Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	6
1.2 Описание выходных данных	7
2 МЕТОД РЕШЕНИЯ	8
3 ОПИСАНИЕ АЛГОРИТМОВ	10
3.1 Алгоритм конструктора класса obj	10
3.2 Алгоритм деструктора класса obj	10
3.3 Алгоритм метода Fill класса obj	11
3.4 Алгоритм метода Sum класса obj	11
3.5 Алгоритм метода Metod1 класса obj	12
3.6 Алгоритм метода Metod2 класса obj	12
3.7 Алгоритм функции main	13
3.8 Алгоритм функции fun	13
3.9 Алгоритм метода obj_p класса obj	14
3.10 Алгоритм конструктора класса obj	14
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	15
5 КОД ПРОГРАММЫ	23
5.1 Файл main.cpp	23
5.2 Файл obj.cpp	23
5.3 Файл obj.h	25
6 ТЕСТИРОВАНИЕ	26
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	27

1 ПОСТАНОВКА ЗАДАЧИ

Дан объект следующей конструкции:

В закрытом доступе имеется массив целого типа и поле его длины. Количество элементов массива четное и больше двух. Объект имеет функциональность:

- Конструктор по умолчанию, в начале работы выдает сообщение;
- Параметризированный конструктор, передается целочисленный параметр. Параметр должен иметь значение больше 2 и быть четным. По значению параметра определяется размерность целочисленного массива из закрытой области. В начале работы выдает сообщение;
- Метод деструктор, который выдает сообщение что он отработал;
- Метод ввода данных для созданного массива;
- Метод 1, который суммирует значения очередной пары элементов и сумму присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение. Например, пусть массив состоит из элементов {1,2,3,4}. В результате суммирования пар получим массив {3,2,7,4};
- Метод 2, который умножает значения очередной пары элементов и результат присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение. Например, пусть массив состоит из элементов {1,2,3,4}. В результате умножения пар получим массив {2,2,12,4};
- Метод который, суммирует значения элементов массива и возвращает это значение.

Разработать функцию, которая в качестве параметра получает объект по значению. Функция вызывается метод 2, далее выводит сумму элементов массива

с новой строки.

В основной функции реализовать алгоритм:

- 1. Ввод размерности массива.
- 2. Если размерность массива некорректная, вывод сообщения и завершить работу алгоритма.
- 3. Вывод значения размерности массива.
- 4. Создание объекта с аргументом размерности массива.
- 5. Вызов метода для ввода значений элементов массива.
- 6. Вызов функции передача в качестве аргумента объекта.
- 7. Вызов метода 1 от имени объекта.
- 8. Вывод суммы элементов массива объекта с новой строки.

Разработать конструктор копии объекта для корректного выполнения вычислений. В начале работы конструктор копии выдает сообщение с новой строки.

1.1 Описание входных данных

```
Первая строка:
«целое число»

Вторая строка:
«целое число» «целое число» . . . .

Пример:
```

1 2 3 4 5 6 7 8

1.2 Описание выходных данных

Если введенная размерность массива допустима, то в первой строке выводится это значение:

«Целое число»

Если введенная размерность массива не больше двух или нечетная, то в первой строке выводится некорректное значение и вопросительный знак:

«Целое число»?

Конструктор по умолчанию в начале работы с новой строки выдает сообщение:

Default constructor

Параметризированный конструктор в начале работы с новой строки выдает сообщение:

Constructor set

Конструктор копирования в начале работы с новой строки выдает сообщение:

Copy constructor

Деструктор в начале работы с новой строки выдает сообщение:

Destructor

Пример вывода:

8 Constructor set Copy constructor 120 Destructor 56 Destructor

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект obj класса obj предназначен для ;
- функция main для Основная функция;
- Цикл со счётчиком;
- Условный оператор;
- Объекты стандартного потока ввода/вывода cin/cout.

Класс obj:

- свойства/поля:
 - о поле Массив:
 - наименование arr;
 - тип Указаетль на целочисленный;
 - модификатор доступа private;
 - о поле Размерность массива:
 - наименование size_arr;
 - тип Целочисленный;
 - модификатор доступа private;
- функционал:
 - о метод obj Конструктор;
 - о метод obj_p Параметризированный конструктор, по значению которого определяется размерность массива;
 - о метод obj_c Конструктор копирования;
 - о метод ~obj Деструктор, выводящий на экран сообщение и очищающий память, выделенную под массива;
 - о метод Fill Используется для заполнения массива;
 - о метод Sum Предназначен для суммирования значений элементов

массива;

- о метод Metod1 Используется для суммирования очередной пары элементов массива и присваивания значения первому элементу массива;
- о метод Metod2 Используется для перемножения очередной пары элементов массива и присваивания значения первому элементу массива.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса оbj

Функционал: Конструктор.

Параметры: нет.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса obj

N₂	Предикат	Действия	No
			перехода
1		Вывод "Default constructor"	Ø

3.2 Алгоритм деструктора класса obj

Функционал: Деструктор, выводящий на экран сообщение и очищающий память, выделенную под массива.

Параметры: нет.

Алгоритм деструктора представлен в таблице 2.

Таблица 2 – Алгоритм деструктора класса obj

No	Предикат	Действия	No
			перехода
1		Вывод "Destructor"	2
2		Очищенние выделенной памяти под массива с помощью delete	Ø

3.3 Алгоритм метода Fill класса obj

Функционал: Используется для заполнения массива.

Параметры: нет.

Возвращаемое значение: Нет.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода Fill класса obj

No	Предикат	Действия	No
			перехода
1		Иницилизация целочисленной переменной i	2
2	i < size_arr	Ввод элемента массива	3
			Ø
3		Инкрементируем і	2

3.4 Алгоритм метода Sum класса obj

Функционал: Предназначен для суммирования значений элементов массива.

Параметры: нет.

Возвращаемое значение: Целочисленное.

Алгоритм метода представлен в таблице 4.

Таблица 4 – Алгоритм метода Sum класса obj

N₂	Предикат	Действия	No
			перехода
1		Иницилизация целочисленных переменных sum =	2
		0, i = 0	
2	i < size_arr	Прибавляем к sum значение элемента массива	3
		Возвращаем значение переменной sum	Ø
3		Инкрементируем і	2

3.5 Алгоритм метода Metod1 класса obj

Функционал: Используется для суммирования очередной пары элементов массива и присваивания значения первому элементу массива.

Параметры: нет.

Возвращаемое значение: Целочисленное.

Алгоритм метода представлен в таблице 5.

Таблица 5 – Алгоритм метода Metod1 класса obj

No	Предикат	Действия	No
			перехода
1		Иницилизация целочисленной переменной i = 0	2
2	i < size_arr	Суммируем пару элементов массива и	3
		присваиваем это значение первому элементу пары	
		Возвращаем метод Sum()	Ø
3		i++	2

3.6 Алгоритм метода Metod2 класса obj

Функционал: Используется для перемножения очередной пары элементов массива и присваивания значения первому элементу массива.

Параметры: нет.

Возвращаемое значение: Целочисленное.

Алгоритм метода представлен в таблице 6.

Таблица 6 – Алгоритм метода Metod2 класса obj

No	Предикат	Действия	No
			перехода
1		Иницилизация целочисленной переменной i = 0	2
2	i < size_arr	Перемножаем пару элементов массива и	3
		присваиваем это значение первому элементу пары	
		Возвращем метод Sum()	Ø

N₂	Предикат	Действия	N₂
			перехода
3		Инкрементируем і	2

3.7 Алгоритм функции main

Функционал: Основная функция.

Параметры: Нет.

Возвращаемое значение: Целочисленное.

Алгоритм функции представлен в таблице 7.

Таблица 7 – Алгоритм функции таіп

N₂	Предикат	Действия	N₂
			перехода
1		Объявление целочисленной переменной size_arr	2
2		Ввод значения size_arr	3
3	size_arr > 2 или size_ar	r Вывод значения переменной size_arr	4
	четный		
		Вывод значения переменной size_arr и "?"	Ø
4		Создание объекта obj класс obj путем вызова	5
		параметризированного конструктора с аргументом	
		size_arr	
5		Вызов метода Fill()	6
6		Вызов функции fun(obj)	7
7		Переход на новую строку	8
8		Вызов метода Metod1 объекта obj	9
9		Вывод результата выполнения метода Metod1	Ø
		объекта obj	

3.8 Алгоритм функции fun

Функционал: Вызов и вывод Метод2 объекта obj.

Параметры: obj.

Возвращаемое значение: Отсутствует.

Алгоритм функции представлен в таблице 8.

Таблица 8 – Алгоритм функции fun

N₂	Предикат	Действия	No
			перехода
1		Вызов Metod2	2
2		Вывод Metod2	Ø

3.9 Алгоритм метода obj_р класса obj

Функционал: Параметризированный конструктор, по значению которого определяется размерность массива.

Параметры: нет.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 9.

Таблица 9 – Алгоритм метода obj_р класса obj

No	Предикат	Действия	N₂
			перехода
1		Параметизированный конструктор с size_rr	Ø

3.10 Алгоритм конструктора класса obj

Функционал: Конструктор копирования.

Параметры: нет.

Алгоритм конструктора представлен в таблице 10.

Таблица 10 – Алгоритм конструктора класса obj

N₂	Предикат	Действия	No
			перехода
1		Конструктор копирования	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-8.

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

Рисунок 4 – Блок-схема алгоритма

Рисунок 5 – Блок-схема алгоритма

Рисунок 6 – Блок-схема алгоритма

Рисунок 7 – Блок-схема алгоритма

Рисунок 8 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл таіп.срр

Листинг 1 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "obj.h"
using namespace std;
void fun(obj obj)
  cout << obj.Metod2() << endl;</pre>
int main()
  int size_arr;
  cin >> size_arr;
  if(size_arr > 2 && size_arr %2 == 0)
      cout << size_arr << endl;</pre>
      obj obj(size_arr);
      obj.Fill();
      fun(obj);
      cout << endl;</pre>
      cout << obj.Metod1() << endl;</pre>
  }
  else
      cout << size_arr << "?";</pre>
  return(0);
}
```

5.2 Файл obj.cpp

Листинг 2 – obj.cpp

```
#include "obj.h"
```

```
#include <iostream>
using namespace std;
obj::obj()
  cout << "Default constructor" << endl;</pre>
obj::obj(int size_arr)
  cout << "Constructor set" << endl;</pre>
  arr = new int[size_arr];
  this->size_arr = size_arr;
obj::obj(const obj & obj)
  cout << "Copy constructor" << endl;</pre>
  size_arr = obj.size_arr;
  arr = new int[size_arr];
  for(int i = 0; i < size_arr; i ++)</pre>
      arr[i] = obj.arr[i];
obj::~obj()
  cout << "Destructor";</pre>
  if(arr == nullptr)
      delete[] arr;
void obj::Fill()
  for(int i = 0; i <size_arr; i++)</pre>
      cin >> arr[i];
  }
}
int obj::Sum()
{
  int sum = 0;
  for(int i = 0; i < size_arr; i++)</pre>
     sum += arr[i];
  return sum;
}
int obj::Metod1()
  for(int i = 0; i < size_arr; i+=2)
      arr[i] += arr[i+1];
```

```
    return Sum();
}

int obj::Metod2()
{
    for(int i = 0; i < size_arr; i+=2)
        {
        arr[i] *= arr[i+1];
        }
        return Sum();
}
</pre>
```

5.3 Файл obj.h

Листинг 3 – obj.h

```
#ifndef __IKB051__H
#define __IKB051__H
class obj
private:
   int* arr;
   int size_arr;
public:
   obj();
   obj(int size_arr);
   obj(const obj & obj);
   ~obj();
   void Fill();
   int Sum();
   int Metod1();
   int Metod2();
};
#endif
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 11.

Таблица 11 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
2	2?	2?
4 1 2 3 4	4 Constructor set Copy constructor 20 Destructor 16 Destructor	4 Constructor set Copy constructor 20 Destructor 16 Destructor

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).