САНКТ - ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА ЭКСПЕРИМЕНТАЛЬНОЙ ФИЗИКИ

Группа	_К работе допущен
Студент	_Работа выполнена
Преподаватель	Отчет принят
•	
Лаборант	

Рабочий протокол и отчет по лабораторной работе №2.10

Электронно-дырочный переход

1. Цель работы.

Измерить ВАХ полупроводникового диода. Найти высоту и ширину потенциального барьера в области p-n перехода

2. Задачи, решаемые при выполнении работы.

Измерить BAX германиевого и кремниевого диодов в прямом и обратном включениях. Построить графики BAX обоих диодов. Для германиевого диода найти напряжение отсечки Uoтс, ширину d p-n перехода, ток насыщения ls, экспериментальное значение Фрп. Визуально сравнить BAX, полученную экспериментально, с BAX, полученной теоретически.

3. Объект исследования.

Полупроводниковый диод (германий, кремний)

4. Метод экспериментального исследования.

Снятие ВАХ диода

5. Рабочие формулы и исходные данные.

$$d \approx \left(\frac{2\varepsilon \varepsilon_0 U_{\text{orc}}}{e n_d}\right)^{\frac{1}{2}}, \quad I = I_s \cdot \left[\exp\left(\frac{e U}{kT}\right) - 1\right].$$

Ge: Nd =
$$2.3*10^23 \text{ M}^{-3}$$
, $\varepsilon = 16$ Si: Nd = $1.8*10^23 \text{ M}^{-3}$, $\varepsilon = 12$

$$\varepsilon_0 = 8.85 * 10^{-12} \Phi/M$$

$$T = 23$$
 град. $= 296$ К

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	вольтметр	цифровой	0-8,82 B	0,001 B
2	амперметр	цифровой	-13 – 9,46 MA	0,001 mA
3				
4				

- 7. Схема установки (перечень схем, которые составляют Приложение 1).
- 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

	Германиевый диод		Кремниевый диод					
	пря	эмое	обратное		прямое		обратное	
	Uпр, В	Іпр, мА	U обр, В	Іобр, мка	Uпр, В	Іпр, Ма	Uобр, мВ	Іобр, мка
1	0,212	0,283	-3,43	-0,31	0,676	1,016	-14,147	-1,6
2	0,252	0,445	-3,7	-0,32	0,688	1,35	-14,14	-1,5
3	0,27	0,538	-4,01	-0,415	0,698	1,691	-13,32	-1,4
4	0,284	0,615	-4,32	-0,42	0,704	2,191	-12,37	-1,3
5	0,305	0,744	-4,62	-0,43	0,713	2,31	-11,2	-1,2
6	0,322	0,861	-4,91	-0,52	0,73	3,19	-10,49	-1,16
7	0,351	1,082	-5,24	-0,55	0,744	4,06	-9,32	-1,07
8	0,362	1,17	-5,53	-0,57	0,75	4,526	-8,26	-0,98
9	0,38	1,321	-5,82	-0,61	0,76	5,32	-7,32	-0,88
10	0,394	1,45	-6,14	-0,62	0,772	6,47	-6,26	-0,82
11	0,406	1,566	-6,42	-0,65	0,785	7,94	-5,29	-0,69
12	0,418	1,695	-6,71	-0,69	0,79	8,61	-4,25	-0,59
13	0,42	1,71	-7,02	-0,73	0,8	9,85	-3,31	-0,43
14	0,43	1,81	-7,35	-0,78	0,811	11,5	-2,36	-0,31
15	0,47	2,25	-7,62	-0,79	0,82	13,01	-1,507	-0,2
16	0,488	2,47	-7,95	-0,8	0,83	14,67	-1,322	-0,16
17	0,505	2,68	-8,25	-0,81	0,84	16,68		
18	0,51	2,74	-8,52	-0,88				

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Ge:

Uotc = Upn = 0,29 В
 Ф =
$$e*U_{\rm otc}$$
 = 1,6 * 10⁻¹⁹ * 0.29 Дж = 4.64 * 10²⁰ Дж = 0,29 эВ $I_{\rm S}$ = -0,12 мкА

$$\mathsf{d} = \left(\frac{2*\epsilon*\epsilon_0*U \text{otc}}{e*n_d}\right)^{1/2} = \left(\frac{2*12*8.85*10^{-12}*0.29}{1.6*10^{-19}*2.3*10^{23}}\right)^{1/2} = 0.01375 \; \mathsf{m}$$

$$I = Is * \left[exp\left(\frac{eU}{k*T}\right) - 1 \right] = 3 = 0.12 * \left[exp\left(\frac{1.6 * 10^{-19} * U}{1.38 * 10^{-23} * 296}\right) - 1 \right]$$

= 0.12 * \left[exp(39,16 * U) - 1 \right]

Uпр, В

0,212

Іпр,Ма

4,8E+02

 Ообр, В	Іобр,мкА
-3,43	-0,00012
-3,7	-0,00012
-4,01	-0,00012
-4,32	-0,00012
-4,62	-0,00012
-4,91	-0,00012
-5,24	-0,00012
-5,53	-0,00012
-5,82	-0,00012
-6,14	-0,00012
-6,42	-0,00012
-6,71	-0,00012
-7,02	-0,00012
-7,35	-0,00012
-7,62	-0,00012
-7,95	-0,00012
-8,25	-0,00012
-8,52	-0,00012

Si:

$$U_{
m otc} = U_{pn} = 0,75~{
m B}$$
 $\Phi = e*U_{
m otc} = 1,6*10^{-19}*0,75 = 1.2*10^{19}~{
m Дж} = 0,75~{
m эВ}$ $I_{s} = -0,3~{
m mkA}$ ${
m d} = \left(\frac{2*\epsilon*\epsilon_0*U_{
m otc}}{e*n_d} \right)^{1/2} = \left(\frac{2*12*8.85*10^{-12}*0.75}{1,6*10^{-19}*1.8*10^{23}} \right)^{1/2} = 0,025~{
m m}$

$$I = Is * \left[exp\left(\frac{eU}{k*T}\right) - 1 \right] = 0.3 * \left[exp\left(\frac{1.6 * 10^{-19} * U}{1.38 * 10^{-23} * 296}\right) - 1 \right]$$
$$= 0.3 * \left[exp(39.16 * U) - 1 \right]$$

Uпр, В	Іпр,Ма
0,676	9,42E+10
0,688	1,51E+11
0,698	2,23E+11
0,704	2,82E+11
0,713	4,01E+11
0,73	7,80E+11
0,744	1,35E+12
0,75	1,71E+12
0,76	2,53E+12
0,772	4,04E+12
0,785	6,72E+12
0,79	8,18E+12
0,8	1,21E+13
0,811	1,86E+13
0,82	2,65E+13
0,83	3,92E+13
0,84	5,79E+13

Uобр, В	Іобр,мкА
-14,147	-0,300
-14,14	-0,300
-13,32	-0,300
-12,37	-0,300
-11,2	-0,300
-10,49	-0,300
-9,32	-0,300
-8,26	-0,300
-7,32	-0,300
-6,26	-0,300
-5,29	-0,300
-4,25	-0,300
-3,31	-0,300
-2,36	-0,300
-1,507	-0,300
-1,322	-0,300

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Ge:
$$\Delta$$
Upn = 0.001 B
 $\Delta\Phi$ = e * Δ Upn = 0.0016 $_{9}B$

$$\Delta d(Ge) = \sqrt{\left(\frac{1}{2d(Ge)} * \frac{d(Ge)^{2}}{Upn} * \Delta Upn\right)^{2}} = \frac{d(Ge) * \Delta Upn}{2*Upn} = \frac{0.01375*0.001}{2*0.29} = 2.371 * 10^{-5} \text{ M} = 0.024 * 10^{-3} \text{ M}$$

Si:

$$\Delta$$
Upn = 0.001 B

$$\Delta \Phi = e * \Delta Upn = 0.0016 B$$

$$\Delta d(Si) = \sqrt{\left(\frac{1}{2d(Si)} * \frac{d(Si)^2}{Upn} * \Delta Upn\right)^2} = \frac{d(Si) * \Delta Upn}{2*Upn} = \frac{0.025*0.001}{2*0.75} = 1.667 * 10^{-5} \text{ M} = 0.017 * 10^{-3} \text{ M}$$

11. Графики (перечень графиков, которые составляют Приложение 2).

ВАХ германиевого и кремниевого диодов Теоретическая ВАХ германиевого и кремниевого диодов

12. Окончательные результаты.

Ge:

$$\Phi = (0,2900 \pm 0,0016) \, \exists B \quad d = (15.530 \pm 0,024) * 10^{-3} \, M$$

Si:

$$\Phi = (0,7500 \pm 0,0016) \, \exists B \quad d = (19.580 \pm 0.017) * 10^{-3} \, M$$

13. Выводы и анализ результатов работы.

В ходе лабораторной работы была получена высота потенциального барьера и ширина запрещенной зоны германия, были построены BAX германия и кремния, построены теоретическая BAX для обоих диодов. Отклонение экспериментально полученного значения высоты потенциального барьера германия $\Phi pn = 0,29$ эВ от табличной величины Eg=0.72 Эв может быть вызвана недостаточным количеством данных для проведения более точных вычислений. Сравнивая экспериментальную и теоретическую BAX, можно установить, что прямая ветвь экспериментально полученных значений плавно переходит от экспоненциальной к линейной зависимости.