Isothermal Expansion of Ideal Gas

As the piston is raised the gas does work pdV (we do negative work of W = -pdV.) Heat flows in from bath to maintain a constant temperature. We do it slowly enough so that T is constant at all times. Lets consider ideal gasses where U = Nf(T). Since T is fixed du = 0. What is the heat flowing in?

dy = ta + dw

20 = - 2W = p dV

50

$$\Delta Q = \int_{1}^{4} dQ = \int_{1}^{4} p(T, V) dV = \int_{1}^{4} \frac{V_{f}}{V_{i}}$$

At all times we are in equilibrium so

So integrating	
	heat inflow of
$\Delta Q = N k_B T \ln \left(\frac{V_f}{V_f} \right)$	ideal gas during
· (V. /	isothermal expansion
	•
We remind that DU = 0 but - W	1. = Qif. The
We remind that $\Delta U = 0$ but $-W$ work done by the gas is W^{gas} :	= 0,4
	. (

Adiabatic Expansion of Ideal Gas @ Constant Cy
• We will consider a gas with constant specific heat $C_v = const$, and, $C_p = C_v + Nk_B$, is also constant.
C = const and Ca = Cut NK is also constant
B, 13 wiso constant.
In an adiabatic expansion we do not allow
heat to flow into the cylinder, &Q = 0.
J /
· Adjabatic expansions are much more common
in practice since if the expansion is relatively.
quick, there isn't time for heat exchange.
)
.Temperature drops as
gas expands
7f 1 1 1
Vi 1 gas thermally insulated walls, t,v or just do the expansion
Il t, v or just do the expansion
fast enough (but not too fast) that no heat can be exchanged
that no heat can be exchanged
dQ =0
du = dw (1) Use dw = pdv
7
CydT = -pdV (2) use ideal gas du = CydT+/ay dv relation; ideal gas
idealgas
(v dT = - NKBT dT (3) Use ideal gas EOS.

•	So	we	Can	Integrate	this	assuming	constant
		_	heat	()			

$$\frac{dT}{T} = -Nk_B \frac{dV}{V} \qquad C_P = C_V + Nk_B$$

$$T = C_V = 1 + Nk_B$$

$$C_V = C_V$$

$$T = -(8-1) dV$$

$$T_i V_i = T_f V_f$$
 or $T_V \delta^{-1} \equiv conpt$

$$P;V'_{x} = PfV_{x}$$
 or $PV_{x} = (onst$