CLAIMS:

1

5

1

2

3

4

5

signal.

1	1.	A communication system comprising:
2	a radio	o module operable to generate an RF signal at a predetermined frequency;
3		and
4	a direc	ctional coupler operably connected to said radio module to measure the
5		power of said RF signal, said directional coupler further comprising:
6	an envelope detector; and	
7	distortion minimization circuitry operable to minimize distortion generated by	
8		said envelope detector at frequencies corresponding to said predetermined
9		frequency and harmonics thereof.
1	2.	The communication system of claim 1 wherein said envelope detector
2	comprises a detector diode and a capacitor.	
1	· 3.	The communication system of claim 2, wherein said distortion
2	minimization circuitry comprises a first capacitor connected to said diode, said first	
3	capacitor hav	ing a capacitance value for minimizing distortion in the frequency band
4	corresponding	g to the fundamental frequency of said RF signal.
1	4.	The communication system of claim 3, wherein said distortion
2	minimization	circuitry further comprises a second capacitor connected to said diode, said
3	second capacitor having a capacitance value for minimizing distortion in the frequency	
4	band correspo	onding to the second harmonic of said fundamental frequency of said RF

5. The communication system of claim 4, wherein said distortion minimization circuitry further comprises a third capacitor connected to said diode, said third capacitor having a capacitance value for minimizing distortion in the frequency band corresponding to the third harmonic of said fundamental frequency of said RF signal.

1	6. The communication system of claim 5, wherein said first RF signal has a	
2	fundamental frequency in the 2.4 GHz band.	
1	7. A method of measuring the transmitted power of an RF signal, comprising:	
2	generating an RF signal at a predetermined frequency;	
3	measuring the transmitted power of said RF signal using a directional coupler	
4	having an envelope detector and	
5	minimizing distortion generated by said envelope detector at frequencies	
6	corresponding to said predetermined frequency and harmonics thereof.	
1	8. The method of claim 7 wherein said envelope detector comprises a	
2	detector diode and a capacitor.	
1	9. The method of claim 8, wherein said distortion is minimized by	
2	connecting a first capacitor connected to said diode, said first capacitor having a	
3	capacitance value for minimizing distortion in the frequency band corresponding to the	
4	fundamental frequency of said RF signal.	
1	10. The method of claim 9, wherein said distortion is minimized by	
2	connecting a second capacitor to said diode, said second capacitor having a capacitance	
3	value for minimizing distortion in the frequency band corresponding to the second	
4	harmonic of said fundamental frequency of said RF signal.	
1	11. The method of claim 10, wherein said distortion is minimized by	
2	connecting a third capacitor to said diode, said third capacitor having a capacitance value	
3	for minimizing distortion in the frequency band corresponding to the third harmonic of	
4	said fundamental frequency of said RF signal.	
1	12. The method of claim 11, wherein said first RF signal has a fundamental	

2

frequency in the 2.4 GHz band.

1	13. An integrated circuit for enabling data communication between a host device	
2	and at least one wirelessly enabled external device, comprising:	
3	a host interface;	
4	a radio module operably connected to said host interface, wherein said radio	
5	module is operable to generate an RF signal at a predetermined frequency;	
6	and	
7	a directional coupler operably connected to said radio module to measure the	
8	power of said RF signal, said directional coupler further comprising:	
9	an envelope detector; and	
10	distortion minimization circuitry operable to minimize distortion generated by	
11	said envelope detector at frequencies corresponding to said predetermined	
12	frequency and harmonics thereof.	
1	14. The communication system of claim 13 wherein said envelope detector	
2	comprises a detector diode and a capacitor.	
1	15. The communication system of claim 14, wherein said distortion	
2	minimization circuitry comprises a first capacitor connected to said diode, said first	
3	capacitor having a capacitance value for minimizing distortion in the frequency band	
4	corresponding to the fundamental frequency of said RF signal.	
1	16. The communication system of claim 15, wherein said distortion	
2	minimization circuitry further comprises a second capacitor connected to said diode, said	
3	second capacitor having a capacitance value for minimizing distortion in the frequency	
4	band corresponding to the second harmonic of said fundamental frequency of said RF	
5	signal.	

- 1 17. The communication system of claim 16, wherein said distortion
- 2 minimization circuitry further comprises a third capacitor connected to said diode, said
- 3 third capacitor having a capacitance value for minimizing distortion in the frequency
- 4 band corresponding to the third harmonic of said fundamental frequency of said RF
- 5 signal.
- 1 18. The communication system of claim 17, wherein said first RF signal has a
- 2 fundamental frequency in the 2.4 GHz band.