Improved Classical and Quantum Algorithms for the Shortest Vector Problem

Divesh Aggarwal

Rajendra Kumar

Yanlin Chen

Yixin Shen

What is a (Euclidean) lattice?

Definition

$$\mathcal{L}(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n) = \left\{\sum_{i=1}^n x_i \boldsymbol{b}_i : x_i \in \mathbb{Z}\right\}$$
 where $\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n$ is a basis of \mathbb{R}^n .

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Basis reduction: transform a bad basis into a good one Main tool: BKZ algorithm and its variants

Requires to solve the (approx-)SVP problem in smaller dimensions.

The Shortest Vector Problem

Shortest Vector Problem (SVP): Given a basis for the lattice \mathcal{L} , find a shortest nonzero lattice vector. $\lambda_1(\mathcal{L}) = \text{length of such a vector.}$

The Shortest Vector Problem

Shortest Vector Problem (SVP): Given a basis for the lattice \mathcal{L} , find a shortest nonzero lattice vector.

 $\lambda_1(\mathcal{L}) = \text{length of such a vector.}$

Main approaches for SVP:

- ▶ Enumeration: $2^{O(n \log(n))}$ time and poly(n) space
- ► Sieving: $2^{O(n)}$ time and $2^{O(n)}$ space

Sieving

- Heuristic algorithms: fastest in practice
- ▶ Provable algorithms: important for theory → our work

Results in the Classical Setting

Provable algorithms for SVP:

Time Complexity Space Comple		Reference	
$n^{\frac{n}{2e}+o(n)}$	poly(<i>n</i>)	[Kan87,HS07]	
$2^{n+o(n)}$	$2^{n+o(n)}$	[ADRS15]	
2 ^{2.05n+o(n)}	$2^{0.5n+o(n)}$	[CCL18]	
2 ^{1.669n+o(n)}	$2^{0.5n+o(n)}$	Our work	

Results in the Classical Setting

Provable algorithms for SVP:

Time Complexity	Space Complexity	Reference	
$n^{\frac{n}{2e}+o(n)}$	poly(n)	[Kan87,HS07]	
$2^{n+o(n)}$	$2^{n+o(n)}$	[ADRS15]	
2 ^{2.05n+o(n)}	$2^{0.5n+o(n)}$	[CCL18]	
2 ^{1.669n+o(n)}	$2^{0.5n+o(n)}$	Our work	

Our work: first provable smooth time/space trade-off for SVP

time
$$q^{13n+o(n)}$$
 space $poly(n) \cdot q^{\frac{16n}{q^2}}$ $q \in [4, \sqrt{n}]$

- ▶ $q = \sqrt{n}$: time $n^{O(n)}$ and space poly(n), not as good as [Kan87].
- ▶ q = 4: time $2^{O(n)}$ and space $2^{O(n)}$, not as good as [ADRS15].

quantum data

Interlude: quantum memory models

Interlude: quantum memory models

Interlude: quantum memory models

Results in the Quantum Setting

Provable quantum algorithms for SVP:

Time	Space Complexity		Reference	
Complexity	Classical	Quantum	Model	neierence
2 ^{1.799n+o(n)}	2 ^{1.286n+o(n)}	2 ^{1.286n+o(n)}	QRACM	[LMP15]
$2^{1.2553n+o(n)}$	$2^{0.5n+o(n)}$	poly(n)	plain	[CCL18]
$2^{n+o(n)}$	2 ^{n+o(n)}	classical algorithm!		[ADRS15]
$2^{0.950n+o(n)}$	$2^{0.5n+o(n)}$	poly(n)	plain	Our work
$2^{0.835n+o(n)}$	$2^{0.5n+o(n)}$	$2^{0.293n+o(n)}$	QRACM	Our work

Remark on quantum heuristic algorithms:

- ▶ better complexity: 2^{0.265n+o(n)} [Laarhoven15], requires QRACM
- ▶ even better complexity: 2^{0.257n+o(n)} [CL21], requires QRAQM

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Sieve:

Input: many vectors of length $\leqslant \ell$ **Output:** many vectors of length $\leqslant \frac{\ell}{2}$

Combine pairs of vectors to produce shorter vectors

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Sieve:

Input: many vectors of length $\leqslant \ell$ **Output:** many vectors of length $\leqslant \frac{\ell}{2}$

Combine pairs of vectors to produce shorter vectors

Idea: LLL reduced \rightsquigarrow length $\ell \leqslant 2^{O(n)}\lambda_1$, sieve O(n), solve SVP

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Sieve:

Input: many vectors of length $\leqslant \ell$ **Output:** many vectors of length $\leqslant \frac{\ell}{2}$

Combine pairs of vectors to produce shorter vectors

Idea: LLL reduced \rightsquigarrow length $\ell \leqslant 2^{O(n)}\lambda_1$, sieve O(n), solve SVP

Many heuristic variants: local sensitive hash, tuple sieve, ... All control the length of the vectors.

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Sieve:

Input: many vectors of length $\leqslant \ell$ **Output:** many vectors of length $\leqslant \frac{\ell}{2}$

Combine pairs of vectors to produce shorter vectors

Idea: LLL reduced \rightsquigarrow length $\ell \leqslant 2^{O(n)}\lambda_1$, sieve O(n), solve SVP

Many heuristic variants: local sensitive hash, tuple sieve, ... All control the length of the vectors.

[ADRS15]'s new idea: control distribution instead of length of vectors

Discrete Gaussian Sampling

$$\rho_{\mathcal{S}}(\boldsymbol{x}) = \exp\left(-\pi \frac{\|\boldsymbol{x}\|^2}{s^2}\right), \qquad D_{L,s}(\boldsymbol{x}) = \frac{\rho_{\mathcal{S}}(\boldsymbol{x})}{\rho_{\mathcal{S}}(L)}, \qquad \boldsymbol{x} \in \mathbb{R}^n, s > 0.$$

Definition (Discrete Gaussian Distribution)

On lattice L with parameter s: probability of $\mathbf{x} \in L$ is $D_{L,s}(\mathbf{x})$.

$$L = \mathbb{Z} \times 4\mathbb{Z}, s = 7$$

Discrete Gaussian Sampling (DGS)

- ▶ input: L and s
- **output:** random $x \in L$ according to $D_{L,s}$.

Bounded Distance Decoding (α -BDD): Given a lattice \mathcal{L} and a target vector $t \in \mathbb{R}^n$

Bounded Distance Decoding (α -BDD): Given a lattice \mathcal{L} and a target vector $t \in \mathbb{R}^n$ with distance to lattice $\leq \alpha \cdot \lambda_1(\mathcal{L})$

Bounded Distance Decoding (α -BDD):

Given a lattice \mathcal{L} and a target vector $t \in \mathbb{R}^n$ with distance to lattice $\leq \alpha \cdot \lambda_1(\mathcal{L})$, find the closest vector $y \in \mathcal{L}$.

- $ightharpoonup \alpha$ is the decoding radius
- $\alpha < \frac{1}{2}$ for unique solution

Bounded Distance Decoding (α -BDD):

Given a lattice \mathcal{L} and a target vector $t \in \mathbb{R}^n$ with distance to lattice $\leq \alpha \cdot \lambda_1(\mathcal{L})$, find the closest vector $y \in \mathcal{L}$.

- $ightharpoonup \alpha$ is the decoding radius
- $\alpha < \frac{1}{2}$ for unique solution

The two reductions use completely different DGS parameter regimes!

Parameter s (width/standard deviation) of $D_{\mathcal{L},s}$:

Parameter s (width/standard deviation) of $D_{\mathcal{L},s}$:

Parameter s (width/standard deviation) of $D_{\mathcal{L},s}$:

▶ Open problem: $2^{O(n)}$ time, $2^{o(n)}$ space algorithm for $s = \eta_{\varepsilon}(\mathcal{L})$

Parameter s (width/standard deviation) of $D_{\mathcal{L},s}$:

▶ Open problem: $2^{O(n)}$ time, $2^{o(n)}$ space algorithm for $s = \eta_{\varepsilon}(\mathcal{L})$

Theorem (ADRS15, best known result)

There is an algorithm that solves DGS for $s = \sqrt{2}\eta_{1/2}(\mathcal{L})$ in time and space $2^{n/2+o(n)}$.

Parameter s (width/standard deviation) of $D_{\mathcal{L},s}$:

- ▶ Open problem: $2^{O(n)}$ time, $2^{o(n)}$ space algorithm for $s = \eta_{\varepsilon}(\mathcal{L})$
- ▶ No known time/space trade-off for $s \ll \eta_{\varepsilon}(\mathcal{L})$

→ first provable time/space trade-off for SVP

Idea: if $X_1, \ldots, X_k \sim D_{\mathcal{L},s}$ and $\sum_i X_i \in q \mathcal{L}$ then $(\sum_i X_i)/q \approx D_{\mathcal{L},s\sqrt{k}/q}$ \sim progress when $k < q^2$, repeat many times to reach $\eta_{\varepsilon}(\mathcal{L})$

Idea: if $X_1, \ldots, X_k \sim D_{\mathcal{L},s}$ and $\sum_i X_i \in q \mathcal{L}$ then $(\sum_i X_i)/q \approx D_{\mathcal{L},s\sqrt{k}/q}$ \sim progress when $k < q^2$, repeat many times to reach $\eta_{\varepsilon}(\mathcal{L})$

Algorithm: given a list of N vectors in \mathcal{L} , find $k = q^2 - 1$ of them such that their sum $\in q \mathcal{L}$, then repeat (q is a parameter)

Idea: if $X_1, \ldots, X_k \sim D_{\mathcal{L}, \mathbf{s}}$ and $\sum_i X_i \in q \mathcal{L}$ then $(\sum_i X_i)/q \approx D_{\mathcal{L}, \mathbf{s}\sqrt{k}/q}$ \sim progress when $k < q^2$, repeat many times to reach $\eta_{\varepsilon}(\mathcal{L})$

Algorithm: given a list of N vectors in \mathcal{L} , find $k = q^2 - 1$ of them such that their sum $\in q \mathcal{L}$, then repeat (q is a parameter)

- ▶ Space: need $N \gtrsim q^{n/q^2}$ to be successful
- ► Time: *q*ⁿ to produce one vector

decrease with q increase with q

Idea: if $X_1, \ldots, X_k \sim D_{\mathcal{L},s}$ and $\sum_i X_i \in q \mathcal{L}$ then $(\sum_i X_i)/q \approx D_{\mathcal{L},s\sqrt{k}/q}$ \rightarrow progress when $k < q^2$, repeat many times to reach $\eta_{\varepsilon}(\mathcal{L})$

Algorithm: given a list of N vectors in \mathcal{L} , find $k = q^2 - 1$ of them such that their sum $\in q \mathcal{L}$, then repeat (q is a parameter)

- ▶ Space: need $N \gtrsim q^{n/q^2}$ to be successful
- ► Time: *q*ⁿ to produce one vector

decrease with *q* increase with *q*

Difficulties:

- independence of samples
- errors in distributions

Theorem (Simplified)

For $q \in [4, \sqrt{n}]$, there is an algorithm that produces q^{16n/q^2} vectors from $D_{\mathcal{L},s}$ with $s \geqslant \eta_{\varepsilon}(\mathcal{L})$ in time q^{13n} and space q^{16n/q^2} .

Time-Space Tradeoff for SVP

Smooth time-space tradeoff for BDD: create a $\frac{0.1}{q}$ -BDD oracle in time q^{13n} , space q^{16n/q^2} , each call takes time q^{16n/q^2} .

Gives a smooth time-space tradeoff for SVP:

Theorem

Let $n \in \mathbb{N}$, $q \in [4, \sqrt{n}]$ be a positive integer. Let \mathcal{L} be a lattice of rank n. There is a randomized algorithm that solves SVP in time $q^{13n+o(n)}$ and in space $poly(n) \cdot q^{\frac{16n}{q^2}}$.

SVP to BDD reduction [CCL18]

Lemma (CCL18, simplified)

Given a α -BDD oracle and p an integer, one can enumerate all lattice points in a ball of radius $p\alpha\lambda_1$ using p^n queries to the oracle.

SVP to BDD reduction [CCL18]

Lemma (CCL18, simplified)

Given a α -BDD oracle and p an integer, one can enumerate all lattice points in a ball of radius $p\alpha\lambda_1$ using p^n queries to the oracle.

Solve SVP by using a α -BDD oracle:

- ▶ Set $p = \lceil \frac{1}{\alpha} \rceil$.
- Enumerate all points in a ball of radius $> \lambda_1$.

SVP to BDD reduction [CCL18]

Lemma (CCL18, simplified)

Given a α -BDD oracle and p an integer, one can enumerate all lattice points in a ball of radius $p\alpha\lambda_1$ using p^n queries to the oracle.

Solve SVP by using a α -BDD oracle:

- ▶ Set $p = \lceil \frac{1}{\alpha} \rceil$.
- ▶ Enumerate all points in a ball of radius $> \lambda_1$.

The reduction is space efficient

But
$$\alpha < \frac{1}{2} \implies p \ge 3 \implies$$
 at least 3^n queries

Faster SVP to BDD reduction

Cover the sphere of radius $\lambda_1(\mathcal{L})$ by balls of radius $2\alpha\lambda_1(\mathcal{L})$:

Use $2^n \alpha$ -BDD queries to enumerate points in balls of radius $2\alpha\lambda_1$

Faster SVP to BDD reduction

Cover the sphere of radius $\lambda_1(\mathcal{L})$ by balls of radius $2\alpha\lambda_1(\mathcal{L})$:

Use $2^n \alpha$ -BDD queries to enumerate points in balls of radius $2\alpha\lambda_1$

Each ball covers a spherical cap.

Faster SVP to BDD reduction

Cover the sphere of radius $\lambda_1(\mathcal{L})$ by balls of radius $2\alpha\lambda_1(\mathcal{L})$:

Use $2^n \alpha$ -BDD queries to enumerate points in balls of radius $2\alpha\lambda_1$

Each ball covers a spherical cap.

Smaller α :

- More balls
- Less expensive BDD
- → Trade-off

SVP to DGS via BDD

Classical SVP to BDD: do 3ⁿ queries to 1/3-BDD and keep minimum

SVP to DGS via BDD

Classical SVP to BDD: do 3ⁿ queries to 1/3-BDD and keep minimum

"Improved" SVP to BDD: do $M(n, \alpha)$ queries to α -BDD Details omitted in this presentation, M is a complicated function

SVP to DGS via BDD

Classical SVP to BDD: do 3ⁿ queries to 1/3-BDD and keep minimum

"Improved" SVP to BDD: do $M(n, \alpha)$ queries to α -BDD Details omitted in this presentation, M is a complicated function

- Not obvious which one is better: less queries to more expensive BDD oracle
- Same structure for both reductions, but different parameters: will be useful for the quantum reduction!

Reduction

- ▶ SVP makes $P := M(n, \alpha)$ calls to α -BDD with argument t_1, \ldots, t_P
- ▶ each BDD call requires N samples $w_1, ..., w_N$ from DGS
- $ightharpoonup w_1, \ldots, w_N$ can be **shared** across all BDD calls: independent of t_i

Reduction

- ▶ SVP makes $P := M(n, \alpha)$ calls to α -BDD with argument t_1, \ldots, t_P
- ▶ each BDD call requires N samples $w_1, ..., w_N$ from DGS
- \triangleright w_1, \dots, w_N can be **shared** across all BDD calls: independent of t_i

Classical cost: DGS cost + $P \times BDD$ cost $\approx poly(n) \times (N + PN)$

Reduction from BDD to DGS

Periodic Gaussian function
$$f(t) := \frac{\rho(t+\mathcal{L})}{\rho(\mathcal{L})} = \mathbb{E}_{\boldsymbol{w} \sim \mathcal{D}_{\mathcal{L}^*}}[\cos(2\pi \langle \boldsymbol{w}, t \rangle)]$$

- f achieves maximum on lattice points
- a constant number of gradient ascent steps solves BDD

Reduction from BDD to DGS

Periodic Gaussian function $f(t) := \frac{\rho(t+\mathcal{L})}{\rho(\mathcal{L})} = \mathbb{E}_{\boldsymbol{w} \sim \mathcal{D}_{\mathcal{L}^*}}[\cos(2\pi \langle \boldsymbol{w}, t \rangle)]$

- f achieves maximum on lattice points
- a constant number of gradient ascent steps solves BDD

Approximate f by

$$f_w(t) = \frac{1}{N} \sum_{i=1}^{N} \cos(2\pi \langle w_i, t \rangle)$$

where w_1, \ldots, w_N are i.i.d. DGS samples: small error if N is very large.

Reduction from BDD to DGS

Periodic Gaussian function $f(t) := \frac{\rho(t+\mathcal{L})}{\rho(\mathcal{L})} = \mathbb{E}_{\boldsymbol{w} \sim \mathcal{D}_{\mathcal{L}^*}}[\cos(2\pi \langle \boldsymbol{w}, t \rangle)]$

- f achieves maximum on lattice points
- a constant number of gradient ascent steps solves BDD

Approximate f by

$$f_w(t) = \frac{1}{N} \sum_{i=1}^{N} \cos(2\pi \langle w_i, t \rangle)$$

where w_1, \ldots, w_N are i.i.d. DGS samples: small error if N is very large.

Theorem ([DRS14] (Informal))

There is an algorithm that solves α -BDD using N samples from $D_{\mathcal{L}^*,\eta_{\varepsilon}(\mathcal{L}^*)}$ in time N \cdot poly(n), where N = O $\left(n\frac{\log(1/\varepsilon)}{\sqrt{\varepsilon}}\right)$ and $\alpha=\alpha(\varepsilon)$.

Quantum Reduction

- hardcode DGS samples into a quantum circuit to create a BDD oracle
- use this oracle in a quantum minimum finding algorithm

Quantum Reduction

- hardcode DGS samples into a quantum circuit to create a BDD oracle
- use this oracle in a quantum minimum finding algorithm

Quantum cost: DGS cost +
$$\sqrt{P}$$
 × BDD cost \approx poly(n) × $\left(N + \sqrt{P}N\right)_{n \in \mathbb{N}}$

Reduction from BDD to DGS with QRACM

$$f_w(t) = \frac{1}{N} \sum_{i=1}^{N} \cos(2\pi \langle w_i, t \rangle)$$

where w_1, \dots, w_N are i.i.d. DGS samples: small error if N is very large.

Reduction from BDD to DGS with QRACM

$$f_{w}(t) = \frac{1}{N} \sum_{i=1}^{N} \cos(2\pi \langle w_{i}, t \rangle)$$

where w_1, \ldots, w_N are i.i.d. DGS samples: small error if N is very large.

Our algorithm: approximate f_W quantumly in time $\sqrt{N} \cdot \text{poly}(n)$ Use amplitude estimation and show that the error stays small

Reduction from BDD to DGS with QRACM

$$f_{w}(t) = \frac{1}{N} \sum_{i=1}^{N} \cos(2\pi \langle w_{i}, t \rangle)$$

where w_1, \ldots, w_N are i.i.d. DGS samples: small error if N is very large.

Our algorithm: approximate f_W quantumly in time $\sqrt{N} \cdot \text{poly}(n)$ Use amplitude estimation and show that the error stays small

Theorem (Informal)

There is an quantum algorithm that solves α -BDD using N samples from $D_{\mathcal{L}^*,\eta_{\varepsilon}(\mathcal{L}^*)}$ in time $\sqrt{N} \cdot \operatorname{poly}(n)$, where $N = O\left(n^8 \frac{\log(1/\varepsilon)}{\sqrt{\varepsilon}}\right)$ and $\alpha = \alpha(\varepsilon)$. It requires a QRACM of size N and O(N) preprocessing time.

→ gain when doing lots of BDD calls

Quantum Reduction with QRACM

- put DGS samples in a QRACM
- ▶ BDD oracle uses QRACM + amplitude estimation

Quantum Reduction with QRACM

- put DGS samples in a QRACM
- ▶ BDD oracle uses QRACM + amplitude estimation

Cost (QRACM): DGS cost +
$$\sqrt{P}$$
 × BDD cost \approx poly(n) × $\left(N + \sqrt{PN}\right)$

Quantum SVP

Classical SVP to BDD: do 3ⁿ queries to 1/3-BDD and keep minimum

"Improved" SVP to BDD: do $M(n, \alpha)$ queries to α -BDD

Not obvious which one is better: less queries to more expensive BDD oracle

Number of lattice points in a ball of radius r is $\leq c^{n+o(n)}r^n$

 $\beta(\mathcal{L}) = \text{smallest } c \text{ that works for all } r$

- ▶ Upper bound: $\beta(\mathcal{L}) \leq 2^{0.401}$ [KL78]
- ▶ Conjectured to be $\beta(\mathcal{L}) \approx 1$ for most lattices

Number of lattice points in a ball of radius r is $\leqslant c^{n+o(n)}r^n$

$$\beta(\mathcal{L}) = \text{smallest } \mathbf{c} \text{ that works for all } \mathbf{r}$$

- ▶ Upper bound: $\beta(\mathcal{L}) \leqslant 2^{0.401}$ [KL78]
- ▶ Conjectured to be $\beta(\mathcal{L}) \approx 1$ for most lattices

Best known relations between α and ε depends on $\beta(\mathcal{L})$:

small $\beta(\mathcal{L})$ \longrightarrow bigger α for fixed ε \longrightarrow less expensive BDD

Number of lattice points in a ball of radius r is $\leqslant c^{n+o(n)}r^n$

$$\beta(\mathcal{L}) = \text{smallest } \mathbf{c} \text{ that works for all } \mathbf{r}$$

- ▶ Upper bound: $\beta(\mathcal{L}) \leq 2^{0.401}$ [KL78]
- ▶ Conjectured to be $\beta(\mathcal{L}) \approx 1$ for most lattices

Number of lattice points in a ball of radius r is $\leqslant c^{n+o(n)}r^n$

$$\beta(\mathcal{L}) = \text{smallest } \mathbf{c} \text{ that works for all } \mathbf{r}$$

- ▶ Upper bound: $\beta(\mathcal{L}) \leq 2^{0.401}$ [KL78]
- ▶ Conjectured to be $\beta(\mathcal{L}) \approx 1$ for most lattices

Conclusions and Future work

Provable SVP:

- classical: time $2^{1.669n+o(n)}$, space $2^{0.5n+o(n)}$
- quantum: $2^{0.950n+o(n)}$, space $2^{0.5n+o(n)}$ and poly(n) qubits
- ▶ quantum: $2^{0.835n+o(n)}$, classical space $2^{0.5n+o(n)}$ and QRACM $2^{0.293n+o(n)}$
- ▶ first time/space tradeoff: time q^{13n} , space q^{16n/q^2} for $q \in [4, \sqrt{n}]$
- studied dependency on $\beta(\mathcal{L})$, generalized kissing number

Conclusions and Future work

Provable SVP:

- classical: time $2^{1.669n+o(n)}$, space $2^{0.5n+o(n)}$
- quantum: $2^{0.950n+o(n)}$, space $2^{0.5n+o(n)}$ and poly(n) qubits
- ▶ quantum: $2^{0.835n+o(n)}$, classical space $2^{0.5n+o(n)}$ and QRACM $2^{0.293n+o(n)}$
- ▶ first time/space tradeoff: time q^{13n} , space q^{16n/q^2} for $q \in [4, \sqrt{n}]$
- studied dependency on $\beta(\mathcal{L})$, generalized kissing number

Open problems:

- ▶ Show that random lattices satisfy $\beta(\mathcal{L}) \approx 1$?
- Fill the gap between provable and heuristic algorithms for sieving?
- Exploit the subexponential space regime in our trade-off for SVP?
- ▶ $2^{O(n)}$ time, $2^{o(n)}$ space algorithm for DGS at smoothing parameter?

Backup slides

DGS sampling: new lemma

- ► [ADRS15]: DGS of parameter $s \ge \sqrt{2\eta_{1/2}(\mathcal{L})}$ in time $2^{n/2}$
- ▶ BDD to DGS reduction requires $s = \eta_{\varepsilon}(\mathcal{L})$ for some $\varepsilon > 0$

Previous work [CCL18]: find ε such that $\eta_{\varepsilon}(\mathcal{L}) \geqslant \sqrt{2}\eta_{1/2}$ \sim very small ε , larger than necessary BDD radius, too expensive BDD

DGS sampling: new lemma

- ► [ADRS15]: DGS of parameter $s \ge \sqrt{2\eta_{1/2}(\mathcal{L})}$ in time $2^{n/2}$
- ▶ BDD to DGS reduction requires $s = \eta_{\varepsilon}(\mathcal{L})$ for some $\varepsilon > 0$

Previous work [CCL18]: find ε such that $\eta_{\varepsilon}(\mathcal{L}) \geqslant \sqrt{2}\eta_{1/2}$ \rightsquigarrow very small ε , larger than necessary BDD radius, too expensive BDD

New idea:

- ▶ find a well-chosen lattice $\mathcal{L} \subset \mathcal{L}' \subset \mathcal{L}/2$ such that $\eta_{\varepsilon'}(\mathcal{L}') \leqslant \eta_{\varepsilon}(\mathcal{L})/\sqrt{2}$ for $\varepsilon' \approx \varepsilon$ [ADRS15]
- ▶ run DGS on \mathcal{L}' at $s = \eta_{1/3}(\mathcal{L}) \geqslant \sqrt{2}\eta_{1/2}(\mathcal{L}')$ [ADRS15]
- only keep samples in \mathcal{L} (rejection)

DGS sampling: new lemma

- ► [ADRS15]: DGS of parameter $s \ge \sqrt{2\eta_{1/2}(\mathcal{L})}$ in time $2^{n/2}$
- ▶ BDD to DGS reduction requires $s = \eta_{\varepsilon}(\mathcal{L})$ for some $\varepsilon > 0$

Previous work [CCL18]: find ε such that $\eta_{\varepsilon}(\mathcal{L}) \geqslant \sqrt{2}\eta_{1/2}$ \rightarrow very small ε , larger than necessary BDD radius, too expensive BDD

New idea:

- ▶ find a well-chosen lattice $\mathcal{L} \subset \mathcal{L}' \subset \mathcal{L}/2$ such that $\eta_{\varepsilon'}(\mathcal{L}') \leqslant \eta_{\varepsilon}(\mathcal{L})/\sqrt{2}$ for $\varepsilon' \approx \varepsilon$ [ADRS15]
- ▶ run DGS on \mathcal{L}' at $s = \eta_{1/3}(\mathcal{L}) \geqslant \sqrt{2}\eta_{1/2}(\mathcal{L}')$ [ADRS15]
- only keep samples in \mathcal{L} (rejection)

Some details:

- \blacktriangleright \mathcal{L}' is chosen randomly, works with high probability
- ▶ need that $|\mathcal{L}' / \mathcal{L}| \approx 2^{n/2}$ for $\varepsilon \approx \varepsilon'$
- ▶ rejection: $|\mathcal{L}'/\mathcal{L}| \approx 2^{n/2}$ slowdown, still better than previous work!
- ▶ allows to choose $\alpha = 1/3$ for BDD, improved from 0.391 [CCL18]