Seminář o projektech IMS

Martin Hrubý

2013

Zápočet IMS

- Půlsemestrální písemka 10 bodů
- Projekt 20 bodů
- Celkem až 30 bodů
- 10 bodů a více = zápočet
- 9, 8, 7, ... = bez zápočtu

Smysl simulačního projektu

- Co se řeší?
- Proč se to řeší?
- Jak se to řeší?
- Jaký je výsledek nebo závěr?
- K čemu je výsledek/závěr dobrý?
- Proč má odběratel věřit výsledku?

Řešitelé projektu

- Dvojice, jednotlivec.
- Projekt odevzdává zástupce týmu (první ve dvojici).
- Pokud se tým rozpadne:
 - Mohou dokončit a odevzdat jednotlivci.
 - V dokumentaci zmínit.
 - Jednotlivci nemají úlevu v kvalitě výsledků.

Termín odevzdání

- Termín: 9. 12. 2013
- Průběžné odevzdávání
- Pokud nebudou zápočty jasné v době 1. termínu zkoušky, lze jít na zkoušku bez zápočtu.

Konzultace

- Seminář.
- Fórum předmětu.
- Osobní konzultace.
- E-mail.

Konzultace, nevhodné otázky

- Co znamená moje téma projektu?
- Co mám v projektu dělat?
- Jak mám projekt dělat?
- Jak mám projekt udělat, abych dostal plný počet bodů?
- Už je můj projekt ve stavu, abych za něj dostal plný počet bodů?

Inženýrský přístup

- Inženýři versus úředníci.
- Nejasné zadání.

Forma odevzdání

- WIS, termín "Projekt-odevzdávání projektů"
- Archív .tar.gz, .zip (ověřit na merlinovi!!!).
- Zdrojové texty programu (bez diakritiky).
 Makefile.
- Dodatečná data (obrázky, grafy, tabulky, výsledky).
- Dokumentace výhradně PDF (ověřit čitelnost).

Funkčnost programu

- Povolené programovací jazyky: C/C++
- SIMLIB zadání 3-9.
- Ověřit funkčnost na merlin/eva.
- make, make run.

Hodnocení, podání vysvětlení

- Hodnotitel má právo povolat v libovolném okamžiku (po odevzdání) tým k podání vysvětlení.
 - Vysvětlení musí být schopni podat oba členové týmu.

Pokud nejsou:

- Snížení bodového hodnocení (nedůvěryhodný projekt).
- Snížení bodového hodnocení jednoho z týmu. Zpochybnění jeho účasti na projektu.
- V extrémním případě 0 bodů pro jednoho nebo oba.

Kritické případy pro 0 bodů

- Model je nevalidní tak, že to pozná i laik.
- Model/program je nepřeložitelný, nedokončený nebo nefunkční. Obzvlášť pochybný je projekt prezentující výsledky z evidentně nefunkčního modelu.
- Nejsou dodrženy formální náležitosti projektu (jako např. formát souboru, programací jazyk).
 - Některá část projektu zcela chybí nebo nedosahuje minimálních požadavků (není dokumentace nebo je triviální, případne je dokumentace, ale chybí model).

Simulační studie - "dokumentace"

- Současný stav:
 - Psát dokumentaci je "opruz".
 - Tým = jeden programuje a druhý píše.
 - Odlišujme publikovanou zprávu a interní dokumentaci.
- Inženýr musí umět oboje, časem spíš psát.
- Dnešní doba: píše se více a více; čte se méně a méně.
- Prezentace a technické zprávy fakta, koncepce, rozhodnutí, zdůvodnění, experimenty, ověření, závěry, doporučení, odborná literatura.

Simulační studie - struktura

- http://perchta.fit.vutbr.cz/vyuka-ims/16
- Technická zpráva má povinnou strukturu (nedodržení -> ztráta bodů).
 Zpráva (simulační studie) musí obsahovat všechna důležitá fakta. Nejsou "ústní dodatky".
- Struktura je obecná, přesto u jednotlivých okruhů je třeba formulace přizpůsobit.

Obecná struktura sim. studie

- Úvod
- Fakta
- Koncepce
- Způsob řešení
- Testování/experimenty
- Závěr

1. Úvod

- Úvod musí vysvětlit, proč se celá práce dělá a proč má uživatel výsledků váš dokument číst.
 - V této práci je řešena implementace ..., která bude použita pro sestavení modelu ...
 - Na základě modelu a simulačních experimentů bude ukázáno chování systému ... v podmínkách ...
 - Smyslem experimentů je demonstrovat, že pokud by ..., pak by ...
 - Správnost zvolené koncepce byla ověřena...
- Psaní úvodů je náročná práce. Úvody se čtou!!!

1.1 Zdroje faktů

- Kdo se na práci podílel jako autor, odborný konzultant, dodavatel odborných faktů,
 - význačné zdroje literatury / fakt, ...
 - je ideální, pokud jste vaši koncepci konzultovali s nějakou autoritou v oboru (v IMS projektu to je hodnoceno, ovšem není vyžadováno)
 - pokud nebudete mít odborného konzultanta, nevadí. Nelze ovšem tvrdit, že jste celé dílo vymysleli s nulovou interakcí s okolím a literaturou.
- Zdroj údajů

1.2 Ověření validity/funkčnosti

- V jakém prostředí a za jakých podmínek probíhalo experimentální ověřování validity modelu.
- Pokud čtenář/zadavatel vaší zprávy neuvěří ve validitu vašeho modelu, obvykle vaši práci odmítne už v tomto okamžiku.

2. Fakta

 Podstatná fakta o systému musí být zdůvodněna a podepřena důvěryhodným zdrojem (vědecký článek, kniha, osobní měření a zjišťování). Alespoň jeden (lépe 2) zdroj.

• Fakta:

- Kterékoliv číslo, fakt, stav, vztah
- Za každým takovým údajem musí následovat odkaz na zdroj (1 důvěryhodný nebo několik jiných).
- Hypotézy/předpoklady (podklady)
- SHO: proces příchodů požadavků/doby obsluhy, struktura systému, ...

3. Koncepce modelu/simulátoru

- Konceptuální model je abstrakce reality a redukce reality na soubor relevantních faktů pro sestavení simulačního modelu.
- Pokud některé partie reality zanedbáváte nebo zjednodušujete, musí to být zdůvodněno a v ideálním případě musí být prokázáno, že to neovlivní validitu modelu.
- Výsledek kapitoly: konceptuální (abstraktní) model s vyznačením relevantních faktů.

Fakta versus Koncepce

- Fakta: soupis znalostí o daném problému.
- Koncepce:
 - převzetí faktů do modelu,
 - zdůvodněné provedené zjednodušení faktů,
 - abstraktní popis modelu/programu.
- Těžiště modelářské práce.
- Návod: koncepci vaší práce MUSÍ pochopit libovolný technik (a často i manažer...).

Příklad: ovce na pastvě

Fakta (smyšleno):

- Smith a Brown (odkaz) rozlišují tři typy ovcí: středoevropské, severské a jihoevropské. Dožívají se ... věku. Jejich spotřeba potravy se mění s věkem takto... Dle údajů České komory zemědělců (odkaz) je denní přírustek trávy ... kg/m^2 násobeno koeficientem x dle nadmořské výšky.
- Chovatel P. Novák uvádí počet 100 ovcí ve stádě. Přírustek uvádí ... ovcí ročně. Pastviny P. Nováka jsou ve výšce 500 m n.m.

...

Koncepce: ovce

• Koncepce:

- Předpokládáme výhradně středoevropské ovce, protože ...
- Předpokládáme … přírustek trávy. Potvrzují to i …
- Předpokládáme srážky v průměry ... za den
- Předpokládáme věkové spektrum a z toho plynoucí spotřebu potravy dle následující tabulky: ...
- Ovce jsou na pastvě od ... do ...
- Smyslem modelu je ukázat vztah mezi ... a ...

Zjišťování faktů

- Náročná práce, mnohdy téměř partyzánská.
- Literatura.
- Osobní (nedestruktivní) zjišťování v terénu.
- Je to součást modelářské práce.

Koncepce implementačních zadání

- Studenti nejsou schopni odlišit popis koncepce a implementace (projekty, BP/DP).
- Oblíbené jsou zejména "diagramy tříd".
- Koncepce algoritmů:
 - Datové struktury zdůvodnění jejich atributů.
 - Abstraktní popis alg. zapsaný pseudo-kódem, matematicky.
 - Vývojový diagram.
- Klíčový prvek dokumentace!

Koncepce SHO: Petriho síť

- Může být dobré ukázat vztahy mezi procesy a zdroji v systému.
 - Neberme AM v Petriho síti jako detailní program.
 AM má ukázat zásadní fakta o systému. Části, které v PS nelze vyjádřit, vyjádřete slovním popisem.
 - Konkrétní fronta se volí podle.... Vygeneruje se normal(X,Y) značek...
- AM musí být stručný, přehledný a srozumitelný
 Může být čitelně psán rukou + scan.

Koncepce pro okruhy zadání

- 1 a 2: popis datových struktur a algoritmů.
- 3,4,6,7,8: přehledné zobrazení relevantních faktů, významné části (přehledově) např. P. sítí.
- 5: okolnosti měření, popis způsobu měření, způsob zpracování naměřených dat.

Architektura simulačního modelu

- Nejméně zajímavá část. Obvykle se neuvádí.
- O funkčnosti modelu musí přesvědčit kapitola 3.
- Není to referenční příručka!
- Rozeberte několik nejzajímavějších partií implementace.
 - Např. přepis abstraktně podaného alg. do formy kódu.
- Případná uživatelská příručka (spuštění programu, struktura výpisů, ...).

Experimenty

- Simulační studie začíná formulováním problému:
 - co chci zjistit,
 - (proč je k tomu potřeba simulační model.)
- Studie končí výslovením závěru:
 - co jsem tedy zjistil,
 - co bych ještě mohl zjistit,
 - (proč by to nešlo bez modelu.)

Experimenty: úvod

- Experimentování musí mít předem zvolený a zdůvodněný řád, či postup.
- Okolnosti experimentování:
 - datová sada, konfigurace měřící aparatury, ...
- Test versus Experiment.
 - "měření" != experiment !!!
- Experimenty se i ladí model kalibrační experimenty.
 - ... na základě tohoto experimentu jsme korigovali parametr x..

Struktura kapitoly Experimenty

- 5.1 Postup experimentování a okolnosti studie
- 5.2 Dokumentace jednotlivých experimentů
- 5.3 Závěr experimentů
- Poznámka: experimentování je činnost vyžadující preciznost.
 - modelování a SIMULACE

Dokumentace experimentu

- Protokolární forma:
 - vstupy a okolnosti,
 - výstupy a pozorování,
 - interpretace výsledků.
- Interpretace výsledků:
 - Rozbor výsledků: co v nich má čtenář vidět.
 - Grafy mají pojmenované a kalibrované osy.
- Návrh dalšího experimentu.

Závěry experimentů

- Co bylo experimentováním zjištěno.
- Jaké chyby v modelu byly odstraněny (oproti původním předpokladům ... došlo ke změně koncepce ... protože ...).
- Co lze zjistit dalšími experimenty.

Závěr práce

- Jednoznačná odpověď na prvotní otázku studie.
 - Studií provedenou na našem modelu bylo jednoznačně prokázáno/vyvráceno, že ...
 - V rámci experimentů bylo zjištěno, že průměrné zatížení ...
 je ...
 - Z experimentů vyplývá jednoznačné doporučení, aby provozovatel ... rozšířil výrobu o ...
 - Ze statisticky zpracovaného měření v terénu plyne, že proces příchodů ... se řídí normálním rozložením se středem a
 - Na přiložených demo-příkladech jsme ověřili funkčnost ...

Co v závěru NEMÁ být

- Poznámky osobního charakteru (např. práce na projektu mě bavila/nebavila, ...).
 - Technická zpráva není osobní příběh autora. Kolik úsilí jste projektu věnovali...
- Do závěru se velmi nehodí psát "autozhodnocení" kvality práce, to je výhradně na recenzentovi/hodnotiteli/zákazníkovi.
 - (např. v projektujsem zcela splnil zadání a domnívám se, že můj model je bezchybný a výsledky taktéž).
- Předat podklady pro zhodnocení práce (zdůvodnění validity a výsledky) a zhodnocení nechat na odběrateli výsledků.

Obecné poznámky

- Znát svůj text studie jsou oponovány/ prezentovány.
- Korektní technické vyjadřování
 - Žádný slang/žargón, slova v uvozovkách, neformální obraty.
 - Žádné vtipné poznámky.
 - Fakta, analýzy, rozhodnutí, výsledky a jejich interpretace.
 - Rozsah technické zprávy: Stránky se nepočítají.
 Minimalizujte rozsah s ohledem na kvalitní podání.

Rozbor okruhů

... spíše dodatky a komentáře

1.Implementace diskrétního simulátoru pro modelování na základě událostí

- Simulátor události (ne procesy).
- Podpora pro SHO.
- Transakce třída s atributy. Metody modelují bloky pro obsluhu událostí. Stav transakce.
- Demo příklad z democvičení (ideálně dva).

2. Implementace spojitého simulátoru

- Spojitý simulátor (Euler, RK-4, Adams-Bashforth).
- Bloky pro integrátor a aritm. operace (inspirace SIMLIB).
- Bez detekce rychlých smyček jinak BONUS.
- Demo: 2 x model s třemi integrátory.

3. SHO výrobní linka

- Najděte a prostudujte jednu výrobní firmu.
- Provoz výroby výrobní operace, produkt, zakázky (+ priority).
- Výrobní várka = transakce.
- Statistiky časů strávených v systému, fronty.
- Experimenty:
 - režimy provozu, pořadí transakcí ve výrobě, ...
 - počet výrobních linek, personálu, ...

4. SHO logistická firma

- Konkrétní region (ČR, SR, ...). Pobočky, centrála, auta, provozní doba.
- Procesy příchodů požadavků klíčové.
- Pozor na obsl. linky není jich nekonečně.
- Experimenty:
 - ideální počet aut, topologie sítě, ...
 - vytíženost,
 - provozní náklady palivo, čas, doba strávená v systému.

5. Modely stochastických procesů

- 3 reálné jevy intervaly mezi příchody, počty.
 - Zajímavé jevy.
- Změření souboru dat min. 100-200 vzorků.
 - Protokol o měření (okolnosti, postup, vzorek dat).
- Statistické zpracování:
 - Není vyžadována exaktní metoda aproximace.
 - Histogram, experimentování s rozloženími (je jich více).
 - Demonstrace aproximace (SIMLIB generátor).

6. SHO dopravní uzel

- Struktura a provozování dopravního uzlu (přístav, železniční překladiště).
 - ideálně existující místo na světě. Už ne letiště.
- Stochastický nebo rozvrhovaný proces příchodů požadavků.
- Zatížení zdrojů (jeřáby, posunovači), propustnost systému, doba v systému, poruchovost v systému.

7. SHO cloudové centrum

- Hypotetické, ideálně však existující cloud centrum se službami (3 služby).
- Procesy příchodů požadavků, doby obsluhy.
 - různé části světa.
 - podpořit vlastním měřením, z literatury, ...
- Vytížení zdrojů, doba odezvy.
- Experimenty:
 - provoz v různých podmínkách, ekonomické aspekty,
 - BONUS: zvýšení efektivnosti při nákupu novějšího HW/SW.

8. Model dopravy na D1

- Aktuální stav rozpracovaných oprav, uzavírek apod.
- Proces zatížení D1 (pracovní den, svátek). Průběh dne.
- Modelujte buď:
 - celou D1 s menším detailem diskretizace 1 km a obslužná linka (kdy se uvolňuje a kdy se zabírá),
 - úsek D1 s detailem na každé auto (CA) přesný prostorový model.
 Experimenty se způsoby objížděk.
- Havárie (lib. nová okolnost) vliv na propustnost (dynamika).

9. SHO státní volební infrastruktura

- Prostudujte organizaci voleb.
- Informační centrum + okrsky.
 - Síť okrsků (200, velká města) vygenerujte náhodně podle zvoleného klíče (velikost okrsku). Síť je jednotná pro všechny experimenty.
- Modeluje se provoz okrskové komise a centralizované zpracování výsledků:
 - SHO okrsková komise, proces příchodů.
 - SHO centrální uzel okamžik dokončení práce okrsku a napojení na centrum, zpracování výsledků.

Hodnocení

- Odevzdání po termínu nepřípustné.
 - Zásadní vada v modelu 0 bodů.
 - Chybí (nebo je pouze triviální) nějaká část projektu 0 bodů.
- Rozložení bodů (10+10):
 - 10 bodů programátorská část.
 - 10 bodů experimentální/dokumentační část.
 - Bonusy za výrazné překročení rozsahu zadání.

• Důraz:

- Zdůvodnění validity modelu. Experimentování a jeho závěr.
- Programátorsky styl pouze v extrémních případech.

Další studium modelování

- Pokročilejší témata v magisterském studiu:
 - Obory Inteligentní systémy a Matematické metody v IT
- Další moje předměty:
 - Teorie her (THE) modely rozhodování.
 - Geografické informační systémy (GIS) prostorové modely.
 - Simulační nástroje a techniky (přednáší dr. Peringer, SNT) –
 IMS pro pokročilé