Optimization-Based Data Analysis

Recitation 10

1. Suppose $f, g : \mathbb{R} \to \mathbb{R}$ are convex and twice differentiable. Give conditions so that $f \circ g$ is convex. Does the result still hold under your conditions if we remove differentiability?

Solution. Let $h = f \circ g$ so that

$$h'(x) = f'(g(x))g'(x)$$
 and $h''(x) = f''(g(x))g'(x)^2 + f'(g(x))g''(x)$.

This is non-negative if $f'(g(x)) \ge 0$ which occurs if f is increasing.

Now assume that f, g are just convex. Then

$$h(tx + (1 - t)y) = f(g(tx + (1 - t)y))$$

$$\leq f(tg(x) + (1 - t)g(y))$$

$$\leq tf(g(x)) + (1 - t)f(g(y)),$$

for $t \in (0,1)$ where the first inequality requires the convexity of g and that f is increasing.

2. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = e^{-x^2/2}$. Is f concave?

Solution. No. Note that $f'(x) = -xe^{-x^2/2}$ and

$$f''(x) = -e^{-x^2/2} + x^2 e^{-x^2/2} = -(1 - x^2)e^{-x^2/2}$$

which changes sign at ± 1 .

3. Which of the following functions $f: \mathbb{R}^2 \to \mathbb{R}$ are convex?

(a)
$$f(x,y) = x^2 + y^2$$

(b)
$$f(x,y) = x^2 - y$$

(c)
$$f(x,y) = x^2 - y^2$$

(d)
$$f(x,y) = x^2 y^2$$

Solution.

(a) Yes,
$$Hf(x,y) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
.

(b) Yes, sum of convex functions x^2 and -y.

(c) No,
$$Hf(x,y) = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$$
.

- (d) No, $Hf(x,y)=\begin{bmatrix}2y^2&4xy\\4xy&2x^2\end{bmatrix}$ has determinant $-12x^2y^2$ which is negative when $x,y\neq 0$.
- 4. Which of the following convex functions are strictly convex?
 - (a) $f(\vec{x}) = ||\vec{x}||_1$ for $\vec{x} \in \mathbb{R}^n$ with n > 1
 - (b) $f(\vec{x}) = ||\vec{x}||_2$ for $\vec{x} \in \mathbb{R}^n$ with n > 1
 - (c) $f(\vec{x}) = ||\vec{x}||_2^2$ for $\vec{x} \in \mathbb{R}^n$ with n > 1
 - (d) f(X) = ||X|| for $X \in \mathbb{R}^{n \times n}$ with n > 1
 - (e) $f(X) = ||X||_F$ for $X \in \mathbb{R}^{n \times n}$ with n > 1
 - (f) $f(X) = ||X||_*$ for $X \in \mathbb{R}^{n \times n}$ with n > 1

Solution.

- (a) No, $\|\vec{e}_1 + \vec{e}_2\|_1 = \|(\vec{e}_1 + \vec{e}_2) + t(\vec{e}_1 \vec{e}_2)\|_1$ for $t \in [0, 1]$. Alternatively, note that the contour lines are straight, or that f(x) = |x| is not strictly convex.
- (b) No, $||t\vec{x}||_2 = |t|||\vec{x}||_2$ for $t \in [0,1]$ (i.e., consider the line segment between 0 and \vec{x}). Alternatively, the function is linear on radial lines.
- (c) Yes, Hessian is 2I.
- d,e,f) No. Apply previous parts to diagonal matrices.