Zhengdong Zhang

Email: zhengz@uoregon.edu

Course: MATH 635 - Algebraic Topology II Term: Winter 2025

Instructor: Dr.Daniel Dugger

Due Date: 20^{th} February. 2025

Homework 6

ID: 952091294

Problem 1

Compute π_1 of each of the following spaces.

(a) Take S^2 and identify the north and south poles.

- (b) Take two copies of S^2 , identify the two north poles together, and then also identify the two south poles together.
- (c) Take \mathbb{R}^3 and remove three lines through the origin.
- (d) \mathbb{R}^n with k points removed (do n=2 and n>2 separately).
- (e) A torus with two points removed.
- (f) Take $S^4 \times S^1$ and remove one point.
- (g) $\mathbb{R}P^4$ with two points removed.

Solution:

(a) Let X be the quotient space of S^2 where the north pole and the south pole are identified. An interval is contractible, so X is homotopic equivalent to the space S^2 in which the north pole and the south pole are connected by an interval. Consider the left half sphere U and the right half sphere V in S^2 whose intersection is an annulus. $X = U \cup V$ where U congV is homeomorphic to a disk on which two points are connected by a line, and the intersection is homotopic equivalent to S^1 where two points are connected by a line, as show in the picture.

We know both $U, V, U \cap V$ are path-connected, so we assume the basepoint is chosen in $U \cap V$ and omit the notation in the calculation. Note that $U \cong V \simeq S^1$ and $U \cap V \simeq S^1 \vee S^1$. By Van Kampen Theorem, we have a pushout square in groups

$$\pi_1(S^1 \vee S^1) \xrightarrow{i} \pi_1(S^1)
\downarrow j \qquad \qquad \downarrow
\pi_1(S^1) \xrightarrow{} \pi_1(X)$$

We have $\pi_1(X) = \mathbb{Z} * \mathbb{Z}/(\operatorname{Im} i \sim \operatorname{Im} j)$. Note that the two maps i, j induced by inclusion $U \cap V \hookrightarrow U$ and $U \cap V \hookrightarrow V$. i and j have the same image by symmetry and the induced map is surjective. So $\operatorname{Im} i = \operatorname{Im} j = \mathbb{Z}$. This implies $\pi_1(X) = \mathbb{Z}$.

(b) Let X be the quotient space of $S^2 \sqcup S^2$ where the two north poles and the two south poles are identified respectively. Same as previous. X is homotopic equivalent to the space $S^2 \sqcup S^2$ where there are two lines connecting north poles and south poles respectively. Consider U and V indicated in the pictures by red and blue. We can see that $U \cong V$ is homeomorphic to two disks connected by two lines, thus homotopic equivalent to S^1 since a disk is contractible. The intersection $U \cap V$ is homotopic equivalent to two S^1 connected by two lines, thus further homotopic equivalent to the wedge sum $S^1 \vee S^1$.

We know that $U \cap V$, U, V are path-connected, so we assume the base point is chosen in $V \cap U$ and omit the notation in the calculation. By Van Kampen Theorem, we have a pushout square in groups

$$\pi_1(S^1 \vee S^1 \vee S^1) \xrightarrow{i} \pi_1(S^1)
\downarrow j \qquad \qquad \downarrow
\pi_1(S^1) \xrightarrow{\pi_1(X)} \pi_1(X)$$

We have $\pi_1(S^1 \vee S^1 \vee S^1) = \mathbb{Z} * \mathbb{Z} * \mathbb{Z}$. So $\pi_1(X) = \mathbb{Z}/(\operatorname{Im} i \sim \operatorname{Im} j)$. i and j have the same image by symmetry and the map i must be sujective since it is induced by inclusion of spaces. So we have $\pi_1(X) = \mathbb{Z}$.

- (c) We know that \mathbb{R}^3 is homotopic to D^3 . Let X be the space of D^3 removing three lines passing through this solid ball. These three lines pass through the one common point in D^3 . We first remove the common point in three lines from inside D^3 . Since D^3 removing one point inside is homotopic equivalent to S^2 , we know that X is homotopic equivalent to the S^2 removing 6 points. Note that $S^2 \cong \mathbb{R}^2 \cup \{\infty\}$. Thus, S^2 removing 6 points is homotopic equivalent to \mathbb{R}^2 removing 5 points. And from what we have discussed in part (d), we know that $\pi_1(X) = \underbrace{\mathbb{Z} * \cdots * \mathbb{Z}}_{5 \text{ times}}$.
- (d) Let X be \mathbb{R}^n removing k points. X is always path-connected, so we omit the basepoint notation in the calculations. When n=2, if k=0, then \mathbb{R}^2 is contractible, so $\pi_1(\mathbb{R}^2)=*$ is trivial. If $k\geq 1$, without loss of generality, we may assume all k points x_1,\ldots,x_k are on the circle centered at the origin with radius 1. We know that \mathbb{R}^3 is homotopic equivalent to D^2 , which can be viewed as a disk centered at the origin with radius 2. Divide the disk

 D^2 into fan-shaped sectors with having one and only one x_i inside each sector. This can be done since the points removed are discrete. Then removing each point inside the fan-shaped sector can be viewed as homotopic to removing the surfaces occupying that secton. Thus, X is homotopic equivalent to S^1 with k lines connecting to the center. Choose the center as the basepoint and it is easy to see that X is homotopic equivalent to k copies of S^1 wedged at one point. By Van Kampen Theorem and what we proved in class, we know $\pi_1(X) = \mathbb{Z} * \cdots * \mathbb{Z}$.

Now assume $n \geq 2$. When k = 0, we know that \mathbb{R}^n is contractible. So $\pi_1(\mathbb{R}^n) = *$ is trivial. For $k \geq 1$, using the same method as above, we can see that X is homotopic equivalent to k copies of S^{n-1} wedged at one point. For any $n \geq 2$, S^{n-1} is simply-connected, so by Van Kampen Theorem, the wedge sum is also simply-connected. We have $\pi_1(X) = *$ is trivial. To summarize, we have

$$\pi_1(X) = \begin{cases}
\underbrace{\mathbb{Z} * \cdots * \mathbb{Z}}_{k \text{ times}}, & \text{if } n = 2, k \ge 1; \\
0, & \text{otherwise.}
\end{cases}$$

(e) Let X be the space of torus T removing two points. Note that X is still path-connected, so we omit the choice of basepoint. Consider the standard cell complex structure for the torus T as shown. Additionally, the 0-cell x are connected by a red line, which is homeomorphic to S^1 in the 2-cell, thus dividing the 2-cell into two sectors. Next, remove one point from each of the two sectors. X is homotopic equivalent to the 1-skeleton of this cell complex, which has one 0-cell x, and three 1-cells a, b, c. From this we can see that X is homotopic equivalent to $S^1 \vee S^1 \vee S^1$. By Van Kampen Theorem, $\pi_1(X) = \mathbb{Z} * \mathbb{Z} * \mathbb{Z}$.

(f) Let $M = S^4 \times S^1$ and $x \in M$ be a point. We know both S^4 and S^1 are path-connected,

so M is also path-connected. We omit the choice of basepoint from now on. Note that M is a 5-manifold. There exists an open neighborhood U of x in M such that $U \cong \mathbb{R}^5$. Let $V = M - \{x\}$ which is also open in M. We have

$$U \cap V \cong U - \{x\} \cong \mathbb{R}^5 - \{*\}.$$

So $U \cap V$ is homotopic equivalent to S^4 . By Van Kampen Theorem, we have a pushout square of groups

$$\pi_1(S^4) \longrightarrow \pi_1(U)
\downarrow \qquad \qquad \downarrow
\pi_1(M - \{x\}) \longrightarrow \pi_1(M)$$

Note that $\pi_1(S^4) = *$ is trivial and $\pi_1(U) = \pi_1(\mathbb{R}^5) = *$ is also trivial. So we have

$$\pi_1(M - \{x\}) = \pi_1(M) = \pi_1(S^4 \times S^1) = \pi_1(S^4) \times \pi_1(S^1) = \mathbb{Z}.$$

(g) Let X be the space of $\mathbb{R}P^4$ removing two points. Consider the standard CW complex structure on $\mathbb{R}P^4$. We know that $\mathbb{R}P^4$ can be viewed as $\mathbb{R}P^3$ attaching a 4-cell D^4 via a degree 0 boundary map $S^3 \to S^3$. We choose a base point $x \in \mathbb{R}P^3$ and one S^3 inside the interior of D^4 (red in picture), denoted by Y. We know that $Y \cap \partial D^4 = \{x\}$. Choose one point inside the space bounded by Y and another point in the interior of D^4 but not in Y. Remove these two points and we obtain X. We know that D^4 removing these two points is homotopic equivalent to the union $Y \cup \partial D^4$. Note that $\partial D^4 = S^3$ is glued to the 3-skeleton $\mathbb{R}P^3$, so X is homotopic equivalent to $\mathbb{R}P^3 \vee Y = \mathbb{R}P^3 \vee S^3$.

By Van Kampen Theorem, we have

$$\pi_1(X) = \pi_1(\mathbb{R}P^3) * \pi_1(\mathbb{S}^3) = \pi_1(\mathbb{R}P^3).$$

We know $\mathbb{R}P^2$ is the 2-skeleton of $\mathbb{R}P^3$, so $\pi_1(X) = \pi_1(\mathbb{R}P^3) \cong \pi_1(\mathbb{R}P^2) = \mathbb{Z}/2\mathbb{Z}$.

Problem 2

Let p and q be relatively prime, positive integers. Consider the 3-disk $D^3 \subseteq \mathbb{R}^3$, and regard it as the space

$$D^{3} = \{(z, r) \mid z \in \mathbb{C}, r \in \mathbb{R}, |z|^{2} + r^{2} \le 1\}.$$

Let $\zeta = e^{2\pi i/p}$, and let L(p,q) be the quotient space of X where one identifies

$$(z,r) \sim (\zeta^q z, -r)$$

if $r \ge 0$ and $|z|^2 + r^2 = 1$. Convince yourself that L(p,q) is a 3-manifold. The space L(p,q) is called a lens space. Note that $L(2,1) = \mathbb{R}P^3$.

Let $\rho: D^3 \to L(p,q)$ be the quotient map. Let

$$X_0 = \{ \rho(1,0) \},$$

$$X_1 = \{ \rho(z,0) \mid z \in \mathbb{C}, |z|^2 = 1 \},$$

$$X_2 = \{ \rho(z,r) \mid |z|^2 + r^2 = 1 \}.$$

Convince yourself that

$$\varnothing \hookrightarrow X_0 \hookrightarrow X_1 \hookrightarrow X_2 \hookrightarrow X_3 = L(p,q)$$

is a CW-structure on L(p,q), with exactly one cell in each dimension. Use this to compute $H_*(L(p,q))$ as well as $\pi_1(L(p,q))$.

Solution: The solutions are divided into three parts. In part (1), we prove that L(p,q) is indeed a 3-manifold. In part (2), we prove that the given structure in the problem is a CW structure on L(p,q). Lastly, in part (3), we calculate the homology and fundamental groups of L(p,q).

- (1) We have already know that D^3 is a 3-manifold with boundary, to show that L(p,q) is a 3-manifold, we need to show that for every point $(z,r) \in \partial D^3$ with |z| = 1, after the identification, it has an open neighborhood which is homeomorphic to \mathbb{R}^3 . For points (z,r) satisfying r < 0, it is identifies with exactly one point in the upper half sphere, so it has a neighborhood homeomorphic to \mathbb{R}^3 . For each point (z,0) with $|z|^2 = 1$ on the equator, note that if we choose an open neighborhood small enough, no points in this neighborhood are identified with each other, so we can piece together p-1 such neighborhood to get \mathbb{R}^3 as each of them can be chosen as being homeomorphic to a half ball.
- (2) It is easy to see that X_0 is just a point and X_1 just S^1 with |z| = 1 and r = 0 in L(p,q). Note that for point $z \in L(p,q)$ satisfying |z| = 1, we identify the points z with $e^{2\pi i \frac{q}{p}}z$. Since p and q are coprime, we divide this circle into p copies of S^1 and view them as just one S^1 . When attaching a 2-cell to X_1 , we use a degree p map $S^1 \to S^1$. Note that we only have one 2-cell because if L(p,q) is viewed as a quotient space D^3/\sim , for $r \geq 0$, all points (z,r) in lower half sphere in ∂D^3 is identified with a point $(e^{2\pi i \frac{q}{p}}z, -r)$ in the upper half sphere. Finally, we attach a 3-cell to the 2-skeleton X_2 , which corresponding to the interior of the quotient space D^3/\sim . This gives us a CW structure for L(p,q):

$$\varnothing \hookrightarrow X_0 \hookrightarrow X_1 \hookrightarrow X_2 \hookrightarrow X_3 = L(p,q).$$

(3) The cellular chain complex from the above CW structure is given by

$$0 \to \mathbb{Z} \xrightarrow{d_3} \mathbb{Z} \xrightarrow{p} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \to 0.$$

Note that $d_3 = 0$ because this is a chain complex. So the homology can be calculated as

$$H_i(L(p,q)) = \begin{cases} \mathbb{Z}, & \text{if } i = 0,3; \\ \mathbb{Z}/p\mathbb{Z}, & \text{if } i = 1; \\ 0, & \text{otherwise.} \end{cases}$$

For the fundamental group $\pi_1(L(p,q))$, from the CW structure, we know that $\pi_1(L(p,q)) = \pi_1(X_2) = \pi_1(X_1)/\sim$ where \sim is given by the attaching map $S^1 \to S^1$. We have seen that it is a degree p map, so the fundamental group $\pi_1(L(p,q)) = \mathbb{Z}/p\mathbb{Z}$.

Problem 3

Suppose W is a space and $h: W \to W$ is a homeomorphism. Let X be the quotient space of $W \times I$ where we identify $(w,0) \sim (h(w),1)$ for all $w \in W$. Note that if W is a d-manifold then X is a (d+1)-manifold. If $W = S^2$ then $\deg(h)$ is either 1 or -1. Compute $H_*(X)$ in both cases.

Solution: Let X be the quotient space of $S^2 \times I$ obtained in this way. Consider the open sets $U = S^2 \times (\frac{1}{4}, \frac{3}{4})$ and $V = S^2 \times ((0, \frac{1}{3}) \cup (\frac{2}{3}, 1))$. We have $X = U \cup V$. Note that $S^2 \times \{0\}$ is identified with $S^2 \times \{1\}$ via a homeomorphism h, so we know that both U and V are homotopic equivalent to S^2 . Moreover, we have

$$U \cap V = S^2 \times ((\frac{1}{4}, \frac{1}{3}) \cup (\frac{2}{3}, \frac{3}{4})) \simeq S^2 \sqcup S^2.$$

By Mayer-Vietoris, we have a long exact sequence in homology

$$\tilde{H}_{*}(U \cap V) \qquad \tilde{H}_{*}(U) \oplus \tilde{H}_{*}(V) \qquad \tilde{H}_{*}(X)$$

$$3 \qquad 0 \longrightarrow 0 \longrightarrow ?$$

$$2 \qquad \mathbb{Z} \oplus \mathbb{Z} \stackrel{\longleftarrow}{\longleftarrow} \mathbb{Z} \oplus \mathbb{Z} \longrightarrow ?$$

$$1 \qquad 0 \longleftarrow 0 \longrightarrow ?$$

$$0 \qquad \mathbb{Z} \longleftarrow 0$$

It can be observed that

$$H_1(X) \cong \tilde{H}_0(U \cap V) = \tilde{H}_0(S^2 \sqcup S^2) = \mathbb{Z}.$$

X is path-connected since $S^2 \times I$ is path-connected, so $H_0(X) = \mathbb{Z}$. For the rest of the homology

groups, we need to determine the map in homology

$$H_2(S^2 \sqcup S^2) \to H_2(S^2) \oplus H_2(S^2)$$

which is induced by the inclusion $i: U \cap V \to U$ and $j: U \cap V \to V$. Choose the spheres $S^2 \times \left\{\frac{2}{7}\right\}$ and $S^2 \times \left\{\frac{5}{7}\right\}$ in $U \cap V$ as the generators of the homology group $H_2(U \cap V) = \mathbb{Z} \oplus \mathbb{Z}$. We know that $H_2(U) = H_2(S^2) = \mathbb{Z}$ has only one generator, so the spheres at $S^2 \times \left\{\frac{2}{7}\right\}$ and the sphere at $S^2 \times \left\{\frac{5}{7}\right\}$ is the same generator in $H_2(U)$, so i_* can be described as

$$i_*: \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z};$$

 $(1,0) \mapsto 1,$
 $(0,1) \mapsto 1.$

For V, we know $H_2(V) = \mathbb{Z}$ have one generator and we choose the sphere at $S^2 \times \left\{\frac{5}{7}\right\}$. So one of the generator $S^2 \times \left\{\frac{5}{7}\right\}$ of $H_*(U \cap V)$ is sent to itself, and for the other generator $S^2 \times \left\{\frac{2}{7}\right\}$, firstly it is sent to the sphere at $S^2 \times \{0\}$, then the induced map in homology $h_*: H_2(S^2) \to H_2(S^2)$ sends it to the homology group of the sphere at $S^2 \times \{1\}$, which is the same as the generator at $S^2 \times \left\{\frac{5}{7}\right\}$. Note that deg h is just how we sent $1 \in H_2(S^2)$, so j_* can be described as

$$j_*: \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z};$$

 $(1,0) \mapsto \deg h,$
 $(0,1) \mapsto 1.$

So the map in homology $H_2(S^2 \sqcup S^2) \xrightarrow{i_*,j_*} H_2(S^2) \oplus H_2(S^2)$ can be summarized as a matrix $\begin{pmatrix} 1 & \deg h \\ 1 & 1 \end{pmatrix}$. Note that $H_3(X) = \ker(i_*,j_*)$ and $H_2(X) = \operatorname{coker}(i_*,j_*)$.

When $\deg h = 1$, the matrix is similar to $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and we have

$$H_i(X) = \begin{cases} \mathbb{Z}, & \text{if } i = 0, 1, 2, 3; \\ 0, & \text{otherwise.} \end{cases}$$

And when $\deg h = -1$, the matrix is similar to $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ and we have

$$H_i(X) = \begin{cases} \mathbb{Z}, & \text{if } i = 0, 1; \\ \mathbb{Z}/2\mathbb{Z}, & \text{if } i = 2; \\ 0, & \text{otherwise.} \end{cases}$$

Problem 4

Regard \mathbb{R}^7 as contained in \mathbb{R}^8 in the usual way. For every line ℓ through the origin in \mathbb{R}^8 , I want to associate a line $F(\ell)$ through the origin in \mathbb{R}^7 . I want this assignment to be continous,

and when $\ell \subseteq \mathbb{R}^7$, I want $F(\ell) = \ell$. Prove that no such assignment F can exist.

Solution: Recall that for $n \geq 2$, each point in $\mathbb{R}P^n$ can be viewed as a line through the origin in \mathbb{R}^{n+1} . To get the map F described in the problem, it is the same as defining a continuous map $f: \mathbb{R}P^7 \to \mathbb{R}P^6$. F restricted to lines in \mathbb{R}^7 being the identity means that f restricted to $\mathbb{R}P^6$ is the identity map. Namely we have a commutative diagram

$$\mathbb{R}P^7 \xrightarrow{f} \mathbb{R}P^6$$

$$\downarrow i \qquad \qquad \downarrow id$$

$$\mathbb{R}P^6$$

where $i: \mathbb{R}P^6 \to \mathbb{R}P^7$ is the inclusion map. Apply $\pi_6(-,*)$, and we have a commutative diagram in homotopy groups

$$\pi_{6}(\mathbb{R}P^{7}, *) \xrightarrow{f_{*}} \pi_{6}(\mathbb{R}P^{6}, *)$$

$$\downarrow_{i_{*}} \qquad \downarrow_{i_{d}} \qquad \downarrow$$

Note that for $\pi_6(\mathbb{R}P^6) = \pi_6(S^6) = \mathbb{Z}$ and $\pi_6(\mathbb{R}P^7) = \pi_6(S^7) = 0$. So this diagram cannot commute since the identity map cannot be obtained from the zero map composed with anything.

Problem 5

Let V be a finite dimensional real vector space and assume it's equipped with a continous product $V \times V \to V$ satisfying the following three conditions:

- (i) $(rv) \cdot w = r(v \cdot w) = v \cdot (rw)$ for all $v, w \in V, r \in \mathbb{R}$;
- (ii) There exists an element $1 \in V$ such that $1 \cdot v = v \cdot 1 = v$ for all $v \in V$;
- (iii) vw = 0 if and only if either v = 0 or w = 0.

Pick a basis e_1, \ldots, e_n for V such that $e_1 = 1$, and define a norm on V by

$$||r_1e_1 + \dots + r_ne_n|| = \sqrt{r_1^2 + \dots + r_n^2}.$$

Let $S(V) = \{v \in V : ||v|| = 1\}.$

- (a) Show that under our assumptions on V there is a continuous map $\theta: S(V) \times S(V) \to S(V)$ with the property that $\theta(-1, v) = -v$ and $\theta(1, v) = v$ for all $v \in S(V)$.
- (b) Use part (a) to show that if $\dim_{\mathbb{R}} V \geq 2$, then the identity map $S(V) \to S(V)$ is homotopic to the antipodal map. Conclude that $\dim_{\mathbb{R}} V$ is either even or equal to 1.

Solution:

(a) For any $v, w \in S(V)$, we define $\theta(v, w) = \frac{v \cdot w}{||v \cdot w||}$. This map is a well-defined map from

 $S(V) \times S(V)$ to S(V) because

$$||\theta(v, w)|| = \frac{||v \cdot w||}{||v \cdot w||} = 1.$$

For any $v \in S(V)$, suppose $v = r_1 e_1 + \cdots + r_n e_n$ satisfying $r_1^2 + \cdots + r_n^2 = 1$. We have

$$(-1) \cdot v = -(1 \cdot v) = -v = -r_1 e_1 - r_2 e_2 - \dots - r_n e_n.$$

So we know that

$$||-v|| = \sqrt{(-r_1)^2 + \dots + (-r_n)^2} = \sqrt{r_1^2 + \dots + r_n^2} = 1.$$

We can calculate

$$\theta(1, v) = \frac{1 \cdot v}{||1 \cdot v||} = \frac{v}{||v||} = v,$$

$$\theta(-1, v) = \frac{(-1) \cdot v}{||(-1) \cdot v||} = \frac{-v}{||-v||} = -v.$$

The last thing we need to show is that θ define in this way is continuous for all $(v, w) \in S(V) \times S(V)$. Since θ is symmetric, we only need to show that for any $w \in S(V)$, $\theta(-, w) : S(V) \to S(V)$ is a continuous function.

(b) Suppose $\dim_{\mathbb{R}} V \geq 2$. For any $-1 \leq t \leq 1$, define $w(t) = te_1 + \sqrt{1 - t^2}e_2 \in S(V)$, which can be viewed as a continous function of t. We have a map

$$H: S(V) \times [-1, 1] \to S(V),$$

 $(v, t) \mapsto \theta(v, w(t)).$

This map is continuous because w and θ are continuous. For any $v \in S(V)$, we can see that

$$H(v, -1) = \theta(v, w(-1)) = \frac{(-1) \cdot v}{||(-1) \cdot v||} = -v$$

is the antipodal map and

$$H(v,1) = \theta(v, w(1)) = \frac{1 \cdot v}{||1 \cdot v||} = v$$

is the identity map. This proves that if $\dim_{\mathbb{R}} V \geq 2$, the identity map $S(V) \to S(V)$ is homotopic to the antipodal map. Suppose $\dim_{\mathbb{R}} V = n \geq 2$. We know that $S(V) \cong S^{n-1}$. So the degree of the identity map $S(V) \xrightarrow{id} S(V)$ is 1 and the degree of the antipodal map is $(-1)^{n-1+1} = (-1)^n$. Thus, this implies n must be even if $n \geq 2$. We know that we have a product for 1-dimensional real vector space because in this case, V is isomorphic to \mathbb{R} , and \mathbb{R} is a field.