EXAMEN PROBABILITÉS - 1SN

15 Novembre 2018 (14h-15h45)

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1 (7 points)

1. On considère une variable aléatoire continue X définie sur l'intervalle $]0,T[\ (T>0)$ de densité

$$p(x) = \begin{cases} Ke^{-ax} \text{ si } x \in]0, T[\\ 0 \text{ sinon} \end{cases}$$
 (1)

où K > 0 est une constante dépendant de a > 0.

- Déterminer la valeur de K pour que p soit une densité de probabilité (on ne remplacera pas K par son expression dans ce qui suit).
- Montrer que la loi de la variable aléatoire

$$Y = \frac{KT}{a} \left[1 - \exp(-aX) \right]. \tag{2}$$

est une loi uniforme sur un intervalle Ãă préciser.

2. De manière plus générale, on considère une variable aléatoire continue X définie sur l'intervalle $]0,T[\ (T>0)$ de densité p(x) et de fonction de répartition strictement croissante. On considère la variable aléatoire Y définie par

$$Y = T \int_0^X p(u)du. \tag{3}$$

- Montrer que dans le cas où X possède la loi définie par (1), la variable aléatoire Y définie dans (3) admet l'expression (2) (ce qui montre que cette question généralise la précédente).
- Déterminer la fonction de répartition de la variable aléatoire Y et en déduire que Y suit la loi uniforme sur l'intervalle]0, T[.

Exercice 2: Changement de variables (9 points)

On considère deux variables aléatoires indépendantes X et Y de lois exponentielles de paramètre 1 (notées $X \sim \mathcal{E}(1)$ et $Y \sim \mathcal{E}(1)$) définies par

$$p(x,.) = \left\{ \begin{array}{ll} e^{-x} \text{ si } x > 0 \\ 0 \text{ sinon} \end{array} \right. \quad \text{et} \quad p(.,y) = \left\{ \begin{array}{ll} e^{-y} \text{ si } y > 0 \\ 0 \text{ sinon.} \end{array} \right.$$

On remarquera que la loi exponentielle est un cas particulier de loi gamma dont les paramètres sont précisés dans les tables de lois.

- Déterminer la loi du couple (Z,T) lorsque Z = X + Y et T = X Y en prenant soin (comme d'habitude) de déterminer le domaine de définition de ce couple. En déduire les lois marginales de Z et T, leurs moyennes E[Z] et E[T] et leurs variances Var(X) et Var(Y).
- 2. Déterminer la covariance du couple (Z, T).
- 3. Déterminer la fonction caractéristique de Z. En utilisant les tables, retrouver la loi de Z déterminée Ãă la première question.

Exercice 3: Médiane (5 points)

On considère une variable aléatoire réelle X de fonction de répartition notée F continue et strictement croissante et on appelle médiane de X le nombre m tel que F(m)=1/2.

1. Déterminer la fonction de répartition d'une loi exponentielle de paramètre a notée $\mathcal{E}(a)$ de densité

$$p(x) = \begin{cases} ae^{-ax} \text{ si } x > 0\\ 0 \text{ sinon} \end{cases}$$

En déduire la médiane de la loi exponentielle $\mathcal{E}(a)$.

2. On considère une suite de variables aléatoires indépendantes $X_1,...,X_n$ de m \tilde{A} lme loi exponentielle $\mathcal{E}(a)$ et on définit la suite de variables aléatoires $Y_1,...,Y_n$ de la manière suivante

$$Y_i = 1 \text{ si } X_i > m$$

 $Y_i = 0 \text{ sinon}$

où m est la médiane de la loi exponentielle $\mathcal{E}(a)$.

- Déterminer la loi de Yi, sa moyenne et sa variance
- En déduire la loi de $S_n = \sum_{i=1}^n Y_i$.
- En utilisant le théorème de la limite centrale, montrer que la loi de S_n peut s'approcher pour n grand par une loi normale dont on précisera les paramètres.

LOIS DE PROBABILITÉ DISCRÈTES

m: moyenne

 σ^2 : variance **F. C.:** fonction caractéristique

 $p_k = P\left[X = k\right]$

 $p_{1,...,m} = P[X_1 = k_1, ..., X_m = k_m]$

LOI	Probabilités	m	σ^2	F. C.
Uniforme	$p_k = \frac{1}{n}$ $k \in \{1,, n\}$	<u>n+1</u>	$\frac{n^2-1}{12}$	$\frac{e^{it}\left(1-e^{itn}\right)}{n\left(1-e^{it}\right)}$
Bernoulli	$p_1 = P[X = 1] = p$ $p_0 = P[X = 0] = q$ $p \in [0, 1]$ $q = 1 - p$	p	pq	$pe^{it} + q$
Binomiale $B(n,p)$	$p_k = C_n^k p^k q^{n-k}$ $p \in [0,1] q = 1 - p$ $k \in \{0, 1,, n\}$	np	npq	$\left(pe^{it}+q\right)^n$
Binomiale négative	$p_k = C_{n+k-1}^{n-1} p^n q^k$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}$	$n\frac{q}{p}$	$nrac{q}{p^2}$	$\left(\frac{p}{1-qe^{it}}\right)^n$
Multinomiale	$p_{1,\dots,m} = \frac{n!}{k_1!\dots k_m!} p_1^{k_1} \dots p_m^{k_m}$ $p_j \in [0,1] q_j = 1 - p_j$ $k_j \in \{0,1,\dots,n\}$ $\sum_{j=1}^m k_j = n \sum_{j=1}^m p_j = 1$	np_j	Variance : np_jq_j Covariance : $-np_jp_k$	$\left(\sum_{j=1}^{m} p_j e^{it}\right)^n$
Poisson $P(\lambda)$	$\sum_{j=1}^{m} k_j = n \sum_{j=1}^{m} p_j = 1$ $p_k = e^{-\lambda} \frac{\lambda^k}{k!}$ $\lambda > 0 k \in \mathbb{N}$	λ	λ	$\exp\left[\lambda\left(e^{it}-1\right)\right]$
Géométrique	$p_k = pq^{k-1}$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}^*$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^{it}}{1 - qe^{it}}$

LOIS DE PROBABILITÉ CONTINUES σ^2 : variance F. C.: fonction caractéristique

LOI	Densité de probabilité	m	σ^2	F. C.
Uniforme	$f(x) = \frac{1}{b-a}$ $x \in]a, b[$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
Gamma $\Gamma\left(heta, u ight)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\theta x} x^{\nu - 1}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ avec $\Gamma(n + 1) = n! \ \forall n \in \mathbb{N}$	$\frac{\nu}{\theta}$	$\frac{\nu}{\theta^2}$	$\frac{1}{\left(1-i\frac{t}{\theta}\right)^{\nu}}$
Inverse gamma $\mathrm{IG}(heta, u)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\frac{\theta}{x}} \frac{1}{x^{\nu+1}}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\text{avec } \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{\theta}{\nu-1}$ si $\nu > 1$	$\frac{\theta^2}{(\nu-1)^2(\nu-2)} \text{ si } \nu > 2$	
Première loi de Laplace	$f\left(x\right) = \frac{1}{2}e^{- x }$	mont or que la	2 at 3 aparts	$\frac{1}{1+t^2}$
Normale $\mathcal{N}\left(m,\sigma^2 ight)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}$	m	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. $e^{imt-rac{\sigma^2t^2}{2}}$
Khi $_2$ $\chi^2_ u$ $\Gamma\left(rac{1}{2},rac{ u}{2} ight)$	$f(x) = ke^{-\frac{x}{2}}x^{\frac{\nu}{2}-1}$ $k = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}$ $\nu \in \mathbb{N}^*, \ x \ge 0$	$I = \{a_{\nu}, \dots, 1, \dots, 1$	$\frac{1}{12} = \frac{1}{12} = \frac{1}{2} \nu$	$\frac{1}{(1-2it)^{\frac{1}{2}}}$
Cauchy $c_{\lambda,lpha}$	$f(x) = \frac{1}{\pi\lambda \left(1 + \left(\frac{x-\alpha}{\lambda}\right)^2\right)}$ $\lambda > 0, \ \alpha \in \mathbb{R}$	(-)	(-)	$e^{i\alpha t - \lambda t }$
Beta $B(a,b)$	$f(x) = kx^{a-1} (1-x)^{b-1}$ $k = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$ $a > 0, b > 0$ $x \in]0,1[$ $avec \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$	(*)