

נושאי הקורס "בקרה 2"

- בוניות, אובזרבביליות, צורות קנוניות LOOP SHAPING בארה 1: LOOP SHAPING משתני מצב, קונטרולאביליות, אובזרבביליות,
 - 2. בקרת מערכות בעזרת משוב מצב והזזת קטבים
 - 3. משחזר מצב ותכונותיו, תכן משחזר מסדר מלא וסדר מופחת
 - 4. שילוב משחזר מצב ומשוב מצב
 - , אמינימאליות אובזרווביליות, צורות קנוניות של מערכות לא מינימאליות Detectability, Stabilizability
 - 6. ליאפונוב: בחינת יציבות מערכות לא לינאריות, עיקרון לה-סאל, למת ברבלט, (בקרה אדפטיבית)
 - אופטימיזציות משוב המצב : LQR Linear Quadratic Regulator אופטימיזציות משוב המצב זא לבקרה אופטימאלית ווער אורגיית הבקרה ושגיאות מצב והמשערך לפי קריטריונים ריבועיים של אנרגיית הבקרה ושגיאות מצב
 - 8. מסנן קלמן: חזרה על אותות אקראיים גאוסיים, משחזר מצב למערכות רועשות אופטימאלי 🔼
 - LQG- Linear Quadratic Gaussian מבוא לבקרה אופטימאלית עבור תהליך ומדידה רועשים:
 - 10. מערכות לינאריות משתנות בזמן

- 1. רקע היסטורי על התפתחות הבקרה
- LOOP SHAPING בקרה קלאסית דוגמת תכן בקרה על בקרה בקרה דוגמת ב

4. משוואות מצב רציפות ודסקרטיות של מערכות לינאריות

5. פולונום אופייני, משפט קיילי המילטון, קונטרולאביליות, אובזרואביליות

6. מערכת מינימאלית, טרנספורמציות, צורות קנוניות, שקילות, תוצאות מאלגברה לינארית

7. מידול של מערכות

רקע היסטורי על התפתחות הבקרה

בקרה קלאסית – עד שנות ה- 60 של המאה ה- 20 (בקרה 1)

- פונקציות תמסורת (התמרות לפלס) תגובת תדר
- (Cut and Try) ניקולס גישה היוריסטית Root Locus כלים עיקריים: דיאגרמות בודה נייקויסט

בקרה "מודרנית" במרחב המצב – שנות 60 ואילך (בקרה 2 🗻

- תכן במרחב המצב 🏻
- ס בקרה אופטימאלית על בסיס קריטריוני ביצועים גישה מתימטית ⋅ ס

בקרה "מודרנית" במישור התדר– שנות 80 ואילך 📥

- - בקרה אדפטיבית (בקרה 2) 🧓
 - ארת NN ס בקרת ס
 - Fuzzy Logic •
 - MPC: Model predictive Control •
 - Reinforcement Learning Control •

עבודת מהנדס הבקרה/מערכת

1. מפרט דרישות ביצועים מהמערכת

- עקיבה, מהירויות, תאוצות, הצבה 🥕
- ייצוב/רגולציה נגד הפרעות קרקע אוויר, ים , רעשי חיישנים 🤛
- דיוקי תצפית ללא רעידות , דיוקי ירי, דיוקי הצבה/חיתוך/כרסום... 🤛
 - פיתרון בעיות עקב השהיות 🥕

עבודת מהנדס הבקרה/מערכת

2_ ניתוח הדרישות: מידול מערכת- סימולציה, תקציב שגיאות ובחירת רכיבים:

- עיבוד אותות) PSD הפרעות במערכת: קרקע, הלמים, רעידות, רוח/גלים − PSD (עיבוד אותות) PSD PSD Power Spectrum Density
- בחירת הנעים (Actuators): חשבון מומנטים/כוחות נדרשים (הנדסת הספק) *→*
- סנסורים: מדי זווית יחסיים אנקודרים, רזולוורים, פוטנציומטרים, טכומטרים, כמורים: מדי זווית יחסיים אנקודרים, מדי תאוצה, GPS, מצלמות: עיבוד תמונה/ראייה ממוחשבת
- הגדרת דרישות על המכאניקה: מומנטי חיכוך, אי איזון, תדרים עצמיים (הנד. מכניקה)
- דרישות מחשב: יישום הבקרה ב- CPU, קצבי דגימה, השהיות מותרות, אורך מילה *⊸* (תוכנה קידוד)

Department of Electrical Engineering Electronics Computers Communications

עבודת מהנדס הבקרה/מערכת - המשך

ביית אב טיפוס - מבצעים מדידות לאימות המידול והסימולציה – 3
 ספקטרום אנלייזר, עירור המערכת, מדידת התגובות וביצוע אנאליזה ספקטראלית וזמנית.

4. תכן מתימטי על בסיס המידול והמדידות – תכן לעמידה בדרישות –בסימולציות (נתמקד בקורס).

. יישום וכוונון התכן – יישום בסימולציות ועל הדגם הניסויי.

ם מימוש – יישום התכן על המערכת המבוקרת וביצוע אופטימיזציות ביצועים 6 ∠

בעיית הבקרה של מערכות - תזכורת

דרישות ביצועים עיקריות במערכות בקרה: 📥

- אחר Y עקיבה עם שגיאות מצב מתמיד מינימאליות של פלט המערכת P אחר אות פיקוד
 - עמידה להפרעות (רגולציה) רגישות נמוכה של הפלט Y להפרעות חיצוניות. oubset
 - עמידות לרעשים רגישות נמוכה לרעשי מדידה מחיישנים ומאות המשוב. 🤛
 - הגבלת מאמץ הבקרה עמידה בביצועים במסגרת הגבלות המומנטים האפשריים במערכת – הגבלת U.
 - רובוסטיות רגישות נמוכה לשינויים ואי ודאויות בפרמטרים של מודל *→* התהליך. קריטי בייצור שוטף של מערכות.
 - הדרישות לעיל עלולות להיות מנוגדות זו לזו ומצריכות ביצוע "פשרות ____ הנדסיות" בביצוע התכן.

Control development process

System Analysis

Mechanical & Servo requirements revision- a design to achieve performance goals.

Hit Probability Analysis

Dynamic development

Running the turret on a 2DOF Simulator with the measured ground disturbances. Optimization of servo controllers and testing the stabilization performance

Field tests

Course driving – test stabilization performanceShooting tests Results analysis ,
Updates & optimizations

Return on tests - if needed

ייצוב אינרציאלי של עמדת נשק

רגולציה כנגד הפרעות קרקע

"סימולציה מערכתית בסיסית – "מולקולה

$$T_{in} = K_{K[Nm/rad]} \underbrace{\int (\Omega_{M} - \Omega_{G}) dt + K_{V[NM/rad/s]} \underbrace{(\Omega_{M} - \Omega_{G})}_{\Delta\Omega[rad/sec]}$$

Department of Electrical Engineering Electronics Computers Communications

סימולציה מערכתית בסיסית - המשך

סימולציה מערכתית 스

$$T_{in} = K_{K[NM/RAD]} \int (\Omega_M - \Omega_G) dt + K_{V[Nm/rad/s]} (\Omega_m - \Omega_G)$$

W GYROSCOPE

Department of Electrical Engineering Electronics Computers Communications

סימולציה מערכתית בסיסית

פונקציית תמסורת מזרם מנוע למהירות ציר מנוע

פונקציית תמסורת מזרם מנוע למהירות עומס

$$\frac{\Omega_G}{I_c}(s) = \frac{K_T}{(J_g + J_M)s} \frac{1 + \frac{K_V}{K_K}s}{1 + \frac{K_V}{K_K}s + \frac{J^*}{K_K}s^2}$$

$$J^* = rac{J_M J_L}{J_M + J_L}$$

תזכורת למערכת מסדר שני

$$G(s) = \frac{1}{\left(\frac{s}{\omega_n}\right)^2 + 2\xi\left(\frac{s}{\omega_n}\right) + 1}$$

 ξ : damping ratio, ω_n : natural frequency

 $\xi > 1$: overdamped

 ξ < 1: underdamped

 $\xi = 1$: critically damped

 $\xi = 0$: undamped

"המולקולה" הבסיסית

ניתן לראות שהתמסורת כוללת:

אינטגרטור טהור (עקב המעבר ממומנט – תאוצה) למהירות זוויתית
$$\frac{K_T}{(J_{_{\it g}}+J_{_{\it M}})s}$$

$$\frac{K_T}{(J_g + J_M)s}$$

$$rac{2\xi}{\omega_z} = \sqrt{rac{K_k}{K_V}}$$
 :שני אפסים קומפלקסיים עם תדר עצמי: $\omega_z = 2\pi f_z = \sqrt{rac{K_k}{J_G}}$

$$rac{2\xi}{\omega_p} = \sqrt{rac{K_k}{K_V}}$$
 :שני קטבים קומפלקסיים עם תדר עצמי: $\omega_p = 2\pi f_p = \sqrt{rac{K_k}{J_G \parallel J_m}}$

"המולקולה" הבסיסית מומנט מנוע - טכו

$$\omega_z = 2\pi f_z = \sqrt{\frac{K_k}{J_G}}$$

הוא למעשה גבול העברת מומנטים ממנוע לעומס. על מנת לאפשר העברegשל מומנטים ברוחב סרט גדול יש להגדיל את קשיחות הממסרת ו/או להקטין את אינרציית העומס.

$$\omega_p = 2\pi f_p = \sqrt{\frac{K_k}{J_G \parallel J_m}} \approx \sqrt{\frac{K_k}{J_m}}$$

הוא תדר רזוננס מנוע-ממסרת.

- $\omega_p > \omega_z$ אז $J_G >> J_m$ בדרך כלל
- כשאיפה נרצה שרזוננס העומס (לא נראה כאן) יהיה שונה מרזוננס מנוע-ממסרת 🤛
- על מנת לקבל מערכת מרוסנת נדרוש $K_{\scriptscriptstyle V}$ גבוה על ידי בחירת חומרים עם מקדם תקומה $ightharpoonup \sim$ גבוה.

Department of Electrical Engineering Electronics Computers Communications

DISTURBANCE ATTENUATION

Department of Electrical Engineering Electronics Computers Communications

hazaraDugmaNotchstabAcc.slx

Continuous

$$X = AX + BU$$
$$Y = CX + DU$$

$$X(t_0) = X_0$$

Discrete

$$X(k+1) = AX(k) + BU(k)$$

 $Y(k) = CX(k) + DU(k)$ $X(0) = X_0, k = 0,1...n$

$$G(s) = C(sI - A)^{-1}B + D$$

$$\mathcal{L}^{-1}(sI - A)^{-1} = e^{At} 1(t)$$

$$-\sum_{k=0}^{\infty} (At)^{k} 1(t)$$

$$=\sum_{k=0}^{\infty}\frac{(At)^k}{k!}\mathbf{1}(t)$$

$$g(t) = \mathcal{L}^{-1}[G(s)]$$
$$= Ce^{At}B \cdot 1(t) + D\delta(t)$$

$$G(z) = C(zI - A)^{-1}B + D$$

$$\mathcal{L}^{-1}(zI-A)^{-1} = \sum_{k=1}^{\infty} A^{k-1} 1(k)$$

$$g(k) = CA^{k-1}B1(k-1) + D\delta(k)$$

Solution

$$y(t) = Ce^{At}X_0 + \int_0^t e^{A\tau}BU(t-\tau)d\tau + DU(t)$$

$$y(k) = CA^{k}X_{0} + \sum_{l=1}^{k} CA^{l-1}B(k-l)d\tau + DU(k)$$

$$Y = CX + DU$$

$$X(t_0) = X_0$$

דגימה - מעבר מרציף לבדיד

$$\overline{A} = e^{AT}; \quad \overline{B} = \begin{bmatrix} \int_0^T e^{A\sigma} d\sigma \end{bmatrix} B; \quad \overline{C} = C; \quad \overline{D} = D$$

$$X(k+1) = \overline{A}X(k) + \overline{B}U(k)$$

$$Y(k) = \overline{C}X(k) + \overline{D}U(k)$$
 $X(0) = X_0, k = 0,1...n$

T Sampling Time

תוצאות מאלגברה לינארית

:A פולינום אופייני של מטריצה 📥

$$a(s) = \det(sI - A) = s^n + a_1 s^{n-1} + a_2 s^{n-2} + \dots + a_{n-1} s + a_n$$
 ::

$$a(s)$$
 - יש ח שרשים:

 $oldsymbol{A}$ הם הערכים העצמיים של $oldsymbol{A}_{i}$

$$Ap=\lambda p$$
 : A של מטריצה של p של של שלי

$$(\lambda I - A)p = 0$$
 :נסמן:

Communications

תוצאות מאלגברה לינארית

:מתקיים

ולכן 🥕

$$\det A = \lambda_1 * \lambda_2 * \lambda_3 * \cdots \lambda_n = \prod_{i=1}^n \lambda_i$$

$$tr(A) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_{i}$$

במשפט קיילי המילטון:

 A^n

בל מטריצה ריבועית מקיימת את הפולינום האופייני שלה:

$$a(A) = \det(sI - A)|_{s \Leftrightarrow A} \implies A^n + a_1 A^{n-1} + a_2 A^{n-2} + \dots + a_{n-1} A + a_n I = 0$$

$$\Rightarrow A^n = -a_1 A^{n-1} - a_2 A^{n-2} - \dots - a_{n-1} A - a_n I$$

:ניתנת לביטוי כצירוף לינארי של

$$\{A^n \Longrightarrow I, A^1, A^2 \cdots A^{n-1}\}$$

קונטרולאביליות <u></u>

מערכת נקראת קונטרולאבילית אם ניתן להביאה מכל מצב התחלתי נתון לכל מצב סופי >
רצוי על ידי כניסת בקרה מתאימה.

משפט: מערכת LTI נתונה הינה קונטרולאבילית אם ורק אם המטריצה

$$\mathscr{C} = [B, AB, A^2B,A^{n-1}B]$$

בדרגה מלאה דהיינו:

$$rank \mathcal{C} = n$$

אובזרבביליות 🚄

שנרכת נקראת אובזרבבילית אם ניתן לשחזר את כל וקטור המצב עבור כל מצב ightarrow התחלתי, מתוך מדידות הכניסה , ומדידות חלקיות של תפוקות המערכת.

משפט: מערכת LTI נתונה הינה אובזרבבילית אם ורק אם המטריצה

$$C = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

ברגה מלאה דהיינו:

$$rank \mathcal{O} = n$$

מערכת מינימאלית __

מערכת נקראת מינימאלית אם היא גם קונטרולאבילית וגם $oldsymbol{\mathscr{S}}=G(s)$ אובזרבבילית ואז בG(s)אין צמצום קטבים ואפסים

<u>מרנספורמציות</u>

עבור S לא סינגולארית כלשהיא המערכת המקורית S והמערכת לאחר שרנספורמציה \overline{S} הן מערכות שקולות:

$$\overline{X} \longleftrightarrow T^{-1}X$$

$$S \in \{A, B, C, D\} \longleftrightarrow \overline{S} \in \{T^{-1}AT, T^{-1}B, CT, D\}$$

בורספורמציית השקילות שומרת על תכונות המערכת:

- אותם ע"ע –
- תכונות אובזרבביליות וקונטרולאביליות נשמרות
 - אותן פונקציות תמסורת –

$$\overline{\mathscr{C}} = T^{-1}\mathscr{C}$$
 הקשר בין מטריצות הקונטרולאביליות:

$$\overline{\mathscr{O}} = T \mathscr{O}$$
 :הקשר בין מטריצות אובזרבביליות:

Canonical forms

Controller Form

$$\{A_c, B_c, C_c, D_c\}$$

$$A_c = \begin{bmatrix} -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 1 & 0 & 0 & 0 & 0 \\ \vdots & 1 & 0 & 0 & 0 \\ 0 & 0 & \ddots & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$B_c = egin{bmatrix} 1 \ 0 \ dots \ 0 \ 0 \end{bmatrix}$$

משפט:

 \overline{S} כל מערכת קונטרולאביליתS ניתן להעתיק על ידי T מתאים לקבלת מערכת בעלת צורה קנונית Controller Form.

שתי המערכות בעלות אותה תמסורת נומינאלית והן שקולות זו לזו.

Communications

צורות קנוניות

T נחשב מטריצת שקילות

:יש למצוא מטריצה T הפיכה לקבלת: $S \in \{A,B,C,D\}$ הפיכה לקבלת:

$${A_c = T^{-1}AT, B_c = T^{-1}B, C_c = CT}$$

$$T = \begin{bmatrix} t_1 & t_2 & \cdots & t_n \\ \hline & & colons & \end{bmatrix}$$

:נסמן 🧽

$$B_c = egin{bmatrix} 1 \ 0 \ dots \ 0 \end{bmatrix}$$
, $B = TB_c = [t_1, \cdots t_n] * egin{bmatrix} 1 \ 0 \ dots \ 0 \end{bmatrix} = t_1 \Rightarrow t_1 = B$ כמתקיים:

צורות קנוניות

:וחשב את העמודות הבאות

$$A_{c} = T^{-1}AT \implies TA_{c} = AT \quad AT = \begin{bmatrix} At_{1}, At_{2} \cdots, At_{n} \end{bmatrix} = \begin{bmatrix} t_{1}, t_{2}, \cdots, t_{n} \end{bmatrix} \begin{bmatrix} -a_{1} & -a_{2} & \cdots & -a_{n} \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

$$\Rightarrow At_1 = -a_1t_1 + t_2$$
 $\Rightarrow t_2 = At_1 + a_1t_1\Big|_{t_1=B}$ $\Rightarrow t_2 = AB + a_1B$: שמודה ראשונה:

:עמודה שנייה

$$At_2 = -a_2t_1 + t_3 \qquad \Longrightarrow t_3 = A\underbrace{\left(AB + a_1B\right)}_{t_2} + \underbrace{a_2B}_{a_2t_1} = A^2B + a_1AB + a_2B$$

$$At_n = -a_n t_1$$
 $\Rightarrow t_n = -a_n A^{-1} B$

ינמודה N 🥕

$$-a_n I = A^n + a_1 A^{n-1} + \dots + a_{n-1} A$$

:ממשפט קיילי המילטון

$$\Rightarrow -a_n A^{-1} B = [A^n + a_1 A^{n-1} + \dots + a_{n-1} A] A^{-1} B = t_n$$

$$\Rightarrow -a_n A^{-1} B = [A^{n-1} + a_1 A^{n-2} + \cdots + a_{n-1} I]B = t_n$$

Communications

צורות קנוניות

$$T = \left[\underbrace{B}_{t_1}, \underbrace{AB + a_1B}_{t_2}, \underbrace{A^2B + a_1AB + a_2B}_{t_3}, \cdots, \underbrace{A^{n-1}B + a_1A^{n-2}B + \cdots + a_{n-1}B}_{t_n}\right]$$

$$T = \left[B, AB, A^2B \cdots, A^{n-1}B\right]_{c}^{-1}$$

$$\mathcal{C}_{c}^{-1} = \begin{bmatrix} 1 & a_{1} & a_{2} & \cdots & a_{n-1} \\ 0 & 1 & a_{1} & a_{2} & \vdots \\ 0 & 0 & 1 & a_{1} & \vdots \\ 0 & 0 & 0 & \ddots & a_{1} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

T שלבים לחישוב ∠

- חשבו מטריצת קונ' של המערכת הנתונה 🥕
 - A חשבו מקדמי פולינום אופייני של 🥕

לאחר אירגון וסידור איברים נקבל 🥕

🚤 חשבו הופכי של מטריצת קונ' קנונית 🤛

$$T=\mathscr{C}_{c}^{*}\mathscr{C}_{c}^{-1}$$

צורות קנוניות

מימוש צורה קנונית של קונטרולר: 🥕

$$H(s) = \frac{b_1 s^2 + b_2 s + b_3}{s^3 + a_1 s^2 + a_2 s + a_3}$$

$$A_c = \begin{bmatrix} -a_1 & -a_2 & -a_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, B_c = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, C_c = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix}$$

Observer Form

$$\{A_o, B_o, C_o, D_0\}$$

$$\left\{ A_{o}, B_{o}, C_{o}, D_{0} \right\}$$

$$A_{o} = \begin{bmatrix} -a_{1} & 1 & 0 & \cdots & 0 & 0 \\ -a_{2} & 0 & 1 & 0 & 0 & 0 \\ \vdots & 0 & 0 & \ddots & 0 \\ -a_{n-1} & 0 & 0 & 0 & 0 & 1 \\ -a_{n} & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$C_o = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

משפט:

כל מערכת אובזרבביליתS ניתן להעתיק על ידי ${\sf T}$ מתאים למערכתleft.Observer Form קנונית

$$\overline{\mathscr{O}}\,{}^{-1}=T$$
 . שתי המערכות בעלות אותה תמסורת נומינאלית והן שקולות זו לזו. $extcolor{oldsymbol{oldsymbol{\omega}}}$

צורות קנוניות

מטריצת אובזרבביליות של הצורה הקנונית הינה נתונה לפי:

$$\mathcal{O}_{o}^{-1} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -a_{1} & 1 & 0 & 0 & 0 & 0 \\ \vdots & -a_{1} & 1 & \ddots & 0 \\ -a_{n} & 0 & 0 & 1 & 0 \\ -a_{n-1} & 0 & 0 & -a_{1} & 1 \end{bmatrix}$$

צורות קנוניות

Computers Communications

מימוש צורה קנונית של אובזרוור: 🥕

$$H(s) = \frac{b_1 s^2 + b_2 s + b_3}{s^3 + a_1 s^2 + a_2 s + a_3}$$

$$A_{o} = \begin{bmatrix} -a_{1} & 1 & 0 \\ -a_{2} & 0 & 1 \\ -a_{3} & 0 & 0 \end{bmatrix}, B_{o} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}, C_{o} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

תת מרחב נפרש:

$$\{x_1, x_2, \cdots x_n\}$$

בתונה קבוצת וקטורים:

-תת המרחב הנפרש על ידי קבוצה זו נתון לפי:

$$span\{x_1, x_2, \dots x_n\} = \left\{ x \middle| x = \sum_{i=1}^n \alpha_i x_i, \quad \alpha_i \in R \right\}$$

אי השוויון של קושי שוורץ

$$|x^T y|^2 = (\sum x_i y_i)^2 \le ||x||^2 \cdot ||y||^2$$

חישוב דטרמיננטה של מטריצה

ע"י מחיקת השורה ה- i והעמודה ה- j של המטריצה

$$\gamma_{i,j} = (-1)^{i+j} \det(M_{i,j})$$
נטמן $ightharpoonup = (-1)^{i+j} \det(M_{i,j})$

 $(a_{i,j}$ של (הקופקמור של)

: אזי 🥓

$$\det A = \sum_j a_{i,j} \gamma_{i,j}$$
 ℓ שבור i כלשהוא

תהליך גרהם שמים:

- - בתונה קבוצת וקטורים:

$$\{x_1, x_2, \cdots x_n\}$$

:תהליך גרהם שמים נתון על ידי:

$$y_1 = \frac{x_1}{\|x_1\|}$$

$$y_{2} = \frac{x_{2} - \alpha y_{1}}{\|x_{2} - \alpha y_{1}\|} \xrightarrow{\text{such that}} y_{1}^{T} y_{2} = 0$$

$$y_3 = \frac{x_3 - \alpha_1 y_1 - \alpha_2 y_2}{\|x_3 - \alpha_1 y_1 - \alpha_2 y_2\|} \xrightarrow{\text{such that}} y_1^T y_3 = 0, y_2^T y_3 = 0$$

:(Toeplitz) מטריצת טופליץ

קבוע - שווים ביניהם
$$(i-j) \ \, \text{ אשר } (i,j)$$
 אשר כלומר:
$$a_{i,j} = a_{i+l,j+l} \qquad \qquad :$$

חישוב דטרמיננטה של מטריצה

עבור מטריצה A נסמן ב- $M_{i,j}$ את המטריצה $M_{i,j}$ המתקבלת $M_{i,j}$ עבור מטריצה $M_{i,j}$ המתקבלת $M_{i,j}$ והעמודה ה- $M_{i,j}$ של המטריצה $M_{i,j}$

$$\gamma_{i,j} = (-1)^{i+j} \det(M_{i,j})$$

נסמן 🥕

($a_{i,j}$ של הקופקטור של ightharpoonup

$$\det A = \sum_{i} a_{i,j} \gamma_{i,j}$$
 :ייי

עבור i כלשהוא 🥕

בחישוב הופכי של מטריצה לא סינגולארית:

$$A^{-1} = \frac{1}{\det A} adjA$$

$$[adjA^T]_{i,j} = \gamma_{i,j}$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$$

מטריצות בלוקים:

$$\det \begin{bmatrix} A & 0 \\ C & B \end{bmatrix} = \det A * \det B$$

:אם המטריצה A אינה סינגולארית אזי

$$\det \begin{vmatrix} A & D \\ C & B \end{vmatrix} = \det A * \det [B - CA^{-1}D]$$

דטרמיננט של מכפלת מטריצות ריבועיות

$$\det AB = \det BA = \det A * \det B$$

:אם שתי המכפלות BA ו-BA מוגדרות אזי:

$$\det[I - AB] = \det[I - BA]$$

(Null Space) A עבור מטריצה A, מרחב האפס של

$$\mathcal{N}(A) = \{x | Ax = 0\}$$

:(range) A התחום של

$$\mathscr{R}(A) = \{x | x = Ay\}$$

- . A דרג**ת שורות של מטריצה:** מספר מקסימאלי של שורות הבלתי תלויות של
 - A מוגדרת בצורה זהה על עמודות: A דרגת העמודות של
 - מתקיים תמיד: דרגת המטריצה=דרגת עמודות=דרגת שורות
 - :נסמן את דרגות A+B כאשר ho(A),
 ho(B) : B ,A ניסמן את דרגות ho

$$\rho(A) + \rho(B) - n \le \rho(AB) \le \min\{\rho(A), \rho(B)\}$$
 :יי:

באשר ח הוא מספר העמודות של A והשורות של △.

$$\rho(A+B) \le \rho(A) + \rho(B)$$
 :בנוסף:

$$A = \mu v^T$$
 מתקיים: **U,V**

$$\rho(A) = 1$$

$$\rho(A) = 1$$

Communications

תוצאות מאלגברה לינארית

צוי: עני ווקטורים אזי: U, V -ו <u>(לא סינגולארית) אם A הפיכה</u>

$$(A + uv^{T})^{-1} = A^{-1} - \frac{A^{-1}uv^{T}A^{-1}}{1 + v^{T}A^{-1}u}$$

$$\begin{bmatrix} A & D \\ C & B \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} + E\Delta^{-1}F & -E\Delta^{-1} \\ -\Delta^{-1}F & \Delta^{-1} \end{bmatrix}$$

$$\Delta = B - CA^{-1}D$$

$$E = A^{-1}D$$

$$F = CA^{-1}$$

<mark>היפוך מטריצות בלוקים:</mark>

כאשר

Department of Electrical Engineering Electronics Computers Communications

מטריצות חיוביות / אי שליליות

מטריצות חיוביות /אי שליליות: בקורס זה מטריצות המוגדרות כ- חיוביות או אי שליליות - הן מטריצות סימטריות וממשיות

$$x^T A x \ge 0$$
 $\forall x \ne 0$:מטריצה אי שלילית **A** היא מטריצה המקיימת: Δ

מטריצה חיובית <u>מוגדרת</u> A היא מטריצה המקיימת:

$$x^T A x > 0 \qquad \forall x \neq 0$$

- מטריצה היא חיובית מוגדרת אם ורק אם כל הערכים העצמיים שלה הם חיוביים ממש.
 - מטריצה היא אי שלילית אם ורק אם חלק מהערכים העצמיים שלה הם חיוביים —
 וחלקם הוא אפס.
 - מטריצה היא חיובית מוגדרת אם כל המינורים המובילים שלה הם חיוביים (הדטרמיננטות של המטריצות):

Electronics Computers Communications

מידול משוואות מצב של מערכות סטאטיות, מהירות קבועה: 🚣

מודל Bias (סחיפה קבועה או שגיאה קבועה) של חיישן, או דינאמיקת מטרה 🥕 סטאטית:

$$x = c \rightarrow \dot{x} = 0 \cdot x + 0 \cdot u = 0$$

מודל מטרה נעה במהירות קבועה והמיקום בלבד נמדד:

$$x_{vel} = c \rightarrow x_{pos} = x_1, x_{vel} = x_2$$

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = 0 \end{cases} \longrightarrow \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$y = x_1$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

מודלים של מערכות

מידול משוואות מצב של מערכות מתמרנות:

מודל מטרה מתמרנת בתדר קבוע ידוע והמיקום נמדד בעזרת חיישן מתאים >
הכולל שגיאה קבועה לא ידועה :

$$x_{pos} = a \sin(\omega t) \rightarrow x_{pos} = x_1, x_{vel} = x_2$$

 $y = x_{pos} + c$

יש למצוא משוואות מצב לתיאור התמרון והסחיפה הקבועה:

$$\dot{x}_{1} = a\omega\cos(\omega t), \quad \dot{x}_{1} = x_{2}$$

$$\dot{x}_{2} = -a\omega^{2}\sin(\omega t) \rightarrow \dot{x}_{2} = -\omega^{2}x_{1}$$

$$x_{3} = c \rightarrow \dot{x}_{3} = 0$$

$$\begin{cases}
\dot{x}_{1} = x_{2} \\
\dot{x}_{2} = -\omega^{2}x_{1} \\
\dot{x}_{3} = 0
\end{cases}$$

$$\dot{x}_{3} = 0$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ -\omega^2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
$$y = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

מידול של מערכות דיסקרטיות - דוגמא

מידול משוואות מצב של מערכות דיסקרטיות:

$$x(k) = ak + b$$
 $k = 0,1,2...n$

$$x(k) = ak + b$$

 $x(k+1) = a(k+1) + b = ak + a + b$
 $x(k+2) = a(k+2) + b = ak + 2a + b$
 $\Rightarrow x(k+2) = 2x(k+1) - x(k)$

:משוואות מצב

$$\begin{bmatrix} x(k+1) \\ x(k+2) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x(k) \\ x(k+1) \end{bmatrix}$$

קבלת BODE בסימולינק

בנו מודל בסימולינק כמתואר בדוגמא:

עמדו עם העכבר על חץ קלם ובצעו קליק שמאכי ואחר כך קכיק ימני

:לקבלת Input perturbation ← Linear Analysis Point בחרו בחרו

לקבלת: Output Measurement לקבלת אבל יש לבחור של חץ הפלט אבל יש לבחור

Department of Electrical Engineering Electronics Computers Communications

קבלת BODE בסימולינק

Linear Analysis ← Control Design ← Analysis בסרגל הכלים של המודל בחרו Δ

ויש להפעיל New Bode ← EXECT LINEARIZATION ויש להפעיל △ את החץ הירוק לקבלת גרף בודה אמפליטודה ופאזה

Print to Figure בסרגל הכלים ולבחור FIGURS על מנת להעביר את הגרף לאיור יש לבחור

עבודה עם פיילי נתונים

שהם תוצאה plant.mat בדוגמת ההרצאה נתון פייל נתונים: ספקטראלית מדודה ממערכת סרוו אמיתית

יתקבלו: who במטלב בצעו:\load('plant.mat') במטלב בצעו

ס2i1.mat → ס2i1.mat ספרים קומפלקסיים ס2i1x.mat - ס2i1x.mat

- הפקודה:

- Figure, subplot(2,1,1)..., semilogx(o2i1x,20*log10(o2i1)),grid,subplot(2,1,2)...
- ,semilogx(o2i1x,(180/pi)*phase(o2i1)),grid

תניב גרף בודה:

עבודה עם פייל נתונים

sys=frd(o2i1,o2i1x,'FrequencyUnit','Hz'); >

sisotool הינה פונקציית תמסורת שניתן להפעיל עליה את פונקציות Sys בעת

Department of Electrical Engineering Electronics Computers Communications

צורות קנוניות

מימוש צורה קנונית של אובזרבביליטי: 🤛

$$H(s) = \frac{b_1 s^2 + b_2 s + b_3}{s^3 + a_1 s^2 + a_2 s + a_3}$$

$$A_{oT} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_3 & -a_2 & -a_1 \end{bmatrix}, B_{oT} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}, C_{oT} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ a_1 & 1 & 0 \\ a_2 & a_1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \Rightarrow \begin{cases} \beta_1 = b_1 \\ \beta_2 = b_2 - a_1 b_1 \\ \beta_3 = b_3 - a_1 b_2 - a_2 b_1 + a_1^2 b_1 \end{cases}$$

למטריצה A המבנה:

Companion Form >

צורות קנוניות

מימוש צורה קנונית של קונטרולביליטי: 🥕

$$H(s) = \frac{b_1 s^2 + b_2 s + b_3}{s^3 + a_1 s^2 + a_2 s + a_3}$$

$$A_{cT} = \begin{bmatrix} 0 & 0 & -a_3 \\ 1 & 0 & -a_2 \\ 0 & 1 & -a_1 \end{bmatrix}, B_{cT} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, C_{cT} = \begin{bmatrix} \beta_1 & \beta_2 & \beta_3 \end{bmatrix}$$

$$\begin{bmatrix} \beta_1 & \beta_2 & \beta_3 \end{bmatrix} = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} \begin{bmatrix} 1 & a_1 & a_2 \\ 0 & 1 & a_1 \\ 0 & 0 & 1 \end{bmatrix}^{-1}$$

RESOLVER __

TACHOMETER __

Tachometer

Communications

Fig. 9.6. The principle of a DC tachometer

Working principle:

The permanent magnet generates a steady and uniform magnetic field. Relative motion between the field and the rotor induces voltages, which is proportional to the speed of the rotor.

סנסורים

SHAFT ENCODER _

INCREMENTAL >

ABSOLUTE 🤛

Fig. 9.7. Incremental and absolute shaft encoders

Department of Electrical Engineering

Electronics

Computers

GYROSCOPE

Electro-mechanical

Fiber Optic Gyro – FOG 🤛

MEMS – Coriolis Gyro 🛩