TEST =
$$(act[1] \rightarrow act[2] \rightarrow TEST | act[3] \rightarrow TEST2)$$
,
TEST2 = $(act[4] \rightarrow act[5] \rightarrow TEST2)$.

property
$$FOO = (act[1] \rightarrow act[2] \rightarrow FOO)$$
.

There is a hidden * transition on every state, where * are all actions excluding act[1] and act[2].

$$TEST = (act[1] \rightarrow act[2] \rightarrow TEST | act[3] \rightarrow TEST2),$$

$$TEST2 = (act[4] \rightarrow act[5] \rightarrow TEST2).$$

assert
$$A1 = (\langle \rangle act[1] | | \langle \rangle act[3])$$

A Buchi automata. Double circle is accepting state(s). Goal is to stay out of accepting states.

$$TEST = (act[1] \rightarrow act[2] \rightarrow TEST | act[3] \rightarrow TEST2),$$

$$TEST2 = (act[4] \rightarrow act[5] \rightarrow TEST2).$$

assert FIE2b = []!act[2]

$$TEST = (act[1] \rightarrow act[2] \rightarrow TEST | act[3] \rightarrow TEST2),$$

$$TEST2 = (act[4] \rightarrow act[5] \rightarrow TEST2).$$

assert FEE2 =
$$[](act[1] \rightarrow X act[2])$$

$$TEST = (act[1] \rightarrow act[2] \rightarrow TEST | act[3] \rightarrow TEST2),$$

$$TEST2 = (act[4] \rightarrow act[5] \rightarrow TEST2).$$

assert $FEE = (act[1] \rightarrow X act[2])$

$$TEST = (act[1] \rightarrow act[2] \rightarrow TEST | act[3] \rightarrow TEST2),$$

$$TEST2 = (act[4] \rightarrow act[5] \rightarrow TEST2).$$

assert A3 =
$$(act[2] \rightarrow \langle \rangle none)$$

This is True because act[2] not in set of first actions. Does not matter than none is not an action in TEST.

$$TEST = (act[1] \rightarrow act[2] \rightarrow TEST | act[3] \rightarrow TEST2),$$

$$TEST2 = (act[4] \rightarrow act[5] \rightarrow TEST2).$$

assert FUM2 = (!act[2]Wact[1])

$$TEST = (act[1] \rightarrow act[2] \rightarrow TEST | act[3] \rightarrow TEST2),$$

$$TEST2 = (act[4] \rightarrow act[5] \rightarrow TEST2).$$

property
$$FOO2 = (act[1] \rightarrow GOOD)$$
, $GOOD = (act[1], act[2]) \rightarrow GOOD$.

Equiv to assert FUM2 = (!act[2]Wact[1])

TEST =
$$\{ act[1] \rightarrow act[2] \rightarrow TEST | act[3] \rightarrow TEST2 \}$$
,
TEST2 = $\{ act[4] \rightarrow act[5] \rightarrow TEST2 \}$.

assert
$$FIE2 = [](!act[2]Wact[1])$$

Non-obvious. Can you work it out?

$$TEST = (act[1] \rightarrow act[2] \rightarrow TEST | act[3] \rightarrow TEST2),$$

$$TEST2 = (act[4] \rightarrow act[5] \rightarrow TEST2).$$

assert FUM = (!act[2] U act[1])

$$TEST = (act[1] \rightarrow act[2] \rightarrow TEST | act[3] \rightarrow TEST2),$$

$$TEST2 = (act[4] \rightarrow act[5] \rightarrow TEST2).$$

Probably not what you want. Looks at very first set of actions possible. If it includes act[1] then it has to be followed by act[2]. If it does not include act[1], then it is True.

TEST =
$$\{act[1] \rightarrow act[2] \rightarrow TEST | act[3] \rightarrow TEST2\}$$
,
TEST2 = $\{act[4] \rightarrow act[5] \rightarrow TEST2\}$.

