Logique

 $\mathsf{MP}/\mathsf{MP}^*$ Option info

Définition

Soit V un ensemble au plus dénombrable, dont les éléments sont appelés ${\bf variables}$.

Définition

Soit V un ensemble au plus dénombrable, dont les éléments sont appelés **variables**.

L'ensemble des **formules logiques** sur V est le plus petit langage sur $\Sigma = V \cup \{\land, \lor, \neg\}$ tel que:

- Toute variable $x \in V$ est une formule
- Si φ est une formule alors $\neg \varphi$ est une formule
- Si φ , ψ sont des formules alors $\varphi \wedge \psi$ (conjonction) et $\varphi \vee \psi$ (disjonction) sont des formules

Définition

Soit V un ensemble au plus dénombrable, dont les éléments sont appelés **variables**.

L'ensemble des **formules logiques** sur V est le plus petit langage sur $\Sigma = V \cup \{\land, \lor, \neg\}$ tel que:

- Toute variable $x \in V$ est une formule
- Si φ est une formule alors $\neg \varphi$ est une formule
- Si φ , ψ sont des formules alors $\varphi \wedge \psi$ (conjonction) et $\varphi \vee \psi$ (disjonction) sont des formules

Exemple: si x_1 , $x_2 \in V$, $\neg(x_1 \lor x_2)$ et $\neg x_2 \land \neg x_2$ sont deux formules différentes.

Définition

Soit V un ensemble au plus dénombrable, dont les éléments sont appelés **variables**.

L'ensemble des **formules logiques** sur V est le plus petit langage sur $\Sigma = V \cup \{\land,\lor,\lnot\}$ tel que:

- Toute variable $x \in V$ est une formule
- ullet Si φ est une formule alors $\neg \varphi$ est une formule
- Si φ , ψ sont des formules alors $\varphi \wedge \psi$ (conjonction) et $\varphi \vee \psi$ (disjonction) sont des formules

Exemple: si x_1 , $x_2 \in V$, $\neg(x_1 \lor x_2)$ et $\neg x_2 \land \neg x_2$ sont deux formules différentes.

On peut aussi rajouter les lettres \Rightarrow , \iff ...

Formules logiques représentées par un arbre

On peut représenter une formule par un arbre où les noeuds internes sont les connecteurs logiques et les feuilles sont les variables. Par exemple, $(x \land \neg y) \lor y$ est représenté par:

Évaluation d'une formule

Définition

Une **distribution de vérité** sur un ensemble V de variables est une fonction de V vers $\{0, 1\}$.

0 est parfois noté Faux ou \bot . 1 est parfois noté Vrai ou \top .

Évaluation d'une formule

Définition

Une **distribution de vérité** sur un ensemble V de variables est une fonction de V vers $\{0, 1\}$.

0 est parfois noté Faux ou \bot . 1 est parfois noté Vrai ou \top .

Définition

Soit d une distribution de vérité sur V.

L'évaluation $[\![\varphi]\!]_d$ d'une formule φ sur d est définie inductivement:

- $[x]_d = d(x)$ si $x \in V$
- $\bullet \ \llbracket \neg \varphi \rrbracket_d = 1 \llbracket \varphi \rrbracket_d$
- $\bullet \ \llbracket \varphi \wedge \psi \rrbracket_d = \min(\llbracket \varphi \rrbracket_d, \llbracket \psi \rrbracket_d)$
- $\bullet \ \llbracket \varphi \lor \psi \rrbracket_d = \max(\llbracket \varphi \rrbracket_d, \llbracket \psi \rrbracket_d)$

Formule en Caml

Formule en Caml

```
type 'a formule =
  | Var of 'a
  | Et of 'a formule * 'a formule
  | Ou of 'a formule * 'a formule
  | Non of 'a formule;;
```

```
let rec eval f d = match f with
  | Var(x) -> d x
  | Et(f1, f2) -> eval f1 d && eval f2 d
  | Ou(f1, f2) -> eval f1 d || eval f2 d
  | Non(f1) -> not (eval f1 d);;
```

lci une distribution de vérité d à valeur booléenne est utilisée.

Définition

Deux formules φ et ψ sur V sont **équivalentes** (et on note $\varphi \equiv \psi$) si, pour toute distribution de vérité $d: V \to \{0, 1\}$:

$$\llbracket \varphi \rrbracket_d = \llbracket \psi \rrbracket_d$$

Définition

Deux formules φ et ψ sur V sont **équivalentes** (et on note $\varphi \equiv \psi$) si, pour toute distribution de vérité $d: V \to \{0, 1\}$:

$$\llbracket \varphi \rrbracket_d = \llbracket \psi \rrbracket_d$$

Lois de de Morgan

Pour toutes formules φ , ψ :

$$\neg(\varphi \lor \psi) \equiv \neg\varphi \land \neg\psi$$
$$\neg(\varphi \land \psi) \equiv \neg\varphi \lor \neg\psi$$

Définition

Deux formules φ et ψ sur V sont **équivalentes** (et on note $\varphi \equiv \psi$) si, pour toute distribution de vérité $d: V \to \{0, 1\}$:

$$\llbracket \varphi \rrbracket_d = \llbracket \psi \rrbracket_d$$

Lois de de Morgan

Pour toutes formules φ , ψ :

$$\neg(\varphi \lor \psi) \equiv \neg\varphi \land \neg\psi$$
$$\neg(\varphi \land \psi) \equiv \neg\varphi \lor \neg\psi$$

Définition

Une formule toujours évaluée à 1 est une tautologie.

Une formule qui possède au moins une évaluation à $1\ \mathrm{est}\ \mathrm{satisfiable}.$

Quelques équivalences importantes:

$$\varphi \wedge 1 \equiv \varphi$$

$$\varphi \wedge 0 \equiv 0$$

$$\varphi \vee 1 \equiv 1$$

$$\varphi \vee 0 \equiv \varphi$$

$$\neg \neg \varphi \equiv \varphi$$

$$\varphi \wedge \varphi \equiv \varphi$$

$$\varphi \wedge \varphi \equiv \varphi$$

$$\varphi \vee \varphi \equiv \varphi$$

$$\varphi_1 \wedge (\varphi_2 \wedge \varphi_3) \equiv (\varphi_1 \wedge \varphi_2) \wedge \varphi_3$$

$$\varphi_1 \vee (\varphi_2 \vee \varphi_3) \equiv (\varphi_1 \vee \varphi_2) \vee \varphi_3$$

$$\varphi_1 \vee (\varphi_2 \wedge \varphi_3) \equiv (\varphi_1 \vee \varphi_2) \wedge (\varphi_1 \vee \varphi_3)$$

$$\varphi_1 \wedge (\varphi_2 \vee \varphi_3) \equiv (\varphi_1 \wedge \varphi_2) \vee (\varphi_1 \wedge \varphi_3)$$

Algèbre de Boole

En notant \overline{a} au lieu de $\neg a$, a+b au lieu de $a \lor b$, ab au lieu de $a \land b$, les équivalences précédentes deviennent:

$$\overline{a} \equiv a$$

$$aa \equiv a$$

$$a + a \equiv a$$

$$a(bc) \equiv (ab)c$$

$$a + (b+c) \equiv (a+b) + c$$

$$a + bc \equiv (a+b)(a+c)$$

$$a(b+c) \equiv ab + ac$$

Algèbre de Boole

En notant \overline{a} au lieu de $\neg a$, a+b au lieu de $a \lor b$, ab au lieu de $a \land b$, les équivalences précédentes deviennent:

$$\overline{a} \equiv a$$

$$aa \equiv a$$

$$a + a \equiv a$$

$$a(bc) \equiv (ab)c$$

$$a + (b+c) \equiv (a+b) + c$$

$$a + bc \equiv (a+b)(a+c)$$

$$a(b+c) \equiv ab + ac$$

Et les lois de De Morgan:

$$\overline{a+b} \equiv \overline{a}\overline{b}$$
$$\overline{ab} \equiv \overline{a} + \overline{b}$$

Calculs en pratique

Soit ϕ une formule possédant des \neg uniquement sur des variables.

Alors $\neg \phi$ équivaut à:

- inverser les ∨ et ∧
- 2 inverser les variables avec leurs négations

Par exemple si $\phi = (x \lor y) \land ((\neg x \land z) \lor \neg y) \lor \neg z$ alors:

$$\neg \phi \equiv (\neg x \land \neg y) \lor ((x \lor \neg z) \land y) \land z$$

Calculs en pratique

Soit ϕ une formule possédant des \neg uniquement sur des variables.

Alors $\neg \phi$ équivaut à:

- inverser les ∨ et ∧
- inverser les variables avec leurs négations

Par exemple si $\phi = (x \lor y) \land ((\neg x \land z) \lor \neg y) \lor \neg z$ alors:

$$\neg \phi \equiv (\neg x \land \neg y) \lor ((x \lor \neg z) \land y) \land z$$

On peut calculer sur des formules un peu comme sur les réels.

Par exemple, comme (a+b)(c+d)e = ace + ade + bce + bde:

$$(a \lor b) \land (c \lor d) \land e \equiv (a \land c \land e) \lor (a \land d \land e) \lor (b \land c \land e) \lor (b \land d \land e)$$

Soit $V = \{x_0, ..., x_{n-1}\}$. Pour savoir si une formule est une tautologie, une méthode naïve est d'énumérer les 2^n distributions de vérité $d: V \to \{0, 1\}$.

Soit $V = \{x_0, ..., x_{n-1}\}$. Pour savoir si une formule est une tautologie, une méthode naïve est d'énumérer les 2^n distributions de vérité $d: V \to \{0, 1\}$.

Une possibilité: représenter d par un entier dont le ième bit est $d(x_i)$.

Soit $V = \{x_0, ..., x_{n-1}\}$. Pour savoir si une formule est une tautologie, une méthode naïve est d'énumérer les 2^n distributions de vérité $d: V \to \{0, 1\}$.

Une possibilité: représenter d par un entier dont le ième bit est $d(x_i)$. On énumère alors tous les entiers de 0 à $2^n - 1$.

Soit $V = \{x_0, ..., x_{n-1}\}$. Pour savoir si une formule est une tautologie, une méthode naïve est d'énumérer les 2^n distributions de vérité $d: V \rightarrow \{0, 1\}$.

Une possibilité: représenter d par un entier dont le ième bit est $d(x_i)$. On énumère alors tous les entiers de 0 à $2^n - 1$.

```
let tautologie f n =
  let res = ref true in
  for d = 0 to (pow 2 n) - 1 do
    if not (eval f (fun x -> d land (pow 2 x) <> 0))
    then res := false
  done;
!res;;
```

a land b renvoie le « et binaire » des entiers a et b (l'entier dont le ième bit est 1 ssi les ièmes bits de a et b sont 1).

Soit $V = \{x_0, ..., x_{n-1}\}$. Pour savoir si une formule est une tautologie, une méthode naïve est d'énumérer les 2^n distributions de vérité $d: V \rightarrow \{0, 1\}$.

Une possibilité: représenter d par un entier dont le ième bit est $d(x_i)$. On énumère alors tous les entiers de 0 à $2^n - 1$.

```
let tautologie f n =
  let res = ref true in
  for d = 0 to (pow 2 n) - 1 do
    if not (eval f (fun x -> d land (pow 2 x) <> 0))
    then res := false
  done;
!res;;
```

a land b renvoie le « et binaire » des entiers a et b (l'entier dont le ième bit est 1 ssi les ièmes bits de a et b sont 1).

Complexité:

Soit $V = \{x_0, ..., x_{n-1}\}$. Pour savoir si une formule est une tautologie, une méthode naïve est d'énumérer les 2^n distributions de vérité $d: V \rightarrow \{0, 1\}$.

Une possibilité: représenter d par un entier dont le ième bit est $d(x_i)$. On énumère alors tous les entiers de 0 à $2^n - 1$.

```
let tautologie f n =
  let res = ref true in
  for d = 0 to (pow 2 n) - 1 do
    if not (eval f (fun x -> d land (pow 2 x) <> 0))
    then res := false
  done;
!res;;
```

a land b renvoie le « et binaire » des entiers a et b (l'entier dont le ième bit est 1 ssi les ièmes bits de a et b sont 1).

Complexité: $\geq 2^n$.

Satisfiabilité en Caml

De même, on peut déterminer une distribution de vérité satisfaisant une formule, si elle existe:

```
let satisfiable f n =
  let rec aux i =
    if i = pow 2 n then failwith "non satisfiable"
  else let d = (fun x -> i land (pow 2 x) <> 0) in
        if eval f d then d
        else aux (i+1)
  in aux 0;;
```

Soit φ une formule sur V. On peut représenter les différentes valeurs des évaluations de φ par une **table de vérité**.

Soit φ une formule sur V. On peut représenter les différentes valeurs des évaluations de φ par une **table de vérité**.

Table de vérité de $(x \land y) \lor (\neg x \land \neg y)$:

X	У	$(x \land y) \lor (\neg x \land \neg y)$	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

Chaque ligne correspond à une distribution de vérité d possible et $\llbracket \varphi \rrbracket_d$.

Soit φ une formule sur V. On peut représenter les différentes valeurs des évaluations de φ par une **table de vérité**.

Table de vérité de $(x \land y) \lor (\neg x \land \neg y)$:

Χ	У	$(x \wedge y) \vee (\neg x \wedge \neg y)$	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

Chaque ligne correspond à une distribution de vérité d possible et $\llbracket \varphi \rrbracket_d$.

Deux formules sont équivalentes ssi elles ont la même table de vérité.

Vous êtes perdus dans le désert et vous avez le choix entre 2 chemins, gardés par 2 sphinx.

Le premier vous dit : « au moins un des chemins conduit à une oasis. » Le second ajoute : « le chemin de droite se perd dans le désert. » Sachant que les deux sphinx disent tous deux la vérité, ou bien mentent tous deux, que faites vous ?

Vous êtes perdus dans le désert et vous avez le choix entre 2 chemins, gardés par 2 sphinx.

Le premier vous dit : « au moins un des chemins conduit à une oasis. » Le second ajoute : « le chemin de droite se perd dans le désert. » Sachant que les deux sphinx disent tous deux la vérité, ou bien mentent tous deux, que faites vous ?

Soient x =« le chemin de gauche conduit à une oasis » et y =« le chemin de droite conduit à une oasis ».

Vous êtes perdus dans le désert et vous avez le choix entre 2 chemins, gardés par 2 sphinx.

Le premier vous dit : « au moins un des chemins conduit à une oasis. » Le second ajoute : « le chemin de droite se perd dans le désert. » Sachant que les deux sphinx disent tous deux la vérité, ou bien mentent tous deux, que faites vous ?

Soient x =« le chemin de gauche conduit à une oasis » et y =« le chemin de droite conduit à une oasis ».

D'après l'hypothèse, la formule $\varphi = ((x \lor y) \land \neg y) \lor (\neg(x \lor y) \land y)$ doit être vraie.

Vous êtes perdus dans le désert et vous avez le choix entre 2 chemins, gardés par 2 sphinx.

Le premier vous dit : « au moins un des chemins conduit à une oasis. » Le second ajoute : « le chemin de droite se perd dans le désert. » Sachant que les deux sphinx disent tous deux la vérité, ou bien mentent tous deux, que faites vous ?

Soient x =« le chemin de gauche conduit à une oasis » et y =« le chemin de droite conduit à une oasis ».

D'après l'hypothèse, la formule $\varphi = ((x \lor y) \land \neg y) \lor (\neg(x \lor y) \land y)$ doit être vraie.

En écrivant la table de vérité de φ ou en utilisant notre fonction Caml, on trouve que la seule solution est x=1 et y=0: il faut donc prendre le chemin de gauche.

Nombre de tables de vérités différentes sur n variables:

Nombre de tables de vérités différentes sur n variables: 2^{2^n} (2 choix pour chacune des 2^n distributions de vérité).

Nombre de tables de vérités différentes sur n variables: 2^{2^n} (2 choix pour chacune des 2^n distributions de vérité).

Question

Est-ce que toutes les tables de vérités possibles peuvent être obtenues par une formule logique?

Nombre de tables de vérités différentes sur n variables: 2^{2^n} (2 choix pour chacune des 2^n distributions de vérité).

Question

Est-ce que toutes les tables de vérités possibles peuvent être obtenues par une formule logique?

Question: comment obtenir la table suivante?

X	у	?
0	0	1
0	1	1
1	0	0
1	1	1

Table de vérité

Nombre de tables de vérités différentes sur n variables: 2^{2^n} (2 choix pour chacune des 2^n distributions de vérité).

Question

Est-ce que toutes les tables de vérités possibles peuvent être obtenues par une formule logique?

Question: comment obtenir la table suivante?

X	у	?
0	0	1
0	1	1
1	0	0
1	1	1

Réponse: avec la formule $\neg x \lor y$, qu'on note aussi $x \Longrightarrow y$.

Table de vérité

2ème exemple:

X	у	Z	?
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Cette méthode marche tout le temps, et permet de prouver:

Théorème

Toute table de vérité peut être obtenue avec une formule logique. Il existe donc exactement 2^{2^n} formules logiques à n variables, à équivalence près.

Cette méthode marche tout le temps, et permet de prouver:

Théorème '

Toute table de vérité peut être obtenue avec une formule logique. Il existe donc exactement 2^{2^n} formules logiques à n variables, à équivalence près.

De plus, la forme de la formule obtenue est bien particulière.

Définition

- Un **littéral** est une variable ou sa négation.
- Une **clause** est une conjonction de littéraux (c'est à dire de la forme $\ell_1 \wedge \ell_1 \wedge ... \wedge \ell_p$ où ℓ_i est un littéral).

Cette méthode marche tout le temps, et permet de prouver:

Théorème

Toute table de vérité peut être obtenue avec une formule logique. Il existe donc exactement 2^{2^n} formules logiques à n variables, à équivalence près.

De plus, la forme de la formule obtenue est bien particulière.

Définition

- Un littéral est une variable ou sa négation.
- Une **clause** est une conjonction de littéraux (c'est à dire de la forme $\ell_1 \wedge \ell_1 \wedge ... \wedge \ell_p$ où ℓ_i est un littéral).

Théorème

Toute formule logique est équivalente à une formule sous **forme normale disjonctive**, c'est à dire de la forme $c_1 \vee ... \vee c_k$ où c_i est une clause.

Une **forme normale conjonctive** (FNC) est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Une **forme normale conjonctive** (FNC) est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

Preuve:

Une **forme normale conjonctive** (FNC) est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

<u>Preuve</u>: $\neg \varphi$ est équivalente à une forme normale disjonctive, c'est à dire $\neg \varphi \equiv c_1 \lor ... \lor c_k$ où chaque c_i est de la forme $\ell_1 \land ... \land \ell_p$.

Une **forme normale conjonctive** (FNC) est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

<u>Preuve</u>: $\neg \varphi$ est équivalente à une forme normale disjonctive, c'est à dire $\neg \varphi \equiv c_1 \lor ... \lor c_k$ où chaque c_i est de la forme $\ell_1 \land ... \land \ell_p$. Alors $\neg \neg \varphi = \neg (c_1 \lor ... \lor c_k) \equiv \neg c_1 \land ... \land \neg c_k$ (de Morgan).

Une **forme normale conjonctive** (FNC) est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

<u>Preuve</u>: $\neg \varphi$ est équivalente à une forme normale disjonctive, c'est à dire $\neg \varphi \equiv c_1 \lor ... \lor c_k$ où chaque c_i est de la forme $\ell_1 \land ... \land \ell_p$. Alors $\neg \neg \varphi = \neg (c_1 \lor ... \lor c_k) \equiv \neg c_1 \land ... \land \neg c_k$ (de Morgan). Or $\neg c_i = \neg (\ell_1 \land \ell_2 \land ... \land \ell_p) \equiv \neg \ell_1 \lor ... \lor \neg \ell_p$ (de Morgan).

Une **forme normale conjonctive** (FNC) est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

<u>Preuve</u>: $\neg \varphi$ est équivalente à une forme normale disjonctive, c'est à dire $\neg \varphi \equiv c_1 \lor ... \lor c_k$ où chaque c_i est de la forme $\ell_1 \land ... \land \ell_p$. Alors $\neg \neg \varphi = \neg (c_1 \lor ... \lor c_k) \equiv \neg c_1 \land ... \land \neg c_k$ (de Morgan).

Or $\neg c_i = \neg (\ell_1 \land \ell_2 \land ... \land \ell_p) \equiv \neg \ell_1 \lor ... \lor \neg \ell_p$ (de Morgan).

Donc $\varphi \equiv \neg \neg \varphi$ est bien équivalente à une forme normale conjonctive.

Une **forme normale conjonctive** (FNC) est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique ϕ est équivalente à une formule sous forme normale conjonctive.

<u>Preuve</u>: $\neg \varphi$ est équivalente à une forme normale disjonctive, c'est à dire $\neg \varphi \equiv c_1 \lor ... \lor c_k$ où chaque c_i est de la forme $\ell_1 \land ... \land \ell_p$.

Alors $\neg \neg \varphi = \neg (c_1 \lor ... \lor c_k) \equiv \neg c_1 \land ... \land \neg c_k$ (de Morgan).

Or $\neg c_i = \neg(\ell_1 \land \ell_2 \land ... \land \ell_p) \equiv \neg \ell_1 \lor ... \lor \neg \ell_p$ (de Morgan).

Donc $\varphi \equiv \neg \neg \varphi$ est bien équivalente à une forme normale conjonctive.

Autre preuve possible: par induction structurelle sur φ , ou avec une table de vérité.

Exercice X2016

Question 20 Pour chacune des formules suivantes, utiliser l'involutivité de la négation, l'associativité et la distributivité des connecteurs \wedge et \vee , ainsi que les lois de De Morgan pour transformer la formule en FNC. Seul le résultat du calcul est demandé :

- a) $(x_1 \vee \neg x_0) \wedge \neg (x_4 \wedge \neg (x_3 \wedge x_2))$
- b) $(x_0 \wedge x_1) \vee (x_2 \wedge x_3) \vee (x_4 \wedge x_5)$

Problème k-SAT

Le problème k-SAT consiste à déterminer si une formule φ , sous forme normale conjonctive dont chaque clause comporte k littéraux, est satisfiable.

Problème k-SAT

Le problème k-SAT consiste à déterminer si une formule φ , sous forme normale conjonctive dont chaque clause comporte k littéraux, est satisfiable.

1-SAT:

Problème k-SAT

Le problème k-SAT consiste à déterminer si une formule φ , sous forme normale conjonctive dont chaque clause comporte k littéraux, est satisfiable.

- $\ \ \,$ 1-SAT:satisfiable ssi φ ne contient pas à la fois une variable et sa négation.
 - Complexité: O(n), n étant le nombre de variables dans φ .
- 2-SAT:

Problème k-SAT

Le problème k-SAT consiste à déterminer si une formule φ , sous forme normale conjonctive dont chaque clause comporte k littéraux, est satisfiable.

- **1**-SAT:satisfiable ssi φ ne contient pas à la fois une variable et sa négation.
 - Complexité: O(n), n étant le nombre de variables dans φ .
- 2-SAT: se ramène à un problème de graphe dont les sommets sont les littéraux de φ .
 - Pour toute clause $\ell_1 \vee \ell_2$, équivalente à $\neg \ell_1 \Longrightarrow \ell_2$, on ajoute un arc $(\neg \ell_1, \ell_2)$.
 - φ est alors satisfiable ssi aucune composante fortement connexe ne contient une variable et sa négation.

Théorème

Si on peut résoudre 3-SAT en complexité polynomiale (en le nombre de variables), alors on peut aussi résoudre k-SAT en complexité polynomiale.

Théorème

Si on peut résoudre 3-SAT en complexité polynomiale (en le nombre de variables), alors on peut aussi résoudre k-SAT en complexité polynomiale.

<u>Preuve</u>: soit φ une formule k-SAT et $c = \ell_1 \vee ... \vee \ell_k$ une de ses clauses.

Théorème

Si on peut résoudre 3-SAT en complexité polynomiale (en le nombre de variables), alors on peut aussi résoudre k-SAT en complexité polynomiale.

<u>Preuve</u>: soit φ une formule k-SAT et $c = \ell_1 \vee ... \vee \ell_k$ une de ses clauses. Alors:

$$c \equiv (\ell_1 \vee \ell_2 \vee x_1) \wedge (\neg x_1 \vee \ell_3 \vee x_2) \wedge (\neg x_2 \vee \ell_4 \vee x_3) \dots \wedge (\neg x_{k-3} \vee \ell_{k-1} \vee \ell_k)$$

où x_1 , ..., x_{k-3} sont des nouvelles variables.

Théorème

Si on peut résoudre 3-SAT en complexité polynomiale (en le nombre de variables), alors on peut aussi résoudre k-SAT en complexité polynomiale.

<u>Preuve</u>: soit φ une formule k-SAT et $c = \ell_1 \vee ... \vee \ell_k$ une de ses clauses. Alors:

$$c \equiv (\ell_1 \vee \ell_2 \vee x_1) \wedge (\neg x_1 \vee \ell_3 \vee x_2) \wedge (\neg x_2 \vee \ell_4 \vee x_3) \dots \wedge (\neg x_{k-3} \vee \ell_{k-1} \vee \ell_k)$$

où x_1 , ..., x_{k-3} sont des nouvelles variables.

On peut donc transformer φ en une formule 3-SAT, en multipliant au plus par 2 le nombre de variables.