SEOUENCE LISTING

110> BEAUDOIN, Adrien R. SEVIGNY, Jean BACH, Fritz H. ROBSON, Simon

<120> ATP-DIPHOSPHOHYDROLASES, PROCESS OF PURIFICATION THEREOF AND PROCESS OF PRODUCING THEREOF BY RECOMBINANT TECHNOLOGY

<130> 920333.90019

<140> 09/781,796

<141> 2001-02-12

<150> 08/419,204

<151> 1995-04-10

<150> CA96/00223

<151> 1996-04-10

<150> 08/930,921

<151> 1998-02-01

<160> 8

<170> PatentIn Ver. 2.1

<210> 1

<211> 510

<212> PRT

<213> Homo sapiens

<400> 1

Met Glu Asp Thr Lys Glu Ser Asn Val Lys Thr Phe Cys Ser Lys Asn

Ile Leu Ala Ile Leu Gly Phe Ser Ser Ile Ile Ala Val Ile Ala Leu

Leu Ala Val Gly Leu Thr Gln Asn Lys Ala Leu Pro Glu Asn Val Lys 40

Tyr Gly Ile Val Leu Asp Ala Gly Ser Ser His Thr Ser Leu Tyr Ile

Tyr Lys Trp Pro Ala Glu Lys Glu Asn Asp Thr Gly Val Val His Gln

Val Glu Glu Cys Arg Val Lys Gly Pro Gly Ile Ser Lys Phe Val Gln

Lys Val Asn Glu Ile Gly Ile Tyr Leu Thr Asp Cys Met Glu Arg Ala 105

Arg Glu Val Ile Pro Arg Ser Gln His Gln Glu Thr Pro Val Tyr Leu

Gly Ala Thr Ala Gly Met Arg Leu Leu Arg Met Glu Ser Glu Glu Leu 135

TECH CENTER 1800/200

Ala 145	Asp	Arg	Val	Leu	Asp 150	Val	Val	Glu	Arg	Ser 155	Leu	Ser	Asn	Tyr	Pro 160
Phe	Asp	Phe	Gln	Gly 165	Ala	Arg	Ile	Ile	Thr 170	Gly	Gln	Glu	Glu	Gly 175	Ala
Tyr	Gly	Trp	Ile 180	Thr	Ile	Asn	Tyr	Leu 185	Leu	Gly	Lys	Phe	Ser 190	Gln	Lys
Thr	Arg	Trp 195	Phe	Ser	Ile	Val	Pro 200	Tyr	Glu	Thr	Asn	Asn 205	Gln	Glu	Thr
Phe	Gly 210	Ala	Leu	Asp	Leu	Gly 215	Gly	Ala	Ser	Thr	Gln 220	Val	Thr	Phe	Val
Pro 225	Gln	Asn	Gln	Thr	Ile 230	Glu	Ser	Pro	Asp	Asn 235	Ala	Leu	Gln	Phe	Arg 240
Leu	Tyr	Gly	Lys	Asp 245	Tyr	Asn	Val	Ţyr	Thr 250	His	Ser	Phe	Leu	Cys 255	Tyr
Gly	Lys	Asp	Gln 260	Ala	Leu	Trp	Gln	Lys 265	Leu	Ala	Lys	Asp	Ile 270	Gln	Val
Ala	Ser	Asn 275	Glu	Ile	Leu	Arg	Asp 280	Pro	Cys	Phe	His	Pro 285	Gly	Tyr	Lys
	290					295					300		Thr		
Phe 305	Glu	Met	Thr	Leu	Pro 310	Phe	Gln	Gln	Phe	Glu 315	Ile	Gln	Gly	Ile	Gly 320
Asn	Tyr	Gln	Gln	Cys 325	His	Gln	Ser	Ile	Leu 330	Glu	Leu	Phe	Asn	Thr 335	Ser
Tyr	Cys	Pro	Tyr 340	Ser	Gln	Cys	Ala	Phe 345	Asn	Gly	Ile	Phe	Leu 350	Pro	Pro
Leu	Gln	Gly 355	Asp	Phe	Gly	Ala	Phe 360	Ser	Ala	Phe	Tyr	Phe 365	Val	Met	Lys
Phe	Leu 370	Asn	Leu	Thr	Ser	Glu 375	Lys	Val	Ser	Gln	Glu 380	Lys	Val	Thr	Glu
Met 385	Met	Lys	Lys	Phe	Cys 390	Ala	Gln	Pro	Trp	Glu 395	Glu	Ile	Lys	Thr	Ser 400
Tyr	Ala	Gly	Val	Lys 405	Glu	Lys	Tyr	Leu	Ser 410	Glu	Tyr	Cys	Phe	Ser 415	Gly
Thr	Tyr	Ile	Leu 420	Ser	Leu	Leu	Leu	Gln 425	Gly	Tyr	His	Phe	Thr 430	Ala	Asp
Ser	Trp	Glu 435	His	Ile	His	Phe	Ile 440	Gly	Lys	Ile	Gln	Gly 445	Ser	Asp	Ala
Gly	Trp 450		Leu	Gly	Tyr	Met 455		Asn	Leu	Thr	Asn 460	Met	Ile	Pro	Ala

•

```
Glu Gln Pro Leu Ser Thr Pro Leu Ser His Ser Thr Tyr Val Phe Leu
                    470
Met Val Leu Phe Ser Leu Val Leu Phe Thr Val Ala Ile Ile Gly Leu
                                    490
                485
Leu Ile Phe His Lys Pro Ser Tyr Phe Trp Lys Asp Met Val
                                505
<210> 2
<211> 1818
<212> DNA
<213> Homo sapiens
accacaccaa gcagcggctg gggggggaa agacgaggaa agaggaggaa aacaaaagct 60
gctacttatg gaagatacaa aggagtctaa cgtgaagaca ttttgctcca agaatatcct 120
agccatcctt ggcttctcct ctatcatagc tgtgatagct ttgcttgctg tggggttgac 180
ccagaacaaa gcattgccag aaaacgttaa gtatgggatt gtgctggatg cgggttcttc 240
tcacacaagt ttatacatct ataagtggcc agcagaaaag gagaatgaca caggcgtggt 300
gcatcaagta gaagaatgca gggttaaagg tcctggaatc tcaaaatttg ttcagaaagt 360
aaatgaaata ggcatttacc tgactgattg catggaaaga gctagggaag tgattccaag 420
gtcccagcac caagagacac ccgtttacct gggagccacg gcaggcatgc ggttgctcag 480
gatggaaagt gaagagttgg cagacagggt tctggatgtg gtggagagga gcctcagcaa 540
ctaccccttt gacttccagg gtgccaggat cattactggc caagaggaag gtgcctatgg 600
ctggattact atcaactatc tgctgggcaa attcagtcag aaaacaaggt ggttcagcat 660
agtoccatat gaaaccaata atcaggaaac ctttggagct ttggaccttg ggggagcctc 720
tacacaagtc acttttgtac cccaaaacca gactatcgag tccccagata atgctctgca 780
atttcgcctc tatggcaagg actacaatgt ctacacacat agcttcttgt gctatgggaa 840
ggatcaggca ctctggcaga aactggccaa ggacattcag gttgcaagta atgaaattct 900
cagggaccca tgctttcatc ctggatataa gaaggtagtg aacgtaagtg acctttacaa 960
gaccccctgc accaagagat ttgagatgac tcttccattc cagcagtttg aaatccaggg 1020
tattggaaac tatcaacaat gccatcaaag catcctggag ctcttcaaca ccagttactg 1080
cccttactcc cagtgtgcct tcaatgggat tttcttgcca ccactccagg gggattttgg 1140
ggcattttca gctttttact ttgtgatgaa gtttttaaac ttgacatcag agaaagtctc 1200
tcaggaaaag gtgactgaga tgatgaaaaa gttctgtgct cagccttggg aggagataaa 1260
aacatcttac gctggagtaa aggagaagta cctgagtgaa tactgctttt ctggtaccta 1320
cattetetee etecttetge aaggetatea ttteacaget gatteetggg ageacateea 1380
tttcattggc aagatccagg gcagcgacgc cggctggact ttgggctaca tgctgaacct 1440
gaccaacatg atcccagctg agcaaccatt gtccacacct ctctcccact ccacctatgt 1500
cttcctcatg gttctattct ccctggtcct tttcacagtg gccatcatag gcttgcttat 1560
ctttcacaag ccttcatatt tctggaaaga tatggtatag caaaagcagc tgaaatatgc 1620
tggctggagt gaggaaaaaa tcgtccaggg agcattttcc tccatcgcag tgttcaaggc 1680
catcettece tgtetgeeag ggeeagtett gaegagtgtg aagetteett ggettttaet 1740
gaagcettte ttttggaggt atteaatate etttgeetea aggaettegg eagatactgt 1800
                                                                   1818
ctctttcatg agtttttc
<210> 3
<211> 11
<212> PRT
<213> Bovine
<400> 3
Glu Thr Pro Val Tyr Leu Gly Ala Thr Ala Gly
<210> 4
```

<211> 5

```
<212> PRT
<213> Bovine
<400> 4
Leu Leu Arg Met Glu
1
<210> 5
<211> 13
<212> PRT
<213> Bovine
<220>
<221> UNSURE
<222> (8)
<223> Xaa, where Xaa = any amino acid
<400> 5
Ala Asp Lys Ile Leu Ala Asn Xaa Val Ala Ser Ser Ile
<210> 6
<211> 10
<212> PRT
<213> Bovine
<400> 6
Tyr Pro Phe Asp Phe Gln Gly Ala Arg Ile
<210> 7
<211> 20
<212> PRT
<213> Porcine
<400> 7
Lys Ser Asp Thr Gln Glu Thr Tyr Gly Ala Leu Asp Leu Gly Gly Ala
1
                                     10
Ser Thr Gln Val
             20
<210> 8
<211> 16
<212> PRT
<213> Human and bovine
<400> 8
Lys Ser Asp Thr Gln Glu Thr Tyr Gly Ala Leu Asp Leu Gly Gly Ala
                                     10
1
```