

Three-State Buffer: 連接 output

19

Decoder

generate all minterms of input variables

(priority) Encoder:

從 Yn 開始看,如果有 | 就直接 output

ROM: stores an array of binary data

Appendix

Type	Q ⁺		
S-R Latch	S + R'Q		
Gated D Latch	G'Q + GD		
D Flip-Flop	D		
S-R Flip-Flop	S + R'Q		
J-K Flip-Flop	JQ' + K'Q		
T Flip-Flop	TQ' + T'Q		
D-CE Flip-Flop	D(CE) + Q(CE)'		

LII

112

LI3

 $Q^{\dagger} = S + R'Q$

Counter Design:

S-R Flip-Flop:

- 1. 畫 Next State table
- 2. 畫 K-map of ct Bt At

4 用 Excitation table

結合 Next State table

取決於 Flip - Flop 種類: 當Q→Q⁺時 5.R 會是什麼?

Determine the flip flop input equations from the <u>next-state</u> <u>equations</u> using K-maps

> Always copy X's from next state maps onto input maps first

Ту	Туре	Input	Q = 0		Q = 1		Rules for forming input map from next state map		
	of FF		Q+ = 0	Q+ = 1	Q+ = 0	Q+ = 1	Q = 0 Half of Map	Q = 1 Half of Map	
	D	D	0	1	0	1	No change	No change	
	Т	Т	0	1	1	0	No change	Complement	
		S	0	1	0	Х	No change	Replace 1's with X's	
	S-R	R	Х	0	1	0	Replace 0's with X's Replace 1's with 0's	Complement	
	LV	J	0	1	Х	х	No change	Fill in with X's	
	J-K	К	Х	Х	1	0	Fill in with X's	Complement	

得出 Flip-Flop equation C→C⁺ 得 Sc Rc

State Table

- 1. Determine the flip-flop input equations and the output equations from the circuit
- 2. Derive the next-state equation for each flip-flop from its input equations
- 3. Plot a next-state map for each flip-flop
- 4. Combine these maps to form the state table

Moore:

output depend on present state

Mealy:
depend on present state & input

4.5	A ⁺	B ⁺	Z		
AB	X = 0	X = 1	X = 0	X = 1	
S ₀	S ₀	S_1	0	1	
S_1	S_1	S_2	1	0	
S ₂	S ₂	S_0	0	1	
S ₃	S ₃	S_1	0	1	

- ☐ Designing a sequential circuit
 - Construct a state graph or state table (Unit 14)
 - ➤ Simplify it (Unit 15)
 - > Derive flip-flop input equations and output equations (Unit 12)

Construct a state graph (114)

- Steps
 - > Construct sample sequences to help you understand the problem
 - > Determine under what conditions it should reset
 - ➤ If only one or two sequences lead to a nonzero output, construct a partial state graph
 - Another way, determine what sequences or groups of sequences must be remembered by the circuit and set up states accordingly
 - ➤ Each time you add an arrow to the state graph, determine whether it can go to one of the previously defined states or whether a new state must added
 - ➤ Check your graph to make sure there is one and only one path leaving each state for each combination of values of the input variables
 - When your graph is complete, verify it by applying the input sequences formulated in step 1

Implication Table

- ☐ Draw an empty table, where each square represents a pair
- ☐ If outputs are different, give it an X (impossible!)
- ☐ Write down the implied pair in the square
- ☐ Delete self-implied pairs (redundant)

Next	Present	
X = 0	X = 1	Output
D	С	0
F	Н	0
Е	D	1
Α	E	0
С	Α	1
F	В	1
В	Н	0
С	G	1
	X = 0 D F E A C F B	D C F H E D A E C A F B B H

Transcoquano									
undant)									
В	D-F C-H	K	#						
С	х	х							
D	A-D C-E	A-F E-H	Х						
Ε	х	х	-C-E- A-D	Х					
F	х	х	B-D	Х	C-F A-B				
G	В-D С-Н	B€	Х	# F-	Х	Х			
Н	х	х	D-G	Х	A-G	B-6	Х		
	Α	В	С	D	Ε	F	G		

だし(いち) Find equivalent state!

"Another" state graph for "0101/1001" sequence detector

	-/							
	Input	Present	Next	State	Present	Output		
	Sequence	State	X = 0	X = 1	X = 0	X = 1		
	Reset	Α	В	С	0	0		
	0	В	D	E	0	0		
	1	С	F⇒E	$G \rightarrow D$	0	0		
	00	D	Н	I→H	0	0		
	01	Е	J	$K \rightarrow H$	0	0		
	10	F	L⇒J	M⇒H	0	0		
	11	G	N→H	P⇒H	0	0		
	000	Н	А	Α	0	0		
	001	I	А	Α	0	0		
	010	J	А	Α	0	1		
	011	K	А	Α	0	0		
何	100	L	А	Α	0	1		
	101	М	А	Α	0	0		
	110	N	А	Α	0	0		
	111	Р	Α	Α	0	0		

☐ One-hot state assignment: One flip-flop for each state

 \triangleright Example: 3 flip-flops for 3 states (Q₀Q₁Q₂)

• $S_0 = 100$, $S_1 = 010$, $S_2 = 001$

Write next-state and output (Z) equations directly by inspecting the state graph

- $Q_0^+ = F'R'Q_0 + F'RQ_1 + FQ_2$
- $Q_1^+ = F'R'Q_1 + F'RQ_2 + FQ_0$
- $Q_2^+ = F'R'Q_2 + F'RQ_0 + FQ_1$
- $Z = Z_0Q_0 + Z_1Q_1 + Z_2Q_2$

