预习报告		实验记录		分析讨论		总成绩	
年级、专业:				组号:			
姓名:				学号:			
日期:				教师签名	:		

晶体电光、声光、磁光效应实验预习报告

【实验报告注意事项】

1. 实验报告由三部分组成:

- 1) 预习报告:(提前一周)认真研读<u>实验讲义</u>,弄清实验原理;实验所需的仪器设备、用具及其使用(强烈建议到实验室预习),完成讲义中的预习思考题;了解实验需要测量的物理量,并根据要求提前准备实验记录表格(由学生自己在实验前设计好,可以打印)。预习成绩低于10分(共20分)者不能做实验。
- 2) 实验记录:认真、客观记录实验条件、实验过程中的现象以及数据。实验记录请用 珠笔或者钢笔书写并签名(用铅笔记录的被认为无效)。保持原始记录,包括写错 删除部分,如因误记需要修改记录,必须按规范修改。(不得输入电脑打印,但可 扫描手记后打印扫描件);离开前请实验教师检查记录并签名。
- 3) 分析讨论:处理实验原始数据(学习仪器使用类型的实验除外),对数据的可靠性和合理性进行分析;按规范呈现数据和结果(图、表),包括数据、图表按顺序编号及其引用;分析物理现象(含回答实验思考题,写出问题思考过程,必要时按规范引用数据);最后得出结论。

实验报告就是预习报告、实验记录、和数据处理与分析合起来,加上本页封面。

2. 每次完成实验后的一周内交**实验报告**。

除实验记录外,实验报告其他部分建议双面打印。

实验 E4 晶体电光、声光和磁光效应

实验目的

实验 1 晶体的电光效应实验

- 1. 掌握晶体电光调制的原理和实验方法;
- 2. 了解一种激光通信的方法

仪器用具

产品编号	产品名称	规格	数量
1	电光效应晶体部件		1
2	电光效应实验电源	600V 输出,含电源线	1
3	激光功率计	100nW-100mW 测试范围	1
4	90mm 导轨	90mm 宽,30mm 高,1200mm 长	1
5	90mm 滑块	120mm 宽,40mm 长	6
6	90mm Y 向移动滑块	120mm 宽,40mm 长,Y 轴平移	1
7	调节套筒	L76mm	7
8	支杆	L76mm,双头阳螺纹	7
9	干板夹	外形 60×26×24mm	2
10	激光管夹持器	Ф25~Φ50mm, V 型	1
11	可调棱镜支架	最大夹持物体 44×50×50mm	1
12	可变光阑	通光 Φ2~Φ28mm,外径 Φ50mm	1
13	大气光通信接收模块	400~1100nm,音频接口输出	1
14	偏振片及偏振片架(标定方向)	Φ25.4,标定好偏振方向并贴签	2
15	波片及偏振片架 (标定方向)	Ф25.4, 655nm, 1/4,	1
16	光纤准直镜	通光 Φ1mm FC/PC,	1
17	半导体激光器驱动电源及系统	650nm,激光器内置,2mW,	1
18	窗口	单面毛玻璃	1
19	白屏(带刻度)	外形 210×150×2mm,单面带一维刻度	1
20	MP3 播放器	音频播放器	1
21	Q9 线	双 Q9 插头,1m	1
22	电光晶体信号线	1 套 2 根,分红蓝,1m	1
23	探测器信号输出线	一端 Q9 插头,一端 AV 插头,1m	1
24	直流电源	5V, 1A	1
25	音箱	有源音箱	1

实验原理

一、一次电光效应

由电场所引起的晶体折射率变化称为电光效应。可以表示为:

$$n = n_0 + aE_0 + bE_0^2 + \dots (1)$$

- 一次项所引起的折射率变化即为一次电光效应
 - 一次电光效应只存在于不具有对称中心的晶体中。
 - 一次效应要比二次效应更显著。

二、折射率椭球

光在各向异性晶体中传播时折射率会因传播方向改变而变化,可以将折射率与光传播方向、振动方向 表示为折射率椭球:

$$\frac{x^2}{n_1^2} + \frac{y^2}{n_2^2} + \frac{z^2}{n_3^2} = 1 \tag{2}$$

加上电场后,各向异性产生,则折射率变为:

$$\frac{x^2}{n_{11}^2} + \frac{y^2}{n_{22}^2} + \frac{z^2}{n_{33}^2} + \frac{2yz}{n_{23}^2} + \frac{2xz}{n_{13}^2} + \frac{2xy}{n_{12}^2} = 1$$
 (3)

有两种一次电光效应:

- 1. 纵向电光效应: 电场方向与传播方向平行时产生。如 KD*P 类型晶体
- 2. 横向电光效应: 电场方向与传播方向垂直时产生。如 LiNbO3 晶体

本实验研究铌酸锂晶体的一次电光效应,用铌酸锂晶体的横向调制装置测量铌酸锂晶体的半波电压及电光系数,并用两种方法改变调制器的工作点,观察相应的输出特性的变化。

The state of the s						
点群	晶体材料	折射率		波长	一次光电系数	
对称性	目目7年47月4年	n _o	n_e	(μm)	$(10^{-12} m/V)$	
3 <i>m</i>	LiNbO ₃	2.286	2.203	0.633	$\gamma_{13} = \gamma_{23} = 10, \gamma_{33} = 32$ $\gamma_{42} = \gamma_{51} = 28, \gamma_{22} = 6.8$ $\gamma_{12} = \gamma_{61} = -\gamma_{22}$	
32	Quartz (SiO₂)	1.544	1.553	0.589	$ \gamma_{41} = -\gamma_{52} = 0.2 \gamma_{62} = \gamma_{21} = -\gamma_{11} = 0.93 $	
42 <i>m</i>	KH ₂ PO ₄	1.5115	1.4698	0.546	$\gamma_{41} = \gamma_{52} = 8.77, \gamma_{63} = 10.3$	
42111	(KDP)	1.5074	1.4669	0.633	$\gamma_{41} = \gamma_{52} = 8, \gamma_{63} = 11$	
42 <i>m</i>	NH ₄ H ₂ PO ₄	1.5266	1.4808	0.546	$\gamma_{41} = \gamma_{52} = 23.76, \gamma_{63} = 8.56$	
42m	(ADP)	1.5220	1.4773	0.633	$\gamma_{41} = \gamma_{52} = 23.41, \gamma_{63} = 7.828$	
4 3 <i>m</i>	KD₂PO₄ (KD*P)	1.5079	1.4683	0.546	$\gamma_{41} = \gamma_{52} = 8.8, \gamma_{63} = 26.8$	
	GaAs	3.60		0.9	$\gamma_{41} = \gamma_{52} = \gamma_{63} = 1.1$	
43 <i>m</i>		3.34		1.0	$\gamma_{41} = \gamma_{52} = \gamma_{63} = 1.5$	
		3.20		10.6	$\gamma_{41} = \gamma_{52} = \gamma_{63} = 1.6$	
4 3 <i>m</i>	InP	3.42		1.06	$\gamma_{41} = \gamma_{52} = \gamma_{63} = 1.45$	
4 3 <i>m</i>	ZnSe	2.60		0.633	$\gamma_{41} = \gamma_{52} = \gamma_{63} = 2.0$	
4 3 <i>m</i>	β-ZnS	2.	36	0.6	$\gamma_{41} = \gamma_{52} = \gamma_{63} = 2.1$	
b 1						

表 1-1 电光晶体(electro-optic crystals)的特性参数

图 1

三、电光调制原理

激光作为高频载波,信号多调制于其强度上,也可以采用连续调幅、调频、调相以及脉冲调制等形式。强度调制是根据光载波电场振幅地平方比例调制信号。

原因: 光接收器一般都是直接相应其所接受的光强度变化。

方法: 机械调制、电光调制、声光调制、磁光调制、电源调制等

电光调制开算速度快、结构简单。电光调制根据所施加的电场方向的不同,可分为纵向电光调制和横向电光调制。

4.3.1 铌酸锂晶体横调制

图 2: 横调制器

$$\Gamma \sim \frac{LV}{d}$$
 (4)

铌酸锂晶体具有优良的加工性能及很高的电光系数, $\gamma_{22}=6.8\times10^{-12}~\mathrm{m/V}$, 常常用来做成横向调制器, 铌酸锂为单轴晶体, 有 $n_x=n_y=n_0=2.286, n_z=n_e=2.203$

把晶体的通光方向设为 Z 方向,沿 X 方向施加电场 E。晶体由单轴变为双轴,新的主轴 $X^{'},Y^{'},Z^{'}$ 轴又称为感应轴,其中 $X^{'},Y^{'}$ 绕 Z 轴转 45°,而 $Z^{'}$ 与 Z 轴重合。晶体的线性电光系数 γ 是一个三阶张量,受晶体对称性的影响,铌酸锂的线性电光系数矩阵为

$$\gamma = \begin{bmatrix}
0 & -\gamma_{22} & \gamma_{13} \\
0 & \gamma_{22} & \gamma_{13} \\
0 & 0 & \gamma_{33} \\
0 & \gamma_{42} & 0 \\
\gamma_{42} & 0 & 0 \\
-\gamma_{42} & 0 & 0
\end{bmatrix}$$
(5)

施加电场后,得到电场强度矩阵(E,0,0),此时在 X 轴上加上电场后的电光系数矩阵为

$$\begin{bmatrix} \Delta B_1 \\ \Delta B_2 \\ \Delta B_3 \\ \Delta B_4 \\ \Delta B_5 \\ \Delta B_6 \end{bmatrix} \equiv \begin{bmatrix} 0 & -\gamma_{22} & \gamma_{13} \\ 0 & \gamma_{22} & \gamma_{13} \\ 0 & 0 & \gamma_{33} \\ 0 & \gamma_{42} & 0 \\ \gamma_{42} & 0 & 0 \\ -\gamma_{22} & 0 & 0 \end{bmatrix} \begin{bmatrix} E \\ 0 \\ 0 \end{bmatrix} \equiv \begin{bmatrix} 0 \\ 0 \\ 0 \\ \gamma_{42}E \\ -\gamma_{22}E \end{bmatrix}$$
(6)

当外加电场(E, 0, 0)时,电场作用下的光折射率椭球方程为

$$\frac{x^2}{n_0^2} + \frac{y^2}{n_0^2} + \frac{z^2}{n_e^2} + 2\gamma_{42}E_{xz} + 2\gamma_{22}E_{xy} = 1$$
 (7)

沿 Z 轴方向射入入射光,令上式的 Z=0,折射率椭球就变为与波矢垂直的折射率平面,如图 1-3 所示为加了电场后的折射率椭球截面图,经过坐标转换,得到截迹方程为:

$$\left(\frac{1}{n_0^2} - \gamma_{22}E\right)x'^2 + \left(\frac{1}{n_0^2} + \gamma_{22}E\right)y'^2 = 1$$
(8)

故新主轴折射率为:

$$n_{x'} = n_0 + \frac{1}{2} n_0^3 \gamma_{22} E$$

$$n_{y'} = n_0 - \frac{1}{2} n_0^3 \gamma_{22} E$$
(9)

当激光由晶体出射时两个分量会有一定的相位差。此相位差可以表示为:

$$\varphi = \frac{2\pi}{\lambda} \left(n_x - n_y \right) L = \frac{2\pi}{\lambda} n_0^3 \gamma_{22} V \frac{L}{d}$$
(10)

式中: λ 为激光的波长,L 为晶体的通光长度,d 为晶体在 X 方向的厚度,V 是外加电压。 $\varphi = \pi$ 时所对应的 V 为半波电压,于是可得:

$$V_{\pi} = \frac{\lambda d}{2n_0^3 \gamma_{22} L} \tag{11}$$

可以通过加大器件的长宽比来减小半波电压。

优点: 横调制器的电极不在光路中,工艺上容易解决。

缺点:对波长很敏感,当波长确定时又强烈依赖于距离 L。加工误差、装调误差引起的光波方向的稍许变化都会引起相位差的明显改变。

解决方法:使用准直的激光;使用一对晶体,第一块晶体的 x 轴与第二块晶体的 z 轴相对,使晶体的 e 然双折射部分相互补偿以消除或降低器件对温度、入射方向的敏感性;巴比涅-索勒尔补偿器,将工作点偏置到特性曲线的线性部分。

4.3.2 振幅调制

物理实质:输入的线偏振光在调制晶体中分解为一对偏振方位正交的本征态,在晶体中传播过一段距离后获得相位差 Γ , Γ 为外加电压的函数。在输出的偏振元件透光轴上这一对正交偏振分量重新叠加,输出光的振幅被外加电压所调制,这是典型的偏振光干涉效应。

四、直流偏压对输出特性的影响

1. 当 $U_0 = U_\pi/2$ $U_m = U_\pi$ 时,将工作点选定在线性工作区的中心处,此时,可获得较高效率的线性调制,把 $U_0 = U_\pi/2$ 代入式10,得

$$T = \sin^{2}\left(\frac{\pi}{4} + \frac{\pi}{2U_{\pi}}U_{m}\sin\omega t\right)$$

$$= \frac{1}{2}\left[1 - \cos\left(\frac{\pi}{2} + \frac{\pi}{U_{\pi}}U_{m}\sin\omega t\right)\right]$$

$$= \frac{1}{2}\left[1 + \sin\left(\frac{\pi}{U_{\pi}}U_{m}\sin\omega t\right)\right]$$

$$\approx \frac{1}{2}\left[1 + \left(\frac{\pi U_{m}}{U_{\pi}}\right)\sin\omega t\right]$$
(12)

这时,调制器输出的信号和调制信号虽然振幅不同,但是两者的频率却是相同的,输出信号不失真, 我们称为线性调制. 2. 当 $U_0 = 0, U_m = U_\pi$ 时,

$$T = \sin^2\left(\frac{\pi}{2U_{\pi}}U_m\sin\omega t\right)$$

$$= \frac{1}{2}\left[1 - \cos\left(\frac{\pi}{U_{\pi}}U_m\sin\omega t\right)\right]$$

$$\approx \frac{1}{4}\left(\frac{\pi}{U_{\pi}}U_m\right)^2\sin^2\omega t$$

$$\approx \frac{1}{8}\left(\frac{\pi}{U_{\pi}}U_m\right)^2(1 - \cos2\omega t)$$
(13)

 $T \propto \cos 2\omega t$

从上式可以看出,输出信号的频率是调制信号频率的二倍,即产生"倍频"失真。

- 3. 若 $U_0 = U_{\pi}$,仍是倍频失真
- 4. 直流偏压 U_0 在 0 伏附近或在 U_{π} 附近变化时,由于工作点不在线性工作区,输出波形将失真。
- 5. 当 $U_0 = U_\pi/2$, $U_m > U_\pi$ 时,调制器的工作点虽然选定在线性工作区的中心,但不满足小信号调制的要求。因此,工作点虽然选定在了线性区,输出波形仍然是失真的。

五、用 $\lambda/4$

上面分析说明电光调制器中直流偏压的作用主要是在使晶体中 x',y',两偏振方向的光之间产生固定的位相差,从而使正弦调制工作在光强调制曲线上的不同点。直流偏压的作用可以用 $\lambda/4$ 波片来实现。在起偏器和检偏器之间加入 $\lambda/4$ 片,调整 $\lambda/4$ 波片的快慢轴方向使之与晶体的 x',y' 轴平行,即可保证电光调制器工作在线性调制状态下,转动波片可使电光晶体处于不同的工作点上.

六、锥光干涉

锥光干涉的实质就是偏振干涉,偏振光干涉的条件与自然光的干涉条件是一致的,即: 频率相同、振动方向相同,或存在互相平行的振动分量、位相差恒定。当振动方向互相垂直的两束线偏振光经偏振片 P2

图 3: 偏振光干涉

后,两束投射光的振幅为

$$A_{2o} = A_0 \sin \alpha = A_1 \sin \theta \sin \alpha$$

$$A_{2e} = A_e \cos \alpha = A_1 \cos \theta \cos \alpha$$

$$(14)$$

其中, A_1 是射向波片 E_1 的线偏振光的振幅, θ 为起偏器 P_1 出射线偏振光方向与波片光轴的夹角, α 为检偏器 P_2 透光轴方向与波片光轴的夹角。

若两束光之间的相位差为 $\Delta \phi'$, 那么合强度为

$$I = A^{2} = A_{2o}^{2} + A_{2e}^{2} + 2A_{2o}A_{2e}\cos\Delta\varphi' = A_{1}^{2} \left[\cos^{2}(\alpha - \theta) - \sin 2\theta \sin 2\alpha \sin^{2}\frac{\Delta\varphi'}{2}\right]$$
(15)

其中 $\Delta \phi'$ 是从偏振片 P_2 出射时两束光之间的相位差。入射在波片上的光是线偏光时,o 光和 e 光的相位相等,波片引入的相位差为 $\Delta \varphi = \stackrel{2-}{\sim} (n_o - n_e) d$,其中 d 是波片的厚度。

产生锥光干涉是因为当在晶体前放置毛玻璃时,光会发射漫散射,沿各个方向传播。不同方向入射光经过晶体后会引入不同的相位差,不同入射角的入射光将落在接收屏上不同半径的圆周上,因为相同入射角的光通过晶体的长度是一样的,所以引入的相位差也是一样的,所以每一个圆环上光程差是一致的。从而就造成了圆环状的明暗干涉条纹。

因为正交偏振系统中,设入射光振幅为 E,入射面与起偏器的夹角为,经过前后两个偏振片后,两束光的振幅为。当时,E 都趋向于 0。所以干涉图中有一个与偏振片透光方向相同的黑十字。

七、测量半波电压的两种方法

4.7.1 极值法

当输入直流电压 $V \sim V_{\pi}$ 时,透过率最大,所以只要不断增加输入电压,观测功率计的示数,将会出现极小值和极大值,相邻极小值和极大值对应的直流电压之差即是半波电压。

当晶体所加的电压为半波电压时,光波出射晶体时相对于入射光产生的相位差为 π ,而偏转方向旋转了 $\pi/2$ 。当电压为 0 时,通过检偏器的光强最小,电压逐渐增大,相位差逐渐增大,检偏器的输出光强也增大;当光强最大时,通过检偏器的光偏振方向旋转了 $\pi/2$,则此时的电压就是半波电压,即半波电压为光强最大时的电压。

对于不同的偏置电压点,相同的电压变化量对光强将产生不同的变化。因此,要达到线性调制,必须选择合适的偏置电压和调制幅度。实验曲线上零偏置电压点处的光强不为 0,而是相对于理论曲线发生偏移,一般是晶体自身生长不均匀,入射光通过时光路改变造成的现象.

4.7.2 倍频法

晶体上同时加直流电压和交流信号,与直流电压调到输出光强出现极小值或极大值对应的电压值时,输出的交流信号出现倍频失真,出现相邻倍频失真对应的直流电压之差就是半波电压

图 4: 输出图形的倍频失真

实验 2 晶体的声光效应实验

1.实验目的

- 1. 了解声光效应的原理;
- 2. 了解拉曼一奈斯衍射 (Raman-Nath Diffraction) 和 布 拉 格 衍 射 (Bragg Diffraction)的实验条件和特点;
- 3. 测量声光偏转和声光调制曲线;
- 4. 完成声光通信实验光路的安装及调试。

2.仪器用具

产品编号	产品名称	规格			
1	激光功率计	100nW-100mW 測试范围			
2	90mm 导轨	90mm 宽,30mm 高,1200mm 长	1		
3	90mm 滑块	120mm 宽,40mm 长	2		
4	90mm Y 向移动滑块	120mm 宽, 40mm 长, Y 轴平移	1		
5	调节套筒	L76mm	3		
6	支杆	L76mm,双头阳螺纹	3		
7	干板夹	外形 60×26×24mm	1		
8	激光管夹持器	Ф25~Ф50mm, V 型	1		
9	可调棱镜支架	最大夹持物体 44×50×50mm	1		
10	可变光阑	通光 Φ2~Φ28mm,外径 Φ50mm	1		
11	大气光通信接收模块	400~1100nm, 音频接口输出	1		
12	光纤准直镜	通光 Φ1mm FC/PC,			
13	半导体激光器驱动电 源及系统	650nm,激光器内置,2mW,	1		
14	白屏(带刻度)	外形 210×150×2mm, 单面带一维刻度			
15	MP3 播放器	音频播放器	1		
16	Q9线	双 Q9 插头,1m	1		
17	探测器信号输出线	一端 Q9 插头,一端 AV 插头, 1m	1		
18	直流电源	5V, 1A	1		
19	直流电源	24V, 1A	1		
20	音箱	有源音箱	1		
21 声光调制器		波长: 655±10nm; 频率: 100±0.1MHz; 带宽: ±10MHz; 外控信号偏置、增益可调	1		

3.实验原理

3.1 声光效应的定义

光通过某一超声波扰动介质发生衍射的现象。

3.2 声光效应产生的原因

超声波在介质中传播时,介质的弹性应变量会作时间空间的周期变化,进而改变介质的折射率。这时使光束通过这种介质,就会产生衍射。

3.3 声光效应的应用

- 1.用来控制激光束的频率,方向,强度。
- 2.声光调制器、声光偏转器、和可调谐滤光器等。
- 3.激光技术,光信号处理,集成光通讯。

3.4 声光效应的分类

- 1.正常声光效应(各项同性介质),不导致入射光偏振状态的变化可以用光栅假设解释。
- 2.反常声光效应(各向异性介质),可以导致入射光偏振状态的变化不能用 光栅假设说明。

3.5 声光效应的理论解释

声波是一种纵波,设纵波沿着 y 轴传播,其角频率为 ω_s , 波长为 λ_s , 入射光波沿着 x 轴方向传播。注意到光速远大于声速,可以得到应变引起的折射率变化为

$$\Delta(1/n^2)PS$$

式中, P 为光弹系数, S 是应变量。

通过光学中衍射光栅的相关知识及计算可知,当声波和光波的作用距离很小时,光栅将产生很多栅格,也会产生大量衍射级数。当光波斜入射时,若作用距离满足

$$L<\lambda^2_s/2\lambda$$

各个衍射极大将满足下列关系式

 $Sin\Theta_m = sini + m\lambda_0/\lambda_s$

式中^{O_m} 是方位角,i 是入射光波与超声波波面夹角。 这便是拉曼-奈斯衍射。

若作用距离满足

$$L>\lambda^2_s/2\lambda$$

则只可能出现+-1 级衍射,与布拉格衍射类似,出现这种情况的角度叫做布拉格角。布拉格角可通过以下公式求出

$$\Theta_d = \lambda f / n_d v$$

布拉格衍射的效率很高,可达到 100%,而拉曼奈斯衍射第一级最大效率只有 34%左右,一般采用布拉格衍射

实验3 晶体的磁光效应实验

1引言

磁光效应是指光与磁场中的物质,或光与具有自发磁化强度的物质之间相互作用所产生的各种现象,主要包括法拉第(Faraday)效应、柯顿-莫顿(Cotton-Mouton)效应、克尔(Kerr)效应、塞曼(Zeeman)效应、光磁效应等。磁场中某些非旋光物质具有旋光性,该现象称为"法拉第(Faraday)效应"或"磁致旋光效应"。法拉第于 1845 年发现该效应,故称法拉第效应。

2 实验目的

- 1.掌握磁光效应的原理和实验方法
- 2.掌握计算磁光介质的维尔德常数的方法。

3 仪器用具

产品编号	产品名称	规格	数量
1	磁光效应实验部件		1
2	90mm 导轨	90mm 宽,30mm 高,1200mm 长	1
3	90mm 滑块	120mm 宽,40mm 长	3
4	调节套筒	L76mm	3
5	支杆	L76mm,双头阳螺纹	3
6	干板夹	外形 60×26×24mm	1
7	激光管夹持器	Φ25~Φ50mm,V 型	1
8	可变光阑	通光 Φ2~Φ28mm,外径 Φ50mm	1
9	光纤准直镜	通光 Φ1mm FC/PC,	1
10	半导体激光器驱动电源及系 统	650nm,激光器内置,2mW	1
11	半导体激光器驱动电源及系 统	520nm,2mW,单模输出,FC 接头	1
12	白屏(带刻度)	外形 210×150×2mm, 单面带一维刻度	1
13	导光柱	Ф5×20mm	1
14	导光柱	Ф5×50mm	1

3 实验原理

3.1 磁光效应的定义

磁光效应是指光与磁场中的物质,或与具有自发磁化强度的物质之间产生作用,使得某些非旋光物质具有旋光性。也称为"磁致旋光效应"。

3.2 磁光效应与自然旋光效应的区别

自然旋光效应由晶体微观螺旋结构引起,若光波传播到原始位置时偏振面会复原。 磁光效应由磁场引起,当光波传播到原始位置时会引起旋转角的加倍(非互易性)

3.3 磁光效应的物理解释

线偏振光在介质中沿着磁场方向传播,当走过d的距离后,振动方向的角度会产生旋转。

φ=VedB

式中B为磁感应强度, Ve是物质常数。

3.4 增强磁光效应的方法

在螺线管两端放置两块平行反射镜,可以增加光在反射镜间传播的光路长度,从而尽可能地增大光的旋转角度,以提高测量精度