8. Instruction set architectures

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Instruction and memory cycles

- The fetch and execution of a machine code instruction by a CPU is called an instruction cycle.
- The reading or writing of one word to one memory location (over the data bus) is a memory cycle.
- A memory cycleswigake enterprised and its memory.
 - In general a memory cycle is much slower than a CPLI internal operation like accessing a register. POWCOGET. COLL
- An instruction cycle may involve several memory cycles.
 - To fetch a machine www a les a menor wooder
 - To read or write a data word takes a memory cycle.
- In Sigma16 an RRR instruction uses 1 memory cycle (to fetch the operation word).
 - How many memory cycles does a LOAD take?
 - How many memory cycles does a JUMP take?

Hardware Registers for Instructions

- The computer needs information about the current and next instruction
- This information is maintained automatically by hardware, via several special registers associated with the Control Unit. All CPUs have
 - The IR (Instruction Register) contains the operation word of the instruction that is being executed ASSIGNMENT Project Exam Help
 - The PC (Program Counter) contains the address of the next instruction that will be https://powcoder.com executed.
- There are also machine specific control registers. E.g. in Sigma16:

 The Address Register (ADR) Voltain State (ADR) Voltain
 - instruction.
 - The Data Register (DAT) holds temporary data
- The IR, ADR and DAT are not part of the programmer's model since they do not carry information between instruction cycles.
 - They are sometimes referred to as temporary registers.
 - However, they are exposed in the Sigma16 emulator to help with debugging.

Example: executing a JUMP

- When the Sigma16 instruction JUMP \times [R1] is executed, the following events occur:
 - First word of instruction is fetched, PC increased by 1
 IR:=Memory[PC]; PC:=PC+1;
 - CPU discovers this is a JUMP, Pd fetches second word. Help

 ADR:= Memory[PC]; PC:=PC+1; (The result: ADR:=Px)
 - Effective address computation: ADR:= ADR+ R1;
 - Execution of the https://powcoder.com
- The next instruction will be fetched from the modified PC value: IR:= MeAdd WeChat powcoder
- Notice how instruction execution can be described by means of assignment statements to CPU registers.
- Summary: a JUMP is really just an assignment to the PC register.

Instruction types

- Different CPU designs have different approaches to machine code design.
- Examine a machine code (assembly) instruction from any CPU with the following questions:
 - 1. How many memory cycles are needed to fetch the whole instruction?
 - 2. How many memory cycles are needed to fetch or store data?
 - 3. How many Assignment Peroject the instruction telp?
- Memory cycles are relatively slow so multi-word instructions and instructions requiring many memory topic formula for the control of the co
- One could design a Sigma16-like machine with an instruction like
 - ADD x[R1],y[R2]Add WeChat powcoder
- This is what is called a 3-address instruction, but:
 - How long would such an instruction be?
 - How many memory cycles would it need to fetch or store data?
 - To perform this operation in Sigma16 how many instructions are needed?
 - Which would be faster?
 - Is this an argument against Sigma16?

RISC and CISC

- Why not have instructions of multiple types in a CPU?
 - Problem is that many complex instructions mean a long operation word and a complex control unit.
 - Complex control unit with many instruction types is slower than a simple one with few types.
 - Yet by the 1970s this was the way most CPUs were evolving.
- As a counter Assignmento Projecta Exame Helpuction set computer (RISC)
 - eliminate complex instructions by preventing most instructions accessing memory.
 All memory access via POAD and STORE instructions (c.f. Sigma16)

 - Sometimes called a LOAD-STORE architecture.
 - Use internal registers for ill with metit and logical operations. Make these as fast as possible.
 - Need lots of internal registers.
 - Simple fast control unit
- Conventional machines with complex instructions were called CISC.
- CISC vs RISC was a computing "holy war" in the 1980s and 1990s (comparable to Mac vs PC?)
- Outcome was a compromise. Most successful architecture, Intel's x86 (aka Pentium), started as CISC but was modified to include RISC ideas.

Virtual Machines

- A virtual machine (VM) is a model of a machine that does not really exist
 - Implemented in software rather than hardware.
 - Implementation (guest) is called an emulator and can be run on chosen real hardware (host).
 - Examples: Assignment Project Exam Help
- Raw machine code allows a machine to do anything:
 - Very dangerous. https://deadyvcoderticoble.
 - A good HLL will try to spot accidental mistakes by a programmer and an operating system will block and pilitation program from doing comething that looks dangerous. But maliciously written code may try to circumvent such safety measures.
 - On a system like Sigma 16 programming is in machine code directly and there is no
 OS protection. Fortunately Sigma 16 is a VM and typically a VM can confine disasters to itself. The VM may crash but the host is OK.
 - At cost of performance a VM can perform checks and generate reports on operations before they are performed (good for debugging).

Subroutines and stacks

- A JAL instruction saves return address for subroutine call in an internal reg.
- But one subroutine can call another and so on (nested calls). When there are many calls, the register file will not have enough space for all return addresses.
- Instead return addresses are usually stored in data memory in a data structure called a stack
 - Stack is setup and maintained by the program Peroject Exam Help Unlike an array a stack can grow and shrink.

 - First address is called the stack bottom and the last one is the stack top.
 - In Sigma 16 the stack bottom is set by the programmer via a DATA Statement. It must be placed after all other DATA statements as the stack can grow upwards and overwrite anything above it. Add WeChat powcoder
 - The stack top is tracked by a register, the stack pointer (SP), which contains its current address. In Sigma 16 the programmer uses one of the R registers to do this.
 - Initially the stack top and bottom are the same so SP is set to the address of stack bottom. At this point the stack is empty.
 - After a subroutine call, programmer stores return address on stack and increments SP.
 - After a return the address at the stack top is retrieved and the SP is decremented

Stack after 3 nested subroutine calls...

C40 oly	
Stack bottom	Ret addr1
	Ret addr 2
SP	Ret addr 3
>	

And after first subroutine returns...

Stack bottom	Ret addr1
	Ret addr 2
→	
SP	

More on Stacks

- A stack is a last in first out (LIFO) data structure.
- Storing an item at the stack top is called a PUSH operation (e.g. save return address)
- Retrieving an item from the stack top is called a POP or PULL operation (e.g. retrieve return address)
- The item popped is always the last one pushed.
- Stack can be used Spish and poptitems of the Charles and did resses but must be done with care by any program doing so.
- In Sigma 16 the stack attack in the stack in the stack is the stack in the stack in the stack in the stack is the stack in the stack
- Many CPUs help maintain the stack by providing e.g.
 - A dedicated register Arthe SPWhel au nater the William when subroutine calls are made
 - Special PUSH and POP instructions for manually storing and retrieving data items on the stack
- Note that in many CPU designs the stack grows <u>downwards</u> in memory so the stack top is at a lower address than the stack bottom.
- Programmer is responsible for making sure maximum stack size does not overwrite other data or code or require unpopulated addresses. Failure is stack overflow.