DS 200 Topic 5 and Lab5

Word Vector Representation of Text & Learning Decision Tree for Filtering Irrelevant Tweets

Instructor: John Yen

LA: Luwei Lei

September 18, 2018

In this lab, you will learn to

- 1. Login into Vlab, launch Jupyter Notebook and Python 3. Import relevant Python modules and methods
- 2. Lab 5-1: Split tagged twitter data into two sets: (1) a *training* set and (2) a *testing* set. (slide 5-13)
- 3. Lab 5-2: Build a decision-tree Relevant Classifier from training data (using scikit-learn package). (slide 14-19)
- 4. Lab 5-2 Evaluate the predictive model on the testing data. (15-19)
- 5. Lab 5-2 Visualize the decision-tree predictive model (20-21)

Import Relevant Python Modules and Methods

jupyter Lab 5-JM Build Automated Filtering of Irrelevant Tweets Using Decision Trees Last Checkpoint: 17 hour

Step 2: Split Tagged Data into Training and Testing sets

Type the following in Jupyter to load tagged tweets (the CSV file that contains your tagging results)

```
t1 = Table.read_table('Z:\Downloads\<your-tagged-twitter-file>.csv', sep = ',')
If you use Tab as delimiter in a text file, use '\t' as the value of sep here.
```

t1 = Table.read table("JohnMcCain clean.csv", sep =',')

```
In [74]: t1
Out[74]:
                  user id
                                                      tweet time
                                                                       location
                                                                                                                       text Relevant Stance
                               user_name
                                              Mon Aug 27 21:20:09
                                                                                   #JohnMcCain true American hero fought for
                9.27e+17
                               Gilly Mobile
                                                                          None
                                                      +0000 2018
                                                                                                            his country #D ...
                                      The
                                              Mon Aug 27 21:19:48
                                                                                                @1butterflywild @markknoller
                7.59e+17
                                                                           USA
                                                                                                                                            0
                             Complainster
                                                      +0000 2018
                                                                                         @SenJohnMcCain @NavalAcadem ...
                                              Mon Aug 27 21:20:19
                                                                    Phillys Main
                                                                                    @AaronBlake @AmericanLegion thank you
                9.55e+17
                                  SI2nasty
                                                      +0000 2018
                                                                           Line
                                                                                                         for standing up fo ...
                                              Mon Aug 27 21:18:41
                                                                                  @abdulrahman_q0 @SenJohnMcCain fcking
                                                                        stanbul
                7.68e+17
                                   Hasan
                                                                                                                                          nan
                                                      +0000 2018
                                                                          Trkiye
                                                                                                           Arabs!https://t....
```

Splitting Labelled Data into a Training Set and a Testing Set

Create train and test sets

• 3. Separate data into relevant and irrelevant tweets

```
tweets relevant = t1.where('Relevant', are.equal to(1))
In [75]:
           tweets irrelevant = t1.where('Relevant', are.equal to(0))
In [76]:
           tweets relevant
In [77]:
Out[77]:
                                                                         location
                                                                                                               text Relevant Sta
                user id
                                                          tweet time
                                        user name
                                                          Mon Aug 27
                                                                                      #JohnMcCain true American hero
               9.27e+17
                                        Gilly Mobile
                                                       21:20:09 +0000
                                                                           None
                                                                                            fought for his country #D ...
                                                               2018
                                                          Mon Aug 27
                                                                                         @1butterflywild @markknoller
               7.59e+17
                                   The Complainster
                                                       21:19:48 +0000
                                                                            USA
                                                                                  @SenJohnMcCain @NavalAcadem ...
                                                               2018
                                                          Mon Aug 27
                                                                      Phillys Main
                                                                                      @AaronBlake @AmericanLegion
               9.55e+17
                                                       21:20:19 +0000
                                           SI2nastv
                                                                            Line
                                                                                         thank you for standing up fo ...
                                                               2018
```

Count the total number of relevant tweets and irrelevant tweets

```
[n [79]: relevant count = tweets relevant.num rows
[n [80]: relevant count
Dut[80]: 26
[n [81]: irrelevant count = tweets irrelevant.num rows
[n [82]: irrelevant count
out[82]: 9
```

Compute the Size of Relevant Training Tweets and Irrelevant Training Tweets

```
In [83]: relevant training size = round(relevant count * 0.8 )
In [84]: irrelevant training size = round(irrelevant count * 0.8)
In [85]: relevant training size
Out[85]: 21
In [86]: irrelevant training size
Out[86]: 7
```

Obtain the Index of Relevant Training Tweets and Irrelevant Training Tweets

```
In [87]: relevant rows train = list(range(relevant training size))
In [88]: relevant rows train
Out[88]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
In [89]: irrelevant training size= round(irrelevant count * 0.8)
In [90]: irrelevant rows train= list(range(irrelevant training size))
In [91]: irrelevant rows train
Out[91]: [0, 1, 2, 3, 4, 5, 6]
```

Create a List of Relevant Tweets + a List of Irrelevant Tweets for Training

a Table of relevant tweets

The **take** method of Table object takes a specified list of rows (by row index), and return a new Table formed by these rows and the column(s) specified.

Select the 'text' column of each row in the Table

Convert into a list

```
print(X train)
```

['#JohnMcCain true American hero fought for his country #DonaldTrump ignorant and no respect', '@1 butterflywild @markknoller @SenJohnMcCain @NavalAcademy Toddler should be grateful. #JohnMcCain #A mericanHero too https://t.co/tTeCRhxfk1', '@AaronBlake @AmericanLegion thank you for standing up f or @SenJohnMcCain and all veterans. I am sorry that https://t.co/Ogj5QWJN4K', '@AliVelshi @maddow Additionally the Dept. of Veteran Affairs did NOT have their flags at half staff and were or https://t.co/dOPXAh3HyD', '@anna_deardorff @Brian4Progresss @realDonaldTrump @SenJohnMcCain QAnon told me John McCain faked his own death so h https://t.co/gL0zv3BPSr', '@brooklyn3r @RichPrice65 @FoxNe ws @POTUS @SenJohnMcCain What do you want from him? McCain had already spoke how he https://t.co/JxLnM9OD04', '@CBSEveningNews Too little too late. President Trump disrespected @SenJohnMcCain ever y chance he got....even went https://t.co/Bs58Uqen52', '@Channel4News @realDonaldTrump @SenJohnMcCain The Dotard really is a morally bankrupt sad excuse for a human being.', "@Channel4News @Sonia

Creating Expected Outputs for the Training Data

1: Relevant

0: Irrelevant

Expected Outputs should be consistent with the tags.


```
y_train = [1] * relevant_training_size + [0] * irrelevant_training_size
```

Create a List of Relevant Tweets and Irrelevant Tweets for Testing

relevant relevant **Training** training count size **Testing** irrelevant **Training** count

Testing

The sublist of relevant tweet index starting from the row index after the last row used for training

```
relevant_rows_test = list(range(relevant_count))(relevant_training_size :)
```

```
: irrelevant_rows_test = list (range (irrelevant_count))[irrelevant_training_size :]
```

```
X_test = list (tweets_relevant.take(relevant_rows_test) ['text']) + \
list(tweets_irrelevant.take(irrelevant_rows_test) ['text'])
```

Create Expected Outputs of Testing Data


```
y_test = [1]*(relevant_count - relevant_training_size) + \
[0] * (irrelevant_count - irrelevant_training_size)
```

Convert Training Text Data into Word Feature Vectors Transform training tweets to word feature vectors

Transform training tweets to word feature vectors A(i,j) is 1 if word Wj appears in tweet Ti

```
count vect = CountVectorizer()
X word vect = count vect.fit transform(X train)
print(X word vect.shape)
 (28, 273)
Number of
                Number of Word Features
training
tweets
```

Create a Decision Tree for Filtering Irrelevant Tweets

 You can choose your maximum tree depth (max_depth) and minimum number of training data in the leaf node (min_samples_leaf), suggest > 1

Create a decision tree classifier using the word-frequency features of training tweets and their target outputs (y_train)

Generate a Visualization of the Decision Tree

Obtain the names of the word features

```
dot_data= tree.export_graphviz(clf, out_file=None, feature_names count_vect.get_feature_names())
from graphviz import *

graph = graphviz.Source(dot_data)

graph.render('RelevantClassifier')
'RelevantClassifier.pdf'
```

The frequency of the word "his" in the tweet is <= 0.5 (i.e., absent)

The frequency of the word "his" in the tweet is > 0.5 (i.e., present)

Evaluate the Automated Filter Using Testing Data

```
Transforms the testing tweets
X test word vect = count vect.transform(X test) -
                                                                           into their word features
print(X test word vect.shape)
(7, 273)
                                                           Predict whether each testing tweet is relevant or
predicted y = clf.predict(X test word vect) __
                                                            irrelevant.
print(predicted y)
[1 1 0 0 0 0 0]
print(y test)
[1, 1, 1, 1, 1, 0, 0]
np.mean(predicted_y == y_test)
                                                               Accuracy (Not Good; due to very small
0.5714285714285714
                                                               number of training data)
```

Classification Report

<pre>print(metrics.classification_report(y_test, predicted_y))</pre>											
	precision	recall	f1-score	support							
0	0.40	1.00	0.57	2							
1	1.00	0.40	0.57	5							
avg / total	0.83	0.57	0.57	7							

Confusion Matrix

False Negative (relevant tweets classified to be irrelevant) too high.

Why Evaluate the Model using a data set DIFFERENT from that used for training?

Use training data to evaluate a predictive model introduces risk for overfitting.

Why data scientists do not go to tailors?

Because they are afraid of "over-fitting"

Generalizability of Model

- Avoid the potential problem of "over-fitting"
- Over-fitting: Fit a model TOO much to the training data that it does NOT generalize to data not used for training the model.

An Example

An Example

An Example of Overfitting

How to reduce the risk of overfitting?

Evaluate the model using data not used in training

Evaluating a Model by Data not used in Training

Applying untrained data (i.e., testing data) to a predictive model can reveal a large prediction error for an overfitted model.

Evaluating a Model Using Data NOT involved in Constructing the Model

How much of the labelled data do we use for training, how much for testing?

- Best Practice: Use 70-90% of the labelled data (i.e., tagged tweets)
- Why?
 - Using too few labelled data for training the model may not provide machine enough information to create a model with acceptable predictability.
 - Using too few labelled data for testing the model can reduce our confidence about the evaluation result.
- In this lab, we will use 80% for training, 20% for testing

How to divide the labelled data into 80-20 split?

Two Approaches to Split the Labelled Data

- 1. Randomly sample (without replacement) 80% of labelled data for training; the remaining for testing.
- 2. Divide the labelled data into two groups, based on their tags (e.g., Divide the tagged tweets into Relevant tweets and Irrelevant tweets).
 - Sample 80% of labelled Relevant Tweets for training; the remaining for testing.
 - Sample 80% of labelled Irrelevant Tweets for training; the remaining for testing.

Best Practice: The Second Approach

- Benefits of the second approach:
- The percentage of relevant vs irrelevant tweets in the training data is the same as the testing data.
- This reduces the chance that training data or testing data are highly unbalanced (Will elaborate on this later).

Fit_transform generates a word frequency representation for each tweet.

A tweet can be represented by different type of "feature"

- "Bag of word" features
- "Word frequency" (WF) features
- emoji features
- Frequency of positive emotion words and negative emotion words based on a predefined "dictionary" (e.g., LIWC Dictionary).
- A combination of the above (e.g., WF + emoji, WF + LIWC)

A Word Frequency Representation of Tweets

- A mathematical representation of the words in a text.
- A row of a two-dimension array
- Each column of the array corresponds to a word or a hashtag.
- The value of each entry in the array indicates whether the tweet contains the word/hashtag corresponding to the column (1: present, 0: not present).
- Tweet1: "Congratulations #Philadelphia Eagles"
- Tweet2: "I am so happy that Eagles won the #SuperBowl."
- Tweet3: "#foley fantastic"
- Tweet4: "A super win for super Eagles."

An Example of Word Frequency Features of Tweets

	ı	am	SO	hap py	tha t	Eagl es	wo n	Con grat ulat ion s	#Ph ilad elp hia	#fol ey	the	fant asti c	#Su per Bo wl	sup er	а	win	for	••••
Tweet1	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	
Tweet2	1	1	1	1	1	1	1	0	0	0	1	0	1	0	0	0	0	
Tweet3	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	
Tweet4	0	0	0	0	0	1	0	0	0	0	0	0	0	2	1	1	1	

fit_transform generates a word frequency feature matrix for the set of tweets in x_train

Lab5 Assignment (30 points)

- Build a Decision Tree predictive model that classifies tweets as "relevant" based on your tagging results of HW2.
- Submit a doc, docx, or PDF file containing the following information:
 - 1. Screenshot or Jupyter notebook showing tweets data loaded into Jupyter Notebook as Table object.
 - 2. Screenshots or Jupyter notebook showing the sizes of your training and testing sets (x_train, y_train, x_test, y_test).
 - 3. Screenshots or Jupyter notebook showing the confusion matrix of evaluating your Decision Tree-based relevant classifier using TESTING data, and identify false positive and false negative in your evaluation result.
 - 4. A visualization of your decision tree.
 - 5. A description of a rule based on the tree.
 - 6. A short summary of your evaluation result using the confusion matrix.