Ψηφιακή Επεξεργασία Εικόνας

Χωρικό φιλτράρισμα

Γιώργος Σφήκας sfikas@cs.uoi.gr

Χωρικό φιλτράρισμα

Σε αυτή τη διάλεξη θα εξετάσουμε τεχνικές χωρικού φιλτραρίσματος:

- Πράξεις γειτονιάς (neighbourhood operations)
- Τι είναι χωρικό φιλτράρισμα
- Πράξεις εξομάλυνσης (smoothing)
- Ακμές
- Συσχέτιση και συνέλιξη
- Φίλτρα όξυνσης
- Συνδυασμός τεχνικών φιλτραρίσματος

Πράξεις σε γειτονιά

Οι πράξεις ή επεξεργασίες σε γειτονιά εφαρμόζονται στη βάση μιας γειτονιάς γύρω από το σημείο

Οι γειτονιές ορίζονται κατά κανόνα σαν ένα τετράγωνο γύρω από το εκάστοτε σημείο που επεξεργαζόμαστε

Γ.Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Πράξεις σε γειτονιά

-Στην σημειακή επεξεργασία που εξετάσαμε σε προηγούμενη διάλεξη, η 'γειτονιά' της πράξης ήταν το ίδιο το σημείο -Γενικά μπορούμε να χρησιμοποιήσουμε οποιοδήποτε σχήμα και μέγεθος γειτονιάς

Γ.Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Απλές πράξεις σε γειτονιά

Μερικές απλές πράξεις σε γειτονιά είναι οι εξής:

- Min: Θέτουμε την τιμή του εικονοστοιχείου ίση με την μικρότερη τιμή της γειτονιάς
- Max: Θέτουμε την τιμή του εικονοστοιχείου ίση με την μεγαλύτερη τιμή της γειτονιάς

Απλές πράξεις σε γειτονιά

Μερικές απλές πράξεις σε γειτονιά είναι οι εξής:

- Average ή Mean: Θέτουμε την τιμή του εικονοστοιχείου ίση με την μέση τιμή της γειτονιάς
- Median: Θέτουμε την τιμή του εικονοστοιχείου ίση με την 'ενδιάμεση' (ή 'διάμεση') τιμή
 - Στην πράξη, σε κάποιες περιπτώσεις ο median λειτουργεί καλύτερα από την μέση τιμή
 - Είναι πιο 'robust' / ανθεκτικό μέτρο

Απλές πράξεις σε γειτονιά

Παράδειγμα:

Min(1, 7, 15, 18, 24) = 1

Max(1, 7, 15, 18, 24) = 24

Mean(1, 7, 15, 18, 24) = 13

Median(1, 7, 15, 18, 24) = 15

Η διαδικασία χωρικού φιλτραρίσματος

Το παραπάνω επαναλαμβάνεται για όλα τα εικονοστοιχεία της αρχικής εικόνας, για να δώσει την εικόνα εξόδου ή φιλτραρισμένη εικόνα

Γ. Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Χωρικό φιλτράρισμα: Κλειστός τύπος

Γ.Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Χωρικό φίλτρο εξομάλυνσης

- Μια από τις πιο απλές επεξεργασίες είναι η επεξεργασία εξομάλυνσης
 - Απλά παίρνουμε την μέση τιμή
 - Πολύ χρήσιμο για απομάκρυνση θορύβου

$$\begin{bmatrix} 1/& 1/& 1/& 1/& 1/\\ /25 & /25 & /25 & /25 & /25 \\ 1/& 1/& 1/& 1/& 1/& 1/\\ /25 & /25 & /25 & /25 & /25 \\ 1/& 1/& 1/& 1/& 1/\\ /25 & /25 & /25 & /25 & /25 \\ 1/& 1/& 1/& 1/& 1/\\ /25 & /25 & /25 & /25 & /25 \\ 1/& 1/& 1/& 1/& 1/\\ /25 & /25 & /25 & /25 & /25 \end{bmatrix}$$

Χωρικό φίλτρο εξομάλυνσης

Επαναλαμβάνουμε το παραπάνω για να παράγουμε την εξομαλυμένη εικόνα

Γ. Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Παράδειγμα εξομάλυνσης εικόνας

- Η πρωτότυπο εικόνα, πάνω αριστερά
- Οι υπόλοιπες εικόνες είναι το αποτέλεσμα χρήσης φίλτρου εξομάλυνσης με διαφορετικό μέγεθος γειτονιάς
 - 3, 5, 9, 15 και 35
- Παρατηρήστε ότι όσο αυξάνουμε το μέγεθος της γειτονιάς, τόσο χάνονται οι λεπτομέρειες και θολώνει η εικόνα

Ζυγισμένα φίλτρα εξομάλυνσης (weighted smoothing filters)

 Χρησιμοποιώντας διαφορετικές τιμές για τα στοιχεία του φίλτρου, μπορούμε να κατασκευάσουμε πιο αποτελεσματικά φίλτρα

- Σε αυτό το παράδειγμα, η τιμή κάθε στοιχείου

εξαρτάται από την απόσταση από το κεντρικό σημείο

– Ζυγισμένος μέσος

¹ / ₁₆	² / ₁₆	¹ / ₁₆	
² / ₁₆	⁴ / ₁₆	² / ₁₆	
¹ / ₁₆	² / ₁₆	¹ / ₁₆	

Άλλο παράδειγμα εξομάλυνσης

- Εξομαλύνοντας την εικόνα 'σβήνουμε' τις μικρότερες λεπτομέρειες
- Αναδεικνύουμε τα υπόλοιπα στοιχεία με μια κατωφλίωση

Γ.Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Φίλτρο μέσου και Φίλτρο διάμεσου

Αρχική εικόνα

Εφαρμογή φίλτρου μέσου (mean)

Εφαρμογή φίλτρου διάμεσου (median)

 Σε κάποιες περιπτώσεις όπου το ζητούμενο είναι η απομάκρυνση θορύβου, το median φίλτρο δίνει καλύτερο οπτικό αποτέλεσμα από το φίλτρο μέσου

 Η χωρική εξομάλυνση μπορεί να ειδωθεί σαν μια διαδικασία εκτίμησης της τιμής ενός εικονοστοιχείου με βάση τις τιμές της γειτονιάς.

- Ποια είναι η τιμή που προσεγγίζει 'καλύτερα' αυτή την τιμή;
- Εξαρτάται από το πως ορίζουμε το 'καλύτερα'
 - Προχωρούμε διατυπώνοντας ένα σαφές κριτήριο

Ένα τέτοιο κριτήριο είναι το άθροισμα των διαφορών των τετραγώνων.

$$E = \sum_{i=1}^{N} \left[x(i) - m \right]^{2} \iff m = \operatorname*{arg\,min}_{m} \left\{ \sum_{i=1}^{N} \left[x(i) - m \right]^{2} \right\}$$

$$\frac{\partial E}{\partial m} = 0 \iff -2\sum_{i=1}^{N} (x(i) - m) = 0 \iff \sum_{i=1}^{N} x(i) = \sum_{i=1}^{N} m$$

$$\Leftrightarrow \sum_{i=1}^{N} x(i) = Nm \Leftrightarrow m = \frac{1}{N} \sum_{i=1}^{N} x(i)$$
 Η μέση τιμή

Ένα άλλο κριτήριο είναι το άθροισμα των απόλυτων διαφορών.

$$E = \sum_{i=1}^{N} |x(i) - m| \quad \Leftrightarrow m = \arg\min_{m} \left\{ \sum_{i=1}^{N} |x(i) - m| \right\}$$

$$\frac{\partial E}{\partial m} = 0 \Leftrightarrow -\sum_{i=1}^{N} sgn(x(i) - m) = 0, \quad sign(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$

Η βέλτιστη τιμή αντιστοιχεί σε ισάριθμες θετικές και αρνητικές τιμές

$$m = median\{x(i)\}$$

- Το median φίλτρο (φίλτρο διάμεσου) είναι μηγραμμικό:
 - $median\{x + y\} \neq median\{x\} + median\{y\}$
- Δουλεύει καλά για κρουστικό θόρυβο (salt and pepper)
- Απαιτεί σορτάρισμα των τιμών εισόδου.
- Διατηρεί τις ακμές καλύτερα όταν έχουμε κρουστικό θόρυβο.
- Είναι ανθεκτικό στον κρουστικό θόρυβο μέχρι ένταση 50%.

(N=3)

Κρουστικός θόρυβος και διατήρηση ακμών: Παράδειγμα

Η ακμή εξομαλύνθηκε

Στα όρια ή κοντά στα όρια της εικόνας έχουμε πρόβλημα: Λείπουν pixels γειτονιάς

Υπάρχουν διάφορες εναλλακτικές για να αντιμετωπίσουμε το πρόβλημα:

- Παραλείπουμε τα pixel που λείπουν
 - Δεν δουλεύει για όλα τα φίλτρα
 - Μπορεί να χρειαστεί να γράψουμε παραπάνω κώδικα, ή/και να επιβραδυνθεί η όλη επεξεργασία

Υπάρχουν διάφορες εναλλακτικές για να αντιμετωπίσουμε το πρόβλημα:

- Χρηση 'padding'
 - Τυπικά με άσπρα ή μαύρα pixels
- Αντιγραφή των οριακών pixels (replication)
- Περικοπή της εικόνας (truncation)
- Αντιγραφή των pixel της άλλης πλευράς (wrap around)
 - Μπορεί να δημιουργήσει 'περίεργα' αποτελέσματα (artifacts)

Γ. Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Συνέλιξη και συσχέτιση

- Το φιλτράρισμα που είδαμε αναφέρεται και σαν συσχέτιση (correlation)
- Το ίδιο το φίλτρο αναφέρεται σαν πυρήνας συσχέτισης (correlation kernel)
- Η συνέλιξη (convolution) είναι εντελώς αντίστοιχη διαδικασία, με μια μικρή διαφορά: πρώτα παίρνουμε το κατοπτρικό του αρχικού φίλτρου, και προχωρούμε όπως με την συσχέτιση

a	b	C		r	S	t
d	e	f	*	и	v	W
g	h	\overline{i}		\mathcal{X}	у	Z

 $e_{processed} = v^*e + z^*a + y^*b + x^*c + w^*d + u^*f + t^*g + s^*h + r^*i$

Original Image Pixels

Filter

Για συμμετρικά φίλτρα, συνέλιξη = συσχέτιση

Συνέλιξη και συσχέτιση

FIGURE 3.29 Illustration of 1-D correlation and convolution of a filter with a discrete unit impulse. Note that correlation and convolution are functions of *displacement*.

Γ.Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Συνέλιξη και συσχέτιση

Γ. Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Έστω f bη παρατήρηση μιας εικόνας f_0 στην οποία έχει προστεθεί θόρυβος w:

$$f = f_0 + w$$

Όπου για τον θόρυβο ισχύει E[w(n)]=0 , και είναι μησυσχετισμένος (λευκός):

$$E[w(m)w(n)] = \begin{cases} \sigma^2, & m = n \\ 0, & m \neq n \end{cases}$$

Έστω ότι εφαρμόζουμε ένα φίλτρο εξομάλυνσης h. Μπορούμε αναπαραστήσουμε την διαδικασία σαν συνέλιξη με το φίλτρο

$$g = h * f = h * (f_0 + w) = h * f_0 + h * w$$

Αναμενόμενη τιμή αποτελέσματος:

$$E[g] = E[h*f_0] + E[h*w] = h*f_0 + h*E[w]$$

$$=h*f_0+h*0=h*f_0$$

Ο θόρυβος έχει απομακρυνθεί στην έξοδο

Ας δούμε τι συμβαίνει με την διακύμανση του g?

Έστω
$$g = h * f_0 + h * w = \overline{f_0} + \overline{w}$$

Όπου η οριζόντια γραμμή αναπαριστά τις φιλτραρισμένες εκδοχές των f₀, w

$$\sigma_g^2 = E[g^2] - (E[g])^2 = E[(\overline{f_0} + \overline{w})^2] - (\overline{f_0})^2$$
$$= E[(\overline{f_0})^2 + (\overline{w})^2 + 2\overline{f_0}\overline{w}] - (\overline{f_0})^2$$

 $= E[(w)^{2}] + 2E[f_{0}]E[w] = E[(w)^{2}]$

Θεωρώντας ότι το h είναι φίλτρο μέσου, έχουμε για το pixel n:

$$\overline{w}(n) = (h * w)(n) = \frac{1}{N} \sum_{k \in \Gamma(n)} w(k)$$

Επομένως,

$$E[(\overline{w}(n))^{2}] = E\left[\left(\frac{1}{N}\sum_{k\in\Gamma(n)}w(k)\right)^{2}\right]$$

$$E\left[\left(\frac{1}{N}\sum_{k\in\Gamma(n)}w(k)\right)^{2}\right]$$

$$= \frac{1}{N^2} \sum_{k \in \Gamma(n)} E\left[\left\{w(k)\right\}^2\right]$$

$$+\frac{2}{N^2} \sum_{\substack{l \in \Gamma(n) \\ m \neq l}} \sum_{\substack{m \in \Gamma(n) \\ m \neq l}} E[w(n-l)w(n-m)]$$

$$\frac{1}{N^2} \sum_{k \in \Gamma(n)} E\left[\left\{w(k)\right\}^2\right] = \frac{1}{N^2} \sum_{k \in \Gamma(n)} \sigma^2$$

Και από υπόθεση λευκού θορύβου:

$$+\frac{2}{N^2} \sum_{\substack{l \in \Gamma(n) \\ m \neq l}} \sum_{\substack{m \in \Gamma(n) \\ m \neq l}} E[w(n-l)w(n-m)] = 0$$

Αντικαθιστώντας στον αρχικό τύπο έχουμε:

$$\sigma_g^2 = E \left[\left(\frac{1}{N} \sum_{k \in \Gamma(n)} w(k) \right)^2 \right] = \frac{1}{N^2} \sum_{k \in \Gamma(n)} \sigma^2$$

$$=\frac{1}{N^2}N\sigma^2 = \frac{\sigma^2}{N}$$

- Η επίδραση του θορύβου ελαττώνεται.
- χ Δυστυχώς μαζί με τον θόρυβο πετάμε και τις ακμές

Χωρικά φίλτρα όξυνσης

- Προηγουμένως είδαμε φίλτρα εξομάλυνσης που απομακρύνουν τις λεπτομέρειες
- Τα φίλτρα όξυνσης (sharpening filters) πραγματοποιούν το αντίθετο
 - Αντιστροφή της θόλωσης (deblurring)
 - Εντείνουμε τις ακμές
- Τα φίλτρα όξυνσης βασίζονται στην χωρική διαφόριση

Χωρική διαφόριση

- Θέλουμε να μετρήσουμε τον ρυθμό αλλαγής
- Θεωρούμε ένα παράδειγμα σε 1D

Γ.Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Χωρική διαφόριση

Γ.Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Χαρακτηριστικά φίλτρων διαφόρισης

- Φίλτρο εξόδου πρώτης παραγώγου
 - Μηδέν σε σταθερές εντάσεις
 - Μη-μηδέν στην αρχή ενός βήματος ή ράμπας
 - Μη-μηδέν κατά μήκος μιας ράμπας

- Φίλτρο εξόδου δεύτερης παραγώγου
 - Μηδέν σε σταθερές εντάσεις
 - Μη-μηδέν στην αρχή ενός βήματος ή ράμπας
 - Μηδέν σε ράμπες σταθερής κλίσης

1^η Παράγωγος

• Διακριτή προσέγγιση της πρώτης παραγώγου

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

• Είναι απλά η διαφορά μεταξύ συνεχόμενων τιμών

Γ.Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

• Η παράγωγος της εικόνας: $abla f = \left[rac{\partial f}{\partial x}, rac{\partial f}{\partial y}
ight]$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

Η παράγωγος 'δείχνει' στην κατεύθυνση που η ένταση αυξάνεται πιο γρήγορα

Gradient direction
$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

Η ένταση της ακμής (edge strength) δίνεται από το μέτρο της παραγώγου

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Source: Steve Seitz

 $\|\nabla f\|$

 $\frac{\partial f}{\partial y}$

Γ.Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

• Διακριτή προσέγγιση της 2^{ης} παραγώγου:

$$\frac{\partial^2 f}{\partial^2 x} = f(x-1) - 2f(x) + f(x+1)$$

Γ.Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Χρησιμοποιώντας 2^{ες} παραγώγους για βελτίωση εικόνας

- Οι ακμές εικόνων συμπεριφέρονται συνήθως σαν τις 'ράμπες' που εξετάσαμε
 - Η 1^η παράγωγος είναι σταθερή και παράγει παχιές ζώνες στις ακμές
 - Η 2^η παράγωγος δίνει μη μηδενική απόκριση μόνο στην αρχή και το τέλος της ακμής, ενώ στο ενδιάμεσο είναι μηδέν

Παράγωγοι

Γ. Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Παράγωγοι

Γ.Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Χρησιμοποιώντας 2^{ες} παραγώγους για βελτίωση εικόνας

- Ένα τυπικό φίλτρο όξυνσης είναι το Λαπλασιανό φίλτρο (Laplacian)
 - Ισοτροπικό Ιδιότητα της ισοτροπικότητας
 - 'Rotation invariant': Αν περιστρέψουμε μια εικόνα και εφαρμόσουμε το φίλτρο, θα πάρουμε ίδιο αποτέλεσμα με την περίπτωση που εφαρμόσουμε το φίλτρο και μετά περιστρέψουμε την εικόνα
 - Με άλλα λόγια, η Λαπλασιανή μιας περιστραμμένης εικόνας είναι η περιστραμμένη Λαπλασιανή της αρχικής εικόνας

$$\nabla^2 f = \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$$

Η Λαπλασιανή

$$\nabla^2 f = \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$$

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1, y) + f(x-1, y) - 2f(x, y)$$

$$\frac{\partial^2 f}{\partial^2 y} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

Η Λαπλασιανή

$$\nabla^{2} f = -4f(x, y)$$

$$+ f(x+1, y) + f(x-1, y)$$

$$+ f(x, y+1) + f(x, y-1)$$

0	1	0
1	-4	1
0	1	0

Η Λαπλασιανή

 Εφαρμόζοντας την Λαπλασιανή παίρνουμε μια νέα εικόνα στην οποία είναι οξυμένες οι ακμές και άλλες ασυνέχειες

- Το άμεσο αποτέλεσμα του Λαπλασιανού φίλτρου – η Λαπλασιανή - δεν είναι μια βελτιωμένη εικόνα
- Χρειαζόμαστε ακόμα ένα βήμα για να έχουμε μια βελτιωμένη εικόνα
- Αφαιρούμε την φιλτραρισμένη εικόνα από την αρχική

Laplacian
Filtered Image
Scaled for Display

 Στην τελική, οξυμένη εικόνα, οι ακμές και η λεπτομέρεια είναι πιο καθαρές, έχουν ενταθεί

Γ.Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

 Όλη η διαδικασία μπορεί να συνδυαστεί και να εκφραστεί σαν ένα απλό φιλτράρισμα :

$$g(x, y) = f(x, y) - \nabla^{2} f$$

$$= 5f(x, y) - f(x+1, y) - f(x-1, y)$$

$$-f(x, y+1) - f(x, y-1)$$

Έτσι παίρνουμε ένα νέο γραμμικό φίλτρο συνέλιξης

Γ. Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Παραλλαγές της απλής Λαπλασιανής

 Υπάρχουν διάφορες παραλλαγές της Λαπλασιανής:

0	1	0
1	-4	1
0	1	0

Standard Laplacian

1	1	1
1	-8	1
1	1	1

Variant of Laplacian

Αφαίρεση εξομάλυνσης (unsharp masking)

- Αφαιρούμε μία 'αντι-οξυμένη' (unsharped) εικόνα από την αρχική f(x,y).
 - Θολώνουμε εξομαλύνουμε την εικόνα $b(x,y)=Blur\{f(x,y)\}$
 - Αφαιρούμε την θολωμένη εικόνα από την αρχική, ονομάζοντας το αποτέλεσμα 'μάσκα')

$$g_{mask}(x,y)=f(x,y)-b(x,y)$$

- Προσθέτουμε την μάσκα στο πρωτότυπο $g(x,y)=f(x,y)+k\ g_{mask}(x,y),\ k$ μη-αρνητικό

Αφαίρεση εξομάλυνσης (unsharp masking)

Μηχανισμός όξυνσης

Για k>1, διαδικασία ονομάζεται **highboost filtering**

Γ.Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Αφαίρεση εξομάλυνσης (unsharp masking)

Αρχική εικόνα

Εξομαλυμένη εικόνα

'Μάσκα'

Αφαίρεση εξομάλυνσης (k=1)

Highboost filtering (k=4.5)

DIP-XE

DIP-XE

DIP-XE

DIP-XE

Χρησιμοποιώντας 1^{ες} παραγώγους για βελτίωση εικόνας

$$\nabla f = \begin{bmatrix} G_x & G_y \end{bmatrix}^T = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix}^T$$

 Αν και οι παράγωγοι είναι γραμμικές πράξεις, το μέτρο της παραγωγου δεν είναι γραμμική πράξη.

Χρησιμοποιώντας 1ες παραγώγους για βελτίωση εικόνας

$$mag(\nabla f) = \sqrt{G_x^2 + G_y^2}$$

- Αν και οι παράγωγοι είναι γραμμικές πράξεις, το μέτρο της παραγωγου δεν είναι γραμμική πράξη.
- Οι μερικές παράγωγοι δεν είναι rotation invariant (δεν έχουν την ιδιότητα της ισοτροπικότητας).
- Το μέτρο της παραγώγου όμως είναι ισοτροπικό.

Χρησιμοποιώντας 1^{ες} παραγώγους για βελτίωση εικόνας

 Πολλές φορές βολεύει απλά να προσεγγίσουμε το μέτρο με την πιο υπολογιστικά φθηνή σχέση:

$$\nabla f \approx |G_x| + |G_y|$$

 Αυτή η προσέγγιση διατηρεί κάποιες ιδιότητες της παραγώγου (πχ ανθεκτική σε σχετικές αλλαγές φωτεινότητας) αλλά δεν είναι ισοτροπική.

Τελεστές Sobel

 Οι τελεστές Sobel (Sobel operators) είναι συμμετρικά φίλτρα συνέλιξης 3x3 που μπορούν να μας δώσουν προσεγγίσεις των G_x και G_y

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

 Παρατηρήστε ότι το άθροισμα είναι 0, ώστε να πάρουμε 0 σε περιοχές σταθερής έντασης

Παράδειγμα τελεστή Sobel

- Υπολογίζοντας το μέτρο κατά Sobel, οι περιοχές σταθερής ή αργά μεταβαλλόμενης έντασης απομακρύνονται
- Εντείνονται μικρές ασυνέχειες, όπως είναι η εδώ περιοχή ενδιαφέροντος

1ες και 2ες παράγωγου

Συγκρίνοντας 1^{ες} και 2^{ες} παραγώγους μπορούμε να πούμε σαν συμπέρασμα:

- Οι 1^{ες} παράγωγοι παράγουν πιο 'παχιές' ακμές
- Οι 2^{ες} παράγωγοι έχουν καλή απόκριση σε μικρές λεπτομέρειες, πχ λεπτές γραμμές
- Οι 2^{ες} παράγωγοι παράγουν διπλή απόκριση στις ακμές

Συνδυάζοντας μεθόδους βελτίωσης εικόνας

- Κατά κανόνα θα πρέπει να συνδυάσουμε μεθόδους επεξεργασίας και βελτίωσης για καλύτερο αποτέλεσμα
- Παράδειγμα σε ακτινογραφία σκελετού

Συνδυάζοντας μεθόδους βελτίωσης εικόνας

Συνδυάζοντας μεθόδους βελτίωσης εικόνας

Image (d) smoothed with a 5*5 averaging filte Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (MYE037)

Συνδυάζοντας μεθόδους βελτίωσης εικόνας

Compare the original and final images

Γ.Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Συνοψίζοντας

Σε αυτη τη διάλεξη είδαμε τεχνικές χωρικού φιλτραρίσματος, και πιο συγκεκριμένα:

- Πράξεις / επεξεργασίες σε γειτονιά
- Φιλτράρισμα
- Φίλτρα εξομάλυνσης
- Προβλήματα στα όρια της εικόνας
- Συνέλιξη και συσχέτιση
- Φίλτρα όξυνσης
- Συνδυασμός τεχνικών