```
In [4]:
         import pandas as pd
         df = pd.read_csv("Churn_Modelling.csv")
         df.head()
Out[4]:
             RowNumber Customerld Surname CreditScore Geography
                                                                    Gender Age Tenure
                                                                                          Balance
          0
                      1
                          15634602
                                                    619
                                                                    Female
                                                                             42
                                                                                             0.00
                                    Hargrave
                                                            France
          1
                      2
                          15647311
                                         Hill
                                                    608
                                                             Spain
                                                                    Female
                                                                             41
                                                                                     1
                                                                                         83807.86
          2
                      3
                          15619304
                                                    502
                                                                                        159660.80
                                        Onio
                                                            France
                                                                    Female
                                                                             42
                          15701354
                                                    699
                                                                    Female
                                                                                             0.00
                      4
                                        Boni
                                                            France
                                                                             39
                                                                                     1
                          15737888
                                                    850
                                                                                     2 125510.82
                      5
                                     Mitchell
                                                             Spain Female
                                                                             43
         UNIVARIATE ANALYSIS:
In [6]: df['Age'].mean()
Out[6]: 38.9218
In [7]: df['Age'].median()
Out[7]: 37.0
In [8]: df['Age'].mode()
```

Out[8]: 0

0 37
dtype: int64

In [9]: import seaborn as sns
import matplotlib.pyplot as plt
sns.FacetGrid(df, hue = "Exited", size=5).map(sns.distplot, 'Age').add_legend()

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:337: UserWarning: Th
e `size` parameter has been renamed to `height`; please update your code.
 warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWar ning: `distplot` is a deprecated function and will be removed in a future versi on. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWar ning: `distplot` is a deprecated function and will be removed in a future versi on. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

Out[9]: <seaborn.axisgrid.FacetGrid at 0x7f292601b690>

BIVARIATE ANALYSIS:

```
In [12]: df.sample(100).plot.scatter(x='Tenure',y='EstimatedSalary')
plt.show()
```


In [13]: df.sample(100).plot.hexbin(x='Tenure',y='EstimatedSalary',gridsize=15)
 plt.show()

MULTI-VARIATE ANALYSIS

In [14]: pd.plotting.scatter_matrix(df.loc[:100,'CreditScore':'EstimatedSalary'], diagonal
 plt.show()

In [15]: df.describe()

\cap	4-	[15]	١.
U	uι	ΙТЭΙ	1

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumC
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	100
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	

HANDLING MISSING VALUES

In [1	L6]:	<pre>df.isnull().any()</pre>
-------	------	------------------------------

Out	· F 1	167	
out	- 1 -	LU	

RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False
IsActiveMember	False
EstimatedSalary	False
Exited	False
dtype: bool	

FINDING OUTLIERS AND REPLACING THEM USING IQR

In [17]: sns.boxplot(df.NumOfProducts)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarnin g: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without a n explicit keyword will result in an error or misinterpretation. FutureWarning

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x7f28f59523d0>


```
In [18]: Q1 = df.NumOfProducts.quantile(0.25)
    Q3 = df.NumOfProducts.quantile(0.75)
    IQR = Q3 - Q1
    upperLimit = Q3 + 1.5 * IQR
    lowerLimit = Q1 - 1.5 * IQR
    df = df[df.NumOfProducts < upperLimit]
    sns.boxplot(df.NumOfProducts)</pre>
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarnin g: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without a n explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x7f28f58d9cd0>

ENCODING

```
In [19]: from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df.Geography = le.fit_transform(df.Geography)
df.head()
```

/usr/local/lib/python3.7/dist-packages/pandas/core/generic.py:5516: SettingWith CopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

self[name] = value

Λu	+1	Г1	۱۵	п	
υu	ıu	IJ	レフ	- 1	
		-		-	

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance
0	1	15634602	Hargrave	619	0	Female	42	2	0.00
1	2	15647311	Hill	608	2	Female	41	1	83807.86
2	3	15619304	Onio	502	0	Female	42	8	159660.80
3	4	15701354	Boni	699	0	Female	39	1	0.00
4	5	15737888	Mitchell	850	2	Female	43	2	125510.82
4									•

One hot encoding:

Out[20]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Age	Tenure	Balance	NumOfPro
0	1	15634602	Hargrave	619	0	42	2	0.00	
1	2	15647311	Hill	608	2	41	1	83807.86	
2	3	15619304	Onio	502	0	42	8	159660.80	
3	4	15701354	Boni	699	0	39	1	0.00	
4	5	15737888	Mitchell	850	2	43	2	125510.82	
4									•

SPLITTING DATA INTO DEPENDANT AND INDEPENDANT VARIABLES:

```
In [21]: #Independent variable X
          X = df_main.drop(columns = ['Exited', 'Surname'], axis = 1)
          X.head()
Out[21]:
              RowNumber Customerld CreditScore Geography Age Tenure
                                                                            Balance NumOfProducts Ha
           0
                        1
                             15634602
                                             619
                                                               42
                                                                        2
                                                                               0.00
                        2
           1
                             15647311
                                             608
                                                           2
                                                               41
                                                                        1
                                                                            83807.86
                                                                                                  1
           2
                        3
                            15619304
                                             502
                                                           0
                                                               42
                                                                          159660.80
                                                                                                  3
            3
                        4
                            15701354
                                             699
                                                           0
                                                               39
                                                                        1
                                                                               0.00
                                                                                                  2
                                                           2
                                                                        2 125510.82
                                                                                                  1
                        5
                             15737888
                                             850
                                                               43
In [22]:
          #Dependent variable Y
          Y = df main.Exited
          Y.head()
Out[22]: 0
                1
          1
                0
          2
                1
          3
                0
          Name: Exited, dtype: int64
          SCALING THE INDEPENDANT VARIABLE:
In [23]: | from sklearn.preprocessing import scale
          X_scaled = pd.DataFrame(scale(X), columns = X.columns)
          X_scaled.head()
Out[23]:
              RowNumber Customerld CreditScore
                                                                                  Balance
                                                                                           NumOfProduc
                                                  Geography
                                                                  Age
                                                                         Tenure
           0
                                                    -0.901890 0.297483 -1.041259 -1.223855
                 -1.730861
                            -0.784231
                                         -0.326110
                                                                                                 -0.9356
            1
                 -1.730515
                            -0.607593
                                        -0.439952
                                                    1.512868 0.202106 -1.387070
                                                                                  0.118987
                                                                                                 -0.9356
           2
                 -1.730169
                            -0.996853
                                        -1.536977
                                                    -0.901890 0.297483
                                                                       1.033605
                                                                                  1.334368
                                                                                                 2.6959
            3
                 -1.729823
                             0.143532
                                         0.501833
                                                    -0.901890
                                                             0.011351 -1.387070 -1.223855
                                                                                                 0.8801
            4
                 -1.729476
                             0.651305
                                         2.064576
                                                    1.512868
                                                             0.392860 -1.041259
                                                                                  0.787188
                                                                                                 -0.9356
```

TRAING THE TEST SPLIT:

In [24]: from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X_scaled, Y, test_size = 0.3,
X_train.head()

Out[24]: Balance NumOfPr RowNumber CustomerId CreditScore Geography Age Tenure 5833 0.301456 0.603674 -0.916020 0.305489 -0.751667 -1.041259 0.582053 -0.1 9935 1.730207 -1.178578 1.246982 -0.901890 0.011351 -0.003827 -1.223855 0.8 863 -1.431329 -0.056206 0.284498 0.305489 -1.323931 1.725226 0.009395 0.0 8866 1.357263 -1.559984 -0.098426 -0.901890 1.251256 -0.349638 -1.223855 -0.

-0.574493

-0.079736

→

0.305489

0.678992

-0.003827

1.057170

1.0

In [25]: X_train.shape

3761

-0.421923

Out[25]: (6958, 13)

In [26]: Y_train.shape

Out[26]: (6958,)