0장. 데이터베이스 과목소개

- 교과목의 특성
- 강의일정
- 평가방법
- 기타 유의사항

교과목의 특성

정보처리의 최 상위단계

- 정보처리
 - 주어진 데이터를 가공하여 사용자에게 필요한 내용을 전달하는 全과정
 - _ 정보처리를 위한 교과목 단계
 - » 프로그래밍언어 및 기법
 - » 자료구조 및 화일구조
 - » 데이터베이스

❖ 실무적 요소가 매우 강함

- 데이터베이스 설계부터 응용프로그램 작성까지 全과정 다룸
- _ 데이터 조작에 대한 숙련과정이 필요함
- 실무데이터베이스와 병행 수강해야 함
- 텀 프로젝트 수행이 반드시 필요함

강의일정

주	제목	학습내용
1	데이터베이스의 기본 개념	데이터와 정보의 차이 DB의 정의 및 특성 구현사례소개
2	데이터베이스관리시스템(DBMS)	DBMS의 등장배경 DBMS의 정의 DBMS의 장단점 및 발전과정
3	데이터베이스시스템	데이터베이스시스템의 구조 데이터베이스 사용자 데이터베이스시스템 언어
4	데이터모델링	데이터모델이란? 개체-관계모델 논리적모델의 종류
5	관계데이터모델	릴레이셩의 특성 키의 종류 무결성 제약조건
6	관계데이터 연산	집합연산자 순수관계연산자 확장연산자
7	피드백	1~6주간의 학습내용 정리 및 질의 응답 시간 텀프로젝트 요구사항 설멸 우수사례소개
8	중간평가	중간평가

9	데이터베이스 설계 1	개념설계 ER다이어그램 작성 - 개체, 속성, 관계 추출
10	데이터베이스 설계 2	논리적 설계 릴레이성 스키마로의 변환 규칙 물리적스키마 구현
11	텀 프로젝트에 대한 토의	텀프로젝트에 대한 설계내용 검토 및 피드백 평가기준 설명 및 우수사례소개
12	정규화	이상현상의 종류 정규화의 필요성 정규화 과정
13	회복	트랜잭션의 개념 및 처리 장애와 회복
14	병행제어	병행수행의 필요성 병행제어 트랜잭션스케쥴
15	과제발표 및 평가	한 학기동안 수행한 과제에 대한 발표 및 종합평가

평가방법

평가요소	배점	비고
중간고사	100점	필기고사
기말고사	100점	필기고사
텀 프로젝트	100점 + α	개별과제수행
출석 및 수행평가	30점 ± α	 결석 감점 ✓ 결석 1~2회: -5 ✓ 결석 3~4회: -10 ✓ 결석 5회: -15 ✓ 결석 6회 이상: 실격 ✓ 지각 2회 = 결석 1회 가산점 ✓ 공결, 병결, 지각 없이 완전출석: +5점 ✓ 수업시간 질의응답 시 가산점 부여

기타

❖ 텀프로젝트의 중요성

- _ 실제 문제를 해결하는 능력 배양
- 본 교과목 이후에 정보처리 실무는 없음
- 개별 과제 수행

❖ 텀프로젝트수행을 위한 준비 사항

- 반드시 실무데이터베이스와 병행 수강
- _ 컴퓨터 언어 구사능력 점검
- 분석 능력과 노력의 정도 모두 평가 요소임
- 100점 만점이지만 특별 추가 점수 있음

수업 중 질문의 중요성

- 본인 뿐만 아니라 타인에게도 도움을 줌
- _ 좋은 질문 시 가산점 부여
- 수업 끝나고 하는 질문은 지양함

1장.데이터베이스 기본개념

- 데이터베이스의 필요성
- 데이터베이스의 정의와 특성

학습목표

- ▶ 데이터와 정보의 차이를 이해한다.
- ▶ 데이터베이스의 필요성을 알아본다.
- ▶ 데이터베이스의 정의에 숨겨진 의미와 주요 특성을 이해한다.

❖ 데이터와 정보

- 데이터(data)
 - 현실 세계에서 단순히 관찰하거나 측정해 수집한 사실이나 값
 - 메타데이터(Meta Data)
 - 데이터에 대한 데이터, 속성 데이터
- 정보(information)
 - 의사 결정에 유용하게 활용할 수 있도록 데이터를 처리한 결과물
 - vs. Knowledge(지식)

❖ 정보 처리(information processing)

■ 데이터에서 정보를 추출하는 과정 또는 방법

정보

한빛 쇼핑몰 주문 내역

주문 번호	주문 일자	제품명	판매 금액
1	2013-01-10	냉장고	50만원
2	2013-02-12	세탁기	30만원
3	2013-03-03	세탁기	30만원
4	2013-04-05	에어컨	70만원
5	2013-05-15	에어컨	80만원
6	2013-06-19	에어컨	70만원
7	2013-07-07	에어컨	70만원
8	2013-08-12	냉장고	40만원
9	2013-10-11	청소기	10만원
10	2013-12-27	전자레인지	15만원

제품별 총 판매액

제품	총 판매액
에어컨	290만원
냉장고	90만원
세탁기	60만원
전자레인지	15만원
청소기	10만원

정보 처리

분기별 총 판매액

데이터

■ <mark>빅데이터</mark>에서 우리에게 도움이 될 수 있는 사항을 경험적으로 추출한 것

❖ 정보 시스템과 데이터베이스

- 정보 시스템(information system)
 - 조직 운영에 필요한 데이터를 수집하여 저장해두었다가 필요할 때 유용한 정보를 만들어 주는 수단
 - MIS(Management Information System), DSS(Decision Support System) 등
- 데이터베이스
 - 정보 시스템 안에서 데이터를 저장하고 있다가 필요할 때 제공하는 역할을 담당
 - Data Cabinet

화일시스템과 DB시스템 비교

화일과 DB

File

- 특정 응용목적을 가지는 데이터의 집합
 - 예 : 인사데이터, 총무데이터, 성적데이터

DB(Data Base)

- 시스템의 여러 응용 화일의 집합
- 1963년 Bachman에 의하여 제안됨

❖ DB시스템의 목적

- 다중 사용자(Multi User)를 대상
- 데이터의 통합(Integration)
- 정보의 공유(Share)
- 효율적이고 체계적인 <mark>관리</mark>

(a) 종래의 화일 접근 방법

(b) 데이타베이스 관리 접근 방법

02 데이터베이스의 정의와 특성

- ❖ 데이터베이스(DB; DataBase)의 정의
 - 특정 조직의 여러 사용자가 <mark>공유</mark>하여 사용할 수 있도록
 - <u>통합</u>해서 **저장**한 <u>운영</u> 데이터의 집합

02 데이터베이스의 정의와 특성

❖ 데이터베이스의 특성

운영데이터와 분석데이터

- ❖ 데이터베이스(Data Base)
 - 운영데이터를 다루며 무결성을 가진 정보처리를 목적으로 함
- ❖ 데이터 창고(Data Warehouse)
 - 분석데이터를 보관하며 유용한 지식추출을 위한 빅데이터 분석을 목적으로 함

	운영데이터(데이터베이스 관리)	분석데이터(빅데이터 분석)
데이터의 크기	• 기가바이트 혹은 테라바이트 단위	• 페타바이트, 제타바이트 또는 엑사바이트 단위
데이터 구성 방법	 레코드, 파일 및 테이블로 구성된 정형 데이터 시스템 운영을 위한 데이터 SQL, Oracle DB 및 MySQL 등의 DBMS 	 원시적(raw)이며 비정형데이터 분석을 위한 데이터 구성 Cassandra 및 MongoDB와 같은 비관계형 또는 NoSQL DBMS
데이터 관리에 필요한 아키텍처	 중앙집중식 아키텍처를 통해 관리 비용 효율적이고 안전 정합성, 무결성, 보안이 중요요소임 	 규모와 복잡성 때문에 중앙에서 관리할 수 없어 분산 아키텍처가 필요. 정합성, 무결성, 보안이 중요한 요소는 아님
데이터의 출처	• ERP(전사적자원관리), CRM(고객관계관리) 등 의 온라인 <u>트랜잭션</u> 에서 얻어짐	• 소셜 미디어, 디바이스 및 센서 데이터, 시청각 데 이터, IoT 등 다양한 레벨에서 얻어짐
데이터 분석에 사용되는 방법	• 검색, 비교 등 정형화된 연산으로 정확한 <mark>정보</mark> 를 구함	 분석을 위하여 사전에 정제과정이 필요함 머신러닝 등 정확성 보다는 유용성을 가진 지식 추출을 목표로 함

