The Fast Food Phenomenon:

Assessing Variations in Fast Food Consumption from 1996-2008

Sajan Patel and Max Tjen

Background

- Fast Food: food ordered and paid by customer before receiving the food
- Fast food gaining popularity with accessibility, affordability and advertising
- From NHANES 2013-2016, 36.6% of adults consume fast food in a given day
 - Most frequent users: Age 20-39 years, non-Hispanic Blacks
- Short-term and long-term health effects due to high consumption
 - Short-term: Spikes in blood sugar, blood pressure, and inflammation
 - o Long-term: Increased risk of obesity, insulin resistance, and type 2 diabetes

Rationale

- Adult males consume fast food more often than females
- Gap in literature with respect to patterns of fast food consumption by gender longitudinally
- Understand adolescent behavior can predict future utilization of fast food
- Previous studies have only compare changes in fast food intake over time by gender, separately
- Other studies look at cross-sectional data, as opposed to longitudinal

Research Questions

Using the National Longitudinal Study of Adolescent to Adult Health data from 1996-2008, how have habits of eating fast food changed over time by gender? Are body weight and history of daily smoking associated with these demonstrated changes?

Data Source

- National Longitudinal Study of Adolescent to Adult Health (Add Health)
- Nationally representative sample of 20,000 adolescents in grades 7-12 first interviewed in the 1994-1995 academic year
- Captures information such as demographics, familial relationships, physical health, etc.
- 5 waves of data, most recently occurred in 2016-2018
- Waves II, III, and IV used in this analysis
 - Wave II: 1996
 - Wave III: 2001-2002
 - Wave IV: 2008

Study Population

- Individuals followed during waves II, III, and IV
- Must have at least one wave of information on all variables of interest —
 fast food consumption, gender, body weight, and history of daily smoking
 - Assume excluded individuals had data missing at random (MAR)
- 2377 unique individuals
 - Wave II: 1457 participants
 - Wave III: 1972 participants
 - Wave IV: 2082 participants
- Unbalanced study design

Variables of Interest

- Outcome: Number of times an individual has eaten fast food in the past 7 days
 - Treated as binary variable
 - Daily Consumption: ≥ 7 times in past 7 days
 - Non-Daily Consumption: < 7 times in past 7 days
- Key Predictor: Gender
 - Treated as binary variable
 - Male
 - Female
- Key Predictor: Wave
 - Treated as multi-categorical variable
 - Wave II
 - Wave III
 - Wave IV
- Predictor: Body weight
 - Treated as quantitative variable
- Predictor: Ever smoked at least one cigarette every day for 30 days
 - Treated as binary variable
 - Yes
 - No

Statistical Assumptions

- General linear mixed effects models (GLMM) in this study will use the logit link function to predict daily fast food consumption
- Assumptions:
 - Outcome assumed to follow a Bernoulli distribution
 - Random intercept models with random intercept assumed to be normally distributed
 - Random effects assumed to follow multivariate normal distribution
 - Mean of zero vector, (qXq)-covariance matrix that characterizes among-individual variance and correlation
 - Residuals assumed to observe normality and homoscedasticity

Analytic Approach

- Summary statistics of population
- Baseline logistic regression model
- General Linear Mixed Models (GLMM) to assess significance of interaction between time and gender
 - Main effects: wave and gender
 - Interaction: wave*gender
 - Likelihood Ratio Test to compare models
- General Linear Mixed Models (GLMM) to assess model improvement with weight and smoking history on training dataset
 - Winning model
 - Saturated wave, gender, weight, and smoking history
 - Likelihood Ratio Test to compare models
- GLMM Validation of best model on testing dataset

Results - Summary Statistics

	Wave II (n = 1457)	Wave III (n =1972)	Wave IV (n = 2082)				
Variables	N (col %)	N (col %)	N (col %)				
Gender							
Male	656 (45.0)	942 (47.8)	1018 (48.9)				
Female	801 (55.0)	1030 (52.2)	1064 (51.1)				
Fast Food Consumption							
Daily	74 (5.1)	184 (9.3)	160 (7.7)				
Non-Daily	1383 (94.9)	1788 (90.7)	1922 (92.3)				
History of Daily Smoking							
Yes	658 (45.2)	1315 (66.7)	1429 (68.6)				
No	799 (54.8)	657 (33.3)	653 (31.4)				
Median Weight (in pounds) [IQR]							
	140 [123, 168]	162 [139, 190]	180 [150, 211]				

Results - Summary Statistics

Results - Summary Statistics

Fast Food Consumption by Wave by Gender

Results - Logistic Regression

Term	Estimate	95% CI	p-value	
Wave III	1.721	(1.297, 2.305)	0.000	
Wave IV	1.331	(0.987, 1.809)	0.063	-
Male	1.759	(1.421, 2.184)	0.000	
Weight	1.002	(1.000, 1.004)	0.114	
SmokerHx	1.332	(1.071, 1.664)	0.011	
				0 0.5 1 1.5 2 2.5

Results - Train/Test Split

Unique Subjects: 2,377

TRAIN [70%]

Unique Subjects: 1,664 Observations: 3,849

TEST [30%]

Unique Subjects: 713 Observations: 1,662

Results - GLMM Interaction

Results - GLMM I

Results - GLMM II

Results - GLMM I v. II

```
Data: train data
Models:
glmm 1: food ~ wave + gender + (1 | id)
glmm 2: food ~ wave + gender + weight + smoke + (1 | id)
                 BIC logLik deviance Chisq Df Pr(>Chisq)
           AIC
      npar
         5 1888.8 1920.0 -939.38
                                  1878.8
glmm 1
glmm_2 7 1891.1 1934.9 -938.57 1877.1 1.6365 2 0.4412
```

Results - GLMM I Validation

Results - GLMM I Validation

	R ²	C Statistic
Train Data	0.526	0.976
Test Data	0.488	0.972

Discussion - Summary

- Add Health Dataverse (UNC)
- Fast food consumption patterns differ by time and gender
- Logistic regression model
- GLMM models
 - Interaction
 - Additional covariates
- Final model validation
 - \circ R² = 0.488
 - \circ C = 0.972

Discussion - Strengths

- Database strength
 - Captures lots of demographic and clinical information on adolescents
- Loss to follow-up mitigation
 - More subjects with each wave
 - Reduces bias
- Longitudinal data collection
 - Most fast food consumption data is cross-sectional
 - Trend over time

Discussion - Limitations

- Binary outcome
 - Count more exact results
 - Splitting by daily consumption ⇒ small amount are daily
 - Amount of available degrees of freedom
- Predictor selection
 - Weight ⇒ adolescents age
- Older data

Discussion - Future Work

- Random slope and intercept
 - Subject specific variation
- Predictor variables
 - Geography, race, socioeconomics ...
- Validation of results
 - Sensitivity analysis