Introduction to Algorithms: 6.006 Massachusetts Institute of Technology

Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 2: Data Structures

Lecture 2: Data Structures

Data Structure Interfaces

- A data structure is a way to store data, with algorithms that support operations on the data
- Collection of supported operations is called an **interface** (also API or ADT)
- Interface is a **specification**: what operations are supported (the problem!)
- Data structure is a **representation**: how operations are supported (the solution!)
- In this class, two main interfaces: Sequence and Set

Sequence Interface (L02, L07)

- Maintain a sequence of items (order is **extrinsic**)
- Ex: $(x_0, x_1, x_2, \dots, x_{n-1})$ (zero indexing)
- (use n to denote the number of items stored in the data structure)
- Supports sequence operations:

Container	build(X)	given an iterable x, build sequence from items in x
operation	len()	return the number of stored items
Static	iter_seq()	return the stored items one-by-one in sequence order
appendion	get_at(i)	return the i^{th} item
,	<pre>get_at(i) set_at(i, x)</pre>	replace the i^{th} item with x
Dynamic	insert_at(i, x)	add x as the i^{th} item
approctions	delete_at(i)	remove and return the i^{th} item
1 -0-10	<pre>insert_first(x)</pre>	add x as the first item
	<pre>delete_first()</pre>	remove and return the first item
-	insert_last(x)	add x as the last item
l list	delete_last()	remove and return the last item
:- Aray		

Dynamic May
• Special case interfaces:

insert_last(x) and delete_last() stack **queue** | insert_last(x) and delete_first() A fixed size of wild closest is

Set Interface (L03-L08)

- Sequence about extrinsic order, set is about intrinsic order
- Maintain a set of items having **unique keys** (e.g., item x has key x.key)
- (Set or multi-set? We restrict to unique keys for now.)
- Often we let key of an item be the item itself, but may want to store more info than just key
- Supports set operations:

Container	build(X)	given an iterable x, build sequence from items in x		
	len()	return the number of stored items		
Static	find(k)	return the stored item with key k		
Dynamic	insert(x)	add x to set (replace item with key x.key if one already exists)		
	delete(k)	remove and return the stored item with key k		
Order	iter_ord()	return the stored items one-by-one in key order		
	find_min()	return the stored item with smallest key		
	find_max()	return the stored item with largest key		
	find_next(k)	return the stored item with smallest key larger than k		
	find_prev(k)	return the stored item with largest key smaller than k		

• Special case interfaces:

dictionary | set without the Order operations

Array Sequence

In recitation, you will be asked to implement a Set, given a Sequence data structure.

Larray = consecutive dunk of wemory

Great word-RAM wodel

- $\bullet \ \, \text{Array is great for static operations! } \, \text{get_at (i)} \ \, \text{and } \, \text{set_at (i, x)} \ \, \text{in } \Theta(1) \, \text{time!}$
- But not so great at dynamic operations...

Grand len()

we working - الله (For consistency, we maintain the invariant that array is full)

- size w: • Then inserting and removing items requires: $w \ge \log v$

- shifting all items after the modified item

- reallocating the array - sest O(n) time ... space complexity

to address n data

Grays that we

should be alow

	Operation, Worst Case $O(\cdot)$					
Data	Container	Static	Dynamic			
Structure	build(X)	get_at(i)	insert_first(x)	insert_last(x)	insert_at(i, x)	
		set_at(i,x)	delete_first()	delete_last()	delete_at(i)	
Array	n	1	n	n	n	

(a constant time complexity

since requirer 2 allocating new array w/ bigger size to maintain contiguous mem chunk

Linked List Sequence

- Pointer data structure (this is **not** related to a Python "list")
- Each item stored in a **node** which contains a pointer to the next node in sequence
- Each node has two fields: node.item and node.next
- Can manipulate nodes simply by relinking pointers!
- Maintain pointers to the first node in sequence (called the head)
- Can now insert and delete from the front in $\Theta(1)$ time! Yay!
- (Inserting/deleting efficiently from back is also possible; you will do this in PS1)
- But now get_at(i) and set_at(i, x) each take O(n) time...:(
- Can we get the best of both worlds? Yes! (Kind of...)

	Operation, Worst Case $O(\cdot)$				
Data	Container	Static	Dynamic		
Structure	build(X)	get_at(i)	insert_first(x)	insert_last(x)	insert_at(i, x)
		set_at(i,x)	delete_first()	delete_last()	delete_at(i)
Linked List	n	n	1	n	n

Dynamic Array Sequen

need to traverse linked list ...

• Make an array efficient for last dynamic operations

- Python "list" is a dynamic array
- Idea! Allocate extra space so reallocation does not occur with every dynamic operation

constraint that \bullet Fill ratio: $0 \le r \le 1$ the ratio of items to space

• Whenever array is full (r=1), allocate $\Theta(n)$ extra space at end to fill ratio r_i (e.

• Will have to insert $\Theta(n)$ items before the next reallocation.

• A single operation can take $\Theta(n)$ time for reallocation

However, any sequence of $\Theta(n)$ operations takes $\Theta(n)$ time -

• So each operation takes $\Theta(1)$ time "on average"

Amortized Analysis

- Data structure analysis technique to distribute cost over many operations
- Operation has amortized cost T(n) if k operations cost at most $\leq kT(n)$
- "T(n) amortized" roughly means T(n) "on average" over many operations
- Inserting into a dynamic array takes $\Theta(1)$ amortized time
- More amortization analysis techniques in 6.046!

Dynamic Array Deletion

- Delete from back? $\Theta(1)$ time without effort, yay!
- However, can be very wasteful in space. Want size of data structure to stay $\Theta(n)$
- Attempt: if very empty, resize to r = 1. Alternating insertion and deletion could be bad...
- Idea! When $r < r_d$, resize array to ratio r_i where $r_d < r_i$ (e.g., $r_d = 1/4$, $r_i = 1/2$)
- Then $\Theta(n)$ cheap operations must be made before next expensive resize
- Can limit extra space usage to $(1+\varepsilon)n$ for any $\varepsilon>0$ (set $r_d=\frac{1}{1+\varepsilon}, r_i=\frac{r_d+1}{2}$)
- Dynamic arrays only support dynamic **last** operations in $\Theta(1)$ time
- Python List append and pop are amortized O(1) time, other operations can be O(n)!
- (Inserting/deleting efficiently from front is also possible; you will do this in PS1)

	Operation, Worst Case $O(\cdot)$				
Data	Container	Static	Dynamic		
Structure	build(X)	get_at(i)	insert_first(x)	insert_last(x)	insert_at(i, x)
		set_at(i,x)	delete_first()	delete_last()	delete_at(i)
Array	n	1	n	n	n
Linked List	n	n	1	n	n
Dynamic Array	n	1	n	$1_{(a)}$	n
				G-12-5/	