ASSIGNMENT - 1

$$B_{11} = -625 \text{ cm}^3 \text{ mod}$$

$$B_{12} = B_{21} = -153 \, \text{cm}^3 \, |\text{mod}|$$

imple fraction of butane =
$$(19 + 072) = 0.61 \%$$

$$y_1 = \frac{0.0061}{0.9939}$$

$$B_{\text{mist}} = y_1^2 B_{11} + y_1 y_2 B_{12} + y_2 y_1 B_{21} + y_2^2 B_{22}$$

$$= (0.0061)^{2} (-625) + 2 (0.0061) (0.9939) (-153)$$

(This is very dose to B22 because mole fraction of 1 is very low)

$$BW B' = \frac{B}{RT}$$

$$\Rightarrow V = B_{mix} + RT = -110.54 \text{ cm}^3 + 8.314 \times 313.2 \text{ cm}^3$$

$$= 10 \times 10^5 \times 10^6 \text{ mod}$$

$$|B_{12}| = \sqrt{B_{11} B_{22}} (1-k_{12})$$

$$k_{12} = 1 - \frac{|B_{12}|}{\sqrt{|B_{11}||B_{22}|}}$$

$$= 1 - 153$$

$$\sqrt{110 \times 625}$$

2)
$$l=2$$
 \Rightarrow all c_2H_6 $M_W = 30 g | md$
 $m = 72 kg$ $P = 10 + 72 = 13.79 ban$
 $T = 273.15 + 2 \times 72 = 417.15 8°C = 690.3 K$

$$(2) = 72 \times 10^3 / 30 = 2400 \text{ moly}$$

$$(3) = 72 \times 10^3 / 30 = 2400 \text{ moly}$$

$$V = \frac{nRT}{p} = \frac{2400 \times 8.314 \times 690.3}{13.79 \times 105}$$
 m³

$$P = \frac{RT}{V-b} - \frac{a}{T^{1/2} V(V+b)}$$
 (1)

$$\alpha = 0.42748 R^{2} T_{c}^{2.5} = 9.882 \left[\frac{J m^{3} k^{1/2}}{m d^{2}} \right]$$

$$b = 0.08664 \, \text{RTc} = 4.513 \times 10^{-3} \, \text{m}^3 \, \text{m}^3$$

$$T_c = 305.4 \, \text{k}$$
, $P_c = 48.74 \, \text{bar}$

Now, we can we

to find v numerically

I sued Newton-Raphson method (not including all the iterations here because of space constraint)

$$\Rightarrow$$
 V = Vn = 0.004 143 x 2400 = 9.9432 m³

$$P = RT - q \chi(T)$$

$$V-b - V(V+b) + b(V-b)$$

where
$$z = [1 + K(1 - \sqrt{T_n})]^2$$

$$T_{\rm h} = T = \frac{690.3}{305.4} = 2.2603$$

$$\Rightarrow \qquad \lambda = 0.5415$$

Substituting
$$a = 0.45724(RTc)^2 = 0.6048 [Jm3]$$

$$b = 0.07780 \, \text{RTc} = 4.053 \times 10^{\frac{5}{2}} \, \text{mod}$$

Now, we we the value of P, T, R, a, b and a in Peng-Robinson EOS to find v numerically

I will Newton-Raphson method $V = 0.004149 \frac{m^3}{mol}$

$$T_{\rm H} = \frac{T}{T_{\rm C}} = \frac{690.3}{305.4} = 2.2603$$

$$P_{H} = \frac{P}{Pc} = \frac{13.79}{48.74} = 0.283$$

By double inhupolution, $z^{(0)} = 0.9962$

z (1)

PH

By double interpolation,

$$Z = z^{(0)} + z^{(1)} \times W = \frac{Pv}{RT}$$

$$V = \frac{8.314 \times 690.3}{13.79 \times 10^{5}} \quad 0.9962 + 0.02 \times 0.0997$$

$$V = 0.004154 \text{ m}^3$$

$$\Rightarrow$$
 V = Vn = 0.004154 × 2400 = 9.97 m³

All methods - Tabulateo

Value of V in m3

I deal you : 9.988

Radish - Kwong: 9.9432

Peng_ Robin son: 9.9576

Compressibility shorts: 9.97

(a)
$$P = \frac{RT}{V-b} - \frac{a}{TV^2}$$

$$\Rightarrow P_{c} = \frac{RTc}{V_{c}-b} - \frac{a}{T_{c}V_{c}^{2}}$$

$$\left(\frac{\partial P}{\partial V}\right)_{a T c} = \frac{-R T c}{C v_c - b)^2} + \frac{2a}{T c V_c^3} = 0 \rightarrow (1)$$

$$\left(\frac{\partial^2 P}{\partial v^2}\right)_{TC} = \frac{2RTc}{(V_c - b)^3} - \frac{6a}{T_c V_c^4} = 0 \longrightarrow (2)$$

$$\frac{\partial P}{\partial V} \quad \text{and} \quad \frac{\partial^2 P}{\partial V^2} = 0 \quad \text{at critical point}$$

$$\Rightarrow \frac{4a}{T_c v_c^3} - \frac{6a(v_c - b)}{T_c v_c^4} = 0$$

Substilluting Ve = 36 in eqn (1)

$$\Rightarrow a = \frac{9}{8} V_c R T_c^2 \qquad \Rightarrow (4)$$

$$\frac{r_c}{v_c - b} = \frac{q}{\tau_c v_c e}$$

$$\Rightarrow P_{C} = \frac{QT}{3b-b} - \frac{q}{8} V_{C} Q T_{C}^{2}$$

$$= \frac{q}{3b-b} V_{C} Q T_{C}^{2}$$

$$PC = \frac{RT}{2b} - \frac{9RTc^2}{8(3b)} = \frac{RTc}{8Pc}$$

$$Q = 27 p^2 \sqrt{c^3}$$

$$64 pc$$

$$V_c = 35$$
 \longrightarrow (1)

$$a = \frac{27}{64} \frac{R^2 \text{ Tc}^3}{Pc} \rightarrow (2)$$

$$b = \frac{e^{Tc}}{8Pc} \rightarrow (3)$$

$$P = RT - a$$

$$V - \frac{Vc}{3}$$

$$TV^{2}$$

$$\Rightarrow P = \frac{RT}{VC} - Q$$

$$\frac{(V) - 1}{3}$$

$$TV^{2}$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\end{array}\end{array}\end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array}$$

$$\Rightarrow P = \frac{RT \times PC}{RTC} - \frac{q}{TV2}$$

$$\Rightarrow P = \frac{8P_c T_H}{3V_n - 1} - \frac{a}{TV^2} \qquad \left(\frac{T_H = \frac{T}{T_c}}{T_c}\right)$$

$$\Rightarrow P = \frac{8 P_{c} T_{H}}{3 V_{H} - 1} - \frac{27 Q_{c} T_{c}^{3} R^{2}}{64 P_{c} T_{v}^{2}}$$

$$\Rightarrow P = 8Pc Th - 27 Pc Tcb^2$$

$$3Vn-1$$

$$T V = 27$$

$$\Rightarrow P = \frac{8PcTh}{3V_{H}-1} - \frac{3PcTc}{T} \frac{Vc^{2}}{V^{2}} \qquad (P_{H} = \frac{P}{Pc})$$

$$\Rightarrow P_{H} = \frac{8T_{H}}{3V_{H}-1} - \frac{3}{T_{H}V_{H}^{2}} - \frac{9}{T_{H}V_{H}^{2}} + \frac{9}{T_{H}V_{H}^{2}}$$

$$P = 13.79$$
 bar $a = 27 k^2 + c^3 = 602.347$ Pa K mit

$$b = RTc = 23.016 \times 10^{-5} \text{ m}^3$$

Substituting there values in Berthelot Eos:

$$P = \frac{RT}{V-b} - \frac{a}{TV^2}$$

We can solve v ming numerical techniques. I und Newton-Raphson method

$$V = v \times n = 0.004251 \times 2400 = 10.2 \text{ m}^3$$

4) Vanderwaal's parameters

$$a = \frac{27}{64} \frac{R^2 Tc^2}{Pc} \left[\frac{Jm3}{mol^2} \right]$$

4 droose Benzene (mw = 78 g/mod - andition (1)). oxygen and propare (oxygen -0- condition (2))

Person and Assembly and Assembl			granden er von 1965 (196	
				7 (2) (2)
Gras	Pc	Tc	a = 27 R2 Tc2	b = RTC
	Chan	(K)	64 Pc	8 Pc
			CJm2)	(m3/mal)
VIII I I I I I I I I I I I I I I I I I				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Benzene	48.94	562.1	1.88	1.19×10-4
en constante de la constante d		The Colon Payable of the Colon		
Oxylgen	50.46	154.6	0-138	3.18 × 10 - 5
		The state of the s	The state of the s	
Propare	42.44	370	0.94	9.06 × 10-5
			a dispersión la company de	A second

a: Benzere > Propore > 0 my gen

b: Benzere > Propane >0 say gin

Physical significance

a → affected by attractive enteroction
b → affected by size

a

All three of them are non-polar mobalar. Therefore, only London dispussion forces are prevant. Larger and heavier atoms and mobales exhibit stronger dispusion forces than smaller and lighter ones.

This is because in larger atom on mobale, the valence electrons are, on average, fauther from the nucles than in a smaller atom on molecule.

They are less fightly held and an most early form temporary dipoles, is larger molecules have more polarizability. Benzere I larger and heavier, while 02 is the smallest.

... a: Benzere > Propane > Oxygen

b in directed depended on size of maleule

Benzere 4 langust and 02 is

smallyt.

i. b: Binzene > Propane > Osyger

5: Considering mixture of Oe and propare

For both of and propare, the depole momente are ZO10. (a -> 02 b -> C3 Hp)

i dipole-depole and induction forces are zero Ma = Hb = 6

.. Only forces is dispursion

$$\Gamma_{aa} = \frac{-3}{4} \times \frac{a^2 Ta}{\mu^6}$$

$$\frac{1}{3} = \frac{bb}{k+ab} + \frac{bb}{bb} + \frac{b$$

$$\Gamma_{bb} = -\frac{3}{4} \propto b^2 T_b$$

Note: the firms became zero because Ha = Hb = 0

(depole moment Is zero for non-polar molecula)

Substituting the above value,

 $\Gamma_{bb} = -32.462 \times 10^{-47}$ (ev) (am6)

$$\Gamma_{0b} = -8.663 \times 10^{-47}$$
 (ev) (cmb)

at now ve

Attractive introductions one moximum when n-0