16.8 The hypotheses

$$H_0: \tilde{\mu}=20$$

$$H_1: \tilde{\mu} > 20.$$

$$\alpha = 0.05$$
.

Critical region: $w \le 11$ for n = 10.

Computations:

d_{i}	-3	12	5	-5	8	5	-8	15	6	4
Rank	1	9	4	4	7.5	4	7.5	10	6	2

Therefore, $w_{=}12.5$.

Decision: Do not reject H_0 .

16.20 The hypotheses

$$H_0: \tilde{\mu}_1 = \tilde{\mu}_2$$

$$H_1: \tilde{\mu}_1 \neq \tilde{\mu}_2.$$

 $\alpha = 0.05$.

Critical region: Z < -1.96 or z > 1.96.

Computations:

Observation	12.7	13.2	13.6	13.6	14.1	14.1	14.5	14.8	15.0	15.0	15.4
Rank	1*	2	3.5*	3.5	5.5*	5.5	7	8	9.5*	9.5	11.5*
Observation	15.4	15.6	15.9	15.9	16.3	16.3	16.3	16.3	16.5	16.8	17.2
Rank	11.5	13*	14.5*	14.5	17.5*	17.5*	17.5	17.5	20	21*	22
Observation	17.4	17.7	17.7	18.1	18.1	18.3	18.6	18.6	18.6	19.1	20.0
Rank	23	24.5	24.5*	26.5*	26.5	28	30	30*	30	32	33

Now $w_1 = 181.5$ and $u_1 = 181.5 - (12)(13)/2 = 103.5$. Then with $\mu_{U_1} = (21)(12)/2 = 126$ and $\sigma_{U_1} = \sqrt{(21)(12)(34)/12} = 26.721$, we find z = (103.5 - 126)/26.721 = -0.84. Decision: Do not reject H_0 .

10.23 Test $H_0: M_1 = M_2 \text{ vs } H_A: M_1 < M_2.$

In the joint sample (already ordered),

$$\underline{89},\underline{99},109,\underline{119},\underline{139},159,179,\underline{189},\underline{199},209,219,\underline{229},259,279,299,309,$$

the prices of textbooks during Eric's freshman year are <u>underlined</u>. Their ranks in the joint sample are

$$R_i = 1, 2, 4, 5, 8, 9$$
, and 12,

and the sum of these ranks is the Mann-Whitney-Wilcoxon test statistic,

$$U_{\text{obs}} = \sum_{i} R_i = \underline{41}.$$

From Table A9 with $n_1 = 7$ and $n_2 = 9$, the p-value is

$$P = P\{U \le 38\} \in (0.025, 0.05).$$

This case is marginal. For all $\alpha \geq 0.05$, there is a significant evidence that during the freshman year, the median price of textbooks was lower, so the median cost of textbooks is rising. However, for any $\alpha \leq 0.025$, this evidence is not significant.