Solutions to Assignment 1

Simon Etter, 2019/2020 Total marks: 10

1 Fill path theorem [4 marks]

1. The graph is a tree:

2. According to the fill-path theorem, we have $(L+U)[i,j] \neq 0$ in the structural sense if and only if there is a fill-path from j to i. Using this result, we obtain the following sparsity pattern for the LU factorisation.

	/ 1	•	•					\
	•	2	х	•	•			
	•	х	3	х	х	•	•	
A =		•	х	4	х	х	x	
		•	х	х	5	х	х	
			•	х	х	6	x	
,	'		•	х	х	х	7	

In particular:

- $L[3,2] \neq 0$ because we have a fill path $2 \rightarrow 1 \rightarrow 3$.
- L[6,2] = 0 because the only path connecting these two vertices is $2 \to 1 \to 3 \to 6$ and this is not a fill path because 3 > 2.
- $L[4,3] \neq 0$ because we have a fill path $3 \rightarrow 1 \rightarrow 2 \rightarrow 4$.
- 3. The trick is to enumerate the vertices from bottom to top, e.g. using the permutation

i	1	2	3	4	5	6	7
$\pi(i)$	4	5	6	7	2	3	1

which yields the enumeration

We now verify that this new enumeration indeed does not permit fill paths of length > 1. (Note that only fill paths of length > 1 produce fill-in. For fill paths $j \to i$ of length one, we have $(L+U)[i,j] \neq 0$ but also $A[i,j] \neq 0$ and hence this is not a fill-in entry.)

1

• No fill path of length > 1 starts in the vertices 1, 2, 3 or 4.

All paths of length > 1 starting in vertex 1 are of the form $1 \to 5 \to \dots$ If we add vertices after 5, this will no longer be a fill path because 1 < 5; hence there are no fill paths of length > 1 starting in vertex 1. The argument for the other vertices is analogous.

- No fill path of length > 1 starts in the vertices 5 or 6.
 - All paths of length > 1 starting in vertex 5 are of the form $5 \to 7 \to ...$ No such path can be a fill path because 7 > 5. The argument for vertex 6 is analogous.
- No fill path of length > 1 starts in vertex 7.

All paths of length > 1 starting in vertex 7 are of the form $7 \to 5 \to \dots$ or $7 \to 6 \to \dots$. All possible vertices following 5 or 6 are numbered lower than 5 or 6, so these paths cannot be fill paths.

2 Convergence of GMRES [2 marks]

- Matrix C has only 5 distinct eigenvalues and hence we must have $||Cx_k b||_2 = 0$ for k = 5. The only plot satisfying this criterion is plot 3.
- We have the bound

$$\min_{q_k \in \mathcal{P}_k} \max_{x \in [1, \kappa]} \frac{|q_k(x)|}{|q_k(0)|} \le 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k$$

which implies that GMRES converges faster for smaller κ . For matrix A we have $\kappa = 10$ while for matrix B we have $\kappa = 40$; hence the faster converging plot 1 must correspond to matrix A and the more slowly converging plot 2 must correspond to matrix B.

3 Conjugate gradients [4 marks]

See sheet1_solutions.jl.