grade 100%

Graded quiz on Tangent Lines to Functions, Exponents and Logarithms

	nd Logarithms	
	TEST SUBMISSION GRADE	
1.	Convert $\frac{1}{49}$ to exponential form, using 7 as the factor.	1/1 point
	$\bigcirc \frac{7}{7^3}$	
	O 49 ⁻¹	
	(7 ²)	
	Correct The rule for a factor to a Negative exponent is to divide by the same factor to a positive exponent with the same absolute value.	
	A light-year (the distance light travels in a vacuum in one year) is $9,460$ trillion meters. Express in scientific notation.	1/1 point
	$\bigcirc~9.46 imes 10^{15}$ kilometers	
	○ 9460 × 10 ¹² meters	
	\odot 9.46 $ imes$ 10 15 meters. \bigcirc 0.946 $ imes$ 10 16	
	\checkmark correct $9,460 \text{ is } \big(9.4\times10^3\big) \text{ meters and one trillion meters is } 10^{12} \text{ meters.} \big(9.4\times10^3\big)\big(10^{12}\big) = 9.4\times10^{15}. \text{ A kilometer is } 1000 \text{ meters.}$	
3.	Simplify $(x^8)(y^3)(x^{-10})(y^{-2})$	1/1 point
	$\bigcirc (x)(y^{-2})$	
	$\bigcirc (x^2)(y)$	
	● $(x^{-2})(y)$	
	$\bigcirc (x^{-80})(y^{-6})$	
	\checkmark Correct By the Division and Negative Powers Rule, this is $(x^{(8-10)})(y^{(3-2)})$	
	way Av Av-I	
4.	Simplify $[(x^4)(y^{-6})]^{-1}$ $lacktriangledown(x^{-4})(y^6)$	1/1 point
	$\bigcirc \frac{(x^4)}{(y^{-6})}$	
	$\bigcirc \ (x^3)(y^{-7})$	
	$\bigcirc \frac{(x^{-4})}{(y^6)}$	
	\checkmark Correct By the Power to a Power Rule, each of the exponents is multiplied by (-1)	
5	Solve for x:	1/1 point
٥.	$\log_2\left(39x\right) - \log_2\left(x - 5\right) = 4$	17 I politic
	⊕	
	23 39	
	$\frac{\sqrt{23}}{23}$	
	$\bigcirc \frac{80}{38}$	
	$\bigcirc \frac{23}{80}$	
	Correct $\frac{39x}{\log_2 \frac{39x}{(\pi - E)}} = 4$ by the Quotient Rule.	

Since both sides are equal, we can use them as exponents in an equation.

$2^{\log_2} \frac{39x}{(x-5)} = 2^4$	
$\frac{39x}{(x-5)} = 16$	
$39x=16\times(x-5)$	
39x = 16x - 80	
23x = -80	
$x = \frac{-80}{23}$	

6. Simplify this expression:

1/1 point

- $\circ_{x^{\frac{4}{3}}}$
- $\circ x^{-1}$
- \bullet $x^{\frac{-3}{4}}$
- $\bigcirc \ x^{\frac{1}{3}}$

✓ Correct

We use the Power to a Power Rule -- multiply exponents:

$$x^{\frac{1}{2}\times\frac{-3}{2}}=x^{\frac{-3}{4}}$$

7. Simplify $\log_2 8 - \log_2 4 - (\log_3 4.5 + \log_3 2)$

1/1 point

- \bigcirc 0
- O 2
- O 1
- -1

✓ Corre

This is equivalent to:

$$\log_2(\frac{8}{4}) - \log_3(4.5 \times 2) = 1 - 2 = -1$$

 $^{\text{8.}}$ If $\log_3 19 = 2.680$, what is $\log_9 19$?

1/1 point

- 0.8934
- 0.4347
- 1.304
- \bigcirc 5.216

✓ Correc

To convert from \log_3 to \log_9 , divide by $\log_3 9.$ Which is equal to 2, so the answer is 1.34

 $^{9.}$ If $\log_{10}b=1.8$ and $log_ab=2.5752$, what is a?

1/1 point

- 0 4
- \bigcirc 6
- \bigcirc 3

✓ Correc

To solve for a in the formula;

$$\log_a b = \frac{\log_x b}{\log_x a}$$

 $\log_a b = 2.5752$ and $\log_{10} b = 1.8$

Therefore, $\log_{10} a$ must equal to $\ \frac{1.8}{2.5752} = 0.69897$

Treating both sides of equation $\log_{10}a=0.69897$ as exponents of 10 gives $a=10^{0.69897}=5$

- $^{\rm 10.}$ An investment of 1,600 is worth 7,400 after 8.5 years. What is the continuously compounded rate of return of this investment?
- 1/1 point

- $\bigcirc\ 19.01\%$
- O 20.01
- 17.01%
- **18.02%**

$$\sqrt{\frac{\cos r \cos t}{\ln \frac{7400}{1600}}} = 0.18017$$

 $^{\rm 11.}$ A pearl grows in an oyster at a continuously compounded rate of .24 per year. If a 25-year old pearl weighs 1 gram, what did it weigh when it began to form?

- 0.002478
- 0.0002478
- 0.2478
- 0.02478

$$e^{(0.24 imes25)}=rac{1}{x} \ x=rac{1}{\left(e^{0.24 imes25}
ight)} \ x=rac{1}{403.4288} \ x=0.002478$$

 $^{ ext{12.}}\log_2z=6.754.$ What is $\log_{10}(z)$?

1/1 point

- 0.49185
- \bigcirc 1.3508
- \circ 0.82956
- ② 2.03316

$$\begin{array}{l} \checkmark \text{ } \frac{\mathsf{Correct}}{\log_2 z} \\ \frac{\log_2 z}{\log_2 10} = \\ \\ \left(\log_{10} z\right) \times \left(\log_2 10\right) = 3.321928 \\ \\ \text{Therefore, } \log_{10} z = \frac{6.754}{3.321928} = 2.03316 \end{array}$$

- 13. Suppose that $g:\mathbb{R}\to\mathbb{R}$ is a function, and that g(1)=10. Suppose that g'(a) is negative for every single value of a.Which of the following could possibly be g(1.5)?
- $\bigcirc \ g(1.5)=10.1$
- $\bigcirc \ g(1.5)=11$
- $\bigcirc g(1.5) = 103.4$

✓ Corre

Since the slope of the tangent line to the graph of g is negative everywhere on the graph, we know that g is decreasing function! And therefore we must have g(1.5) < g(1). That is the case here, so this value is at least possible.