# COMP5121 Data Mining and Data Warehousing Applications

#### Week 1: Introduction to Data Mining and Data Warehousing

#### Dr. Fengmei Jin

- Email: fengmei.jin@polyu.edu.hk
- Office: PQ747 (+852 3400 3327)
- Consultation Hours: 10am-12pm every Thursday

#### Outline

- Why Data Mining?
- What Is Data Mining?
- ☐ How to Mine Data? a multidimensional view of data mining
  - What Kinds of Data Can Be Mined?
  - What Kinds of Patterns Can Be Mined?
  - Which Technologies Are Used?
  - What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- □ Summary

# The Evolution of Information Technology

Data collection and database creation (1960s and earlier)

Database management systems (DBMS, 1970s – early 1980s)

- Relational DBMS
- Indexing and accessing methods
- Query language, processing and optimization ...



- Advanced data models
- Managing complex data
- Cloud computing and parallel data preprocessing ...

- Data warehouse and OLAP
- Data mining and knowledge discovery
- Mining complex types of data

...



# Why Data Mining?

- ☐ We are living in the data age.
  - The explosive growth of data:
    - ☐ from terabytes (1 TB ≈ 1,000 GB) to petabytes (1 PB ≈ 1,000 TB)
  - The extensive data collection, availability, and storage:
    - ☐ *Business*: e-commerce, stocks, ...
    - ☐ *Telecommunication networks*: call detail records, web search, ...
    - ☐ Social media: news, blogs, photos, ...

However, a data rich but information poor situation!





# Why Data Mining?

- ☐ We are drowning in data, but starving for knowledge!
- Solution: data warehousing and data mining
  - To turn a large collection of data into knowledge and move from the data age toward the information age

#### **User Query**

- Flu symptoms
- How to tell if I have the flu
- Flu vs cold symptoms
- Flu treatment
- How long does the flu last

• ...



#### Knowledge

- the level of flu activity across different regions
- # flu-related searches over a period
- comparing the current flu activity to past years
- prediction
- ..

## What Is Data Mining?

- □ Alternative names
  - Knowledge mining → not emphasis on mining from data
  - Knowledge mining from data → too long
  - Knowledge extraction
  - Data/pattern analysis
  - ...





- To extract interesting, non-trivial, implicit, previously unknown, and potentially useful information from huge amount of data
  - □ e.g., around 60% of the customers buy diapers also buy beer

### Knowledge discovery in databases



# Data Mining in Business Intelligence



data, knowledge/pattern, technologies, applications, ...

#### A MULTIDIMENSIONAL VIEW OF DATA MINING

- □ Database data (Relational)
  - A collection of tables; each consists of a set of attributes and stores a set of tuples. Each tuple represents an object identified by a unique key and described by values.
  - What to mine: searching for trends or data patterns

e.g., by analyzing customer data, we could predict the credit risk of new customers based on their income, age, and previous credit info.



```
customer (cust_ID, name, address, age, occupation, annual_income, credit_information, category, ...)

item (item_ID, brand, category, type, price, place_made, supplier, cost, ...)

employee (empl_ID, name, category, group, salary, commission, ...)

branch (branch_ID, name, address, ...)

purchases (trans_ID, cust_ID, empl_ID, date, time, method_paid, amount)

items_sold (trans_ID, item_ID, qty)

works_at (empl_ID, branch_ID)
```

Relational schema for a relational database, *AllElectronics*.

#### Data warehouse

- A repository of information collected from multiple sources, but stored under a unified schema, and often residing at a single site.
- The data are typically summarized a multidimensional view of data and the precomputation/fast access of historical data.

e.g., rather than storing the details of each sales transaction, the data warehouse may store a summary of the transactions per item type for each store, or summarized to a higher level, for each sales region.



- □ Transactional data
  - One record per transaction (change, event, interaction, etc.)
    - □ e.g., a customer's purchase, a flight booking, or a click on a web page
  - What to mine: market basket data analysis, e.g., "Which items sold well together?" → bundle groups of items for boosting sales
    - □ Data mining on transactional data can do so by mining frequent itemsets (patterns), i.e., sets of items that are frequently sold together.

| trans_ID | list_of_item_IDs              |
|----------|-------------------------------|
| T100     | {computer, printer}           |
| T101     | {computer, printer, keyboard} |
|          |                               |

- Other kinds of data
  - data streams (e.g., video surveillance and sensor data)
  - time-related or sequence data (e.g., stock data, time-series data)
  - graph or networked data (e.g., social networks)
  - spatial data (e.g., maps)
  - multimedia data (e.g., text, image, video, and audio data)
  - the Web data
  - ...





#### What Kinds of Patterns Can Be Mined?

- ☐ A classification of data mining functionalities:
  - Descriptive mining tasks characterize properties of the data in a target data set.
    - Data characterization and discrimination
    - ☐ Mining frequent patterns, associations, and correlations
    - Cluster analysis
    - Outlier analysis
    - ...
  - Predictive mining tasks perform induction on the current data in order to make predictions.
    - ☐ Classification and regression ...

#### (1) Data Characterization and Discrimination

- □ Data entries can be associated with classes or concepts, e.g.,
  - classes of items for sale include computers and printers
  - concepts of customers include bigSpenders and budgetSpenders

- ☐ Such class/concept descriptions can be derived using:
  - Data characterization: by summarizing the data of the class under study (often called the target class) in general terms
  - Data discrimination: by comparing the target class with one or a set of comparative classes (often called the contrasting classes)

#### (2) Mining Frequent Patterns, Associations, and Correlations

- ☐ Frequent itemset mining: *very fundamental* 
  - To find a set of items that often appear together in transactions
  - More advanced: frequent subsequences or substructures
- ☐ Mining frequent patterns → the discovery of interesting associations and correlations within data
  - Association: "IF-THEN" rules with frequent co-occurrence in a dataset
  - Correlation: statistical relationship between two random variables



A typical association rule:

Computer → Printer [support = 1%, confidence = 50%]

**Q:** Are strongly associated items also strongly correlated?

#### (3) Classification and Regression for Predictive Analysis

- ☐ Classification and label prediction categorical/discrete labels
  - Build models (functions) based on a set of training data
  - Describe and distinguish classes or concepts for future prediction
  - Predict label-unknown objects
- ☐ Regression and numeric prediction
  - Model continuous-valued functions
  - Predict missing or unavailable numerical data values
    - e.g., the Hang Seng Index, stock price

```
age(X, \text{"youth"}) AND income(X, \text{"high"}) \longrightarrow class(X, \text{"A"})
age(X, \text{"youth"}) AND income(X, \text{"low"}) \longrightarrow class(X, \text{"B"})
age(X, \text{"middle_aged"}) \longrightarrow class(X, \text{"C"})
age(X, \text{"senior"}) \longrightarrow class(X, \text{"C"})
```

#### Classification rules (i.e., IF-THEN)



# (4) Cluster Analysis

☐ Class labels is unknown: group data objects to form new classes, e.g., categorize web pages to define topics

□ **Principle**: maximize the intra-cluster similarity & minimize the

inter-cluster similarity

By doing so, objects within a cluster have high similarity, but are rather dissimilar to objects in other clusters.

Each cluster so formed can be viewed as a class of objects.



# (5) Outlier Analysis

☐ Outlier / Anomaly: a data object that does not comply with the general behavior of the data, typically *noise*.

■ Exception? Sometimes, rare events can be more interesting than the more regularly occurring ones, e.g., fraud detection, hackers.

☐ **Methods**: by regression or clustering analysis, ...



## Are All Patterns Interesting?

- □ No!
  - One can mine tremendous amount of "patterns"
  - Some may fit only certain dimension space (time, location, ...)
  - Some may not be representative enough, may be transient, ...
- ☐ A pattern is interesting if it is:
  - 1) easily understood by humans; 2) valid on new or test data with some degree of certainty; 3) potentially useful; and 4) novel
- ☐ An interesting pattern represents knowledge.
  - Interestingness measures: e.g., support, confidence, ..., each associated with a user-controlled threshold

 $support(X \Rightarrow Y) = P(X \cup Y),$  $confidence(X \Rightarrow Y) = P(Y|X).$ 

### Which Technologies Are Used?

□ **Data mining:** highly application-driven and interdisciplinary



# What Kinds of Applications Are Targeted?

- ☐ Business Intelligence (BI)
  - To understand the commercial context of an organization, e.g., their customers, the market, supply and resources, competitors
    - ☐ *Target marketing*: find clusters of customers who share similar features
  - To offer historical/current/predictive views of business operations
    - ☐ Cross-market analysis: association/correlation between products
    - Sales prediction, customer profiling, recommendation, ...

#### **Benefits of Business Intelligence**



# What Kinds of Applications Are Targeted?

- □ Web Search Engines: search for information on the Web
  - The returned list consists of web pages, images, etc.
    - ☐ How pages should be ranked?
    - Which ads should be added?
    - □ How the search results can be personalized?
  - Web page analysis: classification, clustering, ranking
    - □ By mining the Web access logs in different ways, we could discover user preference and behavior, analyze Web marketing, improve Web site organization, etc.
- ☐ Text Mining, e.g., emails
  - SPAM filtering, email decluttering by topics, etc.

# Major Issues in Data Mining – Mining Methodology

- Mining various and new kinds of knowledge
  - Data mining is not a one-size-fits-all field. As new kinds of data and questions arise, data mining must evolve, leading to the invention of new techniques.
- ☐ Mining knowledge in *multi-dimensional* space (across multiple attributes)
  - To provide a flexible way to analyze data and reveal diverse insights at various levels of detail, from high-level summaries down to fine-grained details
- ☐ Data mining: an *interdisciplinary* effort
  - e.g., text data → DM + IR + NLP; bug analysis → DM + software engineering
- □ Boosting the power of discovery in an *interconnected* environment
- ☐ Handling noise, uncertainty, or incompleteness of data
- Pattern evaluation and pattern- or constraint-guided mining
  - What makes a pattern interesting may vary from user to user.

### Major Issues in Data Mining – User Interaction

- Interactive mining
  - Build flexible and user-friendly interface that allows users to engage with the data and the mining system in an exploratory manner
  - e.g., a summary of sales data → sales by region/product/quarter
- □ Incorporation of background knowledge
  - Domain-specific pattern evaluation
  - Guide the search toward interesting patterns
- Ad-hoc data mining and data mining query languages
  - SQL-like query languages support ad-hoc queries.
  - Need high-level flexible data mining query languages for more ad-hoc mining tasks.
- Presentation and visualization of data mining results
  - The discovered knowledge shall be easily understood and directly usable by humans.

## Major Issues in Data Mining

- ☐ Efficiency and Scalability
  - Efficiency and scalability of data mining algorithms
  - Parallel, distributed, stream, and incremental mining methods
- ☐ Diversity of data types
  - Handling complex types of data
  - Mining dynamic, networked, and global data repositories
- □ Data mining and society
  - Social impacts of data mining
  - Privacy-preserving data mining
  - Invisible data mining

## The 5 Vs of Big Data



### Summary

- □ "Necessity is the mother of invention" big data → data mining
- □ Data mining: the process of discovering interesting patterns from massive amounts of data
  - KDD Process: data cleaning/integration, data selection/transformation, pattern mining/evaluation, knowledge representation
  - Tasks: characterization/discrimination, frequent patterns, association, correlation, classification, regression, clustering, outlier detection, etc.
  - Interestingness: certainty, novel, potentially useful, easily understood by human → guide the discovery process in turn
- Data warehouse: a repository for multiple-source data stored under a unified schema and typically summarized
  - with multidimensional data analysis capabilities for decision making

Email: fengmei.jin@polyu.edu.hk

Office: PQ747

# **THANK YOU!**

