CMA 使用不同误差计算方法对非线性曲线拟合 结果的影响

1. 误差计算方式

对于函数f(x),有大小为 n 的观测样本 $S=\{(x_1,\hat{f}(x_1),x_2,\hat{f}(x_2),...,x_n,\hat{f}(x_n)\}$,通过观测样本拟合函数f(x),误差计算方式分为三种:

均方误差(Mean Squared Error, MSE):

$$\frac{\sum (f(x_i) - \hat{f}(x_i))^2}{n}$$

百分比误差(Mean Percent Error, MPE):

$$\frac{\sum (\frac{f(x_i) - \hat{f}(x_i)}{f(x_i)})^2}{n}$$

绝对值误差(Mean Absolute Error, MAE):

$$\frac{\sum \left| \frac{f(x_i) - \hat{f}(x_i)}{f(x_i)} \right|}{n}$$

2. 函数

构造非线性曲线,选用一元二次多项式函数: $f_1(x)=\omega_2x^2+\omega_1x+\omega_0$,令 $\omega_0=0$ 经过原点; 此外选用指数函数 $f_2(x)=a(e^{\frac{x}{b}}-1)$,经过原点。

3. 数据集

为模拟对函数 $f_1(x)$ 采样过程,构造噪点函数:

$$f_{11}(x) = \omega_2 x^2 + \omega_1 x + \omega_0 + \frac{1}{20\sqrt{2\pi}} e^{(-\frac{x^2}{800})}$$

为模拟对函数 $f_1(x)$ 采样过程,构造噪点函数:

$$f_{21}(x) = a(e^{\frac{x}{b}} - 1) + \frac{1}{20\sqrt{2\pi}}e^{(-\frac{x^2}{800})}$$

另外为模拟数据点离原点远近对其集中程度的影响,使用指数分布

$$f(x;\beta) = \frac{1}{\beta}e^{-\frac{x}{\beta}}$$

函数 f_{11} 使用参数向量(2,1,0),函数 f_{12} 使用参数向量(0.5,2),最后构造 6 个数据集: S0~S5, 其中 S0~S2 使用多项式函数产生噪点数据,S3~S5 使用指数函数产生噪点数据,对应如下图 1 所示。

图 1 6 个数据集与其分布情况

4. 测试结果

下表为使用CMA算法在上面数据集基础上计算残差函数到达最小值时的函数参数。

表 1 CMA 函数参数结果

数据集	S0	S1	S2	S3	S4	S5
参数向量						
pmse	1. 9261, 2. 3326, -1. 8857	1. 9858, 1. 2944, 0. 7171	2. 0026, 0. 9484, -0. 9666	10. 3715, 5. 4289	6. 8239, 3. 0361	14, 7554, -1. 5484
pmpe	2. 7009, -0. 6332, 13. 8089	,	0. 6115, 2. 6682, 10. 1617	12. 1946, 8. 8389	11. 24, 1. 9114	5. 5104, 2. 0464
pmae	2. 0378, -0. 5021, 16. 5252	2. 5931, -1. 0274, 12. 4453	8. 7492,	16. 2185, 2. 0636	9. 805, 5. 9454	12. 1325, 2. 6738

下图为 cma 拟合函数的可视化结果

