Canadian Elections 2019 - Sentiment Analysis

Exploratory Analysis Generic Tweets Dataset

- 550391 rows x 3 columns
 - Columns: ID, Text, Label
- 371341 Positive (67%), 179050 Negative (33%)
 - Majority positive sentiment tweets
- Word Clouds
 - Lots of strong positive and negative keywords

Exploratory Analysis Elections Tweets Datase

- 2133 rows x 3 columns
 - Columns: sentiment, negative reason, text
- 1006 Positive (47%), 1127 Negative (53%)
 - Evenly split sentiments
- Word Clouds
 - Few words that are easily identifiable to positive or negative sentiment.
 - Repeat words for both sentiments (elxn43)
- Party Affiliation
 - Most tweets are not associated with a political party.
 - Most popular Conservative > Liberal > NDP
 - Tweets associated with multiple parties
 - Conservative & Liberal > Conservative & NDP > Liberal & NDP

Word Cloud of Positive Sentiment Election Tweets

Model Preparation and Feature Engineering

- Applied data cleaning to remove HTML tags, character codes, URLs, stop words then made lower case, lemmatized, tokenized.
 - **Before**: RT @MianUsmanJaved: Congratulations Pakistan on becoming #No1TestTeam in the world against all odds! #JI_PakZindabadRallies https://t.co/10...
 - After: ['mianusmanjaved', 'congratulation', 'pakistan', 'becoming', 'noltestteam', 'world', 'odds', 'ji', 'pakzindabadrallies']
- Split 70% training 30% test
- Vectorized using Bag of Words and TF-IDF methods
 - Set max_features = 1000
 - ▶ Improve model performance while reducing computational time
 - ▶ Reduce model noise of low frequency features/words.
- ► Top 10 Features Generic Tweets:

```
['amazing', 'amp', 'best', 'bihday', 'day', 'good', 'great', 'happy', 'love', 'not']
```

Model Results (accuracy scores) predicting generic tweet sentiment on test set

	Log. Reg.	K-NN	Naïve Bayes	Decision Trees	Random Forest	XG Boost
Bag of Words	93.6%	91.2%	94.1%	92.7%	94.1%	91.4%
TF-IDF	92.3%	86.8%	94.1%	92.9%	<mark>94.4%</mark>	93.7%

Election Sentiment Predictions Visualized

- Sentiment prediction more accurate for tweets affiliated with a political party
- Prediction of tweets with no political affiliation is poor and over predicts negative sentiment.
- Model Performance Takeaways:
 - Keywords associated with positive and negative sentiments are not clear in election tweets versus generic tweets.
 - ▶ Election tweet keywords are specific to the Canadian elections and don't show up in the generic tweet dataset. (i.e., SNC has a negative connotation but is not in generic tweets)
 - **Better** to train on more election data or tweets that are politically motivated.

Election Takeaways:

- Conservative party had the largest proportion of negative sentiment tweets and these were largely related to Women's Healthcare (abortion) and Racism which were hot topics during their campaigns.
- Liberal Party also had a significant number of negative sentiment tweets and these were primarily targeted at Justin Trudeau and the SNC 'scandal'.
- NDP was the only party which had more positive sentiment tweets however their overall number of tweets was less than both parties.
- ➤ This provides us with a lot of insight of the public sentiment towards the parties on twitter and the general reasons for these sentiments which can be extracted from keywords and a word cloud. Further data exploration of the elections tweet data can be done.

True Sentiments by Party Affiliation

Predicted Sentiments by Party Affiliation

Model Results: Elections Sentiment Prediction

Best model used for sentiment prediction: TF-IDF Random Forest

	Accuracy	Precision	Recall
Random Forest (TF_IDF)	60.2%	0.703	0.431

Confusion Matrix			
True Negative (798)	False Positive (208)		
False Negative (641)	True Positive (489)		

- ▶ The model does not perform as well on the Canada Elections 2019 data compared to the generic tweet data.
- Low recall indicating the model does not predict positive sentiment tweets.
- Further evidence: high number of false negatives

Model Results: Elections Negative Reason Prediction

- > 3 models used: Log. Reg., Naïve Bayes, Random Forest with hyperparameter tuning via GridSearchCV
 - Grouped negative reasons:
 - Others, Separation, Privilege: 0, Scandal: 1, Tell lies: 2, Economy: 3, Women Rep. Right and Racism, Healthcare, Healthcare & Marij: 4, Climate: 5,
 - Overall model accuracy is not high compared to previous results
 - Negative reasons with low data had lower accuracy which suggests we need more data and/or better grouping

Group	0	1	2	3	4	5
Accuracy	78.2%	58.4%	43.3%	23.5%	23.1%	55.6%

	Accuracy
Logistic Regression	49.0%
Naïve Bayes	51.3%
Random Forest	58.6%