Physics takes a gamble! The science behind Monte Carlo methods

A chance-driven computation

Given: a bounded function $f(x) = f(x_1, ..., x_D)$ on the unit cube $[0, 1]^D$ with $|f(x)| \le 1$

-1

Compute:
$$J = \int \cdots \int_{[0,1]^D} f(x) dx$$

Select $X = (X_1, ..., X_D)$ at random from the D-dimensional cube $[0, 1]^D$

This means: X_1 , ..., X_D are independent and are each uniformly distributed in the unit interval.

$$\mathbf{X} \sim \mathbf{p}(\mathbf{x}) = \mathbf{u}(\mathbf{x}_1) \times \cdots \times \mathbf{u}(\mathbf{x}_D) = \begin{cases} 1 & \text{if } \mathbf{x} \in [0, 1]^D \\ 0 & \text{otherwise} \end{cases}$$

Evaluate Y = f(X)

$$\mathbf{X} \sim \mathbf{p}(\mathbf{x}) = \mathbf{u}(\mathbf{x}_1) \times \cdots \times \mathbf{u}(\mathbf{x}_D) = \begin{cases} 1 & \text{if } \mathbf{x} \in [0, 1]^D \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbf{X} \sim \mathbf{p}(\mathbf{x}) = \mathbf{u}(\mathbf{x}_1) \times \dots \times \mathbf{u}(\mathbf{x}_D) = \begin{cases} 1 & \text{if } \mathbf{x} \in [0, 1]^D \\ 0 & \text{otherwise} \end{cases}$$
 $\mathbf{E}(\mathbf{f}(\mathbf{X})) = \mathbf{J}$ $\mathbf{Var}(\mathbf{f}(\mathbf{X})) \leq 1$

$$\mathbf{X} \sim \mathbf{p}(\mathbf{x}) = \mathbf{u}(\mathbf{x}_1) \times \dots \times \mathbf{u}(\mathbf{x}_D) = \begin{cases} 1 & \text{if } \mathbf{x} \in [0, 1]^D \\ 0 & \text{otherwise} \end{cases}$$
 $\mathbf{E}(\mathbf{f}(\mathbf{X})) = \mathbf{J}$ $\mathbf{Var}(\mathbf{f}(\mathbf{X})) \leq 1$

$$\mathbf{X} \sim \mathbf{p}(\mathbf{x}) = \mathbf{u}(\mathbf{x}_1) \times \cdots \times \mathbf{u}(\mathbf{x}_D) = \begin{cases} 1 & \text{if } \mathbf{x} \in [0, 1]^D \\ 0 & \text{otherwise} \end{cases}$$
 $\mathbf{E}(\mathbf{f}(\mathbf{X})) = \mathbf{J}$ $\mathbf{Var}(\mathbf{f}(\mathbf{X})) \leq 1$

Evaluate:
$$Y_1 = f(X^{(1)}), Y_2 = f(X^{(2)}), \dots, Y_n = f(X^{(n)})$$

$$\mathbf{X} \sim \mathbf{p}(\mathbf{x}) = \mathbf{u}(\mathbf{x}_1) \times \dots \times \mathbf{u}(\mathbf{x}_D) = \begin{cases} 1 & \text{if } \mathbf{x} \in [0, 1]^D \\ 0 & \text{otherwise} \end{cases}$$
 $\mathbf{E}(\mathbf{f}(\mathbf{X})) = \mathbf{J}$ $\mathbf{Var}(\mathbf{f}(\mathbf{X})) \leq 1$

Evaluate:
$$Y_1 = f(X^{(1)}), Y_2 = f(X^{(2)}), \dots, Y_n = f(X^{(n)})$$

What do we know about these values?

$$\mathbf{X} \sim \mathbf{p}(\mathbf{x}) = \mathbf{u}(\mathbf{x}_1) \times \dots \times \mathbf{u}(\mathbf{x}_D) = \begin{cases} 1 & \text{if } \mathbf{x} \in [0, 1]^D \\ 0 & \text{otherwise} \end{cases}$$
 $\mathbf{E}(\mathbf{f}(\mathbf{X})) = \mathbf{J}$ $\mathbf{Var}(\mathbf{f}(\mathbf{X})) \leq 1$

Evaluate:
$$Y_1 = f(X^{(1)}), Y_2 = f(X^{(2)}), \dots, Y_n = f(X^{(n)})$$

What do we know about these values?

The induced sample $Y_1, ..., Y_n$ constitutes a sequence of repeated independent trials with common expectation J and variance bounded above by 1.

$$\mathbf{X} \sim \mathbf{p}(\mathbf{x}) = \mathbf{u}(\mathbf{x}_1) \times \dots \times \mathbf{u}(\mathbf{x}_D) = \begin{cases} 1 & \text{if } \mathbf{x} \in [0, 1]^D \\ 0 & \text{otherwise} \end{cases}$$
 $\mathbf{E}(\mathbf{f}(\mathbf{X})) = \mathbf{J}$ $\mathbf{Var}(\mathbf{f}(\mathbf{X})) \leq 1$

Evaluate:
$$Y_1 = f(X^{(1)}), Y_2 = f(X^{(2)}), \dots, Y_n = f(X^{(n)})$$

What do we know about these values?

The induced sample $Y_1, ..., Y_n$ constitutes a sequence of repeated independent trials with common expectation J and variance bounded above by 1.

$$\mathbf{X} \sim \mathbf{p}(\mathbf{x}) = \mathbf{u}(\mathbf{x}_1) \times \cdots \times \mathbf{u}(\mathbf{x}_D) = \begin{cases} 1 & \text{if } \mathbf{x} \in [0, 1]^D \\ 0 & \text{otherwise} \end{cases}$$
 $\mathbf{E}(\mathbf{f}(\mathbf{X})) = \mathbf{J}$ $\mathbf{Var}(\mathbf{f}(\mathbf{X})) \leq 1$

Evaluate:
$$Y_1 = f(X^{(1)}), Y_2 = f(X^{(2)}), \dots, Y_n = f(X^{(n)})$$

What do we know about these values?

The induced sample $Y_1, ..., Y_n$ constitutes a sequence of repeated independent trials with common expectation J and variance bounded above by 1.

Form:
$$S_n = Y_1 + \cdots + Y_n = f(X^{(1)}) + \cdots + f(X^{(n)})$$

$$\mathbf{X} \sim \mathbf{p}(\mathbf{x}) = \mathbf{u}(\mathbf{x}_1) \times \cdots \times \mathbf{u}(\mathbf{x}_D) = \begin{cases} 1 & \text{if } \mathbf{x} \in [0, 1]^D \\ 0 & \text{otherwise} \end{cases}$$
 $\mathbf{E}(\mathbf{f}(\mathbf{X})) = \mathbf{J}$ $\mathbf{Var}(\mathbf{f}(\mathbf{X})) \leq 1$

Evaluate:
$$Y_1 = f(X^{(1)}), Y_2 = f(X^{(2)}), \dots, Y_n = f(X^{(n)})$$

What do we know about these values?

The induced sample $Y_1, ..., Y_n$ constitutes a sequence of repeated independent trials with common expectation J and variance bounded above by 1.

Form:
$$S_n = Y_1 + \dots + Y_n = f(X^{(1)}) + \dots + f(X^{(n)})$$

 $E(S_n) = E(Y_1) + \dots + E(Y_n)$

$$\mathbf{X} \sim \mathbf{p}(\mathbf{x}) = \mathbf{u}(\mathbf{x}_1) \times \cdots \times \mathbf{u}(\mathbf{x}_D) = \begin{cases} 1 & \text{if } \mathbf{x} \in [0, 1]^D \\ 0 & \text{otherwise} \end{cases}$$
 $\mathbf{E}(\mathbf{f}(\mathbf{X})) = \mathbf{J}$ $\mathbf{Var}(\mathbf{f}(\mathbf{X})) \leq 1$

Evaluate:
$$Y_1 = f(X^{(1)}), Y_2 = f(X^{(2)}), \dots, Y_n = f(X^{(n)})$$

What do we know about these values?

The induced sample $Y_1, ..., Y_n$ constitutes a sequence of repeated independent trials with common expectation J and variance bounded above by 1.

Form:
$$S_n = Y_1 + \dots + Y_n = f(X^{(1)}) + \dots + f(X^{(n)})$$

 $E(S_n) = E(Y_1) + \dots + E(Y_n) = nJ$

$$\mathbf{X} \sim \mathbf{p}(\mathbf{x}) = \mathbf{u}(\mathbf{x}_1) \times \dots \times \mathbf{u}(\mathbf{x}_D) = \begin{cases} 1 & \text{if } \mathbf{x} \in [0, 1]^D \\ 0 & \text{otherwise} \end{cases}$$
 $\mathbf{E}(\mathbf{f}(\mathbf{X})) = \mathbf{J}$ $\mathbf{Var}(\mathbf{f}(\mathbf{X})) \leq 1$

Evaluate:
$$Y_1 = f(X^{(1)}), Y_2 = f(X^{(2)}), \dots, Y_n = f(X^{(n)})$$

What do we know about these values?

The induced sample $Y_1, ..., Y_n$ constitutes a sequence of repeated independent trials with common expectation J and variance bounded above by 1.

Form:
$$S_n = Y_1 + \dots + Y_n = f(X^{(1)}) + \dots + f(X^{(n)})$$

 $E(S_n) = E(Y_1) + \dots + E(Y_n) = nJ$
 $Var(S_n) = Var(Y_1) + \dots + Var(Y_n)$

$$\mathbf{X} \sim \mathbf{p}(\mathbf{x}) = \mathbf{u}(\mathbf{x}_1) \times \cdots \times \mathbf{u}(\mathbf{x}_D) = \begin{cases} 1 & \text{if } \mathbf{x} \in [0, 1]^D \\ 0 & \text{otherwise} \end{cases}$$
 $\mathbf{E}(\mathbf{f}(\mathbf{X})) = \mathbf{J}$ $\mathbf{Var}(\mathbf{f}(\mathbf{X})) \leq 1$

Evaluate:
$$Y_1 = f(X^{(1)}), Y_2 = f(X^{(2)}), \dots, Y_n = f(X^{(n)})$$

What do we know about these values?

The induced sample $Y_1, ..., Y_n$ constitutes a sequence of repeated independent trials with common expectation J and variance bounded above by 1.

Form:
$$S_n = Y_1 + \dots + Y_n = f(X^{(1)}) + \dots + f(X^{(n)})$$

 $E(S_n) = E(Y_1) + \dots + E(Y_n) = nJ$
 $Var(S_n) = Var(Y_1) + \dots + Var(Y_n) \le n \cdot 1 = n$

$$\mathbf{X} \sim \mathbf{p}(\mathbf{x}) = \mathbf{u}(\mathbf{x}_1) \times \dots \times \mathbf{u}(\mathbf{x}_D) = \begin{cases} 1 & \text{if } \mathbf{x} \in [0, 1]^D \\ 0 & \text{otherwise} \end{cases}$$
 $\mathbf{E}(\mathbf{f}(\mathbf{X})) = \mathbf{J}$ $\mathbf{Var}(\mathbf{f}(\mathbf{X})) \leq 1$

Evaluate:
$$Y_1 = f(X^{(1)}), Y_2 = f(X^{(2)}), \dots, Y_n = f(X^{(n)})$$

What do we know about these values?

The induced sample $Y_1, ..., Y_n$ constitutes a sequence of repeated independent trials with common expectation J and variance bounded above by 1.

The law of large numbers beckons!

Form:
$$S_n = Y_1 + \dots + Y_n = f(X^{(1)}) + \dots + f(X^{(n)})$$

 $E(S_n) = E(Y_1) + \dots + E(Y_n) = nJ$
 $Var(S_n) = Var(Y_1) + \dots + Var(Y_n) \le n \cdot 1 = n$

Estimate the unknown J by the sample mean S_n/n

$$\mathbf{X} \sim \mathbf{p}(\mathbf{x}) = \mathbf{u}(\mathbf{x}_1) \times \dots \times \mathbf{u}(\mathbf{x}_D) = \begin{cases} 1 & \text{if } \mathbf{x} \in [0, 1]^D \\ 0 & \text{otherwise} \end{cases}$$
 $\mathbf{E}(\mathbf{f}(\mathbf{X})) = \mathbf{J}$ $\mathbf{Var}(\mathbf{f}(\mathbf{X})) \leq 1$

Evaluate:
$$Y_1 = f(X^{(1)}), Y_2 = f(X^{(2)}), \dots, Y_n = f(X^{(n)})$$

What do we know about these values?

The induced sample $Y_1, ..., Y_n$ constitutes a sequence of repeated independent trials with common expectation J and variance bounded above by 1.

The law of large numbers beckons!

Form:
$$S_n = Y_1 + \dots + Y_n = f(X^{(1)}) + \dots + f(X^{(n)})$$

 $E(S_n) = E(Y_1) + \dots + E(Y_n) = nJ$
 $Var(S_n) = Var(Y_1) + \dots + Var(Y_n) \le n \cdot 1 = n$

Monte Carlo method

Estimate the unknown J by the sample mean S_n/n

$$S_n = Y_1 + \dots + Y_n = f(X^{(1)}) + \dots + f(X^{(n)})$$

$$E(S_n) = nJ$$

$$Var(S_n) \leq n$$

$$S_n = Y_1 + \dots + Y_n = f(X^{(1)}) + \dots + f(X^{(n)})$$

$$E(S_n) = nJ$$

$$Var(S_n) \le n$$

$$\begin{split} S_n &= Y_1 + \dots + Y_n = f\big(X^{(1)}\big) + \dots + f\big(X^{(n)}\big) \\ E(S_n) &= nJ \\ Var(S_n) &\leq n \end{split}$$

$$\mathbf{P}\left\{\left|\frac{S_n}{n}-J\right|>\epsilon\right\}$$

$$S_n = Y_1 + \dots + Y_n = f(X^{(1)}) + \dots + f(X^{(n)})$$

$$E(S_n) = nJ$$

$$Var(S_n) \le n$$

$$\mathbf{P}\left\{\left|\frac{S_n}{n} - J\right| > \epsilon\right\} = \mathbf{P}\left\{|S_n - nJ| > n\epsilon\right\}$$

$$S_n = Y_1 + \dots + Y_n = f(X^{(1)}) + \dots + f(X^{(n)})$$

$$E(S_n) = nJ$$

$$Var(S_n) \le n$$

$$\mathbf{P}\left\{\left|\frac{S_n}{n} - J\right| > \epsilon\right\} = \mathbf{P}\left\{|S_n - nJ| > n\epsilon\right\} \le \frac{\operatorname{Var} S_n}{(n\epsilon)^2}$$

$$S_n = Y_1 + \dots + Y_n = f(X^{(1)}) + \dots + f(X^{(n)})$$

$$E(S_n) = nJ$$

$$Var(S_n) \le n$$

$$\mathbf{P}\left\{\left|\frac{S_n}{n} - J\right| > \epsilon\right\} = \mathbf{P}\left\{|S_n - nJ| > n\epsilon\right\} \le \frac{\operatorname{Var} S_n}{(n\epsilon)^2} \le \frac{n}{n^2 \epsilon^2}$$

$$S_n = Y_1 + \dots + Y_n = f(X^{(1)}) + \dots + f(X^{(n)})$$

$$E(S_n) = nJ$$

$$Var(S_n) \le n$$

$$\mathbf{P}\left\{\left|\frac{S_n}{n} - J\right| > \epsilon\right\} = \mathbf{P}\left\{|S_n - nJ| > n\epsilon\right\} \le \frac{\operatorname{Var} S_n}{(n\epsilon)^2} \le \frac{n}{n^2\epsilon^2} = \frac{1}{n\epsilon^2}$$

$$S_n = Y_1 + \dots + Y_n = f(\mathbf{X}^{(1)}) + \dots + f(\mathbf{X}^{(n)})$$

$$E(S_n) = nJ$$

$$Var(S_n) \le n$$

$$\mathbf{P}\left\{\left|\frac{S_n}{n} - J\right| > \epsilon\right\} = \mathbf{P}\left\{|S_n - nJ| > n\epsilon\right\} \le \frac{\operatorname{Var} S_n}{(n\epsilon)^2} \le \frac{n}{n^2\epsilon^2} = \frac{1}{n\epsilon^2}$$

The sample mean S_n/n estimate the unknown integral J with an absolute error of no more than ϵ and a confidence of at least $1 - \delta$ if the sample size n satisfies

$$\frac{1}{n\epsilon^2} \le \delta \qquad -or - \qquad n \ge \frac{1}{\epsilon^2 \delta}$$

$$S_n = Y_1 + \dots + Y_n = f(\mathbf{X}^{(1)}) + \dots + f(\mathbf{X}^{(n)})$$

$$E(S_n) = nJ$$

$$Var(S_n) \le n$$

$$\mathbf{P}\left\{\left|\frac{S_n}{n} - J\right| > \epsilon\right\} = \mathbf{P}\left\{|S_n - nJ| > n\epsilon\right\} \le \frac{\operatorname{Var} S_n}{(n\epsilon)^2} \le \frac{n}{n^2\epsilon^2} = \frac{1}{n\epsilon^2}$$

The sample mean S_n/n estimate the unknown integral J with an absolute error of no more than ϵ and a confidence of at least $1 - \delta$ if the sample size n satisfies

$$\frac{1}{n\epsilon^2} \le \delta \qquad -or - \qquad n \ge \frac{1}{\epsilon^2 \delta}$$

To illustrate: if $n = 10^6$ then the estimate error will be less than 1% ($\varepsilon = 0.01$) and the confidence in excess of 99% ($\delta = 0.01$)!