The Fourth Week Report

Lu Guorui

2018.7.22

Contents

1	Some Questions Remained		2
	1.1	What is Forward and Back propagation	2
	1.2	How can we express the derivative of	
		$\sigma(z)$	2
	1.3	Some uses of numpy 1	3

 $^{^1{\}rm The\ source}$ of package "python highlight":https://github.com/chenfeng123-latex-highlighting

1 Some Questions Remained

1.1 What is Forward and Back propagation

In short, forward propagation is a way we used to count the value of compound functions. And back propagation is used to count the derivative of compound functions. We needn't complicate them.

1.2 How can we express the derivative of $\sigma(z)$

By taking the derivative of $\sigma(z)$, we can easily get the result: $\sigma'(z) = \sigma(z)(1-\sigma)$. Further, we can gain the consequence:

$$dz = \frac{\partial L}{\partial z} = \frac{\partial L}{\partial a} \cdot \frac{\partial a}{\partial z} \tag{1}$$

$$= \left(-\frac{y}{a} + \frac{1-y}{1-1} \cdot a(1-a)\right) \tag{2}$$

$$= a - y \tag{3}$$

$$dw = \frac{\partial L(w, b)}{\partial w} = \frac{\partial L}{\partial z} \cdot \frac{\partial z}{\partial w}$$
 (4)

$$= dz \cdot x \tag{5}$$

$$= x(a - y) \tag{6}$$

$$db = \frac{\partial L}{\partial b} = \frac{\partial L}{\partial z} \cdot \frac{\partial z}{\partial b} \tag{7}$$

$$= 1 \cdot dz \tag{8}$$

$$= a - y \tag{9}$$

1.3 Some uses of numpy ²

1. Creat a vector:

```
1 x = np.array([...])
```

2. Call some frequently-used functions

 $^{^2{\}rm The\ source}$ of package "python highlight":https://github.com/chenfeng1234 latex-highlighting

3. Get the shape of matrices

```
1 x.shape[0] # the number of rows
2 x.shape[1] # the number of column
```

4. Change the dimension

```
1 x.reshape((row,col))
```

5. Count the length of each row

6. Matrix-matrix or matrix-vector multiplication

7. Gain random numbers

• Get one number

```
1 n = numpy.random.random()
```

• Get a matrix

```
1  n = numpy.random.random(size=(3, 2))
```

• Generate random numbers between 0 and 1

```
1 np.random.rand(2,3) # (2,3) show the dimension
```

• Generate the same random numbers

```
1 '''
2 Set the same seed every time,
3 and we can get the same random numbers
4 '''
5 numpy.random.seed(num)
6 numpy.random.rand(the_length_of_the_array)
```