Algotrading

Luís Filipe Martins Loureiro

Março, 2023

Exercício 1

In [1]:

```
# Importando as bibliotecas

%matplotlib inline

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import time
import datetime
from scipy import stats
import yahoofinancials as yf
from IPython import display
```

A empresa escolhida foi o Méliuz, considerada a primeira startup a ser listada na B3. A expectativa é de uma ação bastante descontada, dado a conjuntura de SELIC alta, algo que impacta mais empresas cuja maior parte do valor está na perpetuidade.

In [2]:

```
ticker = 'CASH3.SA'
start_date = '2022-08-23'
end_date = '2023-02-23'
data = yf.YahooFinancials(ticker).get_historical_price_data(start_date, end_date, 'daily
```

In [13]:

```
# Ajustando o DataFrame para focar nas colunas de interesse
# Ler os dados do JSON
cash3_raw = pd.DataFrame(data[ticker]['prices']).dropna()
# Converter a data para o tipo correto datetime
cash3_raw['formatted_date'] = pd.to_datetime(cash3_raw['formatted_date'])
# Indica a data como o índice de cada linha
cash3_raw = cash3_raw.set_index('formatted_date')
cash3 = cash3_raw.iloc[:,1:-1]
cash3.head(10)
```

Out[13]:

	high	low	open	close	volume
formatted_date					
2022-08-23	1.32	1.19	1.19	1.29	45616300
2022-08-24	1.37	1.28	1.29	1.32	48894100
2022-08-25	1.40	1.33	1.35	1.36	41879900
2022-08-26	1.39	1.31	1.36	1.33	27783300
2022-08-29	1.37	1.31	1.33	1.31	30630400
2022-08-30	1.35	1.25	1.35	1.26	34570200
2022-08-31	1.32	1.25	1.28	1.31	42062100
2022-09-01	1.37	1.28	1.31	1.35	37673600
2022-09-02	1.38	1.31	1.36	1.32	40040400
2022-09-05	1.36	1.32	1.34	1.33	15976500

Simulando Estratégia de Trade

- Comprar quando estiver caindo 1% em relação ao início da simulação
- Sair da posição quando estiver ganhando ou perdendo 2% do preço de entrada
- Entrar novamente quando o preço cair 1% do último preço de venda

In [35]:

```
fig, ax = plt.subplots(1, 1, figsize=(10,5));
cash = 0 # indica quanto dinheiro tem no bolso
position = 0 # indica a posição atual. 0 é zerado
result = [] # lista para montar o gráfico
buy_price = 0
sell_price = 0
fim = 0
first_price = cash3.close[0] #primeiro valor, início da simulação
for price in cash3.close:
    # Critério de compra
    if position == 0 and ((price <= first_price * 0.99) or (price <= sell_price * 0.99)
        cash -= 1 * price # Fluxo de caixa negativo
        position = 1 # Indica que está comprado em 1
        buy_price = price
   # Critério de Venda:
   if position == 1 and ((price >= buy_price * 1.02) or (price < buy_price * 0.98)):</pre>
        cash += 1 * price
        position = 0
        sell_price = price
   result.append(cash + 1 * price * position) # Mark To Market!
   # Fazendo o plot a cada iteração:
   ax.plot(result, color='blue')
   display.clear_output(wait=True)
   display.display(fig)
ax.plot(result, color='blue');
display.clear_output(wait=True)
print("Carteira - CASH3 - Méliuz Aug/22 a Fev/23")
```

Carteira - CASH3 - Méliuz Aug/22 a Fev/23

In [33]:

```
cash3.close.head()
```

Out[33]:

```
formatted_date
2022-08-23
            1.29
2022-08-24
           1.32
          1.36
2022-08-25
2022-08-26 1.33
2022-08-29
           1.31
Name: close, dtype: float64
```

In [32]:

```
print("EOF")
```

EOF