番外篇-定时器

一、OK6410定时器说明

Timers 0 and 1 include a PWM function (Pulse Width Modulation), which can drive an external I/O signal. The PWM for timer 0 and 1 have an optional dead-zone generator capability, which can be utilized to support a large current device. Timer 2, 3 and 4 are internal timers with no output pins.

To control the functionality of PWM, 16 special function registers are provided. The PWM is a programmable

output. The 16 special function registers within PWM are accessed via APB transactions. TCMPB0 TCNTB0 **PCLK** XpwmTOUT0 DeadZone Control 6:1 Generator 1/1 **→**MUX Logic0 1/2 Deadzone 8BIT 1/4 PRESCALER 1/8 TCMPB1 TCNTB1 0 1/16 6:1 MUX XpwmTOUT1 Control Logic1 **Xpw**mECLK Deadzone TCMPB2 TCNTB2 TCLK 6:1 Control No pin **>**M∪x Logic2 ТСМРВЗ ТСМТВЗ 1/1 1/2 6:1 8BIT Control No pin 1/4 **≻**MUX PRESCALER Logic3 1 1/8 1/16 TCNTB4 TCLK 6:1 No pin Control MUX Logic4

Figure 32-1. PWMTIMER Clock Tree Diagram

The Figure 32-1 depict the clock generation scheme for individual PWM Channels.

二、定时器时钟源

32.3.1 PRESCALER & DIVIDER

An 8-bit prescaler and 4-bit divider makes the following output frequencies:

Table 32-1. Min. and Max. Resolution based on Prescaler and Clock Divider Values

4-bit divider settings	Minimum resolution	Maximum resolution	Maximum interval	
	(prescaler=1)	(prescaler=255)	(TCNTBn=4294967295)	
1/1(PCLK=66 MHz)	0.030us (33.0 MHz)	3.87us(258 kHz)	16621.52s	
1/2 (PCLK=66 MHz)	0.060us (16.5 MHz)	7.75us (129 kHz)	33243.05s	
1/4 (PCLK=66 MHz)	0.121us (8.25 MHz)	15.5us (64.5 kHz)	66486.09s	
1/8 (PCLK=66 MHz)	0.242us (4.13 MHz)	31.0us (32.2 kHz)	132972.19s	
1/16 (PCLK=66 MHz)	0.484us (2.07 MHz)	62.1us (16.1 kHz)	265944.37s	

三、定时器操作流程 32.3.2 BASIC TIMER OPERATION

Figure 32-4. Basic Timer operations example

32.3.4 TIMER OPERATION EXAMPLE

The result of the following procedure is shown in Figure 32-6.

Figure 32-6. Example of a Timer Operation

update bit and inverter bit(on/off). The manual update bit sets the TCNTn,TCMPn to the value of TCNTBn,TCMPBn.

And then, set TCNTBn,TCMPBn as 79(40+39) and 39.

- 2. Start Timer by setting the start bit and manual update bit off.
- 3. When TCNTn has the same value with TCMPn, the logic level of TOUTn is changed from low to high
- 4. As soon as TCNTn reaches to 0, the interrupt request is generated.
- 5. TCNTn and TCMPn are reloaded automatically with TCNTBn,TCMPBn as (79(40+39)) and 39. In the ISR(interrupt service routine), the TCNTBn and TCMPBn are set as 79(20+59) and 59.
- 6. When TCNTn has the same value with TCMPn, the logic level of TOUTn is changed from low to high
- 7. As soon as TCNTn reaches to 0, the interrupt request is generated.
- 8. TCNTn and TCMPn are reloaded automatically with TCNTBn,TCMPBn as (79(20+59)) and 59. In the ISR(interrupt service routine), auto-reload and interrupt request are disabled to stop the timer.
- 9. When TCNTn has the same value with TCMPn, the logic level of TOUTn is changed from low to high
- 10. Even when TCNTn reaches to 0, No interrupt request is generated.
- 11. TCNTn is not any more reloaded and the timer is stopped because auto-reload is disabled.

四、定时器寄存器

注意:

- 1、timer2~4的TCMPn在列表和描述中并没有地址值,但实际上地址有个4字节的预留。
- 2. (TCNTn and TCMPn are the names of the internal registers. The TCNTn register can be read from the TCNTOn register)

Register	Offset	R/W	Description	Reset Value
TCFG0	0x7F006000	R/W	Timer Configuration Register 0 that configures the two 8-bit Prescaler and DeadZone Length	0x0000_0101
TCFG1	0x7F006004	R/W	Timer Configuration Register 1 that controls 5 MUX and DMA Mode Select Bit	0x0000_0000
TCON	0x7F006008	R/W	Timer Control Register	0x0000_0000
TCNTB0	0x7F00600C	R/W	Timer 0 Count Buffer Register	0x0000_0000
TCMPB0	0x7F006010	R/W	Timer 0 Compare Buffer Register	0x0000_0000
TCNTO0	0x7F006014	R	Timer 0 Count Observation Register	0x0000_0000
TCNTB1	0x7F006018	R/W	Timer 1 Count Buffer Register	0x0000_0000
TCMPB1	0x7F00601c	R/W	Timer 1 Compare Buffer Register	0x0000_0000
TCNTO1	0x7F006020	R	Timer 1 Count Observation Register	0x0000_0000
TCNTB2	0x7F006024	R/W	Timer 2 Count Buffer Register	0x0000_0000
TCNTO2	0x7F00602c	R	Timer 2 Count Observation Register	0x0000_0000
TCNTB3	0x7F006030	R/W	Timer 3 Count Buffer Register	0x0000_0000
TCNTO3	0x7F006038	R	Timer 3 Count Observation Register	0x0000_0000
TCNTB4	0x7F00603c	R/W	Timer 4 Count Buffer Register	0x0000_0000
TCNTO4	0x7F006040	R	Timer 4 Count Observation Register	0x0000_0000
TINT_CSTAT	0x7F006044	R/W	Timer Interrupt Control and Status Register	0x0000_0000

五、实现定时器定时中断及延时程序设计

5.1、定时器初始化

32.4.1.1 TCFG0 (Timer Configuration Register)

Regist	er	Offset	R/W	Description	Reset Value
TCFG	0	0x7F006000		Timer Configuration Register 0 that configures the two 8-bit Prescaler and DeadZone Length	0x0000_0101

Timer input clock Frequency = PCLK / ($\{\text{prescaler value + 1}\}\)$ / $\{\text{divider value}\}\$ $\{\text{prescaler value}\}\$ = $1\sim255$

{divider value} = 1, 2, 4, 8, 16, TCLK

TCFG0	Bit	R/W	Description	Initial State
Reserved	[31:24]	R	Reserved Bits	0x00
Dead zone length	[23:16]	R/W	Dead zone length	0x00
Prescaler 1	[15:8]	R/W	Prescaler 1 value for Timer 2, 3 and 4	0x01
Prescaler 0	[7:0]	R/W	Prescaler 0 value for timer 0 & 1	0x01

32.4.1.2 TCFG1 (Timer Configuration Register)

Register	Offset	R/W	Description	Reset Value
TCFG1	0x7F006004		Timer Configuration Register 1 that controls 5 MUX and DMA Mode Select Bit	0x0000_0000

TCFG1	Bit	R/W	De	Description	
Reserved	[31:24]	R	Reserved Bits		0x00
DMA mode	[23:20]	R/W	Select DMA Request Ch	nannel Select Bit	0x0
			0000: No select 0010: INT1	0001: INT0 0011: INT2	
			0100: INT3	*****	
			0110: No select	0111: No select	
Divider MUX4	[19:16]	R/W	Select Mux input for PW	/M Timer 4	0x0
			0000:1/1 0010:1/4 0100: 1/16 0110: External TCLK1	0001:1/2 0011:1/8 0101: External TCLK1 0111: External TCLK1	
Divider MUX3	[15:12]	R/W	Select Mux input for PW	M Timer 3	0x0
			0000:1/1 0010:1/4 0100: 1/16 0110: External TCLK1		
Divider MUX2	[11:8]	R/W	Select Mux input for PW	M Timer 2	0x0
			0000:1/1 0010:1/4 0100: 1/16 0110: External TCLK1	0.0 = ///	
Divider MUX1	[7:4]	R/W	Select Mux input for PW	M Timer 1	0x0

32-13

WM TIMER 6410X_UM

			0000:1/1 0010:1/4 0100: 1/16 0110: External TCLK0	0001:1/2 0011:1/8 0101: External TCLK0 0111: External TCLK0		
Divider MUX0	[3:0]	R/W	Select Mux input for PW 0000:1/1 0010:1/4 0100: 1/16 0110: External TCLK0	M Timer 0 0001:1/2 0011:1/8 0101: External TCLK0 0111: External TCLK0	0x0	

```
1 #define TCFG0 (*((volatile unsigned long *)0x7F006000))
2 #define TCFG1 (*((volatile unsigned long *)0x7F006004))
3 #define TCON (*((volatile unsigned long *)0x7F006008))
4 #define TCNTB2 (*((volatile unsigned long *)0x7F006024))
5 #define TCNTO2 (*((volatile unsigned long *)0x7F006028))
6 #define TINT_CSTAT (*((volatile unsigned long *)0x7F006044))
```

8

```
9 void timer_2_init(void)
10 {
11
       /*Timer input clock Frequency = 66MHz / (\{65 + 1\}) / 1 = 1us */
12
13
      /*set Prescaler 1 value for Timer 2, 3 and 4 is 65*/
14
      TCFG0 &= ~(0xff << 8);
      TCFG0 |= (65 << 8);
15
16
      /*Select Mux input for PWM Timer 2:1/1 */
17
       TCFG1 &= \sim(0xf << 8);
18
19}
20
```

5.2、定时器定时中断

注意:在开始定时时,

32.4.1.3 TCON (Timer Control Register)

Register	Offset	R/W	Description	Reset Value
TCON	0x7F006008	R/W	Timer Control Register	0x0000_0000

TCON	Bit	R/W	Description	Initial State
Reserved	[31:23]	R	Reserved Bits	0x000
Timer 4 Auto Reload on/off	[22]	R/W	0: One-Shot 1: Interval Mode(Auto-Reload)	0
Timer 4 Manual Update	[21]	R/W	0: No Operation 1: Update TCNTB4	0
Timer 4 Start/Stop	[20]	R/W	0: Stop 1: Start Timer 4	0
Timer 3 Auto Reload on/off	[19]	R/W	0: One-Shot 1: Interval Mode(Auto-Reload)	0
Reserved	[18]	R/W	Reserved Bits	0
Timer 3 Manual Update	[17]	R/W	0: No Operation 1:Update TCNTB3,TCMPB3	0
Timer 3 Start/Stop	[16]	R/W	0: Stop 1: Start Timer 3	0
Timer 2 Auto Reload on/off	[15]	R/W	0: One-Shot 1: Interval Mode(Auto-Reload)	0
Reserved	[14]	R/W	Reserved Bits	0
Timer 2 Manual Update	[13]	R/W	0: No Operation 1: Update TCNTB2,TCMPB2	0
Timer 2 Start/Stop	[12]	R/W	0: Stop 1: Start Timer 2	0
Timer 1 Auto Reload on/off	[11]	R/W	0: One-Shot 1: Interval Mode(Auto-Reload)	0
Timer 1 Output Inverter on/off	[10]	R/W	0: Inverter Off 1: TOUT1 Inverter-On	0
Timer 1 Manual Update	[9]	R/W	0: No Operation 1: Update TCNTB1,TCMPB1	0
Timer 1 Start/Stop	[8]	R/W	0: Stop 1: Start Timer 1	0
Reserved	[7:5]	R/W	Reserved Bits	000
Dead zone enable/disable	[4]	R/W	Deadzone Generator Enable/Disable	0
Timer 0 Auto Reload on/off	[3]	R/W	0: One-Shot 1: Interval Mode(Auto-Reload)	0
Timer 0 Output Inverter on/off	[2]	R/W	0: Inverter Off 1: TOUT0 Inverter-On	0
Timer 0 Manual Update	[1]	R/W	0: No Operation 1: Update TCNTB0,TCMPB0	0
Timer 0 Start/Stop	[0]	R/W	0: Stop 1: Start Timer 0	0

32.4.1.10 TCNTB2 (Timer2 Counter Register)

Register	Offset	R/W	Description	Reset Value
TCNTB2	0x7F006024	R/W	Timer 2 Count Buffer Register	0x0000_0000

TCNTB2	Bit	R/W	Description	Initial State
Timer 2 Count Buffer	[31:0]	R/W	Timer 2 Count Buffer Register	0x00000000

32.4.1.11 TCNTO2 (Timer2 Observation Register)

Register	Offset	R/W	Description	Reset Value
TCNTO2	0x7F00602C	R	Timer 2 Count Observation Register	0x0000_0000

TCNTO2	Bit	R/W	Description	Initial State
Timer 2 Count Observation	[31:0]	R	Timer 2 Count Observation Register	0x00000000

32.4.1.16 TINT_CSTAT (Interrupt Control And Status Register)

Register	Offset	R/W	Description	Reset Value
TINT_CSTAT	0x7F006044	R/W	Timer Interrupt Control and Status Register	0x0000_0000

TINT_CSTAT	Bit	R/W	Description	Initial State
Reserved	[31:10]	R	Reserved Bits	0x00000
Timer 4 Interrupt Status	[9]	R/W	Timer 4 Interrupt Status Bit. Clears by writing '1' on this bit.	0x0
Timer 3 Interrupt Status	[8]	R/W	Timer 3 Interrupt Status Bit. Clears by writing '1' on this bit.	0x0
Timer 2 Interrupt Status	[7]	R/W	Timer 2 Interrupt Status Bit. Clears by writing '1' on this bit.	0x0
Timer 1 Interrupt Status	[6]	R/W	Timer 1 Interrupt Status Bit. Clears by writing '1' on this bit.	0x0
Timer 0 Interrupt Status	[5]	R/W	Timer 0 Interrupt Status Bit. Clears by writing '1' on this bit.	0x0
Timer 4 interrupt Enable	[4]	R/W	Timer 4 Interrupt Enable.	0x0
			1 – Enabled 0 – Disabled	
Timer 3 interrupt Enable	[3]	R/W	Timer 3 Interrupt Enable.	0x0
			1 – Enabled 0 – Disabled	
Timer 2 interrupt Enable	[2]	R/W	Timer 2 Interrupt Enable.	0x0
			1 – Enabled 0 – Disabled	
Timer 1 interrupt Enable	[1]	R/W	Timer 1 Interrupt Enable.	0x0
			1 – Enabled 0 – Disabled	
Timer 0 interrupt Enable	[0]	R/W	Timer 0 Interrupt Enable.	0x0
			1 – Enabled 0 – Disabled	

```
21 void timer_2_timing(unsigned long usec)
23
       int n,m,f;
24
25
       n = usec;
26
27
       /*Timer 2 Interrupt Enable. */
28
       TINT_CSTAT |= (1 << 2);
29
       //printf("\n\r Timer 2 Interrupt Enable\n\r");
30
31
32
       /*clear Timer Control Register */
33
       TCON &= \sim(0xf << 12);
34
35
       //printf("\n\r clear Timer Control Register\n\r");
36
```

```
37
        /*clear timer2 interrupt statu */
38
        //TINT_CSTAT = (0x1 << 7);
39
40
        /*f = TCNTB2;
41
        printf("\n\r TCNTB2 is : %d \n\r", f);
42
        m = TCNTO2;
43
        printf("\n\r TCNTO2 is: %d \n\r", m);*/
44
45
        /*load count value */
46
       TCNTB2 = n;
47
48
       /*printf("\n\r load count value\n\r");
49
50
        f = TCNTB2;
51
        printf("\n\r TCNTB2 is : %d \n\r", f);
52
        m = TCNTO2;
53
        printf("\n\r TCNTO2 is : %d \n\r", m);*/
54
55
        /*Timer 2 Auto Reload on */
56
        TCON = (0x1 << 15);
57
58
        /*printf("\n\r Timer 2 Auto Reload on\n\r");
59
60
        f = TCNTB2;
61
        printf("\n\r TCNTB2 is : %d \n\r", f);
62
        m = TCNTO2;
63
        printf("\n\r TCNTO2 is: %d \n\r", m);*/
64
65
        /*Timer 2 Manual Update */
66
        TCON = (0x1 << 13);
67
68
        /*printf("\n\r Timer 2 Manual Update\n\r");
69
70
        f = TCNTB2;
71
        printf("\n\r TCNTB2 is : %d \n\r", f);
72
        m = TCNTO2;
73
        printf("\n\r TCNTO2 is: %d \n\r", m);*/
74
75
        /*end Timer 2 Manual Update */
76
        TCON &= \sim(0x1 << 13);
77
78
        /* Start Timer2 */
79
       TCON = (1 << 12);
80
81
       /*printf("\n\r Start Timer2\n\r");
82
83
        f = TCNTB2;
84
        printf("\n\r TCNTB2 is : %d \n\r", f);
85
        m = TCNTO2;
86
        printf("\n\r TCNTO2 is : %d \n\r", m);*/
87
88
        /*Timer 2 Auto Reload off */
89
        TCON &= \sim(0x1 << 15);
90
       /*printf("\n\r Timer 2 Auto Reload off\n\r");
91
92
93
        f = TCNTB2;
94
        printf("\n\r TCNTB2 is : %d \n\r", f);
95
        m = TCNTO2;
96
        printf("\n\r TCNTO2 is : %d \n\r", m);*/
97
98 }
99
100 void timer_2_ms(unsigned long msec)
101 {
102
        int n;
103
        n = msec * 1000;
104
        timer_2_timing(n);
```

```
105}
106
107 /* sec < 4294 */
108 void timer_2_s(unsigned long sec)
110
        int n;
        n = sec * 1000000;
111
112
        timer_2_timing(n);
113}
114
115 int timer_2_int_isr(void)
116 {
117
        led_xor();
118
119
        //input_time();
120
121
        /* end Timer 2 */
122
        TCON &= ~(1 << 12);
123
        /*Timer 2 Interrupt disable. */
124
125
        TINT_CSTAT &= ~(1 << 2);
126
127
        return 0;
128}
129
  5.2、定时器实现延时
130 void udelay(unsigned long usec)
131 {
132
        int n;
133
134
        n = usec;
135
136
        /*Timer 2 Interrupt disable. */
137
        TINT_CSTAT &= ~(1 << 2);
138
139
        /*clear Timer Control Register */
140
        TCON &= \sim(0xf << 12);
141
142
        /*clear timer2 interrupt statu */
143
        TINT_CSTAT = (0x1 << 7);
144
145
        /*load count value */
146
        TCNTB2 = n;
147
        /*Timer 2 Auto Reload on */
148
149
        TCON = (0x1 << 15);
150
151
        /*Timer 2 Manual Update */
152
        TCON = (0x1 << 13);
153
154
        /*end Timer 2 Manual Update */
155
        TCON &= \sim(0x1 << 13);
156
157
        /* Start Timer 2 */
158
        TCON = (1 << 12);
159
160
        /*Timer 2 Auto Reload off */
161
        TCON &= \sim(0x1 << 15);
162
163
        while (!(TINT_CSTAT & (0x1 << 7)));
164
165
        /*clear timer2 interrupt statu */
166
        TINT_CSTAT = (0x1 << 7);
167
168
        /* end Timer 2 */
169
        TCON &= ~(1 << 12);
170}
```

```
171
172 void mdelay(unsigned long msec)
173 {
174
       int n;
     n = msec * 1000;
175
176
       udelay(n);
177 }
178
179 /* sec < 4294 */
180 void sdelay(unsigned long sec)
181 {
182
       int n;
     n = sec * 1000000;
183
184
       udelay(n);
185}
186
187 void timer_2_TCNTO_print(void)
188 {
189
       int count;
190
       count = TCNTO2;
191
       printf("\n TCNTO2 is %d!\n\r", TCNTO2);
192}
```