Regression Trees

Regression Trees

- ➤ The tree will search for all combination of predictors and cutoff value to decide the best split
- In Regression tree, the best split is the split that minimizes

$$\underbrace{\sum_{i: \mathbf{x}_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2}_{\text{RSS of obs. in left-branch}} + \underbrace{\sum_{i: \mathbf{x}_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2}_{\text{RSS of-obs. in right-branch}}$$

 $\blacktriangleright \ \hat{y}_{R_1}$ and \hat{y}_{R_2} are the means of the responses falling in to the left branch and right branch, respectively.

Example

(0	YTYVOU	
٠.	/	

			4/
	X_1	X_2	Y
	1_	0	1.2
B	2	1	2.1
	3	2	1.5
0	4	1	3.0
=	2	2	2.0
	1,	1	1.6

Using the RSS to decide the best split among

- ▶ Split 1: Region 1 X_1 < 4, Region 2 X_1 ≥ 4
- lacksquare Split 2: Region 1 $X_2 < 2$, Region 2 $X_2 \ge 2$

		₩.
X_{1}	X_2	Y
1	0	1.2
2	1	2.1
3	2	1.5
4	1	3.0
2	2	2.0
1	1	1.6

$$\frac{1}{\sqrt{1}} = \frac{1.2 + 2.1 + 1.5 + 2.0 + 1.6}{5} = 1.60$$

$$\varrho_{SS_1} = (1.2 - \overline{4}_1)^2 + (2.1 - \overline{4}_1)^3 + (1.5 - \overline{4}_1)^2$$

$$+ (7.0 - \overline{4}_1)^2 + (1.4 - \overline{4}_1)^3$$

$$= \frac{1.548}{1.548}$$

$$x_{2} \in 2$$
 $x_{2} \neq 2$
 $y_{3} = 1.5$
 $y_{1} = 2.0$
 $y_{2} = 1.5$
 $y_{3} = 1.5$
 $y_{4} = 2.0$

Split 2

 $=12 = \frac{1.5 + 7.0}{7}$ 7, = 1.975 = 1.75 155, = (1.5-1.75)2+(7-1.75) = 0.125

$$RSS_{1} = \overline{Z} (H_{1} - H_{1})^{2} = 1.8075$$

$$RSS_{2} = \frac{1.95}{(1.5 - 1.95)^{2}} + (7 - 1.75)$$

$$= 0.125$$

$$= 1.93.25 7 KSS of SIGH 1 = 7 [SIGH 1 is Lake.]$$

clossification: Mis dessitiation, ROC, Sensitivity....

Prodel

Evaluation

Regression:

Ress =
$$\mathbb{Z}(4i - 4i)^2$$

True producted value value

 $\frac{1}{4i} = \frac{1}{4i}$
 $\frac{1}{4i} = \frac{1}{4i}$

$$R^2 = 1 - \frac{855}{1040(85)} = 1 - \frac{2(4i - 4i)^2}{2(4i - 4)}$$

$$\mathcal{F} = 1 \iff RSS = 0$$

(1)
$$R^2 = 0$$
 (2) $RSS = TSS$

$$2^{2} < 0 \qquad (?)$$

$$\otimes$$
 In volidation: $p^2 < 0$

classify 0 1 : 2%
$$prodict 1 \rightarrow 0$$

$$prodict 1 \rightarrow 0$$

$$p^2 = -100$$