Design for Analog Circuits - Laboratory Report

16 August 2021

Assignment 1

Soumya Kanta Rana M.Tech Electronic Systems Engineering S.R. No. : 04-01-00-10-51-21-1-19261 CONTENTS CONTENTS

Contents

1	BJ	Γ Amplifier	1			
	1.1	Aim	1			
	1.2	Schematic	1			
	1.3	Calculation of Component Values	1			
	1.4	DC Operating Point Simulation	2			
	1.5	Input and Output Coupling Capacitor Selection	3			
	1.6	AC Simulation Without R_L	4			
	1.7	AC Simulation With $R_L = 10k\Omega$	5			
2	Non-Inverting Amplifier					
	2.1	Aim	6			
	2.2	Schematic	6			
	2.3	Calculation of Component Values	6			
	2.4	AC Simulation Without R_L	7			
	2.5	AC Simulation With $R_L = 10k\Omega$	8			
3	Op-amp Buffer Amplifier					
	3.1^{-}	Aim	9			
	3.2	Schematic	9			
	3.3	AC Simulation Without R_L	10			
	3.4	AC Simulation With $R_L = 10k\Omega$	11			
1	Cor	nclusions	19			

LIST OF FIGURES

LIST OF FIGURES

List of Figures

1	LTSpice Schematic of the BJT Amplifier Circuit	1
2	DC operating point simulation of BJT amplifier	2
3	AC simulation of BJT amplifier without R_L	4
4	BJT amplifier output for 0.2 V p-p sinewave without R_L	4
5	AC simulation of BJT amplifier with $R_L = 10k\Omega$	5
6	BJT amplifier output for 0.2V p-p 1kHz sinewave and $R_L = 10k\Omega$	5
7	LTSpice Schematic of the Non-inverting Amplifier Circuit	6
8	AC simulation of non-inverting amplifier without R_L	7
9	Non-inverting amplifier output for 0.2 V p-p sinewave without R_L	7
10	AC simulation of non-inverting amplifier with $R_L = 10k\Omega$	8
11	Non-inverting amplifier output for 0.2 V p-p sinewave with $R_L = 10k\Omega$.	8
12	LTSpice Schematic of the op-amp (LT1097) Buffer Circuit	9
13	AC simulation of buffer without R_L	10
14	Buffer output for 10 V p-p sinewave without R_L	10
15	AC simulation of buffer with $R_L = 10k\Omega$	11
16	Buffer output for 10 V p-p sinewave with $R_I = 10k\Omega$	11

1 BJT Amplifier

1.1 Aim

To design a BJT Amplifier with a gain of 5-6.

1.2 Schematic

Figure 1: LTSpice Schematic of the BJT Amplifier Circuit

1.3 Calculation of Component Values

We shall design the amplifier for $R_L=10\mathrm{k}\Omega$, F=1kHz and gain=6.67 (to account for attenuation due to loading) taking the following design assumptions:

1.
$$V_c = 0.5 \times V_+ = 5V$$

2.
$$R_L = 10 \times R_C \implies R_C = 1k\Omega$$

3.
$$I_{R_a} = 10 \times I_b$$

4.
$$I_{R_a} = I_{R_b}$$

5.
$$I_C = I_E$$

6.
$$V_{BE(on)}$$
 of BJT = 0.7 V

We have chosen NPN transistor (Part No. 2N2222) with β =200.

DC value of collector current
$$(I_C) = \frac{5}{1} = 5mA$$

Emitter Resistor
$$(R_E)$$
 = $\frac{R_C}{\text{gain}} = 150\Omega$
Emitter Voltage (V_E) = $I_C \times R_E = 0.75V$
Base current (I_B) = $\frac{I_C}{\beta} = 25\mu A$
Current through $R_a(I_{R_a})$ = $10 \times I_B = 0.25mA$
Voltage across $R_b(V_{R_b})$ = $V_{BE} + V_E = 1.45V$
 R_b = $\frac{V_{R_b}}{I_{R_a}} = 5.8k\Omega$
 R_a = $\frac{V_{+}-V_{R_b}}{I_{R_a}} = 34.2k\Omega$

The component values are used for initial simulation and have been tuned for getting better results.

1.4 DC Operating Point Simulation

Figure 2: DC operating point simulation of BJT amplifier

The following table shows the DC operating point values of the amplifier as obtained from simulation using $R_L = 10k\Omega$, $Rc = 1k\Omega$, $Re = 0.15k\Omega$, $Ra = 34.8k\Omega$, $Rb = 6.6k\Omega$:

Parameter	Value
I_C	5.04mA
V_C	4.96V
V_E	0.76V
I_{R_a}	0.25mA
V_{R_b}	1.46V

1.5 Input and Output Coupling Capacitor Selection

The input capacitor C_i and output capacitor C_o are chosen such that their reactance is less than 10% of the input impedance and load impedance of the amplifier respectively.

Input Impedance of the amplifier $(R_{in}) = R_a ||R_b|| \beta R_E = 4.68 k\Omega$

Load Impedance of the amplifier $(R_L) = 10k\Omega$

Input Capacitor Reactance (X_{C_i}) = 0.468 $k\Omega$

Output Capacitor Reactance (R_L) = $1k\Omega$

So we have

$$C_i = \frac{1}{2\pi F X_{C_i}} = 0.34 \mu F$$

$$C_o = \frac{1}{2\pi F X_{C_o}} = 0.16 \mu F$$

1.6 AC Simulation Without R_L

Figure 3 shows the AC simulation (magnitude and frequently response) of the amplifier gain with no-load. We obtain a gain of $16.1~\mathrm{dB} = 6.39$. Since the amplifier is on no-load, the observed gain is higher than the design gain. The lower cutoff frequency obtained from the simulation is $100~\mathrm{Hz}$ and upper cutoff frequency is $34.4~\mathrm{MHz}$. Figure 4 shows the waveforms at output when $0.2~\mathrm{V}$ p-p $1~\mathrm{kHz}$ sinewave is supplied to the amplifier input.

Figure 3: AC simulation of BJT amplifier without R_L .

Figure 4: BJT amplifier output for 0.2 V p-p sinewave without R_L .

1.7 AC Simulation With $R_L = 10k\Omega$

Figure 5 shows the AC simulation (magnitude and frequency response) of the amplifier gain. We obtain a gain of $15.28~\mathrm{dB} = 5.8$ which satisfies the requirement. The lower cutoff frequency obtained from the simulation is $148~\mathrm{Hz}$ and upper cutoff frequency is $37.9~\mathrm{MHz}$. Figure 6 shows the waveforms at output when $0.2V~\mathrm{p-p}$ 1kHz sinewave is supplied to the amplifier input.

Figure 5: AC simulation of BJT amplifier with $R_L = 10k\Omega$.

Figure 6: BJT amplifier output for 0.2V p-p 1kHz sinewave and $R_L=10k\Omega$.

2 Non-Inverting Amplifier

2.1 Aim

To design a non-Inverting amplifier (using op-amp) with a gain of 5-6.

2.2 Schematic

Figure 7: LTSpice Schematic of the Non-inverting Amplifier Circuit

2.3 Calculation of Component Values

We shall design the amplifier for $R_L=10\mathrm{k}\Omega$ and gain=6. We have chosen Op-Amp (Part No. LT1097) for this design. We know that for a non-inverting amplifier

$$gain G = \frac{R_2 + R_1}{R_1}$$

We choose $R_1=1$ k Ω and $R_2=5$ k Ω to get a gain of 6..

2.4 AC Simulation Without R_L

Figure 8 shows the AC simulation (magnitude and frequency response) of the amplifier gain with no-load. We obtain a gain of $15.56~\mathrm{dB} = 6.00$. The bandwidth of the amplifier obtained from the simulation is $105.2~\mathrm{kHz}$. Figure 9 shows the waveforms at output when $0.2~\mathrm{V}$ p-p 1kHz sinewave is supplied to the amplifier input.

Figure 8: AC simulation of non-inverting amplifier without R_L .

Figure 9: Non-inverting amplifier output for 0.2 V p-p sinewave without R_L .

2.5 AC Simulation With $R_L = 10k\Omega$

Figure 10 shows the AC simulation (magnitude and frequency response) of the amplifier gain. We obtain a gain of $15.56~\mathrm{dB} = 6.00$. The bandwidth obtained from the simulation is $95.3~\mathrm{kHz}$. Figure 11 shows the waveforms at output when $0.2~\mathrm{V}$ p-p 1kHz sinewave is supplied to the amplifier input.

Figure 10: AC simulation of non-inverting amplifier with $R_L = 10k\Omega$.

Figure 11: Non-inverting amplifier output for 0.2 V p-p sinewave with $R_L = 10k\Omega$.

3 Op-amp Buffer Amplifier

3.1 Aim

To design a Op-amp Buffer Amplifier.

3.2 Schematic

Figure 12: LTSpice Schematic of the op-amp (LT1097) Buffer Circuit

3.3 AC Simulation Without R_L

Figure 13 shows the AC simulation (magnitude and frequency response) of the buffer gain with no-load. We obtain a gain of 0 dB. The bandwidth of the buffer obtained from the simulation is 1.06 MHz. Figure 14 shows the waveforms at output when 10V p-p 1kHz sinewave is supplied to the buffer input.

Figure 13: AC simulation of buffer without R_L .

Figure 14: Buffer output for 10 V p-p sinewave without R_L .

3.4 AC Simulation With $R_L = 10k\Omega$

Figure 15 below shows the AC simulation (magnitude and frequency response) of the amplifier gain. We obtain a gain of 0 dB . The bandwidth of the buffer obtained from the simulation is $0.94~\mathrm{MHz}$. Figure 16 shows the waveforms at output when 10 V p-p 1kHz sinewave is supplied to the buffer input.

Figure 15: AC simulation of buffer with $R_L = 10k\Omega$.

Figure 16: Buffer output for 10 V p-p sinewave with $R_L = 10k\Omega$.

4 Conclusions

- 1. The output impedance of the BJT amplifier is higher than that of the OP-AMP based amplifiers, so the gain values with and without load are considerably different.
- 2. The BJT amplifier has a very large bandwidth compared to the OP-AMP amplifiers.
- 3. At low frequencies (below 100 Hz) the BJT amplifier will not function as intended, because the reactance of the input coupling capacitor increases, which causes signal attenuation at the amplifier input.