CLAIMS

- 1. A cathepsin inhibiting pharmaceutical composition comprising a dipeptide nitrile in which the C-terminal carboxy group of the dipeptide is replaced by a nitrile group (-C≡N) and in which the N-terminal nitrogen atom is substituted via a peptide or pseudopeptide linkage which optionally additionally comprises a -methylene-hetero atom- linker or an additional hetero atom, directly by aryl, lower alkyl, lower alkenyl, lower alkynyl or heterocyclyl or a physiologically-acceptable and -cleavable ester or a salt thereof, in combination with a pharmaceutically acceptable carrier.
- 2. A cathepsin inhibiting pharmaceutical composition according to claim 1 comprising a compound of formula I, or a physiologically-acceptable and -cleavable ester or a salt thereof

$$R = \begin{bmatrix} L \\ X_1 - NH \end{bmatrix} \begin{bmatrix} R_3 \\ R_2 \end{bmatrix} \begin{bmatrix} -NH \\ R_5 \end{bmatrix} \begin{bmatrix} R_4 \\ R_5 \end{bmatrix} \begin{bmatrix} R_4 \\ R_5 \end{bmatrix}$$

wherein:

R is optionally substituted (aryl, lower alkyl, lower alkenyl, lower alkynyl, or heterocyclyl); R_2 and R_3 are independently hydrogen, or optionally substituted [lower alkyl, cycloalkyl, bicycloalkyl, or (aryl, biaryl, cycloalkyl or bicycloalkyl)-lower alkyl]; or R_2 and R_3 together represent lower alkylene, optionally interrupted by O, S or NR_6 , so as to form a ring with the carbon atom to which they are attached

wherein R_6 is hydrogen, lower alkyl or aryl-lower alkyl; or either R_2 or R_3 are linked by lower alkylene to the adjacent nitrogen to form a ring; R_4 and R_5 are independently H, or optionally substituted (lower alkyl, aryl-lower alkyl), - $C(O)OR_7$, or $-C(O)NR_7R_8$,

wherein

 R_7 is optionally substituted (lower alkyl, aryl, aryl-lower alkyl, cycloalkyl, bicycloalkyl or heterocyclyl), and

R₈ is H, or optionally substituted (lower alkyl, aryl, aryl-lower alkyl, cycloalkyl, bicycloalkyl or heterocyclyl), or

R₄ and R₅ together represent lower alkylene, optionally interrupted by O, S or NR₆, so as to form a ring with the carbon atom to which they are attached

wherein R₆ is hydrogen, lower alkyl or aryl-lower alkyl, or

 R_4 is H or optionally substituted lower alkyl and R_5 is a substituent of formula $-X_2-(Y_1)_n-(Ar)_p$ -Q-Z

wherein

 Y_1 is O, S, SO, SO₂, $N(R_6)SO_2$, $N-R_6$, SO_2NR_6 , $CONR_6$ or NR_6CO ;

n is zero or one;

p is zero or one;

X₂ is lower alkylene; or when n is zero, X₂ is also C₂-C₇-alkylene interrupted by O, S,

SO, SO₂, NR₆, SO₂NR₆, CONR₆ or NR₆CO;

wherein R₆ is hydrogen, lower alkyl or aryl-lower alkyl;

Ar is arylene;

Z is hydroxy, acyloxy, carboxyl, esterified carboxyl, amidated carboxyl, aminosulfonyl, (lower alkyl or aryl-lower alkyl)aminosulfonyl, or (lower alkyl or aryl-lower alkyl)sulfonylaminocarbonyl; or Z is tetrazolyl, triazolyl or imidazolyl; Q is a direct bond, lower alkylene, Y_1 -lower alkylene or C_2 - C_7 -alkylene interrupted by

 Y_1 ; X_1 is -C(O)-, -C(S)-, -S(O)-, -S(O)₂-, or -P(O)(OR₆)-,

wherein R₆ is as defined above;

Y is oxygen or sulphur;

L is optionally substituted -Het-, -Het-CH₂- or -CH₂-Het-,

wherein Het is a hetero atom selected from O, N or S, and

x is zero or one;

and aryl in the above definitions represents carbocyclic or heterocyclic aryl; in combination with a pharmaceutically acceptable carrier.

3. A compound of formula I, or a physiologically-acceptable and -cleavable ester or a salt thereof

$$R = \begin{bmatrix} L \\ \end{bmatrix}_{X} \begin{bmatrix} NH \\ \\ R_{2} \end{bmatrix} \begin{bmatrix} -NH \\ \\ R_{5} \end{bmatrix} \begin{bmatrix} R_{4} \\ R_{5} \end{bmatrix}$$

wherein:

R is optionally substituted (aryl, lower alkyl, lower alkenyl, lower alkynyl, or heterocyclyl); R₂ and R₃ are independently hydrogen, or optionally substituted [lower alkyl, cycloalkyl, bicycloalkyl, or (aryl, biaryl, cycloalkyl or bicycloalkyl)-lower alkyl]; or R₂ and R₃ together represent lower alkylene, optionally interrupted by O, S or NR₆, so as to form a ring with the carbon atom to which they are attached

wherein R_6 is hydrogen, lower alkyl or aryl-lower alkyl; or either R_2 or R_3 are linked by lower alkylene to the adjacent nitrogen to form a ring; R_4 and R_5 are independently H, or optionally substituted (lower alkyl, aryl-lower alkyl), - $C(O)OR_7$, or $-C(O)NR_7R_8$,

wherein

R₇ is optionally substituted (lower alkyl, aryl, aryl-lower alkyl, cycloalkyl, bicycloalkyl or heterocyclyl), and

R₈ is H, or optionally substituted (lower alkyl, aryl, aryl-lower alkyl, cycloalkyl, bicycloalkyl or heterocyclyl), or

R₄ and R₅ together represent lower alkylene, optionally interrupted by O, S or NR₆, so as to form a ring with the carbon atom to which they are attached

wherein R_6 is hydrogen, lower alkyl or aryl-lower alkyl, or R_4 is H or optionally substituted lower alkyl and R_5 is a substituent of formula $-X_2-(Y_1)_n-(Ar)_p$ -Q-Z

wherein

Y₁ is O, S, SO, SO₂, N(R₆)SO₂, N-R₆, SO₂NR₆, CONR₆ or NR₆CO; n is zero or one; p is zero or one;

 X_2 is lower alkylene; or when n is zero, X_2 is also C_2 - C_7 -alkylene interrupted by O, S, SO, SO₂, NR₆, SO₂NR₆, CONR₆ or NR₆CO;

wherein R₆ is hydrogen, lower alkyl or aryl-lower alkyl;

Ar is arylene;

Z is hydroxy, acyloxy, carboxyl, esterified carboxyl, amidated carboxyl, aminosulfonyl, (lower alkyl or aryl-lower alkyl)aminosulfonyl, or (lower alkyl or aryl-lower alkyl)sulfonylaminocarbonyl; or Z is tetrazolyl, triazolyl or imidazolyl; Q is a direct bond, lower alkylene, Y₁-lower alkylene or C₂-C₇-alkylene interrupted by Y₁;

 X_1 is -C(O)-, -C(S)-, -S(O)-, -S(O)₂-, or -P(O)(OR₆)-, wherein R₆ is as defined above;

Y is oxygen or sulphur;

L is optionally substituted -Het-, -Het-CH₂- or -CH₂-Het-,

wherein Het is a hetero atom selected from O, N or S, and

x is zero or one;

and aryl in the above definitions represents carbocyclic or heterocyclic aryl;

provided that when R is lower alkyl not substituted by aryl,

one of R₄ or R₅ is a substituent of formula -X₂-(Y₁)_n-(Ar)_p-Q-Z;

provided that when x is one, L is -O-, or -CH2-O- and X1 is -C(O)-,

either one of R_4 or R_5 is a substituent of formula $-X_2-(Y_1)_n-(Ar)_p-Q-Z$, or R is not unsubstituted phenyl;

provided that when $R_2 = R_4 = R_5 = H$, x is zero and X_1 is -C(0)-,

 R_3 is not H, -CH₃, -CH(CH₃)₂, -CH₂-CH-(CH₃)₂, -CH₂-COOH, or -CH₂-COO-CH₂-CH₃, when R is unsubstituted phenyl,

 R_3 is not H, $-CH(CH_3)_2$, or $-CH_2$ -CH- $(CH_3)_2$, when R is 4-aminophenyl or 4-nitrophenyl, R_3 is not H when R is 3-aminophenyl, 3-nitrophenyl 2-chloropyridin-4-yl, or vinyl or

R₃ is not -CH₂-CH₂-S-CH₃ when R is pyridin-3-yl or 2-chloropyridin-4-yl,

provided that when $R_2 = R_3 = R_4 = H$, x is zero and X_1 is -C(0)- and R is phenyl,

 R_5 is not -CH(CH₃)₂,

provided that when $R_3 = R_4 = H$, R_5 is $-CH_2$ - $-CH_2$ --COOH, x is zero and X_1 is -C(O)-,

 R_2 does not form a heterocyclic ring with the adjacent nitrogen atom, and provided that when $R_2 = R_3 = R_4 = R_5 = H$, x is zero and X_1 is -SO₂-,

R is not 4-methylphenyl.

4. A compound according to claim 3, of formula II, or a physiologically-acceptable and cleavable ester or a salt thereof

$$R_{20} = L - X_1 - NH + R_{23} - N - R_{24} - C = N$$

$$R_{20} = 1 - N - R_{25} - R_$$

wherein:

R₂₀ is optionally substituted (aryl, aryl-lower alkyl, lower alkenyl, lower alkynyl, heterocyclyl, or heterocyclyl-lower alkyl);

 R_{22} is H, or optionally substitued lower alkyl, and

 R_{23} is optionally substituted (lower alkyl, aryl-lower alkyl, or cyloalkyl-lower alkyl) or R_{22} and R_{23} together with the carbon atom to which they are attached form an optionally substituted (cycloalkyl group or heterocycloalkyl group);

 R_{24} and R_{25} are independently H, or optionally substituted (lower alkyl), - $C(O)OR_7$, or - $C(O)NR_7R_8$,

wherein R₇ and R₈ are as defined above, or

R₂₄ and R₂₅ together with the carbon atom to which they are attached form an optionally substituted (cycloalkyl group or heterocycloalkyl group);

 X_1 is as defined in claim 2;

Y is oxygen or sulphur;

L' is optionally substituted (-Het-CH₂- or -CH₂-Het-),

wherein Het is a a hetero atom selected from O, N or S, and

x is 1 or 0,

provided that when x is one, L is $-CH_2$ -O- and X_1 is -C(O)-,

R₂₀ is not unsubstituted phenyl,

provided that when $R_{22} = R_{24} = R_{25} = H$, x is zero and X_1 is -C(O)-,

 R_{23} is not H, -CH₃, -CH(CH₃)₂, -CH₂-CH-(CH₃)₂, -CH₂-COOH, or -CH₂-COO-CH₂-CH₃, when R_{20} is unsubstituted phenyl,

 R_{23} is not H, -CH(CH₃)₂, or -CH₂-CH-(CH₃)₂, when R_{20} is 4-aminophenyl or 4-nitrophenyl,

 R_{23} is not H when R_{20} is 3-aminophenyl, 3-nitrophenyl 2-chloropyridin-4-yl, or vinyl, or R_{23} is not -CH₂-CH₂-S-CH₃ when R_{20} is pyridin-3-yl or 2-chloropyridin-4-yl,

provided that when $R_{22} = R_{23} = R_{24} = H$, x is zero and X_1 is -C(O)- and R_{20} is phenyl,

 R_{25} is not -CH(CH₃)₂,

provided that when $R_{23} = R_{24} = H$, R_{25} is -CH₂-CH₂-COOH, x is zero and X_1 is -C(O)-,

 R_{22} does not form a heterocyclic ring with the adjacent nitrogen atom, and provided that when $R_{22} = R_{23} = R_{24} = R_{25} = H$, x is zero and X_1 is -SO₂-,

R₂₀ is not 4-methylphenyl.

5. A compound according to claim 3, of formula II' or a physiologically-acceptable and cleavable ester or a salt thereof

$$R_{20} = L - X_1 - NH + C - N - R_{22} - C = N$$

$$R_{20} = L - X_1 - NH + C = N$$

$$R_{22} = L - NH + C = N$$

$$R_{22} = L - NH + C = N$$

$$R_{23} = L - NH + C = N$$

$$R_{24} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

$$R_{25} = L - NH + C = N$$

wherein:

R₂₀' is optionally substituted (C₆-C₁₈ aryl or C₄-C₁₈ heteroaryl);

R₂₂' is H, or optionally substitued C₁-C₈ alkyl, and

R₂₃' is optionally substituted (C₂-C₈ alkyl, or C₇-C₁₄ aralkyl), or

 R_{22} ' and R_{23} ' together with the carbon atom to which they are attached form an optionally substituted (C_3 - C_8 cycloalkyl group or C_4 - C_7 heterocycloalkyl group);

 R_{24} ' and R_{25} ' are independently H, or optionally substituted (C_1 - C_8 alkyl, C_7 - C_{14} aralkyl, or C_5 - C_{14} heteroaralkyl), -C(O)OR₆', or -C(O)NR₆'R₇',

wherein

 R_6 ' is optionally substituted (C_1 - C_8 alkyl, C_7 - C_{14} aralkyl, C_3 - C_8 cycloalkyl, C_4 - C_7 heterocycloalkyl, C_5 - C_{14} heteroaralkyl, C_6 - C_{14} aryl, or C_4 - C_{14} heteroaryl), and

R₇' is H, or optionally substituted (C₁-C₈ alkyl, C₇-C₁₄ aralkyl, C₃-C₈ cycloalkyl, C₄-C₇ heterocycloalkyl, C₅-C₁₄ heteroaralkyl, C₆-C₁₄ aryl, or C₄-C₁₄ heteroaryl), or R₂₄' and R₂₅' together with the carbon atom to which they are attached form an optionally substituted (C₃-C₈ cycloalkyl group or C₄-C₇ heterocycloalkyl group);

 X_1 is -C(O)-, -C(S)-, -S(O)-, -S(O)₂-, -P(O)(OR₆')-

wherein R₆' is as defined above;

Y is oxygen or sulphur;

L' is optionally substituted (-Het-CH₂- or -CH₂-Het-),

wherein Het is a a hetero atom selected from O, N or S, and

x is 1 or 0,

provided that when x is one, L' is -CH2-O- and X1 is -C(O)-

R₂₀' is not unsubstituted phenyl,

provided that when $R_{22}' = R_{24}' = R_{25}' = H$, x is zero and X_1 is -C(O)-,

 R_{23} ' is not H, -CH₃, -CH(CH₃)₂, -CH₂-CH-(CH₃)₂, -CH₂-COOH, or -CH₂-COO-CH₂-CH₃, when R_{20} ' is unsubstituted phenyl,

 R_{23} ' is not H, -CH(CH₃)₂, or -CH₂-CH-(CH₃)₂, when R_{20} ' is 4-aminophenyl or 4-nitrophenyl,

 R_{23} ' is not H when R_{20} ' is 3-aminophenyl, 3-nitrophenyl, 2-chloropyridin-4-yl, or vinyl, or

 R_{23} ' is not -CH₂-CH₂-S-CH₃ when R_{20} ' is pyridin-3-yl or 2-chloropyridin-4-yl, provided that when R_{22} ' = R_{23} ' = R_{24} ' = H, x is zero and X_1 is -C(O)- and R_{20} ' is phenyl, R_{25} ' is not -CH(CH₃)₂,

provided that when R_{23} ' = R_{24} ' = H, R_{25} ' is -CH₂-CH₂-COOH, x is zero and X_1 is -C(O)-,

 R_{20} ' does not form a heterocyclic ring with the adjacent nitrogen atom, and provided that when R_{22} ' = R_{23} ' = R_{24} ' = R_{25} ' H, x is zero and X_1 is -SO₂-,

R₂₀' is not 4-methylphenyl.

6. A cathepsin inhibiting pharmaceutical composition comprising a compound of formula III

wherein

 R_{30} is an acyl group derived from an organic carboxylic, carbonic, carbamic or sulfonic acid; R_{32} and R_{33} are independently hydrogen, lower alkyl, cycloalkyl, bicycloalkyl, or (aryl, biaryl, cycloalkyl or bicycloalkyl)-lower alkyl; or R_{32} and R_{33} together represent lower alkylene so as to form a ring together with the carbon to which they are attached;

R₃₄ is hydrogen or lower alkyl;

 Y_1 is O, S, SO, SO₂, $N(R_6)SO_2$, $N-R_6$, SO_2NR_6 , $CONR_6$ or NR_6CO ;

n is zero or one;

p is zero or one;

 X_2 is lower alkylene; or when n is zero, X_2 is also C_2 - C_7 -alkylene interrupted by O, S, SO, SO_2 , NR_6 , SO_2NR_6 , $CONR_6$ or NR_6CO ;

wherein R₆ is hydrogen, lower alkyl or aryl-lower alkyl;

Ar is arylene;

Z is hydroxy, acyloxy, carboxyl, esterified carboxyl, amidated carboxyl, aminosulfonyl, (lower alkyl or aryl-lower alkyl)aminosulfonyl, or (lower alkyl or aryl-lower alkyl)sulfonylaminocarbonyl; or Z is tetrazolyl, triazolyl or imidazolyl; Q is a direct bond, lower alkylene, Y₁-lower alkylene or C₂-C₇-alkylene interrupted by Y₁; or a pharmaceutically acceptable salt or ester thereof; in combination with a pharmaceutically acceptable carrier.

7. A compound of formula III

wherein

 R_{30} is an acyl group derived from an organic carboxylic, carbamic or sulfonic acid; R_{32} and R_{33} are independently hydrogen, lower alkyl, cycloalkyl, bicycloalkyl, or (aryl, biaryl, cycloalkyl or bicycloalkyl)-lower alkyl; or R_{32} and R_{33} together represent lower alkylene

so as to form a ring together with the carbon to which they are attached;

R₃₄ is hydrogen or lower alkyl;

 Y_1 is O, S, SO, SO₂, N(R₆)SO₂, N-R₆, SO₂NR₆, CONR₆ or NR₆CO;

n is zero or one;

p is zero or one;

 X_2 is lower alkylene; or when n is zero, X_2 is also C_2 - C_7 -alkylene interrupted by O, S, SO, SO_2 , NR_6 , SO_2NR_6 , $CONR_6$ or NR_6CO ;

wherein R₆ is hydrogen, lower alkyl or aryl-lower alkyl;

Ar is arylene;

Z is hydroxy, acyloxy, carboxyl, esterified carboxyl, amidated carboxyl, aminosulfonyl, (lower alkyl or aryl-lower alkyl)aminosulfonyl, or (lower alkyl or aryl-lower alkyl)sulfonylaminocarbonyl; or Z is tetrazolyl, triazolyl or imidazolyl;

Q is a direct bond, lower alkylene, Y₁-lower alkylene or C₂-C₇-alkylene interrupted by Y₁; or a pharmaceutically acceptable salt or ester thereof.

- 8. A compound according to claim 7, wherein
 - (a) p is one;
 - (b) Y_1 is O, S, SO, SO₂, N(R₆)SO₂ or N-R₆; and
 - (c) X_2 is lower alkylene; or when n is zero, X_2 is also C_2 - C_7 -alkylene interrupted by O, S, SO, SO₂ or NR₆,

or a pharmaceutically acceptable salt or ester thereof.

9. A compound according to claim 3, of formula IV

$$R_{40} - C - NH - C - CO - NH - C - C \equiv N$$

$$R_{43} - C - C = N$$

$$R_{45} - C = N$$

wherein

R₄₀ is substituted phenyl or heterocyclic aryl, (mono- or di- carbocyclic or heterocyclic aryl)-lower alkyl or lower alkenyl, or heterocyclyl;

 R_{42} is hydrogen or lower alkyl; R_{43} is carbocyclic or heterocyclic aryl - lower alkyl; R_{44} and R_{45} are independently hydrogen or lower alkyl; or R_{44} and R_{45} combined represent lower alkylene; or a pharmaceutically acceptable salt or esters thereof.

10. A compound according to claim 4 of the formula V,

$$\begin{array}{c|c}
R_{20} & \downarrow & \downarrow \\
\hline
 & \downarrow & \downarrow \\
X_1 & \downarrow & \downarrow \\
X & \downarrow & \downarrow \\$$

wherein the symbols are as defined in said claim, or a physiologically-acceptable and -cleavable ester or salt thereof.

11. A compound according to claim 7 of the formula V

wherein the symbols are as defined in said claim, or a physiologically-acceptable and -cleavable ester or salt thereof.

12. A compound according to claim 9 of the formula V"

wherein the symbols are as defined in said claim, or a physiologically-acceptable and -cleavable ester or salt thereof.

- 13. A process for the preparation of a compound of formula I as defined in claim 3, comprising
 - (a) converting an amide of the formula VI

wherein R, R₂, R₃, R₄ and R₅ have meaning as previously defined in claim 2 for the compounds of formula I to a nitrile of formula I; or

(b) condensing a compound of the formula VII

$$NH_2-C-C \equiv N$$

$$\downarrow$$

$$R_5$$

$$VII$$

wherein R4 and R5 have meaning as defined in claim 1, with an acid of formula VIII

$$R = \begin{bmatrix} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ &$$

wherein R, R₂ and R₃ have meaning as defined in claim 1; or with a reactive derivative thereof; or

(c) condensing a compound of the formula Ia

$$R_3$$
 R_4 $|$ $|$ $|$ H_2N -C-CONH-C-C \equiv N (Ia) $|$ $|$ R_2 R_5

wherein R_2 , R_3 , R_4 and R_5 have meaning as defined in claim 1 with an acid corresponding to the group R- $[L]_x$ - X_1 - or with a reactive derivative thereof; and in the above processes, if required, temporarily protecting any interfering reactive groups and then isolating the resulting compound of the invention; and, if desired, converting any resulting compound into another compound of the invention; and/or if desired, converting a resulting compound into a salt or a resulting salt into the free acid or base or into another salt.

- 14. A method of inhibiting cathepsin activity in a mammal which comprises administering to a mammal in need thereof an effective amount of a pharmaceutical composition as defined in claim 1.
- 15. A method of inhibiting cathepsin activity in a mammal which comprises administering to a mammal in need thereof an effective amount of a pharmaceutical composition as defined in claim 2.

- 16. A method of inhibiting cathepsin activity in a mammal which comprises administering to a mammal in need thereof an effective amount of a compound of formula I as defined in claim3.
- 17. A method of treating cathepsin dependent conditions in a mammal which comprises administering to a mammal in need thereof an effective amount of a pharmaceutical composition as defined in claim 2.
- 18. A method according to claim 17 of treating inflammation, osteoporosis, rheumatoid arthritis and osteoarthritis.
- 19. A method of treating cathepsin dependent conditions in a mammal which comprises administering to a mammal in need thereof an effective amount of a compound as defined in claim 3.
- 20. A cathepsin inhibiting pharmaceutical composition comprising a compound of formula I as defined in claim 3, in combination with a pharmaceutically acceptable carrier.