Vladislav Belavin, Maxim Borisyak

Introduction to distances: Wasserstein

2021

Motivation

French Bakeries

Given a set of N bakeries and M cafes, what is the optimal way to transport loaves of bread between them?

French Bakeries

Price = 10+7+15+10+14+9 = 65 min

http://www.gpeyre.com/

More Bakeries

We can estimate different possibilities, using the same matrix of costs.

Optimal Transport: Monge

The number of calculations rises as factorial.

We thus need to solve a problem:

$$\min_{\sigma \in \mathsf{Perm}_{\mathsf{n}}} \sum_{\mathsf{i}=1}^{\mathsf{n}} \mathsf{C}_{\mathsf{i},\sigma(\mathsf{i})}$$

Earth Mover's (EM) distance

Formulate the Bakery problem: Kantorovich

What if bakeries can produce different mass of breads?

- ► Let:
 - p_i , $i \in 1...N$ the mass of bread held by each bakery;
 - q_i , $j \in 1...M$ the mass of bread desired by each cafe;
 - $-x_i, y_i$ the positions of bakeries and cafes;
 - $\sum_i p_i = \sum_j q_j = 1$, and cost is proportional to work (mass×distance).

Find an optimal coupling $\gamma_{i,j}$ – a quantity of how much bread is delivered from bakery i to cafe j – for the mass of bread moved from p_i to q_j . This defines the Earth Mover's (EM) distance:

$$\mathsf{EMD} = \inf_{\gamma \in \Pi} \sum_{\mathsf{x}, \mathsf{y}} ||\mathsf{x} - \mathsf{y}|| \gamma(\mathsf{x}, \mathsf{y}) = \inf_{\gamma \in \Pi} \mathop{\mathbb{E}}_{(\mathsf{x}, \mathsf{y}) \sim \gamma} ||\mathsf{x} - \mathsf{y}||.$$

Why EMD?

Imagine that we want to move the events from P_r to P_θ . We also want to save effort, that is, not to move large pieces over long distances.

This is a problem that is solved by many construction workers every day. In fact, this is the optimal transport problem from P_r to P_θ .

Figure: https://vincentherrmann.github.io/blog/wasserstein/

Why EMD?

Imagine that we want to move the events from P_r to P_θ . We also want to save effort, that is, not to move large pieces over long distances.

Figure: https://vincentherrmann.github.io/blog/wasserstein/

Why EMD?

Imagine that we want to move the events from P_r to P_θ . We also want to save effort, that is, not to move large pieces over long distances.

$$\mathsf{EMD}(\mathsf{P}_r,\mathsf{P}_\theta) = \inf_{\gamma \in \Pi} \sum_{x,y} ||x-y|| \gamma(x,y) = \inf_{\gamma \in \Pi} \mathop{\mathbb{E}}_{(x,y) \sim \gamma} ||x-y||,$$

Figure: https://vincentherrmann.github.io/blog/wasserstein/

Wasserstein distance

Wasserstein Distance

For continuous case, there are a set of p-Wasserstein distances, with $W_p(P_x, Q_y)$ defined with $x \in M$, $y \in M$ and a distance D on x, y:

$$W_p(p_x,q_y) = \inf_{\gamma \in \Pi(x,y)} \int D(x,y)^p \gamma(x,y) dx dy,$$

where $\Pi(x,y)$ is a set of all joint distributions having P_x, Q_y as their marginals. And $\gamma(x,y)$ denotes the amount of "mass" to move from x to y.

W₁ Distance

W₁ distance with Euclidean norm is:

$$W(p_x,q_y) = \inf_{\gamma \in \Pi(x,y)} \int D(x,y) \gamma(x,y) dx dy = \inf_{\gamma \in \Pi(x,y)} \mathbb{E}(||x-y||)$$

Which brings an evident connection to EMD.

Two dimensional representation of the transport plan between horizontal μ and vertical ν pdfs. Note, that this is not unique plan. The inf must be taken over all possible plans.

Picture: https:

//en.wikipedia.org/wiki/Wasserstein_metric

V. Belavin, et. al., NRU HSE

July 22, 2020

14/20

W vs KL

EMD also takes into account the distance at which the differences in the distributions are located.

This is exactly what we need!

W vs KL

Wasserstein loss landscape is less sensitive to the initial point, hence a gradient descent approach would easily converge to the optimal point regardless of the starting point.

Cons: W loss depends on the distance measure, i.e. one more thing to tune.

From: https://arxiv.org/pdf/1711.05376.pdf

W vs KL

Also, the Wasserstein metric suffers less from the local minima in multimodal cases and is much smoother.

Claim without proof: it is connected to the fact that Wasserstein takes into account the distance at which the differences in the distributions are located.

From: https://arxiv.org/pdf/1711.05376.pdf

W₂ for interpolation

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024256/

Conclusion

Key point (one more time :) There is no single good way to evaluate a generative model. Most likely, the quality metrics should depend on the further use.

- Wasserstein distance does not have zero-gradient problem like KL/JS divergence;
- more robust in multidimensional multimodal cases than KL;
- quite difficult to optimize (dozens of papers are devoted to the optimization problem of Wasserstein distance).

19/20

Thank you for your attention!

Vladislav Belavin

- SchattenGenie
- O hse_lambda

