MobileNet: A Deep Dive into Efficiency

- The importance of MobileNet for efficient computations on mobile and embedded devices.
- Key building blocks:
 - Standard Convolution The traditional approach.
 - Depthwise Convolution Reducing spatial computation.
 - Pointwise Convolution Channel-wise computation optimization.
- Focus on how these techniques reduce computational complexity and parameters while maintaining performance.

Objective:

To understand how MobileNet achieves high efficiency and accuracy for real-world applications.

Standard Convolution

Depthwise Convolution

Standard Convolution:

Computationally heavy, combines spatial and channel info in one step.

Depthwise Convolution:

Applies spatial filtering to each channel separately.

Pointwise Convolution:

Combines depth information across channels.

MobileNet allows to operate on devices with limited computational power while maintaining reasonable accuracy

In MobileNet

These two methods together reduce the number of parameters and computational complexity, making MobileNet more efficient while maintaining good performance for image classification tasks.

Depthwise Separable Convolution

• Depthwise Convolution + Pointwise Convolution(1x1 convolution)

Normal Convolution

Normal Convolution

*

6x6x3

Input:

Size = $6 \times 6 \times 3$ Width & Height = 6×6 Depth/Channels = 3

Filters:

Size = $3 \times 3 \times 3$: Width & height = 3×3 : Channels = 3

Number of Filters = 5 (you want 5 output channels).

Output:

Output size = $4 \times 4 \times 5$ Width & height = 4×4 Channels = 5

Step 1: Compute Output Dimensions

The formula for the output spatial dimensions is:

$${
m Output\ Size} = rac{{
m Input\ Size} - {
m Filter\ Size}}{{
m Stride}} + 1$$

- Input size = 6×6
- Filter size = 3×3
- Stride = 1 (filter moves 1 step at a time).
- Padding = 0 (no extra padding added).

Output Size (per side) =
$$\frac{6-3}{1} + 1 = 4$$

So, the spatial output size is 4×4 .

With 5 filters, the full output size becomes $4 \times 4 \times 5$.

Step 2: Number of Parameters per Filter

Each filter is a cube of size $3 \times 3 \times 3$:

Parameters per Filter =
$$3 \times 3 \times 3 = 27$$

There are 5 filters, so the total number of filter parameters is:

Total Parameters =
$$27 \times 5 = 135$$

Step 3: Number of Filter Positions

The filter moves across the input at each position to calculate the output. The number of filter positions is based on the output size:

 $Filter\ Positions = Output\ Width \times Output\ Height = 4 \times 4 = 16$

Step 4: Total Computational Cost

At each position, for each filter, we perform the following:

- Multiply and add for all the filter parameters.
- Each filter has 27 parameters, and there are 16 positions per filter.
- For **5** filters, the total computation is:

 $Computational\ Cost = Parameters\ per\ Filter \times Filter\ Positions \times Number\ of\ Filters$

Computational Cost =
$$27 \times 16 \times 5 = 2160$$

Normal Convolution

Summary of Results:

- 1. Output Size: $4 \times 4 \times 5$ (Width \times Height \times Channels).
- 2. Filter Parameters: $27 \times 5 = 135$.
- 3. Computational Cost: 2160.

Depthwise Separable Convolution

Depthwise Convolution

- •Filter 1 operates only on the red channel.
- •Filter 2 operates only on the green channel.
- •Filter 3 operates only on the blue channel.

Computational Cost:

Depthwise convolution drastically reduces the computation compared to standard convolution.

Number of Filter Parameters:

- Each 3×3 filter has $3 \times 3 = 9$ parameters.
- With 3 filters, the total is $9 \times 3 = 27$ parameters.

Number of Filter Positions:

- The filter slides across $4 \times 4 = 16$ positions for each channel.
- Total positions = $16 \times 3 = 48$.

Total Multiplications:

ullet 27 filter parameters are applied across 48 positions: 27 imes48=432 multiplications.

Pointwise Convolution

4 x 4

Pointwise Convolution

•Input Tensor: 4×4×34

•Filters: 5 filters, each of size

•Output Tensor: After applying 5 filters, the output will have 4×4×5

•Here, 5 (output channels) corresponds to the number of filters.

Computational Cost:

Step-by-Step Explanation:

1. Filter Parameters:

Each filter is of size 1x1x3, so there are $1 \cdot 1 \cdot 3 = 3$ parameters per filter.

2. Filter Positions:

The filter moves across every spatial location in the input, which is $4 \cdot 4 = 16$ positions.

Number of Filters:

There are 5 filters, corresponding to N', the number of desired output channels.

Total Computational Cost:

$$Cost = 3 \cdot 16 \cdot 5 = 240$$

Comparison of computational costs

Туре	Input Dimensions	Filters Used	Output Dimensions	Computational Cost (Operations)
Standard Convolution	6 imes 6 imes 3	5 imes(3 imes3 imes3)	4 imes 4 imes 5	2,160
Depthwise Convolution	6 imes 6 imes 3	3 imes(3 imes3)	4 imes 4 imes 3	423
Pointwise Convolution	4 imes 4 imes 3	5 imes (1 imes 1 imes 3)	4 imes 4 imes 5	240

Key Takeaways:

- Depthwise and Pointwise Convolutions significantly reduce computational complexity.
- MobileNet achieves efficiency without compromising accuracy, making it suitable for devices with limited resources.

Real-World Applications:

 Widely used in object detection, face recognition, and image classification on mobile devices and edge platforms.

MobileNet

MobileNet v1

MobileNet v1:

- It uses depthwise separable convolutions, which break down the image into smaller parts and process them independently.
- It processes the image step by step for 13 layers, extracting features like edges, colors, and textures.
- However, it doesn't reuse information, so it's slower and less efficient.

MobileNet v2:

1. Expansion:

Temporarily increases the data size (like zooming in on details) to capture richer information.

2. Depthwise Convolution:

Processes only the important parts of the data, reducing unnecessary computations.

3. **Projection**:

Shrinks the data back to its original size to save memory.

4. Residual Connection:

Skips some layers when the important features (like a clear edge or shape) are already captured.

This process happens 17 times, making it more accurate and faster while using fewer resources.

- MobileNet v1: Processes an image layer by layer (step by step). It's simple but uses more resources and time.
- MobileNet v2: Improves the process by:
 - 1. **Expanding:** Temporarily making the data bigger to capture more details.
 - 2. **Depthwise Convolution:** Efficiently processing the data to reduce computations.
 - 3. **Compressing:** Shrinking the data back to save memory.
 - Shortcut (Residual Connection): Skipping layers when the data is already good, making the process faster.

Result: MobileNet v2 is faster, uses less power, and is more accurate than v1.