

Grenoble | images | parole | signal | automatique | laboratoire

Concentration of the Measure Theory to study random matrices

Cosme Louart, Romain Couillet

GIPSA-lab, INP Grenoble; List-CEA

20/06/2019

Table of contents

Introduction

I- Concentration of the Measure Phenomenon

- A Description of the phenomenon
- B Concentration of random variables
- C Concentration of the norm of a random vector
- D Concentration of the sum and the product of random vectors

- A Position of the problem
- B A first Deterministic equivalent
- C Second Deterministic equivalent

Introduction

Classical study of singular values of rectangular RM

 $X \in \mathcal{M}_{p,n}$, we study $\frac{1}{n}XX^T$

Classial Hypothesis

- X has i.i.d entries with bounded Variance
- $X = C^{\frac{1}{2}}Z$

Classical conclusions

 Weak convergence of the spectral distribution to the Marcenko-Pastur law

Question: Can we find wider hypothesis and control the speed of convergence?

With the concentration of the measure theory (CMT)

Hypothesis of CMT

1. For all 1-Lipschitz maps $f: \mathcal{M}_{p,n} \to \mathbb{R}$:

$$\forall t > 0 : \mathbb{P}(|f(X) - \mathbb{E}[f(X)]| \ge t) \le 2e^{-t^2/2}$$

2. The column of X are i.i.d.

Remarks

- ▶ (Asset) True if the columns are Lipschitz transformation of a Gaussian vector $Z \sim \mathcal{N}(0, I_p)$.
 - \longrightarrow dependence between the entries of a column possibly complex
- ▶ (Drawback) That implies that all the moments are bounded

With the concentration of the measure theory (CMT)

Conclusions on the spectral distribution

Noting $Q(z) = (\frac{1}{n}XX^T + zI_p)^{-1}$, the resolvent of the empirical covariance, $\frac{1}{p}\operatorname{Tr}(Q(z))$ is the *Stieltjes transform* of its spectral distribution and:

$$\forall t>0: \ \mathbb{P}\left(\left|\mathsf{Tr}(Q(z))-\mathsf{Tr}(\tilde{Q}_1)\right|\geq t\right)\leq C\mathrm{e}^{-nt^2/c}, \ C,c\underset{p,n\to\infty}{=} O(c^{-nt^2/c})$$

where $ilde{Q}_1 \in \mathcal{M}_{\scriptscriptstyle P}$ is a deterministic equivalent of Q

Introduction

- I- Concentration of the Measure Phenomenon
 - A Description of the phenomenon
 - B Concentration of random variables
 - C Concentration of the norm of a random vector
 - D Concentration of the sum and the product of random vectors

Introduction

I- Concentration of the Measure Phenomenon

- A Description of the phenomenon
- B Concentration of random variables
- C Concentration of the norm of a random vector
- D Concentration of the sum and the product of random vectors

- A Position of the problem
- B A first Deterministic equivalent
- C Second Deterministic equivalent

Concentration of the Measure Phenomenon

Setting

 $(E, \|\cdot\|)$, a normed vector space, $Z \in E$, a random vector

- $(\mathbb{R}^p, \|\cdot\|)$, with $\|x\| = \sqrt{\sum_{i=1}^p x_i^2}$
- $(\mathcal{M}_{p,n}, \|\cdot\|_F) \text{ with } \|M\|_F = \sqrt{\text{Tr}(MM^T)} = \sqrt{\sum_{1 \le i \le p} M_{i,j}^2}$

Notations

- if $\exists \alpha : \mathbb{R}^+ \to \mathbb{R}^+ \mid \forall f : E \to \mathbb{R}$ 1-Lipschitz : $\forall t > 0 : \mathbb{P}(|f(Z) - \mathbb{E}[f(Z)]| \ge t) \le \alpha(t),$ we note $Z \in \alpha$
- ▶ In particular, if $\exists \tilde{Z} \in E \mid \forall u : E \to \mathbb{R}$ 1-Lipschitz and linear : $\left|\, orall t>0 \,\,:\,\, \mathbb{P}\left(\left|u(Z- ilde{\mathcal{Z}})
 ight|\geq t
 ight)\leq lpha(t), \,
 ight|\, \mathsf{we}\,\,\mathsf{note}\,\, oldsymbol{\mathsf{Z}}\in ilde{\mathcal{Z}}\pmlpha$

 \tilde{Z} : Deterministic equivalent of Z. $(Z \in \alpha \Longrightarrow Z \in \mathbb{E}[Z] \pm \alpha)$

Standard concentration: Exponential concentration

Fundamental example of the Theory:

 $Z \in \mathbb{R}^p$, if Z uniformly distributed on $\sqrt{p}S^{p-1}$ or $Z \sim \mathcal{N}(0, I_p)$: $\forall f: E \to \mathbb{R} \text{ 1-Lipschitz}:$

$$\forall t > 0 : \mathbb{P}\left(\left|f(Z) - \mathbb{E}[f(Z')]\right| \ge t\right) \le 2e^{-t^2/2},$$

For $q, \sigma > 0$, if we note $\mathcal{E}_q(\sigma)$: $t \mapsto e^{-(t/\sigma)^q}$, then:

$$Z \in 2\mathcal{E}_2(\sqrt{2})$$
 (Independent of p!).

Standard Hypothesis : $Z \in \tilde{Z} \pm C\mathcal{E}_{\sigma}(\sigma)$

- $\tilde{Z} \in E$: deterministic equivalent
- ightharpoonup C > 0, q > 0: numerical constants (between $\frac{1}{10}$ and 10)
- $\sigma > 0$: observable diameter, gives the speed of concentration.

How to build new concentrated random vectors?

- ▶ If $Z \in C\mathcal{E}_q(\sigma)$ and $f : E \to E$ λ -Lipschitz, $f(Z) \in C\mathcal{E}_q(\lambda \sigma)$
- ▶ No simple way to set the concentration of $(Z_1, ..., Z_p)$ if $Z_1, ..., Z_p \in C\mathcal{E}_q(\sigma)$ non independent
- ▶ $Z_1, Z_2 \in C\mathcal{E}_q(\sigma)$, independent $(Z_1, Z_2) \in 2C\mathcal{E}_q(2\sigma)$
- ▶ $(Z_1, Z_2) = f(Z)$ where $Z \in C\mathcal{E}_q(\sigma)$, and f 1-Lipschitz $(Z_1, Z_2) \in C\mathcal{E}_q(\sigma)$

Introduction

I- Concentration of the Measure Phenomenon

- A Description of the phenomenon
- B Concentration of random variables
- C Concentration of the norm of a random vector
- D Concentration of the sum and the product of random vectors

- A Position of the problem
- B A first Deterministic equivalent
- C Second Deterministic equivalent

Same Notations:

▶ $\exists a \in \mathbb{R}$ such that:

$$orall t>0 \ : \ \mathbb{P}\left(|Z-a|\geq t
ight)\leq Ce^{-(t/\sigma)^q}$$
 we note $Z\in a\pm C\mathcal{E}_q(\sigma)$.

Example

$$X \sim \mathcal{N}(0, I_p)$$
, $f : \mathbb{R}^p \to \mathbb{R}$, 1-Lipschitz:

$$f(X) \in \mathbb{E}[f(X)] \pm 2\mathcal{E}_2(\sqrt{2})$$

Characterization with the moments

$$Z \in a \pm Ce^{-(\cdot/\sigma)^{q}}$$

$$\downarrow 1$$

$$\forall r \ge q :$$

$$\mathbb{E}[|Z - a|^{r}] \le C\left(\frac{r}{q}\right)^{\frac{r}{q}} \sigma^{r}$$

$$\downarrow 2$$

$$Z \in a \pm Ce^{-\frac{(\cdot/\sigma)^{q}}{e}}$$

Proof:

(1) Fubini:

$$\mathbb{E}[|Z-a|^r] = \int_{Z} \left(\int_0^{\infty} \mathbb{1}_{t \leq |Z-a|^r} dt \right) dZ$$

$$= \int_0^{\infty} \mathbb{P}(|Z-a|^r \geq t) dt$$

$$\leq \int_0^{\infty} C e^{-t\frac{q}{r}/\sigma^q} dt \dots \leq C \left(\frac{r}{q} \right)^{\frac{r}{q}} \sigma^r$$

(2) Markov inequality:

$$\mathbb{P}(|Z - a| \ge t) \le \frac{\mathbb{E}[|Z - a|^r]}{t^r} \le C\left(\frac{r}{q}\right)^{\frac{r}{q}} \left(\frac{\sigma}{t}\right)^r,$$
with $r = \frac{qt^q}{e\sigma^q} \ge q : \mathbb{P}(|Z - a| \ge t) \le Ce^{-(t/\sigma)^q/e}.$

Concentration of the sum

$$X \in a \pm C\mathcal{E}_q(\sigma)$$
, $Y \in b \pm C\mathcal{E}_q(\sigma)$:

$$\begin{array}{l} \blacktriangleright X+Y\in a+b\pm 2\mathcal{C}\mathcal{E}_q\left(2\sigma\right)\\ \text{Proof}: \quad \mathbb{P}\left(|Z_1+Z_2-a_1-a_2|\geq t\right)\\ \\ \leq \mathbb{P}\left(|Z_1-a_1|+|Z_2-a_2|\geq \frac{t}{2}+\frac{t}{2}\right)\\ \\ \leq \mathbb{P}\left(|Z_1-a_1|\geq \frac{t}{2}\right)+\leq \mathbb{P}\left(|Z_2-a_2|\geq \frac{t}{2}\right)\\ \\ < 2Ce^{-(t/2\sigma)^q} \end{array}$$

Concentration of the product

$$X \in a \pm \mathcal{CE}_q(\sigma)$$
 and $Y \in b \pm \mathcal{CE}_q(\sigma)$

 $XY \in ab\pm 2C\mathcal{E}_{\mathbf{q}}(3\sigma\max(|a|,|b|)) + 2\mathcal{E}_{\mathbf{q}}(3\sigma^2)$

Proof:
$$XY - ab = (X - a)(Y - b) + (X - a)b + (Y - b)a$$

$$\mathbb{P}(|XY - ab| \ge t) \le \mathbb{P}\left(|X - a| \ge \sqrt{\frac{t}{3}}\right) + \mathbb{P}\left(|Y - b| \ge \sqrt{\frac{t}{3}}\right)$$

$$+ \mathbb{P}\left(|X - a| \ge \frac{t}{3|b|}\right) + \mathbb{P}\left(|Y - b| \ge \frac{t}{3|a|}\right)$$

$$\le Ce^{-(t/3\sigma^2)^{\frac{q}{2}}} + Ce^{-(t/3|b|\sigma)^q} + Ce^{-(t/3|a|\sigma)^q}$$

Introduction

I- Concentration of the Measure Phenomenon

- A Description of the phenomenon
- B Concentration of random variables
- C Concentration of the norm of a random vector
- D Concentration of the sum and the product of random vectors

- A Position of the problem
- B A first Deterministic equivalent
- C Second Deterministic equivalent

Control of the norm

▶ Infinite norm :

$$\mathbb{P}\left(\|Z - \tilde{Z}\|_{\infty} \ge t\right) = \mathbb{P}\left(\sup_{1 \le i \le p} e_i^T (Z - \tilde{Z}) \ge t\right)$$

$$\le p \sup_{1 \le i \le p} \mathbb{P}\left(e_i^T (Z - \tilde{Z}) \ge t\right) \le pCe^{-(t/\sigma)^q},$$

▶ For the general case, use of " ε -nets". If $\exists H \subset (E^*, \|\cdot\|_{\downarrow})$

$$\forall z \in E : ||z|| = \sup_{f \in \mathcal{B}_H} f(z).$$

where $\mathcal{B}_H = \{ f \in H, ||f||_* \le 1 \} \subset H$, then :

$$Z \in \tilde{Z} \pm C\mathcal{E}_q(\sigma) \implies \left\| Z - \tilde{Z} \right\| \in 0 \pm 8^{\dim(H)} C\mathcal{E}_q(2\sigma)$$

on $(\mathbb{R}^p, \|\cdot\|)$, $H = \mathbb{R}^p$, and $\dim H = p$

Norm degree

Degree of a subset $H \subset E^*$ and of a norm

- ρ $\eta_H = \log(\#H)$ if H is finite
- ho $\eta_H = \dim(\operatorname{Vect}(H))$ if H is infinite

Degree of a norm

Example

Concentration of the norm

If
$$Z \in \tilde{Z} \pm C\mathcal{E}_q(\sigma)$$
:

$$\left\| Z - \tilde{Z}
ight\| \in 0 \pm C' \mathcal{E}_q(c' \sigma \eta_{\|\cdot\|}^{1/q}) \quad ext{and} \quad \mathbb{E} \left\| Z - \tilde{Z}
ight\| \leq C' \sigma \eta_{\|\cdot\|}^{1/q}$$

Example $Z \in \mathbb{R}^p$, $X \in \mathcal{X}_{p,n}$

- if $Z \in \tilde{Z} \pm 2\mathcal{E}_2(\sqrt{2})$: $\mathbb{E} \|Z\| \le \|\tilde{Z}\| + C\sqrt{p}$
- if $X \in \tilde{X} \pm 2\mathcal{E}_2(\sqrt{2})$: $\mathbb{E} \|X\| \le \|\tilde{X}\| + C\sqrt{p+n}$,
- if $X \in \tilde{X} \pm 2\mathcal{E}_2(\sqrt{2})$: $\mathbb{E} \|X\| \le \|\tilde{X}\| + C\sqrt{pn}$.

Introduction

I- Concentration of the Measure Phenomenon

- A Description of the phenomenon
- B Concentration of random variables
- C Concentration of the norm of a random vector
- D Concentration of the sum and the product of random vectors

- A Position of the problem
- B A first Deterministic equivalent
- C Second Deterministic equivalent

Concentration of the sum and the product

If
$$(X, Y) \in C\mathcal{E}_q(\sigma)$$
:

- $X + Y \in C\mathcal{E}_q(\sigma)$
- $\blacktriangleright (X \tilde{X})(Y \tilde{Y})$

$$\in C'\mathcal{E}_{\frac{q}{2}}\left(c\sigma^{2}\right)+C'\mathcal{E}_{q}\left(c\sigma^{2}\eta_{\|\cdot\|'}^{\frac{1}{q}}\right) \quad \text{in} \quad (\mathcal{A},\|\cdot\|)$$
 where $\forall x,y\in\mathcal{A} \ \|xy\|\leq \|x\|'\|y\| \ (\text{usually} \ \|x\|'\leq \|x\|).$

Example $Z \in \mathbb{R}^p$, $X \in \mathcal{M}_{p,n}$, $Z, X \in 2\mathcal{E}_2(\sqrt{2})$

- $\qquad \qquad \frac{\mathbf{X}\mathbf{X}^T}{\sqrt{\log(np)}} \in C\mathcal{E}_2(\mathbf{c}) + C\mathcal{E}_1\left(\frac{\mathbf{c}}{\sqrt{\log(pn)}}\right) \text{ in } (\mathcal{M}_{p,n}, \|\cdot\|_{\infty}),$

Hanson Wright Theorem

Classical Theorem

If $Z_1, \ldots, Z_n \in C\mathcal{E}_2(\sigma)$ independent:

$$\mathbb{P}\left(\left|Z^{T}AZ - \mathbb{E}Z^{T}AZ\right| \ge t\right) \le C \exp\left(-c \min\left(\left(\frac{t}{\sigma^{2} \|A\|_{F}}\right)^{2}, \frac{t}{\sigma^{2} \|A\|}\right)\right)$$

With the Concentration of the measure phenomenon

If
$$Z = (Z_1, \ldots, Z_p) \in C\mathcal{E}_2(\sigma)$$
:

$$\begin{split} \mathbb{P}\left(\left|Z^{T}AZ - \mathbb{E}Z^{T}AZ\right| \geq t\right) \\ &\leq C \exp\left(-c \min\left(\left(\frac{t}{\sigma \mathbb{E} \left\|Z\right\| \left\|A\right\|}\right)^{2}, \frac{t}{\sigma^{2} \left\|A\right\|}\right)\right) \end{split}$$

 \rightarrow about the same result since $\mathbb{E}[\|Z\|] \approx \sigma \sqrt{p}$ and $\|A\|_F \approx \sqrt{p} \|A\|$

Introduction

- I- Concentration of the Measure Phenomenor
- II Spectral Distribution of Empirical Covariance matrices
 - A Position of the problem
 - B A first Deterministic equivalent
 - C Second Deterministic equivalent

Introduction

I- Concentration of the Measure Phenomenon

- A Description of the phenomenon
- B Concentration of random variables
- C Concentration of the norm of a random vector
- D Concentration of the sum and the product of random vectors

- A Position of the problem
- B A first Deterministic equivalent
- C Second Deterministic equivalent

Position of the problem

Data matrix $X=(x_1,\ldots,x_n)\in\mathcal{M}_{p,n}$,

Hypothesis:

- ightharpoonup p = O(n) and n = O(p)
- $X \in C\mathcal{E}_2(c)$
- $\blacktriangleright \|\mathbb{E}[X]\| = O(\sqrt{n})$

Goal:

Show the concentration of the resolvent:

$$Q = Q(z) = \left(\frac{1}{n}XX^{T} + zI_{p}\right)^{-1}$$

and find a computable deterministic equivalent \tilde{Q}_1 depending on the population covariance : $\Sigma = \frac{1}{\pi} \mathbb{E}[XX^T]$

Basic results on the resolvent $Q = (\frac{1}{r}XX^T + zI_p)^{-1}$

The resolvent is bounded:

$$\|Q(z)\| \le \frac{1}{z}$$
, $\|Q(z)\frac{XX^T}{n}\| \le 1$ and $\|Q(z)\frac{X}{\sqrt{n}}\| \le \frac{1}{z^{1/2}}$

 $X \mapsto Q(z)$ is $\frac{1}{\sqrt{n}z^{3/2}}$ -Lipschitz: If we note $Q(z)^{H} = (\frac{1}{2}(X+H)(X+H)^{T} + zI_{p})^{-1}$: $\|Q(z)^{H} - Q(z)\|_{F} = \left\|\frac{1}{n}Q(z)^{H}(XX^{T} - (X+H)(X+H)^{T})Q(z)\right\|_{F}$ $= \left\| -\frac{1}{n} Q(z)^H H X^T + (X+H) H^T \right) Q(z) \right\|_{z}$ $\leq \frac{1}{\sqrt{z}} \left(\|Q(z)^H\| \left\| \frac{1}{\sqrt{z}} X^T Q \right\| + \left\| \frac{1}{\sqrt{z}} Q^H (X + H) \right\| \|Q(z)\| \right) \|H\|_F$

 $lacksymbol{Q}(z)\in \mathbb{E}[Q(z)]\pm C\mathcal{E}_2\left(rac{c}{\sqrt{n}}
ight)$ (we suppose that $rac{1}{z}=\mathit{O}(1)$)

Question

How to estimate $\mathbb{E}\left[\left(\frac{1}{n}XX^T + zI_p\right)^{-1}\right]$?

Design of a Deterministic equivalent

Let $\tilde{\Sigma} \in \mathcal{M}_p$ to be chosen precisely later and we set:

$$ilde{Q}_1 = (ilde{\Sigma} + z I_p)^{-1}$$

Introduction

I- Concentration of the Measure Phenomenon

- A Description of the phenomenon
- B Concentration of random variables
- C Concentration of the norm of a random vector
- D Concentration of the sum and the product of random vectors

- A Position of the problem
- B A first Deterministic equivalent
- C Second Deterministic equivalent

With identity $A^{-1} - B^{-1} = A^{-1}(B - A)B^{-1}$:

$$\mathbb{E}[\tilde{Q}_1 - Q] = \mathbb{E}\left[Q\left(\frac{1}{n}XX^T - \tilde{\Sigma}\right)\tilde{Q}_1\right] = \sum_{i=1}^n \frac{1}{n}\mathbb{E}\left[Q(x_ix_i^T - \tilde{\Sigma})\tilde{Q}_1\right].$$

Schur formulas

We set $X_{-i} = (x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n) \in \mathcal{M}_{n,n}$ and $Q_{-i} = (\frac{1}{2}X_{-i}X^T + zI_p)^{-1}$:

$$Q = Q_{-i} - \frac{1}{n} \frac{Q_{-i} x_i x_i^T Q_{-i}}{1 + \frac{1}{n} x_i^T Q_{-i} x_i} \quad \text{and} \quad Q x_i = \frac{Q_{-i} x_i}{1 + \frac{1}{n} x_i^T Q_{-i} x_i}.$$

Then:

$$\tilde{Q}_{1} - \mathbb{E}Q = \sum_{i=1}^{n} \frac{1}{n} \mathbb{E} \left[Q_{-i} \left(\frac{x_{i} x_{i}^{T}}{1 + \frac{1}{n} x_{i}^{T} Q_{-i} x_{i}} - \tilde{\Sigma} \right) \tilde{Q}_{1} \right] - \frac{1}{n^{2}} \sum_{i=1}^{n} \mathbb{E} \left[Q_{-i} x_{i} x_{i}^{T} Q \tilde{\Sigma} \tilde{Q}_{1} \right].$$

A first deterministic equivalent

$$\left\| \tilde{Q}_{1} - \mathbb{E}Q \right\| = \sup_{\|u\|, \|v\| \le 1} u^{T} \left(\tilde{Q}_{1} - \mathbb{E}Q \right) v$$
$$= \sup_{\|u\|, \|v\| \le 1} \frac{1}{n} \sum_{i=1}^{n} \Delta_{i} + \varepsilon_{i}$$

with:

$$\longrightarrow$$
 we note $rac{\delta_1}{n}=rac{1}{n}\operatorname{Tr}(\Sigma\mathbb{E}[Q])$ and we chose $\left\lfloor ilde{\Sigma}=rac{\Sigma}{1+\delta_1}
ight
floor$

Let us show that with this choice: $\Delta_i, \varepsilon_i = O\left(\frac{1}{\sqrt{n}}\right)$

Preliminary lemmas

$$\mathbb{E}[u^T Q x_i] \le \sqrt{\mathbb{E}[u^T Q x_i x_i^T Q u]} = \sqrt{\frac{1}{n}} \mathbb{E}[u^T Q X X^T Q u].$$

$$\le \mathbb{E}[u^T Q u] = O(1)$$

► The same way:

$$u^{T}Q_{-i}x_{i}, u^{T}\tilde{Q}_{1}x_{i} \in O(1) \pm C\mathcal{E}_{2}(c) + C\mathcal{E}_{1}\left(\frac{c}{\sqrt{p}}\right)$$

Preliminary lemmas

$$\blacktriangleright \ \mathbb{E}\left[\frac{1}{n}x_i^T Q_{-i}x_i\right] = \frac{1}{n}\operatorname{Tr}(\Sigma \mathbb{E}[Q_{-i}]) \le \frac{1}{n}\operatorname{Tr}(\Sigma)\mathbb{E}\left[\|Q_{-i}\|\right] = O(1)$$

$$\|\mathbb{E}Q_{-i} - \mathbb{E}Q\| = \sup_{\|u\|, \|v\| \le 1} u^T \left(\mathbb{E}Q_{-i} - \mathbb{E}Q\right) v$$

$$= \sup_{\|u\|, \|v\| \le 1} \mathbb{E}\left[\frac{1}{n} u^T Q_{-i} x_i x_i^T Q v\right] = O\left(\frac{1}{n}\right)$$

$$\begin{array}{l} \bullet \ \ \frac{1}{n} x_i^T Q_{-i} x_i \in \delta_1 \pm C \mathcal{E}_2(c) + C \mathcal{E}_1 \left(\frac{c}{\sqrt{n}} \right) \text{ (recall that } \\ \delta_1 = \frac{1}{n} \operatorname{Tr}(\Sigma \mathbb{E}[Q])) \end{array}$$

End of the proof of the estimation with the first

deterministic equivalent
$$ilde{Q}_1 = \left(rac{\Sigma}{1+\delta_1} + zI_p
ight)^{-1}$$

► Since
$$\left\| \tilde{\Sigma} \tilde{Q}_1 \right\| = O(1)$$
, $\varepsilon_i = \frac{1}{n} \mathbb{E} \left[u^T Q_{-i} x_i x_i^T Q \tilde{\Sigma} \tilde{Q}_1 v \right] = O\left(\frac{1}{n}\right)$

$$\Delta_{i} = \mathbb{E}\left[u^{T}Q_{-i}\left(\frac{x_{i}x_{i}^{T}}{1 + \frac{1}{n}x_{i}^{T}Q_{-i}x_{i}} - \frac{\Sigma}{1 + \delta_{1}}\right)\tilde{Q}_{1}v\right]$$

$$= \mathbb{E}\left[\frac{u^{T}Q_{-i}x_{i}x_{i}^{T}\tilde{Q}_{1}v(\delta_{1} - \frac{1}{n}x_{i}^{T}Q_{-i}x_{i})}{(1 + \frac{1}{n}x_{i}^{T}Q_{-i}x_{i})(1 + \delta_{1})}\right]$$

$$+ \mathbb{E}\left[u^{T}Q_{-i}\left(\frac{x_{i}x_{i}^{T} - \Sigma}{1 + \delta_{1}}\right)\tilde{Q}_{1}v\right]$$

$$= O\left(\frac{1}{\sqrt{n}}\right)$$

$$\Longrightarrow \left\| \mathbb{E}\left[Q\right] - \tilde{Q}_1 \right\| = O\left(\frac{1}{\sqrt{n}}\right)$$

Introduction

I- Concentration of the Measure Phenomenon

- A Description of the phenomenon
- B Concentration of random variables
- C Concentration of the norm of a random vector
- D Concentration of the sum and the product of random vectors

- A Position of the problem
- B A first Deterministic equivalent
- C Second Deterministic equivalent

Second deterministic equivalent

Note that
$$\delta_1 = \frac{1}{n} \operatorname{Tr}(\Sigma \mathbb{E}[Q]) = \frac{1}{n} \operatorname{Tr}(\Sigma \tilde{Q}_1) + O\left(\frac{1}{\sqrt{n}}\right)$$
$$= \frac{1}{n} \operatorname{Tr}\left(\Sigma \left(\frac{\Sigma}{1 + \delta_1} + z I_p\right)^{-1}\right) + O\left(\frac{1}{\sqrt{n}}\right)$$

The function

$$\mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$$

$$\delta \longmapsto \frac{1}{n} \operatorname{Tr} \left(\Sigma \left(\frac{\Sigma}{1+\delta} + z I_{p} \right)^{-1} \right)$$

is contracting for the semimetric: $d_s(\delta, \delta') = \frac{|\delta - \delta'|}{\sqrt{s_{s'}}}$ ⇒ It admits a unique fixed point:

$$\delta_{2}=rac{1}{n}\operatorname{Tr}\left(\Sigma\left(rac{\Sigma}{1+\delta_{2}}+zI_{p}
ight)^{-1}
ight)$$

End of the proof

It can be showed that $\delta_1 - \delta_2 = O\left(\frac{1}{\sqrt{n}}\right)$ thus if we set

$$ilde{Q}_2 = \left(rac{\Sigma}{1+\delta_2} + z I_p
ight)^{-1}$$
:

$$\begin{split} \left\| \mathbb{E}\left[Q \right] - \tilde{Q}_2 \right\| & \leq \left\| \mathbb{E}\left[Q \right] - \tilde{Q}_1 \right\| + \left\| \tilde{Q}_1 - \tilde{Q}_2 \right\| \\ & \leq \left\| \tilde{Q}_1 \frac{\Sigma(\delta_2 - \delta_1)}{(1 + \delta_2)(1 + \delta_1)} \tilde{Q}_2 \right\| + O\left(\frac{1}{\sqrt{n}}\right) & = O\left(\frac{1}{\sqrt{n}}\right) \end{split}$$

$$\Longrightarrow orall t > 0 \; : \; \mathbb{P}\left(\left|rac{1}{p}\operatorname{\mathsf{Tr}}(Q) - rac{1}{p}\operatorname{\mathsf{Tr}}(ilde{Q}_2)
ight| \geq t
ight) \leq C e^{-cnt^2}$$

