TEST REPORT

Reference No. : WTS16S0962160E

FCC ID : 2AJ2C-ITCKS503

Applicant.....: ITOMA (HONG KONG) Co., Ltd.

Address ... Flat A, 14/F, Fully Industrial Building, No.6, Tsun Yip Lane, Kwun

Tong, Kowloon, HongKong, China

Manufacturer : The same as above

Address..... The same as above

Product Name : Alarm Clock Radio Bluetooth

CKS503BT, CKS503, CKS15030, CKS1503BT, 1503, 503, 503BT,

CKS507BT, CKS2708BT, CKS1512BT, M21, CKS1515BT,

CKS515BT, CKS503-1, CKS503BT-1, 503-1BT, 503-2BT, 503A,

503M, 503N, 503O, 503P, 503Q, 503R, 503S, 503T, 503U, 503V,

503W, 503X, 503Y, 503Z

Brand Name iTOMA

Standards...... FCC CFR47 Part 15 Section 15.247:2016

Date of Receipt sample : Sep. 30, 2016

Date of Issue...... : Nov. 14, 2016

Test Result..... : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033

Fax:+86-755-835524

Tested by:

Zero Zhou / Test Engineer

nilo Zhong / Manager

2 Contents

		Page
1	COVER PAGE	1
2	CONTENTS	2
3	REPORT REVISION HISTORY	4
4	GENERAL INFORMATION	5
	4.1 GENERAL DESCRIPTION OF E.U.T	
	4.3 CHANNEL LIST	
	4.4 TEST MODE	6
	4.5 TEST FACILITY	
5	EQUIPMENT USED DURING TEST	
	5.1 EQUIPMENTS LIST	
	5.2 MEASUREMENT UNCERTAINTY	
6	TEST SUMMARY	
2 3 4	CONDUCTED EMISSION	
	7.1 E.U.T. OPERATION	
	7.3 MEASUREMENT DESCRIPTION	
	7.4 CONDUCTED EMISSION TEST RESULT	
8	RADIATED SPURIOUS EMISSIONS	13
	8.1 EUT OPERATION	13
	8.2 TEST SETUP	
	8.3 SPECTRUM ANALYZER SETUP	
	8.5 SUMMARY OF TEST RESULTS	
9	BAND EDGE MEASUREMENT	
	9.1 Test Procedure	
	9.2 TEST RESULT	21
10	BANDWIDTH MEASUREMENT	27
	10.1 Test Procedure	27
	10.2 TEST RESULT	
11	MAXIMUM PEAK OUTPUT POWER	33
	11.1 Test Procedure	
	11.2 TEST RESULT	
12	HOPPING CHANNEL SEPARATION	
	12.1 TEST PROCEDURE	
12	NUMBER OF HOPPING FREQUENCY	
13		
	13.1 TEST PROCEDURE	
14	DWELL TIME	
1-7	14.1 TEST PROCEDURE	
	14.2 TEST ROCEDORE	

Reference No.: WTS16S0962160E Page 3 of 70

15	ANTE	ENNA REQUIREMENT	53			
16	RF EXPOSURE					
		REQUIREMENTS THE PROCEDURES / LIMIT MPE CALCULATION METHOD	54			
17	PHOT	TOGRAPHS – MODEL CKS503BT TEST SETUP	56			
	17.1 17.2	PHOTOGRAPH – CONDUCTED EMISSION TEST SETUP AT TEST SITE 1#PHOTOGRAPH – RADIATION SPURIOUS EMISSION TEST SETUP				
18	PHO	TOGRAPHS - CONSTRUCTIONAL DETAILS	60			
	18.1 18.2	MODEL CKS503BT -EXTERNAL PHOTOS				

Reference No.: WTS16S0962160E Page 4 of 70

3 Report Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS16S0962160E	Sep. 30, 2016	Oct. 19 – 31, 2016	Nov. 14, 2016	original	-	Valid

Reference No.: WTS16S0962160E Page 5 of 70

4 General Information

4.1 General Description of E.U.T.

Product Name: Alarm Clock Radio Bluetooth

Model No.: CKS503BT, CKS503, CKS1503BT, 1503, 503,

503BT, CKS507BT, CKS2708BT, CKS1512BT, M21,

CKS1515BT, CKS515BT, CKS503-1, CKS503BT-1, 503-1BT, 503-2BT, 503A, 503B, 503C, 503D, 503E, 503F, 503G, 503H, 503I, 503J, 503K, 503L, 503M, 503N, 503O, 503P, 503Q, 503R,

503S, 503T, 503U, 503V, 503W, 503X, 503Y, 503Z

Model Description: Only the model names are different.

Operation Frequency: 2402MHz ~ 2480MHz, 79 channels in total

Type of Modulation: GFSK, Pi/4DQPSK, 8DPSK

The lowest oscillator: 32.768KHz

Antenna installation: PCB printed antenna

Antenna Gain: 0 dBi

4.2 Details of E.U.T.

Technical Data: DC 5V, 1.2A by Adapter

(Adapter: Model DZ006HL050120U INPUT AC 100-

240~50/60Hz, 0.15A)

DC 3V by CR2032(Clock Back Up)

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	_	-

Reference No.: WTS16S0962160E Page 6 of 70

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2441MHz	2480MHz

4.5 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A-1

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A-1, October 15, 2015

• FCC Test Site 1#- Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

5 Equipment Used during Test

5.1 Equipments List

5.1 Equipments List									
Condu	cted Emissions Test S	Site 1#	T	T		T			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.12, 2016	Sep.11, 2017			
2.	LISN	R&S	ENV216	101215	Sep.12, 2016	Sep.11, 2017			
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.12, 2016	Sep.11, 2017			
Condu	cted Emissions Test S	Site 2#							
Item Equipment		Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1.	EMI Test Receiver	R&S ESCI 101155 Sep.12, 2016		Sep.11, 2017					
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.12, 2016	Sep.11, 2017			
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.12, 2016	Sep.11, 2017			
4.	Cable	LARGE	RF300	-	Sep.12, 2016	Sep.11, 2017			
3m Ser	ni-anechoic Chamber	for Radiation Emis	sions Test site	1#					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.15,2016	Sep.14,2017			
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Oct.17, 2016	Oct.16, 2017			
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.09, 2016	Apr.08, 2017			
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.12, 2016	Sep.11, 2017			
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.09, 2016	Apr.08, 2017			
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.09, 2016	Apr.08, 2017			
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Apr.13, 2016	Apr.12, 2017			
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.13, 2016	Apr.12, 2017			
3m Ser	mi-anechoic Chamber	for Radiation Emis	ssions Test site	2#					
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date			
1	Test Receiver	R&S	ESCI	101296	Apr.13, 2016	Apr.12, 2017			
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Apr.09, 2016	Apr.08, 2017			
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Apr.13, 2016	Apr.12, 2017			
4	Cable	HUBER+SUHNER	CBL2	525178	Apr.13, 2016	Apr.12, 2017			

RF Coi	RF Conducted Testing									
Item	Equipment	Manufacturer Model No. Se		Serial No.	Last Calibration Date	Calibration Due Date				
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.15,2016	Sep.14,2017				
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.15,2016	Sep.14,2017				
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.15,2016	Sep.14,2017				

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	$\pm 1 \times 10^{-6}$
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
Radiated Spurious Emissions test	± 5.03 dB (Bilog antenna 30M~1000MHz)
Radiated Spurious Effissions test	± 5.47 dB (Horn antenna 1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS16S0962160E Page 9 of 70

6 Test Summary

Test Items	Test Requirement	Result
	15.205(a)	
Radiated Spurious Emissions	15.209	С
	15.247(d)	
Dand adaa	15.247(d)	
Band edge	15.205(a)	С
Conduct Emission	15.207	С
Bandwidth	15.247(a)(1)	С
Maximum Peak Output Power	15.247(b)(1)	С
Frequency Separation	15.247(a)(1)	С
Number of Hopping Frequency	15.247(a)(1)(iii)	С
Dwell time	15.247(a)(1)(iii)	С
Maximum Permissible Exposure	4 4207/h\/4\	
(Exposure of Humans to RF Fields)	1.1307(b)(1)	С
Antenna Requirement	15.203	С
Note: C=Compliance; NC=Not Comp	liance; NT=Not Tested; N/A=No	t Applicable

Reference No.: WTS16S0962160E Page 10 of 70

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207
Test Method: ANSI C63.10:2013&ANSI C63.4:2014

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

7.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

Conducted Emission Test Result

Neutral line:

Reference No.: WTS16S0962160E Page 13 of 70

8 Radiated Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013&ANSI C63.4:2014

Test Result: PASS
Measurement Distance: 3m

Limit:

Fraguenav	Field Stre	ngth	Field Strength Limit at 3m Measurement Distance					
Frequency (MHz)	uV/m	m Distance uV/m		dBuV/m				
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80				
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40				
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40				
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾				
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾				
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾				
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾				

8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 51.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10:2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber Antenna Elevation Varies From 1 to 4 m Turn Table From 0° to 360° 3m **EUT** 区 1.5m Turn Table **Absorbers** PC Spectrum **AMP** Combining Network System Analyzer

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GHz	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS16S0962160E Page 16 of 70

8.4 Test Procedure

- 1. The EUT is placed on a turntable, which is above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

8.5 Summary of Test Results

Test Frequency: 32.768KHz ~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

	Receiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
GFSK Low Channel									
263.25	20.68	QP	31	1.9	Н	10.58	31.26	46.00	-14.74
263.25	19.24	QP	115	1.1	V	10.58	29.82	46.00	-16.18
4804.00	51.17	PK	179	1.8	V	-1.07	50.10	74.00	-23.90
4804.00	42.37	Ave	179	1.8	V	-1.07	41.30	54.00	-12.70
7206.00	50.01	PK	282	1.9	Н	1.33	51.34	74.00	-22.66
7206.00	41.78	Ave	282	1.9	Н	1.33	43.11	54.00	-10.89
2328.91	46.17	PK	141	1.9	V	-13.15	33.02	74.00	-40.98
2328.91	39.69	Ave	141	1.9	V	-13.15	26.54	54.00	-27.46
2376.71	43.06	PK	96	1.8	Н	-13.18	29.88	74.00	-44.12
2376.71	38.29	Ave	96	1.8	Н	-13.18	25.11	54.00	-28.89
2494.21	42.94	PK	359	1.3	V	-13.22	29.72	74.00	-44.28
2494.21	36.91	Ave	359	1.3	V	-13.22	23.69	54.00	-30.31

Frequency	Receiver		Turn table Angle	RX Antenna		Corrected	Corrected		
	Reading	Detector		Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK Middle Channel								
263.25	20.16	QP	134	2.0	Н	10.58	30.74	46.00	-15.26
263.25	18.19	QP	25	1.7	V	10.58	28.77	46.00	-17.23
4882.00	52.69	PK	8	1.9	V	-0.63	52.06	74.00	-21.94
4882.00	41.93	Ave	8	1.9	V	-0.63	41.30	54.00	-12.70
7323.00	54.50	PK	329	2.0	Н	2.24	56.74	74.00	-17.26
7323.00	44.05	Ave	329	2.0	Н	2.24	46.29	54.00	-7.71
2341.19	45.59	PK	350	1.7	V	-13.21	32.38	74.00	-41.62
2341.19	39.41	Ave	350	1.7	V	-13.21	26.20	54.00	-27.80
2371.68	43.78	PK	243	1.2	Н	-13.16	30.62	74.00	-43.38
2371.68	37.16	Ave	243	1.2	Н	-13.16	24.00	54.00	-30.00
2495.10	42.34	PK	134	1.9	V	-13.11	29.23	74.00	-44.77
2495.10	38.48	Ave	134	1.9	V	-13.11	25.37	54.00	-28.63

Frequency Receiver Reading	Receiver		Turn	RX Antenna		Corrected Factor	Corrected Amplitude	Limit	Margin
	Detector	table Angle	Height	Polar					
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK High Channel								
263.25	20.56	QP	358	1.4	Н	10.58	31.14	46.00	-14.86
263.25	19.46	QP	42	1.4	V	10.58	30.04	46.00	-15.96
4960.00	53.88	PK	293	1.9	V	-0.25	53.63	74.00	-20.37
4960.00	42.34	Ave	293	1.9	V	-0.25	42.09	54.00	-11.91
7440.00	54.30	PK	257	1.7	Н	2.86	57.16	74.00	-16.84
7440.00	42.38	Ave	257	1.7	Н	2.86	45.24	54.00	-8.76
2319.55	46.64	PK	141	1.9	V	-13.21	33.43	74.00	-40.57
2319.55	37.34	Ave	141	1.9	V	-13.21	24.13	54.00	-29.87
2378.74	44.41	PK	2	1.2	Н	-13.13	31.28	74.00	-42.72
2378.74	36.11	Ave	2	1.2	Н	-13.13	22.98	54.00	-31.02
2487.83	42.03	PK	248	1.7	V	-13.09	28.94	74.00	-45.06
2487.83	37.04	Ave	248	1.7	V	-13.09	23.95	54.00	-30.05

Remark: only the worst data(GFSK modulation mode) were reported.

Test Frequency : Above 18GHz

The measurements were more than 20 dB below the limit and not reported

Reference No.: WTS16S0962160E Page 20 of 70

9 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in

the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section

15.209(a) (see Section 15.205(c)).

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see

§15.205(c)).

Test Mode: Transmitting and Hopping

9.1 Test Procedure

 Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

9.2 Test Result

Test plots

Reference No.: WTS16S0962160E Page 27 of 70

10 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Mode: Test in fixing operating frequency at low, Middle, high

channel.

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

10.2 Test Result

Modulation	Test Channel	20 dB Bandwidth	99% Bandwidth	
GFSK	Low	1.102MHz	0.958MHz	
GFSK	Middle	1.102MHz	0.958MHz	
GFSK	High	1.102MHz	0.958MHz	
Pi/4 DQPSK	Low	1.335MHz	1.240MHz	
Pi/4 DQPSK	Middle	1.335MHz	1.240MHz	
Pi/4 DQPSK	High	1.335MHz	1.240MHz	
8DPSK	Low	1.341 MHz	1.240MHz	
8DPSK	Middle	1.341 MHz	1.240MHz	
8DPSK	High	1.341 MHz	1.240MHz	

Reference No.: WTS16S0962160E Page 33 of 70

11 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz

band: 0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 0.125watts (20.97 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

11.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 3 MHz. VBW =3 MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Result

	Dete	Pea			
Test Mode	Data Rate	CH00	CH39	CH78	Limit (dBm)
GFSK	1Mbps	-5.71	-5.89	-5.31	20.97
4*π4DQPSK	2Mbps	-6.16	-6.27	-5.61	20.97
8DPSK	3Mbps	-6.11	-6.31	-5.73	20.97

GFSK High Channel

Pi/4 DQPSK High Channel

8DPSK High Channel

Reference No.: WTS16S0962160E Page 39 of 70

12 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

12.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 30KHz. VBW = 100KHz , Span = 3MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Result

Modulation	Test Channel	Separation (MHz)	Result	
GFSK	Low	1 MHz	PASS	
GFSK	Middle	1 MHz	PASS	
GFSK	High	1 MHz	PASS	
Pi/4 DQPSK	Low	1 MHz	PASS	
Pi/4 DQPSK	Middle	1 MHz	PASS	
Pi/4 DQPSK	High	1 MHz	PASS	
8DPSK	Low	1 MHz	PASS	
8DPSK	Middle	1 MHz	PASS	
8DPSK High		1 MHz	PASS	

Reference No.: WTS16S0962160E Page 45 of 70

13 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.483GHz. Sweep=auto;

13.2 Test Result

Test Plots: 79 Channels in total

Reference No.: WTS16S0962160E Page 47 of 70

14 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided

that a minimum of 15 channels are used.

Test Mode: Test in hopping transmitting operating mode.

14.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set spectrum analyzer span = 0. Centred on a hopping channel;
- 3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

14.2 Test Result

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)			
DH5	1600/79/6*0.4*79*(MkrDelta)/1000			
DH3	1600/79/4*0.4*79*(MkrDelta)/1000			
DH1 1600/79/2*0.4*79*(MkrDelta)/1000				
Remark: Mkr Delta is once pulse time. Only the worst data(DH5)				

Remark: Mkr Delta is once pulse time. Only the worst data(DH5) were show as follow.

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
		Low	2.944	0.314	0.4
GFSK	DH5	middle	2.944	0.314	0.4
		High	2.944	0.314	0.4
Pi/4DQPSK		Low	2.944	0.314	0.4
	DH5	middle	2.944	0.314	0.4
		High	2.944	0.314	0.4
8DPSK		Low	2.944	0.314	0.4
	DH5	middle	2.944	0.314	0.4
		High	2.944	0.314	0.4

8DPSK DH5 High Channel

15 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has one PCB Printed Antenna, the gain is 0 dBi. meets the requirements of FCC 15.203.

Reference No.: WTS16S0962160E Page 54 of 70

16 RF Exposure

Test Requirement: FCC Part 1.1307

Evaluation Method: FCC Part 2.1091 & KDB 447498 D01 General RF Exposure Guidance v06

16.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

16.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS16S0962160E Page 55 of 70

16.3 MPE Calculation Method

$$\mathbf{S} = \frac{P \times G}{4 \times \pi \times R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = output power to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

From the peak EUT RF output power, the minimum mobile separation distance, R=20cm, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm²)	Limit of Power Density (mW/cm²)	Result
0.00	1.000	-5.31	0.294	0.0000585	1	Complianc e

17 Photographs – Model CKS503BT Test Setup

17.1 Photograph - Conducted Emission Test Setup at Test Site 1#

17.2 Photograph – Radiation Spurious Emission Test Setup

30MHz-1GHz at Test Site 2#

Above 1GHz at Test Site 1#

Reference No.: WTS16S0962160E Page 59 of 70

18 Photographs - Constructional Details

18.1 Model CKS503BT -External Photos

Reference No.: WTS16S0962160E Page 63 of 70

Reference No.: WTS16S0962160E Page 64 of 70

18.2 Model CKS503BT -Internal Photos

Reference No.: WTS16S0962160E Page 66 of 70

Reference No.: WTS16S0962160E Page 67 of 70

Reference No.: WTS16S0962160E Page 68 of 70

