Uvod u aritmetiku eliptičkih krivulja - Zadatci 3.

- 1. Pokažite da je $E: y^2 = x^3 + x + 1$ eliptička krivulja nad konačnim poljem \mathbf{F}_p za proste brojeve p = 3, 7, 11, 13 i odredite grupe $E(\mathbf{F}_p)$ (skup rješenja i strukturu grupe).
- 2. Za eliptičku krivulju $E: y^2 = x^3 + x$ odredite E[4] i zbrajanje u toj grupi. Izaberite bazu u E[4] i u njoj odredite $\rho_4(G)$, gdje je $G:=Gal(\mathbf{Q}(E[4])/\mathbf{Q})$.

Uputa: Pogledajte stranicu 192. u [S-T].

- 3. Odredite $Gal(\mathbf{Q}(E[2])/\mathbf{Q})$ i $\rho_2(G)$ (uz neki izbor baze od E[2]) ako je E zadana jednadžbom
- a) $y^2 = x^3 + x 2$.
- b) $y^2 = x^3 x 2$.
- a) $y^2 = x^3 3x + 1$.
- 4. Dokažite da su $E_1: y^2 = x^3 + Ax$ i $E_2: y^2 = x^3 + B$ eliptičke krivulje s kompleksnim množenjem za sve cijele brojeve $A, B \neq 0$. Odredite $E_1[2]$ i $Gal(\mathbf{Q}(E_1[2])/\mathbf{Q})$ u ovisnosti o A, te $E_2[2]$ i $Gal(\mathbf{Q}(E_2[2])/\mathbf{Q})$ u ovisnosti o B.
- 5. Neka je $E: y^2 = x^3 + x$ eliptička krivulja, neka je $K_n := \mathbf{Q}(E[n])$ za $n \ge 2$, i neka je $G := Gal(K_n)/\mathbf{Q}$ i $H := Gal(K_n)/\mathbf{Q}(i)$.

Neka τ označava kompleksno konjugiranje. Dokažite:

- (i) $\tau \in G$ i $\tau \notin H$.
- (ii) Svaki element σ iz G ili je iz H ili se jednoznačno predočuje u obliku $\sigma = s\tau$, za neki $s \in H$.
- (iii) Za svaki $s \in H$ vrijedi $s\tau = \tau s^{-1}$.
- (iv) G je abelova ako i samo ako je $s^2 = id$ za sve $s \in H$ (tu id označava identitetu).

Uputa. Vidi [S-T, zad. 6.17] i lekciju 19.