GER 1000 quiz 6

Question 1

If you were to toss a fair coin six times, which one(s) of the following sequences would be most likely (i.e., having the largest probability) to occur?

- (i) H H H H H H, (ii) H T H T H T, (iii) H H H T T T.
- (H denotes a head; T denotes a tail)
- (a) (ii)
- (b) (i) and (ii)
- (c) (ii) and (iii)
- (d) All are equally likely

Answer: d

The probability of each sequence equals 0.5^6.

Question 2

You pay \$10 to play the following game. The dealer rolls a fair six-sided die, so the outcome is equally likely to be 1, 2, ..., 6. The payoff for each outcome is indicated in the table below.

Outcome	1	2	3	4	5	6
Payoff (\$)	0	2	3	4	25	25

What is your average net gain from this game? (Rounded to the nearest cent.)

- (a) -8 cents
- (b) -17 cents
- (c) -33 cents
- (d) 12 cents

Answer: b

Average value = (1/6 * 0 + 1/6 * (2 + 3 + 4) + 2/6 * 25) - 10 = -1/6 dollars = -17 cents.

Question 3

In a quiz, there are five MCQ questions. Two of them have 4 options each, while the other three questions have 3, 5, 6 options, respectively. Suppose a student picks an option randomly for each question, and that the picks are independent of each other.

The probability that the student gets 0 marks is (or closest to):

- (a) 0.15
- (b) 0.20
- (c) 0.25
- (d) 0.40

Answer: c

The probability = 2/3 * 3/4 * 3/4 * 4/5 * 5/6 = 1/4.

Question 4

Mammograms and ultrasounds are used to test for breast cancer. In a certain country, there were 4000 women who went for both tests in 2016, and the table displays the outcomes.

	Positive ultrasound	Negative ultrasound	
Positive mammogram	200	300	
Negative mammogram	50	3450	

The next two questions are about a randomly selected person from the 4000 women.

Question 4

The probability of the person having a positive mammogram is _____.

- (a) 1/20
- (b) 1/16
- (c) 1/8
- (d) 2/5
- (e) 4/5

Answer: c

Let M be the event that she has a positive mammogram.

Then P(M) = (200 + 300)/4000 = 1/8.

Question 5

Is having a positive mammogram independent from having a positive ultrasound?

- (a) Yes
- (b) No
- (c) Cannot be determined from the given information

Answer: b

Let U be the event that she has a positive ultrasound. P(U) = (200 + 50)/4000 = 1/16.

Since P(M and U) = 200/4000 = 1/20, which is not equal to P(M) * P(U) = 1/8 * 1/16 = 1/128, we know by multiplication rule that having a positive mammogram and having a positive ultrasound are not independent events.