MATH 104: MULTIVARIABLE CALCULUS

MIDTERM NAME:
There are four questions. Make sure you justify all your work for complete credit.
Rules
 You have 80 minutes to complete your work Closed books. No use of internet, textbooks, computer algebra systems, calculators. No collaboration. 1 person per bathroom break. When you go to the bathroom, turn in your cellphone and exam until return. Scores:
(1) (2) (3) (4) Total :

Date: March 12, 2025.

Questions

Problem 1 (20 points, 5 points each). (1) Where does the line

$$x(t) = 2t - 1$$
; $y(t) = 3t + 2$; $z(t) = 4t$

intersect the plane given by 4x + 3y - z = 3?

(2) What is the surface that the following function a parametrization of? Give a reason.

$$G(\varphi, \theta) = \begin{bmatrix} R\cos\theta\sin\varphi \\ R\sin\theta\sin\varphi \\ R\cos\varphi \end{bmatrix}$$

(3) What is the value of c so that the planes $2cx-y+c^2z=15$ and x+5cy-3z=4 are orthogonal?

Problem 2 (20 points). (1) Find an equation of the tangent plane to the surface $z=x\sin(x+y)$ at the point (-1,1,0).

(2) Find the linear approximation at (0,0) of $e^x \cos(xy)$.

Problem 3 (20 points). Given the curve $\gamma(t) = (1, t, t^2)$.

- (1) Compute the velocity, acceleration of γ at time t=1.
- (2) What is the arclength of γ from t = 1 to t = 2?

Problem 4 (20 points). A manufacturer has modeled its yearly production function P as a Cobb-Douglas function

$$P(L, K) = 2L^{0.2}K^{0.8}$$

where L is the number of labor hours (in thousands) and K is the invested capital (in millions of dollars). Suppose the manufacturer has 20 workers and 2 machines.

(1) Use differentials to estimate the change in production if the company want to employ only 15 workers and increase to 3 machines.

(2) Compare the above result to the exact change (not the differential approximation).