Tutorial 2

EC31003: Digital Electronic Circuits

Questions

- 1. Simplify the following Boolean functions using k-map:
 - a. $Y(A, B, C, D) = \Sigma m(2, 3, 8, 10, 11, 12, 14, 15)$
 - b. $Y(A, B, C, D) = \prod M(0, 1, 2, 5, 6, 8, 10, 13, 14)$
 - c. $Y(A, B, C, D) = \sum m(2, 3, 4, 5) + \sum d(10, 11, 12, 13, 14, 15)$
- 2. Consider the function $F(P, Q, R, S) = \Sigma m(1, 5, 6, 7, 11, 12, 13, 15)$ Find the number of:
 - a. Prime Implicants
 - b. Essential Prime Implicants
- 3. A digital circuit with three inputs (a, b, and, c) performs the following function:

$$F(a, b, c) = abc'+b'$$

- a. Find the min-terms of the output expression F(a, b, c).
- b. Find the min-terms of the expression F'(a, b, c).

Time limit (20 min.)

4. Consider the following truth tables for addition (+), multiplication (+) and division(+) operation,

 $A \times B$

A+B				
Α	B A+B			
0	0	0		
0	1	1		
1	0	1		
1	1	1		

Α	В	AxB
0	0	0
0	1	0
1	0	0
1	1	1

7,4,6			
Α	В	A/B	
0	0	0	
0	1	0	
1	0	X (Don't care)	
1	1	1	

A/B

Find the Boolean logic (using k-map minimization) for the expression: $F = (A+(B \times C))/D$

5. Solve the POS function of 5 variable K-map using the following expression $f(P,Q,R,S,T) = \prod M(0, 2, 4, 7, 8, 10, 12, 16, 18, 20, 23, 24, 25, 26, 27, 28)$

Solution 1 (a)

1. a. $Y(A, B, C, D) = \Sigma m(2, 3, 8, 10, 11, 12, 14, 15)$

Y=AD'+AC+B'C

Solution 1(b)

1 b. $Y(A, B, C, D) = \prod M(0,1,2,5,6,8,10,13,14)$

Y = (A+B+C)(B+D)(B'+C+D')(C'+D)

Solution 1(c)

1.c $Y(A, B, C, D) = \Sigma m (2, 3, 4, 5) + \Sigma d(10, 11, 12, 13, 14, 15)$

$$Y(A, B, C, D) = BC' + B'C = B \oplus C$$

Solution 2

 $F(P,Q,R,S) = \Sigma m(1,5,6,7,11,12,13,15)$

- a) No. of prime implicants = 5(1,2,3,4,5) = (P'R'S, PQR', PRS, P'QR, QS)
- b) No. of essential prime implicants = 4 (1,2,3,4) = (P'R'S, PQR', PRS, P'QR)

Solution 3

```
a)
F=abc'+b'
=abc'+b'(a+a')(c+c')
=abc'+(ab'+a'b')(c+c')
=abc'+ab'c+a'b'c+ab'c'+a'b'c'
=\Sigma(0,1,4,5,6)
```

b)One approach is to find out F' and do the same as above. Alternative, simply minterm of F' is same as maxterm of F. So, minterm of F' is $\Sigma(2,3,7)$

Solution 4

Truth table for the given expression (F) is

А	В	С	D	ВхС	A+(BxC)	(A+(BxC))/D
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	0	1	0	0	0
0	1	1	0	1	1	х
0	1	1	1	1	1	1
1	0	0	0	0	1	х
1	0	0	1	0	1	1
1	0	1	0	0	1	х
1	0	1	1	0	1	1
1	1	0	0	0	1	Х
1	1	0	1	0	1	1
1	1	1	0	1	1	Х
1	1	1	1	1	1	1

K-map minimization of minterms devised from Truth table

	C'D'	C'D	CD	CD'
A'B'				
A'B			1	X
AB	Х	1	1	X
AB'	Х	1	1	Х

Hence, final answer is, F = A + BC

Solution 5

5 variable POS function: $f(P,Q,R,S,T) = \prod M(0, 2, 4, 7, 8, 10, 12, 16, 18, 20, 23, 24, 25, 26, 27, 28)$

In this K-Map we have 4 sub-cubes:

Subcube 1: The one marked in red comprises of cells (0, 4, 8, 12, 16, 20, 24, 28) = **S+T**

Subcube 2: The one marked in blue comprises of cells (7, 23) = Q+R'+S'+T'

Subcube 3: The one marked in pink comprises of cells (0, 2, 8, 10, 16, 18, 24, 26) = **R+T**

<u>Subcube 4:</u> The one marked in yellow comprises of cells (24, 25, 26, 27) = **P'+Q'+R**

Therefore the minimal expression of the given Boolean Function can be expressed as follows:

$$f(P,Q,R,S,T)=(S+T).(Q+R'+S'+T').(R+T).(P'+Q'+R)$$