Branching Random Walks with Selection

Patrik Gerber

Supervised by Prof. Julien Berestycki

Dissertation on a topic in Statistics presented for MMath in Mathematics and Statistics

January 31, 2019

Contents

1	Effect of selection on ancestry: an exactly soluble case and its phenomenological generalization
2	The space D
3	Background
4	exactly soluble
5	Speed
	5.1 Exponentially decaying tails
	5.1.1 Construction
	5.1.2 Properties of the model
	5.1.3 Killed branching random walks
	5.1.4 Brunet-Derrida behaviour
	5.2 Generalised Bernoulli

1 EFFECT OF SELECTION ON ANCESTRY: AN EXACTLY SOLUBLE CASE AND ITS PHENOMENOLOGICAL GENERALIZATION

Placeholder text.

2 The space D

This section is based on Sections 3,11 and 12 of [?]. Consider $D(I,\mathbb{R})$ where I is a closed interval. Let Λ be the space of continuous bijections from [0,1] to itself which are zero at zero. The J_1 topology is defined by the metric

$$d_{J_1}(f,g) = \inf_{\lambda \in \Lambda} \{ \|f \circ \lambda\|_{\infty} \vee \|\lambda - \mathbb{1}\|_{\infty} \}$$
 (2.1)

The M_1 topology is defined by the same metric but on the completed graph. These definitions extend to I $[0, \infty)$ by saying that $x_n \in D$ converges to $x \in D$ if convergence happens in D([0, t]) for all continuity points t of x. The topology this defines is metrisable (see page 83 of [?]). The topologies they induce are called strong and sometimes written SJ_1 and SM_1 . We talk about weak topologies when we consider $D(I, \mathbb{R}^k)$ with k > 1 and they are equal to the product topology, but they are not important to our discussion.

The $(S)J_2$ and $(S)M_2$ topologies are the ones induced by applying the Hausdorff metric to the functions graphs and completed graphs respectively.

3 Background

THEOREM 3.1 ([?, Theorem 7.4.1.]) — Let $\{X_{m,n} \mid 0 \le m < n\}$ be a family of random variables satisfying

- (i) $X_{l,n} \le X_{l,m} + X_{m,n}$ for all l < m < n
- (ii) The distribution of $\{X_{m+k,n+k} \mid 0 \le m < n\}$ does not depend on $k \in \mathbb{N}$
- (iii) $\mathbb{E}\left[X_{0,1}^+\right] < \infty$ and there exists $\gamma > -\infty$ such that $\mathbb{E}\left[X_{0,n}\right] > \gamma n$ for all $n \in \mathbb{N}$.

Then

4 EXACTLY SOLUBLE

The model we consider is constructed as follows: The individual at position $x_0 \in \mathbb{R}$ has offspring according to a poisson process with intensity measure that has density $x \mapsto \exp(-(x-x_0))$ with respect to the Lebesgue measure. Out of the offspring of all individuals, the N right-most are selected to form the population of the next generation. By additivity of Poisson processes, the location of the offspring is described by a Poisson process with density $\Psi(x) \sum_{i=1}^{N} \exp(-(x-x_i))$ where x_i denotes the position of the i'th individual in the current generation.

Let us find the joint density of the N+1 rightmost particles. Let $x_1, ..., x_{N+1}$ denote them, with $X_{N+1} < X_i$ for $i \in [N]$ but with no particular order on $X_1, ..., X_N$. Then weby the mean value theorem for integrals we have:

$$\mathbb{P}\left(\bigcap_{i=1}^{N+1} \{X_i \in [x_i, x_i + \Delta_i]\}\right) = \frac{1}{N!} \exp\left(-\int_{x_{N+1}}^{\infty} \Psi(u) \, du\right) \prod_{i=1}^{N+1} \{\Delta_i \Psi(x_i)\} \, (1 + o(1)).$$

Thus, dividing by $\Delta_1 \times ... \times \Delta_{N+1}$ and taking the Δ_i go to zero, we get the density

$$f_{X_1,...,X_{N+1}}(x_1,...,x_{N+1}) = \frac{1}{N!} \exp\left(-\int_{x_{N+1}}^{\infty} \Psi(u) \, du\right) \prod_{i=1}^{N+1} \Psi(x_i).$$

Now we can marginalise to obtain the density of X_{N+1} :

$$f_{X_{N+1}}(x) = \frac{1}{N!} \Psi(x) \left(\int_{x}^{\infty} \Psi(u) \, du \right)^{N} \exp \left(-\int_{x}^{\infty} \Psi(u) \, du \right).$$

From here it is easy to see that conditional on X_{N+1} , the X_i are independent with density

$$f(x) = \frac{\Psi(x)}{\int\limits_{X_{N+1}}^{\infty} \Psi(u) \, du} \mathbb{1}_{\{X_{N+1} < x\}}.$$

5 Speed

Placeholder text.

In generality, the models that we will discuss in this essay can be described as evolving according to two mechanisms: ...

5.1 Exponentially decaying tails

5.1.1 Construction

The first variation of the N-branching random walk that we consider is the one studied in [1] by Bérard and Gouéré. Suppose that at timestep $n \geq 0$ there is a particle at $x \in \mathbb{R}$. During the branching step the particle dies giving birth to two children, whose positions independently (from each other and the past) follow a distribution with cumulative distribution function $p(\cdot -x)$. Out of all 2N children, the population at time n+1 is then formed by the N rightmost particles.

Construction. Let $X=(X_n)_{n\geq 0}=(\sum_{i=1}^N\delta_{X_n(i)})_{n\geq 0}$ denote the \mathcal{C}_N -valued discrete time Markov process defined by the branching-selection procedure detailed above. Note that we suppress the dependence on N in our notation for simplicity. We can construct X easily: Let $\mathcal{E}_N:=(\epsilon_{l,i,j})_{l\geq 0,\,i\in [\![1,N]\!],\,j=1,2}$ be an i.i.d. collection of random variables distributed like p. For $n\geq 0$ define $Y_{n+1}:=\sum_{i=1}^N\sum_{j=1,2}\delta_{X_n(i)+\epsilon_{n,i,j}}$ and take X_{n+1} to be the counting measure supported on the rightmost N atoms of Y_{n+1} . This construction gives rise to an important monotonicity property that we record in the following Lemma:

LEMMA 5.1 ([1, Corollary 2]) — For any $1 \leq N_1 \leq N_2$ and $\mu_i \in \mathcal{C}_{N_i}$ with i = 1, 2 such that $\mu_1 \leq \mu_2$, there exists a coupling $(X_n^{(1)}, X_n^{(2)})_{n \geq 0}$ between two versions of the branching-selection particle system started from μ_1 and μ_2 respectively satisfying $X_n^{(1)} \leq X_n^{(2)}$ almost surely for all $n \geq 0$.

Proof. The proof is a straightworward consequence of our construction. The idea is to take an i.i.d. family $\mathcal{E}_{N_2} = (\epsilon_{l,i,j})_{l \geq 0, i \in [\![1,N_2]\!], j=1,2}$ of random variables with law given by p and to use it to construct both $(X^{(1)})_n$ and $(X_n^{(2)})_{n \geq 0}$.

5.1.2 Properties of the model

Let us now define the logarithmic moment generation function of p:

$$\Lambda(t) := \log \int_{\mathbb{R}} \exp(tx) dp(x).$$

In their analysis, Bérard and Gouéré impose some conditions on the domain $\mathcal{D}(\Lambda) := \{t \mid \Lambda(t) < \infty\}$ of Λ in order for the results of [2] to be applicable.

Assumption 1. Λ is finite in some neighbourhood of 0.

Assumption 2. There exists $t^* > 0$ in the interior of $\mathcal{D}(\Lambda)$ such that $t^*\Lambda'(t^*) - \Lambda(t^*) = \log 2$.

Assumption 1 is in fact equivalent to the requirement that p have exponentially decaying tails, furthermore it implies that p has finite moments of all orders. The results that follow in this section are conditional upon Assumptions 1 and 2 being satisfied.

Denote by $\max X_n$ and $\min X_n$ the right- and leftmost atom of X_n respectively. It is worth noting that $\min X_n$ and $\max X_n$ are integrable and hence finite by Assumption 1 when started from any fixed $X_0 \in \mathcal{C}_N$. Denote by $d(X_n) := \max X_n - \min X_n$ the diameter of X_n .

PROPOSITION 5.1 ([1, Corollary 1]) — For any $N \ge 1$ and initial population $X_0 \in \mathcal{C}_N$, we have

$$\frac{d(X_n)}{n} \xrightarrow[n \to \infty]{a.s., L^1} 0.$$

PROPOSITION 5.2 ([1, Proposition 2]) — There exists $v_N = v_N(p) \in \mathbb{R}$ such that for any initial population $X_0 \in \mathcal{C}_N$ the following holds almost surely and in L^1 :

$$\lim_{n \to \infty} \frac{\min X_n}{n} = \lim_{n \to \infty} \frac{\max X_n}{n} = v_N.$$
 (5.1)

Proof. Recall the definition of \mathcal{E}_N from the construction of X. For each $l \geq 0$ we define the process $(X_n^l)_{n \geq 0}$ by shifting the origin of time by l. More precisely, given the process up to time $n \geq 0$, define X_{n+1}^l to be given by the N rightmost atoms of $\sum_{i=1}^N \sum_{j=1,2} \delta_{X_n^l(i)+\epsilon_{n+l,i,j}}$. It is clear that each $(X_n^l)_{n \geq 0}$ is distributed as the N-branching random walk with offspring law p. Suppose that for each $l \geq 0$ we start $(X_n^l)_{n \geq 0}$ from $N\delta_0$ and notice that $(X_n^0)_{n \geq 0} = (X_n)_{n \geq 0}$ almost surely, provided that $X_0 = N\delta_0$ also. From Lemma 5.1 it follows easily that

$$\max X_{n+m}^0 \le \max X_n^0 + \max X_m^n \qquad \forall n, m \ge 0.$$
 (5.2)

Provided that the conditions of the theorem hold, applying Kingman's Subadditive Ergodic theorem yields $\lim_{n\to\infty} n^{-1} \max X_n = \lim_{n\to\infty} \mathbb{E}\left[n^{-1} \max X_n\right] = \inf_n \mathbb{E}\left[n^{-1} \max X_n\right] = v_N \in \mathbb{R}$ where the first limit is almost sure and also in L^1 . Using the fact that p has exponentially decaying tails (Assumption 1) and the independence of \mathcal{E}_N , the conditions are easily verified.

From Proposition 5.1 we immediately get $\lim_{n\to\infty} n^{-1} \min X_n = v_N$, so the proof is complete in the case $X_0 = N\delta_0$. By translation invariance of the dynamics of the system the result also follows for initial conditions of the form $N\delta_{x_0}$ for any $x_0 \in \mathbb{R}$. Finally, for arbitrary $X_0 \in \mathcal{C}_N$ note that the result is a consequence of Lemma 5.1 and a sandwiching argument between the initial configurations $N\delta_{\min X_0}$ and $N\delta_{\max X_0}$.

Proposition 5.3 ([1, Proposition 3]) — The sequence $(v_N)_{N\geq 1}$ is non-decreasing.

Proof. This is again a consequence of Lemma 5.1.

Remark 5.1. From Proposition 5.3 we can deduce that v_N increases to a possibly infinite limit v_∞ as N goes to infinity. Assumption 1 implies that Λ is smooth on the interior of $\mathcal{D}(\Lambda)$ so that both quantities $v := \Lambda'(t^*)$ and $\chi := \frac{\pi^2}{2} t^* \Lambda''(t^*)$ are finite. In Section 5.1.4 we will see that v_∞ is in fact equal to v.

5.1.3 Killed branching random walks

Following the notation used in [1], we formally define a Branching Random Walk (BRW) to be a pair (\mathcal{T}, Φ) , where \mathcal{T} is a rooted binary tree and Φ is a random map assigning a random variable $\Phi(u)$ to each vertex $u \in \mathcal{T}$. Φ must be such that $\Phi(\text{root}) = 0$ and $\{\Phi(v) - \Phi(u) \mid u \text{ is the parent of } v\}$ is i.i.d. with common distribution p. We call $\Phi(u)$ the value of the BRW at vertex u and write $\mathcal{T}(n)$ for the set of vertices in \mathcal{T} at distance n from the root. We say a sequence of vertices u_1, u_2, \ldots is a path if u_{i+1} is the parent of u_i for each $i \geq 1$.

Suppose that we have a BRW (\mathcal{T}, Φ) and take $v \in \mathbb{R}$ and $m \ge 1$. We say that vertex u is (m, v)-good if there exists a path $u = u_0, u_1, ..., u_m$ such that $\Phi(u_i) - \Phi(u) \ge vi$ for all $i \in [0, m]$. This is

essentially saying that there exists a path started from u that stays to the right of the space-time line through $(u, \Phi(u))$ with slope v, for at least m steps. The definition of an (∞, v) -good vertex is analogous. We now state two results from [2] that we will need to prove Theorem 5.4. Recall the definitions of v and χ from Remark ??.

THEOREM 5.2 ([2, Theorem 1.2]) — Let $\rho(\infty, \epsilon)$ denote the probability that the root of the BRW with offspring distribution p is $(\infty, v - \epsilon)$ – good. Then, as $\epsilon > 0$ goes to zero,

$$\rho(\infty, \epsilon) \le \exp\left(-\left(\frac{\chi + o(1)}{\epsilon}\right)^{1/2}\right).$$
(5.3)

A similar result can be stated for the probability of observing a $(m, v - \epsilon)$ -good root with m finite:

THEOREM 5.3 ([1, Theorem 3]) — Let $\rho(m, \epsilon)$ denote the probability that the root of the BRW with offspring distribution p is $(m, v - \epsilon)$ -good. For any $0 < \beta < \chi$, there exists $\theta > 0$ such that for all large m,

$$\rho(m,\epsilon) \le \exp\left(-\left(\frac{\chi-\beta}{\epsilon}\right)^{1/2}\right), \quad \text{with } \epsilon := \theta m^{-2/3}.$$
(5.4)

5.1.4 Brunet-Derrida behaviour

We are now ready to present the main result of Bérard and Gouéré on N-branching random walks with exponentially decaying tails:

THEOREM 5.4 — As N goes to infinity,

$$v_{\infty} - v_N = \frac{\chi}{(\log N)^2} + o((\log N)^{-2}). \tag{5.5}$$

Let us describe the coupling between the N-branching random walk and N independent branching random walks, which will allow us to relate Theorems 5.2 and 5.4 to the N-branching random walk. Let $(BRW_i)_{i \in [\![1,N]\!]} = ((\mathcal{T}_i, \Phi_i))_{i \in [\![1,N]\!]}$ be a set of N independent copies of the BRW with offspring distribution p. Define $\mathbb{T}_n := \bigsqcup_{i=1}^N \mathcal{T}_i(n)$ to be the disjoint union of vertices at depth n in the N BRWs, and fix an arbitrary (nonrandom) total order on \mathbb{T}_n for each n. We now inductively define a sequence $(G_n)_{n\geq 0}$ of random subsets of \mathbb{T}_n , each with exactly N elements. These random subsets will correspond to the particles alive in the coupled N-braching random walk at time n. Define $G_0 = \mathbb{T}_0$ and given G_n , define H_n to be the vertices in \mathbb{T}_{n+1} that descend from vertices in G_n . Finally, set G_{n+1} to be the set of N vertices in H_n with the gratest value, resolving ties via the fixed total order on \mathbb{T}_{n+1} . If we now define (with some abuse of notation) $\mathfrak{X}_n = \sum_{u,i:u \in G_n \cap \mathcal{T}_i} \delta_{\Phi_i(u)}$ then $(\mathfrak{X}_n)_{n\geq 0}$ has the same distribution as X started from $N\delta_0$. Let us record a technical lemma that will be used in the proof of the lower bound in Theorem 5.4.

LEMMA 5.5 ([3, Adapted by Bérard and Gouéré from Lemma 5.2]) — Let $v_1 < v_2 \in \mathbb{R}$ and $1 \le m \le n \in \mathbb{N}$. Suppose $0 =: x_0, ..., x_n$ is a sequence of real numbers such that $\max_{i \in [\![0,n-1]\!]} (x_{i+1} - x_i) \le K$ for some K > 0, and define $I := \{i \in [\![0,n-m]\!] \mid x_{i+j} - x_i \ge jv_1, \quad \forall j \in [\![0,m]\!]\}$. If $x_n \ge v_2 n$, then $|I| \ge \frac{v_2 - v_1}{K - v_1} \frac{m}{n} - \frac{K}{K - v_1}$.

Proof of lower bound in Theorem 5.4. As before, set $X_0 = N\delta_0$. Our aim is to show $v_N := \lim_{n\to\infty} \mathbb{E}\left[n^{-1}\max X_n\right] \leq v_\infty - \chi/(\log N)^2 + o((\log N)^{-2})$. However, we shall show this with v_∞ replaced by v, which combined with the upper bound also proves that $v_\infty = v$. Let $\beta \in (0,\chi)$ and let $\theta > 0$ be as in Theorem 5.4. Let $\lambda > 0$, and define

$$m := \left[\theta^{3/2} \left(\frac{(1+\lambda)\log N}{(\chi-\beta)^{1/2}} \right)^3 \right], \tag{5.6}$$

and $\epsilon := \theta \, m^{-2/3}$. The scale of ϵ and m is carefully chosen so that by Theorem 5.4,

$$\rho(m,\epsilon) \le N^{-(1+\lambda)} \quad \text{for all large } N.$$
(5.7)

Take $\gamma \in (0,1)$ and define $v_1 = v - \epsilon$ and $v_2 = v - (1 - \gamma)\epsilon$ noting that $v_1 < v_2 < v$. Finally, let $n = \lceil N^{\xi} \rceil$ for some $0 < \xi < \lambda$ and consider the following inequality with $\delta > 0$:

$$\mathbb{E}\left[n^{-1}\max X_{n}\right] = \mathbb{E}\left[n^{-1}\max X_{n}\left[\mathbb{1}_{\left\{\max X_{n} < nv_{2}\right\}} + \mathbb{1}_{\left\{nv_{2} \leq \max X_{n} < n(v+\delta)n\right\}} + \mathbb{1}_{\left\{(v+\delta)n \leq \max X_{n}\right\}}\right]\right]$$

$$\leq v_{2} + (v+\delta)\underbrace{\mathbb{P}\left(\max X_{n} \leq v_{2}n\right)}_{(I)} + \underbrace{\mathbb{E}\left[n^{-1}\max X_{n}\mathbb{1}_{\left\{(v+\delta)n \leq \max X_{n}\right\}}\right]}_{(II)}.$$

$$(5.8)$$

The strategy for the proof is to show that both (I) and (II) are $o((log N)^{-2})$. The result then follows, as $v_2 = v - (1 - \gamma)(\chi - \beta)(1 + \lambda)^{-2}(\log N)^{-2}$ where γ, β, λ can be taken arbitrarily small.

Let B_n be the number of vertices in $\bigsqcup_{i=1}^n G_i$ that are (m,v_1) -good with respect to their respective BRWs. Define $K = \kappa \log(2Nn)$ for some $\kappa > 0$ and notice that the quantity $\frac{v_2 - v_1}{K - v_1} \frac{m}{n} - \frac{K}{K - v_1} = \Theta(N^{\xi}(\log N)^{-4})$ so that for large enough N it is positive. Let $u_0, u_1, ..., u_n$ be a path in \mathcal{T}_{i_0} for some $i_0 \in [\![1,N]\!]$ such that $u_0 = root_{i_0}$ and $u_n \in G_n$ with $\Phi_{i_0}(u_n) = \max X_n$. In other words, let $u_0, ..., u_n$ be the path from the root to the rightmost particle at time n of the coupled N-branching random walk. On the event $E := \{\max X_n \geq v_2 n\}$, we apply Lemma 5.5 to the sequence of real numbers $(\Phi_{i_0}(u_i))_{i \in [\![1,n]\!]}$ to see that either there is an (m,v_1) -good vertex among the u_i or one of the random walk steps along the path is $\geq K$. These events are respectively included in the events that $B_n \geq 1$ and that $M := \max\{\epsilon_{l,i,j} \mid l \in [\![0,n-1]\!], \ i \in [\![1,N]\!], \ j=1,2\} \geq K$. We can use this to bound the probability of E:

$$\mathbb{P}(E) \le \mathbb{P}(M \ge K) + \mathbb{P}(B_n \ge 1). \tag{5.9}$$

Consider a vertex $u \in \mathcal{T}_{i_0}(d)$ for some $i_0 \in [\![1,N]\!]$ at depth $d \in [\![0,n]\!]$. The event $\{u \in G_d\}$ is measurable with respect to the sigma algebra generated by the random variables $\{\Phi_j(v) \mid j \in [\![1,N]\!], \mathcal{T}_j \ni v'$ s depth $\leq d\}$. On the other hand, the event $\{u \text{ is } (m,v_1)\text{-good}\}$ is determined by the variables $\{\Phi_{i_0}(v) - \Phi_{i_0}(u) \mid \mathcal{T}_{i_0} \ni v'$ s depth $> d\}$, so that the two events are independent. We can write B_n as

$$B_n = \sum_{i \in \llbracket 1, N \rrbracket, u \in \mathcal{T}_i} \mathbb{1}_{\{u \text{ is } (n, v_1) \text{-good}\}} \mathbb{1}_{\{u \in G_d \text{ for some } d \in \llbracket 0, n \rrbracket\}}.$$

Taking expectations gives

$$\mathbb{E}[B_n] \leq N(n+1)\rho(m,\epsilon) = \mathcal{O}(N^{\xi-\lambda})$$
 as N goes to infinity,

where we used that G_n has N elements for all n. Recall that the distribution p has exponentially decaying tails, so that there exist $C, \gamma > 0$ such that $\mathbb{P}_{X \sim p}(X > t) \leq C \exp(-\gamma t)$ for all large t. This gives $\mathbb{P}(M \geq K) \leq 1 - (1 - \exp(-\gamma \kappa \log(2Nn)))^N = \mathcal{O}(N(2Nn)^{-\gamma\kappa}) = \mathcal{O}(N^{1-(\xi+1)\gamma\kappa})$. Thus we can take κ large enough so that we get

$$\mathbb{P}(E) < \mathcal{O}(N^{\xi - \lambda}), \quad \text{which proves } (I) = o((\log N)^{-2}).$$
 (5.10)

To show that $(II) = o((\log N)^{-2})$ first consider the obvious inequality $\exp(t \max X_n) \leq \sum_{i \in [\![1,N]\!], u \in \mathcal{T}_i(n)} \exp(t\Phi_i(u))$. Taking expectations gives $\mathbb{E}\left[\exp(t \max X_n)\right] \leq N2^n \exp(n\Lambda(t))$, where we used a telescoping sum along the path connecting the root and u and the fact that $\#\mathcal{T}_i(n) = 2^n$ for each i. Recalling from Assumption 2 and Remark 5.1 that $\Lambda(t^*) = vt^* - \log 2$, we obtain

$$\mathbb{E}\left[\exp(t^* \max X_n)\right] \le N \exp(vnt^*). \tag{5.11}$$

Lemma 5.6 — Let b > 0. Then for all large enough a,

$$x\mathbb{1}_{\{x\geq a\}} \leq \exp\left(b\left(x - \frac{a}{2}\right)\right), \quad \forall x \in \mathbb{R}.$$
 (5.12)

Proof. Differentiate the map $f: x \mapsto \exp(b(x-a/2)) - x$ to find that for large enough a, f is increasing on $[a, \infty)$. Noting that $f(a) \ge 0$ for all large a concludes the proof.

Apply Lemma 5.6 with $X = \max X_n - vn$, $a = \delta n$, $b = t^*$ and take expectations to get

$$\mathbb{E}\left[\left(\max X_n - vn\right)\mathbb{1}_{\left\{\max X_n \ge (v+\delta)n\right\}}\right] \le \mathbb{E}\left[\exp(t^*(X_n - vn - \delta n/2))\right],$$

which combined with 5.11 and a Chernoff bound gives

$$(II) = \mathbb{E}\left[\max X_n \mathbb{1}_{\{\max X_n \ge (v+\delta)n\}}\right] \le N \exp(-\delta n/2)(1 + |v|n) = o((\log N)^{-2}).$$

We have shown that for any choice of $\gamma \in (0,1)$, $\beta \in (0,\chi)$ and $\lambda > \xi > 0$, for all N large enough

$$\mathbb{E}\left[\left\lceil N^{\xi}\right\rceil^{-1} \max X_{\lceil N^{\xi}\rceil}\right] \le v - (1 - \gamma) \frac{\chi - \beta}{(1 + \lambda)^2 (\log N)^2} + o((\log N)^{-2}). \tag{5.13}$$

Recall from the proof of Proposition 5.2 that $v_N = \inf_n n^{-1} \mathbb{E} [\max X_n]$, so the left hand side in 5.13 can be replaced by v_N . Taking γ, β, λ and ξ to zero gives the desired result.

5.2 Generalised Bernoulli

Placeholder text.

DEfine the *censored* Galton Watson process $(X_n)_{n\geq 0}$ with offspring distribution \mathcal{X} to be the discrete time \mathbb{N} valued stochastic process satisfying

(i)
$$X_0 = N$$

(ii)
$$X_{n+1} = \min \left\{ N, \sum_{i=1}^{X_n} \mathcal{X}_{i,n+1} \right\}$$
 for all $n \ge 0$

where $(\mathcal{X}_{i,n})_{i\geq 0, n\geq 0}$ is an i.i.d. collection of random variables with distribution \mathcal{X} . Complete at some later point, since this is really easy material.

REFERENCES

- [1] Jean Bérard and Jean-Baptiste Gouéré. Brunet-derrida behavior of branching-selection particle systems on the line. *Communications in Mathematical Physics*, 298(2):323–342, 2010.
- [2] Nina Gantert, Yueyun Hu, and Zhan Shi. Asymptotics for the survival probability in a super-critical branching random walk. arXiv preprint arXiv:0811.0262, 2008.
- [3] Robin Pemantle. Search cost for a nearly optimal path in a binary tree. *The Annals of Applied Probability*, pages 1273–1291, 2009.