Bölüm
11

Regularizasyon ve Hiperparametre Ayarlaması

Regularizasyon

Regularizasyon

- Regularizasyon Nedir?
- L1 Regularizasyon (Lasso Regularization)
- L2 Regularizasyon (Ridge Regularization)
- ElasticNet Regularizasyon
- Regularizasyon Teknikleri Arasındaki Farklar

Regularizasyon Nedir?

 Makine öğrenmesinde regularizasyon, bir modelin aşırı uyuma (overfitting) eğilimini azaltmak veya önlemek için kullanılan bir tekniktir.

L1 Regularizasyon (Lasso Regularization)

- L1 regularizasyonu, modelin katsayılarını (parametreleri) sıfıra yaklaştırmak için L1 normunu kullanır.
- Bu, bazı katsayıların tamamen sıfıra düşmesine neden olabilir, böylece model daha basitleşir ve daha iyi genelleme yapabilir.

$$\hat{eta} = rg \min \left\{ \sum_{i=1}^n (y_i - eta_0 - \sum_{j=1}^p eta_j x_{ij})^2 + \lambda \sum_{j=1}^p |eta_j|
ight\}.$$

L2 Regularizasyon (Ridge Regularization)

- L2 regularizasyonu, katsayıları sıfıra yaklaştırmak için karelerin toplamını (L2 normu) kullanır. Bu yöntem, büyük katsayıları azaltır ancak tamamen sıfıra düşmezler.
- Model karmaşıklığını azaltır ve aşırı uyumu önler.

L2 Regularization Cost =
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} W_j^2$$

$$\hat{eta} = (X^TX + \lambda I)^{-1}X^TY$$

L1 vs L2

- Öznitelik Seçimi
- Robustlik
- Çözüm Hızı

L1 Regularization Cost =
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} |W_j|$$
L2 Regularization Cost =
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} |W_j|$$
Loss function Regularization Term

ElasticNet Regularizasyon

- ElasticNet, L1 ve L2 regularizasyonlarını birleştirir.
- Bu, hem L1 hem de L2 cezalarını birleştirerek her iki yaklaşımın avantajlarından faydalanır.

$$\hat{eta} = rg \min \left\{ \sum_{i=1}^n (y_i - eta_0 - \sum_{j=1}^p eta_j x_{ij})^2 + \lambda_1 \sum_{j=1}^p |eta_j| + \lambda_2 \sum_{j=1}^p eta_j^2
ight\}.$$

Regularizasyon Teknikleri Arasındaki Farklar

Regularizasyon Tekniği	Farklar	Avantajlar	Dezavantajlar
L1 Regularizasyon	Katsayıları sıfıra indirme eğilimindedir. Sezgisel olarak öznitelik seçimi sağlar.	Sparse modeller oluşturur, yani birçok öznitelikten oluşan bir model yerine sadece önemli öznitelikleri içeren bir model oluşturur.	Modelde bazı katsayılar tamamen sıfıra düşer, dolayısıyla özniteliklerin tamamen atılmasına neden olabilir.
L2 Regularizasyon	Katsayıları küçültme eğilimindedir.	Modelin aşırı uyumu azaltır ve genelleme yeteneğini artırır.	Model karmaşıklığını azaltırken sıfıra yaklaştırır, ancak tam olarak sıfıra indirmez. Bu nedenle öznitelik seçimi konusunda L1 kadar etkili değildir.
ElasticNet	Hem L1 hem de L2 regularizasyonlarını birleştirir.	L1 ve L2'nin avantajlarını birleştirir, bu nedenle daha esnek bir regularizasyon sağlar.	Hem L1 hem de L2'nin dezavantajlarını birleştirir, bu nedenle hesaplama maliyeti daha yüksek olabilir.

Hiperparametre Ayarlaması

Hiperparametre Ayarlaması

- Hiperparametre Nedir?
- Hiperparametre Ayarlamanın Önemi
- Hiperparametre Ayarlama Yöntemleri

Hiperparametre Nedir?

 Hiperparametreler, makine öğrenimi algoritmalarında kullanılan ve modelin davranışını ve performansını kontrol eden parametrelerdir.

https://k21academy.com/microsoft-azure/dp-100/hyperparameter-tuning-in-azure/

Hiperparametre Ayarlamanın Önemi

- Aşırı Uyumun Önlenmesi
- Performansın İyileştirilmesi
- Modelin Stabilitesi
- Zamandan ve Kaynaklardan Tasarruf

Hiperparametre Ayarlama Yöntemleri

- Manuel Arama
- Kafes Arama (Grid Search)
- Rastgele Arama (Random Search)

