- References:
 - Text book : Chapter 4
 - Previous CSC313 class notes

1. Introduction to Performance Analysis

- Goal : To analyze the efficiency of algorithms
- Definition:
 - The <u>space complexity</u> of a program is the amount of memory that it needs to run to completion. Example: additional storage such as recursive calls, new operation to allocate objects
 - The <u>time complexity</u> of a program is the amount of computer time that it needs to run to completion.

<u>Time Complexity</u>

• The time taken by a program

T(p) = compile time (fixed) + run (or execution) time Ep(I)

- Tp is the total time requirement for program p
- Ep(I) is the total run time for program p with particular instance I.
- For Ep(I), need to know a detailed knowledge of executable code and the time needed to perform each operation on specific hardware.

For example : c = a+b; \rightarrow load a; load b; add; store c

** very difficult.

- Use other methods to estimate T(p)
 - use system command such as "time" in Unix to approximate the run time. difficult to analyze!
 - set a global counter in your program to count the number of steps that a program needs to solve an instance I.

very difficult for a complex problem, we may need to find out the best, average and worst case scenarios

Example: Add two arrays a and b

```
for (i=0; i < rows; i++) /* count++ */
for (j=0; j < cols; j++) /* count++ */
c[i][j] = a[i][j]+b[i][j]; /* count++ */
```

Assume count = 0 (initially) and each step takes constant time, we have

- i for-loop statement, executed rows + 1 times,
- j for-loop statement, executed rows*(cols + 1) times,
- the statement in j-loop, executed *rows*cols* times
- total counts : 2*rows*cols + 2*rows + 1

If *rows* >> *cols*, should interchange the matrices to minimize the total counts.

• <u>Asymptotic notation</u>: The approximation of step counts (Only cover Big O here. You also need to know definitions of Big Omega Ω and Big Theta Θ)

- Def [Big O]: A function f(n) is said to be O(g(n)) iff there exist positive constants c and n_0 such that $f(n) \le c*g(n)$ for all $n, n \ge n_0$. Read: f of n is big o of g of n
- O(g(n)) is an upper bound of f(n), should try to find as small g(n) as possible
- ignore constants; drop low-order terms; interest to look at the growth rate as n getting bigger; use big O notation (upper bound)
- Example:
 - f(n) = 3n+2, O(n) because $3n+2 \le 4n$ for all $n \ge 2$
 - f(n) = 10, O(1) because $10 \le 10^*1$ for all n > 0
 - $f(n) = 10n^2 + 4n + 2$, $O(n^2)$ because $f(n) \le 11*(n^2)$ for all $n \ge 5$
 - $f(n) = 6*(2^n) + n^2$, $O(2^n)$ because $f(n) \le 7*(2^n)$ for all $n \ge 4$
- You may think of f(n) is the running time of program, n is the input size of the program and g(n) is the approximate upper bound of f(n), i.e. worst case
- The following identities hold for Big Oh notation:

$$O(k f(n)) = O(f(n))$$

$$O(f(n)) + O(g(n)) = O(f(n) + g(n))$$

$$O(f(n)) O(g(n)) = O(f(n) g(n))$$

• Example 1: For matrix addition, we have

O(rows) for i for-loop statement O(rows*cols) for j for loop statement O(rows*cols) for the statement in j for loop

Total : O(rows*cols)

• Example 2 : factorial

```
res=1;
for (i=1; i<=n; i++)
res=res*i
return res
```

each iteration, constant c time, each time we reduce the number n by 1 we have n iterations total time = c * n = O(n)

• Example 3: Three algorithms for computing 1 + 2 + ... n for an integer n > 0

Algorithm A	Algorithm B	Algorithm C			
sum = 0 for i = 1 <i>to</i> n sum = sum + i	<pre>sum = 0 for i = 1 to n { for j = 1 to i sum = sum + 1 }</pre>	sum = n * (n + 1) / 2			

$$O(n)$$
, $O(n^2)$, $O(1)$

• Main Problem: constant numbers and lower terms are eliminated. They may be a very large number.

• Here are the list of common time complexities:

$$O(1)$$
, $O(\log n)$, $O(n)$, $O(n \log n)$, $O(n^2)$, $O(2^n)$ etc

Time	Name n→	1	2	4	8	16	32
1	Constant	1	1	1	1	1	1
log	Logarithmic	0	1	2	3	4	5
n	Linear	1	2	4	8	16	32
n log n	Log linear	0	2	8	24	64	160
n^2	Quadratic	1	4	16	64	256	1024
n^3	Cubic	1	8	64	512	4096	32768
2 ⁿ	Exponential	2	4	16	256	65536	4294967296
n!	Factorial	1	2	24	40326	2E13	4E47

2. Efficiency of Implementations of ADT Bag (as present in Chapter 4 & 5)

• For array-based implementation (ArrayBag)

Add to end of array O(1)

Search array (getIndex()) O(1) best case, O(n) worst case

• For linked implementation (LinkedBag)

Add to the beginning of linked list O(1)

Search an entry

O(1) best case, O(n) worst case

Note: In general, you should consider worst case scenario, so, in the following table, you should focus on slower big-O numbers:

Operation	Fixed-Size Array	Linked
add(newEntry)	O(1)	O(1)
remove()	O(1)	O(1)
remove(anEntry)	O(1), O(n), O(n)	O(1), O(n), O(n)
clear()	O(n)	O(n)
getFrequencyOf(anEntry)	O(n)	O(n)
contains(anEntry)	O(1), O(n), O(n)	O(1), O(n), O(n)
toArray()	O(n)	O(n)
<pre>getCurrentSize(), isEmpty(), isFull()</pre>	O(1)	O(1)