Classe préparatoire2

Examen Final S1. Durée 2h.

Documents et Calculatrice interdits.

Exercice1 (3 points)

On pose:
$$f(x,y) = \begin{cases} \frac{Log(1+x^2y^2)}{x^2+y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

- 1) Etudier la continuité de f sur D_f
- Etudier la différentiabilité de f sur D_f.

Exercice 2 (3,5 points)

En posant u=x, v=y-x, w=z-x; trouver toutes les fonctions $f\in C^1(\mathbb{R}^3)$ qui sont solutions de l'EDP suivante: $\frac{\delta f}{\delta x} + \frac{\delta f}{\delta y} + \frac{\delta f}{\delta z} = 0$.

Exercice 3 (8,5 points)

Soient f et g deux applications de $U = \mathbb{R}^2 - \{(0,0)\}$ dans \mathbb{R} telles que:

$$f(x,y) = \sqrt{x^2 + y^2} + y^2 - 1$$
 et $g(x,y) = x^2 + y^2 - 9$.

-) Vérifier que U est un ouvert de \mathbb{R}^2 et que $f \in C^{\infty}(U)$.
- (2) On pose: pour $(x,y) \in U$, $h(x,y) = f(x,y) \frac{7}{6}g(x,y)$.

Frouver les points critiques de h sur U puis étudier leur nature.

- χ 3) On pose $\Gamma = \{(x,y) \in \mathbb{R}^2 / g(x,y) = 0\}$. En utilisant la méthode des multiplicateurs de Lagrange, montrer qu'il existe 4 points où $f_{|\Gamma}$ peut présenter des extréma (ne pas faire le test).
 - \mathcal{A}) Donner la valeur maximale et la valeur minimale de $f_{|\Gamma}$.
- On pouvait déduire, de la question 2, deux des extréma de $f_{|\Gamma}$. Expliquez comment.
 - Trouver les extréma de h en tant que fonction définie sur \mathbb{R}^2 .

Exercice 4 (5 points)

Pour
$$a > 0$$
, On pose: $F_a = [0, a] \times [0, a]$.

Pour
$$a > 0$$
, On pose: $F_a = [0, a] \times [0, a]$.

$$D_a = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le a^2, x \ge 0 \text{ et } y \ge 0\}.$$

- №1) Dans le même repère représenter D_a et F_a .
- 2) En utilisant les coordonnées polaires, calculer $\iint e^{-x^2-y^2} dx dy$.

3) Montrer que
$$\iint_{F_a} e^{-x^2-y^2} dx dy = \left(\int_0^a e^{-t^2} dt\right)^2$$
. (On ne demande pas le calcul de $\int_0^a e^{-t^2} dt$).

4) Montrer que
$$\iint_{D_a} e^{-x^2-y^2} dx dy \le \iint_{F_a} e^{-x^2-y^2} dx dy \le \iint_{D_{2a}} e^{-x^2-y^2} dx dy$$
.

On pose
$$\lim_{a\to +\infty}\int\limits_0^a e^{-t^2}dt=l\in\mathbb{R}.$$
 Déduire de ce qui précède que $l=\frac{\sqrt{\pi}}{2}.$