AB

ASSIGNMENT

- 1. Define the following terms:
 - Fissile, Fertile and Fissionable Nuclides giving examples of each.
- 2. What is the purpose of neutron source and give an example of neutron source.
- 3. Derive the semi empirical mass formula
- 4. Calculate the BE/A for U-235, U-238
 - Given: mass of proton 1.007825 amu, mass of neutron 1.008665 amu, lamu = 931 Mev
- 5. Explain the mechanism of fission on the basis of liquid drop model
- 6. What is critical energy? Explain the fission on the basis on the potential energy curve.
- 7. Draw the fission yield curve for thermal fission of U-235 and fast fission of U-238
- 8, What is critical mass? What is the critical mass for U-235 and Pu-239?
- 9. Define micro-scopic and macro-scopic cross sections.
- 10. The micro-scopic cross sections for the capture of (slow neutrons) at 0.025 ev by hydrogen is 0.33 barns and for oxygen is 2x10e-04 barns. Calculate the macro-scopic x sec of H2O molecule for thermal neutrons.
- 11. Nat U is a homogenous mixture of 99.28 wt% of U-238 (σ_b=2.7 b) and 0.72 wt% U-235 (σ_b=681 b). The density of nat. U is 19.0x10E03 kg/m³. Determine the total macro-scopic and micro-scopic absorption cross section of this material.
- 12. Plot micro-scopic cross section vs neutron energy.
- 13. Explain Doppler effect.
- 14. What are the properties of good moderator?
- 15. Calcualte the ξ of hydrogen atom.
- 16. Explain the kinematics of elastic coliision.
- 17. Explain neutron cycle.
- 18. Derive the four factor formula.
- 19. Explain the following terms: critical, super critical and sub critical state.
- 20. Explain the terms: neutron flux, neutron current, reaction rate, diffusion length, lethargy, logarithmic energy decrement, migration length.
- 21. Plot neutron flux vs neutron energy.
 - 22. Calculate the avg. no of collisions required to reduce the neutron energy from 2Mev to 1 ev in the moderator region for H atom and D atom. Ξ for H and D atom is 1.0 and 0.726.
 - 23. Stainless steel type 304 having density of 7.86 g/cm3 has been used in some reactors. The nominal composition by weight of this material as follows C- 0.08%, CR-19%, Ni-10% and Fe the remainder. Calculate the macroscopic absorption x-sec of SS304 at 0.0253 ev.
 - $C \sigma(n,\gamma) = 0.0034 \text{ barns}$, Mol wt. 12.0
 - $Cr \sigma(n,\gamma) = 3.1 \text{ barns}$, Mol wt. 52.0
 - Ni $\sigma(n,\gamma) = 4.43$ barns, Mol wt. 58.7
 - Fe $\sigma(n,\gamma) = 2.55$ barns, Mol wt. 55.8
- 24. How four factor changes by fuel lumping?
- 25. In a critical reactor, the multiplication factor is
 - slightly greater than unity
 - ii. equal to unity
 - iii. slightly less than unity
 - iv. equal to zero
- 26. Doppler broadening is caused by
 - i. increase in temperature of the fuel
 - ii. decrease in temperature of the fuel
 - iii. is independent of temperature of the fuel
 - iv. decrease in temperature of the moderator
- 27. Resonance escape probability in a heterogeneous system is

ii. great iii. less t	to that of homogeneous system for the same fuel/moderator composition er than that of homogeneous system for the same fuel/moderator composition han that of homogeneous system for the same fuel/moderator composition				
	pendent of fuel/moderator composition				
28. Write the two group diffusion equation and explain the terms 29. Thermal utilization factor in a heterogeneous system is					
i. equal ii. great iii. less t	to that of homogeneous system for the same fuel/moderator composition er than that of homogeneous system for the same fuel/moderator composition han that of homogeneous system for the same fuel/moderator composition bendent of fuel/moderator composition				
30. The amount of total energy released in a nuclear fission is about 200 MeV, out of which most of the energies carried by					
[a] Prompt neutrons [b] Fission products					
[c] prompt gammas [d] Neutrinos					
→31. Which of the following	g moderator material has largest migration area/length:				
[a] D_2O [b] H_2O	[c] Beryllium [d] Graphite				
32. In a nuclear fission, most	of the prompt neutrons are emitted with kinetic energy approximately equal to				
[a] 0.0625 eV [b] 1 e	V [c] 1 keV [d] 1 MeV				
33. If Σ_a is the macroscop	ic absorption cross section and ' Φ ' is the reaction rate is $ \Phi ^2 = \Phi ^2 + \Phi ^2 = \Phi ^2 + \Phi ^2$				
[a] $\Phi \Sigma_a$ [b] 1/($\Phi \Sigma$	$(\Sigma_a)^2$ [c] $1/\Phi \Sigma_a$ [d] $(\Phi \Sigma_a)^2$				
34. Main source of thermal	neutrons in a reactor core is:				
[a] Fissile material	[d] Absorber				
[c] Fertile material					
35. By integrating which of equation:	f the following variables in neutron transport equation, one obtains the diffusion				
[a] Angular, Ω	[b] Energy, E				
[c] time, t	[d] Space, r				
36. In a chain reaction system, if infinite multiplication factor, k_{∞} , is 1.005, the neutron density increases 10 times in approximately					
[a] 46 generations	[b] 6 generations				
[c] 462 generations	[d] 1460 generations				
37. With the decrease in the si	ze of the reactor system, the non-leakage probability:				
[a] decreases [b] increases					
[c] remains constant	[d] depends on k-eff				
$\Sigma_{\rm f}$ respectively, what is	and 'v'. If the macroscopic absorption and fission cross section are defines as Σ_a and the relation between ' η ' and 'v'.				
39. Various mechanisms transport formulation.	by which neutrons can be gained or lost from an arbitrary volume, in the neutron				

- 40. The migration length is a measure of the net vector distance travelled by (a) a thermal neutron before getting absorbed (b) a fission neutron before getting absorbed
- (c) a fission neutron before leaking out
- (d) a thermal neutron before leaking out
- 41. Fick's law is not valid
- (i) far away from the boundaries
- (ii) when the neutron flux strongly varies with distance
- (iii) for a uniform medium
- (iv) near strong absorbers
- 42. The flux at a distance r from a point source of neutrons in an infinite medium is given by

(a)
$$\phi(r) = \frac{S}{4\pi D} \frac{e^{-r}}{r}$$

(b)
$$\phi(r) = \frac{4S}{\pi D} e^{-r/L}$$

(c)
$$\phi(r) = \frac{1}{4\pi D} \frac{e^{-r}}{L}$$

$$\phi(r) = \frac{D}{4\pi S} \frac{e^{-L}}{r}$$

- 43. Linear extrapolation distance is the distance over which
- (a) thermal absorption goes to zero
- (b) neutron diffusion coefficient becomes zero
- (c) neutron flux goes to zero
- (d) derivative of neutron flux becomes zero
- √ 44. In a certain critical reactor having a geometrical buckling B², if M² is doubled, then k_∞ should be
 - (a) $k_{\infty} = k_{\infty}$
 - (b) $k_{\infty} = 2k_{\infty}$
 - (c) $k_{\infty} = 2 k_{\infty} + 1$
 - (d) $k_{\infty} = 2 k_{\infty} 1$
 - 45. As the neutron loses energy while slowing down
 - (a) the average logarithmic decrement increases
 - (b) the average logarithmic decrement decreases
 - (c) the neutron lethargy increases
 - (d) the neutron lethargy decreases
 - 46. The diffusion area termed as L² for thermal neutrons
 - (a) is inversely proportional to the diffusion coefficient
 - (b) directly proportional to the macroscopic absorption cross section
 - (c) inversely proportional to the absorption mean free path cross section
 - (d) directly proportional to the absorption mean free path (diffusion cooff) 1/2
 - 47. The average logrithmic energy decrement ξ for isotropic scattering
 - (a) independent of initial energy
 - (b) dependent on initial energy
 - (c) dependent on scattering angle

- (d) independent of the scattering angle
- 48. Identify the critical relation for diffusion of two group of neutrons in a multiplying medium for a bare reactor

(a)
$$k_{\infty} = 1 + L^2 B_g^2 + \tau$$
 (b) $k_{eff} = \frac{k_{\infty}}{(1 + L^2 B_g^2)(1 + \tau B_g^2)}$

(c)
$$k_{eff} = \frac{k_{\infty}}{(1 + L^2 B_g^2)\tau}$$
 (d) $k_{eff} = \frac{\tau B_g^2}{(1 + L^2 B_g^2)}$

- \angle 49. The unit of fermi age τ is
 - (a) sec (b) sec
- (c) cm²
- (d) cm⁻²

- 50 Explain the following
- (i) Diffusion length
 - (ji) Geometrical buckling
- 51. Explain how the four factors η, ε, p and f change for homogenous and heterogeneous reactors?
- 52. Define the terms fissile, fertile and fissionable materials giving examples. Write the nuclear reactions leading to the production of fissile plutonium and uranium.
- 53. Write a note on two types of neutron sources with their possible role in the reactor operation.
- 54. Explain the terms involved four factor formula. How does the expression change if leakage on neutrons is considered.
- 55. What is the basic purpose of reflector?
- 56. A nuclide is said to be fertile if
 - a) It can be fissioned.
 - b) It can be fissioned with fast neutrons.
 - c) It can be converted to fissile species.
 - d) It can be fissioned by neutrons of any energy.
- 57. Resonance escape probability is the probability
 - a) that a neutron is captured in the resonance.
 - b) that a neutron escapes the resonance.
 - c) that a neutron undergoes fission.
 - d) that a neutron leaks out while slowing down.
- 58. Delayed neutrons are the ones
 - a) which are produced by fission products.
 - b) which are produced due to (n,γ) reaction with fission products.
 - c) which are produced during fission.
 - d) which are produced neutron sources in the reactor.

59.	The unit of J, current density are
	a) neutrons/m.
	b) neutrons/sec.
	c) neutrons/sq. m/sec.
	d) neutrons/m/sec.
60.	Fast reactor is one where
	a) the fission occur at a fast rate.
	b) most of the fissions are caused by fast neutrons.
	c) the heat is transferred to the coolant at a fast rate.
	d) the fission neutrons are born with fast energies.
	fissioned.
61.	If a U ²³⁵ nucleus is split into its constituent neutrons and protons
	a) then 2500 MeV energy is released.
	b) then 2500 MeV has to be supplied.
	c) then 200 MeV is released.
	d) then 200 MeV has to be supplied.
¥ 62.	Migration length is a measure of
	a) the distance travelled by a thermal neutron before getting absorbed.
	b) distance travelled by a fission neutron before getting absorbed.
	c) distance travelled by a fission neutron before leaking out.
	d) the distance travelled by a thermal neutron before leaking out.
63.	A good moderator is one
	a) / which has a small scattering cross section.
	b) which has a small diffusion length.
	c) which has a high absorption cross section.
	d) which has a small ξ value.
61	As a size of the reactor increases the leakage
04.	
	a) increases. b) decreases.
	c) does not change.
	d) can not be predicted.
65.	The number of collisions required to a neutron for a hydrogen atom to slow down to thermal energy (0.025
	ev) from 2 Mev is
	a) 18.
	b) 55.
	c) 200.
	d) 150.
66.	If $B_g^2 >> B_m^2$ then
	a) the system is over sized.
	b) the system is critical.
	c) the system is supercritical.
	d) the system is subcritical.
67	If the enrichment of the fuel is increased, then one can say that
07.	a) f decreases.
	b) η increases.
	c) p increases.
	d) non leakage probability increases

68. The diffusion theory is not valid for a

(I)	b) far away from c) heterogeneous d) near strong ab Write short note on foll	medium.				
(H) (H) (III) (IV) (V)	Microscopic and macroDelayed neutrons in fissAverage logarithmic en	scopic cross section sion and their signif				
69.	Answer the following:					
(i) C	Calculate η and α for thermal	neutron fission of U	U ²³³ and P ²³⁹ from the following quantities;			
		U^{233}	Pu^{239}			
	σ_a	580 b	1010 b			
	σ_{f}	530 b	740 b			
	ν	2.492	2.871			
	 70. Diffusion theory is not (a) for a homogeneous sys (b) far away from the boun (c) when there are no neutron (d) near strong absorbers 71. If ξ of Oxygen is 0.1 0.025 eV upon scattering 	daries con sources	collisions required for a neutron to slow dwon from 2 MeV to			
	(a) 18 (b) 1	(c) 151	(d) 221			
	72. The average logrithmic (a) independent of initial end		for isotropic scattering (b) dependent on initial energy			
	(c) dependent on scattering a	ngle	(d) independent of the scattering angle			
73.	The unit of fermi age τ is (a) sec (b) sec	c ⁻¹ (c) cm ⁻²	2 (d) cm ²			
74.	A thermal reactor is one in	which				
	(a) fission neutrons are	generated with therr	mal energies			
	(b) most of fissions are	caused by thermal i	neutrons			
	(c) fission reactions take	place at a slow rate	re			
	(d) neutrons are slowed down to thermal energies					
75.	In an critical reactor, the	In an critical reactor, the multiplication factor				
	(a) slightly greater than	unity				

a) homogeneous medium.

