(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 11 November 1999 (11.11.1999)

PCT

(10) International Publication Number WO 99/057280 A3

C12N 15/31, (51) International Patent Classification6: C07K 14/22, 16/12, C12Q 1/68, A61K 39/095, G01N 33/50

(21) International Application Number: PCT/US99/09346

(22) International Filing Date: 30 April 1999 (30.04.1999)

(25) Filing Language:

English

(26) Publication Language:

English

30)	Priority Data:		
•	60/083,758	1 May 1998 (01.05.1998)	US
	60/094,869	31 July 1998 (31.07.1998)	US
	60/098,994	2 September 1998 (02.09.1998)	US
	60/099,062	2 September 1998 (02.09.1998)	US
	60/103,749	9 October 1998 (09.10.1998)	US
	60/103,794	9 October 1998 (09.10.1998)	US
	60/103,796	9 October 1998 (09.10.1998)	US
	60/121,528	25 February 1999 (25.02.1999)	US
	•	<u>-</u>	

(71) Applicants (for all designated States except US): CHI-RON CORPORATION [US/US]; 4560 Horton Street, Emeryville, CA 94608 (US). THE INSTITUTE FOR GENOMIC RESEARCH [US/US]; 9212 Medical Center Drive, Rockville, MD 20850 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FRASER, Claire [US/US]; The Institute for Genomic Research, 9212 Medical Center Drive, Rockville, MD 20850 (US) GA-LEOTTI, Cesira [N/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). GRANDI, Guido [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (II). HICKEY, Erin [US/US]; The Institute for Genomic Research, 9212 Medical Center Drive, Rockville, MD 20850 (DS) MASIGNANI, Vega [ITAT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT) MORA, Marirosa [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). PETERSEN, Jeremy [US/US]; The Institute for Genomic Research, 9212 Medical Center Drive, Rockville, MD 20850 (US) PIZZA, Mariagrafia [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT), RAPPUOLI, Rino [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT) RATTI, Giulio [IT/IY]; Chiron S.p.A., Via Fidrentina, 1, I-53100 Siena (IT): SCALATO, Enzo [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). SCARSELLI, Maria [ITAT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT) TETTELIN, Herve [US/US]; The Institute for Genomic Research, 9212 Medical Center Drive, Rockville, MD 20850 (US). VENTER, J., Craig [US/US]; The Institute for Generalic Research, 9212 Medical Center Drive, Rockville, MD 20850 (US).

(74) Agent: HARBIN, Alisa, A.; Chiron Corporation, Intellectual Property - R440, P.O. Box 8097, Emeryville, CA 94662-8097 (US).

(81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, $KE,\,KG,\,KP,\,KR,\,KZ,\,LC,\,LK,\,LR,\,LS,\,LT,\,LU,\,LV,\,MD,$ MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(88) Date of publication of the international search report: 24 August 2000

(48) Date of publication of this corrected version:

29 August 2002

(15) Information about Correction: see PCT Gazette No. 35/2002 of 29 August 2002, Section

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NEISSERIA MENINGITIDIS ANTIGENS AND COMPOSITIONS

(57) Abstract: The invention provides proteins from Neisseria meningitidis, including the amino acid sequences and the corresponding nucleotide sequences. The proteins are predicted to be useful antigens for vaccines and/or diagnostics.

NEISSERIA MENINGITIDIS ANTIGENS AND COMPOSITIONS

This application is a continuation-in-part of the following U.S. Provisional Patent applications, from each of which priority is claimed, and each of which is incorporated by reference in its entirety: 60/083,758 (filed May 1, 1998); 60/094,869 (filed July 31, 1998); 60/098,994 (filed September 2, 1998); 60/099,062 (filed September 2, 1998); 60/103,749 (filed October 9, 1998); 60/103,794 (filed October 9, 1998); 60/103,796 (filed October 9, 1998); and 60/121,528 (filed February 25, 1999).

This invention relates to antigens from the bacterial species: Neisseria meningitidis and Neisseria gonorrhoeae.

BACKGROUND

Neisseria meningitidis is a non-motile, gram negative diplococcus human pathogen. It colonizes the pharynx, causing meningitis and, occasionally, septicaemia in the absence of meningitis. It is closely related to N. gonorrhoea, although one feature that clearly differentiates meningococcus from gonococcus is the presence of a polysaccharide capsule that is present in all pathogenic meningococci.

N. meningitidis causes both endemic and epidemic disease. In the United States the attack rate is 0.6-1 per 100,000 persons per year, and it can be much greater during outbreaks. (see Lieberman et al. (1996) Safety and Immunogenicity of a Serogroups A/C Neisseria meningitidis Oligosaccharide-Protein Conjugate Vaccine in Young Children. JAMA 275(19):1499-1503; Schuchat et al (1997) Bacterial Meningitis in the United States in 1995. N Engl J Med 337(14):970-976). In developing countries, endemic disease rates are much higher and during epidemics incidence rates can reach 500 cases per 100,000 persons per year. Mortality is extremely high, at 10-20% in the United States, and much higher in developing countries. Following the introduction of the conjugate vaccine against Haemophilus influenzae, N. meningitidis is the major cause of bacterial meningitis at all ages in the United States (Schuchat et al (1997) supra).

Based on the organism's capsular polysaccharide, 12 serogroups of N. meningitidis have been identified. Group A is the pathogen most often implicated in epidemic disease in sub-Saharan Africa. Serogroups B and C are responsible for the vast majority of cases in the

WO 99/057280 PCT/US99/09346

2

United States and in most developed countries. Serogroups W135 and Y are responsible for the rest of the cases in the United States and developed countries. The meningococcal vaccine currently in use is a tetravalent polysaccharide vaccine composed of serogroups A, C, Y and W135. Although efficacious in adolescents and adults, it induces a poor immune response and short duration of protection, and cannot be used in infants [eg. Morbidity and Mortality weekly report, Vol.46, No. RR-5 (1997)]. This is because polysaccharides are T-cell independent antigens that induce a weak immune response that cannot be boosted by repeated immunization. Following the success of the vaccination against *H.influenzae*, conjugate vaccines against serogroups A and C have been developed and are at the final stage of clinical testing (Zollinger WD "New and Improved Vaccines Against Meningococcal Disease". In:

New Generation Vaccines, supra, pp. 469-488; Lieberman et al (1996) supra; Costantino et al (1992) Development and phase I clinical testing of a conjugate vaccine against meningococcus A and C. Vaccine 10:691-698).

Meningococcus B (menB) remains a problem, however. This serotype currently is responsible for approximately 50% of total meningitis in the United States, Europe, and South America. The polysaccharide approach cannot be used because the menB capsular polysaccharide is a polymer of α(2-8)-linked *N*-acetyl neuraminic acid that is also present in mammalian tissue. This results in tolerance to the antigen; indeed, if an immune response were elicited, it would be anti-self, and therefore undesirable. In order to avoid induction of autoimmunity and to induce a protective immune response, the capsular polysaccharide has, for instance, been chemically modified substituting the *N*-acetyl groups with *N*-propionyl groups, leaving the specific antigenicity unaltered (Romero & Outschoorn (1994) Current status of Meningococcal group B vaccine candidates: capsular or non-capsular? *Clin Microbiol Rev* 7(4):559-575).

Alternative approaches to menB vaccines have used complex mixtures of outer membrane proteins (OMPs), containing either the OMPs alone, or OMPs enriched in porins, or deleted of the class 4 OMPs that are believed to induce antibodies that block bactericidal activity. This approach produces vaccines that are not well characterized. They are able to protect against the homologous strain, but are not effective at large where there are many antigenic variants of the outer membrane proteins. To overcome the antigenic variability, multivalent vaccines containing up to nine different porins have been constructed (eg. Poolman JT (1992) Development of a meningococcal vaccine. Infect. Agents Dis. 4:13-28).

Additional proteins to be used in outer membrane vaccines have been the opa and opc proteins, but none of these approaches have been able to overcome the antigenic variability (eg. Ala'Aldeen & Borriello (1996) The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine 14(1):49-53).

A certain amount of sequence data is available for meningococcal and gonoccocal genes and proteins (e.g. EP-A-0467714, WO96/29412), but this is by no means complete. Other men B proteins may include those listed in WO 97/28273, WO 96/29412, WO 95/03413, US 5,439,808, and US 5,879,686.

The provision of further sequences could provide an opportunity to identify secreted or surface-exposed proteins that are presumed targets for the immune system and which are not antigenically variable. For instance, some of the identified proteins could be components of efficacious vaccines against meningococcus B, some could be components of vaccines against all meningococcal serotypes, and others could be components of vaccines against all pathogenic *Neisseriae* including *Neisseria meningitidis* or *Neisseria gonorrhoeae*. Those sequences specific to *N. meningitidis* or *N. gonorrhoeae* that are more highly conserved are further preferred sequences.

It is thus an object of the invention is to provide Neisserial DNA sequences which encode proteins that are antigenic or immunogenic.

BRIEF DESCRIPTION OF THE DRAWINGS

- Fig. 1 illustrates the products of protein expression and purification of the predicted ORF 919 as cloned and expressed in *E. coli*.
- Fig. 2 illustrates the products of protein expression and purification of the predicted ORF 279 as cloned and expressed in *E. coli*.
- Fig. 3 illustrates the products of protein expression and purification of the predicted ORF 576-1 as cloned and expressed in *E. coli*.
- Fig. 4 illustrates the products of protein expression and purification of the predicted ORF 519-1 as cloned and expressed in *E. coli*.
- Fig. 5 illustrates the products of protein expression and purification of the predicted ORF 121-1 as cloned and expressed in *E. coli*.

- Fig. 6 illustrates the products of protein expression and purification of the predicted ORF 128-1 as cloned and expressed in *E. coli*.
- Fig. 7 illustrates the products of protein expression and purification of the predicted ORF 206 as cloned and expressed in *E. coli*.
- Fig. 8 illustrates the products of protein expression and purification of the predicted ORF 287 as cloned and expressed in *E. coli*.
- Fig. 9 illustrates the products of protein expression and purification of the predicted ORF 406 as cloned and expressed in *E. coli*.
- Fig. 10 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 919 as cloned and expressed in *E. coli*.
- Fig. 11 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 279 as cloned and expressed in *E. coli*.
- Fig. 12 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 576-1 as cloned and expressed in *E. coli*.
- Fig. 13 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 519-1 as cloned and expressed in *E. coli*.
- Fig. 14 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 121-1 as cloned and expressed in *E. coli*.
- Fig. 15 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 128-1 as cloned and expressed in *E. coli*.
- Fig. 16 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 206 as cloned and expressed in *E. coli*.
- Fig. 17 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 287 as cloned and expressed in *E. coli*.
- Fig. 18 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 406 as cloned and expressed in *E. coli*.
- Fig. 19 shows an alignment comparison of amino acid sequences for ORF 225 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

Fig. 20 shows an alignment comparison of amino acid sequences for ORF 235 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

Fig. 21 shows an alignment comparison of amino acid sequences for ORF 287 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

Fig. 22 shows an alignment comparison of amino acid sequences for ORF 519 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

Fig. 23 shows an alignment comparison of amino acid sequences for ORF 919 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

THE INVENTION

The invention provides proteins comprising the *N. meningitidis* amino acid sequences and *N. gonorrhoeae* amino acid sequences disclosed in the examples.

It also provides proteins comprising sequences homologous (i.e., those having sequence identity) to the *N. meningitidis* amino acid sequences disclosed in the examples. Depending on the particular sequence, the degree of homology (sequence identity) is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more). These proteins include mutants and allelic variants of the sequences disclosed in the examples. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence. Identity between proteins is preferably determined by the Smith-Waterman

homology search algorithm as implemented in MPSRCH program (Oxford Molecular) using an affine gap search with parameters:gap penalty 12, gap extension penalty 1.

The invention further provides proteins comprising fragments of the N. meningitidis amino acid sequences and N. gonorrhoeae amino acid sequences disclosed in the examples. The fragments should comprise at least n consecutive amino acids from the sequences and, depending on the particular sequence, n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20 or more). Preferably the fragments comprise an epitope from the sequence.

The proteins of the invention can, of course, be prepared by various means (eg. recombinant expression, purification from cell culture, chemical synthesis etc.) and in various forms (eg. native, fusions etc.). They are preferably prepared in substantially pure or isolated form (ie. substantially free from other N. meningitidis or N. gonorrhoeae host cell proteins)

According to a further aspect, the invention provides antibodies which bind to these proteins. These may be polyclonal or monoclonal and may be produced by any suitable means.

According to a further aspect, the invention provides nucleic acid comprising the *N. meningitidis* nucleotide sequences and *N. gonorrhoeae* nucleotide sequences disclosed in the examples.

According to a further aspect, the invention comprises nucleic acids having sequence identity of greater than 50% (e.g., 60%, 70%, 80%, 90%, 95%, 99% or more) to the nucleic acid sequences herein. Sequence identity is determined as above-discussed.

According to a further aspect, the invention comprises nucleic acid that hybridizes to the sequences provided herein. Conditions for hybridization are set forth herein.

Nucleic acid comprising fragments of these sequences are also provided. These should comprise at least n consecutive nucleotides from the N. meningitidis sequences or N. gonorrhoeae sequences and depending on the particular sequence, n is 10 or more (eg 12, 14, 15, 18, 20, 25, 30, 35, 40 or more).

According to a further aspect, the invention provides nucleic acid encoding the proteins and protein fragments of the invention.

It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg. for antisense or probing purposes).

Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, in part or in whole, from genomic or cDNA libraries, from the

organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).

In addition, the term "nucleic acid" includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also protein nucleic acids (PNA) etc.

According to a further aspect, the invention provides vectors comprising nucleotide sequences of the invention (eg. expression vectors) and host cells transformed with such vectors.

According to a further aspect, the invention provides compositions comprising protein, antibody, and/or nucleic acid according to the invention. These compositions may be suitable as vaccines, for instance, or as diagnostic reagents or as immunogenic compositions.

The invention also provides nucleic acid, protein, or antibody according to the invention for use as medicaments (eg. as vaccines) or as diagnostic reagents. It also provides the use of nucleic acid, protein, or antibody according to the invention in the manufacture of (I) a medicament for treating or preventing infection due to Neisserial bacteria (ii) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria or (iii) for raising antibodies. Said Neisserial bacteria may be any species or strain (such as N. gonorrhoeae) but are preferably N. meningitidis, especially strain B or strain C.

The invention also provides a method of treating a patient, comprising administering to the patient a therapeutically effective amount of nucleic acid, protein, and/or antibody according to the invention.

According to further aspects, the invention provides various processes.

A process for producing proteins of the invention is provided, comprising the step of culturing a host cell according to the invention under conditions which induce protein expression.

A process for detecting polynucleotides of the invention is provided, comprising the steps of: (a) contacting a nucleic probe according to the invention with a biological sample under hybridizing conditions to form duplexes; and (b) detecting said duplexes.

A process for detecting proteins of the invention is provided, comprising the steps of:

(a) contacting an antibody according to the invention with a biological sample under conditions suitable for the formation of an antibody-antigen complexes; and (b) detecting said complexes.

Having now generally described the invention, the same will be more readily understood through reference to the following examples which are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified.

Methodology - Summary of standard procedures and techniques. General

This invention provides *Neisseria meningitidis* menB nucleotide sequences, amino acid sequences encoded therein. With these disclosed sequences, nucleic acid probe assays and expression cassettes and vectors can be produced. The expression vectors can be transformed into host cells to produce proteins. The purified or isolated polypeptides (which may also be chemically synthesized) can be used to produce antibodies to detect menB proteins. Also, the host cells or extracts can be utilized for biological assays to isolate agonists or antagonists. In addition, with these sequences one can search to identify open reading frames and identify amino acid sequences. The proteins may also be used in immunogenic compositions, antigenic compositions and as vaccine components.

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature e.g., Sambrook Molecular Cloning; A Laboratory Manual, Second Edition (1989); DNA Cloning, Volumes I and ii (D.N Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed, 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds. 1984); Transcription and Translation (B.D. Hames & S.J. Higgins eds. 1984); Animal Cell Culture (R.I. Freshney ed. 1986); Immobilized Cells and Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide to Molecular Cloning (1984); the Methods in Enzymology series (Academic Press, Inc.), especially volumes 154 & 155; Gene Transfer Vectors for Mammalian Cells (J.H. Miller and M.P. Calos eds. 1987, Cold Spring Harbor Laboratory); Mayer and Walker, eds. (1987), Immunochemical Methods in Cell and Molecular Biology (Academic Press, London); Scopes, (1987) Protein Purification: Principles and Practice, Second Edition (Springer-Verlag, N.Y.), and Handbook of Experimental Immunology, Volumes I-IV (D.M. Weir and C.C. Blackwell eds 1986).

Standard abbreviations for nucleotides and amino acids are used in this specification.

All publications, patents, and patent applications cited herein are incorporated in full by reference.

Expression systems

The *Neisseria* menB nucleotide sequences can be expressed in a variety of different expression systems; for example those used with mammalian cells, plant cells, baculoviruses, bacteria, and yeast.

i. Mammalian Systems

Mammalian expression systems are known in the art. A mammalian promoter is any DNA sequence capable of binding mammalian RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g., structural gene) into mRNA. A promoter will have a transcription initiating region, which is usually placed proximal to the 5' end of the coding sequence, and a TATA box, usually located 25-30 base pairs (bp) upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site. A mammalian promoter will also contain an upstream promoter element, usually located within 100 to 200 bp upstream of the TATA box. An upstream promoter element determines the rate at which transcription is initiated and can act in either orientation (Sambrook et al. (1989) "Expression of Cloned Genes in Mammalian Cells." In Molecular Cloning: A Laboratory Manual, 2nd ed.).

Mammalian viral genes are often highly expressed and have a broad host range; therefore sequences encoding mammalian viral genes provide particularly useful promoter sequences. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter (Ad MLP), and herpes simplex virus promoter. In addition, sequences derived from non-viral genes, such as the murine metallothionein gene, also provide useful promoter sequences. Expression may be either constitutive or regulated (inducible). Depending on the promoter selected, many promotes may be inducible using known substrates, such as the use of the mouse mammary tumor virus (MMTV) promoter with the glucocorticoid responsive element (GRE) that is induced by glucocorticoid in hormone-responsive transformed cells (see for example, U.S. Patent 5,783,681).

The presence of an enhancer element (enhancer), combined with the promoter elements described above, will usually increase expression levels. An enhancer is a

regulatory DNA sequence that can stimulate transcription up to 1000-fold when linked to homologous or heterologous promoters, with synthesis beginning at the normal RNA start site. Enhancers are also active when they are placed upstream or downstream from the transcription initiation site, in either normal or flipped orientation, or at a distance of more than 1000 nucleotides from the promoter (Maniatis et al. (1987) *Science 236*:1237; Alberts et al. (1989) *Molecular Biology of the Cell*, 2nd ed.). Enhancer elements derived from viruses may be particularly useful, because they usually have a broader host range. Examples include the SV40 early gene enhancer (Dijkema et al (1985) *EMBO J. 4*:761) and the enhancer/promoters derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus (Gorman et al. (1982b) *Proc. Natl. Acad. Sci. 79*:6777) and from human cytomegalovirus (Boshart et al. (1985) *Cell 41*:521). Additionally, some enhancers are regulatable and become active only in the presence of an inducer, such as a hormone or metal ion (Sassone-Corsi and Borelli (1986) *Trends Genet. 2*:215; Maniatis et al. (1987) Science 236:1237).

A DNA molecule may be expressed intracellularly in mammalian cells. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in mammalian cells. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The adenovirus tripartite leader is an example of a leader sequence that provides for secretion of a foreign protein in mammalian cells.

Usually, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. The 3' terminus of the mature mRNA is formed by site-specific post-transcriptional cleavage and polyadenylation (Birnstiel et al. (1985) *Cell 41*:349; Proudfoot and Whitelaw (1988) "Termination and 3' end processing of eukaryotic RNA. In *Transcription and splicing* (ed. B.D. Hames and D.M.

WO 99/057280 PCT/US99/09346

11

Glover); Proudfoot (1989) Trends Biochem. Sci. 14:105). These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator/polyadenylation signals include those derived from SV40 (Sambrook et al (1989) "Expression of cloned genes in cultured mammalian cells." In Molecular Cloning: A Laboratory Manual).

Usually, the above described components, comprising a promoter, polyadenylation signal, and transcription termination sequence are put together into expression constructs. Enhancers, introns with functional splice donor and acceptor sites, and leader sequences may also be included in an expression construct, if desired. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as mammalian cells or bacteria. Mammalian replication systems include those derived from animal viruses, which require trans-acting factors to replicate. For example, plasmids containing the replication systems of papovaviruses, such as SV40 (Gluzman (1981) Cell 23:175) or polyomavirus, replicate to extremely high copy number in the presence of the appropriate viral T antigen. Additional examples of mammalian replicons include those derived from bovine papillomavirus and Epstein-Barr virus. Additionally, the replicon may have two replication systems, thus allowing it to be maintained, for example, in mammalian cells for expression and in a prokaryotic host for cloning and amplification. Examples of such mammalian-bacteria shuttle vectors include pMT2 (Kaufman et al. (1989) Mol. Cell. Biol. 9:946) and pHEBO (Shimizu et al. (1986) Mol. Cell. Biol. 6:1074).

The transformation procedure used depends upon the host to be transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), and a number of other cell lines.

ii. Plant Cellular Expression Systems

There are many plant cell culture and whole plant genetic expression systems known in the art. Exemplary plant cellular genetic expression systems include those described in patents, such as: U.S. 5,693,506; US 5,659,122; and US 5,608,143. Additional examples of genetic expression in plant cell culture has been described by Zenk, Phytochemistry 30:3861-3863 (1991). Descriptions of plant protein signal peptides may be found in addition to the references described above in Vaulcombe et al., Mol. Gen. Genet. 209:33-40 (1987); Chandler et al., Plant Molecular Biology 3:407-418 (1984); Rogers, J. Biol. Chem. 260:3731-3738 (1985); Rothstein et al., Gene 55:353-356 (1987); Whittier et al., Nucleic Acids Research 15:2515-2535 (1987); Wirsel et al., Molecular Microbiology 3:3-14 (1989); Yu et al., Gene 122:247-253 (1992). A description of the regulation of plant gene expression by the phytohormone, gibberellic acid and secreted enzymes induced by gibberellic acid can be found in R.L. Jones and J. MacMillin, Gibberellins: in: Advanced Plant Physiology,. Malcolm B. Wilkins, ed., 1984 Pitman Publishing Limited, London, pp. 21-52. References that describe other metabolically-regulated genes: Sheen, Plant Cell, 2:1027-1038(1990); Maas et al., EMBO J. 9:3447-3452 (1990); Benkel and Hickey, Proc. Natl. Acad. Sci. 84:1337-1339 (1987)

Typically, using techniques known in the art, a desired polynucleotide sequence is inserted into an expression cassette comprising genetic regulatory elements designed for operation in plants. The expression cassette is inserted into a desired expression vector with companion sequences upstream and downstream from the expression cassette suitable for expression in a plant host. The companion sequences will be of plasmid or viral origin and provide necessary characteristics to the vector to permit the vectors to move DNA from an original cloning host, such as bacteria, to the desired plant host. The basic bacterial/plant vector construct will preferably provide a broad host range prokaryote replication origin; a prokaryote selectable marker; and, for Agrobacterium transformations, T DNA sequences for Agrobacterium-mediated transfer to plant chromosomes. Where the heterologous gene is not readily amenable to detection, the construct will preferably also have a selectable marker gene suitable for determining if a plant cell has been transformed. A general review of suitable markers, for example for the members of the grass family, is found in Wilmink and Dons, 1993, *Plant Mol. Biol. Reptr.*, 11(2):165-185.

Sequences suitable for permitting integration of the heterologous sequence into the plant genome are also recommended. These might include transposon sequences and the like for homologous recombination as well as Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome. Suitable prokaryote selectable markers include resistance toward antibiotics such as ampicillin or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.

The nucleic acid molecules of the subject invention may be included into an expression cassette for expression of the protein(s) of interest. Usually, there will be only one expression cassette, although two or more are feasible. The recombinant expression cassette will contain in addition to the heterologous protein encoding sequence the following elements, a promoter region, plant 5' untranslated sequences, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence. Unique restriction enzyme sites at the 5' and 3' ends of the cassette allow for easy insertion into a pre-existing vector.

A heterologous coding sequence may be for any protein relating to the present invention. The sequence encoding the protein of interest will encode a signal peptide which allows processing and translocation of the protein, as appropriate, and will usually lack any sequence which might result in the binding of the desired protein of the invention to a membrane. Since, for the most part, the transcriptional initiation region will be for a gene which is expressed and translocated during germination, by employing the signal peptide which provides for translocation, one may also provide for translocation of the protein of interest. In this way, the protein(s) of interest will be translocated from the cells in which they are expressed and may be efficiently harvested. Typically secretion in seeds are across the aleurone or scutellar epithelium layer into the endosperm of the seed. While it is not required that the protein be secreted from the cells in which the protein is produced, this facilitates the isolation and purification of the recombinant protein.

Since the ultimate expression of the desired gene product will be in a eucaryotic cell it is desirable to determine whether any portion of the cloned gene contains sequences which will be processed out as introns by the host's splicosome machinery. If so, site-directed mutagenesis of the "intron" region may be conducted to prevent losing a portion of the genetic message as a false intron code, Reed and Maniatis, *Cell* 41:95-105, 1985.

The vector can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. Crossway, *Mol. Gen. Genet*, 202:179-185, 1985. The genetic material may also be transferred into the plant cell by using polyethylene glycol, Krens, et al., *Nature*, 296, 72-74, 1982. Another method of introduction of nucleic acid segments is high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., *Nature*, 327, 70-73, 1987 and Knudsen and Muller, 1991, *Planta*, 185:330-336 teaching particle bombardment of barley endosperm to create transgenic barley. Yet another method of introduction would be fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies, Fraley, et al., *Proc. Natl. Acad. Sci. USA*, 79, 1859-1863, 1982.

The vector may also be introduced into the plant cells by electroporation. (Fromm et al., *Proc. Natl Acad. Sci. USA* 82:5824, 1985). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the gene construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and form plant callus.

All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be transformed by the present invention so that whole plants are recovered which contain the transferred gene. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugarcane, sugar beet, cotton, fruit and other trees, legumes and vegetables. Some suitable plants include, for example, species from the genera Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersion, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Hererocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Lolium, Zea, Triticum, Sorghum, and Datura.

Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts containing copies of the heterologous gene is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced from the protoplast suspension.

WO 99/057280 PCT/US99/09346

15

These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Shoots and roots normally develop simultaneously. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is fully reproducible and repeatable.

In some plant cell culture systems, the desired protein of the invention may be excreted or alternatively, the protein may be extracted from the whole plant. Where the desired protein of the invention is secreted into the medium, it may be collected.

Alternatively, the embryos and embryoless-half seeds or other plant tissue may be mechanically disrupted to release any secreted protein between cells and tissues. The mixture may be suspended in a buffer solution to retrieve soluble proteins. Conventional protein isolation and purification methods will be then used to purify the recombinant protein. Parameters of time, temperature pH, oxygen, and volumes will be adjusted through routine methods to optimize expression and recovery of heterologous protein.

iii. Baculovirus Systems

The polynucleotide encoding the protein can also be inserted into a suitable insect expression vector, and is operably linked to the control elements within that vector. Vector construction employs techniques which are known in the art. Generally, the components of the expression system include a transfer vector, usually a bacterial plasmid, which contains both a fragment of the baculovirus genome, and a convenient restriction site for insertion of the heterologous gene or genes to be expressed; a wild type baculovirus with a sequence homologous to the baculovirus-specific fragment in the transfer vector (this allows for the homologous recombination of the heterologous gene in to the baculovirus genome); and appropriate insect host cells and growth media.

After inserting the DNA sequence encoding the protein into the transfer vector, the vector and the wild type viral genome are transfected into an insect host cell where the vector and viral genome are allowed to recombine. The packaged recombinant virus is expressed and recombinant plaques are identified and purified. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, *inter alia*, Invitrogen, San Diego CA ("MaxBac" kit). These techniques are generally known to

WO 99/057280 PCT/US99/09346

16

those skilled in the art and fully described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987) (hereinafter "Summers and Smith").

Prior to inserting the DNA sequence encoding the protein into the baculovirus genome, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are usually assembled into an intermediate transplacement construct (transfer vector). This construct may contain a single gene and operably linked regulatory elements; multiple genes, each with its owned set of operably linked regulatory elements; or multiple genes, regulated by the same set of regulatory elements. Intermediate transplacement constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as a bacterium. The replicon will have a replication system, thus allowing it to be maintained in a suitable host for cloning and amplification.

Currently, the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373. Many other vectors, known to those of skill in the art, have also been designed. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and which introduces a BamHI cloning site 32 basepairs downstream from the ATT; see Luckow and Summers, *Virology* (1989) 17:31.

The plasmid usually also contains the polyhedrin polyadenylation signal (Miller et al. (1988) Ann. Rev. Microbiol., 42:177) and a prokaryotic ampicillin-resistance (amp) gene and origin of replication for selection and propagation in E. coli.

Baculovirus transfer vectors usually contain a baculovirus promoter. A baculovirus promoter is any DNA sequence capable of binding a baculovirus RNA polymerase and initiating the downstream (5' to 3') transcription of a coding sequence (e.g., structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A baculovirus transfer vector may also have a second domain called an enhancer, which, if present, is usually distal to the structural gene. Expression may be either regulated or constitutive.

Structural genes, abundantly transcribed at late times in a viral infection cycle, provide particularly useful promoter sequences. Examples include sequences derived from the gene encoding the viral polyhedron protein, Friesen et al., (1986) "The Regulation of Baculovirus Gene Expression," in: *The Molecular Biology of Baculoviruses* (ed. Walter Doerfler); EPO

Publ. Nos. 127 839 and 155 476; and the gene encoding the p10 protein, Vlak et al., (1988), J. Gen. Virol. 69:765.

DNA encoding suitable signal sequences can be derived from genes for secreted insect or baculovirus proteins, such as the baculovirus polyhedrin gene (Carbonell et al. (1988) *Gene*, 73:409). Alternatively, since the signals for mammalian cell posttranslational modifications (such as signal peptide cleavage, proteolytic cleavage, and phosphorylation) appear to be recognized by insect cells, and the signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells, leaders of non-insect origin, such as those derived from genes encoding human (alpha) α-interferon, Maeda et al., (1985), *Nature 315*:592; human gastrin-releasing peptide, Lebacq-Verheyden et al., (1988), *Molec. Cell. Biol. 8*:3129; human IL-2, Smith et al., (1985) *Proc. Nat'l Acad. Sci. USA*, 82:8404; mouse IL-3, (Miyajima et al., (1987) *Gene 58*:273; and human glucocerebrosidase, Martin et al. (1988) *DNA*, 7:99, can also be used to provide for secretion in insects.

A recombinant polypeptide or polyprotein may be expressed intracellularly or, if it is expressed with the proper regulatory sequences, it can be secreted. Good intracellular expression of nonfused foreign proteins usually requires heterologous genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. If desired, methionine at the N-terminus may be cleaved from the mature protein by *in vitro* incubation with cyanogen bromide.

Alternatively, recombinant polyproteins or proteins which are not naturally secreted can be secreted from the insect cell by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in insects. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the translocation of the protein into the endoplasmic reticulum.

After insertion of the DNA sequence and/or the gene encoding the expression product precursor of the protein, an insect cell host is co-transformed with the heterologous DNA of the transfer vector and the genomic DNA of wild type baculovirus -- usually by co-transfection. The promoter and transcription termination sequence of the construct will usually comprise a 2-5kb section of the baculovirus genome. Methods for introducing heterologous DNA into the desired site in the baculovirus virus are known in the art. (See

Summers and Smith *supra*; Ju et al. (1987); Smith et al., *Mol. Cell. Biol.* (1983) 3:2156; and Luckow and Summers (1989)). For example, the insertion can be into a gene such as the polyhedrin gene, by homologous double crossover recombination; insertion can also be into a restriction enzyme site engineered into the desired baculovirus gene. Miller et al., (1989), *Bioessays 4*:91. The DNA sequence, when cloned in place of the polyhedrin gene in the expression vector, is flanked both 5' and 3' by polyhedrin-specific sequences and is positioned downstream of the polyhedrin promoter.

The newly formed baculovirus expression vector is subsequently packaged into an infectious recombinant baculovirus. Homologous recombination occurs at low frequency (between about 1% and about 5%); thus, the majority of the virus produced after cotransfection is still wild-type virus. Therefore, a method is necessary to identify recombinant viruses. An advantage of the expression system is a visual screen allowing recombinant viruses to be distinguished. The polyhedrin protein, which is produced by the native virus, is produced at very high levels in the nuclei of infected cells at late times after viral infection. Accumulated polyhedrin protein forms occlusion bodies that also contain embedded particles. These occlusion bodies, up to 15 µm in size, are highly refractile, giving them a bright shiny appearance that is readily visualized under the light microscope. Cells infected with recombinant viruses lack occlusion bodies. To distinguish recombinant virus from wild-type virus, the transfection supernatant is plaqued onto a monolayer of insect cells by techniques known to those skilled in the art. Namely, the plaques are screened under the light microscope for the presence (indicative of wild-type virus) or absence (indicative of recombinant virus) of occlusion bodies. Current Protocols in Microbiology Vol. 2 (Ausubel et al. eds) at 16.8 (Supp. 10, 1990); Summers and Smith, *supra*; Miller et al. (1989).

Recombinant baculovirus expression vectors have been developed for infection into several insect cells. For example, recombinant baculoviruses have been developed for, *inter alia: Aedes aegypti , Autographa californica, Bombyx mori, Drosophila melanogaster, Spodoptera frugiperda*, and *Trichoplusia ni* (PCT Pub. No. WO 89/046699; Carbonell et al., (1985) *J. Virol.* 56:153; Wright (1986) *Nature 321*:718; Smith et al., (1983) *Mol. Cell. Biol.* 3:2156; and see generally, Fraser, *et al.* (1989) *In Vitro Cell. Dev. Biol.* 25:225).

Cells and cell culture media are commercially available for both direct and fusion expression of heterologous polypeptides in a baculovirus/expression system; cell culture technology is generally known to those skilled in the art. See, e.g., Summers and Smith supra.

The modified insect cells may then be grown in an appropriate nutrient medium, which allows for stable maintenance of the plasmid(s) present in the modified insect host. Where the expression product gene is under inducible control, the host may be grown to high density, and expression induced. Alternatively, where expression is constitutive, the product will be continuously expressed into the medium and the nutrient medium must be continuously circulated, while removing the product of interest and augmenting depleted nutrients. The product may be purified by such techniques as chromatography, e.g., HPLC, affinity chromatography, ion exchange chromatography, etc.; electrophoresis; density gradient centrifugation; solvent extraction, or the like. As appropriate, the product may be further purified, as required, so as to remove substantially any insect proteins which are also secreted in the medium or result from lysis of insect cells, so as to provide a product which is at least substantially free of host debris, e.g., proteins, lipids and polysaccharides.

In order to obtain protein expression, recombinant host cells derived from the transformants are incubated under conditions which allow expression of the recombinant protein encoding sequence. These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill in the art, based upon what is known in the art.

iv. Bacterial Systems

Bacterial expression techniques are known in the art. A bacterial promoter is any DNA sequence capable of binding bacterial RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A bacterial promoter may also have a second domain called an operator, that may overlap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may bind the operator and thereby inhibit transcription of a specific gene. Constitutive expression may occur in the absence of negative regulatory elements, such as the operator. In addition, positive regulation may be achieved by a gene activator protein binding sequence, which, if present is usually proximal (5') to the RNA polymerase binding sequence. An example of a gene activator protein is the catabolite activator protein (CAP), which helps

thereby either enhancing or reducing transcription.

WO 99/057280

PCT/US99/09346

initiate transcription of the lac operon in Escherichia coli (E. coli) (Raibaud et al. (1984)

Annu. Rev. Genet. 18:173). Regulated expression may therefore be either positive or negative,

20

Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose (*lac*) (Chang *et al.* (1977) *Nature 198*:1056), and maltose.

Additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan (*trp*) (Goeddel *et al.* (1980) *Nuc. Acids Res. 8*:4057; Yelverton *et al.* (1981) *Nucl. Acids Res. 9*:731; U.S. Patent 4,738,921; EPO Publ. Nos. 036 776 and 121 775). The betalactamase (*bla*) promoter system (Weissmann (1981) "The cloning of interferon and other mistakes." In *Interferon 3* (ed. I. Gresser)), bacteriophage lambda PL (Shimatake *et al.* (1981) *Nature 292*:128) and T5 (U.S. Patent 4,689,406) promoter systems also provide useful promoter sequences.

In addition, synthetic promoters which do not occur in nature also function as bacterial promoters. For example, transcription activation sequences of one bacterial or bacteriophage promoter may be joined with the operon sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter (U.S. Patent 4,551,433). For example, the *tac* promoter is a hybrid *trp-lac* promoter comprised of both *trp* promoter and *lac* operon sequences that is regulated by the *lac* repressor (Amann *et al.* (1983) *Gene 25*:167; de Boer *et al.* (1983) *Proc. Natl. Acad. Sci. 80*:21). Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. A naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes. The bacteriophage T7 RNA polymerase/promoter system is an example of a coupled promoter system (Studier *et al.* (1986) *J. Mol. Biol. 189*:113; Tabor *et al.* (1985) *Proc Natl. Acad. Sci. 82*:1074). In addition, a hybrid promoter can also be comprised of a bacteriophage promoter and an *E. coli* operator region (EPO Publ. No. 267 851).

In addition to a functioning promoter sequence, an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes. In *E. coli*, the ribosome binding site is called the Shine-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon

(Shine et al. (1975) Nature 254:34). The SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3' end of E. coli 16S rRNA (Steitz et al. (1979) "Genetic signals and nucleotide sequences in messenger RNA." In Biological Regulation and Development: Gene Expression (ed. R.F. Goldberger)). To express eukaryotic genes and prokaryotic genes with weak ribosome-binding site, it is often necessary to optimize the distance between the SD sequence and the ATG of the eukaryotic gene (Sambrook et al. (1989) "Expression of cloned genes in Escherichia coli." In Molecular Cloning: A Laboratory Manual).

A DNA molecule may be expressed intracellularly. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide or by either *in vivo* or *in vitro* incubation with a bacterial methionine N-terminal peptidase (EPO Publ. No. 219 237).

Fusion proteins provide an alternative to direct expression. Usually, a DNA sequence encoding the N-terminal portion of an endogenous bacterial protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the bacteriophage lambda cell gene can be linked at the 5' terminus of a foreign gene and expressed in bacteria. The resulting fusion protein preferably retains a site for a processing enzyme (factor Xa) to cleave the bacteriophage protein from the foreign gene (Nagai et al. (1984) Nature 309:810). Fusion proteins can also be made with sequences from the lacZ (Jia et al. (1987) Gene 60:197), trpE (Allen et al. (1987) J. Biotechnol. 5:93; Makoff et al. (1989) J. Gen. Microbiol. 135:11), and Chey (EPO Publ. No. 324 647) genes. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (e.g. ubiquitin specific processing-protease) to cleave the ubiquitin from the foreign protein. Through this method, native foreign protein can be isolated (Miller et al. (1989) Bio/Technology 7:698).

Alternatively, foreign proteins can also be secreted from the cell by creating chimeric DNA molecules that encode a fusion protein comprised of a signal peptide sequence fragment that provides for secretion of the foreign protein in bacteria (U.S. Patent 4,336,336). The

signal sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). Preferably there are processing sites, which can be cleaved either *in vivo* or *in vitro* encoded between the signal peptide fragment and the foreign gene.

DNA encoding suitable signal sequences can be derived from genes for secreted bacterial proteins, such as the *E. coli* outer membrane protein gene (*ompA*) (Masui *et al.* (1983), in: *Experimental Manipulation of Gene Expression*; Ghrayeb *et al.* (1984) *EMBO J.* 3:2437) and the *E. coli* alkaline phosphatase signal sequence (*phoA*) (Oka *et al.* (1985) *Proc. Natl. Acad. Sci. 82*:7212). As an additional example, the signal sequence of the alpha-amylase gene from various Bacillus strains can be used to secrete heterologous proteins from *B. subtilis* (Palva *et al.* (1982) *Proc. Natl. Acad. Sci. USA 79*:5582; EPO Publ. No. 244 042).

Usually, transcription termination sequences recognized by bacteria are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures that aid in terminating transcription. Examples include transcription termination sequences derived from genes with strong promoters, such as the *trp* gene in *E. coli* as well as other biosynthetic genes.

Usually, the above described components, comprising a promoter, signal sequence (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as bacteria. The replicon will have a replication system, thus allowing it to be maintained in a prokaryotic host either for expression or for cloning and amplification. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably contain at least about 10, and more preferably at least about 20 plasmids. Either a high or low copy number

vector may be selected, depending upon the effect of the vector and the foreign protein on the host.

Alternatively, the expression constructs can be integrated into the bacterial genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome. For example, integrating vectors constructed with DNA from various Bacillus strains integrate into the Bacillus chromosome (EPO Publ. No. 127 328). Integrating vectors may also be comprised of bacteriophage or transposon sequences.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of bacterial strains that have been transformed. Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin (neomycin), and tetracycline (Davies *et al.* (1978) *Annu. Rev. Microbiol. 32*:469). Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways.

Alternatively, some of the above described components can be put together in transformation vectors. Transformation vectors are usually comprised of a selectable market that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extra-chromosomal replicons or integrating vectors, have been developed for transformation into many bacteria. For example, expression vectors have been developed for, *inter alia*, the following bacteria: Bacillus subtilis (Palva *et al.* (1982) *Proc. Natl. Acad. Sci. USA 79*:5582; EPO Publ. Nos. 036 259 and 063 953; PCT Publ. No. WO 84/04541), Escherichia coli (Shimatake *et al.* (1981) *Nature 292*:128; Amann *et al.* (1985) *Gene 40*:183; Studier *et al.* (1986) *J. Mol. Biol. 189*:113; EPO Publ. Nos. 036 776, 136 829 and 136 907), Streptococcus cremoris (Powell *et al.* (1988) *Appl. Environ. Microbiol. 54*:655); Streptococcus lividans (Powell *et al.* (1988) *Appl. Environ. Microbiol. 54*:655), Streptomyces lividans (U.S. Patent 4,745,056).

Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with CaCl₂ or other agents, such as divalent cations and DMSO. DNA can also be introduced into bacterial cells by

WO 99/057280

24

electroporation. Transformation procedures usually vary with the bacterial species to be transformed. (See e.g., use of Bacillus: Masson et al. (1989) FEMS Microbiol. Lett. 60:273; Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EPO Publ. Nos. 036 259 and 063 953; PCT Publ. No. WO 84/04541; use of Campylobacter: Miller et al. (1988) Proc. Natl. Acad. Sci. 85:856; and Wang et al. (1990) J. Bacteriol. 172:949; use of Escherichia coli: Cohen et al. (1973) Proc. Natl. Acad. Sci. 69:2110; Dower et al. (1988) Nucleic Acids Res. 16:6127; Kushner (1978) "An improved method for transformation of Escherichia coli with ColE1derived plasmids. In Genetic Engineering: Proceedings of the International Symposium on Genetic Engineering (eds. H.W. Boyer and S. Nicosia); Mandel et al. (1970) J. Mol. Biol. 53:159; Taketo (1988) Biochim. Biophys. Acta 949:318; use of Lactobacillus: Chassy et al. (1987) FEMS Microbiol. Lett. 44:173; use of Pseudomonas: Fiedler et al. (1988) Anal. Biochem 170:38; use of Staphylococcus: Augustin et al. (1990) FEMS Microbiol. Lett. 66:203; use of Streptococcus: Barany et al. (1980) J. Bacteriol. 144:698; Harlander (1987) "Transformation of Streptococcus lactis by electroporation, in: Streptococcal Genetics (ed. J. Ferretti and R. Curtiss III); Perry et al. (1981) Infect. Immun. 32:1295; Powell et al. (1988) Appl. Environ. Microbiol. 54:655; Somkuti et al. (1987) Proc. 4th Evr. Cong. Biotechnology 1:412.

v. Yeast Expression

Yeast expression systems are also known to one of ordinary skill in the art. A yeast promoter is any DNA sequence capable of binding yeast RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site (the "TATA Box") and a transcription initiation site. A yeast promoter may also have a second domain called an upstream activator sequence (UAS), which, if present, is usually distal to the structural gene. The UAS permits regulated (inducible) expression. Constitutive expression occurs in the absence of a UAS. Regulated expression may be either positive or negative, thereby either enhancing or reducing transcription.

Yeast is a fermenting organism with an active metabolic pathway, therefore sequences encoding enzymes in the metabolic pathway provide particularly useful promoter sequences.

WO 99/057280

Examples include alcohol dehydrogenase (ADH) (EPO Publ. No. 284 044), enolase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (EPO Publ. No. 329 203). The yeast *PHO5* gene, encoding acid phosphatase, also provides useful promoter sequences (Myanohara *et al.* (1983) *Proc. Natl. Acad. Sci. USA 80*:1).

In addition, synthetic promoters which do not occur in nature also function as yeast promoters. For example, UAS sequences of one yeast promoter may be joined with the transcription activation region of another yeast promoter, creating a synthetic hybrid promoter. Examples of such hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (U.S. Patent Nos. 4,876,197 and 4,880,734). Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the ADH2, GAL4, GAL10, OR PHO5 genes, combined with the transcriptional activation region of a glycolytic enzyme gene such as GAP or PyK (EPO Publ. No. 164 556). Furthermore, a yeast promoter can include naturally occurring promoters of non-yeast origin that have the ability to bind yeast RNA polymerase and initiate transcription. Examples of such promoters include, inter alia, (Cohen et al. (1980) Proc. Natl. Acad. Sci. USA 77:1078; Henikoff et al. (1981) Nature 283:835; Hollenberg et al. (1981) Curr. Topics Microbiol. Immunol. 96:119; Hollenberg et al. (1979) "The Expression of Bacterial Antibiotic Resistance Genes in the Yeast Saccharomyces cerevisiae," in: Plasmids of Medical, Environmental and Commercial Importance (eds. K.N. Timmis and A. Puhler); Mercerau-Puigalon et al. (1980) Gene 11:163; Panthier et al. (1980) Curr. Genet. 2:109;).

A DNA molecule may be expressed intracellularly in yeast. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide.

Fusion proteins provide an alternative for yeast expression systems, as well as in mammalian, plant, baculovirus, and bacterial expression systems. Usually, a DNA sequence encoding the N-terminal portion of an endogenous yeast protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the yeast or human

superoxide dismutase (SOD) gene, can be linked at the 5' terminus of a foreign gene and expressed in yeast. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See e.g., EPO Publ. No. 196056. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (e.g. ubiquitin-specific processing protease) to cleave the ubiquitin from the foreign protein. Through this method, therefore, native foreign protein can be isolated (e.g., WO88/024066).

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provide for secretion in yeast of the foreign protein. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.

DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the yeast invertase gene (EPO Publ. No. 012 873; JPO Publ. No. 62:096,086) and the A-factor gene (U.S. Patent 4,588,684). Alternatively, leaders of non-yeast origin, such as an interferon leader, exist that also provide for secretion in yeast (EPO Publ. No. 060 057).

A preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which contains both a "pre" signal sequence, and a "pro" region. The types of alpha-factor fragments that can be employed include the full-length pre-pro alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (usually about 25 to about 50 amino acid residues) (U.S. Patent Nos. 4,546,083 and 4,870,008; EPO Publ. No. 324 274). Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a presequence of a first yeast, but a pro-region from a second yeast alphafactor. (See e.g., PCT Publ. No. WO 89/02463.)

Usually, transcription termination sequences recognized by yeast are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator

WO 99/057280 PCT/US99/09346

27

sequence and other yeast-recognized termination sequences, such as those coding for glycolytic enzymes.

Usually, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as yeast or bacteria. The replicon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a prokaryotic host for cloning and amplification. Examples of such yeast-bacteria shuttle vectors include YEp24 (Botstein *et al.* (1979) *Gene 8*:17-24), pCl/1 (Brake *et al.* (1984) *Proc. Natl. Acad. Sci USA 81*:4642-4646), and YRp17 (Stinchcomb *et al.* (1982) *J. Mol. Biol. 158*:157). In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20. Enter a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host. See e.g., Brake *et al.*, *supra*.

Alternatively, the expression constructs can be integrated into the yeast genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous DNA in the vector and the yeast chromosome (Orr-Weaver et al. (1983) Methods in Enzymol. 101:228-245). An integrating vector may be directed to a specific locus in yeast by selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver et al., supra. One or more expression construct may integrate, possibly affecting levels of recombinant protein produced (Rine et al. (1983) Proc. Natl. Acad. Sci. USA 80:6750). The chromosomal sequences included in the vector can occur either as a single segment in the vector, which results in the integration of the entire vector, or two segments homologous to adjacent segments in the chromosome and flanking the expression construct in the vector, which can result in the stable integration of only the expression construct.

WO 99/057280

28

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of yeast strains that have been transformed. Selectable markers may include biosynthetic genes that can be expressed in the yeast host, such as *ADE2*, *HIS4*, *LEU2*, *TRP1*, and *ALG7*, and the G418 resistance gene, which confer resistance in yeast cells to tunicamycin and G418, respectively. In addition, a suitable selectable marker may also provide yeast with the ability to grow in the presence of toxic compounds, such as metal. For example, the presence of *CUP1* allows yeast to grow in the presence of copper ions (Butt *et al.* (1987) *Microbiol, Rev. 51*:351).

Alternatively, some of the above described components can be put together into transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extrachromosomal replicons or integrating vectors, have been developed for transformation into many yeasts. For example, expression vectors and methods of introducing exogenous DNA into yeast hosts have been developed for, inter alia, the following yeasts: Candida albicans (Kurtz, et al. (1986) Mol. Cell. Biol. 6:142); Candida maltosa (Kunze, et al. (1985) J. Basic Microbiol. 25:141); Hansenula polymorpha (Gleeson, et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302); Kluyveromyces fragilis (Das, et al. (1984) J. Bacteriol. 158:1165); Kluyveromyces lactis (De Louvencourt et al. (1983) J. Bacteriol. 154:737; Van den Berg et al. (1990) Bio/Technology 8:135); Pichia guillerimondii (Kunze et al. (1985) J. Basic Microbiol. 25:141); Pichia pastoris (Cregg, et al. (1985) Mol. Cell. Biol. 5:3376; U.S. Patent Nos. 4,837,148 and 4,929,555); Saccharomyces cerevisiae (Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75:1929; Ito et al. (1983) J. Bacteriol. 153:163); Schizosaccharomyces pombe (Beach and Nurse (1981) Nature 300:706); and Yarrowia lipolytica (Davidow, et al. (1985) Curr. Genet. 10:380471 Gaillardin, et al. (1985) Curr. Genet. 10:49).

Methods of introducing exogenous DNA into yeast hosts are well-known in the art, and usually include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations. Transformation procedures usually vary with the yeast species to be transformed. See e.g., [Kurtz et al. (1986) Mol. Cell. Biol. 6:142; Kunze et al. (1985) J. Basic Microbiol. 25:141; Candida]; [Gleeson et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302; Hansenula]; [Das et al. (1984) J.

Bacteriol. 158:1165; De Louvencourt et al. (1983) J. Bacteriol. 154:1165; Van den Berg et al. (1990) Bio/Technology 8:135; Kluyveromyces]; [Cregg et al. (1985) Mol. Cell. Biol. 5:3376; Kunze et al. (1985) J. Basic Microbiol. 25:141; U.S. Patent Nos. 4,837,148 and 4,929,555; Pichia]; [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75;1929; Ito et al. (1983) J. Bacteriol. 153:163 Saccharomyces]; [Beach and Nurse (1981) Nature 300:706; Schizosaccharomyces]; [Davidow et al. (1985) Curr. Genet. 10:39; Gaillardin et al. (1985) Curr. Genet. 10:49; Yarrowia].

Definitions

A composition containing X is "substantially free of" Y when at least 85% by weight of the total X+Y in the composition is X. Preferably, X comprises at least about 90% by weight of the total of X+Y in the composition, more preferably at least about 95% or even 99% by weight.

A "conserved" Neisseria amino acid fragment or protein is one that is present in a particular Neisserial protein in at least x% of Neisseria. The value of x may be 50% or more, e.g., 66%, 75%, 80%, 90%, 95% or even 100% (i.e. the amino acid is found in the protein in question in all Neisseria). In order to determine whether an animo acid is "conserved" in a particular Neisserial protein, it is necessary to compare that amino acid residue in the sequences of the protein in question from a plurality of different Neisseria (a reference population). The reference population may include a number of different Neisseria species or may include a single species. The reference population may include a number of different serogroups of a particular species or a single serogroup. A preferred reference population consists of the 5 most common Neisseria strains.

The term "heterologous" refers to two biological components that are not found together in nature. The components may be host cells, genes, or regulatory regions, such as promoters. Although the heterologous components are not found together in nature, they can function together, as when a promoter heterologous to a gene is operably linked to the gene. Another example is where a Neisserial sequence is heterologous to a mouse host cell.

"Epitope" means antigenic determinant, and may elicit a cellular and/or humoral response.

Conditions for "high stringency" are 65 degrees C in 0.1 xSSC 0.5% SDS solution.

30

An "origin of replication" is a polynucleotide sequence that initiates and regulates replication of polynucleotides, such as an expression vector. The origin of replication behaves as an autonomous unit of polynucleotide replication within a cell, capable of replication under its own control. An origin of replication may be needed for a vector to replicate in a particular host cell. With certain origins of replication, an expression vector can be reproduced at a high copy number in the presence of the appropriate proteins within the cell. Examples of origins are the autonomously replicating sequences, which are effective in yeast; and the viral T-antigen, effective in COS-7 cells.

A "mutant" sequence is defined as a DNA, RNA or amino acid sequence differing from but having homology with the native or disclosed sequence. Depending on the particular sequence, the degree of homology (sequence identity) between the native or disclosed sequence and the mutant sequence is preferably greater than 50% (e.g., 60%, 70%, 80%, 90%, 95%, 99% or more) which is calculated as described above. As used herein, an "allelic variant" of a nucleic acid molecule, or region, for which nucleic acid sequence is provided herein is a nucleic acid molecule, or region, that occurs at essentially the same locus in the genome of another or second isolate, and that, due to natural variation caused by, for example, mutation or recombination, has a similar but not identical nucleic acid sequence. A coding region allelic variant typically encodes a protein having similar activity to that of the protein encoded by the gene to which it is being compared. An allelic variant can also comprise an alteration in the 5' or 3' untranslated regions of the gene, such as in regulatory control regions. (see, for example, U.S. Patent 5,753,235).

Antibodies

As used herein, the term "antibody" refers to a polypeptide or group of polypeptides composed of at least one antibody combining site. An "antibody combining site" is the three-dimensional binding space with an internal surface shape and charge distribution complementary to the features of an epitope of an antigen, which allows a binding of the antibody with the antigen. "Antibody" includes, for example, vertebrate antibodies, hybrid antibodies, chimeric antibodies, humanized antibodies, altered antibodies, univalent antibodies, Fab proteins, and single domain antibodies.

Antibodies against the proteins of the invention are useful for affinity chromatography, immunoassays, and distinguishing/identifying *Neisseria* menB proteins.

Antibodies elicited against the proteins of the present invention bind to antigenic polypeptides or proteins or protein fragments that are present and specifically associated with strains of *Neisseria meningitidis* menB. In some instances, these antigens may be associated with specific strains, such as those antigens specific for the menB strains. The antibodies of the invention may be immobilized to a matrix and utilized in an immunoassay or on an affinity chromatography column, to enable the detection and/or separation of polypeptides, proteins or protein fragments or cells comprising such polypeptides, proteins or protein fragments.

Alternatively, such polypeptides, proteins or protein fragments may be immobilized so as to detect antibodies bindably specific thereto.

Antibodies to the proteins of the invention, both polyclonal and monoclonal, may be prepared by conventional methods. In general, the protein is first used to immunize a suitable animal, preferably a mouse, rat, rabbit or goat. Rabbits and goats are preferred for the preparation of polyclonal sera due to the volume of serum obtainable, and the availability of labeled anti-rabbit and anti-goat antibodies. Immunization is generally performed by mixing or emulsifying the protein in saline, preferably in an adjuvant such as Freund's complete adjuvant, and injecting the mixture or emulsion parenterally (generally subcutaneously or intramuscularly). A dose of 50-200 µg/injection is typically sufficient. Immunization is generally boosted 2-6 weeks later with one or more injections of the protein in saline, preferably using Freund's incomplete adjuvant. One may alternatively generate antibodies by in vitro immunization using methods known in the art, which for the purposes of this invention is considered equivalent to in vivo immunization. Polyclonal antisera is obtained by bleeding the immunized animal into a glass or plastic container, incubating the blood at 25°C for one hour, followed by incubating at 4°C for 2-18 hours. The serum is recovered by centrifugation (e.g., 1,000g for 10 minutes). About 20-50 ml per bleed may be obtained from rabbits.

Monoclonal antibodies are prepared using the standard method of Kohler & Milstein (Nature (1975) 256:495-96), or a modification thereof. Typically, a mouse or rat is immunized as described above. However, rather than bleeding the animal to extract serum, the spleen (and optionally several large lymph nodes) is removed and dissociated into single cells. If desired, the spleen cells may be screened (after removal of nonspecifically adherent cells) by applying a cell suspension to a plate or well coated with the protein antigen. B-cells that express membrane-bound immunoglobulin specific for the antigen bind to the plate, and

are not rinsed away with the rest of the suspension. Resulting B-cells, or all dissociated spleen cells, are then induced to fuse with myeloma cells to form hybridomas, and are cultured in a selective medium (e.g., hypoxanthine, aminopterin, thymidine medium, "HAT"). The resulting hybridomas are plated by limiting dilution, and are assayed for the production of antibodies which bind specifically to the immunizing antigen (and which do not bind to unrelated antigens). The selected MAb-secreting hybridomas are then cultured either *in vitro* (e.g., in tissue culture bottles or hollow fiber reactors), or *in vivo* (as ascites in mice).

If desired, the antibodies (whether polyclonal or monoclonal) may be labeled using conventional techniques. Suitable labels include fluorophores, chromophores, radioactive atoms (particularly 32P and 125I), electron-dense reagents, enzymes, and ligands having specific binding partners. Enzymes are typically detected by their activity. For example, horseradish peroxidase is usually detected by its ability to convert 3,3',5,5'-tetramethylbenzidine (TMB) to a blue pigment, quantifiable with a spectrophotometer. "Specific binding partner" refers to a protein capable of binding a ligand molecule with high specificity, as for example in the case of an antigen and a monoclonal antibody specific therefor. Other specific binding partners include biotin and avidin or streptavidin, IgG and protein A, and the numerous receptor-ligand couples known in the art. It should be understood that the above description is not meant to categorize the various labels into distinct classes, as the same label may serve in several different modes. For example, 125 I may serve as a radioactive label or as an electron-dense reagent. HRP may serve as enzyme or as antigen for a MAb. Further, one may combine various labels for desired effect. For example, MAbs and avidin also require labels in the practice of this invention: thus, one might label a MAb with biotin, and detect its presence with avidin labeled with 125I, or with an anti-biotin MAb labeled with HRP. Other permutations and possibilities will be readily apparent to those of ordinary skill in the art, and are considered as equivalents within the scope of the instant invention.

Antigens, immunogens, polypeptides, proteins or protein fragments of the present invention elicit formation of specific binding partner antibodies. These antigens, immunogens, polypeptides, proteins or protein fragments of the present invention comprise immunogenic compositions of the present invention. Such immunogenic compositions may further comprise or include adjuvants, carriers, or other compositions that promote or enhance

or stabilize the antigens, polypeptides, proteins or protein fragments of the present invention. Such adjuvants and carriers will be readily apparent to those of ordinary skill in the art.

Pharmaceutical Compositions

Pharmaceutical compositions can comprise (include) either polypeptides, antibodies, or nucleic acid of the invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.

The term "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature, when given to a patient that is febrile. The precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgment of the clinician.

For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.

Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of

organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. 1991).

Pharmaceutically acceptable carriers in therapeutic compositions may contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.

Delivery Methods

Once formulated, the compositions of the invention can be administered directly to the subject. The subjects to be treated can be animals; in particular, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal and transcutaneous applications, needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Vaccines

Vaccines according to the invention may either be prophylactic (i.e., to prevent infection) or therapeutic (i.e., to treat disease after infection).

Such vaccines comprise immunizing antigen(s) or immunogen(s), immunogenic polypeptide, protein(s) or protein fragments, or nucleic acids (e.g., ribonucleic acid or deoxyribonucleic acid), usually in combination with "pharmaceutically acceptable carriers," which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates (such as oil droplets or

liposomes), and inactive virus particles. Such carriers are well known to those of ordinary skill in the art. Additionally, these carriers may function as immunostimulating agents ("adjuvants"). Furthermore, the immunogen or antigen may be conjugated to a bacterial toxoid, such as a toxoid from diphtheria, tetanus, cholera, *H. pylori*, etc. pathogens.

Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: (1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sùlfate, etc; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59 (PCT Publ. No. WO 90/14837), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) RibiTM adjuvant system (RAS), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (DetoxTM); (3) saponin adjuvants, such as StimulonTM (Cambridge Bioscience, Worcester, MA) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes); (4) Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA); (5) cytokines, such as interleukins (e.g., IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (e.g., gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc; (6) detoxified mutants of a bacterial ADP-ribosylating toxin such as a cholera toxin (CT), a pertussis toxin (PT), or an E. coli heat-labile toxin (LT), particularly LT-K63, LT-R72, CT-S109, PT-K9/G129; see, e.g., WO 93/13302 and WO 92/19265; and (7) other substances that act as immunostimulating agents to enhance the effectiveness of the composition. Alum and MF59 are preferred.

As mentioned above, muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-huydroxyphosphoryloxy)-ethylamine (MTP-PE), etc.

The vaccine compositions comprising immunogenic compositions (e.g., which may include the antigen, pharmaceutically acceptable carrier, and adjuvant) typically will contain diluents, such as water, saline, glycerol, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Alternatively, vaccine compositions comprising immunogenic compositions may comprise an antigen, polypeptide, protein, protein fragment or nucleic acid in a pharmaceutically acceptable carrier.

More specifically, vaccines comprising immunogenic compositions comprise an immunologically effective amount of the immunogenic polypeptides, as well as any other of the above-mentioned components, as needed. By "immunologically effective amount", it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (e.g., nonhuman primate, primate, etc.), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.

Typically, the vaccine compositions or immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. The preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect, as discussed above under pharmaceutically acceptable carriers.

The immunogenic compositions are conventionally administered parenterally, e.g., by injection, either subcutaneously or intramuscularly. Additional formulations suitable for other modes of administration include oral and pulmonary formulations, suppositories, and transdermal and transcutaneous applications. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents.

As an alternative to protein-based vaccines, DNA vaccination may be employed (e.g., Robinson & Torres (1997) Seminars in Immunology 9:271-283; Donnelly et al. (1997) Annu Rev Immunol 15:617-648).

Gene Delivery Vehicles

Gene therapy vehicles for delivery of constructs, including a coding sequence of a therapeutic of the invention, to be delivered to the mammal for expression in the mammal, can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches in *in vivo* or *ex vivo* modality. Expression of such coding sequence can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence in vivo can be either constitutive or regulated.

The invention includes gene delivery vehicles capable of expressing the contemplated nucleic acid sequences. The gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, adenoviral, adeno-associated viral (AAV), herpes viral, or alphavirus vector. The viral vector can also be an astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, parvovirus, picornavirus, poxvirus, or togavirus viral vector. See generally, Jolly (1994) Cancer Gene Therapy 1:51-64; Kimura (1994) Human Gene Therapy 5:845-852; Connelly (1995) Human Gene Therapy 6:185-193; and Kaplitt (1994) Nature Genetics 6:148-153.

Retroviral vectors are well known in the art, including B, C and D type retroviruses, xenotropic retroviruses (for example, NZB-X1, NZB-X2 and NZB9-1 (see O'Neill (1985) *J. Virol.* 53:160) polytropic retroviruses e.g., MCF and MCF-MLV (see Kelly (1983) *J. Virol.* 45:291), spumaviruses and lentiviruses. See RNA Tumor Viruses, Second Edition, Cold Spring Harbor Laboratory, 1985.

Portions of the retroviral gene therapy vector may be derived from different retroviruses. For example, retrovector LTRs may be derived from a Murine Sarcoma Virus, a tRNA binding site from a Rous Sarcoma Virus, a packaging signal from a Murine Leukemia Virus, and an origin of second strand synthesis from an Avian Leukosis Virus.

These recombinant retroviral vectors may be used to generate transduction competent retroviral vector particles by introducing them into appropriate packaging cell lines (see US patent 5,591,624). Retrovirus vectors can be constructed for site-specific integration into host cell DNA by incorporation of a chimeric integrase enzyme into the retroviral particle (see WO96/37626). It is preferable that the recombinant viral vector is a replication defective recombinant virus.

Packaging cell lines suitable for use with the above-described retrovirus vectors are well known in the art, are readily prepared (see WO95/30763 and WO92/05266), and can be used to create producer cell lines (also termed vector cell lines or "VCLs") for the production of recombinant vector particles. Preferably, the packaging cell lines are made from human parent cells (e.g., HT1080 cells) or mink parent cell lines, which eliminates inactivation in human serum.

Preferred retroviruses for the construction of retroviral gene therapy vectors include Avian Leukosis Virus, Bovine Leukemia, Virus, Murine Leukemia Virus, Mink-Cell Focus-Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis Virus and Rous Sarcoma Virus. Particularly preferred Murine Leukemia Viruses include 4070A and 1504A (Hartley and Rowe (1976) *J Virol* 19:19-25), Abelson (ATCC No. VR-999), Friend (ATCC No. VR-245), Graffi, Gross (ATCC Nol VR-590), Kirsten, Harvey Sarcoma Virus and Rauscher (ATCC No. VR-998) and Moloney Murine Leukemia Virus (ATCC No. VR-190). Such retroviruses may be obtained from depositories or collections such as the American Type Culture Collection ("ATCC") in Rockville, Maryland or isolated from known sources using commonly available techniques.

Exemplary known retroviral gene therapy vectors employable in this invention include those described in patent applications GB2200651, EP0415731, EP0345242, EP0334301, WO89/02468; WO89/05349, WO89/09271, WO90/02806, WO90/07936, WO94/03622, WO93/25698, WO93/25234, WO93/11230, WO93/10218, WO91/02805, WO91/02825, WO95/07994, US 5,219,740, US 4,405,712, US 4,861,719, US 4,980,289, US 4,777,127, US 5,591,624. See also Vile (1993) Cancer Res 53:3860-3864; Vile (1993) Cancer Res 53:962-967; Ram (1993) Cancer Res 53 (1993) 83-88; Takamiya (1992) J Neurosci Res 33:493-503; Baba (1993) J Neurosurg 79:729-735; Mann (1983) Cell 33:153; Cane (1984) Proc Natl Acad Sci 81:6349; and Miller (1990) Human Gene Therapy 1.

Human adenoviral gene therapy vectors are also known in the art and employable in this invention. See, for example, Berkner (1988) *Biotechniques* 6:616 and Rosenfeld (1991) *Science* 252:431, and WO93/07283, WO93/06223, and WO93/07282. Exemplary known adenoviral gene therapy vectors employable in this invention include those described in the above referenced documents and in WO94/12649, WO93/03769, WO93/19191, WO94/28938, WO95/11984, WO95/00655, WO95/27071, WO95/29993, WO95/34671, WO96/05320, WO94/08026, WO94/11506, WO93/06223, WO94/24299, WO95/14102,

WO95/24297, WO95/02697, WO94/28152, WO94/24299, WO95/09241, WO95/25807, WO95/05835, WO94/18922 and WO95/09654. Alternatively, administration of DNA linked to killed adenovirus as described in Curiel (1992) Hum. Gene Ther. 3:147-154 may be employed. The gene delivery vehicles of the invention also include adenovirus associated virus (AAV) vectors. Leading and preferred examples of such vectors for use in this invention are the AAV-2 based vectors disclosed in Srivastava, WO93/09239. Most preferred AAV vectors comprise the two AAV inverted terminal repeats in which the native D-sequences are modified by substitution of nucleotides, such that at least 5 native nucleotides and up to 18 native nucleotides, preferably at least 10 native nucleotides up to 18 native nucleotides, most preferably 10 native nucleotides are retained and the remaining nucleotides of the D-sequence are deleted or replaced with non-native nucleotides. The native D-sequences of the AAV inverted terminal repeats are sequences of 20 consecutive nucleotides in each AAV inverted terminal repeat (i.e., there is one sequence at each end) which are not involved in HP formation. The non-native replacement nucleotide may be any nucleotide other than the nucleotide found in the native D-sequence in the same position. Other employable exemplary AAV vectors are pWP-19, pWN-1, both of which are disclosed in Nahreini (1993) Gene 124:257-262. Another example of such an AAV vector is psub201 (see Samulski (1987) J. Virol. 61:3096). Another exemplary AAV vector is the Double-D ITR vector. Construction of the Double-D ITR vector is disclosed in US Patent 5,478,745. Still other vectors are those disclosed in Carter US Patent 4,797,368 and Muzyczka US Patent 5,139,941, Chartejee US Patent 5,474,935, and Kotin WO94/288157. Yet a further example of an AAV vector employable in this invention is SSV9AFABTKneo, which contains the AFP enhancer and albumin promoter and directs expression predominantly in the liver. Its structure and construction are disclosed in Su (1996) Human Gene Therapy 7:463-470. Additional AAV gene therapy vectors are described in US 5,354,678, US 5,173,414, US 5,139,941, and US 5,252,479.

The gene therapy vectors comprising sequences of the invention also include herpes vectors. Leading and preferred examples are herpes simplex virus vectors containing a sequence encoding a thymidine kinase polypeptide such as those disclosed in US 5,288,641 and EP0176170 (Roizman). Additional exemplary herpes simplex virus vectors include HFEM/ICP6-LacZ disclosed in WO95/04139 (Wistar Institute), pHSVlac described in Geller (1988) Science 241:1667-1669 and in WO90/09441 and WO92/07945, HSV Us3::pgC-lacZ

described in Fink (1992) *Human Gene Therapy* 3:11-19 and HSV 7134, 2 RH 105 and GAL4 described in EP 0453242 (Breakefield), and those deposited with the ATCC as accession numbers ATCC VR-977 and ATCC VR-260.

Also contemplated are alpha virus gene therapy vectors that can be employed in this invention. Preferred alpha virus vectors are Sindbis viruses vectors. Togaviruses, Semliki Forest virus (ATCC VR-67; ATCC VR-1247), Middleberg virus (ATCC VR-370), Ross River virus (ATCC VR-373; ATCC VR-1246), Venezuelan equine encephalitis virus (ATCC VR923; ATCC VR-1250; ATCC VR-1249; ATCC VR-532), and those described in US patents 5,091,309, 5,217,879, and WO92/10578. More particularly, those alpha virus vectors described in U.S. Serial No. 08/405,627, filed March 15, 1995,WO94/21792, WO92/10578, WO95/07994, US 5,091,309 and US 5,217,879 are employable. Such alpha viruses may be obtained from depositories or collections such as the ATCC in Rockville, Maryland or isolated from known sources using commonly available techniques. Preferably, alphavirus vectors with reduced cytotoxicity are used (see USSN 08/679640).

DNA vector systems such as eukarytic layered expression systems are also useful for expressing the nucleic acids of the invention. SeeWO95/07994 for a detailed description of eukaryotic layered expression systems. Preferably, the eukaryotic layered expression systems of the invention are derived from alphavirus vectors and most preferably from Sindbis viral vectors.

Other viral vectors suitable for use in the present invention include those derived from poliovirus, for example ATCC VR-58 and those described in Evans, Nature 339 (1989) 385 and Sabin (1973) *J. Biol. Standardization* 1:115; rhinovirus, for example ATCC VR-1110 and those described in Arnold (1990) *J Cell Biochem* L401; pox viruses such as canary pox virus or vaccinia virus, for example ATCC VR-111 and ATCC VR-2010 and those described in Fisher-Hoch (1989) *Proc Natl Acad Sci* 86:317; Flexner (1989) *Ann NY Acad Sci* 569:86, Flexner (1990) *Vaccine* 8:17; in US 4,603,112 and US 4,769,330 and WO89/01973; SV40 virus, for example ATCC VR-305 and those described in Mulligan (1979) *Nature* 277:108 and Madzak (1992) *J Gen Virol* 73:1533; influenza virus, for example ATCC VR-797 and recombinant influenza viruses made employing reverse genetics techniques as described in US 5,166,057 and in Enami (1990) *Proc Natl Acad Sci* 87:3802-3805; Enami & Palese (1991) *J Virol* 65:2711-2713 and Luytjes (1989) *Cell* 59:110, (see also McMichael (1983) *NEJ Med* 309:13, and Yap (1978) *Nature* 273:238 and Nature (1979) 277:108); human

WO 99/057280

41

PCT/US99/09346

immunodeficiency virus as described in EP-0386882 and in Buchschacher (1992) *J. Virol.* 66:2731; measles virus, for example ATCC VR-67 and VR-1247 and those described in EP-0440219; Aura virus, for example ATCC VR-368; Bebaru virus, for example ATCC VR-600 and ATCC VR-1240; Cabassou virus, for example ATCC VR-922; Chikungunya virus, for example ATCC VR-64 and ATCC VR-1241; Fort Morgan Virus, for example ATCC VR-924; Getah virus, for example ATCC VR-369 and ATCC VR-1243; Kyzylagach virus, for example ATCC VR-927; Mayaro virus, for example ATCC VR-66; Mucambo virus, for example ATCC VR-580 and ATCC VR-1244; Ndumu virus, for example ATCC VR-371; Pixuna virus, for example ATCC VR-372 and ATCC VR-1245; Tonate virus, for example ATCC VR-925; Triniti virus, for example ATCC VR-469; Una virus, for example ATCC VR-374; Whataroa virus, for example ATCC VR-926; Y-62-33 virus, for example ATCC VR-375; O'Nyong virus, Eastern encephalitis virus, for example ATCC VR-65 and ATCC VR-1242; Western encephalitis virus, for example ATCC VR-70, ATCC VR-1251, ATCC VR-622 and ATCC VR-1252; and coronavirus, for example ATCC VR-740 and those described in Hamre (1966) *Proc Soc Exp Biol Med* 121:190.

Delivery of the compositions of this invention into cells is not limited to the above mentioned viral vectors. Other delivery methods and media may be employed such as, for example, nucleic acid expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example see US Serial No. 08/366,787, filed December 30, 1994 and Curiel (1992) *Hum Gene Ther* 3:147-154 ligand linked DNA, for example see Wu (1989) *J Biol Chem* 264:16985-16987, eucaryotic cell delivery vehicles cells, for example see US Serial No.08/240,030, filed May 9, 1994, and US Serial No. 08/404,796, deposition of photopolymerized hydrogel materials, hand-held gene transfer particle gun, as described in US Patent 5,149,655, ionizing radiation as described in US5,206,152 and in WO92/11033, nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip (1994) *Mol Cell Biol* 14:2411-2418 and in Woffendin (1994) *Proc Natl Acad Sci* 91:1581-1585.

Particle mediated gene transfer may be employed, for example see US Serial No. 60/023,867. Briefly, the sequence can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, as described in Wu &

Wu (1987) J. Biol. Chem. 262:4429-4432, insulin as described in Hucked (1990) Biochem Pharmacol 40:253-263, galactose as described in Plank (1992) Bioconjugate Chem 3:533-539, lactose or transferrin.

Naked DNA may also be employed to transform a host cell. Exemplary naked DNA introduction methods are described in WO 90/11092 and US 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm.

Liposomes that can act as gene delivery vehicles are described in U.S. 5,422,120, WO95/13796, WO94/23697, WO91/14445 and EP-524,968. As described in USSN. 60/023,867, on non-viral delivery, the nucleic acid sequences encoding a polypeptide can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then be incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, insulin, galactose, lactose, or transferrin. Other delivery systems include the use of liposomes to encapsulate DNA comprising the gene under the control of a variety of tissue-specific or ubiquitously-active promoters. Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin et al (1994) Proc. Natl. Acad. Sci. USA 91(24):11581-11585. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun, as described in U.S. 5,149,655; use of ionizing radiation for activating transferred gene, as described in U.S. 5,206,152 and WO92/11033.

Exemplary liposome and polycationic gene delivery vehicles are those described in US 5,422,120 and 4,762,915; inWO 95/13796; WO94/23697; and WO91/14445; in EP-0524968; and in Stryer, Biochemistry, pages 236-240 (1975) W.H. Freeman, San Francisco; Szoka (1980) Biochem Biophys Acta 600:1; Bayer (1979) Biochem Biophys Acta 550:464; Rivnay (1987) Meth Enzymol 149:119; Wang (1987) Proc Natl Acad Sci 84:7851; Plant (1989) Anal Biochem 176:420.

A polynucleotide composition can comprises therapeutically effective amount of a gene therapy vehicle, as the term is defined above. For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

Delivery Methods

Once formulated, the polynucleotide compositions of the invention can be administered (1) directly to the subject; (2) delivered ex vivo, to cells derived from the subject; or (3) in vitro for expression of recombinant proteins. The subjects to be treated can be mammals or birds. Also, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a tumor or lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal applications, needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Methods for the ex vivo delivery and reimplantation of transformed cells into a subject are known in the art and described in eg. WO93/14778. Examples of cells useful in ex vivo applications include, for example, stem cells, particularly hematopoetic, lymph cells, macrophages, dendritic cells, or tumor cells.

Generally, delivery of nucleic acids for both ex vivo and in vitro applications can be accomplished by the following procedures, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei, all well known in the art.

Polynucleotide and polypeptide pharmaceutical compositions

In addition to the pharmaceutically acceptable carriers and salts described above, the following additional agents can be used with polynucleotide and/or polypeptide compositions.

A.Polypeptides

One example are polypeptides which include, without limitation: asioloorosomucoid (ASOR); transferrin; asialoglycoproteins; antibodies; antibody fragments; ferritin; interleukins; interferons, granulocyte, macrophage colony stimulating factor (GM-CSF),

WO 99/057280 PCT/US99/09346

granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor and erythropoietin. Viral antigens, such as envelope proteins, can also be used. Also, proteins from other invasive organisms, such as the 17 amino acid peptide from the circumsporozoite protein of plasmodium falciparum known as RII.

B. Hormones, Vitamins, Etc.

Other groups that can be included are, for example: hormones, steroids, androgens, estrogens, thyroid hormone, or vitamins, folic acid.

C.Polyalkylenes, Polysaccharides, etc.

Also, polyalkylene glycol can be included with the desired polynucleotides or polypeptides. In a preferred embodiment, the polyalkylene glycol is polyethlylene glycol. In addition, mono-, di-, or polysaccarides can be included. In a preferred embodiment of this aspect, the polysaccharide is dextran or DEAE-dextran. Also, chitosan and poly(lactide-co-glycolide)

D.Lipids, and Liposomes

The desired polynucleotide or polypeptide can also be encapsulated in lipids or packaged in liposomes prior to delivery to the subject or to cells derived therefrom.

Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed polynucleotide or polypeptide to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or more of lipid. For a review of the use of liposomes as carriers for delivery of nucleic acids, see, Hug and Sleight (1991) *Biochim. Biophys. Acta.* 1097:1-17; Straubinger (1983) *Meth. Enzymol.* 101:512-527.

Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner (1987) *Proc. Natl. Acad. Sci. USA* 84:7413-7416); mRNA (Malone (1989) *Proc. Natl. Acad. Sci. USA* 86:6077-6081); and purified transcription factors (Debs (1990) *J. Biol. Chem.* 265:10189-10192), in functional form.

Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, NY. (See, also, Felgner *supra*). Other commercially available liposomes include transfectace (DDAB/DOPE) and

DOTAP/DOPE (Boerhinger). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, eg. Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; WO90/11092 for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes.

Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, AL), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.

The liposomes can comprise multilammelar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known in the art. See eg. Straubinger (1983) Meth. Immunol. 101:512-527; Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; Papahadjopoulos (1975) Biochim. Biophys. Acta 394:483; Wilson (1979) Cell 17:77); Deamer & Bangham (1976) Biochim. Biophys. Acta 443:629; Ostro (1977) Biochem. Biophys. Res. Commun. 76:836; Fraley (1979) Proc. Natl. Acad. Sci. USA 76:3348); Enoch & Strittmatter (1979) Proc. Natl. Acad. Sci. USA 76:145; Fraley (1980) J. Biol. Chem. (1980) 255:10431; Szoka & Papahadjopoulos (1978) Proc. Natl. Acad. Sci. USA 75:145; and Schaefer-Ridder (1982) Science 215:166.

E.Lipoproteins

In addition, lipoproteins can be included with the polynucleotide or polypeptide to be delivered. Examples of lipoproteins to be utilized include: chylomicrons, HDL, IDL, LDL, and VLDL. Mutants, fragments, or fusions of these proteins can also be used. Also, modifications of naturally occurring lipoproteins can be used, such as acetylated LDL. These lipoproteins can target the delivery of polynucleotides to cells expressing lipoprotein receptors. Preferably, if lipoproteins are including with the polynucleotide to be delivered, no other targeting ligand is included in the composition.

Naturally occurring lipoproteins comprise a lipid and a protein portion. The protein portion are known as apoproteins. At the present, apoproteins A, B, C, D, and E have been

isolated and identified. At least two of these contain several proteins, designated by Roman numerals, AI, AII, AIV; CI, CII, CIII.

A lipoprotein can comprise more than one apoprotein. For example, naturally occurring chylomicrons comprises of A, B, C, and E, over time these lipoproteins lose A and acquire C and E apoproteins. VLDL comprises A, B, C, and E apoproteins, LDL comprises apoprotein B; and HDL comprises apoproteins A, C, and E.

The amino acid of these apoproteins are known and are described in, for example, Breslow (1985) Annu Rev. Biochem 54:699; Law (1986) Adv. Exp Med. Biol. 151:162; Chen (1986) J Biol Chem 261:12918; Kane (1980) Proc Natl Acad Sci USA 77:2465; and Utermann (1984) Hum Genet 65:232.

Lipoproteins contain a variety of lipids including, triglycerides, cholesterol (free and esters), and phopholipids. The composition of the lipids varies in naturally occurring lipoproteins. For example, chylomicrons comprise mainly triglycerides. A more detailed description of the lipid content of naturally occurring lipoproteins can be found, for example, in *Meth. Enzymol.* 128 (1986). The composition of the lipids are chosen to aid in conformation of the apoprotein for receptor binding activity. The composition of lipids can also be chosen to facilitate hydrophobic interaction and association with the polynucleotide binding molecule.

Naturally occurring lipoproteins can be isolated from serum by ultracentrifugation, for instance. Such methods are described in *Meth. Enzymol.* (supra); Pitas (1980) J. Biochem. 255:5454-5460 and Mahey (1979) J Clin. Invest 64:743-750.

Lipoproteins can also be produced by *in vitro* or recombinant methods by expression of the apoprotein genes in a desired host cell. See, for example, Atkinson (1986) *Annu Rev Biophys Chem* 15:403 and Radding (1958) *Biochim Biophys Acta* 30: 443.

Lipoproteins can also be purchased from commercial suppliers, such as Biomedical Techniologies, Inc., Stoughton, Massachusetts, USA.

Further description of lipoproteins can be found in Zuckermann et al., PCT. Appln. No. US97/14465.

F.Polycationic Agents

Polycationic agents can be included, with or without lipoprotein, in a composition with the desired polynucleotide or polypeptide to be delivered.

Polycationic agents, typically, exhibit a net positive charge at physiological relevant pH and are capable of neutralizing the electrical charge of nucleic acids to facilitate delivery to a desired location. These agents have both in vitro, ex vivo, and in vivo applications. Polycationic agents can be used to deliver nucleic acids to a living subject either intramuscularly, subcutaneously, etc.

The following are examples of useful polypeptides as polycationic agents: polylysine, polyarginine, polyornithine, and protamine. Other examples include histones, protamines, human serum albumin, DNA binding proteins, non-histone chromosomal proteins, coat proteins from DNA viruses, such as (X174, transcriptional factors also contain domains that bind DNA and therefore may be useful as nucleic aid condensing agents. Briefly, transcriptional factors such as C/CEBP, c-jun, c-fos, AP-1, AP-2, AP-3, CPF, Prot-1, Sp-1, Oct-1, Oct-2, CREP, and TFIID contain basic domains that bind DNA sequences.

Organic polycationic agents include: spermine, spermidine, and purtrescine.

The dimensions and of the physical properties of a polycationic agent can be extrapolated from the list above, to construct other polypeptide polycationic agents or to produce synthetic polycationic agents.

Synthetic Polycationic Agents

Synthetic polycationic agents which are useful include, for example, DEAE-dextran, polybrene. Lipofectin , and lipofectAMINE are monomers that form polycationic complexes when combined with polynucleotides or polypeptides.

Immunodiagnostic Assays

Neisserial antigens of the invention can be used in immunoassays to detect antibody levels (or, conversely, anti-Neisserial antibodies can be used to detect antigen levels). Immunoassays based on well defined, recombinant antigens can be developed to replace invasive diagnostics methods. Antibodies to Neisserial proteins within biological samples, including for example, blood or serum samples, can be detected. Design of the immunoassays is subject to a great deal of variation, and a variety of these are known in the art. Protocols for the immunoassay may be based, for example, upon competition, or direct reaction, or sandwich type assays. Protocols may also, for example, use solid supports, or may be by immunoprecipitation. Most assays involve the use of labeled antibody or polypeptide; the labels may be, for example, fluorescent, chemiluminescent, radioactive, or dye molecules. Assays which amplify the signals from the probe are also known; examples of which are

48

assays which utilize biotin and avidin, and enzyme-labeled and mediated immunoassays, such as ELISA assays.

Kits suitable for immunodiagnosis and containing the appropriate labeled reagents are constructed by packaging the appropriate materials, including the compositions of the invention, in suitable containers, along with the remaining reagents and materials (for example, suitable buffers, salt solutions, *etc.*) required for the conduct of the assay, as well as suitable set of assay instructions.

Nucleic Acid Hybridisation

"Hybridization" refers to the association of two nucleic acid sequences to one another by hydrogen bonding. Typically, one sequence will be fixed to a solid support and the other will be free in solution. Then, the two sequences will be placed in contact with one another under conditions that favor hydrogen bonding. Factors that affect this bonding include: the type and volume of solvent; reaction temperature; time of hybridization; agitation; agents to block the non-specific attachment of the liquid phase sequence to the solid support (Denhardt's reagent or BLOTTO); concentration of the sequences; use of compounds to increase the rate of association of sequences (dextran sulfate or polyethylene glycol); and the stringency of the washing conditions following hybridization. See Sambrook *et al.* [supra] Volume 2, chapter 9, pages 9.47 to 9.57.

"Stringency" refers to conditions in a hybridization reaction that favor association of very similar sequences over sequences that differ. For example, the combination of temperature and salt concentration should be chosen that is approximately 120 to 200□C below the calculated Tm of the hybrid under study. The temperature and salt conditions can often be determined empirically in preliminary experiments in which samples of genomic DNA immobilized on filters are hybridized to the sequence of interest and then washed under conditions of different stringencies. See Sambrook *et al.* at page 9.50.

Variables to consider when performing, for example, a Southern blot are (1) the complexity of the DNA being blotted and (2) the homology between the probe and the sequences being detected. The total amount of the fragment(s) to be studied can vary a magnitude of 10, from 0.1 to 1µg for a plasmid or phage digest to 10^{-9} to 10^{-8} g for a single copy gene in a highly complex eukaryotic genome. For lower complexity polynucleotides, substantially shorter blotting, hybridization, and exposure times, a smaller amount of starting polynucleotides, and lower specific activity of probes can be used. For example, a single-copy

WO 99/057280

yeast gene can be detected with an exposure time of only 1 hour starting with 1 μ g of yeast DNA, blotting for two hours, and hybridizing for 4-8 hours with a probe of 10^8 cpm/ μ g. For a single-copy mammalian gene a conservative approach would start with 10 μ g of DNA, blot overnight, and hybridize overnight in the presence of 10% dextran sulfate using a probe of greater than 10^8 cpm/ μ g, resulting in an exposure time of ~24 hours.

49

Several factors can affect the melting temperature (Tm) of a DNA-DNA hybrid between the probe and the fragment of interest, and consequently, the appropriate conditions for hybridization and washing. In many cases the probe is not 100% homologous to the fragment. Other commonly encountered variables include the length and total G+C content of the hybridizing sequences and the ionic strength and formamide content of the hybridization buffer. The effects of all of these factors can be approximated by a single equation:

Tm= $81 + 16.6(\log_{10}\text{Ci}) + 0.4[\%(G + C)]-0.6(\%\text{formamide}) - 600/n-1.5(\%\text{mismatch}).$ where Ci is the salt concentration (monovalent ions) and n is the length of the hybrid in base pairs (slightly modified from Meinkoth & Wahl (1984) Anal. Biochem. 138: 267-284).

In designing a hybridization experiment, some factors affecting nucleic acid hybridization can be conveniently altered. The temperature of the hybridization and washes and the salt concentration during the washes are the simplest to adjust. As the temperature of the hybridization increases (*ie.* stringency), it becomes less likely for hybridization to occur between strands that are nonhomologous, and as a result, background decreases. If the radiolabeled probe is not completely homologous with the immobilized fragment (as is frequently the case in gene family and interspecies hybridization experiments), the hybridization temperature must be reduced, and background will increase. The temperature of the washes affects the intensity of the hybridizing band and the degree of background in a similar manner. The stringency of the washes is also increased with decreasing salt concentrations.

In general, convenient hybridization temperatures in the presence of 50% formamide are 42 \Box C for a probe with is 95% to 100% homologous to the target fragment, 37 \Box C for 90% to 95% homology, and 32 \Box C for 85% to 90% homology. For lower homologies, formamide content should be lowered and temperature adjusted accordingly, using the equation above. If the homology between the probe and the target fragment are not known, the simplest approach is to start with both hybridization and wash conditions which are nonstringent. If non-specific bands or high background are observed after autoradiography, the filter can be

washed at high stringency and reexposed. If the time required for exposure makes this approach impractical, several hybridization and/or washing stringencies should be tested in parallel.

Nucleic Acid Probe Assays

Methods such as PCR, branched DNA probe assays, or blotting techniques utilizing nucleic acid probes according to the invention can determine the presence of cDNA or mRNA. A probe is said to "hybridize" with a sequence of the invention if it can form a duplex or double stranded complex, which is stable enough to be detected.

The nucleic acid probes will hybridize to the Neisserial nucleotide sequences of the invention (including both sense and antisense strands). Though many different nucleotide sequences will encode the amino acid sequence, the native Neisserial sequence is preferred because it is the actual sequence present in cells. mRNA represents a coding sequence and so a probe should be complementary to the coding sequence; single-stranded cDNA is complementary to mRNA, and so a cDNA probe should be complementary to the non-coding sequence.

The probe sequence need not be identical to the Neisserial sequence (or its complement) — some variation in the sequence and length can lead to increased assay sensitivity if the nucleic acid probe can form a duplex with target nucleotides, which can be detected. Also, the nucleic acid probe can include additional nucleotides to stabilize the formed duplex. Additional Neisserial sequence may also be helpful as a label to detect the formed duplex. For example, a non-complementary nucleotide sequence may be attached to the 5' end of the probe, with the remainder of the probe sequence being complementary to a Neisserial sequence. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the a Neisserial sequence in order to hybridize therewith and thereby form a duplex which can be detected.

The exact length and sequence of the probe will depend on the hybridization conditions, such as temperature, salt condition and the like. For example, for diagnostic applications, depending on the complexity of the analyte sequence, the nucleic acid probe typically contains at least 10-20 nucleotides, preferably 15-25, and more preferably at least 30 nucleotides, although it may be shorter than this. Short primers generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.

Probes may be produced by synthetic procedures, such as the triester method of Matteucci et al. [J. Am. Chem. Soc. (1981) 103:3185], or according to Urdea et al. [Proc. Natl. Acad. Sci. USA (1983) 80: 7461], or using commercially available automated oligonucleotide synthesizers.

The chemical nature of the probe can be selected according to preference. For certain applications, DNA or RNA are appropriate. For other applications, modifications may be incorporated eg. backbone modifications, such as phosphorothioates or methylphosphonates, can be used to increase in vivo half-life, alter RNA affinity, increase nuclease resistance etc. [eg. see Agrawal & Iyer (1995) Curr Opin Biotechnol 6:12-19; Agrawal (1996) TIBTECH 14:376-387]; analogues such as peptide nucleic acids may also be used [eg. see Corey (1997) TIBTECH 15:224-229; Buchardt et al. (1993) TIBTECH 11:384-386].

One example of a nucleotide hybridization assay is described by Urdea *et al.* in international patent application WO92/02526 [see also US patent 5,124,246].

Alternatively, the polymerase chain reaction (PCR) is another well-known means for detecting small amounts of target nucleic acids. The assay is described in: Mullis *et al.* [*Meth. Enzymol.* (1987) 155: 335-350]; US patent 4,683,195; and US patent 4,683,202. Two "primer" nucleotides hybridize with the target nucleic acids and are used to prime the reaction. The primers can comprise sequence that does not hybridize to the sequence of the amplification target (or its complement) to aid with duplex stability or, for example, to incorporate a convenient restriction site. Typically, such sequence will flank the desired Neisserial sequence.

A thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a threshold amount of target nucleic acids are generated by the polymerase, they can be detected by more traditional methods, such as Southern blots. When using the Southern blot method, the labelled probe will hybridize to the Neisserial sequence (or its complement).

Also, mRNA or cDNA can be detected by traditional blotting techniques described in Sambrook et al [supra]. mRNA, or cDNA generated from mRNA using a polymerase enzyme, can be purified and separated using gel electrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The solid support is exposed to a labelled probe and then washed to remove any unhybridized probe. Next, the duplexes

containing the labeled probe are detected. Typically, the probe is labelled with a radioactive moiety.

EXAMPLES

The examples describe nucleic acid sequences which have been identified in N. meningitidis, and N. gonorrhoeae along with their respective and putative translation products. Not all of the nucleic acid sequences are complete ie. they encode less than the full-length wild-type protein.

The examples are generally in the following format:

- a nucleotide sequence which has been identified in N. meningitidis
- the putative translation product of said N. meningitidis sequence
- a computer analysis of said translation product based on database comparisons
- a corresponding nucleotide sequence identified from N. gonorrhoeae
- the putative translation product of said N. gonorrhoeae sequence
- a comparision of the percentage of identity between the translation product of the *N. meningitidis* sequence and the *N. gonorrhoeae* sequence.
- a corresponding nucleotide sequence identified from strain A of N. meningitidis
- the putative translation product of said N. meningitidis strain A sequence
- a comparision of the percentage of identity between the translation product of the *N. meningitidis* sequence and the *N. gonorrhoeae* sequence.
- a description of the characteristics of the protein which indicates that it might be suitably antigenic or immunogenic.

Sequence comparisons were performed at NCBI (http://www.ncbi.nlm.nih.gov) using the algorithms BLAST, BLAST2, BLAST1, BLAST1, BLAST2, BLAST1, BLAST2, & tBLAST1, & tBLAST1, & tBLAST2 [eg. see also Altschul et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:2289-3402]. Searches were performed against the following databases: non-redundant GenBank+EMBL+DDBJ+PDB sequences and non-redundant GenBank CDS translations+PDB+SwissProt+SPupdate+PIR sequences.

Dots within nucleotide sequences represent nucleotides which have been arbitrarily introduced in order to maintain a reading frame. In the same way, double-underlined nucleotides were removed. Lower case letters represent ambiguities which arose during

alignment of independent sequencing reactions (some of the nucleotide sequences in the examples are derived from combining the results of two or more experiments).

Nucleotide sequences were scanned in all six reading frames to predict the presence of hydrophobic domains using an algorithm based on the statistical studies of Esposti *et al*. [Critical evaluation of the hydropathy of membrane proteins (1990) *Eur J Biochem* 190:207-219]. These domains represent potential transmembrane regions or hydrophobic leader sequences.

Open reading frames were predicted from fragmented nucleotide sequences using the program ORFFINDER (NCBI).

Underlined amino acid sequences indicate possible transmembrane domains or leader sequences in the ORFs, as predicted by the PSORT algorithm (http://www.psort.nibb.ac.jp). Functional domains were also predicted using the MOTIFS program (GCG Wisconsin & PROSITE).

For each of the following examples: based on the presence of a putative leader sequence and/or several putative transmembrane domains (single-underlined) in the gonococcal protein, it is predicted that the proteins from *N. meningitidis* and *N. gonorrhoeae*, and their respective epitopes, could be useful antigens or immunogenic compositions for vaccines or diagnostics.

The standard techniques and procedures which may be employed in order to perform the invention (e.g. to utilize the disclosed sequences for vaccination or diagnostic purposes) were summarized above. This summary is not a limitation on the invention but, rather, gives examples that may be used, but are not required.

In particular, the following methods were used to express, purify and biochemically characterize the proteins of the invention.

Chromosomal DNA Preparation

N.meningitidis strain 2996 was grown to exponential phase in 100ml of GC medium, harvested by centrifugation, and resuspended in 5ml buffer (20%(w/v) Sucrose, 50mM Tris-HCl, 50mM EDTA, pH8). After 10 minutes incubation on ice, the bacteria were lysed by adding 10ml of lysis solution (50mM NaCl, 1% Na-Sarkosyl, 50µg/ml Proteinase K), and the suspension incubated at 37°C for 2 hours. Two phenol extractions (equilibrated to pH 8) and one CHCl₃/isoamylalcohol (24:1) extraction were performed. DNA was precipitated by addition of 0.3M sodium acetate and 2 volumes of ethanol, and collected by centrifugation.

The pellet was washed once with 70%(v/v) ethanol and redissolved in 4.0ml TE buffer (10mM Tris-HCl, 1mM EDTA, pH 8.0). The DNA concentration was measured by reading the OD at 260 nm.

Oligonucleotide design

Synthetic oligonucleotide primers were designed on the basis of the coding sequence of each ORF, using (a) the meningococcus B sequence when available, or (b) the gonococcus/meningococcus A sequence, adapted to the codon preference usage of meningococcus as necessary. Any predicted signal peptides were omitted, by designing the 5' primers to sequence immediately downstream from the predicted leader sequence.

For most ORFs, the 5' primers included two restriction enzyme recognition sites (BamHI-NdeI, BamHI-NheI, EcoRI-NdeI or EcoRI-NheI), depending on the restriction pattern of the gene of interest. The 3' primers included a XhoI or a HindIII restriction site (table 1). This procedure was established in order to direct the cloning of each amplification product (corresponding to each ORF) into two different expression systems: pGEX-KG (using BamHI-XhoI, BamHI-HindIII, EcoRI-XhoI or EcoRI-HindIII), and pET21b+ (using NdeI-XhoI, NheI-XhoI, NdeI-HindIII or NheI-HindIII).

5'-end primer tail:	CGCGGATCCCATATG	(BamHI-NdeI)
	CGCGGATCCGCTAGC	(BamHI-NheI)
	CCGGAATTCTACATATG	(EcoRI-NdeI)
	CCGGAATTCTAGCTAGC	(EcoRI-NheI)
3'-end primer tail:	CCCG <u>CTCGAG</u> CCCG <u>CTCGAG</u>	(XhoI) (HindIII)

For cloning ORFs into the pGEX-His vector, the 5' and 3' primers contained only one restriction enzyme site (*EcoRI*, *KpnI* or *SalI* for the 5' primers and *PstI*, *XbaI*, *SphI* or *SalI* for the 3' primers). Again restriction sites were chosen according to the particular restriction pattern of the gene (table 1).

5'-end primer tail:	(AAA) AAAGAATTC	(EcoRI)
	(AAA) AAAGGTACC	(KpnI)
3'-end primer tail:	(AAA) AAACTGCAG	(PstI)
	(AAA) AAATCTAGA	(XbaI)

55

AAAGCATGC

(SphI)AAAAAGTCGAC

(SalI)

5' or 3'-end primer tail:

As well as containing the restriction enzyme recognition sequences, the primers included nucleotides which hybridized to the sequence to be amplified. The melting temperature depended on the number and type of hybridising nucleotides in the whole primer, and was determined for each primer using the formulae:

$$T_m = 4 (G+C)+ 2 (A+T)$$
 (tail excluded)
 $T_m = 64.9 + 0.41 (\% GC) - 600/N$ (whole primer)

The melting temperatures of the selected oligonucleotides were usually 65-70°C for the whole oligo and 50-55°C for the hybridising region alone.

Table 1 shows the forward and reverse primers used for each amplification. In certain cases, the sequence of the primer does not exactly match the sequence of the predicted ORF. This is because when initial amplifications were performed, the complete 5' and/or 3' sequences for some meningococcal B ORFs were not known. However the corresponding sequences had been identified in Gonococcus or in Meningoccus A. Hence, when the Meningoccus B sequence was incomplete or uncertain, Gonococcal or Meningococcal A sequences were used as the basis for primer design. These sequences were altered to take account of codon preference. It can be appreciated that, once the complete sequence is identified, this approach will no longer be necessary.

Oligonucleotides were synthesized using a Perkin Elmer 394 DNA/RNA Synthesizer, eluted from the columns in 2.0ml NH₄OH, and deprotected by 5 hours incubation at 56°C. The oligos were precipitated by addition of 0.3M Na-Acetate and 2 volumes ethanol. The samples were centrifuged and the pellets resuspended in either 100µl or 1.0ml of water. The OD₂₆₀ was determined using a Perkin Elmer Lambda Bio spectophotometer and the concentration adjusted to 2-10pmol/µl.

Amplification

The standard PCR protocol was as follows: 50-200ng of genomic DNA was used as a template in the presence of 20-40 µM of each oligonucletide primer, 400-800 µM dNTPs solution, 1x PCR buffer (including 1.5mM MgCl₂), 2.5 units TaqI DNA polymerase (using

Perkin-Elmer AmpliTaQ, GIBCO Platinum, Pwo DNA polymerase, or Tahara Shuzo Taq polymerase). In some cases, PCR was optimsed by the addition of 10µl DMSO or 50µl 2M Betaine.

After a hot start (adding the polymerase during a preliminary 3 minute incubation of the whole mix at 95°C), each sample underwent a two-step amplification. The first 5 cycles were performed using the hybridization temperature that excluded the restriction enzyme tail of the primer (see above). This was followed by 30 cycles using the hybridization temperature calculated for the whole length oligos. The cycles were completed with a 10 minute extension step at 72°C. The standard cycles were as follows:

	Denaturation	Hybridisation	Elongation
First 5 cycles	30 seconds	30 seconds	30-60 seconds
	95°C	50-55°C	72°C
Last 30 cycles	30 seconds	30 seconds	30-60 seconds
	95°C	65-70°C	72°C

Elongation times varied according to the length of the ORF to be amplified. Amplifications were performed using either a 9600 or a 2400 Perkin Elmer GeneAmp PCR System. To check the results, 1/10 of the amplification volume was loaded onto a 1-1.5% (w/v) agarose gel and the size of each amplified fragment compared with a DNA molecular weight marker.

The amplified DNA was either loaded directly on a 1% agarose gel or first precipitated with ethanol and resuspended in a volume suitable to be loaded on a 1.0% agarose gel. The DNA fragment corresponding to the band of correct size was purified using the Qiagen Gel Extraction Kit, following the manufacturer's protocol. DNA fragments were eluted in a volume of 30µl or 50µl with either H2O or 10mM Tris, pH 8.5.

Digestion of PCR fragments

The purified DNA corresponding to the amplified fragment was doubly-digested with the appropriate restriction enzymes for; cloning into pET-21b+ and expressing the protein as a C-terminus His-tagged fusion, for cloning into pGEX-KG and expressing the protein as a N-

terminus GST-fusion, and for cloning into pGEX-His and expressing the protein as a N-terminus GST-His tagged fusion.

Each purified DNA fragment was incubated at 37°C for 3 hours to overnight with 20 units of appropriate restriction enzyme (New England Biolabs) in a volume of either 30 or 40μl in the presence of suitable digestion buffer. Digested fragments were purified using the QIAquick PCR purification kit (following the manufacturer's instructions) and eluted in a volume of 30μl or 50μl with either H2O or 10mM Tris, pH 8.5. The DNA concentration was determined by quantitative agarose gel electrophoresis (1.0% gel) in the presence of a titrated molecular weight marker.

Digestion of the cloning vectors (pET22B, pGEX-KG, pTRC-His A, pET21b+, pGEX-KG, and pGEX-His)

The vector pGEX-His is a modified pGEX-2T vector carrying a region encoding six histidine residues upstream of the thrombin cleavage site and containing the multiple cloning site of the vector pTRC99 (Pharmacia).10 µg plasmid was double-digested with 50 units of each restriction enzyme in 200 µl reaction volume in the presence of appropriate buffer by overnight incubation at 37°C. After loading the whole digestion on a 1% agarose gel, the band corresponding to the digested vector was purified from the gel using the Qiagen QIAquick Gel Extraction Kit and the DNA was eluted in 50 µl of 10 mM Tris-HCl, pH 8.5. The DNA concentration was evaluated by measuring OD₂₆₀ of the sample, and adjusted to 50 µg/µl. 1 µl of plasmid was used for each cloning procedure.

 $10\mu g$ of plasmid vector was doubly-digested with 50 units of each restriction enzyme in a volume of $200\mu l$ with the appropriate buffer overnight at $37^{\circ}C$. The digest was loaded onto a 1.0% agarose gel and the band corresponding to the digested vector purified using the Qiagen QIAquick Gel Extraction Kit. DNA was eluted in $50\mu l$ of 10mM Tris-HCl, pH 8.5. The DNA concentration was evaluated by measuring OD_{260nm} and the concentration adjusted to $50\mu g/\mu l$. $1\mu l$ of plasmid was used for each cloning procedure.

Cloning

For some ORFs, the fragments corresponding to each ORF, previously digested and purified, were ligated in both pET22b and pGEX-KG. In a final volume of 20 µl, a molar

WO 99/057280 PCT/US99/09346

58

ratio of 3:1 fragment/vector was ligated using 0.5 µl of NEB T4 DNA ligase (400 units/µl), in the presence of the buffer supplied by the manufacturer. The reaction was incubated at room temperature for 3 hours. In some experiments, ligation was performed using the Boheringer "Rapid Ligation Kit", following the manufacturer's instructions.

In order to introduce the recombinant plasmid in a suitable strain, $100~\mu l~E.~coli~DH5$ competent cells were incubated with the ligase reaction solution for 40 minutes on ice, then at $37^{\circ}C$ for 3 minutes, then, after adding $800~\mu l~LB$ broth, again at $37^{\circ}C$ for 20 minutes. The cells were then centrifuged at maximum speed in an Eppendorf microfuge and resuspended in approximately $200~\mu l$ of the supernatant. The suspension was then plated on LB ampicillin (100~mg/ml).

The screening of the recombinant clones was performed by growing 5 randomly-chosen colonies overnight at 37 °C in either 2 ml (pGEX or pTC clones) or 5ml (pET clones) LB broth + 100 µg/ml ampicillin. The cells were then pelletted and the DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions, to a final volume of 30 µl. 5 µl of each individual miniprep (approximately 1g) were digested with either *NdeI/XhoI* or *BamHI/XhoI* and the whole digestion loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1Kb DNA Ladder, GIBCO). The screening of the positive clones was made on the base of the correct insert size.

For other ORFs, the fragments corresponding to each ORF, previously digested and purified, were ligated into both pET21b+ and pGEX-KG. A molar ratio of of 3:1 fragment/vector was used in a final volume of 20µl, that included 0.5µl T4 DNA ligase (400 units/µl, NEB) and ligation buffer supplied by the manufacturer. The reaction was performed at room temperature for 3 hours. In some experiments, ligation was performed using the Boheringer "Rapid Ligation Kit" and the manufacturer's protocol.

Recombinant plasmid was transformed into 100µl of competent *E. coli* DH5 or HB101 by incubating the ligase reaction solution and bacteria for 40 minutes on ice then at 37°C for 3 minutes. This was followed by the addition of 800µl LB broth and incubation at 37°C for 20 minutes. The cells were centrifuged at maximum speed in an Eppendorf microfuge, resuspended in approximately 200µl of the supernatant and plated onto LB ampicillin (100mg/ml) agar.

Screening for recombinant clones was performed by growing 5 randomly selected colonies overnight at 37°C in either 2.0ml (pGEX-KG clones) or 5.0ml (pET clones) LB broth + 100µg/ml ampicillin. Cells were pelleted and plasmid DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions. Approximately 1µg of each individual miniprep was digested with the appropriate restriction enzymes and the digest loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1kb DNA Ladder, GIBCO). Positive clones were selected on the basis of the size of insert.

ORFs were cloned into PGEX-His, by doubly-digesting the PCR product and ligating into similarly digested vector. After cloning, recombinant plasmids were transformed into the *E.coli* host W3110. Individual clones were grown overnight at 37°C in LB broth with 50µg/ml ampicillin.

Certain ORFs may be cloned into the pGEX-HIS vector using *EcoRI-PstI* cloning sites, or *EcoRI-SalI*, or *SalI-PstI*. After cloning, the recombinant plasmids may be introduced in the *E.*coli host W3110.

Expression

Each ORF cloned into the expression vector may then be transformed into the strain suitable for expression of the recombinant protein product. 1 μl of each construct was used to transform 30 μl of *E.coli* BL21 (pGEX vector), *E.coli* TOP 10 (pTRC vector) or *E.coli* BL21-DE3 (pET vector), as described above. In the case of the pGEX-His vector, the same *E.coli* strain (W3110) was used for initial cloning and expression. Single recombinant colonies were inoculated into 2ml LB+Amp (100 μg/ml), incubated at 37°C overnight, then diluted 1:30 in 20 ml of LB+Amp (100 μg/ml) in 100 ml flasks, making sure that the OD₆₀₀ ranged between 0.1 and 0.15. The flasks were incubated at 30°C into gyratory water bath shakers until OD indicated exponential growth suitable for induction of expression (0.4-0.8 OD for pET and pTRC vectors; 0.8-1 OD for pGEX and pGEX-His vectors). For the pET, pTRC and pGEX-His vectors, the protein expression was induced by addiction of 1mM IPTG, whereas in the case of pGEX system the final concentration of IPTG was 0.2 mM. After 3 hours incubation at 30°C, the final concentration of the sample was checked by OD. In order to check expression, 1ml of each sample was removed, centrifuged in a microfuge, the pellet

resuspended in PBS, and analysed by 12% SDS-PAGE with Coomassie Blue staining. The whole sample was centrifuged at 6000g and the pellet resuspended in PBS for further use.

GST-fusion proteins large-scale purification.

For some ORFs, a single colony was grown overnight at 37°C on LB+Amp agar plate. The bacteria were inoculated into 20 ml of LB+Amp liquid colture in a water bath shaker and grown overnight. Bacteria were diluted 1:30 into 600 ml of fresh medium and allowed to grow at the optimal temperature (20-37°C) to OD₅₅₀ 0.8-1. Protein expression was induced with 0.2mM IPTG followed by three hours incubation. The culture was centrifuged at 8000 rpm at 4°C. The supernatant was discarded and the bacterial pellet was resuspended in 7.5 ml cold PBS. The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed two times and centrifuged again. The supernatant was collected and mixed with 150µl Glutatione-Sepharose 4B resin (Pharmacia) (previously washed with PBS) and incubated at room temperature for 30 minutes. The sample was centrifuged at 700g for 5 minutes at 4C. The resin was washed twice with 10 ml cold PBS for 10 minutes, resuspended in 1ml cold PBS, and loaded on a disposable column. The resin was washed twice with 2ml cold PBS until the flow-through reached OD₂₈₀ of 0.02-0.06. The GST-fusion protein was eluted by addition of 700µl cold Glutathione elution buffer 10mM reduced glutathione, 50mM Tris-HCl) and fractions collected until the OD280 was 0.1. 21µl of each fraction were loaded on a 12% SDS gel using either Biorad SDS-PAGE Molecular weight standard broad range (M1) (200, 116.25, 97.4, 66.2, 45, 31, 21.5, 14.4, 6.5 kDa) or Amersham Rainbow Marker (M") (220, 66, 46, 30, 21.5, 14.3 kDa) as standards. As the MW of GST is 26kDa, this value must be added to the MW of each GST-fusion protein.

For other ORFs, for each clone to be purified as a GST-fusion, a single colony was streaked out and grown overnight at 37°C on a LB/Amp. (100µg/ml) agar plate. An isolated colony from this plate was inoculated into 20ml of LB/Amp (100 µg/ml) liquid medium and grown overnight at 37°C with shaking. The overnight culture was diluted 1:30 into 600ml LB/Amp (100µg/ml) liquid medium and allowed to grow at the optimal temperature (20-37°C) until the OD_{550nm} reached 0.6-0.8. Recombinant protein expression was induced by addition of IPTG (final concentration 0.2mM) and the culture incubated for a further 3 hours. Bacteria were harvested by centrifugation at 8000xg for 15 min at 4°C.

PCT/US99/09346

The bacterial pellet was resuspended in 7.5ml cold PBS. Cells were disrupted by sonication on ice four times for 30 sec at 40W using a Branson sonifier 450 and centrifuged at 13 000xg for 30 min at 4°C. The supernatant was collected and mixed with 150µl Glutatione-Sepharose 4B resin (Pharmacia), previously equilibrated with PBS, and incubated at room temperature with gentle agitation for 30 min. The batch-wise preparation was centrifuged at 700xg for 5 min at 4°C and the supernatant discarded. The resin was washed twice (batchwise) with 10ml cold PBS for 10 min, resuspended in 1ml cold PBS, and loaded onto a disposable column. The resin continued to be washed with cold PBS, until the OD_{280nm} of the flow-through reached 0.02-0.01. The GST-fusion protein was eluted by addition of 700µl cold glutathione elution buffer (10mM reduced glutathione, 50mM Tris-HCl pH 8.0) and fractions collected, until the OD_{280nm} of the eluate indicated all the recombinant protein was obtained. 20µl aliquots of each elution fraction were analyzed by SDS-PAGE using a 12% gel. The molecular mass of the purified proteins was determined using either the Bio-Rad broad range molecular weight standard (M1) (200, 116, 97.4, 66.2, 45.0, 31.0, 21.5, 14.4, 6.5 kDa) or the Amersham Rainbow Marker (M2) (220, 66.2, 46.0, 30.0, 21.5, 14.3 kDa). The molecular weights of GST-fusion proteins are a combination of the 26 kDa GST protein and its fusion partner. Protein concentrations were estimated using the Bradford assay.

His-fusion soluble proteins large-scale purification.

For some ORFs, a single colony was grown overnight at 37°C on a LB + Amp agar plate. The bacteria were inoculated into 20ml of LB+Amp liquid culture and incubated overnight in a water bath shaker. Bacteria were diluted 1:30 into 600ml fresh medium and allowed to grow at the optimal temperature (20-37°C) to OD₅₅₀ 0.6-0.8. Protein expression was induced by addition of 1 mM IPTG and the culture further incubated for three hours. The culture was centrifuged at 8000 rpm at 4°C, the supernatant was discarded and the bacterial pellet was resuspended in 7.5ml cold 10mM imidazole buffer (300 mM NaCl, 50 mM phosphate buffer, 10 mM imidazole, pH 8). The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed two times and centrifuged again. The supernatant was collected and mixed with 150µl Ni²⁺-resin (Pharmacia) (previously washed with 10mM imidazole buffer) and incubated at room temperature with gentle agitation for 30 minutes. The sample was centrifuged at 700g for 5 minutes at 4°C. The resin was washed twice with 10 ml cold 10mM imidazole buffer for 10 minutes.

resuspended in 1ml cold 10mM imidazole buffer and loaded on a disposable column. The resin was washed at 4°C with 2ml cold 10mM imidazole buffer until the flow-through reached the O.D₂₈₀ of 0.02-0.06. The resin was washed with 2ml cold 20mM imidazole buffer (300 mM NaCl, 50 mM phosphate buffer, 20 mM imidazole, pH 8) until the flow-through reached the O.D₂₈₀ of 0.02-0.06. The His-fusion protein was eluted by addition of 700µl cold 250mM imidazole buffer (300 mM NaCl, 50 mM phosphate buffer, 250 mM imidazole, pH 8) and fractions collected until the O.D₂₈₀ was 0.1. 21µl of each fraction were loaded on a 12% SDS gel.

His-fusion insoluble proteins large-scale purification.

A single colony was grown overnight at 37 °C on a LB + Amp agar plate. The bacteria were inoculated into 20 ml of LB+Amp liquid culture in a water bath shaker and grown overnight. Bacteria were diluted 1:30 into 600ml fresh medium and let to grow at the optimal temperature (37°C) to O.D550 0.6-0.8. Protein expression was induced by addition of 1 mM IPTG and the culture further incubated for three hours. The culture was centrifuged at 8000rpm at 4°C. The supernatant was discarded and the bacterial pellet was resuspended in 7.5 ml buffer B (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 8.8). The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed twice and centrifuged again. The supernatant was stored at -20°C, while the pellets were resuspended in 2 ml guanidine buffer (6M guanidine hydrochloride, 100mM phosphate buffer, 10 mM Tris-HCl, pH 7.5) and treated in a homogenizer for 10 cycles. The product was centrifuged at 13000 rpm for 40 minutes. The supernatant was mixed with 150µl Ni²⁺-resin (Pharmacia) (previously washed with buffer B) and incubated at room temperature with gentle agitation for 30 minutes. The sample was centrifuged at 700 g for 5 minutes at 4°C. The resin was washed twice with 10 ml buffer B for 10 minutes, resuspended in 1ml buffer B, and loaded on a disposable column. The resin was washed at room temperature with 2ml buffer B until the flow-through reached the OD₂₈₀ of 0.02-0.06. The resin was washed with 2ml buffer C (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 6.3) until the flow-through reached the O.D₂₈₀ of 0.02-0.06. The His-fusion protein was eluted by addition of 700µl elution buffer (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 4.5) and fractions collected until the OD₂₈₀ was 0.1. 21µl of each fraction were loaded on a 12% SDS gel.

Purification of His-fusion proteins.

For each clone to be purified as a His-fusion, a single colony was streaked out and grown overnight at 37°C on a LB/Amp (100 μg/ml) agar plate. An isolated colony from this plate was inoculated into 20ml of LB/Amp (100 μg/ml) liquid medium and grown overnight at 37°C with shaking. The overnight culture was diluted 1:30 into 600ml LB/Amp (100 μg/ml) liquid medium and allowed to grow at the optimal temperature (20-37°C) until the OD_{550nm} reached 0.6-0.8. Expression of recombinant protein was induced by addition of IPTG (final concentration 1.0mM) and the culture incubated for a further 3 hours. Bacteria were harvested by centrifugation at 8000xg for 15 min at 4°C.

The bacterial pellet was resuspended in 7.5ml of either (i) cold buffer A (300mM NaCl, 50mM phosphate buffer, 10mM imidazole, pH 8.0) for soluble proteins or (ii) buffer B (8M urea, 10mM Tris-HCl, 100mM phosphate buffer, pH 8.8) for insoluble proteins. Cells were disrupted by sonication on ice four times for 30 sec at 40W using a Branson sonifier 450 and centrifuged at 13 000xg for 30 min at 4°C. For insoluble proteins, pellets were resuspended in 2.0 ml buffer C (6M guanidine hydrochloride, 100mM phosphate buffer, 10mM Tris-HCl, pH 7.5) and treated with a Dounce homogenizer for 10 cycles. The homogenate was centrifuged at 13 000xg for 40 min and the supernatant retained.

Supernatants for both soluble and insoluble preparations were mixed with 150µl Ni²⁺-resin (previously equilibrated with either buffer A or buffer B, as appropriate) and incubated at room temperature with gentle agitation for 30 min. The resin was Chelating Sepharose Fast Flow (Pharmacia), prepared according to manufacturers protocol. The batch-wise preparation was centrifuged at 700xg for 5 min at 4°C and the supernatant discarded. The resin was washed twice (batch-wise) with 10ml buffer A or B for 10 min, resuspended in 1.0 ml buffer A or B and loaded onto a disposable column. The resin continued to be washed with either (i) buffer A at 4°C or (ii) buffer B at room temperature, until the OD_{280nm} of the flow-through reached 0.02-0.01. The resin was further washed with either (i) cold buffer C (300mM NaCl, 50mM phosphate buffer, pH 6.3) until the the OD_{280nm} of the flow-through reached 0.02-0.01. The His-fusion protein was eluted by addition of 700µl of either (i) cold elution buffer A (300mM NaCl, 50mM phosphate buffer, 250mM imidazole, pH 8.0) or (ii) elution buffer B (8 M urea, 10mM Tris-HCl, 100mM phosphate buffer, pH 4.5) and fractions

collected until the O.D_{280nm} indicated all the recombinant protein was obtained. 20µl aliquots of each elution fraction were analyzed by SDS-PAGE using a 12% gel. Protein concentrations were estimated using the Bradford assay.

His-fusion proteins renaturation

In the cases where denaturation was required to solubilize proteins, a renaturation step was employed prior to immunization. Glycerol was added to the denatured fractions obtained above to give a final concentration of 10%(v/v). The proteins were diluted to 200µg/ml using dialysis buffer I (10% (v/v) glycerol, 0.5M arginine, 50mM phosphate buffer, 5.0mM reduced glutathione, 0.5mM oxidised glutathione, 2.0M urea, pH 8.8) and dialysed against the same buffer for 12-14 hours at 4°C. Further dialysis was performed with buffer II (10% (v/v) glycerol, 0.5M arginine, 50mM phosphate buffer, 5.0mM reduced glutathione, 0.5mM oxidised glutathione, pH 8.8) for 12-14 hours at 4°C.

Alternatively, 10% glycerol was added to the denatured proteins. The proteins were then diluted to 20µg/ml using dialysis buffer I (10% glycerol, 0.5M arginine, 50mM phosphate buffer, 5mM reduced glutathione, 0.5mM oxidised glutathione, 2M urea, pH 8.8) and dialysed against the same buffer at 4°C for 12-14 hours. The protein was further dialysed against dialysis buffer II (10% glycerol, 0.5M arginine, 50mM phosphate buffer, 5mM reduced glutathione, 0.5mM oxidised glutathione, pH 8.8) for 12-14 hours at 4°C.

Protein concentration was evaluated using the formula:

Protein (mg/ml) =
$$(1.55 \times OD_{280}) - (0.76 \times OD_{260})$$

Purification of proteins

To analyse the solubility, pellets obtained from 3.0ml cultures were resuspended in 500µl buffer M1 (PBS pH 7.2). 25µl of lysozyme (10mg/ml) was added and the bacteria incubated for 15 min at 4°C. Cells were disrupted by sonication on ice four times for 30 sec at 40W using a Branson sonifier 450 and centrifuged at 13 000xg for 30 min at 4°C. The supernatant was collected and the pellet resuspended in buffer M2 [8M urea, 0.5M NaCl, 20mM imidazole and 0.1M NaH₂ PO₄] and incubated for 3 to 4 hours at 4°C. After centrifugation, the supernatant was collected and the pellet resuspended in buffer M3 [6M guanidinium-HCl, 0.5M NaCl, 20mM imidazole and 0.1M NaH₂PO₄] overnight at 4°C. The

WO 99/057280 PCT/US99/09346

65

supernatants from all steps were analysed by SDS-PAGE. Some proteins were found to be soluble in PBS, others need urea or guanidium-HCl for solubilization.

For preparative scale purifications, 500ml cultures were induced and fusion proteins solubilized in either buffer M1, M2 or M3 using the procedure described above. Crude extracts were loaded onto a Ni-NTA superflow column (Quiagen) equilibrated with buffer M1, M2 or M3 depending on the solubilization buffer employed. Unbound material was eluted by washing the column with the same buffer. The recombinant fusion protein was eluted with the corresponding buffer containing 500mM imidazole then dialysed against the same buffer in the absence of imidazole.

Mice immunisations

20μg of each purified protein are used to immunise mice intraperitoneally. In the case of some ORFs, Balb-C mice were immunised with Al(OH)₃ as adjuvant on days 1, 21 and 42, and immune response was monitored in samples taken on day 56. For other ORFs, CD1 mice could be immunised using the same protocol. For ORFs 25 and 40, CD1 mice were immunised using Freund's adjuvant, and the same immunisation protocol was used, except that the immune response was measured on day 42, rather than 56. Similarly, for still other ORFs, CD1 mice were immunised with Freund's adjuvant, but the immune response was measured on day 49. Alternatively, 20μg of each purified protein was mixed with Freund's adjuvant and used to immunise CD1 mice intraperitoneally. For many of the proteins, the immunization was performed on days 1, 21 and 35, and immune response was monitored in samples taken on days 34 and 49. For some proteins, the third immunization was performed on day 28, rather than 35, and the immune response was measured on days 20 and 42, rather than 34 and 49.

ELISA assay (sera analysis)

The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 7ml of Mueller-Hinton Broth (Difco) containing 0.25% Glucose. Bacterial growth was monitored every 30 minutes by following OD₆₂₀. The bacteria were let to grow until the OD reached the value of 0.3-0.4. The culture was centrifuged for 10 minutes at 10000 rpm. The supernatant was discarded and bacteria were washed once with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated

for 2 hours at room temperature and then overnight at 4°C with stirring. 100μl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4°C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200 μl of saturation buffer (2.7% Polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37°C. Wells were washed three times with PBT. 200 μl of diluted sera (Dilution buffer: 1% BSA, 0.1% Tween-20, 0.1% NaN₃ in PBS) were added to each well and the plates incubated for 90 minutes at 37°C. Wells were washed three times with PBT. 100 μl of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37°C. Wells were washed three times with PBT buffer. 100 μl of substrate buffer for HRP (25 ml of citrate buffer pH5, 10 mg of O-phenildiamine and 10 μl of H₂O) were added to each well and the plates were left at room temperature for 20 minutes. 100 μl H₂SO₄ was added to each well and OD₄₉₀ was followed. The ELISA was considered positive when OD490 was 2.5 times the respective pre-immune sera.

Alternatively, The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into Mueller-Hinton Broth (Difco) containing 0.25% Glucose. Bacterial growth was monitored every 30 minutes by following OD_{620} . The bacteria were let to grow until the OD reached the value of 0.3-0.4. The culture was centrifuged for 10 minutes at 10 000rpm. The supernatant was discarded and bacteria were washed once with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated for 1 hour at 37°C and then overnight at 4°C with stirring. 100µl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4°C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200μl of saturation buffer (2.7% Polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37°C. Wells were washed three times with PBT. 200µl of diluted sera (Dilution buffer: 1% BSA, 0.1% Tween-20, 0.1% NaN3 in PBS) were added to each well and the plates incubated for 2 hours at 37°C. Wells were washed three times with PBT. 100µl of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37°C. Wells were washed three times with PBT buffer. 100µl of substrate buffer for HRP (25ml of citrate buffer pH5, 10mg of O-

67

phenildiamine and $10\mu l$ of H_2O_2) were added to each well and the plates were left at room temperature for 20 minutes. $100\mu l$ of 12.5% H_2SO_4 was added to each well and OD_{490} was followed. The ELISA titers were calculated abitrarely as the dilution of sera which gave an OD_{490} value of 0.4 above the level of preimmune sera. The ELISA was considered positive when the dilution of sera with OD_{490} of 0.4 was higher than 1:400.

FACScan bacteria Binding Assay procedure.

The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 4 tubes containing 8ml each Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD₆₂₀. The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes at 4000rpm. The supernatant was discarded and the pellet was resuspended in blocking buffer (1% BSA in PBS, 0.4% NaN₃) and centrifuged for 5 minutes at 4000rpm. Cells were resuspended in blocking buffer to reach OD₆₂₀ of 0.07. 100µl bacterial cells were added to each well of a Costar 96 well plate. 100µl of diluted (1:100, 1:200, 1:400) sera (in blocking buffer) were added to each well and plates incubated for 2 hours at 4°C. Cells were centrifuged for 5 minutes at 4000rpm, the supernatant aspirated and cells washed by addition of 200µl/well of blocking buffer in each well. 100µl of R-Phicoerytrin conjugated F(ab)₂ goat anti-mouse, diluted 1:100, was added to each well and plates incubated for 1 hour at 4°C. Cells were spun down by centrifugation at 4000rpm for 5 minutes and washed by addition of 200µl/well of blocking buffer. The supernatant was aspirated and cells resuspended in 200µl/well of PBS, 0.25% formaldehyde. Samples were transferred to FACScan tubes and read. The condition for FACScan (Laser Power 15mW) setting were: FL2 on; FSC-H threshold:92; FSC PMT Voltage: E 01; SSC PMT: 474; Amp. Gains 6.1; FL-2 PMT: 586; compensation values: 0.

OMV preparations

Bacteria were grown overnight on 5 GC plates, harvested with a loop and resuspended in 10 ml 20mM Tris-HCl. Heat inactivation was performed at 56°C for 30 minutes and the bacteria disrupted by sonication for 10' on ice (50% duty cycle, 50% output). Unbroken cells were removed by centrifugation at 5000g for 10 minutes and the total cell envelope

fraction recovered by centrifugation at 50000g at 4°C for 75 minutes. To extract cytoplasmic membrane proteins from the crude outer membranes, the whole fraction was resuspended in 2% sarkosyl (Sigma) and incubated at room temperature for 20 minutes. The suspension was centrifuged at 10000g for 10 minutes to remove aggregates, and the supernatant further ultracentrifuged at 50000g for 75 minutes to pellet the outer membranes. The outer membranes were resuspended in 10mM Tris-HCl, pH8 and the protein concentration measured by the Bio-Rad Protein assay, using BSA as a standard.

Whole Extracts preparation

Bacteria were grown overnight on a GC plate, harvested with a loop and resuspended in 1ml of 20mM Tris-HCl. Heat inactivation was performed at 56°C for 30' minutes.

Western blotting

Purified proteins (500ng/lane), outer membrane vesicles (5μg) and total cell extracts (25μg) derived from MenB strain 2996 were loaded onto a 12% SDS-polyacrylamide gel and transferred to a nitrocellulose membrane. The transfer was performed for 2 hours at 150mA at 4°C, using transfer buffer (0.3 % Tris base, 1.44 % glycine, 20% (v/v) methanol). The membrane was saturated by overnight incubation at 4°C in saturation buffer (10% skimmed milk, 0.1% Triton X100 in PBS). The membrane was washed twice with washing buffer (3% skimmed milk, 0.1% Triton X100 in PBS) and incubated for 2 hours at 37°C with mice sera diluted 1:200 in washing buffer. The membrane was washed twice and incubated for 90 minutes with a 1:2000 dilution of horseradish peroxidase labelled anti-mouse Ig. The membrane was washed twice with 0.1% Triton X100 in PBS and developed with the Opti-4CN Substrate Kit (Bio-Rad). The reaction was stopped by adding water.

Bactericidal assay

MC58 and 2996 strains were grown overnight at 37°C on chocolate agar plates. 5-7 colonies were collected and used to inoculate 7ml Mueller-Hinton broth. The suspension was incubated at 37°C on a nutator and let to grow until OD₆₂₀ was in between 0.5-0.8. The culture was aliquoted into sterile 1.5ml Eppendorf tubes and centrifuged for 20 minutes at maximum speed in a microfuge. The pellet was washed once in Gey's buffer (Gibco) and resuspended in the same buffer to an OD₆₂₀ of 0.5, diluted 1:20000 in Gey's buffer and stored at 25°C.

50μl of Gey's buffer/1% BSA was added to each well of a 96-well tissue culture plate. 25μl of diluted (1:100) mice sera (dilution buffer: Gey's buffer/0.2% BSA) were added to each well and the plate incubated at 4°C. 25μl of the previously described bacterial suspension were added to each well. 25μl of either heat-inactivated (56°C waterbath for 30 minutes) or normal baby rabbit complement were added to each well. Immediately after the addition of the baby rabbit complement, 22μl of each sample/well were plated on Mueller-Hinton agar plates (time 0). The 96-well plate was incubated for 1 hour at 37°C with rotation and then 22μl of each sample/well were plated on Mueller-Hinton agar plates (time 1). After overnight incubation the colonies corresponding to time 0 and time 1h were counted.

Gene Variability

The *ORF4* and *919* genes were amplified by PCR on chromosomal DNA extracted from various Neisseria strains (see list of strains). The following oligonucleotides used as PCR primers were designed in the upstream and downstream regions of the genes:

```
orf 4.1 (forward) CGAATCCGGACGCAGGACTC
orf 4.3 (reverse) GGCAGGGAATGGCGGATTAAAG

919.1 (forward) AAAATGCCTCTCCACGGCTG or
CTGCGCCCTGTGTTAAAATCCCCT
919.6 (reverse) CAAATAAGAAAGGAATTTTG or
GGTATCGCAAAACTTCGCCTTAATGCG
```

The PCR cycling conditions were:

```
1 cycle 2 min. at 94°
30 cycles 30 sec. at 94°
30 sec. at ~54° or ~60° (in according to Tm of the primers)
40 sec. at 72°
1 cycle 7 min. at 72°
```

The PCR products were purified from 1 % agarose gel and sequenced using the following primers:

```
orf 4.1 (forward) CGAATCCGGACGGCAGGACTC orf 4.2 (forward) CGACCGCGCCTTTGGGACTG orf 4.3 (reverse) GGCAGGGAATGGCGGATTAAAG orf 4.4 (reverse) TCTTTGAGTTTGATCCAACC
```

WO 99/057280 PCT/US99/09346

70

919.1	(forward)	AAAATGCCTCTCCACGGCTG or
		CTGCGCCCTGTGTTAAAATCCCCT
919.2	(forward)	ATCCTTCCGCCTCGGCTGCG
919.3	(forward)	AAAACAGCGGCACAATCGAC
919.4	(forward)	ATAAGGGCTACCTCAAACTC
919.5	(forward)	GCGCGTGGATTATTTTTGGG
919.6	(reverse)	CAAATAAGAAAGGAATTTTG or
		GGTATCGCAAAACTTCGCCTTAATGCG
919.7	(reverse)	CCCAAGGTAATGTAGTGCCG
919.8	(reverse)	TAAAAAAAGTTCGACAGGG
919.9	(reverse)	CCGTCCGCCTGTCGTCGCCC
919.10	(reverse)	TCGTTCCGGCGGGGTCGGGG

All documents cited herein are incorporated by reference in their entireties.

The following Examples are presented to illustrate, not limit, the invention

EXAMPLE 1

Using the above-described procedures, the following oligonucleotide primers were employed in the polymerase chain reaction (PCR) assay in order to clone the ORFs as indicated:

Table 1: Oligonucleotides used for PCR for Examples 2-10

ORF	Primer	Sequence	Restriction sites
279	Forward	CGCGGATCCCATATG-TTGCCTGCAATCACGATT <seq 3021="" id=""></seq>	BamHl-Ndel
	Reverse	CCCGCTCGAG-TTTAGAAGCGGGCGGCAA <seq ID 3022></seq 	Xhol
519	Forward	CGCGGATCCCATATG-TTCAAATCCTTTGTCGTCA <seq 3023="" id=""></seq>	BamHI-Ndel
	Reverse	CCCGCTCGAG-TTTGGCGGTTTTGCTGC <seq 3024="" id=""></seq>	Xhol
576	Forward	CGCGGATCCCATATG-GCCGCCCCCGCATCT	BamHl-Ndel
	Reverse		Xhol
919	Forward	CGCGGATCCCATATG-TGCCAAAGCAAGAGCATC	BamHl-Ndel
	Reverse	CCCGCTCGAG-CGGGCGGTATTCGGG <seq 3028="" id=""></seq>	Xhol
121	Forward	CGCGGATCCCATATG-GAAACACAGCTTTACAT	BamHI-NdeI

		CCCGCTCGAG-ATAATAATATCCCGCGCCC <seq< th=""><th>Xhol</th></seq<>	Xhol
	Reverse		A1101
		ID 3030>	
1			
128	Forward	CGCGGATCCCATATG-ACTGACAACGCACT <seq< th=""><th>BamHI-Ndel</th></seq<>	BamHI-Ndel
		ID 3031>	
	Doverse		Xhol
	Reverse]	7,101
		3032>	1
206	Forward	CGCGGATCCCATATG-AAACACCGCCAACCGA	BamHI-NdeI
		<seq 3033="" id=""></seq>	
	Reverse	CCCGCTCGAG-TTCTGTAAAAAAAGTATGTGC	Xhol
	11040.50	<seq 3034="" id=""></seq>	
		10EQ 1D 30347	
		00004477074007400 077704000700000	FooDI Nhal
287	Forward	CCGGAATTCTAGCTAGC-CTTTCAGCCTGCGGG	EcoRI-Nhel
		<seq 3035="" id=""></seq>	
1	Reverse	CCCGCTCGAG-ATCCTGCTCTTTTTTGCC <seq id<="" th=""><th>Xhol</th></seq>	Xhol
		3036>	
406	Forward	CGCGGATCCCATATG-TGCGGGACACTGACAG	BamHI-Ndel
400	Forward		Dannin-14dei
		<seq 3037="" id=""></seq>	1,,,
	Reverse	CCCGCTCGAG-AGGTTGTCCTTGTCTATG <seq< th=""><th>Xhoi</th></seq<>	Xhoi
		ID 3038>	

Localization of the ORFs

The following DNA and amino acid sequences are identified by titles of the following form: [g, m, or a] [#].[seq or pep], where "g" means a sequence from N. gonorrhoeae, "m" means a sequence from N. meningitidis B, and "a" means a sequence from N. meningitidis A; "#" means the number of the sequence; "seq" means a DNA sequence, and "pep" means an amino acid sequence. For example, "g001.seq" refers to an N. gonorrohoeae DNA sequence, number 1. The presence of the suffix "-1" to these sequences indicates an additional sequence found for the same ORF, thus, data for an ORF having both an unsuffixed and a suffixed sequence designation applies to both such designated sequences. Further, open reading frames are identified as ORF #, where "#" means the number of the ORF, corresponding to the number of the sequence which encodes the ORF, and the ORF designations may be suffixed with ".ng" or ".a", indicating that the ORF corresponds to a N. gonorrhoeae sequence or a N. meningitidis A sequence, respectively. The word "partial" before a sequence indicates that the sequence may be a partial or a complete ORF. Computer analysis was performed for the comparisons that follow between "g", "m", and "a" peptide sequences; and therein the "pep" suffix is implied where not expressly stated. Further, in the event of a conflict between the text immediately preceding and describing which sequences are being compared, and the

WO 99/057280 PCT/US99/09346

72

designated sequences being compared, the designated sequence controls and is the actual sequence being compared.

ORF: contig:

279 gnm4.seq

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3039>: m279.seq

- ATAACGCGGA TTTGCGGCTG CTTGATTTCA ACGGTTTTCA GGGCTTCGGC 51 AAGTTTGTCG GCGGCGGTT TCATCAGGCT GCAATGGGAA GGTACGGACA 101 CGGGCAGCGG CAGGGCGCGT TTGGCACCGG CTTCTTTGGC GGCAGCCATG 151 GCGCGTCCGA CGGCGGCGGC GTTGCCTGCA ATCACGATTT GTCCGGGTGA 201 GTTGAAGTTG ACGGCTTCGA CCACTTCGCT TTGGGCGGCT TCGGCACAAA 251 TGGCTTTAAC CTGCTCATCT TCCAAGCCGA GAATCGCCGC CATTGCGCCC 301 ACGCCTTGCG GTACGGCGGA CTGCATCAGT TCGGCGCGCA GGCGCACGAG 351 TTTGACCGCG TCGGCAAAAT TCAATGCGCC GGCGGCAACG AGTGCGGTGT
- 401 ATTCGCCGAG GCTGTGTCCG GCAACGGCGG CAGGCGTTTT GCCGCCCGCT 451 TCTAAATAG

This corresponds to the amino acid sequence <SEQ ID 3040; ORF 279>: m279.pep

- ITRICGCLIS TVFRASASLS AAGFIRLQWE GTDTGSGRAR LAPASLAAAM
- 51 ARPTAAALPA ITICPGELKL TASTTSLWAA SAQMALTCSS SKPRIAAIAP
- 101 TPCGTADCIS SARRTTSLTA SAKFNAPAAT SAVYSPRLCP ATAAGVLPPA

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 3041>: g279.seq

- atgacgcgga tttgcggctg cttgatttca acggttttga gtgtttcggc 1
- 51 aagtttgtcg gcggcgggtt tcatcaggct gcaatgggaa ggaacggata
- 101 ccggcagcgg cagggcgcgt ttggctccgg cttctttggc ggcagccatg
 151 gtgcgtccga cggcggcggc gttgcctgca atcacgactt gtccgggcga
 201 gttgaagttg acggcttcga ccacttcgcc ctgtgcggat tcggcacaaa

- 251 tetgeetgae etgtteatet tecaaaceea aaatggeege eattgegeet
- 301 acgccttgcg gtacggcgga ctgcatcagt tcggcgcgca ggcggacgag
- 351 tttgacggca tcggcaaaat ccaatgcttc ggcggcgaca agcgcggtgt
- 401 atteqeeqaq qetqtqteeq geaacggegg caggegtttt geegeecact
- 451 tccaaatag

This corresponds to the amino acid sequence <SEQ ID 3042; ORF 279.ng>: g279.pep

- MTRICGCLIS TVLSVSASLS AAGFIRLQWE GTDTGSGRAR LAPASLAAAM
- 51 VRPTAAALPA ITTCPGELKL TASTTSPCAD SAQICLTCSS SKPKMAAIAP
- TPCGTADCIS SARRTSLTA SAKSNASAAT SAVYSPRLCP ATAAGVLPPT 101
- 151

ORF 279 shows 89.5% identity over a 152 aa overlap with a predicted ORF (ORF 279.ng) from N. gonorrhoeae:

```
ITRICGCLISTVFRASASLSAAGFIRLQWEGTDTGSGRARLAPASLAAAMARPTAAALPA
m279.pep
         g279
         MTRICGCLISTVLSVSASLSAAGFIRLQWEGTDTGSGRARLAPASLAAAMVRPTAAALPA
                      20
                                    40
                             30
```

WO 99/057280 PCT/US99/09346

```
90
                                              100
                            80
                                                       110
m279.pep
            ITICPGELKLTASTTSLWAASAQMALTCSSSKPRIAAIAPTPCGTADCISSARRRTSLTA
            ITTCPGELKLTASTTSPCADSAQICLTCSSSKPKMAAIAPTPCGTADCISSARRRTSLTA
q279
                                              100
                   70
                            80
                                     90
                           140
                  130
m279.pep
            SAKFNAPAATSAVYSPRLCPATAAGVLPPASKX
            SAKSNASAATSAVYSPRLCPATAAGVLPPTSKX
q279
                           140
                                     150
                  130
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3043>:
     a279.seq
              ATGACNCNGA TTTGCGGCTG CTTGATTTCA ACGGTTTNNA GGGCTTCGGC
              GAGTTTGTCG GCGGCGGGTT TCATGAGGCT GCAATGGGAA GGTACNGACA
          51
             CNGGCAGCGG CAGGGCGCGT TTGGCGCCGG CTTCTTTGGC GGCAAGCATA
         101
             GCGCGCTCGA CGGCGGCGC ATTGCCTGCA ATCACGACTT GTCCGGGCGA
             GTTGAAGTTG ACGGCTTCAA CCACTTCATC CTGTGCGGAT TCGGCGCAAA
         201
         251
              TTTGTTTTAC CTGTTCATCT TCCAAGCCGA GAATCGCCGC CATTGCGCCC
             ACGCCTTGCG GTACGGCGGA CTGCATCAGT TCGGCGCGCA NGCGCACGAG
         301
             TTTGACCGCG TCGGCAAAAT CCAATGCGCC GGCGGCAACN AGTGCGGTGT
         351
             ATTCGCCGAN GCTGTGTCCG GCAACGGCGG CAGGCGTTTT GCCGCCCGCT
         451
             TCCGAATAG
This corresponds to the amino acid sequence <SEQ ID 3044; ORF 279.a>:
              MTXICGCLIS TVXRASASLS AAGFMRLQWE GTDTGSGRAR LAPASLAASI
ARSTAAALPA ITTCPGELKL TASTTSSCAD SAQICFTCSS SKPRIAAIAP
          51
              TPCGTADCIS SARXRTSLTA SAKSNAPAAT SAVYSPXLCP ATAAGVLPPA
         101
         151 SE*
m279/a279 ORFs 279 and 279.a showed a 88.2% identity in 152 aa overlap
                                 20
                                           30
                 ITRICGCLISTVFRASASLSAAGFIRLQWEGTDTGSGRARLAPASLAAAMARPTAAALPA
     m279.pep
                 MTXICGCLISTVXRASASLSAAGFMRLQWEGTDTGSGRARLAPASLAASIARSTAAALPA
     a279
                        10
                                 20
                                           30
                                                    40
                        70
                                 80
                                           90
                                                   100
                                                            110
                                                                     120
                 ITICPGELKLTASTTSLWAASAQMALTCSSSKPRIAAIAPTPCGTADCISSARRRTSLTA
     m279.pep
                 ITTCPGELKLTASTTSSCADSAQICFTCSSSKPRIAAIAPTPCGTADCISSARXRTSLTA
     a279
                        70
                                 80
                                           90
                                                   100
                                                            110
                                                                     120
                                 140
                       130
                                          150
     m279.pep
                 SAKFNAPAATSAVYSPRLCPATAAGVLPPASKX
                 SAKSNAPAATSAVYSPXLCPATAAGVLPPASEX
     a279
                       130
                                140
                                          150
519 and 519-1
               gnm7.seq
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3045>:
     m519.seq
              (partial)
```

..TCCGTTATCG GGCGTATGGA GTTGGACAAA ACGTTTGAAG AACGCGACGA

AATCAACAGT ACTGTTGTTG CGGCTTTGGA CGAGGCGGCC GGGGCTTGGG

GTGTGAAGGT TTTGCGTTAT GAGATTAAAG ACTTGGTTCC GCCGCAAGAA

ATCCTTCGCT CAATGCAGGC GCAAATTACT GCCGAACGCG AAAAACGCGC CCGTATCGCC GAATCCGAAG GTCGTAAAAT CGAACAAATC AACCTTGCCA

1

51 101

151

```
GTGGTCAGCG CGAAGCCGAA ATCCAACAAT CCGAAGGCGA GGCTCAGGCT
                 GCGGTCAATG CGTCAAATGC CGAGAAAATC GCCCGCATCA ACCGCGCCAA
          301
                 AGGTGAAGCG GAATCCTTGC GCCTTGTTGC CGAAGCCAAT GCCGAAGCCA
          351
          401
                 TCCGTCAAAT TGCCGCCGCC CTTCAAACCC AAGGCGGTGC GGATGCGGTC
                 AATCTGAAGA TTGCGGAACA ATACGTCGCT GCGTTCAACA ATCTTGCCAA
          451
                 AGAAAGCAAT ACGCTGATTA TGCCCGCCAA TGTTGCCGAC ATCGGCAGCC
          501
                 TGATTTCTGC CGGTATGAAA ATTATCGACA GCAGCAAAAC CGCCAAaTAA
          551
This corresponds to the amino acid sequence <SEQ ID 3046; ORF 519>:
     m519.pep
                (partial)
               .. SVIGRMELDK TFEERDEINS TVVAALDEAA GAWGVKVLRY EIKDLVPPQE
                 ILRSMOAOIT AEREKRARIA ESEGRKIEQI NLASGOREAE IQOSEGEAQA
           51
                 AVNASNAEKI ARINRAKGEA ESLRLVAEAN AEAIRQIAAA LQTQGGADAV
          101
                 NLKIAEQYVA AFNNLAKESN TLIMPANVAD IGSLISAGMK IIDSSKTAK*
          151
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3047>:
     g519.seg
               atggaatttt tcattatctt gttggcagcc gtcgccgttt tcggcttcaa
           51 atcetttgte gteatecece ageaggaagt ceaegttgte gaaaggeteg
          101 ggcgtttcca tcgcgccctg acggccggtt tgaatatttt gattcccttt
          151 ategacegeg tegectaceg ceattegetg aaagaaatee etttagaegt
          201 acccagccag gtctgcatca cgcgcgataa tacgcaattg actgttgacg
          251 gcatcatcta tttccaagta accgatccca aactcgcctc atacggttcg
          301 agcaactaca ttatggcaat tacccagctt gcccaaacga cgctgcgttc
          351 cgttatcggg cgtatggagt tggacaaaac gtttgaagaa cgcgacgaaa
401 tcaacagtac cgtcgtctcc gccctcgatg aagccgccgg ggcttggggt
          451 gtgaaagtcc tccgttacga aatcaaggat ttggttccgc cgcaagaaat
          501 cettegegea atgeaggeae aaattacege egaacgegaa aaacgegeee
          551 gtattgccga atccgaaggc cgtaaaatcg aacaaatcaa ccttgccagt
          601 ggtcagcgtg aagccgaaat ccaacaatcc gaaggcgagg ctcaggctgc
          651 gqtcaatqcq tccaatqccq aqaaaatcqc ccqcatcaac cqcqccaaaq
          701 gcgaagcgga atccctgcgc cttgttgccg aagccaatgc cgaagccaac
          751 cgtcaaattg ccgccgccct tcaaacccaa agcgggggg atgcggtcaa
          801 totgaagatt gogggacaat acgttaccgc gttcaaaaat ottgccaaag
          851 aagacaatac gcggattaag cccgccaagg ttgccgaaat cgggaaccct
          901 aattttcggc ggcatgaaaa attttcgcca gaagcaaaaa cggccaaata
This corresponds to the amino acid sequence <SEQ ID 3048; ORF 519.ng>:
     g519.pep
               MEFFIILLAA VAVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF
            1
               IDRVAYRHSL KEIPLDVPSQ VCITRDNTQL TVDGIIYFQV TDPKLASYGS
               SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVS ALDEAAGAWG
          151 VKVLRYEIKD LVPPQEILRA MQAQITAERE KRARIAESEG RKIEQINLAS
               GQREAEIQQS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAN
               RQIAAALQTQ SGADAVNLKI AGQYVTAFKN LAKEDNTRIK PAKVAEIGNP
          251
               NFRRHEKFSP EAKTAK*
          301
ORF 519 shows 87.5% identity over a 200 aa overlap with a predicted ORF (ORF 519.ng)
from N. gonorrhoeae:
     m519/g519
                                                                   20
                                                         10
                                                 SVIGRMELDKTFEERDEINSTVVAALDEAA
     m519.pep
                                                 YFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIGRMELDKTFEERDEINSTVVSALDEAA
     q519
                              100
                                        110
                                                  120
                                                         70
                           40
                                     50
                                               60
                                                                   80
                                                                              90
     m519.pep
                  GAWGVKVLRYEIKDLVPPQEILRSMQAQITAEREKRARIAESEGRKIEQINLASGQREAE
```

PCT/US99/09346

```
q519
                 GAWGVKVLRYEIKDLVPPQEILRAMQAQITAEREKRARIAESEGRKIEQINLASGQREAE
                  150
                            160
                                      170
                                               180
                                                         190
                                                     130
                        100
                                  110
                                           120
                 IQQSEGEAQAAVNASNAEKIARINRAKGEAESLRLVAEANAEAIRQIAAALQTQGGADAV
     m519.pep
                 q519
                 IQQSEGEAQAAVNASNAEKIARINRAKGEAESLRLVAEANAEANRQIAAALQTQSGADAV
                                                         250
                                                                  260
                  210
                            220
                                      230
                                               240
                        160
                                  170
                                           180
                 NLKIAEOYVAAFNNLAKESNTLIMPANVADIGSL-ISAGMKIIDSSKTAK
     m519.pep
                 1:
                 NLKIAGOYVTAFKNLAKEDNTRIKPAKVAEIGNPNFRRHEKFSPEAKTAK
     q519
                                      290
                                               300
                            280
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3049>:
     a519.seq
              ATGGAATTTT TCATTATCTT GCTGGCAGCC GTCGTTGTTT TCGGCTTCAA
           1
              ATCCTTTGTT GTCATCCCAC AGCAGGAAGT CCACGTTGTC GAAAGGCTCG
           51
              GGCGTTTCCA TCGCGCCCTG ACGGCCGGTT TGAATATTTT GATTCCCTTT ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT
         101
          151
              ACCCAGCCAG GTCTGCATCA CGCGCGACAA TACGCAGCTG ACTGTTGACG
         201
              GTATCATCTA TTTCCAAGTA ACCGACCCCA AACTCGCCTC ATACGGTTCG
          251
              AGCAACTACA TTATGGCGAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC
          301
              CGTTATCGGG CGTATGGAAT TGGACAAAAC GTTTGAAGAA CGCGACGAAA
          351
              TCAACAGCAC CGTCGTCTCC GCCCTCGATG AAGCCGCCGG AGCTTGGGGT
          401
              GTGAAGGTTT TGCGTTATGA GATTAAAGAC TTGGTTCCGC CGCAAGAAAT
          451
              CCTTCGCTCA ATGCAGGCGC AAATTACTGC TGAACGCGAA AAACGCGCCC
          501
              GTATCGCCGA ATCCGAAGGT CGTAAAATCG AACAAATCAA CCTTGCCAGT
          551
              GGTCAGCGCG AAGCCGAAAT CCAACAATCC GAAGGCGAGG CTCAGGCTGC
          601
              GGTCAATGCG TCAAATGCCG AGAAAATCGC CCGCATCAAC CGCGCCAAAG
          651
          701
               GTGAAGCGGA ATCCTTGCGC CTTGTTGCCG AAGCCAATGC CGAAGCCATC
              CGTCAAATTG CCGCCGCCCT TCAAACCCAA GGCGGTGCGG ATGCGGTCAA
          751
               TCTGAAGATT GCGGAACAAT ACGTCGCCGC GTTCAACAAT CTTGCCAAAG
          801
              AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG
          851
              ATTTCTGCCG GTATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA
This corresponds to the amino acid sequence <SEQ ID 3050; ORF 519.a>:
     a519.pep
               MEFFIILLAA VVVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF
               IDRVAYRHSL KEIPLDVPSO VCITRONTQL TVDGIIYFQV TDPKLASYGS
           51
               SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVS ALDEAAGAWG
          101
               VKVLRYEIKD LVPPQEILRS MQAQITAERE KRARIAESEG RKIEQINLAS
          151
               GOREAEIQOS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAI
          201
               RQIAAALQTQ GGADAVNLKI AEQYVAAFNN LAKESNTLIM PANVADIGSL
          251
          301
               ISAGMKIIDS SKTAK*
                  ORFs 519 and 519.a showed a 99.5% identity in 199 aa overlap
     m519/a519
                                                                20
                                                                          30
                                               SVIGRMELDKTFEERDEINSTVVAALDEAA
     m519.pep
                                               14441114311441141111111111
                  YFOVTDPKLASYGSSNYIMAITQLAQTTLRSVIGRMELDKTFEERDEINSTVVSALDEAA
     a519
                                                120
                                                         130
                                                                   140
                            100
                                      110
                    90
                         40
                                   50
                                             60
                                                      70
                                                                80
                  GAWGVKVLRYEIKDLVPPQEILRSMQAQITAEREKRARIAESEGRKIEQINLASGQREAE
     m519.pep
                  a519
                  GAWGVKVLRYEIKDLVPPQEILRSMQAQITAEREKRARIAESEGRKIEQINLASGQREAE
                   150
                            160
                                      170
                                                180
                                                         190
                                                                   200
                         100
                                  110
                                            120
                                                     130
                                                               140
                                                                         150
```

```
IQQSEGEAQAAVNASNAEKIARINRAKGEAESLRLVAEANAEAIRQIAAALQTQGGADAV
m519.pep
         IQQSEGEAQAAVNASNAEKIARINRAKGEAESLRLVAEANAEAIRQIAAALQTQGGADAV
a519
                        .230
                                240
              160
                      170
                             180
                                    190
         NLKIAEQYVAAFNNLAKESNTLIMPANVADIGSLISAGMKIIDSSKTAKX
m519.pep
         NLKIAEOYVAAFNNLAKESNTLIMPANVADIGSLISAGMKIIDSSKTAKX
a519
                                300
          270
                 280
                         290
```

Further work revealed the DNA sequence identified in N. meningitidis <SEQ ID 3051>:

```
m519-1.seq
          ATGGAATTTT TCATTATCTT GTTGGTAGCC GTCGCCGTTT TCGGTTTCAA
         ATCCTTTGTT GTCATCCCAC AACAGGAAGT CCACGTTGTC GAAAGGCTGG
      51
     101 GGCGTTTCCA TCGCGCCCTG ACGGCCGGTT TGAATATTTT GATTCCCTTT
     151 ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT
          ACCCAGCCAG GTCTGCATCA CGCGCGACAA TACGCAGCTG ACTGTTGACG
          GCATCATCTA TTTCCAAGTA ACCGACCCCA AACTCGCCTC ATACGGTTCG
     301 AGCAACTACA TTATGGCGAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC
     351 CGTTATCGGG CGTATGGAGT TGGACAAAAC GTTTGAAGAA CGCGACGAAA
     401 TCAACAGTAC TGTTGTTGCG GCTTTGGACG AGGCGGCCGG GGCTTGGGGT
     451 GTGAAGGTTT TGCGTTATGA GATTAAAGAC TTGGTTCCGC CGCAAGAAAT
          CCTTCGCTCA ATGCAGGCGC AAATTACTGC CGAACGCGAA AAACGCGCCC
          GTATCGCCGA ATCCGAAGGT CGTAAAATCG AACAAATCAA CCTTGCCAGT
     551
     601 GGTCAGCGCG AAGCCGAAAT CCAACAATCC GAAGGCGAGG CTCAGGCTGC
     651 GGTCAATGCG TCAAATGCCG AGAAAATCGC CCGCATCAAC CGCGCCAAAG
     701 GTGAAGCGGA ATCCTTGCGC CTTGTTGCCG AAGCCAATGC CGAAGCCATC
     751 CGTCAAATTG CCGCCGCCCT TCAAACCCAA GGCGGTGCGG ATGCGGTCAA
801 TCTGAAGATT GCGGAACAAT ACGTCGCTGC GTTCAACAAT CTTGCCAAAG
     851 AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG
     901 ATTTCTGCCG GTATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA
```

This corresponds to the amino acid sequence <SEQ ID 3052; ORF 519-1>:

```
MEFFIILLVA VAVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF
    IDRVAYRHSL KEIPLDVPSQ VCITRONTQL TVDGIIYFQV TDPKLASYGS
51
    SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVA ALDEAAGAWG
151 VKVLRYEIKD LVPPQEILRS MQAQITAERE KRARIAESEG RKIEQINLAS
201 GQREAEIQQS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAI
251 RQIAAALQTQ GGADAVNLKI AEQYVAAFNN LAKESNTLIM PANVADIGSL
301 ISAGMKIIDS SKTAK*
```

The following DNA sequence was identified in N. gonorrhoeae <SEQ ID 3053>: g519-1.seq

```
1 ATGGAATTTT TCATTATCTT GTTGGCAGCC GTCGCCGTTT TCGGCTTCAA
 51 ATCCTTTGTC GTCATCCCCC AGCAGGAAGT CCACGTTGTC GAAAGGCTCG
101 GGCGTTTCCA TCGCGCCCTG ACGGCCGGTT TGAATATTTT GATTCCCTTT
151 ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT
201 ACCCAGCCAG GTCTGCATCA CGCGCGATAA TACGCAATTG ACTGTTGACG
    GCATCATCTA TTTCCAAGTA ACCGATCCCA AACTCGCCTC ATACGGTTCG
301 AGCAACTACA TTATGGCAAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC
351 CGTTATCGGG CGTATGGAGT TGGACAAAAC GTTTGAAGAA CGCGACGAAA
401 TCAACAGTAC CGTCGTCTCC GCCCTCGATG AAGCCGCCGG GGCTTGGGGT
451 GTGAAAGTCC TCCGTTACGA AATCAAGGAT TTGGTTCCGC CGCAAGAAAT 501 CCTTCGCGCA ATGCAGGCAC AAATTACCGC CGAACGCGAA AAACGCGCCC
501 CCTTCGCGCA ATGCAGGCAC AAATTACCGC CGAACGCGAA AAACGCGCCC
551 GTATTGCCGA ATCCGAAGGC CGTAAAATCG AACAAATCAA CCTTGCCAGT
601 GGTCAGCGTG AAGCCGAAAT CCAACAATCC GAAGGCGAGG CTCAGGCTGC
651 GGTCAATGCG TCCAATGCCG AGAAAATCGC CCGCATCAAC CGCGCCAAAG
701 GCGAAGCGGA ATCCCTGCGC CTTGTTGCCG AAGCCAATGC CGAAGCCATC
    801 TCTGAAGATT GCGGAACAAT ACGTAGCCGC GTTCAACAAT CTTGCCAAAG
```

```
851 AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG
         901 ATTTCTGCCG GCATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA
This corresponds to the amino acid sequence <SEQ ID 3054; ORF 519-1 ng>:
    g519-1.pep
             MEFFIILLAA VAVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF
             IDRVAYRHSL KEIPLDVPSQ VCITRDNTQL TVDGIIYFQV TDPKLASYGS
             SNYIMAITOL AOTTLRSVIG RMELDKTFEE RDEINSTVVS ALDEAAGAWG
         101
             VKVLRYEIKD LVPPQEILRA MQAQITAERE KRARIAESEG RKIEQINLAS
         151
             GQREAEIQQS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAI
         201
             ROIAAALOTO GGADAVNLKI AEQYVAAFNN LAKESNTLIM PANVADIGSL
         251
             ISAGMKIIDS SKTAK*
                   ORFs 519-1 and 519-1.ng showed a 99.0% identity in 315 aa
    m519-1/g519-1
    overlap
                                20
                                         30
                                                  40
                                                           50
                                                                    60
                       10
                MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
    g519-1.pep
                MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
    m519-1
                                20
                                         30
                                                  40
                                                           50
                                                                    60
                                         90
                                                 100
                                                          110
                KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
    g519-1.pep
                KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
    m519-1
                                                          110
                                                 100
                                         90
                                                                   120
                       70
                                80
                               140
                                        150
                                                 160
                                                          170
                                                                   180
                RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRAMQAQITAERE
    g519-1.pep
                RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
    m519-1
                               140
                                        150
                                                 160
                      130
                               200
                                        210
                                                 220
                                                          230
                                                                   240
                      190
                KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
    g519-1.pep
                KRARIAESEGRKIEOINLASGOREAEIOOSEGEAQAAVNASNAEKIARINRAKGEAESLR
    m519-1
                      190
                               200
                                        210
                                                 220
                                                          230
                                                                   240
                      250
                               260
                                        270
                                                 280
                LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
    q519-1.pep
                LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
    m519-1
                      250
                               260
                                        270
                                                 280
                                                          290
                                                                   300
                      310
                ISAGMKIIDSSKTAKX
     g519-1.pep
                1111111111111111
     m519-1
                ISAGMKIIDSSKTAKX
                      310
The following DNA sequence was identified in N. meningitidis <SEQ ID 3055>:
     a519-1.seq
           1 ATGGAATTTT TCATTATCTT GCTGGCAGCC GTCGTTGTTT TCGGCTTCAA
             ATCCTTTGTT GTCATCCCAC AGCAGGAAGT CCACGTTGTC GAAAGGCTCG
          51
              GGCGTTTCCA TCGCGCCCTG ACGGCCGGTT TGAATATTTT GATTCCCTTT
         101
         151 ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT
         201 ACCCAGCCAG GTCTGCATCA CGCGCGACAA TACGCAGCTG ACTGTTGACG
```

GTATCATCTA TTTCCAAGTA ACCGACCCCA AACTCGCCTC ATACGGTTCG

AGCAACTACA TTATGGCGAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC

CGTTATCGGG CGTATGGAAT TGGACAAAAC GTTTGAAGAA CGCGACGAAA

251

451 501 551 601 651 701 751 801 851	TCAACAGCAC CGTCGTCTCC GCCCTCGATG AAGCCGCCGG AGCTTGGGGT GTGAAGGTTT TGCGTTATGA GATTAAAGAC TTGGTTCCGC CGCAAGAAAT CCTTCGCTCA ATGCAGGCGC AAATTACTGC TGAACGCGAA AAACGCGCCC GTATCGCCGA ATCCGAAGGT CGTAAAATCG AACAAATCAA CCTTGCCAGT GGTCAGCGGG AAGCCGAAAT CCAACAATCC GAAGGCGAGG CTCAGGCTGC GGTCAATGCG TCAAATGCCG AGAAAATCGC CCGCATCAAC CGCGCCAAAG GTGAAGCGGA ATCCTTGCGC CTTGTTGCCG AAGCCAATGC CGAAGCCATC CGTCAAATTG CCGCCGCCT TCAAACCCAA GGCGGTGCGG ATGCGGTCAA GCTGAAGATT GCGGAACAAT ACGTCGCCGC GTTCAACAAT CTTGCCAAAG AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG ATTTCTGCCG GTATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA
This corresponds	to the amino acid sequence <seq 3056;="" 519-1.a="" id="" orf="">:</seq>
a519-1.pep 1 51 101 151 201 251	
m519-1/a51	9-1 ORFs 519-1 and 519-1.a showed a 99.0% identity in 315 aa
overlap	
-	
a519-1.pep	10 20 30 40 50 60 MEFFIILLAAVVVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL : : :
m519-1	MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
	10 20 30 40 50 60
a519-1.pep m519-1	70 80 90 100 110 120 KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
a519-1.pep	130 140 150 160 170 180 RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
a519-1.per	190 200 210 220 230 240 KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
a519-1.per m519-1	250 260 270 280 290 300 LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
a519-1.pep	310 ISAGMKIIDSSKTAKX ISAGMKIIDSSKTAKX 310

```
576 and 576-1 gnm22.seq
```

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3057>:
```

```
m576.seq..
           (partial)
          ..ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA
       1
            GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
            CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
     101
            GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCGT
     151
            AGAAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGCCT
     201
            TTCTGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGC
     251
     301
            CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
            CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACGGTAT
     351
     401
            TCGACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTGAGCCAA
            GTGATTCCGG GTTGGACCGA AGGCGTACAG CTTCTGAAAG AAGGCGGCGA
     451
     501
            AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
            GCGACAAAAT CGGTCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC
     551
            AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
     601
            CATCAAAAA GTAAATTAA
```

This corresponds to the amino acid sequence <SEQ ID 3058; ORF 576>:

```
m576.pep.. (partial)
```

- 1 ..MQQASYAMGV DIGRSLKQMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
- 51 AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG 101 LOYKITKQGE GKOPTKDDIV TVEYEGRLID GTVFDSSKAN GGPVTFPLSQ
- 151 VIPGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
- 201 KIGAPENAPA KQPAQVDIKK VN*

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3059>:

```
g576.seq..(partial)
```

- ..atgggcgtgg acatcggacg ctccctgaaa caaatgaagg aacagggcgc 1 ggaaatcgat ttgaaagtct ttaccgatgc catgcaggca gtgtatgacg 51 101 gcaaagaaat caaaatgacc gaagagcagg cccaggaagt gatgatgaaa 151 ttcctgcagg agcagcaggc taaagccgta gaaaaacaca aggcggatgc 201 qaaqqccaac aaaqaaaaaq gcgaaqcctt cctgaaggaa aatgccgccg aagacggcgt gaagaccact gcttccggtc tgcagtacaa aatcaccaaa 251 301 cagggtgaag gcaaacagcc gacaaaagac gacatcgtta ccgtggaata 351 cgaaggccgc ctgattgacg gtaccgtatt cgacagcagc aaagccaacg gcggcccggc caccttcct ttgagccaag tgattccggg ttggaccgaa 401 451 ggcgtacggc ttctgaaaga aggcggcgaa gccacgttct acatcccgtc 501 caaccttgcc taccgcgaac agggtgcggg cgaaaaaatc ggtccgaacg
- 501 caacettgcc tacegegaac agggtgeggg egaaaaaate ggteegaacg 551 ccaetttggt atttgaegtg aaactggtea aaateggege accegaaaac 601 gegeeegeea ageageegga teaagtegae ateaaaaaag taaattaa

This corresponds to the amino acid sequence <SEQ ID 3060; ORF 576.ng>:

g576.pep..(partial)

- 1 .MGVDIGRSLK QMKEQGAEID LKVFTDAMQA VYDGKEIKMT EEQAQEVMMK
 51 FLQEQQAKAV EKHKADAKAN KEKGEAFLKE NAAEDGVKTT ASGLQYKITK
- 101 QGEGKQPTKD DIVTVEYEGR LIDGTVFDSS KANGGPATFP LSQVIPGWTE
- 151 GVRLLKEGGE ATFYIPSNLA YREQGAGEKI GPNATLVFDV KLVKIGAPEN
- 201 APAKQPDQVD IKKVN*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m576/g576 ORFs 576 and 576.ng showed a 97.2% identity in 215 aa overlap

10 20 30 40 50 60 m576.pep MQQASYAMGVDIGRSLKQMKEQGAEIDLKVFTEAMQAVYDGKEIKMTEEQAQEVMMKFLQ

WO 99/057280

g576	MGVDIGRSLKQMKEQGAEIDLKVFTDAMQAVYDGKEIKMTEEQAQEVMMKFLQ 10 20 30 40 50
m576.pep g576	70 80 90 100 110 120 EQQAKAVEKHKADAKANKEKGEAFLKENAAKDGVKTTASGLQYKITKQGEGKQPTKDDIV
	130 140 150 160 170 180
m576.pep	TVEYEGRLIDGTVFDSSKANGGPVTFPLSQVIPGWTEGVQLLKEGGEATFYIPSNLAYRE
g5 76	TVEYEGRLIDGTVFDSSKANGGPATFPLSQVIPGWTEGVRLLKEGGEATFYIPSNLAYRE 120 130 140 150 160 170
-576	190 200 210 220 OGAGDKIGPNATLVFDVKLVKIGAPENAPAKQPAQVDIKKVNX
m576.pep g576	QGAGDKIGPNATLVFDVKLVKIGAPENAPAKQFAQVDIKKVNX :
g370	180 190 200 210
The following p	artial DNA sequence was identified in N. meningitidis <seq 3061="" id="">:</seq>
a570.seq	ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC
	ACTITICAGCC TGCGGCAAAA AAGAAGCCGC CCCCGCATCT GCATCCGAAC
51	CTGCCGCCGC TTCTTCCGCG CAGGGCGACA CCTCTTCGAT CGGCAGCACG
101	
151	ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
201 251	CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
	GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCGT
301	
351	AGAAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGCCT TTCTGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGC
401	TTCTGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGC
451	CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
501	CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACGGTAT
551	TCGACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTGAGCCAA
601	GTGATTCTGG GTTGGACCGA AGGCGTACAG CTTCTGAAAG AAGGCGGCGA
651	AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
701	GCGACAAAAT CGGCCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC
751	AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
801	CATCAAAAAA GTAAATTAA
This correspond	Is to the amino acid sequence <seq 3062;="" 576.a="" id="" orf="">:</seq>
a576.pep	
1	MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASSA QGDTSSIGST
51	MQQASYAMGV DIGRSLKQMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
101	AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
151	LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPVTFPLSQ
201	VILGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
251	KIGAPENAPA KQPAQVDIKK VN*
m576/a576	ORFs 576 and 576.a showed a 99.5% identity in 222 aa overlap
	10 20 30
m576.pep	MQQASYAMGVDIGRSLKQMKEQGAEIDLKV
-536	
<u> </u>	
	30 40 50 60 70 80
	40 50 60 70 80 90
m676	40 50 60 70 80 90 FTEAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKHKADAKANKEKGEAFLKENAA
m576.pep	FTEAMQAVIDGREIRMIEEQAQEVMARIQEQQARAVERHRADARANERGEAFLRENAA
a576	FTEAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKHKADAKANKEKGEAFLKENAA
a370	90 100 110 120 130 140
	70 100 110 120 130 140

	100	110	120	130	140	150
m576.pep	KDGVKTTASGLQYKI	TKQGEGKQF	TKDDIVTVEY	EGRLIDGTVF	DSSKANGGP	/TFPLSQ
				411111111	ППППП	
a576	KDGVKTTASGLQYKI	TKQGEGKQF	PTKDDIVTVEY	EGRLIDGTVF?	DSSKANGGP	VTFPLSQ
	150	160	170	180	190	200
	160	170	180	190	200	210
m576.pep	VIPGWTEGVQLLKEG	GEATFYIPS	SNLAYREQGAG	SDKIGPNATLV	FDVKLVKIG	APENAPA
		11111111			11111111	
a576	VILGWTEGVQLLKEG	GEATFYIPS	SNLAYREQGAG	DKIGPNATLV	FDVKLVKIG	APENAPA
	210	220	230	240	250	260
~						
	220					
m576.pep	KQPAQVDIKKVNX					
	111111111111					
a576	KQPAQVDIKKVNX				•	
	270					

Further work revealed the DNA sequence identified in N. meningitidis <SEQ ID 3063>:

```
m576-1.seq
      1 ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC
         ACTTTCCGCC TGCGGCAAAA AAGAAGCCGC CCCCGCATCT GCATCCGAAC
     101 CTGCCGCCGC TTCTTCCGCG CAGGGCGACA CCTCTTCGAT CGGCAGCACG
     151 ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA
     201 GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
         CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
          GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCGT
     351 AGAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGCCT
         TTCTGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGC
     451 CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
         CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACGGTAT
     501
         TCGACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTGAGCCAA
     601 GTGATTCCGG GTTGGACCGA AGGCGTACAG CTTCTGAAAG AAGGCGGCGA
     651 AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
     701 GCGACAAAAT CGGTCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC
     751 AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
     801 CATCAAAAA GTAAATTAA
```

This corresponds to the amino acid sequence <SEQ ID 3064; ORF 576-1>:

```
m576-1.pep
```

```
1 MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASSA QGDTSSIGST
 51 MOOASYAMGV DIGRSLKOMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
101 AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
151 LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPVTFPLSQ
201 VIPGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
251 KIGAPENAPA KQPAQVDIKK VN*
```

The following DNA sequence was identified in N. gonorrhoeae <SEQ ID 3065>:

q576-1.seq

```
1 ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC
51 ACTITCCGCC TGCGGCAAAA AAGAAGCCGC CCCCGCATCT GCATCCGAAC
    CTGCCGCCGC TTCTGCCGCG CAGGGCGACA CCTCTTCAAT CGGCAGCACG
151 ATGCAGCAGG CAAGCTATGC AATGGGCGTG GACATCGGAC GCTCCCTGAA
201 ACAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGATG
251 CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
    GCCCAGGAAG TGATGATGAA ATTCCTGCAG GAGCAGCAGG CTAAAGCCGT
    AGAAAAACAC AAGGCGGATG CGAAGGCCAA CAAAGAAAAA GGCGAAGCCT
351
    TCCTGAAGGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGT
401
451 CTGCAGTACA AAATCACCAA ACAGGGTGAA GGCAAACAGC CGACAAAAGA
501 CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACCGTAT
551
    TCGACAGCAG CAAAGCCAAC GGCGGCCCGG CCACCTTCCC TTTGAGCCAA
    GTGATTCCGG GTTGGACCGA AGGCGTACGG CTTCTGAAAG AAGGCGGCGA
651 AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
```

WO 99/057280 PCT/US99/09346

```
701 GCGAAAAAT CGGTCCGAAC GCCACTTTGG TATTTGACGT GAAACTGGTC
         751 AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG ATCAAGTCGA
            CATCAAAAAA GTAAATTAA
This corresponds to the amino acid sequence <SEQ ID 3066; ORF 576-1.ng>:
    q576-1.pep
             MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASAA QGDTSSIGST
             MQQASYAMGV DIGRSLKOMK EQGAEIDLKV FTDAMQAVYD GKEIKMTEEQ
          51
             AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
         151 LOYKITKOGE GKOPTKDDIV TVEYEGRLID GTVFDSSKAN GGPATFPLSQ
201 VIPGWTEGVR LLKEGGEATF YIPSNLAYRE QGAGEKIGPN ATLVFDVKLV
         251 KIGAPENAPA KQPDQVDIKK VN*
                    ORFs 576-1 and 576-1.ng showed a 97.8% identity in 272 aa
    g576-1/m576-1
    overlap
                       10
                                20
                                         30
                                                  40
                                                           50
                                                                   60
                MNTIFKISALTLSAALALSACGKKEAAPASASEPAAASAAQGDTSSIGSTMQQASYAMGV
    g576-1.pep
                MNTIFKISALTLSAALALSACGKKEAAPASASEPAAASSAQGDTSSIGSTMQQASYAMGV
    m576-1
                       10
                                20
                                         30
                                                  40
                                                          50
                                                                   60
                                80
                                         90
                                                100
                                                                  120
                       70
                                                         110
                DIGRSLKOMKEQGAEIDLKVFTDAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKH
    q576-1.pep
                DIGRSLKQMKEQGAEIDLKVFTEAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKH
    m576-1
                       70
                                80
                                         90
                                                 100
                      130
                               140
                                        150
                                                 160
                                                          170
                                                                  180
                KADAKANKEKGEAFLKENAAKDGVKTTASGLQYKITKQGEGKQPTKDDIVTVEYEGRLID
    g576-1.pep
                KADAKANKEKGEAFLKENAAKDGVKTTASGLQYKITKQGEGKQPTKDDIVTVEYEGRLID
    m576-1
                      130
                               140
                                        150
                                                 160
                                                          170
                      190
                               200
                                        210
                                                 220
                                                          230
                GTVFDSSKANGGPATFPLSQVIPGWTEGVRLLKEGGEATFYIPSNLAYREQGAGEKIGPN
    q576-1.pep
                m576-1
                GTVFDSSKANGGPVTFPLSQVIPGWTEGVQLLKEGGEATFYIPSNLAYREQGAGDKIGPN
                      190
                               200
                                        210
                                                 220
                                                          230
                                                                   240
                      250
                               260
                                        270
    q576-1.pep
                ATLVFDVKLVKIGAPENAPAKQPDQVDIKKVNX
                m576-1
                ATLVFDVKLVKIGAPENAPAKQPAQVDIKKVNX
                      250
    a576-1.seg
```

The following DNA sequence was identified in N. meningitidis <SEQ ID 3067>:

-	-ı.sed	4				
	1	ATGAACACCA	TTTTCAAAAT	CAGCGCACTG	ACCCTTTCCG	CCGCTTTGGC
	51	ACTTTCCGCC	TGCGGCAAAA	AAGAAGCCGC	CCCCGCATCT	GCATCCGAAC
	101	CTGCCGCCGC	TTCTTCCGCG	CAGGGCGACA	CCTCTTCGAT	CGGCAGCACG
	151	ATGCAGCAGG	CAAGCTATGC	GATGGGCGTG	GACATCGGAC	GCTCCCTGAA
	201	GCAAATGAAG	GAACAGGGCG	CGGAAATCGA	TTTGAAAGTC	TTTACCGAAG
	251	CCATGCAGGC	AGTGTATGAC	GGCAAAGAAA	TCAAAATGAC	CGAAGAGCAG
	301	GCTCAGGAAG	TCATGATGAA	ATTCCTTCAG	GAACAACAGG	CTAAAGCCGT
	351	AGAAAAACAC	AAGGCGGACG	CGAAGGCCAA	TAAAGAAAAA	GGCGAAGCCT
	401	TTCTGAAAGA	AAATGCCGCC	AAAGACGGCG	TGAAGACCAC	TGCTTCCGGC
	451	CTGCAATACA	AAATCACCAA	ACAGGGCGAA	GGCAAACAGC	CGACCAAAGA
	501	CGACATCGTT	ACCGTGGAAT	ACGAAGGCCG	CCTGATTGAC	GGTACGGTAT
	551	TCGACAGCAG	CAAAGCCAAC	GGCGGCCCGG	TCACCTTCCC	TTTGAGCCAA
	601	GTGATTCTGG	GTTGGACCGA	AGGCGTACAG	CTTCTGAAAG	AAGGCGGCGA
	651	AGCCACGTTC	TACATCCCGT	CCAACCTTGC	CTACCGCGAA	CAGGGTGCGG

```
701 GCGACAAAAT CGGCCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC
             AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
             CATCAAAAA GTAAATTAA
This corresponds to the amino acid sequence <SEQ ID 3068; ORF 576-1.a>:
    a576-1.pep
             MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASSA QGDTSSIGST
             MQQASYAMGV DIGRSLKQMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
         101
             AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
             LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPVTFPLSQ
VILGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
         151
         201
             KIGAPENAPA KQPAQVDIKK VN*
    a576-1/m576-1
                     ORFs 576-1 and 576-1.a showed a 99.6% identity in 272 aa
    overlap
                       10
                                 20
                                          30
                                                            50
                                                                     60
                MNTIFKISALTLSAALALSACGKKEAAPASASEPAAASSAQGDTSSIGSTMOQASYAMGV
    a576-1.pep
                m576-1
                MNTIFKISALTLSAALALSACGKKEAAPASASEPAAASSAQGDTSSIGSTMQQASYAMGV
                       10
                                20
                                         30
                                                  40
                                                           50
                                                                     60
                       70
                                80
                                         90
                                                  100
                                                           110
    a576-1.pep
                DIGRSLKQMKEQGAEIDLKVFTEAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKH
                m576-1
                DIGRSLKQMKEQGAEIDLKVFTEAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKH
                       70
                                80
                                         90
                                                  100
                                                           110
                                                                    120
                                140
                      130
                                        150
                                                  160
                                                           170
                                                                    180
    a576-1.pep
                KADAKANKEKGEAFLKENAAKDGVKTTASGLQYKITKQGEGKOPTKDDIVTVEYEGRLID
                KADAKANKEKGEAFLKENAAKDGVKTTASGLQYKITKQGEGKQPTKDDIVTVEYEGRLID
    m576-1
                      130
                                140
                                        150
                                                 160
                                                           170
                                                                    180
                      190
                                200
                                         210
                                                  220
                                                           230
                                                                    240
    a576-1.pep
                GTVFDSSKANGGPVTFPLSQVILGWTEGVQLLKEGGEATFYIPSNLAYREQGAGDKIGPN
                m576-1
                GTVFDSSKANGGPVTFPLSQVIPGWTEGVQLLKEGGEATFYIPSNLAYREOGAGDKIGPN
                      190
                                200
                                        210
                                                  220
                                                           230
                                                                    240
                      250
                                260
                                         270
                ATLVFDVKLVKIGAPENAPAKQPAQVDIKKVNX
    a576-1.pep
```

919 gnm43.seq

m576-1

The following partial DNA sequence was identified in *N.meningitidis* <SEQ ID 3069>: m919.seq

ATLVFDVKLVKIGAPENAPAKQPAQVDIKKVNX

260

```
ATGAAAAAT ACCTATTCCG CGCCGCCTG TACGGCATCG CCGCCGCCAT
 1
51
     CCTCGCCGCC TGCCAAAGCA AGAGCATCCA AACCTTTCCG CAACCCGACA
101
    CATCCGTCAT CAACGCCCG GACCGGCCGG TCGGCATCCC CGACCCCGCC
    GGAACGACGG TCGGCGGCGG CGGGGCCGTC TATACCGTTG TACCGCACCT
151
    GTCCCTGCCC CACTGGGCGG CGCAGGATTT CGCCAAAAGC CTGCAATCCT
201
251
     TCCGCCTCGG CTGCGCCAAT TTGAAAAACC GCCAAGGCTG GCAGGATGTG
     TGCGCCCAAG CCTTTCAAAC CCCCGTCCAT TCCTTTCAGG CAAAACAGTT
301
351
    TTTTGAACGC TATTTCACGC CGTGGCAGGT TGCAGGCAAC GGAAGCCTTG
    CCGGTACGGT TACCGGCTAT TACGAACCGG TGCTGAAGGG CGACGACAGG
401
```

```
451 CGGACGCAC AAGCCCGCTT CCCGATTTAC GGTATTCCCG ACGATTTTAT
 501 CTCCGTCCCC CTGCCTGCCG GTTTGCGGAG CGGAAAAGCC CTTGTCCGCA
 551 TCAGGCAGAC GGGAAAAAAC AGCGGCACAA TCGACAATAC CGGCGGCACA
 601 CATACCGCCG ACCTCTCCcG ATTCCCCATC ACCGCGCGCA CAACAGCAAT
 651 CAAAGGCAGG TTTGAAGGAA GCCGCTTCCT CCCCTACCAC ACGCGCAACC
 701 AAATCAACGG CGGCGCGCTT GACGGCAAAG CCCCGATACT CGGTTACGCC
751 GAAGACCCTG TCGAACTTTT TTTTATGCAC ATCCAAGGCT CGGGCCGTCT
801 GAAAACCCCG TCCGGCAAAT ACATCCGCAT CGGCTATGCC GACAAAAACG
851 AACATCCYTA CGTTTCCATC GGACGCTATA TGGCGGATAA GGGCTACCTC
901 AAACTCGGAC AAACCTCCAT GCAGGGCATT AAGTCTTATA TGCGGCAAAA
951 TCCGCAACGC CTCGCCGAAG TTTTGGGTCA AAACCCCAGC TATATCTTTT
1001 TCCGCGAGCT TGCCGGAAGC AGCAATGACG GCCCTGTCGG CGCACTGGGC
1051 ACGCCGCTGA TGGGGGAATA TGCCGGCGCA GTCGACCGGC ACTACATTAC
1101 CTTGGGTGCG CCCTTATTTG TCGCCACCGC CCATCCGGTT ACCCGCAAAG
1151 CCCTCAACCG CCTGATTATG GCGCAGGATA CCGGCAGCGC GATTAAAGGC
1201 GCGGTGCGCG TGGATTATTT TTGGGGATAC GGCGACGAAG CCGGCGAACT
1251 TGCCGGCAAA CAGAAAACCA CGGGATATGT CTGGCAGCTC CTACCCAACG
1301 GTATGAAGCC CGAATACCGC CCGTAA
```

This corresponds to the amino acid sequence <SEQ ID 3070; ORF 919>:

m919.pep

```
1 MKKYLFRAAL YGIAAAILAA CQSKSIQTFP QPDTSVINGP DRPVGIPDPA
51 GTTVGGGGAV YTVVPHLSLP HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV
101 CAQAFQTPVH SFQAKQFFER YFTPWQVAGN GSLAGTVTGY YEPVLKGDDR
151 RTAQARFPIY GIPDDFISVP LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT
201 HTADLSRFPI TARTTAIKGR FEGSRFLPYH TRNQINGGAL DGKAPILGYA
251 EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSI GRYMADKGYL
301 KLGQTSMQGI KSYMRQNPQR LAEVLGQNPS YIFFRELAGS SNDGPVGALG
351 TPLMGEYAGA VDRHYITLGA PLFVATAHPV TRKALNRLIM AQDTGSAIKG
401 AVRVDYFWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P*
```

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 3071>:

g919.seq

```
1 ATGAAAAAC ACCTGCTCCG CTCCGCCCTG TACGGCatCG CCGCCqccAT
  51 CCtcgCCGCC TGCCAAAgca gGAGCATCCA AACCTTTCCG CAACCCGACA
 101 CATCCGTCAT CAACGGCCCG GACCGGCCGG CCGGCATCCC CGACCCCGCC
 151 GGAACGACGG TTGCCGGCGG CGGGGCCGTC TATACCGTTG TGCCGCACCT
 201 GTCCATGCCC CACTGGGCGG CGCaggATTT TGCCAAAAGC CTGCAATCCT
 251 TCCGCCTCGG CTGCGCCAAT TTGAAAAACC GCCAAGGCTG GCAGGATGTG
 301 TGCGCCCAAG CCTTTCAAAC CCCCGTGCAT TCCTTTCAGG CAAAGcGgTT
 351 TTTTGAACGC TATTTCACGC cgtGGCaggt tgcaggcaAC GGAAGcCTTG
401 Caggtacggt TACCGGCTAT TACGAACCGG TGCTGAAGGG CGACGGCAGG
 451 CGGACGGAAC GGGCCCGCTT CCCGATTTAC GGTATTCCCG ACGATTTTAT
 501 CTCCGTCCCG CTGCCTGCCG GTTTGCGGGG CGGAAAAAAC CTTGTCCGCA
 551 TCAGGCAGac ggGGAAAAAC AGCGGCACGA TCGACAATGC CGGCGGCACG
 601 CATACCGCCG ACCTCTCCCG ATTCCCCATC ACCGCGCGCA CAACGGcaat
 651 caaaGGCAGG TTTGAaggAA GCCGCTTCCT CCCTTACCAC ACGCGCAACC
 701 AAAtcaacGG CGGCgcgcTT GACGGCAAag cccCCATCCT CggttacgcC
 751 GAagaccCcG tcgaacttTT TTTCATGCAC AtccaaggCT CGGGCCGCCT
 801 GAAAACCCcg tccggcaaat acatCCGCAt cggaTacgcc gacAAAAACG
 851 AACAtccgTa tgtttccatc ggACGctaTA TGGCGGACAA AGGCTACCTC
901 AAGctcggc agACCTCGAT GCAGGgcatc aaagcCTATA TGCGGCAAAA
951 TCCGCAACGC CTCGCCGAAG TTTTGGGTCA AAACCCCAGC TATATCTTTT
1001 TCCGCGAGCT TGCCGGAAGC GGCAATGAGG GCCCCGTCGG CGCACTGGGC
1051 ACGCCACTGA TGGGGGAATA CGCCGGCGCA ATCGACCGGC ACTACATTAC
1101 CTTGGGCGCG CCCTTATTTG TCGCCACCGC CCATCCGGTT ACCCGCAAAG
1151 CCCTCAACCG CCTGATTATG GCGCAGGATA CAGGCAGCGC GATCAAAGGC
1201 GCGGTGCGCG TGGATTATTT TTGGGGTTAC GGCGACGAAG CCGGCGAACT
1251 TGCCGGCAAA CAGAAAACCA CGGGATACGT CTGGCAGCTC CTGCCCAACG
1301 GCATGAAGCC CGAATACCGC CCGTGA
```

This corresponds to the amino acid sequence <SEQ ID 3072; ORF 919.ng>:

g919.pep					
1	MKKHLLRSAL	YGIAAAILAA	CQSRSIQTFP	QPDTSVINGP	DRPAGIPDPA
51	GTTVAGGGAV	YTVVPHLSMP	HWAAQDFAKS	LQSFRLGCAN	LKNRQGWQDV
101	CAQAFQTPVH	SFQAKRFFER	YFTPWQVAGN	GSLAGTVTGY	YEPVLKGDGR
151	RTERARFPIY	GIPDDFISVP	LPAGLRGGKN	LVRIRQTGKN	SGTIDNAGGT
201	HTADLSRFPI	TARTTAIKGR	FEGSRFLPYH	TRNQINGGAL	DGKAPILGYA
251	EDPVELFFMH	IQGSGRLKTP	SGKYIRIGYA	DKNEHPYVSI	GRYMADKGYL
301	KLGQTSMQGI	KAYMRQNPQR	LAEVLGQNPS	YIFFRELAGS	GNEGPVGALG
351	TPLMGEYAGA	IDRHYITLGA	PLFVATAHPV	TRKALNRLIM	AQDTGSAIKG
401	AVRVDYFWGY	GDEAGELAGK	OKTTGYVWOL	LPNGMKPEYR	P*

ORF 919 shows 95.9 % identity over a 441 aa overlap with a predicted ORF (ORF 919.ng) from N. gonorrhoeae:

m919/g919

ATGAAAAAT ACCTATTCCG CGCCGCCCTG TGCGGCATCG CCGCCGCCAT CCTCGCCGCC TGCCAAAGCA AGAGCATCCA AACCTTTCCG CAACCCGACA CATCCGTCAT CAACGGCCCG GACCGGCCGG TCGGCATCCC CGACCCCGCC 101 151 GGAACGACGG TCGGCGGCGG CGGGGCCGTT TATACCGTTG TGCCGCACCT GTCCCTGCCC CACTGGGCGG CGCAGGATTT CGCCAAAAGC CTGCAATCCT TCCGCCTCGG CTGCGCCAAT TTGAAAAACC GCCAAGGCTG GCAGGATGTG TGCGCCCAAG CCTTTCAAAC CCCCGTCCAT TCCGTTCAGG CAAAACAGTT 251 301 TTTTGAACGC TATTTCACGC CGTGGCAGGT TGCAGGCAAC GGAAGCCTTG 351 CCGGTACGGT TACCGGCTAT TACGAGCCGG TGCTGAAGGG CGACGACAGG 401 CGGACGCAC AAGCCCGCTT CCCGATTTAC GGTATTCCCG ACGATTTTAT CTCCGTCCC CTGCCTGCCG GTTTGCGGAG CGGAAAAGCC CTTGTCCGCA TCAGGCAGAC GGGAAAAAAC AGCGGCACAA TCGACAATAC CGGCGGCACA 501 551 CATACCGCCG ACCTCTCCCA ATTCCCCATC ACTGCGCGCA CAACGGCAAT 601 651 CAAAGGCAGG TTTGAAGGAA GCCGCTTCCT CCCCTACCAC ACGCGCAACC 701 AAATCAACGG CGGCGCGCTT GACGGCAAAG CCCCGATACT CGGTTACGCC 751 GAAGACCCCG TCGAACTTTT TTTTATGCAC ATCCAAGGCT CGGGCCGTCT GAAAACCCCG TCCGGCAAAT ACATCCGCAT CGGCTATGCC GACAAAAACG 801 AACATCCCTA CGTTTCCATC GGACGCTATA TGGCGGACAA AGGCTACCTC 851 901 AAGCTCGGGC AGACCTCGAT GCAGGGCATC AAAGCCTATA TGCAGCAAAA 951 CCCGCAACGC CTCGCCGAAG TTTTGGGGCA AAACCCCAGC TATATCTTTT 1001 TCCGAGAGCT TACCGGAAGC AGCAATGACG GCCCTGTCGG CGCACTGGGC 1051 ACGCCGCTGA TGGGCGAGTA CGCCGGCGCA GTCGACCGGC ACTACATTAC CTTGGGCGCG CCCTTATTTG TCGCCACCGC CCATCCGGTT ACCCGCAAAG 1101 1151 CCCTCAACCG CCTGATTATG GCGCAGGATA CCGGCAGCGC GATTAAAGGC

1201 GCGGTGCGCG TGGATTATTT TTGGGGATAC GGCGACGAAG CCGGCGAACT 1251 TGCCGGCAAA CAGAAAACCA CGGGATATGT CTGGCAGCTT CTGCCCAACG 1301 GTATGAAGCC CGAATACCGC CCGTAA

This corresponds to the amino acid sequence <SEQ ID 3074; ORF 919.a>:

		•	-		
a919.pep					
1	MKKYLFRAAL	CGIAAAILAA	CQSKSIQTFP	QPDTSVINGP	DRPVGIPDPA
51	GTTVGGGGAV	YTVVPHLSLP	HWAAQDFAKS	LQSFRLGCAN	LKNRQGWQDV
101	CAQAFQTPVH	SVQAKQFFER	YFTPWQVAGN	GSLAGTVTGY	YEPVLKGDDR
151	RTAQARFPIY	GIPDDFISVP	LPAGLRSGKA	LVRIRQTGKN	SGTIDNTGGT
201	HTADLSQFPI	TARTTAIKGR	FEGSRFLPYH	TRNQINGGAL	DGKAPILGYA
251	EDPVELFFMH	IQGSGRLKTP	SGKYIRIGYA	DKNEHPYVSI	GRYMADKGYL
301	KLGQTSMQGI	KAYMQQNPQR	LAEVLGQNPS	YIFFRELTGS	SNDGPVGALG
351	TPLMGEYAGA	VDRHYITLGA	PLFVATAHPV	TRKALNRLIM	AQDTGSAIKG
401	AVRVDYFWGY	GDEAGELAGK	QKTTGYVWQL	LPNGMKPEYR	P*

m919/a919 ORFs 919 and 919.a showed a 98.6% identity in 441 aa overlap

			•		-	
	10	20	30	40	50	60
m919.pep	MKKYLFRAALYGIA	AAILAACQSK	SIQTFPQPDT	SVINGPDRPV	GIPDPAGTTV	GGGGAV
_	11111111111111	11111111111	1111111111		11/11/11/1	11111
a919	MKKYLFRAALCGIA	AAILAACQSK	SIQTFPQPDT	SVINGPDRPV	GIPDPAGTTV	GGGGAV
	10	20	30	40	50	60
	70	80	90	100	110	120
m919.pep	YTVVPHLSLPHWAA	QDFAKSLQSF	RLGCANLKNR	QGWQDVCAQA	FQTPVHSFQA	KQFFER
	111111111111111	111111111	111111111	1111111111	11111111111	111111
a919	YTVVPHLSLPHWAA	QDFAKSLQSE	RLGCANLKNR	QGWQDVCAQA	FQTPVHSVQA	KQFFER
	70	80	90	100	110	120

WO 99/057280 PCT/US99/09346

m919.pep	130 YFTPWQVAGNGSLAGTV YFTPWQVAGNGSLAGTV 130	111111111	111111111		111111111	1111
m919.pep	190 LVRIRQTGKNSGTIDN' LVRIRQTGKNSGTIDN' 190		:111111111		нинтн	
m919.pep	250 DGKAPILGYAEDPVEL: DGKAPILGYAEDPVEL: 250	нийш	11111111	1111111111	THILLIE	1111
m919.pep	310 KLGQTSMQGIKSYMRQI	111111111	THILLIA	1:1111111		
m919.pep	370 VDRHYITLGAPLFVATA VDRHYITLGAPLFVATA 370	1111111111	1111111111	1111111111	1131111111	1111
m919.pep	430 QKTTGYVWQLLPNGMK QKTTGYVWQLLPNGMK 430 440	11111				

121 and 121-1

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3075>: m121.seq

1	ATGGAAACAC	AGCTTTACAT	CGGCATCATG	TCGGGAACCA	GCATGGACGG
51	GGCGGATGCC	GTACTGATAC	GGATGGACGG	CGGCAAATGG	CTGGGCGCGG
101	AAGGGCACGC	CTTTACCCCC	TACCCCGGCA	GGTTACGCCG	CCAATTGCTG
151	GATTTGCAGG	ACACAGGCGC	AGACGAACTG	CACCGCAGCA	GGATTTTGTC
201	GCAAGAACTC	AGCCGCCTAT	ATGCGCAAAC	CGCCGCCGAA	CTGCTGTGCA
251	GTCAAAACCT	CGCACCGTCC	GACATTACCG	CCCTCGGCTG	CCACGGGCAA
301	ACCGTCCGAC	ACGCGCCGGA	ACACGGTTAC	AGCATACAGC	TTGCCGATTT
351	GCCGCTGCTG	GCGxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
401	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
451	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
501	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
551	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
601	xxxxxxCAGC	TTCCTTACGA	CAAAAACGGT	GCAAAGTCGG	CACAAGGCAA
651	CATATTGCCG	CAACTGCTCG	ACAGGCTGCT	CGCCCACCCG	TATTTCGCAC
701	AACGCCACCC	TAAAAGCACG	GGGCGCGAAC	TGTTTGCCAT	AAATTGGCTC
751	GAAACCTACC	TTGACGGCGG	CGAAAACCGA	TACGACGTAT	TGCGGACGCT
801	TTCCCGTTTT	ACCGCGCAAA	CCGTTTGCGA	CGCCGTCTCA	CACGCAGCGG
851	CAGATGCCCG	TCAAATGTAC	ATTTGCGACG	GCGGCATCCG	CAATCCTGTT
901	TTAATGGCGG	ATTTGGCAGA	ATGTTTCGGC	ACACGCGTTT	CCCTGCACAG
951	CACCGCCGAC	CTGAACCTCG	ATCCGCAATG	GGTGGAAGCC	GCCGnATTTG
1001	CGTGGTTGGC	GGCGTGTTGG	ATTAATCGCA	TTCCCGGTAG	TCCGCACAAA

1051 GCAACCGGCG CATCCAAACC GTGTATTCTG AnCGCGGGAT ATTATTATTG 1101 A

This corresponds to the amino acid sequence <SEQ ID 3076; ORF 121>: m121.pep

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3077>: g121.seq

1 ATGGAAACAC AGCTTTACAT CGGCATTATG TCGGGAACCA GTATGGACGG GGCGGATGCC GTGCTGGTAC GGATGGACGG CGGCAAATGG CTGGGCGCGG 51 AAGGGCACGC CTTTACCCCC TACCCTGACC GGTTGCGCCG CAAATTGCTG 101 GATTTGCAGG ACACAGGCAC AGACGAACTG CACCGCAGCA GGATGTTGTC 151 201 GCAAGAACTC AGCCGCCTGT ACGCGCAAAC CGCCGCCGAA CTGCTGTGCA GTCAAAACCT CGCTCCGTGC GACATTACCG CCCTCGGCTG CCACGGGCAA 251 301 ACCGTCCGAC ACGCGCCGGA ACACGGTtac AGCATACAGC TTGCCGATTT GCCGCTGCTG GCGGAACTGa cgcggatttT TACCGTCggc gacttcCGCA 351 GCCGCGACCT TGCTGCCGGC GGacaAGGTG CGCCGCTCGT CCCCGCCTTT 401 451 CACGAAGCCC TGTTCCGCGA TGACAGGGAA ACACGCGTGG TACTGAACAT CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGGCGCA CCCGCCTTCG 501 GCTTCGACAC AGGGCCGGGC AATATGCTGA TGGAcgcgtg gacgcaggca 551 601 cacTGGcagc TGCCTTACGA CAAAAacggt gcAAAGgcgg cacAAGGCAA 651 catatTGCcg cAACTGCTCG gcaggctGCT CGCCcaccCG TATTTCTCAC 701 AACCCcaccc aaAAAGCACG GGgcGCGaac TgtttgcccT AAattggctc 751 qaaacctAcc ttgacggcgg cgaaaaccga tacgacgtat tgcggacgct ttcccgattc accgcgcaaA ccgTttggga cgccgtctca CACGCAGCGG 801 851 CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG 951 CACCGCCGAA CTGAACCTCG ATCCTCAATG GGTGGAGGCG gccgCATTtg cataattaac GGCGTGTTGG ATTAACCGCA TTCCCGGTAG TCCGCACAAA 1001 GCGACCGGCG CATCCAAACC GTGTATTCTG GGCGCGGGAT ATTATTATTG 1051 1101 A

This corresponds to the amino acid sequence <SEQ ID 3078; ORF 121.ng>: g121.pep

```
1 METQLYIGIM SGTSMDGADA VLVRMDGGKW LGAEGHAFTP YPDRLRRKLL
51 DLQDTGTDEL HRSRMLSQEL SRLYAQTAAE LLCSQNLAPC DITALGCHGQ
101 TVRHAPEHGY SIQLADLPLL AELTRIFTVG DFRSRDLAAG GQGAPLVPAF
151 HEALFRDDRE TRVVLNIGGI ANISVLPPGA PAFGFDTGPG NMLMDAWTQA
201 HWQLPYDKNG AKAAQGNILP QLLGRLLAHP YFSQPHPKST GRELFALNWL
251 ETYLDGGENR YDVLRTLSRF TAQTVWDAVS HAAADARQMY ICGGGIRNPV
301 LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWLAACW INRIPGSPHK
351 ATGASKPCIL GAGYYY*
```

ORF 121 shows 73.5% identity over a 366 as overlap with a predicted ORF (ORF121.ng) from N. gonorrhoeae:
m121/g121

```
30
                      20
                                    40
         METOLY IG IMSGTSMDGADAVLIRMDGGKWLGAEGHAFT PY PGRLRRQLLDLQDTGADEL
m121.pep
         {\tt METQLYIGIMSGTSMDGADAVLVRMDGGKWLGAEGHAFTPYPDRLRRKLLDLQDTGTDEL}
g121
               10
                                    40
               70
                      80
                             90
                                   100
                                          110
                                                  120
         HRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGOTVRHAPEHGYSIQLADLPLL
m121.pep
```

WO 99/057280 PCT/US99/09346

g121	HRSRMLSQELSRLYA	TAAELLCSQN	NLAPCDITALO	CHGQTVRHAP	EHGYSIQLAD	LPLL
	70	80	90	100	110	120
	130	140	150	160	170	180
m121.pep	AXXXXXXXXXXXXXX	XXXXXXXXX	XXXXXXXXXX	XXXXXXXXX	XXXXXXXXXX	XXXX
	: :			:		
g121	AELTRIFTVGDFRSRI	DLAAGGQGAPI	VPAFHEALFR	DDRETRVVLN	IGGIANISVL	PPGA
	130	140	150	160	170	180
	190	200	210	220	230	240
m121.pep	XXXXXXXXXXXXXXXX	KXXXXXQLPY	DKNGAKSAQO	NILPQLLDRL	LAHPYFAQRHI	PKST
	:	: [11]	111111:11	1111111 11	1111111:1	
g121	PAFGFDTGPGNMLMDA	WTQAHWQLPY	/DKNGAKAAQG	NILPQLLGRL	LAHPYFSQPHI	PKST
	190	200	210	220	230	240
	250	260	270	280	290	300
m121.pep	GRELFAINWLETYLDO	GGENRYDVLRI	LSRFTAQTVC	DAVSHAAADA	RQMYICDGGI	RNPV
		11111111111		11111111111	111111 111	1111
g121	GRELFALNWLETYLDO	GGENRYDVLRI	LSRFTAQTVW	DAVSHAAADA	RQMYICGGGI	RNPV
-	250	260	270	280	290	300
	310	320	330	340	350	360
m121.pep	LMADLAECFGTRVSL	ISTADLNLDPO	WVEAAXFAWI	AACWINRIPG	SPHKATGASK	PCIL
				1111111111	111111111	1111
g121	LMADLAECFGTRVSL	ISTAELNLDPO	WVEAAAFAWI	AACWINRIPG	SPHKATGASK	PCIL
9	310	320	330	340	350	360
m121.pep	XAGYYYX					
g121	GAGYYYX					
-						

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3079>:

```
al21.seq
          ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
      51 GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
     101 AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CAAATTGCTG
     151 GATTTGCAGG ACACAGGCGC GGACGAACTG CACCGCAGCA GGATGTTGTC 201 GCAAGAACTC AGCCGCCTGT ACGCGCAAAC CGCCGCCGAA CTGCTGTGCA
     251 GTCAAAACCT CGCGCCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA
     301 ACCGTCAGAC ACGCGCCGGA ACACAGTTAC AGCGTACAGC TTGCCGATTT
     351 GCCGCTGCTG GCGGAACGGA CTCAGATTTT TACCGTCGGC GACTTCCGCA
         GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCGCTCGT CCCCGCCTTT
     401
          CACGAAGCCC TGTTCCGCGA CGACAGGGAA ACACGCGCGG TACTGAACAT
     451
     501 CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGACGCA CCCGCCTTCG
     551 GCTTCGACAC AGGACCGGGC AATATGCTGA TGGACGCGTG GATGCAGGCA
     601 CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA
     651 CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC
701 AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC
     751 GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT
     801 TTCCCGATTC ACCGCGCAAA CCGTTTTCGA CGCCGTCTCA CACGCAGCGG
     851 CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
     901
          TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
     951
          CACCGCCGAA CTGAACCTCG ATCCGCAATG GGTAGAAGCC GCCGCGTTCG
    1001
          CATGGATGGC GGCGTGTTGG GTCAACCGCA TTCCCGGTAG TCCGCACAAA
          GCAACCGGCG CATCCAAACC GTGTATTCTG GGCGCGGGAT ATTATTATTG
    1101 A
```

This corresponds to the amino acid sequence <SEQ ID 3080; ORF 121.a>:

```
a121.pep

1 METQLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRKLL
51 DLQDTGADEL HRSRMLSQEL SRLYAQTAAE LLCSQNLAPS DITALGCHGQ
101 TVRHAPEHSY SVQLADLPLL AERTQIFTVG DFRSRDLAAG GQGAPLVPAF
151 HEALFRDDRE TRAVLNIGGI ANISVLPPDA PAFGFDTGPG NMLMDAWMQA
201 HWQLPYDKNG AKAAQGNILP QLLDRLLAHP YFAQPHPKST GRELFALNWL
251 ETYLDGGENR YDVLRTLSRF TAQTVFDAVS HAAADARQMY ICGGGIRNPV
```

LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWMAACW VNRIPGSPHK 351 ATGASKPCIL GAGYYY* ORFs 121 and 121.a showed a 74.0% identity in 366 aa overlap m121/a121 METOLY IGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRQLLDLQDTGADEL m121.pep METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRKLLDLQDTGADEL a121 HRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHGYSIQLADLPLL m121.pep ${\tt HRSRMLSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHSYSVQLADLPLL}$ a121 m121.pep AERTOIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDDRETRAVLNIGGIANISVLPPDA a121 XXXXXXXXXXXXXXXXXXXXQLPYDKNGAKSAQGNILPQLLDRLLAHPYFAQRHPKST m121.pep PAFGFDTGPGNMLMDAWMOAHWOLPYDKNGAKAAOGNILPQLLDRLLAHPYFAQPHPKST a121 GRELFAINWLETYLDGGENRYDVLRTLSRFTAQTVCDAVSHAAADARQMYICDGGIRNPV m121.pep GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVFDAVSHAAADARQMYICGGGIRNPV a121 LMADLAECFGTRVSLHSTADLNLDPQWVEAAXFAWLAACWINRIPGSPHKATGASKPCIL m121.pep LMADLAECFGTRVSLHSTAELNLDPQWVEAAAFAWMAACWVNRIPGSPHKATGASKPCIL a121 **XAGYYYX** m121.pep **GAGYYYX** a121 Further work revealed the DNA sequence identified in N. meningitidis <SEQ ID 3081>: m121-1.seq ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CCAATTGCTG GATTTGCAGG ACACAGGCGC AGACGAACTG CACCGCAGCA GGATTTTGTC GCAAGAACTC AGCCGCCTAT ATGCGCAAAC CGCCGCCGAA CTGCTGTGCA GTCAAAACCT CGCACCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA ACCGTCCGAC ACGCGCCGGA ACACGGTTAC AGCATACAGC TTGCCGATTT GCCGCTGCTG GCGGAACGGA CGCGGATTTT TACCGTCGGC GACTTCCGCA GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCACTCGT CCCCGCCTTT CACGAAGCCC TGTTCCGCGA CAACAGGGAA ACACGCGCGG TACTGAACAT CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGACGCA CCCGCCTTCG GCTTCGACAC AGGGCCGGGC AATATGCTGA TGGACGCGTG GACGCAGGCA CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC

GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT

TTCCCGTTTT ACCGCGCAAA CCGTTTGCGA CGCCGTCTCA CACGCAGCGG

851 901 951 1001 1051 1101	CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG CACCGCCGAC CTGAACCTCG ATCCGCAATG GGTGGAAGCC GCCGNATTTG CGTGGTTGGC GGCGTGTTGG ATTAATCGCA TTCCCGGTAG TCCGCACAAA GCAACCGGCG CATCCAAACC GTGTATTCTG ANCGCGGGAT ATTATTATTG A	
	s to the amino acid sequence <seq 121-1="" 3082;="" id="" orf="">:</seq>	
m121-1.per		
1 mizi-1.per	METQLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRQLL	
51	DLODTGADEL HRSRILSQEL SRLYAQTAAE LLCSQNLAPS DITALGCHGQ	
101	TVRHAPEHGY SIQLADLPLL AERTRIFTVG DFRSRDLAAG GQGAPLVPAF	
151	HEALFRONRE TRAVLNIGGI ANISVLPPDA PAFGFDTGPG NMLMDAWTQA	
201	HWQLPYDKNG AKAAQGNILP QLLDRLLAHP YFAQPHPKST GRELFALNWL	
251	ETYLDGGENR YDVLRTLSRF TAQTVCDAVS HAAADARQMY ICGGGIRNPV	
301 351	LMADLAECFG TRVSLHSTAD LNLDPQWVEA AXFAWLAACW INRIPGSPHK ATGASKPCIL XAGYYY*	
m121-1/g12	ORFs 121-1 and 121.ng showed a 95.6% identity in 366 aa overlap	,
	10 20 30 40 50 60	
m121-1.per		
mill riper		
q121	METQLYIGIMSGTSMDGADAVLVRMDGGKWLGAEGHAFTPYPDRLRRKLLDLQDTGTDEL	
	10 20 30 40 50 60	
	70 80 90 100 110 120 HRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHGYSIQLADLPLL	
m121-1.pep	HKSKILSQELSKLYAQIAAELDCSQNLAPSDIIALGCAGQIVAAAFERGISIQLADDFID	
g121	HRSRMLSQELSRLYAQTAAELLCSQNLAPCDITALGCHGQTVRHAPEHGYSIQLADLPLL	
9121	70 80 90 100 110 120	
	130 140 150 160 170 180	
m121-1.pe	P AERTRIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDNRETRAVLNIGGIANISVLPPDA	
g121	AELTRIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDDRETRVVLNIGGIANISVLPPGA 130 140 150 160 170 180	
	130 140 150 160 170 180	
	190 200 210 220 230 240	
m121-1.pe	PAFGFDTGPGNMLMDAWTQAHWQLPYDKNGAKAAQGNILPQLLDRLLAHPYFAQPHPKST	
g121	PAFGFDTGPGNMLMDAWTQAHWQLPYDKNGAKAAQGNILPQLLGRLLAHPYFSQPHPKST	
	190 200 210 220 230 240	
	250 260 270 280 290 300	
m121-1.pe		
g121	GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVWDAVSHAAADARQMYICGGGIRNPV	
	250 260 270 280 290 300	
	310 320 330 340 350 360	
m121-1.pe		
mizi-i.pe		
g121	LMADLAECFGTRVSLHSTAELNLDPQWVEAAAFAWLAACWINRIPGSPHKATGASKPCIL	
5	310 320 330 340 350 360	
	- VACVVVV	
m121-1.pe	p XAGYYYX	
g121	GAGYYYX	
gizi	J. J	

The following DNA sequence was identified in N. meningitidis <SEQ ID 3083>: a121-1.seq

1 ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG

PCT/US99/09346 WO 99/057280

51	GGCGGATGCC	GTACTGATAC	GGATGGACGG	CGGCAAATGG	CTGGGCGCGG			
101	AAGGGCACGC	CTTTACCCCC	TACCCCGGCA	GGTTACGCCG	CAAATTGCTG			
151	GATTTGCAGG	ACACAGGCGC	GGACGAACTG	CACCGCAGCA	GGATGTTGTC			
201	GCAAGAACTC	AGCCGCCTGT	ACGCGCAAAC	CGCCGCCGAA	CTGCTGTGCA			
251	GTCAAAACCT	CGCGCCGTCC	GACATTACCG	CCCTCGGCTG	CCACGGGCAA			
301	ACCGTCAGAC	ACGCGCCGGA	ACACAGTTAC	AGCGTACAGC	TTGCCGATTT			
351	GCCGCTGCTG	GCGGAACGGA	CTCAGATTTT	TACCGTCGGC	GACTTCCGCA			
401	GCCGCGACCT	TGCGGCCGGC	GGACAAGGCG	CGCCGCTCGT	CCCCGCCTTT			
451	CACGAAGCCC	TGTTCCGCGA	CGACAGGGAA	ACACGCGCGG	TACTGAACAT			
501	CGGCGGGATT	GCCAACATCA	GCGTACTCCC	CCCCGACGCA	CCCGCCTTCG			
551	GCTTCGACAC	AGGACCGGGC	AATATGCTGA	TGGACGCGTG	GATGCAGGCA			
601	CACTGGCAGC	TTCCTTACGA		GCAAAGGCGG				
651	CATATTGCCG	CAACTGCTCG	ACAGGCTGCT	CGCCCACCCG	TATTTCGCAC			
701	AACCCCACCC		GGGCGCGAAC					
751	GAAACCTACC	TTGACGGCGG	CGAAAACCGA	TACGACGTAT	TGCGGACGCT			
801	TTCCCGATTC	ACCGCGCAAA	CCGTTTTCGA	CGCCGTCTCA	CACGCAGCGG			
851		TCAAATGTAC						
901	TTAATGGCGG	ATTTGGCAGA	ATGTTTCGGC	ACACGCGTTT	CCCTGCACAG			
951	CACCGCCGAA	CTGAACCTCG	ATCCGCAATG	GGTAGAAGCC	GCCGCGTTCG			
1001	CATGGATGGC	GGCGTGTTGG	GTCAACCGCA	TTCCCGGTAG	TCCGCACAAA			
1051	GCAACCGGCG	CATCCAAACC	GTGTATTCTG	GGCGCGGGAT	ATTATTATTG			
1101	A							
				·				
espond	esponds to the amino acid sequence <seq 121-1.a="" 3084;="" id="" orf="">:</seq>							
_								

This corresp

a121-1.pep 1 METQLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRKLL 51 DLQDTGADEL HRSRMLSQEL SRLYAQTAAE LLCSQNLAPS DITALGCHGQ 101 TVRHAPEHSY SVQLADLPLL AERTQIFTVG DFRSRDLAAG GQGAPLVPAF
151 HEALFRDDRE TRAVLNIGGI ANISVLPPDA PAFGFDTGPG NMLMDAWMQA
201 HWQLPYDKNG AKAAQGNILP QLLDRLLAHP YFAQPHPKST GRELFALNWL
251 ETYLDGGENR YDVLRTLSRF TAQTVFDAVS HAAADARQMY ICGGGIRNPV 301 LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWMAACW VNRIPGSPHK 351 ATGASKPCIL GAGYYY*

m121-1/a121-1 ORFs 121-1 and 121-1.a showed a 96.4% identity in 366 aa overlap

m121-1.pep	10 METQLYIGIMSGTSM METQLYIGIMSGTSM 10	111111111	1111111111	111111111	111:11111	111111
m121-1.pep	70 HRSRILSQELSRLYA : HRSRMLSQELSRLYA 70	ĪHHHHH	Тиннин	шийши	1111:11:11	111111
ml21-1.pep	130 AERTRIFTVGDFRSR : AERTQIFTVGDFRSR 130	111111111	1111111111	111:11111	1111111111	11111
m121-1.pep	190 PAFGFDTGPGNMLMD PAFGFDTGPGNMLMD 190	11 111111	111111111	1111111111	111111111	
m121-1.pep	250 GRELFALNWLETYLD	11111111		1 1111111	шіш	31111

```
340
                                              350
                       320
                               330
          LMADLAECFGTRVSLHSTADLNLDPQWVEAAXFAWLAACWINRIPGSPHKATGASKPCIL
m121-1.pep
          LMADLAECFGTRVSLHSTAELNLDPQWVEAAAFAWMAACWVNRIPGSPHKATGASKPCIL
                                      340
               310
                      320
                              330
m121-1.pep
          XAGYYYX
          11111
          GAGYYYX
a121
```

128 and 128-1

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3085>:

```
m128.seq (partial)
         ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
      1
      51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATCGCCGAAG
     101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
     151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
     201 GGGCGTGGTG TCGCACCTCA ACTGCGTCGC CGACACGCCC GAACTGCGCG
     251 CCGTCTATAA CGAACTGATG CCCGAAATCA CCGTCTTCTT CACCGAAATC
     301 GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
     351 CGAATTCGAC ACCCTCTCCC CCGCACAAAA AACCAAACTC AACCAC
         TACGCCAGCG AAAAACTGCG CGAAGCCAAA TACGCGTTCA GCGAAACCGA
          WGTCAAAAA TAYTTCCCYG TCGGCAAWGT ATTAAACGGA CTGTTCGCCC
     101 AAMTCAAAAA ACTMTACGGC ATCGGATTTA CCGAAAAAAC YGTCCCCGTC
     151 TGGCACAAAG ACGTGCGCTA TTKTGAATTG CAACAAAACG GCGAAmCCAT
     201 AGGCGGCGTT TATATGGATT TGTACGCACG CGAAGGCAAA CGCGGCGGCG
     251 CGTGGATGAA CGACTACAAA GGCCGCCGCC GTTTTTCAGA CGGCACGCTG
     301 CAAYTGCCCA CCGCCTACCT CGTCTGCAAC TTCGCCCCAC CCGTCGGCGG
     351 CAGGGAAGCC CGCYTGAGCC ACGACGAAAT CCTCATCCTC TTCCACGAAA
     401 CCGGACACGG GCTGCACCAC CTGCTTACCC AAGTGGACGA ACTGGGCGTA
     451 TCCGGCATCA ACGGCGTAKA ATGGGACGCG GTCGAACTGC CCAGCCAGTT
     501 TATGGAAAAT TTCGTTTGGG AATACAATGT CTTGGCACAA mTGTCAGCCC
     551 ACGAAGAAAC CGGcgTTCCC yTGCCGAAAG AACTCTTsGA CAAAwTGCTC
     601 GCCGCCAAAA ACTTCCAASG CGGCATGTTC YTSGTCCGGC AAWTGGAGTT
     651 CGCCCTCTTT GATATGATGA TTTACAGCGA AGACGACGAA GGCCGTCTGA
     701 AAAACTGGCA ACAGGTTTTA GACAGCGTGC GCAAAAAAGT CGCCGTCATC
     751 CAGCCGCCCG AATACAACCG CTTCGCCTTG AGCTTCGGCC ACATCTTCGC
     801 AGGCGGCTAT TCCGCAGCTn ATTACAGCTA CGCGTGGGCG GAAGTATTGA
     851 GCGCGGACGC ATACGCCGCC TTTGAAGAAA GCGACGATGT CGCCGCCACA
     901 GGCAAACGCT TTTGGCAGGA AATCCTCGCC GTCGGGGNAT CGCGCAGCGG
     951 nGCAGAATCC TTCAAAGCCT TCCGCGGCCG CGAACCGAGC ATAGACGCAC
    1001 TCTTGCGCCA CAGCGGTTTC GACAACGCGG TCTGA
```

This corresponds to the amino acid sequence <SEQ ID 3086; ORF 128>:

```
m128.pep
            (partial)
          MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
      51 NTVEPLTGIT ERVGRIWGVV SHLNCVADTP ELRAVYNELM PEITVFFTEI
     101 GQDIELYNRF KTIKNSPEFD TLSPAQKTKL NH
       1 YASEKLREAK YAFSETXVKK YFPVGXVLNG LFAQXKKLYG IGFTEKTVPV
      51 WHKDVRYXEL QQNGEXIGGV YMDLYAREGK RGGAWMNDYK GRRRFSDGTL
     101 QLPTAYLVCN FAPPVGGREA RLSHDEILIL FHETGHGLHH LLTQVDELGV
     151 SGINGVXWDA VELPSQFMEN FVWEYNVLAQ XSAHEETGVP LPKELXDKXL
     201 AAKNFQXGMF XVRQXEFALF DMMIYSEDDE GRLKNWQQVL DSVRKKVAVI
     251 QPPEYNRFAL SFGHIFAGGY SAAXYSYAWA EVLSADAYAA FEESDDVAAT
301 GKRFWQEILA VGXSRSGAES FKAFRGREPS IDALLRHSGF DNAV*
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3087>: g128.seq

```
atgattgaca acgCActgct ccacttgggc gaagaaccCC GTTTTaatca
     aatccaaacc qaaqACAtca AACCCGCCGT CCAAACCGCC ATCGCCGAAG
  51
 101 CGCGCGGACA AATCGCCGCC GTCAAAGCGC AAACGCACAC CGGCTGGGCG
 151 AACACCGTCG AGCGTCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
 201 GGGCGTCGTG TCCCATCTCA ACTCCGTCGT CGACACGCCC GAACTGCGCG
 251 CCGTCTATAA CGAACTGATG CCTGAAATCA CCGTCTTCTT CACCGAAATC
 301 GGACAAGACA TCGAACTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
351 CGAATTTGCA ACGCTTTCCC CCGCACAAAA AACCAAGCTC GATCACGACC
401 TGCGCGATTT CGTATTGAGC GGCGCGGAAC TGCCGCCCGA ACGGCAGGCA
451 GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
 501 CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
 551 CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC
 601 GCCGCGCAAA GCGAAGGCAA AACAGGTTAC AAAATCGGCT TGCAGATTCC
 651 GCACTACCTT GCCGTTATCC AATACGCCGG CAACCGCGAA CTGCGCGAAC
 701 AAATCTACCG CGCCTACGTT ACCCGTGCCA GCGAACTTTC AAACGACGGC
 751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCATTGAA
 801 AACCGccaaa cTGCTCGGCT TTAAAAATTA CGCCGAATTG TCGCTGGCAA
 851 CCAAAATGGC GGACACGCCC GAACAGGTTT TAAACTTCCT GCACGACCTC
 901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
 951 CTTCGCCCGC GAACACCTCG GTCTCGCCGA CCCGCAGCCG TGGGACTTGA
     GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTTCTGGCAG GCCTGTTCGC
1101 CCAAATCAAA AAACTCTACG GCATCGGATT CGCCGAAAAA ACCGTTCCCG
1151 TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCAAAACC
1201 ATCGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
1251 CGCGTGGATG AACGACtaca AAGGCCGCCG CCGCTTTGCC GACGgcacGC
1301 TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC GCCCGTCGGC
1351 GGCAAAGAAG CGCGTTTAAG CCACGACGAA ATCCTCACCC TCTTCCACGA
1401 AacCGGCCAC GGACTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG
1451 TGTCCGGCAT CAAcggcgtA GAATGGGACG CGGTCGAACT GCCCAGCCAG
1501 TTTATGGAAA ACTTCGTTTG GGAATACAAT GTATTGGCAC AAATGTCCGC
1551 CCACGAAGAA AccgGCGAGC CCCTGCCGAA AGAACTCTTC GACAAAATGC
1601 TcgcCGCCAA AAACTTCCAG CGCGGTATGT TCCTCGTCCG GCAAATGGAG
1651 TTCGCCCTCT TCGATATGAT GATTTACAGT GAAAGCGACG AATGCCGTCT
1701 GAAAAACTGG CAGCAGGTTT TAGACAGCGT GCGCAAAGAA GTcGCCGTCA
1751 TCCAACCGCC CGAATACAAC CGCTTCGCCA ACAGCTTCGG CCacatctTC
1801 GCCGGCGCT ATTCCGCAGG CTATTACAGC TACGCATGGG CCGAAGTCCt
1851 CAGCACCGAT GCCTACGCCG CCTTTGAAGA AAGCGACGac gtcGCCGCCA
1901 CAGGCAAACG CTTCTGGCAA GAAAtccttg ccgtcggcgg ctCCCGCAGC
1951 gcgGCGGAAT CCTTCAAAGC CTTCCGCGGA CGCGAACCGA GCATAGACGC
2001 ACTGCTGCGC CAaagcggtT TCGACAACGC gGCttgA
```

This corresponds to the amino acid sequence <SEQ ID 3088; ORF 128.ng>: q128.pep

. pep					
1	MIDNALLHLG	EEPRFNQIQT	EDIKPAVQTA	IAEARGQIAA	VKAQTHTGWA
51	NTVERLTGIT	ERVGRIWGVV	SHLNSVVDTP	ELRAVYNELM	PEITVFFTEI
101	GQDIELYNRF	KTIKNSPEFA	TLSPAQKTKL	DHDLRDFVLS	GAELPPERQA
151	ELAKLQTEGA	QLSAKFSQNV	LDATDAFGIY	FDDAAPLAGI	PEDALAMFAA
201	AAQSEGKTGY	KIGLQIPHYL	AVIQYAGNRE	LREQIYRAYV	TRASELSNDG
251	KFDNTANIDR	TLENALKTAK	LLGFKNYAEL	SLATKMADTP	EQVLNFLHDL
301	ARRAKPYAEK	DLAEVKAFAR	EHLGLADPQP	WDLSYAGEKL	REAKYAFSET
351	EVKKYFPVGK	VLAGLFAQIK	KLYGIGFAEK	TVPVWHKDVR	YFELQQNGKT
401	IGGVYMDLYA	REGKRGGAWM	NDYKGRRRFA	DGTLQLPTAY	LVCNFAPPVG
451	GKEARLSHDE	ILTLFHETGH	GLHHLLTQVD	ELGVSGINGV	EWDAVELPSQ
501	FMENFVWEYN	VLAQMSAHEE	TGEPLPKELF	DKMLAAKNFQ	RGMFLVRQME
551	FALFDMMIYS	ESDECRLKNW	QQVLDSVRKE	VAVIQPPEYN	RFANSFGHIF
601	AGGYSAGYYS	YAWAEVLSTD	AYAAFEESDD	VAATGKRFWQ	EILAVGGSRS

PCT/US99/09346 WO 99/057280

651 AAESFKAFRG REPSIDALLR QSGFDNAA*

ORF 128 shows 91.7% identity over a 475 aa overlap with a predicted ORF (ORF 128.ng) from *N. gonorrhoeae:* m128/g128

	10 20 30 40 50 60
g128.pep	MIDNALLHLGEEPRFNQIQTEDIKPAVQTAIAEARGQIAAVKAQTHTGWANTVERLTGIT
m128	MTDNALLHLGEEPRFDQIKTEDIKPALQTAIAEAREQIAAIKAQTHTGWANTVEPLTGIT
	10 20 30 40 50 60
	70 80 90 100 110 120
g128.pep	ERVGRIWGVVSHLNSVVDTPELRAVYNELMPEITVFFTEIGQDIELYNRFKTIKNSPEFA
m128	ERVGRIWGVVSHLNCVADTPELRAVYNELMPEITVFFTEIGQDIELYNRFKTIKNSPEFD
	70 80 90 100 110 120
	130 140 150 160 170 180
g128.pep	TLSPAQKTKLDHDLRDFVLSGAELPPERQAELAKLQTEGAQLSAKFSQNVLDATDAFGIY
m128	TLSPAQKTKLNH
	130
100	340 350 360 YAGEKLREAKYAFSETEVKKYFPVGKVLAG
g128.pep	:
m128	YASEKLREAKYAFSETXVKKYFPVGXVLNG 10 20 30
	10 20 30
~3.20 ~~~	370 380 390 400 410 420 LFAQIKKLYGIGFAEKTVPVWHKDVRYFELQQNGKTIGGVYMDLYAREGKRGGAWMNDYK
g128.pep	
m128	LFAQXKKLYGIGFTEKTVPVWHKDVRYXELQQNGEXIGGVYMDLYAREGKRGGAWMNDYK 40 50 60 70 80 90
	40 30 00 /0 00 30
g128.pep	430 440 450 460 470 480 GRRRFADGTLQLPTAYLVCNFAPPVGGKEARLSHDEILTLFHETGHGLHHLLTQVDELGV
3120.pop	
m128	GRRRFSDGTLQLPTAYLVCNFAPPVGGREARLSHDEILILFHETGHGLHHLLTQVDELGV 100 110 120 130 140 150
g128.pep	490 500 510 520 530 540 SGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGEPLPKELFDKMLAAKNFQRGMF
-120	
m128	160 170 180 190 200 210
	550 560 570 580 590 600
g128.pep	LVRQMEFALFDMMIYSESDECRLKNWQQVLDSVRKEVAVIQPPEYNRFANSFGHIFAGGY
m128	
	220 230 240 250 260 270
	610 620 630 640 650 660
g128.pep	SAGYYSYAWAEVLSTDAYAAFEESDDVAATGKRFWQEILAVGGSRSAAESFKAFRGREPS
m128	: :
	280 290 300 310 320 330

WO 99/057280 PCT/US99/09346

96

670 679
g128.pep IDALLRQSGFDNAAX
||||||:||||:
m128 IDALLRHSGFDNAVX
340

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3089>:

a128.seq ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATTGCCGAAG 101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA 151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG 201 GGGCGTGGTG TCGCACCTCA ACTCCGTCAC CGACACGCCC GAACTGCGCG 251 CCGCCTACAA TGAATTAATG CCCGAAATTA CCGTCTTCTT CACCGAAATC GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAACTCCCC 351 CGAGTTCGAC ACCCTCTCCC ACGCGCAAAA AACCAAACTC AACCACGATC 401 TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA 451 GAATTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC 501 CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG CCGCACCGCT TGCCGCCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCT 601 GCCGCGCAAA GCGAAGGCAA AACAGGCTAC AAAATCGGTT TGCAGATTCC 651 GCACTACCTC GCCGTCATCC AATACGCCGA CAACCGCAAA CTGCGCGAAC 701 AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAGCTTTC AGACGACGGC 751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCCCTGCA 801 AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA 851 CCAAAATGGC GGACACCCCC GAACAAGTTT TAAACTTCCT GCACGACCTC 901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC 951 CTTCGCCCGC GAAAGCCTCG GCCTCGCCGA TTTGCAACCG TGGGACTTGG 1001 GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC 1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC 1101 CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG 1151 TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC 1201 ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG 1251 CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCACCCC GCCCGTCGGC GGCAAAGAAG CCCGCTTGAG CCATGACGAA ATCCTCACCC TCTTCCACGA 1401 AACCGGACAC GGCCTGCACC ACCTGCTTAC CCAAGTCGAC GAACTGGGCG 1451 TATCCGGCAT CAACGGCGTA GAATGGGACG CAGTCGAACT GCCCAGTCAG 1501 TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCGC AAATGTCCGC 1551 CCACGAAGAA ACCGGCGTTC CCCTGCCGAA AGAACTCTTC GACAAAATGC TCGCCGCCAA AAACTTCCAA CGCGGAATGT TCCTCGTCCG CCAAATGGAG 1651 TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT 1701 GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAGAA GTCGCCGTCG 1751 TCCGACCGCC CGAATACAAC CGCTTCGCCA ACAGCTTCGG CCACATCTTC 1801 GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT
1851 GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA
1901 CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC 1951 GCGGCAGAAT CCTTCAAAGC CTTCCGCGGA CGCGAACCGA GCATAGACGC 2001 ACTCTTGCGC CACAGCGGCT TCGACAACGC GGCTTGA

This corresponds to the amino acid sequence <SEQ ID 3090; ORF 128.a>:

a128.pep

1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
51 NTVEPLTGIT ERVGRIWGVV SHLNSVTDTP ELRAAYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFD TLSHAQKTKL NHDLRDFVLS GAELPPEQQA
151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
201 AAQSEGKTGY KIGLQIPHYL AVIQYADNRK LREQIYRAYV TRASELSDDG
251 KFDNTANIDR TLENALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
301 ARRAKPYAEK DLAEVKAFAR ESLGLADLQP WDLGYAGEKL REAKYAFSET
351 EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
401 IGGVYMDLYA REGKRGGAWM NDYKGRRRFS DGTLQLPTAY LVCNFTPPVG
451 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
501 FMENFVWEYN VLAQMSAHEE TGVPLPKELF DKMLAAKNFQ RGMFLVRQME

a128

551 601 651	FALFDMMIYS EDDEGRLKNW QQVLDSVRKE VAVVRPPEYN RFANSFGHIF AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS AAESFKAFRG REPSIDALLR HSGFDNAA*	
m128/a128 OI	RFs 128 and 128.a showed a 66.0% identity in 677 aa overlap	
m128.pep	10 20 30 40 50 60 MTDNALLHLGEEPRFDQIKTEDIKPALQTAIAEAREQIAAIKAQTHTGWANTVEPLTGIT	ľ
a128	MTDNALLHLGEEPRFDQIKTEDIKPALQTAIAEAREQIAAIKAQTHTGWANTVEPLTGIT	Γ
m128.pep	70 80 90 100 110 120 ERVGRIWGVVSHLNCVADTPELRAVYNELMPEITVFFTEIGQDIELYNRFKTIKNSPEFI)
a128)
ml28.pep	130 TLSPAQKTKLNH	_
a128	 TLSHAQKTKLNHDLRDFVLSGAELPPEQQAELAKLQTEGAQLSAKFSQNVLDATDAFGI 130 140 150 160 170 180	
m128.pep		_
mrzo.pep		
a128	FDDAAPLAGIPEDALAMFAAAAQSEGKTGYKIGLQIPHYLAVIQYADNRKLREQIYRAYV 190 200 210 220 230 240	
m128.pep		-
a128	TRASELSDDGKFDNTANIDRTLENALQTAKLLGFKNYAELSLATKMADTPEQVLNFLHD 250 260 270 280 290 300	
	140 150	
m128.pep	YASEKLREAKYAFSETXVKKYFPVG	
a128	ARRAKPYAEKDLAEVKAFARESLGLADLQPWDLGYAGEKLREAKYAFSETEVKKYFPVG 310 320 330 340 350 360	K
m128.pep	160 170 180 190 200 210 VLNGLFAQXKKLYGIGFTEKTVPVWHKDVRYXELQQNGEXIGGVYMDLYAREGKRGGAW	M
a128		M
	220 230 240 250 260 270	
m128.pep	NDYKGRRRFSDGTLQLPTAYLVCNFAPPVGGREARLSHDEILILFHETGHGLHHLLTQV	1
a128	NDYKGRRRFSDGTLQLPTAYLVCNFTPPVGGKEARLSHDEILTLFHETGHGLHHLLTQV 430 440 450 460 470 48	
m128.pep	280 290 300 310 320 330 ELGVSGINGVXWDAVELPSQFMENFVWEYNVLAQXSAHEETGVPLPKELXDKXLAAKNF	Q
a128		Ō
m128.pep	340 350 360 370 380 390 XGMFXVRQXEFALFDMMIYSEDDEGRLKNWQQVLDSVRKKVAVIQPPEYNRFALSFGHI 	

RGMFLVRQMEFALFDMMIYSEDDEGRLKNWQQVLDSVRKEVAVVRPPEYNRFANSFGHIF 550 560 570 580 590 600

	400	410	420	430	440	450	
m128.pep	AGGYSA	AXYSYAWAI	EVLSADAYA	FEESDDVAATG	KRFWQEILA	VGXSRSGAES	FKAFRG
	111111	: 111111		1111111111	11111111	11 111:111	
a128	AGGYSA	GYYSYAWAI	EVLSADAYAA	AFEESDDVAATO	KRFWQEILA	VGGSRSAAES	FKAFRG
		610	620	630	640	650	660
	460	470					
m128.pep	REPSID	ALLRHSGF	XVANC				
	111111	1111111	111:				
a128	REPSID	ALLRHSGF	XAANC				
		670					

Further work revealed the DNA sequence identified in N. meningitidis <SEQ ID 3091>: m128-1.seq

```
1 ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
  51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATCGCCGAAG
 101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
 151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
201 GGGCGTGGTG TCGCACCTCA ACTCCGTCGC CGACACGCCC GAACTGCGCG
251 CCGTCTATAA CGAACTGATG CCCGAAATCA CCGTCTTCTT CACCGAAATC
 301 GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
 351 CGAATTCGAC ACCCTCTCCC CCGCACAAAA AACCAAACTC AACCACGATC
 401 TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA
451 GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
 501 - CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
 551 CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC
 601 GCCGCGCAAA GCGAAAGCAA AACAGGCTAC AAAATCGGCT TGCAGATTCC
 651 ACACTACCTC GCCGTCATCC AATACGCCGA CAACCGCGAA CTGCGCGAAC
 701 AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAACTTTC AGACGACGGC
      AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGCAA ACGCCCTGCA
 801 AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA
 851 CCAAAATGGC GGACACGCCC GAACAAGTTT TAAACTTCCT GCACGACCTC
 901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
 951 CTTCGCCCGC GAAAGCCTGA ACCTCGCCGA TTTGCAACCG TGGGACTTGG
      GCTACGCCAG CGAAAAACTG CGCGAAGCCA AATACGCGTT CAGCGAAACC
      GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC
1051
1101 CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG
1151 TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC
1201 ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
      CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC
1301 TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC ACCCGTCGGC
1351 GGCAGGGAAG CCCGCCTGAG CCACGACGAA ATCCTCATCC TCTTCCACGA
1401 AACCGGACAC GGGCTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG
1451 TATCCGGCAT CAACGGCGTA GAATGGGACG CGGTCGAACT GCCCAGCCAG
1501 TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCAC AAATGTCAGC
1551 CCACGAAGAA ACCGGCGTTC CCCTGCCGAA AGAACTCTTC GACAAAATGC
1601 TCGCCGCCAA AAACTTCCAA CGCGGCATGT TCCTCGTCCG GCAAATGGAG
1651 TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT
1701 GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAAAA GTCGCCGTCA
1751 TCCAGCCGCC CGAATACAAC CGCTTCGCCT TGAGCTTCGG CCACATCTTC
1801 GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT
1851 GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA
1901 CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC
1951 GCGGCAGAAT CCTTCAAAGC CTTCCGCGGC CGCGAACCGA GCATAGACGC
2001 ACTCTTGCGC CACAGCGGTT TCGACAACGC GGTCTGA
```

This corresponds to the amino acid sequence <SEQ ID 3092; ORF 128-1>: m128-1.pep.

- 1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
- 51 NTVEPLTGIT ERVGRIWGVV SHLNSVADTP ELRAVYNELM PEITVFFTEI


```
101 GODIELYNRF KTIKNSPEFD TLSPAQKTKL NHDLRDFVLS GAELPPEQQA
    ELAKLOTEGA OLSAKFSONV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
    AAQSESKTGY KIGLQIPHYL AVIQYADNRE LREQIYRAYV TRASELSDDG
    KFDNTANIDR TLANALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
251
    ARRAKPYAEK DLAEVKAFAR ESLNLADLQP WDLGYASEKL REAKYAFSET
301
351 EVKKYFPVGK VLNGLFAOIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
    IGGVYMDLYA REGKRGGAWM NDYKGRRRFS DGTLQLPTAY LVCNFAPPVG
    GREARLSHDE ILILFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
451
    FMENFVWEYN VLAOMSAHEE TGVPLPKELF DKMLAAKNFQ RGMFLVROME
501
    FALFDMMIYS EDDEGRLKNW QQVLDSVRKK VAVIQPPEYN RFALSFGHIF
551
601 AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
651 AAESFKAFRG REPSIDALLR HSGFDNAV*
```

The following DNA sequence was identified in N. gonorrhoeae <SEQ ID 3093>:

```
g128-1.seq (partial)
      1 ATGATTGACA ACGCACTGCT CCACTTGGGC GAAGAACCCC GTTTTAATCA
         AATCAAAACC GAAGACATCA AACCCGCCGT CCAAACCGCC ATCGCCGAAG
         CGCGCGGACA AATCGCCGCC GTCAAAGCGC AAACGCACAC CGGCTGGGCG
     101
     151 AACACCGTCG AGCGTCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
         GGGCGTCGTG TCCCATCTCA ACTCCGTCGT CGACACGCCC GAACTGCGCG
         CCGTCTATAA CGAACTGATG CCTGAAATCA CCGTCTTCTT CACCGAAATC
     251
     301
         GGACAAGACA TCGAACTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
         CGAATTTGCA ACGCTTTCCC CCGCACAAAA AACCAAGCTC GATCACGACC
     351
         TGCGCGATTT CGTATTGAGC GGCGCGGAAC TGCCGCCCGA ACGGCAGGCA
     401
     451
         GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
         CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
     501
         CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC
     551
         GCCGCGCAAA GCGAAGGCAA AACAGGTTAC AAAATCGGCT TGCAGATTCC
     601
         GCACTACCTT GCCGTTATCC AATACGCCGG CAACCGCGAA CTGCGCGAAC
     651
     701 AAATCTACCG CGCCTACGTT ACCCGTGCCA GCGAACTTTC AAACGACGGC
         AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCATTGAA
     751
         AACCGCCAAA CTGCTCGGCT TTAAAAATTA CGCCGAATTG TCGCTGGCAA
     801
         CCAAAATGGC GGACACGCCC GAACAGGTTT TAAACTTCCT GCACGACCTC
     851
     901
         GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
         CTTCGCCCGC GAACACCTCG GTCTCGCCGA CCCGCAGCCG TGGGACTTGA
     951
   1001
         GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
   1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTTCTGGCAG GCCTGTTCGC
         CCAAATCAAA AAACTCTACG GCATCGGATT CGCCGAAAAA ACCGTTCCCG
   1101
         TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCAAAACC
   1151
   1201 ATCGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
         CGCGTGGATG AACGACTACA AAGGCCGCCG CCGCTTTGCC GACGGCACGC
   1301 . TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC GCCCGTCGGC
         GGCAAAGAAG CGCGTTTAAG CCACGACGAA ATCCTCACCC TCTTCCACGA
    1351
         AACCGGCCAC GGACTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG
    1401
    1451
         TGTCCGGCAT CAACGGCGTA AAA
```

This corresponds to the amino acid sequence <SEQ ID 3094; ORF 128-1.ng>:

			•	•	
g128-1.pe	p (partial)	•			
1	MIDNALLHLG	EEPRFNQIKT	EDIKPAVQTA	IAEARGQIAA	VKAQTHTGWA
51	NTVERLTGIT	ERVGRIWGVV	SHLNSVVDTP	ELRAVYNELM	PEITVFFTEI
101	GQDIELYNRF	KTIKNSPEFA	TLSPAQKTKL	DHDLRDFVLS	GAELPPERQA
151	ELAKLQTEGA	QLSAKFSQNV	LDATDAFGIY	FDDAAPLAGI	PEDALAMFAA
201	AAQSEGKTGY	KIGLQIPHYL	AVIQYAGNRE	LREQIYRAYV	TRASELSNDG
251	KFDNTANIDR	TLENALKTAK	LLGFKNYAEL	SLATKMADTP	EQVLNFLHDL
301	ARRAKPYAEK	DLAEVKAFAR	EHLGLADPQP	WDLSYAGEKL	REAKYAFSET
351	EVKKYFPVGK	VLAGLFAQIK	KLYGIGFAEK	TVPVWHKDVR	YFELQQNGKT
401	IGGVYMDLYA	REGKRGGAWM	NDYKGRRRFA	DGTLQLPTAY	LVCNFAPPVG
451	GKEARLSHDE	ILTLFHETGH	GLHHLLTQVD	ELGVSGINGV	K

m128-1/g128-1 ORFs 128-1 and 128-1.ng showed a 94.5% identity in 491 aa overlap

10 20 30 40 50 60

	·					
g128-1.pep m128-1	MIDNALLHLGEEPRFNQIKTEDIKPAVQTAIAEARGQIAAVKAQTHTGWANTVERLTGIT					
	10 20 30 40 50 60					
g128-1.pep	70 80 90 100 110 120 ERVGRIWGVVSHLNSVVDTPELRAVYNELMPEITVFFTEIGQDIELYNRFKTIKNSPEFA					
m128-1	ERVGRIWGVVSHLNSVADTPELRAVYNELMPEITVFFTEIGQDIELYNRFKTIKNSPEFD 70 80 90 100 110 120					
g128-1.pep	130 140 150 160 170 180 TLSPAQKTKLDHDLRDFVLSGAELPPERQAELAKLQTEGAQLSAKFSQNVLDATDAFGIY					
m128-1	TLSPAQKTKLNHDLRDFVLSGAELPPEQQAELAKLQTEGAQLSAKFSQNVLDATDAFGIY 130 140 150 160 170 180					
g128-1.pep	190 200 210 220 230 240 FDDAAPLAGIPEDALAMFAAAAQSEGKTGYKIGLQIPHYLAVIQYAGNRELREQIYRAYV					
m128-1	!					
g128-1.pep	250 260 270 280 290 300 TRASELSNDGKFDNTANIDRTLENALKTAKLLGFKNYAELSLATKMADTPEQVLNFLHDL					
m128-1						
g128-1.pep	310 320 330 340 350 360 ARRAKPYAEKDLAEVKAFAREHLGLADPQPWDLSYAGEKLREAKYAFSETEVKKYFPVGK					
m128-1	ARRAKPYAEKDLAEVKAFARESLNLADLQPWDLGYASEKLREAKYAFSETEVKKYFPVGK 310 320 330 340 350 360					
g128-1.pep	370 380 390 400 410 420 VLAGLFAQIKKLYGIGFAEKTVPVWHKDVRYFELQQNGKTIGGVYMDLYAREGKRGGAWM					
m128-1	VLNGLFAQIKKLYGIGFTEKTVPVWHKDVRYFELQQNGETIGGVYMDLYAREGKRGGAWM 370 380 390 400 410 420					
-120 1	430 440 450 460 470 480 NDYKGRRRFADGTLOLPTAYLVCNFAPPVGGKEARLSHDEILTLFHETGHGLHHLLTOVD					
g128-1.pep						
m128-1	NDYKGRRRFSDGTLQLPTAYLVCNFAPPVGGREARLSHDEILILFHETGHGLHHLLTQVD 430 440 450 460 470 480					
g128-1.pep	490 ELGVSGINGVK !!!!!!!:					
m128-1	ELGVSGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGVPLPKELFDKMLAAKNFQ 490 500 510 520 530 540					
following DNA sequence was identified in N. meningitidis <seq 3095="" id="">:</seq>						
	GACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA					
51 AA	ATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATTGCCGAAG					

The fo

1.50	-1				
1	ATGACTGACA	ACGCACTGCT	CCATTTGGGC	GAAGAACCCC	GTTTTGATCA
51	AATCAAAACC	GAAGACATCA	AACCCGCCCT	GCAAACCGCC	ATTGCCGAAG
101	CGCGCGAACA	AATCGCCGCC	ATCAAAGCCC	AAACGCACAC	CGGCTGGGCA
151	AACACTGTCG	AACCCCTGAC	CGGCATCACC	GAACGCGTCG	GCAGGATTTG
201	GGGCGTGGTG	TCGCACCTCA	ACTCCGTCAC	CGACACGCCC	GAACTGCGCG
251	CCGCCTACAA	TGAATTAATG	CCCGAAATTA	CCGTCTTCTT	CACCGAAATC
301	GGACAAGACA	TCGAGCTGTA	CAACCGCTTC	AAAACCATCA	AAAACTCCCC
351	CGAGTTCGAC	ACCCTCTCCC	ACGCGCAAAA	AACCAAACTC	AACCACGATC
401	TGCGCGATTT	CGTCCTCAGC	GGCGCGGAAC	TGCCGCCCGA	ACAGCAGGCA
451	GAATTGGCAA	AACTGCAAAC	CGAAGGCGCG	CAACTTTCCG	CCAAATTCTC

501	CCAAAACGTC	CTAGACGCGA	CCGACGCGTT	CGGCATTTAC	TTTGACGATG
551	CCGCACCGCT	TGCCGGCATT	CCCGAAGACG	CGCTCGCCAT	GTTTGCCGCT
601	GCCGCGCAAA	GCGAAGĢCAA	AACAGGCTAC	AAAATCGGTT	TGCAGATTCC
651	GCACTACCTC	GCCGTCATCC	AATACGCCGA	CAACCGCAAA	CTGCGCGAAC
701	AAATCTACCG	CGCCTACGTT	ACCCGCGCCA	GCGAGCTTTC	AGACGACGGC
751	AAATTCGACA	ACACCGCCAA	CATCGACCGC	ACGCTCGAAA	ACGCCCTGCA
801	AACCGCCAAA	CTGCTCGGCT	TCAAAAACTA	CGCCGAATTG	TCGCTGGCAA
851	CCAAAATGGC	GGACACCCCC	GAACAAGTTT	TAAACTTCCT	GCACGACCTC
901	GCCCGCCGCG	CCAAACCCTA	CGCCGAAAAA	GACCTCGCCG	AAGTCAAAGC
951	CTTCGCCCGC	GAAAGCCTCG	GCCTCGCCGA	TTTGCAACCG	TGGGACTTGG
1001	GCTACGCCGG	CGAAAAACTG	CGCGAAGCCA	AATACGCATT	CAGCGAAACC
1051	GAAGTCAAAA	AATACTTCCC	CGTCGGCAAA	GTATTAAACG	GACTGTTCGC
1101	CCAAATCAAA	AAACTCTACG	GCATCGGATT	TACCGAAAAA	ACCGTCCCCG
1151	TCTGGCACAA	AGACGTGCGC	TATTTTGAAT	TGCAACAAAA	CGGCGAAACC
1201	ATAGGCGGCG	TTTATATGGA	TTTGTACGCA	CGCGAAGGCA	AACGCGGCGG
1251	CGCGTGGATG	AACGACTACA	AAGGCCGCCG	CCGTTTTTCA	GACGGCACGC
1301	TGCAACTGCC	CACCGCCTAC	CTCGTCTGCA	ACTTCACCCC	GCCCGTCGGC
1351	GGCAAAGAAG	CCCGCTTGAG	CCATGACGAA	ATCCTCACCC	TCTTCCACGA
1401	AACCGGACAC	GGCCTGCACC	ACCTGCTTAC	CCAAGTCGAC	GAACTGGGCG
1451	TATCCGGCAT	CAACGGCGTA	GAATGGGACG	CAGTCGAACT	GCCCAGTCAG
1501	TTTATGGAAA	ATTTCGTTTG	GGAATACAAT	GTCTTGGCGC	AAATGTCCGC
1551	CCACGAAGAA	ACCGGCGTTC	CCCTGCCGAA	AGAACTCTTC	GACAAAATGC
1601	TCGCCGCCAA	AAACTTCCAA	CGCGGAATGT	TCCTCGTCCG	CCAAATGGAG
1651	TTCGCCCTCT	TTGATATGAT	GATTTACAGC	GAAGACGACG	AAGGCCGTCT
1701	GAAAAACTGG	CAACAGGTTT	TAGACAGCGT	GCGCAAAGAA	GTCGCCGTCG
1751	TCCGACCGCC	CGAATACAAC	CGCTTCGCCA	ACAGCTTCGG	CCACATCTTC
1801	GCAGGCGGCT	ATTCCGCAGG	CTATTACAGC	TACGCGTGGG	CGGAAGTATT
1851	GAGCGCGGAC	GCATACGCCG	CCTTTGAAGA	AAGCGACGAT	GTCGCCGCCA
1901	CAGGCAAACG	CTTTTGGCAG	GAAATCCTCG	CCGTCGGCGG	ATCGCGCAGC
1951	GCGGCAGAAT	CCTTCAAAGC	CTTCCGCGGA	CGCGAACCGA	GCATAGACGC
2001	ACTCTTGCGC	CACAGCGGCT	TCGACAACGC	GGCTTGA	

This corresponds to the amino acid sequence <SEQ ID 3096; ORF 128-1.a>:

```
1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
51 NTVEPLTGIT ERVGRIWGVV SHLNSVTDTP ELRAAYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFD TLSHAQKTKL NHDLRDFVLS GAELPPEQQA
151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
201 AAQSEGKTGY KIGLQIPHYL AVIQYADNRK LREQIYRAYV TRASELSDDG
251 KFDNTANIDR TLENALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
301 ARRAKPYAEK DLAEVKAFAR ESLGLADLQP WDLGYAGEKL REAKYAFSET
351 EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
401 IGGVYMDLYA REGKRGGAWM NDYKGRRRFS DGTLQLPTAY LVCNFTPPVG
451 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
501 FMENFVWEYN VLAQMSAHEE TGVPLPKELF DKMLAAKNFQ RGMFLVRQME
551 FALFDMMIYS EDDEGRLKNW QQVLDSVRKE VAVVRPPEYN RFANSFGHIF
601 AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
651 AAESFKAFRG REPSIDALLR HSGFDNAA*
```

m128-1/a128-1 ORFs 128-1 and 128-1.a showed a 97.8% identity in 677 aa overlap

	10	20	30	40	50	60
a128-1.pep	MTDNALLHLGEEPF	RFDQIKTEDIK	PALQTAIAEA	REQIAAIKAÇ	THTGWANTVE	PLTGIT
		111111111	11111111		111111111111111111111111111111111111111	
m128-1	MTDNALLHLGEEPF	REDQIKTEDIK	PALQTAIAEA	REQIAAIKAÇ	THTGWANTVE	PLTGIT
	10	20	30	40	50	60
	70	80	90	100	110	120
a128-1.pep	ERVGRIWGVVSHLN	ISVTDTPELRA	AYNELMPEIT	VFFTEIGQDI	ELYNRFKTIK	NSPEFD
		11:111111	:	11111111	11111111111	
m128-1	ERVGRIWGVVSHLN	SVADTPELRA	VYNELMPEIT	VFFTEIGQDI	ELYNRFKTIK	NSPEFD
	70	80	90	100	110	120
	130	140	150	160	170	180

a128-1.pep m128-1	TLSHAQKTKLNHDLRDFVLSGAELPPEQQAELAKLQTEGAQLSAKFSQNVLDATDAFGIY
a128-1.pep	190 200 210 220 230 240 FDDAAPLAGIPEDALAMFAAAAQSEGKTGYKIGLQIPHYLAVIQYADNRKLREQIYRAYV
a128-1.pep	250 260 270 280 290 300 TRASELSDDGKFDNTANIDRTLENALQTAKLLGFKNYAELSLATKMADTPEQVLNFLHDL
a128-1.pep	310 320 330 340 350 360 ARRAKPYAEKDLAEVKAFARESLGLADLQPWDLGYAGEKLREAKYAFSETEVKKYFPVGK
a128-1.pep m128-1	370 380 390 400 410 420 VLNGLFAQIKKLYGIGFTEKTVPVWHKDVRYFELQQNGETIGGVYMDLYAREGKRGGAWM
a128-1.pep m128-1	430 440 450 460 470 480 NDYKGRRRFSDGTLQLPTAYLVCNFTPPVGGKEARLSHDEILTLFHETGHGLHHLLTQVD
a128-1.pep	490 500 510 520 530 540 ELGVSGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGVPLPKELFDKMLAAKNFQ
a128-1.pep	550 560 570 580 590 600 RGMFLVRQMEFALFDMMIYSEDDEGRLKNWQQVLDSVRKEVAVVRPPEYNRFANSFGHIF
a128-1.pep	610 620 630 640 650 660 AGGYSAGYYSYAWAEVLSADAYAAFEESDDVAATGKRFWQEILAVGGSRSAAESFKAFRG
a128-1.pep	670 679 REPSIDALLRHSGFDNAAX : REPSIDALLRHSGFDNAVX 670

WO 99/057280 PCT/US99/09346

```
1 ATGTTTCCCC CCGACAAAAC CCTTTTCCTC TGTCTCAGCG CACTGCTCCT
          51
              CGCCTCATGC GGCACGACCT CCGGCAAACA CCGCCAACCG AAACCCAAAC
          101 AGACAGTCCG GCAAATCCAA GCCGTCCGCA TCAGCCACAT CGACCGCACA
          151 CAAGGCTCGC AGGAACTCAT GCTCCACAGC CTCGGACTCA TCGGCACGCC
          201 CTACAAATGG GGCGGCAGCA GCACCGCAAC CGGCTTCGAT TGCAGCGGCA
         251
              TGATTCAATT CGTTTACAAr AACGCCCTCA ACGTCAAGCT GCCGCGCACC
         301
              GCCCGCGACA TGGCGGCGGC AAGCCGSAAA ATCCCCGACA GCCGCyTCAA
          351
              GGCCGGCGAC CTCGTATTCT TCAACACCGG CGGCGCACAC CGCTACTCAC
              ACGTCGGACT CTACATCGGC AACGGCGAAT TCATCCATGC CCCCAGCAGC
          401
              GGCAAAACCA TCAAAACCGA AAAACTCTCC ACACCGTTTT ACGCCAAAAA
          451
         501 CTACCTCGGC GCACATACTT TTTTTACAGA ATGA
This corresponds to the amino acid sequence <SEQ ID 3098; ORF 206>:
     m206.pep..
              MFPPDKTLFL CLSALLLASC GTTSGKHRQP KPKQTVRQIQ AVRISHIDRT
              QGSQELMLHS LGLIGTPYKW GGSSTATGFD CSGMIQFVYK NALNVKLPRT
          51
             ARDMAAASRK IPDSRXKAGD LVFFNTGGAH RYSHVGLYIG NGEFIHAPSS
          151 GKTIKTEKLS TPFYAKNYLG AHTFFTE*
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3099>:
     g206.seg
              atgttttccc ccgacaaaac ccttttcctc tgtctcggcg cactgctcct
          51
              cgcctcatgc ggcacgacct ccggcaaaca ccgccaaccg aaacccaaac
          101 agacagteeg geaaateeaa geegteegea teageeacat eggeegeaca
          151 caaggetege aggaacteat getecacage eteggaetea teggeaegee
          201 ctacaaatgg ggcggcagca gcaccgcaac cggcttcgac tgcagcggca
          251 tgattcaatt ggtttacaaa aacgccctca acgtcaagct gccgcgcacc
              gcccgcgaca tggcggcggc aagccgcaaa atccccgaca gccgcctcaa
          301
              ggccggcgac atcgtattct tcaacaccgg cggcgcacac cgctactcac
          351
          401 acgtcggact ctacatcggc aacggcgaat tcatccatgc ccccggcagc
          451 ggcaaaacca tcaaaaccga aaaactctcc acaccgtttt acgccaaaaa
          501 ctaccttgga gcgcatacgt tttttacaga atga
This corresponds to the amino acid sequence <SEQ ID 3100; ORF 206.ng>:
     g206.pep
              MFSPDKTLFL CLGALLLASC GTTSGKHRQP KPKQTVRQIQ AVRISHIGRT
              OGSQELMLHS LGLIGTPYKW GGSSTATGFD CSGMIQLVYK NALNVKLPRT
           51
          101 ARDMAAASRK IPDSRLKAGD IVFFNTGGAH RYSHVGLYIG NGEFIHAPGS
              GKTIKTEKLS TPFYAKNYLG AHTFFTE*
          151
ORF 206 shows 96.0% identity over a 177 aa overlap with a predicted ORF (ORF 206.ng)
from N. gonorrhoeae:
     m206/g206
                                   20
                                            30
                                                      40
     m206.pep
                 MFPPDKTLFLCLSALLLASCGTTSGKHRQPKPKQTVRQIQAVRISHIDRTQGSQELMLHS
                  MFSPDKTLFLCLGALLLASCGTTSGKHRQPKPKQTVRQIQAVRISHIGRTQGSQELMLHS
     q206
                         10
                                            30
                                                               50
                                   20
                                                      40
                                                                         60
                                   80
                                            90
                                                     100
     m206.pep
                 LGLIGTPYKWGGSSTATGFDCSGMIQFVYKNALNVKLPRTARDMAAASRKIPDSRXKAGD
                  LGLIGTPYKWGGSSTATGFDCSGMIQLVYKNALNVKLPRTARDMAAASRKIPDSRLKAGD
     q206
```

70

m206.pep

g206

80

140

90

150

100

160

110

160

150

104

140

130

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3101>: a206.seq ATGTTTCCCC CCGACAAAAC CCTTTTCCTC TGTCTCAGCG CACTGCTCCT CGCCTCATGC GGCACGACCT CCGGCAAACA CCGCCAACCG AAACCCAAAC 51 101 AGACAGTCCG GCAAATCCAA GCCGTCCGCA TCAGCCACAT CGACCGCACA CAAGGCTCGC AGGAACTCAT GCTCCACAGC CTCGGACTCA TCGGCACGCC 151 201 CTACAAATGG GGCGGCAGCA GCACCGCAAC CGGCTTCGAT TGCAGCGGCA TGATTCAATT CGTTTACAAA AACGCCCTCA ACGTCAAGCT GCCGCGCACC 251 GCCCGCGACA TGGCGGCGGC AAGCCGCAAA ATCCCCGACA GCCGCCTTAA 301 GGCCGGCGAC CTCGTATTCT TCAACACCGG CGGCGCACAC CGCTACTCAC 351 ACGTCGGACT CTATATCGGC AACGGCGAAT TCATCCATGC CCCCAGCAGC 401 GGCAAAACCA TCAAAACCGA AAAACTCTCC ACACCGTTTT ACGCCAAAAA 451 CTACCTCGGC GCACATACTT TCTTTACAGA ATGA 501 This corresponds to the amino acid sequence <SEQ ID 3102; ORF 206.a>: a206.pep MFPPDKTLFL CLSALLLASC GTTSGKHRQP KPKQTVRQIQ AVRISHIDRT QGSQELMLHS LGLIGTPYKW GGSSTATGFD CSGMIQFVYK NALNVKLPRT 51 ARDMAAASRK IPDSRLKAGD LVFFNTGGAH RYSHVGLYIG NGEFIHAPSS 101 GKTIKTEKLS TPFYAKNYLG AHTFFTE* m206/a206 ORFs 206 and 206.a showed a 99.4% identity in 177 aa overlap 20 30 40 10 MFPPDKTLFLCLSALLLASCGTTSGKHRQPKPKQTVRQIQAVRISHIDRTQGSQELMLHS m206.pep MFPPDKTLFLCLSALLLASCGTTSGKHRQPKPKQTVRQIQAVRISHIDRTQGSQELMLHS a206 20 30 40 50 60 100 70 80 90 LGLIGTPYKWGGSSTATGFDCSGMIQFVYKNALNVKLPRTARDMAAASRKIPDSRXKAGD m206.pep a206 LGLIGTPYKWGGSSTATGFDCSGMIQFVYKNALNVKLPRTARDMAAASRKIPDSRLKAGD 100 110 120 70 80 90 130 140 150 160 170 LVFFNTGGAHRYSHVGLYIGNGEFIHAPSSGKTIKTEKLSTPFYAKNYLGAHTFFTEX m206.pep LVFFNTGGAHRYSHVGLYIGNGEFIHAPSSGKTIKTEKLSTPFYAKNYLGAHTFFTEX a206 130 140 150 160 287

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3103>:

```
m287.seq
          ATGTTTAAAC GCAGCGTAAT CGCAATGGCT TGTATTTTTG CCCTTTCAGC
       1
          CTGCGGGGGC GGCGGTGGCG GATCGCCCGA TGTCAAGTCG GCGGACACGC
      51
          TGTCAAAACC TGCCGCCCCT GTTGTTTCTG AAAAAGAGAC AGAGGCAAAG
     101
          GAAGATGCGC CACAGGCAGG TTCTCAAGGA CAGGGCGCGC CATCCGCACA
          AGGCAGTCAA GATATGGCGG CGGTTTCGGA AGAAAATACA GGCAATGGCG
     201
          GTGCGGTAAC AGCGGATAAT CCCAAAAATG AAGACGAGGT GGCACAAAAT
     251
          GATATGCCGC AAAATGCCGC CGGTACAGAT AGTTCGACAC CGAATCACAC
     301
         CCCGGATCCG AATATGCTTG CCGGAAATAT GGAAAATCAA GCAACGGATG
     351
     401
          CCGGGGAATC GTCTCAGCCG GCAAACCAAC CGGATATGGC AAATGCGGCG
     451 GACGGAATGC AGGGGGACGA TCCGTCGGCA GGCGGGCAAA ATGCCGGCAA
     501
         TACGGCTGCC CAAGGTGCAA ATCAAGCCGG AAACAATCAA GCCGCCGGTT
         CTTCAGATCC CATCCCCGCG TCAAACCCTG CACCTGCGAA TGGCGGTAGC
     551
```

```
601 AATTTTGGAA GGGTTGATTT GGCTAATGGC GTTTTGATTG ACGGGCCGTC
 651 GCAAAATATA ACGTTGACCC ACTGTAAAGG CGATTCTTGT AGTGGCAATA
701 ATTTCTTGGA TGAAGAAGTA CAGCTAAAAT CAGAATTTGA AAAATTAAGT
 751 GATGCAGACA AAATAAGTAA TTACAAGAAA GATGGGAAGA ATGATAAATT
 801 TGTCGGTTTG GTTGCCGATA GTGTGCAGAT GAAGGGAATC AATCAATATA
 851 TTATCTTTA TAAACCTAAA CCCACTTCAT TTGCGCGATT TAGGCGTTCT
 901 GCACGGTCGA GGCGGTCGCT TCCGGCCGAG ATGCCGCTGA TTCCCGTCAA
951 TCAGGCGGAT ACGCTGATTG TCGATGGGGA AGCGGTCAGC CTGACGGGGC
1001 ATTCCGGCAA TATCTTCGCG CCCGAAGGGA ATTACCGGTA TCTGACTTAC
1051 GGGGCGGAAA AATTGCCCGG CGGATCGTAT GCCCTTCGTG TTCAAGGCGA
1101 ACCGGCAAAA GGCGAAATGC TTGCGGGCGC GGCCGTGTAC AACGGCGAAG
1151 TACTGCATTT CCATACGGAA AACGGCCGTC CGTACCCGAC CAGGGGCAGG
1201
      TTTGCCGCAA AAGTCGATTT CGGCAGCAAA TCTGTGGACG GCATTATCGA
1251 CAGCGGCGAT GATTTGCATA TGGGTACGCA AAAATTCAAA GCCGCCATCG
1301 ATGGAAACGG CTTTAAGGGG ACTTGGACGG AAAATGGCAG CGGGGATGTT
1351 TCCGGAAAGT TTTACGGCCC GGCCGGCGAG GAAGTGGCGG GAAAATACAG
1401 CTATCGCCCG ACAGATGCGG AAAAGGGCGG ATTCGGCGTG TTTGCCGGCA
1451 AAAAAGACA GGATTGA
```

This corresponds to the amino acid sequence <SEQ ID 3104; ORF 287>:

```
m287.pep

1 MFKRSVIAMA CIFALSACGG GGGSPDVKS ADTLSKPAAP VVSEKETEAK
51 EDAPQAGSQG QGAPSAQGSQ DMAAVSEENT GNGGAVTADN PKNEDEVAQN
101 DMPQNAAGTD SSTPNHTPDP NMLAGNMENQ ATDAGESSQP ANQPDMANAA
151 DGMQGDDPSA GGQNAGNTAA QGANQAGNNQ AAGSSDPIPA SNPAPANGGS
201 NFGRVDLANG VLIDGPSQNI TLTHCKGDSC SGNNFLDEEV QLKSEFEKLS
251 DADKISNYKK DGKNDKFVGL VADSVQMKGI NQYIIFYKPK PTSFARFRRS
301 ARSRRSLPAE MPLIPVNQAD TLIVDGEAVS LTGHSGNIFA PEGNYRYLTY
351 GAEKLPGGSY ALRVQGEPAK GEMLAGAAVY NGEVLHFHTE NGRPYPTRGR
401 FAAKVDFGSK SVDGIIDSGD DLHMGTQKFK AAIDGNGFKG TWTENGSGDV
451 SGKFYGPAGE EVAGKYSYRP TDAEKGGFGV FAGKKEQD*
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3105>: g287.seq

```
atgtttaaac gcagtgtgat tgcaatggct tgtatttttc ccctttcagc
     ctgtgggggc ggcggtggcg gatcgcccga tgtcaagtcg gcggacacqc
 101
     cgtcaaaacc ggccgccccc gttgttgctg aaaatgccgg ggaaggggtg
 151 ctgccgaaag aaaagaaaga tgaggaggca gcgggcggtg cgccgcaagc
     cgatacgcag gacgcaaccg ccggagaagg cagccaagat atggcggcag
     tttcggcaga aaatacaggc aatggcggtg cggcaacaac ggacaacccc
 251
     aaaaatgaag acgcggggc gcaaaatgat atgccgcaaa atgccgccga
 301
 351 atccgcaaat caaacaggga acaaccaacc cgccggttct tcagattccg
     cccccgcgtc aaaccctgcc cctgcgaatg gcggtagcga ttttggaagg
 451 acgaacgtgg gcaattctgt tgtgattgac ggaccgtcgc aaaatataac
     gttgacccac tgtaaaggcg attcttgtaa tggtgataat ttattggatg
 551
     aagaagcacc gtcaaaatca gaatttgaaa aattaagtga tgaagaaaaa
 601 attaagcgat ataaaaaaga cgagcaacgg gagaattttg tcggtttggt
 651 tgctgacagg gtaaaaaagg atggaactaa caaatatatc atcttctata
 701 cggacaaacc acctactcgt tctgcacggt cgaggaggtc gcttccggcc
 751
     gagattccgc tgattcccgt caatcaggcc gatacgctga ttgtggatgg
      ggaagcggtc agcctgacgg ggcattccgg caatatcttc gcgcccgaag
 801
 851
     ggaattaccg gtatctgact tacggggcgg aaaaattgcc cggcggatcg
     tatgccctcc gtgtgcaagg cgaaccggca aaaggcgaaa tgcttgttgg
 901
 951
     cacggccgtg tacaacggcg aagtgctgca tttccatatg gaaaacggcc
1001
     gtccgtaccc gtccggaggc aggtttgccg caaaagtcga tttcggcagc
1051
     aaatctgtgg acggcattat cgacagcggc gatgatttgc atatgggtac
1101
     gcaaaaattc aaagccgcca tcgatggaaa cggctttaag gggacttgga
1151 cggaaaatgg cggcggggat gtttccggaa ggttttacgg cccggccggc
1201
     gaggaagtgg cgggaaaata cagctatcgc ccgacagatg ctgaaaaggg
     cggattcggc gtgtttgccg gcaaaaaaga tcgggattga
```

This corresponds to the amino acid sequence <SEQ ID 3106; ORF 287.ng>: g287.pep

1 MFKRSVIAMA CIFPLSACGG GGGGSPDVKS ADTPSKPAAP VVAENAGEGV

51	LPKEKKDEEA	AGGAPQADTQ	DATAGEGSQD	MAAVSAENTG	NGGAATTDNP
101	KNEDAGAQND	MPQNAAESAN	QTGNNQPAGS	SDSAPASNPA	PANGGSDFGR
151	TNVGNSVVID	GPSQNITLTH	CKGDSCNGDN	LLDEEAPSKS	EFEKLSDEEK
201	IKRYKKDEOR	ENFVGLVADR	VKKDGTNKYI	IFYTDKPPTR	SARSRRSLPA
251	EIPLIPVNOA	DTLIVDGEAV	SLTGHSGNIF	APEGNYRYLT	YGAEKLPGGS
301	YALRVOGEPA	KGEMLVGTAV	YNGEVLHFHM	ENGRPYPSGG	RFAAKVDFGS
351	KSVDGIIDSG	DDLHMGTQKF	KAAIDGNGFK	GTWTENGGGD	VSGRFYGPAG
401		PTDAEKGGFG			

m287/g287 ORFs 287 and 287.ng showed a 70.1% identity in 499 aa overlap

	10	20	30	40		49
m287.pep	MFKRSVIAMACIFALSA					ETEA :
q287						
9207	10	20	30	40	50	60
000	50 60 KEDAPQAGSQGQGAPSA	70	80	90	100	109
m287.pep	KEDAPQAGSQGQGAPSA					
g287	AGGAPQADTQDATAG					
	70	80	90	100	110	
	110 120	130	140	150	160	169
m287.pep	110 120 DSSTPNHTPDPNMLAGN					
M207.pop				_	_	
g287						
	170 180	190	200	210	220	229
m287.pep	AQGANQAGNNQAAGSSD	PIPASNPAPA	ANGGSNFGRVI	LANGVLIDG!	PSQNITLTHO	CKGDS
	:: :					
g287	-ESANQTGNNQPAGSSD 120 130	SAPASNPAPA 140	ANGGSDEGRTN 150	160	PSQNITLIHO 170	KGDS
	120 130	110	100	100	2,0	
	230 240	250	260	270	280	289
m287.pep	CSGNNFLDEEVQLKSEF					
g287	: : : : CNGDNLLDEEAPSKSEF		: : ::			
9201	180 190	200	210	220	230	
207	290 300 KPTSFARFRRSARSRRS	310	320	330	340	349 7871.T
m287.pep			1111111111			
g287	KPPTRSARSRRS	LPAEIPLIP	VNQADTLIVDO	SEAVSLTGHS	GNI FAPEGN	YRYLT
	240	250	260	270	280	290
	350 360	370	380	390	400	409
m287.pep	YGAEKLPGGSYALRVQG	EPAKGEMLA	GAAVYNGEVLI	HEHTENGRPY	PTRGRFAAK	
	11111111111111111					
g287	YGAEKLPGGSYALRVQG 300	SEPAKGEMLVO 310	GTAVYNGEVLI 320	HFHMENGRPY 330	PSGGRFAAK 340	VDFGS 350
	300	310	320	330	340	330
	410 420	430	440	450	460	469
m287.pep	KSVDGIIDSGDDLHMGT					
~207						
g287	360	370	380	390	400	410
0.07	470 480	489				
m287.pep	PTDAEKGGFGVFAGKK	-Ony				

m287.pep

70

a287

```
PTDAEKGGFGVFAGKKDRDX
     q287
                                   430
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3107>:
     a287.seq
               ATGTTTAAAC GCAGTGTGAT TGCAATGGCT TGTATTGTTG CCCTTTCAGC
               CTGTGGGGC GGCGGTGGCG GATCGCCCGA TGTTAAGTCG GCGGACACGC
           51
               TGTCAAAACC TGCCGCCCCT GTTGTTACTG AAGATGTCGG GGAAGAGGTG
          101
               CTGCCGAAAG AAAAGAAAGA TGAGGAGGCG GTGAGTGGTG CGCCGCAAGC
               CGATACGCAG GACGCAACCG CCGGAAAAGG CGGTCAAGAT ATGGCGGCAG
               TTTCGGCAGA AAATACAGGC AATGGCGGTG CGGCAACAAC GGATAATCCC
          251
               GAAAATAAAG ACGAGGACC GCAAAATGAT ATGCCGCAAA ATGCCGCCGA
          301
               TACAGATAGT TCGACACCGA ATCACACCCC TGCACCGAAT ATGCCAACCA
          351
               GAGATATGGG AAACCAAGCA CCGGATGCCG GGGAATCGGC ACAACCGGCA
          401
               AACCAACCGG ATATGGCAAA TGCGGCGGAC GGAATGCAGG GGGACGATCC
          451
               GTCGGCAGGG GAAAATGCCG GCAATACGGC AGATCAAGCT GCAAATCAAG
          501
               CTGAAAACAA TCAAGTCGGC GGCTCTCAAA ATCCTGCCTC TTCAACCAAT
          551
               CCTAACGCCA CGAATGGCGG CAGCGATTTT GGAAGGATAA ATGTAGCTAA
          601
               TGGCATCAAG CTTGACAGCG GTTCGGAAAA TGTAACGTTG ACACATTGTA
               AAGACAAAGT ATGCGATAGA GATTTCTTAG ATGAAGAAGC ACCACCAAAA
          701
               TCAGAATTTG AAAAATTAAG TGATGAAGAA AAAATTAATA AATATAAAAA
          751
               AGACGAGCAA CGAGAGAATT TTGTCGGTTT GGTTGCTGAC AGGGTAGAAA
          801
               AGAATGGAAC TAACAAATAT GTCATCATTT ATAAAGACAA GTCCGCTTCA
          851
               TCTTCATCTG CGCGATTCAG GCGTTCTGCA CGGTCGAGGC GGTCGCTTCC
               GGCCGAGATG CCGCTGATTC CCGTCAATCA GGCGGATACG CTGATTGTCG
          951
               ATGGGGAAGC GGTCAGCCTG ACGGGGCATT CCGGCAATAT CTTCGCGCCC
         1001
               GAAGGGAATT ACCGGTATCT GACTTACGGG GCGGAAAAAT TGTCCGGCGG
               ATCGTATGCC CTCAGTGTGC AAGGCGAACC GGCAAAAGGC GAAATGCTTG
         1101
               CGGGCACGGC CGTGTACAAC GGCGAAGTGC TGCATTTCCA TATGGAAAAC
         1151
               GGCCGTCCGT CCCCGTCCGG AGGCAGGTTT GCCGCAAAAG TCGATTTCGG
         1201
               CAGCAAATCT GTGGACGGCA TTATCGACAG CGGCGATGAT TTGCATATGG
         1251
               GTACGCAAAA ATTCAAAGCC GTTATCGATG GAAACGGCTT TAAGGGGACT
         1301
               TGGACGGAAA ATGGCGGCGG GGATGTTTCC GGAAGGTTTT ACGGCCCGGC
         1351
               CGGCGAAGAA GTGGCGGGAA AATACAGCTA TCGCCCGACA GATGCGGAAA
         1401
         1451 AGGGCGGATT CGGCGTGTTT GCCGGCAAAA AAGAGCAGGA TTGA
This corresponds to the amino acid sequence <SEQ ID 3108; ORF 287.a>:
     a287.pep
               MFKRSVIAMA CIVALSACGG GGGGSPDVKS ADTLSKPAAP VVTEDVGEEV
               LPKEKKDEEA VSGAPQADTQ DATAGKGGQD MAAVSAENTG NGGAATTDNP
           51
               ENKDEGPOND MPONAADTDS STPNHTPAPN MPTRDMGNOA PDAGESAOPA
               NOPDMANAAD GMQGDDPSAG ENAGNTADQA ANQAENNQVG GSQNPASSTN
               PNATNGGSDF GRINVANGIK LDSGSENVTL THCKDKVCDR DFLDEEAPPK
               SEFEKLSDEE KINKYKKDEQ RENFVGLVAD RVEKNGTNKY VIIYKDKSAS
          251
               SSSARFRRSA RSRRSLPAEM PLIPVNQADT LIVDGEAVSL TGHSGNIFAP
          301
               EGNYRYLTYG AEKLSGGSYA LSVQGEPAKG EMLAGTAVYN GEVLHFHMEN
          351
          401 GRPSPSGGRF AAKVDFGSKS VDGIIDSGDD LHMGTQKFKA VIDGNGFKGT
               WTENGGGDVS GRFYGPAGEE VAGKYSYRPT DAEKGGFGVF AGKKEOD*
     m287/a287
                  ORFs 287 and 287.a showed a 77.2% identity in 501 aa overlap
                                              30
                                                        40
                                    20
                  MFKRSVIAMACIFALSACGGGGGSPDVKSADTLSKPAAPVVSE-----KETEA
     m287.pep
                  1: 11
                  MFKRSVIAMACIVALSACGGGGGSPDVKSADTLSKPAAPVVTEDVGEEVLPKEKKDEEA
     a287
                                              30
                                                        40
                                                                            60
                          10
                                    20
                                     70
                                               80
                                                         90
                                                                  100
```

KEDAPQAGSQGQAPSAQGSQDMAAVSEENTGNGGAVTADNPKNEDEVAQNDMPQNAAGT

80

90

m287.pep	110 120 DSSTPNHTPDPNMLAGNME	111 11111:111111	MANAADGMQGDDI	1111 : 11111
m287.pep	170 180 1 AQGANQAGNNQAAGSSDPI : :: :: DQAANQAENNQVGGSQNPA 180 190	:: : : :	DLANGVLIDGPS(:1:11111
m287.pep a287	CSGNNFLDEEVQLKSEFE		KFVGLVADSVOMI	: : : :
m287.pep	290 300 KPTSFARFRRSARSRR: : KSASSSSARFRRSARSRR: 300 310	[11111111111	
m287.pep	350 360 LTYGAEKLPGGSYALRVQI	11111111111111111		1:
m287.pep a287	410 420 GSKSVDGIIDSGDDLHMG	111111:11111111		
m287.pep a287	470 480 YRPTDAEKGGFGVFAGKK YRPTDAEKGGFGVFAGKK 480 490	THI		

406

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3109>: m406.seq

1	ATGCAAGCAC	GGCTGCTGAT	ACCTATTCTT	TTTTCAGTTT	TTATTTTATC
51	CGCCTGCGGG	ACACTGACAG	GTATTCCATC	GCATGGCGGA	GGTAAACGCT
101	TTGCGGTCGA	ACAAGAACTT	GTGGCCGCTT	CTGCCAGAGC	TGCCGTTAAA
151	GACATGGATT	TACAGGCATT	ACACGGACGA	AAAGTTGCAT	TGTACATTGC
201	CACTATGGGC	GACCAAGGTT	CAGGCAGTTT	GACAGGGGGT	CGCTACTCCA
251	TTGATGCACT	GATTCGTGGC	GAATACATAA	ACAGCCCTGC	CGTCCGTACC
301	GATTACACCT	ATCCACGTTA	CGAAACCACC	GCTGAAACAA	CATCAGGCGG
351	TTTGACAGGT	TTAACCACTT	CTTTATCTAC	ACTTAATGCC	CCTGCACTCT
401	CTCGCACCCA	ATCAGACGGT	AGCGGAAGTA	AAAGCAGTCT	GGGCTTAAAT
451	ATTGGCGGGA	TGGGGGATTA	TCGAAATGAA	ACCTTGACGA	CTAACCCGCG
501	CGACACTGCC	TTTCTTTCCC	ACTTGGTACA	GACCGTATTT	TTCCTGCGCG
551	GCATAGACGT	TGTTTCTCCT	GCCAATGCCG	ATACAGATGT	GTTTATTAAC
601	ATCGACGTAT	TCGGAACGAT	ACGCAACAGA	ACCGAAATGC	ACCTATACAA
651	TGCCGAAACA	CTGAAAGCCC	AAACAAAACT	GGAATATTTC	GCAGTAGACA

m406

109

```
701 GAACCAATAA AAAATTGCTC ATCAAACCAA AAACCAATGC GTTTGAAGCT
     751 GCCTATAAAG AAAATTACGC ATTGTGGATG GGGCCGTATA AAGTAAGCAA
     801 AGGAATTAAA CCGACGGAAG GATTAATGGT CGATTTCTCC GATATCCGAC
     851 CATACGGCAA TCATACGGGT AACTCCGCCC CATCCGTAGA GGCTGATAAC
     901 AGTCATGAGG GGTATGGATA CAGCGATGAA GTAGTGCGAC AACATAGACA
     951 AGGACAACCT TGA
This corresponds to the amino acid sequence <SEQ ID 3110; ORF 406>:
m406.pep
         MQARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL VAASARAAVK
      51 DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG EYINSPAVRT
     101 DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG SGSKSSLGLN
     151 IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP ANADTDVFIN
     201 IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL IKPKTNAFEA
251 AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIRPYGNHTG NSAPSVEADN
     301 SHEGYGYSDE VVRQHRQGQP *
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3111>:
g406.seq
       1
          ATGCGGGCAC GGCTGCTGAT ACCTATTCTT TTTTCAGTTT TTATTTTATC
          CGCCTGCGGG ACACTGACAG GTATTCCATC GCATGGCGGA GGCAAACGCT
     101 TCGCGGTCGA ACAAGAACTT GTGGCCGCTT CTGCCAGAGC TGCCGTTAAA
     151 GACATGGATT TACAGGCATT ACACGGACGA AAAGTTGCAT TGTACATTGC
     201 AACTATGGGC GACCAAGGTT CAGGCAGTTT GACAGGGGGT CGCTACTCCA
     251 TTGATGCACT GATTCGCGGC GAATACATAA ACAGCCCTGC CGTCCGCACC
     301 GATTACACCT ATCCGCGTTA CGAAACCACC GCTGAAACAA CATCAGGCGG
     351 TTTGACGGGT TTAACCACTT CTTTATCTAC ACTTAATGCC CCTGCACTCT
     401 CGCGCACCCA ATCAGACGGT AGCGGAAGTA GGAGCAGTCT GGGCTTAAAT
     451 ATTGGCGGGA TGGGGGATTA TCGAAATGAA ACCTTGACGA CCAACCCGCG
     501 CGACACTGCC TTTCTTTCCC ACTTGGTGCA GACCGTATTT TTCCTGCGCG
     551 GCATAGACGT TGTTTCTCCT GCCAATGCCG ATACAGATGT GTTTATTAAC
     601 ATCGACGTAT TCGGAACGAT ACGCAACAGA ACCGAAATGC ACCTATACAA
651 TGCCGAAACA CTGAAAGCCC AAACAAAACT GGAATATTTC GCAGTAGACA
701 GAACCAATAA AAAATTGCTC ATCAAACCCA AAACCAATGC GTTTGAAGCT
     751 GCCTATAAAG AAAATTACGC ATTGTGGATG GGGCCGTATA AAGTAAGCAA
     801 AGGAATCAAA CCGACGGAAG GATTGATGGT CGATTTCTCC GATATCCAAC
     851 CATACGGCAA TCATACGGGT AACTCCGCCC CATCCGTAGA GGCTGATAAC
     901 AGTCATGAGG GGTATGGATA CAGCGATGAA GCAGTGCGAC AACATAGACA
     951 AGGGCAACCT TGA
This corresponds to the amino acid sequence <SEQ ID 3112; ORF 406>:
g406.pep
      1 MRARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL VAASARAAVK
      51 DMDLOALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG EYINSPAVRT
     101 DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG SGSRSSLGLN
     151 IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP ANADTDVFIN
     201 IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL IKPKTNAFEA
         AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIQPYGNHTG NSAPSVEADN
     301 SHEGYGYSDE AVRQHRQGQP *
ORF 406 shows 98.8% identity over a 320 aa overlap with a predicted ORF (ORF406.a) from
N. gonorrhoeae:
g406/m406
                                20
                                          30
                                                    40
                                                               50
                                                                         60
             g406.pep
```

MOARLLIPILFSVFILSACGTLTGIPSHGGGKRFAVEQELVAASARAAVKDMDLQALHGR

110

	10	20	30	40	50	60
	70	80	90	100	110	120
g406.pep	KVALYIATMGDQGSG	SLTGGRYS:	IDALIRGEYIN:	SPAVRTDYTY	PRYETTAETT	SGGLTG
m406	KVALYIATMGDQGSG	 SLTGGRYS:	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			IIIIII SGGLTG
	70	80	90	100	110	120
	130	140	150	160	170	180
g406.pep	LTTSLSTLNAPALSR			GDYRNETLTT	NPRDTAFLSH	LVQTVF
		TOSPESS			ון ן ן ן ן ן ן ן	
m406	130	140	150	160	170	180
	130	140	150	100	170	100
	190	200	210	220	230	240
g406.pep	FLRGIDVVSPANADT	DVFINIDV	FGTIRNRTEMH	LYNAETLKAQ	TKLEYFAVDF	TNKKLL
					111111111	111111
m406	FLRGIDVVSPANADT	-		_	•	
	190	200	210	220	230	240
	250	260	270	280	290	300
g406.pep	IKPKTNAFEAAYKEN				YGNHTGNSAF	SVEADN
J 1 1		11111111		1111111:1		111111
m406	IKPKTNAFEAAYKEN	TYALWMGPY!	KVSKGIKPTEG	LMVDFSDIRF	YGNHTGNSAF	SVEADN
	250	260	270	280	290	300
	310	320				
g406.pep	SHEGYGYSDEAVRQH	HILLI				
m406		ITOGOPX				
200	310	320				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3113>:

a406.seq ATGCAAGCAC GGCTGCTGAT ACCTATTCTT TTTTCAGTTT TTATTTTATC 51 CGCCTGCGGG ACACTGACAG GTATTCCATC GCATGGCGGA GGTAAACGCT 101 TCGCGGTCGA ACAAGAACTT GTGGCCGCTT CTGCCAGAGC TGCCGTTAAA GACATGGATT TACAGGCATT ACACGGACGA AAAGTTGCAT TGTACATTGC 151 201 AACTATGGGC GACCAAGGTT CAGGCAGTTT GACAGGGGGT CGCTACTCCA 251 TTGATGCACT GATTCGTGGC GAATACATAA ACAGCCCTGC CGTCCGTACC 301 GATTACACCT ATCCACGTTA CGAAACCACC GCTGAAACAA CATCAGGCGG 351 TTTGACAGGT TTAACCACTT CTTTATCTAC ACTTAATGCC CCTGCACTCT CGCGCACCCA ATCAGACGGT AGCGGAAGTA AAAGCAGTCT GGGCTTAAAT 401 451 ATTGGCGGGA TGGGGGATTA TCGAAATGAA ACCTTGACGA CTAACCCGCG 501 CGACACTGCC TTTCTTTCCC ACTTGGTACA GACCGTATTT TTCCTGCGCG 551 GCATAGACGT TGTTTCTCCT GCCAATGCCG ATACGGATGT GTTTATTAAC 601 ATCGACGTAT TCGGAACGAT ACGCAACAGA ACCGAAATGC ACCTATACAA
651 TGCCGAAACA CTGAAAGCCC AAACAAAACT GGAATATTTC GCAGTAGACA 701 GAACCAATAA AAAATTGCTC ATCAAACCAA AAACCAATGC GTTTGAAGCT 751 GCCTATAAAG AAAATTACGC ATTGTGGATG GGACCGTATA AAGTAAGCAA 801 AGGAATTAAA CCGACAGAAG GATTAATGGT CGATTTCTCC GATATCCAAC 851 CATACGGCAA TCATATGGGT AACTCTGCCC CATCCGTAGA GGCTGATAAC 901 AGTCATGAGG GGTATGGATA CAGCGATGAA GCAGTGCGAC GACATAGACA 951 AGGGCAACCT TGA

This corresponds to the amino acid sequence <SEQ ID 3114; ORF 406.a>: a406.pep

F - F					
1	MQARLLIPIL	FSVFILSACG	TLTGIPSHGG	GKRFAVEQEL	VAASARAAVK
51	DMDLQALHGR	KVALYIATMG	DQGSGSLTGG	RYSIDALIRG	EYINSPAVRT
101	DYTYPRYETT	AETTSGGLTG	LTTSLSTLNA	PALSRTQSDG	SGSKSSLGLN
151	IGGMGDYRNE	TLTTNPRDTA	FLSHLVQTVF	FLRGIDVVSP	ANADTDVFIN
201	IDVFGTIRNR	TEMHLYNAET	LKAQTKLEYF	AVDRTNKKLL	IKPKTNAFEA

251 301	AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIQPYGNHMG NSAPSVEADN SHEGYGYSDE AVRRHRQGQP *
m406/a406	ORFs 406 and 406.a showed a 98.8% identity in 320 aa overlap
m406.pep	10 20 30 40 50 60 MQARLLIPILFSVFILSACGTLTGIPSHGGGKRFAVEQELVAASARAAVKDMDLQALHGR
m406.pep a406	70 80 90 100 110 120 KVALYIATMGDQGSGSLTGGRYSIDALIRGEYINSPAVRTDYTYPRYETTAETTSGGLTG
m406.pep	130 140 150 160 170 180 LTTSLSTLNAPALSRTQSDGSGSKSSLGLNIGGMGDYRNETLTTNPRDTAFLSHLVQTVF
m406.pep	190 200 210 220 230 240 FLRGIDVVSPANADTDVFINIDVFGTIRNRTEMHLYNAETLKAQTKLEYFAVDRTNKKLL
m406.pep	250 260 270 280 290 300 IKPKTNAFEAAYKENYALWMGPYKVSKGIKPTEGLMVDFSDIRPYGNHTGNSAPSVEADN
m406.pep	310 320 SHEGYGYSDEVVRQHRQGQPX : : SHEGYGYSDEAVRRHRQGQPX 310 320

EXAMPLE 2

Expression of ORF 919

The primer described in Table 1 for ORF 919 was used to locate and clone ORF 919. The predicted gene 919 was cloned in pET vector and expressed in E. coli. The product of protein expression and purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 919-His fusion protein purification. Mice were immunized with the purified 919-His and sera were used for Western blot (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; PP, purified protein, TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm

WO 99/057280 PCT/US99/09346

that 919 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 919 are provided in Figure 10. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, *J. Immunol* 143:3007; Roberts et al. 1996, *AIDS Res Human Retroviruses* 12:593; Quakyi et al. 1992, *Scand J Immunol Suppl* 11:9). The nucleic acid sequence of ORF 919 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 3

Expression of ORF 279

The primer described in Table 1 for ORF 279 was used to locate and clone ORF 279. The predicted gene 279 was cloned in pGex vector and expressed in E. coli. The product of protein expression and purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 279-GST purification. Mice were immunized with the purified 279-GST and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 279 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 279 are provided in Figure 11. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 279 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 4

Expression of ORF 576 and 576-1

The primer described in Table 1 for ORF 576 was used to locate and clone ORF 576. The predicted gene 576 was cloned in pGex vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 576-GST fusion protein purification. Mice were immunized with the purified 576-GST and sera

were used for Western blot (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B).. These experiments confirm that ORF 576 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 576 are provided in Figure 12. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 576 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 5

Expression of ORF 519 and 519-1

The primer described in Table 1 for ORF 519 was used to locate and clone ORF 519. The predicted gene 519 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 519-His fusion protein purification. Mice were immunized with the purified 519-His and sera were used for Western blot (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 519 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 519 are provided in Figure 13. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 519 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 6

Expression of ORF 121 and 121-1

The primer described in Table 1 for ORF 121 was used to locate and clone ORF 121. The predicted gene 121 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 121-His fusion protein purification. Mice were immunized with the purified 121-His and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Results show that 121 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 121 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 121 are provided in Figure 14. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 121 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 7

Expression of ORF 128 and 128-1

The primer described in Table 1 for ORF 128 was used to locate and clone ORF 128. The predicted gene 128 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 128-His purification. Mice were immunized with the purified 128-His and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D) and ELISA assay (panel E). Results show that 128 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 128 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 128 are provided in Figure 15. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J.

WO 99/057280

Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 128 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 8

Expression of ORF 206

The primer described in Table 1 for ORF 206 was used to locate and clone ORF 206. The predicted gene 206 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 206-His purification. Mice were immunized with the purified 206-His and sera were used for Western blot analysis (panel B). It is worthnoting that the immunoreactive band in protein extracts from meningococcus is 38 kDa instead of 17 kDa (panel A). To gain information on the nature of this antibody staining we expressed ORF 206 in E. coli without the His-tag and including the predicted leader peptide. Western blot analysis on total protein extracts from E. coli expressing this native form of the 206 protein showed a recative band at a position of 38 kDa, as observed in meningococcus. We conclude that the 38 kDa band in panel B) is specific and that anti-206 antibodies, likely recognize a multimeric protein complex. In panel C is shown the FACS analysis, in panel D the bactericidal assay, and in panel E) the ELISA assay. Results show that 206 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 206 is a surfaceexposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 519 are provided in Figure 16. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 206 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 9

Expression of ORF 287

The primer described in Table 1 for ORF 287 was used to locate and clone ORF 287. The predicted gene 287 was cloned in pGex vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 287-GST fusion protein purification. Mice were immunized with the purified 287-GST and sera were used for FACS analysis (panel B), bactericidal assay (panel C), and ELISA assay (panel D). Results show that 287 is a surface-exposed protein. Symbols: M1, molecular weight marker. Arrow indicates the position of the main recombinant protein product (A). These experiments confirm that 287 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 287 are provided in Figure 17. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 287 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 10

Expression of ORF 406

The primer described in Table 1 for ORF 406 was used to locate and clone ORF 406. The predicted gene 406 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 406-His fusion protein purification. Mice were immunized with the purified 406-His and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Results show that 406 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 406 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 406 are provided in Figure 18. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al.

PCT/US99/09346 WO 99/057280

117

1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 406 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 11

Table 2 lists several Neisseria strains which were used to assess the conservation of the sequence of ORF 225 among different strains.

Table 2

225 gene variability	: List of used Neisseria strains
Identification Strains	Source / reference
number	
Group B	
zo01_225 NG6/88	R. Moxon / Seiler et al., 1996
zo02_225 BZ198	R. Moxon / Seiler et al., 1996
zo03_225 NG3/88	R. Moxon / Seiler et al., 1996
zo04_225 297-0	R. Moxon / Seiler et al., 1996
zo05_225 1000	R. Moxon / Seiler et al., 1996
zo06_225 BZ147	R. Moxon / Seiler et al., 1996
zo07_225 BZ169	R. Moxon / Seiler et al., 1996
zo08_225 528	R. Moxon / Seiler et al., 1996
zo09_225 NGP165	R. Moxon / Seiler et al., 1996
zo10_225 BZ133	R. Moxon / Seiler et al., 1996
zo11_225 NGE31	R. Moxon / Seiler et al., 1996
zo12_225 NGF26	R. Moxon / Seiler et al., 1996
zo13_225 NGE28	R. Moxon / Seiler et al., 1996
zo14_225 NGH38	R. Moxon / Seiler et al., 1996
zo15_225 SWZ107	R. Moxon / Seiler et al., 1996
zo16_225 NGH15	R. Moxon / Seiler et al., 1996
zo17_225 NGH36	R. Moxon / Seiler et al., 1996
zo18_225 BZ232	R. Moxon / Seiler et al., 1996
zo19_225 BZ83	R. Moxon / Seiler et al., 1996
zo20_225 44/76	R. Moxon / Seiler et al., 1996
zo21_225 MC58	R. Moxon
zo96_225 2996	Our collection
Group A	
zo22_225 205900	R. Moxon
zo23_225 F6124	R. Moxon
z2491 Z2491	R. Moxon / Maiden et al., 1998
Group C	
zo24 225 90/18311	R. Moxon
zo25_225 93/4286	R. Moxon

118

Others

zo26_225 A22 (group W) R. Moxon / Maiden et al., 1998 zo27 225 E26 (group X) R. Moxon / Maiden et al., 1998

zo28 225 860800 (group Y) R. Moxon / Maiden et al., 1998

zo29 225 E32 (group Z) R. Moxon / Maiden et al., 1998

Gonococcus

zo32 225 Ng F62

R. Moxon / Maiden et al., 1998

zo33 225 Ng SN4

R. Moxon

fa1090 I

FA1090

R. Moxon

References:

Seiler A. et al., Mol. Microbiol., 1996, 19(4):841-856. Maiden et al., Proc. Natl. Acad. Sci. USA, 1998, 95:3140-3145.

The amino acid sequences for each listed strain are as follows:

>FA1090 <SEQ ID 3115>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG NADELIGSAMGLNEQPVLPVNRAPARRAGNADELIGSAMGLLGIAYRYGGTSVSTGFDCS GFMQHIFKRAMGINLPRTSAEQARMGAPVARSELQPGDMVFFRTLGGSRISHVGLYIGNN RFIHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

Z2491 <SEQ ID 3116>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRVPARRAGNA DELIGNAMGLNEQPVLPVNRAPARRAGNADELIGNAMGLLGIAYRYGGTSISTGFDCSGF MQHIFKRAMGINLPRTSAEQARMGTPVARSELQPGDMVFFRTLGGSRISHVGLYIGNNRF IHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

2001 225 <SEQ ID 3117>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO02 225 <SEQ ID 3118>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

Z003 225 <SEQ ID 3119>

MDSFFKPAVWAVLWLMFAVRLALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO04 225 <SEQ ID 3120>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO05 225 <SEQ ID 3121>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGSAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO06 225 <SEQ ID 3122>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO07 225 <SEQ ID 3123>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO08 225 <SEQ ID 3124>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGSAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO09 225 <SEO ID 3125>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO10_225 <SEQ ID 3126>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO11 225 <SEQ ID 3127>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLNEQPVLPVNRAPARRAGNADELIGNAMGLLGIAYRYGGTSVSTGFDCSGF MQHIFKRAMGINLPRTSAEQARMGTPVARSELQPGDMVFFRTLGGSRISHVGLYIGNNRF IHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

ZO12_225 <SEQ ID 3128>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO13 225 <SEQ ID 3129>

WO 99/057280 PCT/US99/09346

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFIQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO14 225 <SEQ ID 3130>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO15 225 <SEQ ID 3131>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLLGIAYRYGGTSVSTGFDCS GFMQHIFKRAMGINLPRTSAEQARMGTPVARSELQPGDMVFFRTLGGSRISHVGLYIGNN RFIHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

ZO16 225 <SEQ ID 3132>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO17 225 <SEQ ID 3133>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO18 225 <SEQ ID 3134>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO19 225 <SEQ ID 3135>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO20 225 <SEQ ID 3136>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPINRAPARRAGNADELIGSAMGLNEQPVLPVNRVPARRAGNA DELIGNAMGLNEQPVLPVNRAPARRAGNADELIGNAMGLLGIAYRYGGTSVSTGFDCSGF MQHIFKRAMGINLPRTSAEQARMGTPVARSELQPGDMVFFRTLGGSRISHVGLYIGNNRF IHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

ZO21 225 <SEQ ID 3137>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO22 225 <SEQ ID 3138>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

2023 225 <SEQ ID 3139>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO24 225 <SEQ ID 3140>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO25 225 <SEO ID 3141>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO26 225 <SEQ ID 3142>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO27 225 <SEQ ID 3143>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO28 225 <SEQ ID 3144>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO29 225 <SEQ ID 3145>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO32 225 <SEQ ID 3146>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG NADELIGSAMGLNEQPVLPVNRAPARRAGNADELIGSAMGLLGIAYRYGGTSVSTGFDCS GFMQHIFKRAMGINLPRTSAEQARMGAPVARSELQPGDMVFFRTLGGSRISHVGLYIGNN RFIHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

ZO33 225 <SEQ ID 3147>

MDSFFKPAVWAVLWLMFAVRSALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG NADELIGSAMGLNEQPVLPVNRAPARRAGNADELIGSAMGLLGIAYRYGGTSVSTGFDCS GFMQHIFKRAMGINLPRTSAEQARMGAPVARSELQPGDMVFFRTLGGSRISHVGLYIGNN RFIHAPRTGKNIEITSLSHKYWSGKYAFARRIKKNDPSRFLN*

2096_225 <SEQ ID 3148>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

Figure 19 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 225, further confirming its utility as an antigen for both vaccines and diagnostics.

EXAMPLE 12

Table 3 lists several *Neisseria* strains which were used to assess the conservation of the sequence of ORF 235 among different strains.

Table 3

235 gene	variability	: List of used Neisseria strains
Identifica	tion Strains	Reference
number		
Gr	oup B	
gnmzq01	NG6/88	Seiler <i>et al.</i> , 1996
gnmzq02	BZ198	Seiler et al., 1996
gnmzq03	NG3/88	Seiler et al., 1996
gnmzq04	1000	Seiler et al., 1996
gnmzq05	1000	Seiler et al., 1996
gnmzq07	BZ169	Seiler et al., 1996
gnmzq08	528	Seiler et al., 1996
gnmzq09	NGP165	Seiler et al., 1996
gnmzq10	BZ133	Seiler et al., 1996
gnmzq11	NGE31	Seiler et al., 1996
gnmzq13	NGE28	Seiler et al., 1996
gnmzq14	NGH38	Seiler et al., 1996
gnmzq15	SWZ107	Seiler et al., 1996
gnmzq16	NGH15	Seiler et al., 1996
gnmzq17	NGH36	Seiler et al., 1996
gnmzq18	BZ232	Seiler et al., 1996
gnmzq19	BZ83	Seiler et al., 1996
gnmzq21	MC58	Virji <i>et al.</i> , 1992
Gı	roup A	
gnmzq22	205900	Our collection

gnmzq23	F6124	Our collection
z2491	Z2491	Maiden et al., 1998
-		
Gr	oup C	
gnmzq24	90/18311	Our collection
gnmzq25		Our collection
Ot	hers	
gnmzq26	A22 (group	W) Maiden et al., 1998
gnmzq27	E26 (group	X) Maiden et al., 1998
gnmzq28	860800 (gr	roup Y) Maiden et al., 1998
gnmzq29	E32 (group	D Z) Maiden et al., 1998
gnmzq31	N. lactam	ica Our collection
Go	onococcus	
gnmzq32	Ng F62	Maiden et al., 1998
gnmzq33	Ng SN4	Our collection
£-1000	FA1090	Dempsey et al. 1991
fa1090	FA1090	Dempsey et at. 1991
Reference	es:	
10101010		
Seiler A.	et al., Mol. Mic	crobiol., 1996, 19(4):841-856.
		Vatl. Acad. Sci. USA, 1998, 95:3140-3145.
		robiol., 1992, 6:1271-1279
		acteriol., 1991, 173:5476-5486
	,	
1		

The amino acid sequences for each listed strain are as follows:

FA1090 <SEQ ID 3149>

MKPLILGLAAVLALSACQVRKAPDLDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST AAPISEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKTAAYNLLSPYSRNGILKGPRFVEEQPK*

GNMZQ01 <SEQ ID 3150> MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANNLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ02 <SEQ ID 3151> MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ03 <SEQ ID 3152> MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ04 <SEQ ID 3153>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ05 <SEQ ID 3154>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANNLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZO07 <SEQ ID 3155>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ08 <SEQ ID 3156>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANNLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ09 <SEQ ID 3157>

MKPLILGLAAALVLSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST AEPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVQPEKLHQIFGNDAVLYITITEYGTS YQILDSVTTVSARARLVDSRNGKVLWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYOVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ10 <SEQ ID 3158>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ11 <SEQ ID 3159>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ13 <SEQ ID 3160>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ14 <SEQ ID 3161>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ15 <SEQ ID 3162>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ16 <SEQ ID 3163>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYOVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ17 <SEQ ID 3164>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYOVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZ018 <SEQ ID 3165>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZ019 <SEQ ID 3166>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYOVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ21 <SEQ ID 3166>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYOVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNM2022 <SEQ ID 3167>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ23 <SEQ ID 3168>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ24 <SEQ ID 3169>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ25 <SEQ ID 3170>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ26 <SEQ ID 3171>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYOVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ27 <SEQ ID 3172>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

ins. Dark
on of amino
onservation
for both

rvation of

127

	Froup B		
287 2	BZ198	Seiler et al., 1996	
287 9	NGP165	Seiler et al., 1996	•
$287^{-}14$	NGH38	Seiler et al., 1996	
287_21	MC58	Virji <i>et al.</i> , 1992	
G	Group A		
z2491	Z2491	Maiden <i>et al.</i> , 1998	
C	Conococcus		
fa1090	FA1090	Dempsey et al. 1991	

References:

Seiler A. et al., Mol. Microbiol., 1996, 19(4):841-856. Maiden R. et al., Proc. Natl. Acad. Sci. USA, 1998, 95:3140-3145. Virji M. et al., Mol. Microbiol., 1992, 6:1271-1279 Dempsey J.F. et al., J. Bacteriol., 1991, 173:5476-5486

The amino acid sequences for each listed strain are as follows:

287 14 <SEQ ID 3179>

MFKRSVIAMACIFALSACGGGGGSPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQG QGAPSAQGGQDMAAVSEENTGNGGAAATDKPKNEDEGAQNDMPQNAADTDSLTPNHTPAS NMPAGNMENQAPDAGESEQPANQPDMANTADGMQGDDPSAGGENAGNTAAQGTNQAENNQ TAGSQNPASSTNPSATNSGGDFGRTNVGNSVVIDGPSQNITLTHCKGDSCSGNNFLDEEV QLKSEFEKLSDADKISNYKKDGKNDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFAR FRRSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLP GGSYALRVQGEPSKGEMLAGTAVYNGEVLHFHTENGRPSPSRGRFAAKVDFGSKSVDGII DSGDGLHMGTQKFKAAIDGNGFKGTWTENGGGDVSGKFYGPAGEEVAGKYSYRPTDAEKG

287 2 <SEQ ID 3180>

MFKRSVIAMACIFALSACGGGGGGSPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQG
QGAPSAQGGQDMAAVSEENTGNGGAAATDKPKNEDEGAQNDMPQNAADTDSLTPNHTPAS
NMPAGNMENQAPDAGESEQPANQPDMANTADGMQGDDPSAGGENAGNTAAQGTNQAENNQ
TAGSQNPASSTNPSATNSGGDFGRTNVGNSVVIDGPSQNITLTHCKGDSCSGNNFLDEEV
QLKSEFEKLSDADKISNYKKDGKNDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFAR
FRRSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLP
GGSYALRVQGEPSKGEMLAGTAVYNGEVLHFHTENGRPSPSRGRFAAKVDFGSKSVDGII
DSGDGLHMGTQKFKAAIDGNGFKGTWTENGGGDVSGKFYGPAGEEVAGKYSYRPTDAEKG

287 21. <SEQ ID 3181>

MFKRSVIAMACIFALSACGGGGGGSPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQG QGAPSAQGSQDMAAVSEENTGNGGAVTADNPKNEDEVAQNDMPQNAAGTDSSTPNHTPDP NMLAGNMENQATDAGESSQPANQPDMANAADGMQGDDPSAGGQNAGNTAAQGANQAGNNQ AAGSSDPIPASNPAPANGGSNFGRVDLANGVLIDGPSQNITLTHCKGDSCSGNNFLDEEV OLKSEFEKLSDADKISNYKKDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFARFRRS ARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLPGGSY ALRVQGEPAKGEMLAGAAVYNGEVLHFHTENGRPYPTRGRFAAKVDFGSKSVDGIIDSGD DLHMGTQKFKAAIDGNGFKGTWTENGSGDVSGKFYGPAGEEVAGKYSYRPTDAEKGGFGV FAGKKEQD*

287 9 <SEQ ID 3182>

MFKRSVIAMACIVALSACGGGGGSPDVKSADTLSKPAAPVVTEDVGEEVLPKEKKDEEA
VSGAPQADTQDATAGKGGQDMAAVSAENTGNGGAATTDNPENKDEGPQNDMPQNAADTDS
STPNHTPAPNMPTRDMGNQAPDAGESAQPANQPDMANAADGMQGDDPSAGENAGNTADQA
ANQAENNQVGGSQNPASSTNPNATNGGSDFGRINVANGIKLDSGSENVTLTHCKDKVCDR
DFLDEEAPPKSEFEKLSDEEKINKYKKDEQRENFVGLVADRVEKNGTNKYVIIYKDKSAS
SSSARFRRSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYG
AEKLSGGSYALSVQGEPAKGEMLAGTAVYNGEVLHFHMENGRPSPSGGRFAAKVDFGSKS
VDGIIDSGDDLHMGTQKFKAVIDGNGFKGTWTENGGGDVSGRFYGPAGEEVAGKYSYRPT
DAEKGGFGVFAGKKEOD*

FA1090 <SEQ ID 3183>

MFKRSVIAMACIFPLSACGGGGGGSPDVKSADTPSKPAAPVVAENAGEGVLPKEKKDEEA
AGGAPQADTQDATAGEGSQDMAAVSAENTGNGGAATTDNPKNEDAGAQNDMPQNAAESAN
QTGNNQPAGSSDSAPASNPAPANGGSDFGRTNVGNSVVIDGPSQNITLTHCKGDSCNGDN
LLDEEAPSKSEFEKLSDEEKIKRYKKDEQRENFVGLVADRVKKDGTNKYIIFYTDKPPTR
SARSRRSLPAEIPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLPGGS
YALRVQGEPAKGEMLVGTAVYNGEVLHFHMENGRPYPSGGRFAAKVDFGSKSVDGIIDSG
DDLHMGTQKFKAAIDGNGFKGTWTENGGGDVSGRFYGPAGEEVAGKYSYRPTDAEKGGFG
VFAGKKDRD*

Z2491 <SEQ ID 3184>

MFKRSVIAMACIFALSACGGGGGSPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQG
QGAPSAQGSQDMAAVSEENTGNGGAVTADNPKNEDEVAQNDMPQNAAGTDSSTPNHTPDP
NMLAGNMENQATDAGESSQPANQPDMANAADGMQGDDPSAGGQNAGNTAAQGANQAGNNQ
AAGSSDPIPASNPAPANGGSNFGRVDLANGVLIDGPSQNITLTHCKGDSCSGNNFLDEEV
QLKSEFEKLSDADKISNYKKDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFARFRRS
ARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLPGGSY
ALRVQGEPAKGEMLAGAAVYNGEVLHFHTENGRPYPTRGRFAAKVDFGSKSVDGIIDSGD
DLHMGTQKFKAAIDGNGFKGTWTENGSGDVSGKFYGPAGEEVAGKYSYRPTDAEKGGFGV
FAGKKEQD*

Figure 21 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 287, further confirming its utility as an antigen for both vaccines and diagnostics.

EXAMPLE 14

Table 5 lists several *Neisseria* strains which were used to assess the conservation of the sequence of ORF 519 among different strains.

Table 5

519 gene variability: List of used Neisseria strains

Identification Strains

Source / reference

number		
Group	В	
zv01 519	NG6/88	R. Moxon / Seiler et al., 1996
zv02 519	BZ198	R. Moxon / Seiler et al., 1996
zv03_519ass	NG3/88	R. Moxon / Seiler et al., 1996
zv04_519	297-0	R. Moxon / Seiler et al., 1996
zv05_519	1000	R. Moxon / Seiler et al., 1996
zv06_519ass	BZ147	R. Moxon / Seiler et al., 1996
zv07_519	BZ169	R. Moxon / Seiler et al., 1996
zv11_519	NGE31	R. Moxon / Seiler et al., 1996
zv12_519	NGF26	R. Moxon / Seiler et al., 1996
zv18_519	BZ232	R. Moxon / Seiler et al., 1996
zv19_519	BZ83	R. Moxon / Seiler et al., 1996
zv20_519ass	44/76	R. Moxon / Seiler et al., 1996
zv21_519ass	MC58	R. Moxon
zv96_519	2996	Our collection
Grou	a A	
zv22 519ass	205900	R. Moxon
z2491 519	Z2491	R. Moxon / Maiden et al., 1998
22471_317	22771	Te. Honoit / Haladi di any 1990
Other	'S	
zv26_519	\ O 1	W) R. Moxon / Maiden et al., 1998
zv27_519		X) R. Moxon / Maiden et al., 1998
zv28_519	860800 (gr	roup Y) R. Moxon / Maiden et al., 1998
zv29_519ass	E32 (g	roup Z) R. Moxon / Maiden et al., 1998
Como		
	coccus	R. Moxon / Maiden et al., 1998
zv32_519	Ng F62	K. Mozon / Maiden et at., 1770
fa1090_519	FA1090	R. Moxon

References:

Seiler A. et al., Mol. Microbiol., 1996, 19(4):841-856. Maiden et al., Proc. Natl. Acad. Sci. USA, 1998, 95:3140-3145.

The amino acid sequences for each listed strain are as follows:

FA1090_519 <SEQ ID 3185>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRAMQAQITAERE
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSSKTAK*

Z2491 519 <SEQ ID 3186>

MEFFITLLAAVVVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV01_519 <SEQ ID 3187>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV02 519 <SEQ ID 3188>

MEFFĪILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV03 519 <SEQ ID 3189>

MEFFĪILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV04 519 <SEQ ID 3190>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV05 519 <SEQ ID 3191>

MEFFĪILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV06_519ASS <SEQ ID 3192>

MEFFILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVFSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERK KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV07 519 <SEQ ID 3193>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK* 131

ZV11 519 <SEQ ID 3194>

MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV12 519 <SEQ ID 3195>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV18 519 <SEQ ID 3196>

MEFFÏILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV19 519 <SEQ ID 3197>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV20 519ASS <SEQ ID 3198>

MEFFĪILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSM ISAGMKIIDSSKTAK*

ZV21_519ASS <SEQ ID 3199>

MEFFĪILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV22_519ASS <SEQ ID 3200>

MEFFĪILLAAVVVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAKIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV26 519 <SEQ ID 3201>

MEFFIILLAAVVVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV27_519 <SEQ ID 3202>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV28_519 <SEQ ID 3203>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSSKTAK*

ZV29_519ASS <SEQ ID 3204>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSIVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
KRARIAESEGRKIEQINLASGQREPEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSNKTAK*

ZV32_519 <SEQ ID 3205>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRAMQAQITAERE
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSSKTAK*

ZV96_519 <SEQ ID 3206>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSSKTAK*

Figure 22 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 519, further confirming its utility as an antigen for both vaccines and diagnostics.

EXAMPLE 15

Table 6 lists several *Neisseria* strains which were used to assess the conservation of the sequence of ORF 919 among different strains.

Table 6

919 gene variability: List of used Neisseria strains

Identification Strains

Source / reference

numb	er	
	Group B	
zm01	NG6/88	R. Moxon / Seiler et al., 1996
zm02	BZ198	R. Moxon / Seiler et al., 1996
zm03	NG3/88	R. Moxon / Seiler et al., 1996
zm04	297-0	R. Moxon / Seiler et al., 1996
zm05	1000	R. Moxon / Seiler et al., 1996
zm06	BZ147	R. Moxon / Seiler et al., 1996
zm07	BZ169	R. Moxon / Seiler et al., 1996
zm08n	528	R. Moxon / Seiler et al., 1996
zm09	NGP165	R. Moxon / Seiler et al., 1996
zm10	BZ133	R. Moxon / Seiler et al., 1996
zm11a	sbc NGE31	R. Moxon / Seiler et al., 1996
zm12	NGF26	R. Moxon / Seiler et al., 1996
zm13	NGE28	R. Moxon / Seiler et al., 1996
zm14	NGH38	R. Moxon / Seiler et al., 1996
zm15	SWZ107	R. Moxon / Seiler et al., 1996
zm16	NGH15	R. Moxon / Seiler et al., 1996
zm17	NGH36	R. Moxon / Seiler et al., 1996
zm18	BZ232	R. Moxon / Seiler et al., 1996
zm19	BZ83	R. Moxon / Seiler et al., 1996
zm20	44/76	R. Moxon / Seiler et al., 1996
zm21	MC58	R. Moxon
zm96	2996	Our collection
	Group A	
zm22	205900	R. Moxon
zm23a	sbc F6124	R. Moxon
z2491	Z2491	R. Moxon / Maiden et al., 1998
	Group C	
zm24	90/18311	R. Moxon
zm25	93/4286	R. Moxon
	Others	
zm26	(0	p W) R. Moxon / Maiden et al., 1998
zm27b		(group X) R. Moxon / Maiden et al., 1998
		group Y) R. Moxon / Maiden et al., 1998
		group Z) R. Moxon / Maiden et al., 1998
zm31a	isbc N. lad	ctamica R. Moxon
		•
20	Gonococcus	
	sbc Ng F62	R. Moxon / Maiden et al., 1998
zm33a	sbc Ng SN4	R. Moxon
fo.1.000	EA1000	R. Moxon
fa1090	FA1090	R. IVIOXOII

References:

Seiler A. et al., Mol. Microbiol., 1996, 19(4):841-856. Maiden et al., Proc. Natl. Acad. Sci. USA, 1998, 95:3140-3145.

The amino acid sequences for each listed strain are as follows:

FA1090 <SEQ ID 3207>

MKKHLLRSALYGIAAAILAACQSRSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV YTVVPHLSMPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKRFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDGRRTERARFPIYGIPDDFISVPLPAGLRGGKN LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSGNEGPVGALGTPLMGEYAGA IDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

Z2491 <SEQ ID 3208>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM01 <SEQ ID 3209>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZMO2 <SEQ ID 3210>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM03 <SEQ ID 3211>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM04 <SEQ ID 3212>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM05 <SEO ID 3213>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLSCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM06 <SEQ ID 3214>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK OKTTGYVWOLLPNGMKPEYRP*

ZM07 <SEQ ID 3215>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM08N <SEQ ID 3216>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM09 <SEQ ID 3217>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM10 <SEQ ID 3218>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM11ASBC <SEQ ID 3219>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM12 <SEQ ID 3220>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM13 <SEQ ID 3221>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAEQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM14 <SEQ ID 3222>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSRNDGPVGALGTPLMGEYAGA
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
QKTTGYVWQLLPNGMKPEYRP*

ZM15 <SEQ ID 3223>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDLAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNHQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM16 <SEQ ID 3224>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPGRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM17 <SEQ ID 3225>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM18 <SEQ ID 3226>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM19 <SEQ ID 3227>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM20 <SEQ ID 3228>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK OKTTGYVWQLLPNGMKPEYRP*

ZM21 <SEQ ID 3229>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM22 <SEQ ID 3230>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM23ASBC <SEQ ID 3231>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL $\label{thm:configuration} KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTSKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGETAGK MKEPGYVWQLLPNGMKPEYRP*$

ZM24 <SEQ ID 3232>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK OKTTGYVWQLLPNGMKPEYRP*

ZM25 <SEQ ID 3233>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM26 <SEQ ID 3234>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK OKTTGYVWOLLPNGMKPEYRP*

ZM27BC <SEQ ID 3235>

MKKYLFRAALYGISAAILAACQSKSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGETAGK MKEPGYVWQLLPNGMKPEYRP*

ZM28 <SEQ ID 3236>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM29ASBC <SEQ ID 3237>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATTHPITRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM31ASBC <SEQ ID 3238>

MKKHLFRAALYGIAAAILAACQSKSIQTFPQPDTSIIKGPDRPAGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYVFFRELAGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM32ASBC <SEQ ID 3239>

MKKHLLRSALYGIAAAILAACQSRSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV YTVVPHLSMPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKRFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDGRRTERARFPIYGIPDDFISVPLPAGLRGGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSGGDGPVGALGTPLMGGYAGA IDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM33ASBC <SEQ ID 3240>

MKKHLLRSALYGIAAAILAACQSRSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV YTVVPHLSMPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPIHSFQAKRFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDGRRTERARFPIYGIPDDFISVPLPAGLRGGKN LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPHKLAEVLGQNPSYIFFRELAGSGNEGPVGALGTPLMGEYAGA IDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM96 <SEQ ID 3241>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

Figure 23 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 919, further confirming its utility as an antigen for both vaccines and diagnostics.

EXAMPLE 16

Using the above-described procedures, the following oligonucleotide primers were employed in the polymerase chain reaction (PCR) assay in order to clone the ORFs as indicated:

Table 7: Oligonucleotides used for PCR to amplify complete or partial ORFs

ORF	primer	Sequence	Restriction
	-		sites
001	Forward	CGCGGATCCCATATG-TGGATGGTGCTGGTCAT	BamHI-
			NdeI
		CCCGCTCGAG-TGCCGTCTTGTCCCAC	Xhol
003	Forward	CGCGGATCCCATATG-GTCGTATTCGTGGC	BamH1-
			Ndel
		CCCGCTCGAG-AAAATCATGAACACGCGC	Xhol
005	Forward	CGCGGATCCCATATG-GACAATATTGACATGT	BamHI-
			Ndel
		CCCGCTCGAG-CATCACATCCGCCCG	Xhol
006	Forward	CGCGGATCCCATATG-CTGCTGGTGCTGG	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-AGTTCCGGCTTTGATGT	XhoI
007	Forward	CGCGGATCCCATATG-GCCGACAACAGCATCAT	BamHI-
		· · · · · · · · · · · · · · · · · · ·	NdeI
	Reverse	CCCGCTCGAG-AAGGCGTTCATGATATAAG	XhoI
008	Forward	CGCGGATCCCATATG-AACAACAGACATTTTG	BamHI- Ndel
ļ	_		XhoI
		CCCGCTCGAG-CCTGTCCGGTAAAAGAC	BamHI-
009	Forward	CGCGGATCCCATATG-CCCCGCGCTGCT	Ndel
	ъ.	CCCGCTCGAG-TGGCTTTTGCCACGTTTT	XhoI
	Reverse	CCCGC1CGAG-1GGC1111GCCACG1111	BamHI-
011	Forward	CGCGGATCCCATATG-AAGACACACCGCAAG	Ndel
1	Daviese	CCCGCTCGAG-GGCGGTCAGTACGGT	Xhol
012		CGCGGATCCCATATG-CTCGCCCGTTGCC	BamHI-
012	rorward	CGCGGATCCCATATG-CTCGCCCGTTGCC	Ndel
1	Deverse	CCCGCTCGAG-AGCGGGGAAGAGGCAC	Xhol
012		CGCGGATCCCATATG-CCTTTGACCATGCT	BamHI-
1013	TOIWAIC	ede <u>ddareeening</u> eerraneeniger	Ndel
	Reverse	CCCGCTCGAG-CTGATTCGGCAAAAAAATCT	XhoI
018	Forward	CGCGGATCCCATATG-CAGCAGAGGCAGTT	BamHI-
010	1 01 Wate	ede <u>ediii eeeiii ee</u>	Ndel
	Reverse	CCCGCTCGAG-GACGAGGCGAACGCC	XhoI
019	Forward	AAAGAATTC-CTGCCAGCCGGCAAGACCCCGGC	Eco RI
""	Reverse	AAACTGCAG-TCAGCGGGCGGGGACAATGCCCAT	Pst I
023		AAAGAATTC-AAAGAATATTCGGCATGGCAGGC	Eco RI
023	Reverse	AAACTGCAG-TTACCCCCAAATCACTTTAACTGA	Pst I
025		AAAGAATTC-TGCGCCACCCAACAGCCTGCTCC	Eco RI
1 023		AAACTGCAG-TCAGAACGCGATATAGCTGTTCGG	Pst I
031		CGCGGATCCCATATG-GTCTCCCTTCGCTT	BamHI-
031	1.01 Marc	- Cocoonicentino oroneoori	Ndel
	Reverse	CCCGCTCGAG-ATGTAAGACGGGGACAAC	XhoI
032		CGCGGATCCCATATG-CGGCGAAACGTGC	BamHI-

			Ndel
	Reverse	CCCGCTCGAG-CTGGTTTTTTGATATTTGTG	Xhol
033		CGCGGATCCCATATG-GCGGCGGCAGACA	BamHI-
			Ndel
İ	Reverse	CCCGCTCGAG-ATTTGCCGCATCCCGAT	Xhol
034	Forward	CGCGGATCCCATATG-GCCGAAAACAGCTACGG	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-TTTGACGATTTGGTTCAATT	XhoI
036	Forward	CGCGGATCCCATATG-CTGAAGCCGTGCG	BamHI-
			Ndel
		CCCG <u>CTCGAG</u> -CCGGACTGCGTATCGG	Xhol
038	Forward	CGCGGATCCCATATG-ACCGATTTCCGCCA	BamHI-
	_	2000 2000 LO THON LOCACOM LONGO	Ndel
		CCCGCTCGAG-TTCTACGCCGTACTGCC	Xhol
039	Forward	CGCGGATCCCATATG-CCGTCCGAACCGC	BamHI-
	Davosos	CCCGCTCGAG-TAGGATGACGAGGTAGG	Ndel
041			Xhol
041	rorward	CGCGGATCCCATATG-TTCGTGCGCGAACCGC	BamHI-
	Deverse	CCCGCTCGAG-GCCCAAAAACTCTTTCAAA	NdeI XhoI
042		CGCGGATCCCATATG-ACGATGATTTGCTTGC	BamHI-
042	roiwaiu	COCOMPTECENTATO-ACOMPONITION TOCTOC	Ndel
	Reverse	CCCGCTCGAG-TTTGCAGCCTGCATTTGAC	XhoI
043		AAAAAAGGTACC-ATGGTTGTTTCAAATCAAAATATC	Kpn I
0.5		AAACTGCAG-TTATTGCGCTTCACCTTCCGCCGC	Pst I
043a		AAAAAGGTACC-GCAAAAGTGCATGGCGGCTTGGACGGTGC	
""		AAAAAACTGCAG-	Pst I
	110.0100	TTAATCCTGCAACACGAATTCGCCCGTCCG	. 5. 1
044	Forward	CGCGGATCCCATATG-CCGTCCGACTAGAG	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-ATGCGCTACGGTAGCCA	XhoI
046		AAAGAATTC-ATGTCGGCAATGCTCCCGACAAG	Eco RI
1		AAACTGCAG-TCACTCGGCGACCCACACCGTGAA	Pst I
047	Forward	CGCGGATCCCATATG-GTCATCATACAGGCG	BamHI-
-			NdeI
		CCCGCTCGAG-TCCGAAAAAGCCCATTTTG	XhoI
048		AAAGAATTC-ATGCTCAACAAAGGCGAAGAATTGCC	Eco RI
		AAACTGCAG-TCAAGATTCGACGGGGATGATGCC	Pst I
049		AAAGAATTC-ATGCGGGCGCAGGCGTTTGATCAGCC	Eco RI
		AAACTGCAG-AAGGCGTATCTGAAAAAATGGCAG	Pst I
050	Forward	CGCGGATCCCATATG-GGCGCGGGCTGG	BamHI-
	_	000000000000000000000000000000000000000	Ndel
		CCCG <u>CTCGAG</u> -AATCGGGCCATCTTCGA	XhoI
052		AAAAAAGAATTC-ATGGCTTTGGTGGCGGAGGAAAC	Eco RI
0.55		AAAAAAGTCGAC-TCAGGCGGCGTTTTTCACCTTCCT	Sal I
052a	Forward	AAAAAAGAATTC-GTGGCGGAGGAAACGGAAATATCCGC	Eco RI

	Reverse	AAAAAACTGCAG-TTAGCTGTTTTTGGAAACGCCGTCCAACCC	Pst I
073		CGCGGATCCCATATG-TGTATGCCATATAAGAT	BamHI-
","			Ndel
	Reverse	CCCGCTCGAG-CACCGGATTGTCCGAC	Xhol
075		CGCGGATCCCATATG-CCGTCTTACTTCATC	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-ATCACCAATGCCGATTATTT	XhoI
077a	Forward	AAAAAGAATTC-GGCGGCATTTTCATCGACACCTTCCT	Eco RI
	Reverse	AAAAAACTGCAG-TCAGACGAACATCTGCACAAACGCAAT	Pst I
080	Forward	AAAGAATTC-GCGTCCGGGCTGGTTTGGTTTTACAATTC	Eco RI
	Reverse	AAACTGCAG-CTATTCTTCGGATTCTTTTTCGGG	Pst I
081	Forward	AAAGAATTC-ATGAAACCACTGGACCTAAATTTCATCTG	Eco RI
	Reverse	AAACTGCAG-TCACTTATCCTCCAATGCCTC	Pst I
082	Forward	AAAGAATTC-ATGTGGTTGTTGAAGTTGCCTGC	Eco RI
	Reverse	AAACTGCAG-TTACGCGGATTCGGCAGTTGG	Pst I
084	Forward	AAAGAATTC-TATCACCCAGAATATGAATACGGCTACCG	Eco RI
1	Reverse	AAACTGCAG-TTATACTTGGGCGCAACATGA	Pst I
085	Forward	CGCGGATCCCATATG-GGTAAAGGGCAGGACT	BamHI-
			NdeI
		CCCGCTCGAG-CAAAGCCTTAAACGCTTCG	XhoI
086		AAAAAAGGTACC-TATTTGGCATCAAAAGAAGGCGG	Kpn I
		AAACTGCAG-TTACTCCACCCGATAACCGCG	Pst I
		AAAGAATTC-ATGGGCGGTAAAACCTTTATGC	Eco RI
1		AAACTGCAG-TTACGCCGCACACGCAATCGC	Pst I
087a		AAAAAAGAATTC-AAGCTATTAGGCGTGCCGATTGTGATTCA	
		AAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCC	Pst I
088		AAAAAAGAATTC-ATGTTTTTATGGCTCGCACATTTCAG	Eco RI
		AAAAAA <u>CTGCAG</u> -TCAGCGGATTTTGAGGGTACTCAAACC	Pst I
089	Forward	CGCGGATCCCATATG-CCGCCCAAAATCAC	BamHI-
	_	GCCCCTCC+ C TCCCC+T+CC+++000+	Ndel
		CCCGCTCGAG-TGCGCATACCAAAGCCA	XhoI
090	Forward	CGC <u>GGATCCCATATG</u> -CGCATAGTCGAGCA	BamHI-
	Davarra	CCCGCTCGAG-AGCAAAACGGCGGTACG	NdeI XhoI
091		AAAGAATTC-ATGGAAATACCCGTACCGCCGAGTCC	Eco RI
091		AAACTGCAG-TCAGCGCAGGGGGTAGCCCAAGCC	Pst I
002		AAAGAATTC-ATGTTTTTTATTTCAATCCG	Eco RI
092		AAACTGCAG-TCAAATCTGTTTCGACAATGC	Pst I
002		AAAGAATTC-ATGCAGAATTTTGGCAAAGTGGC	Eco RI
093		AAACTGCAG-CTATGGCTCGTCATACCGGGC	Pst I
004		AAAGAATTC-ATGCCGTCACGGAAGCGCATCAACTC	Eco RI
094		AAACTGCAG-TTATCCCGGCCATACCGCCGAACA	Pst I
095		AAAGAATTC-ATGTCCTTTCATTTGAACATGGACGG	Eco RI
1093		AAACTGCAG-TCAACGCCGCAGGCACTAACGCCC	Pst I
006		AAAGAATTC-ATGGCTCGTCATACCGGGCAGGG	Eco RI
ספט ן	rorward	AAAGAATTC-ATGGCTCGTCATACCGGGCAGGG	ECO KI

الاشتاء راستان

		AAACTGCAG-TCAAAGGAAAAGGCCGTCTGAAAAGCG	Pst I
097		AAAGAATTC-ATGGACACTTCAAAACAAACACTGTTG	Eco RI
	Reverse	AAACTGCAG-TCAGCCCAAATACCAGAATTTCAG	Pst I
098	Forward	AAAGAATTC-GATGAACGCAGCCCAGCATGGATACG	Eco RI
	Reverse	AAACTGCAG-TTACGACATTCTGATTTGGCA	Pst I
102	Forward	AAAAAAGAATTC-GGCCTGATGATTTTGGAAGTCAACAC	Eco RI
	Reverse	AAAAAACTGCAG-TTATCCTTTAAATACGGGGACGAGTTC	Pst I
105	Forward	CGCGGATCCCATATG-TCCGCAAACGAATACG	BamHI-
		•	Ndel
		CCCGCTCGAG-GTGTTCTGCCAGTTTCAG	Xhol
107	Forward	AAAAAAGAATTC-	Eco RI
	_	CTGATGATTTTGGAAGTCAACACCCATTATCC	
		AAAAAACTGCAG-TTATCCTTTAAATACGGGGACGAGTTC	Pst I
1076	Forward	AAAAAAGAATTC-	Eco RI
	Deverse	GATACCCAAGCCCCCGCCGGCACAAACTACTG AAAAAACTGCAG-	Pst I
	Reveise	TTACGCGTCGCCTTTAAAGTATTTGAGCAGGCTGGAGAC	PSI I
108	Forward	AAAGAATTC-ATGTTGCCGGGCTTCAACCG	Eco RI
1.00		AAACTGCAG-TTAGCGGTACAGGTGTTTGAAGCA	Pst I
108a		AAAAAGAATTC-GGTAACACATTCGGCAGCTTAGACGGTGG	
		AAACTGCAG-TTAGCGGTACAGGTGTTTGAAGCA	Pst I
109		AAAGAATTC-ATGTATTATCGCCGGGTTATGGG	Eco RI
100		AAACTGCAG-CTAGCCCAAAGATTTGAAGTGTTC	Pst I
111		CGCGGATCCCATATG-TGTTCGGAACAAACCGC	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-GCGGAGCAGTTTTTCAAA	Xhol
114	Forward	CGCGGATCCCATATG-GCTTCCATCACTTCGC	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-CATCCGCGAAATCGTC	Xhol
117	Forward	AAAAAAGGTACC-ATGGTCGAAGAACTGGAACTGCTG	Kpn I
ĺ	Reverse	AAACTGCAG-TTAAAGCCGGGTAACGCTCAATAC	Pst I
118		AAA <u>GTCGAC</u> ATGTGTGAGTTCAAGGATATTATAAG	Sal I
		AAAGCATGC-CTATTTTTGTTGTAATAATCAAATC	Sph I
121	Forward	CGCGGATCCCATATG-GAAACACAGCTTTACAT	BamHI-
	D	G0G0GT0010 ATLATA ATLATA COCCOCCO	Ndel
100		CCCGCTCGAG-ATAATAATATCCCGCGCCC	Xhol
122	Forward	CGCGGATCCCATATG-GTCATGATTAAAATCCGCA	BamHI-
	Deverse	CCCGCTCGAG-AATCTTGGTAGATTGGATTT	Ndel
125		AAAGAATTC-ATGTCGGGCAATGCCTCCTCTCC	Xhol
123		AAACTGCAG-TCACGCCGTTTCAAGACG	Eco RI
1250		AAAAAAGAATTC-ACGGCAGGCAGCACCGCCGCACAGGTTTC	Pst I
123a		AAAAAACTGCAG-	
	Veneize	TTATTTTGCCACGTCGGTTTCTCCGGTGAACAACGC	Pst I
126	Forward	CGCGGATCCCATATG-CCGTCTGAAACCC	BamHI-
		TO TO THE TOTAL TO	Dain11-

			Ndel
ŀ	Deverse	CCCGCTCGAG-ATATTCCGCCGAATGCC	Xhol
127	Forward	AAAGAATTC-ATGGAAATATGGAATATGTTGGACACTTG	Eco RI
127	Deverse	AAACTGCAG-TTAAAGTGTTTCGGAGCCGGC	Pst I
127	Forward	AAAAAGAATTC-AAGGAACTGATTATGTGTCTGTCGGG	Eco RI
12/6		AAACTGCAG-TTAAAGTGTTTCGGAGCCGGC	Pst I
120		CGCGGATCCCATATG-ACTGACAACGCACT	BamHI-
120	roiwaiu	COCOUNTECCATATO-ACTORICIDADOCITO	NdeI
	Reverse	CCCGCTCGAG-GACCGCGTTGTCGAAA	XhoI
130		CGCGGATCCCATATG-AAACAACTCCGCGA	BamHI-
150	1 Ol Wald	- Cocomicociti	NdeI
	Reverse	CCCGCTCGAG-GAATTTTGCACCGGATTG	XhoI
132	Forward	AAAGAATTC-ATGGAACCCTTCAAAACCTTAATTTG	Eco RI
	Reverse	AAAAACTGCAG-TCACCATGTCGGCATTTGAAAAAC	Pst I
134		CGCGGATCCCATATG-TCCCAAGAAATCCTC	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-CAGTTTGACCGAATGTTC	XhoI
135	Forward	CGCGGATCCCATATG-AAATACAAAAGAATCGTATT	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-AAATTCGGTCAGAAGCAGG	XhoI
137	Forward	AAAAAAGGTACC-ATGATTACCCATCCCCAATTCGATCC	Kpn I
		AAAAAACTGCAG-TCAGTGCTGTTTTTTCATGCCGAA	Pst I
137		AAAAAAGAATTC-GGCCGCAAACACGGCATCGGCTTCCT	Eco RI
		AAAAAACTGCAG-TTAAGCGGGATGACGCGGCAGCATACC	Pst I
138		AAAAAAGAATTC-AACTCAGGCGAAGGAGTGCTTGTGGC	Eco RI
-		AAAAAATCTAGA-TCAGTTTAGGGATAGCAGGCGTAC	Xba I
141		AAAGAATTC-ATGAGCTTCAAAACCGATGCCGAAATCGC	Eco RI
		AAACTGCAG-TCAGAACAAGCCGTGAATCACGCC	Pst I
142	? Forward	CGCGGATCCCATATG-CGTGCCGATTTCATG	BamHI-
			NdeI XhoI
		CCCGCTCGAG-AAACTGCTGCACATGGG	Eco RI
143	3 Forward	AAAAAAGAATTC-	ECO KI
	D	ATGCTCAGTTTCGGCTTTCTCGGCGTTCAGAC AAAAAACTGCAG-TCAAACCCCGCCGTGTGTTTCTTTAAT	Pst I
١.,		AAAAAA <u>CTGCAG</u> -TCAAACCCCGCGTGTGTTTCTTAAT	Eco RI
14		AAAAAATCTAGA-TCGGCATCGGCCGGCATATGTCCG	Xba I
1.,		AAAAAA <u>TCTAGA</u> -TCGGCATCGGCCGGCATATGTCCG	Eco RI
14	o rorware	CGCCAAGTCGTCATTGACCACGACAAAGTC	Lee ra
	Reverse	AAAAAACTGCAG-TTAGGCATCGGCAAATAGGAAACTGGG	Pst I
114		d AAAAAGAATTC-ACTGAGCAATCGGTGGATTTGGAAAC	Eco RI
14		AAAAAATCTAGA-TTAGGTAAAGCTGCGGCCCATTTGCGG	Xba I
14		d AAAAAAGAATTC-	Eco RI
14	O IOIWAI	ATGGCGTTAAAAACATCAAACTTGGAACACGC	
-	Revers	AAAAAATCTAGA-TCAGCCCTTCATACAGCCTTCGTTTTG	Xba I
14		d CGCGGATCCCATATG-CTGCTTGACAACAAAGT	BamHI-
L			

			Ndel
	Reverse	CCCGCTCGAG-AAACTTCACGTTCACGCC	Xhol
150		CGCGGATCCCATATG-CAGAACACAAATCCG	BamHI-
	101	<u> </u>	Ndel
	Reverse	CCCGCTCGAG-ATAAACATCACGCTGATAGC	XhoI
151	Forward	AAAAAGAATTC-	Eco RI
		ATGAAACAAATCCGCAACATCGCCATCATCGC	
1	Reverse	AAAAAACTGCAG-TCAATCCAGCTTTTTAAAGTGGCGGCG	Pst I
152	Forward	AAAAAGAATTC-	Eco RI
		ATGAAAAACAAAACCAAAGTCTGGGACCTCCC	
ł	Reverse	AAAAAA <u>CTGCAG</u> -TCAGGACAGGAGCAGGATGGCGGC	Pst I
153	Forward	AAAAAAGAATTC-ATGGCGTTTGCTTACGGTATGAC	Eco RI
	Reverse	AAAAAACTGCAG-TCAGTCATGTTTTTCCGTTTCATT	Pst I
153a	Forward	AAAAAAGAATTC-CGGACTTCGGTATCGGTTCCCCAGCATTG	Eco RI
	Reverse	AAAAA <u>CTGCAG</u> -	Pst I
1		TTACGCCGACGAAATACTCAGACTTTTCGG	
154	Forward	CGCGGATCCCATATG-ACTGACAACAGCCC	BamHI-
	_	2222222	Ndel
		CCCGCTCGAG-TCGGCTTCCTTTCGGG	XhoI
155		AAAAAAGAATTC-ATGAAAATCGGTATCCCACGCGAGTC	Eco RI
		AAAAAACTGCAG-TTACCCTTTCTTAAACATATTCAGCAT	Pst I
156		AAAAAAGAATTC-GCACAGCAAAACGGTTTTGAAGC	Eco RI
		AAAAAACTGCAG-TCAAGCAGCCGCGACAAACAGCCC	Pst I
157	Forward	CGCGGATCCCATATG-AGGAACGAGGAAAAAC	BamHI-
1	D	CCCCCTCC AC A A A CA CA A TATOCCCC	Ndel
1.50		CCCGCTCGAG-AAAACACAATATCCCCGC	XhoI
158		AAAAAAGAATTC-GCGGAGCAGTTGGCGATGGCAAATTCTGC	
1,00		AAAAAATCTAGA-TTATCCACAGAGATTGTTTCCCAGTTC	Xba I
160	rorward	CGCGGATCCCATATG-GACATTCTGGACAAAC	BamHI-
]	Daverce	CCCGCTCGAG-TTTTTGCCCGCCTTCTTT	NdeI XhoI
163		AAAAAGGTACC-ACCGTGCCGGATCAGGTGCAGATGTG	
103		AAAAAATCTAGA-TTACTCTGCCAATTCCACCTGCTCGTG	Kpn I Xba I
1632		AAAAAAGAATTC-CGGCTGGTGCAGATAATGAGCCAGAC	Eco RI
1034		AAAAAATCTAGA-TTACTCTGCCAATTCCACCTGCTCGTG	Xba I
164		CGCGGATCCCATATG-AACCGGACTTATGCC	
104	roiwaid	CGCGGATCCCATATG-AACCGGACTTATGCC	BamHI- Ndel
	Reverse	CCCGCTCGAG-TTTGTTTCCGTCAAACTGC	XhoI
165		CGCGGATCCGCTAGC-GCTGAAGCGACAGACG	BamHI-
			NheI
	Reverse	CCCGCTCGAG-AATATCCAATACTTTCGCG	Xhol
206		CGCGGATCCCATATG-AAACACCGCCAACCGA	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-TTCTGTAAAAAAAGTATGTGC	XhoI
209	Forward	CGCGGATCCCATATG-CTGCGGCATTTAGGA	BamHI-
		- 	NdeI

WO 99/057280 PCT/US99/09346

	Reverse CCCGCTCGAG-TACCCCTGAAGGCAAC	Xhol
211	Forward AAAAAAGAATTC-ATGTTGCGGGTTGCTGCTGC	Eco RI
	Reverse AAAAAACTGCAG-CTATCCTGCGGATTGGCATTGAAA	Pst I
212	Forward CGCGGATCCCATATG-GACAATCTCGTATGG	BamHI-
		Ndel
	Reverse CCCGCTCGAG-AGGGGTTAGATCCTTCC	XhoI
215	Forward CGCGGATCCCATATG-GCATGGTTGGGTCGT	BamHI-
		Ndel
	Reverse CCCGCTCGAG-CATATCTTTTGTATCATAAATC	XhoI
216	Forward CGCGGATCCCATATG-GCAATGGCAGAAAACG	BamHI-
		Ndel
	Reverse CCCGCTCGAG-TACAATCCGTGCCGCC	XhoI
217	Forward CGCGGATCCCATATG-GCGGATGACGGTGTG	BamHI-
		Ndel
	Reverse CCCGCTCGAG-ACCCCGAATATCGAATCC	XhoI
218	Forward CGCGGATCCCATATG-GTCGCGGTCGATC	BamHI-
		NdeI
	Reverse CCCGCTCGAG-TAACTCATAGAATCCTGC	XhoI
219	Forward CGCGGATCCGCTAGC-ACGGCAAGGTTAAG	BamHI- Nhel
1	Reverse CCCGCTCGAG-TTTAAACCATCTCCTCAAAAC	XhoI
222	Forward CGCGGATCCCATATG-GAATTCAGGCACCAAGTA	BamHI-
223	FOIWARD COCOONTECCATATO-OAATTCAOOCACCAAGTA	Ndel
	Reverse CCCGCTCGAG-GGCTTCCCGCGTGTC	XhoI
225	Forward CGCGGATCCCATATG-GACGAGTTGACCAACC	BamHI-
223	10.mard 0.00 <u>0.00.00.00</u> 0.100.100.2100	NdeI
	Reverse CCCGCTCGAG-GTTCAGAAAGCGGGAC	XhoI
226	Forward AAAGAATTC-CTTGCGATTATCGTGCGCACGCG	Eco RI
	Reverse AAACTGCAG-TCAAAATCCCAAAACGGGGAT	Pst I
228	Forward CGCGGATCCCATATG-TCGCAAGAAGCCAAACAG	BamHI-
		Ndel
1	Reverse CCCGCTCGAG-TTTGGCGGCATCTTTCAT	XhoI
229	Forward CGCGGATCCCATATG-CAAGAGGTTTTGCCC	BamHI-
		Ndel
	Reverse CCCGCTCGAG-ACACAATATAGCGGATGAAC	XhoI
230	Forward CGCGGATCCCATATG-CATCCGGGTGCCGAC	BamHI-
	D. COCCOTOCAC AAOTTTOCOCCOTTTOCO	NdeI
000	Reverse CCCGCTCGAG-AAGTTTGGCGGCTTCGG	XhoI
232	Forward AAAAAAGAATTC-ATGTACGCTAAAAAAAGGCGGTTTGGG	Eco RI
0.55	Reverse AAAAAACTGCAG-TCAAGGTTTTTTCCTGATTGCCGCCGC	Pst I
232a	Forward AAAAAAGAATTC-GCCAAGGCTGCCGATACACAAATTGA	Eco RI
	Reverse AAAAAACTGCAG-TTAAACATTGTCGTTGCCGCCCAGATG	Pst I
233	Forward CGCGGATCCCATATG-GCGGACAAACCCAAG	BamHI-
1	Devices CCCCCTCCAC CACCCATTCACCAC	Ndel
224	Reverse CCCGCTCGAG-GACGGCATTGAGCAG	XhoI
234	Forward CGCGGATCCCATATG-GCCGTTTCACTGACCG	BamHI-

		Ndel
-	Reverse GCCCAAGCTT-ACGGTTGGATTGCCATG	Hind III
235	Forward CGCGGATCCCATATG-GCCTGCCAAGTTCAAA	BamHI-
		NdeI
Ì	Reverse CCCGCTCGAG-TTTGGGCTGCTCTTC	XhoI
236	Forward CGCGGATCCCATATG-GCGCGTTTCGCCTT	BamHI-
1		NdeI
	Reverse CCCGCTCGAG-ATGGGTCGCGCGCCGT	XhoI
238	Forward CGCGGATCCGCTAGC-AACGGTTTGGATGCCCG	BamHI-
		Nhel
	Reverse CCCGCTCGAG-TTTGTCTAAGTTCCTGATATG	Xhol
239	Forward CCGGAATTCTACATATG-CTCCACCATAAAGGTATTG	EcoRI-
	*	Ndel
	Reverse CCCGCTCGAG-TGGTGAAGAGCGGTTTAG	XhoI
240	Forward CGCGGATCCCATATG-GACGTTGGACGATTTC	BamHI-
l	Reverse CCCGCTCGAG-AAACGCCATTACCCGATG	Ndel Xhol
	Forward CCGGAATTCTACATATG-CCAACACGTCCAACT	EcoRI-
241	roward CCGGAATTCTACATATG-CCAACACGTCCAACT	Ndel
Ì	Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC	XhoI
242	Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG	BamHI-
242	rolward cocoda recentario-a recode a a a control rolling	Ndel
ĺ	Reverse GCCCAAGCTT-ACCGATACGGTCGCAG	HindIII
243	Forward CGCGGATCCCATATG-ACGATTTTTTCGATGCTGC	BamHI-
	16.444 000 00 00	Ndel
	Reverse CCCGCTCGAG-CGACTTGGTTACCGCG	XhoI
244	Forward CGCGGATCCCATATG-CCGTCTGAAGCCC	BamHI-
		NdeI
	Reverse CCCGCTCGAG-TTTTTTCGGTAGGGGATTT	XhoI
246	Forward CGCGGATCCCATATG-GACATCGGCAGTGC	BamHI-
		NdeI
1	Reverse CCCGCTCGAG-CCCGCGCTGCTGGAG	XhoI
247	Forward CGCGGATCCCATATG-GTCGGATCGAGTTAC	BamHI-
		Ndel
l	Reverse CCCGCTCGAG-AAGTGTTCTGTTTGCGCA	XhoI
248	Forward CGCGGATCCCATATG-CGCAAACAGAACACT	BamHI-
1	Reverse CCCGCTCGAG-CTCATCATTATTGCTAACA	Ndel
249	Forward CGCGGATCCCATATG-AAGAATAATGCTTACA	XhoI
249	Forward CGCGGATCCCATATG-AAGAATAATGATTGCTTC	BamHI- NdeI
	Reverse CCCGCTCGAG-TTCCCGACCTCCGAC	XhoI
251	Forward CGCGGATCCCATATG-CGTGCTGCGGTAGT	BamHI-
~,	Tomas occionista concording	Ndel
	Reverse CCCGCTCGAG-TACGAAAGCCGGTCGTG	
253		
253	Reverse CCCGCTCGAG-TACGAAAGCCGGTCGTG Forward AAAAAAGAATTC-ATGATTGACAGGAACCGTATGCTGCG Reverse AAAAAACTGCAG-TTATTGGTCTTTCAAACGCCCTTCCTG	XhoI Eco RI Pst I

253a	Forward	AAAAAAGAATTC-AAAATCCTTTTGAAAACAAGCGAAAACGG	Eco RI
1	Reverse	AAAAAACTGCAG-TTATTGGTCTTTCAAACGCCCTTCCTG	Pst I
254	Forward	AAAAAAGAATTC-ATGTATACAGGCGAACGCTTCAATAC	Eco RI
	Reverse	AAAAAATCTAGA-TCAGATTACGTAACCGTACACGCTGAC	Xba I
255	Forward	CGCGGATCCCATATG-GCCGCGTTGCGTTAC	BamHI-
			Ndel
ŀ	Reverse	CCCGCTCGAG-ATCCGCAATACCGACCAG	XhoI
256	Forward	CGCGGATCCGCTAGC-TTTTAACACCGCCGGAC	BamHI-
ļ			Nhel
İ		CCCGCTCGAG-ACGCCTGTTTGTGCGG	XhoI
257	Forward	CGCGGATCCCATATG-GCGGTTTCTTTCCTG	BamHI-
	_	222227224	NdeI
2.50		CCCGCTCGAG-GCGCGTGAATATCGCG	XhoI
258		AAAAAAGAATTC-GATTATTTCTGGTGGATTGTTGCGTTCAG	Eco RI
		AAAAAACTGCAG-CTACGCATAAGTTTTTACCGTTTTTGG	Pst I
258a		AAAAAAGAATTC-GCGAAGGCGGTGGCGCAAGGCGA	Eco RI
2.50		AAAAAACTGCAG-CTACGCATAAGTTTTTACCGTTTTTGG	Pst I
259	Forward	CGCGGATCCCATATG-GAAGAGCTGCCTCCG	BamHI-
	Danaga	CCCGCTCGAG-GGCTTTTCCGGCGTTT	Ndel
260		CGCGGATCCCATATG-GGTGCGGGTATGGT	XhoI
200	rorward	CGCGGATCCCATATG-GGTGCGGGTATGGT	BamHI- Ndel
	Reverse	CCCGCTCGAG-AACAGGGCGACACCCT	XhoI
261		AAAAAGAATTC-CAAGATACAGCTCGGGCATTCGC	Eco RI
201		AAAAAACTGCAG-TCAAACCAACAAGCCTTGGTCACT	Pst I
263		CGCGGATCCCATATG-GCACGTTTAACCGTA	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-GGCGTAAGCCTGCAATT	Xhol
264	Forward	AAAAAAGGTACC-GCCGACGCAGTGGTCAAGGCAGAA	Kpn I
	Reverse	AAACTGCAG-TCAGCCGGCGGTCAATACCGCCCG	Pst I
265	Forward	AAAAAGAATTC-GCGGAGGTCAAGAGAAGGTGTTTG	Eco RI
	Reverse	AAAAAACTGCAG-TTACGAATACGTCGTCAAAATGGG	Pst I
266	Forward	AAAGAATTC-CTCATCTTTGCCAACGCCCCCTTC	Eco RI
	Reverse	AAACTGCAG-CTATTCCCTGTTGCGCGTGTGCCA	Pst I
267	Forward	AAAGAATTC-TTCTTCCGATTCGATGTTAATCG	Eco RI
		AAACTGCAG-TTAGTAAAAACCTTTCTGCTTGGC	Pst I
269	Forward	AAAGAATTC-TGCAAACCTTGCGCCACGTGCCC	Eco RI
		AAACTGCAG-TTACGAAGACCGCAACGAAAGGCAGAG	Pst I
269a	Forward	AAAAAAGAATTC-GACTTTATCCAAAACACGGCTTCGCC	Eco RI
		AAACTGCAG-TTACGAAGACCGCAACGAAAGGCAGAG	Pst I
270		AAAGAATTC-GCCGTCAAGCTCGTTTTGTTGCAATG	Eco RI
		AAACTGCAG-TTATTCGGCGGTAAATGCCGTCTG	Pst I
271	Forward	CGCGGATCCCATATG-CCTGTGTGCAGCTCGAC	BamHI-
	n	000000000000000000000000000000000000000	Ndel
<u> </u>	Reverse	CCCGCTCGAG-TCCCAGCCCCGTGGAG	XhoI

272	Forward	AAAGAATTC-ATGACCGCAAAGGAAGAACTGTTCGC	Eco RI
		AAACTGCAG-TCAGAGCAGTTCCAAATCGGGGCT	Pst I
273		AAAGAATTC-ATGAGTCTTCAGGCGGTATTTATATACCC	Eco RI
12,3		AAACTGCAG-TTACGCGTAAGAAAAACTGC	Pst I
274		CGCGGATCCCATATG-ACAGATTTGGTTACGGAC	BamHI-
2/7	1 OI Walu	COCOONTECCNIATO-ACAONTITOOTTACOOAC	Ndel
}	Reverse	CCCGCTCGAG-TTTGCTTTCAGTATTATTGAA	XhoI
276		AAAAAGAATTC-	Eco RI
12.0	7 07 4.10	ATGATTTTGCCGTCGTCCATCACGATGATGCG	LCO ICI
	Reverse	AAAAAACTGCAG-CTACACCACCATCGGCGAATTTATGGC	Pst I
277		AAAAAGAATTC-ATGCCCCGCTTTGAGGACAAGCTCGTAGG	Eco RI
		AAAAAACTGCAG-TCATAAGCCATGCTTACCTTCCAACAA	Pst I
277a		AAAAAGAATTC-GGGGCGGCGGCTGGGTTGGACGTAGG	Eco RI
		AAAAAACTGCAG-TCATAAGCCATGCTTACCTTCCAACAA	Pst I
278		AAAAAAGGTACC-GTCAAAGTTGTATTAATCGGGCCTTTGCC	Kpn I
		AAAAAACTGCAG-TCATTCAACCATATCAAATCTGCC	Pst I
278a		AAAAAAGAATTC-AAAACTCTCCTAATTCGTCATAGTCG	Eco RI
	Reverse	AAAAAACTGCAG-TCATTCAACCATATCAAATCTGCC	Pst I
279	Forward	CGCGGATCCCATATG-TTGCCTGCAATCACGATT	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-TTTAGAAGCGGCGCGCAA	XhoI
280	Forward	AAAAAAGGTACC-GCCCCCCTGCCGGTTGTAACCAG	Kpn I
	Reverse	AAAAAACTGCAG-TTATTGCTTCATCGCGTTGGTCAAGGC	Pst I
281	Forward	AAAAAAGAATTC-GCACCCGTCGGCGTATTCCTCGTCATGCG	Eco RI
		AAAAAA <u>TCTAGA</u> -GGTCAGAATGCCGCCTTCTTTGCCGAG	Xba I
281a	Forward	AAAAAAGAATTC-TCCTACCACATCGAAATTCCTTCCGG	Eco RI
		AAAAAATCTAGA-GGTCAGAATGCCGCCTTCTTTGCCGAG	Xba I
282		AAAAAAGAATTC-CTTTACCTTGACCTGACCAACGGGCACAG	Eco RI
		AAAAAACTGCAG-TCAACCTGCCAGTTGCGGGAATATCGT	Pst I
283	Forward	CGCGGATCCCATATG-GCCGTCTTTACTTGGAAG	BamHI-
1	_	000000000000000000000000000000000000000	NdeI
1		CCCGCTCGAG-ACGGCAGTATTTGTTTACG	XhoI
284	Forward	CGC <u>GGATCCCATATG</u> -TTTGCCTGCAAAAGAATCG	BamHI-
	Daverce	CCCGCTCGAG-CCGACTTTGCAAAAACTG	NdeI
286		CGCGGATCCCATATG-GCCGACCTTTCCGAAAA	XhoI
280	roiwaiu	COCOGATCCCATATO-OCCOACCTTTCCGAAAA	BamHI- NdeI
	Reverse	CCCGCTCGAG-GAAGCGCGTTCCCAAG	XhoI
287		CCGGAATTCTAGCTAGC-CTTTCAGCCTGCGGG	EcoRI-
		ood <u>oo</u> m <u>oomaa</u> orriondeerdeddd	NheI
	Reverse	CCCGCTCGAG-ATCCTGCTCTTTTTTGCC	XhoI
288		CGCGGATCCCATATG-CACACCGGACAGG	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-CGTATCAAAGACTTGCGT	XhoI
290	Forward	CGCGGATCCCATATG-GCGGTTTGGGGCGGA	BamHI-

			Ndel
	Reverse	CCCGCTCGAG-TCGGCGCGGCGGCC	Xhol
292		CGCGGATCCCATATG-TGCGGGCAAACGCCC	BamHI-
2)2	1 OI Wald	COCOMPECCATATO-TOCOGOCAAACOCCC	Ndel
	Reverse	CCCGCTCGAG-TTGATTTTTGCGGATGATTT	XhoI
294		AAAAAGAATTC-GTCTGGTCGATTCGGGTTGTCAGAAC	Eco RI
		AAAAAACTGCAG-TTACCAGCTGATATAAAACATCGCTTT	Pst I
295		CGCGGATCCCATATG-AACCGGCCGGCCTCC	BamHI-
	101	The education of the ed	Ndel
	Reverse	CCCGCTCGAG-CGATATTTGATTCCGTTGC	XhoI
297		AAAAAAGAATTC-GCATACATTGCTTCGACAGAGAG	Eco RI
		AAAAAACTGCAG-TCAATCCGATTGCGACACGGT	Pst I
298		AAAAAGAATTC-CTGATTGCCGTGTGGTTCAGCCAAAACCC	Eco RI
		AAAAAACTGCAG-TCATGGCTGTGTACTTGATGGTTGCGT	Pst I
299		CGCGGATCCGCTAGC-CTACCTGTCGCCTCCG	BamHI-
			NheI
	Reverse	CCCGCTCGAG-TTGCCTGATTGCAGCGG	XhoI
302	Forward	AAAAAAGAATTC-ATGAGTCAAACCGATACGCAACG	Eco RI
1	Reverse	AAAAAACTGCAG-TTAAGGTGCGGGATAGAATGTGGGCGC	Pst I
305	Forward	AAAAAAGGTACC-GAATTTTTACCGATTTCCAGCACCGGA	Kpn I
	Reverse	AAAAAACTGCAG-TCATTCCCAACTTATCCAGCCTGACAG	Pst I
305a	Forward	AAAAAAGGTACC-TCCCGTTCGGGCAGTACGATTATGGG	Kpn I
	Reverse	AAAAAACTGCAG-TTACAAACCGACATCATGCAGGGTGAA	Pst I
306	Forward	CGCGGATCCCATATG-TTTATGAACAAATTTTCCC	BamHI-
	_		NdeI
		CCCGCTCGAG-CCGCATCGGCAGAC	XhoI
308	Forward	CGCGGATCCCATATG-TTAAATCGGGTATTTTATC	BamHI-
	D	COCCCTCC AC ATOCCCC ATTOCCCTCC	Ndel
211		CCCGCTCGAG-ATCCGCCATTCCCTGC	XhoI
311		AAAAAAGGTACC-ATGTTCAGTTTTGGCTGGGTGTTT	Kpn I
212		AAACTGCAG-ATGTTCATATTCCCTGCCTTCGGC	Pst I
312		AAAAAAGGTACC-ATGAGTATCCCATCCGGCGAAATT	Kpn I
212		AAACTGCAG-TCAGTTTTTCATCGATTGAACCGG	Pst I
313		AAAAAAGAATTC-ATGGACGACCGCGCACCTACGGATC	Eco RI
401		AAAAAACTGCAG-TCAGCGGCTGCCGCCGATTTTGCT	Pst I
401	rorward	CGCGGATCCCATATG-AAGGCGGCAACACAGC	BamHI-
Ì	Reverse	CCCGCTCGAG-CCTTACGTTTTTCAAAGCC	NdeI XhoI
402		AAAAAGAATTC-GTGCCTCAGGCATTTTCATTTACCCTTGC	Eco RI
		AAAAAATCTAGA-TTAAATCCCTCTGCCGTATTTGTATTC	Xba I
402a		AAAAAAGAATTC-AGGCTGATTGAAAACAAACAGG	Eco RI
		AAAAATCTAGA-TTAAATCCCTCTGCCGTATTTGTATTC	Xba I
406		CGCGGATCCCATATG-TGCGGGACACTGACAG	BamHI-
		TOTAL TOTAL	Ndel
	Reverse	CCCGCTCGAG-AGGTTGTCCTTGTCTATG	XhoI

501	Forward CGCGGATCCCATATG-GCAGGCGGAGATGGC	BamHI-
301	TOIWAR COCOGNICCENTATO-OCNOCOGNICATION	Ndel
ł	Reverse CCCGCTCGAG-GGTGTGATGTTCACCC	Xhol
502	Forward CGCGGATCCCATATG-GTAGACGCGCTTAAGCA	BamHI-
302	Forward COCOGNICCCATATO-OTAGACGCGCTTAAGCA	Ndel
	Reverse CCCGCTCGAG-AGCTGCATGGCGGCG	
502		XhoI
303	Forward CGCGGATCCCATATG-TGTTCGGGGAAAGGCG	BamHI-
	Reverse CCCGCTCGAG-CCGCGCATTCCTCGCA	Ndel
504		Xhol
304	Forward CGCGGATCCCATATG-AGCGATATTGAAGTGACG	BamHI-
	Reverse GCCCAAGCTT-TGATTCAAGTCCTTGCCG	Ndel
505		HindIII
303	Forward CGCGGATCCCATATG-TTTCGTTTACAATTCAGG	BamHI-
	Danish COCCCTCCAC CCCCCTTTTATACCCC	Ndel
5.0	Reverse CCCGCTCGAG-CGGCGTTTTATAGCGG	XhoI
310	Forward CGCGGATCCCATATG-CCTTCGCGGACAC	BamHI-
	P	NdeI
5.0	Reverse CCCGCTCGAG-GCGCACTGGCAGCG	XhoI
512	Forward CGCGGATCCCATATG-GGACATGAAGTAACGGT	BamHI-
	D 00000T004C 40044T4000TTTTC400	Ndel
	Reverse CCCGCTCGAG-AGGAATAGCCTTTGACG	XhoI
515	Forward CGCGGATCCCATATG-GAGGAAATAGCCTTCGA	BamHI-
	D COCCTOCAC AAATOGGGGAAAAGAATG	NdeI
1	Reverse CCCGCTCGAG-AAATGCCGCAAAGCATC	XhoI
516	Forward CGCGGATCCCATATG-TGTACGTTGATGTTGTGG	BamHI-
	David COCCOTOCA C TTTCOCCOCCOA MO	NdeI
512	Reverse CCCGCTCGAG-TTTGCGGGCGGCATC	Xhol
31/	Forward CGCGGATCCCATATG-GGTAAAGGTGTGGAAATA	BamHI-
	D CCCCCTCCAC CTCCCCCA CCCCT	Ndel
6,0	Reverse CCCGCTCGAG-GTGCGCCCAGCCGT	XhoI
218	Forward AAAGAATTC-GCTTTTTTACTGCTCCGACCGGAAGG	Eco RI
	Reverse AAACTGCAG-TCAAATTTCAGACTCTGCCAC	Pst I
219	Forward CGCGGATCCCATATG-TTCAAATCCTTTGTCGTCA	BamHI-
	D COCCOTOCA C TTTCCCCCCTTTTCCTCC	Ndel
500	Reverse CCCGCTCGAG-TTTGGCGGTTTTGCTGC	XhoI
520	Forward CGCGGATCCCATATG-CCTGCGCTTCTTTCA	BamHI-
	Paraman COCCOTOCA C ATLANTITA CATTITA A CINCOCC	NdeI
	Reverse CCCGCTCGAG-ATATTTACATTTCAGTCGGC	XhoI
521	Forward CGCGGATCCCATATG-GCCAAAATCTATACCTGC	BamHI-
	Develope COOCCTOCAC CATA COOCCC CTTCC	NdeI
500	Reverse CCCGCTCGAG-CATACGCCCCAGTTCC	XhoI
522	Forward CGCGGATCCCATATG-ACTGAGCCGAAACAC	BamHI-
	Develope COCCA A COTT TROTO ATTENDA & TOTO	NdeI
500	Reverse GCCCAAGCTT-TTCTGATTTCAAATCGGCA	HindIII
523	Forward CGCGGATCCCATATG-GCTCTGCTTTCCGCG	BamHI-
		NdeI

<u></u>	Reverse	CCCGCTCGAG-AGGGTGTGTGATAATAAGAAG	Xhol
525		CGCGGATCCCATATG-GCCGAAATGGTTCAAATC	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-GCCCGTGCATATCATAAA	XhoI
527	Forward	AAAGAATTC-TTCCCTCAATGTTGCCGTTTTCG	Eco RI
	Reverse	AAACTGCAG-TTATGCTAAACTCGAAACAAATTC	Pst I
529	Forward	CGCGGATCCGCTAGC-TGCTCCGGCAGCAAAAC	BamHI-
			NheI
	Reverse	GCCCAAGCTT-ACGCAGTTCGGAATGGAG	HindIII
530	Forward	CGCGGATCCCATATG-AGTGCGAGCGCGG	BamHI-
			Ndel
		CCCG <u>CTCGAG</u> -ACGACCGACTGATTCCG	XhoI
531		AAAAAAGAATTC-TATGCCGCCGCCTACCAAATCTACGG	Eco RI
1	Reverse	AAAAAACTGCAG-TTAAAACAGCGCCGTGCCGACGACAAG	Pst I
532	Forward	AAAAAA <u>GAATTC</u> -ATGAGCGGTCAGTTGGGCAAAGGTGC	Eco RI
		AAAAAACTGCAG-TCAGTGTTCCAAGTGGTCGGTATCAAA	Pst I
532a	Forward	AAAAAAGAATTC-TTGGGTGTCGCGTTTGAGCCGGAAGT	Eco RI
	Reverse	AAAAAACTGCAG-TCAGTGTTCCAAGTGGTCGGTATCAAA	Pst I
535		AAAGAATTC-ATGCCCTTTCCCGTTTTCAGAC	Eco RI
	Reverse	AAACTGCAG-TCAGACGACCCCGCCTTCCCC	Pst I
537	Forward	CGCGGATCCCATATG-CATACCCAAAACCAATCC	BamHI-
			NdeI
		CCCGCTCGAG-ATCCTGCAAATAAAGGGTT	XhoI
538	Forward	CGCGGATCCCATATG-GTCGAGCTGGTCAAAGC	BamHI-
	D	000000000000000000000000000000000000000	Ndel
500		CCCGCTCGAG-TGGCATTTCGGTTTCGTC	XhoI
539	Forward	CGC <u>GGATCCGCTAGC</u> -GAGGATTTGCAGGAAA	BamHI-
	Davarca	CCCGCTCGAG-TACCAATGTCGGCAAATC	Nhel
542		AAAGAATTC-ATGCCGTCTGAAACCGTGTC	XhoI Eco RI
342		AAACTGCAG-TTACCGCGAACCGGTCAGGAT	Pst I
542			
343		AAAAAAGAATTC-GCCTTCGATGGCGACGTTGTAGGTAC	Eco RI
	Keveise	AAAAAATCTAGA TTAATGAAGAACATATTGGAATTTTGG	Xba I
5432	Forward		Eco Ri
3434			
			AUA I
544			Eco RI
		AAACTGCAG-CTATTGCGCCACGCGCGTATCGAT	Pst I
544a		AAAAAGAATTC-	
		GCAAATGACTATAAAAACAAAAACTTCCAAGTACTTGC	
1	Reverse	AAACTGCAG-CTATTGCGCCACGCGCGTATCGAT	Pst I
547	Forward	AAAGAATTC-ATGTTCGTAGATAACGGATTTAATAAAAC	Eco RI
	Reverse	AAACTGCAG-TTAACAACAAAAAAAACAAACCGCTT	Pst I
548	Forward	AAAGAATTC-GCCTGCAAACCTCAAGACAACAGTGCGGC	Eco RI
544 544a 547	Forward Reverse Forward Reverse Forward Reverse	TTAATGAAGAAGAACATATTGGAATTTTGG AAAAAAGAATTC-GGCAAAACTCGTCATGAATTTGC AAAAAATCTAGA- TTAATGAAGAAGAACATATTGGAATTTTGG AAAGAATTC-GCGCCCGCCTTCTCCCTGCCCGACCTGCACGG AAACTGCAG-CTATTGCGCCACGCGCGTATCGAT AAAAAGAATTC- GCAAATGACTATAAAAAACAAAAACTTCCAAGTACTTGC AAACTGCAG-CTATTGCGCCACGCGCGTATCGAT AAAGAATTC-ATGTTCGTAGATAACGGATTTAATAAAAC AAACTGCAG-TTAACAACAAAAAACAAACCGCTT	Eco RI Xba I Eco RI Pst I Eco RI Pst I Eco RI Pst I

WO 99/057280 PCT/US99/09346

	Reverse	AAACTGCAG-TCAGAGCAGGGTCCTTACATCGGC	Pst I
550	Forward	AAAAAGTCGAC-	Sal I
		ATGATAACGGACAGGTTTCATCTCTTTCATTTTCC	
	Reverse	AAACTGCAG-TTACGCAAACGCTGCAAAATCCCC	Pst I
550a	Forward	AAAAAGAATTC-GTAAATCACGCCTTTGGAGTCGCAAACGG	Eco RI
	Reverse	AAACTGCAG-TTACGCAAACGCTGCAAAATCCCC	Pst I
552	Forward	AAAAAGAATTC-TTGGCGCGTTGGCTGGATAC	Eco RI
	Reverse	AAACTGCAG-TTATTTCTGATGCCTTTTCCCAAC	Pst I
554	Forward	CGCGGATCCCATATG-TCGCCCGCGCCCAAC	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-CTGCCCTGTCAGACAC	XhoI
556	Forward	AAAGAATTC-GCGGGCGGTTTTGTTTGGACATCCCG	Eco RI
İ	Reverse	AAACTGCAG-TTAACGGTGCGGACGTTTCTGACC	Pst I
557	Forward	CGCGGATCCCATATG-TGCGGTTTCCACCTGAA	BamHI-
Ì			NdeI
		CCCGCTCGAG-TTCCGCCTTCAGAAAGG	XhoI
558		AAAGAATTC-GAGCTTTATATGTTTCAACAGGGGACGGC	Eco RI
		AAACTGCAG-CTAAACAATGCCGTCTGAAAGTGGAGA	Pst I
558a		AAAAAA <u>GAATTC</u> -ATTAGATTCTATCGCCATAAACAGACGGG	Eco RI
		AAAAAACTGCAG-CTAAACAATGCCGTCTGAAAGTGGAGA	Pst I
560	Forward	AAAAA <u>GAATTC</u> -	Eco RI
		TCGCCTTTCCGGGACGGGCGCACAAGATGGC	
		AAAAAACTGCAG-TCATGCGGTTTCAGACGGCATTTTGGC	Pst I
561	Forward	CCGGAATTCTACATATG-ATACTGCCAGCCCGT	EcoRI-
1	D		NdeI
5.0		CCCGCTCGAG-TTTCAAGCTTTCTTCAGATG	XhoI
362	rorward	CGC <u>GGATCCCATATG</u> -GCAAGCCCGTCGAG	BamHI-
	Davarca	CCCGCTCGAG-AGACCAACTCCAACTCGT	NdeI XhoI
565		CGCGGATCCCATATG-AAGTCGAGCGCGAAATAC	BamHI-
303	roiwaiu	COCOUNTECCATATO-ANOTCONOCOCONAATAC	Ndel
	Reverse	CCCGCTCGAG-GGCATTGATCGGCGGC	XhoI
566		CGCGGATCCCATATG-GTCGGTGGCGAAGAGG	BamHI-
300	1 01 11 11 11	0.000.000.000	Ndel
	Reverse	CCCGCTCGAG-CGCATGGGCGAAGTCA	XhoI
567		CCGGAATTCTACATATG-AGTGCGAACATCCTTG	EcoRI-
			NdeI
	Reverse	CCCGCTCGAG-TTTCCCCGACACCCTCG	XhoI
568	Forward	CGCGGATCCCATATG-CTCAGGGTCAGACC	BamHI-
			NdeI
		CCCGCTCGAG-CGGCGCGCGTTCAG	XhoI
569		AAAAAAGAATTC-CTGATTGCCTTGTGGGAATATGCCCG	Eco RI
	Reverse	AAAAAA <u>CTGCAG</u> -TTATGCATAGACGCTGATAACGGCAAT	Pst I
570	Forward	CGCGGATCCCATATG-GACACCTTCCAAAAAATCG	BamHI-
	_		Ndel
	Reverse	CCCGCTCGAG-GCGGGCGTTCATTTCTTT	XhoI

571	Forward	AAAAAGAATTC-	Eco RI
	101	ATGGGTATTGCCGGCGCCGTAAATGTTTTGAACCC	200.0
	Reverse	AAAAAACTGCAG-TTATGGCCGACGCGCGGCTACCTGACG	Pst I
572		CGCGGATCCCATATG-GCGCAAAAAGGCAAAACC	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-GCGCAGTGTGCCGATA	XhoI
573	Forward	CGCGGATCCCATATG-CCCTGTTTGTGCCG	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-GACGGTGTCATTTCGCC	XhoI
574	Forward	CGCGGATCCCATATG-TGGTTTGCCGCCCGC	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-AACTTCGATTTTATTCGGG	XhoI
575	Forward	CGCGGATCCCATATG-GTTTCGGGCGAGG	BamHI-
			NdeI
		CCCG <u>CTCGAG</u> -CATTCCGAATCTGAACAG	XhoI
576	Forward	CGCGGATCCCATATG-GCCGCCCCCGCATCT	BamHI-
	_		NdeI
		CCCGCTCGAG-ATTTACTTTTTTGATGTCGAC	XhoI
577	Forward	CGC <u>GGATCCCATATG</u> -GAAAGGAACGGTGTATTT	BamHI-
		000000004040400000000000000000000000000	NdeI
		CCCGCTCGAG-AGGCTGTTTGGTAGATTCG	XhoI
5/8	Forward	CGC <u>GGATCCCATATG</u> -AGAAGGTTCGTACAG	BamHI-
	Davarca	CCCGCTCGAG-GCCAACGCCTCCACG	NdeI XhoI
570		CGCGGATCCCATATG-AGATTGGGCGTTTCCAC	BamHI-
3/9	Torward	COCOONICCENTATO-AGAITOGOCGITTCCAC	NdeI
	Reverse	CCCGCTCGAG-AGAATTGATGATGTGTATGT	XhoI
580		CGCGGATCCCATATG-AGGCAGACTTCGCCGA	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-CACTTCCCCCGAAGTG	XhoI
581	Forward	CGCGGATCCCATATG-CACTTCGCCCAGC	BamHI-
			NdeI
		CCCGCTCGAG-CGCCGTTTGGCTTTGG	Xhol
582	Forward	AAAAAA <u>GAATTC</u> -TTTGGAGAGACCGCGCTGCAATGCGC	Eco RI
		AAAAAA <u>TCTAGA</u> -TCAGATGCCGTCCCAGTCGTTGAA	Xba I
583	Forward	AAAAAAGAATTC-ACTGCCGGCAATCGACTGCATAATCG	Eco RI
	Reverse	AAAAAACTGCAG-TTAACGGAGGTCAATATGATGAAATTG	Pst I
584	Forward	AAAAAGAATTC-	Eco RI
		GCGGCTGAAGCATTGAATTACAATATTGTC	
		AAAAAACTGCAG-TCAGAACTGAACCGTCCCATTGACGCT	Pst I
585		AAAAAAGGTACC-TCTTTCTGGCTGCTGCAGAACACCCTTGC	Eco RI
		AAAAAA <u>CTGCAG</u> -TCAGTTCGCACTTTTTTCTGTTTTGGA	Pst I
586	Forward	CGCGGATCCCATATG-GCAGCCCATCTCG	BamHI-
		G0000000	NdeI
		CCCGCTCGAG-TTTCAGCGAATCAAGTTTC	XhoI
587	rorward	CGCGGATCCCATATG-GACCTGCCCTTGACGA	BamHI-

WO 99/057280 PCT/US99/09346

155

			Ndel
	Reverse	CCCGCTCGAG-AAATGTATGCTGTACGCC	Xhol
588	Forward	AAAAAAGAATTC-GCCGTCCTGACTTCCTATCAAGAACCAGG	Eco RI
	Reverse	AAAAAACTGCAG-TTATTTGTTTTTTGGGCAGTTTCACTTC	Pst I
589		AAAAAGAATTC-	Eco RI
		ATGCAACAAAAATCCGTTTCCAAATCGAAGG	
	Reverse	AAAAACTGCAG-CTAATCGATTTTTACCCGTTTCAGGCG	Pst I
590	Forward	AAAAAGAATTC-ATGAAAAAACCTTTGATTTCAGTTGCGGC	Eco RI
	Reverse	AAAAACTGCAG-TTACTGCTGCGGCTCTGAAACCAT	Pst I
591	Forward	AAAAAAGAATTC-CACTACATCGTTGCCAGATTGTGCGG	Eco RI
	Reverse	AAAAAACTGCAG-CTAACCGAGCAGCCGGGTAACGTCGTT	Pst I
592a	Forward	AAAAAGAATTC-CGCGATTACACCGCCAAGCTGAAAATGGG	Eco RI
	Reverse	AAAAAACTGCAG-TTACCAAACGTCGGATTTGATACG	Pst I
593	Forward	CGCGGATCCGCTAGC-CTTGAACTGAACGGACTC	BamHI-
			NheI
	Reverse	CCCG <u>CTCGAG</u> -GCGGAAGCGGACGATT	XhoI
594a	Forward	AAAAAAGAATTC-GGTAAGTTCGCCGTTCAGGCCTTTCA	Eco RI
İ	Reverse	AAAAAACTGCAG-TTACGCCGCCGTTTCCTGACACTCGCG	Pst I
595	Forward	AAAAAAGAATTC-TGCCAGCCGCCGGAGGCGGAGAAAGC	Eco RI
		AAAAAACTGCAG-TTATTTCAAGCCGAGTATGCCGCG	Pst I
596	Forward	CGCGGATCCCATATG-TCCCAACAATACGTC	BamHI-
	_		Ndel
		CCCGCTCGAG-ACGCGTTACCGGTTTGT	Xhol
597	Forward	CGCGGATCCCATATG-CTGCTTCATGTCAGC	BamHI-
	Раматаа	GCCCAAGCTT-ACGTATCCAGCTCGAAG	Ndel
601			HindIII
601	rorward	CGCGGATCCCATATG-ATATGTTCCCAACCGGCAAT	BamHI- Ndel
•	Reverse	CCCGCTCGAG-AAAACAATCCTCAGGCAC	XhoI
602		CGCGGATCCGCTAGC-TTGCTCCATCAATGC	BamHI-
002	1 or ward	ede <u>dd/ffedeffide</u> -ffdefeekfe/kffde	NheI
	Reverse	CCCGCTCGAG-ATGCAGCTGCTAAAAGCG	XhoI
603		AAAAAAGAATTC-CTGTCCTCGCGTAGGCGGGGACGGGG	Eco RI
		AAAAACTGCAG-CTACAAGATGCCGGCAAGTTCGGC	Pst I
604		CGCGGATCCGCTAGC-CCCGAAGCGCACTT	BamHI-
			NheI
	Reverse	CCCGCTCGAG-GACGGCATCTGCACGG	XhoI
606a	Forward	AAAAAGAATTC-CGCGAATACCGCGCCGATGCGGGCGC	Eco RI
1	Reverse	AAAAAACTGCAG-TTAAAGCGATTTGAGGCGGGCGATACG	Pst I
607	Forward	AAAAAAGAATTC-ATGCTGCTCGACCTCAACCGCTTTTC	Eco RI
	Reverse	AAAAAACTGCAG-TCAGACGGCCTTATGCGATCTGAC	Pst I
608	Forward	AAAAAAGAATTC-ATGTCCGCCCTCCTCCCCATCATCAACCG	Eco RI
	Reverse	AAAAAACTGCAG-TTAGTCTATCCAAATGTCGCGTTC	Pst I
609	Forward	CGCGGATCCCATATG-GTTGTGGATAGACTCG	BamHI-
			NdeI

CLIECTITI ITE SHFET (RULE 26)

Reverse CCCGCTCGAG-CTGGATTATGATGTCTGTC	Xhol
610 Forward CGCGGATCCCATATG-ATTGGAGGGCTTATGCA	BamHI-
010 101Wall COCOGATECCATATO-ATTOGAGOGCITATOCA	Ndel
Reverse CCCGCTCGAG-ACGCTTCAACATCTTTGCC	XhoI
611 Forward CGCGGATCCCATATG-CCGTCTCAAAACGGG	BamHl-
D CCCCCTCCAC AACCACTTTCAACCCCCAA	Ndel
Reverse CCCGCTCGAG-AACGACTTTGAACGCGCAA	XhoI
613 Forward CGCGGATCCCATATG-TCGCGTTCGAGCCG3	BamHI-
	NdeI
Reverse CCCGCTCGAG-AGCCTGTAAAATAAGCGGC	XhoI
614 Forward CGCGGATCCCATATG-TCCGTCGTGAGCGGC	BamHI-
	Ndel
Reverse CCCGCTCGAG-CCATACTGCGGCGTTC	XhoI
616 Forward AAAAAAGAATTC-ATGTCAAACACAATCAAAATGGTT	TGTCGG Eco RI
Reverse AAAAAATCTAGA-TTAGTCCGGGCGGCAGGCAGCTCC	G Xba I
619a Forward AAAAAAGAATTC-GGGCTTCTCGCCGCCTCGCTTGC	Eco RI
Reverse AAAAAACTGCAG-TCATTTTTTGTGTTTTAAAACGAG	ATA Pst I
622 Forward CGCGGATCCCATATG-GCCGCCCTGCCTAAAG	BamHI-
333333333333333333333333333333333333333	Ndel
Reverse CCCGCTCGAG-TTTGTCCAAATGATAAATCTG	XhoI
624 Forward CGCGGATCCCATATG-TCCCCGCGCTTTTACCG	BamHI-
ozi ioiwad odo <u>odiiioodiiiiid</u> ioooddooiiiiiiood	NdeI
Reverse CCCGCTCGAG-AGATTCGGGCCTGCGC	XhoI
625 Forward CGCGGATCCCATATG-TTTGCAACCAGGAAAATG	BamHI-
111 de la constantion de la co	NdeI
Reverse CCCGCTCGAG-CGGCAAAATTACCGCCTT	XhoI
627a Forward AAAAAAGAATTC-AAAGCAGGCGAGGCAGGCGCGCT	
Reverse AAAAAACTGCAG-	Pst I
TTACGAATGAAACAGGGTACCCGTCATCAAGGC	rst i
628 Forward AAAAAAGGTACC-GCCTTACAAACATGGATTTTGCGT	TC V I
Reverse AAAAAACTGCAG-CTACGCACCTGAAGCGCTGGCAAA	•
629a Forward AAAAAAGAATTC-GCCACCTTTATCGCGTATGAAAAC	
Reverse AAAAAACTGCAG-TTACAACACCGCCGTCCGGTTCAA	
630a Forward AAAAAAGAATTC-GCGGCTTTGGGTATTTCTTTCGG	Eco RI
Reverse AAAAAACTGCAG-TTAGGAGACTTCGCCAATGGAGCC	CGGG Pst I
635 Forward AAAAAAGAATTC-	Eco RI
ATGACCCAGCGACGGTCGGCAAGCAAAACCG	
Reverse AAAAAACTGCAG-TTAATCCACTATAATCCTGTTGCT	
638 Forward AAAAAAGAATTC-ATGATTGGCGAAAAGTTTATCGTA	AGTTGG Eco RI
Reverse AAAAAACTGCAG-TCACGAACCGATTATGCTGATCGC	G Pst I
639 Forward CGCGGATCCCATATG-ATGCTTTATTTTGTTCG	BamHI-
	NdeI
Reverse CCCGCTCGAG-ATCGCGGCTGCCGAC	XhoI
642 Forward CGCGGATCCCATATG-CGGTATCCGCCGCAAT	BamHI-
	NdeI
Reverse CCCGCTCGAG-AGGATTGCGGGGCATTA	XhoI

643	Forward	CGCGGATCCCATATG-GCTTCGCCGTCGGCAG	BamHl-
· .		· · · · · · · · · · · · · · · · · · ·	Ndel
	Reverse	CCCGCTCGAG-AACCGAAAAACAGACCGC	Xhol
644	Forward	AAAAAGAATTC-	Eco RI
		ATGCCGTCTGAAAGGTCGGCGGATTGTTGCCC	
	Reverse	AAAAAA <u>TCTAGA</u> -CTACCCGCAATATCGGCAGTCCAATAT	Pst I
645	Forward	AAAAAAGAATTC-GTGGAACAGAGCAACACGTTAAATCG	Eco RI
	Reverse	AAAAAACTGCAG-CTACGAGGAAACCGAAGACCAGGCCGC	Pst I
647	Forward	AAAAAAGAATTC-ATGCAAAGGCTCGCCGCAGACGG	Eco RI
	Reverse	AAAAAACTGCAG-TTAGATTATCAGGGATATCCGGTAGAA	Pst I
648	Forward	AAAAAGAATTC-	Eco RJ
		ATGAACAGGCGCGACGCGCGGATCGAACG	
		AAAAAACTGCAG-TCAAGCTGTGTGCTGATTGAATGCGAC	Pst I
649	Forward	AAAAAAGAATTC-GGTACGTCAGAACCCGCCCACCG	Eco RI
	Reverse	AAAAAACTGCAG-TTAACGGCGGAAACTGCCGCCGTC	Pst I
650	Forward	AAAAAAGAATTC-ATGTCCAAAACTCAAAACCATCGC	Eco RI
	Reverse	AAAAAACTGCAG-TCAGACGGCATGGCGGTCTGTTTT	Pst I
652	Forward	AAAAAAGGTACC-	Kpn I
		GCTGCCGAAGACTCAGGCCTGCCGCTTTACCG	
	_	AAAAAACTGCAG-TTATTTGCCCAGTTGGTAGAATGCGGC	Pst I
653		AAAAAA <u>GAATTC</u> -GCGGCTTTGCCGGTAATTTTCATCGG	Eco RI
{		AAAAAACTGCAG-CTATGCCGGTCTGGTTGCCGGCGGCGA	Pst I
656a	Forward	AAAAAAGAATTC-CGGCCGACGTCGTTGCGTCCTAAGTC	Eco RI
1		AAAAAACTGCAG-CTACGATTTCGGCGATTTCCACATCGT	Pst I
657		AAAAAAGAATTC-GCAGAATTTGCCGACCGCCATTTGTGCGC	Eco RI
	Reverse	AAAAAACTGCAG-TTATAGGGACTGATGCAGTTTTTTTGC	Pst I
658	Forward	CGCGGATCCCATATG-GTGTCCGGAATTGTG	BamHI-
	_		Ndel
		CCCGCTCGAG-GGCAGAATGTTTACCGTT	XhoI
661	Forward	AAAAAGAATTC-	Eco RI
	_	ATGCACATCGGCGGCTATTTTATCGACAACCC	
		AAAAAACTGCAG-TCACGACGTGTCTGTTCGCCGTCGGGC	Pst I
063	Forward	CGCGGATCCCATATG-TGTATCGAGATGAAATT	BamHI-
	Dayarra	CCCGCTCGAG-GTAAAAATCGGGGCTGC	NdeI XhoI
661		CGCGGATCCCATATG-GCGGCTGGCGCGGT	
004	roiwaid	COCOOKICCCATATO-OCOOCIOOCOCOOI	BamHI- NdeI
	Reverse	CCCGCTCGAG-AAATCGAGTTTTACACCAC	XhoI
665		AAAAAGAATTC-ATGAAATGGGACGAAACGCGCTTCGG	Eco RI
"		AAAAACTGCAG-TCAATCCAAAATTTTGCCGACGATTTC	Pst I
666		AAAAAGAATTC-AACTCAGGCGAAGGAGTGCTTGTGGC	Eco RI
		AAAAAATCTAGA-TCAGTTTAGGGATAGCAGGCGTAC	Xba I
667		AAAAAGAATTC-	Eco RI
"		CCGCATCCGTTTGATTTCCATTTCGTATTCGTCCG	LCO IQ
	Reverse	AAAAAACTGCAG-TTAATGACACAATAGGCGCAAGTC	Pst I

669	Forward	AAAAAAGAATTC-ATGCGCCGCATCATTAAAAAACACCAGCC	Eco RI
	Reverse	AAAAAACTGCAG-TTACAGTATCCGTTTGATGTCGGC	Pst I
670a	Forward	AAAAAAGAATTC-AAAAACGCTTCGGGCGTTTCGTCTTC	Eco RI
	Reverse	AAAAAACTGCAG-	Pst I
		TTAGGAGCTTTTGGAACGCGTCGGACTGGC	
671	Forward	CGCGGATCCCATATG-ACCAGCAGGGTAAC	BamHI-
1			NdeI
		CCCG <u>CTCGAG</u> -AGCAACTATAAAAACGCAAG	XhoI
672	Forward	CGCGGATCCCATATG-AGGAAAATCCGCACC	BamHI-
			NdeI
		CCCGCTCGAG-ACGGGATAGGCGGTTG	XhoI
673		AAAAAAGAATTC-ATGGATATTGAAACCTTCCTTGCAGG	Eco RI
		AAAAAACTGCAG-CTACAAACCCAGCTCGCGCAGGAA	Pst I
674	Forward	AAAAAAGAATTC-ATGAAAACAGCCCGCCGCCGTTCCCG	Eco RI
ł	Reverse	AAAAAACTGCAG-TCAACGGCGTTTGGGCTCGTCGGG	Pst I
675	Forward	CGCGGATCCCATATG-AACACCATCGCCCC	BamHI-
			NdeI
		CCCGCTCGAG-TTCTTCGTCTTCAAACTGT	XhoI
677a		AAAAAAGAATTC-AGACGGCATTCCCGATCAGTCGATTTTGA	Eco RI
		AAAAAACTGCAG-TTACGTATGCGCGAAATCGACCGCCGC	Pst I
680	Forward	CGCGGATCCGCTAGC-ACGAAGGCAGTTCGG	BamHI-
}	_	000000000000000000000000000000000000000	NheI
		CCCGCTCGAG-CATCAAAAACCTGCCGC	XhoI
681		AAAAAAGAATTC-ATGACGACGCCGATGGCAATCAGTGC	Eco RI
		AAAAAACTGCAG-TTACCGTCTTCCGCAAAAAACAGC	Pst I
683	Forward	CGC <u>GGATCCCATATG</u> -TGCAGCACACCGGACAA	BamHI-
	Ромото	CCCGCTCGAG-GAGTTTTTTCCGCATACG	NdeI
601		CGCGGATCCCATATG-TGCGGTACTGTGCAAAG	XhoI
084	roiwaiu	CGCGGATCCCATATG-TGCGGTACTGTGCAAAG	BamHI-
ļ	Reverse	CCCGCTCGAG-CTCGACCATCTGTTGCG	NdeI XhoI
685		CGCGGATCCCATATG-TGTTTGCTTAATAAACATT	BamHI-
005	1 OI Wald	ede <u>ddateceatato</u> forfiderfaafaafaacaff	NdeI
	Reverse	CCCGCTCGAG-CTTTTTCCCCGCCGCA	XhoI
686		CGCGGATCCCATATG-TGCGGCGGTTCGGAAG	BamHI-
		1000000110001110	NdeI
1	Reverse	CCCGCTCGAG-CATTCCGATTCTGATGAAG	XhoI
687	Forward	CGCGGATCCCATATG-TGCGACAGCAAAGTCCA	BamHI-
			NdeI
		CCCGCTCGAG-CTGCGCGGCTTTTTGTT	XhoI
690	Forward	CGCGGATCCCATATG-TGTTCTCCGAGCAAAGAC	BamHI-
			NdeI
		CCCGCTCGAG-TATTCGCCCCGTGTTTGG	XhoI
691	Forward	CGCGGATCCCATATG-GCCACGGCTTATATCCC	BamHI-
	_		Ndel
L	Reverse	CCCGCTCGAG-TTTGAGGCAGGAAGAAG	Xhol

I-
I-
_
I-
[-
[-
-
-
-
-
-
_
_
1
ſ
-
1

725	Forward CGCGGATCCCATATG-GTGCGCACGGTTAAA	BamHl-
/ ==		Ndel
	Reverse CCCGCTCGAG-TTGCTTATCCTTAAGGGTTA	XhoI
726	Forward CGCGGATCCCATATG-ACCATCTATTTCAAAAAC	BamHI-
		Ndel
	Reverse CCCGCTCGAG-GCCGATGTTTAGCGTCC	XhoI
728	Forward CGCGGATCCCATATG-TTTTGGCTGGGAACGGG	BamHI-
		Ndel
	Reverse CCCGCTCGAG-GTGAGAAAGGTCGCGC	Xhol
729	Forward CGCGGATCCCATATG-TGCACCATGATTCCCCA	BamHI-
		Ndel
	Reverse GCCCAAGCTT-TTTGTCGGTTTGGGTATC	HindIII
731	Forward CGCGGATCCGCTAGC-GCCGTGCCGGAGG	BamHI-
	Daniel CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	Nhel
722	Reverse CCCGCTCGAG-ACGGGCGCGCAG	Xhol
132	Forward CCGGAATTCTACATATG-TCGAAACCTGTTTTTAAGAA	EcoRI- NdeI
	Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC	XhoI
733	Forward CGCGGATCCCATATG-GCCTGCGGCGCAA	BamHI-
1,33	Tolward Cocoda (CCCATATO-OCCTOCOCCAA	NdeI
	Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC	XhoI
734	Forward CGCGGATCCCATATG-GCCGATACTTACGGCTAT	BamHI-
		NdeI
	Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG	XhoI
735	Forward CGCGGATCCCATATG-AAGCAGCAGGCGGTCA	BamHI-
		Ndel
1	Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG	XhoI
737	Forward CGCGGATCCCATATG-CACCACGACGGACACG	BamHI-
	D CCCCCTCCAC CTCCTCCCCCCCA	Ndel
720	Reverse CCCGCTCGAG-GTCGTCGCGGGGGA Forward CGCGGATCCCATATG-GCAAAAAAACCGAACA	XhoI
/39	FORWARD COCOGNICCCATATO-OCAAAAAACCGAACA	BamHI- Ndel
1	Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT	XhoI
740	Forward CGCGGATCCCATATG-GCCAATCCGCCCGAAG	BamHI-
		Ndel
	Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG	XhoI
741	Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG	BamHI-
		Ndel
	Reverse CCCGCTCGAG-TTGCTTGGCGGCAAGGC	XhoI
743	Forward CGCGGATCCCATATG-GACGGTGTTGTGCCTGTT	BamHI-
		Ndel
	Reverse CCCGCTCGAG-CTTACGGATCAAATTGACG	XhoI
745	Forward CGCGGATCCCATATG-TTTTGGCAACTGACCG	BamHI-
1	Payone CCCCTCCAC CAAATCACATCCCTTTACC	Ndel
746	Reverse CCCGCTCGAG-CAAATCAGATGCCTTTAGG	XhoI
/40	Forward CGCGGATCCCATATG-TCCGAAAACAAACAAAC	BamHI-

		Ndel
	Reverse CCCGCTCGAG-TTCATTCGTTACCTGACC	Xhol
747	Forward CCGGAATTCTAGCTAGC-CTGACCCCTTGGG	EcoRI-
İ		Nhel
	Reverse GCCCAAGCTT-TTTTGATTTTAATTGACTATAGAAC	HindIII
749	Forward CGCGGATCCCATATG-TGCCAGCCGCCG	BamHI-
ŀ		Ndel
	Reverse CCCGCTCGAG-TTTCAAGCCGAGTATGC	XhoI
750	Forward CGCGGATCCCATATG-TGTTCGCCCGAACCTG	BamHI-
		Ndel
	Reverse CCCGCTCGAG-CTTTTTCCCCGCCGCAA	XhoI
758	Forward CGCGGATCCCATATG-AACAATCTGACCGTGTT	BamHI-
		NdeI
	Reverse CCCGCTCGAG-TGGCTCAATCCTTTCTGC	
759	Forward CGCGGATCCGCTAGC-CGCTTCACACACACCAC	BamHI-
	D OCCCOTCO A C. CC A CTTCT A CCCT A TYTTC	Nhel
763	Reverse CCCGCTCGAG-CCAGTTGTAGCCTATTTTG	XhoI
/63	Forward CGCGGATCCCATATG-CTGCCTGAAGCATGGCG	BamHI- NdeI
	Reverse CCCGCTCGAG-TTCCGCAAATACCGTTTCC	XhoI
764	Forward CGCGGATCCCATATG-TTTTTCTCCGCCCTGA	BamHI-
/04	Toward coconnecentato-fill reference to A	Ndel
	Reverse CCCGCTCGAG-TCGCTCCCTAAAGCTTTC	XhoI
765	Forward CGCGGATCCCATATG-TTAAGATGCCGTCCG	BamHI-
		Ndel
	Reverse CCCGCTCGAG-ACGCCGACGTTTTTTATTAA	XhoI
767	Forward CGCGGATCCCATATG-CTGACGGAAGGGGAAG	BamHI-
		NdeI
	Reverse CCCGCTCGAG-TTTCTGTACAGCAGGGG	XhoI
768	Forward CGCGGATCCCATATG-GCCCCGCAAAAACCCG	BamHI-
		NdeI
	Reverse CCCGCTCGAG-TTTCATCCCTTTTTTGAGC	XhoI
770	Forward CGCGGATCCCATATG-TGCGGCAGCGGCGAA	BamHI-
İ	D CCCCCTCC & C. CCCTTTCTCC & C. ATTTTC	Ndel
771	Reverse CCCGCTCGAG-GCGTTTGTCGAGATTTTC	XhoI
771	Forward CGCGGATCCCATATG-TCCGTATATCGCACCTTC	BamHI-
	Reverse CCCGCTCGAG-CGGTTCTTTAGGTTTGAG	NdeI XhoI
772		BamHI-
1 //2	Tolward ede <u>oddricechtato</u> -trideodedi 100100	NdeI
	Reverse CCCGCTCGAG-CAATGCCGACATCAAACG	XhoI
774		BamHI-
	1000	Ndel
	Reverse CCCGCTCGAG-TCGTTTGCGCACGGCT	Xhol
790	Forward CGCGGATCCCATATG-GCAAGAAGGTCAAAAAC	BamHI-
		NdeI

		CCCGCTCGAG-GGCGTTGTTCGGATTTCG	Xhol
900	Forward	CGCGGATCCCATATG-CCGTCTGAAATGCCG	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-ATATGGAAAAGTCTGTTGTC	Xhol
901	Forward	CGCGGATCCCATATG-CCCGATTTTTCGATG	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-AAAATGGAACAATACCAGG	Xhol
902	Forward.	CCGGAATTCTACATATG-TTGCACTTTCAAAGGATAATC	EcoRI-
	2		Ndel
	Reverse	CCCGCTCGAG-AAAAATGTACAATGGCGTAC	Xhol
903	Forward	CCGGAATTCTAGCTAGC-CAGCGTCAGCAGCACAT	EcoRI-
			NheI
	Reverse	CCCGCTCGAG-GAAACTGTAATTCAAGTTGAA	XhoI
904	Forward	AAAAAAGGTACC-ATGATGCAGCACAATCGTTTC	Kpn I
	Reverse	AAACTGCAG-TTAATATCGATAGGTTATATG	Pst I
904a	Forward	AAAAAAAATTC-CGGCTCGGCATTGTGCAGATGTTGCA	Eco RI
		AAACTGCAG-TTAATATCGATAGGTTATATG	Pst I
905		CGCGGATCCCATATG-AACAAAATATACCGCATC	BamHI-
100	10,,,,,,,,	.1.0.11.12	Ndel
	Reverse	CCCGCTCGAG-CCACTGATAACCGACAGAT	XhoI
907		CGCGGATCCCATATG-GGCGCGCAACGTGAG	BamHI-
, , ,	,		Ndel
ł	Reverse	CCCGCTCGAG-ACGCCACTGCCAGCG	XhoI
908		AAAGAATTC-GCAGAGTTAGTAGGCGTTAATAAAAATAC	Eco RI
		AAACTGCAG-TTAATATGGTTTTGTCGTTCG	Pst I
909		CGCGGATCCCATATG-TGCGCGTGGGAAACTTAT	BamHI-
" "			Ndel
	Reverse	CCCGCTCGAG-TCGGTTTTGAAACTTTGGTTTT	XhoI
910		AAAGAATTC-GCATTTGCCGGCGACTCTGCCGAGCG	Eco RI
		AAACTGCAG-TCAGCGATCGAGCTGCTCTTT	Pst I
911		AAAGAATTC-GCTTTCCGCGTGGCCGGCGGTGC	Eco RI
' ' '		AAAAAACTGCAG-GTCGACTTATTCGGCGGCTTTTTCCGC	Pst I
012		AAAAAAGAATTC-	Eco RI
912	Torward	CAAATCCGTCAAAACGCCACTCAAGTATTGAG	ECO KI
į	Reverse	AAAAAACTGCAG-TTACAGTCCGTCCACGCCTTTCGC	Pst I
013		CGCGGATCCCATATG-GAAACCCGCCCCGC	BamHI-
1 213	roiwaid	COCOUNTECCATATO-OAAACCCOCCCCCC	Ndel
	Reverse	CCCGCTCGAG-AGGTTGTTTCCAGGTTG	XhoI
915		CGCGGATCCCATATG-TGCCGGCAGGCGGAA	BamHI-
1,13	Torward	COCOOATCCCATATO-TOCCOOCAOOCOOAA	
	Reverse	CCCGCTCGAG-TTTGAAAATATAGGTATCAGG	NdeI XhoI
914		AAAGAATTC-GACAGAATCGGCGATTTGGAAGCACG	
714		AAACTGCAG-CTATATGCGCGGCAGGACGCTCAACGG	Eco RI
014			Pst I
910	rorward	CGCGGATCCCATATG-GCAATGATGGCGGCTG	BamHI-
	Davers	CCCGCTCGAG-TTTGGCGGCATCTTTCAT	NdeI
	Venerge	CCCGCTCGAG-TTTGGCGGCATCTTTCAT	Xhol

917	Forward	AAAAAAGAATTC-CCTGCCGAAAAACCGGCACCGGC	Eco RI
	Reverse	AAAAAACTGCAG-TTATTTCCCCGCCTTCACATCCTG	Pst I
919	Forward	CGCGGATCCCATATG-TGCCAAAGCAAGAGCATC	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-CGGGCGGTATTCGGG	Xhol
920	Forward	CGCGGATCCCATATG-CACCGCGTCTGGGTC	BamHI-
			NdeI
1		CCCG <u>CTCGAG</u> -ATGGTGCGAATGACCGA	XhoI
921	Forward	AAAAAA <u>GAATTC</u> -TTGACGGAAATCCCCGTGAATCC	Eco RI
	Reverse	AAAAAACTGCAG-TCATTTCAAGGGCTGCATCTTCAT	Pst I
922	Forward.	CGCGGATCCGCTAGC-TGTACGGCGATGGAGGC	BamHI-
1	2		Nhel
		CCCGCTCGAG-CAATCCCGGGCCGCC	XhoI
923	Forward	CGCGGATCCCATATG-TGTTACGCAATATTGTCCC	BamHI-
	_	000000000000000000000000000000000000000	NheI
00.5		CCCGCTCGAG-GGACAAGGCGACGAAG	XhoI
925	Forward	CGCGGATCCCATATG-AAACAAATGCTTTTAGCCG	BamHI-
	Davis		NdeI
026		CCCGCTCGAG-GCCGTTGCATTTGATTTC	XhoI
926	rorward	CGCGGATCCCATATG-TGCGCGCAATTACCTC	BamHI-
	Deverse	CCCGCTCGAG-TCTCGTGCGCGCCG	NdeI XhoI
927		CGCGGATCCCATATG-TGCAGCCCCGCAGC	BamHI-
1 32 /	·	COCOUNTECCATATO-TOCAOCCCCOCAGC	NdeI
	Reverse	CCCGCTCGAG-GTTTTTTGCTGACGTAGT	XhoI
929a		AAAAAGAATTC-CGCGGTTTGCTCAAAACAGGGCTGGG	Eco RI
		AAAAAATCTAGA-TTAAGAAAGACGGAAACTACTGCC	Xba I
931		AAAAAGAATTC-GCAACCCATGTTTTGATGGAAAC	Eco RI
		AAAAAACTGCAG-TTACTGCCCGACAACAACGCGACG	Pst I
935		AAAAAGAATTC-	Eco RI
1		GCGGATGCGCCCGCGATTTTGGATGACAAGGC	200 14
1	Reverse	AAAAAACTGCAG-TCAAAACCGCCAATCCGCCGACAC	Pst I
936	Forward	CGCGGATCCCATATG-GCCGCCGTCGGCGC	BamHI-
			Ndel
		CCCGCTCGAG-GCGTTGGACGTAGTTTTG	XhoI
937	Forward	AAAAAAGAATTC-CCGGTTTACATTCAAACCGGCGCAAC	Eco RI
ļ	Reverse	AAAAAACTGCAG-TTAAAATGTATGCTGTACGCCAAA	Pst I
939a	Forward	AAAAAAGAATTC-GGTTCGGCAGCTGTGATGAAACC	Eco RI
	Reverse	AAAAAACTGCAG-TTAACGCAAACCTTGGATAAAGTTGGC	Pst I
950	Forward	CGCGGATCCCATATG-GCCAACAAACCGGCAAG	BamHI-
	_		NdeI
		CCCGCTCGAG-TTTAGAACCGCATTTGCC	XhoI
953	Forward	CGCGGATCCCATATG-GCCACCTACAAAGTGGAC	BamHI-
	D	00000T00 + 0 TT0TTT000T000	NdeI
057		CCCGCTCGAG-TTGTTTGGCTGCCTCGAT	XhoI
957	rorward	CGCGGATCCCATATG-TTTTGGCTGGGAACGGG	BamHI-

<u> </u>			Ndel
	Reverse	CCCGCTCGAG-GTGAGAAAGGTCGCGC	Xhol
958		CGCGGATCCCATATG-GCCGATGCCGTTGCG	BamHI-
		0000000	Ndel
1	Reverse	GCCCAAGCTT-GGGTCGTTTGTTGCGTC	HindIII
959	Forward	CGCGGATCCCATATG-CACCACGACGGACACG	BamHl-
			Ndel
	Reverse	CCCGCTCGAG-GTCGTCGCGGCGGGA	Xhol
961	Forward	CGCGGATCCCATATG-GCCACAAGCGACGACG	BamHI-
			Ndel
		CCCGCTCGAG-CCACTCGTAATTGACGC	Xhol
972	Forward	AAAAAGAATTC-	Eco RI
		TTGACTAACAGGGGGGGGGGAGCGAAATTAAAAAC	
		AAAAAA <u>TCTAGA</u> -TTAAAAATAATCATAATCTACATTTTG	Xba I
973		AAAAAAGAATTC-ATGGACGCGCACAACCGAAAAC	Eco RI
		AAAAAACTGCAG-TTACTTCACGCGGGTCGCCATCAGCGT	Pst I
982	Forward	CGCGGATCCCATATG-GCAGCAAAAGACGTAC	BamHI-
	_		Ndel
		CCCGCTCGAG-CATCATGCCGCCCATCC	XhoI
983	Forward	CGCGGATCCCATATG-TTAGCTGTTGCAACAACAC	BamHI-
1	Ваманаа	CCCCTCCAC CAACCCCTACCCTACC	Ndel
007		CCCGCTCGAG-GAACCGGTAGCCTACG	XhoI
967	rorward	CGCGGATCCCATATG-CCCCCACTGGAAGAAC	BamHI-
	Reverse	CCCGCTCGAG-TAATAAACCTTCTATGGGC	NdeI
988		CGCGGATCCCATATG-TCTTTAAATTTACGGGAAAAAG	XhoI
700	1 OI Wald	COCOGATCCCATATO-TCTTTAAATTTACOOGAAAAAG	BamHI- Ndel
ŀ	Reverse	GCCCAAGCTT-TGATTTGCCTTTCCGTTTT	HindIII
989		CCGGAATTCTACATATG-GTCCACGCATCCGGCTA	EcoRI-
		<u></u> crossocom codderx	NdeI
	Reverse	CCCGCTCGAG-TTTGAATTTGTAGGTGTATTGC	XhoI
990	Forward.	CGCGGATCCGCTAGC-TTCAGAGCTCAGCTT	BamHI-
	2		NheI
		CCCGCTCGAG-AAACAGCCATTTGAGCGA	XhoI
992	Forward	CGCGGATCCCATATG-GACGCGCCCGCCCG	BamHI-
	_		NdeI
		CCCGCTCGAG-CCAAATGCCCAACCATTC	XhoI
993	Forward	CGCGGATCCCATATG-GCAATGCTGATTGAAATCA	BamHI-
	D	COCCCTCC+C C++C+C+TCCCC	NdeI
006		CCCGCTCGAG-GAACACATCGCGCCCG	XhoI
996	rorward	CGCGGATCCCATATG-TGCGGCAGAAAATCCGC	BamHI-
-	Reverse	CCCGCTCGAG-TCTAAACCCCTGTTTTCTC	Ndel
997			XhoI
1 221	1.01 Maid	CCGGAATTCTAGCTAGC-CGGCACGCCGACGTT	EcoRI-
	Reverse	CCCGCTCGAG-GACGGCATCGCTCAGG	NheI
L	110.0100	TOTO TOTO TO ACCURATE OF TANK OF THE PARTY O	XhoI

Underlined sequences indicate restriction recognition sites.

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 1>:
     g001.seq
              ATGCTGCCGC AGGGGAAGGC GGCGCGGAGG GTGTCGGCGA ACGAGGTGTC
           51 CGGCAGGCT TGCGCCCGGA TGGTGCTGGT CATCTGCCAG ACGCTGCCGA
          101 AACGCGATAC TTTAAACGGC TCGGGTACGC ATACTTTACC GGTTTGGGCG
          151 ATTTTGCCGA GGTCGTTGCG CAGCAAATCG ACAATCATCA CGTTTTCGGC
201 GCGGTTTTC GGGTCGGTTT GTAACTCGGC GGCGCGGCGT TCGTCTTGTC
          301 CCGTCTGAAG CGATGTTGAG GAAGAGTTCG GGCGAGAAAC ACAGCGTCCA
          351 CGCGGATTGC CCGGCTTCAT CGGGCAGGTG GGACAATACG GCATAG
This corresponds to the amino acid sequence <SEO ID 2; ORF 001.ng>;
           1
              MLPQGKAARR VSANEVSGRA CARMVLVICQ TLPKRDTLNG SGTHTLPVWA
              ILPRSLRSKS TIITFSARFF GSVCNSAARR SSCPSPKIGA VPFIGSVLMV
           51
          101 PSEAMLRKSS GEKHSVHADC PASSGRWDNT A*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3>:
     m001.seq
             ATGCTGCCGC AGGGGAAGGC GGCGCGGAGG ATGTCGGCGA ACGAGGTGTG
          51 CGGcAssCTT ss.GCTTGGA yGGTGCTGGT CATCTGCCAA ACGCTGCCGA
         101 AACGCGATAC TTTAAACGGT TCGGGTACGC ATACTGTGCC GGTTTGGGCG
         151 ATTTTGCCGA GATCGTTACG CAGCAAATCG ACAATCATCA CGTTTTCGGC
         GCGGTTTTTC GGGTCTGCTT GCAACTCGGC GGCGCGGCGT TCGTCTTGTC
         301 CCGTCCGAAC CGATTTTGAG GAAGAGTTCG GGCGAGAAAC ACAGCGTCCA
         351 CGCGGATTGC CCCTCCGCAT CGGGCAGGTG GGACAAGACG GCATAG
This corresponds to the amino acid sequence <SEQ ID 4; ORF 001>:
     m001.pep
           1 MLPQGKAARR MSANEVCGXL XAWXVLVICQ TLPKRDTLNG SGTHTVPVWA
              ILPRSLRSKS TIITFSARFF GSACNSAARR SSCPSPKIGA VPFIGSVLMV
          51
         101 PSEPILRKSS GEKHSVHADC PSASGRWDKT A*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 5>:
     a001.seq
           1 ATGCTGCCGC AGGGGAAGGC GGCGCGGAGG ATGTCGGCGA ACGAGGTGTG
          51 CGGCAAGGCT TGGGCTTGGA TGGTGCTGGT CATCTGCCAA ACGCTGCCGA
         101 AACGCGATAC TTTAAACGGT TCGGGTACGC ATACTGTGCC GGTTTGGGCG
              ATTTTGCCGA GGTCGTTACG CAGCAAATCG ACAATCATCA CGTTTTCGGC
         201 GCGGTTTTTC GGGTCTGCTT GCAACTCGGC GGCGCGGCGT TCGTCTTGTC
         301 CCGTCCGAAC CGATTTTGAG GAAGAGTTCG GGCGAGAAAC ACAGCGTCCA
         351 CGCGGATTGC CCTTGTGCAT CGGGCAGGTG GGACAAAACG GCATAG
This corresponds to the amino acid sequence <SEQ ID 6; ORF 001.a>:
    a001.pep
              MLPQGKAARR MSANEVCGKA WAWMVLVICQ TLPKRDTLNG SGTHTVPVWA
              ILPRSLRSKS TIITFSARFF GSACNSAARR SSCPSPKIGA VPFIGSVLMV
          51
         101 PSEPILRKSS GEKHSVHADC PCASGRWDKT A*
    m001/a001
                 96.2% identity over a 131 aa overlap
                                  20
                                           30
                                                    40
                 MLPQGKAARRMSANEVCGXLXAWXVLVICQTLPKRDTLNGSGTHTVPVWAILPRSLRSKS
    m001.pep
                 MLPQGKAARRMSANEVCGKAWAWMVLVICQTLPKRDTLNGSGTHTVPVWAILPRSLRSKS
    a001.pep
```

	10	20	30	40	50	60
	70	80	90	100	110	120
m001.pep	TIITFSARFFGSACN	SAARRSSCE	SPKIGAVPFI	GSVLMVPSEF	PILRKSSGEKH	ISVHADC
• •	[[[[[[[[[[[[[[[[[[[[111111111	1111111111		111111111	11111
a001.pep	TIITFSARFFGSACN	SAARRSSCE	SPKIGAVPFI	GSVLMVPSE	PILRKSSGEK	ISVHADC
	70	80	90	100	110	120
	130					
m001.pep	PSASGRWDKTAX					
	1 111111					
a001.pep	PCASGRWDKTAX					
	130					

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 001 shows 89.3% identity over a 131 aa overlap with a predicted ORF (ORF 001.ng) from N. gonorrhoeae:

m001/g001

	10	20	30	40	50	60
m001.pep	MLPQGKAARRMSANE	VCGXLXAWX	KVLVICQTLPK	RDTLNGSGTH	TVPVWAILPR	SLRSKS
		1 1	4111111111		1:11111111	
g001	MLPQGKAARRVSANE	VSGRACARI	/VLVICQTLPK	RDTLNGSGTH	TLPVWAILPR	SLRSKS
	10	20	30	40	50	60
	70	80	90	100	110	120
m001.pep	TIITFSARFFGSACN			GSVLMVPSE	ILRKSSGEKH	SVHADC
	1111111111111111111	1111111			:111111111	11111
q001	TIITFSARFFGSVCN	SAARRSSCI	PSPKIGAVPFI	GSVLMVPSE <i>F</i>	MLRKSSGEKH	ISVHADC
,	70	80	90	100	110	120
	130					
m001.pep	PSASGRWDKTAX					
	1::11111:111					
g001	PASSGRWDNTAX					
_	130					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 7>: g003.seq

s.seq					
1	ATGGTCGTAT	TCGTGGCTGA	AGGCGTATTC	GGTCGCGCTG	TTTTGGGTCA
51	CTTGGTATTG	CTCTTCGGTC	AGGGTGCGTT	TGAGTTCGGC	GTCACTCGGT
101	TTTTTATACG	TTGCCGCGTC	GAAGCCTTTG	CCTTGCGGTG	CGGCTTTGGT
151	TTTGCCCGGC	AGCGGTTCGT	CGGCTTTGCG	GATGTCGATG	TGGCAGTAGC
201	CGTTGGGGTT	TTTAATCAGG	TAGTCCTGAT	GGTATTCCTC	GGCGTCGTAG
251	AAGTTTTTCA	GCGGTTCGTT	TTCAACAACG	AGGGGCAGTT	GGTATTTTTG
301	CTGCTCGCGT	TTGAGGGCGG	CGGCGATGAC	GGCTTTTTCG	GCGGGGTCGG
351	TGTAGTACAC	GCCGCTGCGG	TATTGCGTGC	CGGTGTCGTT	ACCCTGTTTG
401	TTGAGGCTGG	TCGGATCAAC	GACGCGGAAA	TAATATTGCA	GGATGTCGTC
451	CAGgCTGagt	TTGTCGGCAT	CGTaggtcac	tTTGACGGTC	TCGGCATGAC
501	CCGTATGGCG	GTaggacact	tctTCgtanc	TcGGGtTTTC	CGTGttGCCG
551	TTGGCgttac	CGGATACCGC	gtcaACCACG	CCGTcgatgc	gttggaAATa
601	ggCTTCCAAg	ccccaaaagc	agccgccggc	gaagtaaatg	gtgcccgtgt
651	tcatgattGC	TGa			

This corresponds to the amino acid sequence <SEQ ID 8; ORF 003.ng>:

g003.pep

1 MVVFVAEGVF GRAVLGHLVL LFGQGAFEFG VTRFFIRCRV EAFALRCGFG
51 FARQRFVGFA DVDVAVAVGV FNQVVLMVFL GVVEVFQRFV FNNEGQLVFL
101 LLAFEGGGDD GFFGGVGVVH AAAVLRAGVV TLFVEAGRIN DAEIILQDVV

```
151 OAEFVGIVGH FDGLGMTRMA VGHFFVRVFR VAVGVTGYRV NHAVDALEIG
          201 FQAPKAAAGE VNGARVHDC
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 9>:
     m003.seq
              ATGGTCGTAT TCGTGGCTGA AGGCATATTC GGTCGCGCTG TTTTGGGTAA
           51 CTTGsTATTG CTCTTCGGTC AGGGTGCGTT TGAGTTCGGC GTCACTCGGT
          101 TTTTTATACG TTGCCGCGTC GAAGCCTTTG CCTTGCGGGG CGGTCTTGGT
               TTTGCCCGGC AGCGGTTCGT CAGCKTTGCG GATGTCGATG TGGCAGTAGC
               CGTTGGGGTT TTTAATCAAG TAGTCCTGAT GGTATTCCTC GGCATCGTAG
          201
               AAGTTTTCA GCGGCTCGTT TTCAACAACG AGGGGCAGTT GGTATTTTTG
              CTGCTCGCGT TTGAGGGCGk CGGCGATGAC GGCTTTTTCG kCGGGGTCGG
          301
          351 TGTAGTACAC GCCGCTGCGG TATTGCGTAC CGGTGTCGTT GCCCTGTTTG
               TTGAGGCTGG TCGGATCAAC GACGCGGAAG AAATATTGCA GGATGTCGTC
               TAGGCTGAGT TTGTCGGCAT CGTAGGTCAC TTTGACGGTT TCGGCGTGGC
          451
               CCGTATGGCG GTAGGACACG TCTTCATAGC TCGGATTTTT CGTGTTGCCG
          551 TTGGCGTAGC CGGATACCGC GTCAACCACG CCGTCGATGC GTTGGAAATA
          601 GGCTTCCAAG CCCCAGAAGC AGCq.CCGGC GAGGTAAATG GTGCGCGTGT
          651 TCATGATTTT TGA
This corresponds to the amino acid sequence <SEQ ID 10; ORF 003>:
     m003.pep Length: 221
               MVVFVAEGIF GRAVLGNLXL LFGQGAFEFG VTRFFIRCRV EAFALRGGLG
           51 FARQRFVSXA DVDV<u>AVAVGV FNQVVLMVFL</u> GIVEVFQRLV FNNEGQLVFL
.01 LLAFEGXGDD GFFXGVGVVH AAAVLRTGVV ALFVEAGRIN DAEEILQDVV
          151 *AEFVGIVGH FDGFGVARMA VGHVFIARIF RVAVGVAGYR VNHAVDALEI
          201 GFQAPEAAXG EVNGARVHDF *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 11>:
     a003.seq
               ATGGTCGTAT TCGTGGCTGA AGGCATATTC GGTCGCGCTG TTTTGGGTAA
               CTTGGTATTG CTCTTCGGTC AGGGTGCGTT TGAGTTCGGC GTCACTCGGT
           51
               TTTTTATACG TTGCCGCGTC GAAGCCTTTG CCTTGCGGTG CGGTCTTGGT
          151 TTTGCCCGGC AGCGGTTCGT CGGCTTTGCG GATATCGATG TGGCAGTAGC
          201 CGTTGGGGTT TTTAATCAAG TAGTCCTGAT GGTATTCCTC GGCATCGTAG
251 AAGTTTTCA GCGGCTCGTT TTCAACAACG AGGGGCAGTT GGTATTTTTG
          301 CTGCTCGCGT TTGAGGGCGG CGGCGATGAC GGCTTTTTCG GCGGGGTCGG
           351 TGTAGTACAC GCCGCTGCGG TATTGCGTAC CGGTGTCGTT GCCCTGTTTG
           401 TTGAGGCTGG TCGGATCAAC GACGCGGAAG AAATATTGCA GGATGTCGTC
          451
               TAGGCTGAGT TTGTCGGCAT CGTAGGTCAC TTTGACGGTT TCGGCGTGGC
               CCGTATGGCG GTAGGACACG TCTTCATAGC TCGGATTTTT CGTGTTGCCG
           501
          551 TTGGCGTAGC CGGATACCGC GTCAACCACG CCGTCGATGC GTTGGAAATA
               GGCTTCCAAG CCCCAGAAGC AGCCGCCGGC GAGGTAGATG GTGCGCGTGT
           651 TCATGATTTT TGA
This corresponds to the amino acid sequence <SEQ ID 12; ORF 003.a>:
     a003.pep
               MVVFVAEGIF GRAVLGNLVL LFGQGAFEFG VTRFFIRCRV EAFALRCGLG
               FARQRFVGFA DIDVAVAVGV FNQVVLMVFL GIVEVFQRLV FNNEGQLVFL
               LLAFEGGGDD GFFGGVGVVH AAAVLRTGVV ALFVEAGRIN DAEEILQDVV
           101
               *AEFVGIVGH FDGFGVARMA VGHVFIARIF RVAVGVAGYR VNHAVDALEI
           151
           201 GFQAPEAAAG EVDGARVHDF *
             95.9% identity over a 220 aa overlap
m003/a003
                                                30
                                                          40
                   MVVFVAEGIFGRAVLGNLXLLFGQGAFEFGVTRFFIRCRVEAFALRGGLGFARQRFVSXA
     m003.pep
                   MVVFVAEGIFGRAVLGNLVLLFGQGAFEFGVTRFFIRCRVEAFALRCGLGFARQRFVGFA
      a003
                           10
                                     20
                                                30
                                                          40
```

	70	80	90	100	110	120
m003.pep	DVDVAVAVGVFNQV	VLMVFLGIVE	VFQRLVFNNE	GQLVFLLLAF	EGXGDDGFF	KGVGVVH
	1:11:11:11:11		1111111111	1111111111	11 111111	
a003	DIDVAVAVGVFNQV	VLMVFLGIVE	VFQRLVFNNE	GQLVFLLLAF	EGGGDDGFF	GGVGVVH
	70	80	90	100	110	120
	130	140	150	160	170	180
m003.pep	AAAVLRTGVVALFV	'EAGRINDAE	CILQDVVXAE	VGIVGHFDGF	GVARMAVGH	VFIARIF
	111111111111	111111111			11111111	
a003	AAAVLRTGVVALFV	'EAGRINDAE	CILQDVVXAE	VGIVGHFDGF	'GVARMAVGH'	VFIARIF
	130	140	150	160	170	180
	190	200	210	220		
m003.pep	RVAVGVAGYRVNHA	VDALEIGFQA	APEAAXGEVNO	SARVHDFX		
	[11111111111				
a003	RVAVGVAGYRVNHA	VDALEIGFQA	APEAAAGEVDO	GARVHDFX		
	190	200	210	220		

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 003 shows 88.6% identity over a 219 aa overlap with a predicted ORF (ORF 003.ng) from N. gonorrhoeae:

m003/g003

	10	20	30	40	5 0	60
m003.pep	MVVFVAEGIFGRAVL	GNLXLLFGQG	AFEFGVTRFF	IRCRVEAFAI	LRGGLGFARQR	FVSXA
• •	- 1 1 1 1 1 1 1 1 1 1	1:1	1111111111			11: 1
g003	MVVFVAEGVFGRAVL	GHLVLLFGQG	SAFEFGVTRFF	IRCRVEAFAI	LRCGFGFARQR	FVGFA
•	10	20	30	40	50	60
	70	80	90	100	110	120
m003.pep	DVDVAVAVGVFNQVV	LMVFLGIVEV	FORLVFNNEG	QLVFLLLAFE	EGXGDDGFFXG	VGVVH
	111111111111111	111111:111	111:111111	111111111		1111
g003	DVDVAVAVGVFNQVV	LMVFLGVVEV	FORFVFNNEG	QLVFLLLAFE	EGGGDDGFFGG	VGVVH
	70	80	90	100	110	120
	130	140	150	160	170	180
m003.pep	AAAVLRTGVVALFVE	AGRINDAEE!	LQDVVXAEFV	GIVGHFDGF	GVARMAVGHVF	TARIF
	-	11111111		11111111:		: 1:1
g003	AAAVLRAGVVTLFVE					
	130	140	150	160	170	180
	190	200	210	220		
m003.pep	RVAVGVAGYRVNHAV	DALEIGFQAI	PEAAXGEVNGA	RVHDFX		
			1:11			
g003	RVAVGVTGYRVNHAV			RVHDC		
	190	200	210			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 13>: g004.seq

– – -					
1	ATGgtagAAC	GGCATATCCA	GCATTTGCGG	AACGGTCATC	TTCATTTGAT
51	GCGCCCATGC	CAACAagtga	gccaAAtgtT	CGGCGGCAGG	GCCTacgatT
101	TCCGCGCCGA	TAAagcggcc	gGTGgctTTT	tcgGCataca	ggcgcaTatg
151	gCCTTTGTTT	ACCAgcatca	cgcggctgcg	accttgaTTT	TTGAACGATA
201	CTTCGCCgaT	GACAAATTCG	TCGGCTTGGT	ATTGCGCGGC	AACCTGCGCG
251	TATTTCAAAC	CGACAAAGCC	GATTTGCgga	ctggtaaACA	CCACGCCAAT
301	GGTgctgcgg	cGCAAACCGC	TGCCGATATt	cgGgtagcgg	ccccgcgtta
351	ttgcccggca	atcttacctt	ggtcggcggc	ttcatGCAGC	AGGGGCagtt
401	ggttggacgc	gtcgcccgca	ataAAGATAT	GCGGAATgct	ggtCTGCATg
451	gtCAGCGGAT	CGGCAACGGG	tacgccgcgc	gcgtctttgT	CGATATTGAT
501	GTTTTCCAAA	CCGATATtgT	CAACGTTCGG	ACGGCgACCT	ACGGCTGCCA

```
551 ACATATATTC GGCAACAAAT ACGCCTTTTT CGCCATCCTG CTCCCAATGG
601 ACTICLACAT TGCCGTCTGC GTCGAGTTTG ACCTCGGTTT TAGCATCCAG
651 ATGCAGTTTC AATLCTTCTC CGAACACGGC TTTCGCCTCG TCTGAAACAA
701 CGGGGTCGGA AATGCCGCCG ATGATTCCGC CCAAACCGAA AATTTCAACT
751 TTCACACCCA AACGGTGCAA TGCCTGA
```

This corresponds to the amino acid sequence <SEQ ID 14; ORF 004.ng>:

```
q004.pep
         MVERHIOHLR NGHLHLMRPC QQVSQMFGGR AYDFRADKAA GGFFGIQAHM
      51 AFVYQHHAAA TLIFERYFAD DKFVGLVLRG NLRVFQTDKA DLRTGKHHAN
     101 GAAAQTAADI RVAAPRYCPA ILPWSAASCS RGSWLDASPA IKICGMLVCM
     151
201
         VSGSATGTPR ASLSILMFSK PILSTFGRRP TAANIYSATN TPFSPSCSQW
          TSTLPSASSL TSVLASRCSF NSSPNTAFAS SETTGSEMPP MIPPKPKIST
     251 FTPKRCNA*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 15>: m004.seq

. seq					
1	ATGGTAGAAC	GGCATATCCA	GCATTTGCGG	AACGGTCATC	TTCATTTGAT
51	GTGCCCAAGC	CAACAGGTGC	GCCAAATGTT	CGGCGGCAGG	GCCTACGATT
101	TCCGCGCCGA	TAAAGCGGCC	GGTGGCTTTT	TCGGCATACA	GGCGCATATG
151	GCCTTTGTTC	ACCAGCATCA	CGCGGCTGCG	GCCTTGGTTT	TTGAACGATA
201	CTTCGCCGAT	GACAAATTCG	TCGGCTTGGT	ATTGCGCGGC	AACCTGCGCG
251	TATTTCAGAC	CGACAAAGCC	GATTTGCGGA	CTGGTAAACA	CCACGCCGAT
301	GGTGCTGCGC	CGCAAACCGC	CGCCGATATT	CGGGTAGCGG	CCGCGTTATC
351	GCCGGCAATC	TTGCCTTGGT	CGGCAGCTTC	ATGCAGCAGA	GGCAGTTGGT
401	TGGACGCATC	GCCTGCGATG	AAGATATGCG	GAATACTGGT	CTGCATGGTC
451	AGCGGGTCGG	CAACAGGTAC	GCCGCGCGCA	TCTTTTTCGA	TATTGATATT
501	TTCCAAACCG	ATATTGTCAA	CGTTCGGACG	GCGGCCCACG	GCTGCCAGCA
551	TATATTCGGC	AACAAATACG	CCTTTTTCGC	CATCCTGCTC	CCAATGGACT
601	TCTACATTGC	CGTCTGCATC	GAGTTTGACC	TCGGTTTTAG	CATCCAGATG
651	CAGTTTCAAT	TCTTCGCCGA	ACACGGCGTT	CGCCTCGTCT	GAAACGACGG
701	GGTCGGAAAT	GCCGCCGATG	ATTCCGCCCA	AACCGAAAAT	TTCAACTTTC
751	ACGCCCAAAC	GGTGCAATGC	CTGA		

This corresponds to the amino acid sequence <SEQ ID 16; ORF 004>: m004.pep

```
MVERHIQHLR NGHLHLMCPS QQVRQMFGGR AYDFRADKAA GGFFGIQAHM
 51 AFVHOHHAAA ALVFERYFAD DKFVGLVLRG NLRVFQTDKA DLRTGKHHAD
    GAAPQTAADI RVAAALSPAI LPWSAASCSR GSWLDASPAM KICGILVCMV
151 SGSATGTPRA SFSILIFSKP ILSTFGRRPT AASIYSATNT PFSPSCSQWT
    STLPSASSLT SVLASRCSFN SSPNTAFASS ETTGSEMPPM IPPKPKISTF
251 TPKRCNA*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 17>:

```
ATGGTAGAAC GGCATATCCA GCATTTGCGG AACGGTCATC TTCATTTGAT
    GTGCCCAAGC CAACAGGTGC GCCAAATGTT CGGCGGCCGG ACCTACGATT
 51
    TCTGCGCCGA TGAAGCGGCC GGTGGCTTTT TCGGCATACA GGCGCATATG
101
151 GCCTTTGTTT ACCAGCATCA CGCGGCTGCG GCCTTGGTTT TTGAACGATA
201 CTTCGCCGAT GACAAATTCG TCGGCTTGGT ATTGCGCGGC AACCTGCGCG
251 TATTTCAAAC CGACAAAGCC GATTTGCGGA CTGGTGAACA CTACGCCGAT
301 GGTGCTGCGG CGCAAACCGC CGCCGATATT CGGGTAGCGG CCGCGTTATC
    GCCGGCAATC TTGCCTTGGT CGGCGGCTTC ATGCAGCAGG GGCAGTTGGT
401 TGGACGCGTC GCCCGCAATA AAGATATGCG GAATACTGGT CTGCATAGTC
451 AGCGGATCGG CAACGGGTAC GCCGCGCGCA TCTTTTTCGA TATTGATGTT
501 TTCCAAACCG ATATTGTCAA CGTTCGGACG GCGGCCTACG GCTGCCAGCA
551 TATATTCGGC AACAAATACG CCTTTTTCGC CATCCTGCTC CCAATGGACT
    TCTACATTGC CGTCTGCGTC GAGTTTGGCC TCGGTTTTAG CATCCAAATG
651 CAGTTTCAAT TCTTCACCGA ACACGGCTTT CGCCTCGTCT GAAACGACGG
701 GGTCGGAAAT GCCGCCGATG ATGCCACCCA AACCGAAAAT TTCAACTTTC
751 ACGCCCAAAC GGTGCAATGC CTGA
```

This corresponds to the amino acid sequence <SEQ ID 18; ORF 004.a>:

a004	. pep
------	-------

- 1 MVERHIQHLR NGHLHLMCPS QQVRQMFGGR TYDFCADEAA GGFFGIQAHM 51 AFVYQHAAA ALVFERYFAD DKFVGLVLRG NLRVFQTDKA DLRTGEHYAD
- 101 GAAAQTAADI RVAAALSPAI LPWSAASCSR GSWLDASPAI KICGILVCIV
- 151 SGSATGTPRA SFSILMFSKP ILSTFGRRPT AASIYSATNT PFSPSCSQWT 201 STLPSASSLA SVLASKCSFN SSPNTAFASS ETTGSEMPPM MPPKPKISTF 251 TPKRCNA*

94.9% identity over a 257 aa overlap m004/a004

m004.pep	10 MVERHIOHLRNGHL	20 ILMCPSOOVR	30 OMFGGRAYDF	40 RADKAAGGFF	50 GIQAHMAFVH	60 АААННОІ
moor.pop		1111111111	111111:111	11:111111		11111
a004	MVERHIQHLRNGHL	LMCPSQQVR	QMFGGRTYDF	CADEAAGGFF	GIQAHMAFVY	AAAHHQ
	10	20	30	40	50	60
	70	80	90	100	110	120
m004.pep	ALVFERYFADDKFV	SLVLRGNLRV	FOTDKADLRT	GKHHADGAAP	QTAADIRVAA	ALSPAI
				1:1:1111	!!!!!!!!!!!	111111
a004	ALVFERYFADDKFV		_			
	70	80	90	100	110	120
	130	140	150	160	170	180
004	LPWSAASCSRGSWLI			•		
m004.pep	LPWSAASCSRGSWLI	HILLIIII	ILIVERVSGSA	IIIIIIIIIII	1.1111111	
-004	LPWSAASCSRGSWLI			111111111 TCTPRASTST	I.MESKPII.ST	FGRRPT
a004	130	140	150	160	170	180
	130	140	100	100	2.5	
	190	200	210	220	230	240
m004.pep	AASIYSATNTPFSP:	SCSOWTSTLE	SASSLTSVLA	SRCSFNSSPN	TAFASSETTO	SSEMPPM
	11111111111111			1:11111111	1111111111	
a004	AASIYSATNTPFSP:	SCSQWTSTLE	PSASSLASVLA	SKCSFNSSPN	TAFASSETTO	SSEMPPM
	190	200	210	220	230	240
	250					
m004.pep	IPPKPKISTFTPKR	CNAX				
	:					
a004	MPPKPKISTFTPKR	CNAX				
	250					

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 004 shows 93.4% identity over a 258 aa overlap with a predicted ORF (ORF 004.ng) from N. gonorrhoeae:

m0	04	/g	00	4
----	----	----	----	---

		10	20	30	40	50	60
m004.pep	MVERHI	QHLRNGHL	HLMCPSQQVR	OMFGGRAYDF	RADKAAGGFF	GIQAHMAFVHQ	AAAHH
	111111	11111111		1111111111		[[[]]]]	11111
g004	MVERHI	QHLRNGHL	HLMR PCQQVS	OMFGGRAYDF	RADKAAGGFF	GIQAHMAFVYÇ	AAAHH
		10	20	30	40	50	60
		70	80	90	100	110	119
m004.pep	ALVFER	YFADDKFV	GLVLRGNLRV:	FQTDKADLRT	GKHHADGAAP	QTAADIRVAAA	-LSPA
	:1:11	1111111	111111111		11111:111	111111	11
g004	TLIFER	YFADDKFV	GLVLRGNLRV:	FQTDKADLRT	GKHHANGAAA	QTAADIRVAAF	RYCPA
		70	80	90	100	110	120
	120	130	140	150	160	170	179
m004.pep	ILPWSA	ASCSRGSW	LDASPAMKIC	GILVCMVSGS	ATGTPRASFS	ILIFSKPILST	FGRRP

g004	 LPWS				ATGTPRASLS		
		130	140	150	160	170	180
	180	190	200	210	220	230	239
m004.pep	TAASI	YSATNTPFS	PSCSQWTSTI	PSASSLTSVI	ASRCSFNSSP	NTAFASSETT	GSEMPP
	111:			1111111111		1111111111	11111
g004	TAAN	YSATNTPFS	PSCSQWTSTI	PSASSLTSVI	ASRCSFNSSP	NTAFASSETT	GSEMPP
		190	200	210	220	230	240
	240	250					
m004.pep	MIPP	KPKISTFT P K	RCNAX				
• •	HILL		1111				
g004	MIPP	KPKIS TF TPK	RCNA				
-		250					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 19>: g005.seq

```
ATGGGGATGG ACAATATTGA TATGTTCATG CCTGAACAAG AGGAAATCCA
  1
 51 ATCAATGTGG AAAGAAATTT TACTGAATTA CGGTATTTTC CTGCTCGAAC
101 TGCTTACCGT GTTCGGCGCA ATTGCGCTGA TTGTGTTGGC TATCGTACAG
     AGTAAGAAAC AGTCGGAAAG CGGCAGTGTC GTACTGACAG ATTTTTCGGA
201 AAATTATAAA AAACAGCGGC AATCGTTTGA AACATTCTTT TTAAGCGAGG
251 AAGAGACAAA ACATCAGGAA AAAAAAGAAA AGAAAAAGGA AAAGGCGGAA
301 GCCAAAGCAG AGAAAAAGCG TTTGAAGGAG GGCGGGGAGA AATCTGCCGA
351 AACGCAAAAA TCCCGCCTTT TTGTGTTGGA TTTTGACGGC GATTTGTATG
     CACACGCCGT AGAATCCTTG CGTCATGAGA TTACGGCGGT GCTTTTGATT
401 CACACGCCGT AGAATCCTTG CGTCATGAGA TTACGGCGGT GCTTTTGATT
451 GCCAAGCCTG AAGATGAGGT TCTGCTCAGA TTGGAAAGTC CGGGCGGCGT
501 GGTTCACGGT TACGGTTTGG CGGCTTCGCA GCTTAGGCGT TTGCGCGAAC
 551 GCAATATTCC GCTGAccgtc gccgTCGATA AGGTCGCGGC AAGCGgcggc
 601 tatatgatgg cgtgtgtgGC GGATAAAATT GTTTCCGCtc cgtttgcggt
651 catcggttcg gtgggtgtgg tgGcggaagt gcCGAATATC CAccgCctGT
701 TGAAAAACA TGATATTGAT GTGGATGTGA TGACGGCGGG CGAATTTAAG
 751 CGCACGGTTA CTTTTATGGG TGAAAATACG GAAAAGGGCA AACAGAAATT
 801 CCGGCAGGAA CTGGAGGAAA CGCATCAGTT GTTCAAGCAG TTTGTCAGTG
 851 AAAACCGCCC CGGGTTGGAT ATTGAAAAAA TAGCGACGGG CGAGCATTGG
      TTCGGCCGGC AGGCGTTGGC GTTGAACTTG ATTGACGAGA TTTCGACCAG
951
      TGATGATTTG TTGTTGAAAG CGTTTGAAAA CAAACAGGtt aTCGAAGTGA
1001 AATATCAGGA GAAGCGAAGC CTGATCCAGC GCATTGGTTT GCAGGCGGAA
      GCTTCCGTTG AAAAGTTGTT TGCCAAACTT GTCAACCGGC GAGCGGATGT
1051
1101
      GATGTAG
```

This corresponds to the amino acid sequence <SEQ ID 20; ORF 005.ng>: g005.pep

1 MGMDNIDMFM PEQEEIQSMW KEILLNYGIF LLELLTVFGA IALIVLAIVQ
51 SKKQSESGSV VLTDFSENYK KQRQSFETFF LSEEETKHQE KKEKKKEKAE
101 AKAEKKRLKE GGEKSAETQK SRLFVLDFDG DLYAHAVESL RHEITAVLLI
151 AKPEDEVLLR LESPGGVVHG YGLAASQLRR LRERNIPLTV AVDKVAASGG
201 YMMACVADKI VSAPFAVIGS VGVVAEVPNI HRLLKKHDID VDVMTAGEFK
251 RTVTFMGENT EKGKQKFRQE LEETHQLFKQ FVSENRPGLD IEKIATGEHW
301 FGRQALALNL IDEISTSDDL LLKAFENKQV IEVKYQEKRS LIQRIGLQAE
351 ASVEKLFAKL VNRRADVM*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 21>: m005.seq

1	ATGGACAATA	TTGACATGTT	CATGCCTGAA	CAAGAGGAAA	TCCAATCAAT
51	GTGGAAAGAA	ATTTTACTGA	ATTACGGTAT	TTTCCTGCTC	GAACTGCTTA
101	CCGTGTTCGG	CGCAATTGCG	CTGATTGTGT	TGGCTATCGT	ACAGAGTAAG
151	AAACAGTCGG	AWAGCGGCAG	TGTCGTACTG	ACGGATTTTT	CGGAAAATTA
201	TAAAAAACAG	CGGCAATCGT	TTGAAGCATT	CTTTTTAAGC	GGGGAAGAGG
251	CACAACATCA	GGAAAAAGAG	GAAAAGAAAA	AGGAAAAGGC	GGAAGCCAAA

```
301 GCAGAGAAAA A.CGTTTGAA GGAGGGTGGG GAGAAATCTG CCGAAACGCA
    NAAATCACGC CTTTTTGTGT TGGANNNNN NNNNNNNNN NNNNNNNNN
    иминимими иминимими иминимими иминимими иминимими
401
 551 NNNNNNNN NNNNNNNNN NNNNNNNN NNGCGAGCGG CGGTTATATG
    ATGGCGTGTG TGGCGGATAA AATTGCTTCC GCTCCGTTTG CGATTGTCGG
651 TTCGGTGGGT GTGGTGGCGG AAGTACCGAA TATCCACCGC CTGTTGAAAA
701 AACATGATAT TGATGTGGAT GTGATGACGG CGGGCGAATT TAAGCGCACG
751 GTTACTTTA TGGGTGAAAA TACGGAAAAG GGCAAACAGA AATTCCGACA
801 GGAACTGGAG GAAACGCATC AGTTGTTCAA GCAGTTTGTC AGCGAGAACC
    GCCCTCAATT GGATATTGAG GAAGTGGCAA CGGGCGAGCA TTGGTTCGGT
851
    CGGCAGGCGT TGGCGTTGAA CTTGATTGAC GAGATTTCGA CCAGTGATGA
901
951 TTTGTTGTTG AAAGCGTTTG AAAACAAACA GGTTATCGAA GTGAAATATC
1001 AGGAGAAGCA AAGCCTGATC CAGCGCATTG GTTTGCAGGC GGAAGCTTCT
1051 GTTGAAAAGT TGTTTGCCAA ACTTGTCAAC CGGCGGGCGG ATGTGATGT A
1101 G
```

This corresponds to the amino acid sequence <SEQ ID 22; ORF 005>: m005.pep

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 23>: a005.seq

```
1 ATGGACAATA TTGACATGTT CATGCCTGAA CAAGAGGAAA TCCAATCAAT
  51 GTGGAAAGAA ATTTTACTGA ATTACGGTAT TTTCCTGCTC GAACTGCTTA
 101 CCGTGTTCGG CGCAATTGCG CTGATTGTGT TGGCTATCGT ACAGAGTAAG
 151 AAACAGTCGG AAAGCGGCAG TGTCGTACTG ACGGATTTTT CGGAAAATTA
      TAAAAAACAG CGGCAATCGT TTGAAGCATT CTTTTTAAGC GGGGAAGAGG
 251 CAAAACATCA GGAAAAAGAG GAAAAGAAAA AGGAAAAGGC GGAAGCCAAA
 301 GCAGAGAAAA AGCGTTTGAA GGAGGGTGGG GAGAAATCTT CCGAAACGCA
 351 AAAATCCCGC CTTTTTGTGT TGGATTTTGA CGGCGATTTG TATGCACACG
 401 CCGTAGAATC CTTGCGTCAT GAGATTACGG CGGTGCTTTT GATTGCCAAG
 451 CCTGAAGATG AGGTTCTGCT TAGATTGGAA AGTCCGGGCG GCGTGGTTCA
501 CGGTTACGGT TTGGCGGCTT CGCAGCTTAG GCGTTTGCGC GAACGCAATA
 551 TTCCGCTGAC CGTCGCCGTC GATAAGGTGG CGGCGAGCGG TGGTTATATG
 601 ATGGCGTGTG TGGCGGATAA AATTGTTTCC GCTCCGTTTG CGATTGTCGG
 651 TTCGGTGGGT GTTGTAGCGG AAGTACCGAA TATCCACCGC CTGTTGAAAA
     AACATGATAT TGATGTGGAT GTGATGACGG CGGGCGAATT TAAGCGCACG
GTTACTTTTA TGGGTGAAAA TACGGAAAAG GGCAAACAGA AATTCCGACA
 751
 801 GGAACTGGAG GAAACGCATC AGTTGTTCAA GCAGTTTGTC AGCGAGAACC
 851 GCCCTCAATT GGATATTGAG GAAGTGGCAA CGGGCGAGCA TTGGTTCGGT
 901 CGGCAGGCGT TGGCGTTGAA CTTGATTGAC GAGATTTCGA CCAGTGATGA
      TTTGTTGTTG AAAGCGTTTG AAAACAAACA GGTTATCGAA GTGAAATATC
1001
      AGGAGAAGCA AAGCCTGATC CAGCGCATTG GTTTGCAGGC GGAAGCTTCT
1051 GTTGAAAAGT TGTTTGCCAA ACTTGTCAAC CGGCGGGCGG ATGTGATGTA
```

This corresponds to the amino acid sequence <SEQ ID 24; ORF 005.a>:

```
a005.pep

1 MDNIDMFMPE QEEIQSMWKE ILLNYG<u>IFLL ELLTVFGAIA LIV</u>LAIVQSK
51 KQSESGSVVL TDFSENYKKQ RQSFEAFFLS GEEAKHQEKE EKKKEKAEAK
101 AEKKRLKEGG EKSSETQKSR LFVLDFDGDL YAHAVESLRH EITAVLLIAK
151 PEDEVLLRLE SPGGVVHGYG LAASQLRRLR ERNIPLTVAV DKVAASGGYM
201 MACVADK<u>IVS APFAIVGSVG VVAEV</u>PNIHR LLKKHDIDVD VMTAGEFKRT
251 VTFMGENTEK GKQKFRQELE ETHQLFKQFV SENRPQLDIE EVATGEHWFG
```

301 RQALALNLID EISTSDDLLL KAFENKQVIE VKYQEKQSLI QRIGLQAEAS 351 VEKLFAKLVN RRADVM*

m005/a005 79.2% identity over a 366 aa overlap

m005.pep	10 MDNIDMFMPEQEEI MDNIDMFMPEQEEI 10	Ī	111111111	1111111111		111111
m005.pep a005	70 TDFSENYKKQRQSE !!!!!!!!!!! TDFSENYKKQRQSE 70	80 EAFFLSGEEA	90 QHQEKEEKKK	100 KEKAEAKAEKX 	111111111:	120 AETXKSR
m005.pep	130 LFVLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	140 XXXXXXXXX :	150 XXXXXXXXXX	160 XXXXXXXXXX	170 XXXXXXXXX	180 XXXXXX
m005.pep	190 XXXXXXXXXXXXXX : ERNIPLTVAVDKVA	200 KASGGYMMACV	210 /ADKIASAPF#	220 AIVGSVGVVAE	230 VPNIHRLLKF	240 KHDIDVD
m005.pep	250 VMTAGEFKRTVTFN VMTAGEFKRTVTFN	260 IGENTEKGKOP IGENTEKGKOP	270 (FRQELEETH)	280 OLFKQFVSENR OLFKQFVSENR	290 PQLDIEEVAT	300 FGEHWFG
m005.pep a005	250 310 RQALALNLIDEIST RQALALNLIDEIST	SDDLLLKAFE	330 ENKQVIEVKY(350 LQAEASVEKI LQAEASVEKI	360 LFAKLVN LFAKLVN
m005.pep a005	310 RRADVMX RRADVMX	320	330	340	350	360

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 005 shows 77.0% identity over a 366 aa overlap with a predicted ORF (ORF 005.ng) from N. gonorrhoeae:

m005/g005

		10	20	30	40	50	
m005.pep	MDNIDM	MFMPEQEE I	QSMWKEILLN	YGIFLLELLT	VFGAIALIVI	_AIVQSKKQS	XSGSV
	11111		111111111	111111111			1111
g005	MGMDNIDM	IFMPEQEE I	QSMWKEILLN	YGIFLLELLT	VFGAIALIVI	_AIVQSKKQS	SESGSV
		10	20	30	40	50	60
	60	70	80	90	100	110	
m005.pep	VLTDFSEN	1YKKQRQSF	EAFFLSGEE	QHQEKEEKKK	EKAEAKAEKI	KRLKEGGEKS	SAETXK
	1111111		1:1111 11:	:1111:1111	111111111		
g005	VLTDFSEN	YKKQRQSF	ETFFLSEEEI	KHQEKKEKKK	EKAEAKAEKI	KRLKEGGEKS	SAETQK
		70	80	90	100	110	120

m005.pep		140 XXXXXXXXXXX	150 XXXXXXXXXX	160 XXXXXXXXXX	170 XXXXXXXXXX	XXXXX
g005	 SRLFVLDFDGDL 130	YAHAVESLRHEI' 140	: FAVLLIAKPE: 150	DEVLLRLESPO 160	GGVVHGYGLAA 170	ASQLRR 180
m005.pep	:	200 XXXXASGGYMMA DKVAASGGYMMA 200	111111111	11::11		11111
m005.pep		260 VTFMGENTEKGK VTFMGENTEKGK 260	THITHILL	4111111111	-	HIH
m005.pep	111111111111	320 EISTSDDLLLKA EISTSDDLLLKA 320				11111
m005.pep	360 VNRRADVMX VNRRADVMX					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 25>: g006.seq

1 ATGCTGCTGG TGCTggaatt ttggttCGGc gtGtCGGCGG TGGGCatact
51 tgCGTTGTTT TTATGGCttt TGCCACGTTT TGCCGCCATC AGCGAAAACC
101 TGTATTTCCG CCTGAACAAC AGCTTGGAAC gcgACAACCA CTTTATCCGA
151 AAAGGCGACG AGCGGCAGCT GTACCGCCAT TACGGACTGG TTTCGCGCCT
201 GCGTGTGCTG ATTTCCAACC GCGAAGCCTT CGGCTATCTC TGCGTCGGCG
251 CGGCGATGGG TATTTTGTTC GGCTTTGCTT TTGTGATGAT GACGCTCAAA
301 GGCTACGGCA GCGCGGGCA TATTTATTCG GTCGGCACTT ATCTGTGGAT
351 GTTTGCCATG AGTTTGGACG ATGTGCCGCG ATTGGTCGAA CAATATTCCA
401 ATTTGAAAGA CATCGGACAA CGGATAGAGT GGTCGGAACG GAACATCAAA
451 GCCGGAACTT GA

This corresponds to the amino acid sequence <SEQ ID 26; ORF 006.ng>: g006.pep

1 MLLVLEFWFG VSAVGILALF LWLLPRFAAI SENLYFRLNN SLERDNHFIR 51 KGDERQLYRH YGLVSRLRVL ISNREAFGYL CVGAAMGILF GFAFVMMTLK 101 GYGSAGHIYS VGTYLWMFAM SLDDVPRLVE QYSNLKDIGQ RIEWSERNIK

151 AGT*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 27>: m006.seq

4						
1	ATGCTGCTGG	TGCTGGAATT	TTGGGTCGGC	GTGTCGGCGG	TGGGCATACT	
51	TGCGTTGTTT	TTATGGCTTT	TGCCACGTTT	TGCCGCCATC	AGCGAAAACC	
101	TGTATTTCCG	CCTGAACAAC	AGCTTGGAAC	GCGACAACCA	CTTTATCCGA	
151	AAAGGCGACC	GGCGGCAGCT	GTACCGCCAT	TACGGACTGC	TTGCGCGCCT	
201	GCGTGTGCTG	ATTTCCAACC	GCGAAGCCTT	CGGCTATCTC	TGCGTCGGCA	
251	CGGCGATGGG	TATTTTGTTC	GGCTTTGCTT	TTGTGATGAT	GACGCTCAAA	
301	GGCTACAGCA	GCGCGGGGCA	TGTCTATTCG	GTCGGCACTT	ATCTGTGGAT	

m006/a006

from N. gonorrhoeae:

```
351 GTTTGCCATG AGTTTGGACG ACGTGCCGCG ATTGGTCGAA CAATATTCCA
              ATTTGAAAGA CATCGGACAA CGGATAGAGT GGTCGGAACG GAACATCAAA
              GCCGGAACTTGA
This corresponds to the amino acid sequence <SEQ ID 28; ORF 006>:
    m006.pep
              MLLVLEFWVG VSAVGILALF LWLLPRFAAI SENLYFRLNN SLERDNHFIR
           1
              KGDRRQLYRH YGLLARLRVL ISNREAFGYL CVGTAMGILF GFAFVMMTLK
          51
              GYSSAGHVYS VGTYLWMFAM SLDDVPRLVE QYSNLKDIGQ RIEWSERNIK
         101
         151
              AGT*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 29>:
     a006.seq
              ATGCTGCTGG TGCTGGAATT TTGGGTCGGC GTGTCGGCGG TGGGCATACT
              TGCGTTGTTT TTATGGCTTT TGCCACGTTT TGCCGCCATC AGCGAAAACC
          51
              TGTATTTCCG CCTGAAGAAC AGCTTGGAAC GCGACAACCA CTTTATCCGA
          101
              AAAGGCGACG AGCGGCAGCT GGACCGCCAT TACGGACTGC TTGCGCGCCT
          151
              GCGTGTGCTG ATTTCCAACC GCGAAGCCTT CGGCTATCTC TGCGTCGGCA
          201
              CGGCGATGGG TATTTTGTTC GGCTTTGCTT TTGTGATGAT GACGCTCAAA
          251
              GGCTACAGCA GCGCGGGCA TGTCTATTCG GTCGGCACTT ATCTGTGGAT
          301
              GTTTGCCATA AGTTTGGACG ACGTGCCGCG ATTGGTCGAA CAATATTCCA
          351
              ATTTGAAAGA CATCGGACAA CGGATAGAGT GGTCGAAACG GAACATCAAA
          401
              GCCGGAACTT GA
          451
This corresponds to the amino acid sequence <SEQ ID 30; ORF 006.a>:
     a006.pep
              MLLVLEFWVG VSAVGILALF LWLLPRFAAI SENLYFRLKN SLERDNHFIR
              KGDERQLDRH YGLLARLRVL ISNREAFGYL CVGTAMGILF GFAFVMMTLK
           51
              GYSSAGHVYS VGTYLWMFAI SLDDVPRLVE QYSNLKDIGQ RIEWSKRNIK
          101
          151
              AGT*
            96.7% identity over a 153 aa overlap
                                                               50
                                                      40
                                   20
                                            30
                 MLLVLEFWVGVSAVGILALFLWLLPRFAAISENLYFRLNNSLERDNHFIRKGDRRQLYRH
     m006.pep
                  MLLVLEFWVGVSAVGILALFLWLLPRFAAISENLYFRLKNSLERDNHFIRKGDERQLDRH
     a006
                                                               50
                                                                         60
                         10
                                                      40
                                            90
                                                     100
                                   80
                  YGLLARLRVLISNREAFGYLCVGTAMGILFGFAFVMMTLKGYSSAGHVYSVGTYLWMFAM
     m006.pep
                  YGLLARLRVLISNREAFGYLCVGTAMGILFGFAFVMMTLKGYSSAGHVYSVGTYLWMFAI
     a006
                                   80
                                            90
                                                     100
                                                              110
                                                                        120
                         70
                        130
                                  140
                  SLDDVPRLVEQYSNLKDIGQRIEWSERNIKAGTX
     m006.pep
                  a006
                  SLDDVPRLVEQYSNLKDIGQRIEWSKRNIKAGTX
                                  140
                                           150
                        130
Computer analysis of this amino acid sequence gave the following results:
```

m006/g006 60 40 50 10 20 30

ORF 006 shows 95.4% identity over a 153 aa overlap with a predicted ORF (ORF 006.ng)

Homology with a predicted ORF from N. gonorrhoeae

MLLVLEFWVGVSAVGILALFLWLLPRFAAISENLYFRLNNSLERDNHFIRKGDRRQLYRH m006.pep

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 31>:

```
q006-1.seq
         ATGTGGAAAA TGTTGAAACA CATAGCCAAA ACCCACCGCA AGCGATTGAT
          TGGCACATTT TCCCCGGTCG GACTGGAAAA CCTTTTGATG CTGGGGTATC
      51
          CGGTGTTTGG CGGCTGGGCG ATTAATGCCG TGATTGCGGG GAGGGTGTGG
     101
          CAGGCGTTGC TGTACGCTTT GGTTGTATTT TTGATGTGGC TGGTCGGTGC
     151
          GGCACGCGG ATTGCCGATA CGCGCACGTT TACGCGGATT TATACCGAAA
     201
          TCGCCGTGCC GGTTGTGTTG GAACAACGGC AGCGGCAAGT CCCGCATTCA
     251
          GCGGTAACTG CACGGGTTGC CCTGTCGCGT GAATTTGTCA GCTTTTTTGA
     301
          AGAACACCTG CCGATTGCCG CGACATCCGT CGTATCCATA TTCGGCGCGT
     351
          GCATCATGCT GCTGGTGCTG GAATTTTGGG TCGGCGTGTC GGCGGTGGGC
     401
          ATACTTGCGT TGTTTTTATG GCTTTTGCCA CGTTTTGCCG CCATCAGCGA
     451
          AAACCTGTAT TTCCGCCTGA ACAACAGCTT GGAACGCGAC AACCACTTTA
     501
          TCCGAAAAGG CGACGAGCGG CAGCTGTACC GCCATTACGG ACTGGTTTCG
     551
          CGCCTGCGTG TGCTGATTTC CAACCGCGAA GCCTTCGGCT ATCTCTGCGT
     601
          CGGCGCGCG ATGGGTATTT TGTTCGGCTT TGCTTTTGTG ATGATGACGC
     651
          TCAAAGGCTA CGGCAGCGCG GGGCATATTT ATTCGGTCGG CACTTATCTG
          TGGATGTTTG CCATGAGTTT GGACGATGTG CCGCGATTGG TCGAACAATA
     751
          TTCCAATTTG AAAGACATCG GACAACGGAT AGAGTGGTCG GAACGGAACA
     801
          TCAAAGCCGG AACTTGA
```

This corresponds to the amino acid sequence <SEQ ID 32; ORF 006-1.ng>:

```
g006-1.pep
         MWKMLKHIAK THRKRLIGTF SPVGLENLLM LGYPVFGGWA INAVIAGRVW
       1
          OALLYALVVF LMWLVGAARR IADTRTFTRI YTEIAVPVVL EQRQRQVPHS
          AVTARVALSR EFVSFFEEHL PIAATSVVSI FGACIMLLVL EFWVGVSAVG
     101
          ILALFLWLLP RFAAISENLY FRLNNSLERD NHFIRKGDER QLYRHYGLVS
     151
     201
          RLRVLISNRE AFGYLCVGAA MGILFGFAFV MMTLKGYGSA GHIYSVGTYL
     251 WMFAMSLDDV PRLVEQYSNL KDIGQRIEWS ERNIKAGT*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 33>:

```
m006-1.seq
          ATGTGGAAAA TGTTGAAACA CATAGCCCAA ACCCACCGCA AGCGATTGAT
          TGGCACATTT TCCCTGGTCG GACTGGAAAA CCTTTTGATG CTGGTGTATC
      51
          CGGTGTTTGG CGGCCGGCG ATCAATGCCG TGATTGCGGG GGAGGTGTGG
     101
          CAGGCGTTGC TGTACGCTTT GGTTGTGCTT TTGATGTGGC TGGTCGGTGC
     151
          GGTGCGGCGG ATTGCCGATA CGCGCACGTT TACGCGGATT TATACCGAAA
          TCGCCGTGCC GGTCGTGTTG GAACAGCGGC AGCGACAAGT CCCGCATTCG
     251
          GCGGTAACTG CGCGGGTTGC CCTGTCGCGT GAGTTTGTCA GCTTTTTTGA
     301
          AGAACACCTG CCGATTGCCG CGACATCCGT CGTATCCATA TTCGGCGCGT
     351
          GCATCATGCT GCTGGTGCTG GAATTTTGGG TCGGCGTGTC GGCGGTGGGC
     401
     451
          ATACTTGCGT TGTTTTTATG GCTTTTGCCA CGTTTTGCCG CCATCAGCGA
          AAACCTGTAT TTCCGCCTGA ACAACAGCTT GGAACGCGAC AACCACTTTA
     501
     551
          TCCGAAAAGG CGACCGGCGG CAGCTGTACC GCCATTACGG ACTGCTTGCG
          CGCCTGCGTG TGCTGATTTC CAACCGCGAA GCCTTCGGCT ATCTCTGCGT
```

```
CGGCACGCG ATGGGTATTT TGTTCGGCTT TGCTTTTGTG ATGATGACGC
         651
              TCAAAGGCTA CAGCAGCGCG GGGCATGTCT ATTCGGTCGG CACTTATCTG
         701
              TGGATGTTTG CCATGAGTTT GGACGACGTG CCGCGATTGG TCGAACAATA
         751
              TTCCAATTTG AAAGACATCG GACAACGGAT AGAGTGGTCG GAACGGAACA
         801
              TCAAAGCCGG AACTTGA
         851
This corresponds to the amino acid sequence <SEQ ID 34; ORF 006-1>:
     m006-1.pep
              MWKMLKHIAQ THRKRLIGTF SLVGLENLLM LVYPVFGGRA INAVIAGEVW
           1
              QALLYALVVL LMWLVGAVRR IADTRTFTRI YTEIAVPVVL EQRQRQVPHS
              AVTARVALSR EFVSFFEEHL PIAATSVVSI FGACIMLLVL EFWVGVSAVG
ILALFLWLLP RFAAISENLY FRLNNSLERD NHFIRKGDRR QLYRHYGLLA
         101
         151
              RLRVLISNRE AFGYLCVGTA MGILFGFAFV MMTLKGYSSA GHVYSVGTYL
         201
         251
              WMFAMSLDDV PRLVEQYSNL KDIGQRIEWS ERNIKAGT*
                95.5% identity in 288 aa overlap
m006-1/g006-1
                                            30
                                                     40
                 MWKMLKHIAQTHRKRLIGTFSLVGLENLLMLVYPVFGGRAINAVIAGEVWQALLYALVVL
     m006-1.pep
                 MWKMLKHIAKTHRKRLIGTFSPVGLENLLMLGYPVFGGWAINAVIAGRVWQALLYALVVF
     q006-1
                                            30
                                                     40
                                  20
                         10
                                                    100
                                                                       120
                                            90
                                                              110
                         70
                                  80
                 LMWLVGAVRRIADTRTFTRIYTEIAVPVVLEQRQRQVPHSAVTARVALSREFVSFFEEHL
     m006-1.pep
                 LMWLVGAARRIADTRTFTRIYTEIAVPVVLEQRQRQVPHSAVTARVALSREFVSFFEEHL
     g006-1
                                                    100
                                                              110
                                  80
                                            90
                                                              170
                        130
                                 140
                                           150
                                                    160
                 PIAATSVVSIFGACIMLLVLEFWVGVSAVGILALFLWLLPRFAAISENLYFRLNNSLERD
     m006-1.pep
                 PIAATSVVSIFGACIMLLVLEFWVGVSAVGILALFLWLLPRFAAISENLYFRLNNSLERD
     g006-1
                        130
                                 140
                                           150
                                                    160
                                                              170
                                                                       180
                                 200
                                           210
                                                    220
                                                              230
                                                                       240
                        190
                 NHFIRKGDRRQLYRHYGLLARLRVLISNREAFGYLCVGTAMGILFGFAFVMMTLKGYSSA
     m006-1.pep
                 NHFIRKGDERQLYRHYGLVSRLRVLISNREAFGYLCVGAAMGILFGFAFVMMTLKGYGSA
     a006-1
                                                    220
                                                              230
                                 200
                                           210
                        190
                                                    280
                                           270
                                  260
                 GHVYSVGTYLWMFAMSLDDVPRLVEQYSNLKDIGQRIEWSERNIKAGTX
     m006-1.pep
                  11:114114141414141414144444
                 GHIYSVGTYLWMFAMSLDDVPRLVEQYSNLKDIGQRIEWSERNIKAGTX
     q006-1
                                  260
                                           270
                                                    280
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 35>:
                 (partial)
     a006-1.seq
               ..AGCCAAAACC ACCGCAAGCG ATTGATTGGC ACATTTTTTC TGGTCGGACT
            1
                 GGAAAACCTT TTGATGCTGG TGTATCCGGT GTTTGGCGGC TGGGCGATTA
           51
                 ATGCCGTGAT TGCGGGGCAG GCGTGGCAGG CGTTGCTGTA CGCTTTGGTT
          101
                 GTGCTTTTGA TGTGGCTGGT CGGTGCGGCG CGGCGGATTG CCGATACGCG
          151
                 CACGTTTACG CGGATTTATA CCGAAATCGC CGTGCCGGTT GTGTTGGAAC
          201
                 AGCGGCAGCG GCAAGTCCCG CATTCGGCGG TAACTGCGCG GGTTGCCCTG
          251
                 TCGCGTGAGT TTGTCAGCTT TTTTGAAGAA CACCTGCCGA TTGCCGCGAC
          301
                 ATCCGTCGTA TCCATATTCG GCGCGTGCAT CATGCTGCTG GTGCTGGAAT
          351
                 TTTGGGTCGG CGTGTCGGCG GTGGGCATAC TTGCGTTGTT TTTATGGCTT
          401
                 TTGCCACGTT TTGCCGCCAT CAGCGAAAAC CTGTATTTCC GCCTGAAGAA
          451
                 CAGCTTGGAA CGCGACAACC ACTTTATCCG AAAAGGCGAC GAGCGGCAGC
          501
                 TGGACCGCCA TTACGGACTG CTTGCGCGCC TGCGTGTGCT GATTTCCAAC
          551
```

CGCGAAGCCT TCGGCTATCT CTGCGTCGGC ACGGCGATGG GTATTTTGTT

CGGCTTTGCT TTTGTGATGA TGACGCTCAA AGGCTACAGC AGCGCGGGGC

701	ATGTCTATTC	GGTCGGCACT	TATCTGTGGA	TGTTTGCCAT	AAGTTTGGAC	;	
751	GACGTGCCGC	GATTGGTCGA	ACAATATTCC	AATTTGAAAG	ACATCGGACA	1	
801	ACGGATAGAG	TGGTCGAAAC	GGAACATCAA	AGCCGGAACT	TGA		
This common and a	a tha amina	oid soqueno	SECTO ID	36. OPE 006	5-1 a>·		
This corresponds to the amino acid sequence <seq 006-1.a="" 36;="" id="" orf="">:</seq>							
a006-1.pep	(partial) .SQNHRKRLIG	mper voi ent	IMIUVDUECC	WATNAUTACO	DIAVITAONA	,	
1 . 51	. SQNHKKKLIG	TEELVGLENL	DIVTEINUDU	VLEQRQRQVP	HSAVTARVAI	_	
101				VLEFWVGVSA			
151	LPRFAAISEN	LYFRLKNSLE	RDNHFIRKGD	ERQLDRHYGL	LARLRVLISN	Ī	
201				SAGHVYSVGT			
251			WSKRNIKAGT				
			_				
a006-1/m006-1	95.7% ident	•		2.0	40	50	
006.1	C	10	20	30 VYPVFGGWAIN			
a006-1.pep	5(NUKKKTIGIE.	11111111111 1111111111111	IIIIIII III	11111	PEINDAAP	
m006-1	MWKMIKHTA	THRKRLIGTE:	SLVGLENLLML	VYPVFGGRAIN	AVIAGEVWOAL	LYALVVL	
MOOO I	100101111111111111111111111111111111111			40	50	60	
	60	70	80	90	100	110	
a006-1.pep	LMWLVGAARI	RIADTRTFTRI	YTEIAVPVVLE	QRQRQVPHSAV	TARVALSREF	/SFFEEHL	
m006-1				QRQRQVPHSAV 100	TARVALSREF 110	120	
	70	0 80	90	100	110	120	
	120	130	140	150	160	170	
a006-1.pep	PIAATSVVS			LALFLWLLPRF.	AAISENLYFRI	LKNSLERD	
2000 11909	11111111	1111111111	11111111111	1111111111	1111111111	1:11111	
m006-1	PIAATSVVS	IFGACIMLLVL	EFWVGVSAVGI	LALFLWLLPRF			
	13	· 140	150	160	170	180	
			000	010	220	230	
006.1	180	190	200	210 FGYLCVGTAMG	220		
a006-1.pep	NHFIRKGOE	RQLDKHIGLLA	KTKATISHKEW		ILLUIIIIIII	IIIIIIII	
m006-1	NHFTRKGDR	ROLYRHYGLLA	RLRVLTSNREA	FGYLCVGTAMG	ILFGFAFVMM	rLKGYSSA	
11000 1	19			220	230	240	
	240	250	260	270	280		
a006-1.pep				DIGQRIEWSKR			
				111111111111			
m006-1				DIGQRIEWSER 280	NIKAGTX		
	25	0 260	2/0	200			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 37>: g007 . seq

1 atgaACACAA CCCGACTGCC GACCGCCTTC ATCTTGTGCT GCCTCTGcgC 51 CGCcGCTTCT GCCGccgaca acAGCatcat gaCaAAAGGG CAAAAAGTGT
101 ACGAATCcAa ctGCATCGCC TGCCACGGCA AGAAAGGGG AGGGCGCGGC
151 ACTGCGtTTC CTccgctTTT CCggtcgGac tgtattatga acaAACCGCa
201 cgTCCtgctg cacagcatgg tcaaaggCAt cgacgggaca ttcaaagtgg 251 agcggcaaaa cctacgacgg atttatgCcc gcaaccgcca tcagcgATGC 301 GGACATTGCC GCCGTCGCCA CTTATATCAT GAACGCCTTT GA

This corresponds to the amino acid sequence <SEQ ID 38; ORF 007.ng>: g007.pep

- MNTTRLPTAF ILCCLCAAAS AADNSIMTKG QKVYESNCIA CHGKKGEGRG TAFPPLFRSD CIMNKPHVLL HSMVKGIDGT FKVERQNLRR IYARNRHQRC
- 51
- GHCRRRHLYH ERL* 101

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 39>:

WO 99/057280 PCT/US99/09346

179

```
m007.seq
              ATGAACACAA CCCGACTGCC GACCGCCCTC GTCTTGGGCT GCTTCTGCGC
           1
              CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT
          51
         101 ACGAATCCAA CTGCGTCGCC TGCCACGGCA AAAAGGGCGA AGGCCGCGGA
              ACCATGTTTC CGCCGCTCTA CCGCTCCGAC TTCATCATGA AAAAACCGCA
         151
              GGTGCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTC.
         201
              AACGGCAAAA CCTACAACGG ATTCATGCCC GCAACCGCCA TCAGCGATGC
         251
              GGACATTGCC GCCGTCGCCA CTTATATCAT GAACGCCTTT GA
         301
This corresponds to the amino acid sequence <SEQ ID 40; ORF 007>:
    m007.pep
              MNTTRLPTAL VLGCFCAAAS AADNSIMTKG QKVYESNCVA CHGKKGEGRG
              TMFPPLYRSD FIMKKPQVLL HSMVKGINGT IKVXRQNLQR IHARNRHQRC
          51
         101
              GHCRRRHLYH ERL*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 41>:
     a007.seq
              ATGAACACAA CCCGACTGCC GACCGCCCTC GTCTTGGGCT GCCTCTGCGC
           1
              CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT
          51
         101 ACGAATCCAA CTGCGTCGCC TGCCACGGCA AAAAGGGCGA AGGCCGCGGA
         151 ACCATGTTTC CGCCGCTCTA CCGCTCCGAC TTCATCATGA AAAAACCGCA
         201 GGTGCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTC.
              AACGGCAAAA CCTACAACGG ATTCATGCCC GCCACTGCCA TCAGCGATGC
         251
              GGACATTGCC GCCGTCGCCA CTTATATCAT GAACGCCTTT GA
This corresponds to the amino acid sequence <SEQ ID 42; ORF 007.a>:
     a007.pep
              MNTTRLPTAL VLGCLCAAAS AADNSIMTKG QKVYESNCVA CHGKKGEGRG
           1
              TMFPPLYRSD FIMKKPQVLL HSMVKGINGT IKVXRQNLQR IHARHCHQRC
          51
              GHCRRRHLYH ERL*
          101
            97.3% identity over a 113 aa overlap
m007/a007
                                  20
                                            30
                                                     40
                         10
                 MNTTRLPTALVLGCFCAAASAADNSIMTKGQKVYESNCVACHGKKGEGRGTMFPPLYRSD
     m007.pep
                 MNTTRLPTALVLGCLCAAASAADNSIMTKGQKVYESNCVACHGKKGEGRGTMFPPLYRSD
     a007
                                                     40
                         10
                                  20
                                            30
                                                    100
                                  80
                                            90
                 FIMKKPQVLLHSMVKGINGTIKVXRQNLQRIHARNRHQRCGHCRRRHLYHERLX
     m007.pep
                 FIMKKPQVLLHSMVKGINGTIKVXRQNLQRIHARHCHQRCGHCRRRHLYHERLX
     a007
                                  80
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 007 shows 86.7% identity over a 113 aa overlap with a predicted ORF (ORF 007.ng)
from N. gonorrhoeae:
     m007/g007
                                   20
                                                      40
                                                               50
                                                                         60
                 {\tt MNTTRLPTALVLGCFCAAASAADNSIMTKGQKVYESNCVACHGKKGEGRGTMFPPLYRSD}
     m007.pep
                  g007
                 MNTTRLPTAFILCCLCAAASAADNSIMTKGQKVYESNCIACHGKKGEGRGTAFPPLFRSD
                         10
                                   20
                                            30
                                                      40
                                                               50
                                   80
                                            90
                                                     100
     m007.pep
                 FIMKKPOVLLHSMVKGINGTIKVXRQNLQRIHARNRHQRCGHCRRRHLYHERLX
```

```
g007
                  CIMNKPHVLLHSMVKGIDGTFKVERQNLRRIYARNRHQRCGHCRRRHLYHERL
                                    80
                                              90
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 43>:
     g007-1.seq (partial)
            1 ATGAACACAA CCCGACTGCC GACCGCCTTC ATCTTGTGCT GCCTCTGCGC
           51 CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT
          101 ACGAATCCAA CTGCATCGCC TGCCACGGCA AGAAAGGGGA AGGGCGCGGC
          151 ACTGCGTTTC CTCCGCTTTT CCGGTCGGAC TATATTATGA ACAAACCGCA
          201 CGTCCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTCA
          251 ACGGCAAAAC CTACAACGGA TTCATGCCCG CAACCGCCAT CAGCGAIGGG
301 GACATTGCCG CCGTCGCCAC TTATATCATG AACGCCTTTG ACAACGGCGG
          351 CGGAAGCGTT ACCGAAAAAG ACGTAAAACA GGCAAAAGGC AAAAAAAAC.
This corresponds to the amino acid sequence <SEQ ID 44; ORF 007-1.ng>:
     g007-1.pep (partial)
            1 MNTTRLPTAF ILCCLCAAAS AADNSIMTKG QKVYESNCIA CHGKKGEGRG
              TAFPPLFRSD YIMNKPHVLL HSMVKGINGT IKVNGKTYNG FMPATAISDA
          101 DIAAVATYIM NAFDNGGGSV TEKDVKQAKG KKN...
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 45>:
     m007-1.seq
            1 ATGAACACAA CCCGACTGCC GACCGCCCTC GTCTTGGGCT GCTTCTGCGC
           51 CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT
          101 ACGAATCCAA CTGCGTCGCC TGCCACGGCA AAAAGGGCGA AGGCCGCGGA
          151 ACCATGTTC CGCCGCTCTA CCGCTCCGAC TTCATCATGA AAAAACCGCA
          201 GGTGCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTCA
251 ACGGCAAAAC CTACAACGGA TTCATGCCCG CAACCGCCAT CAGCGATGCG
          301 GACATTGCCG CCGTCGCCAC TTATATCATG AACGCCTTTG ACAACGCCGG
          351 CGGAAGCGTT ACCGAAAAAG ACGTAAAACA GGCAAAAAGC AAAAAAAACT
          401 AA
This corresponds to the amino acid sequence <SEQ ID 46; ORF 007-1>
     m007-1.pep
               MNTTRLPTAL VLGCFCAAAS AADNSIMTKG QKVYESNCVA CHGKKGEGRG
               TMFPPLYRSD FIMKKPOVLL HSMVKGINGT IKVNGKTYNG FMPATAISDA
           51
          101 DIAAVATYIM NAFDNGGGSV TEKDVKQAKS KKN*
m007-1 / g007-1 91.7% identity in 133 aa overlap
                                    20
                                              30
                                                        40
                  MNTTRLPTALVLGCFCAAASAADNSIMTKGQKVYESNCVACHGKKGEGRGTMFPPLYRSD
     m007-1.pep
                  q007-1
                  MNTTRLPTAFILCCLCAAASAADNSIMTKGQKVYESNCIACHGKKGEGRGTAFPPLFRSD
                                    20
                                              30
                                                         40
                                              90
                                                        100
                  FIMKKPQVLLHSMVKGINGTIKVNGKTYNGFMPATAISDADIAAVATYIMNAFDNGGGSV
     m007-1.pep
                  g007-1
                  YIMNKPHVLLHSMVKGINGTIKVNGKTYNGFMPATAISDADIAAVATYIMNAFDNGGGSV
                          70
                                    80
                                              90
                                                       100
                                                                            120
                         130
                  TEKDVKQAKSKKNX
     m007-1.pep
                  1111111111:111
     a007-1
                  TEKDVKQAKGKKN
                         130
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 47>:
     a007-1.seg (partial)
            1 ATGAACACA CCCGACTGCC GACCGCCCTC GTCTTGGGCT GCCTCTGCGC
           51 CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT
```

101 ACGAATCCAA CTGCGTCGCC TGCCACGGCA AAAAGGGCGA AGGCCGCGGA

181

```
ACCATGTTC CGCCGCTCTA CCGCTCCGAC TTCATCATGA AAAAACCGCA
GGTGCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTCA
ACGGCAAAAC CTACAACGGA TTCATGCCCG CCACTGCCAT CAGCGATGCG
GACATTGCCG CCGTCGCCAC TTATATCATG AACGCCTTTG ACAACGGCGG
GCGAAGCGTT ACCGAAAAAG ACGTAAAACA GGCAAAAAAC AAAAAA..
```

This corresponds to the amino acid sequence <SEQ ID 48; ORF 007-1.a>: a007-1.pep (partial)

- 1 MNTTRLPTAL VLGCLCAAAS AADNSIMTKG QKVYESNCVA CHGKKGEGRG 51 TMFPPLYRSD FIMKKPQVLL HSMVKGINGT IKVNGKTYNG FMPATAISDA
- 101 DIAAVATYIM NAFDNGGGSV TEKDVKQAKN KK..

m007-1/a007-1 98.5% identity in 132 aa overlap

m007-1.pep	10 MNTTRLPTALVLGCF	20 CAAASAADN	30 ISIMTKGQKVYI	40 ESNCVACHGK	50 KGEGRGTMFE	60 PPLYRSD
a007-1	MNTTRLPTALVLGCL	CAAASAADN 20	ISIMTKGQKVYI 30	ESNCVACHGK 40	KGEGRGTMFE 50	PPLYRSD 60
	70	80	90	100	110	120
m007-1.pep	FIMKKPQVLLHSMVK	GINGTIKVN	IGKTYNGFMPAT	raisdadiaa	VATYIMNAFI	ONGGGSV
a007-1						
	70	80	90	100	110	120
	130					
m007-1.pep	TEKDVKQAKSKKNX					
•						
a007-1	TEKDVKQAKNKK 130					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 49>: 9008.seq

1	ATGAACAACA	GACATTTTGC	CGTCAtcgCC	TTGGGCAGCA	ACCTTGACAA
51	CCCCGCACAA	CAAATacgcg	gcgcattaga	cgcgctctcg	tcccatcctg
101	acatccggct	tgaaCaggtt	tcctcactgt	aTatgaccgc	acctgtcggt
151	tacgAcaaTC	agcccgATTT	CATCaatgcc	gTCTgcaccg	TTTCCACCAC
201	CtTGGACGGC	ATTGcccTGC	TTGCCgaACT	CAAccgTATC	GAAGCCGATT
251	TCGGACGCGA	aCGCAGTTTC	CGCAATGCAC	CGCGCACATT	GGATTTGGAC
301	ATTATCGACT	TTGACGGCAT	CTCCAGCGAC	GACCCCCGCC	TTACCCTGCC
351	GCATCCGCGC	GCGCACGAAC	GCAGTTTCGT	CATACGCCCT	TTGGCAGAAA
401	TCCTCCCTGA	TTTTATTTTG	GGAAAATACG	GAAAGGTTGT	CGAATTGTCA
451	AAACGGCTGG	GCAATCAAGG	CATCCGTCTT	TTACCGGACA	GGTAA

This corresponds to the amino acid sequence <SEQ ID 50; ORF 008.ng>: g008.pep

```
1 MNNRHFAVIA LGSNLDNPAQ QIRGALDALS SHPDIRLEQV SSLYMTAPVG
51 YDNQPDFINA VCTVSTTLDG IALLAELNRI EADFGRERSF RNAPRTLDLD
101 IIDFDGISSD DPRLTLPHPR AHERSFVIRP LAEILPDFIL GKYGKVVELS
151 KRLGNQGIRL LPDR*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 51>: m008.seq

```
1 ATGAACAACA GACATTTTGC CGTCATCGCC CTGGGCAGTA ATCTTGAAAA
51 CCCTGCTCAA CAGGTACGCG CCGCATTGGA CACGCTGTCG TCCCATCCTG
101 ACATCCGTCT TAAACAGGCT TCCTCACTGT ATATGACCGC GCCCGTCGGT
151 TACGACAATC AGCCCGATTT TGTCAATGCC GTCTGCACCG TTTCCACCAC
201 TCTGGACGGC ATTGCCyTGC TTGCCGAACT CAACCGTATC GAGGCTGATT
251 TCGGACGCGA ACGCAGCTTC CGCAACGCGC CGCGCACATT GKATTTGGAC
301 ATTATCGACT TTGACGGCAT CTCCAGCGAC GACACSCGAC TCACCTTGCC
```

```
351 GCATCCGCGC GCGCACGAAC GCAGTTTCGT CATCCGCCCT TTGGCAGAAA
              TCCTCCCTGA TTTTGTTTTA GGAAAACACG GAAAGGTTGC CGAATTGTCA
              AAACGGYTGG GCAATCAAGG TATCCGTCTT TTACCGGACA GGTAATT
This corresponds to the amino acid sequence <SEQ ID 52; ORF 008>:
    т008.рер
              MNNRHFAVIA LGSNLENPAQ QVRAALDTLS SHPDIRLKQA SSLYMTAPVG
              YDNQPDFVNA VCTVSTTLDG IALLAELNRI EADFGRERSF RNAPRTLXLD
          51
              IIDFDGISSD DTRLTLPHPR AHERSFVIRP LAEILPDFVL GKHGKVAELS
             KRLGNQGIRL LPDR*
         151
The following partial DNA sequence was identified in N. meningitidis SEQ ID 53>:
    a008.seq
              ATGAACAACA GACATTTTGC CGTCATCGCC CTGGGCAGTA ATCTTGAAAA
          51 CCCTGCCCAA CAGGTACGCG CCGCATTGGA CACGCTGTCG TCCCATCCTG
         101
              ACATCCGTCT TAAACAGGCT TCCTCACTGT ATATGACCGC GCCCGTCGGT
              TACGACAATC AGCCCGATTT CGTCAATGCC GTCTGCACCG TTTCCACCAC
         151
         201 CTTGGACGGC ATTGCCCTGC TTGCCGAACT CAACCGTATC GAAGCCGATT
         251 TCGGACGCGA ACGCAGCTTC CGCAACGCGC CGCGCACATT GGATTTGGAC
         301 ATTATCGACT TTGACGGCAT CTCCAGCGAC GACCCCCGAC TCACCCTGCC
         351
              GCATCCGCGC GCGCACGAAC GCAGTTTCGT CATACGCCCT TTGGCAGAAA
         401
             TCCTCCCTGA TTTTATTTTG GGAAAACACG GAAAGGTTGC CGAATTGTCA
         451 AAACGGCTGG GCAATCAAGG CATCCGTCTT TTACCGGATA AGTAA
This corresponds to the amino acid sequence <SEQ ID 54; ORF 008.a>:
    a008.pep
              MNNRHFAVIA LGSNLENPAQ QVRAALDTLS SHPDIRLKQA SSLYMTAPVG
          51 YDNQPDFVNA VCTVSTTLDG IALLAELNRI EADFGRERSF RNAPRTLDLD
              IIDFDGISSD DPRLTLPHPR AHERSFVIRP LAEILPDFIL GKHGKVAELS
         101
              KRLGNQGIRL LPDK*
            97.6% identity over a 164 aa overlap
                                           30
                                                    40
                 MNNRHFAVIALGSNLENPAQQVRAALDTLSSHPDIRLKQASSLYMTAPVGYDNQPDFVNA
    m008.pep
                 MNNRHFAVIALGSNLENPAQQVRAALDTLSSHPDIRLKQASSLYMTAPVGYDNQPDFVNA
                                           90
                                                   100
     m008.pep
                 VCTVSTTLDGIALLAELNRIEADFGRERSFRNAPRTLXLDIIDFDGISSDDTRLTLPHPR
                 VCTVSTTLDGIALLAELNRIEADFGRERSFRNAPRTLDLDIIDFDGISSDDPRLTLPHPR
                        70
                                 80
                                           90
                                                   100
                                                            110
                                 140
                                          150
                 AHERSFVIRPLAEILPDFVLGKHGKVAELSKRLGNQGIRLLPDRX
    m008.pep
                 a008
                 AHERS FVIRPLAEILPD FILGKHGKVAELSKRLGNOGIRLLPDKX
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

130

140

ORF 008 shows 92.7% identity over a 164 aa overlap with a predicted ORF (ORF008.ng) from N. gonorrhoeae:

150

160

m008/q008

m008/a008

a008

a008

	10	20	30	40	50	60
m008.pep	MNNRHFAVIALGS	NLEN PAQQVRA	ALDTLSSHPD	IRLKQASSLY	MTAPVGYDNQ	PDFVNA
	1111111111111	11:1111:1:	111111111111111111111111111111111111111	111:1:111		111:11
g008	MNNRHFAVIALGS	NLDNPAQQIRG	ALDALSSHPD	IRLEQVSSLY	MTAPVGYDNQ	PDFINA

PCT/US99/09346 WO 99/057280

183

	10	20	30	40	50	60
	70	80	90	100	110	120
m008.pep	VCTVSTTLDGIALL	AELNRIEADF	GRERSFRNAP	RTLXLDIIDF	DGISSDDTRL	TLPHPR
	[11]]]]]]	1111111111	111111111	111 111111	11111111111	111111
g008	VCTVSTTLDGIALL	AELNRIEADF	GRERSFRNAP:	RTLDLDIIDF	DGISSDDPRL	TLPHPR
	70	80	90	100	110	120
	130	140	150	160		
m008.pep	AHERSFVIRPLAEI	LPDFVLGKHG	KVAELSKRLG	NQGIRLLPDR	X	
	[1111:111:1	F1:111111	1111111111	1	
g008	AHERSFVIRPLAEI	LPDFILGKYG	KVVELSKRLG	NQGIRLLPDR	X	
	130	140	150	160		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 55>: g009.seq

- 1 51 CGAACAAAT ACCCATCGCC GCGCCGACGC AGAGATAGCC GAAGGCTTCG
- 101 CGGTTGGAAA TCAGCACACG CAGGCGCGAA ACCAGTCCGT AATGGCGGTA 151 CAGCTGCCGC TCGTCGCCTT TTCGGATAAA GTGGTTGTcg cGTTCCAAGC
- 201 TGTTGTTCAG GCGGAAATAC AGGTTTTCGC TGATGGCGGC AAAACGTGGC
- 251 AaaaGCCATA A

This corresponds to the amino acid sequence <SEQ ID 56; ORF 009.ng>: g009.pep

- MPRAAVAFER HHHKSKAEQN THRRADAEIA EGFAVGNQHT QARNQSVMAV
- 51 QLPLVAFSDK VVVAFQAVVQ AEIQVFADGG KTWQKP*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 57>: m009.seq

- 1
- 51 CGAACAAAT ACCCATCGCC GTGCCGACGC AGAGATAGCC GAAGGCTTCG
- 101 CGGTTGGAAA TCAGCACACG CAGGCGCGCA AGCAGTCCGT AATGGCGGTA 151 CAGCTGCCGC CGGTCGCCTT TTCGGATAAA GTGGTTGTCG CGTTCCAAGC
- 201 TGTTGTTCAG GCGGAAATAC AGGTTTTCGC TGATGGCGGC AAAACGTGGC
- 251 AAAAGCCATA A

This corresponds to the amino acid sequence <SEQ ID 58; ORF 009>: т009.рер

- MPRAAVAFER HHHKSKAEQN THRRADAEIA EGFAVGNQHT QARKQSVMAV
- QLPPVAFSDK VVVAFQAVVQ AEIQVFADGG KTWQKP*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 009 shows 97.7% identity over a 86 aa overlap with a predicted ORF (ORF 009.ng) from N. gonorrhoeae:

m009/g009

	10	20	30	40	50	60
m009.pep	MPRAAVAFERHHHK	SKAEQNTHRR	ADAEIAEGFA	VGNQHTQARK	OSVMAVQLPP	VAFSDK
			111111111	111111111:		111111
g009	MPRAAVAFERHHHK.	SKAEQNTHRR	ADAEIAEGFA	VGNQHTQARN	QSVMAVQLPL	VAFSDK
-	10	20	30	40	50	60
	70	80				
m009.pep	VVVAFQAVVQAEIQ	VFADGGKTWQ	KPX			
	111111111111111		111			
g009	VVVAFQAVVQAEIQ	VFADGGKTWQ	KPX			
-	70	80				

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 59>:
    a009.seq
             1
          51
             CGAACAAAT ACCCATCGCC GTGCCGACGC AGAGATAGCC GAAGGCTTCG
             CGGTTGGAAA TCAGCACACG CAGGCGCGCA AGCAGTCCGT AATGGCGGTC
         101
             CAGCTGCCGC TCGTCGCCTT TTCGGATAAA GTGGTTGTCG CGTTCCAAGC
         151
             TGTTCTTCAG GCGGAAATAC AGGTTTTCGC TGATGGCGGC AAAACGTGGC
         251 AAAAGCCATA A
This corresponds to the amino acid sequence <SEQ ID 60; ORF 009.a>:
    a009.pep
             MPRAAVAFER HHHKSKAEON THRRADAEIA EGFAVGNOHT QARKQSVMAV
             QLPLVAFSDK VVVAFQAVLQ AEIQVFADGG KTWQKP*
           97.7% identity over a 86 aa overlap
m009/a009
                                          30
                        10
                                 20
                                                            50
                MPRAAVAFERHHHKSKAEQNTHRRADAEIAEGFAVGNQHTQARKQSVMAVQLPPVAFSDK
    m009.pep
                {\tt MPRAAVAFERHHHKSKAEQNTHRRADAEIAEGFAVGNQHTQARKQSVMAVQLPLVAFSDK}
    a009
                                 20
                                                   40
                       70
    m009.pep
                VVVAFQAVVQAEIQVFADGGKTWQKPX
                11111111:11111111111111111
    a009
                VVVAFQAVLQAEIQVFADGGKTWQKPX
                                 80
                       70
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 61>:

```
ATGGGTTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGCGG
  1
     TGCAGGTTTA CGTGCAGCCC TCCAATTATC CAAATCCGGT TTGAATTGTG
 51
     CCGTTTTGTC TAAAGTGTTC CCGACCCGCT CGCATACCGT AGCGGCGCAG
101
     GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAGGACC GTTGGGACTG
151
     GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGCTGGGC GACCAAGATG
201
     CGATTGAGTT TATGTGTCGC GCTGCGCCTG AAGCGGTGAT TGAGTTGGAA
251
301 CACATGGGTA TGCCTTTTGA CCGCGTTGAA AGCGGCAAAA TTTATCAGCG
     TCCTTTCGGC GGACATACTG CCGAACATGG TAAACGTGCG GTAGAACGTG
     CATGTGCGGT TGCCGACCGT ACCGGTCATG CGATGTTGCA TACTTTGTAC
 401
 451
      CAACAAACG TCCGTGCCAA TACACAATTC TTTGTGGAAT GGACGGCGCA
      AGATTTGATT CGTGATGAAA ACGGCGATGT CGTCGGCGTA ACCGCCATGG
 501
551 AAATGGAAAC GGGCGAAGTT TATATTTTCC ACGCCAAGGC CGTGATGTTT
     GCTACCGGTG GCGGCGGTCG TATTTATGCT TCTTCTACCA ATGCTTATAT
 601
     GAATACCGGT GACGGTTTGG GCATTTGCGC CCGTGCGGGC ATTCCGTTGG
 651
 701
     AAGATATGGA ATTCTGGCAA TTCCACCCGA CCGGCGTGGC GGGTGCGGGC
      GTGTTGATTA CCGAAGGCGT ACGCGGCGAG GGCGGTATTC TGTTGAacgc
 751
     cgacggcgaA cgcTTTATGG AAcgctatgc GCcgACCGta aAagaCTTGG
 801
      CTTCTCGCga cgtGGTTTCA CgcgcGatgG CGatggaAAt ctatgaaggt
 851
 901
      cgcggctgTG GtaaAAAcaA agaCCacgtC TTACTGAAAA TCGACcAtAt
 951
      cqqtGCAGAA AAAATTATGG AAAAACTGCC GGGCATCCGC GAGATTTCCA
      TTCagtttgc cGGTATCGAT CCGATTAAAG ACCCGATTcc ggttgTGCCG
1001
1051
     ACTACCCACT ATATGATGGG CGGCATTCcq aCCAATTATC ACGGTGAAGT
1101
      TGTTGTTCCG CAAGGCGACG AGTACGAAGT ACCTGTAAAA GGCCTGTATG
      CCGCAGGTGA GTGCGCCTGT GCTTCCGTAC ACGGTGCGAA CCGTTTGGGT
1151
      ACGAACTCCC TGCTGGACTT GGTGGTGTTC cgcccaaccc cccggtga
```

This corresponds to the amino acid sequence <SEQ ID 62; ORF 010.ng>: g010.pep

185

1 MGFPVRKFDA VIVGGGGAGL RAALQLSKSG LNCAVLSKVF PTRSHTVAAQ 51 GGISASLGNV OEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE 101 HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY 151 QQNVRANTQF FVEWTAQDLI RDENGDVVGV TAMEMETGEV YIFHAKAVMF 201 ATGGGGRIYA SSTNAYMNTG DGLGICARAG IPLEDMEFWQ FHPTGVAGAG VLITEGVRGE GGILLNADGE RFMERYAPTV KDLASRDVVS RAMAMEIYEG 251 301 RGCGKNKDHV LLKIDHIGAE KIMEKLPGIR EISIQFAGID PIKDPIPVVP 351 TTHYMMGGIP TNYHGEVVVP QGDEYEVPVK GLYAAGECAC ASVHGANRLG 401 TNSLLDLVVF RPTPR*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 63>: m010.seq (PARTIAL)

..nTCCAATTAT CCAAATCCGG TCTGAATTGT GCCGTTTTGT CTAAAGTGTT CCCGACCCGT TCGCATACCG TAGCGGCGCA GGGCGGTATT TCCGCCTCTn TGGGTAATGT GCAGGAAGAC CGTTGGGACT GGCACATGTA CGATACCGTG AAAGGTTCCG ACTGGTTGGG CGACCAAGAT GCGATTGAGT TTATGTGCCG CGCCGCGCT GAAGCCGTAA TTGAGTTGGA ACACATGGGT ATGCCTTTTG ACCGTGTGGA AAGCGGTAAA ATTTATCAGC GTCCTTTCGG CGGCCATACT 251 GCCGAACACG GTAAACGCGC GGTAGAACGC GYCTGTGCGG TTGCCGACCG 301 TACAGGTCAT GCGATGCTGC ATACTTTGTA CCAACAAAAC GTCCGTGCCA 401 ATACGCAATT CTTTGTGGAA TGGACGGCAC AAGATTTGAT TCGTGATGAA AACGGCGATG TCGTCGGCGT AACCGCCATG GAAATGGAAA CCGGCGAAgT 451 TTATATTTTC CACGCTAAAG CTGTGATGTT TGCTACCGGC GGCGGCGGTC 501 GTATTTATGC GTCTTCTACC AATGCCTATA TGAATACCGG CGATGGTTTG 551 GGTATTTGTG CGCGTGCAGG TATCCCGTTG GAAGACATGG AATTCTGGCA ATTCCAGCCG ACCGGCGTGG CGGGTGCGGG CGTGTTGATT ACCGAA....

This corresponds to the amino acid sequence <SEQ ID 64; ORF 010>:

m010.pep (PARTIAL)

..XQLSKSGLNC AVLSKVFPTR SHTVAAQGGI SASXGNVQED RWDWHMYDTV 1 KGSDWLGDQD AIEFMCRAAP EAVIELEHMG MPFDRVESGK IYQRPFGGHT 51 AEHGKRAVER XCAVADRTGH AMLHTLYQQN VRANTQFFVE WTAQDLIRDE NGDVVGVTAM EMETGEVYIF HAKAVMFATG GGGRIYASST NAYMNTGDGL GICARAGIPL EDMEFWQFQP TGVAGAGVLI TE...

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 65>:

a010.seq ATGGGCTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGTGG TGCAGGTTTA CGCGCANCCC TCCAATTATC CAAATCCGGT CTGAATTGTG 101 CCGTTTTGTC TAAAGTGTTC CCGACCCGTT CGCATACCGT AGCGGCGCAG GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAAGACC GTTGGGACTG 201 GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGTTGGGC GACCAAGATG 251 CGATTGAGTT TATGTGCCGC GCCGCGCCTG AAGCCGTAAT TGAGTTGGAA 301 CACATGGGTA TGCCTTTTGA CCGTGTGGAA AGCGGTAAAA TTTATCAGCG 351 TCCTTTCGGC GGCCATACTG CCGAACACGG TAAACGCGCG GTAGAACGCG CCTGTGCNGT TGCCGACCGT ACAGGTCATG CGATGCTGCA TACTTTGTAC 451 CAACAAATG TCCGTGCCAA TACGCAATTC TTTGTGGAAT GGACGGCACA 501 AGATTTGATT CGTGATGAAA ACGGCGATGT CGTCGGCGTA ACCGCCATGG 551 AAATGGAAAC CGGCGAAGTT TATATTTTCC ACGCTAAAGC TGTGATGTTT 601 GCTACCGGCG GCGCGGCCG TATTTATGCG TCTTCTACCA ATGCCTATAT 651 GAATACCGC GATGGTTTGG GTATTTGTGC GCGTGCAGGT ATCCCGTTGG 701 AAGACATGGA ATTCTGGCAA TTCCACCCGA CCGGCGTGGC AGGTGCGGGC 751 GTGTTGATTA CCGAAGGCGT ACGCGGCGAG GGCGGTATTC TGTTGAATGC 801 CGACGCGAA CGCTTTATGG AACGCTATGC GCCGACCGTA AAAGACTTGG 851 CTTCTCGCGA CGTTGTTTCC CGCGCGATGG CGATGGAAAT CTACGAAGGT CGCGGCTGCG GTAAAAACAA AGACCATGTC TTACTGAAAA TCGACCATAT 951 CGGCGCAGAA AAAATTATGG AAAAACTGCC GGGCATCCGC GAGATTTCCA 1001 TTCAGTTCGC CGGTATCGAT CCGATTAAAG ACCCGATTCC CGTTGTGCCG 1051 ACTACCCACT ATATGATGGG CGGTATTCCG ACCAACTACC ATGGCGAAGT 1101 TGTCGTTCCT CAAGGCGACG AATACGAAGT GCCTGTAAAA GGTCTGTATG
1151 CGGCAGGTGA GTGCGCCTGT GCTTCCGTAC ACGGTGCGAA CCGCTTGGGT
1201 ACGAACTCCC TGCTGGACTT AGTGGTATTC GGTAAAGCTG CCGGCGACAG 1251 CATGATTAAA TTCATCAAAG AGCAAAGCGA CTGGAAACCT TTGCCTGCTA

1301 1351 1401 1451 1501 1551 1601 1651 1701	GATGGTGAAA ATTGCACGCC GAGAAGTCAT AAGAGCAAAG CCTAATTGAA AATCACGCGG AACTGGATGA CAAACCGGTG	ACGTTGATGC GGCGTGTTCC GGCGATTGCC TGTGGAATAC GTGGCGAAAG TGCGCACGCT AACATACGCT CACACCAAGC	CAACGTATCG ATTGCGCCGC GTACTGATGA GAGCGTGTGA CGCGCGTATC CGACTTTGGT TCAGACGACC GTACCATTCA CTTTGAGCGT	GAACTGCAAC GATTCTGAGC AACGTACCGA GAGGCTTTGG GTCTGCCGAA ATCCTGAGCG GATGCCAATA	GCTCCGTACA AAAGGCGTTC AATCAAAGAC AATTGGATAA GCACGTAAAG CGATGATGAA CCTTGTCCTA
1701 1751	CAAACCGGTG AGCGCGTTTA	•	CTTTGAGCGT	GGAATACATC	AAACCGGCCA

This corresponds to the amino acid sequence <SEQ ID 66; ORF 010.a>:

```
a010.pep
         1 MGFPVRKFDA VIVGGGGAGL RAXLQLSKSG LNCAVLSKVF PTRSHTVAAQ
        51 GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE
      101 HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY
      151 QQNVRANTQF FVEWTAQDLI RDENGDVVGV TAMEMETGEV YIFHAKAVMF
201 ATGGGGRIYA SSTNAYMNTG DGLGICARAG IPLEDMEFWQ FHPTGVAGAG
      251 VLITEGVRGE GGILLNADGE RFMERYAPTV KDLASRDVVS RAMAMEIYEG
      301 RGCGKNKDHV LLKIDHIGAE KIMEKLPGIR EISIQFAGID PIKDPIPVVP
      351 TTHYMMGGIP TNYHGEVVVP QGDEYEVPVK GLYAAGECAC ASVHGANRLG
      401 TNSLLDLVVF GKAAGDSMIK FIKEQSDWKP LPANAGELTR QRIERLDNQT
451 DGENVDALRR ELQRSVQLHA GVFRTDEILS KGVREVMAIA ERVKRTEIKD
501 KSKVWNTARI EALELDNLIE VAKATLVSAE ARKESRGAHA SDDHPERDDE
      551 NWMKHTLYHS DANTLSYKPV HTKPLSVEYI KPAKRVY*
```

98.7% identity over a 231 aa overlap m010/a010

			10		30	
m010.pep		XQL ! I	SKSGLNCAVI	SKVFPTRSHT	VAAQGGISA:	SXGNV
a010	MGFPVRKFDAVIVGGG	_				
	10	20	30	40	50	60
	40 50	60	70	80	90	
m010.pep	QEDRWDWHMYDTVKGS	DWLGDQDAIE	FMCRAAPEAV	/IELEHMGMPF	DRVESGKIY	QRPFG
a010	QEDRWDWHMYDTVKGS	_				
	70	80	90	100	110	120
	100 110	120	130	140	150	
m010.pep	GHTAEHGKRAVERXCA	VADRTGHAML	HTLYQQNVR <i>A</i>	ANTQFFVEWT <i>P</i>	QDLIRDENG:	DVVGV
a010	GHTAEHGKRAVERACA	VADRTGHAML	,,,,,,,,,,,	ANTOFFVEWTA	QDLIRDENG	DVVGV
	130	140	150	160	170	180
	160 170	180	190	200	210	
m010.pep	TAMEMETGEVYIFHAK	AVMFATGGGG	RIYASSTNAY	/MNTGDGLGIC	ARAGIPLED	MEFWQ
a010	TAMEMETGEVYIFHAK	CAVMFATGGGG	RIYASSTNA	MNTGDGLGIC		_
	190	200	210	220	230	240
	220 230	•				
m010.pep	FQPTGVAGAGVLITE			*		
a010	FHPTGVAGAGVLITEG		ADGERFMER	YAPTVKDLASI	RDVVSRAMAM	EIYEG
	250	260	270	280	290	300

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from *N. gonorrhoeae*ORF 010 shows 98.7% identity over a 231 aa overlap with a predicted ORF (ORF 010.ng) from N. gonorrhoeae: m010.pep/g010.pep

			10	20	30	
m010.pep		XQL	.SKSGLNCAVI	SKVFPTRSH?	rvaaqggisa	SXGNV
		• • •	1111111111			1 111
g010	MGFPVRKFDAVIVGGG				_	
	10	20	30	40	50	60
	40 50	60	70	80	90	
m010 mon	40 50 QEDRWDWHMYDTVKGS		-			ODDEC
m010.pep		ILLLLLLLLL	IIICKAAFEA		IIIIIIIIII	LIIII
g010	OEDRWDWHMYDTVKGS	DWLGDODAIE		/IELEHMGMP1	FDRVESGKIY	ORPFG
9010	70	80	90	100	110	120
	100 110	120	130	140	150	
m010.pep	GHTAEHGKRAVERXCA	VADRTGHAMI	HTLYQQNVRA	NTQFFVEWT	AQDLIRDENG	DVVGV
			111111111			
g010	GHTAEHGKRAVERACA			_	-	
	130	140	150	160	170	180
	160 170	180	190	200	210	
m010.pep		CAVMFATGGGG				MEEWO
moro.pep		11111111111	1111111111			
g010	TAMEMETGEVYIFHAK	CAVMFATGGGG	RIYASSTNA	MNTGDGLGI	CARAGIPLED	MEFWO
3	190	200	210	220	230	240
	220 230					
m010.pep	FQPTGVAGAGVLITE					
	1:11111111111					
g010	FHPTGVAGAGVLITEG					•
	250	260	270	280	290	300

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 67>: g010-1.seq.

4				
ATGGGTTTTC	CTGTTCGCAA	GTTTGATGCC	GTGATTGTCG	GCGGTGGCGG
TGCAGGTTTA	CGTGCAGCCC	TCCAATTATC	CAAATCCGGT	TTGAATTGTG
CCGTTTTGTC	TAAAGTGTTC	CCGACCCGCT	CGCATACCGT	AGCGGCGCAG
GGCGGTATTT	CCGCCTCTCT	GGGTAATGTG	CAGGAGGACC	GTTGGGACTG
GCACATGTAC	GATACCGTGA	AAGGTTCCGA	CTGGCTGGGC	GACCAAGATG
CGATTGAGTT	TATGTGTCGC	GCTGCGCCTG	AAGCGGTGAT	TGAGTTGGAA
CACATGGGTA	TGCCTTTTGA	CCGCGTTGAA	AGCGGCAAAA	TTTATCAGCG
TCCTTTCGGC	GGACATACTG	CCGAACATGG	TAAACGTGCG	GTAGAACGTG
CATGTGCGGT	TGCCGACCGT	ACCGGTCATG	CGATGTTGCA	TACTTTGTAC
CAACAAAACG	TCCGTGCCAA	TACACAATTC	TTTGTGGAAT	GGACGCGCA
AGATTTGATT	CGTGATGAAA	ACGGCGATGT	CGTCGGCGTA	ACCGCCATGG
AAATGGAAAC	GGGCGAAGTT	TATATTTTCC	ACGCCAAGGC	CGTGATGTTT
GCTACCGGTG	GCGGCGGTCG	TATTTATGCT	TCTTCTACCA	ATGCTTATAT
GAATACCGGT	GACGGTTTGG	GCATTTGCGC	CCGTGCGGGC	ATTCCGTTGG
AAGATATGGA	ATTCTGGCAA	TTCCACCCGA	CCGGCGTGGC	GGGTGCGGGC
GTGTTGATTA	CCGAAGGCGT	ACGCGGCGAG		TGTTGAACGC
				AAAGACTTGG
CTTCTCGCGA	CGTGGTTTCA	CGCGCGATGG	CGATGGAAAT	CTATGAAGGT
CGCGGCTGTG	GTAAAAACAA	AGACCACGTC	TTACTGAAAA	TCGACCATAT
CGGTGCAGAA	AAAATTATGG	AAAAACTGCC	GGGCATCCGC	GAGATTTCCA
TTCAGTTTGC	CGGTATCGAT	CCGATTAAAG	ACCCGATTCC	GGTTGTGCCG
			ACCAATTATC	ACGGTGAAGT
				GGCCTGTATG
CCGCAGGTGA	GTGCGCCTGT	GCTTCCGTAC	ACGGTGCGAA	CCGTTTGGGT
	ATGGGTTTC TGCAGGTTTA CCGTTTTGTC GGCGGTATTT GCACATGTAC CGATTGAGTT CACATGGGTA TCCTTTCGGC CATGTGCGT CAACAAAACG AGATTTGATT AAATGGAAAC GCTACCGGT GAATACCGGT AAGATATGA CTTCTCGCGA CTCTCCGCA CGCGGCTGT CGGTGCAGAA TTCAGTTTGC ACTACCCACT TGTTGTTCCG	ATGGGTTTTC CTGTTCGCAA TGCAGGTTTA CGTGCAGCCC CCGTTTTGTC TAAAGTGTTC GGCGGTATTT CCGCCTCTCT GCACATGTAC GATACCGTGA CGATTGAGTT TATGTGTCGC CACATGGGTA TGCCTTTTGA TCCTTTCGGC GGACATACTG CATGTGCGT TGCCGACCGT CAACAAAACG TCCGTGCCAA AGATTTGATT CGTGATGAAA AAATGGAAAC GGCGGAGTT GCAACGGTG GACGGTTCG GAATACCGGT GACGGTTTGG AAGATATGGA ATTCTGGCAA GTGTTGATTA CCGAAGGCGT CGACGGCGAA CGCTTTATGG CTTCTCGCGA CGTGTTTCA CGCGGCTGTG GTAAAAACAA CGGTGCAGAA AAAATTATGG TTCAGTTTGC CGGTATCGAT ACTACCCACT ATATGATGGG TGTTGTTCCG CAAGGCGACG	ATGGGTTTTC CTGTTCGCAA GTTTGATGCC TGCAGGTTTA CGTGCAGCCC TCCAATTATC CCGTTTTGTC TAAAGTGTTC CCGACCCGCT GGCGGTATTT CCGCCTCTCT GGGTAATGTG GCACATGTAC GATACCGTGA AAGGTTCCGA CGATTGAGTT TATGTGTCGC GCTGCGCCTG CACATGGGTA TGCCTTTTGA CCGCGTTGAA TCCTTTCGGC GGACATACTG CCGAACATGG CAACAAAACG TCCGTGCCAA TACACAATTC AGATTTGATT CGTGATGAAA ACGGCGATGT AAATGGAAAC GGCGAAGTT TATATTTTCC GCTACCGGT GCGGCGGTCG TATTATGCT GAATACCGGT GACGGTTTGG GCATTTGGCA AGATATGGA ATTCTGGCAA TTCCACCCGA CGACGGCGAA CGCTTTATGG ACCGCGCGAG CGACGGCGAA CGCTTTATGG AACGCTATGC CTTCTCGCGA CGTGTTTCA CGCGCGATGG CGCGGCTGTG GTAAAAACAA AGACCACGTC CGGTGCAGAA AAAATTATGG AAAAACTGCC TTCAGTTTGC CGGTATCGAT CCGATTAAAG ACTACCCACT ATATGATGGG CGGCATTCCG TGTTGTTCCC CAAGGCGACG AGTACGAAGT	ATGGGTTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG TGCAGGTTTA CGTGCAGCCC TCCAATTATC CAAATCCGGT CCGTTTTGTC TAAAGTGTTC CCGACCCGCT CGCATACCGT GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAGGACC GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGCTGGGC CGATTGAGTT TATGTGTCGC GCTGCGCCTG AAGCGGTGAT CACATGGGTA TGCCTTTTGA CCGCGTTGAA AGCGGCAAAA TCCTTTCGGC GGACATACTG CCGAACATGG TAAACGTGCG CATGTGCGGT TGCCGACCGT ACCGGTCATG CGATGTTGCA CAACAAAACG TCCGTGCCAA TACACAATTC TTTGTGGAAT AGATTTGATT CGTGATGAAA ACGGCGATGT CGTCGGCGTA AAATGGAAAC GGGCGAAGTT TATATTTTCC ACGCCAAGGC GCTACCGGT GCGGGGTCG TATTATGCT TCTTCTACCA GAATACCGT GACGGTTTGG GCATTTGCG CCGTGGGC GAAGATATGAA ATTCTGGCAA TTCCACCCGA CCGGCGTGGC GTGTTGATTA CCGAAGGCGT ACGCGCGAG GGCGGTATTC CGACGGCGAA CGCTTTATGG AACGCTATGC CCGGCGTGGC GTGTTGATTA CCGAAGGCGT ACGCGCGAG GGCGGTATTC CGACGGCGAA CGCTTTATGG AACGCTATGC CGATGGAAAT CGCGGCTGTG GTAAAAACAA AGACCACGTC TTACTGAAAA CGGTGCAGAA AAAATTATGG AAAAACTGCC GGGCATCCGC TTCAGTTTGC CGGTATCGAT CCGATTAAAG ACCCGATTCC ACTACCCACT ATATGATGGG CGGCATTCCC ACCAATTACC

PCT/US99/09346 WO 99/057280

188

1201 ACGAACTCCC TGCTGGACTT GGTGGTGTTC cgcccaaccc cccggtga This corresponds to the amino acid sequence <SEQ ID 68; ORF 010-1.ng>: g010-1.pep 1 MGFPVRKFDA VIVGGGGAGL RAALQLSKSG LNCAVLSKVF PTRSHTVAAQ 51 GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE 101 HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY 151 QQNVRANTQF FVEWTAQDLI RDENGDVVGV TAMEMETGEV YIFHAKAVMF 201 ATGGGGRIYA SSTNAYMNTG DGLGICARAG IPLEDMEFWQ FHPTGVAGAG 251 VLITEGVRGE GGILLNADGE RFMERYAPTV KDLASRDVVS RAMAMEIYEG 301 RGCGKNKDHV LLKIDHIGAE KIMEKLPGIR EISIQFAGID PIKDPIPVVP 351 TTHYMMGGIP TNYHGEVVVP QGDEYEVPVK GLYAAGECAC ASVHGANRLG 401 TNSLLDLVVF RPTPR* g010-1 / P10444 Sp|P10444|DHSA ECOLI SUCCINATE DEHYDROGENASE FLAVOPROTEIN SUBUNIT gnl|PID|d1015210 (D90711) Succinate dehydrogenase, flavoprotein [Escherichia coli] gi|1786942 (AE000175) succinate dehydrogenase flavoprotein subunit [Escherichia coli] Length = 588 Score = 1073 (495.6 bits), Expect = 6.7e-169, Sum P(2) = 6.7e-169Identities = 191/303 (63%), Positives = 238/303 (78%) 1 MGFPVRKFDAVIVXXXXXXXXXXXXXXSKSGLNCAVLSKVFPTRSHTVAAQGGISASLGNV 60 Query: S+SG CA+LSKVFPTRSHTV+AQGGI+ +LGN M PVR+FDAV++ 1 MKLPVREFDAVVIGAGGAGMRAALQISQSGQTCALLSKVFPTRSHTVSAQGGITVALGNT 60 Sbjct: 61 QEDRWDWHMYDTVKGSDWLGDQDAIEFMCRAAPEAVIELEHMGMPFDRVESGKIYQRPFG 120 Query: ED W+WHMYDTVKGSD++GDQDAIE+MC+ PEA++ELEHMG+PF R++ G+IYQRPFG 61 HEDNWEWHMYDTVKGSDYIGDQDAIEYMCKTGPEAILELEHMGLPFSRLDDGRIYQRPFG 120 Sbjct: 121 GHTAEHGKRAVERACAVADRTGHAMLHTLYQQNVRANTQFFVEWTAQDLIRDENGDVVGV 180 Query: R A ADRTGHA+LHTLYQQN++ +T F EW A DL+++++G VVG 121 GOSKNFGGEQAARTAAAADRTGHALLHTLYQQNLKNHTTIFSEWYALDLVKNQDGAVVGC 180 Sbjct: 181 TAMEMETGEVYIFHAKAVMFATGGGGRIYASSTNAYMNTGDGLGICARAGIPLEDMEFWQ 240 Ouery: TA+ +ETGEV F A+A + ATGG GRIY S+TNA++NTGDG+G+ RAG+P++DME WQ 181 TALCIETGEVVYFKARATVLATGGAGRIYQSTTNAHINTGDGVGMAIRAGVPVQDMEMWQ 240 Sbjct: 241 FHPTGVAGAGVLITEGVRGEGGILLNADGERFMERYAPTVKDLASRDVVSRAMAMEIYEG 300 Query: FHPTG+AGAGVL+TEG RGEGG LLN GERFMERYAP KDLA RDVV+R++ +EI EG 241 FHPTGIAGAGVLVTEGCRGEGGYLLNKHGERFMERYAPNAKDLAGRDVVARSIMIEIREG 300 Sbjct: Query: 301 RGC 303 RGC Sbjct: 301 RGC 303 Score = 249 (115.0 bits), Expect = 6.7e-169, Sum P(2) = 6.7e-169 Identities = 53/102 (51%), Positives = 62/102 (60%) 309 HVLLKIDHIGAEKIMEKLPGIREISIQFAGXXXXXXXXXXXTTHYMMGGIPTNYHGEVV 368 Query: T HYMMGGIPT G+ + H LK+DH+G E + +LPGI E+S FA 310 HAKLKLDHLGKEVLESRLPGILELSRTFAHVDPVKEPIPVIPTCHYMMGGIPTKVTGQAL 369 Sbjct: 369 VPQGDEYEVPVKGLYAAGECACASVHGANRLGTNSLLDLVVF 410 Query: +V V GL+A GE AC SVHGANRLG NSLLDLVVF 370 TVNEKGEDVVVPGLFAVGEIACVSVHGANRLGGNSLLDLVVF 411 Sbict: The following partial DNA sequence was identified in N. meningitidis <SEQ ID 69>: m010-1.seq.. 1 ATGGGTTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGTGG 51 TGCAGGTTTA CGCGCAGCCC TCCAATTATC CAAATCCGGT CTGAATTGTG 101 CCGTTTTGTC TAAAGTGTTC CCGACCCGTT CGCATACCGT AGCGGCGCAg 151 GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAAGACC GTTGGGACTG

```
201 GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGTTGGGC GACCAAGATG
251 CGATTGAGTT TATGTGCCGC GCCGCGCCTG AAGCCGTAAT TGAGTTGGAA
301 CACATGGGTA TGCCTTTTGA CCGTGTGGAA AGCGGTAAAA TTTATCAGCG
351 TCCTTTCGGC GGCCATACTG CCGAACACGG TAAACGCGCG GTAGAACGCG
401 CCTGTGCGGT TGCCGACCGT ACAGGTCATG CGATGCTGCA TACTTTGTAC
```

451 CAACAAAACG TCCGTGCCAA TACGCAATTC TTTGTGGAAT GGACGGCACA 501 AGATTTGATT CGTGATGAAA ACGGCGATGT CGTCGGCGTA ACCGCCATGG 551 AAATGGAAAC CGGCGAAGTT TATATTTTCC ACGCTAAAGC TGTGATGTTT 601 GCTACCGGCG GCGGCGGTCG TATTTATGCG TCTTCTACCA ATGCCTATAT GAATACCGGC GATGGTTTGG GTATTTGTGC GCGTGCAGGT ATCCCGTTGG 701 AAGACATGGA ATTCTGGCAA TTCCACCCGA CCGGCGTGGC GGGTGCGGGC 751 GTGTTGATTA CCGAAGGCGT ACGCGGCGAG GGCGGTATTC TGTTGAATGC 801 CGACGCGAA CGCTTTATGG AACGCTATGC GCCGACCGTA AAAGACTTGG CTTCTCGCGA CGTTGTTTCC CGCGCGATGG CGATGGAAAT CTACGAAGGT 851 CGCGGCTGCG GTAAAAACAA AGACCATGTC TTACTGAAAA TCGACCATAT 901 951 CGGCGCAGAA AAAATTATGG AAAAACTGCC GGGCATCCGC GAGATTTCCA 1001 TTCAGTTCGC CGGTATCGAT CCGATTAAAG ACCCGATTCC CGTTGTGCCG 1051 ACTACCCACT ATATGATGGG CGGCATTCCG ACCAATTACC ACGGCGAAGT 1101 TGTCGTTCCG CAAGGTGAAG ATTACGAAGT GCCTGTAAAA GGTCTGTATG
1151 CGGCAGGTGA GTGCGCTTGT GCTTCCGTAC ACGGTGCGAA CCGCTTGGGT 1151 CGGCAGGTGA GTGCGCTTGT GCTTCCGTAC ACGGTGCGAA CCGCTTGGGT 1201 ACCAACTCCC TGTTGGACTT GGTGGTATTC GGTAAAGCTG CCGGCGACAG 1251 CATGATTAAA TTCATCAAAG AGCAAAGCGA CTGGAAACCT TTGCCTGCTA 1301 ATGCAGGTGA GTTGACCCGC CAACGTATCG AGCGTTTGGA CAACCAAACC 1351 GATGGTGAAA ACGTTGATGC ATTGCGTCGC GAACTGCAAC GCTCTGTACA 1401 ACTGCACGCC GGCGTGTTCC GTACTGATGA GATTCTGAGC AAAGGCGTTC GAGAAGTCAT GGCGATTGCC GAGCGTGTGA AACGTACCGA AATCAAAGAC 1501 AAGAGCAAAG TGTGGAATAC CGCGCGTATC GAGGCTTTGG AATTGGATAA 1551 CCTGATTGAA GTGGCGAAAG CGACTTTGGT GTCTGCCGAA GCACGTAAAG 1601 AATCACGCGG TGCGCACGCT TCAGACGACC ATCCTGAGCG CGATGATGAA 1651 AACTGGATGA AACATACGCT GTACCATTCA GATATCAATA CCTTGTCCTA CAAACCGGTG CACACCAAGC CTTTGAGCGT GGAATACATC AAACCGGCCA 1751 AGCGCGTTTA TTGATGA

This corresponds to the amino acid sequence <SEQ ID 70; ORF 010-1>: m010-1.pep..

```
MGFPVRKFDA VIVGGGGAGL RAALQLSKSG LNCAVLSKVF PTRSHTVAAQ
   GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE
51
    HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY
101
151 QQNVRANTQF FVEWTAQDLI RDENGDVVGV TAMEMETGEV YIFHAKAVMF
201 ATGGGGRIYA SSTNAYMNTG DGLGICARAG IPLEDMEFWQ FHPTGVAGAG
251 VLITEGVRGE GGILLNADGE RFMERYAPTV KDLASRDVVS RAMAMEIYEG
301 RGCGKNKDHV LLKIDHIGAE KIMEKLPGIR EISIQFAGID PIKDPIPVVP
    TTHYMMGGIP TNYHGEVVVP QGEDYEVPVK GLYAAGECAC ASVHGANRLG
351
401 TNSLLDLVVF GKAAGDSMIK FIKEQSDWKP LPANAGELTR QRIERLDNQT
451 DGENVDALRR ELORSVOLHA GVFRTDEILS KGVREVMAIA ERVKRTEIKD
501 KSKVWNTARI EALELDNLIE VAKATLVSAE ARKESRGAHA SDDHPERDDE
551 NWMKHTLYHS DINTLSYKPV HTKPLSVEYI KPAKRVY*
```

m010-1 / g010-1 99.5% identity in 410 aa overlap

m010-1 / g010-1	99.5% identity	in 410 da	Overlap			
	10	20	30	40	50	60
m010-1.pep	MGFPVRKFDAVIVO	GGGAGLRAAL	QLSKSGLNCA	VLSKVFPTRS	HTVAAQGGI	SASLGNV
• -		111111111111111111111111111111111111111	1111111111	441111111		
g010-1	MGFPVRKFDAVIVO	GGGAGLRAAL	QLSKSGLNCA	VLSKVFPTRS	HTVAAQGGI:	Baslgnv
_	10	20	30	40	50	60
	70	80	90	100	110	120
m010-1.pep	OEDRWDWHMYDTV	GSDWLGDQDA	IEFMCRAAPE	AVIELEHMG	PFDRVESGK:	IYQRPFG
		11111111111				
g010-1	QEDRWDWHMYDTVI	GSDWLGDQDA	IEFMCRAAPE	AVIELEHMG	PFDRVESGK	IYQRPFG
5.00	70	80	90	100	110	120
	130	140	150	160	170	180
m010-1.pep	GHTAEHGKRAVERA	CAVADRTGHA	MLHTLYQQNV	/RANTQFFVE	TAQDLIRDE	NGDVVGV
		111111111	11111111111	111111111		1111111
g010-1	GHTAEHGKRAVERA	CAVADRTGHA	MLHTLYQQNV	/RANTQFFVEV	TAQDLIRDE	NGDVVGV
•	130	140	150	160	170	180
	190	200	210	220	230	240
m010-1.pep	TAMEMETGEVYIF	LAKAVMFATGO	GGRIYASSTN	NAYMNTGDGL	SICARAGIPL	EDMEFWQ
	31111111111111	1111111111	1111111111	111111111	111111111	111111
g010-1	TAMEMETGEVYIFE	iakavmfatgo	GGRIYASSTN	NAYMNTGDGL	SICARAGIPL	edmefwq

	190	200	210	220	230	240
	250	260	270	280	290	300
m010-1.pep	FHPTGVAGAGVLIT	EGVRGEGGII	LLNADGERFME	ERYAPTVKDL	asrdvvsram	AMEIYEG
	111111111111111	111111111		111111111		
q010-1	FHPTGVAGAGVLIT	EGVRGEGGII	LLNADGERFME	ERYAPTVKDL	ASRDVVSRAM	
-	250	260	270	280	290	300
	310	320	330	340	350	360
m010-1.pep	RGCGKNKDHVLLKI	DHIGAEKIM	EKLPGIREISI	QFAGIDPIK	DPIPVVPTTH	YMMGGIP
	1111111111111111	1111111111	1111111111		1111111111	111111
g010-1	RGCGKNKDHVLLKI	DHIGAEKIM	EKLPGIREISI	(QFAGIDPIK	DPIPVVPTTH	YMMGGIP
3	310	320	330	340	350	360
	370	380	390	400	410	420
m010-1.pep	TNYHGEVVVPQGED	YEVPVKGLY	AAGECACASVI	GANRLGTNS:	LLDLVVFGKA	AGDSMIK
		1111111111	11111111111	1111111111	111111	
g010-1	TNYHGEVVVPQGDE	YEVPVKGLY	AAGECACASVI	HGANRLGTNS	LLDLVVFRPT	PRX
9	370	380	390	400	410	
	430	440	450	460	470	480
m010-1.pep	FIKEOSDWKPLPAN	AGELTRORI	ERLDNQTDGE	NVDALRRELQ	RSVQLHAGVF	RTDEILS
Pop		_	_			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 71>:

a010-1.seq.. ATGGGCTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGTGG 1 51 TGCAGGTTTA CGCGCANCCC TCCAATTATC CAAATCCGGT CTGAATTGTG 101 CCGTTTTGTC TAAAGTGTTC CCGACCCGTT CGCATACCGT AGCGGCGCAG GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAAGACC GTTGGGACTG GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGTTGGGC GACCAAGATG CGATTGAGTT TATGTGCCGC GCCGCGCCTG AAGCCGTAAT TGAGTTGGAA CACATGGGTA TGCCTTTTGA CCGTGTGGAA AGCGGTAAAA TTTATCAGCG 301 TCCTTTCGGC GGCCATACTG CCGAACACGG TAAACGCGCG GTAGAACGCG 351 CCTGTGCNGT TGCCGACCGT ACAGGTCATG CGATGCTGCA TACTTTGTAC 401 CAACAAAATG TCCGTGCCAA TACGCAATTC TTTGTGGAAT GGACGGCACA 451 AGATTTGATT CGTGATGAAA ACGGCGATGT CGTCGGCGTA ACCGCCATGG 501 551 AAATGGAAAC CGGCGAAGTT TATATTTTCC ACGCTAAAGC TGTGATGTTT GCTACCGGCG GCGGCGGCCG TATTTATGCG TCTTCTACCA ATGCCTATAT 601 651 GAATACCGGC GATGGTTTGG GTATTTGTGC GCGTGCAGGT ATCCCGTTGG 701 AAGACATGGA ATTCTGGCAA TTCCACCCGA CCGGCGTGGC AGGTGCGGGC 751 GTGTTGATTA CCGAAGGCGT ACGCGGCGAG GGCGGTATTC TGTTGAATGC 801 CGACGGCGAA CGCTTTATGG AACGCTATGC GCCGACCGTA AAAGACTTGG 851 CTTCTCGCGA CGTTGTTTCC CGCGCGATGG CGATGGAAAT CTACGAAGGT 901 CGCGGCTGCG GTAAAAACAA AGACCATGTC TTACTGAAAA TCGACCATAT 951 CGGCGCAGAA AAAATTATGG AAAAACTGCC GGGCATCCGC GAGATTTCCA TTCAGTTCGC CGGTATCGAT CCGATTAAAG ACCCGATTCC CGTTGTGCCG 1001 ACTACCCACT ATATGATGGG CGGTATTCCG ACCAACTACC ATGGCGAAGT TGTCGTTCCT CAAGGCGACG AATACGAAGT GCCTGTAAAA GGTCTGTATG 1101 1151 CGGCAGGTGA GTGCGCCTGT GCTTCCGTAC ACGGTGCGAA CCGCTTGGGT 1201 ACGAACTCCC TGCTGGACTT AGTGGTATTC GGTAAAGCTG CCGGCGACAG 1251 CATGATTAAA TTCATCAAAG AGCAAAGCGA CTGGAAACCT TTGCCTGCTA
1301 ATGCCGGCGA ACTGACCCGC CAACGTATCG AGCGTTTGGA CAATCAAACT 1351 GATGGTGAAA ACGTTGATGC ATTGCGCCGC GAACTGCAAC GCTCCGTACA 1401 ATTGCACGCC GGCGTGTTCC GTACTGATGA GATTCTGAGC AAAGGCGTTC 1451 GAGAAGTCAT GGCGATTGCC GAGCGTGTGA AACGTACCGA AATCAAAGAC AAGAGCAAAG TGTGGAATAC CGCGCGTATC GAGGCTTTGG AATTGGATAA 1501 CCTAATTGAA GTGGCGAAAG CGACTTTGGT GTCTGCCGAA GCACGTAAAG 1551 1601 AATCACGCGG TGCGCACGCT TCAGACGACC ATCCTGAGCG CGATGATGAA AACTGGATGA AACATACGCT GTACCATTCA GATGCCAATA CCTTGTCCTA CAAACCGGTG CACACCAAGC CTTTGAGCGT GGAATACATC AAACCGGCCA AGCGCGTTTA TTGA

This corresponds to the amino acid sequence <SEQ ID 72; ORF 010-1.a>:

- a010-1.pep..

 1 MGFPVRKFDA VIVGGGGAGL RAXLQLSKSG LNCAVLSKVF PTRSHTVAAQ
 51 GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE
 - 101 HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY

151 201 251 301 351 401 451 501	ATGGGGRIYA VLITEGVRGE RGCGKNKDHV TTHYMMGGIP TNSLLDLVVF DGENVDALRR KSKVWNTARI	FVEWTAQDLI SSTNAYMNTG GGILLNADGE LLKIDHIGAE TNYHGEVVVP GKAAGDSMIK ELQRSVQLHA EALELDNLIE DANTLSYKPV	DGLGICARAG RFMERYAPTV KIMEKLPGIR QGDEYEVPVK FIKEQSDWKP GVFRTDEILS VAKATLVSAE	IPLEDMEFWQ KDLASRDVVS EISIQFAGID GLYAAGECAC LPANAGELTR KGVREVMAIA ARKESRGAHA	FHPTGVAGAG RAMAMEIYEG PIKDPIPVVP ASVHGANRLG QRIERLDNQT ERVKRTEIKD
m010-1 / a010-1	99.3% ident	ity in 587 a	a overlap		
a010-1.pep	111111111111111111111111111111111111111	20 VGGGGAGLRAXLO VGGGGAGLRAALO 20			QGGISASLGNV QGGISASLGNV
a010-1.pep m010-1	-11111111111111	80 TVKGSDWLGDQDA TVKGSDWLGDQDA 80	!		ESGKIYQRPFG ESGKIYQRPFG
a010-1.pep m010-1	1111111111111	140 ERACAVADRTGHA ERACAVADRTGHA 140	111111111111		IRDENGDVVGV
a010-1.pep		200 [FHAKAVMFATGG FHAKAVMFATGG 200			GIPLEDMEFWQ GIPLEDMEFWQ
a010-1.pep		260 LITEGVRGEGGIL LITEGVRGEGGIL 260	11111111111111		SRAMAMEIYEG
a010-1.pep		320 LKIDHIGAEKIME LKIDHIGAEKIME 320			PTTHYMMGGIP
a010-1.pep	111111111	380 GDEYEVPVKGLYA :: GEDYEVPVKGLYA 380	111111111111111		FGKAAGDSMIK FGKAAGDSMIK
a010-1.pep	11111111111	440 PANAGELTRORIE PANAGELTRORIE 440		 ALRRELQRSVQLI	AGVFRTDEILS
a010-1.pep		500 RVKRTEIKDKSKV RVKRTEIKDKSKV 500		NLIEVAKATLVS NLIEVAKATLVS	
a010-1.pep		560 WMKHTLYHSDANT 			

g011

192

```
SDDHPERDDENWMKHTLYHSDINTLSYKPVHTKPLSVEYIKPAKRVYX
m010-1
                       550
                                560
                                          570
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 73>:
     g011.seq
                ATGAAGACAC ACCGCAAGAC CTGCTCTGCG GTGTGTTTTG CTTTTCAGAC
            51 GGCATCGAAA CCCGCCGTTT CCATCCGACA TCCCAGCGAG GACATCATGA
           101 GCCTGAAAAC CCGCCTTACC GAAGATATGA AAACCGCGAT GCGCGCCAAA
                GATCAAGTTT CCCTCGGCAC CATCCGCCTC ATCAATGCCG CCGTCAAACA
           151
           201 GTTTGAAGTA GACGAACGCA CCGAAGCCGA CGATGCCAAA ATCACCGCCA
           251 TCCTGACCAA AATGGTCAAA CAGCGCAAAG ACGGCGCGAA AATCTACACT
           301 GAAGCCGGCC GTCAGGATTT GGCAGACAAA GAAAACGCCG AAATCGACGT
           351 GCTGCACCGC TACCTGCCGC AAATGCTCTC CGCCGGCGAA ATCCGCACCG
           401 CCGTCGAAGC AGCCGTTGCC GAAACCGGCG CGGCAGGTAT GGCGGATATG
451 GGCAAAGTGA TGGTCGTATT GAAAACCCGC CTCGCCGGCA AAGCCGATAT
           501 GGGCGAAGTC AACAAAATCT TGAAAACCGt aCTGACCGCC tga
This corresponds to the amino acid sequence <SEQ ID 74; ORF 011.ng>:
      g011.pep
                MKTHRKTCSA VCFAFQTASK PAVSIRHPSE DIMSLKTRLT EDMKTAMRAK
             1
           51 DQVSLGTIRL INAAVKQFEV DERTEADDAK ITAILTKMVK QRKDGAKIYT
101 EAGRQDLADK ENAEIDVLHR YLPQMLSAGE IRTAVEAAVA ETGAAGMADM
           151 GKVMVVLKTR LAGKADMGEV NKILKTVLTA *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 75>:
      m011.seq (partial)
                ATGAGGACAC ACCGCAAGAC CTGCTCTGCG GTGTGTTTTG CTTTTCAGAC
                GGCATCGAAA CCCGCCGTTT CCATCCGACA TCCCAGCGAG GACATCATGA
           101 GCCTGAAAAT CCGCCTTACC GAAGACATGA AAACCGCGAT GCGCGCCAAA
           151 GACCAAGTTT CCCTCGGCAC CATCCGCCTC ATCAACGCCG CCGTCAAACA
           201 GTTTGAAGTG GACGAACGCA CCGAAGCCGA CGATGCCAAA ATCACCGCCA
           251 TCCTGACCAA AATGGTCAAA CAGCGAAAAG ACAGCGCGAA AATCTACACT
301 GAAGCCGGCC GTCAGGATTT GGCAGACAAA GAAAACGCCG AAATCGAGGT
351 ACTGCACCGC TACCTTCCCC AAATGCTTTC CGCCGGCGAA ATCCGTACCG
           401 AGGTCGAAGC TGCCGTTGCC GAAACCGGCG CGGCAGGTAT GGCGGATATG
           451 GGTAAAGTCA TGGGGCTGCT GAAAACCCGC CTCGCAGGTA AAGCCGA...
This corresponds to the amino acid sequence <SEQ ID 76; ORF 011>:
      m011.pep (partial)
                MRTHRKTCSA VCFAFQTASK PAVSIRHPSE DIMSLKIRLT EDMKTAMRAK
            51 DQVSLGTIRL INAAVKQFEV DERTEADDAK ITAILTKMVK QRKDSAKIYT
           101 EAGRODLADK ENAEIEVLHR YLPQMLSAGE IRTEVEAAVA ETGAAGMADM
           151 GKVMGLLKTR LAGKA.....
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 011 shows 95.8% identity over a 165 aa overlap with a predicted ORF (ORF 011.ng)
from N. gonorrhoeae:
      m011/g011
                                                   30
                                                              40
                    MRTHRKTCSAVCFAFQTASKPAVSIRHPSEDIMSLKIRLTEDMKTAMRAKDQVSLGTIRL
      m011.pep
                    MKTHRKTCSAVCFAFQTASKPAVSIRHPSEDIMSLKTRLTEDMKTAMRAKDQVSLGTIRL
      q011
                                                   30
                                                              40
                                                   90
                                                             100
                                        80
                    INAAVKQFEVDERTEADDAKITAILTKMVKQRKDSAKIYTEAGRQDLADKENAEIEVLHR
      m011.pep
```

INAAVKQFEVDERTEADDAKITAILTKMVKQRKDGAKIYTEAGRQDLADKENAEIDVLHR

```
100
                       80
                               90
                                             110
                                                     120
                70
                              150
                                      160
               130
                       140
         YLPQMLSAGEIRTEVEAAVAETGAAGMADMGKVMGLLKTRLAGKA
m011.pep
          YLPQMLSAGEIRTAVEAAVAETGAAGMADMGKVMVVLKTRLAGKADMGEVNKILKTVLTA
q011
                   140
                              150 160
q011
         Х
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 77>: g012.seq

```
ATGCTCGCCC GTCGCTATTT TTTCAATATC CAACCCGGGG CGGTTTTCAC
    TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGCCGGAAT
51
    TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT
101
   AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACa
151
201 gGcqqTGGAT ATTCGqcact tccgCcacca cacccaccga accgatgacc
    gcaaacggaG CGGAAACAAT TTTATCCGCc acacacgcca tcatatagcc
301 gccGCTTGCC GCGACCTTAT CGAcggcgac ggTCAGCGGA ATATTGCGTT
    CGCGCAAACG CCTAAGCTGC GAAGCCGCCA AACCGTAACC GTGAACCACG
   CCGCCCGGAC TTTCCAATCT GAGCAGAACC TCATCTTCAG GCTTGGCAAT
401
451 CAAAAGCACC GCCGTAATCT CATGACGCAA GGATTCTACG GCGTGTGCAT
501 ACAAATCGCC GTCAAAATCC AACACAAAAA GGCGGGATTT TTGCGTTTCG
551 GCAGATTTCT CCCCGCCCTC CTTCAAACGC TTTTTCTCTG CTTTGGCTTC
601 CGCCTTTTCC TTTTTCTTTT CTTTTTTTTC CTGATGTTTT GTCTCTTCCT
651 CGCTTAA
```

This corresponds to the amino acid sequence <SEQ ID 78; ORF 012.ng>:

g012.pep

1 MLARRYFFNI QPGAVFTDKL LEQLMRFLQF LPEFLFALFR IFTHKSNRAL 51 KFARRHHIHI NIMFFQQAVD IRHFRHHTHR TDDRKRSGNN FIRHTRHHIA AACRDLIDGD GQRNIAFAQT PKLRSRQTVT VNHAARTFQS EQNLIFRLGN 151 QKHRRNLMTQ GFYGVCIQIA VKIQHKKAGF LRFGRFLPAL LQTLFLCFGF

201 RLFLFLFFFF LMFCLFLA*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 79>:

m012.seq ATGCTCGCCC GTTGCCACTT CCTCAATATC CAATTGAGGG CGGTTCTCGC TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGTCGGAAT 51 101 TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT 151 AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACA 201 GGCGGTGGAT ATTCGGTACT TCCGCCACCA CACCCACCGA ACCGACAATC 251 GCAAACGGAG CGGAAGCAAT TTTATCCGCC ACACACGCCA TCATATAACC nnnnnnnn nnnnnnnnc AACACAAAAA GGCGTGATTT nTGCGTTTCG 551 GCAGATTTCT CCCCACCCTC CTTCAAACGT TTTTCcTCTG CTTTGGCTTC 601 CGCCTTTTCC TTTTTCTTTT CCTCTTTTTC CTGATGTTGT GCCTCTTCCC

This corresponds to the amino acid sequence <SEQ ID 80; ORF 012>: m012.pep

- MLARCHFLNI QLRAVLADKL LEQLMRFLQF LSEFLFALFR IFTHKSNRAL 51 KFARRHHIHI NIMFFOOAVD IRYFRHHTHR TDNRKRSGSN FIRHTRHHIT
- 151 XXXXXXXXX XXXXXXXXX XXXQHKKA*F XRFGRFLPTL LQTFFLCFGF 201 RLFLFLFF LMLCLFPA*

651 CGCTTAA

g012

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 81>:
    a012.seq
              ATGCTCGCCC GTTGCCACTT CCTCAATATC CAATTGAGGG CGGTTCTCGC
              TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGTCGGAAT
          51
              TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT
         101
              AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACA
         151
         201
              GGCGGTGGAT ATTCGGTACT TCCGCTACAA CACCCACCGA ACCGACAATC
              GCAAACGGAG CGGAAACAAT TTTATCCGCC ACACACGCCA TCATATAACC
         251
              ACCGCTCGCC GCCACCTTAT CGACGGCGAC GGTCAGCGGA ATATTGCGTT
         301
              CGCGCAAACG CCTAAGCTGC GAAGCCGCCA AACCGTAACC GTGAACCACG
         351
              CCGCCCGGAC TTTCCAATCT AAGCAGAACC TCATCTTCAG GCTTGGCAAT
         401
              CAAAAGCACC GCCGTAATCT CATGACGCAA GGATTCTACG GCGTGTGCAT
         451
              ACAAATCGCC GTCAAAATCC AACACAAAAA GGCGGGATTT TTGCGTTTCG
         501
              GAAGATTTCT CCCCACCCTC CTTCAAACGC TTTTTCTCTG CTTTGGCTTC
         551
              CGCCTTTTCC TTTTTCTTTT CCTCTTTTTC CTGATGTTTT GCCTCTTCCC
         651 CGCTTAA
This corresponds to the amino acid sequence <SEQ ID 82; ORF 012.a>:
     a012.pep
              MLARCHFLNI QLRAVLADKL LEQLMRFLQF LSEFLFALFR IFTHKSNRAL
              KFARRHHIHI NIMFFQQAVD IRYFRYNTHR TDNRKRSGNN FIRHTRHHIT
              TARRHLIDGD GQRNIAFAQT PKLRSRQTVT VNHAARTFQS KQNLIFRLGN
              QKHRRNLMTQ GFYGVCIQIA VKIQHKKAGF LRFGRFLPTL LQTLFLCFGF
         151
              RLFLFLFF LMFCLFPA*
         201
            64.2% identity over a 218 aa overlap
m012/a012
                                  20
                                            30
                                                     40
                                                                        60
                         10
                 MLARCHFLNIQLRAVLADKLLEQLMRFLQFLSEFLFALFRIFTHKSNRALKFARRHHIHI
     m012.pep
                 MLARCHFLNIQLRAVLADKLLEQLMRFLQFLSEFLFALFRIFTHKSNRALKFARRHHIHI
     a012
                                                              50
                         10
                                  20
                                            30
                                                     40
                                  80
                                            90
                                                    100
                                                             110
                                                                       120
                 NIMFFQQAVDIRYFRHHTHRTDNRKRSGSNFIRHTRHHITAARXXXXXXXXXXXXXXXXX
     m012.pep
                 {\tt NIMFFQQAVDIRYFRYNTHRTDNRKRSGNNFIRHTRHHITTARRHLIDGDGQRNIAFAQT}
     a012
                         70
                                  80
                                            90
                                                    100
                                                             110
                                                                       120
                                                             170
                                           150
                                                    160
                                                                       180
                                 140
                        130
                 m012.pep
                                                                   PKLRSRQTVTVNHAARTFQSKQNLIFRLGNQKHRRNLMTQGFYGVCIQIAVKIQHKKAGF
     a012
                                           150
                                                    160
                                                             170
                                                                       180
                                 140
                                           210
                        190
                                 200
                 XRFGRFLPTLLQTFFLCFGFRLFLFLFLFLFLMLCLFPAX
     m012.pep
                  LRFGRFLPTLLQTLFLCFGFRLFLFLFLFFLMFCLFPAX
     a012
                                           210
                        190
                                 200
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 012 shows 58.7% identity over a 218 aa overlap with a predicted ORF (ORF 012.ng)
from N. gonorrhoeae:
     m012/g012
                         10
                                   20
                                            30
                                                     40
                                                               50
                                                                        60
                 MLARCHFLNIQLRAVLADKLLEQLMRFLQFLSEFLFALFRIFTHKSNRALKFARRHHIHI
     m012.pep
```

	10	20	30	40	50	60
	70	80	90	100	110	120
m012.pep	NIMFFQQAVDIRYF				XXXXXXXXXX	XXXXXX
			1111:11111			:
g012	NIMFFQQAVDIRHF	RHHTHRTDDF	RKRSGNNFIRE	ITRHHIAAACF	RDLIDGDGQRN	IIAFAQT
•	70	80	90	100	110	120
	130	140	150	160	170	180
m012.pep	XXXXXXXXXXXXXX	XXXXXXXXX	XXXXXXXXX	XXXXXXXXXX	XXXXXXXXX	HKKAXF
	: :	:		:	1	1111 1
q012	PKLRSRQTVTVNHA	ARTFOSEONI	IFRLGNOKHE	RNLMTOGFYO	SVCIQIAVKIC	HKKAGF
9012	130	140	150	160	170	180
	190	200	210	219		
m012.pep	XRFGRFLPTLLQTF	FLCFGFRLFI	FLFLFFLMLC	LFPAX		
morz.pcp	1111111:1111:					
g012	LRFGRFLPALLQTL					
9012	190	200	210			
	190	200	210			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 83>:

```
m012-1.seq
        1 ATGCTCGCCC GTTGCCACTT CCTCAATATC CAATTGAGGG CGGTTCTCGC
       51 TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGTCGGAAT
      101 TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT
      151 AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACA
      201 - GGCGGTGGAT ATTCGGTACT TCCGCCACCA CACCCACCGA ACCGACAATC
      251 GCAAACGGAG CGGAAGCAAT TTTATCCGCC ACACACGCCA TCATATAACC
      301 GCCGCTCGCC GCCACCTTAT CGACGGCGAC GGTCAGCGGA ATATTGCGTT
      351 CGCGCAAACG CYTAAGCTGC GAAGCCGCCA AACCGTAACC GTGAACCACG
     401 CCGCCGGAC TTTCCAATCT GAGCAGAACC TCATCTTCAG GCTTGGCAAT
451 CAAAAGCACC GCCGTAATCT CATGACGCAA GGATTCTACG GCGTGTGCAT
501 ACAAATCGCC GTCAAAATCC AACACAAAAA GGCGGGATTT TTGCGTTTCG
      551 GCAGATTTCT CCCCACCCTC CTTCAAACGC TTTTTCTCTG CTTTGGCTTC
      601 CGCCTTTTCC TTTTTCTTTT CCTCTTTTTC CTGATGTTTT GCCTCTTCCC
      651 CGCTTAA
```

This corresponds to the amino acid sequence <SEQ ID 84; ORF 012-1>: m012-1.pep

1 MLARCHFLNI QLRAVLADKL LEQLMRFLQF LSEFLFALFR IFTHKSNRAL 51 KFARRHHIHI NIMFFQQAVD IRYFRHHTHR TDNRKRSGSN FIRHTRHHIT

101 AARRHLIDGD GQRNIAFAQT XKLRSRQTVT VNHAARTFQS EQNLIFRLGN

151 QKHRRNLMTQ GFYGVCIQIA VKIQHKKAGF LRFGRFLPTL LQTLFLCFGF

201 RLFLFLFF LMFCLFPA*

m012-1/g012 91.7% identity in 218 aa overlap

_						
	10	20	30	40	50	60
m012-1.pep	MLARCHFLNIQL	RAVLADKLLEQI	MRFLQFLSE	FLFALFRIFTH	IKSNRALKFAI	RRHHIHI
		11::111111		111111111		111111
q012	MLARRYFFNIQP	GAVFTDKLLEQI	LMRFLQFLPE	FLFALFRIFTH	IKSNRALKFAI	RRHHIHI
3	10	20	30	40	50	60
	70	80	90	100	110	120
m012-1.pep	NIMFFQQAVDIR	Y FRHHTHR T DNI	RKRSGSNFIR	HTRHHITAARF	RHLIDGDGQRI	NIAFAQT
• •	111111111111	:	1111:1111			
q012	NIMFFQQAVDIR	HFRHHTHRTDD	RKRSGNNFIR	HTRHHIAAACF	RDLIDGDGQR	NIAFAQT
9	70	80	90	100	110	120
	130	140	150	160	170	180
m012-1.pep	XKLRSRQTVTVN	HAART FQSEQNI	LIFRLGNQKHI	RRNLMTQGFY	SVCIQIAVKI	QHKKAGF
• •	1111111111	11111111111		11111111111		
g012	PKLRSRQTVTVN	HAART FQSEQN!	LIFRLGNQKH	RRNLMTQGFY	CIQIAVKI	QHKKAGF

170

g013.seq

51

196

150

160

140

```
130
                                 200
                                          210
                       190
                                                   219
                 LRFGRFLPTLLQTLFLCFGFRLFLFLFLFLFLMFCLFPAX
    m012-1.pep
                 LRFGRFLPALLOTLFLCFGFRLFLFLFFFFLMFCLFLAX
    g012
                                 200
                       190
                                          210
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 85>:
a012-1.seq
              ATGCTCGCCC GTTGCCACTT CCTCAATATC CAATTGAGGG CGGTTCTCGC
              TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGTCGGAAT
          51
         101
              TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT
              AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACA
         151
              GGCGGTGGAT ATTCGGTACT TCCGCTACAA CACCCACCGA ACCGACAATC GCAAACGGAG CGGAAACAAT TTTATCCGCC ACACACGCCA TCATATAACC
         201
         251
              ACCGCTCGCC GCCACCTTAT CGACGGCGAC GGTCAGCGGA ATATTGCGTT
         301
              CGCGCAAACG CCTAAGCTGC GAAGCCGCCA AACCGTAACC GTGAACCACG
         351
              CCGCCCGGAC TTTCCAATCT AAGCAGAACC TCATCTTCAG GCTTGGCAAT
         401
              CAAAAGCACC GCCGTAATCT CATGACGCAA GGATTCTACG GCGTGTGCAT
         451
              ACAAATCGCC GTCAAAATCC AACACAAAAA GGCGGGATTT TTGCGTTTCG
         501
              GAAGATTTCT CCCCACCCTC CTTCAAACGC TTTTTCTCTG CTTTGGCTTC
         551
              CGCCTTTTCC TTTTTCTTTT CCTCTTTTTC GTGATGTTTT GCCTCTTCCC
         601
         651
              CGCTTAA
This corresponds to the amino acid sequence <SEQ ID 86; ORF 012-1.a>:
     a012-1.pep
              MLARCHFLNI QLRAVLADKL LEQLMRFLQF LSEFLFALFR IFTHKSNRAL
           1
              KFARRHHIHI NIMFFQQAVD IRYFRYNTHR TDNRKRSGNN FIRHTRHHIT
          51
              TARRHLIDGD GQRNIAFAQT PKLRSRQTVT VNHAARTFQS KQNLIFRLGN
         101
              QKHRRNLMTQ GFYGVCIQIA VKIQHKKAGF LRFGRFLPTL LQTLFLCFGF
         151
              RLFLFLFF LMFCLFPA*
         201
a012-1/m012-1
              97.2% identity in 218 aa overlap
                                           30
                                                     40
                 MLARCHFLNIQLRAVLADKLLEQLMRFLQFLSEFLFALFRIFTHKSNRALKFARRHHIHI
     a012-1.pep
                 MLARCHFLNIQLRAVLADKLLEQLMRFLQFLSEFLFALFRIFTHKSNRALKFARRHHIHI
     m012-1
                                                     40
                                  20
                                           30
                         10
                                  80
                                           90
                                                    100
                                                             110
                                                                       120
                 NIMFFQQAVDIRYFRYNTHRTDNRKRSGNNFIRHTRHHITTARRHLIDGDGQRNIAFAQT
     a012-1.pep
                 NIMFFQQAVDIRYFRHHTHRTDNRKRSGSNFIRHTRHHITAARRHLIDGDGQRNIAFAQT
     m012-1
                                  80
                                           90
                        130
                                 140
                                          150
                                                    160
                                                             170
                 PKLRSRQTVTVNHAARTFQSKQNLIFRLGNQKHRRNLMTQGFYGVCIQIAVKIQHKKAGF
     a012-1.pep
                  XKLRSRQTVTVNHAARTFQSEQNLIFRLGNQKHRRNLMTQGFYGVCIQIAVKIQHKKAGF
     m012-1
                        130
                                 140
                                          150
                                                    160
                                                             170
                                                                       180
                        190
                                 200
                                          210
     a012-1.pep
                 LRFGRFLPTLLQTLFLCFGFRLFLFLFLFFLMFCLFPAX
                 m012-1
                 LRFGRFLPTLLQTLFLCFGFRLFLFLFLFLFLMFCLFPAX
                                 200
                                           210
                        190
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 87>:
```

aTgcctttga ccatgctgtg cagcaGGAcg tGCGGTTtgt tcataataca gtCcgaccGG AAAagcggAG GAAaCGCAGT GCCGCGCCCT TCCCCTTTCT

TGCCGTGGCA GGCGATGCag tTgGATTCGT ACACTTTTTG CCCTTTtGtc

197

```
151 atgatGCTgt tgtcggCGGC AGAAGCgGCG GcgCAGAGGC AGCACAAGAT
         201 GAAGGCGGTC GGCAGTCGGG TTGTGTtcat tGgcgTTTCC cctaatgttt
          251 tgaaaccttg ttttttgatt Ttgcctttac ggggtgaaaa gtttttTtgg
          301 cccaaatccg gaatttag
This corresponds to the amino acid sequence <SEQ ID 88; ORF 013.ng:
     g013.pep
              MPLTMLCSRT CGLFIIQSDR KSGGNAVPRP SPFLPWQAMQ LDSYTFCPFV
              MMLLSAAEAA AQRQHKMKAV GSRVVFIGVS PNVLKPCFLI LPLRGEKFFW
           51
          101
              PKSGI*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 89>:
    m013.seq
              ATGCCTTTGA CCATGCTGTG CAGCAGCACC TGCGGTTTTT TCATGATGAA
           1
           51 GTCGGAGCGG TAGAGCGGCG GAAACATGGT TCCGCGGCCT TCGCCCTTTT
          101 TGCCGTGGCA GGCGACGCAG TTGGATTCGT ACACTTTTTG CCCTTTTGTC
              ATGATGCTGT TGTCGGCGGC AGAAGCGGCG GCGCAGAAGC AGCCCAAGAC
          151
          201 GAGGGCGGTC GGCAGTCGGG TTGTGTTCAT TGGTGTTTCC TTCATGTTTG
          251 AAACCTTGTT GTTGATTTTG CGTAGCGGGT GAAAGATTTT TTTGCCGAAT
          301
              CAGTAG
This corresponds to the amino acid sequence <SEQ ID 90; ORF 013>:
     m013.pep
           1 MPLTMLCSST CGFFMMKSER XSGGNMVPRP SPFLPWQATQ LDSYTFCPFV
           51 MMLLSAAEAA AQKQPKTRAV GSRVVFIGVS FMFETLLLIL RSGXKIFLPN
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 91>:
     a013.seq
              ATGCCTTTGA CCATGCTGTG CAGCAGCACC TGCGGTTTTT TCATGATGAA
              GTCGGAGCGG TAGAGCGGCG GAAACATGGT TCCGCGGCCT TCGCCCTTTT
          101 TGCCGTGGCA GGCGACGCAG TTGGATTCGT ACACTTTTTG CCCTTTTGTC
              ATGATGCTGT TGTCGGCGGC AGAAGCGGCG GCGCAGAGGC AGCCCAAGAC
              GAGGGCGGTC GGCAGTCGGG TTGTGTTCAT TGGTGTTTCC TTAATGTTTG
          201
              AAACCTTGTT GTTGATTTTG CGTAGCGGGT GAAAGATTTT CTTGCCGAAT
          251
          301
              CGGTAG
This corresponds to the amino acid sequence <SEQ ID 92; ORF 013.a>:
     a013.pep
              MPLTMLCSST CGFFMMKSER *SGGNMVPRP SPFLPWQATQ LDSYTFCPFV
           51
              MMLLSAAEAA AQRQPKTRAV GSRVVFIGVS LMFETLLLIL RSG*KIFLPN
          101
              R*
            97.0% identity over a 101 aa overlap
m013/a013
                                             30
                                   20
                 MPLTMLCSSTCGFFMMKSERXSGGNMVPRPSPFLPWQATQLDSYTFCPFVMMLLSAAEAA
     m013.pep
                  MPLTMLCSSTCGFFMMKSERXSGGNMVPRPSPFLPWQATQLDSYTFCPFVMMLLSAAEAA
     a013
                         10
                                             30
                                                      40
                                                                50
                                                                          60
                                   80
                                             90
                 AQKQPKTRAVGSRVVFIGVSFMFETLLLILRSGXKIFLPNQX
     m013.pep
                  AQRQPKTRAVGSRVVFIGVSLMFETLLLILRSGXKIFLPNRX
     a013
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

70

ORF 013 shows 73.3% identity over a 101 aa overlap with a predicted ORF (ORF 013.ng) from N. gonorrhoeae:

90

100

80

```
m013/q013
```

```
20
                              30
                                     40
               10
         MPLTMLCSSTCGFFMMKSERXSGGNMVPRPSPFLPWQATQLDSYTFCPFVMMLLSAAEAA
m013.pep
         MPLTMLCSRTCGLF11QSDRKSGGNAVPRPSPFLPWQAMQLDSYTFCPFVMMLLSAAEAA
q013
                       20
                              30
                                      40
               70
                       80
         AQKQPKTRAVGSRVVFIGVSF-MFETLLLILR-SGXKIFLPNQX
m013.pep
         AQRQHKMKAVGSRVVFIGVSPNVLKPCFLILPLRGEKFFWPKSGIX
a013
                       80
                              90
               70
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 93>:

g015.seq

```
ATGCAGTATC TGATTGTCAA ATACAGCCAT CAAATCTTCG TTACCATCAC
51 CATTTTGGTA TTCAACATCC GTTTTTTCCT ACTTTGGAAA AATCCAGAAA
101 AGCCCTTGGT CGGCTTTTGG AAAGCACTGC CCCACCTCAA CGACACGATG
151 CTGCTGTTTA CGGGATTGTG GCTGATGAAG ATTACCCATT TCTCCCCGTT
201 CAACGCGCCT TGGCTCGGCA CAAAAATCCT GCTCCTGTTC GCCTACATCG
251 CACTGGGCAT GGTAATGATG CGCGCCCGTC CGCGTTCGAC CAAGTTCTAC
301 ACCGTTTACC TGCTCGCTAT GTGTTGCATC GCCTGCATCG TTTACCTTGC
351 CAAAACCAAA GTCCTGCCAT TCTGA
```

This corresponds to the amino acid sequence <SEQ ID 94; ORF 015.ng>:

g015.pep

- MQYLIVKYSH QIFVTITILV FNIRFFLLWK NPEKPLVGFW KALPHLNDTM
- 51 LLFTGLWLMK ITHFSPFNAP WLGTKILLLF AYIALGMVMM RARPRSTKFY
- 101 TVYLLAMCCI ACIVYLAKTK VLPF*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 95>:

m015.seq

- .. AAAATCAGAA AAGCCTTGGC GGGCTTTTGG AAGGCACTGC CCCACCTTAA 1 CGACACCATG CTGCTGTTTA CGGGATTGTG GCTGATGAAA ATTACCCATT
- TCTCCCCGTT CAACGCGCCT TGGCTCGGTA CAAAAATCCT GCTTCTGCTC 101
- GCCTATATCG CATTGGGTAT GATGATGATG CGCGCCCGTC CGCGTTCGAC 151
- CAAGTTCTAC ACCGTTTACC TGCTCGCCAT GTGTTGCGTC GCCTGCATCG 201
- TTTACCTTGC CAAAACCAAA GTCCTGCCTT TCTGA

This corresponds to the amino acid sequence <SEQ ID 96; ORF 015:

m015.pep (partial)

- 1 ..KIRKALAGFW KALPHLNDTM LLFTGLWLMK ITHFSPFNAP WLGTKILLLL
- AYIALGMMMM RARPRSTKFY TVYLLAMCCV ACIVYLAKTK VLPF* 51

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 97>:

a015.seq

ATGCAGTATC TGATTGTCAA ATACAGCCAT CAAATCTTCG TTACCATCAC 51 CATTTTGGTA TTCAACATCC GTGTTTTCNT ACTTTGGAAA AATCCAGAAA AGCCCTTGGC GGGCTTTTGG AAGGCACTGC CCCACCTTAA CGACACCATG 101 151 CTGCTGTTTA CGGGATTGTG GCTGATGAAA ATTACCCATT TCTCCCCGTT 201 CAACGCGCCT TGGCTCGGTA CAAAAATCCT GCTTCTGCTC GCCTATATCG 251 CATTGGGTAT GATGATGATG CGCGCCCGTC CGCGTTCGAC CAAGTTCTAC 301 ACCGTTTACC TGCTCGCCAT GTGTTGCCTC ACCTGCATCG TTTACCTTGC 351 CAAAACCAAA GTCCTGCCTT TCTGA

This corresponds to the amino acid sequence <SEQ ID 98; ORF 015.a>: a015.pep

- 1 MQYLIVKYSH QIFVTITILV FNIRVFXLWK NPEKPLAGFW KALPHLNDTM
- 51 LLFTGLWLMK ITHFSPFNAP WLGTKILLLL AYIALGMMMM RARPRSTKFY
- 101 TVYLLAMCCL TCIVYLAKTK VLPF*

96.7% identity over a 91 aa overlap m015/a015

			10	20	30
		KIRK	ALAGFWKALP	HLNDTMLLFT	GLWLMKITH
		l			1111111
LIVKYSHQIFVT		/FXLWKNPEK	PLAGFWKALP	HLNDTMLLFT	GLWLMKITH
10	20	30	40	50	60
40	50	60	70	80	90
FSPFNAPWLGTK	CILLLLAYIA	LGMMMMRARP	RSTKFYTVYL:	LAMCCVACIV	YLAKTKVLP
	111111111		111111111	11111::111	
FSPFNAPWLGTK	CILLLLAYIA	LGMMMMRARP	RSTKFYTVYL:	LAMCCLTCIV	YLAKTKVLP
70	80	90	100	110	120
FX					
11					
FX					
	10 40 FSPFNAPWLGTK FSPFNAPWLGTK 70 FX	10 20 40 50 FSPFNAPWLGTKILLLAYIAI	LIVKYSHQIFVTITILVFNIRVFXLWKNPEK 10 20 30 40 50 60 FSPFNAPWLGTKILLLLAYIALGMMMMRARP	KIRKALAGFWKALPE	KIRKALAGFWKALPHLNDTMLLFT.

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 015 shows 94.5% identity over a 91 aa overlap with a predicted ORF (ORF 015.ng) from N. gonorrhoeae:

m015/g015

				10	20	30
m015.pep			KIRKA	LAGFWKALPHI	NDTMLLFTGL	WLMKITH
			1	1:11111111	1111111	11111
g015	LIVKYSHQIFVTI	FILVFNIRFF	LLWKNPEKP	LVGFWKALPHI	NDTMLLFTGL	WLMKITH
	10	20	30	40	50	60
	40	50	60	70	80	90
m015.pep	FSPFNAPWLGTKI	LLLLAYIALG	MMMRARPR	STKFYTVYLL	MCCVACIVYL	AKTKVLP
		:	!:			
g015	FSPFNAPWLGTKI	LLLFAYIALG	MVMMRARPR	STKFYTVYL L A	MCCIACIVYL	AKTKVLP
	70	80	90	100	110	120
m015.pep	FX					
	11					
g015	FX					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 99>: g018.seq

1	atGCAGCAGG	GGCagttggt	tggacgcgtc	gcccgcaata	AAGATATGCG
51	GAATgctggt	CTGCATggtC	AGCGGATCGG	CAACGGGtac	gccgcgcgcg
101	tctttgTCGA	TATTGATGTT	TTCCAAACCG	ATATtgTCAA	CGTTCGGACG
151	GCGACCTACG	GCTGCCAACA	TATATTCGGC	AACAAATACG	CCTTTTTCGC
201	CATCCTGCTC	CCAATGGACT	tctACATTGC	CGTCTGCGTC	GAGTTTGACC
251	TCGGTTTTAG	CATCCAGATG	CAGTTTCAAT	tctTCTCCGA	ACACGGCTTT
301	CGCCTCGTCT	GA			

This corresponds to the amino acid sequence <SEQ ID 100; ORF 018.ng>: g018.pep

- 1 MQQGQLVGRV ARNKDMRNAG LHGQRIGNGY AARVFVDIDV FQTDIVNVRT
- 51 ATYGCQHIFG NKYAFFAILL PMDFYIAVCV EFDLGFSIQM QFQFFSEHGF

101 RLV*

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 101>: m018.seq
```

- 1 ATGCAGCAGA GGCAGTTGGT TGGACGCATC GCCTGCGATG AAGATATGCG
 - 51 GAATACTGGT CTGCATGGTC AGCGGGTCGG CAACAGGTAC GCCGCGCGCA
 - 101 TCTTTTCGA TATTGATATT TTCCAAACCG ATATTGTCAA CGTTCGGACG
 - 151 GCGGCCCACG GCTGCCAGCA TATATTCGGC AACAAATACG CCTTTTTCGC
 - 201 CATCCTGCTC CCAATGGACT TCTACATTGC CGTCTGCATC GAGTTTGACC
 - 251 TCGGTTTTAG CATCCAGATG CAGTTTCAAT TCTTCGCCGA ACACGGCGTT
 - 301 CGCCTCGTCT GA

This corresponds to the amino acid sequence <SEQ ID 102; ORF 018>:

m018.pep

- 1 MQQRQLVGRI ACDEDMRNTG LHGQRVGNRY AARIFFDIDI FQTDIVNVRT
- 51 AAHGCQHIFG NKYAFFAILL PMDFYIAVCI EFDLGFSIQM QFQFFAEHGV
- 101 RLV*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 103>:

a018.seq

- 1 ATGCAGCAGG GGCAGTTGGT TGGACGCGTC GCCCGCAATA AAGATATGCG
- 51 GAATACTGGT CTGCATAGTC AGCGGATCGG CAACGGGTAC GCCGCGCGCA
- 101 TCTTTTTCGA TATTGATGTT TTCCAAACCG ATATTGTCAA CGTTCGGACG 151 GCGGCCTACG GCTGCCAGCA TATATTCGGC AACAAATACG CCTTTTTCGC
- 201 CATCCTGCTC CCAATGGACT TCTACATTGC CGTCTGCGTC GAGTTTGGCC
- 251 TCGGTTTTAG CATCCAAATG CAGTTTCAAT TCTTCACCGA ACACGGCTTT
- 301 CGCCTCGTCT GA

This corresponds to the amino acid sequence <SEQ ID 104; ORF 018.a>:

a018.pep

- 1 MQQGQLVGRV ARNKDMRNTG LHSQRIGNGY AARIFFDIDV FQTDIVNVRT
- 51 AAYGCQHIFG NKYAFFAILL PMDFYIAVCV EFGLGFSIQM QFQFFTEHGF
- 101 RLV*

m018/a018 86.4% identity over a 103 aa overlap

	10	20	30	40	50	60
m018.pep	MQQRQLVGRIACDE	OMRNTGLHGQ	RVGNRYAARI	FFDIDIFQTD	IVNVRTAAHGO	CQHIFG
• •	111 11111:1:::					
a018	MQQGQLVGRVARNK	DMRNTGLHSQ	RIGNGYAARI	FFDIDVFQTD	IVNVRTAAYG	CQHIFG
	10	20	30	40	50	60
	70	80	90	100		
m018.pep	NKYAFFAILLPMDF					

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 018 shows 84.5% identity over a 103 aa overlap with a predicted ORF (ORF 018.ng) from N. gonorrhoeae:

m018/g018

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 105>:

g019.seq (partial)

- 1 ..ctgctggcgg ccctggtgct tgccgcgtgt tcttcgACAA ACAcacTGCC
 51 AGCCGGCAAG ACCCCGGCAG ACAATATAGA AActgcCgAC CTTTCGGCAA
 101 GCGTTCCCAC ccgcCCTGCC GAACCGGAAG GAAAAACGCT GGCAGATTAC
 151 GGCGGCTACC CGTCCGCACT GGATGCAGTG AAACAGAACA ACGATGCGGC
 201 AGCCGCCGCC TATTTGGAAA Acgcaggaga cagCGcgatg gcGGAAAatg
 251 tccgcaagga gtgGCTGa
- This corresponds to the amino acid sequence <SEQ ID 106; ORF 019.ng>; g019.pep (partial)
 - 1 ..LLAALVLAAC SSTNTLPAGK TPADNIETAD LSASVPTRPA EPEGKTLADY
 51 GGYPSALDAV KQNNDAAAAA YLENAGDSAM AENVRKEWL*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 107>: m019.seq (partial)

1 ATGTACCTAC CCTCTATGAA GCATTCCCTG CCGCTGCTGG CGGCCCTGGT 51 GCTTGCCGCG TGTTCTTCGA CAAACACACT GCCAGCCGGC AAGACCCCGG CAGACAATAT AGAAACTGCC GACCTTTCGG CAAGCGTTCC CACCCGCCCT GCCGAACCCG AAAGAAAAAC GCTGGCAGAT TACGGCGGCT ACCCGTCCGC 201 ACTGGATGCA GTGAAACAGA AAAACGATGC CGCCGTCGCC GCCTATTTGG 251 AAAACGCCGG CGACAGCGCG ATGGCGGAAA ATGTCCGCAA CGAGTGGCTG 301 AAGTCTTTGG GCGCACGCAG ACAGTGGACG CTGTTTGCAC AGGAATACGC 351 CAAACTCGAA CCGGCAGGGC GCGCCCAAGA AGTCGAATGC TACGCCGATT 401 CGAGCCGCAA CGACTATACG CGTGCCGCTG AACTGGTCAA AAATACGGGC 451 AAACTGCCTT CGGGCTGCAC CAAACTGTTG GAACAGGCAG CCGCATCCGG 501 CTTGTTGGAC GGCAACGACG CCTGGAGGCG CGTGCGCGGA CTGCTGGCCG 551 GCCGCCAAAC CACAGACGCA CGCAACCTTG CCGCCGCATT GGGCAGCCCG 601 TTTGACGGCG GTACACAAGG TTCGCGCGAA TATGCCCTGT TGAACGTCAT 651 CGGCAAAGAA GCACGCAAAT CGCCGAATGC CGCCGCCCTG CTGTCCGAAA 701 TGGAAAGCGG TTTAAGCCTC GAACAACGCA GTTTCGCGTG GGGCGTATTG
751 GGGCATTATC AGTCGCAAAA CCTCAATGTG CCTGCCGCCT TGGACTATTA 801 CGGCAAGGTT GCCGACCGCC GCCAACTGAC CGACGACCAA ATCGAGTGGT 851 ACGCCCGCGC CGCCTTGCGC GCCCGACGTT GGGACGAGCT GGCCTCCGTT 901 ATCTCGCATA TGCCCGAAAA ACTGCAAAAA AGCCCGACCT GGCTCTACTG 951 GCTGGCACGC AGCCGCGCCG CAACGGGCAA CACGCAAGAG GCGGAAAAAC 1001 TTTACAAACA GGCGGCAGCG ACGGGCAGGA ATTTTTATGC GGTGCTGGCA 1051 GGGGAAGAAT TGGGTCGGAA AATCGATACG CGCAACAATG TGCCCGATGC 1101 CGGCAAAAAC AGCGTCCGCC GCATGGCGGA AGACGGTGCA GTCAAACGCG 1151 CACTGGTACT GTTCCAAAAC AGCCAATCTG CCGGTGATGC AAAAATGCGC 1201 CGTCAGGCTC AGGCGGAATG GCGTTTTGCC ACACGCGGCT TTGACGAAGA CAAGCTGCTG ACCGCCGCG AAACCGCGTT CGACCACGGT TTTTACGATA 1251 CAAGCTGCTG ACCGCCGCGC AAACCGCGTT CGACCACGGT TTTTACGATA 1301 TGGCGGTCAA CAGCGCGGAA CGCACCGACC GCAAACTCAA CTACACCTTG 1351 CGCTATATTT CGCCGTTTAA AGACACGGTA ATCCGCCACG CGCAAAATGT 1401 TAATGTCGAT CCGGCTTGGG TTTATGGGCT GATTCGTCAG GAAAGCCGCT 1451 TCGTTATAGG CGCGCAATCC CGCGTAGGCG CGCAGGGGCT GATGCAGGTT 1501 ATGCCTGCCA CCGCGCGCA AATCGCCGGC AAAATCGGTA TGGATGCCGC

This corresponds to the amino acid sequence <SEQ ID 108; ORF 019>: m019.pep (partial)

1551 ACAACTTTAC ACCGCCGACG GG...

1 MYLPSMKHSL PLLAALVLAA CSSTNTLPAG KTPADNIETA DLSASVPTRP

202

```
51 AEPERKTLAD YGGYPSALDA VKQKNDAAVA AYLENAGDSA MAENVRNEWL
101 KSLGARRQWT LFAQEYAKLE PAGRAQEVEC YADSSRNDYT RAAELVKNTG
151 KLPSGCTKLL EQAAASGLLD GNDAWRRVRG LLAGRQTTDA RNLAAALGSP
201 FDGGTQGSRE YALLNVIGKE ARKSPNAAAL LSEMESGLSL EQRSFAWGVL
251 GHYQSQNLNV PAALDYYGKV ADRRQLTDDQ IEWYARAALR ARRWDELASV
301 ISHMPEKLQK SPTWLYWLAR SRAATGNTQE AEKLYKQAAA TGRNFYAVLA
351 GEELGRKIDT RNNVPDAGKN SVRRMAEDGA VKRALVLFQN SQSAGDAKMR
401 RQAQAEWRFA TRGFDEDKLL TAAQTAFDHG FYDMAVNSAE RTDRKLNYTL
451 RYISPFKDTV IRHAQNVNVD PAWVYGLIRQ ESRFVIGAQS RVGAQGLMQV
501 MPATAREIAG KIGMDAAQLY TADG...
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 109>:

```
a019.seq
          ATGTACCCAC CCTCTCTGAA GCATTCCCTG CCGCTGCTGG TGGNCCTGGT
         GCTTGCCGCG TGTTCTTNGA CAAACACACT GTCAGCCGAC AAGACCCCGG
    101 CAGACAATAT AGAAACTGCC GACCTTTCGG CAAGCGTTCC CACCNGCCCT
    151 GCCGAACCCG AANGAAAAAC GTNGGCAGAT TACGGCGGCT ACCCGTCCGC
    201 ACTGGATGCA GTGAAACAGA AAAACGATGC CGCCGTCGCC GCCTATTTGG
    251 AAAACGCCGG CGACAGCGCG ATGGCGGAAA ATGTCCGCAA CGAGTGGCTG
         AAGTCTTTGG GCGCGCAG ACAGTGGACG CTGTNTGCAC ANGAATATGC
    351 NAAACTCGAA CCGGCANGGC GCGCCCAAGA AGTCGAATGC TACGCCGATT
    401 CGAGCCGCAA CGACTATACG CGTGCCGCCG AACTGGTCAA AAATACGGGC
     451 AAACTGCCTT CGGGCTGCAC CAAACTGTTG GAACAGGCAG CCGCATCCGG
    501 CTTGTTGGAC GGCAACGACG CCTGGAGGCG CGTGCGCGGA CTGCTGGCCG
         GCCGCCAAAC CACAGACGCA CGCAACCTTG CCGCCGCATT GGGCAGCCCG
    601 TTTGACGGCG GTACACAAGG TTCGCGCGAA TATGCCCTGT TGAACGTCAT
    651 CGGCAAAGAA GCACGCAAAT CGCCGAATGC CGCCGCCCTG CTGTCCGAAA
    701 . TGGAAAGCGG TTTAAGCCTC GAACAACGCA GTTTCGCGTG GGGCGTATTG
    751 GGGCATTATC AGTCGCAAAA CCTCAATGTG CCTGCCGCCT TGGACTATTA
         NGGCAAGGTT GCCGACCGCC GCCAACTGAC CGACGACCAA ATCGAGTGGT
    851 ACGCCCGCGC CGCNNTNNGC NNNCGNNGTT NGNANGANNT GGCNNCCGNN
    901 ANCNCGNNNN TGCNNGANAA ACNNNNNNAN AGNCNNANNT NGNTNNANTG
    951 NNTGGCACGC AGCCGCGCG CNACGGGCAA CACGCAANAN GCGGANAAAC
    1001 TNTACAAACA GGCGGCAGCA NCGGGCANGA ATTTTTATGC NGTGCTGNCN
         GGGGAAGAGT TGGGGCGCAN AATCGATACG CGCAACAATG TGCCCGATGC
         CGGCAAAANC AGCGTCCTCC GTATGGCGGA AGACGGCGCG ATTAAGCGCG
    1101
   1151 CGCTGGTGCT GTTCCGAAAC AGCCGAACCG CCGGCGATGC GAAAATGCGC
   1201 CGTCNGGCTC AGGCGGAATG GCGTTTCGCC ACACGCGGCT TCGATGAAGA
   1251 CAAGCTGCTG ACCGCCGCG AAACCGCGTT CGACCACGGT TTTTACGATA
1301 TGGCGGTCAA CAGCGCGGAA CGCACCGACC GCAAACTCAA CTACACCTTG
   1351
         CGCTACATTT CGNNNNTNA NGACACGGTA ATCCGCCACG CGCAAAATGT
   1401 TAATGTCGAT CCGGCGTGGG TTTACGGGCT GATTCGTCAG GAAAGCCGCT
   1451 TCGTTATGGG CGCGCAATCC CGCGTAGGCG CGCAGGGGCT GATGCAGGTT
    1501 ATGCCTGCCA CCGCGCGCA AATCGCCGGC AAAATCGGTA TGGATGCCGC
    1551 ACAACTTTAC ACCGCCGACG GCAATATCCG TATGGGGACG TGGTATATGG
         CGGACACCAA ACGCCGCCTG CAAAACAACG AAGTCCTCGC CACCGCAGGC
   1651 TATAACGCCG GTCCCGGCAG GGCGCGCCGA TGGCAGGCGG ACACGCCCCT
   1701 CGAAGGCGCG GTATATGCCG AAACCATCCC GTTTTCCGAA ACGCGCGACT
    1751 ATGTCAAAAA AGTGATGGCC AATGCCGCCT ACTACGCCTC CCTCTTCGGC
          GCGCCGCACA TCCCGCTCAA ACAGCGTATG GGCATTGTCC CCGCCCGCTG
    1801
    1851
```

This corresponds to the amino acid sequence <SEQ ID 110; ORF 019.a>:

```
a019.pep

1 MYPPSLKHSL PLLVXLVLAA CSXTNTLSAD KTPADNIETA DLSASVPTXP
51 AEPEXKTXAD YGGYPSALDA VKQKNDAAVA AYLENAGDSA MAENVRNEWL
101 KSLGARRQWT LXAXEYAKLE PAXRAQEVEC YADSSRNDYT RAAELVKNTG
151 KLPSGCTKLL EQAAASGLLD GNDAWRRVRG LLAGRQTTDA RNLAAALGSP
201 FDGGTQGSRE YALLNVIGKE ARKSPNAAAL LSEMESGLSL EQRSFAWGVL
251 GHYQSQNLNV PAALDYXGKV ADRRQLTDDQ IEWYARAAXX XRXXXXXAXX
301 XXXXXXXXXX XXXXXXXXR SRAATGNTQX AXKLYKQAAA XGXNFYAVLX
351 GEELGRXIDT RNNVPDAGKX SVLRMAEDGA IKRALVLFRN SRTAGDAKMR
401 RXAQAEWRFA TRGFDEDKLL TAAQTAFDHG FYDMAVNSAE RTDRKLNYTL
```

203

451 RYISXXXDTV IRHAQNVNVD PAWVYGLIRQ ESRFVMGAQS RVGAQGLMQV 501 MPATAREIAG KIGMDAAQLY TADGNIRMGT WYMADTKRRL QNNEVLATAG 551 YNAGPGRARR WQADTPLEGA VYAETIPFSE TRDYVKKVMA NAAYYASLFG 601 APHIPLKQRM GIVPAR*

m019/a019 88.9% identity over a 524 aa overlap

			•			
m019.pep	10 MYLPSMKHSLPLLAA					
a019	: : MYPPSLKHSLPLLVX	LVLAACSXT	NTLSADKTPA	DNIETADLSA	ASVPTXPAEPE	EXKTXAD
	10 70	20 80	30 90	40 100	50 110	60 120
m019.pep	YGGYPSALDAVKQKN	111111111	1111111111		THILL	111111
a019	YGGYPSALDAVKQKN 70	B0	NAGDSAMAEN 90	IVRNEWLKSLG 100	SARRQWTLXAX 110	EYAKLE 120
m019.pep	130 PAGRAQEVECYADSS					
a019						
	190	200	210	220	230	240
m019.pep	LLAGRQTTDARNLAA LLAGRQTTDARNLAA	111111111	111111111	нини	1111111111	
4015	190	200	210	220	230	240
m019.pep	250 EQRSFAWGVLGHYQS					300 VDELASV I
a019	EQRSFAWGVLGHYQS 250					
m019.pep	310 ISHMPEKLQKSPTWI	320 YWLARSRAA	330 TGNTQEAEKI	340 LYKQAAATGRN	350 IFYAVLAGEEI	360 LGRKIDT
a019	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXARSRAA	TGNTQXAXKI		FYAVLXGEEI	LGRXIDT
	310 370	320 380	330 390	340 400	350 410	360 420
m019.pep	RNNVPDAGKNSVRRM	11111:111	1111:11::1	[[]]		
a019	RNNVPDAGKXSVLRM 370	380	390	400	410	420
m019.pep	430 TAAQTAFDHGFYDMA					_
a019						
m019.pep	490 ESRFVIGAQSRVGAQ	500	510	520	-	
a019	: ESRFVMGAQSRVGAQ	41111111	111111111		1	ADTKRRL
a019	490 QNNEVLATAGYNAGE	500 PGRARRWOAD	510	520 ETIPESETRO	. 530	540
442	550	560	570	580	590	600

204

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 019 shows 95.5% identity over a 89 aa overlap with a predicted ORF (ORF 019.ng) from N. gonorrhoeae:

q019/m019

			10	20	30	40	49
g019.pep		LLA	ALVLAACSST	NTLPAGKTPAI	NIETADLSA	SVPTRPAEPEG	KTLAD
		111					
m019	MYLPS	MKHSLPLLA	ALVLAACSST	NTLPAGKTPAI	DNIETADLSA	SVPTRPAEPER	KTLAD
		10	20	30	40	50	60
	50	60	70	80	89		
g019.pep	YGGYP	SALDAVKON	NDAAAAAYLE	NAGDSAMAEN	/RKEWL		
			1111:1111		:		
m019	YGGYP	SALDAVKQK	NDAAVAAYLE	NAGDSAMAEN	RNEWLKSLG	ARRQWTLFAQE	YAKLE
		70	80	90	100	110	120

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 111>:

g023.seq

```
ATGGTAGAAC GTAAATTGAC CGGTGCCCAT TACGGTTTGC GCGATTGGGT
 1
51 AATGCAGCGT GCGACTGCGG TTATTATGTT GATTTATACC GTTGCACTTT
101 TAGTGGTTCT ATTTGCCCTG CCTAAAGAAT ATCCGGCATG GCAGGCATTT
151 TTTAGTCAAG CTTGGGTAAA AGTATTTACC CAAGTGAGCT TTATCGCCGT
201 ATTCTTGCAC GCTTGGGTGG GTATCCGCGA TTTGTGGATG GACTATATCA
251 AACCCTTCGG CGTGCGTTTG TTTTTGCAGG TTGCCACCAT TGtctGGCTG
301 GTCGGCTGCC TCGTGTATTC AGTTAAAGTG ATTTGGGGGT AA
```

This corresponds to the amino acid sequence <SEQ ID 112; ORF 023.ng>:

g023.pep

- MVERKLTGAH YGLRDWVMQR ATAVIMLIYT VALLVVLFAL PKEYPAWQAF 51 FSQAWVKVFT QVSFIAVFLH AWVGIRDLWM DYIKPFGVRL FLQVATIVWL 101 VGCLVYSVKV IWG*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 113>:

m023.seg

- 1 ATGGTAGAAC GTAAATTGAC CGGTGCCCAT TACGGTTTGC GCGATTGGGT 51 GATGCAACGT GCGACTGCGG TTATTATGTT GATTTATACC GTTGCACTTT 101 TAGTGGTTCT ATTTTCCCTG CCTAAAGAAT ATTCGGCATG GCAGGCATTT 151 TTTAGTCAAA CTTGGGTAAA AGTATTTACC CAAGTGAGCT TCATCGCCGT 201 ATTCTTGCAC GCTTGGGTGG GTATCCGCGA TTTGTGGATG GACTATATCA AACCCTTCGG CGTGCGTTTG TTTTTGCAGG TTGCCACCAT CGTTTGGCTG
- 301 GTCGGCTGTC TCGTGTATTC AGTTAAAGTG ATTTGGGGGT AA

This corresponds to the amino acid sequence <SEQ ID 114; ORF 023>: m023.pep

- MVERKLTGAH YGLRDWVMQR ATAVIMLIYT VALLVVLFSL PKEYSAWQAF 51 FSQTWVKVFT QVSFIAVFLH AWVGIRDLWM DYIKPFGVRL FLQVATIVWL
- 101 VGCLVYSVKV IWG*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 115>:

a023.seq

- ATGGTAGAAC GTAAATTGAC CGGTGCCCAT TACGGTTTGC GGGATTGGGC 51 GATGCAACGT GCGACCGCGG TTATTATGTT GATTTATACC GTTGCACTTT 101 TAGTGGTTCT ATTTGCTCTG CCTAAAGAAT ATTCGGCATG GCAGGCATTT
- 151 TTTAGTCAAA CTTGGGTAAA AGTATTTACC CAAGTGAGCT TCATCGCCGT

205

```
201 ATTCTTGCAC GCTTGGGTGG GTATCCGCGA TTTGTGGATG GACTATATNA
```

251 AACCCTTCGG CGTGCGTTTG TTTTTGCAGG TTGCCACCAT CGTCTGGCTG

301 GTCGGCTGCT TGGTGTATTC AATTAAAGTA ATTTGGGGGT AA

This corresponds to the amino acid sequence <SEQ ID 116; ORF 023.a>:

a023.pep

- 1 MVERKLTGAH YGLRDWAMQR ATAVIMLIYT VALLVVLFAL PKEYSAWQAF
- 51 FSQTWVKVFT QVSFIAVFLH AWVGIRDLWM DYXKPFGVRL FLQVATIVWL

101 VGCLVYSIKV IWG*

m023/a023 96.5% identity over a 113 aa overlap

	10	20	30	40	50	60
m023.pep	MVERKLTGAH	YGLRDWVMQR	RATAVIMLIYI	VALLVVLFSL	PKEYSAWQAFF	SQTWVKVFT
a023	MVERKLTGAH	YGLRDWAMQF	RYILMIVATAS	VALLVVLFAL	PKEYSAWQAFF	SQTWVKVFT
	10	20	30	40	50	60
	70	80) 90	100	110	
m023.pep	QVSFIAVFLH	LAWVGIRDLWM	IDYIKPFGVRI	FLQVATIVWL	VGCLVYSVKVI	WGX
	111111111	11111111111			11111111:111	111
a023	QVSFIAVFLH	LAWVGIRDLWM	1DYXKPFGVRI	FLQVATIVWL	VGCLVYSIKVI	WGX
	70	80	90	100	110	

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 023 shows 97.3% identity over a 113 aa overlap with a predicted ORF (ORF 023.ng) from N. gonorrhoeae:

g023/m023

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 117>:

```
g025.seq
         ATGTTGAAAC AAAcgACACT TTTGGCAGCT TGTACCGCCG TTGCCGCTCT
     51 GTTGGGCGGT TGcqCCACCC AACAGCCTGC TccTGTCATT GCAGGCAATT
     101 CAGGTATGCA GACCGTATCG TCTGCGCCGG TTTACAATCC TTATGGCGCA
     151 ACGCCGTACA ATGCCGCTCC TGCCGCCAac gatgcGCCgT ATGTGCCGCC
     201 CGTGCAAact gcgccggttT ATTCGCCTCC TGCTTATGTT CCGCcgtCTG
     251 CACCTGCCGT TTCGGgtaca tatgtTCCTT CTTACGCACC CgtcgACATC
     301 aacgCGGCGa cgCataCTAT TGTGCGTGGC GACACGGtgt acaACATTTc
     351 caaAcgCtac CATATCTCTC AAGACGATTT CCGTGCGTGG AACGGCATGA
         CCGACAATAC GTTGAGCATC GGTCAGATTG TTAAAGTCAA ACCGGCaggA
         TATGCCGCAC CGAAAACCGC AGCCGTAGAA AGCAGGCCCG CCGTACCGGC
     501
         TGCCGCGCAA ACCCCTGTGA AACCCGCCGC gcaACCGCCC GTTCAGTCCG
     551 CGCCGCAACC TGCCGCGCCC GCTGCGGAAA ATAAAGCGGT TCCCGCCCCC
     601 GCGCCCGCCC CGCAATCTCC TGCCGCTTCG CCTTCCGGCA CGCGTTCGGT
     651 CGGCGGCATT GTTTGGCAGC GTCCGACCCA AGGTAAAGTG GTTGCCGATT
```

```
701 TCGGCGGCGG CAACAAGGGT GTCGATATTG CCGGCAATGC CGGACAACCC
751 GTTTTGGCGG CGGCTGACGG CAAAGTGGTT TATGCCGGTT CAGGTTTGAG
801 GGGATACGGA AACTTGGTCA TCATCCAGCA CAATTCCTCT TTCCTGACCG
851 CGTACGGGCA CAACCAAAAA TTGCTGGTCG GCGAAGGTCA GCAGGTCAAA
901 CGCGGTCAGC AGGTTGCTTT GATGGGTAAT ACCGATGCTT CCAGAACGCA
951 GCTTCATTTC GAGGTGCGTC AAAACGGCAA ACCGGTTAAC CCGAACAGCT
1001 ATATCGCGTT CTGA
```

This corresponds to the amino acid sequence <SEQ ID 118; ORF 025.ng>:

```
g025.pep
```

1 MLKOTTLLAA CTAVAALLGG CATQQPAPVI AGNSGMQTVS SAPVYNPYGA
51 TPYNAAPAAN DAPYVPPVQT APVYSPPAYV PPSAPAVSGT YVPSYAPVDI
101 NAATHTIVRG DTVYNISKRY HISQDDFRAW NGMTDNTLSI GQIVKVKPAG
151 YAAPKTAAVE SRPAVPAAAQ TPVKPAAQPP VQSAPQPAAP AAENKAVPAP
201 APAPQSPAAS PSGTRSVGGI VWQRPTQGKV VADFGGGNKG VDIAGNAGQP
251 VLAAADGKVV YAGSGLRGYG NLVIIQHNSS FLTAYGHNQK LLVGEGQQVK
301 RGQQVALMGN TDASRTQLHF EVRQNGKPVN PNSYIAF*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 119>:

```
m025.seg (partial)
          ..GTGCCGCCGG TGCAAAGCGC GCCGGTTTAT ACGCCTCCTG CTTATGTTCC
      1
           GCCGTCTGCA CCTGCCGTTT CGGGTACATA CGTTCCTTCT TACGCACCCG
     51
           TCGACATCAA CGCGGCGACG CATACTATTG TGCGCGGCGA CACGGTGTAC
     101
           AACATTTCCA AACGCTACCA TATCTCTCAA GACGATTTCC GTGCGTGGAA
     151
           CGGCATGACC GACAATACGT TGAGCATCGG TCAGATTGTT AAAGTCAAAC
    201
     251
           CGGCAGGATA TGCCGCACG AAAGCCGCAG CCGTAAAAAG CAGGCCCGCC
           GTACCGGCTG CCGCGCAACC GCCCGTACAG TCCGCACCCG TCGACATTAA
     301
           CGCGGCGACG CATACTATTG TGCGCGGCGA CACGGTGTAC AACATTTCCA
     351
           AACGCTACCA TATCTCTCAA GACGATTTCC GTGCGTGGAA CGGCATGACC
     401
           GACAATATGT TGAGCATCGG TCAGATTGTT AAAGTCAAAC CGGCAGGATA
     451
           TGCCGCACCG AAAACCGCAG CCGTAGAAAG CAGGCCCGCC GTACCGGCTG
     501
           CCGTGCAAAC CCCTGTGAAA CCCGCCGCGC AACCGCCTGT GCAGTCCGCG
     551
           CCGCAACCTG CCGCGCCCGC TGCGGAAAAT AAAGCGGTTC CCGCGCCCGC
     601
           CCCGCAATCT CCTGCCGCTT CGCCTTCCGG CACGCGTTCG GTCGGCGGCA
     651
           TTGTTTGGCA GCGTCCGACG CAAGGTAAAG TGGTTGCCGA TTTCGGCGGC
     701
           AACAACAAGG GTGTCGATAT TGCCGGTAAT GCGGGACAGC CCGTTTTGGC
     751
     801
           GGCGGCTGAC GGCAAAGTGG TTTATGCCGG TTCAGGTTTG AGGGGATACG
           GAAACTTGGT CATCATCCAG CATAATTCTT CTTTCCTGAC CGCATACGGG
     851
           CACAACCAAA AATTGCTGGT CGGCGAGGGG CAGCAGGTCA AACGCGGTCA
     901
     951
           GCAGGTTGCT TTGATGGGCA ATACCGATGC TTCCAGAACG CAGCTTCATT
    1001
           TCGAGGTGCG TCAAAACGGC AAACCGGTTA ACCCGAACAG CTATATCGCG
    1051
            TTCTGA
```

This corresponds to the amino acid sequence <SEQ ID 110; ORF 025>:

```
m025.pep (partial)
```

```
1 ..VPPVQSAPVY TPPAYVPPSA PAVSGTYVPS YAPVDINAAT HTIVRGDTVY
51 NISKRYHISQ DDFRAWNGMT DNTLSIGQIV KVKPAGYAAP KAAAVKSRPA
101 VPAAAQPPVQ SAPVDINAAT HTIVRGDTVY NISKRYHISQ DDFRAWNGMT
151 DNMLSIGQIV KVKPAGYAAP KTAAVESRPA VPAAVQTPVK PAAQPPVQSA
201 PQPAAPAAEN KAVPAPAPQS PAASPSGTRS VGGIVWQRPT QGKVVADFGG
251 NNKGVDIAGN AGQPVLAAAD GKVVYAGSGL RGYGNLVIIQ HNSSFLTAYG
301 HNQKLLVGEG QQVKRGQQVA LMGNTDASRT QLHFEVRQNG KPVNPNSYIA
351 F*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 111>:

a025.seq

- 1 ATGTTGACAC CAACAACACT TTAGGTAGCT TGTACCGCCC TTGCCGCTCA
- 51 GTTGGGCGGA TGCCCCACCC AACACCCTTC TCCTGTCATT GCAGGCAATT
- 101 CAGGTATGCA GACCGTACCG TCTGCGCCGG TTTACAATCC TTATGGCGCA

ACGCCGTACA ATGCCGCTCC TGCCGCCAAC GATGCGCCGT ATGTGCCGCC

GGTGCAAAGC GCGCCGGTTT ATANGCCTCC TGCTTATGTT CCGCCGTCTG

```
CACCTGCCGT TTCGGGTACA TACGTTCCTT CTTACGCANC CGTCGACATC
         251
              AACGCGGCGA CCCATACTAT TGTGCGCGGC GACACCGTGT ACAAGATTTC
         301
              CAAATGCTAC CATATCTCTC AAGACGATTT CCGTGCGTGG AACGGCATGA
         351
              CCGACAATAC GTTGAGCATC GGTCAGATTG TTAAAGTCAA ACCGGCAGGA
         401
              TATGCCGCAC CGAAAGCCGC AGCCGTAAAA AGCAGGCCCG CCGTACCGGC
         451
              TGCCGCGCAA CCGCTCGTAC AGTCCGCACC CGTCGACATC AACGCGGCGA
         501
              CGCATACTAT TGTGCGCGGC GACACGGTGT ACAACATTTC CAAACGCTAC CATATCTCTC AAGACGATTT CCGTGCGTGG AACGGCATGA CCGACAATAC
         551
         601
              GTTGAGCATC GGTCAGATTG TTAAAGTCAA ACCGGCAGGA TATGCCGCAC
         651
              CGAAAGCCGC AGCCGTAAAA AGCAGGCCCG CCGTACCGGC TGCCGTGCAA
         701
              ACCCCTGTGA AACCCGCCGC GCAACCGCCT GTGCAGTCCG CGCCGCAACC
         751
              TGCCGCGCCC GCTGCGGAAA ATAAAGCGGT TCCCGCGCCC GCCCCGCAAT
         801
              CTCCTGCCGC TTCGCCTTCC GGCACGCGTT CGGTCGGCGG CATTGTTTGG
         851
              CAGCGTCCGA CGCAAGGTAA AGTGGTTGCC GATTTCGGCG GCAACAACAA
         901
         951
              GGGTGTCGAT ATTGCAGGAA ATGCGGGACA GCCCGTTTTG GCGGCGGCTG
              ACGGCAAAGT GGTTTATGCA GGTTCCGGTT TGAGGGGATA CGGCAATTTG
        1001
              GTCATCATCC AGCATAATTC TTCCTTCCTG ACCGCATACG GGCACAACCA
        1051
              AAAATTGCTG GTCGGCGAAG GCCAGCAGGT CAAACGCGGG CAGCAGGTCG
        1101
              CTTTGATGGG CAATACCGAG GCTTCTAGAA CGCAGCTTCA TTTCGAGGTG
        1151
        1201 CGGCAAAACG GCAAACCGGT TAATCCGAAC AGCTATATCG CGTTCTGA
This corresponds to the amino acid sequence <SEQ ID 112; ORF 025.a>:
     a025.pep
              MLTPTTL*VA CTALAAQLGG CPTQHPSPVI AGNSGMQTVP SAPVYNPYGA
              TPYNAAPAAN DAPYVPPVQS APVYXPPAYV PPSAPAVSGT YVPSYAXVDI
          51
              NAATHTIVRG DTVYKISKCY HISQDDFRAW NGMTDNTLSI GQIVKVKPAG
         101
              YAAPKAAAVK SRPAVPAAAQ PLVQSAPVDI NAATHTIVRG DTVYNISKRY
         151
              HISODDFRAW NGMTDNTLSI GQIVKVKPAG YAAPKAAAVK SRPAVPAAVQ
         201
              TPVKPAAQPP VQSAPQPAAP AAENKAVPAP APQSPAASPS GTRSVGGIVW
         251
              QRPTQGKVVA DFGGNNKGVD IAGNAGQPVL AAADGKVVYA GSGLRGYGNL
         301
              VIIOHNSSFL TAYGHNQKLL VGEGQQVKRG QQVALMGNTE ASRTQLHFEV
         351
              RONGKPVNPN SYIAF*
          401
                 97.4% identity over a 351 aa overlap
     m025/a025
                                                              20
                                             VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
     m025.pep
                                             GMOTVPSAPVYNPYGATPYNAAPAANDAPYVPPVQSAPVYXPPAYVPPSAPAVSGTYVPS
     a025
                                                           80
                                                 70
                     40
                              50
                                        60
                                                     70
                                  50
                                            60
                 YAPVDINAATHTIVRGDTVYNISKRYHISQDDFRAWNGMTDNTLSIGQIVKVKPAGYAAP
     m025.pep
                 YAXVDINAATHTIVRGDTVYKISKCYHISQDDFRAWNGMTDNTLSIGQIVKVKPAGYAAP
     a025
                                       120
                                                130
                             110
                    100
                                                             140
                                                    130
                        100
                                 110
                                          120
                 KAAAVKSRPAVPAAAQPPVQSAPVDINAATHTIVRGDTVYNISKRYHISQDDFRAWNGMT
     m025.pep
                 KAAAVKSRPAVPAAAQPLVQSAPVDINAATHTIVRGDTVYNISKRYHISQDDFRAWNGMT
     a025
                    160
                             170
                                       180
                                                 190
                                                          200
                                                                   210
                                 170
                                          180
                                                    190
                 DNMLSIGOIVKVKPAGYAAPKTAAVESRPAVPAAVQTPVKPAAQPPVQSAPQPAAPAAEN
     m025.pep
                  DNTLSIGQIVKVKPAGYAAPKAAAVKSRPAVPAAVQTPVKPAAQPPVQSAPQPAAPAAEN
     a025
                    220
                              230
                                       240
                                                 250
                                                          260
                                                                   270
                        220
                                 230
                                           240
                                                    250
                 KAVPAPAPQSPAASPSGTRSVGGIVWQRPTQGKVVADFGGNNKGVDIAGNAGQPVLAAAD
     m025.pep
```

a025	KAVPAPAPQSPA	ASPSGTRSVO	GIVWQRPTQ	GKVVADFGGN	NKGVDIAGNA	GQPVLAAAD
	280	290	300	310	320	330
	280	290	300	310	320	330
m025.pep	GKVVYAGSGLRO	YGNLVIIQH	NSSFLTAYGH	NQKLLVGEGQ	QVKRGQQVAL	MGNTDASRT
• •	4 1 1 1 1 1 1 1 1 1 1 1	THEFT		1111111111		1111:111
a025	GKVVYAGSGLRO	SYGNLVIIQH	NSSFLTAYGH	NQKLLVGEGÇ	QVKRGQQVAL	MGNTEASRT
	340	350	360	370	380	390
	340	350				
m025.pep	QLHFEVRQNGK	PVNPNSYIAF	Κ			
			1			
a025	QLHFEVRQNGKI	PVNPNSYIAF	Κ.			
	400	410				

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 025 shows 75.6% identity over a 353 aa overlap with a predicted ORF (ORF 025.ng) from N. gonorrhoeae:

m025/g025

VPPVOSAPVYTPPAYVPPSAPAVSGTYVPS m025.pep GMQTVSSAPVYNPYGATPYNAAPAANDAPYVPPVQTAPVYSPPAYVPPSAPAVSGTYVPS g025 YAPVDINAATHTIVRGDTVYNISKRYHISQDDFRAWNGMTDNTLSIGQIVKVKPAGYAAP m025.pep YAPVDINAATHTIVRGDTVYNISKRYHISQDDFRAWNGMTDNTLSIGQIVKVKPAGYAAP g025 KAAAVKSRPAVPAAAQPPVQSAPVDINAATHTIVRGDTVYNISKRYHISQDDFRAWNGMT m025.pep q025 DNMLSIGQIVKVKPAGYAAPKTAAVESRPAVPAAVQTPVKPAAQPPVQSAPQPAAPAAEN m025.pep -------TAAVESRPAVPAAAQTPVKPAAQPPVQSAPQPAAPAAEN q025 KAVPAPAP--OSPAASPSGTRSVGGIVWQRPTQGKVVADFGGNNKGVDIAGNAGQPVLAA m025.pep KAVPAPAPAPQSPAASPSGTRSVGGIVWQRPTQGKVVADFGGGNKGVDIAGNAGQPVLAA a025 ADGKVVYAGSGLRGYGNLVI IQHNSSFLTAYGHNQKLLVGEGQQVKRGQQVALMGNTDAS m025.pep ADGKVVYAGSGLRGYGNLVIIQHNSSFLTAYGHNQKLLVGEGQQVKRGQQVALMGNTDAS q025 RTQLHFEVRQNGKPVNPNSYIAFX m025.pep

PCT/US99/09346 WO 99/057280

209

```
RTQLHFEVRQNGKPVNPNSYIAFX
q025
               330
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 113>: g031.seq

```
ATGGTGTCCC TCCGCTTCAG ATTCGGCAAC CACTTTAAAC GCCGACATTC
      TGACAATTTC CTTTTCCGCC AGCCAAATAT CATGCGTATC TTTCGGTTCG
 51
101 GGCTTGTTGG GCATGGCAAC CTTCAACAGC CGCGCCATCA CAGGAATCGT
151 CGTTCCCTGA ATCAGCAGCG ACAGCACCAC CACGGCAAAC GCCACATCAA
201 ACAGCAGGTG CGAATTGGGA ACGCCCATCA CCAGCGGCAT CATCGCCAGC
251 GAAATCGGTA CGGCTCCTCG CAAGCCCAAC CAACTGATAT ACGCCTTTTC
301 ACGCAGGCTG TAATTGAATT TCCACAAACC GCCGAACACT GCCAGCGGAC
351 GCGCGACCAG CATCAGGAAC GCCGCAATCG CCAAGGCTTC CGCCGCCCTG
401 TCCAACACGC CGGCGGAGA AACCAGCAGA CCGAGCATGA CGAACAAAGT
451 TGCCTGCGCC AGCCAAGCCA AACCGTCCAT CACACGCAAA ACGTGTTCCG
TcgcACGGTT GCGCTGGTTA CCGACAATGA TGCCGGCAAG GTAAACCGCC
AAAAAGCCGC TGCCGCCTAT GGTATTGGTA AACGCAAACA CAAGCAGCCC
GCCCGACACA ATCATCAGCG CGTACAGACC TTCCGtacac acctccaatt
651 cccaatcaac qtcataqctq tctcccqtqt taaaatqttc ttcacttcaq
701 aatcccccc ttcttcccag cccgaaacct tcatgtgtta naccctgggg
751 tgccccaacg gatttagtaa cctcccaatg actctgcttg tcgccccctt 801 cgcccgcttt ctccttccgg gaaaacttgt tgtccccgtc ttacattaa
```

This corresponds to the amino acid sequence <SEQ ID 114; ORF 031.ng>: g031.pep

```
MVSLRFRFGN HFKRRHSDNF LFRQPNIMRI FRFGLVGHGN LQQPRHHRNR
 51 RSLNQQRQHH HGKRHIKQQV RIGNAHHQRH HRQRNRYGSS QAQPTDIRLF
     TQAVIEFPQT AEHCQRTRDQ HQERRNRQGF RRPVQHAGGR NQQTEHDEQS
101
151 CLRQPSQTVH HTQNVFRRTV ALVTDNDAGK VNRQKAAAAY GIGKRKHKQP
201 ARHNHQRVQT FRTHLQFPIN VIAVSRVKMF FTSESPPSSQ PETFMCXTLG
251 CPNGFSNLPM TLLVAPFARF LLPGKLVVPV LH*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 115>: m031.seq (partial)

```
... CGCCTGAAGC ACGGTGTCGG ACTGCATTTC TATTCGGCTA TACGCCTTTT
 1
       CACGCAGGCT GTAATTGAAT TTCCACAAAC CGCCGAACAC TGCCGACGGA
       CGCGCGACCA GCATCAGGAA CGCCGCAATC GCCAAGGCTT CCGCCGCCCT
       GTCCAACACG TTGGCAGGAG AAACCAGCAG CAAAGGCATT CCCAAACGTG
       CGGACAAAGT GGTCGAAACC ACGCTCAGAA ACAACAGTGC GCCACCCGGC
201
       AG....
```

This corresponds to the amino acid sequence <SEQ ID 116; ORF 031>: m031.pep (partial)

```
... RLKHGVGLHF YSAIRLFTQA VIEFPQTAEH CRRTRDQHQE RRNRQGFRRP
   VQHVGRRNQQ QRHSQTCGQS GRNHAQKQQC ATRQ....
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 117>:

```
a031.seq
         ATACGCCTTT TCACGCAGGC TGTAATTGAA TTTCCACAAA CCGCCGAACA
      1
     51 CTGCCGGCGG ACGCGCGACC AGCATCAGGA ACGCCGCAAT CGCCAAGGCT
     101 TCCGCCGCCC CGTCCAACAC GTTGGCAGGA GAAACCAGCA GCAAAGGCAT
     151 TCCCAAACGT GCGGACAAAG TGGTCGAAAC CACGCTCAGA AACAACAGTG
     201 CGCCACCCGG CAG
```

This corresponds to the amino acid sequence <SEQ ID 118; ORF 031.a>:

```
a031.pep (partial)
          IRLFTQAVIE FPQTAEHCRR TRDQHQERRN RQGFRRPVQH VGRRNQQQRH
      51 SQTCGQSGRN HAQKQQCATR Q
```

210

```
100.0% identity over a 71 aa overlap
m031/a031
```

```
30
                                            40
                                                     50
                  10
           RLKHGVGLHFYSAIRLFTQAVIEFPQTAEHCRRTRDQHQERRNRQGFRRPVQHVGRRNQQ
m031.pep
                      IRLFTQAVIEFPQTAEHCRRTRDQHQERRNRQGFRRPVQHVGRRNQQ
a031
                                      20
                           80
                  70
m031.pep
           QRHSQTCGQSGRNHAQKQQCATRQ
           111111111111111111111111111
           QRHSQTCGQSGRNHAQKQQCATRQ
a031
                    60
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 031 shows 60.0% identity over a 85 aa overlap with a predicted ORF (ORF 031.ng) from N. gonorrhoeae:

m031/g031

		10	20	30
	RL	KHGVGLHFYS	AIRLFTQAV	IEFPQTAEH
	1	::1: :	1111111	1111111
RHIKQQVRIGNA	AHHQRHHRQRN	RYGSSQAQPT	DIRLFTQAV	IEFPQTAEH
70	80	90	100	110
50	60	70	80	
RRNRQGFRRPV	HVGRRNQQQR	HS-QTCGQSG	RNHAQKQQC	ATRQ
4 1 1 1 1 1 1 1 1 1	11:1 1111 :	1: 1:1 ::	: ::: 1	: 1:
RRNRQGFRRPV	QHAGGRNQQTE	HDEQSCLRQP	'SQTVHHTQN'	VFRRTVALV
130	140	150	160	170
, , , , , , , , , , , , , , , , ,	SKRKUDVDHNR	OPVOTERTHE	OFPINUTAV	SRVKMFFTS
_				230
	70 50 CRRNRQGFRRPV(CRRNRQGFRRPV(130	RRHIKQQVRIGNAHHQRHHRQRN 70 80 50 60 CRRNRQGFRRPVQHVGRRNQQQR	RLKHGVGLHFYS :: : : CRHIKQQVRIGNAHHQRHRQRNRYGSSQAQPT 70 80 90 50 60 70 CRRNRQGFRRPVQHVGRRNQQQRHS-QTCGQSG	RLKHGVGLHFYSAIRLFTQAV :: : :

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 119>: g032 . sec

)32.seq					
1	ATGCGGCGAA	ACGTGCCTGC	CGTCGCCGTA	TTGCGCCGCC	CACGATTCGA
51		GATTTGGCGT			
101	AACAGGGCTT	TGCCGTCCGA	TGCCGTCTGA	CGCAGCGGCA	GATAGTTTTT
151	CAAGGCTTCC	ACGCTTTTGC	CGGTCAGCGG	AACCTGACGC	TGCTTGCGCC
201	CTTTGCCGGT	AACGTGTACC	CACGCTTCGT	CCAAATATAC	ATCATCTGCA
251	TTCAAGCCGT	GTATCTCGCT	CACGCGCAAA	CCGCTGCCGT	ACATCAGCTC
301	GAACAGCGCG	TGGTCGCGCA	CCGCCAGCGG	GTCGCCGCCG	TCCACGGGCA
351	AATCCAACAT	CCGGTTCAGC	CATTCCTGCG	GCAGGGCTTT	GGGTACGCGC
401	TCGGGCTGCT	TCGGCGGTTT	GATGTCGGCG	GTCGGGTCGG	CGCGCATCAG
451	CCCGCGTTTG	ACCAGCCAGG	CGCAATACTG	CCGCCACGCC	GACAGCTTGC
501	GCGCCAGCGT	CCGACCGTCC	AAACCGCGCT	GCGACAGCCG	CCGCAACGCC
551	GccgTAAAAT	CGCGCCGCGA	CAAGTCCTGC	GGCACGCcgc	ctgcaTCTTC
601	AGACGGCATT	TGTGCCAACA	GTGCAAACAG	TTCTTCCAAA	TCGCGCCGGT
651	ATGCCGCAAC	CGTGTGCTCC	GACTTGCCCT	CGCGCACGAT	GTTTTCCAAA
701	TAAGCGTCAA	AATacgccgC	AAACccgTCC	AAAACCATAA	CCGTCCCACA
751	CAAATATCAA	AAAACCAGTG	A		

This corresponds to the amino acid sequence <SEQ ID 110; ORF 032.ng>: g032.pep

MRRNVPAVAV LRRPRFEAFL DLALAQARAV PAGKQGFAVR CRLTQRQIVF 51 QGFHAFAGQR NLTLLAPFAG NVYPRFVQIY IICIQAVYLA HAQTAAVHQL

```
101 EQRVVAHRQR VAAVHGQIQH PVQPFLRQGF GYALGLLRRF DVGGRVGAHQ
              PAFDQPGAIL PPRRQLARQR PTVQTALRQP PQRRRKIAPR QVLRHAACIF
          201
               RRHLCQCCKQ FFQIAPVCRN RVLRLALAHD VFQISVKIRR KPVQNHNRPT
              QISKNQ*
          251
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 111>:
     m032 . seq
               (partial)
              ATGCGGCGAA ACGTGCMTGC MGTCGCCGTT KTGCGCCGCC CATTGCGCCA
           51 AACGTTTTTG GATTTGGCGT TGGCTCAGGC GCGTGCCGTT CCTGCCGGTA
              AACAGGGCTT TGCCGTCCGA TGCCGTCTGA CGCAGCGGCA GATAGTTTTT
          151 CAGGGCTTCC ACGCTTTTGC CGACCAGCGG CACCTGCCGC TgTT.GCGCC
          201 CTTTGCCGAT AACGTGTACC CACGCYTCGT CCAAATAGAC ATCATCTGCA
          251 TTCAAGCCGT GTATCTCGCT CACGCGCAAA CCGCTGCCGT ACATCAGTTC
          301 GAACAGGGCG TGGTCGCGCA CCGCCAGCGG GTCGCCGCCG TCCACGGGCA
              AATCCAGCAT CCGGTTCAGC CATTCCTGCG GCAGGGCTTT GGGTACGCGC
          451 GCCGCGCTTT ACCAGCCAAA CGCAATACTG CCGCCAAGAC GAAAGCTTGC
          501 GAGCCAGCGT CCGTTCCCCC AAACCGCG...
This corresponds to the amino acid sequence <SEQ ID 112; ORF 032>:
     m032.pep (partial)
              MRRNVXAVAV XRRPLRQTFL DLALAQARAV PAGKQGFAVR CRLTQRQIVF
           51 QGFHAFADQR HLPLXAPFAD NVYPRXVQID IICIQAVYLA HAQTAAVHQF
          101 EQGVVAHROR VAAVHGQIQH PVQPFLRQGF GYALGLLRRF DVGGRVGVHQ
          151 AALYQPNAIL PPRRKLASQR PFPQTA...
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 113>:
     a032.seq
               ATGCGGCGAA ACGTGCCTGC CGTCGCCGTT TTGCGCCGCC CATTGCGCCA
           51 AACGTTTTTG GATTTGGCGT TGGCTCAGGC GCGTGCCGTT CCTGCCGGTA
          101 AACAGGGCTT TGCCGTCCGA TGCCGTCTGA CGCAGCGGCA GATAGTTTTT
          151 CAGGGCTTCC ACGCTTTTGC CGGTCAGCGG AACCTGCCGC TGCTTGCGTC
          201 CTTTGCCGGT AACGTGTACC CACGCCTCGT CCAAATATAC ATCATCTGCA
251 TTCAAGCCGT GTATCTCGCT CACGCGCAAA CCGCTGCCGT ACATCAGTTC
          301 GAACAGCGCG TGATCGCGCA CCGCCAGCGG GTCGCCGCCG TCCACGGGCA
          351 AATCCAGCAT CCGGTTCAGC CATTCCTGCG GCAGGGCTTT GGGTACGCGC
          451 ACCGCGTTTG ACCAGCCAGG CGCAATACTG CCGCCAAGAC GACAGCTTGC
501 GCGCCAGCGT CCGCGCATTC AAACCGCGCT GCGACAGCCG CCGCAACGCC
          551 GCCGTAAAAT CGCGCTGCGA CAAGCCCTGC GGCACGCCGC CTGCATCTTC
          601 AGACGGCATT TGTGCCAACA GCGCAAACAG TTCTTCCAAA TCGCGCCGGT
          651 ATGCCGCCAC CGTGTGCTCC GACTTGCCCT CGCGCACGAT GTTTTCCAAA
               TAAGCGTCAA AATGCGCCGC AAACCCGTCC AAAACCATAA CCGCCCCACA
          751 CAAATATCAA AAAAACAGTG A
This corresponds to the amino acid sequence <SEQ ID 114; ORF 032.a>:
     a032.pep
              MRRNVPAVAV LRRPLRQTFL DLALAQARAV PAGKQGFAVR CRLTQRQIVF
           51 QGFHAFAGQR NLPLLASFAG NVYPRLVQIY IICIQAVYLA HAQTAAVHQF
          101 EQRVIAHROR VAAVHGQIQH PVQPFLRQGF GYALGLLRRF DVGGRVGMQQ
               TAFDQPGAIL PPRRQLARQR PRIQTALRQP PQRRRKIALR QALRHAACIF
               RRHLCQQRKQ FFQIAPVCRH RVLRLALAHD VFQISVKMRR KPVQNHNRPT
          251
               QISKKQ*
             88.1% identity over a 176 aa overlap
m032/a032
                                             30
                                                        40
                  MRRNVXAVAVXRRPLRQTFLDLALAQARAVPAGKQGFAVRCRLTORQIVFQGFHAFADOR
     m032.pep
                  a032
                  {\tt MRRNVPAVAVLRRPLRQTFLDLALAQARAVPAGKQGFAVRCRLTQRQIVFQGFHAFAGQR}
                          10
                                    20
                                             30
                                                       40
```

212

	70	80	90	100	110	120
m032.pep	HLPLXAPFADNVYP	RXVQIDIICI	TQAVYLAHAQT	AAVHQFEQGV	VAHRQRVAAV	HGQIQH
	:	1 111 1111	111111111	1111111	: [[] [] [] []	11111
a032	NLPLLASFAGNVYP	RLVQIYIICI	TQAVYLAHAQT	AAVHQFEQRV	IAHRQRVAAV	/HGQIQH
	70	80	90	100	110	120
			4.5.0			
	130	140	150	160	170	
m032.pep	PVQPFLRQGFGYAL	GLLRRFDVGG	RVGVHQAALY	QPNAILPPRR	KLASQRPFPÇ	TΑ
	11:11:11:11:11:11	1111111111	111::1:1:	11:111111	:11 111 1	11
a032	PVQPFLRQGFGYAL	GLLRRFDVG	RVGMQQTAFD	QPGAILPPRR	QLARQRPRIÇ	TALRQP
	130	140	150	160	170	180
- 0.2.2	PORRRKIALROALR	UNACTEDBUI	COORVOEEOI	A DUCDUDUI D	171700000	CUMMDD
a032	PORKKKIALKQALK					
	190	200	210	220	230	240

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 032 shows 86.4% identity over a 176 aa overlap with a predicted ORF (ORF 032.ng) from *N. gonorrhoeae*:

m032/g032

m032.pep	10 MRRNVXAVAVXRRP	20 LRQTFLDLAL	30 AQARAVPAGK	40 QGFAVRCRLT	50 'QRQIVFQGFH	60 AFADQR
g032	MRRNVPAVAVLRRPI	RFEAFLDLAL	AOARAVPAGK	OGFAVRCRLI	OROIVFOGFH	AFAGOR
9002	10	20	30	40	50	60
	70	80	90	100	110	120
m032.pep	HLPLXAPFADNVYP	RXVQIDIICI	QAVYLAHAQT	AAVHQFEQGV	VAHRQRVAAV	'HGQIQH
	:1	1	11111111	11111:11 1		11111
g032	NLTLLAPFAGNVYP	RFVQIYIICI			/VAHRQRVAAV	
	70	80	90	100	110	120
	130	140	150	160	170	
m032.pep	PVQPFLRQGFGYAL	GLLRRFDVGG	RVGVHQAALY	QPNAILPPRE	RKLASQRPFPC	PΤΑ
	1	11111111	111:11 1:	11:111111	: [H
g032	PVQPFLRQGFGYAL	GLLRRFDVGG	RVGAHQPAFD	QPGAILPPRE	RQLARQRPTVQ	TALRQP
	130	140	150	160	170	180
q032	PORRRKIAPROVLR	HAACIFRRHL	CQQCKQFFQI	APVCRNRVLF	RLALAHDVFQI	SVKIRR
•	190	200	210	220	230	240

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 115>: g033.seq

1	ATGGCGGCGG	CGGACAAACT	CTTGGGCGGC	GACCGCCGCA	GCGTCGCCAT
51	CATCGGAGAC	GGCGCGATGA	CGGCGGGGCA	${\tt GGCGTTTGAA}$	GCCTTGAATT
101	GCGCGGCGA	TATGGATGTG	GATTTGCTGG	TCGTCCTCAA	CGACAACGAA
151		CCCCCAACGT			
201	CGTCGTGCGC	GATATGCACG	GACTGTTGAG	TACCGTCAAA	GCGCAAAcgg
251	GCAAGGTATT	AGACAAAATA	CCCGGCGCGA	TGGagtTTGC	CCAAAAAGTC
301	GAACAcaaaA	TCAAAACCCT	TGCCGAAGAA	GCCGAACACG	CCAAACAGTC
351	GCTGTCGCTG	TTTGAAAATT	TCGGCTTCCG	CTACACCGGC	CCCGTGGACG
401	GACACAACGT	CGAGAATCTG	GTGGACGTAT	TGAAAGACTT	GCGCAGCCGC
451	AAAGGCCCTC	AGTTGCTGCA	CGTCATCACC	AAAAAGGGCA	ACGGCTACAA
501	ACTCGCCGAA	AACGACCCcg	tcaAATACCA	CGCCGTCGCc	aACCTGCcta
551	AAGAAGGCGG	GGCGCAAATg	CCGTCTGAAA	AAGAACCCAA	GCCCGCCgCc
601	aaaccgACCT	ATACCCAAGT	ATTCGGCAAA	TGGCTGTGCG	ACCGGGCGGC
651	GGCAGATTCC	CGACTGGTTG	CGATTACCCC	CGCCATGCGC	GAGGGCAGCG

```
701 GACTGGTGGA GTTTGAACAA CGATTCCCCG ACCGCTATTT CGATGTCGGC
 751 ATCGCCGAGC AGCACGCCGT tacCTTTGCC GGCGGTTTGG CGTGCGAAGG
 801 CATGAAGCCC GTCGTGGCGA TTTATTCCAC CTTTTTACAA CGCGCCTACG
 851 ACCAACTGGT GCACGACATC GCCCTGCAAA ACCTGCCCGT TTTGTTTGCC
 901 GTCGACCGTG CGGGCATCGT CGGCGCGGAC GGTCCGACCC ATGCCGGCTT
     GTACGATTTG AGCTTCTTGC GCTGTGTGCC GAACATGATT GTTGCCGCGC
     CGAGCGATGA AAACGAATGC CGCCTGCTGC TTTCGACCTG CTATCAGGCG
1001
1051 GATGCGCCG CCGCCGTCCG CTATCCGCGC GGCACGGGTA CGGGCGCGCC
1101 GGTTTCAGAC GGCATGGAAA CCGTGGAAAT CGGCAAGGGC ATTATCCGCC
1151 GCGAAGGTGA GAAAACCGCC TTCatTGCCT TCGGCAGTAT GGTCGCCACC
1201 GCATTGGCGG TTGCCGAAAA ACTGAACGCC ACCGTCGCCG ATATGCGCTt
1251 cgtcaaacCG ATAGACGAAG AGTTGATTGT CCGCCTTGCC CGAAGCCAcg
1301 accGCATCGT TACCCTTGAA GAAAACGCCG AACAGGGCGG CGCAGGCGGC
1351 GCGGTCTTGG AAGTGTTGGC GAAACACGGC ATCTGCAAAC CCGTTTTGCT
1401 TTTGGGCGTT GCCGATACCG TAACCGAACA CGGCGATCCG AAAAAACTTT
1451 TGGACGATTT GGGTTTGAGT GCCGAAGCGG TGGAACGCCG GGTGCGCGAG
1501 TGGCTGCCGG ACCGTGATGC GGCAAATTAA
```

This corresponds to the amino acid sequence <SEQ ID 116; ORF 033.ng>: g033.pep

```
1 MAAADKLLGG DRRSVAIIGD GAMTAGQAFE ALNCAGDMDV DLLVVLNDNE
51 MSISPNVGAL PKYLASNVVR DMHGLLSTVK AQTGKVLDKI PGAMEFAQKV
101 EHKIKTLAEE AEHAKQSLSL FENFGFRYTG PVDGHNVENL VDVLKDLRSR
151 KGPQLLHVIT KKGNGYKLAE NDPVKYHAVA NLPKEGGAQM PSEKEPKPAA
201 KPTYTQVFGK WLCDRAAADS RLVAITPAMR EGSGLVEFEQ RFPDRYFDVG
251 IAEQHAVTFA GGLACEGMKP VVAIYSTFLQ RAYDQLVHDI ALQNLPVLFA
301 VDRAGIVGAD GPTHAGLYDL SFLRCVPNMI VAAPSDENEC RLLLSTCYQA
351 DAPAAVRYPR GTGTGAPVSD GMETVEIGKG IIRREGEKTA FIAFGSMVAT
401 ALAVAEKLNA TVADMRFVKP IDEELIVRLA RSHDRIVTLE ENAEQGGAGG
451 AVLEVLAKHG ICKPVLLLGV ADTVTEHGDP KKLLDDLGLS AEAVERRVRE
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 117>: m033.seq

```
ATGGCGGCGG CAGACAAACT CTTGGGCAGC GACCGCCGCA GCGTCGCCAT
  51 CATCGGCGAC GGCGCGATGA CGGCGGGGCA GGCGTTTGAA GCCTTGAATT
101 GCGCaG.CGA TATGGATGTT GATTTGCTTG TCGTCCTCAA CGACAACGAA
151 ATGTCGATTT CCCCCAACGT CGGCGCGCTG CCGAAATACC TTGCCAGCAA
201 CGTCGTGCGC GATATGCACG GCCTGTTGAG TACCGTCAAA GCGCAAACGG
251 GCAAGGTATT AGACAAAATA CCCGGCGCGA TGGAGTTTGC CCAAAAAGTC
301 GAACACAAA TCAAAACCCT TGCCGAAGAA GCCGAACACG CCAAACAGTC
351 GCTGTCTTTG TTTGAAAACT TCGGCTTCCG CTACACCGGC CCCGTGGACG
401 GACACAACGT CGAAAATCTG GTGGACGTAT TGAAAGACTT GCGCAGCCGC
451 AAAGGCCCTC AGTTGCTGCA CGTCATCACC AAAAAGGGCA ACGGCTACAA
501 ACTCGCCGAA AACGACCCCG TCAAATACCA CGCCGTCGCC AACCTGCCTA
551 AAGAAAGCGC GGCGCAAATG CCGTCTGAAA AAGAACCCAA GCCCGCCGCC
 601 AAACCGACCT ATACCCAAGT GTTCGGCAAA TGGCTGTGCG ACCGGGCGGC
 651 GGCAGATTCC CGACTGGTTG CGATTACCCC CGCCATGCGC GAGGGCAGCG
 701 GCTTGGTTGA GTTTGAACAA CGATTCCCCG ACCGCTATTT CGATGTCGGC
 751 ATCGCCGAGC AGCACGCCGT TACCTTTGCC GGCGGTTTGG CTTGCGAAGG
 801 GATGAAGCCC GTCGTGGCGA TTTATTCCAC CTTTTTACAA CGCGCCTACG
 851 ACCAACTGGT GCACGACATC GCCCTGCAAA ACCTACCCGT TTTGTTTGCC
 901 GTCGACCGCG CGGGCATCGT CGGCGCGGAC GGCCCGACCC ATGCCGGTCT
951 GTACGATTTG AGCTTTTTGC GCTGCGTGCC GAACATGATT GTCGCCGCGC
1001 CGAGCGATGA AAACGAATGC CGCCTGTTGC TTTCGACCTG CTATCAGGCA
1051 GACGCCCCG CCGCCGTCCG CTATCCGCGC GGCACGGGTA CGGGCGCCC
1101 GGTTTCAGAC GGCATGGAAA CCGTGGAAAT CGGCAAGGGC ATTATCCGCC
1151 GCGAAGGTGA GAAAACCGCA TTCATTGCCT TCGGCAGTAT GGTCGCCCCC
1201 GCATTGGCGG TTGCCGAAAA ACTGAACGCC ACCGTCGCCG ATATGCGCTT
1251 CGTCAAACCG ATAGACGAAG AGTTGATTGT CCGCCTTGCC CGAAGCCACG
```

```
1301 ACCGCATCGT TACCCTTGAA GAAAACGCCG AACAGGGCGG CGCAGGCGGC
1351 GCGGTGCTGG AAGTATTGGC GAAACACGGC ATCTGCAAAC CCGTTTTGCT
1401 TTTGGGCGTT GCCGATACCG TAACCGGACA CGGCGATCCG AAAAAACTTT
     TAGACGATTT GGGCTTGAGT GCCGAAGCGG TGGAACGGCG TGTGCGCGCG
1501 TGGCTGTCGG ATCGGGATGC GGCAAATTAA
```

This corresponds to the amino acid sequence <SEQ ID 118; ORF 033>:

WLSDRDAAN*

```
m033.pep
         MAAADKLLGS DRRSVAIIGD GAMTAGQAFE ALNCAXDMDV DLLVVLNDNE
     51 MSISPNVGAL PKYLASNVVR DMHGLLSTVK AQTGKVLDKI PGAMEFAQKV
     101 EHKIKTLAEE AEHAKQSLSL FENFGFRYTG PVDGHNVENL VDVLKDLRSR
    151 KGPOLLHVIT KKGNGYKLAE NDPVKYHAVA NLPKESAAQM PSEKEPKPAA
    201 KPTYTQVFGK WLCDRAAADS RLVAITPAMR EGSGLVEFEQ RFPDRYFDVG
     251 IAEOHAVTFA GGLACEGMKP VVAIYSTFLQ RAYDQLVHDI ALQNLPVLFA
     301 VDRAGIVGAD GPTHAGLYDL SFLRCVPNMI VAAPSDENEC RLLLSTCYQA
     351 DAPAAVRYPR GTGTGAPVSD GMETVEIGKG IIRREGEKTA FIAFGSMVAP
     401 ALAVAEKLNA TVADMRFVKP IDEELIVRLA RSHDRIVTLE ENAEQGGAGG
         AVLEVLAKHG ICKPVLLLGV ADTVTGHGDP KKLLDDLGLS AEAVERRVRA
     451
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 119>:

```
a033.seq
           ATGGCGGCGG CGGACAAACA GTTGGGCAGC GACCGCCGCA GCGTCGCCAT
       1
      51 CATCGGCGAC GGCGCGATGA CGGCGGGTCA GGCGTTTGAA GCCTTGAACT
     101 GCGCGGCGA TATGGATGTG GATTTGCTGG TCGTCCTCAA CGACAACGAA
     151 ATGTCGATTT CCCCCAACGT CGGTGCGTTG CCCAAATACC TTGCCAGCAA
     201 CGTCGTGCGC GATATGCACG GACTGTTGAG TACCGTCAAA GCGCAAACGG
     251 GCAAGGTATT AGACAAAATA CCCGGCGCGA TGGAGTTTGC CCAAAAAGTC
     301 GAACATAAAA TCAAAACCCT TGCCGAAGAA GCCGAACACG CCAAACAGTC
     351 ACTGTCTTG TTTGAAAACT TCGGCTTCCG CTATACCGGC CCCGTGGACG
     401 GACACAACGT CGAAAATCTG GTCGATGTAT TGGAAGACCT GCGCGGACGC
451 AAAGGCCCGC AGCTTCTGCA CGTCATCACC AAAAAGGGCA ACGGCTACAA
     451 AAAGGCCCGC AGCTTCTGCA CGTCATCACC AAAAAGGGCA ACGGCTACAA
501 ACTCGCCGAA AACGATCCCG TCAAATACCA CGCCGTCGCC AACCTGCCTA
     551 AAGAAAGCGC GGCGCAAATG CCGTCTGAAA AAGAACCCAA GCCCGCCGCC
     601 AAACCGACCT ATACCCAAGT GTTCGGCAAA TGGCTGTGCG ACCGGGCGGC
     651 GGCAGATTCC CGACTGGTTG CGATTACCCC CGCCATGCGC GAGGGCAGCG
     701 GCTTGGTTGA GTTTGAACAA CGATTCCCCG ACCGCTATTT CGATGTCGGC
751 ATCGCCGAGC AGCACGCCGT TACCTTTGCC GGCGGTTTGG CTTGCGAAGG
     801 GATGAAGCCC GTCGTGGCGA TTTATTCCAC CTTTTTACAA CGCGCCTACG
     851 ACCAACTGGT GCACGACATC GCCCTGCAAA ACCTGCCCGT TTTGTTTGCC
      901 GTCGACCGCG CGGGCATCGT CGGCGCGGAC GGCCCGACCC ATGCCGGTTT
    951 GTACGATTTA AGCTTTTTGC GCTGCATTCC GAATATGATT GTCGCCGCGC 1001 CGAGCGATGA AAATGAATGC CGCCTGCTGC TTTCGACCTG CTATCAGGCA
    1051 GACGCGCCG CCGCCGTCCG CTATCCGCGC GGCACGGGTA CGGGCGTGCC
    1101 GGTTTCAGAC GGCATGGAAA CCGTGGAAAT CGGCAAGGGC ATTATCCGCC
    1151 GCGAAGGTGA GAAAACCGCA TTCATTGCCT TCGGCAGTAT GGTCGCCCCT
    1201 GCATTGGCGG TCGCCGGAAA ACTGAACGCC ACCGTCGCCG ATATGCGCTT
          CGTCAAACCG ATAGACGAAG AGTTGATTGT CCGCCTTGCC CGAAGCCACG
    1251
    1301 ACCGCATCGT TACCCTTGAA GAAAACGCCG AACAGGCCGG CGCAGGCAGC
    1351 GCGGTGCTGG AAGTGTTGGC GAAACACGGC ATCTGCAAAC CCGTCTTGCT
    1401 TTTGGGCGTT GCCGATACCG TAACCGGACA CGGCGATCCG AAAAAACTTT
    1451 TAGACGATTT GGGCTTGAGT GCCGAAGCGG TGGAACGGCG TGTGCGCGCG
1501 TGGCTGTCGG ATCGGGATGC GGCAAATTAA
```

This corresponds to the amino acid sequence <SEQ ID 120; ORF 033.a>:

```
a033.pep
           MAAADKQLGS DRRSVAIIGD GAMTAGQAFE ALNCAGDMDV DLLVVLNDNE
      51 MSISPNVGAL PKYLASNVVR DMHGLLSTVK AQTGKVLDKI PGAMEFAQKV
     101 EHKIKTLAEE AEHAKQSLSL FENFGFRYTG PVDGHNVENL VDVLEDLRGR
     151 KGPQLLHVIT KKGNGYKLAE NDPVKYHAVA NLPKESAAQM PSEKEPKPAA
201 KPTYTQVFGK WLCDRAAADS RLVAITPAMR EGGGLVFFFO BERDRYEDVO
     251 IAEQHAVTFA GGLACEGMKP VVAIYSTFLQ RAYDQLVHDI ALQNLPVLFA
```

301	VDRAGIVGAD	GPTHAGLYDL	SFLRCIPNMI	VAAPSDENEC	RLLLSTCYOA

- 301 VDRAGIVGAD GPTHAGLYDL SFLRCIPNMI VAAPSDENEC RLLLSTCYQA
 351 DAPAAVRYPR GTGTGVPVSD GMETVEIGKG IIRREGEKTA FIAFGSMVAP
 401 ALAVAGKLNA TVADMRFVKP IDEELIVRLA RSHDRIVTLE ENAEQGGAGS
 451 AVLEVLAKHG ICKPVLLLGV ADTVTGHGDP KKLLDDLGLS AEAVERRVRA
 501 WLSDRDAAN*

m033/a033 98.4% identity over a 509 aa overlap

	10	20	20	40	50	60
m033.pep	10 MAAADKLLGSDRRS\	20 VAIIGDGAM	30 TAGQAFEALN	40 CAXDMDVDLL\		60 SPNVGAL
• -						
a033	MAAADKQLGSDRRS\ 10	VAIIGDGAM1 20	rag <u>o</u> afealn 30	CAGDMDVDLL\ 40	/VLNDNEMSIS 50	SPNVGAL 60
000	70 PKYLASNVVRDMHG	80	90	100	110	120
m033.pep	PRILASNVVRDMAG	_		_		_
a033	PKYLASNVVRDMHG!	LLSTVKAQTO	GKVLDKIPGA	MEFAQKVEHK:	IKTLAEEAEHA	AKQSLSL
	70	80	90	100	110	120
	130	140	150	160	170	180
m033.pep	FENFGFRYTGPVDGI					
a033	FENFGFRYTGPVDG	HNVENLVDVI	LEDLRGRKGP	QLLHVITKKG!	NGYKLAENDP\	/KYHAVA
	130	140	150	160	170	180
	190	200	210	220	230	240
m033.pep	NLPKESAAQMPSEK					
a033						
a 033	190	200	210	220	230	240
	250	260	270	280	290	300
m033.pep	Z5U RFPDRYFDVGIAEQ					
	11111111111111	111111111	111111111	1111111111	1111111111	111111
a033	RFPDRYFDVGIAEQ	HAVTFAGGLI 260	ACEGMKPVVA 270	1YSTFLQRAY	DQLVHDIALQI 290	300
m033.pep	310 VDRAGIVGADGPTH	320 AGLYDLSEL	330 RCVPNMTVAA	340 PSDENECRIA	350 LSTCYOADAP	360 AAVRYPR
moss.pep						
a033	VDRAGIVGADGPTH	AGLYDLSFL 320	RCIPNMIVAA 330	PSDENECRLL: 340	LSTCYQADAP 350	AAVRYPR 360
	310	320	330	340	330	300
	370	380	390	400	410	420
m033.pep	GTGTGAPVSDGMET					
a033	GTGTGVPVSDGMET	VEIGKGIIR	REGEKTAFIA	FGSMVAPALA	VAGKLNATVA:	DMRFVKP
	370	380	390	400	410	420
	430	440	450	460	470	480
m033.pep	IDEELIVRLARSHD		-			
a033	IDEELIVRLARSHD					
	430	440	450	460	470	480
	490	500	510			
m033.pep	KKLLDDLGLSAEAV					
a033						
2033	490	500	510			

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 033 shows 98.4% identity over a 509 aa overlap with a predicted ORF (ORF 033.ng)

from N. gonorrhoeae: m033/g033

m033.pep	MAAADKLLGSDRRSVAIIGDGAMTAGQAFEALNCAXDMDVDLLVVLNDNEMSISPNVGAL	60
g033	MAAADKLLGGDRRSVAIIGDGAMTAGQAFEALNCAGDMDVDLLVVLNDNEMSISPNVGAL	60
m033.pep	PKYLASNVVRDMHGLLSTVKAQTGKVLDKI PGAMEFAQKVEHKI KTLAEEAEHAKQSLSL	120
g033	PKYLASNVVRDMHGLLSTVKAQTGKVLDKIPGAMEFAQKVEHKIKTLAEEAEHAKQSLSL	120
m033.pep	FENFGFRYTGPVDGHNVENLVDVLKDLRSRKGPQLLHVITKKGNGYKLAENDPVKYHAVA	180
g033	FENFGFRYTGPVDGHNVENLVDVLKDLRSRKGPQLLHVITKKGNGYKLAENDPVKYHAVA	180
m033.pep	NLPKESAAQMPSEKEPKPAAKPTYTQVFGKWLCDRAAADSRLVAITPAMREGSGLVEFEQ	240
g033	NLPKEGGAQMPSEKEPKPAAKPTYTQVFGKWLCDRAAADSRLVAITPAMREGSGLVEFEQ	240
m033.pep	RFPDRYFDVGIAEQHAVTFAGGLACEGMKPVVAIYSTFLQRAYDQLVHDIALQNLPVLFA	300
g033	RFPDRYFDVGIAEQHAVTFAGGLACEGMKPVVAIYSTFLQRAYDQLVHDIALQNLPVLFA	300
m033.pep	VDRAGIVGADGPTHAGLYDLSFLRCVPNMIVAAPSDENECRLLLSTCYQADAPAAVRYPR	360
g033	VDRAGIVGADGPTHAGLYDLSFLRCVPNMIVAAPSDENECRLLLSTCYQADAPAAVRYPR	360
m033.pep	GTGTGAPVSDGMETVEIGKGIIRREGEKTAFIAFGSMVAPALAVAEKLNATVADMRFVKP	420
g033	GTGTGAPVSDGMETVEIGKGIIRREGEKTAFIAFGSMVATALAVAEKLNATVADMRFVKP	420
m033.pep	IDEELIVRLARSHDRIVTLEENAEQGGAGGAVLEVLAKHGICKPVLLLGVADTVTGHGDP	480
g033	IDEELIVRLARSHDRIVTLEENAEQGGAGGAVLEVLAKHGICKPVLLLGVADTVTEHGDP	480
m033.pep	KKLLDDLGLSAEAVERRVRAWLSDRDAANX 510	
g033	KKLLDDLGLSAEAVERRVREWLPDRDAANX 510	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 121>: g034.seq

:	1	ATGAGCCGTT	TATGGTTTTT	TGCCGTAAAA	AACATTATAA	TCCGCCTTAT
5	1	TTACCTATTG	CCCAAGGAGA	CACAAATGGC	ACTCGTATCC	ATGCGCCAAC
10	1	TGCTTGACCA	CGCCGCCGAA	AACAGCTACG	GCCTGCCCGC	GTTCAACGTC
15	1	AACAACCTCG	AACAAATGCG	CGCCATTATG	GAAGCCGCCG	ACCAAGTCAA
20	1	CGCGCCCGTC	ATCGTACAGG	CGAGCGCAGG	TGCGCGCAAA	TACGcggGCG
25	1	CGCCGTTTTT	GCGCCACCTG	ATTCTGGCGG	CAGTCGAAGA	ATTTCCGCAC
30	1	ATCCCCGTCG	TGATGCACCA	AGACCACGGC	GCATCGCCCG	ACGTgtgCCA
35	1	ACGCTCCATC	CAACTGGGCT	TCTCCTCCGT	GATGATGGAC	GGCTCTTTGC
40	1	TCGAAGACGG	CAAAACCCCT	TCTTCTTACG	AATACAACGT	CAACGCCACC
45	1	CGTACCGTCG	TCAACTTCTC	CCACGCCTGC	GGCGTGTCCG	TCGAAGGCGA
50	1	AATCGGCGTA	TTGGGCAACC	TCGAAACCGG	CGAAGCAGGC	GAAGAAGACG
55	1	GAGTGGGCGC	GGCAGGCAAA	CTCTCACACG	ACCAAATGCT	CACCAGCGTT
60	1	GAAGATGCCG	TGCGTTTCGT	TAAAGATACC	GGCGTTGACG	CATTGGCGAT
65	1	TGCCGTCGGC	ACCAGCCACG	GCGCATACAA	ATTCACCCGT	CCGCCCACAG

WO 99/057280 PCT/US99/09346

```
701 GCGACGTATT GCGTATCGAC CGCATCAAGG AAATCCACCA AGCCCTGCCC
751 AATACACACA TCGTGATGCA CGGCCCAGC TCCGTTCCGC AAGAAtgGCT
801 GAAAGTCATC AACGAATACG GCGCAATAT CGGCGAAACC TACGGCGTGC
851 CGGTTGAAGA AATCGTCGAA GGCATCAAAC ACGGCGTGCG CAAAGTCAAC
901 ATCGATACCG ACCTGCGCCT CGCTTCCACC GGCGCGGTAC GCCGCTACCT
951 TGCCGAAAAC CCGTCCGACT TTGATCCGCG CAAATACTTG GGCAAAACCA
1001 TTGAAGCGAT GAAGCAAATC TGCCTCGACC GTTATCTTGC GTTCGGTTGC
1051 GAAGGTCAGG CAGGCAAAAT CAAACCTGTT TCGTTGGAAA AAATGGCAAG
1101 CCGTTATGCC AAGGGCGAAT TGAACCAAAT CGTCAAATAA
```

This corresponds to the amino acid sequence <SEQ ID 122; ORF 034.ng>: g034.pep

```
1 MSRLWFFAVK NIIIRLIYLL PKETQMALVS MRQLLDHAAE NSYGLPAFNV
51 NNLEQMRAIM EAADQVNAPV IVQASAGARK YAGAPFLRHL ILAAVEEFPH
101 IPVVMHQDHG ASPDVCQRSI QLGFSSVMMD GSLLEDGKTP SSYEYNVNAT
151 RTVVNFSHAC GVSVEGEIGV LGNLETGEAG EEDGVGAAGK LSHDQMLTSV
201 EDAVRFVKDT GVDALAIAVG TSHGAYKFTR PPTGDVLRID RIKEIHQALP
251 NTHIVMHGSS SVPQEWLKVI NEYGGNIGET YGVPVEEIVE GIKHGVRKVN
301 IDTDLRLAST GAVRRYLAEN PSDFDPRKYL GKTIEAMKQI CLDRYLAFGC
351 EGQAGKIKPV SLEKMASRYA KGELNQIVK*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 123>: m034.seq (partial)

```
1 ATGAGCTGTT TATGGTTTTT TGCTGTAAAA AACATTATAA TCCGCCTTAT
51 TTACCTATTG CCCAAGGAGA CACAAATGGC ACTCGTATCC ATGCGCCAAC
101 TGCTTGATCA TGCTGCCGAA WACAGCTACG GCYTGCCGGC GTTCAACGTC
151 AACAACCTCG WACAGATGCG CGCCATCATG GAGGCTGCAG ACCAAGTCGA
201 CGCCCCCGTC ATCGTACAGG CGAGTGCCGG TGCGCGCAAA TATGCGGGTG
251 CGCCGTTTTT ACGCCACCTG ATTTTGGCGG CTGTCGAAGT ATTTCCACAC
301 ATCCCCGTCG TCATGCACCA AGACCACGGC GCATCACCCG ACGTGTGCCA
351 ACGCTCCATC CAACTGGGCT TCTCCTCTGT AATGATGGAC GGCTCGCTGA
401 TGGAAGACGG CAAAACCCCT TCTTCTTACG AATACAACGT CAACGCCACA
451 CGTACCGTGG TTAACTTCTC CCACGCTTGC GGCGTATCCG TTGAAGGCGA
501 AATCGGCGTA TTGGGCAACC TCGAAACCGG CGATGCAGGC GAAGAAGACG
501 GAAGATGCCG TATGTTTCGT TAAAGATACC GGCGTTGACG CAATTGGCTAT
651 TGCCGTCGGC ACCAGCCACG GCGCATACAA ATTCACCCGT CCGCCCACAG
701 GCGATGTATT ACGTATCGAC CGCATCAAAG AAATCCACCA AGCCCTGCCC
751 AATACACACA TCGTGATGCA C...
```

This corresponds to the amino acid sequence <SEQ ID 124; ORF 034>: m034.pep (partial)

```
pep (partial)

1 MSCLWFFAVK NIIIRLIYLL PKETQMALVS MRQLLDHAAE XSYGLPAFNV
51 NNLXQMRAIM EAADQVDAPV IVQASAGARK YAGAPFLRHL ILAAVEVFPH
101 IPVVMHQDHG ASPDVCQRSI QLGFSSVMMD GSLMEDGKTP SSYEYNVNAT
151 RTVVNFSHAC GVSVEGEIGV LGNLETGDAG EEDGVGAVGK LSHDQMLTSV
201 EDAVCFVKDT GVDALAIAVG TSHGAYKFTR PPTGDVLRID RIKEIHQALP
251 NTHIVMH...
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 125>:

```
a034.seq

1 ATGAGCCGTT TATGGTTTTT TGCCGCAAAA AACATTATAA TCCGCCTTAT
51 TTACCTATTG CCCAAGGAGA CACAAATGGC ACTCGTATCC ATGCGCCAAC
101 TGCTTGATCA TGCTGCCGAA AACAGCTACG GCCTGCCCGC GTTCAACGTC
151 AACAACCTCG AACAAATGGC CGCCATTATG GAAGCCGCCG ACCAAGTCAA
201 CGCGCCCGTC ATCGTACAGG CGAGCGCAGG TGCGCGCAAA TACGCGGGCG
251 CGCCGTTTTT GCGCCACCTG ATTTTGGCGG CTGTCGAAGA ATTTCCGCAC
301 ATCCCCGTCG TGATGCACCA AGACCACGGC GCATCGCCCG ACGTGTGCCA
351 ACGCTCCATC CAACTGGGCT TTTCCTCCGT GATGATGAC GGCTCGCTGA
401 TGGAAGACGG CAAAACCCCT TCTTCTTATG AATACAACGT CAACGCCACC
```

WO 99/057280 PCT/US99/09346

218

451	CGTACCGTGG	TTAATTTCTC	CCACGCCTGC	GGCGTATCCG	TTGAAGGCGA
501	AATCGGCGTA	TTGGGCAACC	TCGAAACTGG	CGAAGCCGGC	GAAGAAGACG
551	GTGTAGGCGC	AGTGGGCAAA	CTTTCCCACG	ACCAAATGCT	CACCAGCGTC
601	GAAGATGCCG	TGCGTTTCGT	TAAAGATACC	GGCGTTGACG	CATTGGCGAT
651	TGCCGTCGGC	ACCAGCCACG	GCGCGTACAA	ATTCACCCGT	CCGCCCACAG
701	GCGACGTGTT	GCGTATCGAC	CGCATCAAAG	AAATCCACCA	AGCCCTGCCC
751	AATACACACA	TCGTGATGCA	CGGCTCCAGC	TCCGTTCCGC	AAGAATGGCT
801	GAAAGTCATC	AACGAATACG	GCGGCAATAT	CGGCGAAACC	TACGGCGTGC
851	CGGTTGAAGA	AATCGTCGAA	GGCATCAAAC	ACGGCGTGCG	TAAAGTCAAC
901	ATCGATACCG	ACTTGCGCCT	TGCTTCCACC	GGCGCGGTAC	GCCGCTACCT
951	TGCCGAAAAC	CCGTCCGACT	TCGATCCGCG	CAAATATTTG	AGCAAAACCA
1001	TTGAAGCGAT	GAAGCAAATC	TGCCTCGACC	GCTACCTCGC	GTTCGGTTGC
1051	GAAGGTCAGG	CAGGCAAAAT	CAAACCGGTT	TCCTTGGAAA	AAATGGCAAA
1101	CCGTTATGCC	AAGGGCGAAT	TGAACCAAAT	CGTCAAATAA	

This corresponds to the amino acid sequence <SEQ ID 126; ORF 034.a>:

m034/a034 96.9% identity over a 257 aa overlap

m034.pep	10 MSCLWFFAVKNIII	20 RI.TYLI.PKET	30	40 JOHAAEXSYO	50	60 OMRATM
qaq.rcom	11 11111:1111		11111111111			11111
a034	MSRLWFFAAKNIII	RLIYLLPKET	OMALVSMROL	LDHAAENSYC	LPAFNVNNLE	
	10	20	30	40	50	60
	70	80	90	100	110	120
m034.pep	EAADQVDAPVIVQA	SAGARKYAGA	PFLRHLILAA	VEVFPHIPV	/MHQDHGASPE	VCQRSI
	4				F1	
a034	EAADQVNAPVIVQA					_
	70	80	90	100	110	120
	130	140	150	160	170	180
m034.pep	QLGFSSVMMDGSLM	EDGKTPSSYE	YNVNATRTVV	NFSHACGVS	/EGEIGVLGNI	
	11111111111111					111:11
a034	QLGFSSVMMDGSLM					
	130	140	150	160	170	180
	100	200	210	220	230	240
024	190 EEDGVGAVGKLSHD					
m034.pep		OWPI2AFDWA	CEVKDIGVDA	ILLILLILLI	3AIREIRPPI	
-024		1111111111	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
a034	190	200	210	220	230	240
	190	200	210	220	230	240
	250					
m034.pep	RIKEIHOALPNTHI	VMH				
mosa.pep						
a034	RIKEIHQALPNTHI		DEWLKVINEYO	GNIGETYGV	PVEEIVEGIK	GVRKVN
2001	250	260	270	280	290	300
						

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 034 shows 96.5% identity over a 257 aa overlap with a predicted ORF (ORF 034.ng) from N. gonorrhoeae:

The

219

m034/g034		
m034.pep	MSCLWFFAVKNIIIRLIYLLPKETQMALVSMRQLLDHAAEXSYGLPAFNVNNLXQMRAIM	60
g034	MSRLWFFAVKNIIIRLIYLLPKETQMALVSMRQLLDHAAENSYGLPAFNVNNLEQMRAIM	60
m034.pep	EAADQVDAPVIVQASAGARKYAGAPFLRHLILAAVEVFPHIPVVMHQDHGASPDVCQRSI	120
g034	EAADQVNAPVIVQASAGARKYAGAPFLRHLILAAVEEFPHIPVVMHQDHGASPDVCQRSI	120
m034.pep	OLGFSSVMMDGSLMEDGKTPSSYEYNVNATRTVVNFSHACGVSVEGEIGVLGNLETGDAG	180
g034	QLGFSSVMMDGSLLEDGKTPSSYEYNVNATRTVVNFSHACGVSVEGEIGVLGNLETGEAG	180
m024 mon	EEDGVGAVGKLSHDQMLTSVEDAVCFVKDTGVDALAIAVGTSHGAYKFTRPPTGDVLRID	240
m034.pep		240
g034	EEDGVGAAGKLSHDQMLTSVEDAVRFVKDTGVDALAIAVGTSHGAYKFTRPPTGDVLRID	240
m034.pep	RIKEIHQALPNTHIVMH	257
mos4.pep		
g034	RIKEIHQALPNTHIVMHGSSSVPQEWLKVINEYGGNIGETYGVPVEEIVEGIKHGVRKVN	300
following pa	artial DNA sequence was identified in N. gonorrhoeae <seq 127="" id="">:</seq>	
q036.seq	•	
1	ATGCTGAAGC CGTGTTTGGT ATACAGTGCC TGTGCGGCGG cgttgcCTGC	
51	GCGGACTTCG AGCAGCAGGC GTTGCGTGCC TTCGGGCAGA TGTGCGTACC	
101	AATATTCGAG CAGGGCGGAC GCAACGCCCC GTCGGCGGCA TTCGGGCGCG	
151	GTGGCAATCA GGTGCAGTTC GGATTCGTCG GGCAGGTTCT GCCAAACGAT	
201	AAAGGCGGCA ATCCTGCCGT CTTTTTCCGC AAGGAAAACC TGTTCGGACG	
251	GCGAAACAAG CGCGGACTCA AATTGGCGTT GCGTCCACGC GGACGGGTTG	
301	CAGACGGTAT CGAGCGCGGC CAGTGCGGCG CAGTCGGACG GTGAGGCTGG	
351	GCGGATGTTC ATGTTCGTGC CTTCCGTTCC GCCTGTTCTT TGGCAGTCAG	
401	GGCGATTTTG TTGCGGACGT AGAGCAGTTC GGCGTGTGCC GCGCCAGTTG	
451	CGGGATAGCC GCCGCGAGG GCGAGCGCGA GAAAATCGGC GGCGGTCGGC	
501	ATATCGGGTT TGCCTGAGAA GGGCGGACGG TTTTCCAGTG CGAACGCACT	
551	GCCGATGCCG TCTGAAAAGA CGTACCCCTC GGGGAGGGCA ATGTCTGCCG	

This corresponds to the amino acid sequence <SEQ ID 128; ORF 036.ng>: g036.pep

1 MLKPCLVYSA CAAALPARTS SSRRCVPSGR CAYQYSSRAD ATPRRRHSGA
51 VAIRCSSDSS GRFCQTIKAA ILPSFSARKT CSDGETSADS NWRCVHADGL
101 QTVSSAASAA QSDGEAGRMF MFVPSVPPVL WQSGRFCCGR RAVRRVPRQL
151 RDSRRGRAR ENRRRSAYRV CLRRADGFPV RTHCRCRLKR RTPRGGQCLP

601 CCCTACCGAC TTGATAATCG CTCAAACGGC GGCGGTTCAG CGTGTCGAAC 651 CACGCATAAA ACACTTCGCC CATACGCGCG TCCGCAGCGG CGAGTATGCA 701 GCTTTGCGGC GGCGGCAGCG AGGCGGCGGC ATCGAGCGTG GGGATGCCGA 751 TTAAAGGCGT GTCGAACGGC GTTGCCAAAC CTTGCGCCAC GCCGATGCCG

201 PYRLDNRSNG GGSACRTTHK TLRPYARPOR RVCSFAAAAA RRRHRAWGCR

251 LKACRTALPN LAPRRCRYAV R*

801 ATACGCAGTC CGGTAA

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 129>: m036.seq

1 ATGCTGAAGC CGTGCGCCGT GTACAGTGCC TGTGCGGCGG TGTTGCCTGC
51 ACGGACTTCG AGCAGCAGGC GTTGCGTGTC TTCGGGCAGA TGTGTGAACC
101 AATATTCGAG CAGGGCGGAC GCAATTCCTT GGCGGCGCA TTCGGGCGCG
151 GTGGCAATCA GGTGCAGTTC GGATTCGTCG GGCAGGTTCT GCCAAACGAT
201 AAAGGCGGCA ATCCCG.CGT CTTTTTCCGC AAGGAAAACC TGTTCGGACG
251 GCGAAACCAG TGCGGACTCA AATTGGCGTT GCGTCCATGC GGACGGGTTG
301 CAGACGGCAT CGAGTGCGGC CAGCTCCTCA CAATCGGCAC AAACGGCACG

351	GCGGATGTTC ACGGGCGCGC TCTCCGTTCG GCCTGTTCTT TGGCAGTCAG
401	GGCGATTTTG TTGCGGACGT AGAGCAAACC GGCGTGTGCG GCATGGACGG
451	CAGGATAACC GCCCTTGGCT GCCAATGCGA GAAAGTCGGC GGCAGTCGGC
501	ATATCCGGTC TGCCTGAGAA CGGCGGAGCT TCTTCCAGCG CGAACGCGCT
551	GCCTATGCCG TCTGAAAAGG CGCATCCCTC CGGCAGCCGG ATGTCTGCCG
601	CCCGCCCGAC CTGATAATCG CTCAAACGGT GGCAGTTCAG CGTATCGAAC
651	CATGCATAAA ACACTTCGCC CATACGAGCG TCCGTAGCGG CAAGGATGCA
701	GCTTTGCGGC GGCGGCAGCG AGGCGGCGGC ATCGAGCGAG GGTACGCCGA
751	TTAAGGGGGT ATCAAACGGC GTTGCCAAAC CCTGAGCTAC ACCGATGCCG
801	ATACGCAGTC CGGTAA
This correspond	s to the amino acid sequence <seq 036="" 130;="" id="" orf="">:</seq>
m036.pep	•
1	MLKPCAVYSA CAAVLPARTS SSRRCVSSGR CVNQYSSRAD AIPWRRHSGA
51	VAIRCSSDSS GRFCQTIKAA IPXSFSARKT CSDGETSADS NWRCVHADGL
101	
151	QDNRPWLPMR ESRRQSAYPV CLRTAELLPA RTRCLCRLKR RIPPAAGCLP
	PARPDNRSNG GSSAYRTMHK TLRPYERP*R QGCSFAAAAA RRRHRARVRR
251	LRGYQTALPN PELHRCRYAV R*
231	and the state of t
701 C 11 '	11 1 DNIA
The following p	artial DNA sequence was identified in N. meningitidis <seq 131="" id="">:</seq>
a036.seq	
1	ATGCTGAAGC CGTGCGCCGT GTACAGTGCC TGTGCGGCGG TGTTGCCTGC
51	ACGGACTTCG AGCAGCAGGC GTTGCGTGTC TTCGGGCAGA TGTGTGAACC
101	AATATTCGAG CAGGGCGGAC GCAATTCCTT GGCGGCGGCA TTCGGGCGCG
151	GTGGCAATCA GGTGCAGTTC GGATTCGTCG GGCAGGTTCT GCCAAACGAT
201	AAAGGCGGCA ATCCCGCCGT CTTTTTCCGC AAGGAAAACC TGTTCGGACG
251	GCGAAACCAG TGCGGACTCA AATTGGCGTT GCGTCCACGC GGACGGGTTG
301	CAGACGGCAT CGAGCGCGGC GAGTGCGGCG CAATCGGCAT AAACGGCGCG
351	GCGGATGTTC ACAGGCGCGC CCTCCGTTCC GCCTGTTCTT TGGCAGTCAA
401	GGCGATTTTG TTGCGGACGT AGAGCAGCTC GGCGTGTGCC GCAGCGACGG
451	CGGGAAAACC GCCTTCAGCC GCCAGATTGA GGAAGTCGGC GGCGGTCGGC
501	ATATCGGGTT TGCCTGAGAA GGGCGGACGG TTTTCCAGCG CGAACGCATT
551	GCCGATGCCG TCTGAAAAGG CGCATCCTTC CGGCAGCCGG ATGTCTGCCG
601	CCCGACCGAC CTGATAATCG CTCAAACGGC GGCGGTTCAG CGTGTCGAAC
651	CATGCATAAA ACACTTCGCC CATACGTGCG TCCGCAGCGG CAAGGATGCA
701	GCTTTGCGGC GGCGGCAGCG AGGCGGCGGC ATCGAGCGAG GGTACGCCGA
751	TTAAAGGAGT ATCAAACGGC GTTGCCAAAC CTTGCGCCAC GCCGATGCCG
801	ATACGCAGTC CCGTAA
This correspond	s to the amino acid sequence <seq 036.a="" 132;="" id="" orf="">:</seq>
a036.pep	-
1	MLKPCAVYSA CAAVLPARTS SSRRCVSSGR CVNQYSSRAD AIPWRRHSGA
51	VAIRCSSDSS GRFCQTIKAA IPPSFSARKT CSDGETSADS NWRCVHADGL
101	OTASSAASAA OSA*TARRMF TGAPSVPPVL WOSRRFCCGR RAARRVPORR
151	RENRLQPPD* GSRRRSAYRV CLRRADGFPA RTHCRCRLKR RILPAAGCLP
201	PDRPDNRSNG GGSACRTMHK TLRPYVRPQR QGCSFAAAAA RRRHRARVRR
251	LKEYQTALPN LAPRRCRYAV P*
m036/a036 8	5.6% identity over a 270 aa overlap
1105074050	, 10 / 0 12 4 13 13 13 13 13 13 13 13 13 13 13 13 13
	10 20 30 40 50 60
= 02€ 	MLKPCAVYSACAAVLPARTSSSRRCVSSGRCVNQYSSRADAIPWRRHSGAVAIRCSSDSS
m036.pep	
*03¢	MLKPCAVYSACAAVLPARTSSSRRCVSSGRCVNQYSSRADAIPWRRHSGAVAIRCSSDSS
a036	10 20 30 40 50 60
	10 20 30 40 30 00
	70 80 90 100 110 120
m036.pep	GRFCOTIKAAIPXSFSARKTCSDGETSADSNWRCVHADGLQTASSAASSSQSAQTARRMF
moso.pep	
a036	GRFCQTIKAAIPPSFSARKTCSDGETSADSNWRCVHADGLQTASSAASAAQSAXTARRMF
2000	70 80 90 100 110 120

70 80 90 100 110 120

m036.pep	130 TGALSVRPVLWQSG TGAPSVPPVLWQSR 130	111111111111111111111111111111111111111	11:11:	1 111	:111 1111	1: :11
	100	222	210	220	220	240
m036.pep	190 RTRCLCRLKRRIPE	200	210 PDNRSNGGSSA	220 YRTMHKTI.R P	230 YERPXROGOS	
moso.pep	:	111111111111		111111111		11111
a036	RTHCRCRLKRRILP	AAGCLPPDRE	DNRSNGGSA	CRTMHKTLRP	YVRPQRQGCS	FAAAAA
	190	200	210	220	230	240
	250	260	270			
m036.pep	RRRHRARVRRLRGY	QTALPNPELH	IRCRYAVRX			
• •		111111 :	11111			
a036	RRRHRARVRRLKEY	QTALPNLAPF	RCRYAVPX			
	250	260	270			

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 036 shows 74.9% identity over a 271 aa overlap with a predicted ORF (ORF 036.ng)

from *N. gonorrhoeae:* m036/g036

	10	20	30	40	50	60
m036.pep	MLKPCAVYSACA	AVLPARTSSSRR	CVSSGRCVNC	QYSSRADAIPW	RRHSGAVAIF	RCSSDSS
		1:111111111	11 1111: 1		11111111	
g036	MLKPCLVYSACA	AALPARTSSSRR	CVPSGRCAYÇ	QYSSRADATPR	RRHSGAVAIF	RCSSDSS
	10	20	30	40	50	60
	70	80	90	100	110	120
m036.pep	GRFCQTIKAAIP					
						1 111
g036	GRFCQTIKAAIL					
	70	80	90	100	110	120
	130	140	150	160	170	180
m036.pep	TGALSVRPVLWQS					
					:	
g036	MFVPSVPPVLWQS					
	130	140	150	160	170	180
	4.00	000	010	222	000	240
	190	200	210	220	230	240
m036.pep	RTRCLCRLKRRI	PPAAGCLPPARP			_	
224	:	! ::				
g036	RTHCRCRLKRRT	~				240
	190	200	210	220	230	240
	0.50	260	270			
225	250	260				
m036.pep	RRRHRARVRRLR	~				
026	: RRRHRAWGCRLK					
g036	250	ACRIALPNIAPR 260	270			
	250	260	270			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 133>: m036-1.seq

1	ATGCTGAAGC	CGTGCGCCGT	GTACAGTGCC	TGTGCGGCGG	TGTTGCCTGC
51	ACGGACTTCG	AGCAGCAGGC	GTTGCGTGTC	TTCGGGCAGA	TGTGTGAACC
101	AATATTCGAG	CAGGGCGGAC	GCAATTCCTT	GGCGGCGGCA	TTCGGGCGCG
151	GTGGCAATCA	GGTGCAGTTC	GGATTCGTCG	GGCAGGTTCT	GCCAAACGAT
201	AAAGGCGGCA	ATCCCGCCGT	CTTTTTCCGC	AAGGAAAACC	TGTTCGGACG
251	GCGAAACCAG	TGCGGACTCA	AATTGGCGTT	GCGTCCATGC	GGACGGGTTG
301	CAGACGGCAT	CGAGTGCGGC	CAGCTCCTCA	CAATCGGCAC	AAACGGCACG

WO 99/057280 PCT/US99/09346

222

```
351 GCGGATGTTC ACGGGCGCG TCTCCGTTCG GCCTGTTCTT TGGCAGTCAG
401 GGCGATTTTG TTGCGGACGT AGAGCAAACC GGCGTGTGCG GCATGGACGG
451 CAGGATAACC GCCCTTGGCT GCCAATGCGA GAAAGTCGGC GGCAGTCGGC
501 ATATCCGGTC TGCCTGAGAA CGGCGGAGCT TCTTCCAGGG CGAACGCGCT
551 GCCTATGCCG TCTGAAAAGG CGCATCCCTC CGGCAGCCGG ATGTCTGCCG
601 CCCGCCCGAC CTGATAATCG CTCAAACGGT GGCAGTTCAG CGTATCGAAC
651 CATGCATAAA ACACTTCGCC CATACGAGCG TCCGTAG
```

This corresponds to the amino acid sequence <SEQ ID 134; ORF 0036-1>:

```
m036-1.pep

1 MLKPCAVYSA CAAVLPARTS SSRRCVSSGR CVNQYSSRAD AIPWRRHSGA
51 VAIRCSSDSS GRFCQTIKAA IPPSFSARKT CSDGETSADS NWRCVHADGL
101 QTASSAASSS QSAQTARRMF TGALSVRPVL WQSGRFCCGR RANRRVRHGR
151 QDNRPWLPMR ESRRQSAYPV CLRTAELLPA RTRCLCRLKR RIPPAAGCLP
201 PARPDNRSNG GSSAYRTMHK TLRPYERP*
```

m036-1/g036 76.8% identity in 228 aa overlap

	10	20	30	40	50	60
m036-1.pep	MLKPCAVYSACAAVL	PARTSSSRRC	VSSGRCVNQY	SSRADAIP W R	RHSGAVAIRC	SSDSS
	11111 111111:1	1111111111	1 1111: 11	111111 1 1	1111111111	11111
g036	MLKPCLVYSACAAAL					SSDSS
	10	20	30	40	50	60
	70	80	90	100	110	120
m036-1.pep	GRFCQTIKAAIPPSF	SARKTCSDGE	CTSADSNWRCV	HADGLQTASS	AASSSQSAQT	ARRMF
		1111111111	11111111	1111111111	111::11	1 111
g036	GRFCQTIKAAILPSF	SARKTCSDGE	TSADSNWRCV	HADGLQTVSS	AASAAQSDGE	AGRMF
	70	80	90	100	110	120
	130	140	150	160	170	180
m036-1.pep	TGALSVRPVLWQSGR	FCCGRRANRE	RVRHGRQDNRP	WLPMRESRRQ	SAYPVCLRTA	ELLPA
	: 11 11 11 11	1111111 11	1::::	: :	111 1111 1	::::
g036	MFVPSVPPVLWQSGR	FCCGRRAVRE	RVPRQLRDSRR	RGRARENRRR	SAYRVCLRRA	DGFPV
	130	140	150	160	170	180
	190	200	210	220	229	
m036-1.pep	RTRCLCRLKRRIPPA	AGCLPPARPI	NRSNGGSSAY	RTMHKTLRPY	ERPX	
	11:1	:	111111:11	HE TITLET	11	
g036	RTHCRCRLKRRTPRG	GQCLPPYRLI	NRSNGGGSAC	RTTHKTLRPY	ARPQRRVCSF	'AAAAA
_	190	200	210	220	230	240
g036	RRRHRAWGCRLKACR	TALPNLAPRE	RCRYAVRX			
-	250	260	270			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 135>:

```
q038.seq
         ATGACTGATT TCCGCCAAGA TTTCCTCAAA TTCTCCCTCG CCCAAAATGT
      51 TTTGAAATTC GGCGAATTTA CCACCAAAGC CGGACGGCGG TCGCCCTATT
     101 TCTTCAATGC CGGCCTCTTC AACGACGGCG CGTCCACGCT GCAACTGGCA
     151
         AAATTCTATG CACAATCCAT CATTGAAAGC GGCATCCGAT TCGATATGCT
     201 GTTCGGCCCC GCCTACAAAG GCATTATTTT GGCGGCGGCA ACCGCGATGA
     251
         TGCTGGCGGA AAAAGGCGTG AACGTCCCGT TTGCCTACAA CCGCAAAGAA
     301 GCCAAAGACC GCGGCGAAGG CGGCGTGTTG GTCGGCGCGC CGCTTAAAGG
     351 GCGCGTGCTG ATTATCGACG ACGTGATTTC CGCCGGCACA TCCGTACGCG
     401 AATCAATCAA ACTGATTGAA GCGGAGGGTG CAACCCCGC CGGTGTCGCC
     451 ATCGCGCTCG ACCGCATGGA AAAAGGCACG GGTAAATTGT CCGCCGTTCA
     501 GGAAGTGGAA AAACAATACG GCCTGCCCGT CGCCCCCATC GCCAGCCTGA
     551 ACGATTTGTT TATCCTGTTG CAAAACAACC CCGAATTCGG ACAGTTCCTC
     601 GAACCCGTCC GCACCTACCG CCGGCAGTAC GGCGTAGAAT AA
```

```
This corresponds to the amino acid sequence <SEQ ID 136; ORF 038.ng>:
     g038.pep
                MTDFRQDFLK FSLAQNVLKF GEFTTKAGRR SPYFFNAGLF NDGASTLQLA
                KFYAQSIIES GIRFDMLFGP AYKGIILAAA TAMMLAEKGV NVPFAYNRKE
            51
                AKDRGEGGVL VGAPLKGRVL IIDDVISAGT SVRESIKLIE AEGATPAGVA
           101
           151 IALDRMEKGT GKLSAVQEVE KQYGLPVAPI ASLNDLFILL QNNPEFGQFL
           201 EPVRTYRRQY GVE*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 137>:
     m038.seq
                ATGACCGATT TCCGCCAAGA TTTCCTCAAA TTCTCCCTCG CCCAAAATGT
            51 TTTGAAATTC GGCGAATTTA CCACCAAGGC AGGACGGCGG TCGCCCTATT
           101 TCTTCAATGC CGGCCTCTTT AACGACGGCT TGTCCACGCT GCAACTGGCA
           151 AAATTTTACG CACAATCCAT CATTGAAAGC GGCATCCGAT TCGATATGCT
           201 GTTCGGTCCC GCCTACAAAG GCATTATTTT GGCGGCGGCA ACCGCGATGA
           251 TGCTGGCGGA AAAAGGCGTG AACGTCCCGT TTGCCTACAA CCGCAAAGAA
           301 GCCAAAGACC ACGGCGAAGG CGGCGTGTTG GTCGGCGCGC CGCTTAAAGG
           351 GCGCGTGCTG ATTATCGACG ACGTGATTTC CGCCGGCACA TCCGTACGCG
           401 AATCGATCAA ACTGATTGAA GCGGAGGGTG CAACCCCGGC CGGTGTCGCC
451 ATCGCGCTCG ATCGCATGGA AAAAGGCACG GGTGAATTGA GCGCGGTTCA
           501 GGAAGTGGAY AAACAATACG GKCTGCCCGT CGCCCCCATC GCCAGCCTGA
           551 ACGATTTGTT TATTCTGTTG CAAAACAACC CCGAATTCGG ACAGTTCCTC
           601 GAACCCGTCC GAGCCTACCG TCGGCAGTAC GGCGTAGAAT AA
This corresponds to the amino acid sequence <SEQ ID 138; ORF 038>:
     m038.pep
             1 MTDFRQDFLK FSLAQNVLKF GEFTTKAGRR SPYFFNAGLF NDGLSTLQLA
            51 KFYAOSIIES GIRFDMLFGP AYKGIILAAA TAMMLAEKGV NVPFAYNRKE
           101 AKDHGEGGVL VGAPLKGRVL IIDDVISAGT SVRESIKLIE AEGATPAGVA
151 IALDRMEKGT GELSAVQEVE KQYGLPVAPI ASLNDLFILL QNNPEFGQFL
201 EPVRAYRRQY GVE*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 139>:
     a038.seq
                ATGACCGATT TCCGCCAAGA TTTCCTCAAA TTCTCCCTCG CCCAAAATGT
             1
             51
                 TTTGAAATTC GGCGAATTCA CCACCAAAGC CGGACGGCGG TCGCCCTATT
           101 TCTTCAATGC CGGCCTCTTT AACGACGGCT TGTCCACGCT GCAACTGGCA
           151 AAATTTTACG CACAATCCAT CATTGAAAGC GGCATCCGAT TCGATATGCT
           201 GTTCGGCCCC GCCTACAAAG GCATTATTTT GGCGGCGGCA ACCGCGATGA
251 TGCTGGCGGA AAAAGGCGTG AACGTCCCGT TTGCCTACAA CCGCAAAGAA
301 GCCAAAGACC ACGGCGAAGG CGGCGTGTTG GTCGGCGGCC CGCTTAAAGG
           351 GCGCGTGCTG ATTATCGACG ACGTGATTTC CGCCGGCACA TCCGTACGCG
           401 AATCGATCAA ACTGATTGAA GCGGAGGGTG CAACCCCCGC CGGTGTCGCC
           451 ATCGCGCTCG ACCGCATGGA AAAAGGCACG GGTGAATTGA GCGCGGTTCA
501 GGAAGTGGAA AAACAATACG GCCTGCCCGT CGCCCCCATC GCCAGCCTGA
           551 ACGATTTGTT TATTCTGTTG CAAAACAACC CCGAATTCGG ACAGTTCCTC
           601 GAACCCGTCC GAGCCTACCG TCGGCAGTAC GGCGTAGAAT AA
This corresponds to the amino acid sequence <SEQ ID 140; ORF 038.a>:
      a038.pep
                 MTDFRQDFLK FSLAQNVLKF GEFTTKAGRR SPYFFNAGLF NDGLSTLQLA
             1
                 KFYAQSIIES GIRFDMLFGP AYKGIILAAA TAMMLAEKGV NVPFAYNRKE
           101 AKDHGEGGVL VGAPLKGRVL IIDDVISAGT SVRESIKLIE AEGATPAGVA
           151 IALDRMEKGT GELSAVQEVE KQYGLPVAPI ASLNDLFILL QNNPEFGQFL
           201 EPVRAYRRQY GVE*
              100.0% identity over a 213 aa overlap
m038/a038
                                                    30
                                                               40
                    MTDFRQDFLKFSLAQNVLKFGEFTTKAGRRSPYFFNAGLFNDGLSTLQLAKFYAQSIIES
     m038.pep
```

a038				 FNAGLFNDGI 40	! .STLQLAKFY: 50	 AQSIIES 60
	70	80	90	100	110	120
m038.pep	GIRFDMLFGPAYKG	LILAAATAMM	LAEKGVNVPF.	AYNRKEAKDH	IGEGGVLVGA	PLKGRVL
	111111111111111		111111111	111111111	111111111	111111
a038	GIRFDMLFGPAYKG	[ILAAATAMM	ILAEKGVNVPF.	AYNRKEA KDH	GEGGVLVGA	PLKGRVL
	70	80	90	100	110	120
	130	140	150	160	170	180
m038.pep	IIDDVISAGTSVRES	SIKLIEAEGA	TPAGVAIALD	RMEKGTGELS	AVQEVEKQY	GLPVAPI
	11111111111111		111111111	1111111111	11111111	
a038	IIDDVISAGTSVRES	SIKLIEAEGA	TPAGVAIALD	RMEKGTGELS	AVQEVEKQY	GLPVAPI
	130	140	150	160	170	180
	190	200	210			
m038.pep	ASLNDLFILLQNNP					
moso.pep	I I I I I I I I I I I I I I I I I I I	II OQL DELVI				
- 020	TOTAL CHARGE	ECOPI EDUC				
a038	ASLNDLFILLQNNPE		-			
	190	200	210			

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae
ORF 038 shows 98.1% identity over a 213 aa overlap with a predicted ORF (ORF 038.ng) from N. gonorrhoeae: m038/g038

	10	20	30	40	50	60
m038.pep	MTDFRQDFLKFSLA	.QNVLKFGEFT	TKAGRRSPYF	FNAGLFNDGI	STLQLAKFYA	AQSIIES
		111111111	111111111			
g038	MTDFRQDFLKFSLA		TKAGRRSPYF	FNAGLFNDGA	ASTLQLAKFY <i>A</i>	AQSIIES
	10	20	30	40	50	60
	70	80	90	100	110	120
m038.pep	GIRFDMLFGPAYKG	IILAAATAMM	ILAEKGVNVPE	TAYNRKEAKDI	igeggvlvgae	PLKGRVL
			1111111111	11111111:		
g038	GIRFDMLFGPAYKG	IILAAATAMM	LAEKGVNVPE	AYNRKEAKDE	RGEGGVLVGAE	LKGRVL
	70	80	90	100	110	120
	130	140	150	160	170	180
m038.pep	IIDDVISAGTSVRE	SIKLIEAEGA	TPAGVAIAL	PRMEKGTGELS	SAVQEVEKQYO	LPVAPI
	11111111111111	11111111111	11111111111	11111111:11	11111111111	111111
g038	IIDDVISAGTSVRE	SIKLIEAEGA	TPAGVAIAL	RMEKGTGKLS	SAVQEVEKQYO	SLPVAPI
	130	140	150	160	170	180
	190	200	210			
m038.pep	ASLNDLFILLQNNP	EFGQFLEPVR	AYRRQYGVEX	ζ		
-	11111111111111	11111111111	: [] [] [] []			
g038	ASLNDLFILLONNP	FFGOFLEPVE	TYRROYGVEX	(
	190	200	210	-		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 141>: g039.seq

1	ATGCCGTCCG	AACCACCTGC	CGCTTCAGAC	GGCATCAAAC	CGACACACAC
51	CGAGAAAACA	TCATGCCCGC	CTGTTTCTGT	CCGCACTGCA	AAACCCGCCT
101	CTGGGTCAAA	GAAAcccagC	TCAAcgtCgC	ccaagGCTTC	GTCGTCTgcc
151	aaAAAtgcga	agGGCTgttt	aaAgccaaaG	accAtctggc	aaGcacGAAA
201	gaacctatat	tcaacgattg	gcccgaagct	gtttcgggat	gTcaaaCTCG

```
251 TCcaccgcaT cggcacgcac gccattagca aGAaacagat gtcccgcgac
           301 qaaatCqccq atatcctcaa cggcggtaca acCCTGCACG ATACGCCGCC
           351 CGCAACCGCC GCTGCCGCac ctGCCGCCGC ACCGCaggTT TCCGTACCGC
           401 CCGCCCGTCA GGAAGGGCTC AACTGGACTA TTGCAACCCT GTTCGCACTT
           451 ATCGTCCTCA TTATGCAGCT TTCCTACCTC TTCATCCTAT GA
This corresponds to the amino acid sequence <SEQ ID 142; ORF 039.ng>:
     g039.pep
                MPSEPPAASD GIKPTHTEKT SCPPVSVRTA KPASGSKKPS STSPKASSSA
             1
               KNAKGCLKPK TIWQARKNLY STIGPKLFRD VKLVHRIGTH AISKKQMSRD
           101 EIADILNGGT TLHDTPPATA AAAPAAAPQV SVPPARQEGL NWTIATLFAL
           151 IVLIMQLSYL FIL*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 143>:
     m039.seq
                ATGCCGTCCG AACCGCCTTA CGCCTCAGAC GGCATCAAAC CTGACACACA
            51 CGAGGAAATA CCATGCCCGC CTGTTTCTGC CCCCACTGCA AAACCCGTCT
           101 CTGGGTCAAA GAAACCCAAC TCAATGTCGC CGnnnnnnnn nnnnnnnnn
           201 nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnccc GAGGCTGTTT
           251 CGGATGTCAA ACTCGTTCAC CGTATCGGCA CGCGCGCCAT CGGCAAGAAA
301 CAGATTTCCC GTGACGAAAT CGCCGGCATC CTCAACGGCG GTACAACCCA
351 GCCCGATATT CCGCCCGCAA CCGCCGCCAC CCCTGCTGCC GCACCGCAGG
401 TTACCGTACC GCCCGCCGCG CCCGCCCGTC AGGATGGGTT CAACTGGACG
           451 ATTGCAACCC TGTTTGCCCT TATCGTCCTC ATTATGCAGC TTTCCTACCT
           501 CGTCATCCTA TGA
This corresponds to the amino acid sequence <SEQ ID 144; ORF 039>:
      m039.pep
             1 MPSEPPYASD GIKPDTHEEI PCPPVSAPTA KPVSGSKKPN SMSPXXXXXX
            51 XXXXXXXXX XXXXXXXXX XXXXXXXXP EAVSDVKLVH RIGTRAIGKK
           101 QISRDEIAGI LNGGTTQPDI PPATAATPAA APQVTVPPAA PARQDGFNWT
           151 IATLFALIVL IMQLSYLVIL *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 145>:
      a039.seg
                ATGCCGTCTG AACCGCCTTA CGCCTCAGAC GGCATCAAAC CTGACACACA
            51 CGAGGAAATA CCATGCCCGC CTGTTTCTGC CCCCACTGCA AAACCCGTCT
           101 CTGGGTCAAA GAAACCCAAC TCAATGTCGC CCAAGGCTTC GTCGTCTGCC
           151 AAAAATGCGA AGGAATGTTT AAAGCCAAAG ACCATCTGGC AAGCACGAAA
201 GAACCCATAT TCAACGATT. TGCCCGAAGC TGTTTCGGAT GTCAAACTCG
251 TTCACCGCAT CGGCACGAGC GCCATCGGCA AGAAACAGAT TTCCCGTGAC
           301 GAAATCGCCG GCATCCTCAA CGGCGGCACA ACCCAGCCCG ATATTCCGCC
           351 CGCAACCGCC GCCACCCCTG CTGCCGCACC GCAGGTTACC GTACCGCCCG
           401 CCGCGCCCGC CCGTCAGGAT GGGTTCAACT GGACGATTGC AACCCTGTTT
           451 GCCCTTATCG TCCTCATTAT GCAGCTTTCC TACCTCGTCA TCCTATGA
This corresponds to the amino acid sequence <SEQ ID 146; ORF 039.a>:
      a039.pep
                 MPSEPPYASD GIKPDTHEEI PCPPVSAPTA KPVSGSKKPN SMSPKASSSA
             51 KNAKECLKPK TIWQARKNPY STIXPEAVSD VKLVHRIGTS AIGKKQISRD
           101 EIAGILNGGT TOPDIPPATA ATPAAAPQVT VPPAAPARQD GFNWTIATLF
           151 ALIVLIMQLS YLVIL*
             79.4% identity over a 170 aa overlap
m039/a039
                                                                        50
                                        20
                                                   30
                                                              40
      m039.pep
                    MPSEPPYASDGIKPDTHEEIPCPPVSAPTAKPVSGSKKPNSMSPXXXXXXXXXXXXXXXX
                    {\tt MPSEPPYASDGIKPDTHEEIPCPPVSAPTAKPVSGSKKPNSMSPKASSSAKNAKECLKPK}
      a039
```

	10	20	30	40	50	60
m039.pep	70 XXXXXXXXXXXXXXX : : !	80 XXXXPEAVS	90 DVKLVHRIGT	100 RAIGKKQISR	110 DEIAGILNG	120 GTTQPDI
a039	TIWQARKNPYSTIX- 70	PEAVS		SAIGKKQISR 0 10		GTTQPDI 10
	130	140	150	160	170	
m039.pep	PPATAATPAAAPQV'	rvppaaparq 	DGFNWTIATL	FALIVLIMQL	SYLVILX	
a039	PPATAATPAAAPQV'					

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae
ORF 039 shows 60.8% identity over a 171 aa overlap with a predicted ORF (ORF 039.ng) from N. gonorrhoeae: m039/g039

	10	20	30	40	50	60
m039.pep	MPSEPPYASDGIKPD	THEEIPCPP	VSAPTAKPVS(3SKKPNSMSP)	(XXXXXXXXX	XXXXXX
		:	: : -			
g039	MPSEPPAASDGIKPT	HTEKTSCPP	VSVRTAKPAS(GSKKPSSTSP	Kasssaknak	GCLKPK
_	10	20	30	40	50	60
	70	80	90	100	110	120
m039.pep	XXXXXXXXXXXXXXX	XXXXPEAVS	DVKLVHRIGT	RAIGKKQISRI	DEIAGILNGG	TTQPDI
	: :	:		: : :		11 1
g039	TIWQARKNLYSTIG-	PKLFR	DVKLVHRIGTI	HAISKKOMSRI	DEIADILNGG	TTLHDT
_	70	8	0 9	0 100	0 11	.0
	120	140	150	160	170	
	130					
m039.pep	PPATAAT-PAAAPQV			PLATIATINO.	POIDAIDY	
			1:1:11111		1111 111	
g039	PPATAAAAPAAAPQV	SVPPAR	-			
	120 130	,	140	150	160	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 147>: g040 . seq

1	ATGAACGCGC	CCGACAGCTT	TGTCGCCCAC	TTCCGCGAAG	CCGCCCCTA
51	CATCCGCCAA	ATGCGCGGCA	CGACACTGGT	CGCCGGCATA	GAcggCCGCC
101	TGCTCGAAGG	CGGCACCTTA	AATAAGCTCG	CCGCCGACAT	CGGGCTGTTG
151	TCGCAACTGG	GCATCCGACT	CGTCCTCATC	CACGGCGCGT	ACCACTTCCT
201	CGAccgCCTC	GCCGCCGCGC	AAGgccGCAC	GCCGCATTAT	TGCCGgggtt
251	tGCGCGTTAC	CGACGaAACc	tcGctcgGAC	AGGCGCAGCA	GtttGCCGGC
301	AccgTCCGCA	GCCGTTTTGA	agcCGCATTG	tgcggcagCG	tttcaggatt
351				gggcaacttc	
401	GTCcgatggg	cgtgattgac	ggaACCGata	tggaatacgc	gggggttatc
451	cgcaaaaccg	ACACCGCCGC	CCTCCGTTTC	CAACTCGACG	CGGGCAATAT
501	CGTCTGGATG	CCGCCGCTCG	GGCATTCCTA	CGGCGGCAAA	ACCTTCAATC
551	TCGATATGGT	GCAGGCCGCC	GCTTCCGTCG	CCGTCTCGCT	TCAGGCCGAA
601	AAACTCGTTT	ACCTGACCCT	TTCAGACGGC	ATTTCCCGCC	CCGACGGCAC
651	GCTCGCCGAA	ACCCTCTCGG	CACAGGAAGC	GCAATCGCTG	GCGGAACACG
701	CCGCCAGCGA	AACCCGACGA	CTGATTTCGT	CCGCCGTTGC	CGCGCTCGAA
751	GGCGGCGTGC	ATCGCGTCCA	AATCCTCAAC	GGGGCCGCCG	ACGGCAGCCT
801	GCTGCAAGAA	CTCTTCACCC	GCAACGGCAT	CGGCACGTCC	ATTGCCAAAG
851	AAGCCTTCGT	CTCCATCCGG	CAGGCGCACA	GCGGCGACAT	CCCGCACATC
901	GCCGCCCTCA	TCCGCCCGCT	GGAAGAACAG	GGCGTCCTAT	TGCACCGCAG
951	CCGCGAATAC	CTCGAAAACC	ACATTTCCGA	ATTTTCCATC	CTCGAACACG

```
1001 ACGCCGACCT GTACGGCTGT GCCGCACTCA AAACCTTTGC CGAAGCCGAT
     TGCGGCGAAA TCGCCTGCCT TGCCGTCTCG CCGCAGGCAC AGGACGGCGg
1101
     CTACGGCGAA CGCCTGCTTG CCCACATTAT CGATAAGGCG CGCGGCATAG
      GCATAAGCAG GCTGTTCGCA CTGTCCACAA ATACCGGCGA ATGGTTTGCC
1151
1201 GAACGCGGCT TTCAGACGCC ATCGGAAGAC GAGCTGCCCG AAACGCGGCG
1251 CAAAGACTAC CGCAGCAACG GACGAAACCC GCATATTCTG GTGCGTCGCC
1301 TGCACCGCTG A
```

This corresponds to the amino acid sequence <SEQ ID 148; ORF 040.ng>: g040.pep

```
MNAPDSFVAH FREAAPYIRQ MRGTTLVAGI DGRLLEGGTL NKLAADIGLL
    SQLGIRLVLI HGAYHFLDRL AAAQGRTPHY CRGLRVTDET SLGQAQQFAG
 51
    TVRSRFEAAL CGSVSGFARA PSVPLVSGNF LTARPMGVID GTDMEYAGVI
101
151 RKTDTAALRF QLDAGNIVWM PPLGHSYGGK TFNLDMVQAA ASVAVSLQAE
    KLVYLTLSDG ISRPDGTLAE TLSAQEAQSL AEHAASETRR LISSAVAALE
251 GGVHRVQILN GAADGSLLQE LFTRNGIGTS IAKEAFVSIR QAHSGDIPHI
301 AALIRPLEEQ GVLLHRSREY LENHISEFSI LEHDGDLYGC AALKTFAEAD
    CGEIACLAVS PQAQDGGYGE RLLAHIIDKA RGIGISRLFA LSTNTGEWFA
401 ERGFQTASED ELPETRRKDY RSNGRNPHIL VRRLHR*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 149>:

```
m040.seq
           ATGAGCGCGC CCGACCTCTT TGTCGCCCAC TTCCGCGAAG CCGTCCCCTA
      51 CATCCGCCAA ATGCGCGGCA AAACGCTGGT CGCCGGCATA GACGACCGCC
     101 TGCTCGAAGG TGATACCTTA AACAAGCTCG CCGCCGACAT CGGGCTGTTG
     151 TCGCAACTGG GCATCAGGCT CGTCCTCATC CACGGCGCGC GCCACTTCCT 201 CGACCGCCAC GCCGCCGCTC AAGGCCGCAC GCCGCATTAT TGCCGGGGCT
           TGCGCGTTAC CGACGAAACC TCGCTCGAAC AGGCGCAGCA GTTTGCCGGC
     251
     301 ACCGTCCGCA GCCGTTTTGA AGCCGCATTG TGCGGCAGCG TTTCCGGGTT
     351 CGCGCGCGC CCTTCCGTCC CGCTCGTATC GGGCAACTTC CTGACCGCCC
     401 GTCCGATAGG TGTGATTGAC GGAACCGATA TGGAATACGC GGGCGTTATC
451 CGCAAAACCG ACACCGCCGC CCTCCGTTTC CAACTCGACG CGGGCAATAT
     501 CGTCTGGCTG CCGCCGCTCG GACATTCCTA CAGCGGCAAG ACCTTCTATC
     551 TCGATATGCT TCAAACCGCC GCCTCCGCCG CCGTCTCGCT TCAGGCCGAA
     601 AAACTCGTTT ACCTGACCCT TTCAGACGGC ATTTCCCGCC CCGACGGCAC
     651 GCTCGCCGAA ACCCTCTCGG CACAGGAAGC GCAATCGCTG GCGGAACACG
           CCGGCGGCA AACGCGACGG CTGATTTCGT CCGCCGAACT CTTCACCCGC
     751 AACGGCATCG GCACGTCCAT TGCCAAAGAA GCCTTCGTCT CCATCCGGCA
     801 rGCGCAywgG G.CGACATCC CGCACATCGC CGCCCTCATC CGCCCGCTGG
     851 AAGAACAGGG CATCCTGCTG CACCGCAs.c GCGAATACCT CGAAAACCAC
     901 ATTTCCGAAT TTTCCATCCT CGAACACGAC GGCAACCTGT ACGGTTGCGC
          CGCCCTGAAA ACCTTTGCCG AAGCCGATTG CGGCGAAATC GCCTGCCTTG
    951 CGCCCTGAAA ACCTTTGCCG AAGCCGATTG CGGCGAAATC GCCTGCCTTG
1001 CCGTCTCGCC GCag.cACAG GACGGCGGCT ACGGCGAACG CNTGCTTGCC
    1051 CACATTATCG ATAAGGCGCG CGGCATAGGC ATAAGCAGGC TGTTCGCACT
    1101 GTCCACAAT ACCGGCGAAT GGTTTGCCGA ACGCGGCTTT CAGACGGCAT
    1151 CGGAAGACGA GTTGCCCGAA ACGCGGCGCA AAGACTACCG CAGCAACGGA
    1201 CGGAACTCGC ATATTCTGGT ACGTCGCCTG CACCGCTGA
```

This corresponds to the amino acid sequence <SEQ ID 150; ORF 040>:

```
m040.pep
         MSAPDLFVAH FREAVPYIRQ MRGKTLVAGI DDRLLEGDTL NKLAADIGLL
          SQLGIRLVLI HGARHFLDRH AAAQGRTPHY CRGLRVTDET SLEQAQQFAG
     101
151
         TVRSRFEAAL CGSVSGFARA PSVPLVSGNF LTARPIGVID GTDMEYAGVI
         RKTDTAALRF QLDAGNIVWL PPLGHSYSGK TFYLDMLQTA ASAAVSLQAE
     201 KLVYLTLSDG ISRPDGTLAE TLSAQEAQSL AEHAGGQTRR LISSAELFTR
     251 NGIGTSIAKE AFVSIRQAHX XDIPHIAALI RPLEEQGILL HRXREYLENH
         ISEFSILEHD GNLYGCAALK TFAEADCGEI ACLAVSPQXQ DGGYGERXLA
          HIIDKARGIG ISRLFALSTN TGEWFAERGF QTASEDELPE TRRKDYRSNG
     351
     401
          RNSHILVRRL HR*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 151>: a040.seq

```
1 ATGATCGTGC CCGACCTCTT TGTCGCCCAC TTCCGCGAAG CCGCCCCCTA
            51 CATCCGCCAA ATGCGCGGCA AAACGCTGGT CGCCGGCATA GACGACCGCC
           101
                TGCTCGAAGG TGATACCTTA AACAAGTTCG CCGCCGACAT CGGGCTTTTG
               TCGCAACTGG GCATCAGGCT CGTCCTCATC CACGGCGCGC GCCACTTCCT
           151
           201 CGACCGCCAC GCCGCCGCAC AAGGCCGCAC GCCGCATTAT TGCCGGGGCT
           251 TGCGCGTTAC CGACGAAACC TCGCTCGAAC AGGCGCAGCA GTTTGCCGGC
           301 ACCGTCCGCA GCCGTTTTGA AGCCGCATTG TGCGGCAGCG TTTCCGGGTT
           351 CGCGCGCGC CCTTCCGTCC CGCTCGTATC GGGCAACTTC CTGACCGCCC 401 GTCCGATAGG TGTGATTGAC GGAACCGATA TGGAATACGC GGGCGTTATC
           451 CGCAAAACCG ACACCGCCGC CCTCCGTTTC CAACTCGACG CGGGCAATAT
           501 CGTCTGGCTG CCGCCGCTCG GACATTCCTA CAGCGGCAAG ACCTTCCATC
           551 TCGATATGCT TCAAACCGCC GCCTCCGTCG CCGTCTCGCT TCAGGCCGAA
           601 AAACTCGTTT ACCTGACCCT TTCAGACGGC ATTTCCCGCC CCGACGGCAC
           651
               GCTCGCCGTA ACCCTCTCGG CACAGGAAGC GCAATCGCTG GCGGAACACG
           701 CCGGCGGCGA AACGCGACGG CTGATTTCGT CCGCCGTTGC CGCGCTCGAA
           751 GGCGGCGTGC ATCGCGTCCA AATCCTCAAC GGAGCCGCCG ACGGCAGCCT
           801 GCTGCAAGAA CTCTTCACCC GCAACGGCAT CGGCACGTCC ATTGCCAAAG
           851 AAGCCTTCGT CTCCATCCGG CAGGCGCACA GCGGCGACAT CCCGCACATT
901 GCCGCCCTCA TCCGCCCGCT GGAAGAACAG GGCATCCTGC TGCACCGCAG
           951 CCGCGAATAC CTCGAAAACC ACATTTCCGA ATTTTCCATC CTCGAACACG
          1001 ACGGCAACCT GTACGGTTGC GCCGCCCTGA AAACCTTTGC CGAAGCCGAT
          1051 TGCGGCGAAA TCGCCTGCCT TGCCGTCTCG CCGCAGGCAC AGGACGGCGG
          1101 CTACGGCGAA CGCCTGCTTG CCCACATTAT CGATAAGGCG CGCGGCATAG
               GCATAAGCAG GCTGTTCGCA CTGTCCACAA ATACCGGCGA ATGGTTTGCC
          1151
          1201 GAACGCGGCT TTCAGACGGC ATCGGAAGAC GAGTTGCCCG AAACGCGGCG
          1251 CAAAGACTAC CGCAGCAACG GACGGAACTC GCATATTCTG GTGCGTCGCC
          1301 TGCACCGCTG A
This corresponds to the amino acid sequence <SEQ ID 152; ORF 040.a>:
```

```
a040.pep
         MIVPDLFVAH FREAAPYIRQ MRGKTLVAGI DDRLLEGDTL NKFAADIGLL
          SQLGIRLVLI HGARHFLDRH AAAQGRTPHY CRGLRVTDET SLEQAQQFAG
      51
          TVRSRFEAAL CGSVSGFARA PSVPLVSGNF LTARPIGVID GTDMEYAGVI
     101
     151 RKTDTAALRF QLDAGNIVWL PPLGHSYSGK TFHLDMLQTA ASVAVSLQAE
     201 KLVYLTLSDG ISRPDGTLAV TLSAQEAQSL AEHAGGETRR LISSAVAALE
     251 GGVHRVQILN GAADGSLLQE LFTRNGIGTS IAKEAFVSIR QAHSGDIPHI
     301 AALIRPLEEQ GILLHRSREY LENHISEFSI LEHDGNLYGC AALKTFAEAD
     351
         CGEIACLAVS POAODGGYGE RLLAHIIDKA RGIGISRLFA LSTNTGEWFA
     401 ERGFQTASED ELPETRRKDY RSNGRNSHIL VRRLHR*
```

m040/a040 91.5% identity in 436 aa overlap

m040.pep	10 MSAPDLFVAHFREAV	20 PYIRQMRGI	30 KTLVAGIDDRL	40 LEGDTLNKLA	50 ADIGLLSQLO	60 GIRLVLI
a040	: MIVPDLFVAHFREAA 10				AADIGLLSQLO 50	IIIIIIII GIRLVLI 60
	70	80	90	100	110	120
m040.pep	HGARHFLDRHAAAQG	RTPHYCRGI	LRVTDETSLEQ	AQQFAGTVRS	RFEAALCGS	/SGFARA
a040	HGARHFLDRHAAAQG			AOOFAGTVR		 SGEARA
4040	70	80	90	100	110	120
	130	140	150	160	170	180
m040.pep	PSVPLVSGNFLTARE	IGVIDGTD	MEYAGVIRKTD	TAALRFQLDA	AGNIVWLPPLO	GHSYSGK
a040	PSVPLVSGNFLTARE			_		
	130	140	150	160	170	180
	190	200	210	220	230	240
m040.pep	TFYLDMLQTAASAAV	SLQAEKLV	/LTLSDGISRP	DGTLAETLS	AQEAQSLAEHA	AGGQTRR
	11:11111111:11			11111 1111		111:114
a040	TFHLDMLQTAASVAV	SLQAEKLV	/LTLSDGISRP	DGTLAVTLSA	AQEAQSLAEHA	AGGETRR

	190	200	210	220	230	240
m040.pep	LISSA LISSAVAALEGGVHR		111111	260 GIGTSIAKEAE GIGTSIAKEAE 280	4111111 4	1111
m040.pep	280 290 AALIRPLEEQGILLH	1 1111111	11311111111		. 1 1 1 1 1 1 1 1 1 1	
m040.pep	340 350 PQXQDGGYGERXLAH PQAQDGGYGERLLAH 370	111111111		11111111111		
m040.pep	400 410 RSNGRNSHILVRRLH RSNGRNSHILVRRLH 430	13				

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 040 shows 88.3% identity over a 436 aa overlap with a predicted ORF (ORF 040.ng) from N. gonorrhoeae:

	_		
m04	0 /	′α0	40

m040.pep	MSAPDLFVAHFREAVPYIRQMRGKTLVAGIDDRLLEGDTLNKLAADIGLLSQLGIRLVLI	60
g040	MNAPDSFVAHFREAAPYIRQMRGTTLVAGIDGRLLEGGTLNKLAADIGLLSQLGIRLVLI	60
m040.pep	HGARHFLDRHAAAQGRTPHYCRGLRVTDETSLEQAQQFAGTVRSRFEAALCGSVSGFARA	120
g040	HGAYHFLDRLAAAQGRTPHYCRGLRVTDETSLGQAQQFAGTVRSRFEAALCGSVSGFARA	120
m040.pep	PSVPLVSGNFLTARPIGVIDGTDMEYAGVIRKTDTAALRFQLDAGNIVWLPPLGHSYSGK	180
g040	PSVPLVSGNFLTARPMGVIDGTDMEYAGVIRKTDTAALRFQLDAGNIVWMPPLGHSYGGK	180
m040.pep	TFYLDMLQTAASAAVSLQAEKLVYLTLSDGISRPDGTLAETLSAQEAQSLAEHAGGQTRR	240
g040	TFNLDMVQAAASVAVSLQAEKLVYLTLSDGISRPDGTLAETLSAQEAQSLAEHAASETRR	240
m040.pep	LISSAELFTRNGIGTSIAKEAFVSIRQAHXXDIPHI	276
g040	LISSAVAALEGGVHRVQILNGAADGSLLQELFTRNGIGTSIAKEAFVSIRQAHSGDIPHI	300
m040.pep	AALIRPLEEQGILLHRXREYLENHISEFSILEHDGNLYGCAALKTFAEADCGEIACLAVS	336
g040	AALIRPLEEQGVLLHRSREYLENHISEFSILEHDGDLYGCAALKTFAEADCGEIACLAVS	360
m040.pep	PQXQDGGYGERXLAHIIDKARGIGISRLFALSTNTGEWFAERGFQTASEDELPETRRKDY	396
g040	PQAQDGGYGERLLAHIIDKARGIGISRLFALSTNTGEWFAERGFQTASEDELPETRRKDY	420
m040.pep	RSNGRNSHILVRRLHRX 413	
g040	RSNGRNPHILVRRLHRX 437	

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 153>:
     q041.seq
               ATGAGTTCGC CCAAACACAT CGGCTTGCAG GGCGGCAGCA ACGGCGGCCT
            1
           51
               GATTACCGCC GCCGCCTTCG TGCGCGAACC GCAAAGCATC GGTGCGCTGG
               TGTGCGAAGT ACCGCTGACC GATATGATCC GTTATCCGCT GCTGTCCGCC
          101
          151 GGTTCAAGTT GGACGGACGA ATACGGCAAT CCGCAGAAAT ACGAAGCCTG
               CAAACGCCGG CTGGGCGAAT TGTCGCCGTA TCACAATCTT TCAGACGGCA
          251 TCGATTATCC GCCCGCACTC ATTACCACCA GCCTCAGCGA CGACCGCGTC
          301 CATCCCGCCC ACGCGCTCAA ATTCTACGCC AAACTGCGCG AAACCTCGCC
351 GCAATCTTGG CTCTACTCGC CTGACGGCGG CGGCCATACC GGCAACGGCA
          401 CCCAACGCGA ATCCGCCGAC AAACTCGCCT GCGTGTTGCT GTTTTTGAAA
           451 GAATTTTTGG GATAA
This corresponds to the amino acid sequence <SEQ ID 154; ORF 041.ng>:
     g041.pep
                MSSPKHIGLQ GGSNGGLITA AAFVREPQSI GALVCEVPLT DMIRYPLLSA
                GSSWTDEYGN PQKYEACKRR LGELSPYHNL SDGIDYPPAL ITTSLSDDRV
           101 HPAHALKFYA KLRETSPOSW LYSPDGGGHT GNGTQRESAD KLACVLLFLK
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 155>:
     m041.seq
               ATCAGTTCGC CCGAACACAT CGGCTTGCAG GGCGGCAGCA ACGGCGGACT
            1
               GATTACTGCC GCCGCCTTCG TGCGCGAACC GCAAAGCATC GGCGCGCTGG
           101 TGTGCGAAGT GCCGCTGACC GACATGATCC GTTATCCGCT GCTCTCCGCC
           151 GGTTCAAGCT GGACAGACGA ATACGGCAAT CCGCAAAAAT ACGAAGTCTG
           201 CAAACGCCGG TTGGGCGAAT TGTCGCCGTA TCACAATCTT TCAGACGGCA
           251
               TCGATTATCC GCCCGCGCTC ATTACCACCA GCCTGTCCGA CGATCGCGTC
           301 CATCCCGCCC ACGCGCTCAA GTTCTACGCC AAACTGCGCG AAACCTCCGC
           351 GCAATCTTGG CTCTACTCGC CTGACGGCGG CGGCCATACC GGCAACGGCA
               CCCAACGCGA ATCCGCCGAC GAACTCGCCT GCGTCTTGCT GTTTTTGAAA
           451 GAGTTTTTGG GCTAA
This corresponds to the amino acid sequence <SEQ ID 156; ORF 041>:
     m041.pep
                ISSPEHIGLQ GGSNGGLITA AAFVREPQSI GALVCEVPLT DMIRYPLLSA
            51
                GSSWTDEYGN POKYEVCKRR LGELSPYHNL SDGIDYPPAL ITTSLSDDRV
           101 HPAHALKFYA KLRETSAQSW LYSPDGGGHT GNGTQRESAD ELACVLLFLK
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 157>:
      a041.seq
               ATCAGTTCGC CCGAACACAT CGGCTTGCAG GGCGGCAGCA ACGGCGGACT
            51 GATTACTGCC GCCGCCTTCG TGCGCGAACC GCAAAGCATA GGCGCGCTGG
           101 TGTGCGAAGT GCCGCTGACC GACATGATCC GTTATCCGCT GCTCTCCGCC
```

This corresponds to the amino acid sequence <SEQ ID 158; ORF 041.a>:

```
a041.pep
      1
      51
```

ISSPEHIGLQ GGSNGGLITA AAFVREPQSI GALVCEVPLT DMIRYPLLSA

151 GGTTCAAGCT GGACAGACGA ATACGGCAAT CCGCAAAAAT ACGAAGTCTG
201 CAAACGCCGG TTGGGCGAAT TGTCGCCGTA TCACAATCTT TCAGACGGCA 251 TCGATTATCC GCCCGCGCTC ATTACCACCA GCCTGTCCGA CGATCGCGTC 301 CATCCGCCC ACGCGCTCAA GTTCTACGCC AAACTGCGCG AAACCTCGCC 351 GCAATCTTGG CTCTACTCGC CTGACGGCGG CGGCCATACC GGCAACGGCA 401 CGCAGCGCGA AGCCGCCGAC GAACTCGCCT GCGTGTTGCT GTTTTTGAAA
451 GAGTTTTTGG GCTAA

GSSWTDEYGN PQKYEVCKRR LGELSPYHNL SDGIDYPPAL ITTSLSDDRV 101 HPAHALKFYA KLRETSPQSW LYSPDGGGHT GNGTQREAAD ELACVLLFLK

151 EFLG*

m041/a041	98.7% id	lentity ove	ra 154	aa overlap

	10	20	30	40	50	60
m041.pep	ISSPEHIGLQGGSN	GGLITAAAFV	REPOSIGALV	CEVPLTDMIR	YPLLSAGSSW	TDEYGN
1 1	111111111111111	1111111111	1111111111	1111111111	1111111111	
a041	ISSPEHIGLQGGSN	GGLITAAAFV	REPQSIGALV	CEVPLTDMIR	YPLLSAGSSW	TDEYGN
	10	20	30	40	50	60
	• 70	80	90	100	110	120
m041.pep	PQKYEVCKRRLGEL					
mo41.pep		1111111111				
a041	PQKYEVCKRRLGEL	SPYHNLSDGI	DYPPALITTS:	LSDDRVHPAH	ALKFYAKLRE	
	70	80	90	100	110	120
	130	140	150			
m041.pep	LYSPDGGGHTGNGT			X		
mo41.pcp						
a041	LYSPDGGGHTGNGT			-		
	130	140	150			

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 041 shows 96.8% identity over a 154 aa overlap with a predicted ORF (ORF 041.ng) from *N. gonorrhoeae*:

m041/g041

	10	20	30	40	50	60
m041.pep	ISSPEHIGLQGGSN	GGLITAAAFV	REPOSIGALV	CEVPLTDMIR	YPLLSAGSSW	TDEYGN
-	:111:11111111	[1][[1][[1][[1][111111111		
g041	MSSPKHIGLQGGSN	GGLITAAAFV	/REPQSIGALV	CEVPLTDMIR	YPLLSAGSSW	TDEYGN
	10	20	30	40	50	60
	70	80	90	100	110	120
m041.pep	PQKYEVCKRRLGEL	SPYHNLSDGI	DYPPALITTS:	LSDDRVHPAH	ALKFYAKLRE	TSAQSW
	11111:1111111	1111111111		1111111111		
g041	PQKYEACKRRLGEL	SPYHNLSDG1	(DYPPALITTS:	LSDDRVHPAH	ALKFYAKLRE	TSPQSW
_	70	80	90	100	110	120
			1.50			
	130	140	150			
m041.pep	LYSPDGGGHTGNGT	QRESADELAC	CVLLFLKEFLG	X		
	111111111111	111111:11		1		
g041	LYSPDGGGHTGNGT	QRESADKLAG	CVLLFLKEFLG	X		
_	130	140	150			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 159>: g041-1.seq

	3				
1	ATGAAATCCT	ACCCCGACCC	CTACCGCCAT	TTTGAAAACC	TCGATTCCGC
51	CGAAACGCAA	AACTTCGCTG	CTGAAGCGAA	TGCCGAAACG	CGCGCGCGTT
101	TTTTAAACAA	CGACAAGGCG	CGCGCACTTT	CAGACGGCAT	TTTGAATCAA
151	ATGCAGGACA	CGCGGCAGAT	TCCGTTTTGT	CAGGAACACC	GCGCGCGGAT
201	GTACCATTTC	CATCAGAATG	CGGAATATCC	GAAGGGCGTG	TACCGCATGT
251	GTACGGCGGC	GACCTACCGT	TCCGGCTATC	CCGAGTGGAA	AATCCTGTTT
301	TCGGTGGCGG	ATTTCGATGA	GTTGCTCGGC	GACGATGTGT	ATTTGGGCGG
351	CGTGTCGCAC	TTGGTGGAGC	AGCCCAACCG	CGCGCTGCTG	ACTTTGAACA
401	AATCGGGCGG	CGATACGGCG	TATACGCTGG	AAGTGGATTT	GGAAGCAGGG
451	GAATTGGTAG	AGGGCGGTTT	TCACTTTCCG	GCAGGCAAAA	ACCATGTGTC
501	GTGGCGCGAT	GAAAACAGCG	TGTGGGTGTG	TCCGGCTTGG	GACGAACGCC
551	AGTTGACCGA	ATCGGGCTAT	CCGCGCGAAG	TGTGGCTGGT	GGAACGCGGC

WO 99/057280 PCT/US99/09346

232

```
601 AAGAGTTTCG AGGAAAGCCT GCCGGCGTAC CAAATCGATA AAGGCGCGAT
     GATGGTAAAC GCGTGGCGTT ACCTCGATCC GCAGGGTTCG CCGATTGATT
     TGATTGAAGC GTCGGACGGT TTTTACACCA AGACGTATTT GCAGGTGTCG
TCCGAAGGCG GGGCGAAACC GTTGAACCTG CCTAATGATT GCGATGTGGT
751
801 CGGCTATCTG GCGGGACATC TTTTGCTGAC GCTGCGCAAG GACTGGCACC
     GCGCGAACCA AAGCTATCCG AGTGGCGCGT TGGTGGCGGT GAAACTGAAT
 901 CGGGGCGAAC TCGGGGCGGC GCAGCTTTTG TTTGCGCCCG ATGAAACGCA
     GGCATTGGAA AGCGTGGAAA CGACCAAGCG TTTTGTGGTG GCAAGCCTGC
951
     TGGAGAATGT ACAAGGCCGT CTGAAAGCGT GGCGGTTTGC CGACAGCAAA
1001
1051 TGGCAGGAAG CCGAGTTGCC GCACCTGCCC TCGGGCGCGT TGGAAATGAC
1101 CGACCAACCG TGGGGCGGCG ACGTGGTTTA TCTTGCCGCC AGCGATTTCA
1151 CCACGCCGCT GACGCTGTTT GCGCTGGATT TGAACGTGAT GGAACTGACC
1201 GTCATGCGCC TCCAGCCGCA GCAGTTTGTT TCAGACGGCA TCGAAGTGCG
     GCAGTTTTGG GCGGTGTCGT CCGACGGCGA ACGCATTCCT TATTTCCACG
1251
1301 TCGGCAAAAA CGCCGCGCCC GACACGCCGA CCTTAGTCTA TGCTTACGGA
1351 GGTTTCGGCA TTCCTGAATT GCCGCATTAT CTGGGCAGCG TCGGCAAATA
1401 TTGGCTGGAA GAGGGCAATG CCTTTGTATT GGCAAACATC CGCGGCGGCG
1451 GAGAATTCGG CCCGCGCTGG CATCAGGCGG CGCAGGGAAT CAGCAAACAC
     AAAAGCGTTG ATGATTTGTT GGCAGTCGTG CGTGATTTGT CCGAACGCGG
1551 CATGAGTTCG CCCAAACACA TCGGCTTGCA GGGCGGCAGC AACGGCGGCC
1601 TGATTACCGC CGCCGCCTTC GTGCGCGAAC CGCAAAGCAT CGGTGCGCTG
1651 GTGTGCGAAG TACCGCTGAC CGATATGATC CGTTATCCGC TGCTGTCCGC
1701 CGGTTCAAGT TGGACGGACG AATACGGCAA TCCGCAGAAA TACGAAGCCT
     GCAAACGCCG GCTGGGCGAA TTGTCGCCGT ATCACAATCT TTCAGACGGC
1801 ATCGATTATC CGCCCGCACT CATTACCACC AGCCTCAGCG ACGACCGCGT
1851 CCATCCCGCC CACGCGCTCA AATTCTACGC CAAACTGCGC GAAACCTCGC
1901 CGCAATCTTG GCTCTACTCG CCTGACGGCG GCGGCCATAC CGGCAACGGC
1951 ACCCAACGCG AATCCGCCGA CAAACTCGCC TGCGTGTTGC TGTTTTTGAA
2001 AGAATTTTTG GGATAA
```

This corresponds to the amino acid sequence <SEQ ID 160; ORF 041-1.ng>:

```
g041-1.pep
       1 MKSYPDPYRH FENLDSAETQ NFAAEANAET RARFLNNDKA RALSDGILNQ
      51 MODTROIPFC OEHRARMYHF HONAEYPKGV YRMCTAATYR SGYPEWKILF
     101 SVADFDELLG DDVYLGGVSH LVEQPNRALL TLNKSGGDTA YTLEVDLEAG
     151 ELVEGGFHFP AGKNHVSWRD ENSVWVCPAW DERQLTESGY PREVWLVERG
201 KSFEESLPAY QIDKGAMMVN AWRYLDPQGS PIDLIEASDG FYTKTYLQVS
     251 SEGGAKPLNL PNDCDVVGYL AGHLLLTLRK DWHRANQSYP SGALVAVKLN
     301 RGELGAAQLL FAPDETQALE SVETTKRFVV ASLLENVQGR LKAWRFADSK
     351 WQEAELPHLP SGALEMTDQP WGGDVVYLAA SDFTTPLTLF ALDLNVMELT
     401 VMRLQPQQFV SDGIEVRQFW AVSSDGERIP YFHVGKNAAP DTPTLVYAYG
     451
         GFGIPELPHY LGSVGKYWLE EGNAFVLANI RGGGEFGPRW HQAAQGISKH
     501 KSVDDLLAVV RDLSERGMSS PKHIGLQGGS NGGLITAAAF VREPQSIGAL
     551 VCEVPLTDMI RYPLLSAGSS WTDEYGNPQK YEACKRRLGE LSPYHNLSDG
     601 IDYPPALITT SLSDDRVHPA HALKFYAKLR ETSPQSWLYS PDGGGHTGNG
     651 TQRESADKLA CVLLFLKEFL G*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 161>:

m041-1.seq 1 ATGAAATCCT ACCCCGACCC CTACCGCCAT TTTGAAAACC TCGATTCCGC 51 CGAAACGCAA AACTTCGCTG CTGAAGCGAA TGCCGAAACG CGCGCGCGTT 101 TTTTAGAAAA CGACAAGGCG CGCGCGCTTT CAGACGGCAT TTTGGCGCAG 151 TTGCAGGACA CGCGGCAGAT TCCGTTTTGT CAGGAACACC GCGCGCGGAT 201 GTACCATTTC CATCAGGACG CGGAGTATCC GAAGGGCGTG TACCGCGTGT 251 GTACCGCGGC GACGTATCGT TCCGGCTATC CCGAGTGGAA AATCCTGTTT 301 TCGGTGGCGG ATTTCGACGA ATTGCTTGGC GACGATGTGT ATTTGGGCGG 351 CGTGTCGCAC TTGGTGGAAC AGCCCAACCG CGCGTTGTTA ACACTGAGCA 401 AATTGGCAG CGATACGGCG TACACGCTGG AAGTGGATTT GGAAGCAGGG
451 GAGTTGGTCG AAGGCGGTTT TCACTTTCCG GCAGGCAAAA ACCATGTGTC
501 GTGGCGCGAT GAAAACAGCG TGTGGGTGTG TCCGGCTTGG AACGAACGCC 551 AGTTGACCCA ATCGGGCTAT CCGCGCGAAG TATGGCTGGT GGAACGCGGC 601 AAGAGTTTCG AGGAAAGCCT GCCTGTGTAT CAAATCGGCG AAGACGGCAT 651 GATGGTGAAC GCGTGGCGTT ATCTCGATCC GCAGGGTTCG CCGATTGATT
701 TGATTGAAGC GTCGGACGGT TTTTACACCA AAACCTATTT GCGGGTCTCA WO 99/057280 PCT/US99/09346

751	GCCGAAGGCG	AGGCGAAACC	GTTAAACCTG	CCCAACGATT	GCGACGTGGT
801	CGGCTATCTG	GCGGGGCATC	TTTTGCTGAC	GCTGCGCAAG	GACTGGAACC
851	GCGCGAACCA	AAGCTATCCG	AGCGGCGCGC	TGGTGGCGGT	GAAGCTGAAT
901	CGGGGCGAAC	TCGGGGCGGC	GCAGCTTTTG	TTTGCGCCCG	ATGAAACGCA
951	GGCATTGGAA	AGCGTGGAAA	CGACCAAGCG	TTTTGTGGTG	GCGAGCCTGT
1001	TGGAGAACGT	ACAAGGCCGT	CTGAAAGCAT	GGCGGTTTGC	CGACGGCAAA
					TGGAAATGAC
1051	TGGCAGGAAG	TCGAATTGCC	GCGCCTGCCT	TCGGGCGCGT	
1101	CGACCAACCT	TGGGGCGCG	ACGTGGTTTA	CCTTGCCGCC	AGCGATTTCA
1151	CCACGCCGCT	GACGCTGTTT	GCGCTGGATT	TGAACGTGAT	GGAACTGACC
1201	GTCATGCGCC	GCCAGCCGCA	GCAGTTTGAT	TCAGACGGCA	TTAACGTGCA
1251	GCAGTTTTGG	ACGACTTCGG	CTGACGGCGA	GCGCATTCCT	TATTTCCACG
1301	TCGGCAAAAA	CGCCGCGCCC	GACATGCCGA	CGCTGGTCTA	TGCCTACGGC
1351	GGTTTCGGCA	TTCCCGAATT	GCCGCATTAT	CTGGGCAGCA	TTGGCAAATA
1401	TTGGCTGGAA	GAGGGCAATG	CCTTTGTATT	GGCGAACATC	CGCGGCGGCG
1451	GCGAGTTCGG	CCCGCGCTGG	CATCAGGCGG	CGCAGGGAAT	CAGCAAACAT
1501	AAAAGCGTTG	ATGATTTATT	GGCAGTCGTG	CGCGATTTGT	CCGAACGCGG
1551	TATCAGTTCG	CCCGAACACA	TCGGCTTGCA	GGGCGGCAGC	AACGGCGGAC
1601	TGATTACTGC	CGCCGCCTTC	GTGCGCGAAC	CGCAAAGCAT	CGGCGCGCTG
1651	GTGTGCGAAG	TGCCGCTGAC	CGACATGATC	CGTTATCCGC	TGCTCTCCGC
1701	CGGTTCAAGC	TGGACAGACG	AATACGGCAA	TCCGCAAAAA	TACGAAGTCT
1751	GCAAACGCCG	GTTGGGCGAA	TTGTCGCCGT	ATCACAATCT	TTCAGACGGC
1801	ATCGATTATC	CGCCCGCGCT	CATTACCACC	AGCCTGTCCG	ACGATCGCGT
1851	CCATCCCGCC	CACGCGCTCA	AGTTCTACGC	CAAACTGCGC	GAAACCTCCG
1901	CGCAATCTTG	GCTCTACTCG	CCTGACGGCG	GCGGCCATAC	CGGCAACGGC
1951	ACCCAACGCG		CGAACTCGCC		TGTTTTTGAA
2001	AGAGTTTTTG	GGCTAA	22.2.010000	100101100	
2001	AGAGIIIIG	OOCIII			

This corresponds to the amino acid sequence <SEQ ID 162; ORF 041-1>: m041-1.pep

```
1 MKSYPDPYRH FENLDSAETQ NFAAEANAET RARFLENDKA RALSDGILAQ
51 LQDTRQIPFC QEHRARMYHF HQDAEYPKGV YRVCTAATYR SGYPEWKILF
101 SVADFDELLG DDVYLGGVSH LVEQPNRALL TLSKLGSDTA YTLEVDLEAG
151 ELVEGGFHFP AGKNHVSWRD ENSVWVCPAW NERQLTQSGY PREVWLVERG
201 KSFEESLPVY QIGEDGMMVN AWRYLDPQGS PIDLIEASDG FYYKTYLRVS
251 AEGEAKPLNL PNDCDVVGYL AGHLLLTLRK DWNRANQSYP SGALVAVKLN
301 RGELGAAQLL FAPDETQALE SVETTKRFVV ASLLENVQGR LKAWRFADGK
351 WQEVELPRLP SGALEMTDQP WGGDVVYLAA SDFTTPLTLF ALDLNVMELT
401 VMRRQPQQFD SDGINVQQFW TTSADGERIP YFHVGKNAAP DMPTLVYAYG
451 GFGIPELPHY LGSIGKYWLE EGNAFVLANI RGGGEFGRW HQAAQGISKH
501 KSVDDLLAVV RDLSERGISS PEHIGLQGGS NGGLITAAAF VREPQSIGAL
551 VCEVPLTDMI RYPLLSAGSS WTDEYGNPQK YEVCKRRLGE LSPYHNLSDG
601 IDYPPALITT SLSDDRVHPA HALKFYAKLR ETSAQSWLYS PDGGGHTGNG
```

m041-1/g041-1 94.6% identity in 671 aa overlap

m041-1.pep	10 MKSYPDPYRHFEN	20 LDSAETQNFA	30 AEANAETRARI	40 FLENDKARALS	50 DGILAQLQDI	60 RQIPFC
		11111111111		11:1111111	1111 1:111	11111
q041-1	MKSYPDPYRHFEN	LDSAETONEA	EANAETRARI	FI.NNDKARALS	DGTLNOMODT	ROTPEC
9014 1	10	20	30	40	50	60
	10	20	50	-10	50	00
	70	80	90	100	110	120
m041-1.pep	OEHRARMYHFHOD	AEYPKGVYRVO	CTAATYRSGY	PEWKILFSVAD	FDELLGDDV	LGGVSH
		1111111111:		1111111111	1111111111	
q041-1	QEHRARMYHFHON	AFYPKGVYRMO	TAATYRSGYI	PEWKTLESVAR	FDELL GDDV	ZI.GGVSH
9011 1	70	80	90	100	110	120
	70	80	30	100	110	120
	130	140	150	160	170	180
m041-1.pep	LVEQPNRALLTLS	KLGSDTAYTLE	EVDLEAGELVE	EGGFHFPAGKN	IHVSWRDENS	WVCPAW
		1 1:111111			111111111	
q041-1	LVEOPNRALLTLN	KSGGDTAYTLE	EVDLEAGELVE	EGGFHFPAGKN	HVSWRDENS	WVCPAW
3	130	140	150	160	170	180
	100			200	_ , 0	200
•	190	200	210	220	230	240
-041 1						
m041-1.pep	NERQLTQSGYPRE		-		-	
	: :			: :		

g041-1	DERQLTESGYPREVWL	VERGKSFEES 200	LPAYQIDKGA 210	MMVNAWRYLD 220	PQGSPIDLIE 230	ASDG 240
m041-1.pep g041-1	250 FYTKTYLRVSAEGEAK	1111111111	111111111	111111:11	1111111111	\mathbf{I}
m041-1.pep g041-1	310 RGELGAAQLLFAPDET RGELGAAQLLFAPDET 310	1111111111	111111111	1111111111	11:1111:11	1:11
m041-1.pep g041-1	370 SGALEMTDQPWGGDVV SGALEMTDQPWGGDVV 370	111111111111	11111111111	1111111 11	111 1111:1	:
m041-1.pep	430 TTSADGERIPYFHVGK :: : ! AVSSDGERIPYFHVGK 430	11111 1111	1111111111	1111111:11		1111
m041-1.pep	490 RGGGEFGPRWHQAAQO IIIIIIIIIIIIIIII RGGGEFGPRWHQAAQO 490	1111111111	1111111111	1:111:111		11111
m041-1.pep . g041-1	550 VREPQSIGALVCEVPI IIIIIIIIIIIIIIIIIIIIV VREPQSIGALVCEVPI 550		111111111			1111
m041-1.pep g041-1	610 IDYPPALITTSLSDDF IDYPPALITTSLSDDF 610					11:11
m041-1.pep g041-1	670 CVLLFLKEFLGX CVLLFLKEFLGX 670					
m041-1/P55577 splP55577 Y4NA_RHISN PROBABLE PEPTIDASE Y4NA >gi 2182536 (AE000086) Y4nA [Rhizobium sp. NGR234] Length = 726 Score = 370 bits (940), Expect = e-101 Identities = 217/682 (31%), Positives = 331/682 (47%), Gaps = 22/682 (3%)						
K DP Sbjct: 42 KDASDPRA Query: 62 EHRARMY- R M	RHFENLDSAETQNFAAEANF + +D + + N AYLNEIDGDKAMTWVEAHNI -HFHQDAEYPKGVYRVCTAF +F QD + +G++R T DNFWQDGTHVQGLWRRTTWE	T + ++ + LSTVDKLSKDPR ATYRSGYPEWKI +YRSG P+W+	L YSEYQADALTI LFSVADFDELL + V +	LQ T +I LQATDRIASPS GDDVYLGGVSH G G	101 120	
	ALLTLSKLGSDTAYTLEVDI L+ LS G D E D+	LEAGELVEGGFH F GE V+ GF			180	

```
Sbjct: 162 LPPTSNLCLIRLSDGGKDADVVREFDIAKGEFVKEGFVLPEGKQSVTWVDENTIYVTREW 221
Query: 181 NERQLTQSGYPREVWLVERGKSFEESLPVYQ-----IGEDGMM--VNAWRYLDPQGSPI 232
                        +V+RG+S ++++ +++ .
                                                 E G++ ++
              ++T SGY
Sbjct: 222 TPGEVTSSGYAYVTKVVKRGQSLDQAVEIFRGQKKDVSAERGVLRDIDGKYVMDTSYRGL 281
Query: 233 DLIEASDGFYTKTYLRVSAEGEAKPLNLPNDCDVVGYLAGHLLLTLRKDWNRANQS-YPS 291
                  FY + + L LP
                                             GY G + L+ DW A + + +
Sbjct: 282 DFFNTELAFYPNGH----PDTRKVVLPLPTTAVFSGYYKGQAIYWLKSDWTSAKGTVFHN 337
Query: 292 GALVAVKLNRGELGAAQL----LFAPDETQALESVETTKRFVVASLLENVQGRLKAWRFA 347 GA++A L A++ LF P+E Q++ TK +V S+L NV +++++ F
Sbjct: 338 GAIIAFDLKAALADPARVEPLVLFMPNEHQSVAGTTQTKNRLVLSILSNVTSEVRSFDFG 397
Query: 348 DGKWQEVELPRLPSGALEMTDQPWGGDVVYLAASDFTTPLTLFALDLNVMELTVMRRQPQ 407
            GW +L + L+T D+++ + F PTLF D ++ +
Sbjct: 398 KGGWSSFKLALPENSTLSLTSSDDESDQLFVFSEGFLEPSTLFCADAATGQVEKITSTPA 457
Query: 408 QFDSDGINVQQFWTTSADGERIPYFHVGKNAAP---DMPTLVYAYGGFGIPELPHYLGSI 464
                                            PT++YAYGGF IP P Y
           +FD+ G+ QQFW TS DG ++PYF V +
Sbjct: 458 RFDAGGLQAQQFWATSKDGTKVPYFLVARKDVKLDGTNPTILYAYGGFQIPMQPSYSAVL 517
Query: 465 GKYWLEEGNAFVLANIRGGGEFGPRWHQAAQGISKHKSVDDLLAVVRDLSERGISSPEHI 524
           GK WLE+G A+ LANIRGGGEFGP+WH A ++ + DD AV +DL + ++S H+
Sbjct: 518 GKLWLEKGGAYALANIRGGGEFGPKWHDAGLKTNRQRVYDDFQAVAQDLIAKKVTSTPHL 577
Query: 525 GLQGGSNGGLITAAAFVREPQSIGALVCEVPLTDMIRYPLLSAGSSWTDEYGNPQKYEVC 584
           G+ GGSNGGL+ ++ P A+V +VPL DM+ + +SAG+SW EYG+P
Sbjct: 578 GIMGGSNGGLLMGVQMIQRPDLWNAVVIQVPLLDMVNFTRMSAGASWQAEYGSPDD-PVE 636
Query: 585 KRRLGELSPYHNLSDGIDYPPALITTSLSDDRVHPAHALKFYAKLRETSAQSWLYSPDGG 644
L +SPYHN+ G+ YP TS DDRV P HA K A + + Y G
Sbjct: 637 GAFLRSISPYHNVKAGVAYPEPFFETSTKDDRVGPVHARKMAALFEDMGLPFYYYENIEG 696
Query: 645 GHTGNGTQRESADELACVLLFL 666
           GH +E A A +++
Sbjct: 697 GHAAAANLQEHARRYALEYIYM 718
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 163>: a041-1.seq

1 ATGAAATCCT ACCCCGACCC CTACCGCCAT TTTGAAAACC TCGATTCCGC 51 CGAAACGCAA AACTTCGCTG CTGAAGCGAA TGCCGAAACG CGCGCGCGTT 101 TTTTAAACAA CGACAAGGCA CGCGCATTGT CTGACGGCAT TTTGGCGCAG 151 TTGCAGGACA CGCGGCAAAT TCCGTTTTGT CAGGAACACC GCGCGCGGAT 201 GTACCATTTC CATCAAGATG CGGAATATCC GAAAGGCGTG TACCGCGTGT 251 GTACCGCGGC GACTTACCGT TCGGGCTATC CTGAGTGGAA AATCCTGTTT 301 TCGGTGGCGG ATTTCGACGA ATTGCTCGGT GACGATGTAT ATCTAGGCGG 351 CGTGTCGCAC CTGGTGGAAC AGCCCAACCG CGCGTTGTTA ACACTGAGCA 401 AATCGGGCG CGATACCGCG TACACGCTGG AAGTGGATTT GGAAGCAGGG 451 GAGTTGGTAG AAGGCGGTTT TCACTTTCCG GCAGGCAAAA ACCATGTGTC 501 GTGGCGCGAT GAAAACAGCG TGTGGGTGTG TCCGGCTTGG GACGAACGCC 551 AGTTGACCGA ATCGGGCTAT CCGCGCGAGG TGTGGCTGGT GGAACGCGGC 601 AAGAGTTTCG AGGAAAGCCT GCCGGTGTAC CAAATTGCTG AAGACGGCAT 651 GATGGTGAAC GCGTGGCGTT ACCTCGATCC GCAGGGTTCG CCGATTGATT 701 TGATTGAAGC GTCTGACGGT TTTTACACCA AAACCTATTT GCAGGTCTCA 751 GCCGAAGGCG AAGCGAAACC GTTAAACCTG CCCAACGATT GCGACGTAGT 801 CGGCTATCTG GCCGGACATC TTTTGCTGAC CTTGCGTAAA GACTGGCACC 851 GCGCGAACCA AAGCTATCCG AGTGGCGCAT TGGTAGCAGT AAAATTAAAC 901 CGCGGCGAAT TGGGCGCGGC GCAGCTTTTG TTTGCGCCCA ATGAAACGCA 951 GGCATTGGAA AGCGTGGAAA CGACCAAGCG TTTTGTCGTG GCGAGCCTGC 1001 TGGAAAACGT ACAGGGTCGT CTGAAAGCGT GGCGTTTTAC TGATGGCAAA 1051 TGGCAGGAAA CCGAGTTGCC GCGCCTGCCT TCGGGCGCGT TGGAAATGAC 1101 CGACCAACCG TGGGGGGGCG ACGTAGTTTA CCTTGCCGCC AGCGATTTCA 1151 CCACGCCGCT GACGCTGTTT GCATTGGATT TGAACGTGAT GGAACTGACC 1201 GTCATGCGCC GCCAGCCGCA GCAGTTTGAT TCAGACGGCA TTAACGTGCA 1251 GCAGTTTTGG ACGACTTCGG CTGACGGCGA GCGCATTCCT TATTTCCACG 1301 TCGGCAAAAA CGCCGCGCCC GACATGCCGA CGCTGGTCTA TGCCTACGGC 1351 GGTTTCGGCA TTCCCGAATT GCCGCATTAT CTGGGCAGCA TTGGCAAATA 1401 TTGGCTGGAA GAGGGCAATG CCTTTGTATT GGCGAACATC CGCGGCGGCG

1451	GCGAGTTCGG	CCCGCGCTGG	CATCAGGCGG	CGCAGGGAAT	CAGCAAACAT
1501	AAAAGCGTTG	ATGATTTATT	GGCAGTCGTG	AGCGATTTGT	CCGAACGCGG
1551	TATCAGTTCG	CCCGAACACA	TCGGCTTGCA	GGGCGGCAGC	AACGGCGGAC
1601	TGATTACTGC	CGCCGCCTTC	GTGCGCGAAC	CGCAAAGCAT	AGGCGCGCTG
1651	GTGTGCGAAG	TGCCGCTGAC	CGACATGATC	CGTTATCCGC	TGCTCTCCGC
1701	CGGTTCAAGC	TGGACAGACG	AATACGGCAA	TCCGCAAAAA	TACGAAGTCT
1751	GCAAACGCCG	GTTGGGCGAA	TTGTCGCCGT	ATCACAATCT	TTCAGACGGC
1801	ATCGATTATC	CGCCCGCGCT	CATTACCACC	AGCCTGTCCG	ACGATCGCGT
1851	CCATCCCGCC	CACGCGCTCA	AGTTCTACGC	CAAACTGCGC	GAAACCTCGC
1901			CCTGACGGCG		
1951	ACGCAGCGCG	AAGCCGCCGA	CGAACTCGCC	TGCGTGTTGC	TGTTTTTGAA
2001	AGAGTTTTTG	GGCTAA			
espond	s to the amin	o acid seque	nce <seq ii<="" td=""><td>) 164; ORF</td><td>041-1.a>:</td></seq>) 164; ORF	041-1.a>:
P					
	PYRH FENLDSAE				
	IPFC QEHRARMY				
CUNDED	ELIC DOUVLCCU	CH LVEOPNRAL	L TLSKSGGDTA	YTLEVDLEAG	

This corres

1	MKSYPDPYRH	FENLDSAETQ	NFAAEANAET	RARFLNNDKA	RALSDGILAQ
51	LQDTRQIPFC	QEHRARMYHF	HQDAEYPKGV	YRVCTAATYR	SGYPEWKILF
101	SVADFDELLG	DDVYLGGVSH	LVEQPNRALL	TLSKSGGDTA	YTLEVDLEAG
151	ELVEGGFHFP	AGKNHVSWRD	ENSVWVCPAW	DERQLTESGY	PREVWLVERG
201	KSFEESLPVY	QIAEDGMMVN	AWRYLDPQGS	PIDLIEASDG	FYTKTYLQVS
251	AEGEAKPLNL	PNDCDVVGYL	AGHLLLTLRK	DWHRANQSYP	SGALVAVKLN
301	RGELGAAQLL	FAPNETQALE	SVETTKRFVV	ASLLENVQGR	LKAWRFTDGK
351	WQETELPRLP	SGALEMTDQP	WGGDVVYLAA	SDFTTPLTLF	ALDLNVMELT
401	VMRRQPQQFD	SDGINVQQFW	TTSADGERIP	YFHVGKNAAP	DMPTLVYAYG
451	GFGIPELPHY	LGSIGKYWLE	EGNAFVLANI	RGGGEFGPRW	HQAAQGISKH
501	KSVDDLLAVV	SDLSERGISS	PEHIGLQGGS	NGGLITAAAF	VREPQSIGAL
551	VCEVPLTDMI	RYPLLSAGSS	WTDEYGNPQK	YEVCKRRLGE	LSPYHNLSDG
601	IDYPPALITT	SLSDDRVHPA	HALKFYAKLR	ETSPQSWLYS	PDGGGHTGNG
651	TOREAADELA	CVLLFLKEFL	G*		

a041-1/m041-1 .97.9% identity in 671 aa overlap

•	•					
	10	20	30	40	50	60
a041-1.pep	MKSYPDPYRHFENLD					
avar-1.pep						
m041-1	MKSYPDPYRHFENLD					
IIIO41-1	10	20	30	40	50	60
	10	20	30	10	30	00
	70	80	90	100	110	120
a041-1.pep	OEHRARMYHFHODAE				FDELLGDDVY	LGGVSH
audi i.pep						
m041-1	QEHRARMYHFHQDAE					
mo 11 - 1	70	80	90	100	110	120
	, ,	00	30	100	220	
	130	140	150	160	170	180
a041-1.pep	LVEQPNRALLTLSKS					
a041 1.pcp						
m041-1	LVEQPNRALLTLSKI	GSDTAYTLE	VDLEAGELVE	GGEHEPAGKN	HVSWRDENS	WVCPAW
MO41 1	130	140	150	160	170	180
	150	110	200			
	190	200	210	220	230	240
a041-1.pep	DERQLTESGYPREVV				LDPOGSPIDI	LIEASDG
doll l.pcp	:					
m041-1	NERQLTQSGYPREVV					
	190	200	210	220	230	240
	250	260	270	280	290	300
a041-1.pep	FYTKTYLOVSAEGE#	KPLNLPNDC	DVVGYLAGHI	LLTLRKDWH	RANQSYPSGA	LVAVKLN
		111111111	1111111111	11111111:		111111
m041-1	FYTKTYLRVSAEGE/					
	250	260	270	280	290	300
	310	320	330	340	350	360
a041-1.pep	RGELGAAOLLFAPNE			ENVOGRLKAV	RFTDGKWOE	relprlp.
		-		-		
m041-1	RGELGAAOLLFAPDE					
_	310	320	330	340	350	360

a041-1.pep m041-1	370 SGALEMTDQPWGGDVV SGALEMTDQPWGGDVV 370	1111111111		111111111		1111
a041-1.pep m041-1	430 TTSADGERIPYFHVGK !!!!!!!!!!!!!! TTSADGERIPYFHVGK 430	1111111111				1111
a041-1.pep	490 RGGGEFGPRWHQAAQG RGGGEFGPRWHQAAQG 490	1111111111	1111 11111		11111111111	
a041-1.pep m041-1	550 VREPQSIGALVCEVPL VREPQSIGALVCEVPL 550	1111111111	11111111111	11111111111		
a041-1.pep	610 IDYPPALITTSLSDDR IDYPPALITTSLSDDR 610	1111111111	11111111111	1111111111	111111111:1	1111
a041-1.pep	670 CVLLFLKEFLGX CVLLFLKEFLGX 670					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 165>: g042.seq

1 ATGACGATGA TTTGCTTGCG CTTCCAAgCG TTCGTGCCGC ATACCAGCGC
51 GTTATCCAAC ACTTCCACGG CAGCCGGCCC TTCCTGCCCG ATGGCGGCGG
101 TGCGGTCGAT GATGAAAATC CAGCCGGGGT TTTTCTCTTT GATGTATTCG
151 AAGGAAACGG GCTGCCCGTG CCCTTCGTTG CGTAAAGATT CGTCCACGGG
201 CGGCAGGCCG ATGTCGCCGT GTATCCAACT TGCCAACCGC GATTGCGTGC
251 CGAAGGCGGA CACCTTGTTG CCTGTAACCG ACAGCACCAG CCCGCGTCCT
301 TTGCCTTTGG CGGCTTCGCG CTTTTTGGGCG AACAGCACCAG CCCGCGTCCT
301 ATTCAATTCC GCCACGCGC CTTCCTTACC GAAAATCCGC GACAGGGTCT
401 CCATCTGCTT CTCGCCGCTG GTGCGGATAT TGCCGTTGTC CACCGTCAAA
451 TCTATGGtgG TCGCGTTTTT CGCCAACTGT TCATACGCTT CCGCACCCGG
501 CCCGCCGGTA ATGACAAACT GCGGATTGTG GCGGTGCAGA TGCAGGCTGC
551 CGGGCTCAAA CAGCGTCCCC ACCGTTGCCG CCTTGTCAAA TGCAGGCTGC

This corresponds to the amino acid sequence <SEQ ID 166; ORF 042.ng>: g042.pep

1 MTMICLRFQA FVPHTSALSN TSTAAGPSCP MAAVRSMMKI QPGFFSLMYS
51 KETGCPCPSL RKDSSTGGRP MSPCIQLANR DCVPKADTLL PVTDSTSPRP
101 LPLAASRFWA NSASICAFNS ATRASLPKIR DRVSICFSPL VRILPLSTVK
151 SMVVAFFANC SYASAPGPPV MTNCGLWRCR DSQSGSNSVP TVAALSNAGC
201 K*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 167>:

```
m042.seq
              ATGACGATGA TTTGCTTGCG CTTCCAAGCG TTCGTGCCGC GTACCAGCGC
              GTTATCCAMT ACTTCGACAG CCGCCGGCCY TTCYTGCCCG ATGGCGGCGG
          51
              TACGGTCGAT GATGAAAATC CAATCGGGGT TTTTCTCTTT GATGTATTCG
         101
              AAGGAAACAG GCTGCCCGTG CCCCTCGTTG CGTAAAGATT CGTCTACAGG
         151
              CGGTAGGCCG ATGTCGCCGT GTATCCAACT TGCCAACCGC GACTGCGTGC
         201
              CGAAGGCGGA CACCTTGTTG CCCGTAACCG ACAGCACCAG CCCGCGTCCT
         251
              TTGCCTTTGG CGGCTTCGCG CGTTTGGGCG AACAGCGCGT CAATCTGCGC
         301
              CTTCAATTCC GCCGCGCGC CTTCCTTGCC GAAAATCCGC GCCAAGGTCT
         351
              CCATCTGCTT TTCGCCGCTG GTGCGGATAT TGCCGTTGTC CACCGTCAGA
         401
              TCTATGGTGG TCGCGTTTTT CGCTAACTGT TCATACGCTT CCGCGCCCGG
          451
              CCCGCCGGTA ATGACAAGCT GAGGATTGTA GCGGTGCAGG GCTTCGTAAT
         501
              CGGGCTCGAA CAGCGTCCCC ACCGTTGCCG CCTTGTCAAA TGCAGGCTGC
          551
          601
              AAATAA
This corresponds to the amino acid sequence <SEQ ID 168; ORF 042>:
     m042.pep
              MTMICLRFQA FVPRTSALSX TSTAAGXSCP MAAVRSMMKI QSGFFSLMYS
           1
              KETGCPCPSL RKDSSTGGRP MSPCIOLANR DCVPKADTLL PVTDSTSPRP
          51
          101 LPLAASRVWA NSASICAFNS AARASLPKIR AKVSICFSPL VRILPLSTVR
              SMVVAFFANC SYASAPGPPV MTSXGLXRCR ASXSGSNSVP TVAALSNAGC
          201
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 169>:
     a042.seq
              ATGACGATGA TTTGCTTGCG CTTCCAAGCG TTCGTGCCGC GTACCAGCGC
            1
              GTTATCCAAT ACTTCGACAG CCGCCGGCCC TTCCTGCCCG ATGGCGGCGG
           51
             TACGGTCGAT GATGAAAATC CAATCGGGGT TTTTCTCTTT GATGTATTCG
          101
              AAGGAAACAG GCTGCCCGTG CCCCTCGTTG CGTAAAGATT CGTCTACAGG
          151
               CGGTAGGCCG ATGTCGCCGT GTATCCAACT TGCCAACCGC GACTGCGTGC
          201
              CGAAGGCGGA CACCTTGTTG CCCGTAACCG ACAGCACCAG CCCGCGTCCT
          251
              TTGCCTTTGG CGGCTTCGCG CGTTTGGGCG AACAGCGCGT CAATCTGCGC
              CTTCAATTCC GCCGCGCGC CTTCCTTGCC GAAAATCCGC GCCAAGGTCT
          351
               CCATCTGCTT TTCGCCGCTG GTGCGGATAT TGCCGTTGTC CACCGTCAGA
          401
               TCTATGGTGG TCGCGTTTTT CGCCAACTGT TCATACGCTT CCGCGCCCGG
          451
               CCCGCCGGTA ATGACAAGCT GAGGATTGTA GCGGTGCAGG GCTTCGTAAT
          501
               CGGGCTCGAA CAGCGTCCCC ACCGTTGCCG CCTTGTCAAA TGCAGGCTGC
          551
          601 AAATAA
This corresponds to the amino acid sequence <SEQ ID 170; ORF 042.a>:
     a042.pep
               MTMICLRFQA FVPRTSALSN TSTAAGPSCP MAAVRSMMKI QSGFFSLMYS
               KETGCPCPSL RKDSSTGGRP MSPCIQLANR DCVPKADTLL PVTDSTSPRP
               LPLAASRVWA NSASICAFNS AARASLPKIR AKVSICFSPL VRILPLSTVR
               SMVVAFFANC SYASAPGPPV MTS*GL*RCR AS*SGSNSVP TVAALSNAGC
          151
          201
             99.0% identity over a 201 aa overlap
m042/a042
                                   20
                                             30
                                                       40
                         10
                  MTMICLRFQAFVPRTSALSXTSTAAGXSCPMAAVRSMMKIQSGFFSLMYSKETGCPCPSL
     m042.pep
                  MTMICLRFQAFVPRTSALSNTSTAAGPSCPMAAVRSMMKIQSGFFSLMYSKETGCPCPSL
     a042
                                                                50
                                                       40
                         10
                                  . 20
                                             30
                                   80
                                             90
                                                      100
                  RKDSSTGGRPMSPCIQLANRDCVPKADTLLPVTDSTSPRPLPLAASRVWANSASICAFNS
     m042.pep
                  RKDSSTGGRPMSPCIQLANRDCVPKADTLLPVTDSTSPRPLPLAASRVWANSASICAFNS
     a042
                                                                         120
                                   80
                                             90
                                                      100
                                                                110
                          70
                                                                170
                                            150
                                                      160
                         130
                                  140
                  AARASLPKIRAKVSICFSPLVRILPLSTVRSMVVAFFANCSYASAPGPPVMTSXGLXRCR
```

m042.pep

WO 99/057280 PCT/US99/09346

239

a042 AARASLPKIRAKVSICFSPLVRILPLSTVRSMVVAFFANCSYASAPGPPVMTSXGLXRCR 160 150 . 140 130 190 200 ASXSGSNSVPTVAALSNAGCKX m042.pep ASXSGSNSVPTVAALSNAGCKX a042 190

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 042 shows 93.0% identity over a 201 aa overlap with a predicted ORF (ORF 042.ng) from N. gonorrhoeae:

m042/g042

m042.pep	10 MTMICLRFQAFVPRT	20 SALSXTSTAA	30 GXSCPMAAVR	40 SMMKIQSGF	50 FSLMYSKETG	60 CPCPSL
			1 1111111			
g042	MTMICLRFQAFVPHT	SALSNTSTAA 20	GPSCPMAAVR 30	SMMKIQPGF! 40	FSLMYSKETG 50	60
	10	20	50	40	30	
	70	80	90	100	110	120
m042.pep	RKDSSTGGRPMSPCI	QLANRDCVPK	ADTLLPVTDS	TSPRPLPLA	ASRVWANSAS	ICAFNS
		111111111	111111111		111 11111	
g042	RKDSSTGGRPMSPCI	QLANRDCVPK	ADTLLPVTDS			
	70	80	90	100	110	120
	130	1.40	150	160	170	180
0.4.0	130 AARASLPKIRAKVSI	140 CESPLVRILE	T SU STVRSMVVA			
m042.pep	AARASLPKIRAKVSI	CESETAKITE	LILLITION	ILLILIAN.	ALGELVMISA	II III
~042	ATRASLPKIRDRVSI	CECDIVETLE		FFANCSYAS	THEFT THE	GLWRCR
g042	130	140	150	160	170	180
	130	140	150	100	1,0	100
	190	200				
m042.pep	ASXSGSNSVPTVAAL	SNAGCKX				
	1 1111111111111	111111				
g042	DSQSGSNSVPTVAAL	SNAGCKX				
-	190	200				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 171>:

m042-1.seq 1 ATGACGATGA TTTGCTTGCG CTTCCAAGCG TTCGTGCCGC GTACCAGCGC 51 GTTATCCAAT ACTTCGACAG CCGCCGGCCC TTCCTGCCCG ATGGCGGCGG TACGGTCGAT GATGAAAATC CAATCGGGGT TTTTCTCTTT GATGTATTCG 151 AAGGAAACAG GCTGCCCGTG CCCCTCGTTG CGTAAAGATT CGTCTACAGG 201 CGGTAGGCCG ATGTCGCCGT GTATCCAACT TGCCAACCGC GACTGCGTGC 251 CGAAGGCGGA CACCTTGTTG CCCGTAACCG ACAGCACCAG CCCGCGTCCT 301 TTGCCTTTGG CGGCTTCGCG CGTTTGGGCG AACAGCGCGT CAATCTGCGC 351 CTTCAATTCC GCCGCGCGC CTTCCTTGCC GAAAATCCGC GCCAAGGTCT 401 CCATCTGCTT TTCGCCGCTG GTGCGGATAT TGCCGTTGTC CACCGTCAGA 451 TCTATGGTGG TCGCGTTTTT CGCTAACTGT TCATACGCTT CCGCGCCCGG 501 CCCGCCGGTA A

This corresponds to the amino acid sequence <SEQ ID 172; ORF 042-1>: m042-1.pep

1 MTMICLRFQA FVPRTSALSN TSTAAGPSCP MAAVRSMMKI QSGFFSLMYS 51 KETGCPCPSL RKDSSTGGRP MSPCIQLANR DCVPKADTLL PVTDSTSPRP

101 LPLAASRVWA NSASICAFNS AARASLPKIR AKVSICFSPL VRILPLSTVR

151 SMVVAFFANC SYASAPGPPV MTS*

m042-1/g042 95.4% identity in 173 aa overlap

```
20
                                        30
                MTMICLRFQAFVPRTSALSNTSTAAGPSCPMAAVRSMMKIQSGFFSLMYSKETGCPCPSL
    m042-1.pep
                MTMICLRFQAFVPHTSALSNTSTAAGPSCPMAAVRSMMKIQPGFFSLMYSKETGCPCPSL
    g042
                                        30
                                                 40
                       10
                               20
                                                          50
                                                                  120
                       70
                                80
                                        90
                                                100
                                                         110
                RKDSSTGGRPMSPCIQLANRDCVPKADTLLPVTDSTSPRPLPLAASRVWANSASICAFNS
    m042-1.pep
                RKDSSTGGRPMSPCIQLANRDCVPKADTLLPVTDSTSPRPLPLAASRFWANSASICAFNS
    q042
                                                100
                                        90
                                                160
                                                         170
                      130
                               140
                                       150
                AARASLPKIRAKVSICFSPLVRILPLSTVRSMVVAFFANCSYASAPGPPVMTSX
    m042-1.pep
                ATRASLPKIRDRVSICFSPLVRILPLSTVKSMVVAFFANCSYASAPGPPVMTNCGLWRCR
    g042
                                                160
                      130
                               140
                                       150
                                                         170
                DSOSGSNSVPTVAALSNAGCKX
    a042
                      190
                               200
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 173>:
    a042-1.seq
             ATGACGATGA TTTGCTTGCG CTTCCAAGCG TTCGTGCCGC GTACCAGCGC
          1
             GTTATCCAAT ACTTCGACAG CCGCCGGCCC TTCCTGCCCG ATGGCGGCGG
          51
             TACGGTCGAT GATGAAAATC CAATCGGGGT TTTTCTCTTT GATGTATTCG
         101
             AAGGAAACAG GCTGCCCGTG CCCCTCGTTG CGTAAAGATT CGTCTACAGG
         151
             CGGTAGGCCG ATGTCGCCGT GTATCCAACT TGCCAACCGC GACTGCGTGC
         201
             CGAAGGCGGA CACCTTGTTG CCCGTAACCG ACAGCACCAG CCCGCGTCCT
         251
             TTGCCTTTGG CGGCTTCGCG CGTTTGGGCG AACAGCGCGT CAATCTGCGC
         301
             CTTCAATTCC GCCGCGCGC CTTCCTTGCC GAAAATCCGC GCCAAGGTCT
         351
             CCATCTGCTT TTCGCCGCTG GTGCGGATAT TGCCGTTGTC CACCGTCAGA
         401
             TCTATGGTGG TCGCGTTTTT CGCCAACTGT TCATACGCTT CCGCGCCCGG
         451
             CCCGCCGGTA A
         501
This corresponds to the amino acid sequence <SEQ ID 174; ORF 042-1.a>:
    a042-1.pep
             MTMICLRFQA FVPRTSALSN TSTAAGPSCP MAAVRSMMKI QSGFFSLMYS
           1
             KETGCPCPSL RKDSSTGGRP MSPCIQLANR DCVPKADTLL PVTDSTSPRP
          51
             LPLAASRVWA NSASICAFNS AARASLPKIR AKVSICFSPL VRILPLSTVR
         101
             SMVVAFFANC SYASAPGPPV MTS*
                    100.0% identity in 173 aa overlap
    m042-1/a042-1
                                                  40
                                20
                                         30
                                                          50
                MTMICLRFOAFVPRTSALSNTSTAAGPSCPMAAVRSMMKIQSGFFSLMYSKETGCPCPSL
    m042-1.pep
                MTMICLRFQAFVPRTSALSNTSTAAGPSCPMAAVRSMMKIQSGFFSLMYSKETGCPCPSL
    a042-1
                       10
                                20
                                         30
                                                  40
                                                          50
                                                                   60
                                         90
                                                 100
                                                          110
                                                                   120
                       70
                                80
                RKDSSTGGRPMSPCIQLANRDCVPKADTLLPVTDSTSPRPLPLAASRVWANSASICAFNS
    m042-1.pep
                RKDSSTGGRPMSPCIQLANRDCVPKADTLLPVTDSTSPRPLPLAASRVWANSASICAFNS
     a042-1
                                                                  120
                                                 100
                       70
                                80
                                         90
                                                          110
                               140
                                        150
                                                 160
                AARASLPKIRAKVSICFSPLVRILPLSTVRSMVVAFFANCSYASAPGPPVMTSX
     m042-1.pep
                a042-1
                AARASLPKIRAKVSICFSPLVRILPLSTVRSMVVAFFANCSYASAPGPPVMTSX
                               140
                                        150
                                                 160
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 175>:

```
g043.seq
        1 ATGGTTGTTT CAAATCAAAA TATCTATGCC GTCGGCCCAT CAGCACTTTT
       51 TCACATCCGA AGGCAAAAAT CCGTAATGCC GCCTGAACGC TTCgttgaAC
      101 CGTCCCGCGT ggcggtagcc gcAAAAGTGC ATcGCGGCTT GGATGGTGCT
151 GCCCGATTCG ATGAGGGCga gcGCGTGTTC CAGCCGCAGG CGGCGCAGGC
      201 GTCCGGCGAC GGTTTCGCCG GTTTGCGCTT TGAAATAGCG TTTCAGGTAG
      251 CATTCGTTCA GCCCGACGCG GCGGGCGATT TCGGCGATGG TCAGCGGGCG
      301 GGCGAATTCG CTGTTCAAAA TATCGGCGGC TTCGTCTATG CGCCGGCGGC
351 GGTAGCCGTT GTCGTGGCGG CGGAAGGTGA AGCGTAA
```

This corresponds to the amino acid sequence <SEQ ID 176; ORF 043.ng>:

g043.pep

- 1 MVVSNQNIYA VGPSALFHIR RQKSVMPPER FVEPSRVAVA AKVHRGLDGA
- 51 ARFDEGERVF QPQAAQASGD GFAGLRFEIA FQVAFVQPDA AGDFGDGQRA
- 101 GEFAVQNIGG FVYAPAAVAV VVAAEGEA*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 177>:

m043.seq					
1	ATGGTTGTTT	CAAATCAAAA	TATCTATGCC	GCCGGCCCCT	CAGCACTTCT
51	TCACATCCGA	AGGCAAAAAT	CCGTAATGCC	GTCTGAACGC	TTCGTTGAAC
101	CGTCCCGCGT				
151	GCCGGATTCG	ATGAGGGCGA	GCGCGTGTTC	CAGCCGCAGG	CGGCGCAgGC
201	ATCCGGCGAC	GGTTTCGCCG	GTTTGCGCTT	TGAAATAGCG	TTTCAGGTAG
251	CATTCGTTCA	GTCCGACGCG	GCGGGCGATT	TCGGCGATGG	TCAGCGGACG
301	GGCGAATTCG	TGTTGCAGGA	TGTCGGCGGC	TTCGTCTATG	CGCCGACGGC
351	GGTAACCGTT	GTCGTGGCGG	CGGAAGGTGA	AGCGCAATAA	

This corresponds to the amino acid sequence <SEQ ID 178; ORF 043>:

m043.pep

- MVVSNQNIYA AGPSALLHIR RQKSVMPSER FVEPSRVAVA AKVHGGLDGA
- AGFDEGERVF QPQAAQASGD GFAGLRFEIA FQVAFVQSDA AGDFGDGQRT 51
- 101 GEFVLQDVGG FVYAPTAVTV VVAAEGEAQ*

Computer analysis of the amino acid sequences gave the following results: Homology with a predicted ORF from N. meningitidis menA with menB ORF 043 shows 89.8% identity over a 128 aa overlap with a predicted ORF (ORF043.a) from N. gonorrhoeae: m043/g043

	10	20	30	40	50	60
m043.pep	MVVSNQNIYAAGPS	ALLHIRRQKS	VMPSERFVEP	SRVAVAAKVH	GGLDGAAGFD	EGERVF
	11111111:11	11:111111	111 111111	11111111111		$\Pi\Pi\Pi\Pi$
q043	MVVSNQNIYAVGPS	ALFHIRRQKS	VMPPERFVEP	SRVAVAAKVH	RGLDGAARFD	EGERVF
-	10	20	. 30	40	50	60
	70	80	90	100	110	120
m043.pep	QPQAAQASGDGFAG	LRFEIAFQVA				
	111111111111111	1111111111		11111:111:		
g043	QPQAAQASGDGFAG	LRFEIAFQVA	FVQPDAAGDF	'GDGQRAGEFA	VQNIGGFVY <i>F</i>	
	70	80	90	100	110	120
	130					
m043.pep	VVAAEGEAQX					
• •	1111111					
g043	VVAAEGEAXX					
-	130					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 179>:

a043.seq 1 ATGGTTGTTT CAAATCAAAA TATCTATGCC GCCGGCCCCT CAGCACTTCT 51 TCACATCCGA AGGCAAAAAT CCGTAATGCC GTCTGAACGC TTCGTTGAAC

101 CGTCCCGCGT GGCGGTAGCC GCAAAAGTGC ATGGCGGCTT GGACGGTGCT

```
151 GCCGGATTCG ATGAGGGCGA GCGCGTGTTC CAGCCGCAGG CGGCGCAGGC
201 ATCCGGCGAC GGTTTCGCCG GTTTGCGCTT TGAAATAGCG TTTCAGGTAG
251 CATTCGTTCA GTCCGACGCG GCGGGCGATT TCGGCGATGG TCAGCGGACG
301 GGCGAATTCG TGTTGCAGGA TGTCGGCGGC TTCGTCTATG CGCCGACGGC
351 GGTAACCGTT GTCGTGGCGG CGGAAGGTGA AGCGCAATAA
```

This corresponds to the amino acid sequence <SEQ ID 180; ORF 043.a>:

a043.pep

- 1 MVVSNQNIYA AGPSALLHIR RQKSVMPSER FVEPSRVAVA AKVHGGLDGA
- 51 AGFDEGERVF QPQAAQASGD GFAGLRFEIA FQVAFVQSDA AGDFGDGQRT
- 101 GEFVLQDVGG FVYAPTAVTV VVAAEGEAQ*

m043/a043	100.0% identity	y in 129 a	a overlap			
	10	20	30	40	50	60
m043.pep	MVVSNQNIYAAGPS	ALLHIRRQKS	VMPSERFVEP:	SRVAVAAKVH	GGLDGAAGFD	EGERVF
• •	111111111111111111111111111111111111111	11111111		[] [] [] [] [] [] []	111111111	111111
a043	MVVSNQNIYAAGPS	ALLHIRRQKS	VMPSERFVEP.	SRVAVAAKVH	GGLDGAAGFE	EGERVF
	10	20	30	40	50	60
	70	80	90	100	110	120
m043.pep	QPQAAQASGDGFAG	LRFEIAFQVA	FVQSDAAGDF	GDGQRTGEFV	LQDVGGFVYA	
		111111111	111111111		1111111111	
a043	QPQAAQASGDGFAG	LRFEIAFQVA	FVQSDAAGDF			
	70	80	90	100	110	120
	130					
m043.pep	VVAAEGEAQX					
	1111111					
a043	VVAAEGEAQX					
	130					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 181>:

9044.seq

1 ATGCTGCCCG ACCAGAGCGT CGAGTTCTTG CCACAAGTCG TCGTTTTTGA
51 CGGGCTGTTT GGCGGCGGTT TTCCAGCCGT TGCGCTTCCA ACCGTGTATC
101 CAGTTTTCCA TGCCGTTTTT GACGTATTGC GAGTCGGTGC AGATGATGAC
151 GGTGCAGCGG CGTTTGAGCG ATTTCAGCCC TTCGATAACG GCGGTCAGCT
201 CCATGCGGTT GTTGGTGGTT TGCGCTTCGC CGCCGAAAAG TTCTTTTTCG
251 CGGCTGCCGT AGCGCATTAA

This corresponds to the amino acid sequence <SEQ ID 182; ORF 044.ng>: g044.pep

- 1 MLPDQSVEFL PQ<u>VVVFDGLF GGGFPAVAL</u>P TVYPVFHAVF DVLRVGADDD
- 51 GAAAFERFQP FDNGGQLHAV VGGLRFAAEK FFFAAAVAH*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 183>: m044.seq

1 ATGCCGTCCG ACTAGAGCGT CGAGTTCTTT CCAGAAGTCG TCGTTTTGA
51 CGGGCTGTTT GGAGGCGGT TTCCAGCCGT TGCGCTTCCA ACCGTGTATC
101 CAGTTTTCCA TGCCATTTTT GACGTATTGC GAGTCGGTGC AGATGATGAC
151 GGTGCAGCGG CGTTTGAGCG ATTTCAGTCC TTCGATGACG GCAGTCAGTT
201 CCATGCGGTT GTTGGTGGTT TGCGCTTCGC CGCCGAAAAG TTCTTTTTCG
251 TGGCTACCGT AGCGCAYTAA

This corresponds to the amino acid sequence <SEQ ID 184; ORF 044>: m044.pep

- 1 MPSDXSVEFF PEVVVFDGLF GGGFPAVALP TVYPVFHAIF DVLRVGADDD
- 51 GAAAFERFQS FDDGSQFHAV VGGLRFAAEK FFFVATVAH*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 185>:

```
a044.seq
          GTGCCGTCCG ACCAGCGCGT CGAGTTCTTT CCACAAGTCG TCGTTTTTGA
       1
          CGGGCTGTTT GGCGGCGGTT TTCCAGCCGT TGCGCTTCCA ACCGTGTATC
      51
          CAGTTTTCCA TGCCGTTTTT GACGTATTGC GAGTCGGTGC AGATGATGAC
     101
          GGTGCAGCGG CGTTTGAGCG ATTTCAGTCC TTCGATGACG GCGGTCAGTT
     151
          CCATACGGTT GTTGGTGGTT TGCGCTTCGC CGCCGAAAAG TTCTTTTTCG
     201
     251
          TGGCTGCCGT AGCGCATTAA
```

This corresponds to the amino acid sequence <SEQ ID 186; ORF 044.a>:

a044.pep

VPSDQRVEFF PQVVVFDGLF GGGFPAVALP TVYPVFHAVF DVLRVGADDD

GAAAFERFOS FDDGGOFHTV VGGLRFAAEK FFFVAAVAH* 51

91.0% identity over a 89 aa overlap m044/a044

```
20
                                  30
                                          40
                                                  50
          MPSDXSVEFFPEVVVFDGLFGGGFPAVALPTVYPVFHAIFDVLRVGADDDGAAAFERFQS
m044.pep
               VPSDQRVEFFPQVVVFDGLFGGGFPAVALPTVYPVFHAVFDVLRVGADDDGAAAFERFQS
a044
                         20
                                  30
                                          40
                 1.0
                                  90
                 70
                         RΛ
          FDDGSOFHAVVGGLRFAAEKFFFVATVAHX
m044.pep
           1111:11:11:11:11
          FDDGGQFHTVVGGLRFAAEKFFFVAAVAHX
a044
                 70
                         80
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 044 shows 86.5% identity over a 89 aa overlap with a predicted ORF (ORF 044.ng) from N. gonorrhoeae:

m044/q044

```
30
                                       40
                                                50
                                                       60
                10
                        20
          MPSDXSVEFFPEVVVFDGLFGGGFPAVALPTVYPVFHAIFDVLRVGADDDGAAAFERFQS
m044.pep
            MLPDQSVEFLPQVVVFDGLFGGGFPAVALPTVYPVFHAVFDVLRVGADDDGAAAFERFQP
q044
                10
                        20
                                30
                                        40
                                               50
                                                       60
                70
                                90
                        80
          FDDGSQFHAVVGGLRFAAEKFFFVATVAHX
m044.pep
          FDNGGQLHAVVGGLRFAAEKFFFAAAVAHX
q044
                        80
                70
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 187>:

```
g046.seq
         ATGTCGGCAA TGCTGCGTCC GACAAGCAGC CCGCCGCgcc gCGCCTGTAT
      1
         GATGACCATC CGCACGCGGT CGTCTGCAAA ACGTAAAACC TGCAATGCGC
     51
         CCGGGCAGTC TATCAGGCCG GCAAGCTGTT CGGTAACGAG CTGTTCGGGG
     101
         CTGATGGTTT CGGTTATGCC gaATATGGAA AGGCTGCCGt TTTcGTTGTT
         TTCGAGCTTG GGGCTGAGGT ATTCGAGGTA TtcgctGGAA CGGACGCGCG
     201
     251 CGATGCGGCC GGGGATGTTG AACAGGTCGG CGGCAACTTT GCAGGCGACG
     301 ATGTTGGTTT CGTCGCTGCG GGagaGCGCG AGcagcaagt cggcatcttC
     351 CgcgccggcG Cgttataatg tgAAGGGGGA TGCGccgttg ccgaAAACGG
     401 TTTGGacatc gaggcggctg CCTGTTTCCT GCAATGCTTT TTCGTCGATG
     451 TCGATAAcgg TTACGTCGTT GTTGGTGATG GCGGCAAGGT TTTGCGCGAC
```

```
501 GGTAGAACCT ACCTGCCCGT TGCCTAAAAT GAGGATTTTC ACGGTATGGG
           551 TCGCCGGGTG A
This corresponds to the amino acid sequence <SEQ ID 188; ORF 046.ng>:
      g046.pep
                MSAMLRPTSS PPRRACMMTI RTRSSAKRKT CNAPGQSIRP ASCSVTSCSG
            51 LMVSVMPNME RLPFSLFSSL GLRYSRYSLE RTRAMRPGML NRSAATLQAT
           101 MLVSSLRESA SSKSASSAPA RYNVKGDAPL PKTVWTSRRL PVSCNAFSSM
           151 SITVTSLLVM AARFCATVEP TCPLPKMRIF TVWVAG*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 189>:
      m046.seq
                 ATGTCGGCAA TGCTGCGTCC GACAAGCAST CCGC.r.sGC gCGcCTGTAT
             1
            51 GATGACCATC CGCACGCGGT CGTCTGCAAA ACGTAAAACC TGCAATGCGC
           101 CCGGGCAGTC TATCAGGCCG GCAAGCTGTT CGGTAACGAG CTGTTCGGGG
           151 CTGATGGTTT CGGTTATGCC GAATATGGAA AGGCTGCCGT TTTCGTTGTT
           201 TTCGAGCTTG GGGCTGAGGT ATTCGAGGTA TTCGCTGGAA CGGACGCGCG
           251 CGATGCGGCC GGGGATGTTG AACAGGTCGG CGGCAACTTT GCAGGCGACG
301 ATGTTGGTTT CGTCGCTGCG GGAGAGCGCG AGCAGCAAGT CGGCATCTTC
           351 CGCGCCGGCG CGTTCTAATG TGAAGGGGGA TGCGCCGTTG CCGAAAACGG
           401 TTTGGACATC GAGGCGGCTG CCTGTTTCCT GCAATGCTTT TTCGTCGATG
           451 TCGATAACGG TTACGTCGTT GTTGGGTATG GCGGCAAGGT TTTGTGCGAC
           501 GGTAGAACCT ACCTGTCCGT TGCCTAAAAT GAGGATTTTC ACGGTGTGGG
           551 TCGCCGAGTG A
This corresponds to the amino acid sequence <SEQ ID 190; ORF 046>:
      m046.pep
              1 MSAMLRPTSX PXXRACMMTI RTRSSAKRKT CNAPGQSIRP ASCSVTSCSG
            51 LMVSVMPNME RLPFSLFSSL GLRYSRYSLE RTRAMRPGML NRSAATLOAT
           101 MLVSSLRESA SSKSASSAPA RSNVKGDAPL PKTVWTSRRL PVSCNAFSSM
           151 SITVTSLLGM AARFCATVEP TCPLPKMRIF TVWVAE*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 191>:
      a046.seq
                 ATGTCGGCAA TGCTGCGTCC GACAAGCAGT CCGCCGCGCC GCGCCTGTAT
             1
             51 GATGACCATC CGCACGCGGT CGTCTGCAAA ACGTAAAACC TGCAATGCGC
           101 CCGGGCAGTC TATCAGGCCG GCAAGCTGTT CGGTAACGAG CTGTTCGGGG
           151 CTGATGGTTT CGGTTATGCC GAATATGGAA AGGCTGCCGT TTTCGTTGTT
201 TTCGAGCTTG GGGCTGAGGT ATTCGAGGTA TTCGCTGGAA CGGACGCGCG
251 CGATGCGGCC GGGGATGTTG AACAGGTCGG CGGCAACTTT GCAGGCGACG
           301 ATGTTGGTTT CGTCGCTGCG GGAGAGCGCG AGCAGCAAGT CGGCATCTTC
           351 CGCGCCGGCG CGTTCTAATG TGAAGGGGGA TGCGCCGTTG CCGAAAACGG
           401 TTTGGACATC GAGGCGGCTG CCTGTTTCCT GCAATGCTTT TTCGTCGATG
451 TCGATAACGG TTACGTCGTT GTTGGGTATG GCGGCAAGGT TTTGTGCGAC
                 TCGATAACGG TTACGTCGTT GTTGGGTATG GCGGCAAGGT TTTGTGCGAC
           501 GGTAGAACCT ACCTGTCCGT TGCCTAAAAT GAGGATTTTC ACGGTGTGGG
           551 TCGCCGAGTG A
This corresponds to the amino acid sequence <SEQ ID 192; ORF 046.a>:
      a046.pep
                 MSAMLRPTSS PPRRACMMTI RTRSSAKRKT CNAPGQSIRP ASCSVTSCSG
           51 LMVSVMPNME RLPFSLFSSL GLRYSRYSLE RTRAMRPGML NRSAATLQAT
101 MLVSSLRESA SSKSASSAPA RSNVKGDAPL PKTVWTSRRL PVSCNAFSSM
151 SITVTSLLGM AARFCATVEP TCPLPKMRIF TVWVAE*
               98.4% identity over a 186 aa overlap
m046/a046
      m046.pep
                     MSAMLRPTSXPXXRACMMTIRTRSSAKRKTCNAPGQSIRPASCSVTSCSGLMVSVMPNME
                     a046
                     MSAMLRPTSSPPRRACMMTIRTRSSAKRKTCNAPGQSIRPASCSVTSCSGLMVSVMPNME
```

	10	20	30	40	50	60
	70	80	90	100	110	120
m046.pep	RLPFSLFSSLGLRY	SRYSLERTRA	MRPGMLNRSA	ATLQATMLVS	SLRESASSKS	ASSAPA
			111111111	1111111111	1311111111	111111
a046	RLPFSLFSSLGLRY	SRYSLERTRA	MRPGMLNRSA	ATLQATMLVS	SLRESASSKS	ASSAPA
	70	80	90	100	110	120
	130	140	150	160	170	180
m046.pep	RSNVKGDAPLPKTV	WTSRRLPVSC	NAFSSMSITV	TSLLGMAARF	CATVEPTCPL	PKMRIF
			ELLITTIE	1111111111	111111111	111111
a046	RSNVKGDAPLPKTV	WTSRRLPVSC	NAFSSMSITV	TSLLGMAARF	CATVEPTCPL	PKMRIF
	130	140	150	160	170	180
m046.pep	TVWVAEX					
	1111111					
a046	TVWVAEX					

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 046 shows 97.3% identity over a 185 aa overlap with a predicted ORF (ORF 046.ng) from N. gonorrhoeae: m046/g046

m046.pep	10 MSAMLRPTSXPXXR	20 ACMMTIRTRS:	30 SAKRKTCNAP	40 GQSIRPASCS	50 VTSCSGLMVS	60 VMPNME
g046						
	10	20	30	40	50	60
	70	80	90	100	110	120
m046.pep	RLPFSLFSSLGLRY	SRYSLERTRA	MRPGMLNRSA	ATLQATMLVS	SLRESASSKS	ASSAPA
				111111111	11111111	
g 04 6	RLPFSLFSSLGLRY	SRYSLERTRAI	MRPGMLNRSA	ATLQATMLVS	SLRESASSKS	ASSAPA
	70	80	90	100	110	120
			_			
	130	140	150	160	170	180
m046.pep	RSNVKGDAPLPKTV	WISRRLPVSCI	NAFSSMSITV	TSLLGMAARF	CATVEPTCPL	PKMRIF
-046						
g046	RYNVKGDAPLPKTV 130	WISKREPVSCI	NAFSSMSITV 150			
	130	140	150	160	170	180
m046.pep	TVWVAEX					
F-E	11111					
g046	TVWVAGX					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 193>: g047.seq

1	ATGGTCATCA	TACAGGCGcg	gcGCGGCGGG	CTGCTTGTCG	GACGCAGCAT
51		GCCCAAGATT			
101	CCGTTTACCG	CAACAACCGC	CTCATCGTCC	CCGCGCCGCA	AACCGTCATC
151	ATCGAAGGCG	ACGAAATCCT	GTTTGCCGCC	GCCGCCGAAA	ACATCGGGGC
		gaATTGCGCC			
251	TTGCCGGCGG	CGGCAACATC	tgctACCGCC	TCGCCAAGCA	GCTCGAACAC

```
301 GCATACAACG TCAAAATCAT CGAATGCCGG CCGCGCGtg ccgaATGGAT
351 AGCCGAAAAC ctcgAcaaCA CCCTCGTCCT GCAAGGTTCG Gcaaccgacg
401 aAaccctgct cgAcaacgaa tacatcgacg aaatcgaCGT ATTCTGCGCC
451 CTGACCAACG ACGACGAAAG CAACATTAtg tCCGCCCTTT TGGCGAAAAA
501 CCTcggcgCG AAGCGcgtca tcggCATCGT CAACCGCTCA AGCTACGTCG
551 ATTTGCTCGA AGGCAACAAA ATCGACATCG TCGTCTCCC CCACCTCATC
601 ACCATCGGCT CGATACTCGC CCACATCCGG CGCGGCGACA TCGTTGCCGT
651 CCACCCCATC CGGCGCGGCA CGGCGGAAGC CATCGAAGTC GTCGCGCACG
701 GCGACAAAAA AACTTCCGCC ATCATCGGCA GGCGCATCAG CGGCATCAAA
751 TGGCCCGAAG GCTGCCACAT TGCCGCCGTC GTCCGCGCCG GAACCGGCGA
801 AACCATTATG GGACACCATA CCGAAACCGT CATCCAAGAC GGTGACCACA
851 TCATCTTTTT CGTCTCGCG CGGCGCATCC TGAACGAACT GGAGAAACTC
901 ATCCAAGTCA AAATGGGCTT TTTCGGATAA
```

This corresponds to the amino acid sequence <SEQ ID 194; ORF 047.ng>: g047.pep

```
1 MVIIQARRGG LLVGRSIADI AQDLPDGADC QICAVYRNNR LIVPAPQTVI
51 IEGDEILFAA AAENIGAVIP ELRPKETSTR RIMIAGGGNI CYRLAKQLEH
101 AYNVKIIECR PRRAEWIAEN LDNTLVLQGS ATDETLLDNE YIDEIDVFCA
151 LTNDDESNIM SALLAKNLGA KRVIGIVNRS SYVDLLEGNK IDIVVSPHLI
201 TIGSILAHIR RGDIVAVHPI RRGTAEAIEV VAHGDKKTSA IIGRRISGIK
251 WPEGCHIAAV VRAGTGETIM GHHTETVIQD GDHIIFFVSR RRILNELEKL
301 IQVKMGFFG*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 195>: m047.seq

```
1 ATGGTCATCA TACAGGCGCG C..syGCGGA sTGCTTGTCG GACGCAGCAT
51 TGCCGACATC GCCCAAGATT TGCCCGACGG GGCCGACTGC CAAATCTGCG
101 CCGTTTACCG CAACAACCGC CTCATCGTCC CCGCGCCGCA AACCGTCATC
    ATCGAAGGCG ACGAAATCCT ATTTGCCGCC GCCGCCGAAA ACATCGGCGC
    GGTCATACCC GAATTGCGCC CCAAAGAAAC CCAAAGAAAC CAGCCCmgmm
    GCATCATGAT TKCCGGCGGC GGCAACATCG GCTACCGTCT CGCCAAGCAG
301 CTCGAACACG CATACAACGT YAAAATCATC GAATGCCGGC CGCGCCGTGC
351 CGAATGGATA GCCGAAAACC TCGACAACAC CCTCGTCYTG CAAGGTTCGG
401 CAACCGACGA AACCCTGCTC GACAACGAAT ACATCGACGA AATCGACGTA
451 TTCTGCGCCC TGACCAACGA CGACGAAAGC AACATTATGT CCGCCCTTTT
501 GGCGAAAAAC CTCGGCGCGA AGCGCGTCAT CGGCATCGTC AACCGCTCAA
551 GCTACGTCGA TTTGCTCGAA GGCAACAAAA TCGACATCGT CGTCTCCCCC
601 CACCTCATCA CCATCGGCTC GATACTCGCC CACATCCGGC GCGGCGACAT
651 CGTTGCCGTC CACCCCATCC GGCGCGCAC GGCGGAAGCC ATCGAAGTCG
701 TCGCACACGG CGACAAAAA ACTTCCGCCA TCATCGGCAG GCGCATCAGC
751 GGCATCAAAT GGCCCGAAGG CTGCCACATT GCCGCCGTCG TCCGCGCCGG
801 AACCGGCGAA ACCATTATGG GACACCATAC CGAAACCGTC ATCCAAGACG
851 GCGACCACAT CATCTTTTC GTCTCGCGCC GGCGCATCCT GAACGAACTG
901 GAAAAACTCA TCCAGGTCAA AATGGGCTTT TTCGGATAA
```

This corresponds to the amino acid sequence <SEQ ID 196; ORF 047>: m047.pep

```
1 MVIIQARXXG XLVGRSIADI AQDLPDGADC QICAVYRNNR LIVPAPQTVI 51 IEGDEILFAA AAENIGAVIP ELRPKETQRN QPXXIMIXGG GNIGYRLAKQ 101 LEHAYNVKII ECRPRAEWI AENLDNTLVL QGSATDETLL DNEYIDEIDV 151 FCALTNDDES NIMSALLAKN LGAKRVIGIV NRSSYVDLLE GNKIDIVVSP 201 HLITIGSILA HIRRGDIVAV HPIRRGTAEA IEVVAHGDKK TSAIIGRRIS 251 GIKWPEGCHI AAVVRAGTGE TIMGHHTETV IQDGDHIIFF VSRRRILNEL 301 EKLIQVKMGF FG*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 197>: a047.seq

1 ATGGTCATCA TACAGGCGCG GCGCGGCGGA CTGCTTGTCG GACGCAGCAT

WO 99/057280 PCT/US99/09346

247

51	TGCCGACATC	GCCCAAGATT	TGCCCGACGG	GGCCGACTGC	CAAATCTGCG
101	CCGTTTACCG	CAACAACCGC	CTCATCGTCC	CCGCGCCGCA	AACCGTCATC
151	ATCGAAGGCG	ACGAAATCCT	ATTTGCCGCC	GCCGCCGAAA	ACATCGGCGC
201	GGTCATACCC	GAATTGCGCC	CCAAAGAAAC	CAGCACCCGC	CGCATCATGA
251	TTGCCGGCGG	CGGCAACATC	GGCTACCGTC	TCGCCAAGCA	GCTCGAACAC
301	GCATACAACG	TCAAAATCAT	CGAATGCCGG	CCGCGCCGTG	CCGAATGGAT
351	AGCCGAAAAC	CTCGACAACA	CCCTCGTCCT	GCAAGGTTCG	GCAACCGACG
401	AAACCCTGCT	CGACAACGAA	TACATCGACG	AAATCGACGT	ATTCTGCGCC
451	CTGACCAACG	ACGACGAAAG	CAACATTATG	TCCGCCCTTT	TGGCGAAAAA
501	CCTCGGCGCG	AAGCGCGTCA	TCGGCATCGT	CAACCGCTCA	AGCTACGTCG
551	ATTTGCTCGA	AGGCAACAAA	ATCGACATCG	TCGTCTCCCC	CCACCTCATC
601	ACCATCGGCT	CGATACTCGC	CCACATCCGG	CGCGGCGACA	TCGTTGCCGT
651	CCACCCCATC	CGGCGCGCA	CGGCGGAAGC	CATCGAAGTC	GTCGCACACG
701	GCGACAAAAA	AACTTCCGCC	ATCATCGGCA	GGCGCATCAG	CGGCATCAAA
751	TGGCCCGAAG	GCTGCCACAT	TGCCGCCGTC	GTCCGCGCCG	GAACCGGCGA
801	AACCATTATG	GGACACCATA	CCGAAACCGT	CATCCAAGAC	GGCGACCACA
851	TCATCTTTTT	CGTCTCGCGC	CGGCGCATCC	TGAACGAACT	GGAAAAACTC
901	ATCCAAGTCA	AAATGGGCTT	TTTCGGATAA		

This corresponds to the amino acid sequence <SEQ ID 198; ORF 047.a>:

```
a047.pep

1 MVIIQARRGG LLVGRSIADI AQDLPDGADC QICAVYRNNR LIVPAPQTVI
51 IEGDEILFAA AAENIGAVIP ELRPKETSTR RIMIAGGGNI GYRLAKQLEH
101 AYNVKIIECR PRRAEWIAEN LDNTLVLQGS ATDETLLDNE YIDEIDVFCA
151 LTNDDESNIM SALLAKNLGA KRVIGIVNRS SYVDLLEGNK IDIVVSPHLI
201 TIGSILAHIR RGDIVAVHPI RRGTAEAIEV VAHGDKKTSA IIGRRISGIK
251 WPEGCHIAAV VRAGTGETIM GHHTETVIQD GDHIIFFVSR RRILNELEKL
301 IQVKMGFFG*
```

m047/a047 96.5% identity over a 312 aa overlap

1111111111111

m047.pep	10 MVIIQARXXGXLVG	20 GRSIADIAQDLE				
a047	MVIIQARRGGLLVO	, , , , , , , , , , , ,				
m047.pep a047	70 AAENIGAVIPELRE AAENIGAVIPELRE 70	111: : 1	11 1111111	[1] [1] [1] [1] [1]		
m047.pep	130 AENLDNTLVLQGSA AENLDNTLVLQGSA 120 130		11111111111		111111111	11111
m047.pep	190 NRSSYVDLLEGNKI NRSSYVDLLEGNKI 180 190					1111
m047.pep a047	250 TSAIIGRRISGIKV TSAIIGRRISGIKV 240 250			шшш	1111111111	11111
m047.pep	310 EKLIQVKMGFFGX					

EKLIQVKMGFFGX a047

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 047 shows 96.2% identity over a 312 aa overlap with a predicted ORF (ORF 047.ng) from *N. gonorrhoeae*:

m047/g045

m047.pep	MVIIQARXXGXLVGRSIADIAQDLPDGADCQICAVYRNNRLIVPAPQTVIIEGDEILFAA	60 60
m047.pep	AAENIGAVIPELRPKETQRNQPXXIMIXGGGNIGYRLAKQLEHAYNVKIIECRPRRAEWI : :	120 117
m047.pep	AENLDNTLVLQGSATDETLLDNEYIDEIDVFCALTNDDESNIMSALLAKNLGAKRVIGIV	180 177
m047.pep	NRSSYVDLLEGNKIDIVVSPHLITIGSILAHIRRGDIVAVHPIRRGTAEAIEVVAHGDKK	240 237
m047.pep	TSAIIGRRISGIKWPEGCHIAAVVRAGTGETIMGHHTETVIQDGDHIIFFVSRRRILNEL	300 297
m047.pep	EKLIQVKMGFFGX 313 EKLIQVKMGFFGX 310	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 199>:

g048.seq 1 ATGCTCGACA AAGGCGAGGA GTTGCCCGTC GATTTCACCA ACCGCCTGAT 51 TTACTACGTC GGCCCGTCG ATCCGGTCGG CGATGAAGTC GTCGGTCCCG 101 CAGGTCCGAC CACAGCCACC CGCATGGACA AATTTACCCG CCAAATGCTC 151 AAACAAACCG GCCTCTTGGG CATGATCGGC AAATCCGagc gcgGcgcggc 201 CACCTGCGAA GCCATCGCCG ACAACAAGGC CGTGTACCTC ATGGCAGTCG 251 GCGGCGCGC ATACCTCGTG GCAAAAGCCA TCAAATCTTC CAAAGTCTTG 301 GCGTTCCCCG AATTGGGTAT GGAAGCCGTT TACGAATTTG AAGTCAAAGA 351 TATGCCCGTA ACCGTCGCCG TGGACAGCAA AGGCGAATCC ATCCACGCCA 401 CCGCCCCGCG CAAATGGCAG GCGAAAATCG GCATCATCCC CGTCGAGTCT 451 TGA

This corresponds to the amino acid sequence <SEQ ID 200; ORF 048.ng>: g048.pep

1 MLDKGEELPV DFTNRLIYYV GPVDPVGDEV VGPAGPTTAT RMDKFTRQML KOTGLLGMIG KSERGAATCE AIADNKAVYL MAVGGAAYLV AKAIKSSKVL 101 AFPELGMEAV YEFEVKDMPV TVAVDSKGES IHATAPRKWQ AKIGIIPVES 151

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 201>: m048.seg

1 ATGCTCAACA AAGGCGAAGA ATTGCCCGTC GATTTCACCA ACCGCCTGAT 51 TTACTACGTC GGCCCCGTCG ATCCGGTCGG CGATGAAGTC GTCGGTCCGG

```
101 CAGGTCCGAC CACAGCCACC CGCATGGACA AATTCACCCG CCAAATGCTC
151 GAACAAACCG ACCTCTTGGG CATGATCGGC AAATCCGAGC GCGGCGTGGC
201 CACCTGCGAA GCCATCGCCG ACAACAAAGC CGTGTACCTC ATGGCAGTCG
251 GCGGCGCGGC GTATCTCGTG GCAAAAGCCA TCAAATCTTC CAAAGTCTTG
301 GCGTTCCCCG AATTGGGCAT GGAAGCCATT TACGAATTTG AAGTCAAAGA
351 CATGCCCGTA ACCGTCGCCG TAGATAGCAA AGGCGAATCC ATCCACGCCA
401 CCGCCCCGCG CAAATGGCAG GCGAAAATCG GCATCATCCC CGTCGAATCT
```

This corresponds to the amino acid sequence <SEQ ID 202; ORF 048>:

m048.pep

- 1 MLNKGEELPV DFTNRLIYYV GPVDPVGDEV VGPAGPTTAT RMDKFTRQML
- 51 EQTDLLGMIG KSERGVATCE AIADNKAVYL MAVGGAAYLV AKAIKSSKVL
- 101 AFPELGMEAI YEFEVKDMPV TVAVDSKGES IHATAPRKWQ AKIGIIPVES
- 151 *

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 203>:

a048.seq

- 1 ATGCTCGACA AAGGCGAAGA ATTGCCCGTC GATTTCACCA ACCGCCTGAT
- 51 TTACTACGTC GGCCCCGTCG ATCCGGTCGG CGACGAAATC GTCGGCCCAG
 101 CAGGTCCGAC CACCGCCACC CGCATGGACA AATTCACCCG CCAAATGCTC
- 201 CACCTGCGAA GCCATCGCCG ACAACAAAGC CGTGTACCTC ATGGCAGTCG
- 251 GCGGCGCGC GTATCTCGTG GCAAAAGCCA TCAAATCTTC CAAAGTCTTG
 301 GCGTTCCCCG AATTGGGCAT GGAAGCCATT TACGAATTTG AAGTCAAAGA
- 351 CATGCCCGTA ACCGTCGCCG TAGACAGCAA AGGCGAATCC ATCCACGCCA
- 401 CCGCCCGCC CCAATGGCAG GCGAAAATCG GCATCATCCC CGTCAAATCT
- 451 TGA

This corresponds to the amino acid sequence <SEQ ID 204; ORF 048.a>:

a048.pep

- 1 MLDKGEELPV DFTNRLIYYV GPVDPVGDEI VGPAGPTTAT RMDKFTRQML
- 51 EQTDLLGMIG KSERGAATCE AIADNKAVYL MAVGGAAYLV AKAIKSSKVL
- 101 AFPELGMEAI YEFEVKDMPV TVAVDSKGES IHATAPPQWQ AKIGIIPVKS
- 151 *

m048/a048 96.0% identity over a 150 aa overlap

m048.pep	10 MLNKGEELPVDFTN	20 RLIYYVGPVD		40 GPTTATRMDK	50 FTROMLEOTD	60 LLGMIG
a048	:	RLIYYVGPVD 20	: PVGDEIVGPA 30		FTRQMLEQTD 50	LLGMIG 60
	70	80	90	100	110	120
m048.pep	KSERGVATCEAIAD	NKAVYLMAVG	GAAYLVAKAI	KSSKVLAFPE	LGMEAIYEFE	VKDMPV
a048	KSERGAATCEAIAD	NKAVYLMAVG 80	GAAYLVAKAI 90	KSSKVLAFPE	LGMEAIYEFE	VKDMPV 120
	130	140	150			
m048.pep	TVAVDSKGESIHAT					
a048	TVAVDSKGESIHAT		SIIPVKSX 150			

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 048 shows 96.4% identity over a 150 aa overlap with a predicted ORF (ORF 048.ng) from N. gonorrhoeae:

```
m048/q048
                                       40
                10
                       2.0
                               30
         MLNKGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLEQTDLLGMIG
m048.pep
          MLDKGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLKQTGLLGMIG
q048
                       20
                               30
                                       40
                                              50
                       80
                               90
                                      100
                70
          KSERGVATCEAI ADNKAVYLMAVGGAAYLVAKAI KSSKVLAFPELGMEAI YEFEVKDMPV
m048.pep
          KSERGAATCEA1ADNKAVYLMAVGGAAYLVAKA1KSSKVLAFPELGMEAVYEFEVKDMPV
9048
                               90
                                      100
                70
                       80
                       140
               130
          TVAVDSKGESIHATAPRKWQAKIGIIPVESX
m048.pep
          TVAVDSKGESIHATAPRKWQAKIGIIPVESX
q048
               130
                       140
                              150
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 205>:

```
1 ATGCGGGCGC AGGCGTTTGA TCAACCGTTC GGTCAGCTCC TGTTCGGACA
51 GGCAGAACAC TTCGCGCCGG TTGACGGCTT TCGGGTTCAG GATATTGATT
101 TGGACGGCCA TCAACGCCTC TTCCGCACCG CCTTCGCCGT TTTCCGCAAC
151 CCCGTCTGCC GCCGTACCGG ATTCTGCCGC ATCGGCGTTT TCCCCGCCCT
201 CAATCTGTGC GGTTTCAAAT TCGGCACTGT CTTTTTTGGC ATCGAACCGG
251 ATTCTCCGCC GCGATTCGAT GTGTTTTTCC GAAACCGGCA TTTGCAGGGA
301 AGCCTGCGG TTGAGCCAGT TTTCCTGAAG GACGATCATC GGGTCGGTTT
351 CGACTTCCTC GCCGCAATCG GCAACGGCGC tGTTGTGTTC TTCCTGCCAT
```

This corresponds to the amino acid sequence <SEQ ID 206; ORF 049.ng>:

g049.pep

1 MRAQAFDOPF GOLLFGQAEH FAPVDGFRVQ DIDLDGHQRL FRTAFAVFRN 51 PVCRRTGFCR IGVFPALNLC GFKFGTVFFG IEPDSPPRFD VFFRNRHLQG

101 SLRVEPVFLK DDHRVGFDFL AAIGNGAVVF FLPFLQIRL*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 207>:

```
m049.seg
         (partial)
          ATGCGGGCGC AGGCGTTTGA TCAGCCGTTC GGTCAGCTCC TGTTCGGACA
      1
         GGCAGAACAC TTCGCGCCGG TTGACGGCTT TCGGGTTCAG GATATTGATT
      51
         TGGACGGGCA TCAACGTTTC TTCCGCATCG TTTTCCCCGT TTTCCGAAAC
     101
     151
         CGCCGGCTCA TTCGTGCCGG ATTCTGCCTC GTCGGCGTTT TCCCCGCTTT
         CAATCTGTCC GGTTTCAAAT TCGACACTGT CTTTTTTGGT ATCAAACCGG
     201
         ATTCTCCGCC GCGATTCGAT GTGTTTTTCC GAAACCGACA TTTGCAGGGA
     301 AGCCTGCGCG TTGAGCCAGT TTTCCTGAAG GACGATCATC GGGTCGGTTT
     351 CGACTTCCTC GCCGCAATCG GCAACGGCGG CATTGTGTTC CTCCTGCCAT
     401 TTTTTCAGAT ACGCCTT...
```

This corresponds to the amino acid sequence <SEQ ID 208; ORF 049>:

```
m049.pep (partial)
```

- 1 MRAQAFDQPF GQLLFGQAEH FAPVDGFRVQ DIDLDGHQRF FRIVFPVFRN
- 51 RRLIRAGFCL VGVFPAFNLS GFKFDTVFFG IKPDSPPRFD VFFRNRHLQG
- 101 SLRVEPVFLK DDHRVGFDFL AAIGNGGIVF LLPFFQIRL...

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 209>: a049.seq

```
1 ATGCGGGCGC AGGCGTTTGA TCAGCCGTTC GGTCAGCTCC TGTTCGGACA
51 GGCAGAACAC TTCGCGCCGG TTGACCGCTT TCGGGTTCAG AATATTGATT
101 TGGACGGGCA TCAACGCTTC TTCCGCACCG CCTTCGCCGT TTTCCGCAAC
151 CCCGTCTGCC GCCGTACCCG ATTCTGCCGC ATCGGCGTTT TCCCCGCCTT
201 CAATCTGTCC GGGTTCAAAT TCGGCACTGT CTTTTTTGGC ATCAAACCGG
251 ATTCTCCGCC GCGATTCGAT GTGTTTTTCC GAAACCGACA TTTGCAGGGA
301 AGCCTGCGCG TTGAGCCAGT TTTCCTGAAG GACGATCATC GGGTCGGTTT
351 CGACTTCCTC GCCGCAATCG GCAACGGCGG CATTGTGTTC CTCCTGCCAT
```

This corresponds to the amino acid sequence <SEQ ID 210; ORF 049.a>:

a049.pep

- 1 MRAQAFDQPF GQLLFGQAEH FAPVDGFRVQ NIDLDGHQRF FRTAFAVFRN
- 51 PVCRRTRFCR IGVFPAFNLS GFKFGTVFFG IKPDSPPRFD VFFRNRHLQG
- 101 SLRVEPVFLK DDHRVGFDFL AAIGNGGIVF LLPFFQIRL

m049/a049 90.6% identity over a 139 aa overlap

	10	20	30	40	50	60
m049.pep	MRAQAFDQPFGQLL:	FGQAEHFAPV	DGFRVQDIDL	DGHQRFFRIV	FPVFRNRRL	IRAGFCL
	111111111111111	1111111111	1111111:111	11111111:	1 1111	1: 11
a049	MRAQAFDQPFGQLL:	FGQAEHFAPV	/DGFRVQNIDL	DGHQRFFRTA	FAVFRNPVCI	RRTRFCR
	10	20	30	40	50	60
	70	80	90	100	110	120
m049.pep	VGVFPAFNLSGFKF		-	NRHLOGSLRV	EPVFLKDDH	RVGFDFL
	:111111111111	11111111	1111111111		111111111	111111
a049	IGVFPAFNLSGFKF	GTVFFGIKP	SPPRFDVFFR	NRHLQGSLRV	EPVFLKDDH	RVGFDFL
	70	80	90	100	110	120
	130	139				
m049.pep	AAIGNGGIVFLLPF					
mo43.pep	1111111111111111	1				
a049	AAIGNGGIVFLLPF	FQIRL				
	130					

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 049 shows 86.3% identity over a 139 aa overlap with a predicted ORF (ORF 049.ng) from N. gonorrhoeae:

m049/g049

m049.pep	10 MRAQAFDQPFGQLL:	[]]]]		111111:11 :	1 1111	1:11
g049	MRAQAFDQPFGQLL	FGQAEHFAPV				
	10	20	30	40	50	60
	70	80	90	100	110	120
m049.pep	VGVFPAFNLSGFKF	DTVFFGIKPI	SPPRFDVFFR	NRHLQGSLRV	EPVFLKDDHF	RVGFDFL
	-: :					
g049	IGVFPALNLCGFKF	GTVFFGIEPI	SPPRFDVFFR	NRHLQGSLRV	EPVFLKDDH	RVGFDFL
-	70	80	90	100	110	120
	130	139				
m049.pep	AAIGNGGIVFLLPF	FQIRL				
		:				
g049	AAIGNGAVVFFLPF	LQIRLX				
-	130	140				

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 211>:
     g050.seq
            1 atgggcgCGG GCTGGTGTCC TCCCGGCATC TTGGGCATCG GCATCGGCGg
           51 cacgcccGAA AAAGccgtgt TGATGGcaaA AGAATCCCTG ATGAGCCACA
          101 TCGAcatCca aGaATTGCAG GAAAAAGCCG CGTccggggc ggaattgtcc
          151 accaccgaAG ccCTGCGCCT cGAACTCTTT GAAAAGGTCA ACGCGCTGGG
          201 CATCGGCGCG CAAGGCTTGG GCGGTCTGAC CACCGTGTTG GACGTGAAAA
          251 TCCTCGATTA CCCGACCCAT GCCGCCTCCA AACCGATTGC CATGATTCCC
          301 AACTGTGCcg ccacCCGcca cgtcgAATTT GAATTGgACG GCTCAGGtcc
          351 TGTCGAactc acgccGCcgc gtgtCGAAGA CTGA
This corresponds to the amino acid sequence <SEQ ID 212; ORF 050.ng>:
     g050.pep
            1 MGAGWCPPGI LGIGIGGTPE KAVLMAKESL MSHIDIQELQ EKAASGAELS
           51 TTEALRLELF EKVNALGIGA QGLGGLTTVL DVKILDYPTH AASKPIAMIP
          101 NCAATRHVEF ELDGSGPVEL TPPRVED*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 213>:
     m050.seq
            1 ATGGGCGCGG GCTGGTGTCC TCCCGGCATC TTGGGTATCG GCATCGGCGG
           51 C..agCCgAA AAAGCCGTGC TGATGGCAAA AGAGTCCCTG ATGAGCCACA
          101 TCGACATTCA AGAATTGCAG GAAAAGGCCG CGTCCGGCGC GGAATTGTCC
               ACCACCGAAG CCCTGCGCCT CGAACTCTTT GAAAAAGTCA ACGCGCTGGG
          151
              CATCGGCGCA CAAGGCTTGG GCGGACTGAC CACCGTGTTG GACGTGAAAA
          251 TCCTCGATTA TCCGACCCAC GCCGCCTCCA AACCGATTGC CATGATTCCG
          301 AACTGCGCCG CCACCCGCCA CGTCGAATTT GAATTGGACG GCTCAGGCCC
          351 TGTCGAACTC ACGCCGCCGC GCGTCGAAGA TGGCCCGATT TGA
This corresponds to the amino acid sequence <SEQ ID 214; ORF 050>:
     m050.pep
               MGAGWCPPGI LGIGIGGXAE KAVLMAKESL MSHIDIQELQ EKAASGAELS
           51 TTEALRLELF EKVNALGIGA QGLGGLTTVL DVKILDYPTH AASKPIAMIP
          101 NCAATRHVEF ELDGSGPVEL TPPRVEDGPI *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 215>:
     a050.seq
               ATGGGCGCGG GCTGGTGTCC TCCCGGCATC TTGGGCATCG GCATCGGCGG
               TACGCCCGAA AAAGCCGTGT TGATGGCGAA AGAATCCCTG ATGAGCCACA
           51
          101 TCGACATCCA AGAATTGCAG GAAAAAGCCG CGTCCGGCGC GGAATTGTCC
          151 ACCACCGAAG CCCTGCGCCT CGAACTCTTT GAAAAAGTCA ACGCGCTAGG
          201 CATCGGCGCG CAAGGCTTGG GCGGTCTGAC CACCGTGTTG GACGTGAAAA
               TCCTCGATTA CCCGACCCAC GCCGCCTCCA AACCGATTGC CATGATTCCG
          301 AACTGCGCCG CCACCCGCCA CGTCGAATTT GAATTGGACG GCTCAGGCCC
          351 TGTCGAACTC ACGCCGCCGC GCGTCGAAGA CTGGCCC
This corresponds to the amino acid sequence <SEQ ID 216; ORF 050.a>:
     a050.pep
               MGAGWCPPGI LGIGIGGTPE KAVLMAKESL MSHIDIQELQ EKAASGAELS
               TTEALRLELF EKVNALGIGA QGLGGLTTVL DVKILDYPTH AASKPIAMIP
              NCAATRHVEF ELDGSGPVEL TPPRVEDWP
             97.7% identity over a 129 aa overlap
m050/a050
                                              30
                  MGAGWCPPGILGIGIGGXAEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELF
     m050.pep
                  a050
                  MGAGWCPPGILGIGIGGTPEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELF
```

	10	20	30	40	50	60
	70	. 80	90	100	110	120
m050.pep	EKVNALGIGAQGLG	GLTTVLDVKI	LDYPTHAASK	PIAMIPNCAA	TRHVEFELDG	SGPVEL
	1111111111111111		111111111	1111111111	11111111111	11111
a050	EKVNALGIGAQGLG	GLTTVLDVKI	LDYPTHAASK	PIAMIPNCAA	TRHVEFELDG	SGPVEL
	70	80	90	100	110	120
	130					
m050.pep	TPPRVEDGPIX					
	[
a050	TPPRVEDWP					

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 050 shows 98.4% identity over a 127 aa overlap with a predicted ORF (ORF 050.ng) from N. gonorrhoeae: m050/g050

m050.pep	10 MGAGWCPPGILGIGI	HI: HIH				
g050	MGAGWCPPGILGIG	GGTPEKAVL	MAKESLMSHI	DIQELQEKAA	SGAELSTTEA	
	10	20	30	40	50	60
	70	80	90	100	110	120
m050.pep	EKVNALGIGAQGLG	GLTTVLDVKI	LDYPTHAASK	PIAMIPNCAA	TRHVEFELDG	SGPVEL
					1111111111	
g050	EKVNALGIGAQGLG	GLTTVLDVKI	LDYPTHAASK	PIAMIPNCAA	TRHVEFELDG	SGPVEL
,	, 70	80	90	100	110	120
	130					
m050.pep	TPPRVEDGPIX					
	111111					
g050	TPPRVEDX					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 217>: g050-1.seq

1	ATGACCGTTA	TCAAGCAAGA	AGACTTTATT	CAAAGTATCT	GCGATGCCTT
51				CTACATCGAC	
101				CCAAAGACGC	
151				AACAACCGCC	
201				AGTCGGTATG	
251				TTAACGAAGG	
301	GCCTACACTT			GCTTCCGTCC	
351	GGCCGGCAAA			CACCCCCCCC	
401	TGAGCATCGT			TAACCTGCGC	
451				ATGCTCAACC	
501				GACGATGGGC	
551				GCGGCAcgcC	
601	GTGTTGATGG	cgaAAGAATC	CCTGATGAGC	CACATCGACA	
651	GCAGGAAAAA	GCCGCGTCCG	GCGCGGAATT		GAAGCCCTGC
701	GCCTCGAACT	CTTTGAAAAG	GTCAACGCGC	TGGGCATCGG	CGCGCAAGGC
751	TTGGGCGGTC	TGACCACCGT	GTTGGACGTG	AAAATCCTCG	
801	CCATGCCGCC	TCCAAACCGA	TTGCCATGAT	TCCCAACTGT	GCCGCCACCC
851	GCCACGTCGA	ATTTGAATTG	GACGGCTCAG	••••	ACTCACGCCG
901	CCGCGCGTCG		CGATCTGACT		ACAACGGCAA
951	ACGCGTCGAT			AGAAGTGGCA	
1001				TCCTCACCGG	
1051				AAAGGCGAGG	
1101				CGGCCCCGTC	
1151				CCACAGCCAC	
1201	AAATTTACCC	GCCAAATGCT	CAAACAAACC	GGCCTCTTGG	GCATGATCGG

```
1251 CAAATCCGAG CGCGGCGCG CCACCTGCGA AGCCATCGCC GACAACAAGG
    1301 CCGTGTACCT CATGGCAGTC GGCGGCGCGG CATACCTCGT GGCAAAAGCC
    1351 ATCAAATCTT CCAAAGTCTT GGCGTTCCCC GAATTGGGTA TGGAAGCCGT
1401 TTACGAATTT GAAGTCAAAG ATATGCCCGT AACCGTCGCC GTGGACAGCA
    1451 AAGGCGAATC CATCCACGCC ACCGCCCCGC GCAAATGGCA GGCGAAAATC
    1501 GGCATCATCC CCGTCGAGTC TTGA
This corresponds to the amino acid sequence <SEQ ID 218; ORF 050-1.ng>:
g050-1.pep
      1 MTVIKQEDFI QSICDAFQFI SYYHPKDYID ALYKAWQKEE NPAAKDAMTQ
51 ILVNSRMCAE NNRPICQDTG IATVFLKVGM DVQWDADMSV EKMVNEGVRR
     101 AYTWEGNTLR ASVLADPAGK RONTKONTPA VIHMSIVPGG KVEVTCAAKG
     151 GGSENKSKLA MLNPSDNIVD WVLKTIPTMG AGWCPPGILG IGIGGTPEKA
     201 VLMAKESLMS HIDIQELQEK AASGAELSTT EALRLELFEK VNALGIGAQG
     251 LGGLTTVLDV KILDYPTHAA SKPIAMIPNC AATRHVEFEL DGSGPVELTP
301 PRVED*PDLT YSPDNGKRVD VDKLTKEEVA SWKTGDVLLL NGKILTGRDA
     351 AHKRLVNMLD KGEELPVDFT NRLIYYVGPV DPVGDEVVGP AGPTTATRMD
     401 KFTROMLKQT GLLGMIGKSE RGAATCEAIA DNKAVYLMAV GGAAYLVAKA
451 IKSSKVLAFP ELGMEAVYEF EVKDMPVTVA VDSKGESIHA TAPRKWQAKI
     501 GIIPVES*
g050-1/p14407
 SDIP14407 FUMB ECOLI FUMARATE HYDRATASE CLASS I, ANAEROBIC (FUMARASE)
>gi|280063|pir||B44511 fumarate hydratase (EC 4.2.1.2) fumB, iron-dependent - Escherichia coli
>gi|146048 (M27058) anaerobic class I fumarase (EC 4.2.1.2) [Escherichia coli] Length = 548
 \frac{1}{100} Score = 172 bits (432), Expect = 4e-42
 Identities = 138/488 (28%), Positives = 216/488 (43%), Gaps = 22/488 (4%)
Query: 11 QSICDAFQFISYYHPKDYIDALYKAWQKEENPAAKDAMTQILVNSRMCAENNRPICQDTG 70
            Q+ DA + HK L+ E+ K Q L NS + A+ P CQDTG
           QAFHDASFMLRPAHQKQVAAILHDPEASEND---KYVALQFLRNSEIAAKGVLPTCQDTG 109
Query: 71 IATVFLKVGMDVQWDADMSVEKMVNEGVRRAYTWEGNTLRASVLADPAGKRQNTKDNTPA 130
             A + KG VW E+ +++GV Y E N + A
                                                              K NT N PA
Sbjct: 110 TAIIVGKKGQRV-WTGGGD-EETLSKGVYNTYI-EDNLRYSQNAALDMYKEVNTGTNLPA 166
Query: 131 VIHMSIVPGGKVEVTCAAKGGGSENKSKL----AMLNPSDNIVDWVLKTIPTMGAGWCP 185
             I + V G + + C AKGGGS NK+ L A+L P + +++++ T+G CP
Sbjct: 167 QIDLYAVDGDEYKFLCVAKGGGSANKTYLYQETKALLTPG-KLKNFLVEKMRTLGTAACP 225
Query: 186 PXXXXXXXXTPEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELFEKVNXXX 245
                      T + L + +H EL + +
                                                              I. EL E+
Sbjct: 226 PYHIAFVIGGTSAETNLKTVKLASAHY-YDELPTEGNEHGQAFRDVQLEQELLEEAQKLG 284
Query: 246 XXXXXXXXXTTVLDVKILDYPTHAASKPIAMIPNCAATRHVEFELDGSG----PVELTPP 301
                         D++++ P H AS P+ M +C+A R+++ +++ G
Sbjct: 285 LGAQFGGKYFAH-DIRVIRLPRHGASCPVGMGVSCSADRNIKAKINREGIWIEKLEHNPG 343
uery: 302 RVEDXPDLTYSPDNGKRVDVDKLTKE---EVASWKTGDVLLLNGKILTGRDAAHKRLVNM 358
                             +VD+++ KE +++ + L L G I+ GRD AH +L +
Sbjct: 344 QYIPQELRQAGEGEAVKVDLNRPMKEILAQLSQYPVSTRLSLTGTIIVGRDIAHAKLKEL 403
Query: 359 LDKGEELPVDFTNRLIYYXXXXXXXXXXXXXXXXXTTATRMDKFTRQMLKQTGLLGMIGK 418
            +D G+ELP + IYY
                                                  TTA RMD + +
                                                                  G + M+ K
 Sbjct: 404 IDAGKELPQYIKDHPIYYAGPAKTPAGYPSGSLGPTTAGRMDSYVDLLQSHGGSMIMLAK 463
 Query: 419 SERGAATCEAIADNKAVYLMAVGG-AAYLVAKAIKSSKVLAFPELGMEAVYEFEVKDMPV 477
                    +A + YL ++GG AA L ++IK + +A+PELGMEA+++ EV+D P
 Sbjct: 464 GNRSQQVTDACHKHGGFYLGSIGGPAAVLAQQSIKHLECVAYPELGMEAIWKIEVEDFPA 523
 Query: 478 TVAVDSKG 485
              + VD KG
 Sbjct: 524 FILVDDKG 531
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 219>:
```

m050-1.seq

- 1 ATGACCGTCA TCAAACAGGA AGACTTTATC CAAAGCATTT GCGATGCCTT
 51 CCAATTCATC AGCTACTATC ATCCCAAAGA CTACATCGAC GCGCTTTATA
 101 AGGCGTGGCA GAAGGAAGAA AATCCTGCCG CCAAAGACGC GATGACGCAG
 151 ATTTTGGTCA ACAGCCGTAT GTGTGCGGAA AACAACCGCC CCATCTGCCA
 201 AGACACAGGT ATCGCAACCG TCTTCCTCAA AGTCGGTATG AACGTCCCAAT

- 251 GGGATGCGGA CATGAGCGTG GAAGAGATGG TTAACGAAGG CGTACGCCGC

301	GCCTACACTT	GGGAAGGCAA	TACGCTGCGC	GCTTCCGTCC	TCGCCGATCC
351	GGCCGGCAAA	CGCCAAAACA	CCAAAGACAA	CACCCCCGCC	GTCATCCATA
401	TGAGCATCGT	GCCGGGCGGT	AAAGTCGAAG	TAACCTGCGC	GGCAAAAGGC
451	GGCGGCTCTG	AAAACAAATC	CAAACTCGCC	ATGCTCAATC	CTTCCGACAA
501	CATCGTCGAT	TGGGTATTGA	AAACCATCCC	GACCATGGGC	GCGGGCTGGT
551	GTCCTCCCGG	CATCTTGGGT	ATCGGCATCG	GCGGCACGCC	CGAAAAAGCC
601	GTGCTGATGG	CAAAAGAGTC	CCTGATGAGC	CACATCGACA	
651	GCAGGAAAAG	GCCGCGTCCG	GCGCGGAATT	GTCCACCACC	
701	GCCTCGAACT	CTTTGAAAAA	GTCAACGCGC	TGGGCATCGG	CGCACAAGGC
751	TTGGGCGGAC	TGACCACCGT	GTTGGACGTG	AAAATCCTCG	
801	CCACGCCGCC	TCCAAACCGA	TTGCCATGAT	TCCGAACTGC	GCCGCCACCC
851	GCCACGTCGA	ATTTGAATTG	GACGGCTCAG	GCCCTGTCGA	
901	CCGCGCGTCG	AAGACTGGCC	CGATTTGACT	TACAGCCCCG	ACAACGGCAA
951	ACGCGTCGAT	GTCGACAAGC	TGACCAAAGA	AGAAGTGGCA	
1001	CCGGCGACGT	ATTGCTGTTG	AACGGCAAAA	TCCTCACCGG	CCGCGATGCC
1051	GCACACAAAC	GCCTCGTCGA	TATGCTCAAC	AAAGGCGAAG	AATTGCCCGT
1101	CGATTTCACC	AACCGCCTGA	TTTACTACGT	CGGCCCCGTC	GATCCGGTCG
1151	GCGATGAAGT	CGTCGGTCCG	GCAGGTCCGA	CCACAGCCAC	CCGCATGGAC
1201	AAATTCACCC	GCCAAATGCT	CGAACAAACC		GCATGATCGG
1251	CAAATCCGAG	CGCGGCGTGG	CCACCTGCGA		
1301	CCGTGTACCT	CATGGCAGTC	GGCGGCGCGG	CGTATCTCGT	GGCAAAAGCC
1351	ATCAAATCTT	CCAAAGTCTT	GGCGTTCCCC	GAATTGGGCA	TGGAAGCCAT
1401	TTACGAATTT	GAAGTCAAAG	ACATGCCCGT	AACCGTCGCC	
1451	AAGGCGAATC	CATCCACGCC	ACCGCCCCGC	GCAAATGGCA	GGCGAAAATC
1501	GGCATCATCC	CCGTCGAATC	TTGA		

This corresponds to the amino acid sequence <SEQ ID 220; ORF 050-1>: m050-1.pep

```
1 MTVIKQEDFI QSICDAFQFI SYYHPKDYID ALYKAWQKEE NPAAKDAMTQ
51 ILVNSRMCAE NNRPICQDTG IATVFLKVGM NVQWDADMSV EEMVNEGVRR
101 AYTWEGNTLR ASVLADPAGK RQNTKDNTPA VIHMSIVPGG KVEVTCAAKG
151 GGSENKSKLA MLNPSDNIVD WVLKTIPTMG AGWCPPGILG IGIGGTPEKA
201 VLMAKESLMS HIDIQELQEK AASGAELSTT EALRLELFEK VNALGIGAQG
251 LGGLTTVLDV KILDYPTHAA SKPIAMIPNC AATRHVEFEL DGSGPVELTP
301 PRVEDWPDLT YSPDNGKRVD VDKLTKEEVA SWKTGDVLLL NGKILTGRDA
351 AHKRLVDMLN KGEELPVDFT NRLIYYVGPV DPVGDEVVGP AGPTTATRMD
401 KFTRQMLEQT DLLGMIGKSE RGVATCEAIA DNKAVYLMAV GGAAYLVAKA
451 IKSSKVLAFP ELGMEAIYEF EVKDMPVTVA VDSKGESIHA TAPRKWQAKI
```

m050-1/g050-1 98.2% identity in 507 aa overlap

	10	20	30	40	50	60
m050-1.pep	MTVIKQEDFIQSICDA	FQFISYYHPKI	YIDALYKAWO	KEENPAAKDA	MTQILVNSRM	CAE
		[[[]]]	111111111	11111111	1111111111	111
g050-1	MTVIKQEDFIQSICDA					CAE
	10	20	30	40	50	60
			00	100	110	120
	70	80	90	100		
m050-1.pep	NNRPICQDTGIATVFL	KVGMNVQWDAI	MSAFFWANEC	VKKAIIWEGN	ILLKAS VLADE	AGK
g050-1	NNRPICQDTGIATVFL				TLRASVLADP.	120
	70	80	90	100	110	120
			150	1.00	170	180
	130	140	150	160		
m050-1.pep	RONTKONTPAVIHMSI					1116
		111111111		,		
g050-1	RONTKONTPAVIHMSI					180
	130	140	150	160	170	100
		200	210	220	230	240
	190					
m050-1.pep	AGWCPPGILGIGIGGT		SPW2HIDIOE	LUERAASGAEI	1111111111 11111111111	111
	[] [] [] [] [] [] [] [] [] []		{			
g050-1	AGWCPPGILGIGIGGT	200	210	220		240
	190	200	210	220	230	240
	250	260	270	280	290	300
	VNALGIGAQGLGGLTT					
m050-1.pep	VNALGIGAQGLGGLII					
	VNALGIGAQGLGGLTT					
g050-1		260	THAASKEIAM 270	280	290	300
	250	200	210	200	230	300

```
340
                                            350
                     320
                             330
m050-1.pep PRVEDWPDLTYSPDNGKRVDVDKLTKEEVASWKTGDVLLLNGKILTGRDAAHKRLVDMLN
         PRVEDXPDLTYSPDNGKRVDVDKLTKEEVASWKTGDVLLLNGKILTGRDAAHKRLVNMLD
q050-1
                     320
                             330
                                     340
                                            410
                                                    420
                             390
                                     400
              370
                     380
m050-1.pep KGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLEQTDLLGMIGKSE
         KGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLKQTGLLGMIGKSE
q050-1
                                     400
                                            410
                             390
                             450
                                     460
                      440
              430
         RGVATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAIYEFEVKDMPVTVA
m050-1.pep
         RGAATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAVYEFEVKDMPVTVA
a050-1
                      440
                             450
                                    460
                                            470
                                                    480
              490
                      500
         VDSKGESIHATAPRKWQAKIGIIPVESX
m050-1.pep
         VDSKGESIHATAPRKWQAKIGIIPVESX
a050-1
              490
                      500
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 221>: a050-1.seq

```
1 ATGACCGTCA TCAAACAGGA AGACTTTATC CAAAGCATTT GCGATGCCTT
      CCAATTCATC AGCTACTACC ATCCCAAAGA CTACATCGAC GCGCTTTATA
  51
      AGGCGTGGCA GAAGGAAGAA AACCCCGCCG CCAAAGACGC GATGACGCAG
151 ATTTTGGTCA ACAGCCGCAT GTGTGCCGAA AACAACCGCC CCATCTGCCA
201 AGATACCGGT ATCGCGACCG TGTTTTTGAA AGTCGGTATG GATGTGCAAT
      GGGATGCAGA CATGAGCGTC GAAGAGATGG TTAACGAAGG CGTGCGCCGC
251
      GCCTACACTT GGGAAGGCAA TACGCTGCGC GCTTCCGTTC TCGCCGACCC
 301
      CGCCGGCAAA CGCCAAAATA CCAAAGACAA CACGCCCGCC GTCATCCATA
 351
      TGAGCATCGT GCCGGGCGAC AAAGTCGAAG TAACCTGCGC GGCAAAAGGC
 401
      GGCGGTTCTG AAAACAAATC CAAACTCGCC ATGCTCAACC CTTCCGACAA
 451
      CATCGTCGAT TGGGTATTGA AAACCATTCC GACCATGGGC GCGGGCTGGT
 501
      GTCCTCCCGG CATCTTGGGC ATCGGCATCG GCGGTACGCC CGAAAAAGCC
 551
      GTGTTGATGG CGAAAGAATC CCTGATGAGC CACATCGACA TCCAAGAATT
 601
      GCAGGAAAAA GCCGCGTCCG GCGCGGAATT GTCCACCACC GAAGCCCTGC
 651
      GCCTCGAACT CTTTGAAAAA GTCAACGCGC TAGGCATCGG CGCGCAAGGC
 701
      TTGGGCGGTC TGACCACCGT GTTGGACGTG AAAATCCTCG ATTACCCGAC
CCACGCCGCC TCCAAACCGA TTGCCATGAT TCCGAACTGC GCCGCCACCC
 751
 801
      GCCACGTCGA ATTTGAATTG GACGGCTCAG GCCCTGTCGA ACTCACGCCG
 851
      CCGCGCGTCG AAGACTGGCC CGATTTGACT TACAGCCCCG ACAACGGCAA
 901
      ACGCGTCGAT GTCGACAAGC TGACCAAAGA AGAAGTGGCA AGCTGGAAAA
 951
      CCGGCGACGT ATTGCTGTTG AACGGCAAAA TCCTCACCGG CCGCGATGCC
GCACACAAAC GCCTCGTCGA TATGCTCGAC AAAGGCGAAG AATTGCCCGT
1001
1051
      CGATTTCACC AACCGCCTGA TTTACTACGT CGGCCCCGTC GATCCGGTCG
1101
      GCGACGAAAT CGTCGGCCCA GCAGGTCCGA CCACCGCCAC CCGCATGGAC
1151
      AAATTCACCC GCCAAATGCT CGAACAAACC GACCTCTTGG GCATGATCGG
1201
      CAAATCCGAG CGCGGCGCGG CCACCTGCGA AGCCATCGCC GACAACAAAG
CCGTGTACCT CATGGCAGTC GGCGGCGCGG CGTATCTCGT GGCAAAAGCC
1251
1301
      ATCAAATCTT CCAAAGTCTT GGCGTTCCCC GAATTGGGCA TGGAAGCCAT
1351
      TTACGAATTT GAAGTCAAAG ACATGCCCGT AACCGTCGCC GTAGACAGCA
1401
      AAGGCGAATC CATCCACGCC ACCGCCCCGC CCCAATGGCA GGCGAAAATC
1451
1501 GGCATCATCC CCGTCAAATC TTGA
```

This corresponds to the amino acid sequence <SEQ ID 222; ORF 050-1.a>: a050-1.pep

1 MTVIKQEDFI QSICDAFQFI SYYHPKDYID ALYKAWQKEE NPAAKDAMTQ ILVNSRMCAE NNRPICODTG IATVFLKVGM DVQWDADMSV EEMVNEGVRR 51 AYTWEGNTLR ASVLADPAGK RONTKONTPA VIHMSIVPGD KVEVTCAAKG GGSENKSKLA MLNPSDNIVD WVLKTIPTMG AGWCPPGILG IGIGGTPEKA VLMAKESLMS HIDIQELQEK AASGAELSTT EALRLELFEK VNALGIGAQG 201 LGGLTTVLDV KILDYPTHAA SKPIAMIPNC AATRHVEFEL DGSGPVELTP 251 PRVEDWPDLT YSPDNGKRVD VDKLTKEEVA SWKTGDVLLL NGKILTGRDA 301 AHKRLVDMLD KGEELPVDFT NRLIYYVGPV DPVGDEIVGP AGPTTATRMD 351 KFTROMLEQT DLLGMIGKSE RGAATCEAIA DNKAVYLMAV GGAAYLVAKA 401 451 IKSSKVLAFP ELGMEAIYEF EVKDMPVTVA VDSKGESIHA TAPPQWQAKI 501 GIIPVKS*

```
98.4% identity in 507 aa overlap
a050-1/m050-1
                              30
                       20
        MTVIKQEDFIQSICDAFQFISYYHPKDYIDALYKAWQKEENPAAKDAMTQILVNSRMCAE
a050-1.pep
         MTVIKQEDFIQSICDAFQFISYYHPKDYIDALYKAWQKEENPAAKDAMTQILVNSRMCAE
m050-1
                              30
               10
                       20
                                     100
                                             110
                                                     120
                       80
                              90
               70
         NNRPICQDTGIATVFLKVGMDVQWDADMSVEEMVNEGVRRAYTWEGNTLRASVLADPAGK
a050-1.pep
         NNRPICQDTGIATVFLKVGMNVQWDADMSVEEMVNEGVRRAYTWEGNTLRASVLADPAGK
m050-1
                                             110
                                     100
                       80
                              90
               70
                      140
                                     160
                                             170
              130
         RQNTKDNTPAVIHMSIVPGDKVEVTCAAKGGGSENKSKLAMLNPSDNIVDWVLKTIPTMG
a050-1.pep
         RQNTKDNTPAVIHMSIVPGGKVEVTCAAKGGGSENKSKLAMLNPSDNIVDWVLKTIPTMG
m050-1
                                             170
                                                     180
              130
                      140
                              150
                                     160
                              210
                      200
              190
         AGWCPPGILGIGIGGTPEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELFEK
a050-1.pep
         AGWCPPGILGIGIGGTPEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELFEK
m050-1
                      200
                              210
                                      220
                                             230
              190
                                                     300
                              270
                                      280
                                             290
              250
                      260
         VNALGIGAQGLGGLTTVLDVKILDYPTHAASKPIAMIPNCAATRHVEFELDGSGPVELTP
a050-1.pep
         VNALGIGAQGLGGLTTVLDVKILDYPTHAASKPIAMIPNCAATRHVEFELDGSGPVELTP
m050-1
                                                     300
                              270
              250
                      260
                      320
                              330
                                      340
              310
         PRVEDWPDLTYSPDNGKRVDVDKLTKEEVASWKTGDVLLLNGKILTGRDAAHKRLVDMLD
a050-1.pep
         PRVEDWPDLTYSPDNGKRVDVDKLTKEEVASWKTGDVLLLNGKILTGRDAAHKRLVDMLN
m050-1
                      320
                              330
                                      340
                              390
                                      400
                                              410
                                                     420
               370
                      380
         KGEELPVDFTNRLIYYVGPVDPVGDEIVGPAGPTTATRMDKFTRQMLEQTDLLGMIGKSE
a050-1.pep
         KGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLEQTDLLGMIGKSE
m050-1
                                      400
                                              410
                                                     420
                      380
                              390
               370
                                      460
                              450
               430
                      440
         RGAATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAIYEFEVKDMPVTVA
a050-1.pep
         RGVATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAIYEFEVKDMPVTVA
m050-1
                                              470
                                                     480
                              450
               430
                      440
               490
                       500
         VDSKGESIHATAPPQWQAKIGIIPVKSX
a050-1.pep
         VDSKGESIHATAPRKWQAKIGIIPVESX
m050-1
                       500
               490
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 223>: g052.seq

```
1 ATGGCTTTGG TGGCGGAGGA AACGGAAATA TCCGCGCCGT GTTTCAAAGG
51 CTGCGAGCCG ACGGCGACA GCAGGCTGTT GTCCACCACC AAGAGCGCGC
101 CGATGCCGTG CGCCAATTCC GCCAAGGCTT CCAAGTCGGC CACTTCGCCC
151 AAGGGGTTGG ACGGCGTTTC CAAAAACAGC AGTTTGGTGT TGGCTTTGAC
201 GGCGGCTTTC CATTCATTTA TATCAGTCGG CGACACGCGG CTCACTCCGA
251 TGCCGAATTT GGTAACGATG TTATTGATAA AGCCGACGGT CGTGCCGAAC
301 AGGCTGCGGC TGGAAACCAC ATGGTCGCCC GCCTGCAGGA AGGTGAAAAA
```

This corresponds to the amino acid sequence <SEQ ID 224; ORF 052.ng>: g052.pep

```
1 MALVAEETEI SAPCFKGCEP TGDSRLLSTT KSAPMPCANS AKASKSATSP
              KGLDGVSKNS SLVLALTAAF HSFISVGDTR LTPMPNLVTM LLIKPTVVPN
         101 RLRLETTWSP ACRKVKNAA*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 225>:
     m052.seq
           1 ATGGCTTTGG TGGCGGAGGA AACGGAAATA TCCGCGCCGT GTTTCAAAGG
          51 CTGCGAGCCG ACGGCGACA GCAGGCTGTT GTCCACCACC AAGAGCGCGC
              CGATGCCGTG CGCCAATTCC GCCAAGGCTT CCAAGTCGGC CACTTCGCCC
              AAGGGGTTGG ACGGCGTTTC CAAAAACAGC AGTTTGGTGT TGGCTTTGAC
         201 GGCGGCTTTC CATTCATTTA TATCAGTCGG CGACACGCGG CTCACTCCGA
         251 TGCCGAATTT GGTAACGATG TTATTGATAA AGCCGACGGT CGTGCCGAAC
         301 AGGCTGCGGC TGGAAACCAC ATGGTCGCCC GCCTGCAGGA AGGTGAAAAA
         351 CGCCGCCTGA
This corresponds to the amino acid sequence <SEQ ID 226; ORF 052>:
     m052.pep
              MALVAEETEI SAPCFKGCEP TGDSRLLSTT KSAPMPCANS AKASKSATSP
          51 KGLDGVSKNS SLVLALTAAF HSFISVGDTR LTPMPNLVTM LLIKPTVVPN
         101 RLRLETTWSP ACRKVKNAA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 227>:
a052.seq
         ATGGCTTTGG TCGCGGAGGA AACGGAAATA TCCGCGCCGT GTTTCAAAGG
     5.1
        CTGAGAGCCG ACAGGCGACA GCAGGCTGTT GTCCACCACC AAGAGCGCGC
    101
        CGATGCCGTG CGCCAATTCC GCCAAGGCTT CCAAGTCGGC CACTTCTCCC
    151 AAGGGATTGG ACGGCGTTTC CAAAAACAGC AGTTTGGTGT TGGCTTTGAC
    201 GGCGGCTTTC CATTCGTTTA TATCAGTCGG CGACACGTGA CTCACTTCGA
    251 TGCCGAATTT GGTAACGATG TTATTGATAA AGCCGACGGT CGTGCCGAAC
    301 AGGCTGCGGC TGGAAATCAC ATGGTCGCCC GCCTGCAAAA AGGTGAAAAA
    351 CGCCGCCTGA
This corresponds to the amino acid sequence <SEQ ID 228; ORF 052.a>:
a052.pep
         MALVAEETEI SAPCFKG*EP TGDSRLLSTT KSAPMPCANS AKASKSATSP
         KGLDGVSKNS SLVLALTAAF HSFISVGDT* LTSMPNLVTM LLIKPTVVPN
     51
    101 RLRLEITWSP ACKKVKNAA*
            95.8% identity over a 119 aa overlap
m052/a052
            MALVAEETEISAPCFKGCEPTGDSRLLSTTKSAPMPCANSAKASKSATSPKGLDGVSKNS
m052.pep
            a052
            MALVAEETEISAPCFKGXEPTGDSRLLSTTKSAPMPCANSAKASKSATSPKGLDGVSKNS
                             20
                                      30
                                                40
                                                         50
                    70
                             80
                                       90
                                               100
                                                        110
                                                                  120
m052.pep
            SLVLALTAAFHSFISVGDTRLTPMPNLVTMLLIKPTVVPNRLRLETTWSPACRKVKNAAX
            SLVLALTAAFHSFISVGDTXLTSMPNLVTMLLIKPTVVPNRLRLEITWSPACKKVKNAAX
a052
                    70
                             80
                                       90
                                               100
                                                        110
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 052 shows 95.8% identity over a 119 aa overlap with a predicted ORF (ORF 052.ng)
from N. gonorrhoeae:
     m052/g052
                                  20
                                            30
                                                     4.0
     m052.pep
                 MALVAEETEISAPCFKGCEPTGDSRLLSTTKSAPMPCANSAKASKSATSPKGLDGVSKNS
```

g052		MALVAEET	reisapcfkgc 10	EPTGDSI 20	RLLSTT 30		AKASKSATSPKO 50	ELDGVSKNS 60
m052	.pep		70 AAFHSFISVGE			LLIKPTVVPNI	110 RLRLEITWSPAC	
g052		SLVLALTA	AFHSFISVGI 70			LLIKPTVVPNI	RLRLETTWSPAC	
The follow		artial DNA s	equence wa	s identi	fied in	ı N. gonorrh	oeae <seq< td=""><td>ID 229>:</td></seq<>	ID 229>:
J	ī	ATGTGTATGC	CATACGCAAT	AAGGG	TTTCA	GACGGCATCT	GCCGCATTTT	
	51	TCCGCCGATG	CCGTCTGAAA	CACGC	AATCA	GCGCGCGAGT	GCCTGTTTCA	
	101	AATCGTCAAT	CAAATCGCCA	ACATA	TTCCA	AACCGACCGA	CAGGCGCACC	
	151	AGTCCGGGGC	GGatacCGGC	GGCGA	STTTT	TCTTCGGGCT	GCATCCTGCC	
	201	GTGCGTGGTT	GTCCACGGAT	TGGTG	ATGGT	CGAGCGCACG	TCGCCGAGGT	
	251	TGGCGGTACG	GGAAAAGAGT	TCCAC	GACTT	TCCACGCGGC	TGCTTGGTCG	
	301						GTTTGCGGAT	
	351							
This corres	spond	s to the amin	o acid sequ	ence <s< td=""><td>EO II</td><td>230: ORF</td><td>073.ng>:</td><td></td></s<>	EO II	230: ORF	073.ng>:	
g073			1			,	J	
30.0	1	MCMPYAIRVS	DGICRIFPPN	4 PSETR	NORAS	ACFKSSIKSP	TYSKPTDRRT	
	51	SPGRIPAASF	SSGCILPCV	/ VHGLV	MVERT	SPRLAVREKS	STTFHAAAWS	
	101	ATSKPMTMPP						
The follow	zing n	artial DNA s	equence wa	s identi	fied in	N. meningi	itidis <seo i<="" td=""><td>D 231>:</td></seo>	D 231>:
m073	.seq		oquonos					
111073	1	ATGTGTATGC	CATATAAGA	r AAGGG	TTTCA	GACGGCATCT	GCTGTCCAAT	
	51		-				AAATCGTCAA	
	101						CAATCCGGGG	
	151	CGGATGTTGG	CGGCGAGTT	TTCTT	CGGGC	TGCATCCTGC	CGTGCGTGGT	
	201						TTGGCGGTGC	
	251	GGGAAAAGAG	TTCCACGCC	TCCAC	AACTT	TCCACGCCGC	TTCTTGATCG	
	301	GCAACTTCAA	AGCCGATGA	CGATGC	CGCCG	CCGTTTTGCT	GTTTGCGGAT	
	351	AAGCGCCGCC	TGAGGATGG'	r cggac	AATCC	GGTGTAG		
This corre	spond	ls to the amin	no acid sequ	ence <	SEQ II	O 232; ORF	073>:	
	.pep		_		-			
	1	MCMPYKIRVS	DGICCPMPS	E TRNQR	ASACF	KSSIKSPTYS	KPTDRRTNPG	
	51					LAVREKSSTP	STTFHAASXS	
	101	ATSKPMTMPP	PFCCLRISA	A XGWSD	NPV*			
The follow	ving p	artial DNA s	sequence wa	as ident	ified in	n N. mening	itidis <seq< td=""><td>D 233>:</td></seq<>	D 233>:
a073.seq								
1		GTATGT CATA						
51		CCGATG CCGT						
		CGGGGC GGAT						
		GTGGTT GTCC						
251	TGGC	GGTACG GGAG	AAAAGT TCG	ACGCCGT	CCAC	SACTTT CCAC	GCGGCT	
301	GCTT	GGTCGG CGAC	TTCAAA GCC	SATGACG	ATGC	CGCCGC CGTT	TTGCTG	
351		CGGATA AGCT						
	spond	ls to the amir	no acid sequ	ience <	SEQ II	D 234; ORF	073.a>:	
a073.pep							~~~~	
1		YKIRVS DGIC						
		MLAASF <u>SSGC</u> TSKPMT MPPP				AVREAS STPS	LIERAA	
101	ANDA	LONEMI MEER	LCCHKI 33A	GHOGNE	•			
m073/a073	9	2.3% identit	y over a 130) aa ove	rlap			

```
20
                                    30
                                            40
                 10
          MCMPYKIRVSDGICC---PMPSETRNQRASACFKSSIKSPTYSKPTDRRTNPGRMLAASF
m073.pep
                        TI HIHILIII
          TCMSYKIRVSDGICGVFPPMPSEXRNQRASACFKSSIKSPTYSKPTDRRTNPGRMLAASF
a073
                                 30
                                          40
                 10
                   70
                            80
                                    90
                                           100
           60
          SSGCILPCVVVHGWVMVERTSPRLAVREKSSTPSTTFHAASXSATSKPMTMPPPFCCLRI
m073.pep
           SSGCILPCVVVHGWVMVERTSPRLAVREKSSTPSTTFHAAAWSATSKPMTMPPPFCCLRI
a073
                 70
                         80
                                 90
                                         100
          120
                  129
m073.pep
          SAAXGWSDNPVX
           1:1111 1111
a073
          SSAXGWSGNPVX
                130
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 073 shows 87.0% identity over a 131 aa overlap with a predicted ORF (ORF 073.ng) from N. gonorrhoeae:

m073/g073

```
50
                           20
                                   30
                                           40
                 10
          MCMPYKIRVSDGICC---PMPSETRNQRASACFKSSIKSPTYSKPTDRRTNPGRMLAASF
m073.pep
                        MCMPYAIRVSDGICRIFPPMPSETRNQRASACFKSSIKSPTYSKPTDRRTSPGRIPAASF
q073
                 10
                                 30
                                         40
                                                 50
                                                         60
                           80
                                   90
                                          100
                                                  110
           60
                   70
          SSGCILPCVVVHGWVMVERTSPRLAVREKSSTPSTTFHAASXSATSKPMTMPPPFCCLRI
m073.pep
          SSGCILPCVVVHGLVMVERTSPRLAVREKSST---TFHAAAWSATSKPMTMPPPFCCLRI
q073
                         80
                                 90
                                          100
                                                   110
                 70
          120
                  129
          SAAXGWSDNPVX
m073.pep
          1:1 111 1111
          SSACGWSGNPVX
g073
          120
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 235>: g075.seq

1	ATGCCGCCTT	ACTTCATCAC	CCTCTTAACG	ATGGAAAATA	CAAAAAGCGC
51	GGCGAAAACG	CCCACTACAA	TCCAACCGGC	TTCCATACCG	TCCGCTTTTG
101	CGGCTTCCAA	AGCGTTTTTT	GCCGTTTCGG	GCAACGCTGC	GTTTGCCTGT
151	GCCGCCAAAG	CCAGCGGGGC	GGCTGTTACA	ACAGCCAGTT	TTGCGCCGTA
201	TTTACGGCAG	GTGTTAATAA	ATTTCATGAT	ATTTTCCTTT	ACGAAATTTT
251	TAAAAAAATG	TGTTTGCGGG	CTTTGTGAAG	GTTTTAGAGA	CCGCCTGCCG
301	GGCCTCTTAA	ACTTAATCTT	CTTTTTCGTA	GAATCCGAAA	ATTACAAATT
351	CCCCGCCTAT	CTCTTCCAAT	GCCGAGCTAA	AAGCGTCTTC	ATAGCTGTCA
401	TATTTACCGG	CTGA			

This corresponds to the amino acid sequence <SEQ ID 236; ORF 075.ng>: g075.pep

- MPPYFITLLT MENTKSAAKT PTTIQPASIP SAFAASKAFF AVSGNAAFAC
- AAKASGAAVT TASFAPYLRQ VLINFMIFSF TKFLKKCVCG LCEGFRDRLP
- 101 GLLNLIFFFV ESENYKFPAY LFQCRAKSVF IAVIFTG*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 237>:

```
1 ATGCCGTCTT ACTTCATCAC TCTCTTAACG ATGGAAAATA CAAAAAGCGC
51 GGCGAAAATG CCCACTACAA TCCAACCGGC TTCCATACCG TCCGCTTTTG
101 CGGCTTCCAA AGCGTTTTTT GCCGTATCGG GCAACGTTGC ATTGCATGT
151 GCGGCCAAAG CCAGGGGAGC AGCTGTTACA ACAGCCAGTT TTGCGCCGTA
201 TTTACGGCAG GTGTTAATAA ATTTCATGAT ATTTCCTTC AAAAAGTGTT
251 TGGCGGTAAT GGATGGAGCG TTTTTCAGAC GACCGCCGAA CATCCGAAAA
301 TCAGTCTTTC AAAAATCCGA ATACGACAAA TTCGTATTGG TTGCCGATTT
351 CTTCCAAACC TGCGTTAATC GCTTCTTCGA AGTCGTAGAA ATAATCGGCA
```

This corresponds to the amino acid sequence <SEQ ID 238; ORF 075>:

m075.pep

- 1 MPSYFITLLT MENTKSAAKM PTTIQPASIP SAFAASKAFF AVSGNVAFAC
- 51 AAKARGAAVT TASFAPYLRQ VLINFMIFSF KKCLAVMDGA FFRRPPNIRK
- 101 SVFQKSEYDK FVLVADFFQT CVNRFFEVVE IIGIGD*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 075 shows 65.7% identity over a 137 aa overlap with a predicted ORF (ORF 075.ng) from N. gonorrhoeae:

m075/g075

	10	20	30	40	50	60
m075.pep	MPSYFITLLTMENTK	SAAKMPTT	IQPASIPSAFAA	SKAFFAVSGN	VAFACAAKA	RGAAVT
		1111 111		111111	:	
g075	MPPYFITLLTMENTK	SAAKTPTT	IQPASIPSAFAA	SKAFFAVSGN	AAFACAAKA	SGAAVT
	10	20	30	40	50	60
	70	80	90	100	110	
m075.pep	TASFAPYLRQVLINF	MIFSF	- KKCLAVMDGAF	FRRPPNIRKS	VFQKSEYDK	FVLVAD
			: :			•
g075	TASFAPYLRQVLINF	MI FSFTKF	LKKCVCGLCEGF	RDRLPGLLNL	IFFFVESEN	YKFPAY
	70	80	90	100	110	120
	120 130					
m075.pep	FFQTCVNRFFEVVEI	IGIGDX				
	-: :: : :	1				
g075	LFQCRAKSVFIAVIF	TGX				
_	130					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 239>: a075.seq

```
1 ATGCCGTCTT ACTTCATCAC TCTCTTAACG ATGGAAAAGA CAAAAAGCGC
51 GGCGAAAACG CCCACTACAA TCCAACCGGC TTCCATACCG TCCGCTTTTG
101 CGGCTTCCAA AGCGTTTTTT GCTGTATCGG GCAACGTTGC ATTTGCATGT
151 GCGGCCAAAG CCAGGGGAGC AGCTGTTACA ACAGCCAGTT TTGCGCCGTA
201 TTTACGGCAG GTGTTAATAA ATTTCATGAT ATTTTCCTTC AAAAAGTGTT
251 TGGCGGTAAT GGATGGAGCG TTTTTCAGAC GACCGCCGAA CATCCGAAAA
301 TCAGTCTTTC AAAAATCCGA ATACGACAAA TTCGTATTGG TTGCCGATTT
351 CTTCCAAACC TGCGTTAATC GCTTCTTCGA AGTCGTAGAA ATAATCGGCA
401 TTGGTGATTA A
```

This corresponds to the amino acid sequence <SEQ ID 240; ORF 075.a>: a075.pep

- 1 MPSYFITLLT MEKTKSAAKT PTTIQPASIP SAFAASKAFF AVSGNVAFAC
- 51 AAKARGAAVT TASFAPYLRQ VLINFMIFSF KKCLAVMDGA FFRRPPNIRK
- 101 SVFQKSEYDK FVLVADFFQT CVNRFFEVVE IIGIGD*

```
98.5% identity over a 136 aa overlap
m075/a075
                    10
                              20
            MPSYFITLLTMENTKSAAKMPTTIQPASIPSAFAASKAFFAVSGNVAFACAAKARGAAVT
m075.pep
            MPSYFITLLTMEKTKSAAKTPTTIQPASIPSAFAASKAFFAVSGNVAFACAAKARGAAVT
a075
                              20
                                       30
                                                 40
                              80
                                       90
                                                100
                                                          110
                                                                   120
            TASFAPYLRQVLINFMIFSFKKCLAVMDGAFFRRPPNIRKSVFQKSEYDKFVLVADFFQT
m075.pep
            TASFAPYLRQVLINFMIFSFKKCLAVMDGAFFRRPPNIRKSVFQKSEYDKFVLVADFFQT
a075
                                       90
                                               100
                              80
                    70
                   130
            CVNRFFEVVEIIGIGDX
m075.pep
             11111111111111111
a075
            CVNRFFEVVEIIGIGDX
                   130
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 241>:
     g080.seq
              ATGTGGGATA ATGCCGAAGC GATGGAACGG CTGACGCGCT GGCTGCTTGT
            1
              CATGATGGCG ATGCTGCTTG CTGCGTCCGG GCTGGTTTGG TTTTACAATT
               CGAATCATCT GCCCGTCAAG CAGGTGTCGC TGAAGGGCAA CCTGGTTTAT
               TCCGATAAGA AGGCATTGGG CAGTTTGGCG AAAGAATACA TCCATGGGAA
          151
              TATTTTGAGG ACGGACATCA ATGGCGCACA GGAAGCCTAC CGCCGGTATC
          201
          251 CGTGGATTGC GTCGGTCATG GTGCGCCGCC GTTTTCCCGA TACGGTTGAG
          301 GTCGTCCTGA CCGAGCGCAA GCCGGTTGCA CGTTGGGGCG ACCATGCCTT
          351 GGTGGACGGC GAAGGCAATG TTTTTGAAGC CCGCTTGGAC AGACCCGGAA
          401 TGCCGGTATT CAGAGGCGCG GAAGGAACGT CTGCCGAAAT GCTCCGCCGT
          451 TATGACGAAT TTTCGACTGT TTTGGCAAAA CAGGGTTTGG GCATCAAAGA
          501 GATGACCTAT ACGGCACGTT CGGCGTGGAA TGTCGTTTTG GACAACGGCA
               TCACCGTCAG GCTCGGACGG GAAAAcgaGA TGAAACGCCT CCGGCTTTTT
               ACCGAAGCGT GGCAGCATCT gttgcGTAAG AATAAAAATC GGTTATCCTA
               TGTGGATATG Aggtataagg acggatttTC agtcccccat gctCCCGACG
          701 GTTTACCCGA AAAAGAATcc gAAGAATatt gggaacaggt ttgggacata
          751 ttacggcctg gcgtcggaaa cggttcgacg caaatttcaa tcagttatAA
               GGGCAGacga acaatggaac AGcagtaa
This corresponds to the amino acid sequence <SEQ ID 242; ORF 080.ng>:
     g080.pep
               MWDNAEAMER LTRWLLVMMA MLLAASGLVW FYNSNHLPVK QVSLKGNLVY
               SDKKALGSLA KEYIHGNILR TDINGAQEAY RRYPWIASVM VRRRFPDTVE
          101 VVLTERKPVA RWGDHALVDG EGNVFEARLD RPGMPVFRGA EGTSAEMLRR
          151 YDEFSTVLAK QGLGIKEMTY TARSAWNVVL DNGITVRLGR ENEMKRLRLF
               TEAWOHLLRK NKNRLSYVDM RYKDGFSVPH APDGLPEKES EEYWEQVWDI
          201
          251 LRPGVGNGST QISISYKGRR TMEQQ*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 243>:
     m080.seq
               ATGTGGGATA ATGCCGAAGC GATGGAACGG CTGACGCGCT GGCTGCTTGT
              CATGATGGCG ATGCTGCTTG CTGCGTCCGG GCTGGTTTGG TTTTACAATT
           51
          101 CGAATCATCT GCCCGTCAAG CAGGTGTCGC TGAAGGGCAA CCTGGTTTAT
               TCCGATAAGA AGACATTGGG CAGTTTGGCG AAAGAATACA TCCATGGGAA
          201 TATTTTGAGG ACGGACATCA ATGGCGCACA GGAGGCCTAC CGCCGGTATC
          251 CGTGGATTGC GTCGGTCATG GTGCGCCGCC GTTTTCCCGA CACGGTTGAG
          301 GTCGTCCTGA CCGAGCGCAA GCCGGTCGCG CGTTGGGGCG ACCATGCCTT
               GGTGGACGGC GAAGGCAATG TTTTTGAAGC CCGCTTGGAC AGACCCGGAA
               TGCCGGTATT CAGAGGCGCG GAAGGAACGT CTGCCGAAAT GCTCCGCCGT
          401
               TATGACGAAT TTTCGACTGT TTTGGCAAAA CAGGGTTTGG GCATCAAAGA
          451
          501 GATGACCTAT ACGCCACGTT CGGCGTGGAT TGTCGTTTTG GACAACGGCA
          551 TCACCGTCAG GCTCGGACGG GAAAACGAGA TGAAACGCCT CCGGCTTTTT
```

```
ACCGAAGCGT GGCAGCATCT GTTGCGTAAA AATAAAAATC GGTTATCCTA
TGTGGATATG AGGTATAAGG ACGGATTTTC AGTCCGCTAT GCTTCCGACG
```

701 GTTTACCCGA AAAAGAATCC GAAGAATAG

This corresponds to the amino acid sequence <SEQ ID 2441; ORF 080>:

m080.pep

- 1 MWDNAEAMER LTRWLLVMMA MLLAASGLVW FYNSNHLPVK QVSLKGNLVY
- 51 SDKKTLGSLA KEYIHGNILR TDINGAQEAY RRYPWIASVM VRRRFPDTVE
- 101 VVLTERKPVA RWGDHALVDG EGNVFEARLD RPGMPVFRGA EGTSAEMLRR
- 151 YDEFSTVLAK QGLGIKEMTY TARSAWIVVL DNGITVRLGR ENEMKRLRLF
- 201 TEAWQHLLRK NKNRLSYVDM RYKDGFSVRY ASDGLPEKES EE*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 080 shows 97.9% identity over a 242 aa overlap with a predicted ORF (ORF 080.ng) from N. gonorrhoeae:

m080/g080

	10	20	30	40	50	60
m080.pep	MWDNAEAMERLTRWL	LVMMAMLLA	ASGLVWFYNS	NHLPVKQVSL	KGNLVYSDKF	TLGSLA
080 ·	MWDNAEAMERLTRWI	LVMMAMLLA	ASGLVWFYNS	NHLPVKQVSL	KGNLVYSDK	ALGSLA
	10	20	30	40	50	60
	70	80	90	100	110	120
m080.pep	KEYIHGNILRTDING		WIASVMVRRR	FPDTVEVVLT	ERKPVARWGI	HALVDG
шооотрор		11		1111111111	1111111111	
080	KEYIHGNILRTDING	AQEAYRRYP	WIASVMVRRR	FPDTVEVVLI	ERKPVARWGI	HALVDG
	70	80	90	100	110	120
	130	140	150	160	170	180
m080.pep	EGNVFEARLDRPGME	PVFRGAEGTS	AEMLRRYDEF	STVLAKQGLO	SIKEMTYTARS	JVVIWA
			111111111	111111111		
080	EGNVFEARLDRPGME					
	130	140	150	160	170	180
					222	240
	190	200	210	220	230	240
m080.pep	DNGITVRLGRENEMI	KRLRLFTEAW	OHPTKKNKNE	CLSYVDMRYKL	JGFSVRIASDO	SLPERES
						וווווו
080	DNGITVRLGRENEMI 190	KRLRLFTEAW 200	210	220	230	240
	190	200	210	220	230	240
m080.pep	EEX					
ooo.pop	11					
080	EEYWEQVWDILRPG'	VGNGSTQISI	SYKGRRTMEC	QQX		
	250	260	270			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 245>: a080.seq

. 560	1				
1	ATGTGGGATA	ATGCCGAAGC	GATGGAACGG	CTGACGCGCT	GGCTGCTTGT
51	CATGATGGCG	ATGCTGCTTG	CTGCGTCCGG	GCTGGTTTGG	TTTTACAATT
101	L CGAATCATCT	GCCCGTCAAG	CAGGTGTCGC	TGAAGGGCAA	CCTAGTTTAT
151	TCCGATAAGA	AAGCATTGGG	CAGTTTGGCG	AAAGAATACA	TCCATGGGAA
201	L TATTTTGAGG	ACGGACATCA	ATGGCGCACA	GGAGGCCTAC	CGCCGGTATC
25	L CGTGGATTGC	GTCGGTCATG	GTGCGCCGCC	GTTTTCCCGA	CACGGTTGAG
303	I GTCGTCCTGA	CCGAGCGCAA	GCCGGTCGCG	CGTTGGGGCG	ACCATGCCTT
35	L GGTGGACGGC	GAAGGCAATG	TTTTTGAAGC	CCGTTTGGAC	AGACCCGGAA
40	1 TGCCGGTATT	CAGAGGCGCG	GAAGGAACGT	CTGCCGAAAT	GCTCCGCCGT
45	1 TATGACGAAT	TTTCGACTGT	TTTGGCAAAA	CAGGGTTTGG	GCATCAAAGA
50	CATCACCTAT	ACGGCACGTT	CGGCGTGGAT	ፕርፕ ርርፕፕፕፕር	GACAACGGCA

```
TCACCGTCAG GCTCGGACGG GAAAACGAGA TGAAACGCCT CCGGCTTTTT
         ACCGAAGCGT GGCAACATCT GTTGCGTAAA AATAAAAATC GGTTATCCTA
         TGTGGATATG AGGTATAAGG ACGGATTTTC AGTCCGCTAT GCTCCCGACG
         GTTTACCCGA AAAAGAATCC GAAGAATAG
This corresponds to the amino acid sequence <SEQ ID 246; ORF 080.a>:
a080.pep
         MWDNAEAMER LTRWLLVMMA MLLAASGLVW FYNSNHLPVK QVSLKGNLVY
         SDKKALGSLA KEYIHGNILR TDINGAQEAY RRYPWIASVM VRRRFPDTVE
     51
         VVLTERKPVA RWGDHALVDG EGNVFEARLD RPGMPVFRGA EGTSAEMLRR
         YDEFSTVLAK QGLGIKEMTY TARSAWIVVL DNGITVRLGR ENEMKRLRLF
         TEAWOHLLRK NKNRLSYVDM RYKDGFSVRY APDGLPEKES EE*
            99.2% identity over a 242 aa overlap
m080/a080
                                               40
                             20
                                      30
            MWDNAEAMERLTRWLLVMMAMLLAASGLVWFYNSNHLPVKQVSLKGNLVYSDKKTLGSLA
m080.pep
            MWDNAEAMERLTRWLLVMMAMLLAASGLVWFYNSNHLPVKQVSLKGNLVYSDKKALGSLA
a080
                             20
                                      30
                                               40
                                                        50
                                                                  60
                                      90
                                              100
                             80
            KEYIHGNILRTDINGAQEAYRRYPWIASVMVRRRFPDTVEVVLTERKPVARWGDHALVDG
m080.pep
            KEYIHGNILRTDINGAQEAYRRYPWIASVMVRRRFPDTVEVVLTERKPVARWGDHALVDG
a080
                                                       110
                                                                 120
                                              100
                             80
                                      90
                                                                 180
                  130
                            140
                                     150
                                              160
                                                       170
            EGNVFEARLDRPGMPVFRGAEGTSAEMLRRYDEFSTVLAKQGLGIKEMTYTARSAWIVVL
m080.pep
            EGNVFEARLDRPGMPVFRGAEGTSAEMLRRYDEFSTVLAKQGLGIKEMTYTARSAWIVVL
a080
                                                                 180
                                     150
                            140
                  130
                                              220
                                                        230
                                                                 240
                                     210
                   190
                            200
            DNGITVRLGRENEMKRLRLFTEAWQHLLRKNKNRLSYVDMRYKDGFSVRYASDGLPEKES
m080.pep
            DNGITVRLGRENEMKRLRLFTEAWQHLLRKNKNRLSYVDMRYKDGFSVRYAPDGLPEKES
a080
                                     210
                                              220
                                                        230
                   190
                            200
m080.pep
            EEX
            111
a080
            EEX
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 247>:
     g081.seq
              ATGAAACCAC TGGACCTAAA TTTCATCTGC CAAGCCCTCA AGCTTCCGAT
            1
              GCCGTCTGAA AACAAACCCG TGTCGCGCAT CGTAACCGAC AGCCGCGATA
           51
              TTCGGGAAGG CGATGTGTTT TTCGCATTGG CGGGCGGGCG GTTTGACGCG
          101
              CATGATTTTG TTGGAGGCGT ATTGTCTGCG GGCGCGGCGG CGGTTGTGGT
              TTCGCGCGAA GATTGCGCGG CTTTGGGCGG CGCGTTGAAA GTCGATGACA
          201
              CGCTTGCCGC GTTGCAAACG TTGGCGAAGG CGTGGCGCGA TAATGTGAAC
          251
              CCGTTTGTGT TCGGCATTAC CGGTTCGGGC GGCAAGACGA CGGTGAAGGA
          301
              GATGCTGGCT GCGGTATTGC GCCGCCGTTT CGGCGATGAT GCCGTTTCGG
          351
              CGACGGCAGG CAACTTCAAC AACCACAtcg gaTTGCCGCT GACTTTATTG
          451 AAATtaaAcq aAAAACACCG CTATGCCGTG ATTGAAATGG GCATGAACCA
              TTTTGGcgaa ctggcggtTt taacgcaaaT CGCCAAACCC GATGCCGCTT
          501
          551
              TGGtcaACAA CGCCCTGCGC GCCCATGTCG GATGCGGTTt cgacggagtg
               GGCGATATTG CCAAAGcgaa aagcGAGATT TatgcagGct tATGTTCAGA
          601
               CGGCATGGCA CTGATTCCTC AAGAAGATGC CAATATGGCT GTCTTCAAAA
          651
               CGGCAACGTT TAATTTGAAT ACGTGCACTT TCGGCGTCGA TAGCGGCGAT
          701
```

751 GTCCGCGCG AAAATATCGT GCTGAAACCT TTGTCGTGCG AATTTGATTT

```
801 GGTGTGCGGC GACGAGCGCA CTGCCGTGGT GCTGCCTGTT CCCGGCCGCC
           851 ACAATGTCCA CAACGCCGCC GCTGCCGCCG CGCTGGCTTT GGCTGCCGGT
           901 TTGAGTTTGA ACGATGTGGC GGAAGGTTTG CAAGGCTTCA GCAACATCAA
          951 AGGCCGTCTG AACGTCAAAG CCGGCATCAA GGGCGCAACC CTGATTGACG
         1001 ATACTTATAA TGCGAATCCC GACAGTATGA AAGCCGCGGT TGACGTGTTG
         1051 GCGCGTATGC CTGCGCCGCG CATTTTCGTG ATGGGCGAATA TGGGCGAACT
         1101 GGGCGAGGAC GAAGCCGCCG CCATGCACGC CGAAGTCGGC GCGTACGCCC
1151 GCGACCAAGG CATCGAAGCG GCTTATTTTG TCGGCGACAA CAGCGTCGAA
1201 GCGGCGGAAA AATTTGGCGC GGACGGTTTG TGGTTCGCCG CCAAAGACCC
         1251 GTTGATTCAA GTGTTGAGCC ACGATTTGCC CGAACGCGCC ACCGTGTTGG
         1301 TGAAAGGTTC GCGCTTTATG CAGAtggAAG AAGTGGTCGA GGCATTGGAG
         1351 GATAAGTga
This corresponds to the amino acid sequence <SEQ ID 248; ORF 081.ng>:
     g081.pep
                MKPLDLNFIC QALKLPMPSE NKPVSRIVTD SRDIREGDVF FALAGGRFDA
            51 HDFVGGVLSA GAAAVVVSRE DCAALGGALK VDDTLAALQT LAKAWRDNVN
           101 PFVFGITGSG GKTTVKEMLA AVLRRRFGDD AVSATAGNFN NHIGLPLTLL
           151 KLNEKHRYAV IEMGMNHFGE LAVLTQIAKP DAALVNNALR AHVGCGFDGV
           201 GDIAKAKSEI YAGLCSDGMA LIPQEDANMA VFKTATFNLN TCTFGVDSGD
           251 VRAENIVLKP LSCEFDLVCG DERTAVVLPV PGRHNVHNAA AAAALALAAG
           301 LSLNDVAEGL QGFSNIKGRL NVKAGIKGAT LIDDTYNANP DSMKAAVDVL
           351 ARMPAPRIFV MGDMGELGED EAAAMHAEVG AYARDQGIEA AYFVGDNSVE
           401 AAEKFGADGL WFAAKDPLIQ VLSHDLPERA TVLVKGSRFM QMEEVVEALE
           451
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 249>:
     m081.seq
                ATGAAACCAC TGGACCTAAA TTTCATCTGC CAAGCCCTCA AGCTTCCGAT
                GCCGTCTGAA AGCAAACCCG TGTCGCGCAT CGTAACCGAC AGCCGCGACA
            51
                TCCGCGCGGG CGATGTGTTT TTCGCATTGG CGGGCGAGCG GTTTGACGCG
           101
           151 CATGATTTTG TTGAAGACGT ATTGGCTGCT GGTGCGGCGG CGGTTGTGGT
                TTCGCGCGAA GATTGTGCTG CAATGGATGG CGCGTTGAAA GTCGATGACA
                CGCTTGCCGC ATTGCAAACG CTGGCAAAGG CGTGGCGTGA AAATGTGAAT
           251
           301 CCGTTTGTGT TCGGCATTAC CGGTTCGGGC GGCAAGACGA CGGTGAAGGA
           351 AATGCTGGCT GCGGTATTGC GCCGCCGTTT CGGCGATGAT GCCGTGTTGG
           401 CGACGGCAGG CAACTTCAAC AACCATATCG GATTGCCGCT GACTTTGTTG
           451 AAGTTAAACG AAAAACACCG CTATGCCGTG ATTGAAATGG GCATGAACCA
           501 TTTCGGCGAA CTGGCGGTTT TAACGCAMAT CGCCAAACCA AATGCCGCAT
           551 TGGTCAACAA CGCCATGCGC GCCCATGTCG GCTGCGGTTT CGACGGAGTG
           601 GGCGATATTG CCAAAGCGAA AAGCGAGATT TACCAAGGTT TATGTTCAGA
           651 CGGCATTGCA CTGATTCCTC AAGAAGATGC CAATATGGCT GTCTTCAAAA
           701 CGGCAACGCT TAATTTGAAT ACGCGCACTT TCGGCATCGA TAGCGGCGAT
751 GTTCACGCGG AAAATATTGT GCTGAAACCG TTGTCGTGCG AATTTGATTT
           801 GGTGTGCGGC GATGAGCGCG CCGCCGTGGT GCTGCCTGTT CCCGGCCGCC
           851 ACAATGTCCA CAACGCCGCC GCTGCCGCCG CGCTGGCTTT GGCTGCGGGT
           901 TTGAGTTTGA ACGATGTGGC GGAAGGTTTG AAAGGCTTCA GCAATATCAA
           951 AGGCCGTCTG AACGTCAAAT CCGGAATCAA GGGCGCAACC CTGATTGACG
          1001 ATACTTATAA TGCGAACCCT GACAGCATGA AAGCTGCGAT TGACGTGTTG
          1051 GCGCGTATGC CTGCGCCGCG TATTTTCGTG ATGGGCGATA TGGGCGAACT
          1101 GGGCGAACTG GGCGAGGACG AAGCCGCCGC TATGCACGCC GAAGTCGGCG
          1151 CGTATGCCCG CGACCAAGGC ATCGAAGCGG CTTATTTTGT CGGCGACAAC
          1201 AGCGTCGAAG CGGCGGAAAA ATTTGGCGCG GACGGTTTGT GGTTCGCCGC
          1251 CAAAGACCCG TTGATTCAAG TGTTGCGCCA CGATTTGCCC GAACGCGCCA
          1301 CCGTGTTGGT GAAAGGTTCG CGCTTTATGC AGATGGAAGA AGTGGTCGAG
1351 GCATTGGAGG ATAAGTGA
This corresponds to the amino acid sequence <SEQ ID 250; ORF 081>:
      m081.pep
                 MKPLDLNFIC QALKLPMPSE SKPVSRIVTD SRDIRAGDVF FALAGERFDA
           51 HDFVEDVLAA GAAAVVVSRE DCAAMDGALK VDDTLAALQT LAKAWRENVN
101 PFVFGITGSG GKTTVKEMLA AVLRRRFGDD AVLATAGNFN NHIGLPLTLL
151 KLNEKHRYAV IEMGMNHFGE LAVLTXIAKP NAALVNNAMR AHVGCGFDGV
```

201 GDIAKAKSEI YQGLCSDGIA LIPQEDANMA VFKTATLNLN TRTFGIDSGD
251 VHAENIVLKP LSCEFDLVCG DERAAVVLPV PGRHNVHNAA AAAALALAAG
301 LSLNDVAEGL KGFSNIKGRL NVKSGIKGAT LIDDTYNANP DSMKAAIDVL
351 ARMPAPRIFV MGDMGELGEL GEDEAAAMHA EVGAYARDQG IEAAYFVGDN
401 SVEAAEKFGA DGLWFAAKDP LIQVLRHDLP ERATVLVKGS RFMQMEEVVE
451 ALEDK*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 081 shows 94.1% identity over a 455 aa overlap with a predicted ORF (ORF 081.ng) from N. gonorrhoeae:

m081/g081

	10	20	30	40	50	60
m081.pep	MKPLDLNFICQALKL	PMPSESKPVS	RIVTDSRDIF	RAGDVFFALAG	ERFDAHDFVI	
g0.01		: PMPSENKPVS			 GRFDAHDFV	: GGVLSA
g081	10	20	30	40	50	60
	70 GAAAVVVSREDCAAM	80	90 331 OTL 3830		110 TTGSGGKTT	120 VKEMI.A
m081.pep	GAAAVVVSREDCAAM		AADQIDAKAV	:		
g081	GAAAVVVSREDCAAL	GGALKVDDTL	AALQTLAKAV	WRDNVNPFVFC	SITGSGGKTT	VKEMLA
	70	80	90	100	110	120
	130	140	150	160	170	180
m081.pep	AVLRRRFGDDAVLAT					TXIAKP
	111111111111111111111111111111111111111			[
g081	AVLRRRFGDDAVSAT			KHRYAVIEMGN 160	MNHFGELAVL 170	TQIAKP 180
	130	140	150	160	170	180
	190	200	210	220	230	240
m081.pep	NAALVNNAMRAHVGO	GFDGVGDIAK	AKSEIYQGL	CSDGIALIPQ	EDANMAVFKT	ATLNLN
	: : DAALVNNALRAHVGO			: CCDCMAI I DOI		ATENIN
g081	190	.GFDGVGDIAF	210	220	230	240
	250	260	270	280	290	300
m081.pep	TRTFGIDSGDVHAEN					
g081	TCTFGVDSGDVRAEN		DLVCGDERT.	AVVLPVPGRHI	AAAAAANHVN	LALAAG
3***	250	260	270	280	290	300
	210	220	330	340	350	360
m081.pep	310 LSLNDVAEGLKGFSN	320 ITKGRLNVKSO				
moor.pcp				111111111		111111
g081	LSLNDVAEGLQGFS					
	310	320	330	340	350	360
	370	380	390	400	410	420
m081.pep	MGDMGELGELGEDE	AAAMHAEVGA	YARDQGIEAA	YFVGDNSVEA	AEKFGADGLW	FAAKDP
		111111111			11111111111	
g081	MGDMGELGE DE	AAAMHAEVGA: 380	YARDQGIEAA 390	YFVGDNSVEA 400	AEKFGADGLW 410	FAAKDP
	370	500	330	100		
	430	440	450			
m081.pep	LIQVLRHDLPERAT	_				
g081	 LIQVLSHDLPERAT					
3002	420 430	440	450	-		

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 251>:
         ATGAAACCAC TGGACCTAAA TTTCATCTGC CAAGCCCTCA AGCTTCCGAT
      1
         GCCGTCTGAA AGCAAACCCG TGTCGCGCAT CGTAACCGAC AGCCGCGACA
      51
         TCCGCGCGGG CGATGTGTTT TTCGCATTGG CGGGCGGGCG GTTTGATGCG
     101
         CATGATTTTG TTGAAGACGT ATTGGCTGCG GGTGCGGCGG CGGTTGTGGT
     151
         TTCGCGCGAA GATTGCGTTG CAATGGATGG CGCGTTGAAA GTCGATGACA
         CGCTTACCGC GTTGCAAATG TTGGCGAAGG CGTGGCGCGA GAATGTGAAC
         CCGTTTGTGT TCGGTATTAC CGGCTCGGGC GGCAAGACGA CGGTGAAGGA
     301
         AATGTTGGCT GCGGTATTGC GCCGCCGTTT CGGCGATAAT. GCCGTTTTGG
     351
         CGACGGCAGG CAACTTCAAC AACCACATCG GATTGCCGTT GACTTTGTTG
     401
     451 AAATTAAACG AAAAACACCG CTATGCCGTG ATTGAAATGG GTATGAACCA
         TTTTGGCGAA CTGGCGGTTT TGACACAAAT CGCCAAACCC GATGCCGCAT
         TGGTCAACAA CGCCATGCGC GCCCATGTCG GCTGCGGTTT CGACGGAGTG
     551
         GGCGATATTG CCAAAGCGAA AAGCGAGATT TATCAAGGCT TATGTTCAGA
     601
         CGGCATGGCG CTGATTCCTC AAGAAGATGC CAATATGGCT GTCTTCAAAA
     651
         CGGCAACGCT TAATTTGAAT ACGCGCACTT TCGGCATCGA TAGCGGCGAT
     701
         GTCCACGCGG AAAATATCGT GCTGAAACCG TTGTCGTGCG AATTTGATTT
     751
         GGTGTGCGGC AACGAGTGCG CAGCCGTGGT TCTGCCCGTT CCCGGCCGCC
     801
         ACAATGTCCA CAACGCCGCC GCCGCCGCCG CGCTGTCTTT GGCTGCAGGT
     851
         TTGAGTTTGA ACGATGTGGC GGAAGGTTTG AAAGGCTTCA GCAATATCAA
     901
         AGGCCGTCTG AACGTCAAAT CCGGAATCAA GGGCGCAACC CTGATTGACG
     951
         ATACTTATAA TGCGAACCCT GACAGCATGA AAGCTGCGGT TGACGTGTTG
    1001
         GCGCGTATGC CTGCGCCGCG TATTTTCGTG ATGGGCGATA TGGGCGAACT
    1051
    1101
         GGGTGAGGAC GAAGCCGCCG CCATGCACGC CGAAGTCGGC GCGTACGCCC
         GCGACCAAGG CATCGAAGCG GCTTATTTTG TCGGCGACAA CAGCGTCGAA
    1151
         GCGGCGGAAA AATTTGGCGC GGACGGTTTG TGGTTCGCCG CCAAAGACCC
    1201
          GTTGATTCAA GTGTTGCGCC ACGATTTGCC CGAACGCGCC ACCGTGTTGG
    1251
          TGAAAGGTTC GCGCTTTATG CAGATGGAAG AAGTGGTCGA GGCATTGGAG
    1301
    1351
         GATAAGTGA
This corresponds to the amino acid sequence <SEQ ID 252; ORF 081.a>:
a081.pep
          MKPLDLNFIC QALKLPMPSE SKPVSRIVTD SRDIRAGDVF FALAGGRFDA
       1
         HDFVEDVLAA GAAAVVVSRE DCVAMDGALK VDDTLTALQM LAKAWRENVN
      51
         PFVFGITGSG GKTTVKEMLA AVLRRRFGDN AVLATAGNFN NHIGLPLTLL
         KLNEKHRYAV IEMGMNHFGE LAVLTQIAKP DAALVNNAMR AHVGCGFDGV
         GDIAKAKSEI YQGLCSDGMA LIPQEDANMA VFKTATLNLN TRTFGIDSGD
     201
          VHAENIVLKP LSCEFDLVCG NECAAVVLPV PGRHNVHNAA AAAALSLAAG
         LSLNDVAEGL KGFSNIKGRL NVKSGIKGAT LIDDTYNANP DSMKAAVDVL
     301
          ARMPAPRIFV MGDMGELGED EAAAMHAEVG AYARDQGIEA AYFVGDNSVE
     351
          AAEKFGADGL WFAAKDPLIQ VLRHDLPERA TVLVKGSRFM QMEEVVEALE
     401
          DK*
     451
m081/a081
             96.7% identity over a 455 aa overlap
                              20
                                        30
                                                  40
             MKPLDLNFICQALKLPMPSESKPVSRIVTDSRDIRAGDVFFALAGERFDAHDFVEDVLAA
m081.pep
             MKPLDLNFICQALKLPMPSESKPVSRIVTDSRDIRAGDVFFALAGGRFDAHDFVEDVLAA
a081
                                                  40
                     10
                              20
                                        90
                                                 100
             GAAAVVVSREDCAAMDGALKVDDTLAALQTLAKAWRENVNPFVFGITGSGGKTTVKEMLA
m081.pep
             GAAAVVVSREDCVAMDGALKVDDTLTALQMLAKAWRENVNPFVFGITGSGGKTTVKEMLA
a081
                     70
                              80
                                        90
                                                 100
                                                           110
                                                                     120
```

150

AVLRRRFGDDAVLATAGNFNNHIGLPLTLLKLNEKHRYAVIEMGMNHFGELAVLTXIAKP

160

170

130

m081.pep

a081

```
130
                           140
                                    150
                                             160
                                                      170
                                                               180
                  190
                           200
                                    210
                                             220
                                                      230
            NAALVNNAMRAHVGCGFDGVGDIAKAKSEIYQGLCSDGIALIPQEDANMAVFKTATLNLN
m081.pep
            DAALVNNAMRAHVGCGFDGVGDIAKAKSEIYQGLCSDGMALIPQEDANMAVFKTATLNLN
a081
                                             220
                  190
                           200
                                    210
                  250
                           260
                                    270
                                             280
                                                      290
                                                               300
            TRTFGIDSGDVHAENIVLKPLSCEFDLVCGDERAAVVLPVPGRHNVHNAAAAAALALAAG
m081.pep
            TRTFGIDSGDVHAENIVLKPLSCEFDLVCGNECAAVVLPVPGRHNVHNAAAAAALSLAAG
a081
                           260
                                    270
                                             280
                                             340
                           320
                                    330
                                                      350
                                                               360
                  310
            LSLNDVAEGLKGFSNIKGRLNVKSGIKGATLIDDTYNANPDSMKAAIDVLARMPAPRIFV
m081.pep
            LSLNDVAEGLKGFSNIKGRLNVKSGIKGATLIDDTYNANPDSMKAAVDVLARMPAPRIFV
a081
                  310
                           320
                                    330
                                             340
                                                      350
                                                               360
                                             400
                           380
                                    390
            MGDMGELGELGEDEAAAMHAEVGAYARDQGIEAAYFVGDNSVEAAEKFGADGLWFAAKDP
m081.pep
                     MGDMGELGE---DEAAAMHAEVGAYARDQGIEAAYFVGDNSVEAAEKFGADGLWFAAKDP
a081
                                                400
                     370
                              380
                                       390
                                                         410
                           440
                                    450
            LIOVLRHDLPERATVLVKGSRFMQMEEVVEALEDKX
m081.pep
            LIQVLRHDLPERATVLVKGSRFMQMEEVVEALEDKX
a081
                     430
                              440
            420
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 253>:
     g082.seq
              ATGTGGTTGT TGAAGTTGCC TGCCGTCGCC GAAACGGCAT CATCGCCGAA
           1
          51
              ACGGCGCGC AATACCGCAG CCAGCATCTC CTTCACCGTC GTCTTGCCGC
              CCGAACCGGT AATGCCGAAC ACAAACGGGT TCACATTATC GCGCCACGCC
         101
              TTCGCCAACG TTTGCAACGC GGCAAGCGTG TCATCGACTT TCAACGCGCC
         151
              GCCCAAAGCC GCGCAATCTT CGCGCGAAAC CACAACCGCC GCCGCGCCCG
         201
              CAGACAATAC GCCTCCAACA AAATCATGCG CGTCAAACCG CCCGCCCGCC
         251
         301
              AATGCGAAAA ACACATCGCC TTCCCGAATA TCGCGGCTGT CGGTTACGAT
         351
              GCGCGACACG GGTTTGTTTT CAGACGCAT CGGAAGCTTG AGGGCTTGGC
              AGATGAAATT TAGGTCCAGT GGTTTCATAT TTGCTTTCGT TAATATTCGG
         401
              GCGGCGGACA CATCGGTAGC GGCTGATTTT TTTATCGCCT GTTTTGCTGT
         451
              GGTAAAACAC AGATTATTTT CCCATTCTCA TTCGGCATTT TTTCTGTACG
         501
              TATCATTTT TAGACGTATT TTTAGCCGAT TTGCCTTTTC CCGCATACCA
         551
              CGGCGCGGGG TCGTCGGACT GTCTGTCGAT AAAGGCAAGG TTATTGCCTT
              CGCCCGGCAC ATCGGGGACA TTCCCCCAAA AATCATAGCC GTCATCGGGC
              AACTCGTCGG TTTCGATACC CGTCCAACTG CCGAATCCGC GTAA
This corresponds to the amino acid sequence <SEQ ID 254; ORF 082.ng>:
     g082.pep
              MWLLKLPAVA ETASSPKRRR NTAASISFTV VLPPEPVMPN TNGFTLSRHA
           1
              FANVCNAASV SSTFNAPPKA AQSSRETTTA AAPADNTPPT KSCASNRPPA
          51
              NAKNTSPSRI SRLSVTMRDT GLFSDGIGSL RAWQMKFRSS GFIFAFVNIR
          101
              AADTSVAADF FIACFAVVKH RLFSHSHSAF FLYVSFFRRI FSRFAFSRIP
              RRGVVGLSVD KGKVIAFARH IGDIPPKIIA VIGQLVGFDT RPTAESA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 255>:
     m082.seq
              ATGNNGTTGT TGAAGTTGCC TGCCGTCGCC AACACGGCAT CATCGCCGAA
              ACGGCGGCGC AATACCGCAG CCAGCATTTC CTTCACCGTC GTCTTGCCGC
              101
```

TTTGCCAGCG TTTGCAATGC GGCAAGCGTG TCATCGACTT TCAACGCGCC

WO 99/057280 PCT/US99/09346

269

```
201 ATCCATTGCA GCACAATCTT CGCGCGAAAC CACAACCGCC GCCGCACCAG
251 CAGCCAATAC GTCTTCAACA AAATCATGCG CGTCAAACCG CTCGCCCGCC
301 AATGCGAAAA ACACATCGCC CGCGCGGATG TCGCGGCTGT CGGTTACGAT
351 GCGCGACACG GGTTTGCTTT CAGACGGCAT CGGAAGCTTG AGGGCTTGGC
401 AGATGAAATT TAGGTCCAGT GGTTTCATAT TTACTTTCGT TAATATTCGG
451 GCGGCGGACA CATCGGTAGC GGCTGATTTT TTTATCGCCT GTTTTGCTGT
501 GGTAAAACAC AGATTATTTT CCCATTCTCA TTCGGSATTT TTTCTGTACG
551 TATCATTTT TAGACGTATT TTTAGTCGAT TTGCCTTTTC CCGCATACCA
601 CGGCGCGGG TCGTCGGGCA GTCCGTCGAT AAAGGCAAGG TTATTGCCTT
651 CGCCCTGCAC ATCGGGAACA TTCCCCCAAA AATCATAGCC GTCATCGGGC
701 AACTCGTCGG TTTCGATACC CGTCCAACTG CCGAATCCGC GTAA
```

This corresponds to the amino acid sequence <SEQ ID 256; ORF 082>:

m082.pep

- 1 MXLLKLPAVA NTASSPKRRR NTAASISFTV VLPPEPVMPN TNGFTFSRHA
- 51 FASVCNAASV SSTFNAPSIA AQSSRETTTA AAPAANTSST KSCASNRSPA
- 101 NAKNTSPARM SRLSVTMRDT GLLSDGIGSL RAWQMKFRSS GFIFTFVNIR
- 151 AADTSVAADF FIACFAVVKH RLFSHSHSXF FLYVSFFRRI FSRFAFSRIP
- 201 RRGVVGQSVD KGKVIAFALH IGNIPPKIIA VIGQLVGFDT RPTAESA*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 082 shows 92.7% identity over a 247 aa overlap with a predicted ORF (ORF 082.ng) from *N. gonorrhoeae*:

m082/g082

m082.pep	10 MXLLKLPAVANTASSP : MWLLKLPAVAETASSP	20 KRRRNTAASI: KRRRNTAASI: 20	1111111111	:	50 SRHAFASVCN : SRHAFANVCN 50	Ш
m082.pep	70 SSTFNAPSIAAQSSRE SSTFNAPPKAAQSSRE 70		1 1111111	1 11111111	1:1:11111	1111
m082.pep g082	130 GLLSDGIGSLRAWQMK : GLFSDGIGSLRAWQMK 130	1:111111:1				11 1
m082.pep g082	190 FLYVSFFRRIFSRFAF FLYVSFFRRIFSRFAF 190				$\Pi \Pi \Pi \Pi \Pi \Pi$	1111
m082.pep g082	RPTAESAX RPTAESAX					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 257>: a082.seq

- ATGTGGTTGT TGAAGTTGCC TGCCGTCGCC AAAACGGCAT TATCGCCGAA
- 51 ACGGCGGCGC AATACCGCAG CCAACATTTC CTTCACCGTC GTCTTGCCGC

```
101 CCGAGCCGGT AATACCGAAC ACAAACGGGT TCACATTCTC GCGCCACGCC
        TTCGCCAACA TTTGCAACGC GGTAAGCGTG TCATCGACTT TCAACGCGCC
    151
        ATCCATTGCA ACGCAATCTT CGCGCGAAAC CACAACCGCC GCCGCACCCG
    201
        CAGCCAATAC GTCTTCAACA AAATCATGCG CATCAAACCG CCCGCCCGCC
    251
         AATGCGAAAA ACACATCGCC CGCGCGGATG TCGCGGCTGT CGGTTACGAT
    301
         GCGCGACACG GGTTTGCTTT CAGACGGCAT CGGAAGCTTG AGGGCTTGGC
    351
        AGATGAAATT TAGGTCCAGT GGTTTCATAT TTACTTTCGT TAATATTCGG
    401
         GCGGCGGACA CATCGGTAGC GGCTGATTTT TTTATCGCCT GTTTTGCTGT
    451
        GGTAAAACAC AGATTATTTT CCCATTCTCA TTCGGCATTT TTTCTGTACG
    501
         TATCATTTTT TAGACGTATT TTTAGTCGAT TTGCCTTTTC CCGCATACCA
    551
        CGGCGCGGGG TCGTCGGCA GTCCGTCGAT AAAGGCAAGG TTATTGCCTT
        CGCCCTGCAC ATCGGGAACA TTCCCCCAAA AATCATAGCC GTCATCGGGC
    651
    701 AACTCGTCGG TTTCGATACC CGTCCAACTG CCGAATCCGC GTAA
This corresponds to the amino acid sequence <SEQ ID 258; ORF 082.a>:
a082.pep
         MWLLKLPAVA KTALSPKRRR NTAANISFTV VLPPEPVIPN TNGFTFSRHA
         FANICNAVSV SSTFNAPSIA TQSSRETTTA AAPAANTSST KSCASNRPPA
     51
         NAKNTSPARM SRLSVTMRDT GLLSDGIGSL RAWQMKFRSS GFIFTFVNIR
    101
         AADTSVAADF FIACFAVVKH RLFSHSHSAF FLYVSFFRRI FSRFAFSRIP
         RRGVVGQSVD KGKVIAFALH IGNIPPKIIA VIGQLVGFDT RPTAESA*
m082/a082
            95.5% identity over a 247 aa overlap
                                                                60
                                     30
                                              40
                                                       50
                   10
            MXLLKLPAVANTASSPKRRRNTAASISFTVVLPPEPVMPNTNGFTFSRHAFASVCNAASV
m082.pep
            MWLLKLPAVAKTALSPKRRRNTAANISFTVVLPPEPVIPNTNGFTFSRHAFANICNAVSV
a082
                                              40
                            20
                                     30
                   10
                            80
                                     90
                                             100
            SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT
m082.pep
            SSTFNAPSIATQSSRETTTAAAPAANTSSTKSCASNRPPANAKNTSPARMSRLSVTMRDT
a082
                            80
                                     90
                                             100
                                                      110
                                                                120
                  130
                           140
                                    150
                                             160
                                                       170
                                                                180
            GLLSDGIGSLRAWOMKFRSSGFIFTFVNIRAADTSVAADFFIACFAVVKHRLFSHSHSXF
m082.pep
            GLLSDGIGSLRAWQMKFRSSGFIFTFVNIRAADTSVAADFFIACFAVVKHRLFSHSHSAF
a082
                                             160
                                                      170
                                    150
                  130
                           140
                                             220
                                                                240
                  190
                            200
                                    210
                                                       230
            FLYVSFFRRIFSRFAFSRIPRRGVVGQSVDKGKVIAFALHIGNIPPKIIAVIGQLVGFDT
m082.pep
            FLYVSFFRRIFSRFAFSRIPRRGVVGQSVDKGKVIAFALHIGNIPPKIIAVIGQLVGFDT
a082
                                    210
                           200
                  190
            RPTAESAX
m082.pep
            1111111
a082
            RPTAESAX
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 259>: 9084.seq

ATGAAacaAT CCGcccgaat aAAAAATATG GATCAGACAT TAAAAAATAC
stattinggcatt tGCGCGcttt tagcctTTTG TTTTggcgcG gccaTCGCAT
caggttatca cttggaatat gaatacggct accgttattc TGCCGTGGGC
scattinggctt cggttgtatt tttattatta ttggcacgcg gcttcccgcg
cgtttcttca gttgtttac tgatttacgt cggcacaacc gccttatatt
stgccggtcgg ctggctgtat ggtgcgcctt cttatcagat agtcggttcg
atattggaaa gcaatcctgc cgaggcgcgt gaatttgtcg gcattgccg
scattinggcacgcgcgt gaatttgtcg gcaatcttcc
scattinggcacgcgt gaatttgtcg gcaatcttcc

```
TTTGGAAATA TTGTGTATCT GTGGGGGTAT TTGCTGACGT AAAAAACTAT
              AAACGTCGCA GCAAAATATG GCTGACCATA TTATTGACTT TGATTTTGTC
              CTGCGCGGTG ATGGAGAAAA TCGccggcga taaAGATTGG CGAGaacctg
         501
              atgccggcct gttgttgaat ATTTTcgacc tgtattaCga cttggctttc
              cgcgccggca cAATATGCCG CCAAGCGCGC CCAcattttg gaagCagcaa
              aaaaagcgtC AACATGGCAt atccgccaac ttgcgcccaa gTAtaa
This corresponds to the amino acid sequence <SEQ ID 260; ORF 084.ng>:
     q084.pep
              MKOSARIKNM DOTLKNTLGI CALLAFCFGA AIASGYHLEY EYGYRYSAVG
              ALASVVFLLL LARGFPRVSS VVLLIYVGTT ALYLPVGWLY GAPSYQIVGS
           51
              ILESNPAEAR EFVGNLPGSL YFVQALFFIF GLTVWKYCVS VGVFADVKNY
          101
          151 KRRSKIWLTI LLTLILSCAV MEKIAGDKDW REPDAGLLLN IFDLYYDLAF
              RAGTICROAR PHFGSSKKSV NMAYPPTCAQ V*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 261>:
     m084.seq
              ATGAAACAAT CCGCCcGAAT AAAa.ATATG AATCAGACAT TACTTTATAC
           1
           51 ATTGGGCATT TGCGCGCTTT TAACCTTTnn nnnnnnnnn nnnnnnnnn
          101 nnnntatca cccngaatat gaatacggct accgttattc tgccgtgggt
              GCTTTGGCTT CGGTTGTATT TTTATTATTA TTGGCACGCG GTTTCCCGCG
          151
              CGTTTCTTCA GTTGTTTTAC TGATTTACGT CGGCACAACC GCCCTATATT
              TGCCGGTCGG CTGGCTGTAT GGTGCGCCGT CTTATCAGAT AGTCGGTTCG
              ATATTGGAAA GCAATCCTGC CGAGGCGCGT GAATTTGTCG GCAATCTTCC
          301
              CGGGTCGCTT TATTTTGTGC AGGCATTATT TTTCATTTTT GGCTTGACAG
          351
              TTTGGAAATA TTGTGTATCG GGGGGGGTAT TTGCTGACGT AAAAAACTAT
          401
              AAACGCCGCA GCAAAATATG GCTGACTATA TTATTGACTT TGATTTTGTC
          451
              CTGCGCGGTG ATGGATAAAA TCGCCAGCGA TAAAGATTTG CGAGAACCTG
              ATGCCGGCCT GTTGTTGAAT ATTTTCGACC TGTATTACGA TTTGGCT.TC
              CGCGCCGGCA CAATATGCCG CCAAGCGCGC CCACATTTTG GAAGCAGCAA
          601
          651 AAAAAGCGTC AACATGGCAT ATCCGTCATG TTGCGCCCAA GTATAA
This corresponds to the amino acid sequence <SEQ ID 262; ORF 084>:
     m084.pep
              MKQSARIKXM NQTLLYTLGI CALLTFXXXX XXXXXYHPEY EYGYRYSAVG
              ALASVVFLLL LARGFPRVSS VVLLIYVGTT ALYLPVGWLY GAPSYQIVGS
          101 ILESNPAEAR EFVGNLPGSL YFVQALFFIF GLTVWKYCVS GGVFADVKNY
              KRRSKIWLTI LLTLILSCAV MDKIASDKDL REPDAGLLLN IFDLYYDLAX
          151
              RAGTICROAR PHFGSSKKSV NMAYPSCCAQ V*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 084 shows 90.5% identity over a 231 aa overlap with a predicted ORF (ORF 084.ng)
from N. gonorrhoeae:
     m084/q084
                                   20
                  MKOSARIKXMNQTLLYTLGICALLTF-----YHPEYEYGYRYSAVGALASVVFLLL
     m084.pep
                                                   11 1111111111111111111111
                  g084
                  MKQSARIKNMDQTLKNTLGICALLAFCFGAAIASGYHLEYEYGYRYSAVGALASVVFLLL
                                                                          60
                                             30
                                                      40
                                   20
                                                                50
                         10
                                                     90
                                            80
                  LARGFPRVSSVVLLIYVGTTALYLPVGWLYGAPSYQIVGSILESNPAEAREFVGNLPGSL
     m084.pep
                  LARGFPRVSSVVLLIYVGTTALYLPVGWLYGAPSYQIVGSILESNPAEAREFVGNLPGSL
     q084
                                                                         120
                         70
                                   80
                                             90
                                                     100
                                                               110
                                 130
                                           140
                                                    150
                  YFVQALFFIFGLTVWKYCVSGGVFADVKNYKRRSKIWLTILLTLILSCAVMDKIASDKDL
     m084.pep
                  YFVQALFFIFGLTVWKYCVSVGVFADVKNYKRRSKIWLTILLTLILSCAVMEKIAGDKDW
     g084
```

140

150

160

170

m084.pep

a084

200

210

220

190

180

m084		PDAGLLLNIFD	LYYDLAXRAGT	ICRQARPHFGS	SKKSVNMAYPS 	CCAQVX
g084				CROARPHFGS		TCAQVX
J * *		190	200	210	220	230
The follow	ving partial I	DNA sequen	ce was ident	ified in <i>N. m</i>	eningitidis <	SEQ ID 263>:
a084 . seq						
1	ATGAAACAAT	CCGCCCGAAT	AAAAAATATG	GATCAGACAT	TAAAAAATAC	
51	ATTGGGCATT	TGCGCGCTTT	TAGCCTTTTG	TTTTGGCGCG	GCCATCGCAT	
101	CAGGTTATCA	CTTGGAATAT	GAATACGGCT	ACCGTTATTC	TGCCGTGGGT	
151	GCTTTGGCTT	CGGTTGTATT	TTTATTATTA	TTGGCACGCG	GTTTCCCGCG	
201	CGTTTCTTCA	GTTGTTTTAC	TGATTTACGT	CGGCACAACC	GCCCTATATT	
251	TGCCGGTCGG	CTGGCTGTAT	GGTGCGCCGT	CTTATCAGAT	AGTCGGTTCG	
301	ATATTGGAAA	GCAATCCTGC	CGAGGCGCGT	GAATTTGTCG	GCAATCTTCC	
351	CGGGTCGCTT	TATTTTGTGC	AGGCATTATT	TTTCATTTTT	GGCTTGACAG	
401	TTTGGAGATA	. TTGTGTATCG	GGGGGGGTAT	TTGCTGACGT	AAAAAACTAT	
451	AAACGCCGCA	GCAAAATATG	GCTGACTATA	TTATTGACTT	TGATTTTGTC	
501	CTGCGCGGTG	ATGGATAAAA	TCGCCAGCGA	TAAAGATTTG	CGAGAACCTG	
551	ATGCCGGCCT	GTTGTTGAAT	ATTTTCGACC	TGTATTACGA	TTTGGCTTCC	
601				CCACATTTTG		•
651	AAAAAGCGTC	AACATGGCAT	ATCCGTCATG	TTGCGCCCAA	GIAIAA	
Th.:			l cognonce <	SEO ID 264.	ODE 084 a	> •
	sponas to th	e ammo acid	sequence \	SEQ ID 264;	OKT 004.a	
a084.pep					andrara and	,
1	MKQSARIKNM	DOTLKNTLGI	CALLAFCEGA	AIASGYHLEY	CARCYCTUCS	•
51	ALASVVFLLI	LARGEPRVSS	VENOVICETE	ALYLPVGWLY GLTVWRYCVS	CCAENDAMA	•
101	ILESNPAEAR	C EFVGNLPGSL	MOVINCOVOI	REPDAGLLLN	TEDIVVDIAS	!
151 201	KRRSKIWLTI	PHFGSSKKSV	NMAYPSCCAC	V*	TEDBITOHAS	•
201	XAGTICKQAF	VEANCEDINT)	MMATEBOOK	, v		
m084/a084	92.2%	identity over	a 231 aa ove	erlan		
m084/2084	72.270	dentity over	u 201 uz 01.	P		
		10	20 3	30 40	50	60
m084.pep	MKOSARI			XXXXXXYHPEY		
moo4.pep						
a084	MKOSARI	KNMDOTLKNTI	GICALLAFCFO	SAAIASGYHLEY		
4001		10		30 40		60
		70		0 100		120
m084.pep				LYGAPSYQIVGS		
	[1111111					
a084	LARGFP	RVSSVVLLIYVO		LYGAPSYQIVGS		
		70	80 9	90 100	110	120
						100
			140 15			180
m084.pep				NYKRRSKIWLTI		
a084	YEVQALI			NYKRRSKIWLTI 50 160		180
		130	140 15	50 160	1 10	100

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 265>: g085.seq

 ${\tt REPDAGLLLNIFDLYYDLASXAGTICRQARPHFGSSKKSVNMAYPSCCAQVX}$

200

200

190

190

210 ${\tt REPDAGLLLNIFDLYYDLAXRAGTICRQARPHFGSSKKSVNMAYPSCCAQVX}$

210

220

220

¹ ATGGGCAAAG GGCAGGACTT CACGCCCCTG CGCGACGCGT TGAAAGATAA

m085.pep

```
51 GGCAAAAGGC GTGTTCCTGA TCGGCGTCGA TGCGCCGCAA ATCCGCCGCG
          101 ATTTGGACGG CTGCGGCTTG AACCTGACCG ACTGCGTCAC TTTGGAAGAG
          151 GCGGTTCAGA CGGCATACGC CCAAGCCGAA GCGGGCGATA TTGTCTTGCT
          201 CAGCCCCGCC TGCGCGAGTT TCGATATGTT TAAAGGCTAC GCGCACCGTT
               CGGAAGTGTT tatCGAAGCG TTTAAGGCTT TGTGA
          251
This corresponds to the amino acid sequence <SEQ ID 266; ORF 085.ng>:
     g085.pep
               MGKGQDFTPL RDALKDKAKG VFLIGVDAPQ IRRDLDGCGL NLTDCVTLEE
               AVQTAYAQAE AGDIVLLSPA CASFDMFKGY AHRSEVFIEA FKAL*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 267>:
     m085.seq
            1 ATGGGTAAAG GGCAGGACTT CACGCCCCTG CGCGATGCAC TGGTAGGCAA
           51 GGCAAAAGGC GTGTTCTTGA TTGGTGTCGA TGCGCCGCAA ATCCGCCGCG
          101 ATTTGGACGG CTGCGGCTTG AATATGACCG ACTGCGCCAC TTTGGGAGAA
               GCCGTTCAGA CGGCATATGC CCAAGCCGAA GCAGGCGATA TTGTGTTGCT
          151
          201 CAGCCCCGCC TGCGCGAGCT TTGATATGTT CAAAGGCTAC GCGCACCGTT
          251 CGGAAGTGTT TATCGAAGCG TTTAAGGCTT TGTGA
This corresponds to the amino acid sequence <SEQ ID 268; ORF 085>:
     m085.pep
              MGKGQDFTPL RDALVGKAKG VFLIGVDAPQ IRRDLDGCGL NMTDCATLGE
               AVQTAYAQAE AGDIVLLSPA CASFDMFKGY AHRSEVFIEA FKAL*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 085 shows 94.7% identity over a 94 aa overlap with a predicted ORF (ORF 085.ng)
from N. gonorrhoeae:
     m085/g085
                                    20
                                             30
                                                        40
                  MGKGODFTPLRDALVGKAKGVFLIGVDAPQIRRDLDGCGLNMTDCATLGEAVQTAYAQAE
     m085.pep
                  MGKGQDFTPLRDALKDKAKGVFLIGVDAPQIRRDLDGCGLNLTDCVTLEEAVQTAYAQAE
     g085
                                                                           60
                                                                 50
                                    20
                                              30
                                                        40
                          10
                          70
                                    80
                                              90
                  AGDIVLLSPACASFDMFKGYAHRSEVFIEAFKALX
     m085.pep
                  AGDIVLLSPACASFDMFKGYAHRSEVFIEAFKALX
     g085
                          70
                                    80
                                              90
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 269>:
a085.seq
          ATGGGCAAAG GGCAGGACTT CACGCCCCTG CGCGACGCGC TTGCCGGCAA
       1
          GGCAAAAGGC GTGTTCCTGA TCGGTGTCGA TGCGCCGCAA ATCCGCCGCG
      51
          ATTTGGACGG CTGCGATCTG AATATGACCG ACTGCGCCAC TTTGGAAGAA
     101
          GCGGTTCAGA AGGCATATGC CCAAGCCGAA GCGGGCGATA TCGTGCTGCT
     151
          CAGCCCCGCC TGCGCGAGTT TCGATATGTT TAAAGGCTAC GCGCACCGTT
          CGGAAGTGTT TATCGGGGCG TTTAAGGCTT TGTGA
This corresponds to the amino acid sequence <SEQ ID 270; ORF 085.a>:
a085.pep
          MGKGODFTPL RDALAGKAKG VFLIGVDAPO IRRDLDGCDL NMTDCATLEE
       1
          AVQKAYAQAE AGDIVLLSPA CASFDMFKGY AHRSEVFIGA FKAL*
      51
             94.7% identity over a 94 aa overlap
m085/a085
                                                             50
                               20
                                         30
                                                   40
                     10
             MGKGQDFTPLRDALVGKAKGVFLIGVDAPQIRRDLDGCGLNMTDCATLGEAVQTAYAQAE
```

```
MGKGQDFTPLRDALAGKAKGVFLIGVDAPQIRRDLDGCDLNMTDCATLEEAVQKAYAQAE
a085
                              20
                                                 40
                              80
            AGDIVLLSPACASFDMFKGYAHRSEVFIEAFKALX
m085.pep
            AGDIVLLSPACASFDMFKGYAHRSEVFIGAFKALX
a085
                    70
                              80
                                        90
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 271>:
     g086.seq
               ATGGTGGTGC TGATGACGGC GTTCGGCCTG CTGATGATTT ATTCGGCTTC
            1
              TGTGTATTTG GCATCGAAGG AAGGCGGCGA TCAGTTTTTC TATTTGACCA
           51
          101
              GGCAGGCGGG GTTCGTCGTT GCCGGCCTTA TAGCGAGCGG TTTTTTATGG
              TTTCTTTGCA GGATGAGGAC ATGGCGGCGG CTTGTGCCGT GGATTTTTGC
          151
              CTTATCCGGC CTGTTGCTGG TAGCCGTATT GATTGCCGGG CGCGAAATCA
          251 ATGGCGCGAC CCGTTGGATA CCTTTGGGTC CGTTGAATTT CCAGCCGACC
          301 GAGCTGTTCA AGCTGGCAGT CATCCTTTAT TTGGCAAGCC TGTTCACGCG
          351 CCGTGAAGAA GTGTTGCGCA GCATGGAAAG TTTGGGTTGG CAGTCGATTT
          401 GGCGGGGAC GGCCAACCTG ATTATGTCCG CCACCAATCC GCAGGCACGT
          451
              CGTGAAACAT TAGAAATGTA CGGCCGTTTC CGGGCGATCA TCCTGCCGAT
               TATGCTGGTG GCGTTCGGTT TGGTGCTGAT AATGGTACAG CCGGATTTCG
              GTTCGTTTGT CGTCATTACC GTCATTACCG TTGGAATGCT GTTTCTGGCA
              GGATTGCCGT GGAAATATTT TTTTGTCCTG GTAGGCAGCG TCTTGGGTGG
          601
          651 GATGGTGCTG ATGATTACCG CCGCTCCCTA CCGTGTGCAG CGGGTAGTGG
          701 CATTTTGGA CCCGTGGAAA GACCCGCAGG GTGCCGGCTA CCAGCTTACC
          751 CACTCTCTGA TGGCAATCGG GCGCGGAGAG TGGTTCGGTA TGGGTTTGGG
          801 TGCGAGTTTG AGCAAACGCG GCTTTCTGCC GGAAGCGCAT ACCGATTTTA
          851 TTTTTGCCAT CATCGCTGAA GAATTCGGCT TCTTCGGGAT GTGCGTGCTG
          901 ATATTCTGTT ACGGCTGGCT GGTGGTGCGG GCGTTTTCCA TCGGCAAGCA
          951 GTCGCGCGAT TTGGGtttgA CTTTCAACGC CTATATCGCT TCGGGTATCG
         1001 GCATTTGGAT CGGTATCCAA AGTTTCTTCA ATATCGGTGT GAACATCGGT
              GCTTTGCCGA CCAAAGGTCT GACGctqCcg tTGATGTCCT ATGGcqqTTC
         1101 GTCAGTCTTT TTCATGCTGA TCAGCATGAT GCTGCTGTTG CGTATCGATT
         1151 ATGAAAACCG CCAGAAAATG CGCGGTTACC GGGTGGAGTA AA
This corresponds to the amino acid sequence <SEQ ID 272; ORF 086.ng>:
     q086.pep
              MVVLMTAFGL LMIYSASVYL ASKEGGDQFF YLTRQAGFVV AGLIASGFLW
               FLCRMRTWRR LVPWIFALSG LLLVAVLIAG REINGATRWI PLGPLNFQPT
           51
               ELFKLAVILY LASLFTRREE VLRSMESLGW QSIWRGTANL IMSATNPQAR
          151 RETLEMYGRF RAIILPIMLV AFGLVLIMVQ PDFGSFVVIT VITVGMLFLA
              GLPWKYFFVL VGSVLGGMVL MITAAPYRVQ RVVAFLDPWK DPQGAGYQLT
          201
          251 HSLMAIGRGE WFGMGLGASL SKRGFLPEAH TDFIFAIIAE EFGFFGMCVL
          301 IFCYGWLVVR AFSIGKQSRD LGLTFNAYIA SGIGIWIGIQ SFFNIGVNIG
          351 ALPTKGLTLP LMSYGGSSVF FMLISMMLLL RIDYENRQKM RGYRVE*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 273>:
     m086.sea
               ATGGTGGTGC TGATGACGGC GTTCAGCCTG CTGATGATTT ATTCGGCTTC
            1
              TGTGTATTTG GCATCAAAAG AAGGCGGCGA TCAGTTTTTC TATTTGACCA
           51
          101 GACAGGCGGG GTTCGTCGTT GCCGGCTTGA TAGCGAGCGG TTTGTTATGG
          151 TTTCTTTGCA GGATGAGGAC ATGGCGGCGG CTTGTGCCGT GGATTTTTGC
          201 CCTATCCGGC CTGTTGCTGG TAGTCGTATT GATTGCCGGG CGCGAAATCA
          251 ATGGCGCGAC CCGTTGGATA CCTTTGGGTC CGTTGAATTT CCAGCCGACC
          301 GAGCTGTTCA AGCLGGCGGT CATCCTTTAT TTGGCAAGCC TGTTCACGCG
          351 CCGTGAAGAA GTGTTGcGCA GCATGGAAAG TTTGGGTTGG CAGTCGATTT
               GGCGGGGGAC GGCCAATCTG ATCATGTCCG CCACCAATCC GCAGrCACGT
          451 CGTGAAACAT TAGAAATGTA CGGCCGTwTC CGGGCGATCA TCCTGCCGAT
          501 TATGCTGGTG GCGTTCGGTT TGGTGCTGAT AATGGTACAG CCGGATTTCG
```

```
551 GTTCGTTTGT CGTCATTACC GTCATTGCCG TTGGAATGCT GTTTTTGGCA
601 GGATTGCCGT GGAAATATTT TTTCGTCCTG GTAGGCAGCG TCTTGGGCGG
651 GATGGTGCTG ATGATTACCG CCGCTCCCTA CCGTGTGCAG CGGGTAGTGG
701 CATTTTTGGA CCCGTGGAAA GACCCGCAGG GTGCCGGCTA CCAGCTTACC
751 CACTCTCTGA TGGCAATCGG GCGCGAGAG TGGTTCGGTA TGGGTTTGGG
801 TGCGAGTTTG AGCAAACGCG GCTTTCTGCC GGAAGCGCAT ACCGATTTTA
851 TTTTTGCCAT CATCGCCGAA GAATTCGGTT TCTTCGGTAT GTGCGTGCTG
901 ATATTCTGTT ACGGCTGCT GGTGGTGCG GCGTTTTCCA TCGGCAAGCA
951 GTCGCGCGAT TTGGGTTTGA CTTTCAACGC CTATATCGCT TCGGGTATCG
1001 GCATTTGGAT CGGKrTCCAA AGTTTCTCA ATATCGGTG GAACATCGGT
1051 GCTTTGCCGA MCAAAGGYCT GACGCYGCCG Tg.ALGTCW ATGGCGGTTC
1101 GTCAGTCTT TTCATGCTGA TCAGCATGAT GCTGCTGTKG CGTATAGATT
1151 ATGAAAACCG CCGGAAAATG CGCGGTTATC GGGTGGAGTA A
```

This corresponds to the amino acid sequence <SEQ ID 274; ORF 086>:

m086.pep

1	MVVLMTAFSL	LMIYSASVYL	ASKEGGDQFF	YLTRQAGFVV	AGLIASGLLW
51	FLCRMRTWRR	LVPWIFALSG	LLLVVVLIAG	REINGATRWI	PLGPLNFQPT
101	ELFKLAVILY	LASLFTRREE	VLRSMESLGW	QSIWRGTANL	IMSATNPQXR
151	RETLEMYGRX	RAIILPIMLV	AFGLVLIMVQ	PDFGSFVVIT	VIAVGMLFLA
201	GLPWKYFFVL	VGSVLGGMVL	MITAAPYRVQ	RVVAFLDPWK	DPQGAGYQLT
251	HSLMAIGRGE	WFGMGLGASL	SKRGFLPEAH	TDFIFAIIAE	EFGFFGMCVL
301	IFCYGWLVVR	AFSIGKQSRD	LGLTFNAYIA	SGIGIWIGXQ	SFFNIGVNIG
351	ALPXKGLTXP	XMSXGGSSVF	FMLISMMLLX	RIDYENRRKM	RGYRVE*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 086 shows 96.7% identity over a 396 aa overlap with a predicted ORF (ORF 086.ng) from N. gonorrhoeae:

m086/g086

m086.pep	10 MVVLMTAFSLLMIYS	20 ASVYLASKEG	30 GDQFFYLTRQA	40 AGFVVAGLIAS	50 GLLWFLCRMI	60 RTWRR
g086	: MVVLMTAFGLLMIYS	 ASVYLASKEG(GDQFFYLTRQA			 RTWRR
	10	20	30	40	50	60
	70	80	90	100	110	120
m086.pep	LVPWIFALSGLLLVV	VLIAGREING	ATRWIPLGPLI	NFOPTELFKLA	VILYLASLF?	TRREE
g086	LVPWIFALSGLLLVA					
	70	80	90	100	110	120
	130	140	150	160	170	180
m086.pep	VLRSMESLGWQSIWR					
oo.pop			HIL HILLI		IIIIIIIIIII	LILLI
g086	VLRSMESLGWQSIWR	IIIIIIIIIIIIIII	III IIIIII «TD∩ADDETTIEN		.	IIIII
9000	130	140	150	160	170	180
	150	140	130	100	170	100
	190	200	210	220	230	240
m086.pep	PDFGSFVVITVIAVG	MLFLAGLPWK	YFFVLVGSVLO	GMVLMITAAI	YRVQRVVAF	LDPWK
						$\Pi\Pi\Pi$
g086	PDFGSFVVITVITVG	MLFLAGLPWK	YFFVLVGSVLO	GMVLMITAA	YRVQRVVAFI	LDPWK
	190	200	210	220	230	240
	250	260	270	280	290	300
m086.pep	DPQGAGYQLTHSLMA:	[GRGEWFGMG]	LGASLSKRGFI	PEAHTDFIFA	IIAEEFGFF	3MCVL
~006						
g086	DPQGAGYQLTHSLMA:				AIIAEEFGFF	
	250	260	270	280	290	300
	310	320	330	340	350	360

	70	80	90	100	110	120
	, 0	00	2.0	200	110	
	130	140	150	160	170	180
m086.pep	VLRSMESLGWQSI	VRGTANLIMSA	TNPQXRRETI	LEMYGRXRAI I	LPIMLVAFG	
			TNDOADDER	EMACDED VI		
a086	VLRSMESLGWQSIV	VRGTANLIMSA 140	150	160	170	180
	130	2.70				
	190	200	210	220	230	240
m086.pep	PDFGSFVVITVIA	/GMLFLAGLPW	KYFFVLVGS	/LGGMVLMITA	APYRVQRVV.	AFLDPWK
a086	PDFGSFVVITVIA		HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	/ /T.GGMVT.MTT7	IIIIIIIIIIIIIAPYRVORVV	
a066	190	200	210	220	230	240
	250	260	270	280	290	300
m086.pep	DPQGAGYQLTHSLI	MAIGRGEWFGM	GLGASLSKRO	GFLPEAHTDF]	FAIIAEEFG	FFGMCVL
a086	DPOGAGYOLTHSLI	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	FILPEAHTDE!	FATTAEEFG	
2000	250	260	270	280	290	300
	310	320	330	340	350	360
m086.pep	IFCYGWLVVRAFS	IGKQSRDLGLI	FNATIASGI	TMIGYÖSEEL	NIGVNIGALP	VVGPIVE
a086	IFCYGWLVVRAFS:	IGKOSRDLGLT	FNAYIASGI	GIWIGIQSFF	NIGVNIGALP	TKGLTLP
4000	310	320	330	340	350	360
006	370 XMSXGGSSVFFML	380	390	OVEV		
m086.pep	XMSXGGSSVFFML	IIIIII IIII	ENKKREKGI	IIII		
a086	LMSYGGSSVFFML	ISMMLLLRIDY	ENRRKMRGY	RVEX		
	370	380	390			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 277>: g087.seq

```
ATGGGCGGTA AAACCTTTAT GCTGATGGCG GGCGGAACGG GCGGACACAT
 51 TTTCCCAGCT CTGGCTGTGG CGGATTCATT GCGCGTGCGC GGTCATCATG
101 TAATTTGGCT GGGCAGCAAG GATTCGATGG AAGAGCGCAT CGTGCCGCAA
151 TACGGCATAC GCTTGGAAAC GCTGGCGATT AAAGGAATAC GCGGCAACGG
201 CATCAAACGC AAGCTGATGC TTCCGTTTAC TCTGTACAAA ACCGTCCGCG
251 AAGCGCAGCG GATTATCCGC AAACACCGTG TCGAGTGCGT CATCGGCTTC
301 GGCGGTTTTG TTACCTTTCC CGGCGGTCTG GCGGCGAAAC TCTTGGGCGT
351 GCCGATTGTG ATTCACGAGC AAAACGCCGT GGCAGGCTTG TCCAACCGCC
401 ACCTGTCGC9 CtGGGCGAAA CGGGTGTTGT ACGCTTTTCC GAAAGCGTTC
451 AGCCACGAAG GCGGTTTGGT CGGCAACCCC GTCCGCGCCG ATATTAGCAA
     CCTGCCCGTG CCTGCCGAAC GCTTCCAAGG GCGCGAAGGC CGTCTGAAAA
     TTTTGGTGGT CGGCGGCAGT TTGGGTGCGG ACGTTTTGAA CAAAACCGTA
 601 CCGCAGGCGT TGGCACTGCT GCCTGAAGAG GTGCGCCCGC AGATGTACCA
 651 CCAGTCGGGG CGTAACAAGC TGGGCAATCT TCAGGCGGAT TATGACGCGT
 701 TGGGCGTGAA AGCGGAATGC GTGGAATTTA TTACCGACAT GGTGTCCGCC
 751 TACCGTGATG CCGATTTGGT GATTTGCCGT GCCGGCGCGC TGACGATTGC
 801 CGAGTTGACG GCGGCGGGC TGGGCGCGTT GTTAGTGCCG TATCCTCACG
 851 CCGTTGATGA CCATCAAACC GCCAACGCGC GTTTCATGGT GCAGGCAGAA
 901 GCGGGGCTGC TGTTGCCGCA AACCCAGTTG ACGGCGGAAA AACTCGCCGA
 951 AATCCTCGGC AGCCTCAACC GCGAAAAATG CCTCAAATGG GCGGAAAACG
1001 CCCGTACGTT GGCATTGCCG CACAGCGCGG ATGACGTTGC CGAAGCCGCG
1051 ATTGCGTGTG CGGCGTAAA
```

This corresponds to the amino acid sequence <SEQ ID 278; ORF 087.ng>: 9087.pep

pep					
1	MGGKTFMLMA	GGTGGHIFPA	LAVADSLRVR	GHHVIWLGSK	DSMEERIVPQ
51	YGIRLETLAI	KGIRGNGIKR	KLMLPFTLYK	TVREAQRIIR	KHRVECVIGE
101	GGFVTFPGGL	AAKLLGVPIV	IHEQNAVAGL	SNRHLSRWAK	RVLYAFPKAF
151	SHEGGLVGNP	VRADISNLPV	PAERFOGREG	RLKILVVGGS	LGADVLNKTV

```
201 PQALALLPEE VRPQMYHQSG RNKLGNLQAD YDALGVKAEC VEFITDMVSA
              YRDADLVICR AGALTIAELT AAGLGALLVP YPHAVDDHQT ANARFMVQAE
         251
              AGLLLPOTOL TAEKLAEILG SLNREKCLKW AENARTLALP HSADDVAEAA
              IACAA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 279>:
    m087.seq
             ATGGGCGGTA AAACCTTTAT GCTGAwkkCG GGCGGAACGG GCGGACATAT
           1
              TTTCCCCGCG CTGGCGGTGG CGGATTCATT GCGCGCGCGC GGCCATCATG
          51
         101
              TGATTTGGCT GGGCAGCAAG GATTCGATGG AAGAGCGTAT CGTGCCGCAA
              TACGGCATAC GCTTGGAAAC GCTGGCGATT AAAGGCGTGC GCGGCAACGG
         151
              CATCAAACGC AAACTGATGC TGCCGGTTAC TTTGTATCAA ACCGTCCGCG
         201
              AAGCGCAGCG GATTATCCGC AAACACCGTG TCGAGTGCGT CATCGGCTTC
         251
              GGCGGCTTCG TTACCTTCCC CGGCGGTTTG GCGGCGAAGC TATTArGCGT
         301
              GCCGATTGTG ATTCACGAGC AAAACGCCGT GGCAGGTTTG TCCAACCGCC
         351
              ACCTGTCGCG CTGGGCGAAG CGGGTGTTGT ACGCTTTTCC GAAAGCGTTC
         401
         451
              AGCCACGAG GCGGCTTGGT CGGCAACCCC GTCCGCGCCG ATATTAGCAA
              CCTGCCGTG CCTGCCGAAC GCTTCCAAGG GCGTGAAGGC CGTCTGAAAA
              TTTTGGTGGT CGGCGGCAGT TTGGGCGCGG ACGTTTTGAA CAAAACCGTA
         551
              CCGCATGCAT TGGCTTTGCT GCCCGACAAT GCGCGTCCGC ATATGTACCA
         601
              CCAATCGGGA CGGGGCAAGC TGGGCATCTT GCAGGCGnnn nnnnnnnn
         651
              701
              nnngcgggat tgggtgcgtt gttagtgccg tatcctcacg cggttgacga
         751
              TCACCAAACC GCCAACGCGC GTTTTATGGT GCAGGCGGAG GCGGGATTGC
              TGTTGCCGCA AACCCAGTTG ACGCCGAAA AACTCGCCGA GATTCTCGGC
         851
              GGCTTAAACC GCGAAAAATG CCTCAAATGG GCAGAAAACG CCCGTACGTT
         901
              GGCACTGCCG CACAGTGCGG ACGACGTGGC GGAAGCCGCG ATTGCGTGTG
         951
        1001
              CGGCGTAA
This corresponds to the amino acid sequence <SEQ ID 280; ORF 087>:
    m087.pep
              MGGKTFMLXX GGTGGHIFPA LAVADSLRAR GHHVIWLGSK DSMEERIVPQ
           1
              YGIRLETLAI KGVRGNGIKR KLMLPVTLYQ TVREAQRIIR KHRVECVIGF
          51
              GGFVTFPGGL AAKLLXVPIV IHEQNAVAGL SNRHLSRWAK RVLYAFPKAF
         101
              SHEGGLVGNP VRADISNLPV PAERFQGREG RLKILVVGGS LGADVLNKTV
         151
              PHALALLPDN ARPHMYHQSG RGKLGILQAX XXXXXXXXX XXXXXXXXX
              XAGLGALLVP YPHAVDDHQT ANARFMVQAE AGLLLPQTQL TAEKLAEILG
         251
              GLNREKCLKW AENARTLALP HSADDVAEAA IACAA*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 087 shows 83.9% identity over a 355 aa overlap with a predicted ORF (ORF 087.ng)
from N. gonorrhoeae:
    m087/g087
                                  20
                                           30
                                                    40
                 MGGKTFMLXXGGTGGHIFPALAVADSLRARGHHVIWLGSKDSMEERIVPQYGIRLETLAI
     m087.pep
                 MGGKTFMLMAGGTGGHIFPALAVADSLRVRGHHVIWLGSKDSMEERIVPQYGIRLETLAI
     g087
                        10
                                  20
                                                    40
                                                                       60
                        70
                                  80
                                           90
                                                   100
                                                             110
                                                                      120
                 {\tt KGVRGNGIKRKLMLPVTLYQTVREAQRIIRKHRVECVIGFGGFVTFPGGLAAKLLXVPIV}
     m087.pep
                 KGIRGNGIKRKLMLPFTLYKTVREAQRIIRKHRVECVIGFGGFVTFPGGLAAKLLGVPIV
     q087
                        70
                                  80
                                           90
                                                    100
                                                             110
                                                                      120
                                 140
                                          150
                                                    160
                                                             170
                                                                      180
                 IHEQNAVAGLSNRHLSRWAKRVLYAFPKAFSHEGGLVGNPVRADISNLPVPAERFQGREG
     m087.pep
                 g087
                 IHEQNAVAGLSNRHLSRWAKRVLYAFPKAFSHEGGLVGNPVRADISNLPVPAERFQGREG
```

140

150

170

160


```
100
                           80
                                    90
                                                     110
                  70
           KGVRGNGIKRKLMLPVTLYQTVREAQRIIRKHRVECVIGFGGFVTFPGGLAAKLLXVPIV
m087.pep
            KGVRGNGIKRKLMLPFTLYQTVREAQQIIRKHRVECVIGFGGFVTFPGGLAAKLLGVPIV
a087
                           80
                                    90
                                            100
                  70
                          140
                                   150
                                            160
                                                     170
                                                              180
                  130
           IHEQNAVAGLSNRHLSRWAKRVLYAFPKAFSHEGGLVGNPVRADISNLPVPAERFQGREG
m087.pep
            IHEQNAVAGLSNRHLSRWAKRVLYAFPKAFSHEGGLVGNPVRADISNLPVPAERFQGREG
a087
                                                              180
                  130
                          140
                                   150
                                            160
                          200
                                   210
                                            220
           RLKILVVGGSLGADVLNKTVPHALALLPDNARPHMYHQSGRGKLGILQAXXXXXXXXXXXX
m087.pep
            RLKILVVGGSLGADVLNKTVPQALALLPDNARPQMYHQSGRGKLGSLQADYDALGVQAEC
a087
                           200
                  190
                                            260
                                                              280
                                    250
           XX-----XXXXXXXXXAGLGALLVPYPHAVDDHQTANARFMVQAE
m087.pep
                                    VEFITDMVSAYRDADLVICRAGALTIAELTAAGLGALLVPYPHAVDDHQTANARFMVQAE
a087
                                    270
                                            280
                                                     290
                           300
                                    310
                                            320
                                                     330
                  290
            AGLLLPOTOLTAEKLAE I LGGLNREKCLKWAENARTLALPHSADDVAEAAIACAAX
m087.pep
            AGLLLPQTQLTAEKLAEILGGLNREKCLKWAENARTLALPHSADDVAEAAIACAAX
a087
                                             340
                                    330
                  310
                           320
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 283>:
q088.seq
         ATGTTTTTAT GGCTCGCACA TTTCAGCAAC TGGTTAACCG GTCTGAATAT
        TTTTCAATAC ACCACATTCC GCGCCGTTAT GGCGGCGTTG ACCGCCTTGG
     51
        CGTTTTCCCT GATGTTCGGC CCGTGGACGA TACGCAGGCT GACCGCGCTC
    101
         AAATGCGGGC AGGCAGTGCG TACCGACGGC CCGCAAACCC ACCTCGTCAA
    151
         AAACGGCACG CCGACGATGG GCGGTTCGCT GATTCTGACC GCCATTACCG
    201
         TGTCCACCCT GTTGTGGGGC AACTGGGCGA ACCCGTATAT CTGGATTCTC
    251
         TTGGGCGTAC TGCTTGCCAC CGGTGCGCTC GGTTTTTACG ACGACTGGCG
         CAAAGTCGTT TATAAAGACC CCAACGGCGT GTCCGCCAAA TTCAAAATGG
    351
         TGTGGCAGTC AAGCGTTGCC GTTatcgcCG GTttggcaTT GTTTTACctt
    401
    451
         GCGCCAATT CCGCCAACAA TATTTTGATT GTCCCGtttT TCAAACAAAT
        CGCCCTGCCG CTGGGCGTGG TCGGCTTttt gGtgttgTCT TACCTGACCA
        TCGTCGGCAC ATCCAACGCC GTCAACCTCA CcgaCGGCTT GGACGGCCTT
        GCCGCcttcc cgttcgtcct cgttgccgcC GGGCTCGCCA ttttcgccTA
        CGTCAGCGGA CACTACCAAT TTTCCCAATA CCTCCAGCTT CCCTATGTCG
    651
         CCGGCGCGAA CGAAGTCGCT ATATTCTGCA CCGCCATGTG CGGCGCGTGC
     701
         CTCGGATTTT TGTGGTTCAA CGCCTATCCC GCGCAAGTCT TTATGGGCGA
         TGTCGGCGCG CTGGCATTGG GTGCCGCGCT CGGTaccGtt gCCGTcaTcg
```

This corresponds to the amino acid sequence <SEQ ID 284; ORF 088.ng>: g088.pep

1101 ACCTTTCAGA CGGCATTTGA ACGCGCAATA A

1001 aagaaacgca agtcgtcgtc CGTTtCTGGA TTAtTAccat cgtcgtggtt tTgataggtt tGagtacccT caAAattcgc ggaaactatg ccgTCCGAAC

901

951

1051

MFLWLAHFSN WLTGLNIFQY TTFRAVMAAL TALAFSLMFG PWTIRRLTAL 1

tCCGCCAAGA ATTTGTcctc gtcattaTGG GCGGTCTGTT cgtcgtagaa gccgtgTCCG TTATGCTTCa tgtcggCTGG TACAAGAAAA Ccaaaaaacg

CATCTTcCTg acgGcaccga ttcatcacca ttaCCaactt cgatgCTGGa

- KCGQAVRTDG PQTHLVKNGT PTMGGSLILT AITVSTLLWG NWANPYIWIL 51
- LGVLLATGAL GFYDDWRKVV YKDPNGVSAK FKMVWQSSVA VIAGLALFYL
- AANSANNILI VPFFKQIALP LGVVGFLVLS YLTIVGTSNA VNLTDGLDGL

```
201 AAFPFVLVAA GLAIFAYVSG HYQFSQYLQL PYVAGANEVA IFCTAMCGAC
    251 LGFLWFNAYP AQVFMGDVGA LALGAALGTV AVIVRQEFVL VIMGGLFVVE
    301 AVSVMLHVGW YKKTKKRIFL TAPIHHHYQL RCWKETQVVV RFWIITIVVV
    351 LIGLSTLKIR GNYAVRTPFR RHLNAQ*
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 285>:
m088.seq
        ATGTTTTAT GGCTCGCACA TTTCAGCANC TGGTTAACCG GTCTGAATnn
     1
        51
    501 nnnnnnnn nnnGGCGTGG TCGGCTTTTT GGTGTTGTCT TACCTGACCA
    551 TCGTCGGCAC ATCCAATGCC GTCAACCTCA CCGACGGCTT GGACGGCCTT
    601 GCGACCTTCC CCGTCGTCCT CGTTGCCGCC GGCCTCGCCA TCTTCGCCTA
    651 TGCCAGCGGC CACTCACAAT TTGCCCAATA CCTGCAATTA CCTTACGTTG
    701 CCGGCGCAAA CGAAGTGGTG ATTTTCTGTA CCGCCATGTG CGGCGCGTGC
    751 CTCGGTTTCT TGTGGTTTAA CGCCTATCCC GCGCAAGTCT TTATGGGCGA
   801 TGTCGGTGCA TTGGCATTGG GTGCCGCGCT CGGTACCGT GCCGTTATCG
851 TCCGCCAAGA GTTTGTCCTC GTCATTATGG GCGGATTATT TGTCGTAGAA
901 GCCGTATCCG TTATGCTTCA GGTTGGCTGG TATAAGAAAA CCAAAAAACG
951 CATCTTCCTG ATGGCGCCCA TCCATCACCA CTACGAACAA AAAGGCTGGA
1001 AAGAAACCCA AGTCGTCGTC CGCTTTTGGA TTATTACCAT CGTCTTGGTG
   1051 TTGATCGGTT TGAGTACCCT CAAAATCCGC TGAACCTATG CCGTCTGAAC
   1101 ATCTTTCAGA CGGCATTTGA ACGCGCAATA A
      1 MFLWLAHFSN WLTGLNIFQY TTFRAVMAAL TALAFSLMFG PWTIRRLTAL
     51 KCGQAVRTDG PQTHLVKNGT PTMGGSLILT AITVSTLLWG NWANPYIWIL
    101 LGVLLATGAL GFYDDWRKVV YKDPNGVSAK FKMVWQSSVA VIAGLALFYL
    151 AANSANNILI VPFFKQIALP LGVVGFLVLS YLTIVGTSNA VNLTDGLDGL
    201 AAFPFVLVAA GLAIFAYVSG HYQFSQYLQL PYVAGANEVA IFCTAMCGAC
        LGFLWFNAYP AQVFMGDVGA LALGAALGTV AVIVRQEFVL VIMGGLFVVE
    251
301
        AVSVMLHVGW YKKTKKRIFL TAPIHHHYQL RCWKETQVVV RFWIITIVVV
    351 LIGLSTLKIR GNYAVRTPFR RHLNAQ*
This corresponds to the amino acid sequence <SEQ ID 286; ORF 088>:
m088.pep
        MFLWLAHFSX WLTGLNXXXX XXXXXXXXXX XXXXXXXXX XXXXXXXXX
      1
        151 XXXXXXXXX XXXXXXXXX XGVVGFLVLS YLTIVGTSNA VNLTDGLDGL
    201 ATFPVVLVAA GLAIFAYASG HSQFAQYLQL PYVAGANEVV IFCTAMCGAC
    251 LGFLWFNAYP AQVFMGDVGA LALGAALGTV AVIVRQEFVL VIMGGLFVVE
    301 AVSVMLQVGW YKKTKKRIFL MAPIHHHYEQ KGWKETQVVV RFWIITIVLV
     351 LIGLSTLKIR XTYAVXTSFR RHLNAQ*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 088 shows 91.7% identity over a 205 aa overlap with a predicted ORF (ORF 088.ng)
from N. gonorrhoeae:
m088/g088
                                           10
                                    GVVGFLVLSYLTIVGTSNAVNLTDGLDGLA
m088.pep
                                     IAGLALFYLAANSANNILIVPFFKQIALPLGVVGFLVLSYLTIVGTSNAVNLTDGLDGLA
g088
                150 160
                                 170
                                         180
                                                  190
```

```
60
                            50
                   40
            TFPVVLVAAGLAIFAYASGHSQFAQYLQLPYVAGANEVVIFCTAMCGACLGFLWFNAYPA
m088.pep
            AFPFVLVAAGLAIFAYVSGHYQFSQYLQLPYVAGANEVAIFCTAMCGACLGFLWFNAYPA
a088
                                             240
                          220
                                    230
                                              130
                                                       140
                                     120
                  100
                           110
            QVFMGDVGALALGAALGTVAVIVRQEFVLVIMGGLFVVEAVSVMLQVGWYKKTKKRIFLM
m088.pep
            QVFMGDVGALALGAALGTVAVIVRQEFVLVIMGGLFVVEAVSVMLHVGWYKKTKKRIFLT
g088
                                             300
                 270
                           280
                                    290
                                     180
                                              190
                  160
                           170
            APIHHHYEQKGWKETQVVVRFWIITIVLVLIGLSTLKIRXTYAVXTSFRRHLNAQX
m088.pep
            APIHHHYQLRCWKETQVVVRFWIITIVVVLIGLSTLKIRGNYAVRTPFRRHLNAQX
q088
                                    350
                                             360
                                                      370
                 330
                           340
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 287>:
a088.seq
         ATGTTTTAT GGCTCGCACA TTTCAGCAAC TGGTTAACCG GTCTGAATAT
         TTTTCAATAC ACCACATTCC GCGCCGTCAT GGCGGCGTTG ACCGCCTTGG
     51
        CGTTTTCCCT GATGTTCGGC CCGTGGACGA TACGCAGGCT GACCGCGCTC
    101
    151 AAATGCGGGC AGGCAGTGCG TACCGACGGT CCGCAAACCC ACCTCGTCAA
     201 AAACGGCACG CCGACGATGG GCGGTTCGCT GATTCTGACC GCCATTACCG
         TGTCCACCCT GTTGTGGGGC AACTGGGCAA ACCCGTATAT CTGGATTCTC
         TTGGGCGTAT TGCTCGCCAC GGGCGCACTC GGTTTTTACG ACGACTGGCG
     301
    351 CAAAGTCGTC TATAAAGACC CCAACGGCGT GTCCGCCAAA TTCAAAATGG
         TGTGGCAGTC AAGCGTTGCC ATTATCGCCG GTTTGGCATT GTTTTACCTT
     401
         GCCGCCAATT CCGCCAACAA TATTTTGATT GTCCCGTTCT TCAAACAAAT
     451
         CGCCCTGCCG CTGGGCGTGG TCGGCTTTTT GGTGTTGTCT TACCTGACCA
     501
        TCGTCGGCAC ATCCAATGCC GTCAACCTCA CCGACGGCTT GGACGGCCTT
     551
     601 GCGACCTTCC CCGTCGTCCT CGTTGCCGCC GGCCTCGCCA TCTTCGCCTA
     651 TGCCAGCGGC CACTCACAAT TTGCCCAATA CCTGCAATTA CCTTACGTTG
     701 CCGGCGCAAA CGAAGTGGTG ATTTTCTGTA CCGCCATGTG CGGCGCGTGC
         CTCGGTTTCT TGTGGTTTAA CGCCTATCCC GCGCAAGTCT TTATGGGCGA
     751
         TGTCGGTGCA TTGGCATTGG GTGCCGCGCT CGGTACCGTC GCCGTCATCG
     801
     851 TCCGCCAAGA GTTTGTCCTC GTCATTATGG GCGGATTATT TGTCGTAGAA
     901 GCCGTATCCG TTATGCTTCA GGTCGGCTGG TATAAGAAAA CCAAAAAACG
     951 CATCTTCCTG ATGGCGCCCA TCCATCACCA CTACGAACAA AAAGGCTGGA
         AAGAAACCCA AGTCGTCGTC CGCTTTTGGA TTATTACCAT CGTCTTGGTG
    1001
    1051 TTGATCGGTT TGAGTACCCT CAAAATCCGC TGAACCTATG CCGTCTGAAC
    1101 ACCTTTCAGA CGGCATTTGA ACGCGCAATA A
This corresponds to the amino acid sequence <SEQ ID 288; ORF 088.a>:
a088.pep
         MFLWLAHFSN WLTGLNIFQY TTFRAVMAAL TALAFSLMFG PWTIRRLTAL
         KCGQAVRTDG PQTHLVKNGT PTMGGSLILT AITVSTLLWG NWANPYIWIL
      51
         LGVLLATGAL GFYDDWRKVV YKDPNGVSAK FKMVWQSSVA IIAGLALFYL
     101
          AANSANNILI VPFFKQIALP LGVVGFLVLS YLTIVGTSNA VNLTDGLDGL
     151
         ATFPVVLVAA GLAIFAYASG HSQFAQYLQL PYVAGANEVV IFCTAMCGAC
     201
         LGFLWFNAYP AQVFMGDVGA LALGAALGTV AVIVRQEFVL VIMGGLFVVE
     251
         AVSVMLQVGW YKKTKKRIFL MAPIHHHYEQ KGWKETQVVV RFWIITIVLV
     301
         LIGLSTLKIR *TYAV*TPFR RHLNAQ*
     351
            99.5% identity over a 205 aa overlap
m088/a088
                           160
                                    170
                                              180
            m088.pep
```

IAGLALFYLAANSANNILIVPFFKQIALPLGVVGFLVLSYLTIVGTSNAVNLTDGLDGLA

a088

WO 99/057280 PCT/US99/09346

283

	150	160	170	180	190	200
	210	220	230	240	250	260
m088.pep	TFPVVLVAAGLAII	FAYASGHSQF	AQYLQLPYVA	GANEVVIFCT	`AMCGACLGFL	WFNAYPA
	1:11:11:11:1				1111111111	111111
a088	TFPVVLVAAGLAI	TAYASGHSQF	AQYLQLPYVA	GANEVVIFC1	AMCGACLGFL	WFNAYPA
	210	220	230	240	250	260
	270	280	290	300	310	320
m088.pep	QVFMGDVGALALG	AALGTVAVIV	RQEFVLVIMG	GLFVVEAVSV	MLQVGWYKKT	KKRIFLM
	<u> </u>		111111111	111111111	111111111	111111
a088	OVFMGDVGALALG	AALGTVAVIV	ROEFVLVIMG	GLFVVEAVSV	MLQVGWYKKT	KKRIFLM
	270	280	290	300	310	320
	2,0					
	330	340	350	360	370	
m088.pep	APIHHHYEOKGWK	ETOVVVRFWI	ITIVLVLIGL:	STLKIRXTYA	VXTSFRRHLN	XQX
мосотрор			1111111111			111
a088	APIHHHYEOKGWK	⋷┅⋂ऽऽऽऽऽहस्कार	TTTVIVITGE	STLKTRXTY	VXTPFRRHIN	AOX
a000	330	340	350	360	370	
	330	340	330	300	5,0	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 289>: g089.seq

```
1 ATGCCGCCCA AAATCACGAA GAGCGGGTTT TGCAAACCGG CAATCGCGGC
51 GGCGGTCGCG CCGACATTCG TGCCTTTGCT GTCGTCGATG AATACCACGC
101 CGTTTTTCTC GCCGATTTTT TCCACACGGT GCGGCAAGCC TTGGAAGGTT 151 TTGACGTGTT CCAGCAATGC TTCGCGCGGC AAACCGACGG CCTCGCACAA
201 AGCCACGGCA GCCATAACGT TGGCGGCGTT GTGCAAACCT TGCAGCGGGA
251 TGTCTTGCGT AGAAATCAAA TCTTCATTGC CTTGTTTTAA ACAGCCCGTC
301 CCGCGTTCCA ACCAAAAATC GGCTTCGTGT TCCAAGGAAA ACCGTTTCAC
351 TTCACGCCT GCCCGTTTCA TGGCGCGGCA GAACACGTCG TCCGCATTCA
401 AAACCTGCAC TCCATCGCCA CGGAAAATCT CGGCTTTGGT ATGCGCGTAG
```

This corresponds to the amino acid sequence <SEQ ID 290; ORF 089.ng>: g089.pep

MPPKITKSGF CKPAIAAAVA PTFVPLLSSM NTTPFFSPIF STRCGKPWKV 51 LTCSSNASRG KPTASHKATA AITLAALCKP CSGMSCVEIK SSLPCFKQPV

101 PRSNQKSASC SKENRFTSRP ARFMARQNTS SAFKTCTPSP RKISALVCA*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 291>: m089.seq

ATGCCGCCCA AAATCACKAW GAGCGGATTT TGCAAACCGG CAATCGCGGC 51 GGCAGTCGCG CCGACATTCG TGCCTTTGCT GTCGTCGATA AACACCACGC 101 CGTTTTCTC GCCGATTTTT TCCACGCGGT GCGGCAGGCC TTGGAAGGTT 151 TTGACGTGTT CGAGCAATGC TTCGCGCGAC AAACCGATGG CCTCACAAA 201 AGCCACKGCA GCCATGACGT TAGCGGCGTT GTGCAKACCT TGCAACGGWA 251 TGTCTTGCGT GACAATCAAA TCTTCATTGC CTTGTTTCAG GCGGCCTGTC 301 TCGCGTTCCA ACCAGAAATC AGCTTCGTGT TCCAACGAAA ACCATTTTAC 351 CTCGCGCCCG GCACGCTTCA TCGCGCGGCA GAACGCATCG TCCGCATTCA
401 AAACCTGCAC GCCGTCGCCA CGGAAAATCT TGGCTTTGGT ATGCGCATAG

This corresponds to the amino acid sequence <SEQ ID 292; ORF 089>:

m089.pep MPPKITXSGF CKPAIAAAVA PTFVPLLSSI NTTPFFSPIF STRCGRPWKV 51 LTCSSNASRD KPMASHKATA AMTLAALCXP CNGMSCVTIK SSLPCFRRPV

101 SRSNQKSASC SNENHFTSRP ARFIARQNAS SAFKTCTPSP RKILALVCA*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 089 shows 88.6% identity over a 149 aa overlap with a predicted ORF (ORF 089.ng) from N. gonorrhoeae:

m089/g089

PCT/US99/09346 WO 99/057280

284

```
10
                               20
                                        30
                                                 40
               MPPKITXSGFCKPAIAAAVAPTFVPLLSSINTTPFFSPIFSTRCGRPWKVLTCSSNASRD
    m089.pep
                MPPKITKSGFCKPAIAAAVAPTFVPLLSSMNTTPFFSPIFSTRCGKPWKVLTCSSNASRG
    a089
                                                                   60
                               20
                                        30
                                                 40
                                                100
                               80
                                        90
                KPMASHKATAAMTLAALCXPCNGMSCVTIKSSLPCFRRPVSRSNQKSASCSNENHFTSRP
    m089.pep
                KPTASHKATAAITLAALCKPCSGMSCVEIKSSLPCFKQPVPRSNQKSASCSKENRFTSRP
    q089
                                80
                                        90
                                                100
                       70
                               140
                                       150
                      130
                ARFIARONASSAFKTCTPSPRKILALVCAX
    m089.pep
                g089
                ARFMARQNTSSAFKTCTPSPRKISALVCAX
                                       150
                      130
                               140
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 293>:
a089.seq
        ATGCCGCCTA AAATCACGAA GAGCGGATTT TGCAAACCGG CAATCGCGGC
      1
        GGCGGTCGCA CCGACGTTCG TGCCTTTGCT GTCGTCGATG AACACCACGC
     51
        CATTTTTCTC GCCGATTTTT TCCACGCGGT GCGGCAGGCC TTGAAAGGTT
    101
        TTGACGTGTT CGAGCAATGC TTCGCGCGGC AAACCGACGG CTTCGCACAA
    151
        GGCAACGGCA GCCATCACGT TAGTGGCGTT GTGCAAGCCT TGCAGCGGAA
        TATCTTGCGT GGCAATCAAA TCTTCATTGC CTTGTTTCAG GCGACCTGTC
    251
    301 TCACGTTCCA ACCAAAAATC GGCTTCGTAT TCCAACGAAA ACCATTTCAC
```

This corresponds to the amino acid sequence <SEQ ID 294; ORF 089.a>: a089.pep

MPPKITKSGF CKPAIAAAVA PTFVPLLSSM NTTPFFSPIF STRCGRP*KV 1 LTCSSNASRG KPTASHKATA AITLVALCKP CSGISCVAIK SSLPCFRRPV 51

CTCGCGCCCG GCGCGCTTCA TCGCACGACA GAACGCATCG TCCGCATTCA 401 AAACCTGCAC ACCGTCGCCA CGGAAAATCT TGGCTTTGGT ATGCGCGTAG

SRSNOKSASY SNENHFTSRP ARFIARQNAS SAFKTCTPSP RKILALVCA*

91.9% identity over a 149 aa overlap m089/a089

m089.pep	10 MPPKITXSGFCKPA	20 [AAAVAPTFV	30 PLLSSINTTPI	40 FFSPIFSTRC	50 GRPWKVLTCS	60 SNASRD
a089	MPPKITKSGFCKPA:	LAAAVAPTFV		FFSPIFSTRC	GRPXKVLTCS	SNASRG
4003	10	20	30	40	50	60
	70	80	90	100	110	120
m089.pep	KPMASHKATAAMTLA	AALCXPCNGM	SCVTIKSSLP	CFRRPVSRSN	QKSASCSNEN	HFTSRP
			111:1111		11111 1111	11111
a089	KPTASHKATAAITL	VALCKPCSGI	SCVAIKSSLP	CFRRPVSRSN	QKSASYSNEN	IHFTSRP
	70	80	90	100	110	120
	130	140	150			
m089.pep	ARFIARQNASSAFK'	TCTPSPRKIL	ALVCAX			
	11111111111111	111111111	111111			
a089	ARFIARQNASSAFK'	TCTPSPRKIL	ALVCAX			
	130	140	150			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 295>: g090.seq

ATGCGCGTAG TCGAGCAAAT CGTCGTAGCG GTCGAGATGG TCTTCGGAAA

```
51 TGTTCATCAC CGTCGCCGCA GTCGGGCGCA GGCTTTCGGT GTTTTCCAGT
              TGGAAGCTGG AAAGCTCcca CACCCACACG TCCGCCTTTT TGCCTTCgcg
         101
              ctgCAATtct gcctccaaga cgggcgtacc gatATTGCCC GCAATGAcgg
         201 tatccagece geacttgatg CAGAGatage ggaccagget ggttacegTG
         251 GTTttgccgt tgctgCcggt aatcgCaatc accttgtcgC CGCGGCGGtt
         301 CACAATGTCC qccaGCAATt ggATGTCGCC TAgCACGCGC .ccgccgTTT
         351 TGCttga
This corresponds to the amino acid sequence <SEQ ID 296; ORF 090.ng>:
    g090.pep
              MRVVEQIVVA VEMVFGNVHH RRRSRAQAFG VFQLEAGKLP HPHVRLFAFA
           1
           51 LQFCLQDGRT DIARNDGIQP ALDAEIADQA GYRGFAVAAG NRNHLVAAAV
         101 HNVRQQLDVA XHAXRRFA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 297>:
    m090.seq
              ATGCGCATAG TCGAGCAAGT CGTCGTAGCG GTCGAGATGG TCTTCGGAAA
              TGTTCAGCAC CGTCGCCGCA GTCGGACGCA GGCTTTCGGT GTTTTCCAGT
           51
         101 TGGAAGCTGG AAAGCTCCAA CACCCACACG TCCGCCTTTT TGCCTTCGCG
         151 CTGCCATTCC GCCTCCAAAA CCGGCGTGCC GATATTGCCC GCGATAACGG
         201 TATCCAGCCC GCACTTGATA CAGAGATAGC CGACCAGGCT CGTTACCGTG
         251 GTTTTGCCGT TGCTGCCGGT AATCGCAATT ACCTTGTCGT CCCGGCGGTT
         301 CACAATGTCC GCCAGCAATT CGATGTCGCC CAACACGCGT .CCGCCGTTT
         351 TGCTTGA
This corresponds to the amino acid sequence <SEQ ID 298; ORF 090>:
     m090.pep
              MRIVEOVVVA VEMVFGNVQH RRRSRTQAFG VFQLEAGKLQ HPHVRLFAFA
           51 LPFRLQNRRA DIARDNGIQP ALDTEIADQA RYRGFAVAAG NRNYLVVPAV
          101 HNVRQQFDVA QHAXRRFA*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 090 shows 83.9% identity over a 118 aa overlap with a predicted ORF (ORF 090.ng)
from N. gonorrhoeae:
     m090/g090
                                                                50
                                   20
                                             30
                                                      40
                 \verb"MRIVEQVVVAVEMVFGNVQHRRRSRTQAFGVFQLEAGKLQHPHVRLFAFALPFRLQNRRA
     m090.pep
                  MRVVEQIVVAVEMVFGNVHHRRRSRAQAFGVFQLEAGKLPHPHVRLFAFALQFCLQDGRT
     g090
                         10
                                                      40
                                                                50
                                   80
                                            90
                                                     100
                                                               110
                                                                        119
                         70
                  DIARDNGIQPALDTEIADQARYRGFAVAAGNRNYLVVPAVHNVRQQFDVAQHAXRRFAX
     m090.pep
                  DIARNDGIQPALDAEIADQAGYRGFAVAAGNRNHLVAAAVHNVRQQLDVAXHAXRRFAX
     g090
                         70
                                   80
                                             90
                                                     100
                                                               110
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 299>:
a090.seg
         ATGCGCGTAG TCGAGCAAGT CGTCGTAGCG GTCGAGATGG TCTTCGGAAA
      1
         TGTTCAGCAC TGTCGCCGCA GTCGGGCGCA GGCTTTCGGT GTTTTCCAGT
      51
     101 TGGAAACTGG AAAGCTCCAA CACCCACACG TCCGCCTTTT TGCCTTCGCG
         CTGCAATTCC GCCTCCAAAA CCGGCGCGCC GATATTGCCC GCGATAACGG
     151
         TATCCAGCCC ACACTTGATG CAGAGATAGC CGACCAGGCT CGTTACCGTG
     201
         GTTTTGCCGT TGCTGCCGGT AATCGCAATC ACCTTGTCGC CGCGGCGGTT
     251
     301 CACAATGTCC GCCAGCAATT CGATGTCGCC CAACACGCGT C.CGCCGTTT
     351 CGCTTAA
```

This corresponds to the amino acid sequence <SEQ ID 300; ORF 090.a>:

```
a090.pep
        MRVVEQVVVA VEMVFGNVQH CRRSRAQAFG VFQLETGKLQ HPHVRLFAFA
        LQFRLQNRRA DIARDNGIQP TLDAEIADQA RYRGFAVAAG NRNHLVAAAV
     51
        HNVRQQFDVA QHAXRRFA*
    101
           91.5% identity over a 117 aa overlap
m09/a090
                          20
                                   30
                                           40
                                                   50
                                                            60
           MRIVEQVVVAVEMVFGNVQHRRRSRTQAFGVFQLEAGKLQHPHVRLFAFALPFRLQNRRA
m090.pep
           a090
           MRVVEOVVVAVEMVFGNVQHCRRSRAQAFGVFQLETGKLQHPHVRLFAFALQFRLQNRRA
                          20
                                           40
                 10
                                   90
                                          100
                          80
                                                   110
                 70
           DIARDNGIQPALDTEIADQARYRGFAVAAGNRNYLVVPAVHNVRQQFDVAQHAXRRFAX
m090.pep
           \verb|DIARDNGIQPTLDAEIADQARYRGFAVAAGNRNHLVAAAVHNVRQQFDVAQHAXRRFAX|
a090
```

The following partial DNA sequence was identified in N. gonorrhoeae g090-1.seq This sequence contains multiple stop codons (not shown)

This corresponds to the amino acid sequence < ORF 090-1.ng>: g090-1.pep (not shown)

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2>: m090-1.seq

```
ATGACGGCGT TTGCATTTCA GACGGCATCA CAAAGCCTTA AACGCTTCGA
  1
     TAAACACTTC CGAACGGTGC GCGTAGCCTT TGAACATATC AAAGCTCGCG
 51
     CAGGCGGGC TGAGCAACAC AATATCGCCT GCTTCGGCTT GGGCATATGC
101
     CGTCTGAACG GCTTCTCCCA AAGTGGCGCA GTCGGTCATA TTCAAGCCGC
151
     AGCCGTCCAA ATCGCGGCGG ATTTGCGGCG CATCGACACC AATCAAGAAC
201
     ACGCCTTTTG CCTTGCCTAC CAGTGCATCG CGCAGGGGCG TGAAGTCCTG
251
     CCCTTTACCC ATGCCGCCCA AAATCACGAA GAGCGGATTT TGCAAACCGG
301
     CAATCGCGGC GGCAGTCGCG CCGACATTCG TGCCTTTGCT GTCGTCGATA
351
     AACACCACGC CGTTTTTCTC GCCGATTTTT TCCACGCGGT GCGGCAGGCC
401
     TTGGAAGGTT TTGACGTGTT CGAGCAATGC TTCGCGCGAC AAACCGATGG
451
     CCTCACACAA AGCCACGGCA GCCATGACGT TAGCGGCGTT GTGCAGACCT
501
     TGCAACGGAA TGTCTTGCGT GACAATCAAA TCTTCATTGC CTTGTTTCAG
551
      GCGGCCTGTC TCGCGTTCCA ACCAGAAATC AGCTTCGTGT TCCAACGAAA
 601
     ACCATTTTAC CTCGCGCCCG GCACGCTTCA TCGCGCGGCA GAACGCATCG
 651
     TCCGCATTCA AAACCTGCAC GCCGTCGCCA CGGAAAATCT TGGCTTTGGT
 701
     ATGCGCATAG TCGAGCAAGT CGTCGTAGCG GTCGAGATGG TCTTCGGAAA
 751
     TGTTCAGCAC CGTCGCCGCA GTCGGACGCA GGCTTTCGGT GTTTTCCAGT
801
 851
     TGGAAGCTGG AAAGCTCCAA CACCCACACG TCCGCCTTTT TGCCTTCGCG
     CTGCCATTCC GCCTCCAAAA CCGGCGTGCC GATATTGCCC GCGATAACGG
 901
     TATCCAGCCC GCACTTGATA CAGAGATAGC CGACCAGGCT CGTTACCGTG
951
     GTTTTGCCGT TGCTGCCGGT AATCGCAATT ACCTTGTCGT CCCGGCGGTT
1001
      CACAATGTCC GCCAGCAATT CGATGTCGCC CAACACGCGT CCGCCGTTTT
1051
     GCTTGAACGC CTCAATATCC GGCTGCCGCT CGCTGATGCC GGGACTGAGA
1101
1151
     GCCAGAATAT CGAAACCGTT GTCCAGCGCA TCTTTCAGAC GGCCCGTGTA
     AAACACCAAC CCGTCAAACA TCTTACCGAT TTGCGACACG CGTTCCGGCT
1201
      TCAGCTCCGC ATCATACGCA GCAACCTCCG CGCCGTTTTT GCGCAGGTAG
1251
1301
      GCAATCATGG AAATACCCGT ACCGCCGAGT CCGGCGACGA GGATTTTTTT
1351 GTTTTGAAAA GTCATTTTGG TTTGTCCTAA
```

This corresponds to the amino acid sequence <SEQ ID 3; ORF 090-1>: m090-1.pep

MTAFAFQTAS QSLKRFDKHF RTVRVAFEHI KARAGGAEQH NIACFGLGIC RLNGFSQSGA VGHIQAAAVQ IAADLRRIDT NQEHAFCLAY QCIAQGREVL 51 PFTHAAQNHE ERILQTGNRG GSRADIRAFA VVDKHHAVFL ADFFHAVRQA 101 LEGFDVFEQC FARQTDGLTQ SHGSHDVSGV VQTLQRNVLR DNQIFIALFQ 151 AACLAFQPEI SFVFQRKPFY LAPGTLHRAA ERIVRIQNLH AVATENLGFG 201 MRIVEQVVVA VEMVFGNVQH RRRSRTQAFG VFQLEAGKLQ HPHVRLFAFA 251 LPFRLQNRRA DIARDNGIQP ALDTEIADQA RYRGFAVAAG NRNYLVVPAV 301 351 HNVRQQFDVA QHASAVLLER LNIRLPLADA GTESQNIETV VQRIFQTARV KHQPVKHLTD LRHAFRLQLR IIRSNLRAVF AQVGNHGNTR TAESGDEDFF 451 VLKSHFGLS*

WO 99/057280 PCT/US99/09346

287

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 303>:

- g091.seq ATGGAAATAC CCGTGCCGCC AAGTCCGGCG ACGAGGATTT TTTTGTTTGA 1
 - 51 AAGTCATTTT GGTTTTGTCC TAAAACAAAT CATATTGGGC AGGAGACGTC
 - 101 CGCCCTTGCC CAAGCCGCTT TCAGACGGCA TCGCGAGCCG ATTAATAACC
 - 151 CGCCTTCAGG CGTTGGTCAT TGTCGCAGCT GTTTTGGTCT CCGTTTTGAC
 - 201 AAGCCTTGCC AAGCCATTGT TGAGCGAGCG CAAGGTCTTG GCGCACGCCG
 - 251 CGTCCATCGT AATACATCAA GCCCAAATTG TATTGGGCTT GGGCATCCCC 301 TTGTTCTGA

This corresponds to the amino acid sequence <SEQ ID 304; ORF 091.ng>: g091.pep

- 1 MEIPVPPSPA TRIFLFESHF GFVLKQIILG RRRPPLPKPL SDGIASRLIT
- 51 RLQALVIVAA VLVSVLTSLA KPLLSERKVL AHAASIVIHQ AQIVLGLGIP
- 101 <u>LF</u>*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 305>: m091.seg

- 1 ATGGAAATAC CCGTACCGCC GAGTCCGGCG ACGAGGATTT TTTTGTTTGA
- 51 AAAGTCATTT TGGTTTGTCC TAAAACAAAT CATATTGAGC AGGAGATGTC
- 101 CGCCCCTGCC CAAGCCGCTT TCAGACGGCA TCGCGAGCTG TTCAATAACC
- 151 CGCCTTCAGG CGTTGGTCAT TGTCGCAGCC GTCTTGGTCT CCGTTTTGAC
 201 AAGCCTTGCC AAACCATTCT TGTGCAAGGG CGCGGTCTTG GCGCACGCCG
- 251 CGTCTTTCGG CATACATCAC GCCCAAATTG TTTTGGGCTT GGGCTACCCC 301 CTGCGC...

This corresponds to the amino acid sequence <SEQ ID 306; ORF 091>: m091.pep

- 1 MEIPVPPSPA TRIFLFEKSF WFVLKQIILS RRCPPLPKPL SDGIASCSIT
 - 51 RLQALVIVAA VLVSVLTSLA KPFLCKGAVL AHAASFGIHH AQIVLGLGYP

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 091 shows 84.2% identity over a 101 aa overlap with a predicted ORF (ORF 091.ng) from N. gonorrhoeae:

m091/g091

The following partial DNA sequence was identified in N. meningiditis <SEQ ID 307>: a091.seq

- 1
- 51 GAAATCATTT TGGTTTGTCC TAAAACAAAT CATATTGAGC AGGGGATGTC
 101 TGATCCTGCT CAAGCCGCTT TCAGACGGCA TCGCGAGCTG TTCAATAACC
- 151 CGCTTTCAGG CGTTGGTCAT TGTCGCAGCT GTCTTGGTAT CCGTTTTGAC
- 201 AAGCCTTGCC AAGCCATTCT TGTGCAAGGG CGCGGTCTTG GCGCACGCCG
- 251 CGTCTTTCGG CATACATCAC GCCCAAATTG TTTTGGGC

This corresponds to the amino acid sequence <SEQ ID 308; ORF 091.a>: a091.pep

- MEIPVPPSPA TRIFLFWKSF WFVLKQIILS RGCLILLKPL SDGIASCSIT 1
- RFQALVIVAA VLVSVLTSLA KPFLCKGAVL AHAASFGIHH AQIVLG 51

93.8% identity over a 96 aa overlap m091/a091

40 50 20 30 MEIPVPPSPATRIFLFEKSFWFVLKQIILSRRCPPLPKPLSDGIASCSITRLQALVIVAA m091.pep MEIPVPPSPATRIFLFWKSFWFVLKQIILSRGCLILLKPLSDGIASCSITRFQALVIVAA a091 10 20 30 40 90 70 80 VLVSVLTSLAKPFLCKGAVLAHAASFGIHHAQIVLGLGYPLR m091.pep

VLVSVLTSLAKPFLCKGAVLAHAASFGIHHAQIVLG a091

80 90

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 309>: g092.seq

ATGTTTTTTA TTTCAATCCG CTATATATTT GTCAGAAAAC TATGGTGCGC AAACGGTCAG ACCTTTAAAA TAACGCCTTT ACGCACTAAA AACCAACCGG 101 AACGCAACAT TATGATGAAA AATCGAGTAA GCAACATCCA TTTTGTCGGT 151 ATCGGCGGCG TCGGCATGAG CGGTATCGCC GAAGTCTTGC ACAATTTGGG 201 CTTTAAAGTT TCCGGTTCGG ATCAGGCGCG AAATGCCGCT ACCGAGCATT 251 TGAGCAGCCT GGGCATTCAA GTTTATCCCG GCCATACCGC AGAACACGTT 301 AACGGTgcgg ATGTCGTCGT TGCCTCTACC GCCGTCAAGA AAGAAaatcC CGAAGTtgtc gcTGCGTTGG AGCGGCAAAT TCCCGTTATT CCGCGCGCCT 351 401 TGATGCTGGC AGAGCTGATG CGCTTCCGTG ACGgcatcgc cattgccggT 451 ACGCACGGCA AAACCACGAC CACCAGCCTG ACCGCCTCCA TCCTCGGCGC 501 GGCAGGACTC GACCCCACTT TCGTTATCGG CGGCAAACTC AACGCCGCAG 551 GCACCAACGC CCGCTTGGGC AAAGGCGAAT ACATCGTTGC CGAAGCCGAC 601 GAATCCGATG CCTCTTTCCT ACATCTGACC CCGATTATGT CCGTCGTTAC 651 CAATATCGAC GAAGACCATA TGGATACCTA CGGGCACAGC GTCGAAAAAC 701 TGCATCAGGC GTTTATCGAT TTCATCCACC GTATGCCCTT CTACGGCAAA 751 GCCTTTTTGT GTGTTGACAG CGAACACGTC CGCGCGATTT TGCCCAAAGT 801 GAGCAAACCT TATGCTACTT ACGGTTTGGA CGATACCGCC GACATCTACG 851 CCACCGACAT CGAAAACGTC GGCGCGCAAA TGAAATTCAC CGTCCATGTT 901 CAAATGAAAG GACATGAGCA GGGGTCGTTT GAAGTCGTGC TGAATATGCC 951 CGGCAGACAC AACGTGCTGA ACGCATTGGC AGCCATCGGc gtggcGCTgg 1001 aagtcGgCGC ATcggttgAA GCGAtcCAAA AaggCTTGCT CGGCTTTGAA 1051 GGCGTCGGCC GCCGCTTCCA AAAATAcqqc gacatCAaqt tgccaaacgg 1101 cggGaccgCT TTgctGGTGG ACGATTAcgg ACACCACCCC GTCGAAATGG 1151 CGGcaacct tgccgcTGCA CGCGGCGCGT ATCCGGAAAA acgtTTGGTG 1201 CtcgCCTTCC AGCCGCACCG CTATACCCGC ACGCGCGATT TGTTTGAAGA 1251 CTTTACCAAA GTACTCAATA CCGTTGatgC GCTGGTACTG ACCGAAGTTT 1301 AtgccgccgG CGAAGAGCCG GTTGCCGCCG CCGactcCCG CGCCTTGGCG 1351 CGTGCTATCC GCGTATTGGG CAAACTTGAG CCGATTTACT GCGAAAatgt 1401 CGCCGACCTG CCGCAAATGC TGATGAATGT TTTACAGGAT GGCGatgttg tgttgAATAT GggTgcggga agcatcaacc gcgttccttc cgcgctgttg gaattgtcga AACAGAtttg A

This corresponds to the amino acid sequence <SEQ ID 310; ORF 092.ng>: g092.pep

MFFISIRYIF VRKLWCANGQ TFKITPLRTK NQPERNIMMK NRVSNIHFVG IGGVGMSGIA EVLHNLGFKV SGSDQARNAA TEHLSSLGIQ VYPGHTAEHV 51 NGADVVVAST AVKKENPEVV AALERQIPVI PRALMLAELM RFRDGIAIAG 101 151 THGKTTTTSL TASILGAAGL DPTFVIGGKL NAAGTNARLG KGEYIVAEAD 201 ESDASFLHLT PIMSVVTNID EDHMDTYGHS VEKLHQAFID FIHRMPFYGK

```
251 AFLCVDSEHV RAILPKVSKP YATYGLDDTA DIYATDIENV GAQMKFTVHV
          301 QMKGHEQGSF EVVLNMPGRH NVLNALAAIG VALEVGASVE AIQKGLLGFE
          351 GVGRRFQKYG DIKLPNGGTA LLVDDIGHTE VLLLLAGEEP VAAADSRALA
401 LAFQPHRYTR TRDLFEDFTK VLNTVDALVL TEVYAAGEEP VAAADSRALA
500 MMH OD GDVVLNMGAG SINRVPSALL
               GVGRRFQKYG DIKLPNGGTA LLVDDYGHHP VEMAATLAAA RGAYPEKRLV
               RAIRVLGKLE PIYCENVADL PQMLMNVLQD GDVVLNMGAG SINRVPSALL
          501 ELSKQI*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 311>:
     m092.seq
               ATGTTTTTTA TTTCAATCCG CTATATATTT GTCAGAAAAC TATGGCGCGC
            1
               AAACGGTCAG CCCTTTAAAA TAACGCCTTT ACGCATCGAA AATCCACCGG
           51
               AACGCAACAT TATGATGAAA AATCGAGTTA CCAACATCCA TTTTGTCGGT
          101
               ATCGGCGGCG TCGGCATGAG CGGCATCGCC GAAGTCTTGC ACAATTTGGG
          151
          201 CTTTAAAGTT TCCGGTTCGG ATCAGGCGCG AAATGCCGCT ACCGAGCATT
               TGGGCAGCCT GGGCATTCAA GTTTATCCCG GCCATACCGC CGAACACGTT
          251
          301 AACGGTGCGG ATGTCGTCGT TACCTCTACC GCCGTCAAAA AAGAAAATCC
          351 CGAAGTTGTC GCTGCGTTGG AGCAGCAAAT TCCCGTTATT CCGCGCGCCC
          401 TGATGTTGGC GGAGTTGATG CGCTTCCGTG ACGGCATCGC CATTGCCGGC
          451 ACGCACGGCA AAACCACGAC CACCAGCCTG ACCGCCTCCA TCCTCGGCGC
          501 GGCAGGACTT GACCCGACTT TCGTTATCGG CGGCAAACTC AACGCCGCAG
          551 GCACTAACGC CCGCTTGGGC AAAGGCGAAT ACATCGTTGC CGAAGCCGAC
          601 GAGTCGGATG CATCCTTTCT GCACCTGACA CCGATTATGT CCGTCGTTAC
               CAATATCGAC GAAGACCATA TGGATACCTA CGGGCACAGC GTCGAAAAAC
          651
          701 TGCATCAGGC GTTTATCGAT TTCATCCACC GTATGCCCTT CTACGGCAAA
          751 GCCTTTTGT GTATTGACAG CGAACACGTC CGCGCGATTT TGCCCAAAGT
          801 GAGCAAACCT TATGCTACTT ACGGTTTGGA CGATACCGCC GACATCTACG
          851 CCACCGACAT CGAAAACGTC GGCGCGCAAA TGAAATTCAC CGTCCATGTT
          901 CAAATGAAAG GACATGAGCA GGGGTCGTTT GAAGTCGTGC TGAATATGCC
           951 CGGCAGACAC AACGTGCTGA ACGCATTGGC AGCCATCGGC GTGGCGCTGG
         1001 AAGTCGGCGC ATCGGTTGAA GCGATCCAAA AAGGCTTGCT CGGCTTTGAA
         1051 GGCGTCGGCC GCCGCTTCCA AAAATACGGC GACATCAAGT TGCCAAACGG
         1101 CGGGACCGCG CTCTTGGTGG ACGACTACGG ACACCACCCC GTCGAAATGG
         1151 CGGCGACCCT TGCCGCCGCA CGCGGCGCGT ATCTGGAAAA ACGTTTGGTA
               CTCGCCTTCC AGCCGCACCG CTATACCCGC ACGCGCGATT TGTTTGAAGA
               CTTTACCAAA GTCCTCAATA CCGTTGACGC GCTGGTGCTG ACCGAAGTTT
         1301 ATGCCGCCGG TGAAGAGCCG ATTGCCGCCG CCGATTCCCG CGCTCTTGCC
         1351 CGCGCCATCC GCGTGTTGGG CAAACTCGAG CCGATTTACT GCGAAAACGT
         1401 TGCCGATCTG CCCGAAATGC TGTTGAACGT TTTGCAGGAC GGCGACATCG
         1451 TGTTGAATAT GGGCGCGGGA AGCATCAACC GCGTCCCCGC CGCGCTGCTG
               GCATTGTCGA AACAGATTTG A
This corresponds to the amino acid sequence <SEQ ID 312; ORF 092>:
      m092.pep
               MFFISIRYIF VRKLWRANGO PFKITPLRIE NPPERNIMMK NRVTNIHFVG
            1
               IGGVGMSGIA EVLHNLGFKV SGSDOARNAA TEHLGSLGIQ VYPGHTAEHV
            51
           101 NGADVVVTST AVKKENPEVV AALEQQIPVI PRALMLAELM RFRDGIAIAG
           151 THGKTTTTSL TASILGAAGL DPTFVIGGKL NAAGTNARLG KGEYIVAEAD
           201 ESDASFLHLT PIMSVVTNID EDHMDTYGHS VEKLHQAFID FIHRMPFYGK
           251 AFLCIDSEHV RAILPKVSKP YATYGLDDTA DIYATDIENV GAQMKFTVHV
           301 QMKGHEQGSF EVVLNMPGRH NVLNALAAIG VALEVGASVE AIQKGLLGFE
           351 GVGRRFQKYG DIKLPNGGTA LLVDDYGHHP VEMAATLAAA RGAYLEKRLV
                LAFOPHRYTR TRDLFEDFTK VLNTVDALVL TEVYAAGEEP IAAADSRALA
                RAIRVLGKLE PIYCENVADL PEMLLNVLQD GDIVLNMGAG SINRVPAALL
           451
           501 ALSKQI*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 092 shows 96.6% identity over a 506 aa overlap with a predicted ORF (ORF 092.ng)
from N. gonorrhoeae:
      m092/g092
                                                                               60
                                                3.0
                                                                     50
                           10
                                      20
                                                          4.0
```

m092.pep MFFISIRYIFVRKLWRANGQPFKITPLRIENPPERNIMMKNRVTNIHFVGIGGVGMSGIA

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 313>: a092.seq

1	ATGTTTTTTA	TTTCAATCCG	CTATATATTT	GTCAGAAAAC	TATGGCGCGC
51	AAACGGTCAG	CCCTTTAAAA	TAACGCCTTT	ACGCATCGAA	AATCCACCGG
101	AACGCAACAT	TATGATGAAA	AATCGAGTGA	CCAACATCCA	TTTTGTCGGT
151	ATCGGCGGCG	TCGGCATGAG	CGGTATCGCC	GAAGTCTTGC	ACAATTTGGG
201	TTTTAAAGTT	TCCGGTTCGG	ATCAGGCGCG	AAATGCCGCT	ACCGAGCATT
251	TGGGCAGCCT	GGGCATTCAA	GTTTATCCCG	GCCATACCGC	AGAACACGTT

301	AACGGTGCGG	ATGTCGTCGT	TACCTCTACC		
351	CGAAGTTGTC	GCTGCGTTGG	AGCAGCAAAT	TCCCGTTATT	CCGCGCGCCC
401	TGATGTTGGC	GGAGTTGATG	CGCTTCCGTG	ACGGCATCGC	CATTGCCGGC
451	ACGCACGGCA	AAACCACGAC	CACCAGCCTG	ACCGCCTCCA	TCCTCGGCGC
501	GGCAGGACTT	GACCCGACTT	TCGTTATCGG	CGGCAAACTC	AACGCCGCAG
551	GCACCAACGC	CCGCTTGGGC	AAAGGCGAAT	ACATCGTTGC	CGAAGCCGAC
601	GAGTCGGATG	CATCCTTTCT	GCACCTGACA	CCGATTATGT	CCGTCGTTAC
651	CAATATCGAC	GAAGACCATA	TGGATACCTA	CGGGCACAGT	GTTGAGAAGC
701	TGCATCAGGC	GTTTATCGAT	TTCATCCACC	GTATGCCCTT	CTACGGCAAA
751	GCCTTTTTGT	GTATTGACAG	CGAACACGTC	CGCGCGATTT	TGCCCAAAGT
801	GAGCAAACCT	TATGCTACTT	ACGGTTTGGA	CGATACCGCC	GACATCTACG
851	CCACCGACAT	CGAAAACGTC	GGCGCGCAAA	TGAAATTCAC	CGTCCATGTT
901	CAAATGAAAG	GACATGAGCA	GGGGTCGTTT	GAAGTCGTGC	TGAATATGCC
951	CGGCAGACAC	AACGTGCTGA	ACGCATTGGC	AGCCATCGGC	GTGGCGCTGG
1001	AAGTCGGCGC	ATCGGTTGAA	GCGATCCAAA	AAGGCTTGCT	CGGCTTTGAA
1051	GGTGTCGGCC	GCCGCTTCCA	AAAATACGGC	GACATCAAGT	TGCCAAACGG
1101	TGGAACCGCG	CTCTTGGTGG	ACGACTACGG	ACACCACCCC	GTCGAAATGG
1151	CGGCGACCCT	TTCCGCCGCA	CGCGGCGCGT	ATCCGGAAAA	ACGTTTGGTA
1201	CTCGCCTTCC	AGCCGCACCG	CTATACCCGC	ACGCGCGATT	TGTTTGAAGA
1251	CTTTACCAAA	GTCCTCAATA	CCGTTGACGC	GCTGGTGCTG	ACCGAAGTTT
1301	ATGCCGCCGG	TGAAGAGCCG	ATTGCCGCCG	CTGATTCCCG	CGCTCTTGCC
1351	CGCGCCATCC	GCGTGTTGGG	CAAACTCGAG	CCGATTTACT	GCGAAAACGT
1401	TGCCGATCTG	CCCGAAATGC	TGTTGAACGT	TTTGCAGGAC	GGCGACATCG
1451	TGTTGAATAT	GGGTGCGGGA	AGCATCAACC	GCGTCCCCGC	CGCGCTGCTG
1501	GAATTGTCGA	AACAGATTTG	Α		

This corresponds to the amino acid sequence <SEQ ID 314; ORF 092.a>: a092.pep

1	MFFISIRYIF	VRKLWRANGQ	PFKITPLRIE	NPPERNIMMK	NRVTNIHFVG
51	IGGVGMSGIA	EVLHNLGFKV	SGSDQARNAA	TEHLGSLGIQ	VYPGHTAEHV
101	NGADVVVTST	AVKKENPEVV	AALEQQIPVI	PRALMLAELM	RFRDGIAIAG
151	THGKTTTTSL	TASILGAAGL	DPTFVIGGKL	NAAGTNARLG	KGEYIVAEAD
201	ESDASFLHLT	PIMSVVTNID	EDHMDTYGHS	VEKLHQAFID	FIHRMPFYGK
251	AFLCIDSEHV	RAILPKVSKP	YATYGLDDTA	DIYATDIENV	GAQMKFTVHV
301		EVVLNMPGRH			
351	GVGRRFQKYG	DIKLPNGGTA	LLVDDYGHHP	VEMAATLSAA	RGAYPEKRLV
401	LAFQPHRYTR	TRDLFEDFTK	VLNTVDALVL	TEVYAAGEEP	IAAADSRALA
451	RAIRVLGKLE	PIYCENVADL	PEMLLNVLQD	GDIVLNMGAG	SINRVPAALL
501	FI.SKOT*				

m092/a092 99.4% identity over a 506 aa overlap

	10	20	30	40	50	60
m092.pep	MFFISIRYIFVRK	LWRANGQPFKIT	PLRIENPP	ERNIMMKNRVT	NIHFVGIGGV	VGMSGIA
	11111111111111	1111111111		1111111111	111111111	111111
a092	MFFISIRYIFVRK	LWRANGQPFKIT	PLRIENPP	ERNIMMKNRVT	NIHFVGIGG	VGMSGIA
	10	20	30	40	50	60
	70	80	90	100	110	120
m092.pep	EVLHNLGFKVSGS	DQARNAATEHLO	SLGIQVYP	GHTAEHVNGAD	VVVTSTAVKI	KENPEVV
	11111111111111			11111111111	111111111	111111
a092	EVLHNLGFKVSGS	DOARNAATEHLO	SSLGIQVYPO	GHTAEHVNGAD	VVVTSTAVKI	KENPEVV
	70	80	90	100	110	120
	130	140	150	160	170	180
m092.pep	AALEQQIPVIPRA	LMLAELMRFRDO	GIAIAGTHG	KTTTTSLTASI	LGAAGLDPT	FVIGGKL
• •	111111111111111	11111111111		111111111111	111111111	
a092	AALEQQIPVIPRA	LMLAELMRFRDO	GIAIAGTHG	KTTTTSLTASI	LGAAGLDPT	FVIGGKL
	130	140	150	160	170	180
	190	200	210	220	230	240
m092.pep	NAAGTNARLGKGE	YIVAEADESDA:	SFLHLTPIM	SVVTNIDEDHM	DTYGHSVEK	LHQAFID
· -		11111111111		111111111111	111111111	111111
a092	NAAGTNARLGKGE	YIVAEADESDA:	SFLHLTPIM	SVVTNIDEDHM	DTYGHSVEK	LHOAFID

WO 99/057280 PCT/US99/09346

292

	190	200	210	220	230	240
m092.pep	250 FIHRMPFYGKAFLCI	260 DSEHVRATLP	270 KVSKPYATYG	280 LDDTADIYAT	290 DIENVGAON	300 MKFTVHV
mo 32. pep					11111111	
a092	FIHRMPFYGKAFLCI	DSEHVRAILP.	KVSKPYATYG:	LDDTADIYAT	DIENVGAQN	MKFTVHV
	250	260	270	280	290	300
	310	320	330	340	350	360
m092.pep	QMKGHEQGSFEVVLNI	MPGRHNVLNA	LAAIGVALEV	GASVEAIQKG	LLGFEGVG	RRFQKYG
• •			111111111		11111111	
a092	QMKGHEQGSFEVVLN	MPGRHNVLNA	LAAIGVALEV	GASVEAIQKG	LLGFEGVGF	RRFQKYG
	310	320	330	340	350	360
	370	380	390	400	410	420
m092.pep	DIKLPNGGTALLVDD					
		, , , , , , , , , , ,				
a092	DIKLPNGGTALLVDD					
	370	380	390	400	410	420
	430	440	450	460	470	480
m092.pep	VINTVDALVLTEVYA				NVADLPEM	LLNVLOD
mose.pep					1111111	_
a092	VLNTVDALVLTEVYA	AGEEPIAAAD	SRALARAIRV	LGKLEPIYCE	NVADLPEM	LLNVLQD
	430	440	450	460	470	480
	490	500				
m092.pep	GDIVLNMGAGSINRV	PAALLALSKQ	IX			
		11111 1111	11			
a092	GDIVLNMGAGSINRV	_	IX			
	490	500				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 315>: q093.seq

```
aTGCAGAATt ttgGCAAAGT ggccgtATTG ATGGGtggtT TTTCCAGCGA
51 ACGAGAaatc tcgcTGGACA GCgGTACCGC CATTTTGAAC GCCTTAAAAA
101 GCAAAGGCAT AGACGCATAC GCCTTCGACC CTAAGGAAAC GCCGTTATCC
151 GAACTGAAGG AGCGGGGCTT TCAGACGGCA TTCAACATCC TTCACGGTAC
201 TTACGGCGAA GACGGGGCTG TTCAGGGTGC ATTGGAACTG TTGGGCATTC
251 CCTATACCGG CAGCGGTGTC GCCGCCTCCG CCATCGGCAT GGACAAATAC
301 CGCTGCAAAC TGATTTGGCA GGCATTGGGA TTACCCGTTC CCGAGTTCGC
351 CGTACTGTAC GATGATACCG ATTTCGATGC CGTCGAAGAA AAATTGGGTC
401 TGCCGATGTT TGTGAAGCCG GCGGCCGAAG GCAGCAGCgt cggcgtggta
451 aAAGTCAAAG AAAaaggccg TCTGAAAAGC GTTtacgaag aatTGAaaCA
501 CCTTcaqqqq cqaAAtcatt qccqAacqTT TTATCGGCGG CGGCGAATAT
551 TCCTGCCCG TCCTGAACGG CAAAGGGCTG CCCGGCATAC ACATCATCCC
601 CGCAACCGAG TTTTACGACt acgaagccaa GtacaaCCGA GACGAcacca
651 tttaTCAATG TCCTTCGGAA GATTTGACCG AAGCCGAAGA AAGCCTGATG
701 CGCGAACTGG CGGTTCGCGG CGCACAGGCA ATCGGTGCGG AAGGCTGCGT
751 GCGCGTCGAT TTCCTCAAAG ATACCGACGG CAAACTCTAT CTGTTGGAAA
     TCAACACCCT GCCCGGTATG ACCGGCCATA G
```

This corresponds to the amino acid sequence <SEQ ID 316; ORF 093.ng>: g093.pep

1 MQNFGKVAVL MGGFSSEREI SLDSGTAILN ALKSKGIDAY AFDPKETPLS 51 ELKERGFQTA FNILHGTYGE DGAVQGALEL LGIPYTGSGV AASAIGMDKY 101 RCKLIWQALG LPVPEFAVLY DDTDFDAVEE KLGLPMFVKP AAEGSSVGVV 151 KVKEKGRLKS VYEELKHLQG RNHCRTFYRR RRIFLPRPER QRAARHTHHP 201 RNRVLRLRSQ VQPRRHHLSM SFGRFDRSRR KPDARTGGSR RTGNRCGRLR 251 ARRFPQRYRR QTLSVGNQHP ARYDRP*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 317>: m093.seq

```
1 ATGCAGAATT TTGGCAAAGT GGCCGTATTG ATGGGCGGTT TTTCCAGCGA
    ACGAGAAATC TCGCTGGACA GCGGCACCGC CATTTTGAAT GCTTTAAAAA
101
    GCAAAGGCAT AGACGCATAC GCCTTCGATC CTAAAGAAAC CCCATTGTCT
     GAATTGAAGG CACAAGGTTT TCAGACGGCA TTCAACATCC TTCACGGTAC
151
    TTACGGCrAA GACGGGGCGG TTCAGGGTGC ATTGGAACTG TTGGGCATTC
201
    CCTATACCGG CAGCGGTGTC GCCGCATCCG CCATCGGCAT GGACAAATAC
251
    CGCTGCAAAC TGATTTGGCA GGCATTGGGA TTGCCCGTTC CCGAGTTCGC
301
    CGTCCTGCAC GACGACACTG ATTTCGATGC CGTCGAAGAA AAATTGGGCC
401
    TGCCGATGTT TGTGAAACCG GCGGCCGAAG GCAGCAGCGT AGGCGTGGTA
    AAAGTCAAAG GAAAAGGCCG TCTGAAAAGC GTTTACGAAG AATTGAAACA
451
    CCTTCAGGG. CGAAATCATT GCCGAACGTT TTATCGGCGG CGGCGAATAT
501
551
    TCCTGCCCG TCCTGAACGG CAAAGGGCTG CCCGGCATAC ACATCATTCC
     CGCAACCGAG TTTTACGACT ACGAAGCCAA GTACAACCGC GACGACACCA
     TTTATCAATG TCCTTCGGAA GATTTGACCG AAGCCGAAGA AAGCCTGATG
651
    CGCGAACTGG CGGTTCGCGG CGCGCAGGCA ATCGGTGCGG AAGGCTGCGT
701
    GCGCGTCGAT TTCCTCAAAG ATACCGACGG CAAACTCTAT CTGTTGGAAA
751
    TCAACACCCT GCCCGGTATG ACGAGCCATA G
801
```

This corresponds to the amino acid sequence <SEQ ID 318; ORF 093>:

m093.pep

1 MQNFGKVAVL MGGFSSEREI SLDSGTAILN ALKSKGIDAY AFDPKETPLS 51 ELKAQGFQTA FNILHGTYGX DGAVQGALEL LGIPYTGSGV AASAIGMDKY

101 RCKLIWQALG LPVPEFAVLH DDTDFDAVEE KLGLPMFVKP AAEGSSVGVV

151 KVKGKGRLKS VYEELKHLQX RNHCRTFYRR RRIFLPRPER QRAARHTHHS

201 RNRVLRLRSQ VQPRRHHLSM SFGRFDRSRR KPDARTGGSR RAGNRCGRLR

251 ARRFPQRYRR QTLSVGNQHP ARYDEP*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 093 shows 96.7% identity over a 276 aa overlap with a predicted ORF (ORF 093.ng) from N. gonorrhoeae:

m093/g093


```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 319>:
         ATGCAGAATT TTGGCAAAGT GGCCGTATTG ATGGGCGGTT TTTCCAGCGA
         ACGAGAAATC TCGCTGGACA GCGGCACCGC CATTTTGAAT GCTTTAAAAA
     51
    101
         GCAAAGGCAT AGACGCATAC GCCTTCGATC CCAAGGAAAC CCCATTGTCT
        GAATTGAAGG CACAAGGTTT TCAGACGGCA TTCAACATCC TTCACGGTAC
    151
         TTACGGCGAA GACGGGGCTG TTCAGGGTGC ATTGGAACTG TTGGGCATTC
    201
         CCTATACCGG CAGCGGTGTC GCCGCATCCG CCATCGGCAT GGACAAATAC
    251
         CGCTGCAAAC TGATTTGGCA GGCATTGGGA TTGCCCGTTC CCGAGTTCGC
    301
    351
         CGTCCTGCAC GACGACACTG ATTTCGATGC CGTCGAAGAA AAATTGGGCC
         TGCCGATGTT TGTGAAACCG GCGGCCGAAG GCAGCAGCGT AGGCGTGGTA
    401
        AAAGTCAAAG GAAAAGGCCG TCTGAAAAGC GTTTACGAAG AATTGAAACA
    451
    501
        CTTTCAGGG. CGAAATCATT GCCGAACGGT TTATCGGCGG CGGCGAATAT
        TCCTGCCCTG TGTTGAACGG CAAAGGCCTG CCCGGCATAC ACATCATCCC
    551
        CGCGACCGAG TTTTATGACT ACGAAGCCAA GTACAACCGC AACGACACCA
    601
         TTTATCAATG TCCTTCGGAA GATCTGACCG AAGCCGAAGA AAGCCTGATG
    651
         CGCGAACTGG CGGTTCGCGG CGCGCAGGCA ATCGGTGCGG AAGGCTGCGT
    701
        GCGCGTCGAT TTCCTCAAAG ATACCGACGG CAAACTCTAT CTGTTGGAAA
        TCAACACCCT GCCCGGTATG ACCGGCCATA G
    801
This corresponds to the amino acid sequence <SEQ ID 320; ORF 093.a>:
a093.pep
         MONFGKVAVL MGGFSSEREI SLDSGTAILN ALKSKGIDAY AFDPKETPLS
      1
         ELKAOGFOTA FNILHGTYGE DGAVQGALEL LGIPYTGSGV AASAIGMDKY
     51
         RCKLIWQALG LPVPEFAVLH DDTDFDAVEE KLGLPMFVKP AAEGSSVGVV
    101
         KVKGKGRLKS VYEELKHFOX RNHCRTVYRR RRIFLPCVER QRPARHTHHP
    151
         RDRVL*LRSQ VQPQRHHLSM SFGRSDRSRR KPDARTGGSR RAGNRCGRLR
    251 ARRFPORYRR QTLSVGNQHP ARYDRP*
           95.7% identity over a 276 aa overlap
m093/a093
                                              40
            MQNFGKVAVLMGGFSSEREISLDSGTAILNALKSKGIDAYAFDPKETPLSELKAQGFQTA
m093.pep
            MONFGKVAVLMGGFSSEREISLDSGTAILNALKSKGIDAYAFDPKETPLSELKAQGFQTA
a093
                                                       50
                   10
                            20
                                     30
                                              40
                   70
                            80
                                     90
                                             100
                                                       110
                                                                120
            FNILHGTYGXDGAVQGALELLGIPYTGSGVAASAIGMDKYRCKLIWQALGLPVPEFAVLH
m093.pep
            FNILHGTYGEDGAVQGALELLGIPYTGSGVAASAIGMDKYRCKLIWQALGLPVPEFAVLH
a093
                   70
                            80
                                                      110
                                    150
                                             160
                           140
            DDTDFDAVEEKLGLPMFVKPAAEGSSVGVVKVKGKGRLKSVYEELKHLQXRNHCRTFYRR
m093.pep
            DDTDFDAVEEKLGLPMFVKPAAEGSSVGVVKVKGKGRLKSVYEELKHFQXRNHCRTVYRR
a093
                                                       170
                                                                180
                  130
                           140
                                    150
                                             160
                  190
                           200
                                    210
                                             220
                                                       230
                                                                240
            RRIFLPRPERORAARHTHHSRNRVLRLRSQVQPRRHHLSMSFGRFDRSRRKPDARTGGSR
m093.pep
            RRIFLPCVERQRPARHTHHPRDRVLXLRSQVQPQRHHLSMSFGRSDRSRRKPDARTGGSR
a093
                  190
                                             220
                                                       230
                           200
                                    210
                  250
                                     270
                           260
            RAGNRCGRLRARRFPORYRROTLSVGNQHPARYDEPX
m093.pep
            RAGNRCGRLRARRFPORYRROTLSVGNOHPARYDRPX
a093
```

260

WO 99/057280 PCT/US99/09346

295

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 321>:

```
q094.seq
          ATGTATTCGC CTTTGCCCAA GCGGGCGTTG GTGCCTGCGG CGTTGAGTTT
```

- 51 GCCGCCGATA ACGAAAGTGG GGTCGAGTCC TGCCGCGCCG AGGATGGAGG
- 101 CGGTCAGGCT GGTGGTCGTG GTTTTGCCGT GCGTAccggc aatqqcqatq
- 151 CCGTCACGGA AGCGCATCAG CTCTGCCAGC ATCAAGGCGC GCGGAATAAC
- 201 GGGAATTTGC CGCTCCAACG CAgcgacaAC TTCGGgattT TCTTTCTTGA
- 251 CGGCGGTAGA GGCAACGACG ACATCCGCAC CGTTAACGTG TTCTGCGGTA
- 301 TGGCCGGGAT AA

This corresponds to the amino acid sequence <SEQ ID 322; ORF 094.ng>: g094.pep

- MYSPLPKRAL VPAALSLPPI TKVGSSPAAP RMEAVRLVVV VLPCVPAMAM 1
- 51 PSRKRISSAS IKARGITGIC RSNAATTSGF SFLTAVEATT TSAPLTCSAV

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 323>:

- m094.seq
 - 1 ATGTATTCGC CTTTGCCCAA GCGGGCGTTA GTGCCTGCGG CGTTGAGTTT
 - 51 GCCGCCGATA ACGAAAGTCG GGTCAAGTCC TGCCGCGCCG AGGATGGAGG
 - 101 CGGTCAGGCT GGTGGTCGTG GTTTTGCCGT GCGTGCCGGC AATGGCGATG
 - 151 CCGTCACGGA AGCGCATCAA CTCCGCCAAC ATCAGGGCGC GCGGAATAAC 201 GGGAATTTGC TGCTCCAACG CAGCGACAAC TTCGGGATTT TCTTTTTGA
 - 251 CGGCGGTAGA GGTAACGACG ACATCCGCAC CGTTAACGTG TTCGGCGGTA
 - 301 TGGCCGGGAT AA

This corresponds to the amino acid sequence <SEQ ID 324; ORF 094>:

m094.pep

- MYSPLPKRAL VPAALSLPPI TKVGSSPAAP RMEAVRLVVV VLPCVPAMAM
- 51 PSRKRINSAN IRARGITGIC CSNAATTSGF SFLTAVEVTT TSAPLTCSAV
- 101

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 094 shows 95.1% identity over a 103 aa overlap with a predicted ORF (ORF 094.ng) from *N. gonorrhoeae*:

m094/g094

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 325>: a094.seq

ATGTATTCGC CTTTGCCCAA GCGGGCGTTG GTGCCTGCGG CGTTGAGTTT 1 51 GCCGCCGATA ACGAAAGTCG GGTCAAGTCC TGCCGCCCG AGGATGGAGG 101 CGGTCAGGCT GGTGGTCGTG GTTTTGCCGT GCGTGCCGGC AATGGCGATG 151 CCGTCACGGA AGCGCATCAA CTCCGCCAAC ATCAGGGCGC GCGGAATAAC GGGAATTTGC TGCTCCAACG CAGCGACAAC TTCGGGATTT TCTTTTTTGA CGGCGGTAGA GGTAACGACG ACATCCGCAC CGTTAACGTG TTCTGCGGTA 251 301 TGGCCGGGAT AA

This corresponds to the amino acid sequence <SEQ ID 326; ORF 094.a>:

```
a094.pep
          MYSPLPKRAL VPAALSLPPI TKVGSSPAAP RMEAVRLVVV VLPCVPAMAM
      51
          PSRKRINSAN IRARGITGIC CSNAATTSGF SFLTAVEVTT TSAPLTCSAV
          WPG*
     101
             100.0% identity over a 103 aa overlap
m094/a094
                     10
                                         30
                                                   40
                                                             50
m094.pep
             MYSPLPKRALVPAALSLPPITKVGSSPAAPRMEAVRLVVVVLPCVPAMAMPSRKRINSAN
             MYSPLPKRALVPAALSLPPITKVGSSPAAPRMEAVRLVVVVLPCVPAMAMPSRKRINSAN
a094
                     10
                               20
                                         30
                                                   40
                     70
                               80
                                         90
             IRARGITGICCSNAATTSGFSFLTAVEVTTTSAPLTCSAVWPGX
m094.pep
             a094
             IRARGITGICCSNAATTSGFSFLTAVEVTTTSAPLTCSAVWPGX
                     70
                               80
                                         90
                                                  100
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 327>:
     g095.seq
               ATGTCCTTTC ATTTGAACAT GGACGGTGAA TTTCATTTGC GCGCCGACGT
            1
           51 TTTCGATGTC GGTGGCGTAG ATGTCGGCGG TATCGTCCAA ACCGTAAGTA
          101 GCATAAGGTT TGCTCACTTT GGGCAAAATC GCGCGGACGT GTTCGCTGTC
          151 AACACACAA AAGGCTTTGC CGTAGAAGGG CATACGGTGG ATGAAATCGA
          201 TAAACGCCTG ATGCAGTTTT TCGACGCTGT GCCCGTAGGT ATCCATATGG
          251 TCTTCGTCGA TATTGGTAAC GACGGACATA ATCGGGGTCA GTGTAGGAAA
          301 GAGGCATCGG ATCGTCGGCT TCGGCAACGA TGTATTCGCC TTTGCCCAAG
               CGGGCGTTGG TGCCTGCGGC GTTGA
This corresponds to the amino acid sequence <SEQ ID 328; ORF 095.ng>:
     g095.pep
            1 MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV
           51 NTQKGFAVEG HTVDEIDKRL MQFFDAVPVG IHMVFVDIGN DGHNRGQCRK
              EASDRRLRQR CIRLCPSGRW CLRR*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 329>:
     m095.seq
              ATGTCCTTTC ATTTGAACAT GGACGGTGAA TTTCATTTGC GCGCCGACGT
            1
           51 TTTCGATGTC GGTGGCGTAG ATGTCGGCGG TATCGTCCAA ACCGTAAGTA
          101 GCATAAGGTT TGCTCACTTT GGGCAAAATC GCGCGGACGT GTTCGCTGTC
          151 AATACACAAA AAGGCTTTGC CGTAGAAGGG CATACGGTGG ATGAAATCGA
201 TAAACGCCTG ATGCAGTTTT TCGACGCTGT GCCCGTAGGT ATCCATATGG
251 TCTTCGTCGA TATTGGTAAC GACGGACATA ATCGGTGTCA GTGCAGAAAG
          301 GATGCATCCG ACCGTCGGCT TCGGCAACGA TGTATTCGCC TTTGCCCAAG
          351 CGGGCGTTAG TGCCTGCGGC GTTGA
This corresponds to the amino acid sequence <SEQ ID 330; ORF 095>:
     m095.pep
               MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GONRADVFAV
           51 NTOKGFAVEG HTVDEIDKRL MOFFDAVPVG IHMVFVDIGN DGHNRCOCRK
          101 DASDRRLRQR CIRLCPSGRX CLRR*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 095 shows 97.6% identity over a 124 aa overlap with a predicted ORF (ORF 095.ng)
from N. gonorrhoeae:
     m095/g095
                                    20
                                              30
                  {\tt MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAVEG}
     m095.pep
```

333>:

297

9095	MSFHLNMD	GEFHLRADVFI	OVGGVDVGGIV	OTVSSIRFAHFO	ONRADVFAVNT	OKGFAVEG
3023			20 30	_	50	60
		. •	30 [.] 90	•	110	120
m095.pep	HTVDEIDK	RLMQFFDAVP	/GIHMVFVDIG	NDGHNRCQCRKI	DASDRRLRQRCI	RLCPSGRX
						111111
g095	· - - ·	- · -		-	EASDRRLRORCI	
		70 8	30 90	100	110	120
m095.pep	CLRRX					
оээ.рер	11111					
9095	CLRRX					
J						
The following p	artial DNA se	equence was	identified in	n N. meningi	tidis <seq ii<="" td=""><td>D 331>:</td></seq>	D 331>:
a095.seq		•		O	•	
1	ATGTCCTTTC	ATTTGAACAT	GGACGGTGAA	TTTCATTTGC	GCGCCGACGT	
51	TTTCGATGTC	GGTGGCGTAG	ATGTCGGCGG	TATCGTCCAA	ACCGTAAGTA	
101	GCATAAGGTT					
151	AATACACAAA					
201	TAAACGCCTG				· -	
251	TCTTCGTCGA					
301 351	GATGCATCCG CGGGCGTTGG			TGTATTCGCC	TTTGCCCAAG	
331	CGGGCG11GG	1GCC1GCGGC	GIIGA			
man '		• 4	CEO II	D 222. ODE	005 ->-	
This correspond	is to the amino	o acia seque	nce <seq ii<="" td=""><td>U 332; OKF</td><td>∪93.a>:</td><td></td></seq>	U 332; OKF	∪93.a>:	
a095.pep			0011011007::0	mu.co. + p. p	00110 3 0110211	
1	MSFHLNMDGE		~		_	
51	NTQKGFAVEG	HIADEIDKKP	MOLPHIALABAG	TUMALADIGN	DGUNKCOCKK	

This

1	MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV	
51	NTQKGFAVEG HTVDEIDKRL MQLLNTVPVG IHMVFVDIGN DGHNRCQCRK	
101	DASDRRLROR CIRLCPSGRW CLRR*	
m095/a095	96.0% identity in 124 aa overlap	
	10 20 30 40 50	60
m095.pep	MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAV	
moss.pcp		
- 005	MSFHLNMDGEFHLRADVFDVGGVDVGGIVOTVSSIRFAHFGONRADVFAVNTOKGFA	
a095		
	10 20 30 40 50	60
		120
m095.pep	HTVDEIDKRLMQFFDAVPVGIHMVFVDIGNDGHNRCQCRKDASDRRLRQRCIRLCPS(GRX
		11
a095	HTVDEIDKRLMQLLNTVPVGIHMVFVDIGNDGHNRCQCRKDASDRRLRQRCIRLCPS(GRW
	70 80 90 100 110	120
m005 non	CLRRX	
m095.pep		
a095	CLRRX	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID

```
g096.seq
                 1 ATGGCCGGTC ATACCGGGCA GGGTGTTGAT TTCCAACAGA TAGAGTTTGC
51 CGTCGGTATC TTTGAGGAAA TCGACGCGCA CGCAGCCTTC CGCACCGATT
101 GCCTGTGCGC CGCGAACCGC CAGTTCGCGC ATCAGGCTTT CTTCGGCTTC
151 GGTCAAATCT TCCGAAGGAC ATTGAtaaat ggtgTCGTCT CGGttgtaCt
```

WO 99/057280 PCT/US99/09346

298

```
201 tggcttcgta gTCGTAAAAC TCGGTTGCGG GGATGATGTG TATGCCGGGC
251 AGCCCTTTGC CGTTCAGGAC GGGGCAGGAA TATTCGCCGC CGCCGATAAA
301 AcgtTcggca atgaTTtcgc ccctgAAGGT GttTCAattc ttcgtaAACG
351 CTTTTCAGAC ggccttTTTC TTTGA
```

This corresponds to the amino acid sequence <SEQ ID 334; ORF 096.ng>: g096.pep

- MAGHTGQGVD FQQIEFAVGI FEEIDAHAAF RTDCLCAANR QFAHQAFFGF
- GQIFRRTLIN GVVSVVLGFV VVKLGCGDDV YAGQPFAVQD GAGIFAAADK 51
- TFGNDFAPEG VSILRKRFSD GLFL* 101

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 335>:

```
ATGGCTCGTC ATACCGGGCA GGGTGTTGAT TTCCAACAGA TAGAGTTTGC
             CGTCGGTATC TTTGAGGAAA TCGACGCGCA CGCAGCCTTC CGCACCGATT
          51
         101 GCCTGCGCGC CGCGAACCGC CAGTTCGCGC ATCAGGCTTT CTTCGGCTTC
         151 GGTCAAATCT TCCGAAGGAC ATTGATAAAT GGTGTCGTCG CGGTTGTACT
         201 TGGCTTCGTA GTCGTAAAAC TCGGTTGCGG GAATGATGTG TATGCCGGGC
             AGCCCTTTGC CGTTCAGGAC GGGGCAGGAA TATTCGCCGC CGCCGATAAA
             ACGTTCGGCA ATGATTTCGC CC.TGAAGGT GTTTCAATTC TTCGTAAACG
         301
             CTTTTCAGAC GGCCTTTTCC TTTGA
This corresponds to the amino acid sequence <SEQ ID 336; ORF 096>:
    m096.pep
             MARHTGOGVD FOQIEFAVGI FEEIDAHAAF RTDCLRAANR QFAHQAFFGF
          51 GQIFRRTLIN GVVAVVLGFV VVKLGCGNDV YAGQPFAVQD GAGIFAAADK
             TFGNDFAXEG VSILRKRFSD GLFL*
    m096/g096 96.0% identity in 124 aa overlap
                                 20
                                          30
                                                   40
                       10
    m096.pep
                MARHTGQGVDFQQIEFAVGIFEEIDAHAAFRTDCLRAANRQFAHQAFFGFGQIFRRTLIN
                MAGHTGQGVDFQQIEFAVGIFEEIDAHAAFRTDCLCAANRQFAHQAFFGFGQIFRRTLIN
    q096
                                                   40
                       10
                                 20
                                          30
                                          90
                                                  100
                                 80
                {\tt GVVAVVLGFVVVKLGCGNDVYAGQPFAVQDGAGIFAAADKTFGNDFAXEGVSILRKRFSD}
    m096.pep
                q096
                GVVSVVLGFVVVKLGCGDDVYAGQPFAVQDGAGIFAAADKTFGNDFAPEGVSILRKRFSD
                       70
                                          90
                                                  100
                                 80
                GLFLX
    m096.pep
                11111
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 337>:

a096.seq

q096

GLFLX

m096.seq

```
ATGGCCGGTC ATACCGGGCA GGGTGTTGAT TTCCAACAGA TAGAGTTTGC
    CGTCGGTATC TTTGAGGAAA TCGACGCGCA CGCAGCCTTC CGCACCGATT
101 GCCTGCGCGC CGCGAACCGC CAGTTCGCGC ATCAGGCTTT CTTCGGCTTC
    GGTCAGATCT TCCGAAGGAC ATTGATAAAT GGTGTCGTTG CGGTTGTACT
TGGCTTCGTA GTCATAAAAC TCGGTCGCGG GGATGATGTG TATGCCGGGC
151
251 AGGCCTTTGC CGTTCAACAC AGGGCAGGAA TATTCGCCGC CGCCGATAAA
    CCGTTCGGCA ATGATTTCGC CCT.GAAAGT GTTTCAATTC TTCGTAAACG
    CTTTTCAGAC GGCCTTTTCC TTTGA
351
```

This corresponds to the amino acid sequence <SEQ ID 338; ORF 096.ng>: a096.pep

1 MAGHTGQGVD FQQIEFAVGI FEEIDAHAAF RTDCLRAANR QFAHQAFFGF

WO 99/057280 PCT/US99/09346

299

51 GOIFRTLIN GVVAVVLGFV VIKLGRGDDV YAGQAFAVQH RAGIFAAADK 101 PFGNDFAXES VSILRKRFSD GLFL* 92.7% identity in 124 aa overlap m096/a096 40 20 30 50 60 MARHTGOGVDFQQIEFAVGIFEEIDAHAAFRTDCLRAANRQFAHQAFFGFGQIFRRTLIN m096.pep MAGHTGQGVDFQQIEFAVGIFEEIDAHAAFRTDCLRAANRQFAHQAFFGFGQIFRRTLIN a096 40 80 90 100 120 70 110 GVVAVVLGFVVVKLGCGNDVYAGQPFAVQDGAGIFAAADKTFGNDFAXEGVSILRKRFSD m096.pep GVVAVVLGFVVIKLGRGDDVYAGQAFAVQHRAGIFAAADKPFGNDFAXESVSILRKRFSD a096 100 80 90 m096.pep 11111a096 GLFLX The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 339>: g097.seq ATGGATATTT CAAAACAAAC ATTGCTGGAT AGGGTTTTTA ACCTGAAGGC 1 AAACGGTACG ACGGTACGTA CCGAGTTGAT GGCGGGTTTG ACGACCTTTT TGACGATGTG CTACATCGTT ATCGTCAATC CCCTGATTTT GGGCGAGACC 151 GGAATGGATA TGGGGGCGGT ATTCGTCGCT ACCTGTATCG CATCCGCCAT 201 CGGCTGTTTT GTCATGGGTT TTATCGGCAA CTATCCGATT GCGCTTGCCC 251 CGGGGATGGG GCTGAATGCC TATTTCACCT TTGCCGTCGT TAAGGGTATG 301 GGCGTGCCTT GGCAGGTGGC GTTGGGTGCG GTGTTCATTT CCGGTCTGAT TTTCATCCTG TTCAGCTTTT TTAAAGTCAG GGAAATGCTG GTCAACGCAC 401 TGCCTATGGG TTTGAAAATG TCGATTGCCG CCGGTATCGG TTTGTTTTTG 451 GCACTGATTT CCCTGAAAGG CGCAGGCATT ATCGTTGCCA ATCCGGCAAC 501 CTTGGTCGGC TTGGGCGATA TTCATCAGCC CAGCGCACTG TTGGCATTGT TCGGTTTTGT CATGGTGGTC GTATTGGGGT ATTTCCGCGT TCAAGGCGCA ATCATCATCA CCATTCTGAC GATTACCGTC ATTGCCAGCC TGATGGGTTT GAACGAGTTT CACGGCGTGG TCGGCGAAGT ACCGGGCATT GCGCCGACCT 701 TTATGCAGAT GGATTTTAAA GGTCTGTTTA CCGTCAGCAT GGTCAGCGTG 751 ATTTTCGTCT TCTTCTTGGT CGATTTGTTC GACAGTACCG GAACGCTGGT 801 CGGCGTATCC CACCGTGCCG GACTGCTGGT GGACGGTAAG CTGCCCCGCC 851 TGAAACGCGC ACTGCTTGCA GACTCTACCG CCATTGTGGC AGGTGCGGCT 901 TTGGGTACTT CTTCAACCAC GCCTTATGTG GAAAGCGCGG CGGGCGTATC 951 GGCAGGCGGA CGGACCGGCC TGACGGCGGT TACCGTCGGC GTATTGATGC 1001 TGGCGTGTCT GATGTTCTCC CCATTGGCGA AAAGTGTTCC GGTATTTGCC 1051 ACCGCGCCCG CACTGCTTTA TGTCGGCACG CAGATGCTCC GCAGTGCGAG 1101 GGACATTGAT TGGGACGATA TGACTGAAGC CGCGCCCGCG TTCCTGACCA TTGTCTTCAT GCCGTTTACC TATTCGATTG CAGACGGCAT CGCCTTCGGC TTCATCAGCT ATGCCGTGGT CAAACTTTTG TGTCGCCGGA CTGGGGACGT 1251 GCCGCCTATG GTATGGGTTG TTGCCGTATT GTGGGCATTG AAATTCTGGT 1301 ATTTGGGCTG A This corresponds to the amino acid sequence <SEQ ID 340; ORF 097.ng>: g097.pep MDISKQTLLD RVFNLKANGT TVRTELMAGL TTFLTMCYIV IVNPLILGET GMDMGAVFVA TCIASAIGCF VMGFIGNYPI ALAPGMGLNA YFTFAVVKGM GVPWQVALGA VFISGLIFIL FSFFKVREML VNALPMGLKM SIAAGIGLFL 151 ALISLKGAGI IVANPATLVG LGDIHQPSAL LALFGFVMVV VLGYFRVQGA 201 IIITILTITV IASLMGLNEF HGVVGEVPGI APTFMOMDFK GLFTVSMVSV 251 IFVFFLVDLF DSTGTLVGVS HRAGLLVDGK LPRLKRALLA DSTAIVAGAA

> 301 LGTSSTTPYV ESAAGVSAGG RTGLTAVTVG VLMLACLMFS PLAKSVPVFA 351 TAPALLYVGT QMLRSARDID WDDMTEAAPA FLTIVFMPFT YSIADGIAFG

g097

70

130

80

140

120

180

401 FISYAVVKLL CRRTGDVPPM VWVVAVLWAL KFWYLG* The following partial DNA sequence was identified in N. meningitidis <SEO ID 341>: m097.seg ATGGACACTT CAAAACAAAC ACTGTTGGAC GGGATTTTTA AGCTGAAGGC 1 51 AAACGGTACK ACGGTGCGTA CCGAGTTGAT GGCGGGTTTG ACAACTTTTT TGACGATGTG CTACATCGTT ATCGTCAACC CTCyGATTTT GGGCGAGACC 101 151 GGCATGGATA TGGGGGCGGT ATTCGTCGCT ACCTGTATCG CGTCTGCCAT CGGCTGTTTT GTTATGGGTT TTGTCGGCAA CTATCCGATT GCACTCGCAC 201 251 CGGGGATGGG GCTGAATGCC TATTTCACCT TTGCCGTCGT TAAGGGTATG GGCGTGCCTT GGCAGGTTGC GTTGGGTGCG GTGTTCATCT CCGGTCTGAT 301 TTTTATCCTG TTCAGCTTTT TTAAAGTCAG GGAAATGCTG GTCAACGCAC TGCCTATGGG TTTGAAAATG TCGATTGCTG CCGGTATCGG TTTGTTTTTG 401 GCACTGATTT CCCTGAAAGG CGCAGGCATT ATCGTTGCCA ATCCGGCAAC 451 CTTGGTCGGT TTGGGCGATA TTCATCAGCC GTCCGCGTTG TTGGCATTGT 501 551 TCGGTTTTGC TATGGTGGTC GTATTGGGAC ATTTCCGCGT TCAAGGCGCA 601 ATCATCATCA CCATCTTGAC CATTACCGTC ATTGCCAGCC TGATGGGTTT 651 GAATGAATTT CACGGCATCA TCGGCGAAGT ACCGAGCATT GCGCCGACTT 701 TTATGCAGAT GGATTTTGAA GGCCTGTTTA CCGTCAGCAT GGTCAGTGTG 751 ATTTTCGTCT TCTTCTTGGT CGATCTATTT GACAGTACCG GAACGCTGGT 801 CGGCATATCC CACCGTGCCG GGCTGCTGGT GGACGGTAAG CTGCCCCGCC 851 TGAAACGCGC ACTGCTTGCA GACTCTACCG CCATTGTGGC AGGTGCGGCT TTGGGTACTT CTTCCACCAC GCCTTATGTG GAAAGCGCGG CGGGCGTATC GGCAGGCGGA CGGACCGGCC TGACGGCGGT TACCGTCGGC GTATTGATGC 951 1001 TCGCCTGCCT GATGTTTTCA CCTTTGGCGA AAAGTGTTCC CGCTTTTGCC 1051 ACCGCGCCCG CCCTGCTTTA TGTCGGCACG CAGATGCTCC GCAGTGCGAG 1101 GGATATTGAT TGGGACGATA TGACGGAAGC CGCACCTGCG TTCCTGACCA 1151 TTGTTTTCAT GCCGTTTACT TATTCGATTG CAGACGCAT CGCTTTCGGC 1201 TTCATCAGTT ATGCCGTGGT TAAACTTTTA TGCCGCCGCA CCAAAGACGT 1251 TCCGCCTATG GTATGGATTG TTGCCGTATT GTGGGCACTG AAATTCTGGT 1301 ATTTGGGCTG A This corresponds to the amino acid sequence <SEQ ID 342; ORF 097>: m097.pep 1 MDTSKQTLLD GIFKLKANGT TVRTELMAGL TTFLTMCYIV IVNPXILGET GMDMGAVFVA TCIASAIGCF VMGFVGNYPI ALAPGMGLNA YFTFAVVKGM 51 101 GVPWQVALGA VFISGLIFIL FSFFKVREML VNALPMGLKM SIAAGIGLFL ALISLKGAGI IVANPATLVG LGDIHQPSAL LALFGFAMVV VLGHFRVQGA 151 201 IIITILTITV IASLMGLNEF HGIIGEVPSI APTFMQMDFE GLFTVSMVSV 251 IFVFFLVDLF DSTGTLVGIS HRAGLLVDGK LPRLKRALLA DSTAIVAGAA LGTSSTTPYV ESAAGVSAGG RTGLTAVTVG VLMLACLMFS PLAKSVPAFA TAPALLYVGT QMLRSARDID WDDMTEAAPA FLTIVFMPFT YSIADGIAFG FISYAVVKLL CRRTKDVPPM VWIVAVLWAL KFWYLG* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 097 shows 96.3% identity over a 436 aa overlap with a predicted ORF (ORF 097.ng) from N. gonorrhoeae: m097/g097 10 20 40 60 30 50 MDTSKOTLLDGIFKLKANGTTVRTELMAGLTTFLTMCYIVIVNPXILGETGMDMGAVFVA m097.pep q097 MDISKQTLLDRVFNLKANGTTVRTELMAGLTTFLTMCYIVIVNPLILGETGMDMGAVFVA 10 20 30 40 50 60 80 90 100 TCIASAIGCFVMGFVGNYPIALAPGMGLNAYFTFAVVKGMGVPWQVALGAVFISGLIFIL m097.pep

TCIASAIGCFVMGFIGNYPIALAPGMGLNAYFTFAVVKGMGVPWQVALGAVFISGLIFIL

100

160

170

90

WO 99/057280 PCT/US99/09346

m097.pep	FSFFKVREMLVNALPMG	LKMSIAAGIO	GLFLALISLKO	GAGIIVANPA	rLVGLGDIHQ:	PSAL
		111111111				
g097	FSFFKVREMLVNALPMG					
	130	140	150	160	170	180
	100	200	220	220	220	240
	190 LALFGFAMVVVLGHFRV	200	210	220	230	240
m097.pep	LALFGFAMVVVLGHFRV	UGALILILI	IIIVIASUMGI		:	,
g097	LALFGFVMVVVLGYFRV	1111111111				
9097		200	210	220	230	240
	170	200	210		230	
	250	260	270	280	290	300
m097.pep	GLFTVSMVSVIFVFFLV	DLFDSTGTLV	VGISHRAGLLV	/DGKLPRLKR	ALLADSTAIV	AGAA
•			:			1111
g097	GLFTVSMVSVIFVFFLV	DLFDSTGTLV	VGVSHRAGLLV	/DGKLPRLKR	ALLADSTAIV.	AGAA
	250	260	270	280	290	300
		320	330	340	350	360
m097.pep	LGTSSTTPYVESAAGVS	AGGRTGLTAV	VTVGVLMLACI	LMFSPLAKSV:		
		Lagrage Mar			:	
g097		AGGRTGLTAV			PVFATAPALL 350	360
	310	320	330	340	350	360
	370	380	390	400	410	420
m097.pep	OMLRSARDIDWDDMTEA					
vspop	111111111111111					Ш
q097	OMLRSARDIDWDDMTEA	APAFLTIVFN	MPFTYSIADG:	AFGFISYAV	VKLLCRRTGD	
J	370	380	390	400	410	420
	430					
m097.pep	VWIVAVLWALKFWYLGX	•				
g097	VWVVAVLWALKFWYLGX					
	430					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 343> a097.seq

L					
1	ATGGACACTT	CAAAACAAAC	ACTGTTGGAC	GGGATTTTTA	AGCTGAAGGC
51	AAACGGTACG	ACGGTGCGTA	CCGAGTTGAT	GGCGGGTTTG	ACAACTTTTT
101	TGACGATGTG	CTACATCGTT	ATCGTCAACC	CTCTGATTTT	GGGCGAGACC
151	GGCATGGATA	TGGGGGCGGT	ATTCGTCGCT	ACCTGTATCG	CGTCTGCCAT
201	CGGCTGTTTT	GTTATGGGTT	TTGTCGGCAA	CTATCCGATT	GCACTCGCAC
251	CGGGGATGGG	GCTGAATGCC	TATTTCACCT	TTGCCGTCGT	TAAGGGTATG
301	GGCGTGCCTT	GGCAGGTTGC	GTTGGGTGCG	GTGTTCATCT	CCGGTCTGAT
351	TTTCATCCTG	TTCAGCTTTT	TTAAAGTCAG	GGAAATGCTG	GTCAACGCAC
401	TGCCTATGGG	TTTGAAAATG	TCGATTGCTG	CCGGTATCGG	TTTGTTTTTG
451	GCACTGATTT	CCCTGAAAGG	CGCAGGCATT	ATCGTTGCCA	ATCCGGCAAC
501	CTTGGTCGGC	TTGGGCGATA	TTCATCAGCC	GTCCGCGTTG	TTGGCACTGT
551	TCGGTTTTGC	CATGGTGGTC	GTATTGGGAC	ATTTCCGCGT	TCAAGGCGCA
601	ATCATCATCA	CCATTTTGAC	GATTACCGTC	ATTGCCAGCC	TGATGGGTTT
651	GAACGAATTT	CACGGCATCA	TCGGCGAAGT	GCCGAGCATT	GCGCCGACTT
701	TTATGCAGAT	GGATTTTAAA	GGGTTGTTTA	CCGTCAGCAT	GGTCAGCGTG
751	ATTTTCGTCT	TTTTCCTAGT	CGATCTGTTC	GACAGTACCG	GAACACTGGT
801	CGGTGTATCG	CATCGTGCCG	GACTGCTGGT	GGACGGTAAG	CTGCCCCGCC
851	TGAAACGCGC	ACTGCTTGCA	GACTCTACCG	CTATTGTGGC	AGGTGCGGCT
901	TTGGGTACTT	CTTCAACCAC	GCCTTATGTG	GAAAGTGCGG	CGGGCGTATC
951	ĠGCAGGCGGG	CGGACAGGTC	TGACGGCGGT	TACCGTCGGC	GTATTGATGC
1001	TCGCCTGCCT	GATGTTTTCA	CCTTTGGCGA	AAAGTGTTCC	CGCTTTTGCC
1051	ACCGCGCCCG	CCCTGCTTTA	TGTCGGCACG	CAGATGCTCC	GCAGTGCGAG
1101	GGACATCGAT	TGGGACGATA	TGACGGAAGC	CGCACCCGCA	TTCCTGACCA
1151	TTGTCTTCAT	GCCGTTTACC	TATTCGATTG	CAGACGGCAT	CGCTTTCGGC
1201	TTCATCAGTT	ATGCCGTGGT	TAAACTTTTA	TGCCGCCGCA	CCAAAGACGT
1251	TCCGCCTATG	GTATGGATTG	TTGCCGTATT	GTGGGCACTG	AAATTCTGGT

1301 ATTTGGGCTG A

This corresponds to the amino acid sequence <SEQ ID 344; ORF 097.a>: a097.pep

- 1 MDTSKQTLLD GIFKLKANGT TVRTELMAGL TTFLTMCYIV IVNPLILGET
 51 GMDMGAVFVA TCIASAIGCF VMGFVGNYPI ALAPGMGLNA YFTFAVVKGM
 101 GVPWQVALGA VFISGLIFIL FSFFKVREML VNALPMGLKM SIAAGIGLFL
 151 ALISLKGAGI IVANPATLVG LGDIHQPSAL LALFGFAMVV VLGHFRVQGA
 201 IIITILTITV IASLMGLNEF HGIIGEVPSI APTFMQMDFK GLFTVSMVSV
 251 IFVFFLVDLF DSTGTLVGVS HRAGLLVDGK LPRLKRALLA DSTAIVAGAA
 301 LGTSSTTPYV ESAAGVSAGG RTGLTAVTVG VLMLACLMFS PLAKSVPAFA
- 351 TAPALLYVGT QMLRSARDID WDDMTEAAPA FLTIVFMPFT YSIADGIAFG 401 FISYAVVKLL CRRTKDVPPM VWIVAVLWAL KFWYLG*

m097/a097 99.3% identity in 436 aa overlap

007	10 MDTSKOTLLDGIFKLK	20	30	40	50	60
m097.pep	WDL2KÖLTTDG15KF					
a097	MDTSKQTLLDGIFKLK					
403.	10	20	30	40	50	60
	70	80	90	100	110	120
m097.pep	TCIASAIGCFVMGFV					
a097	TCIASAIGCFVMGFV					
	70	80	90	100	110	120
	130	140	150	160	170	180
m097.pep	FSFFKVREMLVNALPN					
mos/.pep					_	_
a097	FSFFKVREMLVNALPN					
403.	130	140	150	160	170	180
	190	200	210	220	230	240
m097.pep	LALFGFAMVVVLGHFF	RVQGAIIITIL	TITVIASLMG	LNEFHGIIGE	VPSIAPTFMC	MDFE
a097	LALFGFAMVVVLGHFF					-
	190	200	210	220	230	240
	25.0	260	270	280	290	300
m097.pep	250 GLFTVSMVSVIFVFFI					
mog/.pep						
a097	GLFTVSMVSVIFVFF					
4057	250	260	270	280	290	300
	310	320	330	340	350	360
m097.pep	LGTSSTTPYVESAAG					
a097	LGTSSTTPYVESAAG\					
	310	320	330	340	350	360
	270	200	200	400	410	420
007	370 OMLRSARDIDWDDMT	380	390			
m097.pep						
a097	OMLRSARDIDWDDMT					
405,	370	380	390	400	410	420
	• • •					
	430					

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 345>:
            1 ATGACCGCCG ACGGTCTCTT CGTCGCTTTC AACTTCAATA CGTTTGCCGT
           51 TGTGCGAATA TTGATACCAG TACAGCAGGA TGCTGCCCAG GCTGGCGATC
          101 AGTTTGTCGG CGATGTCGCG CGCTTCGCTG TCGGGATGGC TTTCGCGTTC
          151 GGGATGAACG CAGCCGAGCA TGGACACGCC GGTACGCATC ACGTCCATCG
201 GATGGGTATG TGCAGGCAGG CTTTCCAAAA CTTTAATCAC ACGGATAGGC
          251 AGGCCGCGCA TGGATTTGAG CTTGGTTTTA TAAGCGGCCA GCTCGAATTT
          301 GTTGGGCAGA TGGCCGTGAA TCAGCAAGTG TGCGACTTCT TCAAACTCGC
          351 ATTTTTGTGC CAAATTAGAA TGTCGTAA
This corresponds to the amino acid sequence <SEQ ID 346; ORF 098.ng>:
     g098.pep
               MTADGLFVAF NFNTFAVVRI LIPVQQDAAQ AGDQFVGDVA RFAVGMAFAF
              GMNAAEHGHA GTHHVHRMGM CRQAFQNFNH TDRQAAHGFE LGFISGQLEF
           51
          101
              VGQMAVNQQV CDFFKLAFLC QIRMS*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 347>:
     m098.seq
               ATGACCGCCG ATGGTCTCTT CGTCGCTTTC AACCTCAATG CGTTTGCCGT
               TGTGCGAATA TTGATACCAG TACAAGAGGA TGCTGCCGAG GCTGGCGATC
          101 AGTTTGTCGG CGATGTCGCG CGCTTCACTT TCCGGATGGC TTTCACGTTC
          151 AGGATGAACG CAGCCCAGCA TGGATACGCC GGTACGCATT ACGTCCATCG
          201 GATGGGTATG TGCAGGCAGG CTTTCCAAAA CTTTAATCAC ACGGATAGGC
          251 AGGCCGCGCA TGGATTTGAG CTTGGTTTTA TAAGCGGCCA GCTCGAATTT
          301 GTTGGGCAGA TGGCCGTGAA TCAGCAGGTG GGCGACTTCT TCAAACTCGC
          351 ATTTTTGTGC CAAATCAGAA TGTCGTAA
This corresponds to the amino acid sequence <SEQ ID 348; ORF 098>:
     m098.pep
               MTADGLFVAF NLNAFAVVRI LIPVQEDAAE AGDQFVGDVA RFTFRMAFTF
               RMNAAOHGYA GTHYVHRMGM CROAFONFNH TDROAAHGFE LGFISGOLEF
           51
               VGQMAVNQQV GDFFKLAFLC QIRMS*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 098 shows 89.6% identity over a 125 aa overlap with a predicted ORF (ORF 098.ng)
from N. gonorrhoeae:
     m098/g098
                                    20
                                              30
                                                        40
                                                                 50
                                                                            60
                  MTADGLFVAFNLNAFAVVRILIPVQEDAAEAGDQFVGDVARFTFRMAFTFRMNAAQHGYA
     m098.pep
                  MTADGLFVAFNFNTFAVVRILIPVQQDAAQAGDQFVGDVARFAVGMAFAFGMNAAEHGHA
     g098
                          10
                                                       40
                                                                 50
                                    80
                                              90
                                                      100
                                                                 110
                  {\tt GTHYVHRMGMCRQAFQNFNHTDRQAAHGFELGFISGQLEFVGQMAVNQQVGDFFKLAFLC}
     m098.pep
                  GTHHVHRMGMCRQAFQNFNHTDRQAAHGFELGFISGQLEFVGQMAVNQQVCDFFKLAFLC
     g098
                                              90
                                                      100
                                                                           120
                                    80
                                                                 110
                  QIRMSX
     m098.pep
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 349>: a098.seq

QIRMSX

q098

- ATGACCGCCG ATGGTCTCTT CGTCGCTTTC AACCTCAATG CGTTTGCCGT
- 51 TGTGCGAATA TTGATACCAG TACAAGAGGA TGCTGCCGAG GCTGGCGATC

a098

OIRMSX

304

```
101 AGTTTGTCGG CGATGTCGCG CGCTTCACTT TCCGGATGGC TTTCACGTTC
             AGGATGAACG CAGCCCAGCA TGGATACGCC GGTACGCATT ACGTCCATCG
             GATGGGTATG TGCAGGCAGG CTTTCCAAAA CTTTAATCAC ACGGATAGGC
         201
         251 AGGCCGCGCA TGGATTTGAG CTTGGTTTTA TAAGCGGCCA GCTCGAATTT
             GTTGGGCAGA TGGCCGTGAA TCAGCAGGTG GGCGACTTCT TCAAACTCGC
         351 ATTTTTGTGC CAAATCAGAA TGTCGTAA
This corresponds to the amino acid sequence <SEQ ID 350; ORF 098.a>:
a098.pep
             MTADGLFVAF NLNAFAVVRI LIPVQEDAAE AGDQFVGDVA RFTFRMAFTF
          5.1
             RMNAAOHGYA GTHYVHRMGM CRQAFQNFNH TDRQAAHGFE LGFISGQLEF
             VGQMAVNQQV GDFFKLAFLC QIRMS*
         101
m098/a098
             100.0% identity in 125 aa overlap
                                                   40
                                                            50
                                 20
                                          30
                MTADGLFVAFNLNAFAVVRILIPVQEDAAEAGDQFVGDVARFTFRMAFTFRMNAAQHGYA
    m098.pep
                {\tt MTADGLFVAFNLNAFAVVRILIPVQEDAAEAGDQFVGDVARFTFRMAFTFRMNAAQHGYA}
    a098
                                          30
                                                   40
                        70
                                 80
                                          90
                                                  100
                                                           110
                GTHYVHRMGMCROAFONFNHTDROAAHGFELGFISGQLEFVGQMAVNQQVGDFFKLAFLC
    m098.pep
                GTHYVHRMGMCRQAFQNFNHTDRQAAHGFELGFISGQLEFVGQMAVNQQVGDFFKLAFLC
    a098
                                                  100
                                                           110
                        70
                                 80
                                          90
    m098.pep
                QIRMSX
                11111
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 351>: 9099.seq

```
ATGCTGGGAC GCGCGTCCAT GATGCGCCTG CCCGATATTG TCGGCGTGGA
  1
     GCTGACGGCC AAACGGCAGG CGGGCATTAC TGCCACAGAC ATCGTGTTGG
 51
     CACTGACCGA ATTCTTGCGT AAAGAGCGCG TGGTCGGGGC GTTTGTCGAA
101
151
     TTTTTCGGCG AGGGCGCGA AAGCCTGTCT ATCGGCGACC GCGCGACCAT
     TTCCAACATG ACGCCGGAGT TCGCCGCGAC TGCCGCCATG TTCGCCATCG
201
     ACGCGCAAAC TATTGATTAT TTGAAACTGA CCGGACGTGA CGACGCGCAG
     GTGAAATTGG TGGAAACCTA CGCCAAAACC GCAGGCTTAT GGGCAGGTGG
     CTTGAAAACC GCCGTTTATC CGCGCGTTTT GAAATTTGAT TTGAGCAGCG
351
     TAACGCGCAA TATGGCAGGC CCGAGCAACC CGCACGCGCG TTTTGCCACC
401
     GCCGATTTGG CGGCGAAAGG GCTGGCGAAG CCTTACGAAG AGCCTTCAGA
451
501
      CGGCCAAATG CCTGACGGTG CAGTGATTAT TGCCGCGATT ACTTCGTGTA
      CCAATACTTC CAACCCGCGC AACGTTGTCG CCGCCGCACT GTTGGCACGC
     AATGCCAACC GCCTCGGCTT GAAACGCAAA CCTTGGGTGA AATCTTCGTT
 601
      TGCCCCGGGT TCAAAAGTAG CCGGAATCTA TTTGAAAGAA GCAGGCTTGT
651
      TGCCCGAAAT GGAAAAACTC GGCTTCGGTA TCGTCGCCTT CGCATGTACC
 701
 751 ACCTGTAACG GCATGAgcgG CGCGCTcgaC CCGAAAATCC AACAAGAAAT
     CATCGACCGC GAtttgtacg cCACCGCCGT ATTGTCAGGC AACCGCAACT
     TCGACGCCG TATCCATCCG TATGCGAAAC AGGCTTTCCT CGCTTCGCCT
 901 CCTTTGGTCG TTGCCTACGC ATTGGCAGGT AGCATCCGTT TCGATATTGA
 951 AAACGACGTA CTCGGCGTTG CAGACGGCCG CGAAATCCGC CTGAAAGATA
      TCTGGCCGAC AGACGAAGAA ATCGATGCCA TCGTTGCCGA ATATGTGAAA
1001
      CCGCAACAAT TCCGCGACAT TTATATCCCG ATGTCCGACA CCGGCACAGC
      GCAAAAAGCA CCAAGCCCGC TGTACGACTG GCGACCGATG TCCACCTACA
1101
      TCCGCCGTCC GCCCTATTGG GAAGGCGCAC TGGCAGGGGA ACGTACATTA
1151
     AGAGGTATGC GTCCGCCGGC GATTTTGCCC GACAACATCA CCACCGACCA
1201
     CATCTCgcca tCCAATGCGA TTTTGGCCGG cagTGCcgca ggtgaATATT
```

1301 TGGCGAAAAT GGGTTTGCCT GAAGAAGAT TCAACTCTTA CGCAACCCAC 1351 CGCGGCGACC ACTTGACCGC CCAACGCGCA ACCTTCGCCA ATCCGAAACT 1401 GTTTAACGAA ATGGTGAGAA ACGAAGACGG CAGCGTACGC CAAGGTtcqt tggcacgcgt tgaacCAGAA GGCCAAACCA TGCGCATGTG GGAAGCCATC

GAAACCTATA TGAACCGCAA ACAGCCGCTT ATCATCATTG CCGGTGCGGA

CTATGGTCAA GGCTCAAGCC GCGACTGGGC GGCGAAGGGC GTGCGGCTGG 1601 CGGGTGTGGA AGCCATCGCC GCCGAAGGTT TCGAGCGCAT CCACCGCACC 1651 AACCTCATCG GCATGGGCGT CTTGCCGCTG CAATTCAAAC CCGGCACCAA 1701 CCGCCATACC CTGCAACTGG ACGGTACGGA AACCTACGAC GTTGTCGGCG 1751 AACGCACACC GCGCTGCGGC CTGACCCTCG TGATTCACCG TAAAAAACGGA 1801 GAAACCGTCG AAGTTCCGGT TACCTGCCGC CCCGATACCG CAGAAGAAGC 1851 ATTGGTATAT GAAGCCGGCG GCGTATTGCA ACGGTTTGCA CAGGACTTTT 1901 TGGAAGGGAA CGCGGCTTAG This corresponds to the amino acid sequence <SEQ ID 352; ORF 099.ng>: g099.pep 1 MLGRASMMRL PDIVGVELTG KRQAGITATD IVLALTEFLR KERVVGAFVE 51 FFGEGARSLS IGDRATISNM TPEFGATAAM FAIDAQTIDY LKLTGRDDAQ 101 VKLVETYAKT AGLWAGGLKT AVYPRVLKFD LSSVTRNMAG PSNPHARFAT 151 ADLAAKGLAK PYEEPSDGQM PDGAVIIAAI TSCTNTSNPR NVVAAALLAR 201 NANRLGLKRK PWVKSSFAPG SKVAGIYLKE AGLLPEMEKL GFGIVAFACT 251 TCNGMSGALD PKIQQEIIDR DLYATAVLSG NRNFDGRIHP YAKQAFLASP 301 <u>PLVVAYALAG SIRFDIENDV LGVADGREIR LKDIWPTDEE IDAIVAEYVK</u> 351 <u>PQQFRDIYIP MSDTGTAQKA PSPLYDWRPM STYIRRPPYW EGALAGERTL</u> 401 RGMRPPAILP DNITTDHISP SNAILAGSAA GEYLAKMGLP EEDFNSYATH 451 RGDHLTAQRA TFANPKLFNE MVRNEDGSVR QGSLARVEPE GQTMRMWEAI 501 ETYMNRKQPL IIIAGADYGQ GSSRDWAAKG VRLAGVEAIA AEGFERIHRT 551 NLIGMGVLPL QFKPGTNRHT LQLDGTETYD VVGERTPRCG LTLVIHRKNG 601 ETVEVPVTCR PDTAEEALVY EAGGVLQRFA QDFLEGNAA* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 353>: m099.seq ATGCTGGGAC GCGCGTCCAT GATGCGCCTG CCCGATATTG TCGGCGTTGA 51 GCTGAACGGC AAACGGCAGG CGGGCATTAC GGCGACGGAT ATTGTGTTGG 101 CACTGACCGA GTTTCTGCGC AAAGAACGCG TGGTCGGGGC GTTTGTCGAA 151 TTCTTCGGCG AGGGCGCGAG AAGCCTGTCT ATCGGCGACC GCGCGACCAT 201 TTCCAACATG ACGCCGGAGT TCGGCGCGAC TGCCGCGATG TTCGCTATTG 251 ATGAGCAAAC CATTGATTAT TTGAAACTGA CCGGACGCGA CGACGCGCAG 301 GTGAAATTGG TGGAAACCTA CGCCAAAACC GCAGGCTTGT GGGCAGATGC 351 CTTGAAAACC GCCGTTTATC CTCGCGTTTT GAAATTTGAT TTGAGCAGCG TAACGCGCAA TATGGCAGGC CCAAGTAACC CGCATGCCCG TTTTGCGACC 401 GCCGATTTGG CGGCGAAAGG GCTGGCGAAG CCTTACGAAG AGCCTTCGGA 451 CGGCCAAATG CCCGACGGCT CGGTCATCAT CGCCGCGATT ACCAGTTGCA 501 551 CCAACACTTC CAACCCGCGC AACGTTGTTG CCGCCGCGCT CTTGGCACGC 601 AATGCCAACC GTCTCGGCTT GAAACGCAAA CCTTGGGTGA AATCTTCGTT 651 TGCCCGGGT TCAAAAGTAG CCGAAATCTA TTTGAAAGAA GCGGGCCTGT 701 TGCCCGAAAT GGAAAAACTC GGCTTCGGTA TCGTCGCCTT CGCCTGCACC 751 ACCTGCAACG GCATGAGTGG CGCGCTGGAT CCGAAAATCC AGAAAGAAAT 801 CATCGACCGC GATTTGTACG CCACCGCCGT ATTATCAGGC AACCGCAACT 851 TCGACGGCCG TATCCACCCG TATGCGAAAC AGGCTTTCCT CGCTTCGCCT 901 CCGTTGGTCG TTGCCTACGC GCTGGCAGGC AGTATCCGTT TCGATATTGA 951 AAACGACGTA CTCGGCGTTG CAGACGGCAA GGAAATCCGC CTGAAAGACA 1001 TTTGGCCTGC CGATGAAGAA ATCGATGCCG TCGTTGCCGA ATATGTGAAA 1051 CCGCAGCAGT TCCGCGATGT GTATGTACCG ATGTTCGACA CCGGCACAGC 1101 GCAAAAAGCA CCCAGTCCGC TGTACGATTG GCGTCCGATG TCCACCTACA 1151 TCCGCCGTCC GCCTTACTGG GAAGGCGCGC TGGCAGGGGA ACGCACATTA 1201 AGAGGTATGC GTCCGCTGGC GATTTTGCCC GACAACATCA CCACCGACCA 1251 CCTCTCGCCG TCCAATGCGA TTTTGGCCGT CAGTGCCGCA GGCGAGTATT 1301 TGGCGAAAAT GGGTTTGCCT GAAGAAGACT TCAACTCTTA CGCAACCCAC 1351 CGCGGCGACC ACTTGACCGC CCAACGCGCT ACCTTCGCCA ATCCGAAACT 1401 GTTTAACGAA ATGGTGAAAA ACGAAGACGG CAGCGTGCGC CAAGGCTCGT 1451 TCGCCCGCGT CGAACCCGAA GGCGAAACCA TGCGCATGTG GGAAGCCATC

1501 GAAACCTATA TGAACCGCAA ACAGCCGCTC ATCATCATTG CCGGTGCGGA

```
1551 CTATGGTCAA GGCTCAAGCC GCGACTGGCC TGCAAAAGGC GTACGCCTCG
1601 CCGGCGTAGA AGCGATTGTT GCCGAAGGCT TCGAGCGTAT CCACCGCACC
1651 AACCTTATCG GCATGGGCGT GTTGCCGCTG CAGTTCAAAC CCGACACCAA
1701 CCGCCATACC CTGCAACTGG ACGGTACGGA AACCTACGAC GTGGTCGGCG
1751 AACGCACACC GCGCTGCGAC CTGACCCTCG TGATTCACCG TAAAAACGGC
1801 GAAACCGTTG AAGTTCCCGT TACCTGCTGC CTCGATACTG CAGAAGAAGT
1851 ATTGGTATAT GAAGCCGGCG GCGTGTTGCA ACGGTTTGCA CAGGATTTTT
1901 TGGAAGGGAA CGCGGCTTAG
```

This corresponds to the amino acid sequence <SEQ ID 354; ORF 099>: m099.pep

1 MLGRASMMRL PDIVGVELNG KRQAGITATD IVLALTEFLR KERVVGAFVE
51 FFGEGARSLS IGDRATISNM TPEFGATAAM FAIDEQTIDY LKLTGRDDAQ
101 VKLVETYAKT AGLWADALKT AVYPRVLKFD LSSVTRNMAG PSNPHARFAT
151 ADLAAKGLAK PYEEPSDGQM PDGSVIIAAI TSCTNTSNPR NVVAAALLAR
201 NANRLGLKRK PWVKSSFAPG SKVAEIYLKE AGLLPEMEKL GFGIVAFACT
251 TCNGMSGALD PKIQKEIIDR DLYATAVLSG NRNFDGRIHP YAKQAFLASP
301 PLVVAYALAG SIRFDIENDV LGVADGKEIR LKDIWPADEE IDAVVAEYVK
351 PQQFRDVYVP MFDTGTAQKA PSPLYDWRPM STYIRRPPYW EGALAGERTL
401 RGMRPLAILP DNITTDHLSP SNAILAVSAA GEYLAKMGLP EEDFNSYATH
451 RGDHLTAQRA TFANPKLFNE MVKNEDGSVR QGSFARVEPE GETMRMWEAI
501 ETYMNRKQPL IIIAGADYGQ GSSRDWAAKG VRLAGVEAIV AEGFERIHRT
551 NLIGMGVLPL QFKPDTNRHT LQLDGTETYD VVGERTPRCD LTLVIHRKNG

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 099 shows 96.2% identity over a 639 as overlap with a predicted ORF (ORF 099.ng) from N. gonorrhoeae:

m099/g099

	10	20	30	40	50	60
m099.pep	MLGRASMMRLPDIV	GVELNGKRQA	GITATDIVLA	LTEFLRKERV	V GAFVEFFGE	GARSLS
		 		1111111111	111111111	
g099	MLGRASMMRLPDIV	GVELTGKRQA	GITATDIVLA	LTEFLRKERV	VGAFVEFFGE	GARSLS
	10	20	30	40	50	60
•	70	80	90	100	110	120
m099.pep	IGDRATISNMTPEF	GATAAMFAID	EQTIDYLKLT	GRDDAQVKLV	ETYAKTAGLW	ADALKT
		1111111		1111111	11111111	1:111
g099	IGDRATISNMTPEF	GATAAMFAID	AQTIDYLKLT	GRDDAQVKLV	ETYAKTAGLW	AGGLKT
	70	80	90	100	110	120
	130	140	150	160	170	180
m099.pep	AVYPRVLKFDLSSV	TRNMAGPSNF	HARFATADLA	AKGLA KPYEE	PSDGQMPDGS	IAAIIV
				111111111		
g099	AVYPRVLKFDLSSV			AKGLAKPYEE	PSDGQMPDGA	IAAIIV
	130	140	150	160	170	180
	190	200	210	220	230	240
m099.pep	TSCTNTSNPRNVVA	AALLARNANR	LGLKRKPWVK	SSFAPGSKVA	EIYLKEAGLL	PEMEKL
				11111111		
g099	TSCTNTSNPRNVVA					
	190	200	210	220	230	240
	250	260	270	280	290	300
m099.pep	GFGIVAFACTTCNG			TAVLSGNRNF	DGRIHPYAKQ	AFLASP
				11111		
g099	GFGIVAFACTTCNG				DGRIHPYAKQ	AFLASP
	250	260	270	280	290	300
	310	320	330	340	350	360

WO 99/057280 PCT/US99/09346

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 355>: a099.seq

1	ATGCTGGGAC	GCGCGTCCAT	GATGCGCCTG	CCCGATATTG	TCGGCGTTGA
51	GCTGAACGGC	AAACGGAAGG	CGGGCATTAC	GGCGACGGAT	ATTGTGTTGG
101	CACTGACCGA	GTTTCTGCGC	AAAGAACGCG	TGGTCGGGGC	GTTTGTCGAA
151	TTCTTCGGCG	AGGGCGCGAG	AAGCCTGTCT	ATCGGCGACC	GCGCGACCAT
201	TTCCAACATG	ACGCCGGAGT	TCGGCGCGAC	TGCCGCGATG	TTCGCTATTG
251	ATGAGCAAAC	CATTGATTAT	TTGAAACTGA	CCGGACGCGA	CGACGCGCAG
301	GTGAAATTGG	TGGAAACCTA	CGCCAAAACC	GCAGGCTTGT	GGGCAGATGC
351	CTTGAAAACC	GCCGTTTATC	CGCGCGTTTT	GAAATTTGAT	TTGAGCAGCG
401	TAACGCGCAA	TATGGCAGGC	CCGAGCAACC	CGCACGCGCG	TTTTGCGACC
451	GCCGATTTGG	CCGGCAAAGG	CTTGGCTAAA	CCTTACGAAG	AGCCTTCAGA
501	CGGCCAAATG	CCTGACGGTG	CAGTGATTAT	TGCCGCGATT	ACTTCCTGTA
551	CCAATACTTC	CAATCCGCGC	AACGTTGTCG	CCGCCGCGCT	GTTGGCACGC
601	AATGCCAACC	GCCTCGGCTT	GCAACGCAAA	CCTTGGGTGA	AATCTTCGTT
651	TGCCCCGGGT	TCAAAAGTAG	CCGAAATCTA	TTTGAAAGAA	GCAGATCTGC
701	TGCCCGAAAT	GGAAAAACTC	GGCTTCGGTA	TCGTTGCCTT	CGCATGTACC
751	ACCTGTAACG	GCATGAGCGG	CGCGCTGGAT	CCGAAAATCC	AGAAAGAAAT
801	CATCGACCGC	GATTTGTACG	CCACCGCCGT	ATTGTCAGGC	AACCGCAACT
851	TTGACGGCCG	TATCCATCCG	TATGCGAAAC	AGGCTTTCCT	CGCTTCGCCT
901	CCGTTGGTCG	TTGCCTACGC	GCTGGCAGGC	AGCATCCGTT	TCGATATTGA
951	AAACGACGTA	CTCGGCGTTG	CAGACGGCAA	AGAAATCCGC	CTGAAAGACA
1001	TTTGGCCTAC	CGATGAAGAA	ATCGATGCCA	TCGTTGCCGA	ATATGTGAAA
1051	CCGCAGCAAT	TTCGCGACGT	TTATATCCCG	ATGTTCGACA	CCGGCACAGC
1101	GCAAAAAGCA	CCAAGCCCGC	TGTACGACTG	GCGTCCAATG	TCTACCTATA
1151	TCCGCCGCCC	ACCTTACTGG	GAAGGCGCAC	TGGCAGGGGA	ACGCACATTA
1201	AGCGGTATGC	GTCCGCTGGC	GATTTTGCCC	GACAACATCA	CCACCGACCA

1251	TCTCTCGCCA TCCAATGCGA TTTTGGCAAG CAGTGCCGCA GGCGA	
1301	TGGCAAAAAT GGGTTTGCCT GAAGAAGACT TCAACTCTTA CGCAA	
1351	CGTGGCGACC ACTTGACCGC CCAACGCGCA ACCTTCGCCA ATCCC	
1401	GTTTAACGAA ATGGTGAGAA ACGAAGACGG CAGCGTACGC CAAGC	
1451	TGGCACGCGT TGAACCCGAA GGCCAAACCA TGCGCATGTG GGAAC	
1501	GAAACCTATA TGAACCGCAA ACAGCCGCTC ATCATCATTG CCGGC	
1551	CTACGGTCAA GGCTCAAGCC GCGACTGGGC TGCAAAAGGC GTACC	
1601	CCGGCGTGGA AGCGATTGTT GCCGAAGGCT TCGAGCGTAT CCACC	
1651	AACTTGATCG GTATGGGCGT GTTGCCGCTG CAGTTCAAAC CGGGT	
1701		
1751	AACGCACACC GCGCTGCGAC CTGACCCTTG TGATTCACCG TAAAA	
1801	GAGACCGTCG AAGTCCCCAT TACCTGCCGC CTCGATACCG CAGA	
1851	GTTGGTATAT GAAGCCGGTG GCGTATTGCA ACGGTTTGCA CAGGA	ATTTTT
1901	TGGAAGGGAA CGCGGCTTAG	_
This correspond	Is to the amino acid sequence <seq 099.a<="" 356;="" id="" orf="" td=""><td>>:</td></seq>	>:
a099.pep		
1	MLGRASMMRL PDIVGVELNG KRKAGITATD IVLALTEFLR KERV	VGAFVE
51	FFGEGARSLS IGDRATISNM TPEFGATAAM FAIDEQTIDY LKLTO	GRDDAQ
101	VKLVETYAKT AGLWADALKT AVYPRVLKFD LSSVTRNMAG PSNPI	HARFAT
151	ADLAGKGLAK PYEEPSDGOM PDGAVIIAAI TSCTNTSNPR NVVA	AALLAR
201	NANRLGLORK PWVKSSFAPG SKVAEIYLKE ADLLPEMEKL GFGIV	VAFACT
251	TCNGMSGALD PKIQKEIIDR DLYATAVLSG NRNFDGRIHP YAKQA	AFLASP
301	PLVVAYALAG SIRFDIENDV LGVADGKEIR LKDIWPTDEE IDAIV	VAEYVK
351	POOFRDVYIP MFDTGTAQKA PSPLYDWRPM STYIRRPPYW EGALL	AGERTL
401	SGMRPLAILP DNITTDHLSP SNAILASSAA GEYLAKMGLP EEDFI	NSYATH
451		
501	ETYMNRKOPL IIIAGADYGQ GSSRDWAAKG VRLAGVEAIV AEGF	ERIHRT
551	NLIGMGVLPL QFKPGTNRHT LQLDGTETYD VVGERTPRCD LTLV	IHRKNG
601	ETVEVPITCR LDTAEEVLVY EAGGVLQRFA QDFLEGNAA*	
m099/a099	97.5% identity in 639 aa overlap	
ш099/а099	37.5% Identity In 055 da Overrap	
	· · · · · · · · · · · · · · · · · · ·	
	10 20 20 40	50 60
	10 20 30 40	50 60
m099.pep	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVV	GAFVEFFGEGARSLS
	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVV	GAFVEFFGEGARSLS
m099.pep a099	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVV MLGRASMMRLPDIVGVELNGKRKAGITATDIVLALTEFLRKERVV	GAFVEFFGEGARSLS
	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVV	GAFVEFFGEGARSLS
	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVV 	GAFVEFFGEGARSLS
a099	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVV(GAFVEFFGEGARSLS
	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVG	GAFVEFFGEGARSLS
a099 m099.pep	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVC	GAFVEFFGEGARSLS
a099	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVG	GAFVEFFGEGARSLS
a099 m099.pep	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVC	GAFVEFFGEGARSLS
a099 m099.pep	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVC	GAFVEFFGEGARSLS
a099 m099.pep a099	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVC	GAFVEFFGEGARSLS
a099 m099.pep	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVC	GAFVEFFGEGARSLS
a099 m099.pep a099	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVC	GAFVEFFGEGARSLS
a099 m099.pep a099 m099.pep	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVC	GAFVEFFGEGARSLS
a099 m099.pep a099 m099.pep a099	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVC	GAFVEFFGEGARSLS
a099 m099.pep a099 m099.pep a099	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVC	GAFVEFFGEGARSLS
a099 m099.pep a099 m099.pep a099	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVC	GAFVEFFGEGARSLS
a099 m099.pep a099 m099.pep a099	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVC	GAFVEFFGEGARSLS
a099 m099.pep a099 m099.pep a099	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVC	GAFVEFFGEGARSLS
a099 m099.pep a099 m099.pep a099	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVC	GAFVEFFGEGARSLS
a099 m099.pep a099 m099.pep a099	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVC	GAFVEFFGEGARSLS
a099 m099.pep a099 m099.pep a099	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVG	GAFVEFFGEGARSLS
a099 m099.pep a099 m099.pep a099 m099.pep a099	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVG	GAFVEFFGEGARSLS
a099 m099.pep a099 m099.pep a099 m099.pep a099	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVG	GAFVEFFGEGARSLS
a099 m099.pep a099 m099.pep a099 m099.pep a099	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVG	GAFVEFFGEGARSLS
a099 m099.pep a099 m099.pep a099 m099.pep a099	MLGRASMMRLPDIVGVELNGKRQAGITATDIVLALTEFLRKERVVC	GAFVEFFGEGARSLS

WO 99/057280 PCT/US99/09346

a099				: :: WPTDEEIDA	VAEYVKPOOI	: FRDVYIP
	310	320	330	340	350	360
	370	380	390	400	410	420
m099.pep	MFDTGTAQKAPSPL	YDWRPMSTYI	RRPPYWEGAL		RPLAILPONII	TTDHLSP
a099	MFDTGTAOKAPSPL	YDWRPMSTYI			RPLATLPDNIT	TTDHLSP
4033	370	380	390	400	410	420
	430	440	450	460	470	480
m099.pep	SNAILAVSAAGEYL	AKMGLPEEDE	NSYATHRGDH	-		
000	111111 1111111	NOWCI DEED!			:	
a099	SNAILASSAAGEYL 430	ARMGLPEEDE	450	460	470	480
	430	440	430	400	4,0	100
	490	500	510	520	530	540
m099.pep	QGSFARVEPEGETM			_		
C						
a099	QGSLARVEPEGQTM	RMWEAIETYN 500	INRKQPLIIIA 510	GADYGQGSSI 520	RDWAAKGVRL/ 530	AGVEAIV 540
	490	500	510	320	530	540
	550	560	570	580	590	600
m099.pep	AEGFERIHRTNLIG	MGVLPLQFKE	PDTNRHTLQLE	GTETYDVVGI	ERTPRCDLTL	VIHRKNG
			. , , , , , , , , ,			
a099	AEGFERIHRTNLIG		_			
	550	560	570	580	590	600
	610	620	630	640		
m099.pep	ETVEVPVTCCLDTA			LEGNAAX		
	111111:11	1111111111	шішіш	111111		
a099	ETVEVPITCRLDTA					
	610	620	630	640		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 357>: g102.seq

1	AtgtCCGCCA	AAactccgtc	gctcttcggc	ggcgcgatga	Ttatcgccgg
51	gaaggttatc	ggcgcAGgta	tgttccccaa	ccccaccgcc	aacttggggg
101	acgggttaat	aggctcgctg	attgtgctgc	tgtacacctg	gtttccattc
151	tcctccggcg	ccctcatgat	tttggaagtc	aacacccata	acCCccgagg
201	ggcaAGtttt	gacaccATGg	tcAAagacct	gctcgGaCGc	ggctggaaca
251	tcatcaacgg	catcgccgtc	gctttggTCc	tatacggctc	gacctacgcg
301	tacattttag	tcggcggtga	CCTGACCGCC	AAAGGCAtcg	GCAgCGCAGT
351			CCGTCGGACA		
401	TCGCCTTTTG	CGTATGGGCA	TCCGCACGCT	TGGTCGACCG	CTTTACCGGC
451	GTCCTCATCG	GCGGCATGGT	ATTAACCTTT	ATTTGGGCAA	CCGGCGGCCT
501	GGTTGCCGAT	GCCAAACCGT	CCGTCCTCTT	CGACACCCAA	GCCCCCGTCG
551			GCCGCCACCG		
601	TCCTTCGGCT	TCCACGGCAA	CGTTTCCAGC	CTGCTCAAAT	ACTTTAAAGG
651	CGACGcgcCc	aaagtGgCGA	aATCcatctg	gGcaggtaca	ttggTTGCCt
701	tggtaattta	cgtccTCTgg	caaaccgcca	tCcaaagcaa	ccTGCcgcgc
751	aacgagttcg	cccccgtgat	tgccgccgag	aggcaactCT	CCGTCCTgaa
801	tgaaacccTG	tccaaattcg	cccaaaccgg	cgatatggat	aAaatattgt
851			atcgccacct		-
901	ggcctgtttg	acaacatcgc	cgacatcttc	aaatggaacg	acagtatgtc
951	cgggcggggc	accaaaaccg	tcgcgctgaa	cttcctgccg	CCCCtgattt
1001	cctggctgct	cctccccacc	ggcttcttta	ccgccattgg	tgcgtccggc
1051	ctggcggcaa	ccgtctggga	ccaagGcatc	atccccgcca	tgctgctcta
1101			gcGcaggcaa		
1151			ttccttttcg		
1201	CAGGTATTGA	GccaAatgGa	ACtcgtCccc	GTATTTAAAG	GATAA

This corresponds to the amino acid sequence <SEQ ID 358; ORF 102.ng>: g102.pep

```
MSAKTPSLFG GAMIIAGKVI GAGMFPNPTA NLGDGLIGSL IVLLYTWFPF
         SSGALMILEV NTHNPRGASF DTMVKDLLGR GWNIINGIAV ALVLYGSTYA
     51
         YILVGGDLTA KGIGSAVGGK ISLTVGQLVF FGILAFCVWA SARLVDRFTG
    101
         VLIGGMVLTF IWATGGLVAD AKPSVLFDTQ APVGTGYWIY AATALPVCLA
    151
         SFGFHGNVSS LLKYFKGDAP KVAKSIWAGT LVALVIYVLW QTAIQSNLPR
    201
         NEFAPVIAAE ROLSVLNETL SKFAOTGDMD KILSLFPYMA IATSFLGVTL
    251
         GLFDNIADIF KWNDSMSGRG TKTVALNFLP PLISWLLLPT GFFTAIGASG
    301
         LAATVWDOGI IPAMLLYVSP QKIGAGKTYK VYGGLWLMLV FLFGIANIAA
    351
    401
         QVLSQMELVP VFKG*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 359>:
         ATGCCCAACA AAACCCCTTC ACTGTTCGGC GGCGCGATGA TTATCGCCGG
         CACGGTCATC GGCGCAGGCA TGCTCGCCAA CCCGACCGCC ACATCCGGCG
     51
         TATGGTTTAC CGGCTCGCTG GCCGTGTTGC TGTACACCTG GTTTTCTATG
    101
         CTTTCCAGCG GCCTGATGAT TTTGGAAGTC AACACCCATT ATCCGCACGG
    151
         CGCAAGTTTC GACACGATGG TCAAAGACCT GCTCGGACGC GGCTGGAACA
    201
         TCATCAACGG CATCGCCGTC GCCTTCGTTT TATACCTGCT TACTTACGCT
    251
         TATATCTTCG TCGGCGGCGA CCTGACCGCC AAAGGCTTAG GCAGCGCGGC
    301
         AGGCGGCGAC GTTTCACTCA CCGTCGGACA ACTCGTCTTC TTCGGCATCC
    351
         TCGCCTTTTG CGTATGGGCA TCCGCACGCT TGGTCGACCG CTTCACCGGC
    401
         GTCCTTATCG GCGGCATGGT ATTGACCTTT ATTTGGGCGG CCGGCGGGCT
    451
         GATTGCCGAT GCCAAGCCGT CCGTCCTCTT CGATACCCAA GCCCCCGCCG
    501
         GCACAAACTA CTGGATTTAC GCCGCCACCG CCCTGCCCGT CTGCCTCGCT
    551
         TCCTTCGGCT TCCACGGCAA CGTCTCCAGC CTGCTCAAAT ACTTTAAAGG
    601
         CGACGCGCCC AAAGTGGCTA AATCCATCTG GACGGGCACA CTGATTGCGC
    651
    701
         TGGTAATTTA CGTCCTCTGG CAAACCGCCA TCCAAGGCAA CCTGCCGCGC
         AACGAGTTCG CCCCGTCAT CGCCGCCGAA GGGCAAGTCT CCGTCCTCAT
    751
         CGAAACCCTG TCCAAATTCG CCCAAACCGG CAATATGGAC AAAATATTGT
    801
         CCCTGTTTTC CTATATGGCG ATCGCCACCT CGTTTTTAGG CGTAACGCTC
    851
    901
         GGACTCTTCG ACTACATCGC CGACATCTTC AAATGGAACG ACAGCATCTC
         CGGCCGCACC AAAACCGCCG CGCTGACCTT CCTGCCGCCC CTGATTTCCT
    951
         GCCTGCTCTT CCCCACCGGC TTCGTTACCG CCATCGGCTA CGTCGGCCTG
    1001
         GCGGCAACCG TCTGGACAGG CATCATCCCC GCCATGCTGC TCTACCGTTC
    1051
         GCGCAAAAA TTCGGCGCAG GCAAAACCTA TAAAGTTTAC GGCGGCTTGT
    1101
         GGCTGATGGT TTGGGTCTTC CTTTTCGGCA TCGTCAACAT CGCCGCACAG
    1151
    1201 GTATTGAGCC AAATGGAACT CGTCCCCGTA TTTAAAGGAT AA
This corresponds to the amino acid sequence <SEO ID 360; ORF 102>:
m102.pep.
      1 MPNKTPSLFG GAMIIAGTVI GAGMLANPTA TSGVWFTGSL AVLLYTWFSM
         LSSGLMILEV NTHYPHGASF DTMVKDLLGR GWNIINGIAV AFVLYLLTYA
      51
         YIFVGGDLTA KGLGSAAGGD VSLTVGQLVF FGILAFCVWA SARLVDRFTG
     101
         VLIGGMVLTF IWAAGGLIAD AKPSVLFDTQ APAGTNYWIY AATALPVCLA
     151
         SEGFHGNVSS LLKYFKGDAP KVAKSIWTGT LIALVIYVLW QTAIQGNLPR
     201
         NEFAPVIAAE GQVSVLIETL SKFAQTGNMD KILSLFSYMA IATSFLGVTL
     251
         GLFDYIADIF KWNDSISGRT KTAALTFLPP LISCLLFPTG FVTAIGYVGL
     301
         AATVWTGIIP AMLLYRSRKK FGAGKTYKVY GGLWLMVWVF LFGIVNIAAQ
     351
         VLSQMELVPV FKG*
     401
m102/g102
            86.0% identity in 415 aa overlap
                                                 40
            MPNKTPSLFGGAMIIAGTVIGAGMLANPTATSGVWFTGSLAVLLYTWFSMLSSGLMILEV
m102.pep
               MSAKTPSLFGGAMIIAGKVIGAGMFPNPTANLGDGLIGSLIVLLYTWFPFSSGALMILEV
g102
                                                          50
                    10
                              20
                                       30
                                                 40
                                                                    60
                                                100
                              80
                                       90
             NTHYPHGASFDTMVKDLLGRGWNIINGIAVAFVLYLLTYAYIFVGGDLTAKGLGSAAGGD
m102.pep
             NTHNPRGASFDTMVKDLLGRGWNIINGIAVALVLYGSTYAYILVGGDLTAKGIGSAVGGK
a102
                                       90
                                                100
                   130
                             140
                                       150
                                                160
             VSLTVGQLVFFGILAFCVWASARLVDRFTGVLIGGMVLTFIWAAGGLIADAKPSVLFDTQ
m102.pep
             ISLTVGQLVFFGILAFCVWASARLVDRFTGVLIGGMVLTFIWATGGLVADAKPSVLFDTQ
g102
                   130
                             140
                                                160
                                                          170
                                                                   180
                                       150
```

190

m102.pep

200

210

APAGTNYWIYAATALPVCLASFGFHGNVSSLLKYFKGDAPKVAKSIWTGTLIALVIYVLW

220

-102	: : : APVGTGYWIYAATA	HIIIIIIIII	I I I I I I I I I I I I I I I I I I I		: : TWACTLVAL	
g102	190	200	210	220	230	240
	250	260	270	280	290	300
m102.pep	QTAIQGNLPRNEF!					FLGVTL
-100	: OTAIOSNLPRNEFA		· · · · · · · · · · ·			IIIIII
g102	250	260	270	280	290	300
	310	320	330	340	350	
m102.pep	GLFDYIADIFKWNI				IGYVGLAAT	
100		, , , , , , , , , , , ,	:	: :	ון וווו	II II
g102	310	320	330	340	350	360
	360 370	380	390	400	410	
m102.pep	I PAMLLYRSRKKFO	GAGKTYKVYGGI	WLMVWVFLF	SIVNIAAQVLS	QMELVPVFK	GX
					CMETABAEK	11
g102	IPAMLLYVSPQKIO 370	380	390	400	410	GA.

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 361>: a102.seq

```
ATGCCCACCA AAACCCCTTC ACTGTTCGGC GGCGCGATGA TTATCGCCGG
   1
      CACGNTCATC GGCGCAGGTA TGCTCGCCAA CCCGACCGCC ACATCCGGCG
 101 TATGGTTTAC CGGCTCGCTG GCCGTGTTGC TGTACACCTG GTTTTCCATG
 151 CTCTCCAGCG GCCTGATGAT TTTGGAAGTC AACACCCACT ACCCCCACGG
 201 CGCGANCTTC GACACCATGG TTAAAGACCT GCTCGGACGG AGCTGGAACA
 251
     TCATCAACGG CATCGCCGTC GCCTTCGTTT TATACCTGCT TACTTACGCT
      TATATCTTCG TCGGCGGCGA CCTGACCGCC AAAGGCTTAG GCAGCGCGGC
 301
 351 AGGCGGCAAT GTTTCACTCA CCGTCGGACA ACTCGTCTTC TTCGGCATTC
 401 TCGCCTTTTG CGTATGGGCA TCCGCACGCT TGGTCGACCG ATTCACCAGC
 451 GTCCTCATCG GCGGCATGGT ATTAACCTTT ATTTGGGCAA CCGGCGGCCT
 501 GATTGCCGAT GCCAAACTGC CCGTCCTCTT CGACACCCAA GCCCCTACCG
      GCACCAACTA CTGGATTTAT GTCGCCACCG CCCTGCCCGT CTGCCTTGCG
 551
 601 TCATTCGGTT TCCACGGCAA CGTCTCCAGC CTGCTCAAAT ACTTTAAAGG
 651 CGACGCGCCC AAAGTGGCTA AATCCATCTG GACGGGCACA CTGATTGCGC
 701 TGGTAATTTA CGTCCTCTGG CAAACCGCCA TCCAANGCAA CCTGCCGCGC
 751 AACGAGTTCG CCCCCGTGAT TGCCGCCGAA GGGCAAGTCT CCGTCNTGAT
 801 TGAAACCCTG TCCAAATTCG CCCAAACCGG CAATATGGAC AAAATATTGT
851 CCCTGTTTC CTATATGGCG ATCGCCACCT CGTTTTTAGG CGTAACGCTC
 901 GGACTCTTCG ACTACATCGC CGACATCTTC AAATGGAACG ACAGCGTGTC
 951 CGGCCGCACC AAAACCGCCG CGCTGACCTT CCTGCCGCCT NTAATTTCCT
1001 GCCTGCTCTT CCCCACCGGC TTTGTTACCG CCATCGGNTA CGTCGGCCTG
1051 GCGGCAACCG TCTGGACAGG CATCATCCCC GCCATGCTGC TNTACCGTTC
1101 GCGCAAAAAA TTCGGCGCAG GCAAAACCTA TAAAGTTTAC GGCGGCTTGT
1151 GGCTGATGGT TTGGGTCTTC CTTTTCGGCA TCNTCAACAT CGCCGCACAN
      GTATTGAGCC AAATGGAACT CGTCCCCGTA TTTAAAGGAT AA
1201
```

This corresponds to the amino acid sequence <SEQ ID 362; ORF 102.a>: a102.pep

1	MPTKTPSLFG	GAMIIAGTXI	GAGMLANPTA	TSGVWFTGSL	AVLLYTWFSM
51	LSSGLMILEV	NTHYPHGAXF	DTMVKDLLGR	SWNIINGIAV	AFVLYLLTYA
101	YIFVGGDLTA	KGLGSAAGGN	VSLTVGQLVF	FGILAFCVWA	SARLVDRFTS
151	VLIGGMVLTF	IWATGGLIAD	AKLPVLFDTQ	APTGTNYWIY	VATALPVCLA
201	SFGFHGNVSS	LLKYFKGDAP	KVAKSIWTGT	LIALVIYVLW	QTAIQXNLPR
251	NEFAPVIAAE	GQVSVXIETL	SKFAQTGNMD	KILSLFSYMA	IATSFLGVTL
301	GLFDYIADIF	KWNDSVSGRT	KTAALTFLPP	XISCLLFPTG	FVTAIGYVGL
351	AATVWTGIIP	AMLLYRSRKK	FGAGKTYKVY	GGLWLMVWVF	LFGIXNIAAX
401	VLSQMELVPV	FKG*			

m102 / a102 95.9% identity in 413 aa overlap

WO 99/057280 PCT/US99/09346

312

m102.pep	10 20 MPNKTPSLFGGAMIIAGTVIG		GSLAVLLYTWF	
a102	:		GSLAVLLYTWF:	
m102.pep	70 80 NTHYPHGASFDTMVKDLLGRG	GWNIINGIAVAFVLYLL	TYAYIFVGGDL'	
	70 80			10 120 70 180
m102.pep	130 140 VSLTVGQLVFFGILAFCVWAS	SARLVDRFTGVLIGGMV	LTFIWAAGGLI	ADAKPSVLFDTQ
a102	VSLTVGQLVFFGILAFCVWAS 130 140			ADAKLPVLFDTQ 70 180
m102.pep	190 200 APAGTNYWIYAATALPVCLAS	FGFHGNVSSLLKYFKG	DAPKVAKSIWT	
a102	APTGTNYWIYVATALPVCLAS 190 200			GTLIALVIYVLW 30 240
m102.pep	250 260 QTAIQGNLPRNEFAPVIAAEG	GOVSVLIETLSKFAOTG	NMDKILSLFSY	
a102 .	QTAIQXNLPRNEFAPVIÄAEG 250 260		280 2	90 300
m102.pep	310 320 GLFDYIADIFKWNDSISGRTF		PTGFVTAIGYV	
a102	GLFDYIADIFKWNDSVSGRTF 310 320		PTGFVTAIGYV	
m102.pep	370 380 AMLLYRSRKKFGAGKTYKVYC		AAQVLSQMELV	11111
370	380 390 400	410	- - -	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 363>: g105.seq

1 Atgtccgcag aaaCATACAC acAAAtcggc tGGgtaggct taggGcaaat
51 gGgtctgcct atgGTAACGC GGCTCTTGGA CGGCGCATC GAAGTCGGCG
101 TATACAACCG CTCGCCCGAC AAAACTGCCC CCATCTCcgc CAAAGGAGCA
151 AAAGTTTACG GCagcACCGC CGAACTCGTC CGCGCCTGCC CCGTCATTTT
201 CCTGATGGTT TCCGACTATG CCGCCGTGTG CGACATCCTG AACGGAGTCC
251 GCGACGGATT GGCCGGCAAA ATCATCGTCA ACATGAGCAC CATCTCCCG
301 ACCGAAAACC TCGCCGTCAA AGCACTTGTC GAAGCCGCAG GCGGACAGTT
351 TGCCGAAGCA CCCGTTTCCG GATCGGTCG ACCCGCCACC AACGGCACAC
401 TGCTGATTCT GTTCGGCGC AGCGAAGCCG TTTTAAACCC GCTGCAAAAA
451 ATATTTTCCC TTGTCGGCAA AAAAACCTTC CATTTCGGCG ATGTCGGCAA
501 AGGCTCGGGC GCGAAACTCG TCTTGAACTC CATTTCGGCG ATTTTCGGCG
551 AAGCGTACAG CGAAGCCAT CGGCGGCTCG GCAATGGACT CGCCTATGTT
651 TCAAACAAAA AAATCACTAT GGGCAAACCG TGAGTTCCC CCTGCCTTTG
701 CACTCAAACA CGCTTCCAAA GACCTTAACC TCGCCGtAA AGAGCTTGAA
751 CAGGCAGGCA ACACCCTGCC CGCCGTCGAA ACGGTTCCC CCTGCCTTTG
801 CAAAGCAGTT GAAGCCGGT ACGGCGAACA GGACGTTTCC GGCGTTTACC
851 TGAAATTGGC AGAACCCGT CCGCCGCAACA GGACCGTTTCC CCAGCTACCG
801 CAAAGCAGTT GAAGCCGGCT ACGGCGAACA GGACGTTTCC CCAGCTTACCC
851 TGAAATTGGC AGAACACTGA

```
This corresponds to the amino acid sequence <SEQ ID 364; ORF 105.ng>:
     g105.pep
              MSAETYTQIG WVGLGQMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA
              KVYGSTAELV RACPVIFLMV SDYAAVCDIL NGVRDGLAGK IIVNMSTISP
          51
         101 TENLAVKALV EAAGGOFAEA PVSGSVGPAT NGTLLILFGG SEAVLNPLQK
         151 IFSLVGKKTF HFGDVGKGSG AKLVLNSLLG IFGEAYSEAM LMARQFGIDT
          201 DTIVEAIGGS AMDSPMFQTK KSLWANREFP PAFALKHASK DLNLAVKELE
          251 QAGNTLPAVE TVAASYRKAV EAGYGEQDVS GVYLKLAEH
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 365>:
     m105.seq
              ATGTCCGCAA ACGAATACGC ACAAATCGGC TGGaTAGGCT TAGGGCAAAT
           1
              GGGTCTGCCT ATGGTAACGC GGCTCTTGGA CGGCGGCATC GAAGTCGGCG
          51
          101 TATACAACCG CTCGCCCGAC AAAACTGCCC CCATCTCCGC CAAAGGCGCA
          151 AAAGTTTACG GCAACACCGC CGAACTCGTC CGCGACTATC CCGTCATTTT
          201 CCTGATGGTT TCCGACTATG CCGCCGTGTG CGACATCCTG AACGGAGTCC
              GCGACGGATT GGCCGGCAAm ATCATCGTCA ACATGAGCAC CATCTCCCCG
          251
              ACCGAAAaGC TCGCCGTCAA AGCACTTGTC GAAGCGCAGm GaCAGTTTGC
          301
              CGAAGCACCC GTTTCCGGAT CGGTCGGGCC CGCCACCAAC GGCACGCTGC
              TGATTCTGTT CGGCGGCAGC GAACCGtTTT AAACCCGCTG CAAAAAATAT
              TTTCCCTCGT CGGCAAAAA ACCTTCCATT TCGGCGATGT CGGCAAAGGT
          451
              TCGGGCGCGA AACTCGTCTT GAACTCGCTC TTGGGCATTT TCGGCGAaCG
          501
              TACAGCGAAS GMTqCTGATG GCGCGGCAGT TCGGCATCGA TACCGACACC
          551
          601 ATCGTCGAAG CCATCGGSGA CTCGGCAATG GACTCGCCCA TGTTCCAAAC
          651 CAAAAAATCC CTGTGGGCAA ACCGCGAATT CCCGmCCGmC TTCGCCCTCA
          701 AACACGCCTC CAAAGACCTC AACCTCGCCG TCAAAGAGCT TGAACAGGCA
          751 GGCAACACCC TGCCCGCCGT CGAAACCGTT GCTGCCAGCT ACCGCAAAGC
              AGTCGAAGCC GGCTACGGGA CACAGGACGT TTCCGGCGTT TACCTGAAAC
          801
              TGGCAGAACA CTGA
          851
This corresponds to the amino acid sequence <SEQ ID 366; ORF 105>:
     m105.pep
              MSANEYAQIG WIGLGQMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA
              KVYGNTAELV RDYPVIFLMV SDYAAVCDIL NGVRDGLAGX IIVNMSTISP
           51
              TEKLAVKALV EAQROFAEAP VSGSVGPATN GTLLILFGGS EPFXTRCKKY
          101
              FPSSAKKPSI SAMSAKVRAR NSSXTRSWAF SANVQRXXLM ARQFGIDTDT
               IVEAIGDSAM DSPMFQTKKS LWANREFPXX FALKHASKDL NLAVKELEQA
               GNTLPAVETV AASYRKAVEA GYGTQDVSGV YLKLAEH
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 105 shows 79.9% identity over a 289 aa overlap with a predicted ORF (ORF 105.ng)
from N. gonorrhoeae:
     m105/g105
                                                      40
                                                                50
                         10
                                   20
                                             30
                  MSAETYTQIGWVGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGSTAELV
     g105.pep
                  MSANEYAQIGWIGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGNTAELV
     m105
                         10
                                   20
                                             30
                                                      40
                                                                50
                                                                          60
                                                     100
                                             90
                                   80
                  RACPVIFLMVSDYAAVCDILNGVRDGLAGKIIVNMSTISPTENLAVKALVEAAGGQFAEA
     g105.pep
                     RDYPVIFLMVSDYAAVCDILNGVRDGLAGXIIVNMSTISPTEKLAVKALVEAQR-QFAEA
     m105
                                             90
                                                               110
                          70
                                   80
                                                      100
                                                               170
                                                                         180
                                            150
                                                     160
                         130
                                  140
                  PVSGSVGPATNGTLLILFGGSEAVLNPLQKIFSLVGKKTFHFGDVGKGSGAKLVLNSLLG
     g105.pep
                  :: ::
     m105
                  PVSGSVGPATNGTLLILFGGSEPFXTRCKKYFPSSAKKP-SISAMSAKVRARNSSXTRSW
                120
                          130
                                   140
                                             150
                                                       160
                                                                 170
```

g105.pep						230 240 EFPPAFALKHASK
3	1: ::					
m105					TKKSLWANRI 220	EFPXXFALKHASK 230
	180	190	200	210	220	230
						39
g105.pep		LEQAGNTLPA				
m105		LEQAGNTLPA				
m105	240	250	260	270	280	
The following p	artial DNA so	equence was	s identified	in N. meni	ngitidis <s< td=""><td>EQ ID 367>:</td></s<>	EQ ID 367>:
a105.seq						
1	ATGTCCGCAA					
51 101	GGGTCTGCCT TATACAACCG					
151	AAAGTTTACG	GCAACACCGC	CGAACTCGT	C CGCGACTA	ATC CCGTCA	TTTT
201	CCTGATGGTT					
251	GCGACGGATT	GGCCGGCAAA	ATCATCGTC	A ACATGAGO	CAC CATCTC	CCCG
301	ACCGAAAACC					
351	TGCCGAAGCA					
401	TGCTGATTCT	GTTCGGCGGC	AGCGAAGCC	G TTTTAAAC	CCC GCTGCA	AAAA
451	ATATTTTCCC AGGTTCGGGC					
501 551	AAGCGTACAG					
601	GACACCATCG					
651	CCAAACCAAA					
701	CCCTCAAACA	CGCCTCCAAA	GACCTCAAC	C TCGCCGTC	CAA AGAGCT	TGAA
751	CAGGCAGGCA					
801	CAAAGCAGTC			A GGACGTT	rcc ggcgtt	TACC
851	TGAAATTGGC			TD 260, O	DE 105 ->.	
This correspond	is to the amin	o acid seque	ence <seq< td=""><td>1D 368; O</td><td>KF 105.a>:</td><td></td></seq<>	1D 368; O	KF 105.a>:	
a105.pep						
1	MSANEYTQIG					
51 101	KVYGNTAELV TENLAVKALV					
151	IFSLVGKKTF					
201	DTIVEAIGGS					
251	QAGNTLPAVE					
m105/a105	96.5% ider	ntity in 2	89 aa ove	rlap		
				2.0	4.0	F0 60
-105	MODURA		20	30	40	50 60
m105.pep						KGAKVYGNTAELV
a105						KGAKVYGNTAELV
4100		-	20	30	40	50 60
			80			110 119
m105.pep						ALVEAAG-QFAEA
a105						ALVEAAGGQFAEA
a103	KDIEVIE.	_	80			110 120
	120	130	140	150	160	170 179
m105.pep						GSGAKLVLNSLLG
-105						CECUKI VINELIC
a105				_		GSGAKLVLNSLLG 170 180
		150 1			100	1.0
	180	190	200	210	220	230

```
IFGDV-QRXMLMARQFGIDTDTIVEAIGDSAMDSPMFQTKKSLWANREFPXAFALKHASK
         a105
         IFGEAYSEAMLMARQFGIDTDTIVEAIGGSAMDSPMFQTKKSLWANREFPPAFALKHASK
                             210
                                    220
                                           230
              190
                     200
               250
                              270
        240
                       260
                                     280
         DLNLAVKELEQAGNTLPAVETVAASYRKAVEAGYGEQDVSGVYLKLAEHX
m105.pep
         DLNLAVKELEQAGNTLPAVETVAASYRKAVEAGYGEQDVSGVYLKLAEHX
a105
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 369>: g105-1.seq

```
1 ATGTCCGCAG AAACATACAC ACAAATCGGC TGGGTAGGCT TAGGGCAAAT
 51 GGGTCTGCCT ATGGTAACGC GGCTCTTGGA CGGCGGCATC GAAGTCGGCG
    TATACAACCG CTCGCCCGAC AAAACTGCCC CCATCTCCGC CAAAGGAGCA
101
151 AAAGTTTACG GCAGCACCGC CGAACTCGTC CGCGCCTGCC CCGTCATTTT
201 CCTGATGGTT TCCGACTATG CCGCCGTGTG CGACATCCTG AACGGAGTCC
251 GCGACGGATT GGCCGGCAAA ATCATCGTCA ACATGAGCAC CATCTCCCCG
301 ACCGAAAACC TCGCCGTCAA AGCACTTGTC GAAGCCGCAG GCGGACAGTT
    TGCCGAAGCA CCCGTTTCCG GATCGGTCGG ACCCGCCACC AACGGCACAC
351
401 TGCTGATTCT GTTCGGCGGC AGCGAAGCCG TTTTAAACCC GCTGCAAAAA
451 ATATTTTCCC TTGTCGGCAA AAAAACCTTC CATTTCGGCG ATGTCGGCAA
501 AGGCTCGGGC GCGAAACTCG TCTTGAACTC GCTCTTAGGC ATTTTCGGCG
551 AAGCGTACAG CGAAGCGATG CTGATGGCGC GGCAGTTCGG CATCGATACC
601 GACACCATCG TCGAAGCCAT CGGCGGCTCG GCAATGGACT CGCCTATGTT
651 TCAAACAAAA AAATCACTAT GGGCAAACCG TGAGTTCCCC CCTGCCTTTG
701 CACTCAAACA CGCTTCCAAA GACCTTAACC TCGCCGTCAA AGAGCTTGAA
751 CAGGCAGGCA ACACCCTGCC CGCCGTCGAA ACCGTTGCTG CCAGCTACCG
801 CAAAGCAGTT GAAGCCGGCT ACGGCGAACA GGACGTTTCC GGCGTTTACC
851 TGAAATTGGC AGAACACTGA
```

This corresponds to the amino acid sequence <SEQ ID 370; ORF 105-1.ng>: g105-1.pep

```
1 MSAETYTQIG WVGLGQMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA
     KVYGSTAELV RACPVIFLMV SDYAAVCDIL NGVRDGLAGK IIVNMSTISP
101 TENLAVKALV EAAGGQFAEA PVSGSVGPAT NGTLLILFGG SEAVLNPLQK
151 IFSLVGKKTF HFGDVGKGSG AKLVLNSLLG IFGEAYSEAM LMARQFGIDT
201 DTIVEAIGGS AMDSPMFQTK KSLWANREFP PAFALKHASK DLNLAVKELE
251 QAGNTLPAVE TVAASYRKAV EAGYGEQDVS GVYLKLAEH*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 371>: m105-1.seq

```
1 ATGTCCGCAA ACGAATACGC ACAAATCGGC TGGATAGGCT TAGGGCAAAT
     GGGTCTGCCT ATGGTAACGC GGCTCTTGGA CGGCGGCATC GAAGTCGGCG
 51
101 TATACAACCG CTCGCCCGAC AAAACTGCCC CCATCTCCGC CAAAGGCGCA
151 AAAGTTTACG GCAACACCGC CGAACTCGTC CGCGACTATC CCGTCATTTT
201 CCTGATGGTT TCCGACTATG CCGCCGTGTG CGACATCCTG AACGGAGTCC
251 GCGACGGATT GGCCGGCAAA ATCATCGTCA ACATGAGCAC CATCTCCCCG
301 ACCGAAAACC TCGCCGTCAA AGCACTTGTC GAAGCCGCAG GCGGACAGTT
351 TGCCGAAGCA CCCGTTTCCG GATCGGTCGG GCCCGCCACC AACGGCACGC
401 TGCTGATTCT GTTCGGCGGC AGCGAAGCCG TTTTAAACCC GCTGCAAAAA
451 ATATTTTCCC TCGTCGGCAA AAAAACCTTC CATTTCGGCG ATGTCGGCAA
501 AGGTTCGGGC GCGAAACTCG TCTTGAACTC GCTCTTGGGC ATTTTCGGCG
551 AAGCGTACAG CGAANCGATG CTGATGGCGC GGCAGTTCGG CATCGATACC
601 GACACCATCG TCGAAGCCAT CGGSGACTCG GCAATGGACT CGCCCATGTT
651 CCAAACCAAA AAATCCCTGT GGGCAAACCG CGAATTCCCG CCCGCCTTCG
701
     CCCTCAAACA CGCCTCCAAA GACCTCAACC TCGCCGTCAA AGAGCTTGAA
751 CAGGCAGGCA ACACCCTGCC CGCCGTCGAA ACCGTTGCTG CCAGCTACCG
801 CAAAGCAGTC GAAGCCGGCT ACGGCGAACA GGACGTTTCC GGCGTTTACC
851 TGAAACTGGC AGAACACTGA
```

This corresponds to the amino acid sequence <SEQ ID 372; ORF 105-1>:

- 1 MSANEYAQIG WIGLGQMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA 51 KVYGNTAELV RDY<u>PVIFLMV SDYAAVCDIL</u> NGVRDGLAGK IIVNMSTISP

```
101 TENLAVKALV EAAGGQFAEA PVSGSVGPAT NGTLLILFGG SEAVLNPLQK
        IFSLVGKKTF HFGDVGKGSG AKLVLNSLLG IFGEAYSEXM LMARQFGIDT
    151
         DTIVEAIGDS AMDSPMFQTK KSLWANREFP PAFALKHASK DLNLAVKELE
    201
         OAGNTLPAVE TVAASYRKAV EAGYGEQDVS GVYLKLAEH*
m105-1/g105-1 96.9% identity in 289 aa overlap
                            20
                                     30
                                              40
m105-1.pep
           MSANEYAQIGWIGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGNTAELV
            g105-1
           MSAETYTQIGWVGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGSTAELV
                                              40
                   10
                            20
                                     30
                                     90
                                             100
                                                               120
            RDYPVIFLMVSDYAAVCDILNGVRDGLAGKIIVNMSTISPTENLAVKALVEAAGGQFAEA
m105-1.pep
              RACPVIFLMVSDYAAVCDILNGVRDGLAGKIIVNMSTISPTENLAVKALVEAAGGQFAEA
g105-1
                   70
                            80
                                     90
                                             100
                                                      110
                                    150
                                             160
                  130
            PVSGSVGPATNGTLLILFGGSEAVLNPLQKIFSLVGKKTFHFGDVGKGSGAKLVLNSLLG
m105-1.pep
            PVSGSVGPATNGTLLILFGGSEAVLNPLQKIFSLVGKKTFHFGDVGKGSGAKLVLNSLLG
g105-1
                  130
                           140
                                    150
                                             160
                                                      170
                                    210
                                             220
                                                      230
                  190
                           200
            IFGEAYSEXMLMARQFGIDTDTIVEAIGDSAMDSPMFQTKKSLWANREFPPAFALKHASK
m105-1.pep
            a105-1
            IFGEAYSEAMLMARQFGIDTDTIVEAIGGSAMDSPMFQTKKSLWANREFPPAFALKHASK
                                             220
                           200
                                    210
                                    270
                                             280
                                                      290
                  250
                           260
            DLNLAVKELEQAGNTLPAVETVAASYRKAVEAGYGEQDVSGVYLKLAEHX
m105-1.pep
            DLNLAVKELEQAGNTLPAVETVAASYRKAVEAGYGEQDVSGVYLKLAEHX
g105-1
                  250
                           260
                                    270
                                             280
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 373>:
a105-1.seq
      1 ATGTCCGCAA ACGAATACAC ACAAATCGGC TGGATAGGCT TAGGGCAAAT
         GGGTCTGCCT ATGGTAACGC GGCTCTTGGA CGGCGGCATC GAAGTCGGCG
     51
    101
         TATACAACCG CTCGCCCGAC AAAACTGCCC CCATCTCCGC CAAAGGCGCA
         AAAGTTTACG GCAACACCGC CGAACTCGTC CGCGACTATC CCGTCATTTT
    151
         CCTGATGGTT TCCGACTATG CCGCCGTGTG CGACATCCTG AACGGAGTCC
    201
         GCGACGGATT GGCCGGCAAA ATCATCGTCA ACATGAGCAC CATCTCCCCG
    251
    301 ACCGAAAACC TCGCCGTCAA AGCACTTGTC GAAGCCGCAG GCGGACAGTT
         TGCCGAAGCA CCCGTTTCCG GATCGGTCGG GCCCGCCACC AACGGCACGC
    351
     401
         TGCTGATTCT GTTCGGCGGC AGCGAAGCCG TTTTAAACCC GCTGCAAAAA
         ATATTTCCC TCGTCGGCAA AAAAACCTTC CATTTCGGCG ATGTCGGCAA
     451
         AGGTTCGGGC GCGAAACTCG TCTTGAACTC GCTCTTGGGC ATTTTCGGCG
    501
         AAGCGTACAG CGAAGCGATG CTGATGGCGC GGCAGTTCGG CATCGATACC
    551
     601
         GACACCATCG TCGAAGCCAT CGGCGGCTCG GCAATGGACT CGCCCATGTT
         CCAAACCAAA AAATCCCTGT GGGCAAACCG CGAATTCCCA CCCGCCTTCG
     651
         CCCTCAAACA CGCCTCCAAA GACCTCAACC TCGCCGTCAA AGAGCTTGAA
     701
         CAGGCAGGCA ACACCCTGCC CGCCGTCGAA ACCGTTGCTG CCAGCTACCG
     751
         CAAAGCAGTC GAAGCCGGCT ACGGCGAACA GGACGTTTCC GGCGTTTACC
     801
         TGAAATTGGC AGAACACTGA
This corresponds to the amino acid sequence <SEQ ID 374; ORF 105-1.a>:
a105-1.pep
         MSANEYTQIG WIGLGQMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA
      1
         KVYGNTAELV RDYPVIFLMV SDYAAVCDIL NGVRDGLAGK IIVNMSTISP
     51
         TENLAVKALV EAAGGQFAEA PVSGSVGPAT NGTLLILFGG SEAVLNPLQK
     101
         IFSLVGKKTF HFGDVGKGSG AKLVLNSLLG IFGEAYSEAM LMARQFGIDT
     151
         DTIVEAIGGS AMDSPMFQTK KSLWANREFP PAFALKHASK DLNLAVKELE
     201
     251 QAGNTLPAVE TVAASYRKAV EAGYGEQDVS GVYLKLAEH*
a105-1/m105-1
                99.0% identity in 289 aa overlap
```

MSANEYTQIGWIGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGNTAELV

a105-1.pep

```
MSANEYAQIGWIGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGNTAELV
m105-1
                              30
                                      40
                10
                       20
                               90
                                      100
                                              110
         RDYPVIFLMVSDYAAVCDILNGVRDGLAGKIIVNMSTISPTENLAVKALVEAAGGQFAEA
a105-1.pep
          RDYPVIFLMVSDYAAVCDILNGVRDGLAGKIIVNMSTISPTENLAVKALVEAAGGQFAEA
m105-1
                                      100
                       80
                               90
                                              170
               130
          PVSGSVGPATNGTLLILFGGSEAVLNPLQKIFSLVGKKTFHFGDVGKGSGAKLVLNSLLG
a105-1.pep
          PVSGSVGPATNGTLLILFGGSEAVLNPLQKIFSLVGKKTFHFGDVGKGSGAKLVLNSLLG
m105-1
                       140
                              150
                                      160
                              210
                                      220
                       200
               190
          IFGEAYSEAMLMARQFGIDTDTIVEAIGGSAMDSPMFQTKKSLWANREFPPAFALKHASK
a105-1.pep
          I FGEAYSEXMLMARQFGIDTDTIVEAIGDSAMDSPMFQTKKSLWANREFPPAFALKHASK
m105-1
                                      220
                       200
                              210
               250
                       260
                              270
                                      280
          DLNLAVKELEQAGNTLPAVETVAASYRKAVEAGYGEQDVSGVYLKLAEHX
a105-1.pep
          DLNLAVKELEQAGNTLPAVETVAASYRKAVEAGYGEQDVSGVYLKLAEHX
m1.05-1
                       260
                              270
               250
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 375>:

q107.seq

```
ATGGTATTAA CCTTTATTTG GGCAACCGGC GGCCTGGTTG CCGATGCCAA
    ACCGTCCGTC CTCTTCGACA CCCAAGCCCC CGTCGGCACC GGCTACTGGA
51
     TTTACGCCGC CACCGCCCTG CCCGTCTGCC TCGCTTCCTT CGGCTTCCAC
101
    GGCAACGTTT CCAGCCTGCT CAAATACTTT AAAGGCGACG cgcCcaaagt
151
    GgCGAaATCc atctggGcag gtacattggT TGCCttggta atttacgtcc
201
251 TCTqqcaaac cqccatCcaa aqcaaccTGC cgcgcaacga gttcgcCCCc
301 gtgattgccg ccgagaggca actCTCCGTC CTgaatgaaa cccTGtccaa
351 attcgcccaa accggcgata tggataAaat attgtcccta tttccctaca
401 tggcaatcgc cacctccttt ttaggcgTAA Ccttaggcct gtttgacaac
451 atcgccggac atcttcaaat ggaacgacag tatgtccggg cggcaccaaa
501
    accgtcgcgc tga
```

This corresponds to the amino acid sequence <SEQ ID 376; ORF 107.ng>:

g107.pep

- MVLTFIWATG GLVADAKPSV LFDTQAPVGT GYWIYAATAL PVCLASFGFH 1 51 GNVSSLLKYF KGDAPKVAKS IWAGTLVALV IYVLWQTAIQ SNLPRNEFAP 101 VIAAERQLSV LNETLSKFAQ TGDMDKILSL FPYMAIATSF LGVTLGLFDN 151 IAGHLQMERQ YVRAAPKPSR *

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 377>:

m107.seq

ATGGTATTGA CCTTTATTTG GGCGGCCGGC GGGCTGATTG CCGATGCCAA 51 GCCGTCCGTC CTCTTCGATA CCCAAGCCCC CGCCGGCACA AACTACTGGA 101 TTTACGCCGs CACCGCCCTG CCCGTCTGCC TCGCTTCCTT CGGCTTCCAC 151 GGCAACGTCT CCAGCCTGCT CAAATACTTT AAAGGCGACG CGCCCAAAGT GGCTAAATCC ATCTGGACGG GCACACTGAT TGCGCTGGTA ATTTACGTCC 201 TCTGGCAAAC CGCCATCCAA GGCAACCTGC CGCGCAACGA GTTCGCCCCC GTCATCGCCG CCGAAGGGCA AGTCTCCGTC CTCATCGAAA CCCTGTCCAA ATTCGCCCAA ACCGGCAATA TGGACAAAAT ATTGTCCCTG TTTTCCTATA 351 TGGCGATCGC CACCTCGTTT TTAGGCGTAA CGCTCGGACT CTTCGACTAC 401 451 ATCGCCCATC TTCAAATGGA ACGACAGCAT CTCCGGgCCG CACCAAAACC 501 GCCGCGCTGA

This corresponds to the amino acid sequence <SEQ ID 378; ORF 107>: m107.pep..

- MVLTFIWAAG GLIADAKPSV LFDTQAPAGT NYWIYAXTAL PVCLASFGFH
- 51 GNVSSLLKYF KGDAPKVAKS IWTGTLIALV IYVLWQTAIQ GNLPRNEFAP

```
101 VIAAEGQVSV LIETLSKFAQ TGNMDKILSL FSYMAIATSF LGVTLGLFDY
              IAHLQMERQH LRAAPKPPR*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 107 shows 89.4% identity over a 170 aa overlap with a predicted ORF (ORF 107.ng)
from N. gonorrhoeae:
    m107/g107
                                 20
                                           30
                                                    40
                                                             50
                                                                      60
                MVLTFIWAAGGLIADAKPSVLFDTQAPAGTNYWIYAXTALPVCLASFGFHGNVSSLLKYF
    m107.pep
                 MVLTFIWATGGLVADAKPSVLFDTQAPVGTGYWIYAATALPVCLASFGFHGNVSSLLKYF
    q107
                        10
                                 20
                                 80
                                           90
                                                   100
                                                            110
                 KGDAPKVAKSIWTGTLIALVIYVLWQTAIQGNLPRNEFAPVIAAEGQVSVLIETLSKFAQ
    m107.pep
                 KGDAPKVAKSIWAGTLVALVIYVLWQTAIQSNLPRNEFAPVIAAERQLSVLNETLSKFAQ
    g107
                        70
                                 80
                                                   100
                                                                     120
                                140
                                          150
                                                    160
                                                             170
                 TGNMDKILSLFSYMAIATSFLGVTLGLFDYIA-HLQMERQHLRAAPKPPR
    m107.pep
                 TGDMDKILSLFPYMAIATSFLGVTLGLFDNIAGHLQMERQYVRAAPKPSR
    g107
                                140
                                          150
                                                   160
                                                            170
                       130
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 379>:
a107.seq
             ATGGTATTAA CCTTTATTTG GGCAACCGGC GGCCTGATTG CCGATGCCAA
              ACTGCCCGTC CTCTTCGACA CCCAAGCCCC TACCGGCACC AACTACTGGA
          51
              TTTATGTCGC CACCGCCCTG CCCGTCTGCC TTGCGTCATT CGGTTTCCAC
         101
              GGCAACGTCT CCAGCCTGCT CAAATACTTT AAAGGCGACG CGCCCAAAGT
             GGCTAAATCC ATCTGGACGG GCACACTGAT TGCGCTGGTA ATTTACGTCC
         201
              TCTGGCAAAC CGCCATCCAA GGCAACCTGC CGCGCAACGA GTTCGCCCCC
         251
              GTGATTGCCG CCGAAGGGCA AGTCTCCGTC CTGATTGAAA CCCTGTCCAA
         301
              ATTCGCCCAA ACCGGCAATA TGGACAAAAT ATTGTCCCTG TTTTCCTATA
         351
              TGGCGATCGC CACCTCGTTT TTAGGCGTAA CGCTCGGACT CTTCGACTAC
         401
         451 ATCGCCGACA TCTTCAAATG GAACGACAGC GTGTCCGGCC GCACCAAAAC
         501 CGCCGCGCTG ACCTTCCTGC CGCCTCTAAT TTCCTGCCTG CTCTTCCCCA
              CCGGCTTTGT TACCGCCATC GGCTACGTCG GCCTGGCGGC AACCGTCTGG
         551
         601 ACAGGCATCA TCCCCGCCAT GCTGCTCTAC CGTTCGCGCA AAAAATTCGG
              CGCAGGCAAA ACCTATAAAG TTTACGGCGG CTTGTGGCTG ATGGTTTGGG
              TCTTCCTTTT CGGCATCGTC AACATCGCCG CACAGGTATT GAGCCAAATG
         701
              GAACTCGTCC CCGTATTTAA AGGATAA
This corresponds to the amino acid sequence <SEQ ID 380; ORF 107.a>:
a107.pep
             MVLTFIWATG GLIADAKLPV LFDTQAPTGT NYWIYVATAL PVCLASFGFH
          51 GNVSSLLKYF KGDAPKVAKS IWTGTLIALV IYVLWQTAIQ GNLPRNEFAP
              VIAAEGQVSV LIETLSKFAQ TGNMDKILSL FSYMAIATSF LGVTLGLFDY
              IADIFKWNDS VSGRTKTAAL TFLPPLISCL LFPTGFVTAI GYVGLAATVW
         201
              TGIIPAMLLY RSRKKFGAGK TYKVYGGLWL MVWVFLFGIV NIAAQVLSQM
         251
              ELVPVFKG*
             94.8% identity in 154 aa overlap
m107/a107
                                  20
                                           30
                                                    40
                 MVLTFIWAAGGLIADAKPSVLFDTQAPAGTNYWIYAXTALPVCLASFGFHGNVSSLLKYF
     m107.pep
                 a107
                 MVLTFIWATGGLIADAKLPVLFDTQAPTGTNYWIYVATALPVCLASFGFHGNVSSLLKYF
                                  20
                                           30
                                                    40
```

WO 99/057280 PCT/US99/09346

319

```
100
                         80
                                 90
                                                 110
          KGDAPKVAKSIWTGTLIALVIYVLWQTAIQGNLPRNEFAPVIAAEGQVSVLIETLSKFAQ
m107.pep
          KGDAPKVAKSIWTGTLIALVIYVLWQTAIQGNLPRNEFAPVIAAEGQVSVLIETLSKFAQ
a107
                                         100
                130
                        140
                                150
                                         160
                                                 170
m107.pep
          TGNMDKILSLFSYMAIATSFLGVTLGLFDYIAHLQMERQHLRAAPKPPRX
          TGNMDKILSLFSYMAIATSFLGVTLGLFDYIADIFKWNDSVSGRTKTAALTFLPPLISCL
a107
                        140
                                150
                                        160
                                                 170
          LFPTGFVTAIGYVGLAATVWTGIIPAMLLYRSRKKFGAGKTYKVYGGLWLMVWVFLFGIV
a107
                        200
                                        220
                                                 230
                                                         240
                190
                               210
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 381>: q108.seq

```
ATGttgccgg gCTTCAACCG GATATTCAaa cggTTTGCTC CAACACTCGG
 51 AACGGCGCAT AAAACGCCGC CCTTCGCGTT ATCCCGAACG GGGCGGCTAA
101 TCAGATCCTA TCGCCATAAA AGGCGGGGTT TCAACCGAAA AGGAATTGAG
151 ATGAATAAAA CCTTGTCTAT TTTGCCGGCG GCAATCTTAC TCGGCGGGTG
201 CGCCGCCGGC GGCAACACAT TCGGCAGCTT AGACGGCGGC ACGGGTATGG
     GTGGCAGCAT CGTCAAAATG ACGGTAGAAA GCCAATGCCG TGCGGAATTG
301 GACAGGCGCA GCGAATGGCG TTTGACCGCG CTGGCGATGA GTGCCGAAAA
351 ACAGGCGGAA TGGGAAAACA AGATTTGCGG CTGCGCTACC GAAGAAGCAC
     GACAGGCGCA GCGAATGGCG TTTGACCGCG CTGGCGATGA GTGCCGAAAA
     CTAACCAGCT GACCGGCAAC GATGTGATGC AGATGCTGAa ccagtccacG
401 CTAACCAGCT GACCGGCAAC GATGTGATGC AGATGCTGAG COUPLING
451 CGCaatcagg cacTtgccgc CCtgaccgTC AAAacggtTT CcgcctgcTT
501 CAaacgcctg tACCGCTAa
```

This corresponds to the amino acid sequence <SEQ ID 382; ORF 108.ng>: g108.pep

- MLPGFNRIFK RFAPTLGTAH KTPPFALSRT GRLIRSYRHK RRGFNRKGIE MNKTLSILPA AILLGGCAAG GNTFGSLDGG TGMGGSIVKM TVESQCRAEL 101 DRRSEWRLTA LAMSAEKQAE WENKICGCAT EEAPNQLTGN DVMQMLNQST

151 RNQALAALTV KTVSACFKRL YR*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 383>: m108.seq

> ATGTTGCCGG GCTTCAACCG GATATTCAAA CGGTTTGTTC CAACACTCGG 1 51 AACGGCGCAT AAAACGCCGC CCTTCGCGTT ATCCCGAACG GGGCGGCTAA 101 TCAGATTCTA TCGCCATAAA AGGCGGGGTT TCAACCGAAA AGGAATTGAG 151 ATGATAAAA CCTTGTCTAT TTTGCCGGTG GCAATCTTAC TCGGCGGCTG 201 CGCCGCCGGA GGCGGTAACA CATTCGGCAG CTTAGACGGT GGCACAGGCA 251 TGGGCGCAG CATCGTCAAA ATGGCGGTTG GGAGCCAATG CCGTGCGGAA 301 TTGGACAAAC GCAGCGAATG GCGTTTGACC GCGCTGGCGA TGAGTGCCGA 351 AAAACAGGCG GAGTGGGAAA ACAAGATTTG CGCTTGCGTC GCCCAAGAAG 401 CACCCGAACG GATGACCGGC AACGATGTGA TGCAGATGCT GGCTCCGTCC 451 ACGCGCAATC AGGCACTTGC CGCCCTGACC GCCAAAACGG TTTCCGCCTG

CTTCAAACAC CTGTACCGCT AA

This corresponds to the amino acid sequence <SEQ ID 384; ORF 108>: m108.pep

- MLPGFNRIFK RFVPTLGTAH KTPPFALSRT GRLIRFYRHK RRGFNRKGIE
- MNKTLSILPV AILLGGCAAG GGNTFGSLDG GTGMGGSIVK MAVGSQCRAE
- LDKRSEWRLT ALAMSAEKQA EWENKICACV AQEAPERMTG NDVMQMLAPS
- TRNQALAALT AKTVSACFKH LYR*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 108 shows 89.6% identity over a 173 aa overlap with a predicted ORF (ORF 108.ng) from N. gonorrhoeae:

m108/g108

WO 99/057280 PCT/US99/09346

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 387>:

321

```
g109.seq
      1 ATGTATTATC GCCGGGTTGT GGGGCTATCC GATGGACTTG GCGATTTGGC
     51 AGCCGGTATT GATCGTAGGC GTATGCTTAC CGCTTTTGGA AGCGGGCATG
         GAAATGACGC GCAAAGGCAA AACCACCCAA TCCGCCGCCA TCGTGGTGTT
        CTCTTCCGTC TGGTCAATCC GGTTTTCGGC TGGGCGTTGA CGATGCTGTT
    201 GGATAATTTG GGCTTAATCG GCTGCAAAGA ACGCAGCGCG CAATTAGGTT
    251 TTGTCGGACG AGTATTGATA CCCGCAGTAG GTTTCTTAAT CTTGTGTGTG
    301 GCGATGGGTG CGGTCGGGAT GCTGCCCGGT ATCCCTCCGT TTTTGGAGCA
    351 GTTCAAATCT TTGGGCTAG
This corresponds to the amino acid sequence <SEQ ID 388; ORF 109.ng>:
g109.pep
      1 MYYRRVVGLS DGLGDLAAGI DRRRMLTAFG SGHGNDAQRQ NHPIRRHRGV
     51 LFRLVNPVFG WALTMLLDNL GLIGCKERSA QLGFVGRVLI PAVGFLILCV
    101 AMGAVGMLPG IPPFLEQFKS LG
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 389>:
m109.seq
      1 ATGTATTATC GCCGGGTTAT GGGGCTATCC GATGGACTTG GCGATTTGGC
     51 AGCCGGTATT GAGCGTAGCC TTGGTCGTAG GCGTATACTT ACCGCTTTTG
    101 GAAGCGGCA TGGAAATGAC GCGCAAAGGC AAAACCACCC AATCCGCCGC
    151 CATCGTGGTG TTCTCTTCCG CCTTGTCAAT CCGGTTTTCG GCTGGGCGTT
    201 GACGATGCTG TTGGATAATT TGGGCTTAAT CGGCTGCAAA GAGCGCAGTG
    251 CGCAATTAGG TTTCGCCGGA CGCGTGTTGA TACCCGCAGT AGGTTTCTTG
    301 ATCTTGTGTG TGGCGATGGG TGCGGTCGGG ATGCTGCCCG GTATCCCGCC
    351 GTTTTTGGAA CACTTCAAAT CTTTGGGCTA G
This corresponds to the amino acid sequence <SEQ ID 4; ORF 109>:
m109.pep
         MYYRRVMGLS DGLGDLAAGI ERSLGRRRIL TAFGSGHGND AORONHPIRR
     51 HRGVLFRLVN PVFGWALTML LDNLGLIGCK ERSAOLGFAG RVLIPAVGFL
     101 ILCVAMGAVG MLPGIPPFLE HFKSLG*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 109 shows 92.9% identity over a 126 aa overlap with a predicted ORF (ORF 109.ng)
from N. gonorrhoeae:
m109/g109
                                       30
                                                 40
m109.pep
            MYYRRVMGLSDGLGDLAAGIERSLGRRRILTAFGSGHGNDAQRQNHPIRRHRGVLFRLVN
            MYYRRVVGLSDGLGDLAAGIDR----RRMLTAFGSGHGNDAQRQNHPIRRHRGVLFRLVN
g109
                    10
                                           30
                    70
                             80
                                       90
                                                100
                                                         110
            {\tt PVFGWALTMLLDNLGLIGCKERSAQLGFAGRVLIPAVGFLILCVAMGAVGMLPGIPPFLE}
m109.pep
            PVFGWALTMLLDNLGLIGCKERSAQLGFVGRVLIPAVGFLILCVAMGAVGMLPGIPPFLE
q109
                                 80
                        70
                                           90
            HFKSLGX
m109.pep
            : | | | | |
            OFKSLGX
g109
             120
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 391>:
a109.seq
              ATGTATTATC GCCGGGTTGT GGGGCTATCC GATGGACTTG GCGATTTGGC
```

51 AGCCGGTATT GAGCGTAGCC TTGGTCGTAG GCGTATACTT ACCGCTTTTG GAAGCGGGCA TGGAAATGAC GCGCAAAGGC AAAACCACCC AATCCGCCGC

CACCGTGGTG TTCTCTTCCG CTTGGTCAAT CCGGTTTTCG GCTGGGCGTT

```
201 GACGATGCTG TTGGATAATT TGGGCTTAAT CGGCTGCAAA GAGCGCAGCG
              CGCAATTAGG TTTCACCGGA CGCGTATTGA TACCCGTAGT AGGTTTCTTG
              ATCTTGTGTG TGGCGATGGG TGCGGTCGGG ATGCTGCCCG GTATCCCGCC
         351 GTTTTTGGAG CACTTCAAAT CTTTGGGCTA G
This corresponds to the amino acid sequence <SEQ ID 392; ORF 109>:
a109.pep
           1 MYYRRVVGLS DGLGDLAAGI ERSLGRRRIL TAFGSGHGND AQRQNHPIRR
           51 HRGVLFRLVN PVFGWALTML LDNLGLIGCK ERSAQLGFTG RVLIPVVGFL
              ILCVAMGAVG MLPGIPPFLE HFKSLG*
         101
m109/a109
             97.6% identity in 126 aa overlap
                                  20
                                            30
                                                     40
                                                               50
                 MYYRRVMGLSDGLGDLAAGIERSLGRRRILTAFGSGHGNDAQRQNHPIRRHRGVLFRLVN
     m109.pep
                 a109
                 MYYRRVVGLSDGLGDLAAGIERSLGRRRILTAFGSGHGNDAQRQNHPIRRHRGVLFRLVN
                                  20
                                            30
                                                     40
                         70
                                  80
                                            90
                                                     100
                                                              110
                                                                        120
     m109.pep
                 PVFGWALTMLLDNLGLIGCKERSAQLGFAGRVLIPAVGFLILCVAMGAVGMLPGIPPFLE
                 PVFGWALTMLLDNLGLIGCKERSAQLGFTGRVLIPVVGFLILCVAMGAVGMLPGIPPFLE
     a109
                         70
                                  80
                                            90
                                                    100
     m109.pep
                 HFKSLGX
                 111111
     a109
                 HFKSLGX
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 393>:
     glll.seq
           1
              ATGCCGTCTG AAACACGCCT GCCGAACCTT ATCCGCGCCT TGATATTTGC
              CCTGGGTTTC ATCTTCCTGA ACGCCTGTTC GGaacaaacC GCGCAaaccq
          51
          101 TTACCCTGCA AGGCGAAACG ATGGGTACGA CCLATACCGT CAAATACCTT
          151 TCAAATAATC GGGACAAACT CCCCTCCCCT GCCAAAATAC AAAAGCGCAT
          201 TGATGATGCG CTTAAAGAAG TCAACCGGCA GATGtccaCC TACCAGACCG
          251 ATTCCGAAAT CAGCCGGTTt atacagacan atgctggaga gctcttcgcg
          301 tntcatgcag nttctataac tgattccgcc gaagactgtc tgcctaatac
          351 gcctatctca tcggcgctct ga
This corresponds to the amino acid sequence <SEQ ID 394; ORF 111.ng>:
     g111.pep
              MPSETRLPNL IRALIFALGF IFLNACSEQT AQTVTLQGET MGTTYTVKYL
           1
              SNNRDKLPSP AKIQKRIDDA LKEVNRQMST YQTDSEISRF IQTAGELFAH
              ASITDSAEDC LPNTPISSAL *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 395>:
     m111.seq
              ATGCCGTCTG AAACACGCCT GCCGAACTTT ATCCGCGTCT TGATATTTGC
           1
           51 CCTGGGTTTC ATCTTCCTGA ACGCCTGTTC GGAACAACC GCGCAAACCG
          101 TTACCCTGCA AGGCGAAACG ATGGGCACGA CCTATAYCGT CAAATACCTT
          151 TCAAATAATC GGGACAAACT CCCCTCACCT GCCGAAATAC AWAAACGCAT
          201 CGATGACGCG CTTAAAGAAk TCAACCGGyA GATGTCCACC TATCAGCCCG
          251 ACTCCGAAAT CAGCCGGTTC AACCAACAC CAGCCGGCAA GCCCCTCCGC
          301 ATTTCAAGCG ACTTCGCACA CGTTACTGCC GAAGCCGTCC GCCTGAACCG
          351 CCTGACACAC GGCGCGCTGG ACGTAACCGT CGGCCCCTTG GTCAACCTTT
              GGGGATTCGG CCCCGACAAA TCCGTTACCC GTGAACCGTC GCCGGAACAA
          451 ATCAAACAGG CGGCATCTTA TACGGGCATA GACAAAATCA TTTTGAAACA
          501 AGGCAAAGAT TACGCTTCCT TGAGCAAAAC CCACCCCAAG GCCTATTTGG
```

551 ATTTATCTTC GATTGCCAAA GGCTTCGGCG TTGATAAAGT TGCGGGCGAA

```
601 CTGGAAAAAT ACGCATTCA AAATTATCTG GTCGAAATCG GCGGCGAGTT
651 GCACGGCAAA GGCAAAAACG CGCGCGGCGA ACCGTGGCG ATCGGTATCG
701 AGCAGCCCAA TATCGTCCAA GGCGGCAATA CGCAGATTAT CGTCCCGCTG
751 AACAACCGTT CGCTTGCCAC TTCCGGCGAT TACCGTATTT TCCACGTCGA
801 TAAAAACGGC AAACGCCTCT CCCATATCAT CAACCCGAAC AACAAACGAC
851 CCATCAGCCA CAACCTCGCC TCCATCAGCG TGGTCGCAGA CAGTGCGATG
901 ACGGCGGACG GCTTGTCCAC AGGATTATTC GTATTGGGCG AAACCGAAGC
951 CTTAAAGCTG GCAGAGCGCG AAAAACTCGC TGTTTTCCTG ATTGTCAGGG
1001 ATAAAGGCGG CTACCGCACC GCCATGTCTT CCGAATTTGA AAAACTGCTC
1051 CGCTAA
```

This corresponds to the amino acid sequence <SEQ ID 396; ORF 111>:

mlll.pep

```
1 MPSETRLPNF IRVLIFALGF IFLNACSEQT AQTVTLQGET MGTTYXVKYL
51 SNNRDKLPSP AEIXKRIDDA LKEXNRXMST YQPDSEISRF NQHTAGKPLR
101 ISSDFAHVTA EAVRLNRLTH GALDVTVGPL VNLWGFGPDK SVTREPSPEQ
151 IKQAASYTGI DKIILKQGKD YASLSKTHPK AYLDLSSIAK GFGVDKVAGE
201 LEKYGIQNYL VEIGGELHGK GKNARGEPWR IGIEQPNIVQ GGNTQTIVPL
251 NNRSLATSGD YRIFHVDKNG KRLSHIINPN NKRPISHNLA SISVVADSAM
301 TADGLSTGLF VLGETEALKL AEREKLAVFL IVRDKGGYRT AMSSEFEKLL
351 R*
```

ORF 111 shows 88.7% identity over a 97 aa overlap with a predicted ORF (ORF 111.ng) from N. gonorrhoeae:

```
m111.pep/g111.pep
```

```
mlll.pep
           MPSETRLPNFIRVLIFALGFIFLNACSEQTAQTVTLQGETMGTTYXVKYLSNNRDKLPSP
           g111
           MPSETRLPNLIRALIFALGFIFLNACSEQTAQTVTLQGETMGTTYTVKYLSNNRDKLPSP
                 10
                          20
                                  30
                                           40
                                                   50
                                                           60
                          80
                                  90
                                          100
mlll.pep
           AEIXKRIDDALKEXNRXMSTYQPDSEISRFNQHTAGKPLRISSDFAHVTAEAVRLNRLTH
           AKIQKRIDDALKEVNRQMSTYQTDSEISRFIQTXAGELFAXHAXSITDSAEDCLPNTPIS
g111
                 70
                          80
                                  90
                                          100
                                                  110
                 130
                         140
                                 150
                                          160
                                                  170
                                                           180
           GALDVTVGPLVNLWGFGPDKSVTREPSPEQIKQAASYTGIDKIILKQGKDYASLSKTHPK
m111.pep
g111
           SALX
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 397>: a111.seq

```
ATGCCGTCTG AAACACGCCT GCCGAACTTT ATCCGCACCT TGATATTTGC
51
    CCTGAGTTTT ATCTTCCTGA ACGCCTGTTC GGAACAACC GCGCAAACCG
    TTACCCTGCA AGGTGAAACG ATGGGCACGA CCTATACCGT CAAATACCTT
    TCAAATAATC GGGACAAACT CCCCTCACCT GCCGAAATAC AAAAGCGCAT
151
201
    CGATGACGCG CTTAAAGAAG TCAACCGGCA GATGTCCACC TATCAGCCCG
     ACTCCGAAAT CAGCCGGTTC AACCAACACA CAGCCGGCAA GCCCCTCCGC
251
    ATTTCAAGCG ACTTCGCACA CGTTACTGCC GAAGCCGTCC ACCTGAACCG
301
351
    CCTGACACAC GGCGCGCTGG ACGTAACCGT CGGCCCCTTG GTCAACCTTT
401
    GGGGATTCGG CCCCGACAAA TCCGTTACCC GTGAACCGTC GCCGGAACAA
     ATCAAACAAG CAGCATCTTA TACGGGCATA GACAAAATCA TTTTGAAACA
451
501
     AGGCAAAGAT TACGCTTCCT TGAGCAAAAC CCACCCCAAG GCCTATTTGG
    ATTTATCTTC GATTGCCAAA GGCTTCGGCG TTGATAAAGT TGCGGGCGAA
551
601
    CTGGAAAAAT ACGGCATTCA AAATTATCTG GTCGAAATCG GCGGCGAGTT
651 GCACGCAAA GGCAAAAACG CGCGCGGCGA ACCTTGGCGC ATCGGCATCG
    AACAGCCCAA CATCGTCCAA GGCGGCAATA CGCAGATTAT CGTCCCGCTG
701
751
    AACAACCGTT CGCTTGCCAC TTCCGGCGAT TACCGTATTT TCCACGTCGA
```

```
801 TAAAAGCGGC AAACGCCTCT CCCATATCAT TAATCCGAAC AACAAACGAC
851 CCATCAGCCA CAACCTCGCC TCCATCAGCG TGGTCGCAGA CAGTGCGATG
901 ACGGCGGACG GCTTGTCCAC AGGATTATTC GTATTGGGCG AAACCGAAGC
951 CTTAAAGCTG GCAGAGCGCG AAAAACTCGC TGTTTTCCTG ATTGTCAGGG
1001 ATAAAGGCGG CTACCGCACC GCCATGTCTT CCGAATTTGA AAAACTGCTC
1051 CGCTAA
```

This corresponds to the amino acid sequence <SEQ ID 398; ORF 111.a>: all1.pep

1 MPSETRLPNF IRTLIFALSF IFLNACSEQT AQTVTLQGET MGTTYTVKYL
51 SNNRDKLPSP AEIQKRIDDA LKEVNRQMST YQPDSEISRF NQHTAGKPLR
101 ISSDFAHVTA EAVHLNRLTH GALDVTVGPL VNLWGFGPDK SVTREPSPEQ
151 IKQAASYTGI DKIILKQGKD YASLSKTHPK AYLDLSSIAK GFGVDKVAGE
201 LEKYGIQNYL VEIGGELHGK GKNARGEPWR IGIEQPNIVQ GGNTQIIVPL
251 NNRSLATSGD YRIFHVDKSG KRLSHIINPN NKRPISHNLA SISVVADSAM
301 TADGLSTGLF VLGETEALKL AEREKLAVFL IVRDKGGYRT AMSSEFEKLL
351 R*

m111/a111 97.7% identity in 351 aa overlap

m111.pep MPSETRLPNFIRVLIFALGFIFLNACSEQTAQTVTLQGETMGTTYXVKYLSNNRDKLPSP MPSETRLPNFIRTLIFALSFIFLNACSEQTAQTVTLQGETMGTTYTVKYLSNNRDKLPSP a111 AEIXKRIDDALKEXNRXMSTYQPDSEISRFNQHTAGKPLRISSDFAHVTAEAVRLNRLTH mll1.pep AEIQKRIDDALKEVNRQMSTYQPDSEISRFNQHTAGKPLRISSDFAHVTAEAVHLNRLTH a111 GALDVTVGPLVNLWGFGPDKSVTREPSPEQIKQAASYTGIDKIILKQGKDYASLSKTHPK m111.pep GALDVTVGPLVNLWGFGPDKSVTREPSPEQIKQAASYTGIDKIILKQGKDYASLSKTHPK a111 AYLDLSSIAKGFGVDKVAGELEKYGIQNYLVEIGGELHGKGKNARGEPWRIGIEOPNIVO m111.pep AYLDLSSIAKGFGVDKVAGELEKYGIQNYLVEIGGELHGKGKNARGEPWRIGIEQPNIVQ a111 m111.pep GGNTOIIVPLNNRSLATSGDYRIFHVDKNGKRLSHIINPNNKRPISHNLASISVVADSAM a111 GGNTQIIVPLNNRSLATSGDYRIFHVDKSGKRLSHIINPNNKRPISHNLASISVVADSAM TADGLSTGLFVLGETEALKLAEREKLAVFLIVRDKGGYRTAMSSEFEKLLRX m111.pep TADGLSTGLFVLGETEALKLAEREKLAVFLIVRDKGGYRTAMSSEFEKLLRX a111

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 399>: g111-1.seq

- 1 ATGCCGTCTG AAACACGCCT GCCGAACCTT ATCCGCGCCT TGATATTTGC
- 51 CCTGGGTTTC ATCTTCCTGA ACGCCTGTTC GGAACAAACC GCGCAAacCG
- 101 TTACCCTGCA AGGCGAAACG ATGGGTACGA CCTATACCGT CAAATACCTT
- 151 TCAAATAATC GGGACAAACT CCCCTCCCCT GCCAAAATAC AAAAGCGCAT
- 201 TGATGATGCG CTTAAAGAAG TCAACCGGCA GATGTCCACC TACCAGACCG

m111-1.pep

g111-1

```
251 ATTCCGAAAT CAGCCGGTTC AACCAACACA CAGCCGGCAA GCCCCTCCGC
     301 ATTTCAAGCG ATTTCGCACA CGTTACCGCC GAAGCCGTCC GCCTGAACCG
           CCTGACTCAC GGCGCACTGG ACGTAACCGT CGGCCCTTTG GTCAACCTTT
     401 GGGGGTTCGG CCCCGACAAA TCCGTTACCC GTGAACCGTC GCCGGAACAA
     451 ATCAAACAGG CGGCATCTTA TACGGGCATA GACAAATCA TTTTGCAACA
     501 AGGCAAAGAT TACGCTTCCT TGAGCAAAAC CCACCCCAAA GCCTATTTGG
551 ATTTATCTTC GATTGCCAAA GGCTTCGGCG TTGATAAAGT TGCGGGCGAA
     601 CTGGAAAAAT ACGGCATTCA AAATTATCTG GTCGAAATCG GCggcGAGTT
     651 GCACGGCAAA GGCAAAAATG CGCACGGCGA ACCGTGGCGC ATCGGTATAG
     701 AGCAACCCAA TATcatccaa ggcggcaata cgcAGattat cgtcccgctg
     751 aaCaaccgtt cgcttgccac ttccggcgAT taccgtaTTT tccacgtcgA
     801
           TAAAAACGGC Aaacgccttt cccacATCAT CAATCCCAAC AACAAACGAC
     851 CCATCAGCCA CAACCTCGCC tCCATCAGCG TGGTCTCAGA CAGTGCAATG
     901
          ACGGCGGACG GTTTATCCAC AGGATTATTT GTTTTAGGCG AAACCGAAGC
     951 CTTAAGGCTG GCAGAACAAG AAAAACTCGC TGTTTTCCTA ATTGTCCGGG
          ATAAGGACGG CTACCGCACC GCCATGTCTT CCGAATTTGC CAAGCTGCTC
    1001
    1051
This corresponds to the amino acid sequence <SEQ ID 400; ORF 111-1.ng>:
          MPSETRLPNL IRALIFALGF IFLNACSEQT AQTVTLQGET MGTTYTVKYL
           SNNRDKLPSP AKIQKRIDDA LKEVNRQMST YQTDSEISRF NQHTAGKPLR
      51
     101 ISSDFAHVTA EAVRLNRLTH GALDVTVGPL VNLWGFGPDK SVTREPSPEQ
151 IKQAASYTGI DKIILQQGKD YASLSKTHPK AYLDLSSIAK GFGVDKVAGE
     201 LEKYGIQNYL VEIGGELHGK GKNAHGEPWR IGIEQPNIIQ GGNTQIIVPL
     251 NNRSLATSGD YRIFHVDKNG KRLSHIINPN NKRPISHNLA SISVVSDSAM
301 TADGLSTGLF VLGETEALRL AEQEKLAVFL IVRDKDGYRT AMSSEFAKLL
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 401>:
ml11-1.seq
       1 ATGCCGTCTG AAACACGCCT GCCGAACTTT ATCCGCGTCT TGATATTTGC
      51 CCTGGGTTTC ATCTTCCTGA ACGCCTGTTC GGAACAAACC GCGCAAACCG
     101
           TTACCCTGCA AGGCGAAACG ATGGGCACGA CCTATACCGT CAAATACCTT
     151 TCAAATAATC GGGACAAACT CCCCTCACCT GCCGAAATAC AAAAACGCAT
     201 CGATGACGCG CTTAAAGAAG TCAACCGGCA GATGTCCACC TATCAGCCCG
251 ACTCCGAAAT CAGCCGGTTC AACCAACAC CAGCCGGCAA GCCCCTCCGC
     301 ATTTCAAGCG ACTTCGCACA CGTTACTGCC GAAGCCGTCC GCCTGAACCG
     351
          CCTGACACAC GGCGCGCTGG ACGTAACCGT CGGCCCCTTG GTCAACCTTT
     401 GGGGATTCGG CCCCGACAAA TCCGTTACCC GTGAACCGTC GCCGGAACAA
          ATCAAACAGG CGGCATCTTA TACGGGCATA GACAAAATCA TTTTGAAACA
     451
     501 AGGCAAAGAT TACGCTTCCT TGAGCAAAAC CCACCCCAAG GCCTATTTGG
     551 ATTTATCTTC GATTGCCAAA GGCTTCGGCG TTGATAAAGT TGCGGGCGAA
     601
           CTGGAAAAAT ACGGCATTCA AAATTATCTG GTCGAAATCG GCGGCGAGTT
     651 GCACGGCAAA GGCAAAAACG CGCGCGGCGA ACCGTGGCGC ATCGGTATCG
     701 AGCAGCCCAA TATCGTCCAA GGCGGCAATA CGCAGATTAT CGTCCCGCTG
     751 AACAACCGTT CGCTTGCCAC TTCCGGCGAT TACCGTATTT TCCACGTCGA
          TAAAAACGGC AAACGCCTCT CCCATATCAT CAACCCGAAC AACAAACGAC
     801
           CCATCAGCCA CAACCTCGCC TCCATCAGCG TGGTCGCAGA CAGTGCGATG
     851
     901 ACGGCGGACG GCTTGTCCAC AGGATTATTC GTATTGGGCG AAACCGAAGC
           CTTAAAGCTG GCAGAGCGCG AAAAACTCGC TGTTTTCCTG ATTGTCAGGG
ATAAAGGCGG CTACCGCACC GCCATGTCTT CCGAATTTGA AAAACTGCTC
     951
    1001
           CGCTAA
This corresponds to the amino acid sequence <SEQ ID 402; ORF 111-1>:
m111-1.pep
       1 MPSETRLPNF IRVLIFALGF IFLNACSEQT AQTVTLQGET MGTTYTVKYL
     51 SNNRDKLPSP AEIQKRIDDA LKEVNRQMST YQPDSEISRF NQHTAGKPLR
101 ISSDFAHVTA EAVRLNRLTH GALDVTVGPL VNLWGFGPDK SVTREPSPEQ
           SNNRDKLPSP AEIQKRIDDA LKEVNRQMST YQPDSEISRF NQHTAGKPLR
     151 IKQAASYTGI DKIILKQGKD YASLSKTHPK AYLDLSSIAK GFGVDKVAGE
           LEKYGIQNYL VEIGGELHGK GKNARGEPWR IGIEQPNIVQ GGNTQIIVPL
           NNRSLATSGD YRIFHVDKNG KRLSHIINPN NKRPISHNLA SISVVADSAM
           TADGLSTGLF VLGETEALKL AEREKLAVFL IVRDKGGYRT AMSSEFEKLL
     301
     351
m111-1/g111-1
                   96.6% identity in 351 aa overlap
                                  20
```

30

MPSETRLPNFIRVLIFALGFIFLNACSEQTAQTVTLQGETMGTTYTVKYLSNNRDKLPSP MPSETRLPNLIRALIFALGFIFLNACSEQTAQTVTLQGETMGTTYTVKYLSNNRDKLPSP

40

WO 99/057280 PCT/US99/09346

326

	10	20	30	40	50	60	
m111-1.pep	70 AEIQKRIDDALKEV						
g111-1	AKIQKRIDDALKEV						
m111-1.pep	130 GALDVTVGPLVNLW						
g111-1	GALDVTVGPLVNLW 130						
m111-1.pep	190 AYLDLSSIAKGFGV						
g111-1	AYLDLSSIAKGFGV 190	DKVAGELEKYO 200	SIQNYLVEIO 210	GELHGKGKNA 220	HGEPWRIGIE 230	QPNIIQ 240	
m111-1.pep	250 GGNTQIIVPLNNRS						
g111-1	GGNTQIIVPLNNRS 250	LATSGDYRIF 260	IVDKNGKRLS 270	SHIINPNNKRP 280	ISHNLASISV 290	VSDSAM 300	
m111-1.pep	310 TADGLSTGLFVLGE						
g111-1	TADGLSTGLFVLGE 310	TEALRLAEQEI 320	(LAVFLIVRI 330	OKDGYRTAMSS 340	EFAKLLRX 350		
hypothetical lipoprotein, Score = 34	50 DJL_HAEIN HYPOTH protein HI0172 putative [Haem 19 bits (885), E = 177/328 (53%)	<pre>- Haemophi ophilus in: xpect = 2e-</pre>	ilus influ fluenzae 1 -95	uenzae (str Rd] Length	ain Rd KW2 = 346	0) >gi 1573128	64144 (U32702)
1	NACSEQTAQTVTLQG	+TMGTTY VK	/L +	S + + I+	LK+ N M	STY+	
J. J. J.	LAACQKET-KVISLSG PDSEISRFNQHT-AGK						
		P+ IS+DFA '	/ AEA+RLN-	++T GALDVTV	GP+VNLWGFG	P+K	
- •	TREPSPEQIKQAASY	GIDKI L	K+ A+LSK	P+ Y+DLSS	IAKGFGVD+V	A +L	
	PEKQPTPEQLAERQAW						
E	EKYGIQNYLVEIGGEL E+ QNY+VEIGGE+	KGKN G+	PW+I IE+P	+ +	+ LNN +A+	SGDY	
-	EQLNAQNYMVEIGGEI						
F	RIFHVDKNGKRLSHII RI+ ++NGKR +H I RIY-FEENGKRFAHEI	+P PI H	+LASI+V+A	++MTADGLST	GLFVLGE +A	L++A	
	EREKLAVFLIVRDKGG						
	E+ LAV+LI+R G EKNNLAVYLIIRTDNG	+ T SS F+1 FVTKSSSAFK					
a111-1.seq	ing partial DNA				_	idis <seq id<="" td=""><td>403>:</td></seq>	403>:

- 1 ATGCCGTCTG AAACACGCCT GCCGAACTTT ATCCGCACCT TGATATTTGC
 51 CCTGAGTTTT ATCTTCCTGA ACGCCTGTTC GGAACAAACC GCGCAAACCG
 101 TTACCCTGCA AGGTGAAACG ATGGGCACGA CCTATACCGT CAAATACCTT
 151 TCAAATAATC GGGACAAACT CCCCTCACCT GCCGAAATAC AAAAGCGCAT
 201 CGATGACGCG CTTAAAGAAG TCAACCAGCA GATGTCCACC TATCAGCCCG
 251 ACTCCGAAAT CAGCCGGTTC AACCAACAC CAGCCGGCAA GCCCCTCCGC
 301 ATTTCAAGCG ACTTCGCACA CGTTACTGCC GAAGCCGTCC ACCTGAACCG

```
351 CCTGACACAC GGCGCGCTGG ACGTAACCGT CGGCCCCTTG GTCAACCTTT
401 GGGGATTCGG CCCCGACAAA TCCGTTACCC GTGAACCGTC GCCGGAACAA
451 ATCAAACAAG CAGCATCTTA TACGGGCATA GACAAAATCA TTTTGAAACA
501 AGGCAAAGAT TACGCTTCCT TGAGCAAAAC CCACCCCAAG GCCTATTTGG
551 ATTTATCTTC GATTGCCAAA GGCTTCGGCG TTGATAAAGT TGCGGGCGAA
601 CTGGAAAAAT ACGGCATTCA AAATTATCTG GTCGAAATCG GCGGCGAGTT
651 GCACGGCAAA GGCAAAAACG CGCGCGCGA ACCTTGGCGC ATCGGCATCG
701 AACAGCCCAA CATCGTCCAA GGCGGCAATA CGCAGATTAT CGTCCCGCTG
751 AACAACCGTT CGCTTGCCAC TTCCGGCGAT TACCGTATTT TCCACGTCGA
      TAAAAGCGGC AAACGCCTCT CCCATATCAT TAATCCGAAC AACAAACGAC
801
851 CCATCAGCCA CAACCTCGCC TCCATCAGCG TGGTCGCAGA CAGTGCGATG
901 ACGGCGGACG GCTTGTCCAC AGGATTATTC GTATTGGGCG AAACCGAAGC
951 CTTAAAGCTG GCAGAGCGCG AAAAACTCGC TGTTTTCCTG ATTGTCAGGG
1001 ATAAAGGCGG CTACCGCACC GCCATGTCTT CCGAATTTGA AAAACTGCTC
1051 CGCTAA
```

This corresponds to the amino acid sequence <SEQ ID 404; ORF 111-1.a>: all1-1.pep

1 MPSETRLPNF IRTLIFALSF IFLNACSEQT AQTVTLQGET MGTTYTVKYL 51 SNNRDKLPSP AEIQKRIDDA LKEVNRQMST YQPDSEISRF NQHTAGKPLR 101 ISSDFAHVTA EAVHLNRLTH GALDVTVGPL VNLWGFGPDK SVTREPSPEQ 151 IKQAASYTGI DKIILKQGKD YASLSKTHPK AYLDLSSIAK GFGVDKVAGE 201 LEKYGIQNYL VEIGGELHGK GKNARGEPWR IGIEQPNIVQ GGNTQIIVPL

251 NNRSLATSGD YRIFHVDKSG KRLSHIINPN NKRPISHNLA SISVVADSAM 301 TADGLSTGLF VLGETEALKL AEREKLAVFL IVRDKGGYRT AMSSEFEKLL

all1-1/mll1-1 98.9% identity in 351 aa overlap

a111-1.pep	10 MPSETRLPNFIRTL	1111:1111		1111111111		HHHH
	10	20	30	40	50	60
a111-1.pep	70 AEIQKRIDDALKEV					
m111-1	AEIQKRIDDALKEV					
mili-i	70	80	90	100	110	120
	130	140	150	160	170	180
al11-1.pep	GALDVTVGPLVNLW					
m111-1	GALDVTVGPLVNLW					LSKTHPK
	130	140	150	160	170	180
	190	200	210	220	230	240
a111-1.pep	AYLDLSSIAKGFGV					
dill lipep						
m111-1	AYLDLSSIAKGFGV	DKVAGELEKY	GIQNYLVEIG	GELHGKGKNA	RGEPWRIGI	COPNIVO
	190	200	210	220	230	240
	250	260	270	280	290	300
all1-1.pep	GGNTQIIVPLNNRS					
m111-1	GGNTQIIVPLNNRS					
MIII-I	250	260	270	280	290	300
	200	200				
	310	320	330	340	350	
al11-1.pep	TADGLSTGLFVLGE	TEALKLAERE	KLAVFLIVRD	KGGYRTAMSS	SEFEKLLRX	
m111-1	TADGLSTGLFVLGE					
	310	320	330	340	350	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 405>: g114.seq

- ATGGCTTCCA TCACTTCGCC GCTGCACGGG GCGCAGCAGG AATGCAGCAA
- 51 GACTTTTTA TGTCCGCCGG GCGGGACGAG TATGGGGCGG TCAATGTCGG

```
101 TAACGGTAGG TTTGTTTTGT GTTTCCATTA ACTTAACAAT ATCTGTCGAA
         151 TACGGTCAAA GCGGCTATTT TACCAGAGCC GCCGAATGTA AAACAGGGTG
             TCAGGGCATC AGCCCGAGCT GCCTGAACGA ACGGACGGTT TGCGAGGTAA
             CGATAAAATG GTCGAGCAGC GAAACATCAA CCAGCGACAT GGCCTGTGCC
         301 AGCCGCCTTG TGAACATGAT GTCTTCCTGC GAAGGTTCAG GCGAGCCGCC
         351 CGGATGGTTG TGCGCGATAA TCAGGCTGTC GGCATATTCG TCCAATGCCA
         401 GTTTGACGAT TTCGCGGATG TAA
This corresponds to the amino acid sequence <SEQ ID 406; ORF 114.ng>:
    g114.pep
             MASITSPLHG AQQECSKTFL CPPGGTSMGR SMSVTVGLFC VSINLTISVE
              YGOSGYFTRA AECKTGCQGI SPSCLNERTV CEVTIKWSSS ETSTSDMACA
         101 SRLVNMMSSC EGSGEPPGWL CAIIRLSAYS SNASLTISRM *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 407>:
    m114.seq
             ATGGCTTCCA TCACTTCGCC GCTGCACGGG GCGCACAGAG AATGCAGCAA
              GACTTTTTTA TGTCCACCGG GCGGGACGAG TATAGGGCGG TCAATGTCGG
          51
              TAACGGTAGG TTTGTTTTGT GTTTCCATTA ACTTAACAAT ATCTGTTGAA
         101
         151
              TACGGTTGAA GCGGCTATTT TATCAGAGCC GCCGCATGTA AAACAGAGTG
         201 TCAGGGCATC AACCCGAGCT GTCTGAACGA ACAGACGCTT TGCGAKGTAA
         251 CGATAAAATG GTCGAGCAGC GACACATCGA CCAGCGACAT TGCCTGTGCC
         301 AGCCGCCTTG TGAACATGAT GTCTTCCTGC GAArGTTCsG GCGAGCCGcC
         351 CGGATGGTTG TGCGCAATAA TCAGGCTGTC GGCATATTCG TCCAATGCCA
         401 GTTTGACGAT TTCGCGGATG TAA
This corresponds to the amino acid sequence <SEQ ID 408; ORF 114>:
    m114.pep
              MASITSPLHG AHRECSKTFL CPPGGTSIGR SMSVTVGLFC VSINLTISVE
           1
          51 YGXSGYFIRA AACKTECQGI NPSCLNEQTL CXVTIKWSSS DTSTSDIACA
         101 SRLVNMMSSC EXSGEPPGWL CAIIRLSAYS SNASLTISRM *
    ml14/gl14 90.0% identity over a 140 aa overlap
                                                     40
                        10
                                  20
                                           30
                 MASITSPLHGAHRECSKTFLCPPGGTSIGRSMSVTVGLFCVSINLTISVEYGXSGYFIRA
     m114.pep
                 MASITSPLHGAQQECSKTFLCPPGGTSMGRSMSVTVGLFCVSINLTISVEYGQSGYFTRA
     q114
                                           30
                                                     40
                                                                        60
                        10
                                                    100
                         70
                                  80
                                           90
                                                             110
                                                                       120
                 AACKTECQGINPSCLNEQTLCXVTIKWSSSDTSTSDIACASRLVNMMSSCEXSGEPPGWL
     mll4.pep
                 AECKTGCQGISPSCLNERTVCEVTIKWSSSETSTSDMACASRLVNMMSSCEGSGEPPGWL
     g114
                                                    100
                                                             110
                         70
                                  80
                                           90
                        130
                 CAIIRLSAYSSNASLTISRMX
     m114.pep
                 1111111111
     g114
                 CAIIRLSAYSSNASLTISRMX
                        130
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 409>: all4.seq

1	ATGCCGGAGG	CAAGCATCGC	CTCCATCACT	TCGCCGCTGC	ACGGGGCGCA
51	ACAGGAATGC	AGCAAGACTT	TTTTATGTCC	GCCGGGCGGG	ACGAGTATGG
101	GGCGGTCAAT	GTCGGTAACG	GTAGGTTTGT	TTTGTGTTTC	CATTAACTTA
151	ACGATATCTG	TCGAATACGG	TTGAAGCGGC	TATTTTATCA	GAGCCGCCGC
201	ATGTAAAACA	GGGTGTCAGG	GCATCAGCCC	GAGCTGCCTG	AACGAACGGA
251	CGGTTTGCGC	CGTTACGATA	AAATGGTCGA	GCAGCGACAC	ATCGACCAGC
301	GACATTGCCT	GTGCCAGCCG	CCTTGTGAAC	ATGATGTCTT	CCTGCGAAGG
351	TTCGGGCGAG	CCGCCCGGAT	GGTTGTGCGC	GATAATCAGG	CTGTCGGCAT
401	ATTCGTCCAA	TGCCAGTTTG	ACAATTTCAC	GGATGTAA	

WO 99/057280 PCT/US99/09346

This corresponds to the amino acid sequence <SEQ ID 410; ORF 114.a>: a114.pep

```
1 MPEASIASIT SPLHGAQQEC SKTFLCPPGG TSMGRSMSVT VGLFCVSINL
51 TISVEYG*SG YFIRAAACKT GCQGISPSCL NERTVCAVTI KWSSSDTSTS
101 DIACASRLVN MMSSCEGSGE PPGWLCAIIR LSAYSSNASL TISRM*
```

m114/a114 92.9% identity in 140 aa overlap

		10	20	30	40	50
ml14.pep	MASIT	SPLHGAHRE	CSKTFLCPPGC	GTSIGRSMSV	VGLFCVSIN:	LTISVEYGXSG
	:1111	1111111:1		[]:::::::::::::::::::::::::::::::::::::		
a114	MPEASIASIT	SPLHGAQQE	CSKTFLCPPGO	STSMGRSMSV1	TVGLFCVSIN:	LTISVEYGXSG
	10	20	0 30) 4() 50	0 60
	60	70	80	90	100	110
mll4.pep	YFIRAAACKT	ECQGINPSC:	LNEQTLCXVT	KWSSSDTSTS	SDIACASRLV	NMMSSCEXSGE
	1111111111	1114:111	111:1:1 111			
a114	YFIRAAACKT	GCQGISPSC:	LNERTVCAVT	KWSSSDTST	SDIACASRLV	NMMSSCEGSGE
	70	8	0 90	100	11	0 120
	120	130	140			
mll4.pep	PPGWLCAIIR	LSAYSSNAS:	LTISRMX			
	1111111		1 1 1 1 1			*
a114	PPGWLCAIIR	LSAYSSNAS	LTISRMX			
	130	14	0			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 411>: q117.seq

```
atggtcgacg aactcgacCT GCTGCCCGAT GCCGTCGCCG CCACCCTGCT
  1
     TGCCGACATC GGACGCTACG TCCCCGATTG GAACCTATTG GTTTCCGAGC
 51
     GCTGCAACAG CACCGTCGCC GAGCTGGTCA AAGGTGtgga CGAAGTGCAG
     AAACTTACCC ACTTCGCCCG GGTGGACAGC CTCGCCACGC CGGAAGAACG
201 CGCACAGCAA GCGGAAACCA TGCGGAAAAT GCTGCTGGCg atggttaccg
251 Acatccgcgt cgtaTTAATC AAACTGGCGA TGCGTacgcg caccCTGcta
301 ttTTtaaGCA ACGCCCCGA CAGCCCTGAA AAACgcgccG TCgccaaAga
351 aacccTCGAC ATCTTCGCCC CGCTCGCCAA CCGCTTGGGC GTGTGGCAGC
401 TCAAATGGCA GCTCGAAGAT TTGGGCTTCC GCCATCAAGA ACCCGAAAAA
451 TACCGCGAAA TCGCCCTGCT TTTGGACGAA AAACGCACCG AACGCCTCGA
501 ATACATCGAA AACTTCCTCG ATATCCTGCG TACGGAACTC AAAAAATACA
551 ATATCCACTT TGAAGTCGCC GGCCGTCCGA AACACATCTA CTCCATTTAC
601 AAAAAAATGG TGAAGAAAAA ACTCAGCTTC GACGGCCTGT TCGACATCCG
     CGCCGTGCGG ATTCTGGTCG ATACCGTCCC CGAGTGTTAC ACCACGCTGG
 701 gcaTCGTCCA CAGCCTCTGG CAGCCCATTC CCGGCGagtt CGAcgactAC
 751 ATCGCCAACC CCAAAGgcaA CGgttATAAA AGtTTGCACA CCGTCATCGT
 801 cggcccGGAa gacaaaggtg tggaaGtgCA AATCCGCACC TTCGAtatGC
 851 accAATTCaa CgaatTcggT gtcgccgCCC ACTGGCGtta caaagaaggc
 901 qqcaaaqqcq attccGCCtA cgaacaaAAA ATcgccTggt TGCgccaACT
 951 CTTGGACTGG CGCGAAAATA TGGCGGAAAG CGGCAAGGAA GACCTCGCCG
1001 CCGCCTTCAA AACCGAGCTT TTCAACGACA CGATTTATGT TTTGACCCCG
1051 CACGGCAAAG TCCTCTCTCT GCCAACGGGC GCAACCCCCA TCGACTTCGC
1101 CTACGCCCTG CACAGCAGCA TCGGCGACCG CTGCCGGGGC GCGAAAGTCG
1151 AaggGCAGAT TGTGCCGCTG TCCACCCCGC TCGAAAACGG ACAGCGCGTC
1201 GAAATCatta CCGCCaaAGA AGGGCATCCT TCCGTCAACT GGCTTTACGA
1251 AGGCtgGGtc aAATCCGGCA AGGCCATCGG caaAATCCGC GCCTAcatCC
1301 GCCAGcaaAa cgCcgaCACC GTGCGCGAAG AAGGCCGTGT CCAACTCGAC
1351 AAGCAGCTTG CCAAACTCAC GCCCAAACCC AACCTGCAAG AGCTTgccga
1401 aaATCTCGGC tacaaAAAGC cagaagacct ctacacCGCc gtcggacaag
1451 gcgaaatttc caaccgcgcc atCcaaaaag cctgcggcac GCTgaacgaa
1501 ccgcccCCG TGCCCGTCAG CGCAACCACC ATCGTCAAAC AGTCCAAAAT
```

WO 99/057280 PCT/US99/09346

330

```
1551 CAAAAAAGGT GGCAAAACCG GCGTGCTCAT CGACGGCGAA GACGGCTTGA
1601 TGACCACGCT TGCCAAATGC TGCAAACCCG CGCCGCCCGA CGATATTGCC
1651 GGCTTCGTTA CCCGCGAGCG CGGCATTTCC GTCCACCGCA AAACCTGCCC
          1701 CTCTTTCCGA CACCTTGCCG AACACGCGCC CGAAAAAGTA CTGGACGCAA
          1751 GTTGGGCGC GTTGCAGGAA GGGCAAGTGT TCGCCGTCGA TATCGAAATC
          1801 CGCGCCCAAG ACCGCTCCGG GCTTTTGCGC GACGTATCCG ACGCGCTCGC
          1851 CCGCCACAAA CTCAACGTTA CCGCCGTGCA AACCCAGTCC CGCGACTTGG
          1901 AAGCCAGCAT GAGGTTCACG CTCGAAGTCA AACAAGtCAA CGacCTCCCG
          1951 CGCGTCCTCG CCGGCCTCGG CGATGTCAAA GGCGTATTGA GCGTTACCCG
          2001 GCTTTAA
This corresponds to the amino acid sequence <SEQ ID 412; ORF 117.ng>:
     g117.pep
                MVDELDLLPD AVAATLLADI GRYVPDWNLL VSERCNSTVA ELVKGVDEVQ
            51 KLTHFARVDS LATPEERAQQ AETMRKMLLA MVTDIRVVLI KLAMRTRTLL
           101 FLSNAPDSPE KRAVAKETLD IFAPLANRLG VWQLKWQLED LGFRHQEPEK
           151 YREIALLLDE KRTERLEYIE NFLDILRTEL KKYNIHFEVA GRPKHIYSIY
           201 KKMVKKKLSF DGLFDIRAVR ILVDTVPECY TTLGIVHSLW QPIPGEFDDY
           251 IANPKGNGYK SLHTVIVGPE DKGVEVQIRT FDMHQFNEFG VAAHWRYKEG
           301 GKGDSAYEQK IAWLRQLLDW RENMAESGKE DLAAAFKTEL FNDTIYVLTP
351 HGKVLSLPTG ATPIDFAYAL HSSIGDRCRG AKVEGQIVPL STPLENGQRV
           401 EIITAKEGHP SVNWLYEGWV KSGKAIGKIR AYIRQQNADT VREEGRVQLD
           451 KOLAKLTPKP NLQELAENLG YKKPEDLYTA VGQGEISNRA IQKACGTLNE
           501 PPPVPVSATT IVKQSKIKKG GKTGVLIDGE DGLMTTLAKC CKPAPPDDIA
           551 GFVTRERGIS VHRKTCPSFR HLAEHAPEKV LDASWAALQE GQVFAVDIEI
           601 RAQDRSGLLR DVSDALARHK LNVTAVQTQS RDLEASMRFT LEVKQVNDLP
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 413>: m117.seq (partial)

651 RVLAGLGDVK GVLSVTRL*

```
..GTGAAACTCA AGAAATACAA TGTCCATTTC GAAGTCGCCG GCCGCCCGAA
  1
       ACACATCTAC TCCATTTACA AAAAAATGGT GAAGAAAAA CTCAGCTTCG
  51
       ACGGCCTCTT TGACATCCGC GCCGTGCGAA TTCTGGTTGA TACCGTCCCC
 101
       GAGTGTTACA CCACGCTGGG TATCGTCCAC AGCCTCTGGC AGCCCATTCC
 151
        CGGCGAGTTC GACGACTACA TCGCCAATCC CAAAGGCAAC GGCTATAAAA
 201
       GTTTGCACAC CGTCATCGTC GGCCCGGAAG ACAAAGGCGT GGAAGTACAA
 251
        ATCCGCACCT TCGATATGCA CCAATTCAAC GAATTCGGTG TCGCCGCCCA
 301
        CTGqCGTTAC AAAGAGGGCG GCAAGGGCGA TTCCGCCTAC GAACAGAAAA
 351
        TCGCCTGGTT GCGCCAACTC TTGGACTGGC GCGAAAACAT GGCGGAAAGC
 401
        GGCAAGGAAG ACCTCGCCGC CGCCTTCAAA ACCGAGCTTT TCAACGACAC
 451
        GATTTATGTT TTGACCCCGC ACGGCAAAGT CCTCTCCCTG CCCACGGGCG
 501
       CGACCCCAT CGACTTCGCC TACGCCCTGC ACAGCAGCAT CGGCGACCGT
 551
        TGCCGCGTG CGAAAGTCGA AGGGCAGATT GTGCCGCTGT CCACCCCGCT
 601
        CGAAAACGGA CAGCGCGTCG AAATCATTAC CGCCAAAGAA GGGCATCCTT
 651
        CCGTCAACTG GCTTTACGAA GGCTGGGTCA AATCCAACAA GGCAATCGGC
 701
        AAAATCCGCG CCTACATCCG CCAGCAAAAC GCCGACACCG TGCGCGAAGA
 751
       AGGCCGCGTC CAACTCGACA AACAGCTTGC CAAACTCACG CCCAAACCCA
 801
 851
        ACCTGCAAGA GCTTGCCGAA AATCTCGGCT ACAAAAAGCC AGAAGACCTC
 901
       TACACCGCCG TCGGACAAGG CGAAATTTCC AACCGCGCCA TCCAAAAAGC
        CTGCGGCACG CTGAACGAAC CGCCGCCCGT ACCCGTCAGC GAAACCACCA
 951
        TCGTCAAACA GTCCAAAATC AAAAAAGGCG GCAAAAACGG CGTGCTCATC
1001
1051
        GACGGCGAAG ACGGTCTGAT GACCACGCTT GCCAAATGCT GCAAACCCGC
1101
        GCCGCCCGAC GATATTATCG GCTTCGTTAC CCGCGAGCGC GgCATTTCAG
1151
        TGCACCGCAA AwyyTkCyCG TCTTTCCAAC ACCTCGCCGA ACACGCGCCC
1201
        GAWAAAGTGC TGGACGCAAG CTGGGCGGCA TTGCAGGAAG GACAAGTATT
        CGCCGTCGAT ATCGAAATCC GCGCCCAAGA CCGCTCCGGG CTTTTGCGCG
1251
        ACGTATCCGA CGCGCTCGCC CGCCACAAAC TCAACGTTAC CGCCGTGCAA
1301
        ACCCAGTCCC GCGACTTGGA AGCCAGCATG AGGTTCACGC TCGAAGTCAA
1351
        ACAAGTCAAC GACCTCCCGC GCGTCCTCGC CAGCCTCGGC GACGTCAAAG
1401
        GCGTATTGAG CGTTACCCGG CTTTAA
1451
```

This corresponds to the amino acid sequence <SEQ ID 414; ORF 117>:
m117.pep (partial)

```
1....VKLKKYNVHF EVAGRPKHIY SIYKKMVKKK LSFDGLFDIR AVRILVDTVP
51
      ECYTTLGIVH SLWQPIPGEF DDYIANPKGN GYKSLHTVIV GPEDKGVEVQ
101
      IRTFDMHQFN EFGVAAHWRY KEGGKGDSAY EQKIAWLRQL LDWRENMAES
      GKEDLAAAFK TELFNDTIYV LTPHGKVLSL PTGATPIDFA YALHSSIGDR
151
201
      CRGAKVEGQI VPLSTPLENG QRVEIITAKE GHPSVNWLYE GWVKSNKAIG
251
      KIRAYIRQQN ADTVREEGRV QLDKQLAKLT PKPNLQELAE NLGYKKPEDL
      YTAVGQGEIS NRAIQKACGT LNEPPPVPVS ETTIVKQSKI KKGGKNGVLI
301
      DGEDGLMTTL AKCCKPAPPD DIIGFVTRER GISVHRKXXX SFQHLAEHAP
351
      XKVLDASWAA LQEGQVFAVD IEIRAQDRSG LLRDVSDALA RHKLNVTAVQ
401
      TQSRDLEASM RFTLEVKQVN DLPRVLASLG DVKGVLSVTR L*
451
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 117 shows 97.6% identity over a 490 aa overlap with a predicted ORF (ORF 117.ng) from N. gonorrhoeae:

m117/g117

m117.pep		:	1:111111111	20 30
g117	EKYREIALLLDEKRTERL 150 160	EYIENFLDILRTELKKY 170 180	NIHFEVAGRPKH 190	IIYSIYKKMVKKKL 200
m117.pep	40 5 SFDGLFDIRAVRILVDTV		1111111111111	
3	210 220	230 240	250	260
m117.pep	100 11 PEDKGVEVQIRTFDMHQF	nefgvaahwrykeggkg	DSAYEQKIAWLR	
g117	PEDKGVEVQIRTFDMHQF 270 280	NEFGVAAHWRYKEGGKG 290 300	DSAYEQKIAWLR 310	QLLDWRENMAESG 320
m117.pep	160 17 KEDLAAAFKTELFNDTIY 	VLTPHGKVLSLPTGATP	IDFAYALHSSIG	_
g117	KEDLAAAFKTELFNDTIY 330 340			
m117.pep	220 23 PLSTPLENGQRVEIITAK	EGHPSVNWLYEGWVKSN	KAIGKIRAYIRO	
g117	PLSTPLENGQRVEIITAK 390 400			
m117.pep	280 29 LDKQLAKLTPKPNLQELA	ENLGYKKPED LYTAVGQ	GEISNRAIQKAC	
g117				
m117.pep	340 35 TTIVKQSKIKKGGKNGVI	IDGEDGLMTTLAKCCKP	APPDDIIGFVT	880 390 RERGISVHRKXXXS
g117				RERGISVHRKTCPS
mll7.pep	400 41 FQHLAEHAPXKVLDASWA			440 450 ALARHKLNVTAVQT

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 415>: a117.seq

```
ATGGTTCATG AACTCGACCT GCTCCCCGAT GCCGTCGCCG CCACCCTGCT
  51
      TGCCGACATC GGACGCTACG TCCCCGACTG GAACCTATTG GTTTCCGAAC
      GCTGCAACAG TACCGTCGCC GAGCTGGTCA AAGGTGTGGA CGAAGTGCAG
 101
      AAACTCACCC ACTTCGCCCG GGTGGACAGC CTCGCCACGC CGGAAGAACG
 151
      CGCCCAGCAG GCAGAAACTA TGCGGAAAAT GCTGCTGGCG ATGGTTACCG
 201
     ACATCCGCGT CGTGTTAATC AAACTGGCGA TGCGTACGCG CACCCTGCAA
 251
      TTTTTAAGCA ACGCCCCGA CAGCCCCGAA AAACGCGCCG TCGCCAAAGA
     AACCCTCGAC ATCTTCGCCC CGCTCGCCAA CCGTTTGGGC GTGTGGCAGC
 351
 401
      TCAAATGGCA GCTCGAAGAT TTGGGCTTCC GCCATCAAGA ACCCGAAAAA
      TACCGCGAAA TCGCCCTGCT TTTGGACGAA AAACGCACCG AACGCCTCGA
 451
     ATACATCGAA AACTTCCTTA ATATCCTGCG TACGGAACTC AAAAAATACA
 501
      ATATCCACTT TGAAGTCGCC GGCCGTCCGA AACACATCTA CTCCATTTAC
 551
      AAAAAAATGG TGAAGAAAAA ACTCAGCTTC GACGGGTTGT TCGACATCCG
 601
      CGCCGTGCGG ATTCTGGTTG ATACCGTCCC CGAGTGTTAC ACCACACTGG
 651
 701
      GCATTGTCCA CAGCCTCTGG CAGCCCATTC CCGGCGAGTT CGACGACTAC
     ATCGCCAACC CGAAAGGCAA CGGCTATAAA AGTTTGCACA CCGTCATCGT
 751
     CGGCCCGGAA GACAAAGGCG TGGAAGTGCA AATCCGCACC TTCGATATGC
 851
     ACCAATTCAA CGAATTCGGT GTCGCCGCGC ACTGGCGTTA CAAAGAGGGC
      GGCAAAGGCG ATTCCGCCTA CGAACAAAAA ATCGCCTGGT TACGCCAACT
 901
      TTTGGACTGG CGCGAAAACA TGGCGGAAAG CGGCAAGGAA GACCTCGCCG
      CCGCCTTCAA AACCGAGCTT TTCAACGACA CGATTTATGT TTTGACCCCG
1001
1051
     CACGGCAAAG TCCTCTCCCT GCCCACAGGC GCGACCCCCA TCGACTTCGC
1101
      CTACGCCCTG CACAGCAGCA TCGGCGACCG TTGCCGCGGT GCGAAAGTCG
     AAGGGCAGAT TGTGCCGCTG TCCACCCCGC TCGAAAACGG ACAGCGTGTC
1151
      GAAATCATTA CCGCCAAAGA AGGGCATCCT TCCGTCAACT GGCTTTACGA
1201
      AGGCTGGGTC AAATCCAACA AGGCAATCGG CAAAATCCGC GCCTACATCC
1251
     GCCAGCAAAA CGCCGACACC GTGCGCGAAG AAGGCCGCGT CCAACTCGAC
1301
      AAACAGCTTG CCAAACTCAC GCCCAAACCC AACCTGCAAG AGCTTGCCGA
     AAATCTCGGC TACAAAAAGC CAGAAGACCT CTACACCGCC GTCGGACAAG
1401
      GCGAAATTTC CAACCGCGCC ATCCAAAAAG CCTGCGGCAC GCTGAACGAA
1451
      CCGCCGCCCG TACCCGTCAG CGAAACCACC ATCGTCAAAC AGTCCAAAAT
1501
     CAAAAAGGC GGCAAAAACG GCGTGCTCAT CGACGGCGAA GACGGTCTGA
1551
      TGACCACGCT TGCCAAATGC TGCAAACCCG CGCCGCCCGA CGACATTGTC
      GGCTTCGTTA CCCGCGATCG CGGCATTTCG GTACACCGCA AAACCTGCCC
1651
1701
      CTCTTTCCGA CACCTCGCCG AACACGCGCC CGAAAAAGTA CTGGACGCAA
      GTTGGGCGGC GTTGCAGGAA GGACAAGTGT TCGCCGTCGA TATCGAAATC
1751
     CGCGCCCAAG ACCGCTCCGG GCTTTTGCGC GACGTATCCG ACGCGCTCGC
1801
      CCGCCACAAA CTCAACGTTA CCGCCGTGCA AACCCAGTCC CGCGACTTGG
     AAGCCAGCAT GAGGTTCACG CTCGAAGTCA AACAAGTTAC CGACCTCCCA
1901
      CGCGTCCTCG CCAGCCTCGG CGACGTCAAA GGCGTATTGA GCGTTACCCG
1951
2001
      GCTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 416; ORF 117.a>: a117.pep

```
1 MVHELDLIPD AVAATLIADI GRYVPDWNLL VSERCNSTVA ELVKGVDEVQ
51 KLTHFARVDS LATPEERAQQ AETMRKMLLA MVTDIRVVLI KLAMRTRTLQ
101 FLSNAPDSPE KRAVAKETLD IFAPLANRLG VWQLKWQLED LGFRHQEPEK
151 YREIALLIDE KRTERLEYIE NFLNILRTEL KKYNIHFEVA GRPKHIYSIY
201 KKMVKKKLSF DGLFDIRAVR ILVDTVPECY TTLGIVHSLW QPIPGEFDDY
251 IANPKGNGYK SLHTVIVGPE DKGVEVQIRT FDMHQFNEFG VAAHWRYKEG
301 GKGDSAYEQK IAWLRQLLDW RENMAESGKE DLAAAFKTEL FNDTIYVLTP
351 HGKVLSLPTG ATPIDFAYAL HSSIGDRCRG AKVEGQIVPL STPLENGQRV
```

WO 99/057280 PCT/US99/09346

EIITAKEGHP SVNWLYEGWV KSNKAIGKIR AYIRQQNADT VREEGRVOLD KQLAKLTPKP NLQELAENLG YKKPEDLYTA VGQGEISNRA IQKACGTLNE PPPVPVSETT IVKQSKIKKG GKNGVLIDGE DGLMTTLAKC CKPAPPDDIV GEVTRORGIS VHRKTCPSFR HLAEHAPEKV LDASWAALOE GOVFAVDIEI RAQDRSGLLR DVSDALARHK LNVTAVQTQS RDLEASMRFT LEVKQVTDLP RVLASLGDVK GVLSVTRL* 98.0% identity in 490 aa overlap m117/a117 VKLKKYNVHFEVAGRPKHIYSIYKKMVKKKL m117.pep EKYREIALLLDEKRTERLEYIENFLNILRTELKKYNIHFEVAGRPKHIYSIYKKMVKKKL a117 SFDGLFDIRAVRILVDTVPECYTTLGIVHSLWQPIPGEFDDYIANPKGNGYKSLHTVIVG m117.pep SFDGLFDIRAVRILVDTVPECYTTLGIVHSLWOPIPGEFDDYIANPKGNGYKSLHTVIVG a117 m117.pep PEDKGVEVQIRTFDMHQFNEFGVAAHWRYKEGGKGDSAYEQKIAWLRQLLDWRENMAESG a117 PEDKGVEVQIRTFDMHQFNEFGVAAHWRYKEGGKGDSAYEQKIAWLRQLLDWRENMAESG KEDLAAAFKTELFNDTIYVLTPHGKVLSLPTGATPIDFAYALHSSIGDRCRGAKVEGQIV m117.pep · KEDLAAAFKTELFNDTIYVLTPHGKVLSLPTGATPIDFAYALHSSIGDRCRGAKVEGOIV a117 PLSTPLENGQRVEIITAKEGHPSVNWLYEGWVKSNKAIGKIRAYIRQONADTVREEGRVQ m117.pep PLSTPLENGQRVEIITAKEGHPSVNWLYEGWVKSNKAIGKIRAYIRQQNADTVREEGRVQ a117 m117.pep LDKQLAKLTPKPNLQELAENLGYKKPEDLYTAVGQGEISNRAIQKACGTLNEPPPVPVSE LDKQLAKLTPKPNLQELAENLGYKKPEDLYTAVGQGEISNRAIQKACGTLNEPPPVPVSE a117 TTIVKQSKIKKGGKNGVLIDGEDGLMTTLAKCCKPAPPDDIIGFVTRERGISVHRKXXXS ml17.pep TTIVKQSKIKKGGKNGVLIDGEDGLMTTLAKCCKPAPPDDIVGFVTRDRGISVHRKTCPS a117 FOHLAEHAPXKVLDASWAALQEGQVFAVDIEIRAQDRSGLLRDVSDALARHKLNVTAVOT m117.pep FRHLAEHAPEKVLDASWAALQEGQVFAVDIEIRAQDRSGLLRDVSDALARHKLNVTAVQT a117 m117.pep QSRDLEASMRFTLEVKQVNDLPRVLASLGDVKGVLSVTRLX . . QSRDLEASMRFTLEVKQVTDLPRVLASLGDVKGVLSVTRLX a117

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 417>: g117-1.seq

```
ATGACCGCCA TCAGCCCGAT TCAAGACACG CAAAGCGCGA CCCTGCAAGA
       ATTGCGCGAA TGGTTCGACA GCTACTGCGC CGCTCTGCCG GACAACGATA
       AAAACCTCAT CGGTACCGCA TGGTCGCTGG CGCAGGAACA TTATCCTGCC
 101
 151 GATGCCGCCA CGCCGTATGG CGAGCCGCTG CCCGACCACT TCCTCGGCGC
 201 GGCGCAAATG GTCGACGAAC TCGACCTGCT GCCCGATGCC GTCGCCGCCA
       CCCTGCTTGC CGACATCGGA CGCTACGTCC CCGATTGGAA CCTATTGGTT
 301 TCCGAGCGCT GCAACAGCAC CGTCGCCGAG CTGGTCAAAG GTGTGGACGA
 351 AGTGCAGAAA CTTACCCACT TCGCCCGGGT GGACAGCCTC GCCACGCCGG
 401 AAGAACGCGC ACAGCAAGCG GAAACCATGC GGAAAATGCT GCTGGCGATG
 451 GTTACCGACA TCCGCGTCGT ATTAATCAAA CTGGCGATGC GTACGCGCAC
      CCTGCAATTT TTAAGCAACG CCCCCGACAG CCCTGAAAAA CGCGCCGTCG
 551 CCAAAGAAAC CCTCGACATC TTCGCCCCGC TCGCCAACCG CTTGGGCGTG
 601 TGGCAGCTCA AATGGCAGCT CGAAGATTTG GGCTTCCGCC ATCAAGAACC
 651
      CGAAAAATAC CGCGAAATCG CCCTGCTTTT GGACGAAAAA CGCACCGAAC
 701 GCCTCGAATA CATCGAAAAC TTCCTCGATA TCCTGCGTAC GGAACTCAAA
      AAATACAATA TCCACTTTGA AGTCGCCGGC CGTCCGAAAC ACATCTACTC
 751
 801 CATTTACAAA AAAATGGTGA AGAAAAAACT CAGCTTCGAC GGCCTGTTCG
 851 ACATCCGCGC CGTGCGGATT CTGGTCGATA CCGTCCCCGA GTGTTACACC
 901 ACGCTGGGCA TCGTCCACAG CCTCTGGCAG CCCATTCCCG GCGagttCGA
 951 cgactACATC GCCAACCCCA AAGgcaACGg ttATAAAAGt TTGCACACCG
1001 TCATCGTcgg cccGGAagaa aaaggtgtgg aagtgcAAAT CCGCACCTTC 1051 GATATGCacc AATTCaaCga ATTCGGTGTC GCCGCCCACT GGCGTTACAA
1101 AGAAGGCGGC AAAGGCGATT CCGCCTACGA ACAAAAAATC GCCTGGTTGC
1151 GCCAACTCTT GGACTGGCGC GAAAATATGG CGGAAAGCGG CAAGGAAGAC
1201 CTCGCCGCCG CCTTCAAAAC CGAGCTTTTC AACGACACGA TTTATGTTTT
1251 GACCCCGCAC GGCAAAGTCC TCTCTCTGCC AACGGGCGCA ACCCCCATCG
1301 ACTTCGCCTA CGCCCTGCAC AGCAGCATCG GCGACCGCTG CCGGGGCGCG
1351 AAAGTCGAAG GGCAGATTGT GCCGCTGTCC ACCCCGCTCG AAAACGGACA
1401 GCGCGTCGAA ATCATTACCG CCAAAGAAGG GCATCCTTCC GTCAACTGGC
1451 TTTACGAAGG CTGGGTCAAA TCCGGCAAGG CCATCGGCAA AATCCGCGCC
1501 TACATCCGCC AGCAAAACGC CGACACCGTG CGCGAAGAAG GCCGTGTCCA
1551 ACTCGACAAG CAGCTTGCCA AACTCACGCC CAAACCCAAC CTGCAAGAGC
1601 TTGCCGAAAA TCTCGGCTAC AAAAAGCCAG AAGACCTCTA CACCGCCGTC
1651 GGACAAGGCG AAATTTCCAA CCGCGCCATC CAAAAAGCCT GCGGCACGCT
1701 GAACGAACCG CCGCCCGTGC CCGTCAGCGC AACCACCATC GTCAAACAGT
1751 CCAAAATCAA AAAAGGTGGC AAAACCGGCG TGCTCATCGA CGGCGAAGAC
1801 GGCTTGATGA CCACGCTTGC CAAATGCTGC AAACCCGCGC CGCCCGACGA
1851 TATTGCCGGC TTCGTTACCC GCGAGCGCGG CATTTCCGTC CACCGCAAAA
1901 CCTGCCCCTC TTTCCGACAC CTTGCCGAAC ACGCGCCCGA AAAAGTACTG
1951 GACGCAAGTT GGGCGGCGTT GCAGGAAGGG CAAGTGTTCG CCGTCGATAT
2001 CGAAATCCGC GCCCAAGACC GCTCCGGGCT TTTGCGCGAC GTATCCGACG
2051 CGCTCGCCCG CCACAAACTC AACGTTACCG CCGTGCAAAC CCAGTCCCGC
2101 GACTTGGAAG CCAGCATGAG GTTCACGCTC GAAGTCAAAC AAGTCAACGA
2151 CCTCCCGCG GTCCTCGCCG GCCTCGGCGA TGTCAAAGGC GTATTGAGCG 2201 TTACCCGGCT TTAA
```

This corresponds to the amino acid sequence <SEQ ID 418; ORF 117-1.ng>: g117-1.pep

```
1 MTAISPIQDT QSATLQELRE WFDSYCAALP DNDKNLIGTA WSLAQEHYPA
 51 DAATPYGEPL PDHFLGAAQM VDELDLLPDA VAATLLADIG RYVPDWNLLV
101 SERCNSTVAE LVKGVDEVQK LTHFARVDSL ATPEERAQQA ETMRKMLLAM
151
     VTDIRVVLIK LAMRTRTLQF LSNAPDSPEK RAVAKETLDI FAPLANRLGV
201 WQLKWQLEDL GFRHQEPEKY REIALLLDEK RTERLEYIEN FLDILRTELK
251 KYNIHFEVAG RPKHIYSIYK KMVKKKLSFD GLFDIRAVRI LVDTVPECYT
301 TLGIVHSLWQ PIPGEFDDYI ANPKGNGYKS LHTVIVGPEE KGVEVQIRTF
351
     DMHQFNEFGV AAHWRYKEGG KGDSAYEQKI AWLRQLLDWR ENMAESGKED
401 LAAAFKTELF NDTIYVLTPH GKVLSLPTGA TPIDFAYALH SSIGDRCRGA
451
     KVEGQIVPLS TPLENGQRVE IITAKEGHPS VNWLYEGWVK SGKAIGKIRA
501 YIRQQNADTV REEGRVQLDK QLAKLTPKPN LQELAENLGY KKPEDLYTAV
551 GQGEISNRAI QKACGTLNEP PPVPVSATTI VKQSKIKKGG KTGVLIDGED
601
     GLMTTLAKCC KPAPPDDIAG FVTRERGISV HRKTCPSFRH LAEHAPEKVL
     DASWAALQEG QVFAVDIEIR AQDRSGLLRD VSDALARHKL NVTAVQTQSR
     DLEASMRFTL EVKQVNDLPR VLAGLGDVKG VLSVTRL*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 419>: m117-1.seq

¹ ATGACCGCCA TCAGCCCGAT TCAAGACACG CAAAGCGCGA CTCTGCAAGA

WO 99/057280 PCT/US99/09346

335

```
51 ATTGCGCGAA TGGTTCGACA GCTACTGCGC CGCTCTGCCG GACAACGATA
101
     AAAACCTCAT CGGTACCGCA TGGTTGCTGG CGCAGGAACA TTACCCCGCC
     GATGCCGCCA CGCCGTATGG CGAGCCGCTG CCCGACCACT TCCTCGGCGC
151
     GGCGCAAATG GTTCATGAAC TCGACCTGCT CCCCGATGCC GTCGCCGCCA
201
     CCCTGCTTGC CGACATCGGA CGCTACGTCC CCGACTGGAA CCTATTGGTT
251
     TCCGAACGCT GCAACAGTAC CGTCGCCGAG CTGGTCAAAG GTGTGGACGA
301
 351
     AGTGCAGAAA CTCACCCACT TCGCCCGGGT GGACAGCCTC GCCACGCCGG
     AAGAACGCGC CCAGCAGGCA GAAACTATGC GGAAAATGCT GCTGGCGATG
     GTTACCGACA TCCGCGTCGT GTTAATCAAA CTGGCGATGC GTACGCGCAC
 451
     CCTGCAATTT TTAAGCAACG CCCCGACAG CCCCGAAAAA CGCGCCGTCG
501
     CCAAAGAAAC CCTCGACATC TTCGCCCCGC TCGCCAACCG TTTGGGCGTG
551
     TGGCAGCTCA AATGGCAGCT CGAAGATTTG GGCTTCCGCC ATCAAAAGCC
     CGAAAAATAC CGCGAAATCG CGCTGCTTTT GGACGAAAAA CGCACCGAAC
651
     GCCTCGAATA CATCGAAAAC TTCCTCAACA TCCTGCGCGG TGAACTCAAG
701
     AAATACAATG TCCATTTCGA AGTCGCCGGC CGCCCGAAAC ACATCTACTC
751
     CATTTACAAA AAAATGGTGA AGAAAAAACT CAGCTTCGAC GGCCTCTTTG
801
     ACATCCGCGC CGTGCGAATT CTGGTTGATA CCGTCCCCGA GTGTTACACC
     ACGCTGGGTA TCGTCCACAG CCTCTGGCAG CCCATTCCCG GCGAGTTCGA
901
     CGACTACATC GCCAATCCCA AAGGCAACGG CTATAAAAGT TTGCACACCG
951
     TCATCGTCGG CCCGGAAGAC AAAGGCGTGG AAGTACAAAT CCGCACCTTC
1001
     GATATGCACC AATTCAACGA ATTCGGTGTC GCCGCCCACT GGCGTTACAA
1051
     AGAGGGCGC AAGGGCGATT CCGCCTACGA ACAGAAAATC GCCTGGTTGC
1101
     GCCAACTCTT GGACTGGCGC GAAAACATGG CGGAAAGCGG CAAGGAAGAC
1151
     CTCGCCGCCG CCTTCAAAAC CGAGCTTTTC AACGACACGA TTTATGTTTT
1201
1251 GACCCCGCAC GGCAAAGTCC TCTCCCTGCC CACGGGCGCG ACCCCCATCG
1301 ACTTCGCCTA CGCCCTGCAC AGCAGCATCG GCGACCGTTG CCGCGGTGCG
     AAAGTCGAAG GGCAGATTGT GCCGCTGTCC ACCCCGCTCG AAAACGGACA
1351
1401 GCGCGTCGAA ATCATTACCG CCAAAGAAGG GCATCCTTCC GTCAACTGGC
     TTTACGAAGG CTGGGTCAAA TCCAACAAGG CAATCGGCAA AATCCGCGCC
1451
1501 TACATCCGCC AGCAAAACGC CGACACCGTG CGCGAAGAAG GCCGCGTCCA
1551 ACTCGACAAA CAGCTTGCCA AACTCACGCC CAAACCCAAC CTGCAAGAGC
     TTGCCGAAAA TCTCGGCTAC AAAAAGCCAG AAGACCTCTA CACCGCCGTC
1601
1651
     GGACAAGGCG AAATTTCCAA CCGCGCCATC CAAAAAGCCT GCGGCACGCT
     GAACGAACCG CCGCCCGTAC CCGTCAGCGA AACCACCATC GTCAAACAGT
1701
     CCAAAATCAA AAAAGGCGGC AAAAACGGCG TGCTCATCGA CGGCGAAGAC
1751
1801 GGTCTGATGA CCACGCTTGC CAAATGCTGC AAACCCGCGC CGCCCGACGA
1851
     TATTATCGGC TTCGTTACCC GCGAGCGCGG CATTTCAGTG CACCGCAAAA
1901 CCTGCCGTC TTTCCAACAC CTCGCCGAAC ACGCGCCCGA AAAAGTGCTG
1951 GACGCAAGCT GGGCGGCATT GCAGGAAGGA CAAGTATTCG CCGTCGATAT
2001 CGAAATCCGC GCCCAAGACC GCTCCGGGCT TTTGCGCGAC GTATCCGACG
2051 CGCTCGCCG CCACAAACTC AACGTTACCG CCGTGCAAAC CCAGTCCCGC
2101
     GACTTGGAAG CCAGCATGAG GTTCACGCTC GAAGTCAAAC AAGTCAACGA
     CCTCCCGCGC GTCCTCGCCA GCCTCGGCGA CGTCAAAGGC GTATTGAGCG
2151
    TTACCCGGCT TTAA
```

This corresponds to the amino acid sequence <SEQ ID 420; ORF 117-1>: m117-1.pep

1 MTAISPIQDT QSATLQELRE WFDSYCAALP DNDKNLIGTA WLLAQEHYPA DAATPYGEPL PDHFLGAAQM VHELDLLPDA VAATLLADIG RYVPDWNLLV 51 SERCNSTVAE LVKGVDEVQK LTHFARVDSL ATPEERAQQA ETMRKMLLAM 101 VTDIRVVLIK LAMRTRTLQF LSNAPDSPEK RAVAKETLDI FAPLANRLGV WQLKWQLEDL GFRHQKPEKY REIALLLDEK RTERLEYIEN FLNILRGELK KYNVHFEVAG RPKHIYSIYK KMVKKKLSFD GLFDIRAVRI LVDTVPECYT 251 TLGIVHSLWQ PIPGEFDDYI ANPKGNGYKS LHTVIVGPED KGVEVQIRTF DMHQFNEFGV AAHWRYKEGG KGDSAYEQKI AWLRQLLDWR ENMAESGKED 301 351 401 LAAAFKTELF NDTIYVLTPH GKVLSLPTGA TPIDFAYALH SSIGDRCRGA KVEGQIVPLS TPLENGQRVE IITAKEGHPS VNWLYEGWVK SNKAIGKIRA 451 YIRQONADTV REEGRVQLDK QLAKLTPKPN LQELAENLGY KKPEDLYTAV 501 GQGEISNRAI QKACGTLNEP PPVPVSETTI VKQSKIKKGG KNGVLIDGED 551 GLMTTLAKCC KPAPPDDIIG FVTRERGISV HRKTCPSFQH LAEHAPEKVL 601 651 DASWAALQEG QVFAVDIEIR AQDRSGLLRD VSDALARHKL NVTAVQTQSR DLEASMRFTL EVKQVNDLPR VLASLGDVKG VLSVTRL*

m117-1/g117-1 98.2% identity in 737 aa overlap

	10	20	30	40	50	60
ml17-1.pep	MTAISPIQDTQSAT	_			_	
g117-1	MTAISPIQDTQSAT	LQELREWFDS	YCAALPDNDK	NLIGTAWSLA	QEHYPADAAT	PYGEPL
_	10	20	30	40	50	60
	70	80	90	100	110	120

m117-1.pep g117-1	PDHFLGAAQMVHELDLLPDAVAATLLADIGRYVPDWNLLVSERCNSTVAELVKGVDEVQK
ml17-1.pep g117-1	130 140 150 160 170 180 LTHFARVDSLATPEERAQQAETMRKMLLAMVTDIRVVLIKLAMRTRTLQFLSNAPDSPEK
m117-1.pep g117-1	190 200 210 220 230 240 RAVAKETLDIFAPLANRLGVWQLKWQLEDLGFRHQKPEKYREIALLLDEKRTERLEYIEN
ml17-1.pep gl17-1	250 260 270 280 290 300 FLNILRGELKKYNVHFEVAGRPKHIYSIYKKMVKKKLSFDGLFDIRAVRILVDTVPECYT :
ml17-1.pep gl17-1	310 320 330 340 350 360 TLGIVHSLWQPIPGEFDDYIANPKGNGYKSLHTVIVGPEDKGVEVQIRTFDMHQFNEFGV
m117-1.pep	370 380 390 400 410 420 AAHWRYKEGGKGDSAYEQKIAWLRQLLDWRENMAESGKEDLAAAFKTELFNDTIYVLTPH
m117-1.pep	430 440 450 460 470 480 GKVLSLPTGATPIDFAYALHSSIGDRCRGAKVEGQIVPLSTPLENGQRVEIITAKEGHPS
ml17-1.pep	490 500 510 520 530 540 VNWLYEGWVKSNKAIGKIRAYIRQQNADTVREEGRVQLDKQLAKLTPKPNLQELAENLGY
m117-1.pep	550 560 570 580 590 600 KKPEDLYTAVGQGEISNRAIQKACGTLNEPPPVPVSETTIVKQSKIKKGGKNGVLIDGED
m117-1.pep	610 620 630 640 650 660 GLMTTLAKCCKPAPPDDIIGFVTRERGISVHRKTCPSFQHLAEHAPEKVLDASWAALQEG
ml17-1.pep	670 680 690 700 710 720 QVFAVDIEIRAQDRSGLLRDVSDALARHKLNVTAVQTQSRDLEASMRFTLEVKQVNDLPR
m117-1.pep g117-1	730 VLASLGDVKGVLSVTRLX : VLAGLGDVKGVLSVTRLX 730

ml17-1/RelA

WO 99/057280 PCT/US99/09346

```
sp|P55133|RELA_VIBSS GTP PYROPHOSPHOKINASE (ATP:GTP 3'-PYROPHOSPHOTRANSFERASE) (PPGPP
SYNTHETASE I) \overline{>}gi|537617 (U13769) ppGpp synthetase I [Vibrio sp.] Length = 744
 Score = 536 bits (1366), Expect = e-151
 Identities = 288/685 (42%), Positives = 432/685 (63%), Gaps = 31/685 (4%)
Query: 74 LDLLPDAVAATLLADI---GRYVPDWNLLVSERCNSTVAELVKGVDEVQKLTHFARVDSL 130 L + D + A LL + G Y D + E + T+ LV+GV+++ ++ S
Sbjct: 68 LSMDADTLIAALLYPLVEGGCYSTD---ALKEEYSGTILHLVQGVEQMCAIS-
                                                                 -OLKST 121
Query: 131 ATPEERAQQAETMRKMLLAMVTDIRVVLIKLAMRTRTLQFLSNAPDSPEKRAVAKETLDI 190
          A +AQ + +R+MLL+MV D R V+IKLA R L+ + + PD +RA A+E +I
Sbjct: 122 AEETAQAAQVDNIRRMLLSMVDDFRCVVIKLAERICNLREVKDQPDEV-RRAAAQECANI 180
Query: 191 FAPLANRLGVWQLKWQLEDLGFRHQKPEKYREIALLLDEKRTERLEYIENFLNILRGELK 250
           +APLANRLG+ QLKW++ED FR+Q P+ Y++IA L E+R +R +YI +F++ L +K
Sbjct: 181 YAPLANRLGIGQLKWEIEDYAFRYQHPDTYKQIAKQLSERRIDREDYITHFVDDLSDAMK 240
Query: 251 KYNVHFEVAGRPKHIYSIYKKMVKKKLSFDGLFDIRAVRILVDTVPECYTTLGIVHSLWQ 310
             N+ EV GRPKHIYSI++KM KK L FD LFD+RAVRI+ + + +CY LG+VH+ ++
Sbjct: 241 ASNIRAEVQGRPKHIYSIWRKMQKKSLEFDELFDVRAVRIVAEELQDCYAALGVVHTKYR 300
Query: 311 PIPGEFDDYIANPKGNGYKSLHTVIVGPEDKGVEVQIRTFDMHQFNEFGVAAHWRYKEG- 369
            +P EFDDY+ANPK NGY+S+HTV++GPE K +E+QIRT MH+ +E GVAAHW+YKEG
Sbjct: 301 HLPKEFDDYVANPKPNGYQSIHTVVLGPEGKTIEIQIRTKQMHEESELGVAAHWKYKEGT 360
Query: 370 --GKGDSAYEQKIAWLRQLLDWRENMAESGKEDLAAAFKTELFNDTIYVLTPHGKVLSLP 427
            G SAY++KI WLR+LL W+E M++SG ++ ++++F+D +Y TP G V+ LP
Sbjct: 361 ASGGAQSAYDEKINWLRKLLAWQEEMSDSG--EMLDELRSQVFDDRVYAFTPKGDVVDLP 418
Query: 428 TGATPIDFAYALHSSIGDRCRGAKVEGQIVPLSTPLENGQRVEIITAKEGHPSVNWLYE- 486
           + ATP+DFAY +HS +G RC GAKVEG+IVP + L+ G +VEIIT KE +PS +WL
Sbjct: 419 SNATPLDFAYHIHSEVGHRCIGAKVEGRIVPFTYHLQMGDQVEIITQKEPNPSRDWLNPN 478
Query: 487 -GWVKSNKAIGKIRAYIRQQNADTVREEGRVQLDKQLAKL--TPKPNLQELAENLGYKKP 543
            G+V S++A K+ A+ R+Q+ D G+ L+ +L K+ T K
Sbict: 479 LGFVTSSRARAKVHAWFRKODRDKNIIAGKEILEAELVKIHATLKDAQYYAAKRFNVKSP 538
Query: 544 EDLYTAVGQGEIS-NRAIQKACGTLNEPPPVPVSETTIVKQSKI-----KKGGKNGV 594
           E+LY +G G++ N+ I +N+P + + K S+ KK ++ V
Sbjct: 539 EELYAGIGSGDLRINQVINHINALVNKPTAEEEDQQLLEKLSEASNKQATSHKKPQRDAV 598
Query: 595 LIDGEDGLMTTLAKCCKPAPPDDIIGFVTRERGISVHRKTCPSFQHLAEHAPEKVLDASW 654
           +++G D LMT LA+CC+P P DDI GFVT+ RGISVHR C + L HAPE+++D W
Sbjct: 599 VVEGVDNLMTHLARCCQPIPGDDIQGFVTQGRGISVHRMDCEQLEELRHHAPERIIDTVW 658
Query: 655 AALQEGQVFAVDIEIRAQDRSGLLRDVSDALARHKLNVTAVQTQ--SRDLEASMRFTLEV 712
               G + + + + A +R+GLL+++++ L K+ V ++++ + + M F LE+
Sbjct: 659 GGGFVGN-YTITVRVTASERNGLLKELTNTLMNEKVKVAGMKSRVDYKKQMSIMDFELEL 717
Query: 713 KQVNDLPRVLASLGDVKGVLSVTRL 737
             + T. RVI. + VK V RL
Sbjct: 718 TDLEVLGRVLKRIEQVKDVAEAKRL 742
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 421>: a117-1.seq

1 ATGACCGCCA TCAGCCCGAT TCAAGACACG CAAAGCGCGA CTCTGCAAGA
51 ATTGCGCGAA TGGTTCGACA GCTACTGCAC CGCGCTGCCG AACAACGATA
101 AAAAACTTGT CTTAGCCGCC CGTTCGCTGG CGGAAGCACA TTACCCCGCC
151 GATGCCGCA CGCCGTATGG CGAACCGCTG CCCGACCACT TCCTCGGCGC
201 GGCGCAAATG GTTCATGAAC TCGACCTGCT CCCGACCACT TCCTCGGCGC
251 CCCTGCTTGC CGACACTGGA CGCTACGTCC CCGACCACT TCCTCGGCGC
301 TCCGAACGCT GCAACAGTAC CGCTACGTCC CCGACTGCA CCTATTGGTT
301 TCCGAACGCT GCAACAGTAC CGCTCGCGGG CTGGTCAAAG GTGTGGACGA
351 AGTGCAGAAA CTCACCCACT TCGCCCGGGT GGACAGCCTC GCCACGCCGG
401 AAGAACGCGC CCAGCAGGCA GAAACTATGC GGAAAATGCT GCTGGCGATG
451 GTTACCGACA TCCGCGTCGT GTTAATCAAA CTGGCGATGC GTACGCGCAC
501 CCTGCAATTT TTAAGCAACG CCCCCGACAG CCCCCGAAAAA CGCGCCGTCG
501 TGGCAGCTCA AATGGCAGCT CGAAGATTTG GGCTTCCGCC ATCAAGAACC
601 TGGCAGCTCA AATGGCAGCT CGAAGATTTG GGCTTCCGCC ATCAAGAACC
601 CCTCCAATA CATCGAAAAC TCCTTAATA TCCTGCGAAC GGAACTCAAA
701 GCCTCGAATA CATCGAAAAC TTCCTTAATA TCCTGCGAAC GGAACTCAAC
701 GCCTCGAATA CATCGAAAAC TCCTTAATA TCCTGCGAAC GGAACTCAAC
801 CATTTACAAA AAAATGGTGA AGAAAAAACT CAGCTTCGAC GGGTTGTTCG

```
851 ACATCCGCGC CGTGCGGATT CTGGTTGATA CCGTCCCCGA GTGTTACACC
 901 ACACTGGGCA TTGTCCACAG CCTCTGGCAG CCCATTCCCG GCGAGTTCGA
 951 CGACTACATC GCCAACCCGA AAGGCAACGG CTATAAAAGT TTGCACACCG
1001 TCATCGTCGG CCCGGAAGAC AAAGGCGTGG AAGTGCAAAT CCGCACCTTC
1051 GATATGCACC AATTCAACGA ATTCGGTGTC GCCGCGCACT GGCGTTACAA
1101 AGAGGGCGC AAAGGCGATT CCGCCTACGA ACAAAAATC GCCTGGTTAC
      GCCAACTTTT GGACTGGCGC GAAAACATGG CGGAAAGCGG CAAGGAAGAC
1151
1201 CTCGCCGCCG CCTTCAAAAC CGAGCTTTTC AACGACACGA TTTATGTTTT
1251 GACCCCGCAC GGCAAAGTCC TCTCCCTGCC CACAGGCGCG ACCCCCATCG
1301 ACTTCGCCTA CGCCCTGCAC AGCAGCATCG GCGACCGTTG CCGCGGTGCG
1351 AAAGTCGAAG GGCAGATTGT GCCGCTGTCC ACCCCGCTCG AAAACGGACA
1401
      GCGTGTCGAA ATCATTACCG CCAAAGAAGG GCATCCTTCC GTCAACTGGC
1451 TTTACGAAGG CTGGGTCAAA TCCAACAAGG CAATCGGCAA AATCCGCGCC
1501 TACATCCGCC AGCAAAACGC CGACACCGTG CGCGAAGAAG GCCGCGTCCA
1551 ACTCGACAAA CAGCTTGCCA AACTCACGCC CAAACCCAAC CTGCAAGAGC
1601 TTGCCGAAAA TCTCGGCTAC AAAAAGCCAG AAGACCTCTA CACCGCCGTC
1651 GGACAAGGCG AAATTTCCAA CCGCGCCATC CAAAAAGCCT GCGGCACGCT
1701 GAACGAACCG CCGCCCGTAC CCGTCAGCGA AACCACCATC GTCAAACAGT
1751 CCAAAATCAA AAAAGGCGGC AAAAACGGCG TGCTCATCGA CGGCGAAGAC
1801 GGTCTGATGA CCACGCTTGC CAAATGCTGC AAACCCGCGC CGCCCGACGA
1851 CATTGTCGGC TTCGTTACCC GCGATCGCGG CATTTCGGTA CACCGCAAAA
1901 CCTGCCCCTC TTTCCGACAC CTCGCCGAAC ACGCGCCCGA AAAAGTACTG
1951 GACGCAAGTT GGGCGGCGTT GCAGGAAGGA CAAGTGTTCG CCGTCGATAT
2001 CGAAATCCGC GCCCAAGACC GCTCCGGGCT TTTGCGCGAC GTATCCGACG
2051
      CGCTCGCCCG CCACAAACTC AACGTTACCG CCGTGCAAAC CCAGTCCCGC
2101 GACTTGGAAG CCAGCATGAG GTTCACGCTC GAAGTCAAAC AAGTTACCGA
      CCTCCCACGC GTCCTCGCCA GCCTCGGCGA CGTCAAAGGC GTATTGAGCG
2151
2201 TTACCCGGCT TTAA
```

This corresponds to the amino acid sequence <SEQ ID 422; ORF 117-1.a>:

-⊥.pej	2				
1	MTAISPIQDT	QSATLQELRE	WFDSYCTALP	NNDKKLVLAA	RSLAEAHYPA
51	DAATPYGEPL	PDHFLGAAQM	VHELDLLPDA	VAATLLADIG	RYVPDWNLLV
101	SERCNSTVAE	LVKGVDEVQK	LTHFARVDSL	ATPEERAQQA	ETMRKMLLAM
151	VTDIRVVLIK	LAMRTRTLQF	LSNAPDSPEK	RAVAKETLDI	FAPLANRLGV
201	WQLKWQLEDL	GFRHQEPEKY	REIALLLDEK	RTERLEYIEN	FLNILRTELK
251	KYNIHFEVAG	RPKHIYSIYK	KMVKKKLSFD	GLFDIRAVRI	LVDTVPECYT
301	TLGIVHSLWQ	PIPGEFDDYI	ANPKGNGYKS	LHTVIVGPED	KGVEVQIRTF
351	DMHQFNEFGV	AAHWRYKEGG	KGDSAYEQKI	AWLRQLLDWR	ENMAESGKED
401	LAAAFKTELF	NDTIYVLTPH	GKVLSLPTGA	TPIDFAYALH	SSIGDRCRGA
451	KVEGQIVPLS	TPLENGQRVE	IITAKEGHPS	VNWLYEGWVK	SNKAIGKIRA
501	YIRQQNADTV	REEGRVQLDK	QLAKLTPKPN	LQELAENLGY	KKPEDLYTAV
551	GQGEISNRAI	QKACGTLNEP	PPVPVSETTI	VKQSKIKKGG	KNGVLIDGED
601	GLMTTLAKCC	KPAPPDDIVG	FVTRDRGISV	HRKTCPSFRH	LAEHAPEKVL
651	DASWAALQEG	QVFAVDIEIR	AQDRSGLLRD	VSDALARHKL	NVTAVQTQSR
701	DLEASMRFTL	EVKQVTDLPR	VLASLGDVKG	VLSVTRL*	

a117-1/m117-1 97.7% identity in 737 aa overlap

m117-1.pep	10 MTAISPIQDTQSATI MTAISPIQDTQSATI		11:111:11	:1: :1- 11	: 1111111	HHHH
	7.0	0.0	0.0	100	110	100
	70	80	90	100	110	120
m117-1.pep	PDHFLGAAQMVHELI	OLLPDAVAAT	LLADIGRYVP	DWNLLVSERC	NSTVAELVKG	VDEVQK
			1111111111	1111111111	1111111111	
a117-1	PDHFLGAAQMVHELI	DLLPDAVAAT	LLADIGRYVP	DWNLLVSERC	NSTVAELVKG	VDEVQK
	70	80	90	100	110	120
	-					
	130	140	150	160	170	180
m117-1.pep	LTHFARVDSLATPE	ERAQQAETMR	KMLLAMVTDI	RVVLIKLAMR	TRTLOFLSNA	PDSPEK
	111111111111111				_	
a117-1	LTHFARVDSLATPE					
a11,-1	130	140	150	160	170	180
	130	140	130	160	170	100
	190	200	210	220	230	240
m117-1.pep	RAVAKETLDIFAPL	ANRLGVWQLK	WQLEDLGFRH	QKPEKYREIA	LLLDEKRTER	RLEYIEN
	1111111111111		1111111111	1:1111111	11111111111	11111
a117-1	RAVAKETLDIFAPLA	ANRLGVWQLK	WQLEDLGFRH	QEPEKYREIA	LLLDEKRTER	RLEYIEN
	190	200	210	220	230	240

ml17-1.pep al17-1	250 260 270 280 290 300 FLNILRGELKKYNVHFEVAGRPKHIYSIYKKMVKKKLSFDGLFDIRAVRILVDTVPECYT
ml17-1.pep	310 320 330 340 350 360 TLGIVHSLWQPIPGEFDDYIANPKGNGYKSLHTVIVGPEDKGVEVQIRTFDMHQFNEFGV !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
ml17-1.pep	370 380 390 400 410 420 AAHWRYKEGGKGDSAYEQKIAWLRQLLDWRENMAESGKEDLAAAFKTELFNDTIYVLTPH
ml17-1.pep	430 440 450 460 470 480 GKVLSLPTGATPIDFAYALHSSIGDRCRGAKVEGQIVPLSTPLENGQRVEIITAKEGHPS
ml17-1.pep	490 500 510 520 530 540 VNWLYEGWVKSNKAIGKIRAYIRQQNADTVREEGRVQLDKQLAKLTPKPNLQELAENLGY
m117-1.pep	550 560 570 580 590 600 KKPEDLYTAVGQGEISNRAIQKACGTLNEPPPVPVSETTIVKQSKIKKGGKNGVLIDGED !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
m117-1.pep	610 620 630 640 650 660 GLMTTLAKCCKPAPPDDIIGFVTRERGISVHRKTCPSFQHLAEHAPEKVLDASWAALQEG
m117-1.pep	670 680 690 700 710 720 QVFAVDIEIRAQDRSGLLRDVSDALARHKLNVTAVQTQSRDLEASMRFTLEVKQVNDLPR
m117-1.pep	730 VLASLGDVKGVLSVTRLX VLASLGDVKGVLSVTRLX 730

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 423>:

gl18.seq ATGTGCGAGT TCAAGGATTT TAGAAGAAAC ATCCCTTGTT TTGAAGAGTA 51 TGACGAAAAT TCATTTATTG GCAAATGGTA TGATGACGGG GTGTGGGATG 101 ATGAAGAATA TTGGAAGCTG GAGAATGATT TAATcgaGGT TAGGAGAAAA 151 TATCCTTATC CGATGGATAT ACCAAGGGAT ATTGTGATTG GAATCGGTAC
201 CATTATTGAT TTTTTAATGG TTCCAAATTG GGAGCTTTTT GAAATTAAAG
251 CTTCCCCTTG GTTGCCTGAT AGCGTGGGAA TTCATGAACG TTATGAAAGA 301 TTCACAACGA TGCTCCGTTA TATTTTTACC GAGAAAGACA TAGTCAACGT 351 GCGATTTGAT TATTACAaCA AAAAATAG

This corresponds to the amino acid sequence <SEQ ID 424; ORF 118.ng>: g118.pep

- 1 MCEFKDFRRN IPCFEEYDEN SFIGKWYDDG VWDDEEYWKL ENDLIEVRRK
- 51 YPYPMDIPRD <u>IVIGIGTIID FLMVPNW</u>ELF EIKASPWLPD SVGIHERYER 101 FTTMLRYIFT EKDIVNVRFD YYNKK*

```
The following partial DNA sequence was identified in N. meningitidis <SEO ID 425>:
     m118.seq
           1 , ATGTGTGAGT TCAAGGATAT TATAAGAAAC GTTCCTTATT TTGAGGGGTA
           51
              TGACGAAAAT TCATTTATTG GCAAATGGTA TGATGACGGG GTGTGGGATG
          101
              ATGAAGAATA TTGGAAGTTG GAGAATGATT TAATCGAGGT TAGAAAAAA
              TATCCTTATC CGATGGACAT ACCAAGATAT GTTGTCATTG GAATCGGTAC CATTATTGAT TTCTTAATGG TTCCAAATTG GAAACTTTTT GAAATTAAAG
          151
          201
          251 CTTCCCCTTG GTTGCCTGAT AGTGTGGGAA TTCATGAACG TTATGAAAGA
              TTCACAACGA TGCTCCGTTA TATTTTTACC GAGAAAGACA TAGTCAACGT
              GCGATTTGAT TATTACAACA AAAAATAG
This corresponds to the amino acid sequence <SEQ ID 426; ORF 118>:
     m118.pep
              MCEFKDIIRN VPYFEGYDEN SFIGKWYDDG VWDDEEYWKL ENDLIEVRKK
             YPYPMDIPRY VVIGIGTIID FLMVPNWKLF EIKASPWLPD SVGIHERYER FTTMLRYIFT EKDIVNVRFD YYNKK*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 118 shows 92.8% identity over a 125 aa overlap with a predicted ORF (ORF 118.ng)
from N. gonorrhoeae:
     m118/g118
                         10
                                   20
                                             30
                                                       40
                                                                50
                                                                          60
     m118.pep
                 MCEFKDIIRNVPYFEGYDENSFIGKWYDDGVWDDEEYWKLENDLIEVRKKYPYPMDIPRY
                 g118
                 MCEFKDFRRNIPCFEEYDENSFIGKWYDDGVWDDEEYWKLENDLIEVRRKYPYPMDIPRD
                         10
                                   20
                                             30
                                                       40
                                                                50
                         70
                                             90
                                                      100
                                                                110
                                                                         120
                 VVIGIGTIIDFLMVPNWKLFEIKASPWLPDSVGIHERYERFTTMLRYIFTEKDIVNVRFD
     m118.pep
                 g118
                 IVIGIGTIIDFLMVPNWELFEIKASPWLPDSVGIHERYERFTTMLRYIFTEKDIVNVRFD
                         70
                                   80
                                             90
                                                      100
                                                               110
     m118.pep
                 YYNKKX
                 111111
     g118
                 YYNKKX
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 427>:
a118.seq
              ATGTGTGAGT TCAAGGATTT TAGAAGAAAC ATCCCTTGTT TTGAAGAGTA
          51
              TGACGAAAAT TCATTTATTG GCAAATGGTA TGATGACGGG GTGTGGGATG
              ATGAAGAATA TTGGAAATTG GAGAATGATT TAATCGAGGT TAGAAAAAA
          101
              TATCCTTATC CGATGGATAT ACCAAGGGAT ATTGTGATTG GAATCGGTAC
          151
              CATTATTGAT TTTTTAATGG TTCCAAATTG GGAGCTTTTT GAAATTAAAG
              CTTCCCCTTG GTTGCCTGAT AGTGTGGGAA TTCATGAACG TTATGAAAGA
              TTCACAACGA TGCTCCGTTA TATTTTTACC GAGAAAGACA TAGTCAACGT
              GCGATTTGAT TATTACAACA AAAAATAG
          351
This corresponds to the amino acid sequence <SEQ ID 428; ORF 118.a>:
a118.pep
              MCEFKDFRRN IPCFEEYDEN SFIGKWYDDG VWDDEEYWKL ENDLIEVRKK
           51
              YPYPMDIPRD IVIGIGTIID FLMVPNWELF EIKASPWLPD SVGIHERYER
          101 FTTMLRYIFT EKDIVNVRFD YYNKK*
m118/a118
              93.6% identity in 125 aa overlap
                                   20
                                             30
                                                       40
     m118.pep
                 MCEFKDIIRNVPYFEGYDENSFIGKWYDDGVWDDEEYWKLENDLIEVRKKYPYPMDIPRY
                 a118
                 MCEFKDFRRNIPCFEEYDENSFIGKWYDDGVWDDEEYWKLENDLJEVRKKYPYPMDIPRD
                         10
                                   20
                                             30
                                                       40
```

```
90
                                                      100
                                                                110
                  VVIGIGTIIDFLMVPNWKLFEIKASPWLPDSVGIHERYERFTTMLRYIFTEKDIVNVRFD
     m118.pep
                  IVIGIGTIIDFLMVPNWELFEIKASPWLPDSVGIHERYERFTTMLRYIFTEKDIVNVRFD
     a118
                          70
                                   80
                                             90
                                                     100
     m118.pep
                  YYNKKX
                  11111
     a118
                  YYNKKX
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 429>:
     g120.seq
              ATGATGAAGA CTTTTAAAAA TATATTTTCC GCCGCCATTT TGTCCGCCGC
           51 CCTGCCGTGC GCGTATGCGG CAAGGCTACC CCAATCCGCC GTGCTGCACT
          101 ATTCCGGCAG CTACGGCATT CCCGCCACGA TGACATTTGA ACGCAGCGGC
          151 AATGCTTACA AAATCGTTTC GACGATTAAA GTGCCGCTAT ACAATATCCG
          201 TTTCGAATCC GGCGGTACGG TTGTCGGCAA TACCCTGCAC CCTGCCTACT
          251 ATAAAGACAT ACGCAGGGGC AAACTGTATG CGGAAGCCAA ATTCGCCGAC
          301 GGCAGCGTAA CCTACGGCAA AGCGGGCGAG AGCAAAACCG AGCAAAGCCC
          351 CAAGGCTATG GATTTGTTCA CGCTTGCCTG GCAGTTGGCG GCAAATGACG
              CGAAACTCCC CCCGGGTCTG AAAATCACCA ACGGCAAAAA ACTTTATTCC
          451 GTCGGCGGCC TGAATAAGGC GGGTACGGGA AAATACAGCA Taggcggcgt
          501 gGAAACCGAA GTCGTCAAAT ATCGGGTGCG GCGCGGCGAC GATACGGTAA
          551 CGTATTTCTT CGCACCGTCC CTGAACAATA TTCCGGCACA AATCGGCTAT
          601 ACCGACGACG GCAAAACCTA TACGCTGAAG CTCAAATCGG TGCAGATCAA
          651 CGGACAGGCC GCCAAACCGT AA
This corresponds to the amino acid sequence <SEQ ID 430; ORF 120.ng>:
     g120.pep
              MMKTFKNIFS AAILSAALPC AYAARLPQSA VLHYSGSYGI PATMTFERSG
           51 NAYKIVSTIK VPLYNIRFES GGTVVGNTLH PAYYKDIRRG KLYAEAKFAD
          101 GSVTYGKAGE SKTEQSPKAM DLFTLAWOLA ANDAKLPPGL KITNGKKLYS
          151 VGGLNKAGTG KYSIGGVETE VVKYRVRRGD DTVTYFFAPS LNNIPAQIGY
          201 TDDGKTYTLK LKSVQINGQA AKP*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 431>:
     m120.seq
           1
              ATGATGAAGA CTTTTAAAAA TATATTTTCC GCCGCCATTT TGTCCGCCGC
           51 CCTGCCGTGC GCGTATGCGG CAGGGCTGCC CCAATCCGCC GTGCTGMACT
          101 ATTCCGGCAG CTACGGCATT CCCGCCACGA TGACATTTGA ACGCAGCGGC
          151 AATGCTTACA AAATCGTTTC GACGATTAAA GTGCCGCTAT ACAATATCCG
          201 TTTCGAGTCC GGCGGTACGG TTGTCGGCAA TACCCTGCAC CCTACCTACT
          251 ATAGAGACAT ACGCAGGGGC AAACTGTATG CGGAAGCCAA ATTCGCCGAC
          301 GGCAGCGTAA CTTACGGCAA AGCGGGCGAG AGCAAAACCG AGCAAAGCCC
          351 CAAGGCTATG GATTTGTTCA CGCTTGCCTG GCAGTTGGCG GCAAATGACG
          401 CGAAACTCCC CCCGGGGCTG AAAATCACCA ACGGCAAAAA ACTTTATTCC
              GTCGGCGGTT TGAATAAGGC GGGTACAGGA AAATACAGCA TAGGCGGCGT
          501
              GGAAACCGAA GTCGTCAAAT ATCGGGTGCG GCGCGGCGAC GATGCGGTAA
          551 TGTATTTCTT CGCACCGTCC CTGAACAATA TTCCGGCACA AATCGGCTAT
          601 ACCGACGACG GCAAAACCTA TACGCTGAAA CTCAAATCGG TGCAGATCAA
          651 CGGCCAGGCA GCCAAACCG
This corresponds to the amino acid sequence <SEQ ID 432; ORF 120>:
     m120.pep
              MMKTFKNIFS AAILSAALPC AYAAGLPQSA VLXYSGSYGI PATMTFERSG
           51 NAYKIVSTIK VPLYNIRFES GGTVVGNTLH PTYYRDIRRG KLYAEAKFAD
          101 GSVTYGKAGE SKTEQSPKAM DLFTLAWQLA ANDAKLPPGL KITNGKKLYS
          151 VGGLNKAGTG KYSIGGVETE VVKYRVRRGD DAVMYFFAPS LNNIPAQIGY
          201 TDDGKTYTLK LKSVQINGQA AKP
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 120 shows 97.3% identity over a 223 aa overlap with a predicted ORF (ORF 120.ng) from N. gonorrhoeae:

m120/g120

	10	20	30	40	50	60
m120.pep	MMKTFKNIFSAAIL	SAALPCAYAA	GLPQSAVLXY	SGSYGIPATM	TFERSGNAYK	IVSTIK
		111111111			111111111	
g120	MMKTFKNIFSAAIL	SAALPCAYAA	RLPQSAVLHY	SGSYGIPATM	TFERSGNAYK	IVSTIK
	10	20	30	40	50	60
	70	80	90	100	110	120
m120.pep	VPLYNIRFESGGTV	VGNTLHPTYY	RDIRRGKLYA	EAKFADGSVT	YGKAGESKTE	QSPKAM
		111111:11	:		111111111	111111
g120	VPLYNIRFESGGTV	VGNTLHPAYY	KDIRRGKLYA	EAKFADGSVT	YGKAGESKTE	QSPKAM
	70	80	90	100	110	120
	130	140	150	160	170	180
m120.pep	DLFTLAWQLAANDA	KLPPGLKITN	IGKKLYSVGGL	NKAGTGKYSI	GGVETEVVKY	RVRRGD
g120	DLFTLAWQLAANDA	KLPPGLKITN	IGKKLYSVGGL	NKAGTGKYSI	GGVETEVVKY	RVRRGD
	130	140	150	160	170	180
	190	200	210	220		
m120.pep	DAVMYFFAPSLNNI	PAQIGYTDDG	KTYTLKLKSV	QINGQAAKP		
		11111111				
g120	DTVTYFFAPSLNNI	PAQIGYTDDG	KTYTLKLKSV	'QINGQAAKPX		
	190	200	210	220		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 433>: a120.seq

```
ATGATGAAGA CTTTTAAAAA TATATTTTCC GCCGCCATTT TGTCCGCCGC

51 CCTGCCGTGC GCGTATGCGG CAGGGCTGCC CCAATCCGCC GTGCTGCACT

101 ATTCCGGCAG CTACGGCATT CCCGCCACGA TGACATTTGA ACGCAGCGGC

151 AATGCTTACA AAATCGTTTC GACGATTAAA GTGCCGCTAT ACAATATCCG

201 TTTCGAGTCC GGCGGTACGG TTGTCGGCAA TACCCTGCAC CCTACCTACT

251 ATAGAGACAT ACGCAGGGCC AAACTGTATG CGGAAGCCAA ATTCGCCGAC

301 GGCAGCGTAA CCTACGGCAA AGCGGGCGAG AGCAAAACCG AGCAAAGCCC

351 CAAGGCTATG GATTTGTTCA CGCTTGCCTG GCAGTTGGCG GCAAATGACG

401 CGAAACTCCC CCCGGGGCTG AAAATCACCA ACGGCAAAAA ACTTTATTCC

451 GTCGGCGGTT TGAATAAGGC GGGTACAGGA AAATCACGCA TAGGCGGCGTA

551 GGAAACCGAA GTCGTCAAAT ATCGGGTGCG GCGCGACA AATCGGCTAT

551 TGTATTTCTT CGCACCGTCC CTGAACAATA TTCCGGCACA AATCGGCTAT

601 ACCGACGACG GCAAAACCTA TACGCTGAAA CTCAAATCGG TGCAGATCAA

651 CGGCCAGGCA GCCAAACCGT AA
```

This corresponds to the amino acid sequence <SEQ ID 434; ORF 120.a>: a120.pep

- 1 MMKTFKNIFS AAILSAALPC AYAAGLPQSA VLHYSGSYGI PATMTFERSG 51 NAYKIVSTIK VPLYNIRFES GGTVVGNTLH PTYYRDIRRG KLYAEAKFAD
- 101 GSVTYGKAGE SKTEQSPKAM DLFTLAWQLA ANDAKLPPGL KITNGKKLYS
- 151 VGGLNKAGTG KYSIGGVETE VVKYRVRRGD DAVMYFFAPS LNNIPAQIGY
- 201 TDDGKTYTLK LKSVQINGQA AKP*

m120/a120 99.6% identity in 223 aa overlap

	10	20	30	40	50	60
m120.pep	MMKTFKNIFSAAILS	SAALPCAYAA	GLPQSAVLXYS	GSYGIPATMI	FERSGNAYK	IVSTIK
	1111111111111		1111111 11	1111111111	111111111	
a120	MMKTFKNIFSAAILS	SAALPCAYAAG	ST.POSAVI.HYS	CSYCTPATMI	FFD SCNAVK	TUCTIE

	10	20	30	40	50	60
	70	. 80	90	100	110	120
m120.pep	VPLYNIRFESGGTV	VGNTLHPTYY	RDIRRGKLYA	EAKFADGSV1	YGKAGESKTE	OSPKAM
	111111111111111	1111111111		1111111111	311111111	ÎHHH
a120	VPLYNIRFESGGTV	VGNTLHPTYY	RDIRRGKLYA	EAKFADGSVI	YGKAGESKTE	OSPKAM
	70	80	90	100	110	120
	130	140	150	160	170	180
m120.pep	DLFTLAWQLAANDA	KLPPGLKITN	IGKKLYSVGGL	NKAGTGKYSI	GGVETEVVKY	RVRRGD
		111111111	1111111111		1111111111	111111
a120	DLFT L AWQLAANDA	KLPPGLKITN	IGKKLYSVGGLI	NKAGTGKYSI	GGVETEVVKY	RVRRGD
	130	140	150	160	170	180
	190	200	210	220		
m120.pep	DAVMYFFAPSLNNI	PAQIGYTDDG	KTYT L KLKSV	QINGQAAKPX		
	111111111	1111111111	111111111			
a120	DAVMYFFAPSLNNI	PAQIGYTDDG	KTYTLKLKSV	QINGQAAKPX		
	190	200	210	220		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 435>: g121.seq

1	ATGGAAACAC	AGCTTTACAT	CGGCATTATG	TCGGGAACCA	GTATGGACGG
51	GGCGGATGCC	GTGCTGGTAC	GGATGGACGG	CGGCAAATGG	CTGGGCGCGG
101	AAGGGCACGC	CTTTACCCCC	TACCCTGACC	GGTTGCGCCG	CAAATTGCTG
151	GATTTGCAGG	ACACAGGCAC	AGACGAACTG	CACCGCAGCA	GGATGTTGTC
201	GCAAGAACTC	AGCCGCCTGT	ACGCGCAAAC	CGCCGCCGAA	CTGCTGTGCA
251	GTCAAAACCT	CGCTCCGTGC	GACATTACCG	CCCTCGGCTG	CCACGGGCAA
301	ACCGTCCGAC	ACGCGCCGGA	ACACGGTtac	AGCATACAGC	TTGCCGATTT
351	GCCGCTGCTG	GCGGAACTGa	cgcggatttT	TACCGTCggc	gacttcCGCA
401			GGacaAGGTG		
451	CACGAAGCCC	TGTTCCGCGA	TGACAGGGAA	ACACGCGTGG	TACTGAACAT
501			GCGTACTCCC		
551			AATATGCTGA		
601	cacTGGcagc	TGCCTTACGA	CAAAAacggt	gcAAAGgcgg	cacAAGGCAA
651	catatTGCcg	CAACTGCTCG	gcaggctGCT	CGCCcaccCG	TATTTCTCAC
701	AACCCcaccc	aaAAAGCACG	GGgcGCGaac	TgtttgcccT	AAattggctc
751			cgaaaaccga		
801			ccgTttggga		
851	CAGATGCCCG	TCAAATGTAC	ATTTGCGGCG	GCGGCATCCG	CAATCCTGTT
901	TTAATGGCGG	ATTTGGCAGA	ATGTTTCGGC	ACACGCGTTT	CCCTGCACAG
951	CACCGCCGAA	CTGAACCTCG	ATCCTCAATG	GGTGGAGGCG	gccgCATTtg
1001			ATTAACCGCA		TCCGCACAAA
1051	GCGACCGGCG	CATCCAAACC	GTGTATTCTG	GGCGCGGGAT	ATTATTATTG
1101	A				

This corresponds to the amino acid sequence <SEQ ID 436; ORF 121.ng>: g121.pep

```
1 METQLYIGIM SGTSMDGADA VLVRMDGGKW LGAEGHAFTP YPDRLRRKLL 51 DLQDTGTDEL HRSRMLSQEL SRLYAQTAAE LLCSQNLAPC DITALGCHGQ 101 TVRHAPEHGY SIQLADLPLL AELTRIFTVG DFRSRDLAAG GQGAPLVPAF 151 HEALFRDDRE TRVVLNIGGI ANISVLPPGA PAFGFDTGPG NMLMDAWTQA 201 HWQLPYDKNG AKAAQGNILP QLLGRLLAHP YFSQPHPKST GRELFALNWL 251 ETYLDGGENR YDVLRTLSRF TAQTVWDAVS HAAADARQMY ICGGGIRNPV 301 LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWLAACW INRIPGSPHK 351 ATGASKPCIL GAGYYY*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 437>: m121.seq

- 1 ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
- 51 GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
- 101 AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CCAATTGCTG

3 5 1	CAMMMCCACC	ACACACCCCC	DCDCCDDCDC	Chaccaca	CCAMMMMC
151				CACCGCAGCA	
201	GCAAGAACTC	AGCCGCCTAT	ATGCGCAAAC	CGCCGCCGAA	CTGCTGTGCA
251	GTCAAAACCT	CGCACCGTCC	GACATTACCG	CCCTCGGCTG	CCACGGGCAA
301	ACCGTCCGAC	ACGCGCCGGA	ACACGGTTAC	AGCATACAGC	TTGCCGATTT
351	GCCGCTGCTG	GCGxxxxxx	xxxxxxxxx	xxxxxxxxx	XXXXXXXXX
401	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
451	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
501	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
551	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
601	xxxxxxCAGC	TTCCTTACGA	CAAAAACGGT	GCAAAGTCGG	CACAAGGCAA
651	CATATTGCCG	CAACTGCTCG	ACAGGCTGCT	CGCCCACCCG	TATTTCGCAC
701	AACGCCACCC	TAAAAGCACG	GGGCGCGAAC	TGTTTGCCAT	AAATTGGCTC
751	GAAACCTACC	TTGACGGCGG	CGAAAACCGA	TACGACGTAT	TGCGGACGCT
801	TTCCCGTTTT	ACCGCGCAAA	CCGTTTGCGA	CGCCGTCTCA	CACGCAGCGG
851	CAGATGCCCG	TCAAATGTAC	ATTTGCGACG	GCGGCATCCG	CAATCCTGTT
901	TTAATGGCGG	ATTTGGCAGA	ATGTTTCGGC	ACACGCGTTT	CCCTGCACAG
951	CACCGCCGAC	CTGAACCTCG	ATCCGCAATG	GGTGGAAGCC	GCCGnATTTG
1001	CGTGGTTGGC	GGCGTGTTGG	ATTAATCGCA	TTCCCGGTAG	TCCGCACAAA
1051	GCAACCGGCG	CATCCAAACC	GTGTATTCTG	AnCGCGGGAT	ATTATTATTG
1101	A				

This corresponds to the amino acid sequence <SEQ ID 438; ORF 121>: m121.pep

1	METQLYIGIM	SGTSMDGADA	VLIRMDGGKW	LGAEGHAFTP	YPGRLRRQLL
51	DLQDTGADEL	HRSRILSQEL	SRLYAQTAAE	LLCSQNLAPS	DITALGCHGQ
101	TVRHAPEHGY	SIQLADLPLL	Axxxxxxxx	xxxxxxxxx	xxxxxxxxx
151	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
201	xxQLPYDKNG	AKSAQGNILP	QLLDRLLAHP	YFAQRHPKST	GRELFAINWL
251	ETYLDGGENR	YDVLRTLSRF	TAQTVCDAVS	HAAADARQMY	ICDGGIRNPV
301	LMADLAECFG	TRVSLHSTAD	LNLDPQWVEA	AXFAWLAACW	INRIPGSPHK
351	ATGASKPCIL	XAGY <u>YY</u> *			

Computer analysis of the amino acid sequences gave the following results:

Homology with a predicted ORF from N. meningitidis menA with menB

ORF 121 shows 73.5% identity over a 366 aa overlap with a predicted ORF (ORF121.ng) from N. gonorrhoeae:

m121/g121

	10	20	30	40	50	60
m121.pep	METQLYIGIMSGTS	MDGADAVLI	RMDGGKWLGAE	EGHAFT PYPGR	LRRQLLDLQE	TGADEL
		111111111:	11111111111		111:11111	11:11
g121	METQLYIGIMSGTS	MDGADAVLV	RMDGGKWLGAE	EGHAFTPYPDR	LRRKLLDLQ	TGTDEL
	10	20	30	40	50	60
	70	80	90	100	110	120
m121.pep	HRSRILSQELSRLY	AQTAAELLC	SQNLAPSDITA	ALGCHGQTVRH	LAPEHGYSIQI	ADLPLL
			111111 1111		111111111	111111
g121	HRSRMLSQELSRLY	AQTAAELLC	SQNLAPCDITA	ALGCHGQTVRH	IAPEHGYSIQI	ADLPLL
	70	80	90	100	110	120
	130	140	150	160	170	180
m121.pep	AXXXXXXXXXXXX	XXXXXXXXX	XXXXXXXXX	«XXXXXXXXXX	XXXXXXXXX	XXXXXX
	1 : :			:		
g121	AELTRIFTVGDFRS	RDLAAGGQG/	APLVPAFHEAI	LFRDDRETRVV	'LNIGGIANIS	SVLPPGA
	130	140	150	160	170	180
	190	200	210	220	230	240
m121.pep	XXXXXXXXXXXXXX	QXXXXXXXX	LPYDKNGAKS <i>I</i>	AQGNILPQLLD	RLLAHPYFAC	RHPKST
	:	: 1			11111111:1	
g121	PAFGFDTGPGNMLN	QWHAQTWACK	LPYDKNGAKA	AQGNILPQLLG	RLLAHPYFSÇ	PHPKST
	190	200	210	220	230	240
	250	260	270	280	290	300
m121.pep	GRELFAINWLETY	LDGGENRYDVI	LRTLSRFTAQI	CVCDAVSHAAA	DARQMYICDO	GIRNPV
			[11 11111111	111111111111111111111111111111111111111	111111
g121	GRELFALNWLETYI	LDGGENRYDVI	LRTLSRFTAQI	TVWDAVSHAAA	DARQMYICGO	GIRNPV
	250	260	270	280	290	300

	•
	310 320 330 340 350 360
m121.pep	LMADLAECFGTRVSLHSTADLNLDPQWVEAAXFAWLAACWINRIPGSPHKATGASKPCIL
milli, pep	
g121	${\tt LMADLAECFGTRVSLHSTAELNLDPQWVEAAAFAWLAACWINRIPGSPHKATGASKPCIL}$
	310 320 330 340 350 360
m121.pep	XAGYYYX
g121	
9121	GAGIIIA
The Callerying	artial DNA sequence was identified in N. meningitidis <seq 439="" id="">:</seq>
The following p	arrial DNA sequence was identified in N. meninginals 152Q id 45%.
.101	
a121.seq 1	ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
51	GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
101	AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CAAATTGCTG
151	GATTTGCAGG ACACAGGCGC GGACGAACTG CACCGCAGCA GGATGTTGTC
201	GCAAGAACTC AGCCGCCTGT ACGCGCAAAC CGCCGCCGAA CTGCTGTGCA
251	GTCAAAACCT CGCGCCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA
301	ACCGTCAGAC ACGCGCCGGA ACACAGTTAC AGCGTACAGC TTGCCGATTT
351	GCCGCTGCTG GCGGAACGGA CTCAGATTTT TACCGTCGGC GACTTCCGCA
401	GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCGCTCGT CCCCGCCTTT
451	CACGAAGCCC TGTTCCGCGA CGACAGGGAA ACACGCGCGG TACTGAACAT
501	CGGCGGGATT GCCAACATCA GCGTACTCC CCCCGACGCA CCCGCCTTCG GCTTCGACAC AGGACCGGGC AATATGCTGA TGGACGCGTG GATGCAGGCA
551 601	CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA
651	CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC
701	AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC
751	GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT
801	TTCCCGATTC ACCGCGCAAA CCGTTTTCGA CGCCGTCTCA CACGCAGCGG
851	CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
901	TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
951	CACCGCCGAA CTGAACCTCG ATCCGCAATG GGTAGAAGCC GCCGCGTTCG
1001	CATGGATGGC GGCGTGTTGG GTCAACCGCA TTCCCGGTAG TCCGCACAAA
1051	GCAACCGGCG CATCCAAACC GTGTATTCTG GGCGCGGGAT ATTATTATTG
1101	A
This correspond	ls to the amino acid sequence <seq 121.a="" 440;="" id="" orf="">:</seq>
al21.pep	is to the animo dold sequence "DDQ 12" (10), old 121.0".
arzr.pep	METQLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRKLL
51	TO COLUMN THE COLUMN T
101	
151	HEALFRDDRE TRAVLNIGGI ANISVLPPDA PAFGFDTGPG NMLMDAWMQA
201	HWQLPYDKNG AKAAQGNILP QLLDRLLAHP YFAQPHPKST GRELFALNWL
251	ETYLDGGENR YDVLRTLSRF TAQTVFDAVS HAAADARQMY ICGGGIRNPV
301	
351	ATGASKPCIL GAGYYY*
m121/a121	74.0% identity in 366 aa overlap
mizi/aizi	74.08 Identity in 300 ad Overrap
	10 20 30 40 50 60
m121.pep	METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRQLLDLQDTGADEL
	111111111111111111111111111111111111111
a121	METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRKLLDLQDTGADEL
	10 20 30 40 50 60
-	70 80 90 100 110 120
m121.pep	HRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHGYSIQLADLPLL
~101	:
a121	70 80 90 100 110 120

PCT/US99/09346 WO 99/057280

346

m121.pep	130 AXXXXXXXXXXXXXX	140 XXXXXXXXX	150 xxxxxxxxx	160 XXXXXXXXXX	170 XXXXXXXXX	180 XXXXXX
	1 : :		•	:		
a121	AERTQIFTVGDFRS:					
	130	140	150	160	170	180
	190	200	210	220	230	240
m121.pep	XXXXXXXXXXXXXX					
	:	, ,		111111111		
a121	PAFGFDTGPGNMLM					
	190	200	210	220	230	240
	250	260	270	280	290	300
m121.pep	GRELFAINWLETYL	DGGENRYDVL	RTLSRFTAQT	VCDAVSHAAA	DAROMYICDO	GIRNPV
				1 1111111	1	
a121	GRELFALNWLETYL		_		_	
	250	260	270	280	290	300
				_		
	310	320	330	340	350	360
m121.pep	LMADLAECFGTRVS	LHSTADLNLD	PQWVEAAXFA	WLAACWINRI	PGSPHKATGA	ASKPCIL
		1111:111		1:1111:111		
a121	LMADLAECFGTRVS					
	310	320	330	340	350	360
m121.pep	XAGYYYX					
	111111					
a121	GAGYYYX					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 441>: m121-1.seq

	3				
1	ATGGAAACAC	AGCTTTACAT		TCGGGAACCA	
51	GGCGGATGCC	GTACTGATAC		CGGCAAATGG	
101	AAGGGCACGC	CTTTACCCCC	TACCCCGGCA	GGTTACGCCG	CCAATTGCTG
151	GATTTGCAGG	ACACAGGCGC	AGACGAACTG	CACCGCAGCA	GGATTTTGTC
201	GCAAGAACTC	AGCCGCCTAT	ATGCGCAAAC	CGCCGCCGAA	CTGCTGTGCA
251	GTCAAAACCT	CGCACCGTCC	GACATTACCG	CCCTCGGCTG	CCACGGGCAA
301	ACCGTCCGAC	ACGCGCCGGA	ACACGGTTAC	AGCATACAGC	TTGCCGATTT
351	GCCGCTGCTG	GCGGAACGGA	CGCGGATTTT	TACCGTCGGC	GACTTCCGCA
401	GCCGCGACCT	TGCGGCCGGC	GGACAAGGCG	CGCCACTCGT	CCCCGCCTTT
451	CACGAAGCCC	TGTTCCGCGA	CAACAGGGAA	ACACGCGCGG	TACTGAACAT
501	CGGCGGGATT	GCCAACATCA	GCGTACTCCC	CCCCGACGCA	CCCGCCTTCG
551	GCTTCGACAC	AGGGCCGGGC	AATATGCTGA	TGGACGCGTG	GACGCAGGCA
601	CACTGGCAGC	TTCCTTACGA		GCAAAGGCGG	
651	CATATTGCCG	CAACTGCTCG	ACAGGCTGCT	CGCCCACCCG	TATTTCGCAC
701	AACCCCACCC	TAAAAGCACG	GGGCGCGAAC	TGTTTGCCCT	AAATTGGCTC
751	GAAACCTACC	TTGACGGCGG		TACGACGTAT	
801	TTCCCGTTTT	ACCGCGCAAA	CCGTTTGCGA	CGCCGTCTCA	CACGCAGCGG
851	CAGATGCCCG	TCAAATGTAC	ATTTGCGGCG	GCGGCATCCG	CAATCCTGTT
901	TTAATGGCGG	ATTTGGCAGA			CCCTGCACAG
951	CACCGCCGAC	CTGAACCTCG	ATCCGCAATG	GGTGGAAGCC	GCCGNATTTG
1001	CGTGGTTGGC	GGCGTGTTGG	ATTAATCGCA	TTCCCGGTAG	TCCGCACAAA
1051	GCAACCGGCG	CATCCAAACC	GTGTATTCTG	ANCGCGGGAT	ATTATTATTG
1101	A				

This corresponds to the amino acid sequence <SEQ ID 442; ORF 121-1>: m121-1.pep

```
1 METQLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRQLL
51 DLQDTGADEL HRSRILSQEL SRLYAQTAAE LLCSQNLAPS DITALGCHGQ
```

- 101 TVRHAPEHGY SIQLADLPLL AERTRIFTVG DFRSRDLAAG GQGAPLVPAF
 151 HEALFRDNRE TRAVLNIGGI ANISVLPPDA PAFGFDTGPG NMLMDAWTQA
 201 HWQLPYDKNG AKAAQGNILP QLLDRLLAHP YFAQPHPKST GRELFALNWL
 251 ETYLDGGENR YDVLRTLSRF TAQTVCDAVS HAAADARQMY ICGGGIRNPV
 301 LMADLAECFG TRVSLHSTAD LNLDPQWVEA AXFAWLAACW INRIPGSPHK
 351 ATGASKPCIL XAGYYY*

m121-1/g121 95.6% identity in 366 aa overlap

10 20 30 40 50 60

```
METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRQLLDLQDTGADEL
m121-1.pep
         METQLYIGIMSGTSMDGADAVLVRMDGGKWLGAEGHAFTPYPDRLRRKLLDLQDTGTDEL
g121
                                       40
                               30
               10
                       20
                               90
                                      100
                                             110
         HRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHGYSIQLADLPLL
m121-1.pep
          HRSRMLSQELSRLYAQTAAELLCSQNLAPCDITALGCHGQTVRHAPEHGYSIQLADLPLL
g121
                       80
                               90
                                      100
                                             110
                                              170
                                                     180
                       140
                              150
                                      160
               130
          AERTRIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDNRETRAVLNIGGIANISVLPPDA
m121-1.pep
          AELTRIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDDRETRVVLNIGGIANISVLPPGA
q121
               130
                              150
                                      160
                                             170
                                                     180
                                      220
                              210
                       200
               190
          PAFGFDTGPGNMLMDAWTQAHWQLPYDKNGAKAAQGNILPQLLDRLLAHPYFAQPHPKST
m121-1.pep
          PAFGFDTGPGNMLMDAWTQAHWQLPYDKNGAKAAQGNILPQLLGRLLAHPYFSQPHPKST
g121
                                              230
                       200
                              210
                                      220
               190
                               270
                                      280
                                              290
               250
                       260
          GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVCDAVSHAAADARQMYICGGGIRNPV
m121-1.pep
          GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVWDAVSHAAADARQMYICGGGIRNPV
q121
                                      280
               250
                       260
                               270
                               330
                                      340
               310
          LMADLAECFGTRVSLHSTADLNLDPQWVEAAXFAWLAACWINRIPGSPHKATGASKPCIL
m121-1.pep
          LMADLAECFGTRVSLHSTAELNLDPQWVEAAAFAWLAACWINRIPGSPHKATGASKPCIL
a121
                                              350
                       320
                               330
                                      340
               310
          XAGYYYX
m121-1.pep
           111111
          GAGYYYX
q121
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 443>: a121-1.seq

```
ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
     GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
     AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CAAATTGCTG
101
     GATTTGCAGG ACACAGGCGC GGACGAACTG CACCGCAGCA GGATGTTGTC
151
     GCAAGAACTC AGCCGCCTGT ACGCGCAAAC CGCCGCCGAA CTGCTGTGCA
GTCAAAACCT CGCGCCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA
201
251
     ACCGTCAGAC ACGCGCCGGA ACACAGTTAC AGCGTACAGC TTGCCGATTT
301
     GCCGCTGCTG GCGGAACGGA CTCAGATTTT TACCGTCGGC GACTTCCGCA
351
     GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCGCTCGT CCCCGCCTTT
401
     CACGAAGCCC TGTTCCGCGA CGACAGGGAA ACACGCGCGG TACTGAACAT
451
     CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGACGCA CCCGCCTTCG
501
     GCTTCGACAC AGGACCGGGC AATATGCTGA TGGACGCGTG GATGCAGGCA
551
      CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA
 601
     CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC
651
     AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC
701
      GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT
 751
      TTCCCGATTC ACCGCGCAAA CCGTTTTCGA CGCCGTCTCA CACGCAGCGG
 801
      CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
 851
      TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
901
     CACCGCCGAA CTGAACCTCG ATCCGCAATG GGTAGAAGCC GCCGCGTTCG
951
      CATGGATGGC GGCGTGTTGG GTCAACCGCA TTCCCGGTAG TCCGCACAAA
1001
     GCAACCGGCG CATCCAAACC GTGTATTCTG GGCGCGGGAT ATTATTATTG
1051
1101
```

This corresponds to the amino acid sequence <SEQ ID 444; ORF 121-1.a>: a121-1.pep

- METQLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRKLL DLQDTGADEL HRSRMLSQEL SRLYAQTAAE LLCSQNLAPS DITALGCHGQ
- 51 TVRHAPEHSY SVQLADLPLL AERTQIFTVG DFRSRDLAAG GQGAPLVPAF
- 151 HEALFRDDRE TRAVLNIGGI ANISVLPPDA PAFGFDTGPG NMLMDAWMQA

GAGYYYX

a121

```
HWQLPYDKNG AKAAQGNILP QLLDRLLAHP YFAQPHPKST GRELFALNWL
        ETYLDGGENR YDVLRTLSRF TAQTVFDAVS HAAADARQMY ICGGGIRNPV
        LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWMAACW VNRIPGSPHK
    301
        ATGASKPCIL GAGYYY*
    351
m121-1/a121-1 96.4% identity in 366 aa overlap
                          20
                                            40
           METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRQLLDLQDTGADEL
m121-1.pep
           METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRKLLDLQDTGADEL
a121-1
                                   30
                                            40
                           20
                                   90
                                           100
                                                    110
                                                             120
                  70
                           80
           HRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHGYSIQLADLPLL
m121-1.pep
           HRSRMLSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHSYSVQLADLPLL
a121-1
                           80
                                   90
                                           100
                                                    110
                  70
                          140
                                   150
                 130
           AERTRIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDNRETRAVLNIGGIANISVLPPDA
m121-1.pep
           AERTQIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDDRETRAVLNIGGIANISVLPPDA
a121-1
                                  150
                                           160
                                                    170
                 130
                          140
                                           220
                          200
                                   210
                 190
           PAFGFDTGPGNMLMDAWTQAHWQLPYDKNGAKAAQGNILPQLLDRLLAHPYFAQPHPKST
m121-1.pep
           PAFGFDTGPGNMLMDAWMQAHWQLPYDKNGAKAAQGNILPQLLDRLLAHPYFAQPHPKST
a121-1
                                   210
                                           220
                 190
                          200
                                                    290
                                                             300
                 250
                          260
                                   270
                                           280
           GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVCDAVSHAAADARQMYICGGGIRNPV
m121-1.pep
           GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVFDAVSHAAADARQMYICGGGIRNPV
a121-1
                                                    290
                                           280
                 250
                          260
                                   270
                                            340
                          320
                                   330
                 310
           LMADLAECFGTRVSLHSTADLNLDPQWVEAAXFAWLAACWINRIPGSPHKATGASKPCIL
m121-1.pep
           ининия ининероватичний выправления в при в при в при в при в при в при в при в при в при в при в при в при в при
           LMADLAECFGTRVSLHSTAELNLDPQWVEAAAFAWMAACWVNRIPGSPHKATGASKPCIL
a121
                                                    350
                          320
                                   330
                                           340
m121-1.pep
           XAGYYYX
            111111
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 445>: g122.seq

```
ATGGCTTTAC TGAGCATCCG CAAGCTGCAC AAACAATACG GCAGCGTAAC
    CGCCATCCAA TCCTTAGACT TGGACTTGGA AAAAGGCGAA GtcatCGTAC
51
    TGCTGGGCCC gTccggctgc ggCAAATCCA CCCTcctgcg ctgcgtcaaC
101
    GGTTTGGAGC CGCACCAagg cgGCAGCATC GTGATGGACG GTgtcgGCGA
151
    ATTCggcAAA GACGTTTCCT GGCAAACCGC CCGGCAAAAa gtcggtatgg
201
    tctttcaaag taacgAactg Tttgcccaca tgaccgtcat cgAaaacatc
251
    ttcttAggcC CGGTAAagga aCAAAAcCgc gaccgtgccg aagcaGAGGC
    gCAAGCCGGC AAactGttgg aacgcgTCGG actgctAGAC CGCAAAAACG
351
    CCTATCCGCG CGAACTTTCC GGCGGTCAGA AACAGCGCAT CGCCATTGTC
401
    CGCGCCCTGT GCCTGAATCC GGAAGTCATC CTGCTGGACG AAATCACCGC
451
     CGCACTTGAC CCCGAAATGG TGCGCGAAGT CTTGGAAGTG GTTTTGGAAC
501
     TCGCCCGCGA AGGGATGAGT ATGCTCATCG TAACCCACGA AATGGGGTTC
    GCACGCAAAG TTGCCGACCG CATCGTCTTT ATGGACAAAG GCGGCATCGT
601
    CGAATCGTCC GACCCGAAA CCTTTTTTC CGCACCAAAA AGCGAACGCG
651
    CCCGCCAATT TCTGGCAGGT ATGGACTACT GA
```

This corresponds to the amino acid sequence <SEQ ID 446; ORF 122.ng>:

```
q122.pep
           1 MALLSIRKLH KQYGSVTAIQ SLDLDLEKGE VIVLLGPSGC GKSTLLRCVN
          51
              GLEPHQGGSI VMDGVGEFGK DVSWQTARQK VGMVFQSNEL FAHMTVIENI
              FLGPVKEQNR DRAEAEAQAG KLLERVGLLD RKNAYPRELS GGQKQRIAIV
         101
              RALCLNPEVI LLDEITAALD PEMVREVLEV VLELAREGMS MLIVTHEMGF
              ARKVADRIVF MDKGGIVESS DPETFFSAPK SERARQFLAG MDY*
         201
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 447>:
     m122.seq
              GTTGTCATGA TTAAAATCCG CAATATCCAT AAGACCTTTG GCGAAAACAC
           1
              TATTTTGCGC GGCATCGATT TGGATGTGTG CAAAGGGCAG GTGGTCGTCA
          51
              TCCTCGGGCC TTCCGGCTCA GGCAAAACGA CGTTTCTGCG ATGCCTAAAC
         101
              GCGTTGGAAA TGCCCGAAGA CGGACAAATC GAGTTCGACA ACGAGCGACC
         151
         201 GCTGAAAATC GATTTTCTA AAAAACCAAG CAAACACGAT ATTTTGGCAC
              TGCGCCGCAA ATCAKGCATG GTGTTTCAAC AATACAAYCT CTTTCCGCAC
         251
         301 AAAACCGCCT TGGAAAACGT AATGGAAGGA CCGGTTGCCG TACAGGGCAA
              GCCTGCCGCC CAAGCGCGCG AAGAGGCTCT GAAACTGCTG GAAAAAGTCG
         401 GCTTGGGCGA CAAAGTGGAT TTGTATCCCT ACCAGCTTTC CGGCGGTCAG
         451 CAGCAGCGCG TCGGCATTGC CCGCGCATTG GCGATTCAGC CTGAACTGAT
         501 GCTGTTTGAC GAACCGACTT CCGCGCTCGA TCCTGAATTG GTGCAAGATG
              TTTTGGATmC CATGAAGGAA TTGGCGCAAG AAGGCTGGAC CATGGTTGTC
         551
              GTTACGCATG AAATCAAGTT CGCCTTAGAA GTGGCAACCA CCGwCGTCGT
              GATGGACTGC GGCGTTATTG TCGAACAAGG CAGCCCGCAA GATTTGTTCG
              ACCACCCCAA ACACGAACGG ACGCGGAGAT TTTTAAGCCA AATCCAATCT
         701
              ACCAAGATTT GA
          751
This corresponds to the amino acid sequence <SEQ ID 448; ORF 122>:
     m122.pep
              VVMIKIRNIH KTFGENTILR GIDLDVCKGQ VVVILGPSGS GKTTFLRCLN
           1
              ALEMPEDGQI EFDNERPLKI DFSKKPSKHD ILALRRKSXM VFQQYNLFPH
          51
              KTALENVMEG PVAVQGKPAA QAREEALKLL EKVGLGDKVD LYPYQLSGGQ
          101
              QQRVGIARAL AIQPELMLFD EPTSALDPEL VQDVLDXMKE LAQEGWTMVV
         201 VTHEIKFALE VATTXVVMDX GVIVEQGSPQ DLFDHPKHER TRRFLSQIQS
          251
              TKI*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 122 shows 47.2% identity over a 246 aa overlap with a predicted ORF (ORF 122.ng)
from N. gonorrhoeae:
     m122/g122
                                  20
                                           3.0
                                                     40
                         10
                 VVMIKIRNIHKTFGENTILRGIDLDVCKGQVVVILGPSGSGKTTFLRCLNALEMPEDGQI
     m122.pep
                 MALLSIRKLHKQYGSVTAIQSLDLDLEKGEVIVLLGPSGCGKSTLLRCVNGLEPHQGGSI
     g122
                                                                        60
                         10
                                  20
                                           30
                                                     40
                                                              50
                                                    100
                                                             110
                                            90
                 EFDNERPLKIDFSKKPSKHDILALRRKSXMVFQQYNLFPHKTALENVMEGPVAVQGKPAA
     m122.pep
                        : | | : :
                                       VMDGVGEFGKDVSWQTA------RQKVGMVFQSNELFAHMTVIENIFLGPVKEQNRDRA
     g122
                                         80
                                                  90
                                                           100
                                                                    110
                         70
                                           150
                                                    160
                                                             170
                                 140
                 QAREEALKLLEKVGLGDKVDLYPYQLSGGQQQRVGIARALAIQPELMLFDEPTSALDPEL
     m122.pep
                 EAEAQAGKLLERVGLLDRKNAYPRELSGGQKQRIAIVRALCLNPEVILLDEITAALDPEM
     g122
                     120
                              130
                                        140
                                                 150
                                                          160
                        190
                                 200
                                           210
                                                    220
                                                             230
                                                                       240
                 VQDVLDXMKELAQEGWTMVVVTHEIKFALEVATTXVVMDXGVIVEQGSPQDLFDHPKHER
     m122.pep
                 g122
                 VREVLEVVLELAREGMSMLIVTHEMGFARKVADRIVFMDKGGIVESSDPETFFSAPKSER
```

PCT/US99/09346

WO 99/057280

```
210
                                                         220
                                                                  230
                             190
                                       200
                    180
                       250
                TRRFLSQIQSTKIX
    m122.pep
                : | : | | :
                ARQFLAGMDYX
    g122
                    240
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 449>:
    al22.seg
              GTTGTCATGA TTAAAATCCG CAATATCCAT AAGACCTTCG GCAAAAATAC
              CATTTTGCGC GGCATCAATT TGGATGTGTG CAAAGGGCAG GTGGTCGTCA
          51
              TCCTCGGGCC TTCCGGCTCA GGCAAAACGA CGTTTCTGCG ATGCCTAAAC
         101
             GCGTTGGAAA TGCCCGAAGA CGGACAAATC GAGTTCGACA ACGAGCGACC
              GCTGAAAATC GATTTTCTA AAAAACCAAG CAAACACGAT ATTTTGGCAC
         201
              TGCGCCGCAA ATCAGGCATG GTGTTTCAAC AATACAACCT CTTTCCGCAC
         251
             AAAACCGCCT TGGAAAACGT GATGGAAGGA CCGGTTGCCG TACAGGGCAA
         301
              GCCTGCCGCC CAAGCGCGCG AAGAGGCTCT GAAACTGCTG GAAAAAGTCG
         351
             GCTTGGGCGA CAAAGTGGAT TTGTATCCCT ACCAGCTTTC CGGCGGTCAG
         401
              CAGCAGCGCG TCGGCATTGC CCGAGCATTG GCGATTCAGC CCGAGCTGAT
         451
              GTTGTTTGAC GAACCCACTT CCGCGCTTGA CCCCGAGTTG GTGCAAGACG
         501
              TGTTGAACGC CATGAAGGAA TTGGCGCGGG AAGGTTGGAC GATGGTCGTC
         551
              GTTACCCACG AAATCAAGTT CGCGCTGGAA GTTGCCACGA CCGTTGTCGT
         601
              GATGGACGGC GGCGTTATCG TAGAGCAGGG CAGCCCGAAA GAGTTGTTCG
         651
              ACCACCCAA ACACGAACGG ACGCGGAGAT TTTTAAGCCA AATCCAATCT
         701
             ACCAAGATTT GA
         751
This corresponds to the amino acid sequence <SEQ ID 450; ORF 122.a>:
     al22.pep
              VVMIKIRNIH KTFGKNTILR GINLDVCKGQ VVVILGPSGS GKTTFLRCLN
              ALEMPEDGOI EFDNERPLKI DFSKKPSKHD ILALRRKSGM VFQQYNLFPH
          51
              KTALENVMEG PVAVQGKPAA QAREEALKLL EKVGLGDKVD LYPYQLSGGQ
              QQRVGIARAL AIQPELMLFD EPTSALDPEL VQDVLNAMKE LAREGWTMVV
              VTHEIKFALE VATTVVVMDG GVIVEQGSPK ELFDHPKHER TRRFLSQIQS
         201
         251
              TKI*
          96.0% identity in 253 aa overlap
m122/a122
                                                    40
                                                             50
                                           30
                 VVMIKIRNIHKTFGENTILRGIDLDVCKGQVVVILGPSGSGKTTFLRCLNALEMPEDGQI
     m122.pep
                 VVMIKIRNIHKTFGKNTILRGINLDVCKGQVVVILGPSGSGKTTFLRCLNALEMPEDGQI
     a122
                                                             50
                        10
                                           30
                                                    40
                                                                       60
                                 80
                                           90
                                                   100
                                                            110
                 EFDNERPLKIDFSKKPSKHDILALRRKSXMVFQQYNLFPHKTALENVMEGPVAVQGKPAA
     m122.pep
                 EFDNERPLKIDFSKKPSKHDILALRRKSGMVFQQYNLFPHKTALENVMEGPVAVQGKPAA
     a122
                        70
                                  80
                                           90
                                                   100
                                                            110
                                                                      120
                                 140
                                          150
                                                   160
                 QAREEALKLLEKVGLGDKVDLYPYQLSGGQQQRVGIARALAIQPELMLFDEPTSALDPEL
     m122.pep
                 {\tt QAREEALKLLEKVGLGDKVDLYPYQLSGGQQQRVGIARALAIQPELMLFDEPTSALDPEL}
     a122
                                          150
                                                   160
                                                            170
                                 140
                        130
                                 200
                                                            230
                                                                      240
                                                   220
                        190
                                          210
                 VQDVLDXMKELAQEGWTMVVVTHEIKFALEVATTXVVMDXGVIVEQGSPQDLFDHPKHER
     m122.pep
                 VQDVLNAMKELAREGWTMVVVTHEIKFALEVATTVVVMDGGVIVEQGSPKELFDHPKHER
     a122
                        190
                                 200
                                          210
                                                   220
                        250
                 TRRFLSQIQSTKIX
     m122.pep
```

350

m122-1/q122-1

111111111111 a122 TRRFLSQIQSTKIX The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 451>: g122-1.seq 1 ATGATTAAAA TCCGCAATAT CCATAAGACC TTTGGCGAAA ACACCATTTT 51 GCGCGGCATC GATTTGGATG TGGGCAAAGG GCAGGTGGTC GTCATCCTCG 51 101 GGCCTTCCGG CTCGGGTAAA ACAACATTTC TGCGCTGCCT AAACGCGTTG 151 GAAATGCCCG AAGACGGACA AATCGAGTTC GACAACGCGC GGCCGTTACG 201 CATTGATTTT TCCAAAAAAA CAAGCAAACA CGATATTTTG GCACTGCGCC 251 GCAAGTCCGG AATGGTATTC CAACAATACA ACCTCTTCCC GCATAAAACC GTGTTGGAAA ACGTGATGGA AGGGCCGGTT GCCGTACAGG GCAAGCCTGC 301 351 CGCCCAAGCG CGCGAAGAGG CTTTGAAACT GCTGGAAAAA GTCGGCTTGG 401 GCGATAAAGT GGATTTGTAT CCCTACCAGC TTTCCGGCGG TCAGCAGCAG 451 CGTGTCGGTA TCGCCCGCGC ACTGGCGATT CAGCCTGAAT TGATGCTGTT 501 TGACGAACCC ACTTCCGCGC TGGACCCCGA GTTGGTGCAA GACGTGTTGG
551 ACGCCATGAA GGAATTGGCG CGGGAAGGTT GGACGATGGT CGTCGTTACC 601 CACGAAATCA AGTTCACGCT GGAAGTTGCC ACGAACGTCG TCGTGATGGA 651 CGGCGGCGTT ATCGTAGAGC AGGGCAGCCC GAAAGAGTTG TTCGACCACC TCAAACACGA ACGGACGCGG AGATTTTTAA GCCAAATCCA ATCTGCCAAG 701 751 ATTTGA This corresponds to the amino acid sequence <SEQ ID 452; ORF 122-1.ng>: g122-1.pep 1 MIKIRNIHKT FGENTILRGI DLDVGKGQVV VILGPSGSGK TTFLRCLNAL 51 EMPEDGQIEF DNARPLRIDF SKKTSKHDIL ALRRKSGMVF QQYNLFPHKT VLENVMEGPV AVQGKPAAQA REEALKLLEK VGLGDKVDLY PYQLSGGQQQ 151 RVGIARALAI QPELMLFDEP TSALDPELVQ DVLDAMKELA REGWTMVVVT 201 HEIKFTLEVA TNVVVMDGGV IVEQGSPKEL FDHLKHERTR RFLSQIQSAK 251 I* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 453>: m122-1.seq 1 ATGATTAAAA TCCGCAATAT CCATAAGACC TTTGGCGAAA ACACTATTTT 51 GCGCGGCATC GATTTGGATG TGTGCAAAGG GCAGGTGGTC GTCATCCTCG
101 GGCCTTCCGG CTCAGGCAAA ACGACGTTTC TGCGATGCCT AAACGCGTTG 151 GAAATGCCCG AAGACGGACA AATCGAGTTC GACAACGAGC GACCGCTGAA 201 AATCGATTTT TCTAAAAAAC CAAGCAAACA CGATATTTTG GCACTGCGCC 251 GCAAATCAGG CATGGTGTTT CAACAATACA ACCTCTTTCC GCACAAAACC 301 GCCTTGGAAA ACGTAATGGA AGGACCGGTT GCCGTACAGG GCAAGCCTGC 351 CGCCCAAGCG CGCGAAGAGG CTCTGAAACT GCTGGAAAAA GTCGGCTTGG 401 GCGACAAAGT GGATTTGTAT CCCTACCAGC TTTCCGGCGG TCAGCAGCAG
451 CGCGTCGGCA TTGCCCGCGC ATTGCCGATT CAGCCTGAAC TGATGCTGTT 501 TGACGAACCG ACTTCCGCGC TCGATCCTGA ATTGGTGCAA GATGTTTTGG 551 ATACCATGAA GGAATTGGCG CAACAAGGCT GGACCATGGT TGTCGTTACG
601 CATGAAATCA AGTTCGCCTT AGAAGTGGCA ACCACCGTCG TCGTGATGGA 651 CGGCGGCGTT ATTGTCGAAC AAGGCAGCCC GCAAGATTTG TTCGACCACC CCAAACACGA ACGGACGCGG AGATTTTTAA GCCAAATCCA ATCTACCAAG This corresponds to the amino acid sequence <SEQ ID 454; ORF 122-1>: m122-1.pep 1 MIKIRNIHKT FGENTILRGI DLDVCKGQVV VILGPSGSGK TTFLRCLNAL 51 EMPEDGQIEF DNERPLKIDF SKKPSKHDIL ALRRKSGMVF QQYNLFPHKT 101 ALENVMEGPV AVQGKPAAQA REEALKLLEK VGLGDKVDLY PYQLSGGQQQ
151 RVGIARALAI QPELMLFDEP TSALDPELVQ DVLDTMKELA QEGWTMVVVT 201 HEIKFALEVA TTVVVMDGGV IVEQGSPQDL FDHPKHERTR RFLSQIQSTK 251 I*

94.8% identity in 251 aa overlap

	10	20	30	40	50	60	
m122-1.pep	70 DNERPLKIDFSKKPS	80 KHDILALRR	90 KSGMVFQQYN	100 LFPHKTALEN	110 NVMEGPVAVQG	120 KPAAQA 	
g122-1	DNARPLRIDFSKKTS	KHDILALRR 80	KSGMVFQQYN 90	LFPHKTVLEN 100	NVMEGPVAVQG 110	KPAAQA 120	
m122-1.pep	130 REEALKLLEKVGLGD	140 KVDLYPYQL	150 SGGQQQRVGI	160 ARALAIQPEI	170 LMLFDEPTSAL	180 DPELVQ 	
g122 -1	REEALKLLEKVGLGD 130	KVDLYPYQL 140	SGGQQQRVGI. 150	ARALAIQPEI 160	LMLFDEPTSAL 170	DPELVQ 180	
m122-1.pep	190 DVLDTMKELAQEGWT	1111111111	1:1111:11		1111::1111	11111	
g122-1	DVLDAMKELAREGWT 190	MVVVTHEIK 200	FTLEVATNVV 210	VMDGGVIVE 220	QGSPK ELF DHL 230	KHERTR 240	
m122-1.pep	250 RFLSQIQSTKIX :						
g122-1	RFLSQIQSAKIX 250						
	ng partial DNA	sequence	e was ident	ified in Λ	l. meningit	idis <seq< td=""><td>ID 455>:</td></seq<>	ID 455>:
a122-1.seq	GATTAAAA TCCGCAA	TAT CCATA	AAGACC TTCG	GCAAAA AT	ACCATTTT		
101 G	CCTTCCGG CTCAGGC	AAA ACGAC	GTTTC TGCG	ATGCCT AA	ACGCGTTG		
201 A	AAATGCCCG AAGACGG ATCGATTTT TCTAAAA	AAC CAAGO	CAAACA CGAT	ATTTTG GC	ACTGCGCC		
301 G	CAAATCAGG CATGGTG	GGA AGGAC	CCGGTT GCCG	TACAGG GC	AAGCCTGC		
351 CC	SCCCAAGCG CGCGAAG	AGG CTCTC	GAAACT GCTG	GAAAAA GT	CGGCTTGG		
451 C	GCGTCGGCA TTGCCCC	AGC ATTG	GCGATT CAGO	CCGAGC TG	ATGTTGTT		
551 A	GACGAACCC ACTTCCC	GCG CGGG	AAGGTT GGAC	GATGGT CG	TCGTTACC		
601 C	ACGAAATCA AGTTCGC GGCGGCGTT ATCGTAC	GCT GGAAG	STTGCC ACGA	CCGTTG TC	GTGATGGA CGACCACC		
701 C	CAAACACGA ACGGACG	CGG AGAT	TTTAA GCCA	AATCCA AT	CTACCAAG		
	TTTGA			~~~			
	ponds to the ami	no acid s	sequence <	SEQ ID	456; ORF	122-1.a>:	
a122-1.pep 1 M	IKIRNIHKT FGKNTII	RGI NLDV	CKGQVV VILO	PSGSGK TT	FLRCLNAL		
101 A	MPEDGQIEF DNERPLI LENVMEGPV AVQGKP	AAQA REEA	LKLLEK VGLO	DKVDLY PY	QLSGGQQQ		
151 R	VGIARALAI QPELMLI EIKFALEVA TTVVVMI	TDEP TSAL	DPELVQ DVL	NAMKELA RE	GWTMVVVT		
251 I		, , , , , , , , , , , , , , , , , , ,					
a122-1/m122	-1 97.2% iden	city in 2	51 aa overl	Lap			
100 1	10 MIKIRNIHKTFGKN	20	30	40	50	60 EDGOTEE	
a122-1.pep		1111111:11	111111111		11111111111	1111111	
m122-1	MIKIŖNIHKTFGEN 10	20	30	40	50	60	
a122-1.pep	70 DNERPLKIDFSKKP	80 SKHDILALR	90 RKSGMVFQQYI	100 NLFPHKTALE	110 ENVMEGPVAVQ	120 GKPAAQA	
m122-1				IIIIIIIIIIIIII NLFPHKTALI 100	ENVMEGPVAVQ 110	GKPAAQA 120	
	130	140	150	160	170	180	
a122-1.pep	REEALKLLEKVGLG						
m122-1	REEALKLLEKVGLG	DKVDLYPYQ	LSGGQQQRVG	IARALAIQPI	ELMLFDEPTSA	LDPELVQ	

```
130
                        140
                                150
                                        160
                                                170
                                                        180
                        200
                                210
                                        220
                                                230
                190
          DVLNAMKELAREGWTMVVVTHEIKFALEVATTVVVMDGGVIVEQGSPKELFDHPKHERTR
a122-1.pep
          DVLDTMKELAQEGWTMVVVTHEIKFALEVATTVVVMDGGVIVEQGSPQDLFDHPKHERTR
m122-1
                       200
                              210
                                    220
                190
                250
          RFLSQIQSTKIX
a122-1.pep
          11111111111
m122-1
          RFLSQIQSTKIX
                250
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 457>:

```
g125.seq
          ATGTCGGGCA ATGCCTCCTC TCCTTCATCT TCCGCCGCCA TCGGGCTGGT
       1
         TTGGTTCGGC GCGGCGGTAT CGATTGCCGA AATCAGCACG GGTACGCTGC
      51
         TCGCCCCCTT GGGCTGGCAG CGCGGTCTGG CGGCCCTGCT TTTGGGTCAT
     101
          GCCGTCGGCG GCGCGCTGTT TTTTGCGGCG GCGTATATCG GCGCACTGAC
     151
     201 CGGACGCAGC TCGATGGAAA GTGTGCGCCT GTCGTTCGGC AAATGCGGTT
     251 CAGTGCTGTT TTCCGTGGCG AATATGCTGC AACTGGCCGG CTGGACGGCG
     301 GTGATGATTT ACGTCGCCGC AacggTCAGC TCCGCTTTGG GCAAAGTGTT
         GTGGGACggc gaATCCTTTG TCTGGTGGGC ATTGGCAAAC GGCGCACTGA
          TCGTGCTGTG GCTGGTTTTC GGCGCACGCA GAACGGGCGG GCTGAAAACC
          GTTTCGATGC TGCTGATGCT GCTTGCCGTG TTGTGGTTGA GCGTCGAAGT
         GTTCGCTTCG TCCGGCACAA ACGCCGCGCC CGCCGTTTCA GACGGCATGA
     501
     551 . CCTTCGGAAC GGCAGTCGAA CTGTCCGCCG TCATGCCGCT TTCCTGGCTG
     601 CCGCTGGCCG CCGACTACAC GCGCCAAGCA CGCCGCCCGT TTGCGGCAAC
     651 CCTGACGGCA ACGCTCGCCT ATACGCTGAC GGGCTGCTGG ATGTATGCCT
     701 TGGGTTTGGC GGCGGCTCTG TTTACCGGAG AAACCGACGT GGCGAAAATC
     751 CTGTTGGGCG CGGGCTTGGG CATAACGGGC ATTCTGGCAG TCGTCCTCTC
     801 CACCGTTACC ACAACGTTTC TCGATACCTA TTCCGCCGGC GCGAGTGCGA
     851 ACAACATTTC CGCGCGTTTT GCGGAAATAC CCGTCGCTGT CGGCGTTACC
     901 CTGatccgca ccgtgcttgc cgtcatgctg cccgttaccg aatataaaaa
          cttcctgctg cttatccgct cggtatttgg gccgatggcg ggtggttttg
         attgccgaCT TTTttgtctt AAAACGGCGT GA
```

This corresponds to the amino acid sequence <SEQ ID 458; ORF 125.ng>:

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 459>:

```
m125.seq
      1
          ATGTCGGGCA ATGCCTCCTC TCCTTCATCT TCCTCCGCCA TCGGGCTGAT
          TTGGTTCGGC GCGGCGGTAT CGATTGCCGA AATCAGCACG GGTACGCTGC
         TTGCGCCTTT GGGCTGGCAG CGCGGTCTGG CGGCTCTACT TTTGGGTCAT
     101
         GCCGTCGGCG GCGCGCTGTT TTTTGCGGCG GCGTATATCG GCGCACTGAC
     151
     201 CGGACGCAGC TCGATGGAAA GCGTGCGCCT GTCGTTCGGC AAACGCGGTT
     251 CAGTGCTGTT TTCCGTGGCG AATATGCTGC AACTGGCCGG CTGGACGGCG
     301 GTGATGATTT ACGCCGGCGC AACGGTCAGC TCCGCTTTGG GCAAAGTGTT
     351 GTGGGACGGC GAATCTTTTG TCTGGTGGGC ATTGGCAAAC GGCGCGCTGA
     401 TTGTGCTGTG GCTGGTTTTC GGCGCACGCA AAACAGGCGG GCTGAAAACC
         GTTTCGATGC TGCTGATGCT GTTGGCGGTT CTGTGGCTGA GTGCCGAAGT
     451
         CTTTTCCACG GCAGGCAGCA CCGCCGCACA GGTTTCAGAC GGCATGAGTT
          TCGGAACGGC AGTCGAGCTG TCCGCCGTGA TGCCGCTTTC CTGGCTGCCG
         CTTGCCGCCG ACTACACGCG CCACGCGCGC CGCCCGTTTG CGGCAACCCT
     651 GACGGCAACG CTCGCCTACA CGCTGACCGG CTGCTGGATG TATGCCTTGG
     701 GTTTGGCAGC GGCGTTGTTC ACCGGAGAAA CCGACGTGGC AAAAATCCTG
     751 CTGGGCGCAr GTTTGGGTGC GGCAGGCATT TTGGCGGTCG TCCTCTCCAC
     801 CGTTACCACA ACGTTTCTCG ATGCCTATTC CGCCGGCGCG AGTGCGAACA
```

```
851 ACATTTCCGC GCGTTTTGCG GAAACACCCG TCGCTGTCrG CGTTACCCTG
901 ATCGGCACGG TACTTGCCGT CATGCTGCCC GTTACCGAAT ATGAAAACTT
951 CCTGCTGCTT ATCGGCTCGG TATTTGCGCC GATGGCGGGC GGTTTTGATT
1001 GCCGACTTTT TCGTCTTGAA ACGGCGTGA
```

This corresponds to the amino acid sequence <SEQ ID 460; ORF 125>:

m125.pep

- 1 MSGNASSPSS SSAIGLIWFG AAVSIAEIST GTLLAPLGWQ RGLAALLLGH
- 51 AVGGALFFAA AYIGALTGRS SMESVRLSFG KRGSVLFSVA NMLQLAGWTA
- 101 VMIYAGATVS SALGKVLWDG ESFVWWALAN GALIVLWLVF GARKTGGLKT
- 151 VSMLLMLLAV LWLSAEVFST AGSTAAQVSD GMSFGTAVEL SAVMPLSWLP
- 201 LAADYTRHAR RPFAATLTAT LAYTLTGCWM YALGLAAALF TGETDVAKIL 251 LGAXLGAAGI LAVVLSTVTT TFLDAYSAGA SANNISARFA ETPVAVXVTL 301 IGTVLAVMLP VTEYENFLLL IGSVFAPMAG GFDCRLFRLE TA*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 125 shows 92.1% identity over a 343 aa overlap with a predicted ORF (ORF 125.ng) from N. gonorrhoeae:

m125/g125

m125.pep	MSGNAS	10 SPSSSSAI	20 IGLIWFGAAVS	30 IAEISTĞTLL	40 APLGWQRGLA	50 ALLLGHAVGG	60 ALFFAA
g125	 MSGNAS		: IGLVWFGAAVS: 20			 .ALLLGHAVGG 50	 ALFFAA 60
		10	20	30	40	30	80
		70	80 SVRLSFGKRGS	90	100	110	120
m125.pep	AYIGAL	IIGRSSME:				:	
g125	AYIGAL		SVRLSFGKCGS	_			
		70	80	90	100	110	120
		130	140	150	160	170	179
m125.pep	ESFVWW	VALANGAL:	IVLWLVFGARK			: ::: :	
g125	ESFVWV	, i √ALANGAL:	 VLWLVFGARR'				
5		130	140	150	160	170	180
	180	190	200	210	220	230	239
m125.pep	DGMSFC	TAVELSA	VMPLSWLPLAA		AATLTATLA'	TLTGCWMYAI	GLAAAL
	111:11	111111	1111111111		 7מ.זידמידי,זידממי	TLTGCWMYAI	GLAAAL
a125	DGMTFC	TAVELSA	VMPLSWLPLAA	DITRUARREI			
g125	DGMTF	TAVELSA 190	VMPLSWLPLAA 200	210	220	230	240
g125	240	190 250	200 260	210 270	220 280	230 290	299
g125 m125.pep	240	190 250	200	210 270	220 280	230 290	299 PV AVX VT
ml25.pep	240 FTGETI	190 250 DVAKILLG	200 260 AXLGAAGILAV :	210 270 VLSTVTTTFI 	220 280 DAYSAGASAN	230 290 NNISARFAETI	299 PV AVX VT
	240 FTGETI	190 250 DVAKILLG	200 260	210 270 VLSTVTTTFI 	220 280 DAYSAGASAN	230 290 NNISARFAETI	299 PV AVX VT
ml25.pep	240 FTGETI	190 250 DVAKILLG DVAKILLG	200 260 AXLGAAGILAV : AGLGITGILAV	210 270 VLSTVTTTFI VLSTVTTTFI	220 280 DAYSAGASAN : LDTYSAGASAN	230 290 NNISARFAETI NNISARFAEII	299 PVAVXVT PVAVGVT
ml25.pep	240 FTGETI FTGETI	190 250 DVAKILLG DVAKILLG 250 310	200 260 AXLGAAGILAV : AGLGITGILAV 260	210 270 VLSTVTTTFI VLSTVTTTFI 270 330	220 280 LDAYSAGASAN : LDTYSAGASAN 280 340	230 290 NNISARFAETH NNISARFAEIH 290	299 PVAVXVT PVAVGVT
m125.pep g125 m125.pep	240 FTGETI FTGETI 300 LIGTVI	190 250 DVAKILLG DVAKILLG 250 310 LAVMLPVT	200 260 AXLGAAGILAV : AGLGITGILAV 260 320 EYENFLLLIGS :	210 270 VLSTVTTTFI VLSTVTTTFI 270 330 VFAPMAGGFI	220 280 LDAYSAGASAN : LDTYSAGASAN 280 340 DCRLFRLETAN	230 290 NNISARFAETE NNISARFAEIE 290	299 PVAVXVT PVAVGVT
m125.pep g125	240 FTGETI FTGETI 300 LIGTVI	190 250 DVAKILLG DVAKILLG 250 310 LAVMLPVT	200 260 AXLGAAGILAV : AGLGITGILAV 260 320	210 270 VLSTVTTTFI VLSTVTTTFI 270 330 VFAPMAGGFI	220 280 LDAYSAGASAN : LDTYSAGASAN 280 340 DCRLFRLETAN	230 290 NNISARFAETE NNISARFAEIE 290	299 PVAVXVT PVAVGVT

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 461>:

a125.seq

- 1 ATGTCGGGCA ATGCCTCCTC TCCTTCATCT TCCGCCGCCA TCGGGCTGAT
- 51 TTGGTTCGGC GCGGCGGTAT CGATTGCCGA AATCAGCACG GGTACACTGC
- 101 TTGCGCCTTT GGGCTGGCAG CGCGGTCTGG CGGCTCTGCT TTTGGGTCAT

151	GCCGTCGGCG GCGCGCTGTT TTTTGCGGCG GCGTATATCG GCGCACTGAC	
201	CGGACGCAGC TCGATGGAAA GCGTGCGCCT GTCGTTCGGC AAACGCGGTT	
251	CAGTGCTGTT TTCCGTGGCG AATATGCTGC AACTGGCCGG CTGGACGGCG	
301	GTGATGATTT ACGCCGGCGC AACGGTCAGC TCCGCTTTGG GCAAAGTGTT	
351	GTGGGACGGC GAATCTTTTG TCTGGTGGGC ATTGGCAAAC GGCGCGCTGA	
401	TTGTGCTGTG GCTGGTTTTC GGCGCACGCA AAACAGGCGG GCTGAAAACC	
451	GTTTCGATGC TGCTGATGCT GTTGGCGGTT CTGTGGCTGA GTGCCGAAGT	
501	CTTTTCCACG GCAGGCAGCA CCGCCGCACA GGTTTCAGAC GGCATGAGTT	
551	TCGGAACGGC AGTCGAGCTG TCCGCCGTGA TGCCGCTTTC TTGGCTGCCG	
601	CTGGCCGCCG ACTACACGCG CCACGCGCGC CGCCCGTTTG CGGCAACCCT	
651	GACGGCAACG CTCGCCTACA CGCTGACCGG CTGCTGGATG TATGCCTTGG	
701	GTTTGGCAGC GGCGTTGTTC ACCGGAGAAA CCGACGTGGC AAAAATCCTG	
751	CTGGGCGCAG GTTTGGGTGC GGCAGGCATT TTGGCGGTCG TCCTGTCGAC	
801	CGTTACCACC ACTTTTCTCG ATGCCTACTC CGCCGGCGTA AGTGCCAACA	
851	ATATTTCCGC CAAACTTTCG GAAATACCCA TCGCCGTTGC CGTCGCCGTT	
901	GTCGGCACAC TGCTTGCCGT CCTCCTGCCC GTTACCGAAT ATGAAAACTT	
951	CCTGCTGCTT ATCGGCTCGG TATTTGCGCC GATGGCG.GC GGTTTTGATT	
1001	GCCGACTTTT TCGTCTTGAA ACGGCGTGA	
1001	3000	
This samesmand	s to the amino acid sequence <seq 125.a="" 462;="" id="" orf="">:</seq>	
_	s to the attitud acid sequence 13EQ ID 40E, Old 125.0.	
al25.pep	THE PROPERTY OF THE PROPERTY O	
1	MSGNASSPSS SAAIGLIWFG AAVSIAEIST GTLLAPLGWQ RGLAALLLGH	
51	AVGGALFFAA AYIGALTGRS SMESVRLSFG KRGSVLFSVA NMLQLAGWTA	
101	VMIYAGATVS SALGKVLWDG ESFVWWALAN GALIVLWLVF GARKTGGLKT	
151	VSMLIMLLAV LWLSAEVFST AGSTAAQVSD GMSFGTAVEL SAVMPLSWLP LAADYTRHAR RPFAATLTAT LAYTLTGCWM YALGLAAALF TGETDVAKIL	
201	TAANVOODIAD DDEAATITAT TAYTITGCWM YALGLAAALE TGETOVAKIL	
201	LAADIKIAK KITAATITAT HATTITATATATATATATATATATATATATATATATATAT	
251	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV	
	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA*	
251 301	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA*	
251 301	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV	
251 301	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* 6% identity in 342 aa overlap 10 20 30 40 50	60
251 301 m125/a125 95	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* 6% identity in 342 aa overlap 10 20 30 40 50	
251 301	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* 6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA
251 301 m125/a125 95 m125.pep	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* 6.6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA
251 301 m125/a125 95	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* .6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA
251 301 m125/a125 95 m125.pep	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* .6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA FFAA
251 301 m125/a125 95 m125.pep	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* .6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA FFAA
251 301 m125/a125 95 m125.pep a125	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* 1.6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA FFAA 60
251 301 m125/a125 95 m125.pep	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* 1.6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA FFAA 60 120 LWDG
251 301 m125/a125 95 m125.pep a125	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* 1.6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA FFAA 60 120 LWDG
251 301 m125/a125 95 m125.pep a125	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* 6.6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA FFAA 60 120 LWDG
251 301 m125/a125 95 m125.pep a125	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* 1.6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA FFAA 60 120 LWDG
251 301 m125/a125 95 m125.pep a125	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* 1.6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA FFAA 60 120 LWDG
251 301 m125/a125 95 m125.pep a125 m125.pep a125	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* 6.6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA FFAA 60 120 LWDG LWDG 120
251 301 m125/a125 95 m125.pep a125	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* 6.6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA FFAA 60 120 LWDG LWDG 120 180 QVSD
251 301 m125/a125 95 m125.pep a125 m125.pep a125	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* 6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA FFAA 60 120 LWDG LWDG 120 180 QVSD
251 301 m125/a125 95 m125.pep a125 m125.pep a125	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* 6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA FFAA 60 120 LWDG LWDG 120 180 QVSD
251 301 m125/a125 95 m125.pep a125 m125.pep a125	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* 6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA FFAA FFAA
251 301 m125/a125 95 m125.pep a125 m125.pep a125	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* 6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA FFAA FFAA
251 301 m125/a125 95 m125.pep a125 m125.pep a125 m125.pep a125	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* 1.6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA FFAA 60 120 LWDG LWDG 120 180 QVSD QVSD 180 240
251 301 m125/a125 95 m125.pep a125 m125.pep a125	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVV VGTLLAVLIP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* 6.6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA FFAA FFAA
251 301 m125/a125 95 m125.pep a125 m125.pep a125 m125.pep a125	LGAGLGAAGI LAVVLSTVTT TFLDAYSAGV SANNISAKLS EIPIAVAVAV VGTLLAVLLP VTEYENFLLL IGSVFAPMAX GFDCRLFRLE TA* 1.6% identity in 342 aa overlap 10 20 30 40 50 MSGNASSPSSSSAIGLIWFGAAVSIAEISTGTLLAPLGWQRGLAALLLGHAVGGAL	FFAA FFAA FFAA 60 120 LWDG LWDG 120 180 QVSD QVSD 180 240 AALF

270

TGETDVAKILLGAXLGAAGILAVVLSTVTTTFLDAYSAGASANNISARFAETPVAVXVTL

TGETDVAKILLGAGLGAAGILAVVLSTVTTTFLDAYSAGVSANNISAKLSEIPIAVAVAV

220

280

230

290

240

270 280 260 310 320 ${\tt IGTVLAVMLPVTEYENFLLLIGSVFAPMAGGFDCRLFRLETAX}$ m125.pep a125 VGTLLAVLLPVTEYENFLLLIGSVFAPMAXGFDCRLFRLETAX

200

260

190

a125

m125.pep

310 320 330 340

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 463>: g126.seq

```
AtgccqtcTG AAaccCcaaa ggcACGCCGC CGGCTTTCAG ACGGCATCGC
  1
51 GTCCGACAAC CATACCAAAG AATCCATCAT GCTCACCctg tacggcGAAA
    CTTTCCCTTC GCGGCTGCTg ctcggcacgG cggcctacCC GACCCCTGAA
    ATCCTCAAAC AATCCGTCCG AACCGCCCGG CCCGCGATGA ttaccGTCTC
201 GCTGCGCCGC ACGGGATGCG GCGGCGAGGC GCACGGTCAG GGGTTTTGGT
251 CGCTGCTTCA AGAAACCGGC GTTCCCGTCC TGCCGAACAC GGCAGGCTGC
301 CAAAGCGTGC AGGAAGCGGT AACGACGGCG CAAATGGCGC GCGAAGTGTT
351 TGAAACCGAT TGGATAAAAT TGGAACTCAT CGGCGACGAC GACACCTTGC
401 AGCCGGACGT GTTCCAACTC GTCGAAGCGG CGGAAATCCT GATTAAAGAC
451 GGCTTCAAAG TGCTGCCTTA TTGCACCGAA GACCTGATTG CCTGCCGCCG
501 CCTGCTCGAT GCGGGCTGTC AGGCGTTGAT GCCGTGGGCG GCTCCCATCG
551 GCACGGGTTT GGGGGCGGTT CACGCCTATG CGCTCAAAAT CCTGCGCGAA
601 CGCCTGCCCG ACACGCCGCT GATTATCGAC GCGGGCTTGG GTTTGCCTTC
    CCAAGCGGCA CAAGTGATGG AATGGGGTTT TGACGGCGTA TTGTTAAACA
701 CCGCCGTTTC CCGCAGCGGC GACCCCGTCA ACATGGCGCG CGCCTTCGCA
751 CTCGCCGTCG AATCCGGACG GCTGGCATTT GAAGCCGGGC CGGTCGAAGC
801 GCGAACCAAA GCCCAAGCCA GCACGCCGAC AGTCGGACAA CCGTTTTGGC
```

This corresponds to the amino acid sequence <SEQ ID 464; ORF 126.ng>:

851 ATTCGGCGGA ATATTGA

g126.pep

MPSETPKARR RLSDGIASDN HTKESIMLTL YGETFPSRLL LGTAAYPTPE 51 ILKQSVRTAR PAMITVSLRR TGCGGEAHGQ GFWSLLQETG VPVLPNTAGC 101 QSVQEAVTTA QMAREVFETD WIKLELIGDD DTLQPDVFQL VEAAEILIKD 151 GFKVLPYCTE DLIACRRLLD AGCQALMPWA APIGTGLGAV HAYALKILRE 201 RLPDTPLIID AGLGLPSQAA QVMEWGFDGV LLNTAVSRSG DPVNMARAFA LAVESGRLAF EAGPVEARTK AQASTPTVGQ PFWHSAEY*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 465>:

m126.seq (partial) ..CACTATACAA AGGAACCCAT TATGCTCACC CTATACGGCG AAACTTTCCC 1 CTCGCGGCTG CTGCTCGGCA CGGCTGCCTA CCCGACCCCC GAAATCCTCA 51 AACAATCCAT CCAAACCGCC CAGCCTGCGA TGATTACCGT CTCGCTGCGC CGCGCGGGAA GCGGCGCGA GGCGCACGGT CAGGGGTTTT GGTCGCTGCT 151 TCAAGAAACC GGCGTTCCCG TCCTGCCGAA CACGGCAGGC TGCCAAAGCG 201 TGCAGGAAGC GGTAACGACG GCGCAAATGG CGCGCGAAGT GTTTGAAACC 251 GATTGGATAA AATTGGAACT CATCGGAGAT GACGACACCT TGCAGCCGGA 301 TGTGTTCCAG CTTGTCGAAG CGGCGGAAAT CCTGATTAAA GACGGCTTCA 351 AAGTGCTGCC TTATTGCACC GAAGACCTGA TTGCCTGCCG CCGCCTGCTC 401 GACGCGGGCT GTCAGGCGTT GATGCCGTGG GCGGCCCCGA TCGGCACGGG 451 TTTGGGCGCG GTTCACGCCT ACGCGTTGAA CGTCCTGCGC GAACGCCTGC 501 CCGACACGCC GCTGATTATC GACGCGGGCT TGGGTTTGCC CTCACAGGCG 551 GCACAAGTGA TGGAATGGGG CTTTGACGGC GTGCTTTTGA ATACTGCCGT 601 TTCCCGCAGC GGCGATCCGG TCAATATGGC ACGCGCCTTC GCACTCGCCG TCGAATCCGG ACGCTGGCA TTTGAAGCCG GACCGGTCGA AGCACGCGAC 701 AAAGCGCAAG CCAGCACGCC GACAGTCGGA CAACCGTTTT GGCATTCGGC 751

This corresponds to the amino acid sequence <SEQ ID 466; ORF 126>: m126.pep (partial)

GGAATATTGA

801

...HYTKEPIMLT LYGETFPSRL LLGTAAYPTP EILKQSIQTA QPAMITVSLR RAGSGGEAHG QGFWSLLQET GVPVLPNTAG CQSVQEAVTT AQMAREVFET

101	DWIKLELIGD	DDTLQPDVFQ	LVEAAEILIK	DGFKVLPYCT	EDLIACRRLL
151	DAGCQALMPW	AAPIGTGLGA	VHAYALNVLR	ERLPDTPLII	DAGLGLPSQA
201	AQVMEWGFDG	VLLNTAVSRS	GDPVNMARAF	ALAVESGRLA	FEAGPVEARD
251	KAQASTPTVG	QPFWHSAEY*	•		

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 126 shows 95.9% identity over a 269 aa overlap with a predicted ORF (ORF 126.ng) from N. gonorrhoeae: m126/g126

			10	20	30	40
m126.pep		HYTK	EPIMLTLYGE:	TFPSRLLLGT/	AAYPTPEILK	QATQIZQ
• •		::		[]]]]]]]	1	:: :
g126	MPSETPKARRRLSI	OGIASDNHTK	ESIMLTLYGE'	TFPSRLLLGT		-
	10	20	30	40	50	60
	50	60	70	80	90	100
m126.pep	PAMITVSLRRAGS	GGEAHGQGFW	SLLQETGVPV	LPNTAGCOSVO	AMOATTVAEC	REVFETD
	111111111111					
g126	PAMITVSLRRTGC	GGEAHGQGFW				
	70	80	90	100	110	120
	110	120	130	140	150	160
m126.pep	WIKLELIGDDDTL	QPDVFQLVEA	AEILIKDGFK	VLPYCTEDLI	ACRRLLDAGO	
		111111111	11111111			111111
g126	WIKLELIGDDDTL					
	130	140	150	160	170	180
	170	180	190	200	210	220
m126.pep	APIGTGLGAVHAY	ALNVLRERLP	DTPLIIDAGL	GLPSQAAQVM	EWGFDGVLL	
		11::11111				
g126				GLPSQAAQVM		
	190	200	210	220	230	240
	230	240	250	260	270	
m126.pep	DPVNMARAFALAV	ESGRLAFEAG	PVEARDKAQA	STPTVGQPFW	HSAEYX	
				11111111		
g126	DPVNMARAFALAV				HSAEYX	
	250	260	270	280		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 467>:

00 II		- I		_	-
a126.seq					
1				ATGCTCACCC	
51				AGCCGCCTAC	
101	AAATCCTCAA	ACAATCCGTC	CGAACCGCCC	GGCCCGCGAT	GATTACCGTC
151				GCGCACGGTC	
201	GTCGCTGCTT	CAAGAAACCG	GCGTTCCCGT	CCTGCCGAAC	ACGGCAGGCT
251	GCCAAAGCGT	GCAGGAAGCG	GTAACGACGG	CGCAAATGGC	GCGCGAAGTG
301	TTTGAAACCG	ATTGGATTAA	ACTCGAACTC	ATCGGCGACG	ACGACACCTT
351	GCAGCCGGAT	GTGTTCCAAC	TTGTCGAAGC	GGCGGAAATC	CTGATTAAAG
401	ACGGCTTCAA	AGTGCTGCCT	TATTGCACCG	AAGACCTGAT	TGCCTGCCGC
451	CGCCTGCTCG	ACGCGGGCTG	TCAGGCGTTG	ATGCCGTGGG	CGGCCCCGAT
501	CGGCACGGGT	TTGGGCGCGG	TTCACGCCTA	CGCGTTGAAC	GTCCTGCGCG
551	AACGCCTGCC	CGACACGCCG	CTGATTATCG	ACGCGGGCTT	GGGTTTGCCC
601	TCACAGGCGG	CACAAGTGAT	GGAATGGGGC	TTTGACGGCG	TGCTTTTGAA
651	TACTGCCGTT	TCCCGCAGCG	GCGATCCGGT	CAATATGGCA	CGCGCCTTCG
701	CACTCGCCGT	CGAATCCGGA	CGGCTGGCAT	TTGAAGCCGG	ACCGGTCGAA
751	GCACGCGACA	AAGCGCAAGC	CAGCACGCCG	ACAGTCGGAC	AACCGTTTTG
901	CCATTCGGCG	CAATATTCA			

```
This corresponds to the amino acid sequence <SEQ ID 468; ORF 126.a>:
```

a126.pep

```
LLIHYTKEPI MLTLYSETFP SRLLLGTAAY PTPEILKQSV RTARPAMITV
            SLRRAGCGGE AHGOGFWSLL QETGVPVLPN TAGCQSVQEA VTTAQMAREV
         51
            FETDWIKLEL IGDDDTLQPD VFQLVEAAEI LIKDGFKVLP YCTEDLIACR
        101
            RLLDAGCQAL MPWAAPIGTG LGAVHAYALN VLRERLPDTP LIIDAGLGLP
            SOAAOVMEWG FDGVLLNTAV SRSGDPVNMA RAFALAVESG RLAFEAGPVE
        201
            ARDKAQASTP TVGQPFWHSA EY*
m126/a126 98.1% identity in 269 aa overlap
                                 20
                                         30
                                                 40
                  HYTKEPIMLTLYGETFPSRLLLGTAAYPTPEILKQSIQTAQPAMITVSLRRAGSGGE
    m126.pep
                  LLIHYTKEPIMLTLYSETFPSRLLLGTAAYPTPEILKQSVRTARPAMITVSLRRAGCGGE
    a126
                                               40
                                                       50
                      10
                                       30
                                 80
                                         90
                                                 100
                60
               AHGQGFWSLLQETGVPVLPNTAGCQSVQEAVTTAQMAREVFETDWIKLELIGDDDTLQPD
    m126.pep
               AHGQGFWSLLQETGVPVLPNTAGCQSVQEAVTTAQMAREVFETDWIKLELIGDDDTLQPD
    a126
                                              100
                      70
                              80
                                       90
                                                         170
                                                 160
                                140
                                        150
               VFQLVEAAEILIKDGFKVLPYCTEDLIACRRLLDAGCQALMPWAAPIGTGLGAVHAYALN
    m126.pep
               VFQLVEAAEILIKDGFKVLPYCTEDLIACRRLLDAGCQALMPWAAPIGTGLGAVHAYALN
    a126
```

220 230 180 190 200 210 VLRERLPDTPLIIDAGLGLPSQAAQVMEWGFDGVLLNTAVSRSGDPVNMARAFALAVESG m126.pep VLRERLPDTPLIIDAGLGLPSQAAQVMEWGFDGVLLNTAVSRSGDPVNMARAFALAVESG a126 190 200 210

140

150

160

250 260 240 RLAFEAGPVEARDKAQASTPTVGQPFWHSAEYX m126.pep RLAFEAGPVEARDKAQASTPTVGQPFWHSAEYX a126 250 260

130

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 469>: g126-1.seq

1 ATGCTCACCC TGTACGGCGA AACTTTCCCT TCGCGGCTGC TGCTCGGCAC GGCCGCCTAC CCGACCCCTG AAATCCTCAA ACAATCCGTC CGAACCGCCC 51 GGCCCGCGAT GATTACCGTC TCGCTGCGCC GCACGGGATG CGGCGGCGAG 101 GCGCACGGTC AGGGGTTTTG GTCGCTGCTT CAAGAAACCG GCGTTCCCGT CCTGCCGAAC ACGGCAGGCT GCCAAAGCGT GCAGGAAGCG GTAACGACGG 201 251 CGCAAATGGC GCGCGAAGTG TTTGAAACCG ATTGGATAAA ATTGGAACTC ATCGGCGACG ACGACACCTT GCAGCCGGAC GTGTTCCAAC TCGTCGAAGC 301 GGCGGAAATC CTGATTAAAG ACGCCTTCAA AGTGCTGCCT TATTGCACCG 351 AAGACCTGAT TGCCTGCCGC CGCCTGCTCG ATGCGGGCTG TCAGGCGTTG ATGCCGTGGG CGGCTCCCAT CGGCACGGGT TTGGGGGGCGG TTCACGCCTA 451 TGCGCTCAAA ATCCTGCGCG AACGCCTGCC CGACACGCCG CTGATTATCG 501 ACGCGGGCTT GGGTTTGCCT TCCCAAGCGG CACAAGTGAT GGAATGGGGT 551 TTTGACGGCG TATTGTTAAA CACCGCCGTT TCCCGCAGCG GCGACCCCGT 601 CAACATGGCG CGCGCCTTCG CACTCGCCGT CGAATCCGGA CGGCTGGCAT TTGAAGCCGG GCCGGTCGAA GCGCGAACCA AAGCCCAAGC CAGCACGCCG 701 ACAGTCGGAC AACCGTTTTG GCATTCGGCG GAATATTGA

This corresponds to the amino acid sequence <SEQ ID 470; ORF 126-1.ng>: g126-1.pep

¹ MLTLYGETFP SRLLLGTAAY PTPEILKQSV RTARPAMITV SLRRTGCGGE

```
51 AHGQGFWSLL QETGVPVLPN TAGCQSVQEA VTTAQMAREV FETDWIKLEL
    IGDDDTLQPD VFQLVEAAEI LIKDGFKVLP YCTEDLIACR RLLDAGCQAL
101
151 MPWAAPIGTG LGAVHAYALK ILRERLPDTP LIIDAGLGLP SQAAQVMEWG
201 FDGVLLNTAV SRSGDPVNMA RAFALAVESG RLAFEAGPVE ARTKAQASTP
251 TVGQPFWHSA EY*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 471>: m126-1.seq

```
1 ATGCTCACCC TATACGGCGA AACTTTCCCC TCGCGGCTGC TGCTCGGCAC
 51 GGCTGCCTAC CCGACCCCCG AAATCCTCAA ACAATCCATC CAAACCGCCC
    AGCCTGCGAT GATTACCGTC TCGCTGCGCC GCGCGGGAAG CGGCGGCGAG
101
    GCGCACGGTC AGGGGTTTTG GTCGCTGCTT CAAGAAACCG GCGTTCCCGT
151
201 CCTGCCGAAC ACGGCAGGCT GCCAAAGCGT GCAGGAAGCG GTAACGACGG
251 CGCAAATGGC GCGCGAAGTG TTTGAAACCG ATTGGATAAA ATTGGAACTC
301 ATCGGAGATG ACGACACCTT GCAGCCGGAT GTGTTCCAGC TTGTCGAAGC
    GGCGGAAATC CTGATTAAAG ACGGCTTCAA AGTGCTGCCT TATTGCACCG
351
401 AAGACCTGAT TGCCTGCCGC CGCCTGCTCG ACGCGGGCTG TCAGGCGTTG
451 ATGCCGTGGG CGGCCCCGAT CGGCACGGGT TTGGGCGCGG TTCACGCCTA
501 CGCGTTGAAC GTCCTGCGCG AACGCCTGCC CGACACGCCG CTGATTATCG
551 ACGCGGGCTT GGGTTTGCCC TCACAGGCGG CACAAGTGAT GGAATGGGGC
    TTTGACGGCG TGCTTTTGAA TACTGCCGTT TCCCGCAGCG GCGATCCGGT
601
651 CAATATGGCA CGCGCCTTCG CACTCGCCGT CGAATCCGGA CGGCTGGCAT
701 TTGAAGCCGG ACCGGTCGAA GCACGCGACA AAGCGCAAGC CAGCACGCCG
751 ACAGTCGGAC AACCGTTTTG GCATTCGGCG GAATATTGA
```

This corresponds to the amino acid sequence <SEQ ID 5; ORF 126-1>: m126-1.pep

- 1 MLTLYGETFP SRLLLGTAAY PTPEILKQSI QTAQPAMITV SLRRAGSGGE 51 AHGQGFWSLL QETGVPVLPN TAGCQSVQEA VTTAQMAREV FETDWIKLEL
- 101 IGDDDTLQPD VFQLVEAAEI LIKDGFKVLP YCTEDLIACR RLLDAGCQAL
- 151 MPWAAPIGTG LGAVHAYALN VLRERLPDTP LIIDAGLGLP SQAAQVMEWG
- 201 FDGVLLNTAV SRSGDPVNMA RAFALAVESG RLAFEAGPVE ARDKAQASTP
- 251 TVGQPFWHSA EY*

```
m126-1/g126-1 96.9% identity in 262 aa overlap
                     10
                              20
```

m126-1.pep	MLTLYGETFPSRLLL	1111111		111111111	:1 1111111	111111
g126-1	MLTLYGETFPSRLLL	GTAAYPTP. 20	EILKQSVKTAR:	PAMITVSLKE 40	CIGCGGEARGQ 50	60 60
	10	20	50	30	30	00

40

50

60

	70	80	90	100	110	120
m126-1.pep	QETGVPVLPNTAG	CQSVQEAVTTA	QMAREVFET	WIKLELIGDE	DTLQPDVFQI	LVEAAEI
• •	(11111111111111111111111111111111111111	1111111111111	1111111111	1111111111		
q126-1	QETGVPVLPNTAG	CQSVQEAVTTA	QMAREVFETI	WIKLELIGDE	DTLQPDVFQ	LVEAAEI
•	70	80 .	90	100	110	120

	130	140	150	160	170	180
m126-1.pep	LIKDGFKVLPYCTE	DLIACRRLLD	AGCQALMPWA	APIGTGLGAV	HAYALNVLRE	RLPDTP
	11111111111111		11111111111		11111::111	11111
g126-1	LIKDGFKVLPYCTE	EDLIACRRLLE	AGCQALMPWA	APIGTGLGAV	HAYALKILRE	RLPDTP
3	130	140	150	160	170	180

	190	200	210	220	230	240
m126-1.pep	LIIDAGLGLPSQAA					
g126-1	LIIDAGLGLPSQAA	QVMEWGFDG'	VLLNTAVSRSC	DPVNMARAF <i>i</i>	ALAVESGRLAI	FEAGPVE
•	190	200	210	220	230	240

250 260 ARDKAQASTPTVGQPFWHSAEYX m126-1.pep ARTKAQASTPTVGQPFWHSAEYX g126-1 250

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 473>:

- 1 ATGCTCACCC TGTACAGCGA AACTTTCCCT TCGCGGCTGC TGCTCGGCAC
- 51 AGCCGCCTAC CCGACCCCTG AAATCCTCAA ACAATCCGTC CGAACCGCCC
- 101 GGCCCGCGAT GATTACCGTC TCGCTGCGCC GCGCGGGATG CGGCGGCGAG

```
GCGCACGGTC AGGGGTTTTG GTCGCTGCTT CAAGAAACCG GCGTTCCCGT
    151
        CCTGCCGAAC ACGGCAGGCT GCCAAAGCGT GCAGGAAGCG GTAACGACGG
    201
        CGCAAATGGC GCGCGAAGTG TTTGAAACCG ATTGGATTAA ACTCGAACTC
    251
        ATCGGCGACG ACGACACCTT GCAGCCGGAT GTGTTCCAAC TTGTCGAAGC
    301
        GGCGGAAATC CTGATTAAAG ACGGCTTCAA AGTGCTGCCT TATTGCACCG
    351
        AAGACCTGAT TGCCTGCCGC CGCCTGCTCG ACGCGGGCTG TCAGGCGTTG
    401
        ATGCCGTGGG CGGCCCCGAT CGGCACGGGT TTGGGCGCGG TTCACGCCTA
    451
        CGCGTTGAAC GTCCTGCGCG AACGCCTGCC CGACACGCCG CTGATTATCG
    501
    551
        ACGCGGGCTT GGGTTTGCCC TCACAGGCGG CACAAGTGAT GGAATGGGGC
        TTTGACGGCG TGCTTTTGAA TACTGCCGTT TCCCGCAGCG GCGATCCGGT
    601
        CAATATGGCA CGCGCCTTCG CACTCGCCGT CGAATCCGGA CGGCTGGCAT
    651
        TTGAAGCCGG ACCGGTCGAA GCACGCGACA AAGCGCAAGC CAGCACGCCG
    701
    751 ACAGTCGGAC AACCGTTTTG GCATTCGGCG GAATATTGA
This corresponds to the amino acid sequence <SEQ ID 474; ORF 126-1.a>:
a126-1.pep
        MLTLYSETFP SRLLLGTAAY PTPEILKQSV RTARPAMITV SLRRAGCGGE
        AHGQGFWSLL QETGVPVLPN TAGCQSVQEA VTTAQMAREV FETDWIKLEL
     51
         IGDDDTLQPD VFQLVEAAEI LIKDGFKVLP YCTEDLIACR RLLDAGCQAL
        MPWAAPIGTG LGAVHAYALN VLRERLPDTP LIIDAGLGLP SQAAQVMEWG
    151
        FDGVLLNTAV SRSGDPVNMA RAFALAVESG RLAFEAGPVE ARDKAQASTP
    201
    251 TVGOPFWHSA EY*
a126-1/m126-1 98.1% identity in 262 aa overlap
                   10
                            20
           MLTLYSETFPSRLLLGTAAYPTPEILKQSVRTARPAMITVSLRRAGCGGEAHGQGFWSLL
a126-1.pep
            MLTLYGETFPSRLLLGTAAYPTPEILKQSIQTAQPAMITVSLRRAGSGGEAHGQGFWSLL
m126-1
                                     30
                                              40
                                                       50
                            20
                                    90
                                             100
                                                      110
                            80
           QETGVPVLPNTAGCQSVQEAVTTAQMAREVFETDWIKLELIGDDDTLQPDVFQLVEAAEI
a126-1.pep
            QETGVPVLPNTAGCQSVQEAVTTAQMAREVFETDWIKLELIGDDDTLQPDVFQLVEAAEI
m126-1
                            80
                                     90
                                                      110
                   70
                                             160
                           140
                                    150
                                                      170
           LIKDGFKVLPYCTEDLIACRRLLDAGCQALMPWAAPIGTGLGAVHAYALNVLRERLPDTP
a126-1.pep
            LIKDGFKVLPYCTEDLIACRRLLDAGCQALMPWAAPIGTGLGAVHAYALNVLRERLPDTP
m126-1
                                                      170
                  130
                           140
                                    150
                                             160
                  190
                           200
                                    210
                                             220
                                                      230
                                                               240
            LIIDAGLGLPSQAAQVMEWGFDGVLLNTAVSRSGDPVNMARAFALAVESGRLAFEAGPVE
a126-1.pep
            LIIDAGLGLPSQAAQVMEWGFDGVLLNTAVSRSGDPVNMARAFALAVESGRLAFEAGPVE
m126-1
                  190
                           200
                                    210
                                             220
                                                      230
                                                               240
                  250
            ARDKAQASTPTVGQPFWHSAEYX
a126-1.pep
            1111111111111111111111111111
m126-1
            ARDKAQASTPTVGQPFWHSAEYX
                  250
                           260
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 475>: 9127.seq

. seq					
1	ATGGAAATAT	GGAATATGTT	GAACACTTGG	CCCGATGCCG	TCCCGATACG
51	CGCGGAGGCG	GCCGAATCCG	TGGCGGCGGT	CGCGGCTTTG	CTGCTGGCGC
101	GCGCCCTTCT	GTTGAATATC	CACTTCAGAC	GGCATCCGGA	TTTCGGCATC
151	GAAAGCAAGC	GGCGGTTTTT	GGTTGCCAGC	CGCAATATAA	CGCTGCTTTT
201	GGTGCTGTTT	TCGCTGGCAT	TTATCTGGTC	GGCGCAAATT	CAAACGCTGG
251	CTTTGTCGAT	GTTTGCGGTG	GCGGCGGCGG	TCGTCGTGGC	GACAAAAGAA
301	CTGATTATGT	GTCTGTCGGG	CAGTATTTTA	aggtctGCCA	CCCAGCAATA
351	CTCGGTCGGC	GACTATATCG	AAATCAACGG	CCTGCGCGGG	CGCGTGGTCG
401	ACATCAATCT	GTTGAACACG	CTGATGATGC	AGGTCGGTCC	GAACCCCTTG
451	GTCGGACAGC	TTGCGGGAAC	CACCGTTTCT	TTCCCCAACA	GCCTGTTGTT
501	GAGCCACCCC	GTGCGCCGCG	ACAATATTTT	GGGCGACTAT	GTCATCCATA

```
551 CGGTCGAAAT CCCCGTTCCC ATCCATTTGG ATTCGGATGA AGCCGTATGC
          601 CGTCTGAAAG CCGTACTCGA GCCCTTGTGC GCGCCCTACA TCCCCGCCAT
          651 TCAGCGGTAT TTGGAAAACG TGCAGGCGGA AAAACTGTTT ATCACGCCCG
              CCGCCAGGCC GCGCGTTACC CGCGTACCGT ACGACGACAA GGCATACCGC
              ATCATCGTCC GCTTCGCCTC CCCCGTTTCA AAGCGGCTGG AAATCCAACA
          801 GGCGGTTATG GACGAATTTT TGCGCGTACA ATACCGCCTG TTAAATCATC
          851 CCGCCGqctc cgAAACACTT TAA
This corresponds to the amino acid sequence <SEQ ID 476; ORF 127.ng>:
     g127.pep
              MEIWNMLNTW PDAVPIRAEA AESVAAVAAL LLARALLLNI HFRRHPDFGI
              ESKRRFLVAS RNITLLLVLF SLAFIWSAQI QTLALSMFAV AAAVVVATKE
          101 LIMCLSGSIL RSATQQYSVG DYIEINGLRG RVVDINLLNT LMMQVGPNPL
          151 VGQLAGTTVS FPNSLLLSHP VRRDNILGDY VIHTVEIPVP IHLDSDEAVC
          201 RLKAVLEPLC APYIPAIQRY LENVQAEKLF ITPAARPRVT RVPYDDKAYR
          251 IIVRFASPVS KRLEIQQAVM DEFLRVQYRL LNHPAGSETL *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 477>:
     m127.seq
              ATGGAAATAT GGAATATGTT GGACACTTGG CTCGGTGCCG TCCCGATACG
              TGCGGAGGCG GTCGAATCCG TGGCGGCGGT TGCGGCTTTG CTGCTGGCGC
           51
          101 GCGCCCTTCT GTTGAATATC CACTTCAAAC GGCATCCGGA TTTCGGCATC
          151 GAAAGCAAGC GGCGGTTTTT GGTTGCCAGC CGCAATATAA CGCTGCTTTT
          201 GGTGCTGTTT TCGCTGGCAT TTATCTGGTC GGCGCAAATC CAAACGCTGG
          251 CTTTGTCGAT GTTTGCGGTG GCGGCGGCGG TCGTCGTGGC GACGAAGGAA
          301 CTGATTATGT GTCTGTCGGG CAGTATTTTA AGGTCTGCCA CCCAGCAATA
          351 CTCGGTCGGC GACTATATCG AAATCAACGG CCTGCGCGGG CGCGTGGTCG
          401 ACATCAACCT GTTGAACACG CTGATGATGC AGGTCGGTCC GAACCCCTTG
          451 GTCGGACAGC TTGCGGGAAC CACCGTTTCT TTCCCCAACA GCCTGTTGTT
          501 GAGCCACCCC GTGCGCCGCG ACAATATTTT GGGCGACTAT GTCATCCATA
              CGGTCGAAAT CCCCGTTCCC ATCCATTTGG ATTCGGATGA AGCCGTATGC
          601 CGTCTGAAAG CCGTACTCGA GCCCTTGTGC GCGCCCTACA TCCCCGCCAT
          651 CCAACGGSAT TTGGAAAACG TGCAGGCGGA AAAACTGTTT ATCACGCCCG
          701 CCGCCAGACC GCGCGTTACC CGCGTGCCGT ACGATGACAA GGCATACCGC
          751 ATCATCGTCC GCTTCGCTTC CCCCGTTTCA AAGCGGCTGG AAATCCAACA
          801 GGCGGTTATG GACGAATTTT TGCGCGTACA ATACCGCCTG TTAAATCACC
          851 CCGCCGGCTC CGAAACACTT TAA
This corresponds to the amino acid sequence <SEQ ID 478; ORF 127>:
     m127.pep
              MEIWNMLDTW LGAVPIRAEA VESVAAVAAL LLARALLLNI HFKRHPDFGI
            1
           51 ESKRRFLVAS RNITLLLVLF SLAFIWSAQI QTLALSMFAV AAAVVVATKE
          101 LIMCLSGSIL RSATQQYSVG DYIEINGLRG RVVDINLLNT LMMQVGPNPL
          151 VGOLAGTTVS FPNSLLLSHP VRRDNILGDY VIHTVEIPVP IHLDSDEAVC
          201 RLKAVLEPLC APYIPAIQRX LENVQAEKLF ITPAARPRVT RVPYDDKAYR
          251 IIVRFASPVS KRLEIQQAVM DEFLRVQYRL LNHPAGSETL *
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 127 shows 97.9% identity over a 290 aa overlap with a predicted ORF (ORF 127.ng)
from N. gonorrhoeae:
     m127/g127
                                                                          60
                                             3.0
                                                       40
                                   20
                  MEIWNMLDTWLGAVPIRAEAVESVAAVAALLLARALLLNIHFKRHPDFGIESKRRFLVAS
     m127.pep
                  MEIWNMLNTWPDAVPIRAEAAESVAAVAALLLARALLLNIHFRRHPDFGIESKRRFLVAS
     q127
                                             30
                                                      40
                                                                50
                                   20
                         10
                                   80
                                             90
                                                      100
                                                               110
                  RNITLLLVLFSLAFIWSAQIQTLALSMFAVAAAVVVATKELIMCLSGSILRSATQQYSVG
     m127.pep
```

RNITLLLVLFSLAFIWSAQIQTLALSMFAVAAAVVVATKELIMCLSGSILRSATQQYSVG

g127

	70	8	10 90	100	110	120
	130	14			170	180
m127.pep	DYIEINGLRG	RVVDINLLN	ITLMMOVGPNPL	VGQLAGTTVS	FPNSLLLSHPVR	RDNILGDY
g127					FPNSLLLSHPVF 170	180
	130	14	0 150	160	170	180
	190	20	00 210	220	230	240
m127.pep					LENVQAEKLFIT	PAARPRVT
mil. / · pop	1111111111		11111111111		111111111111	
g127	VIHTVEIPVP	IHLDSDEAV	CRLKAVLEPLO	APYIPAIQRY	LENVQAEKLFI	PAARPRVT
_	190	20	00 210	220	230	240
	250				290	
m127.pep	RVPYDDKAYR	IIVRFASP			LNHPAGSETLX	
		111111111			 LNHPAGSETLX	
g127	RVPYDDKAYR 250				290	
	250	26	270	, 200	250	
The following pa	ortial DNA sea	uence was	identified in	N meningi	itidis <seo i<="" td=""><td>D 479>·</td></seo>	D 479>·
	attial DIVA sequ	defice was	identified if	114. meningi	muis BDQ I	20 175
a127.seq 1	ATGGAAATAT GG	מייביים	GGACACTTGG	CTCGGTGCCG	TCCCGATACG	
51	TGCGGAGGCG GT	CGAATCCG	TGGCGGTGGT	CGCGGCTTTG	CTGCTGGCGC	
101	GCGCCCTTCT GT	TGAATATC	CACTTCAAAC	GGCATCCGGA	TTTCGGCATC	
151	GAAAGCAAGC GG	CGGTTTTT	GGTTGCCAGC	CGCAATATAA	CGCTGCTTTT	
201	GGTGCTGTTT TC	GCTGGCAT	TTATCTGGTC	GGCGCAAATC	CAAACGCTGG	
251	CTTTGTCGAT GT	TTGCGGTG	GCGGCGGCGG	TCGTCGTGGC	GACGAAGGAA	
301	CTGATTATGT GI	CTGTCGGG	CAGCATTTTA	AGGTCTGCCA	CCCAGCAATA	
351	CTCGGTCGGC GA	CTATATCG	AAATCAACGG	CCTGCGCGGG	CGCGTGGTCG	
401	ACATCAACCT GT	TGAACACG	CTGATGATGC	AGGTCGGTCC	GAACCCCTTG	
451	GTCGGACAGC TI	GCGGGAAC	CACCGTTTCT	TTCCCCAACA	GCCTGTTGTT	
501	GAGCCACCCC GT	GCGCCGCG	ACAATATTTT	GGGCGACTAC	GTCATCCATA	
551	CGGTCGAAAT CC	CCGGTTCCC	ATCCATTTGG	ATTCGGATGA	AGCCGTATGC	
601	CGTCTGAAAG CO	GTACTCGA	GCCCTTGTGC	GCGCCCTACA	TCCCCGCCAT	
651	CCAACGCCAT TT	GGAAAACG	TGCAGGCGGA	AAAACTGTTT	ATCACGCCCG	
701	CCGCCAAACC GC	CGCGTTACC	CGCGTGCCGT	ACGATGACAA	GGCATACCGC	•
751	ATCATCGTCC GO	CTTCGCCTC	CCCCGTTTCA	AAGCGGCTGG	AAATCCAACA	
801	GGCGGTTATG GA	ACGAATTTT	TGCGCGTACA	ATACCGCCTG	TTAAATTACC	
851	CCGCCGGCTC CC	GAAACACTT	TAA			
			~~~			
This correspond	s to the amino	acid seque	ence <seq i<="" td=""><td>D 480; ORF</td><td>127.a&gt;:</td><td></td></seq>	D 480; ORF	127.a>:	
a127.pep						
1	MEIWNMLDTW LO	GAVPIRAEA	VES <u>VAVVAA</u> L	LLARALLLNI	HFKRHPDFGI	
51	ESKRRFLVAS RI	VITLLLVLF	SLAFIWSAQI	QTLALSMFAV	<u>AAAVVVAT</u> KE	
101	LIMCLSGSIL RS	SATQQYSVG	DYIEINGLRG	RVVDINLLNT	LMMQVGPNPL	
151	VGQLAGTTVS FI	PNSLLLSHP	VRRDNILGDY	VIHTVEIPVE	HLDSDEAVC	
201	RLKAVLEPLC A	PYIPAIQRH	LENVQAEKLF	ITPAAKPRVI	RVPYDDKAYR	
251	IIVRFASPVS K	RLEIQQAVM	DEFLRVQYRL	LNYPAGSETI	. *	
105/105 00		200	1			
m127/a127 98	3.6% identity in		•			60
	10			0 40		60
m127.pep	MEIWNMLDT	WLGAVPIRA	EAVESVAAVAA	LLLARALLLNI	HFKRHPDFGIE	SKRRLLVAS
	11111111	1   1   1   1   1   1	1111111:11	11111111111		
a127					HFKRHPDFGIE	
	1	U	20 3	0 40	50	60
	7:	n	80 9	0 100	110	120
m127.pep					ELIMCLSGSILR	
miz/.beb	[[]]]]]	111111111		11111111		
a127	RNITLLLVI	FSLAFTWSA	OIOTLALSMFA	VAAAVVVATKI	ELIMCLSGSILR	SATOOYSVG
uic,	7			0 100		120
	·				<del>-</del>	

m127.pep	130 DYIEINGLRGRVVD            DYIEINGLRGRVVD 130	1111111111	11111111111	HILLIAM	1111111111	11111
	190	200	210	220	230	240
m127.pep	VIHTVEIPVPIHLD	SDEAVCRLKA	VLEPLCAPYI	PAIQRXLENV	QAEKLFITPA	ARPRVT
						:  :
a127	VIHTVEIPVPIHLD	SDEAVCRLKA	VLEPLCAPYI	PATORHLENV		
	190	200	210	220	230	240
	250	260	270	280	290	
m127.pep	RVPYDDKAYRIIVR	FASPVSKRLE	IQQAVMDEFL	RVQYRLLNHP	AGSETLX	
		1111111111	1111111111	11111111:1	1111111	
a127	RVPYDDKAYRIIVR	FASPVSKRLE	CIOOAVMDEFL	RVQYRLLNYP	AGSETLX	
412,	250	260	270	280	290	

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 481>: g128.seq

s.seq					
1	atgattgaca	acgCActgct	ccacttgggc	gaagaaccCC	GTTTTaatca
51	aatccaaacc	gaagACAtca	AACCCGCCGT	CCAAACCGCC	ATCGCCGAAG
101	CGCGCGGACA	AATCGCCGCC	GTCAAAGCGC	AAACGCACAC	CGGCTGGGCG
151	AACACCGTCG	AGCGTCTGAC	CGGCATCACC	GAACGCGTCG	GCAGGATTTG
201	GGGCGTCGTG	${\tt TCCCATCTCA}$	ACTCCGTCGT	CGACACGCCC	GAACTGCGCG
251	CCGTCTATAA	CGAACTGATG	CCTGAAATCA	CCGTCTTCTT	CACCGAAATC
301		TCGAACTGTA			
351		ACGCTTTCCC			
401		CGTATTGAGC			
451	GAACTGGCAA	AACTGCAAAC	CGAAGGCGCG	CAACTTTCCG	CCAAATTCTC
501	CCAAAACGTC	CTAGACGCGA	CCGACGCGTT	CGGCATTTAC	TTTGACGATG
551		TGCCGGCATT			
601		GCGAAGGCAA			
651		GCCGTTATCC			
701		CGCCTACGTT			
751		ACACCGCCAA			
801		CTGCTCGGCT			
851		GGACACGCCC			
901		CCAAACCCTA			
951		GAACACCTCG			
1001		CGAAAAACTG			
1051		AATACTTCCC			
1101		AAACTCTACG			
1151	TCTGGCACAA	AGACGTGCGC	TATTTTGAAT	TGCAACAAAA	CGGCAAAACC
1201		TTTATATGGA			
1251		AACGACtaca			
1301	TGCAACTGCC	CACCGCCTAC	CTCGTCTGCA	ACTTCGCCCC	GCCCGTCGGC
1351	GGCAAAGAAG	CGCGTTTAAG	CCACGACGAA	ATCCTCACCC	TCTTCCACGA
1401	AacCGGCCAC	GGACTGCACC	ACCTGCTTAC	CCAAGTGGAC	GAACTGGGCG
1451	TGTCCGGCAT	CAAcggcgtA	GAATGGGACG	CGGTCGAACT	GCCCAGCCAG
1501	TTTATGGAAA	ACTTCGTTTG	GGAATACAAT	GTATTGGCAC	AAATGTCCGC
1551	CCACGAAGAA	AccgGCGAGC	CCCTGCCGAA	AGAACTCTTC	GACAAAATGC
1601	TcgcCGCCAA	AAACTTCCAG	CGCGGTATGT	TCCTCGTCCG	GCAAATGGAG
1651		TCGATATGAT			
1701		CAGCAGGTTT			
1751		CGAATACAAC			
1801		ATTCCGCAGG			
1851		GCCTACGCCG			
1901		CTTCTGGCAA			
1951	gcgGCGGAAT	CCTTCAAAGC	CTTCCGCGGA	CGCGAACCGA	GCATAGACGC

```
2001 ACTGCTGCGC CAaagcggtT TCGACAACGC gGCttgA
This corresponds to the amino acid sequence <SEQ ID 482; ORF 128.ng>:
     g128.pep
             1 MIDNALLHLG EEPRFNQIQT EDIKPAVQTA IAEARGQIAA VKAQTHTGWA
            51 NTVERLTGIT ERVGRIWGVV SHLNSVVDTP ELRAVYNELM PEITVFFTEI
           101 GQDIELYNRF KTIKNSPEFA TLSPAQKTKL DHDLRDFVLS GAELPPEROA
           151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
           201 AAQSEGKTGY KIGLQIPHYL AVIQYAGNRE LREQIYRAYV TRASELSNDG
               KFDNTANIDR TLENALKTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
           251
                ARRAKPYAEK DLAEVKAFAR EHLGLADPQP WDLSYAGEKL REAKYAFSET
           301
               EVKKYFPVGK VLAGLFAQIK KLYGIGFAEK TVPVWHKDVR YFELQQNGKT
           351
           401 IGGVYMDLYA REGKRGGAWM NDYKGRRRFA DGTLQLPTAY LVCNFAPPVG
           451 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
           501 FMENFVWEYN VLAQMSAHEE TGEPLPKELF DKMLAAKNFQ RGMFLVRQME
           551 FALFDMMIYS ESDECRLKNW QQVLDSVRKE VAVIQPPEYN RFANSFGHIF
           601 AGGYSAGYYS YAWAEVLSTD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
           651 AAESFKAFRG REPSIDALLR QSGFDNAA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 483>:
     m128.seq (partial)
             1 ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
            51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATCGCCGAAG
           101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
           151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
           201 GGGCGTGGTG TCGCACCTCA ACTGCGTCGC CGACACGCCC GAACTGCGCG
           251 CCGTCTATAA CGAACTGATG CCCGAAATCA CCGTCTTCTT CACCGAAATC
           301 GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
                CGAATTCGAC ACCCTCTCCC CCGCACAAAA AACCAAACTC AACCAC
           351
               TACGCCAGCG AAAAACTGCG CGAAGCCAAA TACGCGTTCA GCGAAACCGA
            51 WGTCAAAAA TAYTTCCCYG TCGGCAAWGT ATTAAACGGA CTGTTCGCCC
           101 AAMTCAAAAA ACTMTACGGC ATCGGATTTA CCGAAAAAAC YGTCCCCGTC
           151 TGGCACAAAG ACGTGCGCTA TTKTGAATTG CAACAAAACG GCGAAMCCAT
           201 AGGCGGCGTT TATATGGATT TGTACGCACG CGAAGGCAAA CGCGGCGGCG
           251 CGTGGATGAA CGACTACAAA GGCCGCCGCC GTTTTTCAGA CGGCACGCTG
           301 CAAYTGCCCA CCGCCTACCT CGTCTGCAAC TTCGCCCCAC CCGTCGGCGG
           351 CAGGGAAGCC CGCYTGAGCC ACGACGAAAT CCTCATCCTC TTCCACGAAA
           401 CCGGACACGG GCTGCACCAC CTGCTTACCC AAGTGGACGA ACTGGGCGTA
451 TCCGGCATCA ACGGCGTAKA ATGGGACGG GTCGAACTGC CCAGCCAGTT
501 TATGGAAAAT TTCGTTTGGG AATACAATGT CTTGGCACAA mTGTCAGCCC
551 ACGAAGAAAC CGGCGTTCCC YTGCCGAAAG AACTCTTSGA CAAAWTGCTC
601 GCCGCCAAAA ACTTCCAASG CGGCATGTTC YTSGTCCGGC AAWTGGAGTT
           651 CGCCCTCTTT GATATGATGA TTTACAGCGA AGACGACGAA GGCCGTCTGA
           701 AAAACTGGCA ACAGGTTTTA GACAGCGTGC GCAAAAAAGT CGCCGTCATC
           751 CAGCCGCCG AATACAACCG CTTCGCCTTG AGCTTCGGCC ACATCTTCGC
           801 AGGCGGCTAT TCCGCAGCTN ATTACAGCTA CGCGTGGGCG GAAGTATTGA
           851 GCGCGGACGC ATACGCCGCC TTTGAAGAAA GCGACGATGT CGCCGCCACA
           901 GGCAAACGCT TTTGGCAGGA AATCCTCGCC GTCGGGGNAT CGCGCAGCGG
           951 ngcagaatcc ttcaaagcct tccgcggccg cgaaccgagc atagacgcac
          1001 TCTTGCGCCA CAGCGGTTTC GACAACGCGG TCTGA
This corresponds to the amino acid sequence <SEQ ID 484; ORF 128>:
                 (partial)
      m128.pep
                 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
             1
             51 NTVEPLTGIT ERVGRIWGVV SHLNCVADTP ELRAVYNELM PEITVFFTEI
           101 GQDIELYNRF KTIKNSPEFD TLSPAQKTKL NH
      //
                YASEKLREAK YAFSETXVKK YFPVGXVLNG LFAQXKKLYG IGFTEKTVPV
                WHKDVRYXEL QQNGEXIGGV YMDLYAREGK RGGAWMNDYK GRRRFSDGTL
            101 QLPTAYLVCN FAPPVGGREA RLSHDEILIL FHETGHGLHH LLTQVDELGV
            151 SGINGVXWDA VELPSQFMEN FVWEYNVLAQ XSAHEETGVP LPKELXDKXL
            201 AAKNFQXGMF XVRQXEFALF DMMIYSEDDE GRLKNWQQVL DSVRKKVAVI
            251 QPPEYNRFAL SFGHIFAGGY SAAXYSYAWA EVLSADAYAA FEESDDVAAT
```

301 GKRFWQEILA VGXSRSGAES FKAFRGREPS IDALLRHSGF DNAV* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 128 shows 91.7% identity over a 475 aa overlap with a predicted ORF (ORF 128.ng)

from *N. gonorrhoeae*:

m128/g128

	10 20 30 40 50 60	
g128.pep	MIDNALLHLGEEPRFNQIQTEDIKPAVQTAIAEARGQIAAVKAQTHTGWANTVERLTGI	ľ
m128		l Γ
11120	10 20 30 40 50 60	
~120 ~~~	70 80 90 100 110 120 ERVGRIWGVVSHLNSVVDTPELRAVYNELMPEITVFFTEIGQDIELYNRFKTIKNSPEF	
g128.pep		•
m128	ERVGRIWGVVSHLNCVADTPELRAVYNELMPEITVFFTEIGQDIELYNRFKTIKNSPEF	
	70 80 90 100 110 120	)
	130 140 150 160 170 180	٥
g128.pep	TLSPAQKTKLDHDLRDFVLSGAELPPERQAELAKLQTEGAQLSAKFSQNVLDATDAFGI	Y
m128	TLSPAQKTKLNH 130	
	//	
	340 350 360	_
g128.pep	YAGEKLREAKYAFSETEVKKYFPVGKVLA(   :	ر ا
m128	YASEKLREAKYAFSETXVKKYFPVGXVLN	Ġ
	10 20 3	0
	370 380 390 400 410 420	
g128.pep	LFAQIKKLYGIGFAEKTVPVWHKDVRYFELQQNGKTIGGVYMDLYAREGKRGGAWMNDY	K
5		1
m128	LFAQXKKLYGIGFTEKTVPVWHKDVRYXELQQNGEXIGGVYMDLYAREGKRGGAWMNDY 40 50 60 70 80 9	
	40 50 60 70 80 9	•
	430 440 450 460 470 480	
g128.pep	GRRRFADGTLQLPTAYLVCNFAPPVGGKEARLSHDEILTLFHETGHGLHHLLTQVDELG	V I
m128	GRRRFSDGTLQLPTAYLVCNFAPPVGGREARLSHDEILILFHETGHGLHHLLTQVDELG	v
	100 110 120 130 140 15	
	490 500 510 520 530 540	
g128.pep	SGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGEPLPKELFDKMLAAKNFQRGM	F
5		
m128	SGINGVXWDAVELPSQFMENFVWEYNVLAQXSAHEETGVPLPKELXDKXLAAKNFQXGM 160 170 180 190 200 21	
	160 170 160 190 200 21	Ŭ
	550 560 570 580 590 600	
g128.pep	LVRQMEFALFDMMIYSESDECRLKNWQQVLDSVRKEVAVIQPPEYNRFANSFGHIFAGG	
m128	XVRQXEFALFDMMIYSEDDEGRLKNWQQVLDSVRKKVAVIQPPEYNRFALSFGHIFAGG	•
20	220 230 240 250 260 27	
	610 620 630 640 650 660	
g128.pep	610 620 630 640 650 660 SAGYYSYAWAEVLSTDAYAAFEESDDVAATGKRFWQEILAVGGSRSAAESFKAFRGREF	s
3**** F-E		
m128	SAAXYSYAWAEVLSADAYAAFEESDDVAATGKRFWQEILAVGXSRSGAESFKAFRGREF	
	280 290 300 310 320 33	U

```
670 679
g128.pep IDALLRQSGFDNAAX
||||||:||||:
m128 IDALLRHSGFDNAVX
340
```

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 485>:

```
a128.seq
          ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
      51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATTGCCGAAG
     101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
     151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
     201 GGGCGTGGTG TCGCACCTCA ACTCCGTCAC CGACACGCCC GAACTGCGCG
          CCGCCTACAA TGAATTAATG CCCGAAATTA CCGTCTTCTT CACCGAAATC
     301 GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAACTCCCC
     351 CGAGTTCGAC ACCCTCTCCC ACGCGCAAAA AACCAAACTC AACCACGATC
     401 TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA
     451 GAATTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
          CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
     551 CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCT
     601 GCCGCGCAAA GCGAAGGCAA AACAGGCTAC AAAATCGGTT TGCAGATTCC
     651 GCACTACCTC GCCGTCATCC AATACGCCGA CAACCGCAAA CTGCGCGAAC
     701 AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAGCTTTC AGACGACGGC
          AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCCCTGCA
     751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCCCTGCAA
801 AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA
     851 CCAAAATGGC GGACACCCCC GAACAAGTTT TAAACTTCCT GCACGACCTC
     901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
     951 CTTCGCCCGC GAAAGCCTCG GCCTCGCCGA TTTGCAACCG TGGGACTTGG
    1001 GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
    1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC
    1101 CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG
          TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC
    1151
    1201 ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
    1251 CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC
1301 TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCACCCC GCCCGTCGCC
    1351 GGCAAAGAAG CCCGCTTGAG CCATGACGAA ATCCTCACCC TCTTCCACGA
    1401 AACCGGACAC GGCCTGCACC ACCTGCTTAC CCAAGTCGAC GAACTGGGCG
    1451 TATCCGGCAT CAACGGCGTA GAATGGGACG CAGTCGAACT GCCCAGTCAG
          TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCGC AAATGTCCGC
          CCACGAAGAA ACCGGCGTTC CCCTGCCGAA AGAACTCTTC GACAAAATGC
    1601 TCGCCGCCAA AAACTTCCAA CGCGGAATGT TCCTCGTCCG CCAAATGGAG
    1651 TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT
    1701 GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAGAA GTCGCCGTCG
    1751 TCCGACCGCC CGAATACAAC CGCTTCGCCA ACAGCTTCGG CCACATCTTC
          GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT
    1851 GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA
    1901 CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC
          GCGGCAGAAT CCTTCAAAGC CTTCCGCGGA CGCGAACCGA GCATAGACGC
    2001 ACTCTTGCGC CACAGCGGCT TCGACAACGC GGCTTGA
```

#### This corresponds to the amino acid sequence <SEQ ID 486; ORF 128.a>:

128.pep					
1	MTDNALLHLG	EEPRFDQIKT	EDIKPALQTA	IAEAREQIAA	IKAQTHTGWA
51	NTVEPLTGIT	ERVGRIWGVV	SHLNSVTDTP	ELRAAYNELM	PEITVFFTEI
101	GQDIELYNRF	KTIKNSPEFD	TLSHAQKTKL	NHDLRDFVLS	GAELPPEQQA
151	ELAKLQTEGA	QLSAKFSQNV	LDATDAFGIY	FDDAAPLAGI	PEDALAMFAA
201	AAQSEGKTGY	KIGLQIPHYL	AVIQYADNRK	LREQIYRAYV	TRASELSDDG
251	KFDNTANIDR	TLENALQTAK	LLGFKNYAEL	SLATKMADTP	EQVLNFLHDL
301	ARRAKPYAEK	DLAEVKAFAR	ESLGLADLQP	WDLGYAGEKL	REAKYAFSET
351	EVKKYFPVGK	VLNGLFAQIK	KLYGIGFTEK	TVPVWHKDVR	YFELQQNGET
401	IGGVYMDLYA	REGKRGGAWM	NDYKGRRRFS	DGTLQLPTAY	LVCNFTPPVG
451	GKEARLSHDE	ILTLFHETGH	GLHHLLTQVD	ELGVSGINGV	<b>EWDAVELPSQ</b>
501	FMENFVWEYN	VLAQMSAHEE	TGVPLPKELF	DKMLAAKNFQ	RGMFLVRQME

FALFDMMIYS EDDEGRLKNW QQVLDSVRKE VAVVRPPEYN RFANSFGHIF
AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
AAESFKAFRG REPSIDALLR HSGFDNAA*

m128/a128 66.0%	% identity in 677 aa overlap
100	10 20 30 40 50 60 MTDNALLHLGEEPRFDQIKTEDIKPALQTAIAEAREQIAAIKAQTHTGWANTVEPLTGIT
m128.pep	
a128	MTDNALLHLGEEPRFDQIKTEDIKPALQTAIAEAREQIAAIKAQTHTGWANTVEPLTGIT
	10 20 30 40 50 60
	70 80 90 100 110 120
m128.pep	ERVGRIWGVVSHLNCVADTPELRAVYNELMPEITVFFTEIGQDIELYNRFKTIKNSPEFD
a128	ERVGRIWGVVSHLNSVTDTPELRAAYNELMPEITVFFTEIGQDIELYNRFKTIKNSPEFD
	70 80 90 100 110 120
	130
m128.pep	TLSPAQKTKLNH
	 TLSHAQKTKLNHDLRDFVLSGAELPPEQQAELAKLQTEGAQLSAKFSQNVLDATDAFGIY
a128	130 140 150 160 170 180
-120	
m128.pep	
a128	FDDAAPLAGIPEDALAMFAAAAQSEGKTGYKIGLQIPHYLAVIQYADNRKLREQIYRAYV
	190 200 210 220 230 240
,	
m128.pep	
a128	TRASELSDDGKFDNTANIDRTLENALQTAKLLGFKNYAELSLATKMADTPEQVLNFLHDL
4120	250 260 270 280 290 300
	140 150
m128.pep	YASEKLREAKYAFSETXVKKYFPVGX
	:
a128	ARRAKPYAEKDLAEVKAFARESLGLADLQPWDLGYAGEKLREAKYAFSETEVKKYFPVGK 310 320 330 340 350 360
100	160 170 180 190 200 210 VLNGLFAQXKKLYGIGFTEKTVPVWHKDVRYXELQQNGEXIGGVYMDLYAREGKRGGAWM
m128.pep	
a128	VLNGLFAQIKKLYGIGFTEKTVPVWHKDVRYFELQQNGETIGGVYMDLYAREGKRGGAWM
	370 380 390 400 410 420
	220 230 240 250 260 270
m128.pep	NDYKGRRRFSDGTLQLPTAYLVCNFAPPVGGREARLSHDEILILFHETGHGLHHLLTQVI
a128	
4120	430 440 450 460 470 480
	280 290 300 310 320 330
m128.pep	ELGVSGINGVXWDAVELPSQFMENFVWEYNVLAQXSAHEETGVPLPKELXDKXLAAKNFC
a128	ELGVSGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGVPLPKELFDKMLAAKNF( 490 500 510 520 530 540
	430 300 010 011
	340 350 360 370 380 390 XGMFXVRQXEFALFDMMIYSEDDEGRLKNWQQVLDSVRKKVAVIQPPEYNRFALSFGHI
m128.pep	4   1   1   1   1   1   1   1   1   1
a128	RGMFLVRQMEFALFDMMIYSEDDEGRLKNWQQVLDSVRKEVAVVRPPEYNRFANSFGHI
	550 560 570 580 590 600

```
430
                410
                       420
         AGGYSAAXYSYAWAEVLSADAYAAFEESDDVAATGKRFWQEILAVGXSRSGAESFKAFRG
m128.pep
         AGGYSAGYYSYAWAEVLSADAYAAFEESDDVAATGKRFWQEILAVGGSRSAAESFKAFRG
a128
                                             650
                                     640
                              630
                      620
         460
                470
         REPSIDALLRHSGFDNAVX
m128.pep
          REPSIDALLRHSGFDNAAX
a128
               670
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 487>: g128-1.seq (partial)

```
1 ATGATTGACA ACGCACTGCT CCACTTGGGC GAAGAACCCC GTTTTAATCA
  51 AATCAAAACC GAAGACATCA AACCCGCCGT CCAAACCGCC ATCGCCGAAG
101 CGCGCGGACA AATCGCCGCC GTCAAAGCGC AAACGCACAC CGGCTGGGCG
151 AACACCGTCG AGCGTCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
201 GGGCGTCGTG TCCCATCTCA ACTCCGTCGT CGACACGCCC GAACTGCGCG
251 CCGTCTATAA CGAACTGATG CCTGAAATCA CCGTCTTCTT CACCGAAATC
301 GGACAAGACA TCGAACTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
351 CGAATTTGCA ACGCTTTCCC CCGCACAAAA AACCAAGCTC GATCACGACC
     TGCGCGATTT CGTATTGAGC GGCGCGGAAC TGCCGCCCGA ACGGCAGGCA
 401
 451 GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
 501 CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
 551 CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC
 601 GCCGCGCAAA GCGAAGGCAA AACAGGTTAC AAAATCGGCT TGCAGATTCC
 651 GCACTACCTT GCCGTTATCC AATACGCCGG CAACCGCGAA CTGCGCGAAC
 701 AAATCTACCG CGCCTACGTT ACCCGTGCCA GCGAACTTTC AAACGACGGC
 751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCATTGAA
801 AACCGCCAAA CTGCTCGGCT TTAAAAATTA CGCCGAATTG TCGCTGGCAA
 851 CCAAAATGGC GGACACGCCC GAACAGGTTT TAAACTTCCT GCACGACCTC
 901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
 951 CTTCGCCCGC GAACACCTCG GTCTCGCCGA CCCGCAGCCG TGGGACTTGA
1001 GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTTCTGGCAG GCCTGTTCGC
1101 CCAAATCAAA AAACTCTACG GCATCGGATT CGCCGAAAAA ACCGTTCCCG
1151 TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCAAAACC
1201 ATCGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
1251 CGCGTGGATG AACGACTACA AAGGCCGCCG CCGCTTTGCC GACGGCACGC
1301 TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC GCCCGTCGGC
1351 GGCAAAGAAG CGCGTTTAAG CCACGACGAA ATCCTCACCC TCTTCCACGA
1401 AACCGGCCAC GGACTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG
1451 TGTCCGGCAT CAACGGCGTA AAA
```

This corresponds to the amino acid sequence <SEQ ID 488; ORF 128-1.ng>: g128-1.pep (partial)

```
1 MIDNALLHLG EEPRFNQIKT EDIKPAVQTA IAEARGQIAA VKAQTHTGWA
 51 NTVERLTGIT ERVGRIWGVV SHLNSVVDTP ELRAVYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFA TLSPAQKTKL DHDLRDFVLS GAELPPERQA
151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
201 AAQSEGKTGY KIGLQIPHYL AVIQYAGNRE LREQIYRAYV TRASELSNDG
251 KFDNTANIDR TLENALKTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
301 ARRAKPYAEK DLAEVKAFAR EHLGLADPQP WDLSYAGEKL REAKYAFSET
351 EVKKYFPVGK VLAGLFAQIK KLYGIGFAEK TVPVWHKDVR YFELQQNGKT
401 IGGVYMDLYA REGKRGGAWM NDYKGRRRFA DGTLQLPTAY LVCNFAPPVG
451 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV K
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 489>: m128-1.seq

```
1 ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATCGCCGAAG
101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
```

151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG

```
201 GGGCGTGGTG TCGCACCTCA ACTCCGTCGC CGACACGCCC GAACTGCGCG
     CCGTCTATAA CGAACTGATG CCCGAAATCA CCGTCTTCTT CACCGAAATC
251
      GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
301
     CGAATTCGAC ACCCTCTCCC CCGCACAAAA AACCAAACTC AACCACGATC
351
      TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA
401
      GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
451
      CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
501
     CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC
551
      GCCGCGCAAA GCGAAAGCAA AACAGGCTAC AAAATCGGCT TGCAGATTCC
601
651 ACACTACCTC GCCGTCATCC AATACGCCGA CAACCGCGAA CTGCGCGAAC
701 AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAACTTTC AGACGACGGC
     AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGCAA ACGCCCTGCA
751
     AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA
801
      CCAAAATGGC GGACACGCCC GAACAAGTTT TAAACTTCCT GCACGACCTC
851
     GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
901
      CTTCGCCCGC GAAAGCCTGA ACCTCGCCGA TTTGCAACCG TGGGACTTGG
951
1001 GCTACGCCAG CGAAAAACTG CGCGAAGCCA AATACGCGTT CAGCGAAACC
1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC
      CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG
1101
1151 TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC
1201 ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
      CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC
1251
1301 TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC ACCCGTCGGC
      GGCAGGGAAG CCCGCCTGAG CCACGACGAA ATCCTCATCC TCTTCCACGA
      AACCGGACAC GGGCTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG
1401
      TATCCGGCAT CAACGCCGTA GAATGGGACG CGGTCGAACT GCCCAGCCAG
1451
      TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCAC AAATGTCAGC
1551 CCACGAAGAA ACCGGCGTTC CCCTGCCGAA AGAACTCTTC GACAAAATGC
      TCGCCGCCAA AAACTTCCAA CGCGGCATGT TCCTCGTCCG GCAAATGGAG
      TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT
1651
1701 GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAAAA GTCGCCGTCA
      TCCAGCCGCC CGAATACAAC CGCTTCGCCT TGAGCTTCGG CCACATCTTC
1751
1801 GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT
1851 GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA
1901 CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC
1951 GCGGCAGAAT CCTTCAAAGC CTTCCGCGGC CGCGAACCGA GCATAGACGC
2001 ACTCTTGCGC CACAGCGGTT TCGACAACGC GGTCTGA
```

This corresponds to the amino acid sequence <SEQ ID 490; ORF 128-1>: m128-1.pep.

```
1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
51 NTVEPLTGIT ERVGRIWGVV SHLNSVADTP ELRAVYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFD TLSPAQKTKL NHDLRDFVLS GAELPPEQQA
151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
201 AAQSESKTGY KIGLQIPHYL AVIQYADNRE LREQIYRAYV TRASELSDDG
251 KFDNTANIDR TLANALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
301 ARRAKPYAEK DLAEVKAFAR ESLNLADLQP WDLGYASEKL REAKYAFSET
351 EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
401 IGGVYMDLYA REGKRGGAWM NDYKGRRRFS DGTLQLPTAY LVCNFAPPVG
451 GREARLSHDE ILILFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
551 FALFDMMIYS EDDEGRLKNW QQVLDSVRKK VAVIQPPEYN RFALSFGHIF
561 AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
```

ml28-1/gl28-1 94.5% identity in 491 aa overlap



g128-1.pep	130 TLSPAQKTKLDHDLRDF            TLSPAQKTKLNHDLRDF	PVLSGAELPPE 140	:         EQQAELAKLQT 150	 `EGAQLSAKFS 160	 SQNVLDATDAE 170	 FGIY - 180
g128-1.pep	190 FDDAAPLAGIPEDALAN            FDDAAPLAGIPEDALAN 190	[11][1][]:[			311111111	
g128-1.pep m128-1	250 TRASELSNDGKFDNTAM        :     TRASELSDDGKFDNTAM 250	инн н	: [ ] [ ] [ ] [ ] [ ]			i
g128-1.pep	310 ARRAKPYAEKDLAEVKI           ARRAKPYAEKDLAEVKI 310	11111 1:11	1	:		
g128-1.pep	370 VLAGLFAQIKKLYGIG	1:1111111	111111111	:		
g128-1.pep	430 NDYKGRRRFADGTLQL               NDYKGRRRFSDGTLQL 430	1111111111	11111:1111	111111 111	111111111	
g128-1.pep m128-1	490 ELGVSGINGVK         : ELGVSGINGVEWDAVE 490	LPSQFMENFV 500	WEYNVLAQMS 510	AHEETGVPLP 520	KELFDKMLAA 530	KNFQ 540

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 491>: a128-1.seq

```
1 ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
 51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATTGCCGAAG
101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
201 GGGCGTGGTG TCGCACCTCA ACTCCGTCAC CGACACGCCC GAACTGCGCG
251 CCGCCTACAA TGAATTAATG CCCGAAATTA CCGTCTTCTT CACCGAAATC
301 GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAACTCCCC
351 CGAGTTCGAC ACCCTCTCCC ACGCGCAAAA AACCAAACTC AACCACGATC
401 TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA
451 GAATTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
501 CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
551 CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCT
601 GCCGCGCAAA GCGAAGGCAA AACAGGCTAC AAAATCGGTT TGCAGATTCC
651 GCACTACCTC GCCGTCATCC AATACGCCGA CAACCGCAAA CTGCGCGAAC
701 AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAGCTTTC AGACGACGGC
751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCCCTGCA
801 AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA
851 CCAAAATGGC GGACACCCCC GAACAAGTTT TAAACTTCCT GCACGACCTC
901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
 951 CTTCGCCCGC GAAAGCCTCG GCCTCGCCGA TTTGCAACCG TGGGACTTGG
1001 GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC
1101 CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG
1151 TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC
1201 ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
```

		AACGACTACA	**************	CCCTTTTTTCN	CACCCCACGC	
1251	CGCGTGGATG	AACGACTACA	AAGGCCGCCG	ACTURE ACCC	CCCCCTCCCC	
1301	TGCAACTGCC	CACCGCCTAC	CTCGTCTGCA	ACTICALCCC	mommaga co	
1351	GGCAAAGAAG	CCCGCTTGAG	CCATGACGAA	ATCCTCACCC	CALCUACGA	
1401	AACCGGACAC	GGCCTGCACC	ACCIGCITAC	CCAAGTCGAC	GAACIGGGCG	
1451	TATCCGGCAT	CAACGGCGTA	GAATGGGACG	CAGTCGAACT	GCCCAGTCAG	
1501	TTTATGGAAA	ATTTCGTTTG	GGAATACAAT	GTCTTGGCGC	AAATGTCCGC	
1551	CCACGAAGAA	ACCGGCGTTC	CCCTGCCGAA	AGAACTCTTC	GACAAAATGC	
1601	TCGCCGCCAF	AAACTTCCAA	CGCGGAATGT	TCCTCGTCCG	CCAAATGGAG	
1651	TTCGCCCTCT	TTGATATGAT	GATTTACAGC	GAAGACGACG	AAGGCCGTCT	
1701	GAAAAACTGO	CAACAGGTTT	TAGACAGCGT	GCGCAAAGAA	GTCGCCGTCG	
1751	TCCGACCGC	CGAATACAAC	CGCTTCGCCA	ACAGCTTCGG	CCACATCTTC	
1801	GCAGGCGGCT	ATTCCGCAGG	CTATTACAGC	TACGCGTGGG	CGGAAGTATT	
	GLAGGEGGE	GCATACGCCG	CCTTTGAAGA	AAGCGACGAT	GTCGCCGCCA	
1851	GAGCGCGGAC	CTTTTGGCAG	CANATCCTCC	CCCTCGCGG	ATCGCGCAGC	
1901	CAGGCAAACC	CITTIGGCAG	GAAATCCTCG	CCGTCGGCGG	CCATACACCC	
1951	GCGGCAGAAT	CCTTCAAAGC	CITCCGCGGA	CGCGAACCGA	GCATAGACGC	
2001	ACTCTTGCG	CACAGCGGCT	TCGACAACGC	GGCTTGA		
This corr	esponds to	the amino	acid sequer	ice <seq i<="" td=""><td>D 492; ORF</td><td>128-1.a&gt;:</td></seq>	D 492; ORF	128-1.a>:
a128-1.pe			•	_		
_	P MOTERAL THE /	EEPRFDQIKT	EDTKPALOTA	TAFAREOIAA	IKAOTHTGWA	
1	MIDNALLING	r ervgriwgvv	Chimenature	ET.DAAVNET.M	DETTVEETET	
51	NIVEPLIGI.	F KTIKNSPEFD	SUTINGALDIE	MAID! BDEAU C	CARLDDEOOA	
101	GQDIELYNR	F KTIKNSPEFU	TLSHAQKTKL	NHULKUFVLS	DEDALAMENA	
151	ELAKLQTEG	A QLSAKFSQNV	LDATDAFGIY	FDDAAPLAGI	PEDALAMFAA	
201	AAQSEGKTG:	Y KIGLQIPHYL	, AVIQYADNRK	LREQIYRAYV	TRASELSDDG	
251	KFDNTANID	R TLENALQTAK	LLGFKNYAEL	SLATKMADTP	EQVLNFLHDL	
301	ARRAKPYAE	K DLAEVKAFAR	ESLGLADLQP	WDLGYAGEKL	REAKYAFSET	
351	EVKKYFPVG	K VLNGLFAQIK	KLYGIGFTEK	TVPVWHKDVR	YFELQQNGET	
401	IGGVYMDLY	A REGKRGGAWM	NDYKGRRRFS	DGTLQLPTAY	LVCNFTPPVG	
451	CKEAPI.SHD	E ILTLFHETGH	GLHHLLTOVD	ELGVSGINGV	EWDAVELPSQ	
501	EMENICULEVI	N VLAQMSAHEE	TGVPLPKELF	DKMLAAKNEC	RGMFLVROME	
	PAT POMMTY	S EDDEGRLKNW	OOVIDSVRKE	VAVVRPPEYN	RFANSFGHIF	
551	FALFDMMII	S YAWAEVLSAI	ZANYEEECDD	VANTCEPENC	FIT.AVGGSRS	
601				ANYIGKKIMÖ	EIDAVGGGRG	
651	AAESFKAFR	G REPSIDALLF	HSGFDNAA*			
m12P 1/-1						
WT 7 9 - T \ 9 7	L28-1 97.8	% identity i	n 677 aa ov	erlap		
mr 70 - 1/97	L28-1 97.8	% identity i	n 677 aa ov			
WT 20 - I / 81		10	20 3	0 40		60
	AANGTM ce	10 LHLGEEPRFDO	20 3 KTEDIKPALQT	0 40 AIAEAREQIA	I KAQTHTGWANT	VEPLTGIT
m128-1/a1	AANDTM q∈	10 LHLGEEPRFDQI	20 3 KKTEDIKPALQT	0 40 AIAEAREQIA	IKAQTHTGWANT	VEPLTGIT
a128-1.pe	AANDTM q∈	10 LHLGEEPRFDQI	20 3 KKTEDIKPALQT	0 40 AIAEAREQIA	IKAQTHTGWANT	VEPLTGIT
	AANDTM q∈	10 LHLGEEPRFDQI          LHLGEEPRFDQI	20 3 KTEDIKPALQI            KTEDIKPALQI	0 40 AIAEAREQIAA          AIAEAREQIAA	AI KAQTHTGWANT           AI KAQTHTGWANT	VEPLTGIT
a128-1.pe	AANDTM q∈	10 LHLGEEPRFDQI	20 3 KTEDIKPALQI            KTEDIKPALQI	0 40 'AIAEAREQIAA           'AIAEAREQIAA	AI KAQTHTGWANT           AI KAQTHTGWANT	VEPLTGIT         VEPLTGIT
a128-1.pe	AANDTM q∈	10 LHLGEEPRFDQI          LHLGEEPRFDQI	20 3 KKTEDIKPALQT             KTEDIKPALQT 20 3	O 40 'AIAEAREQIAF                       'AIAEAREQIAF O 40	AIKAQTHTGWANT            AIKAQTHTGWANT ) 50	VEPLTGIT         VEPLTGIT 60
a128-1.pe	ep MTDNAL        MTDNAL	10 LHLGEEPRFDQI           LHLGEEPRFDQI 10	20 3 EKTEDIKPALQT            EKTEDIKPALQT 20 3	0 40 PAIAEAREQIAA            PAIAEAREQIAA 0 40	AIKAQTHTGWANT            AIKAQTHTGWANT 0 50	VEPLTGIT          VEPLTGIT 60
a128-1.pe	PD ERVGRI	10 LHLGEEPRFDQI LHLGEEPRFDQI 10 70 WGVVSHLNSVTI	20 3 IKTEDIKPALQT            IKTEDIKPALQT 20 3 80 9	0 40 CALABEAREQIAA                     CALABEAREQIAA 0 40 00 100 0.MPEITVFFTE	AIKAQTHTGWANT            AIKAQTHTGWANT   50   110 GQQDIELYNRFKT	VEPLTGIT         VEPLTGIT 60 120 IKNSPEFD
a128-1.pe	P MTDNAL MTDNAL MTDNAL	10 LHLGEEPRFDQI LHLGEEPRFDQI 10 70 WGVVSHLNSVTI	20 3 IKTEDIKPALQT            IKTEDIKPALQT 20 3  80 9 DTPELRAAYNEI	0 40 CALAEAREQIAA                     CALAEAREQIAA 0 40 00 100 0MPEITVFFTE	AIKAQTHTGWANT	VEPLTGIT         VEPLTGIT 60 120 IKNSPEFD
a128-1.pe	P MTDNAL MTDNAL MTDNAL	10 LHLGEEPRFDQI LHLGEEPRFDQI 10 70 WGVVSHLNSVTI	20 3  KKTEDIKPALQT  KKTEDIKPALQT  20 3  80 9  OTPELRAAYNEI                       OTPELRAVYNEI	O 40 ALAEAREQIAA                     ALAEAREQIAA O 40 MPEITVFFTE:                     MPEITVFFTE:	AIKAQTHTGWANT	VEPLTGIT         VEPLTGIT 60 120 IKNSPEFD
a128-1.pe	P MTDNAL MTDNAL MTDNAL	10 LHLGEEPRFDQI LHLGEEPRFDQI 10 70 WGVVSHLNSVTI	20 3  IKTEDIKPALQT              IKTEDIKPALQT  20 3  80 9  OTPELRAAYNEI        :     OTPELRAVYNEI	0 40 CALAEAREQIAA                     CALAEAREQIAA 0 40 00 100 0MPEITVFFTE	AIKAQTHTGWANT	VEPLTGIT         VEPLTGIT 60 120 IKNSPEFD
a128-1.pe	P MTDNAL MTDNAL MTDNAL	10 LHLGEEPRFDQI LHLGEEPRFDQI 10 70 WGVVSHLNSVTI	20 3 IKTEDIKPALQT            IKTEDIKPALQT 20 3 80 9 OTPELRAAYNEI       :    OTPELRAVYNEI 80 9	0 40 CALABEAREQIAA CALABEAREQIAA CO 100 CALABEAREQIAA CO 100 CALABEAREQIAA CO 100 CALABEAREQIAA CO 100 CALABEAREQIAA CO 100 CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALABEAREQIAA CALA	AIKAQTHTGWANT            AIKAQTHTGWANT   50   110   GQDIELYNRFKT               GQDIELYNRFKT	VEPLTGIT         VEPLTGIT 60  120 IKNSPEFD        IKNSPEFD
a128-1.pe	ep MTDNAL        MTDNAL  ep ERVGRI       ERVGRI	10 LHLGEEPRFDQ1 LHLGEEPRFDQ1 10 70 WGVVSHLNSVTI	20 3  KKTEDIKPALQT              KKTEDIKPALQT  20 3  80 5  OTPELRAAYNEI             OTPELRAVYNEI  80 5	0 40 CALAEAREQIAA 0 40 0 100 0MPEITVFFTE:           MPEITVFFTE: 0 100 50 160	AIKAQTHTGWANT            AIKAQTHTGWANT   50   110   GQDIELYNRFKT            IGQDIELYNRFKT   110   170	VEPLTGIT         VEPLTGIT 60  120 IKNSPEFD         IKNSPEFD 120 180
a128-1.pe	MTDNAL  MTDNAL  PD ERVGRI  ERVGRI	10 LHLGEEPRFDQ1 LHLGEEPRFDQ1 10 70 WGVVSHLNSVTI           WGVVSHLNSVAI 70 130	20 3  KKTEDIKPALQT                         KKTEDIKPALQT  20 3  80 S  OTPELRAAYNEI                       OTPELRAVYNEI  80 S  140 15	O 40 CALAEAREQIAA CALAEAREQIAA CO 100 CMPEITVFFTE: CO 100 CMPEITVFFTE: CO 100 CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CO 100 CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIAA CALAEAREQIA	AIKAQTHTGWANT	VEPLTGIT         VEPLTGIT 60  120 IKNSPEFD         IKNSPEFD 120  180 PATDAFGIY
a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL       MTDNAL  ep ERVGRI        ERVGRI	10 LHLGEEPRFDQI LHLGEEPRFDQI 10 70 WGVVSHLNSVTI           WGVVSHLNSVAI 70 130 EKTKLNHDLRDF	20 3  KKTEDIKPALQT                       KKTEDIKPALQT  20 3  80 9  OTPELRAAYNEI                       OTPELRAVYNEI  80 9  140 15  VLSGAELPPEQ	O 40 CALAEAREQIAA                     CALAEAREQIAA   O 40 CO 100 CMPEITVFFTE:                   MPEITVFFTE: 0 100 CO 160 CALAELAKLQTEGA	AIKAQTHTGWANT	VEPLTGIT          VEPLTGIT 60  120  IKNSPEFD          IKNSPEFD 120  180  ATDAFGIY
a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL       MTDNAL  ep ERVGRI        ERVGRI	10 LHLGEEPRFDQI LHLGEEPRFDQI 10 70 WGVVSHLNSVTI           WGVVSHLNSVAI 70 130 EKTKLNHDLRDF	20 3  KKTEDIKPALQT                       KKTEDIKPALQT  20 3  80 9  OTPELRAAYNEI                       OTPELRAVYNEI  80 9  140 15  VLSGAELPPEQ	O 40 CALAEAREQIAA                     CALAEAREQIAA   O 40 CO 100 CMPEITVFFTE:                   MPEITVFFTE: 0 100 CO 160 CALAELAKLQTEGA	AIKAQTHTGWANT	VEPLTGIT          VEPLTGIT 60  120  IKNSPEFD          IKNSPEFD 120  180  ATDAFGIY
a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL       MTDNAL  ep ERVGRI        ERVGRI	10 LHLGEEPRFDQ1 LHLGEEPRFDQ1 10 70 WGVVSHLNSVTI            WGVVSHLNSVAI 70 130 EKTKLNHDLRDF	20 3  KKTEDIKPALQT              KKTEDIKPALQT  20 3  80 S  OTPELRAAYNEI         :     OTPELRAVYNEI  80 S  VLSGAELPPEQC	O 40 CALAEAREQIAA                     CALAEAREQIAA   O 40 CO 100 CMPEITVFFTE:                   MPEITVFFTE: 0 100 CO 160 CALAELAKLQTEGA	AIKAQTHTGWANT	VEPLTGIT          VEPLTGIT 60  120  IKNSPEFD          IKNSPEFD 120  180  ATDAFGIY
a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL       MTDNAL  ep ERVGRI        ERVGRI	10 LHLGEEPRFDQ1 LHLGEEPRFDQ1 10 70 WGVVSHLNSVTI           WGVVSHLNSVAI 70 130 EKTKLNHDLRDF	20 3  KKTEDIKPALQT              KKTEDIKPALQT  20 3  80 S  OTPELRAAYNEI         :     OTPELRAVYNEI  80 S  VLSGAELPPEQC	0 40 AIAEAREQIAA 1                   AIAEAREQIAA 0 100 MPEITVFFTE:                   MPEITVFFTE: 0 100 50 160 AGELAKLQTEGS	AIKAQTHTGWANT	VEPLTGIT         VEPLTGIT 60  120 IKNSPEFD         IKNSPEFD 120  180 PATDAFGIY
a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL       MTDNAL  ep ERVGRI        ERVGRI	10 LHLGEEPRFDQI LHLGEEPRFDQI 10 70 WGVVSHLNSVTI           WGVVSHLNSVAI 70 130 EKTKLNHDLRDF	20 3  IKTEDIKPALQT  IKTEDIKPALQT  IKTEDIKPALQT  20 3  80 9  OTPELRAAYNEI        :     OTPELRAVYNEI  80 9  L40 19  VLSGAELPPEQC            VLSGAELPPEQC	0 40 AIAEAREQIAA            AIAEAREQIAA 0 40 0 100 MPEITVFFTE:            MPEITVFFTE: 00 100 00 160 00 160 00 160 00 160 00 160 00 160 00 160 00 160 00 160 00 160 00 160 00 160 00 160 00 160	AIKAQTHTGWANT            AIKAQTHTGWANT           AIGQDIELYNRFKT             AGQLSAKFSQNVLE             AQLSAKFSQNVLE	VEPLTGIT         VEPLTGIT 60  120 IKNSPEFD         IKNSPEFD 120  180 PATDAFGIY
a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL       MTDNAL  ep ERVGRI        ERVGRI  ep TLSHAQ     TLSPAQ	10 LHLGEEPRFDQI           LHLGEEPRFDQI 10 70 WGVVSHLNSVTI           WGVVSHLNSVAI 70 130 EKTKLNHDLRDF           KTKLNHDLRDF	20 3  KKTEDIKPALQT              KKTEDIKPALQT  20 3  80 5  OTPELRAAYNEI         :     OTPELRAVYNEI  80 5  140 15  VLSGAELPPEQC              VLSGAELPPEQC  140 15	0 40 CALABAREQIAA 0 40 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100 00 100	AIKAQTHTGWANT            AIKAQTHTGWANT           AIKAQTHTGWANT                AIGQDIELYNRFKT               AIGQDIELYNRFKT              AIGQDIELYNRFKT               AIGQDIELYNRFKT                AIGQDIELYNRFKT                  AIGQDIELYNRFKT	VEPLTGIT          VEPLTGIT 60  120 IKNSPEFD        IKNSPEFD 120  180 PATDAFGIY         PATDAFGIY 180 240
a128-1.pe m128-1 a128-1.pe m128-1	P MTDNAL         MTDNAL   P ERVGRI       ERVGRI   TLSHAC	10 LHLGEEPRFDQ1 LHLGEEPRFDQ1 10 70 WGVVSHLNSVTI           ### WGVVSHLNSVAI 70 130 EKTKLNHDLRDF           #### WGVVSHLNSVAI	20 3  KKTEDIKPALQT              EKTEDIKPALQT  20 3  80 S  OTPELRAAYNEI         :     OTPELRAVYNEI  80 S  VLSGAELPPEQC             VLSGAELPPEQC              VLSGAELPPEQC              VLSGAELPPECC               VLSGAELPPECC               VLSGAELPPECC                VLSGAELPPECC                ZOOO 2:  FAAAAQOSEGKTY	0 40 AIAEAREQIAF 0 40 MPEITVFFTE:           MPEITVFFTE: 0 100 AC AC AC AC AC AC AC AC AC AC AC AC AC	AIKAQTHTGWANT            AIKAQTHTGWANT           AIKAQTHTGWANT               AIGQDIELYNRFKT             AIGQDIELYNRFKT            AIGQDIELYNRFKT             AIGQDIELYNRFKT              AIGQDIELYNRFKT               AIGQDIELYNRFKT                AIGQDIELYNRFKT                 AIGQDIELYNRFKT                 AIGQDIELYNRFSQNVLE	VEPLTGIT          VEPLTGIT 60  120 IKNSPEFD         IKNSPEFD 120  180 PATDAFGIY         PATDAFGIY 180  240 REQIYRAYV
a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL           MTDNAL     ERVGRI   ERVGRI   TLSHAQ             TLSPAQ	10 LHLGEEPRFDQ1 LHLGEEPRFDQ1 10 70 WGVVSHLNSVTI           ### WGVVSHLNSVAI 70 130 ### CTKLNHDLRDF            ### HTTKLNHDLRDF 130 190 PLAGIPEDALAM	20 3  KKTEDIKPALQT              KKTEDIKPALQT  20 3  80 5  OTPELRAAYNEI         :     OTPELRAVYNEI  80 5  L40 15  VLSGAELPPEQC              VLSGAELPPEQC              VLSGAELPPECC               VLSGAELPPECC	O 40 CALABAREQIAN O 100 MPEITVFFTE: MPEITVFFTE: O 100 CALAKLQTEGN DAELAKLQTEGN	AIKAQTHTGWANT            AIKAQTHTGWANT            AIKAQTHTGWANT                AGQDIELYNRFKT             AGQLSAKFSQNVLE              AQLSAKFSQNVLE	VEPLTGIT          VEPLTGIT 60  120 IKNSPEFD         IKNSPEFD 120  180 PATDAFGIY         PATDAFGIY 180  240 REQIYRAYV
a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL           MTDNAL     ERVGRI   ERVGRI   TLSHAQ             TLSPAQ	10 LHLGEEPRFDQ1 LHLGEEPRFDQ1 10 70 WGVVSHLNSVTI           130 130 EKTKLNHDLRDF1           EKTKLNHDLRDF1 130 190 PLAGIPEDALAM	20 3  KKTEDIKPALQT              EKTEDIKPALQT             20 3  80 5  OTPELRAAYNEI             OTPELRAVYNEI  80 5  I40 15  VLSGAELPPEQC              VLSGAELPPEQC              200 2:  FAAAAQSEGKT	0 40 AIAEAREQIAF 0 40 MPEITVFFTE:           MPEITVFFTE: 0 100 AC AC AC AC AC AC AC AC AC AC AC AC AC	AIKAQTHTGWANT            AIKAQTHTGWANT            AIKAQTHTGWANT               AIGQDIELYNRFKT              AIGQDIELYNRFKT              AIGQDIELYNRFKT               AIGQDIELYNRFKT                AIGQDIELYNRFKT                 AIGQDIELYNRFKT                  AIGQDIELYNRFKT                   AIGQDIELYNRFKT	VEPLTGIT          VEPLTGIT 60  120 IKNSPEFD         IKNSPEFD 120  180 PATDAFGIY         PATDAFGIY 180  240 REQIYRAYV
a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL           MTDNAL     ERVGRI   ERVGRI   TLSHAQ             TLSPAQ	10 LHLGEEPRFDQ1 LHLGEEPRFDQ1 10 70 WGVVSHLNSVTI           130 EKTKLNHDLRDF           EKTKLNHDLRDF 130 190 LAGIPEDALAM	20 3  KKTEDIKPALQT              KKTEDIKPALQT             20 3  80 5  OTPELRAAYNEI              OTPELRAVYNEI  80 5  I40 15  VLSGAELPPEQO              VLSGAELPPEQO              200 2:  FAAAAQSEGKTO               FAAAAQSESKTO	O 40 CALABAREQIAN O 100 MPEITVFFTE: MPEITVFFTE: O 100 CALAKLQTEGN DAELAKLQTEGN	AIKAQTHTGWANT            AIKAQTHTGWANT            AIKAQTHTGWANT               AIGQDIELYNRFKT              AIGQDIELYNRFKT              AIGQDIELYNRFKT               AIGQDIELYNRFKT                AIGQDIELYNRFKT                 AIGQDIELYNRFKT                  AIGQDIELYNRFKT                   AIGQDIELYNRFKT	VEPLTGIT          VEPLTGIT 60  120 IKNSPEFD         IKNSPEFD 120  180 PATDAFGIY         PATDAFGIY 180  240 REQIYRAYV
a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL           MTDNAL     ERVGRI   ERVGRI   TLSHAQ             TLSPAQ	10 LHLGEEPRFDQ1 LHLGEEPRFDQ1 10 70 WGVVSHLNSVTI           HGVVSHLNSVAI 70 130 EKTKLNHDLRDF            EKTKLNHDLRDF 130 190 PLAGIPEDALAM 190	20 3  KKTEDIKPALQT               KKTEDIKPALQT  20 3  80 9  OTPELRAAYNEI         :     OTPELRAVYNEI  80 9  L40 19  VLSGAELPPEQC              VLSGAELPPEQC              FAAAAQSESKT	0 40 AIAEAREQIAF 10 40 AIAEAREQIAF 10 100 MPEITVFFTE: 10 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEITVFFTE: 20 100 AMPEIT	AIKAQTHTGWANT            AIKAQTHTGWANT           AIKAQTHTGWANT              AGQDIELYNRFKT              AGQLSAKFSQNVLE              AQLSAKFSQNVLE               AQLSAKFSQNVLE                AQLSAKFSQNVLE                AQLSAKFSQNVLE                AQLSAKFSQNVLE                AQLSAKFSQNVLE                AQLSAKFSQNVLE                AQLSAKFSQNVLE                AQLSAKFSQNVLE                AQLSAKFSQNVLE	VEPLTGIT
a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL         MTDNAL  ep ERVGRI       ERVGRI  TLSHAC	10 LHLGEEPRFDQ1           LHLGEEPRFDQ1 10 70 WGVVSHLNSVTI           WGVVSHLNSVAI 70 130 EKTKLNHDLRDF           KTKLNHDLRDF 130 190 PLAGIPEDALAM           PLAGIPEDALAM 190 250	20 3 (KTEDIKPALQT             (KTEDIKPALQT            (KTEDIKPALQT 20 3  80 5 (TPELRAYNEI             (TPELRAVYNEI 80 5 (VLSGAELPPEQC             (VLSGAELPPEQC             200 2: (FAAAAQSEGKTC            (FAAAAQSESKTC 200 2:	0 40 PAIAEAREQIAA PAIAEAREQIAA O 40 PAIAEAREQIAA O 40 PAIAEAREQIAA O 100 PAIAEAREQIAA O 100 PAIAEAREQIAA O 100 PAIAEAREQIAA O 100 PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAE	AIKAQTHTGWANT            AIKAQTHTGWANT            AIKAQTHTGWANT              AIGQDIELYNRFKT             AQLSAKFSQNVLL             AQLSAKFSQNVLL              AQLSAKFSQNVLL               AQLSAKFSQNVLL                AQLSAKFSQNVLL                 AQLSAKFSQNVLL                  AQLSAKFSQNVLL                     AQLSAKFSQNVLL	VEPLTGIT          VEPLTGIT 60  120 IKNSPEFD         IKNSPEFD 120  180 ATDAFGIY         ATDAFGIY 180  240 REQIYRAYV          REQIYRAYV 240 300
a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL         MTDNAL   PP ERVGRI         ERVGRI   TLSHAC        TLSPAC	10 LHLGEEPRFDQ1           LHLGEEPRFDQ1 10 70 WGVVSHLNSVTI           WGVVSHLNSVAI 70 130 EKTKLNHDLRDF           KTKLNHDLRDF 130 190 PLAGIPEDALAM           PLAGIPEDALAM 190 250 LSDDGKFDNTAN	20 3  KKTEDIKPALQT              KKTEDIKPALQT  20 3  80 5  DTPELRAAYNEI             DTPELRAVYNEI  80 5  140 15  VLSGAELPPEQO             200 2:  FAAAAQSEGKTO              FAAAAQSESKTO  200 2:  IDRTLENALQT	0 40 PAIAEAREQIAR 0 40 PAIAEAREQIAR 0 40 PAIAEAREQIAR 0 100 PAIAEAREQIAR 0 100 PAIAEAREQIAR 0 100 PAIAEAREQIAR 0 100 PAIAEAREQIAR 0 160 PAIAEAREQIAR 0 160 PAIAEAREQIAR 0 160 PAIAEAREQIAR 0 160 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQIAR 0 220 PAIAEAREQI	AIKAQTHTGWANT            AIKAQTHTGWANT           AIKAQTHTGWANT               IGQDIELYNRFKT              IGQDIELYNRFKT              AQLSAKFSQNVLL               AQLSAKFSQNVLL                LAVIQYADNRKLF                LAVIQYADNRELF 0 230 0 290 LSLATKMADTPE(	VEPLTGIT           VEPLTGIT  60  120  IKNSPEFD          IKNSPEFD  120  180  PATDAFGIY           PATDAFGIY  180  240  REQIYRAYV           REQIYRAYV  240  300  REVINFLHDL
a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL         MTDNAL     P	10 LHLGEEPRFDQ1           LHLGEEPRFDQ1 10 70 WGVVSHLNSVTI           WGVVSHLNSVAI 70 130 PKTKLNHDLRDF           KTKLNHDLRDF 130 190 PLAGIPEDALAM 190 250 LSDDGKFDNTAN	20 3  KKTEDIKPALQT              KKTEDIKPALQT  20 3  80 5  OTPELRAAYNEI             OTPELRAVYNEI  80 5  I40 15  VLSGAELPPEQQ              VUSGAELPPEQQ              FAAAAQSESKT  200 2:  FAAAAQSESKT  200 2:  IFAAAAQSESKT                 IDRTLENALQT	O 40 PAIAEAREQIAN O 100 PAIAEAREQIAN O 100 PAIAEAREQIAN O 100 PAIAEAREQIAN O 100 PAIAEAREQIAN O 100 PAIAEAREQIAN O 100 PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEARE PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAR	AIKAQTHTGWANT            AIKAQTHTGWANT           AIKAQTHTGWANT               AIGQDIELYNRFKT               AIGQDIELYNRFKT               AIGQDIELYNRFKT                AIGQDIELYNRFKT                AIGQDIELYNRFKT                 AIGUSAKFSQNVLE                  AIGUSAKFSQNVLE	VEPLTGIT          VEPLTGIT 60  120 IKNSPEFD         IKNSPEFD 120  180 ATDAFGIY         PATDAFGIY 180  240 REQIYRAYV         LEQIYRAYV 240  300 RULNFLHDL
a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL         MTDNAL     P	10 LHLGEEPRFDQI           LHLGEEPRFDQI 10 70 WGVVSHLNSVTI           WGVVSHLNSVAI 70 130 EKTKLNHDLRDF           KTKLNHDLRDF 130 190 PLAGIPEDALAM           PLAGIPEDALAM 190 250 LSDDGKFDNTAN	20 3  KKTEDIKPALQT              KKTEDIKPALQT  20 3  80 5  DTPELRAAYNEI             DTPELRAVYNEI  80 5  140 15  VLSGAELPPEQO             ZOO 2:  FAAAAQSEGKTO             FAAAAQSESKTO  200 2:  IDRTLENALQT	0 40 CALABAREQIAA 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVF	AIKAQTHTGWANT            AIKAQTHTGWANT            AIKAQTHTGWANT               AIGQDIELYNRFKT              AIGQDIELYNRFKT              AIGQDIELYNRFKT               AIGQDIELYNRFKT               AIGUSAKFSQNVLE                 AIGUSAKFSQNVLE                   AIGUSAKFSQNVLE	VEPLTGIT           VEPLTGIT  60  120  IKNSPEFD          IKNSPEFD  120  180  PATDAFGIY           PATDAFGIY  180  REQIYRAYV           REQIYRAYV  240  300 REQIYRAYV  240  3ULNFLHDL
a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL         MTDNAL     P	10 LHLGEEPRFDQI           LHLGEEPRFDQI 10 70 WGVVSHLNSVTI           WGVVSHLNSVAI 70 130 EKTKLNHDLRDF           KTKLNHDLRDF 130 190 PLAGIPEDALAM           PLAGIPEDALAM 190 250 LSDDGKFDNTAN	20 3  KKTEDIKPALQT              KKTEDIKPALQT  20 3  80 5  DTPELRAAYNEI             DTPELRAVYNEI  80 5  140 15  VLSGAELPPEQQ              VLSGAELPPEQQ              FAAAAQSEGKT              FAAAAQSESKT  200 2:  FAAAAQSESKT               IDRTLENALQT              IDRTLANALQT	O 40 PAIAEAREQIAN O 100 PAIAEAREQIAN O 100 PAIAEAREQIAN O 100 PAIAEAREQIAN O 100 PAIAEAREQIAN O 100 PAIAEAREQIAN O 100 PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEARE PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAREQIAN PAIAEAR	AIKAQTHTGWANT            AIKAQTHTGWANT            AIKAQTHTGWANT               AIGQDIELYNRFKT              AIGQDIELYNRFKT              AIGQDIELYNRFKT               AIGQDIELYNRFKT               AIGUSAKFSQNVLE                 AIGUSAKFSQNVLE                   AIGUSAKFSQNVLE	VEPLTGIT          VEPLTGIT 60  120 IKNSPEFD         IKNSPEFD 120  180 ATDAFGIY         PATDAFGIY 180  240 REQIYRAYV         LEQIYRAYV 240  300 RULNFLHDL
a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL         MTDNAL     P	10 LHLGEEPRFDQI           LHLGEEPRFDQI 10 70 WGVVSHLNSVTI           WGVVSHLNSVAI 70 130 EKTKLNHDLRDF           KTKLNHDLRDF 130 190 PLAGIPEDALAM           PLAGIPEDALAM 190 250 LSDDGKFDNTAN	20 3  KKTEDIKPALQT              KKTEDIKPALQT  20 3  80 5  DTPELRAAYNEI             DTPELRAVYNEI  80 5  140 15  VLSGAELPPEQO             ZOO 2:  FAAAAQSEGKTO             FAAAAQSESKTO  200 2:  IDRTLENALQT	0 40 CALABAREQIAA 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVFFTE: 0 100 MPEITVF	AIKAQTHTGWANT            AIKAQTHTGWANT            AIKAQTHTGWANT               AIGQDIELYNRFKT              AIGQDIELYNRFKT              AIGQDIELYNRFKT               AIGQDIELYNRFKT               AIGUSAKFSQNVLE                 AIGUSAKFSQNVLE                   AIGUSAKFSQNVLE	VEPLTGIT           VEPLTGIT  60  120  IKNSPEFD          IKNSPEFD  120  180  PATDAFGIY           PATDAFGIY  180  REQIYRAYV           REQIYRAYV  240  300 REQIYRAYV  240  3ULNFLHDL
a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL        MTDNAL ep ERVGRI        ERVGRI  tlspac ep TLSHAC       TLSPAC ep FDDAAF        FDDAAF	10 LHLGEEPRFDQ1 LHLGEEPRFDQ1 10 70 WGVVSHLNSVTI            WGVVSHLNSVAI 70 130 EKTKLNHDLRDF 130 LAGIPEDALAM           PLAGIPEDALAM 190 250 LSDDGKFDNTAN           LSDDGKFDNTAN 250 310	20 3  KKTEDIKPALQT             KKTEDIKPALQT             EKTEDIKPALQT 20 3  80 9  OTPELRAAYNEI             OTPELRAVYNEI 80 9  140 19  VLSGAELPPEQC             VLSGAELPPEQC              FAAAAQSESKT 200 2:  FAAAAQSESKT 200 2:  IDRTLENALQT             IDRTLANALQT 260 2  320 3	0 40 AIAEAREQIAF 10 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE	AIKAQTHTGWANT            AIKAQTHTGWANT            AIKAQTHTGWANT              AIGQDIELYNRFKT              AQLSAKFSQNVLE                AQLSAKFSQNVLE                 AQLSAKFSQNVLE                AQLSAKFSQNVLE 0 230 LAVIQYADNRELF 0 230 LAVIQYADNRELF 0 230 LSLATKMADTPEC 0 290 LSLATKMADTPEC 0 290 0 350	VEPLTGIT          VEPLTGIT 60  120 IKNSPEFD         IKNSPEFD 120  180 ATDAFGIY        ATDAFGIY 180  240 REQIYRAYV         REQIYRAYV 240 300 QVLNFLHDL         QVLNFLHDL 300 360
a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL	10 LHLGEEPRFDQ1 LHLGEEPRFDQ1 10 70 WGVVSHLNSVTI            WGVVSHLNSVAI 70 130 EKTKLNHDLRDF 130 LAGIPEDALAM           PLAGIPEDALAM 190 250 LSDDGKFDNTAN           LSDDGKFDNTAN 250 310	20 3  KKTEDIKPALQT             KKTEDIKPALQT             EKTEDIKPALQT 20 3  80 9  OTPELRAAYNEI             OTPELRAVYNEI 80 9  140 19  VLSGAELPPEQC             VLSGAELPPEQC              FAAAAQSESKT 200 2:  FAAAAQSESKT 200 2:  IDRTLENALQT             IDRTLANALQT 260 2  320 3	0 40 AIAEAREQIAF 10 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE: 00 100 MPEITVFFTE	AIKAQTHTGWANT            AIKAQTHTGWANT            AIKAQTHTGWANT              AIGQDIELYNRFKT              AQLSAKFSQNVLE                AQLSAKFSQNVLE                 AQLSAKFSQNVLE                AQLSAKFSQNVLE 0 230 LAVIQYADNRELF 0 230 LAVIQYADNRELF 0 230 LSLATKMADTPEC 0 290 LSLATKMADTPEC 0 290 0 350	VEPLTGIT          VEPLTGIT 60  120 IKNSPEFD         IKNSPEFD 120  180 ATDAFGIY        ATDAFGIY 180  240 REQIYRAYV         REQIYRAYV 240 300 QVLNFLHDL         QVLNFLHDL 300 360
a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL         MTDNAL	10 LHLGEEPRFDQ1           LHLGEEPRFDQ1 10 70 WGVVSHLNSVTI           WGVVSHLNSVAI 70 130 EKTKLNHDLRDF 130 190 PLAGIPEDALAM 190 250 LSDDGKFDNTAN 1         LSDDGKFDNTAN 250 310 PYAEKDLAEVKA	20 3  KKTEDIKPALQT             KKTEDIKPALQT             KTEDIKPALQT              20 3  80 5                 TPELRAYNEI               TPELRAYNEI              VLSGAELPPEQC              VLSGAELPPEQC               200 2:  FAAAAQSEGKTO              FAAAAQSESKTO              IDRTLENALQT             IDRTLANALQT	0 40 PAIAEAREQIAA PAIAEAREQIAA O 40 PAIAEAREQIAA O 40 PAIAEAREQIAA O 100 PAIAEAREQIAA O 100 PAIAEAREQIAA O 100 PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIA	AIKAQTHTGWANT            AIKAQTHTGWANT            AIKAQTHTGWANT               AIGQDIELYNRFKT               AQLSAKFSQNVLL                AQLSAKFSQNVLL                 AQLSAKFSQNVLL                AQLSAKFSQNVLL                AQLSAKFSQNVLL                AQLSAKFSQNVLL                AQLSAKFSQNVLL                LEVIQYADNRELF               LSLATKMADTPEC               LSLATKMADTPEC                 LSLATKMADTPEC                   LSLATKMADTPEC	VEPLTGIT          VEPLTGIT 60  120 IKNSPEFD         IKNSPEFD 120  180 ATDAFGIY        ATDAFGIY 180  240 REQIYRAYV 240 300 REQIYRAYV 240 300 VLNFLHDL 300 360 VKKYFPVGK
a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNAL         MTDNAL	10 LHLGEEPRFDQ1           LHLGEEPRFDQ1 10 70 WGVVSHLNSVTI           WGVVSHLNSVAI 70 130 EKTKLNHDLRDF 130 190 PLAGIPEDALAM 190 250 LSDDGKFDNTAN 1         LSDDGKFDNTAN 250 310 PYAEKDLAEVKA	20 3  KKTEDIKPALQT             KKTEDIKPALQT             KTEDIKPALQT              20 3  80 5                 TPELRAYNEI               TPELRAYNEI              VLSGAELPPEQC              VLSGAELPPEQC               200 2:  FAAAAQSEGKTO              FAAAAQSESKTO              IDRTLENALQT             IDRTLANALQT	0 40 PAIAEAREQIAA PAIAEAREQIAA O 40 PAIAEAREQIAA O 40 PAIAEAREQIAA O 100 PAIAEAREQIAA O 100 PAIAEAREQIAA O 100 PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIAA PAIAEAREQIA	AIKAQTHTGWANT            AIKAQTHTGWANT            AIKAQTHTGWANT              AIGQDIELYNRFKT              AQLSAKFSQNVLE                AQLSAKFSQNVLE                 AQLSAKFSQNVLE                AQLSAKFSQNVLE 0 230 LAVIQYADNRELF 0 230 LAVIQYADNRELF 0 230 LSLATKMADTPEC 0 290 LSLATKMADTPEC 0 290 0 350	VEPLTGIT          VEPLTGIT 60  120 IKNSPEFD         IKNSPEFD 120  180 ATDAFGIY        ATDAFGIY 180  240 REQIYRAYV 240 300 REQIYRAYV 240 300 VLNFLHDL 300 360 VKKYFPVGK

m128-1	ARRAKPYAEKDLAEVKAFARESLNLADLQPWDLGYASEKLREAKYAFSETEVKKYFPVGK 310 320 330 340 350 360
al28-1.pep	370 380 390 400 410 420  VLNGLFAQIKKLYGIGFTEKTVPVWHKDVRYFELQQNGETIGGVYMDLYAREGKRGAWM
a128-1.pep	430 440 450 460 470 480  NDYKGRRRFSDGTLQLPTAYLVCNFTPPVGGKEARLSHDEILTLFHETGHGLHHLLTQVD
a128-1.pep m128-1	490 500 510 520 530 540  ELGVSGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGVPLPKELFDKMLAAKNFQ
a128-1.pep	550 560 570 580 590 600  RGMFLVRQMEFALFDMMIYSEDDEGRLKNWQQVLDSVRKEVAVVRPPEYNRFANSFGHIF
a128-1.pep	610 620 630 640 650 660 AGGYSAGYYSYAWAEVLSADAYAAFEESDDVAATGKRFWQEILAVGGSRSAAESFKAFRG
a128-1.pep	670 679 REPSIDALLRHSGFDNAAX             : REPSIDALLRHSGFDNAVX 670
- Haemophil >gi 1573174	573  OPDA_HAEIN OLIGOPEPTIDASE A >gi 1075082 pir  C64055 oligopeptidase A (prlC) homolog us influenzae (strain Rd KW20)  (U32706) oligopeptidase A (prlC) [Haemophilus influenzae Rd] Length = 681  91 bits (1507), Expect = e-168  = 309/677 (45%), Positives = 415/677 (60%), Gaps = 4/677 (0%)
	NALLHLGEEPRFDQIKTEDIKPALQTXXXXXXXXXXXXXXTHTGWANTVEPLTGITERV 63 N LL++ P F QIK E I+PA++ H W N + PLT +R+ NPLLNIQGLPPFSQIKPEHIRPAVEKLIQDCRNTIEQVLKQPHFTWENFILPLTETNDRL 64
_	GRIWGVVSHLNSVTDTPELRAAYNELMPEITVFFTEIGQDIELYNRFKTIKNSPEFDTLS 123 R W VSHLNSV ++ ELR AY +P ++ + T +GQ LYN + +KNS EF S NRAWSPVSHLNSVKNSTELREAYQTCLPLLSEYSTWVGQHKGLYNAYLALKNSAEFADYS 124
	HAQKTKLNHDLRDFVLSGAELPPEQQAELAKLQTEGAQLSAKFSQNVLDATDAFGIYFDD 183 AQK + + LRDF LSG L E+Q ++ ++L+++FS NVLDAT + ++ IAQKKAIENSLRDFELSGIGLSEEKQQRYGEIVARLSELNSQFSNNVLDATMGWEKLIEN 184
_	AAPLAGIPEDALAMFAAAAQSEGKTGYKIGLQIPHYLAVIQYADNRKLREQIYRAYVTRA 243 A LAG+PE AL +A+S+G GY+ L+IP YL V+ Y +NR LRE++YRAY TRA EAELAGLPESALQAAQQSAESKGLKGYRFTLEIPSYLPVMTYCENRALREEMYRAYATRA 244
-	SELSDD-GKFDNTANIDRTLENALQTAKLLGFKNYAELSLATKMADTPEQVLNFLHDLAR 302 SE + GK+DN+ ++ L ++ AKLLGF Y ELSLATKMA+ P+QVL+FL LA SEQGPNAGKWDNSKVMEEILTLRVELAKLLGFNTYTELSLATKMAENPQQVLDFLDHLAE 304
-	RAKPYAEKDLAEVKAFARESLGLADLQPWDLGYAGEKLREAKYAFSETEVKKYFPVGKVL 362 RAKP EK+L E+K + + G+ +L PWD+G+ EK ++ YA ++ E++ YFP +V+ RAKPQGEKELQELKGYCEKEFGVTELAPWDIGFYSEKQKQHLYAINDEELRPYFPENRVI 364

```
Query: 363 NGLFAQIKKLYGIGFTE-KTVPVWHKDVRYFEL-QQNGETIGGVYMDLYAREGKRGGAWM 420
           +GLF IK+++ I E K V WHKDVR+F+L +N + G Y+DLYARE KRGGAWM
Sbjct: 365 SGLFELIKRIFNIRAVERKGVDTWHKDVRFFDLIDENDQLRGSFYLDLYAREHKRGGAWM 424
Query: 421 NDYKGRRRFSDGTLQLPTAYLVCNFTPPVGGKEARLSHDEIXXXXXXXXXXXXXXXXXQVD 480
          +D GR+R DG+++ P AYL CNF P+G K A +H+E+
Sbjct: 425 DDCIGRKRKLDGSIETPVAYLTCNFNAPIGNKPALFTHNEVTTLFHEFGHGIHHMLTQID 484
Query: 481 ELGVSGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGVPLPKELFDKMLAAKNFQ 540
             V+GINGV WDAVELPSQFMEN+ WE LA +S H ETG PLPKE ++L AKNFO
Sbjct: 485 VSDVAGINGVPWDAVELPSQFMENWCWEEEALAFISGHYETGEPLPKEKLTQLLKAKNFQ 544
Query: 541 RGMFLVRQMEFALFDMMIYSEDDEGRLKNWQQVLDSVRKEVAVVRPPEYNRFANSFGHIF 600
            MF++RQ+EF+FD++D+ L SV+ +VAV++ ++ R +SF HIF
Sbjct: 545 AAMFILRQLEFGIFDFRLHHTFDAEKTNQILDTLKSVKSQVAVIKGVDWARAPHSFSHIF 604
Query: 601 XXXXXXXXXXXXXWAEVLSADAYAAFEESDDV-AATGKRFWQEILAVGGSRSAAESFKAFR 659
                      WAEVLSADAY+ FEE TGK F EIL GGS
Sbjct: 605 AGGYAAGYYSYLWAEVLSADAYSRFEEEGIFNPITGKSFLDEILTRGGSEEPMELFKRFR 664
Query: 660 GREPSIDALLRHSGFDN 676
           GREP +DALLRH G N
Sbjct: 665 GREPQLDALLRHKGIMN 681
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 493>:
      g129.seq
                ATGCTTTCAC CTCCTCGGCG TAAAACGGCG GCACATCAAT CAAGCCGTCT
             1
             51 TTCATTTGCG TGCGGAAAAA ATGCGGCGTG TTGCCGTGAT CAAAATCAAT
            101 ATCGTGCAGC ATCCAGCCCA AATCGCGGTT TGCCTCGCTT TCCGATAACG
            151 CCGACGGCGG CAGCGGTTCA CCCTTATCCG CGCTTTCGCC ATTTGCCCTT
            201 TCAGGCTGCG GGCATAGGGG CGGAACAGGC GGCGGTCGAA TCCTGTTTCA
            251 TCCGGACAAA CGCGTTGGCA GTCGGAAAAT CCGGCCGGCC GTGTCAAATA
            301 ATGCGTTACT TTGGCCGGGT CTTGTCCTTT GTAAGCGGCG GTCTTTTTTT
            351 GCGCGCCATC CGCATCTGTT TGGGCGCATG GCAAACGGCG GCTGCCGTAC
401 AATCAAAATG TTTGGCGATT TCATGCAGAC AGGCATCCGG ATGCCGCCCG
451 ACATATCGAG CCGGTTTTTG CCTATCCGAT TTGGCGGCAT TTAGGCCGGT
            501 AACTTGA
This corresponds to the amino acid sequence <SEQ ID 494; ORF 129.ng>:
      g129.pep
                 MLSPPRRKTA AHQSSRLSFA CGKNAACCRD QNQYRAASSP NRGLPRFPIT
             1 MLSPPRRKTA AHQSSRLSFA CGKNAACCRD QNQYRAASSP NRGLPRFPIT
51 PTAAAVHPYP RFRHLPFQAA GIGAEQAAVE SCFIRTNALA VGKSGRPCQI
            101 MRYFGRVLSF VSGGLFLRAI RICLGAWQTA AAVQSKCLAI SCRQASGCRP
            151 TYRAGFCLSD LAAFRPVT*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 495>:
      m129.seq (partial)
                 ..TATCTGCGCT TTCACTATTT GCCCTTTCAG GCTGCGGGCA TAGGGACGGA
                    ACAGGTAGCG GTCAAATCCT GTTTCATCCA AATAAACACG TTGGTAGTCG
                   GAAAATTCGG CCGGCTGTGT CAAATAATGC GTTACTTTGG CCGGGTCTTG
            101
                    TTCTTTGTAA GTGGTGGTCT TTTTTTGCGC GTTATCCCCA TCTGTTTGAG
            151
                    TGCATAGCAA ATGGTGGCTG CCGTACAATC AAAATGTTTG GCGATTTCAT
            201
                    GCAGATAGGC ATCCGGGTGT TGCCCAACAT ATTGAGCCGG TTTTTGCCTA
            251
                    TCCGATTTGA CGGCATTTAG ACCGGTAACT TGA
 This corresponds to the amino acid sequence <SEQ ID 496; ORF 129>:
       m129.pep (partial)
                  ...YLRFHYLPFQ AAGIGTEQVA VKSCFIQINT LVVGKFGRLC QIMRYFGRVL
              1
                    FFVSGGLFLR VIPICLSAXQ MVAAVQSKCL AISCRXASGC CPTYXAGFCL
                    SDLTAFRPVT *
 Computer analysis of this amino acid sequence gave the following results:
```

## Homology with a predicted ORF from N. gonorrhoeae

ORF 129 shows 79.1% identity over a 110 aa overlap with a predicted ORF (ORF 129.ng) from N. gonorrhoeae:

m129/g129

m129.pep	,		1 1	, ,,,,,,,	1:11:11:111	:  :
g129		PNRGLPRFPIT	FTAAAVHPIPKI 60	70	80	IKINA
	30 4	0 50	60	70	00	
	40	50	60	70	80	90
m129.pep	LVVGKFGRLCC	IMRYFGRVLFF	VSGGLFLRVIP:	ICLSAXQMVAA	VQSKCLAISCR	XASGC
	:		1111111:			
g129	LAVGKSGRPC	IMRYFGRVLSF	VSGGLFLRAIR:			RQASGC
	90 10	0 110	120	130	140	
	100	110				
m129.pep	CPTYXAGFCLS	DLTAFRPVTX				
g129	RPTYRAGFCLS	DLAAFRPVTX				
	150 16	50				

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 497>:

al29.seq (partial) 1 TATCTGCGCT TTCACTATTT GCCCTTTCAG GCTGCGGGCA TAGGGACGGA 51 · ACAGGTAGCG GTCAAATCCT GTTTCATCCA AATAAACACG TTGGTAGTCG 101 GAAAATTCGG CCAGCTGTGT CAAATAATGC GTTACTTTGG CCGGGTCTTG 151 TTCTTTGTAA GTGGTGGTCT TTTTTTGCGC GTTATCCCCA TCTGTTTGAG 201 TGCATAGCAA ATGGTGGCTG CCGTACAATC AAAATGTTTG GCGATTTCAT 251 GCAGATAGGC ATCCTGGTGT TGCCCAACAT ATTGAGCCGG TTTTTGCCTA

301 TCCGATTTGA CGGCATTTAG ACCGGTAACT TGA

#### This corresponds to the amino acid sequence <SEQ ID 498; ORF 129.a>:

al29.pep (partial)

YLRFHYLPFQ AAGIGTEQVA VKSCFIQINT LVVGKFGQLC QIMRYFGRVL 51 FFVSGGLFLR VIPICLSA*Q MVAAVQSKCL AISCR*ASWC CPTY*AGFCL

101 SDLTAFRPVT *

#### m129/a129 98.2% identity in 110 aa overlap

	10	20	30	40	50	60
m129.pep	YLRFHYLPFQAAGI	GTEQVAVKSC	FIQINTLVVG	KFGRLCQIM	RYFGRVLFFVS	GLFLR
····	111111111111111	1111111111	HILLIAM	111:1111		
a129	YLRFHYLPFQAAGI	GTEQVAVKSC	FIQINTLVVC	KFGQLCQIM	RYFGRVLFFVS	GLFLR
	10	20	30	40	50	60
	70	80	90	100	110	
m129.pep	VIPICLSAXQMVAA	VQSKCLAISO	CRXASGCCPTY	'XAGFCLSDL'	<b>TAFRPVTX</b>	
• •	1111111111111	13 11 11 11 11 1			1111111	
a129	VIPICLSAXQMVAA	VQSKCLAISO	CRXASWCCPTY	(XAGFCLSDL'	TAFRPVTX	
	70	80	90	100	110	

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 499>:

g130.seq 1 ATGAAACAAC TCCGCGACAA CAAAGCCCAA GGCTCTGCAC TGTTTACCCT

51 TGTGAGCGGT ATCGTTATTG TTATTGCAGT CCTTTATTC CTGATTAAGC
101 TGGCGGCAG TGGATCGTTC GGCGATGTCG ATGCCACTAC GGAAGCGGCA
151 ACGCAGACCC GCATCCAGCC TGTCGGACAA TTGACGATGG GTGACGGCAT

201 CCCCGTCGGC GAACGCCAAG GCGAACAGAT TTTCGGCAAA ATCTGTATCC

```
251 AATGCCACGC GGCGGACAGC AATGTGCCGA ACGCTCCGAA ACTGGAACAC
          301 AACGGCGACT GGGCGCCGCG TATCGCGCAA GGCTTCGATA CCTTGTTCCA
          351 ACACGCGCTG AACGGCTTTA ACGCCATGCC TGCCAAAGGC GGTGCGGCAG
          401 ACCTGACCGA TCAGGAACTC AAACGGGCGA TTACCTACAT GGCGAATAAA
               AGCGGCGGTT CTTTCCCGAA TCCTGATGAG GCTGCGCCTG CCGACAATGC
          451
               CGCTTCAGGA ACAGCTTCTG CTCCTGCCGA TAGTGCAGCT CCGGCAGAAG
          501
               CGAAGGCAGA AGACAAGGGT GCGGCAGCCC CTGCGGTCGG CGTTGACGGT
          551
          601 AAAAAAGTCT TCGAAGCAAC CTGTCAGGTG TGCCACGGCG GTTCGATTCC
          651 CGGTATTCCC GGCATAGGCA AAAAAGACGA TTGGGCACCG CGTATCAAAA
          701 AAGGCAAAGA AACCTTGCAC AAACATGCCC TTGAAGGCTT TAACGCGATG
               CCGGCCAAAG GCGGCAATGC AGGTTTGAGC GATGACGAAG TCAAAGCGGC
               TGTTGACTAT ATGGCAAACC AATCCGGTGC AAAATTCTAA
This corresponds to the amino acid sequence <SEQ ID 500; ORF 130.ng>:
     g130.pep
               MKQLRDNKAQ GSALFTLVSG IVIVIAVLYF LIKLAGSGSF GDVDATTEAA
               TQTRIQPVGQ LTMGDGIPVG ERQGEQIFGK ICIQCHAADS NVPNAPKLEH
           51
          101 NGDWAPRIAQ GFDTLFQHAL NGFNAMPAKG GAADLTDQEL KRAITYMANK
               SGGSFPNPDE AAPADNAASG TASAPADSAA PAEAKAEDKG AAAPAVGVDG
          201 KKVFEATCQV CHGGSIPGIP GIGKKDDWAP RIKKGKETLH KHALEGFNAM
          251 PAKGGNAGLS DDEVKAAVDY MANQSGAKF*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 501>:
     m130.seq (partial)
               ..GGCGAACAGA TTTTCGGCAA AATCTGTATC CAATGCCACG CGGCGGACAG
            1
                 CAATGTGCCG AACGCTCCGA AACTGGAACA CAACGGCGAT TrGGCACCGC
           51
                 GTATCGGCAA GGCTTCGATA CCTTGTTCCA ACACGCGCTG AACGGCTTTA
          101
                 ACGCCATGCC TGCAAAAGGC GGTGCGGCAG ACCTGACCGA TCAGGAACTT
          151
                 AAACGGGCGA TTACTTACAT GGCGAACAAA AGCGGCGGTT CTTTCCCGAA
          201
                 TCCTGATGAG GCTGCGCCTG CCGACAATGC CGCTTCAGGA ACAGCTTCTG
          251
                 CTCCTGCCGA TAGTGCAGCT CCGGCAGAAG CGAAGGCAGA AGACAAGGGT
          301
                 GCGGCACCCC TGCGGTCGGC GTTGACGGTA AAAAAGTCTT CGAAGCAACC
          351
                 TGTCAGGTGT GCCACGGCGG TTCGATTCCC GGTATTCCCG GCATAGGCAA
          401
                 AAAAGACGAT TGGGCACCGC GTATCAAAAA AGGCAAAGAA ACCTTGCACA
          451
                 AACACGCCCT TGAAGGCTTT AACGCGATGC CTGCCAAArG CGGCAATGCA
          501
                 GGTTTGAGCG ATGACGAAGT CAAAGCGGCT GTTGACTATA TGGCAAACCA
          551
                 ATCCGGTGCA AAATTCTAA
          601
This corresponds to the amino acid sequence <SEQ ID 502; ORF 130>:
     m130.pep
                (partial)
                ..GEQIFGKICI QCHAADSNVP NAPKLEHNGD XAPRIQGFDT LFQHALNGFN
            1
                 AMPAKGGAAD LTDQELKRAI TYMANKSGGS FPNPDEAAPA DNAASGTASA
            51
                  PADSAAPAEA KAEDKGAAPA VGVDGKKVFE ATCQVCHGGS IPGIPGIGKK
           101
                  DDWAPRIKKG KETLHKHALE GFNAMPAKXG NAGLSDDEVK AAVDYMANQS
           151
                  GAKF*
           201
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 130 shows 98.1% identity over a 206 aa overlap with a predicted ORF (ORF 130.ng)
from N. gonorrhoeae:
      m130/g130
                                                                   20
                                                 GEQIFGKICIQCHAADSNVPNAPKLEHNGD
      m130.pep
                                                 1,11,11,11,11,11,11,11,11,11,11,11,11
                   DATTEAATQTRIQPVGQLTMGDGIPVGERQGEQIFGKICIQCHAADSNVPNAPKLEHNGD
      g130
                                                                         100
                                  60
                                            70
                                                      80
                                      50
                                                60
                                                          70
                                                                    80
                            40
                   XAPRI-QGFDTLFQHALNGFNAMPAKGGAADLTDQELKRAITYMANKSGGSFPNPDEAAP
      m130.pep
                    WAPRIAQGFDTLFQHALNGFNAMPAKGGAADLTDQELKRAITYMANKSGGSFPNPDEAAP
      q130
                                                     140
                                 120
                                           130
                       110
```

	90			.20 13		
m130.pep	ADNAASGT:	ASAPADSAAPA	EAKAEDKGAA-	PAVGVDGKKVF	EATCQVCHGGS1	PGIPGIG
miso.pcp	13111111					
g130	ADNAASGT:	ASAPADSAAPA	EAKAEDKGAAA	PAVGVDGKKVF	EATCQVCHGGS	PGIPGIG
9130	170	180	190	200	210	220
	1.0					
	150	160	170 1	.80 19	0 200	
	120				KAAVDYMANQS	GAKFX
m130.pep						1111
				CONTROL CODE		 "NEV
g130					KAAVDYMANQS	280
	230	240	250	260	270	280
The following pa	artial DNA se	equence was	identified in	n N. meningii	tidis <seq ii<="" td=""><td>) 503&gt;:</td></seq>	) 503>:
a130.seq						
1	ATGAAACAAC	TCCGCGACAA	CAAAGCCCAA	GGCTCTGCAC	TGTTTACCCT	
51	TGTGAGCGGT	ATCGTTATTG	TTATTGCAGT	CCTTTATTTC	CTGATTAAGC	
101	TGGCGGGCAG	CGGCTCGTTC	GGCGATGTCG	ATGCCACTAC	GGAAGCAGCA	
151	ACGCAGACCC	GTATCCAGCC	TGTCGGACAA	TTGACGATGG	GCGACGGCAT	
201	CCCCGTCGGC	GAACGCCAAG	GCGAACAGAT	TTTCGGCAAA	ATCTGTATCC	
251	AATGCCACGC	GGCGGACAGC	AATGTGCCGA	ACGCTCCGAA	ACTGGAACAC	
301	AACGGCGATT	GGGCGCCGCG	TATCGCGCAA	GGCTTCGATA	CCTTGTTCCA	
351	ACACGCGCTG	AACGGCTTTA	ACGCCATGCC	TGCCAAAGGC	GGTGCGGTAG	
401	ACCTGACCGA	TCAGGAACTC	AAACGGGCGA	TTACTTACAT	GGCGAACAAA	
451	AGCGGCGGTT	CTTTCCCGAA	TCCTGATGAG	GCTGCGCCTG	CCGACAATGC	
501	CGCTTCAGGA	ACAGCTTCTG	CTCCTGCCGA	TAGTGCAGCT	CCGGCAGAAG	
551	CGAAGGCAGA	AGACAAGGGT	GCGGCAGCCC	CTGCGGTCGG	CGTTGACGGT	
601	AAAAAAGTCT	TCGAAGCAAC	CTGTCAGGTG	TGCCACGGCG	GTTCGATTCC	
651	CGGTATTCCC	GGCATAGGCA	AAAAAGACGA	TTGGGCACCG	CGTATCAAAA	
701	AAGGCAAAGA	AACCTTGCAC	AAACACGCCC	TTGAAGGCTT	TAACGCGATG	
751	CCTGCCAAAG	GCGGCAATGC	AGGTTTGAGC	GATGACGAAG	TCAAAGCGGC	
801	TGTTGACTAT	ATGGCAAACC	AATCCGGTGC	AAAATTCTAA		
901	1011011111	*********				
This same and	a to the omin	o acid seque	nce <sfo i<="" td=""><td>D 504· ORF</td><td>130.a&gt;:</td><td></td></sfo>	D 504· ORF	130.a>:	
This correspond	s to the amin	o acid seque	ence <seq i<="" td=""><td>D 504; ORF</td><td>130.a&gt;:</td><td></td></seq>	D 504; ORF	130.a>:	
This correspond						
a130.pep 1	MKOLRDNKAO	GSALFTLVSG	IVIVIAVLYF	LIKLAGSGSF	GDVDATTEAA	
a130.pep 1 51	MKQLRDNKAQ TOTRIOPVGO	GSALFTLVSG LTMGDGIPVG	IVIVIAVLYF ERQGEQIFGK	LIKLAGSGSF ICIQCHAADS	GDVDATTEAA NVPNAPKLEH	
a130.pep 1 51 101	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAO	GSALFTLVSG LTMGDGIPVG GFDTLFOHAL	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL	GDVDATTEAA NVPNAPKLEH KRAITYMANK	
a130.pep 1 51 101 151	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG	
a130.pep 1 51 101 151 201	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG	
a130.pep 1 51 101 151	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG	
a130.pep 1 51 101 151 201 251	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAKF*	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG	
a130.pep 1 51 101 151 201 251	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAKF*	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM	
a130.pep 1 51 101 151 201 251	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAKF*	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM	30
a130.pep 1 51 101 151 201 251 m130/a130 97	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAKF*	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM 20 QCHAADSNVPNA	APKLEHNGD
a130.pep 1 51 101 151 201 251	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS 7.6% identity	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY in 206 aa ov	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAK <u>F</u> *	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM  20 QCHAADSNVPNA	APKLEHNGD
a130.pep  1 51 101 151 201 251  m130/a130 97	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS 7.6% identity	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY in 206 aa ov	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAK <u>F</u> *	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH  10 GEQIFGKICI	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM  20 QCHAADSNVPNA	APKLEHNGD          APKLEHNGD
a130.pep 1 51 101 151 201 251 m130/a130 97	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS 7.6% identity	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY in 206 aa ov	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAK <u>F</u> *	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM  20 QCHAADSNVPNA	APKLEHNGD
a130.pep  1 51 101 151 201 251  m130/a130 97	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS 7.6% identity	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY in 206 aa ov	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAKF* /erlap	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH  10 GEQIFGKICI !!!!!!!!!	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM  20 QCHAADSNVPNA           QCHAADSNVPNA 90	APKLEHNGD          APKLEHNGD 100
a130.pep  1 51 101 151 201 251  m130/a130 97	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS 7.6% identity	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY in 206 aa ov TQTRIQPVGQL 60	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAK <u>F</u> *  /erlap  TMGDGIPVGER 70	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH  10 GEQIFGKICI !!!!!!!!! QGEQIFGKICI 80	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM  20 QCHAADSNVPNA            QCHAADSNVPNA 90	APKLEHNGD           APKLEHNGD   100
a130.pep  1 51 101 151 201 251  m130/a130 97 m130.pep a130	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS 7.6% identity DATTEAA 50	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY in 206 aa ov TQTRIQPVGQL 60 40 GFDTLFOHALN	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAK <u>F</u> *  /erlap  TMGDGIPVGEF 70 50 GFNAMPAKGG	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH  10 GEQIFGKICI !!!!!!!!! QGEQIFGKICI 80  60 7	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM  20 QCHAADSNVPNA            QCHAADSNVPNA 90  0 80 ITYMANKSGGS	APKLEHNGD          APKLEHNGD   100   89 FPNPDEAAP
a130.pep  1 51 101 151 201 251  m130/a130 97	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS 7.6% identity  DATTEAA 50  XAPRI-Q	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY in 206 aa ov TQTRIQPVGQL 60 40 GFDTLFQHALN	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAK <u>F</u> *  /erlap  TMGDGIPVGEF 70  50 GFNAMPAKGGF	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH  10 GEQIFGKICI !!!!!!!!! QGEQIFGKICI 80  60 7 AADLTDQELKRA	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM  20 QCHAADSNVPNA 111111111111111111111111111111111111	APKLEHNGD          APKLEHNGD 100 89 FPNPDEAAP
a130.pep  1 51 101 151 201 251  m130/a130 97 m130.pep a130	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS 7.6% identity  DATTEAA 50  XAPRI-Q	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY in 206 aa ov TQTRIQPVGQL 60 40 GFDTLFQHALN	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAK <u>F</u> *  /erlap  TMGDGIPVGEF 70  50 GFNAMPAKGGF	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH  10 GEQIFGKICI !!!!!!!!! ROGEQIFGKICI 80  60 7 AADLTDQELKRA	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM  20 QCHAADSNVPNA 111111111111111111111111111111111111	APKLEHNGD          APKLEHNGD 100 89 FPNPDEAAP
a130.pep  1 51 101 151 201 251  m130/a130 97 m130.pep a130  m130.pep	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS 7.6% identity  DATTEAA 50  XAPRI-Q	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY in 206 aa ov TQTRIQPVGQL 60 40 GFDTLFQHALN	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAK <u>F</u> *  /erlap  TMGDGIPVGEF 70  50 GFNAMPAKGGF	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH  10 GEQIFGKICI !!!!!!!!! QGEQIFGKICI 80  60 7 AADLTDQELKRA	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM  20 QCHAADSNVPNA 111111111111111111111111111111111111	APKLEHNGD          APKLEHNGD 100 89 FPNPDEAAP
a130.pep  1 51 101 151 201 251  m130/a130 97 m130.pep a130  m130.pep	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS 7.6% identity  DATTEAA' 50  XAPRI-Q             WAPRIAQ	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY in 206 aa ov TQTRIQPVGQL 60 40 GFDTLFQHALN	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAKF*  /erlap  TMGDGIPVGEF 70  50 GFNAMPAKGGF !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH  10 GEQIFGKICI !!!!!!!!! QGEQIFGKICI 80  60 7 AADLTDQELKRA :!!!!!!!!	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM  20 QCHAADSNVPNA 111111111111111111111111111111111111	APKLEHNGD          APKLEHNGD 100 89 FPNPDEAAP          FPNPDEAAP
a130.pep  1 51 101 151 201 251  m130/a130 97 m130.pep a130  m130.pep	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS 7.6% identity  DATTEAA 50  XAPRI-Q             WAPRIAQ 110	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY  in 206 aa ov  TQTRIQPVGQL 60 40 GFDTLFQHALN             GFDTLFQHALN 120 100	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAK <u>F</u> * /erlap  TMGDGIPVGEF 70 50 GFNAMPAKGGF            GFNAMPAKGGF 130	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH  10 GEQIFGKICI            QGEQIFGKICI 80 60 7 AADLTDQELKRA :	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM  20 QCHAADSNVPNA !!!!!!!!!!! QCHAADSNVPNA 90  0 80 .ITYMANKSGGS: !!!!!!!!!!!! ITYMANKSGGS: 150	APKLEHNGD          APKLEHNGD 100 89 FPNPDEAAP          FPNPDEAAP 160
a130.pep  1 51 101 151 201 251  m130/a130 97 m130.pep a130  m130.pep	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS 7.6% identity  DATTEAA 50  XAPRI-Q        WAPRIAQ 110 90 ADNAASG	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY  in 206 aa ov  TQTRIQPVGQL 60 40 GFDTLFQHALN             GFDTLFQHALN 120 100 ctasapadsaap	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAK <u>F</u> * /erlap  TMGDGIPVGEF 70 50 GFNAMPAKGGF            GFNAMPAKGGF 130 110 PAEAKAEDKGAF	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH  10 GEQIFGKICI	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM  20 QCHAADSNVPNA 111111111111111111111111111111111111	APKLEHNGD          APKLEHNGD 100 89 FPNPDEAAP          FPNPDEAAP 160 0 SIPGIPGIG
a130.pep  1 51 101 151 201 251  m130/a130 97 m130.pep a130  m130.pep a130	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS 7.6% identity  DATTEAA 50  XAPRI-Q             WAPRIAQ 110  90 ADNAASG	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY  in 206 aa ov  TOTRIQPVGQL 60 40 GFDTLFQHALN             GFDTLFQHALN 120 100 ctasapadsaap	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAKF* /erlap  TMGDGIPVGEF 70  50 GFNAMPAKGGF 11111111111111111111111111111111111	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH  10 GEQIFGKICI 11         QGEQIFGKICI 80  60 7 ADLTDQELKRA 140  120 1 A-PAVGVDGKKV	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM  20 QCHAADSNVPNA 90 0 80 ITYMANKSGGS: 1111111111111111111111111111111111	APKLEHNGD          APKLEHNGD   00   89 FPNPDEAAP          FPNPDEAAP   60  0 SIPGIPGIG
a130.pep  1 51 101 151 201 251  m130/a130 97 m130.pep a130  m130.pep a130	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS 7.6% identity  DATTEAA 50  XAPRI-Q             WAPRIAQ 110  90 ADNAASG	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY in 206 aa ov  TQTRIQPVGQL 60 40 GFDTLFQHALN             GFDTLFQHALN   1        GFTDTLFQHALN   1        GFTDTLFQHALN   1        GFTDTLFQHALN   1        GFTTLFQHALN   1        GFTTLFQHALN	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAK <u>F</u> * /erlap  TMGDGIPVGEF 70  50 GFNAMPAKGGA 130  110 PAEAKAEDKGAA 111111111 PAEAKAEDKGAA	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH  10 GEQIFGKICI            QGEQIFGKICI 80  60 7 AADLTDQELKRA 140  120 120 14 A-PAVGVDGKKV	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM  20 QCHAADSNVPNA 90 0 80 ITYMANKSGGS: 1111111111111111111111111111111111	APKLEHNGD          APKLEHNGD   00   89 FPNPDEAAP          FPNPDEAAP   60  0 SIPGIPGIG
a130.pep  1 51 101 151 201 251  m130/a130 97 m130.pep a130  m130.pep a130	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS 7.6% identity  DATTEAA 50  XAPRI-Q             WAPRIAQ 110  90 ADNAASG	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY in 206 aa ov  TQTRIQPVGQL 60 40 GFDTLFQHALN             GFDTLFQHALN   1        GFTDTLFQHALN   1        GFTDTLFQHALN   1        GFTDTLFQHALN   1        GFTTLFQHALN   1        GFTTLFQHALN	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAKF* /erlap  TMGDGIPVGEF 70  50 GFNAMPAKGGF 11111111111111111111111111111111111	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH  10 GEQIFGKICI 11         QGEQIFGKICI 80  60 7 ADLTDQELKRA 140  120 1 A-PAVGVDGKKV	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM  20 QCHAADSNVPNA 90 0 80 ITYMANKSGGS: 1111111111111111111111111111111111	APKLEHNGD          APKLEHNGD   00   89 FPNPDEAAP          FPNPDEAAP   60  0 SIPGIPGIG
a130.pep  1 51 101 151 201 251  m130/a130 97 m130.pep a130  m130.pep a130	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS 7.6% identity  DATTEAA 50  XAPRI-Q             WAPRIAQ 110  90 ADNAASG	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY  in 206 aa ov  TQTRIQPVGQL 60  40 GFDTLFQHALN            GFDTLFQHALN   20  100 GTASAPADSAAP            GTASAPADSAAP	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAKF* /erlap  TMGDGIPVGEP 70 50 GFNAMPAKGGA 130 110 PAEAKAEDKGAA 1111 PAEAKAEDKGAA 190	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH  10 GEQIFGKICI 11         QGEQIFGKICI 80  60 7 ADLTDQELKRA 140  120 1 A-PAVGVDGKKV AAPAVGVDGKKV 200	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM  20 QCHAADSNVPNA 90 0 80 ITYMANKSGGS 1111111111111111111111111111111111	APKLEHNGD          APKLEHNGD   00 89 FPNPDEAAP          FPNPDEAAP 160 0 SIPGIPGIG           SIPGIPGIG 220
a130.pep  1 51 101 151 201 251  m130/a130 97 m130.pep a130  m130.pep a130	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS 7.6% identity  DATTEAA' 50  XAPRI-Q               WAPRIAQ 110  90 ADNAASG                 ADNAASG 170	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY  in 206 aa ov  TQTRIQPVGQL 60  40 GFDTLFQHALN              GFDTLFQHALN             GTASAPADSAAF             TTASAPADSAAF             TTASAPADSAAF	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAKF* Verlap  TMGDGIPVGER 70  50 GFNAMPAKGGA 110 PAEAKAEDKGAA 1110 PAEAKAEDKGAA 190  170	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH  10 GEQIFGKICI HIHHHHH 10 GEQIFGKICI 80 60 70 ADLTDQELKRA HIHHHHH 140 120 140 120 140 120 140 120 140 120 140 120 140 120 140 120 140 120 140 120 140 120 140 140 120 140 140 120 140 140 140 140 140 120 140 140 140 140 140 140 140 140 140 14	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM  20 QCHAADSNVPNA             QCHAADSNVPNA 90 0 80 ITYMANKSGGS:             ITYMANKSGGS: 150 30 144 FEATCQVCHGG             FEATCQVCHGG 210	APKLEHNGD          APKLEHNGD   00  89 FPNPDEAAP          FPNPDEAAP   60  0 SIPGIPGIG           SIPGIPGIG 220
a130.pep  1 51 101 151 201 251  m130/a130 97 m130.pep a130  m130.pep a130	MKQLRDNKAQ TQTRIQPVGQ NGDWAPRIAQ SGGSFPNPDE KKVFEATCQV PAKGGNAGLS 7.6% identity  DATTEAA' 50  XAPRI-Q               WAPRIAQ 110  90 ADNAASG                 ADNAASG 170	GSALFTLVSG LTMGDGIPVG GFDTLFQHAL AAPADNAASG CHGGSIPGIP DDEVKAAVDY  in 206 aa ov  TQTRIQPVGQL 60  40 GFDTLFQHALN              GFDTLFQHALN             GTASAPADSAAF             TTASAPADSAAF             TTASAPADSAAF	IVIVIAVLYF ERQGEQIFGK NGFNAMPAKG TASAPADSAA GIGKKDDWAP MANQSGAKF* Verlap  TMGDGIPVGER 70  50 GFNAMPAKGGA 110 PAEAKAEDKGAA 1110 PAEAKAEDKGAA 190  170	LIKLAGSGSF ICIQCHAADS GAVDLTDQEL PAEAKAEDKG RIKKGKETLH  10 GEQIFGKICI HIHHHHH 10 GEQIFGKICI 80 60 70 ADLTDQELKRA HIHHHHH 140 120 140 120 140 120 140 120 140 120 140 120 140 120 140 120 140 120 140 120 140 120 140 140 120 140 140 120 140 140 140 140 140 120 140 140 140 140 140 140 140 140 140 14	GDVDATTEAA NVPNAPKLEH KRAITYMANK AAAPAVGVDG KHALEGFNAM  20 QCHAADSNVPNA 90 0 80 ITYMANKSGGS 1111111111111111111111111111111111	APKLEHNGD          APKLEHNGD   00  89 FPNPDEAAP          FPNPDEAAP   60  0 SIPGIPGIG           SIPGIPGIG 220

```
KKDDWAPRIKKGKETLHKHALEGFNAMPAKGGNAGLSDDEVKAAVDYMANQSGAKFX
     a130
                                 240
                                            250
                                                       260
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 505>:
     g132.seq
                ATGGAAGCCT TCAAAACCCT AATTTGGATT ATTAATATTA TTTCCGCTTT
           51 GGCCGTCATC GTGTTAGTAT TGCTCCAACA CGGCAAAGGC GCGGATGCCG
           101 GCGCGACCTT CGGATCGGGA AGCGGCAGCG CGCAAGGCGT ATTCGGCTCT
           151 GCCGGCAACG CCAACTTCCt CAGCCGCTCG ACCGCCGTTG CAGCAACAtt
           201 tttcttTGca acctgcAtgg gctatggTgt atattcacac CCACACGACA
          251 AAACACGGTT TGGACTtcag caacataCGA CAGACTCAGC AagcACCCAA
301 ACCcgtaAGC AATACCGAAC CTTCTGCCCC TGTTCCTCAG CAGCAGAAAT
           351 AACagtTTTT CAAATgccga caTGgtga
This corresponds to the amino acid sequence <SEQ ID 506; ORF 132.ng>:
     g132.pep
                MEAFKTLIWI INIISALAVI VLVLLQHGKG ADAGATFGSG SGSAQGVFGS
            51 AGNANFLSRS TAVAATFFFA TCMGYGVYSH PHDKTRFGLQ QHTTDSASTQ
           101 TRKQYRTFCP CSSAAEITVF QMPTW*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 507>:
     m132.seq (partial)
                ATGGAACCCT TCAAAACCTT AATTTGGATT GTTAATTTAA TTTCCGCTTT
            51 GGCCGTCTTC GTGTTAGTAT TGCTCCAACA CGGCAAAGGC GCGGATGCCG
           101 GCGCGACTTT CGGA...
This corresponds to the amino acid sequence <SEQ ID 508; ORF 132>:
      m132.pep
                (partial)
                MEPFKTLIWI VNLISALAVF VLVLLQHGKG ADAGATFG...
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 132 shows 89.5% identity over a 38 aa overlap with a predicted ORF (ORF 132.ng)
 from N. gonorrhoeae:
      m132/g132
                                       20
                    MEPFKTLIWIVNLISALAVFVLVLLQHGKGADAGATFG
      m132.pep
                    MEAFKTLIWIINIISALAVIVLVLLQHGKGADAGATFGSGSGSAQGVFGSAGNANFLSRS
      g132
                                                            40
                                                 30
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 509>:
      a132.seq
                 ATGGAAGCCT TCAAAACCCT AATTTGGATT GTTAATATAA TTTCCGCTTT
             51 GGCCGTCATC GTGTTAGTAT TGCTCCAACA CGGCAAAGGC GCGGATGCCG
            101 GCGCGACTTT CGGATCGGGA AGCGGCAGCG CGCAAGGCGT ATTCGGCTCT
            151 GCCGGCAACG CTAACTTCCT CAGCCGCTCG ACCGCCGTTG CAGCAACATT
           201 TTTCTTTGCA ACCTGCATGG GCTATGGTGT ATATTCACAC CCACACGACA
251 AAACACGGTT TGGACTTCAG CAACGTACAA CAAACTCAGC AAGCACCCAA
301 ACCCGTAAGC AATACCGAAC CTTCTGCCCC TGTTCCTCAG CAGCAGAAAT
            351 AACAGTTTTT CAAATGCCGA CATGGTGA
 This corresponds to the amino acid sequence <SEQ ID 510; ORF 132.a>:
       a132.pep
                 MEAFKTLIWI VNIISALAVI VLVLLQHGKG ADAGATFGSG SGSAQGVFGS
                 AGNANFLSRS TAVAATFFFA TCMGYGVYSH PHDKTRFGLQ QRTTNSASTQ
             51
                 TRKQYRTFCP CSSAAEITVF QMPTW*
```

m132/a132 92.1% identity in 38 aa overlap

```
10
                                       20
                                                  30
     m132.pep
                   MEPFKTLIWIVNLISALAVFVLVLLOHGKGADAGATFG
                    11 1111111: 111111: 1111111
                   MEAFKTLIWIVNIISALAVIVLVLLQHGKGADAGATFGSGSGSAQGVFGSAGNANFLSRS
     a132
                                       20
                                                  30
The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 511>:
     g134.seg
                ATGTCCCAAG AAATCCTCGA CCAAGTGCGC CGCCGCCGCA CGTTTGCCAT
            51 CATCTCCCAC CCCGATGCGG GTAAAACCAC GCTGACCGAA AAACTGCTGC
           101 TGTTTTCGGG CGCGATTCAA AGCGCAGGCA CGGTGAAAGG TAAGAAAACC
           151 GGCAAATTCG CCACCTCCGA CTGGATGGAC ATCGAGAAGC AGCGCGGCAT
           201 TTCCGTGGCA TCAAGCGTGA TGCAGTTCGA CTACAAAGAC CACACCGTCA
           251 ACCTCTTGGA CACGCCGGGA CACCAAGACT TCTCCGAAGA CACCTACCGC
301 GTTTTAACCG CAGTGGACAG CGCCTTGATG GTCATCGACG CGGCAAAAGG
           351 CGTGGAAGCG CAAACCATCA AACTCTTGAA CGTCTGCCGC CTGCGCGATA
           401 CGCCGATTGT TACCTTCATG AACAAATACG ACCGCGAAGT GCGCGATTCT
           451 TTGGAACTCT TGGACGAAGT GGAAGACATC CTGCAAATCC GCTGCGCGCC
           501 CGTTACCTGG CCGATCGGTA TGGGCAAAAA CTTCAAGGGC GTGTACCACA
           551 TCCTGAACGA CGAAATCTAT CTCTTTGAAG CGGGCGGCGA ACGCCTGCCG
           601 CACGAGTTCG ACATCATCAA AGGCATAAAC AATCCCGAAT TGGAACAACG
           651 CTTTCCGTTG GAAATCCAGC AGTTGCGCGA CGAAATCGAA TTGGTGCAGG
           701 CGGCTTCCAA CGAATTTAAT CTCGacgaAT TTCTCGccgG CGAACTCACG
           751 CCAGTGTTCT TCGGCTCTGC GATTAACAAC TTCGGCATTC AGGAAATCCT
           801 CAATTCATTG ATTGACTGGG CACCCGCACC GAAACCGCGC GACGCGACCA
           851 TGCGCATGGT CGGGCCGGAC GAGCCGAAAT TTTCCGGATT TATCTTTAAA
           901 ATCCAAGCCA ATATGGACCC GAAACACCGC GACCGTATCG CCTTCTTGCG
           951 CGTCTGCTCC GGTAAATTCG AGCGCGGCAT GAAGATGAAA CACCTGCGTA
          1001 TCAACCGCGA AATCGCCGCC TCCAGCGTAG TAACCTTCAT GTCGCACGAC
          1051 CGCGAACTGG CGGAAGAAGC CTACGCCGGC GACATCATCG GCATCCCGAA
          1101 CCACGGCAAC ATCCAAATCG GCGACAGCTT CTCCGAAGGC GAACAACTGG
         1151 CGTTTACCGG CATCCCATTC TTCGCGCCCG AACTGTTCCG CAGCGTCCGC
1201 ATCAAAAACC CGCTGAAAAT CAAACAACTG CAAAAAGGTT TGCAACAACT
1251 CGGCGAAGAA GGTGCGGTTC AAGTATTCAA ACCGATGAGC GGCGCGGATT
1301 TGATTTTGGG TGCGGTCGGC GTGTTGCAGT TTGAAGTCGT AACCTCACGC
          1351 CTCGCCAACG AATACGGCGT GGAAGCCGTG TTCGACAGCG CATCCATCTG
          1401 GTCGGCGCG TGGGTATCGT GCGACGACAA GAAAAAACTG GCGGAATTTG
          1451 AAAAAGCCAA CGCAGGCAAC CTCGCCATCG ACGCAGGCGG CAACCTCGCC
          1501 TACCTCGCCC CCAACCGCGT GAATTTGGGG TTGACGCAAG AACGCTGGCC
          1551 GGACATCGTG TTCCACGAAA CGCGCGAACA TTCGGTCAAA CTCTAA
This corresponds to the amino acid sequence <SEQ ID 512; ORF 134.ng>:
     g134.pep
                MSOEILDOVR RRRTFAIISH PDAGKTTLTE KLLLFSGAIO SAGTVKGKKT
             1
            51 GKFATSDWMD IEKQRGISVA SSVMQFDYKD HTVNLLDTPG HQDFSEDTYR
           101 VLTAVDSALM VIDAAKGVEA QTIKLLNVCR LRDTPIVTFM NKYDREVRDS
           151 LELLDEVEDI LQIRCAPVTW PIGMGKNFKG VYHILNDEIY LFEAGGERLP
           201 HEFDIIKGIN NPELEQRFPL EIQQLRDEIE LVQAASNEFN LDEFLAGELT
                PVFFGSAINN FGIQEILNSL IDWAPAPKPR DATMRMVGPD EPKFSGFIFK
           301 IQANMDPKHR DRIAFLRVCS GKFERGMKMK HLRINREIAA SSVVTFMSHD
           351 RELAEEAYAG DIIGIPNHGN IQIGDSFSEG EQLAFTGIPF FAPELFRSVR
           401 IKNPLKIKQL QKGLQQLGEE GAVQVFKPMS GADLILGAVG VLQFEVVTSR
           451 LANEYGVEAV FDSASIWSAR WVSCDDKKKL AEFEKANAGN LAIDAGGNLA
           501 YLAPNRVNLG LTQERWPDIV FHETREHSVK L*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 513>:
     m134.seq
               ATGTCCCAAG AAATCCTCGA CCAAGTGCGC CGCCGCCGCA CGTTTGCCAT
             1
            51 CATCTCCCAC CCTGACGCAG GTAAAACCAC GTTGACTGAA AAACTCTTGC
           101 TGTTTTCGGG CGCGATTCAG AGCGCGGGTA CGGTAAAAGG CAAGAAAACC
```

151 GGCAAATTCG CCACTTCCGA CTGGATGGAA ATCGAGAAGC AGCGCGGCAT

```
TTCCGTGGCA TCAAGTGTGA TGCAGTTCGA TTACAAAGAC CACACCGTCA
     ACCTCTTGGA CACGCCGGGA CACCAAGACT TCTCCGAAGA CACCTACCGC
251
     GTTTTAACCG CCGTGGACAG CGCATTAATG GTCATCGACG CGGCAAAAGG
301
     CGTGGAAGCG CAAACCATCA AGCTCTTAAA CGTCTGCCGC CTGCGCGATA
351
     CACCGATTGT TACGTTTATG AACAAATACG ACCGCGAAGT GCGCGATTCC
401
     CTGGAACTTT TGGACGAAGT GGAAAACATT TTAAAAATCC GCTGCGCGCC
451
     CGTTACCTGG CCGATCGGTA TGGGCAAAAA CTTCAAGGGC GTGTACCACA
501
     TCCTGAACGA TGAAATTTAT CTCTTTGAAG CTGGCGGCGA ACGCCTGCCG
     CACGAGTTCG ACATCATCAA AGGCATCGAT AATCCTGAAT TGGAACAACG
601
     CTTTCCGTTG GAAATCCAGC AGTTGCGCGA CGAAATCGAA TTGGTGCAGG
651
     CGGCTTCCAA CGAGTTTAAT CTCGACGAAT TCCTCGCCGG CGAACTCACG
701
     CCCGTATTCT TCGGCTCTGC GATTAACAAC TTCGGTATTC AGGAAATCCT
751
     CAATTCATTG ATTGACTGGG CGCCCGCGCC GAAACCGCGC GACGCGACCG
801
     TACGTATGGT CGAGCCGGAC GAGCCGAAGT TTTCCGGATT TATCTTCAAA
851
     ATCCAAGCCA ATATGGACCC GAAACACCGC GACCGTATTG CCTTCTTGCG
901
     CGTCTGCTCC GGCAAATTCG AGCGCGGCAT GAAGATGAAA CACCTGCGTA
951
1001 TCAACCGCGA AATCGCCGCC TCCAGCGTGG TTACCTTCAT GTCGCACGAC
1051 CGCGAGCTGG TTGAAGAAGC CTACGCCGGC GACATTATCG GCATCCCGAA
     CCACGGCAAC ATCCAAATCG GCGACAGCTT CTCCGAAGGC GAACAACTGG
1151 CGTTCACCGG CATCCCATTC TTCGCACCCG AACTGTTCCG CAGCGTACGC
1201 ATCAAAAACC CGCTGAAAAT CAAACAACTG CAAAAAGGCT TGCAACAGCT
1251 CGGCGAAGAA GGCGCGGTGC AGGTGTTCAA ACCGATGAGC GGCGCGGATT
     TGATTTTGGG CGCGGTCGGC GTGTTGCAGT TTGAAGTCGT TACCTCGCGC
     CTCGCCAACG AATACGGCGT AGAAGCCGTG TTCGACAGCG CATCCATCTG
     GTCGGCGCGC TGGGTATCGT GCGACGACAA GAAAAAACTG GCTGAATTTG
     AAAAAGCCAA CGCGGGCAAC CTCGCCATCG ACGCAGGCGG CAACCTCGCC
1451
     TACCTCGCCC CCAACCGCGT GAATTTGGGA CTCACGCAAG AACGTTGGCC
1501
     GGACATCGTG TTCCACGAAA CACGCGAACA TTCGGTCAAA CTGTAA
```

This corresponds to the amino acid sequence <SEQ ID 514; ORF 134>:

```
m134.pep
         MSQEILDQVR RRRTFAIISH PDAGKTTLTE KLLLFSGAIQ SAGTVKGKKT
          GKFATSDWME IEKQRGISVA SSVMQFDYKD HTVNLLDTPG HQDFSEDTYR
          VLTAVDSALM VIDAAKGVEA QTIKLLNVCR LRDTPIVTFM NKYDREVRDS
     101
     151 LELLDEVENI LKIRCAPVTW PIGMGKNFKG VYHILNDEIY LFEAGGERLP
     201 HEFDIIKGID NPELEQRFPL EIQQLRDEIE LVQAASNEFN LDEFLAGELT
     251 PVFFGSAINN FGIQEILNSL IDWAPAPKPR DATVRMVEPD EPKFSGFIFK
         IQANMDPKHR DRIAFLRVCS GKFERGMKMK HLRINREIAA SSVVTFMSHD
          RELVEEAYAG DIIGIPNHGN IQIGDSFSEG EQLAFTGIPF FAPELFRSVR
         IKNPLKIKQL QKGLQQLGEE GAVQVFKPMS GADLILGAVG VLQFEVVTSR
     451 LANEYGVEAV FDSASIWSAR WVSCDDKKKL AEFEKANAGN LAIDAGGNLA
         YLAPNRVNLG LTQERWPDIV FHETREHSVK L*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 134 shows 98.7% identity over a 531 aa overlap with a predicted ORF (ORF 134.ng) from N. gonorrhoeae: m134/g134

60 30 40 50 20 MSQEILDQVRRRRTFAIISHPDAGKTTLTEKLLLFSGAIQSAGTVKGKKTGKFATSDWME m134.pep MSQEILDQVRRRRTFAIISHPDAGKTTLTEKLLLFSGAIQSAGTVKGKKTGKFATSDWMD q134 20 30 40 50 60 10 90 100 IEKORGISVASSVMQFDYKDHTVNLLDTPGHQDFSEDTYRVLTAVDSALMVIDAAKGVEA m134.pep IEKQRGISVASSVMQFDYKDHTVNLLDTPGHQDFSEDTYRVLTAVDSALMVIDAAKGVEA g134 120 70 80 90 100 110 170 180 130 140 150 160

m134.pep	QTIKLLNVCRLRDTPI	1111111111	1111111111	11:11:11		
g134	QTIKLLNVCRLRDTPI 130	VT <b>FMN</b> KYDRE 140	EVRDSLELLDE 150	VEDILQIRCA 160	APVTWPIGMG 170	KNFKG 180
m134.pep			[] [] : [] [] []	441414111		
g134	VYHILNDEIYLFEAGO 190	SERLPHEFDII 200	210	220	230	240
m134.pep	250 LDEFLAGELTPVFFGS           LDEFLAGELTPVFFGS		[			1111
m134.pep	310 IQANMDPKHRDRIAF          IQANMDPKHRDRIAF	 LRVCSGKFER	GMKMKHLRINE	 REIAASSVVTI		 EEAYAG
	310 370	320 380	330	340 400	350 410	360 420
m134.pep	DIIGIPNHGNIQIGD              DIIGIPNHGNIQIGD 370	111111111	111111111	!	1   1   1   1   1   1	
m134.pep	430 GAVQVFKPMSGADLI	440 LGAVGVLQFE	450 VVTSRLANEY	111111		
g134	GAVQVFKPMSGADLI 430	LGAVGVLQFE 440	VVTSRLANEY 450	GVEAVFDSAS 460	470	480
.m134.pep	490 AEFEKANAGNLAIDA           AEFEKANAGNLAIDA	 GGNLAYLAPN		11111111	111111	
	490	500	210	320	550	

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 515>: a134.seq

34.seq					
1	ATGTCCCAAG	AAATCCTCGA	CCAAGTGCGC	CGCCGCCGCA	
51	CATCTCCCAC	CCTGACGCAG	GTAAAACCAC	GTTGACTGAA	
101	TGTTTTCAGG	TGCGATTCAA	AGCGCGGGTA		CAAGAAAACC
151	GGCAAATTCG	CCACCTCCGA	CTGGATGGAC	ATCGAGAAGC	
201	TTCCGTGGCA	TCAAGCGTGA	TGCAGTTCGA	CTATAAAGAC	-
251	ACCTTTTGGA	CACGCCGGGA	CACCAAGACT	TCTCCGAAGA	
301	GTTTTGACCG	CCGTCGATAG	TGCCTTGATG	GTCATCGACG	CGGCAAAAGG
351	CGTGGAAGCG	CAAACCATCA	AACTCTTGAA	CGTCTGCCGC	CTGCGCAATA
401	CGCCGATTGT	TACGTTCATG	AACAAATACG	ACCGCGAAGT	
451	CTGGAATTGC	TGGACGAAGT	GGAAAACATC		GCTGCGCGCC
501	CGTAACCTGG	CCGATCGGCA	TGGGCAAAAA		GTGTACCACA
551	TCCTGAACGA	CGAAATCTAT	CTCTTTGAAG		ACGCTTGCCG
601	CACGAGTTCG	ACATCATCAA	AGGCATCGAT		TGGAACAACG
651	CTTTCCGTTA	GAAATACAGC	AGTTGCGCGA	CGAAATCGAA	TTGGTGCAGG
701	CGGCTTCCAA	CGAGTTCAAT	CTCGACGAAT	TCCTCGCCGG	CGAACTCACG
751	CCCGTATTCT	TCGGCTCTGC	GATTAACAAC	TTCGGTATTC	AGGAAATCCT
801	CAATTCATTG	ATTGAATGGG	CGCCCGCGCC	GAAACCACGC	GATGCGACCG
851	TGCGTATGGT	CGAGCCGGAC	GAGCCGAAGT	TTTCCGGATT	TATCTTCAAA
901	ATCCAAGCCA	ATATGGACCC	GAAACACCGC	GACCGTATTG	CCTTCTTGCG

951	CGTCTGCTCC GGCAAATTCG AGCGCGGCAT GAAAATGAAA CACCTGCGTA	
1001	TCAACCGCGA AATCGCCGCC TCCAGCGTGG TAACCTTCAT GTCCCACGAC	
1051	CGCGAGCTGG TTGAAGAAGC CTACGCCGGC GACATTATCG GTATCCCAAA	
1101	CCACGGCAAC ATCCAAATCG GCGACAGCTT CTCCGAAGGC GAACAACTGA	
1151	CGTTTACCGG CATCCCATTC TTCGCGCCCG AACTGTTCCG CAGCGTTCGC	
1201	ATCAAAAACC CGCTGAAAAT CAAGCAACTG CAAAAAGGTT TGCAACAGCT	
1251	TGGCGAAGAA GGTGCGGTGC AGGTGTTCAA ACCAATGAGC GGCGCGGATT	
1301	TGATTTTGGG CGCGGTCGGC GTGTTGCAGT TTGAAGTCGT TACCTCGCGC	
1351	CTTGCCAACG AATACGGCGT GGAAGCCGTG TTCGACAACG CATCCATCTG	
1401	GTCGGCGCGC TGGGTATCGT GCGACGACAA GAAAAAACTG GCGGAATTTG	
1451	AAAAAGCCAA CGCGGGCAAC CTCGCCATCG ACGCGGGCGG CAACCTCGCC	
1501	TACCTCGCCC CTAACCGCGT GAATCTGGGA CTCACGCAAG AACGCTGGCC	
1551	GGACATCGTG TTCCACGAAA CGCGCGAGCA TTCGGTCAAA CTTTAA	
	070 TD 444 ODT 104	
This correspond	s to the amino acid sequence <seq 134.a="" 516;="" id="" orf="">:</seq>	
a134.pep		
1	MSQEILDQVR RRRTFAIISH PDAGKTTLTE KLLLFSGAIQ SAGTVKGKKT	
51	GKFATSDWMD IEKORGISVA SSVMOFDYKD HTVNLLDTPG HQDFSEDTYR	
101	VLTAVDSALM VIDAAKGVEA QTIKLLNVCR LRNTPIVTFM NKYDREVRDS	
151	LELLDEVENI LOIRCAPVTW PIGMGKNFKG VYHILNDEIY LFEAGGERLP	
201	HEFDIIKGID NPELEORFPL EIQQLRDEIE LVQAASNEFN LDEFLAGELT	
251	PVFFGSAINN FGIOEILNSL IEWAPAPKPR DATVRMVEPD EPKFSGFIFK	
301	IQANMDPKHR DRIAFLRVCS GKFERGMKMK HLRINREIAA SSVVTFMSHD	
351	RELVEEAYAG DIIGIPNHGN IQIGDSFSEG EQLTFTGIPF FAPELFRSVR	
401	TKNPLKIKOL OKGLOOLGEE GAVOVFKPMS GADLILGAVG VLQFEVVTSR	
451	LANEYGVEAV FDNASIWSAR WVSCDDKKKL AEFEKANAGN LAIDAGGNLA	
501	YLAPNRVNLG LTQERWPDIV FHETREHSVK L*	
001		
m134/a134 98	3.9% identity in 531 aa overlap	
mis wars.	10 20 30 40 50 60	
	MSQEILDQVRRRRTFAIISHPDAGKTTLTEKLLLFSGAIQSAGTVKGKKTGKFATSDWME	
m13/ nen		
m134.pep	MSQETEDQVKKKTFATISHEDAGKTTHTEKNEHETSGATQSHGT VACAKTGATTHTS 2	
•	4414144141441444	
m134.pep		
•		
•		
a134		
•		
a134 m134.pep		
a134		
a134 m134.pep		
a134 m134.pep		
a134 m134.pep		
a134 m134.pep a134		
a134 m134.pep a134		
m134.pep a134 m134.pep		; ; ;
a134 m134.pep a134 m134.pep a134		
a134 m134.pep a134 m134.pep a134		,
a134 m134.pep a134 m134.pep a134		,
a134 m134.pep a134 m134.pep a134		
m134.pep a134  m134.pep a134  m134.pep a134		)
a134 m134.pep a134 m134.pep a134		
m134.pep a134  m134.pep a134  m134.pep a134		
m134.pep a134  m134.pep a134  m134.pep a134		
m134.pep a134  m134.pep a134  m134.pep a134		
m134.pep a134  m134.pep a134  m134.pep a134	MSQEILDQVRRRRTFAIISHPDAGKTTLTEKLLLFSGAIQSAGTVKGKKTGKFATSDWMD	
m134.pep a134 m134.pep a134 m134.pep a134		
m134.pep a134  m134.pep a134  m134.pep a134		
m134.pep a134  m134.pep a134  m134.pep a134  m134.pep a134		
m134.pep a134 m134.pep a134 m134.pep a134		

WO 99/057280 PCT/US99/09346

382

```
390
                                      400
                                             410
                      380
               370
         DIIGIPNHGNIQIGDSFSEGEQLAFTGIPFFAPELFRSVRIKNPLKIKQLQKGLQQLGEE
m134.pep
          DIIGIPNHGNIQIGDSFSEGEQLTFTGIPFFAPELFRSVRIKNPLKIKQLQKGLQQLGEE
a134
                              390
                      380
               370
                                      460
               430
                       440
                              450
          GAVQVFKPMSGADLILGAVGVLQFEVVTSRLANEYGVEAVFDSASIWSARWVSCDDKKKL
m134.pep
          GAVQVFKPMSGADLILGAVGVLQFEVVTSRLANEYGVEAVFDNASIWSARWVSCDDKKKL
a134
                                      460
                                             470
                              450
               430
                              510
                                      520
                       500
               490
          AEFEKANAGNLAIDAGGNLAYLAPNRVNLGLTQERWPDIVFHETREHSVKLX
m134.pep
          AEFEKANAGNLAIDAGGNLAYLAPNRVNLGLTQERWPDIVFHETREHSVKLX
a134
                                      520
                       500
                              510
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 517>:

```
q135.seq
         ATGAAATACA AAAGAATCGT ATTTAAAGTC GGCACATCTT CGATTACCCG
         TTCGGACGGC AGCCTCTCGC GCGGCAAAAT CCAAACCATC ACCCGCCAGC
     101 TTGCCGCATT GCATCATGCG GGACACGAGC TGGTCTTGGT GTCTTCCGGC
     151 GCGGTTGCTG CAGGGTTCGG CGCGCTGGGT TTCAAAAAAC GTCCGGTCAA
     201 AATCGCCGAC AAACAGGCTT CCGCCGCCGT CGGGCAGGGG CTGCTGATGG
     251 AAGAATATAC GGCAAACCTG TCTTCAGACG GCATCGTGTC CGCACAAATC
     301 CTGCTCAGCC GTGCCGACTT TGCCGACAAA CGCCGCTACC AAAATGCCGG
     351 CGGCGCACTT TCCGTGCTGC TGCAACGCCG CGCGATTCCC ATCATCAATG
     401 AAAACGACAC GGTTTCGGTT GAGGAGTTGA AAATCGGCGA CAACGACACA
         TTGAGTGCGC AAGTGGCGGC GATGATACAG GCAGACCTCT TGGTGCTGCT
         GACCGACATA GACGGTCTTT ACACCGGCAA CCCGAACAGC AATCCCGATG
     551 CCGTACGGCT GGACAAAATC GAACACATCA ACCATGAAAT CATCGAAATG
     601 GCGGGCGGCT CGGGTTCGGC AAACGGCACG GGCGGTATGC TGACCAAAAT
     651 CAAAGCGGCA ACCATCGCCG CCGAATCCGG CGTACCGGTG TATATCTGTT
     701 CCTCACTCAA ACCCGATTCA TTGGCCGAAG CCGCCGAACA TCAGGCGGAC
     751 GGCTCGTTTT TCGTcccCcg tgCCAAAGGT TTGCGGACAC AGAAGCAATG
         GctggCGTTC TATTCcgaaa gcggGGgcag cgttTAtgtg gacgaaagtg
         cggaacacgc tTtgtccgaa caagggaaag cctgCTGA
     851
```

This corresponds to the amino acid sequence <SEQ ID 518; ORF 135.ng>:

g135.pep 1

```
1 MKYKRIVFKV GTSSITRSDG SLSRGKIQTI TRQLAALHHA GHELVLVSSG
51 AVAAGFGALG FKKRPVKIAD KQASAAVGQG LLMEEYTANL SSDGIVSAQI
101 LLSRADFADK RRYQNAGGAL SVLLQRRAIP IINENDTVSV EELKIGDNDT
151 LSAQVAAMIQ ADLLVLLTDI DGLYTGNPNS NPDAVRLDKI EHINHEIIEM
201 AGGSGSANGT GGMLTKIKAA TIAAESGVPV YICSSLKPDS LAEAAEHQAD
251 GSFFVPRAKG LRTQKQWLAF YSESGGSVYV DESAEHALSE QGKAC*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 519>:
m135.seq

1 ATGAAATACA AAAGAATCGT ATTTAAAGTC GGCACATCTT CGATTACCCA
51 TTCGGACGGC AGTCTCTCGC GCGGCAAAAT CCAAACCATC ACCTGCCAGC
101 TTGCCGCATT GCATCATGCG GGACACGAGC TGGTCTTGGT GTCTTCCGGC
151 GCGGTTGCGG CAGGGTTCGG TGCGCTGGGT TTCAAAAAAAC GTCCGGTCAA
201 AATCGCCGAC AAACAGGCTT CCGCCGCGT CGGGCAGGGG CTGCTGATGG
251 AAGAATATAC GGCAAACCTG TCTTCAGACG GCATCGTGTC CGCGCAAATC
301 CTGCTCAGCC GCGCCGACTT TGCCGACAAA CGCCGCTACC AAAATGCCGG
351 CGGCGCACTT TCCGTGCTGC TGCAACGCCG CGCCGTCCCC ATCATCAATG
401 AAAACGATAC GGTTTCGGTT GAGGAATTGA AAATCGGCGA CAACGACACA
451 TTGAGTGCGC AAGTGGCGGC GATGATACAG GCAGACCTCT TGGTGCTGCT

501	GACCGACATA	GACGGTCTTT	ACACGGGCAA	CCCGAACAGC	AATCCCGATG
551	CCGTACGGCT	GGACAAAATC	GAACACATCA	ACCATGAAAT	CATCGAAATG
601			AAACGGCACG		
651	CAAAGCGGCA	ACCATCGCCG	CCGAATCCGG	CGTACCGGTG	TATATCTGTT
701	CCTCGCTCAA	ACCCGATGCA	CTTGCCGAAG	CTGCCGAACA	TCAGGCGGAC
751	GGCTCGTTTT	TCGTCCCCCG	TGCCAAAGGT	TTGCGGACGC	AGAAGCAATG
801	GCTGGCGTTC	TATTCCGAAA	GCCGGGGCAG	CGTTTATGTG	GACGAAGGTG
851	CGGAACACGC	TTTGTCCGAA	CAGGGGAAAA	GCCTGCTGAT	GTCGGGCATT
901	GCCGGAATCG	AAGGGCATTT	TTCCCGTATG	GACACCGTAA	CCGTGTACAG
951	CAAGGCAACC	AAACAGCCCC	TGGGCAAAGG	GCGCGTCCTG	TTCGGCTCTG
1001	CCGCCGCCGA	AGACCTGCTC	AAATCGCGTA	AGGCGAAAGG	CGTGTTCATC
1051	CATCGGGACG	ACTGGATTTC	CATCACGCCC	GAAATACGCC	TGCTTCTGAC
1101	CGAATTTTAG				

This corresponds to the amino acid sequence <SEQ ID 520; ORF 135>:

m135.pep

1 MKYKRIVFKV GTSSITHSDG SLSRGKIQTI TCQLAALHHA GHE<u>LVLVSSG</u> 51 AVAAGFGALG FKKRPVKIAD KQASAAVGQG LLMEEYTANL SSDGIVSAQI 101 LLSRADFADK RRYQNAGGAL SVLLQRRAVP IINENDTVSV EELKIGDNDT 151 LSAQVAAMIQ ADLLVLLTDI DGLYTGNPNS NPDAVRLDKI EHINHEIIEM 201 AGGSGSANGT GGMLTKIKAA TIAAESGVPV YICSSLKPDA LAEAAEHQAD 251 GSFFVPRAKG LRTQKQWLAF YSESRGSVYV DEGAEHALSE QGKSLLMSGI 301 AGIEGHFSRM DTVTVYSKAT KQPLGKGRVL FGSAAAEDLL KSRKAKGVFI 351 HRDDWISITP EIRLLTEF*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 135 shows 97.6% identity over a 294 aa overlap with a predicted ORF (ORF 135.ng) from N. gonorrhoeae:

m135/g135

	. 10	20	30	40	50	60
m135.pep	MKYKRIVFKVGTSSI	THSDGSLSR	GKIQTITCQL	AALHHAGHEL	VLVSSGAVAA	GFGALG
		1:111111	11111111111			
g135	MKYKRIVFKVGTSSI	TRSDGSLSR	GKIQTITRQL	AALHHAGHEL	VLVSSGAVAA	
_	10	20	30	40	50	60
						•
	70	80	90	100	110	120
m135.pep	FKKRPVKIADKQASA	AVGQGLLME	EYTANLSSDG	IVSAQILLSR	ADFADKRRYQ	
	_			111111111		
g135	FKKRPVKIADKQASA					
	70	80	90	100	110	120
					150	180
	130	140	150	160	170	
m135.pep	SVLLQRRAVPIINEN	NDTVSVEELK	IGDNDTLSAQ	VAAMIQADLL	'ATTITITET	IGNENS
				ווווווו      זיסגסזאגעי	THILLIH HE	TCNDNS
g135	SVLLQRRAIPIINE	140	150	160	170	180
	130	140	150	100	1,0	200
	190	200	210	220	230	240
m135.pep	NPDAVRLDKIEHIN					
miss.pep				1111111111		11111:
g135	NPDAVRLDKIEHIN	HEIIEMAGGS	GSANGTGGML	TKIKAATIAA	ESGVPVYICS	SLKPDS
9133	190	200	210	220	230	240
	250	260	270	280	290	300
m135.pep	LAEAAEHQADGSFF	VPRAKGLRTO	KQWLAFYSES	RGSVYVDEGA	<b>LEHALSEQGKS</b>	LLMSGI
		[	1111111111		.	
g135	LAEAAEHQADGSFF	VPRAKGLRTO	KQWLAFYSES	GGSVYVDESA		CX
	250	260	270	280	290	
	310	320	330	340	350	360

```
AGIEGHFSRMDTVTVYSKATKQPLGKGRVLFGSAAAEDLLKSRKAKGVFIHRDDWISITP
    m135.pep
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 521>:
    al35.seq
              ATGAAATACA AAAGAATCGT ATTTAAAGTC GGCACATCTT CGATTACCCA
           1
              TTCGGACGGC AGTCTCTCGC GCGGCAAAAT CCAAACCATC ACCCGCCAGC
          51
              TTGCCGCATT GCATCATGCG GGACACGAGC TGGTCTTGGT GTCTTCCGGC
         101
              GCGGTTGCGG CAGGGTTCGG TGCGCTGGGT TTCAAAAAAC GTCCGGTCAA
         151
              AATCGCCGAC AAACAGGCTT CCGCCGCCGT CGGGCAGGGG CTGCTGATGG
         201
              AAGAATATAC GGCAAACCTG TCTTCAGACG GCATCGTGTC CGCACAAATC
          251
              CTGCTCAGCC GCGCCGACTT TGCCGACAAA CGCCGCTACC AAAATGCCGG
          301
              CGGCGCACTT TCCGTGCTGC TGCAACGCCG CGCCGTCCCC ATCATCAATG
          351
              AAAACGATAC GGTTTCGGTT GAGGAATTGA AAATCGGCGA CAACGACACA
          401
              TTGAGTGCGC AAGTGGCGGC GATGATACAG GCAGACCTCT TGGTGCTGCT
          451
              GACCGACATA GACGGTCTTT ACACCGGCAA CCCGAACAGC AATCCCGATG
          501
              CCGTACGGCT GGACAAAATC GAACACATCA ACCATGAAAT CATCGAAATG
          551
              GCGGGCGGCT CGGGTTCGGC AAACGGCACA GGCGGTATGC TGACTAAAAT
          601
              CAAAGCGGCG ACGATTGCGA CCGAGTCCGG CGTACCGGTC TATATCTGTT
          651
              CCTCGCTCAA ACCCGATGCA CTTGCCGAAG CGGCAGATAA TCAGGCGGAC
          701
              GGCTCGTTTT TCGTCCCCCG TGCCAAAGGT TTGCGGACGC AGAAGCAATG
          751
              GCTGGCGTTC TATTCCGAAA GCAGGGGCGG CGTTTATGTG GACGAAGGTG
          801
              CGGAACACGC TTTGTCCGAA CAGGGAAAAA GCCTGCTGAT GTCGGGCATT
          851
              GCCGGAATCG AAGGGCATTT TTCCCGTATG GACACCGTAA CCGTGTACAG
          901
              CAAGGCAACC AAACAGCCTT TGGGCAAAGG GCGAGTCCTG TTCGGCTCTG CCGCCGCCGA AGACCTGCTC AAATTGCGTA AGGCGAAAGG CGTGTTCATC
          951
         1001
              CATCGGGACG ACTGGATTTC CATCACGCCC GAAATACGCC TGCTTCTGAC
         1051
         1101
              CGAATTTTAG
This corresponds to the amino acid sequence <SEQ ID 522; ORF 135.a>:
     a135.pep
               MKYKRIVFKV GTSSITHSDG SLSRGKIQTI TRQLAALHHA GHELVLVSSG
               AVAAGFGALG FKKRPVKIAD KQASAAVGQG LLMEEYTANL SSDGIVSAQI
           51
               LLSRADFADK RRYQNAGGAL SVLLQRRAVP IINENDTVSV EELKIGDNDT
          101
               LSAQVAAMIQ ADLLVLLTDI DGLYTGNPNS NPDAVRLDKI EHINHEIIEM
          151
               AGGSGSANGT GGMLTKIKAA TIATESGVPV YICSSLKPDA LAEAADNQAD
          201
               GSFFVPRAKG LRTQKQWLAF YSESRGGVYV DEGAEHALSE QGKSLLMSGI
          251
               AGIEGHFSRM DTVTVYSKAT KQPLGKGRVL FGSAAAEDLL KLRKAKGVFI
          301
               HRDDWISITP EIRLLLTEF*
m135/a135 98.4% identity in 369 aa overlap
                                                                50
                                                      40
                  MKYKRIVFKVGTSSITHSDGSLSRGKIQTITCQLAALHHAGHELVLVSSGAVAAGFGALG
     m135.pep
                  MKYKRIVFKVGTSSITHSDGSLSRGKIQTITRQLAALHHAGHELVLVSSGAVAAGFGALG
     a135
                                                                50
                                             30
                                                      40
                         10
                                                     100
                                                               110
                                   80
                                             90
                  FKKRPVKIADKQASAAVGQGLLMEEYTANLSSDGIVSAQILLSRADFADKRRYQNAGGAL
     m135.pep
                  FKKRPVKIADKQASAAVGQGLLMEEYTANLSSDGIVSAQILLSRADFADKRRYQNAGGAL
     a135
                                                                        120
                                   80
                                             90
                                                     100
                                                               110
                         70
                                                               170
                                            150
                                                     160
                                  140
                         130
                  SVLLQRRAVPIINENDTVSVEELKIGDNDTLSAQVAAMIQADLLVLLTDIDGLYTGNPNS
     m135.pep
                  SVLLQRRAVPIINENDTVSVEELKIGDNDTLSAQVAAMIQADLLVLLTDIDGLYTGNPNS
      a135
                                                               170
                                                                         180
                                                     160
                         130
                                  140
                                            150
                                                     220
                                  200
                                            210
                  NPDAVRLDKIEHINHEIIEMAGGSGSANGTGGMLTKIKAATIAAESGVPVYICSSLKPDA
      m135.pep
                  NPDAVRLDKIEHINHEIIEMAGGSGSANGTGGMLTKIKAATIATESGVPVYICSSLKPDA
      a135
```

210

220

230

```
270
                                     280
               250
                      260
         LAEAAEHQADGSFFVPRAKGLRTQKQWLAFYSESRGSVYVDEGAEHALSEQGKSLLMSGI
m135.pep
         LAEAADNQADGSFFVPRAKGLRTQKQWLAFYSESRGGVYVDEGAEHALSEQGKSLLMSGI
a135
                      260
                                     280
                                      340
                      320
                              330
               310
         AGIEGHFSRMDTVTVYSKATKQPLGKGRVLFGSAAAEDLLKSRKAKGVFIHRDDWISITP
m135.pep
          AGIEGHFSRMDTVTVYSKATKQPLGKGRVLFGSAAAEDLLKLRKAKGVFIHRDDWISITP
a135
                              330
                                     340
                      320
               370
          EIRLLLTEFX
m135.pep
          EIRLLLTEFX
a135
               370
```

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 523>:
```

```
g136.seq
         ATGGAAATCC GGTTTCAGAC AGCATTTTTA CGTTTGGTTC AGatgaAAAC
      1
         AAACGCTtca aTTCTtaccg caACACGCCT TGTATTTCCT GccqCTGCCG
      51
         CACGGACAGG GATCGTTCCT GCCGgtTTTT TCCCCTTCCC TGCGGACGGT
     101
         TTGCGGTTTG TTGATGACCG CCTGCCAGTA GCGGTAGATG TCtgccagcg
     151
     201 cqTAAGGCag tTCGGAcgca agttccgcca gctcgccttc ggTGAATTGC
     251 AGgcggataa cgccgtttTC CTCTTCGTCg taaatgccgc ccactgccat
     301 cacgGGGTAA AACAGCTCTT CAAACGCTTC ATCATCGGCG GCTTCAAACC
     351 AATCGGTCGG CACAATGTCC AAACCGTAAA GATAGGCGTT GCACCAAGTG
     401 TAAAAATCGC TGCCGCCCTC GCCGTCGTCG TAGAGCCACA AATCGGGCAG
     451 CTTTTTATCC GACATCGCGG CGGTTGTTTC CATCGCCATT GCCAAAACCA
     501 GCCGTTCGAT TTCGGAACGT TCGGCGGCGG TAAATTGCGA TTCGTCGCCC
     551 AACACTTCGG GCAGCCAGTC GAGCGGTGCC AATTTGTCCG GCCCGCTCAA
          CAGCGCCGTC ATAAAACCTT GAACCTCGTC GCAACGCATC GTGTTGCCTT
         GTTCGCTTTT GGCATCCAAT AA
```

This corresponds to the amino acid sequence <SEQ ID 524; ORF 136.ng>:

```
q136.pep
         MEIRFQTAFL RLVQMKTNAS ILTATRLVFP AAAARTGIVP AGFFPFPADG
         LRFVDDRLPV AVDVCQRVRQ FGRKFRQLAF GELQADNAVF LFVVNAAHCH
      51
         HGVKQLFKRF IIGGFKPIGR HNVQTVKIGV APSVKIAAAL AVVVEPQIGQ
         LFIRHRGGCF HRHCQNQPFD FGTFGGGKLR FVAQHFGQPV ERCQFVRPAQ
     201 QRRHKTLNLV ATHRVALFAF GIQ*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 525>:

```
m136.seq
          ATGGAAACAA ACGCTTCAAT TCTTACCGCA ACACGCCTTG TATTTTCTGC
       1
          CGCTGCCGCA CGGACAGGGA TCGTTCCTGC CTGTTTTTTC GCCTTCCCTG
          CGGACGGTTT GCGGTTTGTT GATGACTGCC TGCCAGTAGC GGTAGATATC
         CGCCAATGCA TAAGGCAACT CGGATTCCAG TTCCGCCAGC TCGCCTTCTG
     151
     201 TGAATTGCAG ACGGATAGCG CCGTTTTCCT CTTCGTCGTA AATACCGCCC
     251 AATGCCATGA TGGGATAAAA CAACTCTTCA AACGCTTCAT CATCGACGGC
     301 TTCAAACCAA TCGGTCGGCA CAATATCCAA ACCGTAAAGA TAAGCATTGC
     351 ACCATGTGTA AAAATCGCTG CCGCCGTCTT CGTTTTCATA CAGCCACAAA
     401 TCGGGCAGTT TTTTATCCGA CATCGCGGCG GTTGTTTCCA TCGCCATTGC
     451 CAAAACCAGC CGTTCGATTT CGGAACGTTC GGCGGCGGTA AATTGCGATT
     501 CGTCGCCCAA CACTTCGGGC AGCCAGTCGA GCGGTGTCAA TTTGTCCGGC
     551 CCGCTCAACA GCGCCGTCAT AAAACCTTGA ACCTCGTCGC AACGCATCGT
         GTTGCCTTGT TCGCTTTTGG CATCCAACAA TTCGCTCAAC CGCCGTTTGG
         ATGCTTCGGT AAATTTTCGG GAATCCATCA TTTTCCTTTT CAAATGGGTT
          TTGCGCCCTA TTATCGCCGC AATGCCGTCT GA
```

This corresponds to the amino acid sequence <SEQ ID 526; ORF 136>:

```
m136.pep
           1 METNASILTA TRLVFSAAAA RTGIVPACFF AFPADGLRFV DDCLPVAVDI
          51 RQCIRQLGFQ FRQLAFCELQ TDSAVFLFVV NTAQCHDGIK QLFKRFIIDG
              FKPIGRHNIQ TVKISIAPCV KIAAAVFVFI QPQIGQFFIR HRGGCFHRHC
         101
              ONOPFDFGTF GGGKLRFVAQ HFGQPVERCQ FVRPAQQRRH KTLNLVATHR
              VALFAFGIQQ FAQPPFGCFG KFSGIHHFPF QMGFAPYYRR NAV*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 136 shows 85.6% identity over a 209 aa overlap with a predicted ORF (ORF 136.ng)
from N. gonorrhoeae:
    m136/g136
                                               20
                                                        3.0
                                      1.0
                              METNASILTATRLVFSAAAARTGIVPACFFAFPADGLRFVDDCLPV
     m136.pep
                              MEIRFQTAFLRLVQMKTNASILTATRLVFPAAAARTGIVPAGFFPFPADGLRFVDDRLPV
     q136
                                                     40
                                                              50
                                  20
                                           30
                                               80
                                      70
                   50
                 AVDIRQCIRQLGFQFRQLAFCELQTDSAVFLFVVNTAQCHDGIKQLFKRFIIDGFKPIGR
     m136.pep
                 AVDVCQRVRQFGRKFRQLAFGELQADNAVFLFVVNAAHCHHGVKQLFKRFIIGGFKPIGR
     q136
                                                    100
                                  80
                                           90
                                              140
                                                        150
                  110
                           120
                                     130
                 HNIQTVKISIAPCVKIAAAVFVFIQPQIGQFFIRHRGGCFHRHCQNQPFDFGTFGGGKLR
     m136.pep
                 1|:||||:||
                 HNVQTVKIGVAPSVKIAAALAVVVEPQIGQLFIRHRGGCFHRHCQNQPFDFGTFGGGKLR
     q136
                                                                       180
                        130
                                 140
                                           150
                                                    160
                                                             170
                                              200
                                                        210
                                                                 220
                                     190
                            180
                 FVAQHFGQPVERCQFVRPAQQRRHKTLNLVATHRVALFAFGIQQFAQPPFGCFGKFSGIH
     m136.pep
                 FVAQHFGQPVERCQFVRPAQQRRHKTLNLVATHRVALFAFGIQX
     q136
                                           210
                        190
                                 200
                  230
                            240
                 HFPFQMGFAPYYRRNAVX
     m136.pep
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 527>:
     a136.seq
               ATGGAAACAA ACGCTTCAAT TCTTACCGCA ACACGCCTTG TATTTTCTGC
               CGCTGCCGCA CGGACAGGGA TCGTTCCTGC CTGTTTTTTC GCCTTCCCTG
           51
               CGGACGGTTT GCGGCTTGTT GATGACCGCC TGCCAGTAGC GGTAGATATC
          101
               CGCCAATGCA TAAGGCAACT CGGATTCCAG TTCCGCCAGC TCGCCTTCTG
          151
              TGAATTGCAG ACGGATAGTG CCGTTGTCCT CTTCGTCGTA AATACCGCCC
          201
               AATGCCATGA TGGGATAAAA CAACTCTTCA AACGCTTCAT CATCGACGGC
          251
               TTCAAACCAA TCGGTCGGCA CAATATCCAA ACCGTAAAGA TAAGCATTGC
          301
              ACCATGTGTA AAAATCGCTG CCGCCGTCTT CGTTTTCATA CAGCCACAAA
          351
               TCGGGCAGTT TTTTATCCGA CATCGCGGCG GTTGTTTCCA TCGCCATTGC
          401
              CAAAACCAGC CGTTCGATTT CGGAACGTTC GGCGGCGGTA AATTGCGATT
          451
               CGTCGCCCAA CACTTCGGGC AGCCAGTCGA GCGGTGTCAA TTTGTCCGGC
          501
              CCGCTCAACA GCGCCGTCAT AAAACCTTGA ACCTCGTCGC AACGCATCGT
          551
               GTTGCCTTGT TCGCTTTTGG CATCCAACAA TTCGCTCAAC CGCCGTTTGG
          601
               ATGCTTCGGT AAATTTTCGG GAATCCATCA TTTTCCTTTT CCAATGGGTT
          651
               TTGCGCCCTA TTATAGTGGA TTAAATTTAA ATCAGGACAA GGCGACGAAG
          701
               CCGCAGACAG TACAAATAGT ACGGCAAGGC GAGGCAACGC CGTACTGGTT
          751
              TAAATTTAAT CCACTATATC GCCGCAATGC CGTCTGA
```

This corresponds to the amino acid sequence <SEQ ID 528; ORF 136.a>: a136.pep

METNASILTA	TRLVFSAAAA	RTGIVPACFF	AFPADGLRLV	DDRLPVAVDI
ROCIROLGFO	FRQLAFCELQ	TDSAVVLFVV	NTAQCHDGIK	QLFKRFIIDG
FKPIGRHNIO	TVKISIAPCV	KIAAAVFVFI	QPQIGQFFIR	HRGGCFHRHC
QNQPFDFGTF	GGGKLRFVAQ	HFGQPVERCQ	FVRPAQQRRH	KTLNLVATHR
			PMGFAPYYSG	LNLNQDKATK
PQTVQIVRQG	EATPYWFKFN	PLYRRNAV*		
	RQCIRQLGFQ FKPIGRHNIQ QNQPFDFGTF VALFAFGIQQ	RQCIRQLGFQ FRQLAFCELQ FKPIGRHNIQ TVKISIAPCV QNQPFDFGTF GGGKLRFVAQ VALFAFGIQQ FAQPPFGCFG	RQCIRQLGFQ FRQLAFCELQ TDSAVVLFVV FKPIGRHNIQ TVKISIAPCV KIAAAVFVFI ONOPFDFGTF GGGKLRFVAQ HFGQPVERCQ	METNASILTA TRLVFSAAAA RTGIVPACFF AFPADGLRLV RQCIRQLGFQ FRQLAFCELQ TDSAVVLFVV NTAQCHDGIK FKPIGRHNIQ TVKISIAPCV KIAAAVFVFI QPQIGQFFIR QNQPFDFGTF GGGKLRFVAQ HFGQPVERCQ FVRPAQQRRH VALFAFGIQQ FAQPPFGCFG KFSGIHHFPF PMGFAPYYSG PQTVQIVRQG EATPYWFKFN PLYRRNAV*

#### m136/a136 98.3% identity in 238 aa overlap

136/a130 98.3%	o identity iii 236 a	a overrap				
	10	20	30	40	50	60
m136.pep	METNASILTATRLVE	SAAAARTGI	VPACFFAFPA	DGLRFVDDCL	PVAVDIRQCI	RQLGFQ
			1111111111		1111111111	
a136	METNASILTATRLVI	SAAAARTGI	VPACFFAFPA	DGLRLVDDRI	.PVAVDIRQCI	RQLGFQ
4130	10	20	30	40	50	60
	70	80	90	100	110	120
m136.pep	FRQLAFCELQTDSAV	FLFVVNTAC	CHDGIKOLFK	RFIIDGFKPI	GRHNIQTVKI	SIAPCV
MI30.pep			1111111111	1111111111	111111111111	111111
a136	FRQLAFCELQTDSAV		CHOCTROLER	RFIIDGFKPI	GRHNIOTVKI	SIAPCV
a136	70	80	90	100	110	120
	7.0	00				
	130	140	150	160	170	180
	KIAAAVFVFIQPQI					PVERCO
m136.pep	KIAAAVEVEIQPQI	JOEF IKHVO				
	KIAAAVFVFIQPQI				T D EVA OU FC	PVERCO
a136				160	170	180
	130	140	150	160	170	100
		200	010	220	230	240
	190	200	210			
m136.pep	FVRPAQQRRHKTLN:		FAFGIQQFAQI	PPFGCFGKFS	THELLONG	CAPIINA
a136	FVRPAQQRRHKTLN:			PPFGCFGKFS	SIHHEPEPMG.	PAPITSG
	190	200	210	220	230	240
m136.pep	NAVX					
a136	LNLNQDKATKPQTV	QIVRQGEAT	PY <b>WFKFNPLY</b> !	RRNAVX		
	250	260	270			

#### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 529>:

```
g137.seq
         ATGATTATCC ATCACCATT CGATCCCGTC CTCATCAGTA TCGGCCCGCT
      51 TGCCGTCCGC TGGTATGCCT TAAGCTACAT CCTCGGATTT ATTCTTTTTA
         CCTTTCTCGG CAGAAGGCGC ATCGCGCAAG GCTTGTCCGT TTTTACCAAA
     151 GAATCGCTCG ACGACTTCCT GACATGGGGC ATTTTGGGCG TGATTTTGGG
     201 CGGACGCTTG GGCTATGTCC TGTTTTACAA ATTCTCCGAC TACCTCGCCC
     251 ATCCGCTTGA TATTTTCAAG GTATGGGAAG GCGGAATGTC GTTCCACGGC
     301 GGCTTTTTGG GTGTAGTTAT TGCCATATGG TTGTTCAGCC GCAAGCACGG
     351 CATCGGCTTC CTCAAACTGA TGGACACGGT CGCGCCGCTC GTTCCGCTGG
     401 GTCTCGCTTC GGGACGTATC GGCAACTTTA TCAACGGCGA ACTTTGGGGA
     451 CGCATTACCG ACATTAACGC ATTTTGGGCA ATGGGCTTCC CGCAAGCGCA
     501 TTACGAAGAT GCCGAAGCCG CCGCGCACAA TCCGCTTTGG GCAGAATGGC
     551 TGCAACAATA CGGTATGCTG CCGCGTCATC CCTCGCAGCT TTATCAGTTT
     GCCCTTGAAG GCATCTGCCT GTTCGCCGTC GTTTGGCTGT TTTCCAAAAA
651 ACCGCGCCCG ACCGGGCAGA CTGCCGCGCT TTTTCTCGGC GGCTACGGCG
     701 TGTTCCGCTT TATTGCCGAA TTTGCGCGCC AACCCGACGA CTATCTCGGG
     751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT
     801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT
```

This corresponds to the amino acid sequence <SEQ ID 530; ORF 137.ng>: g137.pep

m137.pep

388

```
1 MIIHHQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK
              ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG
          51
              GFLGVVIAIW LFSRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG
          101
              RITDINAFWA MGFPQAHYED AEAAAHNPLW AEWLQQYGML PRHPSQLYQF
          151
              ALEGICLFAV VWLFSKKPRP TGQTAALFLG GYGVFRFIAE FARQPDDYLG
          201
              LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 531>:
     m137.seq
              ATGATTACCC ATCCCCAATT CGATCCCGTC CTTATCAGTA TCGGCCCGCT
              TGCCGTCCGC TGGTATGCCC TAAGCTACAT CCTCGGATTT ATTCTTTTTA
          51
              CCTTTCTCGG CAGAAGGCGC ATCGCGCAAG GCTTGTCCGT TTTTACCAAA
          101
              GAATCGCTCG ACGACTTCCT GACATGGGGC ATTTTGGGCG TAATTTTGGG
          151
              CGGGCGTTTG GGTTACGTCC TGTTTTACAA GTTTTCCGAC TACCTCGCCC
          201
          251
              ATCCGCTTGA TATTTTCAAG GTATGGGAAG GCGGAATGTC GTTCCACGGC
              GGCTTTTTGG GTGTAGTTAT TGCCATACGG TTGTTCGGCC GCAAACACGG
              CATCGGCTTC CTCAAACTGA TGGATACGGT CGCACCGCTC GTTCCGCTGG
          351
              GTCTCGCTTC GGGACGTATC GGCAACTTCA TCAACGGCGA ACTTTGGGGA
          401
              CGCGTTACCG ACATCAACGC ATTTTGGGCA ATGGGCTTCC CGCAGGCGCG
          451
              TTACGAAGAT GCCGAAGCCG CCGCGCACAA TCCGCTTTGG GCAGAATGGC
          501
          551
              TGCAACAATA CGGTATGCTG CCGCGTCATC CCTCGCAGCT TTATCAGTTT
              GCACTTGAAG GCATCTGCCT GTTCACCGTC ATTTGGCTGT TCTCTAAAAA
          601
              ACAGCGGTCG ACCGGACAAG TCGCCTCGCT CTTCCTCGGC GGCTACGGCA
          651
              TATTCCGCTT CATTGCCGAA TTCGCACGCC AACCCGACGA CTATCTCGGG
          701
              CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT
          751
              TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT
          801
          851
This corresponds to the amino acid sequence <SEQ ID 532; ORF 137>:
     m137.pep
              MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK
           1
              ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG
           51
              GFLGVVIAIR LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG
          101
          151 RVTDINAFWA MGFPOARYED AEAAAHNPLW AEWLQQYGML PRHPSQLYQF
              ALEGICLFTV IWLFSKKQRS TGQVASLFLG GYGIFRFIAE FARQPDDYLG
              LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 137 shows 95.4% identity over a 283 aa overlap with a predicted ORF (ORF 137.ng)
from N. gonorrhoeae:
     m137/g137
                                                      40
                                   20
                                            30
                 MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDFLTWG
     m137.pep
                 MIIHHQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDFLTWG
     q137
                                   20
                                            30
                                                      40
                                                               50
                                                                         60
                         10
                                                     100
                                                              110
                                                                        120
                         70
                                   80
                                            90
                  ILGVILGGRLGYVLFYKFSDYLAHPLDIFKVWEGGMSFHGGFLGVVIAIRLFGRKHGIGF
     m137.pep
                  ILGVILGGRLGYVLFYKFSDYLAHPLDIFKVWEGGMSFHGGFLGVVIAIWLFSRKHGIGF
     g137
                                                                        120
                         70
                                   80
                                            90
                                                     100
                                                               110
                        130
                                  140
                                           150
                                                     160
                                                               170
                 LKLMDTVAPLVPLGLASGRIGNFINGELWGRVTDINAFWAMGFPQARYEDAEAAAHNPLW
     m137.pep
                  LKLMDTVAPLVPLGLASGRIGNFINGELWGRITDINAFWAMGFPQAHYEDAEAAAHNPLW
     q137
                                                                        180
                        130
                                  140
                                           150
                                                     160
                                                               170
                                  200
                                           210
                                                     220
                                                               230
                                                                        240
                        190
```

AEWLQQYGMLPRHPSQLYQFALEGICLFTVIWLFSKKQRSTGQVASLFLGGYGIFRFIAE

```
AEWLQQYGMLPRHPSQLYQFALEGICLFAVVWLFSKKPRPTGQTAALFLGGYGVFRFIAE
    q137
                                                                    240
                                        210
                                                 220
                                                          230
                                        270
                                                 280
                               260
                      250
                FARQPDDYLGLLTLGLSMGQWLSVPMIVLGIVGFVRFGMKKQHX
    m137.pep
                FARQPDDYLGLLTLGLSMGQWLSVPMIVLGIVGFVRFGMKKQHX
    g137
                                260
                      250
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 533>:
    a137.seq
             ATGATTACCC ATCCCCAATT CGACCCCGTC CTTATCAGTA TCGGCCCGCT
             TGCCGTCCGC TGGTATGCCC TAAGCTACAT CCTCGGATTT ATTCTTTTTA
          51
             CCTTTCTCGG CAGAAGGCGC ATCGCGCAAG GCTTGTCCGT TTTTACCAAA
         101
             GAATCGCTCG ACGACTTCCT GACATGGGGC ATTTTGGGCG TAATTTTGGG
             CGGGCGTTTG GGTTACGTCC TGTTTTACAA GTTTTCCGAC TACCTCGCCC
         201
             ATCCGCTTGA TATTTTCAAG GTATGGGAAG GCGGAATGTC GTTCCACGGC
         251
             GGCTTTTTGG GTGTAGTTAT TGCCATATGG TTGTTCGGTC GCAAACACGG
         301
             CATCGGCTTC CTCAAACTGA TGGACACGGT CGCACCGCTC GTTCCACTGG
         351
              GTCTCGCTTC GGGACGTATC GGCAACTTCA TCAACGGCGA ACTTTGGGGA
         401
             CGCGTTACCG ACATCAACGC ATTTTGGGCA ATGGGCTTCC CGCAGGCGCG
         451
              TTACGAAGAC CTCGAAGCCG CCGCGCACAA TCCGCTTTGG GCAGAATGGC
         501
              TGCAACAATA CGGTATGCTG CCGCGTCATC CCTCGCAGCT TTATCAGTTT
         551
             GCACTTGAAG GCATCTGCCT GTTCGCCGTC GTTTGGCTGT TCTCTAAAAA
         601
              ACAGCGGCCG ACCGGACAAG TCGCCTCACT CTTCCTCGGC GGCTACGGCA
         651
              TATTCCGCTT CATTGCCGAA TTTGCACGCC AACCCGACGA CTATCTCGGG
         701
              CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT
         751
              TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT
         801
         851
This corresponds to the amino acid sequence <SEQ ID 534; ORF 137.a>:
     a137.pep
              MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK
              ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG
          51
              GFLGVVIAIW LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG
         101
              RVTDINAFWA MGFPQARYED LEAAAHNPLW AEWLQQYGML PRHPSQLYQF
         151
              ALEGICLFAV VWLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG
         201
              LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*
           98.2% identity in 283 aa overlap
m137/a137
                                                   40
                                                            50
                        10
                                 20
                                          30
                 MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDFLTWG
     m137.pep
                 MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDFLTWG
     a137
                                                            50
                                                                     60
                                                   40
                        10
                                 20
                                                  100
                                          90
                                 80
                 ILGVILGGRLGYVLFYKFSDYLAHPLDIFKVWEGGMSFHGGFLGVVIAIRLFGRKHGIGF
     m137.pep
                 ILGVILGGRLGYVLFYKFSDYLAHPLDIFKVWEGGMSFHGGFLGVVIAIWLFGRKHGIGF
     a137
                                                  100
                                                           110
                                                                    120
                                 80
                                          90
                        70
                                                           170
                                         150
                                                  160
                       130
                                140
                 {\tt LKLMDTVAPLVPLGLASGRIGNFINGELWGRVTDINAFWAMGFPQARYEDAEAAAHNPLW}
     m137.pep
                 LKLMDTVAPLVPLGLASGRIGNFINGELWGRVTDINAFWAMGFPQARYEDLEAAAHNPLW
     a137
                                                                     180
                                                  160
                                                           170
                                140
                                         150
                       130
                                                           230
                                200
                                          210
                                                  220
                 AEWLQQYGMLPRHPSQLYQFALEGICLFTVIWLFSKKQRSTGQVASLFLGGYGIFRFIAE
     m137.pep
                 AEWLQQYGMLPRHPSQLYQFALEGICLFAVVWLFSKKQRPTGQVASLFLGGYGIFRFIAE
     a137
```

230

220

280

390

210

270

200

260

190

```
250
                  FARQPDDYLGLLTLGLSMGQWLSVPMIVLGIVGFVRFGMKKQHX
     m137.pep
                   FARQPDDYLGLLTLGLSMGQWLSVPMIVLGIVGFVRFGMKKQHX
     a137
                                    260
                                              270
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 535>:
q138.seq
          ATGGAGTTTG AAAACATTAT TTCCGCCGCc gaCAAGGCGC GTATCCTTGC
         CGAAGCACTG CCTTACAtcc gccgGTTTTC CGGTTCGGTC GCCGTCATCA
     101 AGTATGGCGG CAACGCGATG ACCGAACCTG CCTTGAAAGA AGGGTTTGCC
     151 CGCGATGTCG TGCTGCTGAA GCTGGTCGGC ATTCATCCCG TCATCGTTCA
     201 CGGCGGCGG CCGCAGATCA ATGCGATGCT TGAAAAAGTC GGCAAAAAGG
     251 GCGAATTTGT CCAAGGAATG CGCGTTACCG ACAAAGAGAC GATGGATATT
     301 GTCGAAATGG TATTGGGCGG GCACGTCAAC AAGGAAATCG TGTCGATGAT
     351 TAACACATAT GGAGGGCACG CGGTCGGCGT GAGCGGGCGC GACGACCATT
     401 TCATTAAGGC GAAGAAACTT TTGGTCGATA CGCCCGAACA GAATAGCGTG
     451 GACATCGGAC AGGTCGGTAC GGTGGAAAGC ATCGATACCG GTTTGGTTAA
         AGGGCTGATA GAACGCGGCT GCATTCCCGT CGTCGCCCCC GTCGGCGTAG
         GTGAAAAAGG CGAAGCGTTC AACATCAACG CCGATTTGGT GGCAGGCAAA
     601 TTGGCGGAAG AATTGAACGC CGAAAAACTC TTGATGATGA CGAAtatcgc
     651 CGGTGTGATG GACAAAACGG GCAATCTGCT GACCAAACTC aCGCCGAAAC
     701 GGATTGATGG GCTGATTGCC GACGGCACGC TGTATGGCGG TATGCTGCCG
     751 AAAATCGCTT CTGCGGTCGA AGCCGCCGtc aACGGTGTGA AAGCCACGCA
      801 CATCATCGAC GGCAGGTTGC CCAACGCGCT TTTGCTGGAA ATCTTTACCG
      851 ATGCCGGTAT CGGGTCGATG ATTTTAGGCA GAGGGGAAGA TGCCTGA
This corresponds to the amino acid sequence <SEQ ID 536; ORF 138.ng>:
g138.pep
          MEFENIISAA DKARILAEAL PYIRRFSGSV AVIKYGGNAM TEPALKEGFA
       1
      51 RDVVLLKLVG IHPVIVHGGG PQINAMLEKV GKKGEFVQGM RVTDKETMDI
      101 VEMVLGGHVN KEIVSMINTY GGHAVGVSGR DDHFIKAKKL LVDTPEQNSV
      151 DIGQVGTVES IDTGLVKGLI ERGCIPVVAP VGVGEKGEAF NINADLVAGK
      201 LAEELNAEKL LMMTNIAGVM DKTGNLLTKL TPKRIDGLIA DGTLYGGMLP
      251 KIASAVEAAV NGVKATHIID GRLPNALLLE IFTDAGIGSM ILGRGEDA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 537>:
m138.seq
           ATGGAGTCTG AAAACATTAT TTCCGCCGCC GACAAGGCGC GTATCCTTGC
       1
       51 CGAAGCGCTG CCTTACATCC GCCGGTTTTC CGGTTCGGTC GCCGTCATCA
      101 AATACGGCGG CAACGCGATG ACCGAACCTG CCTTGAAAGA AGGGTTTGCC
      151 CGCGATGTCG TGCTGCTGAA GCTGGTCGGC ATTCATCCCG TCATCGTTCA
      201 CGGCGGCGG CCGCAGATCA ATGCGATGCT TGAAAAAGTC GGCAAAAAGG
      251 GTGAGTTTGT CCAAGGAATG CGCGTTACCG ACAAAGAGGC GATGGATATT
301 GTCGAAATGG TGTTGGGCGG GCATGTCAAT AAAGAAATCG TGTCGATGAT
351 TAACACATAT GGCGGACACG CGGTCGGCGT AAGCGGACGC GACGACCATT
      401 TCATTAAGGC GAAGAAACTT TTGATCGATA CGCCCGAACA GAATGGCGTG
      451 GACATCGGAC AGGTCGGTAC GGTGGAAAGC ATCGATACCG GTTTGGTTAA
      501 AGGGCTGATA GAACGTGGCT GCATTCCCGT CGTCGCCCCC GTCGGCGTAG
      551 GTGAAAAAGG CGAAGCGTTC AACATCAACG CCGATTTGGT AGCAGGCAAA
      601 TTGGCGGAAG AATTGAACGC CGAAAAACTC TTGATGATGA CGAATATCGC
      651 CGGTGTGATG GACAAAACGG GCAATCTGCT GACCAAACTC ACGCCGAAAC
      701 GGATTGATGA ACTGATTGCC GACGGCACGC TGTATGGCGG TATGCTGCCG
      751 AAAATCGCTT CTGCGGTCGA AGCCGCCGTC AACGGTGTGA AAGCCACGCA
           TATCATCGAC GGCAGGTTGC CCAACGCGCT TTTGCTGGAA ATCTTTACCG
           ATGCCGGTAT CGGTTCGATG ATTTTGGGCG GTGGGGAAGA TGCCTGA
 This corresponds to the amino acid sequence <SEQ ID 538; ORF 138>:
 m138.pep
```

MESENIISAA DKARILAEAL PYIRRFSGSV AVIKYGGNAM TEPALKEGFA

- 51 RDVVLLKLVG IHPVIVHGGG PQINAMLEKV GKKGEFVQGM RVTDKEAMDI
  101 VEMVLGGHVN KEIVSMINTY GGHAVGVSGR DDHFIKAKKL LIDTPEQNGV
  151 DIGQVGTVES IDTGLVKGLI ERGCIPVVAP VGVGEKGEAF NINADLVAGK
  201 LAEELNAEKL LMMTNIAGVM DKTGNLLTKL TPKRIDELIA DGTLYGGMLP
  251 KIASAVEAAV NGVKATHIID GRLPNALLLE IFTDAGIGSM ILGGGEDA*
- Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 138 shows 98.0% identity over a 298 aa overlap with a predicted ORF (ORF 138.ng) from N. gonorrhoeae:
m138/g138

m138.pep	10 MESENIISAADKARII              MEFENIISAADKARII 10					1111
m138.pep	70 IHPVIVHGGGPQINAN            IHPVIVHGGGPQINAN 70		<del>Шинин</del>	:1111111111	110 GHVNKEIVSM          GHVNKEIVSM 110	$  \cdot  $
m138.pep	130 GGHAVGVSGRDDHFII            GGHAVGVSGRDDHFII 130		11:111111	ниний		$\Pi\Pi\Pi$
m138.pep	190 · VGVGEKGEAFNINADI            VGVGEKGEAFNINADI 190		111111111	ШШШ	1111111111	111
m138.pep	250 DGTLYGGMLPKIASAY            DGTLYGGMLPKIASAY 250			280 LLLEIFTDAG          LLLEIFTDAG 280	290 IGSMILGGGE            IGSMILGRGE 290	Ш

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 539>:

		=		_	<del>-</del>
a138.seq					
1	ATGGAGTCTG	AAAACATTAT	TTCCGCCGCC	GACAAGGCGC	GTATCCTTGC
51	CGAAGCGCTG	CCTTACATCC	GCCGGTTTTC	CGGTTCGGTC	GCCGTCATCA
101	AATACGGCGG	CAACGCGATG	ACCGAACCTG	CCTTGAAAGA	AGGGTTTGCC
151	CGCGATGTCG	TGCTGCTGAA	GCTGGTCGGC	ATTCATCCCG	TCATCGTTCA
201	CGGCGGCGGG	CCGCAGATCA	ATGCGATGCT	TGAAAAAGTC	GGCAAAAAGG
251	GTGAGTTTGT	CCAAGGAATG	CGCGTTACCG	ACAAAGAGGC	GATGGATATT
301	GTCGAAATGG	TGTTGGGCGG	GCATGTCAAT	AAAGAAATCG	TGTCGATGAT
351	TAACACATAT	GGCGGACACG	CGGTCGGCGT	AAGCGGACGC	GACGACCATT
401	TCATTAAGGC	GAAGAAACTT	TTGATCGATA	CGCCCGAACA	GAATGGCGTG
451	GACATCGGAC	AGGTCGGTAC	GGTGGAAAGC	ATCGATACCG	GTTTGGTTAA
501	AGGGCTGATA	GAACGTGGCT	GCATTCCCGT	CGTCGCCCCC	GTCGGCGTAG
551	GTGAAAAAGG	CGAAGCGTTC	AACATCAACG	CCGATTTGGT	AGCAGGCAAA
601	TTGGCGGAAG	AATTGAACGC	CGAAAAACTC	TTGATGATGA	CGAATATCGC
651	CGGTGTGATG	GACAAAACGG	GCAATCTGCT	GACCAAACTC	ACGCCGAAAC
701	GGATTGATGA	ACTGATTGCC	GACGGCACGC	TGTATGGCGG	TATGCTGCCG
751	AAAATCGCTT	CTGCGGTCGA	AGCCGCCGTC	AACGGCGTGA	AAGCCACGCA
801	TATCATCGAC	GGCAGGGTGC	CCAACGCGCT	TTTGCTGGAA	ATCTTTACCG
851	ATGCCGGTAT	CGGTTCGATG	ATTTTGGGCG	GTGGGGAAGA	TGCCTGA

```
This corresponds to the amino acid sequence <SEQ ID 540; ORF 138.a>:
    a138.pep
             MESENIISAA DKARILAEAL PYIRRÉSGSV AVIKYGGNAM TEPALKEGFA
             RDVVLLKLVG IHPVIVHGGG PQINAMLEKV GKKGEFVQGM RVTDKEAMDI
          51
             VEMVLGGHVN KEIVSMINTY GGHAVGVSGR DDHFIKAKKL LIDTPEQNGV
         101
             DIGQVGTVES IDTGLVKGLI ERGCIPVVAP VGVGEKGEAF NINADLVAGK
         151
             LAEELNAEKL LMMTNIAGVM DKTGNLLTKL TPKRIDELIA DGTLYGGMLP
             KIASAVEAAV NGVKATHIID GRVPNALLLE IFTDAGIGSM ILGGGEDA*
          99.7% identity in 298 aa overlap
m138/a138
                                          30
                                                            50
                       1.0
                                20
                                                   40
                                                                     60
                MESENIISAADKARILAEALPYIRRFSGSVAVIKYGGNAMTEPALKEGFARDVVLLKLVG
    m138.pep
                MESENIISAADKARILAEALPYIRRFSGSVAVIKYGGNAMTEPALKEGFARDVVLLKLVG
    a138
                       10
                                20
                                          30
                                                   40
                                                            50
                                                                     60
                       70
                                80
                                          90
                                                  100
                                                           110
                IHPVIVHGGGPQINAMLEKVGKKGEFVQGMRVTDKEAMDIVEMVLGGHVNKEIVSMINTY
    m138.pep
                IHPVIVHGGGPQINAMLEKVGKKGEFVQGMRVTDKEAMDIVEMVLGGHVNKEIVSMINTY
    a138
                                80
                                          90
                                                  100
                       70
                                                           110
                                                                    120
                      130
                                140
                                         150
                                                  160
                                                           170
                                                                    180
                GGHAVGVSGRDDHFIKAKKLLIDTPEQNGVDIGQVGTVESIDTGLVKGLIERGCIPVVAP
    m138.pep
                GGHAVGVSGRDDHFIKAKKLLIDTPEQNGVDIGQVGTVESIDTGLVKGLIERGCIPVVAP
    a138
                      130
                               140
                                         150
                                                  160
                                                           170
                                200
                                         210
                                                  220
                                                           230
                                                                    240
                      190
    m138.pep
                VGVGEKGEAFNINADLVAGKLAEELNAEKLLMMTNIAGVMDKTGNLLTKLTPKRIDELIA
                a138
                VGVGEKGEAFNINADLVAGKLAEELNAEKLLMMTNIAGVMDKTGNLLTKLTPKRIDELIA
                      190
                                200
                                         270
                                                           290
                                                                   299
                      250
                                260
                                                  280
    m138.pep
                DGTLYGGMLPKIASAVEAAVNGVKATHIIDGRLPNALLLEIFTDAGIGSMILGGGEDAX
                a138
                DGTLYGGMLPKIASAVEAAVNGVKATHIIDGRVPNALLLEIFTDAGIGSMILGGGEDAX
                       250
                                260
                                         270
                                                  280
                                                           290
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 541>:
    q139.seq
             ATGCGAACCA CCTCAACCTT CCCTACAAAA ACTTTCAAAC CGGCTGCCAT
             GGCGTTAGCT GTTGCAACAA CACTTTCTGC CTGCTTAggc ggcggcggag
          51
         101
             gcGGCACTTC TGCTCCCGAC TTTAATGCAG GCGGCACCGG TATCGGCAGC
         151
             AACAGCAGGG CAACGATAGC GGAATCAGCA GCAGTATCTT ACGCCGGTAT
             AAAAAACGAA ATGTGCAAAG ACAGAAGCAT GCTCTGTGCC GGTCGGGATG
             ACGTTGCGGT TACAGACAGG GATGCCAAAA TCAAAGCCCC CCGAATCTGC
         251
             ATACCGGAGA CTTTTCAAAC CCAAATGACC AATATTAAGA ATATGATCAA
         301
             CCTCAAACCT GCAATTGAAG CAGGCTATAC AGGACGCGGG GTAGAGGTAG
         351
             GTATCGTCGA TACAGGCGAA TCCGTCGGCA GCATATCCTT TCCCGAACTG
         401
             TATGGCAGAA AAGAACACGG CTATAACGAA AATTACAAAA ACAAATTACA
             AAAACTATAC GGCGTATATG CGGAAGGAAG CGCCTGA
         501
This corresponds to the amino acid sequence <SEQ ID 542; ORF 138.ng>:
    g139.pep
              MRTTSTFPTK TFKPAAMALA VATTLSACLG GGGGGTSAPD FNAGGTGIGS
           1
          51
             NSRATIAESA AVSYAGIKNE MCKDRSMLCA GRDDVAVTDR DAKIKAPRIC
             IPETFQTQMT NIKNMINLKP AIEAGYTGRG VEVGIVDTGE SVGSISFPEL
```

YGRKEHGYNE NYKNKLQKLY GVYAEGSA*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 543>: m139.seq ATGCGAACGA CCCCAACCTT CCCTACAAAA ACTTTCAAAC CGACTGCCAT 1 51 GGCGTTAGCT GTTGCAACAA CACTTTCTGC CTGCTTAGGC GGCGGCGGAG 101 GCGGCACTTC TGCGCCCGAC TTCAATGCAG GCGGTACCGG TATCGGCAGC 151 AACAGCAGAG CAACAACAGC GAAATCAGCA GCAGTATCTT ACGCCGGTAT 201 CAAGAACGAA ATGTGCAAAG ACAGAAGCAT GCTCTGTGCC GGTCGGGATG 251 ACGTTGCGGT TACAGACAGG GATGCCAAAA TCAATGCCCC CCCCCGAATC 301 TGCATACCGG AGACTTTCCA AACCCAAATG ACGCATEACA AGAATTTGAT 351 CAACCTCAAA CCTGCAATTG AAGCAGGCTA TACAGGACGC GGGGTAGAGG TAGGTATCGT CGACACAGGC GAATCCGTCG GCAGCATATC CTTTCCCGAA CTGTATGGCA GAAAAGAACA CGGCTATAAC GAAAATTACG AAAAACTATA 501 CGGCGTATAT GCGGAAGGAA GCGCCTGA This corresponds to the amino acid sequence <SEQ ID 544; ORF 138>: m139.pep MRTTPTFPTK TFKPTAMALA VATTLSACLG GGGGGTSAPD FNAGGTGIGS NSRATTAKSA AVSYAGIKNE MCKDRSMLCA GRDDVAVTDR DAKINAPPRI 51 CIPETFQTQM THYKNLINLK PAIEAGYTGR GVEVGIVDTG ESVGSISFPE 151 LYGRKEHGYN ENYEKLYGVY AEGSA* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N.gonorrhoeae ORF 138 shows 92.2% identity over a 179 aa overlap with a predicted ORF (ORF 138.ng) from N. gonorrhoeae: m139/g139 20 40 30 50 60 10 MRTTPTFPTKTFKPTAMALAVATTLSACLGGGGGGTSAPDFNAGGTGIGSNSRATTAKSA m139.pep g139 MRTTSTFPTKTFKPAAMALAVATTLSACLGGGGGGTSAPDFNAGGTGIGSNSRATIAESA 10 20 30 40 50 80 90 100 AVSYAGIKNEMCKDRSMLCAGRDDVAVTDRDAKINAPPRICIPETFQTQMTHYKNLINLK m139.pep AVSYAGIKNEMCKDRSMLCAGRDDVAVTDRDAKIKAP-RICIPETFQTQMTNIKNMINLK g139 70 80 90 100 130 140 150 160 PAIEAGYTGRGVEVGIVDTGESVGSISFPELYGRKEHGYNENY - - - - EKLYGVYAEGSAX m139.pep : | | | | | | | | | | | | PAI EAGYTGRGVEVGIVDTGESVGSISFPELYGRKEHGYNENYKNKLQKLYGVYAEGSAX g139 130 140 150 160 120 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 545>: al39.seq ATGCGAACGA CCCCAACCTT CCCTACAAAA ACTTTCAAAC CGGCTGCCAT 1 GGCGTTAGCT GTTGCAACAA CACTTTCTGC CTGCTTAGGC GGCGGCGGAG GCGGCACTTC TGCGCCCGAC TTCAATGCAG GCGGCACCGG TATCGGCAGC 101 151 AACAGCAGGG CAACAACAGC GAAATCAGCA GCAATATCTT ACGCCGGTAT CAAGAACGAA ATGTGCAAAG ACAGAAGCAT GCTCTGTGCC GGTCGGGATG 201 251 ACGTTGCGGT TACAGACAGG GATGCCAAAA TCAATGCCCC CCCCGAATC TGCATACCGG AGACTTTACA AACCCAAATG ACGCAT.ACA AGAATTTGAT 351 CAACCTCAAA CCTGCAATTG AAGCAGGCTA TACAGGACGC GGGGTAGAGG TAGGTATCGT CGACACAGGC GAATCCGTCG GCAGCATATC CTTTCCCGAA

This corresponds to the amino acid sequence <SEQ ID 546; ORF 139.a>: a139.pep

501 CGGCGTATAT GCGGAAGGAA GCGCCTGA

401

451

MRTTPTFPTK TFKPAAMALA VATTLSACLG GGGGGTSAPD FNAGGTGIGS

CTGTATGGCA GAAAAGAACA CGGCTATAAC GAAAATTAC. AAAAACTATA

```
51 NSRATTAKSA AISYAGIKNE MCKDRSMLCA GRDDVAVTDR DAKINAPPRI
           CIPETLOTOM THXKNLINLK PAIEAGYTGR GVEVGIVDTG ESVGSISFPE
            LYGRKEHGYN ENYXKLYGVY AEGSA*
m139/a139 97.1% identity in 175 aa overlap
                     10
                                     30
                                              40
                                                      50
              MRTTPTFPTKTFKPTAMALAVATTLSACLGGGGGGTSAPDFNAGGTGIGSNSRATTAKSA
    m139.pep
               {\tt MRTTPTFPTKTFKPAAMALAVATTLSACLGGGGGGTSAPDFNAGGTGIGSNSRATTAKSA}
    a139
                     10
                             20
                                     30
                                              40
                                                              60
                     70
                             80
                                     90
                                             100
                                                     110
                                                             120
               AVSYAGIKNEMCKDRSMLCAGRDDVAVTDRDAKINAPPRICIPETFQTQMTHYKNLINLK
    m139.pep
               a139
               AISYAGIKNEMCKDRSMLCAGRDDVAVTDRDAKINAPPRICIPETLQTQMTHXKNLINLK
                             80
                                     90
                     70
                                             100
                                                     110
                    130
                            140
                                     150
                                             160
               PAIEAGYTGRGVEVGIVDTGESVGSISFPELYGRKEHGYNENYEKLYGVYAEGSAX
    m139.pep
               PAIEAGYTGRGVEVGIVDTGESVGSISFPELYGRKEHGYNENYXKLYGVYAEGSAX
    a139
```

## The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 547>: 9140.seq

150

160

140

130

```
Atgtcggcac gCGGCAAGGG GGCAGgctat ctcAACAGTA CCGGACGACa
  1
     TGTTCCCTTC CTGAGTGCCG CCAAAATCGG GCAGGATTAT TCTTTCTTCA
     AAAATATCAA AACCGACGGC GGTCTGCTGG CTTCCCTCGA CAGCGTCGAA
101
151 AAAACAGCGG GCAGTGAAGG CGACACGCCG TCCTATTATG TCCGTCGCGG
     CAATGCGGCA CGGACTGCTT CGGCAGCGGC ACATTCCGCG CCCGCCGGTC
     TGAAACACGC CGTAGAACAG GGCGGCAGCA ATCTGGAAAA CCTGATGGTC
     GAGCTGGATG CCTCCGAATC ATCCGCAACA CCCGAGACGG TTGAAACTGC
301
351 GGTCGCCGAC CGCACAGATA TGCCGGGCAT CCGCCTACGG CGCACAACTT
401 TCCGCACAGC GGCAGCCGTA CAGCATGCGA ATACCGCCGA CGGCGTACGC
451 aTCTTcaaCA GTCTCGCCGC TAccgTCTAt GccgACAGTG CCGCCGCCCA
501 TGCCGATATG CAGGGACGCC GCCTGAAAGC CGTATCGGAC GGGTTGGACC
551 ACAACGGTAC GGGTCTGCGC GTCATCGCGC AAACCCAACA GGACGGTGGA
601 ACGTGGGAAC AGGGCGGTGT CGAAGGCAAA ATGCGCGGCA GTACCCAAAC
651
     TATCGGCATT GCCGCGAAAA CCGGCGAAAA TACGACAGCA GCCGCCACAC
     TGGGCATAGG ACGCAGCACA TGGAGCGAAA ACAGTGCAAA TGCAAAAACC
751
     GACAGCATTA GTCTGTTTGC AGGCATACGG CACGATGTGG GCGATATCGG
801 CTATCTCAAA GGCCTGTTCT CctaCGGACG CTACAAAAAC AGCATCAGCC
851 GCAGCACCGG TGCGGATGAA TATGCGGAAG GCAGCGTCAA CGGCACGCTG
901 ATGCAGCTGG GCGCACTGGG TGGTGTCAAC GTTCCGTTTG CCGCAACGGG
951 AGATTTGACG GTTGAAGGCG GTCTGCGCCA CGACCTGCTC AAACAGGATG
1001 CATTCGCCGA AAAAGGCagt GCTTTGGGCT GGAGCGGCAA CAGCCTCACT
1051 GAAGGCACAC TGGTCGGACT CGCGGGTCTG AAACTGTCGC AACCCTTGAG
1101 CGATAAAGCC GTCCTGTCTG CGACGGCGGG CGTGGAACGC GACCTGAACG
     GACGCGACTA CGCGGTAACG GGCGGCTTTA CCGGCGCGCC TGCAGCAACC
1151
     GGCAAGACGG GTGCACGCAA TATGCCGCAC ACCCGCCGGG TTGCCGGTCT
     GGGGGTGGAT GTCGAATTCG GCAACGGCTG GAACGGCTTG GCACGTTACA
1251
     GCTACACCGG TTCCAAACAG TACGGCAACC ACAGCGGACA AATCGGCGTA
1301
     GGCTACCGGT TCTGA
1351
```

## This corresponds to the amino acid sequence <SEQ ID 548; ORF 140.ng>: g140.pep

1 MSARGKGAGY LNSTGRHVPF LSAAKIGQDY SFFKNIKTDG GLLASLDSVE
51 KTAGSEGDTP SYYVRRGNAA RTASAAAHSA PAGLKHAVEQ GGSNLENLMV
101 ELDASESSAT PETVETAVAD RTDMPGIRLR RTTFRTAAAV QHANTADGVR
151 IFNSLAATVY ADSAAAHADM QGRRLKAVSD GLDHNGTGLR VIAQTQQDGG
201 TWEQGGVEGK MRGSTQTIGI AAKTGENTTA AATLGIGRST WSENSANAKT

```
251 DSISLFAGIR HDVGDIGYLK GLFSYGRYKN SISRSTGADE YAEGSVNGTL
              MQLGALGGVN VPFAATGDLT VEGGLRHDLL KQDAFAEKGS ALGWSGNSLT
               EGTLVGLAGL KLSQPLSDKA VLSATAGVER DLNGRDYAVT GGFTGAAAAT
              GKTGARNMPH TRRVAGLGVD VEFGNGWNGL ARYSYTGSKQ YGNHSGQIGV
          451 GYRF*
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 549>:
     m140.seq
               ATGTCGGCAC GCGGCAAGGG GGCAGGCTAT CTCAACAGTA CCGGACGACG
               TGTTCCCTTC CTGAGTGCCG CCAAAATCGG GCAGGATTAT TCTTTCTTCA
               CAAACATCGA AACCGACGGC GGCCTGCTGG CTTCCCTCGA CAGCGTCGAA
          101
              AAAACAGCGG GCAGTGAAGG CGACACGCTG TCCTATTATG TCCGTCGCGG
          151
              CAATGCGGCA CGGACTGCTT CGGCAGCGGC ACATTCCGCG CCCGCCGGTC
          201
          251 TGAAACACGC CGTAGAACAG GGCGGCAGCA ATCTGGAAAA CCTGATGGTC
          301 GAACTGGATG CCTCCGAATC ATCCGCAACA CCCGAGACGG TTGAAACTGC
          351 GGCAGCCGAC CGCACAGATA TGCCGGGCAT CCGCCCCTAC GGCGCAACTT
          401 TCCGCGCAGC GGCAGCCGTA CAGCATGCGA ATGCCGCCGA CGGTGTACGC
          451 ATCTTCAACA GTCTCGCCGC TACCGTCTAT GCCGACAGTA CCGCCGCCCA
          501 TGCCGATATG CAGGGACGCC GCCTGAAAGC CGTATCGGAC GGGTTGGACC
          551 ACAACGGCAC GGGTCTGCGC GTCATCGCGC AAACCCAACA GGACGGTGGA
          601 ACGTGGGAAC AGGGCGGTGT TGAAGGCAAA ATGCGCGGCA GTACCCAAAC
               CGTCGGCATT GCCGCGAAAA CCGGCGAAAA TACGACAGCA GCCGCCACAC
          701 TGGGCATGGG ACGCAGCACA TGGAGCGAAA ACAGTGCAAA TGCAAAAACC
          751 GACAGCATTA GTCTGTTTGC AGGCATACGG CACGATGCGG GCGATATCGG
          801 CTATCTCAAA GGCCTGTTCT CCTACGGACG CTACAAAAAC AGCATCAGCC
          851 GCAGCACCGG TGCGGACGAA CATGCGGAAG GCAGCGTCAA CGGCACGCTG
          901 ATGCAGCTGG GCGCACTGGG CGGTGTCAAC GTTCCGTTTG CCGCAACGGG
          951 AGATTTGACG GTCGAAGGCG GTCTGCGCTA CGACCTGCTC AAACAGGATG
         1001 CATTCGCCGA AAAAGGCAGT GCTTTGGGCT GGAGCGGCAA CAGCCTCACT
         1051 GAAGGCACGC TGGTCGGACT CGCGGGTCTG AAGCTGTCGC AACCCTTGAG
         1101 CGATAAAGCC GTCCTGTTTG CAACGGCGGG CGTGGAACGC GACCTGAACG
         1151 GACGCGACTA CACGGTAACG GGCGGCTTTA CCGGCGCGAC TGCAGCAACC
               GGCAAGACGG GGGCACGCAA TATGCCGCAC ACCCGTCTGG TTGCCGGCCT
         1251 GGGCGCGGAT GTCGAATTCG GCAACGGCTG GAACGGCTTG GCACGTTACA
         1301 GCTACGCCGG TTCCAAACAG TACGGCAACC ACAGCGGACG AGTCGGCGTA
         1351 GGCTACCGGT TCTGA
This corresponds to the amino acid sequence <SEQ ID 550; ORF 140>:
     m140.pep
               MSARGKGAGY LNSTGRRVPF LSAAKIGQDY SFFTNIETDG GLLASLDSVE
               KTAGSEGDTL SYYVRRGNAA RTASAAAHSA PAGLKHAVEQ GGSNLENLMV
           51
               ELDASESSAT PETVETAAAD RTDMPGIRPY GATFRAAAAV QHANAADGVR
          101
          151 IFNSLAATVY ADSTAAHADM QGRRLKAVSD GLDHNGTGLR VIAQTQQDGG
          201 TWEQGGVEGK MRGSTQTVGI AAKTGENTTA AATLGMGRST WSENSANAKT
          251 DSISLFAGIR HDAGDIGYLK GLFSYGRYKN SISRSTGADE HAEGSVNGTL
          301 MQLGALGGVN VPFAATGDLT VEGGLRYDLL KQDAFAEKGS ALGWSGNSLT
           351 EGTLVGLAGL KLSQPLSDKA VLFATAGVER DLNGRDYTVT GGFTGATAAT
               GKTGARNMPH TRLVAGLGAD VEFGNGWNGL ARYSYAGSKQ YGNHSGRVGV
           401
               GYRF*
           451
 Computer analysis of this amino acid sequence gave the following results:
 Homology with a predicted ORF from N.gonorrhoeae
ORF 140 shows 94.5% identity over a 454 aa overlap with a predicted ORF (ORF 140.ng)
 from N. gonorrhoeae:
      m140/g140
                                              30
                                                        40
                   MSARGKGAGYLNSTGRRVPFLSAAKIGQDYSFFTNIETDGGLLASLDSVEKTAGSEGDTL
      m140.pep
                   MSARGKGAGYLNSTGRHVPFLSAAKIGQDYSFFKNIKTDGGLLASLDSVEKTAGSEGDTP
      g140
                                    20
                                              30
                                                        40
                                                                  50
                                                                            60
                          10
                                                                           120
                                                       100
                                                                 110
                           70
                                     80
                                              90
```



# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 551>: a140.seq

40.seq					
1	ATGTCGGCAG	GCGGTAAGGG		CTCAACCGTA	CCGGACAACG
51	TGTTCCCTTC	CTGAGTGCCG	CCAAAATCGG	GCGGGATTAT	TCTTTCTTCA
101	CAAACATCGA	AACCGACGGC	GGTCTGCTGG	CTTCCCTCGA	CAGCGTCGAA
151	AAAACAGCGG	GTAGTGAAGG	CGACACGCTG	TCCTATTATG	TCCGTCGCGG
201	CAATGCGGCA	CGGACTGCTT	CGGCAGCGGC	ACATTCCGCG	CCCGCCGGTC
251	TGAAACACGC	CGTAGAACAG	GGCGGCAGCA	ATCTGGAAAA	CCTGATGGTC
301	GAACTGGATG	CCTCCGAATC	ATCCGCAACA	CCCGAGACGG	TTGAAACTGC
351	GGCCGCCGAC	CGCACAGATA	TGCCGGGCAT	CCGCCCCTAC	GGCGCAACTT
401	TCCGCGCAGC	GGCAGCCGTA	CAGCATGCGA	ATGCCGCCGA	CGGTGTACGC
451	ATCTTCAACA	ATCTCGCCGC	TACCGTCTAT	GCCGACAGTA	CCGCCGCCCA
501	TGCCGATATG	CAGGGACGCC	GCCTGAAAGC	CGTATCGGAC	GGGTTGGACC
551	ACAACGCTAC	GGGTCTGCGC	GTCATCGCGC	AAACCCAACA	GGACGGTGGA
601	ACGTGGGAAC	AGGGCGGTGT	TGAAGGCAAA	ATGCGCGGCA	GTACCCAAAC
651	CGTCGGCATT	GCCGCGAAAA	CCGGCGAAAA	TACGACAGCA	GCCGCCACAC
701	TGGGCATGGG	ACACAGCACA	TGGAGCGAAA	ACAGTGCAAA	TGCAAAAACC
751	GACAGCATTA	GTCTGTTTGC	AGGCATACGG	CACGATGCGG	GCGATATCGG
801	CTATCTCAAA	GGCCTGTTCT	CCTACGGACG	CTACAAAAAC	AGCATCAGCC
851	GCAGCACCGG	TGCGGACGAA	CATGCGGAAG	GCAGCGTCAA	CGGCACGCTG
901	ATGCAGCTGG	GCGCACTGGG	CGGTGTCAAC	GTTCCGTTTG	CCGCAACGGG

a140



KLSQPLSDKAVLFATAGVERDLNGRDYTVTGGFTGATAATGKTGARNMPHTRLVAGLGAD

m140.pep

390

450

400

380

440

VEFGNGWNGLARYSYAGSKQYGNHSGRVGVGYRFX

370

430



420

410

```
a140
                  VEFGNGWNGLARYSYAGSKOYGNHSGRVGVGYRFX
                         430
                                   440
                                            450
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 553>:
g141.seg
         atgagettea aAAccgATGC CGAAACCGCC CAATCCTCCA CCATGCGCCC
      1
     51 GATTGGCGAA ATTGCCGCCA AGCTGGGTTT GAACGTTGAC AACATTGAGC
    101 CTTACGGTCA TTACAAAGCC AAAATCAATC CTGCCGAAGC GTTCAAGCTG
    151 CCGCAAAAC AAGGCAGGCT GATTTTGGTT ACCGCCATCA ACCCGACTCC
    201 GGCGGGCGAA GGCAAAACCA CCGTAACCAT CGGTTTGGCG GACGCATTGC
    251 GCCATATCGG CAAAGACTCT GTGATTGCTT TGCGCGAGCC TTCTTTGGGT
    301 CCGGTGTTCG GCGTGAAAGG CGGCGCGGCA GGCGGCGGCT ACGCGCAAGT
         TTTGCCGATG GAAGACATCA ACCTGCACTT CACCGGCGAC TTCCACGCCA
         TCGGTGCGGC GAATAACCTC CTCGCCGCCA TGCTCGACAA CCATATCTAC
         CAAGGTAACG AGTTGAACAT CGACCCCAAA CGCGTGCTGT GGCGGCGCGT
    501 GGTCGATATG AACGACCGCC AGTTGCGCAA CATCATCGAC GGTATGGGCA
    551 AGCCTGTtga cggCGTGATG CGtcccGACG GCTTCGACAT CACCGTCGCC
    601 TCCGAAGTGa tggcgGTATT CTGCCTTGCC AAAGACATCA GCGATTTGAA
    651 AGAGCGTTLL GGCAATATTC TCGTCGCCTA CGCCAAAGAC GGCAGCCCCG
    701 TTTACGCCAA AGATTTGAAG GCACACGGCG CGATGGCGGC ATTGCTAAAA
    751 GATGCGATTA AGCCCAATTT GGTGCAAACC ATCGAAGGCA CTCCGGCCTT
    801 TGTACACGGC GGCCCGTTCG CCAACATCGC CCACGGCTGC AACTCCGTTA
    851 CCGCAACCCG TCTGGCGAAA CACCTTGCCG ATTACGCCGT AACCGAAGCA
         GGCTTCGGCG CGGACTTGGG TGCGGAAAAA TTCTGCGACA TCAAATGCCG
    951 CCTTGCCGGT TTGAAACCTG ATGCGGCAGT CGTCGTGGCG ACTGTCCGCG
   1001 CCCTGAAATA CAACGGCGGC GTGGAACGCG CCAACCTTGG TGAAGAAAAC
   1051 CTCGAAGCCT TGGCAAAAGG TTTGCCCAAC CTGTTGAAAC ACATTTCCAA
   1101 CCTGAAAAAC GTATTCGGAC TGCCCGTCGT CGTTGCGCTC AACCGCTTCG
   1151 TGTCCGACTC CGATGCCGAG TTGGCGATGA TTGAAAAAGC CTGTGCCGAA
   1201 CACGGCGTTG AAGTTTCCCT GACCGAAGTG TGGGGCAAAG GCGGCGCGGG
   1251 CGGCGCGGAT TTGGCGCGCA AAGTCGTCAA TGCCATCGAC AACCAACCTA
   1301 ATAACTTCGG TTTCGCCTAC GATGTCGAGT TGGGCATCAA AGACAAAATC
         CGTGCGATTG CCCAAAAAGT GTACGGCGCG GAAGATGTCG ATTTCAGCGC
   1351
   1401 GGAAGCGTCT GCCGAAATCG CCTCGCTGGA AAAACTGGGC TTGGACAAAA
   1451 TGCCGATCTG CATGGCGAAA ACCCAATATT CATTGAGCGA CAACGCCAAA
   1501 CTCTTGGGCT GCCCCGAAGG CTTCCGCATC GCCGTACGCG GTATCACTGT
   1551 TTCCGCCGGC GCGGCCTTCA TCGTTGCGTT GTGCGGCAAT ATGATGAAAA
         TGCCGGGCCT GCCGAAAGTT CCGGCTGCCG AGAAAATCGA TGTGGACGAA
         CACGGCGTGA TTCACGGCTT GTTCTGA
This corresponds to the amino acid sequence <SEQ ID 554; ORF 141.ng>:
q141.pep
         MSFKTDAETA QSSTMRPIGE IAAKLGLNVD NIEPYGHYKA KINPAEAFKL
      1
         POKOGRLILV TAINPTPAGE GKTTVTIGLA DALRHIGKDS VIALREPSLG
    101 PVFGVKGGAA GGGYAQVLPM EDINLHFTGD FHAIGAANNL LAAMLDNHIY
    151 QGNELNIDPK RVLWRRVVDM NDRQLRNIID GMGKPVDGVM RPDGFDITVA
    201 SEVMAVFCLA KDISDLKERF GNILVAYAKD GSPVYAKDLK AHGAMAALLK
    251 DAIKPNLVQT IEGTPAFVHG GPFANIAHGC NSVTATRLAK HLADYAVTEA
         GFGADLGAEK FCDIKCRLAG LKPDAAVVVA TVRALKYNGG VERANLGEEN
    351 LEALAKGLPN LLKHISNLKN VFGLPVVVAL NRFVSDSDAE LAMIEKACAE
    401 HGVEVSLTEV WGKGGAGGAD LARKVVNAID NQPNNFGFAY DVELGIKDKI
    451 RAIAQKVYGA EDVDFSAEAS AEIASLEKLG LDKMPICMAK TQYSLSDNAK
         LLGCPEGFRI AVRGITVSAG AGFIVALCGN MMKMPGLPKV PAAEKIDVDE
         HGVIHGLF*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 555>:
```

```
m141.sea
      1 ATGAGCTTCA AAACCGATGC CGAAATCGCC CAATCCTCCA CCATGCGCCC
      51 GATTGCCGAA ATTGCCGCCA AGCTTGGTCT GAATGCCGAC AACATTGAGC
     101 CTTACGGTCA TTACAAGGCG AAAATCAATC CTGCCGAAGC GTTCAAACTG
     151 CCGCAAAAAC AGGGCAGGCT GATTTTGGTT ACCGCCATCA ACCCGACTCC
         GGCGGGCGAA GGCAAAACCA CCGTAACCAT CGGTTTGGCG GACGCGTTGC
         GCCACATCGG CAAAGATGCC GTGATTGCCC TGCGCGAACC TTCTCTGGGG
         CCGGTGTTCG GCGTGAAAGG CGGCGCGGCA GGCGGCGGCT ATGCCCAAGT
    351 TTTGCCGATG GAAGACATCA ACCTGCACTT CACCGGAGAT TTTCACGCCA
    401 TCGGTGCGC AAATAATCTG CTTGCCGCGA TGCTCGACAA CCATATCTAC
     451 CAAGGCAACG AGTTGAACAT CGACCCCAAA CGCGTGCTGT GGCGGCGCGT
     501 GGTCGATATG AACGACCGCC AGTTGCGCAA CATCATCGAC GGCATGGGTA
     551 AACCCGTTGA CGGCGTGATG CGTCCTGACG GTTTCGATAT TACCGTTGCT
    601 TCCGAAGTGA TGGCGGTATT CTGTCTTGCC AAAGACATCA GCGATTTGAA
     651 AGAGCGTTTG GGCAACATCC TTGTCGCCTA CGCCAAAGAC GGCAGCCCCG
         TTTACGCCAA AGATTTGAAA GCGAATGGCG CGATGGCGGC ATTGCTTAAA
         GATGCGATTA AGCCCAACTT GGTGCAAACC ATCGAAGGCA CGCCCGCCTT
    801 CGTACACGGC GGCCCGTTCG CCAACATCGC CCACGGCTGC AACTCCGTAA
    851 CCGCAACCCG TCTGGCGAAA CACCTTGCCG ATTACGCCGT AACCGAAGCA
    901 GGCTTCGGCG CGGACTTGGG CGCGGAAAAA TTCTGCGACA TCAAATGCCG
    951 CCTTGCCGGT TTGAAACCTG ATGCGGCTGT TGTCGTGGCG ACTGTCCGCG
    1001 CGTTGAAATA TAACGGCGGC GTGGAACGCG CCAACCTCGG CGAAGAAAAT
    1051 TTAGACGCTT TGGAAAAAGG TTTGCCCAAC CTGCTGAAAC ACATTTCCAA
    1101 CCTGAAAAAC GTATTCGGAC TGCCCGTCGT CGTTGCGCTC AACCGCTTCG
    1151 TGTCCGACGC CGATGCCGAG TTGGCGATGA TTGAAAAAGC CTGTGCCGAA
    1201 CACGGCGTTG AAGTTTCCCT GACCGAAGTG TGGGGCAAAG GTGGTGCGGG
         CGGCGCGGAT TTGGCGCGCA AAGTCGTCAA CGCCATTGAA AGTCAAACCA
    1301 ATAACTTCGG TTTCGCCTAC GATGTCGAGT TGGGCATCAA AGACAAAATC
    1351 CGTGCGATTG CCCAAAAAGT GTACGGCGCG GAAGATGTTG ATTTCAGCGC
    1401 GGAAGCGTCT GCCGAAATCG CTTCACTGGA AAAACTGGGC TTGGACAAAA
    1451 TGCCGATCTG CATGGCGAAA ACCCAATACT CTTTGAGCGA CAACGCCAAA
    1501 CTGTTGGGCT GCCCGAAGA CTTCCGCATC GCCGTGCGCG GCATCACCGT
    1551 TTCCGCAGGC GCAGGTTTCA TCGTCGCCCT GTGCGGCAAC ATGATGAAAA
    1601 TGCCCGGCCT GCCCAAAGTT CCGGCTGCCG AGAAAATCGA TGTGGACGCA
         GAAGGCGTGA TTCACGGCTT GTTCTGA
This corresponds to the amino acid sequence <SEQ ID 556; ORF 141>:
m141.pep
      1
         MSFKTDAEIA QSSTMRPIGE IAAKLGLNAD NIEPYGHYKA KINPAEAFKL
         POKOGRLILV TAINPTPAGE GKTTVTIGLA DALRHIGKDA VIALREPSLG
     51
    101
         PVFGVKGGAA GGGYAQVLPM EDINLHFTGD FHAIGAANNL LAAMLDNHIY
         QGNELNIDPK RVLWRRVVDM NDRQLRNIID GMGKPVDGVM RPDGFDITVA
         SEVMAVFCLA KDISDLKERL GNILVAYAKD GSPVYAKDLK ANGAMAALLK
     251 DAIKPNLVQT IEGTPAFVHG GPFANIAHGC NSVTATRLAK HLADYAVTEA
    301 GFGADLGAEK FCDIKCRLAG LKPDAAVVVA TVRALKYNGG VERANLGEEN
    351 LDALEKGLPN LLKHISNLKN VFGLPVVVAL NRFVSDADAE LAMIEKACAE
     401 HGVEVSLTEV WGKGGAGGAD LARKVVNAIE SQTNNFGFAY DVELGIKDKI
     451 RAIAQKVYGA EDVDFSAEAS AEIASLEKLG LDKMPICMAK TQYSLSDNAK
     501 LLGCPEDFRI AVRGITVSAG AGFIVALCGN MMKMPGLPKV PAAEKIDVDA
         EGVIHGLF*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 141 shows 97.5% identity over a 558 aa overlap with a predicted ORF (ORF 141.ng)
from N. gonorrhoeae:
m141/g141
                                        30
                                                  40
            MSFKTDAEIAQSSTMRPIGEIAAKLGLNADNIEPYGHYKAKINPAEAFKLPOKOGRLILV
m141.pep
            MSFKTDAETAQSSTMRPIGEIAAKLGLNVDNIEPYGHYKAKINPAEAFKLPQKQGRLILV
q141
                                        30
                                                  40
                                                            50
                                                                     60
```

m141.pep g141	70 TAINPTPAGEGKTTVI           TAINPTPAGEGKTTVI 70		111:11111	11111111111	111111111	Ш
m141.pep	130 EDINLHFTGDFHAIGA             EDINLHFTGDFHAIGA 130			111111111	1111111111	1111
m141.pep	190 GMGKPVDGVMRPDGFI           GMGKPVDGVMRPDGFI 190		1111111111	111:1111	1111111111	1111
m141.pep	250 ANGAMAALLKDAIKPN  :          AHGAMAALLKDAIKPN 250		ШИШ		ШППП	1111
m141.pep	310 GFGADLGAEKFCDIKO            GFGADLGAEKFCDIKO 310		11111111111			1111
m141.pep	370 LLKHISNLKNVFGLPV            LLKHISNLKNVFGLPV 370		: [ ] [ ] [ ] [ ]	111111111	111111111	1111
m141.pep	430 LARKVVNAIESQTNNE         ::      LARKVVNAIDNQPNNE 430			1111111111	111111111	$\Pi\Pi$
m141.pep	490 LDKMPICMAKTQYSLS            LDKMPICMAKTQYSLS 490			111111111111111111111111111111111111111	НППППП	$\Pi\Pi$
m141.pep	550 PAAEKIDVDAEGVIHO           PAAEKIDVDEHGVIHO 550	1111				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 557>: al41.seq

1 ATGAGTTTCA AAACCGATGC CGAAATCGCC CAATCCTCCA CCATGCGCCC
51 GATTGGCGAA ATTGCCGCCA AGCTGGGTTT GAACGTTGAC AACATTGAGC
101 CTTACGGTCA TTACAAAGCC AAAATCAATC CTGCCGAAGC GTTCAAACTG
151 CCGCAAAAAC AGGGCAGGCT GATTTTGGTT ACCGCCATCA ACCCGACTCC



201	GGCGGGCGAA	GGTAAAACCA	CCGTAACCAT	CGGTTTGGCG	GACGCATTGC
251	GCCATATCGG	CAAAGACTCT	GTGATTGCTT	TGCGCGAGCC	TTCTTTGGGT
301	CCGGTGTTCG	GCGTGAAAGG	CGGCGCGGCA	GGCGGCGGCT	ATGCCCAAGT
351	TTTGCCGATG	GAAGACATCA	ACCTGCACTT	CACCGGAGAT	TTTCACGCCA
401	TCGGTGCGGC	AAATAATCTG	CTTGCCGCGA	TGCTCGACAA	CCATATCTAC
451	CAAGGCAACG	AGTTGAACAT	CGACCCCAAA	CGCGTGCTGT	GGCGGCGCGT
501	GGTCGATATG	AACGACCGCC	AGTTGCGCAA	CATCATCGAC	GGCATGGGCA
551	AGCCTGTTGA	CGGCGTGATG	CGTCCTGACG	GTTTCGATAT	TACCGTTGCT
601	TCCGAAGTGA	TGGCGGTATT	CTGTCTTGCC	AAAGACATCA	GCGATTTGAA
651	AGAGCGTTTG	GGCAACATCC	TTGTCGCCTA	CGCCAAAGAC	GGCAGCCCCG
701	TTTACGCCAA	AGATTTGAAA	GCGAATGGCG	CGATGGCGGC	ATTGCTTAAA
751	GATGCGATTA	AGCCCAACTT	GGTGCAAACC	ATCGAAGGCA	CGCCCGCCTT
801	CGTACACGGC	GGCCCGTTCG	CCAACATCGC	CCACGGCTGC	AACTCCGTAA
851	CCGCAACCCG	TCTGGCGAAA	CACCTTGCCG	ATTACGCCGT	AACCGAAGCA
901	GGCTTCGGCG	CGGACTTGGG	CGCGGAAAAA	TTCTGCGACA	TCAAATGCCG
951	CCTTGCCGGT	TTGAAACCTG	ATGCGGCTGT	TGTCGTGGCG	ACTGTCCGCG
1001	CGTTGAAATA	TAACGGCGGC	GTGGAACGCG	CCAACCTCGG	CGAAGAAAAT
1051	TTAGACGCTT	TGGAAAAAGG	TTTGCCCAAC	CTGCTGAAAC	ACATTTCCAA
1101	CCTGAAAAAC	GTATTCGGAC	TGCCCGTCGT	CGTTGCGCTC	AACCGCTTCG
1151	TGTCCGACTC	CGATGCCGAG	TTGGCGATGA	TTGAAAAAGC	CTGTGCCGAA
1201	CACGGCGTTG	AAGTTTCCCT	GACCGAAGTG	TGGGGCAAAG	GTGGTGCGGG
1251	CGGCGCGGAT	TTGGCGCGCA	AAGTCGTCAA	CGCCATTGAA	AGTCAAACCA
1301	ATAACTTCGG	TTTCGCCTAC	GATGTCGAGT	TGGGCATCAA	AGACAAAATC
1351	CGTGCGATTG	CCCAAAAAGT	GTACGGCGCG	GAAGATGTTG	ATTTCAGCGC
1401	GGAAGCGTCT	GCCGAAATCG	CTTCACTGGA	AAAACTGGGC	TTGGACAAAA
1451	TGCCGATCTG	CATGGCGAAA	ACCCAATACT	CTTTGAGCGA	CAACGCCAAA
1501	CTGTTGGGCT	GCCCCGAAGA	CTTCCGCATC	GCCGTGCGCG	GCATCACCGT
1551	TTCCGCAGGC	GCAGGTTTCA	TCGTCGCCCT	GTGCGGCAAC	ATGATGAAAA
1601	TGCCCGGCCT	GCCCAAAGTT	CCGGCTGCCG	AGAAAATCGA	TGTGGACGCA
1651	GAAGGCGTGA	TTCACGGCTT	GTTCTGA		

#### This corresponds to the amino acid sequence <SEQ ID 558; ORF 141.a>:

1 MSFKTDAEIA QSSTMRPIGE IAAKLGLNVD NIEPYGHYKA KINPAEAFKL
51 PQKQGRLILV TAINPTPAGE GKTTVTIGLA DALRHIGKDS VIALREPSLG
101 PVFGVKGGAA GGGYAQVLPM EDINLHFTGD FHAIGAANNL LAAMLDNHIY
151 QGNELNIDPK RVLWRRVVDM NDRQLRNIID GMGKPVDGVM RPDGFDITVA
201 SEVMAVFCLA KDISDLKERL GNILVAYAKD GSPVYAKDLK ANGAMAALLK
251 DAIKPNLVQT IEGTPAFVHG GPFANIAHGC NSVTATRLAK HLADYAVTEA
301 GFGADLGAEK FCDIKCRLAG LKPDAAVVVA TVRALKYNGG VERANLGEEN
351 LDALEKGLPN LLKHISNLKN VFGLPVVVAL NRFVSDSDAE LAMIEKACAE
401 HGVEVSLTEV WGKGGAGGAD LARKVVNAIE SQTNNFGFAY DVELGIKDKI
451 RAIAQKVYGA EDVDFSAEAS AEIASLEKLG LDKMPICMAK TQYSLSDNAK
501 LLGCPEDFRI AVRGITVSAG AGFIVALCGN MMKMPGLPKV PAAEKIDVDA

#### m141/a141 99.5% identity in 558 aa overlap

	10	20	30	40	50	60
m141.pep	MSFKTDAEIAQSST	MRPIGEIAAI	KLGLNADNIEF	YGHYKAKINE	AEAFKLPQK	GRLILV
	1111111111	111111111	[[[]]]	1111111111	1111111111	111111
a141	MSFKTDAEIAQSST	MRPIGEIAAI	KLGLNVDNIE	YGHYKAKINF	AEAFKLPQK	GRLILV
	10	20	30	40	50	60
	70	80	90	100	110	120
m141.pep	TAINPTPAGEGKTT	VTIGLADALI	RHIGKDAVIAL	REPSLGPVFG	VKGGAAGGG	AQVLPM
	11111111111111	11111111	11111:111	111111111	111111111	111111
a141	TAINPTPAGEGKTT	VTIGLADALI	RHIGKDSVIAL	REPSLGPVFG	VKGGAAGGG	MAQVLPM
	70	80	90	100	110	120
	130	140	150	160	170	180
m141.pep	EDINLHFTGDFHAI	GAANNLLAA				
·- • •	11111111111111	[]][]]		1111111111		
a141	EDINLHFTGDFHAI	GAANNLLAAI	1LDNH I YQGNE	LNIDPKRVLW	RRVVDMNDR	LRNIID
	130	140	150	160	170	180



m141.pep	190 200 210 220 230 GMGKPVDGVMRPDGFDITVASEVMAVFCLAKDISDLKERLGNILVAYAKDGSPVYA	
a141	GMGKPVDGVMRPDGFDITVASEVMAVFCLAKDISDLKERLGNILVAYAKDGSPVYA 190 200 210 220 230	
m141.pep	250 260 270 280 290 ANGAMAALLKDAIKPNLVQTIEGTPAFVHGGPFANIAHGCNSVTATRLAKHLADYA	1111
m141.pep	310 320 330 340 350  GFGADLGAEKFCDIKCRLAGLKPDAAVVVATVRALKYNGGVERANLGEENLDALEK	1111
m141.pep	370 380 390 400 410 LLKHISNLKNVFGLPVVVALNRFVSDADAELAMIEKACAEHGVEVSLTEVWGKGGA	1111
m141.pep	430 440 450 460 470 LARKVVNAIESQTNNFGFAYDVELGIKDKIRAIAQKVYGAEDVDFSAEASAEIASL	1111
m141.pep	490 500 510 520 530 LDKMPICMAKTQYSLSDNAKLLGCPEDFRIAVRGITVSAGAGFIVALCGNMMKMPG [	1111
m141.pep	550 559 PAAEKIDVDAEGVIHGLFX                  PAAEKIDVDAEGVIHGLFX 550	

# The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 559>: g142.seq

1 ATGCGTGCCG ATTTCATGTT TGCCGACAAT ATGCCCGTGC AGGTGCGCCA
51 ACGCGCCTTC TATTTCAAGT TGTCCCGTTT TGCCGCGATG CCAAATATGG
101 TAGGCAAACC GCTCTTCGGG CGACAGGCCG GTCAGCCCGG CAAAATGTTC
151 GGCAACATCC TGATGTTCGT CCGCCAGCAT ATTGATGCAG AGGCTGCCGT
201 TTTCCGACAG GATCGGAATG ALCCGCGCAC TCCGGTTTAT GCACAGCATC
251 ACGGTCGGCG GCTCGTCGGT AACCGGCGCA ACCGCCGTCA TTGTAATGCC
301 GTAACGCCCT GCCGCACCGT CTGTCGTGAT GACATGAACG CCTGCCGCAC
351 AGGATGCCAT CGCATCACGG AACGAAGTTT GAAAAGTTTT CTGCAAATCC
401 GCCATTTTTC CCCTTTAAAC CGTCCCCTAT ATAAGAATGC TGCACACAAG
451 GCATCCCCCC ATGTGCAGCA GTTCTGA

# This corresponds to the amino acid sequence <SEQ ID 560; ORF 142.ng>: g142.pep

- 1 MRADFMFADN MPVQVRQRAF YFKLSRFAAM PNMVGKPLFG RQAGQPGKMF
- 51 GNILMFVRQH IDAEAAVFRQ DRNDSRTPVY AQHHGRRLVG NRRNRRHCNA
- 101 VTPCRTVCRD DMNACRTGCH RITERSLKSF LQIRHFSPLN RPLYKNAAHK
- 151 ASPHVQQF*

WO 99/057280 PCT/US99/09346

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 561>:
     m142.seq
              ATGCGTGCCG ATTTCATGTT TGCCGACAAT ATGCCCGTGC AGGTGCGCCA
           1
              ACGCGCCCTC TATTTCAAGT TGTCCCGTTT TGCCGCGATG CCAGATGTGG
          51
         101
              TAGGCAAACC GCTCTTCGGG CGACAGGCCG GTCAGCCCGG CAAAATGTTC
         151 GGCAACATCC TGATGTTCGT CCGCCAGCGT ATTGATGCAG AGGCTGCCGT
              TTTCCGACAG GATCGGAATG ATTCGCGCAC TCCGGTTGAT GCACAGCATC
          251 ACGGTCGGCG GCTCGTCGGT AACCGGCGCG ACCGCCGTCA TTGTAATGCC
         301 GTAACGCCCT GCCGCACCGT CTGTCGTGAT GACATGAACG CCTGCCGCGC
          351 AAGATGCCAT CGCATCACGG AACGAAGTTT GAAAATTTTT CTGCAAATCC
              GCCATTTTC CCCTTTAAAC TGTCCCCTAT ATAAGAATGC TGCACACAAG
              GCATCCCCC ATGTGCAGCA GTTTTGA
This corresponds to the amino acid sequence <SEQ ID 562; ORF 142>:
     m142.pep
           1 MRADFMFADN MPVQVRQRAL YFKLSRFAAM PDVVGKPLFG RQAGQPGKMF
              GNILMFVRQR IDAEAAVFRQ DRNDSRTPVD AQHHGRRLVG NRRDRRHCNA
           51
              VTPCRTVCRD DMNACRARCH RITERSLKIF LQIRHFSPLN CPLYKNAAHK
              ASPHVQQF*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 142 shows 93.7% identity over a 158 as overlap with a predicted ORF (ORF 142.ng)
from N. gonorrhoeae:
     m142/g142
                         10
                                   20
                                             30
                                                       40
                                                                50
                                                                          60
                 {\tt MRADFMFADNMPVQVRQRALYFKLSRFAAMPDVVGKPLFGRQAGQPGKMFGNILMFVRQR}
     m142.pep
                  MRADFMFADNMPVQVRQRAFYFKLSRFAAMPNMVGKPLFGRQAGQPGKMFGNILMFVRQH
     g142
                         10
                                   20
                                             30
                                                       4 D
                                                                50
                                                                          60
                                   80
                                             90
                                                      100
                                                               110
                  IDAEAAVFRQDRNDSRTPVDAQHHGRRLVGNRRDRRHCNAVTPCRTVCRDDMNACRARCH
     m142.pep
                  g142
                  IDAEAAVFRQDRNDSRTPVYAQHHGRRLVGNRRNRRHCNAVTPCRTVCRDDMNACRTGCH
                                   80
                                             90
                                                      100
                                                               110
                         70
                         130
                                  140
                                            150
                  RITERSLKIFLQIRHFSPLNCPLYKNAAHKASPHVQQFX
     m142.pep
                  g142
                  RITERSLKSFLQIRHFSPLNRPLYKNAAHKASPHVQQFX
                                  140
                                            150
                         130
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 563>:
     a142.seq
               ATGCGTGCCG ATTTCATGTT TGCCGACAAT ATGCCCGTGC AGGTGCGCCA
              ACGCGCCCTC TATTTCAAGT TGTCCCGTTT TGCCGCGATG CCAGATGTGG
           51
               TAGGCAAACC GCTCTTCGGG CGACAGGCCG GTCAGCCCGG CAAAATGTTC
          101
              GGCAACATCC TGATGTTCGT CCGCCAGCGT ATTGATGCAG AGGCTGCCGT
          151
               TTTCCGACAG GATCGGAATG ATTCGCGCAC TCCGGTTGAT GCACAGCATC
          201
              ACGGTCGGCG GCTCGTCCGT AACCGGCGCA ACCGCCGTCA TTGTAATGCC
          251
               GTAACGCCCT GCCGCACCGT CTGTCGTGAT GACATGAACG CCTGCCGCAC
          301
          351
               AGGATGCCAT CGCATCACGG AACGAAGTTT GAAAAGTTTT CTGCAAATCC
              GCCATTTTC CCCTTTAAAC TGTCCCCTAT ATAAGAATGC TGCACACAAG GCACCCCCA TGTGCAGCAG TTCTGATTCA AAAAGCCGTC GGTCGGACAT
          401
          451
               TTCCGCGCGT TACGGCGTAT TACGAGTTCA ACGCATCCTC GATTTTGGCA
          501
          551 AGTTCTGCCA ACAGGTCTTT AAGCAGCAGC ATTTTCTCGC GGCCCAGCAC
              TTCCTCGATA GCGTCGTAAC GCTCGTCCAC TTCTTCGCCG ATTTCCTCAT
          601
          651
              ACAGCTTCTC GCCCTCGGCA GTCAGCTTCA GAAAAACACG TCGTTGGTCG
               TTGGAAGGTT TCAGGCGGAC AACCAAACCC GCTTTTTCAA GGCGGGTCAG
          751 GATACCGGTC AGGCTGGGGC GCAAAATGCA CGCCTGATTC GCCAAATCTT
```



```
801 GAAAGTCCAG CGTGCCGTTT TCCGCCAAAA GACGGATAAT CCGCCATTGC
         851 TGATCGGTAA TATTCGCCTG ATTCAGAATA GGCCTGAATT GGGTCATCAG
         901 GGCTTCCCTT GCCTGTATCA GACCGATATT GATAGACGCA TGTTTTGA
This corresponds to the amino acid sequence <SEQ ID 564; ORF 142.a>:
     a142.pep
              MRADEMFADN MPVQVRQRAL YFKLSRFAAM PDVVGKPLFG ROAGOPGKMF
              GNILMFVRQR IDAEAAVFRQ DRNDSRTPVD AQHHGRRLVR NRRNRRHCNA
          51
         101 VTPCRTVCRD DMNACRTGCH RITERSLKSF LQIRHFSPLN CPLYKNAAHK
         151 APPMCSSSDS KSRRSDISAR YGVLRVQRIL DFGKFCQQVF KQQHFLAAQH
         201 FLDSVVTLVH FFADFLIQLL ALGSQLQKNT SLVVGRFQAD NQTRFFKAGQ
         251 DTGQAGAQNA KLIKQI
301 GFPCLYQTDI DRRM<u>F</u>*
              DTGOAGAONA RLIRQILKVQ RAVFROKTON PPLLIGNIRL IONRPELGHO
m142/a142 96.1% identity in 153 aa overlap
                        10
                                  20
                                           30
                                                     40
                 MRADFMFADNMPVQVRQRALYFKLSRFAAMPDVVGKPLFGROAGOPGKMFGN1LMFVROR
     m142.pep
                 147114141414141414141414144
                 MRADFMFADNMPVQVRQRALYFKLSRFAAMPDVVGKPLFGRQAGQPGKMFGNILMFVRQR
     a142
                        10
                                  20
                                           30
                                           90
                                                    100
                 IDAEAAVFRQDRNDSRTPVDAQHHGRRLVGNRRDRRHCNAVTPCRTVCRDDMNACRARCH
     m142.pep
                 a142
                 IDAEAAVFRQDRNDSRTPVDAQHHGRRLVRNRRNRRHCNAVTPCRTVCRDDMNACRTGCH
                                  80
                                           90
                                                    100
                                                             110
                                                                       120
                       130
                                 140
                                                   159
                                          150
                 RITERSLKIFLQIRHFSPLNCPLYKNAAHKASPHVQQFX
     m142.pep
                 RITERSLKSFLQIRHFSPLNCPLYKNAAHKAPPMCSSSDSKSRRSDISARYGVLRVQRIL
     a142
                        130
                                 140
                                          150
                                                    160
                 DFGKFCQQVFKQQHFLAAQHFLDSVVTLVHFFADFLIQLLALGSQLQKNTSLVVGRFQAD
     a142
                        190
                                                    220
                                 200
                                          210
                                                             230
                                                                       240
```

#### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 565>:

q143.seq ATGTTGAGCT TCGGCTATCT CGGCGTTCAG ACGGCCTTTA CCCTGCAAAG 1 CTCGCAGATG AGCCGCATTT TTCAAACGCT AGGCGCAGAC CCGCACAATT 51 TGGGCTGGTT TTTCATCCTG CCGCCGCTGG CGGGGATGCT GGTTCAGCCG 101 151 ATAGTGGGCT ACTACTCAGA CCGCACTTGG AAGCCGCGCT TGGGCGGCCG CCGCCTGCCG TATCTGCTTT ACGGCACGCT GATTGCGGTC ATCGTGATGA 251 TTTTGATGCC GAACTCGGGC AGCTTCGGTT TCGGCTATGC GTCGCTGGCG GCCTTGTCGT TCGGCGCGCT GATGATTGCG CTGTTGGACG TGTCGTCGAA 351 TATGGCGATG CAGCCGTTTA AGATGATGGT CGGCGATATG GTCAACGAGG 401 AGCAGAAAAG CTACGCCTAC GGGATTCAAA GTTTCTTAGC GAATACGGAC 451 GCGGTTGTGG CAGCGATTCT GCCGTTTGTG TTcgcgtata TCGGTTTGGC 501 GAACACTGCC GAGAAAGGCG TTGTGCCACA AACCGTGGTC GTAGCATTCT 551 ATGTGGGTGC GGCGTTACTG ATTATTACCA GTGCGTTCAC AATCTCCAAA GTCAAAGAAT ACGACCCGGA AACCTACGCC CGTTACCACG GCATCGATGT 601 651 CGCCGCGAAT CAGGAAAAAG CCAACTGGTT CGAACTCTTA AAAACCGCGC 701 CTAAAGTGTT TTGGACGGTT ACTCCGGTAC AGTTTTTCTG CTGGTTCGCC TTCCGGTATA TGTGGACTTA CTCGGCAGGC GCGATTGCAG AAAACGTCTG GCACACTACC GATGCGTCTT CCGTAGGCCA TCAGGAGGCG GGCAACCGGT 801 851 ACGGCGTTTT GGCGGCGGTG TAGTCGGTTG CGGCGGTGAT TTGTTCGTTT 901 ATTCTGGCAA AAGTACCGAA TAAATACCAT AAGGCGGGTT ATTTCGGCTG 951 TTTGGCTTTG GGCGCGCTCG GTTTCTTCTC TATCTTCTTC ATCTACAATC 1001 AATACGCACT CATCCTGTCT TATATCTTAA TCGGCATCGC TTGGGCGGGC 1051 ATTATCACTT ATCCGCTGAC GATTGTGGCC AACGCTTTGT CGGGCAAACA 1101 CATGGATACT TATTTGGGCC TGTttaacgg ctctgtCTGT ATGCcgcaaa 1151 tcgTcgctTC GctgttgAGT TTCGTGCTTT TCCCGATGCT GGGCGGCCAT



```
1201 CAGGCAACCA TGTTCTTGGT TGCAGGCGCA GTCTTGCTGC TGGGAGCCTT
1251 CTCAGTCTGT CTGATTAAAG AGATCCACGG CGGGGTTTGA
```

#### This corresponds to the amino acid sequence <SEQ ID 566; ORF 143.ng>:

g143.pep

- 1 MLSFGYLGVQ TAFTLQSSQM SRIFQTLGAD PHNLGWFFIL PPLAGMLVQP
  51 IVGYYSDRTW KPRLGGRRLP YLLYGTLIAV IVMILMPNSG SFGFGYASLA
  101 ALSFGALMIA LLDVSSNMAM QPFKMMVGDM VNEEQKSYAY GIQSFLANTD
  151 AVVAAILPFV FAYIGLANTA EKGVVPQTVV VAFYVGAALL IITSAFTISK
  201 VKEYDPETYA RYHGIDVAAN QEKANWFELL KTAPKVFWTV TPVQFFCWFA
  251 FRYMWTYSAG AIAENVWHTT DASSVGHQEA GNRYGVLAAV *SVAAVICSF
  301 ILAKVPNKYH KAGYFGCLAL GALGFFSIFF IYNQYALILS YILIGIAWAG
  351 IITYPLTIVA NALSGKHMDT YLGLFNGSVC MPQIVASLLS FVLFPMLGGH
  401 QATMFLVAGA VLLLGAFSVC LIKEIHGGV*
- The following partial DNA sequence was identified in N. meningitidis <SEQ ID 567>:

```
m143.seq
```

```
ATGCTCAGTT TCGGCTTTCT CGGCGTTCAG ACGGCCTTTA CCCTGCAAAG
  1
  51
     CTCGCAAATG AGCCGCATTT TTCAAACGCT AGGCGCAGAC CCGCACAATT
 101 TGGGCTGGTT TTTCATCCTG CCGCCGCTGG CGGGGATGCT GGTGCAGCCG
 151 ATTGTCGGCC ATTACTCCGA CCGCACTTGG AAGCCGCGTT TGGGCGGCCG
 201 CCGTCTGCCG TATCTGCTTT ATGGCACGCT GATTGCGGTT ATTGTGATGA
     TTTTGATGCC GAACTCGGGC AGCTTCGGTT TCGGCTATGC GTCGCTGGCG
 301 GCTTTGTCGT TCGGCGCGCT GATGATTGCG CTGTTAGACG TGTCGTCAAA
 351 TATGGCGATG CAGCCGTTTA AGATGATGGT CGGCGACATG GTCAACGAGG
 401 AGCAGAAAGG CTACGCCTAC GGGATTCAAA GTTTCTTAGC AAATACGGGC
 451 GCGGTCGTGG CGGCGATTCT GCCGTTTGTG TTTGCGTATA TCGGTTTGGC
 501 GAACACCGCC GAGAAAGGCG TTGTGCCGCA GACCGTGGTC GTGGCGTTTT
 551 ATGTGGGTGC GGCGTTGCTG GTGATTACCA GCGCGTTCAC GATTTTCAAA
 601 GTGAAGGAAT ACGATCCGGA AACCTACGCC CGTTACCACG GCATCGATGT
 651 CGCCGCGAAT CAGGAAAAAG CCAACTGGAT CGAACTCTTG AAAACCGCGC
 701 CTAAGGCGTT TTGGACGGTT ACTTTGGTGC AATTCTTCTG CTGGTTCGCC
 751 TTCCAATATA TGTGGACTTA CTCGGCAGGC GCGATTGCGG AAAACGTCTG
 801 GCACACCACC GATGCGTCTT CCGTAGGTTA TCAGGAGGCG GGTAACTGGT
 851 ACGGCGTTTT GGCGGCGGTG CAGTCGGTTG CGGCGGTGAT TTGTTCGTTT
 901 GTATTGGCGA AAGTGCCGAA TAAATACCAT AAGGCGGGTT ATTTCGGCTG
951 TTTGGCTTTG GGCGCGCTCG GCTTTTTCTC CGTTTTCTTC ATCGGCAACC 1001 AATACGCGCT GGTGTTGTCT TATACCTTAA TCGGCATCGC TTGGGCGGGC
1051 ATTATCACTT ATCCGCTGAC GATTGTGACC AACGCCTTGT CGGGCAAGCA
1101 TATGGGCACT TACTTGGGCT TGTTTAACGG CTCTATCTGT ATGCCTCAAA
1151 TCGTCGCTTC GCTGTTGAGT TTCGTGCTTT TCCCTATGCT GGGCGGCTTG
     CAGGCCACTA TGTTCTTGGT AGGGGGCGTC GTCCTGCTGC TGGGCGCGTT
1251 TTCCGTGTTC CTGATTAAAG AAACACACGG CGGGGTTTGA
```

#### This corresponds to the amino acid sequence <SEQ ID 568; ORF 143>:

m143.pep

```
1 MLSFGFLGVQ TAFTLQSSQM SRIFQTLGAD PHNLGWFFIL PPLAGMLVQP
51 IVGHYSDRTW KPRLGGRRLP YLLYGTLIAV IVMILMPNSG SFGFGYASLA
101 ALSFGALMIA LLDVSSNMAM QPFKMMVGDM VNEEQKGYAY GIQSFLANTG
151 AVVAAILPFV FAYIGLANTA EKGVVPQTVV VAFYVGAALL VITSAFTIFK
201 VKEYDPETYA RYHGIDVAAN QEKANWIELL KTAPKAFWTV TLVQFFCWFA
251 FQYMWTYSAG AIAENVWHTT DASSVGYQEA GNWYGVLAAV QSVAAVICSF
301 VLAKVPNKYH KAGYFGCLAL GALGFFSVFF IGNQYALVLS YTLIGIAWAG
351 IITYPLTIVT NALSGKHMGT YLGLFNGSIC MPQIVASLLS FVLFPMLGGL
401 QATMFLVGGV VLLLGAFSVF LIKETHGGV*
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m143 / g143 93.9% identity in 429 aa overlap

10 20 30 40 50 60



m143.pep	MLSFGFLGVQTAFTLQSSQMSRIFQTLGADPHNLGWFFILPPLAGMLVQPIVGHYSDRTW
g143	MLSFGYLGVQTAFTLQSSQMSRIFQTLGADPHNLGWFFILPPLAGMLVQPIVGYYSDRTW 10 20 30 40 50 60
m143.pep	70 80 90 100 110 120 KPRLGGRRLPYLLYGTLIAVIVMILMPNSGSFGFGYASLAALSFGALMIALLDVSSNMAM
g143	HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLING HILLIN
m143.pep	130 140 150 160 170 180 QPFKMMVGDMVNEEQKGYAYGIQSFLANTGAVVAAILPFVFAYIGLANTAEKGVVPQTVV
g143	
	190 200 210 220 230 240
m143.pep	VAFYVGAALLVITSAFTIFKVKEYDPETYARYHGIDVAANQEKANWIELLKTAPKAFWTV         :  :
91.0	190 200 210 220 230 240 250 260 270 280 290 300
m143.pep	TLVQFFCWFAFQYMWTYSAGAIAENVWHTTDASSVGYQEAGNWYGVLAAVQSVAAVICSF
g143	TPVQFFCWFAFRYMWTYSAGAIAENVWHTTDASSVGHQEAGNRYGVLAAVXSVAAVICSF 250 260 270 280 290 300
m143.pep	310 320 330 340 350 360 VLAKVPNKYHKAGYFGCLALGALGFFSVFFIGNQYALVLSYTLIGIAWAGIITYPLTIVT
g143	ILAKVPNKYHKAGYFGCLALGALGFFSIFFIYNQYALILSYILIGIAWAGIITYPLTIVA 310 320 330 340 350 360
m143.pep	370 380 390 400 410 420 NALSGKHMGTYLGLFNGSICMPQIVASLLSFVLFPMLGGLQATMFLVGGVVLLLGAFSVF
g143	
	430
m143.pep	LIKETHGGVX           LIKEIHGGVX
9170	430

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 569>: a14

143.seq					
1	ATGCTCAGTT	TCGGCTTTCT		ACGGCCTTTA	
51	CTCGCAGATG	AGCCGCATCT		CGGTGCCGAT	
101	TCGGCTGGTT	CTTTATCCTG	CCGCCGCTGG	CGGGGATGCT	GGTGCAGCCG
151	ATTGTCGGCC	ATTACTCCGA	CCGCACTTGG	AAGCCGCGTT	TGGGCGGCCG
201				GATTGCGGTT	
251	TTTTGATGCC	GAACTCGGGC	AGCTTCGGTT	TCGGCTATGC	GTCGCTGGCG
301	GCTTTGTCGT	TCGGCGCGCT	GATGATTGCG	CTGTTAGACG	
351	TATGGCGATG	CAGCCGTTTA	AGATGATGGT	CGGCGACATG	GTCAACGAGG
401	AGCAGAAAGG	CTACGCCTAC		GTTTCTTAGC	
451	GCGGTCGTGG	CGGCGATTCT	GCCGTTTGTG	TTTGCGTATA	TCGGTTTGGC
501	GAACACCGCC	GAGAAAGGCG	TTGTGCCGCA	GACCGTGGTC	GTGGCGTTTT
551	ATGTGGGTGC	GGCGTTGCTG	GTGATTACCA	GCGCGTTCAC	GATTTTCAAA
601	GTGAAGGAAT	ACAATCCGGA	AACCTACGCC	CGTTACCACG	GCATCGATGT
651	CGCCGCGAAT	CAGGAAAAAG	CCAACTGGAT	CGAACTCTTG	AAAACCGCGC
701	CTAAGGCGTT	TTGGACGGTT	ACTTTGGTGC	AATTCTTCTG	CTGGTTCGCC





```
114449111111111111111111
     a143
                  NALSGKHMGTYLGLFNGSICMPQIVASLLSFVLFPMLGGLQATMFLVGGVVLLLGAFSVF
                                    380
                                                         400
                                                                   410
                                               390
                          370
                          430
                  LIKETHGGVX
     m143.pep
                  111111111
     a143
                  LIKETHGGVX
                          430
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 571>:
     g144.seq
               ATGAGCGATA CCCCCGCTAC CCGCGATTTC GGCCTGATCG ACGGGCGGGC
               CGTAACCGGC TATGTGCTGT CCAACCGGCG TGGTACGTGC GTCTTCGTGC
          101
               TGGACTTGGG CGGGATTGTG CAGGAATTTT CCGTTTTGGC AGACGGCGTG
               CGCGAAAACC CCGTGGTGTC GTTCGACGAT GCGGCTTCCT ATGCGGACAA
          201 TCCGTTTCAG ATTAACAAGC AGATAGGGCG CGTGGCCGGA CGCATCCGCG
          251 GTGCGGCGTT CGACATCAAC GGTAGGACTT ACCGCGTGGA GGCCAACGAA
          301 GGCAGGAACG CGCTGCACGG CGGTTCGCAC GGGCTGGCCG TTACCcgtTT
          351 CAACGCGGTG GCGGCAGACG GccgacggTt atCCCAACGA TTTGGatatT
401 TCctaccgCT TGGACGAGGA CGGCCGGCTT ACCGTTACCT ATCGCCCCAC
          451 CGCgctCGGC GACACGGTGT TCGACCCGAC GCTGCACATT TACTGGCGGC
          501 TGGACGCGG CCTGCACGAT GCGGTTCTGC ATATTCCGCA GGGCGGACAT
          551 ATTCCGGCCG ATGCCGAAAA ACTGCCCGTC TTAACGGTTT CAGACGGCCT
          601 CGAAGTATTT GA
This corresponds to the amino acid sequence <SEQ ID 572; ORF 144.ng>:
     g144.pep
               MSDTPATRDF GLIDGRAVTG YVLSNRRGTC VFVLDLGGIV QEFSVLADGV
            51 RENPVVSFDD AASYADNPFQ INKQIGRVAG RIRGAAFDIN GRTYRVEANE
          101 GRNALHGGSH GLAVTRFNAV AADGRRLSQR FGYFLPLGRG RPAYRYLSRH
          151 RARRHGVRPD AAHLLAAGRG PARCGSAYSA GRTYSGRCRK TARLNGFRRP
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 573>:
     ml44.seq
               ATGAGCGATA CCCCCGCTAC CCGCGATTTC GGTCTGATCG ACGGGCGTGC
            51 CGTAACCGGC TATGTGCTGT CCAACCGGCG TGGTACGCGT GTCTGCGTGC
           101 TGGACTTGGG CGGGATTGTG CAGGAATTTT CCGTTTTGGC AGACGGCGTG
           151 CGCGAAAACC TCGTGGTGTC GTTCGATGAT GCGGCTTCCT ATGCGGACAA
          201 TCCGTTTCAG ATTAACAAAC AGATAGGGCG CGTGGCCGGA CGCATCCGCG
251 GTGCGGCGTT CGACATCAAC GGCAGGACTT ACCGCGTGGA GGCCAACGAA
           301 GGCAGGAACG CGCTGCACGG CGGTTCGCAC GGGCTGGCCG TTACCCGTTT
           351 CAACGCGGTG GCGGCAGACG GCCGTTCGGT GGTGCTGCGC AGCCGCCTGg
           401 CAACAGTCGG CCGACGGTTA TCCCAACGAT TTGGATTTGG ATATTTCCTA
           451 CCGCTTGGAC GAGGACGACC GGCTTACCGT TACCTATCGC GCCACCGCGC
           501 TCGGCGACAC GGTGTTCGAC CCGACGCTGC ACATTTACTG GCGGCTGGAC
           551 GCGGGCCTGC ACGATGCGGT TCTGCATATT CCGCAGGGCG GACATATGCC
           601 GGCCGATGCC GAAAAACTGC CCGTCTCAAC GGTTTCAGAC GACCTCGAAG
           651 TATTTGA
This corresponds to the amino acid sequence <SEQ ID 574; ORF 144>:
     m144.pep
               MSDTPATRDF GLIDGRAVTG YVLSNRRGTR VCVLDLGGIV QEFSVLADGV
            51 RENLVVSFDD AASYADNPFQ INKQIGRVAG RIRGAAFDIN GRTYRVEANE
```

Computer analysis of this amino acid sequence gave the following results:

GRCRKTARLN GFRRPRSI*

101 GRNALHGGSH GLAVTRFNAV AADGRSVVLR SRLATVGRRL SQRFGFGYFL
151 PLGRGRPAYR YLSRHRARRH GVRPDAAHLL AAGRGPARCG SAYSAGRTYA



## Homology with a predicted ORF from N. gonorrhoeae

m144 / g144	91.3% identity in 218 aa overlap
m144.pep	10 20 30 40 50 60 MSDTPATRDFGLIDGRAVTGYVLSNRRGTRVCVLDLGGIVQEFSVLADGVRENLVVSFDD
g144	
ml44.pep	70 80 90 100 110 120 AASYADNPFQINKQIGRVAGRIRGAAFDINGRTYRVEANEGRNALHGGSHGLAVTRFNAV
g144	
9111	70 80 90 100 110 120
ml44.pep	130 140 150 160 170 180  AADGRSVVLRSRLATVGRRLSQRFGFGYFLPLGRGRPAYRYLSRHRARRHGVRPDAAHLL
g144	AADGRRLSQRFGYFLPLGRGRPAYRYLSRHRARRHGVRPDAAHLL 130 140 150 160
m144.pep	190 200 210 219 AAGRGPARCGSAYSAGRTYAGRCRKTARLNGFRRPRSIX
g144	
The following par	tial DNA sequence was identified in N. meningitidis <seq 575="" id="">:</seq>
1 7	ATGAGCGATA CCCCCGCTAC CCGCGATTTC GGCCTGATCG ACGGGCGTGC
	CGTAACCGGC TATGTGCTGT CCAACCGGCG TGGTACGCGT GTCTGCGTGC
	rggacttggg cgggattgtg caggaatttt ccgttttggc agacggcgtg cgcgaaaacc tcgtggtgtc gttcgacgat gcggcttcct atgcggacaa
	CCCGTTCAG ATTAACAAGC AGATAGGGCG CGTGGCCGGA CGCATCCGCG
	STGCGGCGTT CGACATCAAC GGCAGGACTT ACCGCGTGGA GGCCAACGAA
	GGCAGGAACG CGCTGCACGG CGGTTCGCAC GGGCTGGCCG TTACCCGTTT
	CAACGCGGTG GCGGCAGACG GCCGTTCGGT GGTGCTGCGC AGCCGCCTG.
	CAACAGTCGG CCGACGGTTA TCCCAACGAT TTGGATTTGG ATATTTCCTA CCGCTTGGAC GAGGACGACC GGCTTACCGT TACCTATCGC GCCACCGCGC
	CCGCCACAC GGTGTTCGAC CCGACGCTGC ACATTTACTG GCGGCTGGAC
	GCGGGCCTGC ACGATGCGGT TCTGCATATT CCGCAGGGCG GACATATTCC
	GGCCGATGCC GAAAAACTGC CCGTCTCAAC GGTTTCAGAC GACCTCGAAG PATTTGA
This corresponds	to the amino acid sequence <seq 144.a="" 576;="" id="" orf="">:</seq>
al44.pep	
	MSDTPATRDF GLIDGRAVTG YVLSNRRGTR <u>VCVLDLGGIV QEFSVLA</u> DGV RENLVVSFDD AASYADNPFQ INKQIGRVAG RIRGAAFDIN GRTYRVEANE
	GRNALHGGSH GLAVTRFNAV AADGRSVVLR SRLXTVGRRL SQRFGFGYFL
	PLGRGRPAYR YLSRHRARRH GVRPDAAHLL AAGRGPARCG SAYSAGRTYS
201	GRCRKTARLN GFRRPRSI*
m144/a144	99.1% identity in 218 aa overlap
ml44.pep	10 20 30 40 50 60 MSDTPATRDFGLIDGRAVTGYVLSNRRGTRVCVLDLGGIVQEFSVLADGVRENLVVSFDD
a144	
G117	10 20 30 40 50 60
	70 80 90 100 110 120
m144.pep	AASYADNPFQINKQIGRVAGRIRGAAFDINGRTYRVEANEGRNALHGGSHGLAVTRFNAV



```
AASYADNPFQINKQIGRVAGRIRGAAFDINGRTYRVEANEGRNALHGGSHGLAVTRFNAV
    a 144
                                           90
                                                   100
                                                            110
                                140
                                          150
                                                   160
                                                            170
                       130
                {\tt AADGRSVVLRSRLATVGRRLSQRFGFGYFLPLGRGRPAYRYLSRHRARRHGVRPDAAHLL}
    m144.pep
                 AADGRSVVLRSRLXTVGRRLSQRFGFGYFLPLGRGRPAYRYLSRHRARRHGVRPDAAHLL
    a144
                                                   160
                                          150
                       130
                                140
                                 200
                                          210
                                                  219
                       190
                 AAGRGPARCGSAYSAGRTYAGRCRKTARLNGFRRPRSIX
    m144.pep
                 AAGRGPARCGSAYSAGRTYSGRCRKTARLNGFRRPRSIX
    a144
                                          210
                                200
                       190
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 577>:
    g146.seq
              ATGAAGCAAA TCCCCCTCCG CCTTCTCCAG GTCGTCATTG ACCACGACAA
          101 CTTTGGATAa ctTCCCGACT GTCCGTCCCG CGCcctTTGA GGCGCGCGGC
         151 AAGCACGTCG AAAGAAGGCG GCAGGATAAA GATACCGACA GCTTCCGGCA
              GCGCGTTGCG AACCTGCGCC GCGCCCTGAA CGTCGATTTC CAAAATCACG
         251 TCATAGCCTG CCGCCGCCAA CGCATTCACG CCCTCCGTGC TTGTGCCGTA
         301 ATAGTTGCCG AATACGTCTG CGTATTCCAA AAAAGCCTCC TGCGCGATAA
         351 GCGATTCAAA CTCTTCTTTG GAAACAAAGT GATAATGTAC GCCGTTTGCT
         401 TCGCCTTCAC GCGGCGGCG CGTCGTATGC GACACGGAAA CGCGCAAACC
         451 GTTATGGTTT GCCAACAGCC GCGACACCAG CGTGGTTTTG CCCGTGCCGG
501 AAGCGGCCGA AATGATAAAG ATGTTGCCTT TTCGATAAGC GGACATATTT
          551 TTTACCTGTA TATTTTCCAA CCGATTGTAT CACAACGGAC ACCCTATTTC
          601 ATATTTGCCG ATGCCCATAT TTTGCCGCTA TTGTTTTGA
This corresponds to the amino acid sequence <SEQ ID 578; ORF 146.ng>:
     g146.pep
              MKQIPLRLLQ VVIDHDKVEQ YGLFDFMPCL RQPPLDNFPT VRPAPFEARG
              KHVERRRQDK DTDSFRQRVA NLRRALNVDF QNHVIACRRQ RIHALRACAV
           51
              IVAEYVCVFQ KSLLRDKRFK LFFGNKVIMY AVCFAFTRRA RRMRHGNAQT
          101
              VMVCQQPRHQ RGFARAGSGR NDKDVAFSIS GHIFYLYIFQ PIVSQRTPYF
          151
          201 IFADAHILPL LF*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 579>:
     m146.seq
              ATGGCGCAAA TCCTCCTCCG CTCGCGCCAA GTCGTCATTG ACCACGACAA
              51
              CTTTGGATAA CTTCCCGACT GTCCGTCCCG CGTCCGTTGA GGCGCGCGGC
          101
          151 AAGTACGTCG AAAGAAGGCG GCAGGATAAA GATGCCGACG GCTTCGGGCA
          201 GCGCGTCGCG AACCTGCGCC GCGCCCTGAA CGTCGATTTC CAAAATCACG
              TCATAGCCTG CCGCCGCAA CGCATTCACA CCCTCCGCGC CTGTGCCGTA
              ATAGTTGCCA AATACGTCGG CGTATTCCAA AAAAGCTTCC TGCGCGATAA
              GCGACTCAAA CTCTTCTTTG GAAACAAAGT GATAATGTAC GCCGTTTGCT
          351
          401 TCGCCTTCAC GCGGCGGCG CGTCGTGTGC GACACGGAAA CGCGCAAACC
          451 GTTATGGTTT GCCAACAGCC GCGACACCAG CGTGGTTTTG CCCGTGCCGG
          501 AAGCGGCCGA AATGATAAAG ATGTTGCCTT TTCGATAAGC GGACATATTT
          551 TTTACCTGTA TATTTTCCAG CCGATTGTAT CACAATGGAC ACCCAGTTTC
              CTATTTGCCG ATGCCCATAT TTTGCCGCTA TTGTTTTGA
This corresponds to the amino acid sequence <SEQ ID 580; ORF 146>:
     m146.pep
              MAQILLRSRQ VVIDHDKVKQ YGLLDFMPCL RQPPLDNFPT VRPASVEARG
           51 KYVERRRODK DADGFGORVA NLRRALNVDF ONHVIACRRO RIHTLRACAV
              IVAKYVGVFQ KSFLRDKRLK LFFGNKVIMY AVCFAFTRRA RRVRHGNAQT
          101
          151 VMVCQQPRHQ RGFARAGSGR NDKDVAFSIS GHIFYLYIFQ PIVSQWTPSF
          201 LFADAHILPL LF*
```



# Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from *N. gonorrhoeae*

m146 / g146	90.1% identity in	212 aa	overlap			
ml46.pep	10 MAQILLRSRQVVIDHDH	20 VKQYGLLD	30 FMPCLRQPPI	40 DNFPTVRPA	50 SVEARGKYVEF	60 RRRQDK
g146		VEQYGLFD	FMPCLRQPPI 30	JNFPTVRPA 40	PFEARGKHVEN	
	10	20				
m146.pep	70 DADGFGQRVANLRRALN  : :	80 VVDFQNHVI	90 ACRRQRIHTI	100 LRACAVIVAK	110 YVGVFQKSFLI	120 RDKRLK !!!!:!
g146	DTDSFRQRVANLRRALN 70	NVDFQNHVI 80	ACRRQRIHAI	RACAVIVAE	YVCVFQKSLLI 110	RDKRFK 120
	120	1.40	150	160	170	180
m146.pep	130 LFFGNKVIMYAVCFAF:	1111111:11	11111111	QOPRHQRGFA	RAGSGRNDKD'	VAFSIS
g146	LFFGNKVIMYAVCFAF	rrarrmri 140	IGNAQTVMVC 150	QQPRHQRGFA 160	RAGSGRNDKD 170	VAFSIS 180
m146.pep	190 GHIFYLYIFQPIVSQW	200 rpsflfad <i>i</i>	210 AHILPLLFX			
g146		[] [:11]	11111111			
givo	190	200	210			
The following par	tial DNA sequence v	vas identi	fied in N. n	neningitidi.	s <seq id<="" td=""><td>581&gt;:</td></seq>	581>:
a146.seq			_			
1 7	ATGGCGCAAA TCCTCCTC	CG CCCGC	GCCAA GTCA	TCATTG ACC	CACGACAA	
51 7	AATCGAACAA TACGGACT	GT TCGAT	TTCAT GCCT	TGCCTT CGA	ACAGCCTC	
101	CTTTGGATAA CTTCCCGA	CT GTCCG	rcccg cgrc	CGTTGA GAG	JGCGCAGC PTCGCGCA	
151	AAGCACATCG AAAGACGG GCGCATCTCG AACCTGAG	CG GCAGG	ATAAA GATG	CUGACG GC.	ADDTCDCG	
201	CGCATCTCG AACCTGAG CCATAACCTG CCGCCGCC	NA CCCAT	CIGAA CGIC	CCGCGC TT	TTGCCGTA	
251	ATAGTTGCCG AACACGTC	CG CGTAT	TCCAA AAAA	GCCTCC TG	CGCGATAA	
301 . 351 .	GCGACTCAAA CTCTTCTT	TG GAAAC	AAAGT GATA	ATGTAC GC	CGTTTGCT	
401	TCGCCTTCAC GCGGCGGA	CG CGTCG	TGTGC GACA	CGGAAA CG	CGCAAACC	
451	GTTATGGTTT GCCAACAG	CC GCGAC	ACCAG CGTG	GTTTTG CC	CGTGCCGG	
501	AAGCGGCCGA AATGATAA	AG ATGTT	GCCTT TTCG	ATAAGC GG	ACATATTT	
551	TTTACCTGTA TATTTTCC	AG CCGAT	TGTAT CACA	ACGGAC AC	CCGGTTTC	
601	CTATTTGCCG ATGCCCAT	'AT TTTGC	CGCTA TTGT	TTTGA		
	to the amino acid see	quence <	SEQ ID 582	2; ORF 140	5.a>:	
al46.pep	MAQILLRPRQ VIIDHDKI	TO VOLED	EMPCI POR	מנו שמשואת זו	DASUETES	
1	MAQILLRPRQ VIIDHDRI KHIERRRQDK DADGFGQF	LEQ IGLED	THIPCE ROPE	TTCRRO RI	HTLRACAV	
51	IVAEHVRVFQ KSLLRDKF	RIK LEFGN	KVTMY AVCE	FAFTRRT RR	VRHGNAOT	
101 151	VMVCQQPRHQ RGFARAGS	GR NDKDV	AFSIS GHIE	YLYIFO PI	VSQRTPGF	
	LFADAHILPL LF*			_	_	
m146/a146	90.6% identity i	in 212 aa	overlap			
	10	20	30	40	50	60
m146.pep	MAQILLRSRQVVIDHI	OKVKQYGLI	DFMPCLRQPI	PLDNFPTVRP	ASVEARGKYV	ERRRQDK
	111111 111:111	::   :	1111111111		:: : :	
a146	MAQILLRPRQVIIDHI	OKIEQYGLE 20	FDFMPCLRQPI 30	PLDNFPTVRF 40	ASVETRSKHII 50	ERRRQDK 60
	70	80	90	' 100	110	120

WO 99/057280



```
DADGFGQRVANLRRALNVDFQNHVIACRRQRIHTLRACAVIVAKYVGVFQKSFLRDKRLK
ml46.pep
          DADGFGQRISNLSRALNVDFQNHVITCRRQRIHTLRACAVIVAEHVRVFQKSLLRDKRLK
a146
                               90
                                      100
                70
                       80
                                              170
                                      160
                       140
                               150
               130
          LFFGNKVIMYAVCFAFTRRARRVRHGNAQTVMVCQQPRHQRGFARAGSGRNDKDVAFSIS
m146.pep
          LFFGNKVIMYAVCFAFTRRTRRVRHGNAQTVMVCQQPRHQRGFARAGSGRNDKDVAFSIS
a146
                                              170
                                      160
               130
                       200
               190
          GHIFYLYIFOPIVSQWTPSFLFADAHILPLLFX
m146.pep
          111111111111111
          GHIFYLYIFQPIVSQRTPGFLFADAHILPLLFX
a146
                       200
```

412

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 583>:

```
(partial)
g147.seq
          ..ATGCGACGAG AAGCCAAAAT GGCACAAATC ACACTCAAAC CCATTGTTTT
      1
            ATCAATTCTT TTAATCAACA CACCCCTCCT CGCCCAAGCG CATGAAACTG
            AGCAATCGGT GGGCTTGGAA ACGGTCAGCG TCGTCGGCAA AAGCCGTCCG
     101
            CGCGCGACTT CGGGGCTGCT GCACACTTCG ACCGCCTCCG ACAAAATCAT
     151
            CTCCGGCGAT ACTTTGCGCC AAAAAGCCGT CAACTTGGGC GACGCTTTGG
     201
            ACGGCGTACC GGGCATCCAC GCTTCGCAAT ACGGCGGCGG CGCATCCGCT
     251
            CCCGTTATTC GCGGTCAAAC GGGCAGACGG ATTAAAGTAT TGAACCATCA
     301
            CGGCGAAACG GGCGATATGG CGGACTTTTC TCCCGATCAC GCCATTATGG
     351
            TAGATACCGC CTTGTCGCAA CAGGTTGAAA TCCTGCGCGG GCCGGTTACG
     401
            CTCTTGTACA GCTCGGgcaa tgtggccgGG GCTGGtcaat gttgccgatg
     451
            gAAAAAtccc ccaaaaAAtg cc..
     501
```

## This corresponds to the amino acid sequence <SEQ ID 584; ORF 147.ng>:

```
g147.pep (partial)

1 .MRREAKMAQI TLKPIVLSIL LINTPLLAQA HETEQSVGLE TVSVVGKSRP
51 RATSGLLHTS TASDKIISGD TLRQKAVNLG DALDGVPGIH ASQYGGGASA
101 PVIRGQTGRR IKVLNHHGET GDMADFSPDH AIMVDTALSQ QVEILRGPVT
151 LLYSSGNVAG AGQCCRWKNP PKNA..
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 585>:

onowing p	muai Di vi i boq				_
m147.seq	(partial)				
1	CCGCATAAAA				
51	CAAAAGCCGT			GTTGCACACT	
101	CCGACAAAAT			GCCAAAAAGC	
151	GGCGACGCTT			CACGCTTCGC	
201	CGGCGCGTCT	GCTCCCGTCA			CGGATTAAAG
251	TGTTGAACCA			TGGCGGATTT	
301	CACGCCATTA			CAACAGGTCG	
351	CGGGCCGGTT			CAATGTGGCG	
401	ATGTTGCCGA			TGCCTGAAAA	
451	GGCGAACTCG	GATTGCGTTT		AATCTGGAAA	
501		AATATCGGTT		CTTTGTATTG	
551				TACCGCGTTA	
601	AAACGCCTGC			CAAACGGGCA	
651	GTCTTGGGTT			CGTAGCGTAC	
701	GCGACCAATA			ACGAATACGA	
751				AACAAACGCT	
801				CGATTACGAC	
851				CACACGCACA	
901				CGCTACGAAC	
951				CCTGCGCGTA	
1001				GCGATGCAGT	
1051	TTTAACAACC	AAACGCAAAA	CGCCCGCATC	GAGTTGCGCC	ACCAACCCAT



1101	AGGTCGTCTG	AAAGGCAGCT	GGGGCGTGCA	ATATTTACAA	CAAAAATCCA
1151	GTGCTTTATC	TGCCATATCC	GAAGCGGTTA	AACAACCGAT	GCTGCTTGAC
1201	AACAAAGTGC	AACATTACAG	CTTTTTCGGT	GTAGAACAGG	CAAACTGGGA
1251	CAACTTCACG	CTTGAAGGAG	GCGTACGCGT	GGAAAAACAA	AAAGCCTCCA
1301	TTCAGTACGA	CAAAGCATTG	ATTGATCGGG	AAAACTACTA	CAACCACCCC
1351	CTGCCCGACC	TCGGCGCGCA	CCGCCAAACC	GCCCGCTCAT	TCGCACTTTC
1401	GGGCAACTGG	TATTTCACGC	CACAACACAA	ACTCAGCCTG	ACCGCCTCCC
1451	ATCAGGAACG	CCTGCCGTCA	ACGCAAGAGC	TGTACGCACA	CGGCAAACAC
1501	GTCGCCACCA	ACACCTTTGA	AGTCGGCAAC	AAACACCTCA	ACAAAGAGCG
1551	TTCCAACAAT	ATCGAACTCG	CGCTGGGCTA	CGAAGGCGAC	CGCTGGCAAT
1601	ACAATCTGGC	ACTCTACCGC	AACCGCTTCG	GTAACTACAT	TTACGCCCAA
1651	ACCTTAAACG	ACGGACGCGG	CCCCAAATCC	ATCGAAGACG	ACAGCGAAAT
1701	GAAGCTCGTG	CGCTACAACC	AATCCGGCGC	CGACTTCTAC	GGCGCGGAAG
1751	GCGAAATCTA	CTTCAAACCG	ACACCGCGCT	ACCGCATCGG	CGTTTCCGGC
1801	GACTATGTAC	GAGGCCGTCT	GAAAAACCTG	CCTTCCCTAC	CCGGCAGAGA
1851	AGATGCCTAC	GGCAACCGTC	CTTTCATCGC	ACAGGACGAC	CAAAATGCCC
1901	CCCGTGTTCC	GGCTGCGCGC	CTCGGCTTCC	ACCTGAAAGC	CTCGCTGACC
1951	GACCGTATCG	ATGCCAATTT	GGACTACTAC	CGCGTGTTCG	CCCAAAACAA
2001	ACTCGCCCGC	TACGAAACGC	GCACGCCCGG	ACACCATATG	CTCAACCTCG
2051	GCGCAAACTA	CCGCCGCAAT	ACGCGCTATG	GCGAGTGGAA	TTGGTACGTC
2101	AAAGCCGACA	ACCTGCTCAA	CCAATCCGTT	TACGCCCACA	GCAGCTTTCT
2151	CTCTGATACG	CCGCAAATGG	GCCGCAGCTT	TACCGGCGGC	GTGAACGTGA
2201	AGTTTTAA				

### This corresponds to the amino acid sequence <SEQ ID 586; ORF 147>:

47.pep	(partial)				
1	PHKTEQSVDL	ETVSVVGKSR	PRATSGLLHT	STASDKIISG	DTLRQKAVNL
51	GDALDGVPGI	HASQYGGGAS	APVIRGQTGR	RIKVLNHHGE	TGDMADFSPD
101	HAIMVDTALS	QQVEILRGPV	TLLYSSGNVA	GLVDVADGKI	PEKMPENGVS
151	GELGLRLSSG	NLEKLTSGGI	NIGLGKNFVL	HTEGLYRKSG	DYAVPRYRNL
201	KRLPDSHADS	QTGSIGLSWV	GEKGFIGVAY	SDRRDQYGLP	AHSHEYDDCH
251	ADIIWQKSLI	NKRYLQLYPH	LLTEEDIDYD	NPGLSCGFHD	DDNAHAHTHS
301	GRPWIDLRNK	RYELRAEWKQ	PFPGFEALRV	HLNRNDYRHD	EKAGDAVENF
351	FNNQTQNARI	ELRHQPIGRL	KGSWGVQYLQ	QKSSALSAIS	EAVKQPMLLD
401	NKVQHYSFFG	VEQANWONFT	LEGGVRVEKQ	KASIQYDKAL	IDRENYYNHP
451	LPDLGAHRQT	ARSFALSGNW	YFTPQHKLSL	TASHQERLPS	TQELYAHGKH
501	VATNTFEVGN	KHLNKERSNN	IELALGYEGD	RWQYNLALYR	NRFGNYIYAQ
551	TLNDGRGPKS	IEDDSEMKLV	RYNQSGADFY	GAEGEIYFKP	TPRYRIGVSG
601	DYVRGRLKNL	PSLPGREDAY	GNRPFIAQDD	QNAPRVPAAR	LGFHLKASLT
651	DRIDANLDYY	RVFAQNKLAR	YETRTPGHHM	LNLGANYRRN	TRYGEWNWYV
701	KADNLLNQSV	YAHSSFLSDT	PQMGRSFTGG	VNVK <u>F</u> *	

# Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m147 / g147 92.3% identity in 142 aa overlap

				10	20	30
m147.pep			PHKTE	COSVDLETVS	VVGKSRPRATS	SGLLHTS
			1:11		111111111	111111
g147	MRREAKMAQITLK	PIVLSILLIN	TPLLAQAHETE	EQSVGLETVS	VVGKSRPRAT:	SGLLHTS
	10	20	30	40	50	60
	40	50	60	70	80	90
m147.pep	TASDKIISGDTLR	OKAVNLGDAL	DGVPGIHASQY	(GGGASAPVI)	RGQTGRRIKVI	LNHHGET
	1111111111111		1111111111		111111111	HIIIII
g147	TASDKIISGDTLR	QKAVNLGDAL	DGVPGIHASQY	(GGGASAPVI)	RGQTGRRIKV	LNHHGET
	70	80	90	100	110	120
	4.00					
	100	110	120	130	140	150
m147.pep	GDMADFSPDHAIM	/DTALSQQVE	ILRGPVTLLYS	SSGNVAGLVD	<b>VADGKIPEKM</b>	PENGVSG
	1111111111111		1111111111	: 111111	1 1 1	
g147	GDMADFSPDHAIM	/DTALSQQVE	ILRGPVTLLYS	SSGNVAGAGQ	CCRWKNPPKN	A

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 587>:

al47.seq ATGCGACGAG AAGCCAAAAT GGCACAAACT ACACTCAAAC CCATTGTTTT 51 ATCAATTCTT TTAATCAACA CACCCCTCCT CTCCCAAGCG CATGGAACTG AGCAATCAGT GGGCTTGGAA ACGGTCAGCG TCGTCGGCAA AAGCCGTCCG 101 CGCGCCACTT CGGGGCTGCT GCACACTTCT ACCGCCTCCG ACAAAATCAT 151 201 CAGCGGCGAC ACCTTGCGAC AAAAAGCCGT CAACTTGGGT GATGCTTTAG 251 ACGGCGTACC GGGCATTCAT GCCTCGCAAT ACGGCGGCGG CGCATCCGCT 301 CCCGTTATTC GCGGTCAAAC AGGCAGACGG ATTAAAGTGT TGAACCATCA 351 CGGCGAAACG GGCGACATGG CGGACTTCTC TCCAGACCAT GCAATCATGG
401 TGGACAGCGC CTTGTCGCAA CAGGTCGAAA TCCTGCGCGG TCCGGTTACG 451 CTCTTGTACA GCTCGGGCAA TGTGGCGGGG CTGGTCGATG TTGCCGATGG 501 CAAAATCCCC GAAAAAATGC CTGAAAACGG CGTATCGGGC GAACTCGGAT 551 TGCGTTTGAG CAGCGGCAAT CTGGAAAAAC TCACGTCCGG CGGCATCAAT 601 ATCGGTTTGG GCAAAAACTT TGTATTGCAC ACGGAAGGGC TGTACCGCAA ATCGGGGGAT TACGCCGTAC CGCGTTACCG CAATCTGAAA CGCCTGCCCG 651 701 ACAGCCACGC CGATTCGCAA ACGGGCAGCA TCGGGCTGTC TTGGGTTGGC 751 GAAAAAGGCT TTATCGGCGC AGCATACAGC GACCGTCGCG ACCAATATGG 801 TCTGCCTGCC CACAGCCACG AATACGATGA TTGCCACGCC GACATCATCT GGCAAAAGAG TTTGATTAAC AAACGCTATT TGCAGCTTTA TCCGCACCTG 851 TTGACCGAAG AAGACATCGA TTACGACAAT CCGGGCTTGA GCTGCGGCTT 901 TCACGACGAC GATGATGCAC ACGCCCATGC CCACAACGGC AAACCTTGGA 951 1001 TAGACCTGCG CAACAAACGC TACGAACTCC GCGCCGAATG GAAGCAACCG 1051 TTCCCCGGTT TTGAAGCCCT GCGCGTACAC CTGAACCGCA ACGACTACCG 1101 CCACGACGAA AAAGCAGGCG ATGCAGTAGA AAACTTTTTT AACAACCAAA CGCAAAACGC CCGTATCGAG TTGCGCCACC AACCCATAGG CCGTCTGAAA 1151 GGCAGCTGGG GCGTGCAATA TTTGGGACAA AAATCCAGTG CTTTATCTGC 1201 1251 CACATCCGAA GCGGTCAAAC AACCGATGCT GCTTGACAAT AAAGTGCAAC 1301 ATTACAGCTT TTTCGGTGTA GAACAGGCAA ACTGGGACAA CTTCACGCTT 1351 GAAGGCGGCG TACGCGTGGA AAAACAAAAA GCCTCCATCC GCTACGACAA 1401 AGCATTGATT GATCGGGAAA ACTACTACAA CCATCCCCTG CCCGACCTCG
1451 GCGCGCACCG CCAAACCGCC CGCTCATTCG CACTTTCGGG CAACTGGTAT 1501 TTCACGCCAC AACACAAACT CAGCCTGACC GCCTCCCATC AGGAACGCCT 1551 GCCGTCAACG CAAGAGCTGT ACGCACACGG CAAACACGTC GCCACCAACA 1601 CCTTTGAAGT CGGCAACAAA CACCTCAACA AAGAGCGTTC CAACAATATC 1651 GAACTCGCGC TGGGCTACGA AGGCGACCGC TGGCAATACA ATCTGGCACT CTACCGCAAC CGCTTCGGCA ACTACATTTA CGCCCAAACC TTAAACGACG 1701 1751 GACGCGGCCC CAAATCCATC GAAGACGACA GCGAAATGAA GCTCGTGCGC 1801 TACAACCAAT CCGGTGCGGA CTTCTACGGC GCGGAAGGCG AAATCTACTT 1851 CAAACCGACA CCGCGCTACC GCATCGGCGT TTCCGGCGAC TATGTACGAG
1901 GCCGTCTGAA AAACCTGCCT TCCCTACCCG GCAGGGAAGA CGCCTACGGC
1951 AACCGCCCAC TCATTGCCCA AGCCGACCAA AACGCCCCTC GCGTTCCGGC 2001 TGCGCGCCTC GGCGTCCACC TGAAAGCCTC GCTGACCGAC CGCATCGATG 2051 CCAATTTGGA CTACTACCGC GTGTTCGCCC AAAACAAACT CGCCCGCTAC 2101 GAAACGCGCA CGCCCGGACA CCATATGCTC AACCTCGGCG CAAACTACCG 2151 CCGCAATACG CGCTATGGCG AGTGGAATTG GTACGTCAAA GCCGACAACC TGCTCAACCA ATCCGTTTAC GCCCACAGCA GCTTCCTCTC TGATACGCCG 2251 CAAATGGGCC GCAGCTTTAC CGGCGGCGTG AACGTGAAGT TTTAA

#### This corresponds to the amino acid sequence <SEQ ID 588; ORF 147.a>:

corres	sponus	s to the annin	o aciu scque	iicc ord ii	) 500, OIG	177.00.
a147	.pep					
	1		TLKPIVLSIL			
	51		TASDKIISGD			
•	101	PVIRGQTGRR	IKVLNHHGET	GDMADFSPDH	AIMVDSALSQ	QVEILRGPVT
	151	LLYSSGNVAG	LVDVADGKIP	EKMPENGVSG	ELGLRLSSGN	LEKLTSGGIN
	201		TEGLYRKSGD			
	251	EKGFIGAAYS	DRRDQYGLPA	HSHEYDDCHA	DIIWQKSLIN	KRYLQLYPHL
	301	LTEEDIDYDN	PGLSCGFHDD	DDAHAHAHNG	KPWIDLRNKR	YELRAEWKQP
	351	FPGFEALRVH	LNRNDYRHDE	KAGDAVENFF	NNQTQNARIE	LRHQPIGRLK
	401	GSWGVQYLGQ	KSSALSATSE	AVKQPMLLDN	KVQHYSFFGV	EQANWDNFTL
	451	EGGVRVEKQK	ASIRYDKALI	DRENYYNHPL	PDLGAHRQTA	RSFALSGNWY
	501	FTPQHKLSLT	ASHQERLPST	QELYAHGKHV	<b>ATNT FEVGNK</b>	HLNKERSNNI
	551	ELALGYEGDR	WQYNLALYRN	RFGNYIYAQT	LNDGRGPKSI	EDDSEMKLVR

601 651 701 751	YNQSGADFYG AEGEIYFKPT PRYRIGVSGD YVRGRLKNLP SLPGREDAYG NRPLIAQADQ NAPRVPAARL GVHLKASLTD RIDANLDYYR VFAQNKLARY ETRTPGHHML NLGANYRRNT RYGEWNWYVK ADNLLNQSVY AHSSFLSDTP QMGRSFTGGV NVK <u>F</u> *
m147/a147	98.1% identity in 734 aa overlap
m147.pep	10 20 30 PHKTEQSVDLETVSVVGKSRPRATSGLLHTS 
a147	MRREAKMAQTTLKPIVLSILLINTPLLSQAHGTEQSVGLETVSVVGKSRPRATSGLLHTS 10 20 30 40 50 60
ml47.pep	40 50 60 70 80 90 TASDKIISGDTLRQKAVNLGDALDGVPGIHASQYGGGASAPVIRGQTGRRIKVLNHHGET
a147	TASDKIISGDTLRQKAVNLGDALDGVPGIHASQYGGGASAPVIRGQTGRRIKVLNHHGET 70 80 90 100 110 120
m147.pep	100 110 120 130 140 150 GDMADFSPDHAIMVDTALSQQVEILRGPVTLLYSSGNVAGLVDVADGKIPEKMPENGVSG [
a147	GDMADFSPDHAIMVDSALSQQVEILRGPVTLLYSSGNVAGLVDVADGKIPEKMPENGVSG 130 140 150 160 170 180
m147.pep	160 170 180 190 200 210 ELGLRLSSGNLEKLTSGGINIGLGKNFVLHTEGLYRKSGDYAVPRYRNLKRLPDSHADSQ
a147	ELGLRLSSGNLEKLTSGGINIGLGKNFVLHTEGLYRKSGDYAVPRYRNLKRLPDSHADSQ 190 200 210 220 230 240
m147.pep	220 230 240 250 260 270 TGSIGLSWVGEKGFIGVAYSDRRDQYGLPAHSHEYDDCHADIIWQKSLINKRYLQLYPHL
a147	TGSIGLSWVGEKGFIGAAYSDRRDQYGLPAHSHEYDDCHADIIWQKSLINKRYLQLYPHL 250 260 270 280 290 300
m147.pep	280 290 300 310 320 330 LTEEDIDYDNPGLSCGFHDDDNAHAHTHSGRPWIDLRNKRYELRAEWKQPFPGFEALRVH
a147	LTEEDIDYDNPGLSCGFHDDDDAHAHAHNGKPWIDLRNKRYELRAEWKQPFPGFEALRVH 310 320 330 340 350 360
m147.pep	340 350 360 370 380 390 LNRNDYRHDEKAGDAVENFFNNQTQNARIELRHQPIGRLKGSWGVQYLQQKSSALSAISE
a147	LNRNDYRHDEKAGDAVENFFNNQTQNARIELRHQPIGRLKGSWGVQYLGQKSSALSATSE 370 380 390 400 410 420
m147.pep	400 410 420 430 440 450 AVKQPMLLDNKVQHYSFFGVEQANWDNFTLEGGVRVEKQKASIQYDKALIDRENYYNHPL
a147	
m147.pep	460 470 480 490 500 510 PDLGAHRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNK
a147	
m147.pep	520 530 540 550 560 570 HLNKERSNNIELALGYEGDRWQYNLALYRNRFGNYIYAQTLNDGRGPKSIEDDSEMKLVR
a147	

	550	560	570	580	590	600
	580	590	600	610	620	630
ml47.pep	YNQSGADFYGAEGI	EIYFKPTPRY	RIGVSGDYVR	GRLKNLPSLP	GREDAYGNRP	FIAQDDQ
	111111111111	11111111	11111111	111111111		:111 11
a147	YNQSGADFYGAEGI	EIYFKPTPRY	RIGVSGDYVR	GRLKNLPSLP	GREDAYGNRP	LIAQADQ
	610	620	630	640	650	660
	640	650	660	670	680	690
m147.pep	NAPRVPAARLGFHI	LKASLTDRID	ANLDYYRVFA	QNKLARYETR'	rpghhmLnlg.	ANYRRNT
• -	1111111111			11111111		111111
a147	NAPRVPAARLGVH	LKASLTDRID	ANLDYYRVFA	ONKLARYETR'	rpghhmlnlg.	ANYRRNT
	670	680	690	700	710	720
	700	710	720	730		
ml47.pep	RYGEWNWYVKADNI	LLNQSVYAHS	SFLSDTPQMG:	RSFTGGVNVK	FX	
		11111111			11	
a147	RYGEWNWYVKADN:	LLNQSVYAHS	SFLSDTPQMG	RSFTGGVNVK	FX	
	730	740	750	760		

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 589>:

```
9148.seq
1 ATGGCGTTAA AAACATCAAA CTTGGAACAC GCAATGctgg ttcaTCCCGA
51 AgctATgagt gtcggcgCC TTGccgAcaa AATCCGCAAA AtcgaAAact
101 gGCCGCAAAA AGgcaTCTTA TTCCACGACA TCACGCCGT CCTGCAAAGT
151 GCGGAATACT TCCGCCTTTT GGTCGATTTG CTGGTTTACC GCTATATGGA
201 TCAGAAAATC GACATCGTTG CCGGCTTGGA CGCCGCGGC TTCATATCG
251 GCGCGGCACT CGCCTACCAG CTCAaCGtcg gctTCGTCCC CATCCGCAAA
301 AAAGGCAAGC TGCCTTTTGA AACCGTATCG CAAAGCTACG cgCTCGAATA
351 CGGGGAAGCT GCGCTGGAAA TCCACACCG tgccgCGCC CCGGTTCGC
401 GCGTCCTGCT GGTCGATGAT TTGGTTGCCA CGGGCGGCA AATGCTTGCC
451 GGGCTGGAAC TGATCCGCAA ACTCGGCGG GAAATTGTCG AAGCCTGCG
501 CATTTTGGAA TTTACCCAC TTCAAAACG AAGGCTGCAT GAAAGCCTGA
```

## This corresponds to the amino acid sequence <SEQ ID 590; ORF 148.ng>:

g148.pep

1 MALKTSNLEH AMLVHPEAMS VGALADKIRK IENWPQKGIL FHDITPVLQS 51 AEYFRLUDL LVYRYMDQKI DIVAGLDARG FIIGAALAYQ LNVGFVPIRK 101 KGKLPFETVS QSYALEYGEA AVEIHTDAVK PGSRVLLVDD LVATGGTMLA 151 GLELIRKLGG EIVEAAAILE FTDLQGGKNI RASGAPLFTL LQNEGCMKG*

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 591>:

1 ATGGCGTTAA AAACATCAAA CTTGGAACAC GCAATGCTGG TTCATCCCGA
51 AGCTATGAGT GTCGGCGCGC TTGCCGACAA AATCCGCAAA ATCGAAAACT
101 GGCCGCAAAA AGGCATCTTA TTCCACGACA TCACGCCGT CCTTCAAAGC
151 GCGGAATACT TCCGCCTTTT GGTTGATTTA TTGGTTTACC GCTATATGGA
201 TCAGAAAATC GACATCGTTG CCGGTTTGGA CGCCGGCGGGC TTCATATGGA
251 GCGCGGCACT CGCCTACCAG CTCAACGTCG GTTTCGTCCC CATCCGCAAA
301 AAAGGCAAGC TGCCTTTTGA AACCGTATCG CAAAGCTACG CGCCGCAAA
351 CGGGGAAGCT GCGGTGGAAA TCCACACGA TGCCGTCAAA CTCGGTTCGC
401 GCGTGCTGCT GGTCGATGAT TTGATTGCCA CGGGCGGCAC GATGCTTGCC
451 GGACTGGAAC TGATCCGCAA ACTCGGCGGA GAAATTGTCG AAGCCGCCGC
501 CATTTTGGAA TTTACCCGC TTCAAAACG AAGGCTGTAT GAAGGCCTGA

#### This corresponds to the amino acid sequence <SEQ ID 592; ORF 148>:

m148.pep

1 MALKTSNLEH AMLVHPEAMS VGALADKIRK IENWPQKGIL FHDITPVLQS 51 AEYFRLLVDL LVYRYMDQKI DIVAGLDARG FI<u>IGAALA</u>YQ LNVGFVPIRK

101 KGKLPFETVS QSYALEYGEA AVEIHTDAVK LGSRVLLVDD LIATGGTMLA 151 GLELIRKLGG EIVEAAAILE FTDLQGGKNI RASGAPLFTL LQNEGCMKG*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

			_			
m148 / g14	<b>8</b> 99.0% identity	in 199 aa	overlap			
m148.pep	10 MALKTSNLEHAMLV !!!!!!!!!!!!	11311111111	1111111111	1111111111	1111111111	
g148	MALKTSNLEHAMLV 10	HPEAMSVGALA 20	DKIRKIENWP 30	QKGILFHDIT 40	PVLQSAEYFF 50	60
m148.pep	70 LVYRYMDQKIDIVA 	80 GLDARGFIIGA	90 ALAYQLNVGF	100 VPIRKKGKLP	110 FETVSQSYAI	120 LEYGEA
g148	LVYRYMDQKIDIVA 70	GLDARGFIIGA 80	ALAYOLNVGF 90	VPIRKKGKLP 100	FETVSQSYAI 110	LEYGEA 120
m148.pep	130 AVEIHTDAVKLGSR					
g148	AVEIHTDAVKPGSR 130	VLLVDDLVATG	GTMLAGLELI 150	RKLGGEIVEA 160	AAILEFTDLO	QGGKNI 180
m148.pep	190 RASGAPLFTLLQNE				•	
g148	RASGAPLFTLLQNE 190					
The following pa	rtial DNA sequenc	e was identii	fied in N. m	eningitidis	<seq 5<="" id="" td=""><td>593&gt;:</td></seq>	593>:
a148.seq						
ĺ	ATGGCGTTAA AAACAT	CAAA CTTGGA	ACAC GCAAT	GCTGG TTCA	TCCCGA	
51	AGCTATGAGT GTCGGT	GCGC TTGCCG	ACAA AATCO	CGCAAA ATCG	AAAACT	
101	GGCCGCAAAA AGGCAT	CTTA TTCCAC	GACA TCACO	SCCCGT CCTG	CAAAGC	•
151	GCGGAATACT TCCGAC	TTTT GGTTGA	ATTTA TTGG1	TTACC GCTA	\TATGGA	
201	TCAGAAAATC GACATC	GTTG CCGGTI	TGGA CGCG	CGCGGC TTCA	TTATCG	
251	GCGCGGCACT CGCCTA	CCAG CTCAAC	CGTCG GTTT	CGTCCC CATC	CGCAAA	
301	AAAGGCAAGC TGCCTT	TTGA AACCGI	TATCG CAAA	SCTACG CGCT	CGAATA	
351	CGGGGAAGCT GCGGTG	GAAA TCCACA	ACCGA TGCC	STCAAA CTCG	GTTCGC	
	GCGTGCTGCT GGTCGA	ATGAT TTGGTT	GCCA CGGG	CGGCAC GATG	CTTGCC	
451	GGACTGGAGC TGATCO	CGCAA ACTCGC	GCGGG GAAA	TIGICG AAGC	CONCCC	
501	CATTTTGGAA TTTACC GCGCGCCCTT ATTTAC	CGACC TTCAAC	NAMES ANGE	TATATE COTO	CCCTCA	
551	GCGCGCCCTT ATTTAC	CCTG CTTCA	AAACG AAGG	JIGIAI GAAG	JGGC I GA	
	to the amino acid	sequence <s< td=""><td>EQ ID 594</td><td>; ORF 148.</td><td>a&gt;:</td><td></td></s<>	EQ ID 594	; ORF 148.	a>:	
a148.pep	MALKTSNLEH AMLVHI	PEAMS VCALAI	OKIBK TENM	POKGII. FHDI	TPVI.OS	
1 51	AEYFRLLVDL LVYRYN	ADOKI DIVAGI	DARG FITG	AALAYO LNVO	FVPIRK	
101	KGKLPFETVS QSYALI					
151	GLELIRKLGG EIVEA	AAILE FTDLQ	GGKNI RASG	APLFTL LQNE	EGCMKG*	
m148/a148	99.5% identity			40	5.0	60
m148.pep	10 MALKTSNLEHAML ^v 					
a148	MALKTSNLEHAMLY					
	70	80	90	100	110	120

```
LVYRYMDQKIDIVAGLDARGFIIGAALAYQLNVGFVPIRKKGKLPFETVSQSYALEYGEA
m148.pep
          LVYRYMDQKIDIVAGLDARGFIIGAALAYQLNVGFVPIRKKGKLPFETVSQSYALEYGEA
a148
                                                110
                        80
                                90
                                       100
                                                170
                                                       180
                               150
                                        160
                130
                        140
          AVEIHTDAVKLGSRVLLVDDLIATGGTMLAGLELIRKLGGEIVEAAAILEFTDLQGGKNI
ml48.pep
          AVEIHTDAVKLGSRVLLVDDLVATGGTMLAGLELIRKLGGEIVEAAAILEFTDLQGGKNI
a148
                                       160
                        140
                               150
                130
                190
                        200
          RASGAPLFTLLQNEGCMKGX
m148.pep
          1111111111111111111111
a148
          RASGAPLFTLLQNEGCMKGX
                190
```

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 595>: g149.seq

```
ATGTTGATTG ACAACAATGT CCGCCATTAC AGCTTTTTCG GTGTAGAACA
  1
 51 GGCAAATTGG GACAACTTCA CGCTTGAAGG CGGCGTACGC GTGGAAAAAC
101 AAAAAGCCTC CATCCGGTAC GACAAAGCAT TGATTGATCG AGAAAACTAC
151 TACAACCAGC CCCTGCCCGA CCTCGGCGCG CACCGCCAAA CCGCCCGCTC
201 GTTCGCACTT TCGGGCAACT GGTATTTCAC GCCACACCAC AAACTCAGCC
251 TGACCGCCTC CCATCAGGAa cgCCTGCCGT CAACGCaagA actGtACgca
301 cacggcAAGC ACGtcgccac CAACACCTTT GAagtcggca acaaACACCT
351 CAACAAAGaG CgttccaacA atatcgaACT CGCGCTGGgc tAcaaaggcg
401 accGCTGGCA ATACAATCTG GCAGCCTACC GCAACCGALT CGGCAACTAC
451 ATTTACGCCC AAACCTTAaa cgacggacgC GGCCCCAAAT CCATCgaaga
501 cgacagcgaA ATGaagcTCG TGCGCTACAA CCAATCCGGT GCCGACTTCT
551 ACGgcgcggA aggcgaaatc tACTTcaaaC CGACACCGCG CTACCGCATC
601 GGTGTTTCCG GCGACTatgt acgaggccgT CTGAAAAACC TGCCGTCCCT
651 ACCCGGCAGG gaagatccCT AcggcAAACG TCccttcaTC GCACAAGCCG
701 ACCAAAACGC CCCCCGCATT ccggctGCGC GCCTCGGCTT CCACCTGAAA
751 ACCTCGCTAA CCGACCGTAT CGATGCCAAT TTGGACTACT ACCGCGTGTT
801 CGCCCAAAAC AAACTCGCCC GCTACGAAAC GCGTACGCCC GGACACCATA
851 TGCTCAACCT CGGTGCAAAC TACCGCCGCA ATACGCGCTA TGGCGAGTGG
901 AATTGGTACG TCAAAGCCGA CAACCTGCtc aACcaatCcg tTTACGCCCa
951 CAGCAGCTTC CTCTCTGATA CGCCGCAAAt gGGCCGCAGC TTtgccgGCg
1001 gcgtaAACGT GaAGTTttaA
```

This corresponds to the amino acid sequence <SEQ ID 596; ORF 149.ng>: g149.pep

- 1 MLIDNNVRHY SFFGVEQANW DNFTLEGGVR VEKQKASIRY DKALIDRENY 51 YNQPLPDLGA HRQTARSFAL SGNWYFTPHH KLSLTASHQE RLPSTQELYA
- 51 YNQPLPDLGA HRQTARSFAL SGNWYFTPHH KLSLTASHQE KLPSTQELYA 101 HGKHVATNTF EVGNKHLNKE RSNNIELALG YKGDRWQYNL AAYRNRFGNY
- 151 IYAQTLNDGR GPKSIEDDSE MKLVRYNQSG ADFYGAEGEI YFKPTPRYRI
- 201 GVSGDYVRGR LKNLPSLPGR EDPYGKRPFI AQADQNAPRI PAARLGFHLK 251 TSLTDRIDAN LDYYRVFAQN KLARYETRTP GHHMLNLGAN YRRNTRYGEW
- 301 NWYVKADNLL NQSVYAHSSF LSDTPQMGRS FAGGVNVKF*

The following partial DNA sequence was identified in N. meningitidis < SEQ ID 597>: m149.seq

1 ATGCTGCTTG ACAACAAGT GCAACATTAC AGCTTTTTCG GTGTAGAACA
51 GGCAAACTGG GACAACTTCA CGCTTGAAGG AGGCGTACGC GTGGAAAAAC
101 AAAAAGCCTC CATTCAGTAC GACAAAGCAT TGATTGATCG GGAAAACTAC
151 TACAACCACC CCCTGCCCGA CCTCGGCGCG CACCGCCAAA CCGCCCGCTC
201 ATTCGCACTT TCGGGCAACT GGTATTTCAC GCCACAACAC AAACTCAGCC
251 TGACCGCCTC CCATCAGGAA CGCCTGCCGT CAACGCAAGA GCTGTACGCA
301 CACGGCAAAC ACGTCGCCAC CAACACCTTT GAAGTCGGCA ACAAACACCT
351 CAACAAAGAG CGTTCCAACA ATATCGAACT CGCGCTGGGC TACGAAGGCG

401 ACCGCTGGCA ATACAATCTG GCACTCTACC GCAACCGCTT CGGTAACTAC

m149.pep

451	ልተተዋልCGCCC	AAACCTTAAA	CGACGGACGC	GGCCCCAAAT	CCATCGAAG	SA .	
501	CGACAGCGAA	ATGAAGCTCG	TGCGCTACAA	CCAATCCGGC	GCCGACTTC	T	
551	ACGGCGCGGA	AGGCGAAATC	TACTTCAAAC	CGACACCGCG	CTACCGCAT	C	
601	GGCGTTTCCG	GCGACTATGT	ACGAGGCCGT	CTGAAAAACC	TGCCTTCCC	CT	
651	ACCCGGCAGA	GAAGATGCCT	ACGGCAACCG	TCCTTTCATC	GCACAGGAC	:G	
701	ACCAAAATGC	CCCCCGTGTT	CCGGCTGCGC	GCCTCGGCTT	CCACCTGAA	<b>A</b>	
751	GCCTCGCTGA	CCGACCGTAT	CGATGCCAAT	TTGGACTACT	ACCGCGTGT	T	
801	CGCCCAAAAC	AAACTCGCCC	GCTACGAAAC	GCGCACGCCC	GGACACCAT	. A	
851	TGCTCAACCT	CGGCGCAAAC	TACCGCCGCA	ATACGCGCTA	TGGCGAGT	<del>;</del> G	
901	AATTGGTACG	TCAAAGCCGA	CAACCTGCTC	AACCAATCCG	TTTACGCCC	CA	
951	CAGCAGCTTT	CTCTCTGATA	CGCCGCAAAT	GGGCCGCAGC	TTTACCGG	CG	
1001	GCGTGAACGT	GAAGTTTTAA					
This corre	sponds to the	e amino acid	sequence <	SEQ ID 598;	ORF 1492	>:	
m149.pep							
1	MLLDNKVQHY	SFFGVEQANW	DNFTLEGGVR	VEKQKASIQY	DKALIDRE	1X	
51	YNHPLPDLGA	HRQTARSFAL	SGNWYFTPQH	KLSLTASHQE	RLPSTQEL	ZA 	
101	HGKHVATNTF	EVGNKHLNKE	RSNNIELALG	YEGDRWQYNL	ALYRNRFGI	1Y	
151	IYAQTLNDGR	GPKSIEDDSE	MKLVRYNQSG	ADFYGAEGEI	YFKPTPRYI	RI	
201	GVSGDYVRGR	LKNLPSLPGR	EDAYGNRPFI	AQDDQNAPRV	PAARLGFHI	-K	
251	ASLTDRIDAN	LDYYRVFAQN	KLARYETRTP	GHHMLNLGAN	YRRNTRYG	€W.	
301	NWYVKADNLL	NOSVYAHSSF	LSDTPQMGRS	FTGGVNVKF*		14	
Computer	analysis of t	this amino ac	id sequence	gave the following	lowing res	ults:	
Homology	y with a pred	icted ORF fr	om N.gonor	rhoeae			
ORF 149	shows 95.9%	6 identity over	er a 339 aa o	verlap with a	a predicted	ORF (ORF	149.ng)
		o laterally a vi			•	`	0,
	onorrhoeae:						
m149/g149	)						
		10	20 3	0 40	5	0 60	
m140 non	MI.I DNKV		20 3 NWDNFTLEGGV			_	
m149.pep		QHYSFFGVEQA	NWDNFTLEGGV	RVEKQKASIQY	DKALIDREN	YYNHPLPDLGA	
	11:11:1	QHYSFFGVEQA	NWDNFTLEGGV	rvekokasioy 	DKALIDREN	- YYNHPLPDLGA 	
m149.pep	11:11:1	QHYSFFGVEQA	NWDNFTLEGGV           NWDNFTLEGGV	rvekokasioy 	DKALIDREN         DKALIDREN	YYNHPLPDLGA    :       YYNQPLPDLGA	
	11:11:1	OHYSFFGVEQA 	NWDNFTLEGGV          NWDNFTLEGGV	RVEKQKASIQY          :  RVEKQKASIRY	DKALIDREN         DKALIDREN	YYNHPLPDLGA    :       YYNQPLPDLGA	
	:  :  MLIDNNV	VQHYSFFGVEQA :          VRHYSFFGVEQA 10	NWDNFTLEGGV            NWDNFTLEGGV 20 3	RVEKQKASIQY         :  RVEKQKASIRY 0 40	DKALIDREN	YYNHPLPDLGA    :       YYNQPLPDLGA 0 60	
g149	:  :  MLIDNNV	YQHYSFFGVEQA :         YRHYSFFGVEQA 10	NWDNFTLEGGV            NWDNFTLEGGV 20 3	RVEKQKASIQY         :  RVEKQKASIRY 0 40	DKALIDREN	YYNHPLPDLGA    :       YYNQPLPDLGA 0 60	
	:  :  MLIDNNV HRQTARS 	VQHYSFFGVEQA :                     VRHYSFFGVEQA 10 70 SFALSGNWYFTP	NWDNFTLEGGV	RVEKQKASIQY                RVEKQKASIRY 0 40 0 100 PERLPSTQELYA	DKALIDREN                   DKALIDREN   5   11 HGKHVATNT	YYNHPLPDLGA    :       YYNQPLPDLGA 0 60 0 120 FEVGNKHLNKE	
g149 m149.pep	:  :  MLIDNNV HRQTARS 	OHYSFFGVEQA :           VRHYSFFGVEQA 10 70 FFALSGNWYFTP	NWDNFTLEGGV	RVEKQKASIQY                RVEKQKASIRY 0 40 0 100 PERLPSTQELYA	DKALIDREN                   DKALIDREN   5   11 HGKHVATNT	YYNHPLPDLGA    :       YYNQPLPDLGA 0 60 0 120 FEVGNKHLNKE	
g149	:  :  MLIDNNV HRQTARS 	VQHYSFFGVEQA :                     VRHYSFFGVEQA 10 70 SFALSGNWYFTP	NWDNFTLEGGV	RVEKQKASIQY                RVEKQKASIRY 0 40 0 100 PERLPSTQELYA	DKALIDREN                   DKALIDREN   5   11 HGKHVATNT	YYNHPLPDLGA    :       YYNQPLPDLGA 0 60 0 120 FEVGNKHLNKE	
g149 m149.pep	:  :  MLIDNNV HRQTARS 	VQHYSFFGVEQA :          VRHYSFFGVEQA 10 70 SFALSGNWYFTP	NWDNFTLEGGV	RVEKQKASIQY	DKALIDREN                   DKALIDREN   5   11 HGKHVATNT                 HGKHVATNT	YYNHPLPDLGA    :       YYNQPLPDLGA 0 60 FEVGNKHLNKE          FEVGNKHLNKE	
g149 m149.pep	:  :  MLIDNNV HRQTARS        HRQTARS	VQHYSFFGVEQA :          VRHYSFFGVEQA 10 70 SFALSGNWYFTP           SFALSGNWYFTP 70 130 1	NWDNFTLEGGV            NWDNFTLEGGV 20 3 80 9 QHKLSLTASHQ :         HHKLSLTASHQ 80 9	RVEKQKASIQY	DKALIDREN                   DKALIDREN   5   11 HGKHVATNT                 HGKHVATNT   11	YYNHPLPDLGA       :               YYNQPLPDLGA 0 60 0 120 FEVGNKHLNKE                   FEVGNKHLNKE 0 120 0 180	
g149 m149.pep	:  :  MLIDNNV  HRQTARS        HRQTARS	VQHYSFFGVEQA :          VRHYSFFGVEQA 10 70 SFALSGNWYFTP           SFALSGNWYFTP 70 130 1 LALGYEGDRWOY	NWDNFTLEGGV            NWDNFTLEGGV 20 3 80 9 QHKLSLTASHQ :          HHKLSLTASHQ 80 9 40 15	RVEKQKASIQY	DKALIDREN                   DKALIDREN   5   11 HGKHVATNT                 HGKHVATNT   11	YYNHPLPDLGA       :             YYNQPLPDLGA 0 60 0 120 FEVGNKHLNKE                   FEVGNKHLNKE 0 120 0 180 EMKLVRYNQSO	
g149 m149.pep g149	:  :  MLIDNNV  HRQTARS        HRQTARS	VQHYSFFGVEQA :                     VRHYSFFGVEQA 10 70 SFALSGNWYFTP                     SFALSGNWYFTP 70 130 LALGYEGDRWQY	NWDNFTLEGGV             NWDNFTLEGGV 20 3 80 9 QHKLSLTASHQ :          HHKLSLTASHQ 80 9 40 15 TNLALYRNRFGN	RVEKQKASIQY	DKALIDREN                   DKALIDREN   5   11 HGKHVATNT                 HGKHVATNT ) 11   17 RGPKSIEDDS	YYNHPLPDLGA       :               YYNQPLPDLGA 0 60 0 120 FEVGNKHLNKE                   FEVGNKHLNKE 0 120 0 180 EMKLVRYNQSO	
g149 m149.pep g149	:  :  MLIDNNV  HRQTARS        HRQTARS	VQHYSFFGVEQA :          VRHYSFFGVEQA 10 70 SFALSGNWYFTP 1         SFALSGNWYFTP 70 130 1ALGYEGDRWQY	NWDNFTLEGGV	RVEKQKASIQY	DKALIDREN                   DKALIDREN   5   11 HGKHVATNT                 HGKHVATNT   11 CGPKSIEDDS	YYNHPLPDLGA       :               YYNQPLPDLGA 0 60 0 120 FEVGNKHLNKE                   FEVGNKHLNKE 0 120 0 180 EMKLVRYNQSO	
g149 m149.pep g149 m149.pep	:  :  MLIDNNV  HRQTARS        HRQTARS	VQHYSFFGVEQA :          VRHYSFFGVEQA 10 70 SFALSGNWYFTP           SFALSGNWYFTP 70 130 1ALGYEGDRWQY	NWDNFTLEGGV             NWDNFTLEGGV 20 3 80 9 QHKLSLTASHQ :          HHKLSLTASHQ 80 9 40 15 TNLALYRNRFGN	RVEKQKASIQY	DKALIDREN                   DKALIDREN   5   11 HGKHVATNT                 HGKHVATNT   11 CGPKSIEDDS	YYNHPLPDLGA       :               YYNQPLPDLGA 0 60 0 120 FEVGNKHLNKE                   FEVGNKHLNKE 0 120 0 180 EMKLVRYNQSO	
g149 m149.pep g149 m149.pep	:  :  MLIDNNV  HRQTARS        HRQTARS	VQHYSFFGVEQA :          VRHYSFFGVEQA 10 70 SFALSGNWYFTP 70 130 1 ALGYEGDRWQY     :      LALGYKGDRWQY 130 1	NWDNFTLEGGV            NWDNFTLEGGV 20 3 80 9 QHKLSLTASHQ :          PHHKLSLTASHQ 80 9 40 15 NLALYRNRFGN	RVEKQKASIQY	DKALIDREN          DKALIDREN     11 HGKHVATNT          HGKHVATNT   11 CGPKSIEDDS          RGPKSIEDDS	YYNHPLPDLGA       :             YYNQPLPDLGA 0 60 0 120 FEVGNKHLNKE                   FEVGNKHLNKE 0 120 0 180 EMKLVRYNQSO 0 180	
g149 m149.pep g149 m149.pep g149	:  :  MLIDNNV  HRQTARS        HRQTARS  RSNNIEI	TOHYSFFGVEQA  :          TRHYSFFGVEQA  10  70 TRHLSGNWYFTF            TRHYSFFGVEQA  10  70  130  130  1ALGYEGDRWQY      :      LALGYKGDRWQY  130  130  140  140  140  140	NWDNFTLEGGV            NWDNFTLEGGV 20 3 80 9 QHKLSLTASHQ :          HHKLSLTASHQ 80 9 40 15 NLALYRNRFGN           NLAAYRNRFGN 40 15	RVEKQKASIQY	DKALIDREN                   DKALIDREN   5   11 HGKHVATNT                 HGKHVATNT   11 CGPKSIEDDS                   RGPKSIEDDS   23	YYNHPLPDLGA       :             YYNQPLPDLGA 0 60 0 120 FEVGNKHLNKE                   FEVGNKHLNKE 0 120 0 180 EMKLVRYNQSO                     EMKLVRYNQSO 0 180	
g149 m149.pep g149 m149.pep	:  :  MLIDNNV  HRQTARS        HRQTARS  RSNNIEL        RSNNIEL	TOHYSFFGVEQA  :          TRHYSFFGVEQA  10  70 TRHLSGNWYFTF  70  130 1 LALGYEGDRWQY      :      LALGYKGDRWQY  130 1 190 2 EGEIYFKPTPRY	NWDNFTLEGGV            NWDNFTLEGGV 20 3 80 9 QHKLSLTASHQ :          HHKLSLTASHQ 80 9 40 15 NLALYRNRFGN           NLAAYRNRFGN 40 15	RVEKQKASIQY	DKALIDREN                   DKALIDREN   5   11 HGKHVATNT                 HGKHVATNT   17 GGPKS I EDDS                   RGPKS I EDDS   23 REDAYGNRPF	YYNHPLPDLGA       :             YYNQPLPDLGA 0 60 0 120 FEVGNKHLNKE                   FEVGNKHLNKE 0 120 0 180 EMKLVRYNQSO                     EMKLVRYNQSO 0 180 0 180	
g149 m149.pep g149 m149.pep g149 m149.pep	:  :  MLIDNNV  HRQTARS         HRQTARS  RSNNIEL        RSNNIEL	TOHYSFFGVEQA  :          TRHYSFFGVEQA  10  70 TRALSGNWYFTF  70  130 1 LALGYEGDRWQY 130 130 1 LALGYKGDRWQY 130 190 2 EGEIYFKPTPRY	NWDNFTLEGGV            NWDNFTLEGGV 20 3 80 9 QHKLSLTASHQ :          HHKLSLTASHQ 80 9 40 15 NLALYRNRFGN           NLAAYRNRFGN 40 15	RVEKQKASIQY	DKALIDREN                   DKALIDREN   5   11 HGKHVATNT                 HGKHVATNT   17 GGPKS I EDDS                   RGPKS I EDDS   23 REDAYGNRPF	YYNHPLPDLGA       :             YYNQPLPDLGA 0 60 0 120 FEVGNKHLNKE                   FEVGNKHLNKE 0 120 0 180 EMKLVRYNQSO                   EMKLVRYNQSO 0 180 0 240 1AQDDQNAPRO	
g149 m149.pep g149 m149.pep g149	:  :  MLIDNNV  HRQTARS         HRQTARS  RSNNIEL        RSNNIEL	YQHYSFFGVEQA :          RHYSFFGVEQA 10 70 SFALSGNWYFTP 70 130 130 LALGYEGDRWQY     :      LALGYKGDRWQY 130 190 2EGEIYFKPTPRY	NWDNFTLEGGV            NWDNFTLEGGV 20 3 80 9 QHKLSLTASHQ :          PHHKLSLTASHQ 80 9 40 15 TALALYRNRFGN            TALAYRNRFGN 40 15 TALAYRNRFGN            TALAYRNRFGN 40 15 TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRN TALAYRNRFGN	RVEKQKASIQY	DKALIDREN                 DKALIDREN   5   11 HGKHVATNT               HGKHVATNT   11 CREPKSIEDDS                 REPKSIEDDS   17 CREPKSIEDDS   23 REDAYGNRPF	YYNHPLPDLGA       :             YYNQPLPDLGA 0 60 0 120 FEVGNKHLNKE                   FEVGNKHLNKE 0 120 0 180 EMKLVRYNQSO                     EMKLVRYNQSO 0 180 0 240 IAQDDQNAPRO	
g149 m149.pep g149 m149.pep g149 m149.pep	:  :  MLIDNNV  HRQTARS         HRQTARS  RSNNIEL        RSNNIEL	YQHYSFFGVEQA :          RHYSFFGVEQA 10 70 FFALSGNWYFTP 70 130 130 LALGYEGDRWQY 130 140 190 EGEIYFKPTPX EGEIYFKPTPX	NWDNFTLEGGV            NWDNFTLEGGV 20 3 80 9 QHKLSLTASHQ :          HHKLSLTASHQ 80 9 40 15 NLALYRNRFGN           NLAAYRNRFGN 40 15	RVEKQKASIQY	DKALIDREN                 DKALIDREN   5   11 HGKHVATNT               HGKHVATNT   11 CREPKSIEDDS                 REPKSIEDDS   17 CREPKSIEDDS   23 REDAYGNRPF	YYNHPLPDLGA       :             YYNQPLPDLGA 0 60 0 120 FEVGNKHLNKE                   FEVGNKHLNKE 0 120 0 180 EMKLVRYNQSO                     EMKLVRYNQSO 0 180 0 240 IAQDDQNAPRO	
g149 m149.pep g149 m149.pep g149	:  :  MLIDNNV  HRQTARS         HRQTARS  RSNNIEL        RSNNIEL	YQHYSFFGVEQA :          RHYSFFGVEQA 10 70 FFALSGNWYFTP 70 130 130 LALGYEGDRWQY 130 140 LALGYKGDRWQY 130 190 EGEIYFKPTPRY 190 2	NWDNFTLEGGV            NWDNFTLEGGV 20 3 80 9 QHKLSLTASHQ :          PHHKLSLTASHQ 80 9 40 15 TALALYRNRFGN            TALAYRNRFGN 40 15 TALALYRNRFGN            TALAYRNRFGN 40 15 TALAYRNRFGN             TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFGN TALAYRNRFG	RVEKQKASIQY	DKALIDREN                 DKALIDREN   5   11 HGKHVATNT               HGKHVATNT   12 CGPKSIEDDS                 CGPKSIEDDS                 CGPKSIEDDS   23 CEDAYGNRPF               CREDAYGNRPF               CREDAYGRPF   23	YYNHPLPDLGA       :             YYNQPLPDLGA 0 60 0 120 FEVGNKHLNKE                   FEVGNKHLNKE 0 120 0 180 EMKLVRYNQSO                     EMKLVRYNQSO 0 180 0 240 IAQDDQNAPRO                   IAQADQNAPRO 10 240	
g149 m149.pep g149 m149.pep g149 m149.pep	:  :  MLIDNNV  HRQTARS         HRQTARS  RSNNIEI        RSNNIEI  ADFYGAR	TQHYSFFGVEQA :          TRHYSFFGVEQA 10 70 FFALSGNWYFTF 70 130 1 LALGYEGDRWQY 130 190 2EGEIYFKPTPRY 190 250	NWDNFTLEGGV            NWDNFTLEGGV 20 3 80 9 QHKLSLTASHQ :          HHKLSLTASHQ 80 9 40 15 NLALYRNRFGN           NLAAYRNRFGN 40 15 RIGVSGDYVRG RIGVSGDYVRG RIGVSGDYVRG RIGVSGDYVRG	RVEKQKASIQY	DKALIDREN                 DKALIDREN   5   11 HGKHVATNT               HGKHVATNT   17 GGPKSIEDDS                 RGPKSIEDDS                 REDAYGNRPF                 REDPYGKRPF D 23	YYNHPLPDLGA       :             YYNQPLPDLGA 0 60 0 120 FEVGNKHLNKE                   FEVGNKHLNKE 0 120 0 180 EMKLVRYNQSO 0 180 EMKLVRYNQSO 0 180 1AQDDQNAPRO                   IAQADQNAPRO	
g149 m149.pep g149 m149.pep g149	:  :  MLIDNNV  HRQTARS         HRQTARS  RSNNIEI        RSNNIEI  ADFYGAE        ADFYGAE	TOHYSFFGVEQA  :          TRHYSFFGVEQA  10  70 TRHSFFGVEQA  10  70 TRHSFFGVEQA  10  70 TRHSFFGVEQA  10  70 TRHSFFGVEQA  10  130 TRHSFALSGNWYFTF  70  130 TRHSFALSGNWYFTF  70  130 TRHSFALSGNWYFTF  70  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFT  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  130 TRHSFALSGNWYFTF  1	NWDNFTLEGGV            NWDNFTLEGGV 20 3 80 9 QHKLSLTASHQ :          HHKLSLTASHQ 80 9 40 15 NLALYRNRFGN           NLAAYRNRFGN 40 15 RIGVSGDYVRG RIGVSGDYVRG (RIGVSGDYVRG (RIGVS	RVEKQKASIQY	DKALIDREN                   DKALIDREN   5   11 HGKHVATNT                 HGKHVATNT   12   17 RGPKS   EDDS                   RGPKS   EDDS   23 REDAYGNRPF                 REDPYGKRPF   23 PGHHMLNLGA	YYNHPLPDLGA       :             YYNQPLPDLGA 0 60 0 120 FEVGNKHLNKE                   FEVGNKHLNKE 0 120 0 180 EMKLVRYNQSO 0 180 EMKLVRYNQSO 0 180 IAQDDQNAPRO                   IAQADQNAPRO                   IAQADQNAPRO                     IAQADQNAPRO                     IAQADQNAPRO	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
g149 m149.pep g149 m149.pep g149 m149.pep g149	:  :  MLIDNNV  HRQTARS         HRQTARS  RSNNIEL        RSNNIEL  ADFYGAE        ADFYGAE	TOHYSFFGVEQA  :          TRHYSFFGVEQA  10  70 SFALSGNWYFTP  FALSGNWYFTP  70  130  130  130  14  :       LALGYEGDRWQY  130  190  26GEIYFKPTPRY  190  250 FHLKASLTDRII	NWDNFTLEGGV            NWDNFTLEGGV 20 3 80 9 QHKLSLTASHQ :          HHKLSLTASHQ 80 9 40 15 TNLALYRNFFGN           TNLAAYRNFFGN 40 15 TRIGVSGDYVRG (RIGVSGDYVRG (R	RVEKQKASIQY	DKALIDREN                   DKALIDREN   5   11 HGKHVATNT                 HGKHVATNT   12   17 RGPKSIEDDS                   REDAYGNRPF                 REDPYGKRPF D 23   17   29   29   29   29   30   30   40   50   60   70   70   70   70   70   70   70   7	YYNHPLPDLGA       :             YYNQPLPDLGA 0 60 0 120 FEVGNKHLNKE                   FEVGNKHLNKE 0 120 0 180 EMKLVRYNQSO 0 180 EMKLVRYNQSO 0 180 IAQDDQNAPRO                   IAQADQNAPRO                   IAQADQNAPRO                     IAQADQNAPRO                     IAQADQNAPRO                       IAQADQNAPRO                       IAQADQNAPRO	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
g149 m149.pep g149 m149.pep g149 m149.pep	:  :  MLIDNNV  HRQTARS         HRQTARS  RSNNIEL        RSNNIEL  ADFYGAE        ADFYGAE	TOHYSFFGVEQA  INTERPOLATION  TO  TO  TO  TO  TO  TO  TO  TO  TO	NWDNFTLEGGV             NWDNFTLEGGV 20 3 80 9 QHKLSLTASHQ :           PHHKLSLTASHQ 80 9 40 15 TALALYRNFGN            TALAYRNFGN 40 15 TRIGASGDYNG (RIGVSGDYNG (RIG	RVEKQKASIQY	DKALIDREN                 DKALIDREN   5   11 HGKHVATNT               HGKHVATNT   11 O 17 RGPKSIEDDS                 REDAYGNRPF               REDPYGKRPF D 23 PGHHMLNLGF PGHHMLNLGF	YYNHPLPDLGA       :             YYNQPLPDLGA 0 60 0 120 FEVGNKHLNKE                   FEVGNKHLNKE 0 120 0 180 EMKLVRYNQSO 0 180 EMKLVRYNQSO 0 180 INQDDQNAPRO                   IAQADQNAPRO                   IAQADQNAPRO                     IAQADQNAPRO                     IAQADQNAPRO                       IAQADQNAPRO                     IAQADQNAPRO                       IAQADQNAPRO                       IAQADQNAPRO                         IAQADQNAPRO                         IAQADQNAPRO                           IAQADQNAPRO                           IAQADQNAPRO                                   IAQADQNAPRO	

310 320 330 340
NWYVKADNLLNQSVYAHSSFLSDTPQMGRSFTGGVNVKFX

m149.pep

```
NWYVKADNLLNQSVYAHSSFLSDTPQMGRSFAGGVNVKFX
q149
                            320
                                     330
                  310
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 599>:
     a149.seq
              ATGCTGCTTG ACAATAAAGT GCAACATTAC AGCTTTTTCG GTGTAGAACA
           1
              GGCAAACTGG GACAACTTCA CGCTTGAAGG CGGCGTACGC GTGGAAAAAC
          51
          101
              AAAAAGCCTC CATCCGCTAC GACAAAGCAT TGATTGATCG GGAAAACTAC
              TACAACCATC CCCTGCCCGA CCTCGGCGCG CACCGCCAAA CCGCCCGCTC
          151
              ATTCGCACTT TCGGGCAACT GGTATTTCAC GCCACAACAC AAACTCAGCC
         201
              TGACCGCCTC CCATCAGGAA CGCCTGCCGT CAACGCAAGA GCTGTACGCA
         251
              CACGGCAAAC ACGTCGCCAC CAACACCTTT GAAGTCGGCA ACAAACACCT
          301
              CAACAAGAG CGTTCCAACA ATATCGAACT CGCGCTGGGC TACGAAGGCG
          351
              ACCGCTGGCA ATACAATCTG GCACTCTACC GCAACCGCTT CGGCAACTAC
          401
              ATTTACGCCC AAACCTTAAA CGACGGACGC GGCCCCAAAT CCATCGAAGA
          451
              CGACAGCGAA ATGAAGCTCG TGCGCTACAA CCAATCCGGT GCGGACTTCT
          501
              ACGGCGCGGA AGGCGAAATC TACTTCAAAC CGACACCGCG CTACCGCATC
          551
              GGCGTTTCCG GCGACTATGT ACGAGGCCGT CTGAAAAACC TGCCTTCCCT
          601
              ACCCGGCAGG GAAGACGCCT ACGGCAACCG CCCACTCATT GCCCAAGCCG
          651
              ACCAAAACGC CCCTCGCGTT CCGGCTGCGC GCCTCGGCGT CCACCTGAAA
          701
              GCCTCGCTGA CCGACCGCAT CGATGCCAAT TTGGACTACT ACCGCGTGTT
          751
              CGCCCAAAAC AAACTCGCCC GCTACGAAAC GCGCACGCCC GGACACCATA
              TGCTCAACCT CGGCGCAAAC TACCGCCGCA ATACGCGCTA TGGCGAGTGG
          851
              AATTGGTACG TCAAAGCCGA CAACCTGCTC AACCAATCCG TTTACGCCCA
          901
              CAGCAGCTTC CTCTCTGATA CGCCGCAAAT GGGCCGCAGC TTTACCGGCG
          951
         1001 GCGTGAACGT GAAGTTTTAA
This corresponds to the amino acid sequence <SEQ ID 600; ORF 149.a>:
     al49.pep
              MLLDNKVQHY SFFGVEQANW DNFTLEGGVR VEKQKASIRY DKALIDRENY
              YNHPLPDLGA HRQTARSFAL SGNWYFTPQH KLSLTASHQE RLPSTQELYA
              HGKHVATNTF EVGNKHLNKE RSNNIELALG YEGDRWQYNL ALYRNRFGNY
          101
              IYAOTLNDGR GPKSIEDDSE MKLVRYNQSG ADFYGAEGEI YFKPTPRYRI
          151
              GVSGDYVRGR LKNLPSLPGR EDAYGNRPLI AQADQNAPRV PAARLGVHLK
          201
              ASLTDRIDAN LDYYRVFAQN KLARYETRTP GHHMLNLGAN YRRNTRYGEW
          251
              NWYVKADNLL NQSVYAHSSF LSDTPQMGRS FTGGVNVKF*
m149/a149 98.8% identity in 339 aa overlap
                                                     40
                                           30
                                                              50
                                  20
                 MLLDNKVQHYSFFGVEQANWDNFTLEGGVRVEKQKASIQYDKALIDRENYYNHPLPDLGA
     m149.pep
                 MLLDNKVQHYSFFGVEQANWDNFTLEGGVRVEKQKASIRYDKALIDRENYYNHPLPDLGA
     a149
                                  20
                                           30
                                                     40
                                                              50
                                                    100
                         70
                                  80
                                            90
                  HRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNKHLNKE
     m149.pep
                  HRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNKHLNKE
     a149
                                                    100
                                  80
                                            90
                         70
                                                             170
                                           150
                                                    160
                  RSNNIELALGYEGDRWQYNLALYRNRFGNYIYAQTLNDGRGPKSIEDDSEMKLVRYNQSG
     m149.pep
                  RSNNIELALGYEGDRWQYNLALYRNRFGNYIYAQTLNDGRGPKSIEDDSEMKLVRYNQSG
     a149
                                                             170
                                                                       180
                                           150
                                                    160
                        130
                                           210
                                                    220
                                  200
                  ADFYGAEGEIYFKPTPRYRIGVSGDYVRGRLKNLPSLPGREDAYGNRPFIAQDDQNAPRV
     m149.pep
                  ADFYGAEGEIYFKPTPRYRIGVSGDYVRGRLKNLPSLPGREDAYGNRPLIAQADQNAPRV
     a149
                                                                       240
                                  200
                                           210
                                                    220
                                                              230
                        190
                                           270
                                                    280
                                                              290
                                                                       300
```

PAARLGFHLKASLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEW

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 601>: g149-1.seq

```
1 ATGGCACAAA TCACACTCAA ACCCATTGTT TTATCAATTC TTTTAATCAA
     CACACCCCTC CTCGCCCAAG CGCATGAAAC TGAGCAATCG GTGGGCTTGG
     AAACGGTCAG CGTCGTCGGC AAAAGCCGTC CGCGCGCGAC TTCGGGGCTG
101
     CTGCACACTT CGACCGCCTC CGACAAAATC ATCTCCGGCG ATACTTTGCG
151
     CCAAAAAGCC GTCAACTTGG GCGACGCTTT GGACGGCGTA CCGGGCATCC
201
     ACGCTTCGCA ATACGGCGGC GGCGCATCCG CTCCCGTTAT TCGCGGTCAA
251
     ACGGGCAGAC GGATTAAAGT ATTGAACCAT CACGGCGAAA CGGGCGATAT
     GGCGGACTTT TCTCCCGATC ACGCCATTAT GGTAGATACC GCCTTGTCGC
351
     AACAGGTTGA AATCCTGCGC GGGCCGGTTA CGCTCTTGTA CAGCTCGGGC
401
     AATGTGGCGG GGCTGGTCGA TGTTGCCGAT GGAAAAATCC CCGAAAAAAT
451
     GCCTGAAAAC GGCGTATCGG GCGaagccgG ATTGCGTTTG AGCAGCGGCA
     ATTTAGAAAA ACTGACATCC GCAGGCATCA ATATCGGACT GGGCAAAAAC
551
     TTCGTGCTGC ATACCGAAGG CTTGTACCGC AAATCGGGCG ATTACGCCGT
601
     ACCGCGTTAC CGCAATCTGA AACGCCTGCC CGACAGCCAT GCCGATTCGC
651
     AAACGGGCAG CATCGGGCTG TCTTGGGTGG GCGAAAAAGG CTTTATCGGC
701
     GCAGCATACA GCGACCGTCG CGACCGCTAC GGCCTGCCTG CCCACAGCCA
     CGAATACGAT GATTGCCACG CCGACATCAT CTGGCAAAAG AGTTTGATCA
801
     ACAAACGCTA TTTGCAGCTT TATCCGCACT TGTTGACCGA AGAAGACATC
851
     GATTACGACA ATCCGGGCTT GAGCTGCGGC TTCCACGACG GCGACGGTGC
901
     ACACGCACAC ACCCACAACG GCAAACCGTG GATAGACCTG CGCAACAAAC
951
     GCTACGAACT CCGCGCCGAA TGGAAGCAGC CATTCCCCGG TTTTGAAGCC
1001
     CTGCGCGTAC ATCTGAACCG CAATGACTAC CACCACGACG AAAAAGCAGG
1051
     CGATGCAGTA GAAAACTTCT TCAACAACAA AACACACAAC GCCCGTATCG
1101
     AGTTGCGCCA CCAACCCATA GGCCGTCTGA AAGGCAGCTG GGGCGTGCAA
1151
     TATTTGGGAC AAAAATCCAG CGCGCTTTCC GCCATTCCCG AAACCGTCCA
1201
     ACAACCGATG TTGATTGACA ACAATGTCCG CCATTACAGC TTTTTCGGTG
1251
      TAGAACAGGC AAATTGGGAC AACTTCACGC TTGAAGGCGG CGTACGCGTG
1301
     GAAAAACAAA AAGCCTCCAT CCGGTACGAC AAAGCATTGA TTGATCGAGA
1351
     AAACTACTAC AACCAGCCCC TGCCCGACCT CGGCGCGCAC CGCCAAACCG
1401
      CCCGCTCGTT CGCACTTTCG GGCAACTGGT ATTTCACGCC ACACCACAAA
1451
      CTCAGCCTGA CCGCCTCCCA TCAGGAACGC CTGCCGTCAA CGCAAGAACT
1501
      GTACGCACAC GGCAAGCACG TCGCCACCAA CACCTTTGAA GTCGGCAACA
1551
1601 AACACCTCAA CAAAGAGCGT TCCAACAATA TCGAACTCGC GCTGGGCTAC
      GAAGGCGACC GCTGGCAATA CAATCTGGCA GCCTACCGCA ACCGATTCGG
1651
      CAACTACATT TACGCCCAAA CCTTAAACGA CGGACGCGGC CCCAAATCCA
1701
      TCGAAGACGA CAGCGAAATG AAGCTCGTGC GCTACAACCA ATCCGGTGCC
      GACTTCTACG GCGCGGAAGG CGAAATCTAC TTCAAACCGA CACCGCGCTA
1801
      CCGCATCGGT GTTTCCGGCG ACTATGTACG AGGCCGTCTG AAAAACCTGC
1851
      CGTCCCTACC CGGCAGGGAA GATCCCTACG GCAAACGTCC CTTCATCGCA
CAAGCCGACC AAAACGCCCC CCGCATTCCG GCTGCGCGCC TCGGCTTCCA
1901
1951
      CCTGAAAACC TCGCTAACCG ACCGTATCGA TGCCAATTTG GACTACTACC
2001
      GCGTGTTCGC CCAAAACAAA CTCGCCCGCT ACGAAACGCG TACGCCCGGA
2051
      CACCATATGC TCAACCTCGG TGCAAACTAC CGCCGCAATA CGCGCTATGG
2101
      CGAGTGGAAT TGGTACGTCA AAGCCGACAA CCTGCTCAAC CAATCCGTTT
2151
      ACGCCCACAG CAGCTTCCTC TCTGATACGC CGCAAATGGG CCGCAGCTTT
2201
2251 ACCGGCGGCG TAAACGTGAA GTTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 602; ORF 149-1.ng>: g149-1.pep

T · bei					
1	MAQITLKPIV	LSILLINTPL	LAQAHETEQS	VGLETVSVVG	KSRPRATSGL
51	LHTSTASDKI	ISGDTLRQKA	VNLGDALDGV	PGIHASQYGG	GASAPVIRGQ
101	TGRRIKVLNH	HGETGDMADF	SPDHAIMVDT	ALSQQVEILR	GPVTLLYSSG
151	NVAGLVDVAD	GKIPEKMPEN	GVSGEAGLRL	SSGNLEKLTS	AGINIGLGKN
201	FVLHTEGLYR	KSGDYAVPRY	RNLKRLPDSH	ADSQTGSIGL	SWVGEKGFIG
251	AAYSDRRDRY	GLPAHSHEYD	DCHADIIWQK	SLINKRYLQL	YPHLLTEEDI
301	DYDNPGLSCG	FHDGDGAHAH	THNGKPWIDL	RNKRYELRAE	WKQPFPGFEA

```
151 LRVHLNRNDY HHDEKAGDAV ENFFNNKTHN ARIELRHQPI GRLKGSWGVQ
161 YLGOKSSALS AIPETVQQPM LIDNNVRHYS FFGVEQANWD NFTLEGGVRV
162 EKQKASIRYD KALIDRENYY NQPLPDLGAH RQTARSFALS GNWYFTPHK
163 LSLTASHQER LPSTQELYAH GKHVATNTFE VGNKHLNKER SNNIELALGY
164 EGDRWQYNLA AYRNFFGNYI YAQTLNDGRG PKSIEDDSEM KLVRYNQSGA
165 QADQNAPRIP AARLGFHLKT SLTDRIDANL DYYRVFAQNK LARYETRTPG
165 HHMLNLGANY RRNTRYGEWN WYVKADNLLN QSVYAHSSFL SDTPQMGRSF
165 TGGVNVKF*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 603>:

```
1 ATGGCACAAA CTACACTCAA ACCCATTGTT TTATCAATTC TTTTAATCAA
51 CACACCCCTC CTCGCCCAAG CGCATGAAAC TGAGCAATCG GTGGATTTGG
101 AAACGGTCAG CGTCGTCGGC AAAAGCCGTC CGCGCGCCAC GTCGGGGCTG
151 TTGCACACTT CGACCGCCTC CGACAAAATC ATCTCCGGCG ATACCTTGCG
201 CCAAAAAGCC GTCAACTTGG GCGACGCTTT AGACGGCGTA CCGGGCATCC
251 ACGCTTCGCA ATACGGCGGC GGCGCGTCTG CTCCCGTCAT TCGCGGTCAA
301 ACAGGCAGGC GGATTAAAGT GTTGAACCAT CACGGCGAAA CAGGCGATAT
351 GGCGGATTTT TCGCCCGATC ACGCCATTAT GGTAGATACC GCCTTGTCGC
 401 AACAGGTCGA AATCCTGCGC GGGCCGGTTA CGCTCTTGTA CAGCTCGGGC
 451 AATGTGGCGG GGCTGGTCGA TGTTGCCGAT GGCAAAATCC CCGAAAAAAT
501 GCCTGAAAAC GGCGTATCGG GCGAACTCGG ATTGCGTTTG AGCAGCGGCA
 551 ATCTGGAAAA ACTCACGTCC GGCGGCATCA ATATCGGTTT GGGCAAAAAC
      TTTGTATTGC ACACGGAAGG GCTGTACCGC AAATCGGGGG ATTACGCCGT
 601
 651 ACCGCGTTAC CGCAATCTGA AACGCCTGCC CGACAGCCAC GCCGATTCGC
 701 AAACGGGCAG CATCGGGCTG TCTTGGGTTG GCGAAAAAGG TTTTATCGGC
 751 GTAGCGTACA GCGACCGTCG CGACCAATAT GGTCTGCCTG CCCACAGCCA
801 CGAATACGAT GATTGCCACG CCGACATCAT CTGGCAAAAG AGCTTGATTA
851 ACAAACGCTA TTTACAGCTT TATCCGCACC TGTTGACCGA AGAAGACATC
 901 GATTACGACA ATCCGGGCTT GAGCTGCGGC TTCCACGACG ACGATAATGC
 951 ACACGCACAC ACCCACAGCG GCAGACCGTG GATAGACCTG CGCAACAAAC
1001 GCTACGAACT CCGTGCCGAA TGGAAGCAAC CGTTCCCCGG TTTTGAAGCC
1051 CTGCGCGTAC ACCTGAACCG CAACGACTAC CGCCACGACG AAAAAGCAGG
1101 CGATGCAGTC GAAAACTTTT TTAACAACCA AACGCAAAAC GCCCGCATCG
1151 AGTTGCGCCA CCAACCCATA GGTCGTCTGA AAGGCAGCTG GGGCGTGCAA
1201 TATTTACAAC AAAAATCCAG TGCTTTATCT GCCATATCCG AAGCGGTTAA
1251 ACAACCGATG CTGCTTGACA ACAAAGTGCA ACATTACAGC TTTTTCGGTG
1301 TAGAACAGGC AAACTGGGAC AACTTCACGC TTGAAGGAGG CGTACGCGTG
1351 GAAAAACAAA AAGCCTCCAT TCAGTACGAC AAAGCATTGA TTGATCGGGA
1401 AAACTACTAC AACCACCCC TGCCCGACCT CGGCGCGCAC CGCCAAACCG
1451 CCCGCTCATT CGCACTTTCG GGCAACTGGT ATTTCACGCC ACAACACAAA
1501 CTCAGCCTGA CCGCCTCCCA TCAGGAACGC CTGCCGTCAA CGCAAGAGCT
1551 GTACGCACAC GGCAAACACG TCGCCACCAA CACCTTTGAA GTCGGCAACA
1601 AACACCTCAA CAAAGAGCGT TCCAACAATA TCGAACTCGC GCTGGGCTAC
1651 GAAGGCGACC GCTGGCAATA CAATCTGGCA CTCTACCGCA ACCGCTTCGG
1701 TAACTACATT TACGCCCAAA CCTTAAACGA CGGACGCGGC CCCAAATCCA
1751 TCGAAGACGA CAGCGAAATG AAGCTCGTGC GCTACAACCA ATCCGGCGCC
1801 GACTTCTACG GCGCGGAAGG CGAAATCTAC TTCAAACCGA CACCGCGCTA
1851 CCGCATCGGC GTTTCCGGCG ACTATGTACG AGGCCGTCTG AAAAACCTGC
1901 CTTCCCTACC CGGCAGAGAA GATGCCTACG GCAACCGTCC TTTCATCGCA
1951 CAGGACGACC AAAATGCCCC CCGTGTTCCG GCTGCGCGCC TCGGCTTCCA
2001 CCTGAAAGCC TCGCTGACCG ACCGTATCGA TGCCAATTTG GACTACTACC
       GCGTGTTCGC CCAAAACAAA CTCGCCCGCT ACGAAACGCG CACGCCCGGA
2051
2101
       CACCATATGC TCAACCTCGG CGCAAACTAC CGCCGCAATA CGCGCTATGG
       CGAGTGGAAT TGGTACGTCA AAGCCGACAA CCTGCTCAAC CAATCCGTTT
2151
       ACGCCCACAG CAGCTTTCTC TCTGATACGC CGCAAATGGG CCGCAGCTTT
       ACCGGCGGCG TGAACGTGAA GTTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 604; ORF 149-1>: m149-1.pep

-1 . per					
1	MAQTTLKPIV	LSILLINTPL	LAQAHETEQS	VDLETVSVVG	KSRPRATSGL
51	LHTSTASDKI	ISGDTLRQKA	VNLGDALDGV	PGIHASQYGG	GASAPVIRGQ
101	TGRRIKVLNH	HGETGDMADF	SPDHAIMVDT	ALSQQVEILR	GPVTLLYSSG
151	NVAGLVDVAD	GKIPEKMPEN	GVSGELGLRL	SSGNLEKLTS	GGINIGLGKN
201	FVLHTEGLYR	KSGDYAVPRY	RNLKRLPDSH	ADSQTGSIGL	SWVGEKGFIG
251	VAYSDRRDQY	GLPAHSHEYD	DCHADIIWQK	SLINKRYLQL	YPHLLTEEDI
301	DYDNPGLSCG	FHDDDNAHAH	THSGRPWIDL	RNKRYELRAE	WKQPFPGFEA
351	LRVHLNRNDY	RHDEKAGDAV	ENFFNNQTQN	ARIELRHQPI	GRLKGSWGVQ
401	YLQQKSSALS	AISEAVKOPM	LLDNKVQHYS	FFGVEQANWD	NFTLEGGVRV
451	EKQKASIQYD	KALIDRENYY	NHPLPDLGAH	RQTARSFALS	GNWYFTPQHK
501	LSLTASHQER	LPSTQELYAH	GKHVATNTFE	VGNKHLNKER	SNNIELALGY

601 DFYG 651 QDDC 701 HHML	RWQYNLA LYRNRFGNYI GAEGEIY FKPTPRYRIG QNAPRVP AARLGFHLKA LNLGANY RRNTRYGEWN VNVKF*	VSGDYVRGF	RL KNLPSLPO IL DYYRVFAQ	RE DAYGNE ONK LARYET	PFIA RTPG	
m149-1/g149-1	96.2% identity	n in 758 aa	overlap			
1	10 MAQTTLKPIVLSILLINT 				1111111111	111
1	70 ISGDTLRQKAVNLGDALE                 ISGDTLRQKAVNLGDALE 70		YGGGASAPVII            YGGGASAPVII	RGQTGRRIKV           RGQTGRRIKV	LNHHGETGDM	111
	SPDHAIMVDTALSQQVEI 	LRGPVTLLYS	SSGNVAGLVD             SSGNVAGLVD	VADGKIPEKM 	111111111111111111111111111111111111111	111
	SSGNLEKLTSGGINIGLO             SSGNLEKLTSAGINIGLO	SKNFVLHTEG           SKNFVLHTEG	LYRKSGDYAV            LYRKSGDYAV	PRYRNLKRLP          PRYRNLKRLP	11111111111	
	SWVGEKGFIGVAYSDRRI             SWVGEKGFIGAAYSDRRI	DQYGLPAHSH  :        DRYGLPAHSH	EYDDCHADII           EYDDCHADII		41111111111	1111
	DYDNPGLSCGFHDDDNAI 	HAHTHSGRPW      : :   HAHTHNGKPW	IDLRNKRYEL             IDLRNKRYEL	111111111		HH
	RHDEKAGDAVENFFNNQ :           HHDEKAGDAVENFFNNK	TQNARIELRH  :       THNARIELRH	QPIGRLKGSW           QPIGRLKGSW	11111 1111		:
• •	LLDNKVQHYSFFGVEQA  :  : :          LIDNNVRHYSFFGVEQA	NWDNFTLEGG	VRVEKQKASI	:		1111
	RQTARSFALSGNWYFTP	:111111111	HILLIE	111111111		
	550 SNNIELALGYEGDRWQY	111 111111	111111111111111111111111111111111111111	111111111		1111
m149-1.pep g149-1	610 DFYGAEGEIYFKPTPRY              DFYGAEGEIYFKPTPRY 610	111111111111	4614141414	1111 11:1	11111 1111	11:1

```
710
                       680
                              690
                                      700
               670
          AARLGFHLKASLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEWN
m149-1.pep
          AARLGFHLKTSLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEWN
a149-1
                              690
                                      700
                                              710
                              750
                       740
               730
          WYVKADNLLNQSVYAHSSFLSDTPQMGRSFTGGVNVKFX
m149-1.pep
          WYVKADNLLNQSVYAHSSFLSDTPQMGRSFTGGVNVKFX
q149-1
                       740
               730
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 605>: a149-1.seq

```
ATGGCACAAA CTACACTCAA ACCCATTGTT TTATCAATTC TTTTAATCAA
     CACACCCCTC CTCTCCCAAG CGCATGGAAC TGAGCAATCA GTGGGCTTGG
 51
     AAACGGTCAG CGTCGTCGGC AAAAGCCGTC CGCGCGCCAC TTCGGGGCTG
101
     CTGCACACTT CTACCGCCTC CGACAAAATC ATCAGCGGCG ACACCTTGCG
151
     ACAAAAAGCC GTCAACTTGG GTGATGCTTT AGACGGCGTA CCGGGCATTC
201
     ATGCCTCGCA ATACGGCGGC GGCGCATCCG CTCCCGTTAT TCGCGGTCAA
251
     ACAGGCAGAC GGATTAAAGT GTTGAACCAT CACGGCGAAA CGGGCGACAT
301
     GGCGGACTTC TCTCCAGACC ATGCAATCAT GGTGGACAGC GCCTTGTCGC
351
     AACAGGTCGA AATCCTGCGC GGTCCGGTTA CGCTCTTGTA CAGCTCGGGC
401
     AATGTGGCGG GGCTGGTCGA TGTTGCCGAT GGCAAAATCC CCGAAAAAAT
451
     GCCTGAAAAC GGCGTATCGG GCGAACTCGG ATTGCGTTTG AGCAGCGGCA
501
     ATCTGGAAAA ACTCACGTCC GGCGGCATCA ATATCGGTTT GGGCAAAAAC
 551
     TTTGTATTGC ACACGGAAGG GCTGTACCGC AAATCGGGGG ATTACGCCGT
 601
     ACCGCGTTAC CGCAATCTGA AACGCCTGCC CGACAGCCAC GCCGATTCGC
 651
     AAACGGGCAG CATCGGGCTG TCTTGGGTTG GCGAAAAAGG CTTTATCGGC
 701
     GCAGCATACA GCGACCGTCG CGACCAATAT GGTCTGCCTG CCCACAGCCA
 751
     CGAATACGAT GATTGCCACG CCGACATCAT CTGGCAAAAG AGTTTGATTA
 801
     ACAAACGCTA TTTGCAGCTT TATCCGCACC TGTTGACCGA AGAAGACATC
 851
     GATTACGACA ATCCGGGCTT GAGCTGCGGC TTTCACGACG ACGATGATGC
 901
     ACACGCCCAT GCCCACAACG GCAAACCTTG GATAGACCTG CGCAACAAAC
951
     GCTACGAACT CCGCGCCGAA TGGAAGCAAC CGTTCCCCGG TTTTGAAGCC
1001
     CTGCGCGTAC ACCTGAACCG CAACGACTAC CGCCACGACG AAAAAGCAGG
1051
     CGATGCAGTA GAAAACTTTT TTAACAACCA AACGCAAAAC GCCCGTATCG
1101
     AGTTGCGCCA CCAACCCATA GGCCGTCTGA AAGGCAGCTG GGGCGTGCAA
1151
     TATTTGGGAC AAAAATCCAG TGCTTTATCT GCCACATCCG AAGCGGTCAA
1201
     ACAACCGATG CTGCTTGACA ATAAAGTGCA ACATTACAGC TTTTTCGGTG
1251
     TAGAACAGGC AAACTGGGAC AACTTCACGC TTGAAGGCGG CGTACGCGTG
1301
     GAAAAACAAA AAGCCTCCAT CCGCTACGAC AAAGCATTGA TTGATCGGGA
1351
      AAACTACTAC AACCATCCCC TGCCCGACCT CGGCGCGCAC CGCCAAACCG
1401
      CCCGCTCATT CGCACTTTCG GGCAACTGGT ATTTCACGCC ACAACACAAA
1451
      CTCAGCCTGA CCGCCTCCCA TCAGGAACGC CTGCCGTCAA CGCAAGAGCT
1501
      GTACGCACAC GGCAAACACG TCGCCACCAA CACCTTTGAA GTCGGCAACA
1551
      AACACCTCAA CAAAGAGCGT TCCAACAATA TCGAACTCGC GCTGGGCTAC
1601
      GAAGGCGACC GCTGGCAATA CAATCTGGCA CTCTACCGCA ACCGCTTCGG
1651
      CAACTACATT TACGCCCAAA CCTTAAACGA CGGACGCGGC CCCAAATCCA
1701
      TCGAAGACGA CAGCGAAATG AAGCTCGTGC GCTACAACCA ATCCGGTGCG
1751
      GACTTCTACG GCGCGGAAGG CGAAATCTAC TTCAAACCGA CACCGCGCTA
1801
      CCGCATCGGC GTTTCCGGCG ACTATGTACG AGGCCGTCTG AAAAACCTGC
1851
      CTTCCCTACC CGGCAGGGAA GACGCCTACG GCAACCGCCC ACTCATTGCC
1901
      CAAGCCGACC AAAACGCCCC TCGCGTTCCG GCTGCGCGCC TCGGCGTCCA
1951
      CCTGAAAGCC TCGCTGACCG ACCGCATCGA TGCCAATTTG GACTACTACC
2001
      GCGTGTTCGC CCAAAACAAA CTCGCCCGCT ACGAAACGCG CACGCCCGGA
2051
      CACCATATGC TCAACCTCGG CGCAAACTAC CGCCGCAATA CGCGCTATGG
2101
      CGAGTGGAAT TGGTACGTCA AAGCCGACAA CCTGCTCAAC CAATCCGTTT
2151
      ACGCCCACAG CAGCTTCCTC TCTGATACGC CGCAAATGGG CCGCAGCTTT
2201
      ACCGGCGGCG TGAACGTGAA GTTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 606; ORF 149-1.a>: a149-1.pep

± . p - ,					
1	MAQTTLKPIV	LSILLINTPL	LSQAHGTEQS	VGLETVSVVG	KSRPRATSGL
51	LHTSTASDKI	ISGDTLRQKA	VNLGDALDGV	PGIHASQYGG	GASAPVIRGQ
101	TGRRIKVLNH	HGETGDMADF	SPDHAIMVDS	ALSQQVEILR	GPVTLLYSSG
151	NVAGLVDVAD	GKIPEKMPEN	GVSGELGLRL	SSGNLEKLTS	GGINIGLGKN
201	<b>FVLHTEGLYR</b>	KSGDYAVPRY	RNLKRLPDSH	ADSQTGSIGL	SWVGEKGFIG
251	AAYSDRRDQY	GLPAHSHEYD	DCHADIIWQK	SLINKRYLQL	YPHLLTEEDI
301	DYDNPGLSCG	FHDDDDDAHAH	AHNGKPWIDL	RNKRYELRAE	WKQPFPGFEA

351 401 451 501 551 601 651 701 751	LRVHLNRNDY YLGQKSSALS EKQKASIRYD LSLTASHQER EGDRWQYNLA DFYGAEGEIY QADQNAPRVP HHMLNLGANY TGGVNVKF*	ATSEAVKOPI KALIDRENY LPSTQELYA LYRNRFGNY FKPTPRYRI AARLGVHLK	M LLDNKVQHY Y NHPLPDLGA H GKHVATNTI I YAQTLNDGI G VSGDYVRGI A SLTDRIDAI	YS FFGVEQAI AH RQTARSF; FE VGNKHLN; RG PKSIEDD; RL KNLPSLP; NL DYYRVFA;	NWD NFTLEGO ALS GNWYFT KER SNNIELA SEM KLVRYNO GRE DAYGNRO QNK LARYET	GVRV PQHK ALGY QSGA PLIA RTPG	
a149-1/ml4	<b>19-1</b> 98.	0% identit	y in 758 a	a overlap			
a149-1.pep m149-1	111111	1111111111	1111:111 1	1111 11111	1111111	50 SGLLHTSTASI             SGLLHTSTASI 50	111
a149-1.pep m149-1	111111	1111111111	111111111	YGGGASAPVI           YGGGASAPVI	RGQTGRRIKV          RGQTGRRIKV	LNHHGETGDMA            LNHHGETGDMA	111
a149-1.pep	SPDHAIM        SPDHAIM	VDSALSQQVE   :       VDTALSQQVE	ILRGPVTLLY            LRGPVTLLY	SSGNVAGLVD           SSGNVAGLVD	VADGKIPEKM            VADGKIPEKM	PENGVSGELGI	111
a149-1.pep	SSGNLEK           SSGNLEK	LTSGGINIGL	GKNFVLHTEG             GKNFVLHTEG	LYRKSGDYAV             LYRKSGDYAV	PRYRNLKRLP          PRYRNLKRLP	DSHADSQTGS:	111
a149-1.pe	P SWVGEKG	FIGAAYSDRR	DQYGLPAHSH            DQYGLPAHSH	EYDDCHADII           EYDDCHADII	WQKSLINKRY          WQKSLINKRY	LQLYPHLLTE           LQLYPHLLTE	$\Pi\Pi$
a149-1.pe	1411411	11111111:1	HAHAHNGKPW    : : :   HAHTHSGRPW	IDLRNKRYEL	RAEWKQPFPG             RAEWKQPFPG	FEALRVHLNR	
a149-1.pe	- 1111111	11111111111	11111111111	11111111111	11111 1111	ALSATSEAVK	111
a149-1.pe	1111111	1111111111	1111111111	11111111111	:111111111	NYYNHPLPDL	$\mathbf{H}$
a149-1.pe	1111111	1111111111		111111111111	1111111111	ITFEVGNKHLN                  TFEVGNKHLN	111
a149-1.pe	• 1111111		11111111111		11111111111	590 SSEMKLVRYNQ             SSEMKLVRYNQ   590	111
		610	620	630	640	650	660

```
DFYGAEGEIYFKPTPRYRIGVSGDYVRGRLKNLPSLPGREDAYGNRPLIAQADQNAPRVP
a149-1.pep
           DFYGAEGEIYFKPTPRYRIGVSGDYVRGRLKNLPSLPGREDAYGNRPFIAQDDQNAPRVP
m149-1
                                         640
                          620
                                  630
                 610
                          680
                                   690
                                           700
                                                    710
           AARLGVHLKASLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEWN
a149-1.pep
           AARLGFHLKASLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEWN
m149-1
                                           700
                          680
                                   690
                                   750
                                           759
                 730
                          740
           WYVKADNLLNQSVYAHSSFLSDTPQMGRSFTGGVNVKFX
a149-1.pep
           m149-1
           WYVKADNLLNQSVYAHSSFLSDTPQMGRSFTGGVNVKFX
                          740
                                   750
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 607>:
q150.seq
          ..TACTGCAAGG CAGACCCCTT TCCCGCCGCC CTGCTGGCCA ATCAGAAAAT
      1
            CACCGCCCGC CAATCCGATA AAGACGTGCG CCACATCGAA ATCGATTTGA
      51
           GCGGTTCGGA TTTGCACTAC CTCCCGGGCG ACGCGCTCGG CGTTTGGTTT
     101
           GACAACGATC CGGCACTGGT CGGGGAAATC CTAGACCTGC TCGGCATCAA
     151
           TCCGGCAACG GAAATACAGG CGGGCGGAAA AACCCTGCCG GTTGCCTCCG
     201
            CACTGTTATC CCATTTCGAA CTCACGCAAA ACACCCCCGC CTTTGTCAAA
           GGCTATGCCA CGTTCGCCGA TAATGACGAA CTCGACCGTA TTGCTGCCGA
            CAACGCCGTT TTGCAAGGCT TTGTGCAAAG CACGCCGATT GCCGGTGTGC
     351
            TGCACCGCTT CCCGGCAAAA CTGACGGCGG AACAATTCGC CGGCCTGCTG
     401
            CGCCCGCTTG CGCCGCGCCT GTATTCGATT TCCTCGTCGC AGGCGGAAGC
     451
            GGGGGACGAA GTGCACCTGA CCGTCGGCGC AGTGCGTTTC GAACACGAAG
     501
            GGCGCGCCAG GGCGGCGGC GCATCGGGTT TCTTTGCCGA CCGGCTGGAA
     551
            GAGGACGGCA CGGTGCGCGT GTTTGCGGAA CGCAACGACG GCTTCAGGCT
     601
            GCCCGAAGAC AGCCGCAAGC CGATTGTGAT GATCGGCTCC GGTACCGGCG
     651
            TCGCACCGTT CCGCGCCTTC GTCCAACAAC GTGCCGCAGA AAATGCGGAA
     701
            GGCAGAAACT GGCTGATTTT CGGCAATCCG CATTTTGCCG CCGACTTCCT
     751
            CTATCAGACC GAATGGCAGC AGTTTGCCAA AGACGGCTTC CTGCACAGAT
     801
            ATGACTTCGC CTGGTCGCGC GATCAGGAAG AAAAAATCTA TGTGCAGGAC
            AAAATCCGCG AACAGGCGGA AGGACTTTGG CAATGGCTGC AGGAAGGCGC
     901
            GCATATCTAT GTGTGCGGCG ATGCGGCAAA AATGGCAAAA GAAGTGGAAG
     951
            CCGCCTTGCT GGATGTGATT ATCGGGGCAG GGCATTCGGA CGAAGACGGC
    1001
            GCAGAAGGAT ATTTGGATAT GCTGCGCGAA GAAAAACGCT ATCAGCGTGA
    1051
            TGTTTATTGA
This corresponds to the amino acid sequence <SEQ ID 608; ORF 150.ng>:
g150.pep
          (partial)
          ..YCKADPFPAA LLANQKITAR QSDKDVRHIE IDLSGSDLHY LPGDALGVWF
       1
            DNDPALVGEI LDLLGINPAT EIQAGGKTLP VASALLSHFE LTQNTPAFVK
      51
            GYATFADNDE LDRIAADNAV LQGFVQSTPI AGVLHRFPAK LTAEQFAGLL
     101
            RPLAPRLYSI SSSQAEAGDE VHLTVGAVRF EHEGRARAGG ASGFFADRLE
     151
            EDGTVRVFAE RNDGFRLPED SRKPIVMIGS GTGVAPFRAF VQQRAAENAE
     201
            GRNWLIFGNP HFAADFLYQT EWQQFAKDGF LHRYDFAWSR DQEEKIYVQD
     251
            KIREQAEGLW QWLQEGAHIY VCGDAAKMAK EVEAALLDVI IGAGHSDEDG
     301
            AEGYLDMLRE EKRYQRDVY*
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 609>:
m150.seq
          ATGCAGAACA CAAATCCGCC ATTACCGCCT CTGCCGCCCG AAATCACGCA
       1
          GCTCCTGTCG GGGCTGGACG CGGCACAATG GGCGTGGCTG TCCGGCTACG
     101 CTTGGGCAAA AGCAGGAAAC GGGGCATCTG CAGGACTGCC CGCGCTTCAG
     151 ACGGCATTGC CGGCGGCAGA ACCTTTTTCC GTAACCGTCC TTTCCGCCTC
     201 GCAAACCGGC AATGCGAAAT CCGTTGCCGA CAAAGCGGCG GACAGCCTGG
     251 AAGCCGCCGG CATCCAAGTC AGTCGCGCCG AACTGAAAGA CTATAAGGCG
     301 AAAAACATCG CCGGCGAACG CCGCCTGCTG CTGGTTACCT CCACCCAAGG
     351 CGAAGGCGAA CCGCCGAAAG AAGCCGTCGT GCTGCACAAA CTGCTGAACG
```

401 GCAAAAAAGC CCCGAAATTG GACAAACTCC AATTTGCCGT ACTGGGTTTG

```
451 GGCGACAGTT CCTATCCGAA TTTCTGTCAG GCAGGTAAAG ATTTCGACCG
     501 GCGTTTTGAA GAATTGGGCG CAAAACGGCT GCTCGAACGC GTTGATGCGG
     551 ATTTGGACTT TACCGCCTCC GCAAACGCCT GGACAGATAA TATCGCCGCA
     601 CTCTTAAAAG AAGAAGCCGC AAAAAACCGG GCAACGCCCG CGCCGCAGAC
651 AACGCCCCC GCCGGCCTTC AGACGGCACC GGATGGCAGG TACTGCAAGG
     701 CAGCCCCCTT TCCCGCCGCC CTGCTGGCCA ATCAGAAAAT CACCGCCCGC
     751 CAATCCGATA AAGACGTGCG CCACATCGAA ATCGATTTGA GCGGTTCGGA
     801 TTTGCACTAC CTCCCGGGCG ACGCGCTCGG CGTTTGGTTT GACAACGATC
     851 CGGCACTGGT CAGGGAAATC CTAGACCTGC TCGGCATCGA TCCGGCAACG
     901 GAAATACAGG CGGGCGGAAA GATGATGCCG GTTGCGCGCG CACTTTCATC
     951 TCATTTCGAA CTCACGCAAA ACACTCCGGC TTTCGTCAAA GGCTATGCCG
    1001 CGTTCGCCCA TTATGAAGAA CTCGATAAAA TCATTGCCGA TAACGCCGTT
    1051 TTGCAGGATT TCGTGCAAAA CACGCCTATT GTCGATGTGC TGCACCGCTT
    1101 CCCGGCAAGC CTGACGGCAG AACAATTCAT CCGTTTACTG CGTCCGCTTG
1151 CACCCCGTTT GTATTCGATT TCTTCAGCAC AGGCGAAGT GGGCGATGAA
1201 GTGCATTTAA CTGTCGGCGT GGTTCGTTTT GAACACGAAG GCCGCGCCAG
1251 AACGGGCGC GCATCGGGTT TCCTTGCCGA CCGGCTGGAA GAGGACGGCA
    1301 CGGTGCGCGT GTTTGTGGAA CGCAACGACG GCTTCAGGCT GCCCGAAGAC
    1351 AGCCGCAAGC CGATTGTGAT GATCGGCTCG GGCACCGGCG TCGCACCGTT
    1401 CCGCGCTTTC GTCCAACAAC GTGCCGCAGA AAATGCGGAA GGCAAAAACT
    1451 GGCTGATTTT CGGCAATCCG CATTTTGCCC GTGATTTTCT CTATCAAACC
    1501 GAATGGCAGC AGTTTGCCAA AGACGGCTTC CTGCACAGGT ACGATTTCGC
    1551 CTGGTCCCGC GATCAGGAAG AAAAAATCTA TGTGCAGGAC AAAATCCGCG
    1601 AACAGGCGGA AGGACTTTGG CAATGGCTGC AGGAAGGCGC GCATATCTAT
    1651 GTGTGCGGCG ATGCGGCAAA AATGGCAAAA GACGTGGAAG CCGCCTTGCT
    1701 GGATGTGATT ATCGGGGCAG GACATTTGGA CGAAGAGGGC GCAGAAGAAT
    1751 ATTTGGATAT GCTGCGCGAA GAAAAACGCT ATCAGCGTGA TGTTTATTGA
This corresponds to the amino acid sequence <SEQ ID 610; ORF 150>:
       1 MQNTNPPLPP LPPEITQLLS GLDAAQWAWL SGYAWAKAGN GASAGLPALQ
      51 TALPAAEPFS VTVLSASQTG NAKSVADKAA DSLEAAGIQV SRAELKDYKA
      101 KNIAGERRLL LVTSTQGEGE PPKEAVVLHK LLNGKKAPKL DKLQFAVLGL
     151 GDSSYPNFCQ AGKDFDRRFE ELGAKRLLER VDADLDFTAS ANAWTDNIAA
201 LLKEEAAKNR ATPAPQTTPP AGLQTAPDGR YCKAAPFPAA LLANQKITAR
      251 OSDKDVRHIE IDLSGSDLHY LPGDALGVWF DNDPALVREI LDLLGIDPAT
      301 EIQAGGKMMP VARALSSHFE LTQNTPAFVK GYAAFAHYEE LDKIIADNAV
      351 LODFVONTPI VDVLHRFPAS LTAEQFIRLL RPLAPRLYSI SSAQAEVGDE
      401 VHLTVGVVRF EHEGRARTGG ASGFLADRLE EDGTVRVFVE RNDGFRLPED
      451 SRKPIVMIGS GTGVAPFRAF VQQRAAENAE GKNWLIFGNP HFARDFLYQT
          EWQQFAKDGF LHRYDFAWSR DQEEKIYVQD KIREQAEGLW QWLQEGAHIY
          VCGDAAKMAK DVEAALLDVI IGAGHLDEEG AEEYLDMLRE EKRYQRDVY*
```

Computer analysis of this amino acid sequence gave the following results:

#### Homology with a predicted ORF from N.gonorrhoeae

ORF 150 shows 91.3% identity over a 369 aa overlap with a predicted ORF (ORF 150.ng) from N. gonorrhoeae:

m150/g150

	210	220	230	240	250	260
m150.pep	LLKEEAAKNRATPA			AAPFPAALLAN		
			1111		11111111	
g150			YCK.	ADPFPAALLAN	QKITARQSDI	KDVRHIE
-				10	20	30
	270	280	290	300	310	320
m150.pep	IDLSGSDLHYLPG	ALGVWFDND	PALVREILDLI	LGIDPATEIQA	GGKMMPVAR	ALSSHFE
		111111111		111:111111	111:111	11 111
g150	IDLSGSDLHYLPG	DALGVWFDND	PALVGEILDLI	LGINPATEIQA	GGKTLPVAS	ALLSHFE
-	40	50	60	70	80	90
	330	340	350	360	370	380
m150.pep	LTQNTPAFVKGYA	AFAHYEELDK	IIADNAVLQDI	FVQNTPIVDVI	HRFPASLTA	EQFIRLL

g150				:   :    VQSTPIAGVL	:     HRFPAKLTAE	 OFAGLL
9130	100	110	120	130	140	150
	390	400	410	420	430	440
m150.pep	RPLAPRLYSISSAQ.		VGVVRFEHEG			
A.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				:	111111
g150	RPLAPRLYSISSSQ					
	160	170	180	190	200	210
	450	460	470	480	490	500
m150.pep	RNDGFRLPEDSRKP	IVMIGSGTGV	/APFRAFVQQR	AAENAEGKNW	LIFGNPHFAF	
	111111111111111	11111111		111111:11		
g150	RNDGFRLPEDSRKP	IVMIGSGTGV	/APFRAFVQQR			
	220	230	240	250	260	270
	510	520	530	540	550	560
m150.pep	EWQQFAKDGFLHRY	DFAWSRDQE	EKIYVQDKIRE	QAEGLWQWLQ	EGAHIYVCG	DAAKMAK
	11111111111111	111111111		1111111111		
g150	EWQQFAKDGFLHRY	DFAWSRDQE	EKIYVQDKIRE	QAEGLWQWLQ	EGAHIYVCG	DAAKMAK
-	280	290	300	310	320	330
	570	580	590	600		
m150.pep	DVEAALLDVIIGAG	HLDEEGAEE	YLDMLREEKRY	'QRDVYX		
	: 1111111111111	1 11:111				
g150	EVEAALLDVIIGAG	HSDEDGAEG:	YLDMLREEKRY	'QRDVYX		
,	340	350	360	370		

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 611>: a150.seq

L50.seq					
1				ATGCCGCCCG	
51	GCTCCTGTCG	GGGCTGGACG	CGGCACAATG	GGCGTGGCTG	TCCGGCTACG
101				CAGGACTGCC	
151	ACGGCATTGC	CGACGGCAGA	ACCTTTTTCC	GTAACCGTCC	TTTCCGCCTC
201	GCAAACCGGC	AATGCGAAAT	CCGTTGCCGA	CAAAGCGGCG	GACAGCCTGG
251	AAGCCGCCGG	CATCCAAGTC	AGTCGCGCCG	AACTGAAAGA	CTATAAGGCG
301				CTGGTTACCT	
351				GCTGCACAAA	
401				AATTTGCCGT	
451	GGCGACAGCT	CCTATCCGAA	TTTCTGCCGG	GCGGGCAAAG	ATTTCGACAA
501	ACGTTTTGAA	GAATTGGGCG	CAAAACGCCT	GCTCGAACGC	GTTGATGCGG
551	ATTTGGACTT	TGCCGCCGCC	GCAGACGGAT	GGACAGATAA	TATCGCCGCA
601	CTCTTAAAAG	AAGAAGCCGC	AAAAAACCGG	GCAACGCCCG	CGCCGCAGAC
651				GGATGGCAGG	
701	CAGACCCCTT	TCCCGCCGCC	CTGCTGGCCA	ATCAGAAAAT	CACCGCCCGC
751				ATCGATTTGA	
801				CGTTTGGTTT	
851	CGGCACTGGT	CAGGGAAATC	CTAGACCTGC	TCGGCATCGA	TCAGGCAACG
901	GAAATACAGG	CGGGCGGAAA	AACCCTGCCG	GTTGCCTCCG	CACTGTTATC
951				CTTTGTCAAA	
1001	CGTTCGCCGA	TGATGACGAA	CTCGACCGTA	TTGCTGCCGA	CAACGCCGTT
1051	TTGCAAGGCT	TTGTGCAAAG	CACGCCGATT	GCCGATGTGC	TGCACCGCTT
1101	CCCGGCAAAA	CTGACAGCGG	AACAATTCGC	CGGCCTACTG	CGCCCGCTTG
1151			TCCTCGTCGC		GGGGGACGAA
1201	GTGCACCTGA	CCGTCGGCGC	GGTGCGTTTC	GAACACGAAG	GGCGCGCCAG
1251				CCGGCTGGAA	
1301				GCTTCAGGCT	
1351				GGCACCGGCG	
1401	CCGCGCTTTC	GTCCAACAAC	GTGCCGCAGA	AAATGCGGAA	GGCAAAAACT
1451	GGCTGTTTTT	CGGCAATCCG	CATTTTGCCC	GTGATTTTCT	CTATCAAACC
1501	GAATGGCAGC	AGTTTGCCAA	AGACGGCTTC	CTGCACAGAT	ACGATTTCGC
1551	CTGGTCGCGC	GATCAGGAAG	AAAAAATCTA	TGTGCAGGAC	AAAATCCGCG
1601				AGGAAGGCGC	
1651	GTGTGCGGCG	ATGCGGCAAA	AATGGCAAAA	GACGTGGAAG	CCGCCTTGCT

1701 1751	GGATGTGATT ATCGGGGCAG GACATTTGGA CGAAGAGGGC GCAGAAGAAT ATTTGGATAT GCTGCGCGAA GAAAAACGCT ATCAGCGTGA TGTTTATTGA						
	This corresponds to the amino acid sequence <seq 150.a="" 612;="" id="" orf="">:</seq>						
a150.pep  1 51 101 151 201 251 301 351 401 451 501 551	MQNTNPPLPP MPPEITQLLS GLDAAQWAWL SGYAWAKAGN GASAGLPALQ TALPTAEPFS VTVLSASQTG NAKSVADKAA DSLEAAGIQV SRAELKDYKA KNIAGERRLL LVTSTQGEGE PPEEAVVLHK LLNGKKAPKL DKLQFAVLGL GDSSYPNFCR AGKDFDKRFE ELGAKRLLER VDADLDFAAA ADGWTDNIAA LLKEEAAKNR ATPAPQTTPP AGLQTAPDGR YCKADPFPAA LLANQKITAR QSDKDVRHIE IDLSGSDLHY LPGDALGVWF DNDPALVREI LDLLGIDQAT EIQAGGKTLP VASALLSHFE LTQNTPAFVK GYAPFADDDE LDRIAADNAV LQGFVQSTPI ADVLHRFPAK LTAEQFAGLL RPLAPRLYSI SSSQAEVGDE VHLTVGAVRF EHEGRARAGG ASGFLADRLE EDGTVRVFVE RNDGFRLPED SRKPIVMIGS GTGVAPFRAF VQQRAAENAE GKNWLFFGNP HFARDFLYQT EWQQFAKDGF LHRYDFAWSR DQEEKIYVQD KIREQAEGLW QWLQEGAHIY VCGDAAKMAK DVEAALLDVI IGAGHLDEEG AEEYLDMLRE EKRYQRDVY*						
m150/a150 94.8% ide	10 20 30 40 50 60						
m150.pep a150	MQNTNPPLPPEITQLLSGLDAAQWAWLSGYAWAKAGNGASAGLPALQTALPAAEPFS						
m150.pep <b>a1</b> 50	70 80 90 100 110 120 VTVLSASQTGNAKSVADKAADSLEAAGIQVSRAELKDYKAKNIAGERRLLLVTSTQGEGE						
m150.pep a150	130 140 150 160 170 180 PPKEAVVLHKLLNGKKAPKLDKLQFAVLGLGDSSYPNFCQAGKDFDRRFEELGAKRLLER   :						
m150.pep a150	190 200 210 220 230 240 VDADLDFTASANAWTDNIAALLKEEAAKNRATPAPQTTPPAGLQTAPDGRYCKAAPFPAA        : : :						
m150.pep <b>a1</b> 50	250 260 270 280 290 300 LLANQKITARQSDKDVRHIEIDLSGSDLHYLPGDALGVWFDNDPALVREILDLLGIDPAT	•					
m150.pep a150	310 320 330 340 350 360  EIQAGGKMMPVARALSSHFELTQNTPAFVKGYAAFAHYEELDKIIADNAVLQDFVQNTPI         :						
m150.pep a150	370 380 390 400 410 420 VDVLHRFPASLTAEQFIRLLRPLAPRLYSISSAQAEVGDEVHLTVGVVRFEHEGRARTGG :	3					
m150.pep a150	430 440 450 460 470 480 ASGFLADRLEEDGTVRVFVERNDGFRLPEDSRKPIVMTGSGTGVAPFRAFVQQRAAENAE	3   					
m150.pep	490 500 510 520 530 540 GKNWLIFGNPHFARDFLYQTEWQQFAKDGFLHRYDFAWSRDQEEKIYVQDKIREQAEGLW     ::	Ň					

a150	GKNWLFFGNPHFARDFLYQTEWQQFAKDGFLHRYDFAWSRDQEEKIYVQDKIREQAEGLW						
	490	500	510	520	530	540	
	550	560	570	580	590	600	
m150.pep	QWLQEGAHIYVCGI					_	
	111111111111	1111111111			111111111	111111	
a150	QWLQEGAHIYVCGI	AAKMAKDVE?	ALLDVIIGAC	GHLDEEGAEE	LDMLREEKRY	'QRDVYX	
	550	560	570	580	590	600	

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 613>:

```
q151.seq
          ATGAAACAAA TCCGCAACAT CGCCATCATC GCACACGTCG ACCACGGCAA
      51 AACCACATTG GTCGACCAAC TGCTGCGCCA ATCCGGCACA TTCCGCGCCA
     101 ACCAGCAGGT TGACGAGCGC GTGATGGACA GCAACGACCT TGAAAAAGAA
     151 CGCGGCATCA CCATCCTCGC CAAAAACACC GCCATCGATT ACGAAGGCTG
     201 CCACATCAAT ATCGTCGACA CGCCGGGACA CGCCGACTTC GGCGGCGAAG
     251 TGGAGCGCGT TTTGGGGATG GTGGATTGCG TCGTCTTGTT GGTGGACGCA
     301 CAGGAAGGTC CGATGCCGCA AACCCGTTTC GTGACCAAAA AAGCCTTGGC
     351 TTTGGGGCTG AAACCGATTG TCGTCATCAA CAAAATCGAC AAACCGTCCG
     401 CCCGTCCGAG CTGGGTTATC GACCAGACTT TCGAGTTGTT CGACAACTTG
     451 GGTGCGACCG ACGAGCAGTT GGATTTCCCG ATTGTTTACG CTTCAGGTTT
     501 GAGCGGCTTT GCCAAGCTGG AAGAAACCGA CGAGAGCAGC GATATGCGCC
     551 CGCtgttcgA CACCATCCTA AAATACAcgc ctgCACCGAG CGGCAGCGCG
     601 GACGAGCCGC TGCAACTGCA AATTTCCCAA CTCGACTACG ACAACTACAC
     651 CGGCCGCCTC GGTATCGGTC GTATCTTGAA CGGACGCATC AAACCCGGCC
     701 AAACCGTTGC CGTGATGAAC CACGAGCAGC AAATCGCCCA AGGCCGCATC
     751 AACCAGCTTT TGGGTTTCAA AGGCTTGGAA CGCGTGCCGC TTGAAGAAGC
     801 CGAAGCCGGC GACATTGTGA TTATTTCCGG TATCGAAGAC ATCGGCATCG
     851 GCGTAACCAT CACCGACAAA GACAACCCCA AAGGCCTGCC GATGTTGAGC
     901 GTGGACGAAC CGACGCTGAC GATGGACTTT ATGGTAAACA CCAGCCCGCT
     951 CGCAGGTACA GAAGGCAAAT TCGTGACCAG CCGCCAAATC CGCGACCGCC
    1001 TGCAAAAAGA ATTGCTGACC AACGTTGCCC TGCGCGTGGA AGACACCGCC
    1051 GatgCCGACG TGTTCCGCGT ATCcgGGCGC GGCGAACTGC ACCTGACGAT
    1101 TTTGCTGGAA AATATGCGCC GCGAAGGCTA CGAACTCGCC GTCGGCAAGC
1151 CGCGCGTCGT GTACCGAGAC ATCGACGGTC AAAAATGCGA ACCTTATGAA
1201 AACCTGACTG TGGACGTACC CGACGACAC CAAGGCGCGG TAATGGAAGA
1251 ACTCGGCCGC CGCCGTGGCG AACTGACCAA TATGGAAAGC GACGGCAACG
    1301 GacgCACCCG CCTCGAATAC CATATTCCAG CGCGCGGCTT GATCGGTTTC
    1351 CAAGGCGAAT TCATGACCCT GACGCGCGGC GTCGGGCTGA TGAGCCaCGT
    1401 GTTcgacgac tacgcgcccg tcaAACCCGA TATGCCCGGC CGCCACAACG
    1451 GCGTactqqt GtcccaAGAG CAGGGCGAGG CGGTTGCTTA CGCCTTGTGG
    1501 AATCTTGAAG ACCGCGGCCG TATGTTCGTA TCGCCCAACG ACAAAATCTA
    1551 CGAAGGTATG ATTATCGGCA TCCACAGCCG CGACAACGAT TTGGTGGTCA
    1601 ACCCGCTCAA AGGCAAAAAA CTCACCAATA TCCGTGCCAG CGGTACCGAC
    1651 GAAGCGGTGC GCCTGACCAC GCCGATCAAA CTGACGCTGG AAGGCGCGGT
    1701 CGAGTTTATC GACGATGACG AGCTGGTGGA AATCACGCCG CAAtccatcc
          qcctqcqcat qcqttacctG AGCGaattgg aacgccqccg tcaTTTTAAA
          AagctgGATT AA
```

This corresponds to the amino acid sequence <SEQ ID 614; ORF 151.ng>: q151.pep

```
1 MKQIRNIAII AHVDHGKTTL VDQLLRQSGT FRANQQVDER VMDSNDLEKE
51 RGITILAKNT AIDYEGCHIN IVDTPGHADF GGEVERVLGM VDCVVLLVDA
101 QEGPMPQTRF VTKKALALGL KPIVVINKID KPSARPSWVI DQTFELFDNL
151 GATDEQLDFP IVYASGLSGF AKLEETDESS DMRPLFDTIL KYTPAPSGSA
201 DEPLQLQISQ LDYDNYTGRL GIGRILNGRI KPGQTVAVMN HEQQIAQGRI
251 NQLLGFKGLE RVPLEEAEAG DIVIISGIED IGIGVTITDK DNPKGLPMLS
301 VDEPTLTMDF MVNTSPLAGT EGKFVTSRQI RDRLQKELLT NVALRVEDTA
351 DADVFRVSGR GELHLTILLE NMRREGYELA VGKPRVVYRD IDGQKCEPYE
401 NLTVDVPDDN QGAVMEELGR RRGELTNMES DGNGRTRLEY HIPARGLIGF
451 QGEFMTLTRG VGLMSHVFDD YAPVKPDMPG RHNGVLVSQE QGEAVAYALW
```

```
501 NLEDRGRMFV SPNDKIYEGM IIGIHSRDND LVVNPLKGKK LTNIRASGTD
     551 EAVRLTTPIK LTLEGAVEFI DDDELVEITP QSIRLRMRYL SELERRRHFK
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 615>:
m151.seq
           ATGAAACAAA TCCGCAACAT CGCCATCATC GCCCACGTCG ACCACGGCAA
       51 AACCACATTG GTCGACCAAC TGCTGCGCCA ATCCGGCACA TTCCGCGCCA
     101 ACCAGCAGGT TGACGAGCGC GTGATGGACA GCAACGACCT TGAAAAAGAA
     151 CGCGGCATCA CCATCCTCGC CAAAAACACC GCCATCGATT ACGAAGGCTA
     201 CCACATCAAT ATCGTCGACA CGCCGGGACA CGCCGACTTC GGCGGCGAAG
     251 TAGAGCGCGT TTTGGGGATG GTGGACTGCG TCGTCTTGTT GGTGGACGCG
     301 CAGGAAGGCC CGATGCCGCA AACCCGTTTC GTGACCAAAA AAGCCTTGGC
     351 TTTGGGGCTG AAACCGATTG TCGTCATCAA CAAAATCGAC AAGCCGTCCG
     401 CTCGTCCGAG CTGGGTTATC GACCAAACTT TCGAGCTGTT CGACAACTTG
     451 GGCGCGACCG ACGAGCAGTT GGATTTCCCG ATTGTTTACG CTTCAGGGTT
     501 GAGCGGTTTC GCCAAATTGG AAGAAACCGA CGAGAGCAAC GACATGCGTC
     551 CGCTGTTCGA TACTATCTTA AAATATACGC CTGCACCGAG CGGCAGCGCG
601 GACGAAACGC TGCAACTGCA AATTTCCCAA CTCGACTACG ACAACTACAC
651 CGGCCGCCTC GGTATCGGTC GTATCTTGAA CGGACGCATC AAACCCGGCC
     701 AAACCGTTGC CGTCATGAAC CACGATCAGC AAATCGCCCA AGGCCGCATC
     751 AACCAGCTTT TGGGTTTCAA AGGTTTGGAA CGCGTGCCGC TTGAAGAAGC
     801 CGAAGCCGGC GACATCGTGA TTATTTCCGG TATCGAAGAC ATCGGTATCG
     851 GCGTAACCAT CACCGACAAA GACAATCCCA AAGGCCTACC GATGTTGAGC
     901 GTGGACGAAC CGACGCTGAC GATGGACTTT ATGGTCAACA CCAGCCCGCT
     951 GGCGGGTACG GAAGGCAAAT TCGTAACCAG CCGCCAAATC CGCGACCGCC
    1001 TGCAAAAAGA ATTGCTGACC AACGTCGCCC TGCGCGTGGA AGATACCGCC
    1051 GATGCCGACG TGTTCCGCGT ATCCGGGCGC GGCGAGCTGC ACCTGACCAT
    1101 TTTGCTGGAA AACATGCGCC GCGAAGGCTA CGAACTCGCC GTCGGCAAAC
    1151 CGCGCGTCGT GTACCGCGAC ATCGACGGTC AAAAATGCGA ACCGTATGAA
    1201 AACCTGACCG TGGATGTACC CGACGACAAC CAAGGCGCGG TAATGGAAGA
    1251 ACTCGGCCGC CGCCGTGGCG AACTGACTAA TATGGAAAGC GACGGCAACG
    1301 GACGCACCCG CCTCGAATAC CATATTCCAG CGCGCGGCTT GATCGGTTTC
    1351 CAAGGCGAAT TTATGACCCT GACGCGCGGG GTCGGGCTGA TGAGCCACGT
    1401 GTTCGACGAT TACGCGCCCG TCAAACCCGA TATGCCCGGC CGCCACAACG
    1451 GCGTGCTGGT GTCCCAAGAG CAGGGCGAGG CAGTCGCTTA CGCCTTGTGG
    1501 AATCTGGAAG ACCGCGGCCG TATGTTCGTA TCGCCCAACG ACAAAATCTA
    1551 CGAAGGCATG ATTATCGGCA TCCACAGTCG CGACAACGAT TTGGTGGTCA
    1601 ACCCGCTCAA AGGCAAAAAA CTTACCAACA TCCGTGCCAG CGGTACCGAC
    1651 GAAGCCGTTC GCCTGACCAC GCCAATCAAG CTGACGCTGG AAGGTGCGGT
    1701 TGAGTTTATC GACGATGACG AACTCGTTGA AATCACGCCG CAATCCATCC
1751 GTCTGCGCAA GCGTTACTTG AGCGAATTGG AACGCCGCCG CCACTTTAAA
1801 AAGCTGGATT GA
This corresponds to the amino acid sequence <SEQ ID 616; ORF 151>:
m151.pep
          MKQIRNIAII AHVDHGKTTL VDQLLRQSGT FRANQQVDER VMDSNDLEKE
      51 RGITILAKNT AIDYEGYHIN IVDTPGHADF GGEVERVLGM VDCVVLLVDA
     101 QEGPMPQTRF VTKKALALGL KPIVVINKID KPSARPSWVI DQTFELFDNL
151 GATDEQLDFP IVYASGLSGF AKLEETDESN DMRPLFDTIL KYTPAPSGSA
201 DETLQLQISQ LDYDNYTGRL GIGRILNGRI KPGQTVAVMN HDQQIAQGRI
     251 NQLLGFKGLE RVPLEEAEAG DIVIISGIED IGIGVTITDK DNPKGLPMLS
     301 VDEPTLTMDF MVNTSPLAGT EGKFVTSRQI RDRLQKELLT NVALRVEDTA
     351 DADVFRVSGR GELHLTILLE NMRREGYELA VGKPRVVYRD IDGQKCEPYE
     401 NLTVDVPDDN QGAVMEELGR RRGELTNMES DGNGRTRLEY HIPARGLIGF
     451 QGEFMTLTRG VGLMSHVFDD YAPVKPDMPG RHNGVLVSQE QGEAVAYALW
     501 NLEDRGRMFV SPNDKIYEGM IIGIHSRDND LVVNPLKGKK LTNIRASGTD
     551 EAVRLTTPIK LTLEGAVEFI DDDELVEITP QSIRLRKRYL SELERRRHFK
     601
          KLD*
```

Computer analysis of this amino acid sequence gave the following results: