AA 203 Recitation #2: JAX and Automatic Differentiation Spencer M. Richards April 16, 2021

1 JAX

JAX follows the *functional programming* paradigm. That is, JAX provides tools to transform a function into another function. Specifically, JAX can automatically compute the *derivative* of a function or composition of functions.

As an example, for $f(x) = \frac{1}{2} ||x||_2^2$, JAX computes $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ where $\nabla f(x) = x$.

```
import jax
import jax.numpy as jnp

def f(x):
    return jnp.sum(x**2)/2  # identical to numpy syntax

grad_f = jax.grad(f)  # compute the gradient function

x = jnp.array([0., 1., 2.])  # use JAX arrays!
print('x: ', x)
print('f(x): ', f(x))
print('grad_f(x):', grad_f(x))
```

x: [0. 1. 2.] f(x): 2.5 grad_f(x): [0. 1. 2.]

2 Automatic Differentation

Consider the function $f: \mathbb{R}^n \to \mathbb{R}^m$. The Jacobian of f evaluated at the point $x \in \mathbb{R}^n$ is the matrix

$$\partial f(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_1}{\partial x_2}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\ \frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) & \cdots & \frac{\partial f_2}{\partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x) & \frac{\partial f_m}{\partial x_2}(x) & \cdots & \frac{\partial f_m}{\partial x_n}(x) \end{bmatrix} = \begin{bmatrix} \frac{\partial f_i}{\partial x_j}(x) \end{bmatrix}_{i=1,j=1}^{m,n} \in \mathbb{R}^{m \times n}.$$

As for any matrix, the Jacobian $\partial f(x) : \mathbb{R}^n \to \mathbb{R}^m$ is a linear map $v \mapsto \partial f(x)v$ defined by the usual matrix-vector multiplication rules.

Automatic Differentiation (AD, autodiff) uses pre-defined derivatives and the chain rule to compute derivatives of more complex functions.

In particular, AD can be used to compute the Jacobian-Vector Product (JVP)

$$\partial f(x) : \mathbb{R}^n \to \mathbb{R}^m$$

 $v \mapsto \partial f(x)v'$

and the Vector-Jacobian Product (VJP)

$$\partial f(x)^{\top} : \mathbb{R}^m \to \mathbb{R}^n$$

$$w \mapsto \partial f(x)^{\top} w$$

The maps $v \mapsto \partial f(x)v$ and $w \mapsto \partial f(x)^{\top}w$ are also known as the *pushforward* and *pullback*, respectively, of f at x. The vectors v and w are termed seeds in AD literature.

Consider the function composition

$$h(x) = (f_N \circ f_{N-1} \circ \cdots \circ f_1)(x) = f_N(f_{N-1}(\cdots f_1(x)\cdots)),$$

where each $f_k : \mathbb{R}^{d_k} \to \mathbb{R}^{d_{k+1}}$ is some differentiable map.

We can write this recursively as

$$y_0 = x \in \mathbb{R}^n$$
, $y_{k+1} = f_k(y_k) \in \mathbb{R}^{d_{k+1}}$, $y_N = h(x) \in \mathbb{R}^{d_N}$.

By the chain rule, we have

$$\partial h(x) = \partial f_N(y_{N-1}) \partial f_{N-1}(y_{N-2}) \cdots \partial f_1(y_0).$$

This sequence of matrix multiplications that can get quickly get expensive for complicated functions! It is more efficient and usually sufficient in practice to compute JVPs via the recursion

$$\partial h(x)v_0 = \partial f_N(y_{N-1})\partial f_{N-1}(y_{N-2})\cdots\partial f_1(y_0)v_0$$

= v_N
 $v_k = \partial f_k(y_{k-1})v_{k-1}$

and VJPs via the recursion

$$\partial h(x)^{\top} w_0 = \partial f_1(y_0)^{\top} \cdots \partial f_{N-1}(y_{N-2})^{\top} \partial f_N(y_{N-1})^{\top} w_0$$

$$= w_N$$

$$w_k = \partial f_{N-k+1}(y_{N-k}) w_{k-1}$$

VJPs require more memory than JVPs, since $\{y_k\}_{k=1}^{N-1}$ must be computed and stored first (i.e., the forward pass) before recursing (i.e., the backward pass).

2.1 Example: VJP as a gradient

For a scalar function $f: \mathbb{R}^n \to \mathbb{R}$, the Jacobian at x is $\partial f(x) \in \mathbb{R}^{1 \times n}$, so

$$\nabla f(x) = \partial f(x)^{\top} 1.$$

E.g., if $f(x) = \frac{1}{2} ||x||_2^2$, then $\nabla f(x) = x \cdot 1$.

```
[2]: f = lambda x: jnp.sum(x**2)/2  # anonymous functions work as well
x = jnp.array([0., 1., 2.])
f_x, dfxT = jax.vjp(f, x)  # compute forward pass and VJP function

print('x: ', x)
print('f(x): ', f_x)
print('dfxT(1):', dfxT(1.))
print('dfxT(2):', dfxT(2.))
```

```
x: [0. 1. 2.]
f(x): 2.5
dfxT(1): (DeviceArray([0., 1., 2.], dtype=float32),)
dfxT(2): (DeviceArray([0., 2., 4.], dtype=float32),)
```

2.2 Example: JVP as a directional derivative

The directional derivative of $f: \mathbb{R}^n \to \mathbb{R}$ at $x \in \mathbb{R}^n$ along $v \in \mathbb{R}^n$ is

$$\nabla f(x)^{\top} v = \partial f(x) v.$$

E.g., if $f(x) = \frac{1}{2} ||x||_2^2$, then $\nabla f(x)^{\top} v = x^{\top} v$.

```
[3]: f = lambda x: jnp.sum(x**2)/2
x = jnp.array([0., 1., 2.])
v = jnp.array([1., 1., 1.])
f_x, dfx_v = jax.jvp(f, (x,), (v,)) # use tuples to separate inputs from seeds

print('x: ', x)
print('f(x): ', f_x)
print('dfx(v):', dfx_v)
```

```
x: [0. 1. 2.]
f(x): 2.5
dfx(v): 3.0
```

2.3 Example: Multi-input, multi-output VJP

Let's try something more complicated:

$$f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \times \mathbb{R}$$
$$(x,y) \mapsto \left(\frac{1}{2} \|x\|_2^2 + \frac{1}{2} \|y\|_2^2, \sum_{i=1}^n x_i\right)$$

```
[4]: def f(x, y):
    f1 = jnp.sum(x**2)/2 + jnp.sum(y**2)/2
    f2 = jnp.sum(x)
    return f1, f2

x = jnp.array([0., 1., 2.])
y = jnp.array([0., 1., 2.])
f_xy, dfT = jax.vjp(f, x, y)

print('x,y: ', x, y)
print('f(x,y):', f_xy)
print('dfT(1,1):', dfT((1., 1.))) # provide tuple as input
```

```
x,y: [0. 1. 2.] [0. 1. 2.]
f(x,y): (DeviceArray(5., dtype=float32), DeviceArray(3., dtype=float32))
dfT(1,1): (DeviceArray([1., 2., 3.], dtype=float32), DeviceArray([0., 1., 2.],
dtype=float32))
```

2.4 Example: VJP and JVP for a Matrix Input

We can generalize VJPs and JVPs to non-vector inputs as well:

$$f: \mathbb{R}^{n \times n} \to \mathbb{R}$$
$$X \mapsto a^{\top} X b$$

```
[5]: def f(X):
    a, b = jnp.array([0., 1., 2.]), jnp.array([0., 1., 2.])
    return a @ (X @ b)

X = jnp.ones((3, 3))
w, V = jnp.array(1.), jnp.eye(3)
f_x, dfT = jax.vjp(f, X)
f_x, df_v = jax.jvp(f, (X,), (V,))

print('X:\n', X, '\n', 'f(X): ', f_x, '\n', sep='')
print('dfT(1):\n', dfT(w), '\n', 'df(I): ', df_v, sep='')
```

X:
[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]

3 Auto-Vectorizing Functions with jax.vmap

For some complicated function $f: \mathbb{R}^n \to \mathbb{R}^m$, we want to calculate f(x) for many different values of x without looping.

This is known as *vectorizing* a function. JAX can do this automatically!

```
[6]: f = lambda x: jnp.array([jnp.sum(x**2)/2, jnp.linalg.norm(x, jnp.inf)])
f = jax.vmap(f)

batch_size, n = 100, 3
x = jnp.ones((batch_size, n)) # dummy values with desired shape

print(x.shape)
print(f(x).shape)
(100, 3)
(100, 2)
```

3.1 Example: Batch Evaluation of a Neural Network

```
[7]: f = lambda x, W, b: W[1] @ jnp.tanh(W[0] @ x + b[0]) + b[1]
f = jax.vmap(f, in_axes=(0, None, None))

n, m = 3, 5
batch_size = 100
hdim = 32

W = (jnp.ones((hdim, n)), jnp.ones((m, hdim)))
b = (jnp.ones(hdim), jnp.ones(m))
x = jnp.ones((batch_size, n))

print(x.shape)
print(f(x, W, b).shape)
```

(100, 3)
(100, 5)

3.2 Example: Jacobian Matrix from JVPs and VJPs

Let $e_k^{(d)} \in \{0,1\}^d$ denote the k^{th} coordinate vector in d dimensions. For $f: \mathbb{R}^n \to \mathbb{R}^m$, we can compute the full Jacobian $\partial f(x) \in \mathbb{R}^{m \times n}$ with either n JVPs

$$\partial f(x) = \partial f(x)I_n = \begin{bmatrix} \partial f(x)e_1^{(n)} & \partial f(x)e_2^{(n)} & \cdots & \partial f(x)e_n^{(n)} \end{bmatrix},$$

or m VJPs

$$\partial f(x)^{\top} = \partial f(x)^{\top} I_m = \begin{bmatrix} \partial f(x)^{\top} e_1^{(m)} & \partial f(x)^{\top} e_2^{(m)} & \cdots & \partial f(x)^{\top} e_m^{(m)} \end{bmatrix}.$$

This is what the source code for jax.jacfwd and jac.jacrev does.

```
[8]: f = lambda x: jnp.array([x[0], x[0]**2 + x[2]**2])

def df(x, v):
    fx, dfx_v = jax.jvp(f, (x,), (v,))
    return dfx_v

def dfT(x, w):
    fx, dfxT = jax.vjp(f, x)
    return dfxT(w)[0] # need to index into tuple

n, m = 3, 2
    x = jnp.ones(n)
    Jx = jax.vmap(df, in_axes=(None, 0))(x, jnp.eye(n))
    JxT = jax.vmap(dfT, in_axes=(None, 0))(x, jnp.eye(m))
    print('Jacobian (forward AD):')
    print(Jx)
    print('\nJacobian (reverse AD):')
    print(JxT)
```

```
Jacobian (forward AD):
```

[[1. 2.]]

[0. 0.]

[0. 2.]]

Jacobian (reverse AD):

[[1. 0. 0.]

[2. 0. 2.]]

3.3 Example: Linearizing Dynamics at Many Points

For $\dot{x} = f(x, u)$ with $x \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$, recall the first-order Taylor approximation

$$f(x,u) \approx \underbrace{f(\bar{x}_k, \bar{u}_k)}_{=c_k} + \underbrace{\partial_x f(\bar{x}_k, \bar{u}_k)}_{=A_k} (x - \bar{x}) + \underbrace{\partial_u f(\bar{x}_k, \bar{u}_k)}_{=B_k} (u - \bar{u}).$$

We want $A_k \Delta x_t$, $B_k \Delta u_t$, and c_k for $\{(\bar{x}_k, \bar{u}_k)\}_{k=1}^K$ and $\{(\Delta x_t, \Delta u_t)\}_{t=1}^T$.

```
[9]: # Inverted pendulum (with unit mass and unit length)
f = lambda x, u: jnp.array([x[1], 9.81*jnp.sin(x[0]) + u[0]])

def taylor(x̄, ū, Δx, Δu):
    f_x̄ū, AΔx = jax.jvp(lambda x: f(x, ū), (x̄,), (Δx,))
    _, BΔu = jax.jvp(lambda u: f(x̄, u), (ū,), (Δu,))
    return f_x̄ū, AΔx, BΔu

n, m = 2, 1
K, T = 5, 10
x̄, ū = jnp.ones((K, n)), jnp.ones((K, m))
Δx, Δu = jnp.ones((T, n)), jnp.ones((T, m))

taylor = jax.vmap(taylor, in_axes=(None, None, 0, 0))
taylor = jax.vmap(taylor, in_axes=(0, 0, None, None))
c, Ax, Bu = taylor(x̄, ū, Δx, Δu)
print(c.shape, Ax.shape, Bu.shape, sep=', ')
```

(5, 10, 2), (5, 10, 2), (5, 10, 2)

4 Other Features and Nuances of JAX

See the JAX documentation for more details.

4.1 Just-In-Time (JIT) Compilation

JAX can compile code to run fast on both CPUs and GPUs. The first call to a "jitted" function will compile and cache the function; subsequent calls are then much faster.

```
[10]: def selu(x, alpha=1.67, lmbda=1.05):
    return lmbda * jnp.where(x > 0, x, alpha * jnp.exp(x) - alpha)

x = jnp.ones(int(1e7))
%timeit -r10 -n100 selu(x).block_until_ready()

selu_jit = jax.jit(selu)
%timeit -r10 -n100 selu_jit(x).block_until_ready()
```

1.87 ms \pm 981 μ s per loop (mean \pm std. dev. of 10 runs, 100 loops each) The slowest run took 6.25 times longer than the fastest. This could mean that an intermediate result is being cached. 278 μ s \pm 259 μ s per loop (mean \pm std. dev. of 10 runs, 100 loops each)

4.2 In-Place Updates

JAX arrays are immutable. In keeping with the functional programming paradigm, updates to array values at indices are done via JAX functions.

```
[11]: X = jnp.zeros((3,3))
    try:
        X[0, :] = 1.
    except Exception as e:
        print("Exception {}".format(e))
    print('X:\n', X, sep='')

Y = jax.ops.index_update(X, jax.ops.index[0, :], 1.)
Y = X.at[0, :].set(1.) # more convenient syntax
    print('Y:\n', Y, sep='')
```

Exception '<class 'jaxlib.xla_extension.DeviceArray'>' object does not support item assignment. JAX arrays are immutable; perhaps you want jax.ops.index_update or jax.ops.index_add instead?

```
X:
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]
Y:
[[1. 1. 1.]
[0. 0. 0.]
[0. 0. 0.]
```

\---SPLIT --> new key

4.3 Pseudo-Random Number Generation (PRNG)

JAX does explicit PRNG; after initializing a PRNG state, it can be forked into new PRNG states for parallel stochastic generation. This enables reproducible results; propagate the key and make new subkeys whenever new random numbers are needed.

[3134548294 3733159049]

\--> new subkeys [3746501087 894150801] --> normal [0.10796154]

[801545058 2363201431] --> normal [-1.2226542]