OpenCMISS-iron examples and tests used by OpenCMISS developers at University of Stuttgart, Germany

Christian Bleiler, Andreas Hessenthaler, Thomas Klotz, Aaron Krämer, Benjamin Maier, Sergio Morales, Mylena Mordhorst, Harry Saini

> June 27, 2017 07:31

CONTENTS

1	Introduction					
_		Emgui files for cmgui-2.9		3		
		Variations to consider		3		
	1.3	Folder structure		4		
2	How to work on this document			4		
3	Diffusion equation					
	3.1 l	Equation in general form		5		
	3.2	Example-0001		6		
	3	3.2.1 Mathematical model - 2D		6		
	3	3.2.2 Mathematical model - 3D		6		
	3	3.2.3 Computational model		6		
	3	3.2.4 Results		7		
	3	3.2.5 Validation		7		
4	Linear elasticity					
	4.1	Equation in general form		10		
	4.2 Example-0101			11		
		4.2.1 Mathematical model		11		
	4	1.2.2 Computational model		11		
		1.2.3 Results		11		
	2	4.2.4 Validation		11		
5	Finite	Finite elasticity 1				
6		Navier-Stokes flow 1				
7	MIOUC	Monodomain 1				

^{*} Institute of Applied Mechanics (CE), University of Stuttgart, Pfaffenwaldring 7, 70569 Stuttgart, Germany

[†] Institute for Parallel and Distributed Systems, University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany

[‡] Lehrstuhl Mathematische Methoden für komplexe Simulation der Naturwissenschaft und Technik, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany

8 CellML model				
LIST OF FIG	GURES			
Figure 1	2D results, iron reference w/ command line argu-			
T.	ments [2.0 1.0 0.0 8 4 0 1 0]	7		
Figure 2	2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0]	8		
Figure 3	3D results, iron reference w/ command line argu-	O		
0 -	ments [2.0 1.0 1.0 8 4 4 1 0]	8		
Figure 4	3D results, current run w/ command line arguments			
F:	[2.0 1.0 1.0 8 4 4 1 0]	9		
Figure 5	Results, analytical solution.	11		
Figure 6	Results, Abaqus reference	12		
Figure 7	Results, iron reference	12		
Figure 8	Results, current run.	13		
LIST OF TA	BLES			
Table 1	Initials of people working on examples, in alphabetical order (surnames)	4		

1 INTRODUCTION

This document contains information about examples used for testing *OpenCMISS-iron*. Read: How-to¹ and [1].

- 1.1 Cmgui files for cmgui-2.9
- 1.2 Variations to consider
 - Geometry and topology

1D, 2D, 3D

Length, width, height

Number of elements

Interpolation order

Generated or user meshes

quad/hex or tri/tet meshes

- Initial conditions
- Load cases

Dirichlet BC

Neumann BC

Volume force

Mix of previous items

- Sources, sinks
- Time dependence

Static

Quasi-static

Dynamic

Material laws

Linear

Nonlinear (Mooney-Rivlin, Neo-Hookean, Ogden, etc.)

Active (Stress, strain)

- Material parameters, anisotropy
- Solver

Direct

Iterative

Test cases

Numerical reference data

Analytical solution

• A mix of previous items

¹ https://bitbucket.org/hessenthaler/opencmiss-howto

1.3 Folder structure

TBD..

HOW TO WORK ON THIS DOCUMENT

In the Google Doc at https://docs.google.com/spreadsheets/d/1RGKj8vVPqQ-PH0UwMX_ e9TAzqaYavKi0z0D4pKY9RGI/edit#gid=0 please indicate what you are working on or if a given example was finished

- no mark: to be done
- x: currently working on it
- xx: done

Initials	Full name
СВ	Christian Bleiler
AH	Andreas Hessenthaler
TK	Thomas Klotz
AK	Aaron Krämer
BM	Benjamin Maier
SM	Sergio Morales
MM	Mylena Mordhorst
HS	Harry Saini

 Table 1: Initials of people working on examples, in alphabetical order (surnames).

3 DIFFUSION EQUATION

3.1 Equation in general form

$$\partial_t \mathbf{u} + \nabla \cdot \nabla \mathbf{u} = \mathbf{f} \tag{1}$$

3.2 Example-0001

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.2.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla u = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{2}$$

with boundary conditions

$$u = 0 x = y = 0, (3)$$

$$u = 0$$
 $x = 2, y = 1.$ (4)

No material parameters to specify.

3.2.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{5}$$

with boundary conditions

$$u = 0 \qquad \qquad x = y = z = 0, \tag{6}$$

$$u = 0$$
 $x = 2, y = z = 1.$ (7)

No material parameters to specify.

3.2.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

3.2.4 Results

Passed tests: 24 / 24

No failed tests.

Figure 1: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1 o].

3.2.5 Validation

We use CHeart rev. 6292 to produce numerical reference solutions.

Figure 2: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 3: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 1 o].

Figure 4: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

4 LINEAR ELASTICITY

4.1 Equation in general form

$$\label{eq:delta_theta_$$

4.2 Example-0101

4.2.1 Mathematical model

We solve the following equation,

$$\nabla \cdot \sigma(\mathbf{u}, \mathbf{t}) = \mathbf{0}$$
 $\Omega = [0, 160] \times [0, 120], \mathbf{t} \in [0, 5],$ (9)

with time step size $\Delta_t = 1$ and boundary conditions

$$\dots$$
 (11)

2D: specify thickness, Young's modulus and Poisson's ratio.

4.2.2 Computational model

- Length, width, height
- Direct/iterative solver
- Generated/user mesh
- Number of elements
- Interpolation order
- Number of solver steps (time steps, load steps)

4.2.3 Results

Figure 5: Results, analytical solution.

4.2.4 Validation

CHeart rev. 6328, Abaqus 2017, analytical reference solution, whatever...

Figure 6: Results, Abaqus reference.

Figure 7: Results, iron reference.

Figure 8: Results, current run.

5 FINITE ELASTICITY

6 NAVIER-STOKES FLOW

7 MONODOMAIN

8 CELLML MODEL

REFERENCES

[1] Chris Bradley, Andy Bowery, Randall Britten, Vincent Budelmann, Oscar Camara, Richard Christie, Andrew Cookson, Alejandro F Frangi, Thiranja Babarenda Gamage, Thomas Heidlauf, et al. Opencmiss: a multi-physics & multi-scale computational infrastructure for the vph/physiome project. Progress in biophysics and molecular biology, 107(1):32-47, 2011.