

चला, शिकूया.

- अंतर्वर्तुळ
- वर्तुळाच्या जीवेचे गुणधर्म
- परिवर्तुळ

जरा आठवूया.

शेजारच्या आकृतीतील P केंद्र असलेल्या वर्तुळाचे निरीक्षण करा. या आकृतीवरून खालील सारणी पूर्ण करा.

	रेख PA					∠CPA
जीवा		व्यास	त्रिज्या	केंद्र	केंद्रीय कोन	

आकृती 6.1

वर्तुळ (Circle)

बिंदूंच्या संचाच्या रूपात या वर्तुळाचे वर्णन करू.

प्रतलातील एका स्थिर बिंदूपासून समान अंतरावर असणाऱ्या सर्व बिंदूंच्या संचाला वर्तुळ (Circle) म्हणतात.
 त्या स्थिर बिंदूला वर्तुळाचा केंद्रबिंदू किंवा वर्तुळकेंद्र (Centre of a circle) म्हणतात.

वर्तुळासंबंधी काही संज्ञा

- वर्तुळकेंद्र आणि वर्तुळावरील कोणताही बिंदू जोडणाऱ्या रेषाखंडाला वर्तुळाची त्रिज्या (radius) म्हणतात.
- वर्तुळकेंद्र आणि वर्तुळाचा कोणताही बिंदू यांमधील अंतरालाही वर्तुळाची त्रिज्या म्हणतात.
- वर्तुळावरील कोणतेही दोन बिंदू जोडणाऱ्या रेषाखंडाला वर्तुळाची जीवा (Chord) म्हणतात.
- वर्तुळाच्या केंद्रातून जाणाऱ्या जीवेला त्या वर्तुळाचा ट्यास (Diameter) म्हणतात.
 व्यास ही वर्तुळाची सर्वात मोठी जीवा असते.

प्रतलातील वर्तुळे

एकरूप वर्तुळे

• त्रिज्या समान

एककेंद्री वर्तुळे

केंद्र एक व
 त्रिज्या भिन्न

एकाच बिंदूत छेदणारी वर्तुळे

• केंद्र भिन्न, त्रिज्या भिन्न व सामाईक बिंदू एकच आकृती 6.2 दोन बिंदूत छेदणारी वर्तुळे

 केंद्र भिन्न, त्रिज्या भिन्न व सामाईक बिंदू दोन

वर्तुळाच्या जीवेचे गुणधर्म (Properties of chord)

कृती I: गटातील प्रत्येक विद्यार्थ्यांने खालील कृती करावी.

आपापल्या वहीत एक वर्तुळ काढा. त्यात एक जीवा काढा.

वर्तुळ केंद्रातून जीवेवर लंब टाका. जीवेचे जे दोन भाग

झाले आहेत. त्यांची लांबी मोजा.

गटप्रमुखाने खालीलप्रमाणे एक सारणी तयार करावी.

त्या सारणीत सर्वांची निरीक्षणे नोंदवावी.

आकृती 6.3

ं विद्यार्थी लांबी	1	2	3	4	5	6
l (AP)	सेमी					
l (PB)	सेमी					

या निरीक्षणांवरून लक्षात येणारा गुणधर्म लिहा. या गुणधर्माची सिद्धता पाहू.

प्रमेय : वर्तुळाच्या केंद्रातून जीवेवर काढलेला लंब जीवेला दुभागतो.

पक्ष : O केंद्र असलेल्या वर्तुळाची रेख AB ही जीवा आहे.

रेख OP \perp जीवा AB

साध्य : रेख $AP \cong \overline{\lambda}$ ख BP

सिद्धता : रेख OA व रेख OB काढा.

 Δ OPA व Δ OPB मध्ये

 \angle OPA \cong \angle OPB रेख OP \perp जीवा AB,

रेख $\mathrm{OP}\cong$ रेख $\mathrm{OP}\dots\dots$ सामाईक भुजा

कर्ण $OA \cong$ कर्ण $OB \dots \dots$ एकाच वर्त्ळाच्या त्रिज्या

 $\therefore \Delta \text{ OPA} \cong \Delta \text{ OPB} \dots$ कर्ण भुजा प्रमेय

रेख $PA\cong$ रेख $PB\ldots$ एकरूप त्रिकोणाच्या संगत भुजा

आकृती 6.4

कृती II: गटातील प्रत्येक विद्यार्थ्याने खालील कृती करावी.

आपापल्या वहीत एक वर्तुळ काढा. त्यात एक जीवा काढा.

जीवेचा मध्य शोधा. तो मध्यबिंदू व वर्तुळकेंद्र जोडणारा रेषाखंड काढा.

या रेषाखंडाने जीवेशी केलेले कोन मोजा.

काय आढळते?

तुम्ही मोजलेल्या कोनांची मापे एकमेकांना सांगा.

यावरून कोणता गुणधर्म लक्षात येतो, ते ठरवा.

आकृती 6.5

प्रमेय : वर्त्ळाचा केंद्र व जीवेचा मध्य यांना जोडणारा रेषाखंड जीवेस लंब असतो.

पक्ष : O केंद्र असलेल्या वर्तुळाची रेख AB ही जीवा आहे.

जीवा AB चा P हा मध्यबिंदू आहे, म्हणजेच रेख AP \cong रेख PB

साध्य : रेख OP ⊥ जीवा AB

सिद्धता : रेख OA व रेख OB काढा.

 Δ AOP व Δ BOP मध्ये

रेख $OA \cong$ रेख $OB \dots \dots \dots$ (एकाच वर्तुळाच्या त्रिज्या)

रेख $OP \cong \overline{\mathsf{d}}$ ख $OP. \dots ($ सामाईक भुजा)

रेख AP ≅ रेख BP (पक्ष)

 $\therefore \Delta \text{ AOP} \cong \Delta \text{ BOP} \dots$ (बाबाबा कसोटी)

 \therefore \angle OPA \cong \angle OPB \dots (एकरूप त्रिकोणाचे संगत कोन) \dots (I)

आता ∠OPA + ∠OPB = 180°... (रेषीय जोडीतील कोन)

∠OPB + ∠OPB = 180° (I) (वरून)

 $2 \angle OPB = 180^{\circ}$

 \angle OPB = 90 $^{\circ}$

∴ रेख OP ⊥ जीवा AB

सोडवलेली उदाहरणे

उदा (1) एका वर्तुळाची त्रिज्या 5 सेमी आहे. त्या वर्तुळाच्या एका जीवेची लांबी 8 सेमी आहे तर त्या जीवेचे वर्तुळ केंद्रापासूनचे अंतर काढा.

उकल:

आकृती 6.7

प्रथम दिलेली माहिती दर्शवणारी आकृती काढू.

समजा, O केंद्र असलेल्या वर्तुळात जीवा PQ ची लांबी 8 सेमी

आकृती 6.6

आहे.

रेख OM 丄 जीवा PQ काढला.

आपल्याला माहीत आहे की वर्तुळकेंद्रातून जीवेवर टाकलेला लंब जीवेला दुभागतो.

वर्तुळाची त्रिज्या 5 सेमी म्हणजे OQ = 5 सेमी हे दिले आहे.

काटकोन Δ OMQ मध्ये पायथागोरसच्या प्रमेयावरून

$$OM^2 + MQ^2 = OQ^2$$

$$OM^2 + 4^2 = 5^2$$

$$\therefore$$
 OM² = 5² - 4² = 25 - 16 = 9 = 3²

$$\therefore$$
 OM = 3

म्हणजे वर्तुळकेंद्रापासून जीवेचे अंतर 3 सेमी आहे.

उदा (2) एका वर्तुळाची त्रिज्या 20 सेमी आहे. ह्या वर्तुळाची एक जीवा वर्तुळाच्या केंद्रापासून 12 सेमी अंतरावर आहे, तर त्या जीवेची लांबी ठरवा.

उकल : समजा वर्तुळाचे केंद्र O आहे. त्रिज्या = OD = 20 सेमी जीवा CD केंद्र O पासून 12 सेमी अंतरावर आहे. रेख $OP \perp \dot{v}$ d d d d

... CP = PD वर्तुळकेंद्रातून जीवेवर टाकलेला लंब जीवेला दुभागतो.

काटकोन Δ OPD मध्ये पायथागोरसच्या प्रमेयावरून

$$OP^2 + PD^2 = OD^2$$

 $(12)^2 + PD^2 = 20^2$
 $PD^2 = 20^2 - 12^2$
 $PD^2 = (20+12)(20-12)$
 $= 32 \times 8 = 256$
∴ PD = 16 ∴ CP = 16
 $CD = CP + PD = 16 + 16 = 32$

∴ जीवेची लांबी 32 सेमी आहे.

आकृती 6.8

सरावसंच 6.1

- 1. वर्तुळकेंद्र O पासून जीवा AB चे अंतर 8 सेमी आहे. जीवा AB ची लांबी 12 सेमी आहे, तर वर्तुळाचा व्यास काढा.
- 2. एका वर्तुळाचा व्यास 26 सेमी असून जीवेची लांबी 24 सेमी आहे, तर त्या जीवेचे केंद्रापासूनचे अंतर काढा.
- 3. वर्तुळाच्या केंद्रापासून जीवेचे अंतर 30 सेमी असून वर्तुळाची त्रिज्या 34 सेमी आहे, तर जीवेची लांबी काढा.
- 4. O केंद्र असलेल्या वर्तुळाची त्रिज्या 41 सेमी आहे. वर्तुळाची जीवा PQ ची लांबी 80 सेमी आहे, तर जीवा PQ चे केंद्रापासूनचे अंतर काढा.
- 5. आकृती 6.9 मध्ये केंद्र () असलेली दोन वर्तुळे आहेत. मोठ्या वर्तुळाची AB ही जीवा लहान वर्तुळाला बिंदू P व () मध्ये छेदते. तर सिद्ध करा : AP = BQ
- 6. सिद्ध करा की, वर्तुळाचा व्यास जर वर्तुळाच्या दोन जीवांना दुभागत असेल तर त्या जीवा परस्परांना समांतर असतात.

आकृती 6.9

कृती I

- (1) सोईच्या त्रिज्येची वर्तुळे काढा.
- (2) प्रत्येक वर्तुळात समान लांबीच्या दोन जीवा काढा.
- (3) वर्तुळकेंद्रातून प्रत्येक जीवेवर लंब काढा.
- (4) वर्तुळकेंद्रापासून प्रत्येक जीवेचे अंतर मोजा.

वर्तुळाच्या एकरूप जीवा व त्यांचे केंद्रापासूनचे अंतर यांसंबंधीचे गुणधर्म

कृती II

आकृती (i)

आकृती (ii)

आकृती (iii)

आकृती (i)मध्ये OL = OM, आकृती (ii) मध्ये PN = PT, आकृती (iii) मध्ये MA = MB असे आढळले का ? या कृतीतून लक्षात येणारा गुणधर्म शब्दांत लिहा.

एकरूप जीवांचे गुणधर्म (Properties of congruent chords)

प्रमेय : एकाच वर्तुळातील एकरूप जीवा वर्तुळकेंद्रापासून समान अंतरावर असतात.

पक्ष : () केंद्र असलेल्या वर्तुळात

जीवा AB ≅ जीवा CD

 $OP \perp AB$, $OQ \perp CD$

साध्य : OP = OQ

रचना : रेख OA व रेख OD जोडा.

आकृती 6.10

सिद्धता : $AP = \frac{1}{2} AB$, $DQ = \frac{1}{2} CD ...$ वर्तुळकेंद्रातून जीवेवर टाकलेला लंब जीवेला दुभागतो.

AB = CD पक्ष

 \therefore AP = DQ

 \therefore रेख $AP\cong$ रेख $DQ\ldots\ldots$ (I) \ldots समान लांबीचे रेषाखंड

काटकोन Δ APO आणि काटकोन Δ DQO मध्ये

रेख $AP \cong \hat{\tau}$ ख $DQ \dots \dots$ (I) वरून

कर्ण $\mathrm{OA}\cong$ कर्ण $\mathrm{OD}\dots\dots$ एकाच वर्तुळाच्या त्रिज्या

 $\therefore \Delta$ APO $\cong \Delta$ DQO \dots कर्णभुजा प्रमेय

रेख $OP \cong$ रेख $OQ \dots \dots$ एकरूप त्रिकोणाच्या संगतभूजा

∴ OP = OQ एकरूप रेषाखंडांची लांबी समान

वर्तुळातील एकरूप जीवा वर्तुळकेंद्रापासून समान अंतरावर असतात.

प्रमेय : एकाच वर्तुळातील केंद्रापासून समान अंतरावर असणाऱ्या जीवा एकरूप असतात.

C

आकृती 6.11

पक्ष : () केंद्र असलेल्या वर्तुळात

रेख OP ⊥ जीवा AB

रेख OQ \perp जीवा CD

आणि OP = OQ

साध्य : जीवा $AB \cong \overline{\text{जीवा CD}}$

रचना : रेख OA व रेख OD काढा.

काटकोन Δ OPA व काटकोन Δ OQD मध्ये

कर्ण OA ≅ कर्ण OD

रेख OP ≅ रेख OQ पक्ष

 $\therefore \Delta \text{ OPA} \cong \Delta \text{ OQD} \dots$

 \therefore रेख $AP\cong$ रेख $QD\ldots\ldots$ एकरूप त्रिकोणाच्या संगत भुजा

 \therefore AP = QD (I)

परंतु AP = $\frac{1}{2}$ AB, OQ = $\frac{1}{2}$ CD

∴ AP = QD विधान (I) वरून

 \therefore AB = CD

∴ रेख AB ≅ रेख CD

वरील दोन्ही प्रमेये एकमेकांचे व्यत्यास आहेत हे जाणून घ्या.

एका वर्तुळातील एकरूप जीवा वर्तुळकेंद्रापासून समान अंतरावर असतात.

कृती: वरील दोन्ही प्रमेये एकाच वर्तुळाऐवजी एकरूप वर्तुळे घेऊन सिद्ध करता येतात.

- 1. एकरूप वर्तुळांतील एकरूप जीवा वर्तुळकेंद्रांपासून समान अंतरावर असतात.
- 2. एकरूप वर्तुळांत वर्तुळकेंद्रांपासून समान अंतरावर असणाऱ्या जीवा एकरूप असतात. या दोन्ही प्रमेयांसाठी पक्ष, साध्य, सिद्धता लिहा.

सोडवलेले उदाहरण

उदा. दिलेल्या आकृती 6.12 मध्ये बिंदू O हा वर्तुळाचा केंद्रबिंदू असून AB = CD आहे. जर OP = 4 सेमी तर OQ ची लांबी काढा.

उकल: 🔾 केंद्र असलेल्या वर्तुळात

जीवा $AB \cong$ जीवा CD दिले आहे.

आकृती 6.12

 $OP \perp AB$, $OQ \perp CD$

OP = 4 सेमी आहे. म्हणजे जीवा AB चे O या वर्तुळ केंद्रापासूनचे अंतर 4 सेमी आहे. आपल्याला माहीत आहे की एकाच वर्तुळातील एकरूप जीवा केंद्रापासून समान अंतरावर असतात.

∴ OQ = 4 सेमी

सरावसंच 6.2

- 1. एका वर्तुळाची त्रिज्या 10 सेमी आहे. त्या वर्तुळात प्रत्येकी 16 सेमी लांबीच्या दोन जीवा आहेत, तर त्या जीवा वर्तुळकेंद्रापासून किती अंतरावर असतील ?
- 2. एका वर्तुळात दोन समान लांबीच्या जीवा आहेत. केंद्रापासून त्या 5 सेमी अंतरावर असून वर्तुळाची त्रिज्या 13 सेमी आहे तर त्या जीवांची लांबी काढा.
- 3. केंद्र C असलेल्या वर्तुळाच्या रेख PM आणि रेख PN ह्या एकरूप जीवा आहेत, तर किरण PC हा ∠NPM चा दुभाजक आहे. हे सिद्ध करा.

मागील इयत्तेत आपण विविध त्रिकोण काढून त्यांचे कोनदुभाजक एकसंपाती असतात या गुणधर्माचा पडताळा घेतला आहे. त्रिकोणाच्या कोनांच्या दुभाजकांचा संपातिबंदू 'I' या अक्षराने दर्शवितात, हे आपल्याला माहीत आहे.

त्रिकोणाचे अंतर्वर्तुळ (Incircle of a triangle)

∆ ABC च्या तिन्ही कोनांचे दुभाजक I या बिंदूत मिळालेले आहेत.

कोनदुभाजकाच्या I या संपात बिंदूमधून त्रिकोणाच्या तिन्ही भुजांवर लंब काढले आहेत.

 $IP \perp AB$, $IQ \perp BC$, $IR \perp AC$

कोन दुभाजकांवरील प्रत्येक बिंदू कोनाच्या दोन्ही भुजांपासून समान अंतरावर असतो हे आपण अभ्यासले आहे.

∠B च्या दुभाजकावर I हा बिंदू आहे म्हणून IP = IQ.

∠C च्या दुभाजकावर I हा बिंदू आहे म्हणून IQ = IR

$$IP = IQ = IR$$

बिंदू I हा त्रिकोणाच्या तिन्ही भुजांपासून म्हणजेच AB, AC, BC पासून समद्र आहे.

∴ बिंदू I हा केंद्र मानून व IP ही त्रिज्या घेऊन काढलेले वर्तुळ बाजू AB, AC व BC यांना आतून स्पर्श करेल. अशा वर्तुळाला त्रिकोणाचे अंतर्वर्तुळ म्हणतात.

त्रिकोणाचे अंतर्वर्तुळ काढणे (To construct incircle of a triangle)

उदा. \triangle PQR असा काढा की, PQ = 6 सेमी, \angle Q = 35°, QR = 5.5 सेमी \triangle PQR चे अंतर्वर्तुळ काढा.

प्रथम कच्ची आकृती काढा व दिलेली माहिती त्यात दाखवा.

रचनेच्या पायऱ्या :

- (1) Δ PQR हा दिलेल्या मापाचा त्रिकोण काढा.
- (2) कोणत्याही दोन कोनांचे दुभाजक काढा.
- (3) कोनदुभाजकांच्या छेदन बिंदूला I नाव द्या.
- (4) बिंदू I मधून बाजू PQ वर IM हा लंब काढा.
- (5) IM ही त्रिज्या व I हे केंद्र घेऊन वर्तुळ काढा.

कच्चीआकृती 6.14

आकृती 6.15

हे लक्षात ठेवूया.

त्रिकोणाच्या तिन्ही बाजूंना स्पर्श करणाऱ्या वर्तुळाला त्रिकोणाचे अंतर्वर्तुळ म्हणतात आणि त्या वर्तुळाच्या केंद्राला अंतर्वर्तुळकेंद्र किंवा अंतर्मध्य किंवा अंतर्केंद्र असे म्हणतात.

मागील इयत्तेत आपण त्रिकोणाच्या बाजूंचे लंबदुभाजक एकसंपाती असतात या गुणधर्माचा पडताळा विविध त्रिकोण काढून घेतला आहे. त्रिकोणाच्या बाजूंच्या लंबदुभाजकांचा संपातबिंदू C या अक्षराने दाखवतात.

जाणून घेऊया.

△ PQR च्या बाजूंचे लंबदुभाजक C या बिंदूत मिळाले आहेत. म्हणून C हा लंबदुभाजकांचा संपातबिंदू आहे.

त्रिकोणाचे परिवर्तुळ (Circumcircle)

बिंदू C हा त्रिकोण PQR च्या तिन्ही बाजूंच्या लंबदुभाजकावरचा बिंदू आहे. PC, QC, RC जोडा. रेषाखंडाच्या लंबदुभाजकावरील प्रत्येक बिंदू हा त्या रेषाखंडाच्या अंत्यबिंदूंपासून समान अंतरावर असतो. हे आपण अभ्यासले आहे.

बिंदू C हा रेख PQ च्या लंबदुभाजकावर आहे. \therefore $PC = QC \dots I$ बिंदू C हा रेख QR च्या लंबदुभाजकावर आहे. \therefore $QC = RC \dots II$

 \therefore PC = QC = RC \dots विधान I व II वरून

.. C बिंदू केंद्र घेऊन व PC ही त्रिज्या घेऊन काढलेले वर्तुळ या त्रिकोणाच्या तीनही शिरोबिंदूंतून जाईल. अशा वर्तुळाला त्रिकोणाचे परिवर्तुळ म्हणतात.

त्रिकोणाच्या सर्व शिरोबिंदूंतून जाणाऱ्या वर्तुळाला त्रिकोणाचे परिवर्तुळ म्हणतात. आणि त्या वर्तुळाच्या केंद्राला परिकेंद्र असे म्हणतात.

त्रिकाणाचे परिवर्तुळ काढणे

उदा. \triangle DEF मध्ये DE = 4.2 सेमी, \angle D = 60°, \angle E = 70° तर \triangle DEF काढा व त्याचे परिवर्तुळ काढा.

प्रथम कच्ची आकृती काढा. त्यात दिलेली माहिती लिहा.

कच्चीआकृती कच्चीआकृती ह अाकृती 6.17

रचनेच्या पायऱ्या :

- (1) दिलेल्या मापाचा त्रिकोण DEF काढा.
- (2) कोणत्याही दोन भुजांचे लंबदुभाजक काढा.
- (3) ते लंबदुभाजक जेथे मिळतील त्या बिंदूला C नाव द्या.
- (4) रेख CF काढा.
- (5) CF ही त्रिज्या व C हे केंद्र घेऊन वर्तुळ काढा.

कृती

विविध मापांचे व विविध प्रकारचे त्रिकोण काढा. त्यांची अंतर्वर्तुळे व परिवर्तुळे काढा. आपले निरीक्षण खालील सारणीत नोंदवा व चर्चा करा.

त्रिकोणाचा प्रकार	समभुज त्रिकोण	समद्विभुज त्रिकोण	विषमभुज त्रिकोण	
अंतर्वर्तुळाच्या केंद्राचे स्थान	त्रिकोणाच्या आत	त्रिकोणाच्या आत	त्रिकोणाच्या आत	
परिवर्तुळाच्या केंद्राचे स्थान	त्रिकोणाच्या आत	त्रिकोणाच्या आत किंवा बाहेर किंवा त्रिकोणावर		

त्रिकोणाचा प्रकार	लघुकोन त्रिकोण	काटकोन त्रिकोण	विशालकोन त्रिकोण
अंतर्वर्तुळाच्या केंद्राचे स्थान			
परिवर्तुळाच्या केंद्राचे स्थान		कर्णाच्या मध्यावर	

- त्रिकोणाचे अंतर्वर्तुळ त्रिकोणाच्या सर्व बाजूंना आतून स्पर्श करते.
- त्रिकोणाचे अंतर्वर्तुळ काढण्यासाठी त्रिकोणाच्या कोणत्याही दोन कोनांचे दुभाजक काढावे लागतात.
- त्रिकोणाचे परिवर्तुळ त्रिकोणाच्या तिन्ही शिरोबिंदूतून जाते.
- त्रिकोणाचे परिवर्तुळ काढण्यासाठी त्याच्या कोणत्याही दोन बाजूंचे लंबदुभाजक काढावे लागतात.

- लघुकोन त्रिकोणाचे पिरकेंद्र त्रिकोणाच्या आत
 असते.
- काटकोन त्रिकाणाचे पिरकेंद्र कर्णाचा मध्यिबंद्
 असतो.
- विशालकोन त्रिकोणाचे परिकेंद्र त्रिकोणाच्या बाहेर असते.
- कोणत्याही त्रिकोणाचा अंतर्मध्य त्रिकोणाच्या अंतर्भागात असतो.

कृती: कोणताही एक समभुज त्रिकोण काढून त्याचे परिवर्तुळ व अंतर्वर्तुळ काढा. वरील कृती करत असताना तुम्हांला खालील बाबतींत काय आढळले?

- (1) त्रिकोणाचे परिवर्तुळ व अंतर्वर्तुळ काढताना त्याचे कोनदुभाजक आणि बाजूंचे लंबदुभाजक हे एकच आले का?
- (2) परिवर्तुळ व अंतर्वर्तुळ यांचे केंद्र एकच आहे का? तसे असल्यास त्याचे कारण काय असावे?
- (3) परिवर्तुळाची त्रिज्या व अंतर्वर्तुळाची त्रिज्या मोजून त्यांचे गुणोत्तर काढा.

- समभुज त्रिकोणाचे परिवर्तुळ व अंतर्वर्तुळ काढताना त्याचे कोनद्भाजक आणि बाजूंचे लंबद्भाजक हे एकच येतात.
- समभुज त्रिकोणाचे परिवर्तुळ व अंतर्वर्तुळ यांचे केंद्र एकच येते.
- समभ्ज त्रिकोणाच्या परिवर्त्ळाच्या त्रिज्येचे अंतर्वर्त्ळाच्या त्रिज्येशी गुणोत्तर 2:1 असते.

सरावसंच 6.3

- 1. \triangle ABC असा काढा की, \angle B =100°, BC = 6.4 सेमी \angle C = 50°. या त्रिकोणाचे अंतर्वर्तुळ काढा.
- 2. \triangle PQR असा काढा की, \angle P = 70°, \angle R = 50°, QR = 7.3 सेमी. या त्रिकोणाचे परिवर्तुळ काढा.
- 3. Δ XYZ असा काढा की, XY = 6.7 सेमी, YZ = 5.8 सेमी, XZ = 6.9 सेमी. या त्रिकोणाचे अंतर्वर्त्ळ काढा.
- 4. Δ LMN मध्ये, LM = 7.2 सेमी, \angle M = 105°, MN = 6.4 सेमी. तर त्रिकोण LMN काढा व त्याचे परिवर्त्ळ काढा.
- 5. \triangle DEF काढा. DE = EF = 6 सेमी \angle F = 45°. या त्रिकोणाचे परिवर्त्ळ काढा.

- खालील बहुपर्यायी प्रश्नांच्या दिलेल्या उत्तरांपैकी अचूक पर्याय निवडा. 1.
 - (i) एका वर्त्ळाची त्रिज्या 10 सेमी असून त्याच्या एका जीवेचे केंद्रापासूनचे अंतर 6 सेमी आहे, तर त्या जीवेची लांबी किती?
 - (A) 16 सेमी
- (B) 8 सेमी
- (C) 12 सेमी (D) 32 सेमी
- (ii) त्रिकोणाच्या तिन्ही कोनांचे द्भाजक एकसंपाती असतात. त्या संपात बिंद्ला काय म्हणतात?
 - (A) मध्यगासंपात
- (B) परिकेंद्र
- (C) अंतर्केंद्र
- (D)लंबसंपात
- (iii) त्रिकोणाच्या सर्व शिरोबिंद्ंतून जाणाऱ्या वर्तुळाला काय म्हणतात?
 - (A) परिवर्त्तळ
- (B) अंतर्वर्त्ळ
- (C) एकरूप वर्तुळ
- (D) एककेंद्री वर्त्ळ
- (iv) एका वर्तृळाची जीवा 24 सेमी लांबीची असून तिचे केंद्रापासून अंतर 5 सेमी असेल तर त्या वर्तृळाची त्रिज्या किती असेल ?
 - (A) 12 सेमी
- (B) 13 सेमी (C) 14 सेमी (D) 15 सेमी

- (v) 2.9 सेमी त्रिज्या असणाऱ्या वर्त्ळात जास्तीत जास्त किती लांबीची जीवा असू शकते?
 - (A) 3.5 सेमी
- (B) 7 सेमी
- (C) 10 सेमी (D) 5.8 सेमी
- (vi) एका वर्तुळाची त्रिज्या 4 सेमी आहे. O हा वर्तुळाचा केंद्रबिंद् आहे. l(OP) = 4.2 सेमी असल्यास बिंद 'P' चे स्थान कुठे असेल ?
- (A) केंद्रबिंद्वर (B) वर्तुळाच्या अंतर्भागात (C) वर्तुळाच्या बाह्यभागात (D) वर्तुळावर

- (vii) एका वर्तुळात समांतर असणाऱ्या जीवांची लांबी 6 सेमी व 8 सेमी आहे. त्या वर्तुळाची त्रिज्या 5 सेमी असल्यास त्या जीवांमधील अंतर किती?
 - (A) 2 सेमी
- (B) 1 सेमी
- (C) 8 सेमी
- (D) 7 सेमी
- 2. समभुज Δ DSP मध्ये DS = 7.5 सेमी तर Δ DSP चे परिवर्तुळ व अंतर्वर्तुळ काढा. परिवर्तुळ व अंतर्वर्तुळ यांच्या त्रिज्या मोजून लिहा. परिवर्तुळाच्या त्रिज्येचे अंतर्वर्तुळाच्या त्रिज्येशी गुणोत्तर काढा.
- 3. Δ NTS मध्ये NT = 5.7 सेमी, TS = 7.5 सेमी आणि \angle NTS = 110° आहे तर Δ NTS काढून त्याचे परिवर्तुळ व अंतर्वर्तुळ काढा.
- **4.** आकृती 6.19 मध्ये C हे वर्तुळाचे केंद्र आहे. रेख QT हा व्यास आहे.CT = 13, CP = 5 असेल तर जीवा RS काढा.

P C T

आकृती 6.19

- 5. आकृती 6.20 मध्ये P हे वर्तुळाचे केंद्र आहे. जीवा AB आणि जीवा CD व्यासावर बिंदू E मध्ये छेदतात. जर $\angle AEP \cong \angle DEP$
- तर सिद्ध करा, की AB = CD.
- 6. आकृती 6.21 मध्ये केंद्र असलेल्या वर्तुळाचा CD हा व्यास व AB ही जीवा आहे. व्यास CD हा जीवा AB ला E बिंदूपाशी लंब आहे, तर दाखवा की △ ABC हा समद्विभुज त्रिकोण आहे.

आकृती 6.21

ICT Tools or Links

Geogebra software च्या मदतीने विविध वर्तुळे काढून त्यांमध्ये जीवांचे गुणधर्म प्रात्यक्षिकांद्वारे अनुभवा. वेगवेगळ्या त्रिकोणांची परिवर्तुळे, अंतर्वर्तुळे काढा. Move option चा उपयोग करून मूळ त्रिकोणांचे आकार बदलून अंतर्केंद्र, परिकेंद्र यांचे स्थान कसे बदलते हे प्रात्यिक्षकाद्वारे अनुभवा.