

EJERCICIOS DEL TEMA 3 PARTE 1

Cinemática directa del robot

Ejercicio 1. Obtén la representación gráfica del robot de definido por la siguiente tabla de parámetros de Denavit-Hartenberg. Indica sus GDL y cada tipo de articulación teniendo en cuenta que las variables articulares aparecen en color rojo. Resuelve su cinemática directa.

i	$\boldsymbol{\theta}_{i}$	di	a _i	α_{i}
1	q ₁	I ₁	0	90
2	q_2	0	l_2	0
3	q_3	0	l ₃	0

Ejercicio 2. Obtén la representación gráfica del robot de definido por la siguiente tabla de parámetros de Denavit-Hartenberg. Indica sus GDL y cada tipo de articulación. Argumenta si esta configuración de robot recibe algún nombre. Por último, resuelve su cinemática directa.

i	θί	di	a _i	α_{i}
0	0	0.5	0	0
1	q_1	0	0.7	0
2	q_2	0	0.7	0
3	0	q_3	0	0
4	q ₄	0	0	0

Nota: La fila i = 0 representa la base (fija) del robot

Ejercicio 3. Extrae la tabla de parámetros de Denavit-Hartenberg y resuelve la cinemática directa del robot con una articulación prismática y tres de rotación (tipo R-R-T) de la figura:

Área de Tecnología Electrónica

Ejercicio 4. La figura indica las dimensiones, en mm, de los eslabones que componen el robot industrial ABB IRB 120, y la posición y orientación de los seis sistemas de referencia del robot. Con ellos, extrae la tabla de parámetros de Denavit-Hartenberg del IRB 120.

Ejercicio 5. El robot de la figura tiene qi coordenadas articulares y su TCP está centrado en el extremo del elemento terminal.

- a) Extrae su representación de Denavit-Hartenberg, dibujando los sistemas de referencia Si necesarios de acuerdo al estándar D-H (puedes usar la figura para representar los Si)
- b) Resuelve su cinemática directa sólo para la posición (x,y,z) del elemento terminal.

Robótica Industrial

Área de Tecnología Electrónica

Ejercicio 6. Las figuras muestran la geometría y dimensiones de un robot manipulador industrial de 6 ejes Kuka KR 16, usado para operaciones de soldadura. Su TCP está centrado en el extremo del elemento terminal, y puede rotar.

- a) Dibuja un boceto del robot que incluya los sistemas de referencia Si de acuerdo al estándar Denavit-Hartenberg. Puedes utilizar offsets, pero debes justificarlo.
- b) Extrae su representación de Denavit-Hartenberg,

