Rozwiązywanie układów równań liniowych i rozkład LU

Aby znaleźć rozkład LU macierzy możemy posłużyć się algorytmem Doolittle'a, w którym zakładamy dodatkowo, że $l_{ii}=1$ dla każdego $i=1,2,\ldots,n$. Algorytm ten możemy zapisać następująco:

Dla
$$k = 1, 2, ..., n$$
:
 $l_{kk} = 1$
Dla $j = k, k + 1, ..., n$:
 $u_{kj} = a_{kj} - \sum_{s=1}^{k-1} l_{ks} u_{sj}$
Dla $i = k + 1, k + 2, ..., n$:
 $l_{ik} = (a_{ik} - \sum_{s=1}^{k-1} l_{is} u_{sk})/u_{kk}$

Zadania

1. Używając polecenia lu znajdź rozkład LUP poniższych macierzy:

(a)
$$A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 7 & 9 \\ 3 & 8 & 7 \end{bmatrix}$$
,
(b) $A = \begin{bmatrix} 3 & 1 & 2 \\ 5 & 2 & 3 \\ -1 & -1 & -1 \end{bmatrix}$,
(c) $A = \begin{bmatrix} -1 & -5 & -3 & -4 \\ 1 & 6 & 4 & 5 \\ 1 & 9 & 6 & 7 \\ 1 & 9 & 7 & 6 \end{bmatrix}$.

- 2. (* 2,5 pkt) Napisz funkcję Doolittle, która dla zadanej macierz \boldsymbol{A} znajduje jej rozkład LU, używając algorytmu Doolittle'a.
- 3. (* 2,5 pkt) Napisz funkcję, która dla macierzy A, wektora b, wektora początkowego x0 i parametrów związanych z kryteriami stopu rozwiązuje układ równań liniowych Ax=b za pomocą metody Jacobiego.
- 4. (* 2,5 pkt) Napisz funkcję, która dla macierzy A, wektora b, wektora początkowego x0 i parametrów związanych z kryteriami stopu rozwiązuje układ równań liniowych Ax = b za pomocą metody Gaussa-Seidela.
- 5. (* 2,5 pkt) Napisz funkcję, która dla macierzy A, wektora b, wektora początkowego x0, parametru ω i parametrów związanych z kryteriami stopu rozwiązuje układ równań liniowych Ax = b za pomocą metody nadrelaksacji.

Rozkład macierzy według wartości szczególnych (SVD)

Niech $A = [a_{ij}]_{1 \le i \le m, 1 \le j \le n}$ będzie macierzą rozmiaru $m \times n$ o wartościach zespolonych. Przypomnijmy kilka pojęć związanych z macierzami.

Definicja 1. 1. Macierz $A^t = [a_{ji}]_{1 \le j \le n, 1 \le i \le m}$ nazywamy macierzą transponowaną,

- 2. Macierz $A^* = [\overline{a_{ij}}]_{1 \le j \le n, 1 \le i \le m}$ nazywamy macierzą sprzężoną.
- 3. Jeżeli $A = A^t$, to macierz A nazywamy symetryczną.
- 4. Jeżeli $A = A^*$, to macierz A nazywamy samosprzeżoną.
- 5. Jeżeli $A^{-1} = A^*$, to macierz A nazywamy unitarną.

Rozkład SVD pozwala nam rozłożyć dowolną macierz na macierz diagonalną i macierze unitarne.

Twierdzenie 1. Dowolną macierz A o elementach zespolonych i wymiarach $m \times n$ możemy przedstawić w postaci $V\Sigma U^*$, gdzie V jest macierzą unitarną o wymiarach $m \times m$, Σ jest macierzą diagonalną o wymiarach $m \times n$, a U jest macierzą unitarną o wymiarach $n \times n$.

Macierze V, Σ oraz U możemy znaleźć w następujący sposób

- 1. Obliczamy macierz $B = A^*A$.
- 2. Obliczamy wartości własne macierzy B. Można pokazać, że wszystkie te wartości są nieujemne. Oznaczmy je jako $\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2$, przy czym zakładamy, że $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > \sigma_{r+1} = \ldots = \sigma_n = 0$.
- 3. Obliczamy wektory własne u_1, \ldots, u_n macierzy B (tzn. takie wektory, że $Bu_i = \sigma_i^2 u_i$), dobierając je w taki sposób, aby tworzyły układ ortonormalny (tzn. $\langle u_i, u_i \rangle = 1$ i $\langle u_i, u_j \rangle = 0$ dla $i \neq j$, gdzie $\langle \cdot, \cdot \rangle$ oznacza iloczyn skalarny).
- 4. Definiujemy wektory $v_i = \frac{1}{\sigma_i} A u_i$ dla i = 1, ..., r. Jeżeli r < m, to definiujemy dodatkowo wektory $v_{r+1}, ..., v_m$ w taki sposób, aby układ $\{v_1, ..., v_m\}$ był bazą ortonormalną.
- 5. Macierz Σ tworzymy w następujący sposób: na główną przekątną wpisujemy kolejno, od pierwszego wiersza liczby $\sigma_1, \sigma_2, \ldots, \sigma_r$ i uzupełniamy ją zerami.
- 6. Macierz V tworzymy wpisując do jej kolejnych kolumn wektory v_1, \ldots, v_m .
- 7. Macierz U tworzymy wpisując do jej kolejnych kolumn wektory u_1, \ldots, u_n .

Liczby $\sigma_1, \sigma_2, \ldots, \sigma_n$ nazywamy wartościami szczególnymi macierzy A, a podany rozkład $V\Sigma U^*$ rozkładem maierzy A względem wartości szczególnych. Zwróćmy uwagę, że rozkład ten nie jest jednoznaczny.

Liniowe zagadnienie najmniejszych kwadratów

Jednym z zastosowań rozkładu SVD jest związane z układami równań. Niech Ax=b będzie układem równań, przy czym układ ten może być sprzeczny lub zawierać wiele rozwiązań.

Definicja 2. Niech A będzie macierzą zespoloną o wymiarach $m \times n$, a b wektorem zespolonym o wymiarach $m \times 1$.Rozwiązaniem minimalnym układu równań Ax = b nazywamy wektor x ze zbioru $\{x : ||Ax - b||_2 = \rho\}$ o najmniejszej normie euklidesowej, gdzie $\rho = \min_{x \in \mathbb{C}^n} ||Ax - b||_2$.

Szukając rozwiązania minimalnego układu Ax=b możemy posłużyć się pseudoodwrotnością macierzy A.

Definicja 3. Niech A będzie macierzą zespoloną o wymiarach $m \times n$. Pseudoodwrotnością macierzy A nazywamy macierz A^+ spełniająca następujące warunki

- 1. $AA^{+}A = A$,
- 2. $A^+AA^+ = A^+$.
- 3. $(AA^+)^* = AA^+$
- 4. $(A^+A)^* = A^+A$.

Znając rozkład SVD macierzy A możemy w łatwy sposób policzyć jej odwrotność jako $A^+ = U\Sigma^+V*$, gdzie Σ^+ powstaje z macierzy Σ przez jej transponowanie i zastąpienie jej niezerowych wartości ich odwrotnościami.

Twierdzenie 2. Rozwiąaniem minimalnym układu Ax = b jest wektor $x = A^+b$.

Zadania

1. Korzystając z funkcji svd w Scilabie znajdź rozwiązania minimalne poniższych układów równań:

(a)
$$\begin{cases} x_1 + x_2 = 3 \\ x_1 + x_2 = 6 \end{cases}$$
,

(b)
$$\begin{cases} x_1 + 3x_2 + 4x_3 = 5 \\ -2x_1 - 6x_2 - 8x_3 = -10 \end{cases}$$

Uwaga! Polecenie [V, S, U] = svd(A) zwraca macierze V, S, U takie, że $A = VSU^*$.

- 2. (* 2 pkt)
 - (a) Wygeneruj wektor x 50 równomiernie rozłożonych punktów w przedziale [1, 10].
 - (b) Wygeneruj wektor a 50 losowo wybranych punktów z przedziału [2,3].
 - (c) Wygeneruj wektor b 50 losowo wybranych punktów z przedziału [-1,0].
 - (d) Narysuj wykres $y = b \cdot x^2 + a \cdot x$.
 - (e) Za pomocą SVD znajdź wielomian $f(x) = b_0 x^2 + a_0 x$, który najlepiej aproksymuje punkty (x, y) i narysuj jego wykres.