ARM Processor - Architecture

Lecture on ARM7 Architecture

By
Harish V. Mekali
Assistant Professor, Dept. of ECE
BMSCE, Bangalore - 19

Inside ARM based System

ARM University Program

The Architecture for the Digital World* ARM*

Programs model / Data flow Model

Ex instruction:
ADD Rd, Rn, Rm, LSL #2
i.e., Rd = Rn + Rm * 4

Pipelining

ARM7TDMI - Pipeline

Processors States

- When the processor is executing in ARM state:
 - All instructions are 32 bits wide
 - All instructions must be word aligned
 - Therefore the pc value is stored in bits [31:2] with bits [1:0] undefined (as instruction cannot be halfword or byte aligned).
- When the processor is executing in Thumb state:
 - All instructions are 16 bits wide
 - All instructions must be halfword aligned
 - Therefore the pc value is stored in bits [31:1] with bit [0] undefined (as instruction cannot be byte aligned).
- When the processor is executing in Jazelle state:
 - All instructions are 8 bits wide
 - Processor performs a word access to read 4 instructions at once
- Hence there are 3 instruction sets, We can not intermingle the instructions and for Jazelle state T=0 and J=1 in CPSR

Processors Modes

ARM has seven basic operating modes

- Each mode has access to its own stack space and a different subset of registers
- Some operations can only be carried out in a privileged mode

Processors Modes

Mode	Abbreviation	Privileged	Mode[4:0]
Abort	abt	yes	10111
Fast interrupt request	fiq	yes	10001
Interrupt request	irq	yes	10010
Supervisor	svc	yes	10011
System	sys	yes	11111
Undefined	und	yes	11011
User	usr	no	10000

Non privileged modes allows read access to **control field** in CPSR but, allows read – write access to **conditional flag**

Register Organization

Register Organization

- ARM has 37 registers all of which are 32-bits long.
 - 1 dedicated program counter
 - 1 dedicated current program status register
 - 5 dedicated saved program status registers
 - 30 general purpose registers
- The current processor mode governs which of several banks is accessible. Each mode can access
 - a particular set of r0-r12 registers
 - a particular r13 (the stack pointer, sp) and r14 (the link register, lr)
 - the program counter, r15 (pc)
 - the current program status register, cpsr
- Registers from r0 to r13 are orthogonal: Any instruction that we can apply on r0 can also be used on any other register
- Depending on the context, r13 and r14 can also be used as a general purpose registers

Register Organization - CPSR

- Condition flags updated by comparisons and ALU operations that specify the "S" instruction suffix. ex: SUBS r0, r1, r2
- Jazelle enabled cores have **J** bit in CPSR 24th bit. Jazelle state requires a separate software from ARM Ltd., and Sun microsystems.
- Most ARM instructions can be executed conditionally on the value of condition ex:
 ADDEQ r0, r1, r2

Register Organization - CPSR

Condition code flags

- N = Negative result from ALU
- Z = Zero result from ALU
- C = ALU operation Carried out
- V = ALU operation o Verflowed

Sticky Overflow flag - Q flag

- Architecture 5TE/J only
- Indicates if saturation has occurred

J bit

- Architecture 5TEJ only
- J = 1: Processor in Jazelle state

Interrupt Disable bits.

- I = 1: Disables the IRQ.
- F = 1: Disables the FIQ.

T Bit

- Architecture xT only
- T = 0: Processor in ARM state
- T = 1: Processor in Thumb state

Mode bits

Specify the processor mode

Exception Handling

- When an exception occurs, the ARM:
 - Copies CPSR into SPSR <mode>
 - Sets appropriate CPSR bits
 - Change to ARM state
 - Change to exception mode
 - Disable interrupts (if appropriate)
 - Stores the return address in LR_<mode>
 - Sets PC to vector address
- To return, exception handler needs to:
 - Restore CPSR from SPSR_<mode>
 - Restore PC from LR_<mode>

This can only be done in ARM state.

Vector Table

Vector table can be at 0xFFFF0000 on ARM720T and on ARM9/10 family devices

- Hardware extensions that can be used to improve the system performance like
- 1. Cache
- 2. Memory Management
- 3. Co-processor

Cache Memory

- Cache is block of fast memory placed between main memory and the core
- With cache processor core run faster majority of the time by without having to wait for the data from slow external memory
- Cache can be of Harvard and Von neumann style
- Cache provides Overall increase in performance at the expense of predictable logic / execution

Most of the ARM based systems uses Single level cache

Fig: Simplified von Neumann architecture of cache

Memory Management

- Embedded Systems have multiple memory devices and it is necessary to organize these devices and protect system from applications trying to make inappropriate access to the hardware
- There are 3 types of memory management hardwares
 - No extension No protection
 For very simple embedded applications
 - Memory Protection Unit(MPU) Limited Protection
 Each memory region is protected with access control
 - 3. Memory Management Unit(MMU) Full protection
 Translation table from virtual to physical memory address as
 well as permission to access

Co – Processor

- It extends the processing feature of the basic processor core by extending the instructions or by providing the configuration registers
- They can be accessed through the group of dedicated ARM instructions and it is identified during the decoding stage.
- If in case the coprocessor is not present then basic core generates undefined exception that allows to emulate the coprocessor behaviour in software
- Ex: Vector floating point co-processor

Thank you

Harish V. Mekali Assistant Professor, Dept. of ECE, BMSCE

hvm.ece@bmsce.ac.in / harishmekali@gmail.com

+91-9538765141

http://harishvmekali.blogspot.in/p/technology.html

I acknowledge and appreciate ARM University Program(AUP) and ARM Embedded Systems pvt. Ltd. for their continuous support.

References

Video lectures:

Mr. Chrish Shore, ARM Training Manager, UK
 The ARM University Program, ARM Architecture Fundamentals
 https://www.youtube.com/watch?v=7LqPJGnBPMM

2. Dr. Santanu Chaudhury, Dept. of Electrical Engineering, IIT Delhi Lecture - 5 ARM : (https://www.youtube.com/watch?v=4VRtujwa_b8)

Website:

3. http://infocenter.arm.com/help/index.jsp

Textbooks:

- ARM system developers guide, Andrew N Sloss, Dominic Symes and Chris Wright, Elsevier, Morgan Kaufman publishers, 2008.
- ARM System-on-Chip Architecture, Steve Furber, Second Edition, Pearson, 2015