LECTURE 2: PRELIMINARIES

- 1. Standard form LP
- 2. Embedded assumptions
- 3. Converting to standard form

Standard form LP

- Key elements:
 - n variables:

$$x_1, x_2, \ldots, x_n$$

• 1 objective function:

$$\mathbf{z} = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

• m constraints:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

non-negativity requirements:

$$x_1 \ge 0, \ x_2 \ge 0, \cdots, \ x_n \ge 0$$

Explicit form

Minimize $\mathbf{z} = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$ subject to

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

$$x_1 \ge 0, \ x_2 \ge 0, \dots, \ x_n \ge 0$$

- Minimizing one objective function
- Equality constraints
- Non-negative variables

Matrix form

Cost vector

solution vector

right-hand-side vector

$$\mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Constraint matrix

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \qquad \mathbf{Min} \ \mathbf{c}^T \mathbf{x}$$

$$\mathbf{s.} \ \mathbf{t.} \ \mathbf{A} \mathbf{x} = \mathbf{b}$$

$$\mathbf{x} \ge \mathbf{0}$$

$$\min \mathbf{c}^T \mathbf{x}$$

s. t. $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge 0$

Example – transportation problem

Supply	tons		Demand	tons
NC	4,000		NY	5,000
OK	3,000		LA	2,000
IO	2,500		DC	4,000
VA	1.500	1	20	1,000

Cost	NY	LA	DC
NC	30	10	40
OK	15	20	60
IO	60	35	25
VA	5	45	75

A management question

 How to meet customer demands in a most cost effect manner?

- LP model
 - What are that variables to be involved?
 - What's the objective function
 - How are the variables constrained?
 - Which one comes to picture first?

Formulation

Variables

	NY	LA	DC
NC	x_{11}	x_{12}	x_{13}
OK	x_{21}	x_{22}	x_{23}
IO	x_{31}	x_{32}	x_{33}
VA	x_{41}	x_{42}	x_{43}

Constraints

(supply side)

$$x_{11} + x_{12} + x_{13} = 4,000$$

 $x_{21} + x_{22} + x_{23} = 3,000$
 $x_{31} + x_{32} + x_{33} = 2,500$
 $x_{41} + x_{42} + x_{43} = 1,500$

Objective function

$$\mathbf{z} = 30x_{11} + 10x_{12} + 40x_{13}$$

$$+ 15x_{21} + 20x_{22} + 60x_{23}$$

$$+ 60x_{31} + 35x_{32} + 25x_{33}$$

$$+ 5x_{41} + 45x_{42} + 75x_{43}$$

(demand side)

$$x_{11} + x_{21} + x_{31} + x_{41} = 5,000$$
$$x_{12} + x_{22} + x_{32} + x_{42} = 2,000$$
$$x_{13} + x_{23} + x_{33} + x_{43} = 4,000$$

LP model in standard form

Minimize
$$\mathbf{z} = 30x_{11} + 10x_{12} + 40x_{13}$$

 $+ 15x_{21} + 20x_{22} + 60x_{23}$
 $+ 60x_{31} + 35x_{32} + 25x_{33}$
 $+ 5x_{41} + 45x_{42} + 75x_{43}$
subject to $x_{11} + x_{12} + x_{13} = 4,000$
 $x_{21} + x_{22} + x_{23} = 3,000$
 $x_{31} + x_{32} + x_{33} = 2,500$
 $x_{41} + x_{42} + x_{43} = 1,500$
 $x_{11} + x_{21} + x_{31} + x_{41} = 5,000$
 $x_{12} + x_{22} + x_{32} + x_{42} = 2,000$
 $x_{13} + x_{23} + x_{33} + x_{43} = 4,000$
 $x_{11}, x_{12}, \dots, x_{33}, x_{43} \ge 0$

Embedded assumptions in LP

- 1. Proportionality Assumption
 - No discount.
 - No economy of return to scale.
- 2. Additivity Assumption
 - Total contribution = Sum of contributions
 of individual variables
- 3. Divisibility Assumption
 - Any fractional value is allowed.
- 4. Certainty Assumption
 - Each parameter is known for sure.

Converting to standard form

Example

Maximize
$$3x_1 - 2x_2 - 4|x_3|$$

s. t. $-x_1 + 2x_2 \le -5$
 $3x_2 - x_3 \ge 6$
 $2x_1 + x_3 = 12$
 $x_1, x_2 \ge 0$

Converting to standard form

- What went wrong?
- How to fix them? In which order?

Maximize
$$3x_1 - 2x_2 - 4|x_3|$$

s. t. $-x_1 + 2x_2 \le -5$
 $3x_2 - x_3 \ge 6$
 $2x_1 + x_3 = 12$
 $x_1, x_2 \ge 0$

Rule 1

Rule 1: Unrestricted (free) variables

$$x_{i} \in R$$

$$x_{i}^{+} = \begin{cases} x_{i}, & \text{if } x_{i} \geq 0 \\ 0, & \text{otherwise} \end{cases}$$

$$x_{i}^{-} = \begin{cases} 0, & \text{if } x_{i} \geq 0 \\ -x_{i}, & \text{otherwise} \end{cases}$$

$$x_i = x_i^+ - x_i^-$$

 $x_i^+, x_i^- \ge 0$

- By-product: $|x_i| = x_i^+ + x_i^-$
- Potential problem: the requirement of $x_i^+ \times x_i^- = 0$

Example

Maximize
$$3x_1 - 2x_2 - 4(x_3^+ + x_3^-)$$

s. t. $-x_1 + 2x_2 \le -5$
 $3x_2 - (x_3^+ - x_3^-) \ge 6$
 $2x_1 + (x_3^+ - x_3^-) = 12$
 $x_1, x_2, x_3^+, x_3^-, \ge 0$

Rule 2

- Rule 2: Inequality constraints
 - slack variable

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \leq b_i$$

$$\updownarrow \text{ add a } \underline{slack} \ \underline{variable} \ s_i \geq 0$$

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n + s_i = b_i$$

$$s_i \geq 0$$

- excess variable

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \ge b_i$$

 \updownarrow subtract an excess variable $e_i \ge 0$

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n - e_i = b_i$$

$$e_i \ge 0$$

Example

Maximize

$$3x_1 - 2x_2 - 4x_3^+ - 4x_3^-$$

subject to

$$-x_{1} + 2x_{2} + x_{4} = -5$$

$$3x_{2} -x_{3}^{+} + x_{3}^{-} -x_{5} = 6$$

$$2x_{1} + x_{3}^{+} - x_{3}^{-} = 12$$

$$x_{1}, x_{2}, x_{3}^{+}, x_{3}^{-} x_{4}, x_{5} \ge 0$$

Rule 3

Rule 3: Minimization of the objective function

$$\operatorname{Max} c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

Example

(-)Minimize
$$-3x_{1} +2x_{2} +4x_{3}^{+} +4x_{3}^{-}$$
subject to
$$-x_{1} +2x_{2} +x_{3}^{+} +x_{3}^{-} =-5$$

$$3x_{2} -x_{3}^{+} +x_{3}^{-} -x_{5} =6$$

$$2x_{1} +x_{3}^{+} -x_{3}^{-} =12$$

$$x_{1}, x_{2}, x_{3}^{+}, x_{3}^{-} x_{4}, x_{5} \geq 0$$

More on free variable and absolute value

Potential problems:

$$x_i = x_i^+ - x_i^- \quad |x_i| = x_i^+ + x_i^-$$

one quadratic constraint is missing

 $x_i^+, \ x_i^- \ge 0$

- 2. increasing dimensionality
- 3. one original solution corresponds to many new solutions
- 4. |x| is a convex function while -|x| is a concave function
- Maximize c|x| could be problematic with c being positive

Reference

'Linear' Programming with Absolute-Value Functionals

David F. Shanno; Roman L. Weil

Operations Research, Vol. 19, No. 1. (Jan. - Feb., 1971), pp. 120-124.

Consider the problem Ax=b; max $z=\sum c_i|x_i|$. This problem cannot, in general, be solved with the simplex method. The problem has a simplex method solution (with unrestricted basis entry) only if c_i are nonpositive (nonnegative for minimizing problems).

Example: where multiple solutions occur

Consider

$$x^* = -1$$

$$z^* = -1$$

Unique optimum

Standard Form

min
$$x^+ - x^-$$

 $s.t.$ $x^+ - x^- - s = -1$
 $x^+, x^-, s \ge 0$

$$\begin{cases} x^{+} = 0 \\ x^{-} = 1 \end{cases} \qquad z^{*} = -1$$

$$\begin{cases} x^{+} = 1 \\ x^{-} = 2 \end{cases} \qquad z^{*} = -1$$

$$\begin{cases} x^{+} = t \\ x^{-} = 1 + t \end{cases} (t \ge 0) \qquad z^{*} = -1$$

Multiple optimal solutions

Example: where simplex method fails

Consider

$$\min_{s.t.} z = -|x|$$

$$s.t. \quad x \ge -1$$

$$x \in \mathcal{R}$$

Start from x1 won't
 go to x2 that leads to x*

Standard Form

$$\mathbf{x}^1 = \begin{pmatrix} x^+ \\ x^- \\ s \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \qquad z(\mathbf{x}^1) = -1$$

$$\mathbf{x}^2 = \begin{pmatrix} x^+ \\ x^- \\ s \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \qquad z(\mathbf{x}^2) = 0$$

$$\mathbf{x} = \begin{pmatrix} t \\ 0 \\ t+1 \end{pmatrix}$$
 is feasible as $t \ge 0$ with $z(\mathbf{x}) = -t$.

Hence
$$z^* = -\infty$$