Краткое вступление

В.Ф. Турчин (1931–2010)

- Функциональный язык Рефал
- Суперкомпиляция
- ...

- Семинары МЕТА: 2008–2016 в Переславле-Залесском
- Приглашённые докладчики: Neil D. Jones, Simon Peyton-Jones

Совместный рабочий семинар МГТУ им. Н.Э. Баумана и ИПС им. А.К. Айламазяна РАН, 1 июля, 2024

Теорема Турчина в анализе формальных языков

A. Непейвода, a_nevod@mail.ru

Методы анализа формальных языков

Коммутативные:

- Образы Париха;
- Вычисление функции мощности множества слов по длине.

Некоммутативные:

aab<mark>abbabb</mark>aa babbbaaaaaa babbabbabbb

- леммы о накачке;
- леммы о перескоке;
- утверждения о неизбежных подсловах.

Конечные системы переходов

- Конфигурация вычисления описывается только состоянием.
- Число состояний заранее ограничено конечным N.
- Метки на переходах символы, читаемые из входа.

• Если язык бесконечен, то существуют компоненты сильной связности, длины которых ограничены тоже N.

Конечные системы переходов

- Если язык бесконечен, то существуют компоненты сильной связности, длины которых ограничены тоже N.
- Читая слово длины N+1, мы точно попадём в одно и то же состояние q_i дважды.
- Цикл из q_i в q_i можно проходить сколько угодно раз (в том числе и нисколько) \Rightarrow существует «накачка».

$$\underbrace{a_1a_2\dots a_{k-1}}_{\text{путь из }q_0\text{ в }q_i}\underbrace{a_k\dots a_{k+m}}_{\text{путь из }q_i\text{ в }q_i}\underbrace{a_{k+m+1}\dots a_{k+m+n}}_{\text{путь из }q_i\text{ в }q_F}$$

- Выбираем самое первое попадание в цикл \Rightarrow сумма длин $a_1 \dots a_{k-1}$ и $a_k \dots a_{k+m}$ ограничена N.
- Можно начинать отсчёт с любой позиции в слове, после которой есть подслово как минимум N букв, и внутри этого подслова тоже будет «накачка».

Перегруженность формальной нотации

Классическая лемма о накачке

Если \mathscr{L} — конечноавтоматный, то $\exists n \in \mathbb{N}$. $\forall w \ (w \in \mathscr{L} \& |w| > n \Rightarrow \exists w_1, w_2, w_3 \ (|w_2| > 0 \& |w_1| + |w_2| \le n \& w = w_1 w_2 w_3 \& \forall k \ (k \ge 0 \Rightarrow w_1 w_2^k w_3 \in \mathscr{L}))$.

Универсальная лемма о накачке

 \mathscr{L} конечноавтоматный \Leftrightarrow $\exists m \in \mathbb{N}. \ \forall w \in \mathscr{L}. \ \forall i \in \mathbb{N}. \ |w| \geq m \& (i \leq |w|-m) \Rightarrow \exists w_1, w_2, w_3, w_4 \ |w| = w_1w_2w_3w_4 \& |w_1| = i \& 1 \geq |w_3| \leq m \& |w_2| + |w_3| \leq m \& \forall k \ (w_1w_2w_3^kw_4 \in \mathscr{L}))$.

Другой взгляд на конечные системы переходов

- (1), . . . , (5) это нульместные функции;
- функция (k) только читает символ с ленты и передаёт управление другой функции.

• получается система переписывания термов, фиксирующая возможные поведения стека.

$$(1) \xrightarrow{a} (2) \quad (1) \xrightarrow{b} (4) \quad (2) \xrightarrow{a} (3)$$

Другой взгляд на конечные системы переходов

 получается система переписывания термов, фиксирующая возможные поведения стека.

$$\begin{array}{cccc} (1) \xrightarrow{a} (2) & (1) \xrightarrow{b} (4) & (2) \xrightarrow{a} (3) \\ (4) \xrightarrow{b} (3) & (3) \xrightarrow{a} (5) & (5) \xrightarrow{a} (3) \end{array}$$

$$(4) \xrightarrow{b} (3) \quad (3) \xrightarrow{a} (5) \quad (5) \xrightarrow{a} (3)$$
$$(5) \xrightarrow{b} (1)$$

• Очевидно, что в любом отрезке вычисления длины больше N минимум две конфигурации стека (а значит, и конфигурации вычисления вообще) повторятся.

Теорема Турчина о регулярном поведении стеков

Если вдоль пути вычислений встречаются состояния стека: $\rho_1:\Phi\Theta_0,\, \rho_2:\Phi\Psi\Theta_0$, то будем говорить, что ρ_1 и ρ_2 образуют турчинскую пару ($\rho_1\preceq\rho_2$), если значение Θ_0 неизменно на отрезке вычислений начиная от ρ_1 и до ρ_2 .

Если Φ порождает бесконечный цикл с состояниями стека $\Phi\Psi^n\Theta_0$, то $\rho_1 \leq \rho_2$. Если все функции нульместны, то условие $\rho_1 \leq \rho_2$ необходимо и достаточно для существования бесконечного цикла.

Теорема Турчина о регулярном поведении стеков

Если вдоль пути вычислений встречаются состояния стека: $\rho_1:\Phi\Theta_0,\,\rho_2:\Phi\Psi\Theta_0$, то будем говорить, что ρ_1 и ρ_2 образуют турчинскую пару $(\rho_1\preceq\rho_2)$, если значение Θ_0 неизменно на отрезке вычислений начиная от ρ_1 и до ρ_2 .

Плохая последовательность относительно \leq : отрезок вычислений, не содержащий пар, связанных \leq .

Длина наибольшей п.п. относительно \leq ограничена числом правил в программе P.

Теорема Турчина о регулярном поведении стеков

Если вдоль пути вычислений встречаются состояния стека: $\rho_1:\Phi\Theta_0,\,\rho_2:\Phi\Psi\Theta_0$, то будем говорить, что ρ_1 и ρ_2 образуют турчинскую пару $(\rho_1\preceq\rho_2)$, если значение Θ_0 неизменно на отрезке вычислений начиная от ρ_1 и до ρ_2 .

Длина наибольшей п.п. относительно \preceq ограничена числом правил в программе P.

Выполняется также для размера вершины стека $|\Phi|=1.$

Нульместное переписывание со стеком

- Пусть теперь нульместные функции так же читают одну букву, но вызывают не обязательно не больше одной другой функции.
- Правила переписывания стека примут вид $N_i \xrightarrow{a} M_1 \dots M_n$.

Пусть \mathscr{L} — КС-язык. Тогда он может быть порождён грамматикой G с правилами вида $N_i\mapsto \gamma_i$ и $N_i\mapsto \gamma_i M_{1,i}\dots M_{k,i}$, где $\gamma_i\in \Sigma, N_i, M_j\in \mathcal{N}$.

Классическая лемма о накачке

Пусть \mathscr{L} — КС-язык. Тогда существует длина накачки $p\in\mathbb{N}$ такая что для всех $w\in\mathscr{L},$ $|w|\leq p$ выполняется условие:

$$\exists x_i, y_i, z \big(w = x_1 y_1 z y_2 x_2 \& |y_1 y_2| \ge 1 \& |y_1 z y_2| \le p \\ \& \forall k \in \mathbb{N}(x_1 y_1^k z y_2^k x_2 \in \mathscr{L}) \big)$$

- Можно выбрать заведомо накачиваемые позиции (лемма Огдена);
- Можно выбрать запрещённые позиции (теорема Бадера–Маура);
- Или множественные накачки (Multiple Pumping Lemma)...

Н.Ф. Грейбах & Поведение стека

Пусть \mathscr{L} — КС-язык. Тогда он описывается грамматикой G с правилами вида $N_i(\gamma_i)\mapsto \varepsilon$ и $N_i(\gamma_i)\mapsto M_{1,i}\dots M_{k,i}$, где $\gamma_i\in \Sigma,\, N_i,\, M_i\in \mathcal{N}.$

- Поведение стека *P* описывается алфавитной префиксной грамматикой.
- (Алфавитные) префиксные грамматики определяют регулярные языки.
- …и удовлетворяют их комбинаторным свойствам (например, универсальной лемме о накачке).

Теорема Турчина — это лемма о накачке

- Можно выбрать любой достаточно длинный сегмент, не являющийся плохой последовательностью;
- Можно выбрать любое конечное число запрещённых позиций;
- Можно рассуждать о накачках рекурсивно.

Специализация теоремы Турчина

• Выберем последнюю турчинскую пару на пути вычисления и применим ограничения из теоремы Турчина:

Пусть \mathscr{L} — КС. Тогда существует длина накачки $p\in\mathbb{N}$ такая что для всех $w\in\mathscr{L},$ $|w|\leq p$ выполняется условие:

$$\exists x_i, y_i, z \big(w = x_1 y_1 z y_2 x_2 \& |y_1| \ge 1 \& |y_2| \ge 1 \& |z| \ge 1 \& |y_1 z y_2| \le p \& \frac{|x_2|}{|x_1|} \le p \& \forall k \in \mathbb{N}(x_1 y_1^k z y_2^k x_2 \in \mathscr{L}) \big)$$

Специализация теоремы Турчина

 А теперь выберем самую первую турчинскую пару на пути вычислений:

Пусть \mathscr{L} — КС. Тогда существует длина накачки $p\in\mathbb{N}$ такая что для всех $w\in\mathscr{L}, |w|\leq p$ выполняется условие:

$$\exists x_i, y_i, z \big(w = x_1 y_1 z \, y_2 x_2 \, \& \, |y_1| \ge 1 \, \& \, |y_2| \ge 1 \, \& \, |z| \ge 1 \\ \& \, |x_1 y_1| \le p \, \& \, \forall k \in \mathbb{N}(x_1 y_1^k z y_2^k x_2 \in \mathscr{L}) \big)$$

Специализация теоремы Турчина

• Применим лемму рекурсивно:

Пусть \mathscr{L} — КС. Тогда существует длина накачки $p\in\mathbb{N}$ такая что для всех $w\in\mathscr{L},$ $|w|\leq p$ выполняется условие:

$$\exists x_i, y_i, z \big(w = x_1 y_1 z \ y_2 x_2 \ \& \ |y_1| \ge 1 \ \& \ |y_2| \ge 1 \ \& \ |z| \ge 1 \ \& \ |x_1 y_1| \le p \ \& \ \forall k \in \mathbb{N}(x_1 y_1^k z y_2^k x_2 \in \mathscr{L}) \ \& \ (|\xi| \le p \lor \xi \ \text{содержит}$$
 независимую область накачки))

• Здесь $\xi \in \{x_2, z, y_2\}.$

Too Many Languages Satisfy Ogden's Lemma

Рассмотрим язык

$$\left\{ a^n b^m \middle| (n \neq m) \lor (n = m = k^2) \right\}$$

Применим рекурсивно теорему Турчина к слову $a^{p^{p^2}}b^{p^{p^2}}$.

- Если существуют хотя бы две области накачки такие, что одна добавляет больше букв a, чем b, а другая наоборот, то контрпример построен.
- Предположим, что все накачки добавляют больше букв a, чем b. Будем вычитать минимальные накачки из слова до тех пор, пока фрагмент из букв a не станет меньше p и накачек в нём уже не останется. При этом фрагмент из букв b будет всё ещё больше, чем p^{p-1} и будет содержать хотя бы одну накачку.

