Heurísticas em Algoritmos de Busca para o Quebra-Cabeça de 8 Peças: Uma Avaliação Experimental

Bruno Braga Guimarães Alves PUC Minas Belo Horizonte

> Victor Monteiro PUC Minas Belo Horizonte

1. Introdução

Este trabalho explora heurísticas em algoritmos de busca para resolver o Quebra-Cabeça de 8 Peças. A implementação utiliza a classe Puzzle com heurísticas como Distância de Manhattan, Zero e Euclidiana, integradas ao algoritmo A*. Além disso, estratégias de busca em profundidade (DFS) e busca em largura (BFS) são comparadas. O estudo visa avaliar o desempenho dessas abordagens por meio de métricas de espaço e tempo, fornecendo uma percepção sobre o impacto das heurísticas na eficácia dos algoritmos de busca.

2. Algoritmos Escolhidos

Na busca por soluções eficientes para o Quebra-Cabeca de 8 Pecas. selecionados diferentes algoritmos, sendo o destaque principal o algoritmo A* (A-star). Este algoritmo é uma escolha freguente devido à sua capacidade de combinar efetivamente a busca de custo uniforme com heurísticas informadas, proporcionando uma busca informada e eficiente no espaço de estados. A* (A-star): O algoritmo A* é uma técnica de busca que utiliza uma função de avaliação composta pela soma do custo do caminho percorrido até o estado atual (custo g) e uma heurística que estima o custo do caminho do estado atual ao estado objetivo (h). A função de avaliação é dada por f(n) = g(n) + h(n). Isso permite ao A* priorizar estados que têm menor custo total esperado,

tornando-o especialmente adequado para problemas de otimização.

2.1. Heurísticas Aplicadas ao A*

Distância de Manhattan: Esta heurística mede a distância entre as posições atual e objetivo de cada peça no Quebra-Cabeça, calculando a soma das distâncias horizontais e verticais. É uma heurística eficaz para avaliar a proximidade de um estado ao objetivo.

Heurística Euclidiana: A heurística Euclidiana calcula a distância euclidiana entre as posições atual e objetivo de cada peça. Essa abordagem leva em consideração tanto as distâncias horizontais quanto verticais, oferecendo uma perspectiva mais geométrica da proximidade ao estado objetivo.

Ao explorar o A* e suas heurísticas, este estudo visa analisar como diferentes métodos de avaliação de estados impactam o desempenho do algoritmo na resolução do Quebra-Cabeça de 8 Peças. A avaliação experimental se concentrará em medir o espaço e o tempo necessários para encontrar soluções ótimas, proporcionando uma visão aprofundada do comportamento do A* em diferentes cenários.

3. Desenvolvimento dos Algoritmos

Os algoritmos foram desenvolvidos utilizando a linguagem de programação Python, com destaque para a implementação do algoritmo A* e suas heurísticas no contexto do Quebra-Cabeça de 8 Peças. Abaixo está um resumo do desenvolvimento:

Classe Puzzle: A classe Puzzle foi criada para representar o estado do Quebra-Cabeça, armazenando informações como o estado atual, o pai, a ação que levou a esse estado, o custo do caminho percorrido até o estado atual e a necessidade de uma heurística. Métodos como generate_heuristic, goal_test, find_legal_actions, generate_child, e find_solution foram implementados para realizar operações específicas, como a geração de heurísticas, verificação de estado objetivo, geração de filhos válidos e encontrar a solução.

Algoritmo A* (A-star):* A função Astar_search foi desenvolvida para realizar a busca A* com base em uma heurística específica (por exemplo, Distância de Manhattan ou Heurística Euclidiana). O algoritmo utiliza uma fila de prioridade (implementada como uma PriorityQueue) para explorar os estados de forma informada, priorizando estados com menor custo total esperado.

Outras Estratégias de Busca: Além do A*, foram implementadas estratégias de busca em profundidade (depth first search), busca uniforme е busca em largura (breadth first search). Cada uma dessas estratégias utiliza abordagens distintas para explorar o espaço de estados em busca da Função Principal (Main): Foi desenvolvida para executar o programa. Ela solicita ao usuário a entrada do estado inicial do Quebra-Cabeça, inicializa a classe Puzzle com esse estado e, em seguida, realiza a busca Α* com diferentes heurísticas (Manhattan e Euclidiana). As métricas de e tempo são registradas apresentadas ao usuário para análise comparativa.

4. Testagem

Dado a implementação das buscas já citadas, aqui vão os resultados das buscas para 10 estados iniciais do Quebra Cabeça de 8 Peças:

4 5 6 1 2 3 0 7 8					
			Cust		
	Man	Eucl	0	Prof	
	hat	idia	Unif	undi	Larg
	tan	na	orme	dade	ura
Num					
Jogad	175				1585
as	4	1754	1754	9303	39
as	_	_	_	9303	

5	4	0					
6	1	2					
7	3	8					
					Cust		
			Man	Eucl	0	Prof	
			hat	idia	Unif	undi	Larg
			tan	na	orme	dade	ura
Nι	ım						
Jo	oga	ad	458			7599	3024
as	3		7	4587	4587	2	49
			0.0	0.12	0.06	0.64	2.54
T€	emp	00	945	38	25	63	3

4 0 1					
2 3 5					
7 8 6					
			Cust		
	Man	Eucl	0	Prof	
	hat	idia	Unif	undi	Larg
	tan	na	orme	dade	ura
Num					
Jogad	150			6527	7639
as	1	1501	1501	1	0
	0.0	0.06	0.03	0.75	0.58
Tempo	527	72	45	76	56

8	7	6					
0	2	5					
1	4	3					
					Cust		
			Man	Eucl	0	Prof	
			hat	idia	Unif	undi	Larg
			tan	na	orme	dade	ura
Νι	ım		tan	na	orme	dade	ura
'		ad	tan 156	na	orme	dade	ura 1546
'	oga	ad			orme 1567		
Jo	oga	ad	156 7	1567		8409	1546 64

7	6	5					
1	2	0					
3	4	8					
					Cust		
			Man	Eucl	0	Prof	
			hat	idia	Unif	undi	Larg
			tan	na	orme	dade	ura
Νυ	ım						
		ad	224	2242	2242	2724	4290
	ga	ad	224	2242	2242	2724	4290 11
Jo	ga	ad	24	4	4		11

0 8 4	1				
5 7 1	L				
2 3 6	5				
			Cust		
	Man	Eucl	0	Prof	
	hat	idia	Unif	undi	Larg
	tan	na	orme	dade	ura
Num	tan	na	orme	dade	ura
	tan d 187	na	orme		
			1878		ura 1914 58
Jogad	d 187	1878		1755 74	1914

4	5	1					
2	3	8					
7	6	0					
					Cust		
			Man	Eucl	0	Prof	
			hat	idia	Unif	undi	Larg
			tan	na	orme	dade	ura
Nι	ım						
Jo	oga	ad					8216
as	3		887	887	887	1723	0
			0.0	0.01	0.02	0.00	0.83
Te	emp	00	182	06	27	97	1

8 0 1					
7 4 3					
2 5 6					
			Cust		
	Man	Eucl	0	Prof	
	hat	idia	Unif	undi	Larg
	tan	na	orme	dade	ura
Num					
Jogad				4440	3392
as	536	536	536	6	8
	0.0	0.02	0.01	0.40	0.68
Tempo	189	14	57	05	05

1 0 8					
3 7 4					
6 5 2					
			Cust		
	Man	Eucl	0	Prof	
	hat	idia	Unif	undi	Larg
	tan	na	orme	dade	ura
Num					
Jogad	143			1824	7034
as	9	1439	1439	34	5
	0.0				
	859	0.03	0.01	1.24	0.64
Tempo	7	314	91	4	03

3	2	1					
0	8	7					
6	5	4					
					Cust		
			Man	Eucl	0	Prof	
			hat	idia	Unif	undi	Larg
			tan	na	orme	dade	ura
Nι	ım						
Jo	oga	ad	146			1421	7699
as	3		8	1468	1468	9	9
			0.0	0.03	0.02	0.47	0.77
T€	emp	00	290	56	03	42	26

Além disso, as estratégias de busca em profundidade e busca em largura revelaram limitações significativas para resolver o Quebra-Cabeça de 8 Peças, resultando em um número substancialmente maior de jogadas e tempos de execução mais longos em comparação com o algoritmo A*.

Portanto, com base resultados nos experimentais, é evidente que o algoritmo A*, especialmente guando combinado heurísticas eficazes, como a Distância de Manhattan. abordagem representa uma promissora e eficiente para resolver o Quebra-Cabeça de 8 Peças, proporcionando um equilíbrio entre otimização de recursos computacionais e busca por soluções ótimas.

5. Conclusão

A implementação do algoritmo A* com heurísticas como Distância de Manhattan e Euclidiana demonstrou um desempenho superior em comparação com outras estratégias, como busca em profundidade (DFS) e busca em largura (BFS).

Observamos que o algoritmo A* se destaca devido à sua capacidade de combinar busca informada e eficiente no espaço de estados. priorizando estados com menor custo total esperado. As heurísticas utilizadas. desempenharam um papel fundamental na desempenho melhoria do do Α*, proporcionando uma avaliação mais precisa da proximidade ao estado objetivo.

Os resultados obtidos demonstram que, em termos de número de jogadas e tempo de execução, o algoritmo A* com heurística de Distância de Manhattan tende a encontrar soluções ótimas de forma mais eficiente em comparação com a Heurística Euclidiana em alguns casos específicos. Contudo, a Heurística Euclidiana mostrou-se vantajosa em outros cenários, evidenciando a importância de selecionar a heurística mais adequada para um problema específico.

6. Código Desenvolvido

Codigo Desenvolvido