Química

Formulario

Contents

Conver		_
	Peso	2
	Longitud	2
	Gases	2
	Termodinámica	2
Propied	dades intensivas	2
Estequiometría		
	Unidades de cantidad	2
	Isótopo	2
	Composición porcentual	2
	Fórmulas químicas	2
Reaccio	ones	2
	Rendimiento	2
		_
Solucio		2
	Molaridad (M)	2
	Molalidad (η)	2
	Fracción molar (X)	2
	Porcentaje en volumen $(V_{\%})$	2
	Porcentaje en masa $(m_{\%})$	2
	Partes por millón (ppm)	2
Gases		2
	Ley de los gases ideales	2
	Ecuación de estado	3
	Densidad de un gas	3
	Ley de Dalton	3
	Volumen molar de un gas	3
	· · · · · · · · · · · · · · · · · · ·	
Termod	linámica	3
	Trabajo y energía	3
	Entalpía	3
	Calor	3
	Cálculos de un sistema	3
	Entalpía de una solución	3
	Disminución de presión de vapor	3
	Cambio de fases	3
	Elevación del punto de ebullición	3
	Disminución del punto de ebullición	3
	Presión osmótica	3

Conversiones

Peso

1 lb = 453,6 g

1 kg = 2.2 lb

1 oz = 28,35 g

Longitud

1 mi = 1,61 km

1 m = 3.28 ft

 $1 \text{ m} = 39.4^{\circ}$

1'' = 2,54 cm

Gases

1 atm = 760 mmHg

1 atm = 101,33 kPa

1 atm = 14,696 psi

1 torr = 1 mmHg

1 torr = 133,32 Pa

 $1 \text{ bar} = 10^5 \text{ Pa}$

Termodinámica

1 cal = 4.18 J

1 atmL = 101,3 J

Propiedades intensivas

m = dv

(s), (l) =
$$g/cm^3$$
; (g) = g/m^3

 $^{\circ}$ C = $(F - 32)\frac{5}{9}$

 $F = \frac{9}{5}$ °C + 32

 $K = {^{\circ}C} + 273,15$

Estequiometría

Unidades de cantidad

 $1uma = \frac{g}{mol}$

El peso atómico se mide en uma's.

 $1g = 6,022 \cdot 10^{23} uma$

 $N_A/L = 6,022 \cdot 10^{23}$ partículas

Isótopo

 $\bar{m} = m_1 A b_1 + \dots + m_n A b_n$

Composición porcentual

 $Mr = \Sigma Ar$

 $\%X = \frac{nAr}{Mr}100\%$

Fórmulas químicas

FM = nFE

m = nMr

Reacciones

Rendimiento

$$%r = \frac{\text{real}}{\text{teórico}} 100\%$$

Soluciones

$$C_1V_1 = C_2V_2$$

 $m_{\text{solución}} = m_{soluto} + m_{solvente}$

 $V_{\text{solución}} = V_{soluto} + V_{solvente}$

Molaridad (M)

$$M = \frac{n_{soluto}}{V_{\text{solución}}}$$

volumen = dm^3

Molalidad (η)

$$\eta = \frac{n_{soluto}}{m_{solvente}}$$

$$masa = kg$$

Fracción molar (X)

$$X_A = \frac{n_A}{n_{\text{solución}}}$$

$$X_B = \frac{n_B}{n_{\text{solución}}}$$

$$X_A + X_B = 1$$

Porcentaje en volumen $(V_{\%})$

$$V_{\%} = \frac{V_{soluto}}{V_{solución}} \cdot 100\%$$

volumen =
$$cm^3$$

Porcentaje en masa (m%)

$$m_{\%} = \frac{m_{\text{soluto}}}{m_{\text{solución}}} \cdot 100\%$$

$$masa = g$$

Partes por millón (ppm)

$$m_{\%} = \frac{m_{soluto}}{m_{solución}} \cdot 10^6$$

$$masa = g$$

Gases

$$R = 8,314 \frac{J}{K \cdot mol} R = 0,0821 \frac{atm \cdot L}{K \cdot mol}$$

Ley de los gases ideales

$$PV = nRT$$

Ecuación de estado

$$\frac{P_1 V_1}{n_1 T_1} = \frac{P_2 V_2}{n_2 T_2}$$

Densidad de un gas

$$\rho = \frac{MrP}{RT}$$

Ley de Dalton

$$P_A = X_A P_T$$

$$P_A = \frac{n_A RT}{V}$$

Volumen molar de un gas

$$1mol = 22,7dm^3$$

Posible a a 273K y 1 atmósfera. Esto se conoce como condiciones normales de temperatura y presión (CNTP).

Termodinámica

Trabajo y energía

$$W = \pm P\Delta V$$

$$\Delta E = \pm Q \pm W$$

 ΔH = +endotérmico, -exotérmico

W,Q = +compresión, -expansión

Entalpía

 $\Delta H = H_{productos} - H_{reactivos}$

Entalpía estándar de formación

 ΔH_f°

Entalpía estándar de reacción

$$\Delta H_{rxn}^{\circ} = \left[c\Delta H_f^{\circ}(C) + d\Delta H_f^{\circ}(D) \right] - \left[a\Delta H_f^{\circ}(A) + b\Delta H_f^{\circ}(B) \right]$$

Calor

$$-Q_1 = Q_2$$

 $Q=mc\Delta T$

C = mc

 $c_{H_2O} = 4,184 \frac{J}{g^{\circ}C}$

Cálculos de un sistema

 $Q_{sis} = \Sigma Q_{\text{Componentes}}$

Componentes

 $Q_{sis}=0$

$$Q_{H_2O}=mc\Delta T$$

$$Q_{\rm aparato} = C_{\rm aparato} \Delta T$$

Q_{sis} ningún calor entra o sale

Q_{rxn} se despeja

Reacción a P constante

$$\Delta H = Q_{\rm rxn}$$

Reacción a V constante

Entalpía de una solución

$$\Delta H_{\text{soln}} = E + \Delta H_{\text{hidratación}}$$

$$\Delta H_{\text{soln}} = H_{\text{solución}} - H_{\text{componentes}}$$

$$\Delta H_{\text{soln}} = \Sigma \Delta H$$

 $\Delta H > \Delta E \rightarrow \text{compresión}$

 $\Delta H < \Delta E \rightarrow \text{expansión}$

 $\Delta H = \Delta E \rightarrow \text{rxn}$ que no produce cambio en moles

 $\Delta H_{
m soln} = 0
ightarrow
m solución$ ideal

Disminución de presión de vapor

Ley de Raoult

$$P_1 = X_1 P_1^{\circ}$$

Si la solución contiene solo un soluto

$$\Delta P = X_2 P_1^{\circ}$$

$$\Delta P = P_1^{\circ} - P_1$$

 P_1° = presión de vapor del solvente **puro**

 $_1$ = solvente

₂ = soluto

Cambio de fases

$$\Delta H_{sub} = \Delta H_{fus} + \Delta H_{vap}$$

Elevación del punto de ebullición

$$\Delta T_b = T_b - T_b^{\circ}$$

$$T_b > T_b^{\circ} \rightarrow \Delta T_b > 0$$

$$\Delta T_b = k_b \eta$$

Disminución del punto de ebullición

$$\Delta T_f = T_f - T_f^{\circ}$$

$$T_f^{\circ} > T_f \rightarrow \Delta T_f > 0$$

$$\Delta T_f = k_f \eta$$

Presión osmótica

$$\pi = MRT$$