## Kocherlakota Lakshmipathi Rao

```
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
```

```
messages = pd.read_csv("messages.csv")
employees = pd.read_csv("employees.csv")
```

## messages.head(10)

| message_length | timestamp           | receiver | sender |   |
|----------------|---------------------|----------|--------|---|
| 88             | 2021-06-02 05:41:34 | 48       | 79     | 0 |
| 72             | 2021-06-02 05:42:15 | 63       | 79     | 1 |
| 86             | 2021-06-02 05:44:24 | 58       | 79     | 2 |
| 26             | 2021-06-02 05:49:07 | 70       | 79     | 3 |
| 73             | 2021-06-02 19:51:47 | 109      | 79     | 4 |
| 37             | 2021-06-03 01:12:11 | 58       | 79     | 5 |
| 33             | 2021-06-03 09:54:41 | 99       | 144    | 6 |
| 80             | 2021-06-03 09:57:02 | 105      | 144    | 7 |
| 13             | 2021-06-03 09:59:16 | 121      | 144    | 8 |
| 32             | 2021-06-04 07:50:33 | 32       | 177    | 9 |

Double-click (or enter) to edit

employees.head(10)

|   | id | department | location | age |     |
|---|----|------------|----------|-----|-----|
| 0 | 3  | Operations | US       | 33  | ılı |
| 1 | 6  | Sales      | UK       | 50  |     |
| 2 | 8  | IT         | Brasil   | 54  |     |
| 3 | 9  | Admin      | UK       | 32  |     |
| 4 | 12 | Operations | Brasil   | 51  |     |
| 5 | 19 | Marketing  | US       | 50  |     |
| 6 | 23 | Sales      | Brasil   | 39  |     |
| 7 | 26 | Operations | France   | 32  |     |
| 8 | 27 | Sales      | France   | 58  |     |
| 9 | 29 | Admin      | France   | 33  |     |
|   |    |            |          |     |     |

Next steps: Generate code with employees View recommended plots

```
send_act = messages.groupby('sender').size()
rec_act = messages.groupby('receiver').size()
dep_act = (send_act.add(rec_act, fill_value=0)).astype(int)
most_active_dep = dep_act.idxmax()
least_active_dep = dep_act.idxmin()
```

```
print(send_act)

print(rec_act)

print(dep_act)
print(most_active_dep)
print(least_active_dep)
```

```
sender
79
          13
128
         266
144
         221
162
          11
173
          10
1800
           4
1802
           2
1807
          16
           4
1879
```

```
1881
              28
     Length: 85, dtype: int64
     receiver
             11
     6
             10
     8
              1
     9
             22
     12
             12
     1796
              2
     1801
              4
     1830
              2
     1839
              8
              2
     1890
     Length: 617, dtype: int64
             11
     6
             10
     8
              1
     9
             22
     12
             12
     1830
              2
     1839
              8
     1879
              4
             28
     1881
     1890
              2
     Length: 664, dtype: int64
     605
emp_con = pd.concat([messages['sender'], messages['receiver']]).value_counts()
emp_high_con = emp_con.idxmax()
print(emp_high_con)
     605
plt.figure(figsize=(100, 100))
for index, row in messages.iterrows():
    plt.plot([row['sender'], row['receiver']], [row['receiver'], row['receiver']], 'b-',
plt.xlabel('Sender')
plt.ylabel('Receiver')
plt.title('Employee Communication Network')
plt.grid(True)
plt.show()
```



```
L = nx.from_pandas_edgelist(messages, 'sender', 'receiver')

pos = nx.spring_layout(L)

plt.figure(figsize=(60, 60))

nx.draw(G, pos=pos, with_labels=True, node_size=1000, node_color='skyblue', font_size=10

plt.title('Employee Communication Network (Spring Layout)')

plt.show()
```

Employee Communication Science Libring Layroot

```
dep_influence = nx.degree_centrality(L)
emp_influence = nx.degree_centrality(L)
```

```
print(dep_influence)
print(emp_influence)
```

```
 \{79: 0.016591251885369532, 48: 0.0030165912518853697, 63: 0.006033182503770739, 58: \\ \{79: 0.016591251885369532, 48: 0.0030165912518853697, 63: 0.006033182503770739, 58: \\ \{79: 0.016591251885369532, 48: 0.0030165912518853697, 63: 0.006033182503770739, 58: \\ \{79: 0.016591251885369532, 48: 0.0030165912518853697, 63: 0.006033182503770739, 58: \\ \{79: 0.016591251885369532, 48: 0.0030165912518853697, 63: 0.006033182503770739, 58: \\ \{79: 0.016591251885369532, 48: 0.0030165912518853697, 63: 0.006033182503770739, 58: \\ \{79: 0.016591251885369532, 48: 0.0030165912518853697, 63: 0.006033182503770739, 58: \\ \{79: 0.016591251885369532, 48: 0.0030165912518853697, 63: 0.006033182503770739, 58: \\ \{79: 0.016591251885369532, 48: 0.0030165912518853697, 63: 0.006033182503770739, 58: \\ \{79: 0.016591251885369532, 48: 0.0030165912518853697, 63: 0.006033182503770739, 58: \\ \{79: 0.016591251885369532, 48: 0.0030165912518853697, 63: 0.006033182503770739, 58: \\ \{79: 0.016591251885369532, 48: 0.0030165912518853697, 63: 0.006033182503770739, 58: \\ \{79: 0.016591251885369532, 48: 0.0030165912518853697, 63: 0.006033182503770739, 58: \\ \{79: 0.016591251885369532, 48: 0.0030165912518853697, 63: 0.006033182503770739, 58: \\ \{79: 0.0165912518853697, 63: 0.006033182503770739, 58: \\ \{79: 0.0165912518853697, 63: 0.006033182503770739, 58: \\ \{79: 0.0165912518853697, 63: 0.006033182503770739, 58: \\ \{79: 0.0165912518853697, 63: 0.006033182503770739, 58: \\ \{79: 0.0165912518853697, 63: 0.0060033182503770739, 58: \\ \{79: 0.0165912518853697, 63: 0.006033182503770739, 58: \\ \{79: 0.016591251885369, 63: 0.006033182503770739, 58: \\ \{79: 0.016591251885369, 63: 0.006033182503770739, 63: 0.006033182503770739, \\ \{79: 0.016591251885369, 63: 0.006033182503770739, \\ \{79: 0.016591251885369, 63: 0.006033182503770739, \\ \{79: 0.016591251885369, 63: 0.006033182503770739, \\ \{79: 0.016591251885369, \\ \{79: 0.016591251885369, \\ [70: 0.0165912518], [70: 0.01659125], [70: 0.01659125], [70: 0.01659125], [70: 0.01659125], [70: 0.01659125], [70: 0.01659125], [70: 0.01659125], [70: 0.0
```



```
plt.figure(figsize=(70, 70))
nx.draw(L, with_labels=True, node_size=1000, node_color='orange', font_size=10, font_wei;
plt.title('Employee Communication Network')
plt.show()
```

stree connunction Motors