程式人《十分鐘系列》

用十分鐘瞭解

機率、統計、還有R軟體

陳鍾誠

2016年7月1日

大學的時候

- · 我就讀的《交大資訊科學系》有一門 必修的《機率》課程
- 然後還有一門選修的《統計》課程。

我修了機率

但是沒有修統計!

結果

•我只知道一堆機率分佈

•但是卻不知道該怎麼用

後來

我修了通識開的一門統計課

但是那門統計課

•是採用《通識領域》的上法

結果

• 我還是不知道該怎麼用

· 像是《檢定》之類的方法,我還是不太瞭解!

然後

就這樣過了25年!

25 年後

•我也是個大學老師了!

教育部的評鑑委員說

·你們這個科系的數學課程太少,不 符合大學的課程要求!

所以、系主任說

。請各位老師多開數學課!

於是

•我决定開一門《機率統計》

這樣

我就可以把之前沒學好的

《機率統計》學好了!

為了學好《機率統計》

我決定發揮《程式人》的專長

就是用程式的方式學機率統計

於是我決定用R軟體

·來幫助我學機率統計!

我發現

·R 軟體非常的適合用來學機率統計!

所以

•我想我真的把機率統計學會了!

然後我一邊學一邊教

順便

電子書!

※ 陳鍾誠/電子書/ 機率統計

機率統計 -- 使用 R 軟體

書籍章節	簡報
第1章 機率統計簡介	簡報
第2章.機率的概念	
第3章.隨機變數	
第4章 機率分布	
第5章 期室值與動差生成函數	
第6章 聯合分布	
第7章 抽樣與敘述統計	
第8章 中央極限定理	
第9章 平均值的估計與檢定	

現在

就讓我們來看看

到底甚麼是《機率和統計》

還有

·如何用R軟體來學機率和統計吧!

首先

。讓我們先看看,機率和統計

之間的關係!

如下圖所示

機率和統計

·其實是看待同一件事情的兩種不同角度!

機率

- 是在已知母體的情況下,研究樣本產生的情況!
- 而統計則通常是在母體未知的情況 下,透過抽樣來研究母體到底長得甚 麼樣?

這樣講

。或許很難理解!

還是讓我們

一發揮程式人的本色

•用程式來解說《機率統計》

好了!

假如、我們想從1到100裏

·抽出10個樣本,可以用下列R指令

```
> x = sample(1:100, 10)
> x
[1] 12 17 50 33 98 77 39 79 7 26
```

在R軟體裡

- 內建了很多機率分布,還有對應的抽樣函數
- 像是《均等分布、常態分佈、布瓦松分布、指數 分布、二項分布、負二項分布、幾何分布...》等等。

我們可以透過這些函數

*進行隨機抽樣!

以下是一些抽樣的範例

```
[1] 4 3 3 4 2 4 3 1 2 3 4 3 2 2 2 4 2 3 1 1
> rpois(20, 3.5) 布瓦松分布 · lambda=3.5 · 抽 20 次
 [1] 2 1 4 2 1 6 3 6 1 3 3 6 6 0 4 2 6 4 6 2
> runif(20, min = 3, max = 8) 3到8之間的均等分布·抽 20 個樣本
 [1] 3, 933526 3, 201883 7, 592147 5, 207603 4, 897806 3, 848298 4, 521461 4, 437873
 [9] 3, 655640 5, 633540 6, 557995 5, 430671 6, 502675 5, 637283 7, 713699 5, 841052
[17] 6, 859493 5, 987991 3, 752924 7, 480678
> rnorm(20, mean = 5.0, sd = 2.0) 常態分佈(平均值5,標準差2),抽 20 個樣本
 [1] 6. 150209 4. 743013 3. 328734 5. 096294 4. 922795 6. 272768 4. 862825 8. 036376
 [9] 4. 198432 5. 467984 2. 046450 6. 452511 2. 088256 5. 349187 3. 074408 3. 628072
[17] 3, 421388 7, 242598 3, 125895 9, 865341
> rexp(20, rate=2.0) 指數分佈(參數為2),抽 20 個樣本
 [1] 0. 17667426 0. 49729383 0. 12786107 0. 13983412 0. 44683515 1. 30482842
 [7] 0. 28512544 1. 61472266 0. 23220649 0. 39089780 0. 05947224 1. 42892610
[13] 0. 02555552 0. 69409186 0. 68228242 0. 22542362 0. 33590791 0. 14684937
[19] 0.34995146 0.80595369
```

但是、這樣的抽樣

我們只看到一堆數字

9到底這些數字代表甚麼呢?

讓我們進一步用程式來畫圖

會比較知道這些分布的樣子

舉例而言

- · 右邊是均等分布抽十萬 個的次數統計圖 (histogram)
- 你可看到每個區域的分 布都很均匀。
- 所以才叫均等分布

```
> z = runif(100000, min=3, max=8)
> hist(z)
```


接著讓我們看看常態分佈

右圖是標準常態分佈的機率密度函數
 (Probabilistic Density Function, PDF)

如果我們對常態分佈抽樣

- 結果當然也會很常態
- 像是右圖是對平均值5, 標準差2的常態分佈抽 十萬個樣本的統計圖形
- > w = rnorm(100000, mean=5.0, sd=2.0)
 > hist(w)

一個很直覺的想法是

· 樣本從什麼分布抽出來,《次數統計圖》(histogram)就會長得和該分布 很像。

• 基本上這是對的!

如果想大概瞭解

- 該分布到底長得甚麼樣子
- 除了畫圖以外,還可以算出一些 數字來讓我們大概理解該分布的 外貌!

這些大概的數字

- 就是《敘述統計》裡的那些數字
- 像是《平均值、中位數、標準差、四分位 數、最大最小值》等等。

假如我們不知道母體分布

·那麼《敘述統計》就可以提供一些基本的線索!

但是、統計的力量不止於此

除了《敘述統計》之外

• 更強大的是推論統計!

而《推論統計》的關鍵

·則是《中央極限定理》!

要理解中央極限定理

可以用數學

也可以用程式

傳統的統計課程

•都會教你用《數學》來理解

《中央極限定理》

但我是教程式的老師

·所以打算用程式來教你

《中央極限定理》!

首先、讓我們寫個R程式

```
CLT = function(x)  {
 op<-par(mfrow=c(2,2)) # 設為 2*2 的四格繪圖版
 hist(x, nclass=50) # 繪製 x 序列的直方圖 (histogram)。
 m2 \leftarrow matrix(x, mrow=2, ) # 將 x 序列分為 2*k 兩個一組的矩陣 m2。
 xbar2 <- apply(m2, 2, mean) # 取每兩個一組的平均值 (x1+x2)/2 放入 xbar2 中。
 hist(xbar2, nclass=50) # 繪製 xbar2 序列的直方圖 (histogram)。
 m10 <- matrix(x, nrow=10, ) # 將 x 序列分為 10*k 兩個一組的矩陣 m10。
 xbar10 <- apply(m10, 2, mean) # 取每10個一組的平均值 (x1+..+x10)/10 放入 xbar10 中。
 hist(xbar10, nclass=50) # 繪製 xbar10 序列的直方圖 (histogram)。
 m20 <- matrix(x, nrow=20, ) # 將 x 序列分為 25*k 兩個一組的矩陣 m25。
 xbar20 <- apply(m20, 2, mean) # 取每20個一組的平均值 (x1+..+x20)/20 放入 xbar20 中。
 hist(xbar20, nclass=50) # 繪製 xbar20 序列的直方圖(histogram)。
```

這個程式

·會畫出1個、2個、10個、20個樣本的平均值之分布圖。

然後、我們就可以用下列程式

• 來觀察《中央極限定理》到底是甚麼意思

```
CLT(rbinom(100000, 20, 0.5)) # 用參數為 n=20, p=0.5 的二項分布驗證中央極限定理。
CLT(runif(100000)) # 用參數為 a=0, b=1 的均等分布驗證中央極限定理。
CLT(rpois(100000, 4)) # 用參數為 lambda=4 的布瓦松分布驗證中央極限定理。
CLT(rgeom(100000, 0.5)) # 用參數為 n=20, m=10, k=5 的超幾何分布驗證中央極限定理。
CLT(rhyper(100000, 20, 10, 5)) # 用參數為 p=0.5 的幾何分布驗證中央極限定理。
CLT(rnorm(100000)) # 用參數為 mean=0, sd=1 的標準常態分布驗證中央極限定理。
CLT(sample(1:6, 100000, replace=T)) # 用擲骰子的分布驗證中央極限定理。
CLT(sample(0:1, 100000, replace=T)) # 用丟銅板的分布驗證中央極限定理。
```

你會發現、不管母體長什麼樣子

- · 只要樣本數愈多,其平均值就會愈來愈接近常態分佈!
- ·而且通常20個樣本以上就會非常接近常態分佈了。

舉例而言、以下是均等分布的執行結果

這種多樣本平均

會趨向常態分佈的現象

-就是《中央極限定理》

其數學式可以寫成

· 中央極限定理: n 個樣本的平均值會趨向常態分佈

$$rac{x_1+x_2+...+x_n}{n}=ar{x} o N(\mu,\sigma/\sqrt{n})$$

n個樣本的平均

會趨向常態分佈

而且這個常態分佈,還會隨 n 增加而變窄

$$rac{x_1+x_2+...+x_n}{n}=ar{x} o N(\mu,\sigma/\sqrt{n})$$

更精確一點的說,當您從某個母體 X 取出 n 個樣本,則這 n 個樣本的平均數 $\frac{x_1+x_2+...+x_n}{n}=\bar{x}$ 會趨近於以平均期望值 μ 為中心, 以母體標準差 σ 除以 \sqrt{n} 的值 σ/\sqrt{n} 為標準差的常態分布。

所以、不管母體是骰子還是銅板

多個樣本的平均值都會趨向常態分佈

骰子

1到6點

十個樣本的平均值 就非常常態了

换句話說

- 只要是前後無關的隨機樣本
- · n 個樣本的平均值都會趨向常態分佈
- · 只要 n 大一點就行了!
- 而且 n 愈大,標準差就越小

仔細想想

·你會發現這是一個非常強大的定理!

為甚麼很強大?

因為只要幾十個樣本

• 通常就可以很準確地預測母體的平均值。

不過、這個定理還有一點點缺陷

那個缺陷就是

• 對於非數學化的母體而言

•我們通常不知道母體的標準差!

這樣、我們就不能套用

中央極限定理的公式了!

$$rac{x_1+x_2+...+x_n}{n}=ar{x} o N(\mu,\sigma/\sqrt{n})$$

σ未知?

為了處理這個問題

英國在酒廠工作的 Willam S. Gosset 於
 1908年提出了《t分布》,可以用來修正常態 N分布在 σ 未知時難以套用中央極限定理的問題。

T分布的想法是

· 改用樣本標準差 Sn 來替代母體標準差 σ

$${S_n}^2 = rac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}_n
ight)^2$$

·於是標準常態分佈Z就換成了T分布

$$Z=rac{\overline{X}_n-\mu}{\sigma/\sqrt{n}}$$

$$T=rac{\overline{X}_n-\mu}{S_n/\sqrt{n}}$$

T分布的樣子如下

• 由於使用了 S_n 樣本標準差

所以樣本數 n 不同就 會有不同的分佈線

樣本愈多就越接近常態分佈

```
> curve(dnorm, from=-3, to=3, col="black")
> curve(dt(x, df=25), from=-3, to=3, add=T, ylab="T25", col="blue")
> curve(dt(x, df=10), from=-3, to=3, add=T, ylab="T10", col="red")
> curve(dt(x, df=3), from=-3, to=3, add=T, ylab="T3", col="green")
```


有了T分布之後

- 既使不知道母體標準差,我們也能很有信心的透過 n個樣本來估計母體的平均值。
- 因為我們可以用樣本標準差 Sn 取代母體標準差 σ

$$T = rac{\overline{X}_n - \mu}{S_n/\sqrt{n}}$$

樣本標準差

但是有個條件

。就是樣本之間必須是獨立的

•抽樣必須要是《隨機抽樣》

只要確保這些條件

·我們就能使用 t 分布來估計了!

有了中央極限定理和T分布

我們還需要什麼大數據呢?

只要幾十個樣本

。就可以估計的不錯了!

不夠的話

。就用幾百或上千個樣本

·縮小平均值 X 的標準差就好了!

於是我們可以

• 用抽樣來檢定母體平均數

然後回答下列問題

習題一、以下x是某隨機樣本序列,請回答下列問題

```
x = c(46. 26534, 49. 30766, 53. 79364, 53. 18000, 48. 97584, 51. 92664, 44. 58280, 62. 26655, 54. 52493, 55. 08502, 56. 78329, 45. 00972, 46. 99871, 43. 8 8388, 52. 63184, 53. 15600, 48. 39374, 51. 07595, 47. 36923, 52. 09186, 46. 54074, 54. 46617, 47. 87038, 42. 94228, 48. 69307)
```

- 1. 請問母體平均值 mu 的 95% 信賴區間為何?
- 2. 請問母體平均值 mu 的 98% 信賴區間為何?
- 3. 請用 mu=50 檢定該平均值 (a) 請問該檢定的虛無假設為何? (b) 請問該檢定的對立假設為何? (c) 請問顯著性 p-value 是多少? (d) 請問您認為 mu=50 這個虛無假設是否應該被否決?為甚麼? (e) 請問您認為 mu 不等於 50 這個對立假設是否應該被接受?為甚麼?

或者下列問題

習題二、請用下列方式產生樣本以,然後回答下列問題

```
mu=runif(1, 0, 10)
sd1 = runif(1, 1, 2)
x=rnorm(25, mean=mu, sd=sd1)
x
```

- 1. 請問母體平均值 mu 的 95% 信賴區間為何?
- 2. 請問母體平均值 mu 的 98% 信賴區間為何?
- 3. 請用 mu=5 檢定該平均值 (a) 請問該檢定的虛無假設為何? (b) 請問該檢定的對立假設為何? (c) 請問顯著性 p-value 是多少? (d) 請問您認為 mu=5 這個虛無假設是否應該被否決?為甚麼? (e) 請問您認為 mu≠5 這個對立假設是否應該被接受?為甚麼?

因為落在下圖藍色區域的機率很小

所以我們的 估計值不 答 答 想 該 的 監 過

只要在兩個標準差的範圍內就可以達到95%的信賴區間

1.
$$P[-\sigma < X - \mu < \sigma] = 0.68$$

2.
$$P[-2\sigma < X - \mu < 2\sigma] = 0.95$$

3.
$$P[-3\sigma < X - \mu < 3\sigma] = 0.997$$

4.
$$P[-4\sigma < X - \mu < 4\sigma] = 0.99993$$

5.
$$P[-5\sigma < X - \mu < 5\sigma] = 0.9999994$$

6.
$$P[-6\sigma < X - \mu < 6\sigma] = 0.999999998$$

然後我們就可以用t分布來檢定

```
> t. test(x, mu=8)
                        檢定母體平均值 mu 是否為 8
       One Sample t-test
       自由度 24 代表有 25 個樣本
data: x
t = 0.3612, df = 24, p-value = 0.7211
alternative hypothesis: true mean is not equal to 8
95 percent confidence interval:
7. 205820 9. 131145 ◀ 95% 信賴區間
sample estimates:
mean of x
                -----x 的樣本平均值為 8.168483
8. 168483
```

於是我們可以玩玩猜數字遊戲

•去猜某個分布的母體平均數

mu=μ值到底是多少?

像是這樣

```
母體平均 mu 值是 0 到 10 之間的一個亂數
> mu=runif(1, 0, 10)
                        母體標準差 sd1 是 1 到 2 之間的一個亂數
> sd1=runif(1, 1, 2)
> x=rnorm(25, mean=mu, sd=sd1) 用上述參數進行常態分佈抽樣 25 個
> t.test(x, mu=5)
                        然後進行 t 檢定
                           -然後進行 t 檢定,看看 mu 是否為 5
        One Sample t-test
                            P 值很小,代表 mu 幾乎不可能為 5
data: x
t = -8.5779, df = 24, p-value = 8.985e-09
alternative hypothesis: true mean is not equal to 5
95 percent confidence interval:
 2.901134 3.715254 ←
                      ——— 95% 信賴區間範圍
sample estimates:
mean of x
                   —— 樣本平均數 x 為 3.308194
3.308194
```

既然上述檢定已經告訴我們 x 為 3.308194

·那麼 mu 應該不會離 x 太遠

· 以本例而言母體的 mu 為 3.356528

透過這種T檢定

·我們就可以很容易的推測母體平均數 mu 值的範圍。

並且可以很有信心

·因為落在範圍外的機率可以 設得很小(像是5%)

但前提是

• 樣本必須要《互相獨立》

• 而且必須是從母體中《隨機

抽樣》出來的!

當然、我們不只可以檢定平均值

• 還可以檢定《標準差》(變異數)

-只是要改用 F 分布

另外還有

單樣本、雙樣本、成對樣本等檢定方式!

您必須小心選用

• 不同的情況必須採用不同的分布去檢定

- 4 統計法比較
 - 4.1 單樣本*t*檢驗
 - 4.2 配對樣本t檢驗
 - 4.3 獨立雙樣本t檢驗
 - 4.3.1 樣本數及變異數相等
 - 4.3.2 樣本數不相等但變異數相等
 - 4.3.3 變異數皆不相等
 - 4.4 簡單線性迴歸之斜率

只要選擇對的檢定方法

- 而且確定樣本的隨機性
- ·那麼不需要很多樣本,就可以得到《值得信賴》的信賴區間!

方法很簡單,只要使用下列R函數就行了

```
t.test {stats}
```

Student's t-Test

Description

Performs one and two sample t-tests on vectors of data.

Usage

你可以用單樣本t檢定去檢驗

•某湖水中的平均細菌數量

· 燈泡或機器的平均壽命

一選舉的投票率或得票率

t.test(x, mu= μ , conf.level = 0.95)

或者用雙樣本七檢定去檢驗

- 兩台機器的加工精度
- 兩種飼料讓豬長大的速率
- 兩個湖水的某種細菌數量

t.test(x, y, var.equal=TRUE)

或者用成對七檢定去檢驗

- 攝氏70度與80度時某元件斷裂強度是否有差異
- 某班對某主題第二次考試的成績是否比第一次考試進步
- 同一人在服用某維生素後是否比較不容易感冒。

t.test(x, y, paired=TRUE)

當然、可以檢定的數值

- 並不只限定於平均值

雖然、還是有些情況

少樣本的檢定會偏離太遠!

舉例而言、假如要估計平均財產

- 如果全世界有一百億人,比爾蓋茲的財產佔全世界財產總額的90%
- 那麼我們的抽樣,只要漏掉比爾蓋茲就會有嚴重 的偏離。
- 但是樣本很少卻抽到比爾蓋茲,也一樣會有嚴重 的偏離。

像是上述比爾蓋茲的案例

• 我們是很難透過抽樣進行正確估計的

• 還好這種情況並不是很常見!

另外、在統計的實務上

- 會遭遇到很多困難點
- · 主要的困難點是《抽樣很難做到完 全隨機》

關於這點我們在上次的十分鐘系列

• 《用十分鐘瞭解關於論文的那些事兒》

當中有提到過!

很多碩士論文

·都會犯下這類因《抽樣不隨機》而 導致的統計錯誤

舉例而言

- 當你做問卷調查時,如果用網路問券,那 抽到的就只有上網的人,而且為了鼓勵人 家來填問卷,動用了親朋好友的關係。
- 這樣就沒辦法做到真正的隨機抽樣,會有 嚴重的偏差!

如果你用紙本問卷調查

- 通常要發獎品鼓勵人家來填
- · 於是發糖果就一堆小朋友來
- 發日用品又一堆歐巴桑來填
- •最後還是完全走樣!

如果你用電話調查

- 通常一打過去說要調查,人家就掛電話。
- 最後調查到的都是閒閒在家沒事幹想找人聊天的那種
- 這樣的調查仍然離《隨機抽樣》非常的遠!

但是、很多人為了畢業

- 或者為了升等,還是常常去做這種完全不隨機的調查
- •最後還不懂如何設計才能排除亂填或重複的問卷!

以上這些都是

一抽樣不隨機所導致的統計錯誤。

所以在設計抽樣方法時

- •必須想辦法克服這些問題
- ·例如讓《抽樣方法和母體之間》 具有獨立性。
- •這樣抽樣就不容易走樣太多!

而且在寫論文時

- 務必清楚地描述,你所採用之抽樣方法,以及和母體之間的關係。
- · 這樣就能清楚地讓讀者知道你的研究方法與限制,不會誤導讀者!

當然、還有其他降低抽樣問題的方法

• 這就是進行統計研究前要學習的了!

除了統計檢定之外

·統計學裡還有一些更進階的內容

像是我們可以用 ANOVA

• Analysis of variance (方差分析、變異數分析) 來檢定《多組樣本》的《標準差平方》

標準差的平方=方差=變異數=variance

然後也可以用相關係數

一判斷兩組數據的相關程度

甚至用迴歸分析

• 找出兩組數據的相關公式

而這些檢定方法的數學原理

• 主要就是來自《中央極限定理》

以上這些

• 差不多就是大學《機率統計》的主要內容了!

這就是我們

今天的十分鐘系列

希望您會喜歡

我們下回見!

Bye Bye!

