Quantitative Metrics for Requirements Quality a posteriori

Tatiana Chuprina and Vincent Aravantinos
Fortiss GmbH
Munich, Germany
emails: {chuprina, aravantinos}@fortiss.org

Abstract—The question of "how to measure the quality of requirements?" remains problematic due to its subjectivity.

In this paper we present various quantitative metrics for assessing the quality of requirements assuming a relation between requirements quality and maturity of requirements, i.e., number of changes to be done in requirements document. We consider the number of corrections done in a requirements document within the requirements engineering (RE) and implementation stages; as well as their influence on the time for development process.

Importantly, the proposed metrics are usable to assess the quality of requirements only after project completion. This method is a good tool for empirical studies.

I. INTRODUCTION

A. Problem

The question about quality of requirements remains problematic [1]: "How to measure the quality of requirements?" is a subjective question. There are only few quantitative metrics to measure the quality of requirements. All of them are looking at intrinsic characteristic of requirements and, therefore, depend on their statement.

B. Contribution

We present various quantitative metrics for assessing the quality of requirements assuming a relation between the requirements quality and changes of the requirements. Comparing with existing approaches, discussed in section section II, our method considers a relation between quality of requirements and the resulted product measuring number of changes and time-consumption during RE and implementation phases. We consider the corrections in requirements document done within requirements engineering (RE) and implementation stages [2], and their influence on the time for development process. The suggested metrics take into account a maturity of the requirements and reflects its leverage on the product, resulting in a number from 0 (bad) - 1 (good) for a quality assessment. A developed system, which has passed an acceptance test by a customer, is considered as a baseline for the resulting product. Importantly, the proposed metrics are usable to assess the quality of requirements only after project completion.

The presented approach can be considered for empirical studies. The presented metrics are planed for measuring the quality of requirements in our current study regarding requirements categorization.

II. RELATED WORK

A. What does "quality" mean?

Despite multiple publications about requirements quality and its assessment, the term "quality" is still subjective [3], [4]. Industry standards [5] specify characteristics and criteria, which presumed effective for improving requirements quality, e.g, completeness, unambiguity and others. Additionally, the research community provided several types of quality definition and methods for its assessment. For example, Lamsweerde provides a defect-based checklist to inspect requirements for possible flaws and errors in [6]; Pohl proposes a framework defining dimensions of quality: the specification dimension, the representation dimension, the agreement dimension [7]. This approach purports an uncertain assessment due to impreciseness of the considered attributes, such as requirements adequacy or pertinence. Instead of such level of granularity for requirements consideration, our method take into account a requirements artifact (RA) in general.

Another approach implies syntactic check of the requirements text for improving its comprehension, correctness, ambiguity and other akin characteristics e.g. [8], [9]. All these metrics apply intrinsic inspection of requirements and assess qualitatively the requirements' statement. Oppositely to them, our metrics provide a quantitative analyze of a whole document with the requirements.

In comparison with described above methods, activity-based quality models shift their approach from inherent properties to the context of process, and propose a meta quality model [10], [11]. Furthermore, the "quality question" also turns to a consideration of how the requirements quality impacts project success and the relation between them in scientific community [12], [13], so as among practitioners [14]. In contrast to this approach, our metrics grant a relative simplicity level and provide a precision with cardinal number in assessment.

Chain of studies about relation between quality and project outcomes, [15], [13], [16] triggers our research to the proposed metrics. Scientific papers investigating maturity of requirements [17], [2] and their complexity [18] give a base for idea of transforming a relation between requirements quality and number of changes in requirements document into quantitative measurement.

The presented in this paper metrics consider generally requirements artifact for its maturity and a process of adjusting the requirements at RE and implementation phases, in a quantitative way, a posteriori.

III. METRICS

•

IV. CONCLUSION

•

REFERENCES

- [1] D. M. Fernández, S. Wagner, M. Kalinowski, M. Felderer, P. Mafra, A. Vetro, T. Conte, M. Christiansson, D. Greer, C. Lassenius, T. Männistö, M. Nayabi, M. Oivo, B. Penzenstadler, D. Pfahl, R. Prikladnicki, G. Ruhe, A. Schekelmann, S. Sen, R. O. Spínola, A. Tuzcu, J. L. de la Vara, and R. Wieringa, "Naming the pain in requirements engineering: Contemporary problems, causes, and effects in practice," CoRR, vol. abs/1611.10288, 2016. [Online]. Available: http://arxiv.org/abs/1611.10288
- [2] B. Farbey, "Software quality metrics: considerations about requirements and requirement specifications," *Information and Software Technology*, vol. 32, no. 1, pp. 60 – 64, 1990, special Issue on Software Quality Assurance. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/095058499090047U
- [3] J. Mund, "Measurement-based quality assessment of requirements specifications for software-intensive systems," Ph.D. dissertation, Technical University Munich, 2017.
- [4] H. Femmer, "Requirements engineering artifact quality: Definition and control," Ph.D. dissertation, Technical University Munich, 2017.
- [5] "Iso/iec/ieee international standard systems and software engineering life cycle processes -requirements engineering," ISO/IEC/IEEE 29148:2011(E), pp. 1–94, Dec 2011.
- [6] A. van Lamsweerde, Requirements Engineering: From System Goals to UML Models to Software Specifications, 1st ed. Wiley Publishing, 2009.
- [7] K. Pohl, "The three dimensions of requirements engineering: A framework and its applications," *Information Systems*, vol. 19, no. 3, pp. 243 258, 1994, fifth International Conference on Advanced Information Systems Engineering (CAISE '93). [Online]. Available: http://www.sciencedirect.com/science/article/pii/0306437994900442
- [8] A. Ferrari, G. Lipari, S. Gnesi, and G. O Spagnolo, "Pragmatic ambiguity detection in natural language requirements," in 2014 IEEE 1st International Workshop on Artificial Intelligence for Requirements Engineering, AIRE 2014 - Proceedings, 08 2014.
- [9] A New Quality Model for Natural Language Requirements Specifications, 2006.
- [10] S. Wagner, K. Lochmann, L. Heinemann, M. Kläs, A. Trendowicz, R. Plösch, A. Seidi, A. Goeb, and J. Streit, "The quamoco product quality modelling and assessment approach," in 2012 34th International Conference on Software Engineering (ICSE), June 2012, pp. 1133–1142.
- [11] H. Femmer, J. Mund, and D. M. Fernández, "It's the activities, stupid!: A new perspective on re quality," in *Proceedings of the Second International Workshop on Requirements Engineering and Testing*, ser. RET '15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 13–19. [Online]. Available: http://dl.acm.org/citation.cfm?id=2820704.2820710
- [12] K. E. Emam and N. H. Madhavji, "Measuring the success of requirements engineering processes," in *Second IEEE International Symposium on Requirements Engineering, March* 27 - 29, 1995, York, England. IEEE Computer Society, 1995, pp. 204–213. [Online]. Available: https://doi.org/10.1109/ISRE.1995.512562
- [13] M. I. Kamata and T. Tamai, "How does requirements quality relate to project success or failure?" in 15th IEEE International Requirements Engineering Conference (RE 2007), Oct 2007, pp. 69–78.
- [14] J. Beatty and C. Hokanson, "Project value delivered. the true measure of requirements quality," The Magazine for RE Professionals from IREB, Tech. Rep., 2014.

- [15] J. M. Verner, K. Cox, S. J. Bleistein, and N. Cerpa, "Requirements engineering and software project success: an industrial survey in australia and the U.S," *Australasian J. of Inf. Systems*, vol. 13, no. 1, 2005. [Online]. Available: http://journal.acs.org.au/index.php/ajis/ article/view/73
- [16] R. Ferrari, I. Noorwali, and N. H. Madhavji, "Towards a theory on the interaction between requirements engineering and systems architecting," in 2015 IEEE Fifth International Workshop on Empirical Requirements Engineering (EmpiRE), Aug 2015, pp. 17–20.
- [17] V. R. Basili and D. M. Weiss, "Evaluation of a software requirements document by analysis of change data," in *Proceedings of the 5th International Conference on Software Engineering*, ser. ICSE '81. Piscataway, NJ, USA: IEEE Press, 1981, pp. 314–323. [Online]. Available: http://dl.acm.org/citation.cfm?id=800078.802544
- [18] V. Antinyan, M. Staron, A. Sandberg, and J. Hansson, "A complexity measure for textual requirements," in 2016 Joint Conference of the International Workshop on Software Measurement and the International Conference on Software Process and Product Measurement (IWSM-MENSURA), Oct 2016, pp. 148–158.