

第十一届中国数据库技术大会

DATABASE TECHNOLOGY CONFERENCE CHINA 2020

架构革新 高效可控

↓ 北京国际会议中心 ┃ 0 2020/12/21-12/23

国家地理信息公共服务平台天地图 GaussDB(for Mongo)应用实践

张红平 | 国家基础地理信息中心 2020.11.21 北京

- 01 国家地理信息公共服务平台天地图介绍
- 02 地理信息服务GaussDB(for Mongo)应用与定制
- 03 自然资源行业数据库需求分析

天地图简介

地理信息公共服务平台天地图是网络化地理信息 共享与服务门户,其目的是将我国的国家、省、市三 级地理信息资源按照"在线协同"的理念集成、汇聚 起来,通过统一的门户网站为用户提供权威、标准的 在线地理信息服务。

主要特点

均等化、普惠性向社会提供政府在线地理信息服务,服务自然资源管理与社会经济发展

权威性政府部门主导建设,数据来源权威,国界线、地名等内容代表国家立场

开放性

采用国家统一空间坐标系和标准服务接口,技术 门槛低,便于开发利用

典型案例分享

国家数据网数据地图

第二次全国污染 源普查信息系统

中国地震台网 速报系统

国家海事交通管理 信息服务平台

第三次全国国土调查

国家突发事件 预警信息网

中央气象台·台风网

中国世界文 化遗产分布

气象数据 综合展示

基于天地图的互联网在线地 理信息服务应用 超过70000个

在线举证客户端

全国警用地理 信息系统

第四次全国经济普查普 查区划分与绘图系统

水利部水文 情报预报

江西省安全生产 监管信息系统

山东省公开 数据开放网

- ◎ 国家地理信息公共服务平台天地图介绍
- **四** 地理信息服务GaussDB(for Mongo)应用与定制
- 03 自然资源行业数据库需求分析

在线地图浏览如何实现

金字塔模型

地图瓦片

在线地图服务数据存储需求

02 01 03 地图数据内容 数据特点 数据库需求 海量存储 • 栅格地图瓦片 • 文件体积小 • 动态矢量瓦片 • 文件数量多 • 迁移备份 • 三维地图瓦片 更新频繁 扩容方便 性能高效 更新数据量大

GaussDB(for Mongo)应用实践与定制

解决大量数据数据入库性能瓶颈问题 GaussDB(for Mongo)快照定制应用 解决瓦片数据加载导致备节点挂死的问题 8 混合时相影像存储方案

解决大量数据入库与更新性能瓶颈问题

问题

在云下采用社区版MongoDB 3.4集群导入瓦片数据,由于社区版采用WiredTiger存储引擎,底层数据结构是B+树,插入数据时,会有大量随机IO,写入性能较差。导入300GB的某省瓦片,耗时4小时。

解决大量数据入库与更新性能瓶颈问题

解决瓦片数据加载导致备节点挂死的问题

问题

云下采用社区版MongoDB 3.4集群保存瓦片数据。导入大量数据时,由于社区版MongoDB的bug(备节点在刷新脏页时候容易进入的一些异常逻辑里,造成cpu内存空消耗),导致集群shard的备节点CPU使用率100%从而挂死。

云上架构 社区版MongoDB 华为云DFV DDS Config Server Config Server Application Application Mongos 2 Mongos 3 Monaos 1 Mongos 1 Mongos 2 Mongos 3 Configsvr Shard 1 Shard 2 ... Shard N Shard 2 ... Shard N Shard 1 Primary Primary Primary 社区版MongoDB集群的 Primary DFV DDS集群每个 shard主备节点数据同步时, Secondary Secondary Secondary shard写数据到存储 触发备节点CPU 100% 池,不存在往备节点写 Distributed Storage Pool Secondary Secondary Secondary 数据的场景

GaussDB(for Mongo)快照应用定制

GaussDB(for Mongo)快照应用定制

华为云对GuassDB For MongoDB数据库进行定制开发和能力升级,通过快照技术实现读写分离,满足地图数据更新时提供一致性服务,快照可实现秒级创建,快照创建后所有读操作自动切换为快照读;快照删除后,所有读操作自动切换到数据库读,天地图业务对快照读写分离技术无感知,不需要做任何改造,整体方案如下:

GaussDB(for Mongo)快照应用定制

通过MongoDB集群快照技术实现数据库的读写分离,同时可以通过创建多个快照副本,实现对不同历史数据的查询,在此期间不影响对数据库的写入。在查询的时候通过指定不同的快照副本,实现对不同历史数据的查询,具体原理如右图所示:

应用成效

天地图以门户网站、服务接口、前置服务等形式向政府、专业部门、企业、公众等用户提供在线地理信息服务,已广泛应用于**自然资源、生态环境、统计、应急救灾、气象、水利、农业、交通、公安、安全生产、能源**等41个中央部门,并在**市政规划、扶贫、传媒**等多个领域中发挥了重要作用,有效促进了地理信息资源共享和高效利用。

天地图MongoDB数据日均请求超过5亿次

- ◎ 国家地理信息公共服务平台天地图介绍
- 02 地理信息服务GaussDB(for Mongo)应用与定制
- 03 自然资源行业数据库需求分析

自然资源行业数据分析

自然资源行业数据分析

自然资源部门对于数据库的需求

