Math 300 Notes

Raunak Bhagat

Feb. 6, 2022

1 Overview

Below is a (hopefully comprehensive) list of all the topics that have been covered:

- 1 Complex Numbers
 - 1.1 The Algebra of Complex Numbers
 - 1.2 Point Representations of Complex Numbers
 - 1.3 Vectors and Polar Forms
 - 1.4 The Complex Exponential
 - 1.5 Powers and Roots
 - 1.6 Planar Sets
- 2 Analytic Functions
 - 2.1 Functions of a Complex Variable
 - 2.2 Limits and Continuity
 - 2.3 Analyticity
 - 2.4 The Cauchy-Riemann Equations
 - 2.5 Harmonic Functions
- 3 Elementary Functions
 - 3.1 Polynomials and Rational Functions
 - 3.2 The Exponential, Trigonometric, and Hyperbolic Functions
 - 3.3 The Logarithmic Function
 - 3.5 Complex Powers and Inverse Trigonometric Functions
- 4 Complex Integration
 - 4.1 Contours
 - 4.2 Contour Integrals

2 Definitions and Theorems

1

1.1

adf

- 1.2
- 1.3
- 1.4
- 1.5
- 1.6

2

- 2.1
- 2.2
- 2.3
- 2.4

Definition 1 (Cauchy-Riemann). \longrightarrow A complex function, $f : \mathbb{R} \to \mathbb{R}$ is considered to satisfy Cauchy-Riemann iff:

$$\left(u_x = v_y\right) \wedge \left(u_y = -v_x\right) \tag{1}$$

where f := u + iv and $u, v : \mathbb{R}^2 \to \mathbb{R}$.

Definition 2 (Differentiability and C-R). \longrightarrow Consider $f: \mathbb{C} \to \mathbb{C}$ and some $z_0: \mathbb{C}$.

$$f$$
 is differentiable at $z_0 \implies f$ satisfies C-R at z_0 (2)

Definition 3 (C-R and Differentiability). \longrightarrow Similarly, consider $f: \mathbb{C} \to \mathbb{C}$ and some $z_0: \mathbb{C}$.

$$\left(f_x, f_y \text{ exist and are continuous at } z_0\right) \wedge \left(f \text{ satisfies } C\text{-}R \text{ at } z_0\right) \implies f \text{ is differentiable at } z_0$$
(3)

2.5

Definition 4 (Laplace's Operator and Equation). \longrightarrow Let $\phi : \mathcal{C}^2(\mathbb{R}^n \to \mathbb{R})$ be a real-valued function in which at least all of its second partial derivatives exist. ϕ is said to solve Laplace's equation iff:

$$\Delta(\phi) = 0 \tag{4}$$

where Δ , the Laplace operator, is defined as:

$$\Delta = \left(\phi \mapsto \sum_{j=2}^{n} f_{x_j x_j}\right) \tag{5}$$

Definition 5 (Harmonic Functions). \longrightarrow A real-valued function, $f : \mathcal{C}(X \to Y)$ (i.e., an at least twice differentiable function), is considered harmonic on some domain D iff:

$$\Delta(f) = \sum_{j=2}^{n} f_{x_j x_j} = 0 \tag{6}$$

for every point in D.

Theorem 1 (Analyticity and Harmonicity). \longrightarrow Let $f : \mathbb{C} \to \mathbb{C}$ be some complex-valued function, where:

$$f := u + iv \tag{7}$$

Thus:

$$f$$
 is analytic on $D \implies u, v$ are harmonic on D (8)

where D is some complex domain.

Theorem 2 (Existence of a Harmonic Conjugate). \longrightarrow Consider some function, $u: \mathcal{C}^2(\mathbb{R}^2 \to \mathbb{R})$. Thus:

$$u \text{ is harmonic on } D \implies \left((\exists v : \mathcal{C}^2(\mathbb{R}^2 \to \mathbb{R}), v \text{ is harmonic on } D) \land (f := u + iv \text{ is analytic on } D) \right)$$

$$\tag{9}$$

Here, v is considered the harmonic conjugate of u.