

Exame de Matemática Computacional 1

Ano Letivo: 2017/2018 Semestre: Primeiro Época: Normal Data: 29-01-2018

Cursos: Engenharia Informática Duração: 2h
Nome: Número: ★ Classificação:
O uso de telemóveis ou de outros aplicativos móveis durante a realização do Exame implica a anulação do mesmo. Deverá responder no próprio enunciado no espaço atribuído. Resolva primeiro na folha de rascunho e escreva no enunciado apenas os cálculos essenciais.
Parte I Nas questões seguintes, indique a opção correta, indicando a sua escolha com uma cruz no quadrado associado a essa opção. Uma resposta certa vale 1 valor, uma resposta errada vale -0,3 valores e uma ausência de resposta vale 0 valores.
1) A função $f(x) = \ln(\sin x)$ tem como domínio: $\square \mathbb{R} \setminus \left\{\frac{k\pi}{2}\right\}$ onde $k \in \mathbb{Z}$. $\square \mathbb{R} \setminus \{k\pi\}$ onde $k \in \mathbb{Z}$. $\square \mathbb{R} \setminus \{0\}$. \square nenhuma das anteriores.
2) A derivada de $f(x) = e^{\arctan x^2}$ em $x = 1$ é: \Box 0. \Box $e^{\frac{\pi}{4}}$. \Box $e^{\frac{\pi}{3}}$. \Box nenhuma das anteriores.
3) $\int \frac{5x-4}{x^2-x-2} dx$ é igual a: $\Box \int \frac{\int 5x-4 dx}{\int x^2-x-2 dx}. \Box \int \frac{1}{x^2-x-2} dx - 4 \int \frac{1}{x^2-x-2} dx. \Box \int \frac{3}{x+1} dx + \int \frac{2}{x-2} dx. \Box \text{ nenhuma das anteriores.}$
4) A função inversa, no domínio adequado, da função $f(x) = \frac{\pi}{3} - 2\arccos(x+1)$ é: $\Box f^{-1}(x) = \cos(\frac{\pi}{6} - \frac{x}{2}) - 1$. $\Box f^{-1}(x) = \frac{1}{\frac{\pi}{3} - 2\arccos(x+1)}$. $\Box f^{-1}(x) = \cos(\frac{\pi}{6} - \frac{y}{2}) - 1$. \Box nenhuma das anteriores.
5) A derivada da função $f(x) = \int_0^x \sum_{n=0}^{+\infty} \frac{t^n}{n!} dt$ é: \Box $e^x - 1$. \Box e^x . \Box $\sum_{n=1}^{+\infty} \frac{x^n}{n!}$. \Box nenhuma das anteriores.
6) Uma solução de $\int_0^{\eta} 5x^4 dx = \frac{2}{e-1} \int_0^1 e^x dx$ é: $\Box \eta = \sqrt{5}$. $\Box \eta = 2$. $\Box \eta = 1$. \Box nenhuma das anteriores.
7) $\lim_{x\to 0} \frac{\int_0^x \cosh t dt}{\int_0^x 1 dt}$ é igual a: \Box 1. \Box + ∞ . \Box 0. \Box nenhuma das anteriores.
8) O intervalo de convergência da série de potências dada por $f(x) = \sum_{n=1}^{\infty} \frac{n}{3^n} x^n$ é igual a: $\Box]-3,3[. \Box]-3,3[. \Box]$ nenhuma das anteriores.
9) As séries numéricas $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$ e $\sum_{n=1}^{\infty} \frac{1}{n^2}$ são: \Box convergentes. \Box divergentes. \Box respetivamente convergente e divergente. \Box respetivamente divergente e convergente.
10) Os integrais impróprios $\int_0^1 \frac{1}{\sqrt{x}} dx$ e $\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx$ são: \square convergentes. \square divergentes. \square respetivamente convergente e divergente. \square respetivamente divergente e convergente.
Parte II Nas seguintes afirmações deverá responder se são <i>Verdadeiras</i> ou <i>Falsas</i> . Seguidamente, indique de forma sucinta a razão da sua escolha. Uma resposta certa vale 1 valor e uma resposta sem justificação <u>correta</u> vale 0 valores .
1) A equação da reta tangente ao gráfico da função $f(x) = e^x$ no ponto $(1, e)$ é $y = ex$. $V \square$ $F \square$

2) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável tal que f' é contínua em todo o seu domínio. Se f'(a).f'(b) < 0 (onde a < b), então existe necessariamente pelo menos um zero da derivada em]a,b[.

3) Dado $xy - x - 3y - 4 = 0$ temos que $\frac{3}{dx} \neq \frac{1}{x^2}$	ado $xy - x - 3y - 4 = 0$ temos que $\frac{dy}{dx} \neq$	$\frac{1-y}{x-z}$
---	--	-------------------

 $V\Box$ $F\Box$

4)
$$\int_0^{\frac{\pi}{2}} 2\sin x \cos x e^{\sin^2 x} dx = e - 1.$$

 $V\Box$ $F\Box$

5) O comprimento da curva que define o gráfico da função $f(x) = \cosh(x)$ entre os pontos de abcissas x = 0 e x = 1 é igual a $\sinh(1)$. (Dica: recorde as fórmulas $\int_a^b \sqrt{1 + (f'(x))^2} \, dx$ e $\cosh^2(x) - \sinh^2(x) = 1$).

6) A derivada de $h(x) = \int_0^x e^{t^3} dt$ em $x = \sqrt[3]{2}$ é igual a e^2 .

 $V\Box$ $F\Box$

Parte III Nas duas questões que se seguem responda no espaço atribuído após o enunciado. Cada questão é classificada com 2 valores.

1) Calcule $\int_{\mathrm{e}}^{\mathrm{e}^2} x^2 \ln x \, dx$.

2) Determine justificando uma aproximação da série numérica $\sum_{n\geq 1} (-1)^{n+1} \frac{1}{4n^2}$ com um erro inferior a 0,01.