

Trabajo práctico

[7114] Modelos y optimización I Segundo cuatrimestre de 2022

Integrantes:

• Julián Cassi 96978

Índice

1.	Análisis de la situación problemática	3
2.	Objetivo	3
3.	Hipótesis y supuestos	3
4.	Definición de variables	3
5.	Modelo de programación lineal	3

Análisis de la situación problemática

Se trata de un problema de coloración de grafo. Para cada prenda se puede asociar un nodo, y por cada incompatibilidad se traza una arista entre ellos.

Objetivo

Determinar la cantidad de lavados necesarios y qué prendas se asignan a cada uno de forma tal que el tiempo total de uso del lavarropas sea el menor posible, cumpliendo con las restricciones de incompatibilidades entre prendas.

Hipótesis y supuestos

- No hay tiempo muerto entre un lavado y otro
- Se dispone de la mano de obra necesaria
- La lavadora no se descompone

Definición de variables

Variable	Descripción	Unidades	Tipo
Xij	Indica si la prenda i se lava en el lavado j	-	Bivalente
Wj	Indica si es necesario un lavado j	-	Bivalente
t_{j}	Tiempo del lavado j	unidad de tiempo/período	Continua

Modelo de programación lineal

Cada prenda debe pertenecer a exactamente un lavado, por lo que la sumatoria de las bivalentes de una misma prenda deben sumar uno.

$$\sum_{j=1}^{n} X_{ij} = 1, \ \forall \ i = 1, ..., n$$

Dos prendas incompatibles no pueden pertenecer al mismo lavado, por lo que la suma de las bivalentes de esas dos para un mismo lavado j valdrán a lo sumo 1, si es que ese lavado es necesario.

$$X_{ij} + X_{kj} \leq W_{j}$$
, $\forall j = 1, ..., n$, si la prenda i es incompatible con la k

El tiempo t_j del lavado j es el máximo del tiempo de las prendas que pertenecen a él, siendo d_i el tiempo de la prenda i, una constante conocida.

$$X_{ij} \cdot d_i \le t_j, \ \forall \ i, j = 1, ..., n$$

Funcional a minimizar, la suma de los tiempos de lavado

$$\sum_{j=1}^{n} t_{j}$$