9: Eksperimenter I

Videregående kvantitative metoder i studiet af politisk adfærd

Frederik Hjorth fh@ifs.ku.dk fghjorth.github.io @fghjorth

Institut for Statskundskab Københavns Universitet

8. november 2018

- 1 Opsamling
- 2 Potential outcomes framework
- 3 Randomisering i praksis
- 4 Analyse af eksperimentelle data
- 5 Faldgruber ved eksperimentelle designs
- 6 Case: Gerber, Green & Larimer (2008)
- 7 Kig fremad

Sidste gang:

Opsamling

- TEST-kriterierne
- modelbaseret inferens og Leamer-kritikken
- designbaseret inferens og credibility-revolutionen
- 'bad controls'
- case: workplace wellness

Tema i dag:

https://youtu.be/BvUbv4iwbDs

Lad os antage et treatment vi interesserer os for, D, og en påvirket gruppe $(D_i = 1)$ og en upåvirket gruppe ($D_i = 0$). Vi definerer nu for hvert individ i:

Potential ouctome
$$= \begin{cases} Y_{1i} & \text{if } D_i = 1 \\ Y_{0i} & \text{if } D_i = 0 \end{cases}$$
 (1)

værdien Y_i bestemmes af flg. switching equation:

$$Y_i = Y_{0i} + (Y_{1i} - Y_{0i})D_i (2)$$

 $\rightarrow Y_i$ antager altid værdien Y_{0i} eller Y_{1i}

Potential outcomes framework

For hvert individ i kan vi definere effekten af treatment::

$$\tau_i = Y_{1i} - Y_{0i} \tag{3}$$

M.a.o.: effekten τ_i er forskellen mellem Y_i når $D_i = 1$ og Y_i når $D_i = 0$

- kaldes også 'Rubin causal model' efter Donald B. Rubin
- gennemsnittet på tværs af τ_i kaldes average treatment effect (ATE)
- problem: D_i er altid enten 1 eller 0
- \rightarrow vi observerer altid kun Y_{i1} eller Y_{i0}
- ightarrow vi kan aldrig observere au_i
- denne uobserverbarhed kaldes the fundamental problem of causal inference

To studerende, Khuzdar & Maria

- Y_{1i} : potentielt outcome hvis i tager på hospitalet
- Y_{0i} : potentielt outcome hvis *i ikke* tager på hospitalet
- i dette case: hospitalisering gavner Khuzdar, men ikke Maria

$$Y_{1K} - Y_{0K} = 4 - 3 = 1 (4)$$

$$Y_{1M} - Y_{0M} = 5 - 5 = 0 (5)$$

	Khuzdar	Maria
Y_{0i}	3	5
Y_{1i}	4	5
D_i	1	0
Y_i	4	5
$Y_{1i} - Y_{0i}$	1	0

Observerede outcomes:

Den direkte sammenligning afspejler både ATE hos de treatede + selection bias:

$$Y_{K} - Y_{M} = Y_{1K} - Y_{0M} \tag{6}$$

$$= Y_{1K} - Y_{0K} + Y_{0K} - Y_{0M} (7)$$

$$=1+(-2)$$
 (8)

$$=-1 (9)$$

forskel i gruppegennemsnit = gns. effekt på de treatede + selection bias

M. mere generel notation i AP+GG:

$$E[Y_{1i}|D_i=1] - E[Y_{0i}|D_i=0] = E[Y_{1i} - Y_{0i}|D_i=1] + E[Y_{0i}|D_i=1] - E[Y_{0i}|D_i=0]$$
 (10)

når treatment randomiseres er Y_0i uafhængig af D_i :

$$E[Y_{0i}|D_i=1]-E[Y_{0i}|D_i=0]=0$$
 (11)

m.a.o.: random assignment eliminerer selection bias

Når treatment af de første m af i alt N enheder er randomiseret har vi:

$$E\left[\frac{\sum_{1}^{m}Y_{i}}{m}\right] - E\left[\frac{\sum_{m+1}^{N}Y_{i}}{N-m}\right] = \tag{12}$$

$$E[Y_{1i}] - E[Y_{0i}] = (13)$$

$$E[\tau_i] = \tag{14}$$

$$ATE$$
 (15)

→ difference-in-means estimatoren er en unbiased estimator af ATE

Group	Some HI No HI D		Difference	
Husbands	4.01	3.70	.31 (.03)	
Wives	4.02	3.62	.39 (.04)	

Eksempel: NHIS

 $[\]rightarrow$ hvad indikerer dette om effekten af sundhedsforsikring på sundhed?

Eksempel: NHIS

Resultater fra RAND HIE:

 $\begin{tabular}{ll} TABLE~1.4\\ Health~expenditure~and~health~outcomes~in~the~RAND~HIE\\ \end{tabular}$

Means	Differences between plan groups			
Catastrophic plan (1)			Free – catastrophic (4)	Any insurance catastrophic (5)
	A. Health-	care use		
2.78	.19	.48	1.66	.90
[5.50]	(.25)	(.24)	(.25)	(.20)
248	42	60	169	101
[488]	(21)	(21)	(20)	(17)
.099	.016	.002	.029	.017
[.379]	(.011)	(.011)	(.010)	(.009)
388	72	93	116	97
[2,308]	(69)	(73)	(60)	(53)
636	114	152	285	198
[2,535]	(79)	(85)	(72)	(63)
	Catastrophic plan (1) 2.78 [5.50] 248 [488] .099 [.379] 388 [2,308] 636	Catastrophic plan (1) Deductible – catastrophic (2) 2.78 .19 [5.50] (.25) 248 42 [488] (21) .099 .016 [.379] (.011) 388 72 [2,308] (69) 636 114	Catastrophic plan (1) Deductible – catastrophic catastrophic (2) Coinsurance – catastrophic catastrophic (3) A. Health-care use 2.78 .19 .48 [5.50] (.25) (.24) 248 42 60 (488) [488] (21) (21) .099 .016 .002 (.379) [379] (.011) (.011) 388 72 93 [2,308] (69) (73) 636 114 152	Catastrophic plan (1) Deductible – catastrophic catastrophic (2) Coinsurance – catastrophic catastrophic (3) Free – catastrophic catastrophic (4) A. Health-care use 2.78 .19 .48 1.66 [5.50] (.25) (.24) (.25) 248 42 60 169 [488] (21) (21) (20) .099 .016 .002 .029 [.379] (.011) (.011) (.010) 388 72 93 116 [2,308] (69) (73) (60) 636 114 152 285

70

Succesfuld randomisering kan efterprøves m. balance tests

TABLE 1.3 Demographic characteristics and baseline health in the RAND HIE

	Means	Differences between plan groups			
	Catastrophic plan (1)		Coinsurance – catastrophic (3)		Any insurance – catastrophic (5)
	Α.	Demographic (characteristics		
Female	.560	023 (.016)	025 (.015)	038 (.015)	030 (.013)
Nonwhite	.172	019 (.027)	027 (.025)	028 (.025)	025 (.022)
Age	32.4 [12.9]	.56 (.68)	.97 (.65)	.43 (.61)	.64 (.54)
Education	12.1 [2.9]	16 (.19)	06 (.19)	26 (.18)	17 (.16)
Family income	31,603 [18,148]	-2,104 (1,384)	970 (1,389)	-976 (1,345)	-654 (1,181)
Hospitalized last year	.115	.004 (.016)	002 (.015)	.001 (.015)	.001 (.013)

Eksempel: NHIS

Gerber & Greens procedure:

»First, determine *N*, the number of subjects in your experiment, and *m*, the number of subjects who will be allocated to the treatment group. Second, set a random number 'seed' using a statistics package, so that your random numbers may be reproduced by anyone who cares to replicate your work. Third, generate a random number for each subject. Fourth, sort the subjects by the random numbers in ascending order. Finally, classify the first *m* observations as the treatment group.« (37)

Regressions analyse af randomiseret treatment D_i :

$$Y_i = \alpha + \beta D_i + \epsilon_i \tag{16}$$

Med tilføjet vektor af kontrolvariable X'_i :

$$Y_i = \alpha + \beta D_i + X_i' \gamma + \epsilon_i \tag{17}$$

Hvorfor tilføjer vi X_i' ?

- 1 For at rette op på kendte ubalancer i treatment
- $\ensuremath{\text{2}}$ For at reducere residual varians i outcome $\rightarrow \downarrow$ standardfejl
- \rightarrow mere om dette i næste uge!

To kritiske antagelser om potential outcomes:

- excludability
- 2 non-interferens (SUTVA)

Ad (1):

Lad $Y_i(z, d)$ være potential outcome for treatment assignment $z_i = z$ og faktisk treatment status $d_i = d$

Eksklusionsrestriktionsantagelsen: $Y_i(1, d) = Y_i(0, d)$

Ad (2):

Lad $Y_i(\mathbf{z}, \mathbf{d})$ være PO for Y_i for den fulde mængde af assignments og treatments

Under non-interferens: $Y_i(\mathbf{z}, \mathbf{d}) = Y_i(\mathbf{z}, \mathbf{d})$

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary Election

		Ex	perimental Group		
	Control	Civic Duty	Hawthorne	Self	Neighbors
Percentage Voting	29.7%	31.5%	32.2%	34.5%	37.8%
N of Individuals	191,243	38,218	38,204	38,218	38,201

Neighbors mailing

30423-3 || || || || ||

For more information: (517) 351-1975 email: etov@grebner.com Practical Political Consulting P. O. Box 6249 East Lansing, MI 48826 PRSRT STD U.S. Postage PAID Lansing, MI Permit # 444

ECRLOT **C050 THE JACKSON FAMILY 9999 MAPLE DR FLINT MI 48507

Dear Registered Voter:

WHAT IF YOUR NEIGHBORS KNEW WHETHER YOU VOTED?

Why do so many people fail to vote? We've been talking about the problem for years, but it only seems to get worse. This year, we're taking a new approach. We're sending this mailing to you and your neighbors to publicize who does and does not vote.

The chart shows the names of some of your neighbors, showing which have voted in the past. After the August 8 election, we intend to mail an updated chart. You and your neighbors will all know who voted and who did not.

DO YOUR CIVIC DUTY - VOTE!

 MAPLE DR
 Aug 04
 Nov 04
 Aug 06

 9995 JOSEPH JAMES SMITH
 Voted
 Voted
 Voted

 9995 JENNIFER KAY SMITH
 Voted
 Voted
 Voted

Hey @tedcruz your brilliant public shaming campaign has inspired me to caucus on Monday...For @marcorubio

Næste gang:

- eksperimenter II
- læsefokus i GG: cluster random assignment, covariate adjustment, noncompliance
- case: Gerber & Green (2000) → fokus på afsnit om "The Personal Canvassing Experiment"s. 657f
- udfyld meget gerne halvvejsevaluering! https://fghjorth.typeform.com/to/nen7Xb

Tak for i dag!