

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	r debitative rapprocentate randamente delle tener tangenziam								
Ν	= 123000 N	M_{x}	= 4270000 Nmm	σ_{a}	$= 280 \text{ N/mm}^2$	G	= 76000 1	N/mm ²	
M_t	= 7040000 Nmm	M_{v}	= 7870000 Nmm	E	$= 200000 \text{ N/mm}^2$				
x_G	=	J_{xy}	=	σ(M,	,)=	σ_{mis}	es=		
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	en=		
u_o	=	J_{v}	=	σ	=	θ_{t}	=		
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=		
Α	=	J_t	=	σ_{l}	=	r_{v}	=		
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=		
J_{yy}	=	$\sigma(M_s)$	₍)=	σ_{tres}	_{ca} =				
**								20.05.13	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	r doctative rapprocentate randamente delle terier tangenziam								
Ν	= 134000 N	M_x	= 3120000 Nmm	σ_{a}	= 280 N/mm ²	G	= 76000 N	√mm²	
M_t	= 7580000 Nmm	M_{v}	= 8530000 Nmm	E	$= 200000 \text{ N/mm}^2$				
x_G	=	J_{xy}	=	σ(M,	,)=	σ_{mis}	es=		
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	en=		
u_o	=	J_v	=	σ	=	θ_{t}	=		
V_{o}	=	α	=	τ	=	r_u	=		
Α	=	J_t	=	σ_{I}	=	r_{v}	=		
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=		
J_{yy}	=	$\sigma(M_s)$	_x)=	σ_{tres}	_{ca} =				
**								20.05.13	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 149000 N	M _×	= 3440000 Nmm	σ_{a}	$= 280 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
M_t	= 5600000 Nmm	M_{v}	= 9600000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_G	=	J_{u}	=	τ(M	,) =	$\sigma_{\text{st.v}}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

					o			
Ν	= 108000 N	M_{\star}	= 3760000 Nmm	σ_{a}	= 280 N/mm ²	G	= 76000 1	√mm²
M_t	= 6150000 Nmm	M_{v}^{λ}	= 10200000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	y <i>'</i>	σ_{mis}	es=	
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	en=	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	$\sigma(M_s)$	_x)=	σ_{tres}	_{ca} =			
								20.05.13

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Ν	= 123000 N	M _×	= 4340000 Nmm	σ_{a}	$= 280 \text{ N/mm}^2$	G	= 76000 1	N/mm ²
M_t	= 7100000 Nmm	M_{v}	= 7870000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=	
u_{o}	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=			
	dolfo Zavelani Rossi, F	Polited	nico di Milano, vers.27.	.03.13	}			20.05.13

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	1 doctative rapprocentate randamente delle tener tangenziam								
Ν	= 134000 N	M_x	= 3170000 Nmm	σ_{a}	= 280 N/mm ²	G	= 76000 N	N/mm ²	
M_t	= 7650000 Nmm	M_{v}	= 8540000 Nmm	E	$= 200000 \text{ N/mm}^2$				
x_G	=	J_{xy}	=	σ(M,	,)=	σ_{mis}	es=		
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	en=		
u_o	=	J_v	=	σ	=	θ_{t}	=		
V_{o}	=	α	=	τ	=	r_u	=		
Α	=	J_t	=	σ_{I}	=	r_{v}	=		
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=		
J_{yy}	=	$\sigma(M_s)$	_{<})=	σ_{tres}	_{ca} =				
**								20.05.13	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 149000 N	M _×	= 3500000 Nmm	σ_{a}	$= 280 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
M_t	= 5640000 Nmm	M_{v}	= 9600000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_G	=	J_{u}	=	τ(M	t) =	$\sigma_{\text{st.v}}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	sca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Ν	= 108000 N	M _×	= 3830000 Nmm	σ_{a}	$= 280 \text{ N/mm}^2$	G	= 76000 1	N/mm ²
M_t	= 6210000 Nmm	M_{v}	= 10200000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=	
y_G	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_{t}	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi, I	Polited	nico di Milano, vers.27	.03.13	}			20.05.13

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 19800000 \text{ Nmm} \sigma_{a} = 280 \text{ N/mm}^{2}
                                                                                                                                                            = 76000 \text{ N/mm}^2
Ν
         = 196000 N
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 18100000 Nmm
                                                          = 10200000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                  \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 14600000 \text{ Nmm} \sigma_{a} = 280 \text{ N/mm}^{2}
                                                                                                                                                            = 76000 \text{ N/mm}^2
Ν
         = 215000 N
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 19500000 Nmm
                                                          = 11100000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                  \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 16000000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                        = 76000 \text{ N/mm}^2
Ν
         = 236000 N
                                                                                                                                               G
                                                                                                        = 200000 \text{ N/mm}^2
         = 14300000 Nmm
                                                         = 12300000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_{G}
                                                                                               σ
                                               α
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 17700000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                        = 76000 \text{ N/mm}^2
Ν
         = 173000 N
                                                                                                                                               G
                                                                                                        = 200000 \text{ N/mm}^2
         = 15800000 Nmm
                                                         = 13200000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_{G}
                                                                                               σ
                                               α
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 19900000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                        = 76000 \text{ N/mm}^2
Ν
         = 196000 N
                                                                                                                                               G
                                                                                                        = 200000 \text{ N/mm}^2
         = 18300000 Nmm
                                                         = 10400000 Nmm
                                               M_{v}
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_{G}
                                                                                               σ
                                               α
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 14600000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 216000 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 19800000 Nmm
                                                         = 11400000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                α
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 16100000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                         = 76000 \text{ N/mm}^2
Ν
         = 236000 N
                                                                                                                                               G
                                                                                                         = 200000 \text{ N/mm}^2
         = 14500000 Nmm
                                                         = 12500000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_{G}
                                                                                               σ
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 17800000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                        = 76000 \text{ N/mm}^2
         = 174000 N
Ν
                                                                                                                                               G
                                                                                                        = 200000 \text{ N/mm}^2
         = 16000000 Nmm
                                                         = 13500000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_{G}
                                                                                               σ
                                               α
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 129000 N	M _×	= 6180000 Nmm	σ_{a}	$= 280 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
M_t	= 9280000 Nmm	M_{y}^{2}	= 8480000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}			

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 140000 N	M _×	= 4520000 Nmm	σ_{a}	$= 280 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
M_t	= 9940000 Nmm	M_{v}	= 9130000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{\text{st.}}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

					o			
Ν	= 155000 N	M_{\star}	= 4940000 Nmm	σ_{a}	= 280 N/mm ²	G	= 76000 1	√mm²
M_t	= 7330000 Nmm	M_{v}^{λ}	= 10200000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	y <i>'</i>	σ_{mis}	es=	
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	en=	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	$\sigma(M_s)$	_x)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi, F	Politec	nico di Milano, vers.27	.03.13	}			20.05.13

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 113000 N	M _x	= 5390000 Nmm	σ_{a}	= 280 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 8010000 Nmm	M_{v}	= 10800000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M		σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$	·) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 129000 N	M _×	= 6290000 Nmm	σ_{a}	= 280 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 9410000 Nmm	M_{v}	= 8560000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M		σ_{mis}	ses=
y_G	=	J_{u}	=	$\tau(M_t$	<u>,</u>) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 4600000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
         = 140000 N
Ν
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 10000000 Nmm
                                                         = 9220000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

		P P . 00			o			•
Ν	= 155000 N	M_{x}	= 5030000 Nmm	σ_{a}	= 280 N/mm ²	G	= 76000 1	√mm²
M_t	= 7440000 Nmm	M_{v}^{λ}	= 10300000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M,	y ′	σ_{mis}	es=	
y_{G}	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	en=	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M ₂	_x)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi, F	Politec	nico di Milano, vers.27.	03.13	}			20.05.13

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

					o			•
Ν	= 113000 N	M_{\star}	= 5500000 Nmm	σ_{a}	= 280 N/mm ²	G	= 76000 N	√mm²
M_t	= 8130000 Nmm	M_{v}^{λ}	= 10900000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	y ′	σ_{mis}	es=	
y_G	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	en=	
u_o	=	J_{v}	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{l}	=	r_{v}	=	
J_{xx}	=	$\sigma(N)$	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	₍)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi, F	Politec	nico di Milano, vers.27.	.03.13	}			20.05.13

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 17600000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
         = 190000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 16600000 Nmm
                                                          = 9420000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 208000 N	M _×	= 12900000 Nmm	σ_{a}	= 280 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 17600000 Nmm	M_y		Ē	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	$\sigma(M_{y})$, ·	σ_{mise}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_0	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 14000000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 227000 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 12900000 Nmm
                                                         = 11200000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 15400000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
         = 166000 N
Ν
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 14000000 Nmm
                                                         = 11700000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 190000 N	M _x	= 17900000 Nmm	$\sigma_{\rm a}$	= 280 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 17000000 Nmm	M_{v}	= 9710000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_G	=	J_{u}	=	τ(M	t) =	$\sigma_{\text{st.}}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	sca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 13200000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 208000 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 18100000 Nmm
                                                         = 10400000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                α
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 14200000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                        = 76000 \text{ N/mm}^2
Ν
         = 227000 N
                                                                                                                                               G
                                                                                                        = 200000 \text{ N/mm}^2
         = 13200000 Nmm
                                                         = 11500000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_{G}
                                                                                               σ
                                               α
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 166000 N	 М _×	= 15600000 Nmm	σ_a	= 280 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 14300000 Nmm	M_y		E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y	σ_{mise}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	$\sigma(M_s)$	_x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 148000 N	M _x	= 4560000 Nmm	σ_{a}	= 280 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 7420000 Nmm	M_{v}	= 8960000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	τ(M	,) =	$\sigma_{\text{st.v}}$	_{ren} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_v	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 160000 N	M _×	= 3320000 Nmm	σ_{a}	$= 280 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
M_t	= 8000000 Nmm	M_y	= 9680000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_{G}	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 179000 N	M _×	= 3690000 Nmm	σ_{a}	$= 280 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
M_t	= 5900000 Nmm	M_{v}^{λ}	= 10900000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{treso}	_{ca} =		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Ν	= 130000 N	M _×	= 4020000 Nmm	σ_{a}	$= 280 \text{ N/mm}^2$	G	= 76000 1	N/mm ²
M_t	= 6480000 Nmm	M_{v}	= 11600000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=	
u_{o}	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi, F	Polited	nico di Milano, vers.27	.03.13	}			20.05.13

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Ν	= 147000 N	M _×	= 4640000 Nmm	σ_{a}	$= 280 \text{ N/mm}^2$	G	= 76000 N	N/mm ²
M_t	= 7490000 Nmm	M_{v}	= 8960000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$			
x_G	=	J_{xy}	=	$\sigma(M_y)$, ·	σ_{mis}	es=	
y_{G}	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{l}	=	r_{v}	=	
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=	
J_{yy}	=	$\sigma(M_s)$	₍)=	σ_{treso}	_{ea} =			
@ A	dolfo Zavelani Rossi, F	olitec	nico di Milano, vers.27.	03.13				20.05.13

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 160000 N	M _v	= 3380000 Nmm		= 280 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M,	= 8070000 Nmm	M _v			$= 200000 \text{ N/mm}^2$	O	= 70000 W/IIIII
	= 007 0000 1411111	iviy	= 9000000 1111111				
x_G	=	J_{xy}	=	σ(M	<i>)</i> ·	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{st.v}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

		P P . 00			o			•
Ν	= 178000 N	M_{x}	= 3750000 Nmm	σ_{a}	= 280 N/mm ²	G	= 76000 1	√mm²
M_t	= 5950000 Nmm	M_{y}^{2}	= 10900000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	y ′	σ_{mis}	es=	
y_{G}	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	_{en} =	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M ₂	_x)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi, F	Politec	nico di Milano, vers.27.	03.13	}			20.05.13

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 129000 N	M _×	= 4100000 Nmm	$\sigma_{\rm a}$	$= 280 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
M_t	= 6540000 Nmm	M_{y}^{2}	= 11600000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 19300000 \text{ Nmm} \sigma_{a} = 280 \text{ N/mm}^{2}
                                                                                                                                                             = 76000 \text{ N/mm}^2
Ν
         = 192000 N
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 18000000 Nmm
                                                          = 9600000 Nmm
                                                 M_{v}
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                 α
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 14200000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                        = 76000 \text{ N/mm}^2
Ν
         = 211000 N
                                                                                                                                              G
                                                                                                        = 200000 \text{ N/mm}^2
         = 19400000 Nmm
                                                        = 10500000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_{G}
                                                                                               σ
                                               α
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 15700000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                        = 76000 \text{ N/mm}^2
Ν
         = 232000 N
                                                                                                                                               G
                                                                                                        = 200000 \text{ N/mm}^2
         = 14200000 Nmm
                                                         = 11600000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_{G}
                                                                                               σ
                                               α
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 17300000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                        = 76000 \text{ N/mm}^2
Ν
         = 170000 N
                                                                                                                                              G
                                                                                                        = 200000 \text{ N/mm}^2
         = 15700000 Nmm
                                                        = 12400000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_{G}
                                                                                               σ
                                               α
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 19400000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                        = 76000 \text{ N/mm}^2
Ν
         = 193000 N
                                                                                                                                               G
                                                                                                        = 200000 \text{ N/mm}^2
         = 18200000 Nmm
                                                        = 9770000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_{G}
                                                                                               σ
                                               α
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 14300000 \text{ Nmm} \sigma_{a} = 280 \text{ N/mm}^{2}
                                                                                                                                                            = 76000 \text{ N/mm}^2
Ν
         = 212000 N
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 19600000 Nmm
                                                          = 10700000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 15800000 \text{ Nmm} \sigma_{a} = 280 \text{ N/mm}^{2}
                                                                                                                                                            = 76000 \text{ N/mm}^2
Ν
         = 232000 N
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 14400000 Nmm
                                                          = 11800000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                  \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 17400000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                        = 76000 \text{ N/mm}^2
Ν
         = 170000 N
                                                                                                                                               G
                                                                                                        = 200000 \text{ N/mm}^2
         = 15900000 Nmm
                                                         = 12600000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_{G}
                                                                                               σ
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 181000 N	M _x	= 7930000 Nmm	σ_{a}	$= 280 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
M_t	= 12400000 Nmm	M_{v}	= 11100000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	es=
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5790000 \text{ Nmm} \sigma_{a} = 280 \text{ N/mm}^{2}
                                                                                                                                             = 76000 \text{ N/mm}^2
        = 196000 N
Ν
                                                                                                                                     G
                                                                                                 = 200000 \text{ N/mm}^2
        = 13300000 Nmm
                                                     = 11900000 Nmm
                                            M_{v}
M₊
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_{G}
                                                                                        σ
                                            α
                                                                                        \sigma_{\text{I}}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                               20.05.13
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 6350000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                             = 76000 \text{ N/mm}^2
Ν
        = 219000 N
                                                                                                                                    G
                                                                                                = 200000 \text{ N/mm}^2
        = 9850000 Nmm
                                                    = 13500000 Nmm
M₊
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_{G}
                                            α
                                                                                        \sigma_{\text{I}}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                              20.05.13
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	i aconanion i	APP. 00	ornaro ramaamomo ao		or tarigoriziani			•
Ν	= 158000 N	M_x	= 6920000 Nmm	σ_{a}	$= 280 \text{ N/mm}^2$	G	= 76000 1	ا/mm²
M_t	= 10700000 Nmm	M_{v}	= 14100000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=	
y_G	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	en=	
u_o	=	J_v	=	σ	=	Θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	$\sigma(N)$	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi, I	Polited	nico di Milano, vers.27	.03.13	}			20.05.13

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 181000 N	M _×	= 8090000 Nmm	σ_a	= 280 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 12600000 Nmm	M_{y}^{2}	= 11200000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

r doctative rapprocentare randamente delle terrer tangenziam									
Ν	= 196000 N	M_{x}	= 5910000 Nmm	σ_{a}	$= 280 \text{ N/mm}^2$	G	= 76000 1	N/mm ²	
M_t	= 13500000 Nmm	M_{v}	= 12000000 Nmm	E	$= 200000 \text{ N/mm}^2$				
x_G	=	J_{xy}	=	σ(M,	,)=	σ_{mis}	es=		
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	en=		
u_o	=	J_v	=	σ	=	Θ_{t}	=		
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=		
Α	=	J_t	=	σ_{I}	=	r_{v}	=		
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=		
J_{yy}	=	$\sigma(M_x)$	()=	σ_{tres}	_{ca} =				
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativo. id	122100	ornaro ranaamonto ao		o. tangonziani			•
Ν	= 218000 N	M_x	= 6490000 Nmm	σ_{a}	$= 280 \text{ N/mm}^2$	G	= 76000 N	N/mm ²
M_t	= 9990000 Nmm	M_{v}	= 13600000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_G	=	J_{xy}	=	σ(M	_y)=	σ_{mise}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi, F	Polited	nico di Milano, vers.27	.03.13	}			20.05.13

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i accitativo: ic	approcontaro randamento	aono torior tarigoriziani	•
Ν	= 158000 N	$M_x = 7080000 \text{ Nmm}$	$\sigma_a = 280 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$
M_t	= 10900000 Nmm	$M_v = 14200000 \text{ Nmm}$	$E = 200000 \text{ N/mm}^2$	
x_G	=	$J_{xy} =$	$\sigma(M_{v})=$	$\sigma_{mises} =$
y_{G}	=	J_u =	$\tau(M_t) =$	$\sigma_{\text{st.ven}}$ =
u_o	=	$J_v =$	σ =	$\theta_{t} =$
V_{o}	=	α =	τ =	$r_u =$
Α	=	$J_t =$	$\sigma_{l} =$	$r_v =$
J_{xx}	=	$\sigma(N) =$	$\sigma_{II} =$	$r_o =$
J_{yy}	=	$\sigma(M_x)=$	σ_{tresca} =	
	dolfo Zavelani Rossi, I	Politecnico di Milano, vers.2	27.03.13	20.05.13

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 20800000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
Ν
         = 229000 N
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 20700000 Nmm
                                                          = 11100000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 250000 N	M _x	= 15300000 Nmm		= 280 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 21900000 Nmm	M_{y}	= 11800000 Nmm	Ε	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mise}	es =
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	en=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_v	=
J_{xx}	=	$\sigma(N)$) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{treso}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 275000 N	M _×	= 16600000 Nmm	$\sigma_{\rm a}$	= 280 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 16100000 Nmm	M_{v}	= 13200000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	<u>,</u>) =	$\sigma_{\text{st.}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 18200000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
         = 200000 N
Ν
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 17400000 Nmm
                                                          = 13800000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 229000 N	M _x	= 21200000 Nmm	σ_{a}	= 280 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 21200000 Nmm	M_{v}^{λ}	= 11400000 Nmm		$= 200000 \text{ N/mm}^2$		
x_G	=	J_{xy}	=	σ(M	y'	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 250000 N	M _x	= 15500000 Nmm	σ_{a}	= 280 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 22500000 Nmm	M_{v}	= 12200000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$,) =	$\sigma_{\text{st.v}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 16900000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
Ν
         = 275000 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 16600000 Nmm
                                                          = 13500000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 200000 N	M _x	= 18500000 Nmm		$= 280 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
M_t	= 17900000 Nmm	M_{y}	= 14200000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mise}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 249000 N	M _x	= 22600000 Nmm		= 280 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 22800000 Nmm	M_{y}	= 12100000 Nmm	Ε	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mise}	es =
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	en=
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	$\sigma(N)$) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{treso}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 272000 N	M _x	= 16600000 Nmm		= 280 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 24100000 Nmm	M_{y}	= 12900000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mise}	es=
y_G	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 299000 N	M _×	= 18000000 Nmm	$\sigma_{\rm a}$	= 280 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 17700000 Nmm	M_{v}	= 14400000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	t) =	$\sigma_{\text{st.}}$	_{ven} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	sca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 218000 N	M _x	= 19800000 Nmm		$= 280 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
M_t	= 19100000 Nmm	M_{y}	= 15000000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mise}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 249000 N	M _×	= 23000000 Nmm	$\sigma_{\rm a}$	= 280 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 23400000 Nmm	M_{v}^{λ}	= 12400000 Nmm		$= 200000 \text{ N/mm}^2$		
x_G	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M)$	<u>,</u>) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N	•	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 16900000 \text{ Nmm} \sigma_a = 280 \text{ N/mm}^2
                                                                                                                                                             = 76000 \text{ N/mm}^2
         = 271000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 24800000 Nmm
                                                          = 13300000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_{\star}) =
y_{G}
                                                                                                  σ
                                                 α
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```