Análisis de Clasificación

-Renta Per Cápita Municipios Madrid-

Sergio Casares Fernández Beatriz Quevedo Gómez Gonzalo Carretero Ursúa

Índice

1 INTRODUCCIÓN

2 ANALISIS DISCRIMINANTE

- OBJETIVO
- VARIABLES

- ANÁLISIS DISCRIMINANTE LINEAL
- PRUEBAS DE NORMALIDAD MULTIVARIADA
- MATRIZ DE CONFUSIÓN Y PORCENTAJE DE ACIERTO

3 INTERPRETACIÓN

- MATRIZ DE CORRELACIONES
- GRÁFICOS DE PARTICIONES

Introducción

Objetivo

Clasificación de los municipios de Madrid en función del cuartil

Renta per capita

- 1) Renta baja: 0- 15.000
- 2) Renta medio-baja: 15.000 20.000
- 3) Renta medio-alta: 20.000 25.000
- 4) Renta alta: 25000 En adelante

Fuente: Instituto de estadística de la Comunidad de Madrid (2014)

Variables Explicativas

Autobus	Farmacias	Centros salud	Consultorios	Colegios
Vivienda principal	Segunda vivienda	Viviendas	Edificios	Poblacion
Envejecimiento	Progresividad	Dependencia	Reemplazamiento	Índice de Feminidad
Natalidad	Fecundidad	Mortalidad	Nupcialidad	Crecimiento vegetativo
Paro	Paro juvenil	Contratos temporales	SS	Agricultura y Ganadería
Industria	Construccion	Sector servicios	Servicios financieros	Otros servicios
Km2	Altitud	Distancia km capital	Volumen agua	Turismos
PP	PSOE	IU	UPyD	Otros Partidos

Fuente: Instituto de estadística de la Comunidad de Madrid (2014)

Análisis Discriminante

El Análisis Discriminante Lineal (LDA) es un método de clasificación de variables cualitativas en el que dos o más grupos son conocidos a priori y nuevas observaciones se clasifican en uno de ellos en función de sus características.

Pruebas de normalidad multivariada

Análisis Discriminante Cuadrático

```
``{r}
modelo <- qda(renta_cat ~</pre>
             ss_1m +
             g_envejecimiento +
             t_feminidad +
             mineria_ind_energia +
             km2 +
             otros_partidos +
             crecimiento_vegetativo_1m,
             data = mad)
```

Matriz de Confusión

				_
חח	ᆮᄓ	C	r	ואר
PR	ᄆᄓ			וווע

		Renta baja	Renta medio-baja	Renta medio-alta	Renta alta	
	Renta baja	60	15	3	О	
OBSERVACIÓN	Renta medio-baja	30	15	О	3	
OBSER	Renta medio- alta	0	4	18	4	
	Renta alta	2	1	2	25	
				-1,00		

Interpretación - Matriz de correlación

Interpretación - Gráfico de Partición

Conclusión

Elección del Modelo

QDA

Shapiro - Wilk

Test de Royston

Henze - Zirkler

Box's M

Variables Utilizadas

Árbol de decisión

renta_cat ss_1m

km2 g_envejecimiento

otros_partidos t_feminidad

crec_vegetativo_1m min_ind_energia

% de acierto

79,8 %

GRACIAS!

