Table 1: **English Validation results** of the user-char-lr model. n shows the number of training users and s the total training size. Top results are highlighted with **bold**.

		Gender		Age		Hate Speech		Bots		Fake News		Depression	
n	Inst. Sel.	\overline{s}	F_1	s	F_1	s	F_1	s	F_1	s	F_1	s	F_1
8	Ra_1 Ra_{50} IS	16 800 257	$39.9_{9.5}$ $61.0_{5.4}$ $53.7_{3.1}$	32 $1, 1k$ 361	26.1 _{7.3} 41.5 _{8.8} 36.4 _{2.3}	16 800 348	$38.0_{6.8}$ $54.6_{9.9}$ $49.2_{14.6}$	16 800 191	$46.6_{18.1} \\ 82.7_{2.9} \\ 78.7_{7.4}$	16 800 203	$44.5_{8.8} \\ 52.8_{9.2} \\ 45.7_{8.5}$	29 $1, 3k$ $1, 9k$	$13.4_{6.9} \\ 25.2_{5.2} \\ 21.3_{4.9}$
16	Ra_1 Ra_{50} IS	32 $1,6k$ 501	$48.4_{11.8} \\ 61.2_{4.2} \\ 53.3_{10.0}$	46 $2, 3k$ 611	$27.4_{8.4} \\ 40.7_{3.6} \\ 38.3_{3.0}$	32 $1,6k$ 697	$41.8_{9.8} \\ 56.0_{8.9} \\ 52.1_{6.7}$	$32 \\ 1, 6k \\ 385$	$68.7_{10.0} \\ 88.3_{1.3} \\ 80.2_{5.6}$	32 $1,6k$ 432	$43.5_{9.4} \\ 58.2_{9.1} \\ 48.7_{11.7}$	45 $2, 2k$ $2, 9k$	$11.6_{3.9} \\ 24.2_{6.4} \\ 25.5_{8.9}$
32	Ra_1 Ra_{50} IS	64 $3, 2k$ $1, 0k$	$42.6_{7.0} \\ 66.3_{3.2} \\ 56.7_{9.1}$	$78 \\ 3, 9k \\ 1, 0k$	$28.3_{8.4}$ $35.2_{4.3}$ $31.7_{2.5}$	$64 \\ 3, 2k \\ 1, 4k$	$44.0_{10.4} \\ 52.2_{9.9} \\ 49.1_{8.8}$	$64 \\ 3, 2k \\ 756$	$73.5_{11.0} \\ 89.4_{1.2} \\ 83.6_{2.8}$	$64 \\ 3, 2k \\ 880$	$39.1_{7.2}$ $64.9_{5.8}$ $56.3_{10.0}$	- - -	- - -
48	Ra_1 Ra_{50} IS	96 $4, 8k$ $1, 5k$	$42.3_{8.9} \\ 69.5_{1.3} \\ 60.1_{9.3}$	- - -	- - -	$96 \\ 4,8k \\ 2,1k$	$42.5_{8.9} \\ 58.8_{9.2} \\ 52.3_{10.3}$	96 $4, 8k$ $1, 1k$	$71.4_{13.7} 91.4_{1.2} 84.8_{1.9}$	96 $4, 8k$ $1, 3k$	$43.4_{2.6} \\ 67.9_{4.2} \\ 58.3_{10.5}$	- - -	- - -
64	Ra_1 Ra_{50} IS	128 $6, 4k$ $2, 0k$	$47.7_{9.6} \\ 69.9_{3.6} \\ 62.2_{7.2}$	- - -	- - -	$128 \\ 6, 4k \\ 2, 2$	$40.1_{5.7} \\ 57.2_{8.5} \\ 59.8_{6.4}$	$128 \\ 6, 4k \\ 1, 5k$	$75.9_{7.4} \\ 91.4_{1.2} \\ 84.6_{3.3}$	$128 \\ 6, 4k \\ 1, 8k$	$40.5_{8.5}$ $66.4_{4.7}$ $59.5_{7.6}$	- - -	- - -
128	Ra_1 Ra_{50} IS	256 $12, 8k$ $4, 0k$	$50.6_{11.1} 73.5_{1.8} 67.5_{3.0}$	- - -	- - -	- - -	- - -	256 $12,8k$ $3,0k$	$77.8_{7.1} \\ 91.8_{1.1} \\ 85.2_{2.0}$	- - -	- - -	- - -	- - -
256	Ra_1 Ra_{50} IS	512 $25, 6k$ $8, 0k$	$61.4_{4.8} \\ 75.4_{1.3} \\ 72.8_{1.5}$	- - -	- - -	- - -	- - -	512 $25, 6k$ $6, 0k$	$82.1_{5.2} \\ 93.2_{1.3} \\ 87.0_{1.7}$	- - -	- - -	- - -	- - -
512	Ra_1 Ra_{50} IS	1,0k 51,2k 16,0k	$64.3_{5.4} \\ 78.7_{2.0} \\ 77.2_{1.3}$	- - -	-	- -	-	1,0k 51,2k 11,9k	$86.1_{1.5}$ $95.0_{1.1}$ $88.1_{1.7}$	- -	- - -	- - -	- - -

Table 2: **Spanish Validation results** of the user-char-lr model. n shows the number of training users and s the total training size. Top results are highlighted with **bold**.

		Ge	ender	Age		Hate Speech		Bots		Fake News	
n	Inst. Sel.	\overline{s}	$\overline{F_1}$	\overline{s}	F_1	\overline{s}	$\overline{F_1}$	\overline{s}	$\overline{F_1}$	\overline{s}	F_1
8	Ra_1 Ra_{50} IS	16 800 257	$40.0_{5.2} \\ 53.4_{9.1} \\ 45.0_{6.3}$	$32 \\ 1, 6k \\ 361$	17.2 _{6.8} 48.7 _{12.3} 38.4 _{4.2}	16 800 348	$43.5_{8.0} \\ 63.6_{13.1} \\ 56.9_{14.4}$	16 800 191	$57.4_{17.5} 76.4_{10.2} 72.6_{10.5}$	16 800 203	$40.3_{11.8} \\ 57.2_{5.7} \\ 47.8_{7.7}$
16	Ra_1 Ra_{50} IS	$32 \\ 1, 6k \\ 501$	$37.9_{4.2}$ $58.2_{4.0}$ $46.3_{6.7}$	46 $2, 3k$ 611	$15.2_{3.9} \\ 41.5_{13.4} \\ 33.3_{9.5}$	$32 \\ 1,6k \\ 697$	$38.5_{7.1}$ $68.9_{6.3}$ $65.3_{12.3}$	$32 \\ 1, 6k \\ 385$	$54.5_{8.2}$ $81.5_{8.9}$ $77.8_{9.0}$	$32 \\ 1, 6k \\ 432$	$45.2_{10.1} 61.5_{6.0} 54.2_{5.2}$
32	Ra_1 Ra_{50} IS	$64 \\ 3, 2k \\ 1, 0k$	$35.4_{1.1}$ $62.5_{3.1}$ $58.9_{4.8}$	- - -	- - -	$64 \\ 3, 2k \\ 1, 4k$	$47.6_{14.2} 73.5_{4.9} 70.5_{3.9}$	$64 \\ 3, 2k \\ 756$	$55.1_{10.4}$ $85.9_{4.2}$ $80.0_{6.1}$	$64 \\ 3, 2k \\ 880$	$42.9_{8.4} \\ 69.6_{2.6} \\ 58.9_{9.4}$
48	Ra_1 Ra_{50} IS	96 $4,8k$ $1,5k$	$42.3_{10.0} \\ 64.7_{1.9} \\ 59.5_{7.1}$	- - -	- - -	$96 \\ 4,8k \\ 2,0k$	$42.2_{13.6} 73.8_{4.7} 74.2_{5.1}$	96 $4,8k$ $1,1k$	$61.9_{8.1} \\ 88.1_{1.9} \\ 82.3_{2.5}$	96 $4,8k$ $1,3k$	$41.7_{5.2} \\ 72.5_{3.6} \\ 69.1_{6.3}$
64	Ra_1 Ra_{50} IS	$128 \\ 6, 4k \\ 2, 0k$	$41.8_{8.4} \\ 66.6_{2.0} \\ 63.3_{2.6}$	- - -	- - -	$128 \\ 6, 4k \\ 2, 2k$	46.9 _{13.3} 74.4 _{4.7} 74.2 _{7.6}	$128 \\ 6, 4k \\ 1, 5k$	68.2 _{9.3} 88.5 _{1.7} 84.1 _{1.6}	$128 \\ 6, 4k \\ 1, 8k$	44.9 _{5.3} 73.7 _{4.0} 68.4 _{8.9}
128	Ra_1 Ra_{50} IS	256 $12,8k$ $4,0k$	$46.0_{10.5} \\ 68.9_{2.2} \\ 65.5_{2.5}$	- - -	- - -	- - -	- - -	256 $12,8k$ $3,0k$	79.6 _{3.1} 90.7 _{1.3} 85.8 _{1.8}	- - -	- - -
256	Ra_1 Ra_{50} IS	512 $25, 6k$ $8, 0k$	$51.0_{12.7}$ $70.4_{3.5}$ $65.4_{3.3}$	- - -	- - -	- - -	- - -	512 $25, 6k$ $6, 0k$	$80.2_{3.9} \\ 92.4_{1.7} \\ 87.2_{1.4}$	- - -	- - -
512	$Ra_1 \\ Ra_{50} \\ IS$	1,0k 51,2k 16,0k	$50.5_{13.7}$ $72.2_{2.0}$ $68.8_{1.7}$	- - -	- - -	- - -	- - -	1,0k 51,2k 11,9k	84.7 _{2.2} 94.0 _{1.7} 89.2 _{2.0}	-	- - -