Biological Modeling of Neural Networks

Week 6

Attractor Networks and

Generalizations of the Hopfield model

Wulfram Gerstner EPFL, Lausanne, Switzerland

Reading for week 6: **NEURONAL DYNAMICS** - Ch. 17.2.5 – 17.4 - Ch. 19.1-19.2; Cambridge Univ. Press

6.1. Attractor networks

- 6.2. Stochastic Hopfield model
- 6.3. Energy landscape
- 6.4. Towards biology
 - low-activity patterns - spiking neurons

6.4 Models of synaptic plasticity

- Hebbian learning rules
- Bienenstock-Cooper-Munro rule
- 6.5 Online learning of memories

1. Review of week 5: Memory and Hebbian assemblies

Review of week 5: Deterministic Hopfield model

Sum over all

prototypes

Prototype

Prototype p^2

- each prototype has black pixels with probability 0.5

- prototypes are random patterns, chosen once at the beginning

1. Review from week 5: overlap / correlation			
1 2 i N μ=1 II II II	lmage: Neuronal Dynamics, Gerstner et al., Cambridge Univ. Press (2014),		
$\mu=2$	orrelation: overlap between		
$\mu=3$	one pattern and another		
	μ=1		
1 2 i N	μ =2		
$\mu=1$	μ=3		
$S(t) \bullet \bullet \bigcirc \bigcirc \bigcirc \bullet \bigcirc \bullet \bigcirc$			
Overlap: similarity between	μ		
state $S(t)$ and pattern $m^{\mu} = \frac{1}{2} \sum p^{\mu}$			
$m = \frac{1}{N} \sum_{j} p_{j}$	Orthogonal patterns		

6.3 Review of week 5: Deterministic Hopfield model				
Prototype Prototype p ¹ p ²	interactions $w_{ij} = \frac{1}{N} \sum_{\mu} p_i^{\mu} p_j^{\mu}$ Sum over all prototypes Input potential $h_i = \sum_j w_{ij} S_j$			
Deterministic dynamics	Sum over all inputs to neuron			
	prototypes			
dynamics $S_i(t+1) = \operatorname{sgn}[h_i(t)] = \operatorname{sgn}[\sum_i w_{ij}S_j(t)]$				
Similarity measure: Overla	ap w. pattern 17: $m^{17}(t+1) = \sum_{j} p_{j}^{17} S_{j}$			

6.1 Hopfield model: memory retrieval (with overlaps)
$S_i(t+1) = \operatorname{sgn}[h_i(t)] = \operatorname{sgn}[\sum_j w_{ij}S_j(t)]$
blackboard
$S_i(t+1) = \operatorname{sgn}\left[\sum_{\mu} p_i^{\mu} m_j^{\mu}(t)\right]$

6.1 Hopfield model: memory retrieval (attractor model)
Overlap (definition)
$m^3(t+1) = \sum_{i} p_i S_i$
$m^3 = 1$ $m^{17} = 1$

6.1 Hopfield model: memory retrieval (attractor model)

Attractor networks:

dynamics moves network state to a fixed point

Hopfield model:

for a small number of patterns, states with overlap 1 are fixed points

Quiz 6.1: overlap and attractor dynamics

T 1	The	overlan	ie	mavimal

if the network state matches one of the patterns.

- [] The overlap increases during memory retrieval.
-] The mutual overlap of orthogonal patterns is one.
- [] In an attractor memory, the dynamics converges to a stable fixed point.
- [] In a perfect attractor memory network, the network state moves towards one of the patterns.
- [] In a Hopfield model with N random patterns stored in a network N neurons, the patterns are attractors.
- [] In a Hopfield model with 200 random patterns stored in a network 1000 neurons, all fixed points have overlap one.

Biological Modeling of Neural Networks

(PFU

Week 6

Attractor Networks and

Generalizations of the Hopfield model

Wulfram Gerstner EPFL, Lausanne, Switzerland

Reading for week 6: **NEURONAL DYNAMICS** - Ch. 17.2.5 – 17.4 - Ch. 19.1-19.2; Cambridge Univ. Press

6.1. Attractor networks

6.2. Stochastic Hopfield model

6.3. Energy landscape

6.4. Towards biology

- low-activity patterns - spiking neurons

6.4 Models of synaptic plasticity

- Hebbian learning rules

- Bienenstock-Cooper-Munro rule

6.5 Online learning of memories

6.2 Stochastic Hopfield model

Random patterns

Dynamics (2)

 $\Pr\{S_i(t+1) = +1 \mid h_i\} = g[h_i] = g\left[\sum_j w_{ij}S_j(t)\right]$

6.2 Stochastic Hopfield model: firing probability

 $\Pr\{S_{i}(t+1) = +1 \mid h_{i}\} = g[h_{i}] = g\left[\sum_{j} w_{ij} S_{j}(t)\right] = g\left[\sum_{\mu} p_{i}^{\mu} m^{\mu}(t)\right]$

6.2 Stochastic Hopfield model

Dynamics (2)

$$\Pr\{S_i(t+1) = +1 \mid h_i\} = g[h_i] = g\left[\sum_j w_{ij} S_j(t)\right]$$

$$\Pr\{S_i(t+1) = +1 \mid h_i\} = g\left[\sum_{\mu} p_i^{\mu} m^{\mu}(t)\right]$$

blackboard

Assume that there is only overlap with pattern 17: two groups of neurons: those that should be 'on' and 'off'

$$\Pr\{S_i(t+1) = +1 \mid h_i = h^+\} = g[m^{17}(t)]$$

$$\Pr\{S_i(t+1) = +1 \mid h_i = h^-\} = g \lceil -m^{17}(t) \rceil$$

Overlap (definition)
$$m^{17}(t+1) = \sum_{i} p_{j}^{17} S_{j}$$

Exercise 3 now: Stochastic Hopfield

Overlap (definition) $m^{17}(t+1) = \sum_{j} p_j^{17} S_j$

15 minutes,
Try to get
As far as possible

Suppose initial overlap with pattern 17 is 0.4; Find equation for overlap at time (t+1), given overlap at time (t)

Next lecture 9:50

Hint: Use result from blackboard and consider 4 groups of neurons

- Those that should be ON and are ON
- Those that should be ON and are OFF
- Those that should be OFF and are ON
- Those that should be OFF and are OFF

6.2 Stochastic Hopfield model: memory retrieval Overlap: Neurons that should be 'on' $2m^{17}(t+1) = g \left[m^{17}(t)\right] - \{1-g \left[m^{17}(t)\right]\} - g \left[-m^{17}(t)\right] + \{1-g \left[-m^{17}(t)\right]\}$ $m^{17}(t+1) = \tilde{F} \left[m^{17}(t)\right]$ overlap picture $m^{\nu}(t+\Delta t)$ $m^{\nu}(t_0)$

6.3 Symmetric interactions: Energy picture

$$E = -\frac{1}{2} \sum_{i,j} w_{ij} S_i S_j$$

- Rewrite in terms of overlaps
- Random patterns vs. orthogonal patterns

blackboard

(PF)	6.2. Stochastic Hopfield model	
Week 6	·	
Attractor Networks and	6.3. Energy landscape	
Generalizations of the Hopfield model		
M. H Ot	6.4. Towards biology	
Wulfram Gerstner	 low-activity patterns 	
EPFL, Lausanne, Switzerland	- spiking neurons	
Reading for week 6:	6.4 Models of synaptic plastici	

Biological Modeling of Neural Networks 6.1. Attractor networks

Reading for week 6: NEURONAL DYNAMICS - Ch. 17.2.5 – 17.4 - Ch. 19.1-19.2; Cambridge Univ. Press 4 Models of synaptic plasticity
 - Hebbian learning rules

- Bienenstock-Cooper-Munro rule

- bierieristock-Gooper-iviumo ruik

6.5 Online learning of memories

6.4 attractor memor	y with spi	king neurons
---------------------	------------	--------------

Memory with spiking neurons-Mean activity of patterns? -Better neuron model?

- -Separation of excitation and inhibition?
- -Modeling with integrate-and-fire model?
- -Neural data?

6.4 attract	6.4 attractor memory with 'balanced' activity patterns					
_ 1	2				i	 N
μ=1						
μ=2						
μ=3						
Random patterns +/-1 with zero mean → 50 percent of neurons should be active in each pattern						
$w = \frac{1}{2} \sum_{n} p^{\mu} n^{\mu}$						

6.4 attractor memo	ry with 'low' ad	ctivity patterns	
_ 1 2		i	Ν
μ=1			
μ=2			
μ=3			
Random patterns +/-	1 with low activ	vity (mean =a<0))
e.g., 10 percent of	neurons should	be active in each	pattern
$w_{ij} = \frac{1}{N} \sum_{\mu} (p$	$(p_j^{\mu}-b)(p_j^{\mu}-a_j)$	<i>i</i>)	
	Some constant	Mean activity of	oattern

6.4 attractor memory with 'low' activity patterns

Random patterns +/-1 with **low activity (mean =a<0) →**e.g.10 percent of neurons should be active in each pattern

$$w_{ij} = \frac{1}{N} \sum_{\mu} (p_i^{\mu} - b)(p_j^{\mu} - a)$$
 blackboard

Introduce overlap

Introduce dynamics

Exercise 5 NOW- from Hopfield to spikes

n the Hopfield model, neurons are characterized by a binary variable S_i= +/-1. For an interpretation in terms of spikes it is, however, more appealing to work with a binary variable x which is zero or 1.

(i) Write S_i= 2x_x 1 and rewrite the Hopfield model in terms of x

(i) Write S₁= 2x₁- 1 and rewrite the Hopfield model in terms of xı. What are the conditions so that the input potential is

$$h_{i} = \left[\sum_{j} w_{ij} x_{j}(t) \right]$$

(ii) Interpretation: can you also restric the weights to excitation only?

10 minutes, Try to get As far as possible

Memory with spiking neurons -Low activity of patterns? -Separation of excitation and inhibition? -Modeling with integrate-and-fire? -Neural data?

6.2 Rate-based Hebbian Learning					
o pre					
W_{ij}					
k post pre	on	off	on	off	
post	on	on	off	off	L
$\frac{d}{dt}w_{ij} = a_2^{corr} v_j^{pre} v_i^{post}$	+	0	0	0	
$\frac{d}{dt}w_{ij} = a_2^{corr}v_j^{pre}v_i^{post} - c$	+	-	-	-	
$\frac{d}{dt}w_{ij} = a_2^{corr}v_j^{pre}(v_i^{post} - \theta)$	+	0	-	0	
$\frac{d}{dt}w_{ij} = a_2^{corr}(v_j^{pre} - \vartheta)(v_i^{post} - \vartheta)$	+	-	-	+	

Exercise 2 now: learning of prototypes				
Prototype Prototype				
	$w_{ij} = \sum_{\stackrel{\mu}{/}} p_i^{\mu} p_j^{\mu}$			
a) Show that (1) corresponds to a rate learning	Sum over all prototypes			
(2) $\frac{d}{dt}w_{ij} = a_2^{corr}(v_j^{pre} - \mathcal{G})(v_i^{post} - \mathcal{G})$ Take 8 minutes, start the exercise				
Assume that weights are zero at the beginning; Next lecture at 11:35				
Each pattern is presented (enforced) during 0.5 sec (One after the other). note that $p_j^\mu = \pm 1$ but $v_j \ge 0$				
b) Compare with: $\frac{d}{dt}w_y = a_0 + a_1^{pre} v_j^{pre} + a_1^{post} v_i^{post} + a_2^{corr} v_j^{pre} v_i^{post} + \dots$				
c) Is this unsupervised learning?				

Biological Modeling of Neural Networks √ 6.1 Synaptic Plasticity (PAL - Hebbian Learning - Short-term Plasticity Week 6 - Long-term Plasticity **Hebbian LEARNING and** - Reinforcement Learning ASSOCIATIVE MEMORY √ 6.2 Models of synaptic plasticity Wulfram Gerstner - Hebbian learning rules EPFL, Lausanne, Switzerland - Bienenstock-Cooper-Munro rule **√** 6.3 Hopfield Model - probabilistic - energy landscape 6.4 Attractor memories 6.5 Online learning of memories

6.5 Induction of Plasticity (rate-based)

- nonlinear Hebb for potentiation

$$+a_3^{BCM}v_j^{pre}(v_i^{post})^2$$

- pre-post for depression

$$-a_2^{LTD}v_i^{pre}v_i^{post}$$

Bienenstock et al., 1982 Pfister and Gerstner, 2006

- heterosynaptic plasticity (pure 'post')

$$-a_4^{het}(w_{ij}-z_{ij})[v_i^{post}]^4$$

- transmitter-induced (pure 'pre')

$$+a_1^{pre}v_j^{pre}$$

10 20

Post activity [Hz]

Zenke+Gerstner, PLOS Comp. B. 2013

Zenke et al., Nat. Comm., 2015

6.5 Synaptic changes – review	and summary	
Induction of changes - fast (if stimulated appropriate - slow (homeostasis) Persistence of changes - long (LTP/LTD) - short (short-term plasticity) Functionality - useful for learning a new b - useful for development (wirin - useful for activity control in	phavior/new memories g for receptive field development)	
- useful for coding	,	
Biological Modeling of Neural Networ	/c	1
Week 6 Hebbian LEARNING and	6.1 Synaptic Plasticity - Hebbian Learning - Short-term Plasticity - Long-term Plasticity - Reinforcement Learning	
ASSOCIATIVE MEMORY Wulfram Gerstner EPFL, Lausanne, Switzerland - Hebbian learning rules - Bienenstock-Cooper-Munro rule - Hobbian learning rules - Bienenstock-Coaper-Munro rule - Forbabilistic - energy landscape		
	6.4 Attractor memories 6.5 Online learning of memories	
The en	d	
The en	u	