

# BUNDESREPUBLIK DEUTSCHLAND

IAP18 Rec'd PCT/PTO 14 AUG 2006



10/589455

## Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 10 2004 007 312.0

Anmeldetag: 14. Februar 2004

Anmelder/Inhaber: Henkel Kommanditgesellschaft auf  
Aktien, 40589 Düsseldorf/DE

Bezeichnung: Mikroemulsionen

IPC: D 06 M, B 01 J, B 01 F

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-  
sprünglichen Unterlagen dieser Patentanmeldung.

München, den 18. November 2004  
Deutsches Patent- und Markenamt  
Der Präsident  
Im Auftrag

A handwritten signature in black ink, appearing to read "Dewitz".

Two thick, vertical black bars of equal height, positioned side-by-side.

CERTIFIED COPY OF  
PRIORITY DOCUMENT

Stanschus

Henkel KGaA  
Dr. Korber/BL  
12.03.2004

10 2004 007 312 0 1589455

14.08.2004



IAPC Rec'd PCT/PTO 14 AUG 2006

## Patentanmeldung

H 06244

Mikroemulsionen

Die Erfindung betrifft die Verwendung von Mikroemulsionen, die Öl(e) und ein bestimmtes Emulgatorsystem enthalten, zur Textilbehandlung in einer automatischen Waschmaschine. Weiterhin betrifft die Erfindung ein Textilbehandlungsmittel, dessen Tröpfchengröße  $d_{50}$  unter 500 nm liegt, und welche bestimmte Komponenten umfasst.

Herkömmliche Textilbehandlungsmittel sind im wesentlichen auf die Reinigung und auf die Pflege von Textilien ausgerichtet. Neben der Reinigung der Textilien geht es dabei hauptsächlich darum, den Griff von Textilien zu verbessern, sie weichzumachen, zu glätten, eine elektrostatische Aufladung der Textilien zu verhindern, den Glanz und die Farbbrillanz der Textilien zu erhöhen, die Textilien mit einem möglichst lang anhaltenden Duft zu versehen usw. Daneben können herkömmliche Textilbehandlungsmittel auch zur Erleichterung der Bügelerarbeit beitragen, für einen geringeren Faserabrieb und verbesserten Farberhalt trotz häufiger Textilwäsche sorgen. Wie man erkennt, liegt der Fokus der herkömmlichen Textilbehandlungsmittel beinahe ausschließlich auf dem Textil. Textilbehandlungsmittel können jedoch auch weitere Verbraucherbedürfnisse befriedigen. So offenbart die europäische Patentschrift EP 0 789 070 B1 die Verwendung einer textilweichmachenden Zusammensetzung, welche eine der Haut einen Vorteil verleirende Substanz enthält, zur Abgabe dieser Substanz an die Haut und um der Haut sensorische und/oder kosmetische Vorteile zu verleihen, wenn mit der Zusammensetzung behandelte Textilien mit der Haut in Kontakt kommen, wobei die textilweichmachende Zusammensetzung 4 bis 32 Gewichtsprozent einer in Wasser unlöslichen textilweichmachenden quaternären Ammoniumverbindung mit zwei C<sub>12-28</sub>-Alkyl- oder -Alkenylgruppen, gebunden an das N-Atom über ein oder mehrere Esterbindungen, umfasst. Die Verwendung einer textilweichmachenden Zusammensetzung, welche eine Substanz enthält, die der Haut einen Vorteil verleiht, zur Abgabe dieser Substanz an die Haut und um der Haut sensorische und/oder kosmetische Vorteile zu verleihen, wenn mit der Zusammensetzung behandelte Textilien mit der Haut in Kontakt kommen, wobei das der Haut einen Vorteil verleirende Mittel ein Silikon ist, wird in derselben Schrift offenbart. In den Beispielen dieser Patentschrift werden zwei entsprechende Mittel offenbart, die jeweils 4 Gew.-% eines Diesterquats sowie 1 Gew.-% eines der Haut einen Vorteil verleihenden Silikons enthalten. Damit offenbart also die EP 0 789 070 B1 ein Konzept, bei dem zwar auch eine Leistung für das behandelte Textil erbracht wird (Textilweichmachung), bei dem darüber

hinaus aber auch ein Zusatznutzen für die Haut, welche mit dem behandelten Textil in Berührung kommt, erreicht wird, der über eine bloße Erhöhung des Tragekomforts des Textils hinausgeht, dadurch daß der Haut ein kosmetischer oder sensorischer Vorteil zuteil wird.

In diesem Zusammenhang ist auch noch zu bedenken, daß textile Kleidungsstücke als solche oder aber auf diesen verbliebene Rückstände, die z. B. nach einem Reinigungsvorgang in den textilen Strukturen zurückbleiben, hautschädigend wirken können.

Zur Reduzierung dieser Problematik werden z. B. zur Beseitigung von Waschmittelresten mit unter Spülmittel verwendet, um hautverträglichere Textilien zu erhalten. So beschreibt die DE 199 23 303 C2 Spülmittel, die bestimmte Mindestmengen an Zitronensäure, Milchsäure, Cyclodextrin und Ascorbinsäure enthalten und zur Herstellung hautverträglicherer Textilien geeignet sind.

Vor diesem Hintergrund lag die an die vorliegende Erfindung gestellte Aufgabe darin, dem Verbraucher eine alternative Möglichkeit der Textilbehandlung zu ermöglichen.

Diese Aufgabe wird gelöst durch die Verwendung einer Mikroemulsion zur Textilbehandlung in einer automatischen Waschmaschine, wobei die Mikroemulsion Öl(e) und ein Emulgatorsystem aus wenigstens einem lipophilen und wenigstens einem hydrophilen Emulgator enthält. Dabei ist die erfindungsgemäße Verwendung vorzugsweise im Spülgang einer automatischen Waschmaschine vorgesehen und die Mikroemulsion zeichnet sich insbesondere dadurch aus, daß sie eine Tröpfchengröße  $d_{50}$  von weniger als 500 nm aufweist. Die Öle weisen vorzugsweise hautschützende und/oder hautpflegende und/oder hautheilende Eigenschaften auf. Unter der Tröpfchengröße  $d_{50}$  versteht man den Merkmalswert, bei dem die Verteilungssumme der Tröpfchen durchmesser den Wert  $0,5 = 50\%$  annimmt. Z. B. bedeutet die Angabe „ $d_{50} = a \mu m$ “, daß von dem betrachteten Gut 50(Massen-)% der Tröpfchen einen Durchmesser größer als  $a \mu m$  und 50(Massen-)% einen kleineren Durchmesser als  $a \mu m$  aufweisen.

Mikroemulsionen und deren Herstellung wurden bereits in der Patentliteratur beschrieben. Eine Übersicht zu Herstellung und Anwendung von Mikroemulsionen wird gegeben durch H. Eicke im SÖFW-Journal, 118, 311 (1992) und Th. Förster et al. im SÖFW-Journal, 122, 746 (1996).

Beispielsweise offenbart die DE 37 16 526 C2 eine stabile Öl-in-Wasser-Mikroemulsion, welche aus 1 bis 10 Gew.-% wasserlöslichem anionischem Tensid oder 2 bis 20 Gew.-% eines Gemisches aus wasserlöslichem anionischen und wasserlöslichem nichtionischen Tensid, sowie aus

2 bis 10 Gew.-% eines Cotensids ausgewählt aus der Gruppe von Polypropylenglykolethern, Monoalkylethern und bestimmten Estern von Ethylenglykol oder Propylenglykol, aliphatischen Mono- und Dicarbonsäuren mit 3 bis 6 Kohlenstoffatomen im Molekül, C<sub>9</sub>- bis C<sub>15</sub>- Alkyletherpolyethoxycarbonsäuren, und Mono-, Di- und Triethylphosphat, ferner aus 0,4 bis 10 Gew.-% von nicht wasserlöslichem, 0 bis 80 Gew.-% Terpene enthaltendem, duftendem Parfum, und aus Wasser besteht, wobei gegebenenfalls anorganisches oder organisches Salz eines mehrwertigen Metalls, aber kein Builder oder Solubilisierungsmittel vorhanden ist. In derselben Schrift werden auch konzentrierte Öl-in-Wasser-Mikroemulsionen offenbart, welche aus 10 bis 35 Gew.-% wasserlöslichem anionischem Tensid oder 18 bis 65 Gew.-% eines Gemisches aus wasserlöslichem anionischen und wasserlöslichem nichtionischen Tensid, sowie aus 2 bis 30 Gew.-% eines Cotensids ausgewählt aus der Gruppe von Polypropylenglykolethern, Monoalkylethern und bestimmten Estern von Ethylenglykol oder Propylenglykol, aliphatischen Mono- und Dicarbonsäuren mit 3 bis 6 Kohlenstoffatomen im Molekül, C<sub>9</sub>- bis C<sub>15</sub>- Alkyletherpolyethoxycarbonsäuren, und Mono-, Di- und Triethylphosphat, ferner aus 10 bis 50 Gew.-% von nicht wasserlöslichem, 0 bis 80 Gew.-% Terpene enthaltendem, duftendem Parfum, und aus Wasser bestehen, wobei gegebenenfalls anorganisches oder organisches Salz eines mehrwertigen Metalls, aber kein Builder oder Solubilisierungsmittel vorhanden ist. Die in der DE 37 16 526 C2 beschriebenen Mikroemulsionen fungieren in erster Linie als stabile, klare, für harte Oberflächen geeignete Allzweckreinigungsmittel mit besonderer Wirksamkeit bei Entfernung von öligem und fettigen Schmutz.

Der Gegenstand der vorliegenden Erfindung liegt dagegen in der Verwendung einer Mikroemulsion zur Textilbehandlung in einer automatischen Waschmaschine. Dieser Gegenstand weist verschiedene Vorteile auf. Ein sehr wichtiger Vorteil liegt darin, daß die dem Verbraucher mit dem Gegenstand der Erfindung offerierte alternative Möglichkeit der Textilbehandlung problemlos in einer automatischen Waschmaschine durchgeführt wird, da die Verwendung der Mikroemulsion sich unter anderem dadurch besonders auszeichnet, daß die Mikroemulsion sehr gut aus der Einspülkammer einer handelsüblichen automatischen Waschmaschine in den Waschraum eingespült werden kann. Hinzu kommt, daß die Verteilbarkeit der Mikroemulsion auch in kaltem Wasser sehr gut ist. Ein weiterer Vorteil der Erfindung liegt darin, daß die erfindungsgemäße Verwendung der Mikroemulsion einen doppelten Nutzen für den Verbraucher hat. Auf der einen Seite wirkt die Mikroemulsion infolge der Öl(e) und Emulgatoren als gewöhnliches Textilbehandlungsmittel, z. B. dadurch, daß der damit in der Waschmaschine behandelten Wäsche ein weicherer Griff verliehen wird. Andererseits verhilft die Mikroemulsion als Resultat der erfindungsgemäßen Verwendung auch der menschlichen Haut zu einem Vorteil, und zwar dadurch,

daß die mit der Mikroemulsion behandelten Textilien für das Wohlergehen der Haut im Hinblick auf die Hautgesundheit insoweit dienlich sind, daß beispielsweise das Risiko von Hautreizungen als Folge des Kontaktes Haut/behandeltes Textil nicht zusätzlich erhöht, sondern eher vermindert ist, oder so daß bereits gereizte oder irritierte oder sensibilisierte Haut durch den Kontakt mit dem behandelten Textil nicht noch weiter geschädigt, sondern eher beruhigt wird. Dies wird durch den Gegenstand der Erfindung insofern geleistet, daß die in der Mikroemulsion enthaltenen Öl(e) vorzugsweise bei der Verwendung in der Waschmaschine zumindest anteilsweise auf die Textilfasern übergehen und diese Öle bei Kontakt der behandelten Textilfasern mit menschlicher Haut zumindest anteilsweise vom Textil auf die Haut übergehen, so daß also das behandelte Textil als temporärer Wirt für die Öle auftritt. Die Versorgung der Haut mit Öl über diesen Zwischenwirt gereicht der Haut in oben genannter Hinsicht zum Vorteil, da das Öl vorzugsweise hautschützende und/oder hautpflegende und/oder hautheilende Eigenschaften aufweist. So kann der Haut zumindest ein kosmetischer oder sensorischer Vorteil oder darüber hinausgehender Vorteil verschafft werden.

Dabei geht das Öl vorteilhafterweise nicht vollständig, sondern nur anteilsweise auf die Haut über. Das teilweise Verbleiben der im erfindungsgemäßen Sinne hautheilenden und/oder hautschützenden Substanz auf der Textilfaser ist aus zwei Gründen als vorteilhaft einzuschätzen:

Zum einen gibt es mitunter dermatologische Probleme als Resultat einer unmittelbaren Hautunverträglichkeit bestimmter Fasergattungen. Dadurch, daß die Öle, vorzugsweise Öle mit hautschützenden und/oder hautpflegenden und/oder hautheilenden Eigenschaften, teilweise auf dem Textil verbleiben, kommt es zu einer Reduzierung des Kontaktes zwischen Faser und bloßer Haut, so daß die hautheilende Substanz im weitesten Sinne als eine Faserumhüllung verstanden werden kann.

Zum anderen haben es moderne Waschmittel ermöglicht, hervorragende optische Reinigungseffekte bereits bei relativ niedrigen Waschtemperaturen zu erzielen. Durch die Absenkung der Waschtemperatur ist anzunehmen, daß bestimmte, der natürlichen Hautflora des Menschen abträchtige Mikroorganismen, die bei höheren Temperaturen vernichtet werden, den Waschgang nun überstehen. Antiseptisch wirksame Bestandteile der Öle wirken diesem Problem entgegen.

Als lipophil gelten Emulgatoren im Sinne dieser Anmeldung im wesentlichen dann, wenn sie vorteilhafterweise in C<sub>12</sub>-C<sub>20</sub> Triglyceriden überwiegend löslich bzw. mit diesen mischbar sind. Lipophilie kann sich u. a. beispielsweise dann ergeben, wenn die Emulgatoren etwa Kohlen-

wasserstoffreste mit 6 bis 22 Kohlenstoffatomen aufweisen oder etwa Arylreste enthalten, um anschauliche, aber nicht einschränkende Beispiele zu geben. Lipophile Emulgatoren haben im wesentlichen einen wenig polaren, eher apolaren Charakter. Bevorzugte lipophile Emulgatoren im Sinne dieser Erfindung stellen lipophile, kationische Emulgatoren dar. Demgegenüber gelten Emulgatoren im Sinne dieser Anmeldung im wesentlichen dann als hydrophil, wenn sie vorteilhafterweise in Wasser überwiegend löslich sind bzw. mit diesem mischbar. Hydrophile Emulgatoren haben im wesentlichen einen polaren Charakter. Hydrophilie kann sich u. a. beispielsweise dann ergeben, wenn der Emulgator etwa Hydroxy-Gruppe(n), Ester-Gruppe(n), Ether-Gruppe(n) oder Glycerin-Gruppe(n) enthält, um anschauliche, aber nicht einschränkende Beispiele zu geben.

Die Begriffe der Hautpflege, des Hautschutzes und der Hautheilung sind zu unterscheiden. Die Hautpflege erzielt im wesentlichen einen kosmetischen Nutzen hinsichtlich sensorischer Bedürfnisse z. B. der Weichheit oder des Glanzes der Haut unter normalen Bedingungen.

Unter dem Begriff des Hautschutzes wiederum versteht man dagegen alles das, was zur Aufrechterhaltung der gewöhnlichen Leistung der Haut hinsichtlich ihrer Funktionen unter spezifischen Belastungssituationen erforderlich ist und über ihre eigenen Schutzmechanismen hinausgeht. Damit unterscheidet sich auch dieser Begriff deutlich von der Hautpflege, denn die Hautpflege erzielt nur einen kosmetischen Nutzen hinsichtlich sensorischer Bedürfnisse z. B. der Weichheit oder des Glanzes unter normalen Bedingungen. Der Hautschutz aber unterstützt die Haut mit zusätzlichen Mitteln, die der Haut beispielsweise auch unter widrigen Bedingungen helfen, ihre vielfältigen Funktionen zu erfüllen. Solche widrige Bedingungen können z. B. Reibung, Kälte, Hitze, UV-Strahlung, aggressive Umgebungsfluide, Kontakt mit hautreizenden Materialien sein. Ein hautschützender Aktivstoff, hat im gewöhnlichen Falle gleichzeitig auch eine hautpflegende Funktion.

Der Begriff Hautheilung bzw. das Attribut hautheilend lässt sich im Kontext dieser Erfindung am einfachsten über den Zustand der gesunden menschlichen Haut definieren. Gesunde menschliche Haut zeichnet sich dadurch aus, daß sie mittels ihres intakten Säuremantels einen ausreichenden Schutz gegen Mikroorganismen, Keime und Krankheitserreger liefert, daß ihre Pufferkapazität und ihr Alkali-Neutralisationsvermögen ausreichen, um schädliche Einflüsse umgebender Fluide abzuwehren, daß eine weitgehende Freiheit von Rötungen besteht und daß eine Freiheit von Hautschäden wie Schnitt-, Schürf- und Brandwunden, Reizungen, Entzündungen und Allergien besteht, sowie daß sie weder rissig noch ausgetrocknet ist. Ferner zeichnet sich gesunde Haut dadurch aus, daß sie eine Depotfunktion für Fett, Wasser und Blut und eine

wichtige Rolle im Stoffwechsel übernimmt. Ist die Haut nicht in der Lage o. g. Funktionen zu übernehmen oder zeigt sie offensichtliche Schädigungen bzw. geht von der Haut ein Juckreiz aus, so ist sie nicht mehr als gesund einzustufen. Hautheilend im Rahmen der vorliegenden Erfindung ist nun alles das, was der Haut hilft, in ihren ursprünglichen Zustand zurückzukehren. Dabei ist auch alles das hautheilend, was die Selbstregulierungskräfte der Haut stimuliert, trainiert, unterstützt und fördert, so daß diese in der Lage ist, ihre Funktionen zu erfüllen, dadurch daß sie in den natürlichen Gleichgewichtszustand zurückkehrt. Weiter versteht man unter dem Begriff der Hautheilung im Kontext dieser Erfindung alle Einflüsse, die dazu führen, daß offensichtliche Hautkrankheiten wie beispielsweise Ekzeme, Ausschläge, Rötungen, Juckreiz, Schwellungen, Bläschenbildung, Nässen, Krusten in unterschiedlichsten Ausprägungen zumindest gelindert werden, wenn nicht gar geheilt. Ein hautheilender Aktivstoff, hat im gewöhnlichen Falle gleichzeitig auch eine hautschützende und hautpflegende Funktion.

Wie bereits angesprochen ist die gute Einspülbarkeit der Mikroemulsion im Rahmen der erfindungsgemäßen Verwendung ein bedeutender Vorteil des Erfindungsgegenstandes. Die Einspülbarkeit der Mikroemulsion und ihre Verteilbarkeit auch bereits in kaltem Wasser sind gerade dann besonders gut, wenn bestimmte Maximalwerte für die Tröpfchengröße nicht überschritten und bestimmte Mindestwerte nicht unterschritten werden. Vorteilhafterweise sind solche Mikroemulsionen auch besonders stabil.

Mikroemulsionen mit einer Tröpfchengröße  $d_{50}$  nicht größer als 400 nm, vorzugsweise nicht größer als 300 nm, vorteilhafterweise nicht größer als 250 nm ist, in weiter vorteilhafter Weise nicht größer als 200 nm, in noch vorteilhafterer Weise nicht größer als 150 nm, insbesondere einen Wert von 100 nm nicht übersteigend, sind von daher besonders bevorzugt und dementsprechend stellt die Verwendung dieser bevorzugten Mikroemulsionen eine besonders vorteilhafte Ausführungsform der Erfindung dar.

Ebenso ist es auch für die Einspülbarkeit der Mikroemulsion und ihre Verteilbarkeit auch bereits in kaltem Wasser ungemein vorteilhaft, wenn bestimmte Mindestwerte der Tröpfchengröße nicht verletzt werden.

Mikroemulsionen mit einer Tröpfchengröße  $d_{50}$  nicht kleiner als 10 nm, vorzugsweise nicht kleiner als 25 nm, vorteilhafterweise nicht kleiner als 40 nm, insbesondere einen Wert von 60 nm nicht unterschreitend, sind von daher besonders bevorzugt und dementsprechend stellt die

Verwendung dieser bevorzugten Mikroemulsionen eine besonders vorteilhafte Ausführungsform der Erfindung dar.

Die Verwendung einer erfindungsgemäßen Mikroemulsion, die kationisches Polymer enthält, vorzugsweise in Mengen von weniger als 10 Gew.-%, vorteilhafterweise von weniger als 5 Gew.-%, in weiter vorteilhafter Weise in Mengen von weniger als 3 Gew.-%, in noch vorteilhafterer Weise in Mengen von weniger als 1 Gew.-%, insbesondere aber in Mengen von weniger als 0,5 Gew.-%, wobei vorzugsweise eine Untergrenze von 0,05 Gew.-%, vorteilhafterweise von 0,1 Gew nicht überschritten wird, stellt ebenfalls eine bevorzugte Ausführungsform der Erfindung dar. Vorteilhafterweise sind kationische Polymere im Stande zur Stabilität der Mikroemulsion weiter beizutragen und gleichzeitig leisten sie dem behandelten Textil und der Haut einen Dienst, dadurch daß sie als hauchdünne Filme bei der Textilbehandlung auf die Textilfasern aufziehen können. So kann der optische Eindruck des Textils aufgewertet werden, dadurch daß es seidig glänzend erscheint und das Textil wird durch den Film vor schädlichen Umwelteinflüssen geschützt. Bei Kontakt Textil/Haut kann man auch einen verbesserten Griff des Textils feststellen. Hinzukommt, daß die kationischen Polymere auch bei Kontakt des behandelten Textils mit der Haut zumindest teilweise an die Haut abgegeben werden können, so daß die Haut dann ihrerseits unmittelbar durch einen kationischen Polymerfilm geschützt ist.

Besonders vorteilhafte kationische Polymere sind im Erfindungskontext polymere quartäre Ammoniumverbindungen, vorzugsweise ausgewählt aus Copolymeren aus quaternisiertem Vinylimidazol und Vinylpyrrolidon, Copolymeren aus Vinylcaprolactam, Vinylpyrrolidon und quaterniertem Vinylimidazol und/oder quaternisierten Copolymeren aus Vinylpyrrolidon und Dimethylaminoethylmethacrylaten. Ein besonders bevorzugtes Polymer ist das 3-Methylvinylimidazolin-chlorid-Vinylpyrrolidon-Copolymerisat, erhältlich als Luviquat® Excellence von der BASF AG.

Wie bereits beschrieben, liegt ein wichtiger Vorteil des Erfindungsgegenstandes darin, daß als Resultat der erfindungsgemäßen Verwendung ein mit einer entsprechenden Mikroemulsion behandeltes Textil der Hautgesundheit zuträglich ist. Es ist von daher vorteilhaft, wenn die erfindungsgemäß zu verwendenden Mikroemulsionen weitere Inhaltsstoffe aufweisen, die dem Wohlergehen der Haut zuträglich sind.

Ein Inhaltsstoff, der in diesem Kontext ebenfalls nutzbringend ist, ist Harnstoff und/oder dessen Derivate.

Harnstoff und/oder dessen Derivate fördern die Hautgesundheit, da sie antimikrobiell, wasserbindend, Juckreiz stillend, Hautschuppen lösend, hautglättend wirken können sowie übermäßiges Zellwachstum hemmen können. Ferner können sie der Haut als Feuchthaltefaktor dienen, d. h. sie können der Haut helfen, Feuchtigkeit zu speichern.

Die erfindungsgemäß zu verwendenden Mikroemulsionen können daher Harnstoff und/oder dessen Derivate enthalten.

Vorteilhafterweise können die erfindungsgemäß zu verwendenden Mikroemulsionen Feuchthaltefaktoren beinhalten, beispielsweise solche, die ausgewählt sind aus folgender Gruppe: Aminosäuren, Chitosan oder Chitosansalze/-derivate, Ethylenglycol, Glucosamin, Glycerin, Diglycerin, Triglycerin, Harnsäure, Honig und gehärteter Honig, Kreatinin, Spaltprodukte des Kollagens, Lactitol, Polyole und Polyolderivate (beispielsweise Butylenglycol, Erythrit, Propylenglycol, 1,2,6-Hexantriol, Polyethylenglycole wie PEG-4, PEG-6, PEG-7, PEG-8, PEG-9, PEG-10, PEG-12, PEG-14, PEG-16, PEG-18, PEG-20), Pyrrolidoncarbonsäure Zucker und Zuckerderivate (beispielsweise Fructose, Glucose, Maltose, Maltitol, Mannit, Inosit, Sorbit, Sorbitylsilandiol, -Suerose, Trehalose, Xylose, Xylit, Glucuronsäure und deren Salze), ethoxyliertes Sorbit (Sorbeth-6, Sorbeth-20, Sorbeth-30, Sorbeth-40), gehärtete Stärkehydrolysate sowie Mischungen aus gehärtetem Weizenprotein und PEG-20-Acetatcopolymer, insbesondere Panthenol. Solche Mikroemulsionen sind, da sie der Feuchtigkeitsregulierung der Haut besonders dienen, sehr vorteilhaft, und die Verwendung solcher Mikroemulsionen ist eine bevorzugte Ausführungsform der Erfindung.

Im Gesamtkontext der Erfindung ist es weiterhin sehr vorteilhaft, wenn die verwendeten Mikroemulsionen Komplexierungsmittel enthalten.

Mikroemulsionen, die Komplexierungsmittel enthalten, vorzugsweise ausgewählt aus der Gruppe der Citrate, Citronensäure, Gluconate, Gluconsäure Phosphate, Phosphonate, Carboxylate, Ethylendiamintetraessigsäure und/oder ihre Salze, Nitritetriessigsäure und/oder ihre Salze, Diethylentriaminpentaessigsäure und/oder ihre Salze, Propylendiamintetraessigsäure und/oder ihre Salze, Alanindiessigsäure und/oder ihre Salze, Methylglycindiessigsäure und/oder ihre Salze, Iminodibernsteinsäure und/oder deren Salze und/oder dem Trinatriumsalz der Ethylendiamin-N, N'-dibernsteinsäure, wobei die Citrate und/oder die Citronensäure am meisten bevorzugt sind, sind von daher besonders vorteilhaft und dementsprechend stellt die Verwendung dieser be-

sonders vorteilhaften Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung dar.

Dabei liegen die Komplexierungsmittel vorzugsweise in bestimmten Mengenverhältnissen vor.

Mikroemulsionen, die Komplexierungsmittel in Mengen von mindestens 1,5 Gew.-%, vorteilhaft erweise von mindestens 2,5 Gew.-%, in weiter vorteilhafter Weise in Mengen von mindestens 4 Gew.-%, in noch vorteilhafterer Weise in Mengen von mindestens 6 Gew.-%, insbesondere aber in Mengen von mindestens 7,5 Gew.-%, wobei vorzugsweise eine Obergrenze von 25 Gew.-%, vorteilhafterweise von 20 Gew.-%, in weiter vorteilhafter Weise von 17 Gew.-%, in noch vorteilhafterer Weise von 15 Gew.-%, insbesondere von 12 Gew.-% nicht überschritten wird, enthalten, sind im Rahmen der Erfindung besonders vorteilhaft und dementsprechend stellt die Verwendung dieser besonders vorteilhaften Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung dar.

Vor dem Hintergrund der Erfindung, dem Verbraucher eine alternative Möglichkeit der Textilbehandlung zu ermöglichen, bei der, wie beschrieben wurde, nicht nur dem Textil ein weicher Griff verliehen wird, sondern bei der auch der Haut ein Vorteil verschafft wird, sind vor allem die Citronensäure und/oder Citrate als Komplexbildner sehr hilfreich, weil sie auch einen hautfunktionellen Bezug haben.

Die Inhaltsstoffe Citronensäure und/oder Citrate dienen u. a. dazu, den natürlichen Säureschutzmantel bzw. Hydrolipidfilm der Haut zu unterstützen bzw. zu erneuern. Der Hydrolipidfilm der Haut wird durch alkalische Einflüsse angegriffen oder zerstört, woraus ein Verlust der Barrierefunktion der Haut resultiert, so daß Mikroorganismen oder Schadstoffe leichter in die Haut eindringen können. Durch Citronensäure in den erfindungsgemäßen Mitteln lässt sich z. B. Restalkali aus der Kleidung entfernen und der pH-Wert der Textilien auf einen pH-Bereich beispielsweise um 5 einstellen. Zudem wird durch Citronensäure und/oder Citrat Wasserhärte und Schmutz gebunden bzw. komplexiert. Außerdem sind Citronensäure und Citrate biologisch vollständig abbaubar bis hin zu den mineralischen Endprodukten Kohlendioxid und Wasser.

Mikroemulsionen, in denen zumindest Citrat(e) und/oder zumindest Citronensäure enthalten sind, vorzugsweise ausschließlich Citrat(e) und/oder Citronensäure, wobei die Citrat(e) und/oder Citronensäure vorzugsweise in Mengen von 1 Gew.-% bis 16 Gew.-% als Komplexierungsmittel enthalten sind, sind besonders vorteilhaft und dementsprechend stellt die Verwendung

dung dieser besonders vorteilhaften Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung dar.

Dem in der Mikroemulsion enthaltenem Öl kommt sowohl die Weichmachung des zu behandelnden Textils als besonders auch den beschriebenen Zusammenhang mit der Haut anbetreffend, eine sehr wichtige Rolle zu.

Es ist in diesem Zusammenhang besonders vorteilhaft, daß das in der Mikroemulsion enthaltene Öl ausgewählt aus der Gruppe der vollsynthetischen Öle, dabei vorzugweise Silikonöle, natürlichen Öle, dabei vorzugsweise pflanzliche und/oder tierische fette Öle, und/oder ätherischen Öle ist, und dementsprechend stellt die Verwendung dieser besonders bevorzugten Mikroemulsionen eine besonders vorteilhafte Ausführungsform der Erfindung dar.

In einer weiteren besonderen Ausführungsform gelangt ein hautschützender Stoff zur Anwendung. Bei diesem hautschützenden Stoff handelt es sich vorteilhafterweise um ein hautschützendes Öl, z. B. auch um ein Trägeröl, insbesondere ausgewählt aus der Gruppe Algenöl Oleum Phaeophyceae, Aloe-Vera Öl Aloe vera brasiliiana, Aprikosenkernöl Prunus armeniaca, Arnikaöl Arnica montana, Avocadoöl Persea americana, Borretschöl Borago officinalis, Calendulaöl Calendula officinalis, Camelliaöl Camellia oleifera, Distelöl Carthamus tinctorius, Echiumöl, Erdnussöl Arachis hypogaea, Hanföl Cannabis sativa, Haselnußöl Corylus avellana/, Johanniskrautöl Hypericum perforatum, Jojobaöl Simondsia chinensis, Karottenöl Daucus carota, Kernöl der schwarzen Johannisbeere, Kokosöl Cocos nucifera, Kürbiskernöl Curcubita pepo, Kukuiöl Aleurites moluccana, Macadamianußöl Macadamia ternifolia, Mandelöl Prunus dulcis, Nachtkerzenöl, Olivenöl Olea europaea, Pfirsichkernöl Prunus persica, Rapsöl Brassica oleifera, Rizinusöl Ricinus communis, Schwarzkümmelöl Nigella sativa, Sesamöl Sesamum indicum, Sonnenblumenöl Helianthus annus, Traubenkernöl Vitis vinifera, Trichodesmaöl, Walnußöl Juglans regia, Weizenkeimöl Triticum sativum, wobei von diesen insbesondere das Borretschöl, das Hanföl und das Mandelöl vorteilhaft sind.

Alle die gerade aufgeführten Öle sind natürliche Emollientien, d. h. Mittel, die Körpergewebe weicher und geschmeidiger machen und die Rauhigkeit der Haut vermindern. Diese Öle wirken also zum einen auch hautpflegend. Zum anderen weisen gerade diese Öle weitere spezifische Wirkungen auf, die ein synergistisches Zusammenwirken mit der Haut und deren Selbstregulierungskräften nach sich ziehen und einen Schutz auch unter widrigen Bedingungen ermöglichen.

Ein ebenfalls bevorzugtes Öl ist Mandelöl. Es zeichnet sich dadurch aus, daß es die Wirkung anderer Öle verstärken kann, weshalb es vorteilhafterweise in Kombination mit anderen Ölen eingesetzt wird.

Das in den Mikroemulsionen enthaltene Emulgatorsystem ist besonders vorteilhaft für die Stabilität und auch für die Einspülbarkeit der erfindungsgemäß zu verwendenden Mikroemulsionen.

Besonders bevorzugte Mikroemulsion sind dabei jene, deren Emulgatoren aus der Gruppe der kationischen, nichtionischen, zwitterionischen, ampholytischen und/oder anionischen Emulgatoren ausgewählt sind, und dementsprechend stellt die Verwendung dieser besonders bevorzugten Mikroemulsionen eine besonders vorteilhafte Ausführungsform der Erfindung dar.

Die Anmelderin konnte überraschend finden, daß die Mikroemulsion gerade dann sehr vorteilhafte Eigenschaften bezüglich der Stabilität aber auch bezüglich ihres Einspülverhaltens zeigt, wenn sie bestimmte Emulgatoren enthält.

Mikroemulsionen, in welchen zumindest ein kationischer Emulgator enthalten ist, vorteilhafterweise ein lipophiler kationischer Emulgator, sind dabei besonders vorteilhaft, und dementsprechend stellt die Verwendung dieser besonders vorteilhaften Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung dar. Solche Mikroemulsionen sind besonders stabil.

Wie bereits beschrieben wurde, weist die erfindungsgemäß zu verwendende Mikroemulsion nicht nur einen Emulgator auf. Es ist von großem Nutzen für die Stabilität und die Einspülbarkeit der Mikroemulsionen, wenn neben zumindest einem kationischen auch ein nichtionischer, vorzugsweise nichtionischer hydrophiler Emulgator vorliegt.

Mikroemulsion, in denen zumindest ein nichtionischer Emulgator enthalten ist, insbesondere ein hydrophiler nichtionischer Emulgator, wobei, wenn gleichzeitig kationischer Emulgator enthalten ist, das Mengenverhältnis kationischer zu nichtionischem Emulgator vorteilhafterweise im Bereich von 70:1 bis 3:1, insbesondere von 50:1 bis 8:1, vorzugsweise von 30:1 bis 10:1, und besonders bevorzugt von 20:1 bis 12:1 liegt, sind von daher besonders bevorzugt, und dementsprechend stellt die Verwendung dieser besonders bevorzugten Mikroemulsionen eine beson-

ders vorteilhafte Ausführungsform der Erfindung dar. Solche Mikroemulsionen sind besonders stabil und sehr gut aus der Einspülkammer einer Waschmaschine einspülbar.

Die Einspülbarkeit und die Stabilität der Mikroemulsionen lassen sich sogar noch weiter verbessern, wenn ganz bestimmte nichtionische Emulgatoren zum Einsatz gelangen.

Mikroemulsionen, in denen der darin enthaltene nichtionische Emulgator aus ethoxylierten Fettalkoholen und/oder ethoxylierten Fettsäurealkanolamiden ausgewählt ist, sind dabei besonders vorteilhaft, und dementsprechend stellt die Verwendung dieser besonders vorteilhaften Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung dar. Besonders bevorzugt sind mit Blick auf die ethoxylierten Fettalkoholen die Anlagerungsprodukte von 5 bis 40 Ethylenoxid-Einheiten an C<sub>8-22</sub>-Fettalkohole, wobei insbesondere Eumulgin® B3 (Cetylstearylalkohol+30-EO; erhältlich über Cognis Deutschland GmbH) überaus bevorzugt ist. Besonders bevorzugt mit Blick auf die ethoxylierten Fettsäurealkanolamide sind vorzugsweise die ethoxylierten Kokosfettsäuremonoethanolamide, insbesondere Kokosfettsäuremonoethanolamide plus 4 Ethylenoxid -Einheiten, was beispielsweise dem kommerziellen Produkt Eumulgin® C4 entspricht (erhältlich über Cognis Deutschland GmbH). Bei Einsatz von nichtionischen Emulgatoren entsprechend dieser bevorzugten Ausführungsform, insbesondere bei Einsatz von Eumulgin B3, lassen sich erfindungsgemäß Mikroemulsionen mit herausragender Stabilität, herausragender Einspülbarkeit und herausragender Verteilbarkeit in Wasser bereitstellen.

Ebenso lässt sich die Einspülbarkeit und Stabilität der erfindungsgemäß zu verwendenden Mikroemulsionen noch weiter verbessern, wenn gleichfalls ganz bestimmte kationische Emulgatoren zum Einsatz gelangen.

Mikroemulsionen, in denen die darin enthaltenen kationischen Emulgatoren quartäre Ammoniumverbindungen sind, vorteilhafterweise alkylierte quartäre Ammoniumverbindungen, vorzugsweise mit ein, zwei oder drei hydrophoben Gruppen, die insbesondere über Ester- oder Amidebindungen mit einem quaternierten Di- bzw. Triethanolamin oder einer analogen Verbindung verknüpft sind, sind hierbei besonders vorteilhaft, und dementsprechend stellt die Verwendung dieser besonders vorteilhaften Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung dar.

Mikroemulsionen bei denen der enthaltene kationischen Emulgator eine quartäre Ammoniumverbindung, ausgewählt ist aus den nachfolgenden Formeln (I):



hierbei steht R für einen aliphatischen Alkylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1, 2 oder 3 Doppelbindungen; R<sup>1</sup> steht für H, OH oder insbesondere O(CO)R<sup>4</sup>, R<sup>2</sup> steht unabhängig von R<sup>1</sup> für H, OH oder O(CO)R<sup>5</sup>, wobei R<sup>4</sup> und R<sup>5</sup> unabhängig voneinander jeweils für einen aliphatischen Alkylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1, 2 oder 3 Doppelbindungen steht, a, b und c können jeweils unabhängig voneinander den Wert 1, 2 oder 3 haben, X<sup>-</sup> ist ein passendes Anion, vorzugsweise ein Halogenid-, Methosulfat-, Methophosphat- oder Phosphation sowie Mischungen aus diesen sein,

und/oder der Formel (II) ist:



wobei R<sup>6</sup>, R<sup>7</sup> und R<sup>8</sup> unabhängig voneinander für eine C<sub>1-4</sub>-Alkyl-, Alkenyl- oder Hydroxyalkylgruppe steht, R<sup>9</sup> und R<sup>10</sup> jeweils unabhängig ausgewählt eine C<sub>8-28</sub>-Alkylgruppe mit 0, 1, 2 oder 3 Doppelbindungen darstellt und u eine Zahl zwischen 0 und 5 ist, X<sup>-</sup> ist ein passendes Anion, vorzugsweise ein Halogenid-, Methosulfat-, Methophosphat- oder Phosphation sowie Mischungen aus diesen sein,

sind im Rahmen der Erfindung sehr vorteilhaft, und dementsprechend stellt die Verwendung dieser sehr vorteilhaften Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung dar.

Mikroemulsionen, in welchen es sich bei dem darin enthaltenen kationischen Emulgator um N-Methyl-N(2-hydroxyethyl)-N,N-(ditalgacyloxyethyl)ammonium-methosulfat oder um N-Methyl-N(2-hydroxyethyl)-N,N-(dipalmitoylethyl)ammonium-methosulfat handelt, sind sehr vorteilhaft, und dementsprechend stellt die Verwendung dieser sehr vorteilhaften Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung dar.

Der Gehalt an kationischen Emulgator, vorzugsweise lipophilem kationischem Emulgator lässt sich vorteilhaft einstellen.

Mikroemulsionen, die weniger als 20 Gew.-%, vorzugsweise weniger als 15 Gew.-%, vorteilhafterweise weniger als 10 Gew.-%, in sehr vorteilhafter Weise weniger als 5 Gew.-%, in weiter vorteilhafter Weise weniger als 4 Gew.-%, in noch weiter vorteilhafterer Weise weniger als 3,5 Gew.-%, in überaus vorteilhafter Weise weniger als 3 Gew.-%, in äußerst vorteilhafter Weise weniger als 2,5 Gew.-%, in vorteilhaftester Weise weniger als 2 Gew.-%, mindestens jedoch 0,1 Gew.-%, vorteilhafterweise mindestens 0,5 Gew.-%, insbesondere mindestens 1 Gew.-% an kationischen, vorzugsweise lipophilen kationischen Emulgatoren enthalten, sind äußerst vorteilhaft, und dementsprechend stellt die Verwendung dieser äußerst vorteilhaften Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung dar.

Auch der Gehalt an nichtionischen, vorzugsweise hydrophilen nichtionischen Tensiden lässt sich vorteilhaft einstellen.

Eine Mikroemulsion, die weniger als 5 Gew.-%, vorzugsweise weniger als 3 Gew.-%, vorteilhafterweise weniger als 2 Gew.-%, in sehr vorteilhafter Weise weniger als 1,5 Gew.-%, in weiter vorteilhafter Weise weniger als 1,0 Gew.-%, in noch weiter vorteilhafterer Weise weniger als 0,75 Gew.-%, in überaus vorteilhafter Weise weniger als 0,6 Gew.-%, in äußerst vorteilhafter Weise weniger als 0,45 Gew.-%, in vorteilhaftester Weise weniger als 0,35 Gew.-%, mindestens jedoch 0,15 Gew.-%, vorteilhafterweise mindestens 0,2 Gew.-%, insbesondere mindestens 0,25 Gew.-% an nichtionischen, vorzugsweise hydrophilen nichtionischen Emulgatoren enthält, ist im Rahmen dieser Erfindung als sehr vorteilhaft einzustufen, so daß die Verwendung dieser sehr vorteilhaften Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung darstellt.

Auf die Bedeutung des Öls im Rahmen dieser Erfindung wurde bereits hingewiesen. Nach dem Erkenntnisstand der Anmelderin verhält es sich so, daß die erfindungsgemäß zu verwendenden Mikroemulsionen gerade dann sehr vorteilhaft im Hinblick auf die Einspülbarkeit, die Stabilität und auch im Hinblick auf die Hautgesundheit sind, wenn bestimmte Mengenbereiche eingehalten werden.

Mikroemulsionen, welche zumindest 0,5 Gew.-%, vorzugsweise zumindest 2,5 Gew.-%, vorteilhafterweise zumindest 5 Gew.-%, insbesondere 10 Gew.-%, jedoch nicht mehr als 50 Gew.-%, vorzugsweise nicht mehr als 45 Gew.-%, vorteilhafterweise nicht mehr als 40 Gew.-%, in sehr vorteilhafter Weise nicht mehr als 35 Gew.-%, in noch vorteilhafterer Weise nicht mehr als 32 Gew.-%, in überaus vorteilhafter Weise nicht mehr als 28 Gew.-%, in vorteilhaftester Weise nicht mehr als 25 Gew.-% an Ölen enthalten, jeweils bezogen auf die gesamte Mikroemulsion, sind als sehr vorteilhaft einzustufen, so daß die Verwendung dieser sehr vorteilhaften Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung darstellt.

Um vor allem die Stabilität der Mikroemulsionen noch weiter zu verbessern, können diese Verdickungsmittel enthalten.

Eine Mikroemulsion, die mindestens 0,05 Gew.-%, vorzugsweise zumindest 0,1 Gew.-%, vorteilhafterweise zumindest 0,15 Gew.-%, insbesondere zumindest 0,2 Gew.-%, jedoch nicht mehr als 3 Gew.-%, vorzugsweise nicht mehr als 2,5 Gew.-%, vorteilhafterweise nicht mehr als 2,0 Gew.-%, in sehr vorteilhafter Weise nicht mehr als 1,5 Gew.-%, in noch vorteilhafterer Weise nicht mehr als 1,0 Gew.-%, in überaus vorteilhafter Weise nicht mehr als 0,75 Gew.-%, in vorteilhaftester Weise nicht mehr als 0,5 Gew.-% an hydrophilen und/oder lipophilen Verdickungsmitteln enthält, ist in diesem Sinne als sehr vorteilhaft einzustufen, so dass die Verwendung dieser sehr vorteilhaften Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung darstellt.

- Das in der Mikroemulsion enthaltene Verdickungsmittel ist vorzugsweise aus der Gruppe der
- a) Polysaccharide, insbesondere Xanthan-Gum, Guar-Derivate, Gummi ara-bicum, Karaya-Gummi, Tragant, Taragummi, Gellan, Carrageen, Johannisbrotkernmehl, Agar-Agar, Alginate, Pektine und/oder Dextrane,
  - b) organische vollsynthetische Verdickungsmittel, insbesondere Polyacrylate, Polyacrylamide, Polyvinylpyrrolidon, Polyvinylalkohol, Polyethylenglykole, hydrophob

modifizierte Polyether, Polyurethane, Styrol-Maleinsäureanhydrid-Copolymerisate, deren Salze und/oder Derivate,

- c) nichtionische und/oder anionische Cellulose-Derivate, insbesondere Hydroxyethylcellulose, Carboxymethylcellulose, Hydroxypropyl-methylcellulose, Hydroxypropylcellulose, Ethylhydroxyethyl-cellulose, Methylcellulose,
- d) Stärke-Fraktionen und Derivate, insbesondere Amylose, Amylopektin und Dextri-ne,
- e) Tone, insbesondere Bentonit.
- f) Fettsäuren, Fettalkohole, Silikonöle, Wachse,
- g) Mischungen der vorgenannten

auszuwählen, und die entsprechenden Mikroemulsionen sind sehr vorteilhaft, vor allem hinsichtlich der Stabilität der Emulsion, und dementsprechend ist die Verwendung dieser sehr vorteilhaften Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung.

Als Dispersionsmittel enthalten die erfindungsgemäß zu verwendenden Mikroemulsionen vorzugsweise Wasser, in welchem die Ölphase vorzugsweise verteilt ist. Der Wassergehalt lässt sich vorteilhaft einstellen.

Mikroemulsion, die mindestens 40 Gew.-%, jedoch nicht mehr als 90 Gew.-%, vorzugsweise nicht mehr als 85 Gew.-%, vorteilhafterweise nicht mehr als 80 Gew.-%, in sehr vorteilhafter Weise nicht mehr als 75 Gew.-%, in noch vorteilhafterer Weise nicht mehr als 70 Gew.-%, in überaus vorteilhafter Weise nicht mehr als 68 Gew.-%, in vorteilhaftester Weise nicht mehr als 65 Gew.-% an Wasser enthalten, jeweils bezogen auf das gesamte Mittel, sind vorteilhaft, und dementsprechend ist die Verwendung dieser vorteilhaften Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung.

Wie bereits beschrieben, dienen die enthaltenen Öle nicht nur dazu, das Textil weich zuma-chen, sondern sie dienen über das als temporären Wirt agierende Textil auch dazu, der Haut einen Nutzen zu verschaffen. Dieser Nutzen ist gerade dann sehr vorteilhaft, wenn die Öle be-stimmte Eigenschaften aufweisen.

Mikroemulsionen, die wenigstens 1 Öl mit hautschützenden und/oder hautpflegendenden und/oder hautheilenden Eigenschaften enthalten, sind in diesem Zusammenhang besonders vorteilhaft,

dementsprechend ist die Verwendung dieser besonders vorteilhaften Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung.

Ebenso sind Mikroemulsion, bei welchen wenigstens eines der in der Mikroemulsion enthaltenen Öle antiseptisch wirksam ist, vorteilhaft, so dass demzufolge auch die Verwendung dieser vorteilhaften Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung darstellt. Im Kontext dieser Erfindung ist unter dem Attribut der antiseptischen Wirksamkeit eine Wirkung gemeint, die den Selbstregulierungskräften menschlicher Haut dienlich ist. Diese Wirksamkeit ist in ihrer Ausprägung nicht mit der von klassischen keimtötenden bzw. germiziden Mitteln wie z. B. Phenolen, Halogenen, Alkoholen, mit denen man z. B. Haut und Schleimhäute, Wunden oder auch medizinische Instrumente behandelt, um Asepsis (Keimfreiheit) zu erzielen, zu vergleichen. Die klassische Antiseptik umfaßt antimikrobielle Maßnahmen am Ausgangsort bzw. an der Eintrittspforte einer möglichen Infektion bzw. am Infektionsherd auf der Körperoberfläche. Eine solche starke Wirksamkeit ist jedoch im Kontext der Erfindung nicht angestrebt, da sie zwar zweifellos zur Beseitigung schädlicher Keime o. ä. führen würde, dabei aber auch die natürliche Hautflora des Menschen beeinträchtigen würde.

Die besondere Vorteilhaftigkeit der antiseptisch wirkenden Aktivstoffe, die erfindungsgemäß einsetzbar sind, ergibt sich durch ein synergistisches Zusammenwirken dieser Substanzen mit den allgemeinen Funktionsmechanismen menschlicher Haut, da diese mild antiseptisch wirkenden Substanzen z. B. Keime, darunter schädliche Keime reduzieren, aber nicht vollkommen, also bis zur Keimfreiheit, vernichten. Es verbleiben auf der Haut also genug Keime, die ausreichen, um die Selbstregulierungskräfte menschlicher Haut zu trainieren und dadurch zu stärken. Durch das Zusammenwirken der Selbstregulierungskräfte der Haut mit dem antiseptischen Vermögen der im Mittel enthaltenen Aktivstoffe werden die allgemeinen Funktionsmechanismen der Haut unterstützt. Dies ist gerade im Hinblick auf bereits irritierte und/oder anderweitig geschädigte Haut von großem Vorteil. Bei bereits irritierter und/oder sensibilisierter und/oder sonst wie geschädigter oder aber auch besonders empfindlicher Haut sind die Selbstregulierungskräfte der Haut teilweise nicht mehr in der Lage, wenn auch nur vorübergehend, die Hautgesundheit aus eigener Kraft sicherzustellen. Im synergistischen Zusammenwirken mit den erfindungsgemäß zu verwendenden Mitteln werden diese Selbstregulierungskräfte unterstützt, trainiert und gestärkt. Auf diese Weise unterstützt das Textilbehandlungsmittel bzw. die mit diesem behandelte Wäsche die natürliche Hautflora des Menschen.

Um die natürliche Hautflora des Menschen nicht zu beeinträchtigen, ist es wichtig, solche Stoffe (weitestgehend) auszuschließen, die zwar stark desinfizierend bzw. antiseptisch wirksam sind,

wie z. B. Glutaraldehyd, aber gleichzeitig ein hohes Allergisierungspotential bergen und haut- sowie schleimhautreizend sind.

Bei diesem antiseptisch wirksamen Öl handelt es sich vorzugsweise um ätherisches Öl, das insbesondere ausgewählt ist aus der Gruppe der Angelica fine – Angelica archangelica, Anis – Pimpinella Anisum, Benzoe siam – Styrax tokinensis, Cabreuva – Myrocarpus fastigiatus, Cajeput – Melaleuca leucadendron, Cistrose – Cistrus Iadaniferus, Copaiba-Balsam – Copaifera reticulata, Costuswurzel – Saussurea discolor, Edeltannennadel – Abies alba, Elemi – Canarium luzonicum, Fenchel – Foeniculum dulce Fichtennadel – Picea abies, Geranium – Pelargonium graveolens, Ho-Blätter – Cinnamomum camphora, Immortelle (Strohblume) Helichrysum ang., Ingwer extra – Zingiber off., Johanniskraut – Hypericum perforatum, Jojoba, Kamille deutsch – Matricaria recutita, Kamille blau fine – Matricaria chamomilla, Kamille röm. – Anthemis nobilis, Kamille wild – Ormensis multicaulis, Karotte – Daucus carota, Latschenkiefer - Pinus mugho, Lavandin – Lavendula hybrida, Litsea Cubeba - (May Chang), Manuka - Lepidostpermum scoparium, Melisse – Melissa officinalis, Meerkiefer – Pinus pinaster, Myrrhe – Commiphora molmol, Myrthe – Myrtus communis, Neem – Azadirachta, Niaouli – (MQV) Melaleuca quin. viridiflora, Palmarosa – Cymbopogon martini, Patchouli – Pogostemon patschuli, Perubalsam – Myroxylon balsamum var. pereirae, Raventsara aromatica, Rosenholz – Aniba rosae odora, Salbei – Salvia officinalis Schachtelhalm – Equisetaceae, Schafgarbe extra – Achillea millefolia, Spitzwegerich – Plantago lanceolata, Styrax – Liquidambar orientalis, Tagetes (Ringelblume) Tagetes patula, Teebaum – Melaleuca alternifolia, Tolubalsam – Myroxylon Balsamum L., Virginia-Zeder – Juniperus virginiana, Weihrauch (Olibanum) – Boswellia carteri, Weißtanne – Abies alba.

Ein weiterer Vorteil der zuvor bezeichneten ätherischen Öle liegt in deren besonderer Multifunktionalität, die sich neben der beschrieben mild antiseptischen Wirksamkeit aus einer Vielzahl weiterer wünschenswerter organoleptischer Eigenschaften ergeben, die gerade diesen Ölen zuzurechnen sind. Dabei wird diesen Ölen in den meisten Fällen eine schleimlösende Wirkung zugemessen, da sie auf die Schleimhäute der Atmungsorgane einen milden, positiven Reiz ausüben. Ferner kann sich eine wünschenswertes Wärmegefühl einstellen. Desodorierende, schmerzlindernde, durchblutungsfördernde, beruhigende Wirkungen konnten im Zusammenhang mit dem erfindungsgemäßen Einsatz dieser bezeichneten Ölen von der Anmelderin beobachtet und als besonders vorteilhaft erkannt werden. Dabei werden die organoleptischen Eigenschaften dieser Öle in der Regel nicht von den Hauptkomponenten, sondern von den Neben- od. Spurenbestandteilen geprägt, die oftmals in die Hunderte gehen können

und mitunter synergistisch zusammenwirken. Ein anderer Vorteil im Zusammenhang mit den genannten Ölen ist der von ihnen ausgehende, harmonisierende Wohlgeruch und Duft, der in vielen Fällen bei Menschen zu positiven Gefühlen führt.

Auf diese Weise unterstützt das Textilbehandlungsmittel bzw. die mit diesem behandelte Wäsche nicht nur die natürliche Hautflora des Menschen, sondern verhilft dem menschlichen Organismus zu zusätzlichen Vorteilen eben beschriebener Art.

Eine Mikroemulsion, in welcher wenigstens eines der enthaltenen Öle einen Mindestgehalt an  $\gamma$ -Linolensäure von 0,1 Gew.-%, bezogen auf das betreffende Öl aufweist ist für die Erfindung besonders vorteilhaft und insbesondere ist zumindest eines der Öle, vorzugsweise sind zumindest zwei der Öle ausgewählt aus Hanföl, Borretschöl, Nachtkerzenöl, Kernöl der schwarzen Johannisbeere, Echiumöl, Trichodesmaöl und/oder Schwarzkümmelöl. Dementsprechend ist die Verwendung dieser besonders vorteilhaften Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung.

Ein besonders bevorzugtes Öl im Sinne dieser Erfindung ist z. B. das Hanföl. Hanföl, das einen hohen Anteil essentieller Fettsäuren aufweist, und außerdem bis zu 6 Gew. % der wertvollen  $\gamma$ -Linolensäure (GLA) beinhaltet, wirkt zusätzlich entzündungshemmend, leicht schmerzstillend, heilend, pflegend, Hautstruktur verbessernd, Alterserscheinungen vorbeugend. Es verbessert Erneuerungsprozesse im Gewebe und übt eine hohe regenerierende Wirkung auf verletztes Gewebe aus. Zudem kann es die Pflege-Eigenschaften oder andere Eigenschaften anderer Öle insbesondere aller hier explizit genannten Öle erhöhen. Da essentielle Fettsäuren maßgeblich an der Aufrechterhaltung der Barrierefunktion der Haut beteiligt sind, weil sie helfen, den transepidermalen Wasserverlust über die Haut zu regulieren und zu normalisieren, kommt dem Hanföl im Sinne dieser Erfindung als Folge seines hohen GLA-Gehaltes eine besondere Rolle zu, da bei gestörtem transepidermalen Wasserverlust eine örtliche Behandlung mit GLA zur stärksten Reduktion des transepidermalen Wasserverlusts führt.

Ein ebenso bevorzugtes Öl im Sinne dieser Erfindung ist das Borretschöl. Es hat infolge seines hohen GLA-Gehaltes (bis zu 25 Gew.-%) dem Hanföl vergleichbare Eigenschaften und Vorteile.

Wenn der pH-Wert der Mikroemulsion, insbesondere der pH-Wert einer 1 %-igen wässrigen Lösung der Mikroemulsion bei einer Temperatur von T = 20 °C nicht größer als 5,5 ist, so handelt es sich um eine bevorzugte Mikroemulsion, dementsprechend ist die Verwendung dieser

- besonders bevorzugten Mikroemulsionen eine besonders vorteilhafte Ausführungsform der Erfindung.

Ein pH-Wert des Textilbehandlungsmittels zwischen 3 - 5,5, gemessen bei einer Temperatur von 20°C insbesondere an einer 1 %-igen wässrigen Lösung des Textilbehandlungsmittels ist vorteilhaft im Hinblick auf den pH-Wert der Haut eines gesunden Menschen.

Da im Bereich der großen Schweißdrüsen, die z.B. im Genitalbereich und in den Achselhöhlen vorhanden sind, die Hautoberfläche nur schwach sauer (pH 5,5 - 6,5) ist, besteht gerade dort eine reduzierte Abwehrfähigkeit gegen Keime oder Bakterien, so daß es im Sinne der Erfindung besonders vorteilhaft ist, wenn der pH-Wert des Textilbehandlungsmittel nicht größer als pH 5,5 ist, gemessen bei einer Temperatur von 20°C an einer 1 %-igen wässrigen Lösung des Textilbehandlungsmittels.

Ein weiterer Vorteil dieses pH-Wert-Bereiches für das Textilbehandlungsmittel ist im Zusammenhang mit der Körperhygiene zu sehen. Wird der Körper mit Seife gewaschen, so erhöht sich der pH-Wert der gewaschenen Haut auf etwa 9, so daß der natürliche Schutzmantel der Haut massiv gestört ist. Über ihre Selbstregulierungskräfte vermag es die Haut, den sauren pH-Wert wiedereinzustellen. Allerdings kann dieser Prozeß bis zu 3 h Zeit beanspruchen, in der Regel aber mindestens 30 Minuten. Dies differiert von Hauttyp zu Hauttyp und verläuft z. B. bei Kleinkindern sehr langsam.

Besonders vorteilhaft ist ein solcher pH-Wert-Bereich hinsichtlich eines Personenkreises mit besonders empfindlicher Haut, wie Babys oder Kleinkinder, oder eines Personenkreises mit bereits bestehenden Hautproblemen, z. B. Allergiker. So ist beispielsweise Babyhaut erheblich dünner als die Haut eines erwachsenen Menschen. Da auch die Talgproduktion der Babyhaut deutlich vermindert ist, weist sie nur eine unvollständige Barrierefunktion und einen sehr dünnen Hydrolipidfilm auf. Hier besteht ein besonderer Bedarf an den erfundungsgemäßen Textilbehandlungsmitteln.

Der Vorteil des Textilbehandlungsmittel mit einem pH-Wert wie zuvor beschrieben, liegt darin, daß damit behandelte Textilien es vermögen, die Selbstregulierungskräfte der Haut, was ihre Alkalineutralisationsfähigkeit betrifft, zu unterstützen, dadurch, daß das mit der Haut in Kontakt tretende Textil, wie z. B. ein Abtrockentuch oder Leibwäsche, einen hautoptimalen pH-Wert aufweist.

Auf diese Weise unterstützt das Textilbehandlungsmittel bzw. die mit diesem behandelte Wäsche die natürliche Hautflora des Menschen.

Es ist weiterhin besonders vorteilhaft, wenn die erfindungsgemäß zu verwendenden Mittel farbstofffrei sind, obschon farbstoffhaltige Mittel, wie sie handelsüblich sind, nur in extrem seltenen Ausnahmefällen ggf. bei entsprechend veranlagten, besonders empfindlichen Menschen zu subjektiv wahrgenommenen, geringfügigen Hautirritationen führen können. Um also das hypothetisch vorhandene Unverträglichkeitspotential von dieser Seite noch weiter zu senken, ist es von daher vorteilhaft, den Farbstoffgehalt in den erfindungsgemäß zu verwendenden Mitteln zu minimieren, bestenfalls bis hin zur Farbstofffreiheit. Sollten Farbstoffe beispielsweise aus optischen Gründen erwünscht sein, so werden die üblichen Farbmittel eingesetzt. Bevorzugt liegt der Farbmittelgehalt unter 0,002 Gew.-% der Zusammensetzung, insbesondere beträgt er 0 Gew.-%.

Wenn die Mikroemulsion also farbstofffrei ist, so handelt es sich um eine vorteilhafte Mikroemulsion, dementsprechend ist die Verwendung dieser vorteilhaften Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung.

Ebenso sind Mikroemulsionen, welche nur natürliche Aromen, jedoch vorzugsweise keine zusätzlichen Duftstoffe oder andere Parfumöle enthalten, von großem Vorteil, so dass also auch die Verwendung solcher Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung darstellt.

Dies ist besonders vorteilhaft, da ggf. bestimmte Duftstoffe oder Parfumöle, die keine hautheilenden, hautpflegenden und/oder hautschützenden Aktivstoffe im Sinne der Erfindung und keine natürlichen Aromen sind, wenn auch nur bei sehr kleinen Personengruppen mit überaus empfindlicher Haut und entsprechender Prädisposition, in sehr seltenen Fällen geringfügige, subjektiv wahrgenommene Unverträglichkeitsreaktionen auslösen können, welche der vorliegenden Erfindung entgegenwirken würden.

Zwar sind die erfindungsgemäßen Mittel vorzugsweise frei von vorgenannten Riechstoffen, es kann jedoch erwünscht sein, eine besonders ansprechende Duftnote zu erzeugen, die sich nicht alleine aus den erfindungsgemäßen Aktivstoffen und deren inhärenter Duftwirkungen generieren lässt. Daher ist es in einer bevorzugten Ausführungsform möglich, eine geringe Menge

solcher Riechstoffe, die keine Aktivstoffe im Sinne der Erfindung sind, zu den betreffenden Mitteln hinzuzufügen.

Zu den gewöhnlichen Duftstoffen bzw. Riechstoffen bzw. Parfumölen zählen z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrate, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl-glycinat, Allylcyclohexylpropionat, Styralylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone,  $\alpha$ -Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. In Parfümölen können auch natürliche Riechstoffgemische enthalten sein, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pineöl, Muskateller, Nelkenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Orangenschalenöl.

Wenn die Mikroemulsion ein Bügelerleichterungsmittel und/oder Knitterreduktionsmittel enthält, so ist eine solche Mikroemulsion als vorteilhaft einzustufen, und ebenso ist von daher die Verwendung dieser Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung. Der Vorteil dieser Ausführungsform liegt darin, daß durch den Bügelerleichterungs- und Knitterreduktionseffekt, die Bügeldauer herabgesetzt werden kann, so daß die wertvollen Inhaltsstoffe des erfindungsgemäßen Textilbehandlungsmittels keiner zu langen thermischen Belastung durch das Bügeln ausgesetzt sind, und so ihre volle Wirkkraft behalten.

Die Mikroemulsionen können vorteilhafterweise einen desodorierenden Wirkstoff enthalten, so dass die Verwendung solcher Mikroemulsion eine besonders bevorzugte Ausführungsform der Erfindung ist.

Hierbei muß beachtet werden, daß viele der bereits namentlich genannten Öle, insbesondere ätherische Öle, als solche ebenfalls eine desodorierende Wirkung haben. Der besondere Vorteil des Hinzufügens eines oder mehrerer desodorierender Wirkstoffe zu dem erfindungsgemäßen Textilbehandlungsmittel besteht darin, daß diese Wirkstoffe zusammen mit den genannten Ölen einen besonders verstärkten, weil synergistischen Effekt bezüglich der desodorierenden Wirksamkeit bringen. Dabei besteht die Wirkungsweise nur in einer Facette aus dem Überdecken

von übelriechenden oder unangenehmen Gerüchen. Im Zusammenhang mit der Wirkung des Mittels auf die Haut, hervorgerufen durch den Kontakt Haut/behandeltes Textil tritt ein zusätzlicher Effekt auf, der auf dem synergistischen Zusammenspiel der Aktivstoffe im Sinne der Erfindung mit dem zugesetzten desodorierenden Wirkstoff sowie den Selbstregulierungskräften beruht, so daß nicht alleine das Symptom, der üble Geruch, sondern das diesen Geruch auslösende Moment beseitigt wird. Dabei handelt es sich in der Regel um Bakterien, die auf der Haut oder im Haar- bzw. Schamhaarbereich in unterschiedlicher Zahl angesiedelt sind. Diese Bakterien können Eiweiße und Fette, z. B. aus Körperschweiß, in übelriechende Schwefelverbindungen zersetzen. Diesen Bakterien wird durch das synergistische Zusammenwirken der genannten Faktoren wirkungsvoll entgegengewirkt.

Gleichzeitig werden die Selbstregulierungskräfte der Haut stimuliert und trainiert.

Eine Mikroemulsion, welche einen terpenhaltigen Pflanzenextrakt enthält, vorzugsweise einen Extrakt aus Pflanzenteilen von einem oder mehreren Gewächsen aus der Familie der Myrtaceae, wobei es sich bei dem Extrakt vorteilhafterweise um Teebaumöl handelt, wobei der Extrakt insbesondere in einer Menge von mindestens 0,006 Gew.-% bis maximal 1 Gew.-% in der Mikroemulsion enthalten ist, kann als besonders vorteilhaft angesehen werden, so daß es sich daher auch bei der Verwendung solcher Mikroemulsionen um eine besonders bevorzugte Ausführungsform der Erfindung handelt.

Das Teebaumöl ist von großer Vorteilhaftigkeit für den Erfindungsgegenstand, da es keimtötende, antiseptische, fungizide, antivirale, wundheilende, entzündungshemmende, vernarbungsfördernde Wirkungen in sich vereint.

Wenn die Mikroemulsion wenigstens 0,03 Gew.-%, insbesondere 0,05 bis 1 Gew.-% natürliche Antioxidantien enthält, insbesondere ausgewählt aus terpenhaltigen Antioxidantien, Vitamin E, Vitamin C, Vitamin A, Selen und/oder deren Derivate oder Mischungen aus diesen, so gilt das im Rahmen dieser Erfindung als vorteilhaft, so daß es sich daher auch bei der Verwendung solcher Mikroemulsionen um eine besonders bevorzugte Ausführungsform der Erfindung handelt. Die Zugabe des Antioxidationsmittels trägt sehr gut zur Produktstabilität bei. Die Anmelderin konnte finden, daß dies auch die Stabilität des Öls, welches sich nach der Textilbehandlung auf den Fasern des behandelten Textils befindet, betrifft. Wenn eine erfindungsgemäße Mikroemulsion keine Antioxidationsmittel enthält, so geht nach einer 4-wöchigen Lagerung des behandelten Textils der Gehalt an C-18:2 (Linolsäure, gemessen über den Methylester) auf etwa die

Hälften des Ursprungswertes zurück. Bei einem Gehalt von 0,2 Gew.-% Tocopherol in der Mikroemulsion sieht man dagegen keine Abnahme des Gehaltes an C-18:2 auf der Faser.

Die Verwendung erfindungsgemäßer Mikroemulsionen, die einen sauren Puffer enthalten, vorzugsweise ein organisches Puffersystem, welches die Mikroemulsion und das Textilbehandlungsbad insbesondere in einem pH-Bereich von 3 bis 5,5 puffert, stellt ebenfalls eine bevorzugte Ausführungsform der Erfindung dar. Der Vorteil des sauren Puffers liegt darin, daß er zur Stabilität der Mikroemulsion beiträgt.

Vorzugsweise enthält das Puffersystem Säuren, insbesondere ausgewählt aus Ameisensäure Zitronensäure, Essigsäure, Sulfonsäure – dabei vorteilhafterweise Amidosulfonsäure – und/oder deren Derivate oder Mischungen aus diesen.

Wenn das Puffersystem zumindest ein Salz der im Puffersystem enthaltenen Säure(n) enthält, vorzugsweise Natriumcitrat, so ist das ebenfalls bevorzugt.

Gemäß einer weiteren bevorzugten Ausführungsform enthält das Puffersystem Polyacrylate, Polymethacrylate und/oder Copolymeren aus Acrylsäure und Maleinsäure, vorzugsweise mit einem Molekulargewicht von 2000 bis 10000 enthält.

Eine Mikroemulsion, welche zusätzlich nichtwässrige Lösungsmittel, vorzugsweise Hydroxy-Derivate von aliphatischen und alicyclischen Kohlenwasserstoffen, insbesondere Ethanol enthält, vorteilhafterweise in Mengen größer 0,5 Gew.-%, in sehr vorteilhafterweise in Mengen größer 1 Gew.-%, wobei jedoch eine maximale Menge von 10 Gew.-%, vorzugsweise 7,5 Gew.-%, insbesondere 4 Gew.-% nicht überschritten wird, gilt im Rahmen dieser Erfindung als vorteilhaft, so daß es sich daher auch bei der Verwendung solcher Mikroemulsionen um eine besonders bevorzugte Ausführungsform der Erfindung handelt.

Wenn Ameisensäure und/oder deren Salze vorzugsweise in Mengen kleiner 0,15 Gew.-%, vorteilhafterweise kleiner 0,1 Gew.-% insbesondere kleiner 0,075 Gew.-%, so ist das vorteilhaft, und ebenso vorteilhaft ist die Verwendung solcher Mikroemulsionen, die eine besonders bevorzugte Ausführungsform der Erfindung darstellt. Ameisensäure kann die Stabilität der Mikroemulsion im wesentlichen im Sinne einer Konservierung weiter steigern.

Falls Milchsäure und/oder deren Salze in der Mikroemulsion enthalten ist, vorzugsweise in Mengen kleiner 5 Gew.-%, vorteilhafterweise kleiner 3 Gew.-% insbesondere kleiner 2 Gew.-%, so ist das vorteilhaft, weil Milchsäure und/oder deren Salze hautfunktionell wirksam sind. Milchsäure ist ein wichtiger und feuchtigkeitsbindender Bestandteil einer intakten Oberhaut ist. Von außen zugeführt, kann Milchsäure sogar die Wasserbindungsfähigkeit der Haut verbessern. Einen positiven Einfluss auf unser Hautbild hat auch die hautglättende Eigenschaft der Milchsäure. Da Milchsäure die Ablösung von Hautschuppen unterstützt (Keratolyse) sorgt sie für eine glatte, ebenmäßige Haut. Diese Eigenschaft ist vor allem für die Pflege trockener, schuppender Haut wichtig. Dementsprechend handelt es sich bei der Verwendung solcher Mikroemulsionen um eine besonders bevorzugte Ausführungsform der Erfindung.

Mikroemulsionen, in welchen solche Aktivstoffe enthalten sind, die der Faserelastizität, Formehaltung und Reißfestigkeit der Textilfasern zuträglich sind, insbesondere Aminosiloxane, Cellulosederivate und/oder Carbonsäureester, sind im Gesamtkontext der Erfindung sehr vorteilhaft, so dass also auch die Verwendung solcher Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung darstellt.

Die Viskosität der erfindungsgemäß zu verwendenden Mikroemulsion ist vor allem hinsichtlich der Stabilität der Mikroemulsion interessant, wobei Mikroemulsionen mit Viskositäten im Bereich 5 bis 300 mPas, vorzugsweise zwischen 20 bis 180 mPas und insbesondere zwischen 25 und 120 mPas, gemessen mit dem Brookfield-Viskosimeter DV II bei 22 °C, 20 Upm, Spindel 3, besonders vorteilhaft sind. Folglich ist auch die Verwendung dieser Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung.

Die Anmelderin hat gefunden, daß zur guten Einspülbarkeit in die Waschmaschine Viskositätswerte von 300 mPas nicht überschritten werden dürfen. Vorteilhafterweise ist bei den eben genannten Viskositäten bei den erfindungsgemäßen Mikroemulsionen nicht nur eine gute Stabilität, sondern auch eine gute Verteilbarkeit in Wasser gegeben.

Bei Viskositäten unter 300 mPas sind jedoch normale Emulsionen mit Tröpfchengrößen größer 500 nm bzw. im Mikrometerbereich nicht stabil. Solche normalen Emulsionen bedürfen Viskositäten von über 500 mPas bei 22°C, um im üblichen Temperaturbereich von 10 bis 45°C ausreichend stabil zu sein. Ferner ist eine normale Emulsion zu hydrophob.

Im Vergleich hat die Anmelderin gefunden, daß die Einspülbarkeit aus der Einspülkammer einer Waschmaschine bei den erfindungsgemäßen Mikroemulsionen, welche zudem stabil und gut in Wasser verteilbar sind, gut ist. Die Einspülbarkeit von normalen Emulsionen mit einer Viskosität von 300 mPas ist dagegen allenfalls ausreichend, wobei diese Emulsionen noch dazu instabil sind. Die Einspülbarkeit von normalen Emulsionen, welche stabil sind, d. h. eine Viskosität von über 500 mPas aufweisen, ist dagegen mangelhaft bis ungenügend

Ebenfalls interessant hinsichtlich der Einspülbarkeit und der Stabilität der Mikroemulsion ist deren Dichte, wobei eine Mikroemulsion mit einer Dichte im Bereich 0,900 bis 1,050 g/cm<sup>3</sup>, vorzugsweise zwischen 0,950 und 1,030 g/cm<sup>3</sup> und insbesondere zwischen 0,980 und 1,015 g/cm<sup>3</sup> bei 22 °C als sehr vorteilhaft gelten kann. Infolge dessen ist die Verwendung solcher Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung.

Hinsichtlich des hautfunktionalen Aspektes der Erfindung ist auch der Einsatz entsprechender Silikone in der Mikroemulsion von Bedeutung. Eine Mikroemulsion, die ein Silikon enthält, vorzugsweise ein im wesentlichen lineares Di-(C<sub>1-5</sub>)alkylpolysiloxan oder (C<sub>1-5</sub>)Alkylarylpoly-siloxan, in sehr vorteilhafterweise Polydimethylsiloxan, wobei das Silikon vorzugsweise in Mengen bis zu 10 Gew.-%, insbesondere in Mengen von 0,1 bis 5 Gew.-% in der Mikroemulsion enthalten ist, ist vor diesem Hintergrund als vorteilhaft zu bewerten, und dementsprechend ist die Verwendung solcher vorteilhaften Mikroemulsionen eine besonders bevorzugte Ausführungsform der Erfindung.

In einer weiteren Ausführungsform enthalten die erfindungsgemäß zu verwendenden Mikroemulsionen, einen oder mehrere all jener Aktivstoffe, die in der EP 0 789 070 A1 offenbart sind, also Aktivstoffe aus den Gruppen der Wachse, der hydrophoben Pflanzenextrakte, bestimmter Kohlenwasserstoffe, höherer Fettsäuren und Ester, essentieller Öle, Lipide, Vitamine, Sonnenschutzmittel, Phospholipide, Derivate von alpha-Hydroxsäuren und/oder Mischungen vorgenannter Komponenten jeweils im dort genannten Umfang und noch über diesen hinaus, wobei vorzugsweise weniger als 4 Gew.-% an quartären Ammoniumverbindungen oder andere einschlägige textilweichmachende Verbindungen enthalten sind. Die weitgehende Abwesenheit einschlägiger textilweichmachender Verbindungen ist im eben genannten Zusammenhang dann vorteilhaft, wenn eine mögliche Verminderung des Fasersaugvermögens ausgeschlossen werden soll.

Einen weiteren Gegenstand der Erfindung stellt ein Textilbehandlungsmittel, insbesondere ausgewählt aus der Gruppe der Flüssigwaschmittel oder Nachbehandlungsmittel, vorzugsweise Weichspüler oder Nachspülmittel, dar, welches zumindest die Komponenten a) Antioxidationsmittel b) wenigstens einen lipophilen, vorzugsweise lipophilen kationischen Emulgator, c) wenigstens einen hydrophilen, vorzugsweise hydrophilen nichtionischen Emulgator, sowie d) Öle, vorzugsweise Öle mit hautschützenden und/oder hautpflegenden und/oder hautheilenden Eigenschaften, umfasst, wobei das Mittel als Mikroemulsion mit einer Tröpfchengröße  $d_{50}$  unter 500 nm vorliegt, wobei es vorzugsweise weniger als 5 Gew.-% an kationischen Tensiden enthält und vorteilhafterweise eine Viskosität im Bereich 5 bis 300 mPas aufweist. Mittel mit Viskositäten im Bereich von vorzugsweise 20 bis 180 mPas, insbesondere von 25 bis 120 mPas stellen eine bevorzugte Ausführungsform der Erfindung dar.

Ein solches Mittel ist aus vielen Gründen vorteilhaft. Besonders vorteilhaft ist, daß durch die Darreichungsform der Mikroemulsion und die spezifische Tröpfchengröße eine sehr gute Einspülbarkeit aus der Einstölpükammer einer Waschmaschine des Mittels ermöglicht wird. Dabei ist auch eine gute Stabilität der Emulsion sichergestellt, was zu einem guten Teil auf die erfindungsgemäße Viskosität des Mittels zurückzuführen ist, die im angegebenen Bereich liegt. Hinzu kommt die gute Verteilbarkeit des Mittels bereits in kaltem Wasser. Besonders vorteilhaft ist auch die hohe ökologische Verträglichkeit des Mittels, die unter anderem daher röhrt, daß vorzugsweise eine Obergrenze von 5 Gew.-% Kationentensid nicht überschritten wird. Als Kationentenside werden gemeinhin quartäre Ammoniumverbindungen eingesetzt. Solche Ammoniumverbindungen können wie alle N-haltigen Verbindungen, auch wenn sie inzwischen biologisch besser abgebaut werden können, immer noch einen umweltbelastenden Faktor darstellen. Das erfindungsgemäße Mittel ermöglicht jedoch aufgrund seiner Zusammensetzung eine gute Weichheitsleistung, die eine Reduktion des Kationentensidgehaltes auf unter 5 Gew.-% ermöglicht. Trotz des dann geringen Anteils an Kationentensid ist die Weichheitsleistung immer noch gut. Sie ist sogar vergleichbar mit der von herkömmlichen Weichspülern, die üblicherweise recht hohe Anteile an Kationentensid aufweisen, beispielsweise 15-20 Gew.-% Kationentensid.

In der Summe stellt das erfindungsgemäße Mittel ein sehr haut- und umweltfreundliches Produkt dar, welches eine gute Textil-weichmachende Wirkung hat und welches in der Lage ist, der Haut auch dadurch einen Dienst zu erweisen, daß die enthaltenen Öle im Rahmen eines Textilbehandlungsprozesses in einer Waschmaschine zumindest anteilsweise auf die in der Waschtrömmel befindlichen textilen Gewebe aufziehen und bei Kontakt dieser Gewebe mit menschli-

cher Haut zumindest anteilsweise von dem textilen Gewebe an die Haut abgegeben werden und dieser dadurch zumindest einen kosmetischen oder sensorischen Vorteil verschaffen. Dadurch, daß das Mittel erfindungsgemäß in Gestalt einer stabilen Mikroemulsion vorliegt, ist die gute Einspülbarkeit des Mittels in die Waschmaschine gewährleistet. Diese gute Einspülbarkeit des Mittels ist ein nicht zu unterschätzender Vorteil. Ebensolches gilt für die gute Verteilbarkeit des Mittels in Wasser.

In einer bevorzugten Ausführungsform enthalten die Mittel als Antioxidationsmittel nur natürliche Antioxidantien, insbesondere ausgewählt aus terpenhaltigen Antioxidantien, Vitamin E, Vitamin C, Vitamin A und/oder Selen und/oder deren Derivate.

In einer bevorzugten Ausführungsform enthalten die Mittel Citronensäure und/oder Citrat(e).

In einer bevorzugten Ausführungsform enthalten die Mittel kationisches Polymer, vorzugsweise in Form polymerer quartärer Ammoniumverbindungen, insbesondere ausgewählt aus Copolymeren aus quaternisiertem Vinylimidazol und Vinylpyrrolidon, Copolymeren aus Vinylcaprolactam, Vinylpyrrolidon und quaterniertem Vinylimidazol und/oder quaternisierten Copolymeren aus Vinylpyrrolidon und Dimethylaminoethylmethacrylaten.

Ist in den Mitteln ein saurer Puffer enthalten, vorzugweise ein organisches Puffersystem, welches die Mikroemulsion und das Textilbehandlungsbad insbesondere in einem pH-Bereich von 3 bis 5,5 puffert, so handelt es sich um eine bevorzugte Ausführungsform.

Unter dem Begriff Textilbehandlungsbad wird hier insbesondere die Waschflüssigkeit verstanden, mit der das Textil bei der Behandlung in einer automatischen Waschmaschine in Kontakt tritt und steht.

Eine bevorzugte Ausführungsform liegt auch dann vor, wenn das Puffersystem Säure enthält, vorzugsweise ausgewählt aus Ameisensäure Zitronensäure, Essigsäure, Sulfonsäure – vorteilhafterweise Amidosulfonsäure – und/oder deren Derivate oder Mischungen aus diesen.

Wenn das Puffersystem zumindest ein Salz der im Puffersystem enthaltenen Säure(n) enthält, vorzugsweise Natriumcitrat, so liegt ebenfalls eine bevorzugte Ausführungsform vor.

Auch Mittel mit einem Puffersystem, das Polyacrylate, Polymethacrylate und/oder Copolymeren aus Acrylsäure und Maleinsäure, vorzugweise mit einem Molekulargewicht von 2000 bis 10000 enthält, stellen eine bevorzugte Ausführungsform dar.

Ein erfindungsgemäßes Mittel, bei welchem eine Gesamtmenge an kationischem Tensid von 4 Gew.-%, vorzugsweise von 3 Gew.-%, vorteilhafterweise von 2,5 Gew.-%, insbesondere von 2 Gew.-% nicht überschritten wird, stellt daher eine bevorzugte Ausführungsform der Erfindung dar.

Bevorzugte Ausführungsformen der Erfindung liegen in der Verwendung eines erfindungsgemäßen Mittels als Flüssigwaschmittel sowie in der Verwendung als Nachbehandlungsmittel, insbesondere als Weichspüler oder Nachspülmittel.

Das erfindungsgemäße Flüssigwaschmittel kann zusätzlich zu den bisher beschriebenen Komponenten des Textilbehandlungsmittels bzw. der Mikroemulsion alle solchen Komponenten enthalten, welche für ein Flüssigwaschmittel zweckmäßig und/oder üblich sind. Diese Komponenten sind dem Fachmann wohlbekannt. Bei Bedarf kann er Sie auch einschlägigen Übersichtswerken entnehmen, z. B. E. Smulders, "Laundry Detergents", Wiley-VCH, 2. Auflage, 2001.

Beispiel:

Die folgende erfindungsgemäße Zusammensetzung (Textilbehandlungsmittel AA), bestehend aus

|                                    |              |
|------------------------------------|--------------|
| Wasser                             | 55,75 Gew.-% |
| Citronensäure * 1 H <sub>2</sub> O | 3,50 Gew.-%  |
| Na-citrat * 2 H <sub>2</sub> O     | 1,75 Gew.-%  |
| Dehyquart® AU 56                   | 4,00 Gew.-%  |
| Luviquat® Excellence               | 0,20 Gew.-%  |
| Eumulgin® B3                       | 0,25 Gew.-%  |
| Mandelöl                           | 30,00 Gew.-% |
| Rosmarinöl                         | 0,40 Gew.-%  |
| Ethanol 96 % ig                    | 4,00 Gew.-%  |
| Ameisensäure                       | 0,05 Gew.-%  |
| Tocomix® L 70 (Antioxidanz)        | 0,10 Gew.-%, |

wurde hergestellt.

Die Zusammensetzung wurde unter kräftigem Rühren bei ca. 40 °C in Form einer Dispersion hergestellt und anschließend dreimal nacheinander durch einen Hochdruckhomogenisator der Fa. Niro Soavi (GEA, Typ NS 3006 ) bei 500 bar und einer Temperatur von 50 +/- 5 °C gefahren. Nach dem Abkühlen wird eine stabile, in Wasser gut verteilbare und gut aus der Einspülkammer einer Waschmaschine einspülbare Mikroemulsion erhalten. Die Tröpfchengröße d<sub>50</sub> liegt bei ca. 120 nm.

Luviquat® Excellence entspricht dabei 3-Methylvinylimidazolinchlorid Vinylpyrrolidon Copolymerat ex BASF AG; Dehyquart® AU 56 entspricht Dihydrogenated tallow hydroxyethylammonium methosulfat ex Cognis GmbH&Co.KG; Eumulgin® B3 entspricht Cetylstearylalkohol+30-EO (Ethylenoxid-Addukt) ex Cognis GmbH&Co.KG, Tocomix® L 70 entspricht D-mixed Tocopherol in Sonnenblumenöl ex Jan Dekker Nederland B.V.

Der pH-Wert der Zusammensetzung beträgt 3,5.

Die Viskosität der Zusammensetzung (Brookfield; Spindel 3; 20 Upm; 23°C) beträgt 48 mPas.

Die Stabilität der Zusammensetzung ist nach 1 h gut, nach einem Tag ebenfalls gut und nach einer Woche weiterhin gut. Die Einspülbarkeit aus der Einspülkammer einer automatischen Waschmaschine ist ebenfalls gut, ebenfalls die Verteilbarkeit in Wasser (bereits bei 20°C).

Untersuchung und Nachweis des Transfers von Komponenten des Textilbehandlungsmittels AA von damit behandeltem Textil auf die Haut:

Mit 50 ml des Textilbehandlungsmittels AA wurden in einer automatischen Waschmaschine 3 kg Textilien aus Feinripp-Baumwolle mit Wasser gewaschen, wobei die Applikation des Textilbehandlungsmittels AA im Nachspülgang erfolgte. Die derart behandelten Textilien wurden an der Leine an der Luft getrocknet. Das derart vorbehandelte Textil wurde dann zur Untersuchung und Nachweis des Transfers von Komponenten des Textilbehandlungsmittels von damit behandeltem Textil auf die Haut eingesetzt. Dieses Textil wird im folgenden als „Textil behandelt“ bezeichnet.

Zum Vergleich wurden in einer automatischen Waschmaschine 3 kg Textilien aus Feinripp-Baumwolle mit Wasser gewaschen, wobei kein Textilbehandlungsmittel eingesetzt wurde, d.h. das Textil war nur Wasser ausgesetzt. Die derart behandelten Textilien wurden an der Leine an der Luft getrocknet. Das derart behandelte Textil wird im folgenden als „Textil unbehandelt“ bezeichnet.

Zum Transfernachweis wurden auf den Unterarmen von fünf Probanden Testfelder festgelegt. Der rechte Unterarm der Probanden diente als Testfläche für unbehandeltes Textil, der linke Unterarm als Testfläche für ausgerüstetes Textil.

Die Testfelder nahmen jeweils eine Fläche von 10 x 15 cm ein. Die Felder erhielten die Feldbezeichnungen p (proximal), m (medial) und d (distal).

Das Ziel war der Nachweis von einer messbaren Rückfettung nach einer Reibung bzw. 24-stündiger Tragezeit behandelter Textilien (entspricht „Textil behandelt“) durch die Bestimmung von Triglycerid (C18:2).

Diese Felder wurden zunächst einzeln jeweils mit einem Gazetuch, das mit 1ml Isopropanol getränkt worden war, 5 mal abgerieben (Orientierungswert für die unbehandelte Situation). Danach wurden die entfetteten Flächen nochmals einzeln 5 mal mit einem Gazetuch und 1ml Isopropanol abgerieben (Ausgangswert für die fettfreie Situation).

Anschließend erfolgte die Behandlung 1 (Reibetest). Dazu wurde die Fläche d mit einem 10x10 cm großen Textiltuch 20 mal abgerieben. Das Textiltuch für den linken Arm entsprach jeweils „Textil behandelt“, das Textiltuch für den rechten Arm entsprach jeweils „Textil unbehandelt“ Anschließend wurden alle Flächen einzeln mit in 1ml Isopropanol getränkten Gazetüchern 5 mal abgerieben.

Für die Behandlung 2 (24h Tragetest) wurde jeweils ein 5x10cm großes Textiltuch (linker Arm: „Textil behandelt“, rechter Arm: „Textil unbehandelt“) so appliziert, so dass das Testfeld p vollständig bedeckt war. Nach 24h wurde die Tücher entfernt und die Flächen p und m mit einem Gazetuch und 1ml Isopropanol 5 mal abgerieben.

#### Aufarbeitung der Proben:

Die Gazetücher wurden mit 5ml Isopropanol und Internem Standard über Nacht gerührt. Die organische Phase wurden abgenommen und mit Methanol-BF<sub>3</sub> umgeestert und mittels GC-MS-FID-Kopplung untersucht.

Die Gehalte an C18:2-Fettsäure-Methylester (in µg) können den nachfolgenden Tabellen entnommen werden:

|                                                      |             | Proband 1        |                    |
|------------------------------------------------------|-------------|------------------|--------------------|
|                                                      |             | linker UA        | rechter UA         |
|                                                      |             | Textil behandelt | Textil unbehandelt |
|                                                      |             | µg/Extrakt       | µg/Extrakt         |
| Orientierungswert für die unbehandelte Situation     | p<br>m<br>d | 5<br>4<br>3      | 10<br>5<br>5       |
| Ausgangswert für die fettfreie Situation             | p<br>m<br>d | 5<br>5<br>4      | 5<br>4<br>4        |
| Extraktion nach Behandlung 1:<br>Reibetest           | d           | 8                | 4                  |
| Extraktion des Nullwertes für Behandlung 1           | m           | 5                | 5                  |
| Extraktion nach Behandlung 2: 24 h Tragezeit         | p           | 17               | 4                  |
| Extraktion des Nullwertes für Behandlung 2 nach 24 h | m           | 4                | 5                  |

|                                                           |             | Proband 2                      |                                       |
|-----------------------------------------------------------|-------------|--------------------------------|---------------------------------------|
|                                                           |             | linker UA                      | rechter UA                            |
|                                                           |             | Textil behandelt<br>µg/Extrakt | Textil unbe-<br>handelt<br>µg/Extrakt |
| Orientierungswert für die unbehan-<br>delte Situation     | p<br>m<br>d | 5<br>3<br>5                    | 3<br>3<br>4                           |
| Ausgangswert für die fettfreie<br>Situation               | p<br>m<br>d | 5<br>3<br>4                    | 4<br>4<br>5                           |
| Extraktion nach Behandlung 1:<br>Reibetest                | d           | 8                              | 4                                     |
| Extraktion des Nullwertes für Be-<br>handlung 1           | m           | 3                              | 3                                     |
| Extraktion nach Behandlung 2: 24<br>h Tragezeit           | p           | 5                              | 2                                     |
| Extraktion des Nullwertes für Behand-<br>lung 2 nach 24 h | m           | 3                              | 2                                     |

|                                                           |             | Proband 3                      |                                       |
|-----------------------------------------------------------|-------------|--------------------------------|---------------------------------------|
|                                                           |             | linker UA                      | rechter UA                            |
|                                                           |             | Textil behandelt<br>µg/Extrakt | Textil unbe-<br>handelt<br>µg/Extrakt |
| Orientierungswert für die unbehan-<br>delte Situation     | p<br>m<br>d | 8<br>6<br>4                    | 5<br>5<br>4                           |
| Ausgangswert für die fettfreie<br>Situation               | p<br>m<br>d | 6<br>5<br>4                    | 5<br>4<br>3                           |
| Extraktion nach Behandlung 1:<br>Reibetest                | d           | 7                              | 3                                     |
| Extraktion des Nullwertes für Be-<br>handlung 1           | m           | 6                              | 5                                     |
| Extraktion nach Behandlung 2: 24<br>h Tragezeit           | p           | 10                             | 4                                     |
| Extraktion des Nullwertes für Behand-<br>lung 2 nach 24 h | m           | 5                              | 6                                     |

|                                                      |             | Proband 4                      |                                       |
|------------------------------------------------------|-------------|--------------------------------|---------------------------------------|
|                                                      |             | linker UA                      | rechter UA                            |
|                                                      |             | Textil behandelt<br>µg/Extrakt | Textil unbe-<br>handelt<br>µg/Extrakt |
| Orientierungswert für die unbehandelte Situation     | p<br>m<br>d | 9<br>9<br>9                    | 9<br>7<br>10                          |
| Ausgangswert für die fettfreie Situation             | p<br>m<br>d | 6<br>5<br>4                    | 8<br>5<br>5                           |
| Extraktion nach Behandlung 1:<br>Reibetest           | d           | 6                              | 3                                     |
| Extraktion des Nullwertes für Behandlung 1           | m           | 3                              | 3                                     |
| Extraktion nach Behandlung 2: 24 h Tragezeit         | p           | 11                             | 3                                     |
| Extraktion des Nullwertes für Behandlung 2 nach 24 h | m           | 6                              | 5                                     |

|                                                      |             | Proband 5                      |                                       |
|------------------------------------------------------|-------------|--------------------------------|---------------------------------------|
|                                                      |             | linker UA                      | rechter UA                            |
|                                                      |             | Textil behandelt<br>µg/Extrakt | Textil unbe-<br>handelt<br>µg/Extrakt |
| Orientierungswert für die unbehandelte Situation     | p<br>m<br>d | 6<br>6<br>5                    | 6<br>6<br>6                           |
| Ausgangswert für die fettfreie Situation             | p<br>m<br>d | 5<br>5<br>4                    | 4<br>4<br>5                           |
| Extraktion nach Behandlung 1:<br>Reibetest           | d           | 8                              | 3                                     |
| Extraktion des Nullwertes für Behandlung 1           | m           | 5                              | 3                                     |
| Extraktion nach Behandlung 2: 24 h Tragezeit         | p           | 17                             | 4                                     |
| Extraktion des Nullwertes für Behandlung 2 nach 24 h | m           | 5                              | 4                                     |

Wie die Tabellen zeigen, konnte bei allen Probanden dann deutlich mehr Triglycerid auf der Haut nachgewiesen werden, wenn die Haut der Probanden mit „behandeltem Textil“ behandelt wurde.

Für den Reibetest ergaben sich folgendes Bild:

Proband 1: Der Gehalt an resultierendem C18:2-Fettsäure-Methylester liegt beim Reiben mit „behandeltem Textil“ um 100 % über dem Wert, der sich durch das Reiben mit „unbehandeltem Textil“ ergibt.

Proband 2: Der Gehalt an resultierendem C18:2-Fettsäure-Methylester liegt beim Reiben mit „behandeltem Textil“ um 100 % über dem Wert, der sich durch das Reiben mit „unbehandeltem Textil“ ergibt.

Proband 3: Der Gehalt an resultierendem C18:2-Fettsäure-Methylester liegt beim Reiben mit „behandeltem Textil“ um 133 % über dem Wert, der sich durch das Reiben mit „unbehandeltem Textil“ ergibt.

Proband 4: Der Gehalt an resultierendem C18:2-Fettsäure-Methylester liegt beim Reiben mit „behandeltem Textil“ um 100 % über dem Wert, der sich durch das Reiben mit „unbehandeltem Textil“ ergibt.

Proband 5: Der Gehalt an resultierendem C18:2-Fettsäure-Methylester liegt beim Reiben mit „behandeltem Textil“ um 166 % über dem Wert, der sich durch das Reiben mit „unbehandeltem Textil“ ergibt.

Für den „Tragetest“ ergibt ich ein noch deutlicheres Bild:

Proband 1: Der Gehalt an resultierendem C18:2-Fettsäure-Methylester liegt beim Tragen des „behandelten Textil“ um 325 % über dem Wert, der sich durch das Tragen des „unbehandelten Textil“ ergibt.

Proband 2: Der Gehalt an resultierendem C18:2-Fettsäure-Methylester liegt beim Tragen des „behandelten Textil“ um 150 % über dem Wert, der sich durch das Tragen des „unbehandelten Textil“ ergibt.

Proband 3: Der Gehalt an resultierendem C18:2-Fettsäure-Methylester liegt beim Tragen des „behandelten Textil“ um 150 % über dem Wert, der sich durch das Tragen des „unbehandelten Textil“ ergibt.

Proband 4: Der Gehalt an resultierendem C18:2-Fettsäure-Methylester liegt beim Tragen des „behandelten Textil“ um 266 % über dem Wert, der sich durch das Tragen des „unbehandelten Textil“ ergibt.

Proband 5: Der Gehalt an resultierendem C18:2-Fettsäure-Methylester liegt beim Tragen des „behandelten Textil“ um 325 % über dem Wert, der sich durch das Tragen des „unbehandelten Textil“ ergibt.

Damit steht fest, daß ein Transfer von Komponenten des Textilbehandlungsmittels AA vom behandelten Textil auf die damit in Kontakt tretende Haut stattfindet. Dieser Transfer gereicht der Haut zum Vorteil, da er der Hautpflege dient.

Weiterhin steht ebenfalls fest, daß bei der Textilbehandlung in der automatischen Waschmaschine ein Transfer von Komponenten des Textilbehandlungsmittels AA auf das Textil erfolgt.

Patentansprüche

1. Verwendung einer Mikroemulsion, enthaltend

a) Öl(e)

und ein

b) Emulgatorsystem aus wenigstens einem hydrophilen sowie wenigstens einem lipophilen Emulgator,

zur Textilbehandlung in einer automatischen Waschmaschine.

2. Verwendung gemäß Anspruch 1 im Spülgang einer automatischen Waschmaschine.

3. Verwendung gemäß einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Mikroemulsion eine Tröpfchengröße  $d_{50}$  von weniger als 500 nm aufweist.

4. Verwendung gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Tröpfchengröße  $d_{50}$  der Mikroemulsion nicht größer als 400 nm, vorzugsweise nicht größer als 300 nm, vorteilhafterweise nicht größer als 250 nm ist, in weiter vorteilhafter Weise nicht größer als 200 nm, in noch vorteilhafterer Weise nicht größer als 150 nm ist, insbesondere einen Wert von 100 nm nicht übersteigt.

5. Verwendung gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Tröpfchengröße  $d_{50}$  der Mikroemulsion nicht kleiner als 10 nm, vorzugsweise nicht kleiner als 25 nm, vorteilhafterweise nicht kleiner als 40 nm ist, insbesondere einen Wert von 60 nm nicht unterschreitet.

6. Verwendung gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Mikroemulsion kationisches Polymer enthält, vorzugsweise in Mengen von weniger als 10 Gew.-%, vorteilhafterweise von weniger als 5 Gew.-%, in weiter vorteilhafter Weise in Mengen von weniger als 3 Gew.-%, in noch vorteilhafterer Weise in Mengen von weniger als 1 Gew.-%, insbesondere aber in Mengen von weniger als 0,5 Gew.-%, wobei vorzugsweise eine Untergrenze von 0,05 Gew.-%, vorteilhafterweise von 0,1 Gew.-% nicht überschritten wird.

7. Verwendung gemäß Anspruch 6, dadurch gekennzeichnet, daß es sich bei dem kationischen Polymer um polymere quartäre Ammoniumverbindungen handelt, vorzugsweise ausgewählt

aus Copolymeren aus quaternisiertem Vinylimidazol und Vinylpyrrolidon, Copolymeren aus Vinylcaprolactam, Vinylpyrrolidon und quaternisiertem Vinylimidazol und/oder quaternisierten Copolymeren aus Vinylpyrrolidon und Dimethylaminoethylmethacrylaten.

8. Verwendung gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Mikroemulsion Komplexierungsmittel enthält, vorzugsweise ausgewählt aus der Gruppe der Citrate, Citronensäure, Gluconate, Gluconsäure Phosphate, Phosphonate, Carboxylate, Ethylen-diamintetraessigsäure und/oder ihre Salze, Nitrilotriessigsäure und/oder ihre Salze, Diethylentriaminpentaessigsäure und/oder ihre Salze, Propyldiamintetraessigsäure und/oder ihre Salze, Alanindiessigsäure und/oder ihre Salze, Methylglycindiessigsäure und/oder ihre Salze, Iminodibernsteinsäure und/oder deren Salze und/oder dem Trinatriumsalz der Ethylen-diamin-N, N'-dibernsteinsäure, wobei die Citrate und/oder die Citronensäure am meisten bevorzugt sind.
9. Verwendung gemäß Anspruch 8, dadurch gekennzeichnet, daß die Mikroemulsion Komple-xierungsmittel in Mengen von mindestens 1,5 Gew.-%, vorteilhafterweise von mindestens 2,5 Gew.-%, in weiter vorteilhafter Weise in Mengen von mindestens 4 Gew.-%, in noch vor-teilhafterer Weise in Mengen von mindestens 6 Gew.-%, insbesondere aber in Mengen von mindestens 7,5 Gew.-%, wobei vorzugsweise eine Obergrenze von 25 Gew.-%, vorteilhaft-erweise von 20 Gew.-%, in weiter vorteilhafter Weise von 17 Gew.-%, in noch vorteilhafterer Weise von 15 Gew.-%, insbesondere von 12 Gew.-% nicht überschritten wird.
10. Verwendung gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß in der Mik-roemulsion als Komplexierungsmittel zumindest Citrat(e) und/oder zumindest Citronensäure enthalten sind, vorzugsweise ausschließlich Citrat(e) und/oder Citronensäure, wobei die Citrat(e) und/oder Citronensäure vorzugsweise in Mengen von 1 Gew.-% bis 16 Gew.-% ent-halten sind.
11. Verwendung gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das in der Mikroemulsion enthaltene Öl ausgewählt ist aus der Gruppe der vollsynthetischen Öle, dabei vorzugweise Silikonöle, natürliche Öle, dabei vorzugsweise pflanzliche und/oder tieri-sche fette Öle, und/oder ätherische Öle.

12. Verwendung gemäß einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die in der Mikroemulsion enthaltenen Emulgatoren aus der Gruppe der kationischen, nichtionischen, zwitterionischen, ampholytischen und/oder anionischen Emulgatoren ausgewählt sind.
13. Verwendung gemäß einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß zumindest ein kationischer Emulgator in der Mikroemulsion enthalten ist, vorteilhafterweise ein lipophiler kationischer Emulgator.
14. Verwendung gemäß einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß zumindest ein nichtionischer Emulgator in der Mikroemulsion enthalten ist, insbesondere ein hydrophiler nichtionischer Emulgator, wobei, wenn gleichzeitig kationischer Emulgator enthalten ist, das Mengenverhältnis kationischer zu nichtionischem Emulgator vorteilhafterweise im Bereich von 70:1 bis 3:1, insbesondere von 50:1 bis 8:1, vorzugsweise von 30:1 bis 10:1, und besonders bevorzugt von 20:1 bis 12:1 liegt.
15. Verwendung gemäß Anspruch 14, dadurch gekennzeichnet, daß der in der Mikroemulsion enthaltene nichtionische Emulgator ausgewählt ist aus ethoxylierten Fettalkoholen und/oder ethoxylierten Fettsäurealkanolamiden.
16. Verwendung gemäß Ansprache 13, dadurch gekennzeichnet, daß es sich bei den in der Mikroemulsion enthaltenen kationischen Emulgatoren um quartäre Ammoniumverbindungen handelt, vorteilhafterweise um alkylierte quartäre Ammoniumverbindungen, vorzugsweise mit ein, zwei oder drei hydrophoben Gruppen, die insbesondere über Ester- oder Amidbindungen mit einem quaternierten Di- bzw. Triethanolamin oder einer analogen Verbindung verknüpft sind.
17. Verwendung gemäß einem der Ansprüche 13 oder 16, dadurch gekennzeichnet, daß es sich bei dem in der Mikroemulsion enthaltenen kationischen Emulgator um eine quartäre Ammoniumverbindung, ausgewählt aus den nachfolgenden Formeln (I)



hierbei steht R für einen aliphatischen Alkylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1, 2 oder 3 Doppelbindungen; R<sup>1</sup> steht für H, OH oder insbesondere O(CO)R<sup>4</sup>, R<sup>2</sup> steht unabhängig von R<sup>1</sup> für H, OH oder O(CO)R<sup>5</sup>, wobei R<sup>4</sup> und R<sup>5</sup> unabhängig voneinander jeweils für einen aliphatischen Alkylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1, 2 oder 3 Doppelbindungen steht, a, b und c können jeweils unabhängig voneinander den Wert 1, 2 oder 3 haben, X<sup>-</sup> ist ein passendes Anion, vorzugsweise ein Halogenid-, Methosulfat-, Methophosphat- oder Phosphation sowie Mischungen aus diesen sein, und/oder der Formel (II) handelt:



wobei R<sup>6</sup>, R<sup>7</sup> und R<sup>8</sup> unabhängig voneinander für eine C<sub>1-4</sub>-Alkyl-, Alkenyl- oder Hydroxyalkylgruppe steht, R<sup>9</sup> und R<sup>10</sup> jeweils unabhängig ausgewählt eine C<sub>8-28</sub>-Alkylgruppe mit 0, 1, 2 oder 3 Doppelbindungen darstellt und u eine Zahl zwischen 0 und 5 ist, X<sup>-</sup> ist ein passendes Anion, vorzugsweise ein Halogenid-, Methosulfat-, Methophosphat- oder Phosphation sowie Mischungen aus diesen sein.

18. Verwendung gemäß einem der Ansprüche 13, 16 oder 17, dadurch gekennzeichnet, daß es sich bei dem in der Mikroemulsion enthaltenen kationischen Emulgator um N-Methyl-N(2-hydroxyethyl)-N,N-(ditalgacyloxyethyl)ammonium-methosulfat oder um N-Methyl-N(2-hydroxyethyl)-N,N-(dipalmitoylethyl)ammonium-methosulfat handelt.
19. Verwendung gemäß einem der Ansprüche 13, 16 - 18, dadurch gekennzeichnet, daß die Mikroemulsion weniger als 20 Gew.-%, vorzugsweise weniger als 15 Gew.-%, vorteilhafterweise weniger als 10 Gew.-%, in sehr vorteilhafter Weise weniger als 5 Gew.-%, in weiter

vorteilhafter Weise weniger als 4 Gew.-%, in noch weiter vorteilhafterer Weise weniger als 3,5 Gew.-%, in überaus vorteilhafter Weise weniger als 3 Gew.-%, in äußerst vorteilhafter Weise weniger als 2,5 Gew.-%, in vorteilhaftester Weise weniger als 2 Gew.-%, mindestens jedoch 0,1 Gew.-%, vorteilhafterweise mindestens 0,5 Gew.-%, insbesondere mindestens 1 Gew.-% an kationischen Emulgatoren enthält.

20. Verwendung gemäß einem der Ansprüche 14 oder 15, dadurch gekennzeichnet, daß die Mikroemulsion weniger als 5 Gew.-%, vorzugsweise weniger als 3 Gew.-%, vorteilhafterweise weniger als 2 Gew.-%, in sehr vorteilhafter Weise weniger als 1.5 Gew.-%, in weiter vorteilhafter Weise weniger als 1.0 Gew.-%, in noch weiter vorteilhafterer Weise weniger als 0.75 Gew.-%, in überaus vorteilhafter Weise weniger als 0.6 Gew.-%, in äußerst vorteilhaf-ter Weise weniger als 0.45 Gew.-%, in vorteilhaftester Weise weniger als 0.35 Gew.-%, mindestens jedoch 0.15 Gew.-%, vorteilhafterweise mindestens 0.2 Gew.-%, insbesondere mindestens 0.25 Gew.-% an nichtionischen Emulgatoren enthält.
21. Verwendung gemäß einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß die Mik-roemulsion zumindest 0,5 Gew.-%, vorzugsweise zumindest 2,5 Gew.-%, vorteilhafterweise zumindest 5 Gew.-%, insbesondere 10 Gew.-%, jedoch nicht mehr als 50 Gew.-%, vor-zugsweise nicht mehr als 45 Gew.-%, vorteilhafterweise nicht mehr als 40 Gew.-%, in sehr vorteilhafter Weise nicht mehr als 35 Gew.-%, in noch vorteilhafterer Weise nicht mehr als 32 Gew.-%, in überaus vorteilhafter Weise nicht mehr als 28 Gew.-%, in vorteilhaftester Weise nicht mehr als 25 Gew.-% an Ölen enthält, jeweils bezogen auf das gesamte Mittel.
22. Verwendung gemäß einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, daß die Mik-roemulsion mindestens 0,05 Gew.-%, vorzugsweise zumindest 0,1 Gew.-%, vorteilhafter-weise zumindest 0,15 Gew.-%, insbesondere zumindest 0,2 Gew.-%, jedoch nicht mehr als 3 Gew.-%, vorzugsweise nicht mehr als 2,5 Gew.-%, vorteilhafterweise nicht mehr als 2,0 Gew.-%, in sehr vorteilhafter Weise nicht mehr als 1,5 Gew.-%, in noch vorteilhafterer Wei-se nicht mehr als 1,0 Gew.-%, in überaus vorteilhafter Weise nicht mehr als 0,75 Gew.-%, in vorteilhaftester Weise nicht mehr als 0,5 Gew.-% an hydrophilen und/oder lipophilen Verdi-ckungsmitteln enthält.
23. Verwendung gemäß Anspruch 22, dadurch gekennzeichnet, daß das in der Mikroemulsion enthaltene Verdickungsmittel ausgewählt ist aus der Gruppe der

- a) Polysaccharide, insbesondere Xanthan-Gum, Guar-Derivate, Gummi ara-bicum, Karaya-Gummi, Traganth, Taragummi, Gellan, Carrageen, Johannibrotkernmehl, Agar-Agar, Alginate, Pektine und/oder Dextrane,
- b) organische vollysynthetische Verdickungsmittel, insbesondere Polyacrylate, Polyacrylamide, Polyvinylpyrrolidon, Polyvinylalkohol, Polyethylenglykole, hydrophob modifizierte Polyether, Polyurethane, Styrol-Maleinsäureanhydrid-Copolymerisate, deren Salze und/oder Derivate,
- c) nichtionische und/oder anionische Cellulose-Derivate, insbesondere Hydroxyethylcellulose, Carboxymethylcellulose, Hydroxypropyl-methylcellulose, Hydroxypropylcellulose, Ethylhydroxyethyl-cellulose, Methylcellulose,
- d) Stärke-Faktionen und Derivate, insbesondere Amylose, Amylopektin und Dextri-
- ne,
- e) Tone, insbesondere Bentonit.
- f) Fettsäuren, Fettalkohole, Silikonöle, Wachse
- g) Mischungen der vorgenannten.

24. Verwendung gemäß einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß die Mikroemulsion mindestens 40 Gew.-%, jedoch nicht mehr als 90 Gew.-%, vorzugsweise nicht mehr als 85 Gew.-%, vorteilhafterweise nicht mehr als 80 Gew.-%, in sehr vorteilhafter Weise nicht mehr als 75 Gew.-%, in noch vorteilhafterer Weise nicht mehr als 70 Gew.-%, in überaus vorteilhafter Weise nicht mehr als 68 Gew.-%, in vorteilhaftester Weise nicht mehr als 65 Gew.-% an Wasser enthält, jeweils bezogen auf das gesamte Mittel.

25. Verwendung gemäß einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß wenigstens eines der in der Mikroemulsion enthaltenen Öle hautschützende und/oder hautpflegende und/oder hautheilende Eigenschaften hat.

26. Verwendung gemäß einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, daß wenigstens eines der in der Mikroemulsion enthaltenen Öle antiseptisch wirksam ist.

27. Verwendung gemäß einem der Ansprüche 1 bis 26, dadurch gekennzeichnet, daß wenigstens eines der in der Mikroemulsion enthaltenen Öle einen Mindestgehalt an  $\gamma$ -Linolensäure von 0,1 Gew.-%, bezogen auf das betreffende Öl aufweist, vorzugsweise ist zumindest eines der Öle, insbesondere sind zumindest zwei der Öle ausgewählt aus Hanföl, Borretschöl,

Nachtkerzenöl, Kernöl der schwarzen Johannisbeere, Echiumöl, Trichodesmaöl und/oder Schwarzkümmelöl.

28. Verwendung gemäß einem der Ansprüche 1 bis 27, dadurch gekennzeichnet, daß der pH-Wert der Mikroemulsion bei einer Temperatur von T = 20 °C insbesondere gemessen an einer 1 %-igen wässrigen Lösung Mikroemulsion nicht größer als 5,5 ist.
29. Verwendung gemäß einem der Ansprüche 1 bis 28, dadurch gekennzeichnet, daß die Mikroemulsion farbstofffrei ist.
30. Verwendung gemäß einem der Ansprüche 1 bis 29, dadurch gekennzeichnet, daß nur natürliche Aromen, jedoch vorzugsweise keine zusätzlichen Duftstoffe oder andere Parfumöle in der Mikroemulsion enthalten sind.
31. Verwendung gemäß einem der Ansprüche 1 bis 30, dadurch gekennzeichnet, daß die Mikroemulsion ein Bügelerleichterungsmittel und/oder Knitterreduktionsmittel enthält.
32. Verwendung gemäß einem der Ansprüche 1 bis 31, dadurch gekennzeichnet, daß die Mikroemulsion einen desodorierenden Wirkstoff enthält.
33. Verwendung gemäß einem der Ansprüche 1 bis 32, dadurch gekennzeichnet, daß die Mikroemulsion einen terpenhaltigen Pflanzenextrakt enthält, vorzugsweise einen Extrakt aus Pflanzenteilen von einem oder mehreren Gewächsen aus der Familie der Myrtaceae.
34. Verwendung gemäß einem der Ansprüche 1 bis 33, daß der terpenhaltige Pflanzenextrakt Teebaumöl ist und in einer Menge von mindestens 0,006 Gew.-% bis maximal 1 Gew.-% in der Mikroemulsion enthalten ist.
35. Verwendung gemäß einem der Ansprüche 1 bis 34, daß die Mikroemulsion wenigstens 0,03 Gew.-%, insbesondere 0,05 bis 1 Gew.-% natürliche Antioxidantien enthält, insbesondere ausgewählt aus terpenhaltigen Antioxidantien, Vitamin E, Vitamin A, Vitamin C, Selen und/oder deren Derivate oder Mischungen aus diesen.

36. Verwendung gemäß einem der Ansprüche 1 bis 35, dadurch gekennzeichnet, daß in der Mikroemulsion ein saurer Puffer enthalten ist, vorzugweise ein organisches Puffersystem, welches die Mikroemulsion und das Textilbehandlungsbad insbesondere in einem pH-Bereich von 3 bis 5,5 puffert.
37. Verwendung nach Anspruch 36, dadurch gekennzeichnet, daß das Puffersystem zumindest eine Säure enthält, vorzugsweise ausgewählt aus Ameisensäure Zitronensäure, Essigsäure, Sulfonsäure – vorteilhafterweise Amidosulfonsäure – und/oder deren Derivate oder Mischungen aus diesen.
38. Verwendung nach Anspruch 37, dadurch gekennzeichnet, daß das Puffersystem zumindest ein Salz der im Puffersystem enthaltenen Säure(n) enthält, vorzugsweise Natriumcitrat.
39. Verwendung nach einem der Ansprüche 36 bis 38, dadurch gekennzeichnet, daß das Puffersystem Polyacrylate, Polymethacrylate und/oder Copolymere aus Acrylsäure und Maleinsäure, vorzugweise mit einem Molekulargewicht von 2000 bis 10000 enthält.
40. Verwendung gemäß einem der Ansprüche 1 bis 39, daß die Mikroemulsion nichtwässrige Lösungsmittel, vorzugsweise Hydroxy-Derivate von aliphatischen und alicyclischen Kohlenwasserstoffen, insbesondere Ethanol enthält, vorteilhafterweise in Mengen größer 0,5 Gew.-%, in sehr vorteilhafterweise in Mengen größer 1 Gew.-%, wobei jedoch eine maximale Menge von 10 Gew.-%, vorzugsweise 7,5 Gew.-%, insbesondere 4 Gew.-% nicht überschritten wird.
41. Verwendung gemäß einem der Ansprüche 1 bis 40, dadurch gekennzeichnet, daß die Mikroemulsion Ameisensäure und/oder deren Salze enthält, vorzugsweise in Mengen kleiner 0,15 Gew.-%, vorteilhafterweise kleiner 0,1 Gew.-% insbesondere kleiner 0,075 Gew.-%.
42. Verwendung gemäß einem der Ansprüche 1 bis 41, dadurch gekennzeichnet, daß die Mikroemulsion Milchsäure und/oder deren Salze enthält, vorzugsweise in Mengen kleiner 5 Gew.-%, vorteilhafterweise kleiner 3 Gew.-% insbesondere kleiner 2 Gew.-%.
43. Verwendung gemäß einem der Ansprüche 1 bis 42, dadurch gekennzeichnet, daß solche Aktivstoffe in der Mikroemulsion enthalten sind, die der Faserelastizität, Formerhaltung und

Reißfestigkeit der Textilfasern zuträglich sind, insbesondere Aminosiloxane, Cellulosederivate und/oder Carbonsäureester.

44. Verwendung gemäß einem der Ansprüche 1 bis 43, dadurch gekennzeichnet daß die Viskosität der Mikroemulsion im Bereich 5 bis 300 mPas, vorzugsweise zwischen 20 bis 180 mPas und insbesondere zwischen 25 und 120 mPas, gemessen mit dem Brookfield-Viskosimeter DV II bei 22 °C, 20 Upm, Spindel 3, liegt.
45. Verwendung gemäß einem der Ansprüche 1 bis 44, dadurch gekennzeichnet, daß die Dichte der Mikroemulsion im Bereich 0,900 bis 1,050 g/cm<sup>3</sup>, vorzugsweise zwischen 0,950 und 1,030 g/cm<sup>3</sup> und insbesondere zwischen 0,980 und 1,015 g/cm<sup>3</sup> bei 22 °C liegt.
46. Textilbehandlungsmittel, welches zumindest die Komponenten a) Antioxidationsmittel, b) wenigstens einen lipophilen Emulgator, c) wenigstens einen hydrophilen Emulgator, sowie d) Öle umfasst, dadurch gekennzeichnet, daß das Mittel als Mikroemulsion mit einer Tröpfchengröße  $d_{50}$  unter 500 nm vorliegt, wobei es vorzugsweise weniger als 5 Gew.-% an kationischen Tensiden enthält und vorteilhafterweise eine Viskosität im Bereich 5 bis 300 mPas aufweist.
47. Mittel nach Anspruch 46, dadurch gekennzeichnet, daß der lipophile Emulgator ein kationischer Emulgator ist.
48. Mittel nach einem der Ansprüche 46 oder 47, dadurch gekennzeichnet, daß der hydrophile Emulgator ein nichtionischer Emulgator ist.
49. Mittel nach einem der Ansprüche 46 bis 48, dadurch gekennzeichnet, daß als Antioxidationsmittel nur natürliche Antioxidantien enthalten sind, insbesondere ausgewählt aus terpenhaltigen Antioxidantien, Vitamin E, Vitamin C, Vitamin A und/oder Selen und/oder deren Derivate.
50. Mittel nach einem der Ansprüche 46 bis 49, dadurch gekennzeichnet, daß Citronensäure und/oder Citrat(e) enthalten ist.

51. Mittel nach einem der Ansprüche 46 bis 50, dadurch gekennzeichnet, daß kationisches Polymer enthalten ist, vorzugsweise in Form um polymerer quartärer Ammoniumverbindungen, insbesondere ausgewählt aus Copolymeren aus quaternisiertem Vinylimidazol und Vinylpyrrolidon, Copolymeren aus Vinylcaprolactam, Vinylpyrrolidon und quaternisiertem Vinylimidazol und/oder quaternisierten Copolymeren aus Vinylpyrrolidon und Dimethylaminoethylmethacrylaten.
52. Mittel nach einem der Ansprüche 46 bis 51, dadurch gekennzeichnet, daß ein saurer Puffer enthalten ist, vorzugweise ein organisches Puffersystem, welches die Mikroemulsion und das Textilbehandlungsbad insbesondere in einem pH-Bereich von 3 bis 5,5 puffert.
53. Mittel nach Anspruch 52, dadurch gekennzeichnet, daß das Puffersystem Säure enthält, vorzugsweise ausgewählt aus Ameisensäure Zitronensäure, Essigsäure, Sulfonsäure – vorteilhafterweise Amidosulfonsäure – und/oder deren Derivate oder Mischungen aus diesen.
54. Mittel nach Anspruch 53, dadurch gekennzeichnet, daß das Puffersystem zumindest ein Salz der im Puffersystem enthaltenen Säure(n) enthält, vorzugsweise Natriumcitrat.
55. Mittel nach einem der Ansprüche 52 bis 54, dadurch gekennzeichnet, daß das Puffersystem Polyacrylate, Polymethacrylate und/oder Copolymeren aus Acrylsäure und Maleinsäure, vorzugweise mit einem Molekulargewicht von 2000 bis 10000 enthält.
56. Verwendung eines Mittels nach einem der Ansprüche 46 bis 55 als Nachbehandlungsmittel, insbesondere als Weichspüler oder Nachspülmittel.
57. Verwendung eines Mittels nach einem der Ansprüche 46 bis 55 als Flüssigwaschmittel.

## Zusammenfassung

### “Mikroemulsionen”

Die Verwendung von Mikroemulsionen, die Öl(e) und ein bestimmtes Emulgatorsystem enthalten, zur Textilbehandlung in einer automatischen Waschmaschine wird beschrieben. Weiterhin wird ein Textilbehandlungsmittel beschrieben, welches bestimmte Komponenten umfasst, dessen Tröpfchengröße  $d_{50}$  unter 500 nm liegt. Die Textilbehandlungsmittel bzw. Mikroemulsionen sind stabil, gut aus der Einspülkammer der Waschmaschine einspülbar und bereits in kaltem Wasser gut verteilbar.