Homework for Module 3 Part 2

Quiz, 12 questions

✓ Congratulations! You passed!

Next Item

0/1 points

1. (Difficulty: \star) Consider the magnitude DTFTs $|X(e^{j\omega})|$ and $|Y(e^{j\omega})|$ shown below, where vertical lines represent Dirac deltas:

Both underlying signals x[n] and y[n] are periodic. Find their periods and write them below, separated by a space. Please write the smallest period, i.e. a 5-periodic signal is also obviously 15-periodic but we're interested in 5.

Enter the period of x[n] and y[n] with a unique white space in between.

0.75 / 1

Homework for Module 3 Part 2

Quiz, 12 questio 2s

The signal x[n] is real-valued and its spectrum is nonzero only over the $[-\pi/8,\ \pi/8]$ interval. Due to the bandwidth constraint we need to "fit" the signal over the bands indicated in green in the following figure

To this aim, we need to design a processing block $\mathcal H$ in order to convert x[n] into a sequence s[n] satisfying the following requirements:

- The support of the DTFT of s[n] must be limited to $[-3\pi/4,\ -\pi/2] \cup [\pi/2,\ 3\pi/4]$
- The sequence s[n] must be real-valued (x[n] is real-valued)

Which of the following input/output relationships for ${\cal H}$ meet both requirements? (check all correct answers) :

1/1 points

3.

(Difficulty: \star) Consider the length-L signal

$$\begin{array}{l} \text{Homework for Module 3 Part 2}_1 \\ \text{\tiny Quiz, 12 questions} \end{array} = \begin{cases} 1 & \text{Module 3 Part 2}_1 \\ 0 & M \leq n \leq L-1 \end{cases} ,$$

Write out the closed-form analytical expression for its DFT coefficients X[k].

Be careful with your typing since the regular-expression parser can be a bit picky. Check <u>Coursera help to enter math expression</u>. In particular, remember that in the Coursera platform the symbols are different:

- I (capital i) is used for the imaginary unit instead of j
- ullet Euler's number is E instead of e
- you can also use the exponential function $\exp(\cdot)$
- π is defined as pi

The only other symbols you'll need for the answer are the case-sensitive variables k, M, L.

Finally, do not forget to validate your syntax by clicking "Preview" before submitting your answer.

For instance, the expression $e^{j(\pi L + 3\pi)}/(k+M)$ should be entered as

$$E^{(1*(pi*L + 3 * pi))/(k + M)}$$

1/1 points

4.

The real and imaginary parts of $X(e^{j\omega})$ are:

Homework for Module 3 Part 2

Quiz, 12 questions

After examining the plots, check all the correct statements below.

 $Im[X(e^{j\omega})]$

/

1/1 points

5.

(Difficulty: **) Consider a signal x[n] and its DTFT $X(e^{j\omega})$. Assume $X(e^{j\omega})$ is differentiable. Compute the inverse DTFT of

$$j\frac{d}{d\omega}X(e^{j\omega})$$
.

You should write your answer in terms of x[n] and elementary functions and constants, for example $\frac{\pi}{2}x[n]$ would be written :

pi/2*x[n]

1/1 points

6.

(Difficulty: \star) Which property of the DTFT allows you to easily compute the inverse DTFT of $4X(e^{j\omega})/\pi-2$ once you know x[n]? Just type the name of the property.

Homework for Module 3 Part 2

Quiz, 12 questions

points

7.

(Difficulty: \star) Take a length-N signal x[n] and its DFT X[k], with $0 \le n, k, \le N-1$. Next, consider its periodized version $\tilde{x}[n] = x[n \bmod N]$ with its DFS $\tilde{X}[k]$ where now $n, k \in \mathbb{Z}$.

Which of the following statements are true?

1/1 points

8.

(Difficulty: *) In the class, we learned how the modulation theorem can help us tune a musical instrument. Martin showed us an example with a bass but of course the same works with a classical guitar. Listen carefully to these two samples (with earphones, if possible); each audio clip is the recording of two notes played together:

- · Audio clip A
- Audio Clip B

Select the correct options below.

1/1 points

9.

(Difficulty: $\star\star$) A ringback tone is the sound you hear in your landline telephone when the remote phone you are trying to call is ringing.

In most European countries, the ringback tone is a single sinusoid turned on and off periodically while in the USA, the ringbback tone is the sum of 2 sinusoids with relatively close frequencies turned on and off periodically.

Here are two audio clips:

Sample A

Sample B

Just by listening to the clips, you should be able to identify the US ringback tone. Explain in the box below what helped you identify the US tone. Use the wording and concepts that appear in the lecture slides. No credit, without a proper explanation, e.g., "I live there" is not an answer.