ANGELA HARPER

harpaf13.github.io | harper@fhi-berlin.mpg.de | @ScienceAnge

I am a computational physicist passionate about leveraging machine learning to solve complex physical problems. As a postdoctoral fellow, I developed a workflow to predict high-quality spectroscopic properties from limited datasets and created computational tools for efficient data management and analysis. In my PhD, I combined ab-initio calculations with experimental spectroscopy data to enhance the accuracy of amorphous structure modelling. My expertise lies at the intersection of quantum-mechanical simulations and machine learning, with a focus on improving predictions in the physical sciences by incorporating experimental data. With strong communication and leadership skills, I thrive in interdisciplinary environments that value teamwork. I am looking for industry positions where I can improve my skills in machine learning and tackle new challenges in physics and chemistry.

EDUCATION

2018-2022

PhD, Physics, University of Cambridge

Thesis: "Extending first principles spectroscopy to disordered materials: a study on amorphous and crystalline aluminas" - Supervisors: Prof. Michael Payne, Prof. Andrew Morris

- Applied quantum mechanical methods to compute experimental NMR and XAS spectra, developing a workflow for their application to larger amorphous materials.
- Developed a method for incorporating vibrational properties into first principles calculations to improve their accuracy in comparison with ground-state DFT.
- Gained experience utilizing graph-based neural networks for ML interatomic potentials.

2017-2018

MPhil, Physics, University of Cambridge

Thesis: "Ab Initio Prediction of Metal Phosphide Anode Materials for Lithium and Beyond Lithium Batteries" — Supervisor: Prof. Andrew Morris

- Used high-throughput structure prediction methods including random structure searching and genetic algorithms to identify novel Li-ion battery materials.
- Gained proficiency with density-functional theory calculations including calculating phonon spectra, density of states, Li-ion battery capacity, and voltage profiles.
- Became proficient in using data visualization libraries, such as Matplotlib, seaborn, and pandas to communicate findings effectively.

2013-2017

BS, Physics, Minor: CompSci/Math, Wake Forest University, USA

- Graduated with honours, ranking first in the class with a 4.0 GPA.
- Developed an application using Java and Android Studio to trail mark in the Appalachians.
- Worked in a bioinformatics lab to develop an unsupervised learning protocol for protein structure-function identification.

RESEARCH EXPERIENCES

2022-

PostDoc, Computational Chemistry, Fritz Haber Institute of the MPG, DE

Supervisors: Prof. Dr. Karsten Reuter, Dr. Christoph Scheurer

- Developed and implemented a workflow utilizing equivariant kernel-based methods to accurately predict Nuclear Magnetic Resonance (NMR) properties.
- Curated a comprehensive dataset of over 30k NMR tensors using a combination of DFT, AIMD, and statistical techniques for data filtering.
- Supervised two PhD students on individual projects in applying machine learning to predicting experimental observable properties

2016

Research Intern, Computational Chemistry, Cornell University, USA

Supervisor: Prof Paulette Clancy

- Employed Bayesian optimisation methods and LCAO DFT for understanding the solution processing of hybrid organic/inorganic perovskites.
- Utilized statistical sampling approaches to train an empirical potential for Fe atoms

COMPUTATIONAL SKILLS

LanguagesPython, Fortran90, C++, JavaToolsgit, VisualStudio, Unix/Linux, vimPackagesNumPy, matplotlib, scikit-learn, SciPy,DFTCASTEP, VASP, Orca, Quantum Espresso,

pandas, pymatgen, ase, Tensorflow ONETEP, Fermions++

Spectra NMR, XAS, XRD, Raman ML+Physics TENSOAP, GAP, SchNet, AENet

AWARDS AND SCHOLARSHIPS

2022	Alexander von Humboldt PostDoctoral Fellowship, DE
2018	Gates Cambridge Scholarship, UK
2018	Winton Programme for the Physics of Sustainability Scholarship, UK
201 <i>7</i>	Churchill Scholarship from the Churchill Foundation, USA
2017	LeRoy Apker Award from the American Physical Society, USA

SKILLS

Project Management and Collaboration	 Orchestrated the collaborative writing, editing, and timely submission of a review article involving a team of 7 individuals for Johnson Matthey Technology Review.
	 Acted as the Point of Contact for the HEC Materials Chemistry Consortium, coordinating grant applications for 20+ scientists while following strict deadlines.
	 Lead communications for the PostDoc Day Berlin securing sponsorships from industry and academic partners and establishing effective platforms for engagement
Leadership and Mentoring	 Physics 1A Senior Lab Instructor, providing guidance to fellow PhD students on supervising the labs and supervising undergraduate students throughout the course
	 Led a team of 6 PhD students as part of the Cambridge University Science Policy Exchange, establishing the <u>Cambridgeshire Decarbonisation Fund</u>
	 Organised the Electronic Structure Discussion Group for 3 years during my PhD organising weekly seminars with international speakers.
Cooperation	 Contributed to public code repositories such as OptaDOS and matador by submitting pull requests, developing tests, and promptly addressing change requests.
	 Acted as the Secretary of the Churchill College MCR, effectively liaising with administrative and postgraduate members to address their respective needs

SELECTED PUBLICATIONS

Additional Publications available at ORCID: 0000-0002-0699-0450

Angela F. Harper, Simone Köcher, Karsten Reuter, and Christoph Scheurer. Towards in silico Spectroscopy: Machine learned electric field gradients using equivariant descriptors. In Press, 2023

<u>Angela F. Harper</u>, Steffen P Emge, Peter C M M Magusin, Clare P Grey, and Andrew J Morris. Modelling amorphous materials via a joint solid-state NMR and X-ray absorption spectroscopy and DFT approach: application to alumina. *Chemical Science*, 14:1155–1167, 2022 10.1039/D2SC04035B

Angela F. Harper, Bartomeu Monserrat, and Andrew J. Morris. Finite temperature effects on the X-ray absorption spectra of crystalline aluminas from first principles. *AIP Advances* 13, 055015, 2023 10.1063/5.0146033

<u>Angela F. Harper</u>, Matthew L Evans, and Andrew J Morris. Computational investigation of copper phosphides as conversion anodes for lithium-ion batteries. *Chemistry of Materials*, 32(15):6629–6639, 2020 10.1021/acs.chemmater.0c02054

Benjamin J Foley, Justin Girard, Blaire A Sorenson, Alexander Z Chen, J Scott Niezgoda, Matthew R Alpert, <u>Angela F. Harper</u>, Detlef-M Smilgies, Paulette Clancy, Wissam A Saidi, et al. Controlling nucleation, growth, and orientation of metal halide perovskite thin films with rationally selected additives. *Journal of Materials Chemistry A*, 5(1):113–123, 2017 10.1039/C6TA07671H

Angela F. Harper, Janelle B Leuthaeuser, Patricia C Babbitt, John H Morris, Thomas E Ferrin, Leslie B Poole, and Jacquelyn S Fetrow. An atlas of peroxiredoxins created using an active site profile-based approach to functionally relevant clustering of proteins. *PLoS computational biology*, 13(2):e1005284, 2017 10.1371/journal.pcbi.1005284