Análise de Complexidade de Algoritmos

Estrutura de Dados Profa. Carla Koike - CIC

Principais Classes de Problemas

- f(n) = O(1): complexidade constante
- f(n) = O(log n): complexidade logarítmica
- f(n) = O(n): complexidade linear
- $f(n) = O(n \log n)$: ene log de ene
- f(n) = O(n²): complexidade quadrática
- f(n) = O(n³): complexidade cúbica.
- f(n) = O(2ⁿ): complexidade exponencial
- f(n) = O(n!): complexidade fatorial

Se 1 instrução = $1\mu s ...$

n	n log n	n^2	n^3
10	33.2	100	1000
100	664	10000	1seg
1000	9966	1seg	16min
100000	1.7s	2.8 hours	31.7 years

Exemplo: Caixeiro Viajante

- Um caixeiro viajante precisa visitar n cidades de tal forma que sua viagem inicie e termine em uma mesma cidade, e cada cidade deve ser visitada uma única vez. Supondo que sempre há uma rota entre duas cidades quaisquer, encontre a menor rota que o caixeiro viajante pode utilizar na sua viagem.
- Algoritmo simples: verificar todas as rotas e escolher a menor delas. Existe (n-1)! rotas possíveis, e cada rota envolve n adições para determinar a distância total: n! total de adições!
- Computador realiza 10⁹ adições por segundo, resolver esse problema para 50 cidades levaria 10⁴⁵ séculos de cálculo!

Algoritmos

- Algoritmo exponencial
 - tempo de execução tem função de complexidade O(cⁿ);
 c > 1.
- Algoritmo polinomial:
 - tempo de execução tem função de complexidade
 O(p(n)), onde p(n) é um polinômio.
- Algoritmos exponenciais: simples variações de pesquisa exaustiva.
- Algoritmos polinomiais: obtidos mediante entendimento aprofundado da estrutura do problema.

Mas, tudo depende de n...

- Existem valores de n onde um algoritmo exponencial é mais rápido que um polinomial:
 - f(n) = 2ⁿ e g(n) = n⁵, para n < 20, o algoritmo exponencial é mais rápido.

Técnicas de Análise de Algoritmos

- Considerar memória infinita
- Não considerar o sistema operacional nem o compilador
- Analisar de preferência o algoritmo e não o programa,
 e levar em conta o tamanho das entradas
- Somente alguns comandos são considerados: atribuição, adição, multiplicação e comparação, e eles executam em um único passo de tempo

 A complexidade de um laço é igual ao número de comandos internos vezes o número de vezes que ele é executado

Exemplo:

- para i de 1 até n faça soma <- soma+1
- 1 atribuição externa ao laço
- comandos internos do laço: 1 atribuição, 1 soma, 1 incremento
- laço é executado n vezes
- Complexidade g(n) = 3n + 1, O(n)

- Laços Aninhados: a complexidade de laços aninhados é o produto dos tamanhos dos laços
- Exemplo:
 - para i de 1 até n faça
 - para j de 1 até m faça
 - soma <- soma + i + j</p>
 - Fora dos laços: 1 atribuição
 - Dentro somente do laço i: 1 atribuição
 - Dentro dos dois laços: 1 atribuição e 2 somas
 - -g(n) = 1 + n + 3(nm), O(nm)

- Para uma seqüência de laços do algoritmo:
 - para i de 1 até n faça soma <- soma+1
 - para i de 1 até n faça
 - para j de 1 até n faça
 - soma <- soma + i + j</p>
 - A primeira parte é O(n) e a segunda parte é O(n²)
 - Portanto esse trecho de algoritmo é O(n²)

- No caso de testes condicionais, a complexidade é a maior das duas partes do teste
- Exemplo:

```
 Se teste = 1 então
```

- para i de 1 até n faça soma <- soma +i
- senão
- para i de 1 até n faça
- para i de 1 até n faça
- soma <- soma + i + j
- "Se" é O(n) e "Então" é O(n²), portanto complexidade é O(n²)

- Funções não recursivas
 - O tempo de execução de cada procedimento deve ser computador separadamente, um a um, iniciando com os procedimentos que não chamam outros procedimentos.
 - A seguir, avalia-se os procedimentos que chamam os procedimentos que não chamam outros procedimentos, usando os tempos já avaliados
 - Continua sucessivamente até chegar ao programa principal.

- Funções Recursivas
 - Associamos a complexidade da função recursiva uma equação de recorrência.
 - Uma equação de recorrência é uma equação ou inequação que descreve uma função em termos do seu valor para entradas menores.
 - Resolvendo a equação de recorrência é possível avaliar a classe do algoritmo
 - Existem técnicas para resolver equações de recorrência...

Exercícios 1

 Encontre a complexidade computacional para o seguinte laço:

```
for (cnt1 =0,i=1;i<=n;i++)
for (j=1;j<=n;j++)
    cnt++;</pre>
```

Exercícios 2

 Encontre a complexidade computacional para o seguinte algoritmo de ordenação:

```
inteiro i,j,min,x
inicio
para i de 1 ate n-1 faca
    inicio
   min = 1
    para j de i+1 ate n faca
       se A[j] < A[min] entao min = j
    x = A[min]
    A[min] = A[i]
    A[i] = x
    fim
```