```
PROGIRAM - 1
Develop a Java program that prints all real solutions
to the quadratic equation ax2+ bx + c = 0. Read in
a, b, c and use the quadratic formula. If the
discriminate b- 4ac is negative, display a missage
stating that there are no real solutions.
Import gava . util . Scanner;
class Quadratic
3 ----
  Pot a, b, c;
  double 91, 92, d;
  void getal
    Scanners: new Scanner (System.in);
  System. out. println ("Enter the coefficients of
               a, b, c");
    a = s.nextInt ();
     b = S.nextInt();
  c = s. next Int ();
 void computer
       while (a == 0)
```

System. out. println (" Not a quadratic equation"). System. out. parentlen ("Enter a non zero value 184 Scanney s = new Scanney (System. Pri); d=b*b-4*a*c; 911 = (-6)/2*a); dans standour of System. out. println (" Roots are real and equal") 3 System. out. println ("Roots Root 2= "+ 311) else if (d>0) 912 = ((-6) + (Hadh. squt (d))) /(double) (2*a); 312 = ((-6) - (Hath. squt(d))) / (double) (2*a), System. out. paintln 1 Roots are real and distinct "); 1 System. out. println ("Root 1 = "+ 91+" Root 2 = "+m?) else i (d <0) Surpos salt with all the disposation System out printle ("Rooks are imaginary"); 911 = (-b)/(2*a); / 912 = Math. squt: (/d)/(2*a); System. out. paintln ("Root 1 = " + 91 + " + 91 + " + 92) System. out. println ("Root 1 = "+ 21 +" - 1" + 212)

	class Quadratic Main & MAS, 5099	
	S	
	public static void main (staing orgs []	
•	5	
	Quadratic q'a new Quadratic ();	
	q. compute ();	
	1 " 3 modern motors") and motors	
	3 (of malay 2) canno 2 win = 32 panno 2	
	2 (1 AMIN . 12 - 11 . 4 ng	
	Output: 3(+1921 259;1-9= +199) 1891	
	Carpar 1- sel	
	Enter coefficients of a, b, c	
- e	A 5 6 manda est 1 Jallang Approvedage	ix,
	Roots are imaginary	1
	Root 1 = 0. 0+11.05826876447216470449	1
	Root 1 = 0. 0+11.058268704497216470449 Root 2 = 0.0-91.0532687216470449	1
	Root 1 = 0. 0 + 11. 0 5 3 2 6 8 7 5 4 4 7 2 1 6 4 7 0 4 4 9 Root 2 = 0. 0 - 91. 0 5 3 2 6 8 7 2 1 6 4 7 0 4 4 9	1
	Root 1 = 0. 0+11.05826876447216470449	
	Root 1 = 0. 0 + 11. 0 5 3 2 6 8 7 6 4 4 7 2 1 6 4 7 0 4 4 9 Root 2 = 0. 0 - 91. 0 5 3 2 6 8 7 2 1 6 4 7 0 4 4 9 Enter coefficients of a, b, c 1 - 2 1	
	Root 1 = 0. 0 + 11. 0 5 3 2 6 8 7 6 4 4 7 2 1 6 4 7 0 4 4 9 Root 2 = 0. 0 - 91. 0 5 3 2 6 8 7 2 1 6 4 7 0 4 4 9 Enter coefficients of a, b, c 1 - 2 1 Poots are real and equal	1
	Root 1 = 0. 0 + 11. 0 5 3 2 6 8 7 6 4 4 7 2 1 6 4 7 0 4 4 9 Root 2 = 0. 0 - 91. 0 5 3 2 6 8 7 2 1 6 4 7 0 4 4 9 Enter coefficients of a, b, c 1 - 2 1	
	Root 1 = 0. 0 + 11. 0 5 3 2 6 8 7 6 4 4 7 2 1 6 4 7 0 4 4 9 Root 2 = 0. 0 - 91. 0 5 3 2 6 8 7 2 1 6 4 7 0 4 4 9 Enter coefficients of a, b, c 1 - 2 1 Poots are real and equal Root 1 = Root 2 = 1.0	
	Root 1 = 0. 0 + 11. 0 B 3 2 6 8 7 6 4 4 7 2 1 6 4 7 0 4 4 9 Root 2 = 0. 0 - 91. 0 B 3 2 6 8 7 2 1 6 4 7 0 4 4 9 Enter coefficients of a, b, c 1 - 2 1 Poots are real and equal Root 1 = Root 2 = 1.0	
	Root 1 = 0. 0 + 11. 0 5 3 2 6 8 7 6 4 4 9 7 2 1 6 4 7 0 4 4 9 Root 2 = 0. 0 - 91. 0 5 3 2 6 8 7 2 1 6 4 7 0 4 4 9 Enter coefficients of a, b, c 1 - 2 1 Poots are real and equal Root 1 = Root 2 = 1.0	
	Root 1 = 0. 0 + 11. 0582687016470449 Root 2 = 0. 0 - 11.0532687216470449 Enter coefficients of a, b, c 1 - 2 1 Poots are real and equal Root 1 = Root 2 = 1.0 Enter coefficients of a, b, c 1 - 3 2 Roots are was read and distanct	
	Root 1 = 0. 0 + 11. 0 5 3 2 6 8 7 6 4 4 9 7 2 1 6 4 7 0 4 4 9 Root 2 = 0. 0 - 91. 0 5 3 2 6 8 7 2 1 6 4 7 0 4 4 9 Enter coefficients of a, b, c 1 - 2 1 Poots are real and equal Root 1 = Root 2 = 1.0	
	Root 1 = 0. 0 + 11. 0582687016470449 Root 2 = 0. 0 - 11.0532687216470449 Enter coefficients of a, b, c 1 - 2 1 Poots are real and equal Root 1 = Root 2 = 1.0 Enter coefficients of a, b, c 1 - 3 2 Roots are was read and distanct	
	Root 1 = 0. 0 + 11. 0582687016470449 Root 2 = 0. 0 - 11.0532687216470449 Enter coefficients of a, b, c 1 - 2 1 Poots are real and equal Root 1 = Root 2 = 1.0 Enter coefficients of a, b, c 1 - 3 2 Roots are was read and distanct	