MTH 101-Calculus

Spring-2021

Assignment-11-Solutions: Double and Triple Integrals

1. (a)
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \sqrt{1-y^2} \, dy \, dx = \int_{0}^{1} \left(\int_{0}^{\sqrt{1-y^2}} \sqrt{1-y^2} \, dx \right) dy = \int_{0}^{1} (1-y^2) dy = \frac{2}{3}.$$

(b)
$$\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} dy dx = \int_{0}^{\pi} \int_{0}^{y} \frac{\sin y}{y} dx dy = \int_{0}^{y} \sin y dy = 2.$$

(c)
$$\int_{0}^{1} \int_{y}^{1} x^{2} e^{xy} dx dy = \int_{0}^{1} \int_{0}^{x} x^{2} e^{xy} dy dx = \int_{0}^{1} x(e^{x^{2}} - 1) dx = \frac{e - 2}{2}.$$

- 2. Choose u = x(1-y) and v = xy. Then, $1 \le u \le 2$ and $1 \le v \le 2$. Note that x = u + v, $y = \frac{v}{u+v}$ and $|J(u,v)| = \frac{1}{u+v}$. Therefore, $\iint_R x dx dy = \int_1^2 \int_1^2 dv du = 1$
- 3. Area = $3\int_0^{\frac{\pi}{3}} \int_0^{\sin 3\theta} r dr d\theta = \frac{3}{2}\int_0^{\frac{\pi}{3}} \sin^2 3\theta = \frac{3}{4}\int_0^{\frac{\pi}{3}} (1 \cos 6\theta) d\theta = \frac{1}{4}\pi$.
- 4. (i) Let $D(a) = \{(x,y) : x^2 + y^2 \le a\}$. Then

$$\iint_{D(a)} e^{-(x^2+y^2)} dx dy = \iint_{0}^{2\pi} \int_{0}^{a} e^{-r^2} r dr d\theta = \pi (1 - e^{-a^2}).$$

Therefore, $\lim_{a\to\infty} \iint_{D(a)} e^{-(x^2+y^2)} dxdy = \pi$.

(ii) Let $D_1(a) = \{(x,y) : x, y \ge 0, \ x^2 + y^2 \le a\}$ and $D_2(a) = \{(x,y) : 0 \le x, y \le a\}$. Note that

$$\iint_{D_1(a)} e^{-(x^2+y^2)} dx dy \le \iint_{D_2(a)} e^{-(x^2+y^2)} dx dy \le \iint_{D_1(\sqrt{2}a)} e^{-(x^2+y^2)} dx dy.$$

Now, use the sandwich theorem. We see that

$$\lim_{a \to \infty} \iint_{D_2(a)} e^{-(x^2 + y^2)} dx dy = \lim_{a \to \infty} \iint_{D_1(a)} e^{-(x^2 + y^2)} dx dy = \frac{1}{4}\pi.$$

(a)
$$(\int_{0}^{\infty} e^{-x^2} dx)^2 = (\int_{0}^{\infty} e^{-x^2} dx)(\int_{0}^{\infty} e^{-y^2} dy) = \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy = \frac{\pi}{4}.$$

(b)
$$\int_{0}^{\infty} x^{2} e^{-x^{2}} dx = \lim_{t \to \infty} \int_{0}^{t} -\frac{x}{2} d(e^{-x^{2}}) = \frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} dx = \frac{\sqrt{\pi}}{4}.$$

5. The solid is enclosed by the cylinder $x^2 + y^2 = 1$ and the surfaces $z = -\sqrt{1-x^2}$ and $z = \sqrt{1-x^2}$. Let $R = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$. The required volume is equal to $\iint_R (\sqrt{1-x^2} - (-\sqrt{1-x^2})) dx dy = \int_{-1}^1 \int_{-1/x^2}^{\sqrt{1-x^2}} 2\sqrt{1-x^2} dy dx = \frac{16}{3}.$

6. Use spherical coordinates. Let $x=\rho\cos\theta\sin\phi,\ y=\rho\sin\theta\sin\phi$ and $z=\rho\cos\phi,$ where $0\leq\rho\leq1,\ 0\leq\theta\leq2\pi$ and $0\leq\phi\leq\pi.$

$$\iiint_{W} \frac{dzdydx}{\sqrt{1+x^2+y^2+z^2}} = \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{1} \frac{\rho^2 \sin \phi d\rho d\theta d\phi}{\sqrt{1+\rho^2}} = 2\pi(\sqrt{2} - \ln(1+\sqrt{2})).$$