Statistics comparing one dependent and one

Module 14:

independent variable

Module 14: Learning Outcomes

- Define key terms in statistics that will help you differentiate between certain statistical test
- Differentiate between a parametric and non-parametric test, and identify the situation in which you would use one or the other
- Be able to use a t-test and Wilcoxon rank sum test to compare two means
- Be able to use ANOVA and Kruskall-wallis tests to compare multiple means
- Be able to use Pearson correlation and Kendall correlation tests to correlate two continuous variables

How many variables are we comparing?

- Single variable (Module 14): comparing one response to one predictor
 - Eg. antibiotic use and Shannon measures
- Multivariable (Module 15): comparing multiple responses and predictors
 - Eg. antibiotic use and body site to Shannon and Observed features

Defining our variable

Independent variable
 ("predictor")= "x axis",
 differs by treatment

Dependent variable ("response") = "y axis", responds to treatment

Shannon diversity measure

Species	Frequency	p _i	In (p _i)	p; * In (p;)
Α	40	0.38	-0.97	-0.37
В	20	0.19	-1.66	-0.32
С	15	0.14	-1.95	-0.28
D	8	0.08	-2.57	-0.20
Е	22	0.21	-1.56	-0.33
L	1		н	1.49

Types of Predictors

 Categorical: discrete variables

 Continuous: increasing/decreas ing numerical values

Continuous

Age, height, distance, temperature...

Types of Responses

Parametric distribution: follows a normal distribution

Non-parametric distribution: does not follow a normal distribution

What is a normal distribution?

"Distribution" is the spread of data points across a set of variables

Many distributions in nature are "Normal" (Gaussian)
You can infer things from normally distributed data because there is an expected spread of values, given the **parameters**, mean and standard deviation.

However, not all data is "normally distributed"

What is a non-normal distribution?

Data can be skewed or evenly distributed

For example, microbiome data is generally right-skewed: there are lots of rare things, and very few abundant things

This has statistical implications, which we will see in our R code

To fix non-normal data you can:

Transform data (only works with some data)

e.g. log-transform

Use a non-parametric test

Decision tree then follows...

Statistics in R

- Plenty of basic functions to calculate statistics
- In this module, we will quickly review general statistical concepts and learn how to apply them

statistical_test(x, y) or statistical_test(y ~ x)

Types of tests for one independent and one dependent variable

	CATEGORICAL independent variable (predictor)	CONTINUOUS independent variable (predictor)
Continuous dependent variable (response)	T-test (parametric) ANOVA (parametric, 2+ groups)	Pearson's product-moment correlation (parametric)
	Wilcoxon/Mann-Whitney test (non-parametric) Kruskall-wallis test (non-parametric, 2+groups)	Spearman's rank correlation (non-parametric)

T-test

- •Compares two means
- Typically visualized by boxplots
- Can be paired or unpaired

T-test

```
t.test( Y \sim X, data = dat)
```

t.test(dat\$Y ~ dat\$X)

- dat\$X = c('A', 'A', 'B', 'B', 'B', 'A')
- datY = c(12, 13, 40, 51, 43, 10)

•t.test(A_vec, B_vec)

- $A_{\text{vec}} = c(12,13,10)$
- $B_{\text{vec}} = c(40,51,43)$

Types of tests for one independent and one dependent variable

	CATEGORICAL independent variable	CONTINUOUS independent variable
Continuous dependent variable	T-test (parametric) ANOVA (parametric, 2+ groups)	Pearson's product-moment correlation (parametric)
	Wilcoxon/Mann-Whitney test (non-parametric) Kruskall-wallis test (non-parametric, 2+groups)	Spearman's rank correlation (non-parametric)

T-test assumptions

- •The data are continuous.
- •The sample data have been randomly sampled from a population.
- •There is homogeneity of variance (i.e., the variability of the data in each group is similar).
- The distribution is approximately normal.
 - The t-test is a PARAMETRIC test
 - PARA = parameter-based; mean and standard deviation

Wilcoxon rank test (or Mann-Whitney test)

- Compares two groups to see which is larger
- •Alternative to t-test: uses (sums of) ranks rather than actual values to determine whether one group is "higher" than the other

Wilcoxon rank test (or Mann-Whitney test)

- Compares two groups to see which is larger
- •Alternative to t-test: uses (sums of) ranks rather than actual values to determine whether one group is "higher" than the other

Wilcoxon rank test (or Mann-Whitney test)

```
wilcox.test( Y ~ X, data= dat )
wilcox.test( dat$Y ~ dat$X )
```

wilcox.test(A_vec, B_vec)

Types of tests for one independent and one dependent variable

	CATEGORICAL independent variable	CONTINUOUS independent variable
Continuous dependent variable	T-test (parametric) ANOVA (parametric, 2+ groups)	Pearson's product-moment correlation (parametric)
	Wilcoxon/Mann-Whitney test (non-parametric) Kruskall-wallis test (non-parametric, 2+groups)	Spearman's rank correlation (non-parametric)

- Compares means across 2+ groups (in one variable)
- Mathematically identical to a t-test when there are only 2 groups

* Tells you whether ANY group is different; then you must follow-up with Tukey post-hoc test to see WHICH group(s) are different ANOVAs look at whether within-group variance is smaller than between group variance

ANOVA

Between-group variance

- (1) Set up model
 - Model <- Im(Y ~ X, data = dat)</p>
- (2) Calculate ANOVA and summarise
 - model_aov <- aov(Model)</pre>
 - summary(model aov)
- (3) Tukey Honest Significant Differences test to identify different groups
 - TukeyHSD(model_aov)

Types of tests for one independent and one dependent variable

	CATEGORICAL independent variable	CONTINUOUS independent variable
Continuous dependent variable	T-test (parametric) ANOVA (parametric, 2+ groups)	Pearson's product-moment correlation (parametric)
	Wilcoxon/Mann-Whitney test (non-parametric) Kruskall-wallis test (non-parametric, 2+groups)	Spearman's rank correlation (non-parametric)

Kruskall-Wallis test

- •Compares means across 2+ groups
- Non-parametric alternative to ANOVA; similar to Wilcoxon test, where it sums ranks by group

Types of tests for one independent and one dependent variable

	CATEGORICAL independent variable	CONTINUOUS independent variable
Continuous dependent variable	T-test (parametric) ANOVA (parametric, 2+ groups)	Pearson's product-moment correlation (parametric)
	Wilcoxon/Mann-Whitney test (non-parametric) Kruskall-wallis test (non-parametric, 2+groups)	Spearman's rank correlation (non-parametric)

Pearson's product-moment correlation

Measures degree of correlation between two

continuous variables

Pearson's product-moment correlation

 Measures degree of correlation between two continuous variables

- •cor.test($Y \sim X$, data = dat)
- •cor.test(Y ~ X, data = dat, method= "pearson")

Pearson's Assumptions

 X and Y variables are normally distributed

•Data is homoscedastic (the error is evenly distributed along the line; one side is not trumpet-shaped

•Relationship is LINEAR

Pearson's Assumptions may not apply to our data

- Measures degree of correlation between two continuous variables
- No assumptions about normality, skedasticity, or linearity

•cor.test(Y ~ X, data = dat, method= "spearman")

English (mark)	Maths (mark)	Rank (English)
56	66	9
75	70	3
45	40	10
71	60	4
62	65	6
64	56	5
58	59	8
80	77	1
76	67	2
61	63	7

English (mark)	Maths (mark)	Rank (English)	Rank (maths)	d	d ²
56	66	9	4	5	25
75	70	3	2	1	1
45	40	10	10	0	0
71	60	4	7	3	9
62	65	6	5	1	1
64	56	5	9	4	16
58	59	8	8	0	0
80	77	1	1	0	0
76	67	2	3	1	1
61	63	7	6	1	1

English (mark)	Maths (mark)	Rank (English)	Rank (maths)	d	d ²
56	66	9	4	5	25
75	70	3	2	1	1
45	40	10	10	0	0
71	60	4	7	3	9
62	65	6	5	1	1
64	56	5	9	4	16
58	59	8	8	0	0
80	77	1	1	0	0
76	67	2	3	1	1
61	63	7	6	1	1

Sums, then compares to a known threshold

Spearman's rank correlation can handle both linear and non-linear correlations

Why do we ever use parametric tests if their assumptions suck?

Why do we ever use parametric tests if their assumptions suck?

- If assumptions are met, parametric tests are more powerful (they are more likely to get significant results)
 - Because we can "infer" information from the data's assumed distribution
- If assumptions are NOT met, non-parametric tests can be more powerful under certain conditions

SUMMARY

	CATEGORICAL independent variable	Ones 1 So- Adam Domesto Value of the state	CONTINUOUS independent variable
Continuous dependent variable	PARAMETRIC: t.test lm + aov + summary + TukeyHSD		PARAMETRIC cor.test(, method= "pearson")
	NON-PARAMETRIC: wilcox.test kruskal.test		NON-PARAMETRIC cor.test(,method= "spearman")