### Fyzická vrstva:

- Spoj (fyzické) vs. Kanál (logické)
- Multiplexing
  - V čase
  - o Frekvenčnej dómene
  - ? o Dómene kódovania

## Signály:

- (a/)periodické
  - Periodická sinusovka
    - Charakteristika
      - □ Amplitúda
      - □ Frekvencia
      - □ Fáza
    - Rozložený pomocou Fourierovej analýzy
- Baudova (sig. prvkov) interval dig. Sig. vs. Bitová rýchlosť / sec. ~ perióda analog. Sig.
- ? Pásmová propust
  - Miera relatívnej sily dvoch signálov / jedného v dvoch miestach sa udáva v decibeloch
- Nyquistova veta: vzťah medzi šírkou pásma a spôsobom kódovani dát do signálu vymedzuje dosiahnuteľnú rýchlosť prenosu dát
  - Shannonova veta (počíta so šumom): vzťah medzi širkou pásma a pomerem energie signálu a šumu vymedzuje najvyššiu dosiahnuteľnú rýchloosť prenosu dát bez ohľadu na spôsoobm kódovania dát do signálu
  - Frekvenčná dómena vs. Časová dómena reprezentácie analógového signálu:

Frekvenční a časová doména tří sinusových vln





the same three signals

- 29 a nižšie Fourierova analýza (47. a nižšie)
- 🥐 48. strana: šírka pásma
  - Efektívna šírka pásma musí byť **podinterval** šírky prenosového média
  - 39/57 nerozumiem (ne)spojitosť tých frekvencií
  - Šírka pásma:
    - Analógova (v Hz, interval frekvencií, ktoré médium prepustí)
    - o Digitálna (max. bit. Rýchlosť, ktorú médium prepustí)
    - Oboje vyjadrujú rovnakú vlastnosť vyjadrenú inými mierami a jednotkami
- ? 59 (propusti?)
  - Vysielanie v základnom pásme priame vysielanie bez modulácie (baseband)
  - Širokopásmové vysielanie (broadband) signál sa moduluje do kanálu typu pásmova propust
  - Prenosový kanál digitálneho signálu musí byť typu dolná propust s nekonečnou, alebo veľmi širokou šírkou pásma
  - Dolní propust len pre P2P, alebo časový multiplexing
- ? Skresľovanie rozdielnosť rýchlosti šírenia signálu rôznych frekvencií
  - Útlm: 10log<sub>10</sub>(P2/P1) (decibelový zisk/strata)
  - **ŠUMY:** Termálne, medzimodulačné, preslechy, impulzné
  - C = 2B x log<sub>2</sub> M (M počet hodnôt prvkov signálu, B šírka pásma (Hz)) Nyquistova veta
  - **BER (Bit error rate)** vyššie = horšie. **SNR (Signal to Noise Ratio S/N)** menšie (dB) horšie. Menšie SNR = väčšie BER
  - Shannonova veta: C = B log<sub>2</sub>(1+S/N)

- Priepustnosť skutočná rýchlosť spojenia nižšia než šírka pásma
- Oneskorenie (latency, delay) = doba šírenia sig + doba vysielanie správy + doba čakania + doba spracovania
  - Šírenie propagation
  - o Doba vysielania Transmission time (dĺžka správy / priepustnosť kanálu)
- Ak je frekvencia jednej zložky zloženého signálu nulová, je priemerná hodnota amplitúdy kladná!
- Matematická reprezentácia signálu: s(t) = A(mplitúda)(2\*pí\*f\*t + fáza)
- ? Využitie harmonických zložiek znižuje rýchlosť prenášaných dát

### Digitálne vysielanie:

- a/Synchronné sériové vysielanie
  - Asynchronné medzi bytami môže byť ľubovoľná medzera, start a stop bit
  - o Synchronné rekonštrukciu bytov robí prijímač. Vysielané súvisle
- Baudova rýchlosť ~ modulačná, pulsná
  - Môže byť pomalšia, ale aj rýchlejšia, než bitová. (koľko prvkov signálu je potrebné na zakódovanie koľkých bitov)
  - S = c x N x 1/r (N bitová rýchlost, c faktor rôznorodosti dátových vzorkov, r počet prvkov dát prenášaných jedným prvkom signálu
  - $\circ$  C = 1/2 on average
  - o Potrebná šírka pásma je úmerná S.
- Direct current component dc nežiadúca zložka
  - o Neprenositeľná transformátorom, neužitočná záťaž média
- Samosynchronizujúce kódovanie má dvojnásobnú cenu rýchlosti. (kóduje zmenou)
- Typy:
  - o Unipolar NRZ
  - o Polar NRZ-L, NRZ-I, RZ, (diferenc.) Manchester
  - o Bipolar AMI, pseudoternary
  - o Multilevel 2B/1Q, 8B/6T
  - o Multitransition MLT-3
  - o Blokové 4B/5B
- NRZ Non Return To Zero
- ? Nerozumiem 121 šírkam pásiem u jednotlivých typov kódovaní
  - Manchester ~ biphase schemes
  - Pseudoternary = inversed AMI (0 = 0, 1 = +-1)
  - Strata synchronizácie pri postupnostiach 1iek. Eliminuje stejnosmerné složky
  - 2B1Q ISDN/DSL 4 úrovne napätia, každá dva bity kóduje.
  - 8B6T LAN 100BASE-4T
    - o Eliminovaná stejnosměrná zložka. Synchro a oprava chýb bohatá redundancia
    - 0 alebo +1. Ak 2\* +1 za sebou, dá sa invertovaná verzia, s váhou -1 a to prijímač pozná ako inverziu. Eliminácia stejn. Zložky
  - **Scrambling** riešenie problému autosynchronizácie u menej redundandtných kódovaní, ktoré sú lepšie pre väčšie vzdialenosti
    - B8Z8 (bipolar with 8 zeros substitution)
      - Po + = 000 +- 0 -+ (dc sa neakumuluje (stejnosmerná zložka)
      - Používa T1 (USA/JPN)
    - o HDB3
      - Používa E1 (EU)
  - Útlm
    - Analog sa zosiľuje (aj s šumom a chybami)
    - Digital sa opakuje (rovnaký)
  - PAM (pulse amplitude modulation) stále analog!
    - o PCM (p.code m.) kvantuje sa



- Nyguistova veta o vzorkovaní
  - Musí byť aspoň dvojnásobná rýchlosť vzorkovanie, než je najvyššia frekvencia vzorkovaného signálu
- Každý bit navyše pre popis úrovne kvantovania = +6 dB. Cca 4\* zvýšený pomer SNR
- Vysielanie:
  - o sériové
    - Asynchronné
      - □ Vhodné pre pomalé spoje + asynch. Aplikácie (klávesnice..)
    - Synchronné
      - □ Potrebné udržiavať synchronizáciu na celý rámec
      - □ Pc vs. Pc
      - □ Dekompozíciu na slabiky rieši dátová vrstva
      - □ **Prodlevy** sú riešené prostr. "idle" postupnosťaim 0,1
    - Isochronné
      - Žiadne medzery
      - □ Synchronizácia
      - □ Konštantná rýchlosť
        - Netreba vyrovnávacie pamäte
        - ◆ Efektívne a lacné
  - Paralelné

## Analógové vysielanie:

- Digitálnymi dátmi možno modulovať signál analógový
  - o ASK amplitúdová digitálna modulácia (Amplitude Shift Keying)
    - Citlivá na šum
  - o FSK frequency
  - o PSK phase
  - QAM kvadraturní amplitúdová digitálni modulace ASK + PSK rýchlejšia.
- Trellis coding zavádzanie redundancie, pre vyhýbanie sa chybám
- Analógovými dátmi možno tiež modulovať
  - o AM šírka pásma musí byť 2\* taká, ako šírka modulujúceho
  - o FM 10\* taká
- Prečo treba analog?
  - o Digital potrebuje dolnú priepasť, nedá sa použiť pásmová
  - Éter pustí iba analog
- ? 168 modulace demodulace
  - ASK

- OOK (on off keying)
  - Ovlivněná šumem
  - Šírka pásma: f<sub>c</sub> N<sub>baud</sub>/2 až f<sub>c</sub> + N<sub>baud</sub>/2

### Využívanie šírky pásma (multiplexing, rozprostorovanie)

- Rozprestieranie spektra spread spectrum (SS)
- FHSS (skáče na rôzne frekvencie rôzne množstvo oných v pseudonáhodnú dobu)
- DSSS
- SCPC single channel per carrier vs. Multiplexing
- DWDM Dense WDM
- Synchronný TDM
  - TDM frame / rámec
- Statistický TDM
  - o Rieši dátová vrstva, že komu koľko času
- Digital Carrier System
  - DS-1 (T1) 24 kanálov (sampuje 8000 x /s
  - Každých 124 mikrosekúnd vysiela sa TDM rámec 193 bitov (8\*24+1) 0.bit je synchronizačný (alternuje 0,1)
  - Vysiela sa 8000\*193 = 1.544000 Mb/s
- DS-1 = AMI, B8ZS
- DS-3 = HDB3
- DSSS n of chips. Chips are redundancy. Chips must be transmitted as fast as the original bit thus wider bandwidth is necessary

#### Prenosové médiá

- Vodené (guided)
  - o Twisted pair krútená dvojlinka
  - o Koaxiál vyššia frekvencia, než TP
  - optické vlákno
    - Multimód viac paprskov z jedného zdroja svetla
    - jednomód
- Nevodené (unguided)
  - o Rádiové všesměr
  - o Mikrovlny mobil, satelit, LAN
  - o Infračervené krátke vzdialenosti
- Optické vlákno
  - Multimode step-index
    - Konst. Hustota jádra
    - Rôzne cesty, rôzne paprsky
    - Neurčitý výsledok
  - o Multimode grade index
    - Hustejšie v strede
    - Stojatým vlnením rôzne paprsky
    - Určitý výsledok
  - o Single mode
    - Konštantná malá hustota
    - Malý index lomu, skoro rovnobežné šírenie
    - Veľmi presný výsledok
- Šírenie éterom
  - o 0-2 MHz pozemné
  - o 2-30 MHz odraz od ionosféry
  - 30 + MHz line of sight
- 0 1 GHz rádiové vlny
  - o AM, FM, TV, paging...
- 1 až 300 GHz Mikrovlny
  - o P2P, mobily, satelity, WLAN

- Infra 300 GHz 400 THz
  - Pripojenie myši, klávesnice, tiskárny
  - IrDA (Infrared data association)
  - Do 4 Mb/s < 8 metrov
- Isotropický vyžarovač
  - Vo všetkých smeroch zhodné vyžarovanie

pro isotropní anténu platí  $ztr ilde{a}ty = P_v/P_p = (4\pi d)^2/\lambda^2$ 

- $(P_v/P_p$  je vyzařovaný/přijímaný výkon,  $oldsymbol{\lambda}$  je vlnová délka)
  - obecně platí, že energie signálu se vzdáleností klesá, na nižších frekvencích rychleji
- Opar od 22 GHz
- Dážď a mlha rádiové rozptýli

## Použitie telefónnych a káblových sietí pre prenos dát

- Signál STS
  - o Predpis formátovania rámcov, nie časová funkcia
- ? 347 ignored

### ADSL, Asymmetrical Digital Subscriber Line



- Podkanály majú šírku 4 kHz DMT (discrete multitone FDM + QAM)
  - Kvôli šumu sa modem rozhodne na každej frekvencii pomerom signál/šum o tom, koľko
    0-64 kbps použiť
- HDSL high data rate digital subscriber line
  - Ako T1/E1 1,544 Mb/s do 3,5km (T1 do 1km)
  - o 2B1Q. 1. polarita, 2. amplituda
- SDSL Single line DSL, Symmetric DSL
  - 16-PAM (4bit/baud (3:1))
- **VDSL** (68Mb/s 52:6,4 / 34:34)
- ADSL2
  - o ADM All Digital Mode
  - Upstream vďaka tomu až 2Mb/s
- ADSL2+
  - Zvyšované horné kmitočty 2,208 MHz
  - o 25 Mbit/s, 1,5Mbit/s
- ADSL2++
  - o 3.75 MHz
  - o 40 Mbit/s!!



- ✓ RCH (Regional Cable Head) až 400 000 účastníků,
- ✓ Distribution Hub regionální centrum až 40 000 účastnících
- ✓ na koaxiálu typicky až 1000 účastníků
- ✓ obousměrná síť, účastník může být v interakci s poskytovatelem služeb na Internetu, který mu zpřístupnuje regionální centrum nebo RCH
- HFC pásma v koaxiálu,
  - o 6 MHz (downstream) 30 Mbit/s (real 27)
  - Upstream QPSK < 12 Mbit/s</li>
  - Video má 80 kanálov po 6 MHz
  - CMTS cable modem transmission system
    - o U poskytovateľa zberá dáta z fiber a hádže do combiner
    - o CM spúšťa ranging, keď sa pokúša kontaktovať CMTS
      - Vvžiada si IP
      - Vymenia si paket o bezpečnosti
      - Identifikátor do CMTS
      - Súperenie
  - SONET robí TDM (timedivisionmodulation pseudo) na rámce jednotilvých DS. DS-i rámce
    - Synchronous transport signal STS-1 až 3072 standardy formátov rámcov a rýchlostí
    - OC-i (optical carriers štandardy)
    - o 51 Mb/s 159 Gb/s
    - STS-1 + STS-1 + STS-1 + STS-1 + ... + STS-1 -> **STS-N**
  - SDH signály
    - STM-1 (synchronous transport module) od 155 Mb/s kompatibilné s EU hierarchiou E spoje
  - STS-1 zákl. stav. Rámec SONET. 125 mikrosekúnd 8000 krát. 51.84 Mb/s
  - SOH, LOH, POH (záhlavia)
  - Virtual tributaries (podobné DS1,2, E1..)

## **Chyby prenosu**

- ARQ automatic request for transmission
- FEC forward error correction
- Hammingové kódy:
  - □ Hammingovy (n, k) blokové opravné kódy kódují k-tice datových bitů do n-bitových kódových slov, přičemž
  - $\circ$   $\qquad$   $\checkmark$  při počtu kontrolních bitů v bloku:  $m=n-k\,, m\geq 3$ 
    - $\checkmark$  mají délku bloku kódového slova:  $n=2^m-1$
    - $\checkmark$  tj. počet datových bitů v bloku:  $k=2^m-1-m(=2^m-m-1)$

# Riadenie dátového spoja

- HDLC protokol implementujúci ARQ, podporuje viacbodové spojenia
  - Normal Response Mode
  - Asynchronous Balanced Mode
  - Využíva frames
    - Information
    - Supervisory

- Unnamed
- o High level Data Link Control
- o NRM Unbalanced
  - 1:1 / 1:n primárny na sekundárne (príkazy na odpovede)
- o ABM
  - 1:1
  - Žiadne straty vyzývaním
- o Podobné ako NRM, ale sekundárna môže vysielať bez príkazu
- o Rámec:
  - Flag, adress, control, information, fcs, flag