(widespread adoption in animation industry)

deRose et al., "Subdivision surfaces in character animation"

Problems with NURBS

 Difficult to maintain continuity between patches for arbitrary topology

Woody's hand (NURBS) Geri's hand (subdivision)

- Pixar first demonstrated subdivision surfaces in 1997 with *Geri's Game*.
 - Up until then they'd done everything in NURBS (Toy Story, A Bug's Life.)
 - From 1999 onwards everything they did was with subdivision surfaces (Toy Story 2, Monsters Inc, Finding Nemo...)

Geri's Game

- Subdivision surface: a method to represent a smooth surface via a coarser polygon mesh (base mesh).
- Each step of refinement adds new faces and vertices.
- The process converges to a smooth limit surface.

Initial mesh

Loop

Catmull-Clark

Also useful for efficient distance-dependent rendering (Level Of Detail).

 Not a (Gouraud) shading trick; actually changing the geometry of the model.

Subdivision Curves

Idea:

repeatedly refine the control polygon

$$P^1 \rightarrow P^2 \rightarrow P^3 \rightarrow \cdots$$

curve is the limit of an infinite process

$$Q = \lim_{j \to \infty} P^{j}$$

Chaikin's algorithm

Chaikin introduced the following "corner-cutting" scheme in 1974:

- Start with a piecewise linear curve
- Splitting step: Insert new vertices at the midpoints
- Averaging step: Average each vertex with the "next" (clockwise) neighbor
- Repeat the process

Subdivision Curves

Chaikin can be coded (combining splitting & averaging) as follows:

- k is the generation. Each generation has twice as many control points as before.
- Boundaries, if any, are treated specially.
- The limit curve is a quadratic B-spline!

Subdivision Curves

- Lane-Riesenfeld scheme
 - Insert midpoint of each edge
 - Use row k of Pascal's triangle (normalized to 1) as averaging mask
 - Limit is B-spline of degree k+1

k=1: **quadratic** curve
$$r = \frac{1}{2}(1, 1)$$

k=2: **cubic** curve
$$r = \frac{1}{4}(1, 2, 1)$$

Subdivision curves

Combining split and averaging steps:

When to stop dividing?

- After each split-average step, we are closer to the limit curve.
- How many steps until we reach the final (limit) position?
 - Infinite subdivision!
- Can we push a vertex to its **limit position** without infinite subdivision? Yes!

Recipe for subdivision curves

- After subdividing and averaging a few times to get sufficient vertices, push each vertex to its limit position by applying an evaluation mask.
- Each subdivision scheme has its own evaluation mask, which is mathematically determined by analyzing the subdivision and averaging rules, using eigenanalysis
- For cubic B-spline subdivision, the evaluation mask is:

$$\frac{1}{6}(1 \ 4 \ 1)$$

Numberphile video

Recipe for subdivision curves

Now we can cook up a simple procedure for creating subdivision curves:

- 1) Subdivide (split+average) the control polygon a few times. Use the **averaging mask**.
- 2) Push the resulting points to the limit positions. Use the **evaluation mask**.

DLG Interpolating Scheme (1987)

- Slight modification to subdivision algorithm:
 - Splitting step introduces midpoints
 - Averaging step only changes midpoints
- For DLG (Dyn-Levin-Gregory), use:

$$r_{\text{old}} = (1)$$
 $r_{\text{new}} = \frac{1}{16}(-2, 5, 10, 5, -2)$

 Since we are only changing the midpoints, the points after the averaging step do not move.

Building complex models

We can extend the idea of subdivision from curves to surfaces...

- Chaikin's use of subdivision for curves inspired similar techniques for subdivision surfaces.
- Iteratively refine a **control polyhedron** to produce the limit surface

$$S = \lim_{j \to \infty} M^j$$

using splitting and averaging steps.

Recipe for subdivision surfaces

As with subdivision curves, we can now describe a recipe for *creating* and *rendering* subdivision surfaces:

- Use the averaging mask to subdivide (split+average) the control polyhedron a few times.
- Compute two tangent vectors using the tangent masks.
- Compute the normal from the tangent vectors.
- Use the evaluation mask to push the resulting points to the limit positions.
- Render!

Subdivision Zoo

- There are a variety of subdivision schemes
- Most widely used are Catmull-Clark and Loop schemes

	Primal		Dual
	Triangles	Rectangles	Duai
Approximating	Loop	Catmull-Clark	Doo-Sabin Midedge
Interpolating	Butterfly	Kobbelt	

Primal vs. Dual

- Primal subdivision schemes split faces
- Dual subdivision schemes splits vertices

Catmull-Clark Subdivision

- It is a primal, approximation subdivision scheme
- Applied to meshes with polygons of any # of sides
 - First iteration splits every polygon into quadrilaterals
- Limit surfaces are **bi-cubic B-splines**
- C² continuous limit surfaces except at extraordinary points:
 - C^1 at extraordinary points (vertices with valence \neq 4)

Catmull-Clark subdivision

There are three kinds of new vertices:

- Yellow vertices are associated with old faces
- Green vertices are associated with old edges
- Red vertices are associated with old vertices.

Catmull-Clark subdivision to refine quad surfaces/meshes.

Base mesh

Catmull-Clark limit surface

Catmull-Clark Subdivision

$$\mathbf{V}_2 = \frac{1}{n} \times \sum_{j=1}^n \mathbf{d}_j$$

$$\mathbf{E}_i = \frac{1}{4} \left(\mathbf{d}_1 + \mathbf{d}_{2i} + \mathbf{V}_i + \mathbf{V}_{i+1} \right)$$

$$\mathbf{d}_{1}' = \frac{(n-3)}{n}\mathbf{d}_{1} + \frac{2}{n}\mathbf{R} + \frac{1}{n}\mathbf{S}$$

$$\mathbf{R} = \frac{1}{m}\sum_{i=1}^{m}\mathbf{E}_{i} \quad \mathbf{S} = \frac{1}{m}\sum_{i=1}^{m}\mathbf{V}_{i}$$

Let's expand these equations into ready-to-code statements

A face point is computed using equal weights of its adjacent points.

• An edge point is computed using these 6 weights.

A vertex point is computed using these 7 weights.

Loop subdivision

 A common choice for triangle meshes is 4:1 subdivision – each triangular face is split into four sub-faces:

- The valence of each internal vertex is 6 for triangle meshes
- Limit surface is C² except at *extraordinary* vertices (valence not equal 6)

Loop Subdivision

Loop subdivision to refine triangular surfaces/meshes.

Loop Subdivision via Edge operations

First, split edges of original mesh in any order:

■ Next, flip new edges that touch a new & old vertex:

(Don't forget to update vertex positions!)

Loop tangent masks

- How do we compute the normal?
- Find two tangent vectors, then take the cross product.

Vertex neighorhood

Tangent masks

$$\mathbf{T}_1^{\infty} = \tau_1(n)\mathbf{Q}_1 + \tau_2(n)\mathbf{Q}_2 + \dots + \tau_n(n)\mathbf{Q}_n$$

$$\mathbf{T}_2^{\infty} = \tau_n(n)\mathbf{Q}_1 + \tau_1(n)\mathbf{Q}_2 + \dots + \tau_{n-1}(n)\mathbf{Q}_n$$
where

$$\tau_i(n) = \cos(2\pi i/n)$$

$\sqrt{3}$ -subdivision

- $\sqrt{3}$ -subdivision to refine triangular surfaces/meshes.
 - https://www.graphics.rwth-aachen.de/media/papers/sqrt31.pdf

FIGURE 5. $\sqrt{3}$ Subdivision. From left to right: original mesh, added vertices at the midpoints of the faces (step 1), connecting the new points to the original mesh (step 1), flipping the original edges to obtain a new set of faces (step 3). Step 2 involves shifting the original vertices and is not shown.

 Step 2: move each original vertex v to a new position p by averaging v with the positions of its original neighboring vertices v_i for 0≤i≤n-1.

$$\mathbf{p} = (1 - a_n)\mathbf{v} + \frac{a_n}{n} \sum_{i=0}^{n-1} \mathbf{v}_i$$
 $a_n = \frac{4 - 2\cos(\frac{2\pi}{n})}{9}$

$\sqrt{3}$ -subdivision

 $\sqrt{3}$ -subdivision.

Increases the number of triangles slower than Loop's. Yields a finer gradation of hierarchy levels

Loop subdivision.

Figure 13: Sequences of meshes generated by the √3-subdivision scheme (top row) and by the Loop subdivision scheme (bottom row). Although the quality of the limit surfaces is the same (C^2) , $\sqrt{3}$ -subdivision uses an alternative refinement operator that increases the number of triangles slower than Loop's. The relative complexity of the corresponding meshes from both rows is (from left to right) $\frac{3}{4} = 0.75$, $\frac{9}{16} = 0.56$, and $\frac{27}{64} = 0.42$. Hence the new subdivision scheme yields a much finer gradation of uniform hierarchy levels.

Doo-Sabin Subdivision

- A dual scheme that output a k-sided polygon for each original k-valence vertex.
- A generalization of bi-quadratic uniform B-splines

Interpolating Subdivision Surfaces

Butterfly subdivision to refine triangular surfaces/meshes (interpolating).

Interpolating Subdivision Surfaces

Comparison

Comparison

Subdividing a cube

- Loop result is assymetric, because cube was triangulated first
- Both Loop and Catmull-Clark are better then Butterfly (C² vs. C¹)
- Interpolation vs. smoothness

Comparison

- Spot the difference?
- For smooth meshes with uniform triangle size, different schemes provide very similar results
- Beware of interpolating schemes for control polygons with sharp features

So Who Wins?

- Loop and Catmull-Clark best when interpolation is not required
- Loop best for triangular meshes
- Catmull-Clark best for quad meshes
 - Don't triangulate and then use Catmull-Clark

Creases

- Extensions exist for most schemes to support creases.
- Vertices and edges flagged with sharpness value for partial or hybrid subdivision.
- Crease edges of integer sharpness s (s=0 is smooth)
 - subdivide using infinitely-sharp rules s
 - followed by smooth rules

Yellow are smooth edges. Red are crease edges: (left to right) increasing sharpness

Catmull-Clark subdivision surfaces in character animation by DeRose et al.

Creases

Edge Sharpness

yellow: 0 red: 4

magenta: 2 (middle), 4 (right)

