Introdução à Computação Gráfica

Marcel P. Jackowski mjack@ime.usp.br

Aula #19

Perguntas

- Qual é o uso mais comum de CG hoje em dia ?
- O que faremos com este aumento contínuo em poder de processamento?
 - A maioria das aplicações já tem o que necessitam...
- Qual a porcentagem de código de uma aplicação destinada à interface com usuário (UI)?
- O que diferencia as diversas aplicações ?

Poder computacional vs. cerebral

Use compute power in UI to increase b/w to the brain

Uls são importantes!

- Pode virar um caso de vida ou morte
- Queda de um Boeing 757 em 1995, em Cali, Colômbia, devido à um ambiguidade em um dos comandos do piloto automático

Um extremo: Microsoft Word

Outro extremo: Myst - Revelations

Existe uma interface ideal?

- Não! Elas são um mal necessário!
- Desejamos que a comunicação e o controle seja feita da mesma forma que na vida real
 - Interação com objetos e agentes
- Modelos de agentes: Jeeves, HAL-9000
 - Entender o contexto: físico, pessoal, social, etc...
 - Inferir intenção
- Futuro: interfaces cérebro-máquina
- Hoje: Uls transparentes e fluídicas

Interação homem-computador (IHC)

- Estudo da interação dos humanos com computadores;
- Desenvolvimento de sistemas de processamento de informações ergonômicos:
 - Eficientes
 - Fáceis de utilizar
 - Adaptáveis ao contexto de utilização

Como se dá essa interação ?

- Interface entre humanos e computadores se dá através de canais de entrada e saída:
 - Visão
 - Audição
 - Tato
 - Sistemas hápticos
 - Paladar ?
 - Olfato ?

Variabilidade de percepção

- Existe grande variabilidade no grau de percepção de estímulos
 - visuais
 - auditórios,
 - táteis, olfatórios e no paladar
- Sistemas IHC devem se adaptar a esta variabilidade, sempre que possível.

Interação homem-computador (IHC)

Disciplina preocupada com:

- Design
- Implementação
- Avaliação

de sistemas interativos de processamento de informações para humanos e seus fenômenos.

MAC0446/5768: Princípios de IHC

http://www.sigchi.org/

Interface

 Conjunto de dispositivos de hardware e software que possibilitam o usuário comandar, controlar e supervisionar um sistema interativo.

Design de interfaces

O que há de bom e de ruim na interface abaixo ?

Alguns maus exemplos

Turning off the Office Assistant.

You've hidden me several times now. Would you like to permanently turn me off or just hide me again?

- No, just hide me
- Yes, turn me off
- Change other options

Interação vs Interface

- Componentes: botões, menus, cores, textos, animações, etc.
- Eles são são suficientes para que um sistema seja utilizável ?
- Para medir a usabilidade:
 - Tempo de treinamento;
 - Velocidade de uso;
 - Taxa de erro;
 - Facilidade em recordar;
 - Satisfação objetiva;
 - etc;

Interação vs interface

- A interface conta muito, mas a interação a precede:
 - Sequência de ações necessárias para realizar uma tarefa
 - Adequação entre o sistema e o contexto de utilização.

Interface gráfica

- Evolução:
 - Linha de comando
 - Acesso a uma função do sistema;
 - Menus e telas de entrada de dados
 - Acesso a uma aplicação (subconjunto de funções de um sistema)
 - Janelas múltiplas, interfaces icônicas e manipulação direta
 - Acesso a todas as funções de um sistema.

Interatividade

- Grau de interatividade:
 - Número e natureza das trocas de informações com os usuários.
- Dois elementos importantes:
 - Execução de várias tarefas em paralelo
 - Advento das interfaces gráficas

Breve história das Uls

 1963, Ivan Sutherland lançou o Sketchpad, contendo botões físicos, teclas, e mecanismos para translação e zoom.

- 1968, Engelbart demonstrou um sistema de hipermídia que incluia janelas, mouse, teclado e interface baseada em comandos
- 1970, Engelbart patentou o mouse
 - Apple "empresta" o mouse da Xerox PARC; que tinha "emprestado" de Engelbart

Breve história das Uls

 1973, Xerox PARC produziu o Alto, a primeira workstation pessoal. Era baseada em display gráfico bitmap, com mouse, Ethernet, e arquitetura clienteservidor. Ela também tinha o primeiro editor de texto WYSIWYG, Smalltalk (Alan Kay, Adele Goldberg, et. al.), e GUI WIMP incluindo gerenciador de janelas

Smalltalk-80 screenshot

Breve história das Uls

1981, Xerox apresentou o Star Information System baseado em

janelas sobrepostas

- 1984, Apple lançou o primeiro Mac como o primeiro PC gráfico, baseado no Alto e o Star
- 1985, Microsoft Windows, é considerado uma imitação dos Macs com poucas melhorias
 - Famosa guerra legal entre Apple e Microsoft em relação ao Windows usar ícones, cursores, etc.
 - Apple perde todos os casos

O ciclo de interação

Padrão MVC (Model-View-Controller)

Manipulação direta

"Point and click instead of remember and type" Schneiderman, 1983

- Baseado em 3 princípios:
 - Representação vísivel dos objetos
 - Utilização de ações físicas para manipulação
 - Operações rápidas, incrementais e reversíveis

Periféricos de entrada

- Absoluta:
 - Tablets, telas sensíveis ao toque, caneta ótica
- Relativa:
 - Mouse, joystick, trackball, sensor de movimentos
- Direta:
 - Tela sensível ao toque
- Indireta:
 - Mouse, joystick, trackball

Gerenciamento de periféricos

Programação por eventos

- O programa responde à eventos;
- Os eventos, por sua vez, são interceptados por funções que definem a sua utilização;
- As funções que processam os eventos devem saber o contexto e o tipo de evento passada na variável.

Interfaces WIMP (1980)

- Windows
- Icons
- Menus and controls
- Pointing device

GLUT

Interface programável pelo usuário

```
(...)
menuFondId = glutCreateMenu (menuFond);
glutAddMenuEntry ("Noir", 0);
glutAddMenuEntry ("Rouge", 1);
glutAddMenuEntry ("Vert", 2);
glutAddMenuEntry ("Bleu", 3);
glutAddMenuEntry ("Blanc", 4);
//Menu principal
glutCreateMenu (menuGeneral);
glutAddSubMenu ("Fond", menuFondId);
glutAddMenuEntry ("Raffraichir", 0);
glutAddMenuEntry ("Quitter", 1);

//attache le menu au bouton droit de la souris
glutAttachMenu (GLUT_RIGHT_BUTTON);
```

criação da interface

exemplo de interface

GLUI

- Simples, porém utiliza-se
 - (void *)
 - variáveis globais
- Windows e Linux-Unix

```
(...)
GLUI *glui = GLUI_Master.create_glui( "GLUI" );
  glui->add_checkbox( "Wireframe", &wireframe );
  GLUI_Spinner *segment_spinner =
      glui->add_spinner( "Segments:",
GLUI_SPINNER_INT, &segments );
  segment_spinner->set_int_limits( 3, 60 );

  glui->set_main_gfx_window( main_window );

  /* We register the idle callback with GLUI,
  *not* with GLUT */
  GLUI_Master.set_glutIdleFunc( myGlutIdle );

  glutMainLoop();
```


GLUI

http://www.cs.unc.edu/~rademach/glui/ screen3.gif

FLTK

Qt (antes Trolltech, agora Nokia)

- Multiplataforma (Unix, Windows, Mac, etc)
- Qt designer
- Passagem de mensagens entre objetos;

wxWidgets

- Multiplataforma
- Baseada em objetos (C++)

Realidade virtual (pós-WIMP)

- Salto em relação às interfaces gráficas ("WIMP")
- Caracterizada pela sensação de presença ou imersão dentro da cena
- A qualidade desta imersão, ou grau de ilusão, ou quão real esta ilusão parece ser, depende da interatividade e do grau de realismo que o sistema é capaz de proporcionar

Realidade virtual

Mover ou selecionar um objeto

Tarefas elementares

- Desenho
- Seleção
- Especificação de argumentos e propriedades
- Transformações
- Etc

Dispositivos virtuais

- Widgets 2D e 3D
 - Parte de sistemas de janelas, toolkit de UI ou ambiente 3D
 - Widgets combinação de comportamento e geometria
- Motivação
 - Hardware avançado é caro e nem sempre disponível para todas as plataformas
 - A maioria dos usuários sabem como usar mouse e teclado
- Ineficiente ter que trocar de dispositivo frequentemente

Widgets 2D

- Sistemas de janelas (e.g. X, Mac, Windows)
 - window
 - scrollbar

- UI toolkits (e.g. Java Swing/AWT, Motif, Windows Forms, Cocoa, Qt, WPF)
 - button
 - dialog box
 - drawing area
 - object handles

Tarefas elementares

- Desenho
 - Textos
 - Quantidades (potenciômetros)
 - Posições (pontos)
 - Traçados (amostragem)

Tarefas elementares

Transformações

Seleção 2D

- Seleção de um grupo de objetos
 - Apontador
 - Retângulo elástico
 - Laço
 - Proximidade
 - Hierárquica

Seleção 3D

- Mais delicada:
 - Envolve transformações complexas
 - Inversa da projeção
 - Projeções em 2D (vários candidatos a seleção)

Widgets 3D

- Ambiguidade
 - Gesto em 2D vs movimento em 3D
 - Interface deve fazer importantes decisões
- Diferenças fundamentais entre 2D e 3D
 - Sistemas de coordenadas
 - Superfícies escondidas
 - Primitivas mais complexas (objetos 3D, e não janelas 2D)
- Combinar geometria & comportamento
 - Fazer com que o usuário consiga inferir a funcionalidade da widget de acordo com a sua geometria
 - Reduzir a distância cognitiva entre a função que você está realizando vs. a interação que você está fazendo.

Translação em 2D ou 3D ?

- Axis-aligned

- Screen-aligned

- Surface-aligned

Esfera virtual (Chen'88)

 Projeta movimentos do mouse na superfície de uma esfera

- Noção de um buffer de seleção (picking)
- Especificação de um raio de seleção
- Acumulação da identificação dos objetos interceptados pelo raio

- Especificação de um buffer de seleção que servirá para acumular informações dos objetos interceptados;
- Entrar no modo de seleção;
- Definir o raio de seleção (ex: cursor);
- Inicializar a pilha de nomes dos objetos contidos na cena;
- Desenhar os objetos e seus atributos de nomes colocados na pilha;
- Sair do modo de seleção;
- Examinar o buffer de seleção para determinar o objeto selecionado;

void glSelectBuffer(GLsizei size,GLuint *buffer);

- Retorna para cada objeto interceptado:
 - Número de identificadores na pilha de nomes quando o objeto é interceptado;
 - Os valores mínimo e máximo de z das primitivas que formam objeto
 - Os identificadores (nomes)

buffer [i] = número de nomes na pilha no iésimo hit.

```
buffer [i+1] = valor mínimo de z
```

buffer [i+2] = valor máximo de z

buffer [i+3] = nome na base da pilha

buffer [i+4] = nome seguinte na pilha (caso buffer [i] seja maior que 1!)

GLint glRenderMode (GLenum mode);

Onde mode pode ter os valores:

- GL_RENDER, renderização na tela (default)
- GL_SELECT, para seleção gráfica
- GL FEEDBACK, saída vetorial
- No modo GL_SELECT, cálculos da renderização são executados mas a cena não é desenhada na tela.
- Quando retornamos ao modo GL_RENDER depois de deixar o modo GL_SELECT, o valor de retorno indica o número de objetos interceptados

Ativando o modo de seleção

```
glRenderMode(GL RENDER);
    // desenha objetos
glRenderMode(GL SELECT);
    // desenha objetos identificando-os com
      nomes
nb hits = glRenderMode(GL RENDER);
    // Examina buffer de seleção
```

Raio de seleção

void gluPickMatrix (GLdouble x, GLdouble y, GLdouble width, GLdouble height, GLint viewport[4]);

x,y: coordenadas do centro do raio (posição do apontador) expressas no sistema de coordenadas do viewport.

width, height: largura e comprimento do viewport obtido através da chamada:

glGetIntegerv (GL_VIEWPORT, (GLint *) viewport);

A pilha de nomes

void glInitNames (void);
void glPushName (GLuint nom);
void glPopName (void);
void glLoadName (GLuint nom);

 Nota: estas chamadas são ignoradas se o modo corrente não for GL_SELECT

Demo Seleção

Manipulação

- Interação com um objeto:
 - Observador está fixo
 - Um ou mais objetos são selecionados
 - O observador manipula objeto(s) para inspeção/ modelagem, etc
- Problemas:
 - Objetos são em 3D
 - A tela é 2D
 - A interação é 2D
- Software:
 - OpenInventor
 - VTK

Exemplos de manipuladores

Box manipulator

🗖 Visualization Toolkit - OpenGL 💷 🗖

Translação

Escala

Demo MedSquare

- Colocando CG, IHC e processamento de imagens na prática
 - http://medsquare.org

Implementação

- Estruture-o de forma a ser facilmente mutável
 - Modularidade
 - Orientação à objetos
 - Linux: Qt, X11
 - Mac/iOS: Cocoa, Cocoa Touch
 - Windows: WPF (Windows Presentation Foundation)
 - Web: jQuery, Cappuccino Web Framework, Flex (Adobe), Silverlight (MSFT)
- Faça com que o esqueleto da próxima interface esteja disponível o mais rápido possível
 - Código de UI é difícil de escrever
 - Reuse!
 - Use Toolkits!

Avaliação da interface

Envolver usuários reais

- Novos e antigos
- Designers ou programadores não são bons testadores
 - "Funciona bem quando eu uso."

Designers devem se fazer presentes em testes de usabilidade

- Faça com que eles não falem ou não usem as mãos!
- Devem escutar, observar, aprender e suar!

Metodologia de design experimental

- O que testar e como testar necessita de experimentação
 - Diferentes granularidades

Planeje seus investimentos

 Para produtos comerciais, uma UI pode custar tanto quanto o restante do sistema