

What is Learning?

Use the past to predict the future

	Inside Out	Good Will Hunting	Mean Girls	Terminator	Titanic	Warrior
	HSIDE HSIDE	COCO WILL HUNTING	MEANGRES AND	TERMINATOR	TITANIC	
Fey Fey	3	1	5	1	?	1
Helen Mirren	2	?	?	2	5	1
Sylvester Stallone	1	3	1	4	2	5
Tom Hanks	?	3	1	?	4	3
George Clooney	2	2	1	3	1	4

Types of learning problems

- Regression: predict a numerical value
- Binary classification: predict a yes-no response
- Multiclass classification: predict membership into one of a number of classes
- Ranking: order a set of objects with respect to relevance

Framework for learning

Patterns, Learning, and Inductive Reasoning

- A learner needs to find patterns in the world.
- But the learner has an inductive bias that tells them what patterns are possible.
- The learner's task: to find the **best possible description** of the world around them, within the constraints of the learner's inductive bias.

Ingredients of Machine Learning

- Architecture: The learner's inductive bias.
- Loss Function: A measure of how bad a model is.
- Optimization Algorithm: An algorithm that tries to minimize how bad the model is.

Binary Classification

Input	Label	Input	Label
1, 2, 4	True	4, 8, 16	???
2, 4, 8	True	16, 8, 4	???
16, 32, 64	True	3, 6, 12	???
2, 1, 4	False	1, 2, 3	???
3, 2, 1	False	0, 0, 0	???

Binary Classification

Input	Label	Input	Label	
1, 2, 4	True	4, 8, 16	True	
2, 4, 8	True	16, 8, 4	False	
16, 32, 64	True	3, 6, 12	True	
2, 1, 4	False	1, 2, 3	True	
3, 2, 1	False	0, 0, 0	False	
5, 6, 7	???			
5, 10, 20	???			
3, 6, 9	???			

What's the Pattern?

What's the Pattern?

What's the Pattern?

Model Architectures

A model architecture is a family of parameterized functions of the form

$$\hat{\mathbf{y}} = \hat{f}(\mathbf{x}; \boldsymbol{\theta})$$

where θ is a vector of parameters.

- Hamermesh and Parker (2004): Do good-looking instructors get better course evaluations?
- Create a model that predicts course evaluation scores from course feature vectors.
- The model learns from UT Austin course evaluations.

- Feature vectors for courses: $x \in \mathbb{R}^7$, where
 - x_1 : "beauty score" from 0 (ugly) to 1 (beautiful)
 - x_2 : 1 if instructor is female, 0 if male
 - x_3 : 1 if instructor is non-white, 0 if white
 - x_4 : 1 if instructor is a native English speaker, 0 otherwise
 - x_5 : 1 if instructor is tenure-track, 0 otherwise
 - x_6 : 1 if the course is 100/200, 0 if 300/400
 - x_7 : 1 if course is only one credit, 0 otherwise

Linear model architecture:

$$\hat{y} = \hat{f}(x; \boldsymbol{\theta}) = \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + b$$

where

- $x \in \mathbb{R}^7$ is the feature vector for a course
- $\hat{y} \in [0, 1]$ is the predicted course evaluation
- parameters are $\theta = \begin{bmatrix} w \\ b \end{bmatrix}$.

- Learned model parameters:
 - $w_1 = 0.275$ (beautiful?)
 - $w_2 = -0.239$ (female?)
 - $w_3 = -0.249$ (non-white?)
 - $w_4 = -0.253$ (native English speaker?)
 - $w_5 = -0.136$ (tenure-track?)
 - $w_6 = -0.045 (100/200?)$
 - $w_7 = 0.687$ (one-credit?)

What is the architecture for SGNS?

$$\hat{y} = \hat{f}(w, c; \boldsymbol{\theta}) = \sigma(\langle c \rangle^{\mathsf{T}} \llbracket w \rrbracket)$$

where

- $w \in \mathbb{V}$ is a target word and $c \in \mathbb{V}$ is a context
- $\hat{y} \in (0,1)$ is the probability that w and c occur together

$$\bullet \; \boldsymbol{\theta}^\top = [\langle c_1 \rangle^\top \quad \langle c_2 \rangle^\top \quad \cdots \quad \langle c_n \rangle^\top \quad \llbracket w_1 \rrbracket^\top \quad \llbracket w_2 \rrbracket^\top \quad \cdots \quad \llbracket w_n \rrbracket^\top \rrbracket$$

How Bad Is My Model?

How Bad Is My Model?

Loss Functions

Let $\hat{f}(\cdot; \boldsymbol{\theta}): \mathbb{A} \to \mathbb{B}$ be an architecture that predicts $\hat{y} = \hat{f}(x; \boldsymbol{\theta}) \in \mathbb{B}$ from input $x \in \mathbb{A}$.

A loss function is a function $L: \mathbb{B} \times \mathbb{B} \to \mathbb{R}$ such that $L(\widehat{y}, y)$ measures how bad the prediction \widehat{y} is for the true value y.

Loss Functions

Mean Squared Error Loss Function (Linear Regression)

$$L_{\text{MSE}}(\hat{y}, y) = (\hat{y} - y)^2$$

Binary Cross-Entropy Loss Function (SGNS)

$$L_{\text{CE}}(\hat{y}, y) = -y \ln(\hat{y}) - (1 - y) \ln(1 - \hat{y})$$

Loss Minimization

Let $\hat{f}(\cdot, \boldsymbol{\theta}): \mathbb{A} \to \mathbb{B}$ be a model architecture. We train $\hat{f}(\cdot, \boldsymbol{\theta})$ on a dataset $\mathbb{D} \subseteq \mathbb{A} \times \mathbb{B}$ by finding the parameters $\boldsymbol{\theta}^*$ that minimize average loss:

Objective (\mathcal{L})

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{(x,y) \in \mathbb{D}} L(\hat{f}(x;\theta), y)$$

Minimizing average loss is the same as minimizing total loss!

Linear Regression Model

$$\hat{f}(\mathbf{x}; \mathbf{w}, b) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b$$

Linear Regression Objective

$$\mathcal{L} = \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{D}} L_{\text{MSE}}(\hat{f}(\boldsymbol{x}; \boldsymbol{w}, b), \boldsymbol{y})$$

Linear Regression Model

$$\hat{f}(\mathbf{x}; \mathbf{w}, b) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b$$

Linear Regression Objective

$$\mathcal{L} = \sum_{(x,y) \in \mathbb{D}} L_{\text{MSE}}(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x} + b, y)$$

Linear Regression Model

$$\hat{f}(\mathbf{x}; \mathbf{w}, b) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b$$

Linear Regression Objective

$$\mathcal{L} = \sum_{(x,y) \in \mathbb{D}} (\mathbf{w}^{\mathsf{T}} \mathbf{x} + b - y)^2$$

Linear Regression Model

$$\hat{f}(\mathbf{x}; \mathbf{w}, b) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b$$

Linear Regression Minimization Problem

$$\mathbf{w}^*, b^* = \underset{\mathbf{w}, b}{\operatorname{argmin}} \mathcal{L} = \underset{\mathbf{w}, b}{\operatorname{argmin}} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathbb{D}} (\mathbf{w}^\mathsf{T} \mathbf{x} + b - \mathbf{y})^2$$

SGNS Model

$$\hat{f}(w,c;\langle\cdot\rangle,\llbracket\cdot\rrbracket) = \sigma(\langle c\rangle^{\top}\llbracket w\rrbracket)$$

SGNS Objective

$$\mathcal{L} = \sum_{(w,c,y)\in\mathbb{D}} L_{\text{CE}}(\sigma(\langle c \rangle^{\top} \llbracket w \rrbracket), y)$$

$$\mathcal{L} = \sum_{(w,c,y)\in\mathbb{D}} L_{CE}(\sigma(\langle c \rangle^{\top} \llbracket w \rrbracket), y)$$

$$= \sum_{(w,c,y)\in\mathbb{D}} -\gamma \ln(\sigma(\langle c \rangle^{\top} \llbracket w \rrbracket)) - (1-\gamma) \ln(1-\sigma(\langle c \rangle^{\top} \llbracket w \rrbracket))$$

$$y = 1$$

$$= \left(\sum_{(w,c,1)\in\mathbb{D}} -\ln(\sigma(\langle c \rangle^{\top} \llbracket w \rrbracket))\right) + \left(\sum_{(w,c,0)\in\mathbb{D}} -\ln(1-\sigma(\langle c \rangle^{\top} \llbracket w \rrbracket))\right)$$

$$\mathcal{L} = \sum_{(w,c,y)\in\mathbb{D}} L_{CE}(\sigma(\langle c \rangle^{\top} \llbracket w \rrbracket), y)$$

$$= \sum_{(w,c,y)\in\mathbb{D}} -y \ln(\sigma(\langle c \rangle^{\top} \llbracket w \rrbracket)) - (1-y) \ln(1-\sigma(\langle c \rangle^{\top} \llbracket w \rrbracket))$$

$$y = 0$$

$$= \left(\sum_{(w,c,1)\in\mathbb{D}} -\ln(\sigma(\langle c \rangle^{\top} \llbracket w \rrbracket))\right) + \left(\sum_{(w,c,0)\in\mathbb{D}} -\ln(1-\sigma(\langle c \rangle^{\top} \llbracket w \rrbracket))\right)$$

$$\mathcal{L} = \sum_{(w,c,y)\in\mathbb{D}} L_{CE}(\sigma(\langle c \rangle^{\top} \llbracket w \rrbracket), y)$$

$$= \sum_{(w,c,y)\in\mathbb{D}} -y \ln(\sigma(\langle c \rangle^{\top} \llbracket w \rrbracket)) - (1-y) \ln(1-\sigma(\langle c \rangle^{\top} \llbracket w \rrbracket))$$

$$= \left(\sum_{(w,c,1)\in\mathbb{D}} -\ln(\sigma(\langle c \rangle^{\top} \llbracket w \rrbracket))\right) + \left(\sum_{(w,c,0)\in\mathbb{D}} -\ln(1-\sigma(\langle c \rangle^{\top} \llbracket w \rrbracket))\right)$$

Optimization Algorithm

An optimization algorithm is any algorithm that can minimize the objective.

Given input \mathbb{D} and model architecture $\hat{f}(\cdot; \boldsymbol{\theta})$, return:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{(\boldsymbol{x},\boldsymbol{y})\in\mathbb{D}} L(\hat{f}(\boldsymbol{x};\boldsymbol{\theta}),\boldsymbol{y})$$

Optimization for Linear Regression

Use first derivative test:

$$\nabla_{\boldsymbol{\theta}} \mathcal{L} = \mathbf{0}$$

where $\nabla_{\theta} \mathcal{L}$ is the gradient of \mathcal{L} :

$$abla_{ heta}\mathcal{L} = egin{bmatrix} \partial \mathcal{L}/\partial heta_1 \ \partial \mathcal{L}/\partial heta_2 \ dots \ \partial \mathcal{L}/\partial heta_n \end{bmatrix}$$

Optimization for Linear Regression

For all i,

$$\frac{\partial \mathcal{L}}{\partial w_i} = 0$$

$$\frac{\partial \mathcal{L}}{\partial b} = 0$$

Solve for w_i and b!

From the first equation we get

$$0 = 2 \sum_{(x,y)\in\mathbb{D}} x(ax+b-y)$$

$$= 2 \sum_{(x,y)\in\mathbb{D}} \left(ax^2 + \left(\frac{x}{|\mathbb{D}|} \sum_{(x',y')\in\mathbb{D}} (y'-ax')\right) - yx\right)$$

$$= 2a \left(\sum_{(x,y)\in\mathbb{D}} x^2 - \frac{x}{|\mathbb{D}|} \sum_{(x',y')\in\mathbb{D}} x'\right) + \sum_{(x,y)\in\mathbb{D}} \left(-yx + \frac{x}{|\mathbb{D}|} \sum_{(x',y')\in\mathbb{D}} y'\right),$$

hence

$$a = \frac{\sum_{(x,y)\in\mathbb{D}} \left(yx - \frac{x}{|\mathbb{D}|} \sum_{(x',y')\in\mathbb{D}} y'\right)}{2\left(\sum_{(x,y)\in\mathbb{D}} x^2 - \frac{x}{|\mathbb{D}|} \sum_{(x',y')\in\mathbb{D}} x'\right)}$$

and

$$b = \frac{1}{|\mathbb{D}|} \sum_{(x,y) \in \mathbb{D}} \left(y - x \frac{\sum_{(x'',y'') \in \mathbb{D}} \left(y''x'' - \frac{x''}{|\mathbb{D}|} \sum_{(x',y') \in \mathbb{D}} y' \right)}{2 \left(\sum_{(x'',y'') \in \mathbb{D}} x''^2 - \frac{x''}{|\mathbb{D}|} \sum_{(x',y') \in \mathbb{D}} x' \right)} \right).$$