MATH 7752 Homework 1

James Harbour

January 27, 2022

Problem 1

Let R be a ring and M an R-module.

(a) Prove that for every $m \in M$, the map $r \mapsto rm$ from R to M is a homomorphism of R-modules.

Proof. Fix $m \in M$ and let φ denote the map $r \mapsto rm$. Fix $x, y \in R$ and $r \in R$. Observe that

$$\varphi(x+y) = (x+y)m = xm + ym = \varphi(x) + \varphi(y)$$

and

$$\varphi(rx) = (rx)m = r(xm) = r\varphi(x),$$

so φ is an R-module homomorphism.

(b) Assume that R is commutative and M an R-module. Prove that there is an isomorphism $\operatorname{Hom}_R(R,M) \simeq M$ as R-modules.

Proof. For $m \in M$, let φ_m denote the R-module homomorphism in part (a). Consider the map $\psi: M \to \operatorname{Hom}_R(R, M)$ given by $\psi(m) = \varphi_m$. For $m, n \in M$ and $r, x \in R$,

$$\psi(m+n)(x) = \varphi_{m+n}(x) = x(m+n) = xm + xn = \varphi_m(x) + \varphi_n(x) = (\psi(m) + \psi(n))(x)$$

so $\psi(m+n) = \psi(m) + \psi(n)$, and

$$\psi(rm)(x) = \varphi_{rm}(x) = x(rm) = r(xm) = r\varphi_m(x) = (r\psi(m))(x)$$

so $\psi(rm) = r\psi(m)$.

Suppose $\psi(m) = \psi(n)$. Then $m = \varphi_m(1) = \psi(m)(1) = \psi(n)(1) = \varphi_n(1) = n$, so ψ is injective.

Suppose $\varphi \in \text{Hom}_R(R, M)$. For $r \in R$,

$$\psi_{\varphi(1)}(r) = r\varphi(1) = \varphi(r),$$

so $\psi_{\varphi(1)} = \varphi$, i.e. ψ is surjective.

Problem 2

Give an explicit example of a map $f: A \to B$ with the following properties:

- \bullet A, B are R-modules.
- f is a group homomorphism.
- f is not an R-module homomorphism.

Solution. Consider $A = B = \mathbb{C}$ viewed as \mathbb{C} -modules over themselves. Let $f: A \to B$ be complex conjugation. For $z, w \in A$, $f(z+w) = \overline{z+w} = \overline{z} + \overline{w} = f(z) + f(w)$, so f is a group homomorphism. However, for $z \in A \setminus \{0\}$, $f(iz) = -i\overline{z} \neq i\overline{z} = if(z)$, so f is not an R-module homomorphism.

Problem 3

Let R be a ring and M an R-module.

(a) Let N be a subset of M. The annihilator of N is defined to be the set

$$Ann_R(N) := \{ r \in R : rn = 0, \text{ for all } n \in N \}.$$

Prove that $Ann_R(N)$ is a left ideal of R.

Proof. Let $x, y \in I$ and $r \in R$. Fix $n \in N$. Noting that xn = 0 = yn, it follows that

$$(x + ry)n = xn + (ry)n = xn + r(yn) = 0.$$

Thus $x + ry \in \text{Ann}_R(N)$. Since all elements chosen were arbitrary, $\text{Ann}_R(N)$ is a left ideal of R.

(b) Show that if N is an R-submodule of M, then $Ann_R(N)$ is an ideal of R (i.e. it is two-sided ideal).

Proof. By part (a), it suffices to show that $\operatorname{Ann}_R(N)$ is a right ideal of R. Moreover, part (a) shows a fortiori that $\operatorname{Ann}_R(N)$ is already an abelian group, so we need only address its multiplicative structure. Let $y \in \operatorname{Ann}_R(N)$ and $r \in R$. Fix $n \in N$. As N is an R-submodule of M, $yn \in N$, whence (yr)n = y(rn) = 0 by definition. Hence $\operatorname{Ann}_R(N)$ is a two-sided ideal of R.

(c) For a subset I of R the annihilator of I in M is defined to be the set,

$$\operatorname{Ann}_{M}(I) := \{ m \in M : xm = 0, \text{ for all } x \in I \}.$$

Find a natural condition on I that guarantees that $Ann_M(I)$ is a submodule of M.

Claim. Ann_M(I) is an R-submodule of M if I is a right ideal of R.

Proof. Suppose I is a right ideal of R. As $x \cdot 0 = 0$ for all $x \in I$, $\operatorname{Ann}_M(I) \neq \emptyset$. Suppose $m, n \in \operatorname{Ann}_M(I)$ and $r \in R$. Fix $x \in I$. By definition $x \cdot m = 0$. As I is a right ideal, $xr \in I$, so $x \cdot (m+r \cdot n) = x \cdot m + (xr) \cdot n = 0$. Thus $\operatorname{Ann}_M(I)$ is an R-submodule of M.

(d) Let R be an integral domain. Prove that every finitely generated torsion R-module has a nonzero annihilator.

Proof. Let M be a finitely generated torsion R-module. Taking a generating set $m_1, \ldots, m_n \in M$ of M, for each $k \in \{1, \ldots, n\}$ there exists an $x_k \in R^{\times} = R \setminus \{0\}$ such that $x_k m_k = 0$. As R^{\times} is closed under multiplication, $r := x_1 \cdots x_n \in R^{\times}$ whence $r \neq 0$.

Now suppose that $m \in M$. Then there exist $r_1, \ldots, r_n \in R$ such that $m = r_1 m_1 + \cdots + r_n m_n$. Observe that, by the commutativity of R,

$$rm = (x_1 \cdots x_n)(r_1 m_1 + \cdots + r_n m_n) = \sum_{k=1}^n \left(\prod_{i \neq k} x_i\right) (x_k m_k) = 0.$$

Thus $0 \neq r \in \text{Ann}_R(M)$, so M has nonzero annihilator.

Problem 4

In class we obtained a simple characterization of R-modules when $R = \mathbb{Z}$, and R = F[x], with F a field. Imitate the method to find similar characterizations for R-modules in the following cases:

(a) $R = \mathbb{Z}/n\mathbb{Z}$, for some $n \geq 2$.

Claim. $\{\mathbb{Z}/n\mathbb{Z}\text{-modules}\}\longleftrightarrow\{n\text{-torsion abelian groups}\}$

Proof.

 \Longrightarrow : Let A be a $\mathbb{Z}/n\mathbb{Z}$ -module. We write $\mathbb{Z}/n\mathbb{Z} = \{ [0], [1], \ldots, [n-1] \}$. Define a \mathbb{Z} -module structure on A by letting $m \cdot a := [m] \cdot a$ for $m \in \mathbb{Z}$. This gives A the structure of an abelian group. To see that A is n-torsion, observe that, for any $a \in A$,

$$n \cdot a = [n] \cdot a = [0] \cdot a = 0.$$

 $\underline{\longleftarrow}$: Let A be an n-torsion abelian group. Then A has a natural \mathbb{Z} -module structure given by repeated addition. Define a $\mathbb{Z}/n\mathbb{Z}$ -module structure on A by letting $[m] \cdot a = m \cdot a$. To see that this definition is well-defined, suppose that [m] = [m']. Then n divides m - m', whence there exists a $k \in \mathbb{Z}$ such that m - m' = kn. Now, $(m - m') \cdot a = (kn) \cdot a = k \cdot (n \cdot a) = 0$ by n-torsion, so $m \cdot a = m' \cdot a$. That this action gives a $\mathbb{Z}/n\mathbb{Z}$ -structure follows from the fact that it descends from a \mathbb{Z} -module structure.

(b) $R = \mathbb{Z}[x]$.

Claim.

$$\{ \mathbb{Z}[x]\text{-modules} \} \longleftrightarrow \left\{ (A,T) \mid A \text{ an abelian group} \atop T: A \to A \text{ an abelian group endomorphism} \right\}$$

Proof.

 \Longrightarrow : Let A be a $\mathbb{Z}[x]$ -module. Via restriction of scalars under the natural inclusion $\mathbb{Z} \hookrightarrow \mathbb{Z}[x]$, A has an abelian group structure. Define a map $T: A \to A$ be $T(a) = x \cdot a$. By distributivity, T is an abelian group endomorphism. Moreover, given any $p(x) \in \mathbb{Z}[x]$, we have by linearity that $p(x) \cdot a = p(T)a$.

 $\underline{\longleftarrow}$: Let A be an abelian group and $T:A\to A$ an abelian group endomorphism. Define a $\mathbb{Z}[x]$ -module structure on A by declaring $p(x)\cdot a=p(T)a$ for all $p(x)\in\mathbb{Z}[x]$. That this action gives a $\mathbb{Z}[x]$ -module structure is clear.

(c)
$$R = F[x, y]$$
.

Claim.

$$\left\{ \, \mathbb{F}[x,y]\text{-modules} \, \right\} \longleftrightarrow \left\{ \, (V,T,S) \, \, \left| \, \begin{array}{c} V \text{ an } F\text{-vector space} \\ T,S:V \to V \text{ are } F\text{-linear maps such that } TS = ST \end{array} \right. \right\}$$

Proof.

 \Longrightarrow : Let V be an F[x,y]-module. Via restriction of scalars under the natural inclusion $F \hookrightarrow F[x,y]$, V has the structure of an F-vector space. Define maps $T,S:V\to V$ by $T(v):=x\cdot v$ and $S(v):=y\cdot v$ for all $v\in V$. For $\lambda\in F$ and $v,w\in A$, observe that

$$T(\lambda v + w) = x \cdot (\lambda v + w) = \lambda \cdot (x \cdot v) + x \cdot w = \lambda \cdot T(v) + T(w)$$

and same for S (mutatis mutandis), so T and S are F-linear endomorphisms of V. Moreover, for $v \in V$,

$$(ST)(v) = S(x \cdot v) = y \cdot (x \cdot v) = (yx) \cdot v = (xy) \cdot v = x \cdot (y \cdot v) = (TS)(v),$$

so ST = TS.

 $\underline{\Leftarrow}$: Let V be an F-vector space and $T, S: V \to V$ be commuting F-linear endomorpisms of V. Define an F[x,y]-module structure on V by setting $\lambda \cdot v := \lambda v$ for $\lambda \in F$, $x \cdot v := T(v)$, $y \cdot v := S(v)$, and extending to F(x,y) by linearity and distributivity, i.e. $p(x,y) \cdot v := p(T,S)v$.

Problem 5

An R-module M is called simple (or irreducible) if its only submodules are $\{0\}$ and M. An R-module M is called indecomposable if M is not isomorphic to $N \oplus Q$ for some non-zero submodules N, Q. Show that every simple R-module is indecomposable, but the converse is not true.

Proof. Let M be a simple R-module. Then $M \neq 0$ as otherwise there would only be one submodule. Suppose, for the sake of contradiction, that M is not indecomposable. Then there exist some nonzero submodules $N, Q \subseteq M$ such that $M \cong N \oplus Q$. By simplicity of M, it follows that N, Q = M. But then $M \cong M \oplus M$. Moreover, $0 \oplus M$ is then a nonzero proper submodule of $M \oplus M$, whence via the isomorphism $M \oplus M \cong M$ we obtain a nonzero proper submodule of M, contradicting the simplicity of M.

To see that the converse does not hold, consider $R = \mathbb{Z}$ and $M = \mathbb{Z}$ considered as a \mathbb{Z} -module over itself. Note that $2\mathbb{Z} \subseteq \mathbb{Z}$ is a nonzero proper submodule fo \mathbb{Z} , so M is not simple. to see that M is indecomposable, note that all nonzero submodules of M are of the form $a\mathbb{Z}$ for some $a \in \mathbb{Z} \setminus \{0\}$, and for any $a, b \in \mathbb{Z} \setminus \{0\}$, $ab \in a\mathbb{Z} \cap b\mathbb{Z}$. Hence, no sum of the required form would be direct.

Problem 6

Let R be a ring. An R-module M is called *cyclic* if it is generated as an R-module by a single element.

(a) Prove that every cyclic R-module is of the form R/I for some left ideal I of R.

Proof. Let M be a cyclic R-module. Then there exists an $m \in M$ such that M = Rm. Consider the map $\varphi : R \to M$ given by $\varphi(r) = rm$ for $r \in R$. By problem 1 part (a), φ is an R-module homomorphism; moreover, φ is surjective since m generates M. Let $I = \ker(\varphi)$, a left ideal of R (actually two-sided, but we are identifying R with its left regular module over itself so a priori I is just a left R-submodule). Then, by the first isomorphism theorem, $M = \varphi(R) \cong R/\ker(\varphi) = R/I$.

(b) Show that the simple R-modules are precisely the ones which are isomorphic to R/\mathfrak{m} for some maximal left ideal \mathfrak{m} .

Proof. On one hand, \mathfrak{m} be a maximal left ideal of R. By the correspondence theorem applied to the natural projection, the only R-submodules of R/\mathfrak{m} are $\{0\}$ and R/\mathfrak{m} , so R/\mathfrak{m} is simple (and so is every R-module isomorphic to it).

On the other hand, suppose M is a nonzero simple R-module. Take $m \in M \setminus \{0\}$. Then by the simplicity of M, Rm = M i.e. M is a cyclic module generated by m. Part (a) implies that there is some left ideal \mathfrak{m} of R such that $M \cong R/\mathfrak{m}$. Suppose that I is a proper left ideal of R such that $\mathfrak{m} \subseteq I \subseteq R$. Applying the natural projection, we see that $0 \subseteq I/\mathfrak{m} \subseteq R/\mathfrak{m}$, whence simplicity of R/\mathfrak{m} implies that I/\mathfrak{m} is trivial i.e. $I = \mathfrak{m}$. Thus by definition \mathfrak{m} is a maximal left ideal.

(c) Show that any non-zero homomorphism of simple R-modules is an isomorphism. Deduce that if M is simple, its endomorphism ring $\operatorname{End}_R(M) := \operatorname{Hom}_R(M, M)$ is a division ring. This result is known as Schur 's Lemma .

Proof. Suppose that M, N are simple R-modules and let $f: M \to N$ be a nonzero R-module homomorphism. As $f(M) \neq 0$ is a submodule of N, by simplicity f(M) = N i.e. f is surjective. As f is nonzero, $\ker(f)$ is a nonzero submodule of M whence $\ker(f) = 0$ i.e. f is injective. Hence f is an isomorphism.

Suppose M is simple and $f \in \operatorname{End}_R(M) \setminus \{0\}$. Then f is an isomorphism, so the set-theoretic inverse f^{-1} is in fact an R-module isomorphism and $f^{-1} \in \operatorname{End}_R(M)$. Hence $\operatorname{End}_R(M)$ is a divison ring.

Problem 7

Show that \mathbb{Q} is not a free \mathbb{Z} -module, that is \mathbb{Q} is not isomorphic to a direct sum of the form $\bigoplus_{I} \mathbb{Z}$, for any index set I. More generally, let R be a PID which is not a field and $K = \operatorname{frac}(R)$ be its fraction field. Show that K is not a free R-module.

Proof. Suppose, for the sake of contradiction, that \mathbb{Q} is a free \mathbb{Z} -module. Let $X \subseteq \mathbb{Q} \setminus \{0\}$ be a \mathbb{Z} -basis for \mathbb{Q} . Fix $\frac{a}{b}, \frac{c}{d} \in X$. Noting that $a, b, c, d \neq 0$, observe that then

$$(-bc) \cdot \frac{a}{b} + (da)\frac{c}{d} = \frac{-ac}{1} + \frac{ac}{1} = 0.$$

Thus, for X to be a basis, |X| = 1. Then by assumption, there exists a \mathbb{Z} -module isomorphism $f : \mathbb{Q} \to \mathbb{Z}$. Now, by surjectivity there exists a $\frac{p}{q} \in \mathbb{Q}$ such that $f(\frac{p}{q}) = 1$. Then,

$$1 = f\left(\frac{p}{q}\right) = f\left(2 \cdot \frac{p}{2q}\right) = 2 \cdot f\left(\frac{p}{2q}\right),$$

which is absurd.

Now let R be a PID which is not a field and $K = \operatorname{frac}(R)$ be its fraction field. Suppose, for the sake of contradiction, that K is a free R-module. As before, take $X \subseteq K \setminus \{0\}$ to be an R-basis for K. Again, fix $\frac{a}{b}$, $\frac{c}{d} \in X$. Since R is an integral domain and $a, b, c, d \neq 0$, $-bc \neq 0$ and $da \neq 0$. Observe that then

$$(-bc) \cdot \frac{a}{b} + (da)\frac{c}{d} = \frac{-ac}{1} + \frac{ac}{1} = 0,$$

so for X to be a basis, |X| = 1. Let $f : R \to K$ be an R-module isomorphism and $\iota : R \to K$ be the natural localization map. As $R \setminus \{0\}$ has no zero divisors, ι is injective. From the fact that f is an R-module

isomorphism, we see that $K = f(R) = R \cdot f(1)$.

Write $f(1) = \frac{a}{s} = \iota(a) \frac{1}{s}$. Then there exists an $r \in R$ such that

$$\frac{1}{s^2} = r \cdot \frac{a}{s} = \iota(r) \frac{a}{s} \implies \frac{1}{s} = \iota(ra) \in \iota(R)$$

but then, $f(1) = \iota(a)\iota(ra) = \iota(ara) \in \iota(R)$, whence $K = R \cdot f(1) = \iota(R)f(1) = \iota(R)$. As ι is injective, it follows that K is ring-isomorphic to R, contradicting that R is not a field.

Problem 8

Let R be a commutative ring. Recall that an ideal I of R is called *nilpotent* if there exists some $n \in \mathbb{N}$ such that $I^n = 0$.

(a) Let $i \in I$. Show that the element r = 1 - i is invertible in R.

Proof. As I is a nilpotent ideal, there exists an $n \in \mathbb{N}$ such that $I^n = 0$. Then $i^n = 0$, so

$$1 = 1 - i^{n} = (1 - i)(1 + i + \dots + i^{n-1}),$$

whence $1 - i \in \mathbb{R}^{\times}$.

(b) Let M, N be R-modules and let $\varphi : M \to N$ be an R-module homomorphism. Show that φ induces an R-module homomorphism, $\overline{\varphi} : M/IM \to N/IN$.

Proof. Let $\pi_M: M \to M/IM$ and $\pi_N: N \to N/IN$ be the natural projections. Define a map $\overline{\varphi}: M/IM \to N/IN$ by $\overline{\varphi}(m+IM) := \varphi(m) + IN = (\pi_N \circ \varphi)(m)$. To see that this map is well defined, suppose that m+IM = m'+IM. Then there exist $i_1, \ldots, i_s \in I$ and $m_1, \ldots, m_s \in M$ such that $m-m' = i_1m_1 + \cdots + i_sm_s$. So

$$\varphi(m-m')=\varphi(i_1m_1+\cdots+i_sm_s)=i_1\varphi(m_1)+\cdots+i_s\varphi(m_s)\in IN,$$

whence $\pi_N(\varphi(m)) - \pi_N(\varphi(m')) = \pi_N(\varphi(m-m')) = 0$, so $\pi_N(\varphi(m)) = \pi_N(\varphi(m'))$.

That $\overline{\varphi}$ is an abelian group homomorphism is clear from the fact the φ is one. Suppose $r \in R$ and $m \in M$. Then

$$\overline{\varphi}(r\cdot(m+IM)) = \overline{\varphi}(rm+IM) = \varphi(rm) + IN = r\varphi(m) + IN = r\cdot(\varphi(m)+IN) = r\cdot\overline{\varphi}(m+IM),$$

so $\overline{\varphi}$ is an R-module homomorphism.

(c) Prove that if $\overline{\varphi}$ is sujective, then φ is itself surjective.

Proof. Suppose that $\overline{\varphi}$ is surjective. Then $N/IN = \overline{\varphi}(M/IM) = (\overline{\varphi} \circ \pi_M)(M) = (\pi_N \circ \varphi)(M) = \varphi(M)/IN$. Take $n \in N$. Then there exists an $m \in M$ such that $n + IN = \overline{\varphi}(m + IM) = \varphi(m) + IN$, whence $n - \varphi(m) \in IN$. It follows that $n = \varphi(m) + (n - \varphi(m)) \in \varphi(M) + IN$, whence $N = \varphi(M) + IN$. As I is a nilpotent ideal, there exists a $k \in \mathbb{N}$ such that $I^k = 0$. Observe that

$$N = \varphi(M) + IN = \varphi(M) + I(\varphi(M) + IN) = \varphi(M) + I^2N = \dots = \varphi(M) + I^kN = \varphi(M),$$

so φ is surjective.

Problem 9

Let G be a finite group and k a field. Consider the group ring k[G].

- (a) Let M be a k-vector space with a G-action. Show that M becomes a k[G]-module. Conversely, if M is a k[G]-module, show that M is a G-set.
- (b) Let M, N be two k[G]-modules. Show that $\operatorname{Hom}_k(M, N)$ becomes a k[G]-module with the following G-action: For $g \in G$ and $\varphi : M \to N$ a k[G]-homomorphism define

$$(g \cdot \varphi)(m) := g\varphi(g^{-1}m), \text{ for } m \in M.$$