P2: Description d'un fluide au repos.

1. Grandeurs macroscopiques.

Un fluide est un liquide ou un gaz.

A. Aspect microscopique.

Rappel: L'échelle microscopique est celle des atomes et des molécules

• À l'échelle microscopique, un fluide est constitué de particules (atomes ou molécules) qui se déplacent les unes par rapport aux autres à grande vitesse: c'est **l'agitation thermique.**

 Chaque particule est animée d'un mouvement imprévisible en raison des nombreux chocs qu'elle, subit.

B. Aspect macroscopique.

Rappel: L'échelle macroscopique est notre échelle.

Grandeurs macroscopiques

À l'échelle macroscopique, on décrit un fluide à l'aide de grandeurs physiques faciles à mesurer, par exemple :

- la masse volumique ρ $(kg. m^{-3})$
- la **température** (T en kelvin)
- la **pression** (P en Pa)

Pression

L'ensemble des chocs des particules d'un fluide sur une paroi d'un récipient créent une force appelée **force** \vec{F} .

Cette force est toujours perpendiculaire à la surface et dirigée vers l'extérieur.

Définition: La pression due à une force exercée sur une surface d'aire S est :

$$p = \frac{F}{S}$$

avec F en (N), p en (Pa) et S en (m²)

L'air qui nous entoure exerce une pression appelée pression atmosphérique. Sa valeur est de l'ordre de 1013 hPa et diminue avec l'altitude.

2. Loi de Mariotte

Les grandeur macroscopiques ne sont pas indépendantes les unes des autres.

Pour une quantité de gaz fixe à température constante, on a :

$$p \times V = constante$$

On dit que la pression est inversement proportionnelle au volume.

Attention: La constante dépend de la température et de la quantité de gaz.

3. Loi fondamentale de la statique des

fluides

Dans un fluide **incompressible** au repos, la pression augmente z_B -avec la profondeur.

$$p_B - p_A =
ho imes g imes (z_A - z_B)$$

Avec p la pression (Pa), z l'altitude (m) et ρ la masse volumique du fluide en $kg.\,m^{-3}$ et g l'intensité de la pesanteur $9,81\,N.\,kg^{-1}$

Attention : Pour un liquide en contact avec l'air la pression a sa surface est la pression atmosphérique.