TRANSIENT RESPONSE OF CAPACITOR

RC CIRCUITS

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Charging a Capacitor

Discharging a Capacitor

CHARGING A CAPACITOR

RC CIRCUIT

$KVL @L_1$

$$-v_o + v_R + v_C = 0$$

$$v_R + v_C = v_o$$

$$i_C R + v_C = v_o$$
 ; $i_C = C \frac{d}{dt} v_C$

$$RC\frac{d}{dt}v_C + v_C = v_o$$

$$\frac{d}{dt}v_C + \frac{1}{RC}v_C = \frac{v_o}{RC}$$

... first-order ODE

$$v_C(t) = v_o \left(1 - e^{-\frac{t}{RC}} \right)$$

CAPACITOR VOLTAGE

Charging Equation

$$v_c(t) = v_o \left(1 - e^{-\frac{t}{\tau}}\right)$$

where: $\tau = RC$

The <u>voltage</u> across the capacitor <u>starts at zero</u> and exponentially increases to its maximum voltage (v_o).

CAPACITOR CURRENT

Charging Equation

$$i_c(t) = \frac{v_o}{R} e^{-\frac{t}{\tau}}$$

where: $\tau = RC$

The <u>current</u> through the capacitor instantly jumps to its <u>maximum value</u> ($^{v_o}/_R$) amperes then decays exponentially to zero.

TIME CONSTANT

The $\underline{\text{time constant}}$ (τ) is a measure of how quickly a capacitor charges or discharges in an RC circuit.

<u>Formula</u>

$$\tau = RC$$

unit: second

EXERCISE

A $100\mu F$ capacitor is connected to a 12V DC power supply through a resistor of $1K\Omega$. Determine the time it takes for the capacitor to charge to 86.5% of its maximum voltage.

Solution

EXERCISE

A $100\mu\text{F}$ capacitor is connected to a 12V DC power supply through a resistor of $1K\Omega$. Determine the voltage across the capacitor after 200 ms of charging.

Solution

DISCHARGING A CAPACITOR

RC CIRCUIT

KVL @*L*₁

$$v_R + v_C = 0$$

$$i_C R + v_C = 0$$
 ; $i_C = C \frac{d}{dt} v_C$

$$RC\frac{d}{dt}v_C + v_C = 0$$

$$\frac{d}{dt}v_C + \frac{1}{RC}v_C = 0$$

... first-order ODE

$$v_C(t) = v_o e^{-\frac{t}{RC}}$$

CAPACITOR VOLTAGE

Discharging Equation

$$v_c(t) = v_o e^{-\frac{t}{\tau}}$$

where: $\tau = RC$

The <u>voltage</u> across the capacitor starts at its maximum voltage (v_o) then decays exponentially to <u>zero</u>.

CAPACITOR CURRENT

Discharging Equation

$$i_c(t) = -\frac{v_o}{R} \left(e^{-\frac{t}{\tau}} \right)$$

where: $\tau = RC$

The <u>current</u> through the capacitor instantly jumps to its maximum value, but in opposite direction $(-v_0/R)$ then decays exponentially to <u>zero</u>.

EXERCISE

A 200 μ F capacitor is initially charged to 12V. It is then disconnected from the power supply and discharged a resistor of 1.5 $K\Omega$. Determine the voltage across the capacitor after 0.1s of discharging.

Solution

TRANSIENT RESPONSE

The <u>transient response</u> of a capacitor describes the time-dependent changes in voltage across the capacitor and the current through it. The transient phase is typically considered to last for approximately <u>five time constants</u> (5 τ) after which the system is assumed to have reached steady-state conditions.

TRANSIENT RESPONSE

The <u>transient response</u> of a capacitor describes the time-dependent changes in voltage across the capacitor and the current through it. The transient phase is typically considered to last for approximately <u>five time constants</u> (5τ) after which the system is assumed to have reached steady-state conditions.

LABORATORY

