Menor Caminho em Grafos

Luciano Ribeiro

24 de Maio de 2022

Problema

Encontrar os menores caminhos de um vértice $v \in V$ para os demais vértices de um grafo ponderado G = (V, E)

Menor caminho entre s e t

Sequência de vértices entre a origem e o destino:

$$path = (s, v_1, v_2, \cdots, t).$$

Estrutura ótima

O menor caminho s até t possui menores caminhos dentro de si. Se o menor caminho de s para t passa por v_k , então o caminho (s, v_1, \dots, v_k) é o menor caminho de s até v_k .

Exemplo 1

Determine os caminhos mais curtos a partir da origem A neste grafo:

A começa com distância 0, pois é a origem, e a distância atual de A para os outros vértices é inicializada como ∞ . Na prática, pode ser utilizado um valor muito grande e que não seja uma distância válida para o problema.

Α	В	С	D	Е
0	∞	∞	∞	∞
•				
•				
•				
•				
•				

Em cada iteração do algoritmo, o vértice com menor distância e ainda não processado é escolhido. Na primeira iteração, é escolhido o vértice inicial da busca, nesse caso o vértice A. Processando cada aresta (*relax*) que sai do vértice selecionado.

Α	В	С	D	Е
0	∞	∞	∞	∞
•	∞ 10 _A	∞	∞	∞ 5 _A
•				
•				
•				
•				

Seja V o vertice selecionado e para cada W vizinho de V, faça:

$$dist[W] = min(dist[W], dist[V] + custo_{VW})$$
 (1)

Escolhe-se para continuar a busca outro vértice que possui a menor distância mas que ainda não foi processado, neste caso o *E*.

Α	В	С	D	Е
0	∞	∞	∞	∞
•	10 _A	∞	∞	5_A
•				•
•				•
•				•
•				•

O vértice E foi escolhido e não o B pois como E possui a menor distância atual, podemos assumir que não tem como diminuir ela no futuro. O mesmo não é verdade para B.

E assim por diante.

Α	В	С	D	Е
0	∞	∞	∞	∞
•	10 _A	∞	∞	5 _A
•	8 _E	14 _E	7 _E	•
•				•
•				•

8/21

Α	В	С	D	Е
0	∞	∞	∞	∞
•	10 _A	∞	∞	5 _A
•	8 _E	14 _E	7 _E	•
•			•	•
•			•	•

Α	В	С	D	Е
0	∞	∞	∞	∞
•	10 _A	∞	∞	5 _A
•	8 _E	14 _E	7 _E	•
•	8 _E	13 _D	•	•
•			•	•
•			•	•

Α	В	С	D	Е
0	∞	∞	∞	∞
•	10 _A	∞	∞	5 _A
•	8 _E	14 _E	7 _E	•
•	8 _E	13 _D	•	•
•	•		•	•
•	•		•	•

Α	В	С	D	E
0	∞	∞	∞	∞
•	10 _A	∞	∞	5 _A
•	8 _E	14 _E	7 _E	•
•	8 _E	13 _D	•	•
•	•	9 _B	•	•
•	•	•	•	•

Α	В	С	D	Е
0	∞	∞	∞	∞
•	10 _A	∞	∞	5 _A
•	8 _E	14 _E	7 _E	•
•	8 _E	13 _D	•	•
•	•	9 _B	•	•
•	•	•	•	•

Após a execução do *Dijkstra*, as arestas destacadas formam uma *árvore*: um grafo direcionado e sem ciclos.

Exemplo 2

Encontrar caminhos mais curtos a partir da origem *E* neste grafo.

Exemplo 2

Encontrar caminhos mais curtos a partir da origem *E* neste grafo.

E	Α	В	С	D	S
0	∞	∞	∞	∞	∞
•					
•					
•					
•					
•					

Е	Α	В	С	D	S
0	∞	$_{\infty}$	∞	∞	∞
•	3 _E	1 _E	∞	∞	∞
•		•			
•		•			
•		•			
•		•			

Ε	Α	В	С	D	S
0	∞	∞	∞	∞	∞
•	3 _E	1 _E	∞	∞	∞
•	2 _B	•	4 _B	6 _B	∞
•	•	•			
•	•	•			
•	•	•			

Ε	Α	В	С	D	S
0	∞	∞	∞	∞	∞
•	3 _E	1 _E	∞	∞	∞
•	2 _B	•	4 _B	6 _B	∞
•	•	•	4 _B	6 _B	∞
•	•	•	•		
•	•	•	•		

E	Α	В	С	D	S
0	∞	∞	∞	∞	∞
•	3 _E	1 _E	∞	∞	∞
•	2 _B	•	4 _B	6 _B	∞
•	•	•	4 _B	6 _B	∞
•	•	•	•	5 _C	7 _C
•	•	•	•	•	

E	Α	В	С	D	S
0	∞	∞	∞	∞	∞
•	3 _E	1 _E	∞	∞	∞
•	2 _B	•	4 _B	6 _B	∞
•	•	•	4 _B	6 _B	∞
•	•	•	•	5 _C	7 _C
•	•	•	•	•	6 _D

Е	Α	В	С	D	S
0	∞	∞	∞	∞	∞
•	3 _E	1 _E	∞	∞	∞
•	2 _B	•	4 _B	6 _B	∞
•	•	•	4 _B	6 _B	∞
•	•	•	•	5 _C	7 _C
•	•	•	•	•	6 _D