Random Variables Checkpoint 2

Question (1)

The number of people in a car that crosses a certain bridge is represented by the random variable X, which has a mean value μ_X = 2.7, and a variance σ^2_X = 1.2. The toll on the bridge is \$3.00 per car plus \$.50 per person in the car. The mean and variance of the total amount of money that is collected from a car that crosses the bridge are:

```
A: mean = $1.35, variance = $.30.
```

B: mean = \$8.60, variance = \$.30.

C: mean = \$8.60, variance = \$.60.

D: mean = \$4.35, variance = \$3.30.

E: mean = \$4.35, variance = \$.30.

Feedback

A:0

This is not quite right. You do have the correct variance since $\sigma_{a+b}^2 = b^2 \sigma_X^2 = (.5)^2 (1.2)$. However, your mean is incorrect. Remember that $\mu_{(a+b)} = a+b \mu_X$. The transformation you used was .5 X. However, you forgot about the constant part of the toll, which is the \$3.00 that each car must pay. Consider the remaining options. (E) is the right answer.

B:0

This is not quite right. You do have the correct variance since $\sigma_{a+b}^2 = b^2 \sigma_X^2 = (.5)^2 (1.2)$. However, your mean is incorrect. Remember that $\mu_{(a+b\,X)} = a+b\,\mu_X$. You used $\mu_{(a+b\,X)} = .5+3\,\mu_X$. However, the constant part of the toll is \$3.00/car and the variable part is \$.50/mile. Consider the remaining options. (E) is the right answer.

C:O

This is not quite right. Remember that $\mu_{(a + b X)} = a + b \mu_X$ and $\sigma^2_{a+b X} = b^2 \sigma^2_X$. The "a" represents the constant part of the toll

1 of 3 12/8/2012 3:48 PM

and the "b" represents the variable part. Consider the remaining options. (E) is the right answer.

D:0

X This is not quite right. You do have the correct mean since $\mu_{(a+b)} = a + b \mu_X = 3 + .5(2.7)$. Remember that $\sigma^2_{a+b} = b^2 \sigma^2_X$. It appears that you used $\sigma^2_{a+b} = a + b^2 \sigma^2_X$. Consider the remaining options. (E) is the right answer.

E: 10

✓ Good job! Let T be the total amount of money that is collected from a car that crosses the bridge. T is composed of two parts: the fixed toll of 3 dollars (regardless of the number of passengers) and \$.50 for every passenger, thus T = 3 + 0.50 * X. To find the mean and variance of T you need to use the rules of means and variances:

$$\mu_T = \mu_{3+0.50*X} = 3 + 0.50* \mu_X = 3 + 0.50* 2.7 = 4.35$$

$$\sigma_T^2 = \sigma_{3+0.50*X}^2 = (0.50)^2 * \sigma_X^2 = 0.25*1.20 = 0.30$$

Question (2)

A parking garage has two entrances. Let X be the number of cars that enter the garage through door A in an hour, and Y be the number of cars that enter through door B in an hour. Assuming that $\mu_{x}=15$ and $\mu_{y}=25$, what is the mean of Z, the total number of cars that enter the garage in an hour.

 $m{A}$: 10

B: 15

C: 25

D: 40

E: The mean of Z cannot be determined.

Feedback

A:0

X That is not quite right. Recall that since Z = X + Y, $\mu_z = \mu_x + \mu_y$.

X
B: O
X That is not quite right. Recall that since Z = X + Y, μ_z = μ_x + μ_y. 15 is just μ_x. (D) is the right answer.
C: O
X That is not quite right. Recall that since Z = X + Y, μ_z = μ_x + μ_y. 25 is just μ_y. (D) is the right answer.
D: 10
✓ Good job! Since Z = X + Y, μ_z = μ_x + μ_y.
E: O
X That is not quite right. Recall that since Z = X + Y, μ_z = μ_x + μ_y. (D) is the right answer.

3 of 3