1. Metody rozwiązywania układów równań liniowych

1.1. Metoda Jacobiego

Metoda Jacobiego jest to metodą iteracyjną rozwiązywania układu równań liniowych. Metody te polegają na konstruowaniu ciągu przybliżeń wektora rozwiązań $x^{(0)}, x^{(1)} \dots x^{(i)}$ określonego wzorem:

$$x^{(i+1)} = Mx^{(i)} + w (1)$$

gdzie: i = 0,1 ..., M – macierz kwadratowa, w – wektor.

Rozważmy układ równań:

$$Ax = b (2)$$

Macierz A rozkładamy na 3 macierze:

$$A = L + D + U \tag{3}$$

gdzie: L – macierz trójkątna dolna, D – macierz diagonalna, U – macierz trójkątna górna.

Wstawiając równanie (3) do (2) możemy przekształcić kolejno:

$$(L+D+U)x = b (4)$$

$$Dx = -(L+U)x + b (5)$$

$$x = -D^{-1}(L+U)x + D^{-1}b$$
(6)

Ciąg przybliżeń rozwiązania przyjmuje następującą postać:

$$x^{(i+1)} = -D^{-1}(L+U)x^{(i)} + D^{-1}b$$
(7)

Metoda Jacobiego jest zbieżna dla macierzy nieredukowalnych i diagonalnie słabo dominujących.

Macierz $A=(a_{ij})$ nazywamy diagonalnie słabo dominującą jeśli dla i=0,1...n spełniane są warunki:

$$|a_{ii}| \ge \sum_{\substack{j=0\\j\neq i}}^{n} |a_{ij}| \tag{8}$$

oraz spełniony jest co najmniej jeden warunek dla dowolnego i:

$$|a_{ii}| > \sum_{\substack{j=0\\j\neq i}}^{n} |a_{ij}| \tag{9}$$

Przykład 1

Uklad rownan:				
8	2	2	4	5
2	5	1	1	-4
0	3	4	1	2
-1	-2	1	5	7
Macierz L+U:				
0	2	2	4	
2	0	1	1	
0	3	0	1	
-1	-2	1	0	
Macierz diagonalna odwrotna (Dodw):				
0.125		0	0	
0	0.2	0	0	
0	0	0.25	0	
0	0	0	0.2	
Rozwiazanie po 5 iteracjach: x[0]: 0.28535 x[1]: -1.2878				
x[2]: 1.28868				
	.692447			

Zadanie obowiązkowe:

Zad 1. Napisz program, który będzie rozwiązywał układ n równań liniowych o n niewiadomych metodą Jacobiego. Wymagania:

- Dane pobierane są z pliku.
- Program wypisze układ równań (macierz rozszerzoną), sprawdzi czy macierz jest diagonalnie słabo dominująca i wyświetli stosowny komunikat.
- Warunkiem zatrzymania algorytmu jest podana przez użytkownika ilość iteracji.
- Program wypisze macierze: L + U oraz D^{-1} .
- Program wypisze ilość iteracji i rozwiązanie układu równań.

Zad 2. Zaimplementować warunek stopu w postaci:

$$\left|x^{(i+1)} - x^{(i)}\right| < \varepsilon$$

Wymagania:

- Warunek musi być spełniony dla każdego x.
- Ustalić maksymalną ilość iteracji, aby program w razie nie znalezienia rozwiązania z zadaną dokładnością nie liczył w nieskończoność.
- Program wypisze przyjętą wartość błędu ε , ilość wykonanych iteracji, rozwiązanie układu równań i wartość błędu dla każdego x. Wykonać obliczenia dla $\varepsilon = 0.001$ oraz $\varepsilon = 0.0001$.

Na UPEL należy przesłać sprawozdanie zawierające wyniki obliczeń z zad1 i zad2 oraz plik *.cpp (10p)