Gas Turbine Emission

ANALYSIS AND MODELLING OF 5 YEARS' DATA ON CO AND NOX GAS EMISSIONS FROM GAS TURBINES IN A POWER GENERATION PLANT.

Mentor:

Dr. Sayantani Roy Choudhury

Group Members: Aditya Jaiswal – A22003 Chinmaya Venkataraman – A22014

Research Question

- It is well known that CO and NOx gases are greenhouses gases that are produced in the power generation process and are harmful to the environment.
- Minimisation of emissions is a pressing industry problem and there are regulations with regard to how much can be generated by a power plant.
- We will attempt to predict the most important factors contributing to emissions and provide actionable steps to mitigate them.

Research Objective

- Analysing 5 years' data (recorded from 2011 to 2015) on CO and NOx gas emissions from gas turbines in a power generation plant located in Turkey.
- Identifying the most important features in the dataset.
- Performing operations on the data and fitting Linear Regression models.
- Training Machine Learning models on the data and comparing results to identify the best model using RMSE score.

Data Source

Machine Learning Repository

- ▶ UC Irvine Machine Learning Repository, Gas Turbine CO and NOx Emission Data Set
- Files: gt_2011.csv, gt_2012.csv, gt_2013.csv, gt_2014.csv, gt_2015.csv
- Link: https://archive.ics.uci.edu/ml/machine-learning-databases/00551/ppgasemission.zip

Variables:

Variable

- Ambient temperature
- Ambient pressure
- Ambient humidity
- ▶ Air filter difference pressure
- Gas turbine exhaust pressure
- Turbine inlet temperature
- Turbine after temperature
- Compressor discharge pressure
- Turbine energy yield
- Carbon monoxide
- Nitrogen oxides

Abbreviation

- ▶ AT
- ▶ AP
- ► AH
- AFDP
- ▶ GTEP
- ▼ TIT
- ► TAT
- ▶ CDP
- ▶ TEY
- CO
- NOx

Methodology 1: Linear Regression

Measures Taken

- Outlier Treatment using LOF (Local Outlier Factor)
- Checking for and removing variables that have Variance Inflation factor higher than 5.
- ► Feature Selection using Lasso Regression.

AH

AT

Results: CO

Lasso Regression coefficients:

```
{'AT': -0.0,
  'AP': 0.0,
  'AH': -0.0,
  'AFDP': -0.0,
  'GTEP': 0.0,
  'TIT': -0.0857943408930881,
  'TAT': -0.01829257828806067,
  'TEY': 0.0,
  'CDP': 0.0}
```

Regression with all variables:

OLS Regression Results

Den V	ariable:	CO			R-square	ad.	0.582
	del:	OLS			. R-squ		
			`auaraa				
	hod:		quares		-statist		
	ite:) Jan 202				
	me:	02:05:2	29	Log			-62953.
No. Obse					AIC:		1.259e+05
			35760 BIC: 1		1.260e+05		
		9					
Covaria	nce Type	: nonrob	ust				
	coef	std er	r t	P> t	[0.025	0.97	5]
Intercep	t 121.823	5 2.119	57.502	0.000	117.671	125.9	76
AT	-0.0501	0.003	-17.351	0.000	-0.056	-0.04	4
AP	-0.0020	0.001	-1.389	0.165	-0.005	0.001	
AH	-0.0076	0.001	-11.773	0.000	-0.009	-0.00	6
AFDP	-0.1614	0.015	-10.550	0.000	-0.191	-0.13°	1
GTEP	0.1016	0.010	10.427	0.000	0.082	0.121	
TIT	-0.0690	0.003	-26.221	0.000	-0.074	-0.064	4
TAT	-0.0754	0.003	-21.650	0.000	-0.082	-0.069	9
TEY	-0.1916	0.008	-25.040	0.000	-0.207	-0.17	7
CDP	1.9421	0.108	17.977	0.000	1.730	2.154	
Omni	bus: 4	5324.59	5 Durbi	n-Wats	on: 0	791	
Prob(Om					(JB): 21		6 561
Ske		5.593		ob(JB)			0.001
		23.127		nd. No		52e+0	5
Tturit.	,515.	20.121				520.01	
Notes:							
							ne errors is correctly specified.
						ght ind	licate that there are
strong mu	ilicollinea	rity or oth	ier nume	ricai pr	obiems.		

Regression with select variables:

Dep. Variable:			СО	R-squa			0.033
Model:			DLS		-squared:		0.033
Method:		Least Squa		F-stat			614.8
Date:				Prob (F-statistic):			
Time:		02:05			kelihood:		-77956.
No. Observatio	ons:		770	AIC:			1.559e+05
Df Residuals:		35	767	BIC:			1.559e+05
Df Model:							
Covariance Typ	e:	nonrob	ıst				
========	coef	std err	=====	t	P> t	[0.025	0.975]
Intercept	2.7753	0.089	31	036	0.000	2.600	2.951
AT	-0.0476	0.002	-27	7.406	0.000	-0.051	-0.044
AH	0.0054	0.001		.069	0.000	0.004	0.007
======== Omnibus:		 - 33593	===== 122	Durbin	======= -Watson:		0.620
Prob(Omnibus):		0.	900	Jarque	-Bera (JB):		2933107.711
Skew:		4.	298	Prob(J	B): ` ´		0.00
Kurtosis:		46.	521	Cond.	No.		640.

		OLS R	egress	ion R	esults			
Model: Method: Date: Time: No. Observations: Df Mesiduals: Df Model: Covariance Type:		3	2023 5:35 6733 6729 3	Adj. F-st Prob	uared: R-squared: atistic: (F-statistic): Likelihood:	0.553 0.553 1.514e+04 0.00 -67332. 1.347e+05		
	coef	std err			P> t	[0.025	0.975]	
Intercept AT TIT TAT	164.4816 0.0156 -0.1055 -0.0884	1.103 0.001 0.001 0.001		.315 .669	0.000 0.000 0.000 0.000	162.320 0.013 -0.106 -0.091	166.643 0.018 -0.104 -0.086	
Omnibus: Prob(Omnibus Skew: Kurtosis:):	6	.815 .000 .977 .104	Jarq Prob	======== in-Watson: ue-Bera (JB): (JB): . No.		0.882 0.882 2010049.939 0.00 1.69e+05	

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.69e+05. This might indicate that there are

strong multicollinearity or other numerical problems.

AH AP TIT TAT TEY

Results: NOx

Lasso Regression coefficients:

```
{'AT': -1.292347600752513,
 'AP': -0.07887427101161554,
 'AH': -0.14400977007209276,
 'AFDP': 0.0,
 'GTEP': -0.0,
'TIT': 0.6276786731438204,
'TAT': -0.6384334423096925,
'TEY': -0.9796940258821495,
 'CDP': -0.0}
```

Regression with all variables:

OLS Regression Results

Dep. V	ariable:	NOX		R-squ	ared:	0.518
Model:		OLS		Adj. R-so	uared:	0.518
Method:		Least Squares		F-stati	stic:	4268.
Date:		Mon, 30 Jan 2023 Prob (F-			tatistic):	: 0.00
Time:		06:52:20		Log-Like	lihood:	-1.2546e+05
No. Observations:		35770		AIC	:	2.509e+05
Df Residuals:		35760	35760 B		:	2.510e+05
Df Model:		9				
Covariance Type:		nonrot	oust			
	coef	std err	t	P> t [0.02	5 0.978	5]
Intercept	-61.5671	12.162	-5.062	0.000 -85.40	06 -37.72	28
AT	-1.7649	0.017	-106.504	0.000 -1.797	-1.732	2
AP	-0.2360	800.0	-28.839	0.000 -0.252	-0.220)
AH	-0.2224	0.004	-60.016	0.000 -0.230	-0.21	5
AFDP	0.7286	0.088	8.295	0.000 0.556	0.901	
GTEP	-0.1015	0.056	-1.815	0.070 -0.211	0.008	
ΠT	1.4144	0.015	93.655	0.000 1.385	1.444	
TAT	-1.5245	0.020	-76.244	0.000 -1.564	-1.48	5
TEY	-1.9461	0.044	-44.304	0.000 -2.032	2 -1.860)
CDP	-1.9019	0.620	-3.067	0.002 -3.117	′ -0.68 6	3
Omnil	bus: 7	249.078	B Durbin	-Watson: 0	369	
Prob(Om	nibus): (0.000	Jarque-	Bera (JB): 2	6041.84	3
Skew: 0.		.996	Prol	b(JB) : 0	.00	
Kurto	sis: 6	6.675	Con	d. No. 4	52e+05	
Matari						
Notes: [1] Standa	ard Errors	assuma	that the	covariance m	atrix of t	the errors is correctly specified.
						dicate that there are

strong multicollinearity or other numerical problems

Regression with select variables:

ep. Variable			NOX	R-squ	ıared:		0.324	
odel:			OLS		R-squared:		0.324	
ethod:			Squares				8574.	
ate:					(F-statistic		0.00	
ime:			06:56:40	Log-l	.ikelihood:		-1.3151e+05	
o. Observatio	ons:		35770	AIC:			2.630e+05	
f Residuals:			35767	BIC:			2.630e+05	
of Model:								
ovariance Typ	pe:	n	onrobust					
	coe	f std	====== err	t	P> t	[0.025	0.975]	
ntercept	90.510	4 0.4	100 2:	26.492	0.000	89.727	91.294	
	-0.970	3 0.0	008 -1	25.090	0.000	-0.985	-0.955	
NH .	-0.103	8 0.0	204 -:	25.944	0.000	-0.112	-0.096	
mnibus:			5163.068	Durbi	n-Watson:		0.301	
rob(Omnibus)			0.000	Jarqu	ie-Bera (JB):		13428.258	
kew:			0.807	Prob(JB):		0.00	
urtosis:			5.531	Cond.	No.		640.	

Dep. Variab]			NOX	R-squa	ared:		0.517	
Model:			OLS	Adj. F	R-squared:		0.517	
Method:		Least Squa	ares	F-stat	tistic:		6546.	
Date:		Mon, 30 Jan 2023		Prob ((F-statistic):	0.00	
Time:		07:01:56		Log-Li	ikelihood:		-1.2904e+05	
No. Observations:		36	5733	AIC:			2.581e+05	
Df Residuals		3€	5726	BIC:			2.582e+05	
Df Model:								
Covariance 1	ype:	nonrot	oust					
	coef	std err		t	P> t	[0.025	0.975]	
Intercept	-83.1243	10.420		.978	0.000	-103.547	-62.701	
AT .	-1.7945	0.010	-174	.485	0.000	-1.815	-1.774	
AP	-0.2419	0.008		.171	0.000	-0.257	-0.227	
AH	-0.2174	0.004	-60	.970	0.000	-0.224	-0.210	
TIT	1.4467	0.014	105	.278	0.000	1.420	1.474	
	-1.5370	0.016	-96	.666	0.000	-1.568	-1.506	
	-2.1188	0.019	-113	.363	0.000	-2.155	-2.082	
======= Omnibus:		7100.	===== . 246	==== Durbin	 n-Watson:		 0.374	
Prob(Omnibus	s):		.000	Jarque	e-Bera (JB):		24481.310	
Skew:			963	Prob(JB):		0.00	
Kurtosis:			.505	Cond.	No.		3.90e+05	

strong multicollinearity or other numerical problems

AH AT

AH AT AP TIT TAT TEY

Distribution of errors:

CO NOx

0.4634

Analysis and results

- Durbin-Watson statistic indicates that there is autocorrelation in residuals of both regressions.
- Prediction of NOx has higher error in prediction compared to CO and the errors are normally distributed, indicating that there is information that is not being captured.
- Variance inflation factor is very high for all variables except Ambient Temperature and Ambient Humidity.
- There is high multicollinearity in the data even among the significant variables.

Values for CO

- RMSE Value, CO 1.945
- ► R-squared, Adjusted R-squared 0.582
- ▶ Lasso regression score, CO 0.5375

Values for NOx

- ▶ RMSE Value 64.184
- R-squared, Adjusted R-squared 0.518
- Lasso regression score, NOx 0.4634

Interpretation

- Lasso regression indicates that air filter difference pressure, gas turbine exhaust pressure and compressor discharge pressure are not important for prediction of emissions.
- Ambient Temperature and Ambient Humidity are not good linear predictors for CO emissions but give good results for prediction of NOx.
- ➤ Some of the variables that improve prediction of emissions have very high values for variance inflation factor, such as turbine inlet temperature and turbine after temperature. However, they still are observed to be significant and give better R-squared, AIC and BIC values compared to models that drop these variables.

Methodology 2: Machine Learning

We applied the following algorithms to the data and documented the results and RMSE values after optimising the parameters using the python library, hyperopt:

- Decision Tree
- Random Forest
- Gradient Boosting Machines
- XGBoost (Extreme Gradient Boosting)
- Support Vector Machine

Parameter Search Space and Best Parameters

```
param dt={
    'max depth': scope.int(hp.quniform('max depth',2,20,1)),
    'ccp alpha': hp.uniform('ccp alpha',0.001,0.1)
param rf={
    'n estimators':scope.int(hp.quniform('n estimators',50,500,1)),
    'max features':hp.choice('max features',list(range(2,7)))
param gbm = {
    'max depth':scope.int(hp.quniform('max depth',1,6,1)),
    'n estimators':scope.int(hp.quniform('n estimators',50,500,1)),
    'learning rate':hp.uniform('learning rate',0.001,0.1)
param xgb = {
    'max depth':scope.int(hp.quniform('max depth',1,6,1)),
    'n_estimators':scope.int(hp.quniform('n_estimators',50,500,1)),
    'learning rate':hp.uniform('learning rate',0.001,0.1),
    'colsample bytree':hp.uniform('colsample bytree',0.2,0.8)
```

Decision Tree:

- CO: ccp_alpha: 0.024, max_depth: 17.0
- NOx: ccp_alpha: 0.024, 'max_depth': 18.0

Random Forest:

- CO: 'max_features': 2, 'n_estimators': 229
- NOx: 'max_features': 3, 'n_estimators': 317

Gradient Boosting:

- NOx: learning_rate: 0.0664, max_depth: 6 n_estimators: 497
- CO: learning_rate: 0.0663, max_depth: 5, n_estimators: 254

XgBoost:

- CO: colsample_bytree: 0.797, learning_rate: 0.098, max_depth: 5, n_estimators: 380
- NOx: colsample_bytree: 0.751, learning_rate: 0.082, max_depth: 6, n_estimators: 420

Analysis and Results:

RMSE Values for CO:-

- Random Forest:1.048
- ► XGBoost:1.210
- ► Gradient Boosting: 1.324
- SVM: 1.478 (linear)
- ▶ Decision Tree: 1.725
- ► Linear Regression: 1.945

RMSE Values for NOx:-

- Random Forest:16.901
- ► Gradient Boosting: 18.438
- ► XGBoost:18.797
- ▶ Decision Tree: 31.0495
- ▶ Linear Regression: 64.184
- ▶ SVM: 65.546 (linear)

Interpretation:

- Random forest performs best for prediction of emission of CO and NOx, giving much better results than all other models
- CO prediction shows some degree of success with linear models while the best models are still the non-linear ones
- NOx prediction shows the best results for non-linear models and the worst with linear models.

CONCLUSION

- ► There are strong non-linear relationships between emissions of CO and NOx and the predictor variables, which were best predicted using a random forest model.
- Ambient Temperature and Ambient Humidity are seen to be negatively correlated to emissions.
- ▶ Air filter difference pressure was seen to be negatively correlated to CO but positively correlated to NOx.
- Ambient Pressure is insignificant even at 90% confidence level for CO prediction and gas turbine exhaust pressure is insignificant at 95% confidence level but significant at 90% confidence level.
- ► CO and NOx have been seen to steadily increase from 2011 to 2015, therefore measures need to be taken to mitigate this.

THANK YOU!