Exercise 1

(a) Wavelength of detected light from figure $1(S_{0bs}) = 1214.2 \pm 0.2 \text{ Å}$ = $1.2142 \times 10^{-7} \pm 2 \times 10^{-11} \text{ m/s}$

Wardength of Lyman Alpha line (Mresz) = 1.2157 X10-7 m/s

hence, $z = \frac{S_{obs} - 1}{S_{obs}} = \frac{-0.0014 \pm 0.0002}{S_{obs}}$

(for the rest of the part, I will ascume $\sigma_2 = 0$)
for radial relocity (v_{obs}) $v_{obs} = C2$

 $v_{obs} = (2)$ $= 3 \times 10^{3} \times -0.0014$ = -420.000 m/s (moving towards us)

(b) Distance to Andromeda (D) = 780 kpc Hubble constant (Ho) = 71 km/sec/Mpc

> So, radial relocity (V_{emp}) = $H_0 \cdot D$ = $71 \text{ km} \times \frac{780 \text{ Mpc}}{1000}$ = 5.80 mL (moring away)

No, the expected and measured values are not consistent. The galaxy is moving towards us with much greater magnitude then speed of expanding space.

 $Radial velocity (V_r) = 2c$ $= 0.05 \times 3 \times 10^8 \text{ m/s}$

= 1.5 x10⁷ mls (moving away)

distance (D) = $\frac{V_{\overline{v}}}{H_0}$ = $\frac{1.5 \times 10^{\frac{7}{m}}}{5} \times \frac{1 \cdot 1000}{71 \cdot 1000}$ = $\frac{211.26 \text{ Mpc}}{5}$

Enercise 2

At demperature $\leq 1.5 \cdot 10^{10} \, \text{k}$, the reaction will freeze out leading to progressive annihilation of the e- and e+. At this point, the chergy is two low for e-let production

The ratio between photons and baryons = 109:1

Jemperature (T) > 108 k Energy > 104 eV

(Birding Energy of B = 2.2 MeV = Energy to photodisinlegrate Deutron.

Hence, we need photons with Energy $\geq 2.2 \,\text{MeV} = 2.2 \,\text{MeV}$

Now, we have E = hv $\Rightarrow 2.2 \times 10^6 \text{ ev} = 4.135 \times 10^{15} \text{ ev}$. v

 $\Rightarrow \sqrt{5.3 \times 10^{20} \text{ hz}}$

The frequency of photons that disinlegrated the Deutron was $\geq 5.3 \times 10^{20} hz$

Dutrons are present in such small amound because the binding Energy between the proton and nutron was very low & 2:2 MeV making it very suceptible to breakup.