Resolutions for truncated Ore extensions

Dustin McPhate

Department of Mathematics Texas A&M University

Graduate Algebra Symposium 2019
Texas A&M University

Twisted Tensor Products

Let k be a field and A, B unital associative k algebras with multiplication maps m_A and m_B .

Definition (Twisting Map)

A **twisting map**, τ is a bijective k-linear map

$$\tau: B \otimes A \to A \otimes B$$

for which $\tau(1_B \otimes a) = a \otimes 1_B$, $\tau(b \otimes 1_A) = 1_A \otimes b$, and

$$\tau \circ (m_B \otimes m_A) = (m_A \otimes m_B) \circ (1 \otimes \tau \otimes 1) \circ (\tau \otimes \tau) \circ (1 \otimes \tau \otimes 1)$$

Twisted Tensor Products

Definition (Twisted Tensor Product)

The **twisted tensor product algebra** $A \otimes_{\tau} B$ is the vector space $A \otimes_{\mathbb{k}} B$ with multiplication given by the map $(m_A \otimes m_B) \circ (1 \otimes \tau \otimes 1)$ on $A \otimes B \otimes A \otimes B$.

Example (Quantum Plane)

$$\mathbb{k}\langle x,y\rangle/(xy-qyx)$$

where $q \in \mathbb{k}$ and $q \neq 0$. Letting $A = \mathbb{k}\langle x \rangle$ and $B = \mathbb{k}\langle y \rangle$ with

$$\tau(y \otimes x) = q^{-1}x \otimes y$$

then $\mathbb{k}\langle x,y\rangle/(xy-qyx)\cong A\otimes_{\tau}B$

Definition (Compatability)

A left A-module M is said to be **compatible with** τ if \exists a bijective \Bbbk -linear map

$$\tau_{B,M}: B\otimes M\to M\otimes B$$

which commutes with the module structure of M and multiplication in B

Resolutions

Let M be a left A-module compatible with a twisting map τ via some $\tau_{B,M}$. Let $P_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(M)$ be a projective resolution of M as an A-module.

Definition

The resolution $P_{\bullet}(M)$ is said to be **compatible with** τ if each $P_i(M)$ is compatible with τ via a bijective \mathbb{k} -linear map

$$\tau_{B,i}: B \otimes P_i(M) \to P_i(M) \otimes B$$

with $\tau_{B,\bullet}$ lifting $\tau_{B,M}$.

Ore Extensions

Let A be a unital associative \Bbbk -algebra, $\sigma \in \operatorname{Aut}_{\Bbbk}(A)$, and δ be a σ -derivation. That is $\delta(aa') = \sigma(a)\delta(a') + \delta(a)a'$.

Definition (Ore extension)

The **Ore extension** $A[x;\sigma,\delta]$ is the associative algebra with underlying vector space A[x] and multiplication determined by that of A an $\Bbbk[x]$ with the additional Ore relation

$$xa = \sigma(a)x + \delta(a)$$

Example (Quantum Plane)

$$\mathbb{k}\langle x,y\rangle/(xy-qyx)$$

where $q \in \mathbb{R}$ and $q \neq 0$. Letting $A = \mathbb{R}[x]$, $\sigma(x) = q^{-1}x$ and $\delta = 0$ then

$$\mathbb{k}\langle x, y \rangle / (xy - qyx) \cong A[y; \sigma, \delta]$$

More Examples

Example (first Weyl Algebra)

The first Weyl Algebra ${\mathcal W}$ is defined as

$$\mathcal{W} \coloneqq \mathbb{k}\langle x, y \rangle / (xy - yx - 1)$$

Letting $A=\Bbbk[x]$, $\sigma=id_A$ and δ be formal differentiation of polynomials. Then $\mathcal{W}\cong A[y;\sigma,\delta]$

Example (Universal Enveloping Algebras)

Let $\mathfrak g$ be a Lie algebra . The universal enveloping algebra of $\mathfrak g$ is defined as the algebra with underlying vector space $\mathfrak g$ and multiplication defined by the Ore relation on generators

$$uv = vu + [u, v]$$

Truncated Ore Extensions

Let A be an associative k-algebra, $\sigma \in \operatorname{Aut}_k(A)$, and δ be a σ -derivation.

Definition

The truncated Ore extension $A[\overline{x};\sigma,\delta]$, is the associative algebra with underlying vector space $A[x]/(x^n)$ and multiplication determined by that of A and $k[x]/(x^n)$ with the additional Ore relation

$$\overline{x}a = \sigma(a)\overline{x} + \delta(a)$$

Example (Nichols Algebra)

$$\mathfrak{B}(V_0) = \mathbb{k}[x, y]/(x^2, y^2, xy + yx)$$

Letting $A = \mathbb{k}[x]/(x^2)$, $\sigma(x) = -x$, and $\delta = 0$ then for n = 2

$$\mathfrak{B}(V_0) \cong A[\overline{y}; \sigma, \delta].$$

Multiplication in Truncated Ore Extensions

We introduce some notation. Let $s_{(i_1,i_2,...,i_k)}(x_1,x_2,...,x_k)$ be the polynomial in k noncommuting variables which is the sum of all possible products of i_1 copies of x_1 , i_2 copies of x_2 , ..., and i_k copies of x_k

Example

$$\mathsf{s}_{(1,2)}(x,y) = xy^2 + yxy + y^2x$$

Proposition

Let τ be a twisting map for the Ore extension $A[x;\sigma,\delta]$. If σ and δ satisfy the following conditions

$$s_{(i,j)}(\sigma,\delta) = 0$$

for i+j=n, $0 \le i \le n-1$, $1 \le j \le n$ then τ induces a well defined multiplication on the quotient $A[\overline{x}; \sigma, \delta]$.

Compatibility with au

Let A be any associative algebra and $B=\Bbbk[x]/(x^n)$. Suppose τ is a twisting map for $A[x;\sigma,\delta]$ and induces a well defined multiplication on $A\otimes_{\tau}B\cong A[\overline{x};\sigma,\delta]$.

Let M be a left $A\otimes_{\tau}B\text{-module}$ where upon restriction to an A-module \exists an A-module isomorphism

$$\phi: M \to M^{\sigma}$$

where M^{σ} is the vector space M with A-module action given by $a \cdot_{\sigma} m = \sigma(a) \cdot m$.

Definition

Let $\tau_{B,M}: B\otimes M \to M\otimes B$ be the k-linear map induced by

$$\tau_{B,M}(\overline{x}\otimes m) = \phi(m)\otimes \overline{x} + \overline{x}\cdot m\otimes 1$$

Compatibility with au

Let τ , $A[\overline{x}; \sigma, \delta]$, M, and $\tau_{B,M}$ be defined as in the previous slide.

Lemma

If the maps ϕ and $\overline{x}\cdot$ satisfy the following relations

$$s_{(i,j)}(\phi, \overline{x}\cdot) = 0$$

for i+j=n with $1\leq i\leq n-1$, $1\leq j\leq n-1$ then M is compatible with τ via $\tau_{B.M}$

Constructing $\tau_{B,\bullet}$

Let M be a left $A[\overline{x};\sigma,\delta]$ -module compatible with τ via $\tau_{B,M}$ and $P_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(M)$ be a projective resolution of M as an A-module. We then define $P_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(M)^{\sigma}$ to be the vector spaces $P_i(M)$ with module action given by $a \cdot_{\sigma} z = \sigma(a) \cdot z$ then set $d_i^{\sigma} = d_i$ for $i \neq 0$ and $d_0^{\sigma} = \phi^{-1} d_0$.

Remark

By the comparison theorem \exists an A-module chain map

$$\sigma_{\bullet}: P_{\bullet}(M) \to P_{\bullet}(M)^{\sigma}$$

lifting the identity on M.

Constructing $\tau_{B,\bullet}$

Lemma

For any projective A-module, P, \exists an $A[\overline{x}; \sigma, \delta]$ -module structure on P that extends the action of A

Lemma

There exists a k-linear chain map

$$\delta_{\bullet}: P_{\bullet}(M) \to P_{\bullet}(M)$$

which lifts the action of \overline{x} on M such that for every $i \geq 0$, $a \in A$, $z \in P_i(M)$

$$\delta_i(a \cdot z) = \sigma(a)\delta_i(z) + \delta(a)z$$

Constructing $\tau_{B,\bullet}$

Definition

Let $\tau_{B, \bullet}: B \otimes P_{\bullet}(M) \to P_{\bullet}(M) \otimes B$ be the k-linear chain map induced by

$$\tau_{B,i}(\overline{x}\otimes z) = \sigma_i(z)\otimes \overline{x} + \delta_i(z)\otimes 1$$

for all $z \in P_i(M)$.

Lemma

Let σ , and δ , be the chain maps previously constructed. If σ , and δ , satisfy the relations

$$s_{(i,j)}(\sigma_{\bullet},\delta_{\bullet})=0$$

for i+j=n with $0 \le i \le n-l$ and $1 \le j \le n$ then the resolution $P_{\bullet}(M)$ is compatible with the twisting map τ via $\tau_{B_{\bullet}}$.

Constructing Resolutions

Let A be any associative algebra, $B=\Bbbk[x]/(x^n)$, and $P_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(B)$ be the standard projective resolution of \Bbbk as a module over B with augmentaion map $\epsilon_B(\overline{x})=0$, i.e.

$$\cdots \xrightarrow{\overline{x}\cdot} B \xrightarrow{\overline{x}^{n-1}\cdot} B \xrightarrow{\overline{x}\cdot} B \xrightarrow{\epsilon_B} \mathbb{k} \longrightarrow 0$$

Let $A[\overline{x};\sigma,\delta]$ be a truncated Ore extension and M a left $A[\overline{x};\sigma,\delta]$ -module for which $M\cong M^\sigma$ as A-modules and which is compatible with τ via $\tau_{B,M}$. Let $P_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(M)$ be a projective resolution of M as an A-module which is compatible with τ via $\tau_{B,\bullet}$.

Theorem

If $\sigma_i: P_i(M) \to P_i(M)$ is bijective for every $i \geq 0$ then the twisted product complex of $P_{\bullet}(M)$ and $P_{\bullet}(B)$ gives a projective resolution of M as a left $A[\overline{x}; \sigma, \delta]$ -module.

Let k be a field of prime characteristic p, $A=k[x_1]/(x_1^p)$, and $B=k[x_2]/(x_2^p)$. We consider the class of truncated Ore extensions of the form $A[\overline{x_2};\sigma,\delta]\cong A\otimes_{\tau}B$ where

$$\tau(\overline{x_2} \otimes \overline{x_1}) = \sigma(\overline{x_1}) \otimes \overline{x_2} + \delta(\overline{x_1}) \otimes 1$$

with

$$\sigma = id_A$$

and δ is the σ -derivation defined by

$$\delta(1) = 0$$
 and $\delta(\overline{x_1}) = \alpha \overline{x_1}^t$

for $\alpha \in \mathbb{k}$ and $2 \le t \le p-1$

Remark

Since $\sigma = id_A$ then

$$s_{(i,j)}(\sigma,\delta) = \binom{p}{j} \delta^j$$

And since p is prime, $\operatorname{char}(\mathbb{k}) = p$, and $\delta^p(\overline{x_1}) = 0$ we have that

$$s_{(i,j)}(\sigma,\delta) = 0$$

Remark

Also we note that for any $m \in \mathbb{R}$ we have that $\sigma(a) \cdot m = a \cdot m$ and thus \mathbb{k} is trivially isomorphic to \mathbb{k}^{σ}

Example

Definition

Letting $\phi = id_{\mathbb{k}}$ and noting that $\overline{x_1}$ acts on \mathbb{k} as 0 we have

$$\tau_{B,k}(b\otimes m)=m\otimes b$$

for all $b \in B$ and $m \in \mathbb{R}$

Let $P_{\bullet}(A)$ be the standard projective resolution of \mathbb{R} as an A-module.

Proposition

 $P_{\bullet}(A)$ is compatible with τ via the maps

$$\tau_{B,i}(\overline{x_2}^r \otimes \overline{x_1}^s) = \begin{cases} \tau(\overline{x_2}^r \otimes \overline{x_1}^s) = \sum_{j=0}^r \binom{r}{j} (s)^{[j]} (\alpha \overline{x_1}^t)^j \overline{x_1}^{s-j} \otimes \overline{x_2}^{r-j} \\ \sum_{j=0}^r \binom{r}{j} (s+1)^{[j]} (\alpha \overline{x_1}^t)^j \overline{x_1}^{s-j} \otimes \overline{x_2}^{r-j} \end{cases}$$

where
$$(s)^{[j]} = \prod_{i=0}^{j-1} (s+i(t-1)), (s)^{[0]} = 1$$

Example

Let $P_{\bullet}(B)$ be the standard projective resolution of k as a B-module.

Proposition

 $P_i(A)\otimes P_i(B)$ is a projective $A[\overline{x_2};\sigma,\delta]$ -module and thus the following twisted product complex is a projective resolution of \Bbbk as a $A[\overline{x_2};\sigma,\delta]$ -module.

$$\cdots \xrightarrow{d_3} (A \otimes B)^{\oplus 3} \xrightarrow{d_2} (A \otimes B)^{\oplus 2} \xrightarrow{d_1} A \otimes B \longrightarrow \mathbb{k} \longrightarrow 0$$

with
$$d_k = \sum_{i+j=k} d_{i,j}$$
 for $d_{i,j} = (d_i \otimes 1) + ((-1)^i \otimes d_j)$

Selected sources

- P. A. Bergh and S. Oppermann, "Cohomology of twisted tensor products," *J. Algebra* 320 (2008), 3327-3338.
- A. Čap, H. Schichl, and J. Vanžura, "On twisted tensor products of algebras," *Comm. Algebra* 23 (1995), no. 12, 4701 4735.
- V. C. Nguyen, X. Wang and S. Witherspoon, "Finite generation of some cohomology rings via twisted tensor product and Anick resolutions", J. Pure Appl. Algebra 223 (2019), no. 1, 316-339.
 - A. V. Shepler and S. Witherspoon, "Resolutions for twisted tensor products", *Pacific J. Math.* 298 (2019), no. 2, 445 -469.