* 26/08/2020 * Data Analytics Shive Sara BE B- 20 * Unit Test 1 Overtion 1 * Current Analytical Architecture Pata Sources 1 Departmental 1 Data Science * Avaylic Analytic Architecture.

Data Sources
For the data to be loaded into the data warehouse,
there is a need to normalise the data with suitable
data type definitions & he a structed format.

Departmental Warehouse Data is read by additional applications across the enterprise for BI & reporting purposes.

It achieves the objective of reporting a creation of dashboard. It generally limit the ability of analyst to iterate on the data in a separate non-proof environment where they conduct in-dept analysis.

* Data analytical life cycle:

It has 6- phases as mentioned below:

Phase 2: Presence of analytic sandbox.

Phase 3: Determine the models, techniques & workflow it intends to follow.

Phase 4: Develop data sets for testing, training 4

Phase 5: In collaboration with major stakeholders, determine the nexts of the project. Thase 6: Deliver final reports, briefing code & techical documents & sun the pilot project. Question 3 a Wilcozon Rank Sum test It is a non-parametric hypothesis lest that checks whether two populations are identical distributed. Wilcoxor test aloes not assume anything about the population distribution, it is generally considered more robust the the t-test. This test is often performed as a two-sided k thus the rear research hypothesis indicates that the populations are not equal as opposed to specifying directionality. b) Type I k Type 2 Error

Type I error is also known as false error

positive & owns when a researcher incorrectly vijets

rejects a true will hypothesis. This means that your

report that your findings are significant when in

fact they have owned by chance. Allype 2 error is also known as false negative and ocurs when a reas regearcher fails to reject a will hypothesis which is really false.

Analysis of variance is generalisation of hypothesis of the difference of 2 population means. Arrows test if any of the population means differ from the other population means. The null hypothesis is that all the population means are equal.

Question 4 -> Juitial K1 = 18.5 2 72 Initial K2 = 170 & 56

Evelidean Distance for	ΚI	K2	New Centraid KI	New Contrord ke
(3)	20.81	4.47	185 , 72	169,58
(4)	7.21	14.14	182 , 70	169,58
3	2.00	19.10	182 , 71	169,58
6	8.49	26.87	185,74	169,58
\odot	5.83	17.03	183 , 73	169 , 58
8	3.54	16.28	181 , 71	169 ,58
(9)	12.87	2153	182, 78	169 156
(10)	10.59	31.95	181, 83	169,58
(11)	15.85	14.21	181, 83	175,63
[12]	8.06	13.73	179 1 80	175,63

Grouping: $KI \rightarrow 0, 0, 0, 0, 0, 0, 0, 0$

* Question 5 Regression is statistical method used in finance, investing and other disciplines that attempts to determine the strength a character of the relationship between one dependent value & a series of other variables. There are 2 basic types of regression:

① Simple linear regression.

② Multiple linear regression. hivear regression establishes a relationship between dependent variables (x) & one or more independent variables (x) using a best-fit straight line.

It is represented by an equation T = a + b * x + e, where: a is interest b is slope of the line e is error term.