Kurs rozszerzony języka Python

Lista 1.

Każde zadanie jest warte 2 punkty. Na pracowni do oceny należy przedstawić trzy zadania.

Zadanie 1.

W Polsce podatek od towarów i usług (VAT) liczy się na dwa sposoby: w przypadku faktur sumuje się wartości netto i mnoży się przez 23%, a w przypadku kas fiskalnych i paragonów liczy się VAT 23% od każdej pozycji osobno i na końcu się sumuje. Zaprogramuj w Pythonie dwie funkcje zwracające podatek VAT dla zadanej listy zakupów

- vat_faktura(lista)
- vat_paragon(lista)

gdzie lista jest listą liczb reprezentujących cenę netto. Zazwyczaj oczekujemy, że poniższy program wypisze True

```
print(vat_faktura(zakupy) == vat_paragon(zakupy))
```

gdzie zakupy to lista liczb typu float.

Poszukaj takiej listy zakupy, dla której powyższy program wypisze False i umieść tę listę w pliku źródłowym. Wykonaj eksperyment polegający na zamianie liczb float w liście zakupy na ich odpowiedniki klasy Decimal i sprawdzeniu, czy nadal program w ramce wypisuje False.

Zadanie 2.

Napisz funkcję is_palindrom(text), która zwraca **True** jeśli argument jest palindromem. Zakładamy, że text może być zarówno pojedynczym słowem (np. rotor czy oko), ale też dłuższym wyrażeniem: "Kobyła ma mały bok."; w takim przypadku ignorujemy znaki przestankowe, spacje i wielkość liter.

Sprawdź, czy funkcja poprawnie działa dla tekstów obcojęzycznych:

```
is_palindrom("Eine güldne, gute Tugend: Lüge nie!")
is_palindrom("Míč omočím.")
```

Zadanie 3.

15 listopada br. będzie Światowy Dzień Tabliczki Mnożenia. Zaprogramuj funkcję tabliczka(x1, x2, y1, y2, d), która wypisze na ekran tabliczkę mnożenia dla liczb $[x_1, x_1 + d, x_1 + 2 * d, \ldots, x_2] \times [y_1, y_1 + d, y_1 + 2 * d, \ldots, y_2]$, gdzie x_1, x_2, y_1, y_2 i d są liczbami typu float.

Na przykład tabliczka (3.0, 5.0, 2.0, 4.0, 1.0) powinno wypisać

```
3.0 4.0 5.0
2.0 6.0 8.0 10.0
3.0 9.0 12.0 15.0
4.0 12.0 16.0 20.0
```

Zwróć uwagę, by szerokości kolumn były jednakowe oraz odpowiednie do liczby cyfr w liczbach. Zakładamy, że x_1, x_2, y_1, y_2 mogą być też liczbami ujemnymi.

Zadanie 4.

Liczbę π (a właściwie jej kolejne przybliżenia) można wyliczać na wiele sposobów. Jednym z nich jest rzucanie wielokrotne strzałką do kwadratowej tarczy z wpisanym okręgiem:

i policzenie liczby trafień wewnątrz okręgu (ltwo) oraz całkowitej liczby trafień w tarcze (cltwt). Te dwie liczby pozwolą nam wyliczyć przybliżenie liczby π :

$$\pi \approx \frac{4 * \text{ltwo}}{\text{cltwt}}$$

Zaprogramuj symulację takiego rzucania lotką w tarczę, losując współrzędne punktu na tarczy. Program powinien wypisywać kolejne uzyskane przybliżenia π po każdym rzucie. Program może się zakończyć po wykonaniu zadanej liczby losowań bądź gdy różnica między otrzymanym przybliżeniem a wartością math.pi będzie mniejsza od zadanej wartości.

Zadanie 5.

Zaprogramuj funkcję, która dla zadanej listy stringów lista_slow zwróci najdłuż-szy wspólny prefiks dla przynajmniej trzech elementów lista_slow. Na przykład¹

powinno zwrócić

Wielkość liter nie ma dla nas znaczenia.

 $Marcin\ Młotkowski$

 $^{^1}$ Inspiracja: $\ensuremath{\textit{Cyberiada}},$ Stanisław Lem