PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2001342543 A

(43) Date of publication of application: 14.12.01

(51) Int. CI

C22C 38/00 C21D 9/46 C22C 38/14

(21) Application number: 2000357752

(22) Date of filing: 24.11.00

(30) Priority:

30.03.00 JP 2000093590

(71) Applicant:

NIPPON STEEL CORP

(72) Inventor:

OKAMOTO TSUTOMU UEJIMA YOSHIYUKI TANIGUCHI YUICHI TOMOKIYO TOSHIMASA

(54) HOT ROLLING STEEL SHEET WITH HIGH STRENGTH, EXCELLENT IN BORING PROPERTY AND DUCTILITY, AND ITS **PRODUCTION**

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a hot rolling steel sheet with high strength, having a tensile strength of 590 N/mm2 or above, an excellent boring property of and ductility.

SOLUTION: The hot rolling steel sheet with high tensile, excellent in opening property of a bore and the ductility, is composed of C: 0.01%-0.20%, Si: 0.3%-1.5%,

Mn: 0.55%-2.5%, P: 0.10% or below, S: 0.009% or below, N: 0.010% or below, Mg: 0.0005%-0.01%, Al: 0.002%-0.07%, one or more kinds of Ti: 0.003%-0.25% and Nb: 0.003%-0.04%, by weight %, and the balance iron with inevitable impurities. Furthermore, by controlling the oxides, this steel sheet contains MgO in the range of particle diameter of 0.005-5.0 μ m, or complex oxides of 10x103 pieces or more and 1.0x107 pieces or more per 1 mm2, which are composed of one or more kinds of Al2O2, SiO2 MnO and Ti2O3, and the steel structure is mainly a ferrite structure and the residue is a bainite structure.

COPYRIGHT: (C)2001,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-342543 (P2001-342543A)

(43)公開日 平成13年12月14日(2001.12.14)

(51) Int.Cl. ⁷	識別記号	F I	テーマコード(参考)
C 2 2 C 38/00	301 .	C 2 2 C 38/00	301W 4K037
C 2 1 D 9/46		C 2 1 D 9/46	T
C 2 2 C 38/14		C 2 2 C 38/14	

審査請求 未請求 請求項の数10 OL (全 14 頁)

		EE 20014347	Nemana Maracka Maracka Company
(21)出願番号	特願2000-357752(P2000-357752)	(71) 出願人	000006655 新日本製鐵株式会社
(22)出顧日	平成12年11月24日(2000.11.24)		東京都千代田区大手町2丁目6番3号
		(72)発明者	岡本 力
(31)優先権主張番号	特願2000-93590(P2000-93590)		愛知県東海市東海町5-3 新日本製鐵株
(32)優先日	平成12年3月30日(2000.3.30)		式会社名古屋製鐵所内
(33)優先権主張国	日本(JP)	(72)発明者	
			愛知県東海市東海町5-3 新日本製鐵株
			式会社名古屋製鐵所内
		(74)代理人	100078101
			弁理士 綿貫 達雄 (外2名)
		i .	

最終頁に続く

(54) 【発明の名称】 穴拡げ性と延性に優れた高強度熱延鋼板及びその製造方法

(57)【要約】

【課題】 590N/mm² 以上の引張強度を有し、優れた穴拡げ性と延性を有する高強度熱延鋼板を提供する。

【解決手段】 重量%で、C:0.01%~0.20%、Si:0.3%~1.5%、Mn:0.5%~2.5%、P:0.10%以下、S:0.009%以下、N:0.010%以下、Mg:0.0005%~0.01%、AI:0.002%~0.07%、およびTi:0.003%~0.25%、Nb:0.003%~0.04%の1種または2種含有し、残部が鉄および不可避的不純物からなり、さらに、酸化物の制御により、粒子径が0.005 μ m~5.0 μ mの範囲にあるMgO または、MgO を含みAI2O3、SiO2、MnO、Ti2O3の1種もしくは2種以上の複合酸化物が1平方mmあたり1.0×10³個以上、1.0×10⁷個以下含み、鋼組織をフェライト組織を主とし残ベイナイト組織とする。

【特許請求の範囲】

. 【請求項1】 重量%にて

C : 0.01%以上、0.20%以下、

Si:0.3%以上、1.5%以下、

* - Mn: 0. 5%以上、2. 5%以下、

P:0.10%以下、

S:0.009%以下、

N:0.010%以下、

Mg: 0. 0005%以上、0. 01%以下、

A1:0.002%以上、0.07%以下、

および

Ti:0.003%以上、0.25%以下、

Nb:0.003%以上、0.04%以下

の1種または2種を含有し、残部が鉄および不可避的不 純物からなり、粒子径が0.005μm~5.0μmの 範囲にあるMgOまたは、MgOを含みAl2 O3、S i O2 、MnO、Ti2 O3 の1種もしくは2種以上の 複合酸化物が1平方mmあたり1.0×103 個以上、

1. 0×10⁷ 個以下含む、鋼組織をフェライト組織を 主とし残べイナイト組織とすることを特徴とする穴拡げ 20 性と延性に優れた高強度熱延鋼板。

【請求項2】 重量%にて

C : 0. 01%以上、0. 20%以下、

Si:0.3%以上、1.5%以下、

Mn: 0. 5%以上、2. 5%以下、

P:0.10%以下、

S : 0.009%以下、

N:0.010%以下、

Mg:0.0005%以上、0.01%以下、

A1:0.002%以上、0.07%以下、

Ti:0.003%以上、0.25%以下、

Nb:0.003%以上、0.04%以下

の1種または2種を含有し、残部が鉄および不可避的不 純物からなり、粒子径が0. 005μm~5. 0μmの 範囲にあるMgOまたは、MgOを含みAl2 O3 、S i O2 、MnO、Ti2 O3 の1種もしくは2種以上の 複合酸化物と、これを核にして、その周辺に(Nb、T i) Nを有する複合析出物のうち、そのサイズが0.0 $5~\mu~\mathrm{m}\sim5$. $0~\mu~\mathrm{m}$ の範囲の析出物が $1~\mathrm{Trmm}$ あたり 40 と、これを核にして、その周辺に($N~\mathrm{b}$ 、 $T~\mathrm{i}$)Nを有 1.0 × 1 0³ 個以上、1.0 × 1 0⁷ 個以下含む、鋼組織 をフェライト組織を主とし残ベイナイト組織とすること を特徴とする穴拡げ性と延性に優れた高強度熱延鋼板。

【請求項3】 重量%にて

C : 0. 01%以上、0. 20%以下、

Si:0.3%以上、1.5%以下、

Mn: 0. 5%以上、2. 5%以下、

P:0.10%以下、

S:0.009%以下、

N:0.010%以下、

Mg: 0. 0005%以上、0. 01%以下、

A1:0.002%以上、0.07%以下、

および

Ti:0.003%以上、0.25%以下、

Nb:0.003%以上、0.04%以下

の1種または2種含有し、残部が鉄および不可避的不純 物からなり、さらに、

Ca: 0. 0005%以上、0. 0100%以下、

REM元素の合計:0.0005%以上、0.0100

10 %以下

の1種または2種含有し、残部が鉄および不可避的不純 物からなり、粒子径が0.005μm~5.0μmの範 囲にあるMgOまたは、MgOを含みAl2 O3、Si O2 、MnO、Ti2 O3 の1種もしくは2種以上の複 合酸化物が1平方mmあたり1.0×10³ 個以上、 1. 0×10⁷ 個以下含む、鋼組織をフェライト組織を 主とし残べイナイト組織とすることを特徴とする穴拡げ

件と延性に優れた高強度熱延鋼板。

【請求項4】 重量%にて

C : 0. 01%以上、0. 20%以下、

Si:0.3%以上、1.5%以下、

Mn: 0. 5%以上、2. 5%以下、

P:0.10%以下、

S:0.009%以下、

N:0.010%以下、

Mg: 0. 0005%以上、0. 01%以下、

A1:0.002%以上、0.07%以下、

および

Ti:0.003%以上、0.25%以下、

30 Nb: 0. 003%以上、0. 04%以下

の1種または2種含有し、残部が鉄および不可避的不純 物からなり、さらに、

Ca: 0. 0005%以上、0. 0100%以下、

REM元素の合計: 0. 0005%以上、0. 0100 %以下

の1種または2種含有し、残部が鉄および不可避的不純 物からなり、粒子径が 0. 0 0 5 μ m ~ 5. 0 μ m の M gOまたは、MgOを含みAl2 O3、SiO2、Mn O、Ti2 O3 の1種もしくは2種以上の複合酸化物

する複合析出物のうち、そのサイズが 0.05μm~ 5. 0 μ m の範囲の析出物が1 平方 m m あたり1. 0 × 103 個以上、1.0×107 個以下含む、鋼組織をフ

エライト組織を主とし残ベイナイト組織とすることを特 徴とする穴拡げ性と延性に優れた高強度熱延鋼板。

【請求項5】 請求項1又は請求項2又は請求項3又は 請求項4に記した鋼を、圧延終了温度をAra変態点以 上とする圧延をし、引き続き20℃/sec以上の冷却 速度で冷却し、350℃~600℃で捲取ることを特徴

50 とする、鋼組織をフェライト組織を主とし残べイナイト

組織とすることを特徴とする穴拡げ性と延性に優れた高 強度熱延鋼板の製造方法。

【請求項6】 請求項1又は請求項2又は請求項3又は 請求項4に記した鋼を、圧延終了温度をAr3 変態点以 ・上とする圧延をした後、20℃/sec以上の冷却速度 で650℃~700℃まで冷却し、該温度で15秒以下 空冷した後、再度冷却して、350℃~600℃で捲取 ることを特徴とする、鋼組織をフェライト組織を主とし 残ベイナイト組織とすることを特徴とする穴拡げ性と延 性に優れた高強度熱延鋼板の製造方法。

【請求項7】 請求項1又は請求項2又は請求項3又は 請求項4に記した鋼、および、請求項5又は請求項6に 記した鋼の製造方法における溶製工程の成分調整段階に おいて、SiとMnを添加した後、Tiを添加、その後 にMgとAlを添加することを特徴とする穴拡げ性と延 性に優れた高強度熱延鋼板の製造方法。

【請求項8】 請求項5又請求項6又は請求項7において、Mgの希釈溶媒金属としてSi、Ni、Cu、Al、REM(希土類元素)の1種あるいは2種以上から成るMg合金を用いることを特徴とする穴拡げ性と延性 20に優れた高強度熱延鋼板の製造方法。

【請求項9】 請求項8において、Mg合金中のMg濃度が1%以上10%未満であることを特徴とする穴拡げ性と延性に優れた高強度熱延鋼板の製造方法。

【請求項10】 請求項7から9において、Mg合金中のFe、Mn、Crの濃度の和が10%未満であることを特徴とする穴拡げ性と延性に優れた高強度熱延鋼板及びその製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、主としてプレス加工される自動車用鋼板を対象とし、1.0~6.0 mm程度の板厚で、590N/mm²以上の引張強度を有し、穴拡げ性と延性に優れた高強度熱延鋼板及びその製造方法に関するものである。

[0002]

【従来の技術】近年、自動車の燃費改善対策としての車体軽量化、部品の一体成形によるコストダウンのニーズが強まり、プレス成形性に優れた熱延高強度鋼板の開発が進められてきた。従来、加工用熱延鋼板としてはフェ 40 ライト・マルテンサイト組織からなるDual Phase鋼板が知られている。Dual Phase鋼板は、軟質なフェライト相と硬質なマルテンサイト相の複合組織で構成されており、著しく硬度の異なる両相の界面からボイドが発生して割れを生じるため穴拡げ性に劣る問題があり、足廻り部品等の高い穴拡げ性が要求される用途には不向きであった。

【0003】このため特開平4-88125号公報、特 らなり、粒子径が0.005μm~5.0μmの範囲に開平3-180426号公報にベイナイトを主体とした あるMgOまたは、MgOを含みAl2 O3、Si 組織から構成される、穴拡げ性の優れた熱延鋼板の製造 50 O2、MnO、Ti2 O3の1種もしくは2種以上の複

方法が提案されている。さらに、特開平6-29391 0号公報では2段冷却を用いることによってフェライト 占積率を制御することで穴拡げ性と延性を両立する製造 方法が提案されている。しかしながら、自動車のさらな る軽量化指向、部品の複雑化等を背景に更に高い穴拡げ 性が求められ上記技術では対応しきれない高度な加工 性、高強度化が要求されている。

[0004]

【発明が解決しようとする課題】本発明は590N/m 10 m² クラス以上の熱延鋼板に関するもので、優れた穴拡 げ性と延性を両立した高強度熱延鋼板を提供しようとす るものである。

[0005]

【課題を解決するための手段】本発明の課題解決のため 種々実験、検討を重ねた結果、穴拡げ性の改善には打抜 き穴のクラックの状態が重要であることはよく知られる ところであるが、本発明者らが鋭意検討した結果、Mg を添加することで打抜き穴の断面に発生するクラックを 微細均一化することが可能であることを見出した。そし て、鋼板中に存在する酸化物とこれらを核にした(N b、Ti) Nの複合析出物を均一微細に分散析出させる ことにより、打抜き時に微細ボイドを発生させることで の応力の集中を緩和しうることが考えられ、粗大クラッ クの発生を抑制し穴拡げ性を向上させていると考えられ る。これより、この発明をなすに至ったのである。これ まで、Mg添加による酸化物を利用した提案には、例え ば特開平11-323488号公報による面内異方性改 善に関する提案ではMg酸化物による再結晶時の面方位 の優先的な核生成・成長を抑制する事を目的にしてお 30 り、特開平11-236645号公報の溶接部の靭性に 関する提案ではMg複合酸化物により超大入熱溶接時の HAZ部のγ粒の成長を抑制することを目的としてい る。これらはいずれも微細酸化物によるピンニングによ る効果を利用したものであり、本発明の打抜き時、介在 物により発生する微細ボイドを利用するものとは異な り、これらを目的とする鋼板において穴拡げ性が向上し ているかはさだかではない。本発明の要旨は、下記の通 りである。

【0006】1) 重量%にて

C : 0. 01%以上、0. 20%以下、Si: 0. 3%以上、1. 5%以下、Mn: 0. 5%以上、2. 5%以下、P: 0. 10%以下、S: 0. 009%以下、N: 0. 010%以下、Mg: 0. 0005%以上、0. 01%以下、Al: 0. 002%以上、0. 07%以下、およびTi: 0. 003%以上、0. 25%以下、Nb: 0. 003%以上、0. 04%以下の1種または2種を含有し、残部が鉄および不可避的不純物からなり、粒子径が0. 005μm~5. 0μmの範囲にあるMgOまたは、MgOを含みAl2 O3、Si
 O2 MnO Ti2 O2の1種もしくは2種以上の複

合酸化物が1平方mmあたり1.0×103 個以上、 、 1. 0×10⁷ 個以下含む、鋼組織をフェライト組織を 主とし残べイナイト組織とすることを特徴とする穴拡げ 性と延性に優れた高強度熱延鋼板。

*-【0007】2)重量%にて

C : 0. 01%以上、0. 20%以下、Si: 0. 3 %以上、1.5%以下、Mn:0.5%以上、2.5% 以下、P : 0. 10%以下、S : 0. 009%以 下、N:0.010%以下、Mg:0.0005%以 上、0.01%以下、A1:0.002%以上、0.0 7%以下、およびTi:0.003%以上、0.25% 以下、Nb:0.003%以上、0.04%以下の1種 または2種を含有し、残部が鉄および不可避的不純物か らなり、粒子径が0.005μm~5.0μm以下の範 囲にあるMgOまたは、MgOを含みAl2 O3、Si O2 、MnO、Ti2 O3 の1種もしくは2種以上の複 合酸化物と、これを核にして、その周辺に(Nb、T i) Nを有する複合析出物のうち、そのサイズが 0.0 $5 \mu m \sim 5$. $0 \mu m$ の範囲の析出物が1平方mmあたり 1.0 × 1 0³ 個以上、1.0 × 1 0⁷ 個以下含む、鋼組織 をフェライト組織を主とし残べイナイト組織とすること を特徴とする穴拡げ性と延性に優れた高強度熱延鋼板。

【0008】3) 重量%にて

C: 0.01%以上、0.20%以下、Si: 0.3 %以上、1.5%以下、Mn:0.5%以上、2.5% 以下、P : 0. 10%以下、S : 0. 009%以 下、N:0.010%以下、Mg:0.0005%以 上、0.01%以下、A1:0.002%以上、0.0 7%以下、およびTi:0.003%以上、0.25% 以下、Nb:0.003%以上、0.04%以下の1種 または2種含有し、残部が鉄および不可避的不純物から なり、さらに、Ca: 0.0005%以上、0.010 0%以下、REM元素の合計:0.0005%以上、 0.0100%以下の1種または2種含有し、残部が鉄 および不可避的不純物からなり、粒子径が 0.005μ m~5.0μmの範囲にあるMgOまたは、MgOを含 みAl2 O3、SiO2、MnO、Ti2 O3 の1種も しくは2種以上の複合酸化物が1平方mmあたり1.0 ×103 個以上、1.0×107 個以下含む、鋼組織を フェライト組織を主とし残べイナイト組織とすることを 特徴とする穴拡げ性と延性に優れた高強度熱延鋼板。

【0009】4) 重量%にて

C : 0. 01%以上、0. 20%以下、Si: 0. 3 %以上、1.5%以下、Mn:0.5%以上、2.5% 以下、P : 0. 10%以下、S : 0. 009%以 下、N : 0. 010%以下、Mg: 0. 0005%以 上、0.01%以下、A1:0.002%以上、0.0 7%以下、およびTi:0.003%以上、0.25% 以下、Nb:0.003%以上、0.04%以下の1種 または2種含有し、残部が鉄および不可避的不純物から 50 し、酸化物を均一微細析出させ、これにより、打抜き時

なり、さらに、Ca: 0.0005%以上、0.010 0%以下、REM元素の合計: 0.0005%以上、 0.0100%以下の1種または2種含有し、残部が鉄・ および不可避的不純物からなり、粒子径が0.005μ m~5. 0 μ mのM g O または、M g O を含み A 12 O 3 、SiO2、MnO、Ti2 O3 の1種もしくは2種 以上の複合酸化物と、これを核にして、その周辺に(N b、Ti) Nを有する複合析出物のうち、そのサイズが 0. 05 μm~5. 0 μmの範囲の析出物が1平方mm あたり1. 0×103 個以上、1. 0×107 個以下含 む、鋼組織をフェライト組織を主とし残ベイナイト組織 とすることを特徴とする穴拡げ性と延性に優れた高強度 熱延鋼板。

【0010】5) 1)又は2)又は3)又は4)に記 した鋼を、圧延終了温度をArs 変態点以上とする圧延 をし、引き続き20℃/sec以上の冷却速度で冷却 し、350℃~600℃で捲取ることを特徴とする、鋼 組織をフェライト組織を主とし残べイナイト組織とする ことを特徴とする穴拡げ性と延性に優れた高強度熱延鋼 板の製造方法。

【0011】6) 1)又は2)又は3)又は4)に記 した鋼を、圧延終了温度をAra 変態点以上とする圧延 をした後、20℃/sec以上の冷却速度で650℃~ 700℃まで冷却し、該温度で15秒以下空冷した後、再 度冷却して、350℃~600℃で捲取ることを特徴と する、鋼組織をフェライト組織を主とし残べイナイト組 織とすることを特徴とする穴拡げ性と延性に優れた高強 度熱延鋼板の製造方法。

【0012】7) 1)又は2)又は3)又は4)に記 した鋼、および、5)又は6)に記した鋼の製造方法に おける溶製工程の成分調整段階において、SiとMnを 添加した後、Tiを添加、その後にMgとAlを添加す ることを特徴とする穴拡げ性と延性に優れた高強度熱延 鋼板の製造方法。

【0013】8) 5)又6)又は7)において、Mg の希釈溶媒金属としてSi、Ni、Cu、Al、REM (希土類元素) の1種あるいは2種以上から成るMg合 金を用いることを特徴とする穴拡げ性と延性に優れた高 強度熱延鋼板の製造方法。

【0014】9) 8) において、Mg合金中のMg濃 度が1%以上10%未満であることを特徴とする穴拡げ 性と延性に優れた高強度熱延鋼板の製造方法。

【0015】10) 7)から9)において、Mg合金 中のFe、Mn、Crの濃度の和が10%未満であるこ とを特徴とする穴拡げ性と延性に優れた高強度熱延鋼板 及びその製造方法。

[0016]

【発明の実施の形態】本発明は穴拡げ性の改善のために 打抜き穴の粗大クラックを抑制するため、Mgを添加

40

7

の粗大クラックの発生を抑制させ穴拡げ性を改善させる ものである。以下に本発明の個々の構成要件について詳 細に説明する。

【0017】まず、本発明の成分の限定理由について述・べる。Cは、鋼の加工性に影響を及ぼす元素であり、含有量が多くなると、加工性は劣化する。特に0.20%を超えると穴拡げ性に有害な炭化物(パーライト、セメンタイト)が生成するので、0.20%以下、ただし、好ましくは0.15%以下が望ましい。また、強度確保の面で0.01%以上は必要である。

【0018】Siは、有害な炭化物の生成を抑えフェライト組織主体+残ベイナイトの複合組織を得るために重要な元素である。また、Si添加により強度と延性の両立させる作用もある。このような作用を得るためには0.3%以上の添加が必要である。しかし、添加量が増加すると化成処理性が低下するほか、点溶接性も劣化するため1.5%を上限とする。

【0019】Mnは、強度確保に必要な元素であり、最低0.50%の添加が必要である。しかし、多量に添加するとミクロ偏析、マクロ偏析が起こりやすくなり、これらは穴拡げ性を劣化させる。これより2.50%を上限とする。

【0020】Pは鋼板の強度を上げる元素であるが、添加量が高いと溶接性、加工性、靱性の劣化を引き起こす元素である。これより、0.10%以下とし、好ましくは0.03%以下が望ましい。

【0021】SはMnS等の非金属介在物を生成し、延性穴拡げ性を劣化させるので鋼中に存在しない方が好ましい元素であり、添加量は少ない程望ましく、0.009%以下とする。ただし、0.005%以下でこの効果 30は顕著に現れるため0.005%以下が望ましい。

【0022】Nは、加工性を確保するためには少ない方が良い。0.010%を越えると加工性が劣化してくるので、0.010%以下とし、0.005%以下が望ましい。

【0023】Mgは、本発明における最も重要な添加元素の一つである。Mgはこの添加により、酸素と結合して酸化物を形成するが、このとき生成されるMgOまたはMgOを含むAl2O3、SiO2、MnO、Ti2O3の複合酸化物微細化はMgを添加しない従来の鋼に比べ、個々の酸化物のサイズが小さく、均一に分散した分布状態となることを見出した。鋼中に微細に分散したこれらの酸化物は、明確ではないが打抜き時に微細ボイドを形成し、応力集中を抑制することで粗大クラックの発生を抑制する効果があると考えられ、穴広げ性の向上に効果があると考えられる。ただし、0.0005%未満ではその効果が不十分である。一方で0.01%超の添加は添加量に対する改善代が飽和するばかりでなく、逆に鋼の清浄度を劣化させ、穴拡げ性、延性を劣化させるため上限を0.01%とする。

【0024】Alは本発明における最も重要な添加元素 の一つである。AlはMgが添加されている時、スピネ ル構造をもつMgAl2 O4 複合酸化物を生成しやす い。MgAl2 O4 複合酸化物はMgOを含むAl2 O 3 、SiO2 、MnO、Ti2O3 の複合酸化物のうち 最も微細な酸化物の存在状態のひとつであり、酸化物の 分散状態を均一微細化するのに効果的であると考えられ る。このため、打抜き時に微細ボイドを形成し、これが 応力集中を抑制することで粗大クラックの発生を抑制す る効果があると考えられ、穴広げ性の向上に効果がある と考えられる。これより0.002%以上添加する。た だし添加量が増加するとMg添加の効果を阻害するた め、0.07%以下とする。特に複合酸化物のうちMg Al複合酸化物の酸化物に占める割合を向上し酸化物の 微細化を効率よく達成させるためには添加量は0.02 %~0.07%が望ましい。

【0025】 Ti、Nbは本発明における最も重要な添加元素の一つである。Ti、Nbは微細均一に析出している酸化物のうち特に小さいMgOまたはMgAl2O4を主とする複合酸化物を核に析出し、これら酸化物上に析出することで析出物サイズを大きくし、MgOまたはMgAl2O4の微細ボイド形成を助成する働きがあると考えられる。また、強度の増加にも有効である。これらの結果を有効に発揮させるためにはNb、Tiともに少なくともO。O3%の添加が必要であり、O。O1%以上の添加が望ましい。しかし、これらの添加が過度になると析出強化により延性が劣化するため、上限してTiはO。25%以下、NbはO。O4%以下とする。これらの元素は単独で添加しても効果があり、複合添加しても効果がある。

【0026】Caは硫化物系の介在物の形状制御し、穴拡げ性の向上に有効である。これを有効に発揮させるためには0.0005%以上の添加が必要である。一方、多量の添加は逆に鋼の清浄度を悪化させるため穴拡げ性、延性を損なう。これより上限を0.0100%とする。REM元素はCaと同様の効果を有する。すなわち、REMは硫化物系の介在物の形状制御し、穴拡げ性の向上に有効である。これを有効に発揮させるためにはREM元素の合計で0.0005%以上の添加が必要である。一方、多量の添加は逆に鋼の清浄度を悪化させるため穴拡げ性、延性を損なう。また、製造コストも高いため上限を0.0100%とする。

【0027】酸化物としてはMgOまたは、MgOを含みAl2 O3、SiO2、MnO、Ti2 O3の1種もしくは2種以上の複合酸化物がよい。本発明者らが鋭意検討した結果、複合酸化物のうちMgO、MgAl2 O4 とこれ以外の複合酸化物とで異なった存在状態にて微細クラックの形成に効果を発揮しており、これらはともにMg添加によって得られる効果であり、相乗効果によって穴拡げ性を向上させていることがわかった。

30

【0028】MgO、MgAl2 O4 は主に (Nb、T 。 i) Nを周辺に析出させることで微細ボイド形成の効果 を得ており、MgO、MgAl2 O4 は均一な分散析出 の核として寄与していると考えられる。一方で、Mg *・ O、MgAl2 O4 以外の微細な複合酸化物はMgOと の複合酸化物化により微細分散析出し、(Nb、Ti) Nを周辺に析出させることなく酸化物単独にて微細ボイ ド形成の効果がある。特に、MgO、MgAl2 O4 以 外の微細な複合酸化物としてはMgO、Al2 O3、S i O2 主体の複合酸化物がほとんどであり、この時、全 体に占めるMgO、Al2 O3、SiO2 酸化物の割合 は90%以上である。

【0029】酸化物の粒子径は0.005μm未満では これを核にした(Nb、Ti) Nの析出も少ないこと、 一方で、このサイズの酸化物は(Nb、Ti)Nの複合 析出なしでは微細クラックを発生させる核とはなり難 く、微細ボイド生成の効果が得られ難くなるため0.0 05μm以上とする。逆に5.0μm超では粒子数の確 保が困難であり、また、粗大析出物は延性の劣化を招く ため5.0 μm以下とする。

【0030】酸化物と複合析出物のサイズはこれが小さ い時、微細ボイドの起点とならないため効果を発揮でき ない。従って、0.05μm以上とする。一方、5.0 μ m超では粒子数の確保が困難であり、これが粗大クラ ックの生成を助長し穴拡げ性を低減させるため 5.0 μ m以下とする。

【0031】析出物密度は個数が少ないと、打抜き時に 発生する微細ボイドが不足し、粗大なクラックの発生を 抑制する効果が得られないと考えられる。この効果を得 るには1平方mmあたり1. 0×103 以上必要であ る。一方で個数が多くなると効果は飽和し、逆に延性を 劣化させるため、 1.0×10^7 個以下とする。ただ し、この効果の飽和と延性のバランスから1.0×10 6 個以下が望ましい。

【0032】また、穴拡げ性を高める手段として打抜き 穴の性状の他、母材の局部延性能を高めることが効果的 である。母材の局部延性能を高めるためには組織の均一 化が有効であるが、単相鋼では本発明の目的とする強度 において延性の劣化が大きく、目的とする特性が得られ ない。このため、鋼の組織としてはフェライト組織主体 40 の複合組織とする。但し、フェライト組織の占有率が高 く単相鋼となると延性または強度の低下を引き起こし、 また、この占有率が低い時、伸びの低い第2相の影響を 受け、延性が低下する。このため、フェライト組織の占 有率は50%以上、95%以下が望ましい。また、残り の組織はこれが、マルテンサイト、粗大セメンタイト、 パーライト組織であるとき、フェライト組織とこれらの 組織の界面でクラックが発生し局部変形能が低下する。 一方で、ベイナイト組織はフェライト組織中に微細なセ メンタイトの分散した組織であり、母材の局部延性能を 50 加した後、Tiを添加、その後にMgとAlを添加する

低下させないため、鋼の組織としてフェライト組織を主 体とし、残ベイナイト組織とする。

【0033】本発明で規定した介在物の分散状態は例え ば以下の方法により定量的に測定される。母材鋼板の任 意の場所から抽出レプリカ試料を作成し、これを前記の 透過電子顕微鏡 (TEM) を用いて倍率は5000~2 0000倍で少なくとも5000 µ m2 以上の面積にわ たって観察し、対象となる複合介在物の個数を測定し、 単位面積当たりの個数に換算する。この時、酸化物と (Nb、Ti) Nの同定にはTEMに付属のエネルギー 分散型X線分光法(EDS)による組成分析とTEMに よる電子線回折像の結晶構造解析によって行われる。こ のような同定を測定する全ての複合介在物に対して行う ことが煩雑な場合、簡易的に次に手順による。まず、対 象となるサイズの個数を形状、サイズ別に上記の要領に て測定し、これらのうち、形状、サイズの異なる全てに 対し、各々10個以上に対し上記の要領にて同定を行 い、酸化物と(Nb、Ti)Nの割合を算出する。そし て、はじめに測定された介在物の個数にこの割合を掛け 合わせる。鋼中の炭化物が以上のTEM観察を邪魔する 場合、熱処理によって炭化物を凝集粗大化、または溶解 させ対象とする複合介在物の観察を容易にすることがで きる。

【0034】次に製造方法について説明する。仕上圧延 終了温度はフェライトの生成を妨げ、穴拡げ性を良好に するためAra 変態点以上とする必要がある。しかしあ まり高温にすると組織の粗大化による強度低減、延性の 低下を招くため950℃以下とすることが望ましい。冷 却速度は穴拡げ性に有害な炭化物形成を抑制し、高い穴 拡げ比を得るためには20℃/s以上が必要である。捲 取温度350℃未満では穴拡げ性に有害な硬質のマルテ ンサイトが発生するため350℃以上とする。一方、上 限は600℃超になると穴拡げ性に有害な、パーライ ト、セメンタイトが生成するため600℃以下とする。

【0035】連続冷却中空冷はフェライト相の占有率を 増加させ、延性を向上させるために有効である。しか し、空冷温度、空冷時間により、パーライトが生成され ると逆に延性が低下するばかりでなく、穴拡げ性が著し く低下する。空冷温度が650℃未満では穴拡げ性に有 害なパーライトが早期より発生するため、650℃以上 とする。一方で700℃超ではフェライト生成が遅く空 冷の効果を得にくいばかりでなく、その後の冷却中にお けるパーライト生成が発生しやすくため700℃以下と する。15秒間超の空冷はフェライト相の増加が飽和す るばかりでなく、その後の冷却速度、捲取温度の制御に 負荷をかける。このため、空冷時間は15秒以下とす

【0036】次に溶製工程における成分調整段階の添加 順序は本発明者らが鋭意検討した結果、SiとMnを添

ことを行うとき、溶鋼中へのMg歩留が増加することと、さらに酸化物のサイズがより微細化して、本発明で請求している酸化物のサイズの分散状態が安定に得られ易くなることから、より好ましい。

*- 【0037】Mgは溶鋼中での揮発性が高く、Mg純金 属で溶鋼中へ投入するとMg歩留が非常に低い。このた め、Mgは希釈溶媒金属との合金の形で溶鋼中へ投入す る。このとき、本発明者らが鋭意検討した結果、Mgの 希釈溶媒金属としてSi、Ni、Cu、Al、REM (希土類元素) の1種あるいは2種以上から成るMg合 金を用いたとき、鋼中へ残存するMg量は向上し、これ ら以外の金属を主体とする合金では、効果が得られなか った。Mgの希釈溶媒金属としてMgと原子間引力の相 互作用を有するSi、Ni、Cu、Al、REM(希土 類元素)を選び、これらのうち、1種あるいは2種以上 から成るMg合金を用いて溶鋼中へのMgの投入を行う ことが好ましい。ここで希土類元素の範囲は、例えば理 化学辞典第5版、309頁、岩波書店、1998年発行 の記載通り、周期律表3族に属する5 c、 Yおよびラン タノイド(原子番号57のLaから71のLu)の総称 である。

【0038】また、本発明者らが鋭意検討した結果、Mg合金中のMg濃度としては10%未満ではMg歩留が顕著に増加することと、さらに適正な酸化物サイズと個数が安定に得やすくなり好ましいことを見出した。一方、1%未満であるとMg合金添加時に希釈溶媒金属が鋼中へ過剰に溶解するため、成分調整が困難となる。従って、合金中のMg濃度は1%以上10%未満とすることが好ましい。

【0039】Mg合金中のFe、Mn、Crの濃度の和として10%未満の時、Mg歩留が顕著に増加することと、さらに適正な酸化物サイズと個数が安定に得やすくなり好ましいことを見出した。これはMg合金が溶鋼に溶解中に生じるMgとこれらの元素との間の原子間反発作用によると解釈される。従って、Mg合金中のFe、Mn、Crの濃度の和は10%未満とすることが好ましい。本発明の鋼板は上記のように熱延の後、溶融亜鉛めっきのように焼鈍によりめっきを施しても本発明の効果は損なわれない。また、熱延後、電気めっき、有機複合皮膜を施した場合も効果は損なわれない。

[0040]

【実施例】次に本発明を実施例に基づいて説明する.表 1に示す鋼成分の鋼を溶製するために、溶銑270 tを 転炉で目標C 濃度に脱炭したのち取鍋に溶鋼を移し、脱 酸と合金調整をCAS法(日本鉄鋼協会編、梶岡博幸 著、取鍋精錬法、104頁、地人書館、1997年発行 に記載)により実施した。溶鋼の脱酸をSiとMnを添 加した後、Tiを添加、その後にMgとAlを添加する 順序で行った例とそれ以外の例を表1に示す。ここでは Si、Mn、Ti原料としてFeSi、FeMn、FeTiを用いた。また、Mg、Alは希釈溶媒金属としてSi、Ni、Cu、Al、REM(希土類元素)の1種あるいは2種以上を用い、Mg合金中のMg濃度が1%以上10%未満であり、Mg合金中のFe、Mn、Crの濃度の和が10%未満のMg合金を用いた例とこれら以外の合金を用いた例も表1に示した。脱酸後、必要元素を目標成分濃度範囲に調整した後、ただちに連続鋳造機により厚さ250mm、幅1300mmのスラブを製造した。これらの鋼を1200℃以上にて加熱炉中で加熱し、表2に示す熱延条件にて圧延・冷却し、板厚2.

6~3.2 mmの熱延鋼板を得た。

12

【0041】一方、表3にMgの添加は希釈溶媒金属としてSi、Ni、Cu、Al、REM(希土類元素)の1種あるいは2種以上を用い、Mg合金中のMg濃度が1%以上10%未満であり、Mg合金中のFe、Mn、Crの濃度の和が10%未満のMg合金を用い、溶製工程の成分調整段階において、SiとMnを添加した後、Tiを添加、その後にMgとAlを添加する脱酸を行ったもので、成分を変化させたものを示す。符号D~Yが本発明に従った鋼でこれ以外はC、Si、Mn、S、Al、Mg、Nb、Tiの添加量が本発明の範囲外である。これらの鋼を1200℃以上にて加熱炉中で加熱し、表4に示す熱延条件にて圧延・冷却し、板厚2.6~3.2mmの熱延鋼板を得た。

【0042】また、鋼板母材より抽出レプリカ試料を作成し、前述の方法にて酸化物とこれを核に存在する(Ti、Nb)N複合酸化物の粒径、個数を測定し、単位面積当たりの個数に換算した。これを表1、3に表記する。

【0043】このようにして得られた熱延鋼板について JIS5号片による引張試験、穴拡げ試験、組織観察を 行った。穴拡げ性(λ)は径 $12\,\mathrm{mm}$ の打抜き穴を $60\,\mathrm{mm}$ 円錐ポンチにて押し拡げ、クラックが板厚を貫通した 時点での穴径(d)と初期穴径(d0: $12\,\mathrm{mm}$)から $\lambda=(d-d0)$ /d0×100 で評価した。

【0044】各試験片のTS、E1、 λを表2、4に示す、図1に強度と伸びの関係を図2に強度と穴拡げ比の関係を示す。本発明鋼は比較鋼1と比べて穴拡げ比が、 40 比較鋼2と比べると穴拡げ比と伸びの両特性が高くなっていることがわかる。このように、本発明の鋼板は穴拡げ比、延性をともに優れていることがわかる。

【0045】なお、ここでは合金投入をCAS 法で行ったがこれは特に限定するものではなく、RH脱ガス装置の真空槽内合金添加法、溶鋼取鍋内ワイヤー添加法、粉体インジェクション法等の公知の方法も問題なく使用できることを付記する。

[0046]

【表1】

1	3
1	J

																												1
事件		黎明個	発売を	会の記録	五数	九数值	比较值	比较值	報品を	発売	報告の	ある。	発配の	発出機	1000	比较值	化数值	九数鐘	比数值	代型	先明集	お田田	# E	事品	を出	は金	计数值	
Arı	ပွ	798	795	797	796	795	796	795	783	782	782	783	783	782	782	783	783	782	782	111	111	777	176	111	778	111	97.6	
だ丑物画数	@/mm²	4.0E+03	3.5E+03	3.8E+03	8.0E+02	9.0E+02	5.0E+02	6.0E+02	2.5E+04	2.4E+04	2.2E+04	2.4E+04	2.2E+04	2.1E+04	8.0E+02	2.0E+02	4.0E+02	9.0E+02	8.0E+02	2.0E+04	1.9E+04	1.8E+05	2.2E+04	2.0E+04	1.96+04	7.5E+02	4.0E+02	
Fe,M.Cy编函	\$	8	4	7	51	s	8	co	&	4	æ	~	ø.	60	ស	8	22	æ	ø	œ	4	O 3	œ	7	6	5	&	
Medica	፠	-	∞	50	~	5	50	7	7	~	7	10	9	G	5	&	7	~	9	~	æ	5	7	r.	တ	&	7	
4. 光光 基本 化二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二		ফ	2	N _N	Z	Ö	ů.	έδ	ίΩ	Z	Z.S	S.N.	₹	REM,Si	ίō	Fe,Mn	F ,0,	īō	₹	έō	ž	HEW'S:	S.S.	Cu.N	HEW.N.	Z	Si	
计算音模		Si-IAn-Ti-Mg-Al	Si-Mn-Ti-Mg-Al	SI-Mn-TI-Mg-AI	Si-Mn-Ti-Mg-Al	Si-Mn-Ti-Mg-Al	Si-Mn-Ti-Mg-Al	Mg-Al-Si-Mn-Ti	S-Mn-T-Mg-Al	SI-Mn-TI-Mg-AI	SI-MIN-TI-MIG-AI	Si-Mn-Ti-Mg-Al	Si-Mn-Ti-Mg-Al	Mn-Ti-	Si-Mn-Ti-Mg-Al	Si-Mn-Ti-Mg-Al	SI-Mn-Ti-Mg-Al	Si-Mg-Mn-Ti-Al	Mg-Ai-Si-Mn-Tit	Si-Mn-Ti-Mg-Al	Si-Mn-Ti-Mg-Al	Si-Mn-Ti-Mg-Al	SI-Mn-Ti-Mg-Al	Si-Mn-Ti-Mg-Ai	Si-Mn-Ti-Mg-A	Si-Mn-Ti-Mg-Al	Mg-Al-Si-Mn-Til	
ٿ		,	•	ı	ı	ı	,	ı	0.003	0.003	0.003	0.002	0.002	0.003	0.003	0.002	0.003	0.003	0.002	0.003	0.002	0.002	0.003	0.002	0.002	0.003	0.002	
=		0.071	0.071	0.070	0.071	0.071	0.071	0.073	0.000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0000	0.000	0.080	0,090	0.091	0.090	0.090	0.091	0.090	0600	
2		_					0.028																					
₹		_	_			_	0.005			_		_											-	_	_			
N.		_	_	_	_	_	0.0003 0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	~	
	重量や	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
	i								3 0002																		2 0.003	
2		_	_	_	_	_	0.003	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		2 0.002	SCUL ST
٩		00	00	9.0 10.0	00	0.0	0.010	0.0	00	00	00	0.0	<u>.</u>	0.0	<u>.</u>	<u>6</u>	<u>0</u> 0	00	0.0	0.0	0.0	00	0.01	0.0	0.012	0.0	0.012	Six) -63
ž		53.	<u>.5</u>	.50	2.50	20	1.50	.51	8.	1.92	1.92	8	-90	<u>e</u> .	<u>e</u> .	8.	1.92	6.	<u>.</u>	2.01	2.02	2.01	2.02	202	207	2.01	2.00	X + 26 Q
ō		0.20	9.20	0.49	0.49	0.48	0.51	0.50	0.70	0.69	0.70	0.70	0.70	0.70	0.69	0.69	0.72	0.69	1.0	0.89	0.90	0.90	0,89	080	0.80	0.89	0.90	* (B) _ Ar.=898-509(Cs/+289(Six)-635(MnK)+229
اد		0.04	0.040	0.039	0.039	0.040	0.040	0.04 1	0.029	0.028	0.028	0.029	0.028	0.029	0,029	0.028	0.028	0.029	0.020	0.035	0.034	0.035	0.035	0.034	0.034	0.035	0.033	Ar.=99
		₹	₹	3	¥	A5	A6	¥	<u>=</u>	B 5	8	8	82	98	B 1	8	8	910	<u>=</u>	ច	3	පි	3	S	క	5	8	#

[0047]

【表2】

- 45	仕上温度	冷却速度	空冷開始温度	空冷時間	捲取温度	引張強さ	伸び	穴拡げ	備考
3 41	°C	°C/s	~ °C	8	℃	N/mm²	96	96	
A1	860	60	680	3	510	696	28	115	発明鋼
A2	870	50	670	3	550	697	28	115	発明鋼
A3	860	60	_	_	500	B94	26	1 25	発明鋼
A4	860	60	670	4	51 0	695	27	75	比較鋼
A5	870	60	670	4	490	694	26	70	比較鋼
A6	880	60	670	3	500	695	26	70	比較鋼
A7	860	60	_	_	500	698	21	85	比较鋼
B1	870	60	660	4	500	646	27	130	発明鋼
B2	870	60	670	8	55 0	646	27	125	発明鋼
B3	880	30	670	4	450	647	27	125	発明鋼
B4	870	60	_	_	550	645	27	120	発明鋼
95	880	70	_	_	490	646	26	130	発明鋼
B6	860	50	_	_	440	647	27	125	発明鋼
B7	850	60	670	8	550	646	26	85	比較鋼
B8	870	60	670	8	550	645	27	80	比較鋼
B9	870	60	_	_	480	649	26	80	比較鋼
B10	870	50	-	_	500	644	24	90	比較鋼
B11	860	50	_	_	480	647	25	85	比較鋼
C1	860	50	680	4	550	782	24	105	発明鋼
G2	860	50	670	8	500	782	25	100	発明鋼
C3	880	60	670	3	550	781	25	105	発明鋼
C4	880	40	-	_	450	782	23	105	発明鋼
C5	870	50	_	-	500	782	23	100	発明鋼
C6	870	50	680	4	540	783	25	110	発明鋼
		50 50	6 70	4	550	782	22	65	比較鋼
C7 C8	860	60	680	4	550	781	19	60	比較鋼
<u> </u>	870	- 							

表中*の条件は本発明の範囲外

[0048] -

【表3】

_	Į				**************************************		9 C		9		#	羅	羅!	羅!			羅!	器	■.		新	靈!	A	霉	E 5	赛	蛋!	S		K !	
E L		他亞羅	第四部	先司	物型	免明	金型	第二	金色	海海	を記	先明	海	第二	発電	第二	彩明	光型器	北西	光明	常用量	金型	米馬	北数	五数	开:	开数	开数	开	円 정	开费
ξ	ပ	764	848	608	818	765	796	96	775	775	891	112	763	827	815	781	748	797	793	782	721	810	783	756	731	763	769	774	768	827	778
和田初恒数	個/mm ²	1.5E+04	1.2E+04	1.0E+04	1.5E+04	1.0E+07	4.0E+03	8.0E+03	8.0E+03	1.0E+04	2.0E+04	2.2E+04	2.0E+03	7.0E+03	3.0E+04	4.0E+04	3.0E+03	1.0E+04	3.0E+04	5.0E+04	1.5E+04	3.0E+04	3.0E+04	3.0E+04	3.0E+04	3.0E+03	1.0E+03	8.0E+03	4.0E+03	8.0E+03	8.0E+03
Σ		ı	1	ı	1	ı	1	ι	ı	i	i	ı	1	ı	ı	1	I	1	ı	1	ı	ı	0.0020	1	ı	ı	ı	1	1	ı	ı
ပီ		,	0.0025	0.0020	ı	0.0030	0.0030	0.0030	0.0030	0.0030	0.0025	ı	0.0020	ı	ı	0.0020	0.0020	0.0020	0.0020	0.0020	ı	0.0020	1	0.0020	0.0020	0.0020	0.0020	ı	0.0020	0.0020	1
F		1	i	0.130	ı	0.120	0.070	0.00	0.00	ı	ı	0.080	0.120	1	0.090	0.150	ı	0.080	0.010	0.210	0.155	0.250	0.010	ı	0.080	0.010	0.120	ı	0.080	ı	1
£		0.015	0.035	0.040	0.030	1	0.030	0.030	0.040	0.025	0.025	0.030	0.035	0.030	0.035	1	0.020	0.030	1	0.035	0.035	0.035	0000	0.035	0.020	1	0.035	0.015	0.030	0.030	ì
₹		0.031	0.030	0.005	0.002	0.045	0000	0.005	0.005	0.035	0.033	0.034	0.005	0.005	0.035	0.030	0.005	0.005	0.030	0.005	0.030	0.035	0.030	0.035	0.035	0.005	0.005	0.034	0.080	ı	0.033
Mg		0.0022	0.0033	0.0037	0.0034	00100	0.001	0.0047	0.0047	0.0025	0.0025	0.0032	0.0031	0.0030	0.0025	0.0016	0.0022	0.0033	0.0029	0.0031	0.0040	0.0032	0.0029	0.0022	0.0033	0.0029	0.0016	0.0110	0.0020	0.0032	00000
Z	重量の	0.002	0.002	0.002	0.003	0.002	0.002	0.002	0.005	0.003	0.002	0.003	0.003	0.005	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.003	0.002	0000
S		0 003	0.003	0.003	0.002	0003	000	0.003	0.002	0.002	0.002	0003	0.002	0.003	0.002	0.003	0.003	0.007	0.00	0.003	0.003	0.003	0.004	0.003	0.003	0.012	0.003	0.003	0.003	0.003	000
۵		0010	0.013	0.025	0.010	0.015	0.010	0.010	0.012	0.012	0.030	0 0 18	0.012	0.015	0.012	0.011	0.016	0.014	0.010	0.015	0.00	0.020	0.010	0.016	0.014	0.010	0.015	0.012	0.017	0.017	8100
ş		20] =	: -	2 7	. r.		<u></u>	5 5	9 6		000	2.0	1.D	FC	2.0	20	1.6	4	00	6	- C	7	6	2.7	6.	<u> </u>	6	2.1	0	
ij.	5	53	9 6	3 -	. c	, e	. כ	, c	9 0	, o) -	9 0	9 5	80	, -	<u> </u>	2	- F			2 -	2 12	<u> </u>	3 2	60	0.4	90	90	12	ι α Ο	9 6
c	,	000	3 5		500	8 6	3 5	5 6	500	5 6	5 6	9	900	900	5 5	900	200	700	9 6	2 6	130	900	010	200	000	000	010	2	900	8	9 6
8	 	2	7 L	ט ע	_ C	בי	= -		> >	۷ _		§ 2	2 0	۵ ۵	_	5 C	٠ د	> ⊢	- =	> >	> }	: ×	< >	-) a	2 د	• (, 7	3 4	, 4	-

[0049]

【表4】

	19								
鐦	度	度	空冷開始温度	空冷時間	捲取温度	引張強さ	伸び	穴拡げ	備考
	్డి	°C/s	ಲ್	S	్రి	N/mm²	<u>%</u>	96	
D1	840	60	670	4	450	584	31	130	発明網
D2	870	60	-	-	550	594	29	135	発明鋼
E1	870	50	670	4	480	590	31	125	発明網
E2	870	60	-	-	550	595	30	135	発明鋼
F1	860	80	670 .	3	500	789	24	95	発明鋼
F2	870	60	-	-	550	7 94	23	100	発明鋼
F3	850	10	670	4	480	779	20	70	比較鋼
G1	880	60	670	3	450	601	30	125	発明鋼
G2	870	60	-	-	550	606	28	130	発明鋼
H1	890	60	680	3	450	819	22	100	発明鋼
H2	870	60	_	-	550	829	21	105	発明鋼
I1	860	60	680	3	510	680	27	110	発明鋼
12	870	60	-	-	550	690	25	115	発明鏡
J1	870	50	670	3	490	684	26	110	発明鋼
J2	870	60	_	-	550	692	25	115	発明鋼
K1	860	60	680	3	500	780	24	95	発明鋼
K2	870	30	680	4	550	778	25	100	発明響
КЗ	850	50	680	5	300	788	24	50	比較鋼
K4	900	30	660	3	640	785	22	65	比較鋼
K5	870	70	630	6	490	790	21	65	比较鋼
K6	880	50	720	6	550	780	20	75	比較鋼
K7	880	10	680	3	500	765	19	75	比較鋼
K8	870	60	_	-	550	787	22	100	発明鋼
K9	880	10	_	_	480	767	21	70	比較鋼
LI	860	60	670	4	510	687	28	120	発明鋼
L2	870	60	_	_	550	682	27	125	発明網
М1	870	60	670	4	490	614	31	125	発明鋼
M2	870	60	_	_	550	624	28	130	発明鋼
N1	880	60	670	3	500	781	23	105	発明鋼
N2	850	50	680	- 5	300	791	24	55	比較鋼
N3	880	50	720	6	550	779	20	65	比較鋼
N4	870	60	-	-	550	794	23	110	発明鋼
N5	880	10	_	_	480	772	19	70	比较鋼
01	860	60	670	3	500	784	24	95	発明鋼
02	870	60	_	_	550	796	24	100	発明鋼
P1	860	60	680	3	510	596	30	125	発明鋼
P2	870	60	_	_	550	604	29	130	発明網
QI	870	50	670	3	490	785	24	105	発明鋼
Q2	870	60	-	_	550	795	23	110	発明鋼
Ri	860	60	680	3	500	795	25	100	発明鋼
R2	870	60	-	_	550	807	22	110	免明鋼
R3	880	40	_	_	700	792	22	70	比較網
S1	860	60	670	4	510	609	30	125	免明銷
S2	870	60	_		550	619	29	125	発明講
T1	860	60	680	3	490	787	23	90	発明鋼
T2	870	60		_	550	798	22	90	免明鋼
U1	870	50	670	3	500	684	28	120	発明網
U2	87O	50 60	-	-	550	694	26	125	発明鋼
V1	860	60	680	4	490	1043	17	55	元 · · · · · · · · · · · · · · · · · · ·
V2	860	60	-	-	550	1038	16	65	免明鋼
Wi	870	60	670	4	5 0 0	996	18	65	発明鋼
W2	870	60	47U -	-	550	1001	17	70	免明鋼
X1	870	60	680	4	490	988	18	65	免明鎮
X2	870	60	~	-	550	994	18	70	光明鋼
Y1	870	60	680	4	500	683	27	120	光明鋼
Y2	870	60		-	550 550	693	26	125	免明鋼
			_		450	602	24	80	比較鋼
Z	870	60 70		_ g		800 800	2 4 17		比較調
a	860 850	70 40	660	5 8	510 400			60 70	
ь	850	40	66D	5	490 500	599 760	25 10	70	比較鋼
C	088	70	- -	_	500 480	760	19 27	65 75	比較鏡
d	870	80		-	480	612	27	75	比較錯
e	880	40 50	680	4	480 400	798 500	23	55 90	比較網
f	850	50 50	670	3	490	598	28 27	80 70	比較鋼
В	088	50			490	619	27	70	比較銅

[0050]

【発明の効果】本発明によれば強度レベルが590N/mm² クラス以上で、従来にない伸び一延性バランスを有した熱延高強度鋼板を供給できるようになったもので、産業上極めて有用なものである。

【図面の簡単な説明】

【図1】引張強度と伸びの関係を示すグラフである。 【図2】引張強度と穴拡げ比の関係を示すグラフであ

る。

【図1】

【図2】

【手続補正書】

【提出日】平成13年1月12日(2001.1.1.1

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0048

【補正方法】変更

【補正内容】

[0048]

【表3】

金布		常品館	常型鐵	常思羅	免罚量	常品館	発明鋼	纸配罐	常思難	発出機	常田蟹	常田館	光型鐵	常児童	発明網	常型量	郑田鑑	常田鐵	独型鐵	金田田	光明觀	光明鋼	発明鋼	元数 全	光数键	光数	光数键	九数鑑	九数鑑	九数鑑	比较
Ar_3	ပ	764	848	608	818	765	962	796	775	277	891	277	763	827	815	781	748	797	793	782	721	810	793	756	731	783	769	774	768	827	778
析出物個数	個/mm	1.5E+04	1.2E+04	1.05+04	1.5E+04	1.0E+07	4.0E+03	8.0E+03	8.0E+03	1.0E+04	2.0E+04	2.2E+04	2.0E+03	7.0E+03	3.0E+04	4.0E+04	3.0E+03	1.0E+04	3.0E+04	5.0E+04	1.5E+04	3.0E+04	3.0E+04	3.0E+04	3.0E+04	3.0E+03	1.0E+03	8.0E+03	4.0E+03	8.0E+03	8.0E+03
REM		ı	ı	ı	ı	ı	ı	ı	ı	i	J	ı	ı	ı	1	ì	ı	ı	ı	ı	i	ı	0.0020	ı	i	ŧ	ı	ı	ı	1	·
Ca		ı	0.0025	0.0020	ı	0.0030	0.0030	0.0030	0.0030	0.0030	0.0025	ı	0.0020	1	I	0.0020	0.0020	0.0020	0.0020	0.0020	ı	0.0020	1	0.0020	0.0020	0.0020	0.0020	ı	0.0020	0.0020	
Ţ		1	ı	0.130	ı	0.120	0.070	0.070	0.070	1	•	0.080	0.120	ı	0.000	0.150	1	0.080	0.010	0.210	0.155	0.250	0.010	1	0.080	0.010	0.120	ı	0.080	ı	١
QN N		0.015	0.035	0.040	0.030	ı	0.030	0.030	0.040	0.025	0.025	0.030	0.035	0.030	0.035	1	0.020	0.030	ı	0.035	0.035	0.035	0.000	0.035	0.020	ı	0.035	0.015	0.030	0.030	
AI		0.031	0.030	0.005	0.002	0.045	0.005	0.005	0.005	0.035	0.033	0.034	0.005	0.005	0.035	0.030	0.005	0.005	0.030	0.005	0.030	0.035	0.030	0.035	0.035	0.005	0.005	0.034	0.080	i	0.033
Μg		0.0022	0.0033	0.0037	0.0034	0.0100	0.0011	0.0047	0.0047	0.0025	0.0025	0.0032	0.0031	0.0030	0.0025	0.0016	0.0022	0.0033	0.0029	0.0031	0.0040	0.0032	0.0029	0.0022	0.0033	0.0029	0.0016	0.0110	0.0020	0.0032	0.0030
z	重量%	0.002	0.002	0.002	0.003	0.002	0.005	0.002	0.005	0.003	0.005	0.003	0.003	0.002	0.003	0.005	0.005	0.00	0.002	0.005	0.002	0.002	0.002	0.002	0.002	0.005	0.002	0.003	0.003	0.002	0.002
S		0.003	0.003	0.003	0.002	0.003	0.003	0.003	0.002	0.002	0.005	0.003	0.002	0.003	0.002	0.003	0.003	0.007	0.00	0.003	0.003	0.003	0.004	0.003	0.003	0.012	0.003	0.003	0.003	0.003	0.016 0.003 0.
۵		0.010	0.013	0.025	0.010	0.015	0.010	0.010	0.012	0.012	0.030	0.018	0.012	0.015	0.012	0.011	0.016	0.014	0.010	0.015	0.020	0.020	0.010	0.016	0.014	0.010	0.015	0.012	0.017	0.017	0.016
Ψu		2.0	=	9.	4.	2.5	5.5	<u>.</u>	2.0	2.0	0.5	20	2.0	10	5.	20	50	1.6	4.	20	2.2	<u>.</u>	4.	1.9	2.7	6.	rc.	6	2.1	0	1.9
S		0.3	0.9	Ξ	0.9	5.	0.5	0.5	0.9	0.9	<u>.</u>	6:0	0.8	80	4.	5	0.4	1.3	£.	<u>.</u>	0.1	5.	<u>.</u>	0.1	6.0	0.4	9.0	0.6	1.2	0.8	0.05 0.9 1
O		0.03	0.0	0.04	0.03	0.03	0.04	000	0.04	0.04	0.0	0.05	900	900	0.05	0.05	0.07	0.07	0.10	0.05	0.13	900	0.10	0.05	000	0.05	0.21	000	900	0.06	0.05
羅	1	-	ш	ı.	. c	, T	:		· ×	: _	S	Z	0	<u> </u>		· œ	: v	-	=	>	` ≱	: ×	: >	7	•	ع. ر	ı e	· ~	• •		- ∞

フロントページの続き

(72)発明者	谷口 裕一		Fターム(参考)	4K037 E	00 EA01	EA05	EA06	EA09
	愛知県東海市東海町5-3	新日本製鐵株		E	14 EA15	EA16	EA18	EA19
	式会社名古屋製鐵所内			E	23 EA25	EA27	EA28	EA31
(72)発明者	友清 寿雅			E	36 EB05	EB08	EB09 f	EB11
	愛知県東海市東海町5-3	新日本製鐵株		E	04 FC04	FC07	FD03 [FD04
	式会社名古屋製鐵所内			FI	05 FE01	FE02	FE06	JA06
•								

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLORED OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox