Sommersemester 2014 Prof. Dr. Florian Heß // Stefan Hellbusch Carl von Ossietzky Universität Oldenburg

Klausur zum Modul ALGEBRA I (9KP)

ame:						M	MatrNr:				
udiengang:						Ti	TutorIn:				
 Die Klausur können. Bit Seiten). Am 	te prü	fen Sie	die Vo	ollständ	ligkeit	Ihres E	empl	ars (es			
• Es sind kei : Notizen – en handen, aus	rlaubt	. Bitte	legen	Sie Ihr							
Bei der Korn Rückseiten) berücksichti	gewer	tet. Fa	lls eine	Bearbo	eitung	nicht di	rekt ui	nter der			
• Das Entfern tung erfolgt o.ä., kein B	ausso	chließli	ch mit	dokun				450.000			
 Alle Schritte Folgerungen werden. 		_									
• Erklärung der Klausi			kannt,	dass '	Γäuscl	hungsv	ersuc	he zun	n Nich	tbesteh	
	Z	ur Ker	ntnis į	genomr	men:		J	Untersc	hrift)		
Aufgabe	1	2	3	4	5	6	. 7	K	В	M	
Punkte											
Korrektur											
Note:								(Pro	f. Dr. I	F. Heß)	

- 1. Aufgabe: Chinesischer Restsatz (10P=5P+5P)
 - a) Finden Sie ein Polynom $f \in \mathbb{Q}[t]$ mit Grad $\deg(f) \leq 4$, welches das folgende System simultaner Kongruenzen löst:

$$f \equiv t^2 \mod t^3 - t,$$

$$f \equiv 1 \mod t^2 - 2.$$

(5P)

b) Stellen Sie ein System simultaner Kongruenzen in $\mathbb{Q}[t]$ auf, dessen Lösung ein Polynom $f \in \mathbb{Q}[t]$ liefert, so dass

$$f(1) = f(-1) = 1$$
, $f(0) = 0$, $f(\sqrt{2}) = 1$ und $f(2) = 3$ (*)

gilt. Begründen Sie die Lösbarkeit Ihres Systems und warum es die geforderten Eigenschaften von f impliziert. Ist eine Lösung mit deg(f) = 6 möglich? (5P)

Hinweis: Überprüfen Sie die Gleichungen (*) für Lösungen f aus Teil a). Sie brauchen Ihr System simultaner Kongruenzen nicht explizit zu lösen.

- 2. Aufgabe: Homomorphismen (10P=4P+6P)
 - a) Wie lautet der Homomorphiesatz f
 ür Ringe aus der Vorlesung? (4P)
- b) Sei $n \in \mathbb{Z}^{\geq 0}$ und

$$\phi: \mathbb{Z} \to R$$

ein Ringepimorphismus mit $\ker(\phi) \supseteq n\mathbb{Z}$. Bestimmen Sie bis auf Isomorphie alle möglichen Ringe R, die hier auftreten können. (6P)

- 3. Aufgabe: Maximale Ideale (11P=6P+5P)
 - a) Bestimmen Sie alle maximalen Ideale des Rings R := Z/6Z × Z/8Z. (6P)
 Hinweis: Sie dürfen verwenden, dass jedes Ideal von R der Form I × J mit Idealen I von Z/6Z und J von Z/8Z ist.
- b) Sei R ein Ring und M ein maximales Ideal von R. Gelte für jedes $a \in M$, dass 1+a ein invertierbares Element von R ist. Zeigen Sie, dass M das einzige maximale Ideal von R ist. (5P)

Hinweis: Wegen M maximales Ideal von R ist R/M ein Körper und es gibt zu $x \in R \setminus M$ ein $x' \in R$ mit xx' + M = 1 + M. Führen Sie damit die Annahme, es gebe ein weiteres maximales Ideal N, zu einem Widerspruch.

4. Aufgabe: Irreduzible Polynome (13P=5P+2.5P+5.5P)

Entscheiden Sie für die unten genannten Ringe R, ob das Polynom

$$f := 40t^4 - 28t^3 - 140t^2 - 196t - 28 \in R[t]$$

irreduzibel ist. Ist es nicht irreduzibel, bestimmen Sie eine Zerlegung von f in irreduzible Faktoren.

a)
$$R = \mathbb{F}_3$$
. (5P)

b)
$$R = \mathbb{Q}$$
. (2.5P)

c)
$$R = \mathbb{Z}$$
. (5.5P)

5. Aufgabe: Moduln (10P=5P+5P)

Seien

$$A := \begin{pmatrix} -2 & -2 & 0 \\ 2 & 7 & 10 \\ 2 & 8 & 12 \end{pmatrix} \quad \text{und} \quad B := \begin{pmatrix} 0 & 2 \\ 7 & 10 \\ 6 & 10 \end{pmatrix}.$$

- a) Berechnen Sie die untere Spalten Hermite Normalform von A und B. (5P)
- b) Seien M_A und M_B die von den Spalten von A beziehungsweise B erzeugten \mathbb{Z} Untermoduln von \mathbb{Z}^3 . Entscheiden Sie, welche der folgenden Aussagen

$$M_A = M_A \cap M_B$$
, $M_B = M_A \cap M_B$, $M_A \subseteq M_B$ oder $M_B \subseteq M_A$

gelten. (5P)

Hinweis: Sie brauchen keine Basis von $M_A \cap M_B$ anzugeben.

6. Aufgabe: Normalformen (12P=7P+5P)

a) Sei $V = \mathbb{Q}^3$ und $\phi \in \text{End}(V)$ mit

$$\phi: V \to V, \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 0 & 0 & -4 \\ 1 & 0 & 0 \\ 0 & 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Bestimmen Sie eine Matrix $W \in \mathbb{Q}^{3\times 3}$ in Weierstraß Normalform, sowie eine Basis \mathcal{B} von \mathbb{Q}^3 , so dass

$$M_B^B(\phi) = W$$

gilt. (7P)

Hinweis: Die Berechnung einer Smith Normalform mit Transformationsmatrizen kann umgangen werden.

b) Bestimmen Sie alle Matrizen $A\in\mathbb{Q}^{5\times 5}$ mit

$$A^7 = I_5$$
,

wobei I_5 die Einheitsmatrix in $\mathbb{Q}^{5\times 5}$ bezeichnet.

(5P)

Hinweis: Für einen großen Teil der Punkte ist eine Begründung, dass Sie alle Lösungen angegeben haben, erforderlich.

7. Aufgabe (9P=9·1P)

Kreuzen Sie an, ob folgende Aussagen richtig oder falsch sind. Für falsche Angaben gibt es Punktabzüge, die Gesamtpunktzahl kann nicht negativ werden.

Uneindeutige Markierungen werden als falsch gewertet!

 $\operatorname{Mit} R$ wird ein kommutativer Ring und $\operatorname{mit} K$ ein Körper bezeichnet.

		richtig	falsch
a)	Für jedes Ideal $I \neq \mathbb{Z}$ von \mathbb{Z} gibt es ein Ideal J von \mathbb{Z} , so dass $I+J$ maximal ist.		
b)	Faktorringe von euklidischen Ringen sind euklidisch.		
c)	Für $a \in R$ regulär ist $1 - a$ ebenfalls regulär in R .		
d)	Jedes Primideal von $\mathbb{Q}[x,y]$ ist ein maximales Ideal von $\mathbb{Q}[x,y].$		
e)	Für $a, b \in R$ ist $aR + bR = (a + b)R$.		
f)	Für jeden Ring R ist $R[t]$ faktoriell, wenn R Hauptidealring ist.		
g)	Es gibt Moduln M,N vom Rang 2, welche sich nicht einander enthalten und deren Schnitt $M\cap N$ ebenfalls vom Rang 2 ist.		
h)	Zerfällt das Minimalpolynom einer Matrix $A \in K^{n \times n}$ über K in paarweise verschiedene Linearfaktoren, so ist A diagonalisierbar.		
i)	Die Frobenius Normalform einer Matrix $A \in K^{n \times n}$ ist stets ähnlich zu der Begleitmatrix des charakteristischen Polynoms von A .		
		II .	