Getting Started with Machine Learning

Raunak J

We've learned to calculate the loss of Regression model using Mean Squared Error.

So, is there any loss function to measure loss in Classification models?

Well there is.

But we will go into specifics.

We're trying to get a loss function for binary classification problem.

So the loss function we use is Log Loss aka Logarithmic Loss aka Binary Cross Entropy.

Logarithmic loss (related to cross-entropy) measures the performance of a classification model where the prediction input is a probability value between 0 and 1.

Source: http://wiki.fast.ai/index.php/Log_Loss

$$LL_{(y,\hat{y})} = \frac{1}{N} \sum_{i=1}^{N} -y_i \cdot \log(P(\hat{y}_i)) - (1 - y_i) \cdot \log(1 - P(\hat{y}_i))$$

у	y_pred (Probabilities)
0	0.47248545
0	0.53776089
0	0.57005666
1	0.70484142
1	0.64770326
1	0.76805063

у	y_pred (Probabilities)
0	0.47248545
0	0.53776089
0	0.57005666
1	0.70484142
1	0.64770326
1	0.76805063

$$LL_{(y,\hat{y})} = \frac{1}{N} \sum_{i=1}^{N} -y_i \cdot \log(P(\hat{y}_i)) - (1 - y_i) \cdot \log(1 - P(\hat{y}_i))$$

y	y_pred (Probabilities)
0	0.47248545
0	0.53776089
0	0.57005666
1	0.70484142
1	0.64770326
1	0.76805063

$$LL_{(y,\hat{y})} = \frac{1}{N} \sum_{i=1}^{N} -y_i \cdot \log(P(\hat{y}_i)) - (1 - y_i) \cdot \log(1 - P(\hat{y}_i))$$

$$LL_{(y,\hat{y})} = \frac{1}{6} \sum_{i=1}^{6} -0.\log(0.47248545) - (1-0).\log(1-0.47248545)$$

у	y_pred (Probabilities)
0	0.47248545
0	0.53776089
0	0.57005666
1	0.70484142
1	0.64770326
1	0.76805063

$$LL_{(y,\hat{y})} = \frac{1}{N} \sum_{i=1}^{N} -y_i \cdot \log(P(\hat{y}_i)) - (1 - y_i) \cdot \log(1 - P(\hat{y}_i))$$

$$LL_{(y,\hat{y})} = \frac{1}{6} \sum_{i=1}^{6} -0.\log(0.47248545) - (1-0).\log(1-0.47248545)$$

$$LL_{(y,\hat{y})} = \frac{(0.6395)}{6}$$

у	y_pred (Probabilities)
0	0.47248545
0	0.53776089
0	0.57005666
1	0.70484142
1	0.64770326
1	0.76805063

$$LL_{(y,\hat{y})} = \frac{1}{N} \sum_{i=1}^{N} -y_i \cdot \log(P(\hat{y}_i)) - (1 - y_i) \cdot \log(1 - P(\hat{y}_i))$$

$$LL_{(y,\hat{y})} = \frac{1}{6} \sum_{i=2}^{6} -0.\log(0.53776089) - (1-0).\log(1-0.53776089)$$

$$LL_{(y,\hat{y})} = \frac{(0.6395 + 0.7716)}{6}$$

у	y_pred (Probabilities)
0	0.47248545
0	0.53776089
0	0.57005666
1	0.70484142
1	0.64770326
1	0.76805063

$$LL_{(y,\hat{y})} = \frac{1}{N} \sum_{i=1}^{N} -y_i \cdot \log(P(\hat{y}_i)) - (1 - y_i) \cdot \log(1 - P(\hat{y}_i))$$

$$LL_{(y,\hat{y})} = \frac{1}{6} \sum_{i=3}^{6} -0.\log(0.57005666) - (1-0).\log(1-0.57005666)$$

$$LL_{(y,\hat{y})} = \frac{(0.6395 + 0.7716 + 0.8441)}{6}$$

у	y_pred (Probabilities)
0	0.47248545
0	0.53776089
0	0.57005666
1	0.70484142
1	0.64770326
1	0.76805063

$$LL_{(y,\hat{y})} = \frac{1}{N} \sum_{i=1}^{N} -y_i \cdot \log(P(\hat{y}_i)) - (1 - y_i) \cdot \log(1 - P(\hat{y}_i))$$

$$LL_{(y,\hat{y})} = \frac{1}{6} \sum_{i=4}^{6} -1 \cdot \log(0.70484142) - (1 - 1) \cdot \log(1 - 0.70484142)$$

$$LL_{(y,\hat{y})} = \frac{(0.6395 + 0.7716 + 0.8441 + 0.3497)}{6}$$

у	y_pred (Probabilities)
0	0.47248545
0	0.53776089
0	0.57005666
1	0.70484142
1	0.64770326
1	0.76805063

$$LL_{(y,\hat{y})} = \frac{1}{N} \sum_{i=1}^{N} -y_i \cdot \log(P(\hat{y}_i)) - (1 - y_i) \cdot \log(1 - P(\hat{y}_i))$$

$$LL_{(y,\hat{y})} = \frac{1}{6} \sum_{i=5}^{6} -1.\log(0.64770326) - (1-1).\log(1 - 0.64770326)$$

$$LL_{(y,\hat{y})} = \frac{(0.6395 + 0.7716 + 0.8441 + 0.3497 + 0.4343)}{6}$$

y	y_pred (Probabilities)
0	0.47248545
0	0.53776089
0	0.57005666
1	0.70484142
1	0.64770326
1	0.76805063

$$LL_{(y,\hat{y})} = \frac{1}{N} \sum_{i=1}^{N} -y_i \cdot \log(P(\hat{y}_i)) - (1 - y_i) \cdot \log(1 - P(\hat{y}_i))$$

$$LL_{(y,\hat{y})} = \frac{1}{6} \sum_{i=6}^{6} -1.\log(0.76805063) - (1-1).\log(1 - 0.76805063)$$

$$LL_{(y,\hat{y})} = \frac{(0.6395 + 0.7716 + 0.8441 + 0.3497 + 0.4343 + 0.2638)}{6}$$

у	y_pred (Probabilities)
0	0.47248545
0	0.53776089
0	0.57005666
1	0.70484142
1	0.64770326
1	0.76805063

$$LL_{(y,\hat{y})} = \frac{1}{N} \sum_{i=1}^{N} -y_i \cdot \log(P(\hat{y}_i)) - (1 - y_i) \cdot \log(1 - P(\hat{y}_i))$$

$$LL_{(y,\hat{y})} = \frac{1}{6} \sum_{i=6}^{6} -1.\log(0.76805063) - (1-1).\log(1-0.76805063)$$

$$LL_{(y,\hat{y})} = \frac{(0.6395 + 0.7716 + 0.8441 + 0.3497 + 0.4343 + 0.2638)}{6} = \frac{3.3033}{6} = 0.5505$$