机械建工类(多域格区)合肥工业大学试卷(试卷_A_)

答题内订

共___页第___页

学号学生姓名	_ 教学班号	考试班级	考试日期	2013. 6. 27	成结
一. 单项选择题 (每题 3 分, 共 30 分)		6. 假设卫星E (A) 角动	不绕地球中心作圆周运动 1量守恒,动能也守恒.	力,则在运动过程中,卫星	对地球中心的
1. 一质点在平面上运动,已知质点位置矢量的表示式为	$\vec{r} = at^2 \vec{i} + bt^2 \vec{j}$ (其中 a, b	为 (B) 角动	量守恒, 动能不守恒.		
常量),则该质点作		(-)	量不守恒,动能守恒.		
(A) 匀速直线运动. (B) 变速直线运动.		(-)	」量不守恒, 动量也不守	恒.	
(C) 抛物线运动. (D) 一般曲线运动.	[]	(E) 角动	量守恒, 动量也守恒.		[]
. 某质点作直线运动的运动学方程为 $x=3t-5t^3+6$ (SI),	则该质点作	7. 图中三条	曲线分别表示简谐振动	中的位移 x, 速度 v, 和加	x, v, a
(A) 匀加速直线运动,加速度沿x轴正方向.		速度 a. 下列证	兑法中哪一个是正确的?		1 27
(B) 匀加速直线运动,加速度沿 x 轴负方向. (C) 变加速直线运动,加速度沿 x 轴正方向.		(A) 曲线	3, 1, 2分别表示x,	v, a 曲线;	3/X \
(D) 变加速直线运动,加速度沿 x 轴 负方向.	[]	(B) 曲线	2, 1, 3分别表示x,	v, a 曲线;	
(2) 人加起且以起初,加还反而尤和贝万间。	L J	(C) 曲线	注1, 3, 2分别表示x,	v, a 曲线;	
一轻绳跨过一具有水平光滑轴、质量为 M 的定滑轮,	绳的两端	(D) 曲线	£2, 3, 1分别表示x,	v, a 曲线;	
别悬有质量为 m_1 和 m_2 的物体 $(m_1 < m_2)$,如图所示。绳		(E) 曲线	1, 2, 3 分别表示x,	v, a 曲线.	[]
对滑动。若某时刻滑轮沿逆时针方向转动,则绳中的张					
(A) 处处相等. (B) 左边大于右边.	111	8. 当一平面	简谐机械波在弹性媒质	中传播时,下述各结论哪个	个是正确的?
(C) 右边大于左边. (D) 哪边大无法判断.	m_1 m_2	(A) 媒质质元	色的振动动能增大时,其	弹性势能减小,总机械能	守恒.
(C) 有起八寸在起。 (D) 那起八九拉州明.	L	(B) 媒质质元	的振动动能和弹性势能	都作周期性变化,但二者的	的相位不相同.
对于一个物体系来说,在下列的哪种情况下系统的机构	北此公后?	(C) 媒质质元	色的振动动能和弹性势能	色的相位在任一时刻都相同	,但二者的数值不相等
.) 合外力为 0 . (B) 合外力不作功.	以比 7 1户;	(D) 媒质质元	一在其平衡位置处弹性势	計能最大.	
) 外力和非保守内力都不作功. (D) 外力和保守内力:	#17 16-14 F 7				
7 2727年上述中的分部小中央。(107 2727年末中的分	即小TF切。 L 」	9. 在波长为	12 的驻波中两个相邻波	设节之间的距离为	
大西人民占州武的石(大土) 女氏上之间几女王女司上从	H HUZWYHU LAN	(A) λ.	(B)	3λ/4.	
在两个质点组成的系统中,若质点之间只有万有引力作 社最,则也系统	用,且此系统所受外力的分	(C) $\lambda/2$.	. (D)	2/4.	[]
为零,则此系统					
动量与机械能一定都守恒.		10.一平面简谐	治波在弹性媒质中传播,	在媒质质元从平衡位置运	动到最大位移处的过程
动量与机械能一定都不守恒.			的动能转换成势能.		
动量不一定守恒,机械能一定守恒.			的势能转换成动能.		
动量一定守恒, 机械能不一定守恒.	[]	(C) 🕏	如白口的能量件必知公	邓的一段质元,其能量逐渐	所减小.
		(c) E	170日日的肥里存57日4	身能量,其能量逐渐增大.	

机械建工类

相对性原理说的是

合肥工业大学试卷 (试卷_A_)

共2页第2页

班级考试日期
光速不变原理说的是 三. 计算题(10 分) 已知一质量为 m 的质点在 x 轴上运动,质点只受到指向原点的引力的作用,更质点离原点的距离 x 的平方成反比,即 f = -k/x²,k 是比例常数. 设质点在速度为零,求质点在 x = A/4 处的速度的大小. 四. 计算题(10 分) 如图所示,一个质量为 m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动. 假设定滑轮质量为 M、半径为 R,其转动惯量为 ½ MR²,滑轮轴光滑. 试求该物体由静止开始下落的过程中,下落速度与时间的关系. 五. 计算题(10 分) 如图所示,一均匀细棒,长为 l,质量为 m,可绕过棒端且垂直于棒的光滑水平固定轴 O 在竖直平面内转动. 棒被拉到水平位置从静止开始下落,当它转到竖直位置时,与放在地面上一静止的质量亦为 m 的小物块发生完全非弹性碰撞,碰撞时间极短,碰撞后物块和棒一起继续沿原转动方向转动。求: (1) 碰撞前瞬间棒转动的角速度; (2) 碰撞后瞬间棒转动的角速度; (3) 碰撞后棒的中点 C 离地面的最大高度 h.
六. 计算题(10 分) 如图所示,一平面简谐波沿 Ox 轴正向传播,波速大小为 u ,若 P 处质 点的振动方程为 $y_p = A\cos(\omega t + \phi)$,求:
如图所

三. 计算题(10分)

四. 计算题(10分)

五. 计算题(10分)

- (1) 碰撞前瞬间棒转动的角速度:
- (2) 碰撞后瞬间棒转动的角速度:
- (3) 碰撞后棒的中点 C 离地面的最大高度 h.

六. 计算题 (10分)

- (1) 0处质点的振动方程:
- (2) 该波的波动表达式;
- (3) 与 P 处质点振动状态相同的那些质点的位置.

