Universidade Federal de Ouro Preto

Instituto de Ciência Exatas e Aplicadas

Departamento de Engenharia Elétrica

Laboratório de Microprocessadores e Microcontroladores - CEA580

Prática 1

Nome

Graziele de Cássia Rodrigues 21.1.8120

Objetivos

Compreender o princípio de funcionamento do assembler e do simulador Arm Utilizar instruções para transferência de dados entre memória e registradores Utilizar instruções de soma e subtração

Analisar o comportamento dos flags armazenados no registrador CPSR.

Referências

Mazidi and Naimi "The STM32F103 Arm Microcontroller and Embedded Systems", Cap. 2 e 3.

Installing the Keil for STM32F10x step by step tutorial

STM32 Assembly Programming in Keil step by step tutorial

Lista de Materiais

Keil IDE, disponível em http://www.keil.com/

Keil.STM32F1xx_DFP.2.4.0.pack, disponível em https://www.keil.com/dd2/pack/

Atividades

1 – Criar um projeto no Keil e carregar o algoritmo abaixo:

```
EXPORT __main
      AREA OUR_PROG, CODE, READONLY
__main
      MOV
             R1, #0x12
                           ; R1 = 0x12
      MOV
             R2, #0x25
                           ; R2 = 0x25
      ADD
             R3, R2, R1
                           ; R3 = R2 + R1
             R3, R3, #0x7
                           ; R3 = R3 - 0x07
      SUBS
HERE
             HERE
      В
                           ; stay here forever
      END
```

- A Clicar em build para gerar o código assembly.
- B Examinar o arquivo map gerado e encontrar o endereço inicial utilizado para armazenar a função
 __main

O endereço inicial da função main é 0x08000009

C – Clicar em debug. Examinar o arquivo disassembly gerado e encontrar o código de máquina utilizado para representar a instrução SUBS R3, R3, #0x7

O código de máquina para o R3 é 1FDB

2 – Escrever um programa para carregar os registradores R2, R3 e R4 com 2, 3 e 5, respectivamente. Em seguida, calcular R2+R3+R4.

```
__main PROC

MOV R2,#0x02

MOV R3, #0x03

MOV R4, #0x05

ADD R5, R2, R3

ADD R5, R5, R4

HERE B HERE

ENDP
```

END

3 – Escrever um programa para carregar o registrador R2 com o valor 0x99. Em seguida, mover o conteúdo do registrador R2 para os registradores R0, R1 e R3. Utilizar a função simulador e o recurso single-step para examinar as informações dos registradores.

```
__main PROC

MOV R2,#0x99

MOV R0, R2

MOV R1, R2

MOV R3, R2

HERE B HERE

ENDP

END
```


4 – Escrever um algoritmo assembly para somar os números abaixo.

0x33322292, 0x55566623, 0x9998884B, 0xFF, 0xDDDEEE01

Executar o algoritmo utilizando a opção simulator single-step e analisar o comportamento dos flags C e Z após a execução de cada operação.

```
__main PROC

LDR R0,=0x33322292

LDR R1,=0x55566623

LDR R2,=0x9998884B

LDR R3,=0xFF

LDR R4,=0xDDDEEE01

ADD R5, R0, R1

ADD R5, R5, R2

ADD R5, R5, R3

ADD R5, R5, R3

ADD R5, R5, R4

HERE B HERE
```

1° soma

2° soma

3° soma

4° soma

fim

5 – Criar um projeto no Keil e carregar o algoritmo abaixo

```
EXPORT __main
      AREA MY_PROG, CODE, READONLY
__main
      MOV
             R1,#27
      MOV
             R2,#15
      SUBS
             R3, R1, R2
      MOV
             R1,#20
      MOV
             R2,#15
      SUBS
             R3, R1, R2
      MOV
             R1,#95
      MOV
             R2,#95
      SUBS
             R3, R1, R2
      MOV
             R1,#50
      MOV
             R2,#70
      SUBS
             R3, R1, R2
Н
                    ;stay here forever
      В
             Н
```

Executar o algoritmo utilizando a opção simulator single-step. Analisar o conteúdo dos registradores e o comportamento dos flags C e Z após a execução de cada operação.

Conteúdo R3 após primeira sub

Conteúdo R3 após segundo sub

Conteúdo após terceiro sub

Conteúdo após quarto sub

As flags estão mantidas em 0, por não ter sido habilitado.