Упражнение

Кривая Лиссажу

Ли Тимофей Александрович

Содержание

Выполнение лабораторной работы	Ę
 Модель	
Ход работы	
Пункт 1	. (
Пункт 2	
Пункт 3	
Пункт 4	. 13
Выволы	17

Список иллюстраций

0.1	модель	5
0.2	модель в xcos	6
0.3	1.1	6
0.4	1.2	7
0.5	1.3	7
0.6	1.4	8
0.7	1.5	8
0.8	2.1	9
0.9	2.2	9
0.10	2.3	10
0.11	2.4	10
0.12	2.5	11
0.13	3.1	11
0.14	3.2	12
0.15	3.3	12
0.16	3.4	13
0.17	3.5	13
0.18	4.1	14
0.19	4.2	14
0.20	4.3	15
0.21	4.4	15
0.22	4.5	16

Цель работы

Ознакомиться с xcos, построить кривую Лиссажу для разных значений амплитуды, частоты и фазы.

Выполнение лабораторной работы

Модель

Модель кривой Лиссажу имеет следующий вид: (рис. @fig:001):

$$\begin{cases} x(t) = A\sin(at + \delta), \\ y(t) = B\sin(bt), \end{cases}$$

Рис. 0.1: модель

Здесь А,В – амплитуды колебаний, а,b – частоты, а дельта - сдвиг фаз.

Ход работы

Сначала реализовал модель в xcos. Полученная модель: (рис. @fig:002)

Рис. 0.2: модель в хсоя

Пункт 1

Для амплитуд A=b+1 и частот a=b=2 построил графики со значениями дельта 0, $pi/4,\ pi/2,\ 3pi/4,\ pi.$

Первый график: (рис. @fig:003)

Рис. 0.3: 1.1

Второй график: (рис. @fig:004)

Рис. 0.4: 1.2

Третий график: (рис. @fig:005)

Рис. 0.5: 1.3

Четвертый график: (рис. @fig:006)

Рис. 0.6: 1.4

Пятый график: (рис. @fig:007)

Рис. 0.7: 1.5

Пункт 2

Для амплитуд A=B=1 и частот a=2, b=4 построил графики со значениями дельта 0, pi/4, pi/2, 3pi/4, pi.

Первый график: (рис. @fig:008)

Рис. 0.8: 2.1

Второй график: (рис. @fig:009)

Рис. 0.9: 2.2

Третий график: (рис. @fig:010)

Рис. 0.10: 2.3

Четвертый график: (рис. @fig:011)

Рис. 0.11: 2.4

Пятый график: (рис. @fig:012)

Рис. 0.12: 2.5

Пункт 3

Для амплитуд A=B=1 и частот $a=2,\ b=6$ построил графики со значениями дельта $0,\ pi/4,\ pi/2,\ 3pi/4,\ pi.$

Первый график: (рис. @fig:013)

Рис. 0.13: 3.1

Второй график: (рис. @fig:014)

Рис. 0.14: 3.2

Третий график: (рис. @fig:015)

Рис. 0.15: 3.3

Четвертый график: (рис. @fig:016)

Рис. 0.16: 3.4

Пятый график: (рис. @fig:017)

Рис. 0.17: 3.5

Пункт 4

Для амплитуд A=B=1 и частот a=2, b=3 построил графики со значениями дельта 0, pi/4, pi/2, 3pi/4, pi.

Первый график: (рис. @fig:018)

Рис. 0.18: 4.1

Второй график: (рис. @fig:009)

Рис. 0.19: 4.2

Третий график: (рис. @fig:020)

Рис. 0.20: 4.3

Четвертый график: (рис. @fig:021)

Рис. 0.21: 4.4

Пятый график: (рис. @fig:022)

Рис. 0.22: 4.5

Выводы

Ознакомился с хсоз и выполнил задание.