HM48416AP-12, HM48416AP-15 HM48416AP-20

16384-word X 4-bit Dynamic Random Access Memory

- **FEATURES**
- 16384-word x 4-bit Organization
- Single 5V (±10%)
- Low Power; 303mW Active, 20mW Standby
- High speed: Access Time 120ns/150ns/200ns (max)
- Page mode capability
- Output data controlled by CAS, OE
- TTL compatible
- 128 refresh cycles (A₀ ~A₆, 2ms)

PIN ARRANGEMENT

A0~A7	Address Inputs
CAS	Column Address Strobe
I/O1~I/O4	Data In/Data Out
OE	Output Enable
RAS	Row Address Strobe
WRITE	Read/Write Input
v_{cc}	Power (+5V)
V _{SS}	Ground

BLOCK DIAGRAM

WE - R/W Clock	R/W Switch	OE clock Generator
RAS Clock Generator		
CASo Cas Clock Generator		Data in Buffers
.	Memory O/I DO Memory O/I DO Array	V _{SS} V _{NN} Generator
A ₀ —		WHR Generator

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Value	Unit	
Voltage on any pin relative to V_{SS}	V_T	-1.0 to +7.0	V	
Supply Voltage relative to V_{SS}	Vcc	-1.0 to +7.0	V	
Short Circuit Output Current	Iout	50	mA	
Power Dissipation	P_T	1.0	w	
Operating Temperature	Topr	0 to +70	°C	
Storage Temperatue	Tstg	-55 to +125	°C	

■ RECOMMENDED DC OPERATING CONDITIONS ($T_a = 0 \text{ to } +70^{\circ}\text{C}$)

Item	Symbol	min	typ	max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
	V _{SS}	0	0	0	V
Input Voltage	V _{IH}	2.4	_	6.5	v
	V_{IL}	-1.0	_	0.8	V

Note All voltages referenced to V_{SS} .

■ DC ELECTRICAL CHARACTERISTICS (Ta=0 to 70° C, $V_{CC}=5V\pm10\%$, $V_{SS}=0V$)

Paramater		Smbol HM48416A			416AP 15			416 AP 20 Unit	
		min	max	min	max	min	max		
Operating Current (RAS, CAS Cycling: tRC=min)	I _{CC1}	_	60	_	55	 	45	mA	1, 2
Standby Current (RAS=V _{IH} , Dout=High Impedance)	I _{CC2}	_	3.5	_	3.5	_	3.5	mA	
Refresh Current (RAS Cycling, CAS=VIH, tRC=min)	I _{CC3}	-	42	-	38	_	33	mΑ	2
Standby Current (RAS=V _{IH} , Dout Enable)	I _{CC5}	_	5.5		5.5	_	5.5	mA	1
Page Mode Current (RAS= V_{IL} , CAS Cycling; t_{PC} =min)	I _{CC6}	_	42	_	38	-	33	mA	1, 2
Input Leakage (0 < V _{in} < 6.5 V)	I_{LI}	-10	10	-10	10	-10	10	μА	
Output Leakage (Dout is disabled, 0 < Vout < 5.5 V)	I_{LO}	-10	10	-10	10	-10	10	μА	
Output Levels High (Iout=-5mA)	VOH	2.4	Vcc	2.4	Vcc	2.4	Vcc	V	
Output Levels Low (Iout=4.2mA)	V_{OL}	0	0.4	0	0.4	0	0.4	V	

Notes) 1. I_{CC} depends on output loading condition when the device is selected, I_{CC} max is specified at the output open condition.

2. Current depends on cycle rate: maximum current is measured at the fastest cycle rate.

■ CAPACITANCE (V_{CC} =5V±10%, T_a =25°C)

	Parameter	Symbol	typ	max	Unit	Notes
	Address	Cin1	_	5	pF	1
Input Capacitance	RAS, CAS, WRITE, OE	C _{in2}	_	10	pF	1
Output Capacitance	Data In/Data out	C _{I/O}	_	10	pF	1, 2

Notes) 1. Capacitance mesured with Boonton Meter or effective capacitance measuring method.

2. CAS=VIH to disable Dout.

■ ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(T_a=0 \text{ to } 70^{\circ}\text{C}, V_{CC}=5\text{V}\pm10\%, V_{SS}=0\text{V})^{1), 10)}$

			16AP-12				6AP-20		Note
Parameter	Symbol	min	mas	min	max	min	max	Unit	
Random Read or Write Cycle Time	t _{RC}	230	_	260		330	_	ns	
Read-Write Cycle Time	tRWC	320	-	360	-	450	_	ns	
Page Mode Cycle Time	tPC	130	-	145	-	190	-	ns	
Access Time from RAS	†RAC		120	-	150	_	200	ns	2, 3
Access Time from CAS	†CAC	-	60	_	75	_	100	ns	3, 4
Output Buffer Turn-off Delay referenced to CAS	toff1	-	35	_	40	_	50	ns	5
Transition Time (Rise and Fall)	t_T	3	35	3	35	3	50	ns	6
RAS Precharge Time	tRP	100		100	_	120	_	ns	
RAS Pulse Width	tRAS	120	10000	150	10000	200	10000	ns	
CAS Pulse Width	t _{CAS}	60	10000	75	10000	100	10000	ns	Ī
RAS to CAS Delay Time	tRCD	25	60	25	75	30	100	ns	7
RAS Hold Time	tRSH	60	-	75		100	_	ns	
CAS Hold Time	t _{CSH}	120	-	150	_	200	_	ns	
CAS to RAS Precharge Time	tCRP	-10	_	-10	-	-10		ns	
Row Address Set-up Time	tASR	0	-	0	_	0	_	ns	
Row Address Hold Time	tRAH	15	-	15	_	20	_	ns	
Column Address Set-up Time	tASC	0	-	0		0	T	ns	
Column Address Hold Time	₹CAH	20	-	25	_	30	_	ns	
Column Address Hold Time referenced to RAS	t_{AR}	80	-	100		130	–	ns	
Write Command Set-up Time	twcs	0	_	0	-	0	_	ns	8
Write Command Hold Time	twch	40	-	45		55	_	ns	

(to be continued)

Parameter	Symbol	HM48416AP-12 HM48416AP-15 HM48416AP-20						Unit	Note
rafameter	Symbol	min	max	min	max	min	max	Unit	Note
Write Command Hold Time referenced to RAS	twcr	100	_	120	-	155	-	ns	
Write Command Pulse Width	twp	40	_	45	-	55	_	ns	
Write Command to RAS Lead Time	tRWL	40		45	-	55	_	ns	
Write Command to CAS Lead Time	t _{CWL}	40	-	45	_	55	-	ns	
Data-in Set-up Time	t _{DS}	0	-	0	_	0	_	ns	9
Data-in Hold Time	t _{DH}	40	_	45	1 -	55	_	ns	9
Data-in Hold Time referenced to RAS	t _{DHR}	100		120		155	_	ns	
Read Command Set-up Time	tRCS	0	_	0		0	_	ns	
Read Command Hold Time referenced to CAS	^t RCH	0	_	0	-	0	_	ns	
Read Command Hold Time referenced to RAS	t _{RRH}	10	_	10	-	10	-	ns	
Refresh Period	tREF	-	2	-	2	_	2	ms	
CAS to WE Delay Time	t _{CWD}	105	-	125	_	160	_	ns	8
RAS to WE Delay Time	t _{RWD}	165	_	200	-	260	-	ns	8
CAS Precharge Time (for Page-mode Cycle Only)	t _{CP}	60	_	60	_	80	_	ns	
CAS Precharge Time	t _{CPN}	35	_	40	-	50	-	ns	
RAS Precharge to CAS Hold Time	t _{RPC}	0	_	0	_	0	-	ns	
Access Time from OE	tOAC	_	35	_	40	-	50	ns	3
Output Buffer Turn-off Delay referenced to OE	t _{OFF2}	_	35	-	40		50	ns	5
OE to Data-in Delay Time	todd	35	-	40	-	50	-	ns	11
OE Hold Time referenced to CAS	[‡] OCH	0	_	0		0	_	ns	

Notes:

- 1. AC measurements assume $t_T = 5 \text{ns}$.
- 2. Assumes that $t_{RCD} \leq t_{RCD}$ (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
- 3. Measured with a load circuit equivalent to 2TTL loads and 100pF.
- 4. Assumes that t_{RCD} ≥ t_{RCD} (max).
 5. t_{OFF1} (max) and t_{OFF2} (max) define the time at which the output achieves the open circuit condition.
- 6. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} and V_{IL} .
- 7. Operation within the t_{RCD} (max) limit insures that $t_{RAC}(\max)$ can be met, t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled
- exclusively by t_{CAC} .

 8. t_{WCS} , t_{CWD} and t_{RWD} are not restrictive operating parameters.

They are included in the data sheet as electrical characteristics only; if $t_{WCS} \ge t_{WCS}$ (min), the cycle is an early write cycle and the data output pin will remain open circuit (high impedance) throughout the entire cycle; if $t_{CWD} \ge t_{CWD}$ (min) and $t_{RWD} \ge t_{RWD}$ (min) the cycle is a read-write cycle and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.

- 9. These parameters are referenced to CAS leading edge in early write cycles and to WE leading edge in delayed write or read-modify-write cycles.
- An initial pause of 100μs is required after power-up followed by a minimum of 8 initialization cycles.
- 11. In delayed write or read-modify-write cycles, OE must disable output buffers prior to applying data to the device.

- TIMING WAVEFORMS
- Read Cycle

Early Write Cycle

185

(1) HITACHI

 $\bullet \hspace{0.1cm} \boxed{\hspace{0.1cm} [\hspace{0.1cm}] \hspace{0.1cm} [\hspace$

ŌĒ

186

Page Mode Read Cycle RAS--tcs+-CAS. ROW trchtrcH-WRITE OPEN VALID OUTPUT 1/0 LOAC torra-ŌĒ. * : Don't care Page Mode Write Cycle RAS CAS \overline{WE}

(b) HITACHI

Don't care

1/0

RAS Only Refresh Cycle

*OE, WE: Don't care
: Don't care

188