Infinite Games

Lecture 15

Martin Zimmermann

Universität des Saarlandes

February 6th, 2014

Plan for Today

- Review
- Exam
 - Organizational matters
 - Questions
- Outlook: even more games

Review

Reachability

■ Name:

Reachability Game

■ Format:

(A, REACH(R)) with $R \subseteq V$

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

 $\mathrm{Occ}(\rho) \cap R \neq \emptyset$

linear time in |E|

attractor

uniform positional

uniform positional

safety

Safety

■ Name:

Safety Game

■ Format:

 $(\mathcal{A}, \mathtt{SAFE}(S))$ with $S \subseteq V$

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

 $\mathrm{Occ}(\rho)\subseteq S$ linear time in |E| dualize + attractor uniform positional uniform positional

reachability

Büchi

■ Name:

Büchi Game

■ Format:

 $(\mathcal{A}, \mathtt{B\ddot{U}CHI}(F))$ with $F\subseteq V$

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

 $\operatorname{Inf}(\rho) \cap F \neq \emptyset$

D

iterated attractor uniform positional uniform positional

co-Büchi

Co-Büchi

■ Name:

Co-Büchi Game

■ Format:

 $(\mathcal{A}, \operatorname{COB\ddot{\cup}CHI}(\mathcal{C}))$ with $\mathcal{C} \subseteq \mathcal{V}$

■ Winning condition:

 $Inf(\rho) \subseteq C$

Solution complexity:

Р

■ Algorithm:

dualize + iterated attractor uniform positional

Memory requirements for Player 0:Memory requirements for Player 1:

uniform positional

■ Dual game:

Büchi

Parity

■ Name: Parity Game

■ Format: $(\mathcal{A}, \mathtt{PARITY}(\Omega))$ with $\Omega \colon V \to \mathbb{N}$

■ Winning condition: $\min(\operatorname{Inf}(\Omega(\rho)))$ even

■ Solution complexity: NP ∩ co-NP

■ Algorithm: progress measures and many others

■ Memory requirements for Player 0: uniform positional

■ Memory requirements for Player 1: uniform positional

■ Dual game: parity

Muller

■ Name: Muller Game
■ Format: $(A, \text{MULLER}(\mathcal{F}))$ with $\mathcal{F} \subseteq 2^V$

■ Winning condition: $\operatorname{Inf}(\rho) \in \mathcal{F}$

Solution complexity:
 Algorithm:
 P, NP ∩ co-NP, PSPACE-complete reduction to parity and many others

Memory requirements for Player 0: |V|!

lacktriangle Memory requirements for Player 1: |V|!

■ Dual game: Muller

Pushdown Parity

■ Name:

Pushdown Parity Game

■ Format: $(A, PARITY(\Omega))$ with A induced by PDS P

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

 $\min(\operatorname{Inf}(\Omega(\rho)))$ even

EXPTIME-complete

reduction to parity games infinite (pd. transducer)

infinite (pd. transducer)

pushdown parity

Generalized Reachability

■ Name:

Generalized Reachability Game

■ Format:

 $(\mathcal{A}, \text{CHREACH}(\mathcal{R}))$ with $\mathcal{R} \subseteq 2^V$

■ Winning condition:

 $\forall R \in \mathcal{R}. \operatorname{Occ}(\rho) \cap R \neq \emptyset$

PSPACE-complete

Solution complexity:Algorithm:

Simulate for $|V| \cdot |\mathcal{R}|$ steps

■ Memory requirements for Player 0:

2|10|

■ Memory requirements for Player 1:

 $\binom{|\mathcal{R}|}{\lfloor |\mathcal{R}|/2 \rfloor}$

■ Dual game:

disjunctive safety

Weak Parity

■ Name:

Weak Parity Game

■ Format:

 $(\mathcal{A}, \operatorname{WPARITY}(\Omega))$ with $\Omega \colon V \to \mathbb{N}$

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

 $min(Occ(\Omega(\rho)))$ even

D

iterated attractor uniform positional uniform positional

weak parity

Weak Muller

■ Name: Weak Muller Game

■ Format: $(A, \text{WMULLER}(\mathcal{F}))$ with $\mathcal{F} \subseteq 2^V$

■ Winning condition: $\operatorname{Occ}(\rho) \in \mathcal{F}$ ■ Solution complexity: **PSPACE**-complete

■ Algorithm: reduction to weak parity or direct one

Memory requirements for Player 0: $2^{|V|}$

■ Memory requirements for Player 1: $2^{|V|}$

■ Dual game: weak Muller

Request-Response

Name: Request-Response Game

 $(A, \text{REQRES}((Q_j, P_j)_{i \in [k]}))$ with $Q_j, P_j \subseteq V$ ■ Format:

 $\forall j \forall n (\rho_n \in Q_i \rightarrow \exists m \geq n. \, \rho_m \in P_i)$ ■ Winning condition:

Solution complexity:

EXPTIME-complete reduction to Büchi

Memory requirements for Player 0:

 $k \cdot 2^k$

Memory requirements for Player 1:

■ Dual game:

Algorithm:

n/a

Rabin

■ Name: Rabin Game

■ Format: $(A, \text{RABIN}((Q_j, P_j)_{j \in [k]}))$ with $Q_j, P_j \subseteq V$

■ Winning condition: $\exists j (\operatorname{Inf}(\rho) \cap Q_j \neq \emptyset \wedge \operatorname{Inf}(\rho) \cap P_j = \emptyset)$

Solution complexity: NP-complete

Algorithm: reduction to parity or direct one
 Memory requirements for Player 0: uniform positional

■ Memory requirements for Player 1: k!

■ Dual game: Streett

Streett

Name: Streett Game

■ Format: $(A, STREETT((Q_j, P_j)_{j \in [k]}))$ with $Q_j, P_j \subseteq V$

■ Winning condition: $\forall j (\operatorname{Inf}(\rho) \cap Q_j \neq \emptyset \to \operatorname{Inf}(\rho) \cap P_j \neq \emptyset)$

Solution complexity: co-NP-complete

Algorithm: reduction to parity or direct one

Memory requirements for Player 0: k!
 Memory requirements for Player 1: uniform positional

■ Dual game: Rabin

S2S and Parity Tree Automata

- S2S: Monadic Second-order logic over two successors
- PTA: Parity tree automata

Both formalisms are equivalent:

- lacksquare For every $\mathscr A$ exists $arphi_\mathscr A$ s.t. $t\in\mathcal L(\mathscr A)\Leftrightarrow t\modelsarphi_\mathscr A$
- lacksquare For every arphi exists \mathscr{A}_{arphi} s.t. $t \models arphi \Leftrightarrow t \in \mathcal{L}(\mathscr{A}_{arphi})$

Consequence: Satisfiability of S2S reduces to PTA emptiness

(Parity) Games everywhere:

- Acceptance game $\mathcal{G}(\mathscr{A},t)$ for complement closure of PTA
- Emptiness game $\mathcal{G}(\mathscr{A})$ for emptiness check of PTA

"The mother of all decidability results"

Exam

Organizational Matters

End-of-term exam

■ When: February 13th, 2014, 09:30 - 11:30

■ Where: HS 003, Building E1.3

■ Mode: Open-book

■ What to bring: Student ID

Exam inspection: Feb. 14th, 2014, 15:00 - 16:00 (Room 328?)

Organizational Matters

End-of-term exam

■ When: February 13th, 2014, 09:30 - 11:30

■ Where: HS 003, Building E1.3

■ Mode: Open-book

■ What to bring: Student ID

Exam inspection: Feb. 14th, 2014, 15:00 - 16:00 (Room 328?)

End-of-semester exam: March 20th, 2014 (more information after first exam)

Questions

Challenge us before we challenge you in the exam.

Questions

Challenge us before we challenge you in the exam.

There will also be a tutorial where you can ask further questions!

■ When: March 11th, 2014, 16:00 - 18:00

■ Where: SR U.11, Building E2.5

Outlook

(Simple) Stochastic Games

■ Enter a new player (♦), it flips a coin to pick a successor.

(Simple) Stochastic Games

■ Enter a new player (\diamondsuit) , it flips a coin to pick a successor.

- No (sure) winning strategy...
- ...but one with probability 1.

(Simple) Stochastic Games

■ Enter a new player (♦), it flips a coin to pick a successor.

- No (sure) winning strategy...
- ...but one with probability 1.

More formally: Value of the game

$$\max_{\sigma} \min_{\tau} p_{\sigma,\tau}$$

where $p_{\sigma,\tau}$ is the probability that Player 0 wins when using strategy σ and Player 1 uses strategy τ .

■ Both players choose their moves simultaneously Matching pennies:

■ Both players choose their moves simultaneously

Matching pennies: randomized strategy winning with probability 1.

■ Both players choose their moves simultaneously

Matching pennies: randomized strategy winning with probability 1.

The "Snowball Game":

■ Both players choose their moves simultaneously

Matching pennies: randomized strategy winning with probability 1.

The "Snowball Game": for every ε , randomized strategy winning with probability $1-\varepsilon$.

Games of Imperfect Information

- Players do not observe sequence of states, but sequence of non-unique observations (yellow, purple, blue, brown).
- Player 0 picks action (a,b), Player 1 resolves non-determinism.

Games of Imperfect Information

- Players do not observe sequence of states, but sequence of non-unique observations (yellow, purple, blue, brown).
- Player 0 picks action (a,b), Player 1 resolves non-determinism.

No winning strategy for Player 0: every fixed choice of actions to pick at $(\bigcirc\bigcirc)^*(\bigcirc\bigcirc)$ can be countered by going to v_1 or v_2 .

- Level-1 stack: finite sequence over Γ (standard stack)
- Level-(k + 1) stack: finite sequence of level-k stacks

- Level-1 stack: finite sequence over Γ (standard stack)
- Level-(k + 1) stack: finite sequence of level-k stacks
- Operations (various definitions possible):
 - $\operatorname{push}_{\gamma}$ and $\operatorname{pop}_{\gamma}$ for $\gamma \in \Gamma$: push and pop on level 1

 - $delete_k$: delete the topmost level-k stack

- Level-1 stack: finite sequence over Γ (standard stack)
- Level-(k + 1) stack: finite sequence of level-k stacks
- Operations (various definitions possible):
 - $\operatorname{push}_{\gamma}$ and $\operatorname{pop}_{\gamma}$ for $\gamma \in \Gamma$: push and pop on level 1

 - $delete_k$: delete the topmost level-k stack

Example: on the blackboard

- Level-1 stack: finite sequence over Γ (standard stack)
- Level-(k + 1) stack: finite sequence of level-k stacks
- Operations (various definitions possible):
 - $\operatorname{push}_{\gamma}$ and $\operatorname{pop}_{\gamma}$ for $\gamma \in \Gamma$: push and pop on level 1
 - $copy_k$: copy the topmost level-k stack and add it to the level-(k+1) stack
 - $delete_k$: delete the topmost level-k stack

Example: on the blackboard

Theorem

Parity games on configuration graphs of higher-order pushdown automata can be solved algorithmically.

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

W	0	0	1	1	0	0	1	2
$\begin{array}{c} \operatorname{Sc}_{\{0\}} \\ \operatorname{Acc}_{\{0\}} \end{array}$								
$\begin{array}{c} \operatorname{Sc}_{\{0,1,2\}} \\ \operatorname{Acc}_{\{0,1,2\}} \end{array}$								

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

w	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}} \ \mathrm{Acc}_{\{0\}}$	1							
$\mathrm{Acc}_{\{0\}}$	Ø							
$\mathrm{Sc}_{\{0,1,2\}}$								
$\frac{\mathrm{Sc}_{\{0,1,2\}}}{\mathrm{Acc}_{\{0,1,2\}}}$								

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

W	0	0	1	1	0	0	1	2
$Sc_{\{0\}} \\ Acc_{\{0\}}$	1	2						
$Acc_{\{0\}}$	Ø	Ø						
$\begin{array}{c} \mathrm{Sc}_{\{0,1,2\}} \\ \mathrm{Acc}_{\{0,1,2\}} \end{array}$								
$\mathrm{Acc}_{\{0,1,2\}}$								

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

W	0	0	1	1	0	0	1	2
$Sc_{\{0\}} \\ Acc_{\{0\}}$	1	2	0					
$Acc_{\{0\}}$	Ø	Ø	Ø					
$Sc_{\{0,1,2\}} \\ Acc_{\{0,1,2\}}$								

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

w	0	0	1	1	0	0	1	2
$\begin{array}{c} \operatorname{Sc}_{\{0\}} \\ \operatorname{Acc}_{\{0\}} \end{array}$	1 Ø	2 Ø	0 Ø	0 Ø				
$\frac{\operatorname{Sc}_{\{0,1,2\}}}{\operatorname{Acc}_{\{0,1,2\}}}$								

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

No longer works for Muller games. Need scoring functions:

W	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1			
$\mathrm{Acc}_{\{0\}}$	Ø	Ø	Ø	Ø	Ø			
$Sc_{\{0,1,2\}}$								

 $Acc_{\{0,1,2\}}$

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2		
$\mathrm{Acc}_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø		
Co								

 $Sc_{\{0,1,2\}}$ $Acc_{\{0,1,2\}}$

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

No longer works for Muller games. Need scoring functions:

W	0	0	1	1	0	0	1	2
$\begin{array}{c} \operatorname{Sc}_{\{0\}} \\ \operatorname{Acc}_{\{0\}} \end{array}$	1 Ø	2 Ø	0 Ø	0 Ø	1 Ø	2 Ø	0 Ø	

 $Sc_{\{0,1,2\}} \\ Acc_{\{0,1,2\}}$

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

No longer works for Muller games. Need scoring functions:

W	0	0	1	1	0	0	1	2
$Sc_{\{0\}} \\ Acc_{\{0\}}$	1	2	0	0	1	2	0	0
	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

 $Sc_{\{0,1,2\}}$ $Acc_{\{0,1,2\}}$

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

W	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\mathrm{Acc}_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$\mathrm{Sc}_{\{0,1,2\}}$	0							
$\mathrm{Acc}_{\{0,1,2\}}$	{0}							

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

W	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\mathrm{Acc}_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$Sc_{\{0,1,2\}}$	0	0						
$\mathrm{Acc}_{\{0,1,2\}}$	{0}	{0}						

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

W	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\mathrm{Acc}_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$Sc_{\{0,1,2\}}$	0	0	0					
$\mathrm{Acc}_{\{0,1,2\}}$	{0}	{0}	$\{0, 1\}$					

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

w	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\mathrm{Acc}_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$Sc_{\{0,1,2\}}$	0	0	0	0				
$\mathrm{Acc}_{\{0,1,2\}}$	{0}	{0}	$\{0, 1\}$	$\{0, 1\}$				

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

$\mathrm{Sc}_{\{0\}}$ 1 2 0 0 1 2	0	0
$\mathrm{Acc}_{\{0\}}$ Ø Ø Ø Ø	Ø	Ø
${ m Sc}_{\{0,1,2\}}$ 0 0 0 0 0		
$Acc_{\{0,1,2\}}$ {0} {0} {0,1} {0,1}		

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

W	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\mathrm{Acc}_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$Sc_{\{0,1,2\}}$	0	0	0	0	0	0		
$\mathrm{Acc}_{\{0,1,2\}}$	{0}	{0}	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$		

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

w	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\mathrm{Acc}_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$Sc_{\{0,1,2\}}$	0	0	0	0	0	0	0	
$\mathrm{Acc}_{\{0,1,2\}}$	{0}	{0}	$\{0, 1\}$	$\{0, 1\}$	$\{0, 1\}$	$\{0, 1\}$	$\{0, 1\}$	

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

w	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\mathrm{Acc}_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$Sc_{\{0,1,2\}}$	0	0	0	0	0	0	0	1
$\mathrm{Acc}_{\{0,1,2\}}$	{0}	{0}	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	Ø

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\mathrm{Acc}_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$Sc_{\{0,1,2\}}$	0	0	0	0	0	0	0	1
$\mathrm{Acc}_{\{0,1,2\}}$	{0}	{0}	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	Ø

Theorem

Player i has strategy to bound the opponent's scores by two when starting in $W_i(G)$.

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy ⇒ winning regions preserved

No longer works for Muller games. Need scoring functions:

W	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\mathrm{Acc}_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$Sc_{\{0,1,2\}}$	0	0	0	0	0	0	0	1
$\mathrm{Acc}_{\{0,1,2\}}$	{0}	{0}	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	Ø

Theorem

Player i has strategy to bound the opponent's scores by two when starting in $W_i(\mathcal{G})$.

Corollary: Stopping play after first score reaches value three preserves winning regions (at most exponential play length)

Games with Costs

■ Parity game: Player 0 wins from everywhere, but it takes arbitrarily long two "answer" 1 by 0.

Games with Costs

■ Parity game: Player 0 wins from everywhere, but it takes arbitrarily long two "answer" 1 by 0.

■ Add edge-costs: Player 0 wins if there is a bound b and a position n such that every odd color after n is followed by a smaller even color with cost $\leq b$ in between \Rightarrow Player 1 wins example from everywhere (stay longer and longer in 2).

Games with Costs

■ Parity game: Player 0 wins from everywhere, but it takes arbitrarily long two "answer" 1 by 0.

■ Add edge-costs: Player 0 wins if there is a bound b and a position n such that every odd color after n is followed by a smaller even color with cost $\leq b$ in between \Rightarrow Player 1 wins example from everywhere (stay longer and longer in 2).

Theorem

Parity games with costs are determined, Player 0 has positional winning strategies, and they can be solved in $NP \cap co-NP$.

 More winning conditions: various quantitative conditions (parity with costs, waiting times for RR games, and many more)

- More winning conditions: various quantitative conditions (parity with costs, waiting times for RR games, and many more)
- Games on timed automata ⇒ uncountable arenas

- More winning conditions: various quantitative conditions (parity with costs, waiting times for RR games, and many more)
- Games on timed automata ⇒ uncountable arenas
- Play even longer: games of ordinal length

- More winning conditions: various quantitative conditions (parity with costs, waiting times for RR games, and many more)
- Games on timed automata ⇒ uncountable arenas
- Play even longer: games of ordinal length
- Games with delay: Player 0 is allowed to skip some moves to obtain lookahead on Player 1's moves. Basic question: what kind of lookahead is necessary to win.

- More winning conditions: various quantitative conditions (parity with costs, waiting times for RR games, and many more)
- Games on timed automata ⇒ uncountable arenas
- Play even longer: games of ordinal length
- Games with delay: Player 0 is allowed to skip some moves to obtain lookahead on Player 1's moves. Basic question: what kind of lookahead is necessary to win.
- More than two players ⇒ no longer zero-sum games. Requires whole new theory (equilibria).

- More winning conditions: various quantitative conditions (parity with costs, waiting times for RR games, and many more)
- Games on timed automata ⇒ uncountable arenas
- Play even longer: games of ordinal length
- Games with delay: Player 0 is allowed to skip some moves to obtain lookahead on Player 1's moves. Basic question: what kind of lookahead is necessary to win.
- More than two players ⇒ no longer zero-sum games. Requires whole new theory (equilibria).

And: any combination of extensions discussed above.

■ Even pushdown games can be played in finite time. What about higher-order pushdown games?

- Even pushdown games can be played in finite time. What about higher-order pushdown games?
- How to compute optimal strategies for parity games with costs?

- Even pushdown games can be played in finite time. What about higher-order pushdown games?
- How to compute optimal strategies for parity games with costs?
- Games with delay: how much lookahead is necessary for different winning conditions? What effect has lookahead on the memory requirements?
- **.**..

- Even pushdown games can be played in finite time. What about higher-order pushdown games?
- How to compute optimal strategies for parity games with costs?
- Games with delay: how much lookahead is necessary for different winning conditions? What effect has lookahead on the memory requirements?
- **.**..
- Your own idea?

- Even pushdown games can be played in finite time. What about higher-order pushdown games?
- How to compute optimal strategies for parity games with costs?
- Games with delay: how much lookahead is necessary for different winning conditions? What effect has lookahead on the memory requirements?
- **.**..
- Your own idea?
- Generalized reachability games with sets of size two: P, NP, or PSPACE?

- Even pushdown games can be played in finite time. What about higher-order pushdown games?
- How to compute optimal strategies for parity games with costs?
- Games with delay: how much lookahead is necessary for different winning conditions? What effect has lookahead on the memory requirements?
- **.**..
- Your own idea?
- Generalized reachability games with sets of size two: P, NP, or PSPACE?
- Exact complexity of parity games.

Thank You &

Good luck for the exam