NAME: FARZANA.J REG NO:512219205002 PROJECT: RETAIL STORE STOCK INVENTORY ANALYTICS ASSIGNMENT: 04 1. DOWNLOADING DATASET

Dataset Link: Abalone

2. LOADING THE DATASET

In []:
import numpy as np import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline import
seaborn as sns
In []:
df = pd.read_csv('/content/drive/MyDrive/abalone.csv')
In []:

df.head()

					Wh	ole	Shuck	ed	Viscera	Shell	Out[]:
	Sex	Length Di	ameter	Height	wei	ght	weig	ght	weight	weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15		
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7		
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9		
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10		
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7		

3.PERFORMING VISUALIZATION'S

- (i)Univariate Analysis
- (ii)Bi-Variate Analysis
- (iii) Multi-Variate Analysis
- (i) UNIVARIATE

In[]:
countplot
sns.countplot(data=df, x="Rings")

#boxplot
df.boxplot(column=['Length'], grid=False, color='Red')

#histogram
df.hist(column='Rings', grid=False, edgecolor='Red')

 In []:

In []:

Out[]:

#kdeplot
sns.kdeplot(df['Rings'])

Out[]:

#histplot
sns.histplot(df.Rings,kde=True)

In []:

#histplot
sns.histplot(df['Rings'])

In []:

Out[]:

#heatmap
sns.heatmap(df.isnull())

In []:

#line plot plt.plot(df['Rings'])

#piechart plt.pie(df['Rings'].head(),autopct='%.1f')

In []:

Out[]:

In []:

```
([,
,
,
,
,
],
[Text(0.6111272563215626, 0.9146165735327998, ''),
Text(-0.8270237769092663, 0.725280409515335, ''),
Text(-1.041623153479572, -0.35358337932554523, ''),
Text(-5.149471704824549e-08, -1.09999999999988, ''),
Text(0.9865599777267362, -0.4865176362145796, '')],
[Text(0.33334213981176136, 0.4988817673815271, '31.2'),
Text(-0.4511038783141452, 0.39560749609927365, '14.6'),
Text(-0.5681580837161301, -0.1928636614502974, '18.8'),
Text(-2.8088027480861175e-08, -0.5999999999999, '20.8'),
Text(0.5381236242145833, -0.2653732561170434, '14.6')])
```


(ii) BIVARIATE

In[]:
#countplot
sns.catplot(x="Sex",col="Rings",data=df, kind="count",height=4, aspect=.7)

#boxplot
sns.boxplot(x='Sex',y='Height',data=df,palette='rainbow')

#violin plot
sns.violinplot(x="Sex", y="Length", data=df,palette='rainbow')

#strip plot
sns.stripplot(x="Sex", y="Length", data=df)

In []:

In []:

Out[]:

#scatter plot
sns.scatterplot(x = df["Length"],y = df["Diameter"])

#joint_plot
sns.jointplot(x="Length", y="Diameter", data=df)

In []:

In []:

Out[]:

(III) MULTI-VARIATE

In[]:
#Boxplot fig, ax1 = plt.subplots(figsize=(8,5)) testPlot =
sns.boxplot(ax=ax1, x='Length', y='Diameter', hue='Sex', data=df)
In[]:

sns.pairplot(df)

 $\label{ln} $\ln[]$: fig=plt.figure(figsize=(10,5)) sns.heatmap(df.head().corr(),annot=True)$

Out[]: Length -1 0.99 0.99 0.51 0.86 0.99 0.97 0.98 1 0.55 Diameter -0.99 0.87 1 0.99 0.99 1 0.13 Height -0.86 0.87 1 0.87 0.83 0.92 0.9 0.54 Whole weight -0.99 1 0.87 1 0.99 0.99 1 Shucked weight -1 0.98 0.65 0.97 0.99 0.83 0.99 0.98 Viscera weight -0.98 0.99 0.92 0.99 0.98 1 1 0.48 Shell weight -0.99 1 0.9 1 0.98 1 1 0.5 Rings -0.51 0.55 0.13 0.54 0.65 0.48 0.5 1 Whole weight -Shucked weight -Viscera weight -Shell weight -Height -

4. Perform descriptive statistics on the dataset

 $ln \ [\]:$ df

											Out[]:
	Sex	Length	Diameter	Height	Whole weight		Shuc we	ked ight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15		
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7		
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9		
3	M	0.440	0.365	0.125	(0.5160		2155	0.1140	0.1550	10
	Sex	Length	Diameter	Height		Whole weight	Shuc we	ked ight	Viscera weight	Shell weight	Rings

	4	I	0.330	0.255	0.080	C	0.2050	0.0)895	0.0395	0.0550	7
•												
417	2	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11		
417	73	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10		
417	4	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9		
417	5	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10		
4176		M	0.710	0.555	0.195	1	1.9485	0.9	9455	0.3765	0.4950	12
417	7 row	/s × 9	column	S								
df.	head	l ()										In []:
												Out[]:
	Sex	Len	gth Dia	ameter l	Height	Wh wei		Shuck weig		Viscera weight	Shell weight	Rings
0	M		0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15		
1	M		0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7		
2	F		0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9		
3	M		0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10		
4	I	0	330	0.255	0.080	0.20	050	0.08	95	0.0395	0.055	7
												In []:
di.												
Ran	info aeIn		4177	entrie	s, O to	o 4176	Data					
col	geIn umns	dex:	tal 9	entrie column	s):			<u>a</u>				
col ⁻	geIn umns Co	dex: (to	otal 9	column No:	s): n-Null	Count	Dtyp	-				
col	geIn umns Co Sex	dex: (to	otal 9	column No. 417	s):	Count 	Dtyp	- t				
col: # 0 1 2	geIn umns Co Sex Len Dia	dex: (to	otal 9	column No: 417 417 417	s): n-Null 7 non-1 7 non-1	Count null null null	Dtyp objec float float	- t 64 64				
col: # 0 1	geIn umns Co Sex Len Dia Hei	dex: lumr lumr lumr lumr lumr	otal 9	column No: 417 417 417	s): n-Null 7 non-1 7 non-1 7 non-1 7 non-1	Count null null null	Dtyp objec float	- t 64 64				
col: # 0 1 2 3	geIn umns Co Sex Len Dia Hei Who	dex: (to lumr agth mete ght ble v	otal 9	column No 417 417 417 417 417	s): n-Null 7 non-1 7 non-1 7 non-1 7 non-1 7 non-1	Count null null null null null	Dtyp objec float float	- t 64 64 64 64				

```
Shell weight
                       4177 non-null float64 8 Rings
                                                                              4177 non-
     null
             int64
                        dtypes: float64(7), int64(1), object(1) memory usage:
     293.8+ KB
                                                                                     In []:
df.describe()
                                                                                    Out[]:
                               Height
                                          Whole
                                                   Shucked
                                                                           Shell
          Length
                   Diameter
                                                              Viscera
                                                                                     Rings
                                          weight
                                                    weight
                                                               weight
                                                                         weight
       4177.0000
                  4177.0000
                            4177.0000
                                       4177.0000
                                                  4177.0000
                                                            4177.0000
                                                                       4177.0000
                                                                                 4177.0000
  cou
   nt
             00
                        00
                                  00
                                             00
                                                       00
                                                                  00
                                                                            00
                                                                                       00
 mea
         0.523992
                   0.407881
                                        0.828742
                                                                        0.238831
                             0.139516
                                                   0.359367
                                                             0.180594
                                                                                  9.933684
   n
                                                             0.109614
  std
         0.120093
                             0.041827
                                        0.490389
                                                  0.221963
                                                                        0.139203
                                                                                  3.224169
                   0.099240
         0.075000
                                        0.002000
                                                  0.001000
                                                             0.000500
                                                                        0.001500
                   0.055000
                              0.000000
                                                                                  1.000000
  min
 25%
         0.450000
                   0.350000
                             0.115000
                                        0.441500
                                                   0.186000
                                                             0.093500
                                                                        0.130000
                                                                                  8.000000
 50%
        0.545000
                   0.425000
                             0.140000
                                        0.799500
                                                  0.336000
                                                             0.171000
                                                                        0.234000
                                                                                  9.000000
 75%
        0.615000
                   0.480000
                              0.165000
                                        1.153000
                                                   0.502000
                                                             0.253000
                                                                        0.329000
                                                                                 11.000000
        0.815000
 max
                   0.650000
                              1.130000
                                        2.825500
                                                   1.488000
                                                             0.760000
                                                                        1.005000
                                                                                 29.000000
                                                                                     In []:
numerical features =
                             df.select_dtypes(include
                                                            = [np.number]).columns
categorical_features = df.select_dtypes(include = [object]).columns
                                                                                      In [ ]:
df[numerical features].mean()
                                                                                     Out[]:
                     0.523992
Length
Diameter
                     0.407881
                     0.139516
Height
Whole weight
                     0.828742
Shucked weight
                     0.359367
Viscera weight
                     0.180594
                     0.238831 Rings
Shell weight
9.933684 dtype: float64
                                                                                      In [ ]:
df[numerical features].median()
                                                                                     Out[]:
```

Length

0.5450

```
Diameter 0.4250
Height
                   0.1400
Whole weight 0.7995
Shucked weight 0.3360
Viscera weight 0.1710
Shell weight 0.2340 Rings
9.0000 dtype: float64
                                                                                      In []:
                                              [df[numerical features].quantile(0),
percentage
df[numerical features].quantile(0.25),
df[numerical_features].quantile(0.50),
df[numerical features].quantile(0.75),
df[numerical features].quantile(1)] percentage
                                                                                     Out[]:
[Length
                     0.0750
[Lengum
Diameter
                    0.0550
                    0.0000
 Whole weight 0.0020
Shucked weight 0.0010
 Viscera weight 0.0005
Shell weight 0.0015
Rings 1 0000
                     1.0000
 Rings
 Name: 0.0, dtype: float64, Length 0.4500
 Diameter 0.3500
                    0.1150
 Height
 Whole weight 0.4415
Shucked weight 0.1860
 Viscera weight 0.0935
Shell weight 0.1300
Rings 8 0000
                     8.0000
 Rings
 Name: 0.25, dtype: float64, Length
                                              0.5450
 Diameter 0.4250
Height 0.1400
 Whole weight 0.7995
Shucked weight 0.3360
 Viscera weight 0.1710
Shell weight 0.2340
Rings 9.0000
                     9.0000
 Name: 0.5, dtype: float64, Length
                                                       0.615
 Diameter 0.480
 Height
                      0.165
Whole weight 1.153
Shucked weight 0.502
Viscera weight 0.253
Shell weight 0.329
 Shell weight
 Rings
                     11.000
                                              0.8150
 Name: 0.75, dtype: float64, Length
 Diameter 0.6500
                       1.1300
 Height
 Whole weight 2.8255
Shucked weight 1.4880
Viscera weight 0.7600
Shell weight 1.0050
 Rings
                     29.0000
```

df[numerical_features].value_counts()

_	Diameter	_	Whole weight	Shucked weight	Viscera	Out[]: weight She
_	ht Rings		0.0000	0.0010	0 0005	0 0
0.075 015	0.055 1	0.010	0.0020	0.0010	0.0005	0.0
0.590	0.465	0.155	1.1360	0.5245	0.2615	0.2
750	11	1				
		0.165	1.1150	0.5165	0.2730	0.2
750	10	1	1 0405	0 4625	0 0400	0 0
700	10	0.170 1	1.0425	0.4635	0.2400	0.2
700	10	0.195	1.0885	0.3685	0.1870	0.3
750	17	1				
	0 0 0 0	0 155	0.0600	0 4100	0 0455	0 0
0.485 365	0.370 9	0.155 1	0.9680	0.4190	0.2455	0.2
303	0.375	0.110	0.4640	0.2015	0.0900	0.1
490	8	1				
		0.125	0.5620	0.2505	0.1345	0.1
525	8	1				
570	8	0.130 1	0.5535	0.2660	0.1120	0.1
0.815	0.650	0.250	2.2550	0.8905	0.4200	0.7
975	14	1		· • • • • • • • • • • • • • • • • • • •	0.1200	. ,
Length:	4177, dt	ype: int6	4			
						In []·

In []:

df[numerical_features].mode()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Out[]: Rings
0	0.550	0.45	0.15	0.2225	0.175	0.1715	0.275	9.0
1	0.625	NaN	NaN	NaN	NaN	NaN	NaN	NaN

In []:

df[numerical_features].std()

Length	0.120093
Diameter	0.099240
Height	0.041827
Whole weight	0.490389
Shucked weight	0.221963
Viscera weight	0.109614
Shell weight	0.139203
Rings	3.224169 dtype:
float64	

In []: df[numerical features].var() 0.014422 Length Out[]: Diameter 0.009849 Height 0.001750 Whole weight 0.240481 Shucked weight 0.049268 Viscera weight 0.012015 Shell weight 0.019377 10.395266 Rings dtype: float64 df[numerical features].skew() In []: -0.639873 Length Out[]: Diameter -0.609198 Height 3.128817 Whole weight 0.530959 Shucked weight 0.719098 Viscera weight 0.591852 Shell weight 0.620927 Rings 1.114102 dtype: float64 df[numerical features].kurt() In []: Length 0.064621 Out[]: Diameter -0.045476 76.025509 Height Whole weight -0.023644 Shucked weight 0.595124 Viscera weight 0.084012 Shell weight 0.531926 Rings 2.330687 dtype: float64

5. Check for Missing values and deal with them

False

False

False

2 False False

df.is	null()						In []: Out[]:	
	Sex	Length	Diameter	Height	Whole weight	Shucked wei	ght Viscera weight	Shell weight	Rings
0	False	False	False	False	False	False	False	False	False
1	False Sex	False	False Diameter	False Height	False Whole	False Shucked	False Viscera	False Shell	False
	sex	Length	Diameter	neignt	weight	weight	weight	weight	Rings

False

False

False

False

3	False	False	False	False	False	False	False	False	False		
4	False	False	False	False	False	False	False	False	False		
4172	False	False	False	False	False	False	False	False	False		
4173	False	False	False	False	False	False	False	False	False		
4174	False	False	False	False	False	False	False	False	False		
4175	False	False	False	False	False	False	False	False	False		
4176	False	False	Fals	se Fa	lse	False		False	False	False	False
4177 r	ows × 9	columns	3								
df.is	null()	.any()									In []:
Shuck Visce Shell	ter t weigh ed wei ra wei weigh	.ght .ght	False False False False False False		5						Out[]:
		.sum()									In []:
Shuck Visce Shell Rings dtype	ter t weigh ed wei ra wei weigh : int6	ght ght it	0 0 0 0 0 0								Out[]:
o. Find	ı tne ou	itliers an	ia repla	ice tner	n outhe	гS					In []:
#1000	+ h										

#length

Out[]:

```
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Length
```

```
In []:
q1 = df['Length'].quantile(0.25) q2 = df['Length'].quantile(0.75) iqr = q2-
q1 q1, q2, iqr
                                                                       Out[]:
(0.45, 0.615, 0.1649999999999999)
                                                                        In []:
upper limit = q2 + (1.5 * iqr) lower limit = q1 - (1.5 * iqr) lower limit,
upper limit
                                                                       Out[]:
(0.2025000000000004, 0.862499999999999)
                                                                        In [ ]:
new df = df.loc[(df['Length'] <= upper limit) & (df['Length'] >=
lower limit)]
print('before removing outliers:', len(df))
print('after removing outliers:',len(new df))
print('outliers:', len(df)-len(new df))
before removing outliers: 4177 after removing
outliers: 4128 outliers: 49
                                                                        In []:
new_df = df.copy() new_df.loc[(new_df['Length']>upper_limit), 'Length'] =
upper_limit new_df.loc[(new_df['Length'] < lower_limit), 'Length']</pre>
lower limit
                                                                        In [ ]:
sns.boxplot(x=new df['Length'])
```


#Diameter
sns.boxplot(x=df['Diameter'])

In []:

Out[]:

 $\label{eq:ln} $\ln[]:$ q1 = df['Diameter'].quantile(0.25) q2 = df['Diameter'].quantile(0.75) iqr = q2-q1 q1, q2, iqr$

Out[]:

(0.45, 0.615, 0.1649999999999999)

In []:

upper_limit = q2 + (1.5 * iqr) lower_limit = q1 - (1.5 * iqr) lower_limit, upper limit

Out[]:

(0.2025000000000004, 0.862499999999999)

In []:

new_df = df.loc[(df['Diameter'] <= upper_limit) & (df['Diameter'] >=
lower_limit)] print('before removing outliers:', len(df)) print('after
removing outliers:', len(new_df)) print('outliers:', len(df)-len(new_df))
before removing outliers: 4177 after removing outliers: 4027 outliers: 150

In []:

new_df = df.copy() new_df.loc[(new_df['Diameter']>upper_limit), 'Diameter']
= upper_limit new_df.loc[(new_df['Diameter']<lower_limit), 'Diameter'] =
lower limit</pre>

/usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py:1817: Settin gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copyself. setitem single column(loc, value, pi)

In []:

sns.boxplot(x=new df['Diameter'])

Out[]:

In []:

#Height
sns.boxplot(x=df['Height'])


```
Height
                                                                   In [ ]:
q1 = df['Height'].quantile(0.25) q2 = df['Height'].quantile(0.75) iqr = q2-
q1 q1, q2, iqr
                                                                  Out[]:
(0.45, 0.615, 0.1649999999999999)
                                                                   In []:
upper limit = q2 + (1.5 * iqr) lower limit
= q1 - (1.5 * iqr) lower limit,
upper limit
                                                                  Out[]:
(0.2025000000000004, 0.862499999999999)
                                                                   In []:
new df = df.loc[(df['Height'] <= upper limit) & (df['Height']</pre>
lower limit)] print('before removing outliers:', len(df)) print('after
removing outliers:',len(new df)) print('outliers:', len(df)-len(new df))
before removing outliers: 4177 after removing outliers: 153 outliers: 4024
new_df = df.copy() new_df.loc[(new_df['Height']>upper_limit), 'Height'] =
              upper limit
lower_limit
/usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py:1817: Settin
gWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs

In []:

/stable/user guide/indexing.html#returning-a-view-versus-a-copy

self. setitem single column(loc, value, pi)

sns.boxplot(x=new df['Height'])

In []:

#Whole Weight sns.boxplot(x=df['Whole
weight'])

Out[]:

In []:

q1 = df['Whole weight'].quantile(0.25) q2 = df['Whole weight'].quantile(0.75) iqr = q2-q1 q1, q2, iqr

Out[]:

(0.45, 0.615, 0.1649999999999999)

```
In [ ]:
upper limit = q2 + (1.5 * iqr) lower limit = q1 - (1.5 * iqr) lower limit,
upper limit
                                                                         Out[]:
(0.2025000000000004, 0.862499999999999)
                                                                          In [ ]:
new df = df.loc[(df['Whole weight'] <= upper limit) & (df['Whole weight']</pre>
>= lower limit)] print('before removing
outliers:', len(df)) print('after removing
outliers:',len(new df)) print('outliers:',
len(df)-len(new df)) before removing
outliers: 4177 after removing outliers: 1872
outliers: 2305
                                                                          In []:
new_df = df.copy() new_df.loc[(new_df['Whole weight']>upper_limit), 'Whole
weight'] = upper_limit new_df.loc[(new_df['Whole weight'] < lower_limit),</pre>
```

/usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py:1817: Settin gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copyself. setitem single column(loc, value, pi)

In []:

sns.boxplot(x=new df['Whole weight'])

'Whole weight'] = lower limit

Out[]:

In []:

#Shucked weight
sns.boxplot(x=df['Shucked weight'])

Out[]:

iqr = q2-q1 q1, q2, iqr

Out[]:

In []:

(0.45, 0.615, 0.1649999999999999)

In []

upper_limit = q2 + (1.5 * iqr) lower_limit = q1 - (1.5 * iqr) lower_limit, upper_limit

Out[]:

(0.2025000000000004, 0.862499999999999)

In []:

new_df = df.loc[(df['Shucked weight'] <= upper_limit) & (df['Shucked weight']
>= lower_limit)] print('before removing outliers:', len(df)) print('after
removing outliers:', len(new_df)) print('outliers:', len(df)-len(new_df))
before removing outliers: 4177 after removing outliers: 2900 outliers: 1277

In []

new_df = df.copy() new_df.loc[(new_df['Shucked weight']>upper_limit),
'Shucked weight'] = upper_limit new_df.loc[(new_df['Shucked weight']<lower_limit), 'Shucked weight'] = lower_limit</pre>

/usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py:1817: Settin gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copyself. setitem single column(loc, value, pi)

In []:

In []:

#Viscera weight
sns.boxplot(x=df['Viscera weight'])

Out[]:

In []:
df['Viscera

q1 = df['Viscera weight'].quantile(0.25) weight'].quantile(0.75) iqr = q2-q1 q1, q2, iqr

q2

```
(0.45, 0.615, 0.1649999999999999)
```

upper_limit = q2 + (1.5 * iqr) lower_limit
= q1 - (1.5 * iqr) lower_limit,
upper_limit

Out[]:

In []:

(0.2025000000000004, 0.862499999999999)

In []:

new_df = df.loc[(df['Viscera weight'] <= upper_limit) & (df['Viscera weight']
>= lower_limit)] print('before removing outliers:', len(df)) print('after
removing outliers:', len(new_df)) print('outliers:', len(df)-len(new_df))
before removing outliers: 4177 after removing outliers: 1646 outliers: 2531

In []:

new_df = df.copy() new_df.loc[(new_df['Viscera weight']>upper_limit),
'Viscera weight'] = upper_limit new_df.loc[(new_df['Viscera weight']<lower_limit), 'Viscera weight'] = lower_limit</pre>

/usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py:1817: Settin gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copyself. setitem single column(loc, value, pi)

In []:

sns.boxplot(x=new df['Viscera weight'])

Out[]:

In []:

#shell weight
sns.boxplot(x=df['Shell weight'])

Out[]:


```
q1 = df['Shell weight'].quantile(0.25) q2 = df['Shell weight'].quantile(0.75)
iqr = q2-q1 q1, q2, iqr
                                                                         Out[]:
(0.45, 0.615, 0.1649999999999999)
                                                                         In []:
upper limit = q2 + (1.5 * iqr) lower limit = q1 - (1.5 * iqr) lower limit,
upper_limit
                                                                         Out[]:
(0.2025000000000004, 0.862499999999999)
                                                                         In [ ]:
new df = df.loc[(df['Shell weight'] <= upper limit) & (df['Shell weight']</pre>
>= lower limit)] print('before removing
outliers:', len(df)) print('after removing
outliers:',len(new df)) print('outliers:',
len(df)-len(new df)) before removing
outliers: 4177 after removing outliers: 2373
outliers: 1804
                                                                         In []:
new df = df.copy() new df.loc[(new df['Shell weight']>upper limit), 'Shell
weight'] = upper limit new df.loc[(new df['Shell weight'] < lower limit),</pre>
```

/usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py:1817: Settin gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

'Shell weight'] = lower limit

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copyself._setitem_single_column(loc, value, pi)

Out[]:

In []:

#Rings
sns.boxplot(x=df['Rings'])

Out[]:

In []:

q1 = df['Rings'].quantile(0.25) q2 = df['Rings'].quantile(0.75) iqr = q2-q1 q1, q2, iqr

```
Out[]:
(0.45, 0.615, 0.1649999999999999)
                                                                       In [ ]:
upper_limit = q2 + (1.5 * iqr) lower_limit = q1 - (1.5 * iqr) lower_limit,
upper limit
                                                                       Out[]:
(0.2025000000000004, 0.862499999999999)
                                                                        In []:
new df = df.loc[(df['Rings'] <= upper limit) & (df['Rings'] >= lower limit)]
print('before removing outliers:', len(df)) print('after
                        print('outliers:', len(df)-len(new df))
outliers:',len(new df))
removing outliers: 4177 after removing outliers: 0 outliers: 4177
                                                                       In [ ]:
new df = df.copy() new df.loc[(new df['Rings']>upper limit), 'Rings'] =
upper limit new df.loc[(new df['Rings'] < lower limit), 'Rings'] = lower limit
                                                                     In [219]:
sns.boxplot(x=new df['Rings'])
                                                                    Out[219]:
```


7. Check for Categorical columns and perform encoding

In []: df['Sex'].replace({'M':1,'F':0,'I':2},inplace=True)

df

Out[]:

Sex Length Diameter Height Whole Shucked Viscera Shell weight Weight Weight Rings

0 M 0.455 0.365 0.095 0.5140 0.2245 0.1010 0.1500 15

1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7		
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9		
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10		
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7		
•••						•••					
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11		
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10		
4174	M	0.600	0.475	0.205		1.1760	0.5	5255	0.2875	0.3080	9
					,	Whole	Shuo	cked	Viscera	Shell	
	Sex	Length	Diameter	Height	,	weight	we	eight	weight	weight	Rings
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10		
4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12		
4177	row	s × 9 colı	umns								
from	sklea	arn.pre	process	ing im	ort L	abelEn	coder,	OneHot	Encoder,	StandardS	In[]: Scaler
label label	_		t_trans:	form(d:		belEnc				df['	<pre>In []: Sex']=</pre>
											O+[].
											Out[]:
	Sex	Length	Diameter	Height		Whole weight	Shuc we	cked eight	Viscera weight	Shell weight	Rings

											Out[]:
	Sex	Length	Diameter	Height		Whole veight	Shuc we	ked ight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15		
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7		
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9		
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10		
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7		

4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11		
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10		
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9		
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10		
4176	M	0.710	0.555	0.195	-	1.9485	0.9	9455	0.3765	0.4950	12
4177 ro	ws × 9	9 column	S								
											In []:
enc =		otEncod	ler(dro	p='fir	st')					=	
_		me(enc.	fit_tr	ansfor	m(df[['Sex']]).toa	rray())		
=df.jc		nc_df)									

	Sex	Length Di	iameter	Height	Wh wei	ole ght	Shuck weig		Viscera weight	Shell weight	Out[]:
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15		
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7		
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9		
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10		
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7		

${\bf 8.\,Split\,the\,data\,into\,dependent\,and\,independent\,variables}$

x = df.iloc[:,1:8] x

0.350 0.265

Out[]:

Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight

0.455 0.365 0.095 0.5140 0.2245 0.1010 0.1500

0.2255 0.0995 0.0485 0.0700

In []:

2 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.2100

0.090

```
3
        0.440 0.365
                      0.330 0.255
                      0.080
                             0.2050 0.0895 0.0395 0.0550
                             ...
                                          ...
                                                         •••
                                                                       •••
4172
                                       0.8870
         0.565
                   0.450
                          0.165
                                                      0.3700
                                                                    0.2390
                                                                                0.2490
               Diameter
                         Height Whole weight Shucked weight Viscera weight Shell weight
 4173
                             0.9660 \quad 0.4390 \quad 0.2145 \quad 0.2605
        0.590 0.440
                      0.135
                      0.205
 4174
        0.600 0.475
                             1.1760 0.5255 0.2875 0.3080
 4175
        0.625 \quad 0.485
                      0.150
                             1.0945 0.5310 0.2610 0.2960
4176
         0.710
                   0.555
                          0.195
                                       1.9485
                                                      0.9455
                                                                    0.3765
                                                                                0.4950
4177 rows × 7 columns
                                                                                        In []:
y=df.iloc[:,8] y
                                                                                       Out[]:
0
           15
1
           7
2
           9
3
           10
4
           7
4172
           11
4173
           10
4174
4175
           10
4176
           12
Name: Rings, Length: 4177, dtype: int64
9. Scale the independent variables
                                                                                        In []:
scale = StandardScaler() scaledX = scale.fit transform(x)
print(scaledX)
[[-0.57455813 \quad -0.43214879 \quad -1.06442415 \quad \dots \quad -0.60768536 \quad -0.72621157]
0.63821689]
 \begin{bmatrix} -1.44898585 & -1.439929 & -1.18397831 & \dots & -1.17090984 & -1.20522124 \end{bmatrix}
1.21298732]
 [ 0.05003309 \quad 0.12213032 \quad -0.10799087 \quad \dots \quad -0.4634999 ]
                                                                        -0.35668983
0.20713907]
                  0.67640943 1.56576738 ... 0.74855917 0.97541324
 0.6329849
   0.49695471]
```

```
[ 0.84118198    0.77718745    0.25067161    ...    0.77334105    0.73362741
0.410739141
 1.84048058]]
10. Split the data into training and testing
                                                                In [ ]:
from sklearn.model selection import train test split
                                                                In [ ]:
x_train, x_test, y_train, y_test = train_test_split(x,y, test size = 0.2)
                                                                In []:
print(x.shape, x train.shape, x test.shape, y train.shape, y test.shape)
(4177, 7) (3341, 7) (836, 7) (3341,) (836,)
11. Build the Model
                                                                In [ ]:
from sklearn.linear model import LinearRegression
                                                                In []:
linearmodel = LinearRegression()
12. Train the Model
                                                                In [ ]:
linearmodel.fit(x_train, y_train)
                                                                Out[]:
LinearRegression()
13. Test the Model
                                                                In []:
                     y train pred
             =
linearmodel.predict(x test)
                                                                In [ ]:
y_test_pred
                                                               Out[ ]:
array([ 8.70365574, 10.39057789, 9.40293106, 10.68158892,
                                                          7.57464889,
4.79636131, 8.67332668, 14.02754984, 9.87864789,
                                                          7.25750569,
10.85233616,
              8.50778462,
                            7.15078854,
                                          9.32393986,
                                                          5.76619464,
7.49797457,
                           6.2241946 ,
             5.76688568,
                                           6.18696811,
                                                         9.25884721,
                                        11.69986211,
11.5681706 , 12.13604097, 10.98303848,
                                                         7.83702624,
9.31462136, 10.40327259,
                           6.96378017,
                                         5.81839663, 12.26690446,
10.86817082,
              9.02369275,
                            8.12760588,
                                          8.83313399,
                                                         7.73292169,
             6.07309496,
                                         9.63507119,
                            7.88643423,
                                                         4.7209354
6.91592262,
11.34436294,
             10.57283751, 10.49665213,
                                                        12.28423666,
                                          12.88894543,
8.12974709,
              7.58999374,
                            9.08527348, 10.6411015 ,
                                                         5.89349286,
             7.24999833,
8.30141881,
                            8.25347176,
                                          9.08328759,
                                                         8.99010706,
9.10730271, 14.52308851,
                           9.41403346, 10.23775522,
                                                        8.0477514
9.70375626, 11.03640036,
                           9.5435852 , 10.8850895 ,
                                                         8.08267684,
                                           6.70117135,
                           7.2778873 ,
10.57414181, 11.41222985,
                                                         9.80118094,
             6.50572362, 11.70751204,
7.10712737,
                                          8.76972122,
                                                         6.96654951,
                            7.458727
6.47886711,
             6.93951927,
                                          11.01554321, 10.36006982,
                                         12.29038942,
              9.16579141,
7.61624674,
                             8.04761481,
                                                         6.20248568,
10.8963334 , 10.28472972, 14.8411801 , 13.2740434 ,
                                                         7.49258174,
```

```
13.25230426, 10.63162313, 11.48753783, 9.12967209,
                                                                9.03018002,
                               8.36808156,
               8.82633807,
                                                8.1866462 , 10.24960421,
10.45067022,
                              8.300001

9.7728592 , 7.300011

9.16270242,
                                                7.38834192, 8.51824041,
10.21056392, 10.72719629,
10.75769027,11.85414492,12.87270151,9.16270242,7.67461895,11.76874831,10.16330431,10.05005681,
             11.85414492, 12.072

11.76874831, 10.16330431, 10.05005681, 9.1479746 , 10.34868794, 10.84331115, 7.11114666246, 12.38530452,
                                                                9.51670308,
                                                               7.357215
9.62637671,
12.41355527, 14.38136393, 11.14666246, 12.38530452,
                                                                 7.54358072,
                                              7.94462274,
9.40835468,
              9.88315837, 12.11159133,
                                                                 7.47162288,
                                               9.73850771,
                                                                5.83375835,
8.90032367, 10.43913282, 9.07962681,
8.36362646, 10.9307715 , 6.82609483, 8.29060331, 9.69949734,
        8.89587123, 5.05902985, 12.66596704, 9.28710853, 12.5326091,
        8.79671925, 9.49859385, 11.96474424, 11.52223318, 9.60091683,
        8.53619584, 15.32591088, 14.00301768, 8.97484674, 13.05508044,
6.2030136 , 9.21207997, 7.936351 , 10.16988917, 11.47842671,
                                           9.23986585,
               9.75499741, 10.27332107,
                                                          5.9322595 ,
5.09784281,
7.46631576,
12.28408611, 7.92151313, 15.25635443, 8.21425868,
8.64249299, 11.10284085, 7.78901197, 8.83090234, 9.1646292,
        7.70480134, 9.88123776, 8.25763834, 10.09331237, 9.23862615,
        7.90180974, 13.23613166, 9.26144527, 13.1751266 , 10.4482136 ,
        8.92745413, 11.50202025, 8.43899771, 5.35863306, 11.15256721,
       12.0758802 , 9.72580288, 8.61229334, 10.91349829, 14.60692034,
9.87282727, 9.54625507, 8.67259558, 11.2890254 , 13.33908019,
              8.69347318,
                              9.8305109 , 10.23686184, 11.2406998 ,
11.02243873,
10.17177327,13.30614216,7.20501867,11.59622094,11.79121352,8.89281728,8.17336191,6.66181377,
                              7.20501867, 11.59622094, 6.78619841,
                                                            7.88222639,
11.5961669 ,
                5.62055863, 10.95213761, 10.42565767,
                                                            6.91986363,
               9.13631704, 10.60651687, 10.57288312, 12.48198032,
8.22808635,
10.72400654, 7.94057143, 8.13184549, 9.72402567, 6.08561859, 10.35685691, 11.45185208, 6.12270113, 7.96196924, 9.67026482, 8.41039006, 7.86133336, 13.70955472, 9.71358231, 12.30386605,
9.45850521,
              8.75621392, 7.18052467, 11.26230795, 10.62351901,
13.39193134,10.66694535,11.24857396,7.31369597,11.34385404,5.25197892,9.59055659,16.84346196,11.16831052,11.62804782,
9.53833939, 10.24000367, 8.6230046 , 9.30733633, 12.46773085,
13.64994481, 9.82838202, 10.0234437 , 12.99484459, 10.45651057,
13.40761272,
               8.77910533, 12.33978409, 10.67709288,
                                                            5.63536671,
9.94034672, 7.14256339,
                             9.12794164, 9.21566578,
                                                            5.80513006,
10.6905346 , 11.97328277, 8.30889084, 10.60075702, 14.67068785,
11.09720556, 8.4771601 ,
                               6.21293923, 8.24916844, 10.21094152,
7.51466157, 11.06498401,
                              7.13865753, 15.10717164, 10.62721341,
10.7494065 , 9.36798918, 10.84697015,
                                            6.19124128,
                                                            9.81320126,
             12.25522958, 10.0180955 , 10.25697378, 10.63826128,
8.87149442,
8.83487496, 8.92686532, 10.00754949, 7.30269568, 12.07507174,
11.93297256, 10.38317051, 7.18057693,
                                            8.41307958,
                                                            8.63722592,
              9.24164041,
7.14923596,
                              6.20876584, 13.52351759, 10.87929999,
10.40607483, 13.05707136, 12.39494182, 11.75230309, 12.42380122,
              9.37433398,7.94309167,8.96190867,11.77951614,9.16274124,12.18049248,
9.49893263,
                                             8.96190867,
                                                            7.62962106,
10.85825406, 11.77951614,
                                                            7.75075404,
7.18890683,
              7.57054635, 13.37668116, 7.99159672, 11.59558707,
               8.65031741, 11.19050069, 12.56526943, 10.34615758,
9.33023381,
10.14710918,13.6822781, 12.17950611,5.05668754,10.10464104,9.53755259,9.472615, 10.20387222,6.9805034, 10.36745308,
8.5797176 , 10.0305631 , 9.85976851, 14.7588884 , 10.33370292,
11.95220189, 10.73191172,
                             6.24084469, 7.94205021, 13.2574999 ,
7.4230356 , 9.69102779, 10.19306655, 7.69531367, 8.78069463,
```

```
9.64295733, 10.25986894, 10.43382077, 7.21469625, 9.44012819, 9.03507192, 10.31114951, 6.41797086,
5.98531412,
11.13358543,
               9.44012819, 9.03507192, 10.31114951,
7.45384674, 10.59417698, 8.63488075, 14.02982444, 10.65890459,
9.86162823, 11.31451071, 12.59497748, 10.03074457, 7.334356
11.35510583, 11.90079632, 8.12093928, 10.94441475, 9.51383607,
             7.69098049, 10.88432917, 27.92119074, 9.99772607, 12.01395884, 8.46372125,
                                                              7.30574213,
8.61736287,
12.16580075,
                                                             7.9846562 ,
9.20938127, 10.81645842, 7.48697286, 7.84853701, 9.87249706,
12.42241391, 11.34890737, 10.50687099, 10.8923027 , 12.4523061 ,
7.71112748, 6.89139266, 9.07208527, 13.33541534, 8.6100613, 9.73762238, 8.02254027, 16.21679373, 6.7788581, 9.61586488,
8.47538654, 12.61070772, 7.38898974, 7.94305825, 7.7085148,
       10.61500173, 11.34651659, 13.33513797, 7.60626229, 20.23054277,
        8.24406194, 10.52400655, 9.0689655, 10.45315667, 12.47231165,
        8.91146384, 8.67365154, 9.72583367, 12.30204789, 13.6415676,
        7.32722295, 8.25658547, 8.17855799, 11.49287729, 8.80588627,
       12.25548643, 11.55860069, 10.76620005, 9.16792817, 13.80701665,
8.25280724, 8.35282716, 7.55768412, 8.22063676, 9.44288372,
       10.01885335, 7.49525516, 8.37458402, 10.92937369, 10.67946102,
       13.86376797, 11.71283279, 5.9284063, 9.59255804, 7.57785783,
       11.75865845, 10.29701554, 8.54738043, 7.89933844, 8.3008639,
       12.80214221, 7.16951618, 11.69354963, 9.23287449, 10.60070989,
        9.42484143, 13.39247208, 9.8366729, 9.79308612, 13.00791904,
8.63395954, 8.02483998, 10.992329 , 14.02775855, 10.6388897 ,
              9.46875832, 10.11163209, 9.7990431 , 13.32735769,
8.69134756,
              9.26216515, 10.95117648,
                                             7.64664774,
                                                              9.26343679,
7.15836617,
               8.72541669, 8.42067421, 11.30720778, 10.19609633,
9.24247868,
8.51792098, 13.03157897,
                              8.10294818, 9.67571952, 10.06232263, 7.67606892, 7.37637401, 8.98490732,
                                              9.67571952, 10.06232263,
8.75697612,8.05067885,7.67606892,7.37637401,10.67321551,12.18030627,9.19320718,8.25611386,
                                                              9.18938137,
9.80104014, 10.7614641 , 14.97174085, 9.90863455, 8.49861268, 12.80830169, 9.12888331, 13.22419566, 9.38141091, 9.03719535, 11.28676378, 9.57368493, 14.15810132, 13.15299064, 13.64289594,
9.14271472, 12.52896848,
                              9.85253211, 10.90763996, 11.91247162,
6.9643063 , 7.04873926, 13.51089032, 8.52621657, 11.92054006,
               9.35432381,
                               6.75579742,
                                               6.92536014, 11.06993434,
12.85548554,
5.09516196, 11.14055981, 10.02254804, 11.46143106, 11.6157383 ,
10.70537981, 11.34252457, 10.32964891, 6.40872558, 9.5230551 ,
                                                             8.93050687,
9.8754752 , 6.64957542, 11.08423954, 6.27526737,
7.0837962 , 10.98569946, 9.07710537, 6.54388388, 6.50684135,
                             9.62810419,9.81485944,14.28187178,8.06624002,9.51162406,9.37527001,
13.92665521, 10.73419412,
                                              9.81485944, 14.28187178,
9.74851442, 7.62655355,
               9.05904232, 12.32
8.86368526, 10.75579173, 6.46670957, 7.59767402, 9.94794478,
              9.05904232, 12.31612411, 15.07632548, 11.07945243,
6.28845065,
8.14721185,
                                              6.46670957, 11.46459375,
7.89802408, 10.07334973,
                               7.59/6/40_,
7.63153484, 8./8302_
7016846, 5.65234174,
                                                              7.25564624,
11.34876863, 9.26227404,
                                               8.78362146, 16.25490427,
                             9.76916846,
7.57095315, 13.33206439,
                                                              9.98095345,
5.76281777, 5.75660541, 10.65527206,
                                             9.52082376, 9.3706415 ,
11.20512028,
              7.20216322, 13.40362951, 12.6176809 , 14.53097291,
7.3174256 , 11.16593252, 12.91316997, 7.21956333, 5.52607635, 10.70583405, 9.26550355, 11.67839413, 8.83346747, 9.35654145,
11.97737999, 10.96765731, 7.08959727, 11.88322075, 11.06567064,
9.14221778, 10.10220632, 10.70128798, 6.76121354,
                                                             7.20030452,
              7.60807592, 11.11285058,
                                             7.55727594, 11.97387227,
9.38367229,
10.70204789, 10.6971933 , 8.84485399, 9.69472299, 10.25602577,
```

```
9.34222692, 9.31530758,
14.82340733, 10.38255133,
                                                                                                                      9.13635225,
11.96187819,
                             6.01899495, 11.05520058,
                                                                                     8.73866757,
                                                                                                                        7.23769593,
10.9548119 , 10.0750424 , 10.74864677, 8.25101715, 9.48470442,
                                                         6.53765429, 9.08694898,
5.00488978,
                           6.63414798,
                                                                                                                      8.49684584,
                                                           9.06168902, 9.62601824, 11.51447553, 10.50426586,
10.89150004, 7.36918906,
8.75334046, 11.68484866, 13.58737376,
8.75334040, 11.0012

8.715134 , 13.98844699, 4.86099936, 11.002027233, 1.29164479, 7.12948081, 9.17697908, 8.66316832, 11.29164479, 9.76572868,
15.08124346, 11.80449459, 10.35175054, 10.5595011 ,
                           9.12745562, 11.3516656 , 15.99314921,
                                                                                                                       5.89453211,
9.65425563,
                              8.92167285, 10.87637108, 13.90625374, 10.72846676,
10.87219476,
10.04208441, 10.24592078, 9.80027847, 13.27309825, 12.05243747, 10.63385363, 13.083792 , 7.60719341, 8.99745186, 13.20899991,
12.5576303 , 11.40667332, 11.23953261, 17.23896893, 7.8531285 ,
                8.191757 , 9.48583202, 15.80286428, 11.94151263, 8.67917291,
                7.38030287, 10.56161759, 9.5067371, 10.90686841, 9.52354238,
              10.54064953, 12.76740763, 8.52309521, 2.53887209, 10.16614663,
                7.92323818, 9.19001237, 8.68823114, 8.63952788, 8.6022473 ,
12.43962035, 7.73106395, 6.83365054, 14.94736901, 8.61041768,
              10.17368467, 12.07550847, 10.94804622, 8.71201489, 7.51064335,
              11.60606233, 10.05915732, 7.69003357, 10.48004644, 10.8305406,
                7.22124017, 12.05438669, 8.47989195, 14.50815848, 6.31579116,
9.10492219, 10.63327037, 7.24350042, 11.10935413, 12.34589553,
                6.37506037, 5.24088619, 10.72498267, 7.9826483 , 7.85438097,
              15.50153207, 8.46753475, 8.42673243, 9.36593052, 9.47760882,

      10.90846718,
      9.48600976,
      11.37847124,
      6.34064151,
      12.22938785,

      9.44902029,
      16.78152113,
      12.63696271,
      6.47978491,
      11.74947815,

      9.10400676,
      14.6031103,
      16.66448936,
      8.64201185,
      12.33070086,

12.51770165, 11.29289171, 10.53877233, 12.81078631, 11.8829119
10.06782342, 7.75963449, 10.65794249, 4.91459767,
                                                                                                                      9.56125876,
10.68400691,
                              7.92487953, 8.61887237, 8.37453113, 10.68875889,
10.68400091, 7.562101595, 5.40351361, 6.13674007, 8.55510193, 5.11.17925161, 9.78725504, 12.07803016, 7.56853355, 6.76528288, 10.40005699, 11.76702009, 8.48417017, 13.91588076, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.000056999, 10.00005699, 10.00005699, 10.000056999, 10.000056999, 10.000056999, 10.00005699, 10.00005699, 10.00005699, 10.00005699, 10.000
9.28636427,
                             9.17181811, 12.22486462, 10.46930302, 10.88293772,
                           8.04262297, 9.49841394, 9.72765238, 12.57409792, 8.56749496, 12.93945663,
                                                                                         9.72765238, 11.91317785,
8.06717046,
9.48780322, 12.57409792,
                                                                                                                       8.40072518,
9.26340918, 7.15536791, 7.33131294, 9.40044306, 13.30425143,
                7.52907068, 12.11786607, 9.44871531, 12.64268462, 7.73734429,
              10.801407061)
14. Measure the performance using Metrics
```

```
In [ ]:
from sklearn.metrics import mean absolute error, mean squared error s =
mean squared error(y train, y train pred) print('Mean Squared error of
training set :%2f'%s)
                                                                      In [ ]:
p = mean squared error(y test, y test pred) print('Mean Squared error of
testing set :%2f'%p)
Mean Squared error of testing set :4.869245
```

In []:

Build the Model

from sklearn.ensemble import RandomForestRegressor

```
In []:
                    RandomForestRegressor(max depth=2,
                                                         random state=0,
n estimators=100)
                                                                            In []:
rfr.fit(x train, y train) rfr.fit(x test, y test)
                                                                           Out[]:
RandomForestRegressor(max depth=2, random state=0)
                                                                            In []:
#Test the model y train pred =
rfr.predict(x_train) y_test_pred =
rfr.predict(x test)
                                                                            In []:
#measure the performance using metrics rfr.score(x test,
y_test)
                                                                           Out[]:
0.4497726034378102
K Neighbors Regression
                                                                            In [ ]:
#Build the model
from sklearn.neighbors import KNeighborsRegressor
                                                                            In []:
knr = KNeighborsRegressor(n neighbors =4 )
                                                                            In []:
#Train the model knr.fit(x train,
y train) knr.fit(x test, y test)
                                                                           Out[]:
KNeighborsRegressor(n neighbors=4)
                                                                            In []:
#Test the model y_train_pred =
knr.predict(x train) y test pred =
knr.predict(x test)
                                                                            In []:
#Measure the performance using Metrics
knr.score(x train, y train)
                                                                           Out[]:
0.458628955466746
Decision Tree Regression
                                                                            In []:
#Build the model
from sklearn.tree import DecisionTreeRegressor
dtr = DecisionTreeRegressor(random_state=0)
                                                                            In []:
#Train the model dtr.fit(x test,y test)
                                                                           Out[]:
DecisionTreeRegressor(random state=0)
```

Test the model

y_train_pred = dtr.predict(x_train) y_test_pred = dtr.predict(x_test) In []: #Mesure the performance using Metrics dtr.score(x_train, y_train) Out[]: 0.15715160117393523 **Lasso Regression** In [214]: #Build the model from sklearn.linear model import Lasso In [215]: lr=Lasso(alpha=0.01) In [216]: #Train the model lr.fit(x_train,y_train) Out[216]: Lasso(alpha=0.01) In [217]: y_train_pred = lr.predict(x_train) y_test_pred = lr.predict(x_test) In [218]: #Measure the performance using Metrics lr.score(x_train, y_train) Out[218]: 0.5098141532900928