

معماری و سازمان کامپیوتر

دانشگاه صنعتی اصفهان

دانشکده مهندسی برق و کامپیوتر

امیر خورسندی

بهار ۱۴۰۰

محاسبات در کامپیوتر

مقدمه

• می توان گفت مهم ترین وظیفه کامپیوتر انجام محاسبات و پردازش داده ها است.

• اگرچه شاید لزوماً مهم ترین بخش یک کامپیوتر واحد پردازش و محاسبات نباشد.

۳ امیر خورسندی

انواع محاسبات

- برخی از محاسبات ساده و سریع هستند:
 - And, Or, Xor •
- برخی دیگر نیاز به زمان بیشتری به منظور حصول نتیجه دارند:
 - جمع و تفريق
 - ضرب و تقسیم
 - محاسبات اعشاری
 - توابع محاسباتی و مثلثاتی

طراحی سیستم

• در سیستم همزمان، دوره تناوب پالس ساعت متناسب با کندترین عملیات تعیین می شود.

• همیشه سایر بخش ها معطل کندترین واحد خواهد بود.

• سیستم غیرهمزمان پیچیده و پرهزینه خواهد بود.

• در طراحی پردازنده با سرعت و فرکانس کاری بالا سادگی و کارایی بیشتر مدنظر است.

۵ امیر خورسندی

نتیجه گیری

• باید راهکاری مورد استفاده قرار بگیرد که:

• تاخیر عملکرد همه بخش ها و واحدها تا حد ممکن به یکدیگر نزدیک شود.

• فركانس كارى سيستم افزايش يابد.

• راندمان سیستم افزایش یابد.

مدار جمع کننده

Ripple Carry Adder

مدار جمع کننده (ادامه)

مثال بدترين تاخير

1111

1011

+ 0101

10000

مثال

امير خورسندي امير خورسندي

مدار جمع کننده با پیش بینی بیت نقلی

•دو سیگنال g_i و p_i به صورت زیر تعریف می شوند:

$$x_i + y_i = 2$$
 اگر و تنها اگر $g_i = 1$

$$x_i + y_i = 1$$
 اگر و تنها اگر $p_i = 1$

•بر این اساس بیت نقلی در هر مرحله به صورت زیر محاسبه می شود:

$$c_{i} = g_{i-1} + c_{i-1}p_{i-1}$$

$$= g_{i-1} + (g_{i-2} + c_{i-2}p_{i-2})p_{i-1}$$

$$= g_{i-1} + (g_{i-2} + (g_{i-3} + c_{i-3}p_{i-3})p_{i-2})p_{i-1}$$

$$= ...$$

[پردازنده های محاسباتی - پروفسور شادرخ سماوی]

[پردازنده های محاسباتی - پروفسور شادرخ سماوی]

[پردازنده های محاسباتی - پروفسور شادرخ سماوی]

C4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0C0

[پردازنده های محاسباتی - پروفسور شادرخ سماوی]

Carry Lookahead Adder

مدار ضرب کننده

ضرب کننده Booth

• در حالت عادی به تعداد بیت های یک موجود در مضروب فیه باید عملیات جمع انجام شود.

• ایده کلی جهت افزایش سرعت:

با کد کردن مضروب فیه به صورت خاص تعداد عملیات جمع را کاهش دهیم.

امير خورسندي امير خورسندي

مثال

x 10111110

نتیجه برابر است با:

$$A \times (-2^7 + 2^5 + 2^4 + 2^3 + 2^2 + 2)$$

قاعده رياضي

$$2^{j} + 2^{j-1} + ... + 2^{i+1} + 2^{i} = 2^{j+1} - 2^{i}$$

مثال به روش Booth

10010111 x 10111110

مضروب فیه به صورت زیر کد می شود:

 $10010111 \times \overline{11000010}$

نتیجه برابر است با:

 $A \times (-2^7 + 2^6 - 2)$

مدار تقسیم کننده

محاسبات اعشاري

مميز ثابت

•مميز شناور

پردازش اعداد اعشاری ممیز ثابت

x = 00000000.00001001

y = 10010000.00000000

را به دلیل Overflow نمی توان نمایش داد.

داد. x^2 را به دلیل Underflow نمی توان نمایش داد.

جمع و تفریق اعداد اعشاری ممیز شناور

$$x = s.2^{e}.(1+m)$$

$$y = s'.2^{e'}.(1+m')$$

$$x + y = ?$$

- •تراز کردن توان ها
- •جمع/تفريق كردن مانتيس ها
 - •نرمال كردن مانتيس ها

$$x + y = [s.(1+m) + s'(1+m')/2^{(e-e')}].2^{e} = s''.(1+m'').2^{e''}$$

ضرب و تقسیم اعداد اعشاری ممیز شناور

$$x = s.2^{e}.(1+m)$$

$$y = s'.2^{e'}.(1+m')$$

$$x \times y = ?$$

$$x \times y = (s \times s').2^{(e+e')}.[(1+m) \times (1+m')]$$

•مانتیس می تواند بین ۱ تا ۴ باشد، لذا باید در نهایت نرمال شود.

٢٧ _____ 100 امير خورسندى

توابع محاسباتی و مثلثاتی

• رجوع به جدول

وتخمين با استفاده از دنباله ها

•روش CORDIC

پردازنده کمکی اعداد اعشاری

پردازنده کمکی اعداد اعشاری (۱دامه)

