n [2]:	<pre>import matplotlib.colors as mcolors from sklearn import metrics import warnings warnings.filterwarnings('ignore') np.random.seed(420) colors = ('orange', 'cornflowerblue', 'black', 'gol</pre>	rativeClustering, MeanShift, estimate_bandwidth d', 'tomato', 'forestgreen', 'orchid')
n [3]:	<pre>Preprocessing df = pd.read_csv('dataset1_noClusters2.csv') df_ = pd.DataFrame(StandardScaler().fit_transform(d) df2 = pd.read_csv('dataset2_noClusters2.csv') df2_ = pd.DataFrame(StandardScaler().fit_transform(d) df3 = pd.read_csv('dataset3_noClusters2.csv') df3_ = pd.DataFrame(StandardScaler().fit_transform(d) df4 = pd.read_csv('dataset4_noClusters7.csv') df4_ = pd.DataFrame(StandardScaler().fit_transform(d) </pre>	df2)) df3))
n [4]:	<pre>Plot raw data fig, axs = plt.subplots(2,2, sharex=False, sharey=F axs[0, 0].set_title('Dataset 1 2 Clusters') axs[0, 0].scatter(df_[0], df_[1], c=df_[2]) axs[0, 1].set_title('Dataset 2 2 Clusters') axs[0, 1].scatter(df2_[0], df2_[1], c=df2_[2]) axs[1, 0].set_title('Dataset 3 2 Clusters') axs[1, 0].scatter(df3_[0], df3_[1], c=df3_[2]) axs[1, 1].set_title('Dataset 4 7 Clusters') axs[1, 1].scatter(df4_[0], df4_[1], c=df4_[2]) plt.show()</pre>	alse, figsize=(15,15))
	Dataset 1 2 Clusters 2.0 - 1.5 - 1.0 - 0.5 - -1.0 - -1.5 -	Dataset 2 2 Clusters 1 -
	Dataset 3 2 Clusters	Dataset 4 7 Clusters 2.0 1.5 1.0 -0.5 -1.0
n [5]:	Clustering Techniques DBSCAN db = DBSCAN(eps=0.3, min_samples=10).fit(df_) db2 = DBSCAN(eps=0.8, min_samples=10).fit(df2_) db3 = DBSCAN(eps=0.7, min_samples=10).fit(df3_) db4 = DBSCAN(eps=0.2, min_samples=10).fit(df4_)	-1.5 -1.0 -0.5 0.0 0.5 10 1.5
	<pre>def prepareDBSCANPlotData(dbscanCluster, df0bject): labelsOfDBSCAN = set(dbscanCluster.labels_) n_clusters_ = len(labelsOfDBSCAN) - (1 if -1 in plottingData = [] for label, color in zip(labelsOfDBSCAN, colors) points = dbscanCluster.labels_ == label test_ = df0bject[points] plottingData.append([test_[0], test_[1], co return plottingData dbPlotData = prepareDBSCANPlotData(db, df_) dbPlotData2 = prepareDBSCANPlotData(db2, df2_) dbPlotData3 = prepareDBSCANPlotData(db3, df3_) dbPlotData4 = prepareDBSCANPlotData(db4, df4_) plotData = [[dbPlotData, dbPlotData2], [dbPlotData3, dbPlot] fig_, axs_ = plt.subplots(2,2, figsize=(15,15)) for i in range(2): plotter = plotData[i][j] for x in range(len(plotter[0][3])):</pre>	dbscanCluster.labels_ else 0) : lor, labelsOfDBSCAN])
	#print (f"i: {i} j: {j} x: {x}") axs_[i,j].scatter(plotter[x][0], plotte 20 15 10 -0.5 -1.0 -1.5	r[x][1], c=plotter[x][2]) 3 2 1 0 -1 -2 -3
	-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0 4- 3- 12- 12222222-	20 15 10 -0.5 -0.5
n [6]:	<pre>for x in range(4): labels_true = dataSets[x][2] labels_pred = models[x].fit_predict(dataSets[x]]</pre>	<pre>ized_mutual_info_score(labels_true, labels_pred)*100,2)) ed_rand_score(labels_true, labels_pred)*100,2)) easet {x+1} is: {dbARS}") easet {x+1} is: {dbNMI}\n") 0.00 0.00 33 34</pre>
[16]:	Norm. Mutual Info for DBSCAN for dataset 3 is: 99. Adjusted Rand Score for DBSCAN for dataset 4 is: 100 Norm. Mutual Info for DBSCAN for dataset 4 is: 100 KMeans	40 0.00 0.00 df_) df2_) df3_) df4_)
	<pre>labelsOfkmeans = set(kmeansCluster.labels_) n_clusters_ = len(labelsOfkmeans) - (1 if -1 in plottingData = [] for label, color in zip(labelsOfkmeans, colors) points = kmeansCluster.labels_ == label test_ = dfObject[points] plottingData.append([test_[0], test_[1], co return plottingData kmeansPlotData = prepareKMeansPlotData(kmeans, df_) kmeansPlotData2 = prepareKMeansPlotData(kmeans2, df kmeansPlotData3 = prepareKMeansPlotData(kmeans3, df kmeansPlotData4 = prepareKMeansPlotData(kmeans4, df kmeansPlotDataList = [[kmeansPlotDataList = [[kmeansPlotData], kmeansPlotData2], [kmeansPlotD] figKMeans, axsKMeans = plt.subplots(2,2, figsize=(1 for i in range(2): plotter = kmeansplotDataList[i][j] for x in range(len(plotter[0][3])):</pre>	: clor, labelsOfkmeans]) (2_) (3_) (4_) (ata3, kmeansPlotData4] (5,15))
	2.0 - 1.5 - 1.0 - 1.5 - 2.0 - 1.5 - 2.0 - 1.5 -	3 2 1 0 -1 -2
	-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0	
	4 - 3 - 2 - 1 - 0 - 1 - 2 - 2 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	
n [8]:	dataSets = [df_, df2_, df3_, df4_] models = [kmeans, kmeans2, kmeans3, kmeans4] for x in range(4): labels_true = dataSets[x][2] labels_pred = models[x].fit_predict(dataSets[x]) 20
	dataSets = [df_, df2_, df3_, df4_] models = [kmeans, kmeans2, kmeans3, kmeans4] for x in range(4): labels_true = dataSets[x][2] labels_pred = models[x].fit_predict(dataSets[x] dbARS = "{:.2f}".format(np.round(metrics.normal dbNMI = "{:.2f}".format(np.round(metrics.adjust print (f"Adjusted Rand Score for KMeans for dat print (f"Norm. Mutual Info for KMeans for datset 1 is: 100 Norm. Mutual Info for KMeans for dataset 2 is: 100 Norm. Mutual Info for KMeans for dataset 2 is: 100 Adjusted Rand Score for KMeans for dataset 2 is: 100 Adjusted Rand Score for KMeans for dataset 3 is: 100 Adjusted Rand Score for KMeans for dataset 3 is: 100 Adjusted Rand Score for KMeans for dataset 3 is: 100 Adjusted Rand Score for KMeans for dataset 4 is: 92. Norm. Mutual Info for KMeans for dataset 4 is: 92. Norm. Mutual Info for KMeans for dataset 4 is: 92. Norm. Mutual Info for KMeans for dataset 4 is: 83. Agglomerative Clustering(n_clusters=2, link aggClu2 = AgglomerativeClustering(n_clusters=2, link aggClu3 = AgglomerativeCluster) 20
	dataSets = [df_, df2_, df3_, df4_] models = [kmeans, kmeans2, kmeans3, kmeans4] for x in range(4): labels_true = dataSets[x][2] labels_pred = models[x].fit_predict(dataSets[x] dbaRs = "(::2f)".format(np.round(metrics.normal dbNMI = "(:.2f)".format(np.round(metrics.adjust print (f*Adjusted Rand Score for KMeans for dats print (f*Norm. Mutual Info for KMeans for dataset 1 is: 100 Norm. Mutual Info for KMeans for dataset 1 is: 100 Norm. Mutual Info for KMeans for dataset 2 is: 100 Norm. Mutual Info for KMeans for dataset 3 is: 100 Norm. Mutual Info for KMeans for dataset 3 is: 100 Norm. Mutual Info for KMeans for dataset 3 is: 100 Norm. Mutual Info for KMeans for dataset 4 is: 92. Adjusted Rand Score for KMeans for dataset 3 is: 100 Norm. Mutual Info for KMeans for dataset 4 is: 92. Norm. Mutual Info for KMeans for dataset 4 is: 92. Norm. Mutual Info for KMeans for dataset 4 is: 92. Adjusted Rand Score for KMeans for dataset 4 is: 92. Norm. Mutual Info for KMeans for dataset 1 is: 100 norm. Mutual Info for KMeans for dataset 3 is: 100 norm. Mutual Info for KMeans for dataset 4 is: 92. Adjusted Rand Score for KMeans for dataset 4 is: 92. Norm. Mutual Info for KMeans for dataset 1 is: 100 norm. Mutual Info for KMeans for dataset 1 is: 100 norm. Mutual Info for KMeans for dataset 1 is: 100 norm. Mutual Info for KMeans for dataset 1 is: 100 norm. Mutual Info for KMeans for dataset 1 is: 100 norm. Mutual Info for KMeans for dataset 1 is: 100 norm. Mutual Info for KMeans for dataset 3 is: 100 norm. Mutual Info for KMeans for dataset 4 is: 92. Adjusted Rand Score for KMeans for dataset 3 is: 100 norm. Mutual Info for KMeans for dataset 4 is: 92. Inclusters_elen(lusterselen() 20
	dataSets = [df_, df2_, df3_, df4_] models = [kmeans, kmeans2, kmeans3, kmeans4] for x in range(4): labels_true = dataSets[x][2] labels_pred = models[x].fit_predict((dataSets[x]) dbANS = "(:.27)".format(np.round(metrics.normal) dbMNI = "(:.27)".format(np.round(metrics.adjust print (f*Adjusted Rand Score for KMeans for dataset 1 is: 100 Norm. Mutual Info for KMeans for dataset 1 is: 100 Norm. Mutual Info for KMeans for dataset 2 is: 100 Adjusted Rand Score for KMeans for dataset 2 is: 100 Adjusted Rand Score for KMeans for dataset 3 is: 100 Norm. Mutual Info for KMeans for dataset 3 is: 100 Norm. Mutual Info for KMeans for dataset 3 is: 100 Norm. Mutual Info for KMeans for dataset 4 is: 92. Norm. Mutual Info for KMeans for dataset 4 is: 92. Norm. Mutual Info for KMeans for dataset 4 is: 92. Norm. Mutual Info for KMeans for dataset 4 is: 93. Agglomerative Clustering(n_clusters=2, link aggClu2 = AgglomerativeClustering(n_clusters=2, link aggClu2 = AgglomerativeClustering(n_clusters=2, link aggClu2 = AgglomerativeClustering(n_clusters=7, link aggClu2 = BetagglomerativeClustering(n_clusters=7, link aggClu2 = BetagglomerativeClustering(n_clusters=7, link aggClu2 = BetagglomerativeClustering(n_clusters=7, link aggClu2 = BetagglomerativeClustering(link) = Betagglomerativ) 20
	dataSets = [df_, df2_, df4_] models = [kmeans, kmeans2, kmeans3, kmeans4] for x in range(4): labels_true = dataSets(x)[2] labels_prod = models(x].fit_predict(dataSets(x) dbMS = "(:.27).format(np.round(metrics.an)gus print (f*dataSets(x)[2] labels_prod = models(x).fit_predict(dataSets(x) dbMM = "(:.27).format(np.round(metrics.an)gus print (f*Mosm.Mutual Info for KMeans for dataSet 1 is: 100 Norm. Nutual Info for KMeans for dataSet 1 is: 100 Norm. Nutual Info for KMeans for dataSet 2 is: 100 Norm. Mutual Info for KMeans for dataSet 2 is: 100 Adjusted Rand Score for KMeans for dataSet 2 is: 100 Adjusted Rand Score for KMeans for dataSet 3 is: 100 Norm. Mutual Info for KMeans for dataSet 3 is: 100 Norm. Mutual Info for KMeans for dataSet 4 is: 92. Norm. Nutual Info for KMeans for dataSet 4 is: 92. Norm. Mutual Info for KMeans for dataSet 4 is: 93. Agglomerative Clustering(n_clusters=2, link aggClu = AgglomerativeClustering(n_clusters=2, link aggClug = AgglomerativeClustering(n_cluster	20 15 10 00 -05 -05 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
	dataSets = [df_, df2_, df3_, df4_] models = [kmeans, keeans2, kmeans3, kmeans4] for x in range(4):	
n [9]:	dotaSets = [dfidf2idf3idf4_] months = [Memoms, Newmon3, Newmon3] for xin range(4): labels_pred = models[x].fit_predictidstabets[x] dotASet = (xi_0)?!.formet[monthsetzics.normal print [ff.ogjuted Rand Score for RNeans for detect Adjusted Rand Score for RNeans for detect Rnean Nutual Trile for Memoms for detect 1 is: 100 Rnean Nutual Trile for Memoms for detect 2 is: 100 Rnean Nutual Trile for RNeans for detect 2 is: 100 Rnean Nutual Trile for RNeans for detect 2 is: 100 Rnean Nutual Trile for RNeans for detect 2 is: 100 Rnean Nutual Trile for RNeans for detect 2 is: 100 Rnean Nutual Trile for RNeans for detect 2 is: 100 Rnean Nutual Trile for RNeans for detect 4 is: 82. Agglomerative Clustering agg(1u? = AgglomerativeClustering(n_clusters=2, line agg(1u? = AgglomerativeClustering(n_clusters=2, line) agg(1u? = AgglomerativeClustering(n_clusters=2,	
n [9]:	dotaSets = [ofsdf2df3df4.] dotaSets = [ofsdf2df3df4.] for x in runps(4): labels rune = dataSets[x][2] labels.pred = models[x].fst.predictidensSets[x] dotAS = "(x0)11-(forset].promodimetrics.adjust print (""Nors. Mutual Info for KMeans for dataset 1 is: 100 Norm. Nutual Info for KMeans for dataset 1 is: 100 Norm. Nutual Info for KMeans for dataset 1 is: 100 Norm. Nutual Info for KMeans for dataset 1 is: 100 Norm. Nutual Info for KMeans for dataset 2 is: 100 Norm. Nutual Info for KMeans for dataset 3 is: 100 Norm. Nutual Info for KMeans for dataset 4 is: 53. Agglomerative Clustering aggCul = AgglomerativeClustering(n.clusters=2line) lang(lad = A	
n [9]:	dotoSets = [df_, df2_, df3_, df4_] modSl= [kneess, kneess2, /means2, leneass4] for x in range(4): look_look_look_look_look_look_look_look	and artial time score labels, true, labels ared/1800,201 and artial time, score labels, true, labels ared/1800,201 artial time, labels are and artial ared/1800,201 artial time, labels are
n [9]:	decedents : [aff. d?], d?], d?] decedents : [aff. d?], d?], d?] for xin Tampe(0); labela_large : decedents[a][2] shades = [aff. d?], d?], d. and decedents control cases = [aff. d?], d?], d. and decedents control cases = [aff. d. and decedents = [aff. d. and decedents control cases = [aff. d. and decedents = [aff. d.	200 1 2 2 2 2 2 2 2 2 2