

MACHINE LEARNING MODELS FOR DATA SCIENTIST SALARY PREDICTION

Data Sience - Binus University

- Renata Aqila R P 2702244284 Naira Faizanoor 2702241465
- Farren Angelica D 2702243546 Vionita Lesia 2702238312

INTRODUCTION

Problem Understanding

Understanding the factors that affect data scientist salaries is essential for professionals and employers alike in a job market that is changing quickly. However, accurate prediction is difficult due to the interplay of various features such as job roles, company size, and remote work, as well as the variability of salaries. The goal of this project is to develop a trustworthy salary prediction model by using advanced analytics to identify these relationships.

Objectives

- Create a predictive model that can be broadly applied.
- applied.

 Reduce errors (low RMSE) and provide an explanation for the salary variation (high R^2).

 Determine which factors have the biggest effects on salary.

Data Description

Summary of Data Scientist Salary Dataset The Data Scientist Salary dataset provides information about data scientist salaries from 2020 provides to 2023. It is used to analyze salary trends, work conditions, and industry dynamics in data science. This dataset offers insights into salary differences by experience or location, and supports accurate salary predictions in the data science industry.

Key Variables:

- work year
- experience level employment_type
- job_title
- salary &
- salary_in_usd
- employee_residence
- remote_ratio

Applications:

- Salary prediction using machine learning models
 - like linear regression. Trend analysis based on year, job type, experience, location, and
- remote work ratio. compány_location
- company size
- ightharpoonup Cleaning data by removing missing values and duplicates. Feature engineering to enhance data quality before analysis and prediction.

DATA UNDERSTANDING

- Target variable (Y) = salary_in_usd
- Ordinal columns = experience level, employment_type, company_size

Data Understanding

During the data understanding phase, the target variable (Y) is identified as salary_in_usd. Ordinal encoding is implemented for the columns experience_level, company_size, and employment type

1. Check Anomaly in Target Variable

DATA PREPARATION

2. Check Correlation

3. Encoding

		emperior_iere.	emproyment_type	Junu. ,	Jana 1 7 and		yonce
0	2023	2	0	80000	85847	100	2
1	2023	1	2	30000	30000	100	0
2	2023	1	2	25500	25500	100	0
3	2023	2	0	175000	175000	100	1
4	2023	2	0	120000	120000	100	1

4. Splitting Data

Training set shape: (2067, 10) Test set shape: (517, 10)

5. Scalling

(['work_year', 'experience_level', 'employment_type', 'job_title',
 'salary', 'salary_currency', 'employee_residence', 'remote_ratio',
 'company_location', 'company_size'],
 dtypee'object')

FVALUATION AND ANALYSIS

The evaluation shows that the Random Forest Regressor outperformed Linear Regression by capturing complex non-linear relationships, resulting in lower prediction errors and higher variance explanation. Effective data preparation, including cleaning and ordinal encoding, further improved performance and revealed key factors influencing data scientist salaries.

MACHINE LEARNING MODELLING

For the modeling phase, linear regression is utilized as the baseline model, while the proposed model

- employs the random forest regressor.

 Baseline model analysis: The linear regression model underperformed as it assumes linear relationships, making it less effective for capturing the non-linear patterns present in the data.
 - Proposed model analysis : The proposed Random Forest Regressor significantly reduced prediction errors and effectively captured the variance in the highlighting its suitability for modeling complex, non-linear relationships.

aining Results: E: 42572.5879 MSE: 3160764674.5009 56220.6784

Testing Results: MAE: 43601.9997 MSE: 3103590386.3110 MSE: 55709.8769

Proposed Model Evaluation Training Results: MAE: 785.5695 MSE: 22854766.2229 RMSE: 4780.6659 R2: 0.9950

Testing Results: MAE: 1966.0524 MSE: 198054138.0149 RMSE: 14073.1709

CONCLUSION

The goal of this project was to develop a trustworthy salary prediction model for data scientists by leveraging machine learning techniques.

- Experience level, employment type, and company size are critical factors impacting salaries.
 The ability to work remotely and company
- location also contribute to salary variation.

