ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – СОФИЯ											
КАТЕДРА ТЕОРЕТИЧНА ЕЛЕКТРОТЕХНИКА											
Студент		Фак. №									
Факултет	Група	Дата									
Преподавател		Подпис									

Упражнение №2

ИЗСЛЕДВАНЕ НА НАПРЕЖИТЕЛЕН РЕЗОНАНС

1. Теоретични положения

2. Опитна постановка

3. Резултати от измерванията и изчисленията

3.1. Определяне на резонансната честота

Параметри на веригата: $R = 100 \Omega$, L = 0.1H, C = 100nF

Изчислено: $f_p =$

Опитно: $f_p =$

Препоръчителни стойности за честотите, при кото се извършват измерванията:

- от 400 до 1400 Hz през 200 Hz
- от 1400 до 1800 Hz през 50 Hz
- от 1800 до 3000 Hz през 200 Hz

Освен това е желателно да се извършат измервания и при резонансната честота f_p и граничните честоти f_1 и f_2 за ниво 0,707 (70,7 mV).

3.2. Определяне на честотните зависимости $I(f), U_{\scriptscriptstyle C}(f), U_{\scriptscriptstyle L}(f)$ при U=const=100mV

f	kHz.										
$U_{\scriptscriptstyle R_{\!ec{\mathcal{I}}}}$	mV										
$U_{\it c}$	mV										
I	mA										
$U_{\scriptscriptstyle L}$	mV										

3.3. Определяне на честотните зависимости $U(f), U_{\scriptscriptstyle C}(f), U_{\scriptscriptstyle L}(f)$ при I=const=0,1mA

f	kHz										
U	mV										
$U_{\scriptscriptstyle C}$	mV										
$U_{\scriptscriptstyle L}$	mV										

3.4. Получаване на резонансната крива на тока $\xi(\eta), \; \xi = I/I_p \,, \; \eta = f/f_p$

η											
ξ											

3.5. Изчисляване на активните съпротивления на веригата R и на бобината $R_{\scriptscriptstyle L}$

$$R = R_L =$$

- 3.6. Изчисляване на качествения фактор на веригата ${\it Q}$
 - а) чрез съпротивленията при резонанс ${\it Q}=$
 - б) чрез напрежителните падове при резонзнс ${\it Q}=$
 - в) от резонансната крива на тока

$$\eta_1 = \eta_2 = Q =$$

4. Графики