7p.129

a) L'angle \widehat{AOB} mesure 40° On peut aussi écrire en langage mathématique : $\widehat{AOB} = 40^{\circ}$.

En effet:

- [OA) passe par le zéro de la **graduation extérieure**.
- [OB) passe par la graduation 40 **extérieure.**

On vérifie: \widehat{AOB} est bien aigu.

b) $\widehat{EOB} = 140^{\circ}$ (graduation intérieure)

On vérifie: \widehat{EOB} est bien obtus.

c) $\widehat{AOC} = 85^{\circ}$ (graduation extérieure)

On vérifie: \widehat{AOB} est bien aigu.

d) $\widehat{EOC} = 95^{\circ}$ (graduation intérieure)

On vérifie : \widehat{EOC} est bien obtus.

e) $\widehat{AOD} = 142^{\circ}$ (graduation extérieure, de la gauche vers la droite)

On vérifie: \widehat{AOD} est bien obtus.

f) $\widehat{EOD} = 38^{\circ}$ (graduation intérieure)

On vérifie: \widehat{EOD} est bien aigu.

7 En utilisant l'image ci-dessous, déterminer la mesure de l'angle :

- a) \widehat{AOB}
- **b)** \widehat{EOB}
- c) AOC
- d) EOC

- e) AOD
- f) EOD

8 p. 129

 $\widehat{CAB} = 55^{\circ}$

A Avec un rapporteus mesurer les angles BAC et ELLA gas again a la constant de la

9p.129

 $\widehat{RME} = 110^{\circ}$

 $\widehat{MER} = 43^{\circ}$ (42° accepté)

 $\widehat{MRE} = 27^{\circ}$

