

Analogue Electronics

4th lecture:

- 2 transistor circuit elements:
 - differential pair (continued)
 - current mirror (basics)
- multiple transistor circuit elements:
 - current mirrors (advanced)
 - output stages (introduction)

EEE331 Analogue Electronics

EEE331

to **voltage difference** EEE331 Analogue Electronics

Analogue Electronics

2 transistor circuit elements: The differential pair (emitter coupled pair)

Analogue Electronics

2 transistor circuit elements: The differential pair (emitter coupled pair)

- note on emitter degeneration: add R_1 to the joint emitters provides negative feedback: if $i_{\rm c}$ rises, $i_{\rm e}$ increases, thus also the voltage drop across R_1 , which reduces the bias and $v_{\rm I2}$ thus drives $i_{\rm b}$ and $i_{\rm c}$ back.
 - in detail: look at Ebers-Moll equation: $V_{be} = V_{to} \ln (i_c/i_s)$ If one must provide higher base voltages to T_1 and T_2 to get the same i_c with R_1 present, then this also means the non-linear $i_c(v_{be})$ regime begins only at higher voltage; i.e. R_1 effectively extends the linear region!

EEE331 Analogue Electronics

Lecture 4

EEE331

Analogue Electronics

 ${\bf 2} \ transistor \ circuit \ elements: \ The \ differential \ pair \ ({\tt emitter \ coupled \ pair})$

calculation of differential mode gain A_{dm}:

consider

$$\begin{array}{l} v_{\rm o1} \!\!\to v_{\rm o1} \!\!+\!\! \Delta v,\, i_{\rm c1} \!\!\to\!\! i_{\rm c1} \!\!+\!\! \Delta i,\, {\rm hence \,\, also} \\ v_{\rm o2} \!\!\to v_{\rm o2} \!\!-\!\! \Delta v,\, i_{\rm c2} \!\!\to\!\! i_{\rm c2} \!\!\to\!\! \Delta i \end{array}$$

 As total current I_E into current source and resistor R_E stays constant, no changes occur below the emitters of T₁ and T₂ and we can replace this part with a short circuit and only need to consider T₁ (no need to worry about T₂ since T₁'s emitter is tied to ground from small signal point of view). Thus get the differential mode half-circuit:

EEE331 Analogue Electronics

Lecture 4

Analogue Electronics EEE331

2 transistor circuit elements: The differential pair (emitter coupled pair)

calculation of common mode gain A_{cm} :

- replace single RE with two parallel branches, each with resistance 2RE
- As left and right halves of circuit are completely identical and the drives signals to both sides also, no large signal current will flow between emitters between T_1 and T_2 . As there is no interaction between both halves, we can split circuit down the middle and consider just one half. Thus get the common mode half-circuit for each side j=1,2:

EEE331 Analogue Electronics

2 transistor circuit elements: The differential pair (emitter coupled pair)

common mode rejection ratio (CMRR):

- aim: for differential amplifier, maximise gain $A_{\rm dm}$ in differential mode (= gain for opposite voltage signals) and simultaneously, minimise gain A_{cm} for identical input voltages applied to both inputs
- use as a quality factor the common mode rejection ratio (CMRR) defined as the dimensionless ratio $CMRR = |A_{dm}/A_{cm}| = 1 + 2g_{m}R_{E} (\beta + 1)/\beta$
- CMRR increases with $g_{\rm m}$, and as $g_{\rm m}v_{\rm be}=\beta i_{\rm b}$ it is best to use BJTs with large β and operate them at high current.
- at high frequencies: \emph{Z} =1/($\emph{j}\omega\emph{C}_{cb}$) || \emph{R}_{C} decreases \emph{R}_{C}^{eff} for small signals, which thus reduces A_{dm} (not A_{cm} !) and thereby CMRR.
- notes on differential amplifiers using FETs:
 - ~ JFETS are better than MOSFETs for this as they have lower noise.
 - Differential gain of FETs is lower than for differential amps based on BJTs, due to smaller $g_{\rm m}$.
 - + FETs give much wider linear operation than BJTs as current

EEE331 Analogue Electronics varies only like the square rather than exponentially with voltage.

EEE331 Analogue Electronics

2 transistor circuit elements: The simple current mirror

note 1: take β =100 [200, 400];

then I_{c2}/I_{REF} =0.98 [0.99, 0.995]

EEE331 Analogue Electronics

- definition: two identical transistors T₁ and T_2 connected at their base terminals and their emitters
- work out current ratio from sum over currents at collector of T_1 : $I_{\text{REF}} - I_{\text{b1}} - I_{\text{b2}} - I_{\text{c1}} = 0$ with identical transistors: I_{b1} = I_{b2} , same β hence: $I_{REF} - 2I_{c1}/\beta - I_{c1} = 0$

 $I_{c2} = \beta I_{b2} = \beta I_{b1} = I_{c1} = I_{REF} / [1 + 2/\beta]$

 I_{c2}/I_{REF} =1/[1+2/ β] \approx (1–2/ β) \cong 1 The current flowing down the left hand branch is mirrored approximately (within few %) in the right hand side. Note $I_{c2} \le$ I_{REF} because $1/(1+2x)\approx 1-2x$ for small x. Also note the **strong** β dependence.

EEE331

Analogue Electronics

2 transistor circuit elements: The simple current mirror

note 2: for $V_{ce2} > V_{ce1}$ this ratio is always a bit larger than unity, which more than counterbalances the previous tendency that I_{c2} is always a bit too small, e.g. for $V_{ce1}=1$ $V_{ce1}=1$ V_{ce2} =15V, V_A =100V: I_{c2}/I_{c1} =1.139.

EEE331 Analogue Electronics

- result: collector of T₂ provides constant current source output with large output impedance (= that of T_2) and large output current simultaneously (single transistor provides either large gain g_mR_C or large $I_c \sim 1/R_c$). These circuits are good in suppressing power supply ripples and have a footprint much smaller than an equivalent resistor.
- · consider Early effect (due to base width reduction with increasing V_{cb}) which means I_c depends on $V_{ce} = V_{cb} + V_{be}$ via the Early voltage $V_{\rm A}$

 $I_c = I_S \exp(V_{be}/V_{to})(1 + V_{ce}/V_A)$ Assume identical transistors:

 $I_{c2}/I_{c1} = [1 + V_{ce2}/V_A]/[1 + V_{ce1}/V_A] \ge 1$

EEE331 Analogue Electronics

2 transistor circuit elements: current mirror with degenerated emitter

- · use emitter degeneration with additional $R_{\rm E}$'s to compensate the Early effect by negative feedback stabilisation
- · advantage: increases output impedance to $r_{\rm ce}(1+g_{\rm m}R_{\rm E})$
- · disadvantage: sacrifices available output voltage swing by voltage drop across $R_{\rm F}$

EEE331 Analogue Electronics

Lecture 4

EEE331

Analogue Electronics

2 transistor circuit elements: Widlar current source

- use only **one** resistor $R_{\rm F}$ on transistor T_2 to determine output current
- · advantages:
- I_{c2} can now be adjusted by R_{E} : $V_{\mathrm{be1}} = V_{\mathrm{CC}} - I_{\mathrm{REF}} R_{\mathrm{C}}$ (if r_{ce} negligible) $V_{\mathrm{be2}} = V_{\mathrm{be1}} - I_{\mathrm{e2}} R_{\mathrm{E}}$, hence for $\beta > 1$ $=V_{\text{be1}}-I_{\text{c2}}R_{\text{E}}$ $= V_{\rm CC} - I_{\rm REF} R_{\rm C} - I_{\rm C2} R_{\rm E},$

 I_{c2} =[(V_{CC} - V_{be2})- $I_{REF}R_{C}$]/ R_{E} is ideal for low output currents

- if $R_{\rm E}$ =0 (normal current source) all the voltage $V_{\rm CC} - V_{\rm be1}$ drops across $R_{\rm C}$, which for small currents would result in unrealistically large $R_{\mathbb{C}}$ values
- output impedance is increased to $r_{\rm ce}[1+g_{\rm m}(R_{\rm E}||r_{
 m be})]$

EEE331 Analogue Electronics

Analogue Electronics

3 transistor circuit: current mirror with base-current compensation

note : take e.g. β =100 [200]; then $I_{\rm c2}/I_{\rm REF}$ =0.9998 [0.99995]

EEE331 Analogue Electronics

 third transistor T₃ supplies the base currents to T₁ and T₂

• consider currents for matched T_1 and T_2 to get

input current:

 $I_i = I_{REF} = I_C + 2I_C / [\beta(\beta+1)]$

output current:

 $I_0 = I_{c2} = I_C$, hence

current gain: $I_0/I_{\text{BFF}} = 1/\{1+2/[\beta(\beta+1)]\} \approx 1/(1+2/\beta^2)$

is better than simple current mirror

problem: output resistance ≈r_{ce} is still low

Lecture 4

EEE331

Analogue Electronics

3 transistor circuit elements: Wilson current mirror

note: take e.g. β =100 [200]; then $I_{\rm C3}/I_{\rm REF}$ =0.9998 [0.99995]

EEE331 Analogue Electronics

- third transistor T₃ acts as a common base element because it only transfers its emitter current to its collector
- · input current:

 $I_i = I_{REF} = I_C [1 + (1 + 2/\beta)/(\beta + 1)]$

output current:

 $I_0 = I_{c3} = I_C (1 + 2/\beta)\beta/(\beta + 1)$, hence

current gain:

 $I_0/I_{REF} = (\beta+2)/[\beta+1+(\beta+2)/\beta]$

 $= (\beta+2)/(\beta+2+2/\beta)$

 $\approx 1/(1+2/\beta^2)$ as before

neglected so far: collector-emitter voltages of T_1 and T_2 are not equal, hence small current offset $I_{c1} \neq I_{c2}$ introduces systematic error that needs to be solved by adding diode in series with collector of T_2

Lecture 4

Analogue Electronics

3 transistor circuit elements: Wilson current mirror

EEE331 Analogue Electronics

EEE331

Analogue Electronics

N-transistor circuit elements: extended current mirrors

- at the node just below $R_{\rm ref}$ apply Kirchoff's Law to the sum of currents: $I_{\text{ref}} = I_{\text{C,ref}} + I_{\text{b,ref}} + I_{\text{b,1}} + i_{\text{b,2}} + \dots + I_{\text{b,N}} = (\beta + N + 1) I_{\text{b}}$
- at the output: $I_0=I_{C,N}=\beta I_{\rm b}$ hence, the ratio: $I_0/I_{\rm ref}=\beta/(\beta+N+1)$ (which for N=1 yields the former result)

EEE331 Analogue Electronics

Lecture 4

Analogue Electronics

N-transistor circuit elements: extended current mirrors

- at the node just below $R_{\rm ref}$ apply Kirchoff's Law to the sum of currents: $I_{\text{ref}} = I_{\text{C,ref}} + (I_{\text{b,ref}} + I_{\text{b,1}} + i_{\text{b,2}} + \dots + I_{\text{b,N}}) / (\beta + 1) = [\beta + (N+1)/(\beta + 1)] I_{\text{b}}$
- at the output: $I_{\rm o} = I_{\rm C,N} = \beta I_{\rm b}$ hence, the ratio: $I_{\rm o}/I_{\rm ref} = \beta/[\beta + (N+1)/(\beta+1)]$

 $(N+1)'/(\beta+1) << 1 \le N << \beta$

EEE331 Analogue Electronics

EEE331

Analogue Electronics

4 transistor circuit elements: differential amplifier

- use differential pair T₁&T₂ plus current mirror $T_3 \& T_4$
- consider currents through T_1 and T_2 : $I_{\rm bias}/2\pm g_{\rm m}v_{\rm i}^{\rm diff}/2$ • consider current at output node:
- $I_{\rm o} = I_{\rm c4} I_{\rm c2}$ where the collector current of $T_{\rm 1}$ is mirrored in $T_{\rm 4}$ such that we get $I_{\rm bias}/2 + g_{\rm m} v_{\rm i}^{\rm diff}/2 = I_{\rm c1} = I_{\rm c4} = I_{\rm o} + I_{\rm bias}/2 g_{\rm m} v_{\rm i}^{\rm diff}/2$,

 $I_{\rm o} = g_{\rm m} v_{\rm i}^{\rm diff}$

- for small load impedance $R_{\rm L} << r_{\rm ce}$ the output voltage then is $v_0 = g_m v_i^{\text{diff}} R_L$
- For simple resistors instead of $T_3 \& T_4$ but with v_0 equal magnitude to the output resistance of the BJTs these would give, for same load $R_{\rm L}$ and change in collector current $g_{\rm m}v_{\rm i}^{\rm diff}/2$ at T_2 , only half that output voltage as the output of T_1 branch would be wasted. The current mirror transfers it to T_4 and uses this to **double the gain**.

