Languages and Computation (COMP2049/AE2LAC)

Pushdown Automata

Dr. Tianxiang Cui

tianxiang.cui@nottingham.edu.cn

The Chomsky Hierarchy

Pushdown Automata

- Definition
- A language can be generated by a CFG if and only if it can be accepted by a pushdown automaton
- A pushdown automaton is similar to a finite automaton but has an auxiliary unlimited memory in the form of a stack
- LIFO access to the stack sufficient to handle CFGs
 - Placing words onto the stack is called pushing
 - Taking words off the stack is called popping
- By default, pushdown automata are, nondeterministic. Unlike NFA, the nondeterminism cannot always be removed

Pushdown Automata

- Let's start with a simple example, the language $L = \{a^nb^n \mid n \ge 0\}$
 - · This is not a regular language, but it is context-free
- In processing the first part of an input string that might be in L, all we need to remember is the number of a's
 - Saving the actual *a*'s is a simple way to do this
 - So, the PDA will start by reading a's and pushing them onto the stack
- As soon as the PDA reads a *b*, two things should happen
 - It enters a new state in which only *b*'s are legal inputs
 - It pops one *a* off the stack to cancel this *b*
- In the new state, the correct move on the input symbol b is to pop an a off the stack to cancel it. Once enough b's have been read to cancel the a's on the stack, the string read so far is accepted

Pushdown Automata

- The stack has no limit to its size, so the PDA can handle anything in L
- A single move of a PDA will depend on the **current state**, the **next input**, and the **symbol currently on top of the stack** (the only one the PDA can see)
- In the move, the PDA is allowed to change states and to modify the top of the stack
 - In many stack applications, the only legal stack moves are to push a symbol on and to pop one off
 - Here, to make things a little simpler, we will allow the PDA to replace the top symbol X by a string α of stack symbols
- Special cases are pushing a symbol Y (replacing X by YX) and popping X (replacing X by ε)

PDA Formal Definition

- A pushdown automaton is a 7-tuple $A = (Q, \Sigma, \Gamma, q_0, Z_0, F, \delta)$, where:
- 1. A finite set of states Q
- 2. A finite set of input symbols (alphabets) Σ
- 3. A finite set of stack symbols Γ
- 4. An initial state $q_0 \in Q$
- 5. An initial stack symbol $Z_0 \in \Gamma$
- 6. A set of accepting (or final) states $F \subseteq Q$
- 7. A transition function $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to P_{fin}(Q \times \Gamma^*)$
 - where $P_{fin}(S)$ are the finite subsets of a set
 - $P_{fin}(S) = \{ X \mid X \subseteq S \land X \text{ is finite} \}$

PDA: Transition Function

- Because values of δ are sets, PDA A may be nondeterministic
 - It may have a choice of transitions from any state
- A move requires that there be at least one symbol on the stack. Z_{θ} is the one on the stack initially
- Typically, the transition function is of the form:

$$\delta (q, a, X) = \{(p, Y), ...\}$$

- 1. Make a state transition from q to p
- 2. a is the **next** input symbol
 - Remove α from the front of the input, α can be ϵ
- 3. X is the **current** stack **top** symbol
- 4. Y is the **replacement** for X, it is in Γ^* (a string of stack symbols)
 - Replace X on the top of the stack by Y

PDA: Example

• Consider the PDA A that can recognize the language $L = \{a^nb^n \mid n \ge 0\}$ as following

$$A = (Q = \{q_0, \, q_1, \, q_2\}, \, \Sigma = \{a, \, b\}, \, \Gamma = \{a, \, \#\}, \, q_0, \, Z_0 = \#, \, F = \{q_2\}, \, \delta)$$
 where
$$\delta(q_0, \, a, \, \#) = \{(q_0, \, a\#)\}$$

$$\delta(q_0, \, \epsilon, \, \#) = \{(q_2, \, \#)\}$$

$$\delta(q_0, \, a, \, a) = \{(q_0, \, aa)\}$$

$$\delta(q_0, \, b, \, a) = \{(q_1, \, \epsilon)\}$$

$$\delta(q_1, \, b, \, a) = \{(q_1, \, \epsilon)\}$$

$$\delta(q_1, \, \epsilon, \, \#) = \{(q_2, \, \#)\}$$

$$\delta(q, \, w, \, x) = \emptyset \text{ everywhere else}$$

• Let's try the input string aaabbb

Instantaneous Description (ID)

- At any time instance, the state of the computation of a PDA $A = (Q, \Sigma, \Gamma, q_0, Z_0, F, \delta)$ is given by
 - 1. The state $q \in Q$ the PDA is in (i.e. the **current state**)
 - 2. The portion of the input string $w \in \Sigma^*$ that has not yet been read (i.e. the **remaining input**)
 - 3. The **contents of the stack** $\gamma \in \Gamma^*$ (the convention will be that the top corresponds to the leftmost symbol)
- Such a triple $(q, w, \gamma) \in Q \times \sum^* \times \Gamma^*$ is called **Instantaneous Description** (ID)
 - Or sometimes it is called the **configuration** of a PDA
- We define a relation \vdash_A between IDs, $(q, x, \alpha) \vdash_A (p, y, \beta)$ means that PDA A can move in one step from one ID to the next one
 - \vdash_A can be read as "goes-to"
 - Or, one of the possible moves in the first configuration takes A to the second
- \vdash_A^n and \vdash_A^* refer to *n* moves and zero or more moves, respectively

Instantaneous Description (ID)

- If we have $id_1 \vdash_A id_2$, meaning that PDA A can move in one step from id_1 to id_2 . Since PDAs in general are nondeterministic, there are two possibilities:
- 1. $(q, xw, z\gamma) \vdash_A (p, w, \alpha\gamma) \text{ if } (p, \alpha) \in \delta(q, x, z)$
- 2. $(q, w, z\gamma) \vdash_A (p, w, \alpha\gamma) \text{ if } (p, \alpha) \in \delta(q, \varepsilon, z)$ where $q, p \in Q, x \in \Sigma, w \in \Sigma^*, z \in \Gamma, \alpha, \gamma \in \Gamma^*$
- In the first case, the PDA reads an input symbol x, and consults the transition δ function to calculate a possible new state p and a sequence of stack symbols α that replaces the current top symbol z on the stack
- In the second case, the PDA ignores the input, moves into a new state and modifies the stack as above. The input is unchanged

Example

• Using the previous example PDA that recognizes the language $L = \{a^nb^n \mid n \ge 0\}$, we can describe the sequence of moves for the string aaabbb as follows:

$$(q_0, aaabbb, #)$$

$$\vdash_A (q_0, aabbb, a#)$$

$$\vdash_A (q_0, abbb, aa#)$$

$$\vdash_A (q_0, bbb, aaa#)$$

$$\vdash_A (q_1, bb, aa#)$$

$$\vdash_A (q_1, b, a#)$$

$$\vdash_A (q_1, \epsilon, \#)$$

$$\vdash_A (q_2, \epsilon, \#)$$

• What happens with the input string *aaabbbb*?

- Generally, there are two "flavors" of PDAs
- Acceptance by final state

$$L(A) = \{ w \mid (q_0, w, Z_0) \vdash_A^* (q, \varepsilon, \gamma) \land q \in F \}$$

- This says that the language of PDA A is equal to all words, w, such that
- 1. A can move from (q_0, w, Z_0) to (q, ε, γ) in zero or more steps, and
- 2. q is a final state
- (q_0, w, Z_0) to (q, ε, γ) are both IDs:
 - (q_0, w, Z_0) is the starting ID
 - (q, ε, γ) is the final ID

- (q_0, w, Z_0)
 - PDA A is at **starting** state q_0 , the remaining input string is the **entire** word w, and the content of the stack is Z_0
- (q, ε, γ)
 - PDA A is at state q, which is a **final** state. The remaining input string is **empty** (ϵ), and the contents of the stack are γ (we don't care about this, it can be **anything**)
- So, as long as PDA *A* reaches a final state, with **no** remaining input string, the word is **accepted even if the stack is not empty**

Acceptance by empty stack

$$L(A) = \{ w \mid (q_0, w, Z_0) \vdash_A^* (q, \varepsilon, \varepsilon) \}$$

- This says that the language of PDA A is equal to all words, w, such that
- 1. A can move from (q_0, w, Z_0) to $(q, \varepsilon, \varepsilon)$ in zero or more steps
- (q_0, w, Z_0) to $(q, \varepsilon, \varepsilon)$ are both IDs:
 - (q_0, w, Z_0) is the starting ID
 - $(q, \varepsilon, \varepsilon)$ is the final ID

- (q_0, w, Z_0)
 - PDA A is at **starting** state q_0 , the remaining input string is the **entire** word w, and the content of the stack is Z_0
- $(q, \varepsilon, \varepsilon)$
 - PDA A is at state q, which can be any state. The remaining input string is empty (ϵ), and the stack is also empty (ϵ)
- A PDA that accepts by final state can be converted to an equivalent PDA that accepts by empty stack and vice versa
- Both types of PDAs thus describe the same class of languages, the Context-Free Languages (CFLs).
- Note: under both conditions, input word *w* is accepted **only if all** the input string is read in

PDAs And CFGs

- Theorem
- For a language $L \subseteq \Sigma^*$, L = L(G) for a CFG G iff L = L(A) for a PDA A
- i.e. the CFGs and the PDAs describe the same class of languages
- Proof: By constructing a PDA A from a CFG G and vice versa such that L(A) = L(G)
- We will look at constructing a PDA from a CFG

Translating A CFG Into A PDA

• Given the CFG G=(N, T, S, P), we can construct the PDA as follows:

$$A = (Q = \{q_0\}, \Sigma = T, \Gamma = N \cup T, q_0, Z_0 = S, F = \emptyset, \delta)$$

where

For every
$$E \in N$$
, $\delta(q_0, \varepsilon, E) = \{(q_0, \alpha) \mid E \to \alpha \in P\}$
For every $t \in T$, $\delta(q_0, t, t) = \{(q_0, \varepsilon)\}$
 $\delta(q, w, \gamma) = \emptyset$ everywhere else

- Acceptance by empty stack
- Allow expansion of non-terminal by pushing right-hand side of production onto the stack
- Remove terminal symbols from the stack as they are produced and match them with input symbols

Example

• Consider the grammar *G*:

$$E \rightarrow 0E0 \mid 1E1 \mid \epsilon$$

- Construct the PDA A from G
- Show the input string 0110 is accepted by *A*
 - We may only need to show that at least one accepting configuration can be reached
- Might be a little bit harder to show the non-acceptance as we must show there are **no** accepting sequence
 - Try all the possibilities

Deterministic PDAs (DPDAs)

- A DPDA is a PDA that has **no** choice:
- A PDA $A = (Q, \Sigma, \Gamma, q_0, Z_0, F, \delta)$ is deterministic iff

$$|\delta(q, x, z)| + |\delta(q, \varepsilon, z)| \le 1$$

for all
$$q \in Q$$
, $x \in \Sigma$, $z \in \Gamma$

• Example: the PDA for the previous example is not a DPDA

e.g.,
$$|\delta(q_0, 0, E)| + |\delta(q_0, 1, E)| + |\delta(q_0, \varepsilon, E)| = 3 > 1$$

Deterministic PDAs (DPDAs)

- DPDAs are important because they can be implemented efficiently
- But unfortunately:
- Theorem
- The set of languages accepted by the DPDAs is a **strict subset** of the languages accepted by PDAs: $L(DPDA) \subset L(PDA) = CFL$
 - This is in contrast to the case for finite automata, L(DFA) = L(NFA) = Regular language
- However, most context-free languages of practical importance can be described by DPDAs

Concluding Remarks

- Pushdown automaton
 - Similar to a finite automaton, but with unlimited memories
 - Transition function
 - Instantaneous description / configuration
- The language of a PDA
- PDAs and CFGs
 - Translate a CFG into a PDA
- Deterministic PDAs