COMP-5350 Digital Forensics

FROM: Ally Bennett, Megan Crews, & Jacob Howard

TO: Dr. Jason Cuneo & Jiaxiang Ren

DUE DATE: 12/3/21

Project 2

Overview

The goal of this project and for our team was to create a script that was capable of recovering files from a disk in ".dd" format. After examining the disk image provided, we discovered it was too large to recover the files manually, so our team developed a Python script to find the number of files inside of the disk image. The python script also found the starting byte offsets and ending byte offsets of each file and displayed the information in the output. We used the signatures of each type of file that could be on the disk image and their footers to locate them and used the file size information to find the starting and ending offsets of each. We continued to do this for each file found on the disk image. After everything for each file was found, we then did a sha256 hash for every file. After carefully going through the script and making corrections where needed, we found there to be 13 files on the Project2.dd file. When all files were recovered and all information was given in the output of the python script, we had the script put everything into a directory called RecoveredFiles.

To run the python script in Linux, you must open the script location with the included ".dd" file in terminal, and type "python3 filename.py filename.dd", where filename is the name of the file.

Analysis Techniques

Firstly, our goal was to find a way to write a python script to find the information we needed on the disk image that was given to us. We knew we had to somehow write a script that took the disk image as an input and searched through it to find all the files on the disk. We also knew that while it was looking for all the files, that we needed certain information about all the files like where each file started and ended. Along with that information we also needed the sha256 of each file and even though it was not asked for we also decided to find the size of each file.

Our team decided to try and start our code by finding the files using their file types and their footers. Each file has its own signature and its own file type, so by using these we could easily find each file. Our team put at the beginning of the code an error message if you tried to run the code wrong or typed in something wrong it gives you a warning that says "Missing disk

file. Format python 3 RecoveryFile.py File.dd". This error message allows you to retry and input the right things so the code will run properly.

Next, we used if statements inside of a while statement to find the starting offset, the ending offset, and to generate the sha256 of each file. In order to find those three things for each file, we used an if statement that located a certain file like this statement, "if f == "AVI". That if statement allows the code to go through the disk image and find the files with the signatures "AVI" and to generate its starting offset, ending offset, and sha256. We continued to do this for every file inside the disk image.

Lastly, after we found everything, we needed from each file we made a spot in the code to make a new directory and to move all recovered files into the directory. Not only were the files moved into that directory, but also all the information we needed was moved into it as well. You can find all that information in a directory called RecoveredFiles. Our code also creates a texted file to put all the information into as well, and it is called ConsolOutput.txt.

Recovery

During our recovery process, we found a total of 13 files on the disk drive. The files produced are shown below in *Table 1*, labeled *Files Recovered*. The table will describe each file found as there are large pdf files and media files that cannot be displayed on this report. *Table 2*, labeled *Script Output*, shows the console output from the script. Our script also creates a text file of the console output and stores it in the same directory as the script.

Files Recovered						
File #	Name	Type	Description			
1	File1	mpg	Video: Space Video			
2	File2	pdf	Book: A Tale of Two Cities by Charles Dickens			
3	File3	pdf	Book: Great Expectations by Charles Dickens			
4	File4	docx	Word File: Displays encoded message in base58 and			
			an image from the movie "A Christmas Story".			
5	File5	avi	Video: Video recording a Black Bear			
6	File6	avi	Video: The ocean with a small rock-island			

7	File7	png	Photo: Dice	
8	File8	png	Photo: Encoded Message	
9	File9	jpg	Photo: Auburn logo	
10	File10	jpg	Photo: Iron Man	
11	File11	gif	Photo: Animated Mandelbrot	
12	File12	gif	Photo: Animated Minion	
13	File13	bmp	Photo: Flowers	

Table 1

Script Output							
The disk image contains 13 files							
FileName	FileStart	FileEnd	FileSize	SHA256			
file1.mpg	47960064	50002092	2042028	c9ed8592d0b31b24e5a7286469497cd817e 7c32dd6a9347891db8c27c26d0153			
file2.pdf	29233152	31294603	2061451	d1531276564ac6785944f2110dcc48e45a12 11f4693a947808217cc215913354			
file3.pdf	31703040	35305456	3602416	027927506bd47335d8c3060c1b92bb18002 a9576f0355eabaab834e7552e6aad			
file4.docx	47820800	47957431	136631	0b6793b6beade3d5cf5ed4dfd2fa8e2ab76bd 6a98e02f88fce5ce794cabd0b88			
file5.avi	00245760	29231744	28985984	1e424df16136eb568113dfeaec0142fedbdef 76838d3c6b995ba4ce4a5a7df16			
file6.avi	37908480	47817572	9909092	145d0a0e4870e02b0d80432c4b945add0c8 b5178705a8ef21816d84a6ecd8aa6			
file7.png	31297536	31525499	227963	3967b4fc85eca8a835cc5c69800362a7c4c5 050abe3e36260251edc63eba518f			
file8.png	47824425	47948428	124003	79766e0f0c031cf727a5488e40113941202f afa25b24f72b1488db1f699226c2			
file9.jpg	00229376	00241749	12373	59e0ec78f30c50db44d24a413ca1cccbd7ef5 910cad4d3cf0e4753095725ec94			
file10.jpg	34897920	34920239	22319	bde9e54f4e1ec3b6ab8d439aa64eef3321688 0685f8a4621100533397d114bf9			
file11.gif	34922496	37575141	2652645	c3c82461c8d7cd3974a82967d5c6cf18449e 1b373c8123b01508be277df725e4			
file12.gif	37576704	37904878	328174	8869dd5fcb077005be3195028db6fe58938c 4ec2786a5ff7e818d2f5411ded52			
file13.bm	31621120	31699062	77942	e03847846808d152d5ecbc9e4477eee28d92 e4930a5c0db4bffda4d9b7a27dfc			
Files stored	Files stored in /home/sansforensics/Documents/Project2/RecoveredFiles						

Table 2

Below are the images we found when running our script on the disk drive. Each image is labeled in the order that the file was found and recovered.

Conclusion

A total of 13 files were recovered from the disk image and stored in our RecoveredFiles directory. The python script our team developed was successful in finding files, recovering them, and printing out information about each file.