Aula 04: Análise de algoritmos — notações asintóticas e classes de complexidade

David Déharbe Programa de Pós-graduação em Sistemas e Computação Universidade Federal do Rio Grande do Norte Centro de Ciências Exatas e da Terra Departamento de Informática e Matemática Aplicada

Bibliografia usada

Estrutura da apresentação

- 1. arcabouço teórico;
- 2. melhor caso, pior caso, caso médio;
- 3. notações asintóticas; O, Ω , Θ ;
- 4. análise de algoritmos não recursivos;
- 5. análise de algoritmos recursivos.

Plano da aula

Introdução informal

Notação O

Notação Ω

Notação Θ

Outras notações

Propriedades das notações asintóticas

Usando limites para comparar crescimentos asintóticos

Notações

Para um determinado algoritmo, t(n) denota o tempo de execução (geralmente o contador de operações básicas C(n)).

g(n) denota uma função, que é comparada com t(n).

O objeto da comparação é o crescimento asintótico das funções.

Notações

Para um determinado algoritmo, t(n) denota o tempo de execução (geralmente o contador de operações básicas C(n)). g(n) denota uma função, que é comparada com t(n). O objeto da comparação é o crescimento asintótico das funções.

▶ O(g(n)) é o conjunto das funções com um crescimento asintótico menor ou igual ao de g(n). $n \in O(n^2)$, $100n + 5 \in O(n^2)$, $\frac{1}{2}n(n-1) \in O(n^2)$. $n^3 \notin O(n^2)$, $0,000001n^3 \notin O(n^2)$, $n^4 + n + 1 \notin O(n^2)$.

Notações

Para um determinado algoritmo, t(n) denota o tempo de execução (geralmente o contador de operações básicas C(n)). g(n) denota uma função, que é comparada com t(n). O objeto da comparação é o crescimento asintótico das funções.

▶ $\Omega(g(n))$ é o conjunto das funções com um crescimento asintótico maior ou igual ao de g(n). $n^3 \in \Omega(n^2)$, $\frac{1}{2}n(n-1) \in \Omega(n^2)$, $100n+5 \notin \Omega(n^2)$.

Notações

Para um determinado algoritmo, t(n) denota o tempo de execução (geralmente o contador de operações básicas C(n)). g(n) denota uma função, que é comparada com t(n). O objeto da comparação é o crescimento asintótico das funções.

▶ $\Theta(g(n))$ é o conjunto das funções com um crescimento asintótico igual a (um múltiplo positivo constante) de g(n): $\Theta(n) = O(n) \cap \Omega(n)$. $an^2 + bn + c \in \Theta(n^2)$ se a > 0, $n^2 + \log n \in \Theta(n^2)$.

Exercício

- 1. Entre O, Ω e Θ , qual a notação mais apropriada para discutir a complexidade:
 - no pior caso;
 - no melhor caso;
 - ► em média?
- 2. Aplique as definições informais para determinar se as seguintes asserções são verdadeiras ou falsas:
 - ▶ $n(n+1)/2 \in O(n^3)$;
 - ▶ $n(n+1)/2 \in O(n^2)$;
 - ▶ $n(n+1)/2 \in \Theta(n^3)$;
 - $n(n+1)/2 \in \Omega(n).$

Notação O

Definição

Uma função t(n) é classificada como O(g(n)), e escreve-se $t(n) \in O(g(n))$ se t(n) tem como limite superior um múltiplo constante de g(n), ou seja

$$\exists n_0, k \cdot \forall n \cdot n \geq n_0 \Rightarrow t(n) \leq k \times g(n).$$

Ilustração: $t(n) \in O(g(n))$

$$t(n) \in O(g(n)) \equiv \exists n_0, k \cdot \forall n \cdot n \geq n_0 \Rightarrow t(n) \leq k \times g(n).$$

Definição

$$t(n) \in O(g(n))$$
 sse $\exists n_0, k \cdot \forall n \cdot n \ge n_0 \Rightarrow t(n) \le k \times g(n)$.

Exemplo

Mostrar que $100n + 5 \in O(n^2)$.

Demonstração.

- ▶ Se $n \ge 5$, então $100n + 5 \le 100n + n = 101n$.
- Se $n \ge 1$, então $101n \le 101n^2$.
- Temos $\forall n \cdot n \geq 5 \Rightarrow \underbrace{100n + 5}_{t(n)} \leq \underbrace{101n^2}_{g(n)}$.

Ou seja, podemos usar os valores 101 e 5 como valores de k e n_0 da definição.

Definição

$$t(n) \in O(g(n))$$
 sse $\exists n_0, k \cdot \forall n \cdot n \geq n_0 \Rightarrow t(n) \leq k \times g(n)$.

Exemplo

Mostrar que $100n + 5 \in O(n^2)$.

Demonstração.

- ▶ Se $n \ge 1$, então $100n + 5 \le 100n + 5n = 105n$.
- Se $n \ge 1$, então $105n \le 105n^2$.
- ► Temos $\forall n \cdot n \ge 1 \Rightarrow \underbrace{100n + 5}_{t(n)} \le \underbrace{105n^2}_{g(n)}$.

Ou seja, podemos usar os valores 105 e 1 como valores de k e n_0 da definição.

Notação Ω

Definição

Uma função t(n) é classificada como $\Omega(g(n))$, e escreve-se $t(n) \in \Omega(g(n))$ se t(n) tem como limite inferior um múltiplo constante de g(n), ou seja

$$\exists n_0, k \cdot \forall n \cdot n \geq n_0 \Rightarrow t(n) \geq k \times g(n).$$

Ilustração: $t(n) \in \Omega(g(n))$

$$\exists n_0, k \cdot \forall n \cdot n \geq n_0 \Rightarrow t(n) \geq k \times g(n).$$

Definição

$$t(n) \in \Omega(g(n))$$
 sse $\exists n_0, k \cdot \forall n \cdot n \ge n_0 \Rightarrow t(n) \ge k \times g(n)$.

Exemplo

Mostrar que $0,00001n^3 \in \Omega(n^2)$.

Demonstração.

Neste caso, basta selecionar $n_0 = 0$ e k = 0,00001.

Notação Θ

Definição

Uma função t(n) é classificada como $\Theta(g(n))$, e escreve-se $t(n) \in \Theta(g(n))$ se t(n) tem como limites inferior e superior dois múltiplos constantes de g(n), ou seja

$$\exists n_0, k_1, k_2 \cdot \forall n \cdot n \geq n_0 \Rightarrow k_2 \times g(n) \leq t(n) \leq k_1 \times g(n).$$

Ilustração: $t(n) \in \Theta(g(n))$

$$t(n) \in \Theta(g(n))$$

$$\equiv \exists n_0, k_1, k_2 \cdot \forall n \cdot n \geq n_0 \Rightarrow k_2 \times g(n) \leq t(n) \leq k_1 \times g(n).$$

Definição

$$t(n) \in \Theta(g(n))$$
 sse $\exists n_0, k_1, k_2 \cdot \forall n \cdot n \ge n_0 \Rightarrow k_2 \times g(n) \le t(n) \le k_1 g(n).$

Exemplo

Mostrar que $\frac{1}{2}n(n-1) \in \Theta(n^2)$.

Demonstração.

- se $n \ge 0$, então $\frac{1}{2}n^2 \frac{1}{2}n \le \frac{1}{2}n^2$
- ▶ se $n \ge 2$, então $\frac{1}{2}n \ge 1$ e $\frac{1}{2}n^2 \frac{1}{2}n \ge \frac{1}{2}n^2 \frac{1}{2}n \times \frac{1}{2}n = \frac{1}{4}n^2$.

Neste caso, basta selecionar $n_0 = 2$, $k_2 = \frac{1}{4}$ e $k_1 = \frac{1}{2}$.

Outras notações

- ▶ $t(n) \in o(g(n))$ ("little oh") se
 - ▶ $t(n) \in O(g(n))$ e
 - ▶ $t(n) \notin \Theta(g(n))$.

t(n) tem crescimento asintótico estritamente menor que g(n).

Outras notações

- $t(n) \in \omega(g(n))$ ("little omega") se
 - ▶ $t(n) \in O(g(n))$ e
 - ▶ $t(n) \notin \Theta(g(n))$.

t(n) tem crescimento asintótico estritamente maior que g(n).

Outras notações

▶ $t(n) \sim g(n)$ quando t(n) e g(n) tem o mesmo crescimento asintótico.

Propriedades

Teorema (Soma de limites asintóticos superiores)

```
Se t_1(n) \in O(g_1(n)) e t_2(n) \in O(g_2(n)), então t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\}). (Esta asserção vale também substituindo O por \Omega e \Theta.)
```

Demonstração.

- ▶ se $t_1(n) \in O(g_1(n))$, então $\exists k_1, n_1 \cdot \forall n \cdot n \geq n_1 \Rightarrow t_1(n) \leq k_1 \times g_1(n)$;
- ▶ se $t_2(n) \in O(g_2(n))$, então $\exists k_2, n_2 \cdot \forall n \cdot n \geq n_2 \Rightarrow t_2(n) \leq k_2 \times g_2(n)$;
- seja $k_3 = 2 \max\{k_1, k_2\}$ e $n_3 = \max\{n_1, n_2\}$.
- $\forall n \cdot n \geq n_3 \Rightarrow t_1(n) + t_2(n) \leq k_3 \times \max\{g_1(n), g_2(n)\}.$

Aplicação

- ► Considere um algoritmo composto por duas partes executadas sequencialmente, de complexidade $O(g_1(n))$ e $O(g_2(n))$ respectivamente;
- ▶ a complexidade do algoritmo é $O(\max\{g_1(n), g_2(n)\})$;
- a complexidade do algoritmo é determinada pela parte com maior complexidade
- a parte com menor complexidade não precisa ser levada em conta.

Exemplo

Um algoritmo para testar se um arranjo possui elementos repetidos é composto por dois sub-algoritmos:

- 1. ordenação dos elementos, digamos em $O(n^2)$;
- 2. inspeção de cada elemento e seu sucessor, para determinar se são iguais, em O(n).

A complexidade do algoritmo principal é $O(\max\{n^2, n\}) = O(n^2)$.

Exemplo

Um algoritmo para testar se um arranjo possui elementos repetidos é composto por dois sub-algoritmos:

- 1. ordenação dos elementos, digamos em $O(n^2)$;
- 2. inspeção de cada elemento e seu sucessor, para determinar se são iguais, em O(n).

A complexidade do algoritmo principal é $O(\max\{n^2, n\}) = O(n^2)$.

Exercício

Qual a complexidade do algoritmo principal se a primeira fase tem complexidade $O(n \log n)$?

Usando limites na comparação de crescimentos asintóticos

- As definições de O, Θ e Ω são usadas para provar propriedades gerais.
- São raramente usadas para comparar as funções caracterizando a complexidade de algoritmos.
- Um método mais conveniente é usar a noção de limite ao infinito, e aplicá-la à razão entre essas funções:

$$\lim_{n\to\infty}\frac{t(n)}{g(n)}$$

Os resultados possíveis são:

- 1. $\lim_{n\to\infty} \frac{t(n)}{g(n)} = 0$ quando t(n) cresce asintóticamente menos que g(n);
- 2. $\lim_{n\to\infty} \frac{t(n)}{g(n)} = c$, onde c > 0, quando t(n) e g(n) cresce as intóticamente da mesma forma;
- 3. $\lim_{n\to\infty} \frac{t(n)}{g(n)} = \infty$ quando t(n) cresce asintóticamente mais que g(n).

Os resultados possíveis são:

- 1. $\lim_{n\to\infty} \frac{t(n)}{g(n)} = 0$ quando t(n) cresce asintóticamente menos que g(n);
 - $t(n) \in o(g(n)), \ t(n) \in O(g(n))$
- 2. $\lim_{n\to\infty} \frac{t(n)}{g(n)} = c$, onde c > 0, quando t(n) e g(n) cresce as intóticamente da mesma forma;
- 3. $\lim_{n\to\infty} \frac{t(n)}{g(n)} = \infty$ quando t(n) cresce asintóticamente mais que g(n).

Os resultados possíveis são:

- 1. $\lim_{n\to\infty} \frac{t(n)}{g(n)} = 0$ quando t(n) cresce asintóticamente menos que g(n);
 - $t(n) \in o(g(n)), \ t(n) \in O(g(n))$
- 2. $\lim_{n\to\infty} \frac{t(n)}{g(n)} = c$, onde c > 0, quando t(n) e g(n) cresce as intóticamente da mesma forma; $t(n) \in O(g(n)), t(n) \in \Theta(g(n)), t(n) \in \Omega(g(n))$
- 3. $\lim_{n\to\infty} \frac{t(n)}{g(n)} = \infty$ quando t(n) cresce asintóticamente mais que g(n).

Os resultados possíveis são:

1. $\lim_{n\to\infty} \frac{t(n)}{g(n)} = 0$ quando t(n) cresce asintóticamente menos que g(n);

$$t(n) \in o(g(n)), t(n) \in O(g(n))$$

2. $\lim_{n\to\infty} \frac{t(n)}{g(n)} = c$, onde c > 0, quando t(n) e g(n) cresce as intóticamente da mesma forma;

$$t(n) \in O(g(n)), t(n) \in \Theta(g(n)), t(n) \in \Omega(g(n))$$

3. $\lim_{n\to\infty} \frac{t(n)}{g(n)} = \infty$ quando t(n) cresce asintóticamente mais que g(n).

$$t(n) \in \omega(g(n)), t \in \Omega(g(n))$$

Exercício

Compare o crescimento asintótico de $\frac{1}{2}n(n-1)$ e n^2 .

Exercício

Compare o crescimento asintótico de $\frac{1}{2}n(n-1)$ e n^2 .

Resolução

Aplicando a abordagem da razão dos limites, temos:

$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2} \lim_{n \to \infty} \frac{n(n-1)}{n^2}$$
$$= \frac{1}{2} \lim_{n \to \infty} \frac{n-1}{n}$$
$$= \frac{1}{2} \lim_{n \to \infty} 1 - \frac{1}{n}$$
$$= \frac{1}{2}$$

O resultado é uma constante positiva: apenas um fator constante distingue o crescimento de $\frac{1}{2}n(n+1)$ e n^2 . Logo $\frac{1}{2}n(n+1) \in \Theta(n^2)$.

Propriedades dos limites

Existem muitas técnicas de cálculo para avaliar limites que podem então ser aplicadas.

Teorema (Regra de L'Hôpital — caso particular)

Seja t(n) e g(n) duas funções positivas, crescentes, com limites definidos no infinito, e deriváveis. Se $\lim_{n\to\infty} t(n) = \infty$ e $\lim_{n\to\infty} g(n) = \infty$, então:

$$\lim_{n\to\infty}\frac{t(n)}{g(n)}=\lim_{n\to\infty}\frac{t'(n)}{g'(n)}$$

Ao invés de estudar o limite da razão de duas funções, pode-se estudar o limite da razão das derivadas destas funções.

Exercício

Compare o crescimento asintótico de $\log_2 n$ e \sqrt{n} .

Exercício

Compare o crescimento asintótico de $\log_2 n$ e \sqrt{n} .

Resolução

As funções $\log_2 n$ e \sqrt{n} são deriváveis e são tais que $\lim_{n\to\infty}\log_2 n=\infty$ e $\lim_{n\to\infty}\sqrt{n}=\infty$. Podemos aplicar a abordagem da razão dos limites e a Regra de L'Hôpital:

$$\lim_{n \to \infty} \frac{\log_2 n}{\sqrt{n}} = \lim_{n \to \infty} \frac{(\log_2 n)'}{\sqrt{n'}} = \lim_{n \to \infty} \frac{\frac{1}{n \ln 2}}{\frac{1}{2\sqrt{n}}}$$
$$= \frac{2}{\ln 2} \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0.$$

 $\log_2 n$ cresce asintoticamente menos que \sqrt{n} .

Exercício

Compare o crescimento asintótico de $\log_2 n$ e \sqrt{n} .

Resolução

As funções $\log_2 n$ e \sqrt{n} são deriváveis e são tais que $\lim_{n\to\infty}\log_2 n=\infty$ e $\lim_{n\to\infty}\sqrt{n}=\infty$. Podemos aplicar a abordagem da razão dos limites e a Regra de L'Hôpital:

$$\lim_{n \to \infty} \frac{\log_2 n}{\sqrt{n}} = \lim_{n \to \infty} \frac{(\log_2 n)'}{\sqrt{n'}} = \lim_{n \to \infty} \frac{\frac{1}{n \ln 2}}{\frac{1}{2\sqrt{n}}}$$
$$= \frac{2}{\ln 2} \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0.$$

 $\log_2 n$ cresce asintoticamente menos que \sqrt{n} .

Pode se dizer que $\log_2 n \in o(\sqrt{n})$.

Exercício

Compare o crescimento asintótico de n! e 2^n .

Use o resultado seguinte (fórmula de Stirling): $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

Exercício

Compare o crescimento asintótico de n! e 2^n .

Use o resultado seguinte (fórmula de Stirling): $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

$$\lim_{n\to\infty}\frac{n!}{2^n} = \lim_{n\to\infty}\frac{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n}{2^n} = \lim_{n\to\infty}\sqrt{2\pi n}\left(\frac{n}{2e}\right)^n = \infty$$

n! cresce mais rapidamente que 2^n : $n! \in \Omega(2^n)$, e $n! \in \omega(2^n)$.

Exercícios

Exercício

Para cada uma das funções seguintes, indique a classe $\Theta(g(n))$ da função, expressando g(n) da forma mais simples possível.

- 1. $(n^2+1)^{10}$
- 2. $\sqrt{10n^2+7n+3}$
- 3. $2n\lg(n+2)^2+(n+2)^2\lg\frac{n}{2}$
- 4. $2^{n+1} + 3^{n-1}$
- 5. $\lfloor \log_2 n \rfloor$

Prove suas asserções.

Exercícios

Exercício

Para cada uma das funções seguintes, indique a classe $\Theta(g(n))$ da função, expressando g(n) da forma mais simples possível.

- 1. $(n^2+1)^{10}$
- 2. $\sqrt{10n^2+7n+3}$
- 3. $2n\lg(n+2)^2+(n+2)^2\lg\frac{n}{2}$
- 4. $2^{n+1} + 3^{n-1}$
- 5. $\lfloor \log_2 n \rfloor$

Prove suas asserções.

Exercício

Liste as funções seguintes por ordem crescente de crescimento asintótico:

$$(n-2)!$$
 5 $\lg(n+100)^{10}$ 2^{2n} $0,001n^4+3n^3+1$ $\ln^2 n$ $\sqrt{n_3}$

