程序代写代做 CS编程辅导

Foundations of Computer Science

WeChat: cstutorcs

Lecture 2: Number Theory Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Administrivia

程序代写代做 CS编程辅导

• Quiz 1 released (AEST)

due 12:00 Monday 6 June

- First Challenge Woolemtavailable following the lecture
- Reminder: Consultation on Sunday 8pm Assignment Project Exam Help
- Online stream
- Weekly feedback Email: tutorcs@163.com

QQ: 749389476

Topic 0: Number Theory

程序代写代做 CS编程辅导

[LLM] [RW]

WeChat: cstutorcs
Week 1 Number Theory

Ch. 8 Ch. 1, 3

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Number theory in Computer Science

程序代写代做 CS编程辅导

Applications of number include:

- Cryptography/Security (primes, divisibility)
- Large integer calleathors (motorlas arithmetic)
- Date and time calculations (modular arithmetic)
 Assignment Project Exam Help
- Solving optimization problems (integer linear programming)
- Interesting examples for future topics in this course

QQ: 749389476

Outline

程序代写代做 CS编程辅导

Numbers and Numer

rugalija Rojanija Rojanija

Divisibility

Greatest Common Divisor and Least Common Multiple
WeChat: cstutorcs

Modular Arithmetic

Assignment Project Exam Help

Euclidean Algorithm, again

Email: tutorcs@163.com

Feedback

QQ: 749389476

Outline

程序代写代做 CS编程辅导

Numbers and Numer

Divisibility

Greatest Common Divisor and Least Common Multiple

WeChat: cstutorcs

Modular Arithmetic

Assignment Project Exam Help

Euclidean Algorithm,

Email: tutorcs@163.com

Feedback

QQ: 749389476

Notation for numbers

程序代写代做 CS编程辅导

Definition

- Natural number (1) = 2 = 1,2,...
- Integers $\mathbb{Z} = \{. \square : \mathbb{Z}, 2, \ldots\}$
- Positive integers {1,2,...}
- Rational number (figotions) Project Exam Help, $n \neq 0$
- Real numbers (decimal or binary expansions) \mathbb{R} $r = a_1 a_2 \dots a_k \cdot b_1 b_2 \dots$

00: 749389476

In $\mathbb N$ and $\mathbb Z$ different symbols denote different numbers.

In $\mathbb Q$ and $\mathbb R$ the standard sector at low is not necessarily unique.

程序代写代做 CS编程辅导

NB

Proper ways to intro \square include Dedekind cuts and Cauchy sequences, neither of which will be discussed here. Natural numbers etc. are either axiomatised or constructed from sets $0 \stackrel{\text{def}}{=} \{\}$, $n+1 \stackrel{\text{def}}{=} n \setminus A$ ment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Floor and ceiling

程序代写代做 CS编程辅导

Definition

 $[.]: \mathbb{R} \longrightarrow \mathbb{Z}$ — **floc** where greatest integer $\leq x$ $[.]: \mathbb{R} \longrightarrow \mathbb{Z}$ — **ceil** $[.]: \mathbb{R}$ the least integer $\geq x$

Example

WeChat: cstutorcs

$$\lfloor \pi \rfloor = 3 = \lceil e \rceil$$
 $\pi, e \in \mathbb{R}; \lfloor \pi \rfloor, \lceil e \rceil \in \mathbb{Z}$

Assignment Project Exam Help

Simple properties

Email: tutorcs@163.com

- $\lfloor -x \rfloor = -\lceil x \rceil$, hence $\lceil x \rceil = 389476 x \rfloor$
- For all $t \in \mathbb{Z}$:
 - [x + t] = [x]ttps://tutorcs.com

程序代写代做 CS编程辅导

Fact

Let $k, m, n \in \mathbb{Z}$ such if $n \in \mathbb{Z}$ and $n \geq n$. The number of multiples of k between n and m (inclusive) is

WeChat: cstutorcs $\left| \frac{m}{l} \right| - \left| \frac{n-1}{l} \right|$

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Absolute value

程序代写代做 CS编程辅导

Definition

, if
$$x \ge 0$$

WeChat:-extutoifes < 0

Assignment Project Exam Help

Example

$$|3| = |-3| = 3$$

Email: tutorcs@163.com

 $3, -3 \in \mathbb{Z}; |3|, |-3| \in \mathbb{N}$

QQ: 749389476

程序代写代做 CS编程辅导

Exercises

RW: 1.1.4

(b)

(d)

WeChat: cstutorcs

RW: 1.1.19 (a)

Assignment Project Exam Help Give x, y such that |x| + |y| < |x + y|:

Email: tutorcs@163.com

20T2: Q1 (a)

QQ: 749389476

Truentipsalstuforcalcom R:

$$\lceil |x| \rceil = |\lceil x \rceil|$$

程序代写代做 CS编程辅导

Exercises

RW: 1.1.4

(b)

$$||\mathbf{x}|| = -1$$

$$2 \lceil 0 \rceil = 0$$

(d)
$$\left[\sqrt{3}\right] - \left[\sqrt{3}\right] = 1$$

WeChat: cstutorcs

RW: 1.1.19

(a)

Assignment Project Exam Help Give x, y such that $\lfloor x \rfloor + \lfloor y \rfloor < \lfloor x + y \rfloor$:

x = Email: qutorcs@163.com

20T2: Q1 (a)

QQ: 749389476

Truentiplation allows R:

$$[|x|] = |[x]|$$
 — false (e.g. $x = -1.5$)

Outline

程序代写代做 CS编程辅导

Numbers and Numer

Divisibility

Greatest Common Divisor and Least Common Multiple

WeChat: cstutorcs

Modular Arithmetic

Assignment Project Exam Help

Euclidean Algorithm,

Email: tutorcs@163.com

Feedback

QQ: 749389476

Divisibility

程序代写代做 CS编程辅导

Definition

For $m, n \in \mathbb{Z}$, we say $k \in \mathbb{Z}$ if $n = k \cdot m$ for some $k \in \mathbb{Z}$.

We denote this by $m_{\overline{1}}^{\overline{1}}$

Also stated as: 'n is divisible by m, 'm's a divisor of n', 'n is a multiple of m'

Assignment Project Exam Help

 $m \nmid n$ — negation of Physical: tutorcs@163.com

NB QQ: 749389476

Notion of divisibility applies to all integers — positive, negative and zero. https://tutorcs.com

程序代写代做 CS编程辅导

Exercises		
True or False	for all	
•	1 n	
•	-1 n $0 n$	WeChat: cstutorcs
•	n 0	Assignment Project Exam Help
RW: 1.2.2		Email: tutorcs@163.com
(a) (b)	n 1 $n n$	QQ: 749389476
(c)	$n \mid n^2$	https://tutorcs.com

程序代写代做 CS编程辅导

Outline

程序代写代做 CS编程辅导

Numbers and Numer

er en ti

Divisibility

Greatest Common Divisor and Least Common Multiple
WeChat: cstutorcs

Modular Arithmetic

Assignment Project Exam Help

Euclidean Algorithm,

Email: tutorcs@163.com

Feedback

QQ: 749389476

gcd and lcm

Definition

程序代写代做 CS编程辅导

Let $m, n \in \mathbb{Z}$.

- The greatest constitution of m and n, gcd(m, n), is the largest positive m and $d \mid n$.
- The **least common multiple** of m and n, lcm(m, n), is the smallest positive Wesubatthatum kca and $n \mid k$.
- Exception: gcd(0,0) = lcm(0,n) = lcm(m,0) = 0.

Example

Email: tutorcs@163.com

$$gcd(-4,6) = gcd(4,-6) = gcd(-4,-6) = gcd(4,6) = 2$$

 $lcm(-5,-5) = \dots = 5$

gcd and lcm

程序代写代做 CS编程辅导

NB

Fact

gcd(m, n) and lcm(m, n) are always taken as non-negative even if m or n is negative. WeChat: cstutorcs

Assignment Project Exam Help

 $gcd(m, n) \cdot lcm(m, n)$ Empil: theores@163.com

QQ: 749389476

Primes and relatively prime

程序代写代做 CS编程辅导

Definition

- A number n > 1 if it is only divisble by ± 1 and $\pm n$.
- m and n are **relatively** prime if gcd(m, n) = 1

Examples

Assignment Project Exam Help

- 2, 3, 5, 7, 11, 13, 17, 19 affital the primes less than 20.
- 4 and 9 are relatively prime; 9 and 14 are relatively prime.

 OO: 749389476

程序代写代做 CS编程辅导

Exercises

RW: 1.2.7(b) | gcd(0, /

RW: 1.2.12 Can two ever integers be relatively prime?

RW: 1.2.9 Let m, n be propositive integrate Exam Help

- (a) What can you say about m and n if $lcm(m, n) = m \cdot n$?

 Email: tutorcs@163.com
- (b) What if lcm(m, n) 1:n,49389476

程序代写代做 CS编程辅导

Exercises

RW: 1.2.7(b) gcd(0, 1

RW: 1.2.12 Can two evercintegers be relatively prime? No. (why?)

RW: 1.2.9 Let m, n be spositive integriect Exam Help

(a) What can you say about m and n if $lcm(m, n) = m \cdot n$? They must be relatively all the same m and m if $lcm(m, n) = m \cdot n$?

(b) What if $lcm(m, n_0) = \frac{n_1^2}{49389476}$ m must be a divisor of n

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

WeChat: cstutores

Example

Assignment Project Exam Help

Email: tutorcs @cp638com

QQ: $74938\underline{9}476$ $\gcd(9,9)$

WeChat: cstutorcs

Example

a Assignment Project Exam Help

Email: tutores @ 1632.c8m

 $\begin{array}{c} QQ: 749389476 \\ &= \gcd(8,4) \\ \text{https://tutorcs.com}_{4,4) \end{array}$

_ 4

程序代寫代做 CS编程輔
$$_m = n$$
 gcd (m, n) if $m > n$ if $m > n$ if $m < n$ if $m < n$

WeChat: cstutorcs

Fact

For m > 0, n > 0 the angionnand way set of Fixed Parameters of the Parameters of

Email: tutorcs@163.com

Fact

For $m, n \in \mathbb{Z}$, if m > QQh = AQh = AQ

Fact

程序代写代做 CS编程辅导

For $m, n \in \mathbb{Z}$, if m >

Proof.

We first show that for (d|m) and (d|m) if, and only if, (d|m-n) and (d|n):

" \Rightarrow ": if d|m and d|n then m = a cstutores $b \cdot d$, for some $a, b \in \mathbb{Z}$,

so
$$m-n = (a = b) \cdot d$$

hence $d \mid m-n$ Project Exam Help

"\(\infty\)": if d|m-n and the three futores at $b \in \mathbb{Z}$,

so
$$m = (nQQn)749389476b) \cdot d$$
, hence $d \mid m$

Therefore, any common divisor of m-n and n, and vice versa.

Therefore, the greatest common divisor of m and n is the greatest common divisor of m-n and n.

Outline

程序代写代做 CS编程辅导

Numbers and Numer

er en ti

Divisibility

Greatest Common Divisor and Least Common Multiple

WeChat: cstutorcs

Modular Arithmetic

Assignment Project Exam Help

Euclidean Algorithm,

Email: tutorcs@163.com

Feedback

QQ: 749389476

Euclid's division lemma

程序代写代做 CS编程辅导

Fact

For $m \in \mathbb{Z}$, $n \in \mathbb{Z}_{>0}$ if $q, r \in \mathbb{Z}$ with $0 \le r < n$ such that

WeChat: cstutores

Assignment Project Exam Help

Observe:

• $q = \lfloor \frac{m}{n} \rfloor$

 \bullet $r = m - q \cdot n$

Email: tutorcs@163.com

QQ: 749389476

mod and div

程序代写代做 CS编程辅导

Definition

Let $m, p \in \mathbb{Z}$, $n \in \mathbb{Z}$

- $m \text{ div } n = \lfloor \frac{m}{n} \rfloor$ • m % n = m (m div n)
- m = (n) p if $n \mid (m \text{We} \text{Chat: cstutorcs})$

Assignment Project Exam Help

Important!

 $m =_{(n)} p$ is **not standard** in More commonly Written as

QQ:
$$_{m}^{749389476} \pmod{n}$$

mod and div

程序代写代做 CS编程辅导

Fact

- $0 \le (m \% n) < \square$
- m = (n) p if, and polynif (m % n) = (p % n).
- $m =_{(n)} (m \% n)$
- If $m = \binom{n}{n}$ m' and $p = \binom{n}{n}$ p' then:
 - m + p = (n) / E' n + a / d : a / d o r cs @ 163.com
 - $m \cdot p =_{(n)} m' \cdot p'$.

OO: 749389476

程序代写代做 CS编程辅导

Exercises

- 42 div 9 $\stackrel{?}{=}$
- $42 \% 9 \stackrel{?}{=}$

- WeChat: cstutorcs • $(-42) \text{ div } 9 \stackrel{?}{=}$

• (-42) % 9 ? Assignment Project Exam Help

- Email: tutorcs@163.com True or False:
 - (a+b) % n = QQ: %49389476 n?

程序代写代做 CS编程辅导

Exercises

- 42 div 9 [?]
- 42 % 9 [?]

- $(-42) \text{ div } 9 \stackrel{?}{=} \frac{\text{WeChat: cstutorcs}}{-5}$
- (-42) % 9 ? Assignment Project Exam Help

Email: tutorcs@163.com

• True or False:

$$(a+b)$$
 % $n = Q(2:\%49)38947\%$ $n)?$

False (take a https://tutores?dom

程序代写代做 CS编程辅导

Exercises

- $10^3 \% 7 \stackrel{?}{=}$
- $10^6 \% 7 \stackrel{?}{=}$

WeChat: cstutorcs

- 10²⁰²¹ % 7 ? Assignment Project Exam Help
- What is the last digit of words @ 163.com

QQ: 749389476

程序代写代做 CS编程辅导

Exercises

• $10^3 \% 7 \stackrel{?}{=}$

6

• $10^6 \% 7 \stackrel{?}{=}$

WeChat: cstutorcs

• $10^{2021} \% 7 \stackrel{?}{=}$

Assignment Project Exam Help

• What is the last digit of words @ 163.com

QQ: 749389476

程序代写代做 CS编程辅导

Exercises

具数磁晶

RW: 3.5.20

(a) Show that the umber n = abcd is divisible by 2 if and only if the last digit d is divisible by 2.

WeChat: cstutorcs

(b) Show that the 4 digit number n= abcd is divisible by 5 if and only if the last digit d is divisible by 5.

Email: tutorcs@163.com

RW: 3.5.19

(a) Show that the 4 digit number n = abcd is divisible by 9 if and only if the digit sum a cbh + c + d is divisible by 9.

Outline

程序代写代做 CS编程辅导

Numbers and Numer

WeChat: cstutorcs

Assignment Project Exam Help

Euclidean Algorithm, again Email: tutorcs@163.com

QQ: 749389476

Faster Euclidean gcd Algorithm

程序代写代做 CS编程辅导

Assignment Project Exam Help

Fact

For $m, n \in \mathbb{Z}$, if $m > \frac{\text{Email: tutorcs @163.com}}{n \text{ then gcd}(m, n)} = \frac{163.\text{com}}{\text{gcd}(m, n)}$

Proof.

QQ: 749389476

Let $k = m \operatorname{div} n$. Then the state of n.

Faster Euclidean gcd Algorithm

程序代写代做 CS编程辅导

Outline

程序代写代做 CS编程辅导

Numbers and Numer

Divisibility

Greatest Common Divisor and Least Common Multiple

WeChat: cstutorcs

Modular Arithmetic

Assignment Project Exam Help

Euclidean Algorithm,

Email: tutorcs@163.com

Feedback

QQ: 749389476

Weekly Feedback

程序代写代做 CS编程辅导

I would appreciate ar tsnts/suggestions/requests you have on this week's lectur ect Exam Help https://forms.office.com/r/xKKrxYMRn9 https://tutorcs.com

34