Numerical Linear Algebra: An Introduction - Notes

Enki A. Barra Melendrez

0.2 Error, Stability and Conditioning

Definition 0.2.1: Floating point number

B-adic, normalized floating point number of precision m is either x = 0 or:

$$x = B^e \sum_{k=-m}^{-1} x_k B^{-k}, \ x_{-1} \neq 0, \ x_k \in \{0, 1, \dots, B-1\}$$

Where:

- $B \ge 2$ is the base of the number system.
- $e_{min} \le e \le e_{max}$ is the exponent.
- $\sum_{k=-m}^{-1} x_k B^{-k}$ is the mantissa.

Many programming languages use the IEEE 754 standard for floating point arithmetic. In this standard, for a double precision number, the base is B=2, the mantissa has m=52 bits and the exponent has 11 bits.

Two additional numbers are added to the set of floating point numbers: $\pm \infty$ and NaN (Not a Number) which is used to represent undefined or unrepresentable values.

Definition 0.2.2: Machine epsilon

he machine epsilon eps is the smallest positive number which satisfies:

$$|x - rd(x)| < eps|x|$$

Where rd(x) is the floating point representation of x.

Usually this rounding function is taken to be the nearest machine number. A B-system with precision m the associated the machine epsilon is given by:

Theorem 0.2.1: Floating point machine epsilon

or a floating point number system with base B and precision m, the machine epsilon is given by: The machine epsilon is given by $eps = B^{1-m}$, i.e we have:

$$|x - rd(x)| \le B^{1-m}|x|$$

Theorem 0.2.2: Floating point ope

et \star be one of the operations $+, -, \times, /$ and let \circledast be the equivalent floating point operation, then $\forall x, y$ in the floating point system, there exists an ϵ such that:

$$x \star y = (x \circledast y)(1 + \epsilon).$$

Definition 0.2.3: Compatibility of matrix norms

iven the norms $\|\cdot\|_{(n)}$ and $\|\cdot\|_{(m)}$ on \mathbb{R}^n and \mathbb{R}^m respectively, we say that a matrix norm $\|\cdot\|_{\star}$ is **compatible** with these norms if:

$$||Ax||_{(m)} \le ||A||_{\star} ||x||_{(n)}, \quad \forall x \in \mathbb{R}^n.$$

Matrix-vector multiplication arises naturally when solving linear systems of equations. Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, $x, b \in \mathbb{R}^{n}$. Let us consider the situation

$$b = \mathbf{A}x,$$
$$\delta b = \mathbf{A}\delta x$$

If the matrix $\mathbf{A}: \mathbb{R}^n \to \mathbb{R}^n$ is non-singular, then $||x||_{\star} := ||\mathbf{A}x||$ is a norm on \mathbb{R}^n . From the fact that all norms in \mathbb{R}^n are equivalent follows that there exists two constants C_1 and C_2 such that:

$$C_1 ||x|| \le ||\mathbf{A}x|| \le C_2 ||x|| \implies \frac{||\delta b||}{||b||} \le \frac{C_2}{C_1} \frac{||\delta x||}{||x||}.$$