pyfragment Documentation

Release 0.1

Misha Salim

TABLE OF CONTENTS

1	Background			
	1.1 Theory			
	Indices and tables	3		
Ру	hon Module Index	5		
In	lex	7		

CHAPTER

ONE

BACKGROUND

PyFragment is a collection of Python modules that facilitate the setup and parallel execution of *embedded-fragment* calculations on molecular clusters, liquids, and solids.

1.1 Theory

The *embedded-fragment* methods are rooted in the many body expansion (MBE), which expresses the total energy of a molecular system as

$$E = \sum_{i} E_{i}$$

```
drivers.energy_driver()
 SP energy
```

1.2 Implementation

A series of modules are available. Please check:

1.2.1 Codes

```
class ChargeState . ChargeState (fragments, fragment_charges)
```

Base class for VB CT state

```
coupling_dimer_gs (state2, embed_flag=None)
```

-sqrt($[E_(AB) + - E_(A+B)]*[E_(AB) + - E_(AB+)]$) $E_(AB) + ==$ the relaxed, correlated charged dimer $E_(A+B) ==$ non-stationary HF energy of the charge-local dimer

plus monomer correlation energies of E_A+ and E_B

For a dimer system, this method reproduces the exact E by construction

coupling_dimer_gs_no_embed(state2)

Wraps the above dimer_gs coupling, but the two monomers do not polarize each other in monomerSCF. Hence, it does not exactly reproduce the dimer GS energy by construction

```
coupling_dimer_gs_overlapHOMO (state2)
```

 $S*E_(AB)+ - sqrt([E_(AB)+ - E_(A+B)]*[E_(AB)+ - E_(AB+)])$ Second term is same as coupling_dimer_gs First term is overlap of monomer HOMO's times relaxed dimer energy This method also reproduces energy of a dimer by construction; it just makes the overlap matrix non-identity

diag_chargelocal_dimers (subcomm=None)

return E1 + E2, the BIM energy of this charge-transfer configuration E1: sum of monomer correlated energies E2: sum of dimer interaction energies $(E_AB - E_A - E_B)$

interaction INCLUDES correlation for relaxed dimers (when A&B have same charge) but it's just the non-stationary HF energy for charge-local dimers

CHAPTER

TWO

INDICES AND TABLES

- genindex
- modindex
- search

pyfragment Documentation, Release 0.

PYTHON MODULE INDEX

С

ChargeState, 1

6

INDEX