Comprendre le Sharding dans MongoDB

Djebabla Ammar

17 juin 2025

Résumé

Ce document présente une explication approfondie du concept de **sharding** dans MongoDB, incluant son architecture, ses avantages et des cas d'utilisation pratiques. Un TP complet permet de mettre en œuvre ces concepts avec des exemples concrets de répartition de données.

Table des matières

1	Inti	roducti	ion	au S	shar	din	\mathbf{g}															2
2	Arc	hitecti	ure	déta	ıillée	е																2
	2.1	Comp	osan	ıts pı	rinci	pau:	х															2
	2.2	Types	s de S	Shar	ding								•								•	3
3	Exe	emple o	déta	illé	: Sh	ıard	ling	de	e 10	000	\mathbf{cl}	ier	ıtı	S								3
	3.1	Config	gurat	ion	initia	ale											 					3
	3.2	Décou	ipage	e des	don	inée	s															3
	3.3	Inserti	ion o	les d	lonné	ées																4
	3.4	Vérific																				
4	\mathbf{TP}	: Répa	artit	ion	de (don	née	s d	l'ét	udi	ian	${ m ts}$										5
	4.1	Objec	tifs 1	péda	gogi	ques	3.															5
		4.2.1		rtie 1																		
		4.2.2		rtie 2			_															
		4.2.3		rtie 3																		
٨	Anı	2020	Con	nmo	ndo	.G. 111	tilor	7														G

1 Introduction au Sharding

Le **sharding** est une technique fondamentale dans les bases de données distribuées qui permet de partitionner horizontalement les données sur plusieurs serveurs (appelés **shards**). Cette approche est particulièrement utile pour gérer de très grandes collections de données qui dépassent les capacités d'un seul serveur.

sharding-architecture.png

FIGURE 1 – Architecture typique d'un cluster MongoDB shardé

2 Architecture détaillée

2.1 Composants principaux

- mongos : Le routeur qui dirige les opérations de lecture/écriture vers les shards appropriés
- Config Servers : Stockent les métadonnées du cluster (namespace, plages de clés, etc.)
- Shards : Serveurs contenant les données partitionnées

2.2 Types de Sharding

- 1. Sharding par plage (Range-based) : Partitionnement basé sur des plages de valeurs
- 2. Sharding par hachage (Hash-based) : Utilisation d'une fonction de hachage pour distribuer les données
- 3. Sharding par zone (Zone-based) : Attribution de plages spécifiques à des shards particuliers

3 Exemple détaillé : Sharding de 1000 clients

3.1 Configuration initiale

```
// Activer le sharding pour la base de données

use admin
sh.enableSharding("testdb")

// Créer la collection shardée
use testdb
db.createCollection("clients")

// Choisir la clé de sharding
sh.shardCollection("testdb.clients", { client_id: 1 })
```

Listing 1 – Initialisation du sharding

Information

Remarque : Le choix de la clé de sharding est crucial. Une bonne clé doit avoir :

- Une cardinalité élevée
- Une distribution uniforme
- Des requêtes qui l'utilisent fréquemment

3.2 Découpage des données

```
11 { client_id: 800 }, "shard3")
```

Listing 2 – Découpage en chunks

3.3 Insertion des données

```
// Insertion de 1000 documents
for (let i = 1; i <= 1000; i++) {
    db.clients.insertOne({
        client_id: i,
        nom: "Client_" + i,
        email: "client" + i + "@example.com",
        date_creation: new Date(),
        solde: Math.random() * 1000
    })
}</pre>
```

Listing 3 – Insertion des documents

3.4 Vérification

Listing 4 – Vérification de la distribution

Table 1 – Répartition des données

Shard	Nombre de chunks	Plage min	Plage max
shard1	1	1	332
shard2	1	333	665
shard3	1	666	1000

4 TP : Répartition de données d'étudiants

4.1 Objectifs pédagogiques

- Comprendre la répartition automatique des données
- Maîtriser les commandes de gestion du sharding
- Analyser la distribution des données

4.2 Exercice complet

4.2.1 Partie 1 : Configuration initiale

```
// 1. Créer la base de données et la collection
use etudiantsDB
sh.enableSharding("etudiantsDB")
db.createCollection("notes")

// 2. Activer le sharding sur la collection
sh.shardCollection("etudiantsDB.notes",
{ etudiant_id: "hashed" })

// 3. Vérifier la configuration
sh.status()
```

4.2.2 Partie 2 : Insertion des données

```
// 4. Insérer 9000 documents
for (let i = 1; i <= 9000; i++) {
    db.notes.insertOne({
        etudiant_id: i,
        nom: "Etudiant_" + i,
        note_math: Math.floor(Math.random() * 20),
        note_physique: Math.floor(Math.random() * 20),
        promotion: 2020 + (i % 4)
    })
}</pre>
```

4.2.3 Partie 3 : Analyse

```
{ $group: {
    __id: "$shard",
    count: { $sum: 1 },
    min: { $min: "$min.etudiant_id" },
    max: { $max: "$max.etudiant_id" }
}

// 6. Vérifier l'équilibrage
db.adminCommand({ getBalancerState: 1 })
```

Conclusion

Le sharding est une technique puissante pour gérer de grandes quantités de données dans MongoDB. Ce document a présenté :

- Les concepts fondamentaux du sharding
- L'architecture détaillée d'un cluster shardé
- Des exemples pratiques de configuration
- Un TP complet pour mettre en œuvre ces concepts

Pour aller plus loin, consultez la documentation officielle MongoDB sur le sharding : https://docs.mongodb.com/manual/sharding/

A Annexe: Commandes utiles

Listing 5 – Commandes de gestion du sharding