1. 5.1, p.239

Suppose that EQ_{CFG} is decidable by Turing machine M_1 . Construct a decider M_2 for $ALL_{CFG} = \{\langle G \rangle \mid G \text{ is a CFG and } L(G) = \Sigma^* \}$ as follows:

 M_2 = "On input $\langle G \rangle$:

- 1. Construct a CFG G_1 where $L(G_1) = \Sigma^*$
- 2. Run M_1 on input $\langle G, G_1 \rangle$
- 3. If M_1 accepts, accept and if M_1 rejects, reject."

Therefore M_2 is a decider for ALL_{CFG} if M_1 exists. But it was proven that ALL_{CFG} is undecidable so M_1 cannot exist and we have a contradiction. Thus, EQ_{CFG} is undecidable.

2.5.3, p.239

$$\left[\frac{ab}{abab}\right]\left[\frac{ab}{abab}\right]\left[\frac{aba}{b}\right]\left[\frac{b}{a}\right]\left[\frac{b}{a}\right]\left[\frac{aa}{a}\right]\left[\frac{aa}{a}\right]$$

3.5.4, p.239

No. Define the languages $A = \{a^nb^n \mid n \ge 0\}$ and $B = \{a\}$, both over the alphabet $\Sigma = \{a,b\}$. Define the function $f: \Sigma^* \to \Sigma^*$ as

$$f(w) = \begin{cases} a & \text{if } w \in A \\ b & \text{if } w \notin A \end{cases}$$

A is a CFL, therefore it is Turing-decidable and f is a computable function. So if $w \in A$, the output is f(w) = a and $f(w) \in B$. Thus, A is non-regular, B is regular, since it is finite, and $A \leq_m B$.

5.

- 1. False
- 2. True
- 3. True

6.

- 1. True
- 2. True
- 3. False