Wydział Informatyki i Telekomunikacji Laboratorium Podstaw Elektroniki

Sprawozdanie z ćwiczenia

Tytuł Instrukcja LTSpice		Rok akademicki
		2019/2020
Data wykonania ćwiczenia	Data oddania sprawozdania	Kierunek
21.03.2020	25.03.2020	Informatyka
Skład grupy laboratoryjnej	Rok, semestr, grupa	
1. Dawid Królak	Rok 1,	
2. Michał Matuszak	semestr 2,	
3. Mateusz Miłkowski	grupa I2.1	
4. Dominik Pawłowski		

1. Cel ćwiczenia.

Zapoznanie się z podstawową obsługą programu **LTSpice**, służącego projektowaniu i symulowaniu obwodów elektronicznych.

2. Tworzenie obwodów, umieszczanie i łączenie elementów.

Aby umieścić w polu roboczym element obwodu, np. rezystor, należy nacisnąć odpowiadający mu symbol umieszczony w obszarze roboczym, a następnie, używając lewego przycisku myszy, ustawić w odpowiednim miejscu. Aby łatwo wyjść z trybu dodawania elementów, należy nacisnąć prawy przycisk myszy.

《 Pie Bat Houndy You Smilet Job Yndow Bip |D| ☞ | 묘 | 작 > | ● 즉 < 즉 즉 및 陰原 | 모든 등 보호 및 음 및 모든 등 및 등 및 급등 | △ 수 및 수 후 3 文 D ♡ ♡ 이 ⓒ 쥬음 An *P

Obszar roboczy

Umieszczenie elementu w obszarze roboczym

Używająć skrótów klawiszowych Ctrl+r oraz Ctrl+e w trybie dodawania elementu można obracać element na płaszczyźnie i dokonać jego lustrzanego odbicia.

Odbicie lustrzane elementu (Ctrl+e)

W bibliotece elementów/ układów elektronicznych oznaczonej ikoną bramki logicznej AND można wyszukać wszystkie potrzebne komponenty. Funkcje niektórych z nich to:

- voltage źródło napięcia prądu stałego,
- signal źródło napięcia prądu przemiennego,
- current źródło prądu stałego,
- cap kondensator,
- LED dioda emitująca światło,
- Ind zwojnica.

3. Analiza obwodów elektronicznych, symulacja w jednym punkcie w czasie.

Po zaprojektowaniu obwodu i uruchomieniu odpowiedniej symulacji otrzymujemy jej wyniki. W przypadku symulacji stałoprądowej *DC op pnt* jest to lista wartości pradów i napięć występujących w poszczególnych elementach obwodu.

Zaprojektowany obwód z ustalonymi wartościami rezystancji i napięcia

Wynik symulacji DC op pnt na obwodzie

Po uruchomieniu symulacji, na obszarze roboczym pojawia się jej nazwa. Umożliwia ona szybką edycję symulacji po wprowadzeniu ewentualnych zmian w obwodzie.

Po nakierowaniu kursora myszy na poszczególne elementy obwodu, w lewym dolnym rogu programu pojawiają się informacje o wartości prądu przez nie przepływającego. Analogiczne nakierowanie kursora na węzeł w obwodzie informuje o napięciu w danym miejscu.

4. Analiza obwodów elektronicznych, symulacja obwodu w zadanym czasie.

Aby analizować działanie obwodu w czasie należy uruchomić symulację Transient. Jej wynikiem jest wykres pokazujący zmiany wartości napięcia i prądu płynącego przez obwód w danej jednostce czasu.

Symulowany obwód

Wykresy natężenia prądu w poszczególnych gałęziach obwodu

Po naciśnięciu lewym przyciskiem myszy nazwy danej gałęzi/ elementu u góry okna z wykresem wyświetla się tabela ukazująca dokładne wartości odczytu w danym punkcie czasu. Punkt ten można zmieniać przesuwając białą, pionową kreskowaną linią po obszarze wykresu. Opcję tą wyłączamy zamykając tabelę krzyżykiem w prawym górnym rogu okienka.

Odczyt dokładnych danych w danym punkcie czasu.

Aby zlikwidować dany przebieg, należy wejść w tryb usuwania naciskając klawisz *Delete* na klawiaturze, lub wybierając ikonę nożyczek, a następnie lewym przyciskiem myszy wybrać nazwę przebiegu, umieszczoną w górnej części obszaru wykresu.

Usuwanie wybranego przebiegu

Menu kontekstowe z opcjami Add Plot Pane i Grid

Aby utworzyć nowe pole do wizualizacji przebiegów, należy nacisnąć prawym przyciskiem myszy w obszar wykresu, a następnie w rozwiniętym w ten sposób menu wybrać opcje *Add Plot Pane*. W tym samym menu, w zakładce *View*, istnieje opcja Grid, która ułatwia odczytywanie wykresu, dodając w tle siatkę pomocniczą.

Program automatycznie dobiera skalę osi Y, tak aby wykresy zawsze były jak najbardziej widoczne i czytelne.

4. Generowanie bardziej skomplikowanych przebiegów, funkcja PULSE.

Modyfikując parametry funkcji PULSE, dostępnej w ustawieniach źródła sygnału w obwodzie, można uzyskać różnego rodzaju przebiegi prądu w obwodzie. Znaczenie kolejnych parametrów to:

- Vinitial napięcie na początku pomiaru; granica A generowanego napięcia,
- Von granica B generowanego napiecia,
- Tdelay czas opóźnienia rozpoczęcia pomiaru,
- Trise czas, w którym generowane napięcie jednostajnie zmienia się od wartości A do B,
- Tfall czas, w którym generowane napięcie jednostajnie zmienia się od wartości B do A,
- Ton czas, w trakcie którego napięcie pozostaje na poziomie B,
- Tperiod okres jednego cyklu zmian.

Modyfikowanie parametrów funkcji PULSE

Program automatycznie poprawia błędy użytkownika i gdy trzeba ustala domyślne wartości dla niektórych parametrów. Obrazuje to przykład, gdy próbuje się ustawić wartość *Trise* lub *Tperiod* na 0 sekund - jest to fizycznie niemożliwa i nielogiczna sytuacja, a zatem program dobiera dla nich wielkości domyślne.

Różnica spowodowana dobieraniem przez program wartości domyślnych. U góry Trise oraz Tfall są równe 0.001. Na dole, mimo iż użytkownik nadał wartość 0, można zauważyć, że program dobrał wielkość większą

Manipulując wartościami parametrów uzyskuje się różne kształty wykresów:

- trapezoidalny

Vinitial=0, Von=1.2, Tdelay=0, Trise=0.25, Tfall=0.25, Ton=0.25, Tperiod=1

- trójkątny

Vinitial=0. Von=1.2, Tdelay=0, Trise=0.25, Tfall=0.1, Ton=0, Tperiod=1

- piłokształtny

Vinitial=0, Von=1.2, Tdelay=0, Trise=0.25, Tfall=0.1, Ton=0, Tperiod=0.35