

جامعة أبو بكر بلقايد تلمسان كلية العلوم سم الرياضيات

Contrôle continu en Processus Stochastique

8 décembre 2021

Exercice 1 Soit X_n une chaîne de Markov, $E = \{1, 2, ... 10\}$ de matrice de transition \mathcal{P}

- 1) Représenter le graphe de cette chaîne.
- 2) Déterminer les classes de communication, leurs natures et leurs périodicité.
- 3) Calculer les probabilités d'absorption des états transitoires par les classes récurrentes.

Exercice 2 On considère la propagation d'une information d'un individu 0 à un individu n. On note α la probabilité que l'information soit fausse à l'individu k+1 alors qu'elle était vraie en k. et β la probabilité qu'elle soit vraie en k+1 alors qu'elle était fausse en k.

- 1) Modéliser l'état de l'information à l'aide d'une chaîne de Markov. et représenter son graphe.
- 2) Discuter suivant les valeurs de α et β l'existence de la loi stationnaire.
- 3) En déduire un moyen de calculer la probabilité que l'information soit encore vraie pour un nombre de pas tendant vers l'infini.

Exercice 3 Soit un processus de naissance et de mort de loi de reproduction Z qui suit B(3,2/3), déterminer sa probabilité d'extinction.

Corrigé du contrôle continu en Processus Stochastique

5 janvier 2022

Exercice 1 (10.25 pts) 1)

(2.5 pts)

2) $E_R = \{4, 7, 10\} \cup \{1, 6, 8\}, d(4) = d(7) = d(10) = 2, d(1) = d(6) = d(8) = 1$ $E_T = \{3,5\} \cup \{2\} \cup \{9\}, \ d(9) = d(3) = d(5) = 1, \ 2 \ n'a \ pas \ de \ p\'eriode. \ (3.75 \ pts)$

3) Soit $C_1 = \{4, 7, 10\}$, soit $\phi_{C_1}(a)$ la probabilité d'absorption de l'état a par C_1 .

$$\begin{cases} \phi_{C_1}(2) = \phi_{C_1}(5) \\ \phi_{C_1}(3) = \frac{1}{2} + \frac{1}{2}\phi \end{cases}$$

 $\phi_{C_1}(3) = \frac{1}{2} + \frac{1}{2}\phi_{C_1}(5)$ $\phi_{C_1}(5) = \frac{1}{4} + \frac{1}{4}\phi_{C_1}(3)$ $d'où \phi_{C_1}(2) = \phi_{C_1}(5) = \phi_{C_1}(9) = \frac{3}{7}, \ \phi_{C_1}(3) = \frac{5}{7} \ (2pts)$

 $\phi_{C_1}(9) = \phi_{C_1}(2);$

Soit $C_2 = \{1, 6, 8\}$, soit $\phi_{C_2}(a)$ la probabilité d'absorption de l'état a par C_2 .

$$\begin{cases} \phi_{C_2}(2) = \phi_{C_2}(5) \\ \phi_{C_2}(3) = \frac{1}{2}\phi_{C_2}(5) \\ \phi_{C_2}(5) = \frac{1}{2} + \frac{1}{4}\phi_{C_2}(3) \\ \phi_{C_2}(9) = \frac{3}{4}\phi_{C_2}(2) + \frac{1}{4}\phi_{C_2}(9); \end{cases} d'où \phi_{C_2}(2) = \phi_{C_2}(5) = \phi_{C_2}(9) = \frac{4}{7}, \ \phi_{C_2}(3) = \frac{2}{7}. \ (2pts)$$

Exercice 2 (5pts) 1) l'information peut être modélisée par une chaîne à deux états vrai, faux;

$$\left(\begin{array}{cc} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{array} \right) \ (0.5 \ pts)$$

(0.5 pts)

Si $\alpha = \beta = 1$, la chaîne est irréductible, récurrente positive de période 2, il ya une loi stationnaire $\Pi = \left(\frac{1}{2}, \frac{1}{2}\right)$. (1 pt)

 $Si \alpha = \beta = 0$, la chaine a deux classes absorbantes et admet une infinité de loi stationnaires.(1 pt)

Si $0 < \alpha + \beta < 2$, la chaîne est apériodique, récurrente positive, alors elle admet une loi

stationnaire unique $\Pi = \left(\frac{\beta}{\alpha+\beta}, \frac{\alpha}{\alpha+\beta}\right)$. (1 pt)
3) la loi stationnaire est $\Pi = \left(\frac{\beta}{\alpha+\beta}, \frac{\alpha}{\alpha+\beta}\right)$. alors la probabilité que l'information soit encore vraie pour un nombre de pas tendant vers l'infini est $\frac{\beta}{\alpha+\beta}$ (1 pt)

Exercice 3 (4.75 pts) $E(Z) = 3 * (\frac{2}{3}) > 1$ alors pas d'extinction. (0.5 pt) On écrit la fonction génératrice de Z $\phi_{Z}(t) = \sum_{j=0}^{3} t^{j} \frac{3!}{j!(3-j)!} (\frac{2}{3})^{j} (\frac{1}{3})^{(3-j)}$ (1pt) on a à résoudre $8t^{3} + 12t^{2} - 21t + 1 = 0$, (1pt) les solutions sont : $(t_1 = -5 + 3 * 3^{0.5})/4$, $t_2 = (-5 - 3 * 3^{0.5})/4$, $t_3 = 1$ (1.5 pts) $\rho = 0.049 \ (0.75 \ pt)$