Sistema de Gestão de Dados para a Bioeconomia da Resina

Ana Carolina Menoita

Objetivo do projeto

Este projeto tem como objetivo implementar um sistema de gestão de dados (SGD) para analisar a bioeconomia da resina em florestas portuguesas de *Pinus pinaster*. O sistema utiliza dados sobre área florestal, custos de extração, impacto ambiental, mão de obra e produção de resina para fornecer insights sobre a indústria da resina. O sistema foi pensado para facilitar a tomada de decisões informadas que promovam otimizar a produção de resina, com boas praticas.

Estrutura do projeto

Bioeconomy_resin/

|---- original_data/ #Arquivos de CSV, baixados diretamente do INE

|---- processed_data/ #Um código em python para limpar os dados gerados pela IA,

os dados provenientes do INE foram trabalhados no OpenRefine

|---- sql_scrits/ #Scripts para a criação e implementação dos dados

|---- data_use_scripts/ #Scripts SQL para análise de dados

|---- documents/ #Relatorio

Recolha e preparação dos dados

Os dados forma recolhidos a partir do Instituto Nacional de Estatística (INE), como gerados pela IA (inteligência artificial) e organizados em cinco conjuntos principais, representados em arquivos CSV:

1. forest_areas.csv

ID_region – Identificador único da região (PK)

hectares – Área florestal em hectares

2. extraction_costs.csv

ID_region – Identificador único da região (PK, mas também é uma chave estrangeira que da referência a forest_areas.)

Region – Nome da região

Extraction_Cost - Custo de extração por Kg

Production - Custo de produção €/kg

3. workforce.csv

ID_region – Identificador único da região (PK, mas também é uma chave estrangeira que da referência a forest_areas.)

Region - Nome da região

Workers - Número de trabalhadores por região

4. environmental_impact.csv

ID_region – Identificador único da região (PK, mas também é uma chave estrangeira que da referência a forest_areas.)

CO2_Avoided – Quantidade de CO2 é evitado

5. resin_production.csv

ID_region – Identificador único da região (PK, mas também é uma chave estrangeira que da referência a forest_areas.)

Production_kg - Produção em Kg

Production_Euros - Produção em Euros

Os dados provenientes do INE foram limpos utilizando o OpenRefine e um script Python que se encontra na pasta processed_data, para garantir que estivesse tudo pronto para a importação no banco de dados.

Chaves Primárias e Estrangeiras

As chaves primárias garantem que cada registro nas tabelas seja único.

O campo ID_region foi utilizado como chave primária nas tabelas correspondentes, garantindo que não exista duplicações.

As chaves estrangeiras estabelecem o relacionamento entre as tabelas, permitindo que os dados se interrelacionem.

O campo ID_region nas tabelas extraction_cost, environmental_impact, workforce, resin_production serve como chave estrangeira, dando referencia a chave primária na tabela forest_areas, o que garante a integridade referencial e permite consultas mais complexas que envolvem múltiplas tabelas.

Estrutura do banco de dados e implementação

O banco de dados foi criado e projetado em 5 tabelas principais, cada uma reflete um conjunto específico de dados.

A implementação do banco de dados foi realizada utilizando MariaDB.

Criação da base de dados a utilizar e o comando para se usar esta base de dados para criar as tabelas.

```
#Criar a base de dados
    CREATE DATABASE IF NOT EXISTS bioeconomy_resin;
USE bioeconomy_resin;
```

Criação das tabelas e importação dos dados

```
⊖#Importar os dados da florest_areas
 CREATE TABLE florest areas (
     ID_region INT PRIMARY KEY,
      region VARCHAR(100),
      hectares FLOAT
@LOAD DATA LOCAL INFILE 'C:\Users\anaca\DMSPROJECT\bioeconomy_resin\processed_data\forest_areas.csv'
 INTO TABLE florest areas
FIELDS TERMINATED BY ',' ENCLOSED BY '"'
LINES TERMINATED BY '\n'
 IGNORE 1 ROWS;
⊕#Importar os dados da extraction_costs
 CREATE TABLE extraction_costs (
ID_region INT PRIMARY KEY,
      region VARCHAR(100),
      Extraction Cost FLOAT
      Production_Cost FLOAT
©LOAD DATA LOCAL INFILE 'C:\Users\anaca\DMSPROJECT\bioeconomy_resin\processed_data\extraction_costs.csv'
 INTO TABLE extraction_costs
FIELDS TERMINATED BY ',' ENCLOSED BY '"'
LINES TERMINATED BY '\n'
 IGNORE 1 ROWS
 (ID_region, region, Extraction_Cost, @Production_Cost)
 SET Production_Cost = @Production_Cost;
⊕#Importar os dados da environmental_impact
 CREATE TABLE environmental impact (
      ID_region INT PRIMARY KEY,
      region VARCHAR(100),
      CO2_Avoided FLOAT
©LOAD DATA LOCAL INFILE 'C:\Users\anaca\DMSPROJECT\bioeconomy_resin\processed_data\environmental_impact.csv'
 INTO TABLE environmental_impact
FIELDS TERMINATED BY ',' ENCLOSED BY '"'
LINES TERMINATED BY '\n'
 IGNORE 1 ROWS;
```

```
#Importar os dados da workforce
 CREATE TABLE workforce (
     ID_region INT PRIMARY KEY,
     region VARCHAR(100),
LOAD DATA LOCAL INFILE 'C:\Users\anaca\DMSPROJECT\bioeconomy_resin\processed_data\workforce.csv'
 FIELDS TERMINATED BY
                        ,' ENCLOSED BY '"'
 LINES TERMINATED BY '\n'
 IGNORE 1 ROWS;
#Importar os dados da resin_production
 CREATE TABLE resin_production (
     ID_region INT PRIMARY KEY,
     Production_T FLOAT,
     Production_Euros FLOAT
©LOAD DATA LOCAL INFILE 'C:\Users\anaca\DMSPROJECT\bioeconomy_resin\processed_data\resin_production.csv'
 INTO TABLE resin_production
FIELDS TERMINATED BY ',' ENCLOSED BY '"'
LINES TERMINATED BY '\n'
 TGNORE 1 ROWS
 (@ID_region, @Production_T, @Production_Euros)
 SET ID_region = @ID_region,
     Production_T = @Production_T,
     Production_Euros = @Production_Euros;
```

A importação dos dados foi deita após a criação de cada tabela, quis importar os dados dos arquivos CSV para o banco de dados utilizando primeiramente o comando LOAD DATA INFILE, mas como me estava a dar um erro pedindo ajuda a IA foi aconselhado escrever LOAD DATA LOCAL INFILE, este comando permite carregar os dados diretamente dos arquivos de CSV para as tabelas correspondentes.

Eu não sei se foi o comando utilizado, o caminho mal escrito ou os lines terminted que me causaram o erro de não conseguir colocar os dados na tabela.

Os @ presentes, são de variáveis temporais que estão a armazenar valores lidos dos arquivos CSV, a instrução SET é usada para atribuir esses valores às colunas correspondentes na tabela após a importação.

Análise dos Dados

Após a importação "bem-sucedida" dos dados, desenvolvi outro script SQL dataanalysis.sql, que realiza consultas para responder a 10 perguntas especificas sobre os dados.

1. Produção total de resina por região e a relação com a área florestal

Vai fornecer informação sobre a área florestal e a produção total em Kg e euros por região, além da eficiência da produção em relação à área disponível.

```
USE bioeconomy_resin;

#Produção total de resina por região e relação com área florestal

SELECT fa.region,
fa.hectares AS florest_areas,
rp.Production_Kg AS resin_production_kg,
rp.Production_Euros AS resin_production_euros,
rp.Production_Kg / af.hectares AS production_hectare

FROM florest_areas fa
INNER JOIN resin_production rp ON fa.ID_region = rp.ID_region;
```

2. Eficiência da produção de resina por trabalhador

Calcula quantos kg de resina são extraídas por "trabalhador" em cada região, permitindo identificar quais são as regiões mais eficientes.

3. Custo de extração e produção por região

Apresenta os custos médios da extração e produção por região

4. CO2 evitado por região

Quanto cada região evita em termos de CO2 em relação a quantidade produzida, fornecendo uma métrica sobre o impacto ambiental da produção.

```
#CO2 evitado por regiao
SELECT ei.region,
        ei.CO2_Avoided AS co2_evitado,
        rp.Production_Kg,
        ei.CO2_Avoided / rp.Production_kg AS co2_avoided_per_Kg
FROM environmental_impact ei
INNER JOIN resin_production rp ON ei.ID_region = rp.ID_region;
```

5. Relação entre o número de trabalhadores com a produção de resina

Como o número de trabalhadores se relaciona com a quantidade total produzida em cada região

6. Relação custo benefício da produção de resina

Calcula a relação custo-benefício da produção, permitindo identificar quais regiões têm melhor retorno financeiro em relação aos custos.

7. Comparação entre euros e kg

Compara o valor gerado pela venda da resina em euros com a quantidade produzida em kg, auxiliando a entender o preço médio por kg.

```
#Comparação do euros e de kg

SELECT region,

Production_Kg,

Production_Euros,

Production_Euros / Production_Kg AS value_per_kg

FROM resin_production

ORDER BY value_per_kg DESC;
```

8. Relação entre a área florestal e a eficiência da produção

Analisa como a eficiência da produção se relaciona com a área florestal disponível em cada região

```
#Relaçao entre a area florestal e a eficiencia da produçao
SELECT fa.region,
    fa.hectares,
    rp.Production_Kg,
    rp.Production_Kg / fa.hectares AS efficiency_per_hectare
FROM florest_areas fa
INNER JOIN resin_production rp ON fa.ID_region = rp.ID_region
ORDER BY efficiency_per_hectare DESC;
```

9. Potencial de expansão (considerando a área florestal e a eficiência atual)

Avalia o potencial para expansão da produção com base na área florestal disponível e na eficiência atual.

```
Potencial de expansao (considerando a area florestal e a efeciencia atual)
SELECT fa.region,
    fa.hectares,
    rp.Production_Kg,
    rp.Production_Kg / fa.hectares AS current_efficiency,
    rp.Production_Kg / fa.hectares AS current_efficiency,
    rp.Froduction_Kg / fa.hectares AS current_efficiency,
    fa.hectares * (SELECT MAX(Production_Kg / hectares) FROM resin_production_JOIN florest_areas ON resin_production.ID_region = florest_areas.ID_region) AS potential_output
FROM florest_areas fa
INMER JOIN resin_production rp ON fa.ID_region = rp.ID_region
ORDER BY potential_output - rp.Production_Kg DESC;
```

10. Relação entre o impacto ambiental e a escala de produção

Analisa como o impacto ambiental se relaciona com a quantidade produzida em cada região.

```
#Relaçao entre o imapcto ambiental e a escala de produçao
SELECT ei.region,
        ei.CO2_Avoided,
        rp.Production_Kg,
        ei.CO2_Avoided / rp.Production_Kg AS co2_avoided_per_Kg
FROM environmental_impact ei
INNER JOIN resin_production rp ON ei.ID_region = rp.ID_region
ORDER BY co2_avoided_per_Kg DESC;
```

Problemas encontrados e tentativa de resolução

Durante a execução do script SQL para importar os dados, enfrentei alguns erros que impediram a geração bem-sucedida dos dados no banco de dados, dentro deles, penso que tenha sido:

- Caminho dos arquivos -> o comando LOAD DATA INFILE requer que o caminho do csv esteja correto, verifiquei algumas vezes o caminho, tendo utilizado o método de copiar o

caminho do próprio ficheiro, mudei o comando para LOAD DATA LOCAL INFILE e o erro continuou.

- Formato dos arquivos em csv -> não observei inconsistência nos delimitadores, ou na formatação do arquivo.
- Permissões do MariaDB -> Utilizei uma ferramenta data pela IA que conseguisse observar se estava "on" ou "off" esta configuração, no qual me deparei que estava on e reinicie o programa, podia ser algum bugg. Também verifiquei se tinha acesso ao diretório correto, onde todos os arquivos estavam.
- Mensagem de Erro -> Ao tentar executar os scipts SQL, apareceu-me diversas mensagens de erro que não consegui resolver.

Conclusão

Embora tenha tentado implementar este DMS e importar os dados necessários para a analise, tive como obstáculos algumas dificuldades técnicas que me impediram uma conclusão bem-sucedida do projeto.

Gostaria de ter um feedback, sobre como poderia proceder a resolução destes tipo de problemas, devido a não observar nenhuma falha de Syntax, como também poderia melhorar este trabalho.

Os dados que se encontram disponíveis são muito escassos, incluindo os estatísticos (só estavam disponíveis dos anos 2013 e 2024), o que me dificultou a encontrar dados para desenvolver mais sobre o assunto, que tipo de sites, numa próxima devo procurar para conseguir obter uma melhor qualidade de dados?