NUMERICAL COMPUTING CS2008

Numerical Computing

Muhammad Shahid Ashraf

		+ D > + B > + E > + E >	₹ •9 q (P
Shahid Ashraf	NC-BCS-5(A-F)		1/4
	Errors, ALgorithms		
	Errors, ALgorithm	ic .	
	LITOIS, ALBOHUIIII	13	

+ □ > + ② > + き > き + シ へ へ NC-BCS-5(A-F) 2/4

Errors, ALgorithms Errors

Types of errors

- ▶ Errors in the formulation of the problem to be solved.
 - ► Errors in the mathematical model. Simplifications.
 - ► Error in input data. Measurements.
- Approximation errors
 - Discretization error.
 - ► Convergence error in iterative methods.
 - Discretization/convergence errors may be assessed by an analysis of the method used.
- ► Roundoff errors
 - ► Roundoff errors arise everywhere in numerical computation because of the finite precision arithmetic.
 - ► Roundoff errors behave quite erratic.

NC-BCS-5(A-F)

Errors, ALgorithms Errors

Discretization errors in action

Problem: want to approximate the derivative $f'(x_0)$ of a given smooth function f(x) at the point $x = x_0$.

Example: Let $f(x) = \sin(x)$, $-\infty < x < \infty$, and set $x_0 = 1.2$. Thus, $f(x_0) = \sin(1.2) \approx 0.932...$

Discretization: Function values f(x) are available only at a discrete number of points, e.g. at grid points $x_j = x_0 + jh$, $j \in \mathbb{Z}$.

Want to approximate $f'(x_0)$ by values $f(x_j)$.

・ロ・・カ・・ミ・・ミ・ ラ つくで Shahid Ashraf NC-BCS-5(A-F) 4/4

Notes		
N		
Votes		
Notes		
Votes		

Discretization errors in action (cont.)

Taylor's series gives us an algorithm to approximate $f'(x_0)$:

$$f'(x_0) \approx D_{x_0,h}(f) = \frac{f(x_0+h)-f(x_0)}{h}$$

Discretization errors in action (cont.)

Expanding f(x) by a Taylor series around $x = x_0$ gives

$$\frac{f(x_0+h)-f(x_0)}{h}=f'(x_0)-\frac{h}{2}f''(\xi), \quad x_0<\xi< x_0+h.$$

So, we expect the error to decrease linearly with h.

$$\left| f'(x_0) - \frac{f(x_0 + h) - f(x_0)}{h} \right| = \frac{h}{2} \left| f''(\xi) \right| \approx \frac{h}{2} \left| f''(x_0) \right|$$

$$\left|f'(x_0)-D_{x_0,h}(f)\right|=\mathcal{O}(h).$$

Results

Try for $f(x) = \sin(x)$ at $x_0 = 1.2$.

(So, we are approximating $cos(1.2) = 0.362357754476674\ldots$)

h	Absolute error
0.1	$4.71667 \cdot 10^{-2}$
0.01	$4.666196 \cdot 10^{-3}$
0.001	$4.660799 \cdot 10^{-4}$
10^{-4}	$4.660256 \cdot 10^{-5}$
10^{-7}	4 610326 . 10-8

These results reflect the discretization error as expected.

Note that $f''(x_0)/2 = -\sin(1.2)/2 \approx -0.466$.

Errors, ALgorithms Errors

Results for smaller h

The above results indicate that we can compute the derivative as $% \left\{ 1,2,\ldots ,n\right\}$ accurate as we like, provided that we take h small enough.

If we wanted

$$\left|\cos(1.2) - \frac{\sin(1.2+h) - \sin(1.2)}{h}\right| < 10^{-10}.$$

We have to set $h \le 10^{-10}/0.466$.

Notes

Notes Notes Notes

Results for smaller h

h	Absolute error
-10^{-8}	$4.36105 \cdot 10^{-10}$
10^{-9}	$5.594726 \cdot 10^{-8}$
10^{-10}	$1.669696 \cdot 10^{-7}$
10^{-11}	$7.938531 \cdot 10^{-6}$
10^{-13}	$6.851746 \cdot 10^{-4}$
10^{-15}	$8.173146 \cdot 10^{-2}$
10^{-16}	$3.623578 \cdot 10^{-1}$

These results reflect both discretization and roundoff errors.

Results for all h

The solid curve interpolates the computed values of $|f'(x_0) - \frac{f(x_0+h) - f(x_0)}{h}|$ for $f(x) = \sin(x)$ at $x_0 = 1.2$.

The dash-dotted straight line depicts the discretization error without roundoff arror

NC-BCS-5(A-F)

Errors, ALgorithms Errors

Algorithm properties

Performance features that may be expected from a good numerical algorithm.

Accuracy

Relates to errors. How accurate is the result going to be when a numerical algorithm is run with some particular input data.

► Efficiency

- ► How fast can we solve a certain problem?
- Rate of convergence. Floating point operations (flops).
- How much memory space do we need?
 These issues may affect each other.

► Robustness

(Numerical) software should run under all circumstances. Should yield correct results to within an acceptable error or should fail gracefully if not successful.

NC-BCS-5(A-F)

Complexity I

 ${\color{red} \textbf{Complexity/computational cost of an algorithm}} : \Longleftrightarrow \textbf{number of}$

elementary operators

Asymptotic complexity \(\hat{=}\) "leading order term" of complexity w.r.t. large problem size parameters

The usual choice of problem size parameters in numerical linear algebra is the number of independent real variables needed to $% \left\{ 1,2,\ldots ,n\right\}$ describe the input data (vector length, matrix sizes).

operation	description	#mul/div	#add/sub	
inner product	$(x \in \mathbb{R}^n, y \in \mathbb{R}^n) \mapsto x^H y$	n	n-1	O(n)
outer product	$(x \in \mathbb{R}^m, y \in \mathbb{R}^n) \mapsto xy^H$	nm	0	O(mn)
tensor product				
matrix product	$(A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times k}) \mapsto AB$	mnk	mk(n-1)	O(mnk)

NC-BCS-5(A-F)

Notes

Notes

Notes		
Notes		

Big-O and Θ notation

For an error e depending on h we denote

$$e = \mathcal{O}(h^q)$$

if there are two positive constants \emph{q} and \emph{C} such that

$$|e| \le C h^q$$
 $\forall h > 0$ small enough.

Similarly, for w = w(n) the expression

$$w = \mathcal{O}(n \log n)$$

means that there is a constant C>0 such that

$$|w| \le Cn \log n$$
 as $n \to \infty$.

NC-BCS-5(A-F)

Big-O and Θ notation

More abstract:

Class $\mathcal{O}(f)$ of functions is defined as

$$\mathcal{O}(f) = \{g \mid \exists c_1, c_2 > 0 : \forall N \in \mathbb{Z}^+ : g(N) \le c_1 f(N) + c_2\}$$

The Θ notation signifies a stronger relation than the ${\cal O}$ notation: a function $\phi(h)$ for small h (resp., $\phi(n)$ for large n) is $\Theta(\psi(h))$ (resp., $\Theta(\psi(n))$) if ϕ is asymptotically bounded both above and below by ψ .

 $\mathcal{O}(h^2)$ means at least "quadratic convergence" (see later). $\Theta(h^2)$ is exact quadratic convergence.

NC-BCS-5(A-F)

Complexity II

To a certain extent, the asymptotic complexity allows to predict the dependence of the runtime of a particular implementation of an algorithm on the problem size (for large problems). For instance, an algorithm with asymptotic complexity $\mathcal{O}(n^2)$ is likely to take $4\times$ as much time when the problem size is doubled.

One may argue that the memory accesses are more decisive for run times than floating point operations. In general there is a linear dependence among the two. So, there is no difference in the $\ensuremath{\mathsf{O}}$ notation.

NC-BCS-5(A-F)

 ${\color{red} \textbf{Scaling} \equiv \textbf{multiplication with diagonal matrices (with non-zero}}$ diagonal entries) from left and/or right.

It is important to know the different effects of multiplying with a diagonal matrix from left or right:

$$DA$$
 vs. AD with $\mathbb{R}^{n\times n}\ni A, D=\mathsf{diag}(d_1,\ldots,d_n)$

NC-BCS-5(A-F)

Scaling with $D = \operatorname{diag}(d_1, \dots, d_n)$ in Matlab:

y = diag(d)*x;

OI

4	Þ	40	Þ	< ≅	Þ	< ≅	Þ	2	990

Notes

Notes

Notes

Notes

Errors Al gorithms

Elementary matrices

Matrices of the form $A = I + \alpha \mathbf{u} \mathbf{v}^T$ are called elementary. Again we can apply A to a vector \mathbf{x} in a straightforward and a more clever way:

$$A\mathbf{x} = (I + \alpha \mathbf{u} \mathbf{v}^T)\mathbf{x}$$

or

$$A\mathbf{x} = \mathbf{x} + \alpha \mathbf{u}(\mathbf{v}^T \mathbf{x})$$

Cf. exercises.

4 P > 4 B > 4 E > 4 E > 9 Q Q

Chabid Asharé

NC-BCS-5(A-F)

1

Errors, ALgorithms

Errors

Problem conditioning and algorithm stability

Qualitatively speaking:

- ➤ The problem is ill-conditioned if a small perturbation in the data may produce a large difference in the result.

 The problem is well-conditioned otherwise.
- ► The algorithm is stable if its output is the exact result of a slightly perturbed input.

+□ > +₫ > +≅ > +≅ > - ≅ - 9q@

Shahid Ashraf

NC-BCS-5(A-F)

18 / 4

Errors, ALgorithms

An unstable algorithm

Ill-conditioned problem of computing output values y from input values x by y=g(x): when x is slightly perturbed to \bar{x} , the result $\bar{y}=g(\bar{x})$ is far from y.

Snanid Ashraf

NC-BCS-5(A-F)

D > 4륜 > 4분 > 4분 > 연연

Errors, ALgorithms

Erro

A stable algorithm

An instance of a stable algorithm for computing y=g(x): the output \bar{y} is the exact result, $\bar{y}=g(\bar{x})$, for a slightly perturbed input, i.e., \bar{x} which is close to the input x. Thus, if the algorithm is stable and the problem is well-conditioned, then the computed result \bar{y} is close to the exact y.

NC-BCS-5(A-F)

+□ > <@ > < ≥ > < ≥ > ≥ < 9 <</p>

Notes

Notes

Notes

Notes

Unstable algorithm

Problem statement: evaluate the integrals

$$y_n=\int_0^1\frac{x^n}{x+10}\,dx,\quad \text{for }n=0,1,2,\dots,30.$$
 Algorithm development: observe that analytically, for $n>0$,

$$y_n + 10y_{n-1} = \int_0^1 \frac{x^n + 10x^{n-1}}{x + 10} \, dx = \int_0^1 x^{n-1} \, dx = \frac{1}{n}.$$

Also,

$$y_0 = \int_0^1 \frac{1}{x+10} dx = \log(11) - \log(10).$$

Algorithm:

- ► Evaluate $y_0 = \log(11) \log(10)$.
- For n = 1, 2, ..., 30, evaluate $y_n = \frac{1}{n} 10y_{n-1}$.

Notes

Notes

Unstable algorithm (cont.)

Roundoff error accumulation

▶ In general, if E_n is error after n elementary operations, cannot avoid linear roundoff error accumulation

$$E_n \simeq c_0 n E_0$$
.

▶ Will not tolerate an exponential error growth such as

$$E_n \simeq c_1^n E_0$$
, for some constant $c_1 > 1$.

This is an unstable algorithm.

NC-BCS-5(A-F)

Thankyou

(ロ > ← ② > ← き > ← き ト き √ ⊃ へ へ NC-BCS-5(A-F) 23/4

Notes			
Notes			
	 	·	_
Notes			
INOLES			