Chapter #5

```
P-1
```

* ASK: B = (1 + d) * (1 / r) * N 공식을 이용 (r = 1).

(1 + 1) * (1 / 1) * 6000 bps = 12000 Hz

* FSK: B = (1 + d) * (1 / r) * N + 2부 공식을 이용 (r = 1, 2f = 4 KHz),

(1 + 1) * (1 / 1) * 6000 bps + 4 KHz = 16000 Hz

* QPSK: B = (1 + d) * (1 / r) * N 공식을 이용 (r = 2),

(1 + 1) * (1 / 2) * 6000 bps = 6000 Hz

* 16-QAM : B = (1 + d) * (1 / r) * N 공식을 이용 (r = 4),

(1 + 1) * (1 / 4) * 6000 bps = 3000 Hz

P-2 N = (B * r) / (1 + d) 공식을 이용 (r = 6, d = 0),

(6 MHz * 6) / (1 + 0) = 36 Mbps

P-3

* AM: B(AM) = 2 * B 공식을 이용, 2 * 5 KHz = 10 KHz

*FM: 2 * (1 + f) * B 공식을 이용 (f = 5), 2 * (1 + 5) * 5 KHz = 60 KHz

*PM: 2 * (1 + f) * B 공식을 이용 (f = 1), 2 * (1 + 1) * 5 kHz = 20 kHz

P-4

* AM: (1700 KHz - 530 KHz) / 10 KHz = 117

* FM: (108 MHz - 88 MHz) / 200 KHz = 100

P-5 Number of bits per baud (r) = log_(Level 수) 공식을 이용.

 $*a: \log_2 4 = 2$

 $*b: \log_2 8 = 3$

 $*c: \log_2 4 = 2$

* d: log_128 = 7

P-6

- * FSK: (r = 1), S = 3000 bps * (1 / 1) = 3000 band
- * ASK: (r = 1), S = 2000 bps * (1 / 1) = 2000 band
- * QPSK: (r = 2), S = 4000 bps * (1 / 2) = 2000 band
- $*64-QAM: (r = log_264 = 6), S = 36000 bps * (1 / 6) = 6000 band$

P-8N=5*r 공4을 이용,

- * $FSK: (r = 1) \cdot N = 1000 \text{ band} * 1 = 1000 \text{ bps}$
- * ASK: (r = 1), N = 1000 band * 1 = 1000 bps
- * BPSK: (r = 1), N = 1000 band * 1 = 1000 bps
- * 16-QAM: $(r = \log_2 16 = 4)$, N = 1000 band * 4 = 4000 bps

P-9 $\stackrel{?}{=}$ channel Bandwidth = 1 MHz / 10 = 100 KHz (d = 0),

B = (1 + d) * (1 / r) * N 공식을 이용해, r = (1 + 0) * N / B = (10 Mbps / 10) / 100 KHz = 10 각 channel의 Number of Points = 2 ^ r = 2 ^ 10 = 1024개

P-10 r = log_(Number of Levels = Number of Points) 공식을 이용,

- $*a: \log_{2} 4 = 2$
- $*b: \log_2 8 = 3$
- $*c: \log_{2} 2 = 1$
- * d: log_1024 = 10

P-11

* a : 같은 Phase (D degrees)에 위치하는 2개의 Peak Amplitude가 존재하므로 ASK 입니다. Peak Amplitude는 2와 3입니다.

* b : Peak Amplitude가 오로지 하나 존재하고 원점에서부터 각 점까지의 거리가 3으로 동일하며 2개의 Phase (0, 180 degrees)를 갖고 있으므로 BPSK 입니다. Peak Amplitude는 3입니다.

* c : Peak Amplitude가 오로지 하나 존재하고 4개의 Phase를 갖고 있으므로 QPSK 또는 4-QAM 입니다. Peak Amplitude는 (2^2 + 2^2)^(1 / 2) = 2.83입니다.

* d: Peak Amplitude가 오로지 하나 존재하고 원점에서부터 각 점까지의 거리가 2로 동일하며 2개의 Phase (90, 270 degrees)를 갖고 있으므로 BPSK 입니다. Peak Amplitude는 2입니다.

P-12 N = (B * r) / (1 + d) 공식을 이용 (d = D).

- * ASK: (r = 1), N = (4 KHz * 1) / (1 + 0) = 4 Kbps
- * QPSK: (r = 2), N = (4 KHz * 2) / (1 + 0) = 8 Kbps
- * 16-QAM: $(r = \log_2 16 = 4)$, N = (4 KHz * 4) / (1 + 0) = 16 Kbps
- * $64-QAM: (r = log_264 = 6)$, N = (4 KHz * 6) / (1 + 0) = 24 Kbps