# Dynamical Systems Theory in Machine Learning & Data Science

lecturers: Daniel Durstewitz, Zahra Monfared

tutors: Manuel Brenner, Daniel Kramer, Janik Fechtelpeter, Max Thurm, Jonas Mikhaeil, Unai

Fischer WS2021/22

#### Exercise 2

To be uploaded before the exercise group on November 10, 2021

#### 1 Linearization Fail

Note that for any  $a \in \mathbb{R}$  the following system has a fixed point at (0,0):

$$\dot{x} = -y + (ax - y)(x^2 + y^2)$$

$$\dot{y} = x + (x + ay)(x^2 + y^2)$$

- 1. Show that for all  $a \in \mathbb{R}$ , (0,0) is a linear center.
- 2. To prove that it is not always a true center, transfer the system into polar coordinates. This means that you have to find equivalent differential equations for  $r = \sqrt{x^2 + y^2}$  and  $\theta = \tan^{-1}(\frac{y}{x})$
- 3. Find  $a \in \mathbb{R}$  such that (0,0) is a stable spiral, unstable spiral, or center.
- 4. For each of these cases, find the stable set  $\Omega^s$  and the unstable set  $\Omega^u$ .

#### 2 Cycles

A cycle or closed orbit is a trajectory x(t) in a dynamical system such that there are  $t_2 > t_1$  with  $x(t_2) = x(t_1)$ , and for all  $t \in (t_1, t_2)$ ,  $x(t) \neq x(t_1)$ . A center is a fixed point such that all trajectories sufficiently close to it are cycles.

For the following cases, decide if the system either has no cycle or at least one. Explain why.

- 1. Consider the system  $\dot{x} = f(x)$  in the  $\mathbb{R}^2$  space.  $x^*$  is a fixed point and  $V : \mathbb{R}^2 \to \mathbb{R}$  a continuously differentiable function such that (a) V(x) > 0 for all  $x \neq x^*$ , (b)  $V(x^*) = 0$ , and (c)  $\frac{dV}{dt}(x) < 0$  for all  $x \neq x^*$ . (Such a function is called a Liapunov function.)
- 2. Consider the SIR model from last exercise sheet:

$$\dot{S} = -\frac{\beta}{N}SI, \quad \dot{I} = \frac{\beta}{N}SI - \gamma I, \quad \dot{R} = \gamma I.$$

Show that it is a conservative system.

3. Consider the system

$$\dot{x} = f(x, y), \quad \dot{y} = g(x, y)$$

where f(x, -y) = -f(x, y) and g(x, -y) = g(x, y) for all  $x, y \in \mathbb{R}$ .

- 4. Consider  $\dot{x} = f(x)$  in the  $\mathbb{R}^2$  space. Assume there exists a continuously differentiable function  $V : \mathbb{R}^2 \to \mathbb{R}$  such that (a)  $\frac{dV}{dt} \equiv 0$ , and (b) the system can be written as  $\dot{x} = -\nabla V$ . (Such a system is called a gradient system.)
- 5. Assume  $\dot{x} = f(x)$  in the  $\mathbb{R}^2$  space has no fixed point in the set  $C = \{x \in \mathbb{R}^2 | 1 \le ||x|| \le 2\}$ , and that there exists a trajectory x such that for all  $t \in \mathbb{R}$ ,  $x(t) \in C$  (For this task, an intuitive explanation suffices. A rigorous one follows in the next lecture).

### 3 Graphical Analysis

Use a pencil or a graphical tool to fill the following vector fields with phase portraits. Specifically draw fixed points (indicating their stability), nullclines and, if possible, cycles.



## 4 Visualization of 2D-systems

Write a simple graphical tool (in Python or Matlab) to create vector fields from system equations. Use the system from Ex. 1 as an example. Hint (if you are working in Python): use meshgrid and quiver. Please provide code preferably as a Jupyter notebook.

- 1. Plot the vector field of the system from Ex.1 for different a.
- 2. Plot the fixed points and their stability to the plots from part 1.
- 3. Add nullclines and cycles.
- 4. Add a subplot that visualizes the trajectory over time from a random initial condition.