

MSc. in HPC

Quantitative Finance (5635b)

Binomial Trees

Darach Golden

January 26, 2017

1 A note on exercises involving programming

- Use any of C, C++, python, ruby, fortran, R, matlab, mathematica to do these exercises. If you want to use another package or language ask me first
- If the language you are using has any implementations of the models referred to in the exercises below (e.g., matlab) then you may **not** use those implementations to carry out the exercises. Obviously you can use them to check your answers
- You **may** use any random number generators that are provided by the package or language
- In all simulations below, it is acceptable to use equal time length intervals when partitioning any interval on the real line

Figure 1: Tree used for Conditional Probability Questions

1. Pricing a call option on a binomial tree

Let S be an asset which evolves over time on a four step binomial tree. The up and down parameters of the evolution are $u = \frac{1}{d} = 1.6$. The value of S at t = 0 is $S_0 = 10$. The prevailing risk free interest rate for borrowing and lending money is r = 20%.

- a) What is the value at t=0 of a European call option on this asset with strike price K=11 which expires at the end of four time steps?
- b) Calculate values of Δ for t=0 and t=1 on this tree
- 2. Using the parameters from the previous question, what is the value at t=0 of a European put option on this asset with strike price K=11 which expires at the end of four time steps?
- 3. Conditional probabilities on binomial trees

Given probabilities $\tilde{p} = \frac{2}{3}$ and $\tilde{q} = \frac{1}{3}$, on the binomial tree above, where $u = \frac{1}{d} = 2$, calculate

- a) $\tilde{\mathbb{E}}_1[S_2](H)$
- b) $\tilde{\mathbb{E}}_1[S_2](T)$
- c) $\tilde{\mathbb{E}}_1[S_3](T)$
- 4. Properties of conditional probabilities

In the three step binomial model above in $u = \frac{1}{d} = 2$. Let $p = \frac{2}{3}$, $q = \frac{1}{3}$

a) Show that

$$\mathbb{E}_1[S_2 + S_3](H) = \mathbb{E}_1[S_2](H) + \mathbb{E}_1[S_3](H),$$

$$\mathbb{E}_1[S_2 + S_3](T) = \mathbb{E}_1[S_2](T) + \mathbb{E}_1[S_3](T).$$

b) Show that

$$\mathbb{E}_1[S_1S_2](H) = S_1(H)\mathbb{E}_1[S_2](H) ,$$

$$\mathbb{E}_1[S_1S_2](T) = S_1(T)\mathbb{E}_1[S_2](T) ,$$

c) Calculate

$$\mathbb{E}_2[S_3](HH),$$

$$\mathbb{E}_2[S_3](HT),$$

$$\mathbb{E}_2[S_3](TH),$$

$$\mathbb{E}_2[S_3](TT),$$

and then calculate

$$\mathbb{E}_1[\mathbb{E}_2[S_3]](H) ,$$

$$\mathbb{E}_1[\mathbb{E}_2[S_3]](T) ,$$

Finally, show that

$$\mathbb{E}_1[S_3](H) = \mathbb{E}_1[\mathbb{E}_2[S_3]](H),$$

 $\mathbb{E}_1[S_3](T) = \mathbb{E}_1[\mathbb{E}_2[S_3]](T),$

5. Consider the three step binomial model with $u = \frac{1}{d} = 2$ and $r = \frac{1}{4}$.

- a) Letting $M_n=S_n$ and considering $\mathbb{E}_n[M_{n+1}]$ show that S_n is a martingale when $p=\frac13$, $q=\frac23$
- b) Now let

$$M_n = \frac{S_n}{(1+r)^n} \, .$$

Show that M_n is a martingale under the measure $p = \frac{1}{2}$, $q = \frac{1}{2}$

- c) Is $M_n = S_n$ a martingale under $p = \frac{1}{2}, q = \frac{1}{2}$?
- d) Are either S_n or $\frac{S_n}{(1+r)^n}$ martingales under $p=\frac{2}{3}\,,q=\frac{1}{3}$
- e) Which of these pairs (p,q) is a risk-neutral measure?
- 6. For a general binomial model with 0 < d < 1 + r < u, with risk neutral probabilities given by

$$\begin{split} \tilde{p} &=& \frac{1+r-d}{u-d}\,, \\ \tilde{q} &=& \frac{u-(1+r)}{u-d}\,, \end{split}$$

the discounted stock price process is

$$\frac{S_n}{(1+r)^n}.$$

By considering

$$\widetilde{\mathbb{E}}_n \left[\frac{S_{n+1}}{(1+r)^{n+1}} \right],$$

show that the discounted stock process is a martingale under the risk neutral probabilities

- 7. a) Implement a scaled random walk $W^{(n)}(t)$
 - b) Plot the scaled random walk for n=10,200,1000 out to times t=0.5,1,2 on separate plots
 - c) For t = 2, plot 400 paths of the walk on one plot for n = 500
 - d) Take the multiple (e.g., 10000) final values at t=2 of multiple scaled random walks out to t=2 for n=1000.
 - Make a normed histogram of the distribution of final values
 - Indicate which normal distribution the histogram should be approximating
 - Indicate that your distribution of values does in fact approximate this normal distribution
 - Do the same for t = 0.5