С. Р. Насыров

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. ФУНКЦИОНАЛЬНЫЕ РЯДЫ

1 Введение

В настоящем учебном пособии излагаются теория несобственных интегралов, зависящих от параметра, а также функциональные ряды. Материал соответствует курсу «Математический анализ» для классических университетов, 4-й семестр.

2 Несобственные интегралы, зависящие от параметра

2.1 Равномерная сходимость последовательности функций

Сначала рассмотрим пример, дающий представление о равномерной сходимости. Пусть из пункта A в пункт B движется счетное число черепах T_1, T_2, \ldots Они начинают движение в одно и то же время и движутся равномерно с фиксированной скоростью. Пусть скорость черепахи T_n равна 1/n, расстояние AB равно 1. Спрашивается, наступит ли момент времени, когда все черепахи окажутся в пункте B? Ответ отрицательный. Действительно, черепаха T_n окажется в пункте B в момент времени n. Поскольку множество натуральных чисел не ограничено сверху, то для любого момента времени t существует такое натуральное n, что n > t. Это означает, что черепаха T_n в момент времени t еще не придет в пункт B. Этот пример показывает, что если число объектов бесконечно и каждый из них в какой-то момент времени приходит в конечный пункт, то это не значит, что в какой-то момент все они придут в этот пункт. Это пример неравномерного движения (сходимости).

Теперь дадим определения поточечной и равномерной сходимости последовательности функций. Пусть $f_n: X \to \mathbb{R}$ — последовательность функций на множестве X. Говорят, что последовательность f_n сходится поточечно на X к функции $f: X \to \mathbb{R}$, если для любого $x \in X$ числовая последовательность $f_n(x)$ сходится к f(x). Более подробно, f_n сходится к f поточечно на X, если $\forall x \in X \ \forall \varepsilon > 0 \ \exists N = N(\varepsilon, x): \forall n \geq N \ |f_n(x) - f(x)| < \varepsilon$.

Говорят, что последовательность f_n сходится равномерно на X к функции $f: X \to \mathbb{R}$, если $\forall \varepsilon > 0 \; \exists N = N(\varepsilon) : \forall n \geq N \; \forall x \in X \; |f_n(x) - f(x)| < \varepsilon$. Отметим, что в отличие от поточечной, при равномерной сходимости но-

мер N не зависит от x, т. е. может быть выбран единым для всех x сразу. В случае равномерной сходимости пишут $f_n \Rightarrow f$ на X.

Если $\forall x \in X$ выполняется неравенство $|f_n(x) - f(x)| < \varepsilon$, то $\sup_{x \in X} |f_n(x) - f(x)| \le \varepsilon$. Обратно, если $\sup_{x \in X} |f_n(x) - f(x)| \le \varepsilon$, то $|f_n(x) - f(x)| \le \varepsilon$ $\forall x \in X$. Это показывает, что равномерная сходимость равносильна тому, что числовая последовательность $\sup_{x \in X} |f_n(x) - f(x)|$ стремится к нулю при $n \to \inf ty$. (То, что знак в неравенстве $|f_n(x) - f(x)| \le \varepsilon$ нестрогий, несущественно, так как ε — любое положительное число, и его всегда можно уменьшить.)

Очевидна следующая

Теорема. Если последовательность функций f_n сходится κ f на X равномерно, то она сходится κ f на X и поточечно.

Обратное утверждение неверно, как показывают примеры ниже.

Отметим некоторые простые свойства равномерной сходимости, которые сразу следуют из определений.

- 1) Если X конечное множество, то из поточечной сходимости следует равномерная.
- 2) Если $f_n \rightrightarrows f$ на множествах X_1, X_2, \ldots, X_m , то $f_n \rightrightarrows f$ на $X = \bigcup_{j=1}^m X_j$.
- 3) Если $f_n \Rightarrow f$, $g_n \Rightarrow g$ на множестве X, то $f_n + g_n \Rightarrow f + g$ на множестве X.
 - 4) Если $f_n \rightrightarrows f$ на множестве $X, \alpha \in \mathbb{R}$, то $\alpha f_n \rightrightarrows \alpha f$ на множестве X.
- 5) Если $f_n \rightrightarrows f$, а функция g ограничена на множестве X, то $gf_n \rightrightarrows gf$ на множестве X.

2.2 Геометрическая интерпретация равномерной сходимости

Посмотрим, что означает геометрически условие $|f_n(x) - f(x)| < \varepsilon \ \forall x \in X$. Оно равносильно неравенству $f(x) - \varepsilon < f_n(x) < f(x) + \varepsilon \ \forall x \in X$. Следовательно, график функции $y = f_n(x)$ на множестве X при $n \ge N$ лежит в узкой полоске «высоты» 2ε , ограниченной сверху и снизу графиками функций $y = f(x) + \varepsilon$ и $y = f(x) - \varepsilon$.

Примеры. 1) Рассмотрим последовательность функций $f_n(x) = x^n$ на отрезке X = [0; 1]. Поточечный предел последовательности f_n суще-

ствует и равен

$$f(x) = \begin{cases} 0, & 0 \le x < 1, \\ 1, & x = 1. \end{cases}$$

Докажем, что равномерной сходимости здесь нет. Действительно, $\sup_{x \in X} |f_n(x) - f(x)| = \sup_{0 \le x < 1} x^n = 1 \not\to 0, \ n \to \infty.$

2) Пусть $f_n(x) = x^n - x^{n+1}$, $0 \le x \le 1$. Тогда $f_n \to 0$ поточечно на [0;1]. Исследуем, будет ли равномерная сходимость. Имеем $\sup_{[0;1]} |f_n| = \max_{[0;1]} f_n$. Найдем максимальное значение функции f_n на [0;1]. Имеем $f'(x) = nx^{n-1} - (n+1)x^n$, откуда нетрудно заключить, что функция f_n имеет максимум в точке x = n/(n+1). Тогда

$$\sup_{[0;1]} |f_n| = f_n\left(\frac{n}{n+1}\right) = \left(\frac{n}{n+1}\right)^n \left(1 - \frac{n}{n+1}\right) \le 1 - \frac{n}{n+1} = \frac{1}{n+1} \to 0,$$

 $n \to \infty$. Таким образом, $f_n \rightrightarrows f$ на [0;1].

2.3 Критерий Коши равномерной сходимости последовательности функций

Теорема. Последовательность f_n сходится равномерно на X к некоторой функции f тогда и только тогда, когда $\forall \varepsilon > 0 \ \exists N : \forall n, m \geq N \ \forall x \in X \ |f_n(x) - f_m(x)| < \varepsilon$.

Доказательство. Необходимость. Пусть $f_n \rightrightarrows f$ на X. Тогда $\forall \varepsilon > 0$ $\exists N = N(\varepsilon): \forall n \geq N \ \forall x \in X \ |f_n(x) - f(x)| < \varepsilon/2$. Если $n, m \geq N$, то $|f_n(x) - f_m(x)| \leq |f_n(x) - f(x)| + |f(x) - f_m(x)| < \varepsilon/2 + \varepsilon/2 = \varepsilon$.

Достаточность. Пусть $\varepsilon > 0$. Тогда $\exists N : \forall n, m \geq N \ \forall x \in X \ |f_n(x) - f_m(x)| < \varepsilon$. При фиксированном $x \in X$ получаем, что числовая последовательность $f_n(x)$ фундаментальна, следовательно, сходится к некоторому пределу, который обозначим через f(x). Докажем, что $f_n \rightrightarrows f$ на X. Так как $\forall x \in X$ при $n, m \geq N$ имеет место неравенство $|f_n(x) - f_m(x)| < \varepsilon$, то при $m \to \infty$ получаем $|f_n(x) - f(x)| \leq \varepsilon$. Итак, $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \forall n \geq N \ \forall x \in X \ |f_n(x) - f(x)| \leq \varepsilon$. Это означает, что $f_n \rightrightarrows f$ на X.

2.4 Равномерная сходимость и непрерывность

Одним из важных свойств равномерной сходимости является свойство сохранения непрерывности. Справедлива

Теорема. Пусть X — топологическое пространство и функции f_n непрерывны в точке $x_0 \in X$. Если $f_n \rightrightarrows f$ на X, то функция f также непрерывна в точке x_0 .

Доказательство. Фиксируем $\varepsilon > 0$. Так как $f_n \Rightarrow f$ на X, то $\exists N = N(\varepsilon): \forall n \geq N \ \forall x \in X \ |f_n(x) - f(x)| < \frac{\varepsilon}{3}$. Фиксируем $n \geq N$. Функция f_n непрерывна в точке x_0 , поэтому существует окрестность U точки x_0 такая, что $\forall x \in U$ имеем $|f_n(x) - f_n(x_0)| < \frac{\varepsilon}{3}$. Тогда для любого $x \in U$ имеем $|f(x) - f(x_0)| \leq |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$. Итак, $\forall \varepsilon > 0$ существует окрестность U точки x_0 такая, что $\forall x \in U \ |f(x) - f(x_0)| < \varepsilon$. Это означает, что функция f непрерывна в точке x_0 .

Следствие 1. Если функции f_n непрерывны на X и $f_n \Rightarrow f$ на X, то функция f непрерывна на X.

Следствие 2. Если функции f_n непрерывны на X и $f_n \to f$ на X, а функция f не непрерывна на X, то $f_n \not\rightrightarrows f$ на X.

Следствие 3. Пусть $f_n \Rightarrow f$ на X, x_0 — предельная точка X и существует $\lim_{x\to x_0} f_n(x) = \alpha_n, \ n \geq 1$. Если $\alpha_n \to \alpha, \ n \to \infty$, то существует $\lim_{x\to x_0} f(x) = \alpha$.

Доказательство. Если $x_0 \notin X$, то определим, если $x_0 \in X$, то переопределим f_n и f в точке x_0 по формулам $f_n(x_0) = \alpha_n$, $f(x_0) = \alpha$. Тогда новые функции f_n сходятся равномерно к новой функции f на множестве $X \cup \{x_0\}$. Кроме того, функции f_n непрерывны в точке x_0 , поэтому по предыдущей теореме функция f непрерывна в точке x_0 , т. е. $\lim_{x\to x_0} f(x)\alpha$.

Отметим, что последнее равенство можно записать в виде

$$\lim_{x \to x_0} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to x_0} f_n(x).$$

Теперь поставим вопрос: при каких дополнительных условиях из поточечной сходимости следует равномерная? Приводимая ниже теорема Дини частично дает ответ на этот вопрос.

Последовательность функций f_n на множестве X называется монотонно убывающей, если для любого $x \in X$ имеют место неравенства

$$f_1(x) \ge f_2(x) \ge \ldots \ge f_n(x) \ge \ldots$$

$$f_1(x) \le f_2(x) \le \ldots \le f_n(x) \le \ldots, \quad \forall x \in X.$$

Монотонно убывающие и монотонно возрастающие последовательности часто называются просто монотонными.

Напомним некоторые сведения из топологии.

- 1) Замкнутое подмножество компактного множество компактно.
- 2) Пусть $X_1 \supset X_2 \supset \ldots \supset X_n \supset \ldots$ некоторая последовательность непустых компактных множеств в некотором топологическом пространстве. Тогда $\bigcap_{n=1}^{\infty} X_n \neq \emptyset$.
- 3) Прообраз замкнутого множества при непрерывном отображении является замкнутым множеством.

Теорема (Дини). Пусть f_n — монотонная последовательность непрерывных функций на компактном множестве X. Если f_n поточечно сходится к непрерывной на X функции f, то эта последовательность сходится к f на X равномерно.

Доказательство. Пусть для определенности, f_n монотонно убывает. Рассмотрим функции $g_n(x) = f_n(x) - f(x)$. Ясно, что $g_1(x) \ge g_2(x) \ge \dots \ge g_n(x) \ge \dots$, причем g_n непрерывны на X. Фиксируем $\varepsilon > 0$ рассмотрим множества $X_n := \{x \in X \mid g_n(x) \ge \varepsilon\} = g_n^{-1}([\varepsilon, +\infty))$. Так как множество $[\varepsilon, +\infty)$ замкнуто, а функции g_n непрерывны, то X_n — замкнутые подмножества компактного множества X, следовательно, X_n компактны. Из монотонности последовательности g_n следует, что $X_1 \supset X_2 \supset \dots \supset X_n \supset \dots$ По условию теоремы g_n поточечно сходится к нулю. Это означает, что $\forall x \in X \exists N : \forall n \ge N \ g_n < \varepsilon$, т. е. $x \not\in X_n$. Следовательно, $\bigcap_{n=1}^\infty X_n = \emptyset$. Но пересечение непустых вложенных друг в друга компактных множеств непусто. Следовательно, $\exists n_0 : X_{n_0} = \emptyset$. Тогда $X_n = \emptyset$, $n \ge n_0$, т. е. $\forall n \ge n_0$ и $\forall x \in X \ g_n(x) < \varepsilon$, т. е. $|f_n(x) - f(x)| < \varepsilon$. Так как ε — любое положительное число, то отсюда следует равномерная сходимость f_n к f.

Отметим некоторые свойства равномерной сходимости.

- 1) Если $f_n(x) \equiv \alpha_n = \text{const}$ сходится к $\alpha = \text{const}$, то $f_n \rightrightarrows f$.
- 2) Если $f_n \rightrightarrows f$ а X и g ограниченная функция на X, то $gf_n \rightrightarrows gf$ на X.

Действительно, $\sup_X |gf_n-gf| = \sup_X |g(f_n-f)| \le \sup_X |g| \sup_X |f_n-f| \to 0, \ n \to \infty.$

2.5 Равномерная сходимость и операции дифференцирования и интегрирования

Теорема 1. Пусть f_n — последовательность интегрируемых функций на измеримом по Жордану множестве A функций сходится κ интегрируемой на A функции f равномерно. Тогда $\int_A f_n(x) dx \to \int_A f(x) dx$, $n \to \infty$.

Доказательство. Действительно,

$$\left| \int_{A} f_n(x) dx - \int_{A} f(x) dx \right| = \left| \int_{A} (f_n(x) dx - f(x)) dx \right| \le \sup_{X} |f_n - f| \cdot \mu(A) \to 0,$$

$$n \to \infty.$$

Теорема 2. Пусть последовательность функций f_n определена на [a;b] и в некоторой точке $c \in [a;b]$ числовая последовательность $f_n(c)$ сходится к некоторому числу α . Если f_n дифференцируемы на [a;b] и производные f'_n сходятся равномерно на [a,b] к некоторой функции g, то последовательность f_n сходится равномерно к дифференцируемой функции f и f' = g.

Доказательство. Фиксируем $x \in [a, b]$. Пусть

$$\varphi_n(x) = \begin{cases} \frac{f_n(x) - f_n(x_0)}{x - x_0} & x \neq x_0, \\ f'_n(x_0), & x = x_0. \end{cases}$$

Докажем, что последовательность φ_n сходится равномерно на [a;b]. Фиксируем $\varepsilon > 0$. Тогда по критерию Коши $\exists N: \forall x \in [a;b] \ \forall m \geq n \geq N$ имеет место неравенство $|f_n'(x) - f_m'(x)| < \varepsilon$. При $m \geq n \geq N$ в силу формулы конечных приращений Лагранжа при $x \neq x_0$ имеем

$$|\varphi_n(x) - \varphi_m(x)| = \left| \frac{f_n(x) - f_n(x_0)}{x - x_0} - \frac{f_m(x) - f_m(x_0)}{x - x_0} \right| = \left| \frac{(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))}{x - x_0} \right| = |f'_n(\theta) - f'_m(\theta)| < \varepsilon,$$

где θ лежит между x и x_0 . Отметим, что при $x=x_0$ также

$$|\varphi_n(x) - \varphi_m(x)| = |f'_n(x_0) - f'_m(x_0)| < \varepsilon.$$

Следовательно, по критерию Коши последовательность φ_n сходится равномерно на [a;b]. Так как функция $g(x)=x-x_0$ ограничена на этом отрезке и не зависит от n, то последовательность $f_n(x)-f_n(x_0)=g(x)\varphi_n(x)$ сходится равномерно на [a;b]. Теперь пусть $x=x_0$. Так как числовая последовательность $f_n(c)$ сходится, то отсюда следует, что последовательность $f_n(x)$ сходится равномерно к некоторой функции f. Осталось показать, что f'=g. В силу равномерной сходимости последовательности φ_n и следствия 3 предыдущего пункта получаем, что существует

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \lim_{n \to \infty} \frac{f_n(x) - f_n(x_0)}{x - x_0} =$$
$$= \lim_{n \to \infty} \lim_{x \to x_0} \frac{f_n(x) - f_n(x_0)}{x - x_0} = \lim_{n \to \infty} f'_n(x_0) = g(x_0).$$

2.6 Собственные интегралы, зависящие от параметра

Пусть z = f(x,y) — некоторая функция, определенная на $A \times Y$, где $A \subset \mathbb{R}^n$ — множество, измеримое по Жордану и при любом $y \in Y$ существует интеграл $\int_A f(x,y) dx$. Результатом интегрирования является число $F(y) = \int_A f(x,y) dx$, которое зависит от $y \in Y$. Такие интегралы называются интегралами зависящими от параметра. Одними из наиболее интересных вопросов являются: при каких условиях на f функция F непрерывна? дифференцируема?

Теорема 1(непрерывность интеграла, зависящего от параметра). Пусть множество A компактно и функция z = f(x, y) непрерывна на $A \times [a; b]$. Тогда функция

$$F(y) = \int_{A} f(x, y) dx$$

непрерывна на [a;b].

Доказательство. Можно считать, что $\mu(A)>0$. Множество $A\times[a;b]$ компактно как произведение компактных множеств. Функция f непрерывна на $A\times[a;b]$, поэтому она равномерно непрерывна, т. е. $\forall \varepsilon>0$ $\exists \delta>0: \forall (x_1,y_1), \ (x_2,y_2)\in A\times[a;b] \ (\|x_1-x_2\|<\delta \ \text{и} \ |y_1-y_2|<\delta\Rightarrow |f(x_1,y_1)-f(x_2,y_2)|<\varepsilon/\mu(A))$. Тогда при $|y_1-y_2|<\delta$ имеем

$$|F(y_1) - F(y_2)| = \left| \int_A f(x, y_1) dx - \int_A f(x, y_2) dx \right| =$$

$$= \left| \int_A f((x, y_1) - f(x, y_2)) dx \right| \le \int_A |f((x, y_1) - f(x, y_2))| dx \le \frac{\varepsilon}{\mu(A)} \mu(A) = \varepsilon.$$

Следовательно, F непрерывна на [a;b].

Теорема 2 (дифференцируемость интеграла, зависящего от параметра). Пусть A — компактное множество, функция f непрерывна на $A \times [a;b]$ и в любой точке (x,y) множества $A \times [a;b]$ существует частная производная $\frac{\partial f(x,y)}{\partial y}$, которая является непрерывной функцией на $A \times [a;b]$. Тогда $F(y) = \int_A f(x,y) dx$ является непрерывной функцией на [a;b] и

$$F'(y) = \int_A \frac{\partial f(x,y)}{\partial y} dx, \quad y \in [a;b].$$

Доказательство. Можно считать, что $\mu(A) > 0$. Имеем

$$F'(y) = \lim_{h \to 0} \frac{F(y+h) - F(y)}{h}.$$
 (*)

Докажем, что этот предел существует и равен $\int_A \frac{\partial f(x,y)}{\partial y} dx$. Действительно, в силу формулы конечных приращений

$$\frac{F(y+h) - F(y)}{h} - \int_{A} \frac{\partial f(x,y)}{\partial y} dx = \frac{1}{h} \left[\int_{A} f(x,y+h) dx - \int_{A} f(x,y) dx \right] - \int_{A} \frac{\partial f(x,y)}{\partial y} dx = \int_{A} \frac{1}{h} [f(x,y+h) - f(x,y)] dx - \int_{A} \frac{\partial f(x,y)}{\partial y} dx = \int_{A} \left[\frac{\partial f(x,y+\theta h)}{\partial y} - \frac{\partial f(x,y)}{\partial y} \right] dx,$$

где $\theta = \theta(x,y) \in (0;1)$. Частная производная $\frac{\partial f(x,y)}{\partial y}$ непрерывна на компактном множестве $A \times [a;b]$, поэтому по теореме Кантора она равномерно непрерывна, следовательно, $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall y', \, y'' \in [a;b] \; \forall x \in A$

$$|y' - y''| < \delta \Rightarrow \left| \frac{\partial f(x, y')}{\partial y} - \frac{\partial f(x, y'')}{\partial y} \right| < \frac{\varepsilon}{\mu(A)}.$$

Используя это, получаем

$$\left| \frac{F(y+h) - F(y)}{h} - \int_{A} \frac{\partial f(x,y)}{\partial y} dx \right| \le$$

$$\leq \int_{A} \left| \frac{\partial f(x, y + \theta h)}{\partial y} - \frac{\partial f(x, y)}{\partial y} \right| dx \leq \frac{\varepsilon}{\mu(A)} \mu(A) = \varepsilon.$$

Таким образом, предел (*) существует и равен $\int_A \frac{\partial f(x,y)}{\partial y} dx$. В силу предыдущей теоремы последний интеграл является непрерывной функций переменной y. Теорема доказана.

Теорема 3 (интегрируемость интеграла, зависящего от параметра). Пусть $A \subset \mathbb{R}^n$ и $B \subset \mathbb{R}^m$ — измеримые по экордану замкнутые мноэкества и f — функция, непрерывная на $A \times B$. Тогда функция $F(y) = \int_A f(x,y) dx$ является интегрируемой на B функцией, $\Phi(x) = \int_B f(x,y) dy$ является интегрируемой на A функцией A

$$\int_B F(y)dy = \int_B dy \int_A f(x,y)dy = \int_A dx \int_B f(x,y)dx = \int_A \Phi(x)dx.$$

Эта теорема следует из свойств кратных интегралов.

Теперь рассмотрим интегралы с переменными пределами интегрирования вида $\int_{\varphi(y)}^{\psi(y)} f(x,y) dx$.

Теорема 4. Пусть f непрерывна на $[\alpha; \beta] \times [a; b]$, функции φ и ψ : $[a; b] \to [\alpha; \beta]$ непрерывны. Тогда функция $\Phi(y) = \int_{\varphi(y)}^{\psi(y)} f(x, y) dx$ непрерывна на [a; b].

Доказательство. Фиксируем точку $y_0 \in [a;b]$. Установим непрерывность Φ в точке y_0 . Имеем

$$\Phi(y) = \int_{\varphi(y)}^{\varphi(y_0)} f(x, y) dx + \int_{\varphi(y_0)}^{\psi(y_0)} f(x, y) dx + \int_{\psi(y_0)}^{\psi(y)} f(x, y) dx.$$

По теореме о непрерывности интеграла, зависящего от параметра имеем

$$\int_{\varphi(y_0)}^{\psi(y_0)} f(x, y) dx \to \int_{\varphi(y_0)}^{\psi(y_0)} f(x, y_0) dx = \Phi(y_0).$$

Оценим первое и третье слагаемые. Так как f непрерывна на компакте $[\alpha; \beta] \times [a; b]$, она ограничена, т. е. $\sup |f| = M < +\infty$. Значит,

$$\left| \int_{\varphi(y)}^{\varphi(y_0)} f(x, y) dx \right| \le M |\varphi(y_0) - \varphi(y)| \to 0, \quad y \to y_0,$$

так как φ непрерывна, поэтому первое слагаемое стремится к нулю. Аналогично показываем, что третье слагаемое стремится к нулю при $y \to y_0$. Итак, $\lim_{y\to y_0} \Phi(y) = \Phi(y_0)$. Теорема 4 доказана.

Теорема 5. Пусть выполняются условия теоремы 4 и, кроме того, существует непрерывная частная производная $\frac{\partial f}{\partial y}$ на $[\alpha; \beta] \times [a; b]$. Тогда функция Φ дифференцируема на [a; b] и

$$\Phi'(y) = \int_{\varphi(y)}^{\psi(y)} \frac{\partial f(x,y)}{\partial y} dx + f(\psi(y),y)\psi'(y) - f(\varphi(y),y)\varphi'(y).$$

Доказательство. Рассмотрим функцию трех переменных $\chi(u, v, y) = \int_u^v f(x, y) dy$. Эта функция определена и непрерывно дифференцируема на $[\alpha; \beta] \times [\alpha; \beta] \times [a; b]$ и ее частные производные равны:

$$\frac{\partial \chi}{\partial v} = f(v, y), \quad \frac{\partial \chi}{\partial u} = -f(u, y), \quad \frac{\partial \chi}{\partial y} = \int_u^v \frac{\partial f(x, y)}{\partial y} dx.$$

Здесь для вычисления $\frac{\partial \chi}{\partial v}$ и $\frac{\partial \chi}{\partial v}$ мы применили теорему о производной интеграла с переменным верхним пределом, а для вычисления $\frac{\partial \chi}{\partial y}$ — теорему 2. Так как $\Phi(y)=\chi($

 $varphi(y), \psi(y), y),$ то по правилу дифференцирования сложной функции получаем

$$\Phi'(y) = \frac{\partial \chi}{\partial u} \varphi'(y) + \frac{\partial \chi}{\partial v} \psi'(y) + \frac{\partial \chi}{\partial y}.$$

Подставляя сюда полученные выражения для частных производных функции χ , получаем требуемое равенство.

3 Однопараметрические семейства функций и равномерная сходимость

3.1 Определение равномерной сходимости семейства функций. Критерий Коши.

Рассмотрим функцию $u = F(x,t), F: X \times [a;b) \to \mathbb{R}$, где $-\infty < a < b \le +\infty$. Предположим, что для любого фиксированного $x \in X$ при $t \to b-$ существует конечный предел $\lim_{t\to b-} F(x,t) =: F_0(x)$. Тогда функция F_0 называется поточечным пределом семейства F(x,t) при $t \to b-$. Функция F_0 называется равномерным пределом семейства $F(x,t), a \le t < b$ на X при $t \to b-$, если $\sup_{x \in X} |F(x,t) - F_0(x)| \to 0, t \to b-$. Эквивалентное определение: $F(x,t) \rightrightarrows F_0(x)$ на X при $t \to b-$, если $\forall \varepsilon > 0 \ \exists b_\varepsilon \in [a;b)$: $\forall t \in (b_\varepsilon;b) \ \forall x \in X$ выполняется неравенство $|F(x,t) - F_0(x)| < \varepsilon$.

Теорема 1 (аналог теоремы Гейне). Однопараметрическое семейство функций $F(x,t) \rightrightarrows F_0(x)$ на X при $t \to b-$ тогда и только тогда, когда $\forall t_n \in [a;b)$

$$t_n \to b, \ n \to \infty \Rightarrow F(x, t_n) \rightrightarrows F_0(x), \ n \to \infty \text{ на } X.$$

Доказательство. Обозначим $g(t) = \sup_{x \in X} |F(x,t) - F_0(x)|$. Равномерная сходимость семейства $F(x,t) \rightrightarrows F_0(x)$ на X означает, что $\lim_{t \to b^-} g(t) = 0$. По теореме Гейне это эквивалентно условию: $\forall t_n \in [a;b) \ t_n \to b, \ n \to \infty$ $\Rightarrow \lim_{n \to \infty} g(t_n) = 0$. Последнее эквивалентно условию теоремы.

Теорема 2 (критерий Коши). Однопараметрическое семейство функций F(x,t) сходится равномерно к некоторой функции $F_0(x)$ на X при $t \to b-$ тогда и только тогда, когда $\forall \varepsilon > 0 \; \exists b_{\varepsilon} \in [a;b) : \forall t', t'' \in (b_{\varepsilon};b)$ $\forall x \in X$ выполняется неравенство $|F(x,t') - F(x,t'')| < \varepsilon$.

Доказательство следует из обычного критерия Коши существования предела функции, примененного к функции $g(t) = \sup_{x \in X} |F(x,t) - F_0(x)|$.

3.2 Равномерная сходимость семейства функций и непрерывность

Теорема 1. Пусть X — топологическое пространство и F(x,t), $a \le t < b$, — некоторое однопараметрическое семейство функций, непрерывных на X при любом фиксированном $t \in [a;b)$. Если $F(x,t) \rightrightarrows F_0(x)$ на X при $t \to b-$, то функция F_0 непрерывна на X.

Доказательство. Если $F(x,t) \Rightarrow F_0(x)$ на X при $t \to b-$, то в силу аналога теоремы Гейне $\forall t_n \in [a;b)$

$$t_n \to b, \ n \to \infty \Rightarrow F(x, t_n) \rightrightarrows F_0(x), \ n \to \infty \ \text{\it ha} \ X.$$

Функция F_0 является непрерывной на X как равномерный предел последовательности непрерывных функций $F(x,t_n)$.

Теорема 2 (аналог теоремы Дини). Пусть X — компактное топологическое пространство, F(x,t), $a \le t < b$, — некоторое однопараметрическое семейство функций, непрерывных на X при любом фиксированном $t \in [a;b)$, причем либо

1)
$$\forall x \in X \ \forall t_1, t_2 \in [a;b) \ t_1 < t_2 \Rightarrow F(x,t_1) \leq F(x,t_2)$$
, либо

2) $\forall x \in X \ \forall t_1, t_2 \in [a; b) \ t_1 < t_2 \Rightarrow F(x, t_1) \ge F(x, t_2).$

Eсли $\forall x \in X \ F(x,t) \to F_0(x) \ u \ F_0$ является непрерывной функцией на $[a;b), \ mo \ F(x,t) \rightrightarrows F_0(x)$ на $X \ npu \ t \to b-.$

Доказательство. Для любой последовательности $t_n \in [a;b)$ такой, что $t_n \to b, n \to \infty$, имеем последовательность $F(x,t_n)$ монотонна и сходится к непрерывнйо функции $F_0(x)$. Следовательно, последовательность $F(x,t_n) \Rightarrow f_0(x)$ на $X, n \to \infty$. По аналогу теоремы Гейне семейство $F(x,t) \Rightarrow F_0(x), t \to b-$.

3.3 Равномерная сходимость несобственных интегралов, зависящих от параметра

Пусть функция $f: Y \times [a;b) \to \mathbb{R}$ и для любого $t \in [a;b)$ интеграл $F(y,t) = \int_a^t f(x,y) dx$ является собственным интегралом Римана и при $t \to b-$ существует конечный предел $F(y) := \lim_{t\to b-} \int_a^t f(x,y) dx$, но $\int_a^b f(x,y) dx$ не является собственным интегралом Римана для любого $y \in Y$. Тогда говорят, что несобственный интеграл $\int_a^b f(x,y) dx$ сходится поточечно на Y.

Предположим, что несобственный интеграл $\int_a^b f(x,y)dx$ сходится поточечно на Y. Говорят, что несобственный интеграл $\int_a^b f(x,y)dx$ сходится равномерно на Y, если семейство $F(y,t) = \int_a^t f(x,y)dx$ сходится равномерно к $F(y) = \int_a^b f(x,y)dx$ на Y. Таким образом, $\int_a^b f(x,y)dx$ сходится равномерно на Y, если $\forall \varepsilon > 0 \; \exists b_\varepsilon \in [a;b) : \forall t \in [b_\varepsilon;b)$ и $\forall y \in Y \left| \int_t^b f(x,y)dx \right| < \varepsilon$. Действительно,

$$F(y) - F(y,t) = \int_a^b f(x,y)dx - \int_a^t f(x,y)dx = \int_t^b f(x,y)dx.$$

Теорема 1 (аналог теоремы Гейне). Несобственный интеграл $\int_a^b f(x,y) dx$ сходится равномерно на Y тогда и только тогда, когда для любой последовательности $t_n \in [a;b)$, сходящейся κ точке b, последовательность $\int_a^{t_n} f(x,y) dx$ сходится равномерно на Y κ $\int_a^b f(x,y) dx$.

Действительно, пусть $F(y,t) = \int_a^t f(x,y) dx$. Ранее было показано, что семейство F(y,t) сходится равномерно на Y к $F(y) = \int_a^b f(x,y) dx$ тогда и только тогда, когда любой последовательности $t_n \in [a;b)$, сходящейся к точке b, последовательность $F(y,t_n)$ сходится равномерно на Y к F(y).

Теорема 2 (критерий Коши). Несобственный интеграл $\int_a^b f(x,y)dx$ сходится равномерно на Y тогда и только тогда, когда $\forall \varepsilon > 0 \ \exists b_\varepsilon \in [a;b) \colon \forall t',\ t'' \in [b_\varepsilon;b)\ u\ \forall y \in Y\ \left|\int_{t'}^{t''} f(x,y)dx\right| < \varepsilon.$

Действительно,

$$\int_{t'}^{t''} f(x,y)dx = \int_{a}^{t''} f(x,y)dx - \int_{a}^{t'} f(x,y)dx = F(y,t'') - F(y,t').$$

Далее применяем критерий Коши равномерной сходимости однопараметрических семейств функций.

3.4 Достаточные условия равномерной сходимости несобственных интегралов, зависящих от параметра

Теорема 1 (признак Вейерштрасса). Пусть для любого $x \in [a;b)$ и для любого $e \in Y$ имеет место неравенство $|f(x,y| \leq g(x))$. Если несобственный интеграл $\int_a^b g(x)dx - c$ единственной особенностью в точке b и сходится, то $\int_a^b f(x,y)dx$ сходится равномерно на Y.

Доказательство. Интеграл $\int_a^b g(x)dx$ сходится, поэтому по критерию Коши сходимости несобственных интегралов $\forall \varepsilon > 0 \; \exists b_\varepsilon \in [a;b) : \forall t', t'' \in [b_\varepsilon;b)$ выполняется неравенство $\left| \int_a^b g(x)dx \right| < \varepsilon$. Тогда $\forall t', \, t'' \in [b_\varepsilon;b)$ и $\forall y \in Y$ имеем

$$\left| \int_{a}^{b} f(x,y) dx \right| \le \left| \int_{a}^{b} |f(x,y)| dx \right| \le \left| \int_{a}^{b} g(x) dx \right| < \varepsilon.$$

По критерию Коши интеграл $\int_a^b f(x,y)dx$ сходится равномерно.

Теорема 2 (Дини). Пусть $f(x,y) \ge 0$ и непрерывна на $[a;b) \times Y$, где Y — компактное множество. Предположим, что для любого $y \in Y$ интеграл $F(y) := \int_a^b f(x,y) dx$ сходится и функция F непрерывна на Y. Тогда интеграл $\int_a^b f(x,y) dx$ сходится равномерно на Y.

Доказательство. Рассмотрим любую возрастающую последовательность точек $t_n \in [a;b)$, сходящуюся к точке b. Последовательность собственных интегралов $F(y,t_n) = \int_a^{t_n} f(x,y) dx$ — это последовательность непрерывных функций на компактном множестве Y, так как f непрерывна на $[a;t_n] \times Y$.

Так как функций f неотрицательна, имеем

$$F(y, t_{n+1}) = \int_{a}^{t_{n+1}} f(x, y) dx = \int_{a}^{t_{n}} f(x, y) dx + \int_{t_{n}}^{t_{n+1}} f(x, y) dx \le$$
$$\le \int_{a}^{t_{n}} f(x, y) dx = F(y, t_{n}).$$

Следовательно, последовательность $F(y,t_n)$ монотонно возрастает при любом фиксированном $y \in Y$. По теореме Дини для последовательностей $F(y,t_n) \rightrightarrows F(y)$ на Y. Поскольку последовательность t_n произвольна, получаем $F(y,t) \rightrightarrows F(y)$, $t \to b-$ на Y. Это означает равномерную сходимость интеграла $\int_a^b f(x,y)dx$ на Y.

Теорема 3 (признак Дирихле). Интеграл $\int_a^b f(x,y)g(x,y)dx$ с единственной особенностью в точке b для любого $y \in Y$ сходится равномерно, если:

1) функция f(x,y) непрерывна на [a;b) для любого фиксированного $y \in Y$ и $\exists M>0: \forall y \in Y \ \forall t \in [a;b)$

$$\left| \int_{a}^{t} f(x, y) dx \right| \leq M;$$

2) функция g(x,y) дифференцируема и монотонно убывает по переменной x на [a;b) для любого фиксированного $y \in Y$;

3)
$$g(x,y) \Rightarrow 0, x \rightarrow b-, \mu a Y$$
.

Доказательство. Интегрируя по частям, получаем

$$\int_{t'}^{t''} f(x,y)g(x,y)dx = F(x,y)g(x,y)|_{t'}^{t''} - \int_{t'}^{t''} F(x,y)\frac{\partial g(x,y)}{\partial x}dx,$$

где $F(t) = \int_a^t f(x,y) dx$, поэтому с учетом монотонности функции g(x,y) по переменной x получаем

$$\left| \int_{t'}^{t''} f(x,y)g(x,y)dx \right| \le M|g(t'',y)| + M|g(t',y)| + M \left| \int_{t'}^{t''} \left| \frac{\partial g(x,y)}{\partial x} \right| dx \right| =$$

$$= M \left(g(t'',y) + g(t',y) + \left| \int_{t'}^{t''} \frac{\partial g(x,y)}{\partial x} dx \right| \right) \le 2M(g(t'',y) + g(t',y)).$$

Фиксируем $\varepsilon > 0$. Так как функция $g(x,y) \Rightarrow 0$ при $x \to b-$, существует $b_{\varepsilon} \in [a;b): \forall t \in [b_{\varepsilon};b) \ \forall y \in Y$ имеет место неравенство $g(t,y) < \frac{\varepsilon}{4M}$. Если $t', \ t'' \in [b_{\varepsilon};b)$, то из полученных выше оценок следует, что

$$\left| \int_{t'}^{t''} f(x,y) g(x,y) dx \right| < 2M \left(\frac{\varepsilon}{4M} + \frac{\varepsilon}{4M} \right) = \varepsilon.$$

По критерию Коши $\int_a^b f(x,y)g(x,y)dx$ сходится равномерно.

Теорема 4 (признак Абеля). Интеграл $\int_a^b f(x,y)g(x,y)dx$ с единственной особенностью в точке b для любого $y \in Y$ сходится равномерно. если:

- 1) функция f(x,y) непрерывна на [a;b) для любого фиксированного $y \in Y$ и $\int_a^b f(x,y) dx$ сходится равномерно на Y,
- 2) функция g(x,y) непрерывно дифференцируема по x и монотонно убывает для любого фиксированного $y \in Y$,
 - 3) $\exists M > 0 : \forall x \in [a; b) \ \forall y \in Y \ |g(x, y)| \le M$.

Доказательство. Как и при доказательстве теоремы 3, применим критерий Коши. Фиксируем $\varepsilon > 0$. Пусть $\tilde{F}(t) = \int_b^t f(x,y) dx$. В силу 1) $\exists t_\varepsilon \in [a,b) \colon \forall t \in (t_\varepsilon;b) \mid \tilde{F}(t) \mid < \frac{\varepsilon}{4M}$. Рассуждая как и при доказательстве теоремы 3 (только вместо F используем \tilde{F}), получаем, что $\forall t', t'' \in (t_\varepsilon;b) \forall y \in Y$

$$\left| \int_{t'}^{t''} f(x, y) g(x, y) dx \right| \le 2 \frac{\varepsilon}{4M} (g(t'', y) + g(t', y)) < \varepsilon.$$

3.5 Непрерывность и дифференцируемость несобственных интегралов, зависящих от параметра

Теорема 1. Пусть функция f непрерывна на $[a;b) \times Y$ и интеграл $F(y) = \int_a^b f(x,y)$ сходится равномерно на Y. Тогда функция F является непрерывной на Y.

Доказательство. Для любого фиксированного $t \in [a;b)$ функция $F(y,t) = \int_a^b f(x,y) dx$ непрерывна на Y по теореме о непрерывности собственного интеграла, зависящего от параметра. При $t \to b-$ семейство $F(y,t) \rightrightarrows F(y)$. Следовательно, F(y) непрерывна на Y как равномерный предел семейства непрерывных функций.

Теорема 2. Пусть функция f непрерывна на $[a;b) \times [c,d]$ и существует частная производная $\frac{\partial f(x,y)}{\partial y}$, которая является непрерывной на $[a;b) \times [c,d]$ функцией. Если для любого $y \in [c;d]$ сходится интеграл $F(y) = \int_a^b f(x,y) dx$, а интеграл $\int_a^b \frac{\partial f(x,y)}{\partial y} dx$ сходится равномерно, то функция F непрерывно дифференцируема на [c;d] и $F'(y) = \int_a^b \frac{\partial f(x,y)}{\partial y} dx$, $y \in [c;d]$.

Доказательство. Рассмотрим последовательность $t_n \in [a;b)$: $t_n \to b$, $n \to \infty$. Тогда $\forall y \in Y$

$$F(y,t_n) = \int_a^{t_n} f(x,y)dx \to F(y) = \int_a^b f(x,y)dx.$$

С помощью теоремы о дифференцировании собственных интегралов, зависящих от параметра, из условий теоремы получаем, что

$$\frac{dF(y,t_n)}{dy} = \int_a^{t_n} \frac{\partial f(x,y)}{\partial y} dx \Rightarrow \int_a^b \frac{\partial f(x,y)}{\partial y} dx$$

на [c;d] в силу равномерной сходимости последнего интеграла. По теореме о дифференцируемости последовательности функций отсюда следует, что F(y) дифференцируема и

$$F'(y) = \lim_{n \to \infty} \frac{dF(y, t_n)}{dy} = \int_a^b \frac{\partial f(x, y)}{\partial y} dx.$$

По предыдущей теореме $\int_a^b \frac{\partial f(x,y)}{\partial y} dx$ является непрерывной функцией, следовательно, F непрерывно дифференцируема.

3.6 Интегрирование несобственных интегралов, зависящих от параметра

Теорема 1. Пусть функция f(x,y) непрерывна на $[a;b) \times [c;d]$ и несобственный интеграл $\int_a^b f(x,y) dx = F(y)$ сходится равномерно на [c;d]. Тогда

$$\int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx.$$

Доказательство. Пусть $b_n \in [z;b)$ — некоторая последовательность, сходящаяся к b при $n \to \infty$. Тогда по теореме об интегрировании соб-

ственных интегралов, зависящих от параметра, имеем

$$\int_{c}^{d} \left(\int_{a}^{b_{n}} f(x, y) dx \right) dy = \int_{a}^{b_{n}} \left(\int_{c}^{d} f(x, y) dy \right) dx.$$

При $n \to \infty$

$$F_n(y) = \int_a^{b_n} f(x, y) dx \Longrightarrow F(y) = \int_a^b f(x, y) dx$$

на [c;d] по условию теоремы. Тогда, используя определение несобственного интеграла и теорему о предельном переходе под знаком интеграла, получаем

$$\int_{a}^{b} \left(\int_{c}^{d} f(x,y) dy \right) dx = \lim_{n \to \infty} \int_{a}^{b_{n}} \left(\int_{c}^{d} f(x,y) dy \right) dx = \lim_{n \to \infty} \int_{c}^{d} \left(\int_{a}^{b_{n}} f(x,y) dx \right) =$$

$$= \lim_{n \to \infty} \int_{c}^{d} F_{n}(y) dy = \int_{c}^{d} F(y) dy = \int_{c}^{d} \left(\int_{a}^{b} f(x,y) dx \right) dy.$$

Теорема 2. Пусть функция f(x,y) непрерывна и неотрицательна на $[a;b) \times [c;d)$, несобственный интеграл $\int_a^b f(x,y) dx = F(y)$ сходится для любого $y \in [c;d)$, несобственный интеграл $\int_c^d f(x,y) dy = G(x)$ сходится для любого $x \in [a;b)$ и функции F и G являются непрерывными на [c;d) и a;b) соответственно. Если сходится один из интегралов $\int_c^d F(y) dy$, $\int_a^b G(x) dx$, то сходится и другой и их значения совпадают:

$$\int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx.$$

Доказательство. Обозначим $A = \int_c^d F(y) dy$, $B = \int_a^b G(x) dx$. Фиксируем некоторую возрастающие последовательности точек $b_n \in [a;b)$ и $d_n \in [c;d_n)$. Так как интеграл $\int_a^b f(x,y) dx = F(y)$ сходится для любого $y \in [c;d)$, $f \geq 0$ и F(y) непрерывна, то по теореме Дини этот интеграл сходится равномерно на любом отрезке $[c;d_n] \subset [c;d]$. Аналогично, интеграл $G(x) = \in_c^d f(x,y) dy$ сходится равномерно на любом отрезке $[a;b_n] \subset [a;b)$. По предыдущей теореме с учетом неотрицательности f имеем

$$\int_{c}^{d_{n}} \left(\int_{a}^{b} f(x, y) dx \right) dy = \int_{a}^{b} \left(\int_{c}^{d_{n}} f(x, y) dy \right) dx \le \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx,$$

следовательно, $\int_c^{d_n} F(y) dy \leq B$. Так как $F(y) \leq 0$, то отсюда следует, что существует конечный $\lim_{n\to\infty} \int_c^{d_n} F(y) dy \leq B$. Итак, $A \leq B$. совершенно аналогично получаем, что $B \leq A$, поэтому A = B.

Пример. Вычислим интеграл Дирихле $\int_0^{+\infty} \frac{\sin x}{x} dx$. Отметим, что несобстввенный интеграл сходится, так как $\sin x \sim x$, $x \to 0$, а на $+\infty$ интеграл сходится по признаку Дирихле ($\sin x$ имеет ограниченную первообразную, а 1/x монотонно стремится к нулю).

Для вычисления интеграла Дирихле рассмотрим вспомогательный интеграл $F(y)=\int_0^{+\infty}e^{-xy}\frac{\sin x}{x}dx,\ y\geq 0.$ Этот интеграл сходится равномерно по признаку Абеля на $[0;+\infty)$. Действительно, интеграл Дирихле сходится, а функция e^{-xy} обладает свойствами: $|e^{-xy}|\leq 1,\ x,\ y\geq 0$, она убывает по x при любом фиксированном $y\geq 0$.

Применяя теорему о непрерывности несобственного интеграла, зависящего от параметра, получаем, что F(y) — непрерывная функция и интеграл Дирихле $\int_0^{+\infty} \frac{\sin x}{x} dx = F(0) = \lim_{y\to 0+} F(y)$.

интеграл Дирихле $\int_0^{+\infty} \frac{\sin x}{x} dx = F(0) = \lim_{y \to 0+} F(y)$.

Теперь рассмотрим $\int_0^{+\infty} \frac{\partial}{\partial y} \left(e^{-xy} \frac{\sin x}{x} \right) dx = -\int_0^{+\infty} e^{-xy} \sin x dx$. Отметим, что при y = 0 последний интеграл расходится, но для любого $y_0 > 0$ интеграл сходится равномерно на $[y_0; +\infty)$. Действительно, при $x \ge 0$, $y \ge y_0 > 0$ имеем $|e^{-xy} \sin x| \le e^{-xy} \le e^{-xy_0}$. Интеграл $\int_0^{+\infty} e^{-xy_0} dx = -\frac{e^{-xy_0}}{y_0} \Big|_{x=0}^{+\infty} = frac1y_0$ сходится. По признаку Вейерштрасса интеграл $\int_0^{+\infty} e^{-xy} \sin x dx$ сходится равномерно на $[y_0; +\infty)$. Поэтому к несобственному интегралу $F(y) = \int_0^{+\infty} e^{-xy} \frac{\sin x}{x} dx$ можно применить теорему о дифференцировании по параметру. С учетом того, что y_0 — любое положительное число, имеем при y > 0 $F'(y) = -\int_0^{+\infty} e^{-xy} \sin x dx = -frac11 + y^2$. Тогда $F(y) = -\arctan y + C$. Докажем, что $\lim_{y \to +\infty} F(y) = 0$. Действительно,

$$\left| \int_0^{+\infty} e^{-xy} \frac{\sin x}{x} dx \right| \le \int_0^{+\infty} e^{-xy} dx = \frac{1}{y} \to 0, \quad y \to +\infty,$$

так как $\left|\frac{\sin x}{x}\right| \le 1$, $x \in \mathbb{R}$. Отсюда следует, что $0 = \lim_{y \to +\infty} (-\arctan y + C) = -\pi/2 + C$, т. е. $C = \pi/2$. Итак, $F(y) = \pi/2 - \arctan y$ и интеграл Дирихле

$$\int_0^{+\infty} \frac{\sin x}{x} dx = \lim_{y \to 0} (\pi/2 - \operatorname{arctg} y) = \pi/2.$$

4 Функциональные ряды

4.1 Поточечная и равномерная сходимость функциональных рядов. Критерий Коши.

Рассмотрим формальную сумму $\sum_{n=1}^{\infty} f_n(x) = f_1(x) + f_2(x) + \ldots + f_n(x) + \ldots$, где $f_n(x)$ —некоторая функция, заданная на множестве X. Эта сумма называется функциональным рядом. Говорят, что функциональный ряд $\sum_{n=1}^{\infty} f_n(x) dx$ сходится поточечно, если для любого $x \in X$ числовой ряд сходится.

Говорят, что функциональный ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится абсолютно на X, если ряд $\sum_{n=1}^{\infty} |f_n(x)|$ сходится поточечно на X.

Функциональный ряд $\sum_{n=1}^{\infty} f_n(x)$ называется равномерно сходящимся на множестве X, если последовательность его частичных сумм $\sum_{n=1}^{N} f_n(x)$ сходится равномерно на X (к $\sum_{n=1}^{\infty} f_n(x)$). Пусть $S(x) = \sum_{n=1}^{\infty} f_n(x)$, тогда равномерная сходимость ряда означает, что $S(x) - S_N(x) \rightrightarrows 0$, $N \to \infty$, т.е. остаток $r_N(x) = \sum_{n=N+1}^{\infty} f_n(x) \rightrightarrows 0$ на X.

Теорема (Критерий Коши). Функциональный ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на X тогда и только тогда, когда $\forall \varepsilon > 0 \ \exists M = M(\varepsilon)$: $\forall m \geq n \geq M \ \forall x \in X \ |\sum_{k=n}^m f_k(x)| < \varepsilon$.

Доказательство. Функциональный ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно тогда и только тогда, когда последовательность $S_N(x)$ сходится равномерно. По критерию Коши равномерной сходимости последовательности функций это равносильно тому, что $\forall \varepsilon > 0 \ \exists M = M(\varepsilon) \colon \forall m \geq n \geq M \ \forall x \in X \ |S_m(x) - S_{n-1}(x)| < \varepsilon$. Но $S_m(x) - S_{n-1}(x) = \sum_{k=n}^m f_k(x)$. Теорема доказана.

Пример. Рассмотрим ряд $\sum_{n=1}^{\infty} x^n$. Его частичные суммы $S_N(x) = \sum_{n=1}^N x^n = \frac{x-x^{N+1}}{1-x} \to \frac{x}{1-x}$, если |x| < 1. Однако ряд не сходится равномерно на (-1;1), так как

$$\sup_{|x|<1} \left| \frac{x - x^{N+1}}{1 - x} - \frac{x}{1 - x} \right| = \sup_{|x|<1} \left| \frac{x^{N+1}}{1 - x} \right| = +\infty.$$

Если же рассмотреть сходимость ряда на множестве $\{|x| < q\}$, где q < 1 — фиксированное число, то сходимость будет равномерной, так как

$$\sup_{|x| < q} \left| \frac{x - x^{N+1}}{1 - x} - \frac{x}{1 - x} \right| = \sup_{|x| < q} \left| \frac{x^{N+1}}{1 - x} \right| = \frac{q^{N+1}}{1 - q} \to 0, \quad N \to \infty.$$

Замечание. Критерий Коши означает, что при равномерной сходимости $\sup_X |S_m(x) - S_{n-1}(x)| \to 0$, т.е. $\sup_X |\sum_{k=n}^m f_n(x)| \to 0$, $m, n \to \infty$. В частности, беря m = n, получаем

Следствие. Если функциональный ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на X, то $\sup_X |f_n(x)| \to 0$, $n \to \infty$.

4.2 Равномерная сходимость функциональных рядов и непрерывность

Теорема 1. Пусть X — топологическое пространство, f_n — непрерывные функции на X и ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на X. Тогда сумма ряда $S(x) = \sum_{n=1}^{\infty} f_n(x)$ является непрерывной функцией на X.

Доказательство. По определению ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на X тогда и только тогда, когда частичные суммы сходятся равномерно на X. Функции $S_N(x)$ непрерывны на X как конечные суммы непрерывных на X функций. Следовательно, S(x) непрерывна на X как равномерный предел непрерывных на X функций.

Пример. Рассмотрим ряд $\sum_{n=1}^{\infty}(1-x)x^n,\ x\in[0;1]$. Имеем $S_N(x)=(1-x)(x+x^2+x^3+\ldots+x^N)=x-x^{N+1}$. При $N\to\infty$ имеем

$$S_N(x) \to S(x) = \begin{cases} x, & x \in [0, 1), \\ x - 1, & x = 1. \end{cases}$$

Члены ряда $(1-x)x^n$ являются непрерывными функциями, а сумма ряда S(x) разрывна в точке x=1. Следовательно, ряд не может сходиться равномерно на [0;1].

Теорема Дини. Пусть X — компактное топологическое пространство, функции f_n неотрицательны и непрерывны на X. Пусть ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится на X и его сумма является непрерывной функцией на X. Тогда ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на X.

Доказательство. Рассмотрим частичные суммы $S_N(x) = \sum_{n=1}^N f_n(x)$. Так как функции $f_n(x)$ непрерывны и неотрицательны, функции $S_N(x)$ непрерывны и последовательность $S_N(x)$ монотонно возрастает для любого фиксированного x. Кроме того, $S_N(x)$ сходится поточечно к S(x), $N \to \infty$, где S(x) непрерывна на множестве X. По теореме Дини для

последовательностей функций $S_N(x)$ сходится к S(x) равномерно на X. Это означает, что ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на X.

4.3 Признаки Вейерштрасса, Дирихле и Абеля равномерной сходимости функциональных рядов

Теорема 1 (признак Вейерштрасса). Рассмотрим функциональный ряд $\sum_{n=1}^{\infty} f_n(x)$. Предположим, что для любого $x \in X$ имеют место неравенства $|f_n(x)| \leq \alpha_n$, $n \geq 1$. Если числовой ряд $\sum_{n=1}^{\infty} \alpha_n$ сходится, то ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится абсолютно и равномерно на X.

Доказательство. Абсолютная сходимость ряда $\sum_{n=1}^{\infty} f_n(x)$ следует из признака сравнения для числовых рядов. Докажем равномерную сходимость на X. Фиксируем $\varepsilon > 0$. По критерию Коши для числовых рядов $\exists N \colon \forall m \geq n \geq N \; \sum_{k=n}^m \alpha_k < \varepsilon$. Тогда $\forall m \geq n \geq N \; \forall x \in X \sum_{k=n}^m |f_k(x)| \leq \sum_{k=n}^m \alpha_k < \varepsilon$. По критерию Коши функциональный ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на X.

Пример. Рассмотрим ряд $\sum_{n=1}^{\infty} \frac{1}{x^2+n^2}$. Так как $\frac{1}{x^2+n^2} \leq \frac{1}{n^2}$, $x \in \mathbb{R}$, и ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится, то ряд $\sum_{n=1}^{\infty} \frac{1}{x^2+n^2}$ сходится равномерно на \mathbb{R} .

Лемма. Пусть последовательность g_n неотрицательна и монотонно убывает, а последовательность F_n удовлетворяет условию $|F_n(x)| \le M, n \ge 0,$ для некоторого M > 0. Тогда

$$\left| \sum_{k=n}^{m} (F_k - F_{k-1}) g_k \right| \le 2M g_n, \quad \forall m \ge n \ge 1.$$

Доказательство. Имеем

$$\sum_{k=n}^{m} (F_k - F_{k-1})g_k = \sum_{k=n}^{m} F_k g_k - \sum_{k=n}^{m} F_{k-1} g_k = \sum_{k=n}^{m} F_k g_k - \sum_{k=n-1}^{m-1} F_k g_{k+1} = \sum_{k=n-1}^{m} F_k g_k - \sum_{k=n-1}^{m} F$$

$$= \sum_{k=n}^{m} F_k g_k - \sum_{k=n}^{m} F_k g_{k+1} + F_m g_{m+1} - F_{n-1} g_n = \sum_{k=n}^{m} F_k (g_k - g_{k+1}) + F_m g_{m+1} - F_{n-1} g_n.$$

Следовательно, по неравенству треугольника

$$\left| \sum_{k=n}^{m} (F_k - F_{k-1}) g_k \right| \le \sum_{k=n}^{m} |F_k| |g_k - g_{k+1}| + |F_m| |g_{m+1}| + |F_{n-1}| |g_n| \le C_{k+1}$$

$$\leq M\left(\sum_{k=n}^{m}(g_k-g_{k+1})+g_{m+1}+g_n\right)=M(g_n-g_{m+1}+g_{m+1}+g_n)=2Mg_n.$$

Теорема 2 (признак Дирихле). Функциональный ряд $\sum_{n=1}^{\infty} f_n(x)g_n(x)$ сходится равномерно на X, если выполняются следующие условия:

1) существует константа M>0 такая, что $\forall N\geq 1 \ \forall x\in X$

$$\left| \sum_{n=1}^{N} f_n(x) \right| \le M;$$

- 2) последовательность $g_n(x)$ убывает для любого $x \in X$;
- 3) $g_n(x) \rightrightarrows 0, n \to \infty, \text{ Ha } X.$

Доказательство. Пусть $F_N(x) = \sum_{n=1}^N f_n(x)$. Тогда $\forall N \geq 1 \ \forall x \in X$ выполняется неравенство $|F_N(x)| \leq M$. Так как $g_n(x) \rightrightarrows 0, \ n \to \infty$, для любого $\varepsilon > 0 \ \exists N \colon \forall n \geq N \ \forall x \in X$ выполняется неравенство $|g_n(x)| < \frac{\varepsilon}{2M}$. Используя лемму, получаем что $\forall m \geq n \geq N \ \forall x \in X$

$$\left| \sum_{k=n}^{m} f_k(x) g_k(x) \right| = \left| \sum_{k=n}^{m} (F_k(x) - F_{k-1}(x)) g_k(x) \right| \le 2M g_n(x) < 2M \frac{\varepsilon}{2M} = \varepsilon.$$

По критерию Коши функциональный ряд $\sum_{n=1}^{\infty} f_n(x)g_n(x)$ сходится равномерно на X.

Теорема 3 (признак Абеля). Функциональный ряд $\sum_{n=1}^{\infty} f_n(x)g_n(x)$ сходится равномерно на X, если выполняются следующие условия:

- 1) функциональный ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на X;
- 2) последовательность $g_n(x)$ убывает для любого $x \in X$;
- 3) существует константа C > 0 такая, что $\forall n \geq 1 \ \forall x \in X \ |g_n| \leq C$.

Доказательство. Так как функциональный ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на X, по критерию Коши $\forall \varepsilon > 0 \ \exists N \colon \forall m, \ n \colon m \geq n \geq N$ $\forall x \in X$ выполняется неравенство

$$\left| \sum_{k=n}^{m} f_k(x) \right| < \frac{\varepsilon}{2C}. \tag{*}$$

Фиксируем число $n \geq N$. Пусть $\widetilde{F}_k(x) = \sum_{i=n}^k f_k(x), \ k \geq n, \ \widetilde{F}_{n-1} = 0$. Тогда в силу (*) имеем $|\widetilde{F}_k(x)| < \frac{\varepsilon}{2C}, \ k \geq n, \ x \in X$. Применяя лемму, получаем, что при $m \geq N$

$$\left| \sum_{k=n}^{m} f_k(x) g_k(x) \right| = \left| \sum_{k=n}^{m} (\widetilde{F}_k(x) - \widetilde{F}_{k-1}(x)) g_k \right| \le 2 \frac{\varepsilon}{2C} |g_n(x)| \le \varepsilon.$$

По критерию Коши ряд $\sum_{n=1}^{\infty} f_n(x)g_n(x)$ сходится равномерно на X.

4.4 Почленное дифференцирование и интегрирование функциональных рядов

Теорема 1. Пусть функции f_n непрерывно дифференцируемы на ограниченном числовом промежутке I. Пусть ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится по крайней мере в одной точке промежутка I и ряд из производных $\sum_{n=1}^{\infty} f'_n(x)$ сходится равномерно на I. Тогда ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на I и его сумма S непрерывно дифференцируема на I, причем $S'(x) = \sum_{n=1}^{\infty} f'_n(x), x \in I$.

Замечание. Последнее равенство можно записать в виде

$$\left(\sum_{n=1}^{\infty} f'_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x).$$

При этом говорят, что ряд $\sum_{n=1}^{\infty} f_n(x)$ можно почленно дифференцировать.

Доказательство. Рассмотрим последовательность $S_n(x) = \sum_{k=1}^n f_k(x)$. Из условий теоремы следует, что $S_n(x)$ сходится в некоторой точке из промежутка I. Имеем: последовательность $S_n'(x) = \sum_{k=1}^n f_k'(x)$ сходится равномерно на I. Тогда по теореме о дифференцировании последовательности функций $S_n(x)$ сходится равномерно на I к дифференцируемой функции $S(x) = \sum_{k=1}^\infty f_k(x)$ и

$$S'(x) = \lim_{n \to \infty} S'_n(x) = \lim_{n \to \infty} \sum_{k=1}^n f'_k(x) = \sum_{k=1}^\infty f'_k(x).$$

Теорема 2. Пусть ряд $\sum_{n=1}^{\infty} f_n(x)$ составлен из интегрируемых на отрезке [a;b] функций и сходится равномерно на [a;b] интегрируемой на [a;b] функции f. Тогда

$$\int_{a}^{b} f(x)dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x)dx.$$

В частности, утверждается, что последний ряд сходится.

Замечание. Последнее равенство можно записать в виде

$$\int_a^b \sum_{n=1}^\infty f_n(x) dx = \sum_{n=1}^\infty \int_a^b f_n(x) dx.$$

При этом говорят, что ряд $\sum_{n=1}^{\infty} f_n(x)$ можно почленно интегрировать.

Доказательство. Пусть $S_n(x) = \sum_{k=1}^n f_k(x)$. Функции $S_n(x)$ интегрируемы и равномерно сходятся к f на [a;b]. ПО теореме о предельном переходе под знаком интеграла получаем, что $\int_a^b S_n(x) dx \to \int_a^b f(x) dx$, $n \to \infty$. Но $\int_a^b S_n(x) dx = \int_a^b \sum_{k=1}^n f_k(x) dx = \sum_{k=1}^n \int_a^b f_k(x) dx$. Следовательно, ряд $\sum_{k=1}^\infty \int_a^b f_k(x) dx$ сходится и его сумма равна $\int_a^b f(x) dx$.

Теорема 3. Пусть ряд $\sum_{n=1}^{\infty} f_n(x)$ составлен из непрерывных на отрезке [a;b] функций и сходится равномерно на [a;b] к функции f. Тогда ряд

$$\sum_{n=1}^{\infty} \int_{c}^{x} f_n(t) dt$$

сходится равномерно на [a;b] к функции $\int_{c}^{x} f(t)dt$, где c — произвольная точка из [a;b].

Доказательство. Из условий теоремы следует, что f непрерывна на отрезке [a;b]. Пусть $F_n(x) = \int_c^x f_n(t)dt$, $F(x) = \int_c^x f(t)dt$. Тогда

$$F'_n(x) = f_n(x), \quad F'(x) = f(x), \quad x \in [a; b].$$

Рассмотрим функциональный ряд $\sum_{n=1}^{\infty} F_n(x)$. Ряд $\sum_{n=1}^{\infty} F_n'(x)$ сходится равномерно, а ряд $\sum_{n=1}^{\infty} F_n(c)$ сходится. Следовательно, ряд $\sum_{n=1}^{\infty} F_n(x)$ сходится равномерно на [a;b] и его сумма S(x) такова, что S'(x)=f(x), причем S(c)=0. По формуле Ньютона-Лейбница получаем, что $S(x)=\int_{c}^{x} f(t)dt=F(x)$.

5 Степенные ряды

5.1 Радиус сходимости степенного ряда. Интервал и область сходимости

Степенным рядом называется ряд вида

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots + a_n (x - x_0)^n + \dots$$

При этом говорят, что ряд записан в точке x_0 , а a_n называется n-м коэффициентом ряда.

Радиусом сходимости ряда $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ называется число

$$R = \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}}.$$
 (*)

Отметим, что $0 \le R \le +\infty$.

Теорема. Если R = 0, то степенной ряд $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ сходится только при x = 0. Если $R = +\infty$, то степенной ряд сходится при любом $x \in \mathbb{R}$. Если $0 < R < +\infty$, то степенной ряд сходится на интервале $(x_0 - R, x_0 + R)$ и расходится при $|x - x_0| > R$. В точках $x = x_0 \pm R$ ряд может как сходиться, так и расходиться.

Доказательство. Любой степенной ряд сходится при $x=x_0$. Пусть $x\neq x_0$. Применим к ряду $\sum_{n=0}^{\infty}|a_n(x-x_0)^n|$ радикальный признак Коши. Имеем

$$q = \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n(x - x_0)^n|} - |x - x_0| \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = \frac{|x - x_0|}{R}.$$

Если $|x-x_0| < R$, то q < 1 и ряд $\sum_{n=0}^{\infty} |a_n(x-x_0)^n|$ сходится, поэтому ряд $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ сходится абсолютно. Если $|x-x_0| > R$, то q > 1 и ряд $\sum_{n=0}^{\infty} |a_n(x-x_0)^n|$ расходится, причем его n-й член стремится к $+\infty$. Следовательно, $a_n(x-x_0)^n$ не стремится к нулю, и ряд расходится $\sum_{n=0}^{\infty} a_n(x-x_0)^n$. Если $|x-x_0| = R$, то возможна как сходимость, так и расходимость (см. примеры ниже). Теорема доказана.

Интервал $(x_0-R;x_0+R)$ называется интервалом сходимости степенного ряда $\sum_{n=0}^{\infty}a_n(x-x_0)^n$. Множество точек I, где сходится степенной ряд, называется областью сходимости этого ряда. Если $R=+\infty$, то $I=\mathbb{R}$. Если $0< R<+\infty$, то $(x_0-R;x_0+R)\subset I\subset [x_0-R;x_0+R]$. Следовательно, область сходимости может отличаться от интервала не более чем на две точки — концы интервала $x=x_0\pm R$.

Примеры. 1) Рассмотрим ряд $\sum_{n=0}^{\infty} n! x^n$. Имеем

$$R = \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{n!}} = 0.$$

Ряд сходится только при x = 0.

2) $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. Имеем

$$R = \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{\frac{1}{n!}}} = \lim_{n \to \infty} \sqrt[n]{n!} = +\infty.$$

Следовательно, ряд сходится для любого $x \in \mathbb{R}$. 3) $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n}$.

$$R = \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{\frac{1}{n}}} = \lim_{n \to \infty} [n] \sqrt{n} = 1.$$

Интервал сходимости — (-1;1). При x=1 имеем ряд $\sum_{n=0}^{\infty} \frac{(-1)^n}{n}$, который сходится как ряд Лейбница. При x=-1 имеем гармонический ряд $\sum_{n=0}^{\infty} \frac{1}{n}$, который расходится.

- 4) $\sum_{n=0}^{\infty} \frac{x^n}{n^{\lambda}}$. Имеем $R = \lim_{n \to \infty} \sqrt[n]{n^{\lambda}} = (\lim_{n \to \infty} \sqrt[n]{n})^{\lambda} = 1$. Интервал сходимости (-1;1). Рассмотрим сходимость на концах интервала. При x=1: ряд $\sum_{n=0}^{\infty} \frac{1}{n^{\lambda}}$ сходится при $\lambda>1$. При x=-1: ряд $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^{\lambda}}$ сходится при $\lambda > 0$.
- 5) $\sum_{n=0}^{\infty} x^n$. $R = \lim_{n\to\infty} \sqrt[n]{1} = 1$. Интервал сходимости (-1;1). При x=1 ряд $\sum_{n=0}^{\infty}1$ расходится, при x=-1 ряд $\sum_{n=0}^{\infty}(-1)^n$ также расходится.

Формула (*) называется формулой Коши-Адамара.

Теорема. Если существует

$$\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = R \tag{**}$$

, то радиус сходимости степенного ряда $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ равен R.

Доказательство. Пусть $x \neq x_0$. Применим к ряду $\sum_{n=0}^{\infty} |a_n(x-x_0)^n|$ признак Даламбера. Пусть

$$q = \lim_{n \to \infty} \frac{|a_{n+1}(x - x_0)^{n+1}|}{|a_n(x - x_0)^n|} = |x - x_0| \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \frac{|x - x_0|}{R}.$$

Если $|x-x_0| < R$, то q < 1 и ряд $\sum_{n=0}^{\infty} |a_n(x-x_0)^n|$ сходится по признаку Даламбера. Следовательно, наш ряд сходится абсолютно. Если $|x-x_0| >$ R, то q>1 и $|a_n(x-x_0)^n|\to +\infty,\ n\to\infty$. Отсюда следует, что ряд $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ расходится.

Формула (**) называется формулой Даламбера.

Пример. Рассмотрим ряд $1 + x^2 + x^4 + x^6 + \dots$ По формуле Коши-Адамара радиус сходимости ряда равен 1. Однако формула Даламбера не применима, так как не существует предела (**): $\left|\frac{a_{2n}}{a_{2n+1}}\right| = +\infty$, $\left|\frac{a_{2n-1}}{a_{2n}}\right| = 0$.

5.2 Операции над степенными рядами

Пусть даны два степенных ряда $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ и $\sum_{n=0}^{\infty} b_n (x-x_0)^n$. Можно определить сумму, разность и произведение рядов как $\sum_{n=0}^{\infty} (a_n \pm b_n)(x-x_0)^n$ и $\sum_{n=0}^{\infty} c_n (x-x_0)^n$, $c_n = \sum_{k=0}^n a_k b n - k$.

Теорема. Пусть R_1 и R_2 — радиусы сходимости степенных рядов $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ и $\sum_{n=0}^{\infty} b_n (x-x_0)^n$. Пусть $R=\min\{R_1,R_2\}>0$. Тогда сумма, разность и произведение этих рядов сходится абсолютно при $|x-x_0|< R$.

Доказательство. Для суммы и разности доказательство очевидно. Рассмотрим случай произведения. Если $|x-x_0| < R$, то ряды $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ и $\sum_{n=0}^{\infty} b_n (x-x_0)^n$ сходятся абсолютно. поэтому произведение сходится абсолютно по теореме Мертенса.

5.3 Непрерывность суммы степенного ряда

Теорема 1. Степенной ряд сходится равномерно на любом отрезке, лежащем в интервале сходимости.

Доказательство. Пусть радиус R сходимости ряда $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ — положительное число. Рассмотрим любой отрезок $[a;b] \subset (x_0-R;x_0+R)$. Существует r < R такое, что для любого $x \in [a;b]$ имеем $|x-x_0| \leq r$. Имеем $|a_n(x-x_0)^n| \leq |a_n|r^n$, $n \geq 0$. Степенной ряд сходится абсолютно в точке $x = x_0 + r$, лежащей в интервале сходимости, т. е. сходится ряд $\sum_{n=0}^{\infty} |a_n|r^n$. Из признака Вейерштрасса следует, что ряд $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ сходится равномерно на [a;b].

Теорема 2. Сумма степенного ряда является непрерывной функцией в интервале сходимости.

Доказательство. Фиксируем любую точку x из $(x_0 - R; x_0 + R)$. До-

кажем, что сумма степенного ряда непрерывна в этой точке. Поместим x вместе с малой окрестностью в отрезок [a;b], лежащий в интервале сходимости. По теореме 1 ряд сходится равномерно на [a;b]. Члены ряда $a_n(x-x_0)^n$ являются непрерывными функциями? поэтому сумма является непрерывной на [a;b] в силу равномерной сходимости.

Теорема 3 (теорема Абеля). Если радиус сходимости $0 < R < +\infty$ и степенной ряд сходится в точке $x = x_0 + R$ ($x = x_0 - R$), то ряд сходится равномерно на отрезке $[x_0; x_0 + R]$ ($[x_0 - R; x_0]$). В частности, сумма ряда является непрерывной функцией на отрезке $[x_0; x_0 + R]$ ($[x_0 - R; x_0]$).

Доказательство. Рассмотрим $x = x_0 + R$. Их сходимости ряда в этой точке следует, что сходится ряд $\sum_{n=0}^{\infty} a_n R^n$. Это — числовой ряд, поэтому он сходится равномерно но x на $[x_0; x_0 + R]$. Представим наш степенной ряд в виде

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} a_n R^n \left(\frac{x - x_0}{R} \right)^n.$$

Имеем $\left|\frac{x-x_0}{R}\right| \leq 1$, если $x \in [x_0; x_0 + R]$. Величина $\left(\frac{x-x_0}{R}\right)^n$ монотонна по n при любом фиксированном x. Следовательно, по признаку Абеля степенной ряд $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ сходится равномерно на $[x_0; x_0 + R]$.

Упражнение. Докажите, что если сходятся ряды $\sum_{n=0}^{\infty} a_n$ и $\sum_{n=0}^{\infty} b_n$ и их произведение $\sum_{n=0}^{\infty} n$, то $\sum_{n=0}^{\infty} a_n \cdot \sum_{n=0}^{\infty} b_n = \sum_{n=0}^{\infty} n$. Указание: перейдите к степенным рядам.

5.4 Почленное дифференцирование и интегрирование степенных рядов

Теорема 1. Степенной ряд можно почленно дифференцировать в интервале сходимости, т.е. если $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$, $x \in (x_0 - R, x_0 + R)$, то сумма ряда f(x) является дифференцируемой функцией на $(x_0 - R, x_0 + R)$ и

$$f'(x) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1}, \quad x \in (x_0 - R, x_0 + R).$$
 (*)

Доказательство. Пусть $x \in (x_0 - R, x_0 + R)$. Поместим точку x в симметричный относительно точки x_0 отрезок $[x_0 - r, x_0 + r] \subset (x_0 - r)$

 $R, x_0 + R$) как внутреннюю точку. Так как

$$\overline{\lim}_{n\to\infty} \sqrt[n]{n|a_n|} = \lim_{n\to\infty} \sqrt[n]{n \lim}_{n\to\infty} \sqrt[n]{|a_n|} = \overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|},$$

то радиус сходимости ряда, получающегося почленным дифференцированием, совпадает с радиусом сходимости исходного ряда. Следовательно, ряд (*) сходится равномерно на $[x_0-r,x_0+r]$ по теореме 1 из предыдущего пункта. Так как исходный ряд сходится на (x_0-R,x_0+R) , по теореме о почленном дифференцировании функциональных рядов f(x) является дифференцируемой функцией на (x_0-R,x_0+R) и справедливо равенство (*).

Следствие. Сумма степенного ряда является бесконечно дифференцируемой функцией в интервале сходимости.

Теорема 2. Степенной ряд можно почленно интегрировать в интервале сходимости, т.е. если $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$, то $\forall x \in (x_0 + R; x_0 - R)$

$$\int_{x_0}^x f(t)dt = \sum_{n=0}^\infty \frac{a_n(x-x_0)^{n+1}}{n+1}.$$
 (**)

Более того, если степенной ряд сходится в точке $x = x_0 + R$ ($x = x_0 - R$), то равенство (**) справедливо и для этой точки. При этом радиус сходимости ряда в правой части (**) совпадает с радиусом сходимости исходного ряда.

Доказательство. Пусть $x \in (x_0 - R; x_0 + R)$, тогда степенной ряд сходится равномерно на отрезке с концами x_0 и x. Следовательно, можно применить теорему почленном интегрировании функционального ряда, откуда следует (**). Если исходный ряд сходится в точке точке $x = x_0 + R$ ($x = x_0 - R$), то опять-таки он сходится равномерно на отрезке с концами x_0 и x и имеет место (**).

Наконец, радиус сходимости ряда в правой части (**) равен

$$\overline{\lim}_{n\to\infty} \sqrt[n]{\frac{|a_n|}{n+1}} = \frac{\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|}}{\lim_{n\to\infty} \sqrt[n]{n+1}} = \overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|}.$$

5.5 Ряд Тейлора. Аналитические функции.

Пусть функция f бесконечно дифференцируема в точке x_0 . Рядом Тейлора функции f в точке x_0 называется степенной ряд $\sum_{n=0}^{\infty} a_n (x-x_0)^n$,

где $a_n=\frac{f^{(n)(x_0)}}{n!}$. Предположим, что радиус сходимости ряда Тейлора функции f равен R>0. Тогда при $x\in (x_0-R,x_0+R)$ можно определить сумму этого ряда $S(x):=\sum_{n=0}^\infty a_n(x-x_0)^n$. Возникает вопрос: когда сумма ряда S(x) совпадает с f(x)? Следующий пример показывает, что ответ не всегда положителен.

Пример. Пусть

$$f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Докажем, что функция бесконечно дифференцируема на \mathbb{R} и все производные функции f в точке x=0 равны 0. При $x\neq 0$ производная $f'(x)=\frac{2}{x^3}e^{-1/x^2}$. В точке x=0 имеем, с использованием замены переменных и правила Лопиталя,

$$f'(0) = \lim_{x \to 0} \frac{e^{-1/x^2}}{x} = \lim_{t \to \infty} \frac{t}{e^{t^2}} = \lim_{t \to \infty} \frac{1}{2te^{t^2}} = 0.$$

Аналогично $f''(x) = \left(\frac{4}{x^6} - \frac{6}{x^4}\right)e^{-1/x^2}$,

$$f''(0) = \lim_{x \to 0} \frac{\frac{2}{x^3} e^{-1/x^2}}{x} = 2 \lim_{t \to \infty} \frac{t^4}{e^{t^2}} = 0.$$

Точно также показываем что $f^{(n)}(0) = 0$, $n \in \mathbb{N}$. Таким образом, ряд Тейлора функции f в точке x = 0 состоит из нулей, т.е. $S(x) \equiv 0$, $x \in \mathbb{R}$. Следовательно, $f(x) \neq S(x)$, $x \neq 0$.

Функция f называется аналитической в точке $x = x_0$, если в некоторой окрестности этой точки сумма ряда Тейлора функции f, записанного в точке x_0 , совпадает с f(x).

Если функция f бесконечно дифференцируема в точке x_0 , то для любого $n \in \mathbb{N}$ можно записать формулу Тейлора n-го порядка: $f(x) = S_n(x) + r_n(x)$, где $S_n(x) = \sum_{k=0}^n a_k (x-x_0)^k$, и, как и выше, $a_k = \frac{f^{(k)(x_0)}}{k!}$. Нетрудно заметить, что $S_n(x)$ являются частичными суммами ряда Тейлора, поэтому f(x) = S(x) тогда и только тогда, когда остаток $r_n(x) \to 0$, $n \to \infty$. Итак, доказана

Теорема 1. Функция f является аналитической в точке x_0 тогда и только тогда, когда в некоторой окрестности этой точки $r_n(x) \to 0$, $n \to \infty$.

Теперь сформулируем достаточное условие аналитичности функции f в точке, следующее непосредственно из теоремы 1.

Теорема 2. Пусть $M_n = \sup_{x \in I} |f^{(n)}(x)|$, где $I - \delta$ -окрестность точки x_0 . Если $\frac{M_n}{n!} \delta^n \to 0$, $n \to \infty$, то ряд Тейлора функции f в точке x_0 сходится κ f в δ -окрестности точки x_0 u, следовательно, функция f является аналитической в точке x_0 .

Пусть теперь задан некоторый степенной ряд $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ с радиусом сходимости R>0 и S — его сумма в интервале сходимости.

Теорема 3. Степенной ряд $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ является рядом Тейлора своей суммы S.

Доказательство. Имеем $S(x_0) = a_0$. По теореме о почленном дифференцировании степенных рядов имеем в интервале сходимости

$$S'(x) = a_1 + 2a_2(x - x)^2 + 3(x - x_0)^3 + \dots,$$

поэтому $S'(x_0) = a_1$. Аналогично, дифференцируя еще раз, получаем

$$S'(x) = 2a_2 + 2 \cdot 3a_3(x - x_0) + \dots,$$

и $S''(x_0) = 2a_2$. Продолжая далее получаем

$$S^{n}(x) = n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1a_{n} + (n+1) \cdot n \cdot \ldots \cdot 2a_{n+1}(x-x_{0}) + \ldots,$$

поэтому $S^n(x_0) = n! a_n$ и $a_n = \frac{S^{(n)(x_0)}}{n!}$. Последнее означает, что степенной ряд $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ является рядом Тейлора своей суммы S.

Функция f называется аналитической на интервале (a;b), если она аналитическая в любой точке этого интервала.

Отметим некоторые свойства аналитических функций.

- 1) Сумма, разность произведение функций, аналитических в точке x_0 (на (a;b)) является аналитической функцией в точке x_0 (на (a;b)).
- 2) Если f, g аналитические в точке x_0 (на (a; b)) функции и $g(x) \neq 0$ в точке x_0 (на (a; b)), то частное f/g является аналитической функцией в точке x_0 (на (a; b)).
- 3) Если функция f аналитична в точке x_0 и функция g аналитична в точке $f(x_0)$, то суперпозиция $g \circ f$ является непрерывной в точке x_0 .

5.6 Разложение в ряд Тейлора некоторых элементарных функций

1) $y = e^x$. Имеем $y^{(n)}(x) = e^x$, поэтому $y^{(n)}(0) = 1$ и $a_n = \frac{1}{n!}$. Ряд Тейлора функции в точке x = 0 имеет вид

$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^n}{n!} + \ldots$$

Докажем, что сумма этого ряда совпадает с e^x для любого $x \in \mathbb{R}$. Отметим, что радиус сходимости ряда

$$R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{1/n!}} = \lim_{n \to \infty} \sqrt[n]{n!} = +\infty.$$

Имеем для любого r>0 $M_n=\sup_{|x|\leq r}|y^{(n)}(x)|=\sup_{|x|\leq r}e^x=e^r$. Так как $\frac{M_n}{n!}\delta^n=\frac{e^r}{n!}\delta^n\to 0,\ n\to\infty,$ то по теореме 2 имеем

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

для любого $x \in [-r; r]$. Так как r — любое положительное число, то это равенство имеет место для любого $x \in \mathbb{R}$.

2) $y=\sin x$. Имеем $y'(x)=\cos x,\ y''(x)=-\sin x,\ y'''(x)=-\cos x,\ y^{IV}(x)=\sin x,\ \ldots$. Для любого $n\in\mathbb{N}$ получаем $y^{(n)}(x)=\sin(x+n\pi/2)$. Поэтому для любого числового промежутка вида $I=[-\delta;\delta]$ имеем $M_n=\sup_I|y^{(n)}(x)|\leq 1$. Тогда $0\leq\frac{M_n}{n!}\delta^n\leq=\frac{1}{n!}\delta^n\to 0,\ n\to\infty$. По теореме 2 получаем, что ряд Тейлора функции $y=\sin x$ сходится к значению $\sin x$ в любой точке $x\in\mathbb{R}$. С учетом равенств

$$y^{(n)}(0) = \sin(n\pi/2) = \begin{cases} 0, & n - \text{четное,} \\ (-1)^k, & n = 2k+1, \end{cases}$$

получаем

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots,$$

 $x \in \mathbb{R}$. Отметим, что радиус сходимости ряда равен, разумеется, $+\infty$.

3) $y=\cos x$. Дифференцируя почленно разложение функции $y=\sin x,$ получаем

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots,$$

 $x \in \mathbb{R}$.

4) Для любого комплексного z определим функции

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \dots + \frac{z^{n}}{n!} + \dots,$$

$$\sin z = z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \frac{z^{7}}{7!} + \dots,$$

$$\cos z = 1 - \frac{z^{2}}{2!} + \frac{z^{4}}{4!} - \frac{z^{6}}{6!} + \dots$$

Тогда

$$e^{iz} = 1 + iz + \frac{(iz)^2}{2!} + \frac{(iz)^3}{3!} + \dots + \frac{(iz)^n}{n!} + \dots =$$

$$= 1 + iz + -\frac{z^2}{2!} - i\frac{z^3}{3!} + \dots + \dots = \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots\right) +$$

$$\left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots\right) = \cos z + i\sin z.$$

Итак, $e^{iz} = \cos z + i \sin z$ (формула Эйлера).

5) При |x|<1 из формулы суммы геометрической прогрессии получаем

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \dots,$$
$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots$$

6) Обобщенный бином. Пусть $y=(1+x)^{\alpha}$. Имеем $y'(x)=\alpha(1+x)^{\alpha-1}$, $y''(x)=\alpha(\alpha-1)(1+x)^{\alpha-2},\ldots,\,y^{(n)}(x)=\alpha(\alpha-1)\ldots(\alpha-n+1)(1+x)^{\alpha-n}.$ Таким образом, $y(0)=1,\,y'(0)=\alpha,\,y''(0)=\alpha(\alpha-1),\ldots,\,y^{(n)}(0)=\alpha(\alpha-1)\ldots(\alpha-n+1).$ Ряд Тейлора функции $y=(1+x)^{\alpha}$ имеет вид

$$1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} x^3 + \ldots + \frac{\alpha(\alpha - 1) \ldots (\alpha - n + 1)}{n!} x^n + \ldots$$
(*)

Если α — натуральное число, то все члены ряда, начиная с некоторого номера равны нулю и ряд сходится к $(1+x)^{\alpha}$ в силу формулы бинома

Ньютона. Если $\alpha \neq 0, \alpha \notin \mathbb{N},$ то по формуле Даламбера радиус сходимости ряда

$$R = \lim_{n \to \infty} \left| \frac{\alpha(\alpha - 1) \dots (\alpha - n + 1)}{n!} \cdot \frac{(n+1)!}{\alpha(\alpha - 1) \dots (\alpha - n)} \right| = \lim_{n \to \infty} \left| \frac{n+1}{\alpha - n} \right| = 1.$$

Обозначим через S(x) сумму ряда (*). Покажем, что $S(x) = (1+x)^{\alpha},$ |x| < 1. Имеем

$$S'(x) = \alpha + \alpha(\alpha - 1)x + \frac{\alpha(\alpha - 1)(\alpha - 2)}{2!} + \ldots + \frac{\alpha(\alpha - 1)\dots(\alpha - n + 1)}{(n - 1)!}x^{n - 1} + \ldots,$$

откуда

$$(1+x)S'(x) = S'(x) + xS'(x) = \alpha + \alpha(\alpha - 1)x + \frac{\alpha(\alpha - 1)(\alpha - 2)}{2!}x^2 + \dots$$

$$\dots + \frac{\alpha(\alpha - 1)\dots(\alpha - n + 1)}{(n-1)!}x^{n-1} + \dots + \alpha x + \alpha(\alpha - 1)x^2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{2!}x^3 + \dots$$

$$\dots + \frac{\alpha(\alpha - 1)\dots(\alpha - n + 1)}{(n-1)!}x^n + \dots = \alpha + \alpha^2 x + \frac{\alpha^2(\alpha - 1)}{2!}x^2 + \frac{\alpha^2(\alpha - 1)(\alpha - 2)}{3!}x^3 + \dots$$

$$\dots + \frac{\alpha^2(\alpha - 1)\dots(\alpha - n + 1)}{n!}x^n + \dots = \alpha S(x).$$

Мы показали, что функция S удовлетворяет дифференциальному уравнению (1+x)S'(x)=S(x), |x<1|. Решим это уравнение. Имеем

$$\frac{S'(x)}{S(x)} = \frac{\alpha}{1+x} \Longrightarrow \ln S(x) = \alpha \ln(1+x) + C \Longrightarrow S(x) = e^C (1+x)^{\alpha}.$$

Учитывая, что S(0)=1, получаем, что C=0 и $S(x)=(1+x)^{\alpha}$.

Упражнение. Исследуйте сходимость ряда (*) при $x=\pm 1.$

7) В силу (5) имеем

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots$$

Почленно интегрируя это разложение, получаем

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^n \frac{x^n}{n} + \dots$$

Отметим, что при x = 1 имеем ряд Лейбница

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots + (-1)^n \frac{1}{n} + \ldots$$

По теореме Абеля сумма ряда является непрерывной функцией в точке x=1. Так как $\ln(1+x)$ является непрерывной функцией в точке x=1, имеем

$$\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^n \frac{1}{n} + \dots$$

8) Пусть $y = \operatorname{arctg} x$. Имеем

$$y' = \frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \dots, \quad |x| < 1.$$

Интегрируя почленно этот ряд получаем

$$\operatorname{arctg} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots, \quad |x| < 1.$$

Как и в предыдущем примере имеем при x=1

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

9) Пусть $y = \arcsin x$. Тогда

$$y' = \frac{1}{\sqrt{1-x^2}} = (1-x^2)^{-1/2} = \sum_{n=0}^{\infty} a_n (-x^2)^n, \quad |x| < 1,$$

где

$$a_n = \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\dots\left(-\frac{1}{2}-n+1\right)}{n!} = (-1)^n \frac{\frac{1}{2} \cdot \frac{3}{2} \cdot \dots \cdot \frac{2n-1}{2}}{n!} =$$
$$= (-1)^n \frac{(2n-1)!!}{2^n n!} = (-1)^n \frac{(2n-1)!!}{2n!!}.$$

Таким образом,

$$y' = \sum_{n=0}^{\infty} \frac{(2n-1)!!}{2n!!} x^{2n},$$

$$\arcsin x = \sum_{n=0}^{\infty} \frac{(2n-1)!!}{2n!!} \frac{x^{2n+1}}{2n+1}, \quad |x| < 1.$$

При x = 1 получаем

$$\frac{\pi}{6} = \sum_{n=0}^{\infty} \frac{(2n-1)!!}{2n!!} \frac{1}{2n+1}.$$

10) $y = \sin^2 x$. Имеем

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x) = \frac{1}{2}(1 - 1 + \frac{(2x)^2}{2!} - \frac{(2x)^4}{4!} + \frac{(2x)^6}{6!} - \dots) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(2x)^n}{n!}.$$

11) Пусть $y = \ln \frac{1+x}{1-x}$. Имеем

$$y' = \frac{2}{1 - x^2} = 2 + 2x^2 + 2x^4 + \dots + 2x^{2n} + \dots, \quad |x| < 1,$$

$$\ln \frac{1+x}{1-x} = 2x + \frac{2x^3}{3} + \frac{2x^5}{5} + \dots + \frac{2x^{2n+1}}{2n+1} + \dots, \quad |x| < 1.$$

12) $\int_0^x \frac{\sin t}{t} \, dt$ (интегральный синус). Имеем

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots,$$

$$\frac{\sin x}{x} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \dots,$$

$$\int_0^x \frac{\sin t}{t} dt = x - \frac{x^3}{3 \cdot 3!} + \frac{x^5}{5 \cdot 5!} - \frac{x^7}{7 \cdot 7!} + \dots, \quad x \in \mathbb{R}.$$

13)

$$\frac{1}{x^2 - 3x + 2} = \frac{1}{(1 - x)(2 - x)} = \frac{1}{1 - x} - \frac{1}{2 - x} = \frac{1}{1 - x} - \frac{1}{2} \cdot \frac{1}{1 - x/2} =$$

$$= (1 + x + x^2 + x^3 + \dots + x^n + \dots) - \frac{1}{2} \left(1 + \frac{x}{2} + \frac{x^2}{4} + \dots + \frac{x^n}{2^n} + \dots \right) =$$

$$= \frac{1}{2} + \frac{3}{4}x + \frac{7}{8}x^2 + \dots + \left(1 - \frac{1}{2^n} \right)x^n + \dots, \quad |x| < 1.$$

14) Разложим функцию y=1/x в степенной ряд в точке $x=x_0\neq 0.$ Имеем

$$\frac{1}{x} = \frac{1}{x_0 + (x - x_0)} = \frac{1}{x_0} \cdot \frac{1}{1 + \frac{x - x_0}{x_0}} =$$

$$= \frac{1}{x_0} \left(1 - \frac{x - x_0}{x_0} + \frac{(x - x_0)^2}{x_0^2} - \dots + \frac{(x - x_0)^n}{x_0^n} + \dots \right) = \sum_{n=0}^{\infty} \frac{(-1)^n}{x_0^{n+1}} (x - x_0)^n.$$

Ряд сходится при $\left|\frac{x-x_0}{x_0}\right| < 1$, т. е. при $|x-x_0| < |x_0|$.

15) Разложим функцию $y = 1/x^2$ в степенной ряд в точке $x = x_0 \neq 0$. Дифференцируя предыдущее разложение, получаем

$$\frac{1}{x^2} = \sum_{n=1}^{\infty} \frac{(-1)^n}{x_0^{n+1}} n(x - x_0)^{n-1} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{x_0^{n+1}} (n+1)(x - x_0)^n.$$

16) Рассмотрим функцию $f(x) = \sum_{n=0}^{\infty} \frac{\sin(2^n x)}{n!}$. Этот ряд сходится равномерно на $\mathbb R$ по признаку Вейерштрасса, т. к. $\left|\frac{\sin(2^n x)}{n!}\right| \leq \frac{1}{n!}$, а числовой ряд $\sum_{n=0}^{\infty} \frac{1}{n!}$ сходится. Так как члены ряда непрерывны, функция f непрерывна. Дифференцируя почленно этот ряд, получаем ряд $\sum_{n=0}^{\infty} \frac{2^n \cos(2^n x)}{n!}$. Этот ряд также сходится равномерно, так как числовой ряд $\sum_{n=0}^{\infty} \frac{2^n!}{n!}$ сходится. Следовательно, сумма этого ряд является производной f'(x). Аналогично получаем

$$f''(x) = \sum_{n=0}^{\infty} \frac{2^{2n} \sin(2^n x)}{n!},$$

ит. д.,

$$f^{(k)}(x) = \sum_{n=0}^{\infty} \frac{2^{kn} \sin(2^n x + k\frac{\pi}{2})}{n!}.$$

Таким образом, функция f бесконечно дифференцируема.

Теперь построим ряд Тепйлора функции f в точке x=0. Имеем $f(0)=0,\ f'(0)=e^2,\ f''(0)=0,\ f'''(0)=-\sum_{n=0}^\infty\frac{2^n}{n!}=e^2,\ \ldots,\ f^{(2k)}=0,$ $f^{(2k+1)}=(-1)^ke^{2^{2k+1}}.$ Следовательно, ряд Тейлора функции f имеет вид $\sum_{k=0}^\infty (-1)^k\frac{e^{2^{2k+1}}}{(2k+1)!}x^{2k+1}.$ Применим к исследованию сходимости этого ряда признак Даламбера. Имеем

$$\lim_{k \to \infty} \left| \frac{e^{2^{2k+3}}}{(2k+3)} x^{2k+3} : \frac{e^{2^{2k+1}}}{(2k+1)} x^{2k+1} \right| = \lim_{k \to \infty} \frac{e^{2^{2k+3} - 2^{2k+1}}}{(2k+2)(2k+3)} |x^2| = \lim_{k \to \infty} \frac{e^{3 \cdot 2^{2k+1}}}{(2k+2)(2k+3)} |x^2| = +\infty,$$

если $x \neq 0$. Таким образом, ряд Тейлора функции f расходится для любого $x \neq 0$.

Содержание

1	Вве	едение	2
2	Hec 2.1 2.2 2.3 2.4 2.5 2.6	Равномерная сходимость последовательности функций Геометрическая интерпретация равномерной сходимости Критерий Коши равномерной сходимости последовательности функций	2 2 3 4 4 7
3	0 ===	нопараметрические семейства функций и равномерная	Ü
		нопараметрические семеиства функции и равномерная димость	11
	3.1	Определение равномерной сходимости семейства функций.	11
	0.1	Критерий Коши.	11
	3.2	Равномерная сходимость семейства функций и непрерыв-	11
	0.2	ность	12
	3.3	Равномерная сходимость несобственных интегралов, зави-	12
	0.0	сящих от параметра	13
	3.4	Достаточные условия равномерной сходимости	10
	0.1	несобственных интегралов, зависящих	
		от параметра	14
	3.5	Непрерывность и дифференцируемость несобственных ин-	
		тегралов, зависящих от параметра	16
	3.6	Интегрирование несобственных интегралов, зависящих от	
		параметра	17
	_		
4	·	нкциональные ряды	20
	4.1	Поточечная и равномерная сходимость функциональных	
	4.0	рядов. Критерий Коши	20
	4.2	Равномерная сходимость функциональных рядов и непре-	01
	4.9	рывность	21
	4.3	Признаки Вейерштрасса, Дирихле и Абеля равномерной	00
		сходимости функциональных рядов	22

	4.4	Почленное дифференцирование и интегрирование функци-	
		ональных рядов	24
5	Сте	епенные ряды	25
	5.1	Радиус сходимости степенного ряда. Интервал и область	
		сходимости	25
	5.2	Операции над степенными рядами	28
	5.3	Непрерывность суммы степенного ряда	28
	5.4	Почленное дифференцирование и интегрирование степен-	
		ных рядов	29
	5.5	Ряд Тейлора. Аналитические функции	30
	5.6	Разложение в ряд Тейлора некоторых элементарных функ-	
		ций	33