銀河間相互作用と大質量星形成

星形成セミナー 柘植 2018/7/19

Outline

- アンテナ銀河
 - 解析結果
 - 今後の解析・観測について
- 今後の解析天体拡張について

Antenna Galaxies (NGC4038/4039)

銀河衝突がスターバーストを誘発すると考えられているが、 星団形成について詳細な研究は行われていない

Antenna Galaxies (NGC4038/4039)

銀河衝突がスターバーストを誘発すると考えられているが、 星団形成について詳細な研究は行われていない

0th and and 1st moment maps

0th and and 1st moment maps

Super star cluster

SSC	Age ^a Myr	Mass $10^6~M_{\odot}$	Ref.b	Flux H_2 Flux $Br\gamma$ erg s^{-1} cm ⁻²		
D 30	3.9 1.45	1.4 0.32	[1] [2]	<2.9×10 ⁻¹⁶	2.1±0.1×10 ⁻¹⁵	
D1 3	6.1	1.6 -	[1] [2]	<1.1×10 ⁻¹⁶	<1.5×10 ⁻¹⁶	
D2	5.4	0.8	[1]	<1.1×10 ⁻¹⁶	6.7±0.3×10 ⁻¹⁶	
C 28	5.7 4.8	4.1 1.2	[1] [2]	<1.0×10 ⁻¹⁶	<9.9×10 ⁻¹⁷	
B1 ^c 16	3.5 1	4.2 6.8	[1] [2]	2.9±0.2×10 ⁻¹⁵	2.2±0.1×10 ⁻¹⁴	

Fluxes are not corrected for extinction.

[&]quot;Errors in ages estimated by Gilbert & Graham (2007) are derived from Starburst99 fits to the Br γ EW and are typically below 0.1 Myr. Cluster D2 has a larger error on the Br γ EW, the error on the mass is $5.4^{+0.4}_{-1.4}$.
^b [1] Gilbert & Graham (2007), [2] Table 8 in Whitmore et al. (2010). Masses estimated by Gilbert & Graham (2007) are not corrected by extinction.

SSC first identified by Whitmore & Schweizer (1995) as WS80.

Low-velocity cloud: $\sim 5 \times 10^7 \, M_{\odot}$ High-velocity cloud: $\sim 3 \times 10^7 \, M_{\odot}$ $\Delta V : \sim 40 \, \text{km s}^{-1}$

 $\sim 1.3 \times 10^{54} \, \mathrm{erg}$ $\sim 7.2 \times 10^{53} \, \mathrm{erg}$: total mechanical luminosity from the stellar wind (e.g., Westerlund 2: $\sim 3.6 \times 10^{51} \, \mathrm{erg}$, Rauw et al. 2007)

~ $60 \text{ pc} / 80 = 0.75 \text{ Myr} \sim 1 \text{ Myr}$ SSC B1 の年齢 1.45 Myr オーダーでは合っている.

Low-velocity cloud: $\sim 9 \times 10^7 \, M_{\odot}$ High-velocity cloud: $\sim 4 \times 10^7 \, M_{\odot}$ $\Delta V: \sim 68 \, \text{km s}^{-1}$

 $\sim 6 \times 10^{54} \, \mathrm{erg}$ > $\sim 7.2 \times 10^{53} \, \mathrm{erg}$: total mechanical luminosity from the stellar wind (e.g., Westerlund 2: $\sim 3.6 \times 10^{51} \, \mathrm{erg}$, Rauw et al. 2007)

Cloud-cloud collisions in SGMC 1

Low-velocity cloud: $\sim 5 \times 10^7 \, M_{\odot}$ High-velocity cloud: $\sim 9 \times 10^7 \, M_{\odot}$ $\Delta V : \sim 68 \, \text{km s}^{-1}$

 $\sim 6 \times 10^{54} \, \mathrm{erg}$ > $\sim 6.8 \times 10^{53} \, \mathrm{erg}$: total mechanical luminosity from the stellar wind (e.g., Westerlund 2: $\sim 3.6 \times 10^{51} \, \mathrm{erg}$, Rauw et al. 2007)

解析可能なALMAデータ

 \mathbf{CO}

Project code	Release	Line (CO 関係)	Resolution	Region
2011.0.00876.S	2013/12/31	12CO(3-2)	~ 0.57" (再解析済み)	Overlap
2013.1.01041.S	2015/11/12	13CO(2-1)	~ 0.43"	Overlap ALMA01005805.fits
2015.1.00038.S	2018/01/25	13CO(3-2)	~ 0.1"= 10 pc	SSC B1 周辺 ALMA01074772.fits
2016.1.00924.S	2018/02/02	12CO(2-1)	~ 0.43"	SGMC2 周辺
2016.1.00924.S	2018/02/02	12CO(3-2)	~ 0.29"	SGMC2 周辺 ALMA01085959.fits
2016.1.00924.S	2018/02/02	13CO(2-1)	~ 0.47"	SGMC2 周辺

HCN, HCO+,CS, CN,HCN, HCO+, SiO, HNCO, CH3OH, ...

今後

- CO の分解能向上
 - LMC と同じスケールで空間分解して相補的な分布を確認するためには、 ~ 0.15 " (~ 15 pc) データの解析・観測が必要.

 12 CO (3-2) $\Delta\theta \sim 0.57$ " ~ 60 pc 13 CO (3-2): dirty image $\Delta\theta \sim 0.1$ " ~ 10 pc

• 他の SGMC の高分解能観測も考えられる.

• [CI] (³P₁-³P₀) の観測

• CO と HI の中間層を見たい.

Name	W(CI)	W(CO1-0)	W(CO3-2)	I(CI)	I(CO3-2)
NGC 891 (100,0)	10	58 (22")	23	$12\ 10^{-7}$	$9.7 \ 10^{-7}$
He2-10	3.8	10 (40")	13	$4.6 \ 10^{-7}$	$7.1 \ 10^{-7}$
IRAS 10565	9.5	16 (22")	9	$12 \ 10^{-7}$	$6.7 \ 10^{-7}$
NGC 4038	4.3	321 (7")	40	$5.2 \ 10^{-7}$	$17 \ 10^{-7}$
NGC 4038/4039	8.7	454 (7")	51	$10.6 \ 10^{-7}$	$21\ 10^{-7}$
Mrk 231	6.0	22 (22")	16	$8.0\ 10^{-7}$	$6.7 \ 10^{-7}$
NGC 4736 (nucleus)	11	32 (22")	33	$13 \ 10^{-7}$	$14 \ 10^{-7}$
NGC 4736 (40,0)	2.5	17 (22")	16	$3.0 \ 10^{-7}$	$6.7 \ 10^{-7}$
NGC 6090	5.1	3.5 (45")	25	$6.2 \ 10^{-7}$	$10.5 \ 10^{-7}$
IC 342	51	213 (22")	120	$0.62 \ 10^{-5}$	$0.50 \ 10^{-5}$
NGC 253	575	325 (43")	990	$7.0 \ 10^{-5}$	$4.2 \ 10^{-5}$
M 82	120	709 (22")	574	$1.5 \ 10^{-5}$	$2.41 \ 10^{-5}$
Milky-Way (center)				$10\ 10^{-7}$	10 10-7
Milky-Way (disk)				$5 \ 10^{-7}$	$2.5 \ 10^{-7}$

Gerin & Phillips 1997: 15"分解能

Caltech Submillimeter Observatory (CSO)

CO (3-2) の 2 倍の感度があれば検出可能.

• HI data

- 観測可能最高分解能: 1.2" 程度
- 現時点では星団スケールの分解は不可能 => SKA での観測に期待

感度見積もり

¹² CO (3-2)

- RMS ~ 0.088 K
- 速度分解能: 5 km/s
- Angular resolution ~0.57"
- bridge 成分 (1K) > 10 σ
- 1 single pointing \mathcal{O} beam size; HPBW =1 1.898 "
- 1つの SGMC が収まる.(B1 に注目)

[CI]

- Sensitivity: 0.044 K
- 速度分解能 5 km/s
- Angular resolution 0.629" (most compact configuration)
- Largest angular structure 5" ~ 500 pc
- 観測時間: 5.94 h

今後の解析天体拡張について

Starburst galaxy M82

中心 ~500 pc (~30 arcsec) で star burst Total stellar mass~6×10₈ M_☉ の 200 個の SSCs (Mayya and Carrasco, 2009).

- ・500 Myr ago に M81 member と相互作用. Star burst の時期と一致.
- ・近接遭遇によってstar burst が引き起こされた

- Distance: 3.53 ± 0.07 Mpc (Dalcanton et al., 2009)
- inclination: 77° (Mayya 2005)
- M81 group
- The M81 group is one of the nearest groups of galaxies.

HI by VLA: 62 × 56 arcsec (Yun, M.S et al. 1994, *Nature*, **372**, 530)

- 3 つの銀河の間に tidal bridge と見られる HI filament が存在
- 数値計算: Sofue, 1998, Yun, 1999, Gomez et al., 2004
- M82 中心は高密度であったため, M81 のガスディスクが剥ぎ取られ中心に降着 => star burst?

- 3 つの銀河の間に tidal bridge と見られる HI filament が存在
- 数値計算: Sofue, 1998, Yun, 1999, Gomez et al., 2004
- M82 中心は高密度であったため, M81 のガスディスクが剥ぎ取られ中心に降着 => star burst?