AV01A CR2032

1. 概要

CR2032 コイン電池ホルダーを実装し、3V の電池電圧を昇圧電源回路により 3.3V に変換し、3.3V を各リーフに供給するリーフである。3.3V をオン/オフするためのスイッチを実装している。また、電池電圧をモニターするための AD コンバーターを実装している。

2. リーフ仕様

2-1. ブロック図

2-2. 電源仕様

Symbol	Parameter	Condition	Min.	Тур.	Max.
Vbatt	Battery Voltage	ı	0.7V	ı	3.8V
Vout	Output Voltage	-	3.23V	3.3V	3.37V
Ilim	Current limit	-	0.8A	1A	1.25A

2-3. 電池電圧モニター機能

電池リーフには 8bitAD コンバータ(ADC081C027CIMK)を実装し、電池電圧を I2C でモニター可能にするような機能が搭載されている。 AD コンバーターのリファレンス電圧は 3.3V で 8bit 分解能であり、 AD コンバーターの入力で電圧を 1/2 にしている。 よって 3.3V/2^8*2=26mV が AD コンバーター読み値の 1LSB となる。

電池の種類による典型的な放電特性は以下の通り。ただし、負荷がある場合は、ない場合と比べて、電池電圧は低下する点は注意を要する。

参照先

- ① http://biz.maxell.com/ja/primary_batteries/images/i_lineup00108.gif
- ② https://industrial.panasonic.com/cdbs/www-data/pdf2/AAC4000/AAC4000CJ31.pdf
- ③ https://industrial.panasonic.com/cdbs/www-data/pdf2/ACA4000/ACA4000CJ284.pdf

(c) 2019 Trillion-Node Engine Project

2-4. テスターによる物理的な電池電圧測定手法

電池電圧を測定するパッドが、外観図のように各々の電池リーフ上に用意されているので、テスターで直接測定可能になっている。

2-5. 主要部品

部品番号	部品名	型番	ベンダー名	備考
IC281	昇圧電源 IC	TPS61099YFFR	Texas Instruments	-
IC283	AD コンバーター	ADC081C027CIMK	Texas Instruments	電池電圧モニター用 I2C アドレス: 0x50(チップ抵抗の付け替えによって 0x51、0x52 に変更可
				能)

※I2C アドレスは 7bit で表記

2-6. 外観

2-7. ピンアウト

Name	Function
SCL	I2C 通信クロック
SDA	I2C 通信データ
3V3	3.3V 出力
GND	GND

3. 昇圧電源 IC(TPS61099YFFR)仕様

3-1. 概要

項目	内容
制御方式	PWM/PFM 自動切替制御
最大出力電流	300mA @3.3V to 5V
Protection circuit	過電流制限/サーマルシャットダウン

3-2. 電気的特性

3-2-1. 最大定格

Parameter	Value
Operating Temperature	-40℃ to +150℃
Maximum Operation Voltage	Vin 6.0V

3-2-2. 定格

Symbol	Parameter	Condition	Min.	Тур.	Max.
Vin	Operating Voltage	_	0.7V	ı	5.5V
Vout	Output Voltage	Iout =30mA	1.8V	ı	5.5V
Iq	Quiescent Current	IC enabled, no Load, no Switching, Tj=-40°C to 85°C	1	0.6uA	1.5uA
Isd	Shutdown current	IC disabled, Vin=3.7V, Vout=0V	-	0.5uA	1.6uA
Ttso	Thermal Shutdown	_	-	150℃	-
Ilim	Current Limit	_	0.8A	1A	1.25A

3-3. 効率

参照先: http://www.ti.com/jp/lit/gpn/tps61099

3-4. データシートリンク先

http://www.tij.co.jp/product/jp/TPS61099/

4. AD コンバーター(ADC081C027CIMK)仕様

4-1. 概要

項目	内容
Resolution	8bit
Reference voltage	Vdd(3.3V)
Maximum Sample Rate	188.9kSPS
Interfaces	I2C

4-2. 電気的特性

4-2-1. 最大定格

Parameter	Value
Operating Temperature	-40℃ to +105℃

(c) 2019 Trillion-Node Engine Project

Maximum Operation Voltage	6.5V

4-2-2. 定格

Symbol	Parameter	Condition	Min.	Тур.	Max.
Vdd	supply voltage	Internal Oscillator	2.7V	ı	5.5V
Idd	Automatic Conversion Mode	Vdd=2.7V to 3.6V	-	0.41mA	0.59mA
	Power down mode	PD1	-	0.1uA	0.2uA
		PD2, fscl=400kHz	-	13uA	45uA

4-3. データシートリンク先

http://www.tij.co.jp/product/jp/adc081c027

4-4. レジスタ

Name	D7	D6	D5	D4	D3	D2	D1	D0
Address Pointer	0	0	0	0	0	R	egister Sele	ct

Address Pointer Field Descriptions

D2	D1	D0	REGISTER		
0	0	0	Conversion Result (read only)		
0	0	1	Alert Status (read/write)		
0	1	0	Configuration (read/write)		
0	1	1	Low Limit (read/write)		
1	0	0	High Limit (read/write)		
1	0	1	Hysteresis (read/write)		
1	1	0	Lowest Conversion (read/write)		
1	1	1	Highest Conversion (read/write)		

Name	Pointer	D15	D14	D13	D12	D11	D10	D9	D8
Conversion	00h	Alert Flag	Flag Reserved			Conversion Result [7:4]			
Conversion		D7	D6	D5	D4	D3	D2	D1	D0
Result		Conversion Result [3:0]				Reserved			

Conversion Result Register Field Descriptions

Field	Description						
D15	Alert Flag.						
	This bit indicates when an alert condition has occurred. When the Alert Bit						
	Enable is set in the Configuration Register, this bit will be high if either						
	alert flag is set in the Alert Status Register.						
	Otherwise, this bit is a zero. The I2C controller will typically read the Alert						
	Status register and other data registers to determine the source of the						
	alert.						
D[14:12]	Reserved.						
	Always reads zeros.						

D[11:4]	Conversion Result.
	The Analog-to-Digital conversion result. The Conversion result data is a 8-
	bit data word in straight binary format. The MSB is D11.
D[3:0]	Reserved.
	Always reads zeros.

Name	Pointer	D7	D6	D5	D4	D3	D2	D1	D0
Alert Status	01h	Reserved					Over Range	Under Range	

Alert Status Register Field Descriptions

Field	Description
וניבות	Reserved.
D[7:2]	Always reads zeros. Zeros must be written to these bits.
	Over Range Alert Flag.
	Bit is set to 1 when the measured voltage exceeds the VHIGH limit stored
	in the programmable VHIGH limit register. Flag is reset to 0 when one of
	the following two conditions is met: (1) The controller writes a one to this
D1	bit. (2) The measured voltage decreases below the programmed VHIGH
	limit minus the programmed VHYST value . The alert will only self-clear if
	the Alert Hold bit is cleared in the Configuration register. If the Alert Hold
	bit is set, the only way to clear an over range alert is to write a one to this
	bit.
	Under Range Alert Flag.
	Bit is set to 1 when the measured voltage falls below the VLOW limit stored
	in the programmable VLOW limit register. Flag is reset to 0 when one of
	the following two conditions is met: (1) The controller writes a one to this
D0	bit. (2) The measured voltage increases above the programmed VLOW
	limit plus the
	programmed VHYST value. The alert will only self-clear if the Alert Hold bit
	is cleared in the Configuration register. If the Alert Hold bit is set, the only
	way to clear an under range alert is to write a one to this bit.

Name	Pointer	D7	D6	D5	D4	D3	D2	D1	D0
Configuration	02h	C.	Cycle Time [2:0]		Alert Hold	Alert Flag	Alert Pin	0	Polarity
Configuration	U2n	Сус			Alert Hold	Enable	Enable	U	Polarity

Configuration Register Field Descriptions

Field	Description					
D[7:5]	Cycle Time.					
	Configures Automatic Conversion mode. When these bits are set to zeros,					
	the automatic conversion mode is disabled. This is the case at power-up.					
	When these bits are set to a non-zero value, the ADC will begin operating					
	in automatic conversion mode. The Cycle Time table shows how different					
	values provide various conversion intervals.					

D4	Alert Hold.						
	0: Alerts will self-clear when the measured voltage moves within the limits						
	by more than the hysteresis register value.						
	1: Alerts will not self-clear and are only cleared when a one is written to						
	the alert high flag or the alert low flag in the Alert Status register.						
D3	Alert Flag Enable.						
	0: Disables alert status bit [D15] in the Conversion Result register.						
	1: Enables alert status bit [D15] in the Conversion Result register.						
D2	Alert Pin Enable.						
	*This bit does not apply to the ADC081C027.						
D1	Reserved.						
	Always reads zeros. Zeros must be written to these bits.						
D0	Polarity.						
	*This bit does not apply to the ADC081C027.						

Cycle Time Field Descriptions

D7	D6	D5	Conversion Interval	Typical fconvert[ksps]
0	0	0	Mode Disabled	0
0	0	1	Tconvert x 32	27
0	1	0	Tconvert x 64	13.5
0	1	1	Tconvert x 128	6.7
1	0	0	Tconvert x 256	3.4
1	0	1	Tconvert x 512	1.7
1	1	0	Tconvert x 1024	0.9
1	1	1	Tconvert x 2048	0.4

4-5. 省電力制御

使用している電源 IC(TPS61099YFFR)は、低負荷時でも、比較的高効率が保たれるものを使用している。

実装されている AD コンバータ(ADC081C027CIMK)は、Active モード(Automatic operation mode)は使わない方が低電力化 を達成できる。Normal mode では、測定後、自動的に Power-down モードに移行するため低電力化が可能である。Automatic operation mode から Power-down モードに移行するためには、自動変換モードを無効にする(Address: 02h D7-D5: 000)。 自動変換モードは電源投入時には無効となっている。