# **Problem Set One**

### D. Zack Garza

January 26, 2020

### **Contents**

| 1  | Humphreys 1.1         1.1 a                                                                                                                                             |     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2  | Humphreys 1.3*                                                                                                                                                          | 1   |
| 1  | Humphreys 1.1                                                                                                                                                           |     |
| 1. | 1 a                                                                                                                                                                     |     |
| If | $M \in \mathcal{O}$ and $[\lambda] = \lambda + \Lambda_r$ is any coset of $\mathfrak{h}^{\vee}/\Lambda_r$ , let $M^{[\lambda]}$ be the sum of weight spaces $M_{\mu}$ : | for |

which  $\mu \in [\lambda]$ . **Proposition:**  $M^{[\lambda]}$  is a  $U(\mathfrak{g})$ -submodule of M

Proof:

Proposition: M is the direct sum of finitely many submodules of the form  $M^{[\lambda]}$ .

Proof:

#### 1.2 b

**Proposition:** The weights of an indecomposable module  $M \in \mathcal{O}$  lie in a single coset of  $\mathfrak{h}^{\vee}/\Lambda_r$ .

## 2 Humphreys 1.3\*

**Proposition:** For any  $M \in \mathcal{O}$ ,  $M(\lambda)$  satisfies the following property:

$$\operatorname{Hom}_{U(\mathfrak{g})}(M(\lambda),M) = \operatorname{Hom}_{U(\mathfrak{g})}\left(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}}\mathbb{C}_{\lambda},M\right) \cong \operatorname{Hom}_{U(\mathfrak{b})}\left(\mathbb{C}_{\lambda},\operatorname{Res}_{\mathfrak{b}}^{\mathfrak{g}}M\right).$$

Proof:

Noting that

- Ind<sup>g</sup><sub>b</sub> C<sub>λ</sub> = U(g) ⊗<sub>U(b)</sub> C<sub>λ</sub>,
  Res<sup>g</sup><sub>b</sub> M is an identification of the g-module M has a b- module by restricting the action of g, consider the following two maps:

$$F: \hom_{U(\mathfrak{g})}(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}, M) \to \hom_{U(\mathfrak{b})}(\mathbb{C}_{\lambda}, M)$$
$$\phi \mapsto (F\phi : z \mapsto \phi(1 \otimes z)),$$

and

$$G: \hom_{U(\mathfrak{b})}(\mathbb{C}_{\lambda}, M) \to \hom_{U(\mathfrak{g})}(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}, M)$$
$$\psi \mapsto (G\psi : g \otimes v \mapsto g \cdot \psi(v)).$$

It suffices to show that these maps are well-defined and mutually inverse.

To see that F is well-defined, let  $\phi: U(\mathfrak{g}) \otimes C_{\lambda} \to M$  be fixed; we will show that the set map  $F\phi: \mathbb{C}_{\lambda} \to M$  is  $U(\mathfrak{b})$ -linear. Let  $b \in U(\mathfrak{b})$ , then

```
b \curvearrowright F\phi(v) := b \curvearrowright (z \mapsto \phi(1 \otimes z))(v)
                     := b \curvearrowright \phi(1 \otimes v)
                     =\phi(b\curvearrowright (1\otimes v))\quad \text{since }\phi \text{ is }U(\mathfrak{g})\text{-linear and }b\in U(\mathfrak{g})
                     =\phi((b \cap 1) \otimes v) by the definition/construction of M(\lambda) as a U(\mathfrak{g})-module.
                     =\phi(1\otimes(b\curvearrowright v)) since \mathbb{C}_{\lambda} is a \mathfrak{b}-module and the tensor is over U(\mathfrak{b})
                     := (z \mapsto \phi(1 \otimes z))(b \curvearrowright v)
                      := F\phi(b \curvearrowright v).
```