

GRAU DE MATEMÀTIQUES

Treball final de grau

EL MEU TFG

Autor: Víctor Rubio Jiménez

Director: Dr. Ignasi Mundet Riera

Realitzat a: Departament de matemàtiques i informàtica

Barcelona, 27 de maig de 2025

Abstract

My wonderful abstract.

Resum

- Explicar diferència entre Continu i Diferenciable i totes les restriccions
- Explicar C1 i mobius
- Mirar tor ambient space isometric embeddings square flat torus
- $\bullet\,$ MIrar article Nash, Gromov
- Mirar quin Cn agafa al paper band
- Mirar Sung Jin Oh
- Mirar millora de Kuiper

Agraïments

Bla, bla, bla

Índex

1		Introducció							
	1.1	Temes	s de les reunions						
2	Inti	Introducció a la geometria diferencial							
	2.1	Introd	lucció al capítol						
	2.2		es de regularitat						
	2.3	Variet	ats topològiques i diferenciables						
		2.3.1	Particions de la unitat						
		2.3.2	Vectors tangents						
		2.3.3	Camps vectorials						
		2.3.4	Subvarietats, immersions, encabiments i difeomorfismes						
		2.3.5	Geometria Riemanniana						
		2.3.6	Un resultat interessant en \mathbb{R}^3						
3	Cin	Cinta de Möbius de paper òptima							
	3.1		lucció al capítol						
	3.2		lucció al problema						
		3.2.1	Definitions						
		3.2.2	Enunciats dels teoremes						
		3.2.3	Preliminars a la demostració						
	3.3		stració						
		3.3.1	Existència de la foliació per plecs						
		3.3.2	Demostració del lema T						
		3.3.3	Demostració del lema G						
	3.4		usions						
4	Teorema Nash-Kuiper C^1								
	4.1		lucció al capítol						
	4.2		ciat dels teoremes						
	4.3								
		4.3.1	La pertorbació en un pas						
		4.3.2	Convergència dels passos en una etapa						
		4.3.3	Organització general						
		4.3.4	Convergència de la immersió						
		4.3.5	Encabiments isomètrics						
		4.3.6	Obtenint la immersió o l'encabiment inicial						
	4.4		nament de Kuiper						
_	ъ.	1.	nts isomètrics del tor pla						
5	rmo	anıme	nts isometrics del tor dia						

ÍNDEX	iv

	5.1	Introd	ucció al capítol
	5.2	Integr	ació convexa
		5.2.1	Integració convexa 1D
	5.3	Integr	ació convexa 2D: el cas primitiu
		5.3.1	Integració convexa del cilindre Cil
		5.3.2	Integració convexa del tor \mathbb{T}^2
	5.4	Encab	iment isomètric del tor pla
		5.4.1	Demostració del teorema 5.4.1
6	Con	clusio	ns
7	Glo	ssari d	alguns termes traduïts de l'anglès al català

Capítol 1

Introducció

suau és C^{∞} L'estudi de la geometria és un dels més antics de la història de les matemàtiques. El mot geometria, que significa literalment "mesura de la Terra", indica la seva utilitat en la distribució de terres de conreus i en la construcció arquitectònica. Les primeres aplicacions de la geometria es troben en el desenvolupament a Egipte i Babilònia de tècniques de càlcul de distàncies, àrees i volums. Les primeres escoles filosòfiques de l'Antiga Grècia es van interessar profundament en la geometria, emprenent un llarg camí que portaria a una abstracció cada vegada més gran de les matemàtiques respecte les seves aplicacions pràctiques, invertint l'ordre ontològic de tal manera que les matemàtiques fossin el fonament del món, amb Pitàgores i Plató.

El primer en escriure un tractat de geometria en el sentit modern, amb la demostració de teoremes i proposicions partint d'axiomes i definicions va ser Euclides, en Els Elements. El famós cinquè postulat dels Elements, el postulat de les paral·leles, implica que les rectes paral·leles no es tallen en cap punt. Aquesta afirmació, que sembla molt natural, resulta no ser certa en certs espais geomètrics. Un d'ells és molt quotidià: la superfície terrestre. Com va demostrar el també grec Eratòstenes, la Terra és esfèrica, de manera que qualsevol parell de rectes aparentment paral·leles sobre la superfície d'aquesta han de trobar-se en algun punt. Així, obtenim el primer tipus de geometria no euclidiana: la geometria esfèrica. En el cas de la Terra obtenim una distinció que acabaria sent molt important entre dues maneres de concebre la geometria: el punt de vista intrínsec i el punt de vista extrínsec. El punt de vista extrínsec estudiaria la geometria de l'esfera com una regió concreta de l'espai euclidià tridimensional, de manera que cap corba sobre la superfície de la Terra traça res que es pugui anomenar una recta. Les úniques rectes vertaderes són tangents a la superfície terrestre. El punt de vista intrínsec, en canvi, estudia la geometria esfèrica en si mateixa, sense referència a l'espai euclidia en què es troba. En aquesta nova geometria, el cinquè postulat d'Euclides i les proposicions que se'n deriven no són vàlides.

La branca de la geometria que ens interessa en aquest treball, la geometria diferencial, no va néixer fins segles més tard. Va ser necessari passar per la formalització de l'àlgebra i la geometria mitjançant coordenades de la mà de Descartes, i el desenvolupament del càlcul infinitesimal de Newton i Leibniz, per poder desenvolupar la geometria diferencial. L'ús de coordenades permet treballar en espais més abstractes i de dimensió arbitrària, mentre el càlcul infinitesimal permet estudiar les propietats de les funcions que els defineixen. Després d'aquesta formalització és quan apareixen alguns dels matemàtics que més aportarien a la geometria diferencial, i els noms dels quals apareixeran diverses vegades al llarg del treball. En concret, parlem de Carl Friedrich Gauss i Bernhard Riemann.

Gauss, estudiant les propietats de les superfícies i les corbes en l'espai euclidià tridimensional, enuncia un dels teoremes més importants de la geometria diferencial: el **teorema egregium** alguna nota sobre el significat de egregi. Segons aquest teorema, la curvatura gaussiana d'una superfície regular en l'espai euclidià tridimensional és invariant per isometries, i es pot determinar a partir de les propietats intrínseques de la superfície. Aquest resultat explica per què no es pot el·laborar un mapa pla de la superfície terrestre que conservi distàncies i angles. Riemann solidifica el gir intrínsec en la geometria diferencial, iniciant l'estudi de varietats diferenciables de dimensió superior i amb mètriques arbitràries. Riemann generalitza el concepte de curvatura a través de l'àlgebra multilineal i desenvolupa les eines per a l'estudi de qualsevol varietat diferenciable amb mètrica. Poc després, amb la introducció de les mètriques pseudo-riemannianes, la geometria diferencial seria una eina essencial pel desenvolupament de la teoria de la relativitat general, que és encara la millor teoria física per descriure la relació entre la massa i la curvatura de l'espai-temps.

Tot i els avenços en l'estudi intrínsec de les varietats diferenciables, encara hi ha molt a dir sobre la manera en què aquestes varietats es poden encabir (en anglès, embed) o immergir en espais euclidians de dimensió superior. Com veurem al capítol 2, el teorema de Whitney afirma que tota varietat diferenciable suau n-dimensional es pot encabir de manera suau en un espai euclidià de dimensió 2n. Ara bé, aquest encabiment no és necessàriament isomètric, de manera que la geometria d'aquesta imatge no és necessàriament la geometria intrínseca de la varietat, en el sentit riemannià. Un dels exemples més coneguts d'aquesta limitació és el fet que qualsevol superfície regular compacta immergida en \mathbb{R}^3 ha de tenir algun punt el·líptic. Això implica, com veurem en aquest treball, que no existeix cap encabiment isomètric ni immersió isomètrica del tor pla en \mathbb{R}^3 .

Alguns resultats primerencs en l'estudi dels encabiments isomètrics van ser obtinguts per Janet i Cartan, demostrant que en el cas de varietats analítiques es pot trobar un encabiment localment isomètric en espais de dimensió majors o iguals a la dimensió de Janet, $s_n = \frac{n(n+1)}{2}$. Aquest resultat es va expandir posteriorment per part de Gromov i Rokhlin a espais de dimensió $q \geq s_n + n$ en el cas de varietats C^{∞} . Aquests espais ambients poden arribar a ser de dimensió molt més alta que els que apareixen en el teorema de Whitney.

La impossibilitat de trobar un encabiment isomètric suau del tor pla és deguda, en última instància, al fet que la curvatura del tor pla és incompatible amb la curvatura que ha de tenir per tal de ser encabit d'aquesta manera en \mathbb{R}^3 . Ara bé, si el problema és degut a la curvatura, potser es pot evitar si ignorem aquesta noció. La curvatura és, fonamentalment, una mesura de les segones derivades de l'aplicació que defineix la immersió, de manera no està ben definida si l'aplicació no és C^2 . Aquesta és la intuïció que ens porta a estudiar el problema dels encabiments isomètrics en el cas de varietats C^1 .

L'any 1954, el futur guanyador del Premi Nobel d'Economia John Forbes Nash Jr. va publicar un article sorprenent en què demostrava que qualsevol encabiment de classe C^{∞} estrictament curt d'una varietat Riemanniana en un espai de codimensió 2 es podia modificar per tal d'obtenir un encabiment isomètric de classe C^1 . Per fer-ho, dissenya un mètode iteratiu en cada etapa del qual la imatge de l'encabiment és modificada amb un moviment espiral. Després d'un nombre finit d'etapes, s'obté un nou encabiment curt C^{∞} , però el procés convergeix en un encabiment isomètric de classe C^1 , pel qual la curvatura de la varietat encabida no està ben definida. La demostració és constructiva, però el requeriment que la codimensió sigui 2 impossibilita la seva aplicació per superfícies encabides en l'espai euclidià tridimensional. Afortunadament, Nicolaas H.? Kuiper va demostrar un any més tard la conjectura de Nash segons la qual podria existir un mètode

similar que rebaixés la codimensió de l'espai ambient a 1.

Amb aquest rerefons, en aquest treball es treballarà des dels seus fonaments el problema dels encabiments isomètrics de varietats Riemannianes en espais euclidians, parant especial atenció a dos casos concrets de superfícies encabides en \mathbb{R}^3 pels quals hi ha hagut desenvolupaments recents. En concret, estudiarem la cinta de Möbius i el tor pla. Per la primera varietat, demostrarem un resultat recent que imposa una restricció sobre l'existència de certs encabiments isomètrics, i per la segona veurem que no pot ser encabida isomètricament de manera suau. Veurem també de quina manera podem esquivar aquestes limitacions relaxant el requeriment de regularitat.

Objectius del treball

- Donar una introducció a la geometria diferencial i a la geometria Riemanniana, amb especial atenció als encabiments isomètrics i a la regularitat de les aplicacions que els defineixen.
- Demostrar la impossibilitat d'encabir isomètricament el tor pla en \mathbb{R}^3 de manera suau.
- Demostrar el resultat recent de Schwartz (2024) imposant una raó d'aspecte mínima per encabir una cinta de Möbius isomètricament en \mathbb{R}^3 , i mostrar una aplicació injectiva de la cinta de Möbius en \mathbb{R}^3 de regularitat C^0 .
- Enunciar i demostrar els teoremes de Nash d'immersions i encabiments C^1 , i explicar el refinament de Kuiper.
- Explicar l'aplicació del teorema de Nash-Kuiper per Borrelli et al. (2013) en el cas de l'encabiment isomètric del tor pla en \mathbb{R}^3 .

Estructura de la memòria

El treball es divideix en cinc capítols, relacionats amb els objectius exposats a l'apartat anterior, el primer d'ells sent aquesta introducció que esteu llegint. El capítol 2 comença amb un breu recordatori de la definició de les classes de regularitat de funcions, per després centrar-se en la geometria diferencial i Riemanniana. Definirem els conceptes necessaries per la resta del treball, enunciant i demostrant els resultats més importants. També enunciarem alguns teoremes importants, com el teorema de Sard i el teorema egregi de Gauss, sense donar-ne la demostració. Al final del capítol es discutirà la impossibilitat d'encabir isomètricament el tor pla en \mathbb{R}^3 . El capítol 3 seguirà la demostració completa d'un dels dos teoremes demostrats recentment per Schwartz (2024) sobre la cinta de Möbius, enunciant l'altre resultat i el contraexemple C^0 de l'acordió de Möbius.

Guia de lectura

Faig servir encabiment, que potser hauria de dir immersió?

1.1 Temes de les reunions

Sigui \mathcal{M} una varietat diferenciable amb una distància d, i sigui

$$\nu = \{(x, v) \in \mathcal{M} \times \mathbb{R}^n : v \in T_x \mathcal{M}^{\perp} \}.$$

Per qualsevol $\varepsilon > 0$, definim el subconjunt

$$\nu_{\varepsilon} = \{(x, v) \in \nu : ||v|| < \varepsilon\}$$

i l'aplicació

dues perpendiculars.

$$\sigma: \nu_{\varepsilon} \to \mathbb{R}^n$$
$$(x, v) \mapsto x + v$$

Teorema 1.1.1. Si ε és prou petit, aleshores $\sigma: \nu_{\varepsilon} \to \sigma(\nu_{\varepsilon})$ és homeomorfisme.

Prova. (Meva, està molt millor al John M. Lee) Primer, volem veure que σ és injectiva. Suposem que \mathcal{M} és C^{∞} (amb C^2 hauria de ser prou). Donat qualsevol punt $x \in \mathcal{M}$ existeix un entorn prou petit U_x de x en \mathcal{M} tal que ν_1 és injectiva. Això és degut al fet que, localment, la varietat és aproximadament igual al seu espai tangent.

Sigui x_0 el punt amb l'entorn U_{x_0} més petit que verifica la propietat anterior, i sigui y_0 el punt de $\mathcal{M} \setminus U_{x_0}$ tal amb el vector $w_0 \in T_{y_0} \mathcal{M}$ més curt tal que existeix algun $v_0 \in T_{x_0} \mathcal{M}$ tal que $x_0 + v_0 = y_0 + w_0$. Sigui $l = ||w_0||$. Aleshores, posant $\varepsilon = l/2$, tenim que σ és injectiva.

Pel que fa a la exhaustivitat, $\sigma: \nu_{\varepsilon} \to \sigma(\nu_{\varepsilon})$ és exhaustiva per definició. A més, en ser la suma de dos vectors en \mathbb{R}^n , σ és contínua.

Cal veure que la inversa σ^{-1} és contínua. Sigui $a \in \sigma(\nu_{\varepsilon})$. Aleshores, existeixen $x \in \mathcal{M}$ i $v \in \mathbb{R}^n$ tals que $a = \sigma(x, v) = x + v$. Com σ^{-1} projecta punts de $\sigma(\nu_{\varepsilon})$ en el punt de ν_{ε} més proper, tenim que σ^{-1} és contínua. Per tant, σ és un homeomorfisme. \square Observació 1.1.2. D'aquí surt el que fa servir Nash per allò del conjunt que no admet

Capítol 2

Introducció a la geometria diferencial

El que haurem de fer per a que tot tingui sentit un cop estigui acabat és assegurar-nos que anomenem x a les coordenades normals i z a les coordenades de la carta. DE FET EL QUE TENIM AL CAPíTOL DE NASH ÉS z per l'espai ambient i x per la varietat.

ÉS MOLT IMPORTANT QUE DESPRÉS MIREM LA PÀGINA 24 DEL LEE, ON DEFINEIX TAMBÉ VARIETATS AMB FRONTERA

2.1 Introducció al capítol

L'objectiu d'aquest capítol serà oferir els fonaments matemàtics necessaris per a entendre i justificar els resultats que es mostraran en els capítols posteriors, alhora que volem motivar l'interès d'aquests. Així, es definiran els conceptes i objectes matemàtics basics amb els quals treballarem, veurem algunes de les seves propietats i enunciarem i demostrarem alguns teoremes que seran clau en el treball que segueix.

Voldrem estudiar, al llarg d'aquest capítol, els conceptes de varietat topològica, varietat diferenciable i varietat Riemanniana. A un nivell intuïtiu, es tractarà d'espais topològics que es poden veure localment com espais reals \mathbb{R}^n , sobre els quals es pot fer càlcul infinitesimal i que es poden dotar de diferents mètriques. Prendrem especial atenció a la manera en què aquests espais es poden encabir (en anglès, embed) en altres varietats i espais ambients. Si bé és generalment fàcil entendre i visualitzar aquests espais quan es consideren encabits en un espai \mathbb{R}^n , com el cas de les superfícies regulars en \mathbb{R}^3 , cal notar que les varietats topològiques no requereixen aquest espai ambient per a la seva definició i estudi, sinó que en són independents. Aquest fet és molt rellevant, tot i que no el veurem aquí, en una de les aplicacions més interessants de la geometria diferencial, la teoria de la relativitat general, on l'espai-temps es modela com una varietat diferenciable de dimensió 4 i on no hi ha motiu per introduir cap espai ambient en el sentit clàssic.

Si bé seguirem la línia general d'estudi en molts llibres de referència, centrant-nos en funcions i aplicacions de regularitat C^{∞} , més endavant ens caldrà treballar amb regularitats més baixes. Per aquest motiu, el primer que ens ocuparem de definir, serà el de funcions i aplicacions de classe C^k i les normes associades. Això serà rellevant pel fet que també es pot definir la classe de regularitat d'una varietat diferenciable en un punt, i direm que una varietat és suau (en anglès, smooth) quan és de classe C^{∞} . La noció de suavitat no pot ser una propietat purament topològica, ja que no és preservada per homeomorfismes. L'exemple més evident és el d'un cercle i un quadrat, que són homeomorfs en \mathbb{R}^2 , però el

cercle és suau mentre que el quadrat no ho és.

La suavitat de les varietats diferenciables serà clau per a desenvolupar eines potents en geometria diferencial, com veurem amb l'existència de particions de la unitat i el teorema de Whitney. Ara bé, veurem que això comporta un grau afegit de rigidesa en les propietats de les varietats Riemannianes pel que fa a la seva relació amb els encabiments (en anglès, embeddings). La última part d'aquest capítol serà dedicada a un exemple d'això mateix: demostrar que no existeix cap encabiment C^{∞} del tor pla en \mathbb{R}^3 tal que preservi les distàncies entre els seus punts. Veurem, de fet, que el motiu principal d'aquesta impossibilitat es relaciona amb el concepte de curvatura gaussiana, que només es pot definir per a superfícies immerses en \mathbb{R}^3 de regularitat C^2 o superior.

Les cites principals en aquest capítol seran Lee (2013) i Warner (1983), pel que fa a varietats suaus, i Chavel (2006), pel que fa a varietats Riemannianes.

2.2 Classes de regularitat

Comencem amb la definició estàndard de classes de regularitat de funcions i aplicacions. **Definició 2.2.1.** Siguin $U \subseteq \mathbb{R}^n$ un conjunt obert $i \ f : U \to \mathbb{R}$ una funció real contínua. Diem que f és k-vegades derivable contínuament, o de classe $C^k(U)$, amb $k \in \mathbb{N}_0$, si totes les derivades parcials d'ordre k,

$$\frac{\partial^k f}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}} \quad tal \ que \ \sum_{i=1}^n \alpha_i = k,$$

existeixen i són contínues en U.

Si $g: U \to \mathbb{R}^m$ és una aplicació contínua, diem que g és k-vegades derivable contínuament, o de classe $C^k(U)$, si totes les seves components $g_i: U \to \mathbb{R}$ són k-vegades derivables contínuament.

Notació 1. No indicarem el domini en què una aplicació és de classe C^k quan el domini sigui clar pel context.

Observacions 2.2.2.

- Una aplicació f és 0 vegades derivable contínuament si i només si f és contínua.
- Si f és k vegades derivable contínuament, aleshores també és j vegades derivable contínuament per $0 \le j \le k$.

Definició 2.2.3. Direm que una aplicació és **suau** o **de classe** C^{∞} si és infinitament derivable, és a dir, si és k-vegades derivable contínuament per a tot $k \in \mathbb{N}_0$.

Definició 2.2.4. Siguin $U \subseteq \mathbb{R}^n$ un obert $i \ f : U \to \mathbb{R}$ una funció de classe $C^k(U)$. Definim la **norma** $\|\cdot\|_{C^k(U)}$ de f com

$$||f||_{C^k(U)} := \sum_{|\alpha| < k} \sup_{x \in U} |\partial^{\alpha} f(x)|.$$

on $\alpha = (\alpha_1, \dots, \alpha_n), |\alpha| = \alpha_1 + \dots + \alpha_n, i$

$$\partial^{\alpha} f(x) := \frac{\partial^{|\alpha|} f(x)}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}.$$

Per una aplicació $g: U \to \mathbb{R}^m$ de classe $C^k(U)$, definim la **norma** $\|\cdot\|_{C^k(U)}$ de g com

$$||g||_{C^k(U)} := \sum_{|\alpha| \le k} \sup_{x \in U} ||\partial^{\alpha} g(x)||.$$

2.3 Varietats topològiques i diferenciables

Definició 2.3.1. Sigui M un espai topològic. Diem que M és una varietat topològica de dimensió n si es compleixen les propietats següents:

- M és <u>Hausdorff</u>, és a dir, si per a cada $p, q \in M$ amb $p \neq q$ existeixen entorns oberts $U \subseteq \overline{M}$ i $V \subseteq M$ de p i q respectivament tals que $U \cap V = \emptyset$,
- M verifica el <u>segon axioma de numerabilitat</u>, és a dir, existeix una base numerable de la topologia de M,
- M és <u>localment homeomorf a</u> \mathbb{R}^n , és a dir, per a cada $p \in M$ existeix un entorn obert $U \subset M$ de p que és homeomorf a un obert de \mathbb{R}^n .

Per tal de poder descriure localment els punts de les varietats i de poder operar amb ells, és necessari introduir el concepte de carta coordenada.

Definició 2.3.2. Sigui M una varietat topològica de dimensió n. Diem que un parell (U, φ) és una carta coordenada o un sistema de coordenades de M si U és un obert de M i $\varphi: U \to \hat{U}$ és un homeomorfisme amb un obert $\hat{U} \subseteq \mathbb{R}^n$. Anomenem U el domini de la carta i φ l'aplicació coordenada. Donat un punt $p \in U$, anomenem coordenades de p respecte de la carta (U, φ) als components de $\varphi(p)$ en la base canònica de \mathbb{R}^n .

Notació 2. Sovint anomenarem carta coordenada o simplement carta a l'aplicació coordenada φ .

Observació 2.3.3. De la definició de carta coordenada, observem que no tota varietat topològica M es pot descriure globalment amb una única carta coordenada. Per exemple, si M és homeomorf al cercle \mathbb{S}^1 amb la topologia induïda per \mathbb{R}^2 , no es pot trobar cap aplicació $\varphi: M \to \mathbb{R}$ que sigui un homeomorfisme amb un obert de \mathbb{R} , ja que \mathbb{S}^1 és compacte.

Definició 2.3.4. Sigui M una varietat topològica de dimensió n. Anomenem estructura diferenciable de classe C^k en M una col·lecció $\mathcal{F} := \{(U_\alpha, \varphi_\alpha)\}$ de cartes coordenades de M que compleixen les propietats següents:

- $\bullet \ \bigcup_{\alpha \in A} U_{\alpha} = M,$
- $Si\ U_{\alpha} \cap U_{\beta} \neq \emptyset$, aleshores $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ és C^k .
- \mathcal{F} és maximal respecte de la propietat anterior, és a dir, si \mathcal{G} és una altra estructura diferenciable de classe C^k en M i $\mathcal{F} \subseteq \mathcal{G}$, aleshores $\mathcal{F} = \mathcal{G}$.

Definició 2.3.5. Sigui M una varietat topològica de dimensió n. Diem que (M, \mathcal{F}) és una varietat diferenciable de dimensió n i classe C^k si \mathcal{F} és una estructura diferenciable de classe C^k en M.

Notació 3. Sovint ens referirem a M com a varietat diferenciable, sense especificar-ne l'estructura diferenciable. Diem que la varietat diferenciable és suau si és de classe C^{∞} . Definició 2.3.6. Sigui M una varietat diferenciable suau, $U \subseteq M$ un obert $i f: U \to \mathbb{R}$ una funció real. Diem que f és de classe C^k en U si $f \circ \varphi^{-1}$ és de classe C^k per tota aplicació coordenada φ de M.

Una aplicació $\psi: M \to N$ és de classe $C^k(M, N)$ si per qualsevol $p \in M$ existeixen cartes (U, ϕ) al voltant de p i (V, ξ) al voltant de $\psi(p)$ tals que $\xi \circ \psi \circ \phi^{-1}$ és de classe C^k . Definició 2.3.7. Siguin M i N varietats diferenciables de classe C^k . Diem que una aplicació $\psi: M \to N$ és un difeomorfisme de classe C^k si és bijectiva, de classe $C^k(M, N)$ i la seva inversa és de classe $C^k(N, M)$.

2.3.1 Particions de la unitat

A continuació veurem algunes propietats de les varietats diferenciables que es desprenen del fet que verifiquen el segon axioma de numerabilitat. En aquesta subsecció ens centrarem en varietats diferenciables suaus, per tal d'obtenir el potent teorema de l'existència de particions de la unitat, que serà una eina essencial pel capítol 4.

Definició 2.3.8. Sigui M una varietat diferenciable. Anomenem **recobriment de** $W \subseteq M$ a una col·lecció $\{U_{\alpha}\}$ de subconjunts de M tals que $W = \bigcup_{\alpha \in A} U_{\alpha}$. Diem que el recobriment és un **recobriment per oberts** si tots els U_{α} són oberts, i un **recobriment per tancats** si tots els U_{α} són tancats.

Donat un recobriment $\{U_{\alpha}\}$ de $W \subseteq M$, diem que $\{V_{\beta}\}$ n'és un **refinament** si per tot β existeix un α tal que $V_{\beta} \subseteq U_{\alpha}$ i $\bigcup_{\beta \in B} V_{\beta} = \bigcup_{\alpha \in A} U_{\alpha}$.

Diem que un recobriment $\{U_{\alpha}\}\$ de $W\subseteq M$ és **localment finit** si per a cada $p\in W$ existeix un entorn V de p en M tal que $V\cap U_{\alpha}=\emptyset$ per a tot α excepte un nombre finit.

Diem que una varietat diferenciable és **paracompacta** si qualsevol recobriment per oberts té un refinament localment finit.

Definició 2.3.9. Sigui M una varietat diferenciable suau. Una **partició de la unitat** en M és una col·lecció $\{\varphi_i\}_{i\in I}$ de funcions reals de classe $C^{\infty}(M)$ tals que:

- $0 \le \varphi_i(p) \le 1$ per a tot $i \in I$ i $p \in M$,
- $\sum_{i \in I} \varphi_i(p) = 1 \text{ per a tot } p \in M$,
- El conjunt de suports $\{supp(\varphi_i)\}$ és localment finit, on el **suport** d'una funció és l'adherència del conjunt de punts del seu domini on la funció no és 0.

Diem que la partició de la unitat és **subordinada al recobriment** $\{U_{\alpha}\}$ si per a cada $i \in I$ existeix un α tal que $supp(\varphi_i) \subseteq U_{\alpha}$.

Lema 2.3.10. Sigui X un espai topològic localment compacte (és a dir, tal que tot punt de X té un entorn compacte), Hausdorff i tal que verifica el segon axioma de numerabilitat. Aleshores X és paracompacte, i cada recobriment per oberts de X té un refinament numerable i localment finit per oberts d'adherència compacta.

Prova. Com X verifica el segon axioma de numerabilitat, existeix una base numerable de la topologia de X. Com X és localment compacte, podem prendre d'aquesta base numerable els conjunts amb adherència compacta, i pel fet que X és Hausdorff, aquesta col·lecció de subconjunts serà una base en si mateixa. Sigui $\{U_i\}_{i\in I}$ aquesta base.

Sigui $G_1 := U_1$, i suposem que hem definit un cert $G_k = U_1 \cup \cdots \cup U_{j_k}$. Sigui j_{k+1} l'enter més petit tal que sigui estrictament més gran que j_k i tal que

$$\overline{G_k} \subseteq \bigcup_{i=1}^{j_{k+1}} U_i,$$

i definim

$$G_{k+1} := G_k \cup U_{j_{k+1}}.$$

D'aquesta manera, obtenim inductivament una successió de conjunts oberts G_k tals que per tot k tenim que

- 1. $\overline{G_k}$ és compacte,
- 2. $\overline{G_k} \subseteq G_{k+1}$,
- 3. $X = \bigcup_{k \in \mathbb{N}} G_k$.

Ara sigui $\{U_{\alpha} : \alpha \in A\}$ un recobriment per oberts qualsevol. El conjunt $\overline{G_{k+1}} \setminus G_{k-1}$ és compacte i contingut en l'obert $G_{k+1} \setminus \overline{G_{k-2}}$. Per tot $i \geq 3$, podem escollir un subrecobriment finit del recobriment per oberts $U_{\alpha} \cap (G_{k+1} \setminus \overline{G_{k-2}})$ de $\overline{G_k} \setminus G_{k-1}$, i es pot escollir un subrecobriment finit del recobriment per oberts $U_{\alpha} \cap G_3$ del conjunt compacte $\overline{G_2}$. Aquesta nova col·lecció serà un refinament numerable i localment finit per oberts d'adherència compacta del recobriment $\{U_{\alpha}\}$, com volíem veure.

Lema 2.3.11. Existeix una funció real no-negativa $\varphi : \mathbb{R}^n \to \mathbb{R}$ de classe C^{∞} que és igual a 1 en $[-1,1]^n$ i 0 en el complementari de $(-2,2)^n$.

Prova. Sigui

$$f(t) = \begin{cases} e^{-1/t} & \text{si } t > 0, \\ 0 & \text{si } t \le 0. \end{cases}$$

Observem que f és clarament C^{∞} en t < 0 i t > 0. En el punt t = 0, tenim que

$$\lim_{t \to 0^+} f(t) = \lim_{t \to 0^+} e^{-1/t} = \lim_{x \to \infty} \frac{1}{e^x} = 0,$$

de manera que f és contínua a t=0. Per veure que totes les derivades de f existeixen i són iguals a 0 en t=0, podem veure que totes les derivades de $\phi(t)=e^{-1/t}$ són el producte de $\phi(t)$ per un polinomi de 1/t. En efecte, si $\phi^{(n)}(t)=\phi(t)P_n(1/t)$, aleshores $\phi^{(n+1)}(t)=\frac{1}{t^2}(\phi(t)P_n(1/t)-\phi(t)P'_n(1/t)):=\phi(t)P_{n+1}(1/t)$, on $P_{n+1}(1/t)$ és un nou polinomi en 1/t. Com $\phi(t)$ decreix exponencialment quan $t\to 0^+$ i tots els polinomis $P_n(1/t)$ creixen polinomialment quan $t\to 0^+$, tenim que totes les derivades de f existeixen i són iguals a 0 en t=0.

Així, podem definir

$$g(t) = \frac{f(t)}{f(t) + f(1-t)},$$

que és C^{∞} per ser una composició de funcions C^{∞} , i on el denominador no s'anul·la mai. Observem que g(t) val 1 per $t \geq 1$ i 0 per $t \leq 0$.

A continuació, definim la funció h com

$$h(t) = q(t+2)q(2-t),$$

que és C^{∞} per ser producte de funcions C^{∞} . Observem que h(t) és la funció que buscàvem pel cas n=1. Per n arbitrari, definim

$$\varphi = (h \circ x_1) \cdots (h \circ x_n), \tag{2.3.1}$$

que té exactament les propietats que volíem.

Teorema 2.3.12 (Existència de particions de la unitat). Sigui M una varietat diferenciable de classe C^{∞} i $\{U_{\alpha} : \alpha \in A\}$ un recobriment per oberts de M. Aleshores, existeix una partició de la unitat numberable $\{\varphi_i : i \in I\}$ subordinada al recobriment $\{U_{\alpha}\}$ amb suports $\{supp\varphi_i\}$ compactes. A més, si no exigim que els suports siguin compactes, existeix una partició de la unitat $\{\varphi_{\alpha}\}$ subordinada al recobriment $\{U_{\alpha}\}$ amb supp $\varphi_{\alpha} \subseteq U_{\alpha}$ per a tot $\alpha \in A$, amb com a molt un conjunt numerable dels φ_{α} no idènticament zero.

Prova. Sigui $\{G_i\}$ un recobriment com el definit a la demostració del lema 2.3.10 i definim $G_0 = \emptyset$. Per cada punt $p \in M$, sigui i_p l'enter més gran tal que $p \in M \setminus \overline{G_{i_p}}$. Escollim un α_p tal que $p \in U_{\alpha_p}$ i sigui (V, τ) una carta coordenada centrada en p (és a dir, tal que $\tau(p) = 0$) i tal que $V \subseteq U_{\alpha_p} \cap (G_{i_p+2} \setminus \overline{G_{i_p}})$ i $[-2, 2]^n \subseteq \tau(V)$.

Definim

$$\psi_p = \begin{cases} \varphi \circ \tau & \text{a } V, \\ 0 & \text{for ade } V. \end{cases}$$

on φ és tal com l'hem definit a l'equació 2.3.1. Aleshores, ψ_p és una funció de classe C^{∞} en M que val 1 en un entorn W_p de p i té suport compacte en $V \subseteq U_{\alpha_p} \cap (G_{i_p+2} \setminus \overline{G_{i_p}})$. Per cada $i \geq 1$, escollim un nombre finit de punts $p \in M$ tals que els respectius W_p siguin un recobriment de $\overline{G_i} \setminus G_{i-1}$. Podem escollir un ordre qualsevol per les funcions corresponents ψ_p per obtenir una successió $\{\psi_j\}$, i els seus suports formen una col·lecció localment finita de subconjunts de M. Amb això veiem que la funció

$$\psi = \sum_{j=1}^{\infty} \psi_j$$

és positiva i de classe C^{∞} en M. Ara, per tot $i=1,2,\ldots$ definim

$$\varphi_i = \frac{\psi_i}{\psi}.$$

Les funcions φ_i formen una partició de la unitat subordinada al recobriment $\{U_\alpha\}$ amb suports compactes.

Si definim φ_{α} tals que siguin idènticament zero si cap φ_{i} té suport en U_{α} , i en cas contrari que siguin la suma de totes les φ_{i} que hi tenen suport, aleshores tenim que φ_{α} formen una partició de la unitat subordinada al recobriment $\{U_{\alpha}\}$ amb com a molt un conjunt numerable dels φ_{α} no idènticament zero.

Veiem que el suport de cada φ_{α} és contingut en U_{α} , ja que si \mathcal{A} és una col·lecció localment finita de conjunts tancats, aleshores $\overline{\bigcup_{A\in\mathcal{A}}A}=\bigcup_{A\in\mathcal{A}}A$. Ara bé, observem que en aquest cas el suport de φ_{α} no és necessàriament compacte.

Corol·lari 2.3.13. Sigui G un obert d'una varietat diferenciable de classe C^{∞} i $A \subseteq G$ un subconjunt tancat. Aleshores, existeix una funció $\varphi : M \to \mathbb{R}$ de classe C^{∞} en M tal que

- 1. $0 \le \varphi(p) \le 1$ per a tot $p \in M$,
- 2. $\varphi(p) = 1$ per a tot $p \in A$,
- 3. $supp \varphi \subseteq G$.

Prova. Existeix una partició de la unitat $\{\varphi, \psi\}$ subordinada al recobriment $\{G, M \setminus A\}$ de M amb supp $\varphi \subseteq G$ i supp $\psi \subseteq M \setminus A$. φ és, per tant, la funció desitjada.

A continuació utilitzarem l'existència de particions de la unitat per a demostrar l'existència d'un tipus diferent de funcions, que utilitzarem per demostrar el teorema de Whitney.

Definició 2.3.14. Sigui M una varietat diferenciable. Una funció $f: M \to \mathbb{R}$ és una funció d'exhauriment si és contínua i per qualsevol $c \in \mathbb{R}$, la preimatge $f^{-1}(-\infty, c]$ és compacta.

Proposició 2.3.15. Sigui M una varietat diferenciable suau. Aleshores, existeix una funció d'exhauriment $f: M \to \mathbb{R}_+$ de classe C^{∞} .

Prova. Sigui $\{V_j\}_j$ un recobriment numerable per oberts de M per oberts amb adherències compactes, i sigui $\{\psi_j\}_j$ una partició de la unitat suau subordinada a aquest recobriment. Definim la funció

$$f(p) = \sum_{j=1}^{\infty} j\psi_j(p)$$

De la definició de partició de la unitat obtenim que f és positiva, i com és una suma localment finita de funcions C^{∞} , és de classe C^{∞} .

Cal veure que és, efectivament, una funció d'exhauriment. Sigui $c \in \mathbb{R}$ i N > c un enter. Per $p \notin \bigcup_{j=1}^N \overline{V_j}$, tenim que $\psi_j(p) = 0$ per a tot $1 \leq j \leq N$. Per tant,

$$f(p) = \sum_{j=N+1}^{N} j\psi_j(p) \ge \sum_{j=N+1}^{N} N\psi_j(p) = N \sum_{j=1}^{N} \psi_j(p) = N > c.$$

Equivalentment, si $f(p) \leq c$, aleshores $p \in \bigcup_{j=1}^{N} \overline{V_j}$. Per tant, $f^{-1}(-\infty, c]$ és un subconjunt tancat del conjunt compacte $\bigcup_{j=1}^{N} \overline{V_j}$, i per tant és compacte.

2.3.2 Vectors tangents

Un vector en \mathbb{R}^n es pot pensar com un operador lineal sobre funcions reals diferenciables. En concret, donada una funció f diferenciable en un punt $p \in \mathbb{R}^n$, el vector v assigna a f un valor real que és la derivada direccional de f en la direcció i sentit de v a p,

$$v(f) = v_1 \frac{\partial f}{\partial x_1}\Big|_p + \dots + v_n \frac{\partial f}{\partial x_n}\Big|_p,$$

amb les propietats de linealitat esperades.

$$v(f+g) = v(f) + v(g),$$
$$v(\lambda f) = \lambda v(f).$$

i la propietat de Leibniz,

$$v(fq) = v(f)q(p) + f(p)v(q)$$

per qualssevol $f, g \in C^{\infty}(\mathbb{R}^n)$ i $\lambda \in \mathbb{R}$.

És evident que volem un anàleg a aquesta definició que sigui útil en el context de varietats diferenciables, per tal d'aprofitar el fet que aquestes són espais localment similars a \mathbb{R}^n .

Definició 2.3.16. Sigui p un punt d'una varietat diferenciable de dimensió n. Un **vector** tangent a M en p és una aplicació lineal $v_p : C^{\infty}(M) \to \mathbb{R}$ que compleix la propietat de linealitat,

$$v_p(\lambda f + \mu g) = \lambda v_p(f) + \mu v_p(g),$$

i la propietat de Leibniz,

$$v_p(fg) = v_p(f)g(p) + f(p)v_p(g).$$

Per qualssevol $f, g \in C^{\infty}(M)$ i $\lambda, \mu \in \mathbb{R}$. Anomenem el conjunt de tots aquests vectors tangents l'**espai tangent** a M en p i el denotem per T_pM .

En concret, podem construir els següents vectors tangents:

$$\frac{\partial}{\partial z_i}\Big|_p(f) := \frac{\partial (f \circ \varphi^{-1})}{\partial \hat{z}_i}(\varphi(p)),$$

on \hat{z}_i és la *i*-èssima coordenada de $\varphi(p)$ en la carta coordenada (U, φ) centrada en p. Es pot demostrar que aquests vectors tangents formen una base de T_pM , de manera que T_pM un espai vectorial de dimensió n. Tractant-lo com a tal, podem definir el seu espai dual.

Definició 2.3.17. Sigui M una varietat diferenciable. Per cada punt $p \in M$, definim l'espai cotangent a p, T_p^*M , com l'espai vectorial dual de T_pM ,

$$T_p^*M = (T_pM)^*.$$

Una eina essencial per treballar amb vectors tangents serà el concepte de **diferencial** d'una aplicació diferenciable entre varietats.

Definició 2.3.18. Siguin M i N varietats diferenciables de classe C^k , $F: M \to N$ una aplicació diferenciable de classe C^l , $l \le k$, i $p \in M$. Anomenem **diferencial de** F **en** p l'aplicació

$$dF_p: T_pM \to T_{F(p)}N$$

que assigna a cada vector tangent $v \in T_pM$ el vector tangent $dF_p(v) \in T_{F(p)}N$ que compleix

$$dF_p(v)(f) = v(f \circ F),$$

per a tota $f \in C^{\infty}(N)$.

Definició 2.3.19. Diem que una aplicació F és **no-singular** en $p \in M$ si dF_p no és singular, és a dir, si el seu nucli és $\{0\}$.

Dualitzant l'aplicació que defineix el diferencial, podem definir el pullback d'una funció diferenciable, que serà particularment important per a l'estudi de mètriques Riemannianes. **Definició 2.3.20.** Siguin M i N varietats diferenciables suaus, $F: M \to N$ una aplicació diferenciable i $p \in M$. Anomenem pullback puntual de F en p l'aplicació

$$dF_p^*: T_{F(p)}^*N \to T_p^*M$$

obtinguda dualitzant el diferencial dF_p .

Observem que el pullback puntual està caracteritzat per la propietat

$$dF_p^*(w)(v) = w(dF_p(v)),$$

per a tot $v \in T_pM$ i $w \in T^*_{F(p)}N$.

Observació 2.3.21. Sovint anomenem pushforward a l'aplicació dF_p . Mentre el pushforward actua sobre camps vectorials, el pullback actua sobre funcions i formes diferencials. En concret, com veurem més endavant, es fa servir per transportar mètriques de N a M.

Una altra eina que necessitarem per descriure la geometria local de les varietats diferenciables és el de fibrat tangent.

Definició 2.3.22. Sigui M una varietat diferenciable. El **fibrat tangent** de M és la unió disjunta dels espais tangents de tots els punts de M,

$$TM = \bigcup_{p \in M} T_p M,$$

juntament amb la **projecció** $\pi:TM\to M$ que a cada vector tangent li assigna el punt de la varietat al qual és tangent,

$$\pi(v) = p$$
,

on $v \in T_pM$.

De la mateixa manera, podem definir el fibrat cotangent de M com la unió disjunta dels espais cotangents de tots els punts de M,

$$T^*M = \bigcup_{p \in M} T_p^*M,$$

junt amb la **projecció** $\pi: T^*M \to M$ que envia $w \in T_p^*M$ a $p \in M$.

Es pot demostrar, tot i que no ho farem aquí, que tant el fibrat tangent com el fibrat cotangent són varietats diferenciables de dimensió 2n. La demostració és més tècnica i requereix un cert joc amb les cartes coordenades i les projeccions, però recau en última instància en el simple fet que el fibrat tangent, així com el cotangent, assigna a cada punt de la varietat de dimensió n un espai vectorial de dimensió n.

2.3.3 Camps vectorials

Definició 2.3.23. Sigui M una varietat diferenciable suau, i (a,b) un interval obert de \mathbb{R} . Una **corba suau** en M és una aplicació diferenciable $\sigma:(a,b)\to M$. Si es pot estendre a un interval obert $(a-\epsilon,b+\epsilon)$ per algun $\epsilon>0$ escrivim també $\sigma:[a,b]\to M$. Definim el **vector tangent** a σ en $t\in(a,b)$ com

$$\dot{\sigma}_t = d\sigma \left(\frac{d}{dr} \Big|_t \right) \in T_{\sigma(t)} M$$

Definició 2.3.24. Un camp vectorial X al llarg d'una corba $\sigma:[a,b] \to M$ és una aplicació $X:[a,b] \to T(M)$ que "aixeca" σ , és a dir, tal que $\pi \circ X = \sigma$, on π és la projecció del fibrat tangent tal com l'hem definit abans.

Un camp vectorial X en un conjunt obert $U \subseteq M$ és una aplicació $X : U \to T(M)$ que "aixeca" U, és a dir, tal que $\pi \circ X = id_U$.

2.3.4 Subvarietats, immersions, encabiments i difeomorfismes

Important motivar bé aquesta secció perquè és de les més importants per al nostre TFG **Definició 2.3.25.** Sigui $\psi: M \to N$ una aplicació diferenciable C^{∞} .

- 1. Diem que ψ és una **immersió** si $d\psi_p$ és no-singular per a tot $p \in M$.
- 2. Diem que ψ és un **encabiment** (en anglès, embedding) si és una immersió injectiva i un homeomorfisme sobre la seva imatge.
- 3. Diem que ψ és un **difeomorfisme** si és una injectiva amb inversa diferenciable C^{∞} .
- 4. El parell (M, ψ) és una **subvarietat de** N si ψ és una immersió injectiva, i és una **subvarietat encabida** (en anglès, embedded submanifold) si és un encabiment.

Es pot demostrar la següent proposició:

Proposició 2.3.26. Sigui $\psi: M \to N$ una immersió injectiva entre varietats C^k , amb $k \ge 1$. Si qualsevol de les següents condicions és certa, aleshores ψ és un encabiment:

- 1. M és compacta.
- 2. ψ és un aplicació pròpia, és a dir, la imatge inversa de qualsevol compacte de N és compacta.
- 3. ψ és oberta o tancada.

En parlar de subvarietats encabides en espais euclidians \mathbb{R}^n , també serà interessant parlar del que anomenarem **vectors normals**.

Definició 2.3.27. Sigui $M \subseteq \mathbb{R}^n$ una subvarietat m-dimensional encabida en \mathbb{R}^n . Per tot punt $x \in M$, definim l'espai normal a M en x, N_xM , com el subespai vectorial de $T_x\mathbb{R}^n$ ortogonal a T_xM pel producte escalar euclidià.

Un dels tipus de subvarietats que més ens interessarà seran les subvarietats encabides en \mathbb{R}^n . En concret, posarem particular atenció a n=3.

Definició 2.3.28. Diem que $S \subseteq \mathbb{R}^3$ és una superfície regular (i simple) si és la imatge d'un encabiment suau $\psi: T \to \mathbb{R}^3$ d'una regió elemental $T \subseteq \mathbb{R}^2$ en \mathbb{R}^3 .

Exemple 2.3.29. Siguin R>r>0. Per $T=[0,1)\times[0,1)\subseteq\mathbb{R}^2$, sigui $\psi:T\to\mathbb{R}^3$ l'aplicació

$$\psi(u, v) = ((R + r\cos(2\pi v))\cos(2\pi u), (R + r\cos(2\pi v))\sin(2\pi u), r\sin(2\pi v)).$$

Aleshores, ψ és un encabiment suau i $S = \psi(T)$ és una superfície regular. Aquest és un dels possibles encabiments del **tor** en \mathbb{R}^3 com a superfície regular.

Els teoremes de Whitney

La possibilitat de prendre varietats diferenciables arbitràries com a subvarietats d'altres espais amb estructura més senzilla, com és el cas de \mathbb{R}^n , pot oferir una major facilitat a l'hora de treballar amb aquestes varietats. Si bé, com hem dit més amunt i hem vist fins ara, les varietats diferenciables suaus no requereixen ser subvarietat de cap espai euclidià, sí és cert que totes elles poden ser subvarietats encabides de \mathbb{R}^N per a N prou gran.

El teorema de Whitney (o teoremes, degut a les seves diverses formulacions) afirma això mateix, que tota varietat diferenciable suau n-dimensional M admet un encabiment suau en \mathbb{R}^{2n+1} . Per demostrar el teorema de Whitney, cal utilitzar el teorema de Sard. No demostrarem aquest darrer teorema, però el farem servir en la demostració del teorema de Whitney.

Definició 2.3.30. Sigui $F: M \to N$ una aplicació diferenciable. Diem que $p \in M$ és un **punt regular** de F si dF_p és exhaustiva. Altrament, diem que és un **punt crític**. Un punt $c \in N$ és un **valor regular** de F si tots els punts de la preimatge $F^{-1}(c)$ són regulars.

Teorema 2.3.31 (**Teorema de Sard**). Siguin M, N varietats diferenciables suaus i $F: M \to N$ una aplicació de classe C^{∞} . Aleshores, la imatge del conjunt de punts crítics és un subconjunt de mesura zero de N. En concret, si la dimensió de M és menor que la de N, F(M) té mesura zero en N.

Prova. Observem les següents equivalències entre propietats:

- $\pi_v|_M$ és injectiva $\iff p-q$ mai és paral·lel a v per a $p,q\in M$ diferents.
- $\pi_v|_M$ és una immersió suau $\iff T_pM$ no conté vectors no-nuls de $\ker d(\pi_v)_p$ per a $p \in M$.

Com π_v és lineal, el seu diferencial és la mateixa aplicació lineal, de manera que aquesta última condició és equivalent a demanar que T_pM no contingui vectors no nuls paral·lels a v.

Siguin ara

$$\Delta_M = \{(p, p) : p \in M\} \subseteq M \times M,$$

$$M_0 = \{(p, 0) : p \in M\} \subseteq TM,$$

i considerem les aplicacions següents cap a l'espai projectiu real \mathbb{RP}^{N-1} :

$$\kappa: (M \times M) \setminus \Delta_M \to \mathbb{RP}^{N-1},$$

 $(p,q) \mapsto [p-q]$

i

$$\tau: (TM) \setminus M_0 \to \mathbb{RP}^{N-1},$$

 $(p, w) \mapsto [w]$

On [v] denota la classe d'equivalència del vector v de $\mathbb{R}^N \setminus \{0\}$ com a punt de \mathbb{RP}^{N-1} .

Ambdues aplicacions són suaus, ja que són composició d'aplicacions suaus amb la projecció $\mathbb{R}^N\setminus\{0\}\to\mathbb{RP}^{N-1}$, i les dues condicions donades al principi de la demostració són equivalents a la condició que [v] no sigui imatge de κ ni de τ . Com els dominis d'ambdues aplicacions tenen dimensió 2n< N-1, pel teorema de Sard, les imatges de κ i τ tenen mesura zero en \mathbb{RP}^{N-1} i, per tant, el conjunt de vectors que pertanyen a les classes d'equivalència que no pertanyen a cap d'aquestes imatges és dens.

Iterant el procés donat en aquesta demostració, veiem que podem reduir la dimensió de l'espai ambient d'un encabiment a partir d'una sèrie de projeccions sobre subespais d'una dimensió més baixa, fins arribar a un espai de dimensió 2n+1. Tot i que això només ens ofereix una immersió i no un encabiment, és possible modificar lleugerament el lema per assegurar un encabiment. No detallem aquí de quina manera, però s'acaba reduint a imposar una condició no gaire restrictiva a l'elecció de v.

Lema 2.3.33. Sigui M una varietat suau n-dimensional. Si M admet un encabiment suau propi en algun espai \mathbb{R}^N , aleshores M admet un encabiment suau propi en \mathbb{R}^{2n+1} .

Al lema anterior, **propi** tan sols vol dir que l'encabiment és una aplicació pròpia, és a dir, tal que la preimatge de qualsevol compacte és compacta. Hem vist que podem reduir la dimensió de l'espai ambient en què haguem encabit la nostra varietat, però encara queda veure que es pot encabir en algun espai real per acabar la demostració.

Teorema 2.3.34 (Teorema de Whitney). Tota varietat diferenciable suau n-dimensional admet un encabiment suau en \mathbb{R}^{2n+1} .

Prova. Sigui M una varietat diferenciable suau n-dimensional. Com hem dit, només cal veure que M admet un encabiment en algun espai \mathbb{R}^N amb N prou gran.

Suposem primer que M és compacta. Aquest és el cas més senzill. Sigui $\{B_1, \ldots, B_m\}$ un recobriment finit per boles coordenades, de manera que per cada i existeix un domini de coordenades $B'_i \supseteq \overline{B_i}$ i una carta coordenada $\varphi_i : B'_i \to \mathbb{R}^n$ que és homeomorfisme de $\overline{B_i}$ amb un compacte de \mathbb{R}^n .

Sigui $\{\rho_i\}_i$ un conjunt de funcions de relleu, tals que ρ_i val 1 en $\overline{B_i}$ i 0 en $\mathbb{R}^n \setminus B_i'$. L'existència d'aquests conjunts de funcions de relleu és conseqüència de l'existència de funcions de relleu en espais euclidians, com hem vist al lema 2.3.11. Definim una aplicació suau

$$F: M \to \mathbb{R}^{nm+m},$$

$$p \mapsto (\rho_1(p)\varphi_1(p), \dots, \rho_m(p)\varphi_m(p), \rho_1(p), \dots, \rho_m(p))$$

on $\rho_i \varphi_i$ és zero fora del suport de ρ_i . Com hem suposat que M és compacte, només cal veure que F és una immersió injectiva suau, per la proposició 2.3.26.

Vegem que F és injectiva. Suposem F(p) = F(q) per a $p, q \in M$. Com els B_i són un recobriment de M, existeix un i tal que $p \in B'_i$, i $\rho_i(p) = 1$. Com F(p) = F(q), tenim que $\rho_i(p) = \rho_i(q)$ i $\rho_i\varphi_i(p) = \rho_i\varphi_i(q)$. Com $\rho_i(p) = 1$, tenim que $\varphi_i(p) = \varphi_i(q)$. Com φ_i és un homeomorfisme, tenim que p = q. Així, F és injectiva.

Vegem que F és una immersió suau. Sigui $p \in M$ i $p \in B_i$. Com $\rho_i \equiv 1$ en un entorn de p, tenim $d(\rho_i \varphi_i)_p = d\varphi_p$, que és injectiva. Per tant, dF_p és injectiva, i F és una immersió suau. Amb això acabem el cas de M compacte.

Suposem ara que M no és compacte. Sigui $f: M \to \mathbb{R}$ una funció d'exhauriment suau, tal com les hem definit a la definició 2.3.14. Pel teorema de Sard, per tot enter no-negatiu i existeixen valors regulars a_i, b_i de f tals que $i < a_i < b_i < i+1$. Definim els subconjunts de M

$$D_0 = f^{-1}(-\infty, 1], \quad E_0 = f^{-1}(-\infty, a_1],$$

 $D_i = f^{-1}(i, i+1], \quad E_i = f^{-1}(b_{i-1}, a_{i+1}],$

Cada E_i és un domini regular compacte definició?. Tenim que $D_i \subseteq Int(E_i)$, $M = \bigcup_i D_i$ i $E_i \cap E_j = \emptyset$ si $j \notin \{i-1, i, i+1\}$.

Vegem que per tot i hi ha un encabiment suau de E_i en algun espai \mathbb{R}^N . Per tot i, sigui $\rho_i: M \to \mathbb{R}$ una funció de relleu que val 1 en un entorn de D_i i té suport en $Int(E_i)$. Definim

$$F: M \to \mathbb{R}^{2n+1} \times \mathbb{R}^{2n+1} \times \mathbb{R}.$$

$$p \mapsto \left(\sum_{i \text{ parell}} \rho_i(p)\varphi_i(p), \sum_{i \text{ senar}} \rho_i(p)\varphi_i(p), f(p)\right)$$

Clarament, F és suau perquè en cada punt p només un terme de cada sumatori és diferent de zero. Per veure que F és injectiva, notem que si F(p) = F(q), aleshores $p \in D_j$ i com f(p) = f(q), $q \in D_j$. Per un argument com el del cas compacte, tenim que p = q. Per veure que F és una immersió, sigui $p \in M$ i $p \in D_j$. Aleshores $\rho_j \equiv 1$ en un entorn de p. Si j és senar, aleshores tenim que per tot q en aquest entorn de p.

$$F(p) = (\varphi_i(q), \dots, \dots)$$

de manera que dF_p és injectiva. Si j és parell, un argument anàleg ens diu que dF_p és injectiva. MIRAR PER QUÈ AIXÒ ÉS VERITAT ABANS D'ENTREGAR

Amb això, hem vist que tota varietat diferenciable suau n-dimensional admet un encabiment en \mathbb{R}^N . Pel lema 2.3.33, tenim que M admet un encabiment en \mathbb{R}^{2n+1} .

2.3.5 Geometria Riemanniana

Per tal de poder parlar de geometria en varietats diferenciables arbitràries, necessitem introduir el concepte de mètrica Riemanniana. Abans, però, recordem la definició de producte intern en espais vectorials reals.

Definició 2.3.35. Un producte intern en un espai vectorial real V és una aplicació $g: V \times V \to \mathbb{R}$ que és bilineal, simètrica i definida positiva, és a dir, que verifica

- 1. $g(\alpha u + \beta v, w) = \alpha g(u, w) + \beta g(v, w)$ per a tot $u, v, w \in V$ i $\alpha, \beta \in \mathbb{R}$,
- 2. g(u,v) = g(v,u) per a tot $u,v \in V$,
- 3. $g(u,u) \ge 0$ per a tot $u \in V$,
- 4. g(u, u) = 0 si i només si u = 0.

Definició 2.3.36. Sigui M una varietat diferenciable. Anomenem **mètrica Riemanniana** en M una aplicació g que assigna a cada punt p en M un producte intern $g_p: M_p \times M_p \to \mathbb{R}$ tal que per qualsevol obert $U \subseteq M$, si X,Y són camps vectorials diferenciables en U, aleshores la funció $g(X,Y): U \to \mathbb{R}$ donada per

$$g(X,Y)(p) = g_p(X_{|p}, Y_{|p}),$$

és diferenciable.

Anomenem varietat Riemanniana a una varietat diferenciable dotada d'una mètrica Riemanniana.

En qualsevol sistema de coordenades tal que les coordenades siguin z_1, \ldots, z_n , la mètrica Riemanniana es pot expressar com¹

$$g = \sum_{i,j=1}^{n} g_{ij} dz^{i} \otimes dz^{j} := g_{ij} dz^{i} dz^{j},$$

on g_{ij} són funcions diferenciables en U i dz^i són les 1-formes coordenades.

Definició 2.3.37. Anomenem 1-formes coordenades, $\{dz^1, \ldots, dz^n\}$, a la base de T_p^*M obtinguda dualitzant la base $\{\frac{\partial}{\partial z_1}, \ldots, \frac{\partial}{\partial z_n}\}$ de T_pM en un sistema de coordenades z_1, \ldots, z_n . **Definició 2.3.38.** Anomenarem **mètrica euclidiana** en \mathbb{R}^n la mètrica Riemanniana que en qualsevol sistema de coordenades tal que les coordenades siguin z_1, \ldots, z_n es pot expressar com

$$\langle \cdot, \cdot \rangle := \delta_{ij} dz^i dz^j,$$

on δ_{ij} és la delta de Kronecker.

Definició 2.3.39. Siguin M i N dues varietats Riemannianes, g una mètrica Riemanniana en N i $F: M \to N$ una aplicació diferenciable. Anomenem **pullback de** g **per** F la mètrica Riemanniana F^*g en M tal que, per qualsevol parell de vectors tangents $u, v \in T_pM$,

$$(F^*g)_p(v,u) = g_{F(p)}(dF_p(v), dF_p(u)),$$

on dF_p és el diferencial de F en p.

Proposició 2.3.40 (Existència de mètriques Riemannianes). Tota varietat diferenciable suau admet una mètrica Riemanniana.

Prova. Sigui M una varietat diferenciable suau amb o sense frontera. Sigui $\{(U_{\alpha}, \varphi_{\alpha})\}$ un recobriment per cartes coordenades. En cada domini de carta, existeix una mètrica Riemanniana $g_{\alpha} = \varphi_{\alpha}^* \langle \cdot, \cdot \rangle = \delta_{ij} dz^i dz^j$. Sigui $\{\psi_{\alpha}\}$ una partició de la unitat subordinada a $\{U_{\alpha}\}$. Definim

$$g = \sum_{\alpha} \psi_{\alpha} g_{\alpha},$$

on els termes són zero fora dels suports de les ψ_{α} . Com les particions de la unitat són localment finites, la suma és localment finita i per tant g hereta la suavitat de les g_{α} . És evidentment bilineal i simètrica per construcció, i només cal veure que és definida positiva.

¹Per l'última igualtat prenem la notació d'Einstein per als sumatoris.

Sigui $v \in T_pM$ un vector tangent en $p \in M$ diferent de zero. Aleshores el producte intern definit en aquest punt és

$$g_p(v,v) = \sum_{\alpha} \psi_{\alpha}(p) g_{\alpha}|_p(v,v)$$

que és una suma de termes no-negatius. Com a mínim alguna de les ψ_{α} és positiva en p i, per tant, $g_p(v,v) > 0$.

Definició 2.3.41. Siguin (M,g) i (\tilde{M},\tilde{g}) dues varietats Riemannianes suaus. Una aplicació C^{∞} $F: M \to \tilde{M}$ és una **isometria (Riemanniana)** si és un difeomorfisme i $F^*\tilde{g} = g$. Diem que F és una **isometria local** si tot punt $p \in M$ té un entorn U tal que $F|_U$ és una isometria d'un entorn de F(p) en \tilde{M} . Si F és una isometria, diem que M i \tilde{M} són **isomètriques**, i si F és una isometria local, diem que M i \tilde{M} són **localment isomètriques**.

Hi ha diverses propietats de les varietats Riemannianes que són invariants per isometries. La més important per nosaltres és la planitud (en anglès, *flatness*).

Definició 2.3.42. Diem que una varietat Riemanniana (M, g) és **plana** si és isomètrica a l'espai euclidià \mathbb{R}^n amb la mètrica euclidiana.

estaria molt bé demostrar que la planitud és invariant per isometries

Si (M,g) és una varietat Riemanniana, qualsevol subvarietat diferenciable $S\subseteq M$ admet una **mètrica induïda** i^*g , on $i:S\hookrightarrow M$ és la inclusió.

2.3.6 Un resultat interessant en \mathbb{R}^3

En el cas de superfícies regulars en \mathbb{R}^3 , l'espai normal tal com l'hem definit a la definició 2.3.27 en qualsevol punt de la superfície és unidimensional. En general, el que ens interessarà d'aquest espai normal és la seva direcció, de manera que definim l'aplicació següent:

Definició 2.3.43. Sigui S una superfície regular. Anomenem **aplicació de Gauss** o **aplicació normal** de S a una aplicació $N: S \to \mathbb{S}^2$ que a cada punt $p \in S$ li assigna un vector normal unitari a S en p.

Diem que S és **orientable** si existeix una aplicació de Gauss N.

Exemple 2.3.44. La cinta de Möbius, donada per $S = \phi(\mathbb{R} \times (-1,1))$, on $\phi(u,v) = 2(\cos(2u), \sin(2u), 0) + v(\cos(u)\cos(2u), \cos(u)\sin(2u), \sin(u))$, és una superfície regular no orientable.

Un dels resultats més rellevants pel que fa a l'orientació de superfícies regulars, que no demostrarem aquí, és el següent:

Teorema 2.3.45. Tota superfície regular compacta és orientable.

El diferencial de l'aplicació de Gauss N d'una superfície regular orientable S, dN_p : $T_pS \to T_{N(p)}\mathbb{S}^2$, es pot interpretar com un operador lineal del pla tangent a S en si mateix, ja que el pla tangent a S en N(p) és el mateix que el pla tangent a S en S. Per veure això, només cal considerar que $T_{N(p)}\mathbb{S}^2 = N(p)^{\perp} = T_pS$.això és una mica handwavey Per aquest motiu, denotem **endomorfisme de Weingarten** W_p el diferencial de l'aplicació de Gauss quan és considerat com un endomorfisme de T_pS . Amb aquest endomorfisme, podem arribar a definir la curvatura d'una superfície regular orientada.

Definició 2.3.46. Sigui S una superfície regular orientada, p un punt de S. Anomenem segona forma fonamental de S en p la forma bilineal

$$II_p: T_pS \times T_pS \to \mathbb{R}$$

 $(v, w) \mapsto \langle W_p(v), w \rangle$

on $\langle \cdot, \cdot \rangle$ és el producte escalar euclidià en T_pS .

Definició 2.3.47. Sigui S una superfície regular orientada, p un punt de S. Anomenem **curvatura de Gauss** $\kappa_S(p)$ de S en p el determinant de l'endomorfisme de Weingarten W_p .

Es pot demostrar, potser ho hauriem de fer, esta als apunts de l'Ignasi de geodif de fet, que la l'endomorfisme de Weingarten diagonalitza amb valors propis reals k_1 i k_2 , de manera que la curvatura de Gauss és

$$\kappa_S(p) = k_1(p)k_2(p).$$

Anomenem $k_1(p)$ i $k_2(p)$ les curvatures principals de S en p, i els vectors propis corresponents a aquests valors propis s'anomenen direccions principals de curvatura. Localment, corbes sobre la superfície que passen per p i segueixen les direccions principals de curvatura coincideixen amb cercles encabits a \mathbb{R}^3 tangents a aquest mateix punt i de radis $1/|k_1(p)|$ i $1/|k_2(p)|$. La curvatura de Gauss és negativa quan els centres d'aquests cercles, que anomenem centres de curvatura, es troben en costats oposats del pla tangent, i positiva quan estan en el mateix costat. mirar si això està ben explicat.

Definició 2.3.48. Sigui S una superfície regular orientada, p un punt de S. Diem que p és un punt el·líptic si $\kappa_S(p) > 0$.

Intuïtivament, una superfície regular és el·líptica en un punt si, localment, la superfície roman a un mateix costat del pla tangent, sense creuar-lo.

Teorema 2.3.49. Tota superfície regular compacta té un punt el·líptic.

Prova. Sigui S una superfície regular compacta, i considerem l'aplicació

$$g:S\to\mathbb{R}$$

$$p\mapsto ||p||^2.$$

Com S és compacta i g és una funció real contínua, g assoleix un màxim en un punt $p_{\text{max}} \in S$. Sigui $R^2 = ||p_{\text{max}}||^2$ el valor màxim de g.

Com a p_{\max} s'assoleix el màxim de la distància a l'origen, el vector posició p_{\max} és ortogonal a la superfície en p_{\max} . És a dir, p_{\max} és un punt comú de la superfície regular S i la frontera de l'esfera $B_R(0)$, on els espais tangents a S i $B_R(0)$ coincideixen. crec que això és el que l'ignasi va quedar-se demostrant quan ho vam fer a classe

Tots els punts de S tenen distància a l'origen menor que R, de manera que $S \subseteq B_R(0)$. Siguin k_1 i k_2 les curvatures principals de S en p_{\max} , i $\alpha:[0,1] \to S$ i $\beta:[0,1] \to S$ corbes tangents a S en p_{\max} que corresponen a les direccions principals de curvatura. Les curvatures principals de l'esfera $B_R(0)$ en p_{\max} són ambdues 1/R o ambdues -1/R, depenent de la orientació N escollida. Escollim una orientació N de S tal que en p_{\max} les curvatures principals de l'esfera siguin 1/R. Aleshores, si alguna de les curvatures principals de S és menor que 1/R, la corba α o β tindrà un radi de curvatura més gran que el de l'esfera, de manera que hi haurà un punt $\tilde{p} \in S$ proper a p_{\max} que té distància a l'origen més gran que R. Això entra en contradicció amb el fet que la distància a l'origen de p_{\max} és màxima. Per tant, ambdues curvatures principals de S en p_{\max} han de ser majors que 1/R, i per tant S té un punt el·líptic.

A continuació enunciem un dels teoremes més importants de la geometria de corbes i superfícies regulars en \mathbb{R}^3 , demostrat per Carl Friedrich Gauss el 1827, que relaciona la curvatura de Gauss d'una superfície regular amb la seva mètrica com a varietat Riemanniana.

Teorema 2.3.50 (Teorema Egregi de Gauss). La curvatura de Gauss d'una superfície regular només depèn de la mètrica de la superfície com a varietat Riemanniana. En concret, la curvatura de Gauss és invariant per isometries.

Un cas particular d'aquest teorema és que la planitud tal com l'hem definit a la definició 2.3.42, que la mètrica d'una varietat Riemanniana sigui la mètrica euclidiana, és equivalent a que la curvatura de Gauss sigui nul·la. Això té una implicació a l'hora de determinar quines varietats Riemannianes bidimensionals es poden encabir de manera isomètrica en \mathbb{R}^3 . En concret, obtenim el següent resultat per al tor pla.

Definició 2.3.51. Anomenem **tor** la varietat topològica $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2 = [0,1] \times [0,1]/\sim$, on \sim és la relació d'equivalència tal que $(x,0) \sim (x,1)$ i $(0,y) \sim (1,y)$ per a tot $x,y \in [0,1]$. Anomenem **tor pla** la varietat Riemanniana (\mathbb{T}^2,g) on \mathbb{T}^2 és el tor, i g és la mètrica euclidiana.

Teorema 2.3.52. No existeix cap encabiment isomètric C^{∞} del tor pla en \mathbb{R}^3 .

Prova. Primer de tot, cal veure que el tor és un espai topològic compacte. En efecte, el tor és la imatge del quadrat $[0,1] \times [0,1]$ pel quocient $\pi:[0,1] \times [0,1] \to \mathbb{T}^2$. Com el quocient és una aplicació contínua i el quadrat és compacte, el tor és compacte.

Sigui $f: \mathbb{T}^2 \to \mathbb{R}^3$ un encabiment isomètric C^{∞} de (\mathbb{T}^2, g) , on g és la mètrica euclidiana en \mathbb{R}^2 . Com f és un encabiment suau, $f(\mathbb{T}^2)$ és una superfície regular. A més,com f és una aplicació contínua d'un espai topològic compacte, $f(\mathbb{T}^2)$ és compacte. Per tant, $f(\mathbb{T}^2)$ és una superfície regular compacta.

Pel Teorema Egregi de Gauss, la curvatura de Gauss de $f(\mathbb{T}^2)$ és invariant per isometries, i només depèn de la mètrica g. Com g és la mètrica euclidiana, la curvatura de Gauss de $f(\mathbb{T}^2)$ ha de ser idènticament zero. Ara bé, pel Teorema 2.3.49, $f(\mathbb{T}^2)$ té un punt el·líptic, i per tant la curvatura de Gauss no pot ser idènticament zero. Així doncs, no existeix cap encabiment isomètric C^{∞} del tor pla en \mathbb{R}^3 .

Capítol 3

Cinta de Möbius de paper òptima

Manca fer un repàs al que hem escrit i assegurar que s'entengui tot, però està bastant bé.

3.1 Introducció al capítol

Al capítol anterior hem vist que, tot i que pel teorema de Whitney sempre existeix algun espai euclidià de dimensió prou alta tal que s'hi pugui encabir una varietat topològica C^{∞} , no sempre és possible encabir-los en un espai de dimensió 3. En concret, fins i tot per varietats que sí es poden encabir suaument en \mathbb{R}^3 , hem vist que no sempre és possible encabir-les isomètricament, com és el cas del tor.

A continuació presentem un resultat obtingut recentment, l'any 2023, per Richard Evan Schwartz, on demostra una altra restricció per una varietat amb frontera, aquesta vegada en el cas de les cintes de Möbius. Veurem que, tot i que és possible encabir-les suaument i isomètrica en \mathbb{R}^3 quan el costat llarg de la cinta de Möbius és $\sqrt{3}$ vegades major que el curt, no és possible fer-ho quan és més petit.

L'objectiu d'aquest capítol no serà només veure aquest resultat, sinó també veure com el podem "esquivar"relaxant les condicions del nostre encabiment isomètric. La manera en què ho aconseguirem apuntarà cap al que veurem al capítol següent, on demostrarem el teorema de Nash.

La font d'aquest capítol és gairebé exclusivament la versió més nova de l'article de Richard Evan Schwartz, Schwartz (2024). Aquest article és molt senzill, curt i fàcil de llegir, de manera que seguim de manera molt propera la seva demostració. Hem afegit els diagrames de la demostració del lema T per tal de fer més evident l'argument topològic que fa servir Schwartz.

El Schwartz menciona aquí uns papers que expliquem més sobre la banda de Möbius, si volem escriure més sobre el tema els podem utilitzar.

3.2 Introducció al problema

Comencem introduint un tipus d'objecte que no havíem vist fins ara, la varietat topològica amb frontera. No dedicarem gaire espai a estudiar-les, però és important entendre que molts dels conceptes i resultats que hem vist al capítol anterior es poden generalitzar a varietats topològiques amb frontera, tractant la frontera com un altre varietat topològica de dimensió n-1.

Definició 3.2.1. Sigui M un espai topològic Hausdorff i tal que verifica el segon axioma de numerabilitat. Diem que M és una **varietat topològica amb frontera de dimensió** n si per a cada $p \in M$ existeix un entorn obert $U \subseteq M$ de p que és homeomorf a un obert de \mathbb{R}^n o a un obert del semiespai superior $\mathbb{H}^n := \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_n \geq 0\}$.

Notació 4. Escriurem ∂M per denotar la frontera de M, és a dir, el subconjunt de punts de M al voltant dels quals la varietat topològica amb frontera té un entorn homeomorf a \mathbb{H}^n però no en té cap d'homeomorf a \mathbb{R}^n . Recíprocament, anomenarem Int(M) l' interior de M, és a dir, els punts de M que no pertanyen a ∂M .

3.2.1 Definitions

Definició 3.2.2. Anomenem cinta de Möbius plana de raó d'aspecte λ la varietat topològica amb frontera Hem de definir a la secció anterior varietat topològica amb frontera obtinguda amb la següent identificació d'un rectangle

$$M_{\lambda} := ([0, \lambda] \times [0, 1]) / \sim, \qquad (0, y) \sim (\lambda, 1 - y).$$

Definició 3.2.3. Una cinta de Möbius de paper de raó d'aspecte λ és una aplicació isomètrica $I: M_{\lambda} \to \mathbb{R}^3$ de classe C^{∞}

Notació 5. Anomenarem $\Omega = I(M_{\lambda})$ la imatge de M_{λ} per I. Sovint anomenarem cinta de Möbius de paper a Ω en lloc de I. Quan I sigui un encabiment, direm que Ω està **encabida** en \mathbb{R}^3 .

Exemple 3.2.4. Anomenem cinta de Möbius de paper triangular la cinta de Möbius de paper de raó d'aspecte $\lambda = \sqrt{3}$.

3.2.2 Enunciats dels teoremes

Teorema 3.2.5 (Principal). Una cinta de Möbius de paper encabida en \mathbb{R}^3 té raó d'aspecte més gran que $\sqrt{3}$.

3.2.3 Preliminars a la demostració

Definició 3.2.6. Sigui $I: M_{\lambda} \to \Omega$ una cinta de Möbius de paper encabida. Un **plec** a Ω és un segment de recta B' que talla a través de Ω i té els seus extrems a la frontera. **Definició 3.2.7.** Sigui B' un plec. Anomenem **pre-plec** a la preimatge $B = I^{-1}(B')$.

Veurem més endavant que tota cinta de Möbius de paper encabida té una foliació per plecs. A més, degut al fet que I no incrementa distàncies, és fàcil veure que els pre-plecs també són segments de recta, i que M_{λ} té una foliació per pre-plecs. Hem de definir foliació preferiblement.

Definició 3.2.8. Un patró T en Ω (en anglès, T-pattern) és un parell de plecs que es troben en rectes perpendiculars que intersequen en un punt. Diem que el patró T està encabit en Ω si els plecs no intersequen.

El Teorema Principal es conseqüència directa dels dos lemes que enunciem a continuació. Només caldrà demostrar cada un d'ells.

Lema 3.2.9 (T). Tota cinta de Möbius de paper encabida té un patró T encabit.

Lema 3.2.10 (G). Tota cinta de Möbius de paper encabida amb un patró T encabit té raó d'aspecte més gran que $\sqrt{3}$.

3.3 Demostració

3.3.1 Existència de la foliació per plecs

Sigui Ω° l'interior de Ω , i U el subconjunt de Ω° format pels punts té curvatura mitjana Hem de definir curvatura mitjana!!! diferent de zero.

Per demostrar l'existència de la foliació per plecs, utilitzarem el lema següent:

Lema 3.3.1. Tot punt $p \in U$ pertany a un únic plec γ , i tot punt de γ té curvatura mitjana diferent de zero, fins i tot a la frontera. hauríem de mirar de demostrar això si és possible. Teorema 3.3.2 (Existència de la foliació per plecs). Ω té una foliació per plecs.

Prova. Sigui U^* la unió de tots els plecs que passen per punts de U. Observem que els punts de la frontera de cada plec pertanyen a U^* . Els punts de U^* no intersequen, ja que altrament aquell punt tindria curvatura mitjana zero, contradient el lema 3.3.1. Per tant, U^* té una foliació per plecs.

Sigui τ' un component connex de $\Omega \setminus U^*$. Si τ' té interior buit, aleshores és el límit d'una successió de plecs de U^* , i per tant és també un plec en ser un segment de recta. Si τ' té punts al seu interior, aleshores tots ells tenen curvatura mitjana zero, de manera que pertanyen a un sol pla. Sigui $\tau = I^{-1}(\tau')$. $I|_{\tau}$ és un encabiment isomètric entre regions planes i τ és un trapezoide convex. Per tant, $I|_{\tau}$ és una isometria global, de manera que les imatges de segments de recta en τ són segments de recta. Podem obtenir una foliació per pre-plecs de τ de manera senzilla interpolant entre els dos pre-plecs de la seva frontera, i prendre la imatge per I d'aquesta foliació per obtenir una foliació per plecs de τ' . Podem posar un dibuixet tranquilament, tinc un de molt maco a la pàgina 2 dels apunts.

Realitzant aquest procés per cada component connex de $\Omega \setminus U^*$, obtenim una foliació per plecs de Ω .

3.3.2 Demostració del lema T

Definició 3.3.3. Sigui $I: M_{\lambda} \to \Omega$ una cinta de Möbius de paper encabida. Anomenem **línia central de** M_{λ} al cercle $([0,\lambda] \times \{1/2\})/\sim$. Anomenem **línia central de** Ω a la imatge de la línia central de M_{λ} per I.

Definició 3.3.4. Sigui u un plec. Anomenem **orientació de** u a cada un dels dos vectors unitaris paral·lels a u, $\pm \vec{u}$.

Proposició 3.3.5. Tot pre-plec interseca la línia central de M_{λ} en un únic punt.

Prova. Sigui u un pre-plec, i $\ell(u)$ la seva longitud. Si $\ell(u) < \sqrt{1 + \lambda^2}$, es pot desplaçar per una isometria per tal que no toqui les verticals del rectangle, de manera que clarament ha de tallar a la línia central en un únic punt. Suposem, per tant, que $\ell(u) \ge \sqrt{1 + \lambda^2}$. Aleshores, $\ell(u) > \lambda$. Però la frontera $\partial \Omega$ és un cercle (topològic) de longitud 2λ que conté els extrems del plec I(u). Per tant, $2\lambda = \ell(\partial \Omega) \ge 2\ell(I(u)) = 2\ell(u) > 2\lambda$, que és una contradicció.

Observació 3.3.6. Escollint una foliació per plecs β , el fet que I és un encabiment implica que la proposició també és certa per plecs: tot plec interseca la línia central de Ω en un únic punt. Així, podem associar a cada plec de β un únic valor de $\mathbb{R}/2\pi$

Sigui Γ l'espai de parelles $(x_0, x_1) \in (\mathbb{R}/2\pi)^2$ tals que $x_0 \neq x_1$. Per la observació anterior, cada parella de plecs de β diferents es correspon amb un únic element de Γ . Γ és homeomorf a un cilindre.

Podem compactificar Γ afegint ∂_+ com el límit de les parelles en què x_1 va just abans que x_0 en el cilindre, i ∂_- com el límit de les parelles en què x_1 va just després que x_0 .

Figura 3.1: Cilindre de Γ .

Aquest nou espai, $\overline{\Gamma}$, és homeomorf a l'esfera \mathbb{S}^2 . L'aplicació $\Sigma(x_0, x_1) = (x_0, x_1)$ es pot estendre a una aplicació contínua de l'esfera que bescanvia ∂_+ i ∂_- .

Figura 3.2: Esfera de $\overline{\Gamma}$.

Per tot parell $(x_0, x_1) \in \Gamma$, hi ha un únic camí positiu $\{x_t\}$ en l'ordre cíclic de $\mathbb{R}/2\pi$ que va de x_0 a x_1 . Aquest camí té longitud propera a zero quan (x_0, x_1) està a prop de ∂_+ , i propera a 2π quan (x_0, x_1) està a prop de ∂_- .

Escrivim $\vec{u}_0 \rightsquigarrow \vec{u}_1$ per denotar que hi ha una orientació contínua de plecs $\{u_t\}$ amb extrems u_0 i u_1 . Notem que, si $\vec{u}_0 \rightsquigarrow \vec{u}_1$, aleshores $-\vec{u}_0 \rightsquigarrow -\vec{u}_1$, ja que és un canvi d'orientació, i que $\vec{u}_1 \rightsquigarrow -\vec{u}_0$, ja que ens trobem en una cinta de Möbius.

Sigui m_i el punt mig de u_i . Definim l'aplicació

$$F = (g, h) : \Gamma \to \mathbb{R}^2,$$

$$(x_0, x_1) \mapsto (\vec{u}_0 \cdot \vec{u}_1, (m_0 - m_1) \cdot (\vec{u}_0 \times \vec{u}_1))$$

on $\vec{u}_0 \leadsto \vec{u}_1$. Notem que la definició és independent de la orientació, ja que $\vec{u}_0 \leadsto \vec{u}_1 \iff -\vec{u}_0 \leadsto -\vec{u}_1$, i que F es pot estendre de manera contínua a \mathbb{S}^2 de la següent manera:

$$\overline{F} = (\overline{g}, \overline{h}) : \overline{\Gamma} \to \mathbb{R}^2,$$

$$(x_0, x_1) \mapsto \begin{cases} F(x_0, x_1) & \text{si } (x_0, x_1) \in \Gamma, \\ (\pm 1, 0) & \text{si } (x_0, x_1) = \partial_{\pm}. \end{cases}$$

Proposició 3.3.7. F, tal com l'hem definit, és tal que $F \circ \Sigma = -F$.

Prova. Només cal veure que és cert per les funcions g i h. Utilitzem que $\vec{u}_0 \rightsquigarrow \vec{u}_1 \iff -\vec{u}_0 \rightsquigarrow -\vec{u}_1$.

Com $g(x_0, x_1) = \vec{u}_0 \cdot \vec{u}_1$, tenim que $g(x_1, x_0) = \vec{u}_1 \cdot (-\vec{u}_0) = -g(x_0, x_1)$.

Com
$$h(x_0, x_1) = (m_0 - m_1) \cdot (\vec{u}_0 \times \vec{u}_1)$$
, tenim que $h(x_1, x_0) = (m_1 - m_0) \cdot (\vec{u}_1 \times (-\vec{u}_0)) = (m_1 - m_0) \cdot (\vec{u}_0 \times \vec{u}_1) = -h(x_0, x_1)$.

23

A més, pels punts antipodals ∂_+ i ∂_- tenim que $\overline{F}(\partial_+) = \overline{F}(\partial_-) = (1,0)$.

Com \overline{F} és contínua una aplicació contínua sobre un domini homeomorf a una esfera tal que $\overline{F} \circ \Sigma = -\overline{F}$, pel teorema de Borsuk-Ulam, existeix algun punt del domini amb imatge nul·la. Aquest punt no pot ser ∂_+ ni ∂_- , ja que $\overline{F}(\partial_\pm) = (\pm 1, 0)$, per tant ha de pertànyer a Γ

Siguin (u_0, u_1) els plecs corresponents a $(x_0, x_1) \in F^{-1}(0, 0)$. Aleshores:

- 1. u_0 i u_1 són disjunts, ja que són plecs diferents d'una mateixa foliació.
- 2. u_0 i u_1 són ortogonals, ja que $g(x_0, x_1) = 0$.
- 3. u_0 i u_1 són coplanars, ja que $h(x_0, x_1) = 0 \implies \vec{u}_0, \vec{u}_1$ i $m_0 m_1$ són tots ortogonals a $\vec{u}_0 \times \vec{u}_1$.

Tot plegat, implica que u_0 i u_1 formen un patró T encabit, com volíem demostrar.

3.3.3 Demostració del lema G

Notació 6. Sigui ℓ la longitud d'arc, ∇ un triangle de base horitzontal $i \vee els$ costats no-horitzontals.

Definició 3.3.8. Si ∇ té base $\sqrt{1+t^2}$ i alçada $h \geq 1$, aleshores $\ell(\vee) \geq \sqrt{5+t^2}$. La igualtat es compleix si i només si h=1 i ∇ és isòsceles.

Prova. Siguin p_1 , p_2 i q els vèrtexs de ∇ , amb p_1p_2 la base. Sigui p'_2 el simètric de p_2 respecte de la recta horitzontal que passa per q. Aleshores,

$$\ell(\vee) = \|p_1 - q\| + \|p_2 - q\| = \|p_1 - q\| + \|p_2' - q\| \ge \|p_1 - p_2'\| = \sqrt{1 + t^2 + 4h^2} \ge \sqrt{5 + t^2}.$$

La igualtat es compleix si i només si h=1 i p_1p_2' és vertical, que és el cas de l'isòsceles. \square

Sigui $I: M_{\lambda} \to \Omega$ una cinta de Möbius de paper encabida amb un patró T encabit.

Notació 7. Per qualsevol subconjunt $S \subseteq M_{\lambda}$, anomenem S' = I(S) la imatge de S per I.

Rotem Ω tal que un plec sigui horitzontal, T', i l'altre estigui per sota en el mateix pla, B'. Observant Ω i M_{λ} , verifiquem que tenen la forma de la figura Explicar com s'ha de llegir el dibuixet!!!

Figura 3.3: Cinta de Möbius de paper encabida amb un patró T encabit.

Ara observem que

$$\begin{cases} \text{base} &= \ell(T') = \ell(T) = \sqrt{1+t^2}, \\ \text{alçada} &> \ell(B') = \ell(B) = \sqrt{1+b^2} \ge 1. \end{cases}$$

3.4. CONCLUSIONS 24

Per tant, es verifiquen

$$\begin{cases} \ell(H) + \ell(D) = 2\lambda \\ \ell(D) - 2t = \ell(H) \\ \sqrt{1 + t^2} = \ell(T') \le \ell(H') = \ell(H) \\ \sqrt{5 + t^2} < \ell(\vee) \le \ell(D') = \ell(D) \end{cases}$$

Definim les corbes

$$\begin{cases} \alpha(t) := \sqrt{1+t^2} + \sqrt{5+t^2} < \ell(H) + \ell(D) = 2\lambda \\ \beta(t) := 2\sqrt{5+t^2} - 2t < 2\ell(D) - 2t = \ell(D) + \ell(H) = 2\lambda \end{cases}$$

Una mica hadwavey, de nou. Caldria argumentar millor.

Per tant, $2\lambda > \max(\alpha(t), \beta(t))$. Posant $t_0 = 1/\sqrt{3}$, tenim que $\alpha(t_0) = \beta(t_0) = 2\sqrt{3}$.

Observem que α és creixent en $(0, \infty)$. Per tant, $\alpha(t) > 2\sqrt{3}$ per a tot $t > t_0$. En canvi, β és decreixent en $t \in \mathbb{R}$. Per tant, $\beta(t) > 2\sqrt{3}$ per a tot $t < t_0$. Tot plegat, obtenim que $\lambda > \sqrt{3}$, com volíem demostrar.

3.4 Conclusions

Amb això hem vist i demostrat una nova restricció sobre els encabiments isomètrics d'una varietat amb vora tan familiar com és la cinta de Möbius. De fet, l'article de Schwartz (2024) va un pas més enllà, demostrant el següent teorema sobre successions de cintes de Möbius de paper encabides amb raons d'aspecte convergint a $\sqrt{3}$:

Teorema 3.4.1 (Límit Triangular). Sigui $I_n: M_{\lambda_n} \to \mathbb{R}^3$ una successió de cintes de Möbius de paper encabides, tals que $\lambda_n \to \sqrt{3}$. Aleshores, I_n convergeix uniformement a una cinta de Möbius de paper triangular, llevat d'isometria.

Ara bé, hi ha una manera de prendre un tros de paper de raó d'aspecte $\lambda=1$, i doblegar-lo de tal manera que el resultat sigui gairebé idèntic a una cinta de Möbius de paper encabida. Per aconseguir això, només cal prendre el tros de paper i doblegar-lo un nombre parell de vegades, de tal manera que quedi dividit en un nombre senar de seccions iguals. Si aquestes seccions es dobleguen de manera alternant, com un acordió, podem enganxar els dos extrems i aconseguir un **acordió de Möbius**. De fet, amb aquest mètode podem aconseguir prendre un paper rectangular de qualsevol raó d'aspecte i tornar-lo en un acordió de Möbius.

Què té d'especial l'acordió de Möbius que impedeix que serveixi com a contraexemple del teorema Principal? Aquest objecte no és una cinta de Möbius de paper encabida, tal com l'hem definit a la definició 3.2.3, perquè els dos extrems no poden encaixar correctament sense doblegar el paper de manera suau. Els punts per on dobleguem, dit d'altra manera, no són regulars, de manera que l'encabiment no és C^{∞} . En concret, hem necessitat regularitat com a mínim C^2 per poder definir la curvatura mitjana en la demostració del teorema 3.3.2. Si l'encabiment no és prou regular, no hi ha la foliació per plecs necessària per demostrar el teorema Principal.

L'acordió de Möbius deixa clar que, relaxant les condicions de regularitat, aconseguim encabiments isomètrics de varietats que no n'admetrien altrament. Aquest fet destacable és el que podem generalitzar en el capítol que segueix, on estudiarem el Teorema de Nash d'immersions i encabiments isomètrics C^1 .

Capítol 4

Teorema Nash-Kuiper C^1

4.1 Introducció al capítol

Al final del capítol anterior hem vist que és possible trobar immersions i encabiments isomètrics que resultarien impossibles en altres condicions si no imposem que aquestes aplicacions siguin de classe C^{∞} . Aquest capítol està dedicat a una formalització d'aquesta idea mitjançant el teorema de Nash-Kuiper. El cos principal del capítol consistirà en la demostració dels teoremes originals tals com els va demostrar Nash (1954), de manera que veurem que si una varietat Riemanniana es pot encabir de manera curta en un espai euclidià de dimensió $k \geq n+2$, aleshores es pot modificar aquesta aplicació per obtenir-ne una d'isomètrica tan propera com vulguem. Al final del capítol veurem una millora clau en la demostració, comentant breument l'article de Nicolaas H. Kuiper, Kuiper (1955), que demostra el mateix resultat per a immersions C^{∞} de dimensió n+1.

En aquesta secció enunciarem i demostrarem els quatre teoremes d'immersions isomètriques C^1 de John Forbes Nash Jr., seguint l'article en què els va publicar el 1954 a Annals of Mathematics, Nash (1954).

explicar una mica el context i tal. El podem treure de la introducció del llibre del Tor.

Bàsicament, dir que és un teorema sorprenent perquè no se l'esperava ningú, explicar que el que fa és dividir en etapes i passos, i explicar que Kuiper fa una millora de la demostració de Nash per a una dimensió menys.

Important tornar a llegir i revisar quan dic successió i quan dic sèrie.

Definició 4.1.1. Diem que una varietat Riemanniana M és **tancada** si és compacta, i diem que és **oberta** si tots els seus components connexos no són tancats. Potser s'ha de moure a algun altre lloc?

Notació 8. Sempre que parlem d'encabiments o immersions de varietats en espais \mathbb{R}^n , suposarem que aquests tenen la mètrica euclidiana.

La imatge d'una varietat tancada per un encabiment o immersió contínua és compacta. Si la imatge és una subvarietat de \mathbb{R}^k , aleshores és tancada i acotada. Ara bé, per a una varietat oberta la imatge no és necessàriament compacta. En aquest cas, és possible definir el **conjunt límit** de la imatge, que és el conjunt de punts de \mathbb{R}^k tals que són el límit de successions de punts de la imatge, però que no pertanyen a la imatge.

Exemple 4.1.2. El conjunt límit de l'encabiment per la inclusió i de la bola oberta \mathbb{B}^2 en \mathbb{R}^2 és el cercle \mathbb{S}^1 .

4.2 Enunciat dels teoremes

Teorema 4.2.1. Qualsevol varietat Riemanniana tancada de dimensió n té un encabiment isomètric C^1 en \mathbb{R}^{2n} .

Teorema 4.2.2. Qualsevol varietat Riemanniana de dimensió n té una immersió isomètrica C^1 en \mathbb{R}^{2n} i un encabiment isomètric C^1 en \mathbb{R}^{2n+1} .

Teorema 4.2.3. Si una varietat Riemanniana tancada de dimensió n té una immersió o encabiment C^{∞} en \mathbb{R}^k amb $k \geq n+2$, aleshores també té una immersió o encabiment, respectivament, isomètric en \mathbb{R}^k .

Teorema 4.2.4. Si una varietat Riemanniana oberta de dimensió n té una immersió o encabiment C^{∞} curta en \mathbb{R}^k amb $k \geq n+2$ que no se solapa amb el seu conjunt límit (si aquest existeix), aleshores també té una immersió o encabiment, respectivament, isomètric en \mathbb{R}^k del mateix tipus.

4.3 Demostració

Sigui (M, g) una varietat diferenciable Riemanniana de dimensió n, amb la seva mètrica intrínseca donada per un tensor mètric g_{ij} . Volem trobar una immersió isomètrica d'aquesta varietat M en algun espai euclidià.

Suposem que tenim una immersió f de M en un espai euclidià \mathbb{R}^k , de manera que per un punt amb coordenades locals $\{x^i\}$ de M, les coordenades de la seva imatge en \mathbb{R}^k són $\{z^{\alpha}(x^1,\ldots,x^n)\},$

$$f: M \to \mathbb{R}^k,$$

 $\{x^i\} \mapsto \{z^{\alpha}(x^1, \dots, x^n)\}.$

Aleshores, la mètrica induïda en M és donada pel tensor mètric

$$h_{ij} = \sum_{\alpha} \frac{\partial z^{\alpha}}{\partial x^{i}} \frac{\partial z^{\alpha}}{\partial x^{j}}.$$

El nostre objectiu és equivalent a aconseguir que $h_{ij} = g_{ij}$.

Per tal de començar la demostració, el primer que necessitarem serà que la immersió original f que sigui de classe C^{∞} i curta.

Definició 4.3.1. Diem que una immersió $f: M \to \mathbb{R}^k$ és **curta** si l'error mètric és definit positiu, on l'**error mètric** és el tensor diferència $\delta_{ij} = g_{ij} - h_{ij}$.

El més important d'aquesta definició és que, si f és curta, els vectors tangents a M mai s'allarguen sota f. És fàcil trobar immersions d'aquesta mena per a varietats tancades, mentre que per varietats obertes cal utilitzar un mecanisme més complicat. Discutim la manera d'obtenir aquestes immersions a la secció 4.3.6.

Un cop trobada aquesta immersió curta, l'estructura de la demostració dels teoremes de Nash consisteix en fer una successió de pertorbacions de f que disminueixen l'error mètric progressivament fins a convergir en una immersió isomètrica. En general, el procés de pertorbació es divideix en **etapes** (en anglès, stages), i a cada etapa es divideix en **passos** (en anglès, steps). Així, la primera etapa prendrà la nostra immersió curta f i en retornarà una f_1 amb un error mètric com a molt la meitat del de f, que serà també C^{∞} i curta. Aquesta f_1 serà millorada en la segona etapa, i així successivament.

La manera en què l'error mètric haurà de disminuir en cada etapa és la següent: si en la primera immersió, l'error mètric és

$$\delta_{ij} = g_{ij} - h_{ij},$$

en la segona etapa, l'error mètric serà

$$\overline{\delta}_{ij} = g_{ij} - \overline{h}_{ij} \approx \frac{1}{2} \delta_{ij},$$

on \overline{h}_{ij} és la mètrica induïda per f_1 . Aquest error mètric anirà disminuint geomètricament després de cada etapa, i en el límit obtindrem una immersió isomètrica.

En cada etapa individual, el procés de pertorbació es divideix en passos. Cada pas afectarà només un cert entorn de M, però s'hauran de dur a terme l'un rere l'altre, no simultàniament. Per tal de fer-ho, cal prendre un recobriment localment finit de M per conjunts compactes $\{N_p\}_p$. La construcció d'aquest recobriment és possible, com hem vist al lema 2.3.10. Sigui $\{\varphi_p\}_p$ una partició de la unitat subordinada a $\{N_p\}_p$.

En cada entorn N_p , voldrem que l'error mètric δ_{ij} sigui reduït en $\frac{1}{2}\varphi_p\delta_{ij}$ després d'una etapa. Per fer-ho, necessitem aproximar δ_{ij} per un tensor de classe C^{∞} i definit positiu β_{ij} . Per tal de fer servir aquest β_{ij} per reduir l'error mètric, necessitem el següent resultat:

Lema 4.3.2. Sigui β_{ij} un tensor de classe C^{∞} i definit positiu, i sigui φ_p la funció de la partició de la unitat associada a N_p . Aleshores, es poden trobar funcions no-negatives a_{ν} de classe C^{∞} i un nombre finit de funcions lineals $\psi^{\nu} = \psi^{\nu}(x^1, \dots, x^n)$ tals que

$$\frac{1}{2}\varphi_p\beta_{ij} = \sum_{\nu} a_{\nu} \left(\frac{\partial \psi^{\nu}}{\partial x^i}\right) \left(\frac{\partial \psi^{\nu}}{\partial x^j}\right),\tag{4.3.1}$$

Observació 4.3.3. Cal remarcar que aquest lema només és cert si β_{ij} és definit positiu, i que el nombre de termes del sumatori és finit.

Prova (Aquesta és la demostració del Nash. És una mica llarga però s'entén bastant bé si la mires amb cura. El Sung-Jin Oh té una versió més curta amb una notació diferent.). El conjunt de les matrius simètriques definides positives de rang n és un con de dimensió $\frac{1}{2}n(n+1)$ Revisar d'on surt això abans de fer la presentació. És possible cobrir aquest con amb conjunts simplicials oberts, de tal manera que cada punt del con estigui cobert per, com a molt, un nombre W d'aquests entorns, on W depèn només de n.

Una matriu qualsevol representada per un punt interior d'un símplex és combinació lineal de les matrius que representen els vèrtexs del símplex. Podem posar

$$C_{1,1};$$
 $C_{1,2};$ $C_{1,3};$... $C_{2,1};$ $C_{2,2};$ $C_{2,3};$... \vdots $C_{q,1};$ $C_{q,2};$ $C_{q,3};$...

els coeficients per q representacions diferents d'una matriu del con que pertany a l'interior de q símplexs diferents. Ara podem escriure uns altres coeficients

$$C_{\mu,\nu}^* = \frac{C_{\mu,\nu} \exp\{-\sum_{\sigma} 1/C_{\mu,\sigma}\}}{\sum_{\rho} \exp\{-\sum_{\sigma} 1/C_{\rho,\sigma}\}},$$

on cal considerar que els exponencials són nuls si qualsevol dels termes del seu sumatori ho és. Observem que aquests coeficients són C^{∞} com a funcions de la matriu que representen. A més, per cada matriu, com a molt $W[\frac{1}{2}n(n+1)+1]$ coeficients $C_{\mu,\nu}^*$ són no-nuls.

Si ara considerem que β_{ij} defineix una aplicació de classe C^{∞} de N_p al con, aleshores podem escriure

$$\beta_{ij} = \sum_{\mu,\nu} C_{\mu,\nu}^* M_{(\mu,\nu)ij} \tag{4.3.2}$$

on $M_{(\mu,\nu)ij}$ són les diferents matrius que representen els vèrtexs dels símplexs. Ara, per cada matriu $M_{(\mu,\nu)ij}$ obtenim n autovectors unitaris ortogonals $\{V_r\}$ i els seus autovalors $\{v_r\}$.

Si ψ_r és per cada r la funció lineal dels paràmetres locals pels quals $\sqrt{v_r}V_r$ és el vector gradient Aquesta és la part més rara, entenc que simplement es pot fer, tenim que

$$M_{(\mu,\nu)ij} = \sum_{r} \frac{\partial \psi_r}{\partial x^i} \frac{\partial \psi_r}{\partial x^j}$$

i, substituint en l'equació 4.3.2, tenim que

$$\beta_{ij} = \sum_{r} \sum_{\mu,\nu} C_{\mu,\nu}^* M_{(\mu,\nu)ij} \frac{\partial \psi_r}{\partial x^i} \frac{\partial \psi_r}{\partial x^j}$$

i, agrupant termes en a_{ν} , obtenim el resultat.

4.3.1 La pertorbació en un pas

En el pas associat a N_p d'una etapa donada, caldrà fer una pertorbació de la immersió curta obtinguda anteriorment. Per fer-ho, considerem dos camps vectorials unitaris ortogonals entre ells i a la immersió en l'entorn N_p , representats per funcions de classe C^{∞} , ζ^{α} i η^{α} . És a dir, les coordenades dels camps vectorials normals ζ i η compleixen les següents propietats:

$$\begin{split} \sum_{\alpha} (\zeta^{\alpha})^2 &= 1, \\ \sum_{\alpha} (\eta^{\alpha})^2 &= 1, \\ \sum_{\alpha} \zeta^{\alpha} \eta^{\alpha} &= 0, \\ \sum_{\alpha} \zeta^{\alpha} \frac{\partial z^{\alpha}}{\partial x^i} &= \sum_{\alpha} \eta^{\alpha} \frac{\partial z^{\alpha}}{\partial x^i} &= 0. \end{split}$$

Amb aquests camps vectorials, la pertorbació trobada per Nash de la immersió curta z^{α} en un pas a l'entorn N_p és

$$\overline{z^{\alpha}} = z^{\alpha} + \zeta^{\alpha} \frac{\sqrt{a_{\nu}}}{\lambda} \cos(\lambda \psi^{\nu}) + \eta^{\alpha} \frac{\sqrt{a_{\nu}}}{\lambda} \sin(\lambda \psi^{\nu})$$
(4.3.3)

on λ és una constant positiva tan gran com vulguem.

Ara cal veure que el canvi mètric $\sum_{\alpha} \frac{\partial \overline{z}^{\alpha}}{\partial x^{i}} \frac{\partial \overline{z}^{\alpha}}{\partial x^{j}} - \sum_{\alpha} \frac{\partial z^{\alpha}}{\partial x^{i}} \frac{\partial z^{\alpha}}{\partial x^{j}}$ és aproximadament igual al terme ν del sumatori de l'equació 4.3.1.

Proposició 4.3.4. El canvi mètric a l'entorn N_p en el pas associat a a_ν i ψ^ν donat per l'equació 4.3.3 compleix

$$\sum_{\alpha} \frac{\partial \overline{z}^{\alpha}}{\partial x^{i}} \frac{\partial \overline{z}^{\alpha}}{\partial x^{j}} - \sum_{\alpha} \frac{\partial z^{\alpha}}{\partial x^{i}} \frac{\partial z^{\alpha}}{\partial x^{j}} = a_{\nu} \frac{\partial \psi^{\nu}}{\partial x^{i}} \frac{\partial \psi^{\nu}}{\partial x^{j}} + O\left(\frac{1}{\lambda}\right)$$
(4.3.4)

Prova. Desenvolupant les derivades parcials i cancel·lant els termes que apareixen en ambdós costats, tenim

$$\sum_{\alpha} \frac{\partial \overline{z}^{\alpha}}{\partial x^{i}} \frac{\partial \overline{z}^{\alpha}}{\partial x^{j}} - \sum_{\alpha} \frac{\partial z^{\alpha}}{\partial x^{i}} \frac{\partial z^{\alpha}}{\partial x^{j}} = \sum_{\alpha} \left[\frac{\partial}{\partial x^{i}} \left(\zeta^{\alpha} \frac{\sqrt{a_{\nu}}}{\lambda} \cos(\lambda \psi^{\nu}) \right) \frac{\partial}{\partial x^{j}} \left(\zeta^{\alpha} \frac{\sqrt{a_{\nu}}}{\lambda} \cos(\lambda \psi^{\nu}) \right) + \frac{\partial}{\partial x^{i}} \left(\eta^{\alpha} \frac{\sqrt{a_{\nu}}}{\lambda} \sin(\lambda \psi^{\nu}) \right) \frac{\partial}{\partial x^{j}} \left(\eta^{\alpha} \frac{\sqrt{a_{\nu}}}{\lambda} \sin(\lambda \psi^{\nu}) \right) \right]$$
(4.3.5)

Observem que cada en terme del sumatori apareixen quatre derivades similars, canviant ζ^{α} per η^{α} i cos per sin, així com i per j. Podem considerar una sola d'aquestes, per exemple $\frac{\partial}{\partial x^i} \left(\zeta^{\alpha} \frac{\sqrt{a_{\nu}}}{\lambda} \cos(\lambda \psi^{\nu}) \right)$. Desenvolupant-la, tenim

$$\begin{split} \frac{\partial}{\partial x^i} \left(\zeta^\alpha \frac{\sqrt{a_\nu}}{\lambda} \cos(\lambda \psi^\nu) \right) &= \left(\frac{\partial \zeta^\alpha}{\partial x^i} \right) \frac{\sqrt{a_\nu}}{\lambda} \cos(\lambda \psi^\nu) \\ &+ \zeta^\alpha \frac{1}{\lambda} \left(\frac{\partial}{\partial x^i} \sqrt{a_\nu} \right) \cos(\lambda \psi^\nu) \\ &- \zeta^\alpha \sqrt{a_\nu} \sin(\lambda \psi^\nu) \frac{\partial \psi^\nu}{\partial x^i}. \end{split}$$

Observem que els dos primers termes d'aquesta suma són $O\left(\frac{1}{\lambda}\right)$, de manera que es pot prendre λ prou gran per fer-los tan petits com vulguem. Així,

$$\frac{\partial}{\partial x^i} \left(\zeta^{\alpha} \frac{\sqrt{a_{\nu}}}{\lambda} \cos(\lambda \psi^{\nu}) \right) = -\zeta^{\alpha} \sqrt{a_{\nu}} \sin(\lambda \psi^{\nu}) \frac{\partial \psi^{\nu}}{\partial x^i} + O\left(\frac{1}{\lambda}\right).$$

El producte d'aquest terme amb la derivada respecte de x^{j} en l'equació 4.3.5 és, per tant,

$$\frac{\partial}{\partial x^i} \left(\zeta^{\alpha} \frac{\sqrt{a_{\nu}}}{\lambda} \cos(\lambda \psi^{\nu}) \right) \frac{\partial}{\partial x^j} \left(\zeta^{\alpha} \frac{\sqrt{a_{\nu}}}{\lambda} \cos(\lambda \psi^{\nu}) \right) = (\zeta^{\alpha})^2 a_{\nu} \sin^2(\lambda \psi^{\nu}) \frac{\partial \psi^{\nu}}{\partial x^i} \frac{\partial \psi^{\nu}}{\partial x^j} + O\left(\frac{1}{\lambda}\right).$$

Sumant aquest resultat amb el corresponent a η^{α} , obtenim que el terme α del sumatori de l'equació 4.3.5 és

$$(\zeta^{\alpha})^{2} a_{\nu} \sin^{2}(\lambda \psi^{\nu}) \frac{\partial \psi^{\nu}}{\partial x^{i}} \frac{\partial \psi^{\nu}}{\partial x^{j}} + (\eta^{\alpha})^{2} a_{\nu} \cos^{2}(\lambda \psi^{\nu}) \frac{\partial \psi^{\nu}}{\partial x^{i}} \frac{\partial \psi^{\nu}}{\partial x^{j}} + O\left(\frac{1}{\lambda}\right)$$
$$= ((\zeta^{\alpha})^{2} \sin^{2}(\lambda \psi^{\nu}) + (\eta^{\alpha})^{2} \cos^{2}(\lambda \psi^{\nu})) a_{\nu} \frac{\partial \psi^{\nu}}{\partial x^{i}} \frac{\partial \psi^{\nu}}{\partial x^{j}} + O\left(\frac{1}{\lambda}\right).$$

De manera que

$$\begin{split} \sum_{\alpha} \frac{\partial \overline{z}^{\alpha}}{\partial x^{i}} \frac{\partial \overline{z}^{\alpha}}{\partial x^{j}} - \sum_{\alpha} \frac{\partial z^{\alpha}}{\partial x^{i}} \frac{\partial z^{\alpha}}{\partial x^{j}} &= \\ &= \sum_{\alpha} \left[((\zeta^{\alpha})^{2} \sin^{2}(\lambda \psi^{\nu}) + (\eta^{\alpha})^{2} \cos^{2}(\lambda \psi^{\nu})) a_{\nu} \frac{\partial \psi^{\nu}}{\partial x^{i}} \frac{\partial \psi^{\nu}}{\partial x^{j}} + O\left(\frac{1}{\lambda}\right) \right] \\ &= a_{\nu} \frac{\partial \psi^{\nu}}{\partial x^{i}} \frac{\partial \psi^{\nu}}{\partial x^{j}} \left(\sin^{2}(\lambda \psi^{\nu}) \sum_{\alpha} (\zeta^{\alpha})^{2} + \cos^{2}(\lambda \psi^{\nu}) \sum_{\alpha} (\eta^{\alpha})^{2} \right) + O\left(\frac{1}{\lambda}\right) \\ &= a_{\nu} \frac{\partial \psi^{\nu}}{\partial x^{i}} \frac{\partial \psi^{\nu}}{\partial x^{j}} + O\left(\frac{1}{\lambda}\right), \end{split}$$

on per a la darrera igualtat hem usat que $\sum_{\alpha} (\zeta^{\alpha})^2 = \sum_{\alpha} (\eta^{\alpha})^2 = 1$.

Amb aquesta última proposició s'ha demostrat que la pertorbació indueix un canvi mètric molt proper al que volem, amb un error d'ordre $O\left(\frac{1}{\lambda}\right)$. De la mateixa manera, observem que la pertorbació en un pas, 4.3.3, és també d'ordre $O\left(\frac{1}{\lambda}\right)$.

A continuació, volem veure quin és el canvi en les primeres derivades després d'una etapa del procés en un entorn N_p . És a dir, volem aproximar l'efecte de totes les pertorbacions associades a cada pas de l'etapa. Per fer-ho, primer notem que el canvi en les primeres derivades associat al pas ν és el següent:

$$\left| \frac{\partial \overline{z}^{\alpha}}{\partial x^{i}} - \frac{\partial z^{\alpha}}{\partial x^{i}} \right| \leq 2\sqrt{a_{\nu}} \left| \frac{\partial \psi^{\nu}}{\partial x^{i}} \right| + O\left(\frac{1}{\lambda}\right). \tag{4.3.6}$$

Proposició 4.3.5. El canvi en les primeres derivades associat a una etapa del procés en un entorn N_p és

$$\left| \left(\frac{\partial z^{\alpha}}{\partial x^{i}} \right)_{abans} - \left(\frac{\partial z^{\alpha}}{\partial x^{i}} \right)_{després} \right|$$

$$\leq 2\sqrt{K\beta_{ii}} + O\left(\frac{1}{\lambda_{1}}\right) + O\left(\frac{1}{\lambda_{2}}\right) + \dots + O\left(\frac{1}{\lambda_{\nu}}\right) + \dots, \qquad (4.3.7)$$

on K és una constant que depèn només de la dimensió n de la varietat i les diferents λ_{ν} són els paràmetres de les pertorbacions.

Prova. Considerem l'element i de la diagonal de les matrius de l'equació 4.3.1:

$$\frac{1}{2}\varphi_p\beta_{ii} = \sum_{\nu} a_{\nu} \left(\frac{\partial \psi^{\nu}}{\partial x^i}\right)^2 = \sum_{\nu} \left(\sqrt{a_{\nu}} \left|\frac{\partial \psi^{\nu}}{\partial x^i}\right|\right)^2.$$

Recordem de la prova del lema 4.3.1 que hi ha com a molt $M = W[\frac{1}{2}n(n+1)+1]$ coeficients no nuls del sumatori, on W és una constant que només depèn de la dimensió n de la varietat. Així doncs, per la designaltat de Cauchy-Schwarz,

$$\sum_{\nu} \sqrt{a_{\nu}} \left| \frac{\partial \psi^{\nu}}{\partial x^{i}} \right| \leq \left(M \frac{1}{2} \varphi_{p} \beta_{ii} \right)^{\frac{1}{2}} \leq (K \varphi_{p} \beta_{ii})^{\frac{1}{2}} \leq \sqrt{(K \beta_{ii})}.$$

Combinant aquest resultat amb la desigualtat 4.3.6, obtenim que el canvi en les primeres derivades associat a una etapa del procés en un entorn N_p és

$$\left| \frac{\partial \overline{z}^{\alpha}}{\partial x^{i}} - \frac{\partial z^{\alpha}}{\partial x^{i}} \right| \leq \sqrt{K\beta_{ii}} + O\left(\frac{1}{\lambda_{1}}\right) + O\left(\frac{1}{\lambda_{2}}\right) + \dots + O\left(\frac{1}{\lambda_{\nu}}\right) + \dots.$$

4.3.2 Convergència dels passos en una etapa

A continuació ens interessa veure quines són les constants $\{\lambda_{\nu}\}$ necessàries en els diferents passos d'una etapa per tal que el procés convergeixi tal com desitgem.

Definició 4.3.6. Sigui N_p un entorn del recobriment de M, i considerem el pas ν d'una etapa donada.

• Anomenem B_1 l'error d'ordre $O\left(\frac{1}{\lambda}\right)$ màxim permès en l'aproximació del canvi mètric per $a_{\nu}\left(\frac{\partial \psi^{\nu}}{\partial x^{i}}\right)\left(\frac{\partial \psi^{\nu}}{\partial x^{j}}\right)$ en l'equació 4.3.4, per tots els parells (i,j) i tots els punts de l'entorn N_p .

- Anomenem B_2 l'error d'ordre $O\left(\frac{1}{\lambda}\right)$ màxim permès en l'aproximació del canvi de les primeres derivades en la designaltat 4.3.6, per tots els punts de l'entorn N_p .
- Anomenem B_3 la cota superior permesa del canvi $\overline{z}^{\alpha} z^{\alpha}$ en N_p .

Observació 4.3.7. Es pot trobar una pertorbació que compleixi les condicions anteriors per a qualsevol B_1 , B_2 i B_3 donats, ja que tots tres disminueixen quan λ augmenta i aquesta pot ser presa arbitràriament gran.

Recordem que l'efecte desitjat després d'una etapa és prendre una mètrica induïda h_{ij} i trobar-ne una h'_{ij} que redueixi a la meitat l'error mètric δ_{ij} . És a dir, la nova mètrica h'_{ij} ha de complir

$$h'_{ij} \approx h_{ij} + \frac{1}{2}\delta_{ij},$$

que també podem escriure com

$$h'_{ij} = g_{ij} - \frac{1}{2}\delta_{ij} + e_{ij},$$

on e_{ij} és el terme de l'error de l'aproximació. Així, la diferència entre la mètrica de la nova immersió i la original és

$$\delta'_{ij} = \frac{1}{2}\delta_{ij} - e_{ij}. \tag{4.3.8}$$

A continuació, volem assegurar que δ'_{ij} sigui definit positiu, i que el tensor d'error e_{ij} sigui prou petit per permetre la convergència del procés.

Notació 9. Per un tensor donat T_{ij} en un entorn N_p , escrivim $|T_{ij}|_{N_p}$ per denotar el màxim dels valors absoluts dels components de T_{ij} en N_p . Aquesta és una bona aproximació de la mida del tensor T_{ij} en N_p .

Proposició 4.3.8. Sigui N_p un entorn de M. En una etapa donada del procés, existeix una successió $\{B_{1\nu}\}_{\nu}$, on $B_{1\nu}$ és el B_1 de la definició 4.3.2 al pas ν , tal que, després de fer tots els passos en N_p

- δ'_{ij} és definit positiu en N_p .
- \bullet e_{ij} és prou petit per assegurar que el procés convergeix després de fer totes les etapes.
- La convergència és tal que la mida de δ'_{ij} és aproximadament 2/3 de la mida de δ_{ij} després de cada etapa.

Observació 4.3.9. Aquest resultat confirma que el procés convergeix, de tal manera que la immersió resultant després de realitzar totes les etapes és isomètrica. Potser seria més correcte dir que la mètrica resultant és isomètrica, però encara no sabem si la immersió convergeix correctament.

Prova. En N_p , sempre es pot trobar una constant real $\varepsilon_p > 0$ tal que, si imposem

$$|e_{ij}|_{N_p} \le \varepsilon_p, \tag{4.3.9}$$

aleshores $\delta'_{ij} = \delta_{ij} - e_{ij}$ és definit positiu.

Si també imposem que, després d'una etapa,

$$\max |e_{ij}|_{N_p} \le \frac{1}{6} \min |\delta_{ij}|_{N_p},$$
 (4.3.10)

podem prendre l'equació 4.3.8 i veure que

$$\max |\delta'_{ij}|_{N_p} = \max \left| \frac{1}{2} \delta_{ij} - e_{ij} \right|_{N_p} \le \max \left| \frac{1}{2} \delta_{ij} \right|_{N_p} + \max |e_{ij}|_{N_p}$$

$$\le \frac{1}{2} \max |\delta_{ij}|_{N_p} + \frac{1}{6} \min |\delta_{ij}|_{N_p} \le \frac{2}{3} \max |\delta_{ij}|_{N_p}. \tag{4.3.11}$$

32

Amb això queda demostrat que es pot escollir e_{ij} tal que la mida de δ'_{ij} sigui aproximadament 2/3 de la mida de δ_{ij} després de cada etapa. Així, és clar que la diferència entre la mètrica de la immersió i g_{ij} convergeix a 0 en el límit.

Hem obtingut dues restriccions a la mida de e_{ij} que cal complir, les designaltats 4.3.9 i 4.3.10. Ara cal relacionar-les amb els passos de l'etapa, per tal d'obtenir la successió $\{B_{1\nu}\}_{\nu}$ desitjada.

Primer de tot, recordem que els entorns N_p poden intersecar amb altres entorns N_q . Així, els canvis que fem en N_p poden afectar a N_q . Afortunadament, el nombre d'entorns que intersequen cada N_p és finit. Si N_p interseca amb un nombre σ d'entorns N_q , incloent N_p mateix, aleshores podem prendre les restriccions de N_p , dividir-les per σ , i imposar-les a tots els N_q . Sigui ε_p^* el mínim de totes aquestes restriccions sobre l'error de N_p .

Notem que hi ha dues fonts de l'error en N_p : el primer és l'aproximació preliminar de δ_{ij} pel tensor β_{ij} , i el segon és l'error acumulat pels passos individuals. Per tant, imposant $|\delta_{ij} - \beta_{ij}|_{N_p} \leq \varepsilon_p^*$ obtenim

$$\left| \frac{1}{2} \varphi_p \delta_{ij} - \frac{1}{2} \varphi_p \beta_{ij} \right|_{N_p} \le \frac{1}{2} \varepsilon_p^*. \tag{4.3.12}$$

Ens resta $\frac{1}{2}\varepsilon_p^*$ per a l'error dels passos individuals, que podem assignar de la següent manera:

$$B_{1\nu} \le \frac{1}{2^{\nu+1}} \varepsilon_p^*. \tag{4.3.13}$$

De manera que l'error total obtingut sumant les cotes 4.3.12 i 4.3.13 és menor que

$$\frac{1}{2}\varepsilon_p^* + \sum_{\nu=1}^{\infty} \frac{1}{2^{\nu+1}}\varepsilon_p^* = \varepsilon_p^*.$$

Així, obtenim la successió $\{B_{1\nu}\}_{\nu}$ desitjada.

Realitzabilitat dels passos

Per tal que els passos siguin realitzables, només cal tenir una immersió C^{∞} . Això és cert sempre que la mètrica induïda sigui definida positiva i les immersions siguin C^{∞} . Totes les funcions utilitzades en el procés són C^{∞} , de manera que només cal veure que la mètrica induïda és definida positiva.

Procedim per inducció. Suposem que cada pas pas pren una immersió que produeix una mètrica induïda definida positiva, i augmenta la mètrica induïda en $a_{\nu}\left(\frac{\partial\psi^{\nu}}{\partial x^{i}}\frac{\partial\psi^{\nu}}{\partial x^{j}}\right)$. Així, la mètrica induïda és definida positiva. Aquest augment és un tensor no-negatiu, i l'error és $O\left(\frac{1}{\lambda}\right)$, de manera que per una λ prou gran, ens podem assegurar que la mètrica induïda és definida positiva.

4.3.3 Organització general

Aquest apartat haurem de mirar de moure'l a un lloc més adequat, potser.

- El procés es divideix en una sèrie **d'etapes**. Cada una d'elles és igual que la resta, però la primera necessita una immersió f de classe C^{∞} curta. Després de cada etapa, la nova immersió segueix sent C^{∞} i curta, però l'error mètric és com a molt 2/3 de l'error de la immersió de l'etapa anterior.
- S'escull un recobriment localment finit de M per conjunts tancats N_p . És a dir, tal que cada punt de M pertany a, com a molt, un nombre finit de conjunts N_p .

33

- Cada etapa es divideix en un nombre finit de **passos**. Primer, la correcció es divideix entre tots els conjunts N_p amb unes funcions pes φ_p . Aleshores es divideix la correcció de cada N_p en un nombre finit de passos, en l'equació 4.3.1
- Els passos s'han de realitzar un rere l'altre. L'ordre concret no importa, però s'ha d'escollir un ordre i seguir-lo. En varietats obertes, el nombre de passos és infinit, però en cada entorn compacte el nombre de passos és finit.

4.3.4 Convergència de la immersió

Per la proposició 4.3.8, sabem que la mètrica resultant del procés en el límit és la mètrica intrínseca de la varietat, com volíem. Ara bé, encara no hem demostrat que convergeixi en una immersió C^1 . El primer que cal assegurar és que el resultat en el límit és, efectivament, una immersió. Amb aquest fi, podem imposar que en el pas r de l'etapa s del procés, el corresponent B_3 estigui fitat per

$$B_3 \le \frac{1}{2^{(s+r)}},\tag{4.3.14}$$

de manera que la successió dels B_3 sigui més petita que una successió convergent.

Imposant les mateixes fites per la successió de B_2 ,

$$B_2 \le \frac{1}{2^{(s+r)}},\tag{4.3.15}$$

controlem els termes d'error d'ordre $O\left(\frac{1}{\lambda}\right)$ de l'equació 4.3.7. Ara bé, per tal que les primeres derivades convergeixin al final del procés, cal que el terme irreductible $2\sqrt{K\beta_{ii}}$ també convergeixi.

Proposició 4.3.10. La sèrie formada per la successió $\{2\sqrt{K\beta_{ii}}\}_{\nu}$ convergeix per cada i i uniformement en cada entorn N_p .

Prova. K és una constant que només depèn de la dimensió n de la varietat, de manera que només ens hem d'ocupar de β_{ii} . El tensor β_{ij} aproxima l'error mètric δ_{ij} , que es redueix per un factor 1/3 o major després de cada etapa, com hem vist a la desigualtat 4.3.11 Nash diu que això és després de cada pas, em fa pal ara mirar com és.. Cal veure que β_{ij} decreix de manera similar. Podem imposar que β_{ij} sigui prou proper a δ_{ij} tal que

$$\frac{9}{10} \le \frac{\max |\beta_{ij}|_{N_p}}{\max |\delta_{ij}|_{N_p}} \le \frac{9}{8}.$$
(4.3.16)

Aleshores,

$$|\beta'_{ij}|_{N_p} \le \frac{9}{8} |\delta'_{ij}|_{N_p} \le \frac{9}{8} \frac{2}{3} |\delta_{ij}|_{N_p} \le \frac{9}{8} \frac{2}{3} \frac{10}{9} |\beta_{ij}|_{N_p} = \frac{5}{6} |\beta_{ij}|_{N_p}. \tag{4.3.17}$$

Així, el terme β_{ii} decreix per un factor 5/6 o major després de cada etapa. Per tant, la sèrie formada per la successió $\{2\sqrt{K\beta_{ii}}\}_{\nu}$ convergeix com una geomètrica de raó $\sqrt{5/6}$. \square **Observació 4.3.11.** La conseqüència d'això és que, en el límit, la immersió f és C^1 , com volíem demostrar.

4.3.5 Encabiments isomètrics

Fins ara hem estat tractant el cas de les immersions, per les quals no hi ha restricció pel que fa a les interseccions amb elles mateixes. Ara bé, per demostrar que el procés descrit per Nash també aplica als encabiments, que han de ser injectius, cal comprovar que les immersions resultants també ho són.

La demostració per encabiments és la mateixa que per immersions generals, però l'aplicació f de la que partim ha de ser un encabiment. Si la varietat és oberta, demanem també que el conjunt límit, si existeix, no intersequi la imatge de l'encabiment. Un cop s'ha obtingut aquest primer encabiment curt, la única consideració addicional és que s'ha de controlar la mida de l'encabiment $|\overline{z}^{\alpha} - z^{\alpha}|$ en cada pas.

Ens haurem de fixar primer en què cada pas es pugui fer sense que el nou encabiment intersequi amb si mateix, i després en què l'encabiment resultant en el límit del procés sigui injectiu.

Observació 4.3.12. Si la varietat és oberta, l'elecció de B_3 a 4.3.14 assegura que el conjunt límit roman fix durant tot el procés.

Proposició 4.3.13. En qualsevol pas d'una etapa i en qualsevol entorn N_p de la frontera de l'encabiment, es pot escollir una λ prou gran tal que el pas no produeixi interseccions de l'encabiment amb si mateix ni amb el conjunt límit.

Prova. Sigui K un component compacte de l'encabiment que inclogui N_p al seu interior. K, al seu torn, està inclòs en un entorn obert H tan proper a K tal que per qualsevol punt P en H no pot tenir dues perpendiculars a K en H. Això és el que vam parlar amb l'Ignasi. Podríem mirar si cal posar una demostració o un dibuixet o algo.

Sigui Q la unió de la frontera de l'encabiment i la part de l'encabiment que no està inclòs en K. Com Q és un conjunt tancat, una pertorbació prou petita no pot intersecar Q. A més, com la pertorbació és normal a l'encabiment, estarà dins de H i els punts de K no es podran intersecar. Així doncs, el pas no produeix interseccions de l'encabiment amb si mateix ni amb el conjunt límit.

Amb aquest resultat, obtenim per inducció que en qualsevol nombre finit de passos del procés, l'encabiment no produeix interseccions amb si mateix ni amb el conjunt límit. Això no assegura que el límit del procés sigui injectiu després d'infinits passos, sinó que cal considerar això a part.

Proposició 4.3.14. Es pot escollir una successió dels B_3 tal que el límit del procés sigui injectiu, és a dir, tal que la immersió resultant sigui un encabiment.

Prova. Considerem una enumeració dels N_p qualsevol. Sigui S_r el conjunt de tots els parells de punts dels primers r entorns tals que estaven separats per una distància major que 2^{-r} en l'encabiment curt original. Qualsevol parell de punts pertany a S_r per algun r. A partir de l'etapa r requerirem que el B_3 de l'etapa $\mu \leq r$ i el pas ν sigui més petit que $\varepsilon_r 2^{-\mu-\nu}$, on ε_r s'escull prou petit per assegurar que cap parell de punts pugui ajuntar-se al límit. D'aquesta manera, tots els parells de punts queden protegits en el límit, i la immersió resultant és un encabiment.

4.3.6 Obtenint la immersió o l'encabiment inicial

Amb tot el que hem demostrat fins aquí, ja hem vist que per qualsevol immersió o encabiment curt inicial C^{∞} , es pot trobar una immersió o encabiment C^1 isomètric de la varietat en un espai euclidià. Només queda veure que es pot trobar aquesta immersió o aquest encabiment inicial. En aquesta subsecció expliquem el procés per obtenir-lo.

En el cas d'una varietat tancada, podem obtenir l'encabiment inicial en \mathbb{R}^{2n} mitjançant el teorema de Whitney. Per tal de fer-lo curt, només cal canviar l'escala de l'espai euclidià. **Observació 4.3.15.** El teorema de Whitney que hem demostrat en aquest treball, al teorema 2.3.34, només ens assegura l'existència d'encabiments en espais de dimensió 2n+1. Com hem mencionat allà, hi ha diferents formulacions del teorema de Whitney, amb la

més forta assegurant l'existència d'encabiments en espais de dimensió 2n.

En el cas d'una varietat oberta, s'escull un recobriment per tancats N_p i una partició de la unitat $\{\varphi_p\}$ subordinada a aquest recobriment, com abans, i denotem x_{p_i} per la coordenada i-èssima de N_p . Suposem $|x_{p_i}| < 1$ per a qualsevol i i p. A més, imposem que cada N_p interseca com a molt amb s d'aquests conjunts, incloent-hi el mateix N_p . A continuació, separem els conjunts en s classes, tals que cap conjunt té intersecció amb un altre de la mateixa classe.

Construim un encabiment en un espai s(n+2)-dimensional $\mathbb{R}^{s(n+2)}$ amb les següents funcions:

$$u_{\sigma} = \begin{cases} \varepsilon_{p} \varphi_{p} & \text{en entorns } N_{p} \text{ de la classe } \sigma \\ 0 & \text{en la resta d'entorns} \end{cases}$$
 (4.3.18)

$$v_{\sigma} = \begin{cases} \varepsilon_p^2 \varphi_p & \text{en entorns } N_p \text{ de la classe } \sigma \\ 0 & \text{en la resta d'entorns} \end{cases}$$
 (4.3.19)

$$w_{\sigma i} = \begin{cases} \varepsilon_p \varphi_p x_{pi} & \text{en entorns } N_p \text{ de la classe } \sigma \\ 0 & \text{en la resta d'entorns} \end{cases}$$
(4.3.20)

on ε_p formen part d'una successió monòtona decreixent i convergent a 0. Qualsevol parell de punts de la varietat en entorns diferents es pot distingir per tenir diferents conjunts de raons u_{σ}/v_{σ} , i qualsevol parell de punts en el mateix entorn es pot distingir pels $w_{\sigma i}$ corresponents. A més, la frontera de l'encabiment és l'origen de coordenades.

Per últim, aquesta immersió es pot fer curta escollint els ε_p tal que, si la immersió amb els p primers entorns és curta per un factor $\frac{1}{3}(2-1/p)$ o més gran, prenem ε_{p+1} prou petit perquè la immersió amb p+1 primers entorns sigui curta per un factor $\frac{1}{3}(2-1/(p+1))$ o més gran.

Amb això obtenim un encabiment curt de classe C^{∞} de la varietat en un espai s(n+2)dimensional. Mitjançant projeccions lineals com les de la demostració del teorema de
Whitney, podem rebaixar la dimensió de l'espai de l'encabiment fins a 2n+1, i fins a 2nper a immersions.

Amb això hem acabat la demostració del teorema de Nash.

4.4 El refinament de Kuiper

El fet que Nash utilitzi dos camps vectorials unitaris ortogonals entre ells i a la immersió en l'entorn N_p restringeix severament la utilitat del seu resultat. En concret, per varietats Riemannianes de dimensió 2, com l'esfera o el tor, el que ens interessa idealment és obtenir encabiments isomètrics en l'espai euclidià tridimensional, per tal de poder-les representar visualment, mentre que el resultat de Nash només ens permet construir encabiments isomètrics en un espai euclidià de dimensió 4.

En efecte, al final de l'article original, Nash (1954), Nash mateix conjectura que és possible que el resultat es pugui refinar de tal manera que la codimensió de l'espai ambient sigui 1 en lloc de 2. Com hem mencionat a la introducció d'aquest capítol, Nicolaas H. Kuiper va demostrar aquest resultat l'any posterior a la publicació de Nash, de manera que acabem obtenint la següent formulació del teorema de Nash-Kuiper per encabiments C^1 , Kuiper (1955):

Teorema 4.4.1 (Nash-Kuiper). Qualsevol varietat Riemanniana tancada de dimensió n té una immersió o encabiment C^{∞} en \mathbb{R}^k amb $k \geq n+1$, aleshores també té una immersió o encabiment, respectivament, isomètric en \mathbb{R}^k .

El mètode de Kuiper és molt similar al de Nash, però fa servir un tipus de pertorbació diferent, que anomenem **corrugació** (en anglès, strain). Sigui x^1 la primera coordenada local de la varietat M, i h_{ij} el tensor mètric induït per una primera immersió curta C^{∞} de la varietat en \mathbb{R}^k . Sigui η un camp vectorial unitari normal a la imatge de la immersió, i ξ el camp vectorial tangent tal que $\xi^{\beta}:=\frac{\partial z^{\beta}}{\partial x^1}$, on $\{z^{\beta}\}$ és el sistema de coordenades de l'espai euclidià. Aleshores, la pertorbació de Kuiper és

$$\overline{z^{\beta}} = z^{\beta} - \left(\frac{\overline{\alpha}^2}{8\lambda}\right) h \sin(2\lambda x^1) \xi^{\beta} + \left(\frac{\overline{\alpha}}{\lambda}\right) \sin(\lambda x^1 - \left(\frac{\overline{\alpha}^2}{8}\right) \sin(2\lambda x^1)\right) h \eta^{\beta},$$

on h és un valor derivat de la mètrica induïda tal que $h^2 = h_{11}$, $\overline{\alpha} = \alpha/\sqrt{h_{11}}$ amb α constant i λ és una constant que juga el mateix rol que a la pertorbació de Nash. Aquesta no és la única manera d'obtenir una pertorbació que arribi a un encabiment isomètric, sinó que es poden trobar altres mètodes que s'ajustin millor a la varietat concreta que es vulgui encabir.

Capítol 5

Encabiments isomètrics del tor pla

La idea d'aquest capítol és la següent:

- Recordar que el tor pla no es podia encabir isomètricament en l'espai euclidià tridimensional de manera suau, pel tema del punt el·líptic.
- Explicar com el teorema de Nash ens permet fer-ho de manera C^1 .

Ens hauriem de mirar bé què és això de $W \cdot F$

5.1 Introducció al capítol

Al capítol anterior hem enunciat i demostrat els teoremes d'encabiments isomètrics C^1 de Nash, i hem vist la manera en què Kuiper va reduir la codimensió de l'espai ambient a 1. A continuació revisitarem el tor, una varietat topològica que no es pot encabir isomètricament de manera suau en \mathbb{R}^3 , com hem vist al capítol 2, per buscar la manera en què es pot encabir isomètricament de manera C^1 .

L'elaboració d'aquest encabiment va ser realitzat per Vincent Borrelli, Saïd Jabrane, Francis Lazarus i Boris Thibert i publicada l'any 2013. La cita principal d'aquest capítol és Borrelli et al. (2013). En aquest capítol no donem, en general, les demostracions de lemes i sublemes, que es troben a Borrelli et al. (2013). En canvi, donem les demostracions dels teoremes i proposicions més importants.

5.2 Integració convexa

Aquí s'explica el que es necessita sobre integració convexa per tal de poder fer aquest encabiment isomètric.

5.2.1 Integració convexa 1D

Definició 5.2.1. Per cada $x \in I := [0,1]$, sigui \mathcal{R}_x un conjunt de vectors en \mathbb{R}^n . Anomenem relació diferencial a la unió $\mathcal{R} := \bigcup_{x \in I} \mathcal{R}_x$. Anomenem solució de \mathcal{R} a una corba $f: I \to \mathbb{R}^n$ de classe C^1 tal que $f'(x) \in \mathcal{R}_x$ per a tot $x \in I$.

El mètode d'Integració Convexa ens permetrà trobar solucions de relacions diferencials arbitràriament properes a corbes $f:I\to\mathbb{R}^n$ de classe C^1 qualssevol. Per a això

necessitarem una família de **voltes** (en anglès, loops) $h(x,\cdot): \mathbb{R}/\mathbb{Z} \to \mathcal{R}_x$ tals que

$$f'(x) = \int_0^1 h(x, u) du,$$
 (5.2.1)

és a dir, tals que la derivada f'(x) és la mitjana de la volta $h(x,\cdot)$ sobre el cercle unitat. Si aquestes voltes existeixen, el següent que voldrem és definir la **integral convexa** de h com la solució f de la relació diferencial

$$F(t) := f(0) + \int_0^t h(x, \{Nx\}) dx,$$

on $\{Nx\}$ és la part fraccionària de Nx. Intuïtivament, F s'obté integrant h sobre una corba de període 1/N, de tal manera que per N molt gran, cada període és proper a una volta concreta $h(x,\cdot)$, i per tant la seva integral és propera a f'(x). L'efecte acumulat de les N voltes és proper a f(t).

Lema 5.2.2. Siguin f, h, N i F com hem definit més amunt. Aleshores, F és solució de la relació diferencial \mathcal{R} i

$$||F - f||_{\infty} \le \frac{K(h)}{N},\tag{5.2.2}$$

on K(h) només depèn de $||h||_{C^1}$.

Podem mirar de moure aquesta part més amunt, de manera que sigui evident com s'escullen les voltes.

En el nostre cas, les relacions diferencials \mathcal{R}_s seran esferes de radi r(s) > 0, tal que la relació diferencial restringeix la mida de la derivada f'. En concret, tindrem corbes f que seran curtes si i només si $||f'(s)|| \le r(s)$.

Suposant que f' mai s'anul·la, podem definir $\vec{n}:I\to\mathbb{R}^n$ un vector normal a f' i $\vec{t}(s):=f'(s)/||f'(s)||$. Podem fer ús d'aquests vectors per definir les voltes $h(s,\cdot)$ de la següent manera:

$$h(s,u) = r(s)(\cos(\alpha_s\cos(2\pi u))\vec{t}(s) + \sin(\alpha_s\sin(2\pi u))\vec{n}(s)), \tag{5.2.3}$$

on $\alpha_s := J_0^{-1}(||f'(s)||/r(s))$, on J_0 és la funció de Bessel de primer tipus i d'ordre 0. Per la propietat

$$J_0(x) = \int_0^1 \cos(x\cos(2\pi u))du,$$
 (5.2.4)

es verifica la condició 5.2.1.

5.3 Integració convexa 2D: el cas primitiu

Havent vist com es troba un encabiment isomètric mitjançant Integració Convexa en el cas 1D, ara veurem com es pot fer en el cas 2D. Intuitivament, considerarem la superfície resultant d'un encabiment com una família de corbes unidimensionals, per tal de poder aplicar el resultat del lema 5.2.2.

Considerem el problema que volem resoldre, és a dir, trobar un encabiment isomètric d'un tor $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ amb una mètrica μ en l'espai euclidià tridimensional. Com hem fet en la demostració del teorema de Nash al capítol anterior, partirem d'un encabiment inicial no isomètric $f: (\mathbb{T}^2, \mu) \to (\mathbb{R}^3, \langle \cdot, \cdot \rangle)$ de classe C^{∞} . Abans de considerar el cas més general,

però, partirem primer de la suposició que la diferència entre la mètrica μ i el pullback de la mètrica euclidiana per f és una mètrica primitiva, és a dir:

$$\mu = f^* \langle \cdot, \cdot \rangle + \rho \ell \otimes \ell, \tag{5.3.1}$$

on $\rho: \mathbb{T}^2 \to \mathbb{R}_+$ i ℓ una forma lineal que identifica plans tangents de \mathbb{T}^2 amb \mathbb{R}^2 .

Sigui $V \in \ker(\ell)$ un vector amb coordenades enteres coprimeres. Aleshores, la corba f_V donada per

$$\gamma: [0,1] \to \mathbb{T}^2$$

$$t \mapsto [O+tV],$$

és tancada i simple en \mathbb{T}^2 . Per tant, podem tallar el tor per aquesta corba i obtenir un cilindre, que anomenarem Cil. Sigui U el vector tal que (U, V) és una base directa ortogonal i $||U|| \cdot ||V|| = 1$. De fet, si anomenem O a l'origen de \mathbb{R}^2 , aleshores el rectangle format per O, O + U, O + U + V, O + V és un domini fonamental de \mathbb{T}^2 , i podem escriure

$$Cil = \{ O + tV + sU : (t, s) \in [0, 1] \times (\mathbb{R}/\mathbb{Z}) \}. \tag{5.3.2}$$

A més, canviem l'escala tal que $\ell(U) = ||U||$.

5.3.1 Integració convexa del cilindre Cil

Per tal de poder aplicar el lema 5.2.2, no és prou amb prendre una família de corbes unidimensionals qualssevol, com

$$\phi_t : [0,1] \to \mathbb{T}^2$$

 $s \mapsto [O + tV + sU],$

sinó que haurà de ser una mica més elaborat.

En concret, definim

$$W = U + \zeta V$$
, on $\zeta = -\frac{\mu(U, V)}{\mu(V, V)} = -\frac{\langle U \cdot f, V \cdot f \rangle}{\langle V \cdot f, V \cdot f \rangle}$ (5.3.3)

i $X \cdot f = \mathrm{d}f(X)$ denota la derivada de f al llarg de $X\mathrm{QUe}$ vol dir això?. Observem que, amb aquesta definició, $\mu(W,V) = 0$. Ara podem definir la família de corbes $\varphi(t,\cdot): [0,1] \to Cil$ tals que

$$\varphi(t,0) = O + tV$$
, i $\frac{\partial \varphi}{\partial s}(t,s) = W(\varphi(t,s))$. (5.3.4)

Resolent l'equació diferencial, obtenim

$$\varphi(t,s) = O + sU + \psi(t,s)V. \tag{5.3.5}$$

per alguna funció $\psi: (\mathbb{R}/\mathbb{Z}) \times [0,1] \to \mathbb{R}$ amb $\psi(t,0) = t$. En particular, $\varphi(t,\cdot)$ connecta O + tV i $O + U + \psi(t,1)V$. Així, $\varphi: \mathbb{R}/\mathbb{Z} \times [0,1] \to \mathcal{C}il$ és un difeomorfisme. A més,

$$\ell\left(\frac{\partial\varphi}{\partial t}\right) = 0, \ i\ \mu\left(\frac{\partial\varphi}{\partial s}, W\right) = 0.$$
 (5.3.6)

Voldrem aplicar integració convexa a cada corba $f \circ \varphi(t, \cdot)$. Per fer-ho, considerem ara les voltes h(t, s, u) donades per

$$h(t, s, u) = \bar{h}(\varphi(t, s), \cos(2\pi u)) \tag{5.3.7}$$

on

$$\bar{h}(p,c) = r(p) \left(\cos(\alpha(p)c)\vec{t}(p) + \sin(\alpha(p)c)\vec{n}(p) \right),$$

amb
$$r := \sqrt{\mu(W,W)}, \ \vec{t} := \frac{W \cdot f}{||W \cdot f||}, \ \vec{n} := \frac{W \cdot f \times V \cdot f}{||W \cdot f \times V \cdot f||} \ \text{i} \ \alpha := J_0^{-1}(||W \cdot f||/r).$$

Si ara escrivim

$$(W \cdot f)(\varphi(t,s)) = \frac{\partial (f \circ \varphi)}{\partial s}(t,s) = \int_0^1 h(t,s,u) du,$$

obtenim l'aplicació sua
u $F:(\mathcal{C}il,\mu)\to(\mathbb{R}^3,\langle\cdot,\cdot\rangle)$ amb

$$F \circ \varphi(t,s) := f(O + tV) + \int_0^s h(t, u, \{Nu\}) du.$$
 (5.3.8)

A continuació, enunciem alguns lemes que caracteritzaran la diferència entre F i f i les seves derivades.

Lema 5.3.1. Siguin f, h, N i F com hem definit més amunt. Aleshores,

$$||F - f||_{\infty} \le \frac{K(h)}{N},$$

on K(h) només depèn de $||h||_{C^1}$.

Lema 5.3.2. Siguin f, h, N i F com hem definit més amunt. Aleshores,

$$\left\| \frac{\partial (F \circ \varphi)}{\partial t} - \frac{\partial (f \circ \varphi)}{\partial t} \right\|_{\infty} \le \frac{K(h)}{N},$$

on K(h) només depèn de $||h||_{C^2}$.

Lema 5.3.3. Signin f i F com hem definit més amunt i $\mu = f^*\langle \cdot, \cdot \rangle + \rho \ell \otimes \ell$. Aleshores,

$$\|W\cdot F - W\cdot f\|_{\infty} \leq \sqrt{7}\cdot ||U||\cdot ||\rho||_{\infty}^{1/2}.$$

Lema 5.3.4. SI AQUEST LEMA NO ES FA SERVIR ENS EL CARREGUEM Es verifica

$$1 + J_0^2(\alpha) - 2J_0(\alpha)\cos(\alpha) \le 7(1 - J_0^2(\alpha)).$$

per tot $\alpha \in [0, z]$, on z és el primer zero de J_0 .

Lema 5.3.5.

$$||dF - df||_{\infty} \le \sqrt{7} ||\rho||_{\infty}^{1/2} + \frac{K(\zeta, \psi, h)}{N}$$

on $K(\zeta, \psi, h)$ només depèn de $||\zeta||_{\infty}$, de $\left\|\left(\frac{\partial \psi}{\partial t}\right)^{-1}\right\|_{\infty}$ i $||h||_{C^2}$.

Prova. Com (U, V) és una base directa ortogonal, aleshores

$$||dF - df|| \le \frac{||U \cdot F - U \cdot f||}{||U||} + \frac{||V \cdot F - V \cdot f||}{||V||}.$$

A més, $\frac{\partial \varphi}{\partial t} = \frac{\partial \psi}{\partial t} V.$ Per tant,

$$||V \cdot F - V \cdot f|| = \left| \frac{\partial \psi}{\partial t} \right|^{-1} \left\| \frac{\partial (F \circ \varphi)}{\partial t} - \frac{\partial (f \circ \varphi)}{\partial t} \right\|. \tag{5.3.9}$$

Com $W = U + \zeta V$, obtenim

$$||U \cdot F - U \cdot f|| \le ||W \cdot F - W \cdot f|| + |\zeta| \cdot ||V \cdot F - V \cdot f||.$$

Per últim, prenent les últimes tres equacions,

$$||dF - df|| \le \frac{||W \cdot F - W \cdot f||}{||U||} + \frac{|\zeta| \cdot ||V||^2 + 1}{||V||} \left| \frac{\partial \psi}{\partial t} \right|^{-1} \left\| \frac{\partial (F \circ \varphi)}{\partial t} - \frac{\partial (f \circ \varphi)}{\partial t} \right\|. (5.3.10)$$

Aplicant els lemes 5.3.2 i 5.3.3, obtenim el resultat.

Lema 5.3.6.

$$||\mu - F^*\langle \cdot, \cdot \rangle||_{\infty} \le \frac{K(f \circ \varphi, h)}{N} ||d\varphi^{-1}||_{\infty}^2,$$

on $K(f\circ\varphi,h)$ només depèn de $||\frac{\partial (f\circ\varphi)}{\partial t}||_{\infty}$ i de $||h||_{C^2}.$

Mirar això que ho he escrit amb molta son.

Prova. Primer volem acotar la diferència entre $\varphi^*\mu$ i $\varphi^*F^*\langle\cdot,\cdot\rangle=(F\circ\varphi)^*\langle\cdot,\cdot\rangle$. Notem que

$$(F \circ \varphi)^* \langle \cdot, \cdot \rangle (\partial_s, \partial_s) = \left\| \frac{\partial (F \circ \varphi)}{\partial s} \right\|^2$$
$$= ||h(t, s, \{Ns\})||^2$$
$$= \mu(W, W)$$
$$= \varphi^*(\mu)(\partial_s, \partial_s).$$

Per tant, com $\mu\left(\frac{\partial \varphi}{\partial t}, \frac{\partial \varphi}{\partial t}\right) = f^*\langle \cdot, \cdot \rangle\left(\frac{\partial \varphi}{\partial t}, \frac{\partial \varphi}{\partial t}\right)$, tenim que

$$|((F \circ \varphi)^* \langle \cdot, \cdot \rangle - \varphi^* \mu)(\partial_t, \partial_t)| = \left\| \left\| \frac{\partial F \circ \varphi}{\partial t} \right\|^2 - \left\| \frac{\partial f \circ \varphi}{\partial t} \right\| \right\|$$

$$\leq \left\| \frac{\partial F \circ \varphi}{\partial t} - \frac{\partial f \circ \varphi}{\partial t} \right\| \left\| \frac{\partial F \circ \varphi}{\partial t} - \frac{\partial f \circ \varphi}{\partial t} \right\|$$

$$\leq \left\| \frac{\partial F \circ \varphi}{\partial t} - \frac{\partial f \circ \varphi}{\partial t} \right\| \left(2 \left\| \frac{\partial f \circ \varphi}{\partial t} \right\| + \left\| \frac{\partial F \circ \varphi}{\partial t} - \frac{\partial f \circ \varphi}{\partial t} \right\| \right)$$

De manera que, pel lema 5.3.2,

$$|((F \circ \varphi)^* \langle \cdot, \cdot \rangle - \varphi^* \mu)(\partial_t, \partial_t)| \le \frac{K_1(f \circ \varphi, h)}{N},$$

on $K_1(f \circ \varphi, h)$ només depèn de $||\frac{\partial (f \circ \varphi)}{\partial t}||_{\infty}$ i de $||h||_{C^2}$.

Per la manera en què hem definit els vectors, tenim que

$$f^*\langle \cdot, \cdot \rangle \left(\frac{\partial \varphi}{\partial t}, \frac{\partial \varphi}{\partial s} \right) = \mu \left(\frac{\partial \varphi}{\partial t}, \frac{\partial \varphi}{\partial s} \right) = \mu \left(\frac{\partial \varphi}{\partial t}, W \right) = 0,$$

d'on podem inferir que

$$\left\langle \frac{\partial (f \circ \varphi)}{\partial t}, h(t, s, \{Ns\}) \right\rangle = 0.$$

Per tant,

$$\begin{aligned} |((F \circ \varphi)^* \langle \cdot, \cdot \rangle - \varphi^* \mu)(\partial_t, \partial_s)| &= |(F \circ \varphi)^* \langle \partial_t, \partial_s \rangle - \varphi^* \mu(\partial_t, \partial_s)| \\ &= \left| \left\langle \frac{\partial (F \circ \varphi)}{\partial t}, h(t, s, \{Ns\}) \right\rangle \right| \\ &= \left| \left\langle \frac{\partial (F \circ \varphi)}{\partial t} - \frac{\partial (f \circ \varphi)}{\partial t}, h(t, s, \{Ns\}) \right\rangle \right| \\ &\leq \left\| \frac{\partial (F \circ \varphi)}{\partial t} - \frac{\partial (f \circ \varphi)}{\partial t} \right\| ||h(t, s, \{Ns\})||. \end{aligned}$$

De manera que, de nou pel lema 5.3.2,

$$|((F \circ \varphi)^* \langle \cdot, \cdot \rangle - \varphi^* \mu)(\partial_t, \partial_s)| \le \frac{K_2(h)}{N}, \tag{5.3.11}$$

Tot plegat,

$$||\varphi^*\mu - \varphi^*F^*\langle \cdot, \cdot \rangle||_{\infty} \le \frac{K_1(f \circ \varphi, h) + 2K_2(h)}{N}.$$

I acabem amb

$$||\mu - F^*\langle \cdot, \cdot \rangle|| \le ||\varphi^*\mu - \varphi^*F^*\langle \cdot, \cdot \rangle||||d\varphi^{-1}||_{\infty}^2.$$

Observació 5.3.7. Aquí podríem donar unes interpretacions d'aquests lemes, comparantlos amb els del teorema de Nash.

5.3.2 Integració convexa del tor \mathbb{T}^2

Amb la integració convexa del cilindre, hem obtingut una aplicació $F:(\mathcal{C}il,\mu)\to(\mathbb{R}^3,\langle\cdot,\cdot\rangle)$ gairebé isomètrica i C_0 -propera a l'aplicació induïda sobre $\mathcal{C}il$ per $f:(\mathbb{T}^2,\mu)\to(\mathbb{R}^3,\langle\cdot,\cdot\rangle)$. Ara bé, les imatges de les dues corbes que defineixen la frontera del cilindre no coincideixen necessàriament. Per tant, el nostre objectiu serà deformar F de tal manera que coincideixin, tal que sigui possible prendre el quocient d'aquesta nova aplicació per a obtenir un encabiment isomètric del tor.

Definim una nova aplicació \bar{F} tal que

$$\bar{F} \circ \varphi(t,s) := F \circ \varphi(t,s) - w(s)(F \circ \varphi(t,1) - f \circ \varphi(t,1)), \tag{5.3.12}$$

on $w: I \to I$ és una funció C^{∞} tal que

$$w(0) = 0, \ w(1) = 1 \text{ i } w^{(k)}(0) = w^{(k)}(1) = 0.$$

Lema 5.3.8. Si $f: \mathbb{T}^2 \to \mathbb{R}^3$ i $w: I \to I$ són de classe C^{∞} , aleshores \bar{F} és de classe C^{∞} com a aplicació de \mathbb{T}^2 en \mathbb{R}^3 .

Podem reunir tots aquests resultats en el teorema següent.

Teorema 5.3.9 (One Step Theorem). Sigui $f: (\mathbb{T}^2, \mu) \to (\mathbb{R}^3, \langle \cdot, \cdot \rangle)$ un encabiment de classe C^{∞} tal que $\mu = f^*\langle \cdot, \cdot \rangle + \rho \ell \otimes \ell$ i $\rho \in L^{\infty}(\mathbb{T}^2)$. Aleshores,

1.
$$||\bar{F} - f||_{\infty} \le \frac{K_1(h)}{N} i ||\bar{F} - f||_{\infty} \le 2\sqrt{7}||U|| \cdot ||\rho||_{\infty}^{1/2}$$
,

2.
$$||d\bar{F} - df||_{\infty} \le \frac{K_2(h, \zeta, \psi, w')}{N} + \sqrt{7}||\rho||_{\infty}^{1/2}||,$$

3.
$$||V \cdot \bar{F} - V \cdot f||_{\infty} \le \frac{K_3(h,\psi)}{N}$$
,

4.
$$||W \cdot \bar{F} - W \cdot f||_{\infty} \le \sqrt{7} ||U|| (1 + ||w'||_{\infty}) ||\rho||_{\infty}^{1/2}$$
, i

5.
$$||\mu - \bar{F}^*\langle \cdot, \cdot \rangle||_{\infty} \le \frac{K_4(f \circ \varphi, r, h, w', \varphi^{-1})}{N}$$
.

on

- $K_1(h)$ només depèn de $||h||_{C^1}$.
- $K_2(h,\zeta,\psi,w')$ només depèn de $||\zeta||_{\infty}$, de $\left\|\left(\frac{\partial\psi}{\partial t}\right)^{-1}\right\|_{\infty}$, de $||w'||_{\infty}$ i de $||h||_{C^2}$.
- $K_3(h, \psi)$ només depèn de $\left\| \left(\frac{\partial \psi}{\partial t} \right)^{-1} \right\|_{\infty}$ i de $||h||_{C^2}$.

• $K_4(f \circ \varphi, r, h, w', \varphi^{-1})$ només depèn de $||\frac{\partial (f \circ \varphi)}{\partial t}||_{\infty}$, de $||w'||_{\infty}$, de $||r||_{\infty}$, de $||d\varphi^{-1}||_{\infty}$ i de $||h||_{C^2}$.

Notació 10. Anomenarem

$$IC(f, \mu, N) := \bar{F}$$

l'aplicació obtinguda amb un pas d'integració convexa de l'aplicació f, la mètrica μ i el nombre d'oscil·lació N.

Prova.

Primer punt. De la definició 5.3.12, tenim que

$$||\bar{F}(p) - f(p)|| \le ||F(p) - f(p)|| + ||w(s)||_{\infty} ||F - f||_{\infty} \le 2||F - f||_{\infty}.$$
 (5.3.13)

Pel lema 5.3.1, $||F - f||_{\infty} \leq \frac{K(h)}{N}$. Així, obtenim la primera designaltat del primer punt del teorema.

$$||\bar{F}(p) - f(p)||_{\infty} \le \frac{K_1(h)}{N}.$$

Per la segona desigualtat, considerem

$$||F \circ \varphi(t,s) - f \circ \varphi(t,s)|| = \left\| \int_0^s \left(\frac{\partial F \circ \varphi}{\partial s}(t,u) - \frac{\partial f \circ \varphi}{\partial s}(t,u) \right) du \right\|$$

$$\leq \int_0^s ||(W \cdot F)(\varphi(t,u)) - (W \cdot f)(\varphi(t,u))|| du$$

$$\leq ||W \cdot F - W \cdot f||_{\infty}.$$

Pel lema 5.3.3, $||W \cdot F - W \cdot f||_{\infty} \le \sqrt{7}||U|| \cdot ||\rho||_{\infty}^{1/2}$. Prenent això i la desigualtat 5.3.13, obtenim la segona desigualtat del primer punt del teorema,

$$||\bar{F} - f||_{\infty} \le 2\sqrt{7}||U|| \cdot ||\rho||_{\infty}^{1/2}.$$

 $\underline{\text{Segon punt.}}$ Seguim la demostració del lema 5.3.5 per a obtenir una desigualtat anàloga a 5.3.10,

$$||d\bar{F} - df|| \le \frac{||W \cdot \bar{F} - W \cdot f||}{||U||} + \frac{|\zeta| \cdot ||V||^2 + 1}{||V||} \left| \frac{\partial \psi}{\partial t} \right|^{-1} \left\| \frac{\partial (\bar{F} \circ \varphi)}{\partial t} - \frac{\partial (f \circ \varphi)}{\partial t} \right\|.$$

Derivant la definició 5.3.12 respecte de t i s, obtenim les desigualtats

$$||W \cdot \bar{F} - W \cdot f|| \le ||W \cdot F - W \cdot f||_{\infty} + ||w'||_{\infty} ||F - f||_{\infty}.$$
 (5.3.14)

$$\left\| \frac{\partial (\bar{F} \circ \varphi)}{\partial t} - \frac{\partial (f \circ \varphi)}{\partial t} \right\| \le 2 \left\| \frac{\partial (F \circ \varphi)}{\partial t} - \frac{\partial (f \circ \varphi)}{\partial t} \right\|_{\infty} \tag{5.3.15}$$

Prenent aquestes tres desigualtats,

$$||d\bar{F} - df||_{\infty} \le \frac{1}{||U||} \left(||W \cdot F - W \cdot f||_{\infty} + ||w'||_{\infty} ||F - f||_{\infty} \right)$$

$$+ \frac{|\zeta| \cdot ||V||^2 + 1}{||V||} \left| \frac{\partial \psi}{\partial t} \right|^{-1} \left(2 \left\| \frac{\partial (F \circ \varphi)}{\partial t} - \frac{\partial (f \circ \varphi)}{\partial t} \right\|_{\infty} \right),$$

i amb els lemes 5.3.1, 5.3.2 i 5.3.3, obtenim la desigualtat del segon punt del teorema.

Tercer punt. Prenent una equació com la de 5.3.9 i considerant la designaltat obtinguda derivant respecte de s, 5.3.15, trobem

$$||V \cdot \bar{F} - V \cdot f|| = \left| \frac{\partial \psi}{\partial t} \right|^{-1} \left\| \frac{\partial (\bar{F} \circ \varphi)}{\partial t} - \frac{\partial (f \circ \varphi)}{\partial t} \right\|$$
$$\leq 2 \left| \frac{\partial \psi}{\partial t} \right|^{-1} \left\| \frac{\partial (F \circ \varphi)}{\partial t} - \frac{\partial (f \circ \varphi)}{\partial t} \right\|_{\infty}.$$

aplicant el lema 5.3.2, obtenim el tercer punt del teorema.

Quart punt. Prenent la designaltat obtinguda derivant respecte de t, 5.3.14, i considerant que $||F - f||_{\infty} \le ||W \cdot F - W \cdot f||_{\infty}$, obtenim

$$||W \cdot \bar{F} - W \cdot f||_{\infty} \le ||W \cdot F - W \cdot f||_{\infty} + ||w'||_{\infty}||W \cdot F - W \cdot f||_{\infty}.$$

Pel lema 5.3.3, $||W \cdot F - W \cdot f||_{\infty} \leq \sqrt{7}||U|| \cdot ||\rho||_{\infty}^{1/2}$, de manera que

$$||W \cdot \bar{F} - W \cdot f||_{\infty} \le \sqrt{7} ||U|| \cdot ||\rho||_{\infty}^{1/2} (1 + ||w'||_{\infty}),$$

tal com volíem.

Cinquè punt. Seguim la demostració del lema 5.3.6 per acotar la diferència entre $\varphi^*\mu$ i $(F \circ \varphi)^*\langle \cdot, \cdot \rangle$. Per la definició 5.3.12, tenim que

$$(\bar{F} \circ \varphi)^* \langle \cdot, \cdot \rangle (\partial_s, \partial_s) = \left\| \frac{\partial (\bar{F} \circ \varphi)}{\partial s} \right\|^2 = \left\| W \cdot F - w'(s) (F \circ \varphi(t, 1) - f \circ \varphi(t, 1)) \right\|^2,$$

i com $\varphi^*\mu(\partial_s,\partial_s) = ||W\cdot F||^2 = r^2$, obtenim

$$|(\bar{F} \circ \varphi)^* \langle \cdot, \cdot \rangle (\partial_s, \partial_s) - \varphi^* \mu(\partial_s, \partial_s)| \le ||w'||_{\infty} ||F - f||_{\infty} (2||r||_{\infty} + ||w'||_{\infty} ||F - f||_{\infty}).$$

Pel lema 5.3.1, obtenim

$$|(\bar{F} \circ \varphi)^* \langle \cdot, \cdot \rangle (\partial_s, \partial_s) - \varphi^* \mu(\partial_s, \partial_s)| \le \frac{X(w', r, h)}{N}$$
(5.3.16)

on X(w', r, h) depèn de $||w'||_{\infty}$, $||r||_{\infty}$ i $||h||_{C^2}$.

Ara, com
$$\varphi^*\mu(\partial_t,\partial_t) = \left\|\frac{\partial f \circ \varphi}{\partial t}\right\|^2$$
, obtenim

$$|(\bar{F} \circ \varphi)^* \langle \cdot, \cdot \rangle (\partial_t, \partial_t) - \varphi^* \mu(\partial_t, \partial_t)| \le \left| \left\| \frac{\partial F \circ \varphi}{\partial t} - w(s) \left(\frac{\partial F \circ \varphi}{\partial t} (t, 1) - \frac{\partial f \circ \varphi}{\partial t} (t, 1) \right) \right\|^2 - \left\| \frac{\partial f \circ \varphi}{\partial t} \right\|^2 \right|$$

Podem escriure $A := \frac{\partial F \circ \varphi}{\partial t}$, $B := \frac{\partial F \circ \varphi}{\partial t}(t, 1) - \frac{\partial f \circ \varphi}{\partial t}(t, 1)$ i $C := \frac{\partial f \circ \varphi}{\partial t}$.

$$|(\bar{F} \circ \varphi)^* \langle \cdot, \cdot \rangle (\partial_t, \partial_t) - \varphi^* \mu(\partial_t, \partial_t)| = \||A - w(s)B\|^2 - \|C\|^2 |$$

$$\leq \|A - w(s)B - C\| \|A - w(s)B + C\|$$

$$\leq (\|A - C\| + \|B\|)(\|A - C\| + 2\|C\| + \|B\|),$$

així,

$$|(\bar{F} \circ \varphi)^* \langle \cdot, \cdot \rangle (\partial_t, \partial_t) - \varphi^* \mu(\partial_t, \partial_t)| \leq 4 \left\| \frac{\partial F \circ \varphi}{\partial t} - \frac{\partial f \circ \varphi}{\partial t} \right\|_{\infty} \cdot \left(\left\| \frac{\partial F \circ \varphi}{\partial t} - \frac{\partial f \circ \varphi}{\partial t} \right\|_{\infty} + \left\| \frac{\partial f \circ \varphi}{\partial t} \right\|_{\infty} \right).$$

Ara pel lema 5.3.2, tenim que

$$\left| (\bar{F} \circ \varphi)^* \langle \cdot, \cdot \rangle (\partial_t, \partial_t) - \varphi^* \mu(\partial_t, \partial_t) \right| \le \frac{Y(f \circ \varphi, h)}{N}, \tag{5.3.17}$$

on $Y(f\circ\varphi,h)$ depèn de $\|\frac{\partial (f\circ\varphi)}{\partial t}\|_{\infty}$ i de $\|h\|_{C^2}.$

Com $\varphi^* \mu(\partial_t, \partial_s) = \mu(\frac{\partial \varphi}{\partial t}, W) = 0$, tenim

$$\left| (\bar{F} \circ \varphi)^* \langle \cdot, \cdot \rangle (\partial_t, \partial_s) - \varphi^* \mu(\partial_t, \partial_s) \right| = \left| (\bar{F} \circ \varphi)^* \langle \cdot, \cdot \rangle (\partial_t, \partial_s) \right|$$

Posant $D = \frac{\partial F \circ \varphi}{\partial s}$, $E = F \circ \varphi(t,1) - f \circ \varphi(t,1)$ amb la notació anterior, tenim

$$\left| (\bar{F} \circ \varphi)^* \langle \cdot, \cdot \rangle (\partial_t, \partial_s) \right| = \left| \langle A - wB, D - w'E \rangle \right|$$

$$\leq \left| \langle A, D \rangle \right| + \left| w' \right| \|E\| (\|A\| + \|B\|) + \|B\| \|D\|.$$

Notem que $\langle A, D \rangle = (F \circ \varphi)^* \langle \cdot, \cdot \rangle (\partial_t, \partial_s)$, de manera que, per la desigualtat 5.3.11, $|\langle A, D \rangle| \leq \frac{Z_1(h)}{N}$ per alguna Z_1 que només depèn de $||h||_{C^2}$. Pel lema 5.3.1, $||E|| \leq \frac{Z_2(h)}{N}$ per alguna Z_2 que només depèn de $||h||_{C^1}$. A més, pel lema 5.3.2, $||B|| \leq ||A - C||_{\infty} \leq \frac{Z_3(h)}{N}$ per alguna Z_3 que només depèn de $||h||_{C^2}$. Notant que $||A|| \leq ||A - C|| + ||C||$, obtenim $||A|| \leq \frac{Z_3(h)}{N} + ||C||$. A més, notem que $||D|| = ||W \cdot F|| = r$. Tot junt, obtenim

$$\left| (\bar{F} \circ \varphi)^* \langle \cdot, \cdot \rangle (\partial_t, \partial_s) - \varphi^* \mu(\partial_t, \partial_s) \right| \le \frac{Z(f \circ \varphi, w', r, h)}{N}, \tag{5.3.18}$$

on

$$Z(f \circ \varphi, w', r, h) = Z_1(h) + \|w'\|_{\infty} Z_2(h) \left(\left\| \frac{\partial (f \circ \varphi)}{\partial t} \right\|_{\infty} + 2 \frac{Z_3(h)}{N} \right) + Z_3(h)r.$$

Ara, com en la demostració del lema 5.3.6, tenim que

$$\|\mu - \bar{F}^*\langle \cdot, \cdot \rangle\| \le \|\varphi^*\mu - \varphi^*\bar{F}^*\langle \cdot, \cdot \rangle\| \cdot \|d\varphi^{-1}\|_{\infty}.$$

Amb aquesta última desigualtat i les desigualtats 5.3.16, 5.3.17 i 5.3.18, resolem el quart punt del teorema amb

$$K_4(f \circ \varphi, r, h, w', \varphi^{-1}) = (X(w', r, h) + Y(f \circ \varphi, h) + 2Z(f \circ \varphi, w', r, h)) \|d\varphi^{-1}\|_{\infty}^2.$$

5.4 Encabiment isomètric del tor pla

Per algun motiu, aquí canvien la mètrica de μ a g. Si veiem que no hi ha cap motiu, ho podem canviar.

A la secció anterior ens hem fixat en el cas primitiu, de manera que podiem construir una aplicació gairebé isomètrica $\bar{f}: (\mathbb{T}^2, g) \to (\mathbb{R}^3, \langle \cdot, \cdot \rangle)$ a partir d'una immersió $f: \mathbb{T}^2 \to \mathbb{R}^3$ quan

$$g - f^*\langle \cdot, \cdot \rangle = \rho \ell \otimes \ell.$$

A continuació, prendrem aquests mètode i el generalitzarem al cas en què el defecte isomètric (isometric default)

$$D := g - f^* \langle \cdot, \cdot \rangle$$

és una mètrica. Aquest és el cas si i només si la immersió f és estrictament curta. Per tal d'aplicar els resultats anteriors, haurem de descompondre aquest defecte isomètric en una suma de mètriques primitives. Observem que el conjunt de productes interiors en \mathbb{R}^2 és un con convex

$$Q_{+} = \{ E \operatorname{d} x \otimes \operatorname{d} x + F(\operatorname{d} x \otimes \operatorname{d} y + \operatorname{d} y \otimes \operatorname{d} x) + G \operatorname{d} y \otimes \operatorname{d} y : EG - F^{2} > 0, F > 0, G > 0 \},$$

estas segur de que aquest F > 0 és correcte? potser és E. Aleshores, d'una manera anàloga a la que hem vist a la demostració de l'equació 4.3.1 al capítol anterior, podem trobar una descomposició del defecte isomètric

$$D = \sum_{j=1}^{N} \rho_j(D) \ell_j \otimes \ell_j,$$

on N és un enter i les ℓ_j es defineixen per entorns. El procés d'integració convexa que es presenta aquí aconsegueix trobar tres formes lineals ℓ_1, ℓ_2, ℓ_3 que funcionen a un nivell global, de manera que N es redueix a 3. En concret, suposarem que la immersió f és tal que el defecte isomètric pertany al con obert

Rellegir això perquè ho he fet al bus i no m'he concentrat molt.

$$\mathcal{C} := \{ \rho_1 \ell_1 \otimes \ell_1 + \rho_2 \ell_2 \otimes \ell_2 + \rho_3 \ell_3 \otimes \ell_3 : \rho_1, \rho_2, \rho_3 > 0 \},$$

on ℓ_1, ℓ_2, ℓ_3 són formes lineals en \mathbb{R}^2 donades per

$$\ell_1 := dx, \ \ell_2 := \frac{1}{\sqrt{5}} (dx + 2dy) \ i \ \ell_3 := \frac{1}{\sqrt{5}} (dx - 2dy).$$

Per reduir els tres coeficients del defecte isomètric, farem tres integracions convexes PASSOS? successives. És a dir, prendrem primer

$$\mu_1 = f^*\langle \cdot, \cdot \rangle + \rho_1(D_1)\ell_1 \otimes \ell_1,$$

amb $D_1 := D$ i construirem $f_1 := IC(f, \mu_1, N_1)$. Després, prendrem el nou defecte isomètric $D_2 := g - f_1^* \langle \cdot, \cdot \rangle \in \mathcal{C}$ i la mètrica

$$\mu_2 = f_1^* \langle \cdot, \cdot \rangle + \rho_2(D_2) \ell_2 \otimes \ell_2,$$

per obtenir $f_2 := IC(f_1, \mu_2, N_2)$. Finalment, prendrem el nou defecte isomètric $D_3 := g - f_2^* \langle \cdot, \cdot \rangle \in \mathcal{C}$ i la mètrica

$$\mu_3 = f_2^* \langle \cdot, \cdot \rangle + \rho_3(D_3) \ell_3 \otimes \ell_3,$$

per obtenir $f_3 := IC(f_2, \mu_3, N_3)$. Per tal que aquests tres passos d'integració convexa resultin en un encabiment isomètric, tal com volem, haurem de veure que podem triar les constants N_1, N_2, N_3 prou grans tal que, després de la *i*-èssima integració convexa, el component ρ_i del nou defecte isomètric sigui proper a zero, mentre la resta romanen aproximadament iguals.

Per tal d'obtenir un encabiment isomètric, no és prou amb triar N_1, N_2, N_3 prou grans, sinó que caldrà repetir el procés sencer indefinidament. La realització d'aquests tres passos s'anomena, com en la demostració dels teoremes de Nash, una **etapa** (stage). Al final de cadascuna obtenim un encabiment \mathcal{F}_k amb una mètrica g_k que és cada vegada més propera a $\langle \cdot, \cdot \rangle$. Anomenem a l'encabiment obtingut després de l'etapa k-èssima

$$\mathcal{F}_k := IC(\mathcal{F}_{k-1}, g_k, N_{k,1}, N_{k,2}, N_{k,3}),$$

on $\mathcal{F}_0 := f$. En cada etapa, ens haurem de preocupar de que el defecte isomètric $D_k := g - f_{k-1}^* \langle \cdot, \cdot \rangle$ pertanyi al con convex \mathcal{C} .

Teorema 5.4.1 (Stage Theorem). Siguin g i \bar{g} dues mètriques Riemannianes sobre \mathbb{T}^2 i sigui

$$f:(\mathbb{T}^2,g)\to\mathbb{E}^3$$

una immersió tal que

1.
$$\bar{g} - g \in C^{\infty}(\mathbb{T}^2, \mathcal{C})$$

2.
$$g - f^*\langle \cdot, \cdot \rangle \in C^{\infty}(\mathbb{T}^2, \mathcal{C})$$

Aleshores, existeixen enters N_1, N_2, N_3 tals que l'immersió

$$\bar{f} := IC(\{, g_k, N_1, N_2, N_3)$$

satisfà

1.
$$\bar{f}(0,0) = f(0,0)$$

2.
$$\bar{g} - \bar{f}^*\langle \cdot, \cdot \rangle \in C^{\infty}(\mathbb{T}^2, \mathcal{C})$$

3.
$$||\bar{g} - \bar{f}^*\langle \cdot, \cdot \rangle||_{\infty} \le ||\bar{g} - g||_{\infty}$$

4.
$$||d\bar{f} - df||_{\infty} \le 11||g - f^*\langle \cdot, \cdot \rangle||_{\infty}^{\frac{1}{2}}$$

5.4.1 Demostració del teorema 5.4.1

Definim

$$U(1) := \partial_x, \ U(2) := \frac{1}{5}(\partial_x + 2\partial_y), \ U(3) := \frac{1}{5}(\partial_x - 2\partial_y),$$

i

$$V(1) := \partial_{\nu}, \ V(2) := -2\partial_{x} + \partial_{\nu}, \ V(3) := 2\partial_{x} + \partial_{\nu}.$$

Lema 5.4.2. Sigui $B := \rho_1 \ell_1 \otimes \ell_1 + \rho_2 \ell_2 \otimes \ell_2 + \rho_3 \ell_3 \otimes \ell_3$ una forma bilineal simètrica definició?. Aleshores,

$$\max\{|\rho_1|, |\rho_2|, |\rho_3|\} \le \frac{5\sqrt{3}}{8} ||B||$$

Capítol 6

Conclusions

Hem après un muntHI HA UNA EXPLICACIÓ DE COM CITAR AL CAMPUS

Capítol 7

Glossari d'alguns termes traduïts de l'anglès al català

Exhaustion function - Funció d'exhauriment

Embedding - Encabiment

 Bend - Plec

Pre-bend - Pre-plec

Stage - Etapa

Step - Pas

Strain - Corrugació

loops - voltes

Cal ordenar alfabèticament

Bibliografia

Autor1, A., & Autor2, B. (ANY) Nom del treball. Cambridge University Press.

Oh, S. J. (2018) The Nash C^1 isometric embedding theorem. LINK O PUBLISHER?

Nash, J. (1954) C^1 isometric imbeddings. Annals of Mathematics, 60(3), 383-396.

Lee, J. M. (2013) Introduction to smooth manifolds. Springer.

Borrelli, V., Jabrane, S., Lazarus, F., & Thibert, B. (2013) Isometric embeddings of the square flat torus in ambient space. Ensaios Matemáticos (Sociedade Brasileira de Matemática), 24, 1-98.

Warner, F. W. (1983) Foundations of differentiable manifolds and Lie groups. Springer.

Chavel, I. (2006) Riemannian geometry: A modern introduction. Cambridge University Press.

Schwartz, R. E. (2024) The Optimal Paper Moebius Band. arXiv:2308.12641

Kuiper, N. H. (1955) On C^1 -isometric imbeddings. I Indagationes Mathematicae(Proceedings), 58, 545-556.