Homework-4

Question 1

The Adam method uses a recursive method for computing running averages:

$$\overline{X}_0 = 0$$
, $\overline{X}_t = \beta \overline{X}_{t-1} + (1-\beta)X_t$, $\hat{X}_t = \frac{\overline{X}_t}{1-\beta^t}$

- **1.** Show that if $\beta = 0$ then $\hat{X}_t = X_t$ for all t.
- **2.** Show that if $\beta \to 1$ then $\hat{X}_t \to \frac{1}{t} \sum_{i=1}^t X_i$ for all t.

Hint: Use the explicit formula for $\overline{X_t}$, form the limit, and solve it using, for example, L'Hopital's rule.

Question 2

The Adam technique for accelerating back propagation was specified in terms of the following parameters: λ , α , ϵ , β_1 , β_2 . The standard back propagation algorithm was specified in terms of the learning-rate parameter ϵ . Show how to select the parameters of Adam so that the result is as close approximation to standard back propagation as possible.

Question 3

Consider the following techniques that may be used in a feed-forward neural network training/testing model.

- **A.** l_2 regularization with the regularization parameter λ .
- **B.** Dropouts controlled by the drop-probability parameter p.
- C. Number of nodes in a layer.
- **D.** Number of layers.
- E. Stochastic steepest descent optimizer with the learning rate parameter ϵ .
- **F.** Adam optimizer with the parameters α , ϵ , β_1 , β_2 .

You are asked to determine how these techniques affect the training and the quality of the learned model. In all cases your answer should be based on the theory and **not** on results you may have observed in your experiments. In each case your selection should be **the most appropriate** among the given choices.

- 1. The running time of a single training iteration (one random batch).
 - ${\bf A1.}$ Using l_2 regularization would: increase / descrease / no-effect / impossible-to-tell .
 - **A2.** Increasing λ would: increase / descrease / no-effect / impossible-to-tell .
 - **B1.** Using dropouts would: increase / descrease / no-effect / impossible-to-tell .
 - **B2.** Increasing p would: increase / descrease / no-effect / impossible-to-tell.
 - ${f C.}$ Increasing number of layer nodes would: increase / descrease / no-effect / impossible-to-tell .
 - D. Increasing number of layers would: increase / descrease / no-effect / impossible-to-tell .
 - **E.** Increasing ϵ would: increase / descrease / no-effect / impossible-to-tell.
 - **F.** Increasing α would: increase / descrease / no-effect / impossible-to-tell.
- 2. The running time of the learned model on a single testing example.

- **A1.** Using l_2 regularization would: increase / descrease / no-effect / impossible-to-tell.
- **A2.** Increasing λ would: increase / descrease / no-effect / impossible-to-tell.
- B1. Using dropouts would: increase / descrease / no-effect / impossible-to-tell .
- **B2.** Increasing p would: increase / descrease / no-effect / impossible-to-tell.
- C. Increasing number of layer nodes would: increase / descrease / no-effect / impossible-to-tell .
- **D.** Increasing number of layers would: increase / descrease / no-effect / impossible-to-tell.
- **E.** Increasing ϵ would: increase / descrease / no-effect / impossible-to-tell .
- **F.** Increasing α would: increase / descrease / no-effect / impossible-to-tell.

3. The accuracy of the learned model on the training data.

- A1. Using l_2 regularization would: increase / descrease / no-effect / impossible-to-tell.
- **A2.** Increasing λ would: increase / descrease / no-effect / impossible-to-tell.
- **B1.** Using dropouts would: increase / descrease / no-effect / impossible-to-tell .
- **B2.** Increasing p would: increase / descrease / no-effect / impossible-to-tell .
- C. Increasing number of layer nodes would: increase / descrease / no-effect / impossible-to-tell .
- D. Increasing number of layers would: increase / descrease / no-effect / impossible-to-tell .
- **E.** Increasing ϵ would: increase / descrease / no-effect / impossible-to-tell.
- **F.** Increasing α would: increase / descrease / no-effect / impossible-to-tell.

4. Speed of convergence on the training data.

- ${\bf A1.}$ Using l_2 regularization would: increase / descrease / no-effect / impossible-to-tell .
- **A2.** Increasing λ would: increase / descrease / no-effect / impossible-to-tell.
- **B1.** Using dropouts would: increase / descrease / no-effect / impossible-to-tell.
- **B2.** Increasing p would: increase / descrease / no-effect / impossible-to-tell.
- C. Increasing number of layer nodes would: increase / descrease / no-effect / impossible-to-tell.
- **D.** Increasing number of layers would: increase / descrease / no-effect / impossible-to-tell.
- **E.** Increasing ϵ would: increase / descrease / no-effect / impossible-to-tell.
- **F.** Increasing α would: increase / descrease / no-effect / impossible-to-tell.

5. The accuracy of the learned model on testing data.

- **A1.** Using l_2 regularization would: increase / descrease / no-effect / impossible-to-tell.
- **A2.** Increasing λ would: increase / descrease / no-effect / impossible-to-tell.
- B1. Using dropouts would: increase / descrease / no-effect / impossible-to-tell .
- **B2.** Increasing p would: increase / descrease / no-effect / impossible-to-tell .
- C. Increasing number of layer nodes would: increase / descrease / no-effect / impossible-to-tell.
- **D.** Increasing number of layers would: increase / descrease / no-effect / impossible-to-tell.
- **E.** Increasing ϵ would: increase / descrease / no-effect / impossible-to-tell.
- **F.** Increasing α would: increase / descrease / no-effect / impossible-to-tell.