Ограничение времени

Ограничение памяти

1 секунда

256 МБ

Четыре человека выстроились в очередь друг за другом. Определите, правда ли, что они стоят по росту (неважно, в порядке неубывания или порядке невозрастания).

Формат входных данных

Единственная строка содержит числа h_1 , h_2 , h_3 , h_4 ($0 \le h_i \le 300$), где h_i — рост человека, стоящего на i-й позиции.

Формат выходных данных

Выведите YES, если люди выстроены в порядке неубывания или невозрастания их роста, и NO в противном случае.

Примеры данных

Пример 1	
Ввод 1 2 3 4	Вывод YES
Пример 2	
Ввод 7 6 5 5	Вывод YES
Пример 3	
Ввод 444	Вывод YES

Ввод 5 2 3 1	

Вывод NO			

Ограничение времени

1 секунда

Ограничение памяти

256 МБ

В некоторой компании есть n джунов-разработчиков и m сеньор-разработчиков. Чтобы код, который написал джун, мог попасть в прод, его должны проверить хотя бы k сеньоров. На проверку одной программы сеньор-разработчик тратит 1 минуту.

Каждый из n джунов написал программу, которую хочет отправить в прод. К сожалению, система проверки пока не распределенная, поэтому два разработчика не могут проверять одну работу одновременно. Также сеньор-разработчик хочет провести действительно хорошее код-ревью, поэтому две программы одновременно он не проверяет и не отвлекается на другие дела во время проверки.

Определите, сколько времени в минутах потребуется всем сеньор-разработчикам для просмотра всех написанных джунами программ.

Формат входных данных

Единственная строка ввода содержит числа n, m, k $(1 \le k \le m \le n \le 10^4)$ — число джунов, сеньоров и необходимых проверок для одной работы.

Формат выходных данных

Выведите одно число — суммарное время в минутах, которое потратят сеньоры на код-ревью.

Примеры данных

Ввод	Вывод
322	3
Пример 2	
Ввод	Вывод
732	5

Ограничение времени

Ограничение памяти

1 секунда

256 МБ

Дана строка s, состоящая из символов a, b, c и d.

Подстрокой строки s называется строка, которую можно получить, взяв из s какие-то подряд идущие символы. Например, строки bcd, abcdcdab, cdcdab являются подстроками строки abcdcdab, а cc и cdcdcd— нет.

Назовем строку хорошей, если каждый из символов a,b,c,d встречается в ней хотя бы один раз.

Найдите длину самой короткой хорошей подстроки строки s или определите, что у s нет хороших подстрок.

Формат входных данных

Первая строка входных данных содержит число n $(1 \le n \le 2 \cdot 10^5)$ — длину строки. Во второй строке находится сама строка s, состоящую из символов a, b, c и d.

Формат выходных данных

Выведите длину самой короткой хорошей подстроки строки s. Если хороших подстрок нет, выведите -1.

Ввод 12 aabbccddbadd	Вывод 5
Пример 2	
Ввод 16 aaaabbbbccccdddd	Вывод 10
Пример 3	
Ввод 7 dbbccca	Вывод 7
Пример 4	
Ввод 7	Вывод -1

Ограничение времени

Ограничение памяти

1 секунда

256 ME

Набор чисел x_1, x_2, \ldots, x_k назовем "скучным", если возможно удалить из него один элемент так, чтобы каждое число в данном наборе встречалось одинаковое количество раз.

Дан массив a_1, a_2, \ldots, a_n длины n. Найдите максимальное число l $(2 \le l \le n)$, что префикс длины l является скучным.

Формат входных данных

Первая строка содержит число n $(2 \le n \le 2 \cdot 10^5)$ — размер массива. Во второй строке находятся n чисел из массива a_1, a_2, \ldots, a_n $(1 \le a_i \le 2 \cdot 10^5)$.

Формат выходных данных

Выведите одно число — максимальное l, что префикс длины l массива a является скучным.

Примеры данных

Пример 1

Ввод

1231223331445

Вывод 10

Пример 2

Ввод

124231391523

Вывод

7

Пример 3

Ввод

5

12345

Вывод

5

Ограничение времени

Ограничение памяти

1 секунда

256 МБ

Саша ведет бюджет и анализирует, как изменялся баланс на его счету. Он выписал числа a_1, a_2, \ldots, a_n — изменения баланса за последние n дней.

Отрезок из дней [i,j] Саша считает *разумным*, если суммарное изменение баланса с i-го по j-й день равно нулю, т.е. $a_i+a_{i+1}+\cdots+a_j=0$. Отрезок из дней [l,r] считается *нормальным*, если внутри данного отрезка можно найти *разумный* подотрезок.

Помогите Саше проанализировать эффективность ведения бюджета и посчитайте количество нормальных отрезков в массиве изменений баланса его счета.

Формат входных данных

Первая строка содержит число n $(1 \le n \le 2 \cdot 10^5)$ — количество дней, для которых Саша записывал изменения баланса. Вторая строка содержит n чисел a_1, a_2, \ldots, a_n $(-10^9 \le a_i \le 10^9)$ — значения изменений баланса.

Формат выходных данных

Выведите одно число — количество нормальных отрезков для данного массива.

Примеры данных

Пример 1

Ввод 3		
42 -42 42		

Вывод **3**

Пример 2

Ввод 4 1 2 3 -6 Вывод 1

Пример 3

Ввод 5 -1 1 2 -3 6

Вывод 6

Ограничение времени

Ограничение памяти

1 секунда

256 MB

В вымышленной стране прошел очень важный экзамен (ОВЖ). Именно по результатам ОВЖ определяется, насколько хорошо каждый город организовал образовательный процесс.

Качество организации образовательного процесса в столице этой страны вычисляется как медианный балл учеников, писавших ОВЖ в данном городе (по счастливой случайности количество учеников, писавших ОВЖ, является нечетным числом). Например, если ученики набрали баллы [12,6,23], то качество организации образовательного процесса будет равняться 12.

Эксперты готовы поставить i-му ученику целое число баллов от l_i до r_i включительно. Они бы хотели выставить всем максимально возможные баллы, но боятся, что если они суммарно выставят более чем s баллов, то министерство образования страны может заподозрить их в необъективной оценке работ и уволить. Гарантируется, что эксперты могут выставить баллы, чтобы их не уволили (т.е. сумма всех l_i не превосходит числа s).

Вы являетесь очень важным человеком, поэтому эксперты, проверяющие работы, обратились за помощью к вам. Определите, каким образом необходимо выставить баллы, чтобы максимизировать медианный балл, не допустив при этом никаких нарушений. Требуется сообщить экспертам только сам максимально возможный медианный балл.

Формат входных данных

Первая строка содержит числа n и s $(1 \leq n \leq 2 \cdot 10^5, 1 \leq s \leq 10^9)$ — количество учеников в столице и ограничение сверху на суммарный балл учеников. Гарантируется, что число n является нечетным. Следующие n строк содержат числа l_i и r_i $(1 \leq l_i \leq r_i \leq 10^9)$ — минимальный и максимальный баллы для i-го ученика.

Формат выходных данных

Выведите одно число— максимальный медианный балл, которого можно добиться, не нарушив никаких ограничений.

Примеры данных

Пример 1

Ввод		
3 27		
11 14		
2 10		
11 14		

Вывод 12			

Ввод
7 42
55
35
79
67
38
10 10
11

Вывод 7				
7				