CS 524: Introduction to Optimization Lecture 23: Traveling salesman

Michael Ferris

Computer Sciences Department University of Wisconsin-Madison

October 27, 2023

Traveling Salesman

- A traveling salesman must visit all his cities at minimum cost
- Must also start and end at home

Given

- Set of cities N
- Distances between cities cii
- This is the most famous combinatorial optimization problem
- There are lots of applications

$$x_{ij} = \begin{cases} 1 & \text{We travel from city } i \text{ to city } j \\ 0 & \text{Otherwise} \end{cases}$$

A Formulation for TSP?

Consider the following

$$\min \sum_{i \in N} \sum_{j \in N} c_{ij} x_{ij}$$

$$\sum_{i \in N} x_{ij} = 1 \quad \forall j \in N$$

$$\sum_{j \in N} x_{ij} = 1 \quad \forall i \in N$$

$$x_{ij} \in \{0, 1\}$$

$$(1)$$

• Is this a valid TSP formulation?

10 City USA Instance

table	dist(i,j) "	distances	"						
	Atlanta	Chicago	Denver	Houston	LosAngeles	${\tt Miami}$	NewYork	SanFrancisco	Seattle	WashingtonDC
Atlanta	0	587	1212	701	1936	604	748	2139	2182	543
Chicago	587	0	920	940	1745	1188	713	1858	1737	597
Denver	1212	920	0	879	831	1726	1631	949	1021	1494
Houston	701	940	879	0	1372	968	1420	1645	1891	1220
LosAngeles	1936	1745	831	1374	0	2339	2451	347	959	2300
Miami	604	1188	1726	968	2339	0	1092	2594	2734	923
NewYork	748	713	1631	1420	2451	1092	0	2571	2408	205
SanFrancisc	o 2139	1858	949	1645	347	2594	2571	0	678	2442
Seattle	2182	1737	1021	1891	959	2734	2408	678	0	2329
WashingtonD	C 543	597	1494	1220	2300	923	205	2442	2329	0 ;

Subtours

- How do we get rid of those pesky subtours?
- For every set S of cities except the whole set, we can use at most |S|-1 edges.

$$\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| - 1 \quad \forall S \subseteq N, 2 \le |S| \le |N| - 1$$

• There are exponentially many "subtour elimination" constraints

Quiz Time!

101851798816724304313422284420468908052573419683296 8125318070224677190649881668353091698688.

- Is this...
 - (a) The number of gifts that I have bought my wife?
 - (b) The number of subatomic particles in the universe?
 - (c) The number of "subtour elimination constraints" when |N| = 299.
 - (d) All of the above?
 - (e) None of the above?

Answer Time!

- The answer is (e). (a)–(c) are all too small (as far as I know) :-). (It is (c), for |N| = 300).
- "Exponential" is really big.
- Yet people have solved TSP's with |N| > 80,000!
- How? You ask...
- Branch and cut! (www.tsp.gatech.edu)
 - ► Solve the problem without all of those subtours, and then just add them as we need them
- Finding the "add if we need them" subtours is called the separation problem
- Let's finish solving our example...
 - ► See tsp1.gms in GAMS model library for fancier code: doing it dynamically (Other examples: tsp2,tsp3,tsp4,tsp5,swath) or the MIRO tsp app.

Miller Tucker Zemlin

- There is a weaker, but more compact formulation that should suffice to eliminate subtours for smallish instances.
- We can derive it using the "Turn on constraint' idea'.
- Idea: Let $u_i, i \in N$ be the relative positive of node i in the tour. Choose node 1 to be first (arbitrarily) $u_1 = 1$.
- $2 \le u_i \le n = |N| \quad \forall i \in N \setminus \{1\}$
- Just model implication (assuming $x_{ii} = 0$ is fixed):

$$x_{ij} = 1 \Rightarrow u_j \geq u_i + 1 \quad (i.e.u_i - u_j + 1 \leq 0) \quad \forall i \neq 1, \forall j \neq 1$$

- Since $g(u) = u_i u_i + 1$, it is clear that M = n 2 + 1 = n 1
- This gives inequalities

$$u_i - u_j + 1 \le (n-1)(1-x_{ij}) \quad \forall i \ne 1, \forall j \ne 1$$

The formulation (tsp10.gms)

To exclude subtours, use extra variables $u_i (i = 1, ..., n)$, and constraints

$$u_{1} = 1,$$

 $2 \le u_{i} \le n, \quad \forall i \ne 1,$
 $u_{i} - u_{j} + 1 \le (n - 1)(1 - x_{ij}), \quad \forall i \ne 1, \forall j \ne 1.$
(2)

The formulation consisting of (1) and (2) is called the MillerTuckerZemlin (MTZ) formulation of the TSP. It indeed excludes subtours, as (a) constraint (2) for (i, j) forces $u_j \geq u_i + 1$, when $x_{ij} = 1$; (b) if a feasible solution of (1)-(2) is contained more than one subtour, then at least one of these would not contain node 1, and along this subtour the u_i values would have to increase to infinity. This argument, with the bounds on the u_i variables, also implies that the only feasible value of u_i is the position of node i in the tour.

SOS type 1 variables

Some solvers implement SOS1 variables, and these simplify the model and allow a solver to perform different branching strategies.

• A set of variables $\{\delta_1, \delta_2, \dots \delta_m\}$ is called a special ordered set (SOS) of type 1 variables if at most 1 of them is nonzero.

We often use SOS1 in conjunction with a normalizing constraint that fixes the nonzero value (e.g. $\sum_i \delta_i = 1$ is a popular choice).

Modeling a Restricted Set of Values

- Want variable x to only take on values in $\{a_1, \ldots, a_m\}$.
- We introduce m binary variables $\delta_i, j = 1, \dots, m$ and the constraints

$$x = \sum_{j=1}^{m} a_j \delta_j,$$

$$\sum_{j=1}^{m} \delta_j = 1, \quad \delta_j \in \{0,1\}, j = 1, \dots, m$$

Alternatively, we could replace the last statement:

binary variables delta(J);

with

sos1 variables delta(J);

This results in the same model, but solvers may process these variables differently (branching strategy)

Example—Building a warehouse

- Suppose we are modeling a facility location problem in which we must decide on the size of a warehouse to build.
- The choices of sizes and their associated cost are shown below:

Size	Cost			
10	100			
20	180			
40	320			
60	450			
80	600			

Warehouse sizes and costs

Warehouse Modeling (warehouse.gms)

• Using binary decision variables $\delta_1, \delta_2, \dots, \delta_5$, we can model the cost of building the warehouse as

$$COST \equiv 100\delta_1 + 180\delta_2 + 320\delta_3 + 450\delta_4 + 600\delta_5.$$

• The warehouse will have size (or SIZE \geq 35)

$$\mathsf{SIZE} \equiv 10\delta_1 + 20\delta_2 + 40\delta_3 + 60\delta_4 + 80\delta_5,$$

and we have the SOS constraint

$$\delta_1 + \delta_2 + \delta_3 + \delta_4 + \delta_5 = 1.$$