Práctica 5

Métodos Numéricos y Computación

I. Aproximación trigonométrica (Tema 3)

El polinomio trigonométrico sobre $[-\pi, \pi]$ es una combinación lineal de las funciones periódicas $\{1/2, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots, \cos(nx), \sin(nx), \dots\}$ y es utilizado para aproximar una función continua f definida sobre $[-\pi, \pi]$. Más generalmente, si f es una función definida sobre [-L, L], la aproximación trigonométrica de f viene dada por:

$$f(x) \simeq \frac{a_0}{2} + \sum_{k=1}^{n} a_k \cos(k\pi x/L) + \sum_{k=1}^{n-1} b_k \sin(k\pi x/L),$$

donde

$$a_{0} = \frac{1}{L} \int_{-L}^{L} f(x) dx,$$

$$a_{k} = \frac{1}{L} \int_{-L}^{L} f(x) \cos(k\pi x/L) dx \text{ para } k = 1, \dots, n,$$

$$b_{k} = \frac{1}{L} \int_{-L}^{L} f(x) \sin(k\pi x/L) dx \text{ para } k = 1, \dots, n - 1.$$

Este procedimiento también se puede usar con las funciones definidas a trozos (tanto en $[-\pi, \pi]$ como en cualquier otro intervalo).

Ejercicio 1 Obtén los coeficientes de la aproximación trigonométrica de orden 3 para la función

$$f(x) = \begin{cases} 1, & si - 2 \le x < 1, \\ x, & si \ 1 \le x \le 2. \end{cases}$$

Construye el polinomio y representalo gráficamente junto a la función.

Ejercicio 2 Implementa una función fourier que, dada una función f sobre el intervalo [-L, L], devuelva el valor de la aproximación trigonométrica de orden n, con $n \in \mathbb{N}$, para $x \in [-L, L]$.

Ejercicio 3 Obtén el polinomio trigonométrico de orden 4 de las siguientes funciones y representa gráficamente cada uno de ellos junto a la función que aproximan:

a) La función diente de sierra dada por $f(x) = x + \pi$, para todo $x \in [-\pi, \pi)$.

b) La función de onda rectangular dada por:

$$f(x) = \begin{cases} -1, & si - 1 \le x < -1/2, \\ 1, & si - 1/2 \le x < 1/2, \\ -1, & si \ 1/2 \le x \le 1. \end{cases}$$

Ejercicio 4 Obtén los polinomios trigonométricos de Fourier de grado 2, 3 y 4 de la función:

 $f(x) = \begin{cases} -x, & si - 2\pi \le x < 0, \\ x, & si \ 0 \le x \le 2\pi. \end{cases}$

Representa gráficamente la función junto a los polinomios trigonométricos. Comenta los resultados obtenidos.

Ejercicio 5 Las cantidades M (en mg) de cierto isótopo radiactivo a lo largo del tiempo t (en días) vienen dadas por $M(t) = M_0 e^{-kt}$, $t \in [0,22]$, donde $M_0 = 2100$ gr es la cantidad original (en t = 0) y k = 0.15 días⁻¹ es su tasa de decaimiento. La función $M^*(x) = M(r(x))$ con $r(x) = 11 + 11x/\pi$ está definida sobre $[-\pi, \pi]$. Obtén el polinomio trigonométrico de orden 4 para M^* y represéntalo gráficamente.

II. Aproximación de Padé (Tema 3)

Dada una función f, la aproximación racional en x_0 consiste en obtener un cociente de polinomios r(x) = p(x)/q(x), de forma que $f^{(i)}(x_0) = r^{(i)}(x_0)$, para todo i = 0, 1, ..., N = n + m.

Ejercicio 6 Calcula el aproximante de Padé de grado 6 a partir del desarrollo en serie de Taylor en $x_0 = 0$, con n = m = 3 para la función $f(x) = \sin(x)$. Compara los resultados para $x_i = 0.1i$, con i = 0, 1, ..., 10, con el resultado exacto.

Ejercicio 7 Las cantidades M (en mg) de cierto isótopo radiactivo a lo largo del tiempo t (en días) vienen dadas por $M(t) = M_0 e^{-kt}$, $t \in [0, 22]$, donde $M_0 = 2100$ gr es la cantidad original (en t = 0) y k = 0.15 días⁻¹ es su tasa de decaimiento. Obtén la aproximación racional de Padé de M(t) en $x_0 = 15$ con N = 7 y un polinomio cúbico en el denominador. Representa gráficamente la función y la aproximación racional.