Komplexität und Algorithmen - Kontrollfragen

Dozent: Prof. Dr. Michael Eichberg

Kontakt: michael.eichberg@dhbw.de, Raum 149B

Version: 1.0.1

1

Dynamische Programmierung

Einsatz von dynamischer Programmierung

Wann ist es sinnvoll, dynamische Programmierung einzusetzen?

Minimale Anzahl an Münzen

Gegeben sei ein Betrag *n* und eine Liste von Münzen *coins*. Implementieren Sie eine naive rekursive Funktion *minCoins(n: int, coins: list[int]) -> int*, die die minimale Anzahl an Münzen zurückgibt, die benötigt wird, um den Betrag *n* zu erreichen.

■ Minimale Anzahl an Münzen mit dynamischer Programmierung

Stellen Sie die Funktion *minCoins(n: int, coins: list[int]) -> int* so um, dass sie dynamische Programmierung einsetzt.

Einsatz von dynamischer Programmierung

Wann ist es sinnvoll, dynamische Programmierung einzusetzen?

Minimale Anzahl an Münzen

Gegeben sei ein Betrag n und eine Liste von Münzen coins. Implementieren Sie eine naive rekursive Funktion minCoins(n: int, coins: list[int]) -> int, die die minimale Anzahl an Münzen zurückgibt, die benötigt wird, um den Betrag n zu erreichen.

Minimale Anzahl an Münzen mit dynamischer Programmierung

Stellen Sie die Funktion *minCoins(n: int, coins: list[int]) -> int* so um, dass sie dynamische Programmierung einsetzt.

Folgen

wichtige Grenzwerte

Wie Sie die Grenzwerte der folgenden Folgen:

$$\lim_{n o \infty} rac{q^n}{n!}$$
 für $q \in \mathbb{C}$

$$\lim_{n o\infty}\sqrt[n]{n}$$

■ Konvergenz einer Folge

Gegen welchen Wert konvergiert die Folge:

$$\frac{a_n=n^3+n^2+1}{n^4}$$

Wie gehen Sie vor, um den Grenzwert einer Folge zu bestimmen?

wichtige Grenzwerte

Wie Sie die Grenzwerte der folgenden Folgen:

$$\lim_{n o\infty}rac{q^n}{n!}$$
 für $q\in\mathbb{C}$ $\lim_{n o\infty}\sqrt[n]{n}$

Konvergenz einer Folge

Gegen welchen Wert konvergiert die Folge:

$$\frac{a_n=n^3+n^2+1}{n^4}$$

Wie gehen Sie vor, um den Grenzwert einer Folge zu bestimmen?

Analyse des asymptotischen Verhaltens

Asymptotisches Verhalten

Bestimmen Sie das asymptotische Verhalten der folgenden Funktionen:

$$f(x) = rac{\ln x}{\log_2 x} \quad ext{f\"{u}r} \,\, x o \infty$$

Asymptotisches Verhalten

Bestimmen Sie das asymptotische Verhalten der folgenden Funktionen:

$$f(x) = rac{\ln x}{\log_2 x} \quad ext{f\"{u}}_{\mathbf{r}} \ x o \infty$$

Landau-Notation

Landau-Notation - Prüfen Sie die folgenden Aussagen

- lacksquare Sei $f\in O(g)$. Ist dann auch $f\in \Omega(g)$?
- $\blacksquare \Theta(g) \subseteq O(g)$
- Sei $\lim_{x \to \infty} \frac{f_1(x)}{f_2(x)} = \infty$. Ist dann $f_1(x) \in \Omega(f_2(x))$?

 Sei $\lim_{x \to \infty} \frac{f_1(x)}{f_2(x)} = 5$. Ist dann $f_1(x) \in \Omega(f_2(x))$ oder $f_1(x) \in O(f_2(x))$ oder $f_1(x) \in \Theta(f_2(x))$?

Landau-Notation - Prüfen Sie die folgenden Aussagen

- $$\begin{split} & \blacksquare \text{ Sei } f \in O(g). \text{ Ist dann auch } f \in \Omega(g)? \\ & \blacksquare \Theta(g) \subseteq O(g) \\ & \blacksquare \text{ Sei } \lim_{x \to \infty} \frac{f_1(x)}{f_2(x)} = \infty. \text{ Ist dann } f_1(x) \in \Omega(f_2(x))? \\ & \blacksquare \text{ Sei } \lim_{x \to \infty} \frac{f_1(x)}{f_2(x)} = 5. \text{ Ist dann } f_1(x) \in \Omega(f_2(x)) \text{ oder } f_1(x) \in O(f_2(x)) \text{ oder } f_1(x) \in \Theta(f_2(x))? \end{split}$$

Rekurrenz-Gleichungen und das Master Theorem DHBW Dale Hochschile Baden-Worttenberg

Anwendung des Master-Theorems

Analysieren Sie die folgenden Rekurrenz-Gleichungen mit Hilfe des Master-Theorems:

- 1. Gegeben sei: $T(n) = 9 \cdot T(n/3) + 3n^2 \log_2 n$.
- 2. Gegeben sei: $T(n) = 1 \cdot T(n/4) + \frac{1}{3}n^2$.

Anwendung des Master-Theorems

Analysieren Sie die folgenden Rekurrenz-Gleichungen mit Hilfe des Master-Theorems:

- 1. Gegeben sei: $T(n)=9\cdot T(n/3)+3n^2\log_2 n$. 2. Gegeben sei: $T(n)=1\cdot T(n/4)+\frac{1}{3}n^2$.