Q1.

The equation shows that the value of X will be in the right order if we divide B by A and take the square root of the Answer. But matriculants are just that-matrices. Counting the number of matriculants who are 0

$$A = \begin{pmatrix} 1 & 4 \\ 1 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$

$$x^2 = \frac{A}{B}$$
 ----- > equation 1

$$x^2 = \frac{\binom{1}{1} \quad \frac{4}{4}}{\binom{1}{1} \quad \frac{2}{2}}$$

$$x = \sqrt{\frac{\binom{1}{1} + 4}{\binom{1}{1} + 2}}$$
 ---- > equation 2

= =
$$\sqrt{[1 \ 4 \ ; \ 1 \ 4]/[1 \ 2 \ ; \ 1 \ 2]}$$
 which is option B as Equation 2 = Equation 4

Option A:
$$Sqrt([1 \ 4 \ ; \ 1 \ 4]/Sqrt[1 \ 2 \ ; \ 1 \ 2])$$
 = $\sqrt{[1 \ 4 \ ; \ 1 \ 4]/\sqrt{[1 \ 2 \ ; \ 1 \ 2]}}$ ---- > equation 3

Option B:
$$Sqrt([1 \ 4; 1 \ 4]/[1 \ 2; 1 \ 2])$$

= $\sqrt{[1 \ 4; 1 \ 4]/[1 \ 2; 1 \ 2]}$ ---- > equation 4

Option C:
$$Sqrt([1 \ 4 \ ; \ 1 \ 4] \setminus [1 \ 2 \ ; \ 1 \ 2])$$

$$= \sqrt{[1 \ 4 \ ; \ 1 \ 4] \setminus [1 \ 2 \ ; \ 1 \ 2]} ---- > equation 5$$

Option D:
$$Sqrt([1 \ 4 \ , \ 1 \ 4] \setminus [1 \ 2 \ , \ 1 \ 2])$$
 = $\sqrt{[1 \ 4 \ , \ 1 \ 4] \setminus [1 \ 2 \ , \ 1 \ 2]}$ ---- > equation 6

Q2.

```
>> Q3
Error using input
Not enough input arguments.

Error in Q3 (line 3)
a(i,j)=input();
```

The input syntax is incorrect. Even though we don't have to write anything inside of them, there should be a pair of single inverted commas in the syntax. Yet we have to use

```
Syntax: a(i,j) = input(")

OR

a(i,j) = input('Enter\ value\ Column - wise.')
```

Q3.

The function to be used is plot3(x, y, t). This will enable her to draw the requested three-dimensional layouts. With t on the z-axis, the plot will display both the functions "f" and "g".

Q4.

X	Y	1 st Order	2 nd Order	3 rd Order
0	1			
		$=\frac{0-1}{1-0}=-1$		
1	0		$=\frac{\frac{-3}{2}+1}{\frac{2}{2}-0}=\frac{-3}{4}$	
		$= \frac{[1/2] - 0}{[2/3] - 1} = \frac{-3}{2}$	3 0	$\frac{\left[-0.603 + \left[\frac{3}{4}\right]\right]}{\left[\frac{1}{3}\right] - 0} = 0.481$

$\frac{2}{3}$	$\frac{1}{3}$		$\frac{\left[-1.098 + \left[\frac{2}{3}\right]\right]}{\left[\frac{1}{3}\right] - 1} = -0.603$	
		$\frac{\left[0.866 - {\binom{1}{2}}\right]}{{\binom{1}{3}} - {\binom{2}{3}}} = -1.098$		
$\frac{1}{3}$	0.866			

$$f(r) = 1 - 1(x - 0) - \frac{3}{4}(x - 0)(x - 1) + 0.441(x - 0)(x - 1)\left(x - \frac{2}{3}\right)$$

Put x = 1.5

$$\Rightarrow 1 - 1(1.5 - 0) - \frac{3}{4}(1.5 - 0)(1.5 - 1) + 0.441(1.5 - 0)(1.5 - 1)\left(1.5 - \frac{2}{3}\right)$$

$$\Rightarrow 1 + [-1.5] + [-0.5625] + [0.275625]$$
$$= -0.786875$$

Q5.

X	1.2	1.5	1.6	2	2.2
Y	0.4275	1.139	0.8736	-0.9751	-0.1536

Cubic Spline Formula is;

$$f(x) = \frac{(x_i - x)^3}{6h} A_{i-1} + \frac{(x - x_{i-1})^3}{6h} A_i + \frac{(x_i - x)}{h} (y_{i-1} - \frac{h^2}{6} A_{i-1}) + \frac{(x - x_{i-1})}{h} (y_i - \frac{h^2}{6} A_i) - \dots (1)$$

We have
$$A_{i-1} + 4A_i + A_{i+1} = \frac{6}{h^2}(y_{i-1} - 2y_i + y_{i+1})$$
 -----(2)

Here h = 0.3, n = 4

$$A_0 = 0, A_4 = 0$$

Substitute i = 1 in equation (2)

$$A_0 + 4A_1 + A_2 = \frac{6}{h^2}(y_0 - 2y_1 + y_2)$$

$$\Rightarrow 0 + 4A_1 + A_2 = \frac{6}{0.09} (0.4275 - 2 \times 1.139 + 0.8736)$$

$$\Rightarrow$$
 4*A*₁ + *A*₂ = -65.1267

Substitute i = 2 in equation (2)

$$\Rightarrow A_1 + 4A_2 + A_3 = \frac{6}{h^2}(y_1 - 2y_2 + y_3)$$

$$\Rightarrow A_1 + 4A_2 + A_3 = \frac{6}{0.09} (1.139 - 2 \times 0.8736 \pm 0.9751)$$

$$\Rightarrow A_1 + 4A_2 + A_3 = -105.5533$$

Substitute i = 3 in equation (2)

$$\Rightarrow A_2 + 4A_3 + A_4 = \frac{6}{h^2}(y_2 - 2y_3 + y_4)$$

$$\Rightarrow A_2 + 4A_3 + 0 = \frac{6}{0.09}(0.8736 - 2 \times -0.9751 \pm 0.1536)$$

$$\Rightarrow A_2 + 4A_3 = 178.0133$$

$$4A_1 + A_2 = -65.1267 \times 1 \Rightarrow 4A_1 + A_2$$

_

$$A_1 + 4A_2 + A_3 = -105.5533 \times 4$$

$$-15A_2 - 4A_3 = 357.0867 - (4)$$

$$A_2 + 4A_3 = 178.0133 \times 15$$

+

$$-15A_2 - 4A_3 = 357.0867 \times 1 \Rightarrow$$

$$56A_3 = 3027.2867$$
 ---- (5)

Now use back substitution method

From (5)

$$56A_3 = 3027.2867$$

$$\Rightarrow A_3 = \frac{3027.2867}{56} = 54.0587$$

From (3)

$$\Rightarrow A_2 + 4A_3 = 178.0133$$

$$\Rightarrow A_2 + 4(54.0587) = 178.0133$$

$$\Rightarrow A_2 = 178.0133 - 216.2348 = -38.2214$$

From (2)

$$\Rightarrow A_1 + 4A_2 + A_3 = -105.5533$$

$$\Rightarrow$$
 $A_1 + 4(-38.2214) + (54.0587) = -105.5533$

$$\Rightarrow$$
 $A_1 - 98.827 = -105.5533$

$$\Rightarrow A_1 = -105.5533 + 98.827 = -6.7263$$

Solution using Elimination method.

$$A_1 = -6.7263$$
, $A_2 = -38.2214$, $A = 54.0587$

Substitute i = 1 in equation (10, we get Cubic Spline in 1^{st} interval $[x_0, x_1] = [1.2, 1.5]$

$$f_1(x) = \frac{(x_1 - x)^3}{6h} M_0 + \frac{(x - x_0)^3}{6h} A_1 + \frac{(x_1 - x)}{h} (y_0 - \frac{h^2}{6} A_0) + \frac{(x - x_0)}{h} \left(y_1 - \frac{h^2}{6} A_1 \right)$$

$$f_1(x) = \frac{(1.5 - x)^3}{1.8}(0) + \frac{(x - 1.2)^3}{1.8}(-6.7263) + \frac{(1.5 - x)}{0.3}(0.4275 - \frac{0.09}{6}(0) + \frac{(x - 1.2)}{0.3}\left(1.139 - \frac{0.09}{6}(-6.7263)\right)$$

$$f_1(x) = -3.7368x^3 + 13.4526x^2 - 13.4351x + 3.6352, for 1.2 \le x \le 1.5$$

Substitute i = 2 in equation (1), we get Cubic Spline in 2^{nd} interval $[x_1, x_2] = [1.5, 1.6]$

$$f_2(x) = \frac{(x_2 - x)^3}{6h} A_1 + \frac{(x - x_1)^3}{6h} A_2 + \frac{(x_2 - x)}{h} (y_1 - \frac{h^2}{6} A_1) + \frac{(x - x_1)}{h} \left(y_2 - \frac{h^2}{6} A_2 \right)$$

$$f_2(x) = \frac{(1.6-x)^3}{1.8}(-6.7263) + \frac{(x-1.5)^3}{1.8}(-38.2214) + \frac{(1.6-x)}{0.3}(1.139 - \frac{0.09}{6}(-6.7263) + \frac{(x-1.5)}{0.3}\Big(0.8736 - \frac{0.09}{6}(-38.2214)\Big)$$

$$f_2(x) = -17.4973x^3 + 77.6167x^2 - 113.9413x + 55.7372, for \ 1.5 \le x \le 1.6$$

Substitute i=3 in equation (1), we get Cubic Spline in 3^{rd} interval $[x_2,x_3]=[1.6,2]$

$$f_3(x) = \frac{(x_3 - x)^3}{6h} A_2 + \frac{(x - x_2)^3}{6h} A_3 + \frac{(x_3 - x)}{h} (y_2 - \frac{h^2}{6} A_2) + \frac{(x - x_2)}{h} \left(y_3 - \frac{h^2}{6} A_3 \right)$$

$$f_3(x) = \frac{(2-x)^3}{1.8}(-38.2214) + \frac{(x-1.6)^3}{1.8}(54.0587) + \frac{(2-x)}{0.3}(0.8736 - \frac{0.09}{6}(-38.2214) + \frac{(x-1.6)}{0.3}(-0.9751 - \frac{0.09}{6}(54.0587))$$

$$f_3(x) = -12.43695(2-1.8)^3 + 22.33158(1.8-1.6)^3 + 4.174(2-1.8) + -6.010(1.8-1.6)$$

$$f_3(x) = -0.09949567 + 0.178652664 + 0.83478266 + 1.2021$$

For y(1.8) so substitute x = 1.8 in $f_3(x)$

$$f_3(1.8) = -0.2867$$

 \Rightarrow 8.125 $\frac{m}{c^2}$

Q6.

X	16	22	24
V	45	63	28

Using Lagrange's Interpolation;

$$v = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} v_0 + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} v_1 + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} v_2$$

$$= \frac{(x - 22)(x - 24)}{(16 - 22)(16 - 24)} \times 45 + \frac{(x - 16)(x - 24)}{(22 - 16)(12 - 24)} \times 63 + \frac{(x - 16)(x - 22)}{(24 - 16)(24 - 22)} \times 28$$

$$= (x^2 - 46x + 528) \times 0.9375 + (x^2 - 40x + 384) \times (-5.25) + (x^2 - 38x + 352) \times (1.75)$$

$$v = -2.5625x^2 + 100.375x - 905$$

$$\frac{dv}{dt} = -5.125x + 100.375$$

$$At \ x = 18 \ \Rightarrow \ -5.125(18) + 100.375$$

Explanation.

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + (1)$$

Replace h by (-h) in equation (1)

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2!}f'''(x) - \frac{h^3}{3!}f''''(x) + (2)$$

Replace h by 3h in equation (A)

$$f(x+3h) = f(x) + 3hf'(x) + \frac{9h^2}{2!}f''(x) + \frac{27h^3}{3!}f'''(x) + (3)$$

Multiply equation (A) by 9.

$$9f(x-h) = 9f(x) - 9hf'(x) + \frac{9h^2}{2!}f''(x) - \frac{9h^3}{3!}f'''(x) + (4)$$

Subtract eq (3) by eq (4);

$$f(x+3h)-9f(x-h)=f(x)-9f(x)+3hf'(x)+9hf'(x)+9\frac{h^2}{2!}f''(x)-9h^2f''(x)+27\frac{h^3}{3!}f'''(x)+\frac{9h^3}{3!}f'''(x)$$

$$f(x+3h) - 9f(x-h) = -8f(x) + 12hf'(x) + 36\frac{h^3}{3!}f'''(x)$$

$$f(x+3h) - 9f(x-h) + 8f(x) = 12hf'(x) + O(h^3)$$

Divided by 12h

$$\frac{f(x+3h) - 9f(x-h) + 8f(x)}{12h} - O(h^2) = f'(x)$$

The order of the truncation error is $O(h^2)$.

Q8.

Using Taylors Expansion:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2 f''(x)}{2!} + \frac{h^3 f'''(x)}{3!} + \cdots$$

$$f(x+2h) = f(x) + 2hf'(x) + \frac{4h^2f''(x)}{2!} + \frac{8h^3f'''(x)}{3!} + \cdots$$

$$f(x+2h) - 4f(x+h)$$

$$= f(x) - 4f(x) + 2hf'(x) - 4hf'(x) + \frac{4h^2f''(x)}{2!} - \frac{4h^2f''(x)}{2!} + \frac{8h^3f'''(x)}{3!} - \frac{4h^3f'''(x)}{3!} + \cdots$$

$$f(x+2h) - 4f(x+h) = -3f(x) - 2hf'(x) + \frac{4h^3f'''(x)}{3!} + \cdots$$

$$f(x+2h) - 4f(x+h) = -3f(x) - 2hf'(x) + O(h^3)$$

$$f(x+2h) - 4f(x+h) + 3f(x) = -2hf'(x) + O(h^3)$$

$$\frac{-f(x+2h) + 4f(x+h) - 3f(x)}{2h} = f'(x) + O(h^2)$$

$$f'(x) = \frac{-f(x+2h) + 4f(x+h) - 3f(x)}{2h} + O(h^2)$$

The order of the truncation error is $O(h^2)$.

Q9.

Solution:

Let
$$f(x) = \sqrt{x^2 + 1}$$
, $a = -1$, $b = 1$, $h = 0.2$

 $Subintervals\ are;\ [-1,1.4142]\ , [-0.8,1.2806]\ , [-0.6,1.1662]\ , [-0.4,1.077]\ , [-0.2,1.02]\ , [0,1]\ , [-0.1,1.02]\ ,$

$$\left[0.2, 1.02 \right], \left[0.4, 1.077 \right], \left[0.6, 1.1662 \right], \left[0.8, 1.2806 \right] \textit{and} \left[1, 1.4142 \right]$$

$$S_{10} = \frac{h}{3} [f(-1 + 4(f(-0.8) + f(-0.4) + f(0) + f(0.4) + f(0.8)) + 2(f(-0.6) + f(-0.2) + f(0.2) + f(0.6)) + f(1)]$$

$$S_{10} = \frac{0.2}{3} [1.4142 + 1.4142 + 4(1.2806 + 1.077 + 1 + 1.077 + 1.2806) + 2(1.1662 + 1.0198 + 1.0198 + 1.1662)]$$

$$S_{10} = 2.296$$

Q10.

Solution:

Recall the three point Guassian Quadrature Formula for $I = \int_a^b f(x)dx$

$$I = \frac{b-a}{2} \left\{ w_1 f(x_1) + w_2 f(x_2) + w_3 f(x_3) \right\}$$

Where
$$x_1 = \frac{b-a}{2}z_1 + \frac{b+a}{2}$$
, $x_2 = \frac{b-a}{2}z_2 + \frac{b+a}{2}$, $x_3 = \frac{b-a}{2}z_3 + \frac{b+a}{2}$

$$w_1 = \frac{5}{9}$$
 , $w_2 = \frac{8}{9}$, $w_3 = \frac{5}{9}$

and

$$z_1 = -\sqrt{\frac{3}{5}}$$
 , $z_2 = 0$, $z_3\sqrt{\frac{3}{5}}$

Now we have,

$$I = \int_1^{2.2} \ln(x) \, dx$$

$$\therefore x_1 = 0.6 \left(-\sqrt{\frac{3}{5}} \right) + 1.6$$

$$= -0.4647 + 1.6 = 1.1353$$

$$x_2 = \frac{0.6}{(0)} + 1.6 = 1.6$$

$$x_3 = 0.6\left(\sqrt{\frac{5}{3}}\right) + 1.6 = 0.4647 = 1.6 = 2.0647$$

Now,
$$\ln(x_1) = \ln(1.1353) = 0.1268$$

$$ln(x_2) = ln (1.60 = 0.47)$$

$$\ln(x_3) = \ln(2.0647) = 0.7249$$

∴ We have

$$I = 0.6 \left\{ \frac{5}{9} \times 0.1268 + \frac{8}{9} \times 0.47 + \frac{5}{9} \times 0.7249 \right\}$$

$$= 0.6(0.070 + 0.417 + 0.402)$$
$$= 0.6(0.889)$$
$$= 0.533$$

 $\Rightarrow I = 0.5334$

And them I have done it using the 2nd method:

$$X = \frac{1}{2}[t(b-a) + a + b]$$

$$X = \frac{1}{2}[t(2.2-1) + 1 + 2.2]$$

$$X = \frac{1}{2}[(t(1.2) + 3.2]$$

$$X = \frac{1}{2}(1.2t + 3.2)$$

$$X = \frac{3}{5}t + \frac{8}{5}$$

$$X = 0.6t + 1.6$$

$$dx = \frac{1}{2}(b-a)dt$$

$$dx = \frac{1}{2}(2.2-1)dt$$

$$dx = \frac{1}{2}(1.2)$$

$$dx = \frac{3}{5}$$

$$dx = 0.6dt$$

$$I = \int_{-1}^{1} \ln x dx$$

$$I = \int_{-1}^{1} \ln (0.6t + 1.6)0.6dt$$

$$I = 0.6 \int_{1}^{-1} \ln (0.6t + 1.6)dt$$

 $I = \int_{-1}^{1} f(t)dt = c_1 f(t_1) + c_2 f(t_2) + c_3 f(t_3)$ sub value of C from the table

$$c_1 = 0.5555556$$
 $t_1 = -0.77459667$

$$c_2 = 0.8888889$$
 $t_2 = 0$

$$c_3 = 0.5555556$$
 $t_3 = 0.77459667$

 $I = 0.5555556[0.6(ln(0.6 \times -0.77459667) + 1.6)] + 0.8688889[0.6(ln(0.6 \times 0) + 1.6)] + 0.5555556[0.6(ln(0.6 \times (0.77459667)) + 1.6]$

$$I = 0.5346$$

