⊞ MATH101

2.1: A Preview of Calculus

What is Calculus?
The Tangent Line Problem
The Area Problem

2.2: Finding Limits Graphically and Numerically

An Introduction to Limits
Limits That Fail to Exist
A Formal Definition of Limit (Redaing Only)

2.3: Evaluating Limits Analytically

Properties of Limits
A Strategy for Finding Limits
Dividing Out Technique
Rationalizing Technique
The Squeeze Theorem

2.5: Infinite Limits

Vertical Asymptotes

4.5: Limits at Infinity

Horizontal Asymptotes Infinite Limits at Infinity

2.4: Continuity and One-Sided Limits

Continuity at a Point and on an Open Interval
One-Sided Limits and Continuity on a Closed Interval
Properties of Continuity
The Intermediate Value Theorem

3.1: The Derivative and the Tangent Line Problem

The Tangent Line Problem
The Derivative of a Function
Differentiability and Continuity

Syllabus

2.1: A Preview of Calculus

Objectives

"

- Understand what calculus is and how it compares with precalculus.
- Understand that the tangent line problem is basic to calculus.
- Understand that the area problem is also basic to calculus.

intro.

What is Calculus?

Precalculus Matematics \Rightarrow Limit process \Rightarrow Calculus

The Tangent Line Problem

What is the slope of the line (called $\it tangent\ line$) passing through the point P(c,f(c))?

 Δx

Find the equation of the secant line

$$\mathbf{m}_{sec} = rac{f(c + \Delta x) - f(c)}{\Delta x}$$

 Δx

Example: Find the equation of the secant line

$$\mathrm{m}_{sec} = rac{f(c+\Delta x) - f(c)}{\Delta x} =$$
 1.2

The Area Problem

Find the area under the curve?

outro.

2.2: Finding Limits Graphically and Numerically

Objectives

"

- Estimate a limit using a **numerical** or **graphical approach**.
- Learn different ways that a limit can fail to exist.
- <s>Study and use a formal definition of limit</s>.

An Introduction to Limits

Consider the function

$$f(x) = \frac{x^3-1}{x-1}$$

 $\Delta x = \bigcirc$ 0.0

x approaches 1 from Left ✓

x approacheds 1 (from left) f(x) approaches

-3.0

7.0

Remark

$$\lim_{x\to 1}\frac{x^3-1}{x-1}=3$$

Example 1:

Estimating a Limit Numerically

Evaluate the function $f(x)=rac{x}{\sqrt{x+1}-1}$ at several x-values near 0 and use the results to estimate the limit

$$\lim_{x o 0}rac{x}{\sqrt{x+1}\ -1}$$

Graph

1.9999995001202078

```
begin
whatever(x)=x/(sqrt(x+1)-1)
whatever(-0.000001)
end
```

Find the limit of f(x) as x approaches 2, where

$$f(x)=egin{cases} 1, & x
eq 2, \ 0, & x=2 \end{cases}$$

Remark

Problem solving

- 1. Numerical values (using table of values)
- 2. Graphical (drawing a graph by hand or by technology: MATLAB, python, Julia)
- 3. Analytical (using algebra or of course calculus)

Limits That Fail to Exist

Example 3:

Different Right and Left Behavior

Show that the limit $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

Example 4:

Unbounded Behavior

Discuss the existence of the limit $\lim_{x\to 0} \frac{1}{x^2}$

Example 5:

Oscillating Behavior

Discuss the existence of the limit $\lim_{x \to 0} \sin \left(\frac{1}{x} \right)$

9.9999999999998e9

A Formal Definition of Limit (Redaing Only)

Definition of Limit

Let $m{f}$ be a function defined on an open interval containing $m{c}$ (except possibly at $m{c}$), and let $m{L}$ be a real number. The statement

$$\lim_{x o c}f(x)=L$$

means that for each $\epsilon>0$ there exists a $\delta>0$ such that if

$$0<|x-c|<\delta$$

then

$$|f(x)-L|<\epsilon$$

Remark

Throughout this text, the expression

$$\lim_{x o c}f(x)=L$$

implies two statements—the limit exists and the limit is $oldsymbol{L}$.

Example:

Prove that

$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = 3$$

Example 1 (Graph)

2.3: Evaluating Limits Analytically

Objectives

"

- Evaluate a limit using properties of limits.
- Develop and use a strategy for finding limits.
- Evaluate a limit using the dividing out technique.
- Evaluate a limit using the rationalizing technique.
- Evaluate a limit using the Squeeze Theorem.

Properties of Limits

Theorem

Some Bacic Limits

Let \boldsymbol{b} and \boldsymbol{c} be real numbers, and let \boldsymbol{n} be a positive integer.

1.
$$\lim_{x \to c} b = b$$

$$2.\lim_{x\to c} x = c$$

2.
$$\lim_{x \to c} x = c$$
3. $\lim_{x \to c} x^n = c^n$

Theorem

Properties of Limits

Let \boldsymbol{b} and \boldsymbol{c} be real numbers, and let \boldsymbol{n} be a positive integer, and let \boldsymbol{f} and \boldsymbol{g} be functions with the limits

$$\lim_{x o c} f(x) = L, \quad ext{and} \quad \lim_{x o c} g(x) = K$$

- 1. Scalar multiple $\lim_{x o c}\left[bf(x)
 ight]=bL$ 2. Sum or difference $\lim_{x o c}\left[f(x)\pm g(x)
 ight]=L\pm K$
- 3. Product $\lim_{x \to c} \left[f(x)g(x) \right] = LK$ 4. Quotient $\lim_{x \to c} \left[\frac{f(x)}{g(x)} \right] = \frac{L}{K}, \quad K \neq 0$ 5. Power $\lim_{x \to c} \left[f(x) \right]^n = L^n$

Example 2:

The Limit of a Polynomial

Find
$$\lim_{x\to 2} (4x^2+3)$$
.

Theorem

Limits of Polynomial and Rational Functions

If \boldsymbol{p} is a polynomial function and \boldsymbol{c} is a real number, then

$$\lim_{x o c}p(x)=p(c).$$

If r is a rational function given by $r(x)=rac{p(x)}{q(x)}$ and c is a real number such that q(c)
eq 0, then

$$\lim_{x o c} r(x) = r(c) = rac{p(c)}{q(c)}.$$

Find

$$\lim_{x\to 1}\frac{x^2+x+2}{x+1}.$$

Theorem

The Limit of a Function Involving a Radical

Let n be a positive integer. The limit below is valid for all c when n is **odd**, and is valid for c>0when n is even.

$$\lim_{x o c}\sqrt[n]{x}=\sqrt[n]{c}$$

Theorem

The Limit of a Composite Function

If f and g are functions such that $\lim_{x o c} g(x) = L$ and $\lim_{x o c} f(x) = f(L)$, then

$$\lim_{x\to c} f(g(x)) = f\left(\lim_{x\to c} g(x)\right) = f(L).$$

Theorem

Limits of Transcendental Functions

Let c be a real number in the domain of the given transcendental function.

- 1. $\lim_{x \to c} \sin(x) = \sin(c)$ 2. $\lim_{x \to c} \cos(x) = \cos(c)$
- 3. $\lim_{x \to c} \tan(x) = \tan(c)$
- 4. $\lim_{x \to c} \cot(x) = \cot(c)$ 5. $\lim_{x \to c} \sec(x) = \sec(c)$
- 6. $\lim_{x \to c} \csc(x) = \csc(c)$ 7. $\lim_{x \to c} a^x = a^c, \quad a > 0$
- 8. $\lim_{x \to c} \ln(x) = \ln(c)$

A Strategy for Finding Limits

Theorem

Functions That Agree at All but One Point

Let c be a real number, and let f(x) = g(x) for all $x \neq c$ in an open interval containing c. If the limit of g(x) as x approaches c exists, then the limit of f(x) also exists and

$$\lim_{x o c}f(x)=\lim_{x o c}g(x).$$

Remarks

A Strategy for Finding Limits

- 1. Learn to recognize which limits can be evaluated by direct substitution.
- 2. When the limit of f(x) as x approaches c cannot be evaluated by direct substitution, try to find a function g(x) that agrees with f for all other x than c.

Dividing Out Technique

Example 7:

Dividing Out Technique

Find the limit
$$\lim_{x \to -3} \frac{x^2 + x - 6}{x + 3}$$

Rationalizing Technique

• rationalizing the numerator (denominator) means multiplying the numerator and denominator by the conjugate of the numerator (denominator)

Example 8:

Rationalizing Technique

Find the limit
$$\lim_{x \to 0} \frac{\sqrt{x+1}-1}{x}$$
.

The Squeeze Theorem

Theorem

The Squeeze Theorem

if $h(x) \leq f(x) \leq g(x)$ for all x in an open interval containing c, except possibly at c itself, and if

$$\lim_{x o c}h(x)=L=\lim_{x o c}g(x)$$

then $\lim_{x \to c} f(x)$ exists and equal to L.

$$h(x) \le f(x) \le g(x)$$

Theorem

Three Special Limits

1.
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
.
2. $\lim_{x\to 0} \frac{1-\cos x}{x} = 0$.
3. $\lim_{x\to 0} (1+x)^{1/x} = e$.

Find the limit:
$$\lim_{x\to 0} \frac{\tan x}{x}$$

Example 10:

A Limit Involving a Trigonometric Function

Find the limit:
$$\lim_{x\to 0} \frac{\sin 4x}{x}$$

Exercises

2.5: Infinite Limits

Objectives

u

- Determine infinite limits from the left and from the right.
- Find and sketch the vertical asymptotes of the graph of a function.

Example:

Infinite Limit

Consider

$$f(x)=rac{3}{x-2}$$

2), label=nothing, c=:blue)

Vertical Asymptotes

Definition of Vertical Asymptote

If f(x) approaches infinity (or negative infinity) as x approaches c from the right or the left, then the line x = c is a **vertical asymptote** of the graph of .

Remark

If the graph of a function f has a vertical asymptote at x = c, then f is not continuous at c.

Theorem

Vertical Asymptotes

Let f and g be continuous on an open interval containing c. If f(c)
eq 0, g(c) = 0, and there exists an open interval containing c such that $g(x) \neq 0$ for all $x \neq c$ in the interval, then the graph of the function

$$h(x)=rac{f(x)}{g(x)}$$

has a vertical asymptote at c.

1.
$$h(x) = rac{1}{2(x+1)}$$
.

2.
$$h(x) = rac{x^2+1}{x^2-1}$$
.

3.
$$h(x) = \cot x = \frac{\cos x}{\sin x}$$

1 plot(x->3/(x-2))

Remark

There are good online graphing tools that you use

- desmos.com
- geogebra.org

Example 3:

A Rational Function with Common Factors

Determine all vertical asymptotes of the graph of

$$h(x) = rac{x^2 + 2x - 8}{x^2 - 4}.$$

Example 4:

Determining Infinite Limits

Find each limit.

$$\lim_{x\to 1^-}\frac{x^3-3x}{x-1} \qquad \text{and} \qquad \lim_{x\to 1^+}\frac{x^3-3x}{x-1}$$

Theorem

Properties of Infinite Limits

Let $oldsymbol{c}$ and $oldsymbol{L}$ be real numbers, and let $oldsymbol{f}$ and $oldsymbol{g}$ be functions such that

$$\lim_{x o c} f(x) = \infty \quad ext{and} \quad \lim_{x o c} g(x) = L$$

- 1. Sum or difference: $\lim_{x o c}\left[f(x)\pm g(x)
 ight]=\infty$
- 2. Product:

$$egin{aligned} \lim_{x o c}igl[f(x)g(x)igr] &= \infty, \quad L>0 \ \lim_{x o c}igl[f(x)g(x)igr] &= -\infty, \quad L<0 \end{aligned}$$

3. Quotient:
$$\lim_{x o c} \left[rac{g(x)}{f(x)}
ight] = 0$$

Remark

2. is **not true** if $\lim_{x o c} g(x) = 0$

Exercises

4.5: Limits at Infinity

Objectives

u

- Determine (finite) limits at infinity.
- Determine the horizontal asymptotes, if any, of the graph of a function.
- Determine infinite limits at infinity.

Consider

$$f(x)=\frac{3x^2}{x^2+1}$$

$$\boldsymbol{x} = \boxed{0}$$

$$f(x) = 0.0$$

we write

$$\lim_{x o\infty}rac{3x^2}{x^2+1}=3,\quad \lim_{x o-\infty}rac{3x^2}{x^2+1}=3$$

Horizontal Asymptotes

Definition of a Horizontal Asymptote

The line $oldsymbol{y} = oldsymbol{L}$ is a **horizontal asymptote** of the graph of $oldsymbol{f}$ when

$$\lim_{x o -\infty} f(x) = L \quad ext{or} \quad \lim_{x o \infty} f(x) = L$$

Remarks

- Limits at infinity have many of the same properties of limits discussed in Section 2.3.

$$\circ \lim_{x \to \infty} \left[f(x) + g(x) \right] = \lim_{x \to \infty} f(x) + \lim_{x \to \infty} g(x)$$

• For example, if
$$\lim_{x \to \infty} f(x)$$
 and $\lim_{x \to \infty} g(x)$ both exist, then
$$\circ \lim_{x \to \infty} [f(x) + g(x)] = \lim_{x \to \infty} f(x) + \lim_{x \to \infty} g(x)$$

$$\circ \lim_{x \to \infty} [f(x)g(x)] = \left[\lim_{x \to \infty} f(x)\right] \left[\lim_{x \to \infty} g(x)\right]$$
 Similar was neglected bad for limits at $x \to \infty$

• Similar properties hold for limits at $-\infty$.

Theorem

Limits at Infinity

1. If \boldsymbol{r} is a positive rational number and \boldsymbol{c} is any real number, then

$$\lim_{x \to \infty} \frac{c}{x^r} = 0$$
 and $\lim_{x \to -\infty} \frac{c}{x^r} = 0$

The second limit is valid only if x^r is defined when x < 0.

2.
$$\lim_{x o -\infty} e^x = 0$$
 and $\lim_{x o \infty} e^{-x} = 0$

Guidelines for Finding Limits at ±∞ of Rational Functions

$$h(x)=rac{p(x)}{q(x)}$$

- 1. $\deg p < \deg q$, then the limit is 0.
- 2. $\deg p = \deg q$, then the **limit** of the rational function is the ratio of the **leading coefficients**.
- 3. $\deg p > \deg q$, then the **limit** of the rational function **does not exist**.


```
1 # begin
2 # xx=symbols("xx",real=true)
3 # limit(xx*sin(1/xx),xx,0)
4 # end
```

Infinite Limits at Infinity

Remark

Determining whether a function has an infinite limit at infinity is useful in analyzing the **"end behavior"** of its graph. You will see examples of this in Section 4.6 on curve sketching.

2.4: Continuity and One-Sided Limits

Objectives

"

- Determine continuity at a point and continuity on an open interval.
- Determine one-sided limits and continuity on a closed interval.
- Use properties of continuity.
- Understand and use the Intermediate Value Theorem.

Continuity at a Point and on an Open Interval

The graph of f is no contnious at x=c

In Figure __above__, it appears that continuity at ``x=c`` can be __destroyed__ by any one of __three conditions__.

- 1. The function is not defined at x=c.
- 2. The limit of f(x) does not exist at x=c.
- 3. The limit of f(x) exists at x = c, but it is not equal to f(c).

Definition of Continuity

Continuity at a Point

A function $m{f}$ is **continuous at m{c}** when these three conditions are met.

- 1. f(c) is defined.
- 2. $\lim_{x \to c} f(x)$ exists.
- 3. $\lim_{x \to c} f(x) = f(c)$

Continuity on an Open Interval

- A function f is **continuous on an open interval** (a, b) when the function is continuous at each point in the interval.
- A function that is continuous on the entire real number line $(-\infty, \infty)$ is **everywhere continuous**.

Remarks

- If a function f is defined on an open interval I (except possibly at c), and f is not continuous at c, then f is said to have a **discontinuity** at c.
- Discontinuities fall into two categories:
 - **removable**: A discontinuity at c is called removable when f can be made continuous by appropriately defining (or redefining) f(c).
 - \circ **nonremovable**: there is no way to define f(c) so as to make the function continuous at x=c.

Example 1:

Discuss the continuity of each function

a.
$$f(x)=rac{1}{x}$$

b. $g(x)=rac{x^2-1}{x-1}$
c. $h(x)=egin{cases} x+1,&x\leq0\ e^x,&x>0 \end{cases}$
d. $y=\sin x$

Examples

One-Sided Limits and Continuity on a Closed **Interval**

(a) Limit from right $\lim_{x o c^+} f(x) = L$

(a) Limit as x approaches c from the right.

(b) Limit as x approaches c from the left.

(b) Limit from left
$$\lim_{x o c^-} f(x) = L$$

STEP FUNCTIONS

(greatest integer function)

[x] = greatest integer n such that $n \le x$.

Theorem

The Existence of a Limit

Let f be a function, and let c and L be real numbers. The limit of f(x) as x approaches c is if and only if

$$\lim_{x o c^-}f(x)=L \qquad ext{and} \qquad \lim_{x o c^+}f(x)=L$$

Definition of Continuity on a Closed Interval

A function f is **continuous on the closed interval** [a,b] when f is continuous on the open interval (a,b) and

$$\lim_{x\to a^+}f(x)=f(a)$$

and

$$\lim_{x o b^-}f(x)=f(b).$$

Example 4:

Continuity on a Closed Interval

Discuss the continuity of

$$f(x)=\sqrt{1-x^2}$$

Properties of Continuity

Theorem

Properties of Continuity

If b is a real number and f and g are continuous at x = c, then the functions listed below are also continuous at c.

- 1. Scalar multiple: bf
- 2. Sum or difference: $f \pm g$
- 3. **Product:** *fg*
- 4. Quotient: $\frac{f}{g}, \quad g(c)
 eq 0$,

Remarks

- 1. **Polynomials** are continuous at every point in their domains.
- 2. Rational functions are continuous at every point in their domains.
- 3. Radical functions are continuous at every point in their domains.
- 4. **Trigonometric functions** are continuous at every point in their domains.
- 5. **Exponential and logarithmic functions** are continuous at every point in their domains.

Theorem

Continuity of a Composite Function

If g is continuous at c and f is continuous at g(c) then the **composite function** given by $(f\circ g)(x)=f(g(x))$ is continuous at c.

Remark

$$\lim_{x o c}f(g(x))=f(g(c))$$

provided \boldsymbol{f} and \boldsymbol{g} satisfy the conditions of the theorem.

Example 7:

Testing for Continuity

Describe the interval(s) on which each function is continuous.

a.
$$f(x) = \tan x$$

$$ext{b.} \quad g(x) = egin{cases} \sinrac{1}{x}, & x
eq 0 \ 0, & x = 0 \end{cases}$$

b.
$$g(x) = \begin{cases} \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
c.
$$h(x) = \begin{cases} x \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

The Intermediate Value Theorem

Theorem

Intermediate Value Theorem

If f is continuous on the closed interval [a,b], $f(a) \neq f(b)$, and k is any number between f(a) and f(b) then there is at least one number c in [a,b] such that

$$f(c) = k$$
.

Example 8:

An Application of the Intermediate Value Theorem

Use the Intermediate Value Theorem to show that the polynomial function

$$f(x)=x^3+2x-1$$

has a zero in the interval [0, 1].

3.1: The Derivative and the Tangent Line Problem

Objectives

"

- Find the slope of the tangent line to a curve at a point.
- Use the limit definition to find the derivative of a function.
- Understand the relationship between differentiability and continuity.

The Tangent Line Problem

 Δx 4.0

Find the equation of the secant line

Slope of secant line

$$\mathrm{m}_{sec} = rac{f(c + \Delta x) - f(c)}{\Delta x}$$

Definition of Tangent Line with Slope

If f is defined on an open interval containing c, and if the limit

$$\lim_{\Delta x o 0} rac{\Delta y}{\Delta x} = \lim_{\Delta x o 0} rac{f(c + \Delta x) - f(c)}{\Delta x} = m$$

exists, then the line passing through (c,f(c)) with slope m is the **tangent line** to the graph of f at the point (c,f(c)).

Remark

The slope of the tangent line to the graph of f at the point (c, f(c)) is also called the **slope of the** graph of f at x = c.

Example 1:

The Slope of the Graph of a Linear Function

Find the slope of the graph of f(x) = 2x - 3 when c = 2.

Example 2:

Tangent Lines to the Graph of a Nonlinear Function

Find the slopes of the tangent lines to the graph of $f(x) = x^2 + 1$ at the points (0,1) and (-1,2).

Remarks

- The definition of a tangent line to a curve does not cover the possibility of a vertical tangent line.
- ullet For vertical tangent lines, you can use the **following definition**. If $oldsymbol{f}$ is continuous at $oldsymbol{c}$ and

$$\lim_{\Delta x o 0} rac{f(c+\Delta x) - f(c)}{\Delta x} = \infty \quad ext{or} \quad \lim_{\Delta x o 0} rac{f(c+\Delta x) - f(c)}{\Delta x} = -\infty$$

then the **vertical line** x=c passing through (c,f(c)) is a vertical tangent line to the graph of f.

The Derivative of a Function

Definition

Derivative of a Function

The **derivative** of \boldsymbol{f} at \boldsymbol{x} is

$$f'(x) = \lim_{\Delta x o 0} rac{f(x + \Delta x) - f(x)}{\Delta x}$$

provided the limit exists. For all $m{x}$ for which this limit exists, $m{f'}$ is a function of $m{x}$.

Remarks

- The notation f'(x) is read as "f prime of x."
- f'(x) is a function that gives the slope of the tangent line to the graph of f at the point (x, f(x)), provided that the graph has a tangent line at this point.
- The derivative can also be used to determine the instantaneous rate of change (or simply the rate of change) of one variable with respect to another.
- The process of finding the derivative of a function is called **differentiation**.
- A function is **differentiable** at x when its derivative exists at x and is **differentiable on an open interval** (a, b) when it is differentiable at every point in the interval.

Notation

$$y = f(x)$$

$$rac{dy}{dx} = \lim_{\Delta x o 0} rac{\Delta y}{\Delta x} = \lim_{\Delta x o 0} rac{f(x + \Delta x) - f(x)}{\Delta x}$$

Examples 3,4,5:

Finding the Derivative by the Limit Process

Find the derivative of

- $f(x) = x^3 + 2x$ $f(x) = \sqrt{x}$ $y = \frac{2}{t}$ with respect to t.

Differentiability and Continuity

Alternative form of derivative

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

Remarks

derivative from the left

$$\lim_{x o c^-}rac{f(x)-f(c)}{x-c}$$

derivative from the right

$$\lim_{x o c^+}rac{f(x)-f(c)}{x-c}$$

Example:

$$f(x) = [[x]]$$

Example 6:

A Graph with a Sharp Turn

$$f(x) = |x-2|$$

Example 7:

A Graph with a Vertical Tangent Line

$$f(x)=x^{rac{1}{3}}$$

Theorem

Differentiability Implies Continuity

If ${m f}$ is differentiable at ${m x}={m c}$, then ${m f}$ is continuous at ${m x}={m c}$.

remarks

The relationship between continuity and differentiability is summarized below.

- If a function f is differentiable at x = c, then it is continuous at x = c. So, differentiability implies (⇒) continuity.
- It is possible for a function to be continuous at x = c and not be differentiable at x = c. So, continuity does not imply differentiability.

Exercises

11 11

11.11

```
begin
using CommonMark, ImageIO, FileIO, ImageShow
using PlutoUI
using Plots, PlotThemes, LaTeXStrings, Random
using PGFPlotsX
using SymPy
using HypertextLiteral: @htl, @htl_str
using ImageTransformations
using Colors
end
```