### In [1]:

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

# Generate dummy data

df = np.random.rand(100)

data = pd.read_csv("/home/c4leb/Desktop/C4LEB/Desktop/python_class/yafDataAnal

# print(data)

# 1. Purpose of Data Visualization
# Data visualization simplifies data for easy understanding.
plt.hist(data['Age'], bins=10)
plt.title("Histogram for Data Distribution")
plt.show()
```

## Histogram for Data Distribution



## In [2]:

1 data ][""]

## Out[2]:

|     | Age  | EstimatedSalary | Purchased |
|-----|------|-----------------|-----------|
| 0   | 19.0 | 19000.0         | 0.0       |
| 1   | 35.0 | 20000.0         | 0.0       |
| 2   | 26.0 | 43000.0         | 0.0       |
| 3   | 27.0 | 57000.0         | 0.0       |
| 4   | 19.0 | 76000.0         | 0.0       |
|     |      |                 |           |
| 395 | 46.0 | 41000.0         | 1.0       |
| 396 | 51.0 | 23000.0         | 1.0       |
| 397 | 50.0 | 20000.0         | 1.0       |
| 398 | 36.0 | 33000.0         | 0.0       |
| 399 | 49.0 | 36000.0         | 1.0       |

400 rows × 3 columns

### In [29]:

```
# 2. Distribution of a Single Continuous Variable
# A histogram is suitable for showing the distribution of a single continuous
plt.hist(data["EstimatedSalary"], bins=10)
plt.title("Histogram for Data Distribution")
plt.show()
```

## Histogram for Data Distribution



### In [41]:

```
# 3. Box Plot Representation
# A box plot represents the interquartile range (IQR) of the data.
data.boxplot(by ='Purchased', column =['EstimatedSalary'], grid = False)
plt.title("Box Plot for Data")
plt.show()
```

## Boxplot grouped by Purchased Box Plot for Data



### In [42]:

```
# 3. Box Plot Representation
# A box plot represents the interquartile range (IQR) of the data.
data.boxplot(by ='Purchased', column =['Age'], grid = False)
plt.title("Box Plot for Data")
plt.show()
```

## Boxplot grouped by Purchased Box Plot for Data



### In [4]:

```
# 4. Comparing Parts to a Whole
# A bar chart is suitable for comparing parts to a whole.
categories = ['A', 'B', 'C', 'D']
values = [30, 45, 15, 10]
plt.bar(categories, values)
plt.title("Bar Chart for Parts to a Whole")
plt.show()
```

### Bar Chart for Parts to a Whole



## In [46]:

```
data['Purchased'].value_counts().plot(kind = "bar")
```

## Out[46]:

<AxesSubplot:xlabel='Purchased'>



## In [5]:

```
# 5. Heatmap
# A heatmap is a graphical representation using colors.
heatmap_data = np.random.rand(10, 10)
plt.imshow(heatmap_data, cmap='viridis')
plt.title("Heatmap Example")
plt.colorbar()
plt.show()
```

# Heatmap Example



## In [53]:

```
import seaborn as sns
sns.heatmap(data.corr(), annot = True, cmap='viridis');
```



### In [6]:

```
# 6. Line Chart for Showing Trends
# Line charts are used for showing trends over time.
time = np.arange(0, 10, 1)
values = np.random.rand(10)
plt.plot(time, values)
plt.title("Line Chart for Showing Trends")
plt.xlabel("Time")
plt.ylabel("Values")
plt.show()
```

## Line Chart for Showing Trends



```
In [62]:
```

```
plt.scatter(data['Age'], data["EstimatedSalary"]);
```



### In [7]:

```
1
2 # 7. Scatter Plot for Relationships
3 # A scatter plot shows relationships between two variables.
4 x = np.random.rand(100)
5 y = 2 * x + np.random.rand(100)
6 plt.scatter(x, y)
7 plt.title("Scatter Plot for Relationships")
8 plt.xlabel("X")
9 plt.ylabel("Y")
10 plt.show()
```

## Scatter Plot for Relationships



## In [8]:

```
1 # 8. Log-Scale in Data Visualization
2 # Using a log-scale compresses data values.
3 x = np.arange(1, 10)
4 y = 10**x
5 plt.plot(x, y)
6 plt.yscale('log')
7 plt.title("Log-Scale Data Visualization")
8 plt.xlabel("X")
9 plt.ylabel("Y (log-scale)")
10 plt.show()
```

## Log-Scale Data Visualization



### In [9]:

```
# 9. Color Scheme - Viridis
# Viridis is a color scheme for sequential data.
heatmap_data = np.random.rand(10, 10)
plt.imshow(heatmap_data, cmap='viridis')
plt.title("Viridis Color Scheme")
plt.colorbar()
plt.show()
```

## Viridis Color Scheme



### In [10]:

```
# 1 # 10. Legend in Data Visualization
2 # A legend is a guide to interpreting colors or symbols in the chart.
3 x = np.arange(0, 10, 1)
4 y1 = x
5 y2 = 2 * x
6 plt.plot(x, y1, label='Line 1')
7 plt.plot(x, y2, label='Line 2')
8 plt.legend()
9 plt.title("Data Visualization with Legend")
10 plt.show()
```

## Data Visualization with Legend



#### In [ ]:

1