Theory of Automata – Home Work 8

Name – Akshay Kumar Singh

R11603620

1. Let $M = (K, \Sigma, \delta, s, \{h\})$, where

 $K = \{q0, q1, h\},\$

 $\Sigma = \{a, b, \square, \square\},\$

s = q0, and δ is given by the following table,

q	σ	$\delta(q, \sigma)$
q0	a	(q1, b)
q0	b	(q1, a)
q0 q0 q0		(h, □)
q0		$(q0, \rightarrow)$
q1	a	$(q0, \rightarrow)$
q1	b	$(q0, \rightarrow)$
q1		$(q0, \rightarrow)$
q1		$(q1, \rightarrow)$

- (a) Trace the computation of M starting from the configuration (q0, \square aabbba).
- (b) Describe informally what M does when started in q0 on any square of a tape.

Sol: (a)

q0, □aabbba q1, □babbba q0, □babbba q0, □bbbbba q1, □bbabba q1, □bbabba q1, □bbaaba q1, □bbaaba q1, □bbaaba q1, □bbaaba q1, □bbaaba q1, □bbaaba q1, □bbaaba

q0, □bbaaab□ h, □bbaaab□

(b) Converts all a's to b's, & vice versa, starting from the current symbol and moving towards right

2.
$$M = (K, \Sigma, \delta, s, \{h\})$$
, where

$$K = \{q0, q1, q2, h\},\$$

$$\Sigma = \{a, b, \square, \square\},\$$

$$s = q0$$
,

and δ is given by the following table (the transitions on \Box are $\delta(q, \Box) = (q, \Box)$, and are omitted).

q	σ	$\delta(q,\sigma)$
q0	a	(q1, ←)
q0	b	$(q0, \rightarrow)$
q0		$(q0, \rightarrow)$
q1	a	(q1, ←)
q1	b	$(q2, \rightarrow)$
q1		(q1, ←)
q2	a	$(q2, \rightarrow)$
q2	b	$(q2, \rightarrow)$
q2		(h, □)

Start from the configuration (q0, \Box abb \Box bb \Box \Boxaba).

Sol:

- q0, \square abb \square bb \square \square aba
- q0, \square abb \square bb \square \square aba
- q0, \square abb \square bb \square \square aba ...
- q0, □abb□bb□□□aba
- q1, □abb□bb□□aba ...
- q1, □abb□bb□□□aba
- q2, $\square abb \square bb \square \square \square aba$
- h, □abb□bb□□□aba