Price Theory II Simon Sangmin Oh

1 Short Questions

- 1. (5 points) Define what it means for a preference relation \succeq on \mathbb{R}^n_+ to be continuous.
- 2. (5 points) Prove that if two utility functions u and v represent the same preference relation on \mathbb{R}^n_+ , then there is a strictly increasing function $f: \mathbb{R}_+ \to \mathbb{R}_+$ such that u(x) = f(v(x)) for every $x \in \mathbb{R}$. You should assume that the range of both $u(\cdot)$ and $v(\cdot)$ is all of \mathbb{R}_+ .
- 3. (5 points) Provide an Edgeworth box showing a Walrasian equilibrium allocation that is in the interior of the box but that is not Pareto efficient even though preferences are continuous.
- 4. (5 points) State the first welfare theorem for the exchange economy.

2 Exchange Economy

Consider an economy with four consumers:

$$u^{1}(x_{1}, x_{2}) = u^{2}(x_{1}, x_{2}) = x_{1}x_{2}, \quad \mathbf{e}^{1} = \mathbf{e}^{2} = (18, 2)$$

 $u^{3}(x_{1}, x_{2}) = u^{4}(x_{1}, x_{2}) = x_{1}x_{2}, \quad \mathbf{e}^{3} = \mathbf{e}^{4} = (2, 18)$

- 1. (5 points) Show that the allocation $\mathbf{x}^1 = \mathbf{x}^3 = (9, 9)$ and $\mathbf{x}^2 = \mathbf{x}^4 = (11, 11)$ is Pareto efficient.
- 2. (10 points) Show that the allocation in part (a) is not in the core. (Hint: Find a blocking pair)
- 3. (15 points) Show that the allocation $\mathbf{x}^1 = \mathbf{x}^2 = (9,9)$ and $\mathbf{x}^3 = \mathbf{x}^4 = (11,11)$ is in the core but that it is not a Walrasian equilibrium allocation. (If needed, you may use the fact that $29\sqrt{19/11} > 38$)

3 Production Economy

- 1. (5 points) Define the profit function, $\Pi(\mathbf{p})$, for a price-taking firm with production set $Y \subset \mathbb{R}^n$.
- 2. (5 points) Suppose that $\mathbf{y}^0 \in Y$ is a profit-maximizing production plan at the price vector $\mathbf{p}^0 \gg 0$. Suppose that the price of good k increases and that all other prices remain fixed, leading to the new price vector \mathbf{p}^1 . Prove that if $\mathbf{y}^1 \in Y$ is profit-maximizing at the price vector \mathbf{p}^1 , then $y_k^1 \geq y_k^0$ i.e. the supply of good k does not fall when its price goes up. Do not use envelope theorem or Hotelling's lemma.
- 3. (5 points) Let Y be the aggregate production set of an economy with J > 1 firms. That is,

$$Y = \left\{ y \in \mathbb{R}^n : y \in \sum_{j=1}^J y^j, y^j \in Y^j \right\}$$

Fix some \mathbf{p} and suppose that $\hat{\mathbf{y}} \in Y$ solves $\max \mathbf{p} \cdot \mathbf{y}$ subject to $\mathbf{y} \in Y$. Prove that there exists $\hat{\mathbf{y}}^1 \in Y^1, ..., \hat{\mathbf{y}}^J \in Y^J$ such that for each $j \in \{1, ..., J\}$, $\hat{\mathbf{y}}^j$ solves $\max \mathbf{p} \cdot \mathbf{y}^j$ subject to $\mathbf{y}^j \in Y^j$.

4 Social Welfare

Consider a society with three individuals (1, 2, 3) and three social alternative (x, y, z). Let f be a social welfare function that yields:

Price Theory II Simon Sangmin Oh

Individual 1	Individual 2	Individual 3	Society f
x	y	z	x
y	z	x	z
z	x	y	y

- 1. (5 points) Provide precise statements of Arrow's four axioms using notations from class.
- 2. (5 Points) State Arrow's theorem. Without changing any individuals' rankings in the table above, use Arrow's theorem to conclude that f must violate at least one of U, WP or IIA.
- 3. (5 Points) Suppose that f satisfies U. By changing the ranking(s) of one or more individuals in the table above, show that f cannot also simultaneously satisfy both WP and IIA. You must answer this question without appealing to Arrow's theorem.