Лабораторная работа № 1

Описание модели.

Полнодоступная двухсервисная модель Эрланга

с одинаковыми интенсивностями обслуживания

Исследуется сота сети связи емкостью C. Пусть пользователям сети предоставляются услуги двух типов. Запросы в виде двух пуассоновский потоков (ПП) с интенсивностями λ_1, λ_2 поступают в соту. Среднее время обслуживания запросов на предоставление услуг каждого типа μ_1^{-1}, μ_2^{-1} соответственно. Исследуются основные характеристики модели для случая $\mu_1 = \mu_2 = \mu$.

В классификации Башарина-Кендалла $MM \mid MM \mid C \mid 0$.

Таблица 1.1. Основные обозначения.

С – пиковая пропускная способность соты;

 λ_1, λ_2 — интенсивность поступления запросов на предоставление услуги 1, 2-го типа [запросов/ед.вр.];

 μ^{-1} — среднее время обслуживания запроса на предоставление услуги 1, 2-го типа [запросов/ед.вр.];

 $ho_1,
ho_2$ — интенсивность предложенной нагрузки, создаваемой запросами на предоставление услуги 1, 2-го типа;

X(t) — число запросов, обслуживаемых в системе в момент времени $t,\ t\geq 0$ (случайный процесс (СП), описывающий функционирование системы в момент времени $t,\ t\geq 0$);

X – пространство состояний системы;

n – число обслуживаемых в системе запросов;

 B_1, B_2 — множество блокировок запросов на предоставление услуги 1, 2-го типа;

 S_1, S_2 — множество приема запросов на предоставление услуги 1, 2-го типа.

Схема модели (рис. 1.1):

Рис. 1.1. Схема полнодоступной двухсервисной модели Эрланга с одинаковыми интенсивностями обслуживания

Пространство состояний системы (рис. 1.2):

$$X = \{0, ..., C\}, |X| = C + 1.$$
 (1.1)

Рис. 1.2. Диаграмма интенсивностей переходов для полнодоступной двухсервисной модели Эрланга с одинаковыми интенсивностями обслуживания

Множество блокировок запросов на предоставление услуги i-типа, i = 1, 2:

$$\mathbf{B}_1 = \mathbf{B}_2 = \{C\}. \tag{1.2}$$

Множество приема запросов на предоставление услуги i-типа, i = 1,2:

$$S_i = \overline{B_i} = X \setminus B_i = \{0, \dots, C - 1\}. \tag{1.3}$$

Система уравнений глобального баланса (СУГБ):

$$\begin{cases}
(\lambda_{1} + \lambda_{2}) p_{0} = \mu p_{1}, \\
(\lambda_{1} + \lambda_{2} + n\mu) p_{n} = (\lambda_{1} + \lambda_{2}) p_{n-1} + (n+1)\mu p_{n+1}, n = \overline{1, C-1}, \\
C\mu p_{C} = (\lambda_{1} + \lambda_{2}) p_{C-1}.
\end{cases} (1.4)$$

Система уравнений локального баланса (СУЛБ):

$$(\lambda_1 + \lambda_2) p_{n-1} = n\mu p_n, \quad n = \overline{1, C}. \tag{1.5}$$

Стационарное распределение вероятностей состояний системы:

$$p_{n} = \left(\sum_{i=0}^{C} \frac{(\rho_{1} + \rho_{2})^{i}}{i!}\right)^{-1} \cdot \frac{(\rho_{1} + \rho_{2})^{n}}{n!}, \quad n = \overline{0, C}.$$
 (1.6)

Доказательство:

Используя СУЛБ, найдем стационарное распределение вероятностей состояний системы p_n , $n = \overline{1,C}$:

$$p_n = p_{n-1} \frac{\lambda_1 + \lambda_2}{n\mu} = p_{n-1} \frac{\rho_1 + \rho_2}{n} = \dots = p_0 \frac{(\rho_1 + \rho_2)^n}{n!}, \ n = \overline{1, C}.$$

Для нахождения вероятности p_0 воспользуемся условием нормировки $\sum_{n=0}^{C} p_n = 1$:

$$p_0 = \left(\sum_{n=0}^{C} \frac{(\rho_1 + \rho_2)^n}{n!}\right)^{-1}.$$

Основные вероятностные характеристики (ВХ) модели:

• Вероятность блокировки по времени E_i запроса на предоставление услуги i-типа, i = 1, 2

$$E_1 = E_2 = E = \sum_{n \in B_i} p_n = p_C;$$
 (1.7)

• Вероятность блокировки по вызовам B_i запроса на предоставление услуги i-типа, i = 1, 2

$$B_i = \frac{\lambda_i}{\lambda_1 + \lambda_2} E,\tag{1.8}$$

где $\frac{\lambda_i}{\lambda_1 + \lambda_2}$ — вероятность того, что поступит запрос на предоставление услуги i -типа;

- Вероятность блокировки по нагрузке C_i запроса на предоставление услуги i-типа, i = 1, 2 : $C_1 = C_2 = E$; (1.9)
- Среднее число \bar{N} обслуживаемых в системе запросов:

$$\bar{N} = \sum_{n \in Y} n p_n \ . \tag{1.10}$$

Задание.

- 1. Описать пошагово алгоритм расчета вероятностных характеристик модели (вероятности блокировки запроса каждого типа, среднего числа запросов в системе).
- 2. Составить программу, реализующую расчет распределения вероятностей, вероятности блокировки, среднего числа обслуживаемых запросов для любых значений исходных данных. Программа должна выводить на экран:
 - значение распределения вероятностей,
 - значения вероятностей блокировки,
 - значение среднего числа заявок.
- 3. Построить график зависимости вероятности блокировки от интенсивности поступления запросов на обслуживание.
- 4. Построить график зависимости среднего числа обслуживаемых запросов от интенсивности поступления запросов на предоставление услуги.