SEQUENCE LISTING

```
<110> Gentide Biopharmaceuticals, Inc.
     Bussell, Stuart
<120> METHODS TO CONSTRUCT MULTIMERIC DNA AND POLYMERIC PROTEIN SEQUENCES AS
DIRECT FUSIONS OR WITH LINKERS
<130>
      GNT-00101.P.1-US
      US 60/396,466
<150>
<151>
      2002-07-16
<160> 86
<170> PatentIn version 3.0
<210>
<211>
      573
<212> DNA
<213> Homo sapiens
<400> 1
ttcccaacca ttcccttatc caggettttt gacaacgeta tgctccgcgc ccatcgtctg
                                                                       60
caccagetgg cetttgacae ctaccaggag tttgaagaag cetatateee aaaggaacag
                                                                      120
aagtatteat teetgeagaa ceeccagaee teeetetgtt teteagagte tatteegaea
                                                                      180
ccctccaaca gggaggaaac acaacagaaa tccaacctag agctgctccg catctccctg
                                                                      240
ctgctcatcc agtcgtggct ggagcccgtg cagttcctca ggagtgtctt cgccaacagc
                                                                     300
ctggtgtacg gcgcctctga cagcaacgtc tatgacctcc taaaggacct agaggaaggc
                                                                      360
atccaaacgc tgatggggag gctggaagat ggcagcccc ggactgggca gatcttcaag
                                                                      420
cagacctaca gcaagttcga cacaaactca cacaacgatg acgcactact caagaactac
                                                                     480
gggctgctct actgcttcag gaaggacatg gacaaggtcg agacattcct gcgcatcgtg
                                                                      540
                                                                      573
cagtgccgct ctgtggaggg cagctgtggc ttc
<210>
       2
<211>
      191
<212>
      PRT
<213> Homo sapiens
<220>
<221>
      mat_peptide
<222>
      (1)..()
<400>
```

Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu Arg

Ala	HIS	Arg	20	HIS	GIII	ьец	Ala	25	Asp	1111	TÀT	GIII	30	Pne	GIU	
Glu	Ala	Tyr 35	Ile	Pro	Lys	Glu	Gln 40	Lys	Tyr	Ser	Phe	Leu 45	Gln	Asn	Pro	
Gln	Thr 50	Ser	Leu	Cys	Phe	Ser 55	Glu	Ser	Ile	Pŗo	Thr 60	Pro	Ser	Asn	Arg	
Glu 65	Glu	Thr	Gln	Gln	Lys 70	Ser	Asn	Leu	Glu	Leu 75	Leu	Arg	Ile	Ser	Leu 80	
Leu	Leu	Ile	Gln	Ser 85	Trp	Leu	Glu	Pro	Val 90	Gļn	Phe	Leu	Arg	Ser 95	Val	
Phe	Ala	Asn	Ser 100	Leu	Val	Tyr	Gly	Ala 105	Ser	Asp	Ser	Asn	Val 110	Tyr	Asp	
Leu	Leu	Lys 115	Asp	Leu	Glu	Glu	Gly 120	Ile	Gln	Thr	Leu	Met 125	Gly	Arg	Leu	
	Asp 130	Gly	Ser	Pro	Arg	Thr 135	Gly	Gln	Ile	Phe	Lys 140	Gln	Thr	Tyr	Ser	
Lys 145	Phe	Asp	Thr	Asn	Ser 150	His	Asn	Asp	Asp	Ala 155	Leu	Leu	Lys	Asn	Tyr 160	
Gly	Leu	Leu	Tyr	Cys 165	Phe	Arg	Lys	Asp	Met 170	Asp	Lys	Val	Glu	Thr 175	Phe	
		Ile	Val 180	Gln	Cys	Arg	Ser	Val 185	Glu	Gly	Ser	Cys	Gly 190	Phe		
<21 <21 <21 <21	0 >	3 38 DNA Artii	ficia	al					•							
<22 <22		syntl	netio	c se	quen	ce			٠							
<40 gga		3 cat a	atgti	tece	aa c	catt	ccct	t at	ccag	gc						38
<21 <21 <21 <21	1> 2>	4 36 DNA Arti:	ficia	al												
<22 <22		syntl	heti	c se	quen	ce										
<40 cgc		4 ccc 1	taga	agcc	ac a	gctg	ccct	c ca	caga							36

<pre> <210> 6 <211> 21 <212> DNA <213> Artificial <220> <223> synthetic sequence <400> 6 tgctagttat tgctcagcgg t </pre> <pre> <pre> <210> 7 <211> 588 <212> DNA <213> Artificial </pre> <pre> <220> <221> 588 <212> DNA <213> Artificial </pre> <pre> <220> <223> synthetic sequence <400> 7 catatytic caaccattce cttatccagg ctttttgaca acgctatget ccgcgccat cgtctgcacc agctggctt tgacacctac caggagtttg aagaagccta tatcccaaag gaacagaagt attcattcct gcagaaccce cagacctcce tctgtttctc agagtctatt ccgacaccct ccaacagga ggaaacacaa cagaaatcca acctagaget gctccgcatc tccctgctgc tcatccagtc gtggctggag cccgtgcagt tcctcaggag tgtcttcgcc aacagcctgg tgtacggcg ctctgacage aacgtctatg acctcctaaa ggacctagag gaaggcatcc aaacgctgat ggggaggctg gaagatggca gccccggac tgggcagat ttcaagcaga cctacagcaa gttcgacaa aactcacaca acgatgacca actactcaag aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgag aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac actactcaag aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac actactcaag aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgag aactacggc tgctctactg cttcaggaag gacatggaca aggtcgagaca aggtcgagaca attcctgag aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgaagaca aggtcgaaca aggtcgaaca aggtcgaacaa aggtcgaacaa aggtcgaacaa aggtcgaacaa aggtcgaacaa aggtcgaacaa aggtcgaacaaacaaa aggacacaaaacaaa</pre></pre>	<210><211><212><213>	5 19 DNA Artificial					
<pre>c210> 6 c211> 21 c212> DNA c213> Artificial c220> c223> synthetic sequence <400> 6 tgctagttat tgctcagcgg t c210> T c211> 588 c212> DNA c213> Artificial c220> c223> synthetic sequence c400> 6 tgctagttat tgctcagcgg t c210> T c211> 588 c212> DNA c213> Artificial c220> c223> synthetic sequence c400> T catatgttcc caaccattcc cttatccagg ctttttgaca acgctatgct ccgcgcccat cgtctgcacc agctggcctt tgacacctac caggagtttg aagaagccta tatcccaaag gaacagaagt attcattcct gcagaacccc cagacctccc tctgtttctc agagtctatt ccgaccaccct ccaacaggga ggaaacacaa cagaaatcca acctagagct gctccgcatc tccctgctgc tcatccagtc gtggctggag cccgtgcagt tcctcaggag tgtcttcgcc aacagcctgg tgtacggcgc ctctgacagc aacgtcatg acctcctaaa ggacctagag gaaggcatcc aaacgctgat ggggaggctg gaagatggca gcccccggac tgggcagatc ttcaagcaga cctacagcaa gttcgacca aactcacaca acgatgacca actactcaag aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctagag aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagaca aggtcgagaca attcctgcgc</pre>		synthetic seque	ence				
<pre><211> 21 <212> DNA <213> Artificial </pre> <pre><220> <223> synthetic sequence <400> 6 tgctagttat tgctcagcgg t <210> 7 <211> 588 <212> DNA <213> Artificial </pre> <pre><220> <223> synthetic sequence </pre> <pre><400> 7 catatgttcc caaccattcc cttatccagg ctttttgaca acgctatgct ccgcgccat cgtctgcacc agetggctt tgacacctac caggagtttg aagaagccta tatcccaaag gaacagaagt attcattcct gcagaacccc cagacctccc tctgtttctc agagtctatt ccgacaccct ccaacaggag ggaaacacaa cagaaatcca acctagagct gctccgcatc tccctgctgc tcatccagtc gtggctggag cccgtgcagt tcctcagagg tgtcttcgcc aacagcctgg tgtacggcgc ctctgacagc aacgtctatg acctcctaaa ggacctagag gaaggcatcc aaacgctgat ggggaggctg gaagatggca gcccccggac tgggcagatc ttcaagcaga cctacagcaa gttcgacaca aactcacaca acgatgacg actactcaag aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 54</pre>							19
<pre><223> synthetic sequence <4400> 6 tgctagttat tgctcagcgg t <210> 7 <211> 588 <212> DNA <213> Artificial <220> <223> synthetic sequence <4400> 7 catatgttcc caaccattcc cttatccagg ctttttgaca acgctatgct ccgcgcccat cgtctgcacc agctggcctt tgacacctac caggagtttg aagaagccta tatcccaaag gaacagaagt attcattcct gcagaacccc cagacctcc tctgtttctc agagtctatt ccgacaccct ccaacaggag agaaacacaa cagaaatcca acctagagct gctccgcatc tccctgctgc tcatccagtc gtggctggag cccgtgcagt tcctcaggag tgtcttcgcc aacagcctgg tgtacggcgc ctctgacagc aacgtcatag acctcctaaa ggacctagag gaaggcatcc aaacgctgat ggggaggctg gaagatggca gccccggac tgggcagatc ttcaagcaga cctacagcaa gttcgacaa aactcacaca acgatagacg actactcaag aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 54 aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc</pre>	<211> <212>	21 DNA	·				
tgctagttat tgctcagcgg t <pre> <210> 7 <211> 588 <212> DNA <213> Artificial <220> <223> synthetic sequence <400> 7 catatgttcc caaccattcc cttatccagg ctttttgaca acgctatget ccgcgcccat cgtctgcacc agctggcctt tgacacctac caggagtttg aagaagccta tatcccaaag gaacagaagt attcattcct gcagaacccc cagacctccc tctgtttctc agagtctatt ccgacaccct ccaacaggga ggaaacacaa cagaaatcca acctagagct gctccgcatc tccctgctgc tcatccagtc gtggctggag cccgtgcagt tcctcaggag tgtcttcgcc aacagcctgg tgtacggcgc ctctgacagc aacgtctatg acctcctaaa ggacctagag gaaggcatcc aaacgctgat ggggaggctg gaagatggca gcccccggac tgggcagatc ttcaagcaga cctacagcaa gttcgacaca aactcacaca acgatgacg actactcaag aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 54 aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 54 aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 54 </pre>		synthetic seque	ence				
<pre><211> 588 <212> DNA <213> Artificial <220> <223> synthetic sequence <400> 7 catatgttcc caaccattcc cttatccagg ctttttgaca acgctatgct ccgcgcccat cgtctgcacc agctggcctt tgacacctac caggagtttg aagaagccta tatcccaaag gaacagaagt attcattcct gcagaacccc cagacctccc tctgtttctc agagtctatt ccgacaccct ccaacaggga ggaaacacaa cagaaatcca acctagagct gctccgcatc tccctgctgc tcatccagtc gtggctggag cccgtgcagt tcctcaggag tgtcttcgcc aacagcctgg tgtacggcgc ctctgacagc aacgtctatg acctcctaaa ggacctagag gaaggcatcc aaacgctgat ggggaggctg gaagatggca gccccggac tgggcagatc ttcaagcaga cctacagcaa gttcgacaca aactcacaca acgatgacg actactcaag aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 54</pre>	. •	_	t				21
<pre><223> synthetic sequence <400> 7 catatgttcc caaccattcc cttatccagg ctttttgaca acgetatget cegegeceat cgtctgcacc agetggeett tgacacctae caggagtttg aagaagecta tateccaaag gaacagaagt atteatteet geagaacece cagaceteee tetgtttete agagtetatt cegacaccet ccaacaggga ggaaacacaa cagaaateca acetagaget geteegeate tecetgetge teatecagte gtggetggag eeegtgeagt teeteaggag tgtettegee aacageetgg tgtacggege etetgacage aacgtetatg acetectaaa ggacetagag gaaggeatee aaacgetgat ggggaggetg gaagatggea geeeeeggae tgggeagate tteaageaga cetacageaa gttegacaca aacteacaca acgatgacg actactcaag aactacggge tgetetactg etteaggaag gacatggaca aggtegagae atteetgege 54</pre>	<211> <212>	588 DNA					
catatgttcc caaccattce cttatecagg ctttttgaca acgetatget cegegeceat cgtctgcacc agetggeett tgacacctae caggagtttg aagaageeta tateccaaag 12 gaacagaagt atteatteet geagaaceee cagaceteee tetgtttete agagtetatt 18 ccgacaccet ccaacaggga ggaaacacaa cagaaateea acetagaget geteegeate 24 teeetgetge teatecagte gtggetggag eeegtgeagt teeteaggag tgtettegee 30 aacageetgg tgtacggege etetgacage aacgtetatg aceteetaaa ggacetagag 36 gaaggeatee aaacgetgat ggggaggetg gaagatggea geeeeeggae tgggeagate 42 tteaageaga cetacageaa gttegacaca aacteacaca acgatgacg actacteaag 48 aactacggge tgetetactg etteaggaag gacatggaca aggtegagae atteetgge 54 aactacggge tgetetactg etteaggaag gacatggaca aggtegagae atteetgege 54		synthetic seque	ence		. 3		
gaacagaagt attcattcct gcagaacccc cagacctccc tetgtttctc agagtctatt 18 ccgacaccct ccaacaggga ggaaacacaa cagaaatcca acctagagct gctccgcatc 24 tccctgctgc tcatccagtc gtggctggag cccgtgcagt tcctcaggag tgtcttcgcc 36 aacagcctgg tgtacggcgc ctctgacagc aacgtctatg acctcctaaa ggacctagag 36 gaaggcatcc aaacgctgat ggggaggctg gaagatggca gcccccggac tgggcagatc 42 ttcaagcaga cctacagcaa gttcgacaca aactcacaca acgatgacg actactcaag 48 aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 54		•	cttatccagg	ctttttgaca	acgctatgct	ccgcgcccat	60
ccgacaccct ccaacagga ggaaacacaa cagaaatcca acctagagct gctccgcatc tccctgctgc tcatccagtc gtggctggag cccgtgcagt tcctcaggag tgtcttcgcc 36 aacagcctgg tgtacggcgc ctctgacagc aacgtctatg acctcctaaa ggacctagag gaaggcatcc aaacgctgat ggggaggctg gaagatggca gccccggac tgggcagatc ttcaagcaga cctacagcaa gttcgacaca aactcacaca acgatgacgc actactcaag aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 54	cgtctg	cacc agetggeett	tgacacctac	caggagtttg	aagaagccta	tatcccaaag	120
tecetgetge teatecagte gtggetggag eeegtgeagt teeteaggag tgtettegee 30 aacageetgg tgtacggege etetgacage aacgtetatg acetectaaa ggacetagag 36 gaaggeatee aaacgetgat ggggaggetg gaagatggea geeeeeggae tgggeagate 42 tteaageaga eetacageaa gttegacaca aacteacaca acgatgaeg actaeteaag 48 aactaeggge tgetetactg etteaggaag gacatggaea aggtegagae atteetgege 54	gaacag	aagt attcattcct	gcagaacccc	cagacetece	tctgtttctc	agagtctatt	180
aacagcctgg tgtacggcgc ctctgacagc aacgtctatg acctcctaaa ggacctagag 36 gaaggcatcc aaacgctgat ggggaggctg gaagatggca gcccccggac tgggcagatc 42 ttcaagcaga cctacagcaa gttcgacaca aactcacada acgatgacgc actactcaag 48 aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 54	ccgaca	ccct ccaacaggga	ggaaacacaa	cagaaatcca	acctagagct	gctccgcatc	240
gaaggcatcc aaacgctgat ggggaggctg gaagatggca gcccccggac tgggcagatc 42 ttcaagcaga cctacagcaa gttcgacaca aactcacaca acgatgacgc actactcaag 48 aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 54	tacatg	ctgc tcatccagtc	gtggctggag	cccgtgcagt	tcctcaggag	tgtcttcgcc	300
ttcaagcaga cctacagcaa gttcgacaca aactcacaca acgatgacgc actactcaag aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 54	aacagc	ctgg tgtacggcgc	ctctgacagc	aacgtctatg	acctcctaaa	ggacctagag	360
aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 54	gaaggc	atcc aaacgctgat	ggggaggctg	gaagatggca	gcccccggac	tgggcagatc	420
	ttcaag	caga cctacagcaa	gttcgacaca	aactcacaca	acgatgacgc	actactcaag	480
atcgtgcagt gccgctctgt ggagggcagc tgtggcttct agggatcc 58	aactac	gggc tgctctactg	cttcaggaag	gacatggaca	aggtcgagac	attcctgcgc	540
	atcgtg	cagt gccgctctgt	ggagggcagc	tgtggcttct	agggatcc		588

<210> 8 <211> 192

```
PRT
<212>
      Artificial
<213>
<220>
<223>
     synthetic sequence
<220>
<221>
      mat peptide
<222>
      (1)..()
<400>
Met Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu
Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe
                               25
Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn
Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn
Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser
            Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser
Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr
                               105
Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg
                           120
Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr
                       135
Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn
                                       155
                   150
Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr
Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe
       9
<210>
<211>
       2907
<212>
       DNA
<213>
       Artificial
<220>
       synthetic sequence
<223>
```

<400> 9

ccggatațag	tteeteettt	cagcaaaaaa	cccctcaaga	cccgtttaga	ggccccaagg	60	
ggttatgcta	gttattgctc	agcggtggca	gcagccaact	cagcttcctt	tcgggctttg	120	
tttagcagcc	taggtattaa	tcaattagtg	gtggtggtgg	tggtggtggt	gctcgagtgc	180	
ggccgcaagc	ttgtcgacgg	agctcgcctg	caggcgcgcc	aaggcctgta	cagaattcgg	240	
atccccgata	tcccatggga	ctcttgtcgt	cgtcatcacc	ggagccacca	ccggtaccca	300	-
gatctgggct	gtccatgtgc	tggcgttcga	atttagcagc	agcggtttct	ttcataccaa	360	
ttgcagtact	accgcgtggc	accagacccg	cggagtgatg	gtgatggtga	tgaccagaac	420	
cactagtaca	cacatatgta	tatctccttc	ttaaagttaa	acaaaattat	ttctagaggg	480	
gaattgttat	ccgctcacaa	ttcccctata	gtgagtcgta	ttaatttcgc	gggatcgaga	540	
tegatetega	tcctctacgc	cggacgcatc	gtggccggca	tcaccggcgc	cacaggtgcg	600	
gttgctggcg	cctatatcgc	cgacatcacc	gatggggaag	atcgggctcg	ccacttcggg	660	
ctcatgagcg	cttgtttcgg	cgtgggtatg	gtggcaggcc	ccgtggccgg	gggactgttg	720	
ggcgccatct	ccttgcatgc	atggcgtaat	catggtcata	gctgtttcct	gtgtgaaatt	780	
gttatccgct	cacaattcca	cacaacatac	gagccggaag	cataaagtgt	aaagcctggg	840	
gtgcctaatg	agtgagctaa	ctcacattaa	ttgcgttgcg	ctcactgccc	gctttccagt	900	-
cgggaaacct	gtcgtgccag	ctgcattaat	gaatcggcca	acgcgcgggg	agaggcggtt '	960	
tgcgtattġg	gcgctcttcc	gcttcctcgc	tcactgactc	gctgcgctcg	gtcgttcggc	1020	7
tgcggcgagc	ggtatcagct	cactcaaagg	cggtaatacg	gttatccaca	gaatcagggg	1080	
ataacgcagg	aaagaacatg	tgagcaaaag	gccagcaaaa	ggccaggaac	cgtaaaaagg	1140	
ccgcgttgct	ggcgtttttc	cataggctcc	gcccccctga	cgagcatcac	aaaaatcgac	1200	
gctcaagtca	gaggtggcga	aacccgacag	gactataaag	ataccaggcg	tttccccctg	1260	
gaagctccct	cgtgcgctct	cctgttccga	ccctgccgct	taccggatac	ctgtccgcct	1320	
ttctcccttc	gggaagcgtg	gcgctttctc	atagçtcacg	ctgtaggtat	ctcagttcgg	1380	
tgtaggtcgt	tegetecaag	ctgggctgtg	tgcacgaacc	ccccgttcag	cccgaccgct,	1440	
gcgccttatc	cggtaactat	cgtcttgagt	ccaacccggt	aagacacgac	ttatcgccac	1500	
tggcagcagc	cactggtaac	aggattagca	gagcgaggta	tgtaggcggt	gctacagagt	1560	
tcttgaagtg	gtggcctaac	tacggctaca	ctagaaggac	agtatttggt	atctgcgctc	1620	
tgctgaagcc	agttaccttc	ggaaaaagag	ttggtagctc	ttgatccggc	aaacaaacca	1680	
ccgctggtag	cggtggtttt	tttgtttgca	agcagcagat	tacgcgcaga	aaaaaaggat	1740	

```
ctcaagaaga tootttgato ttttctacgg ggtctgacgc tcagtggaac gaaaactcac
                                                                     1800
gttaagggat tttggtcatg agattatcaa aaaggatctt cacctagatc cttttaaatt
                                                                     1860
aaaaatgaag tittaaatca atctaaagta tatatgagta aacttggtct gacagttacc
                                                                     1920
aatgettaat cagtgaggea cetateteag egatetgtet atttegttea tecatagttg
                                                                     1980
cctgactccc cgtcgtgtag ataactacga tacgggaggg cttaccatct ggccccagtg
                                                                     2040
ctgcaatgat accgcgagac ccacgctcac cggctccaga tttatcagca ataaaccagc
                                                                     2100
cagcoggaag ggccgagcgc agaagtggtc ctgcaacttt atccgcctcc atccagtcta
                                                                     2160
ttaattgttg ccgggaaget agagtaagta gttcgccagt taatagtttg cgcaacgttg
                                                                     2220
ttgecattge tacaggeate gtggtgtcae getegtegtt tggtatgget teatteaget
                                                                     2280
ccggttccca acgatcaagg cgagttacat gatcccccat gttgtgcaaa aaagcggtta
                                                                     2340
gctccttcgg tcctccgatc gttgtcagaa gtaagttggc cgcagtgtta tcactcatgg
                                                                     2400
ttatggcagc actgcataat tctcttactg tcatgccatc cgtaagatgc ttttctgtga
                                                                     2460
ctggtgagta ctcaaccaag tcattctgag aatagtgtat gcggcgaccg agttgctctt
                                                                     2520
                                                                     2580
gcccggcgtc aatacgggat aataccgcgc cacatagcag aactitaaaa gtgctcatca
ttggaaaacg ttcttcgggg cgaaaactct caaggatctt accgctgttg agatccagtt
                                                                     2640
cgatgtaacc cactogtgca cocaactgat ottoagoato tittactito accagogtit
                                                                     2700
ctgggtgagc aaaaacagga aggcaaaatg ccgcaaaaaa gggaataagg gcgacacgga
                                                                     2760
                                                                     2820
aatgttgaat actcatactc ttcctttttc aatattattg aagcatttat cagggttatt
gtctcatgag cggatacata tttgaatgta tttagaaaaa taaacaaata ggggttccgc
                                                                     2880
gcacatttcc ccgaaaagtg ccacctg
                                                                     2907
```

```
<210> 10
```

cgccatatga aaaagacagc tatcgcgatt gcagtggcac tggctggttt cgctaccgta

60

<211> 73

<212> DNA

<213> Artificial

<220>

<223> synthetic sequence

<220>

<221> sig_peptide

<222> (7)..(69)

<400> 10

```
<210>
      11
<211>
      21
<212> PRT
<213> Escherichia coli
<220>
<221> SIGNAL
<222> (1)..(21)
<400> 11
Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala
Thr Val Ala Gln Ala
<210> 12
<211> 42
<212> DNA
<213> Artificial
<220>
<223> synthetic sequence
ggacatatgc tgaagctttc ccaaccattc ccttatccag gc
                                                                     42
<210> 13
<211> 28
<212> DNA
<213> Artificial
<220>
<223> synthetic sequence
<400> 13
cgcggatccc tccacagagc ggcactgc
                                                                     28
<210> 14
<211> 578
<212> DNA
<213> Artificial
<220>
<223> synthetic sequence
<400> 14
catatgctga agctttccca accattccct tatccaggct ttttgacaac gctatgctcc
gcgcccatcg tctgcaccag ctggcctttg acacctacca ggagtttgaa gaagcctata
                                                                   120
```

73

gcgcaagctt gag

tcçcaaagga	acagaagtat	tcattcctgc	agaaccccca	gacctccctc	tgtttctcag	180
agtctattcc	gacaccctcc	aacagggagg	aaacacaaca	gaaatccaac.	ctagagctgc	240
tccgcatctc	cctgctgctc	atccagtcgt	ggctggagcc	cgtgcagttc	ctcaggagtg	300
tcttcgccaa	cagcctggtg	tacggcgcct	ctgacagcaa	cgtctatgac	ctcctaaagg	360
acctagagga	aggcatccaa	acgctgatgg	ggaggctgga	agatggcagç	ccccggactg	420
ggcagatctt	caagçagacc	tacagcaagt	tcgacacaaa	ctcaçacaac	gatgacgcac	480
tactcaagaa	ctacgggctg	ctctactgct	tcaggaagga	catggacaag	gtcgagacat	540
tcctgcgcat	cgtgcagtgc	cgctctgtgg	agggatcc			578

<211> 630

<212> DNA

<213> Artificial

<220>

<223> synthetic sequence

<220>

<221> source

<222> (4)..(66)

<223> Eschericia coli

<220>

<221> source

<222> (67)..(630)

<223> homo sapiens

<400> 15

catatgaaaa agacagctat cgcgattgca gtggcactgg ctggtttcgc taccgtagcg caagetttee caaceattee ettatecagg etttttgaca acgetatget eegegeecat 120 cgtctgcacc agctggcctt tgacacctac caggagtttg aagaagccta tatcccaaag 180 gaacagaagt attcattcct gcagaacccc cagacctccc tctgtttctc agagtctatt 240 ccgacaccet ccaacaggga ggaaacacaa cagaaatcca acctagaget gctccgcatc 300 tecetgetge teatecagte gtggetggag ecegtgeagt teeteaggag .tgtettegee 360 aacagcctgg tgtacggcgc ctctgacagc aacgtctatg acctcctaaa ggacctagag 420 gaaggcatcc aaacgctgat ggggaggctg gaagatggca gcccccggac tgggcagatc 480 ttcaagcaga cctacagcaa gttcgacaca aactcacaca acgatgacgc actactcaag 540 aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 600

```
<210> 16 <211> 208
```

<212> PRT

<213> Artificial

<220>

<223> synthetic sequence

<220>

<221> SIGNAL

<222> (1)..(21)

<223> from Eschericia coli

<400> 16

Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala 1 5 10 15

Thr Val Ala Gln Ala Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp 20 25 30

Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr 35 40 45

Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser 50 60

Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro 65 70 75 80

Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu 85 90 95

Leu Arg Ile Ser Leu Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln
100 105 110

Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp 115 120 125

Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr 130 135 140

Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe 145 150 155 160

Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala 165 170 175

Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp 180 185

Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly

300.

<210><211><212><212><213>	17 570 DNA Artif	ficia	ıl											
<220> <223>	syntl	netic	seq	uenc	e									
<400>	17													
catatg	ttcc (caaco	atto	c ct	tato	cagg	ctt	tttg	jaca	acgo	tatç	gct	ccgcç	cccat
cgtctg	cacc	agcto	gcct	t te	Jacac	ctac	cag	gagt	ttg	aaga	agco	ta	tatco	caaag
gaacag	aagt a	attca	ttcc	t go	agaa	cccc	cag	jacct	ccc	tcts	tttc	ctc	agagt	ctatt
ccgaca	ccct (ccaac	caggg	a gg	jaaac	cacaa	cag	jaaat	cca	acct	agag	gct	gctc	gcatc
tccctg	ctgc t	cato	ccagt	c gt	ggct	ggag	ccc	gtgc	agt	tcct	cago	gag	tgtct	tcgcc
aacagc	ctgg I	tgtac	ggcg	c ct	ctga	acago	aac	gtct	atg	acct	ccta	aaa	ggaco	tagag
gaaggc	atcc a	aaacg	gctga	t gg	ggag	gctg	gaa	gato	ggca	gcc	ccgg	jąc	tgggd	agatc
ttcaag	cąga (cctac	cagca	a gt	tcga	acaca	aac	tcac	caca	acga	tgad	gc	actac	tcaag
aactac	gggc 1	tgcto	ctact	g ct	tcag	ggaac	gad	atgo	gaça	aggt	cgaç	gac	attco	tgcgc
atcgtg	cagt (gccgo	etete	ıt go	jaggg	gated				,				
	;											-		
<210> <211>	18 188													•
<212>	PRT Arti	ficia	al									٠.		
						•								
<220> <223>	synt	hetio	c sec	ueno	ce						-			
<400>	18											÷		
		_	_											
Met Ph 1	e Pro	Thr	Ile 5	Pro	Leu	Ser	Arg	Leu 10	Phe	Asp	Asņ	Ala	Met 15	Leu
Arg Al	a His	Arg 20	Leu	His	Gln	Leu	Ala 25	Phe	Asp	Thr	Tyr	Gln 30		Phe
Glu Gl	u Ala 35	Tyr	Ile	Pro	Lys	Glu 40	Gln	Lys	Tyr	Ser	Phe 45	Leu	Gln	Asn
Pro Gl 50		Ser	Leu	Cys	Phe 55	Ser	Glu	Ser	Ile	Pro 60	Thr	Pro	Ser	Asn
Arg Gl	u Glu	Thr	Gln	Gln 70	Lys	Ser	Asn	Leu	Glu 75	Leu	Leu	Arg	Ile	Ser 80

Leu '	Leu	Leu	Ile	Gln 85	Ser	Trp	Leu	Glu	Pro 90	Val	Gln	Phe	Leu ·	Arg 95	Ser			
Val	Phe	Ala	Asn 100	Ser	Leu	Val	Tyr	Gly 105	Ala	Ser	Asp	Ser	Asn 110	Val	Tyr			
Asp	Leu	Leu 115	Lys	Asp	Leu	Glu	Glu 120	Gly	Ile	Gln	Thr	Leu 125	Met	Gly	Arg			
Leu	Glu 130	Asp	Gly	Ser	Pro	Arg 135	Thr	Gly	Gln	Ile	Phe 140	Lys	Gln	Thr	Tyr			
Ser 145	Lys	Phe	Asp	Thr	Asn 150	Ser	His	Asn	Asp	Asp 155	Ala	Leu	Leu	Lys	Asn 160			
Tyr	Gly	Leu	Leu	Tyr 165	Cys	Phe	Arg	Lys	Asp 170	Met	Asp	Lys	Val	Glu 175	Thr		•	
Phe	Leu ·	Arg	Ile 180	Val	Gln	Cys	Arg	Ser 185	Val	Glu	Gly							,
<210 <211		19 52	٠									•						
<212 <213		ONA Arti:	ficia	al							•							
<220 <223		syntl	netio	c sec	quenc	ce	•	÷										
<400		19 Fair 4	aata:	à tho à t	ta ta	racti	tett.	d da	2200	atta	ccti	t a tro	חבר	ac	•		•	52
			catga	atcal	tg tạ	ggct	tetto	d dda	aacc	attc	ccti	tatc	cag	gc	•.			52
<210	catai	tga (20	catga	ātcai	tg tạ	gget	tetto	d dda	aacc	attc	ccti	tatc	cag	gc				52
taco)> : 	tga (catga	ātcai	tg to	gget	tetto	d dda	aacc	attc	ccti	tatc	cag	gc		-		52
<210 <211)> 1 l> ! 2> I	tga (20 588			tg tọ	gget	tetto	d cca	aacc	attc	ccti	tatc	cag	gc				52
<210 <211 <212	catai)> : 1> ! 2> I 3> !	tga (20 588 DNA Arti:	ficia	al			tette	d dda	aacc	attc	ccti	tato	cag	gc				52
<210 <211 <212 <213	catai)> : 1> ! 2> I 3> !	tga (20 588 DNA Arti:	ficia				tette	e ee	aacc	attc	ccti	tatco	cag	gc				52
<210 <211 <212 <213 <223 <400	Catal O> 2 L> ! 2> I O> 3 >> 3 >> 3 >> 3	tga (20 588 DNA Arti: synt)	ficia hetio	al c sec	quenc	ce		<u>,</u> 3							gacaa	ac		52
<210 <211 <212 <213 <223 <400 cata	0> 2 L> ! 2> I 3> 2 0> 3	tga (20 588 DNA Arti syntl	ficia hetio gatea	al c sec	gg ct	ce	tccca	a ace	catto	ccct	tate	ccag	gct	ttt	gacaa			
<210 <211 <212 <213 <223 <400 cata	0> 2 1> ! 2> I 3> 2 0> 3 0> 3	20 588 DNA Arti: syntl	ficia hetio gatoa gegeo	al c sec atgto	quenc gg ct	ce ctct	tccca	a ace	catte	cect	tate	ccag	gct cca	tttt		aa	12	60
<210 <211 <212 <223 <223 <400 cata gcta	Catal O> 2 L> ! O> 3 O> 3 Atgac atgct	tga (20 588 DNA Arti: syntl 20 cat (tcc (ficia hetic gatca gegeo tecca	al c sec atgto ccato aaago	gg ct cg to ga ao	ce ctgc caga	tccca acca agtal	a acc	catte ggcc	ccct tttg ctgc	tate acae agae	ccag ccta accc	gct cca cca	tttt ggag gacc	tttga	aa tc	12	60 20
<210 <211 <212 <223 <400 cata gcta gaag tgtt	catal O>	20 588 DNA Arti: syntl 20 cat (ficia netion gatea gegeo tecca agte	al c sec atgto ccato aaagg	quenc gg ct cg to ga ac cc ga	ce ctgc caga	tccca acca agta cctco	a ace g cte t tca c aae	catte ggcc attc cagg	ccct tttg ctgc gagg	tato acao agao aaao	ccag ccta accc acca	gct cca cca	tttt ggag gacc gaaa	tttg:	aa tc ac	12	60 20 80
<210 <211 <212 <223 <400 cata gcta gaag tgtt	catal O> 2 L> ! O> 3 O> 3 O> 3 atgain atgain ctctc	tga (20 588 DNA Arti: synt) cat (ata cag (ficia netion gatea gegeo tecea agtea teego	al c sec atgto ccato aaagg tatto	queno gg ct cg to ga ao cc ga tc co	ce ctgc caga acaco	tccca acca agta cctcc tgct	a aco g cto t tco c aao c ato	catto ggcc attc caggo ccag	ccct tttg ctgc gagg tcgt	tato acao agao aaao ggc	ccago cctao accco cacao tgga	gct cca cca aca gcc	tttt ggag gacc gaaa cgtg	tttga tccci	aa tc ac	111 11 24 30	60 20 80
<210 <211 <212 <221 <222 <400 cata gcta gaag tgtt ctag ctca	catal O> 2 L> ! L> ! O> 3 S	tga (20 588 DNA Arti: syntl 20 cat (tcc (ata cag (tgc)	ficia hetio gatea gegeo tecea agtea tecego tecto	al c sec atgto ccato aaagg tatto cato	queno gg ch cg to ga ao co ga to co	ce ctgca cagaa acaca ctgca	tecea accaq agtal cetec tgctc	a aco g cto t tco c aao c ato	catto ggcc atto caggo ccag	ccct tttg ctgc gagg tcgt	tate acae agae aaae ggc	ccag ccta accc caca tgga acag	gct cca cca aca gcc caa	tttt ggag gacc gaaa cgtg	tttga tccci tccaa cagti	aa tc ac tc	12 14 24 30 36	50 20 80 40

<211> 191

<212> PRT

<213> Artificial

<220>

<223> synthetic sequence

<400> 21

Ser Cys Gly Phe Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn 1 5 10 15

Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr
20 25 30

Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe 35 40 45

Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr 50 55 60

Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu 65 70 75 80

Arg Ile Ser Leu Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe
85 90 95

Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser 100 105 110

Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu 115 120 125

Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys 130 135 140

Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala Leu 145 150 155 160

Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys
165 170 175

Val Glu Thr Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly
180 185 190

<210> 22

<211> 42

<212> DNA

<213> Artificial

```
<220>
<223> synthetic sequence
<400> 22
tacgaattcc attgatcatg tggcttctag taggtcgacg at
                                                                    42
<210> 23
<211>
<212> PRT
<213> Artificial
<220>
<223> synthetic sequence
<400> 23
Ser Cys Gly Phe
<210> 24
<211> 51
<212> DNA
<213> Artificial
<220>
<223> synthetic sequence
<400> 24
                                                                    51
tacgaattcc attgatcatg tggcttcaaa aagaaatagt aggtcgacga t
<210> 25
<211> 7
<212> PRT
<213> Artificial
<220>
<223> synthetic sequence
<400> 25
Ser Cys Gly Phe Lys Lys
<210> 26
<211> 1161
<212> DNA
<213> Artificial
<220>
<223> synthetic sequence
<400> 26
catatgacat gatcatgtgg cttcttccca accattccct tatccaggct ttttgacaac
                                                                    60
gctatgctcc gcgcccatcg tctgcaccag ctggcctttg acacctacca ggagtttgaa
                                                                   120
```

gaagcctata	tcccaaagga -	acagaagtat	tcattcctgc	agaaccccca	gacctccctc	180
tgtttctcag	agtctattcc	gacaccctcc	aacagggagg	aaacacaaca	gaaatccaac	240
ctagagctgc	tccgcatctc	cctgctgctc	atccagtcgt	ggctggagcc	cgtgcagttc	300
ctcaggagtg	tcttcgccaa	cagcctggtg	tacggcgcct	ctgacagcaa	cgtctatgac	360
ctcctaaagg	acctagagga	aggcatccaa	acgctgatgg	ggaggctgga	agatggcagc	420
ccccggactg	ggcagatctt	caagcagacc	tacagcaagt	tcgacacaaa	ctcacacaac	480
gatgacgcac	tactcaagaa	ctacgggctg	ctctactgct	tcaggaagga	catggacaag	540
gtcgagacat	tcctgcgcat	cgtgcagtgc	cgctctgtgg	agggatcatg	tggcttcttc	600
ccaaccattc	ccttatccag	gctttttgac	aacgctatgc	tccgcgccca	tcgtctgcac	660
cagetggeet	ttgacaccta	ccaggagttt	gaagaagcct	atatcccaaa	ggaacagaag	720
tattcattcc	tgcagaaccc	ccagacctcc	ctctgtttct	cagagtctat	teegacacee	780
tccaacaggg	aggaaacaca	acagaaatcc	aacctagagc	tgctccgcat	ctccctgctg	840
ctcatccagt	cgtggctgga	gcccgtgcaġ	ttcctcagga	gtgtcttcgc	caacagcctg	9Ó0
gtgtacggcg	cctctgacag	caacgtctat	gacctcctaa	aggacctaga	ggaaggcatc	960
caaacgctga	tggggaggct	ggaagatggc	agcccccgga	ctgggcagat	cttcaagcag	1020
acctacágca	agttcgacac	aaactcacac	aacgatgacg	cactactcaa	gaactacggg	1080
ctgctctact	gcttcaggaa	ggacatggac	aaggtcgaga	cattcctgcg	catcgtgcag	1140
tgccgctctg	tggagggatc	C				1161

<211> 382

<212> PRT

<213> Artificial

<220>

<223> synthetic sequence

<400> 27

Ser Cys Gly Phe Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn 1 5 10 15

Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr 20 25 30

Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe 35 40 45

Leu	Gln 50	Asn	Pro	Gln	Thr	Ser 55	Leu	Cys	Phe	Ser	Glu 60	Sẹr	Ile	Pro	Thr
Pro 65	Ser	Asn	Arg	Glu	Glu 70	Thr	Gln	Gln	Lys	Ser 75	Asn	Leu	Glu	Leu	Leu 80
Arg	Ile	Ser	Leu	Leu 85	Leu	Ile	Gln	Ser	Trp 90	Leu	Ģlu	Pro	Val	Gln 95	Phe
Leu	Arg	Ser	Val [°] 100	Phe	Ala	Asn	Ser	Leu 105	Val	Tyr	Gly	Ala	Ser 110	Asp	Ser
Asn	Val	Tyr 115	Asp	Leu	Leu	Lys	Asp 120	Leu	Glu	Glu	Gly	Ile 125	Gln	Thr	Leu
Met	Gly 130	Arg	Leu	Glu	Asp	Gly 135	Ser	Pro	Arg	Thr	Gly 140	Gln	Ile	Phe	Lys
Gln 145	Thr	Tyr	Ser	Lys	Phe 150	Asp	Thr	Asn	Ser	His 155		Asp	Asp	Ala	Leu . 160.
Leu	Lys	Asn	Tyr	Gly 165	Leu	Leu	Tyr		Phe 170	Arg	Lys	Asp	Met	Asp.	Lys
Val	Gľu	Thr	Phe 180	Leu	Arg	Ile	Val	Gln 185	Cys	Arg	Ser	Val	Glu 190	Gly	.ser
Cys	Gly	Phe 195	Phe	Pro	Thr	Ile	Pro 200	Leu	Ser	Arg	Leu	Phe 205	Asp	Asn	Ala
Met	Leu 210	Arg	Alá	His	Arg	Leu 215	His	Gln	Leu	Ala	Phe 220	Asp	Thr	Tyr	Gln
Glu 225	Phe	Glu	Glu	Ala	Tyr 230	Ile	Pro	Lys	Glu	Gln 235	Lys	Tyr	Ser	Phe	Leu 240
Gln	Asn	Pro	Glń	Thr 245	Ser	Leu	Cys	Phe	Ser 250	Glu	Ser	Ile	Pro	Thr 255	Pro
	Asn	Arg	Glu 260	Glu	Thr	GÌn	Gln	Lys 265	Ser	Asn	Leu	Glu	Leu 270	Leu	Arg
Ile	Ser	Leu 275		Leu	Ile	Gln	Ser 280		Leu	Glu	Pro	Val 285		Phe	Leu
Arg	Ser 290		Phe	Ala	Asn	Ser 295		Val	Tyr		Ala 300	Ser	Asp	Ser	Asn
Val 305	_	Asp	Ļeu	Leu	Lys 310		Leu	Glu	Glu	Gly 315		Gln	Thr	Leu	Met 320
Gly	Arg	Leu	Glu	Asp 325		Ser	Pro	Arg	Thr 330		Gln	Ile	Phe	Lys 335	Gln
Thr	Tyr	Ser	Lуs 340		Asp	Thr	Asn	Ser 345		Asn	Asp	Asp	Ala 350		Leu

Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val 355 360 365

Glu Thr Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly 370 375 380

<210> 28

<211> 1152

<212> DNA

<213> Artificial

<220>

<223> synthetic sequence

<220>

<221> misc feature

<222> (574)..(1146)

<223> sequence is repeated N-1 times, where N is a positive whole numbe

<400> tgatcatgtg gettetteec aaceatteec ttatecagge tttttgacaa egetatgete 60 egegeceate gtetgeacea getggeettt gacacetace aggagtttga agaageetat 120 atcccaaagg aacagaagta ttcattcctg cagaaccccc agacctccct ctgtttctca 180 gagtetatte egacaceete caacagggag gaaacacaac agaaatecaa eetagagetg 240 ctccgcatct ccctgctgct catccagtcg tggctggagc ccgtgcagtt cctcaggagt 300 gtettegeca acageetggt gtaeggegee tetgaeagea aegtetatga eeteetaaag 360 420 gacctagagg aaggcatcca aacgctgatg gggaggctgg aagatggcag cccccggact 480 gggcagatet teaageagae etacageaag ttegacacaa aeteacacaa egatgaegea ctactcaaga actacgggct gctctactgc ttcaggaagg acatggacaa ggtcgagaca 540 ttcctgcgca tcgtgcagtg ccgctctgtg gagggatcat gtggcttctt cccaaccatt 600 cccttatcca ggctttttga caacgctatg ctccgcgccc atcgtctgca ccagctggcc 660 tttgacacct accaggagtt tgaagaagcc tatatcccaa aggaacagaa gtattcattc 720 ctgcagaacc cccagacctc cctctgtttc tcagagtcta ttccgacacc ctccaacagg 780 840 gaggaaacac aacagaaatc caacctagag ctgctccgca tctccctgct gctcatccag tegtggetgg agecegtgea gtteeteagg agtgtetteg ceaacageet ggtgtaegge 900 geetetgaca geaacgteta tgacetecta aaggacetag aggaaggeat ceaaacgetg 960 1020 atggggagge tggaagatgg cageeeeegg actgggeaga tetteaagea gaeetacage 1080 aagttegaca caaacteaca caacgatgac gcactactea agaactacgg getgetetac

tgcttcagga aggacatgga caaggtcgag acattcctgc gcatcgtgca gtgccgctct 1140
gtggagggat cc 1152

<210> 29

<211> 382

<212> PRT

<213> Artificial

<220>

<223> synthetic sequence

<220>

<221> MISC_FEATURE

<222> (191)..(381)

<223> sequence is repeated N-1 times, where N is a positive whole numbe

<400> 29

Ser Cys Gly Phe Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn 1 5 10 : 15

Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr 20 25 30

Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe 35 40 45

Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr 50 55 60

Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu 65 70 75 80

Arg Ile Ser Leu Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe 85 90 95

Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser
100 105 110

Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu 115 120 125

Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys 130 135 140

Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys
165 170 175

Val Glu Thr Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly Ser

180 185 190

Cys	Gly	Phe 195	Phe	Pro	Thr	Ile	Pro 200	Leu	Ser	Arg	Leu	Phe 205	Asp	Asn	Ala	
Met	Leu 210	Arg	Ala	His	Arg	Leu 215	His	Ģln	Leu	Ala	Phe 220	Asp	Thr	Tyr	Glņ	i.
Glu 225	Phe	Glu	Glu	Ala	Tyr 230	Ile	Pro	Lys	Glu	Gln 235	Lys	Tyr	Ser	Phe	Leu 240	
Gln	Asn	Pro	Gln	Thr 245	Ser	Leu	Cys	Phe	Ser 250	Glu	Ser	Ile	Pro	Thr 255	Pro	
Ser	Asn	Arg	Glu 260	Glu	Thr	Gln	Gln	Lys 265	Ser	Asn	Leu	Glu	Leu 270	Leu	Arg	
Ile	Ser	Leu 275	Leu	Leu	Ile	Gln	Ser 280	Trp	Leu	Glu	Pro	Val 285	Gln	Phe	Leu	
Arg	Ser 290	Val	Phe	Ala	Asn	Ser 295	Leu	Val	Tyr	Gly	Ala 300	Ser	Asp	Ser	Asn	
Val 305	Tyr	Asp	Leu	Leu	Lys 310	Asp	Leu	Glu	.Glu	Gly 315	Ile	Gln	Thr	Leu	Met 320	
Gly	Arg	Leu	Glu	Asp 325	Gly	Ser	Pro	Arg	Thr 330	Gly	Gln	Ile	Phe	Lys 335	Gln	
Thr	Tyr	Ser	Lys 340	Phe	Asp	Thr	Asn	Ser 345	His	Asn	Asp	Asp	Ala 350	Leu	Leu	
Lys	Asn	Tyr 355	Gly	Leu	Leu	Tyr	Cys 360	Phe	Arg	Lys	Asp	Met 365	Asp	Lys	Val	
Glu	Thr 370	Phe	Leu	Arg	Ile	Val 375	Gln	Cys	Arg	Ser	Val 380	Glu	Gly			
<21 <21		30 606														
<21	2>]	DNA	<u> </u>	7												
.<21	3> 1	Artı	fici	a⊥			٠									
<22 <22		synt]	heti	c se	quen	ce										
<40 cat		30 tcc (caac	catt	cc c	ttat	ccag	g cti	tttt	gaca	acg	ctat	gct	ccgc	gcccat	60
cgt	ctgc	acc a	agct	ggcc	tt t	gaca	ccta	c ca	ggag	tttg	aag	aagc	cta	tatc	ccaaag	120
gaạ	caga	agt (attc	attc	ct g	caga	accc	c ca	gacc	tccc	tct	gttt	ctc	agag	tctatt	180
ccg	acaç	cct (ccaa	cagg	ga g	gaaa	caca	a ca	gaaa	tcca	acc	taga	gct	gctc	cgcatc	240
tcc	ctgc	tgc	tcat	ccag	tc g	tggc	tgga	g cc	cgtg	cagt	tcc	tcag	gag	tgtc	ttcgcc	300

aacagcctgg tgtacggcgc ctctgacagc aacgtctatg acctcctaaa ggacctagag 360
gaaggcatcc aaacgctgat ggggaggctg gaagatggca gcccccggac tgggcagatc 420
ttcaagcaga cctacagcaa gttcgacaca aactcacaca acgatgacgc actactcaag 480
aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 540
atcgtgcagt gccgctctgt ggagggatcc gaattccatt gatcatgtgg cttctagtag 600
gtcgac 606

<210> 31

<211> 1737

<212> DNA

<213> Artificial

<220>

<223> synthetic sequence

<220>

<221> misc_feature

<222> (1138)..(1710)

<223> sequence is repeated N-1 times, where N is a positive whole numbe

<400> 31 catatgttcc caaccattcc cttatccagg ctttttgaca acgctatgct ccgcgcccat 60 120 cgtctgcacc agctggcctt tgacacctac caggagtttg aagaagccta tatcccaaag 180 gaacagaagt atteatteet geagaaceee cagaceteee tetgtttete agagtetatt 240 cegacacect ccaacaggga ggaaacacaa cagaaatcca acctagaget geteegcate 300 tecetgetge teatecagte gtggetggag ecegtgeagt teeteaggag tgtettegee aacageetgg tgtaeggege etetgaeage aacgtetatg aceteetaaa ggaeetagag 360 gaaggcatce aaacgctgat ggggaggctg gaagatggca gcccccggac tgggcagatc 420 ttcaagcaga cctacagcaa gttcgacaca aactcacaca acgatgacgc actactcaag 480 aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 540 atcgtgcagt gccgctctgt ggagggatca tgtggcttct tcccaaccat tcccttatcc 600 aggetttttg acaacgetat geteegegee categtetge accagetgge etttgacace 660 taccaggagt ttgaagaagc ctatatccca aaggaacaga agtattcatt cctgcagaac 720 ccccagacct ccctctgttt ctcagagtct attccgacac cctccaacag ggaggaaaca 780 caacagaaat ccaacctaga getgeteege atetecetge tgeteateca gtegtggetg 840

```
gagecegtge agttecteag gagtgtette gecaacagee tggtgtaegg egeetetgae
                                                                     900
agcaacgtct atgacctcct aaaggaccta gaggaaggca tccaaacgct gatggggagg
                                                                     960
ctggaagatg gcagccccg gactgggcag atcttcaagc agacctacag caagttcgac
                                                                     1020
acaaactcac acaacgatga cgcactactc aagaactacg ggctgctcta ctgcttcagg
                                                                     1080
aaggacatgg acaaggtcga gacattcctg cgcatcgtgc agtgccgctc tgtggaggga
                                                                     1140
tcatgtggct tcttcccaac cattccctta tccaggcttt ttgacaacgc tatgctccgc
                                                                     1200
geceategte tgeaceaget ggeetttgae acetaceagg agtttgaaga ageetatate
                                                                     1260
ccaaaggaac agaagtattc attcctgcag aacccccaga cctccctctg tttctcagag
                                                                     1320
totattooga caccotocaa cagggaggaa acacaacaga aatocaacot agagetgoto
                                                                     1380
cgcatctccc tgctgctcat ccagtcgtgg ctggagcccg tgcagttcct caggagtgtc
                                                                     1440
ttegecaaca geetggtqta eggegeetet gacageaacg tetatgaeet eetaaaggae
                                                                     1500
ctagaggaag gcatccaaac gctgatgggg aggctggaag atggcagccc ccggactggg
                                                                     1560
cagatettea ageagaceta cageaagtte gacacaaact cacacaacga tgacgcacta
                                                                     1620
ctcaagaact:acgggctgct ctactgcttc aggaaggaca tggacaaggt cgagacattc
                                                                     1680
ctgcgcatcg tgcagtgccg ctctgtggag ggatcatgtg gcttctagta ggtcgac
                                                                     1737
```

```
<210> 32
<211> 574
<212> PRT
```

<213> Artificial

<220>

<223> synthetic sequence

<220>

<221> MISC_FEATURE

<222> (379)..(569)

<223> sequence is repeated N-1 times, where N is a positive whole numbe

<220>

<221> mat_peptide

<222> (1)..()

<400> 32

Met Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu 1 5 10 15

Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe
20 25 30

Glu	Glu	Ala 35	Tyr	Ile	Pro	Lys	Glu 40	Gln	Lys	Tyr	Ser	Phe 45	Leu	Gln	Asn
Pro	Gln 50	Thr	Ser	Leu	Çyş	Phe 55	Ser	Glu	Ser	Ile	Pro 60	Thr	Pro	Ser	Asn
Arg 65	Glu	Glu	Thr	Gln	Gln 70.	Lys	Ser	Asn	Leu	Glu 75	Leu	Leu	Arg	Ile	Ser 80
Leu	Leu	Leu	Ile	Gln 85	Ser	Trp	Leu	Glu	Pro 90	Val	Gln	Phe	Leu	Arg 95	Ser
Val	Pḥe	Ala	Asn 100	Ser	Leu	Val	Tyr	Gly 105	Ala	Ser	Asp	Ser	Asn 110	Val	Tyr
Asp	Leu	Leu 115	ГÀг	Asp	Leu	Glu	Glu 120	Gly	Ile	Gln	Thr	Leu 125	Met	Gly	Arg
Leu	Glu 130	Asp	Gly	Ser	Pro	Arg 135	Thr	Gly	Gln	Ile	Phe 140	ГÀЗ	Gln	Thr	Tyr
Ser 145	Lys	Phe	Asp.	Thr	Asn 150	Ser	His	Asn	Asp	Asp 155	Ala	Leu	Leu	Lys	Asn 160
Tyr	Gly	Leu	Leu	Туг 165	Cys	Phe	Arg	Lys	Asp 170		Asp	Lys	Val	Glu 175	Thr
Phe	Leu	Arg	Ile 180	Val	Gln	Cys	Arg	Ser 185	Val	· Glu	Gly	Ser	Cys 190		Phe
Phe	Pro	Thr 195	Ile	Pro	Leu	Ser	Arg 200	Leu	Phe	Asp	Asn	Ala 205	Met	Leu	Arg
Ala	His 210	Arg	Leu	His	Gln	Leu 215	Ala	Phe	Asp	Thr	Tyr 220	Gln	Glu	Phe	Glu
Glu 225	Ala	Tyr	Ile	Pro	Lys 230	Glu	Gln	Lys	Tyr	Ser 235		Leu	Gln	Asn	Pro 240
Gln	Thr	Ser	Leu	Cys 245	Phe	Ser	Glu	Ser	Ile 250	Pro	Thr	Pro	Ser	Asn 255	Arg
Glu	Glu	Thr	Gln 260		Lys	Ser	Asn	Leu 265		Leu	Leu	Arg	11e 270	Ser	Leu
Leu :	Leu	11e 275		Ser	Trp	Leu	Glu 280		Val	Gln	Phe	Leu 285		Ser	Val
Phe	Ala 290		Ser	Leu	Val	Tyr 295		Ala	Ser	Asp	Ser 300		Val	Tyr	`Asp
Leu 305		Lys	Asp	Leu	Glu 310		Gly	Ile	Gln	Thr 315		. Met	Gly	Arg	Leu 320
Glu	Asp	Gly	Ser	Pro 325		Thr	Gly	Gln	Ile 330		Lys	Gln	Thr	Tyr 335	Ser

- Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn Tyr 340 345 350
- Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr Phe 355 360 365
- Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe Phe 370 375 380
- Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu Arg Ala 385 390 395 400
- His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu 405 410 415
- Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln
 420 425 430
- Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu
 435
 440
 445
- Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu 450 455 460
- Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe 465 470 475 480
- Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu 485 490 495
- Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu 500 505 510
- Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys 515 520 525
- Phe Asp Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly 530 540
- Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu 545 550 555 560
- Arg Ile Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe 565 570
- <210> 33
- <211> 55
- <212> DNA
- <213> Artificial
- <220>
- <223> synthetic sequence
- <400> 33
- taccatatga catgatcatg tggcttcggt ttcccaacca ttcccttatc cagge

<210 <211 <212 <213	> ! > I	34 591 ONA Artii	ficia	ıl												
<220 <223		syntl	netic	: seq	luenc	:e										
<400 cata		34 cat q	gatca	ıtgtg	ıg ct	tegg	jtttc	cca	acca	ittc	cctt	atco	ag g	gcttt	ttgac	
aacg	cta	tgc 1	tccgc	:gccc	a to	gtct	gcac	caç	ctgg	jcct	ttga	caco	ta (ccagg	agttt	
gaag	aag	cct a	atato	ccaa	ia gg	jaaca	igaag	tat	tcat	tcc	tgca	gaac	cc (ccaga	cctcc	
ctct	gtt	tct (cagag	tcta	it to	cgac	caccc	tcc	aaca	rggg	agga	aaca	ica a	acaga	aatcc	
aacc	tag	agc 1	tgctc	ecgea	ıt ct	ccct	gctg	cto	atco	agt	cgtg	ggctg	gga g	gadag	ıtgcag	
ttcc	tca	gga g	gtgto	ttcg	jc ca	acag	gcctg	gto	jtac <u>c</u>	gcg	ccto	etgac	ag	caacg	ıtctat	
gaco	tcc	taa a	aggac	ctag	ja gg	jaagg	gcatc	caa	acgo	tga	tggg	ggagg	jct (ggaag	jatggc	
agec	CCC	gga (ctggg	gcaga	t ct	tcaa	agcag	aco	taca	igca	agtt	cgad	cac.	aaact	cacac	
aacg	atg	acg (cacta	ctca	a ga	acta	cggg	cto	jctct	act	gctt	cago	gaa (ggaca	tggac	
aagg	jtcg.	aga (catto	ctgo	g ca	tcgt	gcag	tgo	cgct	ctg	tgga	aggga	atc.	С		
<210 <211 <212 <213	.> !>	35 192 PRT Arti:	ficia	ıl							. ,					
<220 <223		synt	hetio	c sec	ueno	e			,							
<400		35			-											
Ser 1	Cys	Gly	Phe	Gly 5	Phe	Pro	Thr	Ile	Pro 10	Leu	Ser	Arg	Leu	Phe 15	Asp	
Asn	Ala	Met	Leu 20	Arg	Ala	His	Arg	Leu 25	His	Gln	Leu	Ala	Phe	Asp	Thr	
Tyr	Gln	Glu 35	Phe	Glų	Glu	Ala	Tyr 40	Ile	Pro	Lys	Glu	Gln 45	Lys	Tyr	Ser	
Phe	Leu 50	Gln	Asn	Pro	Gln	Thr 55	Ser	Leu	Cys	Phe	Ser 60	Glu	Ser	Ile	Pro	

Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu

Leu Arg Ile Ser Leu Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln

95

Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp 100 105 Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr 120 Leu Met Gly Arq Leu Glu Asp Gly Ser Pro Arq Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala 150 155 Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly 185 <210> 36 <211> 1158 DNA · <212> <213> Artificial <220> <223> synthetic sequence <220> <221> misc_feature <222> (577)..(1152) sequence is repeated N-1 times, where N is a positive whole numbe <223> <400> 36 tgatcatgtg gcttcggttt cccaaccatt cccttatcca ggctttttga caacgctatg cteegegeee ategtetgea eeagetggee tttgacaeet accaggagtt tgaagaagee 120 tatateceaa aggaacagaa gtatteatte etgeagaace eccagacete cetetgttte 180 tcagagtcta ttccgacacc ctccaacagg gaggaaacac aacagaaatc caacctagag 240 etgeteegea tetecetget geteateeag tegtggetgg ageeegtgea gtteeteagg 300 agtgtcttcg ccaacagcct ggtgtacggc gcctctgaca gcaacgtcta tgacctccta 360 420 aaggacctag aggaaggcat ccaaacgctg atggggaggc tggaagatgg cagccccgg actgggcaga tetteaagea gaeetacage aagttegaea caaacteaca caaegatgae 480 gcactactca agaactacgg gctgctctac tgcttcagga aggacatgga caaggtcgag 540 acattectge geategtgea gtgeegetet gtggagggat eatgtggett eggttteeea 600

accattecet tatedagget ttttgacaac getatgetee gegeecateg tetgeaccag

660

	ctggcctttg	acacctacca	ggagtttgaa	gaagcctata	tcccaaagga	açagaagtat	720
	tcattcctgc	agaaccccca	gacctccctc	tgtttctcag	agtctattcc	gacaccctcc	780
	aacagggagg	aaacacaaca	gaaatccaac	ctagagctgc	tccgcatctc	cctgctgctc	840
	atccagtcgt	ggctggagcc	cgtgcagttc	ctcaggagtg	tcttcgccaa	cagcctggtg	900
	tacggcgcct	ctgacagcaa	cgtctatgac	ctcctaaagg	acctagagga	aggcatccaa	960
	acgctgatgg	ggaggctgga	agatggcagc	ccccggactg	ggcagatctt	caagcagacc	1020
	tacagcaagt :	tcgacacaaa	ctcacacaac	gatgacgcac	tactcaagaa	ctacgggctg	1080
-	ctctactgct	tcaggaagga	catggacaag	gtcgagacat	tcctgcgcat	cgtgcagtgc	1140
	cgctctgtgg	agggatcc			-		, 1158

<211> 384

<212> PRT

<213> Artificial

<220>

<223> synthetic sequence

<220>

<221> MISC_FEATURE

<222> (192)..(383)

<223> sequence is repeated N-1 times, where N is a positive whole numbe

<400> 37

Ser Cys Gly Phe Gly Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr 20 25 30

Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser 35 40 45

Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro 50 55 60

Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu
65 70 75 80

Leu Arg Ile Ser Leu Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln
85 90 95

Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp 100 105 110 Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr
115 120 125

Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe

Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala 145 150 155 160

Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp 165 170 175

Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly
180 185 190

Ser Cys Gly Phe Gly Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp 195 200 205

Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr 210 215 220

Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser 225 230 235 240

Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro 245 250 255

Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu 260 265 270

Leu Arg Ile Ser Leu Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln 275 280 285

Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp 290 295 300

Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr 305 310 315 320

Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe 325 330 335

Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala 340 345 350

Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp 355 360 365

Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly 370 375 380

<210> 38

<211> 1743

<212> DNA

<213> Artificial

<220>
<223> synthetic sequence
<220>
<221> misc_feature
<222> (1141)..(1716)
<223> sequence is repeated N-1 times, where N is a positive whole numbe

<400> 38 60 catatgttcc caaccattcc cttatccagg ctttttgaca acgetatgct ccgcgcccat cgtctgcacc agctggcctt tgacacctac caggagtttg aagaagccta tatcccaaag 120 gaacagaagt atteatteet geagaaceee cagaceteee tetgtttete agagtetatt 180 ecgacaccet ccaacaggga ggaaacacaa cagaaateca acetagaget getecgeate 240 tecetgetge teatecagte gtggetggag eeegtgeagt teeteaggag tgtettegee 300 aacagootgg tgtacggogo ototgacago aacgtotatg acotootaaa ggacotagag . 360 420 gaaggcatcc aaacgctgat ggggaggctg gaagatggca gccccggac tgggcagatc ttcaagcaga cctacagcaa gttcgacaca aactcacaca acgatgacgc actactcaag 480 aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 540 ategtgeagt geegetetgt ggagggatea tgtggetteg gttteecaac cattecetta 600 tecaggettt ttgacaaege tatgeteege geecategte tgeaceaget ggeetttgae 660 acctaccagg agtttgaaga agcctatatc ccaaaggaac agaagtattc attcctgcag 720 aacccccaga cctccctctg tttctcagag tctattccga caccctccaa cagggaggaa 780 840 acacaacaga aatccaacct agaqctgctc cgcatctccc tgctgctcat ccagtcgtgg ctggagcccg tgcagttcct caggagtgtc ttcgccaaca gcctggtgta cggcgcctct 900 gacagcaacg tetatgacet cetaaaggae etagaggaag geatecaaae getgatgggg 960 aggetggaag atggeageee ceggaetggg cagatettea ageagaeeta cageaagtte 1020 gacacaaact cacacaacga tgacgcacta ctcaagaact acgggctgct ctactgcttc 1080 aggaaggaca tggacaaggt cgagacattc ctgcgcatcg tgcagtgccg ctctgtggag 1140 1200 ggatcatgtg gcttcggttt cccaaccatt cccttatcca ggctttttga caacgctatg 1260 ctccgcgccc atcgtctgca ccagctggcc tttgacacct accaggagtt tgaagaagcc tatatcccaa aggaacagaa gtattcattc ctgcagaacc cccagacctc cctctgtttc 1320 1380 tcagagteta tteegacaee etecaacagg gaggaaacae aacagaaate caacetagag

```
etgeteegea tetecetget geteateeag tegtggetgg agecegtgea gtteeteagg
agtgtcttcg ccaacagcct ggtgtacggc gcctctgaca gcaacqtcta tgacctccta .
                                                                    1500
aaggacctag aggaaggcat ccaaacgctg atggggaggc tggaagatgg cagccccgg
                                                                    1560
actgggcaga tcttcaagca gacctacagc aagttcgaca caaactcaca caacgatgac
                                                                    1620
gcactactca agaactacgg gctgctctac tgcttcagga aggacatgga caaggtcgag
                                                                    1680
acattectge geategtgea gtgeegetet gtggagggat eatgtggett etagtaggte
                                                                    1740
gac
                                                                    1743
<210>
       39
<211>
       576
<212>
       PRT
<213>
       Artificial
<220>
       synthetic sequence
<223>
<220>
      MISC FEATURE
<221>
<222>
       (380)..(571)
<223>
       sequence is repeated N-1 times, where N is a positive whole numbe
<220>
<221>
      mat peptide
<222>
       (1)..()
<400>
Met Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu
Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe
Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn
Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn
Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser
Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser
Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr
            100
                                                    110
```

Asp	Leu	Leu 115	Lys	Asp	Leu	Glu	Glu 120	Gly	Ile	Gln	Thr	Leu 125	Met	Gly	Arg
Leu	Glu 130	Asp	Gly	Ser	Pro	Arg 135	Thr	Gly	Gln	Ilė	Phe 140	Lys	Gln	Thr	Tyr
Ser 145	Lys	Phe	Asp	Thr	Asn 150	Ser	His	Asn	Asp	Asp 155	Ala	Leu	Leu	Lys	Asn 160
Tyr	Gly	Leu	Leu	Tyr 165	Cys	Phe	Arg	Lys	Asp 170	Met	Asp	Lys	Val	Glu 175	Thr
Phe	Leu	Arg	Ile 180	Vạl	Gln	Cys	Arg	Ser 185	Val	Glu	Gly	Ser	Cys 190	Gly	Phe
Gly	Phe	Pro 195	Thr	Ile	Pro	Leu	Ser 200	Arg	Leu	Phe	Asp	Asn 205	Ala	Met	Leu
Arg	Ala 210	His	Arg	Leu	His	Gln 215	Leu	Ala	Phe	Asp	Thr 220	Tyr	Gln	Glu	Phe
Glu 225	Glu	Ala	Tyr	Ile	Pro 230	Lys	Glu	Gln	Lys	Tyr 235	Ser	Phe	Leu	Gln	Asn 240
Pro	Gln	Thr	Ser	Leu. 245	Cys	Phe	Ser	Glu	Ser 250	Ile	Pro	Thr	Pro	Ser 255	Asn
Arg	Glu	Glu	Thr 260	Gln	Gln	Lys	Ser	Asn 265	Leu	Glu	Leu	Leu	Arg 270	Ile	Ser
Leu	Leu	Leu 275	Ile	Gln	Ser	Trp	Leu 280	Glu	Pro	Val	Ģln	Phe 285	Leu	Arg	Ser
Val	Phe 290	Ala	Asn	Ser	Leu	Val 295	Tyr	Gly	Ala	Ser	Asp 300		Asn	Val	Tyr
Asp 305	Leu	Leu	Lys	Asp	Leu 310	Glu	Glu	Gly	Ile	Gln 315		Leu	Met	Gly	Arg 320
Leu	Glu	Asp	Gly ·	Ser 325	Pro	Arg	Thr	Gly	Gln 330	Ile	Phe	Lys	Gln	Thr 335	Tyr
Ser	Lys	Phe	Asp 340	Thr	Asn	Ser	His	Asn 345	Asp	Asp	Ala	Leu	Leu 350	Lys	Asn
Tyr	Gly	Leu 355	Leu	Tyr	Cys	Phe	Arg 360	Lys	Asp	Met	Asp	Lys 365	Val	Glu	Thr
Phe	Leu 370	Arg	Ile	Val	Gln	Cys 375	Arg	Ser	Val	Glu	Gly 380	Ser	Сув	Gly	Phe
Gly 385	Phe	Pro	Thr	Ile	Pro 390	Leu	Ser	Arg	Leu	Phe 395	Asp	Asn	Ala	Met	Leu 400
Arg	Ala	His	Arg	Leu 405	His	Gln	Leu		Phe 410	Asp	Thr	Tyr	Gln	Glu 415	Phe

								•							
													•		
Glu Gl	lu Ala	Tyr 420	Ile	Pro	Lys	Gľu	Gln 425	Lys	Tyr	Ser	Phe	Leu 430	Gln	Asn	
Pro Gl	n Thr 435		Leu	Cys	Phe	Ser 440	Glu	Ser	Ile	Pro	Thr 445	Pro	Ser	Asn	
Arg Gl		Thr	Gln	Gln	Lys 455	Ser	Asn	Leu	Glu	Leu 460	Leu	Arg	Ile	Ser	
Leu Le 465	eu Leu	Ile	Gln	Ser 470	Trp	Leu	Glu	Pro	Val 475		Phẹ	Leu	Arg	Ser 480	
Val Ph	ne Ala	Asn	Ser 485	Leu	Val	Tyr	Gly	Ala 490	Ser	Asp	Ser	Asņ	Val 495	Tyr	
Asp Le	eu Leu	Lys 500	Asp	Leu	Glu	Glu	Gly. 505	Ile	Gln	Thr	Leu	Met 510	Gly	Arg	
Leu Gl	lu Asp 515		Ser	Pro	Arg	Thr 520	Gly	Gln	Ile	Phe	Lys 525	Gln	Thr	Tyr	
Ser Ly 53	s Phe	Asp	Thr	Asn	Ser 535	His	Asn	Asp	Asp	Ala 540	Leu	Leu	Lys	Asn	•
Tyr Gl	ly Leu	Leu	Tyr	Cys 550	Phe	Arg	Lys	Asp	Met 555	Asp	Lys	Val	Glu	Thr 560	
Phe Le	eu Arg	Ile	Val 565	Gln	Cys	Arg	Ser	Val 570	Glu	Gly	Ser	Cys	Gly 575	Phe	
<210><211><211><212><213>	40 39 DNA Arti	ficia	al				·			•				:	
<220> <223>	synt	heti	c se	quen	ce		-								
<400>	40											•			
cgcgga	atcct	catg	agaa	ge ca	acago	ctgc	c cto	ccaca	aga	·					39
<210><211><211>	41 591 DNA					; ·									
<213>		fici	al												
<220> <223>	synt	heti	c șe	quen	ce										
<400>	41 gttcc	caac	catto	cc c1	ttato	ccag	g çti	cttt	gaca	acg	ctate	gct (ccgc	gcccat	60
cgtctg	gçacc	agct	ggcc	tt t	gacad	ccta	c cag	ggagt	tttg	aag	aagc	cta 1	tatc	ccaaag	120
gaacag	gaagt	attc	attc	ct go	: cagaa	accc	c cac	gacci	taca	tct	gttt	ctc a	agag	tctatt	180

HC (F

ccgacaccct	ccaacaggga	ggaaacacaa	cagaaatcca	acctagagct	gctccgcatc	240
tccctgctgc	tcatccagtc	gtggctggag	cccgtgcagt	tcctcaggag	tgtcttcgcc	300
aacagcctgg	tgtacggcgc	ctctgacagc	aacgtctatg	acctcctaaa	ggacctagag	360
gaaggcatcc	aaacgctgat	ggggaggctg	gaagatggca	gcccccggac	tgggcagatc	420
ttcaagcaga	cctacagcaa	gttcgacaca	aactcacaca	acgatgacgc	actactcaag	480
aactacgggc	tgctctactg	cttcaggaag	gacatggaca	aggtcgagac	attcctgcgc	540
atcgtgcagt	gccgctctgt	ggagggcagc	tgtggcttct	catgaggatc	c .	591

<211> 193

<212> PRT

<213> Artificial

<220>

<223> synthetic sequence

<400> 42

Met Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu 1 5 10 15

Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe
20 25 30

Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn 35 40 45

Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn 50 55 60

Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser 65 70 75 80

Leu Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser 85 90 95

Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr
100 105 110

Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg
115 120 125

Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr
130 140

Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr 165 170 175

185 180 Ser 43 <210> <211> 50 <212> DNA Artificial <213> <220> <223> synthetic sequence <400> catgccatgg ggtggtggag gaagtttccc aaccattccc ttatccaggc 50 <210> 44 <211> 606 <212> DNA Artificial <213> <220> <223> synthetic sequence <400> 44 ccatggggtg gtggaggaag tttcccaacc attcccttat ccaggctttt tgacaacgct atgeteegeg eccategiet geaccagetg geetttgaca ectaccagga gtttgaagaa 120 gectatatee caaaggaaca gaagtattea tteetgeaga acceeeagae etecetetgt 180 ttctcagagt ctattccgac accctccaac agggaggaaa cacaacagaa atccaaccta 240 gagetgetee geateteest getgeteate cagtegtgge tggageeegt geagtteete 300 aggagtgtet tegecaacag cetggtgtae ggegeetetg acageaacgt etatgacete .360 ctaaaggacc tagaggaagg catccaaacg ctgatgggga ggctggaaga tggcagcccc 420 cggactgggc agatetteaa geagacetae ageaagtteg acacaaacte acacaacgat 480 gacgcactac tcaagaacta cgggctgctc tactgcttca ggaaggacat ggacaaggtc 540 gagacattcc tgcgcatcgt gcagtgccgc tctgtggagg gcagctgtgg cttctcatga 600 606 ggatcc <210> 45 198 <211> <212> PRT

Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe

<220>

<213>

Artificial

<400)> 4	45															
Trp 1	Gly	Gly	Gly	Gly 5	Ser	Phe	Pro	Thr	Ile 10	Pro	Leu	Ser	Arg	Leu 15	Phe		
Asp	Asn	Ala	Met 20	Leu	Arg	Ala	His	Arg 25	Leu	His	Gln	Leu	Ala 30	Phe	Asp		
Thr	Tyr	Gln 35	Glu	Phe	Glu	Glu	Ala 40	Tyr	Ile	Pro	Lys	Glu 45	Gln	Lys	Tyr		
Ser	Phe 50	Leu	Gln	Asn	Pro	Gln 55	Thr	Ser	Leu	Cys	Phe 60	Ser	Glu	Ser	Ile		
Pro 65	Thr	Pro	Ser	Asn	Arg 70	Glu	Glu	Thr	Gln	Gln 75	Lys	Ser	Asn	Leu	Glu 80	,	
Leu	Leu	Arg	Ile	Ser 85	Leu	Leu	Leu	Ile	Gln 90	Ser	Trp	Leu	Glu	Pro 95	Val		
Gln	Phe	Leu	Arg 100	Ser	Val	Phe	Ala	Asn 105	Ser	Leu	Val	Tyr	Gly 110	Ala	Ser		
Asp	Ser	Asn 115	Val	Tyr	Asp	Leu	Lеџ 120	Lys	Asp	Leu	Glu	Glu 125	Gly	Ile	Gln		
Thr	Leu 130	Met	Gly	Arg	Leu	Gļu 135	Asp	Gly	Ser	Pro	Arg 140	Thr	Gly	Gln	Ile		
Phe 145	Lys	Gln	Thr	Tyr	Ser 150	Lys	Phe	Asp	Thr	Asn 155	Ser	His	Asn	Asp	Asp 160		
Ala	Leu	Leu	Lys	Asn 165	Tyr	Gly	Leu	Ļeu	Tyr 170	Cys	Phe	Arg	Lys	Asp 175	Met		
Asp	Lys	Val	Glu 180	Thr	Phe	Leu	Arg	Ile 185	Val	Gln	Cys	Arg	Ser 190	Val	Glu		
Gly	Ser	Cys 195	_	Phe	Ser			÷									
<21 <21 <21 <21	1,> 2 >	46 603 DNA Arti	fici	al				;									
<22 <22		synt?	heti	c se	quen	ce			٠								
<40 cca		46 gtg	gtgg	agga	ag t	ttcc	caac	c at	taca	ttat	cca	ggct	ttt	tgac	aacgct	:	60
atg	ctcc	gcg	ccca	tcgt	ct g	cacc	agct	g gc	cttt	gaca	cct	acca	gga (gttt	gaagaa	ì	120
gcc.	tata	tcc	caaa	ggaa	ca g	aagt	attc	a tto	cċtg	caga	acc	ccca	gac	ctcc	ctctgt	;	180

<223> synthetic sequence

ttctcagagt	ctattccgac	accctccaac	agggaggaaa	cacaacagaa	atccaaccta	240
gagetgetee	gcatctccct	gctgctcatc	cagtcgtggc	tggagcccgt	gcagttcctc	300
aggagtgtct	tcgccaacag	cctggtgtac	ggcgcctctg	acagcaacgt	ctatgacctc	360
ctaaaggacc	tagaggaagg	catccaaacg	ctgatgggga	ggctggaaga	tggcagcccc	420
cggactgggc	agatcttcaa	gcagacctac	agcaagttcg	acacaaactc	acacaacgat	480
gacgcactac	tcaagaacta	cgggctgctc	tactgcttca	ggaaggacat	ggacaaggtc	540
gagacattcc	tgcgcatcgt	gcagtgccgc	tctgtggagg	gcagctgtgg	cttctaggga	600
tcc						603

<211> 197

<212> PRT

<213> Artificial

<220>

<223> synthetic sequence

<400> 47

Trp Gly Gly Gly Ser Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe
1 5 10 15

Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp 20 25 30

Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr 35 40 45

Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile 50 55 60

Pro Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu 65 70 75 80

Leu Leu Arg Ile Ser Leu Leu Leu Ile Gln Ser Trp Leu Glu Pro Val 85 90 95

Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser 100 105 110

Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln
115 120 125

Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile 130 135 140

Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp 145 150 155 160

Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met
165 170 175

Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu 180 185 190

Gly Ser Cys Gly Phe 195

<210> 48

<211> 1200

<212> DNA

<213> Artificial

<220>

<223> synthetic sequence

<220>

<221> misc feature

<222> (595)..(1188)

<223> sequence is repeated N-1 times, where N is a positive whole numbe

<400> 48 60 ccatggggtg gtggaggaag tttcccaacc attcccttat ccaggetttt tgacaacget atgeteegeg cecategiet geaccagetg geettigaca eetaccagga gittigaagaa 120 gectatatec caaaggaaca gaagtattea tteetgeaga acceecagae etcectetgt 180 ttctcagagt ctattccgac accetecaae agggaggaaa cacaacagaa atccaaceta 240 gagetgetee geateteeet getgeteate cagtegtgge tggageeegt geagtteete 300 aggagtgtet tegecaacag cetggtgtac ggegeetetg acageaacgt etatgacete 360 ctaaaggacc tagaggaagg catccaaacg ctgatgggga ggctggaaga tggcagccc 420 480 eggactggge agatetteaa geagacetae ageaagtteg acacaaacte acacaacgat gaegeactae teaagaaeta egggetgete taetgettea ggaaggaeat ggaeaaggte 540 gagacattee tgegeategt geagtgeege tetgtggagg geagetgtgg etteteatgg 600 ggtggtggag gaagtttccc aaccattccc ttatccaggc tttttgacaa cgctatgctc 660 egegeecate gtetgeacca getggeettt gaeacetace aggagtttga agaageetat 720 780 atcccaaagg aacagaagta ttcattcctg cagaaccccc agacctccct ctgtttctca gagtetatte egacaceete caacagggag gaaacacaac agaaatecaa eetagagetg 840 etcegeatet ceetgetget catecagteg tggetggage cegtgeagtt cetcaggagt 900 gtottogoca acagootggt gtacggogoc totgacagoa acgtotatga cotoctaaag 960 gacctagagg aaggcatcca aacgctgatg gggaggctgg aagatggcag cccccggact gggcagatct tcaagcagac ctacagcaag ttcgacacaa actcacacaa cgatgacgca 1080 ctactcaaga actacgggct gctctactgc ttcaggaagg acatggacaa ggtcgagaca 1140 1200 ttcctgcgca tcgtgcagtg ccgctctgtg gagggcaget gtggcttctc atgaggatcc <210> 49 <211> 396 <212> PRT <213> Artificial <220> <223> synthetic sequence <220> <221> MISC FEATURE <222> (198)..(395) <223> sequence is repeated N-1 times, where N is a positive whole numbe <400> 49 Trp Gly Gly Gly Ser Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile 55 Pro Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu 75 70 Leu Leu Arg Ile Ser Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser 105 Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln 115 Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile 135 140 Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp

155

150

Ala	Leu	Leu	Lys	Asn 165	Tyr	Gly	Leu	Leu	Tyr 170	Cys	Phe	Arg	Lys	Asp 175	Met
Asp	Lys	Val	Glu 180	Thr	Phe	Leu	Arg	Ile 185	Val	Gln	Cys	Arg	Ser 190	Val	Glu
Gly	Ser	Cys 195	Gly	Phe	Ser	Trp	Gly 200	Gly	Gly	Gly	Ser	Phe 205	Pro	Thr	Ile
Pro	Leu 210	Ser	Arg	Leu		Asp 215	Asn	Ala	Met	Leu	Arg 220	Ala	His	Arg	Leu
His 225	Gln	Leu	Ala	Phe	Asp 230	Thr	Tyr	Gln	Glu	Phe 235	Glu	Glu	Ala	Tyr	Ile 240
Pro	ГÀЗ	Glu	Gln	Lys 245	Tyr	Ser	Phe	Leu	Gln 250	Asn	Pro	Gln	Thr	Ser 255	Leu
Cys	Phe	Ser	Glu 260	Ser	Ile	Pro	Thr	Pro 265	Ser	Asn	Arg	Glu	Glu 270	Thr	Gln
Gln	Lys	Ser 275	Asn	Leu	Glu	Leu	Leu 280	Arg	Ile ,	Ser	Leu	Leu 285	Leu	Ile	Gln
Ser	Trp 290	Leu	Glu	Pro	Val	Gln 295	Phe	Leu	Arg	Ser	Val 300		Ala	Asn	Ser
Leu 305	Val	Tyr	Gly	Ala	Ser 310	Asp	Ser	Asn	Val	Ту <u>г</u> 315	Asp	Leu	Leu	Lys	Asp 320
Leu	Glu	Glu	Gly	Ile 325	Gln	Thr	Leu	Met	Gly 330	Arg	Leu	Glu	Asp	Gly 335	Ser
Pro	Arg	Thr	Gly 340	Gln	Ile	Phe	Lys	Gln 345	Thr	Tyr	Ser	Lys	Phe 350	Asp	Thr
Asn	Ser	His 355	Asn	Asp	Asp	Ala	Leu 360	Leu	Lys	Asn	Tyr	Gly 365	Leu	Leu	Tyr
Cys	Phe 370		Lys	Asp		Asp 375	_	Val	Glu	Thr	Phe 380		Arg	Ile	Val
Gln 385	Cys	Arg	Ser	Val	Glu 390	Gly	Ser	Cys	Gly	Phe 395	Ser				
<210 <210 <210 <210	1> : 2> !	50 1185 DNA Arti:	ficia	al											
<22 <22		syntl	heti	c sed	quen	ce									
<40		50 tcc (caac	catt	cc c	ttaț	ccag	g ct	tttt	gaca	acg	ctat	gct (ccgc	gcccat
çgt	ctgc	acc a	agct	ggcc	tt t	gaca	ccta	c ca	ggag	tttg	aag	aagc	cta	tato	ccaaag

```
gaacagaagt attcattcct gcagaacccc cagacctccc tctgtttctc agagtctatt
                                                                      180
ccgacaccct ccaacaggga ggaaacacaa cagaaatcca acctagagct gctccgcatc
                                                                     240
tecetgétge teatecagte qtqqctqqaq ceegtgeagt teeteaggag tgtettegee
                                                                      300
aacagcctgg tgtacggcgc ctctgacagc aacgtctatg acctcctaaa ggacctagag
                                                                      360
gaaggcatcc aaacgctgat ggggaggctg gaagatggca gcccccggac tgggcagatc
                                                                    420
ttcaagcaga cctacagcaa gttcgacaca aactcacaca acgatgacgc actactcaag
                                                                      480
aactacqqqc tqctctactq cttcaqqaaq qacatggaca aggtcgagac attcctgcgc
                                                                    540
                                                                      600
atogtgcagt googototgt ggagggcago tgtggcttot catggggtgg tggaggaagt
ttcccaacca ttcccttatc caqqcttttt qacaacqcta tgctccgcgc ccatcqtctg
                                                                      660
caccagetgg cetttgacac etaccaggag tttgaagaag cetatatece aaaggaacag
                                                                      720
aagtattcat teetgeagaa eeeccagaee teeetetgtt teteagagte tatteegaca
                                                                      780
ccctccaaca gggaggaaac acaacagaaa tccaacctag agctgctccg catctccctg
                                                                      840
etgeteatee agtegtgget ggageegtg eagtteetea ggagtgtett egeeaacage
                                                                      900
ctggtgtacg gcgcctctga cagcaacgtc tatgacctcc taaaggacct agaggaaggc
                                                                      960
atccaaacgc tgatggggag gctggaagat ggcagcccc ggactgggca gatcttcaag
                                                                     1020
caqaectaca qeaaqtteqa cacaaactea cacaacgatg acgeactact caagaactac
                                                                     1080
gggctgctct actgcttcag gaaggacatg gacaaggtcg agacattcct gcgcatcgtg
                                                                     1140
                                                                     1185
cagtgccgct ctgtggaggg cagctgtggc ttctcatgag gatcc
```

```
<210> 51
```

<220>

<223> synthetic sequence

<220>

<221> mat_peptide

<222> (1)..()

<400> 51

Met Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu 1 5 10 15

Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe

<211> 391

<212> PRT

<213> Artificial

Glu	Glu	Ala 35	Tyr	Ile	Pŗo	Lys	Glu 40	Gln	Lys	Tyr	Ser	Phe 45	Leu	Gln	Asn
Pro	Gln 50	Thr	Ser	Leu	Cys	Phe 55	Ser	Glu	Ser	Ile	Pro 60	Thr	Pro	Ser	Asn
Arg 65	Glu	Glu	Thr	Gln	Gln 70	Lys	Ser	Asn	Leu	Glu 75	Leu	Leu	Arg	Iļe	Ser 80
Leu	Leu	Leu	Ile	Gln 85	Ser	Trp	Leu		Pro 90	Val	Gln	Phe	Leu	Arg 95	Ser
Val	Phe	Ala	Asn 100	Ser	Leu	Val	Tyr	Gly 105	Ala	Ser	Asp	Ser	Asn 110	Val	Tyr
Asp	Leu	Leu 115	Lys	Asp	Leu	Glu	Glu 120	Gly	Ile	Gln	Thr	Leu 125	Met	Gly	Arg
Leu	Glu 130	Asp	Ġly	Ser	Pro	Arg 135	Thr	Gly	Gln	·Ile	Phe 140	Lys	Gln	Thr	Tyr
Ser 145	Lys	Phe	Asp	Thr	Asn 150	Ser	His	Asn	Asp	Asp 155	Ala	Leu	Leu	Lys	Asn 160
Tyr	Gly	Leu	Leu	Tyr 165	Cys	Phe	Arg	Lys	Asp 170	Met	Asp	Lys	Val	Glu 175	
Phe	Leu	Arg	Ile 180	Val	·Gln	Cys	Arg	Ser 185	Val	Glu	Gly	Ser	Cys 190	Gly	Phe
Ser	Trp	.Gly 195	Gly	Gly	Gly	Ser	Phe 200	Pro	Thr	Ile	Pro	Leu 205	Ser	Arg	Leu
Phe	Asp 210	Asn	Ala	Met	Leu	Arg 215	Ala	His	Arg	Leu	His 220	Gln	Leu	Ala	Phe
Asp 225	Thr	Tyr	Gln	Glu	Phe 230	Glu	Glu	Ala	Tyr	Ile 235	Pro	Lys	Glu	Gln	Lys 240
Tyr	Ser	Phe	Leu	Gln 245	Asn	Pro	Gln	Thr	Ser 250	Leu	Cys	Phe	Ser	Glu 255	Ser
Ile	Pro	Thr	Pro. 260	Ser	Asn	Arg	Glu	Glu 265	Thr	Gln	Gln	Г'ns	Ser 270	Asn	Leu
Glu	Leu	Leu 275	Arg	Ile	Ser	Leu	Leu 280	Leu	Ile	Gln	Ser	Trp 285	Leu	Glu	Pro
Val	Gln 290	Phe	Leu	Arg	Ser	Val 295	Phe	Ala	Asn	Ser	Leu 300	Val	Tyr	Gly	Ala,
Ser 305	Asp	Ser	Asn	Val	Tyr 310	Asp	Leu	Leu	Lys	Asp 315	Leu	Glu	Glu	Gly	Ile 320
Gln	Thr	Leu	Met	Gly 325	Arg	Leu	Glu	Asp	Gly 330	Seŗ	Pro	Arg	Thr	Gly 335	Gln

Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser His Asn Asp 340 Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe Ser 385 390 <210> 52 <211> 1779 <212> DNA Artificial <213> <220> <223> synthetic sequence <220> <221> misc feature (1174)..(1767) <222> <223> sequence is repeated N-1 times, where N is a positive whole numbe <4.00>

catatgttcc caaccattcc cttatccagg ctttttgaca acgctatgct ccgcgcccat .60 cgtctgcacc agctggcctt tgacacctac caggagtttg aagaagccta tatcccaaag 120 gaacagaagt attcattcct gcagaacccc cagacctccc tctgtttctc agagtctatt 180 ccgacaccct ccaacaggga ggaaacacaa cagaaatcca acctagagct gctccgcatc 240 tecetgetge teatecagte gtggetggag ceegtgeagt teeteaggag tgtettegee 300 aacageetgg tgtaeggege etetgaeage aacgtetatg aceteetaaa ggaeetagag 360 gaaggcatcc aaacgctgat ggggaggctg gaagatggca gcccccggac tgggcagatc 420 ttcaagcaga cetacagcaa gttcgacaca aactcacaca acgatgacgc actactcaag 480 aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 540 atcgtgcagt gccgctctgt ggagggcagc tgtggcttct catggggtgg tggaggaagt 600 ttcccaacca ttcccttatc caggettttt gacaacgeta tgetcegege ccategtetg 660 caccagetgg cetttgacac ctaccaggag tttgaagaag cetatateec aaaggaacag 720 aagtattoat tootgoagaa coccoagaco tooctotgtt totoagagto tattoogaca 780 ccctccaaca gggaggaaac acaacagaaa tccaacctag agctgctccg catctccctg 840

```
etgeteatee agtegtgget ggageeegtg eagtteetea ggagtgtett egeeaacage
                                                                     900
ctggtgtacg gcgcctctga cagcaacgtc tatgacctcc taaaggacct agaggaaggc
                                                                     960
atccaaacgc tgatggggag gctggaagat ggcagcccc ggactgggca gatcttcaag
                                                                    1020
cagacctaca gcaagttcga cacaaactca cacaacgatg acgcactact caagaactac
                                                                    1080
gggetgetet actgetteag gaaggacatg gacaaggteg agacatteet gegeategtg
                                                                    1140
cagtgccgct ctgtggaggg cagctgtggc ttctcatggg gtggtggagg aagtttccca
                                                                    1200
accettecet tatecagget ttttgacaac getatgetee gegeegateg tetgeaccag
                                                                    1260
ctggcctttg acacctacca ggagtttgaa gaagcctata tcccaaagga acagaagtat
                                                                    1320
tcattcctgc agaaccccca gacctccctc tgtttctcag agtctattcc gacaccctcc
                                                                    1380
aacagggagg aaacacaaca gaaatccaac ctagagctgc tccgcatctc cctgctgctc
                                                                    1440
atccagtcgt ggctggagcc cgtgcagttc ctcaggagtg tcttcgccaa cagcctggtg
                                                                    1500
tacqqcqcct ctgacagcaa cgtctatgac ctcctaaaqq acctaqagga aggcatccaa
                                                                    1560 -
acgctgatgg ggaggctgga agatggcagc ccccggactg ggcagatctt caagcagacc
                                                                    1620
tacagcaagt tcgacacaaa ctcacacaac gatgacgcac tactcaagaa ctacgggctg
                                                                    1680
ctctactgct tcaggaagga catggacaag gtcgagacat tcctgcgcat cgtgcagtgc
                                                                    1740
cgctctgtgg agggcagctg tggcttctca tgaggatcc
                                                                    1779
```

```
<210> 53
<211> 589
```

<220>

<223> synthetic sequence

<220>

<221> MISC_FEATURE

<222> (391)..(588)

<223> sequence is repeated N-1 times, where N is a positive whole numbe

<220>

<221> mat peptide

<222> (1)..()

<400> 53

Met Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu 1 5 10 15

<212> PRT <213> Artificial

- Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe 20 25 30
- Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn 35 40 45
- Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn 50 55 60
- Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser 65 70 75 80
- Leu Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser 85 90 95
- Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr
 100 105 110
- Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg 115 120 125
- Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr 130 135 140
- Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr 165 170 175
- Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe 180 185 190
- Ser Trp Gly Gly Gly Ser Phe Pro Thr Ile Pro Leu Ser Arg Leu 195 200 205
- Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe 210 215 220
- Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys 225 230 235 240
- Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser 245 250 255
- Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu 260 265 270
- Glu Leu Leu Arg Ile Ser Leu Leu Leu Ile Gln Ser Trp Leu Glu Pro 275 280 285
- Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala 290 295 300
- Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile 305 310 315 320

Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln 325 330 335

Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser His Asn Asp 340 345 350

Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp 355 360 365

Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys Arg Ser Val 370 375 380

Glu Gly Ser Cys Gly Phe Ser Trp Gly Gly Gly Gly Ser Phe Pro Thr 385 390 395 400

Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu Arg Ala His Arg 405 410 415

Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr 420 425 430

Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser 435 440 445

Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr 450 455 460

Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Leu Ile 465 470 475 480

Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn 485 490 495

Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys 500 505 510

Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly 515 520 525

Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp 530 535 540

Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu 545 550 555 560

Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile 565 570 575

Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe Ser 580 585

<210> 54

<211> 2370

<212> DNA

<213> Artificial

<220>

<221> misc_feature

<222> (1174)..(1767)

<223> sequence is repeated N-1 times, where N is a positive whole numbe

<400> 54 catatgttcc caaccattcc cttatccagg ctttttgaca acgctatgct ccgcgcccat cgtctgcacc agetggcctt tgacacctac caggagtttg aagaagccta tateccaaag 120 180 gaacagaagt attcattcct gcagaacccc cagacctccc tctgtttctc agagtctatt ccgacaccct ccaacaggga ggaaacacaa cagaaatcca acctagagct gctccgcatc 240 tecetgetge teatecagte gtggetggag ceegtgeagt teeteaggag tgtettegee 300 aacageetgg tgtaeggege etetgaeage aacgtetatg accteetaaa ggaeetagag 360 gaaggcatcc aaacgctgat ggggaggctg gaagatggca gcccccggac tgggcagatc 420 480 ttcaagcaga cctacagcaa gttcgacaca aactcacaca acgatgacgc actactcaag 540 aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 600 ategtgcagt geogetetgt ggagggcage tgtggcttet catggggtgg tggaggaagt ttcccaacca ttcccttate caggettttt gacaacgeta tgctccgcgc ccatcgtctg 660 720 caccagetgg cetttgacac etaccaggag tttgaagaag cetatatece aaaggaacag aagtattcat teetgeagaa eeeccagaee teeetetgtt teteagagte tatteegaca 780 840 ccctccaaca gggaggaaac acaacagaaa tccaacctag agctgctccg catctccctg 900 etgeteatee agtegtgget ggageeegtg cagtteetea ggagtgtett egeeaacage ctggtgtacg gcgcctctga cagcaacgtc tatgacctcc taaaggacct agaggaaggc 960 atccaaacgc tgatggggag gctggaagat ggcagcccc ggactgggca gatcttcaag 1020 cagacctaca gcaagttcga cacaaactca cacaacgatg acgcactact caagaactac 1080 gggctgctct actgcttcag gaaggacatg gacaaggtcg agacattcct gcgcatcgtg 1140 cagtgccgct ctgtggaggg cagctgtggc ttctcatggg gtggtggagg aagtttccca 1200 accattccct tatccaggct ttttgacaac gctatgctcc gcgcccatcg tctgcaccag 1260 1320 ctggcctttg acacctacca ggagtttgaa gaagcctata tcccaaagga acagaagtat teatteetge agaaccecca gaccteette tgttteteag agtetattee gacaccetee 1380 aacagggagg aaacacaaca gaaatccaac ctagagctgc tccgcatctc cctgctgctc 1440

```
atccagtcgt ggctggagcc cgtgcagttc ctcaggagtg tcttcgccaa caqcctqqtq
tacggcgcct ctgacagcaa cgtctatgac ctcctaaagg acctagagga aggcatccaa
                                                                    1560
acgctgatgg ggaggctgga agatggcagc ccccggactg ggcagatctt caagcagacc
                                                                    1620
tacagcaagt tcgacacaaa ctcacacaac gatgacgcac tactcaagaa ctacgggctg
                                                                    1680
ctctactgct tcaggaagga catggacaag gtcgagacat tcctgcgcat cgtgcagtgc
                                                                    1740
cgctctgtgg agggcagctg tggcttctca tggggtggtg gaggaagttt cccaaccatt
                                                                    1800
ccettateca ggetttttga caacgetatg etcegegeec ategtetgea ccagetggee
                                                                    1860
tttgacacct accaggagtt tgaagaagcc tatatcccaa aggaacagaa gtattcattc
                                                                    1920
ctgcagaacc cccagacctc cctctgtttc tcagagtcta ttccgacacc ctccaacagg
                                                                    1980
gaggaaacac aacagaaatc caacctagag ctgctccgca tctccctgct gctcatccag
                                                                    2040
tegtggetgg agecegtgea gtteeteagg agtqtetteg ceaacageet ggtgtaegge
                                                                    2100
gcctctgaca gcaacgtcta tgacctccta aaggacctag aggaaggcat ccaaacgctg
                                                                    2160
atggggaggc tggaagatgg cagccccgg actgggcaga tettcaagca gacctacagc
                                                                    2220
aagttegaca caaactcaca caacgatgac gcactactca agaactacgg gctgctctac
                                                                    2280
tgcttcagga aggacatgga caaggtcgag acattcctgc gcatcgtgca gtgccgctct
                                                                    2340
gtggagggca gctgtggctt ctagggatcc
                                                                    2370
```

```
<210> 55
<211> 786
<212> PRT
<213> Artificial
```

<220>

<223> synthetic sequence

<220>

<221> MISC_FEATURE <222> (391)..(588)

<220>

<221> mat_peptide

<222> (1)..()

<400> 55

Met Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu 1 5 10 15

Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe
20 25 30

Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser 70 75 Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg .115 120 Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn 150 155 Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe 185 Ser Trp Gly Gly Gly Ser Phe Pro Thr Ile Pro Leu Ser Arg Leu 195 200 Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe 215 Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys 230 Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu 260 265 Glu Leu Leu Arg Ile Ser Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala 295 Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile 305 310 Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln

330

335

- Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser His Asn Asp 340 345 350
- Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp 355 360 365
- Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys Arg Ser Val 370 375 380
- Glu Gly Ser Cys Gly Phe Ser Trp Gly Gly Gly Gly Ser Phe Pro Thr 385 390 395 400
- Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu Arg Ala His Arg
 405 410 415
- Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr
 420 425 430
- Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser 435 440 445
- Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr 450 455 460
- Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Leu Ile 465 470 480
- Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn 485 490 495
- Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys 500 505 510
- Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly 515 520 525
- Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp 530 535 540
- Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu 545 550 555 560
- Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile 565 570 575
- Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe Ser Trp Gly Gly
 580 585 590
- Gly Gly Ser Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala 595 600 605
- Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln 610 615 620
- Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu 625 630 635 640

Gln Ası	ı Pro	Gln	Thr 645	Ser	Leu	Cys	Phe	Ser 650	Glu	Ser	Ile	Pro	Thr 655	Pro			
Ser Ası	n Arg	Glu 660	Glu	Ţhr	Gln	Gln	Lys 665	Ser	Asn	Leu	Glu	Leu 670	Leu	Arg			
Ile Sei	675	Leu	Leu	Ile	Gln	Ser 680	Trp	Leu	Glu	Pro	Val 685	Gln	Phe	Leu			
Arg Ser		Phe	Ala	Asn	Ser 695	Leu	Val	Tyr	Gly	Ala 700	Ser	Asp	Ser	Asn			
Val Tyr	r .Asp	Leu	Leu	Lys 710	Asp	Leu	Glu	Glu	Gly 715	Ile	Gln	Thr	Ļeu	Met 720		e:	
Gly Arg	g Leu	Glu	Asp 725	Gly	Ser	Pro	Arg	Thr 730	Gly	Gln	Ile	Phe	Lys 735	Gln			
Thr Ty	r Ser	Lys 740	Phe	Asp	Thr	Asn	Ser 745	His	Asn	Asp	Asp	Ala 750	Leu	Leu			
Lys Ası	n Tyr 755	Gly	Leu	Leu	Tyr	Cys 760	Phe	Arg	Lys	Asp	Met 765		Lys	Val			
Glu Th		Leu	Arg	Ile	Val 775	Gln	Cys	Arg	Ser	Val 780	Glu	Gly	Ser	Cys			
Gly Pho 785	e																
<210> <211>	56 33				٠.		•					÷					
<212> <213>	DNA Arti	ficia	al									ř.			•		-
<220> <223>	syntl	hetio	c se	quen	ce												
<400> ttacca	56 tgga	ttgc	cggc	gg c	ggçg	gatc	c aa	t		•		,					33
<210>	5 <i>7</i>		•											•			
<211> <212>	36 DNA																
<213>	Arti	ficia	al													-	
<220> <223>	synt	heți	c se	quen	ce							٠					
<400> ttacca	57 tgga	tttg	atca	gg c	ggcg	gcgg	a tc	caat									36
<210> <211>	58 36																
	20																

```
<212> · DNA
<213> Artificial
<220>
<223> synthetic sequence
<400> 58
tgatcaggcg gcggcggatc aggcggcggc ggatcc
                                                                   36
<210> 59
<211> 10
<212> PRT
<213> Artificial
<220>
<223> synthetic sequence
<400> 59
Ser Gly Gly Gly Ser Gly Gly Gly
               5
<210> 60
     48
<211>
<212> DNA
<213> Artificial
<220>
<223> synthetic sequence
<400> 60
gccggcggcg gcggatcagg cggcggcgga tcaggcggcg gcggatcc
                                                                    48
<210>
      61
<211>
      14
<212> PRT
<213> Artificial
<220>
<223> synthetic sequence
<400> 61
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly
<210> 62
<211> 43
<212> DNA
<213> Artificial
<220>
<223> synthetic sequence
<400> 62
```

ggaçata	atgc tgtgatc	att cccaaco	att ccctt	atcca ggc			43
<210><211><211><212><213>	63 41 DNA Artificial						
<220> <223>	synthetic s	sequence					
<400> cgcgaat	63 ttcg atccatg	ggaa gccacag	etg cccto	ccacag a			41
<210><211><211>	64 36 DNA				•	·	
<213>	Artificial						
<220> <223>	synthetic s	sequence	. •				
<400> cgcgtc	64 gacc tagaago	ccac agetge	ctc cacaç	ga			36
<210><211><211><212><213>	65 602 DNA Artificial		·				- - -
<220> <223>	synthetic s	sequence				•	· .
<400> catatg	65 ctgt gatcatt	ccc aaccatt	ccc ttate	ccaggc tttt	tgacaa d	cgctatgctc	. 60
cgcgcc	catc gtctgca	acca gctggco	ettt gacad	cctacc agga	igtttga a	agaagcctat	120
atccca	aagg aacagaa	agța ttcatto	cctg cagaa	accccc agac	ctccct o	ctgtttctca	180
gagtct	attc cgacacc	cctc caacag	ggag gaaad	cacaac agaa	atccaa (cctagagctg	240
ctccgc	atct ccctgct	gct catccag	gtcg tggct	tggagc ccgt	gcagtt o	cctcaggagt	300
gtcttc	gcca acagcct	ggt gtacggo	egcc tctg	acagca acgt	ctatga d	cctcctaaag	360
gaccta	gagg aaggcat	cca aacgct	gatg gggag	gg¢tgg aaga	itggcág (ccccggact	420
gggcag	atct tcaagca	agac ctacago	caag ttcga	acacaa acto	acacaa (cgatgacgca	480
ctactc	aaga actacgg	ggct gctctad	tgc ttcag	ggaagg acat	ggacaa g	ggtcgagaca	540
ttcctg	cgca tcgtgca	agtg ccgctct	gtg gaggg	gcagct gtgç	jcttcca t	tggatcgaat	600
tc							602

```
<210>
       66
<211>
       192
<212>
      PRT
<213>
      Artificial
<220>
<223>
      synthetic sequence
<400> 66
Ser Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu
Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe
                               25
Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn
Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn
Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser
                70
                                       75
Leu Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser
Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr
                               105
Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg
Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr
Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn
                   150
145
                                       155
Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr
Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe
                                185
<210>
       67
<211>
       600
<212>
      DNA
      Artificial
<213>
```

<220>

<223> synthetic sequence

<400> 67

catatgctgt	gatcattccc	aaccattccc	ttatccaggc	tttttgacaa	cgctatgctc	60
cgcgcccatc	gtctgcacca	gctggccttt	gacacctacc	aggagtttga	agaagcctat	120
atcccaaagg	aacagaagta	ttcattcctg	cagaaccccc	agacctccct	ctgtttctca	180
gagtctattc	cgacaccctc	caacagggag	gaaacacaac	agaaatccaa	cctagagctg	240
ctccgcatct	ccctgctgct	catccagtcg	tggctggagc	ccgtgcagtt	cctcaggagt	300
gtcttcgcca	acagcctggt	gtacggcgcc	tctgacagca	acgtctatga	cctcctaaag	360
gacctagagg	aaggcatcca	aacgctgatg	gggaggctgg	aagatggcag	ccccggact	420
gggcagatet	tcaagcagác	ctacagcaag	ttcgacacaa	actcacacaa	cgatgacgca	.480
ctactcaaga	actacgggct	gctctactgc	ttcaggaagg	acatggacaa	ggtcgagaca	540
ttcctgcgca	tcgtgcagtg	ccgctctgtg	gagggcagct	gtggcttcta	ggtcgacgcg	600

<210> 68

<211> 192

<212> PRT

<213> Artificial

<220>

<223> synthetic sequence

<400> 68

Ser Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu 1 5 10 15

Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe 20 25 30

Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn 35 40 45

Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn 50 55 60

Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser 65 70 75 80

Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser 85 90 95

Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr
100 105 110

Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg 115 120 125

Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr 130 135 140 Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe <210> 69 <211> 639 <212> DNA <213> Artificial <220> <223> synthetic sequence <400> catatgetgt gateatteec aaccatteec ttatecagge tttttgacaa egetatgete 60 egegeecate gtetgeacca getggeettt gacacetace aggagtttga agaageetat 120 ateccaaagg aacagaagta tteatteetg cagaaceeec agaceteect etgtttetea 180 gagtetatte egacaceete caacagggag gaaacacaac agaaatecaa eetagagetg 240 ctccgcatct ccctgctgct catccagtcg tggctggagc ccgtgcagtt cctcaggagt 300 qtetteqeea acageetggt gtaeggegee tetgacagea acqtetatga cetectaaag 360 gacctagagg aaggcatcca aacgctgatg gggaggctgg aagatggcag cccccggact 420 gggcagatet teaageagae etacageaag ttegacacaa aeteacacaa egatgaegea 480 ctactcaaga actacgggct gctctactgc ttcaggaagg acatggacaa ggtcgagaca 540 600 tteetgegea tegtgeagtg eegetetgtg gagggeaget gtggettegg eggeggegga tcaggcggcg gcggatcagg cggcggcgga tccgaattc 639 <210> 70 <211> 206 <212> PRT <213> Artificial <220> <223> synthetic sequence <400> 70 Ser Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe

Glu	Glu	Ala 35	Tyr	Iļe	Pro	Lys	Glu 40	Gln	Lys	Tyr	Ser	Phe 45	Leu	Gln	Asn		
Pro	Gln 50	Thr	Ser	Leu	Cys	Phe 55	Ser	Glu	Ser	Ile	Pro 60	Thr	Pro	Ser	Asn		
Arg 65	Glu	Glu	Thr	Gln	Gln 70	Lys	Ser	Asn	Leu	Glu 75	Leu	Leu	Arg	Ile	Ser 80		
Leu	Leu	Leu	Ile	Gln 85	Ser	Trp	Leu	Glu	Pro 90	Val	Gln	Phe	Leu	Arg 95	Ser		
Val	Phe	Ala	Asn 100	Ser	Leu	Val	Tyr	Gly 105	Ala	Ser	Asp	Ser	Asn 110	Val	Туŗ		
Asp	Leu	Leu 115	Lys	Asp	Leu	Glu	Glu 120	Gly	Ile	Gln	Thr	Leu 125	Met	Gly	Arg		
Leu	Glu 130	Asp	Gly	Ser	Pro	Arg 135	Thr	Gly	Gln	Ile	Phe 140	Lys	Gln	Thr	Tyr	121	
Ser 145	Lys	Phe	Asp	Thr	Asn 150	Ser	His	Asn	Asp	Asp 155	Ala	Leu′	Leu	Lys	Asn 160		
Tyr	Gly	Leu	Leu	Tyr 165	Cys	Phe	Arg	Lys	Asp 170	Met	Asp	Lys	Val	Glu 175	Thr	:	
Phe	Leu	Arg	Ile 180	Val	Gln	Cys	Arg	Ser 185	Val	Glu	Gly	Ser	Cys 190	Gly	Phe		
Gly	Gly	Gly 195	_	Ser	Gly.	Gly	Gly 200	Gly	Ser	Gly	Gly	Gly 205	Gly			٠	
<210 <211 <211 <211	L> 2> 1	71 630 DNA Arti	fici	a.1													
<21.		ALCI	LICI	d1								•					
<22		syntl	hetio	c sed	queno	ce											
<4.00 cata		71 tcc (caac	catto	cc ct	tato	ccag	g cti	ttt	gaca	acgo	ctate	gct (ccgc	gcccat		60
cgt	ctgc	acc a	agct	ggect	t to	gacad	ccta	ç caç	ggagt	ttg	aaga	agco	cta 1	tatco	ccaaag	1	20
gaad	caga	agt a	attca	attc	ct go	cagaa	accc	c cag	gacci	ccc	tct	gttt	ctc a	agagi	tctatt	1	.80
ccga	acac	çct (ccaa	cagg	ga gg	gaaa	caca	a caç	gaaal	cca	acci	aga	gct g	gctc	cgcatc	2	40
tcc	etge	tgc 1	tcat	ccag	c gt	ggct	zgga	g cc	cgtg	cagt	teet	cago	gag 1	tgtc	ttcgcc	. 3	00
aaca	agcc	tgg 1	tgtad	cggc	gc ct	ctg	acago	c aad	cgtc	atg	acçi	ccta	aaa g	ggac	ctagag	3	60
gaag	ggca	tcc a	aaac	gctga	at go	ggga	ggct	g gaa	agato	ggca	gcc	cccg	gac 1	tggg	cagatc	4	20

ttcaagcaga cct	acagcaa gttcg	acaca aaçt	cacaca a	acgatgacgc a	actactdaag
aactacgggc tgc	tctactg cttca	ggaag gaca	atggaca a	aggtcgagac a	attcetgege
atcgtgcagt gcc	gctctgt ggagg	gcage tgtg	ggcttcg (gcggcggcgg a	atcaggcggc
ggcggatcag gcg	gcggcgg atccg	aattc	•		
<210> 72	• .				
<211> 206 <212> PRT		*,		.	
<213> Artific	cial				
<220> <223> synthet	ic sequence				
<400> 72	· -				
Met Phe Pro Th		_		Asp Asn Ala	
1	5		10	: ml m 01	15
Arg Ala His An	7	Leu Ala 1 25	Pne Asp	inr lyr Gin 30	Glu Pne
Glu Glu Ala Ty 35	r Ile Pro Lys	Glu Gln 1 40	Lys Tyr	Ser Phe Leu 45	Gln Asn
Pro Gln Thr Se	er Leu Cys Phe 55	Ser Glu	•	Pro Thr Pro 60	Ser Asn
Arg Glu Glu Th	nr Gln Gln Lys 70	Ser Asn l	Leu Glu 1 75	Leu Leu Arg	Ile Ser 80
Leu Leu Leu I	le Gln Ser Trp 85		Pro Val (90	Gln Phe Leu	Arg Ser 95
Val Phe Ala As	sn Ser Leu Val 00	Tyr Gly 7	Ala Ser i	Asp Ser Asn 110	•
Asp Leu Leu Ly 115	ys Asp Leu Glu	Glu Gly :	Ile Gln	Thr Leu Met 125	Gly Arg
Leu Glu Asp G	ly Ser Pro Arg			Phe Lys Gln 140	Thr Tyr
Ser Lys Phe As	sp Thr Asn Ser 150	His Asn	Asp Asp . 155	Ala Leu Leu	Lys Asn 160
Tyr Gly Leu Lo	eu Tyr Cys Phe 165		Asp Met . 170	Asp Lys Val	Glu Thr 175
Phe Leu Arg I	le Val Gln Cys 30	Arg Ser	Val Glu	Gly Ser Cys 190	
Gly Gly Gly G 195	ly Ser Gly Gly	Gly Gly 8	Ser Gly	Gly Gly Gly 205	

```
<210>
       73
<211>
       1248
       DNA
<212>
       Artificial
<213>
<220>
<223>
       synthetic sequence
<220>
<221>
       misc feature
<222>
       (619) . . (1236)
```

<223>

sequence is repeated N-1 times, where N is a positive whole numbe

<400> 73 tgatcattcc caaccattcc cttatccagg ctttttgaca acgctatgct ccgcgcccat 60 egtetgeace agetggeett tgacacetae caggagtttg aagaageeta tateecaaag .120 gaacagaagt attcattcct gcagaacccc cagacctccc tctgtttctc agagtctatt 180 ecgacaccet ccaacaggga ggaaacacaa cagaaateca acetagaget getecgeate 240 300 teeetgetge teatecagte gtggetggag ceegtgeagt teeteaggag tgtettegee aacagcctgg tgtacggcgc ctctgacagc aacgtctatg acctcctaaa ggacctagag 360 gaaggcatcc aaacgctgat ggggaggctg gaagatggca gcccccggac tgggcagatc 420 ttcaagcaga cctacagcaa gttcgacaca aactcacaca acgatgacgc actactcaag 480 aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 540 ategtgeagt geegetetgt ggagggeage tgtggetteg geggeggegg ateaggegge 600 660 ggcggatcag gcggcggcgg atcattccca accattccct tatccaggct ttttgacaac getatgetee gegeeeateg tetgeaceag etggeetttg acacetacea ggagtttgaa 720 gaageetata teecaaagga acagaagtat teatteetge agaaceeeca gaeeteeete 780 tgtttctcag agtctattcc gacaccctcc aacagggagg aaacacaaca gaaatccaac 840 ctagagetge teegeatete eetgetgete ateeagtegt ggetggagee egtgeagtte 900 ctcaggagtg tcttcgccaa cagcctggtg tacggcgcct ctgacagcaa cgtctatgac 960 ctcctaaagg acctagagga aggcatccaa acgctgatgg ggaggctgga agatggcagc 1020 ccccggactg ggcagatctt caagcagacc tacagcaagt tcgacacaaa ctcacacaac 1080 gatgacgcac tactcaagaa ctacgggctg ctctactgct tcaggaagga catggacaag 1140 gtcgagacat tcctgcgcat cgtgcagtgc cgctctgtgg agggcagctg tggcttcggc 1200

```
<210> 74
<211> 412
<212>
       PRT
<213>
       Artificial
<220>
       synthetic sequence
<223>
<220>
<221> MISC_FEATURE
<222>
       (193)..(398)
       sequence is repeated N-1 times, where N is a positive whole numbe
<400> 74
Ser Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu
Arq Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe
                                25
Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn
Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn
Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser
                                        75
Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser
Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr
                               105
Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg
        115
                             120
Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr
Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn
                    150
                                        155
Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr
                                  170
                165
Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe
                                 185 -
```

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Phe

Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu 230 Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu 265 Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu 280 Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe 295 Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys 345 Phe Asp Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly 360 Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu 375 380 Arg Ile Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly <210> 75 <211> 2445 <212> DNA <213> Artificial

<220>

synthetic sequence <223>

<220>

<221> misc_feature

(1237)..(1854) <222>

sequence is repeated N-1 times, where N is a positive whole numbe <223>

catatgttcc	caaccattcc	cttatccagg	ctttttgaca	acgctatgct	ccgcgcccat	60
cgtctgcacc	agctggcctt	tgacacctac	caggagtttg	aagaagccta	tatcccaaag	120
gaacagaagt	attcattcct	gcagaacccc	cagacctccc	tctgtttctc	agagtctatt	180
ccgacaccct	ccaacaggga	ggaaacacaa	cagaaatcca	acctagagct	gctccgcatc	240
tecetgetge	tcatccagtc	gtggctggag	cccgtgcagt	tcctcaggag	tgtcttcgcc	300
aacagcctgg	tgtacggcgc	ctctgacagc	aacgtctatg	acctcctaaa	ggacctagag	360
gaaggcatcc	aaacgctgat	ggggaggctg	gaagatggca	gcccccggac	tgggcagatc	420
ttcaagcaga	cctacagcaa	gttcgacaca	aactcacaca	acgatgacgc	actactcaag	480
aactacgggc	tgctctactg	cttcaggaag	gacatggaca	aggtcgagac	attcctgcgc	540
atcgtgcagt	gccgcțctgt	ggagggcagc	tgtggcttcg	gcggcggcgg	atcaggcggc	600
ggcggatcag	geggeggegg	atcattccca	accattccct	tatccaggct	ttttgacaac	660
gctatgctcc	gcgcccatcg	tctgcaccag	ctggcctttg	acacctacca	ggagtttgaa	720
gaagcctata	tcccaaagga	acagaagtat	tcattcctgc	agaaccccca	gacctccctc	780
tgtttctcag	agtctattcc	gacaccctcc	aacagggagg	aaacacaaca	gaaatccaac	840
ctagagctgc	teegeatete	cctgctgctc	atccagtcgt	ggctggagcc	cgtgcagttc	900
ctcaggagtg	tcttcgccaa	cagcctggtg	tacggcgcct	ctgacagcaa	cgtctatgac	960
ctcctaaagg	acctagagga	aggcatccaa	acgctgatgg	ggaggctgga	agatggcagc	1020
ccccggactg	ggcagatctt	caagcagacc	tacagcaagt	tcgacacaaa	ctcacacaac	1080
gatgacgcac	tactcaagaa	ctacgggctg	ctctactgct	tcaggaagga	catggacaag	1140
gtcgagacat	tcctgcgcat	cgtgcagtgc	cgctctgtgg	agggcagctg	tggcttcggc	1200
ggcggcggat	caggcggcgg	cggatcaggc	ggcggcggat	cattcccaac	cattccctta	1260
tccaggcttt	ttgacaacgc	tatgctccgc	gcccațcgtc	tgcaccagct	ggcctttgac	1320
acctaccagg	agtttgaaga	agcctatatc	ccaaaggaac	agaagtattc	attcctgcag	1380
aacccccaga	cctccctctg	tttctcagag	tctattccga	caccctccaa	cagggaggaa	1440
acacaacaga	aatccaacct	agagctgctc	cgcatctccc	tgctgctcat	ccagtcgtgg	1500
ctggagcccg	tgcagttcct	caggagtgtc	ttcgccaaca	gcctggtgta	cggcgcctct	1560
gacagcaacg	tctatgacct	cctaaaggac	ctagaggaag	gcatccaaac	gctgatgggg	1620
aggctggaag	atggcagccc	ccggactggg	cagatettea	agcagaccta	cagcaagttc	1680
gacacaaact	cacacaacga	tgacgcacta	ctcaagaact	acgggctgċt	ctactgcttc	1740

÷

```
aggaaggaca tggacaaggt cgagacattc ctgcgcatcg tgcagtgccg ctctgtggag
                                                                     1800
ggcagctgtg gcttcggcgg cggcggatca ggcggcggcg gatcaggcgg cggcggatca
                                                                     1860
ttcccaacca ttcccttatc caggettttt gacaacgeta tgctccgcgc ccatcgtctg
                                                                     1920
                                                                     1980
caccagctgg cctttgacac ctaccaggag tttgaagaag cctatatccc aaaggaacag
aagtatteat teetgeagaa eeeeeagaee teeetetgtt teteagagte tatteegaea
                                                                     2040
ccctccaaca gggaggaaac acaacagaaa tccaacctag agctgctccg catctccctg
                                                                     2100
etgeteatee agteqtqqct qqaqeeeqtg cagtteetea ggagtgtett eqceaacage
                                                                     2160
ctgqtgtacq gcgcctctga cagcaacgtc tatgacctcc taaaggacct agaggaaggc
                                                                     2220
atccaaacgc tgatggggag gctggaagat ggcagccccc ggactgggca gatcttcaag
                                                                     2280
caqacctaca qcaaqttcqa cacaaactca cacaacgatg acgcactact caagaactac
qqqctqctct actgcttcag gaaggacatg gacaaggtcg agacattcct gcgcatcgtg
                                                                     2400
cagtgccgct ctgtggaggg cagctgtggc ttctaggtcg acgcg
                                                                     2445
<210>
       76
<211>
       810
<212>
       PRT
<213>
       Artificial
<220>
<223>
       synthetic sequence
<220>
<221>
       MISC FEATURE
      (412)..(617)
<222>
       sequence is repeated N-1 times, where N is a positive whole numbe
<220>
<221>
       mat_peptide .
       (1)..()
<222>
<400> 76
Met Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu
Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe
Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn
```

Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn

Arg 65	Glu	Glu	Thr	Gln	Gln 70	Lys	Ser	Asn	Leu	Glu 75	Leu	Leu	Arg	Ile	Ser 80
Leu	Leu	Leu	Ile	Gln 85	Ser	Trp	Leu	Glu	Pro 90.	Val	Gln	Phe	Leu	Arg 95	Ser
Val	Phe	Ala	Asn 100	Ser	Leu	Val	Tyr	Gly 105	Ala	Ser	Asp	Ser	Asn 110	Val	Tyr
Asp	Leu [.]	Leu 115	Lys	Asp	Leu	Glu	Glu 120	Gly	Ile	Gln	Thr	Leu 125	Met	Gļy.	Arg
Leu	Glu 130		Gly	Ser	Pro	Arg 135	Thr	Gly	Gln	Ile	Phe 140	Lys	Gln	Thr	Tyr
Ser 145	Lys	Phe	Asp	Thr	Asn 150	Ser	His	Asn	Asp	Asp 155	Ala	Leu	Leu	Lys	Asn 160
Tyr	Gly	Leu	Leu	Tyr 165	Cys	Phe	Arg	Lys	Asp 170	Met	Asp	Lys	Val	Glu 175	Thr
Phe	Leu	Arg	Ile 180	Val	Gln	Cys	Arg	Ser 185	Val	Glu	Gly	Ser	Cys 190	Gly	Phe
Gly	Gly ·	Gly 195	Gly	Ser	Gly	Gly	Gly 200	Gly	Ser	Gly	Gly	Gly 205	Gly	Ser	Phe
Pro	Thr 210	Ile	Pro	Leu	Ser	Arg 215	Leu	Phe	Asp	Asn	Ala 220	Met	Leu	Arg	Ala
225					230					235				Glu	240
Ala	Tyr	Ile	Pro	Lys 245	Glu	Gln	Lys	Tyr	Ser 250	Phe	Leu	Gln	Asn	Pro 255	Gln
			260					265					270	Arg	
		275					280					285		Leu	
	290					295					300			Val	
305					310					315				Asp	320
	•			325			•		330					Leu 335	
	. •		340					345					350	Ser	-
Phe	Asp	Thr	Asn	Ser	His.	Asn.	Asp	Asp	Ala	Len	Leu	Lvs	Asn	Tvr	Glv

Leu Leu Tyr Cys Phe Arq Lys Asp Met Asp Lys Val Glu Thr Phe Leu 375

Arg Ile Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe Gly Gly 395

Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Phe Pro Thr

Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu Arg Ala His Arg 425

Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr

Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser 455

Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr 470 475

Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Leu Ile 490

Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn 505

Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys

Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly 535

Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp

Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu

Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile

Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe Gly Gly Gly

Ser Gly Gly Gly Ser Gly Gly Gly Ser Phe Pro Thr Ile Pro 615 620

Leu Ser Arg Leu Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His 625

Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro 650

Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys

660 665 670

Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln 680 Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu 710 Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln 790 795 Cys Arg Ser Val Glu Gly Ser Cys Gly Phe <210> 77 <211> 593 DNA <212> <213> Artificial <220> <223> synthetic sequence <400> catatgttcc caaccattcc cttatccagg ctttttgaca acgctatgct ccgcgcccat 60 cgtctgcacc agctggcctt tgacacctac caggagtttg aagaagccta tatcccaaag 120 gaacagaagt attcatteet geagaaceee cagaeeteee tetgtttete agagtetatt cegacaceet ceaacaggga ggaaacacaa cagaaateea acetagaget geteegeate . 240 tecetgetge teatecagte gtggetggag ceegtgeagt teeteaggag tgtettegee 300 aacageetgg tgtaeggege etetgaeage aaegtetatg aceteetaaa ggaeetagag 360 gaaggcatee aaacgetgat ggggaggètg gaagatggea geeeceggae tgggeagate 420 ttcaagcaga cctacagcaa gttcgacaca aactcacaca acgatgacgc actactcaag 480 aactacgggc tgctctactg cttcaggaag gacatggaca aggtcgagac attcctgcgc 540 ategtgeagt geegetetgt ggaqqqeage tqtqqettee atggateqaa tte 593

```
<210>
       78
<211>
       192
       PRT
<212>
<213>
      Artificial
<220>
<223>
      synthetic sequence
<400> 78
Met Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu
                                    10
Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe
                                25
Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn
Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn
                     . 55
Arg Glu Glu Thr Gln Gln Lys Şer Asn Leu Glu Leu Leu Arg Ile Ser
                                        75
Leu Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser
Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr
                                105
Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg
        115
Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr
                        135
Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn
                    150
                                        155
Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr
Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe
                                185
<210>
       79
<211>
       592
<212>
      DNA
<213>
      Artificial
<220>
<223>
      synthetic sequence
```

<400> 79

aagctttccc	aaccattccc	ttatccaggc	tttttgacaa	cgctatgctc	cgcgcccatc	60
gtctgcacca	gctggccttt	gacacctacc	aggagtttga	agaagcctat	atcccaaagg	120
aacagaagta	ttcattcctg	cagaaccccc	agacctccct	ctgtttctca	gagtctattc	180
cgacaccctc	caacagggag	gaaacacaac	agaaatccaa	cctagagctg	ctccgcatct	240
ccctgctgct	catccagtcg	tggctggagc	ccgtgcagtt	cctcaggagt	gtcttcgcca	300
acagcctggt	gtacggcgcc	tctgacagca	acgtctatga	cctcctaaag	gacctagagg	360
aaggcatcca	aacgctgatg	gggaggctgg	aagatggcag	cccccggact	gggcagatct	420
tcaagcagac	ctacagcaag	ttcgacacaa	actcacacaa	cgatgacgca	ctactcaaga	480
actaçgggçt	gctctactgc	ttcaggaagg	acatggacaa	ggtcgagaca	ttcctgcgca	540
tcgtgcagtg	ccgctctgtg	gagggcagct	gtggcttcca	tggatcgaat	tc	592

<210> 80

<211> 191

<212> PRT

<213> Artificial

<220>

<223> synthetic sequence

<400> 80

Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu Arg 1 5 10 15

Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu 20 25 30

Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro 35 40 45

Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg
50 55 60

Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu 65 70 75 80

Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser Val 85 90 95

Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp 100 105 110

Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg Leu
115 120 125

Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser 130 135 140 Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn Tyr 150 145 Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe <210> 81 <211> 587 <212> DNA <213> Artificial <220> <223> synthetic sequence <400> aagettteee aaceatteee ttatecagge tttttgacaa egetatgete egegeecate 60 gtctgcacca gctggccttt gacacctacc aggagtttga agaagcctat atcccaaagg 120 aacagaagta ttcattcctg cagaaccccc agacctccct ctgtttctca gagtctattc 180 cgacaccete caacagggag gaaacacaac.agaaatecaa.cetagagetg etcegcatet 240 ccctgctgct catccagtcg tggctggagc ccgtgcagtt cctcaggagt gtcttcgcca 300 acagcetggt gtacggcgcc tetgacagca acgtetatga cetectaaag gacetagagg 360 aaggcatcca aacgctgatg gggaggctgg aagatggcag cccccggact gggcagatct 420 tcaagcagac ctacagcaag ttcgacacaa actcacacaa cgatgacgca ctactcaaga, 480 actacgggct gctctactgc ttcaggaagg acatggacaa ggtcgagaca ttcctgcgca 540 tcgtgcagtg ccgctctgtg gagggcagct gtggcttcta gggatcc 587 <210> 82 <211> 191 <212> PRT <213> Artificial <220> synthetic sequence <223> <400> 82 Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu 25

Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro

35

Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arq Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu 70 75 Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp 105 Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg Leu 115 Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser 135 Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn Tyr 145 150 155 Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe 185 <210> 83 <211> 1165 <212> DNA <213> Artificial <220> <223> synthetic sequence <220> <221> misc_feature <222> (579)..(1151) <223> sequence is repeated N-1 times, where N is a positive whole numbe <400> 83 aagettteee aaccatteee ttatecagge tttttgacaa egetatgete egeqeecate 60 gtctgcacca gctggccttt gacacctacc aggagtttga agaagcctat atcccaaagg 120 aacagaagta ttcattcctg cagaaccccc agacctccct ctgtttctca gagtctattc 180 cgacaccete caacagggag gaaacacaac agaaatecaa cetagagetg etecgeatet 240 ecctgetget catecagteg tggetggage cegtgeagtt ceteaggagt gtettegeea 300 acageetggt gtaeggegee tetgaeagea aegtetatga eeteetaaag gaeetagagg 360

aaggcatcca	aacgctgatg	gggaggctgg	aagatggcag	cccccggact	gggcagatct	420
tcaagcagac	ctacagcaag	ttcgacacaa	actcacaçaa	cgatgacgca	ctactcaaga	480
actacgggct	gctctactgc	ttcaggaagg	acatggacaa	ggtcgagaca	ttcctgcgca	540
tcgtgcagtg	ccgctctgtg	gagggcagct	gtggcttctt	cccaaccatt	cccttatcca	600
ggctttttga	caacgctatg	ctccgcgccc	atcgtctgca	ccagctggcc	tttgacacct	660
accaggagtt	tgaagaagcc	tatatcccaa	aggaacagaa	gtattcattc	ctgcagaacc	720
cccagacctc	cctctgtttc	tcagagtcta	ttccgacacc	ctccaacagg	gaggaaacac	780
aacagaaatc	caacctagag	ctgctccgca	tctccctgct	gctcatccag	tcgtggctgg	840
agcccgtgca	gttcctcagg	agtgtcttcg	ccaacagcct	ggtgtacggc	gcctctgaca	900
gcaacgtcta	tgacctccta	aaggacctag	aggaaggcat	ccaaacgctg	atggggaggc	960
tggaagatgg	cagcccccgg	actgggcaga	tcttcaagca	gacctacagc	aagttcgaca	1020
caaactcaca	caacgatgac	gcactactca	agaactacgg	gctgctctac	tgcttcagga	1080
aggacatgga	caaggtcgag	acattcctgc	gcatcgtgca	gtgccgctct	gtggagggca	1140
gctgtggctt	ccatggatcg	aattc	. •			1165

<210> 84

<211> 191

<212> PRT

<213> Artificial

<220>

<223> synthetic sequence

<220>

<221> MISC_FEATURE

<222> (1)..(191)

<223> sequence is repeated N times, where N is a positive whole number

<400> 84

Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu Arg 1 5 10 15

Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu 20 25 30

Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg 50 55 60

G1u 65	Glu	Thr	GIn	GIn	Lys 70	Şer	Asn	Leu	Glu	Leu 75	Leu	Arg	Ile	Ser	Leu 80	
Leu	Leu	Ile	Gln	Ser 85	Trp	Leu	Glu	Pro	Val 90	Gln	Phe	Leu	Arg	Ser 95	Val	
Phe	Aļa	Asn	Ser 100	Leu	Val	Tyr	Gly	Ala 105	Ser	Asp	Ser	Asn	Val 110	Tyr	Asp	
Leu	Leu	Lys 115	Asp	Leu	Glu	Glu	Gly 120	Ile	Gln	Thr	Leu	Met 125	Gly	Arg	Leu	
Glu	Asp 130	Gly	Ser	Pro	Arg	Thr 135	Gly	Gln	Ile	Phe	Lys 140	Gln	Thr	Tyr	Ser	
Lys 145	Phe	Asp	Thr	Asn	Ser 150	His	Asn	Asp	Asp	Ala 155	Leu	Leu	Lys	Asn	Tyr 160	. 3
Gly	Leu	Leu	Tyr	Cys 165	Phe	Arg	Lys	Asp	Met 170	Asp	Lys	Val	Glu	Thr 175	Phe	
Leu	Arg	Ile	Val 180	Gln	Cys	Arg	Ser	Val 185	Glu	Gly	Ser	Cys	Gly 190	Phe		
<210 <211 <211 <211	l> 2 2> I	35 2307 DNA Artii	Eicia	al												-
<220 <220		syntl	netio	c sec	quen	ce										
<220 <221 <222 <221	L> r 2>	(115		(172		ated	N-1	time	es, 1	where	e N :	is a	pos	itiv	e whole	e numbe
<400		35														
			caaco	catto	cc c1	tato	ccag	g cti	tttt	gaca	acg	ctaț	gct	ccgc	gcccat	60
cgt	ctgca	acc a	agct	ggcct	tt to	gaca	ccta	c cag	ggagt	tttg	aaga	aagc	cta	tatco	ccaaag	120
gaad	cagaa	agt a	attca	attco	ct go	cagaa	accc	c ca	gacci	tccc	tct	gttt	ctc	agagt	tctatt	180
ççga	acaco	cct o	ccaa	caggg	ga gg	gaaad	cacaa	a caq	gaaal	cca	acci	tagag	gct	gctc	cgcatc	240
tcc	ctgct	igc t	cato	ccagt	tc gi	ggct	tggag	g cc	cgtg	cagt	tcc	tcag	gag	tgtc	ttegee	300
aaca	agcct	egg t	gtad	cggcg	gc ct	ctga	acago	c aad	cgtc	tatg	acc	tecta	aaa	ggac	ctagag	360
gaag	ggcat	ccc a	aaac	gctga	at g	gggag	ggctg	g gaa	agato	ggca	gcc	ccg	gac	tggg	cagato	420
ttca	aagca	aga d	ccta	cagca	aa gi	tcga	acaca	a aad	ctca	çaça	acga	atga	ege	açta	ctcaag	480

, *č*

aactacgggc	tgctctactg	cttcaggaag	gacatggaca	aggtcgagac	attcctgcgc	540
atcgtgcagt	gccgctctgt	ggagggcagc	tgtggcttct	tcccaaccat	tcccttatcc	600
aggctttttg	acaacgctat	gctccgegcc	categtetge	accagetgge	ctttgacacc	660
taccaggagt	ttgaagaagc	ctatatecea	aaggaacaga	agtattcatt	cctgcagaac	720
ccccagacct	ccctctgttt	ctcagagtct	attccgacac	cctccaacag	ggaggaaaca	780
caacagaaat	ccaacctaga	gctgctccgc	atctccctgc	tgctcatcca	gtcgtggctg	8.40
gagcccgtgc	agttcctcag	gagtgtcttc	gccaacagcc	tggtgtacgg	cgcctctgac	900
agcaacgtct	atgacctcct	aaaggaccta	gaggaaggca	tccaaacgct	gatggggagg	: 960
ctggaagatg	gcagcccccg	gactgggcag	atcttcaagc	agacctacag	caagttcgac	1020
acaaactcac	acaacgatga	cgcactactc	aagaactacg	ggctgctcta	ctgcttcagg	1080
aaggacatgg	acaaggtcga	gacattcctg	cgcatcgtgc	agtgccgctc	tgtggagggc	1140
agctgtggct	tcttcccaac	cattccctta	tccaggcttt	ttgacaacgc	tatgctccgc	1200
gcccatcgtc	tgcaccagct	ggcctttgac	acctaccagg	agtttgaaga	agcctatatc	1260
ccaaaggaac	agaagtattc	attcctgcag	aacccccaga	cctccctctg	tttctcagag	1320
tctattccga	caccctccaa	cagggaggaa	acacaacaga	aatccaacct	agagctgctc	1380
cgcatctccc	tgctgctcat	ccagtcgtgg	ctggagcccg	tgcagttcct	caggagtgtc	1440
ttcgccaaca	gcctggtgta	cggcgcctct	gacagcaacg	tctatgacct	cctaaaggac	1500
ctagaggaag	gcatccaaac	gctgatgggg	aggctggaag	atggcagccc	ccggactggg	1560
cagatettea	agcagaccta	cagcaagttc	gacacaaact	cacacaacga	tgacgcacta	1620
ctcaagaact	acgggctgct	ctactgcttc	aggaaggaca	tggacaaggt	cgagacattc	1680
ctgcgcatcg	tgcagtgccg	ctctgtggag	ggcagctgtg	gcttcttccc	aaccattccc	1740
ttatccaggc	tttttgacaa	cgctatgctc	cgcgcccatc	gtctgcacca	gctggccttt	1800
gacacctacc	aggagtttga	agaagcctat	atcccaaagg	aacagaagta	ttcattcctg	1860
cagaaccccc	agacctccct	ctgtttctca	gagtctattc	cgacaccctc	caacagggag	1920
gaaacacaac	agaaatccaa	cctagagctg	ctccgcatct	ccctgctgct	catccagtcg	1980
tggctggagc	ccgtgcagtt	cctcaggagt	gtettegeca	acagcctggt	gtacggcgcc	2040
tctgacagca	acgtctatga	cctcctaaag	gacctagagg	aaggcatcca	aacgctgatg	2100
gggaggctgg	aagatggcag	ccccggact	gggcagatct	tcaagcagac	ctacagcaag	2160
ttcgacacaa	actcacacaa	cgatgacgca	ctactcaaga	actacgggct	gctctactgc	2220

```
ttcaqgaagg acatggacaa ggtcgagaca ttcctgcgca tcgtgcagtg ccgctctgtg
gagggcagct gtggcttcta gggatcc
                                                                   2307
<210> 86
<211>
      192
<212> PRT
<213> Artificial
<220>
<223> synthetic sequence
<220>
<221> MISC_FEATURE
<222> (2)..(192)
<223> sequence is repeated N+2 times, where N is a positive whole numbe
<220>
<221> mat peptide
      (1)..()
<222>
<400> 86
Met Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu
      . 5
Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe
                               25
Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn
Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn
Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser
                   70
Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser
Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr
Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg
                           120
       115
Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr
                       135
Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn
                   150
                               155
```

Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr 165 170 175

Phe Leu Arg Ile Val Gln Cys Arg Ser Val Glu Gly Ser Cys Gly Phe 180 185 190