6.

Notes about formulas for the rational (q, t)-Catalan numbers and related polynomials.

6.1.

6.1. Fix coprime integers d, n > 0. Let $\delta = \frac{1}{2}(d-1)(n-1)$. The following non-standard normalization of the (q, t)-Catalan numbers will be more convenient:

$$\mathsf{P}_{d/n}(q,t) = q^{\delta} \mathsf{C}_{d/n}(\frac{1}{q},t) = \sum_{\substack{(d \times n) \text{-Dyck paths } D}} q^{\delta - \operatorname{dinv}(D)} t^{\operatorname{area}(D)}.$$

For example, we have

$$P_{d/2} = 1 + qt + \dots + (qt)^{\frac{d-1}{2}},$$

$$P_{4/3} = 1 + qt + q^2t + q^2t^2 + q^3t^3.$$

We are interested in formulas for $P_{d/n}(q,t)$, and counterparts for Kreweras numbers and parking spaces, which are inspired by algebraic geometry.

6.2. Our first inspiration is work of Gorsky–Mazin and parallel work of Hikita.

Gorsky–Mazin study a projective variety known as the local compactified Jacobian of $Y^n = X^d$, which we will denote $\mathcal{M}_{d/n}$. It is stratified by affine spaces, and these strata are indexed by $d \times n$ Dyck paths. For each Dyck path D, let \mathcal{M}_D be the corresponding stratum. There is an increasing filtration of $\mathcal{M}_{d/n}$ by closed subvarieties $\mathcal{M}_{d/n,\leq i}$, in which each subvariety is a union of strata. Gorsky–Mazin essentially prove that

$$\operatorname{area}(D) = \min\{i \mid \mathcal{M}_D \subseteq \mathcal{M}_{d/n,i} \text{ and } \mathcal{M}_D \nsubseteq \mathcal{M}_{d/n,j} \text{ for } j < i\},\$$

$$\delta - \operatorname{dinv}(D) = \operatorname{dim}(\mathcal{M}_D).$$

6.3. At the same time, the variety $\mathcal{M}_{d/n}$ is an example of an affine Springer fiber for SL_n . Hikita studied $\mathcal{M}_{d/n}$ in this Lie-theoretic setting. Below, we summarize the part of his work that corresponds to Gorsky–Mazin's.

Let $\mathbf{Z}_0^n \subseteq \mathbf{Z}^n$ be the set of integral vectors ξ for which sum $(\xi) := \sum_i \xi_i = 0$. Let

$$\mathfrak{D}_{d/n} = \left\{ \xi \in \mathbf{Z}^n \middle| \begin{array}{l} \xi_1 \ge \xi_2 \ge \cdots \ge \xi_n, \\ \xi_1 - \xi_n \le d \end{array} \right\}.$$

There is a known bijection between $d \times n$ Dyck paths and points of $\mathfrak{D}_{d/n} \cap \mathbf{Z}_0^n$. It turns out that if the Dyck path D corresponds to the point $\xi \in \mathfrak{D}_{d/n} \cap \mathbf{Z}_0^n$, then we can recover the statistics for D from ξ as follows. First, for $1 \le i \le n$, set

$$a_i(\xi) = n\xi_i + d(i-1).$$

Hikita essentially showed

$$area(D) = \delta - \min\{a_1(\xi), \dots, a_n(\xi)\}.$$

For all $i, j, k \in \mathbb{Z}$ with $1 \le i, j \le n$ and $i \ne j$, let $\alpha_{i,j,k} : \mathbb{Z}^n \to \mathbb{Z}$ be the affine root $\alpha_{i,j,k}(\xi) = \xi_i - \xi_j - k$. Let

$$\mathfrak{A}_{d/n} = \{ \alpha_{i,j,k} \mid 0 \le \alpha_{i,j,k} (\frac{d}{n} \rho^{\vee}) < \frac{d}{n} \},$$

where $\rho^{\vee} = (\frac{n-1}{2}, \frac{n-3}{2}, \dots, \frac{1-n}{2})$, and let

$$\mathfrak{A}_{d/n}(\xi) = \{\alpha_{i,j,k} \in \mathfrak{A}_{d/n} \mid \alpha_{i,j,k}(\xi) < 0\}.$$

The set $\mathfrak{A}_{d/n}(\xi)$ was implicitly introduced by Goresky–Kottwitz–MacPherson in "Purity of Equivalued Affine Springer Fibers". They showed that

$$\dim(\mathcal{M}_D) = |\mathfrak{A}_{d/n}(\xi)|.$$

6.4. By work of Mellit, later extended by Elias and Hogancamp, $P_{d/n}(q,t)$ is the (a,q,t)-superpolynomial of the (d,n)-torus knot, up to normalization. A conjecture of Oblomkov–Rasmussen–Shende about plane curve singularities, specialized to the case of $Y^n = X^d$, matches the superpolynomial with a generating function for the virtual weight polynomials of the components of the Hilbert scheme of the singularity. We now recast their conjecture in a combinatorial form à la Hikita.

Let $\mathcal{H}_{d/n}$ be the Hilbert scheme in question. We may view $\mathcal{H}_{d/n}$ as the "positive part" of an affine Springer fiber for GL_n . It is stratified by affine spaces, just like $\mathcal{M}_{d/n}$, except now, the strata are indexed by the points of $\mathfrak{D}_{d/n} \cap \mathbf{Z}_{>0}^n$.

For each $\xi \in \mathfrak{D}_{d/n} \cap \mathbf{Z}_{\geq 0}^n$, let \mathcal{H}_{ξ} be the corresponding stratum. It belongs to the ℓ th connected component of $\mathcal{H}_{d/n}$, meaning the component that parametrizes ideals of colength ℓ , precisely when sum(ξ) = ℓ . Let

$$\mathfrak{A}_{d/n}^+(\xi) = \{\alpha_{i,j,k} \in \mathfrak{A}_{d/n}(\xi) \mid k \le \xi_i\}.$$

Either by applying Goresky–Kottwitz–MacPherson's argument, or by imitating an argument of Piontkowski, one can show:

Lemma 6.1. dim(\mathcal{H}_{ξ}) = $|\mathfrak{A}_{d/n}^+(\xi)|$.

One can then deduce that:

Proposition 6.2. The ORS conjecture for $Y^n = X^d$ is equivalent to the identity

(6.1)
$$\frac{1}{1-x} \mathsf{P}_{d/n}(xy, x) = \sum_{\xi \in \mathfrak{D}_{d/n} \cap \mathbf{Z}_{>0}^n} x^{\operatorname{sum}(\xi)} y^{|\mathfrak{A}_{d/n}^+(\xi)|}.$$

Here we have avoided using the letters q and t, because the (q, t) in ORS corresponds to the (t, q) in Haglund's book.

6.2.

6.5. Surprisingly, we do know how to express the left-hand side of (6.1) in a form very similar to the right-hand side, but using a different region in $\mathbb{Z}_{\geq 0}^n$, and using yet another variant of $\mathfrak{A}_{d/n}(-)$.

The combinatorial motivation for what follows is the paper "Recursions for Rational (q,t)-Catalan Numbers", by Gorsky–Mazin–Vazirani. The geometric motivation is a family of generalizations of the Hilbert scheme of $Y^n = X^d$: namely, the Quot schemes of various $R_{d/n}$ -modules, where $R_{d/n}$ is the ring of formal germs of functions on the singularity. Each of these Quot schemes can be interpreted as the positive part of some affine Springer fiber for GL_n .

6.6. Fix $\mu \in \mathbf{Z}^n$. Let

$$\mathfrak{D}_{d/n}(\mu) = \left\{ \xi \in \mathbf{Z}^n \middle| \begin{array}{l} \alpha_{1,2}(\xi + \mu), \dots, \alpha_{n-1,n}(\xi + \mu) \ge 0, \\ \alpha_{1,n}(\xi + \mu) \le d \end{array} \right\},$$

and let

$$\mathfrak{A}^{\mu}_{d/n} = \{ \alpha_{i,j,k} \mid 0 \le \alpha_{i,j,k} (\frac{d}{n} \rho^{\vee} - \mu) < \frac{d}{n} \},$$

$$\mathfrak{A}^{\mu}_{d/n} (\psi) = \{ \alpha_{i,j,k} \in \mathfrak{A}^{\mu}_{d/n} \mid \alpha_{i,j,k} (\psi - \mu) < 0 \},$$

$$\mathfrak{A}^{\mu,+}_{d/n} (\psi) = \{ \alpha_{i,j,k} \in \mathfrak{A}^{\mu}_{d/n} (\psi) \mid k \le \psi_i - \mu_i \}.$$

Then the generating function

$$\mathsf{F}_{d/n}^{\mu}(x,y) = \sum_{\psi \in \mathfrak{D}_{d/n}(\mu) \cap \mathbf{Z}_{\geq 0}^n} x^{\operatorname{sum}(\psi)} y^{|\mathfrak{A}_{d/n}^{\mu,+}(\psi)|}.$$

recovers the right-hand side of (6.1) when μ is the zero vector.

Theorem 6.3. Suppose that $\{a_i(\mu)\}_i = \{0, 1, ..., n-1\}$. Then

$$\frac{1}{1-x} \mathsf{P}_{d/n}(y,x) = \mathsf{F}_{d/n}^{\mu}(x,y).$$

Moreover, in this case, $\mathfrak{A}_{d/n}^{\mu,+}(\psi) = \mathfrak{A}_{d/n}^{\mu}(\psi)$ for all $\psi \in \mathfrak{D}_{d/n}^{\mu} \cap \mathbb{Z}_{\geq 0}^{n}$.

Corollary 6.4. Suppose that $\{a_i(\mu)\}_i = \{0, 1, ..., n-1\}$. Then the ORS conjecture for $Y^n = X^d$ is equivalent to the identity

(6.2)
$$\mathsf{F}_{d/n}^{0}(x,y) = \mathsf{F}_{d/n}^{\mu}(xy,y).$$

Remark 6.5. In the case where d = kn + 1 for some integer k, the condition $\{a_i(\mu)\}_i = \{0, 1, \dots, n-1\}$ is equivalent to taking $\mu_i = -(i-1)k$ for all i.

Example 6.6. Take (d, n) = (5, 2) and $\mu = (0, -2)$. We compute that

$$\mathfrak{D}_{5/2} = \mathfrak{D}_{5/2}(0) = \{ \xi \in \mathbf{Z}^2 \mid 0 \le \xi_1 - \xi_2 \le 5 \},$$

$$\mathfrak{D}_{5/2}(\mu) = \{ \psi \in \mathbf{Z}^2 \mid -2 \le \psi_1 - \psi_2 \le 3 \}.$$

In the following picture of $\mathfrak{D}_{5/2} \cap \mathbf{Z}^2_{\geq 0}$, the bottom left point is the origin, and we have marked each point ξ in the region with the value of $|\mathfrak{A}^+_{5/2}(\xi)|$.

In the following picture of $\mathfrak{D}_{5/2}(\mu) \cap \mathbf{Z}^2_{\geq 0}$, we have marked each point ψ in the region with the value of $|\mathfrak{A}^{\mu,+}_{5/2}(\psi)| = |\mathfrak{A}^{\mu}_{5/2}(\psi)|$.

Now (6.2) amounts to a bijection between these sets that preserves the numbers assigned, and translates any point assigned the number ℓ upwards to the anti-diagonal " ℓ steps above" its current anti-diagonal.

In fact, Oscar Kivinen and I proved an identity for an arbitrary plane curve singularity that specializes to Theorem 6.3 in the case of $Y^n = X^d$.