Projects - Quantile estimation

- \bullet R is the only programming language allowed in answers. Questions requiring R code are indicated by the symbol \spadesuit
- The report (file name: groupe_rapport_noms, e.g., 001_rapport_robert_duche)
 - to be returned in .pdf format and must contain your answers and comments.
 Careful drafting is expected. It is important to justify/comment on the theoretical and numerical results
 - To integrate all or part of your code and outputs into your report, you can use the dedicated tools Notebook, Rmarkdown or LATEX+ knitr. However, it is forbidden to copy and paste raw code into the body of the text. Graphics must be carefully annotated and presented (title, colour, captions, etc.).
- A version of the code that can be tested must be provided (same file name). This code must:
 - run without errors and reproduce all the results presented in the report. You specify the seed used for the results obtained.
 - be well commented. You may be asked for an oral explanation.
 - use as much as possible the specificities of the language (bonus for the most efficient codes).
- The project will be emailed at the address stanislasduche@gmail.com with the object groupe_name1_name2 Monte Carlo Project Part 1
- The project will be released in 3 times, with blocks of 3/4 exercises. This is the first block of the project to be returned for Sunday November 24th 2024 at 23:59:59. Every hour late starting from November 25th, 00:00:01, will be penalized by a point.
- The project can be carried out in groups of two or three. For groups of 3, a requirement for detail and initiative will be included in the marking of the project.
- I would remind you that plagiarism is strictly forbidden and any suspicion will result in a 0 for the exercise. The Large Language Models chatbots can be used as an aid; but any code suspected to be written by an assistant will not be corrected.

Exercise 1: Negative weighted mixture

Consider a random variable of a negative weighted mixture X following a density law proportional to

$$\forall x \in \mathbb{R}, \quad f(x) \propto f_1(x) - af_2(x)$$

with $f_1(x) = \mathcal{N}(x; \mu_1, \sigma_1^2)$ and $f_2(x) = \mathcal{N}(x; \mu_2, \sigma_2^2)$ density laws of two normal distributions; and a > 0. The objective of this exercise is to understand the behavior of the random variable and to compute statistics.

Definition

Question 1: Recall the conditions for a function f to be a probability density. Considering the tail behavior of f, derive necessary conditions on (σ_1^2, σ_2^2) for f to be a density.

Question 2: For given parameters $\theta_1 = (\mu_1, \sigma_1^2)$ and $\theta_2 = (\mu_2, \sigma_2^2)$, determine a bound a^* on a for $f(x) \propto f_1(x) - af_2(x)$ to be a well-defined density. Provide its normalization constant.

Question 3: (\spadesuit) Create an R function f(a, mu_1, mu_2, s_1, s_2, x) that produces the pdf of f as a function of x and of the parameters $a, \mu_1, \mu_2, \sigma_1, \sigma_2$. Plot on the same graph the pdf of f for different values of a, especially for $a = a^*$. In another graph, do the same for different values of σ_2 , for σ_1 fixed. Examine the impact of a and σ_2 on the shape of f.

From now on, we set the following numerical values: $\mu_1 = 0, \mu_2 = 1, \sigma_1^2 = 9, \sigma_2^2 = 1$, and a = 0.2. Check they are compatible with the constraint derived above.

Inverse c.d.f Random Variable simulation

Question 4: (\spadesuit) Show that the cumulative density function associated with f is available in closed form. Create an R function F(a, mu_1, mu_2, s_1, s_2, x) that produces the cdf of f as a function of x and of the parameters $a, \mu_1, \mu_2, \sigma_1, \sigma_2$. Construct an algorithm that returns the value of the inverse function method as a function of $u \in (0,1)$, of the parameters $a, \mu_1, \mu_2, \sigma_1, \sigma_2$, and of an approximation precision ε . Deduce an algorithm that implements the inverse function method for the generation of random variables from F.

Question 5: (\spadesuit) Write an R function inv_cdf(n) that generates n samples from f using the inverse function method. Generate n = 10000 samples, and graphically check that inv_cdf() is correct.

Accept-Reject Random Variable simulation.

Question 6: Describe a method to simulate under f using the accept-reject algorithm and give the expression theoretical acceptance rate according to the parameters of f.

Question 7: (\spadesuit) Write a function accept_reject(n) that generates n samples from f using the accept-reject method. Generate n=10000 samples, and graphically check that accept_reject() is correct. Compute the empirical acceptance rate and check whether it agrees with its theoretical value

Question 8: (\spadesuit) Vary the value of a and plot the acceptance rate for different values of a. Describe its impact when $a \to a^*$.

Random Variable simulation with stratification

Consider a partition $\mathcal{P} = (D_0, D_1, \dots, D_k), k \in \mathbb{N}$ of \mathbb{R} such that D_0 covers the tails of f_1 and f_1 is upper bounded and f_2 lower bounded in D_1, \dots, D_k . We consider the following dominating function g conditioned on the partition:

$$\begin{cases} g(x) = \frac{1}{Z} f_1(x) \text{ if } x \in D_0\\ g(x) = \frac{1}{Z} \left(\sup_{D_i} f_1(x) - a \inf_{D_i} f_2(x) \right) \text{ if } x \in D_i, i \in \{1, \dots, k\} \end{cases}$$

where Z is the normalization constant of f.

Question 9: Describe an accept-reject algorithm using the dominating function g and the partition \mathcal{P} , and calculate the acceptance rate of this new algorithm.

Question 10: For $\delta \in [0, 1]$, prove that there exists a partition $\mathcal{P} = (D_0, D_1, \dots, D_{n_\delta})$, such that the acceptance rate is greater than δ .

Question 11: (\spadesuit) Write a function stratified(n) that generates n samples from f using the accept-reject method. Generate n=10000 samples, and graphically check that stratified() is correct. Compute the empirical acceptance rate and check whether it agrees with its theoretical value.

Question 12: (\spadesuit) Write a function stratified(n,delta) that generates n samples from f using the accept-reject method with an acceptance rate of δ . You will return the n samples generated and the partition \mathcal{P} used. Generate n=10000 samples and compute the empirical acceptance rate and check that your code is correct.

Cumulative density function.

Question 13: Write down the cumulative density function $F_X(x)$ for $x \in \mathbb{R}$; and for a given x, write a Monte Carlo estimator $F_n(x)$ using n random variables $(X_i)_{i=1}^n$, i.i.d. following the law of X.

Question 14: Prove the strong consistency of the estimator $F_n(x)$ for a given x.

Remark 14: In fact, Glivenko-Cantelli theorem asserts that $\sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \to 0$ almost surely. Hence F_n is a good estimate of F as a function of x.

Question 15: (\spadesuit) Write a function empirical_cdf(x,Xn) that returns an estimate of the empirical cdf of f at value x, using n i.i.d. random draws Xn. Illustrate graphically strong consistency using increasing values of n.

Question 16: Remind the Central Limit Theorem. For $x \in \mathbb{R}$, deduce a 95 % confidence interval for F(x) using $F_n(x)$.

Question 17: (\spadesuit) Using a R code, give n, the number of simulation needed to have a 95% confidence interval of F(x) for x = 1, and for x = -15. What do you notice?

Empirical quantile function

We define the empirical quantile function defined on (0,1) by :

$$Q_n(u) := \inf\{x \in \mathbb{R} : u \le F_n(x)\}\$$

By the Glivenko-Cantelli theorem, we can deduce the almost surely convergence of $Q_n(u) \xrightarrow{\text{a.s.}} Q(u)$ **Question 18:** From *i.i.d.* samples $(X_i)_{i=1}^n$ following the same law as X, give the value of $Q_n(u)$ for $u \in (0,1)$.

Reminder: Lindeberg-Levy Central Limit theorem: At n fixed, consider independent random variables $(X_{n,j})_{1 \leq j \leq n}$ uniformly bounded in j and in n, $\operatorname{Var} X_{n,j} = \sigma_{n,j}^2 < \infty$. If $s_n^2 = \sum_{j=1}^n \sigma_{n,j}^2 \to \infty$ and if $t_n \to t$, then:

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{\sum_{j=1}^{n} (X_{n,j} - \mathbb{E}(X_{n,j}))}{s_n} < t_n\right) = \int_{-\infty}^{t} \frac{\exp(-u^2/2)}{\sqrt{2\pi}} du$$

Question 19: Notice that $Y_{j,n} := \mathbbm{1}_{X_{n,j} < Q(u) + \frac{t}{\sqrt{n}} \frac{\sqrt{u(1-u)}}{f(Q(u))}}$ are Bernoulli random variable, using the

Lindeberg-Levy CLT, deduce a Central Limit Theorem for $Q_n(u)$.

Question 20: What do you notice when $u \to 0$ or $u \to 1$?

Question 21: (\spadesuit) Write a function empirical_quantile(u,Xn) that returns the empirical quantile using n *i.i.d.* random draws Xn. Check numerically the intuition of the previous question for different values of u.

Question 22: (\spadesuit) Using a R code, give n, the number of simulation needed to have a 95% confidence interval of Q(u) for $u \in \{0.5, 0.9, 0.99, 0.999, 0.9999\}$.

Quantile estimation Naïve Reject algorithm

Question 23: Describe a method using accept-reject method to simulate a random variable X conditional to the event $\{X \in A\}$, $A \subset \mathbb{R}$. Justify theoretically

Question 24: (\spadesuit) Using the previous question algorithm, propose a way to simulate $\delta = \mathbb{P}(X \geq Q(u))$. Compute a function accept_reject_quantile(u,n) that returns a Monte Carlo estimate $\hat{\delta}_n^{Reject}$ of the target probability using n random variable simulations.

Question 25: (\spadesuit) Compute a confidence interval for δ at level 95% for a required precision ϵ .

Importance Sampling

Question 26: Propose a sampling distribution g to realise importance sampling and remind the importance sampling Monte Carlo estimator $\hat{\delta}_n^{IS}$ of δ for $n \in \mathbb{N}$. On which condition, the importance sampling estimator is preferred to the classical Monte Carlo estimator.

From now on, g will be a Cauchy distribution of the parameters (μ_0, γ)

Question 27: Remind the density of a Cauchy distribution. Choose parameters (μ_0, γ) , explain your reasoning.

Question 28: (\spadesuit) Compute a R function IS_quantile(u,n) that gives, for n = 10000, the estimator $\hat{\delta}_n^{IS}$ using n simulated random variables. Compute a confidence interval for δ at level 95% at precision

Control Variate

Question 29: Remind the definition of the score. Derive the partial derivative of the log-likelihood $\log f(x|\theta_1,\theta_2)$ under μ_1 . We note $s_{\mu_1}(x|\theta) = \frac{\partial \log f(x|\theta_1,\theta_2)}{\partial \mu_1}$. (Remind that $\theta_1 = (\mu_1, \sigma_1^2)$ and $\theta_2 = (\mu_2, \sigma_2^2)$

Question 30: Propose a control variate Monte Carlo Estimator $\hat{\delta}_n^{CV}$ using the control random variable $s_{\mu_1}(X|\theta)$

Question 31: (\spadesuit) Compute a R function CV_quantile(u,n) that gives for n = 10000, the estimator $\hat{\delta}_n^{CV}$ using n simulated random variables. Compute a confidence interval for δ at level 95 % at precision ϵ

Question 32: Compare the 3 methods: Naive, Control Variate and Importance Sampling. You can asses their algorithmic complexity, their computational cost for a required precision, etc.