Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-224. Вариант 15

- 1. Пусть $z = \frac{\sqrt{3}}{2} + \frac{i}{2}$. Вычислить значение $\sqrt[4]{z^3}$, для которого число $\frac{\sqrt[4]{z^3}}{\sqrt{3} + i}$ имеет аргумент $-\frac{\pi}{24}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(6+13i) + y(-2-13i) = 64+19i \\ x(8+8i) + y(-6+4i) = 8-112i \end{cases}$$

- 3. Найти корни многочлена $x^6 x^5 26x^4 8x^3 + 327x^2 + 233x 1326$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = 4 i$, $x_2 = -3 + 2i$, $x_3 = 2$.
- 4. Даны 3 комплексных числа: -21+2i, -27+i, 21+18i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -1 + \sqrt{3}i$, $z_2 = -\sqrt{3} i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z-2+5i| < 2\\ |arg(z-2+i)| < \frac{\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (0, -2, -9), b = (1, 5, 7), c = (-1, -5, -8). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(12,5,8) и плоскость P: -2x + 16y + 20z + 114 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(2,2,-7), $M_1(2,4,6)$, $M_2(-3,-1,6)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 9x - 15y - 11z - 297 = 0 \\ 17x - 13y + 9z - 99 = 0 \end{cases} \qquad L_2: \begin{cases} -8x - 2y - 20z + 2610 = 0 \\ -19x + 5y + 14z - 366 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.