Analiza občutljivosti linearnega programa

Žaklina Jelušić, Anja Zavrl

24. 2. 2017

1 Opis občutljivosti linearnega programa

Pri analizi občutljivosti želimo ugotoviti, kaj se zgodi z optimalno rešitvijo, če spremenimo kakšen koeficient v linearnem programu. Zanima nas za koliko lahko spremenimo koeficiente ciljne funkcije ali desno-stranske koeficiente pri pogojnih funkcijah, da naša rešitev ostane razmeroma nespremenjena. Lahko pa opazujemo spremembo, če problemu dodamo novo omejitev.

Če v nekem primeru majhna sprememba koeficienta povzroči večjo spremembo v naši optimalni rešitvi problema, potem pravimo, da je problem občutljiv, sicer pa je neobčutljiv.

2 Način reševanja

Za analiziranje občutljivosti linearnih programov sva uporabili program R Studio. Obravnavali sva dva primera in s pomočjo grafov prikazali spremembe rešitev in optimalne vrednosti glede na spreminjanje koeficientov. Spreminjali sva koeficiente ciljne funkcije in desno-stranske koeficiente pogojnih funkcij (pri vsakem koraku sva spremenili le po en koeficient), pri prvem primeru pa sva na kratko tudi pokazali kako vpliva dodajanje novega pogoja na končno rešitev.

V R Studiu sva definirali funkcijo, ki je sprejela linearni program in s pomočjo simpleksne metode (ki jo R Studio že vsebuje) vrnila rešitev. S tem sva fiksirali vse koeficiente, nato pa sva po enega spreminjali in opazovali spremembe.

3 Primer kmeta

Kmet ima 8 hektarjev zemlje, ki jo želi nasaditi s pšenico in ječmenom. Za vsak posejan hektar zemlje s pšenico dobi 5000\$ dobička, za vsak hektar zemlje, posejane z ječmenom, pa 3000\$. Za vseh 8 hektarjev zemlje ima na voljo 10 litrov pesticidov. Za vsak hektar, posejan s pšenico, porabi 2 litra pesticidov, za hektar, posejan z ječmenom, pa 1 liter. Kakšen je njegov maksimalni dobiček?

Napišimo ta problem kot linearni program:

$$\max \quad p = 5000x + 3000y$$

$$\text{p.p.} \quad x + y \le 8$$

$$2x + y \le 10$$

$$x, y \ge 0$$

Rešitev tega problema je x = 2, y = 6, p = 28000.

Čeprav so rešitve celoštevilske, sva pri analizi občutljivosti tega primera predpostavili, da lahko za rešitev dobimo katerokoli pozitivno realno število.

Najprej sva pogledali kaj se zgodi pri spremembi **desno-stranskih koeficientov pri pogojnih funkcijah**. Koeficient b_1 , ki ima vrednost 8, sva spreminjali na intervalu [0, 10.5] s korakom 0.01. Intervale sva izbirali tako, da so spremembe na grafu čim bolj vidne. Korake sva vmes spreminjali in opazovali, kaj se dogaja. Opazili sva, da sprememba koeficienta b_1 povzroči naraščanje y, ki je od neke točke naprej konstanta. Za spremembo rešitve x pa velja, da vrednost najprej narašča, potem začne padati, ko pa sprememba koeficienta b_1 doseže vrednost 10, je x konstantno enak 0.

Koeficient b_2 , ki ima vrednost 10, sva spreminjali na intervalu [0, 20] prav tako s korakom 0.01. Iz grafa je lepo razvidno, da sta v tem primeru rešitvi obratni tisti, pri spremembi koeficienta b_1 ; v smislu, da je sedaj rešitev x do neke točke konstantno enaka 0, potem začne naraščati, nato pa ponovno postane konstantna, rešitev y pa najprej narašča, nato začne padati do vrednosti 0, pri večjih spremembah pa je enaka 0. Vsi lomi grafov, tako pri spremembi koeficientov b_1 , kot pri spremembi b_2 , se zgodijo pri isti točki. In sicer za spremembo koeficienta b_1 sta to števili 5 in 10, pri spremembi b_2 pa 8 in 16.

Naša optimalna rešitev te naloge je 28000\$. Tako za spremembo koeficienta b_1 kot b_2 je optimalna vrednost nižja, če koeficienta znižamo od prvotnega, in višja, če tega povišamo.

Nato pa sva pogledali še spremembo **koeficientov ciljne funkcije**. Koeficient $c_1 = 5000$ sva spreminjali na intervalu [2500, 6000], s korakom 10. V našem primeru c_1 predstavlja dobiček za vsak posejan hektar zemlje s pšenico. Vrednosti x, torej hektarji zemlje posejani s pšenico, naraščajo, medtem ko število hektarjev zemlje, posejane z ječmenom, pada. Vmes so skoki pri $c_1 = 3000$ in $c_1 = 6000$.

Nasprotno velja za spremembo koeficienta c_2 , torej za dobiček posejanih hektarjev zemlje z ječmenom. Tukaj vrednosti x padajo ter vrednosti y naračajo. Skoki so tokrat pri vrednostih $c_2 = 2500$ in 5000.

Kako pa sprememba vpliva na optimalno vrednost?

Tudi v tem primeru sprememba dobička pšenice in ječmena vpliva na skupni dobiček. Sprva je konstanta, pri spremembi c_1 do vrednosti 3000, pri spremembi c_2 pa do vrednosti 2500. Od teh vrednosti dalje pa optimalna vrednost narašča (kasneje začne pri vrednosti $c_1 = 6000$ oziroma $c_2 = 5000$ še bolj strmo naraščati).

3.1 Dodajanje novega pogoja

Recimo, da ima kmet za zalivanje poljščin na voljo le 20 litrov vode. Za vsak hektar zemlje, posejanje s pšenico, porabi 5 litrov vode, za vsak hektar, posejan z ječmenom, pa 3 litre vode. Pogoj zapišemo kot $5x + 3y \le 20$.

Pogoj sicer zadošča problemu, vendar se optimalna vrednost zmanjša. Rešitev problema je sedaj enaka p=20000, x=4, y=0.

4 Primer 2

$$\max \quad p = 2x + 4y + 3w + z$$
 p.p.
$$3x + y + w + 4z \le 12$$

$$x - 3y + 2w + 3z \le 7$$

$$2x + y + 3w - z \le 10$$

$$x, y, w, z \ge 0$$

Rešitev problema je: p = 42, x = 0, y = 10.4, w = 0, z = 0.4.

Za primer 2 sva vzeli uvodni primer iz kratke predstavitve, ker niso vse rešitve celoštevilske, poleg tega pa sta vrednosti x in w enaki 0.

Podobno kot pri prvem primeru, sva najprej pogledali spremembe pri **desno-stranskih koeficientih pri pogojnih funkcij**. Koeficient b_1 je v tem primeru enak 12. Spreminjali sva ga na intervalu [0, 20] s korakom 0.05. Pri spremembi b_1 vrednosti y naraščajo od samega začetka. Vrednosti w so do vrednosti koeficienta $b_1 = 10$ konstantne, kjer je lom tudi za spremembo vrednosti y, od tod naprej pa naraščajo. Medtem pa so vrednosti x in z konstantno enake 0.

Pri spremembi b_2 , ki je enak 7, je zanimivo to, da so vse rešitve enake naši splošni rešitvi. Tukaj sva se osredotočili na interval [0,15] s korakom 0.05. V tem primeru je potem tudi optimalna rešitev enaka, torej 42, ne glede na spremembo koeficienta b_2 . Torej sprememba tega koeficienta ne vpliva na naš problem. Medtem pa optimalna rešitev pri spremembi b_1 narašča in ima prelom pri $b_1 = 10$, tako kot za ostale rešitve x, y, z in w.

Pri ciljni funkciji sva najprej spreminjali koeficient $c_1=2$. Vzeli sva interval [0,15] s korakom 0.05. Rešitev za x je naraščajoča, s skoki. Sprva je enaka 0, nato pa ji sledita dva skoka. Rešitvi y in w padata, ravno tako v dveh skokih, z pa je konstantno enak 0.

Na intervalu [0, 20] s korakom 0.05 sva opazovali spremembo koeficienta c_3 . Rešitve za y padajo s skoki, medtem pa z in w naraščata, ravno tako s skoki. Rešitev za x je konstantno enaka 0.

Vse spremembe na optimalno vrednost naraščajo. Pri spremembi c_1 in

 c_3 so te najprej konstantno enake 0nato začnejo naraščati. Medtem pa pri spremembi c_2 in c_4 rešitve naraščajo od začetka.

