# Chapitre 13.

# Géométrie analytique



# Les savoir-faire du parcours

- · Savoir représenter un vecteur dont on connaît les coordonnées. Lire les coordonnées d'un vecteur.
- Savoir calculer les coordonnées d'une somme de vecteurs, d'un produit d'un vecteur par un nombre réel.
- Savoir calculer la distance entre deux points. Calculer les coordonnées du milieu d'un segment.
- Savoir caractériser alignement et parallélisme par la colinéarité de vecteurs.

Les mathématiciennes et mathématiciens

Compétence.

1

# 1

# Bases de vecteurs, repère du plan.

## Propriété 1: Exprimer un vecteur en fonction de deux vecteurs non colinéaires...

Soient  $\vec{u}$  et  $\vec{v}$  deux vecteurs non colinéaires.

Tout vecteur  $\vec{w}$  peut s'exprimer en fonction de  $\vec{u}$  et de  $\vec{v}$ .

### Définition 2: Base de vecteurs.

On dit que deux vecteurs non colinéaires  $\vec{i}$  et  $\vec{j}$  forment une base des vecteurs du plan. On note cette base  $(\vec{i};\vec{j})$ 

### Définition 3: Repère du plan.

Soit O est un point et  $\vec{i}$  et  $\vec{j}$  deux vecteurs non colinéaires.

On dit que le triplet  $(O; \vec{i}, \vec{j})$  est un repère du plan.

Le point O s'appelle l'origine du repère  $(O; \vec{i}, \vec{j})$ .

### Définition 4.

On dit que le repère  $(O; \vec{i}, \vec{j})$  est :

- orthogonal si les vecteurs  $\vec{i}$  et  $\vec{j}$  ont des directions perpendiculaires.
- orthonormé s'il est orthogonal et si les vecteurs  $\vec{i}$  et  $\vec{j}$  ont la même longueur.

#### 2

# Coordonnées d'un point, d'un vecteur dans un repère.

### Définition 5: Coordonnées d'un point du plan..

Soit  $(O; \vec{i}, \vec{j})$  un repère et M un point.

On appelle coordonnées du point M dans le repère  $(O; \vec{i}, \vec{j})$  l'unique couple de nombres  $(x_M; y_M)$  tel que  $OM = x_M \vec{i} + y_M \vec{j}$ 

# Définition 6: Coordonnées d'un vecteur dans le plan..

Soit  $(O; \vec{i}, \vec{j})$  un repère et  $\vec{u}$  un vecteur.

Soit M le point tel que  $\vec{u} = \vec{OM}$ .

Les coordonnées du vecteur  $\vec{u}$  sont les coordonnées de  $M. \label{eq:decoordon}$ 

#### Remarque 7.

Dans un repère  $(O; \vec{i}, \vec{j})$  dire que  $\vec{u}$  a pour coordonnées  $(x_{\vec{u}}; y_{\vec{u}})$  signifie que  $\vec{u} = x_{\vec{u}}\vec{i} + y_{\vec{u}}\vec{j}$ .

### Propriété 8: Coordonnées d'un vecteur défini par deux points..

Soit  $(O; \vec{i}, \vec{j})$  un repère du plan.

 $A(x_A; y_A)$  et  $B(x_B; y_B)$  deux points.

Le vecteur  $\vec{AB}$  a pour coordonnées :

$$\vec{AB}(x_B - x_A; y_B - y_A)$$

# **Premier SF** Compétence. 2 **Deuxième SF** Compétence. 3 **Troisième SF** Compétence.

# 3

# Calculs des coordonnées d'un vecteur

# Propriété 9.

Soit  $(O; \vec{i}, \vec{j})$  un repère du plan.

Soit  $\vec{u}(x_{\vec{u}};y_{\vec{u}})$  et  $\vec{v}(x_{\vec{v}};y_{\vec{v}})$  deux vecteurs et k un nombre réel.

- $\vec{u} = \vec{v} \Leftrightarrow x_{\vec{u}} = x_{\vec{v}}$  et  $y_{\vec{u}} = y_{\vec{v}}$
- $k\vec{u}$  a pour coordonnées  $(k \times x_{\vec{u}}; k \times y_{\vec{u}})$ .
- $\vec{u} + \vec{v}$  a pour coordonnées  $(x_{\vec{u}} + x_{\vec{v}}; y_{\vec{u}} + y_{\vec{v}})$ .

# 4

# Condition analytique de colinéarité.

#### Définition 10: Déterminant de deux vecteurs.

Soit  $(O; \vec{i}, \vec{j})$  un repère,  $\vec{u}(x_{\vec{u}}; y_{\vec{u}})$  et  $\vec{v}(x_{\vec{v}}; y_{\vec{v}})$  deux vecteurs.

On appelle déterminant de  $\vec{u}$  et de  $\vec{v}$  le nombre :

$$det(\vec{u}; \vec{v}) = \begin{vmatrix} x_{\vec{u}} & x_{\vec{v}} \\ y_{\vec{u}} & y_{\vec{v}} \end{vmatrix} = x_{\vec{u}} \times y_{\vec{v}} - y_{\vec{u}} \times x_{\vec{v}}$$

### Propriété 11: Condition analytique de colinéarité.

### Démonstration exigible

Soient  $\vec{u}$  et  $\vec{v}$  deux vecteurs alors les affirmations suivantes sont équivalentes :

$$\vec{u}$$
 et  $\vec{v}$  sont colinéaires

$$det(\vec{u}, \vec{v}) = 0$$

#### Preuve:

# Montrons que si $\vec{u}$ et $\vec{v}$ sont colinéaires alors $det(\vec{u}, \vec{v}) = 0$ .

Soit  $\vec{u}(x_{\vec{u}};y_{\vec{u}})$  et  $\vec{v}(x_{\vec{v}};y_{\vec{v}})$  deux vecteurs colinéaires.

Alors il existe un nombre k tel que  $\vec{v}=k\vec{u}$  donc  $x_{\vec{v}}=k\times x_{\vec{u}}$  et  $y_{\vec{v}}=k\times y_{\vec{u}}.$ 

$$det(\vec{u}, \vec{v}) = x_{\vec{u}} \times y_{\vec{v}} - y_{\vec{u}} \times x_{\vec{v}}$$

donc 
$$det(\vec{u}, \vec{v}) = x_{\vec{u}} \times k \times y_{\vec{u}} - y_{\vec{u}} \times k \times x_{\vec{u}} = 0$$

# Montrons que si $det(\vec{u}, \vec{v}) = 0$ alors $\vec{u}$ et $\vec{v}$ sont colinéaires.

Si  $\vec{u}$  et  $\vec{v}$  sont nuls alors ils sont colinéaires. On suppose que  $\vec{u}$  et  $\vec{v}$  ne sont pas tous les deux nuls (par exemple  $x_{\vec{u}} \neq 0$ .

$$det(\vec{u}, \vec{v}) = 0 \Leftrightarrow x_{\vec{u}} \times y_{\vec{v}} - y_{\vec{u}} \times x_{\vec{v}} = 0$$
$$\Leftrightarrow x_{\vec{u}} \times y_{\vec{v}} = y_{\vec{u}} \times x_{\vec{v}}$$

Si 
$$x_{\vec{u}} \neq 0$$
 alors  $y_{\vec{v}} = \frac{y_{\vec{u}} \times x_{\vec{v}}}{x_{\vec{u}}} = \frac{x_{\vec{v}}}{x_{\vec{u}}} \times y_{\vec{u}}$ 

On pose  $\dfrac{x_{\vec{v}}}{x_{\vec{u}}}=k$  alors  $y_{\vec{v}}=k\times y_{\vec{u}}$  et comme  $x_{\vec{v}}=k\times x_{\vec{u}}$  alors  $\vec{v}=k\vec{u}$  donc les vecteurs  $\vec{u}$  et  $\vec{v}$  sont colinéaires.

# **Premier SF** Compétence. 5 **Deuxième SF** Compétence. 6 **Troisième SF** Compétence.

# **Applications**

# Propriété 12: Coordonnées du milieu d'un segment.

Soit  $(O;\vec{i},\vec{j})$  un repère du plan et  $A(x_A;y_A)$  et  $B(x_B;y_B)$  deux points. Soit M le milieu de [AB] alors :

$$M(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2})$$

## Propriété 13: Distance dans un repère orthonormé.

Soit  $(O;\vec{i},\vec{j})$  un repère orthonormé  $A(x_A;y_A)$  et  $B(x_B;y_B)$  deux points, alors :

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

# Propriété 14: Norme d'un vecteur dans un repère orthonormé.

Soit  $(O; \vec{i}, \vec{j})$  un repère orthonormé  $\vec{u}(x_{\vec{u}}; y_{\vec{u}})$  un vecteur, alors :

$$||\vec{u}|| = \sqrt{x_{\vec{u}}^2 + y_{\vec{u}}^2}$$









31

