]	TOPOLOGIA

S	pis t	creś	ci													
	METRYKI 1.1 METRY 1.2 KULA 1.3 ZBIEŻ 1.4 ZBIOR 1.5 ZBIOR	 NOŚĆ . Y OTWAF	 RTE .		· ·											3 4 4
	LEMAT URY 2.1 PRZES 2.2 LEMAT	TRZEŃ N														
3	ZBIÓR DEF	'INICJI														7

1 METRYKI

1.1 METRYKA

METRYKA na zbiorze X nazyway funkcję $d\,:\, X\times X\to [0,\infty)$

przedstawia sposób mierzenia odległości

Żeby dana funkcja była metryką, musi spełniać następujące warunki:

- 1. $d(x,x) = 0 \land d(x,y) > 0$, jeśli $x \neq y$
- 2. $(\forall\; x,y)\; d(x,y) = d(y,x)$ symetria
- 3. $(\forall\; x,y,z)\; d(x,y) \leq d(x,z) + d(z,y)$ warunek \triangle

METRYKI EUKLIDESOWE:

 \mathbb{R} : d(x,y) = |x-y|

 \mathbb{R}^2 : $d(x,y) = \sqrt{(x(0) - y(0))^2 + (x(1) - y(1))^2}$

 \mathbb{R}^n : $d(x,y) = \sqrt{(x(0) - y(0))^2 + ... + (x(n-1) + y(n-1))^2}$

METRYKA MIASTO, taksówkowa, nowojorska

 \mathbb{R}^2 : d(x,y) = |x(0) - y(0)| + |x(1) - y(1)|

METRYKA MAKSIMUM

 \mathbb{R}^2 : $d(x, y) = \max(|x(0) - y(0)|, |x(1) - y(1)|)$

tutaj muszę dokończyć metryki

1.2 KULA

Kulą o środku $x \in X$ i promieniu r nazywamy: $B_r(x) = \{y \in X \, : \, d(x,y) < r\}$

\mathbb{R} , m. euklidesowa:	\mathbb{R}^2 , m. euklidesowa	\mathbb{R}^2 , m. miasto	\mathbb{R}^2 , m. maksimum				
	×.	× •					
\mathbb{R}^2 , m. c	entrum	$\mathrm{C}[0,1]$, m. supremum	$\mathrm{C}[0,1]$, m. całkowa				
narysję j	potem	narysuje	potem				

1.3 ZBIEŻNOŚĆ

CIAG (x_n) ZBIEGA do $x \in X$, jeżeli

$$(\forall \ \varepsilon > 0)(\exists \ N)(\forall \ n > N) \ d(x_n, x) < \varepsilon$$

W każdej kuli o środku w x leżą prawie szystkie wyrazy (x_n)

Dla przestrzeni metrycznej (\mathbb{R}^n, d_{eukl})

$$(x_n) \overset{d}{\to} x \iff (\forall \ i < m) \ x_n(i) \to x(i),$$

czyli ciąg zbiega w metryce euklidesowej wtedy i tylko wtedy, gdy wszystkie współrzędne są zbieżnymi ciągami liczb rzeczywistych.

W metryce dyskretnej jedynie ciągi stałe mogą być zbieżne – kule dla $r\geq 1$ to cała przestrzeń, a dla r< 1 kula to tylko punkt.

Zbieżność jednostajna jest tym samym, co zbieżność w metryce supremum:

$$(f_n) \overset{d_{\sup}}{\to} f \iff (f_n) \overset{\to}{\to} f.$$

1.4 ZBIORY OTWARTE

 $U\subseteq X$ jest zbiorem otwartym, jeśli na każdym punkcie ze zbioru można opisać kulę, która zawiera się w zbiorze U $(\forall\;z\in U)(\exists\;r>0)\;B_r(x)\subset U$

Rodzina zbiorów otwartych jest zamknięta na wszelkie możliwe sumy

Jeśli dane są dwa zbiory, U i V, których przekrój $U\cap V$ jest otwarty i rodzina zbiorów otwartych ${\mathcal U}$ która je zawiera, to suma tej rodziny też jest otwarta.

DOWOD:

Przekrój zbiorów otwartych jest zbiorem otwartym.

Dla dowlnego $x \in U \cap V$ możemy znaleźć dwie takie kule:

$$(\exists r_0 > 0) B_{r_0}(x) \subseteq V$$

$$(\exists r_1 > 0) B_{r_1}(x) \subseteq U$$

Nie mamy gwarancji, że obie kule będa zawierać się w $\mathrm{U}\cap\mathrm{V}$, ale jedna na pewno będzie się zawierać.

DOWOD:

Suma rodziny zbiorów otwartych jest zbiorem otwartym.

Niech x należy do sumy rodziny zbiorów otwartych:

$$x \in \bigcup \mathcal{U}$$

czyli

$$(\exists U \in \mathcal{U}) x \in U.$$

Ponieważ U jest zbiorem otwartym, to zawiera się w nim kula opisana na x. Skoro U należy do rodziny zbiorów otwartych, to

$$x \in U \land x \in \bigcup \mathcal{U}.$$

W takim razie na każdym punkcie należącym do rodziny zbiorów otwartych możemy opisac kulę, więc jest ona otwarta.

 ${
m U}$ jest zbiorem otwartym $\iff {
m U}$ jest sumą kul.

DOWOD:

⇐= wynika m.in. z twierdzenia wyżej.

 \Longrightarrow

Ponieważ ${
m U}$ jest zbiorem otwartym, to z definicji

$$(\forall x \in U)(\exists r_x > 0) B_{r_x} \subseteq U$$

Rozważmy sumę

$$\bigcup_{x \in U} B_{r_x}(x)$$

Ponieważ sumujemy wyłącznie po kulach zawierających się w U , suma ta nie może być wię-ksza niż U . Zawierają się w niej wszystkie punkty z U , więc możemy napisać

$$\bigcup_{x\in U}B_{r_x}(x)=U$$

1.5 ZBIORY DOMKNIETE

 $F\subseteq X$ jest zbiorem domkniętym, jeśli każdy ciąg zbieżny z F ma granicę w F

Jeżeli U jest zbiorem otwartym, to U^{c} jest zbiorem domkniętym

DOWOD:

Niech (x_n) będzie ciągiem zbieżnym z U^c . Jeśli U^c nie jest domknięte, to (x_n) musi zbiegac do pewnego punktu $x\in U$, czyli

$$(\exists r > 0) B_r(x) \subseteq U.$$

Ale wówczas nieskończenie wiele punktów ciągu (x_n) należy do U, co jest sprzeczen z założeniem, że (x_n) jest ciągiem zbieżnym z U^c .

smiga

2 LEMAT URYSOHNA

2.1 PRZESTRZEŃ NORMALNA

Przestrzeń X jest przestrzenią NORMALNĄ (również T_4), jeżeli $(\forall \ F,G\subseteq X) \ F\cap G=\emptyset$ $(\exists \ U,V\subseteq X) \ U\cap V=\emptyset \ \land \ F\subseteq U \ \land \ G\subseteq V$

Czyli przestrzeń jest normalna, jeżeli każde dwa zbiory domknięte możemy oddzielić od siebie rozłącznymi zbiorami otwartymi.

Przestrzenie metryczne oraz przestrzenie zwarte są przestrzeniami normalnymi.

2.2 LEMAT URYSOHNA

Załóżmy, że przestrzeń X jest normalna. Niech $F,G\subseteq X$ będą dom rozłącznymi zbiorami domkniętymi w X. Wówczas:

$$(\forall \; f: X \xrightarrow{\mathrm{ciga}} [0,1]) \; f_{\upharpoonright F} \equiv 0 \; \wedge \; f_{\upharpoonright G} \equiv 1$$

Warunek ten jest silniejszy od normalności.

3	ZBIO	R	DEFIN:	ICJ:	I					
			NA – przestr ami otwartym		której	każde dw	a zbiory	domknięte	możemy	oddzielić
		(∀	$ otag F, G \subseteq_{\operatorname{domk}} X) F $	$F \cap G = \emptyset$	$\emptyset(\exists \ \mathrm{U}, \mathrm{V} \subset \mathrm{ot}$	$\sum_{w} X) U \cap V$	$=\emptyset \wedge F\subseteq$	$U \wedge G \subseteq V$		