Computational Finance and its implementation in Python with applications to option pricing, Green finance and Climate risk.

Exercise Handout 3

Lecture: Dr. Andrea Mazzon

Exercise 1

Consider again the market where you have zero interest rate $\rho = 0$, and where the risky asset $\bar{S} = (\bar{S}_t)_{t=0,1,...,T}$ is defined by

$$\bar{S}_t = \log(S_t),$$

where $S = (S_t)_{t=0,1,...,T}$ is the binomial model described in the script, i.e.,

$$S_t = S_0 \cdot Y_1 \cdot \dots \cdot Y_t, \quad t = 1, \dots, T,$$

where Y_t can take the two values d, u with 0 < d < 1 < u, for any t = 1, ..., T, and $(Y_t)_{t=1,...,T}$ are i.i.d. and such that Y_{t+1} is independent of \mathcal{F}_t .

In Exercise 2 of Handout 1 you had to find the risk neutral probability Q of such a market, i.e., the probability

$$q = Q(Y_t = u)$$

such that \bar{S} is a martingale under Q, and in Exercise 2 of Handout 2 you had to implement such a model in Python, similarly to what has been done in the classes of

binomialmodel.creationandcalibration.

- Valuate now a call option for given parameters under this new model.
- \bullet Consider the model above with N time steps, for N large enough, and parameters

$$u = e^{\sigma\sqrt{T/N}}, \qquad d = 1/u. \tag{1}$$

Find the dynamics

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t, \quad t > 0,$$

of a process X which is approximated by \bar{S} under this setting.

Is it possible to compute the analytic value of a call option under these dynamics for X? If yes, check that the price obtained under \bar{S} with parameters (1) for large N approximate this price.