РОССИЙСКАЯ АКАДЕМИЯ НАУК ОРДЕНА ЛЕНИНА ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ ИМЕНИ М.В. КЕЛДЫША

С.Ю. Садов

О НЕОБХОДИМОМ И ДОСТАТОЧНОМ УСЛОВИИ ВПИСАННОСТИ ЧЕТЫРЕХУГОЛЬНИКА В ОКРУЖНОСТЬ УДК 514.1+519.11

С.Ю. Садов. О необходимом и достаточном условии вписанности четырехугольника в окружность. Препринт Института прикладной математики им. М.В. Келдыша РАН, Москва, 2003 г. № 94.

Выпуклый четырехугольник со сторонами a, b, c, d и диагоналями p, q является вписанным тогда и только тогда, когда abp - bcq + cdp - daq = 0. Несмотря на простоту, это условие, по-видимому, ново и неожиданно трудно доказуемо. В работе привлекаются методы компьютерной алгебры и локального нелинейного анализа.

S.Yu. Sadov. On a necessary and sufficient cyclicity condition for a quadrilateral. Preprint of the M.V. Keldysh Institute for Applied Mathematics of RAS, Moscow, 2003, No 94.

A convex quadrilateral with sides a, b, c, d and diagonals p, q is cyclic iff abp - bcq + cdp - daq = 0. This condition, in spite of its simplicity, appears to be unnoted and unexpectedly proof-resilient. We employ advanced methods of computer algebra and nonlinear analysis.

Работа выполнена при поддержке Российского Фонда Фундаментальных Исследований, гранты 02-01-01067 и 01-01-00517.

E-mail: sadov@keldysh.ru

© ИПМ им. М.В. Келдыша РАН, Москва, 2003 г.

Введение

В работе рассматривается необходимое и достаточное условие того, что выпуклый четырехугольник ABCD является вписанным (его вершины лежат на одной окружности). Условие формулируется в терминах длин сторон и диагоналей четырехугольника. Обозначим

$$AB = a$$
, $BC = b$, $CD = c$, $DA = d$, $AC = p$, $BD = q$.

Известно классическое условие Птолемея:

$$C_2(a, b, c, d, p, q) \stackrel{\text{def}}{=} ac + bd - pq = 0.$$
 (0.1)

(Буква C — от английского cyclic — вписанный. Индекс 2 обозначает степень однородности полинома.) Новое условие задается однородным полиномом третьей степени

$$C_3(a, b, c, d, p, q) \stackrel{\text{def}}{=} abp - bcq + cdp - daq = 0.$$
 (0.2)

Функция C_2 всегда неотрицательна. В отличие от нее, знак функции C_3 определяет, лежит ли точка D внутри или вне окружности ABC. Такой критерий может быть полезен в приложениях.

Доказательство достаточности условия (0.2), найденное автором, — неэлементарно и очень громоздко. Мы показываем, что некоторая система полиномиальных уравнений не имеет решений в области допустимых значений переменных. Существенной частью доказательства является локальный анализ системы вблизи границы области.

Проверка всех выкладок настоящей работы вручную, без использования системы компьютерной алгебры (я использовал *Maple*), вряд ли возможна. Более того, выделение ветвей решения ведет к необходимости разрешения особенностей и многочисленным случаям и подслучаям. Анализ некоторых вырожденных случаев (см. п. 5.1 и 6.1) еще требует завершения и здесь не приводится.

В.П. Варин предложил значительно более простое доказательство (повидимому, допускающее проверку вручную), основанное на открытом им замечательном тождестве, связывающем величины C_2 и C_3 . В оправдание подхода, используемого здесь, укажем на его универсальность (сдерживаемую недостаточной развитостью программного обеспечения для анализа особенностей многомерных алгебраических уравнений).

§ 1. Критерий Птолемея

Теорема 1. (A) Для любого четырехугольника ABCD имеет место неравенство

$$ac + bd \ge pq. \tag{1.1}$$

(Б) Неравенство (1.1) обращается в равенство тогда и только тогда, когда четырехугольник ABCD вписанный.

Строго говоря, Птолемею принадлежит часть $mor \partial a$ утверждения Б.

Приведем ссылки на три элементарных доказательства, найденные в легко доступной литературе:

- 1) Доказательство, основанное на неравенстве треугольника для педального треугольника и условии вырождении этого треугольника в отрезок прямой Симсона [3, гл. 2, § 5-6].
- 2) Доказательство, основанное на преобразовании инверсии [4], задача 28.24.
- 3) Доказательство, использующее комплексные числа [4], Приложение 1.

Последнее доказательство особенно просто, поэтому позволим себе воспроизвести его. Отождествляя векторы на плоскости с комплексными числами и помещая точку A в начало координат, напишем

$$\vec{AB} = z_1$$
, $\vec{AC} = z_2$, $\vec{AD} = z_3$,

тогда

$$\vec{BC} = z_2 - z_1$$
, $\vec{CD} = z_3 - z_2$, $\vec{BD} = z_3 - z_1$,

и произведения, участвующие в теореме Птолемея, записываются в виде

$$ac = |z_1z_3 - z_1z_2|, \qquad bd = |z_2z_3 - z_1z_3|, \qquad pq = |z_2z_3 - z_1z_2|.$$

Неравенство (1.1) представляет собой неравенство треугольника для тройки вершин z_1z_2 , z_1z_3 , z_2z_3 . Оно обращается в равенство тогда и только тогда, когда точка z_2z_3 лежит на отрезке, соединяющем z_1z_2 и z_1z_3 . Это условие выражается формулой

$$\arg(z_1z_2 - z_2z_3) = \arg(z_1z_2 - z_1z_3).$$

Преобразуем его к виду

$$\arg z_2 - \arg z_1 = \arg (z_2 - z_3) - \arg (z_1 - z_3)$$

и перепишем в геометрических обоначениях

$$\angle BAC = \angle BDC.$$

Получилось условие равенства углов, опирающихся на одну и ту же сторону (BC) нашего четырехугольника, т.е. условие вписанности.

§ 2. Алгебраическое доказательство теоремы 1 (Метод грубой силы)

2.1. Пространство выпуклых четырехугольников

Множество всех шестерок (a, b, c, d, p, q), соответствующих выпуклым невырожденным четырехугольникам, образует пятимерное подмногообразие \mathcal{Q} , лежащее в положительном гипероктанте пространства параметров \mathbb{R}^6 . Его замыкание $\overline{\mathcal{Q}}$ — многообразие с кусочно-гладким краем.

Многообразие $\mathcal Q$ допускает удобную глобальную параметризацию.

Обозначим точку пересечения диагоналей AC и BD через O. Введем пять независимых параметров (см. Рис. 1)

$$OA = x$$
, $OC = u$, $OB = y$, $OD = z$, $\cos \angle AOB = t$, (2.1)

подчиненных ограничениям

$$x > 0, \quad u > 0, \quad y > 0, \quad z > 0, \quad -1 < t < 1.$$
 (2.2)

Длины сторон и диагоналей даются выражениями

$$a^{2} = x^{2} + y^{2} - 2xyt,$$

$$b^{2} = u^{2} + y^{2} + 2uyt,$$

$$c^{2} = u^{2} + z^{2} - 2uzt,$$

$$d^{2} = x^{2} + z^{2} + 2xzt,$$

$$p = x + u$$

$$q = y + z.$$
(2.3)

Уравнения (2.3) описывают взаимно-однозначное отображение области (2.1) из \mathbb{R}^5 на $\mathcal{Q} \subset \mathbb{R}^6_+$. Непосредственное описание многообразия \mathcal{Q} как подмножества в \mathbb{R}^6_+ в терминах a, \ldots, q гораздо более замысловато. Приведем его для справки. Описание состоит из одного уравнения и нескольких неравенств (неравенства треугольников, условия положительности длин и неравенства, отвечающие за выпуклость).

Четырехугольник есть вырожденный случай тетраэдра, когда все вершины лежат в одной плоскости. Объем V тетраэдра со сторонами a, b, c, d, p, q дается $onpedenumenem\ Kənu-Mehrepa\ [1, п. 9.7.3]$

$$288 V = \begin{vmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & a^2 & p^2 & d^2 \\ 1 & a^2 & 0 & b^2 & q^2 \\ 1 & p^2 & b^2 & 0 & c^2 \\ 1 & d^2 & q^2 & c^2 & 0 \end{vmatrix}$$
 (2.4)

(Об истории формулы объема тетраэдра см. [5].) Раскрывая определитель, получим уравнение четырехугольника в явном виде

$$a^{4}c^{2} + a^{2}c^{4} + b^{4}d^{2} + b^{2}d^{4} + p^{4}q^{2} + p^{2}q^{4} +$$

$$+(abp)^{2} + (bcq)^{2} + (cdp)^{2} + (daq)^{2} -$$

$$-(abc)^{2} - (abd)^{2} - (acd)^{2} - (acp)^{2} - (acq)^{2} - (apq)^{2} -$$

$$-(bcd)^{2} - (bdp)^{2} - (bdq)^{2} - (bpq)^{2} - (cpq)^{2} - (dpq)^{2}$$

$$= 0$$

$$(2.5)$$

К этому уравнению добавляются упомянутые неравенства, часть из которых очевидна

$$a > 0, \quad b > 0, \quad c > 0, \quad d > 0, \quad p > 0, \quad q > 0,$$

 $|a - b|
 $|b - c| < q < b + c, \quad |a - d| < q < a + d.$ (2.6)$

Неравенства, отвечающие за выпуклость, не столь тривиальны. При заданных a, b, c, d, p построим треугольники ABC и ADC на общем основании AC. Вершины B и D могут лежать либо по разные стороны от прямой AC, либо по одну сторону (Рис. 2). Найдем q = BD из построенной конфигурации.

В обоих случаях условия (2.5) и (2.6) выполнены. Неравенство, отличающее выпуклый четырехугольник ABCD от невыпуклого AB'CD:

$$\angle BAD > \angle CAD$$
.

Используя теорему косинусов, перепишем это условие в виде

$$\frac{a^2 + d^2 - q^2}{ad} \ = \ 2\cos\angle BAD \ < \ 2\cos\angle CBD \ = \ \frac{a^2 + p^2 - b^2}{ap}.$$

Приводя дроби к общему знаменателю, получим полиномиальное неравенство. Оно еще не гарантирует выпуклости четырехугольника ABCD. Необходимо добавить неравенство, исключающее случай, когда точки A и C лежат по одну сторону от прямой BD. Двух неравенств все еще недостаточно. Например, система неравенств

$$\angle BAC < \angle BAD$$
, $\angle ABD < \angle ABC$

допускает конфигурацию (четырехвершинник) с неправильным порядком вершин (Рис. 3). Трех неравенств

$$\angle BAC < \angle BAD$$
, $\angle ABD < \angle ABC$, $\angle CBD < \angle ABC$

уже достаточно для характеризации выпуклых четырехугольников т.е. к (2.6) добавляются неравенства

$$p(a^{2} + d^{2} - q^{2}) < d(a^{2} + p^{2} - b^{2}),$$

$$q(a^{2} + b^{2} - p^{2}) < a(b^{2} + q^{2} - c^{2}),$$

$$q(a^{2} + b^{2} - p^{2}) < b(a^{2} + q^{2} - d^{2}).$$
(2.7)

Можно ли упростить условия выпуклости — уменьшить число неравенств или понизить их степень (даже увеличив их количество), принимая во внимание (2.6), — я не знаю.

2.2. Пространство вписанных четырехугольников

Шестерки длин сторон и диагоналей вписанных четырехугольников образуют подмногообразие $\mathcal{C} \subset \mathcal{Q}$ коразмерности 1. В координатах x, \ldots, t оно описывается простым уравнением второй степени

$$Cycl(x, y, z, u, t) \stackrel{\text{def}}{=} xu - yz = 0.$$
 (2.8)

(Элементарная теорема: треугольники AOB и COD подобны по двум углам $\angle AOB = \angle COD$ и $\angle OAB = \angle ODC$ тогда и только тогда, когда точки A, B, C, D лежат на одной окружности.)

С другой стороны, часть Б теоремы Птолемея утверждает, что в координатах a, \ldots, q подмногообразие \mathcal{C} выделяеется в \mathcal{Q} условием (0.1). Цель этого пункта — установить эквивалентность (0.1) и (2.8) алгебраически. Заодно мы докажем и неравенство (1.1).

Выразив a, \ldots, q из (2.3) и подставив в (0.1), получим выражение, содержащее квадратные корни. Домножая на сопряженные выражения, избавимся от иррациональностей и получим

$$\begin{split} C_2 \cdot (ac - bd - pq)(ac + bd + pq)(ac - bd + pq) &= \\ -4u^4x^2z^2 + 4x^4u^2z^2t^2 + 32x^2y^2u^2z^2 + 4y^4u^2z^2t^2 + 4x^2y^2t^2u^4 + 4x^2y^2t^2z^4 \\ -4x^2y^2z^4 - 4y^4u^2z^2 - 4x^2y^2u^4 - 4x^4u^2z^2 - 4y^4x^2z^2 - 4u^2y^2z^4 - 4u^2y^2x^4 \\ -32x^2y^2u^2z^2t^2 + 16x^3yt^2u^3z - 8x^3yt^2z^3u - 8y^3xt^2u^3z + 16y^3xt^2z^3u \\ +4u^4x^2z^2t^2 + 4y^4x^2z^2t^2 + 4u^2y^2t^2x^4 + 4u^2y^2t^2z^4 + 8x^3uy^3z + 16x^3uy^2z^2 \\ +8x^3uyz^3 + 16x^2u^2y^3z + 16x^2u^2yz^3 + 8xu^3y^3z + 16xu^3y^2z^2 + 8xu^3yz^3 \\ +8x^3u^3z^2t^2 + 8y^3u^2z^3t^2 + 8x^3y^2t^2u^3 + 8x^2y^3t^2z^3 - 8x^2u^4yz - 8x^4u^2yz \\ -16x^3u^3yz - 8y^4z^2xu - 16y^3z^3xu - 8y^2z^4xu - 8u^3yt^2z^3x - 8y^3ut^2x^3z \\ -8x^3u^3y^2 - 8x^3u^3z^2 - 8x^2z^3y^3 - 8y^3z^3u^2 - 16y^2u^3z^2t^2x + 8y^4uz^2t^2x \\ -16y^3u^2zt^2x^2 + 8x^2yt^2u^4z - 16x^3uz^2t^2y^2 + 8x^4u^2zt^2y - 16x^2u^2z^3t^2y \\ +8xy^2t^2z^4u. \end{split}$$

В дальнейшем громоздкие полиномы, возникающие в вычислениях, не выписываются явно. Те из них, которые используются лишь локально, в пределах конкретного этапа рассуждения, обозначаются P_k , где k

общая степень. Так, назовем приведенный выше многочлен P_{10} . (Его содержательная характеризация как главного минора определителя Кэли-Менгера (2.4) [1, п. 9.7.3.8] здесь не используется.)

Компьютерная факторизация приводит к простому результату, который запишем в смешанных переменных, связанных соотношениями (2.3),

$$P_{10}(x, y, x, u, t) = -4(1 - t^2)p^2q^2(xu - yz)^2.$$
 (2.9)

Поскольку

$$(1 - t^2)p^2q^2 > 0, (2.10)$$

то (0.1) влечет (2.8). Доказано утверждение только тогда теоремы 1 (Б).

Предположим, что неравенство (1.1) неверно для некоторого четырехугольника. Тогда существует кривая $\gamma:[0,1]\to\mathcal{Q}$ в пространстве четырехугольников, такая, что $C_2(\gamma(0))>0$ и $C_2(\gamma(1))<0$, следовательно, существует точка $s\in(0,1)$, в которой $C_2(\gamma(s))=0$. В силу (2.9) и (2.10), для любого невырожденного четырехугольника

$$(ac + bd - pq)(ac + pq - bd)(bd + pq - ac) \ge 0.$$
 (2.11)

Если 2-й и 3-й сомножители не обращаются в 0 в s_0 , то произведение (2.11) меняет знак, что невозможно. Следовательно, хотя бы два из сомножителей в (2.11) одновременно равны 0 в s_0 . Однако тогда четырехугольник $\gamma(s_0)$ оказывается вырожденным. Действительно, если, например

$$ac + bd - pq = ac + pq - bd = 0,$$

то ac = 0. Полученное противоречие доказывает справедливость неравенства (1.1).

Остается доказать утверждение $mor\partial a$ части Б. Для этого следует установить, что (ac+pq-bd) и (bd+pq-ac) не могут (по отдельности) обращаться в 0. Многообразие \mathcal{C} линейно связно: любой вписанный четырехугольник можно деформировать в любой другой, вписанный в ту же окружность, сдвигом вершин вдоль окружности, при котором вершины никогда не сливаются. В каждой точке многообразия \mathcal{C} обращается в 0 ровно один из множителей в (2.11) — иначе четырехугольник был бы вырожденным. Множество нулей каждого из них замкнуто в \mathcal{C} . Из связности следует, что два из этих множеств пусты, а оставшееся совпадает с \mathcal{C} . Ясно (из любого примера вписанного четырехугольника), что не пусто множество нулей функции C_2 , значит, $(Cycl=0) \Leftrightarrow (C_2=0)$.

§ 3. Кубический критерий вписанности

Теорема 2. Выпуклый четырехугольник ABCD является вписанным тогда и только тогда, когда выполнено условие (0.2). Если $C_3 \neq 0$, то

$$sign C_3 = sign Cycl. (3.1)$$

Замечания

- 1. Существенность условия выпуклости. В отличие от условия Птолемея (0.1), условие (0.2) выполняется для некоторых невыпуклых (и, значит, невписанных) четырехугольников. В Приложении вычислено частное однопараметрическое семейство таких четырехугольников.
- 2. Знак C_3 определяет положение вершины четырехугольника относительно окружности, проведенной через три другие вершины. Вероятно, C_3 простейшая функция параметров a, \ldots, q , обладающая этим свойством. Следующие условия равносильны:
 - (i) точка A лежит вне окружности BCD
 - (ii) точка C лежит вне окружности BAD
 - (iii) точка B лежит внутри окружности ADC
 - (iv) точка D лежит внутри окружности ABC
 - (v) $\operatorname{sgn}(xu yz) = \operatorname{sgn} C_3 > 0;$

Доказательство необходимости условия (0.2) элементарно. Пусть четырехугольник ABCD вписан в окружность радиуса R. Тогда

$$4R = \frac{abp}{S_{ABC}} = \frac{bcq}{S_{BCD}} = \frac{cdp}{S_{CDA}} = \frac{daq}{S_{DAB}},$$

где S — площадь треугольника. Равенство (0.2) следует выражает равносоставленность нашего четырехугольника:

$$S_{ABCD} = S_{ABC} + S_{BCD} = S_{CDA} + S_{DAB}.$$

Доказательство достаточности гораздо сложнее. Метод грубой силы в простой редакции недостаточен: при рационализации условия $C_3=0$ появляются паразитные решения — см. п. 5.2. Изложим план доказательства. Рассмотрим величину C_3 как функцию переменной z при фиксированных x,u,y,t. Пишем

$$C_3(a, b, c, d, p, q) = F(x, y, z, u, t)$$
 с подстановкой (2.3).

Тогда

- 1. $F \to -\infty$ при $z \to \infty$. (Простой факт, Лемма 4.1 ниже.)
- 2. F > 0 при z = 0. (Предложение 4.2, трудное.)
- 3. F = 0, когда точка D, двигаясь по лучу OD (меняем z), попадает на окружность ABC. При этом $z = z_* = xu/y$.

Остается показать, что функция $F(\ldots,z)$ не имеет других нулей на $(0,\infty)$. Это легко установить в частном случае, осесимметричных четырехугольников с перпендикулярными диагоналями (Лемма 3.1). Таким образом, существуют значения x, y, u, t, при которых функция $F(\ldots,z)$ имеет единственный положительный корень. Смена числа корней может произойти только с появлением кратного корня, т.е. решения системы

$$F(x, y, z, u, t) = 0, \qquad \partial_z F(x, y, z, u, t) = 0. \tag{3.2}$$

Предположим, что множество решений системы (3.2) на \mathcal{Q} непусто. Обозначим его \mathcal{M} . Изучая асимптотики решений системы (3.2) вблизи границы $\partial \mathcal{Q}$ множества \mathcal{Q} , мы найдем, что не существует семейства решений в \mathcal{Q} , имеющих предельную точку на $\partial \mathcal{Q}$. (Хотя на самой границе есть много решений.) Этот анализ (с пробелом, указанном во Введении) изложен в заключительном § 6.

Сделаем редукцию по однородности и рассмотрим сечение Q_1 , выделенное в Q уравнением

$$x + y + z + u = 1. (3.3)$$

Множество $\mathcal{M}_1 = \mathcal{M} \cap \mathcal{Q}_1$ компактно, поскольку его замыкание не пересекается с $\partial \mathcal{Q}_1$. Максимум функции f(x,y,z,u,y) = t на \mathcal{M}_1 достигается. Точка максимума находится методом множителей Лагранжа, который приводит (Лемма 5.1) к усиленной системе по сравнению с (3.2): либо

$$F = F_x = F_y = F_z = F_u = 0, (3.4)$$

либо $F = F_z = F_{zz} = 0$. В § 5 мы докажем, что система (3.4) не имеет решений в области (2.2). Отсутствие решения во втором случае пока подтверждено лишь численным сканированием.

Таким образом, множество решений системы (3.2) в области (2.2) пусто, следовательно, при любых значениях x, y, u, t корень $z = z_*$ функции $F(\ldots, z)$ — единственный.

Лемма 3.1. В случае x=u и t=0 имеем $\partial_z F<0$ при z>0.

Доказательство. В данном случае a=b, $c=d=\sqrt{x^2+z^2}$, $\partial_z c=z/c$, $F=2x\left(a^2+c^2\right)-2ac\left(y+z\right)$,

$$\partial_z F = 4xz - 2ac - 2a(z/c)(y+z) < 2a(2z - (c^2 + z^2)/c) \le 0.$$

§ 4. Поведение функции F при $z \to \infty$ и при $z \to 0^+$

4.1. Результаты

В настоящей работе относительно простые утверждения называются Леммами, более сложные — Предложениями.

Лемма 4.1. Пусть x, y, u, t фиксированы. Тогда при $z \to \infty$

$$F(x, y, u, z, t) = (p - a - b)z^{2} + O(z).$$

B частности, F < 0 при больших z.

Доказательство. Поскольку $c=z+O(1),\ d=z+O(1),\ q=z+O(1),$ имеем

$$F(x, u, y, z, t) = (ab + cd)p - (ad + bc)q = z^{2}p - (az + bz)z + O(z).$$

Предложение 4.2. Пусть точка D лежит на стороне AC треугольника ABC и отлична от точек A и C. Тогда для вырожденного четырехугольника ABCD имеем $C_3(a,b,c,d,p,q) > 0$ при отсутствии прочих вырождений. B более явном виде,

$$(AB \cdot BC + AD \cdot CD) \cdot AC > (AB \cdot AD + CB \cdot CD) \cdot BD.$$

4.2. План доказательства Предложения 4.2

Не ограничивая общности, положим p=1 и примем $\angle ADB \leq \pi/2$. На множестве $\mathcal{D}=\{0< x<1,\ y>0,\ 0\leq t<1\}$ рассмотрим функцию

$$F_0(x, y, t) \stackrel{\text{def}}{=} F(x, y, z = 0, u = 1 - x, t).$$

Множество \mathcal{D} связно. Достаточно доказать, что на нем $F_0 \neq 0$: тогда знак F_0 постоянен, а из Леммы 3.1 следует, что $F_0 > 0$ при t = 0, x = 1/2. В п. 4.3 рассматривая рационализацию условия (0.2), покажем, что $F_0 \neq 0$ при $y \geq 1$. Затем в п. 4.4 исследуем F_0 на границе компактного множества \mathcal{K} , заданного неравенствами

$$0 \le x \le 1$$
, $0 \le t \le 1$, $0 \le y \le 1$,

и покажем, что там $F_0 \ge 0$. В п. 4.5 установим, что уравнение ∇F_0 не имеет решений во внутренности множества \mathcal{K} , следовательно, $\min F_0$ достигается на его границе и $F_0 > 0$ на внутренности \mathcal{K} .

4.3. Рационализация и неравенство $F_0[y \ge 1] \ne 0$

Выражение F_0 через a, \ldots, q содержит квадратичные иррациональности. Функция

$$R(a, b, c, d, p, q) = C_3(a, b, c, d, p, q) C_3(a, b, -c, -d, p, q) \times C_3(-a, b, c, d, p, q) C_3(-a, b, -c, -d, p, q)$$

есть рациональная функция от a^2 , b^2 , c^2 , d^2 , p, q, и, следовательно, рациональная функция от x, u, y, z, t. Ее ограничение на рассматриваемое множество z=0, p=1, a=x, b=u=1-x обозначим через R_0 .

C помощью Maple находим факторизацию

$$R_0 = 4(1 - t^2) y^2 x T_0(x, y, t)$$

где T_0 — многочлен. При $|t| \neq 1$, $x,y \neq 0$ неравенство $T \neq 0$ влечет $R_0 \neq 0$ и, следовательно, $F_0 \neq 0$. Многочлен T_0 представим в виде

$$T_0(x, y, t) = A(y^2 - 1) + 4y^2(1 - t^2),$$

 $A = 3y^2 + 4(1 - 2x)ty + (1 - 2x)^2.$

Поскольку при |t| < 1,

$$A > 3y^{2} - 4y|1 - 2x| + (1 - 2x)^{2} = (3y - |1 - 2x|)(y - |1 - 2x|)$$

то при $y \ge 1, \ 0 < x < 1,$ имеем A > 0, откуда $T_0 > 0.$

4.4. Предельные случаи x = 0, 1, z = 0 и t = 1

- а) При x=0 (случай x=1 аналогичен) имеем $d=0,\ c=1,\ a=q,$ $F_0=abp-bcq=ab-ba=0.$
- б) При z = 0 имеем q = 0, следовательно $F_0 = ab + cd > 0$.
- в) При t=1 имеет место результат более общего характера (без предположения z=0), который неоднократно понадобится в дальнейшем. Из него следует, что $F_0|_{t=1} \geq 0$.

Лемма 4.3. Имеет место формула

$$F|_{t=1} = (x+y+z+u)(x-y)(u-z)(\operatorname{sgn}(x-y) + \operatorname{sgn}(u-z)).$$
(4.1)

Доказательство. Формула (4.1) следует из равенств при t=1:

$$a = |y - x|, \quad b = y + u, \quad c = |u - z|, \quad d = z + x.$$

4.5. Отсутствие внутренних точек экстремума функции F_0

В этом пункте мы используем декартовы координаты. Поместим начало координат в точку A и направим первую ось вдоль AC. Координаты остальных точек суть $D(d,0),\ C(p,0),\ B(\xi,\eta),\ \eta>0$. Параметры d, $c,\ p=c+d$ не зависят от $\xi,\eta,$ а параметры $a,\ b,\ q$ и их производные даются формулами

$$a^{2} = \xi^{2} + \eta^{2}$$

$$a_{\xi} = \frac{\xi}{a}$$

$$a_{\eta} = \frac{\eta}{a}$$

$$b^{2} = (\xi - p)^{2} + \eta^{2}$$

$$b_{\xi} = \frac{\xi - p}{b}$$

$$b_{\eta} = \frac{\eta}{b}$$

$$q^{2} = (\xi - d)^{2} + \eta^{2}$$

$$q_{\xi} = \frac{\xi - d}{q}$$

$$q_{\eta} = \frac{\eta}{q}$$

Отсюда

$$\partial_{\xi} F_{0} = \frac{(bp - dq)\xi}{a} + \frac{(ap - cq)(\xi - p)}{b} - \frac{(ad + bc)(\xi - d)}{q},$$

$$`\partial_{\eta} F_{0} = \eta \left(\frac{(bp - dq)}{a} + \frac{(ap - cq)}{b} - \frac{(ad + bc)}{q} \right).$$
(4.2)

Назовем набор величин $(a, \ldots, q, \xi, \eta)$ допустимым, если он соответствует конфигурации, описанной в Предложении 4.2 и треугольник ABC невырожден.

Лемма 4.4. Система $\partial_{\xi}F_0=\partial_{\eta}F_0=0$ не имеет допустимых решений.

Доказательство. Вычитая из первого уравнения в (4.2) второе, умноженное соответственно на ξ/η и $(\xi-p)/\eta$, учитывая, что c+d=p, и избавляясь от знаменателей, упростим заданные уравнения:

$$pq(cq - ap) + bd(ad + bc) = 0,$$

 $pq(dq - bp) + ac(ad + bc) = 0.$ (4.3)

Покажем, что допустимые решения удовлетворяют равенству a = b = q.

Беря сумму уравнений и подставляя p=c+d, получим факторизуемое уравнение:

$$[(b-q)d + (a-q)c][(b-q)c + (a-q)d] = 0.$$

Возможны два случая.

Случай I: (b-q)d+(a-q)c=0. В качестве второго уравнения возьмем определитель системы (4.3) относительно неизвестных pq и (ad+bc),

$$0 = \Delta = ac(cq - ap) + bd(bp - dq) = ac[(q - a)c - ad] + bd[(b - q)d + bc].$$

В данном случае

$$\Delta = ac [(b-q)d - ad] + bd [(q-a)c + bc] = cd(b-a)(a+b+q),$$

откуда a=b на допустимом решении. Далее, 0=(b-q)d+(a-q)c=(b-q)(c+d), следовательно, q=b=a.

Случай II: (b-q)c+(a-q)d=0, т.е. ad+bc=pq. Подставляя в первое уравнение системы (4.3), получим $pq\left(cq-ap+bd\right)=0$. С учетом p=c+d, получилась однородная линейная система уравнений

$$(b-q)c + (a-q)d = 0,$$
 $(q-a)c + (b-a)d = 0$

относительно c и d с определителем

$$(b-q)(b-a) + (a-q)^2 = (a-q)^2 - (a-q)(b-q) + (b-q)^2.$$

Равенство нулю возможно лишь при a = b = q.

Итак, в обоих случаях (4.3) влечет a=b=q. Однако равенство a=b=q геометрически невозможно, т.к. всегда $q<\max{(a,b)}$. Этим завершается доказательство Леммы 4.4 и Предложения 4.2.

§ 5. Несуществование компактной компоненты подмножества $F = F_z = 0$ в Q_1

5.1. Усиление системы (3.2)

Лемма 5.1. Предположим, что множество решений системы (3.2) на множестве Q_1 (см. (2.2), (3.3)) компактно (т.е. не имеет предельных точек на ∂Q_1) и непусто. Тогда хотя бы одна из систем (3.4) или

$$F = F_z = F_{zz} = 0 (5.1)$$

имеет решение в Q.

Доказательство. Из предположений Леммы следует, что множество $\tilde{\mathcal{M}}_1$ решений системы (3.2) на множестве $\tilde{\mathcal{Q}}_1 = \{u=1\} \cap \mathcal{Q}$ также компактно и непусто. Можно считать, что F теперь является функцией лишь четырех переменных x, y, z, t. Рассмотрим оптимизационную задачу

$$t|_{\tilde{\mathcal{M}}_1} \to \max.$$

Составим выражение Лагранжа

$$t - \lambda F - \mu F_z. \tag{5.2}$$

Дифференцируя по z и учитывая (3.2), получим $\mu F_{zz} = 0$.

В случае $F_{zz}=0$ имеем систему (5.1). Если же $F_{zz}\neq 0$, то $\mu=0$. Дифференцируя (5.2) по t, находим $1-\lambda F_t=0$, откуда $\lambda\neq 0$. Дифференцируя (5.2) по x и y, находим теперь $F_x=F_y=0$. Мы получили 4 из 5 уравнений (3.4). Оставшееся уравнение $F_u=0$ следует из первых четырех в силу тождества Эйлера для однородных функций.

В оставшейся части параграфа мы докажем несуществование решений системы (3.4), оставляя за рамками данной работы анализ системы (5.1). Этот пробел упомянут во Введении.

5.2. Рационализация

Функция F(x,...,t), являющаяся композицией $C_3(a,...,q)$ с подстановками (2.3), содержит квадратные корни.

<u>Частичная рационализация</u>. Положим $F^* = (ab + cd)p + (ad + bc)q$ и введем выражение

$$R(x, y, z, u, t) = F \cdot F^* = R_0(x, \dots, t) + \lambda R_1(x, \dots, t),$$

$$\lambda = abcd.$$
(5.3)

Здесь $R_1=2(p^2-q^2)$, $R_0=(a^2b^2+c^2d^2)p^2-(a^2d^2+b^2c^2)q^2$ — многочлен степени 2 по t и однородный степени 6 по переменным x,\ldots,u . Его разложение содержит 64 члена. Очевидно, что на множестве $\mathcal Q$ уравнения F=0 и R=0 эквивалентны, поскольку $F^*>0$.

Полная рационализация. Функция

$$RR(x, y, z, u, t) = (R_0 + \lambda R_1)(R_0 - \lambda R_1)$$

является многочленом по переменным x, \ldots, t . Имеем факторизацию

$$RR = 4(t^2 - 1) p^2 q^2 Cycl(x, y, z, u) T(x, y, z, u, t),$$
(5.4)

где T — многочлен с 62 членами, квадратичный по t и однородный степени 6 по остальным переменным. Приводим этот многочлен в явном виде, следуя принципу "Лучше один раз увидеть...":

$$T = 4T_2t^2 + 4T_1t + T_0,$$

$$T_0 = 2y^3z^3 + 3yzx^4 + 2y^3zx^2 + 2yz^3x^2 - 2x^3uy^2 - 2xu^3y^2 - 3xuy^4 - 2xu^3z^2 + 2x^2yzu^2 - zy^5 - yz^5 + ux^5 - 2xuy^2z^2 - 3xuz^4 - 2x^3uz^2 + xu^5 + 3yzu^4 + 2y^3zu^2 + 2yz^3u^2 - 2x^3u^3,$$

$$T_{1} = z^{2}y^{3}x - y^{2}x^{3}z + y^{4}xz - y^{2}z^{3}x + yz^{2}x^{3} - z^{4}xy - x^{3}yu^{2} + x^{2}y^{3}u$$

$$-x^{4}uy + x^{2}u^{3}y - xu^{2}y^{3} + z^{4}uy + y^{2}z^{3}u - yz^{2}u^{3} - y^{3}uz^{2} - y^{4}uz$$

$$+u^{3}y^{2}z - u^{4}xz + xu^{2}z^{3} - x^{2}u^{3}z - x^{2}uz^{3} + x^{4}uz + u^{2}x^{3}z + u^{4}xy,$$

$$\begin{split} T_2 = & -y^3zx^2 - 2y^2z^2x^2 - yz^3x^2 + x^3uy^2 + 2y^2x^2u^2 - yz^3u^2 - \\ & 2u^2y^2z^2 - y^3zu^2 + xu^3z^2 + 2u^2x^2z^2 + x^3uz^2 + xu^3y^2 - 4x^2yzu^2 \\ & -2x^3uyz + 4xuy^2z^2 + 2xy^3zu - 2xyu^3z + 2xyz^3u. \end{split}$$

Из (5.4) видно, что если $C_3 = 0$ и $T \neq 0$, то Cycl = 0. К сожалению, утверждение $T \neq 0$ неверно (см. ниже). Система, рассматриваемая в следующей Лемме, не эквивалентна (3.2), но будет использована в § 6 при доказательстве несуществования примыкающих к границе семейств решений системы (3.2).

Лемма 5.2. Всякое решение системы (3.2) на множестве $\mathcal Q$ является также решением системы

$$T = 0, T_z = 0. (5.5)$$

Доказательство. Имеем $T \cdot Cycl = F \cdot \Xi$, где Ξ — рациональная функция без особенностей на \mathcal{Q} . Из уравнений (3.2) следует

$$T \cdot Cycl = \partial_z (T \cdot Cycl) = 0.$$

Предположим сначала, что $Cycl=0,\ T\neq 0.$ Тогда $\partial_z Cycl=0.$ Но $\partial_z Cycl=-y\neq 0,$ противоречие.

В случае $Cycl \neq 0$, T=0 имеем $T_z=0$, как утверждалось. Остается доказать, что невозможен случай T=Cycl=0. В результате подстановки u=1, x=yz в T получим факторизующийся многочлен

$$4y(y-1)(y+1)(y^2+2ty+1)z(z-1)(z+1)(z^2-2tz+1),$$

который не обращается в 0 на множестве \mathcal{Q} .

Следствие. Всякое решение системы (3.4) на множестве \mathcal{Q} является также решением системы

$$T = T_x = T_y = T_z = T_u = 0. (5.6)$$

Можно было бы надеяться доказать отсутствие решений системы (3.4), доказав отсутствие решений полиномиальной системы (5.6). Но последняя имеет решения. (Например, (5.6) обращается в тождество при u=x, y=z.) Доказательство в следующем п. основано на анализе аналогичной системы с частичной рационализацией,

$$R = R_x = R_y = R_z = R_u = 0, (5.7)$$

которая эквивалентна (3.4) на Q, поскольку $F = R/F^*$, $F^* \neq 0$.

5.3. Несуществование решений системы (5.7)

Прежде всего, запишем производные R_x и т.д. в виде рациональных функций по x, \ldots, t и λ . Имеем

$$\lambda_x = \lambda \left(\frac{a_x}{a} + \frac{d_x}{d} \right) = \lambda \left(\frac{x - yt}{a^2} + \frac{x + zt}{d^2} \right).$$

Поэтому

$$\hat{R}_x \stackrel{\text{def}}{=} a^2 d^2 \, \partial_x R$$

— алгебраический полином по переменным x, y, z, t, λ . Аналогично, многочленами (по тем же переменным) являются

$$\hat{R}_y = a^2 b^2 \partial_y R, \qquad \hat{R}_z = c^2 d^2 \partial_z R. \qquad \hat{R}_u = b^2 c^2 \partial_u R,$$

Получена система 5 полиномиальных уравнений с неизвестными $x,\ y,\ z,\ u,\ t$ и λ

$$R = \hat{R}_x = \hat{R}_y = \hat{R}_z = \hat{R}_u = 0. \tag{5.8}$$

Игнорируя уравнение связи (второе уравнение в (5.3)), будем считать λ независимой переменной от x, \ldots, t . Этим мы разрушаем однородность функции R по переменным x, \ldots, u , следовательно 5 уравнений системы (5.8) более не являются зависимыми в силу тождества Эйлера. Система (5.8) квазиоднородна по 5 переменным (исключая t): переменные x, \ldots, u имеют вес 1, а вес λ равен 4. Одно из значений можно выбрать произвольно. Зафиксируем значение u=1. Теперь (5.8) становится системой 5 уравнений с 5 неизвестными x, y, z, t, λ .

Доказать отсутствие решений этой небольшой полиномиальной системы оказалось нелегко. Автору пришлось перепробовать несколько схем исключения. Действуя "как попало", приходим к исчерпанию вычислительных ресурсов.

Описываемая ниже схема оказалась выполнимой и, следовательно, относительно экономной, но все же далеко выходит за пределы возможностей ручного счета.

 $\underline{\text{Шаг 1}}$. Исключаем λ , вычисляя результанты линейных по λ уравнений

$$Res_x \stackrel{\text{def}}{=} \text{Resultant}_{\lambda}(R, \hat{R}_x),$$

и аналогично Res_y, Res_z, Res_u . Результанты факторизуются, например,

$$Res_x = -4(t^2 - 1)(y + z)^2(x + 1)\tilde{Res}_x,$$

где \tilde{Res}_x — многочлен от x, y, z, t с 92 членами.

Замечание. На последующих шагах нам многократно будут встречаться факторизации, в которых некоторые множители не обращаются в 0 на множестве Q. Например, таковы три множителя в формуле для Res_x выше; другие примеры: $x, t \pm 1, z^2 - 2tzy + y^2$. Такие множители будем называть тривиальными. Некоторые множители, например, y-1, x+1-y-z, y-xz, не относятся к тривиальным, но приводят к простым ответвлениям от основной линии. Мы рассматриваем соответствующие варианты в леммах после завершения наиболее трудной части доказательства. В тексте мы называем такие множители простыми (по английски — "simple", но не "prime").

 $\underline{\text{Шаг 2}}$. Исключаем t. Факторизация результанта многочленов \tilde{Res}_x и \tilde{Res}_y содержит, помимо тривиальных множителей, простые множители

$$z - xy$$
, $y - xz$, $x - yz$, $x - y - z + 1$, (5.9)

и один "большой" множитель степени 6 с 18 членами, который обозначим $Res_{xy}(x,y,z)$. Аналогично, факторизация результанта \tilde{Res}_y и \tilde{Res}_u относительно t приводит к тем же простым множителям и большому множителю $Res_{yu}(x,y,z)$. Между коэффициентами многочленов Res_{xy} и Res_{yu} имеется очевидное соответствие, отвечающее симметрии исходной задачи относительно перестановки $x \to y \to u \to z \to x, \ t \to -t$.

Аналогично определяются большие множители Res_{uz} и Res_{zx} результантов (относительно t) пар $(\tilde{Res}_u, \tilde{Res}_x)$ и $(\tilde{Res}_x, \tilde{Res}_x)$.

<u>Шаг 3</u> (решающий). Имеют место факторизации (найдены методом проб с помощью Maple).

$$z Res_{xy} + y Res_{zx} = (y - z)(y + z) P_4^{(1)}(x, y, z),$$

$$y Res_{uz} - z Res_{yu} = x(y - z)(y + z) P_4^{(2)}(x, y, z),$$

$$P_4^{(1)} + P_4^{(2)} = (x - 1)(x + 1)(3x^2 - 2x + 3 + y^2 + 10yz + z^2).$$

Последний множитель — положительно определенная квадратичная форма. Таким образом, остается рассмотреть "простые" случаи, когда обращается в 0 либо один из простых множителей (5.9), либо y-z, либо x-1.

Случай x - y - z + 1 = 0. Имеем

$$\tilde{Res}_y[z=x+1-y] = -4(y-1)(y^2+2yt+1)(x+1)^2(x-y)(x^2-2xyt+y^2).$$

Следовательно либо y=1, x=z, либо x=y, z=1. В обоих случаях Cycl=xu-yz=0. Но равенство $F=F_z=0$ невозможно на множестве \mathcal{C} (см. доказательство Леммы 5.2).

Случай x = yz. Аналогично, из факторизации

$$\tilde{Res}_x[x = yz] = 2(yz+1)y^2(y^2-1)(y^2+2ty+1)z^2(z^2-1)(z^2-2tz+1)$$

находим, что либо $y=1,\ x=z,$ либо $z=1,\ x=y,$ т.е. Cycl=0, и заключение как в предыдущем случае.

Случай y = xz (Случай y = xz симметричен.) Имеем факторизации

$$\tilde{Res}_x[z=xy] = x^2(x^2-1)(y^2-1)(y^2+2ty+1)P_5(x,y,t),$$

 $\tilde{Res}_u[z=xy] = -x(x^2-1)(y^2-1)(y^2+2ty+1)P_6(x,y,t),$

где

$$P_5(x, y, t) = x + x^2 + y^2 + y^4 + x^2y^2 - xy^4 - 4xy^3t,$$

$$P_6(x, y, t) = 1 + x + y^2 - xy^4 + x^2y^2 + x^2y^4 - 4xy^3t.$$

Далее,

$$P_6 - P_5 = (x^2 - 1)(y^2 - 1)(y^2 + 1).$$

Помимо подслучаев, ведущих к равенству Cycl=0 немедленно, остается только случай $x=1,\ y=z.$ При этом $a=c,\ b=d,$ и четырехугольник ABCD— параллелограм. Выражение C_3 упрощается: $C_3=2(abp-abq).$ Получаем p=q, откуда x=y=z=u, т.е. снова Cycl=0.

Этим заканчивается разбор всех случаев и доказательство несуществования решения системы (5.7), а, значит, и системы (3.4).

§ 6. Несуществование решений системы (3.2) вблизи границы множества \mathcal{Q}_1

6.1. Стратификация границы

Гипотетически, множество \mathcal{M} (см. с. 11) может иметь предельные точки на границе множества \mathcal{Q}_1 . Рассмотрим стратификацию границы (разбиение ее на множества разных размерностей, открытые в соответствующих координатных подпространствах). Грани коразмерности $k=1,\ldots,4$ соответствуют обращению ровно k из неравенств (2.2) в равенства. (Все 5 неравенств не могут одновременно обратиться в равенства в силу условия (3.3).)

Введем терминологию, которая поможет нам компактно описать многочисленные случаи. Пусть \mathcal{V} — некоторое подмножество 5-элементного множества переменных x, y, z, u, t. Будем говорить, что имеет место cлучай \mathcal{V} , если множество \mathcal{M} имеет предельную точку на грани, где неравенства (2.2) для переменных из \mathcal{V} обращаются в равенства.

Например, имеет место случай (x), если у системы (3.2) есть семейство решений, для которого $x \to 0$, а y, z, u не стремятся к 0 и $t \not\to \pm 1$.

Перечислим случаи, которые нужно рассмотреть и исключить, чтобы доказать Теорему 2.

- 1) Случай коразмерности 1: (x), (y), (z) и (u). Случай (z) уже исключен Предложением 4.2. Остальные случаи невозможны по симметрии, т.к. уравнение $F_z = 0$ не используется в Предложении 4.2.
- 2) Случай (t) коразмерности 1. Он исключается Предложением 6.1.
- 3) Случаи (xu), (zy) и их вырождения (xut), (zyt) покрываются Леммой 6.2.
- 4) Случай (xy) исключается Предложением 6.3. По симметрии, также исключается случай (uy).
- 5) Случай (xz) и симметричный (uz) исключаются Предложением 6.4.
- 6) Случаи коразмерности 2, когда одна из переменных t, например, (xt), охватываются Предложением 6.5.
- 7) Случаи коразмерности 3 с тремя длинами: (xyz), (yzu), (zux) и (uxy) исключаются Леммой 6.6. Оказываются охваченными и их вырождения коразмерности 4: (xyzt) и т.д.
- 8) (xyt) и симметричный случай (uyt).
- 9) (xzt) и симметричный случай (uzt). Последние два случая оставлены за рамками настоящей работы. Их анализ представляет самостоятельный интерес с точки зрения техники, изложенной в [2, гл. 2]. В этих случаях разрешение особенности требует нескольких итераций. Здесь мы ограничиваемся формулировкой нужных результатов (Предложение 6.7).

6.2. Случай (t) (складывающийся четырехугольник)

Предложение 6.1. Случай (t) невозможен.

Доказательство. Без ограничения общности можно считать, что $t \to 1^-$. Из (4.1) следует, что равенство $\lim_{t\to 1} F = 0$ невозможно, если $\lim(x-y)(u-z)>0$. Имеется в виду предел вдоль некоторой кривой $\langle x(t),y(t),z(t),u(t),t\rangle,\ t\to 1^-$. В дальнейшем из оставшихся двух возможных комбинаций знаков зафиксируем такую:

$$\lim(y - x) \ge 0, \qquad \lim(u - z) \ge 0. \tag{6.1}$$

Противоположный выбор ведет к полностью аналогичным вычислениям.

Рассмотрим теперь 2 случая:

- А) Пределы (6.1) строго положительны;
- Б) Хотя бы один из этих пределов равен 0.

Случай А. Если пределы (6.1) положительны, то с точностью до членов порядка τ имеем

$$a \sim (y-x) + \frac{xy}{y-x}\tau, \qquad b \sim (u+y) - \frac{uy}{u+y}\tau,$$

$$c \sim (u-z) + \frac{uz}{u-z}\tau, \qquad d \sim (z+x) - \frac{zx}{z+x}\tau.$$
(6.2)

Отсюда находим асимптотику при $\tau \to 0$:

$$F \cdot abcd = \tau (y+z)(x+y)(xu-yz) P_3(x,y,z,u) + O(\tau^2),$$

где

$$P_3 = ux^2 + yz^2 + 3yzx + 3zux - xu^2 - zy^2 - 3uyz - 3uyx.$$

Многочлен P_3 имеет степень 2 по переменной x. Коэффициент при x^2 равен u>0, и $P_3[x=0]=yz(z-y-3u)<0$, $P_3[x=y]=y(z-u)(u+2y+z)<0$. Следовательно, равенство $P_3=0$ несовместно с неравенствами (6.1). Остается возможность обращения F в 0 при $\tau>0$ в случае $xu-yz\to 0$. Эта возможность реализуется—ср. условие (0.1). Покажем, однако, что при этом $F_z\neq 0$.

Подставляя (6.2) в F_z , находим асимптотику при au o 0:

$$F_z \cdot (abcd) \sim -\tau (x+u) P_7(x,y,z,u),$$

Многочлен P_7 однороден; подстановка u=1 и x=yz приводит к многочлену, который факторизуется:

$$P_7(yz, y, z, 1) = 4 [y(y+1)z(z-1)]^2 (y+z).$$

В рассматриваемом случае $\lim(z-1) = \lim(z-u) < 0$. Следовательно, $F_z \neq 0$ при малых $\tau > 0$.

<u>Случай Б.</u> Предположим, что $z - u \to 0$. Переключаясь на рассмотрение многочлена T (см. п. 5.2) вместо F, имеем простую факторизацию:

$$T[z = u, t = 1] = u(x - y)^{3}(x + y + 2u).$$
 (6.3)

Следовательно, необходимо также $x-y\to 0$. (Можно было предположить последнее условие и вывести первое). Итак, имеем 3 малых параметра:

$$\tau = 1 - t, \qquad v = y - x, \qquad s = u - z$$

Заметим, что теперь мы не имеем права считать, что v и s положительны.

Этот случай сильно вырожден и труден. Для его анализа мы будем использовать как пару уравнений $F=F_z=0$, так и пару уравнений $T=T_z=0$ — см. Лемму 5.2.

1°. Обратимся сначала к величине $F = C_3$. Запишем

$$C_3 = Aa + Cc$$
, $A = bp - dq$, $C = dp - bq$, (6.4)

и вычислим асимптотику коэффициентов A и C. В данном случае

$$b = (u+y) - \frac{uy}{u+y}\tau + O(\tau^2), \qquad d = (x+z) - \frac{xz}{x+z}\tau + O(\tau^2). \quad (6.5)$$

Обозначая

$$\xi = |s| + |v|$$

и подставляя асимптотики (6.5) в выражения для A и C, находим

$$A = 2(x+u)s + O(\tau\xi) + O(\tau^2), \qquad C = -2(x+u)v + O(\tau\xi) + O(\tau^2).$$
 (6.6)

В действительности члены, содержащие некоторую степень τ без множителей s или v, отсутствуют, но мы докажем этот факт не для величин A и C в отдельности, а для уравнения Aa+Cc=0. Доказательство просто: при v=s=0 имеем $C_3=0$ (геометрически — это случай равнобочной трапеции).

Возводя уравнение Aa = -Cc в квадрат и используя формулы

$$a^{2} = v^{2} + 2xy\tau, c^{2} = s^{2} + 2uz\tau, \tag{6.7}$$

получаем после сокращений

$$x^{2}s^{2} - u^{2}v^{2} = O(\xi^{2}(\xi + \tau)).$$

Следовательно, $s \sim \pm (u/x)v$. Возвращаясь к уравнению Aa = -Cc, определяем, что ему удовлетворяет только ветвь со знаком +. (Полученный результат можно было ожидать — он согласуется с условием (2.8).)

 2° . Теперь обратимся к уравнению $\partial_z C_3=0$. Используя соотношения $c\,\partial_z c=z-ut$ и d/dz=-d/ds и независимость a от z, выводим из (6.4):

$$c \partial_z C_3 = X + acY,$$

где

$$X = -c^2 \partial_s C + (z - ut)C, \qquad Y = \partial_s A.$$

Из (6.6) видно, что $\lim Y = 2(x+u) > 0$, а из (6.7) следует, что

$$ac > \operatorname{const} \tau.$$
 (6.8)

Следовательно, $\tau = O(ac Y)$. Обратимся к коэффициенту X. Поскольку $\partial_s C = O(\xi)$, первое слагаемое в X есть $O(\xi^3 + \xi \tau)$. Второе слагаемое

$$(z - ut)C = (-s + u\tau)C = 2(x + u)vs + O(\xi^3 + \xi\tau).$$

Таким образом, на асимптотическом решении уравнения X + acY = 0 должна выполняться оценка

$$\tau = O(X) = O(\xi^2).$$

Эту оценку можно усилить, поскольку неравенство (6.8) слишком грубое. В силу результата п.1°, ξ^2 и vs имеют одинаковый асимптотический порядок. Если предположить, что $\lim \tau/\xi^2 > 0$, то получим

$$\lim \frac{ac Y}{vs} > 2(x+u) = \lim \frac{X}{vs},$$

противоречие. Следовательно, $\tau = o(\xi^2)$.

 3° . Укорочение уравнения T=0 при малых $s,\,v,\, au$ имеет вид

$$T \sim 4(x+u)^2 (s-v)(s+v)(sx+v) + O(\tau \xi + \xi^4).$$

Первое слагаемое доминирует, и мы знаем, что $sx/vu \to 1$. Следовательно, на асимптотическом решении $x/u \to 1$.

 4° . Обратимся, наконец, к уравнению $T_z=0$ и найдем его укорочение при $s,\,v,\,\to 0\,,\,\,w=x-u\to 0\,$ и $\tau=o(s^2)$:

$$T_z \sim -16(s+v)(3s-v) + o(\xi^2).$$

Равенство $T_z=0$ несовместно с выведенным в 3° условием $s/v\to 1$. Полученное противоречие доказывает невозможность Случая Б.

6.3. Оставшиеся предельные случаи

Лемма 6.2. (О сплющивающемся четырехугольнике). Случаи (xu), (zy) и их вырождения (xut), (zyt) невозможны. Более того, одно лишь уравнение F=0 не имеет семейств решений, выходящих на соответствующие грани.

Доказательство. Предположим, что $x\to 0,\, u\to 0,\, a\,z$ и y не малы. Тогда $a,b\to y,\,\,c,d\to z,\,\,p\to 0.$ Следовательно, $F\to -2yz(y+z)\neq 0.$

Предложение 6.3. (Вырождение четырехугольника в треугольник – I) *Случай (ху) невозможен.* Доказательство. При $x \to 0, \ y \to 0$ имеем

$$a = O(x + y),$$
 $b = u + yt + O(y^2),$ $c = \text{const},$ $d = z + xt + O(x^2).$

Отсюда находим асимптотики

$$F = x\alpha + y\beta + a\gamma + O(x^2 + y^2),$$

$$F_z = x\tilde{\alpha} + y\tilde{\beta} + a\tilde{\gamma} + O(x^2 + y^2),$$
(6.9)

с коэффициентами

$$\alpha = c(ut + z),$$
 $\tilde{\alpha} = z(z^2 - u^2t^2 + c^2),$

$$\beta = -c(u + zt), \quad \tilde{\beta} = (1 - t)z^3 + (1 + t)(u - z)uz,$$

$$\gamma = u^2 - z^2, \qquad \tilde{\gamma} = -2z^2c.$$
(6.10)

Найдем предельный коэффициент пропорциональности x и y, исключая a из системы (6.9). Получаем

$$\frac{x}{y} \sim \frac{\tilde{\beta}\gamma - \beta\tilde{\gamma}}{\alpha\tilde{\gamma} - \tilde{\alpha}\gamma} = \frac{z}{u} \frac{3u^2 + z^2}{3z^2 + u^2} =: s_*.$$

(В ходе выкладок использовали выражение c^2 через u, z, t, см. (2.3).)

Завершим доказательство Предложения, показав, что укорочение второго из уравнений (6.9) не имеет решений с $x/y = s_*$. Избавляясь в этом уравнении от иррациональности $a = (x^2 + y^2 - 2xyt)^{1/2}$, получаем квадратичную форму

$$(\tilde{\alpha}^2 - \tilde{\gamma}^2) x^2 + (\tilde{\beta}^2 - \tilde{\gamma}^2) y^2 + (2\tilde{\alpha}\tilde{\beta} + 2t\tilde{\gamma}^2) xy = 0.$$

Подставляя коэффициенты из (6.10) и полагая $u=1, y=1, x=s_*$ (выражения однородны!), получим многочлен от z с параметром t, допускающий факторизацию

$$z^4 (z^2 - 2tz + 1) (3z^2 - 2tz + 3).$$

Он не имеет положительных корней, если |t| < 1.

Предложение 6.4. (Вырождение четырехугольника в треугольник – II) *Случай* (xz) *невозможен*.

Доказательство. Доказательство аналогично предыдущему. В конце надо будет разобрать один более тонкий случай.

При $x \to 0$, $z \to 0$ имеем

$$a = y - xt + O(x^2),$$
 $b = \text{const},$ $c = u - zt + O(z^2).$ $d = O(x + z).$

Аналогично (6.11), находим

$$F = x\alpha + z\beta + d\gamma + O(x^2 + z^2),$$

$$F_z = x\tilde{\alpha} + z\tilde{\beta} + d\tilde{\gamma} + O(x^2 + z^2),$$
(6.11)

с коэффициентами

$$\alpha = b(y - ut), \qquad \tilde{\alpha} = ut(u^2 - y^2),$$

$$\beta = -b(u - yt), \qquad \tilde{\beta} = u(u^2 - y^2),$$

$$\gamma = u^2 - y^2, \qquad \tilde{\gamma} = bu(ty - u).$$
(6.12)

Предельный коэффициент пропорциональности x и z равен

$$s_* = \frac{y}{u} \frac{3u^2 - 2tuy - y^2}{y^2 - 2tuy + u^2}.$$

Рассматривая квадратичную форму, соответствующую первому из уравнений (6.11), получим после упрощений и подстановок u=1, $x=s_*z$ предельное уравнение для z и t

$$4(t^2 - 1) y^2(y^2 - 1)^2 (y^2 + 2ty - 3) = 0.$$

Таким образом, остается возможность существования асимптотического решения, на котором

$$y^2 + 2ty - 3 \to 0. ag{6.13}$$

Рассмотрение квадратичной формы, соответствующей второму уравнению в (6.11) также не исключает этот случай. Заметим, что в этом случае $s_* = 0$, т.е. x = o(z). Следовательно, d = z + o(z). Получаем (с u = 1)

$$F = z((1-b) + bty - y^2) + o(z). (6.14)$$

Условие (6.13) влечет $b \to 2$. Коэффициент при z в (6.14) в пределе равен $-y^2 + 2ty - 1 < 0$. Этим возможность (6.13) исключается.

Предложение 6.5. Случаи (xt), (ut), (yt), (zt) невозможны.

Доказательство. Рассмотрим первый из двух подслучаев случая (xt): $x \to 0, t \to +1$. Вначале, следуя доказательству Предложения 6.1, получим (принимая во внимание, что y > x)

$$\lim(u-z) \ge 0. \tag{6.15}$$

Рассмотрим уравнение T = 0. При t = 1, x = 0 оно факторизуется:

$$T[t=1, x=0] = -yz(3u+y-z)(u+y-z)(-u+y+z)(u+y+z) = 0.$$

Ввиду (6.15), факторы (3u+y-z) и (u+y-z) не могут в пределе обращаться в 0, поскольку y ограничено снизу. Остается единственная возможность

$$\lim(y+z-u)=0.$$

Однако

$$T_z[t=1, x=0, u=y+z] = -8y^2z(y+z)(2y+z) \neq 0.$$

Подслучай $t \to -1$ приводит к факторизации

$$T[t = -1, x = 0] = -yz(-3u + y - z)(-u + y - z)(-u + y + z)(u + y + z),$$

откуда снова следует, что на предельном семействе $\,u-y \to z.\,$ Но

$$T_z[t=-1, x=0, u=y+z] = -8yz^2(y+2z)(y+z) \neq 0.$$

Случай (ut) не требует отдельного доказательства ввиду симметрии $x \leftrightarrow u, t \leftrightarrow 1-t$. Остальные случаи, описанные в Предложении, доказываются аналогично. Приведем соответствующие факторизации.

Случай $y \to 0, t \to 1.$

$$T[y = 0, t = 1] = xu(u + x - z)(-u + x + z)(u + x + z)(-u + x + 3z),$$

$$T_z[y = 0, t = 1, z = x + u] = -8x^2u(u + x)(2x + u) \neq 0.$$
(6.16)

Случай $z \to 0, \ t \to 1.$

$$T[y = 0, t = 1] = xu(u + y - x)(x + u - y)(u + x + y)(-u + x + 3y),$$

$$T_z[y = 0, t = 1, z = x + u] = -8x^2u(u + x)(2x + u) \neq 0.$$
(6.17)

Предложение доказано.

Лемма 6.6. Первое укорочение многочлена T при $u=1,\ x,y,z\to 0,\ ecmb$

$$T(x, y, z, 1, t) \sim x + 3yz.$$

Доказательство. Прямая проверка.

Следствие. Случай V, когда множество V содержит три из четырех параметров x, y, z, u, невозможен.

Предложение 6.7. Система (3.2) не имеет семейств решений с асимптотиками $t \to \pm 1$, $\xi, \eta \to 0$, где $\xi, \eta - d$ ва из четырех параметров x, y, z, u.

Это предложение в настоящей работе не доказывается.

Приложение. Нули функции C_3 для невыпуклых симметричных четырехугольников с перпендикулярными диагоналями

Фиксируем масштаб: z=1. Полная система ограничений есть

$$u = x, t = 0, z = 1.$$
 (A.1)

При этих условиях

$$C_3 = 2x(a^2 + d^2) - 2(y+1)ad,$$

и рационализованное выражение R (5.3) факторизуется

$$R = C_3 \cdot (x(a^2 + d^2) + (y+1)ad) = 2(x^2 - y) P_4(x, y),$$

$$P_4(x, y) = (3x^2 + 4x^4) + (1 + 2x^2)y + (2 + 3x^2)y^2 + y^3.$$

При -1 < y < 0 рационализующий множитель положителен, поэтому множества нулей функции $C_3|(A.1)$ и многочлена $P_4(x,z)$ при условии -1 < y < 0 совпадают. Решение с максимальным значением x находится из системы уравнений

$$P(x,z) = 0,$$
 $\partial_z P = (3z+1)(z-2x^2-1) = 0.$

Решение с положительным x единственно:

$$z = -1/3,$$
 $x = \frac{1}{3}\sqrt{2\sqrt{3} - 3} \approx 0.227083.$

При этом

$$a = b \approx 1.025459$$
, $c = d \approx 0.403334$, $p \approx 0.454167$, $q \approx 0.66667$.

Список литературы

- [1] М. Берже. Геометрия, т.1. М.: Мир, 1985.
- [2] А.Д. Брюно. Степенная геометрия в алгебраических и дифференциальных уравнениях. М.: Наука, 1998.
- [3] Г.С.М. Коксетер, С.Л. Грейтцер. Новые встречи с геометрией. М.: Наука, 1978.
- [4] В.В. Прасолов. Задачи по планиметрии, ч.2. М.: Наука, 1986.
- [5] И.Х. Сабитов. Объемы многогранников. М.: Изд. МЦНМО, 2002.