Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №1

(x + 2y + 3z = 10)Если $(x_0; y_0; z_0)$ – решение системы $\begin{cases} x - 3y + 2z = 3 \\ 3x - y + 5z = 15 \end{cases}$ значение выражения $y_0 - z_0$ равно:

4

1

Задание №2

Если
$$A = \begin{pmatrix} 2 & 0 \\ -3 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$, то $A \cdot B$ равно

 $\begin{pmatrix} 2 & 0 \\ -6 & 12 \end{pmatrix} \qquad \begin{pmatrix} 2 & 8 \\ 5 & 0 \end{pmatrix} \qquad \begin{pmatrix} 3 & 4 \\ -6 & 7 \end{pmatrix}$

 $\begin{pmatrix} 2 & 9 \\ 5 & 8 \end{pmatrix}$

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №3

Найти элемент матрицы, обратной к $A = \begin{pmatrix} 1 & 0 & -3 \\ 4 & 0 & 3 \\ -2 & 1 & 1 \end{pmatrix}$, pacположенный на пересечении второго столбца и первой строки.

$$-\frac{1}{15}$$
 $\frac{2}{5}$ $-\frac{1}{3}$ $\frac{1}{5}$ $\frac{1}{9}$

$$-\frac{1}{3}$$

$$\frac{1}{5}$$

Задание №4

Если $\vec{a}=\{2;-2\},\,\vec{b}=\{3;4\},\,\vec{c}=\{-1;8\},$ то разложение вектора \vec{c} по базису $\vec{a},\,\vec{b}$ ($\vec{c}=\alpha\vec{a}+\beta\vec{b}$) имеет вид:

$$\vec{c} = 2\vec{a} + \vec{b} \qquad \vec{c} = 3\vec{a} - \vec{b} \qquad \vec{c} = \vec{b} - 2\vec{a} \qquad \vec{c} = \vec{a} - 2\vec{b}$$

$$\vec{c} = 3\vec{a} - \vec{b}$$

$$\vec{c} = \vec{b} - 2\vec{a}$$

$$\vec{c} = \vec{a} - 2\vec{b}$$

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №5

Пусть $\vec{a}=\{1;2;-3\},\ \vec{b}=\{1;2;-3\},\ \vec{c}=\{0;2;-2\}.$ Тогда длина вектора $\vec{d} = \vec{a} + \vec{b} - 4\vec{c}$ равна:

0

$$\sqrt{26}$$
 $2\sqrt{6}$

$$\sqrt{14}$$

4,8

Задание №6

Косинус угла между векторами $\vec{a} = \vec{i} + 2\vec{j} - 2\vec{k}$ и $\vec{b} = 3\vec{i} - \vec{j} + 2\vec{k}$, равен:

$$-\frac{1}{\sqrt{14}}$$

$$-\frac{1}{3}$$

$$\frac{1}{3}$$

$$\frac{9}{\sqrt{14}}$$

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №7

Площадь треугольника ABC: A(4; -2; 2), B(1; 2; -2), C(3; 2; 1),составляет:

$$\frac{21\sqrt{3}}{2}$$

$$\frac{\sqrt{38}}{2} \qquad \frac{21\sqrt{3}}{2} \qquad \frac{\sqrt{209}}{2}$$

Задание №8

Объём параллелепипеда, построенного на векторах \vec{a} = $\{3; 2; 3\}, \vec{b} = \{-1; 2; 5\}, \vec{c} = \{1; -3; 2\},$ составляет:

12

74

Вариант № 20

Осталось сделать

Перейти к заданию

ЗАВЕРШИТЬ

ЗАКРЫТЬ

Осталось

мин.

Задание №9

Произведение собственных значений матрицы $\begin{pmatrix} 1 & -3 \\ 2 & 6 \end{pmatrix}$ равно:

7

8

12

0

Результаты

Набранные баллы (тах=100)

Неверно выполнены задания

Не выполнены задания