

Laboratório de Sistemas Embarcados e Distribuídos

Hierarquia de Memória Parte III

Revisão	Data	Responsável	Descrição
0.1	-X-	Prof. Cesar Zeferino	Primeira versão
0.2	03/2017	Prof. Cesar Zeferino	Revisão do modelo
0.3	06/2020	Prof. Cesar Zeferino	Atualização da bibliografia

Observação: Este material foi produzido por pesquisadores do Laboratório de Sistemas Embarcados e Distribuídos (LEDS – Laboratory of Embedded and Distributed Systems) da Universidade do Vale do Itajaí e é destinado para uso em aulas ministradas por seus pesquisadores.

- Objetivo
 - Conhecer os princípios do funcionamento da memória virtual
- Conteúdo
 - Introdução à memória virtual
 - Tradução de endereços virtuais
 - Paginação
 - Translation Lookaside Buffer
 - Proteção

Bibliografia

- □ PATTERSON, David A.; HENNESSY, John L. Grande e rápida: explorando a hierarquia de memória. *In*: _____. Organização e projeto de computadores: a interface hardware/software. 4. ed. Rio de Janeiro: Campus, 2014. cap. 5.
- Edições anteriores
 - □ Patterson e Hennessy (2005, cap. 7)
 - □ Patterson e Hennessy (2000, cap. 7)

Introdução

Motivação para memória virtual

- Permitir o compartilhamento seguro e eficiente da memória entre vários programas em um sistema multitarefa
- Lidar de maneira facilitada com o fato de que a memória principal é tipicamente menor que o espaço exigido pelos programas

Definição de memória virtual

- □ A memória virtual é uma forma de permitir ao software utilizar mais memória que o computador possui fisicamente
- □ Ela consiste de um conjunto de alterações no projeto do hardware combinadas a alterações no projeto do sistema operacional.
- □ Tecnicamente falando, ela permite ao programa executar em um espaço de memória cujo tamanho não é necessariamente limitado ao tamanho da memória física do computador

Introdução

Espaço de endereçamento x Memória Física

Largura do endereço	Tamanho do Espaço de Endereçamento
16 bits	64 KB
32 bits	4 GB
64 bits	16 EB

- Configuração típica de sistemas de memória em 2015
 - Memória Principal: 4 a 8 GB
 - Memória Secundária: 0,5 a 1 TB

onde

Prefixo	10 ⁿ
Quilo (K)	10 ³
Mega (M)	10 ⁶
Giga (G)	10 ⁹
Tera (T)	1012
Peta (P)	10 ¹⁵
Exa (E)	1018
Zetta (Z)	10 ²¹
Yotta (Y)	10 ²⁴

Funcionamento básico da memória virtual

- O espaço de endereçamento do programa é organizado em blocos de tamanho fixo, denominados páginas, que são mapeados de um conjunto de endereços virtuais em um conjunto de endereços físicos na memória real que também é dividida em páginas
- Uma página virtual pode estar mapeada em uma página da memória principal ou armazenada na memória secundária
- As páginas físicas podem ser compartilhadas fazendo dois endereços virtuais apontarem para o mesmo endereço físico, o que permite que dois programas compartilhem dados ou códigos

Mapeando um endereço virtual em um end. físico

Endereço virtual

Endereço físico

- Exemplo
 - □ Tamanho da página = 4 KB = 2¹²
 - Número de páginas físicas = 2¹⁸
 - □ Tamanho máximo da memória física = 1 GB = 2³⁰
 - □ Tamanho do espaço de endereços virtuais = 4 GB = 2³²

Escolhas de projeto em sistemas de memória virtual

- Restrição: alto custo de uma falta de página (milhões de ciclo de clock do processador)
- Decisões importantes
 - □ As páginas devem ser grande o bastante para amortizar o tempo de acesso (ex. 4-64 KB em desktops e servidores, mas 1 KB em sistemas embarcados)
 - O mapeamento é totalmente associativo para reduzir a taxa de falta de páginas
 - As faltas de página podem ser tratadas em nível de software pois o overhead é pequeno se comparado ao tempo de acesso ao disco
 - Escritas na memória do tipo write-back

Posicionando e localizando uma página

Endereço físico

Processo

Definição de processo

 Quando um programa está em execução, o PC, os registradores e a tabela de página definem o estado do programa, que é denominado processo

Processo ativo ou inativo

 Um processo é dito <u>ativo</u> quando está de posse do processador (se não, é <u>inativo</u>)

Chaveamento de tarefas

 Quando o sistema operacional (SO) realiza o chaveamento de tarefas, o estado do programa que perde o processador deve ser preservado para poder ser restaurado quando ele receber o processador novamente

■ Salvamento de contexto (preservando o processo)

Como cada programa possui sua própria tabela de páginas, o SO precisa salvar apenas o registrador de tabela de página, além do PC e dos demais registradores

- A memória virtual simplifica o carregamento de programas
- Por meio da relocação, os endereços virtuais usados por um programa são mapeados para diferentes endereços físicos antes que sejam usados para acessar a memória
- A relocação permite carregar um programa em qualquer lugar na memória principal

Faltas de página

□ Um página virtual pode estar mapeada para uma página física na memória principal (valid. = 1) ou não (valid. = 0), nesse caso, sendo mantida em uma área do disco denominada <u>área de swap</u>

Faltas de página

Falta de página

 Quando um endereço de uma página virtual que não está na memória principal é acessado, ocorre uma falta de página

Busca da página

 Na falta de uma página, ela tem que ser trazida do disco para a memória principal

Substituição de página

 Se todas as páginas físicas já estiverem ocupadas, então o SO terá que escolher uma delas para ser substituída, a qual será colocada na área de swap

Esquema de substituição

☐ A escolha da página a ser substituída é tipicamente baseada no esquema LRU (Least Recently Used), em que a página usada menos recentemente é escolhida

Bit de referência (ou de uso)

 Cada página possui um bit de referência que é ligado quando a página é acessada. O SO zera todos os bits periodicamente

Tamanho da tabela de páginas

- Tamanho máximo de uma tabela de páginas
 - Endereço virtual de 32 bits e página de 4 KB (2¹²)
 - □ Número de entradas = $2^{32} 2^{12} = 2^{20} = 1$ M
 - Tamanho de cada entrada = 4 Bytes

Tamanho da tabela de páginas = 1M x 4 Bytes = 4 MBytes

- Reduzindo o custo da tabela de páginas
 - 1. Usar um registrador limite e aumentar a tabela dinamicamente conforme a necessidade do processo
 - 2. Usar mapeamento de dois níveis, mapeando grandes grupos de páginas (64 a 256) em segmentos. A tradução de um endereço virtual é feita consultando uma tabela de segmentos que aponta para uma tabela de páginas que aponta para uma página física

Escrevendo na memória virtual

- Write-back (ou copy back)
 - Uma página só é atualizada na memória secundária (disco) quando ela é substituída da memória principal
 - Porém ao ser substituída, a página só será copiada para o disco se ela tiver sido modificada
 - Para saber se uma página foi modificada, a tabela de páginas inclui um bit de modificação (dirty bit) que é ligado quando uma word é escrita na página

Translation Lookaside Buffer (Cache de tradução)

Custo do acesso à memória

 Qualquer acesso à memória requer pelo menos um acesso adicional para a tradução do endereço virtual

Reduzindo o custo do acesso à memória

- Com base no princípio da localidade, provavelmente as páginas acessadas recentemente serão novamente em um futuro próximo, e as traduções já realizadas serão necessárias de novo
- Processadores modernos utilizam uma cache da tabela de páginas apenas para as entradas que mapeiam as páginas físicas
- Essa cache é denominada TLB Translation Lookaside Buffer

Notas:

Embora a figura não ilustre, cada entrada da tabela e do TLB inclui ainda um bit de modificação e um bit de referência.

Em um acesso, podem ocorrer faltas na TLB e faltas na tabela de páginas.

As faltas de TLB são muito mais frequentes que as faltas de página verdadeiras, pois a TLB é muito menor que a tabela de páginas.

Translation Lookaside Buffer (Cache de tradução)

- Valores comuns de TLBs
 - Tamanho da TLB
 - 16 a 512 entradas
 - Tamanho do bloco
 - □ 1 a 2 entradas de tabela de páginas (4 a 8 Bytes cada uma)
 - Tempo de acerto
 - □ 0,5 a 1 ciclo de clock
 - Penalidade de falta
 - □ 10 a 100 ciclos de clock
 - Taxa de faltas
 - □ 0,01% a 1%
 - Associatividade
 - Em TLBs pequenas, totalmente associativo
 - Em TLBs grande, associatividade (pequena) por conjunto

A TLB do MIPS R2000 (usado na DECStation 3100)

Processando um acesso na DECStation 3100

Implementando proteção com memória virtual

Proteção

□ A memória virtual permite o compartilhamento de uma única memória principal por diversos processos, mas deve impedir que um processo escreva no espaço de endereçamento de outro processo

Hardware deve oferecer um suporte ao SO

- Dois modos de identificação de tipo de processo
 - Processo de usuário
 - Processo de SO (supervisor, kernel ou executivo)
- 2. Munir o processador de um estado que permita que um processo possa ler mas não escrever
 - Bit de modo usuário/supervisor
 - Ponteiro para a tabela de páginas
 - TLB
- 3. Fornecer mecanismos para o processador mudar de modo
 - Chamada de sistema (inst. syscall): usuário => supervisor
 - Return from exception (inst. ERET): supervisor => usuário

Implementando proteção com memória virtual

- O SO deve proteger as tabelas de páginas
 - As tabelas de página devem ser colocadas no espaço de endereçamento protegido do SO
 - Isso impede que um processo modifique sua tabela de página para acessar o espaço de endereçamento de outro processo
- Compartilhamento de páginas entre processos
 - Deve ser auxiliado pelo SO

Glossário

Memória virtual

Uma técnica que usa a memória principal como uma "cache" para armazenamento secundário

Endereço físico

Um endereço na memória principal

□ Proteção

Um conjunto de mecanismos para garantir que múltiplos processos compartilhando processador, memória ou dispositivos de E/S não possam interferir, intencionalmente ou não, um com o outro, lendo ou escrevendo dados no outro. Esses mecanismos também isolam o sistema operacional de um processo de usuário

Falta de página

 Um evento que ocorre quando uma página acessada não está presente na memória principal

Glossário

Endereço virtual

Um endereço que corresponde a um local no espaço no espaço virtual e é traduzido pelo mapeamento de endereço para um endereço físico quando a memória é acessada

Tradução de endereço (ou mapeamento de endereço)

 O processo pelo qual um endereço virtual é mapeado para um endereço físico usado para acessar a memória

Segmentação

□ Esquema de mapeamento de endereço de tamanho variável em que um endereço consiste em um número de segmento (que é mapeado para um endereço físico) e um offset de segmento

Glossário

Tabela de páginas

□ A tabela com as traduções de endereço virtual para físico em um sistema de memória virtual. Armazenada na memória, normalmente é indexada pelo número da página virtual; cada entrada na tabela contém o número da página física para essa página virtual se a página estiver atualmente na memória

Área de swap

 O espaço no disco reservado para o espaço de memória virtual completo de um processo

Bit de referência (ou bit de uso)

☐ Um campo que é ligado sempre que uma página é acessada e que é usado para implementar LRU ou outros esquemas de substituição

TLB (Translation Lookaside Buffer)

Uma cache que monitora os mapeamentos de endereços recentemente usados para evitar um acesso à tabela de páginas