Задача линейного программирования

Даня Меркулов

1 Примеры задач линейного программирования

1.1 Что такое линейное программирование?

В общем случае все задачи с линейной целевой функцией и линейными функциональными ограничениями можно считать задачами линейного программирования. Однако существует несколько стандартных формулировок.

$$\min_{x \in \mathbb{R}^n} c^\top x$$
 (LP.Basic) s.t. $Ax \le b$

для некоторых векторов $c\in\mathbb{R}^n$, $b\in\mathbb{R}^m$ и матрицы $A\in\mathbb{R}^{m\times n}$, где неравенства — покомпонентные. Мы будем часто использовать эту формулировку для построения интуиции.

Широко используется **стандартная форма** записи задачи линейного программирования. Пусть заданы векторы $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$ и матрица $A \in \mathbb{R}^{m \times n}$.

$$\begin{aligned} & \min_{x \in \mathbb{R}^n} c^\top x \\ \text{s.t. } & Ax = b \\ & x_i \geq 0, \ i = 1, \dots, n \end{aligned} \tag{LP.Standard}$$

1.2 Задача о диете

Представьте, что вам нужно составить план диеты из некоторых продуктов: бананы, пироги, курица, яйца, рыба. Каждый из продуктов имеет свой вектор питательных веществ. Таким образом, все питательные вещества можно представить в виде матрицы W.

Предположим, что у нас есть вектор требований для каждого питательного вещества $r \in \mathbb{R}^n$. Нам нужно найти самую дешёвую диету, которая удовлетворяет всем требованиям:

$$\begin{aligned} \min_{x \in \mathbb{R}^p} c^\top x \\ \text{s.t.} \ Wx \succeq r \\ x_i \geq 0, \ i = 1, \dots, p \end{aligned}$$

1.3 Минимизация выпуклой функции как задача линейного программирования

Рисунок 1: Как задача линейного программирования может помочь с общей задачей выпуклой оптимизации

- Функция выпукла, если она может быть представлена как поточечный максимум линейных функций.
- В пространствах большой размерности аппроксимация может потребовать огромного количества
- Существуют более эффективные солверы для выпуклой оптимизации (не сводящиеся к LP).

1.4 Транспортная задача

Типичная транспортная задача заключается в распределении товара от производителей к потребителям. Цель состоит в минимизации общих затрат на транспортировку при соблюдении ограничений на количество товара на каждом источнике и удовлетворении требований к спросу на каждом пункте назначения.

Рисунок 2: Карта Западной Европы. 🔁 Open In Colab

Пункт назначения / Источник	Арнем [€/тонна]	Гауда [€/тонна]	Спрос [тонн]
Лондон	n/a	2.5	125
Берлин	2.5	n/a	175
Маастрихт	1.6	2.0	225
Амстердам	1.4	1.0	250
Утрехт	0.8	1.0	225
Гаага	1.4	0.8	200
Макс. производство [тонн]	550	700	

Минимизировать: Стоимость =
$$\sum_{c \in \Pi \text{ункты назначения}} \sum_{s \in \text{Источники}} T[c,s]x[c,s]$$

$$\sum_{c \in \Pi \text{ункты назначения}} x[c,s] \leq \Pi \text{оставка}[s] \qquad \forall s \in \text{Источники}$$

$$\sum_{s \in \mathsf{Источники}} x[c,s] = \mathsf{Cпpoc}[c] \qquad \forall c \in \mathsf{\Pi}\mathsf{y}\mathsf{h}\mathsf{k}\mathsf{t}\mathsf{b}\mathsf{i}$$
 назначения

Задачу можно представить в виде следующего графа:

Рисунок 3: Граф, связанный с задачей

2 Как получить задачу линейного программирования?

2.1 Основные преобразования

• Максимум-минимум

$$\begin{aligned} & \min_{x \in \mathbb{R}^n} c^\top x & & \max_{x \in \mathbb{R}^n} -c^\top x \\ \text{s.t. } Ax \leq b & & \text{s.t. } Ax \leq b \end{aligned}$$

• Равенство к неравенству

$$Ax = b \leftrightarrow \begin{cases} Ax \le b \\ Ax \ge b \end{cases}$$

• Неравенство к равенству, увеличивая размерность задачи на m.

$$Ax \le b \leftrightarrow \begin{cases} Ax + z = b \\ z \ge 0 \end{cases}$$

• Неотрицательные переменные

$$x \leftrightarrow \begin{cases} x = x_{+} - x_{-} \\ x_{+} \ge 0 \\ x_{-} \ge 0 \end{cases}$$

2.2 Задача аппроксимации Чебышева

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_{\infty} \leftrightarrow \min_{x \in \mathbb{R}^n} \max_i |a_i^Tx - b_i|$$

Можно записать эквивалентную задачу линейного программирования с заменой максимальной координаты вектора:

$$\begin{aligned} & \min_{t \in \mathbb{R}, x \in \mathbb{R}^n} t \\ \text{s.t. } & a_i^T x - b_i \leq t, \ i = 1, \dots, m \\ & - a_i^T x + b_i \leq t, \ i = 1, \dots, m \end{aligned}$$

2.3 Задача ℓ_1 -аппроксимации

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_1 \leftrightarrow \min_{x \in \mathbb{R}^n} \sum_{i=1}^m |a_i^Tx - b_i|$$

Можно записать эквивалентную задачу линейного программирования с заменой суммы координат вектора:

$$\begin{aligned} & \min_{t \in \mathbb{R}^m, x \in \mathbb{R}^n} \mathbf{1}^T t \\ \text{s.t.} & a_i^T x - b_i \leq t_i, \ i = 1, \dots, m \\ & - a_i^T x + b_i \leq t_i, \ i = 1, \dots, m \end{aligned}$$

2.4 Задача смешивания: от нелинейных ограничений к $\Lambda\Pi^{\,1}$

Производственное предприятие получает заказ на 100 литров раствора с определённой концентрацией (например, 4% сахарного раствора). На складе есть:

Компонент	Caxap (%)	Стоимость (\$/л)
Концентрат А (Добрый кола)	10.6	1.25
Концентрат В (Север кола)	4.5	1.02
Вода (Псыж)	0.0	0.62

Цель: Найти смесь с минимальной стоимостью, которая удовлетворит заказ.

2.4.1 Целевая функция

Минимизировать стоимость:

$$Cost = \sum_{c \in C} x_c P_c$$

где x_c — объём используемого компонента c, и P_c — его цена.

2.4.2 Ограничение на объём

Убедитесь, что общий объём V:

$$V = \sum_{c \in C} x_c$$

2.4.2.1 Ограничение на состав

Убедитесь, что содержание сахара — 4%:

$$\bar{A} = \frac{\sum_{c \in C} x_c A_c}{\sum_{c \in C} x_c}$$

Линеаризованная версия:

$$0 = \sum_{c \in C} x_c (A_c - \bar{A})$$

Это можно решить с помощью линейного программирования.

¹Источник

3 Симплекс-метод

3.1 Геометрия симплекс-метода

Рассмотрим следующую простую формулировку задачи линейного программирования:

$$\min_{x \in \mathbb{R}^n} c^\top x$$
 (LP.Inequality) s.t. $Ax < b$

- Определение: базис \mathcal{B} это подмножество n (целых) чисел между 1 и m, такое что $\mathrm{rank}A_{\mathcal{B}}=n$.
- Обратите внимание, что мы можем связать подматрицу $A_{\mathcal{B}}$ и соответствующую правую часть $b_{\mathcal{B}}$ с базисом \mathcal{B} .
- Также мы можем получить точку пересечения всех этих гиперплоскостей из базиса: $x_{\mathcal{B}} = A_{\mathcal{B}}^{-1} b_{\mathcal{B}}$.
- Если $Ax_{\mathcal{B}} \leq b$, то базис \mathcal{B} является допустимым.
- Базис $\mathcal B$ оптимален, если $x_{\mathcal B}$ является решением задачи LP.Inequality.
- $x_{\mathcal{B}}$ называют **базисной точкой** или базисным решением (иногда её тоже называют **базисом**).

3.2 Если решение задачи линейного программирования существует, то оно лежит в вершине

i Theorem

- 1. Если задача линейного программирования в стандартной форме имеет непустое бюджетное множество, то существует по крайней мере одна допустимая базисная точка.
- 2. Если задача линейного программирования в стандартной форме имеет решения, то по крайней мере одно из таких решений является оптимальной базисной точкой.
- 3. Если задача линейного программирования в стандартной форме допустима и ограничена, то она имеет оптимальное решение.

Для доказательства см. теорему 13.2 в Numerical Optimization by Jorge Nocedal and Stephen J. Wright

Верхнеуровневая идея симплекс-метода:

- Убедитесь, что вы находитесь в вершине.
- Проверьте оптимальность.
- Если необходимо, перейдите к другой вершине (измените базис).
- Повторяйте, пока не сойдётесь.

3.3 Оптимальный базис

Поскольку у нас есть базис, мы можем разложить наш целевой вектор c в этом базисе и найти скалярные коэффициенты $\lambda_{\mathcal{B}}$:

$$\lambda_{\mathcal{B}}^T A_{\mathcal{B}} = c^T \leftrightarrow \lambda_{\mathcal{B}}^T = c^T A_{\mathcal{B}}^{-1}$$

i Theorem

Если все компоненты $\lambda_{\mathcal{B}}$ неположительны и \mathcal{B} допустим, то \mathcal{B} оптимален.

Доказательство Предположим противное, то есть $\lambda_{\mathcal{B}} \leq 0$ и \mathcal{B} допустим, но не оптимален.

$$\begin{split} \exists x^* : Ax^* \leq b, c^Tx^* < c^Tx_{\mathcal{B}} \\ A_{\mathcal{B}}x^* \leq b_{\mathcal{B}} \mid \lambda_{\mathcal{B}}^T \cdot \leq 0 \\ \lambda_{\mathcal{B}}^T A_{\mathcal{B}}x^* \geq \lambda_{\mathcal{B}}^T b_{\mathcal{B}} \\ c^Tx^* \geq \lambda_{\mathcal{B}}^T A_{\mathcal{B}}x_{\mathcal{B}} \\ c^Tx^* \geq c^Tx_{\mathcal{B}} \end{split}$$

3.4 Изменение базиса

Предположим, что некоторые из коэффициентов $\lambda_{\mathcal{B}}$ положительны. В этом случае необходимо осуществить переход по ребру многогранника к новой вершине, то есть произвести замену базиса.

- Предположим, что у нас есть базис \mathcal{B} : $\lambda_{\mathcal{B}}^T = c^T A_{\mathcal{B}}^{-1}$
- Предположим, что $\lambda_{\mathcal{B}}^k>0$. Мы хотим удалить k из базиса и сформировать новый:

$$\begin{cases} A_{\mathcal{B}\backslash\{k\}}d = 0 \\ a_k^Td = -1 \end{cases} \qquad c^Td = \lambda_{\mathcal{B}}^TA_{\mathcal{B}}d = \sum_{i=1}^n \lambda_{\mathcal{B}}^i(A_{\mathcal{B}}d)^i = -\lambda_{\mathcal{B}}^k < 0$$

• Для всех $j \notin \mathcal{B}$ рассчитаем размер шага проекции:

$$\mu_j = \frac{b_j - a_j^T x_{\mathcal{B}}}{a_j^T d}$$

• Определим новую вершину, которую мы добавим в новый базис:

$$\begin{split} t &= \arg\min_{j} \{\mu_{j} \mid \mu_{j} > 0\} \\ \mathcal{B}' &= \mathcal{B} \backslash \{k\} \cup \{t\} \\ x_{\mathcal{B}'} &= x_{\mathcal{B}} + \mu_{t} d = A_{\mathcal{B}'}^{-1} b_{\mathcal{B}'} \end{split}$$

• Обратите внимание, что изменение базиса приводит к уменьшению целевой функции: $c^T x_{\mathcal{B}'} = c^T (x_{\mathcal{B}} + \mu_t d) = c^T x_{\mathcal{B}} + \mu_t c^T d$

3.5 Поиск начального допустимого базиса

Нам нужно решить следующую задачу:

$$\min_{x \in \mathbb{R}^n} c^\top x$$
 s.t. $Ax < b$

Предложенный алгоритм требует начального допустимого базиса.

Начнём с переформулировки задачи:

$$\min_{y \in \mathbb{R}^n, z \in \mathbb{R}^n} c^\top (y - z)$$
 s.t. $Ay - Az \le b$
$$y \ge 0, z \ge 0$$
 (2)

Зная решение задачи (2), можно восстановить решение задачи (1), и наоборот.

$$x = y - z$$
 \Leftrightarrow $y_i = \max(x_i, 0), \quad z_i = \max(-x_i, 0)$

Теперь мы попытаемся сформулировать новую задачу линейного программирования, решение которой будет допустимой базисной точкой для Задачи 2. Это означает, что мы сначала запускаем симплекс-метод для задачи Phase-1, а затем запускаем задачу Phase-2 с известным начальным решением. Обратите внимание, что допустимое базисное решение для Phase-1 должно быть легко вычислимо.

$$\min_{y\in\mathbb{R}^n,z\in\mathbb{R}^n}c^\top(y-z)$$
 s.t. $Ay-Az\leq b$ (Фаза-2 (главная задача $\Lambda\Pi$)) $y>0,z>0$

$$\min_{\substack{\xi\in\mathbb{R}^m,y\in\mathbb{R}^n,z\in\mathbb{R}^n\\y\in\mathcal{S}}}\sum_{i=1}^m\xi_i$$
 s.t. $Ay-Az\leq b+\xi$
$$y\geq 0,z\geq 0,\xi\geq 0$$

• Если Фаза-2 (главная задача $\Lambda\Pi$) имеет допустимое решение, то оптимум Фаза-1 равен нулю (т.е. все переменные ξ_i равны нулю).

Доказательство: тривиальная проверка.

• Если оптимум Фаза-1 равен нулю (т.е. все переменные ξ_i равны нулю), то мы получаем допустимый базис для Фаза-2.

Доказательство: тривиальная проверка.

• Теперь мы знаем, что если мы можем решить задачу Фаза-1, то мы либо найдём начальную точку для симплекс-метода в исходном методе (если переменные ξ_i равны нулю), либо проверим, что исходная задача не имеет допустимого решения (если переменные ξ_i не равны нулю).

ullet Но как решить задачу Фаза-1? Она имеет допустимое базисное решение (задача имеет 2n+mпеременных, и точка ниже гарантирует, что 2n+m неравенств удовлетворяются как равенства (активны).)

$$z=0 \quad y=0 \quad \xi_i=\max(0,-b_i)$$

4 Сходимость симплекс-метода

4.1 Неограниченное бюджетное множество

В этом случае не найдётся ни одного положительного μ_i .

4.2 Вырожденность вершин

Случаи вырожденности требуют особого рассмотрения. В отсутствие вырожденности на каждой итерации гарантируется монотонное убывание значения целевой функции.

4.3 Экспоненциальная сходимость

- Много прикладных задач может быть сформулировано в виде задач линейного программирования.
- Симплекс-метод прост в своей основе, но в худшем случае может работать экспоненциально долго.
- Метод эллипсоидов Хачияна (1979) стал первым алгоритмом с доказанной полиномиальной сложностью для задач ЛП. Однако он обычно работает медленнее, чем симплекс-метод в реальных небольших задачах.
- Основной прорыв метод Кармаркара (1984) для решения задач Π с использованием метода внутренней точки.
- Методы внутренней точки являются последним словом в этой области. Тем не менее, для типовых задач Π качественные реализации симплекс-метода и методов внутренней точки показывают схожую производительность.

4.4 Пример Klee Minty

Так как число вершин конечно, сходимость алгоритма гарантирована (за исключением вырожденных случаев, которые здесь не рассматриваются). Тем не менее, сходимость может быть экспоненциально медленной из-за потенциально большого числа вершин. Существует пример, в котором симплексметод вынужден пройти через все вершины многогранника.

В следующей задаче симплекс-метод должен проверить 2^n-1 вершин с $x_0=0$.

$$\begin{aligned} \max_{x \in \mathbb{R}^n} 2^{n-1}x_1 + 2^{n-2}x_2 + \dots + 2x_{n-1} + x_n \\ \text{s.t. } x_1 &\leq 5 \\ 4x_1 + x_2 &\leq 25 \\ 8x_1 + 4x_2 + x_3 &\leq 125 \\ \dots \\ 2^n x_1 + 2^{n-1}x_2 + 2^{n-2}x_3 + \dots + x_n &\leq 5^n \\ x &\geq 0 \end{aligned}$$

Average computation time on 3 runs

5 Смешанное целочисленное программирование (МІР)

5.1 Сложность МІР

Рассмотрим следующую задачу смешанного целочисленного программирования (МІР):

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t. } 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \\ x_i &\in \{0, 1\} \quad \forall i \end{split} \tag{3}$$

Упростим её до:

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t. } 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \\ x_i &\in [0, 1] \quad \forall i \end{split} \tag{4}$$

Оптимальное решение

$$x_1=0, x_2=x_3=x_4=1, \text{ и } z=21.$$

Оптимальное решение

$$x_1=x_2=1, x_3=0.5, x_4=0,$$
 и $z=22.$

- ullet Округление $x_3=0$: даёт z=19.
- Округление $x_3 = 1$: недопустимо.
- I MIP намного сложнее, чем ЛП
 - Наивное округление решения, полученного для ЛП-релаксации исходной задачи МІР, может привести к недопустимому или неоптимальному решению.
 - Общая задача МІР является NP-трудной задачей.
 - Однако, если матрица коэффициентов МІР является полностью унимодулярной матрицей, то она может быть решена за полиномиальное время.

5.2 Непредсказуемая сложность МІР

- Трудно предсказать, что будет решено быстро, а что потребует много времени
- **%**Код

Running time to optimality for different MIPs MIPLIB 2017 Collection Set

5.3 Прогресс аппаратного vs программного обеспечения

Что бы вы выбрали, если предположить, что вопрос поставлен корректно (вы можете скомпилировать ПО для любого оборудования, и задача в обоих случаях одна и та же)? Мы рассмотрим период с 1992 по 2023 год.

Аппаратное обеспечение

Решение MIP с использованием старого ПО на современном оборудовании

🌢 Программное обеспечение

Решение MIP с использованием современного ПО на старом оборудовании

 $\approx 1.664.510 \, \text{x}$ ускорение

Закон Мура утверждает, что вычислительная мощность удваивается каждые 18 месяцев.

 $\approx 2.349.000$ х ускорение

Р. Бикси провёл масштабный эксперимент по сравнению производительности всех версий CPLEX с 1992 по 2007 год и измерил общий прогресс ПО (29000 раз), позже (в 2009 году) он стал одним из основателей Gurobi Optimization, которое дало дополнительное ≈ 81 ускорение на MIP.

Оказывается, что если вам нужно решить МІР, лучше использовать старый компьютер и современные методы, чем наоборот, самый новый компьютер и методы начала 1990-х годов!²

5.4 Источники

Теория оптимизации (МАТН4230) курс @ СUНК, профессор Тейюн Цень

6 Задачи на дом

- 1. **Производство чехлов.** [20 баллов] Lyzard Corp производит чехлы для следующих продуктов:
 - телефоны
 - наушники
 - ноутбуки

Производственные мощности компании таковы, что при полной загрузке производства выпуском чехлов для наушников, мы можем произвести 5000 штук в день. Если мы посвятим всю производственную мощность чехлам для телефонов или ноутбуков, мы можем произвести 4000 или 2000 штук в день.

Производственный цикл — одна неделя (6 рабочих дней), и недельную продукцию необходимо разместить на складе до отгрузки. Хранение 1000 чехлов для наушников (включая упаковку) занимает 30 кубических футов. Хранение 1000 чехлов для телефонов (включая упаковку) занимает 50 кубических футов, а 1000 чехлов для ноутбуков — 200 кубических футов. Доступный складской объём — 1500 кубических футов. В силу коммерческих соглашений Lyzard Corp должна поставлять не менее 6000 чехлов для наушников и 4000 чехлов для ноутбуков в неделю для усиления распространения продукта. Отдел маркетинга оценивает, что недельный спрос на чехлы для наушников, телефонов и ноутбуков не превышает 15 000, 12 000 и 8000 единиц соответственно; следовательно, компания не хочет производить больше этих объёмов для указанных видов чехлов.

Наконец, чистая прибыль на один чехол для наушников, чехол для телефона и чехол для ноутбука составляет 5, 7 и 12 долларов соответственно.

Цель — определить производственный график, который максимизирует общий чистый доход.

- 1. Напишите формулировку задачи линейного программирования для этой задачи. Используйте следующие переменные:
 - y_1 = количество чехлов для наушников, произведенных за неделю,
 - y_2 = количество чехлов для телефонов, произведенных за неделю,
 - y_3 = количество чехлов для ноутбуков, произведенных за неделю.

²R. Bixby report Recent study

2. Найдите решение задачи с помощью РуОМО

```
!pip install pyomo
! sudo apt-get install glpk-utils --quiet # GLPK
! sudo apt-get install coinor-cbc --quiet # CoinOR
```

- 3. Проведите анализ чувствительности. Какое ограничение можно ослабить, чтобы увеличить прибыль? Докажите это численно.
- 2. Докажите оптимальность решения [10 баллов]

$$x = \left(\frac{7}{3}, 0, \frac{1}{3}\right)^T$$

для следующей задачи линейного программирования:

$$\begin{split} 9x_1 + 3x_2 + 7x_3 &\to \max_{x \in \mathbb{R}^3} \\ \text{s.t. } 2x_1 + x_2 + 3x_3 &\leq 6 \\ 5x_1 + 4x_2 + x_3 &\leq 12 \\ 3x_3 &\leq 1, \\ x_1, x_2, x_3 &\geq 0 \end{split}$$

В этой задаче нельзя использовать никакие численные алгоритмы.

- 3. [10 баллов] предположим, небольшая мастерская делает деревянные игрушки, где на каждый игрушечный поезд требуется одна заготовка древесины и 2 банки краски, а на каждую игрушечную лодку одна заготовка древесины и 1 банка краски. Прибыль с одного поезда составляет 30 долларов, с одной лодки 20 долларов. Имея запас 80 заготовок древесины и 100 банок краски, какое количество каждой из игрушек следует произвести, чтобы максимизировать прибыль?
 - 1. Запишите оптимизационную задачу в стандартной форме, записывая все ограничения в виде неравенств.
 - 2. Нарисуйте допустимое множество и определите p^* и x^*
 - 3. Другая интерпретация множителей Λ агранжа анализ чувствительности к изменению ограничений. Предположим, что мастерская нашла больше заготовок древесины; λ_k ассоциированная с ограничением на древесину, будет равна частной производной $-p^*$ по отношению к тому, насколько больше древесины стало доступно. Предположим, что запас увеличился на одну заготовку древесины. Используйте λ^* для оценки того, насколько увеличится прибыль, без решения обновленной оптимизационной задачи. Как это согласуется с приведённой выше ценовой интерпретацией множителей Λ агранжа?source