

Report No. : EED32I00265501 Page 1 of 60

TEST REPORT

Product : WIFI Module

Trade mark : N/A

Model/Type reference : SD06-S14PXX0000NV3

Serial Number : N/A

Report Number : EED32I00265501

FCC ID : 2AEU8SD06 Date of Issue : Mar. 24, 2017

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

Ittim Technology Co., Ltd.
Room 1215, 5th building, No.1988, Jiamei Road, Nanxiang town,
Jiading district, Shanghai, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom chen (Test Project)

Compiled by:

proved by

Ware xin (Project Engineer)

Reviewed by:

Kevin yang (Reviewer)

Sheek Luo (Lab supervisor)

Date:

Mar. 24, 2017

Check No.: 2496598453

Page 2 of 60

2 Version

Version No.	Date	Description			
00	Mar. 24, 2017	Original			
0					

3 Test Summary

47 CFR Part 15 Subpart C Section

15.205/15.209

Page 3 of 60

ANSI C63.10-2013

PASS

Remark:

Restricted bands around

fundamental frequency

(Radiated Emission)

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample and the sample information are provided by the client.

Page 4 of 60

Report No. : EED32I00265501 **5 Test Requirement**

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

5.2 Test Environment

Operating Environment:		
Temperature:	24°C	(20)
Humidity:	50% RH	0
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

Test Mode	Tx	RF Channel			
rest Mode	I X	Low(L)	Middle(M)	High(H)	
802.11b/g/n(HT20)	2412MHz ~2462 MHz	Channel 1	Channel 6	Channel11	
		2412MHz	2437MHz	2462MHz	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				

Test mode:

Pre-scan under all rate at lowest channel 1

Mode			8	02.11b				(48	
Data Rate		1Mbps	s 2Mbp	s 5.5Mbp	s 11Mbp	S			
Power(dBm)		15.20	15.24	15.31	15.38				
Mode		802.11g							
Data Rate	1	6Mbp	s 9Mbp	s 12Mbps	18Mbps	24Mbps	s 36Mbps	48Mbps	54Mbps
Power(dBm)	16	16.61	16.57	7 16.54	16.50	16.50	16.44	16.41	16.38
Mode			·		802.11n	(HT20)			
Data Rate	6.5	Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	1	3.12	13.11	13.10	13.07	13.05	13.00	12.97	12.91

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).

Page 6 of 60

General Information

6.1 Client Information

Applicant:	Ittim Technology Co., Ltd.
Address of Applicant:	Room 1215, 5th building, No.1988, Jiamei Road, Nanxiang town, Jiading district, Shanghai, China
Manufacturer:	Ittim Technology Co., Ltd.
Address of Manufacturer:	Room 1215, 5th building, No.1988, Jiamei Road, Nanxiang town, Jiading district, Shanghai, China

6.2 General Description of EUT

Product Name:	WIFI Module	
Model No.:	SD06-S14PXX0000NV3	
Trade Mark:	N/A	(3)
EUT Supports Radios application:	Wlan 2.4GHz 802.11b/g/n(HT20)	(6.2)
Power Supply:	DC 5V	
Sample Received Date:	Mar. 14, 2017	
Sample tested Date:	Mar. 14, 2017 to Mar. 24, 2017	

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels
Channel Separation:	5MHz
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20): OFDM (64QAM, 16QAM, QPSK,BPSK)
Test Software of EUT:	CDM v2.12.00
Antenna Type:	Chip antenna
Antenna Gain:	0dBi
Test Voltage:	DC 5V

Operation	Operation Frequency each of channel(802.11b/g/n HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz		(2)	

Page 7 of 60

Page 8 of 60

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
Power supply	Keysight	E3642A	FCC DOC	СТІ
Computer	Lenovo	R4900d	FCC DOC	СТІ
Mouse	L.Selectron	OP-200	FCC DOC	СТІ
Keyboard	Lenovo	LXH-EKB-10YA	FCC DOC	СТІ

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Hotline: 400-6788-333

www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No.: EED32I00265501 Page 9 of 60

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	DE newer conducted	0.31dB (30MHz-1GHz)	
4	RF power, conducted	0.57dB (1GHz-18GHz)	
3	Dedicted Courieus emission test	4.5dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)	
4	Conduction emission	3.6dB (9kHz to 150kHz)	
4	Conduction emission	3.2dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	2.8%	
7	DC power voltages	0.025%	

Report No. : EED32I00265501 **7 Equipment List**

	RF test system							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017			
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017			
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017			
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018			
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017			
BT&WI-FI Automatic control	R&S	OSP120	101374	04-01-2016	03-31-2017			
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017			

	Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017			
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017			
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017			
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017			
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017			
ISN	TESEQ GmbH	ISN T800	30297	01-27-2017	01-25-2018			

Page 11 of 60

3M Semi/full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3	TTE20130797	06-05-2016	06-05-2019	
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017	
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018	
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018	
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017	
Microwave Preamplifier	A.H.SYSTEMS	PAP-1840-60	6041.6042	06-30-2015	06-28-2018	
Horn Antenna	A.H.SYSTEMS	SAS-574 374	374	06-30-2015	06-28-2018	
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017	
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017	
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017	
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017	
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017	
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017	
Cable line	Fulai(7M)	SF106	5219/6A	01-11-2017	01-10-2018	
Cable line	Fulai(6M)	SF106	5220/6A	01-11-2017	01-10-2018	
Cable line	Fulai(3M)	SF106	5216/6A	01-11-2017	01-10-2018	
Cable line	Fulai(3M)	SF106	5217/6A	01-11-2017	01-10-2018	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	TTF20120434	01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001	TTF20120435	01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002	TTF20120436	01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001	TTF20120437	01-11-2017	01-10-2018	

Page 12 of 60

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

est Results List:	\C4	(C.*)		10.7
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10/ KDB 558074	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10/ KDB 558074	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10/ KDB 558074	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Page 13 of 60

Appendix A): Conducted Peak Output Power

Result Table

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict	Remark
11B	LCH	15.38	PASS	
11B	MCH	16.35	PASS	
11B	HCH	16.78	PASS	(3)
11G	LCH	16.61	PASS	DMC
11G	MCH	17.26	PASS	RMS
11G	HCH	17.1	PASS	detector
11N20SISO	LCH	13.12	PASS	
11N20SISO	MCH	13.66	PASS	
11N20SISO	НСН	14.11	PASS	

Page 14 of 60

Appendix B): 6dB Occupied Bandwidth

Result Table

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
11B	LCH	10.02	13.517	PASS	
11B	MCH	10.01	13.491	PASS	13
11B	HCH	10.02	13.516	PASS	
11G	LCH	16.52	16.465	PASS	
11G	MCH	16.44	16.471	PASS	Peak
11G	HCH	16.52	16.458	PASS	detector
11N20SISO	LCH	17.77	17.671	PASS	
11N20SISO	MCH	17.77	17.667	PASS	
11N20SISO	HCH	17.70	17.667	PASS	

Page 17 of 60

Page 18 of 60

Report No.: EED32I00265501 Page 21 of 60

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	2.482	-50.096	-27.52	PASS
11B	HCH	3.571	-50.025	-26.43	PASS
11G	LCH	-3.936	-47.148	-33.94	PASS
11G	НСН	-3.594	-48.781	-33.59	PASS
11N20SISO	LCH	-7.882	-49.953	-37.88	PASS
11N20SISO	HCH	-5.513	-49.349	-35.51	PASS

Test Graph

Report No. : EED32I00265501 Page 24 of 60

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	2.531	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	3.165	<limit< td=""><td>PASS</td></limit<>	PASS
11B	НСН	3.657	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-3.845	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	3.308	<limit< td=""><td>PASS</td></limit<>	PASS
11G	HCH	-3.512	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-7.148	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-7.338	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	-7.207	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph

Report No.: EED32I00265501 Page 25 of 60

Report No.: EED32I00265501 Page 30 of 60 RL N 1900 65 Center Freq 12.515000000 GHz #Avg Type: RMS AvgiHold: 1/100 Ref Offset 19.66 dB Ref 10.00 dBm Puw/11N20SIS O/HCH

report No. : LLD32100203301

Appendix E): Power Spectral Density

Result Table

A STATE OF THE STA		The state of the s	The state of the s	
Mode	Channel	PSD [dBm/3kHz]	Limit[dBm/3kHz]	Verdict
11B	LCH	-14.953	8	PASS
11B	MCH	-14.188	8	PASS
11B	НСН	-13.659	8	PASS
11G	LCH	-17.647	8	PASS
11G	MCH	-12.724	8	PASS
11G	НСН	-12.413	8	PASS
11N20SISO	LCH	-18.356	8	PASS
11N20SISO	MCH	-17.986	8	PASS
11N20SISO	НСН	-17.061	8	PASS

Page 31 of 60

Page 32 of 60

Page 35 of 60

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Chip antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.

Page 36 of 60

Test Procedure:	Test frequency range :150KHz-	30MHz				
	1)The mains terminal disturband	ce voltage test was o	conducted in a shielded	l room.		
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2 which was bonded to the ground reference plane in the same way as the LISN 1 fo					
	the unit being measured. A power cables to a single LIS	-		meet manip		
	exceeded.					
	3)The tabletop EUT was place reference plane. And for flot horizontal ground reference	oor-standing arrange		-		
	4) The test was performed with shall be 0.4 m from the reference plane was bonder was placed 0.8 m from the reference plane for LISNs	vertical ground refe d to the horizontal g boundary of the unit	erence plane. The ve round reference plane under test and bonded	rtical grour . The LISN d to a grour		
	distance was between the c					
	of the EUT and associated e					
	5) In order to find the maximum the interface cables must measurement.					
Limit:						
	Frequency range (MHz)	Limit (dBµV)				
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* The limit decreases linearly w to 0.50 MHz. NOTE: The lower limit is applic	/	(G*)	ge 0.15 MH		
la a a company de Data	THE TOWER INTIL TO Applie	able at the transition	ricquerioy			
leasurement Data						
	as performed on the live and neutra					
luasi-Peak and Ave	erage measurement were performed	d at the frequencies	with maximized peak e	mission we		
etected.						

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 37 of 60

Live line:

No.	Freq.		ling_Le dBuV)	evel	Correct Factor	Me	easurer (dBuV)		11778	nit uV)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	32.04		15.86	9.77	41.81		25.63	65.99	55.99	-24.18	-30.36	P	
2	0.1740	32.36		-2.70	9.74	42.10		7.04	64.76	54.76	-22.66	-47.72	Р	
3	0.2500	24.52		-7.04	9.74	34.26		2.70	61.75	51.75	-27.49	-49.05	Р	
4	0.8460	20.42		-9.75	9.74	30.16		-0.01	56.00	46.00	-25.84	-46.01	P	
5	6.6899	14.78		-10.9	9.70	24.48		-1.20	60.00	50.00	-35.52	-51.20	P	
6	24.0020	13.85		11.91	10.18	24.03		22.09	60.00	50.00	-35.97	-27.91	P	

Page 38 of 60

Neutral line: 80.0 dBuV

No.	Freq.		ling_Le dBuV)	evel	Correct Factor	M	easurer (dBuV			nit uV)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	36.30		16.38	9.77	46.07		26.15	65.99	55.99	-19.92	-29.84	Р	
2	0.2500	26.89		-6.31	9.74	36.63		3.43	61.75	51.75	-25.12	-48.32	Р	
3	0.5220	21.94		-7.92	9.72	31.66		1.80	56.00	46.00	-24.34	-44.20	P	
4	2.4300	15.31		-13.0	9.71	25.02		-3.30	56.00	46.00	-30.98	-49.30	Р	
5	6.9538	14.36		-10.7	9.72	24.08		-0.98	60.00	50.00	-35.92	-50.98	Р	
6	24.0019	10.96		11.80	10.18	21.14		21.98	60.00	50.00	-38.86	-28.02	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32I00265501 Page 39 of 60

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
est Procedure:	Below 1GHz test proced a. The EUT was placed at a 3 meter semi-and determine the positio b. The EUT was set 3 m was mounted on the c. The antenna height is determine the maxim polarizations of the a d. For each suspected of the antenna was tune was turned from 0 de e. The test-receiver sys Bandwidth with Maxin	on the top of a rocechoic camber. The nof the highest raneters away from top of a variable-raneters are from one um value of the fintenna are set to emission, the EUT and to heights from togrees to 360 degrees to 260	he table wand adiation. the interfer neight anter meter to found the make the new arran areas to find	ence-receinna tower. Four meters Four Both hor Foue asurement Foue to its Foue asurement Foue asure	above the grontal and versit case and the rotatanum reading.	white white which was a second with white white was a second with a seco
	f. Place a marker at the frequency to show co bands. Save the spector lowest and highest Above 1GHz test procest g. Different between about to fully Anechoic Chanal 18GHz the distance in the first the EUT in the line. The radiation measure Transmitting mode, and j. Repeat above procest.	ompliance. Also metrum analyzer plot channel dure as below: ove is the test site of the change form of the test site of the	e, change fin table 0.8 le is 1.5 me he Highest rmed in X, kis positioni	rom Semi- meter to 1 eter). channel Y, Z axis ping which i	s in the restrict ower and mode Anechoic Cha .5 meter(Abordonistioning for t is worse cas	ulati amb
_imit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procest g. Different between about to fully Anechoic Chan 18GHz the distance in the EUT in the light in the radiation measure. Transmitting mode, a	ompliance. Also metrum analyzer plot channel dure as below: ove is the test site of the change form of the test site of the	e, change from table 0.8 ble is 1.5 months the Highest red in X, kis positioniuencies me	rom Semi- meter to 1 eter). channel Y, Z axis ping which i	s in the restrict ower and mode Anechoic Cha .5 meter(Abordonistioning for t is worse cas	ulati amb
Limit:	frequency to show con bands. Save the spect for lowest and highest and highest and highest and highest and highest and highest and to fully Anechoic Chan 18GHz the distance in the final that the EUT in the line in the radiation measure and the results are results and the results and the results are results and the results and the results are results are results are results are results and the results are results are results are results are results and the results are results ar	ompliance. Also metrum analyzer plot channel dure as below: ove is the test site of the stander change forms 1 meter and table lowest channel, the tements are perfound found the X as dures until all frequents.	e, change fin table 0.8 ble is 1.5 me he Highest rmed in X, kis positioni uencies me //m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis ping which i	Anechoic Cha .5 meter(Abo	ulati amb ve
imit:	frequency to show constants. Save the spect for lowest and highest and highest and highest and highest and highest and highest and to fully Anechoic Chan 18GHz the distance in the line of the first the EUT in the line of the highest and highest a	ompliance. Also metrum analyzer plot channel dure as below: ove is the test site of the modern change forms 1 meter and table lowest channel, the mements are perfound found the X as dures until all frequents (dBµV).	e, change fin table 0.8 le is 1.5 me he Highest rmed in X, kis positioni uencies me //m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis ping which i easured wa Rei Quasi-pe	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete.	ulati amb ve
imit:	frequency to show contained bands. Save the spect for lowest and highest and highest and highest and highest and the fully Anechoic Change 18 has a second band of the full Anechoic Change 18 has a second band of the full Anechoic Change 18 has a second band of the full Anechoic Change 18 has a second band of the full Anechoic Change 18 has a second band of the full Anechoic Change 18 has a second band of the full Anechoic Change 18 has a second band of the full Anechoic Change 18 has a second band of the full Anechoic Change 18 has a second band of the full Anechoic Change 18 has a second band of the full Anechoic Change 18 has a second band of the full Anechoic Change 18 has a second ba	ompliance. Also metrum analyzer plot channel dure as below: ove is the test site of the change form of the set of the test site of the set of the test site of the set of the s	e, change from table 0.8 ble is 1.5 me he Highest rmed in X, kis positioni uencies me /m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis ping which i easured wa Rei Quasi-pe	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete.	ulati amb ve
imit:	frequency to show con bands. Save the spect for lowest and highest and highest and highest and highest and to fully Anechoic Chan 18GHz the distance in the final that the EUT in the final that is the radiation measured and the final that the fina	ompliance. Also metrum analyzer plot channel dure as below: ove is the test site of the stander change forms 1 meter and table lowest channel, the tements are perfound found the X and dures until all frequences until all frequences and found the X and dures until all frequences until all frequences and found the X and dures until all frequences until all frequences and found the X and dures until all frequences and found the X and dures until all frequences and found the X and dures until all frequences and found the X and dures until all frequences and found the X and dures until all frequences and found the X and dures until all frequences and found the X and dures until all frequences and found the X and dures until all frequences and found the X and dures until all frequences and found the X and dures until all frequences and found the X and dures until all frequences and dures are during the found during the fo	e, change fin table 0.8 le is 1.5 me he Highest rmed in X, kis positioni uencies me /m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe	Anechoic Cha .5 meter(Abo oositioning for t is worse cas as complete. mark eak Value	ulati amb ve
imit:	frequency to show consumption bands. Save the spect for lowest and highest and highest and highest and highest and highest and to fully Anechoic Chands and the fully Anechoic Chands and	ompliance. Also metrum analyzer plot channel dure as below: ove is the test site amber change forms 1 meter and tab lowest channel, the rements are perfound found the X and dures until all frequency Limit (dBµV). 40.0 43.9	e, change from table 0.8 sile is 1.5 me he Highest rmed in X, kis positioni uencies me	rom Semi- meter to 1 eter). channel Y, Z axis pi ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete. mark eak Value eak Value	ulati amb

Test plot as follows:

Worse case mode: 802.11b (11Mbps)

Frequency: 2390.0MHz Test channel: Lowest | Polarization: Horizontal Remark: Peak

		eamp Read ctor Level				Pol/Phase	Remark
MHz dB/r	dB	dB dBuV	dBuV/m	dBuV/m	dB		
2200 000 22 53	4 20 2	4 20 4F 7F	10 17	74.00	JE 93	Uandaantal	

4.33 34.39 95.30 97.81 74.00 23.81 Horizontal 2 pp 2410.332 32.57

Worse case mode:	802.11b (11Mbps)				
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak		

Page 40 of 60

Page 41 of 60

Worse case mode:	802.11b (11Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11b (11Mbps)	(67.)	(67)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Freq			Preamp Factor					Pol/Phase	Remark	
MHz	dB/m	dB	dB	dBuV	dBuV/m	dBuV/m	dB			
1 pp 2462.958 2 2483.500										

Page 42 of 60

Worse case mode:	802.11g (6Mbps)	302.11g (6Mbps)					
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak				

Worse case mode:	802.11g (6Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average

Page 43 of 60

Worse case mode:	802.11g (6Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11g (6Mbps)	(67)	(6,7)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average

Page 44 of 60

Worse case mode:	802.11g (6Mbps)		(21)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Worse case mode: 802.11g (6Mbps)

Frequency: 2483.5MHz Test channel: Highest Polarization: Vertical Remark: Average

Worse case mode:	802.11n(HT20) (6.5M	bps)	(6,2)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11n(HT20) (6.5M	bps)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average

Worse case mode:	802.11n(HT20) (6.5Mbps)	(6)	(0)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Page 47 of 60

Worse case mode:	802.11n(HT20) (6.5Mbps)	- P	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Remark:

- 1) Through Pre-scan transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 48 of 60

Appendix I): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Ab 21.2 401 le	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

_				
ш	ir	n	it	•

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	490MHz-1.705MHz 24000/F(kHz)		-	30
1.705MHz-30MHz	1.705MHz-30MHz 30		(1)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Page 49 of 60

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)		2000	70/
Test mode:	Transmitting	Horizontal	

		Ant	Cable	Kead		Limit	Over		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
								-	
	MU-			40.4/	4D. M/m	dD. 1//m			
	MHz	ab/m	dB	abuv	abuv/m	abuv/m	dB		
1	51.301	14.92	1.40	9.28	25.60	40.00	-14.40	Horizontal	
2	191.745	11.32	2.12	18.30	31.74	43.50	-11.76	Horizontal	
3	216.024	11.88	2.26	21.83	35.97	46.00	-10.03	Horizontal	
4	263.819	12.72	2.36	27.77	42.85	46.00	-3.15	Horizontal	
5 рр	408.946	16.45	2.84	23.65	42.94	46.00	-3.06	Horizontal	
6	793.396	21.52	3.85	14.86	40.23	46.00	-5.77	Horizontal	

		Ant	Cable	Read		Limit	0ver			
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark	
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
1	57.999	14.04	1.42	17.94	33.40	40.00	-6.60	Vertical		
2	166.068	10.37	1.80	19.72	31.89	43.50	-11.61	Vertical		
3	287.990	13.25	2.37	22.80	38.42	46.00	-7.58	Vertical		
4	383.932	15.84	2.77	21.86	40.47	46.00	-5.53	Vertical		
5	696.857	20.63	3.87	15.29	39.79	46.00	-6.21	Vertical		
6 pp	866.088	22.06	4.23	16.31	42.60	46.00	-3.40	Vertical		

Transmitter Emission above 1GHz

Test mode:	Mbps)	Test Frequency: 2412MHz			Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1357.254	30.58	2.51	34.80	47.14	45.43	74.00	-28.57	Pass	Horizontal
1773.127	31.35	2.75	34.46	47.63	47.27	74.00	-26.73	Pass	Horizontal
4159.927	33.20	6.58	34.55	43.36	48.59	74.00	-25.41	Pass	Horizontal
4824.000	34.73	6.72	34.35	41.94	49.04	74.00	-24.96	Pass	Horizontal
7236.000	36.42	8.38	34.90	37.99	47.89	74.00	-26.11	Pass	Horizontal
9648.000	37.93	7.63	35.07	36.74	47.23	74.00	-26.77	Pass	Horizontal
1112.837	30.01	2.34	35.06	48.29	45.58	74.00	-28.42	Pass	Vertical
1573.189	31.01	2.65	34.61	47.35	46.40	74.00	-27.60	Pass	Vertical
4213.211	33.34	6.59	34.53	43.54	48.94	74.00	-25.06	Pass	Vertical
4824.000	34.73	6.72	34.35	41.39	48.49	74.00	-25.51	Pass	Vertical
7236.000	36.42	8.38	34.90	38.84	48.74	74.00	-25.26	Pass	Vertical
9648.000	37.93	7.63	35.07	38.77	49.26	74.00	-24.74	Pass	Vertical

	Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	37MHz	Remark: P			
	Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
Ī	1110.008	30.00	2.33	35.06	47.58	44.85	74.00	-29.15	Pass	Horizontal
	1545.405	30.96	2.63	34.63	46.73	45.69	74.00	-28.31	Pass	Horizontal
	4874.000	34.84	6.73	34.33	42.18	49.42	74.00	-24.58	Pass	Horizontal
3	5956.109	35.87	6.00	34.30	42.93	50.50	74.00	-23.50	Pass	Horizontal
2	7311.000	36.43	8.44	34.90	39.10	49.07	74.00	-24.93	Pass	Horizontal
	9748.000	38.03	7.55	35.05	37.13	47.66	74.00	-26.34	Pass	Horizontal
	1115.673	30.02	2.34	35.06	47.32	44.62	74.00	-29.38	Pass	Vertical
Ī	1360.714	30.59	2.52	34.80	46.97	45.28	74.00	-28.72	Pass	Vertical
	1795.839	31.39	2.76	34.44	45.76	45.47	74.00	-28.53	Pass	Vertical
Ī	4874.000	34.84	6.73	34.33	41.23	48.47	74.00	-25.53	Pass	Vertical
	7311.000	36.43	8.44	34.90	39.63	49.60	74.00	-24.40	Pass	Vertical
	9748.000	38.03	7.55	35.05	37.48	48.01	74.00	-25.99	Pass	Vertical

Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	62MHz	Remark: P	Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis		
1115.673	30.02	2.34	35.06	47.63	44.93	74.00	-29.07	Pass	Horizontal		
1353.804	30.57	2.51	34.81	47.42	45.69	74.00	-28.31	Pass	Horizontal		
1773.127	31.35	2.75	34.46	45.99	45.63	74.00	-28.37	Pass	Horizontal		
4924.000	34.94	6.74	34.32	40.37	47.73	74.00	-26.27	Pass	Horizontal		
7386.000	36.44	8.50	34.90	37.96	48.00	74.00	-26.00	Pass	Horizontal		
9848.000	38.14	7.47	35.03	38.84	49.42	74.00	-24.58	Pass	Horizontal		
1147.354	30.10	2.36	35.02	47.22	44.66	74.00	-29.34	Pass	Vertical		
1545.405	30.96	2.63	34.63	46.73	45.69	74.00	-28.31	Pass	Vertical		
4924.000	34.94	6.74	34.32	41.41	48.77	74.00	-25.23	Pass	Vertical		
6235.364	36.02	6.52	34.45	42.03	50.12	74.00	-23.88	Pass	Vertical		
7386.000	36.44	8.50	34.90	38.88	48.92	74.00	-25.08	Pass	Vertical		
9848.000	38.14	7.47	35.03	38.73	49.31	74.00	-24.69	Pass	Vertical		

	Test mode:	Test mode: 802.11g(6Mbps)			uency: 24	12MHz	Remark: Peak				
	Frequency (MHz)	Cy Antenna Cable Preamp Read Level (dBμV/m) Character (dB/m) (dB) (dB) (dB) (dBμV/m) Character (dBμV/m) (dBμV/m)			Over Limit (dB)	Result	Antenna Polaxis				
	1127.091	30.05	2.35	35.04	48.07	45.43	74.00	-28.57	Pass	Horizontal	
	1557.252	30.98	2.64	34.62	46.76	45.76	74.00	-28.24	Pass	Horizontal	
	3644.175	33.06	5.57	34.57	43.43	47.49	74.00	-26.51	Pass	Horizontal	
8	4824.000	34.73	6.72	34.35	41.08	48.18	74.00	-25.82	Pass	Horizontal	
	7236.000	36.42	8.38	34.90	38.89	48.79	74.00	-25.21	Pass	Horizontal	
	9648.000	37.93	7.63	35.07	39.06	49.55	74.00	-24.45	Pass	Horizontal	
	1107.186	29.99	2.33	35.07	47.72	44.97	74.00	-29.03	Pass	Vertical	
	1541.476	30.95	2.63	34.64	47.16	46.10	74.00	-27.90	Pass	Vertical	
	4824.000	34.73	6.72	34.35	41.05	48.15	74.00	-25.85	Pass	Vertical	
	6001.768	35.90	5.97	34.30	43.20	50.77	74.00	-23.23	Pass	Vertical	
	7236.000	36.42	8.38	34.90	39.06	48.96	74.00	-25.04	Pass	Vertical	
	9648.000	37.93	7.63	35.07	39.77	50.26	74.00	-23.74	Pass	Vertical	

Test mode:	802.11g(6N	(lbps	Test Fred	Test Frequency: 2437MHz			Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis		
1127.091	30.05	2.35	35.04	47.18	44.54	74.00	-29.46	Pass	Horizontal		
1367.659	30.60	2.52	34.79	46.08	44.41	74.00	-29.59	Pass	Horizontal		
3795.660	32.95	5.99	34.58	43.38	47.74	74.00	-26.26	Pass	Horizontal		
4874.000	34.84	6.73	34.33	40.25	47.49	74.00	-26.51	Pass	Horizontal		
7311.000	36.43	8.44	34.90	40.06	50.03	74.00	-23.97	Pass	Horizontal		
9748.000	38.03	7.55	35.05	37.28	47.81	74.00	-26.19	Pass	Horizontal		
1127.091	30.05	2.35	35.04	47.70	45.06	74.00	-28.94	Pass	Vertical		
1565.200	30.99	2.64	34.62	46.55	45.56	74.00	-28.44	Pass	Vertical		
3653.463	33.05	5.59	34.57	43.92	47.99	74.00	-26.01	Pass	Vertical		
4874.000	34.84	6.73	34.33	40.31	47.55	74.00	-26.45	Pass	Vertical		
7311.000	36.43	8.44	34.90	38.87	48.84	74.00	-25.16	Pass	Vertical		
9748.000	38.03	7.55	35.05	38.07	48.60	74.00	-25.40	Pass	Vertical		

Test mode:	802.11g(6N	1bps)	Test Freq	uency: 24	62MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Factor Loss		Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1115.673	30.02	2.34	35.06	47.03	44.33	74.00	-29.67	Pass	Horizontal
1746.251	31.31	2.74	34.48	46.98	46.55	74.00	-27.45	Pass	Horizontal
3516.592	33.16	5.19	34.56	44.38	48.17	74.00	-25.83	Pass	Horizontal
4924.000	34.94	6.74	34.32	40.11	47.47	74.00	-26.53	Pass	Horizontal
7386.000	36.44	8.50	34.90	39.86	49.90	74.00	-24.10	Pass	Horizontal
9848.000	38.14	7.47	35.03	38.95	49.53	74.00	-24.47	Pass	Horizontal
1112.837	30.01	2.34	35.06	47.62	44.91	74.00	-29.09	Pass	Vertical
1549.344	30.96	2.63	34.63	47.43	46.39	74.00	-27.61	Pass	Vertical
3653.463	33.05	5.59	34.57	43.70	47.77	74.00	-26.23	Pass	Vertical
4924.000	34.94	6.74	34.32	40.77	48.13	74.00	-25.87	Pass	Vertical
7386.000	36.44	8.50	34.90	.90 36.86 46.90		74.00 -27.10 P	Pass	Vertical	
9848.000	38.14	7.47	35.03	37.84	48.42	74.00	-25.58	Pass	Vertical

Pag	e 5	4 of	60
ı ay	-	ᄑᄓ	OU

Test mode:	802.11n(HT	T20)(6.5M	1bps)	Test Frequ	ency: 2412M	Hz	Rema	ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1124.226	30.04	2.34	35.05	47.61	44.94	74.00		-29.06	Pass	Horizontal
1750.702	31.32	2.74	34.47	46.05	45.64	74.0	00	-28.36	Pass	Horizontal
3903.444	32.87	6.28	34.59	43.34	47.90	74.0	00	-26.10	Pass	Horizontal
4824.000	34.73	6.72	34.35	39.79	46.89	74.0	00	-27.11	Pass	Horizontal
7236.000	36.42	8.38	34.90	39.02	48.92	74.0	00	-25.08	Pass	Horizontal
9648.000	37.93	7.63	35.07	39.39	49.88	74.0	00	-24.12	Pass	Horizontal
1132.844	30.06	2.35	35.04	47.08	44.45	74.0	00	-29.55	Pass	Vertical
1569.189	31.00	2.64	34.61	47.08	46.11	74.0	00	-27.89	Pass	Vertical
3709.691	33.01	5.75	34.57	43.58	47.77	74.0	00	-26.23	Pass	Vertical
4824.000	34.73	6.72	34.35	38.99	46.09	74.0	00	-27.91	Pass	Vertical
7236.000	36.42	8.38	34.90	37.51	47.41	74.0	00	-26.59	Pass	Vertical
9648.000	37.93	7.63	35.07	35.67	46.16	74.0	00	-27.84	Pass	Vertical

Test mode:	802.11n(HT	20)(6.5N	1bps)	Test Frequency: 2437MHz			Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1112.837	30.01	2.34	35.06	47.15	44.44	74	.00	-29.56	Pass	Horizontal
1759.638	31.33	2.75	34.47	46.18	45.79	74	.00	-28.21	Pass	Horizontal
3653.463	33.05	5.59	34.57	44.16	48.23	74	.00	-25.77	Pass	Horizontal
4874.000	34.84	6.73	34.33	40.45	47.69	74	.00	-26.31	Pass	Horizontal
7311.000	36.43	8.44	34.90	39.02	48.99	74	.00	-25.01	Pass	Horizontal
9748.000	38.03	7.55	35.05	37.46	47.99	74	.00	-26.01	Pass	Horizontal
1121.367	30.03	2.34	35.05	47.66	44.98	74	.00	-29.02	Pass	Vertical
1545.405	30.96	2.63	34.63	46.57	45.53	74	.00	-28.47	Pass	Vertical
3757.208	32.97	5.88	34.58	43.45	47.72	74	.00	-26.28	Pass	Vertical
4874.000	34.84	6.73	34.33	41.73	48.97	74	.00	-25.03	Pass	Vertical
7311.000	36.43	8.44	34.90	40.23	50.20	74	.00	-23.80	Pass	Vertical
9748.000	38.03	7.55	35.05	37.03	47.56	74	.00	-26.44	Pass	Vertical

Page 55 of

60

Test mode:	802.11n(HT	20)(6.5N	1bps)	Test Frequ	ency: 2462M	Hz	Rema	ark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Lir (dBµ	-	Over Limit (dB)	Result	Antenna Polaxis	
1107.186	29.99	2.33	35.07	47.82	45.07	74.00		-28.93	Pass	Horizontal	
1549.344	30.96	2.63	34.63	46.27	45.23	74.	00	-28.77	Pass	Horizontal	
3728.625	33.00	5.80	34.58	43.50	47.72	74.	00	-26.28	Pass	Horizontal	
4924.000	34.94	6.74	34.32	40.73	48.09	74.	00	-25.91	Pass	Horizontal	
7386.000	36.44	8.50	34.90	39.40	49.44	74.	00	-24.56	Pass	Horizontal	
9848.000	38.14	7.47	35.03	39.65	50.23	74.	00	-23.77	Pass	Horizontal	
1153.210	30.11	2.37	35.01	47.26	44.73	74.	00	-29.27	Pass	Vertical	
1557.252	30.98	2.64	34.62	46.64	45.64	74.	00	-28.36	Pass	Vertical	
3903.444	32.87	6.28	34.59	43.00	47.56	74.	00	-26.44	Pass	Vertical	
4924.000	34.94	6.74	34.32	40.75	48.11	74.	00	-25.89	Pass	Vertical	
7386.000	36.44	8.50	34.90	38.39	48.43	74.	00	-25.57	Pass	Vertical	
9848.000	38.14	7.47	35.03	38.60	49.18	74.	00	-24.82	Pass	Vertical	

Remark:

- 1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test Model No.: SD06-S14PXX0000NV3

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(Below 1GHz)

Page 56 of 60

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Radiated spurious emission Test Setup for close-up

Report No. : EED32I00265501 Page 59 of 60

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: SD06-S14PXX000NV3

View of Product-1

View of Product-2

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.