University of Technology Sydney Department of Mathematical and Physical Sciences

37233 Linear Algebra Tutorial Assignment 9

Question 1.

Let

$$\mathbf{y} = \begin{pmatrix} 2 \\ 6 \end{pmatrix}, \ \mathbf{u} = \begin{pmatrix} 7 \\ 1 \end{pmatrix}.$$

Write \mathbf{y} as the sum of a vector in $Span\{\mathbf{u}\}$ and a vector orthogonal to \mathbf{u} . Compute the distance from \mathbf{y} to the line through \mathbf{u} and the origin.

Question 2.

Let W be the subspace spanned by the \mathbf{u} 's. Write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W, where

$$\mathbf{u_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ \mathbf{u_2} = \begin{pmatrix} -1 \\ 3 \\ -2 \end{pmatrix}, \ \mathbf{y} = \begin{pmatrix} -1 \\ 4 \\ 3 \end{pmatrix}.$$

Question 3.

Let

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}, \ \mathbf{x}_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \ \mathbf{x}_3 = \begin{pmatrix} 2 \\ 2 \\ 1 \\ 2 \end{pmatrix}$$

and let **X** be the matrix with columns $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$. Apply the Gram–Schmidt process to construct orthogonal basis vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ for $W = \operatorname{Span}\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$.

Question 4.

Construct an orthonormal basis $\{u_1, u_2, u_3\}$ from the orthogonal set $\{v_1, v_2, v_3\}$ obtained in Question 3.

Question 5.

Find the \mathbf{QR} factorisation of matrix \mathbf{X} from Question 3.