СОДЕРЖАНИЕ 1

Содержание

1.	Векторные пространства		
	1.1	Определение	3
	1.2	Фибоначчиевы последовательности	4
2.	Баз	ис и размерность	5
	2.1	Линейная комбинация	5
	2.2	Базис	6
	2.3	Лемма о линейной зависимости линейных комбинаций	8
	2.4	Алгебраические числа	9
3.	Сис	темы линейных уравнений	11
4.	Mar		11
	4.1	Определение	11
	4.2	Свойства матриц	12
5.	Mar	трица перехода	14
6.	Лин	нейные отображения	14
	6.1	Определение	14
	6.2	Ядро и образ линейного отображения	15
	6.3	Формула Грассмана	16
	6.4	Множество линейных отображений	17
	6.5	Матрица перехода	19
	6.6	Формула замены матрицы отображения при замене базиса	19
	6.7	Ранг матрицы	20
	6.8	Решение СЛУ	20
	6.9	Вид общего решения	21
	6.10	Транспонирование	21
7.	Эле	ементарные преобразования	24
8.	Раз	ложение матриц	27
	8.1	PDQ-разложение	27
	8.2	LU-разложение	29
	8.3	LPU-разложение	29

СОДЕРЖАНИЕ 2

9.	Опр	ределитель 30			
	9.1	Определитель	30		
	9.2	Полилинейная функция	30		
	9.3	Четность перестановки	31		
10	10.Групповые свойства определителя				
	10.1	Кольца частных	37		

1. Векторные пространства

1.1 Определение

Определение 1. K — поле; векторное пространство над K — это тройка $(V, +, \cdot)$, где V — множество, $+: V \times V \to V$; $\cdot: K \times V \to V$. Элементы V — векторы, элементы K — скаляры. При этом выполняются аксиомы:

- 1-4) (V,+) абелева группа.
 - 5) $\forall k_1, k_2 \in K, \forall v \in V : (k_1 \cdot k_2) \cdot v = k_1 \cdot (k_2 \cdot v)$
 - 6) $\forall k_1, k_2 \in K, \forall v \in V : k \cdot (v_1 + v_2) = k \cdot v_1 + k \cdot v_2$
 - 7) $\forall k \in K, \forall v_1, v_2 \in V : (k_1 + k_2) \cdot v = k_1 \cdot v + k_2 \cdot v$
 - 8) $\forall v \in V, 1 \in K : 1 \cdot v = v$

Замечание. Очевидные свойства:

- 1. $0 \cdot v = \overline{0}$
- 2. $(-1) \cdot v = -v$
- 3. a + b = b + a следует из 7-ми аксиом.

Доказательство. 2) $1 \cdot v + (-1) \cdot v = (1 + (-1)) \cdot v = 0 \cdot v = \overline{0} \Rightarrow (-1) \cdot v$ — противоположный к v.

1, 3 TODO proof □

Пример 1.

- 1. векторы на плоскости класс эквивалентности направленных отрезков \to в.п.
- 2. арифметическое векторное пространство $K^n = \left\{ \begin{pmatrix} k_1 \\ k_2 \\ \dots \\ k_n \end{pmatrix} \mid k_i \in K \right\}$

Для него выполняются операции:

$$\begin{pmatrix} a_1 \\ \dots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \dots \\ b_n \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ \dots \\ a_n + b_n \end{pmatrix}$$

$$k \begin{pmatrix} a_1 \\ \dots \\ \dots \end{pmatrix} = \begin{pmatrix} ka_1 \\ \dots \\ \dots \end{pmatrix}$$

$${}^{n}K = \{(k_1,...,k_n) | k_i \in K\}$$

 K^n и nK изоморфны: \exists биекция $f:K^n\to {}^nK$, является гомоморфизмом.

Определение 2. u и v — векторные пространства над K; $f:u\to v$ называется **гомоморфиз-** мом (линейным отображением), если:

- 1. f(a+b) = f(a) + f(b)
- 2. $f(k \cdot b) = k \cdot f(b)$

Пример 2.

- 1. K[x] векторное пространство над K
- 2. $K[x^n] = \{f \mid deg \ f \le n\}$ в.п. над K
- 3. Пусть R кольцо, $K_{\text{поле}} \subset R$ подкольцо; если $r_1 + r_2$ и kr определено $\forall r \in R$, то R векторное пространство над K
- 4. \mathbb{C} векторное пространство над \mathbb{R}
- 5. \mathbb{C} векторное пространство над \mathbb{Q}
- 6. M множествово; $V = \{f : M \to K\}$ векторное пространство над K (так как можно определить $(f_1 + f_2)(m) := f_1(m) + f_2(m)$ и $(k \cdot f)(m) := k \cdot f(m)$)

Пример 3.

$$M = k = \mathbb{R};$$

- 1. Func(\mathbb{R},\mathbb{R})
- 2. $\operatorname{Func}_{c}(\mathbb{R},\mathbb{R})$ непрерывные функции, в.п. над \mathbb{R}

1.2 Фибоначчиевы последовательности

Определение 3. Последовательность фибоначииева, если для нее выполняется, что $\forall n \ a_n = a_{n-1} + a_{n-2}$. При этом $a_n + b_n$ и ka_n тоже фибоначииевы \Rightarrow фибоначииевы последовательности векторного пространства.

Пример 4.

1.
$$M$$
 — множество; $V=2^M; K=\mathbb{Z}/_2\mathbb{Z}$ — в.п.
$$X+Y:=(X\cup Y)\setminus (X\cap Y)$$

$$\emptyset$$
 — нейтральный, $0 \cdot x := 0$, $1 \cdot x := x$

Замкнуто: $(1+1) \cdot x = 1 \cdot x + 1 \cdot x = x + x = \emptyset$. Важно, что 1+1=0 в K, т.е. $char\ K=2$

Пример 5.

Как ввести координаты:

1.
$$K[x]_n = \{a_0 + a_1x + \dots + a_nx^n\} = (a_0, \dots, a_n)$$

 $K[x]_n \cong K^{n+1}$

2.
$$\mathbb{C}$$
 над $\mathbb{R}: z = a + bi \rightsquigarrow (a,b)$
 $\mathbb{C} \cong \mathbb{R}^2$

- 3. Пример плохих координат: $z \leadsto (r, \varphi)$ не согласуется с операциями
- 4. Func(\mathbb{N},\mathbb{R}) $\cong \mathbb{R}^n \leadsto (a_0,...,)$
- 5. фиб. пос-ти $(a_1,a_2,...,) \leadsto (a_1,a_2)$ фиб. пос-ти $\cong \mathbb{R}^2$
- 6. $N \subset M = \{a_1,...,a_n\}$ $N \leadsto (\varepsilon_1,...,\varepsilon_n), \ \varepsilon_i = \begin{cases} 1, a_i \in N \\ 0, a_i \notin N \end{cases}$

2. Базис и размерность

2.1 Линейная комбинация

Определение 4. $v_1,...,v_n \in V$ — векторное пространство над K; $a_1,...,a_n \in K$. $a_1v_1+...+a_nv_n$ – **линейная комбинация** $v_1,...,v_n$ с коэффициентами $a_1,...,a_n$.

Определение 5. $v_1,...,v_n \in V$ — множество линейных комбинаций, замкнутых относительно $+,\cdot \Rightarrow$ является векторным пространством. Оно называется **линейной оболочкой** $v_1,...,v_n$ – $\langle v_1,...,v_n \rangle$.

$$\sum a_i v_i + \sum b_i v_i = \sum (a_i + b_i) v_i; \ k \cdot \sum a_i v_i = \sum (ka_i) \cdot v_i$$

Замечание. Все тоже для бесконечных систем $\{v_i\}_{i\in I}$. Линейная комбинация — это $a_1v_1+\ldots+a_nv_n$ или $\sum a_iv_i$, где почти все $a_i=0$ (все, кроме конечного числа)

Пример 6. v, u — неколлинеарные векторы.

 $\langle v \rangle = \{kv\}$ — прямая, содержащая v.

 $\langle v, u \rangle$ — плоскость, натянутая на u и v.

Определение 6. $\{v_i\}$ — *линейно независимое множество векторов*, если выполнено одно из двух равносильных условий:

2.2 Базис 6

1.
$$\forall i \ v_i \neq \sum_{j \neq i} a_j v_j$$

2. $\sum_{i} a_{j}v_{j} = 0 \Rightarrow \forall i \ a_{i} = 0$, то есть никакая линейная комбинация v_{i} не равна 0.

Пример 7. $\{\overline{0}\}$ — линейно независимое

1.
$$\overline{0} = \overline{0} = \sum_{\emptyset}$$

$$2. 1 \cdot \overline{0} = \overline{0}$$

Доказательство.

0 2 \Rightarrow 1 Пусть $v_1 = \sum_{i \neq 1} a_i v_i \Rightarrow (-1) \cdot v_1 + \sum_{i \neq 1} a_i v_i = 0$, но не все коэффициенты = 0.

о
$$1\Rightarrow 2$$

$$\sum a_iv_i=0 \text{ и } i \text{ (HYO } i=1)\text{: } a_i\neq 0\text{; тогда } v_1=-\tfrac{a_2}{a_1}-\dots$$

3амечание. Здесь важно, что K — поле $(\frac{a_i}{a_1})$.

Определение 7. R — ассоциативное кольцо; тогда тройка $(V, +, \cdot)$ т.ч. выполнены 8 аксиом, называется R-модулем.

Определение 8. V — векторное пространство над K; $\{v_i\}$ — nopo mode mode nopo mode mode mode nother mode mode

Замечание. Пусть $M \subset V = \{v_i\}$ — система векторов.

- 1. M линейно независимое, N \subset M \Rightarrow N линейно независимое.
- 2. M порожденная система, $N \supset M \Rightarrow N$ порожденная система.

2.2 Базис

Определение 9. V — векторное пространство, $\{v_i\} \in V$; $\{v_i\}_{i \in I}$ — **базис**, если выполнены 4 равносильных условия:

- 1. $\{v_i\}$ лин. нез. и пор.
- 2. $\{v_i\}$ макс. лин. нез., т.е. $\forall v \in V \ \{v_i\} \cup \{v\}$ лин. зав.
- 3. $\{v_i\}$ мин. пор., т.е. $\forall i \in I \ \{v_i\}_{i \in I} \setminus \{v_i\}$ не пор.
- 4. $\forall v \in V$ представляется единственным образом как линейная комбинация $\{v_i\}$

2.2 Базис 7

Доказательство. Докажем равносильность:

 $\circ 1 \Rightarrow 2$

$$\{v_i\} \cup \{v\} \quad \{v_i\} = V \Rightarrow v -$$
 л.к. $\{v_i\} \Rightarrow \{v_i\} \cup \{v\}$ лин.зав.

 $\circ 2 \Rightarrow 1$

 $v \in V \{v_i\} \cup \{v\}$ — л.з. по условию: $\exists a_{i_1},...,a_{i_k},a: a_{i_1}v_{i_1}+...+a_{i_k}v_{i_k}+av=0$ и не все коэффициенты =0.

- I. Пусть $a \neq 0 \Rightarrow v = -\sum \frac{a_{i_l}}{a} v_{i_l}$, т.е. $v \in \langle \{v_i\} \rangle$
- II. $\sum a_{i_l}v_{i_l}=0$ не все $a_{i_l}=0$, против. с ЛНЗ $\{v_i\}$

 $\circ 1 \Rightarrow 4$

 $v \in V \quad \{v_i\} \Rightarrow v = \sum a_i v_i$, осталось доказать единственность.

Пусть
$$v = \sum a_i v_i = \sum b_i v_i \Rightarrow 0 = \sum (a_i - b_i) v_i \Rightarrow^{\text{ЛН3}} a_1 = b_i \ \forall i$$

 $\circ 4 \Rightarrow 1$

 $\{v_i\}$ пор. по усл., осталось доказать ЛНЗ

$$v_1 = \sum_{I \neq 1} a_i v_i = 1 \cdot v_1 + 0 \cdot v_2 + \dots$$
 разные разложения ????

TODO

Утверждение 1. $f: V \to {}^nK \; (v \to (a_1,...,a_n)) \; - \; u$ зоморфизм

Доказательство. Корректность и биективность — по определению базиса.

Гомоморфность очев.

Обозначение 1. Базис — строка, координаты — столбец.

Пример 8. $K[x]_2$ 1, x, $x^2 \mid x^2 + 1$, $x^2 - x$, $x^2 + x + 3 \rightarrow$ базисы. $2x^2 + 3 \rightsquigarrow (2,0,3) \mid (0,1,1) \rightarrow$ представление в разных базисах.

Определение 10. V называют **конечномерным**, если в $V \exists$ конечная порождающая система $(V = \langle v_1, ..., v_n \rangle).$

Лемма 1. Из любой конечной порождающей системы можно выбрать базис.

Доказательство. Пусть $v_1,...,v_n$ — порожденная система; если она ЛНЗ, то вот и базис.

Иначе
$$\exists v_i \text{ (HYO } v_n): \ v_n = \sum_{i=1}^{n-1} a_i v_i$$

Но тогда \forall линейная комбинация $v_1,...,v_n$ это $\sum\limits_{i=1}^n b_i v_i = \sum\limits_{i=1}^{n-1} b_i v_i + b_n (\sum\limits_{i=1}^{n-1} a_i v_i) \in \langle v_1,...,v_{n-1} \rangle$ Значит, $v_1,...,v_n$ — порождающая система.

Будем продолжать этот процесс, пока система не станет линейно независимой (что когда-нибудь случится, так как система была конечной).

Следствие 1. В любом конечном пространстве есть базис.

Замечание. Лемма Цорна

На самом деле в любом пространстве есть базис.

Пример 9. $K[x] = \{1, x, x^2, ...\}$ — базис

K[[x]] — базис существует, но конструктивно его не предъявить

 \mathbb{R} над \mathbb{Q} — базис есть, но...

Определение 11. V — векторное пространство (конечномерное); **размерность** V ($dim\ V$) — это количество векторов в его базисе.

Теорема 1. B двух любых базисах V поровну элементов.

Доказательство. Это следует из леммы.

2.3 Лемма о линейной зависимости линейных комбинаций

Лемма 2. о линейной зависимости линейных комбинаций (ЛЗЛК)

Пусть $u_1,...,u_n \in v_1,...,v_m, \ m > n$. Тогда $u_1,...,u_m$ линейно зависима.

Доказательство. Лирическое отсутупление:

В теореме: пусть $v_1,...,v_m$ — базис min размера

 \exists базис $u_1,...,u_{n+1}$

Все
$$u_i - \text{л.к.} \{v_i\}$$
, т.к. $\{v_i\} - \text{базис} \Rightarrow \{u_i\} - \text{л.з.}$???

Само доказательство:

НУО:
$$n=m+1$$
 $(u_1,...,u_{m+1}-$ л.з. $\Rightarrow u_1,...,u_n-$ л.з.)

Индукция по m:

1. Basa: m = 1; $u_1 = a_1 v_1$, $u_2 = a_2 v_1$

Два случая:

- 1) a_1 или $a_2 = 0 \Rightarrow \{u_1, u_2\}$ л.з.
- 2) $a_1, a_2 \neq 0 \Rightarrow \frac{a_2}{a_1} \cdot u_1$, т.е. опять л.з.
- 2. Переход: $m \to m+1$

$$u_1,...,u_{m+2}$$
 $v_1,...,v_{m+1}$

$$u_i = \sum_{j=1}^{m+1} a_{i_j} v_j - \text{л.к..}$$
 Далее возможны случаи:

1) Пусть
$$a_{i_{m+1}} = 0 \ \forall i \Rightarrow u_1,...,u_{m+2} \in \langle v_1,...,v_m \rangle \Rightarrow^{\text{и.п.}} u_1,...,u_{m+1} - \text{л.з.}$$

2) Пусть
$$i: a_{i_{m+1}} \neq 0$$
, НУО $a_{1_{m+1}} \neq 0$
$$u_1 = a_{1_1}v_1 + \ldots + a_{1_{m+1}}v_{m+1}$$

$$u_2 = a_{2_1}v_1 + \ldots + a_{2_{m+1}}v_{m+1}$$

. . .

$$u_{m+2} = a_{m+1}v_1 + \dots + a_{m+1_{m+1}}v_{m+1}$$

 $\forall k=2...m+2$ из k-ого равенства вычтем 1-ое, умноженное на $\frac{a_{k_{m+1}}}{a_{1_{m+1}}}$.

$$\tilde{u}_i = u_i - \frac{a_{k_{m+1}}}{a_{1_{m+1}}} \cdot u_1 = \left(a_{i_1} - \frac{a_{i_1} \cdot a_{i_{m+1}}}{a_{i_{m+1}}}\right) \cdot v_1 + \dots + \left(a_{i_m} - \frac{a_{i_m} \cdot a_{i_{m+1}}}{a_{i_{m+1}}}\right) \cdot v_m - \left(a_{i_{m+1}} - a_{i_{m+1}}\right) \cdot v_{m+1}$$

Получили $\tilde{u}_2,...,\tilde{u}_{m+1} \in \langle v_1,...,v_m \rangle$. Тогда по и.п. $\tilde{u}_2,...,\tilde{u}_{m+2}$ — л.з.

То есть $\exists b_2,...,b_{m+2}$ не все равные 0:

$$0=\sum_{i=2}^{m+2}b_i\tilde{u}_i=\sum b_i(u_i-...u_1)=(-\sum rac{a_{i_{m+1}}}{a_{1_{m+1}}})\cdot u_1+b_2u_2+...+b_{m+2}u_{m+2}$$
— нетривиальная линейная комбинация.

Лемма 3. u — конечномерное векторное пространство; $u_1,...,u_k \in U$ — ЛНЗ система $\Rightarrow \exists u_{k+1},...,u_n$ — базис U

(любую ЛНЗ систему можно дополнить до базиса)

Доказательство.
$$u_1,...,u_k - \Pi H 3 \Rightarrow \begin{bmatrix} \text{макс. } \Pi H 3 \Rightarrow \text{ это базис;} \\ \exists u_{l+1} : u_1,...,u_{l+1} - \Pi H 3 \end{bmatrix}$$

Будем добавлять к $u_1,...,u_k$ по вектору. \bar{l} не может стать больше $n^* \Rightarrow$ в какой-то момент получим базис.

 $*u_1,...,u_n,u_{n+1}$ — ЛЗ по ЛЗНК (рассмотрим $v_1,...,v_n$ — базис $U;u_1,...,u_{n+1} \in \langle v_1,...v_n \rangle \Rightarrow u_1,...,u_{n+1}$ — ЛЗ)

Следствие 2. U,V- конечномерное векторное пространство над K и $U \leq V \Rightarrow \dim U \leq \dim V$ u если $\dim U = \dim V \Rightarrow U = V$

Доказательство. $u_1,...,u_k$ — базис U; по лемме можем дополнить до $u_1,...,u_n$ — базис $V\Rightarrow k\leq n$ Если k=n, то дополняем 0 векторов \Rightarrow базис U= базис $V\Rightarrow$ оба пространства — линейные комбинации одних и тех же векторов

2.4 Алгебраические числа

Определение 12. \mathbb{Q} ; α — алгебраическое число, если $\exists f \in \mathbb{Q}[x] : f(\alpha) = 0$

Пример 10.
$$\sqrt[7]{3}$$
— алг., т.к. $\exists f(x) = x^7 - 3$ π, e —не алг. (не знаем)

Теорема 2. α – алгебраическое, $P \in \mathbb{Z}[x] \Rightarrow P(\alpha)$ – алгебраическое

Доказательство. Рассмотрим V_{α} — в.п. над $\mathbb{Q}: \{P(\alpha) \mid P \in \mathbb{Q}[x]\}$ — замкнуто относительно + и · на рациональные числа (т.е. это в.п.)

Утверждение 2. Это пространство конечномерное.

Доказательство.
$$\exists a_0,...,a_{n-1} \in \mathbb{Q}: \alpha^n + a_{n-1}\alpha^{n-1} + ... + a_1\alpha + a_0 = 0$$
 $\alpha^n = -\sum_{i=0}^{n-1} a_i\alpha^i \in \langle 1,\alpha,...,\alpha^{n-1} \rangle \Rightarrow \langle 1,\alpha,...,\alpha^n \rangle = \langle 1,\alpha,...,\alpha^{n-1} \rangle$ $\alpha^{n+1} = -\sum_{i=0}^{n-1} a_i\alpha^{i+1} \in \langle 1,\alpha,...,\alpha^n \rangle \in \langle 1,\alpha,...,\alpha^{n-1} \rangle \Rightarrow \langle 1,\alpha,...,\alpha^{n+1} \rangle = \langle 1,\alpha,...,\alpha^{n-1} \rangle$ Продолжим так делать и получаем, что $\forall N \ \alpha^N \in \langle 1,\alpha,...,\alpha^{n-1} \rangle$, т.е. dim $V_\alpha \leq n$

$$\exists P \in \mathbb{Z}[x] : 1, P(\alpha), ..., (P(\alpha))^n \in V_{\alpha}$$
, их $n+1, \dim V_{\alpha} \Rightarrow 1, ..., (P(\alpha))^n - ЛЗ$, т.е. $\exists q_0, ..., q_n : q_0 \cdot 1 + q_1 \cdot P(\alpha) + ... + q_n \cdot (P(\alpha))^n = 0$, т.е. $P(\alpha)$ – корень многочлена $q_n x^n + ... + q_1 x + q_0$, т.е. $P(\alpha)$ – алг.

 $\it 3$ амечание. Аналогично доказывается, что $\alpha,\,\beta-$ алгебраические $\Rightarrow \alpha+\beta,\,\alpha\beta-$ алгебраические.

Теорема 3. V — конечномерное векторное пространство над K; тогда $\exists ! n : V \cong K^n$

Доказательство. Единственность:

ясно; $n = \dim K^n = \dim V$

Существование:

Пусть $u_1, u_2, ..., u_n$ — базис V.

Рассмотрим отображение
$$i:K^n \to V:\begin{pmatrix} a_1\\ \dots\\ a_n \end{pmatrix} \to a_1u_1+\dots+a_nu_n$$

Это биекция (т.к. $u_1,...,u_n$, а координаты единственны) и гомоморфизм (по очеву). \square

Обозначение 2. $u \in V, \mathcal{U} = \begin{pmatrix} a_1 \\ \dots \\ a_n \end{pmatrix} = [u]_{\{u_i\}} -$ столбец координат в базисе $\{u_i\}.$

[u] зависит от $\{u_i\}$.

Пример 11. Фибоначчиева последовательность:

$$(1,0,1,1,2,3,\ldots) = v_1$$

$$(0,1,1,2,3,5,...) = v_2$$

$$(a,b,a+b,2b+a,...) = av_1 + bv_2 \leadsto \begin{pmatrix} a \\ b \end{pmatrix}$$

Классическое:
$$(1,1,2,3,...) \leadsto \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Пример 12. Пример хорошего базиса:

$$(1,\varphi,\varphi^2,\dots) = u_1$$
$$(1,-\frac{1}{\varphi},-(\frac{1}{\varphi})^2,\dots) = u_2$$

Найти явную формулу для фибоначчиевой последовательности ⇔ найти координаты в базисе $\{u_1,u_2\}$:

$$(c_1, c_2, \dots, c_n) = ku_1 + lu_2 \Rightarrow c_n]k\varphi^n + l\cdot(-\frac{1}{\varphi})^n$$

3. Системы линейных уравнений

Определение 13. Cистема линейных уравнений S : $\begin{cases} a_{1,1}x_1+a_{1,2}x_2+...+a_{1,m}x_m=b_1\\ a_{2,1}x_1+a_{2,2}x_2+...+a_{2,m}x_m=b_2\\ ...\\ a_{n,1}x_1+a_{n,2}x_2+...+a_{n,m}x_m=b_n \end{cases}$

Обозначение 3.
$$A_i=egin{pmatrix} a_{1,i}\\a_{2,i}\\ \dots\\a_{n,i} \end{pmatrix}\in K^n,\, B=egin{pmatrix} b_1\\b_2\\ \dots\\b_n \end{pmatrix}$$

Определение 14. Что значит, что S *имеет решение* $? \to B \in \langle A_1, A_2, ..., A_m \rangle$.

Определение 15. *Однородная* CJIY: $B=0=\begin{pmatrix} 0 \\ 0 \\ ... \\ 0 \end{pmatrix}$; всегда есть тривиальное решение $x_1 = x_2 = \dots = x_m = 0$

Определение 16. У S есть нетривиальное решение $\Leftrightarrow A_1, A_2, ..., A_m$ — ЛЗ.

 $extit{\it Частный случай: } m>n:A_1,...,A_{n+1}\in K^n\Rightarrow \Pi \exists\Rightarrow {\rm OC}\Pi$ У имеет нетривальное решение.

Матрицы 4.

4.1 Определение

Определение 17. A — абелева группа; I,J — множества (конечные); тогда **матрица** на ∂ A — это отображение $I \times J \to A, (i,j) \to a_{i,j} \in A$

Обозначение 4. Часто $I = \{1,2,...,n\},\ J = \{1,2,...,m\}.$ В этом случае множество матриц обозначается как $M_{n,m}(A)$.

Определение 18. Определим *операцию сложения*: $(a_{i,j}) + (b_{i,j}) = (a_{i,j} + b_{i,j})_{i=1...n, j=1...m}$. Тогда $M_{n,m}(A)$ — абелева группа.

Определение 19. A = R— кольцо; определим *операцию умножения*:

1.
$$M_{1,m}(R) \times M_{m,1}(R) \to R$$

$$(a_1,...,a_m) \cdot \begin{pmatrix} b_1 \\ ... \\ b_m \end{pmatrix} = a_1b_1 + a_2b_2 + ... + a_mb_m$$

2.
$$M_{k,m}(R) \times M_{m,1}(R) \to M_{k,1}(R)$$

$$\begin{pmatrix} r_1 \\ - \\ r_2 \\ \cdots \end{pmatrix} \cdot c = \begin{pmatrix} r_1c \\ r_2c \\ \cdots \\ r_kc \end{pmatrix} \in M_{k,1}(R) = R^k$$

$$r_i$$
 — строка, C — столбец

3.
$$M_{k,m}(R) \times M_{m,l}(R) \to M_{k,l}(R)$$

 $A \cdot (c_1 \mid c_2 \mid \dots \mid c_l) = (Ac_1) \cdot (Ac_2) \cdot \dots \cdot (Ac_l)$

Тогда:

$$A \in M_{k,m}, A = (a_{i,j})_{i=1...k, j=1...m}$$

 $B \in M_{m,l}, B = (b_{i,j})_{i=1...m, j=1...l}$
 $AB = C \in M_{k,l}, C = (c_{i,j})_{i=1...k, j=1...l}$
 $c_{i,j} = \sum_{s=1}^{m} a_{i,s} b_{s,j}$

Утверждение 3. Перефразировка СЛУ через матрицы:

$$S \rightsquigarrow A \cdot X = B$$

$$(A_1 \mid A_2 \mid \dots \mid A_m) \cdot \begin{pmatrix} x_1 \\ \dots \\ x_m \end{pmatrix} = \begin{pmatrix} b_1 \\ \dots \\ b_n \end{pmatrix}$$

4.2 Свойства матриц

Утверждение 4. Свойства матриц:

1)
$$A \in M_{m,k}(R)$$
; $B,C \in M_{k,l}(R)$
 $A \cdot (B+C) = AB + BC$

Аналогично (с точностью до перемены индексов матриц) доказывается, что $(B+C)\cdot A=BA+CA$

2) $A \in M_{k,l}(R); B \in M_{l,n}(R); C \in M_{m,n}(R)$ $(AB) \cdot C = A \cdot (BC)$ в частности, все эти произведения существуют.

Доказательство. 2.
$$((AB) \cdot C)_{i,j} = \sum_{s=1}^{m} (AB)_{i,s} \cdot C_{s,j} = \sum_{s=1}^{m} (\sum_{t=1}^{l} A_{i,t} B_{t,s}) \cdot C_{s,j} = \sum_{t=1...l}^{m} A_{i,t} B_{t,s} C_{s,t}$$
 ($A \cdot (BC)$) $_{i,j} = ... =$ тоже самое (честно)

Утверждение 5. $M_{n,n}(R)$ – accoquamueное кольцо с 1, $n \in \mathbb{N}$.

Доказательство. Умножение определено: $M_{n,n} \times M_{n,n} \to M_{n,n}$

Абелева по сложению (знаем). Ассоциативность и дистрибутивность доказали.

Рассмотрим
$$E = \begin{pmatrix} 1 & 0 & \dots \\ 0 & 1 & \dots \\ \dots & \dots & 1 \end{pmatrix}$$
 (0 везде кроме главной диагонали, на которой стоят 1).

по умножению.

Замечание. Умножение матриц не коммунитативно.

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

3амечание. R = K -поле

 $M_n(K)$ — векторное пространство над K (т.к. $k \cdot (a_{i,j}) = (ka_{i,j})$)

$$(M_{n,n}(K) = M_n(K))$$

Самый простой базис:
$$E_{i,j}:(E_{i,j})_{k,l}= egin{cases} 1, & k=i,l=j \\ 0, & \text{иначе} \end{cases}$$

$$a_{i,j} = \sum_{i,j=1..n} a_{i,j} E_{i,j}$$

3амечание. Умножение на $M_n(K)$ достаточно было бы задать на базисе:

$$E_{i,j} \cdot E_{k,l} = \begin{cases} 0, & j \neq k \\ E_{i,l}, & j = k \end{cases}$$

5. Матрица перехода

Определение 20. V-n-мерное пространство; $v_1,...,v_n$ — старый базис, $v_1',...v_n'$ — новый базис

$$a_1,...,a_n \in K: (v_1,...,v_n) \cdot \begin{pmatrix} a_1 \\ ... \\ a_n \end{pmatrix} = a_1v_1 + ... + a_nv_n.$$
 Рассмотрим матрицу $C: ([v_1]_{\{v_1'\}} \mid [v_2]_{\{v_2'\}} \mid ... \mid [v_n]_{\{v_n'\}}) \in M_n(K)$. C называется **матрицей**

nepexoda of v_i k v'_i .

Утверждение 6. $x \in V, \mathcal{X} = [x]_{\{v_i\}}; mor \partial a \ C \cdot \mathcal{X} - \ \vartheta mo \ [x]_{\{v_i'\}}.$

Доказательство. Рассмотрим
$$(u'_1,...,u'_n)(C\mathcal{X}) = ($$
по ассоциативности $) = (u'_1,...,u'_n)(C\mathcal{X}) = (u_1,...,u_n) \cdot \mathcal{X} = x \Rightarrow C\mathcal{X} -$ координатыты $x \in (u'_1,...,u'_n).$

Следствие 3. C — матрица перехода от $(u_1,...,u_n)$ κ $(u'_1,...,u'_n)$.

C' — матрица перехода от $(u'_1,...,u'_n)$ к $(u''_1,...,u''_n)$.

C'C — матрица перехода от $(u_1,...,u_n)$ к $(u_1'',...,u_n'')$.

Доказательство. \forall столбца $\mathcal{X} \leadsto x \in V$:

CX – координаты x в $(u'_1,...,u'_n)$

 $C'(C\mathcal{X})$ — координаты x в $(u_1'',...,u_n'')$

 $(C'C)\mathcal{X} \Rightarrow C'C$ — часть матрицы перехода от $(u_1,...,u_n)$ к $(u_1'',...,u_n'')$

Частный случай: $u_1'' = ... = u_n'' = u_1 = ... = u_n$

C'C = E и CC' = E, т.е. $C' = C^{-1}$; в частности матрица перехода обратима.

Линейные отображения 6.

6.1Определение

Определение 21. U и V – векторное пространство над K; $\mathcal{A}:U\to V$ линейно (гомоморфизм), если $\mathcal{A}(u + \alpha v) = \mathcal{A}(u) + \alpha \mathcal{A}(v) \ \forall u, v \in U, \ \forall \alpha \in K.$

Пример 13. A(x) = x – линейно, A(x) = 0 – линейно.

Пример 14. $\mathcal{A}: K^n \to K$, $\dim_K K = 1$, $(\langle 1 \rangle = K)$

$$\mathcal{A} \cdot \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = a_1 x_1 + \dots + a_n x_n; \ a_1, \dots, a_n$$
 — фиксированы.

Более общо: $A \in M_{m,n} : A(x) = \mathcal{A} \cdot x$ – линейное отображение $\mathcal{A} : K^n \to K$.

Замечание. На самом деле, все линейные отображения таковы (т.е. представляют из себя домножение на матрицу).

Теорема 4. $u_1,...,u_n$ — базис $U; v_1,...,v_n \in V;$ тогда $\exists !$ линейное отображение $\mathcal{A}: U \to V$ т.ч. $\mathcal{A}(u_i) = v_i$.

Доказательство. Единственность:

Пусть
$$\mathcal{A}(u_i) = v_i = \mathcal{B}(u_i)$$
.

Пусть
$$\forall u \in U : u = \sum a_i u_i \Rightarrow \mathcal{A}(u) = \mathcal{A}(\sum a_i u_i) = \sum a_i \mathcal{A}(u_i) = \sum a_i \mathcal{B}(u_i) = \mathcal{B}(\sum a_i u_i) = \mathcal{B}(u)$$

Существование:

Для каждого $u = \sum a_i u_i$ положим $\mathcal{A}(u) = \sum a_i v_i$:

$$\mathcal{A}$$
 — линейно: $\mathcal{A}(\alpha \cdot (\sum a_i u_i) + \sum b_i u_i) = \mathcal{A}(\sum (\alpha \cdot a_i + b_i) u_i) = \alpha \cdot \sum a_i v_i + \sum b_i v_i = \alpha \cdot \mathcal{A}(\sum a_i u_i) + (\sum b_i u_i)$

6.2 Ядро и образ линейного отображения

Определение 22. $A: U \to V-$ линейное отображение.

Ker
$$\mathcal{A} = \{u \in U \mid \mathcal{A}(u) = 0\} - \mathbf{s}\partial po \mathcal{A}.$$

$$\operatorname{Im} \mathcal{A} = \{ v \in V \mid \exists u \in U : \mathcal{A}(u) = v \} - \textit{oбраз } \mathcal{A}.$$

Лемма 4. Ker \mathcal{A} — подпространство в U; Im \mathcal{A} — подпространство в V.

Доказательство. Проверка замкнутости:

1)
$$u,v \in \text{Ker } \mathcal{A} \Rightarrow \mathcal{A}(u) = 0 \& \mathcal{A}(v) = 0 \Rightarrow \mathcal{A}(u+kv) = \mathcal{A}(u) + k \cdot \mathcal{A}(v) = 0 \Rightarrow u+v, ku \in \text{Ker } \mathcal{A}(v) = 0 \Rightarrow u+v, ku \in \mathcal{A}(v) = 0 \Rightarrow$$

2)
$$u = \mathcal{A}(x), v = \mathcal{A}(y)$$

$$u + v = \mathcal{A}(x) + \mathcal{A}(y) = \mathcal{A}(x + y) \Rightarrow x + y \in \text{Im } \mathcal{A}$$

$$ku = k \cdot A(x) = \mathcal{A}(kx) \Rightarrow kx \in \text{Im } \mathcal{A}$$

Пример 15. $V = U = \mathbb{R}^2$

$$\circ \mathcal{A}(x) = 0$$

$$\operatorname{Ker} \mathcal{A} = \{0\}, \operatorname{Im} \mathcal{A} = V$$

$$\circ \mathcal{A}(x) = 0$$

$$\operatorname{Ker} \mathcal{A} = \{V\}, \operatorname{Im} \mathcal{A} = 0$$

 $\circ u$ — вектор

 $u \rightsquigarrow u_0$ — проекция на ОХ

Ker
$$\mathcal{A} = \left\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle$$
, Im $\mathcal{A} = \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\rangle$

Теорема 5. $\mathcal{A}: U \to V$ — линейное отображение; тогда $\dim Ker \mathcal{A} + \dim Im \mathcal{A} = \dim U$.

Доказательство. dim Ker $A=m;\ u_1,...,u_n$ — базис $U;\dim U=n$

Применим $\mathcal{A}: \mathcal{A}(u_1) = ... = \mathcal{A}(u_m) = 0$

Сначала докажем следующее утверждение:

Утверждение 7. $\mathcal{A}(u_{m+1}),...,\mathcal{A}(u_n)$ – базис Im \mathcal{A} .

Доказательство. 1) Докажем, что $\mathcal{A}(u_{m+1}),...,\mathcal{A}(u_n)$ — ЛНЗ

Пусть
$$\alpha_{m+1}\mathcal{A}(u_{m+1}) + ... + \alpha_n\mathcal{A}(u_n) = 0$$

$$\mathcal{A}(\sum \alpha_{m+i}u_{m+i}) = 0 \Rightarrow \sum \alpha_{m+i}u_{m+i} \in \text{Ker } \mathcal{A} \Rightarrow \sum \alpha_{m+i}u_{m+i} = \sum_{i=1}^{m} \alpha_{i}u_{i} \text{ (т.к. } u_{1},...,u_{m} - \text{базис Ker } \mathcal{A}) ??$$

$$\sum \alpha_{m+i}u_{m+i} - \sum \alpha_{i}u_{i} = 0; \text{ т.к. } \{u_{i}\} - \text{ЛЗ, то все } \alpha_{i} = 0.$$

TODO

6.3 Формула Грассмана

Применение: Формула Грассмана. В множествах есть базовые операции \cup , \cap . В пространствах $-\cap$, +.

Определение 23. $V_1 + V_2 = \{v_1 + v_2 \mid v_1 \in V_1, v_2 \in V_2\}$ — сумма подпространств (сумма Минковского).

Теорема 6. V — векторное пространство над K; V_1,V_2 — подпространства $(V_1,V_2 \leq V)$.

- 1. $V_1 \cap V_2$ подпространство V (очев).
- $2. V_1 + V_2 m$ оже nodnpocmpaнcmso.

Доказательство. $v_1 \in V_1 + V_2 \Rightarrow v = v_1 + v_2$ & $v_1' \in V_1 + V_2 \Rightarrow v' = v_1' + v_2' \Rightarrow v + v' = (v_1 + v_1') + (v_2 + v_2') \in V$ ($v_1 + v_1' \in V_1$, $v_2 + v_2' \in V_2$ т.к. $V_1, V_2 \leq V$) $k \cdot v = k \cdot (v_1 + v_2) = k \cdot v_1 + k \cdot v_2 \in V, \ kv_1 \in V_1, \ kv_2 \in V_2$

3амечание. $v_1,...,v_n$ — базис $V_1,\,v_1',...,v_m'$ — базис $V_2\Rightarrow\{v_1,...,v_n,v_1',...,v_m'\}$ — порождающая система V_1+V_2 .

Замечание. Многие формулы про + и \cap аналог формул про \cap и \cup . Но $(V_1 + V_2) \cap V_3 \neq (V_1 \cap V_3) + (V_{23})$.

Определение 24. V_1,V_2 — векторное пространство над K, внешняя/прямая сумма V_1 и V_2 — это $V_1 \oplus V_2 = \{(v_1,v_2) \mid v_1 \in V_1, v_2 \in V_2\}$ с операциями:

- 1. $(v_1, v_2) + (v'_1, v'_2) = (v_1 + v'_1, v_2 + v'_2)$
- 2. $k(v_1, v_2) = (kv_1, kv_2)$

Утверждение 8. $\dim(V_1 \oplus V_2) = \dim V_1 + \dim V_2$

Доказательство. Это векторное пространство (очев).

$$v_1,...,v_k$$
 — базис $V_1,\,v_1',...,v_m'$ — базис $V_2;$ тогда $\{(v_i,0)\}\cup\{(0,v_i')\}$ — базис $V_1+V_2.$

И вправду: $\forall (v,v') = (\sum a_i v_i, \sum b_i v_i') = \sum a_i(v_1,0) + \sum b_i(0,v_i')$ — доказали порождаемость.

Доказательство линейной независимости: $\sum a_i(v_i,0) + \sum b_i(0,v_i') = 0 = (\sum a_iv_i, \sum b_iv_i') = (0,0) \Rightarrow \sum a_iv_i = 0, \sum b_iv_i' \Rightarrow$ т.к. v_i и v_i' — базисы: все $a_i = 0$ и все $b_i = 0 \Rightarrow$ доказали ЛНЗ-ть.

Теорема 7. Формула Грассмана

$$\dim(V_1 + V_2) = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2)$$

Доказательство. Зададим $A:V_1\oplus V_2\to V,\ (v_1,v_2)\to v_1+v_2$

 $\operatorname{Im} \mathcal{A} = V_1 + V_2$ (по определению $V_1 + V_2$)

$$\operatorname{Ker} \mathcal{A} = \{(v, -v) \mid v \in V_1, -v \in V_2\} = \{(v, -v) \mid v \in V_1 \cap V_2\} \cong V_1 \cap V_2$$

Тогда по теореме о ядре и образе: $\dim(V_1 + V_2) = \dim(\operatorname{Im} \mathcal{A}) = \dim(V_1 \oplus V_2) - \dim(V_1 \cap V_2) = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2)$

6.4 Множество линейных отображений

Определение 25. U,V — векторные пространства над K; определим Lin (U,V) — *множество отображений* $\mathcal{A}:U\to V.$

Это векторное пространство:

$$(\mathcal{A} + \mathcal{B})(u) = \mathcal{A}(u) + \mathcal{B}(u)$$

$$(k\mathcal{A})(u) = k \cdot \mathcal{A}(u)$$

Определение 26. Пусть $A \in \text{Lin } (U,V), u_1,...,u_m$ — базис $U, v_1,...,v_n$ — базис V.

$$\mathcal{A}(u_1) = a_{11}v_1 + ... a_{n1}v_n$$

$$\mathcal{A}(u_2) = a_{12}v_1 + ... a_{n2}v_n$$

...

$$\mathcal{A}(u_m) = a_{1m}v_1 + \dots a_{nm}v_n$$

Тогда $A=(a_{ij})_{i=1..n,j=1..m}$ — матрица отображения $\mathcal A$ в базисе $\{v_i\}\{u_i\}$.

Обозначение 5. $A = [A]_{\{u_i\}\{v_i\}}$.

Лемма 5. $A \in \text{Lin } (U, B), \{u_i\}, \{v_i\}$ — базисы.

$$A = [\mathcal{A}]_{\{u_i\}\{v_i\}}; \ \mathcal{A}: U \to V$$

$$u \in U : \mathbf{u} = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$
 — координаты u в $\{u_i\}$.

Аналогично $v \in V : \mathbf{v}$ – координаты v в $\{v_i\}$.

Тогда $\mathbf{v} = A \cdot \mathbf{u}$.

Доказательство.
$$\mathcal{A}(u) = \mathcal{A}(\sum x_i u_i) = \sum_{i=1}^m x_i (\sum_{j=1}^n a_{ji} v_j) = \sum_{j=1}^n (\sum_{i=1}^m x_i a_{ji}) v_j$$
 — координаты \mathbf{v} в базисе $\{v_i\}$ — это $\begin{pmatrix} \sum_{i=1}^m x_i a_{1i} \\ \dots \\ \sum_{i=1}^m x_i a_{mi} \end{pmatrix} = A \cdot \mathbf{u}$.

Следствие 4. $U_{\{u_i\}} \xrightarrow{\mathcal{B}} V_{\{v_i\}} \xrightarrow{\mathcal{A}} W_{\{w_i\}} \mathcal{A}, \mathcal{B} \in Lin$

$$B = [\mathcal{B}]_{\{u_i\}\{v_i\}}, \ A = [\mathcal{A}]_{\{v_i\}\{w_i\}}$$

Тогда:

1.
$$A \circ B \in Lin(U, W)$$
 (oves)

2.
$$[A \circ B]_{\{u_i\}\{w_i\}} = A \cdot B$$

Доказательство. $u \in U, v \in \mathcal{B}(u), w \in \mathcal{A}(v)$

 $\mathbf{u}, \mathbf{v}, \mathbf{w}$ — координаты u, v, w

$$w = (A \circ B)(u)$$
 и $\mathbf{w} = A \cdot \mathbf{u} = A \cdot B \cdot \mathbf{v} \Rightarrow A \cdot B$ — матрица отображение $A \circ B$.

Утверждение 9. $AX = BX \ \forall x \Rightarrow A = B$.

Резюме:

- 1. U, V векторное пространство $K \dim U = m$, $\dim V = m$. Тогда \exists изоморфизм: $f: M_{n,m}(K) \cong \text{Lin } (U,V)$ как векторные пространства.
- 2. $n=m\ M_n(K)\cong {\rm Lin}\ (U,U)$ как кольца.

Замечание. Lin (U, U) — кольцо с операциями + и \circ :

$$(A + B) \circ C = A \circ C + B \circ C$$
 — по определению +.

$$(\mathcal{A} + \mathcal{B})(\mathcal{C}(x)) = \mathcal{A}(\mathcal{C}(x)) + \mathcal{B}(\mathcal{C}(x))$$
 — по определению +.

$$\mathcal{A} \circ (\mathcal{B} + \mathcal{C} = \mathcal{A} \circ \mathcal{B} + \mathcal{A} \circ \mathcal{C}$$
 — по определению + и линейности \mathcal{A} .

Доказательство.

1. Фиксируем базисы $\{u_i\}$ и $\{v_i\}$ и рассмотрим f: Lin $(U,V) \to M_{n,m}(K)$, $\mathcal{A} \to [A]_{\{u_i\},\{v_i\}}$ Очев, что это биекция (по теореме о задании линейного отображения на базисе). Очев, что операции сохраняются:

$$[\mathcal{A} + \mathcal{B}] = [\mathcal{A}] + [\mathcal{B}]; \ [k\mathcal{A}] = k[\mathcal{A}]$$

2. Фиксируем базис $\{u_i\}$ и сопоставляем $\mathcal{A} \to [A]_{\{u_i\},\{u_i\}}$.

6.5Матрица перехода

Напоминание: $u_1,...,u_n$ — старый базис, $u_1',...,u_n'$ — новый базис и $u_i=\sum a_{ji}u_j'$; тогда $A=(a_{ij})$ матрица перехода.

Замечание.
$$u_1=u_1,...,u_n=u_n\Rightarrow E=\begin{pmatrix} 1&0&...&0\\0&1&...&...\\...&...&1&0\\0&...&0&1 \end{pmatrix},\ E=[id]_{\{u_i\},\{v_i\}}$$

Формула замены матрицы отображения при замене базиса 6.6

 $U \xrightarrow{\mathcal{A}} V, \{u_i\}, \{v_i\}$ — старые базисы, $\{u_i'\}, \{v_i'\}$ — новые базисы.

Знаем: $A = [A]_{\{u_i\},\{v_i\}}$

Хотим: $\tilde{A} = [\mathcal{A}]_{\{u_i'\},\{v_i'\}}$

 $U_{\{u_i'\}} \xrightarrow{id} U_{\{u_i\}} \xrightarrow{\mathcal{A}} V_{\{v_i\}} \xrightarrow{id} V_{\{v_i'\}}$

По следствию: $[\mathcal{A}]_{\{u_i\},\{v_i\}} = [id]_{\{v_i\},\{v_i'\}} \cdot [\mathcal{A}]_{\{u_i\},\{v_i\}} \cdot [id]_{\{u_i\},\{u_i'\}} = D \cdot A \cdot C^{-1}$, где D — матрица перехода от v_i к v_i' , а C^{-1} — матрица перехода от u_i к u_i' .

Частный случай: U = V, $\{u_i\} = \{v_i\}$, тогда $\tilde{A} = CAC^{-1}$.

Вопрос: $A \in \text{Lin }(U,V), A = [A]_{\{u_i\},\{v_i\}}$. Насколько простой можно сделать A за счет замены

Ответ: в теореме о Im и Ker доказали: \exists базис $u: u_1,...,u_m,...,u_n; u_1,...,u_n$ – базис Ker $\mathcal{A}, \mathcal{A}(u_{m+1}),...,\mathcal{A}(u_n)$

Обозначим $\mathcal{A}(u_{m+1})=v_1,..., \mathcal{A}(u_n)=v_{n-m}; \ v_1,...,v_{n-m}$ — базис \mathcal{A} . Дополним до базиса V : $v_1,...,v_{n-m},...,v_l$. Тогда:

$$\mathcal{A}(u_1) = 0 \cdot v_1 + \dots + 0 \cdot v_l$$

$$\mathcal{A}(u_m) = 0 \cdot v_1 + \dots + 0 \cdot v_l$$

$$\mathcal{A}(u_{m+1}) = 1 \cdot v_1 + \dots + 0 \cdot v_l$$

...
$$\mathcal{A}(u_n) = 0 \cdot v_1 + \ldots + 1 \cdot v_{n-m} + \ldots + 0 \cdot v_l$$

$$\begin{pmatrix} 0 & \ldots & 0 & | & 1 & 0 & \ldots & 0 & 0 \\ 0 & \ldots & 0 & | & 0 & 1 & \ldots & 0 & 0 \end{pmatrix}$$

$$0 & \ldots & 0 & | & 0 & 0 & \ldots & 1 & 0 \\ 0 & \ldots & 0 & | & 0 & 0 & \ldots & 0 & 1 \end{pmatrix}$$
 — матрица, где первые m столбцов - нулевые, а верхний
$$\begin{pmatrix} 0 & \ldots & 0 & | & 0 & 0 & \ldots & 0 & 1 \\ 0 & \ldots & 0 & | & 0 & 0 & \ldots & 0 & 0 \end{pmatrix}$$

левый блок размера $(n-m) \times (n-m)$ представляет из себя нулевую матрицу с единицами на диагонали. Поменяем местами блоки $(u_1,...,u_m)$ и $(u_{m+1},...,u_n)$. Получили теорему:

Теорема 8.
$$\forall A \in Lin (U,V) \; \exists \; \textit{базисы} \; \{u_i\}, \{v_i\} : \; [A]_{\{u_i\}\{v_i\}} = \left(\begin{array}{c|c} E_s & 0 \\ \hline 0 & 0 \end{array}\right)$$

6.7 Ранг матрицы

Определение 27. Переформулировка: $\forall A \in M_{l,k}(K) \; \exists \;$ такие обратные матрицы D и C, что $DAC = \left(\begin{array}{c|c} E_s & 0 \\ \hline 0 & 0 \end{array} \right).$

Число s равно dim Im \mathcal{A} . Оно называется **рангом отображения** или **рангом матрицы**.

Определение 28. Матричное определение: $A \in M_{l,n}(K)$; столбцы $K^l : A = (C_1 \mid ... \mid C_n) \ C_i \in K^l$.

rank
$$A = \operatorname{rk} A = \operatorname{rg} A = \dim \langle C_1, ..., C_n \rangle$$

Замечание. Это то же самое, что и ранг отображения, т.к. C_i — столбец координат для $\mathcal{A}(u_i)$, где u_i — iый базовый вектор.

Пример 16. rk
$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \text{rk} \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\rangle = \text{rk} \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix}, 2 \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle = \text{rk} \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle = 1$$

Определение 29. $U=V, \dim U=n, \operatorname{rk} \mathcal{A}=k; n-k-\partial e \phi e \kappa m \mathcal{A}; n-k=n=\dim \operatorname{Im} \mathcal{A}=\dim \operatorname{Ker} \mathcal{A}.$

6.8 Решение СЛУ

Что такое dim Ker $\mathcal{A} = \dim \operatorname{Ker} A$?

 $\{x \in K^n \mid AX = 0\}$ — множество решений однородных СЛУ с матрицей $A \in M_{m,n}$:

$$A \cdot \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \dots \\ 0 \end{pmatrix} k^n \to K^m$$
, n неизвестных, m уравнений.

 $\dim \ker A$ — размерность пространства решений; $\dim \ker A = n - \dim \operatorname{Im} A \ge n - m$.

Эти рассуждения подвели нас к формулированию теоремы:

Теорема 9. OCЛУ с n неизвестными u m уравнениями (m < n) имеет пространство решений размерности хотя бы n - m; в частности, если K бесконечно, то бесконечно много решений; если жее $|K| = q \Rightarrow q^{n-m}$ решений.

Теперь рассмотрим частный случай:

Теорема 10. Пусть n=m. Тогда: $\dim \operatorname{Ker} A=n-\dim \operatorname{Im} A, \dim \operatorname{Ker} A=0 \Leftrightarrow \dim \operatorname{Im} A=n,$ m.e. система AX=B имеет решение $\forall B\Leftrightarrow AX=0$ имеет только тривиальное решение. На языке линейных отображений: $A:U\to V$ линейное, $\dim U, \dim V<\infty$; тогда A сюръективно $\Leftrightarrow A$ инъективно.

Доказательство. Сюръективность $\mathcal{A} \Leftrightarrow \operatorname{Im} A = V$ Докажем следующее утверждение:

Утверждение 10. \mathcal{A} интективно \Leftrightarrow Ker $A = \{0\}$

Доказательство.

$$\circ \Rightarrow : \mathcal{A}(x) = 0 \& \mathcal{A}(0) = 0; \mathcal{A}$$
 инъективно $\Rightarrow x = 0$

$$\circ \Leftarrow$$
: Пусть $\operatorname{Ker} \mathcal{A} = 0$ и $\mathcal{A}(x) = \mathcal{A}(y) \Leftrightarrow \mathcal{A}(x) - \mathcal{A}(y) = 0 \Leftrightarrow \mathcal{A}(x-y) = 0 \Rightarrow x-y \in \operatorname{Ker} \mathcal{A} \Rightarrow x-y = 0$, т.е. $x=y$

Теперь вернемся к доказательству теоремы: инъективность \Leftrightarrow dim Ker $\mathcal{A}=0 \Leftrightarrow$ dim Im $\mathcal{A}=\dim V \Leftrightarrow \mathcal{A}=V \Leftrightarrow$ сюръективность.

6.9 Вид общего решения

Рассмотрим СЛУ AX = B или $\mathcal{A}(x) = b$. Пусть знаем частное решение X_0 (т.е. $AX_0 = B$). Тогда:

$$AX = B \Leftrightarrow AX = AX_0 \Leftrightarrow A(X - X_0) = 0 \Leftrightarrow X - X_0 \in \operatorname{Ker} \mathcal{A}$$

Значит, знаем общий вид решения: $X=X_0+Y,Y\in {\rm Ker}\, {\cal A}$ (или ${\cal X}={\cal X}_0+{\rm Ker}\, {\cal A})$

6.10 Транспонирование

Определение 30. Пусть $A \in M_{m,n}(K) = (a_{i,j})_{\substack{i=1..m\\j=1..n}}$; тогда транспонирование $A - A^T \in M_{n,m}(K)$; $A^T = (a'_{i,j})_{\substack{i=1..m\\j=1..n}}$, где $(a'_{i,j}) = a_{j,i}$ (отражение относительно главной диагонали).

Утверждение 11. Свойства:

$$\circ \ (A+B)^T = A^T + B^T; \ (kA)^T = k \cdot A^T \ - \$$
это линейное отображение.

$$\circ \ (A \cdot B)^T = B^T \cdot A^T$$

$$Ecnu \ \exists A^{-1}, \ mo \ \exists (A^T)^{-1} = (A^{-1})^T.$$

Доказательство.

1. Пусть
$$A \cdot B = C = (c_{i,j}), (A \cdot B)^T = (c'_{i,j})$$

$$c'_{i,j} = c_{j,i} = \sum_s a_{j,s} \cdot b_{s,i} = \sum_s a'_{s,j} \cdot b_{i,s} = \sum_s b'_{i,s} \cdot a'_{s,j} = (B^T \cdot A^T)_{i,j}$$

2.
$$\begin{cases} A \cdot B = E \\ B \cdot A = E \end{cases}, B = A^{-1} \Rightarrow B^T \cdot A^T = (A \cdot B)^T = E^T = E$$

Утверждение 12. Свойства ранга:

- 1. $rk\ A = rk\ A^T\ (ecлu\ cmpoкu\ u\ cmoлбцы\ noменять\ poлями,\ mo\ noменяем\ poлями,\ mo\ rk\ нe\ uзменится)$
- 2. $rk A \cdot B \leq \min(rk A, rk B)$
- 3. $rk(A+B) \le rkA + rkB$
- 4. $A \in M_n(K)$, $rk A = n \Leftrightarrow A обратима.$

Доказательство.

2. rk
$$A = \dim \operatorname{Im}(X \to AX)$$

 $U \xrightarrow{\mathcal{B}} V \xrightarrow{\mathcal{A}} W$

a) rk
$$AB = \dim \operatorname{Im} \{(AB)X \mid X \in U\} \leq \dim \{AY \mid Y \in V\} = \operatorname{rk} A \ (\{ABX\} \subset \{AY\})$$

b)
$$\operatorname{rk} AB = \dim \operatorname{Im}(A \circ B) = \dim(A \circ B(U)) = \dim(A(\underbrace{B(U)})) = \dim(\operatorname{Im} A \mid_{\operatorname{Im} B}) \leq \dim \operatorname{Im} B$$

1. Знаем, что
$$\exists C,D:\ CAD = \left(\begin{array}{c|c} E_r & 0 \\ \hline 0 & 0 \end{array} \right)$$

$$D^T \cdot A^T \cdot C^T = (CAD)^T = \begin{pmatrix} E_r & 0 \\ \hline 0 & 0 \end{pmatrix}^T = \begin{pmatrix} E_r & 0 \\ \hline 0 & 0 \end{pmatrix}$$
 (размеры строки и столбца из нулей поменялись местами)

rk A=r, rk $A^T=r$, т.к.:

1) rk
$$(D^T \cdot A^T \cdot C^T) \le$$
 rk A^T по свойству 2.

2) г
к
$$A^T=\operatorname{rk}\;((D^T)^{-1}(D^T\cdot A^T\cdot C^T)(C^T)^{-1})\leq\operatorname{rk}\;(D^T\cdot A^T\cdot C^T)$$
 по свойству 2.

3. упр.

4. \Rightarrow : A обратима \Rightarrow $n=\operatorname{rk} E=\operatorname{rk} (A\cdot A^{-1}) \leq \operatorname{rk} A \Rightarrow \operatorname{rk} A=n$ (т.к. $\operatorname{rk} A \leq n$) \Leftrightarrow : $\operatorname{rk} A=n, \ \exists C,D: \ CAD=\left(\begin{array}{c|c} E_r & 0\\ \hline 0 & 0 \end{array}\right), \ \text{где} \ r=\operatorname{rk} A \Rightarrow CAD=E \Rightarrow CA=D^{-1}\Rightarrow DCA=E$

Аналогично $ADC = E \Rightarrow DC = A^{-1}$.

Следствие 5. Ранг по строкам равен рангу по столбцам (по первому свойству).

Утверждение 13. $A \in M_n(K)$; следующие условия равносильны:

- 1. A обратима.
- 2. Ker $A = \{0\}$
- 3. Im $A = K^n$
- 4. Строки А линейно независимы.
- 5. Столбиы А линейного независимы.

Обозначение 6. $(M_n(K))^* = GL(n,K)$ — полная линейная группа.

Утверждение 14. Все есть матрица.

Пример 17. Матричная реализация: \mathbb{R} , \mathbb{C}

Утверждение 15. Подмножество $M_2(\mathbb{R})$, состоящее из матриц вида $\begin{pmatrix} a & b \\ b & a \end{pmatrix}$ является подкольцом и полем.

Оно изоморфно $\mathbb{C}:\ P(a+bi)=\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$

Объяснение: \mathbb{C} — векторное пространство над \mathbb{R} размерности 2 $\langle 1,i \rangle$

$$a + bi \leadsto \begin{pmatrix} a \\ b \end{pmatrix}, x_1 + x_2 i \mapsto \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Умножение на $z \in \mathbb{C}$ — линейное отображение: $(x_1 + x_2)i = -x_2 + x_1i$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \leadsto \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

7. Элементарные преобразования

Определение 31. $\mathcal{A}: K^n \to K^n$ — линейное отображение $(\mathcal{A}(X) = AX); \mathcal{A}$ — элементарное преобразование, если $\exists i_0: \mathcal{A}(X)_i = x_i \ \forall i \neq i_0, X = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$ и \mathcal{A} — обратимо (меняется только одна координата).

Пример 18.
$$\mathcal{A} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ \sqrt{2}x_2 + x_3 - x_1 \\ x_3 \end{pmatrix}$$
 — элементарно.

Утверждение 16. Виды элементарных преобразований:

1. **Трансвекция**:
$$t_{i,j}(a) \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \dots \\ x_i + a \cdot x_j \\ \dots \\ x_n \end{pmatrix}$$

 $t_{i,j}(a)$ — обратимо.

$$t_{i,j}(a)^{-1} = t_{i,j}(-a)$$

 $Mampuya: E + a \cdot e_{i,j}$

2. Дилатация: $m_i(a), a \in K \setminus \{0, 1\}$

$$m_i(a) \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \dots \\ a \cdot x_i \\ \dots \\ x_n \end{pmatrix}$$

 $m_i(a)$ — обратимо.

$$m_i(a)^{-1} = m_i(\frac{1}{a})$$

Mampuya: $E + (a-1) \cdot e_{i,i}$

$$He$$
 нужна: $\begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} x+y \\ y \end{pmatrix} \to \begin{pmatrix} x+y \\ -x \end{pmatrix} \to \begin{pmatrix} y \\ -x \end{pmatrix} \to \begin{pmatrix} y \\ x \end{pmatrix}$

 $s_{1,2}=m_2(-1)\cdot t_{1,2}(1)\cdot t_{2,1}(-1)\cdot t_{1,2}(1)$ (то есть транспозиция — это композиция трансвекций и дилатаций)

Утверждение 17. A - матрица:

- 1. $t_{i,j}(a) \cdot A$ получается из A прибавлением κ i-ой строке j-ой строки, умноженной на a.
- 2. $m_i(a) \cdot A$ получается из A умножением i-ой строки на a.
- 3. $A \cdot t_{i,j}(a)$ получается из A прибавлением κ j-ому столбцу i-ого столбца, умноженного на a.
- 4. $A \cdot m_i(a)$ получается из A умножением i-ого столбца на a.

Теорема 11.

1) $A \in M_{n,m} \Rightarrow \exists e_1,...,e_k - mpaнcвекции/дилатации.$

$$e_1...e_k A = egin{pmatrix} a_{11} & * & * & * & * \\ 0 & a_{22} & * & * \\ ... & ... & ... \\ 0 & ... & ... & ... \end{pmatrix}$$
 (треугольная матрица)

- 2) m=n и A обратима, то $\exists e_1,...,e_k:e_1...e_k A=E$
- $2')\ m=n\ u\ A\ обратима,\ mo\ A\ -\ произведение\ трансвекций/дислатаций.$

3)
$$A-npoussedenue \Rightarrow \exists e_1,...,e_k \ u \ d_1,...,d_l-mpancsekuuu/дилатации $e_1...e_kAd_1...d_k=\left(\begin{array}{c|c} E_r & 0\\ \hline 0 & 0 \end{array}\right).$$$

Доказательство. 1) Индукция по n

Переход $n \to n+1$: рассмотрим первый столбец $\begin{pmatrix} a_{11} \\ \dots \\ a_{m1} \end{pmatrix}$

I. Bec
$$a_{i1} = 0$$
; $A = \begin{pmatrix} 0 \\ \dots \\ 0 \end{pmatrix} \underbrace{\tilde{A}}_{n}$

Применим к \tilde{A} индукционное предположение: \exists элементарные матрицы (порядка m)

$$e_1, \dots, e_k \tilde{A} = \begin{pmatrix} a_{11} & \dots & * \\ \dots & a_{22} & \dots \\ 0 & \dots & \dots \end{pmatrix}$$

Тогда
$$e_1...e_k A = \begin{pmatrix} 0 & a_{11} & \dots & * \\ 0 & 0 & a_{22} & \\ \dots & & & \\ 0 & & & \end{pmatrix}$$

II. $a_{11} \neq 0$: применим $t_{i,1}(-\frac{a_{i1}}{a_{11}})$ для каждого i=2..m.

$$e_2...e_m A = \begin{pmatrix} a & b \\ \hline 0 & \\ ... & \tilde{A} \\ 0 & \end{pmatrix}$$

Применим индукционное предположение к $\tilde{A}: \exists \tilde{e_{m+1}},...,\tilde{e_s}:$

$$e_{m+1},...,\tilde{e_s}\tilde{A} = \begin{pmatrix} \tilde{a_{11}} & ... & * \\ 0 & \tilde{a_{22}} & ... \\ 0 & & \end{pmatrix}$$

Заменим
$$\tilde{e_k}$$
 на e_k : $\begin{pmatrix} 1 & 0 \\ \hline 0 & \\ ... & \tilde{e_k} \\ 0 & \end{pmatrix}$

Тогда
$$e_{m+1}...e_s A = \begin{pmatrix} a & b \\ \hline 0 & \tilde{a_{11}} \\ ... & 0 & \tilde{a_{22}} \\ 0 & & \end{pmatrix}$$

III. A — квадратная обратимая матрица. По первому пункту: \exists элементарные преобра-

зования:
$$a_1...a_kA=\begin{pmatrix} a_{11} & ... & * \\ 0 & a_{22} & \\ ... & \\ 0 & ... & a_{nn} \end{pmatrix}$$

<u>Утверждение:</u> $a_{ii} \neq 0$

Доказательство утверждения: пусть $\exists a_{ii} = 0 \Rightarrow$

первые
$$i$$
 столбцов матрицы $\in \left\langle \begin{pmatrix} 1\\0\\...\\0 \end{pmatrix},..., \begin{pmatrix} 0\\...\\1_{(i-1\text{ позиция})}\\...\\0 \end{pmatrix} \right\rangle \Rightarrow$ они ЛЗ (но у обратных 0

матриц столбцы линейно независимы)

 $a_1...a_k A$ обратима, так как ранг не меняется при домножении на обратимые матрицы.

Теперь применим $\prod_{i=1}^{n-1} t_{in}(-\frac{a_{in}}{a_{nn}})$:

$$\begin{pmatrix} a_{11} & * & a_{1n} \\ & & a_{2n} \\ & & & a_{nn} \end{pmatrix} \rightsquigarrow \begin{pmatrix} a_{11} & * & 0 \\ & & 0 \\ & & & 0 \\ 0 & & a_{nn} \end{pmatrix}$$

Потом применим $\prod_{i=1}^{n-2} t_{i,n-1} \left(-\frac{a_{i,n-1}}{a_{n-1,n-1}} \right)$ и так далее...

В итоге получим:
$$\begin{pmatrix} a_{11} & \dots & 0 \\ \dots & & \\ 0 & \dots & a_{nn} \end{pmatrix}$$
.

Применим
$$\prod m_i(\frac{1}{a_{ii}})$$
; получим $\begin{pmatrix} 1 & \dots & 0 \\ \dots & & \\ 0 & \dots & 1 \end{pmatrix} = E.$

2')
$$\exists e_1,...,e_k;\ e_1...e_kA=E$$

$$A=e_k^{-1}...e_!^{-1} \text{ (отметим, что } e_1...e_k=A^{-1})$$

 e_i — элементарные преобразования

3)
$$A$$
 — произвольная матрица, \exists обратимые матрицы $C,D: CAD = \begin{pmatrix} E_r & 0 \\ \hline 0 & 0 \end{pmatrix}$ $C = e_1....e_k$ по 2' & $D = d_1....d_l \Rightarrow e_1....e_kAd_1....d_l = \begin{pmatrix} E_r & 0 \\ \hline 0 & 0 \end{pmatrix}$

Следствие 6. Из теоремы следует алгоритм нахождения обратной матрицы:

$$e_k...e_1 A = E \Rightarrow e_k...e_1 = A^{-1}$$

Создаем блочную матрицу: $(A \mid E)$; применяем одновременно элементарные преобразования κ A и κ E (приводя A κ E)

$$e_1...e_k(A \mid E) = (e_1...e_kA \mid e_1...e_kE) \Rightarrow (A \mid E) \xrightarrow{\text{элементарные преобразования}} (E \mid A^{-1})$$

8. Разложение матриц

8.1 PDQ-разложение

Теорема 12. A- прямоугольная матрица, тогда \exists обратные матрицы P и Q такие, что $A=P\frac{E_r \mid 0}{0 \mid 0}Q$

Доказательство. Знаем, что
$$\exists$$
 обратимые C,D : $CAD = \frac{E_r \mid 0}{0 \mid 0} \Rightarrow A = \underbrace{C^{-1}}_{=P} \frac{E_r \mid 0}{0 \mid 0} \underbrace{D^{-1}}_{=Q}$

Определение 32. $A \in M_n(K)$; A называется диагональной, если $a_{ij} = 0$ при $\forall i \neq j$. Обозначается как D_n .

Определение 33. $A \in M_n(K)$; A называется верхнетреугольной, если $a_{ij} = 0$ при $\forall i > j$. Обозначается как LT_n .

Определение 34. $A \in M_n(K)$; A называется нижнетреугольной, если $a_{ij} = 0$ при $\forall i < j$. Обозначается как UT_n .

Утверждение 18. D_n , LT_n , $UT_n - \kappa$ ольца (подкольца в $M_n(K)$).

 $D_n = LT_n \cap UT_n$ — коммунитативно (максимальное коммунитативное подкольцо в $M_n(K)$). $D_n^* = K^* \times K^* \times \ldots \times K^*.$

Утверждение 19. $A \in D_n(LT_n,UT_n)$; тогда A — обратимая \Leftrightarrow все диагональные элемента не равны θ ($a_{ii} \neq 0 \ \forall i$).

Доказательство. Пусть
$$a_i = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \\ \dots \\ 0 \end{pmatrix}; \begin{cases} A \in UT_n \Leftrightarrow \forall i \ \mathcal{A}(\langle e_1, e_2, \dots e_i \rangle) \subseteq \langle e_1, e_2, \dots e_i \rangle \\ A \in LT_n \Leftrightarrow \forall i \ \mathcal{A}(\langle e_i, e_{i+1}, \dots e_n \rangle) \subseteq \langle e_1, e_2, \dots e_i \rangle \end{cases} \Rightarrow LT_n \ \mathsf{H}_n$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ & & \dots & \dots \\ 0 & & a_{nn} \end{pmatrix} \Leftrightarrow \begin{cases} \mathcal{A}(e_1) = a_{11}e)1 \\ \mathcal{A}(e_2) = a_{12}e)1 + a_{22}e)2 & \text{(в образе } \mathcal{A}(\langle e_1, e_2, \dots e_i \rangle) \text{ не возникает } e-\text{шек} \\ \dots & \dots & \dots \end{cases}$$

с большим номером)

С оольшим номером)

Легко видеть:
$$\begin{pmatrix} a_{11} & * \\ & \ddots & \\ 0 & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & * \\ & \ddots & \\ 0 & b_{nn} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & * \\ & \ddots & \\ 0 & a_{nn}b_{nn} \end{pmatrix}$$

В частности: $\begin{pmatrix} a_{11} & 0 \\ & \ddots & \\ 0 & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & 0 \\ & \ddots & \\ 0 & b_{nn} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & 0 \\ & \ddots & \\ 0 & a_{nn}b_{nn} \end{pmatrix} e_i \overset{\mathcal{B}}{\leadsto} b_i e_i \overset{\mathcal{A}}{\leadsto} b_i (a_i e_i) = \begin{pmatrix} a_{11}b_{11} & a_{11} & b_{11} & b_{1$

 $b_i a_i e_i$

Очевидно, что коммунитативно и что $D_n = K \times K \times ... \times K$ и $D_n^* = K \times K^* \times ... \times K^*$. П

Критерий обратимости:

- 1. для $A \in UT_n$: это было в доказательстве пункта 2 предыдущей теореме.
- 2. $A \in LT_n$: следует из обратимости для UT_n (A обратима $\Leftrightarrow A^T$ обратима).

8.2 LU-разложение

Было:
$$A$$
 — обратима; $A \xrightarrow{\text{э.п., } \Gamma \text{aycc}} \begin{pmatrix} a_{11} & 0 \\ & \ddots & \\ 0 & a_{nn} \end{pmatrix}$ (см. пред. теорему)

Пусть в ходе Гаусса не было исключений (перестановок строк) \Rightarrow применяем только $t_{i,j}(a)$, где i > j.

Заметим, что
$$t_{i,j}(a) = \begin{pmatrix} 1 & \dots & 0 & 0 \\ \dots & \ddots & \dots & 0 \\ 0 & a & \ddots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} \in LT_n \Rightarrow U = \underbrace{e_1..e_k}_{\in LT_nA} \in UT_n \Rightarrow A = \underbrace{e_1^{-1}...e_k^{-1}}_{=L}U = LU$$

Утверждение 20. LU-разложение существует $\Leftrightarrow \begin{array}{c|c} A_k & 0 \\ \hline 0 & 0 \end{array}, \ A_k$ — обратимая квадратная матрица размера $k \times k$.

Доказательство. ←: есть проблемы ⇔ в какой-то момент получили

 A_k необратимая $\Leftrightarrow A_k$ необратимая

 \Rightarrow : упражнение - перемножить L на U.

8.3 LPU-разложение

В общем случае: сделаем в начале перестановку строк так, чтобы выполнилось условие теоремы: TODO

rk $C_{k+1}=k+1$ (матрица обратима) \Rightarrow rk C_{k+1} по строке =k+1

Первые k строк ЛНЗ (знаем) $\Rightarrow \exists$ строка $r_i \in \langle r_1, r_2, ..., r_n \rangle$. Переставим r_i на (k+1)-ое место.

Итого: $A \leadsto s_1...s_n A$ — удовлетворяет условию теоремы $(s_i$ — транспозиции) $\Rightarrow s_1...s_n A = LU \Rightarrow$ $A = s_n s_1 LU = PLU, P$ — матрица перестановки.

 $P: \exists$ перестановка $\pi \in S_n \ P_{i,\pi(i)} = 1$ и $P_{i,j} = 0$ иначе.

9. Определитель

9. Определитель

9.1 Определитель

Определение 35. Определитель — функция det: $M_n(K) \to K$.

Пример 19. Площадь/объем.

(картиночка)

Оказывается, что S = |ad - bc|. Как к этому прийти?

Свойства площади:

1) (еще картиночка)

$$S(\vec{u}, k\vec{v}) = kS(\vec{u}, \vec{v})$$

2) (еще картиночка)

$$S(\vec{u}, \vec{v} + \vec{w}) = S(\vec{u}, \vec{v}) + S(\vec{u}, \vec{w})$$

2')
$$S(\vec{u}, \vec{v} + k\vec{u}) = S(\vec{u}, \vec{v}) = S(\vec{u}, \vec{v}) + kS(\vec{u}, \vec{u})$$
 (1 и 2 свойства)

3)
$$S(\vec{u}, \vec{u}) = 0$$

Теперь можно: (опяяяять картинки)

Воспользуемся еще одной аксиомой, что S(квадрат 1 на 1 $)=1:(ad-bc)S\left(1\quad 0\ 0\quad 1\right)=ad-bc.$

9.2 Полилинейная функция

Определение 36. K^n (или V) — векторное пространство над K.

Функция $f: \underbrace{V \times V \times \ldots \times V}_m \to K$ называется полилинейной, если:

$$\forall i \ v_1,...,v_{i-1},v_{i+1},...,v_m \in K^n \ f(v_1,...,v_{i-1},v_{i+1},...,v_m):V \to K$$
 линейная, то есть:

$$f(v_1,...,v_{i-1},v_i+b_iv_i',...,v_m)=f(v_1,...,v_i,...,v_m)+bf(v_1,...,v_i',...,v_m).$$

Пример 20. m=1: полилинейное = линейное.

m=2: пример: скалярное произведение векторов.

Определение 37. Полилинейная функция f называется кососимметричной, если верно, что $v_i = v_j \Rightarrow f(v_1,...,v_m) = 0.$

Замечание. (покажем на случае функции от двух параметров, общий случай выводится аналогично)

f(x,y) — полилинейная.

1. f кососимметричная.

2.
$$f(x,y) = -f(y,x) \ \forall x, y$$
.

Тогда $1 \Rightarrow 2$ и $1 \Leftrightarrow 2$, если $\operatorname{char} K \neq 2$.

Доказательство.
$$2 \Rightarrow 1$$
: $f(x,x) = -f(x,x) \Rightarrow 2f(x,x) = 0 \stackrel{\text{если } \operatorname{char} K \neq 2}{\Rightarrow} f(x,x) = 0$. $1 \Rightarrow 2 : 0 = f(x+y,x+y) = \underbrace{f(x,x)}_{=0} + f(x,y) + f(y,x) + \underbrace{f(y,y)}_{=0} \Rightarrow f(x,y) = -f(y,x)$.

Утверждение 21. Кососимметричная полилинейна функция однозначно задается значениями $f(e_{i_1},...,e_{i_m})$, где $i_1 < ... < i_n$.

Доказательство. Достаточно вычислить $f_1(e_{i_1},...,e_{i_m})$ (по предыдущему утверждению).

 $\exists k,l:\ i_l=i_k\Rightarrow f(\ldots)=0$ (по определнию)

Пусть
$$i_1 \neq i_2 \neq ... \neq i_m$$
; $i_k - \min$; $f(e_{i_1},...,e_{i_m}) = -f(e_{i_k},e_{i_1},...,e_{i_m})$. Продолжая это, получим $f(e_{i_1},...,e_{i_m}) = \pm f(e_{j_1},...,e_{j_m})$, где $j_1 < ... < j_m$.

Определение 38. Пусть n=m; тогда билинейная кососимметричная функция f называется определителем порядка $n \ (f \neq 0)$.

Теорема 13. f_1 и f_2 – определители $\Rightarrow \exists c \in K^* : f_1 = c \cdot f_2$.

Доказательство. Пусть $f_1(e_1,...,e_n) = c \cdot f_2(e_1,...,e_n)$.

Тогда: $\forall e_{i_1},...,e_{i_n}$ $f_1(e_{i_1},...,e_{i_n}) = c \cdot f_2(e_{i_1},...,e_{i_n}).$

Тогда по утверждению 1 $f_1 \cdot f_2$ всегда.

Определение 39. $V = K^n$; определителем будем называть такой определитель, что:

$$f\left(\begin{pmatrix}1\\0\\..0\end{pmatrix},\begin{pmatrix}0\\1\\..0\end{pmatrix},...,\begin{pmatrix}0\\0\\..1\end{pmatrix}\right)=1.$$
 Она обозначается det.

9.3 Четность перестановки

Определение 40. Перестановка $s \in S_n, s_i : \{1,...,n\} \to \{1,...,n\}$ биекция.

Утверждение 22. $s - \kappa$ омпозиция трансвеций.

Доказательство. Индукция по n.

Переход:
$$n \to n+1 : \pi \in S_{n+1}, \, \pi(n+1) = x$$

Рассмотрим
$$s_{n+1,x} \circ \pi = \overline{\pi}; \ \overline{\pi}(n+1) = ,\pi(x) = n+1 \overset{\text{забываем про } n}{\Rightarrow} \overline{\pi} \mid_{\{1,\dots,n\}}$$
 по и.п. это $s_{i_1,j_1} \circ \dots \circ s_{i_k,j_k} \Rightarrow \pi = s_{n+1,x} \circ s_{i_1,j_1} \circ \dots \circ s_{i_k,j_k}$

Определение 41. Четность перестановки

Если $\pi = s_1 \circ ... \circ s_{2k}$, где s_i — транспозиции, то π — *четная* перестановка.

Если $\pi = s_1 \circ ... \circ s_{2k+1}$, где s_i — транспозиции, то π — нечетная перестановка.

Теорема 14. Явная формула для определителя $A = (a_{i,j})_{i,j=1..n}$. Тогда функция $\det A = \sum_{\pi \in S_n} (-1)^{\varepsilon(\pi)} a_{1,\pi(1)} \cdot a_{2,\pi(2)} \cdot \ldots \cdot a_{n,\pi(n)}$, где $\varepsilon(\pi)$ — четность перестановки π полилинейная, кососимметричная и нормальная (т.е. \det в прежнем смысле).

Замечание. Эта формула – сумма ладейных произведений, взятых со знаком.

Пример 21.
$$n = 2: +: \begin{vmatrix} * \\ * \end{vmatrix}, -: \begin{vmatrix} * \\ * \end{vmatrix} \Rightarrow \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$
 (в общем случае будет $n!$ слагаемых)

Определение 42. Четность через инверсии: $\tilde{\varepsilon}(\pi) = \left| \{ (i,j) \mid i < j \& , \pi(i) < , \pi(j) \} \right|$.

Пример 22.
$$\pi: \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 4 & 3 \end{vmatrix} \to 5$$
 инверсий $\Rightarrow 5$ нечетно.

Теорема 15. Два определения четности совпадают.

Доказательство. Это следует из леммы.

Лемма 6. Если t — транспозиция, то у $\tilde{\varepsilon}(t\pi)$ и $\tilde{\varepsilon}(\pi)$ число инверсий по модулю 2 различно.

Доказательство. По индукции: $\tilde{\varepsilon}(s_1,...,s_{2k}) = 0, \tilde{\varepsilon}(s_1,...,s_{2k+1}) = 0$

База: $\tilde{\varepsilon}(id) = 0$

Переход: $\pi: ,\pi(1)...,\pi(k)=i...,\pi(l)=j...,\pi(n)$

$$\tilde{\pi} = t_{i,j} \circ \pi : \tilde{\pi}(1)...\tilde{\pi}(k) = j...\tilde{\pi}(l) = i...\tilde{\pi}(n)$$

Какие пары поменяли статус: их l-k+1 с участием k, l-k+1 с участием l и пара (k,l). Итого: 2(l-k+1)+1- нечеттное число смен статуса \Rightarrow четность поменялась.

Теорема 16. det — полилинейная кососиметричная функция, $\det(E) = 1$ (то есть det в аксиоматическом смысле существует).

Доказательство.

1.
$$\underline{\det(E)} = \det\begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix} = a_{11}a_{22}...a_{nn} \cdot (-1)^{\varepsilon(id)} = 1 \cdot ... \cdot 1 = 1$$

Одна ненулевая ладейная расстановка.

2. <u>Полилинейность:</u> $A = (C_1 \mid C_2 \mid \ldots \mid C_i' + a \cdot C_i'' \mid \ldots \mid C_n), \ A = (a_{ij}), \ a_{ki} = a_{ki}' + a \cdot a_{ki}''$ Тогда $\forall \pi \in S_n : \ (-1)^{\varepsilon(\pi)} a_{1,\pi(1)} \cdot a_{2,\pi(2)} \cdot \ldots \cdot (a_{\pi^{-1}(i)i}' + a \cdot a_{\pi^{-1}(i)i}') \cdot \ldots \cdot a_{n,\pi(n)} = (-1)^{\varepsilon(\pi)} a_{1,\pi(1)} \cdot a_{2,\pi(2)} \cdot \ldots \cdot a_{\pi^{-1}(i)i}' \cdot \ldots \cdot a_{n,\pi(n)} = (-1)^{\varepsilon(\pi)} a_{1,\pi(1)} \cdot a_{2,\pi(2)} \cdot \ldots \cdot a_{\pi^{-1}(i)i}' \cdot \ldots \cdot a_{n,\pi(n)}$

Теперь сложим равенства для всех π и получим линейность (по *i*-ому аргументу)

3. <u>Кососимметричность:</u> (!) $A = (C_1 \mid C_2 \mid ... \mid \overset{i}{C_i} \mid ... \mid \overset{j}{C_j} \mid ... \mid C_n) \Rightarrow \det A = 0, \ a_{ki} = a_{kj} \ \forall k$ Разобьем слагаемые в $\det A$ на пары $(\pi, t_{i,j} \circ \pi)$

$$(-1)^{\varepsilon(\pi)} \cdot a_{1,\pi(1)} \cdot \dots \cdot a_{\pi^{-1}(i),i} \cdot \dots \cdot a_{\pi^{-1}(j),j} \cdot \dots \cdot a_{n,\pi(n)} + (-1)^{\varepsilon(t_{i,j}\circ\pi)} \cdot a_{1,\pi(1)} \cdot \dots \cdot a_{\pi^{-1}(i),j} \cdot \dots \cdot a_{\pi^{-1}(j),j} \cdot \dots \cdot a_$$

Теорема 17. Определитель и элементарные преобразования

- 1. $\det(A \circ t_{i,j}(a)) = \det A$.
- 2. $\det(A \circ m_i(a)) = a \cdot \det A$.
- 3. $\det(A \circ s_{i,j}) = -\det A$.

Доказательство. 3. Это вторая формулировка кососимметричности: f(x,y) = -f(y,x).

- 2. Это линейность по i-ому столбцу.
- 1. $A = (C_1 \mid C_2 \mid ... \mid C_n)$ $\det(A \circ t_{j,i}(a)) = \det(C_1 \mid ... \mid C_i \mid ... \mid C_j + a \cdot C_i \mid ... \mid C_n) = \stackrel{\text{лин-ть по } j}{=} \underbrace{\det(C_1 \mid ... \mid C_i \mid ... \mid C_j \mid ... \mid C_n)}_{=a \cdot \det A} + \underbrace{\det(C_1 \mid ... \mid C_j \mid ... \mid C_n)}_{=a \cdot \det A} + \underbrace{\det(C_1 \mid ... \mid C_j \mid ... \mid C_n)}_{=a \cdot \det A} + \underbrace{\det(C_1 \mid ... \mid C_j \mid ... \mid C_n)}_{=a \cdot \det A} + \underbrace{\det(C_1 \mid ... \mid C_j \mid ... \mid C_n)}_{=a \cdot \det A}$

Следствие 7. det можно посчитать так:
$$A \stackrel{t_{i,j}}{\to} \tilde{A} = \begin{pmatrix} \tilde{a}_{11} & & * \\ & \ddots & \\ 0 & & \tilde{a}_{nn} \end{pmatrix}$$

Доказательство. По th: $\det A = \det \tilde{A}; \det \tilde{A} = \tilde{a_{11}} \cdot ... \cdot \tilde{a_{nn}} \ (\tilde{a_{11}}, ..., \tilde{a_{nn}} -$ единственная возможножно ненулевая ладейная расстановка)

Следствие 8. A обратима $\Leftrightarrow \det A \neq 0$.

 $\@ifnextchar[{\it Доказательство}.$$ A обратима <math>\Leftrightarrow$ $\@ifnextchar[{\it A}]$ обратима <math>\Leftrightarrow$ все $\@ifnextchar[{\it a}]$ ие равны <math>\@ifnextchar[{\it a}]$ \Leftrightarrow det \@ifnextchar[{\it A}]$ = <math>\@ifnextchar[{\it a}]$: ... : a_{nn} \neq 0.$

Теорема 18. det $A = \det A^T$

То есть любые свойства det, верные для столбцов, верны и для строк и наоборот.

Доказательство.
$$A = (a_{ij}), A^T = (a'_{ij}), a'_{ij} = a_{ji}$$
 $(-1)^{\varepsilon(\pi)}a_{1,\pi(1)} \cdot \dots \cdot a_{n,\pi(n)} = (-1)^{\varepsilon(\pi)}a_{\pi^{-1}(1),1} \cdot \dots \cdot a_{\pi^{-1}(n),n} = (-1)^{\varepsilon(\pi)}a'_{1,\pi(1)} \cdot \dots \cdot a'_{n,\pi(n)} \stackrel{(*)}{=} (-1)^{\varepsilon(\pi^{-1})}a_{1,\pi(1)} \cdot \dots \cdot a_{n,\pi(n)}$ $\dots \cdot a_{n,\pi(n)}$

Сложим по всем π и получим $\det A = \det A^T$.

$$(*): \varepsilon(\pi) = \varepsilon(\pi^{-1}), \text{ т.к. } \pi = t_1...t_k; \ \pi^{-1} = (t_1...t_k)^{-1} = t^{-1}...t_1^{-1} = t_k...t_1 \text{ тоже } k.$$

Теорема 19. Разложение по строке/столбцу

 $A = (a_{ij}), A_{i,j}$ — det матрицы 6 полученной из A удалением i-ой строки и j-ого столюца (минор).

Tог $\partial a \ \forall i=1...n:$

1.
$$\det A = \sum_{j=1}^{n} (-1)^{i+j} \cdot a_{i,j} \cdot A_{i,j} - \text{no cmpoke.}$$

2.
$$\forall i = 1...n$$
: $\det A = \sum_{j=1}^{n} (-1)^{i+j} \cdot a_{j,i} \cdot A_{j,i} - no$ столбиу.

Выразим $\det A$ через n определителей (n-1)-ого порядка.

Доказательство. (для строки)

$$i$$
-ая строка: $(a_{i,1},...,a_{i,n}) = \sum_{j=1}^n a_{i,j}(0,...,0,\overset{j}{1},0,...,0)$

Тогда по линейности
$$\det A = \sum a_{i,j} \cdot \det \begin{pmatrix} a_{1,1} & .i. & a_{1,n} \\ 0 & ... 1 ... & 0 \end{pmatrix} i = (переставим $a_{i,j}$ на позицию $(1,1)$$$

$$i-1$$
 транспозиции строк и $j-1$ транспозиции столюцов) = $\sum a_{i,j} \cdot (-1)^{i+j} \cdot \det \left(\frac{1 \mid 0 \quad \dots \quad 0}{\mid \quad \tilde{A}_{i,j}} \right) = 0$

$$\sum a_{i,j} \cdot (-1)^{i+j} \cdot \det(\tilde{A}_{i,j}) = \sum a_{i,j} \cdot (-1)^{i+j} \cdot A_{i,j}$$

Пример 23.
$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = a \cdot \det \begin{pmatrix} e & f \\ h & i \end{pmatrix} - b \cdot \det \begin{pmatrix} d & f \\ g & i \end{pmatrix} + c \cdot \det \begin{pmatrix} d & e \\ g & h \end{pmatrix}$$

Следствие 9. Пусть
$$i \neq i'$$
. Тогда $\sum_{i=1}^{n} (-1)^{i+j} a'_{i,j} \cdot A_{i,j} = 0$ (*).

Доказательство. По предыдущей th * — определитель A' — матрица, у которой i-ая строка заменена на i'-ую строку; $\det A' = 0$, т.к. есть совпадающие строки.

Определение 43. $A^{adj}=((-1)^{i+j}A_{j,i})_{i=1...n,\ j=1...n}-n$ рисоединенная матрица к A.

Утверждение 23.
$$A \cdot A^{adj} = A^{adj} \cdot A = (\det A) \cdot E$$

Доказательство. Это предыдущая теорема и ее следствия:

th: у $A \cdot A^{adj}$ на диагонали стоит $\det A$.

cons: у $A \cdot A^{adj}$ вне диагонали стоят 0.

$$\sum_{i} (-1)^{i+j} \cdot a'_{i,j} \cdot A_{i,j} = \sum_{i} (A_{i,j}) (A^{adj})_{j,i}$$

Следствие 10. $\det A \neq 0$. $Tor \partial a \ A^{-1} = \frac{1}{\det A} \cdot A^{adj}$.

Теорема 20. Формула Крамера

AX = B - CII, $A \in M_n(K)$, $\det A \neq 0$ (\Leftrightarrow pewerue существует и единственно $\forall B$). Тогда $X = \begin{pmatrix} x_1 \\ ...x_n \end{pmatrix}$, где $x_i = \frac{\Delta_i}{\Delta}$, где $\Delta = \det A$, $\Delta_i = \det$ матрицы, полученной из A заменой i-ого столбца на столбец B.

Доказательство.
$$\begin{pmatrix} x_1 \\ \dots x_n \end{pmatrix} = A^{-1} \cdot \begin{pmatrix} b_1 \\ \dots \\ b_n \end{pmatrix}$$

$$x_i = \sum_{k=1}^n (A^{-1})_{i,k} \cdot b_k = \frac{1}{\det A} \cdot \sum_{k=1}^n A_{i,k}^{adj} \cdot b_k = \frac{1}{\Delta} \cdot \sum_{k=1}^n (-1)^{i+k} \cdot A_{k,i} \cdot b_k \overset{\text{разложение по } i \text{-ому столбцу}}{=} \begin{pmatrix} a_{1,1} & \dots & b_1^i & \dots & a_{1,n} \\ & & & & \\ a_{n,1} & \dots & b_k & \dots & a_{n,n} \end{pmatrix}$$

$$x_i = \frac{\Delta_i}{\Delta}$$

Определение 44. $A_{k,i}$ называется алгебраическим дополнением. $a_{k,i}$ — миноры (n-1)-ого порядка.

Теорема 21. Явная формула для ранга: минорный ранг

Ранг матрицы равен порядку максимального ненулевого минора, т.е. размеру тах подматрицы с ненулевым определителем.

Доказательство.

1. Столбцовый ранг ≥ минорного.

$$\exists$$
 ненулевой минор $k \times k$. НУО это первые k строк и k столбцов: $\left(\begin{array}{c}A\\ \end{array}\right)$ $\det \tilde{A} \neq 0 \Rightarrow \tilde{A}$ обратима \Rightarrow столбцы $\tilde{A} - \Pi$ H3 $\Rightarrow k$ столбцов A Π H3 \Rightarrow rk $A \geq k$.

2. Столбцовый ранг ≤ минорного.

Пусть rk
$$A=k$$
. НУО первые k столбцов ЛНЗ: $\left(\left\| \tilde{A} \right\| \right)$

rk $\tilde{A}=k\Rightarrow$ в \tilde{A} есть k ЛНЗ строк, т.е. подматрица $\tilde{\tilde{A}}$ $k\times k$ с ЛНЗ строками \Rightarrow $\tilde{\tilde{A}}$ обратима \Rightarrow det $\tilde{\tilde{A}}\neq 0$

Нашли ненулевой минор k-ого порядка \Rightarrow минорный ранг \geq rk A.

10. Групповые свойства определителя

Теорема 22. det - гомоморфизм, то есть:

1.
$$\det(A \cdot B) = \det A \cdot \det B$$
.

2.
$$\det E = 1$$
.

3.
$$\exists A^{-1} \Rightarrow \det A^{-1} = \frac{1}{\det A}$$
.

Доказательство. 2 знаем, 3 следует из 1. Докажем 1.

$$B = (C_1 \mid \dots \mid C_n)$$

$$A \cdot B = (A \cdot C_1 \mid \dots \mid A \cdot C_n)$$

Зафиксируем A. B, то есть $C_1,...,C_n$ — переменные. Тогда $\det(A\cdot B)$ — линейная кососимметричная функция от $C_1,...,C_n$.

Линейность:

$$\det(A(C_1' + C_1'' \mid C_2 \mid \dots \mid C_n)) = \det(A(C_1' + C_1'') \mid A \cdot C_2 \mid \dots \mid A \cdot C_n)) = \det(A \cdot C_1' + A \cdot C_1'' \mid A \cdot C_2 \mid \dots \mid A \cdot C_n)$$

$$\stackrel{\text{полилин-ть det}}{=} \det(\dots) + \det(\dots)$$

Кососимметричность:

В B одинаковые столбцы $\Rightarrow B$ необратима $\Rightarrow A \cdot B$ необратима $\det AB = 0$.

Знаем: полилинейность, кососимметричность, единственность с точностью умножения на константу.

$$\begin{cases} f(B) = \det(AB) \\ g(B) = \det(AB) \end{cases}$$
 полилинейные кососимметричные $\Rightarrow \exists c \in K \ \forall B \ \det(AB) = c \cdot \det B$

Подставим B=E и получим: $\det A=c\cdot \det E\Rightarrow c=\det A.$ То есть $\det(AB)=\det A\cdot \det B.$ \square

Теорема 23.
$$n=m+l, A \in M_n(K), A = \begin{pmatrix} m & l \\ B & D \\ \hline 0 & B \end{pmatrix}$$
. $Tor \partial a \det A = \det B \cdot \det C$.

Доказательство. Шаг 1:
$$B=C=E$$
. $\det\left(\begin{array}{c|c} E & * \\ \hline 0 & E \end{array}\right)$ эл. преобр. $\det E=1$

Шаг 2: E, * фиксированы. $\det \left(\begin{array}{c|c} E & * \\ \hline 0 & B \end{array} \right)$ — полилинейная функция от последних l строк, т.е.

от строк
$$B \Rightarrow \det \left(\begin{array}{c|c} E & * \\ \hline 0 & B \end{array} \right) = \det B \cdot C$$

$$B = E \Rightarrow C = 1 = \det E$$

Шаг 3: B,* фиксированы. $\det\left(\begin{array}{c|c}A&*\\\hline 0&B\end{array}\right)$ — полилинейная функция относительно столбцов

$$A \Rightarrow \det\left(\begin{array}{c|c} A & * \\ \hline 0 & B \end{array}\right) = \det A \cdot C$$

$$A = E \Rightarrow \det B \stackrel{\text{no mary 2}}{=} 1 \cdot C \Rightarrow C = \det B \Rightarrow \det \left(\frac{A \mid *}{0 \mid B} \right) = \det A \cdot \det B$$

10.1 Кольца частных

R — коммунитативное кольцо. Вопрос: существует ли такое K, что $R \subset K$ — подкольцо и K — поле?

$$R = \mathbb{Z}, \mathbb{Z}[i] - \text{yes.}$$

 $R = \mathbb{Z}/_6\mathbb{Z}$ — no: $2 \cdot 3 = 0 \Rightarrow 2,3$ не обратимы.

То есть делители нуля — препятствие.

Теорема 24. Пусть R — область целостности. Тогда $\exists K : R$ — подкольцо в K и K — поле.

Доказательство. Рассмотрим $K = \{(a,b) \mid a,b \in R, b \neq 0\}$

Заведем отношение: $(a,b) \sim (c,d)$, если ad = bc.

Утверждение: это отношение эквивалентности.

Рефлексивность и симметричность очевидны.

Транзитивность: $(a,b) \sim (c,d) \sim (e,f)$

 $ad = bc \& cf = ed \Rightarrow adef = bced \& c, d \neq 0 \Rightarrow af = bc$, t.e. $(a,b) \sim (e,f)$.

$$K/_{\sim} = K = K(R)$$

Определим + и ::

$$\overline{(a,b)} \cdot \overline{(c,d)} = \overline{(ac,bd)}$$

$$\overline{(a,b)} + \overline{(c,d)} = \overline{(ad + bc,bd)}$$

Корректность: $(a,b) \sim (a',b') \Rightarrow (ad+bc,bd) \sim (a'd+b'c,b'd)$

$$(ad + bc)b'd = (a'd + b'c)bd \Leftrightarrow ab'dd + bb'cd = a'bdd + bb'cd \Rightarrow ab' = a'b$$

Аналогично доказывается корректность умножения.

Обозначение 7. $\frac{a}{b} = \overline{(a,b)}$