Contents

Respiratory System	8
Functions of respiratory system Purpose of oxidation of food	
Mechanical process of respiration	8
Chemical process of respiration	9
Types of respiration	9
Aerobic Respiration Requirement for aerobic respiration Location for aerobic respiration: Amount of energy in aerobic respiration Quantity in aerobic motion Chemical expression for aerobic respiration: Anaerobic Respiration Requirement of Anaerobic respiration Organisms conducting aerobic respiration: Limitation of Anaerobic respiration in terms of process Quantity of Anaerobic Respiration Equation for Anaerobic respiration Feature of aerobic respiration in muscles	9 9 10 10 10 10 10 10
Respiratory organs	11
Nose and nasal chamber Background Shape of nose Backbone of nose Supportive structure of nose Anatomy of Nose External nostrils	11 12 12 12
Location of external nostrils	12

Nasal chamber	1	2
Types of nasal chamber	1	2
Division of nasal chamber	1	3
Histology of nasal chamber	1	3
Nasal conchae	1	3
Location of nasal conchae	1	13
Shape of nasal conchae	1	13
Quantity of nasal conchae	1	13
Material structure of nasal conchae	1	13
Paranasal sinuses	1	13
Anatomy of paranasal sinuses	1	13
Types of paranasal sinuses	1	<u>1</u> 4
Hisology of paranasal sinuses	1	<u>1</u> 4
Internal nostrils	1	14
	_	
Functions of nose		4
Role of vibrissae		l4
Pharynx	1	L 5
Types of pharynx	1	15
Role of nasopharynx		
Role of Laryngopharynx		
Function of pharynx		
	4	
Larynx		L5
Anatomy of larynx		
Location of larynx		
Composition of larynx		
		<i>-</i>
Largest cartilage in larynx		
Epiglottis	1	17
Epiglottis	1	17 17
Epiglottis	1	17 17 17
Epiglottis	1	17 17 17
Epiglottis	1	17 17 17
Epiglottis	1 1 1	17 17 17
Epiglottis	1 1 1 1	17 17 17 17
Epiglottis Structure of epiglottis Composition of epiglottis Role of epiglottis Vocal cords Location of vocal cords	1 1 1 1	17 17 17 17 17

Mechanism of production of sound	. 18
Trachea	18
Anatomy of trachea	18
Location of trachea	. 18
Dimesnsions of trachea	18
Length of trachea	. 18
Diameter of trachea	. 19
Histological structure of trachea	. 19
Anatomical structure of trachea	. 19
Contents of tracheal rings	. 19
Function of tracheal rings	. 19
Bronchi and Bronchioles	19
Types of bronchus	
Structure of right bronchus	
Structural arrangement of right bronchus	
Structure of left bronchus	
Structural arrangement of left bronchus	
Division of lobular branches	
Anatomy of bronchi	
Histology of bronchi	
Histology of bronchioles	
Lungs and Alveoli	21
Lungs	
Basal part of lung	
Location of basal part of the lung	
Apical part of lung	
Appearance of lungs	
Location of lungs	
Outer Histology of lung	
Description of double layered membrane of lung	
Outer membrane	
Role of parietal membrane	
Inner membrane	
Left lung	. 23

	Right lung	23 23
Alve	Internal structure of the lungs	23 24
	Quantity of alveoli	24
Α	natomy of alveoli	
	vole of Type I pneumocytes	
	tole Type II penumocytes	
	tole of surfactant in alveoli	
	arteries of lungs	
	Role of pulmonary artery in lungs	
	Role of bronchial artery in lungs	
	, c	
-	piratory muscles	25
	ypes of respiratory muscles	
	ypes of main muscles	
S	tructure of diaphgram	25
R	tole of diphgram in anatomy	26
	tole of diaphgram in respiration	
L	ocation of intercostal muscles	26
Ţ	ypes of intercostal muscles	26
Phys	siology of respiration	26
Droo	athing	27
	teps of breathing	
K	late of breathing	۷.
Inspi	iration	27
C	Condition for inspiration	27
Р	rocess of inspiration	28
	External Intercostal Muscles	28
	Diaphgram	28
	Thoracic Cavity	28
Р	repost Inspiration	
Expi	ration	28
-	Condition for expiration	
	·	

	Process of Expiration	29
	Internal Intercostal Muscles	29
	Diaphgram	29
	Thoracic cavity	29
	Prepost expiration	29
Ex	change of gases in the lungs	30
	Diffusion Membrane	30
	Layers of diffusion membrane	30
	Method of exchange of gases in lungs	30
	Mechanism of exchange of gases in lungs	30
	Pressure in venous blood	31
	Magnitude of pressure in venous blood	31
	Pressure in alveolar air	31
	Magnitude of pressure in alveolar air	31
	Process of diffusion in alveoli	31
Tra	ansport of oxygen	32
	Medium for transport of oxygen	32
	Quantity of oxygen in blood	32
	Transport in the form of solution	32
	Transport of oxygen in the form of oxyhaemoglobin	32
	Amount of oxygen in oxyhaemoglobin	32
	Process of formation of oxyhaemoglobin	32
	Chemical equation for the formation of oxyhaemoglobin	
	Condition for formation of oxyhaemoglobin	33
	Nature of oxyhaemoglobin	33
	Disassociation of oxyhaemoglobin	33
	Quantity of oxygen in haemoglobin	33
Int	ternal Respiration	33
	Steps in internal respiration	33
	Disassociation of oxyhaemoglobin	
	Condition for disassociation of oxyhaemoglobin	34
	Chemical equation for disassociation of oxyhaemoglobin	
	Oxidation of Food	
	Equation for oxidation of food	
	Requirement for oxidation of food	34

Transport of carbon dioxide	34
Need for expulsion of carbon dioxide	 34
Transport of carbon dioxide as carbonic acid	 35
Amount of carbon dioxide transported as carbonic acid	 35
Process of formation of carbonic acid	 35
Chemical equation for formation of carbonic acid	 35
Transport of carbon dioxide as bicarbonates	 35
Amount of carbon dioxide transferred as bicarbonates	 35
Pre Process of formation of bicarbonates	 35
Condition for the formation of Carbonic acid	 36
Nature of carbonic acid	 36
Chloride shift	 36
Purpose of chloride shift	 36
Process of formation of bicarbonates	 36
Chemical equations for the formation of bicarbonates	 37
Transport of carbon dioxide as carbamino compound	 37
Amount of carbamino compound	 37
Process of formation of carbamino compound	 37
Reactants in the formation of carbamino compound	 37
Chemical equation for formation of carbamino compound	 37
Bohr's effect	37
Discovery	 38
High Partial Pressure of Carbon Dioxide	 38
Low Partial Pressure of Carbon Dioxide	 38
Bohr's Curve	 38
Graph of Bohr's Curve	 38
Analysis of Bohr's curve	 38
Increment of partial pressure of carbon dioxide	 38
Decrement of partial pressure of carbon dioxide	 36
Factors affecting affinity of haemoglobin and oxygen	 36
Increment of Temperature	 36
Decrement of Temperature	 36
Increment of pH	 36
Decrement of pH	 36
Terms related to respiration	39
Spirometry	

Tidal volume	40
Inspiratory Reserve Volume	40
Expiratory Reserve Volume	40
Residual volume	40
Vital capacity	40
Total lungs capacity	41
Dead space:	41
Respiratory quotient	41
Magnitude of respiratory quotient for glucose	41
Haldane effect	
	40
	42
Cause of Hyppoxia	42
Emphysema	
Harmful effects of emphysema	42
Harmful effects of chronic bronchitis	42
Harmful effect of breakdown of alveoli of lungs.	42
Hypercapnia	42
Dispnoea	43
Pneumonia	43
Causative agent of pneumonia	43
Symptoms of pneumonia	43
Asphyxia	43
1 /	
	Inspiratory Reserve Volume Expiratory Reserve Volume Residual volume Vital capacity Total lungs capacity Dead space: Respiratory quotient Magnitude of respiratory quotient for glucose Measurement of respiratory quotient Haldane effect espiratory disorders Hypoxia Cause of Hyppoxia Emphysema Harmful effects of emphysema Harmful effect of breakdown of alveoli of lungs. Hypercapnia Dispnoea Pneumonia Causative agent of pneumonia

Respiratory System

· Respiratory system is an organ system.

Functions of respiratory system

- The functions of respiratory system are:
 - Exchange of gases
 - Oxidation of food
 - The oxidation of food is done inside the tissues.

Purpose of oxidation of food

· Oxidation of food is done to release energy.

Process of respiration

- The process of respiration are divided into:
 - mechanical
 - chemical

Mechanical process of respiration

- There is transport of fresh air.
- The fresh is transported from outside the lungs.
- There is transport of .
- The is transported from lungs to tissues.
- There is transport of .
- The is transported from tissues to lungs.

Chemical process of respiration

- There is release of energy in tissues.
- The energy is released by the oxidation of food.

Types of respiration

The types of respiration are: - Aerobic - Anaerobic

Aerobic Respiration

• Aerobic respiration is done by almost all of the organisms.

Requirement for aerobic respiration

• There is the involvement of oxygen in aerobic respiration.

Location for aerobic respiration:

- Aerobic respiration occurs at:
 - cytoplasm
 - mitochondria

Amount of energy in aerobic respiration

• There is the release of large amount of energy in aerobic respiration.

Quantity in aerobic motion

- · The reactant is glucose.
- The products are ATP molecules.
- 1 molecule of glucose releases 38 ATP molecules.

Chemical expression for aerobic respiration:

$$C_6H_{12}O_6 + O_2 \longrightarrow CO_2 + H_2O + Energy$$

Anaerobic Respiration

Requirement of Anaerobic respiration

• Anaerobic respiration occurs in the presence of certain enzymes.

Organisms conducting aerobic respiration:

- The organisms conducting aerobic respiration are:
 - Taniea
 - Ascaris
 - Bacteria
 - Fruits
 - Germinating seeds
 - Yeast

Limitation of Anaerobic respiration in terms of process

• Anaerobic respiration is such where oxygen is not required.

Quantity of Anaerobic Respiration

- The reactant in Anaerobic respiration is glucose.
- The product in anaerobic respiration is ATP molecules.
- One molecule of glucose yields 2 ATP molecules.

Equation for Anaerobic respiration

• The equation for anaerobic respiration is expressed as:

$$C_6H_{12}O_6 \longrightarrow C_3H_6O_3 + Energy$$

$$C_6H_{12}O_6 \longrightarrow C_2H_5OH + CO_2 + Energy$$

Feature of aerobic respiration in muscles

- Striped Muscles can do anaerobic respiration.
- The anaerobic respiration can be done in the absence of oxygen.
- Oxygen may be absent in emergency condition.
- The other name for striped muscles is skeletal muscles.

Respiratory organs

- · The respiratory organs are
 - Nose and nasal chamber
 - Pharynx
 - Larynx
 - Trachea
 - Bronchi
 - Lungs
 - Respiratory muscles

Nose and nasal chamber

Background

Shape of nose

· Nose is a triangular structure.

Backbone of nose

• Nose is made up of muscles

Supportive structure of nose

- Nose is supported by
 - bones
 - cartilage

Anatomy of Nose

- The parts of nose are:
 - external nostrils
 - nasal chamber
 - internal nostrils

External nostrils

• External nostrils are paired apertures.

Location of external nostrils

• External nostrils open outside the nose.

Nasal chamber

Types of nasal chamber

- The types of nasal chamber are:
 - left nasal chamber
 - right nasal chamber

Division of nasal chamber

- The division of nasal chamber is done by a septum.
- The arrangement of the septum that divides the nasal chamber is vertical.

Histology of nasal chamber

• Nasal chamber is lined internally by ciliated epithelium.

Nasal conchae

• The another term for nasal conchae is nasal turbinates.

Location of nasal conchae

Nasal conchae are present in the respiratory region of nasal chamber

Shape of nasal conchae

• The shape of nasal conchae is that of a convoluted scroll.

Quantity of nasal conchae

• There are three pairs of nasal conchae present at the respiratory region of nasal chamber.

Material structure of nasal conchae

· Nasal conchae are bony projections.

Paranasal sinuses

Anatomy of paranasal sinuses

· Paranasal sinuses are air filled cavity.

Types of paranasal sinuses

- The types of paranasal sinuses are
 - frontal
 - ethmoidal
 - maxillary
 - sphenoid

Hisology of paranasal sinuses

• Paranasal sinuses are lined by mucus cells.

Internal nostrils

- location of internal nostrils
- internal nostrils open inside the pharynx.

Functions of nose

- · Nose prevents the entrance of dust into the lungs.
- · Nose makes the air moist and warm.
- · Nose detects the smell by olfactory receptors.

Role of vibrissae

- · The other term for vibrissae is nasal hairs.
- · Nasal hairs trap
 - dust particles
 - microorganism
- This is done with the help of mucus.

Pharynx

Types of pharynx

- The types of pharynx are
 - nasopharynx
 - oropharynx
 - laryngopharynx

Role of nasopharynx

Nasopharynx leads to eustachian tube

Role of Laryngopharynx

- Laryngopharynx leads to larynx.
 - This is done through an opening.
 - The opening is called epiglottis.

Function of pharynx

- · Pharynx passes food.
- · Pharynx passes air.

Larynx

Anatomy of larynx

• larynx is a hollow cartiligionous box.

Location of larynx

- · Larynx is located at
 - the top of trachea
 - the range of the location is from (c_{3})to (c_{6})

Composition of larynx

- · Larynx is made up of cartilages.
- The number of cartilages that make up the larynx are 9.
- The types of cartilages are single and paired.
- The single cartilages making the larynx are:
 - thryroid cartilage
 - circoid cartilage
 - epiglottis
- Each cartilage in pair cartilage consitutues for a quantity of cartilage.
- The types of paired cartilage are
 - arytenoid
 - corniculate
 - cuneiform

Largest cartilage in larynx

- The largest cartilage in the larynx is the thyroid cartilage.
- Thyroid cartilage gets enlarged in male.
- This enlargement is the result of puberty.
- The enlargement of thyroid is coordinated by a hormone.
- The hormone responsible for enlargement of thyroid cartilage is testosterone.

Epiglottis

Structure of epiglottis

• Epiglottis is a leaf like structure.

Composition of epiglottis

• Epiglottis is made up of fibro elastic cartilage.

Role of epiglottis

- Epiglottis close the glottis.
- The closing of glottis by the epiglottis is done during sallowing.

Vocal cords

Location of vocal cords

- Vocal cords are present among
 - thyroid cartilage
 - arytenoid cartilage

Types of vocal cords

- There are two types of vocal cords
 - Superior pair
 - Inferior pair

Superior Pair

- Superior pair is a false vocal cord.
 - This is because superior pair have no role in producing sound

Inferior Pair

- Inferior pair is true vocal cord.
 - This is because inferior pair have the main role in producing sound.

Mechanism of production of sound

- The sound is produced by the passage of air.
- The air passes through the true vocal cord.
- Sound is produced by the vibration of true vocal cord.

Trachea

Anatomy of trachea

Trachea is a hollow tube.

Location of trachea

- · Trachea is located from
 - larynx
 - upper part of thoracic cavity
- The range for the location of trachea are
 - $(c_{6}) to (t_{5})$
- Trachea lies in parallel to oesophagus.
- Trachea lies in ventral to oesophagus.

Dimesnsions of trachea

Length of trachea

• The length of is:

- (12cm)

Diameter of trachea

- · The diameter of trachea is:
 - (2.5cm)

Histological structure of trachea

- There is the presence of internal lining in trachea.
- The internal lining is done by pseudo stratified epithelium.
- The pseudo stratified epithelium have the presence of goblet cell.

Anatomical structure of trachea

Contents of tracheal rings

- Tracheal rings are made up of cartiliginous rings.
- The cartiliginous rings are c shaped.
- The cartiliginous rings are incomplete.

Function of tracheal rings

- The functions of tracheal rings are:
 - Tracheal rings prevent the collapsing of trachea.
 - The prevention of collapsing of trachea is done during breathing.

Bronchi and Bronchioles

Types of bronchus

• The trachea divides into:

- right bronchus
- left bronchus
- The division occurs at (t_{5})

Structure of right bronchus

- Right bronchus is shorter.
- · Right bronchus is wider.
- The length of right bronchus is (2.5cm).

Structural arrangement of right bronchus

- · Right bronchus divides into 3 branches.
- Each branch of right bronchus passes into each lobes of the lungs.

Structure of left bronchus

- · Left bronchus is longer.
- · Left bronchus is narrower.
- The length of left bronchus is (5cm).

Structural arrangement of left bronchus

- · Left bronchus is divided into (2) branches.
- Each branch of the left bronchus passes into the respective lobe.

Division of lobular branches

- The division of lobular branches occur in the order of:
 - tertiary branches
 - bronchioles
 - terminal bronchioles

- respiratory bonchioles
- alvelolar duct
- alveoli

Anatomy of bronchi

- Bronchi are supported by cartiliginious rings.
- The cartiliginous rings are incomplete.

Histology of bronchi

• Bronchi are lined by pseudo stratified epithelium.

Histology of bronchioles

- Bronchioles are line by two types of tissues.
- · The two types of tissues that line the bronchioles are
 - ciliated columnar
 - cuboidal epithelium

Lungs and Alveoli

Lungs

- $\boldsymbol{\cdot}$ There is a pair of lungs present at the human body.
- The shape of the lungs is conical.
 - Lung has a basal part.
 - Lung has an apical part.
- The material nature of lungs is soft.
- The lungs are spongy.

Basal part of lung

- The basal part of lung in broad.
- The basal part of lung is concave.

Location of basal part of the lung

• The basal part of the lung rests on the diaphgram.

Apical part of lung

• The apical part of the lungs is narrower.

Appearance of lungs

• The lungs are pinkish in nature.

Location of lungs

- The lungs are present at the either side of the heart.
- The lungs occupy the greater region of the thoracic cavity.

Outer Histology of lung

- The lung is enclosed in a double layered membrane.
- The double layered membrane in which the lungs is enclosed is called pleura.

Description of double layered membrane of lung

Outer membrane

• The outer membrane of the lung is parietal membrane.i

Role of parietal membrane

• The parietal membrane encloses the pleural space.

Inner membrane

• The inner membrane of the lung is the visceral membrane.

Left lung

- Left lung is smaller.
- Left lung has cardiac notch.

Right lung

· Right lung is bigger.

Lobes of right lung

- The right lung has three lobes.
- The lobes of the right lung are marked by fissures.

Lobes of left lung

- The left lung has two lobes.
- The lobes of the left lung are marked by fissures.

Internal structure of the lungs

- The internal structure of lungs is structured as:
 - tree of bronchi
 - bronchioles
 - alveoli

Alveoli

- · The anatomical structure of alveoli is a
 - sac
- The alveoli are richly vascularized.

Quantity of alveoli

• The quantity of alveoli present in the lungs are (300 million.)

Anatomy of alveoli

- The wall of alveoli consists of two types of cells.
 - Type I pneumocytes
 - Type II pnuemocytes

Role of Type I pneumocytes

• Type I pneumocytes exchange gases.

Role Type II penumocytes

• Type II peumocytes produce surfactant.

Role of surfactant in alveoli

- There is the presence of surfactant in alveoli.
- Surfactant is a compostion of:
 - phospholipid
 - protein
- The surfactant reduce tension in alveoli.
- The surfactant prevent alveolar collapse during expiration.

Arteries of lungs

- There are two arteries present in the lungs.
- The arteries present in the lungs are:
 - pulmonary artery
 - bronchial artery

Role of pulmonary artery in lungs

• The role of pulmonary artery is to provide deoxygenated blood to the lungs.

Role of bronchial artery in lungs

• The role of bronchial artery is to provide oxygenated blood in the lungs.

Respiratory muscles

Types of respiratory muscles

- The types of respiratory muscles are:
 - Main muscles
 - Accessory muscles

Types of main muscles

- The types of main muscles are:
 - Diaphgram
 - Intercostal muscles

Structure of diaphgram

- The diaphgram is a thin structure.
- The diaphgram is a muscular structure.

Role of diphgram in anatomy

- · Diaphgram separates two cavities.
- The cavities that diaphgram separates are:
 - thoracic
 - abdominal

Role of diaphgram in respiration

- Diaphgram lowers down during contraction.
- Diaphgram exhibits the following characters in contraction:
 - Diaphgram becomes flat.
 - Diaphgram becomes straight.

Location of intercostal muscles

- Intercostal muscles are present :
 - in between the ribs.

Types of intercostal muscles

- The intercostal muscles are categorized in terms of their arrangement.
- The types of intercostal muscles in the basis of their arrangement are:
 - external intercostal muscles
 - internal intercostal muscles

Physiology of respiration

- The physiology of respiration consists of the following steps:
 - 1. Breathing
 - 2. Exchange of gases

- 3. Transport of Oxygen
- 4. Internal Respiration
- 5. Transport of Carbon dioxide

Breathing

- Breathing is the process of :
 - inhalation of oxygen from external environment to the lungs.
 - exhalation of carbon dioxide from lungs to the external environment

Steps of breathing

- The steps of breathing are:
 - Inspiration
 - Expiration

Rate of breathing

- The normal breathing rate is:
 - **-** (12-16) times per minute

Inspiration

• Inspiration is the process of intake of from external environment to the lungs.

Condition for inspiration

• Inspiration occurs when pulmonary air pressure is lower than atmospheric pressure.

Process of inspiration

External Intercostal Muscles

- External intercostal muscles contract.
- External intercostal muscles are pulled outward.
- External intercostal muscles are pulled upward.

Diaphgram

- · Muscles of diaphgram contract.
- · Muscles of diaphgram becomes wide.
- Muscles of diaphgram becomes straight.

Thoracic Cavity

- The size of thoracic cavity increases.
 - The increase in size of thoracic cavity expands the lungs.

Prepost Inspiration

- The air pressure decreases in the lungs.
 - The air pressure decreases in the lungs due to increase in volume of the lungs.
- The air from atmosphere rushes towards the lungs.
 - The air from atmosphere rushes towards the lungs to maintain
 - * inner air pressure
 - * outer atmospheric pressure

Expiration

• Expiration is the process of exhaling from lungs.

- · gas is exhaled in expiration.
- The exhalation occurs from the lungs to the external environment.

Condition for expiration

• Expiration occurs when intra pulmonary air pressure is more than atmospheric pressure.

Process of Expiration

Internal Intercostal Muscles

- · Internal intercostal muscles contract.
 - Contraction of internal intercostal muscles moves ribs inward.
 - Contraction of internal intercostal muscles moves ribs downward.

Diaphgram

- The relaxation of diaphgram occurs.
- Diaphgram moves to it's original position.
- The original shape of diaphgram is dome shape.

Thoracic cavity

- · Size of thoracic cavity decreases.
 - The decrease in size of thoracic cavity decreases the volume of the lungs.

Prepost expiration

- There is increase of air pressure in the lungs.
 - The increase in air pressure of the lungs pushes the air form lungs to the external environment.

Exchange of gases in the lungs

- · Oxygen comes down to the alveolar surface.
- Blood comes up to the alveolar surface.
- The alveolar membrane is extremely thin.
- There is close contact of air and blood.

Diffusion Membrane

- The diffusion membrane of alveoli is made up of layers.
- The layers that make up the diffusion membrane are three in number.

Layers of diffusion membrane

- The layers of diffusion membrane are:
 - Squamous Epithelium
 - * The squamous epithelium is that of the alveoli.
 - Fndothelium
 - * Endothelium is that of the alveolar capillaries.
 - Basement substance
 - * Basement substance is present between squamous epithelium and endothelium.

Method of exchange of gases in lungs

- · Exchange in gases of lungs occurs by:
 - simple diffusion method.

Mechanism of exchange of gases in lungs

- · Diffusion of gases occurs along the concentration gradient.
 - Diffusion of gases occurs from higher partial pressure to lower partial pressure.

Pressure in venous blood

- · Venous blood has lower partial pressure of oxygen.
- Venous blood has higher partial pressure of carbon dioxide.

Magnitude of pressure in venous blood

- The magnitude of partial pressure of oxygen in venous blood is:
 - (P() = 40mm Hg)
- The magnitude of partial pressure of carbon dioxide in venous blood is:
 - (P() = 44mm Hg)

Pressure in alveolar air

- · Alveolar air has higher partial pressure of oxygen.
- Alveolar air has lower partial pressure of carbon dioxide.

Magnitude of pressure in alveolar air

- The magnitude of partial pressure of oxygen in alveolar air is:
 - (P() = 100 mm Hg)
- The magnitude of partial pressure of carbon dioxide in alveolar air is:
 - (P() = 40 mm Hg)

Process of diffusion in alveoli

- diffuses from the alveolar air to the blood capillaries.
- diffuses from the blood capillaries into the alveolar air.

Transport of oxygen

Medium for transport of oxygen

- Oxygen is transported by blood.
- Blood transports oxygen from lungs to tissues.

Quantity of oxygen in blood

• (100ml_) of arterial blood can carry (20ml) of oxygen.

Transport in the form of solution

- Oxygen dissolves in the plasma of the blood.
- The quantity of oxygen that dissolves in the plasma of the blood is:
 - **-** (1-3 %)

Transport of oxygen in the form of oxyhaemoglobin

Amount of oxygen in oxyhaemoglobin

- The quantity of oxygen transported in the form of oxyhaemoglobin is:
 - **-** (97-99%)

Process of formation of oxyhaemoglobin

- The reactants in the formation of oxyhaemoglobin are:
 - Oxygen
 - Haemoglobin
- · Oxygen combines with haemoglobin of red blood cells.
- The combination of oxygen and haemoglobin forms oxyhaemoglobin.

Chemical equation for the formation of oxyhaemoglobin

$$Hb + 4O_2 \longrightarrow Hb \cdot (4O_2)$$

Condition for formation of oxyhaemoglobin

- The conditions for the formation of oxyhaemoglobin are:
 - There is the decrement of partial pressure of .
 - There is the decrement of temperature.
 - There is the presence of high blood (pH) in lungs.

Nature of oxyhaemoglobin

Oxyhaemoglobin is unstable compound.

Disassociation of oxyhaemoglobin

- · Oxyhaemoglobin disassociates to release .
- The disassociation of oxyhaemoglobin occurs in certain conditions.

Quantity of oxygen in haemoglobin

• One molecule of can carry (4) molecules of oxygen.

Internal Respiration

Steps in internal respiration

- The steps in internal respiration are:
 - disassociation of oxyhaemoglobin
 - oxidation of food

Disassociation of oxyhaemoglobin

Condition for disassociation of oxyhaemoglobin

- The conditions for disassociation of oxyhaemoglobin are:
 - There is the presence of high partial pressure of .
 - There is the presence of high temperature.

Chemical equation for disassociation of oxyhaemoglobin

$$Hb(4O_2) \longrightarrow Hb + 4O_2$$

Oxidation of Food

- There is the breakdown of glucose.
- The breakdown of glucose yields:
 - carbon dioxide
 - energy
 - water

Equation for oxidation of food

$$C_6H_{12}O_6 + O_2 \longrightarrow 6CO_2 + 6H_{20} + Energy$$

Requirement for oxidation of food

• Oxygen is needed for the oxidation of food.

Transport of carbon dioxide

Need for expulsion of carbon dioxide

· Carbon dioxide should be expulsed out of the body.

- The need for the expulsion of carbon dioxide is because:
 - Carbon dioxide is toxic to the body.

Transport of carbon dioxide as carbonic acid

Amount of carbon dioxide transported as carbonic acid.

- The amount of carbon dioxide transported as carbon dioxide is:
 - **-** (7%)

Process of formation of carbonic acid

- The reactants for the formation of carbonic acid are:
 - carbon dioxide
 - water
- · Carbon dioxide reacts with water to form carbonic acid.

Chemical equation for formation of carbonic acid

$$CO_2 + H_2O \longrightarrow H_2CO_3$$

Transport of carbon dioxide as bicarbonates

Amount of carbon dioxide transferred as bicarbonates

- The amount of carbon dioxide transported by bicarbonates is:
 - **-** (7%)

Pre Process of formation of bicarbonates

- · Carbon dioxide diffuses to red blood cells.
- · Carbon dioxide reacts with water.
- The product from the reaction of carbon dioxide and water is carbonic acid.

Condition for the formation of Carbonic acid

- · Carbonic acid only forms in the presence of :
 - carbonic anhydrase

Nature of carbonic acid

- · Carbonic acid is unstable.
- · Carbonic acid disassociates due to it's unstability.
- The dissociation of carbonic acid results the formation of:
 - _
 - _

Chloride shift

- The other name for chloride shift is hamburger phenomena.
- The diffusion of chloride ions from plasma to red blood cells is called chloride shift.

Purpose of chloride shift

· Chloride shift occurs for the need to maintain ionic balance.

Process of formation of bicarbonates

- · Bicarbonate ions diffuse into the plasma.
- Bicarbonate ions diffuse into the plasma from RBC.
- Bicarbonate ions form metallic bicarbonate by combining either with:
 - _
 - _

Chemical equations for the formation of bicarbonates

$$CO_2 + H_2O \xrightarrow{carbonic\,anhydrase} H_2CO_3 \longleftrightarrow H+ + HCO3-$$

$$K+ + HCO3- \longrightarrow KHCO_3$$

$$Na+ + HCO3- \longrightarrow NaHCO_3$$

Transport of carbon dioxide as carbamino compound

Amount of carbamino compound

- The amount of carbon dioxide transported in the form of carbamino compounds is:
 - **-** (23%)

Process of formation of carbamino compound

Reactants in the formation of carbamino compound

- The reactants for the formation of carbamino compound are:
 - carbon dioxide
 - amnio group of haemoglobin
- Carbon dioxide reacts with amino group of haemoglobin to form carbamino haemoglobin compound.

Chemical equation for formation of carbamino compound

$$CO_2 + Hb \cdot NH_2 \longrightarrow HbNHCOOH$$

Bohr's effect

• Bohr's effect is the effect of CO₂ concentration on disassociation of oxyhaemoglobin.

Discovery

- · Bohr's effect was discovered by
 - Christian Bohr

High Partial Pressure of Carbon Dioxide

- · High partial pressure of carbon dioxide enhances the
 - disassociation of oxyhaemoglobin

Low Partial Pressure of Carbon Dioxide

- Low partial pressure of carbon dioxide enhances the
 - formation of oxyhaemoglobin

Bohr's Curve

- · The other name for Bohr's curve is
 - oxygen disasscociation curev

Graph of Bohr's Curve

- Bohr's curve is plotted among
 - percentage saturation of haemoglobin with oxygen
 - partial pressure of oxygen
- · The nature of Bohr's curve is
 - sigmoid

Analysis of Bohr's curve

Increment of partial pressure of carbon dioxide

- The curve moves downward towards the right.
- The percentage of saturation of haemoglobin with oxygen decreases.

Decrement of partial pressure of carbon dioxide

• The percentage of saturation of haemoglobin with oxygen increases.

Factors affecting affinity of haemoglobin and oxygen

Increment of Temperature

- The affinity of haemoglobin with oxygen **decreases** in *rise in temperature*.
- The percentage saturation of haemoglobin with oxygen decreases with increase in temperature.

Decrement of Temperature

- The affinity of haemoglobin with oxygen **increases** in *fall in temperature*.
- The percentage saturation of haemoglobin with oxygen increases with decrease in temperature.

Increment of pH

- The affinity of haemoglobin with oxygen **increases** with *rise* in pH .
- The percentage saturation of haemoglobin with oxygen increases with rise in pH.

Decrement of pH

- The affinity of haemoglobin with oxygen **decreases** with *fall in pH* .
- The percentage saturation of haemoglobin with oxygen decreases with fall in pH.

Terms related to respiration

Spirometry

- · Spirometry is the process of evaluating
 - pulmonary volumes
 - pulmonary capacities

Tidal volume

- Tidal volume is the amount of air exchanged during normal breathing.
- · The magnitude of tidal volume is
 - 500ml

Inspiratory Reserve Volume

- The short form for inspiratory reserve volume is
 - IRV
- Inspiratory Reserve Volume is the additional volume of air, a person can inspire by forceful inspiration.
- The magnitude of inspiratory reserve volume is
 - 3000 ml

Expiratory Reserve Volume

- The short form for expiratory reserve volume is
 - ERV
- Expiratory reserve volume is the additional volume of air, a person can expire by forceful expiration.
- · The magnitude of expiratory reserve volume is
 - 1100 ml

Residual volume

The short form for residual volume is RV - Residual volume is the volume of air remaining in lungs even after a forcible expiration. - The magnitude of residual volume is - 1200 ml

Vital capacity

• The short form for vital capacity is VC.

- Vital capacity is the amount of air which can be maximum inspired and also maximum expired.
- The magnitude of vital capacity is

•

$$VC = IRV + ERV + TV$$

Total lungs capacity

- The short form for total lungs volume is
 - TLC

Total lungs capacity is the total volume of air accommodated in the lungs at the end of a forced inspiration. - The magnitude of total lungs capacity is -

$$TLC = VC + RV$$

Dead space:

during the normal respiration, the air remaining in area like trachea and bronchial tree do not participate in gaseous exchange is called dead space. Out of 500 ml dead space volume is about 150 ml.

Respiratory quotient

Respiratory quotient is the ratio of carbon dioxide formed and oxygen utilized during complete combustion of a fuel substance.

Magnitude of respiratory quotient for glucose

• The magnitude for respiratory quotient for glucose is

$$RQ = 1$$

Measurement of respiratory quotient

The measurement of respiratory quotient is done by Ganong's respirometer.

Haldane effect

Haldane effect is unloading of CO2 in high oxygen concentration.

Respiratory disorders

Hypoxia

Hypoxia is the lack of oxygen in tissues

Cause of Hyppoxia

- Hypoxia is caused due to
 - decreased Hb content in blood
 - carbon monoxide poisoning.

Emphysema

• Emphysema are air pollutants.

Harmful effects of emphysema

• Emphysema cause chronic bronchitis.

Harmful effects of chronic bronchitis

· Chronic bronchitis breaks down the alveoli of lungs.

Harmful effect of breakdown of alveoli of lungs.

• The breakdown of alveoli of lungs reducing surface area of gaseous exchange.

Hypercapnia

• Hypercapnia is the excess concentration of carbon dioxide in blood.

Dispnoea

• Dipsnoea is the condition of difficulty in breathing.

Pneumonia

• Pneumonia is the infection of lungs.

Causative agent of pneumonia

The causative agent of pneumonia is Diplococus pneumonia.

Symptoms of pneumonia

- · Pneumonia accumulates mucous in alveoli.
- · Pneumonia accumulates lymph in alveoli.
- Pneumonia impairs gaseous exchange.

Asphyxia

• Asphysxia is the condition of fall of oxygen in blood abd rise of carbon dioxide.

Results of asphyxia

- Asphyxia cause paralysis of respiratory centre of brain.
- · Asphyxia causes death.