IUT de Montpellier M3103 Algorithmique avancée

TD3: Arbres Binaires de Recherche (ABR)

Les boucles sont interdites.

1 Définition

Un arbre A est un arbre binaire de recherche (ABR) ssi

- A est vide
- ou A.filsG est un ABR, et
 - A.filsD est un ABR, et
 - toute valeur x dans A.filsG vérifie $x \leq A.val$, et
 - toute valeur x dans A.filsD vérifie x > A.val

Les ABR sont utilisés comme structure de donnée permettant d'insérer, de supprimer, et de rechercher rapidement des valeurs. En effet, si l'on à n éléments, en utilisant une liste, la recherche peut prendre (dans le pire des cas) de l'ordre de n opérations. D'un autre côté, comme vous le verrez dans une des questions ci-dessous, la recherche dans un ABR coûtera de l'ordre de h opérations (où h est la hauteur de l'arbre), puisque l'on pourra chercher en commençant à la racine, et à chaque étape descendre "toujours du bon côté". L'idée est que, si l'arbre est bien équilibré, on aura $h \approx log(n)$, et on gagnera ainsi beaucoup de temps par rapport aux listes.

Exercice 1. Echauffement

Question 1.1.

Est ce que l'arbre ci-dessous est un ABR ?

Question 1.2.

Est ce que l'arbre ci-dessous est un ABR ?

Question 1.3.

Est ce que l'arbre ci-dessous est un ABR ?

Exercice 2. Recherche

Question 2.1.

Ecrire une fonction boolean recherche (Arbre a, int x) suivante. Prérequis : l'arbre a est un ABR. Action : retourne vrai ssi x est dans l'arbre.

Exercice 3. Affichage trié

Question 3.1.

Ecrire une fonction String toStringTrie (Arbre a) suivante. Prérequis : l'arbre a est un ABR. Retourne dans une chaîne toutes les valeurs de l'arbre triées par ordre croissant.

Exercice 4. Insertion

Question 4.1.

Ecrire une fonction Arbre insert (Arbre a, int x) suivante. Prérequis : l'arbre a est un ABR. Action : retourne un ABR obtenu en inserant x dans a.

Exercice 5. Suppression

Question 5.1.

Ecrire une fonction Arbre suppr (Arbre a, int x) suivante. Prérequis : l'arbre a est un ABR. Action : retourne un ABR obtenu en supprimant x de a (si x n'est pas présent on doit retourner a). Indication: le problème délicat sur lequel vous devez tomber est celui où x est contenu dans la racine de a, et où les deux sous arbres de a sont non vides. Dans ce cas, pensez à la stratégie suivante (et faites un dessin pour vous convaincre que l'arbre obtenu est bien un ABR):

- \bullet cherchez m, le maximum du sous arbre gauche
- ullet enlever m du sous arbre gauche
- $\bullet\,$ dans la racine, remplacez x par m