IN THE CLAIMS:

1-10 (canceled)

11. (currently amended)

A method for enhancing adhesion of photoresist, comprising:

providing a substrate;

treating said substrate by a solution with a plurality of bubbles, wherein part of said bubbles being located on a surface of said substrate for playing the role of a photoresist, said solution being able to remove said substrate and said surface being contacted with said solution; and

forming a photoresist on said surface.

12. (original)

The method of claim 11, further comprises putting said substrate in a reactor and immersing said substrate by said solution, and then reducing the pressure of said reactor such that said bubbles are formed in said solution.

13. (original)

The method of claim 11, further comprises putting said substrate in a reactor and immersing said substrate by said solution, and then conveying a gas into said reactor such that said bubbles are formed in said solution.

14. (original)

The method of claim 11, further comprises putting said substrate in a reactor and immersing said substrate by said high pressure solution, and then keeping the normal pressure of said reactor such that said bubbles are formed in said solution.

15. (original)

The method of claim 11, further comprises performing a dry process after said substrate being treated by said solution and before said photoresist being formed.

16. (original)

The method of claim 11, wherein said solution is chosen from a group consisting of: hydrofluoric acid, nitric acid, mixture of hydrofluoric acid and nitric acid, hydrogen peroxide, ammonium fluoride, mixture of hydrogen peroxide and hydrofluoric acid, and mixture of ammonium fluoride and hydrofluoric acid.

17. (currently amended)

A method for forming capacitor, comprising: providing a substrate;

forming a first dielectric layer on said substrate;

forming a hole in said first dielectric layer such that part of said substrate is exposed;

forming a first conductor layer in said hole;

immersing said substrate in a first solution which comprises a plurality of first bubbles, wherein said first solution being able to remove said first dielectric layer and part of said first bubbles being located on a first surface of first dielectric layer for playing the role of a photoresist, said first surface being contacted with said first solution;

removing said first solution;

forming a second conductor layer on both said first dielectric layer and said first conductor layer;

immersing said substrate in a second solution which comprises a plurality of second bubbles, wherein said second solution being able to remove said second conductor layer and part of said second bubbles being located on a second surface of second conductor layer for playing the role of a photoresist, said second surface being contacted with said second solution;

removing said second solution; and

forming a second dielectric layer and a third conductor layer on said second conductor layer.

18. (original)

The method of claim 17, wherein both said first conductor layer and said second conductor layer and said third conductor layer are polysilicon layers.

19-28 (canceled)