Examples of expressions in FOL

Propositional and First Order Logic

Proposition a Logic

First Order Logic

Example

Every man is mortal $\forall x (man(x) \rightarrow mortal(x))$

Socrate is a man man(Socrate)
Socrate is mortal mortal Socrate

Socrate is mortal mortal(Socrate)

Components of First Order Logic

Propositional and First Order Logic

Proposition Logic

First Order Logic

Objects, Relations, Functions

Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains: **Objects**, **Relations**, **Functions**.

- Objects: people, houses, numbers, theories, colors, football games, wars, centuries · · ·
- Relations: red, round, multistoried ···, brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ···
- Functions: father of, best friend, second half of, one more than, beginning of · · ·

The Language: Logical Symbols

Propositional and First Order Logic

Propositiona Logic

First Order Logic

Logical Symbols

A first order language \mathcal{L} is built upon the following sets of symbols:

- propositional connectives: ¬, ∧, ∨ (plus the shortcuts → and ↔);
- propositional constants ⊤ and ⊥
 (represent True and False respectively);
- equality =
 (not always included);
- a denumerable set of individual variable symbols:

```
x_1, x_2, \cdots;
```

- universal quantification ∀;
- existentional quantification ∃;

The Language: Parameters

Propositional and First Order Logic

Proposition Logic

First Order Logic

Parameters

- A denumerable set of predicate symbols, each associated with a positive integer n, arity. A predicate with arity n is called n-ary;
- A denumerable set of function symbols, each associated with a positive integer n, arity. A function with arity n is called n-ary;
- A denumerable set of constant symbols.

Note

The parameters characterise different first order languages, while logical symbols are always the same.

Therefore parameters are often called the Signature of a First Order Language.

Example 1

Propositional and First Order Logic

Proposition a Logic

First Order Logic

The language of pure predicates

```
n-ary predicate symbols: P_1^n, P_2^n, \cdots; constant symbols: c_1, c_2, \cdots; no function symbols, no equality.
```

Example

The Book is on the table:

- OnTable(Book)
- On(Table, Book)

Example II

Propositional and First Order Logic

Proposition: Logic

First Order Logic

The language of set theory

Equality;

predicate symbols: only the binary predicate ∈;

constant symbols: $\{\ \};$

no function symbols.

Example

There exists no set such that all other sets are its element

$$\neg \exists x \forall y (y \in x)$$

Example III

Propositional and First Order Logic

Proposition Logic

First Order Logic

The language of elementary number theory

Equality;

predicate symbols: only the binary predicate <;</pre>

constant symbols: 0;

function symbols: a unary function symbol s, successor function, and the binary function symbols + and \times , addition and multiplication

Example

There exists no number greater than all others

$$\neg \exists x \forall y (y < x)$$

Definition of FOL Formulas

Propositional and First Order Logic

Proposition : Logic

First Order Logic

FOL formulas

Inductive definition of basic components

- 1 Terms
- 2 Atomic Formulas

FOL terms

The set Term of the terms of ${\cal L}$ is inductively defined as follows:

- Every constant is a term;
- 2 Every variable symbol is a term
- If $t_1 ldots t_n$ are terms and f is a n-ary function symbol, $f(t_1, ldots, t_n)$ is a term (functional term).
- 4 All terms are generated by applying the above rules

Example (Terms for FOL)

$$c$$
, x , $f(x,y)$, $f(g(c),y)$, $plus(plus(x,1),3)$, ...

Atoms

The set Atom of the atomic formulae is inductively defined as follows:

- \blacksquare \bot and \top are atoms;
- 2 If t_1 and t_2 are terms then $t_1 = t_2$ is an atom;
- If t_1, \dots, t_n are terms and P is a n-ary predicate symbol $P(t_1, \dots, t_n)$ is an atom;
- 4 All atomic formulas are defined by applying the above rules

Example (Atoms in FOL)

$$P(x)$$
, $Q(x,c)$, $R(x,f(x,y+c))$, ...

Scope of Quantifiers

Propositional and First Order Logic

Proposition Logic

First Order Logic

Definition (Scope of quantifiers)

The scope of a quantifier occurring in a formula is the formula to which the quantifier applies

Example (Scope of quantifiers)

 $\forall x(Q(x) \to R(x))$ the scope of \forall is $(Q(x) \to R(x))$ $\forall x(Q(x) \to \exists y \ R(y))$ the scope of \forall is $(Q(x) \to \exists y \ R(y))$ and the scope of \exists is R(y)

Free and bounded variables

Propositional and First Order Logic

Proposition Logic

First Order Logic

Definition (Free occurence of a variable)

An occurrence of a variable in a formula is free if the variable is not in the scope of any quantifier. An occurrence of a variable which is not free is bound

Definition (Free variable)

A variable in a formula is free if at least one occurrence of the variable is free. A variable is bound if at least one occurrence is bound.

Examples of free and bound variables

Propositional and First Order Logic

Proposition Logic

First Order Logic

Example (Free occurences and free variables)

 $\forall x (Q(x,y) \rightarrow R(x,y))$ the occurence of y is free while the occurence of x is bound, therefore y is free while x is bound $\forall x (Q(x,y) \rightarrow \exists y \ R(x,y))$ the occurrence of y in Q is free while the occurrence of y in Q is both formulas are bound. Therefore, the variable x is bound while the variable y is both free and bound

First Order Formulas

Propositional and First Order Logic

Proposition a Logic

First Order Logic

Well-Formed Formulas

The set of formulae of \mathcal{L} is inductively defined as follows:

- Every atom is a formula;
- If A is a formula $\neg A$ is a formula;
- If \circ is a binary operator, A and B are formulas, then $A \circ B$ is a formula;
- If A is a formula, x is a free variable in A then $\forall xA$ and $\exists xA$ are formulas
- All formulas are generated by a finite number of applications of the above rules.

Example (FOL Formulas)

$$P(x)$$
, $\exists x Q(x,c)$, $\forall x R(x,f(x,y+c))$, ...

Operator Precedence

Order Logic

Propositional and First

First Order Logic

Operator Precedence

Precedence among logical operators is defined as follows:

$$\forall,\exists,\neg,\wedge,\vee,\rightarrow,\leftrightarrow$$

convention: all operators are right associative (as in propositional

logic). Example

$$\forall x P(x) \to \exists y \exists z Q(y, z) \land \neg \exists x R(x)$$
$$(\forall x P(x)) \to \exists y (\exists z (Q(y, z) \land \neg (\exists x (R(x))).$$

quantifier

Note The inner occurrence of x is bound to the innermost existential

Ground and Closed Formulas

Propositional and First Order Logic

Proposition a Logic

First Order Logic

Definition (Ground Formula)

A formula F is ground if it does not contain variables

Definition (Closed Formula)

A formula F is closed if it does not contain free variables

Example (Ground and Closed Formulas)

```
Boring(GrandeFratello) (ground)

\forall x (Reality(x) \rightarrow Boring(x)) (closed, not ground)

\forall x (Reality(x) \rightarrow BetterProgram(y, x)) (not closed, not ground)
```

Example of FOL formalisation

Propositional and First Order Logic

Logic

First Order Logic

Example (Basic axioms of natural language)

- A_1 : for every number there is one and only one immediate successor
- A_2 : there is no number for which 0 is the immediate successor
- A_3 : for every number other than 0 there is one and only one immediate predecessor

Assume:

- \bullet s(x) is function for immediate successor
- p(x) is function for immediate predecessor
- \blacksquare E(x, y) is true iff x is equal to y

Example contd.

Propositional and First Order Logic

Proposition: Logic

First Order Logic

- $A_1 \triangleq \forall x \exists y (E(s(x), y) \land (\forall z)(E(s(x), z) \rightarrow E(z, y)))$
- $A_2 \triangleq \neg((\exists x) E(s(x), 0))$
- $A_3 \triangleq \forall x (\neg E(x,0) \rightarrow \exists y (E(p(x),y) \land (\forall z)(E(p(x),z) \rightarrow E(z,y)))$

Interpretations in FOL

Propositional and First Order Logic

Logic

First Order Logic

- In Prop. Logic an Interpretation for a formula *G* is an assignment of truth values to each atoms occurring in the formula
- In FOL we have to do more than that:
 - Specify a domain of interest (e.g., real numbers)
 - 2 An assignment to constants, function symbols and predicate symbols

Example (Interpretation)

Consider the set of formulas: $\{\forall x P(x), \exists x Q(x)\}$; An interpretation will need to specify a domain, e.g. $D=\{1,2\}$ and an assignment for all predicate symbol from D to the set $\{T,F\}$, for example $\{P(1)=T,P(2)=F\}$ and $\{Q(1)=F,Q(2)=T\}$.

Interpretation: Formal Definition

Propositional and First Order Logic

Proposition Logic

First Order Logic

Definition of Interpretation

An Interpretation for the language $\mathcal L$ is a pair $I=\langle D,A\rangle$ where:

- D is a non empty set called domain of I;
- *A* is a function that maps:
 - every constant symbol c into an element $c^A \in D$;
 - every n-ary function symbol f into a function $f^A: D^n \to D$:
 - every n-ary predicate symbol P into a n-ary relation $P^A: D^n \to \{\top, \bot\}$.

First Order Logic

Example (Interpretation)

$$\forall x \exists y P(x, y)$$

- D, the set of human beings $P^A(a,b) = true$ iff b is father of a All human beings have a father
- D, the set of human beings $P^{A'}(a,b) = true$ iff b is mother of a All human beings have a mother
- D the set of natural numbers $P^{A''}(a,b) = true$ iff a < b For every nat number there is a greater one