AEOLIS SHORTCOURSE: SURFACE MOISTURE PROCESSES IN AEOLIS

Surface moisture influence erodibility and transport

New surface moisture module in AeoLiS

Governing equations

- Groundwater Boussinesq equation including runup
- Soil water retention relationship, including hysteresis
- Scanning curves describe transition between wetting and drying conditions
- Penman equation
- Percolation follow exponential decay function to field capacity

Soil water retention data from 10 beaches

Model input

```
%% ----- [Flags Processes] ----- %%
process_wind
                                                         % (T) [T/F] Enable the process of wind
process threshold
                                                         % (T) [T/F] Enable the process of threshold
                                                         % (T) [T/F] Enable the process of transport
process transport
process bedupdate
                                                         % (T) [T/F] Enable the process of bed updating
process shear
                                                         % (F) [T/F] Enable the process of wind shear
                                                         % (F) [T/F] Enable the process of tides
process_tide
process_wave
                                                         % (F) [T/F] Enable the process of waves
                                                         % (F) [T/F] Enable the process of wave runup
process runup
process moist
                                                         % (F) [T/F] Enable the process of moist
process_mixtoplayer
                                                         % (F) [T/F] Enable the process of mixing
process wet bed reset
                                                         % (F) [T/F] Enable the process of bed-reset in the intertidal zone
process_meteo
                                                         % (F) [T/F] Enable the process of meteo
process avalanche
                                                         % (F) [T/F] Enable the process of avalanching
process separation
                                                         % (F) [T/F] Enable the including of separation bubble
                                                         % (F) [T/F] Enable the process of vegetation
process vegetation
                                                         % (F) [T/F] Enable the process of sand fencing
process fences
                                                         % (F) [T/F] Enable the process of wave-driven dune erosion
process dune erosion
process_groundwater
                                                         % (F) [T/F] Enable the process of groundwater
                                                         % (F) [T/F] Enable the process of groundwater seepage
process_seepage_face
                        = T
process scanning
                        = F
                                                         % (F) [T/F] Enable the process of scanning curves
```


Model input

%% [Soil moist ure]			
Tdry	= 5400.000 Percolation		% (5400.) [s] Adaptation time scale for soil drying
eps	= 0.001		% (0.001) [m] Minimum water depth to consider a cell "flooded"
<pre>method_moist_process</pre>	= surf_moisture		% (infiltration) Name of method to compute soil moisture content(infiltration or surface_moisture)
method_moist_threshold	<pre>l = belly_johnson</pre>		% (belly_johnson) [-] Name of method to compute wind velocity threshold based on soil moisture content
fc	= 0.11		% (0.11) [-] Moisture content at field capacity (volumetric)
w1_5	= 0.02	SWR properties	% (0.02) [-] Moisture content at wilting point (gravimetric)
resw_moist	= 0.01		% (0.01) [-] Residual soil moisture content (volumetric)
resd_moist	= 0.01		% (0.01) [-] Residual soil moisture content (volumetric)
satw_moist	= 0.30		% (0.35) [-] Satiated soil moisture content (volumetric)
satd_moist	= 0.30		% (0.5) [-] Satiated soil moisture content (volumetric)
nw_moist	= 5.0		% (2.3) [-] Pore-size distribution index in the soil water retention function
nd_moist	= 13.7		% (4.5) [-] Pore-size distribution index in the soil water retention function
mw_moist	= 0.80		% (0.57) [-] m, van Genucthen param (can be approximated as 1-1/n)
md_moist	= 0.40		% (0.42) [-] m, van Genucthen param (can be approximated as 1-1/n)
alfaw_moist	= 0.058		% (-0.07) [cm^-1] Inverse of the air-entry value for a wetting branch of the soil water retention function
_alfad_moist	= 0.038		% (-0.035) [cm^-1] Inverse of the air-entry value for a drying branch of the soil water retention function
K_gw	= 0.0001	Groundwater	% (0.00078) [m/s] Hydraulic conductivity
ne_gw	= 0.3		% (0.3) [-] Effective porosity/specific yield
D_gw	= 12		% (12) [m] Aquifer depth
Cl_gw	= 0.2		% (0.7) [m] Groundwater overheight due to runup
in_gw	= 0		% (0) [m] Initial groundwater level
tfac_gw	= 30		% (10) [-] Reduction factor for time step in ground water calculations

Noordwijk – validation against field data

221 sediment samples from the upper 2 mm of the beach at three occasions:

Results

ME: -0.01 m³/m³

MAE: 0.07 m³/m³

Influence of moisture on aeolian transport

Effect of moisture on aeolian transport simulations

$$q = C\sqrt{\frac{d}{d^{ref}}} \frac{\rho_{air}}{g} (u_* - u_{*t})^3 \qquad u_{*t} = A \cdot \sqrt{\frac{\rho_s - \rho_{air}}{\rho_{air}}} g \cdot d$$

$$u_{*t} = A \cdot \sqrt{\frac{\rho_s - \rho_{air}}{\rho_{air}}} g \cdot d$$

$$u_{*tw} = u_{*t}(1.8 + 0.6log_{10}w)$$

Case study - Noordwijk

- One year simulation
- Tested different equations to calculate wet threshold
- Moisture module validated against field data in previous study

Results – yearly average surface moisture

Results - aeolian transport

Summary

- Surface moisture may have a large influence on yearly transport rates towards the dunes
- In the field, surface moisture display large spatial variability due to heterogeneity of the hydraulic properties of the surface sediment
- The surface moisture module in AeoLiS can be applied to account for moisture effects in meso-scale transport simulations
- Require input of meteorological parameters (precipitation, temperature, global radiation, relative humidity, air pressure, wind) and hydraulic properties (aquifer properties and SWR)

TUDelft