

Our Startup

"Travel Your Way, Every Day."

What our planner looks like

What our planner looks like

Robust Journey Planner

Temporaire

The probability of success for each change (with predicted delay taken into account) is: [1, 1]

The probability of success for the trip (with predicted delay taken into account) is: 1

Data models used to represent the infrastructure

Data Preprocessing and Graph Construction

	trip_id	arrival_time	departure_time	stop_id	stop_sequence	route_id	stop_name	stop_lat	stop_lon	route_desc	arrival_stop_id	departure_stop_id	arrival_time_seconds	departure_time_seconds
444152	1.TA.91-1R-Y-j24-1.1.H	18:57:00	19:01:00	8501120:0:1	2	91-1R-Y-j24-1	Lausanne	46.516775	6.629513	EXT	8501120:0:1	NaN	68220	68460
450005	1.TA.91-2E-Y-j24-1.17.H	19:45:00	19:45:00	8501120:0:6	1	91-2E-Y-j24-1	Lausanne	46.516521	6.629019	TGV	8501120:0:6	NaN	71100	71100
552697	1.TA.91-2H-Y-j24-1.2.H	13:43:00	13:43:00	8501120:0:4	1	91-2H-Y-j24-1	Lausanne	46.516669	6.629055	IC	8501120:0:4	NaN	49380	49380
561787	1.TA.91-37-Y-j24-1.1.H	18:23:00	18:23:00	8501120:0:7	1	91-37-Y-j24-1	Lausanne	46.516459	6.629001	TGV	8501120:0:7	NaN	66180	66180
473577	1.TA.91-3D-Y-j24-1.10.H	08:08:00	08:14:00	8501118:0:4	3	91-3D-Y-j24-1	Renens VD	46.536355	6.581067	IR	8501118:0:4	8501120:0:5	29280	29640

Data Preprocessing Steps:

- Recent Timetable
- Weekday Services
- Correlate **stop** with **trips**
- Business hours
- Stop pairs within walking distance

Reproducible Results

- All geo_shapes objectid

Graph Construction

- Each stop represents a **node**
- **Edges** between consecutive stops based on observed trip sequences
- We set **edge weights** as the travel time between two nodes
- Added edges for stops within walk distance

ROBUST JOURNEY PLANNER

EPFL

Data for the Machine Learning model

Data coming from the modified Djikstra algorithm:

- stop_id
- arrival_time
- lat/lon

Data provided by the user:

- temperature
- precipitations

Data specific to geoshape:

- avg_delay
- stddev_delay

Discretepredicted delay between 0 and 45 minutes

Given the transition time at a stop and the predicted delay get the probability of a successful change.

What is our routing algorithm?

Graph for the Routing Algorithm

Public Transit Graph Visualization

- Create a node for each stop_id
- Edges are each connections

NAME EVENT / NAME PRESENTATIC

Walking edges for stops within 500 m

Modified Dijkstra's Algorithm:

- Output Multiple Path (Top-K Paths) given an arrival time and 2 stops
- Priority Queue Based on Departure Time

- Time Constraints

latest arrival time

- Path Recording (stop_id, stop_name, type_of_transport, departure_time, arrival_time)
- Walking Segments Handling

- 2 min minimum change requirement

How are delays predicted?

Prediction Pipeline

- Random Forest Classifier model for multiclass classification.
- 46 classes (0 to 45) representing the delay in minutes.
- The data is split into training and testing sets with an 80-20 ratio.
- Goal: Predict the delay (in minutes) for a given transport, departure and arrival time and the weather condition

Prediction Pipeline

Pipeline

- StandardScaler for feature scaling.
- RandomForestClassifier for classification.
- Parameter Grid for Hyperparameter Tuning:
 - n_estimators (number of trees in the forest): [20, 50, 100, 200].
 - max_depth (maximum depth of the tree): [5, 10, 20].
- Cross-Validation Configuration:
 - GridSearchCV is used to perform hyperparameter tuning with 3-fold cross-validation, optimizing for accuracy.
- Output: A number between 0 and 45

How well does our model perform?

And potential future improvements

Model Evaluation

How we evaluated the model:

- Accuracy: The ratio of correctly predicted instances to the total instances.
- Precision: The ratio of correctly predicted positive observations to the total predicted positives.
- Recall: The ratio of correctly predicted positive observations to the all observations in actual class.
- F1 Score: The weighted average of Precision and Recall.
- AUC (Area Under the ROC Curve): Measures the ability of the model to distinguish between classes

Preliminary Results

Accuracy	Precision	Recall	F1 Score	AUC
0.52	0.47	0.52	0.47	0.97

Result Analysis

эреаке

- Random guessing would yield an accuracy of approximately 1/#classes = 1/46 ≈ 0.022.
- Accuracy = 0.52 is significantly better than random guessing
 - Indicates that the model is capturing some patterns in the data despite the complexity introduced by having 46 classes.
- Precision = 0.47 suggests that the model has a relatively high rate of false positives, but it is still doing better than chance.
- Recall = 0.52 indicates that the model correctly identified 52% of the actual positive instances for each class.
- Maintaining a recall above 50% is challenging and shows that the model is fairly good at identifying actual positive cases.

Result Analysis

- F1 Score = 0.47
 - reflects a balance between precision and recall but indicates that both metrics are relatively moderate.
- AUC = 0.97 indicates that classifier has a 97% chance of correctly distinguishing between a randomly chosen positive instance and a randomly chosen negative instance.
 - model's predictions are reliable across different thresholds. This means the model is not only good at a specific threshold but performs well generally.

EPFL

Performance evaluation

Robust Journey Planner

Your trip from Lutry (lac) to Lutry, Orzens is planned for 2024-05-28 21:32:51.061794 and you will arrive latest at 00:32:00 with a 🍄 weather.

The Optimal Path path proposed is:

 $Travel\ from\ Lutry\ (lac)\ to\ Lutry,\ port\ with\ the\ following\ mean\ of\ transport:\ walk.\ You\ have\ 1.0min\ to\ change\ the\ porbability\ of\ a\ successful\ change\ is\ 1$

Travel from Lutry, port to Lutry, Les Champs with the following mean of transport: B. You have 6.0min to change the porbability of a successful change is 1

 $Travel\ from\ Lutry, Les\ Champs\ to\ Lutry, Orzens\ with\ the\ following\ mean\ of\ transport:\ walk.\ You\ have 5.0min\ to\ change\ the\ porbability\ of\ a\ successful\ change\ is\ 1$

Total time of the path is 12.0 min and the overall probability of success is 1

SBB Path

Departure: Lutry (lac) (21:01) -> Arrival: Lutry, Orzens (21:12) | Duration: 0:11:00

From Lutry (lac) at 2024-05-28 21:01:00 to Lutry, Les Champs at 2024-05-28 21:11:00

Walking or transfer

From Lutry, Les Champs at 2024-05-28 21:11:00 to Lutry, Orzens at

2024-05-28 21:12:00

Transport: 68026 from platform None to platform None

Category: B Operator: TL

Your trip from Ecublens VD, allée de Dorigny to Ecublens VD, Croset is planned for 2024-05-28 21:35:21.971324 and you will arrive latest at 00:35:00 with a △ weather.

The Optimal Path path proposed is:

Travel from Ecublens VD, allée de Dorigny to Lausanne, Sablons with the following mean of transport: B. You have 3min to change the porbability of a successful change is 0.8

Travel from Lausanne, Sablons to Lausanne, Bourdonnette nord with the following mean of transport: B. You have 3min to change the porbability of a successful change is 0.8

Travel from Lausanne, Bourdonnette nord to Chavannes-R., Dorigny with the following mean of transport : walk. You have 5.0min to change the porbability of a successful change is 1

Travel from Chavannes-R., Dorigny to Chavannes-R., Talluchet with the following mean of transport: B. You have 3.0min to change the porbability of a successful change is 1

Travel from Chavannes-R., Talluchet to Renens VD, Censuy with the following mean of transport: walk. You have 5.0min to change the porbability of a successful change is 1

Travel from Renens VD, Censuy to Renens VD, gare sud with the following mean of transport: B. You have 2.0 min to change the porbability of a successful change is 1

Travel from Renens VD, gare sud to Ecublens VD, Epenex/Pont-Bleu with the following mean of transport: walk. You have 5.0min to change the porbability of a successful change is 1

Travel from Ecublens VD, Epenex/Pont-Bleu to Ecublens VD, Suchet-Forêt with the following mean of transport: B. You have 1.0min to change the porbability of a successful change is 1

Travel from Ecublens VD, Suchet-Forêt to Ecublens VD, Parc with the following mean of transport: B. You have 3min to change the porbability of a successful change is 0.8

Travel from Ecublens VD, Parc to Ecublens VD, Croset with the following mean of transport: walk. You have 6.0min to change the porbability of a successful change is 1

Total time of the path is 36.0 min and the overall probability of success is 0.512000000000001

The Alternative path proposed is:

Travel from Ecublens VD, allée de Dorigny to Lausanne, Sablons with the following mean of transport: B. You have 3min to change the porbability of a successful change is 0.8

Travel from Lausanne, Sablons to Lausanne, Bourdonnette nord with the following mean of transport: B. You have 3min to change the porbability of a successful change is 0.8

Travel from Lausanne, Bourdonnette nord to Chavannes-R., Dorigny with the following mean of transport: walk. You have 5.0min to change the porbability of a successful change is 1

 $Travel from \ Chavannes-R., \ Dorigny \ to \ Chavannes-R., \ Talluchet \ with \ the following \ mean \ of \ transport: B.$ You have 3.0min to change the porbability of a successful change is 1

Travel from Chavannes-R., Talluchet to Renens VD, Censuy with the following mean of transport: walk. You have 5.0min to change the porbability of a successful change is 1

Travel from Renens VD, Censuy to Renens VD, gare sud with the following mean of transport: B. You have 2.0min to change the porbability of a successful change is 1

 $Travel from \, Renens \, VD, \, gare \, sud \, to \, Ecublens \, VD, \, Epenex \, with \, the following \, mean \, of \, transport \, : \, walk. \, You \, have \, 0.0min \, to \, change \, the \, porbability \, of \, a \, successful \, change \, is \, 1$

 $Travel from \ Ecublens \ VD, \ Epenex \ to \ Chavannes - R., Crochy \ with \ the following \ mean \ of \ transport: M. \ You have \ 1.0min \ to \ change \ the \ porbability \ of \ a \ successful \ change \ is \ 1$

Travel from Chavannes-R., Crochy to Ecublens VD, Croset with the following mean of transport: walk. You have 1.0min to change the porbability of a successful change is 1

Total time of the path is 23.0 min and the overall probability of success is 0.6400000000000001

SBB Paths proposed

Departure: Ecublens VD, allée de Dorigny (21:01) -> Arrival:

Ecublens VD, Croset (21:19) | Duration: 0:19:00

From Ecublens VD, allée de Dorigny at 2024-05-28 21:01:00 to

St-Sulpice VD, Castolin at 2024-05-28 21:08:00

Transport: 1144 from platform None to platform None

Category: B

Operator: MBC Auto

From St-Sulpice VD, Castolin at 2024-05-28 21:08:00 to St-Sulpice

VD, Venoge nord at 2024-05-28 21:10:00

Walking or transfer

From St-Sulpice VD, Venoge nord at 2024-05-28 21:10:00 to

Ecublens VD, Croset at 2024-05-28 21:19:00

Transport: 33721 from platform None to platform None

Category: B Operator: TL

Departure: Ecublens VD, allée de Dorigny (20:51) -> Arrival: Ecublens VD, Croset (21:14) | Duration: 0:23:00

From Ecublens VD, allée de Dorigny at 2024-05-28 20:51:00 to Lausanne, Bourdonnette at 2024-05-28 20:54:00

Transport: 1145 from platform None to platform

None

Category: B

Operator: MBC Auto

From Lausanne, Bourdonnette at 2024-05-28 20:54:00 to Lausanne, Bourdonnette nord at

2024-05-28 20:59:00 Walking or transfer

From Lausanne, Bourdonnette nord at 2024-05-28 21:00:00 to Renens VD, gare sud at 2024-05-28

21:05:00

Transport: 25253 from platform None to platform

None

Category: B Operator: TL

From Renens VD, gare sud at 2024-05-28 21:09:00 to Ecublens VD, Croset at 2024-05-28 21:14:00 Transport: 33139 from platform None to platform

None

Category: B Operator: TL

Limitations and Benefits

General trends:

Proposes many changes

Longer trip times

Benefits:

ML model to calculate probability of making trip

NAME EVENT / NAME DEFORMITATION

Thank you for listening!