationship. If p-value < significance level, assume no relationship

Improving learning: Bagging and Boosting

- * Sometimes, you don't have to choose between models...
 - Bagging: combine different types of model
 - * Boosting: combine the same type of model

Network Analysis

What's next?

(Image: Ken Collier, Thoughtworks)

Continuing your Science journey

* http://scikit-learn.org/stable/index.html