

The Delphion Integrated View

Title: JP6005002A2: DISK DEVICE

Country: JP Japan

ହKind: A

Finventor: NAKAGAWA MASAAKI;

Sassignee: RICOH CO LTD

News, Profiles, Stocks and More about this company

Published / Filed: 1994-01-14 / 1992-06-19

Papplication JP1992000186275

Number:

Priority Number: 1992-06-19 JP1992000186275

Abstract: PURPOSE: To shorten the processing time of a system, to notify

the necessity of the exchange of disks to users before the exchange region is used up and to improve operability by automatically reporting the number of the remaining total sectors in the exchange

region to a host computer,

CONSTITUTION: A disk device, which is used in a host computer, is selected in a selection phase P1. When a certain disk is selected as the operating object, the disk device is moved to a command phase P2, and a writing instruction is received. In a data phase P3, data are written. In a status phase P4, the results of writing for the computer (presence or absence of errors) is reported into the computer. In a phase P5, a command complete message is transmitted into the computer, and the phase sequence of the

writing is executed.

COPYRIGHT: (C)1994,JPO&Japio

COPTRIGHT. (C) 1994, JPOQJap

Family: None

Other Abstract None

Info:

this for the Gallery...

© 1997-2004 Thomson

Research Subscriptions | Privacy Policy | Terms & Conditions | Site Map | Contact Us | F

Citation

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平6-5002

(43)公開日 平成6年(1994)1月14日

(51) lnt. Cl. 5

識別記号

庁内整理番号

FΙ

技術表示箇所

G11B 20/12

7033-5D

20/10

C 7923-5D

審査請求 未請求 請求項の数7 (全17頁)

(21)出願番号

特願平4-186275

(22)出願日

平成4年(1992)6月19日

(71)出願人 000006747

株式会社リコー

東京都大田区中馬込1丁目3番6号

(72)発明者 中川 雅章

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(74)代理人 弁理士 宮川 俊崇

(54) 【発明の名称】ディスク装置

(57)【要約】

【目的】 ホストコンピュータに交替領域の残りセクタ 数を報告することによって、システム上での処理時間を 短縮すると共に、ユーザに対して交替領域がなくなる前に、ディスク交換の必要性を知らせて操作性を向上する。

【構成】 ディスクが少なくとも1つ以上のグループに 分割されると共に、各グループに対して所定のセクタ数 を有する交替領域を具備し、ホストコンピュータと接続 されたディスク装置において、動作の終了時に、動作の 終了と全交替領域の残り総セクタ数とを報告する。

【効果】 セクタの残り数を計算する必要なしに、ディスク全体の劣化状態を把握することが可能になる。

【特許請求の範囲】

【請求項1】 ディスクが少なくとも1つ以上のグルー プに分割されると共に、それぞれのグループに対して所 定のセクタ数を有する交替領域を具備し、かつ、ホスト コンピュータと接続されたディスク装置において、

データの書き込みまたは読み出し動作の終了時に、動作 の終了と、全交替領域の残り総セクタ数とをホストコン ピュータへ報告する手段を備え、

動作の終了時に、動作の終了と、全交替領域の残り総セ クタ数とを報告することを特徴とするディスク装置。

データの書き込みまたは読み出しを行ったグループに対 する交替領域の残り総セクタ数をホストコンピュータへ 報告する手段を備え、

【請求項2】 請求項1のディスク装置において、

動作の終了時に、グループに対する交替領域の残り総セ クタ数を報告することを特徴とするディスク装置。

【請求項3】 請求項1または請求項2のディスク装置 において、

交替領域の残りセクタ数について予め設定された所定値 と、データの書き込みまたは読み出し動作の終了時にお 20 ける交替領域の残り総セクタ数とを比較し、所定値より 少なくなったことを検知する残りセクタ数検知手段を備

残りセクタ数が所定値より少なくなったとき、その旨を ホストコンピュータへ報告することを特徴とするディス ク装置。

【請求項4】 請求項3のディスク装置において、 交替領域の残りセクタ数について予め設定される所定値 は、ホストコンピュータからの指示によって設定可能で あることを特徴とするディスク装置。

【請求項5】 請求項4のディスク装置において、 ディスク装置が、交替領域の残りセクタ数について予め 設定される所定値をホストコンピュータから受信した 後、ディスク上のユーザがアクセス不可のディスク固有 の管理情報が記録されている非ユーザエリアに書き込む ことを特徴とするディスク装置。

【請求項6】 請求項5のディスク装置において、 パワーオン時およびディスク交換時に、ホストコンピュ ータは、ディスク上の非ユーザエリアに書き込まれた交 替領域の残りセクタ数の設定値を、自動的に読み出すこ 40 とを特徴とするディスク装置。

【請求項7】 請求項6のディスク装置において、 ディスク上の非ユーザエリアに設けられた交替領域の残 りセクタ数の設定値の記録エリアに、当該設定値が記録 されているかどうかを検知する設定値記録有無検知手段 を備え、

前記ディスク上の非ユーザエリアに交替領域の残りセク 夕数の設定値が記録されていないときは、ホストコンピ ュータに対してその旨を警告することを特徴とするディ スク装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、ディスクが少なくと も1つ以上のグループに分割されると共に、それぞれの グループに対して所定のセクタ数を有する交替領域を具 備し、かつ、ホストコンピュータと接続されたディスク 装置に係り、特に、ホストコンピュータに交替領域の残 りセクタ数を報告することによって、システム上での処 理時間を短縮すると共に、ユーザに対して交替領域がな 10 くなる前に、ディスク交換の必要性を知らせることによ って、操作性を向上させたディスク装置に関する。

[0002]

【従来の技術】ディスクが少なくとも1つ以上のグルー プに分割されると共に、それぞれのグループに対して所 定のセクタ数を有する交替領域を具備し、かつ、ホスト コンピュータと接続されたディスク装置は、従来から公 知である。この従来のディスク装置では、データをディ スクに書き込むSCSIコマンドの実行中に、交替領域 がなくなった場合、エラー終了する。

【0003】ここで、交替領域について、簡単に述べ る。ディスクにデータを書き込むとき、ディスク上の欠 陥によって、あるセクタヘデータを書き込むことができ ない、という事態が発生すると、そのセクタへ書き込む 代りに、予め用意された交替領域のセクタヘデータを書 き込むようにしている。ところが、この交替領域が全て 使用されている場合、ライト動作を行おうとしても、エ ラー終了してしまう。

【0004】このエラーについては、CCM(COMMON C OMMAND SET) 規定によれば、32Hエラーと定められて 30 いる。具体的にいえば、「交替領域が全て使用されてし まった」 (NO DEFECT SPARELOCATION AVAILABLE) とい うエラーである。

【0005】したがって、ユーザは、このような事態が 発生する以前に、ディスクの交換時期を正確に判断する ためには、交替領域の残りセクタ数を知る必要がある。 図10は、ディスク上のユーザ領域と交替領域につい て、そのレイアウトの一例を示す図である。図におい て、X1は欠陥セクタ、R1はその交替セクタを示す。

【0006】この図10に示すように、ディスクは、複 数のグループに分割され、各ユーザ領域 (エリア) に は、それぞれ交替領域が付加されている。ここで、グル ープとは、各ユーザエリア(領域)と交替領域とを合せ た領域を意味し、グループ数とは、ディスクがいくつの グループに区切られているかを示す。そして、例えばグ ループ2で、ユーザ領域に欠陥セクタX1が生じたとき は、そのグループ2の交替領域内の交替セクタR1に、 データを書き込む。

【0007】1つのグループで、複数の欠陥セクタが生 じたとき(例えばグループ4)は、発生した順序で、交 50 替領域内の交替セクタに書き込むことになる。ところ

1

が、この図10に示したように、グループ毎に交替領域 を設けると、あるグループでは、交替領域が不足する場 合を生じる。

【0008】図11は、ディスク上のユーザ領域と交替領域について、あるグループの交替領域が不足した場合の一例を示す図である。図において、X2は欠陥セクタ、R2はその交替セクタを示す。この図11に示すように、例えばグループ2に多くの欠陥セクタが発生して交替領域にセクタがなくなった場合に、新たな欠陥セクタX2が生じたときは、他のグループ、例えばグループ101の交替領域内の交替セクタR2にデータを書き込むことができれば、このような事態に対応することは可能である。

【0009】しかしながら、このように、他のグループの交替領域を使用するためには、各グループ毎に、交替領域の残りセクタ数を知らなければならない。もし、このような各グループ毎の交替領域の残りセクタ数の情報が得られなければ、図11で説明したように、他のグループの交替領域を利用することはできない。そして、従来の装置では、このような情報は、簡単には得られなか20った。

【0010】従来の装置では、ユーザは、ディスク上の交替領域の残りセクタ数を調べる方法として、交替領域として割り当てられたセクタ数と、リード・デフェクト・データ(READ DEFECT DATA)コマンドを発行して返えされたデータ中に表示されている交替セクタ数との差から、計算する以外に方法がなかった。このリード・デフェクト・データ・コマンドは、ディスク上の欠陥セクタの情報を提供するSCSIコマンドである。

【0011】図12は、リード・デフェクト・データ・コマンドの実行に対応して返送されるデータについて、その構成を示す図である。この図12に示すデータ (RE AD DEFECT DATA HEADER) で、パイト1のピット4で示す「PLIST」 ピットが"1"のとき、パイト2とパイト3のフィールドの値(16進数)は、SCSIフォーマットコマンドでのディスク検査時に検出された欠陥セクタ数×4を示す。

【0012】この場合には、当該欠陥セクタは、交替領域の交替セクタで代替えされずに、スキップされる。また、バイト1のビット3で示す「GLIST」 ビットが "1"のとき、同じくバイト2とバイト3のフィールド

"1"のとき、同じくバイト2とバイト3のフィールドの値(16進数)は、データライト中に検出された欠陥セクタ数 \times 4を示す。

【0013】この場合には、当該欠陥セクタは、交替領域の交替セクタで代替される。このように、リード・デフェクト・データ・コマンドを発行すれば、ディスク検査に検出された欠陥セクタの個数および物理アドレスと、データライト中に検出された欠陥セクタの個数および物理アドレスとが返送されるので、ユーザは、ディスク上の欠陥セクタの情報を得ることができる。

【0014】なお、図10や図11のように、ディスク上にグループやユーザ領域、交替領域を割り当てるためには、フォーマットコマンドを使用する。したがって、グループの数や、ユーザ領域、交替領域の大きさ等は、ユーザが自由に設定することが可能である。

【0015】ここで、SCSIコマンドの一つであるフォーマットコマンドについて説明する。このフォーマットコマンドは、次の図13と図14に示す構成である。図13は、ディスク初期化時に使用されるフォーマットコマンドのタイプ0のパラメータを示す図である。

【0016】図14は、ディスク初期化時に使用されるフォーマットコマンドのタイプ1のパラメータを示す図である。この図13と図14に示したディスク初期化のタイプ0,1のパラメータは、モード・セレクト・コマンドによって転送される。

【0017】まず、図13のディスク初期化タイプ0のパラメータは、図10や図11に示したユーザ領域、および交替領域の大きさを決定する。また、このパラメータは、グループ当りのユーザ領域数、および交替領域数を設定し、ディスクの容量(総セクタ数)を、「バイト4〜バイト7」と「バイト8とバイト9」との和で除した値(商)が、グループ数になる。

【0018】この図13で、「バイト4~バイト7」は、ユーザ領域(リード/ライトを行う領域)として割り当てられるセクタ数、「バイト8とバイト9」は、交替領域(ユーザ領域中に欠陥セクタが検出された場合に代替えされる交替セクタ領域)のセクタ数を示す。この図13に示すパラメータを設定した後、SCSIフォーマットコマンドを発行することによって、図10や図11のように、ユーザ領域と交替領域が割り当てられる。

【0019】次に、図14のディスク初期化タイプ1のパラメータは、図10や図11に示したグループ数、およびそのグループ中に割り当てられる交替領域の大きさを決定する。そして、ディスクの容量(総セクタ数)を、「バイト4~バイト7」のグループ数で割つた値(商)が、1グループ当りの「ユーザ領域数+交替領域数」となる。

【0020】したがって、この商と「交替領域数」との差が、ユーザ領域数となる。この図14で、「パイト440~パイト7」は、ディスク上に区切られたグループ(ユーザ領域+交替領域)の数を示す。また、図13のタイプ0と同様に、このタイプ1のパラメータを設定した後、SCSIフォーマットコマンドを発行することによって、図10や図11のようなレイアウトが得られる。【0021】以上のように、図13と図14に示したディスク初期化のタイプ0,1のパラメータを使用することによって、図10や図11のように、ディスク上にグループやユーザ領域、交替領域を設定することができる。しかし、そのグループ数やユーザ領域数等は、これ50のパラメータによる設定値から計算して求める必要が

あり、従来の装置では、直ちにこれらの情報が得られる 訳ではない。

【0022】すなわち、SCSIフォーマットコマンドを発行することによって、ディスク上に、図10や図11に示したようなグループやユーザ領域、交替領域を設定することができる。また、そのためのパラメータの設定には、図13と図14に示したように、ディスク初期化のタイプ0、1のパラメータを使用すればよい。

【0023】しかしながら、ディスク上に設定された各グループのユーザ領域と交替領域のセクタ数、特に、交 10 替領域のセクタ数は、データライトによって変化するので、ユーザは、ユーザ領域に欠陥セクタが生じるたび毎に、交替領域の残りセクタ数を知るためには、複雑な計算が必要であり、システム上での処理に時間を費やしてしまう。したがって、交替領域の残りセクタ数を管理する場合には、システムの負担が増加すると共に、ある一部のグループで、交替領域の残りセクタ数がなくなった場合に、他のグループの交替領域のセクタを使用するためには、管理も容易ではない、という不都合がある。

【0024】また、ユーザが、交替領域の残りセクタ数を管理していない場合には、エラー(交替領域が全て使用されていることを示すエラー)が、唯一の交替領域に関する情報であり、もし、エラーが発生してしまうと、そのディスクへのデータの書き込みができなくなる。そのため、この残りセクタ数を管理しない場合には、エラーが発生する前に、交替領域が終りに近づいたことをユーザに知らせないと、大切なデータが記録できない、等の不都合を生じる。

[0025]

【発明が解決しようとする課題】この発明では、従来の 30 ディスク装置において交替領域の残りセクタが少なくなったり、交替領域が全くなくなったときに生じるこのような不都合を解決し、ホストコンピュータに対して交替領域の残りセクタを報告することによって、システム上での計算処理を不要にすると共に、交替領域がなくなる前に、ユーザに対してディスク交換の必要性を知らせることを可能にしたディスク装置を提供することを目的とする。

[0026]

【課題を解決するための手段】この発明では、第1に、ディスクが少なくとも1つ以上のグループに分割されると共に、それぞれのグループに対して所定のセクタ数を有する交替領域を具備し、かつ、ホストコンピュータと接続されたディスク装置において、データの書き込みまたは読み出し動作の終了時に、動作の終了と、全交替領域の残り総セクタ数とをホストコンピュータへ報告する手段を備え、動作の終了時に、動作の終了と、全交替領域の残り総セクタ数とを報告するように構成している。

【0027】第2に、上記第1のディスク装置におい 交替領域内の交替セクタR2にすて、データの書き込みまたは読み出しを行ったグループ 50 可能にする(請求項2の発明)。

に対する交替領域の残り総セクタ数をホストコンピュータへ報告する手段を備え、動作の終了時に、グループに 対する交替領域の残り総セクタ数を報告するように構成 している。

【0028】第3に、上記第1または第2のディスク装置において、交替領域の残りセクタ数について予め設定された所定値と、データの書き込みまたは読み出し動作の終了時における交替領域の残り総セクタ数とを比較し、所定値より少なくなったことを検知する残りセクタ数検知手段を備え、残りセクタ数が所定値より少なくなったとき、その旨をホストコンピュータへ報告するように構成している。

【0029】第4に、上記第3のディスク装置において、交替領域の残りセクタ数について予め設定される所定値は、ホストコンピュータからの指示によって設定可能であるように構成している。

那のグループで、交替領域の残りセクタ数がなくなった 【0030】第5に、上記第4のディスク装置におい場合に、他のグループの交替領域のセクタを使用するた で、ディスク装置が、交替領域の残りセクタ数について ういには、管理も容易ではない、という不都合がある。 予め設定される所定値をホストコンピュータから受信し 【0024】また、ユーザが、交替領域の残りセクタ数 20 た後、ディスク上のユーザがアクセス不可のディスク固を管理していない場合には、エラー(交替領域が全て使 有の管理情報が記録されている非ユーザエリアに書き込用されていることを示すエラー)が、唯一の交替領域に むように構成している。

【0031】第6に、上記第5のディスク装置において、パワーオン時およびディスク交換時に、ホストコンピュータは、ディスク上の非ユーザエリアに書き込まれた交替領域の残りセクタ数の設定値を、自動的に読み出すように構成している。

【0032】第7に、上記第6のディスク装置において、ディスク上の非ユーザエリアに設けられた交替領域の残りセクタ数の設定値の記録エリアに、当該設定値が記録されているかどうかを検知する設定値記録有無検知手段を備え、前記ディスク上の非ユーザエリアに交替領域の残りセクタ数の設定値が記録されていないときは、ホストコンピュータに対してその旨を警告するように構成している。

[0033]

【作用】この発明では、ホストコンピュータに交替領域の残りのセクタ数を報告することにより、交替領域の残りのセクタ数の計算を不要にしてシステム上での処理時40 間を短縮すると共に、ユーザに対して交替領域がなくなる前に、ディスク交換の必要性を知らせるようにして、操作性を向上させている(請求項1の発明)。また、グループに対する交替領域の残りのセクタ数を報告することにより、例えば、先の図11に関連して説明したように、グループ2に多くの欠陥セクタが発生して交替領域にセクタがなくなった場合に、新たな欠陥セクタX2が生じたときでも、他のグループ、例えばグループ1の交替領域内の交替セクタR2にデータを書き込むことを

6

【0034】したがって、図10や図11のように、ユーザ領域と交替領域とがグループに分割されていても、他のグループの交替領域を迅速に利用することができ、全てのグループにおいて交替領域がなくなったとき、ライト動作はエラー終了(交替領域が全て使用されたことを示す)する。また、それ以前の交替領域が少なくなった時点では、データを書き込もうとすると、エラー終了する可能性が高くなるので、予めユーザに知らせる(請求項3の発明)。

[0035]

【実施例1】次に、この発明のディスク装置について、 図面を参照しながら、その実施例を詳細に説明する。こ の実施例は、主として、請求項1の発明に関連している が、請求項2から請求項7の発明とも関連している。

【0036】図1は、この発明のディスク装置について、その要部構成の一実施例を示す機能プロック図である。図において、1はSCSIコントロール部で、11はそのCPU、12はROM、13はRAM、14はデータバッファ、15はSCSIコントローラ、2はディスク制御部、3はディスク、4はホストコンピュータ、5はSCSIバスを示す。

【0037】この図1に示すこの発明のディスク装置には、ホストコンピュータ4がSCSIバス5上に接続されている。すなわち、ディスク装置とホストコンピュータ4とのインターフェースは、SCSIインターフェース装置である。その構成は、SCSIコントロール部1が、後出の図3や図5、図8、図9等に従った制御を行う点、および、SCSIコントロール部1内のRAM13に、後出の図4や図6に示す交替領域残数報告メッセージ用のマップを設ける点で、従来の装置と異なっている。

【0038】まず、通常の書き込み処理(ライトコマンド)のフェーズシーケンスについて説明する。図2は、ディスク装置における通常の書き込み処理のフェーズシーケンスの構成を示す図である。図において、P1~P5はフェーズを示す。

【0039】通常のコマンドシーケンスは、この図2に示すように、

セレクション・フェーズP1 コマンド・フェーズP2 データ・フェーズP3 ステータス・フェーズP4 メッセージ・イン・フェーズP5 の順になっている。

【0040】各フェーズの内容と動作は、次のとおりである。セレクション・フェーズP1で、ホストコンピュータ4が、使用するディスク装置を選択する。あるディスク装置が操作対象として選択されると、そのディスク装置は、コマンド・フェーズP2へ移行し、書き込み命令(ライトコマンド)を受信して、データ・フェーズP50

3へ移行する。

【0041】データ・フェーズP3では、ディスクに書き込むデータを受信して、データの書き込みを行う。次のステータス・フェーズP4で、ホストコンピュータ4に対して、書き込み処理の結果(エラーがあるか否かの報告)を報告する。

【0042】メッセージ・イン・フェーズP5で、コマンド・コンプリート・メッセージをホストコンピュータ4へ送信して、ライトコマンドを終了する。書き込み処10 理のフェーズシーケンスは、以上のようにして実行される。この発明のディスク装置では、通常の書き込み処理において、ステータス・フェーズP4から移行した直後のメッセージ・イン・フェーズ(P5)で、全交替領域の総残りセクタ数を報告するように構成している。

【0043】図3は、この発明のディスク装置における 通常の書き込み処理のフェーズシーケンスの構成の一実 施例を示す図である。図における符号は図2と同様であ り、また、P51とP52はメッセージ・イン・フェー ズを示す。

20 【0044】この図3に示すように、この発明のディスク装置では、ライトコマンドのステータス・フェーズP4で書き込み処理の結果を報告した後、メッセージ・イン・フェーズ(P51, P52)へ移行すると、メッセージ・イン・フェーズP51で、全交替領域の総残りセクタ数を報告し、同じメッセージ・イン・フェーズP52で、ホストコンピュータ4へ送出して、ライトコマンドを終了する。

【0045】したがって、図2に示した通常のコマンドシーケンスとの相違点は、ステータス・フェーズP4の直後のメッセージ・イン・フェーズ(P5)で、コマンド・コンプリート・メッセージ(P52)を送出する直前に、全交替領域の総残りセクタ数の報告メッセージ(P51)をホストコンピュータ4へ送信すること、ということができる。

[0046]

【実施例2】次に、この発明のディスク装置について、第2の実施例を説明する。この実施例は、主として、請求項2の発明に関連している。この実施例では、先の第1の実施例のように、単に、全交替領域の総残りセクタ 数の報告メッセージを送信するだけでなく、アクセスしたグループ(SCSIフォーマットで分割された領域)に対する交替領域の総残りセクタ数について、ホストコンピュータへ報告する点に特徴を有している。

【0047】したがって、そのハード構成や書き込み処理のフェーズシーケンスの構成は、基本的に先の第1の実施例と同様である。ここでは、この発明のディスク装置において使用する交替領域残数の報告メッセージについて、その一例を説明する。

【0048】図4は、この発明のディスク装置において 使用する交替領域残数報告メッセージの構成について、

その一実施例を示す図である。この図4に示すように、 交替領域残数報告メッセージは、拡張メッセージ (2パ イト以上で構成されるメッセージ)である。

【0049】まず、バイト0は、拡張メッセージである ことを示す。バイト1は、このメッセージの長さ、バイ ト2は、交替領域残数報告メッセージであることを示 す。バイト3は、全交替領域を示す番号で、値を"0 0"のように設定する。

【0050】バイト4は、全交替領域に対する残りセク 夕数を示す。パイト5は、当該ライトコマンドがアクセ 10 スしたグループ番号、バイト6は、そのグループに対す る交替領域の残りセクタ数を示す。

【0051】バイト7以降は省略しているが、複数のグ ループをアクセスした場合、このバイト7以降に、先の バイト5,6の内容(グループ番号,そのグループの交 替領域の残りセクタ数のメッセージ)を続ける。この交 替領域残数報告メッセージは、メモリ (図1のSCSI コントロール部1内のRAM13)内に設けられたマッ プ、すなわち、交替領域残数報告マップとして記録され

【0052】そして、欠陥セクタが生じて、交替領域が 使用されるたび毎に、交替領域の残りセクタ数を計算し て記録しておき、アクセス終了時に読み出す。以上のよ うな構成の交替領域残数報告メッセージを送出すること により、アクセスしたグループに対する交替領域の総残 りセクタ数についても、ホストコンピュータへ報告する ことができる。

[0053]

【実施例3】次に、第3の実施例を説明する。この実施 例は、主として、請求項3の発明に関連しているが、請 30 求項1と請求項2の発明とも関連している。この実施例 では、交替領域の残りセクタ数が、所定の設定値(全交 替領域に対する設定値と、1グループ当りの交替領域に 対する設定値)よりも少なくなったときに、交替領域の 残りセクタ数を、ホストコンピュータへ報告する点に特 徴を有している。

【0054】この第3の実施例でも、そのハード構成や 書き込み処理のフェーズシーケンスの構成は、基本的に 先の第1の実施例および第2の実施例と同様である。こ こで、この発明のディスク装置について、フローチャー 40 トによりその動作を説明する。

【0055】図5は、この発明のディスク装置におい て、交替領域の残りセクタ数の検出時の主要な処理の流 れを示すフローチャートである。図において、#1~# 8はステップを示す。

【0056】システムのディスク装置が、ホストコンピ ュータからのライトコマンドを受信すると、当該ディス ク装置は、ディスクにデータを書き込む。そして、アク セスしたグループに対するデータの書き込み中に、欠陥 セクタを検出する(ステップ#1)と、ステップ#2へ 50 する設定値と、1グループ当りの交替領域に対する設定

進む。

【0057】ステップ#2で、アクセスしたグループ内 に、交替領域の空きセクタがあるかどうかチェックす る。もし、交替領域の空きセクタがあれば、次のステッ プ#3で、当該グループ内の交替領域にデータをライト する。ライト動作が終了すると、ステップ#5へ進む。 【0058】また、交替領域の空きセクタがないとき は、ステップ#4で、他のグループの交替領域にデータ をライトし、ライト動作の終了後、ステップ#5へ進 む。ステップ#5では、グループ内の交替領域の残りセ クタ数と、予め決定された設定値(1グループ当りの交 替領域に対する設定値)とを比較する。

【0059】もし、残りセクタ数の方が、設定値よりも 大きいときは、そのままこの図5のフローを終了する。 これに対して、残りセクタ数と設定値とが等しかった り、設定値の方が大きいときは、ステップ#6へ進む。 【0060】ステップ#6では、当該グループ内の交替 領域の残りセクタ数を、メモリ(図1のSCSIコント ロール部1内のRAM13)内に設けられた交替領域残 数報告マップに記録する。このマップは、先の図4に示 した交替領域残数報告メッセージ (バイト2) と同じ内 容である。

【0061】次のステップ#7で、全交替領域に対する 全残りセクタ数と、全交替領域に対する所定の設定値と を比較する。もし、全残りセクタの方が、設定値よりも 大きいときは、そのままこの図5のフローを終了する。 これに対して、全残りセクタ数と設定値とが等しかった り、設定値の方が大きいときは、ステップ#8へ進む。 【0062】ステップ#8で、全交替領域の残りセクタ 数を、同じくメモリ内に設けられた交替領域残数報告マ ップに記録する。以上のステップ#1~#8の処理によ って、SCSIコントロール部1内のメモリに設けられ た交替領域残数報告マップには、当該グループ内の交替 領域の残りセクタ数、あるいは、全交替領域に対する全 残りセクタ数が、所定の設定値よりも小さくなったと き、その旨を示す情報(交替領域残数報告メッセージ) が記録される。

【0063】当該ディスク装置は、先の図3に関連して 説明したように、ライトコマンドが終了する直前に、メ ッセージ・イン・フェーズ(P51)で、この交替領域 残数報告マップの内容を、交替領域残数報告メッセージ として、ホストコンピュータへ送出する。したがって、 ユーザは、ディスクの交換時期を正確に知ることができ る。

[0064]

【実施例4】次に、第4の実施例を説明する。この実施 例は、主として、請求項4の発明に関連しているが、請 求項3の発明とも関連している。この実施例では、先の 第3の実施例で説明した所定の設定値(全交替領域に対

値)を、ホストコンピュータから設定可能にした点に特 徴を有している。

【0065】この第4の実施例でも、そのハード構成や 書き込み処理のフェーズシーケンスの構成は、基本的に 先の第1から第3の実施例と同様である。ここでは、こ の発明のディスク装置について、ホストコンピュータか らの設定値の設定コマンドを説明する。

【0066】図6は、ホストコンピュータから発行され るパラメータ設定コマンドの構成の一実施例を示す図で ある。パラメータ設定コマンドは、この図6に示すよう 10 な構成である。

【0067】すなわち、バイト0~バイト2からなり、 バイト0は、残数報告に関するパラメータを示す。ま た、バイト1は、全交替領域に対する設定値をセットす るパラメータ、バイト2は、1グループ当りの交替領域 に対する設定値をセットするパラメータを示す。

【0068】先に説明した設定値(全交替領域に対する 設定値と、1グループ当りの交替領域に対する設定値) は、この図6に示したパラメータ設定コマンド(ベンダ ー・ユニーク・コマンド)によって設定される。なお、 バイト0~2 (Extended message code) は、SCSI -IIで定義されたメッセージ表の「Vender Unique」 を使用する。

【0069】この設定値を設定するためのコマンドは、 図3に示した書き込み処理のフェーズシーケンスで、デ ータ・フェーズP3において、当該設定値をパラメータ として送信する。バイト1やパイト2によって送信され た設定値は、例えば、先の図4に示したSCSIコント ロール部1内のメモリに設けられた交替領域残数報告マ ップ等の記録されて、ライト動作が終了する毎に、残り セクタと比較される。

[0070]

【実施例5】次に、第5の実施例を説明する。この実施 例は、主として、請求項5の発明に関連しているが、請 求項1から請求項3の発明とも関連している。この実施 例では、先の第4の実施例で説明したパラメータ設定コ マンドによって送信されたパラメータ、すなわち、所定 の設定値(全交替領域に対する設定値と、1グループ当 りの交替領域に対する設定値)を、ディスク上のユーザ がアクセスすることができない非ユーザエリアに記録す 40 る点に特徴を有している。

【0071】この第5の実施例でも、そのハード構成や 書き込み処理のフェーズシーケンスの構成は、基本的に 先の第1や第4の実施例と同様である。ここで、この発 明のディスク装置について、ディスクのレイアウトにつ いて説明する。

【0072】図7は、ディスク上のユーザエリアと非ユ ーザエリアについて、そのレイアウトの一例を示す図で ある。図において、〇印はバッファトラックを示す。こ の図7に示すように、ディスク上には、例えば、トラッ 50 されているパラメータが自動的に読み出される。

ク「-16~-1」や「10000」~「10015」 のように、ユーザがアクセスできない非ユーザエリアが 設けられている。

【0073】この第5の実施例では、図7で、非ユーザ エリア内の○印で示したパッファトラックを利用して、 ホストコンピュータからパラメータ設定コマンドによっ て送信されたパラメータで指定された所定の設定値 (全 交替領域に対する設定値と、1グループ当りの交替領域 に対する設定値)を記録する。このように、非ユーザエ リアに記録すれば、ユーザが誤って消去してしまう恐れ がなく、また、ディスクを使用するたび毎にパラメータ を設定する必要もないので、ライト時間を短縮すること ができる。

[0074]

【実施例6】次に、第6の実施例を説明する。この実施 例は、主として、請求項6の発明に関連しているが、請 求項1から請求項5の発明とも関連している。この実施 例では、先の第5の実施例で説明した非ユーザエリアに 記録されたパラメータ、すなわち、所定の設定値(全交 替領域に対する設定値と、1グループ当りの交替領域に 対する設定値)を、パワーオン時、およびディスク交換 時に、当該ディスク装置が、自動的に読み出す点に特徴 を有している。

【0075】この第6の実施例でも、そのハード構成や 書き込み処理のフェーズシーケンスの構成は、基本的に 先の第1や第5の実施例と同様である。この実施例で は、パワーオン時、およびディスク交換時に、当該ディ スク装置は、ディスクの初期化を行うので、次に、フロ ーチャートによってディスク初期化の動作を説明する。 【0076】図8は、この発明のディスク装置におい て、ディスク初期化時の主要な処理の流れを示すフロー チャートである。図において、#11~#15はステッ プを示す。ステップ#11で、ライトパワー設定, 交替 情報読み出し等の通常の初期化を行う。ステップ#12 で、ディスク装置は、ディスクの非ユーザエリアから、 パラメータ、すなわち、所定の設定値(全交替領域に対 する設定値と、1グループ当りの交替領域に対する設定 値)を読み出す。

【0077】ステップ#13で、ディスクにパラメータ が記録されているかどうかチェックする。もし、ディス クにパラメータが記録されていれば、次のステップ#1 4で、メモリ(図1や図4で説明したSCSIコントロ ール部1内のRAM13)に、当該パラメータを書き込 んで、この図8のフローを終了する。

【0078】また、先のステップ#13でチェックした 結果、ディスクにパラメータが記録されていなければ、 ステップ#15で、警告フラグをセットして、この図8 のフローを終了する。以上のステップ#11~#15の 処理によって、ディスクが初期化され、ディスクに記録

[0079]

【実施例7】次に、第7の実施例を説明する。この実施 例は、主として、請求項7の発明に関連しているが、請 求項1から請求項6の発明とも関連している。この実施 例では、先の第6の実施例で説明したディスクの初期化 時に、パラメータ、すなわち、所定の設定値(全交替領 域に対する設定値と、1グループ当りの交替領域に対す る設定値)が、ディスク上に記録されていない場合、パ ワーオン後、またはディスク交換後に、ホストコンピュ ータに対して警告を行う点に特徴を有している。

【0080】この第7の実施例でも、そのハード構成や 書き込み処理のフェーズシーケンスの構成は、基本的に 先の第1や第6の実施例と同様である。この発明のディ スク装置では、先の第6の実施例で、図8に関連して説 明したように、ディスクを初期化する。

【0081】この場合に、もし、交替領域に関するパラ メータが、ディスクに記録されていなければ(ホストコ ンピュータが、当該パラメータを送信していない場 合)、ホストコンピュータに対して、その旨を警告す る。ここで、この発明のディスク装置におけるフェーズ 20 シーケンスによって、ディスク初期化の警告動作を説明 する。

【0082】図9は、この発明のディスク装置における ディスク初期化時のフェーズシーケンスの構成の一実施 例を示す図である。図における符号は図3と同様であ る。ライト動作時には、セレクション・フェーズP1 で、あるディスク装置を選択し、コマンド・フェーズP 2で、選択されたディスク装置が、ライトコマンドを受 信する。

【0083】ライトコマンドを受信すると、ディスク装 置は、このコマンド・フェーズP2の終了直後に、ステ ータス・フェーズP4へ移行して、セットされた警告フ ラグ(図8のステップ#15)に基き、ホストコンピュ ータにエラー(警告エラー)を返信して、メッセージ・ イン・フェーズP5で終了する(図8のフローチャー ト)。このように、ホストコンピュータに対して、当該 パラメータが送信されていないことを警告することによ って、選択されたディスク装置は、パラメータ(全交替 領域に対する設定値と、1グループ当りの交替領域に対 する設定値)の送出を要求するので、交替領域の残りセ 40 クタ数を報告する機能が維持される。

[0084]

【発明の効果】請求項1の発明では、自動的に交替領域 の残り総セクタ数をホストコンピュータへ報告するよう にしている。したがって、ユーザは、セクタの残り数を 計算する必要なしに、ディスク全体の使用状態(劣化状 態)を把握することが可能となり、操作性が向上され る。

【0085】請求項2の発明では、アクセスしたグルー

ータへ報告するようにしている。したがって、ユーザ は、当該グループ内の交替領域の残りセクタ数を計算す る必要なしに、当該グループ内の使用状態 (劣化状態) を把握することが可能になる。

【0086】また、ユーザが、交替領域の残りセクタが 少ないグループへデータを書き込むことを回避すれば、 グループ内の交替領域が全て使用されてしまったときに 生じる、他グループ内の交替領域の空きセクタへ代替え する余分なアクセス時間も節減される。

10 【0087】請求項3の発明では、交替領域の残りセク 夕数が、ユーザ(ホストコンピュータ)が設定した設定 値よりも少なくなったとき、ホストコンピュータへ報告 するようにしている。したがって、ユーザは、迅速かつ 正確に、ディスクの交換時期を知ることができる。

【0088】請求項4の発明では、ユーザが、交替領域 の残りセクタ数の報告に関するパラメータ(設定値) を、任意に設定するごとができる。したがって、ユーザ は、独自のディスクの交換時期を判断することができ る。

【0089】請求項5の発明では、ディスク上の、ユー ザがアクセスできない非ユーザエリアに、パラメータ (設定値)を記録する。したがって、ユーザが誤って当 該パラメータを消去してしまう、という恐れがなくな り、また、ディスクに書き込むことによって、ディスク を使用するたびにパラメータを設定する必要がなくなる ので、無駄な時間も省略される。

【0090】請求項6の発明では、パワーオン時および ディスク交換時に、請求項5の発明で記録されたパラメ ータを自動的に読み出すようにしている。したがって、 ディスク交換時等に、ユーザが当該パラメータを読み出 す処理が不要となり、操作性が向上される。

【0091】請求項7の発明では、当該パラメータがデ ィスク上の非ユーザエリアに記録されていない場合に、 ユーザ(ホストコンピュータ)に対してその旨を警告し て、ホストコンピュータにパラメータの送出を要求す る。したがって、ユーザに対してに交替領域の残りセク 夕数を報告する機能が、常に維持される。

【図面の簡単な説明】

【図1】この発明のディスク装置について、その要部構 成の一実施例を示す機能プロック図である。

【図2】 ディスク装置における通常の書き込み処理のフ エーズシーケンスの構成を示す図である。

【図3】この発明のディスク装置における通常の書き込 み処理のフェーズシーケンスの構成の一実施例を示す図 である。

【図4】この発明のディスク装置において使用する交替 領域残数報告メッセージの構成について、その一実施例 を示す図である。

【図5】この発明のディスク装置において、交替領域の プに対する交替領域の残り総セクタ数をホストコンピュ 50 残りセクタ数の検出時の主要な処理の流れを示すフロー

チャートである。

【図6】ホストコンピュータから発行されるパラメータ 設定コマンドの構成の一実施例を示す図である。

【図7】ディスク上のユーザエリアと非ユーザエリアに ついて、そのレイアウトの一例を示す図である。

【図8】この発明のディスク装置において、ディスク初 期化時の主要な処理の流れを示すフローチャートであ

【図9】この発明のディスク装置におけるディスク初期 化時のフェーズシーケンスの構成の一実施例を示す図で 10 12 ROM ある。

【図10】ディスク上のユーザエリアと交替領域につい て、そのレイアウトの一例を示す図である。

【図11】ディスク上のユーザエリアと交替領域につい て、あるグループの交替領域が不足した場合の一例を示 す図である。

【図12】リード・デフェクト・データ・コマンドの実

行に対応して返送されるデータについて、その構成を示 す図である。

【図13】ディスク初期化時に使用されるフォーマット コマンドのタイプ0のパラメータを示す図である。

【図14】ディスク初期化時に使用されるフォーマット コマンドのタイプ1のパラメータを示す図である。

【符号の説明】

- 1 SCSIコントロール部
- 11 CPU
- 13 RAM
- 14 データバッファ
- 15 SCSIコントローラ
- 2 ディスク制御部
- 3 ディスク
- 4 ホストコンピュータ
- 5 SCSIバス

【図1】

【図4】

パイト (Byte)	値	内 容				
0	01	拡張メッセージを示す				
1	X,	バイト2以降のこのメッセージの長さを設定 (α+2がこのメッセージのトータル長さ)				
2	20	交替領域残数報告メッセージを示す				
3	00	全交替領域を示す I D				
4	X ₁	全交替領域の残りセクタ数				
5	X ₂	アクセスしたグループ番号				
6	Хэ	グループ内の交替領域の残りセクタ数				
7						

【図6】

パイト	数値	内 容			
0	2 0	残数報告に関するパラメータを示す			
1	α	全交替領域に対する設定値をセット			
2	β	1 グループ当りの交替領域に対する設定値をセット			

【図7】

【図8】

【図13】

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
2	FORMAT MODE (01H)								
3		TYPE (00H)							
4		SIZE OF USER BAND (MSB)							
5		SIZE OF USER BAND							
6		SIZE OF USER BAND							
7		SI	ZE OF	USER	BAN	D (LSB)		
8	SIZE OF SPARE BAND (MSB)								
9		SI	ZE OF	SPAR	RE BA	ND (LS	в)		
10	RESERVED								
11	RESERVED								

【図10】

【図11】

【図12】

4 3 2 1 0	RESERVED	PLIST GLIST DEFECT LIST FORMAT	DEFECT LIST LENGTH (MSB)	DEFECT LIST LENGTH (LSB)
9 1.		RESERVED		
Byte Byte	0	1	23	င

[図14]

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
2	FORMAT MODE (01H)							
3		TYPE (01 ^H)						
4		NUMBER OF GROUPS (MSB)						
5		NUMBER OF GROUPS						
6		NUMBER OF GROUPS						
7		NUMBER OF GROUPS (LSB)						
8	SIZE OF SPARE BAND (MSB)							
9		SI	ZE OF	SPAF	RE BA	ND (LS	B)	
10	RESERVED							
11	RESERVED							