# Objectives

1. Classification - Transfer Learning

2. Generative Model – Experiment with Autoencoders

## Image Data Set

Dog breed classes: 120

Training Image numbers: 327,000

Test Image numbers: 10,157

Cropped Image Dimensions: 299 x 299 x 3



#### Convolutional Neural Network

Inspired by the visual cortex

Applies a convolution operation to the input, passing the result to the next layer

Share weights in convolutional layers where the same filter is used for each receptive field



**Evaluation Metric:** Multi Class Log Loss

$$logloss = -rac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{M}y_{i,j}\log(p_{i,j})$$

**Model:** Inception v3

- Pre-trained on ImageNet for 1000 different categories
- Smallest out of the pre-trained models at 96 MB
- Batch normalisation Normalises activations at each layer, which reduces sensitivity to changes of weights in the network
- RELU activation functions Eliminates vanishing gradient problem, and is computationally efficient

#### Transfer learning

Storing knowledge gained in one model while solving one problem and applying it to a different but related problem.

### Model Architecture:

- Input to final Layer: [None, 2048]
- Weights: [2048 x 120]
- Softmax Layer: [120]
- Cost function: softmax\_cross\_entropy\_with\_logits
- Optimizer: Gradient Descent



### Results

• Training/Validation Set Loss: 0.34, 0.47

• Training/Validation Set Accuracy: 0.91, 0.9

• Kaggle Submission Log Loss: 0.58

### **Improvements**

- Image augmentation Generalises model and reduces overfitting
- Experiment with Inception v5, VGGNet
- Use deeper fully connected layers



Clustering – Latent Manifold

**t-SNE:** preserve the local distances of the high-dimensional data in some mapping to low-dimensional data





Grid view of clustering

#### **Generative Models**

Given training data, generate new samples from the same distribution. A form of unsupervised learning.

### Why Generative Models?

Data created by Generative Models can be used for simulation and planning (Reinforcement Learning)

Enable inference of latent representations that can be useful as general features

#### **Variational Autoencoders**

- Input data **x**, reduced to latent variables **z** by the Encoder, and reconstructed to **x-hat** by the Decoder.
- Generate latent vectors (z) that roughly follow a Unit Gaussian Distribution
- Maximise likelihood of original input being reconstructed by the model
- The objective is to optimise:
  - **Generative Loss** mean squared error that measures how accurately the network reconstructed the images
  - Latent Loss KL divergence that measures how close the latent variables z match a Unit Gaussian Distribution



**Variational Encoders (cont.)** 

Objective: Learn model parameters to maximise likelihood of training data

- In addition to decoder network modeling p(x|z), define additional encoder network q(z|x) that approximates p(z|x).
- Allows us to derive a lower bound on the data likelihood that is tractable, which we can optimize

But it is intractable to compute p(x|z) for every z

$$p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$$

$$p_{\theta}(z|x) = p_{\theta}(x|z)p_{\theta}(z)/p_{\theta}(x)$$

Posterior density also intractable

Since we're modeling probabilistic generation of data, encoder and decoder networks are probabilistic



$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[ \log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$= \mathbf{E}_{z} \left[ \log \frac{p_{\theta}(x^{(i)}|z)p_{\theta}(z)}{p_{\theta}(z|x^{(i)})} \right] \quad (\text{Bayes' Rule})$$

$$= \mathbf{E}_{z} \left[ \log \frac{p_{\theta}(x^{(i)}|z)p_{\theta}(z)}{p_{\theta}(z|x^{(i)})} \frac{q_{\phi}(z|x^{(i)})}{q_{\phi}(z|x^{(i)})} \right] \quad (\text{Multiply by constant})$$

$$= \mathbf{E}_{z} \left[ \log p_{\theta}(x^{(i)}|z) \right] - \mathbf{E}_{z} \left[ \log \frac{q_{\phi}(z|x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[ \log \frac{q_{\phi}(z|x^{(i)})}{p_{\theta}(z|x^{(i)})} \right] \quad (\text{Logarithms})$$

$$= \mathbf{E}_{z} \left[ \log p_{\theta}(x^{(i)}|z) \right] - D_{KL}(q_{\phi}(z|x^{(i)}) || p_{\theta}(z)) + D_{KL}(q_{\phi}(z|x^{(i)}) || p_{\theta}(z|x^{(i)}))$$

Decoder network gives  $p\theta(x|z)$ , can compute estimate of this term through sampling

This KL term (between Gaussians for encoder and z prior) has nice closed-form solution

Make approximate posterior distribution close to prior

**Reconstruct input data** 

$$\mathcal{L}(x^{(i)}, \theta, \phi)$$

pθ(z|x) intractable (saw earlier), can't compute this KL term. But we know KL divergence always >= 0.

#### **Objective: Maximise this lower bound**

$$\theta^*, \phi^* = \arg\max_{\theta, \phi} \sum_{i=1}^{N} \mathcal{L}(x^{(i)}, \theta, \phi)$$



More details of the math (can be found at cs231n 2017 lecture13.pdf)

### **Variational Autoencoders Configuration**

| Encoder                                     | Decoder                                    |
|---------------------------------------------|--------------------------------------------|
| Input: [None, 64, 64, 3]                    | Convolutional Layer 1: [None, 16, 16, 128] |
| Convolutional Layer 1: [None, 32, 32, 64]   | Convolutional Layer 2: [None, 32, 32, 64]  |
| Convolutional Layer 2 : [None, 16, 16, 128] | Convolutional Layer 3: [None, 64, 64, 3]   |
| Convolutional Layer 3: [None, 8, 8, 256]    | Convolutional filter sizes: [5, 3, 3]      |
| Convolutional filter sizes: [5, 3, 3]       |                                            |
| Variational Layer: [None, 8, 8, 256]        |                                            |
| Fully Connected Layer: 256                  |                                            |

Latent Samples: 128

- Model training
- Image Reconstruction based on Dog Video
- Style Transfer