## Supplementary material

# Manifold neighboring envelope sample generation mechanism for imbalanced ensemble classification

Table 1 shows the definitions of key concepts in this paper.

Table 1. Definition of the key concepts

| Key concepts                   | Definition                                                                    |
|--------------------------------|-------------------------------------------------------------------------------|
| Correlation information        | Correlation among samples                                                     |
| Local correlation information  | Correlation among neighboring samples                                         |
| Global correlation information | Correlation among all samples in the sample set                               |
| Sample envelope                | A set including some similar samples                                          |
| Envelope sample                | Sample envelope after sample transformation by mining correlation information |

#### 1. Joint Optimization

$$J_{MNESG}\left(\boldsymbol{P},\boldsymbol{U},\boldsymbol{V}^{(q)}\right) = \eta Loss_{local}\left(\boldsymbol{P}\right) + \gamma Loss_{global}\left(\boldsymbol{P},\boldsymbol{U},\boldsymbol{V}^{(q)}\right) + \mu Loss_{consistency}\left(\boldsymbol{P},\boldsymbol{V}^{(q)}\right)$$

$$= \eta \sum_{i=1}^{N'} \left\| \mathcal{M}_{i} - \boldsymbol{P}\boldsymbol{P}^{T} \mathcal{M}_{i} \right\|_{2}^{2} + \gamma \sum_{i=1}^{N'} \sum_{j=1}^{C} \left(u_{ij}\right)^{m} \left\| \boldsymbol{P}^{T} \mathcal{M}_{i} - \boldsymbol{v}_{j} \right\|^{2}$$

$$+ \mu \left[ \frac{1}{N^{2}} \sum_{i=1}^{N'} \sum_{i=1}^{N'} \kappa \left(\boldsymbol{P}^{T} \mathcal{M}_{i}, \boldsymbol{P}^{T} \mathcal{M}_{i}\right) - \frac{2}{N^{C}} \sum_{i=1}^{N'} \sum_{j=1}^{C} \kappa \left(\boldsymbol{P}^{T} \mathcal{M}_{i}, \boldsymbol{v}_{j}\right) + \frac{1}{C^{2}} \sum_{j=1}^{C} \sum_{j=1}^{C} \kappa \left(\boldsymbol{v}_{j}, \boldsymbol{v}_{j}\right) \right]$$

$$s.t.\boldsymbol{U} = 1, \quad \boldsymbol{U} \geq 0, \quad \boldsymbol{P}^{T} \boldsymbol{P} = \boldsymbol{I}$$

$$(8)$$

In the MNESG model, there are three variables P, U and  $V^{(q)}$  to be optimized in (8). First, use MNSEP and FCM to complete the initialization of the three variables. Then, an effective alternating variable optimization strategy can be considered, i.e., to solve for one variable while fixing the rest of the variables as constants. Therefore, in solving (8), P, U and  $V^{(q)}$  can be solved in turn using the gradient descent method. Among them,  $\eta$ ,  $\gamma$ ,  $\mu$  are three hyperparameters, which are optimized in this paper based on the grid search method.

#### 1) Initialization of variables

Based on original subsets  $X^{(q)}$ , MNSEP is used to initialize the projection vector P and NES  $\tilde{X}^{(q)}$ . The specific initialization steps are shown as follows.

$$Loss_{local}(\mathbf{P}) = \sum_{i=1}^{N'} \|\mathcal{M}_{i} - \mathbf{P}\mathbf{P}^{T}\mathcal{M}_{i}\|_{2}^{2}$$

$$= \sum_{i=1}^{N'} \mathcal{M}_{i}^{T} \mathcal{M}_{i} - 2\sum_{i=1}^{N'} \mathcal{M}_{i}^{T} \mathbf{P}\mathbf{P}^{T} \mathcal{M}_{i} + \sum_{i=1}^{N'} \mathcal{M}_{i}^{T} \mathbf{P}\mathbf{P}^{T} \mathbf{P}\mathbf{P}^{T} \mathcal{M}_{i}$$

$$= \sum_{i=1}^{N'} \mathcal{M}_{i}^{T} \mathcal{M}_{i} - \sum_{i=1}^{N'} \mathcal{M}_{i}^{T} \mathbf{P}\mathbf{P}^{T} \mathcal{M}_{i}$$

$$= \sum_{i=1}^{N'} \mathcal{M}_{i}^{T} \mathcal{M}_{i} - tr \left[ \mathbf{P}^{T} \left( \sum_{i=1}^{N'} \mathcal{M}_{i} \mathcal{M}_{i}^{T} \right) \mathbf{P} \right]$$

$$= \sum_{i=1}^{N'} \mathcal{M}_{i}^{T} \mathcal{M}_{i} - tr \left[ \mathbf{P}^{T} \left( \mathcal{M}^{T} \right)^{T} \mathcal{M}^{T} \mathbf{P} \right]$$

$$(9)$$

In Eq. (9),  $\sum_{i=1}^{N'} \mathcal{M}_i^T \mathcal{M}$  is a constant, so minimizing Eq. (9) is equivalent to minimizing Eq. (10):

$$Loss_{local}(\mathbf{P}) = -tr\left(\mathbf{P}^{\mathsf{T}}\left(\mathbf{\mathcal{M}}^{\hat{T}}\right)^{\mathsf{T}}\mathbf{\mathcal{M}}^{\hat{T}}\mathbf{P}\right)$$

$$s.t.\mathbf{P}^{\mathsf{T}}\mathbf{P} = \mathbf{I}$$
(10)

The objective function  $Loss_{local}(P)$  can be optimized by the Lagrange multiplier method to obtain Eq. (11):

$$Loss_{local}(\mathbf{P}) = -tr \left[ \mathbf{P}^{T} \left( \mathbf{\mathcal{M}}^{\hat{T}} \right)^{T} \mathbf{\mathcal{M}}^{\hat{T}} \mathbf{P} + \zeta \left( \mathbf{P}^{T} \mathbf{P} - \mathbf{I} \right) \right]$$
(11)

Solve for the minimalist solution of Eq. (11) to obtain Eq. (12):

$$\left(\mathcal{M}^{\hat{T}}\right)^{T} \mathcal{M}^{\hat{T}} \mathbf{P} = \zeta \mathbf{P} \tag{12}$$

From Eq. (12), we can solve that P is a matrix composed of the eigenvectors of  $\left(\mathcal{M}^{\hat{T}}\right)^T \mathcal{M}^{\hat{T}}$  and  $\zeta$  is a diagonal matrix composed of the eigenvalues of  $\left(\mathcal{M}^{\hat{T}}\right)^T \mathcal{M}^{\hat{T}}$ . Therefore, when we reconstruct the sample envelope consisting of k+1 samples into a neighboring envelope sample by sample envelope projection reconstruction, we need to find the eigenvector P corresponding to the largest eigenvalue of  $\left(\mathcal{M}^{\hat{T}}\right)^T \mathcal{M}^{\hat{T}}$  as the projection vector.

The whole process of the MNSEP algorithm is as follows.

#### Algorithm 1: MNSEP

**Input:** Original sample subset  $X^{(q)}$  , Number of samples N , Number of manifold nearest neighbors k .

Procedure:

- 1: Computing the neighborhood graph matrix G;
- 2: Computing the matrix of shortest paths to approximate the manifold distances  $d_M(i,j)$ ;
- 3: For *i*-th sample, construct its sample envelope  $\mathcal{M}_i$ , and the transposed sample envelope  $\mathcal{M}_i^T$ ;
- 4: Repeat step 3(Construction of the manifold neighboring sample envelope) until all the samples are processed. After that, the original samples are transformed into the centered sample envelope matrix  $\mathcal{M}^{\hat{T}}$ ;
- 5: Based on the eigendecomposition of  $\left(\mathcal{M}^{\hat{T}}\right)^T \mathcal{M}^{\hat{T}}$ , the eigenvector corresponding to its largest eigenvalue is the projection vector  $\boldsymbol{P}$ .
- 6: The neighboring envelope samples  $\tilde{X}^{(q)}$  are obtained by step 4 based on  $\mathcal{M}^{\hat{T}}$  and P;
- 7: Return  $\boldsymbol{P}$  and  $\tilde{\boldsymbol{X}}^{(q)}$ ;

**Output:** Projection vector P, Neighboring envelope sample subset  $\tilde{X}^{(q)}$ .

Then, FCM is used to initialize partition matrix U and NCES  $V^{(q)}$ .

$$Loss_{global}(U, V^{(q)}) = \sum_{i=1}^{N'} \sum_{j=1}^{C} (u_{ij})^{m} \|\tilde{\mathbf{x}}_{i} - \mathbf{v}_{j}\|^{2}$$

$$s.t.U1 = 1, \quad U \ge 0$$
(13)

To minimize (13) by using Lagrange multiplier method, there is

$$\min J_1(\boldsymbol{U}, \boldsymbol{V}^{(q)}, \varepsilon) = \sum_{i=1}^{N} \sum_{j=1}^{C} \left( u_{ij} \right)^m \left\| \tilde{\boldsymbol{x}}_i - \boldsymbol{v}_j \right\|^2 + \varepsilon \left( 1 - \sum_{j=1}^{C} u_{ij} \right)$$
(14)

Where  $\varepsilon$  is the Lagrange multiplier. To obtain the iterative fashion by setting the partial derivative of Eq. (14) with respect to  $u_{ij}, v_j, \varepsilon$  to be zero, there is

$$\begin{cases}
\partial J_{1}(\boldsymbol{U}, \boldsymbol{V}^{(q)}, \varepsilon) / \partial u_{ij} = m u_{ij}^{m-1} \| \tilde{\boldsymbol{x}}_{i} - \boldsymbol{v}_{j} \|^{2} - \varepsilon = 0 \\
\partial J_{1}(\boldsymbol{U}, \boldsymbol{V}^{(q)}, \varepsilon) / \partial \boldsymbol{v}_{j} = -2 \sum_{i=1}^{N'} u_{ij}^{m} (\tilde{\boldsymbol{x}}_{i} - \boldsymbol{v}_{j}) = 0 \\
\partial J_{1}(\boldsymbol{U}, \boldsymbol{V}^{(q)}, \varepsilon) / \partial \varepsilon = 1 - \sum_{j=1}^{N} u_{ij} = 0
\end{cases} \tag{15}$$

Through Eq. (15), the partition matrix and NCES are applied in an iterative fashion as follow.

$$u_{ij} = \frac{\left\|\tilde{\mathbf{x}}_{i} - \mathbf{v}_{j}\right\|^{-2/(m-1)}}{\sum_{p=1}^{C} \left\|\tilde{\mathbf{x}}_{i} - \mathbf{v}_{p}\right\|^{-2/(m-1)}}, \quad \mathbf{v}_{j} = \frac{\sum_{i=1}^{N'} \left(u_{ij}\right)^{m} \tilde{\mathbf{x}}_{i}}{\sum_{i=1}^{N'} \left(u_{ij}\right)^{m}}$$
(16)

Based on  $\tilde{X}^{(q)}$ , the initialized U and  $V^{(q)}$  are obtained by Eq. (16).

## 2) Fixing $V^{(q)}$ and U to solve P.

By fixing  $V^{(q)}$  and U, the problem is solved with respect to P. After removing the terms unrelated to P, the objective function (8) is transformed into Eq. (17).

$$\min_{\boldsymbol{P}} J_{1}(\boldsymbol{P}, \boldsymbol{U}, \boldsymbol{V}^{(q)}) = \eta \sum_{i=1}^{N'} \left\| \mathcal{M}_{i} - \boldsymbol{P} \boldsymbol{P}^{\mathrm{T}} \mathcal{M}_{i} \right\|_{2}^{2} + \gamma \sum_{i=1}^{N} \sum_{j=1}^{C} \left( \boldsymbol{u}_{ij} \right)^{m} \left\| \boldsymbol{P}^{\mathrm{T}} \mathcal{M}_{i} - \boldsymbol{v}_{j} \right\|^{2} 
+ \mu \left[ \frac{1}{N'^{2}} \sum_{i=1}^{N'} \sum_{i=1}^{N'} \kappa \left( \boldsymbol{P}^{\mathrm{T}} \mathcal{M}_{i}, \boldsymbol{P}^{\mathrm{T}} \mathcal{M}_{i} \right) - \frac{2}{N'C} \sum_{i=1}^{N'} \sum_{j=1}^{C} \kappa \left( \boldsymbol{P}^{\mathrm{T}} \mathcal{M}_{i}, \boldsymbol{v}_{j} \right) \right] + \lambda \left( \boldsymbol{P}^{\mathrm{T}} \boldsymbol{P} - \boldsymbol{I} \right)$$
(17)

As shown in Eq. (17), it is difficult to obtain the closed-form solution of P. Therefore, the gradient descent method is used to update P. Then the iterative solution of P can be expressed as Eq. (18).

$$\mathbf{P}_{K+1} = \mathbf{P}_{K} - \theta \cdot \nabla \left( \mathbf{P} \right) \tag{18}$$

$$\nabla(\boldsymbol{P}) = -2\eta \sum_{i=1}^{N'} \left[ \left( \mathcal{M}_{i} - \boldsymbol{P} \boldsymbol{P}^{T} \mathcal{M}_{i} \right) \mathcal{M}_{i}^{T} \boldsymbol{P} + \mathcal{M}_{i} \left( \mathcal{M}_{i} - \boldsymbol{P} \boldsymbol{P}^{T} \mathcal{M}_{i} \right)^{T} \boldsymbol{P} \right]$$

$$+2 \sum_{i=1}^{N'} \sum_{j=1}^{C} \left[ \gamma \left( \boldsymbol{u}_{ij} \right)^{m} + \frac{\mu}{N' C \sigma^{2}} \kappa \left( \boldsymbol{P}^{T} \mathcal{M}_{i}, \boldsymbol{v}_{j} \right) \right] \mathcal{M}_{i} \left( \boldsymbol{P}^{T} \mathcal{M}_{i} - \boldsymbol{v}_{j} \right)^{T}$$

$$- \frac{\mu}{N'^{2} \sigma^{2}} \sum_{i=1}^{N'} \sum_{j=1}^{N'} \kappa \left( \boldsymbol{P}^{T} \mathcal{M}_{i}, \boldsymbol{P}^{T} \mathcal{M}_{i} \right) \left( \mathcal{M}_{i} - \mathcal{M}_{i} \right) \left( \mathcal{M}_{i} - \mathcal{M}_{i} \right)^{T} \boldsymbol{P} + 2\lambda \boldsymbol{P}$$

$$(19)$$

## 3) Fixing P and $V^{(q)}$ to solve U.

By fixing P and  $V^{(q)}$ , the problem is solved with respect to U. After removing the terms unrelated to U, the objective function (8) is transformed into Eq. (20).

$$\min_{U} J_{3}(\boldsymbol{P}, \boldsymbol{U}, \boldsymbol{V}^{(q)}) = \gamma \sum_{i=1}^{N} \sum_{j=1}^{C} (u_{ij})^{m} \| \boldsymbol{P}^{T} \mathcal{M}_{i} - \boldsymbol{v}_{j} \|_{2}^{2} + \rho \left( \sum_{j=1}^{C} u_{ij} - 1 \right)$$
(20)

To the minimal value of Eq. (20), we set.

$$\frac{\partial J_3(\boldsymbol{P}, \boldsymbol{U}, \boldsymbol{V}^{(q)})}{\partial u_{ij}} = m\gamma \left(u_{ij}\right)^{m-1} \left\|\boldsymbol{P}^{\mathrm{T}} \mathcal{M}_i - \boldsymbol{v}_j\right\|_2^2 + \rho = 0$$
(21)

By calculation, the iterative formula of the partition matrix is obtained as follows.

$$u_{ij} = \frac{\left(1/\left\|\boldsymbol{P}^{\mathrm{T}}\mathcal{M}_{i} - \boldsymbol{v}_{j}\right\|_{2}^{2}\right)^{\frac{1}{m-1}}}{\sum_{w=1}^{C} \left(1/\left\|\boldsymbol{P}^{\mathrm{T}}\mathcal{M}_{i} - \boldsymbol{v}_{w}\right\|_{2}^{2}\right)^{\frac{1}{m-1}}}$$
(22)

## 4) Fixing U and P to solve $V^{(q)}$ .

By fixing U and P, the problem is solved with respect to  $V^{(q)}$ . After removing the terms unrelated to  $V^{(q)}$ , the objective function (8) is transformed into Eq. (23).

$$\min_{\boldsymbol{v}^{(q)}} J_4(\boldsymbol{P}, \boldsymbol{U}, \boldsymbol{V}^{(q)}) = \gamma \sum_{i=1}^{C} \sum_{j=1}^{N'} \left( u_{ij} \right)^m \left\| \boldsymbol{P}^{\mathrm{T}} \mathcal{M}_i - \boldsymbol{v}_j \right\|_2^2 + \mu \left[ \frac{1}{C^2} \sum_{j=1}^{C} \sum_{j'=1}^{C} \kappa \left( \boldsymbol{v}_j, \boldsymbol{v}_j' \right) - \frac{2}{N'C} \sum_{i=1}^{N'} \sum_{j'=1}^{C} \kappa \left( \boldsymbol{P}^{\mathrm{T}} \mathcal{M}_i, \boldsymbol{v}_j \right) \right]$$
(23)

Based on the characteristic Gaussian kernel function  $\kappa(x, y) = \exp(-\|x - y\|^2 / 2\sigma^2)$ , the minimal value of the objective function (23) is obtained by setting the partial derivative with respect to  $v_j$  to be zero.

$$\frac{\partial J_4(\boldsymbol{P},\boldsymbol{U},\boldsymbol{V}^{(q)})}{\partial \boldsymbol{v}_j} = -2\sum_{i=1}^{N} \left[ \gamma \left( \boldsymbol{u}_{ij} \right)^m + \frac{\mu}{N'C\sigma^2} \kappa \left( \boldsymbol{P}^{\mathrm{T}} \mathcal{M}_i, \boldsymbol{v}_j \right) \right] \left( \boldsymbol{P}^{\mathrm{T}} \mathcal{M}_i - \boldsymbol{v}_j \right) + \frac{2\mu}{C^2 \sigma^2} \sum_{j=1}^{C} \left( \boldsymbol{v}_j - \boldsymbol{v}_j \right) \kappa \left( \boldsymbol{v}_j, \boldsymbol{v}_j \right)$$

Solve for the minimum solution of Eq. (24).  $V^{(q)}$  is obtained from Eq. (25).

$$V^{(q)} = A^{-1} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_C \end{bmatrix}$$
 (25)

Among them:

$$\boldsymbol{A} = diag(a_1, a_2, ..., a_C) + \frac{\mu}{C^2 \sigma^2} \hat{\boldsymbol{K}}$$

$$\hat{\boldsymbol{K}} = \begin{bmatrix} \kappa(\boldsymbol{v}_1, \boldsymbol{v}_1) & \kappa(\boldsymbol{v}_2, \boldsymbol{v}_1) & ... & \kappa(\boldsymbol{v}_C, \boldsymbol{v}_1) \\ \kappa(\boldsymbol{v}_1, \boldsymbol{v}_2) & \kappa(\boldsymbol{v}_2, \boldsymbol{v}_2) & ... & \kappa(\boldsymbol{v}_C, \boldsymbol{v}_2) \\ ... & ... & ... & ... \\ \kappa(\boldsymbol{v}_1, \boldsymbol{v}_C) & \kappa(\boldsymbol{v}_2, \boldsymbol{v}_C) & ... & \kappa(\boldsymbol{v}_C, \boldsymbol{v}_C) \end{bmatrix}$$

$$\boldsymbol{a}_w = \sum_{i=1}^{N'} \left[ \gamma(\boldsymbol{u}_{iw})^m + \frac{\mu}{N'C\sigma^2} \kappa(\boldsymbol{P}^T \mathcal{M}_i, \boldsymbol{v}_w) \right] - \frac{\mu}{C^2\sigma^2} \sum_{j=1}^{C} \kappa(\boldsymbol{v}_j, \boldsymbol{v}_w), w = 1, 2, ..., C$$

$$\boldsymbol{b}_j = \sum_{i=1}^{N'} \left[ \gamma(\boldsymbol{u}_{ij})^m + \frac{\mu}{N'C\sigma^2} \kappa(\boldsymbol{P}^T \mathcal{M}_i, \boldsymbol{v}_j) \right] \boldsymbol{P}^T \mathcal{M}_i, \ j = 1, 2, ..., C$$

The overall process of the MNESG algorithm is outlined as follows.

**Input:** Original sample subset  $X^{(q)}$ , Number of manifold nearest neighbors k, Number of clusters C, Iteration number t, Iteration threshold  $\varepsilon$ .

#### Procedure:

- 1: Based on the original sample subset  $X^{(q)}$ , obtain the initialized neighboring envelope sample subset  $\tilde{X}^{(q)}$  and the initialized projection vector P by Algorithm 1 (MNSEP);
- 2: Initialize  $oldsymbol{V}^{(q)}$  and  $oldsymbol{U}$  based on  $ilde{oldsymbol{\chi}}^{(q)}$  by FCM algorithm;
- 3: Optimize the  ${\it P}$ ,  ${\it U}$ ,  ${\it V}^{(q)}$  by Eqs. (18), (22), and (25), respectively until  $\left|J_{MNESG}^{~~(t+1)}-J_{MNESG}^{~~(t)}\right|<arepsilon$ ;
- 4: Return final  $\boldsymbol{P}$ ,  $\boldsymbol{U}$ ,  $\boldsymbol{V}^{(q)}$ ;
- 5: Based on  $\boldsymbol{P}$ , obtain optimized  $\tilde{\boldsymbol{X}}^{(q)}$ ;

**Output:** Neighboring envelope sample subset  $\tilde{X}^{(q)}$  , Neighboring cluster envelope sample subset  $V^{(q)}$ 

#### 2. Experimental studies

To demonstrate the performance of the proposed algorithm (MNESG\_IE), groups of experiments were conducted and analyzed. First, the experimental environment is introduced. Second, the effects of relevant parameters on the performance of the proposed algorithm are analyzed. Third, ablation experiments are conducted for verification. Finally, the proposed algorithm is compared with seven classical IE algorithms, four state-of-the-art IE algorithms and six advanced imbalanced classification algorithms.

#### 2.1. Experimental environment

The decision tree C 4.5, which is well used in imbalanced ensemble learning, is chosen as the base classifier here. The 5-fold cross-validation (5-CV) method is chosen. To avoid randomness, each experiment is repeated 5 times and the mean and standard deviation of the values are reported.

#### 2.1.1. Datasets

4

Iris0

150

50

100

2.00

The 38 representative public datasets are chosen from the KEEL and UCI databases, which cover different domains, dimensions, samples size, and imbalance ratios (1.82-100.14). The major reasons why the datasets are chosen are as follows: 1) these datasets cover wide ranges of domains, dimensions size, sample size, imbalance ratio, and have been widely used in imbalance learning. 2) the focus of this paper is to propose an envelope sample generation method based on original samples. The datasets can directly provide structured samples for verification of different methods. Table 2 provides the basic information of these datasets.

Imba Imba I Feat Sam I Feat Sam Min Min Maj Maj Name lance Name lance D ority ority D ority ority ures ples ures ples ratio ratio 2 1 Glass1 9 214 76 1.82 Yeast-1-vs-7 459 30 429 14.30 138 8 0 2 2 Glass4 Wisconsin 683 239 444 1.86 214 13 201 15.47 2 3 1.87 336 Pima 768 268 500 Ecoli4 20 316 15.80 2

2

Abalone9-18

731

42

689

16.40

Table 2. Basic information of imbalanced datasets

|        |                            |    |          |     |          |       | 3      |                                    |    |          |    |          |       |
|--------|----------------------------|----|----------|-----|----------|-------|--------|------------------------------------|----|----------|----|----------|-------|
| 5      | Yeast1                     | 8  | 148<br>4 | 429 | 105<br>5 | 2.46  | 2      | Shuttle-c2-vs-c4                   | 9  | 129      | 6  | 123      | 20.50 |
| 6      | Haberman                   | 3  | 306      | 81  | 225      | 2.78  | 2 5    | Glass5                             | 9  | 214      | 9  | 205      | 22.78 |
| 7      | Vehicle2                   | 18 | 846      | 218 | 628      | 2.88  | 2      | Yeast-2-vs-8                       | 8  | 482      | 20 | 462      | 23.10 |
| 8      | Vehicle3                   | 18 | 846      | 212 | 634      | 2.99  | 2      | Yeast4                             | 8  | 148<br>4 | 51 | 143<br>3 | 28.10 |
| 9      | Glass-0-1-2-<br>3_vs_4-5-6 | 9  | 214      | 51  | 163      | 3.20  | 2      | Winequality-red-4                  | 11 | 159<br>9 | 53 | 150<br>6 | 29.17 |
| 1 0    | Vehicle0                   | 18 | 846      | 199 | 647      | 3.25  | 2      | Yeast-1-2-8-9-vs-7                 | 8  | 947      | 30 | 917      | 30.57 |
| 1<br>1 | Ecoli1                     | 7  | 336      | 77  | 259      | 3.36  | 3      | Yeast5                             | 8  | 148<br>4 | 44 | 144<br>0 | 32.73 |
| 1 2    | Ecoli2                     | 7  | 336      | 52  | 284      | 5.46  | 3      | Yeast6                             | 8  | 148<br>4 | 35 | 144<br>9 | 41.40 |
| 1      | Glass6                     | 9  | 214      | 29  | 185      | 6.38  | 3 2    | Winequality-white -3_vs_7          | 11 | 900      | 20 | 880      | 44.00 |
| 1      | Yeast3                     | 8  | 148<br>4 | 163 | 132<br>1 | 8.10  | 3      | Winequality-red-8<br>_vs_6-7       | 11 | 855      | 18 | 837      | 46.50 |
| 1 5    | Ecoli3                     | 7  | 336      | 35  | 306      | 8.60  | 3      | Kr-vs-k-zero_vs_e                  | 6  | 146<br>0 | 27 | 143      | 53.07 |
| 1      | Yeast-2-vs-4               | 8  | 514      | 51  | 463      | 9.08  | 3      | Shuttle-2_vs_5                     | 9  | 331      | 49 | 326<br>7 | 66.67 |
| 1<br>7 | Yeast-0-5-6-<br>7-9-vs-4   | 8  | 528      | 51  | 477      | 9.35  | 3      | Kddcup-buffer_ov<br>erflow_vs_back | 41 | 223      | 30 | 220      | 73.43 |
| 1      | Glass-0-1-6_<br>vs_2       | 9  | 192      | 17  | 175      | 10.29 | 3<br>7 | Kr-vs-k-zero_vs_fi                 | 6  | 219      | 27 | 216<br>6 | 80.22 |
| 1 9    | Glass2                     | 9  | 214      | 17  | 197      | 11.59 | 3      | Rootkit_imapvsba                   | 41 | 222<br>5 | 22 | 220<br>3 | 100.1 |

#### 2.1.2. Parameter setting

The important parameters of the proposed algorithm are as follows: (1) Number of sample subsets: Q. (2) Number of manifold nearest neighbors in MNSEP: MN-num. (3) Number of clustering centers (proportion of clustering centers to the samples before clustering) in FCM: C-num. For most experiments, these three parameters are set as: Q=10, MN-num=1, C-num=50%. Three hyperparameters  $\eta$ ,  $\gamma$ ,  $\mu$  are involved, which determine the contribution of different loss items in the objective function. The range of the hyperparameters is set to  $\eta$ ,  $\gamma$ ,  $\mu = \left[10^{-5},10^{-4},...,10^{2}\right]$ , based on which the grid search method is used to obtain the optimum value. As different value sets  $\left(\eta,\gamma,\mu\right)$  are combined, the corresponding best results are selected for each dataset when executing MNESG\_IE. The parameter settings of the compared imbalanced ensemble algorithms are: Number of subsets=10.

For SMOTEBoost, SMOTEBagging, the number of neighbors is set to 3. Other parameters are default.

#### 2.1.3. Evaluation metrics and non-parametric statistical tests

In this paper, we evaluate the performance of each method based on Accuracy (ACC), AUC, F-measure (F-M), and G-mean (G-M) criteria. These evaluation metrics are calculated as follows.

$$Accuracy(ACC) = \frac{TP + TN}{TP + FP + TN + FN}$$
 
$$AUC = \frac{Sensitivity + Specificity}{2}$$
 
$$F - measure = \frac{2*Recall*Precision}{Recall + Precision}$$
 
$$G - mean = \sqrt{\frac{TP}{TP + FN}}*\frac{TN}{TN + FP}$$

Where TP denotes true positive, FP denotes false positive, TN denotes true negative and FN denotes false negative. In addition, sensitivity, specificity, recall, and precision are calculated as follows.

$$Sensitivity = \frac{TP}{TP + FN}$$
 
$$Specificity = \frac{TN}{TN + FP}$$
 
$$Recall = \frac{TP}{TP + FN}$$
 
$$Precision = \frac{TP}{TP + FP}$$

To determine whether there is a significant difference between the algorithms, two kinds of nonparametric statistical tests are involved. (1) Multiple comparisons, based on the Friedman test with its corresponding post hoc test to determine whether there are significant differences between all comparison algorithms. In this paper, the Holm post hoc test was chosen, and the significance level was set at  $\alpha = 0.05$ . (2) Pairwise comparisons, wherein the Wilcoxon paired signed-rank test was used to determine whether there was a significant difference in the classification ability between the two algorithms. This was complemented by the ranking of all compared algorithms with respect to different evaluation metrics based on the Friedman aligned rank test, where a lower rank number indicates better classification ability.

#### 2.2. Parameter analysis

In this section, the influences of two important parameters: the number of manifold nearest neighbors MN-num and the number of clustering centers C-num on the performance of MNESG\_IE is studied. Six datasets which represented two types of datasets are chosen (e.g., exhibiting high-IR and low-IR). In addition, the optimization of three hyperparameters  $\eta$ ,  $\gamma$ ,  $\mu$  is analyzed based on the grid search method.

#### 2.2.1. Effect analysis of the number of manifold nearest neighbors

MN-num is the number of manifold nearest neighbors selected based on each sample when performing the MNSEP. In the proposed algorithm, MN-num means the number of samples in each

sample envelope. This will affect the structural information in the neighboring envelope samples, which in turn affects the classification performance and diversity of the base classifier trained on the subsets indirectly. To investigate the effect of MN-num on the performance of MNESG\_IE, six datasets with different imbalance ratios (1.86-28.10) are selected for parametric analysis at MN-num = 0,1,2,3,4,5. Figure 5 shows the four evaluation metrics based on different MN-num for different datasets.



Fig. 5. MNESG\_IE performance with different MN-num

As shown in Figure 5, when *MN-num* changes from 0 to 1, each evaluation metric generally improves to a certain extent, which shows that the local correlation among neighboring samples is effective. The possible reason is that the envelope sample projection generation can effectively explore the local correlation among similar samples, thus generating high-quality NES. However, as *MN-num* increases, the performance no changes or starts to decrease. Therefore, an excessive value of *MN-num* is not suitable, probably because too many selected nearest neighbors increase the redundant information. Therefore, a reasonable value of *MN-num* ranges from 1 to 3. To balance the accuracy and computational complexity, this paper sets *MN-num*=1.

#### 2.2.2. Effect analysis of the number of clusters

*C-num* is the ratio of the number of clusters to the number of samples before clustering when performing clustering. The smaller *C-num* is, the more compact the mined correlation information will be, yet the larger the risk of missing useful correlation information. The reverse is also true.

To investigate the effect of C-num on the performance of MNESG\_IE, six datasets with different imbalance ratios (1.86-28.10) were selected at C-num=30%, 40%, 50%, 60%, 70%, 80%. Figure 6 shows the four evaluation metrics in terms of different C-num and datasets.



Fig. 6. MNESG\_IE performance with different C-num

As shown in Figure 6, with the growth of C-num, the performance of the algorithm based on each evaluation metric tends to increase and then decrease, and the best performance is generally obtained when the C-num is approximately 50%. The C-num should not be too large or too small: if it is too large, some poor-quality neighboring envelope samples will be generated, and if it is too small, useful information may be lost. Therefore, a reasonable value of C-num should be chosen from 40% to 60%. To balance the accuracy and computational complexity, this paper sets C-num=50%.

#### 2.2.3. Effect analysis of hyperparameters

The objective function of the proposed algorithm involves three hyperparameters  $\eta$ ,  $\gamma$  and  $\mu$ , and these three hyperparameters determine the contribution of the different loss items.



Fig. 7. MNESG\_IE performance with different  $(\eta, \gamma, \mu)$ 

To analyze the impacts of these hyperparameters, the performance of MNESG\_IE with different parameter value sets executed on Yeast-0-6-5-7-9-vs-4 is shown in Figure 7. The color of each point in

Figure 7 denotes the ACC, F-M, AUC, and G-M values for the corresponding parameter values  $(\eta, \gamma, \mu)$ . It can be found in Figure 7 that better performance can be produced with relatively large values of  $\gamma$  and  $\mu$  and a moderate value of  $\eta$ . The values of  $\gamma$  and  $\mu$  of approximately 10 and the value of  $\eta$  of approximately 1 could be potential suitable ones.

#### 2.3. Ablation study on major components

The major components are the two envelope samples construction mechanism (MNESG). To verify the effectiveness of the two types of the envelope samples-NES and NCES, ablation experiment was conducted on six datasets with different imbalance ratios (1.86-28.10). The 'NES and NCES\_based' method and 'NES\_based' method are compared with the 'Original\_based' method. 'Original\_based' means the original samples-based IE methods. 'NES\_based' means the NES based IE method. 'NES and NCES\_based' (MNESG\_IE) means NES and NCES based IE method. The comparison of the above three methods is presented in Table 3. The best results are shown in boldface.

|                      |                      |                     | 1                   |                     |                     |
|----------------------|----------------------|---------------------|---------------------|---------------------|---------------------|
| Dataset              | Algorithms           | ACC                 | AUC                 | F-M                 | G-M                 |
|                      | 'Original_based'     | $0.9400 \pm 0.0400$ | 0.9403±0.0377       | 0.9178±0.0524       | 0.9400±0.0377       |
| Wisconsin            | 'NES_based'          | $0.9765 \pm 0.0168$ | $0.9770\pm0.0212$   | $0.9666 \pm 0.0249$ | $0.9769 \pm 0.0214$ |
|                      | 'NES and NCES_based' | $0.9898 \pm 0.0083$ | $0.9921 \pm 0.0064$ | $0.9857 \pm 0.0115$ | $0.9921 \pm 0.0065$ |
|                      | 'Original_based'     | 0.9314±0.0482       | 0.9118±0.0620       | 0.8079±0.1261       | 0.9095±0.0655       |
| Ecoli2               | 'NES_based'          | $0.9349 \pm 0.0367$ | $0.9311 \pm 0.0512$ | $0.8192 \pm 0.0927$ | $0.9307 \pm 0.0514$ |
|                      | 'NES and NCES_based' | $0.9761 \pm 0.0257$ | $0.9538 \pm 0.0291$ | $0.9242 \pm 0.0787$ | $0.9532 \pm 0.0293$ |
|                      | 'Original_based'     | $0.7899 \pm 0.0483$ | 0.8497±0.0627       | $0.4642 \pm 0.0765$ | 0.8453±0.0607       |
| Yeast-0-5-6-7-9-vs-4 | 'NES based'          | $0.7916 \pm 0.0803$ | $0.8596 \pm 0.0622$ | 0.4811±0.1021       | $0.8537 \pm 0.0647$ |
|                      | 'NES and NCES_based' | $0.9263 \pm 0.0039$ | 0.9235±0.0779       | $0.6977 \pm 0.0370$ | $0.9184 \pm 0.0873$ |
|                      | 'Original_based'     | $0.7321 \pm 0.0963$ | 0.8102±0.0401       | 0.3179±0.0587       | 0.7973±0.0409       |
| Yeast-1-vs-7         | 'NES_based'          | $0.7868 \pm 0.1449$ | $0.7930 \pm 0.0604$ | $0.3716 \pm 0.1134$ | $0.7784 \pm 0.0749$ |
|                      | 'NES and NCES_based' | $0.8110\pm0.0531$   | $0.8214 \pm 0.0294$ | $0.3732 \pm 0.0614$ | $0.8210 \pm 0.0291$ |
|                      | 'Original_based'     | 0.7907±0.0759       | 0.7952±0.0865       | 0.2543±0.0871       | 0.7857±0.0909       |
| Yeast-2-vs-8         | 'NES_based'          | $0.9143 \pm 0.0274$ | $0.7460 \pm 0.0657$ | $0.3612 \pm 0.0908$ | $0.7201 \pm 0.0788$ |
|                      | 'NES and NCES_based' | $0.9792 \pm 0.0121$ | $0.8696 \pm 0.0978$ | $0.7532 \pm 0.1358$ | $0.8547 \pm 0.1152$ |
|                      | 'Original_based'     | 0.8294±0.0494       | 0.8653±0.0551       | 0.2738±0.0529       | 0.8607±0.0547       |
| Yeast4               | 'NES_based'          | $0.8330 \pm 0.0611$ | $0.8661 \pm 0.0506$ | $0.2837 \pm 0.0652$ | $0.8645 \pm 0.0510$ |
|                      | 'NES and NCES_based' | $0.9097 \pm 0.0142$ | $0.8209 \pm 0.0693$ | $0.3553 \pm 0.0457$ | $0.8122 \pm 0.0787$ |

Table 3. Ablation results for the proposed method

As shown in Table 3, in terms of the four evaluation metrics, 'NES \_based' generally outperforms 'Original \_based'. The result means the NES containing local correlation information can improve the quality of the subsets and subsequent classification performance. The 'NES and NCES\_based' achieves significant improvement compared with 'NES \_based' for most datasets. The result indicates that the NCES containing both local and global correlation information is effective. At the same time, the performance of the 'NES and NCES\_based' is significantly better than that of the 'Original\_based' method in terms of all four evaluation metrics. It means that the two types of envelope samples containing correlation information are better than original samples in the subsets, which are more helpful for imbalanced classification.

In addition, the diversity and performance of the base classifiers in the algorithms are also analyzed based on the Kappa-error diagram. Figure 8 shows the diversity performance of the base classifiers obtained using MNESG\_IE, SMOTE Bagging, and Under Bagging algorithms on three datasets with different imbalance ratios. Among them, 'Neighboring samples based' means that the base classifiers are trained on the NES. 'Hierarchical samples based' means that the base classifiers are

#### trained on the NCES.



Fig. 8. Diversity and performance analysis of base classifiers

As shown in Figure 8, MNESG\_IE can obtain data points with smaller Kappa values and average errors compared to the other two classical IE algorithms. This means that the base classifiers which are trained based on the envelope samples obtained by MNESG\_IE have greater diversity and performance. Moreover, the Kappa values of data points obtained by 'Hierarchical samples based' are generally smaller than that of 'Neighboring samples based'. The possible reason for this is that the NCES are obtained based on the NES. Therefore, NCES include both the local and global correlation information.

#### 2.4. Algorithm comparison

To verify the effectiveness and competitiveness of the proposed algorithm, MNESG\_IE is compared with seven classical IE algorithms, four state-of-the-art IE algorithms, and six advanced DL based imbalanced classification methods. For fair comparison, the results of the MNESG\_IE are shown with the default and optimized parameters and compared with that of the compared methods. The best results are shown in boldface.

### 2.4.1. Comparison with classical IE algorithms

In this experiment, the proposed MNESG\_IE was evaluated against seven classical IE methods: SMOTE Bagging, Under Bagging, SMOTE Boost, RUSBoost, EUSBoost, Balance Cascade, Easy Ensemble. The details and parameter settings of these methods are shown in subsection 'Experimental environment'. The results are shown in Table 4, which lists the average ACC, AUC, F-M and G-M values for performing different IE algorithms based.

|    | Table 4. Comparison with classical IE algorithms |                     |                     |                     |                     |  |  |  |
|----|--------------------------------------------------|---------------------|---------------------|---------------------|---------------------|--|--|--|
| ID | Algorithm                                        | ACC                 | AUC                 | F-M                 | G-M                 |  |  |  |
|    | SBAG                                             | $0.7526 \pm 0.0872$ | $0.7400 \pm 0.0747$ | $0.6727 \pm 0.0763$ | $0.7364 \pm 0.0728$ |  |  |  |
|    | UBAG                                             | $0.7430 \pm 0.0882$ | $0.7549 \pm 0.0817$ | $0.6903 \pm 0.0807$ | $0.7508 \pm 0.0826$ |  |  |  |
|    | SBO                                              | $0.8354 \pm 0.0596$ | $0.7839 \pm 0.0652$ | $0.7232 \pm 0.0830$ | $0.7767 \pm 0.0659$ |  |  |  |
|    | RBO                                              | $0.7663 \pm 0.0717$ | $0.7724 \pm 0.0864$ | $0.7043\pm0.0911$   | $0.7702 \pm 0.0838$ |  |  |  |
| 1  | EBO                                              | $0.7860 \pm 0.0812$ | $0.8013 \pm 0.0695$ | $0.7440 \pm 0.0683$ | $0.7979 \pm 0.0745$ |  |  |  |
|    | BAC                                              | $0.7055 \pm 0.0693$ | $0.7274 \pm 0.0738$ | $0.6599 \pm 0.0703$ | $0.7218 \pm 0.0741$ |  |  |  |
|    | Easy                                             | $0.6903 \pm 0.0926$ | $0.7127 \pm 0.0962$ | $0.6468 \pm 0.0963$ | $0.7079 \pm 0.0957$ |  |  |  |
|    | MNESG_IE (default)                               | $0.7614 \pm 0.0835$ | $0.7757 \pm 0.0403$ | $0.7130 \pm 0.0393$ | $0.7543 \pm 0.0615$ |  |  |  |
|    | MNESG_IE                                         | 0.9721±0.0104       | 0.9662±0.0011       | 0.9599±0.0125       | 0.9656±0.0011       |  |  |  |
|    | SBAG                                             | 0.9648±0.0095       | 0.9611±0.0138       | 0.9501±0.0138       | 0.9609±0.0139       |  |  |  |
| 2  | UBAG                                             | $0.9582 \pm 0.0119$ | $0.9609 \pm 0.0112$ | $0.9445 \pm 0.0137$ | $0.9607 \pm 0.0114$ |  |  |  |
| 2  | SBO                                              | $0.9648 \pm 0.0141$ | $0.9652 \pm 0.0145$ | $0.9506 \pm 0.0196$ | $0.9651 \pm 0.0145$ |  |  |  |
|    | RBO                                              | $0.9736 \pm 0.0083$ | $0.9739 \pm 0.0111$ | $0.9627 \pm 0.0120$ | $0.9738 \pm 0.0113$ |  |  |  |

Table 4. Comparison with classical IE algorithms

|   | EBO                                                                                                                                             | 0.9546±0.0141                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.9526 \pm 0.0154$                                                                                                                                                                                                                                                                                                                                                                                         | $0.9358 \pm 0.0194$                                                                                                                                                                                                                                                                                                                           | 0.9522±0.0157                                                                                                                                                                                                                                                                                                                                                                          |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | BAC                                                                                                                                             | 0.9657±0.0095                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.9473 \pm 0.0132$                                                                                                                                                                                                                                                                                                                                                                                         | $0.9658 \pm 0.0095$                                                                                                                                                                                                                                                                                                                           | $0.9619\pm0.0095$                                                                                                                                                                                                                                                                                                                                                                      |
|   | Easy                                                                                                                                            | 0.9619±0.0119                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9610±0.0117                                                                                                                                                                                                                                                                                                                                                                                               | 0.9463±0.0166                                                                                                                                                                                                                                                                                                                                 | 0.9610±0.0117                                                                                                                                                                                                                                                                                                                                                                          |
|   | MNESG_IE (default)                                                                                                                              | $0.9780 \pm 0.0052$                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9812±0.0048                                                                                                                                                                                                                                                                                                                                                                                               | $0.9694 \pm 0.0070$                                                                                                                                                                                                                                                                                                                           | 0.9811±0.0048                                                                                                                                                                                                                                                                                                                                                                          |
|   | MNESG_IE                                                                                                                                        | 0.9898±0.0083                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9921±0.0064                                                                                                                                                                                                                                                                                                                                                                                               | 0.9857±0.0115                                                                                                                                                                                                                                                                                                                                 | 0.9921±0.0065                                                                                                                                                                                                                                                                                                                                                                          |
|   | SBAG                                                                                                                                            | 0.7590±0.0158                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.7274±0.0155                                                                                                                                                                                                                                                                                                                                                                                               | 0.6434±0.0212                                                                                                                                                                                                                                                                                                                                 | 0.7196±0.0165                                                                                                                                                                                                                                                                                                                                                                          |
|   | UBAG                                                                                                                                            | 0.7214±0.0408                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.7383 \pm 0.0352$                                                                                                                                                                                                                                                                                                                                                                                         | $0.6666 \pm 0.0356$                                                                                                                                                                                                                                                                                                                           | $0.7355 \pm 0.0363$                                                                                                                                                                                                                                                                                                                                                                    |
|   | SBO                                                                                                                                             | 0.7408±0.0356                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.7291±0.0529                                                                                                                                                                                                                                                                                                                                                                                               | $0.6469 \pm 0.0697$                                                                                                                                                                                                                                                                                                                           | $0.7257 \pm 0.0575$                                                                                                                                                                                                                                                                                                                                                                    |
|   | RBO                                                                                                                                             | $0.7356 \pm 0.0309$                                                                                                                                                                                                                                                                                                                                                                                                              | $0.7293 \pm 0.0337$                                                                                                                                                                                                                                                                                                                                                                                         | $0.6511 \pm 0.0414$                                                                                                                                                                                                                                                                                                                           | $0.7278 \pm 0.0342$                                                                                                                                                                                                                                                                                                                                                                    |
| 3 | EBO                                                                                                                                             | $0.7792 \pm 0.0480$                                                                                                                                                                                                                                                                                                                                                                                                              | $0.7566 \pm 0.0392$                                                                                                                                                                                                                                                                                                                                                                                         | $0.6852 \pm 0.0437$                                                                                                                                                                                                                                                                                                                           | $0.7541 \pm 0.0379$                                                                                                                                                                                                                                                                                                                                                                    |
|   | BAC                                                                                                                                             | $0.6901 \pm 0.0307$                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7020±0.0256                                                                                                                                                                                                                                                                                                                                                                                               | $0.6252 \pm 0.0277$                                                                                                                                                                                                                                                                                                                           | $0.6982 \pm 0.0258$                                                                                                                                                                                                                                                                                                                                                                    |
|   | Easy                                                                                                                                            | $0.7143 \pm 0.0306$                                                                                                                                                                                                                                                                                                                                                                                                              | $0.7124 \pm 0.0423$                                                                                                                                                                                                                                                                                                                                                                                         | $0.6344 \pm 0.0512$                                                                                                                                                                                                                                                                                                                           | 0.7114±0.0423                                                                                                                                                                                                                                                                                                                                                                          |
|   | MNESG_IE (default)                                                                                                                              | 0.7435±0.0349                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.7220\pm0.0475$                                                                                                                                                                                                                                                                                                                                                                                           | 0.6223±0.1029                                                                                                                                                                                                                                                                                                                                 | $0.6945 \pm 0.0933$                                                                                                                                                                                                                                                                                                                                                                    |
|   | MNESG_IE                                                                                                                                        | $0.8243 \pm 0.0302$                                                                                                                                                                                                                                                                                                                                                                                                              | $0.7954 \pm 0.0343$                                                                                                                                                                                                                                                                                                                                                                                         | $0.7327 \pm 0.0494$                                                                                                                                                                                                                                                                                                                           | $0.7823 \pm 0.0460$                                                                                                                                                                                                                                                                                                                                                                    |
|   | SBAG                                                                                                                                            | 0.9866±0.0182                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9800±0.0273                                                                                                                                                                                                                                                                                                                                                                                               | 0.9789±0.0288                                                                                                                                                                                                                                                                                                                                 | 0.9794±0.0281                                                                                                                                                                                                                                                                                                                                                                          |
|   | UBAG                                                                                                                                            | $0.9866 \pm 0.0182$                                                                                                                                                                                                                                                                                                                                                                                                              | $0.9800 \pm 0.0273$                                                                                                                                                                                                                                                                                                                                                                                         | $0.9789 \pm 0.0288$                                                                                                                                                                                                                                                                                                                           | $0.9794 \pm 0.0281$                                                                                                                                                                                                                                                                                                                                                                    |
|   | SBO                                                                                                                                             | $0.9933 \pm 0.0149$                                                                                                                                                                                                                                                                                                                                                                                                              | $0.9900 \pm 0.0223$                                                                                                                                                                                                                                                                                                                                                                                         | $0.9894 \pm 0.0235$                                                                                                                                                                                                                                                                                                                           | $0.9897 \pm 0.0229$                                                                                                                                                                                                                                                                                                                                                                    |
|   | RBO                                                                                                                                             | $0.9933 \pm 0.0149$                                                                                                                                                                                                                                                                                                                                                                                                              | $0.9900 \pm 0.0223$                                                                                                                                                                                                                                                                                                                                                                                         | $0.9894 \pm 0.0235$                                                                                                                                                                                                                                                                                                                           | $0.9897 \pm 0.0229$                                                                                                                                                                                                                                                                                                                                                                    |
| 4 | EBO                                                                                                                                             | $0.9933 \pm 0.0149$                                                                                                                                                                                                                                                                                                                                                                                                              | $0.9900 \pm 0.0223$                                                                                                                                                                                                                                                                                                                                                                                         | $0.9894 \pm 0.0235$                                                                                                                                                                                                                                                                                                                           | $0.9897 \pm 0.0229$                                                                                                                                                                                                                                                                                                                                                                    |
|   | BAC                                                                                                                                             | 1±0                                                                                                                                                                                                                                                                                                                                                                                                                              | 1±0                                                                                                                                                                                                                                                                                                                                                                                                         | 1±0                                                                                                                                                                                                                                                                                                                                           | 1±0                                                                                                                                                                                                                                                                                                                                                                                    |
|   | Easy                                                                                                                                            | $0.9933 \pm 0.0149$                                                                                                                                                                                                                                                                                                                                                                                                              | $0.9900 \pm 0.0223$                                                                                                                                                                                                                                                                                                                                                                                         | $0.9894 \pm 0.0235$                                                                                                                                                                                                                                                                                                                           | $0.9897 \pm 0.0229$                                                                                                                                                                                                                                                                                                                                                                    |
|   | MNESG_IE (default)                                                                                                                              | 1±0                                                                                                                                                                                                                                                                                                                                                                                                                              | 1±0                                                                                                                                                                                                                                                                                                                                                                                                         | 1±0                                                                                                                                                                                                                                                                                                                                           | 1±0                                                                                                                                                                                                                                                                                                                                                                                    |
|   | MNESG IE                                                                                                                                        | 1±0                                                                                                                                                                                                                                                                                                                                                                                                                              | 1±0                                                                                                                                                                                                                                                                                                                                                                                                         | 1 + 0                                                                                                                                                                                                                                                                                                                                         | 1 + 0                                                                                                                                                                                                                                                                                                                                                                                  |
|   | WINESO_IE                                                                                                                                       | 120                                                                                                                                                                                                                                                                                                                                                                                                                              | 110                                                                                                                                                                                                                                                                                                                                                                                                         | 1±0                                                                                                                                                                                                                                                                                                                                           | 1±0                                                                                                                                                                                                                                                                                                                                                                                    |
|   | SBAG                                                                                                                                            | 0.7030±0.0246                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.6924±0.0239                                                                                                                                                                                                                                                                                                                                                                                               | 0.5621±0.0347                                                                                                                                                                                                                                                                                                                                 | 0.6855±0.0331                                                                                                                                                                                                                                                                                                                                                                          |
|   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                        |
|   | SBAG                                                                                                                                            | 0.7030±0.0246                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.6924±0.0239                                                                                                                                                                                                                                                                                                                                                                                               | 0.5621±0.0347                                                                                                                                                                                                                                                                                                                                 | 0.6855±0.0331                                                                                                                                                                                                                                                                                                                                                                          |
|   | SBAG<br>UBAG                                                                                                                                    | 0.7030±0.0246<br>0.7263±0.0239                                                                                                                                                                                                                                                                                                                                                                                                   | 0.6924±0.0239<br>0.7210±0.0347                                                                                                                                                                                                                                                                                                                                                                              | 0.5621±0.0347<br>0.5989±0.0418                                                                                                                                                                                                                                                                                                                | 0.6855±0.0331<br>0.7204±0.0351                                                                                                                                                                                                                                                                                                                                                         |
| 5 | SBAG<br>UBAG<br>SBO                                                                                                                             | 0.7030±0.0246<br>0.7263±0.0239<br>0.7183±0.0336                                                                                                                                                                                                                                                                                                                                                                                  | 0.6924±0.0239<br>0.7210±0.0347<br>0.6946±0.0280                                                                                                                                                                                                                                                                                                                                                             | 0.5621±0.0347<br>0.5989±0.0418<br>0.5648±0.0401                                                                                                                                                                                                                                                                                               | 0.6855±0.0331<br>0.7204±0.0351<br>0.6865±0.0366                                                                                                                                                                                                                                                                                                                                        |
| 5 | SBAG<br>UBAG<br>SBO<br>RBO                                                                                                                      | 0.7030±0.0246<br>0.7263±0.0239<br>0.7183±0.0336<br>0.7398±0.0253                                                                                                                                                                                                                                                                                                                                                                 | 0.6924±0.0239<br>0.7210±0.0347<br>0.6946±0.0280<br>0.7104±0.0400                                                                                                                                                                                                                                                                                                                                            | 0.5621±0.0347<br>0.5989±0.0418<br>0.5648±0.0401<br>0.5864±0.0522                                                                                                                                                                                                                                                                              | 0.6855±0.0331<br>0.7204±0.0351<br>0.6865±0.0366<br>0.7066±0.0434                                                                                                                                                                                                                                                                                                                       |
| 5 | SBAG UBAG SBO RBO EBO                                                                                                                           | 0.7030±0.0246<br>0.7263±0.0239<br>0.7183±0.0336<br>0.7398±0.0253<br>0.6913±0.0551                                                                                                                                                                                                                                                                                                                                                | 0.6924±0.0239<br>0.7210±0.0347<br>0.6946±0.0280<br>0.7104±0.0400<br>0.7081±0.0307                                                                                                                                                                                                                                                                                                                           | 0.5621±0.0347<br>0.5989±0.0418<br>0.5648±0.0401<br>0.5864±0.0522<br>0.5857±0.0394                                                                                                                                                                                                                                                             | 0.6855±0.0331<br>0.7204±0.0351<br>0.6865±0.0366<br>0.7066±0.0434<br>0.7032±0.0304                                                                                                                                                                                                                                                                                                      |
| 5 | SBAG UBAG SBO RBO EBO BAC                                                                                                                       | 0.7030±0.0246<br>0.7263±0.0239<br>0.7183±0.0336<br>0.7398±0.0253<br>0.6913±0.0551<br>0.6440±0.0433                                                                                                                                                                                                                                                                                                                               | 0.6924±0.0239<br>0.7210±0.0347<br>0.6946±0.0280<br>0.7104±0.0400<br>0.7081±0.0307<br>0.6794±0.0080                                                                                                                                                                                                                                                                                                          | 0.5621±0.0347<br>0.5989±0.0418<br>0.5648±0.0401<br>0.5864±0.0522<br>0.5857±0.0394<br>0.5885±0.0456                                                                                                                                                                                                                                            | 0.6855±0.0331<br>0.7204±0.0351<br>0.6865±0.0366<br>0.7066±0.0434<br>0.7032±0.0304<br>0.6696±0.0192                                                                                                                                                                                                                                                                                     |
| 5 | SBAG UBAG SBO RBO EBO BAC Easy                                                                                                                  | 0.7030±0.0246<br>0.7263±0.0239<br>0.7183±0.0336<br>0.7398±0.0253<br>0.6913±0.0551<br>0.6440±0.0433<br>0.6543±0.0207                                                                                                                                                                                                                                                                                                              | 0.6924±0.0239<br>0.7210±0.0347<br>0.6946±0.0280<br>0.7104±0.0400<br>0.7081±0.0307<br>0.6794±0.0080<br>0.6752±0.0144                                                                                                                                                                                                                                                                                         | 0.5621±0.0347<br>0.5989±0.0418<br>0.5648±0.0401<br>0.5864±0.0522<br>0.5857±0.0394<br>0.5885±0.0456<br>0.5481±0.0146                                                                                                                                                                                                                           | 0.6855±0.0331<br>0.7204±0.0351<br>0.6865±0.0366<br>0.7066±0.0434<br>0.7032±0.0304<br>0.6696±0.0192<br>0.6728±0.0156                                                                                                                                                                                                                                                                    |
| 5 | SBAG UBAG SBO RBO EBO BAC Easy MNESG_IE (default)                                                                                               | 0.7030±0.0246<br>0.7263±0.0239<br>0.7183±0.0336<br>0.7398±0.0253<br>0.6913±0.0551<br>0.6440±0.0433<br>0.6543±0.0207<br>0.6914±0.0558                                                                                                                                                                                                                                                                                             | 0.6924±0.0239<br>0.7210±0.0347<br>0.6946±0.0280<br>0.7104±0.0400<br>0.7081±0.0307<br>0.6794±0.0080<br>0.6752±0.0144<br>0.7028±0.0194                                                                                                                                                                                                                                                                        | 0.5621±0.0347<br>0.5989±0.0418<br>0.5648±0.0401<br>0.5864±0.0522<br>0.5857±0.0394<br>0.5885±0.0456<br>0.5481±0.0146<br>0.5788±0.0222                                                                                                                                                                                                          | 0.6855±0.0331<br>0.7204±0.0351<br>0.6865±0.0366<br>0.7066±0.0434<br>0.7032±0.0304<br>0.6696±0.0192<br>0.6728±0.0156<br>0.6957±0.0227                                                                                                                                                                                                                                                   |
| 5 | SBAG UBAG SBO RBO EBO BAC Easy MNESG_IE (default)                                                                                               | 0.7030±0.0246<br>0.7263±0.0239<br>0.7183±0.0336<br>0.7398±0.0253<br>0.6913±0.0551<br>0.6440±0.0433<br>0.6543±0.0207<br>0.6914±0.0558<br><b>0.7399±0.0516</b>                                                                                                                                                                                                                                                                     | 0.6924±0.0239<br>0.7210±0.0347<br>0.6946±0.0280<br>0.7104±0.0400<br>0.7081±0.0307<br>0.6794±0.0080<br>0.6752±0.0144<br>0.7028±0.0194<br><b>0.7397±0.0239</b>                                                                                                                                                                                                                                                | 0.5621±0.0347<br>0.5989±0.0418<br>0.5648±0.0401<br>0.5864±0.0522<br>0.5857±0.0394<br>0.5885±0.0456<br>0.5481±0.0146<br>0.5788±0.0222<br><b>0.6246±0.0357</b>                                                                                                                                                                                  | 0.6855±0.0331<br>0.7204±0.0351<br>0.6865±0.0366<br>0.7066±0.0434<br>0.7032±0.0304<br>0.6696±0.0192<br>0.6728±0.0156<br>0.6957±0.0227<br><b>0.7366±0.0211</b>                                                                                                                                                                                                                           |
| 5 | SBAG UBAG SBO RBO EBO BAC Easy MNESG_IE (default) MNESG_IE SBAG                                                                                 | 0.7030±0.0246<br>0.7263±0.0239<br>0.7183±0.0336<br>0.7398±0.0253<br>0.6913±0.0551<br>0.6440±0.0433<br>0.6543±0.0207<br>0.6914±0.0558<br><b>0.7399±0.0516</b><br>0.6532±0.0654                                                                                                                                                                                                                                                    | 0.6924±0.0239<br>0.7210±0.0347<br>0.6946±0.0280<br>0.7104±0.0400<br>0.7081±0.0307<br>0.6794±0.0080<br>0.6752±0.0144<br>0.7028±0.0194<br><b>0.7397±0.0239</b><br>0.6304±0.0521                                                                                                                                                                                                                               | 0.5621±0.0347<br>0.5989±0.0418<br>0.5648±0.0401<br>0.5864±0.0522<br>0.5857±0.0394<br>0.5885±0.0456<br>0.5481±0.0146<br>0.5788±0.0222<br><b>0.6246±0.0357</b><br>0.4698±0.0637                                                                                                                                                                 | $0.6855\pm0.0331$<br>$0.7204\pm0.0351$<br>$0.6865\pm0.0366$<br>$0.7066\pm0.0434$<br>$0.7032\pm0.0304$<br>$0.6696\pm0.0192$<br>$0.6728\pm0.0156$<br>$0.6957\pm0.0227$<br>$0.7366\pm0.0211$<br>$0.6208\pm0.0463$                                                                                                                                                                         |
| 5 | SBAG UBAG SBO RBO EBO BAC Easy MNESG_IE (default) MNESG_IE SBAG UBAG                                                                            | 0.7030±0.0246<br>0.7263±0.0239<br>0.7183±0.0336<br>0.7398±0.0253<br>0.6913±0.0551<br>0.6440±0.0433<br>0.6543±0.0207<br>0.6914±0.0558<br><b>0.7399±0.0516</b><br>0.6532±0.0654<br>0.6598±0.0565                                                                                                                                                                                                                                   | 0.6924±0.0239<br>0.7210±0.0347<br>0.6946±0.0280<br>0.7104±0.0400<br>0.7081±0.0307<br>0.6794±0.0080<br>0.6752±0.0144<br>0.7028±0.0194<br><b>0.7397±0.0239</b><br>0.6304±0.0521<br>0.6422±0.0476                                                                                                                                                                                                              | 0.5621±0.0347<br>0.5989±0.0418<br>0.5648±0.0401<br>0.5864±0.0522<br>0.5857±0.0394<br>0.5885±0.0456<br>0.5481±0.0146<br>0.5788±0.0222<br><b>0.6246±0.0357</b><br>0.4698±0.0637<br>0.4861±0.0640                                                                                                                                                | 0.6855±0.0331<br>0.7204±0.0351<br>0.6865±0.0366<br>0.7066±0.0434<br>0.7032±0.0304<br>0.6696±0.0192<br>0.6728±0.0156<br>0.6957±0.0227<br><b>0.7366±0.0211</b><br>0.6208±0.0463<br>0.6188±0.0802                                                                                                                                                                                         |
| 5 | SBAG UBAG SBO RBO EBO BAC Easy MNESG_IE (default) MNESG_IE SBAG UBAG SBO                                                                        | 0.7030±0.0246<br>0.7263±0.0239<br>0.7183±0.0336<br>0.7398±0.0253<br>0.6913±0.0551<br>0.6440±0.0433<br>0.6543±0.0207<br>0.6914±0.0558<br><b>0.7399±0.0516</b><br>0.6532±0.0654<br>0.6598±0.0565<br>0.6370±0.0473                                                                                                                                                                                                                  | 0.6924±0.0239<br>0.7210±0.0347<br>0.6946±0.0280<br>0.7104±0.0400<br>0.7081±0.0307<br>0.6794±0.0080<br>0.6752±0.0144<br>0.7028±0.0194<br><b>0.7397±0.0239</b><br>0.6304±0.0521<br>0.6422±0.0476<br>0.6145±0.0540                                                                                                                                                                                             | 0.5621±0.0347<br>0.5989±0.0418<br>0.5648±0.0401<br>0.5864±0.0522<br>0.5857±0.0394<br>0.5885±0.0456<br>0.5481±0.0146<br>0.5788±0.0222<br><b>0.6246±0.0357</b><br>0.4698±0.0637<br>0.4861±0.0640<br>0.4517±0.0698                                                                                                                               | 0.6855±0.0331<br>0.7204±0.0351<br>0.6865±0.0366<br>0.7066±0.0434<br>0.7032±0.0304<br>0.6696±0.0192<br>0.6728±0.0156<br>0.6957±0.0227<br><b>0.7366±0.0211</b><br>0.6208±0.0463<br>0.6188±0.0802<br>0.6096±0.0572                                                                                                                                                                        |
|   | SBAG UBAG SBO RBO EBO BAC Easy MNESG_IE (default) MNESG_IE SBAG UBAG SBO RBO                                                                    | 0.7030±0.0246<br>0.7263±0.0239<br>0.7183±0.0336<br>0.7398±0.0253<br>0.6913±0.0551<br>0.6440±0.0433<br>0.6543±0.0207<br>0.6914±0.0558<br><b>0.7399±0.0516</b><br>0.6532±0.0654<br>0.6598±0.0565<br>0.6370±0.0473<br>0.6575±0.0641                                                                                                                                                                                                 | 0.6924±0.0239<br>0.7210±0.0347<br>0.6946±0.0280<br>0.7104±0.0400<br>0.7081±0.0307<br>0.6794±0.0080<br>0.6752±0.0144<br>0.7028±0.0194<br><b>0.7397±0.0239</b><br>0.6304±0.0521<br>0.6422±0.0476<br>0.6145±0.0540<br>0.6639±0.0376                                                                                                                                                                            | 0.5621±0.0347<br>0.5989±0.0418<br>0.5648±0.0401<br>0.5864±0.0522<br>0.5857±0.0394<br>0.5885±0.0456<br>0.5481±0.0146<br>0.5788±0.0222<br><b>0.6246±0.0357</b><br>0.4698±0.0637<br>0.4861±0.0640<br>0.4517±0.0698<br>0.5076±0.0488                                                                                                              | 0.6855±0.0331<br>0.7204±0.0351<br>0.6865±0.0366<br>0.7066±0.0434<br>0.7032±0.0304<br>0.6696±0.0192<br>0.6728±0.0156<br>0.6957±0.0227<br><b>0.7366±0.0211</b><br>0.6208±0.0463<br>0.6188±0.0802<br>0.6096±0.0572<br>0.6575±0.0382                                                                                                                                                       |
|   | SBAG UBAG SBO RBO EBO BAC Easy MNESG_IE (default) MNESG_IE SBAG UBAG SBO RBO EBO                                                                | $0.7030\pm0.0246$<br>$0.7263\pm0.0239$<br>$0.7183\pm0.0336$<br>$0.7398\pm0.0253$<br>$0.6913\pm0.0551$<br>$0.6440\pm0.0433$<br>$0.6543\pm0.0207$<br>$0.6914\pm0.0558$<br>$0.7399\pm0.0516$<br>$0.6532\pm0.0654$<br>$0.6532\pm0.0654$<br>$0.6570\pm0.0473$<br>$0.6575\pm0.0641$<br>$0.7018\pm0.0427$                                                                                                                               | $0.6924\pm0.0239$<br>$0.7210\pm0.0347$<br>$0.6946\pm0.0280$<br>$0.7104\pm0.0400$<br>$0.7081\pm0.0307$<br>$0.6794\pm0.0080$<br>$0.6752\pm0.0144$<br>$0.7028\pm0.0194$<br>$0.7397\pm0.0239$<br>$0.6304\pm0.0521$<br>$0.6422\pm0.0476$<br>$0.6145\pm0.0540$<br>$0.6639\pm0.0376$<br>$0.6548\pm0.0647$                                                                                                          | 0.5621±0.0347<br>0.5989±0.0418<br>0.5648±0.0401<br>0.5864±0.0522<br>0.5857±0.0394<br>0.5885±0.0456<br>0.5481±0.0146<br>0.5788±0.0222<br><b>0.6246±0.0357</b><br>0.4698±0.0637<br>0.4691±0.0640<br>0.4517±0.0698<br>0.5076±0.0488<br>0.4901±0.0849                                                                                             | $0.6855\pm0.0331$<br>$0.7204\pm0.0351$<br>$0.6865\pm0.0366$<br>$0.7066\pm0.0434$<br>$0.7032\pm0.0304$<br>$0.6696\pm0.0192$<br>$0.6728\pm0.0156$<br>$0.6957\pm0.0227$<br>$0.7366\pm0.0211$<br>$0.6208\pm0.0463$<br>$0.6188\pm0.0802$<br>$0.6096\pm0.0572$<br>$0.6575\pm0.0382$<br>$0.6375\pm0.0719$                                                                                     |
|   | SBAG UBAG SBO RBO EBO BAC Easy MNESG_IE (default) MNESG_IE SBAG UBAG SBO RBO EBO BAC                                                            | 0.7030±0.0246<br>0.7263±0.0239<br>0.7183±0.0336<br>0.7398±0.0253<br>0.6913±0.0551<br>0.6440±0.0433<br>0.6543±0.0207<br>0.6914±0.0558<br><b>0.7399±0.0516</b><br>0.6532±0.0654<br>0.6598±0.0565<br>0.6370±0.0473<br>0.6575±0.0641<br>0.7018±0.0427<br>0.6172±0.0830                                                                                                                                                               | 0.6924±0.0239<br>0.7210±0.0347<br>0.6946±0.0280<br>0.7104±0.0400<br>0.7081±0.0307<br>0.6794±0.0080<br>0.6752±0.0144<br>0.7028±0.0194<br><b>0.7397±0.0239</b><br>0.6304±0.0521<br>0.6422±0.0476<br>0.6145±0.0540<br>0.6639±0.0376<br>0.6548±0.0647<br>0.6210±0.0920                                                                                                                                          | 0.5621±0.0347<br>0.5989±0.0418<br>0.5648±0.0401<br>0.5864±0.0522<br>0.5857±0.0394<br>0.5885±0.0456<br>0.5481±0.0146<br>0.5788±0.0222<br><b>0.6246±0.0357</b><br>0.4698±0.0637<br>0.4861±0.0640<br>0.4517±0.0698<br>0.5076±0.0488<br>0.4901±0.0849<br>0.6581±0.1180                                                                            | 0.6855±0.0331<br>0.7204±0.0351<br>0.6865±0.0366<br>0.7066±0.0434<br>0.7032±0.0304<br>0.6696±0.0192<br>0.6728±0.0156<br>0.6957±0.0227<br><b>0.7366±0.0211</b><br>0.6208±0.0463<br>0.6188±0.0802<br>0.6096±0.0572<br>0.6575±0.0382<br>0.6375±0.0719<br>0.6189±0.0919                                                                                                                     |
|   | SBAG UBAG SBO RBO EBO BAC Easy MNESG_IE (default) MNESG_IE SBAG UBAG SBO RBO EBO BAC EBO EBO EBO EBO EBO EBO EBO EBO                            | $0.7030\pm0.0246$<br>$0.7263\pm0.0239$<br>$0.7183\pm0.0336$<br>$0.7398\pm0.0253$<br>$0.6913\pm0.0551$<br>$0.6440\pm0.0433$<br>$0.6543\pm0.0207$<br>$0.6914\pm0.0558$<br>$0.7399\pm0.0516$<br>$0.6532\pm0.0654$<br>$0.6532\pm0.0654$<br>$0.6570\pm0.0473$<br>$0.6575\pm0.0641$<br>$0.7018\pm0.0427$<br>$0.6172\pm0.0830$<br>$0.6843\pm0.0758$                                                                                     | $0.6924\pm0.0239$<br>$0.7210\pm0.0347$<br>$0.6946\pm0.0280$<br>$0.7104\pm0.0400$<br>$0.7081\pm0.0307$<br>$0.6794\pm0.0080$<br>$0.6752\pm0.0144$<br>$0.7028\pm0.0194$<br>$0.7397\pm0.0239$<br>$0.6304\pm0.0521$<br>$0.6422\pm0.0476$<br>$0.6145\pm0.0540$<br>$0.6639\pm0.0376$<br>$0.6548\pm0.0647$<br>$0.6210\pm0.0920$<br>$0.6008\pm0.1185$                                                                | 0.5621±0.0347<br>0.5989±0.0418<br>0.5648±0.0401<br>0.5864±0.0522<br>0.5857±0.0394<br>0.5885±0.0456<br>0.5481±0.0146<br>0.5788±0.0222<br><b>0.6246±0.0357</b><br>0.4698±0.0637<br>0.4691±0.0640<br>0.4517±0.0698<br>0.5076±0.0488<br>0.4901±0.0849<br>0.6581±0.1180<br>0.3728±0.2543                                                           | $0.6855\pm0.0331$<br>$0.7204\pm0.0351$<br>$0.6865\pm0.0366$<br>$0.7066\pm0.0434$<br>$0.7032\pm0.0304$<br>$0.6696\pm0.0192$<br>$0.6728\pm0.0156$<br>$0.6957\pm0.0227$<br>$0.7366\pm0.0211$<br>$0.6208\pm0.0463$<br>$0.6188\pm0.0802$<br>$0.6096\pm0.0572$<br>$0.6575\pm0.0382$<br>$0.6375\pm0.0719$<br>$0.6189\pm0.0919$<br>$0.5165\pm0.2490$                                           |
|   | SBAG UBAG SBO RBO EBO BAC Easy MNESG_IE (default) MNESG_IE SBAG UBAG SBO RBO EBO BAC Easy MNESG_IE                                              | 0.7030±0.0246<br>0.7263±0.0239<br>0.7183±0.0336<br>0.7398±0.0253<br>0.6913±0.0551<br>0.6440±0.0433<br>0.6543±0.0207<br>0.6914±0.0558<br><b>0.7399±0.0516</b><br>0.6532±0.0654<br>0.6598±0.0565<br>0.6370±0.0473<br>0.6575±0.0641<br>0.7018±0.0427<br>0.6172±0.0830<br>0.6843±0.0758<br>0.7284±0.1128                                                                                                                             | 0.6924±0.0239<br>0.7210±0.0347<br>0.6946±0.0280<br>0.7104±0.0400<br>0.7081±0.0307<br>0.6794±0.0080<br>0.6752±0.0144<br>0.7028±0.0194<br><b>0.7397±0.0239</b><br>0.6304±0.0521<br>0.6422±0.0476<br>0.6145±0.0540<br>0.6639±0.0376<br>0.6548±0.0647<br>0.6210±0.0920<br>0.6008±0.1185<br>0.6819±0.0402                                                                                                        | 0.5621±0.0347<br>0.5989±0.0418<br>0.5648±0.0401<br>0.5864±0.0522<br>0.5857±0.0394<br>0.5885±0.0456<br>0.5481±0.0146<br>0.5788±0.0222<br><b>0.6246±0.0357</b><br>0.4698±0.0637<br>0.4861±0.0640<br>0.4517±0.0698<br>0.5076±0.0488<br>0.4901±0.0849<br>0.6581±0.1180<br>0.3728±0.2543<br>0.5259±0.0744                                          | 0.6855±0.0331<br>0.7204±0.0351<br>0.6865±0.0366<br>0.7066±0.0434<br>0.7032±0.0304<br>0.6696±0.0192<br>0.6728±0.0156<br>0.6957±0.0227<br><b>0.7366±0.0211</b><br>0.6208±0.0463<br>0.6188±0.0802<br>0.6096±0.0572<br>0.6375±0.0382<br>0.6375±0.0719<br>0.6189±0.0919<br>0.5165±0.2490<br>0.6333±0.0653                                                                                   |
|   | SBAG UBAG SBO RBO EBO BAC Easy MNESG_IE (default) MNESG_IE SBAG UBAG SBO RBO EBO BAC Easy MNESG_IE (default) MNESG_IE                           | $0.7030\pm0.0246$<br>$0.7263\pm0.0239$<br>$0.7183\pm0.0336$<br>$0.7398\pm0.0253$<br>$0.6913\pm0.0551$<br>$0.6440\pm0.0433$<br>$0.6543\pm0.0207$<br>$0.6914\pm0.0558$<br>$0.7399\pm0.0516$<br>$0.6532\pm0.0654$<br>$0.6532\pm0.0654$<br>$0.6570\pm0.0473$<br>$0.6575\pm0.0641$<br>$0.7018\pm0.0427$<br>$0.6172\pm0.0830$<br>$0.6843\pm0.0758$<br>$0.7284\pm0.1128$<br>$0.9905\pm0.0130$                                           | $0.6924\pm0.0239$<br>$0.7210\pm0.0347$<br>$0.6946\pm0.0280$<br>$0.7104\pm0.0400$<br>$0.7081\pm0.0307$<br>$0.6794\pm0.0080$<br>$0.6752\pm0.0144$<br>$0.7028\pm0.0194$<br>$0.7397\pm0.0239$<br>$0.6304\pm0.0521$<br>$0.6422\pm0.0476$<br>$0.6145\pm0.0540$<br>$0.6639\pm0.0376$<br>$0.6548\pm0.0647$<br>$0.6210\pm0.0920$<br>$0.6008\pm0.1185$<br>$0.6819\pm0.0402$<br>$0.9947\pm0.0072$                      | 0.5621±0.0347<br>0.5989±0.0418<br>0.5648±0.0401<br>0.5864±0.0522<br>0.5857±0.0394<br>0.5885±0.0456<br>0.5481±0.0146<br>0.5788±0.0222<br><b>0.6246±0.0357</b><br>0.4698±0.0637<br>0.4861±0.0640<br>0.4517±0.0698<br>0.5076±0.0488<br>0.4901±0.0849<br>0.6581±0.1180<br>0.3728±0.2543<br>0.5259±0.0744<br><b>0.9556±0.0609</b>                  | $0.6855\pm0.0331$<br>$0.7204\pm0.0351$<br>$0.6865\pm0.0366$<br>$0.7066\pm0.0434$<br>$0.7032\pm0.0304$<br>$0.6696\pm0.0192$<br>$0.6728\pm0.0156$<br>$0.6957\pm0.0227$<br>$0.7366\pm0.0211$<br>$0.6208\pm0.0463$<br>$0.6188\pm0.0802$<br>$0.6096\pm0.0572$<br>$0.6575\pm0.0382$<br>$0.6375\pm0.0719$<br>$0.6189\pm0.0919$<br>$0.5165\pm0.2490$<br>$0.6333\pm0.0653$<br>$0.9947\pm0.0073$ |
| 6 | SBAG UBAG SBO RBO EBO BAC Easy MNESG_IE (default) MNESG_IE SBAG UBAG SBO RBO EBO BAC Easy MNESG_IE SBAG SBO RBO EBO BAC EASY MNESG_IE (default) | $0.7030\pm0.0246$<br>$0.7263\pm0.0239$<br>$0.7183\pm0.0336$<br>$0.7398\pm0.0253$<br>$0.6913\pm0.0551$<br>$0.6440\pm0.0433$<br>$0.6543\pm0.0207$<br>$0.6914\pm0.0558$<br>$0.7399\pm0.0516$<br>$0.6532\pm0.0654$<br>$0.6532\pm0.0654$<br>$0.6598\pm0.0565$<br>$0.6370\pm0.0473$<br>$0.6575\pm0.0641$<br>$0.7018\pm0.0427$<br>$0.6172\pm0.0830$<br>$0.6843\pm0.0758$<br>$0.7284\pm0.1128$<br>$0.9905\pm0.0130$<br>$0.9621\pm0.0130$ | $0.6924\pm0.0239$<br>$0.7210\pm0.0347$<br>$0.6946\pm0.0280$<br>$0.7104\pm0.0400$<br>$0.7081\pm0.0307$<br>$0.6794\pm0.0080$<br>$0.6752\pm0.0144$<br>$0.7028\pm0.0194$<br>$0.7397\pm0.0239$<br>$0.6304\pm0.0521$<br>$0.6422\pm0.0476$<br>$0.6145\pm0.0540$<br>$0.6639\pm0.0376$<br>$0.6548\pm0.0647$<br>$0.6210\pm0.0920$<br>$0.6008\pm0.1185$<br>$0.6819\pm0.0402$<br>$0.9947\pm0.0072$<br>$0.9525\pm0.0245$ | 0.5621±0.0347<br>0.5989±0.0418<br>0.5648±0.0401<br>0.5864±0.0522<br>0.5857±0.0394<br>0.5885±0.0456<br>0.5481±0.0146<br>0.5788±0.0222<br><b>0.6246±0.0357</b><br>0.4698±0.0637<br>0.4698±0.0637<br>0.4517±0.0698<br>0.5076±0.0488<br>0.4901±0.0849<br>0.6581±0.1180<br>0.3728±0.2543<br>0.5259±0.0744<br><b>0.9556±0.0609</b><br>0.9270±0.0261 | 0.6855±0.0331<br>0.7204±0.0351<br>0.6865±0.0366<br>0.7066±0.0434<br>0.7032±0.0304<br>0.6696±0.0192<br>0.6728±0.0156<br>0.6957±0.0227<br><b>0.7366±0.0211</b><br>0.6208±0.0463<br>0.6188±0.0802<br>0.6096±0.0572<br>0.6575±0.0382<br>0.6375±0.0719<br>0.6189±0.0919<br>0.5165±0.2490<br>0.6333±0.0653<br><b>0.9947±0.0073</b>                                                           |

|    | RBO                | $0.9621 \pm 0.0184$ | 0.9671±0.0206       | $0.9304 \pm 0.0340$ | $0.9669 \pm 0.0206$ |
|----|--------------------|---------------------|---------------------|---------------------|---------------------|
|    | EBO                | 0.9704±0.0200       | $0.9681 \pm 0.0210$ | $0.9442 \pm 0.0373$ | $0.9680 \pm 0.0212$ |
|    | BAC                | $0.9515 \pm 0.0153$ | $0.9539 \pm 0.0050$ | 0.9114±0.0241       | $0.9536 \pm 0.0051$ |
|    | Easy               | 0.9455±0.0211       | $0.9559 \pm 0.0176$ | $0.9031 \pm 0.0352$ | $0.9555 \pm 0.0178$ |
|    | MNESG_IE (default) | $0.9468 \pm 0.0120$ | 0.9447±0.0146       | 0.9011±0.0218       | $0.9446 \pm 0.0146$ |
|    | MNESG_IE           | $0.9503 \pm 0.0456$ | $0.9606 \pm 0.0313$ | 0.9148±0.0694       | $0.9599 \pm 0.0325$ |
|    | SBAG               | 0.7677±0.0092       | 0.7618±0.0170       | 0.6190±0.0195       | 0.7613±0.0177       |
|    | UBAG               | 0.7411±0.0234       | 0.7768±0.0235       | 0.6213±0.0265       | 0.7720±0.0219       |
|    | SBO                | 0.7718±0.0287       | 0.7441±0.0348       | 0.6015±0.0423       | $0.7402 \pm 0.0386$ |
|    | RBO                | 0.7564±0.0295       | 0.7493±0.0545       | 0.5993±0.0643       | $0.7464 \pm 0.0584$ |
| 8  | EBO                | 0.7494±0.0343       | 0.7902±0.0315       | 0.6364±0.0377       | 0.7854±0.0312       |
|    | BAC                | 0.7055±0.0446       | 0.7360±0.0400       | 0.5765±0.0459       | 0.7314±0.0391       |
|    | Easy               | 0.7257±0.0351       | 0.7386±0.0360       | 0.5830±0.0420       | $0.7377 \pm 0.0362$ |
|    | MNESG_IE (default) | $0.7448 \pm 0.0397$ | 0.7555±0.0376       | $0.6034 \pm 0.0442$ | $0.7503\pm0.0401$   |
|    | MNESG_IE           | $0.8120 \pm 0.0383$ | $0.7870 \pm 0.0509$ | $0.6601 \pm 0.0586$ | $0.7785 \pm 0.0612$ |
|    | SBAG               | 0.9203±0.0487       | 0.9198±0.0466       | 0.8509±0.0872       | 0.9183±0.0465       |
|    | UBAG               | $0.8831 \pm 0.0520$ | $0.8885 \pm 0.0503$ | 0.7903±0.0863       | $0.8862 \pm 0.0491$ |
|    | SBO                | $0.9392 \pm 0.0390$ | 0.9185±0.0514       | $0.8730 \pm 0.0807$ | 0.9171±0.0524       |
|    | RBO                | $0.9203 \pm 0.0428$ | $0.9269 \pm 0.0324$ | $0.8529 \pm 0.0740$ | $0.9258 \pm 0.0322$ |
| 9  | EBO                | $0.9161 \pm 0.0533$ | 0.9101±0.0514       | $0.8414 \pm 0.0880$ | $0.9078 \pm 0.0522$ |
|    | BAC                | 0.9157±0.0359       | 0.8892±0.0517       | $0.8255 \pm 0.0715$ | 0.9054±0.0435       |
|    | Easy               | 0.9219±0.0268       | 0.9171±0.0313       | $0.8536 \pm 0.0521$ | 0.9159±0.0319       |
|    | MNESG_IE (default) | $0.9628 \pm 0.0202$ | $0.9548 \pm 0.0185$ | $0.9254 \pm 0.0332$ | $0.9539 \pm 0.0188$ |
|    | MNESG_IE           | 0.9953±0.0104       | $0.9970 \pm 0.0068$ | $0.9905 \pm 0.0213$ | 0.9969±0.0068       |
|    | SBAG               | 0.9337±0.0215       | 0.9359±0.0308       | 0.8703±0.0416       | 0.9355±0.0311       |
|    | UBAG               | $0.9349 \pm 0.0131$ | $0.9523 \pm 0.0189$ | $0.8769 \pm 0.0251$ | $0.9516 \pm 0.0187$ |
|    | SBO                | $0.9396 \pm 0.0252$ | 0.9311±0.0385       | $0.8768 \pm 0.0519$ | $0.9305 \pm 0.0389$ |
|    | RBO                | $0.9550 \pm 0.0106$ | $0.9618 \pm 0.0138$ | $0.9108 \pm 0.0206$ | $0.9617 \pm 0.0137$ |
| 10 | EBO                | $0.9397 \pm 0.0234$ | $0.9466 \pm 0.0279$ | $0.8827 \pm 0.0440$ | $0.9465 \pm 0.0278$ |
|    | BAC                | $0.9255 \pm 0.0239$ | $0.9356 \pm 0.0223$ | $0.8588 \pm 0.0393$ | $0.9353 \pm 0.0225$ |
|    | Easy               | $0.9302 \pm 0.0224$ | $0.9370 \pm 0.0312$ | $0.8652 \pm 0.0418$ | $0.9365 \pm 0.0315$ |
|    | MNESG_IE (default) | $0.8208 \pm 0.0199$ | $0.9007 \pm 0.0545$ | $0.8336 \pm 0.0542$ | $0.8966 \pm 0.0618$ |
|    | MNESG_IE           | 0.9657±0.0190       | 0.9655±0.0118       | 0.9311±0.0349       | $0.9652 \pm 0.0119$ |
|    | SBAG               | 0.8814±0.0376       | 0.8998±0.0196       | 0.7865±0.0489       | 0.8975±0.0187       |
|    | UBAG               | $0.8721 \pm 0.0540$ | $0.8990 \pm 0.0501$ | $0.7777 \pm 0.0761$ | $0.8961 \pm 0.0510$ |
|    | SBO                | $0.8840 \pm 0.0436$ | $0.8474 \pm 0.0587$ | $0.7562 \pm 0.0916$ | $0.8436 \pm 0.0621$ |
|    | RBO                | $0.8839 \pm 0.0266$ | $0.9068 \pm 0.0290$ | $0.7908 \pm 0.0348$ | $0.9042 \pm 0.0289$ |
| 11 | EBO                | $0.8750 \pm 0.0734$ | $0.8918 \pm 0.0578$ | $0.7820 \pm 0.0953$ | $0.8878 \pm 0.0616$ |
|    | BAC                | $0.8600 \pm 0.0584$ | $0.8637 \pm 0.0439$ | $0.7475 \pm 0.0773$ | $0.8616 \pm 0.0434$ |
|    | Easy               | $0.8481 \pm 0.0611$ | $0.8698 \pm 0.0564$ | $0.7383 \pm 0.0855$ | $0.8666 \pm 0.0570$ |
|    | MNESG_IE (default) | 0.9139±0.0504       | $0.9070\pm0.0425$   | $0.8331 \pm 0.0843$ | 0.9046±0.0453       |
|    | MNESG_IE           | 0.9910±0.0082       | 0.9800±0.0183       | 0.9793±0.0189       | 0.9797±0.0186       |
| 12 | SBAG               | 0.9168±0.0379       | 0.8926±0.0721       | 0.7606±0.1042       | 0.8870±0.0744       |
| 12 | UBAG               | $0.8929 \pm 0.0408$ | $0.8899 \pm 0.0353$ | $0.7247 \pm 0.0834$ | $0.8897 \pm 0.0353$ |
|    |                    |                     |                     |                     |                     |

|    | SBO                | $0.9346 \pm 0.0301$ | $0.9090 \pm 0.0786$ | $0.8023 \pm 0.0962$ | $0.9054 \pm 0.0842$ |
|----|--------------------|---------------------|---------------------|---------------------|---------------------|
|    | RBO                | $0.9046 \pm 0.0252$ | $0.8905 \pm 0.0332$ | $0.7408 \pm 0.0364$ | $0.8878 \pm 0.0356$ |
|    | EBO                | $0.8990 \pm 0.0570$ | $0.8862 \pm 0.0639$ | $0.7357 \pm 0.1204$ | $0.8857 \pm 0.0645$ |
|    | BAC                | $0.8539 \pm 0.0376$ | 0.8670±0.0341       | 0.6552±0.0653       | $0.8653 \pm 0.0332$ |
|    | Easy               | 0.8212±0.0427       | 0.8485±0.0298       | 0.6095±0.0525       | $0.8459 \pm 0.0284$ |
|    | MNESG_IE (default) | 0.9316±0.0266       | 0.9202±0.0526       | 0.8035±0.0748       | 0.9191±0.0534       |
|    | MNESG_IE           | 0.9761±0.0257       | 0.9538±0.0291       | 0.9242±0.0787       | 0.9532±0.0293       |
|    | SBAG               | 0.9346±0.0191       | 0.8923±0.0965       | 0.7657±0.1005       | 0.8836±0.1123       |
|    | UBAG               | 0.8972±0.0421       | 0.9159±0.0576       | 0.7159±0.0953       | 0.9115±0.0553       |
|    | SBO                | 0.9345±0.0106       | 0.8504±0.0815       | 0.7447±0.0615       | $0.8353 \pm 0.0970$ |
|    | RBO                | 0.9108±0.0518       | 0.9227±0.0342       | 0.7507±0.1082       | 0.9182±0.0340       |
| 13 | EBO                | 0.8877±0.0894       | 0.8932±0.0700       | 0.7121±0.1598       | 0.8912±0.0701       |
|    | BAC                | 0.8875±0.0395       | 0.8932±0.0359       | 0.6893±0.0791       | 0.8913±0.0352       |
|    | Easy               | 0.8550±0.0387       | 0.8463±0.0935       | 0.6050±0.1065       | 0.8390±0.1036       |
|    | MNESG_IE (default) | 0.9673±0.0126       | 0.9359±0.0408       | 0.8823±0.0369       | 0.9333±0.0429       |
|    | MNESG_IE           | 0.9766±0.0233       | 0.9586±0.0709       | 0.9132±0.0881       | 0.9551±0.0783       |
|    | SBAG               | 0.9413±0.0218       | 0.9401±0.0197       | 0.7822±0.0661       | 0.9401±0.0197       |
|    | UBAG               | 0.9279±0.0258       | 0.9353±0.0155       | 0.7472±0.0673       | 0.9350±0.0156       |
|    | SBO                | 0.9386±0.0086       | 0.8795±0.0148       | 0.7427±0.0290       | 0.8761±0.0157       |
|    | RBO                | 0.9225±0.0263       | 0.9188±0.0240       | 0.7260±0.0698       | 0.9188±0.0240       |
| 14 | EBO                | 0.9198±0.0252       | 0.9281±0.0166       | 0.7244±0.0597       | 0.9277±0.0168       |
|    | BAC                | 0.9076±0.0257       | 0.9079±0.0316       | 0.6871±0.0697       | 0.9079±0.0316       |
|    | Easy               | 0.9130±0.0222       | 0.9109±0.0274       | $0.6989 \pm 0.0580$ | $0.9108 \pm 0.0274$ |
|    | MNESG_IE (default) | 0.9373±0.0182       | 0.8819±0.0776       | $0.7349\pm0.0974$   | $0.8753 \pm 0.0897$ |
|    | MNESG_IE           | 0.9905±0.0130       | 0.9947±0.0072       | 0.9556±0.0609       | 0.9947±0.0073       |
|    | SBAG               | 0.8898±0.0227       | 0.8754±0.0467       | 0.6197±0.0525       | 0.8736±0.0481       |
|    | UBAG               | $0.8424 \pm 0.0520$ | $0.8994 \pm 0.0386$ | $0.5710 \pm 0.0843$ | $0.8955 \pm 0.0396$ |
|    | SBO                | $0.9107 \pm 0.0179$ | $0.8744 \pm 0.0735$ | $0.6563 \pm 0.0814$ | $0.8693 \pm 0.0823$ |
|    | RBO                | $0.8720 \pm 0.0522$ | $0.8402 \pm 0.0332$ | $0.5778 \pm 0.0686$ | $0.8346 \pm 0.0337$ |
| 15 | EBO                | $0.8621 \pm 0.0174$ | $0.8605 \pm 0.0746$ | $0.5621 \pm 0.0549$ | $0.8552 \pm 0.0810$ |
|    | BAC                | $0.8090 \pm 0.1216$ | $0.8112 \pm 0.0749$ | $0.4820 \pm 0.1089$ | $0.7996 \pm 0.0831$ |
|    | Easy               | $0.8451 \pm 0.0822$ | $0.8504 \pm 0.0463$ | $0.5544 \pm 0.0845$ | $0.8439 \pm 0.0493$ |
|    | MNESG_IE (default) | $0.8958 \pm 0.0153$ | $0.9166 \pm 0.0357$ | $0.6539 \pm 0.0376$ | $0.9154 \pm 0.0350$ |
|    | MNESG_IE           | $0.9628 \pm 0.0584$ | $0.9442 \pm 0.0516$ | $0.8806 \pm 0.1533$ | $0.9413 \pm 0.0544$ |
|    | SBAG               | 0.9163±0.0108       | 0.8910±0.0753       | $0.6664 \pm 0.0600$ | $0.8861 \pm 0.0830$ |
|    | UBAG               | $0.9124 \pm 0.0305$ | $0.9335 \pm 0.0229$ | $0.6914 \pm 0.0662$ | $0.9324 \pm 0.0229$ |
|    | SBO                | $0.9435 \pm 0.0187$ | $0.8893 \pm 0.0455$ | $0.7428 \pm 0.0829$ | $0.9058\pm0.0581$   |
|    | RBO                | $0.9299 \pm 0.0371$ | $0.9263 \pm 0.0296$ | $0.7342 \pm 0.0819$ | $0.9247 \pm 0.0309$ |
| 16 | EBO                | $0.9144 \pm 0.0510$ | $0.9267 \pm 0.0196$ | 0.7024±0.1029       | $0.9253 \pm 0.0209$ |
|    | BAC                | $0.9066 \pm 0.0520$ | $0.8866 \pm 0.0358$ | $0.6632 \pm 0.0875$ | $0.8827 \pm 0.0396$ |
|    | Easy               | $0.9046 \pm 0.0221$ | 0.9212±0.0433       | $0.6642 \pm 0.0618$ | $0.9199 \pm 0.0435$ |
|    | MNESG_IE (default) | 0.9590±0.0273       | $0.9068 \pm 0.0702$ | 0.8080±0.1153       | $0.9006 \pm 0.0796$ |
|    | MNESG_IE           | 0.9845±0.0128       | $0.9833 \pm 0.0251$ | $0.9286 \pm 0.0532$ | $0.9832 \pm 0.0253$ |
| 17 | SBAG               | 0.8541±0.0340       | 0.8217±0.0822       | 0.5089±0.1030       | 0.8165±0.0885       |
|    |                    |                     |                     |                     |                     |

|    | MNESG_IE           | 0.9902±0.0134       | 0.9949±0.0070       | 0.9200±0.1095       | 0.9948±0.0071       |
|----|--------------------|---------------------|---------------------|---------------------|---------------------|
|    | MNESG_IE (default) | $0.9765 \pm 0.0001$ | $0.9104 \pm 0.1090$ | $0.8000 \pm 0.0001$ | $0.9020\pm0.1209$   |
|    | Easy               | $0.8693 \pm 0.0706$ | $0.8208 \pm 0.1130$ | $0.4389 \pm 0.1094$ | $0.8108 \pm 0.1214$ |
|    | BAC                | $0.8036 \pm 0.0881$ | 0.8480±0.1249       | 0.3915±0.2176       | $0.8393 \pm 0.1301$ |
| 21 | EBO                | $0.8975 \pm 0.1390$ | $0.8666 \pm 0.1520$ | $0.6187 \pm 0.2352$ | $0.8578 \pm 0.1610$ |
|    | RBO                | 0.9018±0.0665       | 0.9004±0.1392       | $0.5563 \pm 0.2347$ | $0.8962 \pm 0.1469$ |
|    | SBO                | $0.9343 \pm 0.0355$ | $0.8866 \pm 0.1011$ | $0.6189 \pm 0.1166$ | $0.8749 \pm 0.1178$ |
|    | UBAG               | $0.8773 \pm 0.0577$ | $0.8593 \pm 0.1031$ | $0.4666 \pm 0.1027$ | $0.8487 \pm 0.1153$ |
|    | SBAG               | 0.9060±0.0610       | 0.9025±0.0885       | 0.5733±0.1382       | 0.8921±0.1066       |
|    | MNESG_IE           | 0.8110±0.0531       | 0.8214±0.0294       | 0.3732±0.0614       | 0.8210±0.0291       |
|    | MNESG_IE (default) | $0.6455 \pm 0.1230$ | $0.8023 \pm 0.0658$ | $0.2690 \pm 0.0662$ | $0.7753 \pm 0.0848$ |
|    | Easy               | 0.6817±0.0821       | 0.7212±0.0346       | $0.2425 \pm 0.0201$ | $0.7113 \pm 0.0416$ |
|    | BAC                | $0.6404 \pm 0.0785$ | 0.6526±0.1016       | 0.1974±0.0634       | 0.6425±0.1109       |
| 20 | EBO                | $0.7996 \pm 0.0336$ | $0.7222 \pm 0.1005$ | $0.2946 \pm 0.0899$ | $0.7105 \pm 0.1192$ |
|    | RBO                | $0.8257 \pm 0.0558$ | $0.7827 \pm 0.0943$ | $0.3601 \pm 0.0813$ | $0.7749 \pm 0.1005$ |
|    | SBO                | $0.8065 \pm 0.0742$ | $0.7259 \pm 0.0319$ | $0.3142 \pm 0.0662$ | $0.7170 \pm 0.0356$ |
|    | UBAG               | $0.7363 \pm 0.0262$ | $0.6883 \pm 0.0798$ | $0.2361 \pm 0.0525$ | $0.6778 \pm 0.0981$ |
|    | SBAG               | 0.8237±0.0556       | 0.7208±0.0367       | 0.3174±0.0480       | 0.7074±0.0455       |
|    | MNESG_IE           | 0.9814±0.0104       | 0.8607±0.0745       | 0.8400±0.0894       | 0.8532±0.0821       |
|    | MNESG_IE (default) | 0.6957±0.1946       | $0.7595 \pm 0.0043$ | $0.3018 \pm 0.0874$ | $0.7378 \pm 0.0187$ |
|    | Easy               | $0.5933 \pm 0.1077$ | $0.7795 \pm 0.0565$ | $0.2903 \pm 0.0845$ | $0.7445 \pm 0.0766$ |
|    | BAC                | 0.5750±0.1166       | 0.6174±0.1515       | $0.2064 \pm 0.0854$ | $0.6134 \pm 0.1478$ |
| 19 | EBO                | $0.7053 \pm 0.0626$ | $0.7646 \pm 0.0711$ | $0.3129 \pm 0.0714$ | $0.7569 \pm 0.0638$ |
|    | RBO                | $0.7662 \pm 0.1562$ | $0.6375 \pm 0.1506$ | $0.3190 \pm 0.2350$ | 0.6110±0.1610       |
|    | SBO                | $0.8594 \pm 0.0585$ | $0.7330 \pm 0.0945$ | $0.4141 \pm 0.1420$ | 0.7114±0.1150       |
|    | UBAG               | $0.5888 \pm 0.0579$ | 0.7766±0.0316       | $0.2796 \pm 0.0375$ | $0.7428 \pm 0.0422$ |
|    | SBAG               | 0.8174±0.0518       | 0.7019±0.1399       | 0.3847±0.1180       | $0.6077 \pm 0.3421$ |
|    | MNESG_IE           | 0.9795±0.0115       | 0.9000±0.0559       | 0.8857±0.0639       | 0.8928±0.0599       |
|    | MNESG_IE (default) | $0.8961 \pm 0.0019$ | $0.6244 \pm 0.0194$ | $0.3333 \pm 0.0006$ | $0.5267 \pm 0.0479$ |
|    | Easy               | $0.6345 \pm 0.1013$ | 0.7390±0.1278       | 0.3066±0.1166       | $0.7259 \pm 0.1226$ |
|    | BAC                | $0.6300 \pm 0.1074$ | $0.6254 \pm 0.1762$ | 0.2199±0.0984       | $0.5965 \pm 0.1821$ |
| 18 | EBO                | $0.7182 \pm 0.0896$ | 0.7930±0.1055       | $0.3669 \pm 0.1032$ | $0.7851 \pm 0.1015$ |
|    | RBO                | $0.7809 \pm 0.0607$ | $0.6999 \pm 0.1416$ | $0.3196 \pm 0.1500$ | $0.6692 \pm 0.1733$ |
|    | SBO                | $0.8491 \pm 0.0423$ | $0.6014 \pm 0.1304$ | $0.3234 \pm 0.1658$ | $0.4569 \pm 0.2871$ |
|    | UBAG               | $0.6667 \pm 0.0261$ | $0.7035 \pm 0.1160$ | $0.2771 \pm 0.0862$ | $0.6863 \pm 0.1213$ |
|    | SBAG               | $0.8331 \pm 0.0475$ | $0.6676 \pm 0.1698$ | $0.4020 \pm 0.1666$ | $0.5605 \pm 0.3434$ |
|    | MNESG_IE           | 0.9263±0.0039       | 0.9235±0.0779       | 0.6977±0.0370       | 0.9184±0.0873       |
|    | MNESG_IE (default) | $0.8146 \pm 0.0478$ | $0.8176 \pm 0.0934$ | $0.4618 \pm 0.0965$ | $0.8112 \pm 0.1015$ |
|    | Easy               | $0.8047 \pm 0.0516$ | $0.7801 \pm 0.0640$ | $0.4298 \pm 0.0675$ | $0.7757 \pm 0.0693$ |
|    | BAC                | $0.7557 \pm 0.0313$ | $0.7511 \pm 0.0658$ | $0.3686 \pm 0.0432$ | $0.7456 \pm 0.0636$ |
|    | EBO                | $0.8180 \pm 0.0324$ | $0.8206 \pm 0.0471$ | $0.4692 \pm 0.0679$ | $0.8197 \pm 0.0473$ |
|    | RBO                | $0.8351 \pm 0.0295$ | $0.7862 \pm 0.0899$ | $0.4581 \pm 0.0987$ | $0.7788 \pm 0.0982$ |
|    | SBO                | $0.8900 \pm 0.0321$ | $0.7727 \pm 0.0907$ | $0.5235 \pm 0.1359$ | $0.7523 \pm 0.1114$ |
|    | UBAG               | 0.7916±0.0179       | $0.7969 \pm 0.0385$ | $0.4271 \pm 0.0403$ | $0.7963 \pm 0.0386$ |
|    |                    |                     |                     |                     |                     |

|    | SBAG                                                                                                                                                                                                                                  | $0.9524 \pm 0.0193$                                                                                                                                                                                                                                                                 | $0.8810 \pm 0.0497$                                                                                                                                                                                                                  | $0.7463 \pm 0.1452$                                                                                                                                                                                                                                                                                   | $0.8753 \pm 0.0523$                                                                                                                                                                           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | UBAG                                                                                                                                                                                                                                  | $0.8363 \pm 0.0802$                                                                                                                                                                                                                                                                 | $0.8427 \pm 0.0773$                                                                                                                                                                                                                  | 0.4118±0.1298                                                                                                                                                                                                                                                                                         | 0.8394±0.0756                                                                                                                                                                                 |
|    | SBO                                                                                                                                                                                                                                   | $0.9582 \pm 0.0164$                                                                                                                                                                                                                                                                 | $0.8373 \pm 0.0964$                                                                                                                                                                                                                  | 0.6666±0.1020                                                                                                                                                                                                                                                                                         | 0.8177±0.1151                                                                                                                                                                                 |
|    | RBO                                                                                                                                                                                                                                   | $0.8927 \pm 0.0867$                                                                                                                                                                                                                                                                 | $0.8961 \pm 0.0714$                                                                                                                                                                                                                  | $0.5680 \pm 0.2540$                                                                                                                                                                                                                                                                                   | 0.8920±0.0737                                                                                                                                                                                 |
| 22 | EBO                                                                                                                                                                                                                                   | $0.8600 \pm 0.1016$                                                                                                                                                                                                                                                                 | $0.9021 \pm 0.1029$                                                                                                                                                                                                                  | $0.5121 \pm 0.2370$                                                                                                                                                                                                                                                                                   | 0.9005±0.1026                                                                                                                                                                                 |
|    | BAC                                                                                                                                                                                                                                   | $0.8539 \pm 0.0492$                                                                                                                                                                                                                                                                 | $0.8989 \pm 0.0593$                                                                                                                                                                                                                  | 0.4491±0.1020                                                                                                                                                                                                                                                                                         | 0.8956±0.0596                                                                                                                                                                                 |
|    | Easy                                                                                                                                                                                                                                  | $0.8869 \pm 0.0248$                                                                                                                                                                                                                                                                 | 0.8930±0.0531                                                                                                                                                                                                                        | $0.4888 \pm 0.0248$                                                                                                                                                                                                                                                                                   | 0.8897±0.0541                                                                                                                                                                                 |
|    | MNESG_IE (default)                                                                                                                                                                                                                    | 0.9045±0.0977                                                                                                                                                                                                                                                                       | 0.9258±0.0542                                                                                                                                                                                                                        | 0.6436±0.2550                                                                                                                                                                                                                                                                                         | 0.9214±0.0582                                                                                                                                                                                 |
|    | MNESG_IE                                                                                                                                                                                                                              | 0.9911±0.0081                                                                                                                                                                                                                                                                       | $0.9953 \pm 0.0043$                                                                                                                                                                                                                  | 0.9333±0.0609                                                                                                                                                                                                                                                                                         | 0.9952±0.0043                                                                                                                                                                                 |
|    | SBAG                                                                                                                                                                                                                                  | 0.8617±0.0601                                                                                                                                                                                                                                                                       | 0.7257±0.1537                                                                                                                                                                                                                        | 0.3392±0.1904                                                                                                                                                                                                                                                                                         | 0.6932±0.1850                                                                                                                                                                                 |
|    | UBAG                                                                                                                                                                                                                                  | 0.7369±0.0566                                                                                                                                                                                                                                                                       | 0.7819±0.0526                                                                                                                                                                                                                        | 0.2755±0.0453                                                                                                                                                                                                                                                                                         | 0.7770±0.053                                                                                                                                                                                  |
|    | SBO                                                                                                                                                                                                                                   | 0.9137±0.0458                                                                                                                                                                                                                                                                       | $0.7533 \pm 0.1430$                                                                                                                                                                                                                  | $0.4560 \pm 0.2876$                                                                                                                                                                                                                                                                                   | 0.7149±0.189                                                                                                                                                                                  |
|    | RBO                                                                                                                                                                                                                                   | $0.8002 \pm 0.0353$                                                                                                                                                                                                                                                                 | 0.7906±0.0992                                                                                                                                                                                                                        | 0.3146±0.0807                                                                                                                                                                                                                                                                                         | 0.7834±0.1052                                                                                                                                                                                 |
| 23 | EBO                                                                                                                                                                                                                                   | 0.7523±0.0597                                                                                                                                                                                                                                                                       | 0.7326±0.0941                                                                                                                                                                                                                        | 0.2504±0.0572                                                                                                                                                                                                                                                                                         | 0.7196±0.107                                                                                                                                                                                  |
|    | BAC                                                                                                                                                                                                                                   | 0.7358±0.0713                                                                                                                                                                                                                                                                       | 0.7502±0.1094                                                                                                                                                                                                                        | 0.2628±0.0932                                                                                                                                                                                                                                                                                         | 0.7463±0.109                                                                                                                                                                                  |
|    | Easy                                                                                                                                                                                                                                  | $0.6880 \pm 0.0665$                                                                                                                                                                                                                                                                 | 0.7220±0.0595                                                                                                                                                                                                                        | 0.2257±0.0444                                                                                                                                                                                                                                                                                         | 0.7165±0.058                                                                                                                                                                                  |
|    | MNESG_IE (default)                                                                                                                                                                                                                    | 0.9110±0.0581                                                                                                                                                                                                                                                                       | 0.8057±0.0724                                                                                                                                                                                                                        | 0.4882±0.2028                                                                                                                                                                                                                                                                                         | 0.7968±0.075                                                                                                                                                                                  |
|    | MNESG_IE                                                                                                                                                                                                                              | 0.9623±0.0048                                                                                                                                                                                                                                                                       | 0.9212±0.0807                                                                                                                                                                                                                        | 0.7166±0.0151                                                                                                                                                                                                                                                                                         | 0.9173±0.085                                                                                                                                                                                  |
|    | SBAG                                                                                                                                                                                                                                  | 0.9221±0.0109                                                                                                                                                                                                                                                                       | 0.9558±0.0077                                                                                                                                                                                                                        | 0.6334±0.0383                                                                                                                                                                                                                                                                                         | 0.9551±0.007                                                                                                                                                                                  |
|    | UBAG                                                                                                                                                                                                                                  | $0.9384 \pm 0.0842$                                                                                                                                                                                                                                                                 | 0.9473±0.0447                                                                                                                                                                                                                        | 0.7666±0.3248                                                                                                                                                                                                                                                                                         | 0.9658±0.046                                                                                                                                                                                  |
|    | SBO                                                                                                                                                                                                                                   | $0.9340\pm0.0241$                                                                                                                                                                                                                                                                   | 0.9114±0.0904                                                                                                                                                                                                                        | $0.6269 \pm 0.0362$                                                                                                                                                                                                                                                                                   | 0.9027±0.109                                                                                                                                                                                  |
|    | RBO                                                                                                                                                                                                                                   | 0.9692±0.0688                                                                                                                                                                                                                                                                       | 0.9840±0.0357                                                                                                                                                                                                                        | 0.8666±0.2981                                                                                                                                                                                                                                                                                         | $0.9833 \pm 0.037$                                                                                                                                                                            |
| 24 | EBO                                                                                                                                                                                                                                   | 1±0                                                                                                                                                                                                                                                                                 | 1±0                                                                                                                                                                                                                                  | 1±0                                                                                                                                                                                                                                                                                                   | 1±0                                                                                                                                                                                           |
|    | BAC                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                               |
|    | DAC                                                                                                                                                                                                                                   | 1±0                                                                                                                                                                                                                                                                                 | 1±0                                                                                                                                                                                                                                  | 1±0                                                                                                                                                                                                                                                                                                   | 1±0                                                                                                                                                                                           |
|    | Easy                                                                                                                                                                                                                                  | 1±0<br>1±0                                                                                                                                                                                                                                                                          | 1±0<br>1±0                                                                                                                                                                                                                           | 1±0<br>1±0                                                                                                                                                                                                                                                                                            | 1±0<br>1±0                                                                                                                                                                                    |
|    |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                               |
|    | Easy                                                                                                                                                                                                                                  | 1±0                                                                                                                                                                                                                                                                                 | 1±0                                                                                                                                                                                                                                  | 1±0                                                                                                                                                                                                                                                                                                   | 1±0                                                                                                                                                                                           |
|    | Easy MNESG_IE (default)                                                                                                                                                                                                               | 1±0<br>1±0                                                                                                                                                                                                                                                                          | 1±0<br>1±0                                                                                                                                                                                                                           | 1±0<br>1±0                                                                                                                                                                                                                                                                                            | 1±0<br>1±0<br>1±0                                                                                                                                                                             |
|    | Easy MNESG_IE (default) MNESG_IE                                                                                                                                                                                                      | 1±0<br>1±0<br>1±0                                                                                                                                                                                                                                                                   | 1±0<br>1±0<br>1±0                                                                                                                                                                                                                    | 1±0<br>1±0<br>1±0                                                                                                                                                                                                                                                                                     | 1±0<br>1±0<br>1±0<br>0.9164±0.118                                                                                                                                                             |
|    | Easy MNESG_IE (default) MNESG_IE SBAG                                                                                                                                                                                                 | 1±0<br>1±0<br>1±0<br>0.9488±0.0382                                                                                                                                                                                                                                                  | 1±0<br>1±0<br>1±0<br>0.9256±0.0998                                                                                                                                                                                                   | 1±0<br>1±0<br>1±0<br>0.6619±0.1980                                                                                                                                                                                                                                                                    | 1±0<br>1±0<br>1±0<br>0.9164±0.118<br>0.9065±0.056                                                                                                                                             |
|    | Easy MNESG_IE (default) MNESG_IE SBAG UBAG                                                                                                                                                                                            | 1±0<br>1±0<br>1±0<br>0.9488±0.0382<br>0.9495±0.0310                                                                                                                                                                                                                                 | 1±0<br>1±0<br>1±0<br>0.9256±0.0998<br>0.5266±0.2712                                                                                                                                                                                  | 1±0<br>1±0<br>1±0<br>0.6619±0.1980<br>0.9512±0.0298                                                                                                                                                                                                                                                   | 1±0<br>1±0<br>1±0<br>0.9164±0.118<br>0.9065±0.056<br>0.9266±0.122                                                                                                                             |
| 25 | Easy  MNESG_IE (default)  MNESG_IE  SBAG  UBAG  SBO                                                                                                                                                                                   | 1±0<br>1±0<br>1±0<br>0.9488±0.0382<br>0.9495±0.0310<br>0.9673±0.0126                                                                                                                                                                                                                | 1±0<br>1±0<br>1±0<br>0.9256±0.0998<br>0.5266±0.2712<br>0.9353±0.1037                                                                                                                                                                 | 1±0<br>1±0<br>1±0<br>0.6619±0.1980<br>0.9512±0.0298<br>0.6933±0.0596                                                                                                                                                                                                                                  | 1±0<br>1±0<br>1±0<br>0.9164±0.118<br>0.9065±0.056<br>0.9266±0.122<br>0.9438±0.048                                                                                                             |
| 25 | Easy MNESG_IE (default) MNESG_IE SBAG UBAG SBO RBO                                                                                                                                                                                    | 1±0<br>1±0<br>1±0<br>0.9488±0.0382<br>0.9495±0.0310<br>0.9673±0.0126<br>0.8976±0.0879                                                                                                                                                                                               | 1±0<br>1±0<br>1±0<br>0.9256±0.0998<br>0.5266±0.2712<br>0.9353±0.1037<br>0.9463±0.0461                                                                                                                                                | 1±0<br>1±0<br>1±0<br>0.6619±0.1980<br>0.9512±0.0298<br>0.6933±0.0596<br>0.5815±0.3015                                                                                                                                                                                                                 | 1±0<br>1±0<br>1±0<br>0.9164±0.118<br>0.9065±0.056<br>0.9266±0.122<br>0.9438±0.048<br>0.9623±0.031                                                                                             |
| 25 | Easy  MNESG_IE (default)  MNESG_IE  SBAG  UBAG  SBO  RBO  EBO                                                                                                                                                                         | 1±0<br>1±0<br>1±0<br>0.9488±0.0382<br>0.9495±0.0310<br>0.9673±0.0126<br>0.8976±0.0879<br>0.9297±0.0572                                                                                                                                                                              | 1±0<br>1±0<br>1±0<br>0.9256±0.0998<br>0.5266±0.2712<br>0.9353±0.1037<br>0.9463±0.0461<br>0.9634±0.0298                                                                                                                               | 1±0<br>1±0<br>1±0<br>0.6619±0.1980<br>0.9512±0.0298<br>0.6933±0.0596<br>0.5815±0.3015<br>0.6066±0.2832                                                                                                                                                                                                | 1±0<br>1±0<br>1±0<br>0.9164±0.118<br>0.9065±0.056<br>0.9266±0.122<br>0.9438±0.048<br>0.9623±0.031<br>0.9471±0.026                                                                             |
| 25 | Easy MNESG_IE (default) MNESG_IE  SBAG  UBAG  SBO  RBO  EBO  BAC                                                                                                                                                                      | 1±0<br>1±0<br>1±0<br>0.9488±0.0382<br>0.9495±0.0310<br>0.9673±0.0126<br>0.8976±0.0879<br>0.9297±0.0572<br>0.9018±0.0476                                                                                                                                                             | 1±0<br>1±0<br>1±0<br>0.9256±0.0998<br>0.5266±0.2712<br>0.9353±0.1037<br>0.9463±0.0461<br>0.9634±0.0298<br>0.9487±0.0249                                                                                                              | 1±0<br>1±0<br>1±0<br>0.6619±0.1980<br>0.9512±0.0298<br>0.6933±0.0596<br>0.5815±0.3015<br>0.6066±0.2832<br>0.4866±0.1849                                                                                                                                                                               | 1±0<br>1±0<br>0.9164±0.118<br>0.9065±0.056<br>0.9266±0.122<br>0.9438±0.048<br>0.9623±0.031<br>0.9471±0.026                                                                                    |
| 25 | Easy  MNESG_IE (default)  MNESG_IE  SBAG  UBAG  SBO  RBO  EBO  BAC  Easy                                                                                                                                                              | 1±0<br>1±0<br>1±0<br>0.9488±0.0382<br>0.9495±0.0310<br>0.9673±0.0126<br>0.8976±0.0879<br>0.9297±0.0572<br>0.9018±0.0476<br>0.9390±0.0538                                                                                                                                            | 1±0<br>1±0<br>1±0<br>0.9256±0.0998<br>0.5266±0.2712<br>0.9353±0.1037<br>0.9463±0.0461<br>0.9634±0.0298<br>0.9487±0.0249<br>0.9682±0.0280                                                                                             | 1±0<br>1±0<br>1±0<br>0.6619±0.1980<br>0.9512±0.0298<br>0.6933±0.0596<br>0.5815±0.3015<br>0.6066±0.2832<br>0.4866±0.1849<br>0.6266±0.2385                                                                                                                                                              | 1±0<br>1±0<br>0.9164±0.118<br>0.9065±0.056<br>0.9266±0.122<br>0.9438±0.048<br>0.9623±0.031<br>0.9471±0.026<br>0.9674±0.029<br><b>0.9939±0.008</b>                                             |
| 25 | Easy  MNESG_IE (default)  MNESG_IE  SBAG  UBAG  SBO  RBO  EBO  BAC  Easy  MNESG_IE (default)                                                                                                                                          | 1±0<br>1±0<br>0.9488±0.0382<br>0.9495±0.0310<br>0.9673±0.0126<br>0.8976±0.0879<br>0.9297±0.0572<br>0.9018±0.0476<br>0.9390±0.0538<br>0.9884±0.0164                                                                                                                                  | 1±0<br>1±0<br>0.9256±0.0998<br>0.5266±0.2712<br>0.9353±0.1037<br>0.9463±0.0461<br>0.9634±0.0298<br>0.9487±0.0249<br>0.9682±0.0280<br><b>0.9939±0.0086</b>                                                                            | 1±0<br>1±0<br>0.6619±0.1980<br>0.9512±0.0298<br>0.6933±0.0596<br>0.5815±0.3015<br>0.6066±0.2832<br>0.4866±0.1849<br>0.6266±0.2385<br>0.9000±0.1414                                                                                                                                                    | 1±0<br>1±0<br>0.9164±0.118<br>0.9065±0.056<br>0.9266±0.122<br>0.9438±0.048<br>0.9623±0.031<br>0.9471±0.026<br>0.9674±0.029<br>0.9939±0.008                                                    |
| 25 | Easy  MNESG_IE (default)  MNESG_IE  SBAG  UBAG  SBO  RBO  EBO  BAC  Easy  MNESG_IE (default)  MNESG_IE                                                                                                                                | 1±0<br>1±0<br>0.9488±0.0382<br>0.9495±0.0310<br>0.9673±0.0126<br>0.8976±0.0879<br>0.9297±0.0572<br>0.9018±0.0476<br>0.9390±0.0538<br>0.9884±0.0164                                                                                                                                  | 1±0<br>1±0<br>0.9256±0.0998<br>0.5266±0.2712<br>0.9353±0.1037<br>0.9463±0.0461<br>0.9634±0.0298<br>0.9487±0.0249<br>0.9682±0.0280<br>0.9939±0.0086                                                                                   | 1±0<br>1±0<br>0.6619±0.1980<br>0.9512±0.0298<br>0.6933±0.0596<br>0.5815±0.3015<br>0.6066±0.2832<br>0.4866±0.1849<br>0.6266±0.2385<br>0.9000±0.1414<br>0.9000±0.1414                                                                                                                                   | 1±0<br>1±0<br>0.9164±0.118<br>0.9065±0.056<br>0.9266±0.122<br>0.9438±0.048<br>0.9623±0.031<br>0.9471±0.026<br>0.9674±0.029<br>0.9939±0.008<br>0.7697±0.203                                    |
| 25 | Easy  MNESG_IE (default)  MNESG_IE  SBAG  UBAG  SBO  RBO  EBO  BAC  Easy  MNESG_IE (default)  MNESG_IE (default)  SBAG                                                                                                                | 1±0<br>1±0<br>0.9488±0.0382<br>0.9495±0.0310<br>0.9673±0.0126<br>0.8976±0.0879<br>0.9297±0.0572<br>0.9018±0.0476<br>0.9390±0.0538<br>0.9884±0.0164<br>0.9584±0.0181                                                                                                                 | 1±0<br>1±0<br>0.9256±0.0998<br>0.5266±0.2712<br>0.9353±0.1037<br>0.9463±0.0461<br>0.9634±0.0298<br>0.9487±0.0249<br>0.9682±0.0280<br>0.9939±0.0086<br>0.9939±0.0086                                                                  | $1\pm0$ $1\pm0$ $1\pm0$ $0.6619\pm0.1980$ $0.9512\pm0.0298$ $0.6933\pm0.0596$ $0.5815\pm0.3015$ $0.6066\pm0.2832$ $0.4866\pm0.1849$ $0.6266\pm0.2385$ $0.9000\pm0.1414$ $0.9000\pm0.1414$                                                                                                             | 1±0<br>1±0<br>0.9164±0.118<br>0.9065±0.056<br>0.9266±0.122<br>0.9438±0.048<br>0.9623±0.031<br>0.9471±0.026<br>0.9674±0.029<br>0.9939±0.008<br>0.7697±0.203<br>0.7215±0.137                    |
|    | Easy  MNESG_IE (default)  MNESG_IE  SBAG  UBAG  SBO  RBO  EBO  BAC  Easy  MNESG_IE (default)  MNESG_IE (default)  MNESG_IE  SBAG  UBAG                                                                                                | 1±0<br>1±0<br>0.9488±0.0382<br>0.9495±0.0310<br>0.9673±0.0126<br>0.8976±0.0879<br>0.9297±0.0572<br>0.9018±0.0476<br>0.9390±0.0538<br>0.9884±0.0164<br>0.9584±0.0181<br>0.7590±0.1437                                                                                                | 1±0<br>1±0<br>0.9256±0.0998<br>0.5266±0.2712<br>0.9353±0.1037<br>0.9463±0.0461<br>0.9634±0.0298<br>0.9487±0.0249<br>0.9682±0.0280<br>0.9939±0.0086<br>0.9939±0.0086<br>0.8109±0.1566<br>0.7307±0.1349                                | 1±0<br>1±0<br>0.6619±0.1980<br>0.9512±0.0298<br>0.6933±0.0596<br>0.5815±0.3015<br>0.6066±0.2832<br>0.4866±0.1849<br>0.6266±0.2385<br>0.9000±0.1414<br>0.9000±0.1414<br>0.5473±0.1410<br>0.2327±0.1257                                                                                                 | 1±0<br>1±0<br>0.9164±0.118<br>0.9065±0.056<br>0.9266±0.122<br>0.9438±0.048<br>0.9623±0.031<br>0.9471±0.026<br>0.9939±0.008<br>0.9939±0.008<br>0.7697±0.203<br>0.7215±0.137<br>0.7528±0.156    |
| 25 | Easy  MNESG_IE (default)  MNESG_IE  SBAG  UBAG  SBO  RBO  EBO  BAC  Easy  MNESG_IE (default)  MNESG_IE (default)  MNESG_IE (stant)  SBAG  UBAG  SBAG  SBAG  SBAG  SBAG  SBAG  SBAG  SBAG  SBAG  SBO                                   | $1\pm0$ $1\pm0$ $1\pm0$ $0.9488\pm0.0382$ $0.9495\pm0.0310$ $0.9673\pm0.0126$ $0.8976\pm0.0879$ $0.9297\pm0.0572$ $0.9018\pm0.0476$ $0.9390\pm0.0538$ $0.9884\pm0.0164$ $0.9584\pm0.0181$ $0.7590\pm0.1437$ $0.9646\pm0.0174$                                                       | 1±0<br>1±0<br>0.9256±0.0998<br>0.5266±0.2712<br>0.9353±0.1037<br>0.9463±0.0461<br>0.9634±0.0298<br>0.9487±0.0249<br>0.9682±0.0280<br><b>0.9939±0.0086</b><br><b>0.9939±0.0086</b><br>0.8109±0.1566<br>0.7307±0.1349<br>0.7902±0.1070 | $1\pm0$ $1\pm0$ $1\pm0$ $0.6619\pm0.1980$ $0.9512\pm0.0298$ $0.6933\pm0.0596$ $0.5815\pm0.3015$ $0.6066\pm0.2832$ $0.4866\pm0.1849$ $0.6266\pm0.2385$ $0.9000\pm0.1414$ $0.9000\pm0.1414$ $0.5473\pm0.1410$ $0.2327\pm0.1257$ $0.5833\pm0.1666$                                                       | 1±0 1±0 0.9164±0.118 0.9065±0.056 0.9266±0.122 0.9438±0.048 0.9623±0.031 0.9471±0.026 0.9674±0.029 0.9939±0.008 0.7697±0.203 0.7215±0.137 0.7528±0.156 0.8403±0.002                           |
|    | Easy  MNESG_IE (default)  MNESG_IE  SBAG  UBAG  SBO  RBO  EBO  BAC  Easy  MNESG_IE (default)  MNESG_IE (default)  MNESG_IE  SBAG  UBAG  SBO  RBO  RBO  RBO  RBO  RBO  RBO  RBO                                                        | 1±0<br>1±0<br>0.9488±0.0382<br>0.9495±0.0310<br>0.9673±0.0126<br>0.8976±0.0879<br>0.9297±0.0572<br>0.9018±0.0476<br>0.9390±0.0538<br>0.9884±0.0164<br>0.9584±0.0181<br>0.7590±0.1437<br>0.9646±0.0174<br>0.9335±0.0059                                                              | 1±0<br>1±0<br>0.9256±0.0998<br>0.5266±0.2712<br>0.9353±0.1037<br>0.9463±0.0461<br>0.9634±0.0298<br>0.9487±0.0249<br>0.9682±0.0280<br>0.9939±0.0086<br>0.9939±0.1566<br>0.7307±0.1349<br>0.7902±0.1070<br>0.8457±0.0030               | $1\pm0$ $1\pm0$ $1\pm0$ $0.6619\pm0.1980$ $0.9512\pm0.0298$ $0.6933\pm0.0596$ $0.5815\pm0.3015$ $0.6066\pm0.2832$ $0.4866\pm0.1849$ $0.6266\pm0.2385$ $0.9000\pm0.1414$ $0.9000\pm0.1414$ $0.5473\pm0.1410$ $0.2327\pm0.1257$ $0.5833\pm0.1666$ $0.4846\pm0.0210$                                     | 1±0 1±0 0.9164±0.118 0.9065±0.056 0.9266±0.122 0.9438±0.048 0.9623±0.031 0.9471±0.026 0.9674±0.029 0.9939±0.008 0.7697±0.203 0.7215±0.137 0.7528±0.156 0.8403±0.002 0.7613±0.087              |
|    | Easy  MNESG_IE (default)  MNESG_IE  SBAG  UBAG  SBO  RBO  EBO  BAC  Easy  MNESG_IE (default)  MNESG_IE (default)  SBAG  UBAG  SBO  RBO  EBO  EBO  EBO  EBO  EBO  EBO  E                                                               | 1±0 1±0 0.9488±0.0382 0.9495±0.0310 0.9673±0.0126 0.8976±0.0879 0.9297±0.0572 0.9018±0.0476 0.9390±0.0538 0.9884±0.0164 0.9584±0.0164 0.9584±0.0174 0.9335±0.0059 0.7820±0.0375                                                                                                     | 1±0 1±0 0.9256±0.0998 0.5266±0.2712 0.9353±0.1037 0.9463±0.0461 0.9634±0.0298 0.9487±0.0249 0.9682±0.0280 0.9939±0.0086 0.8109±0.1566 0.7307±0.1349 0.7902±0.1070 0.8457±0.0030 0.7666±0.0844                                        | $1\pm0$ $1\pm0$ $1\pm0$ $0.6619\pm0.1980$ $0.9512\pm0.0298$ $0.6933\pm0.0596$ $0.5815\pm0.3015$ $0.6066\pm0.2832$ $0.4866\pm0.1849$ $0.6266\pm0.2385$ $0.9000\pm0.1414$ $0.9000\pm0.1414$ $0.5473\pm0.1410$ $0.2327\pm0.1257$ $0.5833\pm0.1666$ $0.4846\pm0.0210$ $0.2238\pm0.0514$                   | 1±0 1±0 0.9164±0.118 0.9065±0.056 0.9266±0.122 0.9438±0.048 0.9623±0.031 0.9471±0.026 0.9674±0.029 0.9939±0.008 0.7697±0.203 0.7215±0.137 0.7528±0.156 0.8403±0.002 0.7613±0.087 0.7485±0.114 |
|    | Easy  MNESG_IE (default)  MNESG_IE  SBAG  UBAG  SBO  RBO  EBO  BAC  Easy  MNESG_IE (default)  MNESG_IE  SBAG  UBAG  SBO  RBO  EBO  BAC  EBO  BAC  EBO  BAC  EBO  BAC  BAC  BBAC  BBAC  BBAC  BBAC  BBAC  BBAC  BBAC  BBAC  BBAC  BBAC | $1\pm0$ $1\pm0$ $1\pm0$ $0.9488\pm0.0382$ $0.9495\pm0.0310$ $0.9673\pm0.0126$ $0.8976\pm0.0879$ $0.9297\pm0.0572$ $0.9018\pm0.0476$ $0.9390\pm0.0538$ $0.9884\pm0.0164$ $0.9584\pm0.0181$ $0.7590\pm0.1437$ $0.9646\pm0.0174$ $0.9335\pm0.0059$ $0.7820\pm0.0375$ $0.6823\pm0.0972$ | 1±0 1±0 0.9256±0.0998 0.5266±0.2712 0.9353±0.1037 0.9463±0.0461 0.9634±0.0298 0.9487±0.0249 0.9682±0.0280 0.9939±0.0086 0.8109±0.1566 0.7307±0.1349 0.7902±0.1070 0.8457±0.0030 0.7666±0.0844 0.7625±0.1149                          | $1\pm0$ $1\pm0$ $1\pm0$ $0.6619\pm0.1980$ $0.9512\pm0.0298$ $0.6933\pm0.0596$ $0.5815\pm0.3015$ $0.6066\pm0.2832$ $0.4866\pm0.1849$ $0.6266\pm0.2385$ $0.9000\pm0.1414$ $0.9000\pm0.1414$ $0.5473\pm0.1410$ $0.2327\pm0.1257$ $0.5833\pm0.1666$ $0.4846\pm0.0210$ $0.2238\pm0.0514$ $0.1910\pm0.0758$ | 1±0<br>1±0                                                                                                                                                                                    |

|    | MNESG_IE           | 0.9792±0.0121       | 0.8696±0.0978       | 0.7532±0.1358       | 0.8547±0.1152       |
|----|--------------------|---------------------|---------------------|---------------------|---------------------|
|    | SBAG               | $0.7978 \pm 0.0482$ | $0.8339 \pm 0.0374$ | 0.2345±0.0278       | 0.8307±0.0327       |
|    | UBAG               | $0.7742 \pm 0.0275$ | $0.8452 \pm 0.0970$ | $0.2097 \pm 0.0219$ | $0.8179 \pm 0.0717$ |
|    | SBO                | $0.8215 \pm 0.0885$ | $0.7979 \pm 0.0779$ | $0.2466 \pm 0.0488$ | $0.7835 \pm 0.0916$ |
|    | RBO                | $0.8200 \pm 0.0347$ | $0.8199 \pm 0.0472$ | $0.2398 \pm 0.0170$ | $0.8165 \pm 0.0462$ |
| 27 | EBO                | $0.8126 \pm 0.0403$ | $0.8372 \pm 0.0611$ | $0.2437 \pm 0.0397$ | $0.8340 \pm 0.0594$ |
|    | BAC                | $0.7850 \pm 0.0532$ | $0.7747 \pm 0.0966$ | $0.2031 \pm 0.0592$ | $0.7710 \pm 0.1002$ |
|    | Easy               | $0.7998 \pm 0.0588$ | $0.8191 \pm 0.0865$ | $0.2337 \pm 0.0750$ | $0.8159 \pm 0.0880$ |
|    | MNESG_IE (default) | $0.8653 \pm 0.0190$ | $0.8579 \pm 0.0243$ | $0.2990 \pm 0.0123$ | 0.8573±0.0247       |
|    | MNESG_IE           | 0.9097±0.0142       | $0.8209 \pm 0.0693$ | $0.3553 \pm 0.0457$ | 0.8122±0.0781       |
|    | SBAG               | 0.8930±0.0156       | $0.6523 \pm 0.0732$ | 0.1970±0.0716       | 0.5921±0.1039       |
|    | UBAG               | $0.6897 \pm 0.0454$ | $0.6666 \pm 0.0750$ | $0.1206 \pm 0.0285$ | $0.6600 \pm 0.0797$ |
|    | SBO                | $0.9392 \pm 0.0047$ | $0.5867 \pm 0.0582$ | $0.2180 \pm 0.0403$ | $0.3999 \pm 0.2266$ |
|    | RBO                | $0.8116 \pm 0.0324$ | $0.6228 \pm 0.0453$ | $0.1330 \pm 0.0335$ | $0.5879 \pm 0.0552$ |
| 28 | EBO                | $0.7535 \pm 0.0876$ | $0.6110 \pm 0.0788$ | $0.1051 \pm 0.0124$ | $0.5630 \pm 0.1616$ |
|    | BAC                | $0.6113 \pm 0.0831$ | $0.6500 \pm 0.0791$ | $0.1021 \pm 0.0186$ | $0.6335 \pm 0.0727$ |
|    | Easy               | $0.6611 \pm 0.1143$ | $0.6403 \pm 0.0669$ | $0.1083 \pm 0.0217$ | $0.6206 \pm 0.0824$ |
|    | MNESG_IE (default) | $0.6953 \pm 0.1522$ | 0.7326±0.0554       | $0.1584 \pm 0.0331$ | 0.7074±0.0423       |
|    | MNESG_IE           | 0.9677±0.0018       | $0.6034 \pm 0.1003$ | 0.2699±0.1787       | 0.4239±0.2120       |
|    | SBAG               | $0.8253 \pm 0.0177$ | 0.6711±0.1485       | $0.1498 \pm 0.0788$ | 0.6200±0.2011       |
|    | UBAG               | $0.7285 \pm 0.0661$ | $0.7147 \pm 0.0517$ | $0.1423 \pm 0.0212$ | $0.7089 \pm 0.0561$ |
|    | SBO                | $0.8171 \pm 0.0096$ | $0.7299 \pm 0.1313$ | $0.1851 \pm 0.0714$ | $0.7065 \pm 0.1625$ |
|    | RBO                | $0.8456 \pm 0.0239$ | $0.7389 \pm 0.0896$ | $0.1992 \pm 0.0365$ | $0.7191 \pm 0.1208$ |
| 29 | EBO                | $0.7696 \pm 0.0990$ | 0.6714±0.0611       | $0.1440 \pm 0.0471$ | $0.6537 \pm 0.0801$ |
|    | BAC                | $0.6472 \pm 0.0484$ | $0.6727 \pm 0.0260$ | 0.1122±0.0093       | $0.6702 \pm 0.0229$ |
|    | Easy               | $0.5957 \pm 0.1497$ | $0.6783 \pm 0.0562$ | $0.1130 \pm 0.0231$ | $0.6591 \pm 0.0712$ |
|    | MNESG_IE (default) | $0.6943 \pm 0.1227$ | $0.7919 \pm 0.0580$ | $0.1916 \pm 0.1012$ | $0.7826 \pm 0.0852$ |
|    | MNESG_IE           | 0.8468±0.0976       | 0.8000±0.0066       | 0.2628±0.0997       | 0.7954±0.0137       |
|    | SBAG               | $0.9703 \pm 0.0122$ | $0.9618 \pm 0.0320$ | $0.6669 \pm 0.0925$ | $0.9612 \pm 0.0325$ |
|    | UBAG               | $0.9393 \pm 0.0189$ | $0.9458 \pm 0.0293$ | $0.4917 \pm 0.0811$ | $0.9451 \pm 0.0294$ |
|    | SBO                | $0.9757 \pm 0.0087$ | $0.9444 \pm 0.0555$ | $0.7018 \pm 0.0541$ | $0.9418 \pm 0.0589$ |
|    | RBO                | $0.9440 \pm 0.1475$ | $0.9604 \pm 0.0282$ | $0.5158 \pm 0.0678$ | $0.9600 \pm 0.0282$ |
| 30 | EBO                | $0.9602 \pm 0.0096$ | $0.9458 \pm 0.0308$ | $0.5849 \pm 0.0624$ | $0.9452 \pm 0.0312$ |
|    | BAC                | $0.9333 \pm 0.0197$ | $0.9534 \pm 0.0220$ | $0.4736 \pm 0.0642$ | $0.9526 \pm 0.0221$ |
|    | Easy               | $0.9198 \pm 0.0191$ | $0.9479 \pm 0.0223$ | $0.4253 \pm 0.0464$ | $0.9470 \pm 0.0222$ |
|    | MNESG_IE (default) | $0.9158 \pm 0.0381$ | $0.9566 \pm 0.0196$ | $0.4342 \pm 0.1065$ | $0.9554 \pm 0.0207$ |
|    | MNESG_IE           | $0.9636 \pm 0.0140$ | $0.9597 \pm 0.0291$ | $0.6231 \pm 0.0788$ | $0.9592 \pm 0.0295$ |
|    | SBAG               | $0.9521 \pm 0.0114$ | $0.8360 \pm 0.1076$ | $0.4103 \pm 0.0799$ | $0.8179 \pm 0.1288$ |
|    | UBAG               | $0.8679 \pm 0.0335$ | $0.8766 \pm 0.0594$ | $0.2466 \pm 0.0502$ | $0.8746 \pm 0.0593$ |
|    | SBO                | $0.9676 \pm 0.0084$ | 0.7743±0.1489       | 0.4407±0.1667       | $0.7252 \pm 0.1973$ |
| 31 | RBO                | $0.8746 \pm 0.0377$ | $0.8382 \pm 0.0795$ | $0.2353 \pm 0.0390$ | $0.8307 \pm 0.0848$ |
|    | EBO                | $0.8712 \pm 0.0517$ | $0.8225 \pm 0.1086$ | 0.2206±0.0575       | $0.8135 \pm 0.1236$ |
|    | BAC                | $0.7776 \pm 0.0334$ | $0.8162 \pm 0.0426$ | $0.1548 \pm 0.0158$ | $0.8135 \pm 0.0405$ |
|    | Easy               | $0.7755 \pm 0.0493$ | $0.8293 \pm 0.0513$ | $0.1603 \pm 0.0266$ | $0.8246 \pm 0.0488$ |

|    | MNESG_IE (default) | $0.8814 \pm 0.0237$ | 0.8974±0.0921       | $0.2685 \pm 0.0570$ | 0.8921±0.0994        |
|----|--------------------|---------------------|---------------------|---------------------|----------------------|
|    | MNESG_IE           | $0.9137 \pm 0.0173$ | $0.8868 \pm 0.0170$ | $0.3234 \pm 0.0472$ | $0.8861 \pm 0.0175$  |
|    | SBAG               | 0.9333±0.0143       | 0.6605±0.0675       | 0.1980±0.0557       | 0.5865±0.1133        |
|    | UBAG               | 0.7411±0.0529       | 0.7698±0.0618       | 0.1237±0.0255       | 0.7674±0.0581        |
|    | SBO                | 0.9518±0.0032       | 0.7310±0.1207       | 0.3025±0.1000       | 0.6772±0.1771        |
|    | RBO                | $0.7866 \pm 0.0873$ | 0.7198±0.1365       | 0.1347±0.0713       | 0.7101±0.1409        |
| 32 | EBO                | $0.7688 \pm 0.0550$ | 0.7107±0.1565       | 0.1176±0.0589       | 0.6940±0.1782        |
|    | BAC                | $0.7069 \pm 0.0517$ | 0.7279±0.1075       | 0.1043±0.0323       | $0.7223 \pm 0.1054$  |
|    | Easy               | 0.5966±0.1318       | 0.6715±0.0420       | 0.0779±0.0115       | $0.6521 \pm 0.0527$  |
|    | MNESG_IE (default) | 0.8694±0.0904       | 0.8111±0.0462       | 0.2398±0.1322       | 0.8082±0.0429        |
|    | MNESG_IE           | 0.9889±0.0045       | 0.8111±0.0722       | 0.7113±0.1216       | 0.7855±0.0916        |
|    | SBAG               | 0.9005±0.0354       | 0.7349±0.0847       | 0.1937±0.0712       | 0.7054±0.1165        |
|    | UBAG               | $0.6596 \pm 0.0886$ | 0.7446±0.0555       | $0.0956 \pm 0.230$  | $0.7323 \pm 0.0490$  |
|    | SBO                | 0.9502±0.0139       | 0.7298±0.1264       | 0.2955±0.1582       | 0.6764±0.1776        |
|    | RBO                | $0.8070 \pm 0.0423$ | 0.7139±0.1216       | 0.1151±0.0452       | $0.6886 \pm 0.1536$  |
| 33 | EBO                | 0.6830±0.1012       | 0.6750±0.0523       | $0.0813 \pm 0.0108$ | 0.6610±0.0447        |
|    | BAC                | $0.6783 \pm 0.1094$ | 0.7625±0.1077       | 0.1043±0.0379       | 0.7467±0.1106        |
|    | Easy               | $0.6549 \pm 0.0726$ | 0.6933±0.1589       | $0.0819 \pm 0.0382$ | 0.6748±0.1727        |
|    | MNESG_IE (default) | 0.6932±0.1517       | $0.6599 \pm 0.0788$ | 0.1222±0.0629       | 0.5730±0.1182        |
|    | MNESG_IE           | $0.8302 \pm 0.1735$ | $0.9136 \pm 0.0082$ | 0.2679±0.2273       | 0.9069±0.0974        |
|    | SBAG               | 0.9294±0.0140       | 0.9564±0.0120       | 0.6436±0.0659       | 0.9562±0.0118        |
|    | UBAG               | $0.8376 \pm 0.0610$ | $0.8779 \pm 0.0683$ | $0.1802 \pm 0.0277$ | $0.8704 \pm 0.0744$  |
|    | SBO                | $0.9374 \pm 0.0122$ | 0.9177±0.0611       | $0.6434 \pm 0.0661$ | $0.9151 \pm 0.0642$  |
|    | RBO                | $0.8945 \pm 0.0467$ | $0.9462 \pm 0.0238$ | $0.2836 \pm 0.0897$ | 0.9444±0.0252        |
| 34 | EBO                | $0.9095 \pm 0.0337$ | $0.9539 \pm 0.0172$ | $0.3081 \pm 0.0860$ | $0.9526 \pm 0.0180$  |
|    | BAC                | $0.8362 \pm 0.0679$ | $0.9165 \pm 0.0347$ | $0.1970 \pm 0.0545$ | $0.9128 \pm 0.0391$  |
|    | Easy               | $0.8602 \pm 0.0333$ | $0.8732 \pm 0.0909$ | $0.1979 \pm 0.0683$ | $0.8693 \pm 0.0940$  |
|    | MNESG_IE (default) | $0.9534 \pm 0.0093$ | $0.9436 \pm 0.0745$ | $0.4269 \pm 0.0647$ | $0.9408 \pm 0.0801$  |
|    | MNESG_IE           | $0.9932 \pm 0.0080$ | $0.9965 \pm 0.0041$ | $0.8684 \pm 0.0239$ | 0.9965±0.0041        |
|    | SBAG               | 1±0                 | 1±0                 | 1±0                 | 1±0                  |
|    | UBAG               | 1±0                 | 1±0                 | 1±0                 | 1±0                  |
|    | SBO                | 1±0                 | 1±0                 | 1±0                 | 1±0                  |
|    | RBO                | $0.9834 \pm 0.0371$ | $0.9915 \pm 0.0188$ | $0.8533 \pm 0.3279$ | $0.9913 \pm 0.0192$  |
| 35 | EBO                | 1±0                 | 1±0                 | 1±0                 | 1±0                  |
|    | BAC                | 1±0                 | 1±0                 | 1±0                 | 1±0                  |
|    | Easy               | 1±0                 | 1±0                 | 1±0                 | 1±0                  |
|    | MNESG_IE (default) | $0.9970 \pm 0.0024$ | $0.9262 \pm 0.0631$ | $0.8895 \pm 0.0890$ | $0.9212 \pm 0.0697$  |
|    | MNESG_IE           | 1±0                 | 1±0                 | 1±0                 | 1±0                  |
|    | SBAG               | 0.9996±0.0010       | 0.9833±0.0373       | 0.9818±0.0407       | 0.9826±0.0390        |
|    | UBAG               | $0.9861 \pm 0.0168$ | $0.9929 \pm 0.0085$ | $0.7471 \pm 0.2704$ | $0.9929 \pm 0.0086$  |
| 36 | SBO                | $0.9986 \pm 0.0020$ | $0.9828 \pm 0.0370$ | $0.9532 \pm 0.0666$ | $0.9821 \pm 0.0387$  |
| 50 |                    | 0.0005 + 0.0222     | $0.9800 \pm 0.0117$ | $0.4848 \pm 0.2898$ | 0.9797±0.0119        |
| 50 | RBO                | $0.9605 \pm 0.0232$ | 0.9600±0.0117       | 0.1010±0.2070       | *** ** * = **** = ** |
|    | RBO<br>EBO         | 0.9852±0.0201       | 0.9760±0.0345       | $0.7387 \pm 0.2556$ | $0.9752 \pm 0.0361$  |

|    | Easy               | $0.9520\pm0.0078$   | $0.9757 \pm 0.0039$ | $0.3622 \pm 0.0357$ | $0.9754 \pm 0.0041$ |
|----|--------------------|---------------------|---------------------|---------------------|---------------------|
|    | MNESG_IE (default) | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
|    | MNESG_IE           | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
|    | SBAG               | 0.9694±0.0142       | 0.9570±0.0492       | 0.7258±0.0399       | 0.9553±0.0523       |
|    | UBAG               | $0.9334 \pm 0.0196$ | $0.9662 \pm 0.0099$ | $0.2830 \pm 0.0757$ | $0.9656 \pm 0.0102$ |
|    | SBO                | $0.9660 \pm 0.0153$ | $0.9462 \pm 0.0542$ | $0.7178 \pm 0.0448$ | $0.9439 \pm 0.0577$ |
|    | RBO                | $0.9402 \pm 0.0347$ | $0.9697 \pm 0.0176$ | $0.3391 \pm 0.1441$ | $0.9691 \pm 0.0181$ |
| 37 | EBO                | $0.9544 \pm 0.0340$ | $0.9769 \pm 0.0172$ | $0.4431 \pm 0.2470$ | $0.9765 \pm 0.0176$ |
|    | BAC                | $0.9366 \pm 0.0292$ | $0.9679 \pm 0.0148$ | 0.3257±0.1712       | $0.9672 \pm 0.0151$ |
|    | Easy               | $0.9357 \pm 0.0235$ | 0.9674±0.0119       | $0.2950 \pm 0.0914$ | $0.9668 \pm 0.0122$ |
|    | MNESG_IE (default) | 0.9973±0.0019       | $0.9788 \pm 0.0441$ | 0.9005±0.0651       | $0.9777 \pm 0.0466$ |
|    | MNESG_IE           | 0.9995±0.0010       | $0.9833 \pm 0.0622$ | 0.9818±0.0407       | $0.9826 \pm 0.0390$ |
|    | SBAG               | 0.9854±0.0644       | 0.9543±0.0621       | 0.8769±0.1315       | 0.9525±0.0644       |
|    | UBAG               | $0.9825 \pm 0.0279$ | 0.9115±0.0506       | $0.8420 \pm 0.1243$ | $0.9073 \pm 0.0528$ |
|    | SBO                | $0.9858 \pm 0.0290$ | $0.9545 \pm 0.0623$ | $0.8987 \pm 0.1244$ | $0.9528 \pm 0.0646$ |
|    | RBO                | $0.9818 \pm 0.0283$ | $0.9327 \pm 0.0620$ | $0.8057 \pm 0.2371$ | $0.9300 \pm 0.0643$ |
| 38 | EBO                | $0.9829 \pm 0.0282$ | 0.9315±0.0631       | $0.8642 \pm 0.1432$ | $0.9285 \pm 0.0658$ |
|    | BAC                | $0.9863 \pm 0.0292$ | $0.9547 \pm 0.0625$ | $0.9169 \pm 0.1327$ | $0.9530 \pm 0.0648$ |
|    | Easy               | $0.9784 \pm 0.0266$ | $0.9094 \pm 0.0514$ | $0.7531 \pm 0.2110$ | $0.9055 \pm 0.0535$ |
|    | MNESG_IE (default) | $0.9991 \pm 0.0012$ | $0.9550 \pm 0.0622$ | $0.9492 \pm 0.0705$ | $0.9521 \pm 0.0664$ |
|    | MNESG_IE           | 0.9996±0.0010       | 0.9998±0.0001       | 0.9778±0.0497       | 0.9998±0.0001       |

As shown in the above table, the proposed MNESG\_IE achieves the best performance on more than 30 datasets. It generally shows a significant improvement in each evaluation metric compared to the classical IE algorithms. For example, MNESG\_IE obtains the best performance on Kr-vs-k-zero\_vs\_eight with the mean ACC, AUC, F-M, and G-M results of 0.9932, 0.9965, 0.8684, and 0.9965, which are 5.58%, 4.01%, 22.48%, and 4.03% better than the second-best results, respectively. It means that the correlation information among samples and envelope samples produced by MNESG\_IE is effective in improving the classification performance.

The nonparametric tests are used to evaluate the difference between multiple methods. Figure 9 and Table 5 present comparative results of the MNESG\_IE and seven classical IE algorithms using the Friedman test and Holm test. The conclusion is that the MNESG\_IE achieves the highest average ranking among all the methods in terms of four evaluation metrics from Figure 9. The results in Table 5 show the significance levels between MNESG\_IE and other IE algorithms. All the p-value in Table 5 is less than 0.05, which means MNESG\_IE and the compared algorithms have significant differences in terms of performance. From results in Figure 9, we know that MNESG\_IE achieves the highest average ranking among all the methods. In general, the nonparametric tests confirm the significant performance improvement of MNESG\_IE over other classical IE algorithms.



Fig. 9. Average ranks of all compared imbalanced ensemble methods

Table 5. P values from Holm's test

| Algorithm | ACC        | AUC        | F-M        | G-M        | Hypothesis (0.05) |
|-----------|------------|------------|------------|------------|-------------------|
| SBAG      | 1.4394e-07 | 9.8556e-10 | 1.8974e-08 | 8.1672e-12 | Rejected          |
| UBAG      | 2.2882e-27 | 5.0702e-09 | 4.4469e-20 | 1.3204e-08 | Rejected          |
| SBO       | 1.1707e-03 | 2.4488e-15 | 1.2966e-05 | 5.8939e-16 | Rejected          |
| RBO       | 1.7973e-11 | 3.3785e-06 | 2.7651e-11 | 1.9413e-05 | Rejected          |
| EBO       | 1.7601e-16 | 3.6705e-09 | 1.8417e-14 | 1.4852e-07 | Rejected          |
| BAC       | 1.5289e-35 | 7.6447e-18 | 2.7724e-30 | 9.4960e-15 | Rejected          |
| Easy      | 1.8088e-34 | 1.3937e-18 | 5.4957e-32 | 3.9370e-16 | Rejected          |

## 2.4.2. Comparison with state-of-the-art IE algorithms

To further verify the performance of the proposed MNESG\_IE, four state-of-the-art IE algorithms: EASE, SPE, HUE, and ECUBoost were chosen for comparison. The specific results are shown in Table 6, and the complete results are shown in the supplementary material.

Table 6. The comparison results between EASE, SPE, HUE, ECUBoost and MNESG\_IE

| ID | Algorithm          | ACC                 | AUC                 | F-M                 | G-M                 |
|----|--------------------|---------------------|---------------------|---------------------|---------------------|
|    | EASE               | $0.7756 \pm 0.0801$ | $0.7687 \pm 0.0901$ | 0.7008±0.1109       | 0.7668±0.0911       |
|    | SPE                | $0.7754 \pm 0.0646$ | 0.7546±0.0679       | $0.6845 \pm 0.0901$ | $0.7509 \pm 0.0694$ |
|    | HUE                | 0.7942±0.0351       | $0.7872 \pm 0.0430$ | $0.7238 \pm 0.0462$ | $0.7848 \pm 0.0426$ |
| 1  | ECUBoost           | 0.7620±0.0776       | 0.7543±0.0821       | $0.6849 \pm 0.0934$ | 0.7511±0.0816       |
|    | MNESG_IE (default) | $0.7614 \pm 0.0835$ | $0.7757 \pm 0.0403$ | $0.7130\pm0.0393$   | 0.7543±0.0615       |
|    | MNESG_IE           | 0.9721±0.0104       | 0.9662±0.0011       | 0.9599±0.0125       | 0.9656±0.0011       |
|    | EASE               | 0.9326±0.0224       | 0.9337±0.0234       | 0.9072±0.0303       | 0.9335±0.0234       |
|    | SPE                | $0.9238 \pm 0.0149$ | $0.9154 \pm 0.0055$ | $0.8915 \pm 0.0150$ | $0.9140 \pm 0.0057$ |
| 2  | HUE                | $0.9253 \pm 0.0202$ | $0.9262 \pm 0.0182$ | $0.8975 \pm 0.0255$ | $0.9259 \pm 0.0183$ |
| 2  | ECUBoost           | $0.9385 \pm 0.0228$ | $0.9401 \pm 0.0218$ | $0.9154 \pm 0.0308$ | $0.9399 \pm 0.0218$ |
|    | MNESG_IE (default) | $0.9780 \pm 0.0052$ | $0.9812 \pm 0.0048$ | $0.9694 \pm 0.0070$ | $0.9811 \pm 0.0048$ |
|    | MNESG_IE           | 0.9898±0.0083       | 0.9921±0.0064       | 0.9857±0.0115       | 0.9921±0.0065       |

|    | EASE               | $0.6523 \pm 0.0306$ | 0.6474±0.0297       | 0.5590±0.0319       | 0.6466±0.0297       |
|----|--------------------|---------------------|---------------------|---------------------|---------------------|
|    | SPE                | $0.6470 \pm 0.0277$ | $0.6335 \pm 0.0344$ | $0.5372 \pm 0.0446$ | 0.6311±0.0359       |
| 2  | HUE                | $0.6588 \pm 0.0338$ | $0.6419 \pm 0.0339$ | $0.5455 \pm 0.0387$ | $0.6392 \pm 0.0339$ |
| 3  | ECUBoost           | $0.6745 \pm 0.0314$ | $0.6437 \pm 0.0312$ | $0.5357 \pm 0.0431$ | $0.6326 \pm 0.0367$ |
|    | MNESG_IE (default) | $0.7435 \pm 0.0349$ | $0.7220\pm0.0475$   | $0.6223 \pm 0.1029$ | 0.6945±0.0933       |
|    | MNESG_IE           | $0.8243 \pm 0.0302$ | $0.7954 \pm 0.0343$ | 0.7327±0.0494       | $0.7823 \pm 0.0460$ |
|    | EASE               | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
|    | SPE                | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
|    | HUE                | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
| 4  | ECUBoost           | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
|    | MNESG_IE (default) | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
|    | MNESG_IE           | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
|    | EASE               | 0.7358±0.0238       | 0.7256±0.0244       | 0.6054±0.0311       | 0.7241±0.0248       |
|    | SPE                | 0.7237±0.0408       | 0.7040±0.0357       | $0.5804 \pm 0.0441$ | 0.7015±0.0355       |
|    | HUE                | 0.7243±0.0278       | 0.7058±0.0278       | 0.5818±0.0353       | 0.7042±0.0280       |
| 5  | ECUBoost           | 0.7385±0.0191       | 0.7193±0.0161       | 0.5986±0.0205       | 0.7175±0.0162       |
|    | MNESG_IE (default) | 0.6914±0.0558       | 0.7028±0.0194       | 0.5788±0.0222       | 0.6957±0.0227       |
|    | MNESG_IE           | 0.7399±0.0516       | $0.7397 \pm 0.0239$ | 0.6246±0.0357       | 0.7366±0.0211       |
|    | EASE               | 0.6312±0.0802       | 0.5877±0.0779       | 0.4199±0.0827       | 0.5792±0.0792       |
|    | SPE                | 0.5846±0.0690       | 0.5823±0.0730       | 0.4259±0.0793       | 0.5807±0.0720       |
|    | HUE                | 0.5819±0.0796       | 0.5339±0.0715       | 0.3559±0.0764       | 0.5188±0.0707       |
| 6  | ECUBoost           | 0.4932±0.0634       | 0.5519±0.0743       | 0.4132±0.0719       | 0.5327±0.0719       |
|    | MNESG_IE (default) | 0.7284±0.1128       | 0.6819±0.0402       | 0.5259±0.0744       | 0.6333±0.0653       |
|    | MNESG_IE           | 0.9905±0.0130       | 0.9947±0.0072       | 0.9556±0.0609       | 0.9947±0.0073       |
|    | EASE               | 0.9645±0.0134       | 0.9559±0.0189       | 0.9257±0.0280       | 0.9556±0.0191       |
|    | SPE                | 0.9645±0.0158       | 0.9595±0.0166       | 0.9328±0.0294       | 0.9593±0.0167       |
| 7  | HUE                | 0.9538±0.0219       | 0.9525±0.0178       | 0.9149±0.0375       | 0.9523±0.0178       |
| 7  | ECUBoost           | 0.9704±0.0106       | 0.9636±0.0126       | 0.9434±0.0183       | 0.9632±0.0128       |
|    | MNESG_IE (default) | 0.9468±0.0120       | 0.9447±0.0146       | 0.9011±0.0218       | 0.9446±0.0146       |
|    | MNESG_IE           | $0.9503 \pm 0.0456$ | 0.9606±0.0313       | 0.9148±0.0694       | 0.9599±0.0325       |
|    | EASE               | 0.7623±0.0278       | 0.7281±0.0367       | 0.5815±0.0494       | 0.7242±0.0387       |
|    | SPE                | $0.7553 \pm 0.0079$ | $0.7206 \pm 0.0073$ | 0.5713±0.0100       | 0.7168±0.0088       |
| 0  | HUE                | $0.7270\pm0.0374$   | $0.7333 \pm 0.0376$ | $0.5783 \pm 0.0438$ | 0.7311±0.0363       |
| 8  | ECUBoost           | $0.7647 \pm 0.0285$ | $0.6860 \pm 0.0193$ | $0.5308 \pm 0.0293$ | 0.6672±0.0172       |
|    | MNESG_IE (default) | $0.7623 \pm 0.0278$ | $0.7281 \pm 0.0367$ | 0.5815±0.0494       | 0.7242±0.0387       |
|    | MNESG_IE           | $0.8120 \pm 0.0383$ | 0.7870±0.0509       | $0.6601 \pm 0.0586$ | 0.7785±0.0612       |
|    | EASE               | 0.9346±0.0307       | 0.9173±0.0380       | 0.8668±0.0569       | 0.9157±0.0391       |
|    | SPE                | $0.8967 \pm 0.0448$ | $0.8558 \pm 0.0552$ | $0.7840 \pm 0.0720$ | 0.8472±0.0607       |
| 0  | HUE                | $0.7270 \pm 0.0374$ | 0.7333±0.0376       | $0.5783 \pm 0.0438$ | 0.7311±0.0363       |
| 9  | ECUBoost           | 0.9345±0.0175       | 0.9172±0.0419       | $0.8640 \pm 0.0376$ | 0.9133±0.0461       |
|    | MNESG_IE (default) | 0.9346±0.0307       | 0.9173±0.0380       | 0.8668±0.0569       | 0.9157±0.0391       |
|    | MNESG_IE           | 0.9953±0.0104       | 0.9970±0.0068       | 0.9905±0.0213       | 0.9969±0.0068       |
| 10 | EASE               | 0.9597±0.0196       | 0.9545±0.0184       | 0.9181±0.0376       | 0.9544±0.0184       |
| 10 | SPE                | 0.9598±0.0137       | 0.9459±0.0160       | 0.9154±0.0267       | 0.9451±0.0168       |
|    |                    |                     |                     |                     |                     |

|     | HUE                | 0.9491±0.0087       | 0.9581±0.0087       | 0.9004±0.0162                  | 0.9579±0.0086                              |
|-----|--------------------|---------------------|---------------------|--------------------------------|--------------------------------------------|
|     | ECUBoost           | 0.9539±0.0195       | 0.9542±0.0203       | 0.9004±0.0102<br>0.9084±0.0357 | $0.9579 \pm 0.0080$<br>$0.9535 \pm 0.0206$ |
|     |                    |                     |                     |                                |                                            |
|     | MNESG_IE (default) | 0.8208±0.0199       | 0.9007±0.0545       | 0.8336±0.0542                  | 0.8966±0.0618                              |
|     | MNESG_IE           | 0.9657±0.0190       | 0.9655±0.0118       | 0.9311±0.0349                  | 0.9652±0.0119                              |
|     | EASE               | $0.8989 \pm 0.0314$ | 0.8607±0.0500       | 0.7802±0.0693                  | 0.8560±0.0536                              |
|     | SPE                | $0.8841 \pm 0.0349$ | 0.8484±0.0653       | $0.7524 \pm 0.0802$            | 0.8406±0.0732                              |
| 11  | HUE                | $0.8571 \pm 0.0545$ | $0.8704 \pm 0.0412$ | 0.7476±0.0791                  | 0.8693±0.0418                              |
|     | ECUBoost           | 0.9136±0.0404       | 0.8569±0.0625       | $0.7981 \pm 0.0987$            | $0.8488 \pm 0.0684$                        |
|     | MNESG_IE (default) | 0.9139±0.0504       | 0.9070±0.0425       | 0.8331±0.0843                  | 0.9046±0.0453                              |
|     | MNESG_IE           | 0.9910±0.0082       | 0.9800±0.0183       | 0.9793±0.0189                  | 0.9797±0.0186                              |
|     | EASE               | 0.9256±0.0523       | 0.8871±0.0689       | 0.7886±0.1235                  | 0.8840±0.0704                              |
|     | SPE                | $0.9435 \pm 0.0303$ | $0.8942 \pm 0.0525$ | $0.8214 \pm 0.0922$            | $0.8895 \pm 0.0569$                        |
| 12  | HUE                | $0.8838 \pm 0.0176$ | $0.8846 \pm 0.0208$ | $0.7035 \pm 0.0223$            | $0.8831 \pm 0.0203$                        |
|     | ECUBoost           | $0.8746 \pm 0.1476$ | $0.8575 \pm 0.0961$ | 0.7371±0.1897                  | 0.8454±0.1095                              |
|     | MNESG_IE (default) | $0.9316 \pm 0.0266$ | $0.9202 \pm 0.0526$ | $0.8035 \pm 0.0748$            | $0.9191 \pm 0.0534$                        |
|     | MNESG_IE           | 0.9761±0.0257       | 0.9538±0.0291       | 0.9242±0.0787                  | 0.9532±0.0293                              |
|     | EASE               | $0.9486 \pm 0.0092$ | $0.9250 \pm 0.0623$ | $0.8197 \pm 0.0512$            | 0.9210±0.0676                              |
|     | SPE                | $0.9439 \pm 0.0347$ | $0.8944 \pm 0.0963$ | $0.7921 \pm 0.1383$            | $0.8861 \pm 0.1090$                        |
| 13  | HUE                | $0.9302 \pm 0.0465$ | $0.9175 \pm 0.0435$ | $0.7967 \pm 0.1158$            | 0.9157±0.0441                              |
| 13  | ECUBoost           | $0.9485 \pm 0.0519$ | $0.9250 \pm 0.0669$ | $0.8387 \pm 0.1382$            | $0.9203 \pm 0.0721$                        |
|     | MNESG_IE (default) | $0.9673 \pm 0.0126$ | $0.9359 \pm 0.0408$ | $0.8823 \pm 0.0369$            | $0.9333 \pm 0.0429$                        |
|     | MNESG_IE           | $0.9766 \pm 0.0233$ | 0.9586±0.0709       | $0.9132 \pm 0.0881$            | $0.9551 \pm 0.0783$                        |
|     | EASE               | $0.9353 \pm 0.0062$ | $0.8826 \pm 0.0331$ | $0.7335 \pm 0.0327$            | $0.8791 \pm 0.0354$                        |
|     | SPE                | $0.9366 \pm 0.0157$ | $0.8810 \pm 0.0263$ | $0.7392 \pm 0.0576$            | $0.8779 \pm 0.0281$                        |
| 14  | HUE                | 0.9110±0.0208       | $0.8964 \pm 0.0203$ | $0.6876 \pm 0.0478$            | $0.8955 \pm 0.0213$                        |
| 14  | ECUBoost           | $0.9366 \pm 0.0152$ | $0.8969 \pm 0.0334$ | $0.7477 \pm 0.0422$            | $0.8942 \pm 0.0365$                        |
|     | MNESG_IE (default) | $0.9373 \pm 0.0182$ | $0.8819 \pm 0.0776$ | $0.7349\pm0.0974$              | $0.8753 \pm 0.0897$                        |
|     | MNESG_IE           | 0.9905±0.0130       | $0.9947 \pm 0.0072$ | 0.9556±0.0609                  | $0.9947 \pm 0.0073$                        |
|     | EASE               | 0.9078±0.0472       | 0.8097±0.1166       | 0.6100±0.1820                  | 0.7882±0.1378                              |
|     | SPE                | $0.8986 \pm 0.0259$ | $0.7919 \pm 0.0953$ | $0.5695 \pm 0.1207$            | $0.7721 \pm 0.1094$                        |
| 1.5 | HUE                | $0.8572 \pm 0.0444$ | $0.8698 \pm 0.0447$ | $0.5736 \pm 0.0911$            | $0.8693 \pm 0.0443$                        |
| 15  | ECUBoost           | 0.9195±0.0336       | 0.8414±0.0921       | 0.6571±0.1281                  | $0.8274 \pm 0.1096$                        |
|     | MNESG_IE (default) | 0.8958±0.0153       | 0.9166±0.0357       | $0.6539 \pm 0.0376$            | $0.9154 \pm 0.0350$                        |
|     | MNESG_IE           | 0.9628±0.0584       | 0.9442±0.0516       | 0.8806±0.1533                  | 0.9413±0.0544                              |
|     | EASE               | 0.9416±0.0261       | 0.8623±0.0856       | 0.7188±0.1360                  | 0.8517±0.0979                              |
|     | SPE                | 0.9572±0.0131       | 0.9316±0.0273       | $0.8096 \pm 0.0486$            | $0.9302 \pm 0.0285$                        |
|     | HUE                | 0.8910±0.0187       | 0.9047±0.0378       | 0.6277±0.0546                  | $0.9037 \pm 0.0374$                        |
| 16  | ECUBoost           | 0.9163±0.0265       | $0.8661 \pm 0.0434$ | 0.6630±0.0430                  | $0.8594 \pm 0.0508$                        |
|     | MNESG_IE (default) | 0.9590±0.0273       | 0.9068±0.0702       | 0.8080±0.1153                  | 0.9006±0.0796                              |
|     | MNESG_IE           | 0.9845±0.0128       | 0.9833±0.0251       | 0.9286±0.0532                  | $0.9832 \pm 0.0253$                        |
|     | EASE               | 0.8806±0.0233       | 0.8095±0.0620       | 0.5387±0.0817                  | 0.8021±0.0676                              |
|     | SPE                | 0.8599±0.0494       | 0.8016±0.0910       | 0.5109±0.1306                  | 0.7956±0.0947                              |
| 17  | HUE                | 0.8086±0.0549       | 0.7813±0.0486       | 0.4440±0.1000                  | 0.7794±0.0493                              |
|     | ECUBoost           | 0.8977±0.0299       | 0.7840±0.0367       | 0.5538±0.0394                  | 0.7672±0.0488                              |
|     |                    |                     |                     |                                |                                            |

|    | MNESG_IE (default) | 0.8146±0.0478       | 0.8176±0.0934       | 0.4618±0.0965       | 0.8112±0.1015       |
|----|--------------------|---------------------|---------------------|---------------------|---------------------|
|    | MNESG_IE           | 0.9263±0.0039       | 0.9235±0.0779       | 0.6977±0.0370       | 0.9184±0.0873       |
|    | EASE               | 0.7916±0.0600       | 0.5700±0.0783       | 0.2004±0.1249       | 0.4436±0.2274       |
|    | SPE                | $0.7759 \pm 0.0543$ | 0.7054±0.1384       | 0.2966±0.1573       | $0.6121 \pm 0.3086$ |
|    | HUE                | 0.6399±0.1113       | 0.7059±0.0675       | 0.2799±0.0489       | $0.6843 \pm 0.0737$ |
| 18 | ECUBoost           | 0.6197±0.1118       | 0.5061±0.1231       | 0.1207±0.0815       | 0.3878±0.2236       |
|    | MNESG_IE (default) | 0.8961±0.0019       | 0.6244±0.0194       | 0.3333±0.0006       | 0.5267±0.0479       |
|    | MNESG_IE           | 0.9795±0.0115       | 0.9000±0.0559       | 0.8857±0.0639       | 0.8928±0.0599       |
|    | EASE               | 0.7944±0.0165       | 0.7202±0.1439       | 0.3147±0.1203       | 0.6918±0.1640       |
|    | SPE                | 0.7849±0.0237       | 0.6842±0.0887       | 0.2911±0.0997       | 0.6617±0.1144       |
| 10 | HUE                | 0.6966±0.0859       | 0.7596±0.0851       | 0.3145±0.0845       | 0.7518±0.0819       |
| 19 | ECUBoost           | $0.7988 \pm 0.0549$ | $0.7003 \pm 0.0758$ | $0.3233 \pm 0.0975$ | $0.6831 \pm 0.0928$ |
|    | MNESG_IE (default) | 0.6957±0.1946       | 0.7595±0.0043       | $0.3018 \pm 0.0874$ | $0.7378 \pm 0.0187$ |
|    | MNESG_IE           | 0.9814±0.0104       | $0.8607 \pm 0.0745$ | 0.8400±0.0894       | $0.8532 \pm 0.0821$ |
|    | EASE               | 0.8323±0.0389       | 0.7088±0.0945       | 0.2996±0.0735       | 0.6767±0.1230       |
|    | SPE                | $0.7581 \pm 0.0205$ | $0.7001 \pm 0.0920$ | $0.2519 \pm 0.0564$ | $0.6888 \pm 0.0945$ |
| 20 | HUE                | $0.6950 \pm 0.0887$ | $0.6663 \pm 0.1180$ | 0.2188±0.0905       | $0.6430 \pm 0.1286$ |
| 20 | ECUBoost           | $0.8583 \pm 0.0308$ | $0.7537 \pm 0.0489$ | $0.3722 \pm 0.0445$ | $0.7390 \pm 0.0603$ |
|    | MNESG_IE (default) | 0.6455±0.1230       | $0.8023 \pm 0.0658$ | $0.2690 \pm 0.0662$ | 0.7753±0.0848       |
|    | MNESG_IE           | $0.8110 \pm 0.0531$ | 0.8214±0.0294       | $0.3732 \pm 0.0614$ | $0.8210\pm0.0291$   |
|    | EASE               | 0.9486±0.0270       | 0.8160±0.1426       | 0.5895±0.2248       | 0.7847±0.1711       |
|    | SPE                | $0.9486 \pm 0.0227$ | $0.8943 \pm 0.1058$ | $0.6599 \pm 0.1688$ | $0.8842 \pm 0.1187$ |
| 21 | HUE                | $0.8321 \pm 0.0919$ | $0.8626 \pm 0.0873$ | $0.4204 \pm 0.1110$ | $0.8502 \pm 0.0989$ |
| 21 | ECUBoost           | $0.9627 \pm 0.0237$ | $0.9492 \pm 0.0710$ | $0.7690 \pm 0.1489$ | $0.9466 \pm 0.0759$ |
|    | MNESG_IE (default) | $0.9765 \pm 0.0001$ | $0.9104 \pm 0.1090$ | $0.8000 \pm 0.0001$ | $0.9020\pm0.1209$   |
|    | MNESG_IE           | 0.9902±0.0134       | 0.9949±0.0070       | 0.9200±0.1095       | 0.9948±0.0071       |
|    | EASE               | $0.9582 \pm 0.0274$ | $0.8373 \pm 0.1251$ | $0.6716 \pm 0.2234$ | $0.8096 \pm 0.1669$ |
|    | SPE                | $0.9642 \pm 0.0223$ | $0.8873 \pm 0.0871$ | $0.7365 \pm 0.1263$ | $0.8756 \pm 0.1012$ |
| 22 | HUE                | $0.8747 \pm 0.0515$ | $0.8865 \pm 0.1137$ | $0.4833 \pm 0.1598$ | 0.8808±0.1211       |
| 22 | ECUBoost           | $0.9612 \pm 0.0152$ | $0.8623 \pm 0.1014$ | $0.6978 \pm 0.0939$ | $0.8436 \pm 0.1202$ |
|    | MNESG_IE (default) | $0.9045 \pm 0.0977$ | $0.9258 \pm 0.0542$ | $0.6436 \pm 0.2550$ | $0.9214 \pm 0.0582$ |
|    | MNESG_IE           | 0.9911±0.0081       | 0.9953±0.0043       | 0.9333±0.0609       | 0.9952±0.0043       |
|    | EASE               | $0.9083 \pm 0.0205$ | $0.7935 \pm 0.0862$ | $0.4554 \pm 0.1128$ | $0.7758 \pm 0.1065$ |
|    | SPE                | $0.8768 \pm 0.0096$ | 0.7574±0.0591       | $0.3636 \pm 0.0334$ | $0.7407 \pm 0.0688$ |
| 23 | HUE                | $0.8371 \pm 0.0160$ | $0.7571 \pm 0.0417$ | $0.3202 \pm 0.0416$ | $0.7501 \pm 0.0469$ |
| 23 | ECUBoost           | $0.8617 \pm 0.0470$ | $0.7951 \pm 0.0890$ | $0.3780 \pm 0.0694$ | $0.7766 \pm 0.1180$ |
|    | MNESG_IE (default) | $0.9110\pm0.0581$   | $0.8057 \pm 0.0724$ | $0.4882 \pm 0.2028$ | $0.7968 \pm 0.0756$ |
|    | MNESG_IE           | 0.9623±0.0048       | 0.9212±0.0807       | 0.7166±0.0151       | 0.9173±0.0859       |
|    | EASE               | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
|    | SPE                | 0.9923±0.0153       | 0.9000±0.2000       | $0.8000 \pm 0.4000$ | $0.8000 \pm 0.4000$ |
| 24 | HUE                | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
|    | ECUBoost           | 0.9923±0.0153       | 0.9500±0.0999       | 0.9333±0.1333       | 0.9414±0.1171       |
|    | MNESG_IE (default) | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
|    | MNESG_IE           | 1±0                 | 1±0                 | 1±0                 | 1±0                 |

|     | EASE               | 0.9812±0.0271       | 0.8926±0.1968       | 0.7142±0.3938       | 0.7925±0.3965       |
|-----|--------------------|---------------------|---------------------|---------------------|---------------------|
|     | SPE                | 0.9812±0.0271       | $0.9902 \pm 0.0142$ | $0.8476 \pm 0.1890$ | $0.9900 \pm 0.0144$ |
| 25  | HUE                | $0.8788 \pm 0.0677$ | $0.9365 \pm 0.0356$ | 0.4504±0.1291       | $0.9336 \pm 0.0382$ |
| 25  | ECUBoost           | 0.9112±0.0629       | 0.9536±0.0330       | 0.5454±0.2082       | $0.9518 \pm 0.0348$ |
|     | MNESG_IE (default) | 0.9884±0.0164       | 0.9939±0.0086       | 0.9000±0.1414       | 0.9939±0.0087       |
|     | MNESG_IE           | 0.9884±0.0164       | 0.9939±0.0086       | 0.9000±0.1414       | $0.9939 \pm 0.0087$ |
|     | EASE               | 0.9169±0.0287       | 0.7653±0.0626       | 0.3915±0.1006       | 0.7433±0.0756       |
|     | SPE                | $0.8609 \pm 0.0267$ | 0.7600±0.1574       | 0.2637±0.1019       | 0.7180±0.2037       |
| 2.6 | HUE                | 0.7923±0.0579       | $0.7959 \pm 0.0973$ | 0.2517±0.0684       | $0.7895 \pm 0.0990$ |
| 26  | ECUBoost           | $0.8318 \pm 0.0444$ | 0.7448±0.0453       | 0.2510±0.0470       | $0.7334 \pm 0.0569$ |
|     | MNESG_IE (default) | $0.8961 \pm 0.0927$ | 0.7066±0.1603       | $0.3026 \pm 0.0901$ | 0.6246±0.2253       |
|     | MNESG_IE           | $0.9792 \pm 0.0121$ | $0.8696 \pm 0.0978$ | $0.7532 \pm 0.1358$ | $0.8547 \pm 0.1152$ |
|     | EASE               | 0.9083±0.0164       | 0.7893±0.0782       | 0.3316±0.0671       | 0.7725±0.0917       |
|     | SPE                | 0.8712±0.0095       | $0.8000 \pm 0.0392$ | $0.2791 \pm 0.0350$ | $0.7951 \pm 0.0437$ |
| 27  | HUE                | 0.8167±0.0300       | 0.8112±0.0534       | 0.2351±0.0373       | $0.8094 \pm 0.0520$ |
| 27  | ECUBoost           | $0.9204 \pm 0.0229$ | $0.8176 \pm 0.0429$ | $0.3891 \pm 0.0734$ | $0.8087 \pm 0.0485$ |
|     | MNESG_IE (default) | $0.8653 \pm 0.0190$ | 0.8579±0.0243       | $0.2990 \pm 0.0123$ | 0.8573±0.0247       |
|     | MNESG_IE           | $0.9097 \pm 0.0142$ | $0.8209 \pm 0.0693$ | $0.3553 \pm 0.0457$ | $0.8122 \pm 0.0781$ |
|     | EASE               | $0.7785 \pm 0.0302$ | 0.6124±0.0568       | 0.1142±0.0266       | 0.5779±0.0831       |
|     | SPE                | $0.7173 \pm 0.0542$ | $0.6168 \pm 0.0693$ | $0.1091 \pm 0.0345$ | $0.6010 \pm 0.0795$ |
| 20  | HUE                | $0.6960 \pm 0.0204$ | $0.6892 \pm 0.0451$ | $0.1294 \pm 0.0156$ | 0.6877±0.0459       |
| 28  | ECUBoost           | $0.6292 \pm 0.1777$ | $0.5906 \pm 0.0374$ | $0.0932 \pm 0.0192$ | $0.5529 \pm 0.0582$ |
|     | MNESG_IE (default) | $0.6953 \pm 0.1522$ | 0.7326±0.0554       | $0.1584 \pm 0.0331$ | 0.7074±0.0423       |
|     | MNESG_IE           | 0.9677±0.0018       | $0.6034 \pm 0.1003$ | $0.2699 \pm 0.1787$ | $0.4239 \pm 0.2120$ |
|     | EASE               | $0.7877 \pm 0.0520$ | $0.6646 \pm 0.0267$ | $0.1424 \pm 0.0266$ | $0.6491 \pm 0.0288$ |
|     | SPE                | $0.6980 \pm 0.0373$ | $0.6989 \pm 0.0447$ | 0.1274±0.0117       | $0.6940 \pm 0.0469$ |
| 29  | HUE                | $0.6737 \pm 0.0439$ | $0.6703 \pm 0.0719$ | $0.1129 \pm 0.0223$ | $0.6592 \pm 0.0845$ |
| 29  | ECUBoost           | 0.6737±0.1902       | $0.7025 \pm 0.1043$ | $0.1559 \pm 0.0735$ | $0.6843 \pm 0.1096$ |
|     | MNESG_IE (default) | $0.6943 \pm 0.1227$ | $0.7919 \pm 0.0580$ | $0.1916 \pm 0.1012$ | $0.7826 \pm 0.0852$ |
|     | MNESG_IE           | 0.8468±0.0976       | $0.8000 \pm 0.0066$ | 0.2628±0.0997       | 0.7954±0.0137       |
|     | EASE               | $0.9770 \pm 0.0068$ | $0.9006 \pm 0.0427$ | $0.6854 \pm 0.0728$ | $0.8956 \pm 0.0481$ |
|     | SPE                | $0.9757 \pm 0.0107$ | $0.8892 \pm 0.0673$ | $0.6666 \pm 0.1285$ | $0.8815 \pm 0.0777$ |
| 30  | HUE                | $0.9501 \pm 0.0100$ | $0.9513 \pm 0.0299$ | $0.5349 \pm 0.0514$ | $0.9509 \pm 0.0300$ |
| 30  | ECUBoost           | $0.9770 \pm 0.0077$ | $0.8885 \pm 0.0738$ | $0.6720 \pm 0.0938$ | $0.8794 \pm 0.0842$ |
|     | MNESG_IE (default) | $0.9158 \pm 0.0381$ | $0.9566 \pm 0.0196$ | $0.4342 \pm 0.1065$ | $0.9554 \pm 0.0207$ |
|     | MNESG_IE           | $0.9636 \pm 0.0140$ | 0.9597±0.0291       | $0.6231 \pm 0.0788$ | 0.9592±0.0295       |
|     | EASE               | 0.9420±0.0124       | $0.8030 \pm 0.0698$ | $0.3509 \pm 0.0635$ | $0.7842 \pm 0.0874$ |
|     | SPE                | $0.9103 \pm 0.0311$ | $0.8425 \pm 0.1048$ | $0.3038 \pm 0.0909$ | $0.8302 \pm 0.1192$ |
| 21  | HUE                | $0.8786 \pm 0.0248$ | $0.8542 \pm 0.0245$ | $0.2482 \pm 0.0312$ | $0.8529 \pm 0.0265$ |
| 31  | ECUBoost           | 0.9615±0.0083       | $0.8130 \pm 0.0597$ | 0.4507±0.0919       | $0.7946 \pm 0.0768$ |
|     | MNESG_IE (default) | $0.8814 \pm 0.0237$ | 0.8974±0.0921       | $0.2685 \pm 0.0570$ | 0.8921±0.0994       |
| _   | MNESG_IE           | 0.9137±0.0173       | $0.8868 \pm 0.0170$ | $0.3234 \pm 0.0472$ | $0.8861 \pm 0.0175$ |
| 22  | EASE               | 0.9433±0.0214       | 0.7511±0.1385       | 0.2923±0.1600       | 0.6427±0.3257       |
| 32  | SPE                | $0.8888 \pm 0.0312$ | $0.7232 \pm 0.0841$ | $0.1834 \pm 0.0531$ | $0.6890 \pm 0.1201$ |
|     |                    |                     |                     |                     |                     |

|     | HUE                | 0.8022±0.0191       | 0.7034±0.0887       | 0.1153±0.0293       | 0.6816±0.1219       |
|-----|--------------------|---------------------|---------------------|---------------------|---------------------|
|     | ECUBoost           | $0.6188 \pm 0.1883$ | 0.6829±0.0831       | 0.1007±0.0560       | 0.6595±0.0964       |
|     | MNESG_IE (default) | 0.8694±0.0904       | 0.8111±0.0462       | 0.2398±0.1322       | 0.8082±0.0429       |
|     | MNESG IE           | 0.9889±0.0045       | 0.8111±0.0722       | 0.7113±0.1216       | 0.7855±0.0916       |
|     | EASE               | 0.7964±0.0550       | 0.5859+0.1207       | 0.0732±0.0488       | 0.4735±0.2590       |
|     | SPE                | $0.6257 \pm 0.0731$ | 0.6213±0.0944       | $0.0623 \pm 0.0188$ | 0.5999±0.1044       |
|     | HUE                | 0.5918±0.0551       | 0.6367±0.0701       | 0.0638±0.0046       | 0.6250±0.0588       |
| 33  | ECUBoost           | 0.2350±0.1469       | 0.5604±0.0913       | 0.0480±0.0092       | 0.4130±0.1613       |
|     | MNESG IE (default) | 0.6932±0.1517       | 0.6599±0.0788       | 0.1222±0.0629       | 0.5730±0.1182       |
|     | MNESG_IE           | 0.8302±0.1735       | 0.9136±0.0082       | 0.2679±0.2273       | 0.9069±0.0974       |
|     | EASE               | 0.9863±0.0075       | 0.9244±0.0983       | 0.7045±0.1528       | 0.9151±0.1137       |
|     | SPE                | 0.9678±0.0073       | 0.8627±0.1268       | 0.4549±0.1158       | 0.8407±0.1573       |
|     | HUE                | 0.9171±0.0135       | 0.9577±0.0069       | 0.3116±0.0331       | 0.9568±0.0072       |
| 34  | ECUBoost           | 0.8712±0.0521       | 0.8951±0.0940       | 0.2418±0.1103       | 0.8914±0.0970       |
|     | MNESG_IE (default) | 0.9534±0.0093       | 0.9436±0.0745       | 0.4269±0.0647       | 0.9408±0.0801       |
|     | MNESG_IE           | 0.9932±0.0080       | 0.9965±0.0041       | 0.8684±0.0239       | 0.9965±0.0041       |
|     | EASE               | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
|     | SPE                | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
| 2.5 | HUE                | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
| 35  | ECUBoost           | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
|     | MNESG_IE (default) | $0.9970 \pm 0.0024$ | $0.9262 \pm 0.0631$ | $0.8895 \pm 0.0890$ | $0.9212 \pm 0.0697$ |
|     | MNESG_IE           | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
|     | EASE               | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
|     | SPE                | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
| 36  | HUE                | $0.9995 \pm 0.0008$ | $0.9833 \pm 0.0333$ | $0.9818 \pm 0.0363$ | $0.9825 \pm 0.0348$ |
| 30  | ECUBoost           | $0.9991 \pm 0.0010$ | $0.9666 \pm 0.0408$ | $0.9636 \pm 0.0445$ | $0.9651 \pm 0.0426$ |
|     | MNESG_IE (default) | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
|     | MNESG_IE           | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
|     | EASE               | 0.9990±0.0011       | $0.9797 \pm 0.0398$ | $0.9595 \pm 0.0498$ | $0.9786 \pm 0.0421$ |
|     | SPE                | $0.9995 \pm 0.0009$ | $0.9997 \pm 0.0004$ | $0.9846 \pm 0.0307$ | $0.9997 \pm 0.0004$ |
| 37  | HUE                | $0.9872 \pm 0.0099$ | $0.9771 \pm 0.0317$ | $0.6964 \pm 0.1634$ | $0.9763 \pm 0.0331$ |
| 31  | ECUBoost           | 1±0                 | 1±0                 | 1±0                 | 1±0                 |
|     | MNESG_IE (default) | $0.9973 \pm 0.0019$ | $0.9788 \pm 0.0441$ | $0.9005 \pm 0.0651$ | $0.9777 \pm 0.0466$ |
|     | MNESG_IE           | 0.9995±0.0010       | 0.9833±0.0622       | 0.9818±0.0407       | 0.9826±0.0390       |
|     | EASE               | $0.9995 \pm 0.0008$ | $0.9800 \pm 0.0399$ | 0.9777±0.0444       | $0.9788 \pm 0.0422$ |
|     | SPE                | $0.9991 \pm 0.0011$ | $0.9550 \pm 0.0556$ | $0.9492 \pm 0.0630$ | $0.9520 \pm 0.0593$ |
| 38  | HUE                | $0.9950\pm0.0078$   | $0.9479 \pm 0.0637$ | $0.8300 \pm 0.2357$ | $0.9446 \pm 0.0678$ |
| 20  | ECUBoost           | $0.9991 \pm 0.0017$ | $0.9600 \pm 0.0799$ | $0.9500 \pm 0.1000$ | $0.9549 \pm 0.0901$ |
|     | MNESG_IE (default) | $0.9991 \pm 0.0012$ | $0.9550 \pm 0.0622$ | $0.9492 \pm 0.0705$ | $0.9521 \pm 0.0664$ |
|     | MNESG_IE           | 0.9996±0.0010       | 0.9998±0.0001       | 0.9778±0.0497       | 0.9998±0.0001       |

As shown in Table 6, the four evaluation metrics obtained by MNESG\_IE with default and optimized parameters are all better than the compared methods. For example, MNESG\_IE obtains the best performance on Ecoli4 with the mean ACC, AUC, F-M, and G-M results of 0.9911, 0.9953,

0.9333, and 0.9952, which are 2.69%, 10.8%, 19.68%, and 11.44% better than the second-best (except for the proposed algorithm with default parameters) results, respectively. In addition, the proposed algorithm obtained the best performance on 32 datasets for ACC, AUC and G-M metrics and on 33 datasets for F-M metric. This means that MNESG\_IE can effectively mine the correlation information among samples to generate high quality envelope samples with better separability and diversity, which is helpful for imbalanced classification.

The Friedman test and Holm test are also used to evaluate the difference between MNESG\_IE and four SOTA imbalanced ensemble methods, the specific results are shown in Tables 7-8.

Table 7. Average rank numbers of compared IE methods

| Algorithm | ACC    | AUC    | F-M    | G-M    |
|-----------|--------|--------|--------|--------|
| MNESG_IE  | 1.5658 | 1.3816 | 1.5395 | 1.3947 |
| EASE      | 2.6053 | 3.2500 | 2.6842 | 3.3684 |
| SPE       | 3.3158 | 3.6184 | 3.4605 | 3.6316 |
| HUE       | 4.3816 | 3.2895 | 4.1842 | 3.1053 |
| ECUBoost  | 3.1316 | 3.4605 | 3.1316 | 3.5000 |

Table 8. P values from Holm's test

| Algorithm | ACC        | AUC        | F-M        | G-M        | Hypothesis (0.05) |
|-----------|------------|------------|------------|------------|-------------------|
| EASE      | 2.0387e-04 | 4.5857e-09 | 9.3157e-06 | 1.1536e-10 | Rejected          |
| SPE       | 1.3621e-09 | 6.2702e-12 | 9.5064e-12 | 4.9002e-14 | Rejected          |
| HUE       | 3.6905e-20 | 1.1890e-08 | 1.0609e-17 | 3.2926e-10 | Rejected          |
| ECUBoost  | 8.2446e-08 | 1.4279e-10 | 1.5560e-08 | 7.8126e-12 | Rejected          |

As shown in Table 7, the rank numbers of MNESG\_IE in the four evaluation metrics are 1.5658, 1.3816, 1.5395, and 1.3947 in order, which are the lowest. Table 8 shows that the equivalence hypotheses between MNESG\_IE and the compared algorithms are all rejected. Therefore, the proposed algorithm MNESG\_IE achieve significant improvements compared to the state-of-the-art IE algorithms.

To further evaluate the statistically significant difference between methods, the Wilcoxon paired signed-rank test was adopted to conduct the four comparisons: MNESG\_IE vs EASE, MNESG\_IE vs SPE, MNESG\_IE vs HUE, and MNESG\_IE vs ECUBoost. The specific results are shown in Table 9.

Table 9. Results of the Wilcoxon pairwise test

| Algorithm        | Measure | R+    | R-  | P value    | Hypothesis (0.05) |
|------------------|---------|-------|-----|------------|-------------------|
|                  | ACC     | 676   | 65  | 1.0708e-05 | Rejected          |
| MOTEGO IE FACE   | AUC     | 681   | 22  | 8.1248e-07 | Rejected          |
| MNESG_IE vs EASE | F-M     | 698   | 43  | 2.4761e-06 | Rejected          |
|                  | G-M     | 697   | 44  | 5.2082e-06 | Rejected          |
|                  | ACC     | 679   | 24  | 1.4692e-06 | Rejected          |
| NOTEGO TE ODE    | AUC     | 683   | 20  | 6.8159e-07 | Rejected          |
| MNESG_IE vs SPE  | F-M     | 715   | 26  | 8.1248e-07 | Rejected          |
|                  | G-M     | 664   | 39  | 4.0111e-06 | Rejected          |
|                  | ACC     | 697.5 | 5.5 | 2.9491e-07 | Rejected          |
| MNESG_IE vs HUE  | AUC     | 713   | 28  | 1.2457e-06 | Rejected          |
|                  | F-M     | 698.5 | 4.5 | 2.7019e-07 | Rejected          |

|                       | G-M | 667.5 | 35.5 | 3.5642e-06 | Rejected |
|-----------------------|-----|-------|------|------------|----------|
|                       | ACC | 638.5 | 64.5 | 1.5890e-05 | Rejected |
| MNESG IE vs ECUBoost  | AUC | 685.5 | 17.5 | 3.8848e-07 | Rejected |
| MINESO_IE VS ECOBOOSI | F-M | 686.5 | 54.5 | 4.4861e-06 | Rejected |
|                       | G-M | 697.5 | 43.5 | 2.6341e-06 | Rejected |

The statistical test results in Table 9 rejects the all hypotheses of equivalence in four comparisons. Meanwhile, R+ in the table indicates that the rank sum of MNESG\_IE outperforms the compared algorithm based on 38 datasets, and R- indicates that the rank sum of the compared algorithm outperforms MNESG\_IE. Table 9 shows that R+ is much larger than R-, which means that MNESG\_IE is significantly better than the four state-of-the-art IE algorithms.

#### 2.4.3. Comparison with deep learning based IE algorithms

To verify the competitiveness of the proposed algorithm, MNESG\_IE is further compared with six advanced DL based imbalanced classification methods: CNN+SMOTE, CNN+AE+GAN, BED, RVGAN-TL, EAL-GAN, DLE-ISMOTE. Since the DL based methods are time consuming, 10 representative datasets are chosen for comparison. The specific results are shown in Table 10, and the complete results are shown in the supplementary material.

Table 10. The comparison results with deep learning based imbalanced classification methods

| Dataset          | Algorithm          | AUC                 | F-M                 | G-M                 |
|------------------|--------------------|---------------------|---------------------|---------------------|
|                  | CNN+SMOTE          | 0.6522±0.0381       | 0.4668±0.0509       | 0.6405±0.0399       |
|                  | CNN+AE+GAN         | $0.8376 \pm 0.0541$ | $0.4303 \pm 0.0690$ | $0.8295 \pm 0.0556$ |
|                  | BED                | $0.8495 \pm 0.0251$ | $0.7584 \pm 0.0268$ | $0.8467 \pm 0.0269$ |
| Ecoli1           | RVGAN-TL           | $0.8123 \pm 0.0510$ | $0.7252 \pm 0.0654$ | $0.7991 \pm 0.0583$ |
| ECOIII           | EAL-GAN            | $0.9226 \pm 0.0441$ | $0.6968 \pm 0.0960$ | $0.8624 \pm 0.0518$ |
|                  | DLE-ISMOTE         | $0.7663 \pm 0.0599$ | $0.5826 \pm 0.0710$ | $0.7463 \pm 0.0910$ |
|                  | MNESG_IE (default) | $0.9070 \pm 0.0425$ | $0.8331 \pm 0.0843$ | $0.9046 \pm 0.0453$ |
|                  | MNESG_IE           | $0.9800 \pm 0.0183$ | $0.9793 \pm 0.0189$ | 0.9797±0.0186       |
|                  | CNN+SMOTE          | $0.8288 \pm 0.0831$ | $0.4810 \pm 0.0636$ | 0.8209±0.0851       |
|                  | CNN+AE+GAN         | $0.8325 \pm 0.0129$ | $0.4944 \pm 0.0305$ | $0.8321 \pm 0.0134$ |
|                  | BED                | $0.9197 \pm 0.0212$ | $0.5941 \pm 0.0679$ | $0.9159 \pm 0.0231$ |
| Ecoli3           | RVGAN-TL           | $0.7443 \pm 0.0883$ | $0.5621 \pm 0.1560$ | $0.7031 \pm 0.1180$ |
| ECOH3            | EAL-GAN            | $0.9200 \pm 0.0574$ | $0.6086 \pm 0.1530$ | $0.8650\pm0.0664$   |
|                  | DLE-ISMOTE         | $0.8452 \pm 0.0183$ | $0.5227 \pm 0.0227$ | $0.8451 \pm 0.0185$ |
|                  | MNESG_IE (default) | $0.9166 \pm 0.0357$ | $0.6539 \pm 0.0376$ | $0.9154 \pm 0.0350$ |
|                  | MNESG_IE           | $0.9442 \pm 0.0516$ | $0.8806 \pm 0.1533$ | $0.9413 \pm 0.0544$ |
|                  | CNN+SMOTE          | 0.6025±0.0765       | 0.2151±0.0601       | 0.5629±0.0842       |
|                  | CNN+AE+GAN         | $0.6065 \pm 0.0932$ | $0.2314 \pm 0.0872$ | $0.5952 \pm 0.1070$ |
|                  | BED                | $0.7133 \pm 0.0775$ | $0.2488 \pm 0.0416$ | $0.6887 \pm 0.0682$ |
| Class 0.1 ( as 2 | RVGAN-TL           | $0.5935 \pm 0.1600$ | $0.1967 \pm 0.2410$ | $0.3269 \pm 0.1560$ |
| Glass-0-1-6_vs_2 | EAL-GAN            | $0.6389 \pm 0.1290$ | $0.3704 \pm 0.1250$ | $0.5992 \pm 0.0997$ |
|                  | DLE-ISMOTE         | $0.6698 \pm 0.1210$ | $0.2269\pm0.0769$   | $0.6143 \pm 0.1400$ |
|                  | MNESG_IE (default) | $0.6244 \pm 0.0194$ | $0.3333 \pm 0.0006$ | 0.5267±0.0479       |
|                  | MNESG_IE           | 0.9000±0.0559       | 0.8857±0.0639       | 0.8928±0.0599       |
| Shuttle-c2-vs-c4 | CNN+SMOTE          | 0.9957±0.0088       | 0.9918±0.0112       | 0.9957±0.0089       |

| CNN+AE+GA                |                    | 0.9997±0.0007       | 0.9959±0.0091       | 0.9997±0.0007       |
|--------------------------|--------------------|---------------------|---------------------|---------------------|
|                          | BED                | 1±0                 | 1±0                 | 1±0                 |
|                          | RVGAN-TL           | 1±0                 | 1±0                 | 1±0                 |
|                          | EAL-GAN            | 0.9960±0.0120       | 0.9940±0.0143       | 0.9905±0.0234       |
|                          | DLE-ISMOTE         | 0.9791±0.0022       | 0.9787±0.0054       | $0.9789 \pm 0.0028$ |
|                          | MNESG_IE (default) | 1±0                 | 1±0                 | 1±0                 |
|                          | MNESG_IE           | 1±0                 | 1±0                 | 1±0                 |
|                          | CNN+SMOTE          | 0.8279±0.0325       | 0.2963±0.0204       | 0.8250±0.0349       |
|                          | CNN+AE+GAN         | 0.7970±0.0335       | 0.2983±0.0538       | $0.7907 \pm 0.0380$ |
|                          | BED                | $0.8573 \pm 0.0080$ | 0.2508±0.0155       | $0.8562 \pm 0.0084$ |
| **                       | RVGAN-TL           | 0.6352±0.0755       | $0.3328 \pm 0.0716$ | $0.4948 \pm 0.0937$ |
| Yeast4                   | EAL-GAN            | 0.8764±0.0604       | 0.3045±0.1130       | $0.4533 \pm 0.1130$ |
|                          | DLE-ISMOTE         | 0.8552±0.0179       | 0.2910±0.0252       | $0.8545 \pm 0.0181$ |
|                          | MNESG_IE (default) | $0.8579 \pm 0.0243$ | 0.2990±0.0123       | 0.8573±0.0247       |
|                          | MNESG_IE           | $0.8209 \pm 0.0693$ | 0.3553±0.0457       | $0.8122 \pm 0.0781$ |
|                          | CNN+SMOTE          | 0.9242±0.0513       | 0.4922±0.1120       | 0.9228±0.0560       |
|                          | CNN+AE+GAN         | 0.9183±0.0398       | $0.4335 \pm 0.0560$ | $0.9168 \pm 0.0408$ |
|                          | BED                | 0.9785±0.0016       | 0.5925±0.0168       | 0.9782±0.0016       |
| X                        | RVGAN-TL           | 0.7991±0.0721       | 0.6638±0.0878       | $0.7685 \pm 0.0977$ |
| Yeast5                   | EAL-GAN            | 0.9715±0.0391       | 0.5556±0.0242       | $0.8094 \pm 0.0264$ |
|                          | DLE-ISMOTE         | $0.9687 \pm 0.0086$ | $0.4810 \pm 0.0707$ | $0.9682 \pm 0.0089$ |
|                          | MNESG_IE (default) | $0.9566 \pm 0.0196$ | 0.4342±0.1065       | $0.9554 \pm 0.0207$ |
|                          | MNESG_IE           | 0.9597±0.0291       | $0.6231 \pm 0.0788$ | $0.9592 \pm 0.0295$ |
|                          | CNN+SMOTE          | 0.8739±0.0517       | 0.2753±0.0567       | 0.8724±0.0532       |
|                          | CNN+AE+GAN         | $0.8663 \pm 0.0744$ | $0.2485 \pm 0.0550$ | $0.8639 \pm 0.0754$ |
|                          | BED                | $0.8829 \pm 0.0291$ | $0.2586 \pm 0.0147$ | $0.8823 \pm 0.0282$ |
| Yeast6                   | RVGAN-TL           | $0.7098 \pm 0.0678$ | $0.4821 \pm 0.1540$ | $0.6415 \pm 0.1160$ |
| i easto                  | EAL-GAN            | $0.9336 \pm 0.0355$ | 0.5476±0.0982       | $0.7020 \pm 0.0496$ |
|                          | DLE-ISMOTE         | 0.9345±0.0186       | 0.2717±0.0261       | 0.9321±0.0192       |
|                          | MNESG_IE (default) | $0.8974 \pm 0.0921$ | $0.2685 \pm 0.0570$ | $0.8921 \pm 0.0994$ |
|                          | MNESG_IE           | $0.8868 \pm 0.0170$ | $0.3234 \pm 0.0472$ | $0.8861 \pm 0.0175$ |
| Winequality-red-8_vs_6-7 | CNN+SMOTE          | $0.6434 \pm 0.0762$ | $0.0896 \pm 0.0288$ | 0.6250±0.0934       |
|                          | CNN+AE+GAN         | $0.6026 \pm 0.0315$ | $0.0550\pm0.0041$   | $0.6002 \pm 0.0327$ |
|                          | BED                | $0.6613 \pm 0.0621$ | $0.0801 \pm 0.0142$ | $0.6587 \pm 0.0619$ |
|                          | RVGAN-TL           | $0.6470 \pm 0.0193$ | 0.3800±0.0653       | $0.5447 \pm 0.0372$ |
|                          | EAL-GAN            | $0.5294 \pm 0.1690$ | $0.0400 \pm 0.1000$ | $0.0000\pm0.0000$   |
|                          | DLE-ISMOTE         | $0.5722 \pm 0.0810$ | $0.0957 \pm 0.0791$ | $0.5714 \pm 0.0865$ |
|                          | MNESG_IE (default) | $0.6599 \pm 0.0788$ | 0.1222±0.0629       | $0.5730 \pm 0.1182$ |
|                          | MNESG_IE           | $0.9136 \pm 0.0082$ | $0.2679 \pm 0.2273$ | $0.9069 \pm 0.0974$ |
| Shuttle-2_vs_5           | CNN+SMOTE          | 0.9994±0.0008       | 0.9636±0.0498       | 0.9994±0.008        |
|                          | CNN+AE+GAN         | $0.9989 \pm 0.0004$ | $0.9351 \pm 0.0237$ | $0.9989 \pm 0.004$  |
|                          | BED                | $0.9991 \pm 0.0008$ | $0.9453 \pm 0.0471$ | $0.9991 \pm 0.008$  |
|                          | RVGAN-TL           | 1±0                 | 1±0                 | 1±0                 |
|                          | EAL-GAN            | 1±0                 | 1±0                 | 1±0                 |

|                    | DLE-ISMOTE         | $0.9992 \pm 0.0008$ | $0.9545 \pm 0.0455$ | $0.9992 \pm 0.008$  |
|--------------------|--------------------|---------------------|---------------------|---------------------|
|                    | MNESG_IE (default) | $0.9970 \pm 0.0024$ | $0.9262 \pm 0.0631$ | $0.8895 \pm 0.0890$ |
|                    | MNESG_IE           | 1±0                 | 1±0                 | 1±0                 |
|                    | CNN+SMOTE          | 0.9993±0.0006       | 0.9414±0.0541       | 0.9993±0.0006       |
|                    | CNN+AE+GAN         | $0.9050\pm0.0102$   | $0.8532 \pm 0.1380$ | 0.8935±0.1210       |
|                    | BED                | 1±0                 | 1±0                 | 1±0                 |
| Dandlid imamala d  | RVGAN-TL           | 1±0                 | 1±0                 | 1±0                 |
| Rootkit_imapvsback | EAL-GAN            | $0.9538 \pm 0.0092$ | $0.9190 \pm 0.0174$ | $0.9298 \pm 0.0161$ |
|                    | DLE-ISMOTE         | $0.9375 \pm 0.0625$ | $0.9286 \pm 0.0714$ | $0.9330 \pm 0.0670$ |
|                    | MNESG_IE (default) | $0.9550 \pm 0.0622$ | $0.9492 \pm 0.0705$ | $0.9521 \pm 0.0664$ |
|                    | MNESG_IE           | $0.9998 \pm 0.0001$ | $0.9778 \pm 0.0497$ | $0.9998 \pm 0.0001$ |

It can be seen the performance of MNESG\_IE is superior to the other DL based imbalanced classification methods on all criteria. In addition, MNESG\_IE with default parameters can outperform most of the compared DL based imbalanced classification methods. For example, when considering F-M and G-M, MNESG\_IE (default) improves 7.47% and 4.22% on the Ecoli1 dataset compared to the best performance obtained by the comparison algorithms, respectively. MNESG\_IE improves the performance on AUC, F-M, and G-M by 5.47%, 22.09%, and 11.73%, respectively, which indicates that the MNESG\_IE algorithm is competitive.

#### 3. Time complexity analysis

The computational complexity of MNESG\_IE consists of the following four components. (1) The Q sample subsets are divided based on the random undersampling method. (2) The initialization of P, U, and V in the MNESG algorithm is performed by the MNSEP and FCM algorithms. (3) Iterative updating of P, U, and V is conducted by the MNESG algorithm. (4) 2D sparse fusion is performed based on the prediction results.

The computational complexity of the first part is related to the number of sample subsets O. The second part of initializing Pby MNSEP involves manifold distance calculation and eigendecomposition, so the complexity is  $O(N_{min}^3)$ . The complexity of FCM algorithm to initialize and V, the complexity is  $O(N_{min}C^2dt)$ , where  $N_{min}$  is the number of minority class samples, is the number of cluster centers, d is the sample dimension, and t is the number of iterations in the FCM algorithm. In the third part, the complexities of updating  ${\it P}$  ,  ${\it U}$  , and  ${\it V}$  are  $O\left(N_{\scriptscriptstyle min}^2\right)$  ,  $O(N_{min}Cd)$ , and  $O(C^2d)$ , respectively. The computational complexity of the fourth part of the 2D-SFM is related to the number of sample subsets Q and the number of test samples  $N_t$ , which can be expressed as  $O(QN_t)$ . Assuming that the number of iterations is T, the total computational complexity of the proposed MNESG IE algorithm be can expressed as  $Q + Q \cdot \left(O\left(N_{min}^{3}\right) + O\left(N_{min}C^{2}dt\right) + T \cdot \left(O\left(N_{min}^{2}\right) + O\left(N_{min}Cd\right) + O\left(C^{2}d\right)\right)\right) + O\left(QN_{t}\right) \quad . \quad \text{It is worth}$ mentioning that in the case of relatively high imbalance ratio,  $N_{min}$  is much smaller than the number

of total samples, so the increased time cost is not significant and relatively close compared to the classical imbalanced ensemble methods. The specific compared results of the running time between the proposed MNESG\_IE and the state-of-the-art algorithms are shown in Table 11.

Table 11. The time cost comparison between EASE, SPE, HUE, ECUBoost and MNESG\_IE

| ID | EASE (s) | SPE (s) | HUE (s) | ECUBoost (s) | MNESG_IE (s) |
|----|----------|---------|---------|--------------|--------------|
| 1  | 0.3383   | 0.1446  | 0.2756  | 1.1255       | 6.3436       |
| 2  | 0.1966   | 0.1465  | 0.1316  | 1.4987       | 14.6192      |
| 3  | 0.2413   | 0.1994  | 0.1915  | 1.7194       | 37.8634      |
| 4  | 0.0929   | 0.0578  | 0.0548  | 1.0686       | 1.0621       |
| 5  | 0.3690   | 0.2565  | 0.6038  | 2.6864       | 58.8042      |
| 6  | 0.1409   | 0.1226  | 0.1431  | 1.1678       | 3.6503       |
| 7  | 0.2542   | 0.2293  | 0.4158  | 2.0981       | 28.6764      |
| 8  | 0.3655   | 0.2473  | 0.5224  | 1.9837       | 58.4714      |
| 9  | 0.0977   | 0.0987  | 0.0937  | 1.2348       | 2.3798       |
| 10 | 0.2536   | 0.1705  | 0.2929  | 1.7264       | 25.4692      |
| 11 | 0.1176   | 0.0847  | 0.1505  | 1.2563       | 3.9906       |
| 12 | 0.1189   | 0.0817  | 0.1612  | 1.2865       | 2.1714       |
| 13 | 0.1017   | 0.0767  | 0.1409  | 1.1774       | 1.6414       |
| 14 | 0.2227   | 0.1457  | 0.3785  | 2.0747       | 9.6333       |
| 15 | 0.1027   | 0.0907  | 0.1715  | 1.1882       | 1.5926       |
| 16 | 0.1317   | 0.0917  | 0.1635  | 1.4541       | 2.0436       |
| 17 | 0.1236   | 0.1216  | 0.1795  | 1.2366       | 2.4931       |
| 18 | 0.1207   | 0.0768  | 0.1935  | 1.1289       | 1.2314       |
| 19 | 0.1605   | 0.0738  | 0.2493  | 1.2199       | 1.1017       |
| 20 | 0.1238   | 0.0867  | 0.2652  | 1.1741       | 1.6201       |
| 21 | 0.0897   | 0.0817  | 0.2344  | 1.0877       | 0.9547       |
| 22 | 0.1498   | 0.0787  | 0.2433  | 1.1359       | 0.9520       |
| 23 | 0.2054   | 0.0957  | 0.3241  | 1.3310       | 2.4676       |
| 24 | 0.1011   | 0.0588  | 0.2632  | 1.0033       | 0.9593       |
| 25 | 0.0887   | 0.0877  | 0.3630  | 1.1617       | 0.7127       |
| 26 | 0.1253   | 0.0897  | 0.5096  | 1.3894       | 1.0945       |
| 27 | 0.1667   | 0.1370  | 0.6711  | 2.0650       | 2.4580       |
| 28 | 0.2253   | 0.1220  | 0.8973  | 1.8235       | 5.9541       |
| 29 | 0.1635   | 0.1028  | 0.5877  | 1.5818       | 1.6469       |
| 30 | 0.2962   | 0.1119  | 0.5597  | 1.7273       | 1.8731       |
| 31 | 0.1428   | 0.1167  | 0.5789  | 2.2304       | 1.5674       |
| 32 | 0.1326   | 0.0907  | 1.1943  | 1.3666       | 1.4893       |
| 33 | 0.1256   | 0.0887  | 1.1906  | 1.5584       | 1.4865       |
| 34 | 0.1593   | 0.1008  | 0.2924  | 1.6109       | 0.9908       |
| 35 | 0.2664   | 0.1207  | 1.2852  | 2.8180       | 2.5935       |
| 36 | 0.1534   | 0.1052  | 1.1983  | 2.4106       | 2.1295       |
| 37 | 0.1466   | 0.1087  | 0.3134  | 2.2223       | 1.0250       |
| 38 | 0.2048   | 0.1256  | 2.1970  | 2.4046       | 1.8002       |

Based on the analysis above, although there is no significant improvement in the computational complexity of the model for the proposed algorithm, the results in Table 6 show that the proposed algorithm has the best classification performance compared to the state-of-the-art algorithms. Therefore, in summary, the proposed algorithm is still highly competitive.