course4.md 10/12/2021

Course 4: 11 october 2021

Last course

Cubic model

We have seen that data warehouses can be conceptually seen as n-dimensions cubes

Browsing a cube

- Slicing: choosing a level of a dimension
- Roll-up: aggregating, ...

This course

We will use many languages to implement those ideas

Languages for Data Warehouses and DW operations

SQL has extensions for DW

SQL

Aggregations

Group by cube

- it basically computes union of all the possible groupings as we see in the example
- we are not considering the null values!

```
select item-name, color, size, sum(number)
from sales
group by cube(item-name, color, size)
```

Computes the union of eight different groupings of the sales relation:

course4.md 10/12/2021

Note that there is always an internal optimization that the tools handle for us. We might have the impression that computing this grouping is better for the future for

Group by roll-up

Roll up: showing level details from the top level to the bottom level of a same dimension.

Cube: only remove or add null values from the top right to the first dimensions

what is rollup? why use it?

MDX (Multidimensional Expressions)

It is a query language for cubes that is used by many data warehousing systems. It is specially designed for DW. It is easy for simple queries but can be complex afterwards: be careful!

Orthogonality

Orthogonality: one dimension is independant of another. SQL is almost an orthogonal system. A table can be stored "table" in the database. What results of a query? a query result: a table. We can use this result as input for another query etc. But for any query, as complex as it is, the result will always have the same look: a table. This proves SQL is a very regular language.

If we have an orthogonal definition, the output is easy to manipulate.

Example : french is not an orthogonal language. Recteur devient rectrice par exemple.

Many languages are orthogonal: we can replace many variable types with other, for example make functions of functions, and still have the same output, etc. Here in MDX we don't have this orthogonality.

On fait un exo