Genetic Algorithm Assignment

- Ratnesh Kumar Rai(MIT2019098)

- 1. Consider three strings A_1 =11101111, A_2 = 00010100, A_3 = 01000011 and six schemata H_1 =1******, H_2 =0******, H_3 = *****11, H_4 = ***0*01*, H_5 = 1****1*, and H_6 =1****1*.
 - a. Which schemata is matched by which string?
 - b. What are the order and defining length of each of the schemata?
 - c. Estimate the probability of survival of each schema under mutation when the probability of a single mutation is p_m =0.001.
 - d. Estimate the probability of survival of each schema under crossover when the probability of crossover p_c =0.85.

Sol: Given $p_m = 0.001$ and $p_c = 0.85$, the calculation table is given below:

Schema(H)	Order (o(H))	Defining length (δ(H))	Strings matching to schema	$S_{ m m}({ m p}_{ m m})=(1-{ m p}_{ m m})^{ m O(H)}$ (Survival under mutation)	$S_c(H,p_c) \geq 1 - p_c rac{\delta(H)}{l-1}$ (Survival under crossover)
H ₁ = 1******	1	0	A1	0.999	1
$H_2 = 0^{*******}$	1	0	A2, A3	0.999	1
H ₃ = *****11	2	1	A1, A3	0.998	0.8780
$H_4 = ***0*01*$	3	3	А3	0.997	0.6357
H ₅ = 1****1*	2	6	A1	0.998	0.2714
$H_6 = 1^{*****1*}$	2	6	A1	0.998	0.2714

2. A population contains the following strings and fitness values at generation 0:

#	String	Fitness		
1.	10001	20		
2.	11100	10		
3.	00011	5		
4.	00011	15		

The probability of mutation is $p_m=0.01$ and the probability of crossover is $p_c=0.7$. Calculate the expected number of schemata of the form 1^{****} in generation 1. Estimate the expected number of schemata of the form $0^{**}1^*$ in generation 1.

Sol. Let $H_1 = 1^{****}$ and $H_2 = 0^{**}1^*$. Let the given strings be denoted by S1, S2,S3,S4 respectively.

String (S _i)	Fitness(f _i)		
S1 = 10001	20		
S2 = 11100	10		
S3 = 00011	5		
S4 = 00011	15		
Total Fitness $(\sum_{i=1}^{N} f_i)$	50		
Avg. Fitness (\overline{f})	12.5		

Now,

Schema(H)	Order (o(H))	Defining length (δ(H))	Strings matching to schema	m(H,0)	$f(H,0) = \frac{\left(\sum_{i \in H}^{m(H,0)} f_i\right)}{m(H,0)}$
H ₁ = 1****	1	0	S1, S2	2	15
$H_2 = = 0**1*$	2	3	S3, S4	2	10

The expected number instance for Schema(H) at next generation is given by :

$$E[m(H, k+1)] \ge m(H, k) \frac{f(H, k)}{\bar{f}} \left(1 - p_c \frac{\delta(H)}{l-1}\right) (1 - p_m)^{o(H)}$$

Given, $p_m = 0.01$, $p_c = 0.7$, Now,

$$\begin{split} E[m(H_1,1)] &\geq m(H_1,0) \frac{f(H_1,0)}{\overline{f}} \Big(1 - p_c \frac{\delta(H_1)}{l-1} \Big) (1 - p_m)^{O(H_1)} \\ &\geq 2 * \frac{15}{12.5} \Big(1 - 0.7 * \frac{0}{4} \Big) (1 - 0.01)^1 \\ &\geq 2.376 \end{split}$$

Similarly,

$$\begin{split} E[m(H_2, 1)] &\geq m(H_2, 0) \frac{f(H_2, 0)}{\overline{f}} \bigg(1 - p_c \frac{\delta(H_2)}{l - 1} \bigg) (1 - p_m)^{O(H_2)} \\ &\geq 2 * \frac{10}{12.5} \bigg(1 - 0.7 * \frac{3}{4} \bigg) (1 - 0.01)^2 \\ &\geq 0.7448 \end{split}$$

So, Expected number of schemata for $H_1 \geq 2.376$ and $H_2 \geq 0.7448$ in generation 1.