Потоки 3 Терміналів До Магазинів

	Термінал	Магазин	Фактичний Потік (одиниць)		
1	Термінал 1	Магазин 1	15		
2	Термінал 1	Магазин 2	10		
3	Термінал 1	Магазин 4	15		
4	Термінал 1	Магазин 5	10		
5	Термінал 1	Магазин 6	5		
6	Термінал 1	Магазин 7	20		
7	Термінал 1	Магазин 8	10		
8	Термінал 2	Магазин 7	20		
9	Термінал 2	Магазин 8	10		
10	Термінал 2	Магазин 10	20		
11	Термінал 2	Магазин 11	10		
12	Термінал 2	Магазин 4	15		
13	Термінал 2	Магазин 5	10		
14	Термінал 2	Магазин 6	5		

3. Які магазини отримали найменше товарів і чи можна збільшити їх постачання, збільшивши пропускну здатність певних маршрутів?

Згідно з таблицею, найменше (або зовсім мало) отримали:

Магазин 13 - 5 од.

Магазин 14 - 10 од.

Магазин 5 – 10 од.

Магазин 2 – 10 од.

Магазин 9 - 10 од.

Усі вони під'єднані через ребра з низькою пропускною здатністю (≤ 10). Тож, збільшення цих вузьких ребер дозволить підвищити постачання — за умови, що upstream-шляхи (термінал \rightarrow склад) мають резерв потужності.

1. Які термінали забезпечують найбільший потік товарів до магазинів?

Загальний потік із кожного терміналу можна обчислити як суму потоків з нього:

Термінал 1 → 60 одиниць

Термінал 2 → 55 одиниць

Термінал 1 забезпечує найбільший потік. Це вказує на більшу завантаженість або стратегічно вигідні шляхи з нього (наприклад, через Склад 1 і 2).

2. Які маршрути мають найменшу пропускну здатність і як це впливає на загальний потік?

Маршрути з мінімальною пропускною здатністю:

Склад $4 \to$ Магазин 13: 5 од.

Склад $4 \to$ Магазин 14: 10 од.

Склад 3 → Магазин 9: 10 од.

Склад $2 \to$ Магазин 5: 10 од.

Склад $1 \to$ Магазин 2: 10 од.

→ Ці вузькі канали впливають на обмежене постачання до відповідних магазинів. Якщо вони насичуються, мережа не може компенсувати потік альтернативними шляхами — це знижує гнучкість логістики.

4. Чи є вузькі місця, які можна усунути для покращення ефективності логістичної мережі?

Оптимізація цих маршрутів дозволить краще збалансувати постачання між магазинами та уникнути перевантаження окремих вузлів.

Вузол	Обмеження	Потенційне рішення
Склад 4 → Маг. 13	лише 5 одиниць	Збільшити пропускну здатність до 10+
Склад 1 → Маг. 2	лише 10 одиниць	Аналогічно
Термінал 2 → Склад 2	лише 10 одиниць	Може обмежувати доступ до Маг. 4–6
Склад 3 → Маг. 9	лише 10 одиниць	Можливе розширення