#### **MTHS 100**

### **DOUBLE TUTORIAL** 9

# First Hour

Question 1. Which of the following function a rational function?

- (a)  $y = \sqrt[4]{x}$ ,
- (b)  $y = \frac{1}{x}$ ,
- (c)  $y = 2x^2 3x + 4$ ,
- (d)  $y = \frac{1-x}{\sqrt{x}}$ ,
- (e)  $\frac{1}{7}x + \sqrt{7}$ ,
- (f) y = x.

**Question 2.** Solve the following equations for x.

- (a)  $\frac{x-6}{2x+1} = 0$ ,
- (b)  $\frac{x^2 + 2x + 1}{x + 1} = 0.$

Question 3. For each function from Q2 find the intervals where the function is negative/positive.

**Question 4.** For the rational function  $y = \frac{x(x+2)}{x^2-1}$  find zeros, asymptotes, intervals where the function is negative/positive, and sketch (very roughly!) the graph on the domain [-4,2]. Compare the result with the graph sketched by WolframAlpha: https://www.wolframalpha.com

# **Second Hour**

# Question 1.

(a) What is the right angle in degrees and in radians?

- (b) What is the angle in radians?
  - (i) 180°, (ii) 45°, (iii) 60°, (iv) 73°.
- (b) What is the angle in degrees?
  - (i)  $\frac{\pi}{6}$ , (ii)  $\frac{3\pi}{4}$ , (iii) 1 radian, (iv) 2.5 radians.

### Question 2. For the following right triangles

(a) find the lengths of sides a and c



(b) find the lengths of sides a and b



(c) find angle  $\alpha$  in radians and in degrees.



**Question 3.** Sketch the unit circle. Mark the following angles on the sketch (a) 0, (b)  $\frac{\pi}{3}$ , (c)  $\frac{2\pi}{3}$ , (d)  $\pi$  (e)  $\frac{4\pi}{3}$ , (f)  $\frac{5\pi}{3}$ , (g)  $2\pi$ , (h)  $\frac{7\pi}{3}$ , (i)  $\frac{8\pi}{3}$ . Write out the values for sin, cos, and tan for each of these angles.

Question 4. Write out all angles with

(a) 
$$\cos x = 0$$
, (b)  $\sin x = \frac{1}{2}$ , (c)  $\tan x = -1$ .

Use a correct notation.

**Question 5.** Given that  $\cos t = \frac{1}{3}$  and  $\sin t = \frac{2\sqrt{2}}{3}$ , fill out the following table. For this first sketch the unit circle and mark angles t,  $t + \frac{\pi}{2}$ ,  $t + \pi$ ,  $t + \frac{3\pi}{2}$ , and  $t + 2\pi$  on the unit circle.

|     | t                     | $t + \frac{\pi}{2}$ | $t+\pi$ | $t + \frac{3\pi}{2}$ | $t+2\pi$ |
|-----|-----------------------|---------------------|---------|----------------------|----------|
| cos | $\frac{1}{3}$         |                     |         |                      |          |
| sin | $\frac{2\sqrt{2}}{3}$ |                     |         |                      |          |
| tan |                       |                     |         |                      |          |