Parcours Ingénieur Machine Learning

DPENCLASSROOMS

Session Mars 2021

Projet 7 Développez une preuve de concept

23/10/2021 Etudiante: QITOUT Kenza

Mentor et Evaluateur : Maïeul Lombard

CONTEXTE DU PROJET

Réaliser une veille thématique sur un problème de Data Science

Problématique: Etude de l'utilisation du Word Embeddings et du Deep Learning lors d'un problème de classification de données textuelles

Objectif: Trouver une méthode plus récente pour améliorer la méthode utilisée en production chez un client

Missions:

- Implémenter une méthode baseline et la comparer avec une nouvelle méthode
- Rédiger un Proof Of Concept (POC) présentant l'état de l'art, les évolutions de la Data Science, les avantages, les inconvénients de la nouvelle méthode implémentée

Représentation des mots : tf-idf

Fréquence d'apparition des mots dans chaque document en fonction de leur apparition dans les autres documents

Poids = fréquence du n-gram × idf(n-gramme) — $indicateur de similarité <math>log(\frac{N}{df_i})$

Avantage et inconvénient :

- Méthode simple qui permet de tenir compte si mot rare ou commun dans l'ensemble des documents
- MAIS création de matrices larges et creuses (majorité de 0 dans la matrice)

Représentation des mots : Word Embeddings

Récente famille de technique beaucoup utilisée dans le NLP

Position d'un mot dans l'espace vectoriel apprise à partir du texte et basée sur les mots qui l'entourent (représentation vectorielle dense)

Mots de même sens avec représentations similaires

zonal

poor

1. EVOLUTION DE LA CLASSIFICATION DES DONNEES TEXTUELLES

Principe du Word Embeddings:

nice

Prédire un mot en fonction de son contexte (modèle CBOW)

Matrice W de taille V x N contenant les plongements de mots

Représentation des mots : Word Embeddings

Matrice W contenant les valeurs des vecteurs de chaque mot

Représentation similaire entre des mots utilisés de la même façon

Avantages:

- Capturer le sens des mots en tenant compte de l'environnement de chaque mot
- Réduire la taille du vecteur final et donc de la représentation des documents
- > Pas le problème des matrices creuses

Modèle : Réseau de neurones convolutionnels

2012 = Geoffrey Hinton et son équipe lors de la compétition ImageNet Challenge

CNN présents dans de nombreux domaines : vision par ordinateur, reconnaissance vocale, NLP

Particularité = Extraire directement les features (filtrage par convolution)

Fonction d'activation sigmoïde pour les problèmes de classification binaire

Principe des réseaux de neurones convolutionnels

Différentes couches hiérarchisées avec chacune un rôle : Convolution, Pooling, Fully-connected (fonction d'activation sigmoïde pour classification binaire)

Couche d'Embeddings à l'entrée du réseau

2. CHOIX DES DONNEES

Données obtenues sur l'outil d'export <u>stackexchange explorer</u>

StackExchange Data Explorer	Home Queries Users	Compose Query
Viewing Query		
Enter a title for your query		s tack overflow
edit description		Q&A for professional and enthusiast programmers

Base de données de 44 500 lignes et de 3 colonnes : 'Body', 'Title', 'Tags' Messages nettoyés :

- Suppression de la ponctuation et des majuscules
- Suppression des Stopwords
- Suppression des nombres seuls, des mots à 1 lettre et des espaces

2. CHOIX DES DONNEES

Algorithme de suggestion de Tags à partir de messages

	Body	Title	Tags
0	statement extract sections docx autonumbering	docx auto pythondocx	python
1	xarray dataset regression variables dimension	xarray operations dataset	python
2	number complexity optimizations check bigo pro	prime bigo	C++
3	meaning statement section interpretations form	meaning dot Imy	r
4	recognizer opencvcontrib line modules thing la	attributeerror attribute createlbphfacerecognizer	python, python-3.x
5	trouble ngbootstrap dropdown component depende	peer dependency popperjs	jquery, npm
6	vuetifys vstepper vue router requirements step	vuetify vstepper vue router	javascript, vue.js
7	engine operations formulas operands operators	php parser xx	php

Données textuelles pour prédire 'Tags' (100 classes) à partir de 'Body' et 'Title': problème de classification multi-classes transformé en problème de classification multi-labels

3. METHODE BASELINE

Objectif:

4 rows × 99 columns

Classification multi-labels pour prédire les Tags de Stack Overflow existants à partir des messages nettoyés

Encodage des données textuelles :

fit_on_texts

Création d'un dictionnaire de tous les mots entraînés sur l'ensemble des messages

```
{'<UNK>': 1,
  'image': 2,
  'python': 3,
  'array': 4,
  'case': 5,
  'api': 6,
  'thanks': 7,
  'page': 8,
  'line': 9,
```

texts_to_sequences

Encodage des messages en utilisant le mappage effectué sur l'ensemble des messages

statement extract sections docx autonumbering pythondocx text docx autonumbering [191, 2759, 1115, 1, 1, 1, 26, 1, 1] pad_sequences

Même longueur pour tous les documents

Réseau de neurones convolutionnels pour un problème de classification multi-labels

Variables explicatives = Matrice des séquences encodées et de taille limitée avec text_to_sequences et pad_sequences

Variables à expliquer = Matrice des Tags (Encodage de la liste des labels avec MultiLabelBinarizer)

Séparation des données en jeu de données d'entraînement et de données test (30%)

'embedding_dim': [50, 100], 'rate': [0.0, 0.5]

Calcul de l'Accuracy, et du Temps de calcul le jeu de données test Entrainement du modèle avec KerasClassifier sur le jeu de données d'entrainement (recherche des hyperparamètres optimaux par validation croisée)

Définition de l'architecture du CNN à optimiser

```
Architecture du réseau de neurones convolutionnels :
```

```
model = Sequential()
                                                                                 1 couche d'Embeddings
model.add(Embedding(vocab_size, embedding_dim, input_length=maxlen))
                                                                      1 couche de
model.add(Conv1D(num_filters, kernel_size, activation='relu'))
                                                                      Convolution et ReLu
                                                                      et 1 couche de Pooling
model.add(GlobalMaxPooling1D())
model.add(Dropout(rate))
model.add(Flatten())
model.add(Dense(units, activation='relu'))
                                                      1 couche Fully-connected
model.add(Dense(100, activation='sigmoid'))
```

model.compile(optimizer=keras.optimizers.Adam(lr), loss='binary_crossentropy', metrics=['accuracy'])

Résultats de la validation croisée pour la recherche des hyperparamètres optimaux :

Sur 'Body'

Sur '*Title*'

'embedding_dim': 100, 'rate': 0.5

'embedding_dim': 50, 'rate': 0.5

Layer (type)	Output	Shape	Param #
embedding_17 (Embedding)	(None,	579, 100)	6973600
conv1d_17 (Conv1D)	(None,	575, 128)	64128
global_max_pooling1d_17 (Glo	(None,	128)	0
dropout_17 (Dropout)	(None,	128)	0
flatten_17 (Flatten)	(None,	128)	0
dense_34 (Dense)	(None,	32)	4128
dense_35 (Dense)	(None,	100)	3300

Total params: 7,045,156
Trainable params: 7,045,156
Non-trainable params: 0

Layer (type) Output Shape Param # ______ embedding_35 (Embedding) (None, 12, 50) 921450 conv1d 35 (Conv1D) (None, 8, 128) 32128 global_max_pooling1d_35 (Glo (None, 128) 0 dropout 35 (Dropout) (None, 128) 0 flatten 35 (Flatten) (None, 128) 0 dense_70 (Dense) (None, 32) 4128 dense 71 (Dense) (None, 100) 3300

Total params: 961,006 Trainable params: 961,006 Non-trainable params: 0

Comparaison des résultats avec la méthode baseline :

Calcul du score Accuracy et du Temps de calcul sur le jeu de données test

Meilleurs résultats obtenus avec la nouvelle méthode : Accuracy = 0.445300 ('Body') et 0.356776 ('Title')

CONCLUSION

Objectif: Algorithme de suggestion de Tags à partir du message d'un utilisateur

Trouver une nouvelle approche pour améliorer les performances = Word Embeddings

Avantages:

- Représentation du sens des mots
- Vecteur de plus petite taille et dense
- > Améliorations possibles : modèles pré-entraînés : glove, BERT, ...

Inconvénients:

- > Temps plus long pour entraîner le modèle
- Technique « boîte noire »

MERCI DE VOTRE ATTENTION

QUESTIONS - REPONSES