Systems Analysis and Control

Matthew M. Peet Arizona State University

Lecture 6: Calculating the Transfer Function

Introduction

In this Lecture, you will learn: Transfer Functions

- Transfer Function Representation of a System
- State-Space to Transfer Function
- Direct Calculation of Transfer Functions

Block Diagram Algebra

- Modeling in the Frequency Domain
- Reducing Block Diagrams

Previously:

The Laplace Transform of a Signal

Definition: We defined the Laplace transform of a **Signal**.

- Input, $\hat{u} = \mathcal{L}(u)$.
- Output, $\hat{y} = \mathcal{L}(y)$

Theorem 1.

Any bounded, linear, causal, time-invariant system, G, has a **Transfer Function**, \hat{G} , so that if y = Gu, then

$$\hat{y}(s) = \hat{G}(s)\hat{u}(s)$$

There are several ways of finding the Transfer Function.

Transfer Functions

Example: Simple System

State-Space:

$$\dot{x}(t) = -x(t) + u(t)$$

 $y(t) = x(t) - .5u(t)$ $x(0) = 0$

Apply the Laplace transform to the first equation:

$$\mathcal{L}\bigg(\dot{x}(t) = -x(t) + u(t)\bigg) \qquad \text{which gives} \qquad s\hat{x}(s) \qquad = -\hat{x}(s) + \hat{u}(s).$$

Solving for $\hat{x}(s)$, we get

$$(s+1)\hat{x}(s) = \hat{u}(s)$$
 and so $\hat{x}(s) = \frac{1}{s+1}\hat{u}(s)$.

Similarly, the second equation yields:

$$\hat{y}(s) = \hat{x}(s) - .5\hat{u}(s) = \frac{1}{s+1}\hat{u}(s) - .5\hat{u}(s) = \frac{1 - .5(s+1)}{s+1}\hat{u}(s) = \frac{1}{2}\frac{s-1}{s+1}\hat{u}(s)$$

Thus we have the Transfer Function:

$$\hat{G}(s) = \frac{1}{2} \frac{s-1}{s+1}$$

M. Peet

Transfer Functions

Example: Step Response

The Transfer Function provides a convenient way to find the response to inputs.

Step Input Response:
$$\hat{u}(s) = \frac{1}{s}$$

$$\hat{y}(s) = \hat{G}(s)\hat{u}(s) = \frac{1}{2}\frac{s-1}{s+1}\frac{1}{s} = \frac{1}{2}\frac{s-1}{s^2+s}$$
$$= \frac{1}{2}\left(\frac{2}{s+1} - \frac{1}{s}\right)$$

Consulting our table of Laplace Transforms,

$$y(t) = \frac{1}{2}\mathcal{L}^{-1}\frac{2}{s+1} - \frac{1}{2}\mathcal{L}^{-1}\frac{1}{s}$$
$$= e^{-t} - \frac{1}{2}\mathbf{1}(t)$$

Transfer Functions

Example: Sinusoid Response

Sine Function:
$$\hat{u}(s) = \frac{1}{s^2+1}$$

$$\hat{y}(s) = \hat{G}(s)\hat{u}(s) = \frac{1}{2}\frac{s-1}{s+1}\frac{1}{s^2+1}$$

$$= \frac{1}{2}\frac{s-1}{s^3+s^2+s+1}$$

$$= \frac{1}{2}\left(\frac{s}{s^2+1} - \frac{1}{s+1}\right)$$

Consulting our table of Laplace Transforms,

$$y(t) = \frac{1}{2}\cos t - \frac{1}{2}e^{-t}$$

Note that this is the same answer we got by integration in Lecture 4.

Inverted Pendulum Example

Return to the pendulum.

Dynamics:

$$\ddot{\theta}(t) = \frac{Mgl}{2J}\theta(t) + \frac{1}{J}T(t)$$

$$y(t) = \theta(t)$$

For the first equation,

$$s^2 \hat{\theta}(s) = \frac{Mgl}{2J} \hat{\theta}(s) + \frac{1}{J} \hat{T}(s)$$

Second Equation: $\hat{y}(s) = \hat{\theta}(s)$

Transfer Function:

$$\hat{G}(s) = \frac{\hat{y}(s)}{\hat{T}(s)} = \frac{1}{J} \frac{1}{s^2 - \frac{Mgl}{2J}}$$

Inverted Pendulum Example: Impulse Response

Impulse Input: $\hat{u}(s) = 1$

$$\begin{split} \hat{y}(s) &= \hat{G}(s)\hat{u}(s) = \frac{1}{J}\frac{1}{s^2 - \frac{Mgl}{2J}} \\ &= \frac{1}{J}\frac{1}{(s - \sqrt{\frac{Mgl}{2J}})(s + \sqrt{\frac{Mgl}{2J}})} \\ &= \frac{1}{J}\sqrt{\frac{2J}{Mgl}}\left(\frac{1}{s - \sqrt{\frac{Mgl}{2J}}} - \frac{1}{s + \sqrt{\frac{Mgl}{2J}}}\right) \quad \text{Figure: Impulse Respor} \\ g &= l = J = 1, \ M = 2 \end{split}$$

Figure: Impulse Response with

In time-domain:

$$y(t) = \frac{1}{J} \sqrt{\frac{2J}{Mgl}} \left(e^{\sqrt{\frac{Mgl}{2J}}t} - e^{-\sqrt{\frac{Mgl}{2J}}t} \right)$$

Pendulum Accelerates to infinity!

Recall the dynamics:

$$\begin{split} \ddot{z}_1(t) &= -\frac{K_1}{m_c} z_1(t) - \frac{c}{m_c} \dot{z}_1(t) + \frac{K_1}{m_c} z_2(t) + \frac{c}{m_c} \dot{z}_2(t) \\ \ddot{z}_4(t) &= \frac{K_1}{m_w} z_1(t) + \frac{c}{m_w} \dot{z}_1(t) - \left(\frac{K_1}{m_w} + \frac{K_2}{m_w}\right) z_2(t) - \frac{c}{m_w} \dot{z}_2(t) - \frac{K_2}{m_w} u(t) \\ y(t) &= \left[z_2(t) \right] \end{split}$$

Apply the Laplace Transform to the dynamics:

$$\begin{split} s^2 \hat{z}_1(s) &= -\frac{K_1}{m_c} \hat{z}_1(s) - \frac{c}{m_c} s \hat{z}_1(s) + \frac{K_1}{m_c} \hat{z}_2(s) + \frac{c}{m_c} s \hat{z}_2(s) \\ s^2 \hat{z}_2(s) &= \frac{K_1}{m_w} \hat{z}_1(s) + \frac{c}{m_w} s \hat{z}_1(s) - \left(\frac{K_1}{m_w} + \frac{K_2}{m_w}\right) \hat{z}_2(s) - \frac{c}{m_w} s \hat{z}_2(s) - \frac{K_2}{m_w} \hat{u}(s) \\ \hat{y}(s) &= \hat{z}_2(s) \end{split}$$

M. Peet

We isolate the z_1 and z_2 terms:

Which yields

$$\hat{z}_1(s) = \frac{\left(\frac{K_1}{m_c} + \frac{c}{m_c}s\right)}{\left(s^2 + \frac{c}{m_c}s + \frac{K_1}{m_c}\right)} \hat{z}_2(s)$$

$$\hat{z}_2(s) = \frac{\frac{K_1}{m_w} + \frac{c}{m_w}s}{s^2 + \frac{c}{m_c}s + \frac{K_1}{m_c} + \frac{K_2}{m_c}} \hat{z}_1(s) - \frac{\frac{K_2}{m_w}}{s^2 + \frac{c}{m_c}s + \frac{K_1}{m_c} + \frac{K_2}{m_c}} \hat{u}(s)$$

Now we can plug in for \hat{z}_1 and solve for \hat{z}_2 :

$$\begin{split} \hat{z}_2(s) &= \\ \frac{K_2(m_c s^2 + c s + K_1)}{m_c m_w s^4 + c(m_w + m_c) s^3 + (K_1 m_c + K_1 m_w + K_2 m_c) s^2 + c K_2 s + K_1 K_2} \hat{u}(s) \end{split}$$

Compare to the State-Space Representation:

$$\frac{d}{dt} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix} (t) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{K_1}{m_c} & -\frac{c}{m_c} & \frac{K_1}{m_c} & \frac{c}{m_c} \\ 0 & 0 & 0 & 1 \\ \frac{K_1}{m_w} & \frac{c}{m_w} & -\left(\frac{K_1}{m_w} + \frac{K_2}{m_w}\right) & -\frac{c}{m_w} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix} (t) + \begin{bmatrix} 0 \\ 0 \\ 0 \\ -\frac{K_2}{m_w} \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix} (t) + \begin{bmatrix} 0 \\ 0 \end{bmatrix} u(t)$$

Block Diagram Algebra

Series (Cascade) Interconnection

The interconnection of systems can be represent by block diagrams.

Cascade of Systems: Suppose we have two systems: G and H.

Definition 2.

The Cascade or Series interconnection of two systems is

$$y_1 = Gu$$
 $y = Hy_1$

or

$$y = H(G(u))$$

Block Diagram Algebra

Series Connection (Cascade)

Series Interconnection:

- The output of G is the input to H.
- Let $\hat{G}(s)$ and $\hat{H}(s)$ be the transfer functions for G and H.
- Then

$$\hat{y}_1(s) = \hat{G}_1(s)\hat{u}(s)$$
 $\hat{y}(s) = \hat{H}(s)\hat{y}_1(s) = \hat{H}(s)\hat{G}(s)\hat{u}(s)$

ullet The Transfer Function, $\hat{T}(s)$ for the combination of G and H is

$$\hat{T}(s) = \hat{H}(s)\hat{G}(s)$$

Note: The order of the \hat{G} and $\hat{H}!$

Parallel Connection

Parallel Interconnection: Suppose we have two systems: G and H.

Definition 3.

The Parallel interconnection of two systems is

$$y_1 = Gu$$
 $y_2 = Hu$ $y = y_1 + y_2$

or

$$y = H(u) + G(u)$$

Parallel Connection

The Transfer function of a Parallel interconnection:

• Laplace transform:

$$\hat{y}(s) = \hat{y}_1(s) + \hat{y}_2(s) = \hat{G}(s)\hat{u}(s) + \hat{H}(s)\hat{u}(s) = \left(\hat{H}(s) + \hat{G}(s)\right)\hat{u}(s)$$

ullet The Transfer Function, $\hat{T}(s)$ for the parallel interconnection of G and H is

$$\hat{T}(s) = \hat{H}(s) + \hat{G}(s)$$

Lower Feedback Interconnection

Feedback:

• Controller: z = K(u - y) Plant: y = Gz

In the Frequency Domain:

$$\hat{z}(s) = -\hat{K}(s)\hat{y}(s) + \hat{K}(s)\hat{u}(s) \qquad \qquad \hat{y}(s) = \hat{G}(s)\hat{z}(s)$$

SO

$$\hat{y}(s) = \hat{G}(s)\hat{z}(s) = -\hat{G}(s)\hat{K}(s)\hat{y}(s) + \hat{G}(s)\hat{K}(s)\hat{u}(s)$$

Solving for $\hat{y}(s)$,

$$\hat{y}(s) = \frac{\hat{G}(s)\hat{K}(s)}{1 + \hat{G}(s)\hat{K}(s)}\hat{u}(s)$$

Upper Feedback Interconnection (Regulators)

There is another Feedback interconnection

- u is the input
- y is the output

$$\hat{y}(s) = \hat{G}(s)\hat{z}(s)$$
$$\hat{z}(s) = u(s) - \hat{K}(s)\hat{y}(s)$$

Which yields

$$\hat{y}(s) = \hat{G}(s) \left(u(s) - \hat{K}(s)\hat{y}(s) \right) = \hat{G}(s)\hat{u}(s) - \hat{G}(s)\hat{K}(s)\hat{y}(s)$$

hence the Transfer Function is:

$$\hat{y}(s) = \frac{\hat{G}(s)}{1 + \hat{G}(s)\hat{K}(s)}\hat{u}(s).$$

The Effect of Feedback: Impulse Response

Inverted Pendulum Model

Transfer Function

$$\hat{G}(s) = \frac{1}{Js^2 - \frac{Mgl}{2}}$$

Controller: Static Gain: $\hat{K}(s) = K$

Input: Impulse: $\hat{u}(s) = 1$.

Closed Loop: Lower Feedback

$$\hat{y}(s) = \frac{\hat{G}(s)\hat{K}(s)}{1 + \hat{G}(s)\hat{K}(s)}\hat{u}(s) = \frac{\frac{K}{Js^2 - \frac{Mgl}{2}}}{1 + \frac{K}{Js^2 - \frac{Mgl}{2}}} = \frac{K}{Js^2 - \frac{Mgl}{2} + K}$$

First Case:

• If
$$K > \frac{Mgl}{2}$$
, then $K - \frac{Mgl}{2} > 0$, so

$$\hat{y}(s) = \frac{K/J}{s^2 + \left(K/J - \frac{Mgl}{2J}\right)}$$

$$y(t) = \frac{K}{J\sqrt{K/J - \frac{Mgl}{2J}}} \sin \left(\sqrt{K/J - \frac{Mgl}{2J}} t \right)$$

The Effect of Feedback: Impulse Response

Inverted Pendulum Model

Second Case:

• If
$$K < \frac{Mgl}{2}$$
, then $K - \frac{Mgl}{2} < 0$, so

$$\hat{y}(s) = \frac{K}{J} \left(\frac{1}{s - \sqrt{K/J - \frac{Mgl}{2J}}} + \frac{1}{s + \sqrt{K/J - \frac{Mgl}{2J}}} \right)$$
$$y(t) = \frac{K}{J} \left(e^{\sqrt{K/J - \frac{Mgl}{2J}}t} + e^{-\sqrt{K/J - \frac{Mgl}{2J}}t} \right)$$

Important: Value of K determines stability vs. instability

M. Peet Lecture 6: Control Systems

Reduction

Now lets look at how to reduce a more complicated interconnections

Label

- The output from the inner loop z
- ullet The input to the inner loop u

First Close the Inner Loop using the Lower Feedback Interconnection.

$$\hat{z}(s) = \frac{\frac{K_1}{s}}{\frac{K_1}{s} + 1} \hat{u}(s) = \frac{K_1}{K_1 + s} \hat{u}(s)$$

Reduction

We now have a reduced Block Diagram

Again, apply the Lower Feedback Interconnetion:

$$\hat{y}(s) = \frac{\frac{K_1}{s(K_1+s)}}{1 + \frac{K_1}{s(K_1+s)}} \hat{e}(s) = \frac{K_1}{s(K_1+s) + K_1} \hat{e}(s)$$

So the Transfer function is $\hat{T}(s) = \frac{K_1}{s^2 + K_1 s + K_1}$

Summary

What have we learned today?

Transfer Functions

- Transfer Function Representation of a System
- State-Space to Transfer Function
- Direct Calculation of Transfer Functions

Block Diagram Algebra

- Modeling in the Frequency Domain
- Reducing Block Diagrams

Next Lecture: Partial Fraction Expansion