CIC0182: Lógica Computacional 1 - Projeto Tema: Verificador de Satisfabilidade

Guilherme da Rocha Cunha - 221030007

2025.1

1 Contexto Histórico

Originando-se no período helenístico (32 a.C - 323 a.C) [3], a lógica proposicional é o ramo da lógica que estuda formas de unir e/ou modificar proposições, declarações ou sentenças inteiras para formar proposições, declarações ou sentenças mais complexas, assim como as relações e propriedades lógicas que são derivadas desses métodos de combinar ou alterar declarações [1].

Ela é uma das bases da matemática e hoje é utilizada no projeto de circuitos lógicos em processadores, verificação formal e provas de correção, representação de conhecimento em inteligências artificias e dentre outros.

2 Definições

A seguir encontram-se as definições [2] dos conceitos da lógica proposicional utilizados neste projeto:

2.1 Sintaxe

- **Definição 1:** O conjunto de símbolos lógicos da linguagem proposicional é dada pela união dos seguintes conjuntos:
 - I. $\mathcal{P} = \{p, q, ..., p_1, q_1, ...\}$: símbolos proposicionais ou variáveis proposicionais:
 - II. $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$: conectivos lógicos ou operadores lógicos;
 - III. $\{(,)\}$: símbolos de pontuação.
- **Definição 2:** Uma fórmula é qualquer sequência finita de símbolos lógicos.
- **Definição 3:** A Linguagem Lógica Proposicional \mathcal{L}_P é equivalente ao seu conjunto de fórmulas bem-formadas $FBF_{\mathcal{L}_P}$, que é definido indutivamente, como se segue:

- I. se $p \in \mathcal{P}$, então $p \in \text{FBF}_{\mathcal{L}_P}$;
- II. se $\varphi \in FBF_{\mathcal{L}_P}$, então $\neg \varphi \in FBF_{\mathcal{L}_P}$;
- III. se $\varphi \in \mathrm{FBF}_{\mathcal{L}_P}$ e $\psi \in \mathrm{FBF}_{\mathcal{L}_P}$, então $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$ e $(\varphi \leftrightarrow \psi) \in \mathrm{FBF}_{\mathcal{L}_P}$.
- **Definição 4:** Sejam $\varphi, \psi, \chi \in \text{FBF}_{\mathcal{L}_P}$. Seja $Op : \text{FBF}_{\mathcal{L}_P} \to \{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$. O operador principal de $\varphi, Op(\varphi)$, é dado por:
 - I. se $\varphi \in \mathcal{P}$, então $Op(\varphi)$ é indefinida;
 - II. se φ é da forma $\neg \psi$, então $Op(\varphi) = \neg$.
 - III. se φ é da forma $(\psi * \chi)$ onde $* \in \{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$, então $Op(\varphi) = *$.
- **Definição 5:** Sejam $\varphi, \psi, \chi \in \mathrm{FBF}_{\mathcal{L}_P}$. Seja $SubI : \mathrm{FBF}_{\mathcal{L}_P} \to 2^{\mathrm{FBF}_{\mathcal{L}_P}}$ uma função. O conjunto de subfórmulas imediatas de φ , $SubI(\varphi)$, é dado por:
 - I. se $\varphi \in \mathcal{P}$, então $SubI(\varphi)$ é indefinido;
 - II. se φ é da forma $\neg \psi$, então $SubI(\varphi) = {\psi};$
 - III. se φ é da forma $(\psi * \chi)$ onde $* \in \{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$, então $SubI(\varphi) = \{\psi, \chi\}$.
- **Definição 6:** Uma árvore sintática para φ , onde $\varphi \in FBF_{\mathcal{L}_P}$, é constituída de uma raiz com zero ou mais filhos, dependendo da estrutura de φ :
 - I. se $\varphi \in \mathcal{P}$, então a raiz é rotulada por φ e tem zero filhos;
 - II. se φ é da forma $\neg \psi$, então a raiz é rotulada por \neg e tem um único filho, que é a raiz da árvore sintática de ψ ;
 - III. se φ é da forma $(\psi * \chi)$ onde $* \in \{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$, então a raiz é rotulada por * e tem dois filhos, onde o da esquerda é a raiz da árvore sintática de ψ e o da direita é a raiz da árvore sintática de χ .

2.2 Semântica

- **Definição 7:** O conjunto $\mathcal{V} = \{V, F\}$ é chamado de conjunto de valores de verdade e cada um de seus elementos é chamado de valor verdade.
- **Definição 8:** Uma valoração booliana v_0 para os símbolos proposicionais de \mathcal{L}_P , \mathcal{P} , é uma função booliana $v_0 : \mathcal{P} \to \mathcal{V}$.
- **Definição 9:** Uma valoração booliana (interpretação) \mathbb{V} para as fórmulas bem-formadas de \mathcal{L}_P é uma função booliana $\mathbb{V}: FBF_{\mathcal{L}_P} \to \mathcal{V}$, que estende uma valoração booliana $\mathbb{V}_0: \mathcal{P} \to \mathcal{V}$ para símbolos proposicionais \mathcal{L}_P , da seguinte forma (onde $\varphi, \psi \in FBF_{\mathcal{L}_P}$):
 - I. $\mathbb{V}(\varphi) = \mathbb{V}_0(\varphi)$, se $\varphi \in \mathcal{P}$;
 - II. $\mathbb{V}(\neg \varphi) = V$ se, e somente se, $\mathbb{V}(\varphi) = F$;
 - III. $\mathbb{V}(\varphi \wedge \psi) = V$ se, e somente se, $\mathbb{V}(\varphi) = \mathbb{V}(\psi) = V$;
 - IV. $\mathbb{V}(\varphi \vee \psi) = V$ se, e somente se, $\mathbb{V}(\varphi) = V$ ou $\mathbb{V}(\psi) = V$ ou ambos;

```
V. \mathbb{V}(\varphi \to \psi) = V se, e somente se, \mathbb{V}(\varphi) = F ou \mathbb{V}(\psi) = V ou ambos;
VI. \mathbb{V}(\varphi \leftrightarrow \psi) = V se, e somente se, \mathbb{V}(\varphi) = \mathbb{V}(\psi).
```

Definição 10: Seja $\varphi \in \mathrm{FBF}_{\mathcal{L}_P}$. Nós dizemos que φ é satisfatível se existe uma valoração booliana $\mathbb{V}: \mathrm{FBF}_{\mathcal{L}_P} \to \mathcal{V}$ tal que $\mathbb{V}(\varphi) = V$. Neste caso, dizemos que \mathbb{V} é um **modelo** para φ .

3 Algoritmo de decisão

O algoritmo implementado consiste em um verificador de satisfabilidade para fórmulas da lógica proposicional (**Definição 3**), capaz de apresentar um modelo que satisfaça cada fórmula apresentada no arquivo de entrada.

3.1 Árvore sintática

O arquivo syntax_tree.h é responsável por definir e representar uma árvore sintática de uma fórmula. Baseando-se na **Definição 4**, **Definição 5** e **Definição 6**, o arquivo é estruturado da seguinte forma:

- struct Syntax_Tree: *struct* que representa uma árvore sintática no programa.
- Syntax_Tree* build_syntax_tree(char* formula): função que recebe uma fórmula formula e retorna sua árvore sintática.

3.2 Verificador de satisfabilidade

O arquivo main.c contém o verificador de satisfabilidade em si. O arquivo contém três principais funções além da própria função main:

- void count_prop_symb(Syntax_Tree* st, HashTable* ht, List* l): função que recebe uma árvore sintática st e conta a quantidade de símbolos proposicionais (**Definição 1**) distintos contidos nela. Além de contar, a função também atribui uma numeração *i* ao *i*-ésimo símbolo não contabilizado, armazenando em uma tabela hash ht e em uma lista l.
- int is_satisfiable(Syntax_Tree* st, HashTable* ht, long long* model): função que recebe uma árvore sintática st e verifica se a fórmula a qual representa é satisfatível (**Definição 10**).

A função verifica todas as 2^n valorações boolianas possíveis, onde n é a quantidade símbolos proposicionais distintos na fórmula, por meio de uma *bitmask*. O i-ésimo símbolo proposicional é atribuído o valor verdade V se o i-ésimo bit da bitmask estiver ligado, ou F caso contrário (**Definição 7** e **Definição 8**).

• int eval(Syntax_Tree* st, HashTable* ht, long long bool_eval): função que recebe um árvore sintática st e uma valoração booliana bool_eval (**Definição 8**) e retorna um valor verdade (**Definição 9**). Nesse contexto, bool_eval é uma bitmask de uma valoração booliana qualquer.

3.3 Compilação e Execução

Compilação: Implementado na linguagem C e compilado pelo GCC 14.2.0, o seguinte comando deve ser passado para o terminal:

```
gcc-14 -o sat_checker src/main.c
```

Execução: Para executar o projeto, o seguinte comando deve ser passado para o terminal:

```
./sat_checker <nome do arquivo de entrada>.txt
```

O arquivo de entrada deve ser estruturado de forma que exista apenas uma fórmula bem-formada por linha. Para cada linha do arquivo de entrada:

- 1. Enquanto não se chegou ao final do arquivo, constroi-se a árvore sintática da fórmula bem-formada presente na linha atual usando a função build_syntax_tree();
- 2. Cria as estruturas de dados necessárias: uma tabela hash e uma lista;
- Com a função count_prop_symb(), conta quantos símbolos proposicionais diferentes existem;
- 4. Verifica se a fórmula é satisfatível iterando por todas as valorações possíveis por meio da função is_satisfiable(). Se for, será impresso SIM seguido por uma lista de pares contendo o símbolo proposicional e sua valoração booliana no arquivo de saída. Caso contrário, será impresso NAO seguido por uma lista vazia.
- 5. Vai para a próxima linha do arquivo de entrada e retorna ao passo 1.

3.4 Limitações

O algoritmo de decisão pode apenas avaliar fórmulas com até $1 \le n \le 63$ símbolos proposicionais diferentes.

4 Resultados Metateóricos

Corretude: O algoritmo é correto visto que será retornado SIM para a fórmula φ se, e somente se, existir um modelo M tal que M satisfaz φ .

Completude: O algoritmo é completo visto que se existe um modelo \mathbb{M} tal que \mathbb{M} satisfaz uma fórmula φ , ele retornará SIM ou, caso contrário, NAO.

Decibilidade: O algoritmo é decidível visto que ele termina em tempo finito com uma resposta SIM ou NAO.

Complexidade: O algoritmo tem complexidade computacional $\mathcal{O}(2^n)$.

5 Conclusão

Em sua essência, este projeto buscou implementar uma solução de um problema clássico na ciência da computação conhecido como o problema da satisfabilidade booliana, mais conhecido como SAT. Durante o projeto, foi possível notar a dificuldade de se encontrar um algoritmo que encontre uma solução para o problema em um tempo razoável sem utilizar força bruta, tornando claro o motivo no qual o problema pertence à classe de complexidade NP-completo [4].

Referências

- [1] KLEMENT, Kevin C.. *Propositional Logic*. Internet Encyclopedia of Philosophy, 2014. Disponível em: https://iep.utm.edu/propositional-logic-sentential-logic/. Acesso em: 01 jul. 2025.
- [2] NALON, Cláudia. *Lógica Computacional 1 Lista de Definições*. Obra não publicada, 2024.2.
- [3] BOBZIEN, Susanne. *Ancient Logic*. Stanford Encyclopedia of Philosophy Archive, 2015. Disponível em: https://plato.stanford.edu/archives/spr2016/entries/logic-ancient/. Acesso em: 01 jul. 2025.
- [4] KARP, Richard M. *Reducibility among combinatorial problems*. In: MILLER, Raymond E.; THATCHER, James W. (Org.). Complexity of computer computations. New York: Plenum Press, 1972. p. 85-103.