Exceptional projections and dimension interpolation

Ana E. de Orellana University of St Andrews aedo1@st-andrews.ac.uk

Joint work with Jonathan Fraser

Geometry and Fractals under the Midnight Sun

Motivation

Marstrand's theorem: For any Borel set $X \subseteq \mathbb{R}^d$ and almost all directions $e \in S^{d-1}$, $\dim_{\mathsf{H}} P_e(X) = \min\{\dim_{\mathsf{H}} X, 1\}$.

We are interested in studying the dimension of the exceptional set, for $u \in [0, \min\{\dim_{\mathsf{H}} X, 1\}]$,

$$\begin{split} \dim_{\mathsf{H}} \{e \in S^{d-1}: \dim_{\mathsf{H}} P_e(X) < u\} \\ \leqslant \begin{cases} 2u - \dim_{\mathsf{H}} X, & \text{if } d = 2, \\ d-2+u, & \text{if } \dim_{\mathsf{H}} X \leqslant 1, \\ d-1 - \dim_{\mathsf{H}} X + u, & \text{if } \dim_{\mathsf{H}} X \geqslant 1, \end{cases} & \text{(Peres-Schlag '00)}. \end{split}$$

Motivation

Marstrand's theorem: For any Borel set $X \subseteq \mathbb{R}^d$ and almost all directions $e \in S^{d-1}$, $\dim_{\mathsf{H}} P_e(X) = \min\{\dim_{\mathsf{H}} X, 1\}$.

We are interested in studying the dimension of the exceptional set, for $u \in [0, \min\{\dim_{\mathbf{H}} X, 1\}]$,

$$\begin{split} \dim_{\mathsf{H}} \{e \in S^{d-1} : \dim_{\mathsf{H}} P_e(X) < u\} \\ \leqslant \begin{cases} 2u - \dim_{\mathsf{H}} X, & \text{if } d = 2, \\ d-2+u, & \text{if } \dim_{\mathsf{H}} X \leqslant 1, \\ d-1 - \dim_{\mathsf{H}} X + u, & \text{if } \dim_{\mathsf{H}} X \geqslant 1, \end{cases} & \text{(Peres-Schlag '00)}. \end{split}$$

If $X \subseteq \mathbb{R}^d$ is a Salem set $(\dim_F X = \dim_H X)$, then there are no exceptions to Marstrand's theorem.

Motivation

Marstrand's theorem: For any Borel set $X \subseteq \mathbb{R}^d$ and almost all directions $e \in S^{d-1}$, $\dim_{\mathsf{H}} P_e(X) = \min\{\dim_{\mathsf{H}} X, 1\}$.

We are interested in studying the dimension of the exceptional set, for $u \in [0, \min\{\dim_{\mathbf{H}} X, 1\}]$,

$$\begin{split} \dim_{\mathsf{H}} \{e \in S^{d-1} : \dim_{\mathsf{H}} P_e(X) < u\} \\ \leqslant \begin{cases} 2u - \dim_{\mathsf{H}} X, & \text{if } d = 2, \\ d-2+u, & \text{if } \dim_{\mathsf{H}} X \leqslant 1, \\ d-1 - \dim_{\mathsf{H}} X + u, & \text{if } \dim_{\mathsf{H}} X \geqslant 1, \end{cases} & \text{(Peres-Schlag '00)}. \end{split}$$

If $X \subseteq \mathbb{R}^d$ is a Salem set $(\dim_F X = \dim_H X)$, then there are no exceptions to Marstrand's theorem.

Can we use Fourier decay to give better estimates?

Given a Borel set $X \subseteq \mathbb{R}^d$, we know that

 $\dim_{\mathbf{F}} X \leqslant \dim_{\mathsf{H}} X$,

Given a Borel set $X\subseteq \mathbb{R}^d$, the Fourier spectrum of X at $\theta\in [0,1]$ interpolates between the two

$$\dim_{\mathbf{F}} X \leqslant \dim_{\mathbf{F}}^{\theta} X \leqslant \dim_{\mathbf{H}} X,$$

We have that, $\dim_F^0 X = \dim_F X$ and $\dim_F^1 X = \dim_H X$.

Given a Borel set $X\subseteq \mathbb{R}^d$, the Fourier spectrum of X at $\theta\in [0,1]$ interpolates between the two

$$\dim_{\mathbf{F}} X \leqslant \dim_{\mathbf{F}}^{\theta} X \leqslant \dim_{\mathbf{H}} X,$$

We have that, $\dim_{\mathrm{F}}^0 X = \dim_{\mathrm{F}} X$ and $\dim_{\mathrm{F}}^1 X = \dim_{\mathrm{H}} X$.

Theorem (Fraser-dO, 2024+)

Let $X \subseteq \mathbb{R}^d$ be a Borel set and $\theta \in (0,1]$. Then for all $u \in [0,1]$,

$$\dim_{\mathsf{H}}\{e \in S^{d-1}: \dim_{\mathsf{H}} P_e(X) < u\} \leqslant \max\bigg\{0, d-1 + \inf_{\theta \in (0,1]} \frac{u - \dim_{\mathrm{F}}^{\theta} X}{\theta}\bigg\}.$$

Given a Borel set $X\subseteq \mathbb{R}^d$, the Fourier spectrum of X at $\theta\in [0,1]$ interpolates between the two

$$\dim_{\mathbf{F}} X \leqslant \dim_{\mathbf{F}}^{\theta} X \leqslant \dim_{\mathbf{H}} X,$$

We have that, $\dim_F^0 X = \dim_F X$ and $\dim_F^1 X = \dim_H X$.

Theorem (Fraser-dO, 2024+)

Let $X \subseteq \mathbb{R}^d$ be a Borel set and $\theta \in (0,1]$. Then for all $u \in [0,1]$,

$$\dim_{\mathsf{H}}\{e \in S^{d-1}: \dim_{\mathsf{H}} P_e(X) < u\} \leqslant \max\bigg\{0, d-1 + \inf_{\theta \in (0,1]} \frac{u - \dim_{\mathsf{F}}^\theta X}{\theta}\bigg\}.$$

Is this bound any good?

Getting better estimates - High dimensions

If $X \subseteq \mathbb{R}^d$ with $d \geqslant 3$

We can improve Mattila's or Peres–Schlag's bounds if $\dim_F^\theta X$ intersects the shaded region.

A concrete example

Let E_{α} , E_{β} and E_{γ} be three middle $(1-2\alpha), (1-2\beta)$ and $(1-2\gamma)$ Cantor sets, respectively. Define $X=E_{\alpha}\times E_{\beta}\times E_{\gamma}$.

A concrete example

Let E_{α} , E_{β} and E_{γ} be three middle $(1-2\alpha), (1-2\beta)$ and $(1-2\gamma)$ Cantor sets, respectively. Define $X=E_{\alpha}\times E_{\beta}\times E_{\gamma}$.

However, improvement is possible for a larger family of sets satisfying a mild non-concentration condition.

Thank you!