Derivadas

Definição

Uma função $f: X \longrightarrow \mathbb{R}$ diz-se **derivável em** $x_0 \in X \cap X'$ se existe $d \in \mathbb{R}$ tal que $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = d$.

Ao valor real d chama-se **derivada de f em** x_0 e escreve-se $f'(x_0) = d$ ou $Df(x_0) = d$.

Nota

Observe-se que, considerando h tal que $x_0 + h \in \mathrm{Dom}\, f$, e fazendo a mudança de variável $x = x_0 + h$, obtemos que

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

 Cálculo
 5. Derivadas
 2018/2019
 1/17

Definição

Dada uma função $f:X\longrightarrow \mathbb{R}$ derivável em $c\in X\cap X'$, a reta de equação y-f(c)=f'(c)(x-c) designa-se por reta tangente ao gráfico de f em (c,f(c)).

Definição

Dada uma função $f:X\longrightarrow \mathbb{R}$ derivável em $c\in X\cap X'$, chama-se **reta** normal ao gráfico de f em (c,f(c)) à reta perpendicular à reta tangente ao gráfico de f nesse ponto.

Definição

Uma função $f: X \longrightarrow \mathbb{R}$ diz-se **derivável** se f for derivável em todos os pontos de X.

A função $f': X \longrightarrow \mathbb{R}$ diz-se a função derivada de f. $x \longmapsto f'(x)$

Teorema

Sejam $f: X \longrightarrow \mathbb{R}$ uma função, $x_0 \in X \cap X'$. Se f é derivável em x_0 então f é contínua em x_0 .

Corolário

Seja $f: X \longrightarrow \mathbb{R}$ uma função derivável. Então f é contínua.

 Cálculo
 5. Derivadas
 2018/2019
 3 / 17

Definição

Uma função $f:X\longrightarrow \mathbb{R}$ diz-se

- derivável à direita em $x_0 \in X \cap X'_+$ se existe $d \in \mathbb{R}$ tal que $\lim_{x \to x_0^+} \frac{f(x) f(x_0)}{x x_0} = d. \text{ Ao valor real } d \text{ chama-se derivada à direita de f em } x_0 \text{ e escreve-se } f'(x_0^+) = d;$
- derivável à esquerda em $x_0 \in X \cap X'_-$ se existe $d \in \mathbb{R}$ tal que $\lim_{x \to x_0^-} \frac{f(x) f(x_0)}{x x_0} = d$. Ao valor real d chama-se derivada à esquerda de f em x_0 e escreve-se $f'(x_0^-) = d$.

Cálculo 5. Derivadas 2018/2019

Proposição

Sejam
$$f:X\longrightarrow \mathbb{R}$$
 uma função, $x_0\in X\cap X'_+\cap X'_-$. Então

$$f \ \textit{derivável em } x_0 \iff \begin{vmatrix} \textit{existem } f'(x_0^+) \ \textit{e} \ f'(x_0^-) \\ \textit{e} \\ f'(x_0^+) = f'(x_0^-). \end{vmatrix}$$

 Cálculo
 5. Derivadas
 2018/2019
 5/17

Regras de derivação

Proposição

Sejam $f, g: X \longrightarrow \mathbb{R}$ funções deriváveis em $x_0 \in X \cap X'$. Então:

- f + g é derivável em x_0 e $(f + g)'(x_0) = f'(x_0) + g'(x_0)$;
- dado $\lambda \in \mathbb{R}$, λf é derivável em x_0 e $(\lambda f)'(x_0) = \lambda f'(x_0)$;
- fg é derivável em x_0 e $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$;
- se $g(x_0) \neq 0$ então $\frac{f}{g}$ é derivável em x_0 e

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}.$$

Cálculo 5. Derivadas

Teorema

Sejam X, Y subconjuntos de \mathbb{R} , $f: X \longrightarrow Y$, $g: Y \longrightarrow \mathbb{R}$ funções, $c \in X \cap X'$, $f(c) \in Y'$. Suponhamos que f é derivável em c e que g é derivável em f(c). Então $g \circ f$ é derivável em c e

$$(g \circ f)'(c) = g'(f(c))f'(c).$$

Teorema

Sejam X e Y subconjuntos não vazios de \mathbb{R} , $f:X\longrightarrow Y$ uma função bijetiva e suponhamos que:

- f é derivável em $c \in X \cap X'$;
- $f'(c) \neq 0$;
- f^{-1} é contínua em f(c).

Então f^{-1} é derivável em f(c). Além disso, $\left(f^{-1}\right)'(f(c))=\frac{1}{f'(c)}$.

 Cálculo
 5. Derivadas
 2018/2019
 7 / 17

Derivadas das funções exponenciais e logaritmos

$$(e^x)' = e^x$$
$$\ln' x = \frac{1}{x}$$

Para $a \in \mathbb{R}^+ \setminus \{1\}$

$$(a^{x})' = a^{x} \ln a$$
$$\log'_{a} x = \frac{1}{x \ln a}$$

Cálculo 5. Derivadas

Derivadas das funções trigonométricas e das funções hiperbólicas

$$\sinh' x = \cosh x$$
 $\cosh' x = \sinh x$
 $\tanh' x = \operatorname{sech}^2 x$ $\coth' x = -\operatorname{cosech}^2 x$
 $\operatorname{sech}' x = -\operatorname{sech} x \operatorname{th} x$ $\operatorname{cosech}' x = -\operatorname{cosech} x \operatorname{coth} x$

 Cálculo
 5. Derivadas
 2018/2019

Derivadas das funções trigonométricas inversas e das funções hiperbólicas inversas

$$\operatorname{arcsen}' x = \frac{1}{\sqrt{1 - x^2}}$$
$$\operatorname{arctg}' x = \frac{1}{1 + x^2}$$
$$\operatorname{arcsec}' x = \frac{1}{x\sqrt{x^2 - 1}}$$

$$\operatorname{argsh'} x = \frac{1}{\sqrt{1+x^2}}$$

$$\operatorname{argth'} x = \frac{1}{1-x^2}$$

$$\operatorname{argsech'} x = \frac{-1}{x\sqrt{1-x^2}}$$

$$\arccos' x = \frac{-1}{\sqrt{1 - x^2}}$$
$$\operatorname{arcotg}' x = \frac{-1}{1 + x^2}$$
$$\operatorname{arcosec}' x = \frac{-1}{x\sqrt{x^2 - 1}}$$

$$\operatorname{argch}' x = \frac{1}{\sqrt{x^2 - 1}}$$
$$\operatorname{argcoth}' x = \frac{1}{1 - x^2}$$
$$\operatorname{argcosech}' x = \frac{-1}{x\sqrt{1 + x^2}}$$

Alguns teoremas envolvendo derivadas

Teorema

Seja $f:X\longrightarrow \mathbb{R}$ uma função derivável em $c\in X\cap X'$. Se c é um ponto de extremo de f então f'(c)=0.

Teorema (de Rolle)

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua, derivável em]a,b[e tal que f(a)=f(b). Então existe $c\in]a,b[$ tal que f'(c)=0.

Cálculo 5. Derivadas

Teorema (de Lagrange)

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua, derivável em]a,b[. Então

$$\exists c \in]a, b[$$
 $f(b) - f(a) = f'(c)(b - a).$

Cálculo 5. Derivadas 2018/2019 12 / 17

Corolário

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua, derivável em]a,b[. Se f'(x)=0 para todo o $x\in]a,b[$ então f é constante.

Corolário

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua, derivável em]a,b[.

- Se f'(x) > 0 para todo o $x \in]a,b[$ então f é estritamente crescente.
- Se f'(x) < 0 para todo o $x \in]a,b[$ então f é estritamente decrescente.

Teorema (de Cauchy)

Sejam $f,g:[a,b]\longrightarrow \mathbb{R}$ funções contínuas, deriváveis em]a,b[. Então

$$\exists c \in]a, b[$$
 $[f(b) - f(a)] g'(c) = [g(b) - g(a)] f'(c).$

 Cálculo
 5. Derivadas
 2018/2019
 13 / 17

Teorema (de Darboux)

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função derivável. Então

f'([a,b]) contém o intervalo fechado de extremos f'(a) e f'(b).

Corolário

Seja $f:[a,b] \longrightarrow \mathbb{R}$ uma função derivável tal que f'(a)f'(b) < 0. Então existe $c \in]a,b[$ tal que f'(c)=0.

Corolário

Sejam I um intervalo de $\mathbb R$ e $f:I\longrightarrow \mathbb R$ uma função derivável. Então f'(I) é um intervalo.

Teorema (Regra de l'Hôpital)

Sejam a,b números reais, a < b, $f,g:]a,b [\longrightarrow \mathbb{R}$ funções deriváveis. Seja $c \in \{a,b\}$ e suponhamos que $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0$ e que existe

$$\lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

$$\lim_{x \to c} \frac{f(x)}{g(x)}$$

$$e \qquad \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

Nota

A Regra de l'Hôpital é também válida:

- quando se calcula o limite quando $x \to +\infty$ ou quando $x \to -\infty$;
- considerando, no teorema anterior,

$$\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = +\infty \quad \text{ou} \quad \lim_{x \to c} f(x) = \lim_{x \to c} g(x) = -\infty$$

e tomando $c \in \mathbb{R} \cup \{-\infty, +\infty\}$.

Derivadas de ordem superior

Definição

Sejam $f:X\longrightarrow \mathbb{R}$ uma função e $c\in X'\cap X$. Diz-se que f é duas vezes derivável em c, ou que f tem derivada de $2^{\underline{\mathbf{a}}}$ ordem em c ou que f tem segunda derivada em c se

$$\exists\, \delta>0\,\, g=f'_{|_{X\cap\,]c-\delta,c+\delta[}}\,\, \text{\'e deriv\'avel em c}.$$

Representa-se a segunda derivada de f em c por $f^{\prime\prime}(c)$ ou $f^{(2)}(c)$.

Diz-se que f tem derivada de $2^{\underline{a}}$ ordem se f é duas vezes derivável em qualquer ponto do seu domínio (note-se que, em particular, temos que $X\subseteq X'$).

À função $f^{''}: X \longrightarrow \mathbb{R}$ chama-se função segunda derivada $x \longmapsto f^{''}(x)$ de f.

Cálculo

Nota

Indutivamente define-se derivada de ordem n de f em c e a função derivada de ordem n de f.

Denota-se a derivada de f de ordem n por $f^{(n)}$ ou $D^n f$. Convenciona-se que $f^{(0)} = f$.

Teorema

Seja $f: X \longrightarrow \mathbb{R}$ uma função que admite segunda derivada em $c \in X \cap X'$. Suponhamos que f'(c) = 0. Então, se f''(c) > 0, c é um ponto de mínimo local de f e se f''(c) < 0, c é um ponto de máximo local de f.