$$A-1 \rightarrow T(n) = 3T(\frac{n}{2}) + n^{2}$$

$$a = 3$$

$$b = 2$$

$$n \log b^{2} = n \log 2^{2}$$

$$n \log_{3}^{3} \leq n^{2} \quad (case 3)$$

$$T(n) = O(n^{2})$$

$$A-2 \Rightarrow T(n) = 4T(\frac{n}{2}) + n^{2}$$

$$a-4, b=2 \quad n \log_{2} 4 = n^{2} = f(n)$$

$$\therefore O(n^{2} \log n)$$

A-3->
$$T(n) = T(\frac{n}{2}) + 2^n$$
.
 $a = 1, b = 2, n^{\log_2 1} = n^\circ = 1$
 $1 < 2^n$ (cose 3)
 $\Rightarrow T(n) = O(2^n)$

A++ This com't be solved by using M.T because a mode b, is dependent on n.

$$A-5 > T(n) = 16T(\frac{\pi}{4}) + n$$

$$a = 16, b = 4,$$

$$n \log b^{\alpha} = n \log_{4} 16 = n^{2}$$

$$n^{2} > f(m) - n \quad (cose 2)$$

$$T(n) = O(n^{2})$$

A-6
$$\rightarrow$$
 T(n) = $2T\left(\frac{n}{2}\right) + nlogn$

$$a = 2, b = 2$$

$$nlog ba = nlog b^2 = n' = n$$

$$nlog k_n = f(n) = nlog n \quad (case - 2)$$

$$f(n) = O\left(nlog^2 n\right)$$

$$A-7 \Rightarrow T(n) = 2T(\frac{n}{2}) + \frac{n}{\log n}$$

M.T com't be applied occause $f(n)$. is not in a polynomial function.

$$A = 9 + T(n) = 2T(\frac{m}{4}) + m^{0.5-1}$$

$$a = 2, b = 4$$

$$m^{\log_{2} 2} = n^{0.5-1}$$

$$n^{0.5-1} < n^{0.5-1} = f(n) \quad (case3)$$

$$T(n) = 0 \quad (n^{0.5-1})$$

$$A-9$$
 > $T(n) = 0.5 T(\frac{n}{2}) + \frac{1}{n}$
M.T cout be applied because $a < 1$

A-10 >
$$T(n) = 16T(\frac{m}{4}) + m!$$
 $a = 16$, $b = 4$, $m!$ can be written as m^n polynomial.

Alondogo = $m \log_4 a = m^2$
 $m^2 < m!$ (case 3)

T(n) = $O(m^n) = O(m!)$

$$\frac{A-11}{A-11} \rightarrow T(n) = 4T(\frac{m}{2}) + \log n$$

$$a=4, b=2$$

$$n\log b^{a} = n\log_{2}4 = n^{2}$$

$$n^{2} > \log n = f(n) \quad (case 1)$$

$$T(n) = O(n^{2})$$

A-12 >
$$T(n) = Sqrt(n) T(\frac{m}{2}) + log n$$
.

M.T. can't be applied because Jn is.

A-13 >
$$T(n) = 8T(\frac{\eta}{2}) + n$$

$$a = 3, b = 2$$

$$n \log b^{\alpha} = n \log_{2} 3 = n \cdot 58$$

$$n' > n \quad (1st Case)$$

A-14 ->
$$T(n) = 8T(\frac{m}{3}) + \sqrt{n}$$
 $a = 3, b = 3$
 $n \log_{8} a = n \log_{3} 3 = n^{1}$
 $n > \sqrt{n}$ (case1)

 $T(n) = O(n)$

A-15
$$\Rightarrow$$
 T(n) = 4 T($\frac{\pi}{2}$) + cn

$$a = 4, b = 2$$

$$n \log_{p} a = n \log_{2} 4 = n^{2}$$

$$n^{2} > cn$$

$$\Rightarrow T(n) = O(n^{2})$$

$$A-1(-)$$
 $T(n) = 3T(\frac{n}{4}) + mlogn$
 $a = 3, b = 4$
 $mlogo = nlog = 6 no.79$
 $n^{0.79} < nlog = 6 no.79$
 $T(n) = O(nlog = 3)$

A(8)
$$T(n) = 6T\left(\frac{m}{3}\right) + n^2 \log n$$

$$a = 6, b = 3$$

$$n^{\log 36} = n^2$$

$$n^2 < n^2 \log n \quad (case 3)$$

$$T(n) = O\left(n^2 \log n\right)$$

$$\frac{A-19}{19}, T(n) = 4T(\frac{m}{2}) + n/\log n$$

$$a = 4, b = 2$$

$$n^{\log_2 a} = n^{\log_2 4} = n^2$$

$$n^2 > n/\log n \quad \text{(case1)}$$

$$T(n) = O(n^2)$$

$$A20$$
 > $T(n) = 64T(\frac{n}{8}) - n^2 logn$
MT. is not applicable since $f(n)$ is negative.

$$A-24 \Rightarrow TT(\frac{n}{3}) + m^2$$
 $a = 7, b = 3$
 $n^{\log_3 a} = n^{\log_3 7} = n^{1.7}$
 $n^{1.7} < n^2 \quad (case 3)$
 $T(n) = O(n^2)$

 $A-22 \rightarrow T(m) = T(\frac{m}{2}) + m(2-cosn)$

M.T. isn't applicable since the condition is valdeted in Case 3.