Lecture 12

DS 211 Date: Sept 26,2019

Contents

- 1. Examples of Constrained Optimization for two inequality constraints
- 2. Some Important Definitions (LICQ , Feasible Sequence , Tangent Cone , Feasible direction set , Critical Cone)
- 3. First Order Conditions
- 4. Second Order Conditions

Example-3: Two Inequality Constraints (Please Check Lecture 11 last part for Ex 1 and Ex 2)

Figure 1: Gradients of the active constraints and objective at the solution

$$min_{x_1,x_2}$$
 $x1 + x2$ $s.t.$ $2 - x_1^2 - x_2^2 \ge 0$, $x_2 \ge 0$

For this case the feasible region is the half-disk as shown in 1. The solution lies at $(-\sqrt{2},0)^T$ at which both the constraints are active.

The fist-order feasible descent direction d should satisfy

$$\nabla c_i(x)^T d \geqslant 0, \quad i \in I = 1, 2 \quad , \quad \nabla f(x)^T d < 0$$

Instructor: Deepak Subramani Scribe: Koushik Sen

Lecture 12

DS 211 Date: Sept 26,2019

The condition $\nabla c_i(x)^T d \ge 0$, $i \in I = 1, 2$ are both satisfied only if d lies in the quadrant defined by $\nabla c_1(x)$ and $\nabla c_2(x)$ and also all the vectors in this quadrant does not satisfy $\nabla f(x)^T d < 0$.

Lagrangian equation is $L(x,\lambda) = f(x) - \lambda_1 c_1(x) - \lambda_2 c_2(x)$ where $\lambda = (\lambda_1, \lambda_2)^T$ is the vector of Lagrangian multipliers.

Now for optimal point which is not at boundary is $\nabla f(x) = 0$ and for optimal point on the boundary, the conditions are, $\nabla f(x) = \lambda \nabla c(x)$ for some $\lambda = (\lambda_1, \lambda_2)^T \ge 0$ where $\nabla c(x)$ is the gradient normal.

Hence the condition becomes

$$\nabla_x L(x^*, \lambda^*) = 0, \quad for \quad some \quad \lambda^* \geqslant 0.$$
 (1)

Here the inequality $\lambda^* \geqslant 0$ means all components of λ^* required to be non-negative. The complementary conditions are

$$\lambda_1^* c_1(x^*) = 0$$
 and $\lambda_2^* c_2(x^*) = 0.$ (2)

For all other feasible points we can check from equations (1) and (2) that the optimal conditions are not satisfied 2.

Figure 2: Gradients of the active constraints and objective at a non-optimal point

Some Important Definitions

1. Linear Independence Constraint Qualification(LICQ) \Rightarrow Given the point x and the active set A(x) defined for $min_{x \in \mathbb{R}^n}$ f(x) s.t. $c_i(x) = 0, i \in \epsilon, c_i(x) \geqslant 0, i \in I$, we say that the LICQ holds if the set of active constraint gradients $\nabla c_i(x)$, $i \in A(x)$ is linearly independent.

Instructor: Deepak Subramani Scribe: Koushik Sen

Lecture 12

DS 211 Date: Sept 26,2019

2. Mangasarian-Fromovitz Constraint Qualification(MFCQ) \Rightarrow Given a point x and the active set A(x) defined for $min_{x \in \mathbb{R}^n} f(x)$ s.t. $c_i(x) = 0, i \in \epsilon, c_i(x) \geq 0, i \in I$, we say that the MFCQ holds if there exists a vector $w \in IR^n$ such that $\nabla c_i(x^*)^T w > 0$ for all $i \in A(x) \cap I$ and $\nabla c_i(x^*)^T w = 0$ for all $i \in \epsilon$

Note: If $x^* \in \Omega$ satisfies LICQ, then x^* satisfies MFCQ. But MFCQ does not imply LICQ.

3. Feasible Sequence \Rightarrow Given a feasible point x, we call z_k a feasible sequence approaching x if $z_k \in \Omega$ for all k sufficiently large and $z_k \to x$.

The figure 3 shows the feasible Sequence for $x_1^2+x_2^2-2=0$ and figure 4 shows the feasible Sequence for $x_1^2+x_2^2-2\geqslant 0$.

4. Tangent Cone \Rightarrow The vector d is said to be a tangent (or tangent vector) to Ω at a point x if there are a feasible sequence z_k approaching x and a sequence of positive scalars t_k with $t_k \to 0$ such that

$$\lim_{k \to \infty} \frac{z_k - x}{t_k} = d$$

The set of all tangents to Ω at x^* is called the tangent cone and is denoted by $T_{\Omega}(x^*)$.

5. **Feasible direction set** \Rightarrow Given a feasible point x and the active constraint set A(x), the set of linearized feasible directions F(x) is

$$F(x) = \left\{ d \mid d^T \bigtriangledown c_i(x) = 0, & \text{for all } i \in \varepsilon \\ d^T \bigtriangledown c_i(x) \geqslant 0, & \text{for all } i \in A(x) \cap I \right\}$$

6. Critical Cone \Rightarrow Given $F(x^*)$ and some Lagrangian multiplier λ^* satisfying the KKT conditions, the critical cone is defined as

$$C(x^*, \lambda^*) = w \in F(x^*) \mid \nabla c_i(x^*)^T w = 0, \text{ all } i \in A(x^*) \cap I \text{ with } \lambda_i^* > 0$$

Equivalently,

$$\mathbf{w} \in C(x^*, \lambda^*) \iff \left\{ \begin{array}{l} \nabla c_i(x^*)^T w = 0, all \ i \in \varepsilon \\ \nabla c_i(x^*)^T w = 0, all \ i \in A(x^*) \cap I \ with \ \lambda_i^* > 0 \\ \nabla c_i(x^*)^T w \geqslant 0, all \ i \in A(x^*) \cap I \ with \ \lambda_i^* = 0 \end{array} \right\}$$

Scribe: Koushik Sen

DS 211 Date: Sept 26,2019

*2

Figure 3: For equality constrained case

Figure 4: For inequality constrained case

Optimality Conditions

1. First-Order Necessary Conditions

Suppose that x^* is a local solution of $\min_{x \in \mathbb{R}^n} f(x)$ s.t. $c_i(x) = 0, i \in \epsilon, c_i(x) \geqslant 0, i \in I$, that the functions f and c_i are continuously differentiable, and that the LICQ holds at x^* . Then there is a Lagrange multiplier vector λ^* , with components $\lambda_i^*, i \in \epsilon \cap I$, such that the following conditions are satisfied at (x^*, λ^*)

$$\nabla_x L(x^*, \lambda^*) = 0$$

$$c_i(x^*) = 0, \text{ for all } i \in \varepsilon$$

$$c_i(x^*) \geqslant 0, \text{ for all } i \in I$$

$$\lambda_i^* \geqslant 0, \text{ for all } i \in I$$

$$\lambda_i^* c_i(x^*) = 0, \text{ for all } i \in \varepsilon \cap I$$

The above conditions are known as Karush Kuhn Tucker conditions, or KKT conditions for short.

The condition $\lambda_i^* c_i(x^*) = 0$, for all $i \in \varepsilon \cap I$ are complementarity conditions. They imply that either constraint i is active or $\lambda_i^* = 0$, or possibly both.

2. Second-Order Necessary Conditions

Suppose that x^* is a local solution of $\min_{x \in \mathbb{R}^n} f(x)$ s.t. $c_i(x) = 0, i \in \epsilon, c_i(x) \ge 0, i \in I$

Instructor: Deepak Subramani Scribe: Koushik Sen

Lecture 12

and that the LICQ condition is satisfied. Let λ^* be the Lagrange multiplier vector for which the KKT conditions are satisfied. Then

$$w^T \bigtriangledown_{xx}^2 L(x^*, \lambda^*) w \geqslant 0, for \ all \ w \in C(x^*, \lambda^*).$$

3. Second-Order Sufficient Conditions

Suppose that for some feasible point $x^* \in \mathbb{R}^n$ there is a Lagrange multiplier vector such that the KKT conditions are satisfied. Suppose also that

$$w^T \nabla^2_{xx} L(x^*, \lambda^*) w > 0, \text{ for all } w \in C(x^*, \lambda^*), w \neq 0.$$

Then x^* is a strict local solution for $min_{x \in \mathbb{R}^n} f(x)$ s.t. $c_i(x) = 0, i \in \epsilon, c_i(x) \ge 0, i \in I$.

DS 211

Date: Sept 26,2019