Team notebook

September 20, 2017

Contents					
1	Data Structures				
	1.1	heavy light decomposition			
	1.2	hull optimizer			
	1.3	hull trick optimization			
	1.4	kd tree			
	1.5	ordered set			
	1.6	$treap(explicit) \dots \dots$			
	1.7	$treap(implicit) \dots \dots$			
2	Geometry 8				
	2.1	geometry 2D			
	2.2	geometry 3D			
	2.3	pick theorem			
3	Gra	aphs 14			
	3.1	2sat			
	3.1 3.2	2sat			
	3.2	block cut tree			
4	3.2 3.3	block cut tree			
4	3.2 3.3 3.4	block cut tree			
4	3.2 3.3 3.4 Mar	block cut tree			
4	3.2 3.3 3.4 Ma 4.1	block cut tree			
4	3.2 3.3 3.4 Ma 4.1 4.2	block cut tree			
4	3.2 3.3 3.4 Mar 4.1 4.2 4.3	block cut tree 15 tarjan bridges 16 tarjan scc 16 th 17 fft 17 gauss jordan 17 latitude longitude converter 18			
4	3.2 3.3 3.4 Mar 4.1 4.2 4.3 4.4	block cut tree 15 tarjan bridges 16 tarjan scc 16 th 17 fft 17 gauss jordan 17 latitude longitude converter 18 miller rabin 18			
4	3.2 3.3 3.4 Mar 4.1 4.2 4.3 4.4 4.5	block cut tree 15 tarjan bridges 16 tarjan scc 16 th 17 fft 17 gauss jordan 17 latitude longitude converter 18 miller rabin 18 modular arithmetic 19			

5	Misc	22		
	5.1 cc template	22		
6	Networks			
	6.1 dilworth theorem	23		
	6.2 dinic	23		
	6.3 hopcroft karp	24		
	6.4 konig theorem	24		
	6.5 max bipartite matching			
	6.6 minimum cost maximum flow	25		
	6.7 minimum cut(bidirectional)	26		
	6.8 minimum cut(directional)			
	6.9 push relabel			
7	Strings 2			
	7.1 aho corasick	28		
	7.2 hashing			
	7.3 kmp automaton			
	7.4 kmp	29		
	7.5 manacher	29		
	7.6 minimum expression			
	7.7 suffix array			
	7.8 z algorithm			

1 Data Structures

1.1 heavy light decomposition

```
struct Data_Node {
  int prnt, dpth, value, id, sz, chain;
  Data_Node():
```

```
prnt( 0 ), dpth( 0 ), value( 0 ),
   id(0), sz(1), chain(0) {}
};
struct Heavy_Light_Decomposition {
 int n, node_counted, cur_chain;
 vvi G, A;
 vector< Data_Node > data_node;
 vi chain head:
 Segment_Tree st;
 Heavy_Light_Decomposition( int n, vi& value ) :
   n(n), G(n), A(n, vi(LOG2)),
   data_node( n, Data_Node( ) ), chain_head( n, -1 ), st( 0, n-1 ) {
   node_counted = cur_chain = 0;
   for( int i = 0; i < n; i++ )</pre>
     data_node[ i ].value = value[ i ];
 }
  void add_edge( int u, int v ) {
   G[u].PB(v);
   G[v].PB(u):
 void set_value( int u, int v ) {
   data_node[ u ].value = v;
   st.update( data_node[ u ].id, data_node[ u ].value );
 void dfs( int u, int d ) {
   data_node[ u ].dpth = d;
   for( int i = 0; i < int( G[ u ].size( ) ); i++ ) {</pre>
     int v = G[ u ][ i ];
     if( v == data_node[ u ].prnt )
       continue;
     data_node[ v ].prnt = A[ v ][ 0 ] = u;
     dfs( v, d+1 );
     data_node[ u ].sz += data_node[ v ].sz;
   }
 }
  void build_hld( int u ) {
   if( chain_head[ cur_chain ] == -1 )
     chain_head[ cur_chain ] = u;
   data_node[ u ].chain = cur_chain;
   data_node[ u ].id = node_counted++;
   st.update( data_node[ u ].id, data_node[ u ].value );
   int best child = -1:
   for( auto& v : G[ u ] ) {
     if( v == data_node[ u ].prnt )
       continue;
```

```
if( best_child == -1 || ( data_node[ best_child ].sz < data_node[ v</pre>
         ].sz ) )
       best_child = v;
   if( best_child != -1 )
     build_hld( best_child );
   for( auto& v : G[ u ] ) {
     if( v == data_node[ u ].prnt || v == best_child )
       continue:
     cur_chain++;
     build hld( v ):
   }
 }
  void build( ) {
   dfs(0,0);
   build_lca();
   build_hld( 0 );
  int query_hld_util( int u, int a ) {
   int r = data_node[ u ].value;
   int chain_u, chain_a = data_node[ a ].chain;
   while( true ) {
     chain_u = data_node[ u ].chain;
     if( chain u == chain a ) {
       if( u != a )
         r = __gcd( r, st.query( data_node[ u ].id, data_node[ a ].id ) );
         r = __gcd( r, data_node[ u ].value );
       break;
     }
     else {
       r = __gcd( r, st.query( data_node[ chain_head[ chain_u ] ].id,
           data_node[ u ].id ) );
       u = data_node[ chain_head[ chain_u ] ].prnt;
   }
   return r;
  int query_hld( int u, int v ) {
   int lca = query_lca( u, v );
   return __gcd( query_hld_util( u, lca ), query_hld_util( v, lca ) );
 }
};
```

1.2 hull optimizer

```
* O(n) where n = number of lines added
* Given a set of lines of the form y = mx + b, find the minimum y-value
     when any of the given lines are evaluated at the specified x.
* To optimize for maximum y-value, call the constructor with query_max =
* Reference: https://github.com/alxli
class hull_optimizer {
 struct line {
   ll m, b, val;
   lf xlo;
   bool is_query, query_max;
   line( ll m, ll b, ll val, bool is_query, bool query_max )
       : m(m), b(b), val(val), xlo(-oo),
        is_query(is_query), query_max(query_max) { }
   bool parallel( const line& 1 )const {
     return m == 1.m;
   lf intersect( const line &l )const {
     if( parallel( 1 ) ) {
       return oo;
     return (lf)( l.b-b )/( m-l.m );
   bool operator < ( const line &l )const {</pre>
     if( l.is_query ) {
       return query_max ? ( xlo < 1.val ) : ( 1.val < xlo );</pre>
     return m < 1.m;</pre>
   }
 };
 set < line > hull;
 bool query_max;
 typedef set<line>::iterator hulliter;
 bool has_prev( hulliter it )const {
   return it != hull.begin();
 }
 bool has_next( hulliter it )const {
   return ( it != hull.end( ) ) && ( ++it != hull.end( ) );
```

```
bool irrelevant( hulliter it )const {
  if( !has_prev( it ) || !has_next( it ) ) {
    return false;
  hulliter prev = it, next = it;
  --prev;
  ++next:
  return query_max ? (prev->intersect(*next) <= prev->intersect(*it))
                  : (next->intersect(*prev) <= next->intersect(*it));
hulliter update_left_border( hulliter it ) {
  if( (query_max && !has_prev(it)) || (!query_max && !has_next(it)) ) {
    return it:
  hulliter it2 = it:
  lf val = it->intersect(query_max ? *--it2 : *++it2);
  line l(*it);
  1.xlo = val:
  hull.erase(it++);
  return hull.insert( it, 1 );
public:
hull_optimizer( bool query_max = false ) {
  this->query_max = query_max;
void add_line( ll m, ll b ) {
  line l( m, b, 0, false, query_max );
  hulliter it = hull.lower_bound( 1 );
  if( it != hull.end( ) && it->parallel( l ) ) {
    if( ( query_max && it->b < b ) || ( !query_max && b < it->b ) ) {
      hull.erase( it++ );
    } else {
      return :
    }
  it = hull.insert( it, 1 );
  if( irrelevant( it ) ) {
    hull.erase(it);
    return:
  while( has_prev( it ) && irrelevant( --it ) ) {
    hull.erase( it++ );
```

```
while( has_next( it ) && irrelevant( ++it ) ) {
     hull.erase( it-- );
   }
   it = update_left_border( it );
   if( has_prev( it ) ) {
     update_left_border( --it );
   if( has next( ++it ) ) {
     update_left_border( ++it );
   }
 }
 11 get_best( ll x )const {
   line q( 0, 0, x, true, query_max );
   hulliter it = hull.lower_bound( q );
   if( query_max ) {
     --it:
   }
   return it->m*x + it->b;
 }
};
```

1.3 hull trick optimization

```
struct Line {
 ll m, b;
 Line() { }
 Line( ll m, ll b ) : m(m), b(b) { }
 ll solve(ll x) {
   return m*x + b;
 }
};
int sz;
Line hull[ MAXN ];
lf inters[ MAXN ];
lf find_intersection( const Line& 11, const Line& 12 ) {
 return lf( l1.b-l2.b )/lf( l2.m-l1.m );
}
void add line( ll m. ll b ) {
 hull[sz] = Line(m, b):
 if( sz == 0 ) {
```

```
inters[sz] = oo:
 } else {
   inters[ sz ] = find_intersection( hull[ sz ], hull[ sz-1 ] );
  while( sz >= 2 && inters[ sz ] > inters[ sz-1 ] ) {
   hull[ sz-1 ] = hull[ sz ];
   inters[ sz-1 ] = find_intersection( hull[ sz-2 ], hull[ sz-1 ] );
 }
  sz++;
}
11 get_min( ll x ) {
 int lo = 0, hi = sz-1, mi;
 while( lo <= hi ) {</pre>
   mi = ( lo+hi )>>1:
   if( inters[ mi ] > x ) {
    lo = mi+1:
   } else {
     hi = mi-1;
 return hull[ hi ].solve( x );
```

1.4 kd tree

```
bool cmp_pt_d( const pt &a, const pt &b, int d ) {
  for( int i = 0; i < DIM; ++i ) {
    if( a.v[i] != b.v[ (d+i)%DIM ] ) {
      return a.v[i] < b.v[ (d+i)%DIM ];
    }
  }
  return true;
}

bool cmp_pt( const pt &a, const pt &b ) {
  return cmp_pt_d( a,b,0 );
}

struct Node {
  int dim;
  pt p;</pre>
```

```
Node *1, *r;
 Node(int dim, pt &p, Node *1, Node *r): dim(dim), p(p), 1(1),
      r(r) {}
};
typedef Node *
                  pnode;
void k_sort( int f, int mi, int t ) {
 for( int i = f; i <= t; ++i ) {</pre>
   extra[ i ] = P[ 0 ][ i ];
 for( int i = 1; i < DIM; ++i ) {</pre>
   for( int j = f, ii = f, jj = mi+1; j <= t; ++j ) {</pre>
     if( extra[ mi ].idx == P[i][j].idx ) continue;
     if( !cmp_pt_d( extra[ mi ], P[i][j], DIM-i ) ) {
       P[ i-1 ][ ii++ ] = P[ i ][ j ];
     } else {
       P[i-1][jj++] = P[i][j];
     }
   }
 for( int i = f; i <= t; ++i ) {</pre>
   P[ DIM-1 ][ i ] = extra[ i ];
 }
}
void create_kd_tree( pnode &root, int f, int t, int d ) {
 if( t == f ) {
   root = new Node( d, points[P[0][f].idx], NULL, NULL );
 }
 int nd = (d+1)%DIM:
 if( t-f == 1 ) {
   if( cmp_pt( P[0][f], P[0][t] ) ) {
     create_kd_tree( root, t, t, d );
     create_kd_tree( root->1, f, f, nd );
   } else {
     create_kd_tree( root, f, f, d );
     create_kd_tree( root->1, t, t, nd );
   }
   return;
 }
 int mi = (t+f+1)/2;
 k_sort( f, mi, t );
 root = new Node( d, points[ P[0][mi].idx ], NULL, NULL );
```

```
create_kd_tree( root->1, f, mi-1, nd );
  create_kd_tree( root->r, mi+1, t, nd );
}
void kd_insert( pnode &root, pt &point, int d ) {
  if( root == NULL ) {
   root = new Node( d, point, NULL, NULL );
 } else if( root->p.v[d] <= point.v[d] ) {</pre>
   kd_insert( root->r, point, (d+1)%DIM );
 } else {
   kd_insert( root->1, point, (d+1)%DIM );
}
pt min_pt( pt p, pt q, int d ) {
 if( p.v[d] < q.v[d] ) return p;</pre>
 if( p.v[d] > q.v[d] ) return q;
 if( samePt(p,q) ) return p;
 return min_pt( p, q, (d+1)%DIM );
pt find_min( pnode root, int d ) {
 if( root == NULL ) {
   return pt(oo,oo);
 if( root->dim == d ) {
   if( root->l == NULL ) return root->p;
   return find_min( root->1, d );
 pt p = find_min( root->1, d );
 pt q = find_min( root->r, d );
 return min_pt( min_pt(p,q,d), root->p, d );
void kd_delete( pnode &root, pt point ) {
 if( root == NULL ) return;
 if( samePt(root->p, point) ) {
   if( root->r == NULL && root->l == NULL ) {
     root = NULL;
   } else {
     if( root->r == NULL ) swap( root->l, root->r );
     root->p = find_min( root->r, root->dim );
     kd_delete( root->r, root->p );
   return;
```

```
}
 if( root->p.v[ root->dim ] <= point.v[ root->dim ] ) {
   kd_delete( root->r, point );
 } else {
   kd_delete( root->1, point );
}
void nearest_neighbor( pt &point, pnode &root, pt &r, lf &d ) {
 if( !root ) return;
 lf curd = dist( point, root->p );
 if( curd && d > curd ) {
   d = curd;
   r = root -> p;
 }
 lf delta = abs( point.v[ root->dim ] - root->p.v[ root->dim ] );
  delta *= delta;
  if( point.v[ root->dim ] <= root->p.v[ root->dim ] ) {
   nearest_neighbor( point, root->1, r, d );
   if( d >= delta ) {
     nearest_neighbor( point, root->r, r, d );
   }
 } else {
   nearest_neighbor( point, root->r, r, d );
   if( d >= delta ) {
     nearest_neighbor( point, root->1, r, d );
 }
}
```

1.5 ordered set

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace __gnu_pbds;

typedef
tree<
   T,
   null_type,
   less< T >,
   rb_tree_tag,
```

```
tree_order_statistics_node_update >
ordered_set;

// Get Kth element of type T [ 0, size )

*X.find_by_order( y )

// Count elements smaller than y
X.order_of_key( y )
```

1.6 treap(explicit)

```
struct node {
 ll k, p, mn;
 node *1, *r;
 node( 11 k ) : k(k), p(rand()), mn(oo), l(nullptr), r(nullptr) { }
};
typedef node* pnode;
ll min_node( pnode t ) {
 if( t == nullptr ) {
   return oo;
 return t->mn;
void upd_min( pnode t ) {
 if( t != nullptr ) {
   t->mn = min( t->k, min( min_node( t->l ), min_node( t->r ) ) );
 }
}
void merge( pnode &t, pnode left, pnode right ) {
 if( left == nullptr || right == nullptr ) {
   t = ( right == nullptr ) ? left : right;
  else if( left->p > right->p ) {
   merge( left->r, left->r, right );
   t = left;
 }
   merge( right->l, left, right->l );
   t = right;
```

```
upd_min( t );
}
void split( pnode t, ll k, pnode &left, pnode &right ) {
 if( t == nullptr ) {
   left = right = nullptr;
 else if( t->k < k ) {
   split( t->r, k, t->r, right );
   left = t;
 else {
   split( t->1, k, left, t->1 );
   right = t;
 }
 upd_min( t );
void insert( pnode &t, pnode new_node ) {
 if( t == nullptr ) {
   t = new_node;
 }
 else if( t->p < new_node->p ) {
   split( t, new_node->k, new_node->l, new_node->r );
   t = new_node;
 else if( t->k < new_node->k ) {
   insert( t->r, new_node );
 }
 else {
   insert( t->1, new_node );
 }
 upd_min( t );
}
void erase( pnode &t, ll k ) {
 if( t == nullptr ) {
   return;
 }
 if( t->k == k ) {
   merge( t, t->1, t->r );
 else if( t\rightarrow k < k ) {
   erase( t->r, k );
```

```
else {
    erase( t->1, k );
}
    upd_min( t );
}
```

1.7 treap(implicit)

```
struct node {
 int k, p, cnt, mn;
 bool rvs;
 node *1, *r;
 node( int k ) : k( k ), p( rand() ), cnt( 1 ), rvs( false ), l( NULL ),
      r( NULL ) {}
};
typedef node* pnode;
int cnt( pnode &t ) {
 if(!t){
   return 0;
 return t->cnt;
void upd_cnt( pnode &t ) {
 if(t){
   t - cnt = 1 + cnt(t - l) + cnt(t - r);
 }
}
void push( pnode &t ) {
 if( t && t->rvs ) {
   t->rvs = false;
   swap(t->1, t->r);
   if( t->l != NULL ) t->l->rvs ^= true;
   if( t->r != NULL ) t->r->rvs ^= true;
}
void merge( pnode &t, pnode left, pnode right ) {
 push( left ); push( right );
 if( !left || !right ) {
```

```
t = left ? left : right ;
   return:
 }
 if( left->p > right->p ) {
   merge( left->r, left->r, right );
   t = left;
 }
 else {
   merge( right->l, left, right->l );
   t = right;
 upd_cnt( t );
}
void split( pnode t, int k, pnode &left, pnode &right, int add = 0 ) {
 if(!t) {
   left = right = NULL;
   return:
 }
 push( t );
 int cur_key = add + cnt( t->1 );
 if( cur_key < k ) {</pre>
   split( t->r, k, t->r, right, add + 1 + cnt( t->l ) );
 }
 else {
   split(t->1, k, left, t->1, add);
   right = t;
 }
 upd_cnt( t );
}
void insert( pnode &t, int idx, int k ) {
 pnode new_node = new node( k );
 if(!t) {
   t = new_node;
   return;
 pnode left, right;
 split( t, idx, left, right );
 merge( left, left, new_node );
 merge( t, left, right );
 upd_cnt( t );
}
```

```
void erase( pnode &t, int k ) {
   if( !t ) {
      return;
   }
   push( t );
   if( t->k == k ) {
      merge( t, t->l, t->r );
   }
   else if( t->k < k ) {
      erase( t->r, k );
   }
   else {
      erase( t->l, k );
   }
   upd_cnt( t );
}
```

2 Geometry

2.1 geometry 2D

```
const int DIM = 2;
struct pt {
 lf v[DIM];
 pt() {}
 pt( lf x, lf y ) {
   v[0] = x;
   v[1] = y;
 }
};
inline lf x( pt P ) { return P.v[0]; }
inline lf y( pt P ) { return P.v[1]; }
istream& operator >> ( istream& in, pt& p ) {
 for( int i = 0; i < DIM; ++i ) {</pre>
   in >> p.v[i];
 return in;
}
ostream& operator << ( ostream& out, const pt& p ) {
```

```
for( int i = 0; i < DIM; ++i ) {</pre>
   out << double(p.v[i]) << " ";
 }
 return out;
}
pt operator + ( const pt& A, const pt& B ) { return pt( x(A)+x(B),
    y(A)+y(B)); }
pt operator - (const pt& A, const pt& B) { return pt(x(A)-x(B),
    v(A)-v(B)); }
pt operator * ( const lf& B, const pt& A ) { return pt( x(A)*B, y(A)*B );
pt operator * (const pt& A, const lf& B) { return pt(x(A)*B, y(A)*B);
pt operator * ( const pt& A, const pt& B ) { return pt(
    x(A)*x(B)-y(A)*y(B), x(A)*y(B)+y(A)*x(B));}
pt operator / (const pt& A, const lf& B) { return pt(x(A)/B, y(A)/B);
    }
inline If dot(pt A, pt B) { return x(A)*x(B) + y(A)*y(B); }
inline lf cross( pt A, pt B ) { return x(A)*y(B) - y(A)*x(B); }
inline If norm( pt A ) { return x(A)*x(A) + y(A)*y(A); }
inline lf abs( pt A ) { return sqrt( norm(A) ); }
inline lf arg( pt A ) { return atan2( y(A), x(A) ); }
inline pt exp( pt A ) { return pt( exp( x(A) )*cos( y(A) ), exp( x(A)
    )*sin( y(A) ) ); }
inline pt rot( pt P, lf ang ) { return P*exp( pt(0,1)*ang ); }
inline pt rotccw( pt P ) { return P*pt(0,1); }
inline pt rotcw( pt P ) { return P*pt(0,-1); }
inline bool same( lf a, lf b ) { return a+EPS > b && b+EPS > a; }
inline bool samePt( pt A, pt B ) { return same ( x(A), x(B) ) && same (
    y(A), y(B)); }
inline If angle( pt A, pt 0, pt B ) { return (lf)acos( dot(A-0, B-0) /
    sqrt(norm(O-A) * norm(O-B))); }
inline bool parallel( pt A, pt B, pt C, pt D ) { return same ( 0, cross(
    B-A, D-C ) ); }
inline bool ortho( pt A, pt B, pt C, pt D ) { return same ( 0, dot( B-A,
    D-C ) ); }
inline lf dist( pt A, pt B ) { return abs( B - A ); }
pt inversion( lf r, pt A ) {
 return r*A / norm(A);
int get_points( pt p, pt q ) {
 return __gcd( abs(x(p)-x(q)), abs(y(p)-y(q)) );
```

```
// 0 for collineal points (angle = 0)
// 1 for angle BAX counter clockwise
// -1 for angle BAX clockwise
int ccw( pt X, pt A, pt B ) {
 lf c = cross( B-A, X-A );
 if( same( c, 0.0 ) ) { return 0; }
 if( c > EPS ) { return 1: }
 return -1;
lf distToLine( pt p, pt A, pt B, pt &c ) {
 lf u = dot(p-A, B-A) / norm(B-A);
 c = A + u*(B-A);
 return dist( p , c );
pt refPoint( pt X, pt A, pt B ) {
 pt aux; distToLine( X, A, B, aux );
 return X + 1f(2.0)*(aux-X);
pt linesIntersection( pt A, pt B, pt C, pt D ) {
 lf x = cross(C, D-C) - cross(A, D-C);
 x \neq cross(B-A, D-C):
 return A + x*(B-A):
inline bool lineContains( pt X, pt A, pt B ) { return fabs(cross( B-A ,
    X-A )) < EPS; }
inline bool segContains( pt X, pt A, pt B ) {
 if (!same(0, cross (A-X, B-X))) return 0;
 return ( dot( A-X, B-X ) < EPS );</pre>
inline bool collinearSegsIntersects ( pt A, pt B, pt C, pt D ) {
 return segContains(A,C,D) || segContains(B,C,D)
     || segContains(C,A,B) || segContains(D,A,B);
bool segmentsIntersect( pt A, pt B, pt C, pt D ) {
 if( samePt(A,B) )
   return segContains( A, C, D );
```

```
if( samePt(C.D) )
   return segContains( C, A, B );
 if( parallel(A,B,C,D) )
   return collinearSegsIntersects( A,B,C,D );
 pt aux = linesIntersection(A,B,C,D);
 return segContains(aux,A,B) && segContains(aux,C,D);
}
lf distToSegment( pt p, pt A, pt B, pt &c ) {
 lf u = dot(p-A, B-A) / norm(B-A);
 if( u < -EPS ) { c = A; return dist( p , A ); }</pre>
 if( (u-1.0) > EPS ) { c = B; return dist( p, B ); }
 return distToLine(p,A,B,c);
}
inline bool insideCircle( pt p, pt c, lf r ) { return norm(c-p) <</pre>
    (r*r)+EPS; }
//From two Points and Radius, get center of the circle
//There are two possible centers, to get the other, reverse p1 p2
bool circle2Pt (pt p1, pt p2, lf r, pt& c) {
 lf d2 = x(p1-p2) * x(p1-p2) + y(p1-p2) * y(p1-p2);
 lf det = r*r / d2 - 0.25;
 if( det < -EPS ) return false;</pre>
 lf h = sqrt(det);
 c.v[0] = x(p1+p2)*0.5 + y(p1-p2)*h;
 c.v[1] = v(p1+p2)*0.5 + x(p2-p1)*h;
 return true;
}
pt circle3Pt(pt a, pt b, pt c) {
 b = (a+b)/lf(2.0); c = (a+c)/lf(2.0);
 return linesIntersection(b, b+rotcw(a-b), c, c+rotcw(a-c));
}
bool circleLineIntersection( pt c, lf r, pt A, pt B, pt &p1, pt &p2 ) {
 pt t;
 lf u = distToLine( c, A, B, t );
 if( u > r+EPS ) {
   return false;
 }
 pt v = (B-A)/abs(B-A);
 lf d = sqrt(r*r - u*u);
 p1 = t + d*v;
```

```
p2 = t - d*v;
 return true;
// -1 for same circles
// O for no intersection
// 1 for tangent
// 2 for 2 points of intersection
int intersectionCircles( pt c1, lf r1, pt c2, lf r2, pt &p1, pt &p2 ) {
 if( samePt( c1, c2 ) && same(r1,r2) ) return -1;
 lf sr = (r1 + r2) * (r1 + r2):
 1f dr = (r1 - r2) * (r1 - r2);
 lf d = norm(c2-c1);
 if( d+EPS < dr || d > sr+EPS ) return 0;
 if ( same(d,sr) || same(d,dr) ) {
   p1 = p2 = c1 + (c2-c1)/sqrt(d) * r1;
   return 1;
 pt tmp;
 tmp.v[0] = (r1*r1 - r2*r2 + d) / (2.0*sqrt(d));
 tmp.v[1] = sqrt( r1*r1 - x(tmp)*x(tmp) ) ;
 lf ang = arg(c2 - c1);
 p1 = rot(tmp, ang) + c1;
 p2 = refPoint( p1, c1, c2 );
 return 2:
// P[0] must be equal to P[n]
double perimeter(const vector<pt> &P) {
 double result = 0.0;
 for(int i = 0; i < (int)P.size()-1; i++) result += dist( P[i],P[i+1] );</pre>
 return result:
}
// P[0] must be equal to P[n]
// Area is positive if the polygon is ccw
double signedArea(const vector<pt> &P) {
 double result = 0.0;
 for(int i = 0; i < (int)P.size()-1; i++) result += cross( P[i],P[i+1] );</pre>
 return result / 2.0;
double area(const vector<pt> &P) { return fabs(signedArea(P)); }
// P[0] must be equal to P[n]
```

```
bool isConvex( const vector<pt> &P) {
 int sz = (int) P.size(); if(sz <= 3) return false;</pre>
 bool isL = ccw(P[0], P[1], P[2]) >= 0;
 for (int i = 1; i < sz-1; i++) {</pre>
   if((ccw(P[i], P[i+1], P[(i+2) == sz?1 : i+2]) >= 0)!= isL)
        return false:
 }
 return true;
}
// P[0] must be equal to P[n]
pt computeCentroid(const vector<pt> &p) {
 pt c(0,0);
 lf scale = 6.0 * signedArea(p);
 for (int i = 0, j = 1; i < p.size()-1; i++, j++)
   c = c + (p[i]+p[j])*(x(p[i]) * y(p[j]) - x(p[j]) * y(p[i]));
 return c / scale;
}
// P[0] must be equal to P[n]
bool isSimple(const vector<pt> &p) {
 for (int i = 0, j, 1; i < p.size()-1; i++) {</pre>
   for (int k = i+1; k < p.size()-1; k++) {</pre>
     j = (i+1); 1 = (k+1);
     if (i == 1 || j == k) continue;
     if (segmentsIntersect(p[i], p[i], p[k], p[l]))
       return false:
   }
 }
 return true;
}
// P[0] must be equal to P[n]
// Return 1 for interior, 0 for boundary and -1 for exterior
int inPolygon(pt X, const vector<pt> &P) {
 const int n = P.size(); int cnt = 0;
 for (int i = 0; i < n-1; i++) {</pre>
   if( segContains(X, P[i], P[i+1]) ) return 0;
   if( y(P[i]) <= y(X) ) {</pre>
     if(y(P[i+1]) > y(X))
       if( !(ccw( X, P[i], P[i+1]) >= 0) ) cnt++;
   }
   else if (y(P[i+1]) \le y(X)) {
     if( ccw( X, P[i], P[i+1]) >= 0 ) cnt--;
```

```
}
 if(cnt == 0) return -1;
  else return 1;
// P[ 0 ] must be the left most (down) point
// 0 for collinear, 1 for inside, -1 for outside
// O( Log N )
int inConvexPolygon( pt X, lf mnx, lf mxx, vector<pt> &P ) {
 if (x(X) < mnx \mid |x(X) > mxx)
   return -1;
 int lo = 1, hi = int( P.size() )-1, mi;
  while( lo <= hi ) {</pre>
   mi = (lo+hi)/2;
   if( cross( P[mi]-P[0], X-P[0] ) < -EPS ) {</pre>
     lo = mi+1;
   else {
     hi = mi-1;
 }
 lo = hi;
 if( hi == -1 ) return -1;
 lf c = cross( X-P[lo], X-P[lo+1] );
 if( same( c, 0.0 ) )
   return ( segContains( X, P[lo], P[lo+1] ) ? 0 : -1 );
 if( c > EPS )
   return -1;
 return 1;
// O( N )
lf diameterOfConvexPolygon( const vector<pt> &P, pt &A, pt &B ) {
 lf ans = -00, d;
 int lo = 0, hi = 0;
 int sz = int(P.size());
 for( int i = 0, j = 0; i < sz; ++i ) {</pre>
   while( dist( P[i], P[j] )+EPS < dist( P[i], P[ (j+1)%sz ] ) ) {</pre>
     j = (j+1)\%sz;
   d = dist( P[i], P[j] );
   if( ans+EPS < d ) {</pre>
     ans = d:
     lo = i; hi = j;
```

```
}
 }
 A = P[lo]; B = P[hi];
 return ans;
}
//Returns the Polygon to the left of AB (counter clockwise)
// O( N )
vector<pt> cutPolygon (pt A, pt B, const vector<pt> &P) {
 vector<pt> Q;
 for (int i = 0; i < (int)P.size(); i++) {</pre>
   double left1 = cross( B-A , P[i]-A ), left2 = 0;
   if(i != (int)P.size()-1) left2 = cross( B-A , P[i+1]-A );
   if(left1 > -EPS) Q.push_back(P[i]);
   if( left1 * left2 < -EPS ) Q.push_back( linesIntersection(P[i],</pre>
       P[i+1], A, B));
 if (!Q.empty() && !samePt(Q.back(), Q.front()) ) Q.push_back(Q.front());
 return 0:
}
// Returns Polygon in clockwise and with leftmost (down) point at P[0]
vector<pt> reorganize( vector<pt> &P ) {
 int n = int(P.size());
 vector<pt> R( n );
 if( P.size() == 1 ) {
   R[0] = P[0];
   return R;
 }
 //Check if is counterclockwise
 if ( signedArea( P ) > EPS ) { reverse( P.begin(), P.end() ); }
 int s = 0;
 for( int i = 1; i < n; ++i ) {</pre>
   if(x(P[s]) > x(P[i]) \mid | (x(P[s]) == x(P[i]) && y(P[s]) > y(P[i]))
       ) {
       s = i;
   }
 }
 R[0] = P[s];
 for( int i = (s+1)%n, j = 1; i != s; i = (i+1)%n, ++j ) {
   if( samePt( P[i], P[(i-1+n)%n] ) ) {
     j--;
     continue;
   }
```

```
R[j] = P[i];
 R[n-1] = R[0];
 return R;
// P and Q must P[0] = P[n]
// Be careful with polygons of just one point
// O(N + M)
vector<pt> convexPolygonSum( vector<pt> &P, vector<pt> &Q ) {
 P = reorganize( P );
 Q = reorganize(Q);
 int n = int( P.size() ), m = int( Q.size() );
 vector<pt> R( n+m-1 );
 R[0] = (P[0] + Q[0]);
 int i = 1, j = 1, k = 1;
 for(; i < n && j < m; ++k) {
   if( cross( P[i]-P[i-1], Q[i]-Q[i-1] ) < -EPS ) {</pre>
     R[k] = R[k-1] + (P[i]-P[i-1]);
     ++i;
   }
   else {
     R[k] = R[k-1] + (Q[j]-Q[j-1]);
     ++j;
   }
 }
 while (i < n) {
   R[k] = R[k-1] + (P[i]-P[i-1]);
   ++i;
   ++k;
 while( j < m ) {</pre>
   R[k] = R[k-1] + (Q[j]-Q[j-1]);
   ++j;
   ++k;
 vector<pt> T;
 T.PB( R[ 0 ] );
 for( int i = 1; i+1 < int(R.size()); ++i ) {</pre>
   if( same( cross( R[i]-R[i-1], R[i+1]-R[i-1] ), 0.0 ) )
     continue;
   T.PB( R[i] );
 T.PB( T[ 0 ] );
```

```
return T;
}
// Monotone Chain O( N Log N )
bool cmpPt( pt A, pt B ) {
 if(!same(x(A), x(B))) return x(A) < x(B);
 return y(A) < y(B);
}
int turn(pt A, pt B, pt C) {
 lf r = cross(B-A, C-A):
 if( same( r, 0.0 ) ) return 0;
 if( r > EPS ) return 1;
 return -1:
}
// Return CH in ccw order starting at leftmost - downmost x
// Doesn't return P[ n ] = P[ 0 ]
vector<pt> CH( vector<pt> &P ) {
 if ( P.size() == 1 ) return P;
 const int n = P.size():
 sort ( P.begin(), P.end(), cmpPt );
 vector<pt> up;
 up.push_back(P[0]); up.push_back(P[1]);
 vector<pt> dn;
 dn.push_back(P[0]); dn.push_back(P[1]);
 for ( int i = 2: i < n: ++i ) {</pre>
   // If collineal points are needed is > and <, otherwise >= and <=
   while ( up.size() > 1 && turn(up[up.size()-2],up.back(),P[i]) >= 0 )
     up.pop_back();
   while (dn.size() > 1 \&\& turn(dn[dn.size()-2],dn.back(),P[i]) \le 0)
     dn.pop_back();
   up.push_back(P[i]);
   dn.push_back(P[i]);
 for (int i = (int) up.size() - 2; i >= 1; i--) dn.push_back(up[i]);
 return dn;
```

2.2 geometry 3D

```
struct pt {
  lf x, y, z;
```

```
pt() { }
 pt(lf x, lf y, lf z): x(x), y(y), z(z) {}
const lf EPS = 1e-9;
const lf PI = acos( -1.0 );
const pt o = pt(0.0, 0.0, 0.0);
inline lf x( pt P ) { return P.x; }
inline lf v( pt P ) { return P.v; }
inline lf z( pt P ) { return P.z; }
istream& operator >> ( istream& in, pt& p ) {
 lf x,y,z; in >> x >> y >> z;
 p = pt(x,y,z); return in;
ostream& operator << ( ostream& out, const pt& p ) {
 out << "(" << p.x << ", " << p.y << ", " << p.z << ")";
 return out;
}
pt operator + ( const pt& A, const pt& B ) { return { x(A)+x(B),
    y(A)+y(B), z(A)+z(B) }; }
pt operator - ( const pt& A, const pt& B ) { return { x(A)-x(B),
    y(A)-y(B), z(A)-z(B) }; }
pt operator * ( const pt& A, const lf& B ) { return { x(A)*B, y(A)*B,
    z(A)*B }; }
pt operator * ( const lf& B, const pt& A ) { return { x(A)*B, y(A)*B,
    z(A)*B }: }
pt operator / (const pt& A, const lf& B) { return { x(A)/B, y(A)/B,
    z(A)/B }: }
inline pt cross( pt A, pt B) { return pt( y(A)*z(B)-z(A)*y(B),
    z(A)*x(B)-x(A)*z(B), x(A)*y(B)-y(A)*x(B));}
inline If dot(pt A, pt B) { return x(A)*x(B) + y(A)*y(B) + z(A)*z(B); }
inline if norm( pt A ) { return x(A)*x(A) + y(A)*y(A) + z(A)*z(A); }
inline lf abs( pt A ) { return sqrt( norm(A) ); }
inline bool same ( lf a, lf b ) { return a+EPS > b && b+EPS > a; }
inline bool samePt ( pt A, pt B ) { return same ( x(A), x(B) ) && same (
    v(A), v(B) ) && same ( z(A), z(B) ); }
inline bool zero( lf d ) { return d >= -EPS && d <= EPS; }</pre>
bool is_plane( pt A, pt B, pt C ) {
 return !samePt( cross( B-A, C-A ), o );
```

```
}
// 1 for intersect, 0 for inside, -1 for parallel
int linePlane( pt S, pt T, pt A, pt B, pt C, pt& r ) {
 pt n = cross(B-A, C-A);
 pt u = T-S;
 lf d = dot( n, u );
 if(!zero(d)) {
   d = dot(n, A-S) / d;
   r = S + u*d;
   return 1:
 }
 d = dot(n, A-S);
 if( zero( d ) ) return 0;
 return -1;
}
bool lineLineIntersection( pt A, pt B, pt C, pt D, pt& S ) {
 pt e = B-A, f = D-C, g = C-A;
 pt fg = cross( f, g ), fe = cross( f, e );
 lf h = abs(fg), k = abs(fe);
 if( zero( h ) || zero( k ) ) return false;
 if( samePt( cross( fg, fe ), o ) )
   S = A + e*h/k;
  else
   S = A - e*h/k:
 return true;
}
bool planesIntersection( pt A, pt B, pt C, pt D, pt E, pt F, pt& S, pt& T
    ) {
 pt n1 = cross( B-A, C-A);
 pt n2 = cross( D-E, F-E);
 pt u = cross( n1, n2 );
 if( samePt( u, o ) ) return false;
 lineLineIntersection(A, B, D, E, S);
 T = S + u;
```

2.3 pick theorem

$$A = I + \frac{B}{2} - 1$$

• A: Area

- I: Points inside the polygon
- B: Points in the boundary of the polygon

3 Graphs

3.1 2sat

```
/*
* Equivalences
* (s1^a2)v(a1^s2) = (s1vs2)^(a1va2)^(s1va1)^(s2va2)
struct SAT {
 int n;
 vector< vi > > graph;
 vi tag;
 vb seen. value:
 stack< int > st;
 SAT( int n ): n( n ), graph( 2, vector< vi >( 2*n ) ), tag( 2*n ),
      seen( 2*n ), value( 2*n ) { }
 int neg( int x ) {
   return 2*n-x-1;
 ///We give u v v and it makes u \rightarrow v and v \rightarrow u
 void make_implication( int u, int v ) {
   implication( neg(u), v );
   implication( neg(v), u );
 void make_true( int u ) {
   add_edge( neg(u), u );
 void make_false( int u ) {
   make_true( neg(u) );
 void eq( int u, int v ) {
   implication( u, v );
   implication( v, u );
 void diff( int u, int v ) {
   eq( u, neg(v) );
 void implication( int u, int v ) {
   add_edge( u, v );
   add_edge( neg(v), neg(u) );
```

```
}
 void add_edge( int u, int v ) {
   graph[ 0 ][ u ].push_back( v );
   graph[ 1 ][ v ].push_back( u );
 void dfs( int id, int u, int t = 0 ) {
   seen[ u ] = true;
   for( auto& v : graph[ id ][ u ] )
     if( !seen[ v ] )
       dfs( id, v, t );
   if( id == 0 )
     st.push( u );
   else
     tag[ u ] = t;
 }
 void kosaraju( ) {
   for( int u = 0; u < n; u++ ) {</pre>
     if(!seen[u])
       dfs(0, u):
     if( !seen[ neg(u) ] )
       dfs(0, neg(u));
   fill( seen.begin( ), seen.end( ), false );
   int t = 0:
   while( !st.empty( ) ) {
     int u = st.top(); st.pop();
     if(!seen[u])
       dfs( 1, u, t++ );
   }
 }
 bool satisfiable() {
   kosaraju();
   for( int i = 0; i < n; i++ ) {</pre>
     if( tag[ i ] == tag[ neg(i) ] ) return false;
     value[ i ] = tag[ i ] > tag[ neg(i) ];
   }
   return true;
 }
};
```

3.2 block cut tree

```
namespace BlockCutTree {
```

```
int t, rootCh, typeCnt;
int low[ MAX ], dfn[ MAX ], type[ MAX ];
vi graph[ MAX ];
bool cut[ MAX ];
map< pii, int > bridges;
stack< int > s;
void init() {
 t = rootCh = typeCnt = 0;
  bridges.clear();
  for( int i = 0; i < MAX; i++ ) {</pre>
   dfn[i] = 0;
   cut[ i ] = false;
   graph[ i ].clear( );
 }
}
void add_edge( int u, int v ) {
 graph[ u ].push_back( v );
void tarjan( int u, int fu ) {
  low[u] = dfn[u] = ++t;
  for( auto& v : graph[ u ] ) {
   if( v == fu ) continue;
   if( !dfn[ v ] ){
     if( u == 1 ) rootCh++;
     s.push( v );
     tarjan( v, u );
     low[u] = min(low[u], low[v]);
     if( low[ v ] >= dfn[ u ] ) {
       int w:
       typeCnt++;
       do {
         w = s.top(); s.pop();
         if( cut[ w ] )
          LowestCommonAncestor::add_edge( typeCnt, type[ w ] );
         else type[ w ] = typeCnt;
       } while( w != v );
       if( low[ v ] > dfn[ u ] )
         bridges[ make_pair( min( u, v ), max( u, v ) ) ] = typeCnt;
       if( !cut[ u ] ) {
         cut[ u ] = true;
         type[ u ] = ++typeCnt;
```

```
LowestCommonAncestor::add_edge( typeCnt, typeCnt-1 );
       }
       else
         LowestCommonAncestor::add_edge( type[ u ], typeCnt );
   else low[ u ] = min( low[ u ], dfn[ v ] );
  }
}
void create block cut tree( ) {
  LowestCommonAncestor::init();
  tarjan(1, 1);
  if( rootCh == 1 ){
   cut[ 1 ] = false;
   type[ 1 ] = --typeCnt;
  LowestCommonAncestor::dfs( type[ 1 ], type[ 1 ] );
  LowestCommonAncestor::build_sparse_table();
}
```

3.3 tarjan bridges

```
void dfs( int u, int p = -1 ) {
 dfn[ u ] = low[ u ] = ++t;
 int children = 0;
 for( int i = 0; i < SIZE( graph[u] ); ++i ) {</pre>
   int v = graph[ u ][ i ];
   if( !dfn[ v ] == -1 ) {
     children++;
     dfs( v, u );
     low[u] = min(low[u], low[v]);
     ///Bridges
     if( low[v] > dfn[u] ) {
       cout << u << " " << v << endl;
     ///Articulation points
     if( p == -1 && children > 1 ) {
       ap[ u ] = true;
     }
     if( p != -1 && low[v] >= dfn[u] ) {
```

```
ap[ u ] = true;
}
}
else if( v != p ) {
   low[ u ] = min( low[u], dfn[v] );
}
}
```

3.4 tarjan scc

```
void dfs( int u ) {
 dfn[ u ] = low[ u ] = ++t;
 st.push( u );
 in_stack[ u ] = true;
 for( int i = 0; i < SIZE( graph[u] ); ++i ) {</pre>
   int v = graph[ u ][ i ];
   if( dfn[ v ] == -1 ) {
     dfs( v );
     low[u] = min(low[u], low[v]);
   else if( in_stack[v] == true ) {
     low[ u ] = min( low[u], dfn[v] );
   }
 }
 if( low[ u ] == dfn[ u ] ) {
   while( st.top( ) != u ) {
     w = st.top();
     cout << w << " ";
     in_stack[ w ] = false;
     st.pop();
   w = st.top();
   cout << w << "\n";
   in_stack[ w ] = false;
   st.pop();
 }
```

4 Math

4.1 fft

```
const lf PI = acos( -1.0 );
struct cp { lf r, i; };
cp operator + ( const cp& a, const cp& b ) { return { a.r+b.r, a.i+b.i };
cp operator - (const cp& a, const cp& b) { return { a.r-b.r, a.i-b.i };
cp operator * ( const cp& a, const cp& b ) { return { a.r*b.r-a.i*b.i,
    a.r*b.i+a.i*b.r }; }
cp operator * ( const cp& a, lf x ) { return { a.r*x, a.i*x }; }
cp operator * ( lf x, const cp& a ) { return { a.r*x, a.i*x }; }
cp operator / ( const cp& a, lf x ) { return { a.r/x, a.i/x }; }
ostream& operator << ( ostream& out, const cp& c ) {
 out << c.r;
 return out;
}
void rev( cp* a, int n ) {
 int i, j, k;
 for( i = 1, j = n>>1; i < n-1; ++i ) {
   if( i < j ) swap( a[ i ], a[ j ] );</pre>
   for(k = n > 1; j > = k; j -= k, k > > = 1);
   j += k;
 }
}
void dft( cp* a, int n, int flag = 1 ) {
 rev(a, n);
 for( int m = 2; m <= n; m <<= 1 ) {</pre>
   cp wm = { cos(flag*2.0*PI/m), sin(flag*2.0*PI/m) };
   for( int k = 0; k < n; k += m ) {
     cp w = \{ 1.0, 0.0 \};
     for( int j = k; j < k+(m>>1); ++j, w = w*wm ) {
       cp u = a[ j ], v = a[ j+(m>>1) ]*w;
       a[j] = u+v;
       a[j+(m>>1)] = u-v;
     }
   }
```

```
}
}

void mul( int na, cp* a, int nb, cp* b ) {
   int n = 1;
   while( n <= na+nb+1 ) n <<= 1;
   dft( a, n );   dft( b, n );
   for( int i = 0; i < n; ++i ) {
      a[ i ] = a[ i ]*b[ i ];
   }
   dft( a, n, -1 );
   for( int i = 0; i < n; ++i ) {
      a[ i ].r = round( a[ i ].r/lf(n) );
   }
}</pre>
```

4.2 gauss jordan

```
const double EPS = 1e-10;
double Gauss_Jordan( vvd& a, vvd& b ) {
 const int n = int( a.size( ) );
 const int m = int( a[ 0 ].size( ) );
 vi irow( n ), icol( n ), ipiv( n );
 double det = 1;
 for( int i = 0; i < n; i++ ) {</pre>
   int pj = -1, pk = -1;
   for( int j = 0; j < n; j++ ) {
     if(!ipiv[ j ] ) {
      for( int k = 0; k < n; k++ ) {
        if(!ipiv[k]) {
          if( pj == -1 || abs( a[ j ][ k ] ) > abs( a[ pj ][ pk ] ) ) {
            pj = j;
            pk = k;
          }
        }
       }
   if( abs( a[ pj ][ pk ]) < EPS ) {</pre>
     cerr << "Matrix is singular." << endl;</pre>
     exit( 0 );
```

```
ipiv[ pk ]++;
  swap( a[ pj ], a[ pk ] );
  swap( b[ pj ], b[ pk ] );
  if( pj != pk ) {
   det *= -1;
  }
  irow[ i ] = pj;
  icol[ i ] = pk;
  double c = 1.0/a[pk][pk];
  det *= a[ pk ][ pk ];
  a[ pk ][ pk ] = 1.0;
  for( int p = 0; p < n; p++ ) {</pre>
   a[pk][p] *= c;
  for( int p = 0; p < m; p++ ) {</pre>
   b[pk][p] *= c;
  for( int p = 0; p < n; p++ ) {
   if( p != pk ) {
     c = a[ p ][ pk ];
     a[p][pk] = 0;
     for( int q = 0; q < n; q++ ) {
       a[p][q] -= a[pk][q]*c;
     for( int q = 0; q < m; q++ ) {</pre>
       b[p][q] -= b[pk][q]*c;
     }
   }
 }
  for( int p = n-1; p >= 0; p-- ) {
   if( irow[ p ] != icol[ p ] ) {
     for( int k = 0; k < n; k++ ) {</pre>
       swap( a[ k ][ irow[ p ] ], a[ k ][ icol[ p ] ] );
     }
   }
 }
}
return det;
```

4.3 latitude longitude converter

```
struct Lat_Lon {
```

}

```
double r, lat, lon;
};
struct Rect {
 double x, y, z;
};
Lat_Lon convert( Rect& p ) {
 Lat_Lon q;
 q.r = sqrt(p.x*p.x + p.y*p.y + p.z*p.z);
 q.lat = 180.0/PI*asin(p.z/q.r);
 q.lon = 180.0/PI*acos(p.x/sqrt(p.x*p.x + p.y*p.y));
 return q;
Rect convert( Lat_Lon& q ) {
 Rect p;
 p.x = q.r*cos(q.lon*PI/180.0)*cos(q.lat*PI/180.0);
 p.y = q.r*sin(q.lon*PI/180.0)*cos(q.lat*PI/180.0);
 p.z = q.r*sin(q.lat*PI/180.0);
 return p;
```

4.4 miller rabin

```
bool check( ll a, ll n ) {
 11 u = n-1;
 int t = 0;
 while( u%2LL == 0 ) {
   t++;
   u /= 2LL;
 11 nxt = mod_pow( a, u, n );
 if( nxt == 1 )
   return false;
 ll lst;
 for( int i = 0; i < t; i++ ) {</pre>
   lst = nxt;
   nxt = mod_mul( lst, lst, n );
   if( nxt == 1 ) {
     return ( lst != n-1 );
   }
```

```
return ( nxt != 1 );
}
bool miller_rabin( ll n, int it = 20 ) {
 if( n <= 1 ) {
   return false;
 }
 if( n == 2 ) {
   return true;
 if( n%2LL == 0 ) {
   return false;
 }
 for( int i = 0; i < it; i++ ) {</pre>
   ll a = rand()\%(n-1) + 1;
   if( check( a, n ) ) {
     return false;
   }
 }
 return true;
```

4.5 modular arithmetic

```
* Modular Arithmetic
int mod_of( int n, int mod ) {
 return ( ( n\mod )+mod )\mod;
}
/// returns d = \gcd(a, b); finds x, y such that d = a*x + b*y
int extended_euclid( int a, int b, int &x, int &y ) {
 int xx = 0; y = 0;
 int yy = 1; x = 1;
 while( b ) {
   int q = a/b;
   int t = b; b = a%b; a = t;
   t = xx; xx = x-q*xx; x = t;
   t = yy; yy = y-q*yy; y = t;
 }
 return a;
}
```

```
int mod_inverse( int a, int n ) {
 int x, y;
 int d = extended_euclid( a, n, x, y );
 if(d > 1) {
   return -1;
 }
 return x%n;
/// computes x and y such that ax + by = c
bool linear_diophantine( int a, int b, int c, int &x, int &y ) {
 int d = __gcd( a, b );
 if( c%d ) {
   return false;
  x = c/d*mod_inverse(a/d, b/d);
 y = (c-a*x)/b;
 return true:
/// finds all solutions to a*x = b \pmod{n}
vi modular_linear_equation_solver( int a, int b, int n ) {
  a = mod_of(a, n);
 b = mod_of(b, n);
 vi ret;
 int x, y;
  int d = extended_euclid( a, n, x, y );
 if(b\%d == 0) {
   x = mod_of(x*(b/d), n);
   for( int i = 0; i < d; i++ ) {</pre>
     ret.PB( mod_of( x+i*( n/d ), n ) );
   }
 }
 return ret;
/// Chinese remainder theorem (special case): find z such that
/// z % x = a, z % y = b. Here, z is unique modulo M = lcm(x,y).
/// Return (z,M). On failure, M = -1.
pii chinese_remainder_theorem( int x, int a, int y, int b ) {
 int s, t;
 int d = extended_euclid( x, y, s, t );
 if( a%d != b%d ) {
   return MP( 0, -1 );
```

```
}
 return MP( mod_of( s*b*x+t*a*y, x*y )/d, x*y/d );
}
/// Chinese remainder theorem: find z such that
/// z % x[i] = a[i] for all i. Note that the solution is
/// unique modulo M = lcm_i (x[i]). Return (z,M). On
/// failure, M = -1. Note that we do not require the a[i]'s
/// to be relatively prime.
pii chinese_remainder_theorem( const vi& x, const vi& a ) {
 pii ret = MP( a[ 0 ], x[ 0 ] );
 for (int i = 1; i < int( x.size( ) ); i++ ) {</pre>
   ret = chinese_remainder_theorem( ret.SE, ret.FI, x[ i ], a[ i ] );
   if( ret.SE == -1 ) {
     break;
   }
 }
 return ret;
```

4.6 pollard rho

```
ll pollard_rho( ll n ) {
 11 x, y, i = 1, k = 2, d;
 x = y = rand()%n;
 while( true ) {
   i++;
   x = mod_mul(x, x, n);
   x += 2;
   if(x >= n) {
     x -= n;
   if(x == y) {
     return 1;
   d = \_gcd(abs(x-y), n);
   if( d != 1 ) {
     return d;
   }
   if( i == k ) {
    y = x;
    k *= 2LL;
```

```
return 1;
vll factorize( ll n ) {
 vll ans:
 if( n == 1 ) {
   return ans:
 if( miller_rabin( n ) ) {
   ans.PB(n):
 else {
   11 d = 1;
   while( d == 1 ) {
     d = pollard_rho( n );
   vll dd = factorize( d );
   ans = factorize( n/d );
   for( int i = 0; i < dd.size( ); i++ ) {</pre>
     ans.PB( dd[ i ] );
 }
 return ans;
```

4.7 primes

```
vi count_divisors_sieve() {
   const int mx = int( 1e7 )+1;
   bitset< mx > is_prime; is_prime.set();
   vi cnt( mx, 1 );
   is_prime[ 0 ] = is_prime[ 1 ] = 0;
   for( int i = 2; i < mx; i++ ) {
      if( is_prime[ i ] ) {
      cnt[ i ]++;
      for( int j = i+i; j < mx; j += i ) {
       int n = j, c = 1;
      while( n%i == 0 ) {
            n /= i;
            c++;
        }
      cnt[ j ] = cnt[ j ]*c;</pre>
```

```
is_prime[j] = 0;
     }
   }
 }
 return cnt;
}
vi euler_phi_sieve( ) {
 const int mx = int( 1e7 )+1;
 bitset< mx > is_prime; is_prime.set();
 vi phi( mx );
 for( int i = 1; i < mx; i++ ) {</pre>
   phi[ i ] = i;
 is_prime[ 0 ] = is_prime[ 1 ] = 0;
 for( int i = 2; i < mx; i++ ) {</pre>
   if( is_prime[ i ] ) {
     for( int j = i; j < mx; j += i ) {</pre>
       phi[ j ] = phi[ j ]-( phi[ j ]/i );
       is_prime[j] = 0;
     }
   }
 }
 return phi;
}
ll count_divisors( vll& prime, ll n ) {
 int total_primes = int( prime.size( ) );
 11 r = 1;
 for( int i = 0; prime[ i ]*prime[ i ] <= n && i < total_primes; i++ ) {</pre>
   11 p = 1;
   while( n%prime[ i ] == 0 ) {
     n /= prime[ i ];
     p++;
   r = r*p;
 if( n != 1 ) {
   r = r*2LL;
 return r;
}
ll highest_exponent( ll n, ll p ) {
 11 r = 0, t = p;
```

```
while( t <= n ) {</pre>
   r = r+(n/t);
   t = t*p;
 return r;
ll count_divisors_factorial( vll& prime, ll n ) {
  int total_primes = int( prime.size( ) );
 11 r = 0;
 for( int i = 0; prime[ i ] <= n && i < total_primes; i++ ) {</pre>
   r = r*( highest_exponent( n, prime[ i ] )+1 );
 return r;
}
ll sum_divisors( vll& prime, ll n ) {
  int total_primes = int( prime.size( ) );
 for( int i = 0; prime[ i ]*prime[ i ] <= n && i < total_primes; i++ ) {</pre>
   while( n%prime[ i ] == 0 ) {
     n /= prime[ i ];
     p++;
   r = r*( (bin_pow(prime[i], p)-1)/(prime[i]-1));
 if( n != 1 ) {
   r = r*( (bin_pow(n, 2)-1)/(n-1));
 return r;
ll euler_phi( vll& prime, ll n ) {
  int total_primes = int( prime.size( ) );
 11 r = n;
 for( int i = 0; prime[ i ]*prime[ i ] <= n && i < total_primes; i++ ) {</pre>
   if( n%prime[ i ] == 0 ) {
     r = r-( r/prime[ i ] );
   while( n%prime[ i ] == 0 ) {
     n /= prime[ i ];
  if( n != 1 ) {
```

```
r = r-( r/n );
}
return r;
}
```

4.8 utilities

```
11 mod_mul( 11 a, 11 b, 11 mod ) {
 11 x = 0, y = a \mod;
 while( b ) {
   if( b&1 ) {
     x = (x+y) \mod;
   }
   y = (y+y) \mod;
   b >>= 1;
 }
 return x;
}
ll mod_pow( ll b, ll e, ll mod ) {
 11 r = 1;
 while( e > 0 ) {
   if( e&1 ) {
     r = mod_mul( r, b, mod );
   b = mod_mul( b, b, mod );
   e >>= 1:
 }
 return r;
}
ll bin_pow( ll b, ll e ) {
 11 r = 1;
 while( e > 0 ) {
   if( e&1 ) {
     r = r*b;
   b = b*b;
   e >>= 1;
 }
 return r;
}
```

5 Misc

5.1 cc template

```
#include <bits/stdc++.h>
#define PB
                  push_back
#define PF
                 push_front
#define MP
                  make_pair
#define FI
                  first
#define SE
                 second
#define SIZE( A ) int( ( A ).size( ) )
#define ALL( A ) ( A ).begin( ), ( A ).end( )
#define ALLR( A ) ( A ).rbegin( ), ( A ).rend( )
using namespace std;
typedef long long
                         11;
typedef unsigned long long ull;
typedef long double
typedef pair< int, int > pii;
typedef pair< 11, 11 >
                         pll;
typedef vector< bool >
                         vb;
typedef vector< lf >
                         vd;
typedef vector< 11 >
                         vll;
typedef vector< int >
                         vi;
typedef vector< pii >
                         vpii;
const int MAXN = int( 1e5 )+10;
const int MOD = int( 1e9 )+7;
const int oo = INT_MAX;
int main() {
#ifdef LOCAL
 freopen( "input", "r", stdin );
 ios_base::sync_with_stdio( 0 );
 cin.tie( 0 );
#endif
 return 0;
```

6 Networks

6.1 dilworth theorem

Chain: Set of elements in which every two are comparable.

Antichain: Set of elements in which every two are NOT comparable. The graph is built by making an edge between U and V if U comparable to V (transitivity applies).

- The width of a finite partially ordered set S is the minimum number of chains needed to cover S, i.e. the minimum number of chains such that any element of S is in at least one of the chains.
- The width of a finite partially ordered set S is the maximum size of an antichain in S.
- The maximum size of an antichain is (Number of nodes Maximum Bipartite Matching)

6.2 dinic

```
* O( |v|^2*|e| )
struct Edge {
 int from, to, cap, flow;
 Edge( int from, int to, int cap, int flow ) :
 from(from), to(to), cap(cap), flow(flow) { }
};
struct Network {
 int n;
 vector< Edge > edges;
 vector< vi > graph;
 vi dist, ptr;
 Network( int n ) : n(n), graph(n), dist(n), ptr(n) { }
  void add_edge( int from, int to, int cap ) {
   graph[ from ].PB( SIZE(edges) );
   edges.PB( Edge( from, to, cap, 0 ));
   graph[ to ].PB( SIZE(edges) );
   edges.PB( Edge( to, from, 0, 0 ));
 }
```

```
bool bfs( int s, int t ) {
   fill( ALL(dist), -1 );
   queue < int > q;
   q.push( s );
   dist[s] = 0;
   while( !q.empty( ) && dist[ t ] == -1 ) {
     int u = q.front(); q.pop();
     for( int i = 0; i < SIZE( graph[u] ); ++i ) {</pre>
       int id = graph[u][i], v = edges[id].to;
       if( dist[ v ] == -1 && edges[id].flow < edges[id].cap ) {</pre>
         q.push( v );
         dist[ v ] = dist[u]+1;
       }
   return ( dist[ t ] != -1 );
  int dfs( int u, int t, int flow ) {
   if( !flow ) return 0:
   if( u == t ) return flow;
   for( ; ptr[u] < SIZE( graph[u] ); ++ptr[u] ) {</pre>
     int id = graph[u][ ptr[u] ], v = edges[id].to;
     if( dist[ v ] != dist[ u ]+1 ) continue;
     int pushed = dfs( v, t, min( flow, edges[id].cap-edges[id].flow ) );
     if( pushed ) {
       edges[ id ].flow += pushed;
       edges[id^1].flow -= pushed;
       return pushed;
     }
   }
   return 0;
 11 max_flow( int s, int t ) {
   11 \text{ flow} = 0:
   while( bfs( s, t ) ) {
     fill( ALL(ptr), 0 );
     while( int pushed = dfs( s, t, oo ) ) {
       flow += pushed;
     }
   return flow;
 }
};
```

6.3 hopcroft karp

```
* O( |e|*sqrt(|v|) )
struct MBM {
 int n1, n2, edges;
 vi last, prev, head, matching, dist;
 vb used, seen;
 MBM():
 last(MAXN1), prev(MAXM), head(MAXM), matching(MAXN2),
 dist(MAXN1), used(MAXN1), seen(MAXN1) { }
 void init( int n1, int n2 ) {
   this \rightarrow n1 = n1; this \rightarrow n2 = n2;
   edges = 0;
   fill( last.begin(), last.begin()+n1, -1 );
 void add_edge( int u, int v ) {
   head[ edges ] = v;
   prev[ edges ] = last[ u ];
   last[ u ] = edges++;
 }
 void bfs( ) {
   fill( dist.begin(), dist.begin()+n1, -1 );
   queue < int > q;
   for( int u = 0; u < n1; u++ ) {</pre>
     if( !used[u] ) {
       q.push( u );
       dist[ u ] = 0;
     }
   while( !q.empty() ) {
     int u1 = q.front(); q.pop();
     for( int e = last[u1]; e >= 0; e = prev[e] ) {
       int u2 = matching[ head[e] ];
       if( u2 >= 0 && dist[u2] < 0 ) {</pre>
         dist[ u2 ] = dist[u1]+1;
         q.push( u2 );
       }
     }
   }
 }
 bool dfs( int u1 ) {
```

```
seen[ u1 ] = true;
   for( int e = last[u1]; e >= 0; e = prev[e] ) {
     int v = head[ e ];
     int u2 = matching[ v ];
     if(u2 < 0 | | (!seen[u2] && dist[u2] == dist[u1] + 1 && dfs(u2) )) {
       matching[ v ] = u1;
       used[ u1 ] = true;
       return true:
     }
   return false;
  int max_matching( ) {
   fill( used.begin(), used.begin()+n1, false );
   fill( matching.begin(), matching.begin()+n2, -1 );
   int ans = 0:
   while( true ) {
     bfs():
     fill( seen.begin(), seen.begin()+n1, false );
     int f = 0;
     for( int u = 0; u < n1; u++ ) {</pre>
       if( !used[ u ] && dfs( u ) ) {
         f++;
       }
     if( f == 0 ) {
       return ans:
     ans += f;
   return 0;
 }
};
```

6.4 konig theorem

- In any bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in a minimum vertex cover.
- The complement of a vertex cover in any graph is an independent set, so a minimum vertex cover is complementary to a maximum independent set.

6.5 max bipartite matching

```
* O(v*e) where v = \# nodes, e = \# edges
 */
int n, m;
vi graph[ MAXN ];
int match[ MAXM ];
bool seen[ MAXM ];
bool dfs( int u ) {
 for( int i = 0; i < SIZE( graph[u] ); ++i ){</pre>
   int v = graph[ u ][ i ];
   if( seen[ v ] ) continue;
   seen[ v ] = true;
   if( match[ v ] == -1 || dfs( match[v] ) ) {
     match[v] = u:
     return true;
   }
 }
 return false;
}
int mbm() {
 int r = 0;
 memset( match, -1, sizeof(match) );
 for( int u = 0; u < n; ++u ) {</pre>
   memset( seen, false, sizeof(seen) );
   r += dfs( u ):
 }
 return r;
```

6.6 minimum cost maximum flow

```
/*
 * 0(?)
 */
struct Edge {
  int from, to, cap, cost, flow;
  Edge() { }
  Edge( int from, int to, int cap, int cost, int flow ) :
    from(from), to(to), cap(cap), cost(cost), flow(flow) { }
};
struct Network {
```

```
int n:
vector< Edge > edge;
vector< vi > graph;
vi pred, dist, phi;
Network( int n ) : n(n), graph(n), pred(n), dist(n), phi(n) { }
void add_edge( int from, int to, int cap, int cost ) {
 graph[ from ].PB( SIZE( edge ) );
 edge.PB( Edge( from, to, cap, cost, 0 ) );
 graph[ to ].PB( SIZE( edge ) );
 edge.PB( Edge( to, from, 0, -cost, 0 ));
bool dijkstra( int s, int t ) {
 fill( ALL(dist), oo );
 fill( ALL(pred), -1 );
 set < pii > pq;
 dist[s] = 0;
 for( pq.insert( MP( dist[s], s ) ); !pq.empty( ); ) {
   int u = (*pq.begin()).SE; pq.erase(pq.begin());
   for( int i = 0; i < SIZE( graph[u] ); i++ ) {</pre>
     Edge& e = edge[ graph[u][i] ];
     int ndist = dist[e.from]+e.cost+phi[e.from]-phi[e.to];
     if( e.cap-e.flow > 0 && ndist < dist[e.to] ) {</pre>
      pq.erase( MP( dist[e.to], e.to ) );
       dist[ e.to ] = ndist;
      pred[ e.to ] = graph[ u ][ i ];
      pg.insert( MP( dist[e.to], e.to ) );
   }
 for( int i = 0; i < n; i++ ) {</pre>
   phi[ i ] = min( oo, phi[i]+dist[i] );
 return ( dist[t] != oo );
pair< 11, 11 > max_flow( int s, int t ) {
 11 mincost = 0, maxflow = 0;
 fill( ALL(phi), 0 );
 while( dijkstra( s, t ) ) {
   int flow = oo:
   for( int v = pred[t]; v != -1; v = pred[ edge[v].from ] ) {
     flow = min( flow, edge[v].cap-edge[v].flow );
   for( int v = pred[t]; v != -1; v = pred[ edge[v].from ] ) {
```

```
Edge& e1 = edge[ v ];
Edge& e2 = edge[ v^1 ];
mincost += e1.cost*flow;
e1.flow += flow;
e2.flow -= flow;
}
maxflow += flow;
}
return MP( maxflow, mincost );
}
};
```

6.7 minimum cut(bidirectional)

```
* O( |v|^3 )
int n;
pair< int, vi > min_cut( vector< vi >& graph ) {
 vi used( n );
 vi cut, best_cut;
 int best_weight = -1;
 for( int phase = n-1; phase >= 0; --phase ) {
   vi w = graph[0];
   vi added = used;
   int prev, last = 0;
   for( int i = 0; i < phase; ++i ) {</pre>
     prev = last; last = -1;
     for( int j = 1; j < n; ++j ) {
       if( !added[j] && ( last == -1 || w[j] > w[last] ) ) {
         last = j;
       }
     if( i == phase-1 ) {
       for( int j = 0; j < n; j++ ) {
         graph[ prev ][ j ] += graph[ last ][ j ];
       for( int j = 0; j < n; j++ ) {</pre>
         graph[ j ][ prev ] = graph[ prev ][ j ];
       used[ last ] = true;
       cut.PB( last ):
       if( best_weight == -1 || w[last] < best_weight ) {</pre>
```

```
best_cut = cut;
   best_weight = w[last];
}

else {
   for( int j = 0; j < n; j++ ) {
      w[ j ] += graph[ last ][ j ];
   }
   added[ last ] = true;
}

return MP( best_weight, best_cut );
}</pre>
```

6.8 minimum cut(directional)

```
* O( |e|*flow_complexity )
bool cmp_edge( const Edge &e1, const Edge &e2 ) {
 if( e1.cap != e2.cap ) return e1.cap > e2.cap;
 return e1.index < e2.index;</pre>
bool ok[ MAXN ];
ll get_flow( int s, int t ) {
 Network netw( n );
 for( int i = 0; i < m; ++i ) {</pre>
   if( !ok[ edges[i].index ] ) {
     netw.add_edge( edges[i].from, edges[i].to, edges[i].cap );
   }
 }
 return netw.max_flow( s, t );
vi min_cut( int s, int t ) {
 sort( ALL(edges), cmp_edge );
 11 flow = get_flow( s, t );
 vi ans:
 for( int i = 0; flow; ++i ) {
   ok[ edges[i].index ] = true;
   11 cur_flow = get_flow( s, t );
   ok[ edges[i].index ] = (flow-cur_flow == edges[i].cap);
   if( ok[ edges[i].index ] ) {
```

```
ans.PB( edges[i].index );
  flow = cur_flow;
}
}
```

6.9 push relabel

```
* O( |v|^3 )
 */
struct Edge {
 int from, to, cap, flow, index;
 Edge( int from, int to, int cap, int flow, int index ) :
 from(from), to(to), cap(cap), flow(flow), index(index) { }
};
struct Network {
 int n;
 vector< vector<Edge> > graph;
 vll excess;
 vi dist, active, count;
 queue < int > q;
 Network( int n ) : n(n), graph(n), excess(n), dist(n), active(n),
      count(2*n) { }
 void add_edge( int from, int to, int cap ) {
   graph[ from ].PB( Edge( from, to, cap, 0, SIZE( graph[to] ) ) );
   if( from == to ) graph[ from ].back( ).index++;
   graph[ to ].PB( Edge( to, from, 0, 0, SIZE( graph[from] )-1 ) );
 }
 void enqueue( int v ) {
   if( !active[ v ] && excess[v] > 0 ) {
     active[ v ] = true;
     q.push( v );
   }
 }
  void push( Edge &e ) {
   int amt = int( min( excess[e.from], ll(e.cap-e.flow) ) );
   if( dist[e.from] <= dist[e.to] || amt == 0 ) return ;</pre>
   e.flow += amt;
   graph[ e.to ][ e.index ].flow -= amt;
```

```
excess[e.to] += amt:
  excess[ e.from ] -= amt;
  enqueue( e.to );
void gap( int k ) {
  for( int v = 0; v < n; v++ ) {
   if( dist[v] < k ) continue;</pre>
   count[ dist[v] ]--;
   dist[v] = max(dist[v], n+1);
   count[ dist[v] ]++;
   enqueue( v );
 }
}
void relabel( int v ) {
  count[ dist[ v ] ]--;
 dist[v] = 2*n;
 for( int i = 0; i < SIZE( graph[v] ); i++ )</pre>
   if( graph[v][i].cap-graph[v][i].flow > 0 )
     dist[ v ] = min( dist[v], dist[ graph[v][i].to ]+1 );
  count[ dist[v] ]++;
  enqueue( v );
void discharge( int v ) {
 for( int i = 0; excess[v] > 0 && i < SIZE( graph[v] ); i++ )</pre>
   push( graph[v][i] );
  if(excess[v] > 0) {
   if( count[ dist[v] ] == 1 )
     gap( dist[v] );
   else
     relabel( v );
11 max_flow( int s, int t ) {
  count[0] = n-1;
  count[ n ] = 1;
  dist[s] = n;
  active[ s ] = active[ t ] = true;
 for( int i = 0; i < SIZE( graph[s] ); i++ ) {</pre>
   excess[ s ] += graph[ s ][ i ].cap;
   push( graph[s][i] );
  while( !q.empty( ) ) {
   int v = q.front(); q.pop();
   active[ v ] = false;
   discharge( v );
```

```
}
ll totflow = 0;
for (int i = 0; i < SIZE( graph[s] ); i++ )
   totflow += graph[s][i].flow;
return totflow;
}
};</pre>
```

7 Strings

7.1 aho corasick

```
* O(|t|+SUM(|p_i|)+matches) where t is a text and p_i are the
     patterns
 */
const int alphabet = 26;
int fail[ MAX_N ];
int mv( int node, int c ){
 while( !trie[ node ][ c ] ) {
   node = fail[ node ];
 return trie[ node ][ c ];
}
void build_aho_corasick( ) {
 memset( fail, 0, sizeof( fail ) );
 queue < int > q;
 for( int i = 0; i < alphabet; i++ ) {</pre>
   if( trie[1][i] ) {
     q.push( trie[1][i] );
     fail[ trie[1][i] ] = 1;
   else {
     trie[1][i] = 1;
   }
 }
  while( !q.empty( ) ) {
   int node = q.front(); q.pop();
   for( int i = 0; i < alphabet; i++ ){</pre>
     if( trie[node][i] ) {
       fail[ trie[node][i] ] = mv( fail[ node ], i );
```

```
q.push( trie[node][i] );
}
}
```

7.2 hashing

```
* gen_mod() generates two random primes ~10^9
 * fill_hash( acc, t ) acc[ i ] ( 1 \le i \le |t| ) stores the hash of t[0,
 * get_hash( acc, 1, r ) return the hash [ 1, r ] using the acc array.
void gen_mod( ) {
  srand( time( nullptr ) );
  for( int i = 0; i < 2; ++i ) {</pre>
   int mod = int(1e9) + rand()%int(5e6);
   while( !is_prime( mod ) ) {
     mod++;
   cout << mod << '\n';
}
typedef pair< int, int > mint;
const int MOD[] = { 1001864327, 1001265673 };
const mint BASE( 256, 256 ), ZERO( 0, 0 ), ONE( 1, 1 );
inline int add( int a, int b, const int& mod ) { return ( a+b >= mod ) ?
    a+b-mod : a+b: }
inline int sbt( int a, int b, const int& mod ) { return ( a-b < 0 ?
    a-b+mod : a-b ); }
inline int mul( int a, int b, const int& mod ) { return ll(a)*ll(b) %
    11(mod); }
inline 11 operator ! ( const mint a ) { return (ll(a.FI)<<32) | ll(a.SE); }</pre>
inline mint operator + ( const mint a, const mint b ) {
 return mint( add( a.FI, b.FI, MOD[0] ), add( a.SE, b.SE, MOD[1] ) );
inline mint operator - ( const mint a, const mint b ) {
 return mint( sbt( a.FI, b.FI, MOD[0] ), sbt( a.SE, b.SE, MOD[1] ) );
```

```
inline mint operator * ( const mint a, const mint b ) {
   return mint( mul( a.FI, b.FI, MOD[0] ), mul( a.SE, b.SE, MOD[1] ) );
}

void fill_hash( mint* acc, const string& t ) {
   acc[ 0 ] = ZERO;
   for( int i = 1; i <= n; ++i ) {
      acc[ i ] = acc[ i-1 ]*BASE + val[ t[i-1] ];
   }
}

mint get_hash( mint* acc, int l, int r ) {
   return acc[ r+1 ] - acc[ l ]*base[ r-l+1 ];
}</pre>
```

7.3 kmp automaton

```
* O( n*alphabet ) where n = |text|
* Returns a matrix such that a[ i ][ j ] is equal to the transition if
     I'm at i-th position and see the character j.
*/
const int alphabet = 256;
vector< vi > kmp_automaton( string t ) {
 int len = SIZE( t );
 vi phi = kmp( t );
 vector< vi > aut( len, vi( alphabet ) );
 for( int i = 0; i < len; ++i ) {</pre>
   for( int c = 0; c < alphabet; ++c ) {</pre>
     if( i > 0 && char(c) != t[ i ] ) {
       aut[ i ][ c ] = aut[ phi[i-1] ][ c ];
     } else {
       aut[ i ][ c ] = i + ( char(c) == t[ i ] );
   }
 return aut;
```

7.4 kmp

7.5 manacher

```
* O(n) where n = |text|
* Returns a vector with size equal to 2*|text|. For each i in such
     vector, p[i] is equal to the maximum palindrome centered at this
    position.
vi manacher( string t ) {
 int len = SIZE( t );
 vi p( 2*len );
 int C = -1, R = -1;
 int n = (len-1) << 1;
 for( int i = 0; i <= n; i++ ) {</pre>
   int j = 2*C-i;
   p[i] = (R \ge i) ? min(R-i+1, p[j]) : !(i%2);
   int 1 = (i-p[ i ])>>1;
   int r = (i+p[i]+1)>>1;
   while( 1 >= 0 && r < len && t[1] == t[r]) {
     p[i] += 2;
```

```
l--; r++;
}
int ri = p[i] ? ((i+p[i])>>1)<<1 : i;
if( ri > R ) {
   C = i;
   R = ri;
}
return p;
}
```

7.6 minimum expression

```
/*
* O(n) where n = |text|
 * Find the lexicographically minimal string rotation.
 */
int minimum_expression( string t ) {
 t = t+t;
 int len = SIZE( t );
 int i = 0, j = 1, k = 0;
 while( i+k < len && j+k < len ) {</pre>
   if( t[ i+k ] == t[ j+k ] ) {
     k++:
   }
   else if( t[ i+k ] > t[ j+k ] ) {
     i = i+k+1;
     if( i <= j ) {</pre>
       i = j+1;
     k = 0;
   }
   else {
     j = j+k+1;
     if( j <= i ) {</pre>
       j = i+1;
     k = 0;
 }
 return min( i, j );
```

7.7 suffix array

```
* O(n*log(n)) where n = |text|
 * sa[i] contains the starting position of the i-th smallest suffix in t,
     ensuring that for all 1 < i <= n, t[sa[i-1], n] < t[sa[i], n] holds.
 * O(n) where n = |text|
 * lcp[i] stores the lengths of the longest common prefixes between all
     pairs of consecutive suffixes in a sorted suffix array (needs sa).
int n, mx;
string t;
int pos[ MAXN ], cnt[ MAXN ];
int aux_sa[ MAXN ], aux_pos[ MAXN ];
int sa[ MAXN ], lcp[ MAXN ];
bool check( int i, int gap ) {
 if( pos[ sa[i-1] ] != pos[ sa[i] ] ) {
   return true;
 if( sa[ i-1 ]+gap < n && sa[ i ]+gap < n ) {</pre>
   return ( pos[ sa[i-1]+gap ] != pos[ sa[i]+gap ] );
 return true;
void radix_sort( int k ) {
 for( int i = 0; i < mx; ++i ) {</pre>
   cnt[i] = 0;
 for( int i = 0; i < n; i++ ) {</pre>
   cnt[ (i+k < n) ? pos[ i+k ]+1 : 1 ]++;</pre>
 for( int i = 1; i < mx; i++ ) {</pre>
   cnt[ i ] += cnt[ i-1 ];
 for( int i = 0; i < n; i++ ) {</pre>
   aux_sa[cnt[(sa[i]+k < n)?pos[sa[i]+k]:0]++] = sa[i];
 for( int i = 0; i < n; i++ ) {</pre>
   sa[ i ] = aux_sa[ i ];
}
void build_sa( ) {
 for( int i = 0; i < n; i++ ) {</pre>
```

```
sa[ i ] = i;
   pos[ i ] = t[ i ];
 }
 for( int gap = 1; gap < n; gap <<= 1 ) {</pre>
   radix_sort( gap );
    radix_sort( 0 );
    aux_pos[sa[0]] = 0;
    for( int i = 1; i < n; i++ ) {</pre>
     aux_pos[ sa[i] ] = aux_pos[ sa[i-1] ] + check( i, gap );
    for( int i = 0; i < n; i++ ) {</pre>
     pos[ i ] = aux_pos[ i ];
    if( pos[ sa[n-1] ] == n-1 ) {
     break;
   }
 }
}
void build_lcp( ) {
 int k = 0;
 lcp[0] = 0;
 for( int i = 0; i < n; i++ ) {</pre>
   if( pos[ i ] == 0 ) {
     continue;
    while ( t[i+k] == t[sa[pos[i]-1]+k] ) {
   }
   lcp[ pos[ i ] ] = k;
   k = max(0, k-1);
}
void build( string s ) {
 n = SIZE(s);
 t = s + "#";
 mx = max(256, n);
 build_sa( );
 build_lcp();
}
```

7.8 z algorithm

```
/*
```

```
* O(n) where n = |text|
* For each i, z[ i ] is equal to the longest substring starting at i
     that is prefix of the text.
vi z_algorithm( string str ) {
 int len = SIZE( str );
 vi z( len );
 z[0] = 0;
 for( int i = 1, l = 0, r = 0; i < len; ++i ) {
   if( i <= r ) z[ i ] = min( r-i+1, z[ i-l ] );</pre>
   while( i+z[ i ] < len && str[ z[i] ] == str[ i+z[i] ] ) z[ i ]++;</pre>
   if( i+z[ i ]-1 > r ) {
    1 = i:
    r = i+z[i]-1;
   }
 }
 return z;
```