Naphon Santisukwongchot

Profile summary

Student

Thammasat business school **Business administration: Finance**

Aug 2017 - May 2021

Present

Associate account manager

N-Squared eCommerce, Bangkok Oct 2021 - May 2023

Seeking a career transition into data science. Excellent understanding and proficiency of platforms for effective data analysis, including Excel, Python, R, and SQL. Strong communication, organizational and analytical skills.

Technical strengths

Business Intelligence: Looker, Power BI, Tableau

Data Analysis: Pandas, NumPy

Data Visualization: Matplotlib, Seaborn

Machine Learning: Scikit-Learn

Microsoft Office: Excel, PowerPoint, Word

Programming: Python, R, SQL

Skills

- Attention to Detail
- ♦ Collaboration
- ♦ Problem Solving
- ♦ Regression , Classification, Clustering

- Business Acumen
- ♦ Critical Thinking

♦ IELTS 6

Project Predicting Movie Rental Durations (1)

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
```

```
df.info()
  df.info()
                                                                 <class 'pandas.core.frame.DataFrame'>
<class 'pandas.core.frame.DataFrame'>
                                                                 RangeIndex: 15861 entries, 0 to 15860
RangeIndex: 15861 entries, 0 to 15860
                                                                 Data columns (total 19 columns):
Data columns (total 15 columns):
                                                                                     Non-Null Count Dtype
     Column
                         Non-Null Count Dtype
                         -----
                                                                 0 rental date
                                                                                     15861 non-null datetime64[ns, UTC]
                                                                 1 return date
                                                                                     15861 non-null datetime64[ns, UTC]
     rental date
                         15861 non-null object
                                                                                     15861 non-null float64
                                                                     amount
     return date
                         15861 non-null object
                                                                    release year
                                                                                     15861 non-null float64
     amount
                         15861 non-null float64
                                                                 4 rental rate
                                                                                     15861 non-null float64
     release year
                         15861 non-null float64
                                                                 5 length
                                                                                     15861 non-null float64
     rental rate
                         15861 non-null float64
                                                                    replacement cost
                                                                                    15861 non-null float64
                         15861 non-null float64
                                                                    special features
                                                                                    15861 non-null object
                                                                    NC-17
                                                                                     15861 non-null int64
     replacement cost 15861 non-null float64
                                                                 9
                                                                    PG
                                                                                     15861 non-null int64
     special features 15861 non-null
                                                                 10 PG-13
                                                                                     15861 non-null int64
     NC-17
                         15861 non-null int64
                                                                                     15861 non-null int64
                         15861 non-null int64
                                                                 12 amount 2
                                                                                     15861 non-null float64
                         15861 non-null int64
                                                                 13 length 2
                                                                                     15861 non-null float64
                                                                 14 rental rate 2
                         15861 non-null int64
                                                                                     15861 non-null float64
                                                                 15 rental length
 12 amount 2
                         15861 non-null float64
                                                                                     15861 non-null timedelta64[ns]
                                                                 16 rental days
                                                                                     15861 non-null int64
 13 length 2
                         15861 non-null float64
                                                                                    15861 non-null int64
                                                                 17 deleted scenes
14 rental rate 2
                         15861 non-null float64
                                                                 18 behind the scenes 15861 non-null int64
dtypes: float64(8), int64(4), object(3)
                                                                 dtypes: datetime64[ns, UTC](2), float64(8), int64(7), object(1), timedelta64[ns](1)
memory usage: 1.8+ MB
                                                                 memory usage: 2.3+ MB
```

A DVD rental company needs your help! They want to figure out how many days a customer will rent a DVD for based on some features. They want you to try out some regression models which will help predict the number of days a customer will rent a DVD. The company wants a model which yields a MSE of 3 or less on a test set. The model you make will help the company become more efficient inventory planning.

- Exploratory data analysis

- ♦ Import frameworks and csv file
- Perform EDA: df.head(), df.info(), df.describe
- ♦ Set a target variable
 - Add rental_length column
 - Add rental_days column : Target
- ♦ Categorize special features into one hot encoder
 - Add deleted_scenes column: Feature
 - Add behind_the_scenes column : Feature

Project Predicting Movie Rental Durations (2)

Feature Selection

- ♦ removing irrelevant features
 - Assign relevant features into X
- ♦ Assign rental_days (target) into Y

```
X = df.drop(['rental_days','rental_date','return_date','rental_length','special_features'], axis=1)
y = df['rental_days']
```

Data implementation

- ♦ Checking data set dimension
- ♦ Perform train test split

```
print(X.shape)
print(y.shape)

(15861, 14)
(15861,)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=9)
```

Project Predicting Movie Rental Durations (3)

Linear (lasso)

```
# Perform feature selectino by choosing columns with positive coefficients

lasso = Lasso(alpha=0.3, random_state=9)
lasso.fit(X_train, y_train)
lasso_coef = lasso.coef
X_lasso_train, X_lasso_test = X_train.iloc[:, lasso_coef > 0], X_test.iloc[:, lasso_coef > 0]

from sklearn.linear_model import LinearRegression

lr = LinearRegression()
lr.fit(X_lasso_train, y_train)
lr_pred = lr.predict(X_lasso_test)
lr_mse = mean_squared_error(y_test, lr_pred)
lr_mse

4.812297241276244
```

Decision tree

Random forest

```
from sklearn.ensemble import RandomForestRegressor
from sklearn.model selection import RandomizedSearchCV
param dist = {'n estimators': np.arange(1,101,1),
               'max depth': np.arange(1,11,1)}
rf = RandomForestRegressor()
random search = RandomizedSearchCV(rf,
                                     param distributions = param dist,
                                     cv=5.
                                     random state=9)
random search.fit(X train, v train)
hyper params = random search.best params
rf = RandomForestRegressor(n estimators = hyper params['n estimators'],
                           max depth = hyper params['max depth'],
                           random state=9)
rf.fit(X train, y train)
rf pred = rf.predict(X test)
rf mse = mean squared error(y test, rf pred)
rf mse
2.225667528098759
```

MSE calculation

Perform machine learning

- Linear (lasso): MSE = 4.812

- Decision tree : MSE = 3.271

- Random Forest : MSE = 2.225

Contact

Naphon Santisukwongchot

emoney euro@hotmail.com (+66)89 738 3632

https://www.linkedin.com/in/naphon1999/ https://github.com/naphon1999 https://www.datacamp.com/portfolio/naphon1999 https://drive.google.com/drive/folders/1-3x -Xmho0 3z5u3PA6VKZi2-nY90oixK?usp=sharing

Portfolio reference

https://drive.google.com/file/d/1nS9qUg9F65z3MXSeZQoGUH-U2ZeuNgZq/view?usp=drive_link

Certifications & Developments

Data Science Bootcamp 10: DataRockie

Data Analyst in SQL & Python: DataCamp

Google Advanced Data Analytics : Google

IBM Data Science: IBM

Machine Learning: DeepLearning.Al

Work achievement

- Achieve campaign sales target
- ♦ Completely release aging stock