Introduction to Anomaly Detection

Fang Zhou

Anomalies and outliers are essentially the same thing:

objects that are different from most other objects

The techniques used for detection are the same.

Anomaly detection

- Historically, the field of statistics tried to find and remove outliers as a way to improve analyses.
- There are now many fields where the outliers / anomalies are the objects of greatest interest.
 - The rare events may be the ones with the greatest impact, and often in a negative way.

Causes of anomalies

- Data from different class of object or underlying mechanism
 - fraud vs. not fraud

- Natural variation
 - tails on a Gaussian distribution

Distinction Between Noise and Anomalies

 Noise doesn't necessarily produce unusual values or objects

Noise is not interesting

Noise and anomalies are related but distinct concepts

Structure of anomalies

Point anomalies

Contextual anomalies

Collective anomalies

Point anomalies

 An individual data instance is anomalous with respect to the data

Contextual anomalies

- An individual data instance is anomalous within a context
- Requires a notion of context
- Also referred to as conditional anomalies

Collective anomalies

- A collection of related data instances is anomalous
- Requires a relationship among data instances
 - Sequential data
 - Spatial data
 - Graph data
- The individual instances within a collective anomaly are not anomalous by themselves

Applications of anomaly detection

- Network intrusion
- Insurance / credit card fraud
- Healthcare informatics / medical diagnostics
- Industrial damage detection
- Image processing / video surveillance
- Novel topic detection in text mining

• . . .

Intrusion detection

Intrusion detection

- Monitor events occurring in a computer system or network and analyze them for intrusions
- Intrusions defined as attempts to bypass the security mechanisms of a computer or network

Challenges

- Traditional intrusion detection systems are based on signatures of known attacks and cannot detect emerging cyber threats
- Substantial latency in deployment of newly created signatures across the computer system
- Anomaly detection can alleviate these limitations

Fraud detection

- Detection of criminal activities occurring in commercial organizations.
- Malicious users might be:
 - Employees
 - Actual customers
 - Someone posing as a customer (identity theft)
- Types of fraud
 - Credit card fraud
 - Insurance claim fraud
 - Mobile / cell phone fraud
 - Insider trading

- Challenges
 - Fast and accurate real-time detection
 - Misclassification cost is very high

Healthcare informatics

- Detect anomalous patient records
 - Indicate disease outbreaks, instrumentation errors, etc.
- Key challenges
 - Only normal labels available
 - Misclassification cost is very high
 - Data can be complex: spatio-temporal

Industrial damage detection

Key challenges

- Data is extremely large, noisy, and unlabeled
- Most of applications exhibit temporal behavior
- **Detected anomalous** events typically require immediate intervention

(a) Normal

(b) Anomaly

Use of data labels in anomaly detection

Supervised anomaly detection

- Labels available for both normal data and anomalies
- Similar to classification with high class imbalance

Semi-supervised anomaly detection

- Labels available only for normal data
- Labels available only for anomalies

Unsupervised anomaly detection

- No labels assumed
- Based on the assumption that anomalies are very rare compared to normal data

Output of anomaly detection

Label

- Each test instance is given a normal or anomaly label
- Typical output of classification-based approaches

Score

- Each test instance is assigned an anomaly score
 - allows outputs to be ranked
 - requires an additional threshold parameter

Anomaly detection problem definition

3.1.1 Problem Statement. Given a training dataset $\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N, \mathbf{x}_{N+1}, \cdots, \mathbf{x}_{N+K}\}$, with $\mathbf{x}_i \in \mathbb{R}^D$, where $\mathcal{U} = \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N\}$ is a large unlabeled dataset and $\mathcal{A} = \{\mathbf{x}_{N+1}, \mathbf{x}_{N+2}, \cdots, \mathbf{x}_{N+K}\}$ $(K \ll N)$ is a small set of labeled anomaly examples that often do not illustrate every possible class of anomaly, our goal is to learn a scoring function $\phi: \mathcal{X} \to \mathbb{R}$ that assigns anomaly scores to data instances in a way that we have $\phi(\mathbf{x}_i) > \phi(\mathbf{x}_j)$ if \mathbf{x}_i is an anomaly (despite it is a seen or unseen anomaly) and \mathbf{x}_j is a normal instance.

Anomaly detection: Supervised

- Supervised methods

 Classification of a class attribute with very rare class values
- Key issue: Unbalanced datasets
 - Suppose a intrusion detection problem.
 - Two classes: normal (99.9%) and intrusion (0.1%)
 - The default classifier, always labeling each new entry as normal, would have 99.9% accuracy!

Anomaly detection: Supervised

- Managing the problem of Classification with rare classes:
 - We need other evaluation measures as alternatives to accuracy (Recall, Precision, F-measure, ROC-curves)
 - Some methods manipulate the data input, oversampling those tuples with the outlier label (the rare class value)
 - Cost-sensitive methods (assigning high cost to the rare class value)