

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 18 martie 2017

CLASA a XI-a

Problema 1.

Fie $(a_n)_{n\geq 1}$ un şir de numere reale astfel încât $a_1>2$ şi

$$a_{n+1} = 1 + \frac{2}{a_n}$$
, pentru orice $n \ge 1$.

- a) Arătați că $a_{2n-1}+a_{2n}>4$, oricare ar fi $n\geq 1$, și că $\lim_{n\to\infty}a_n=2$.
- b) Determinați cel mai mare număr real a pentru care inegalitatea

$$\sqrt{x^2 + a_1^2} + \sqrt{x^2 + a_2^2} + \sqrt{x^2 + a_3^2} + \dots + \sqrt{x^2 + a_n^2} > n\sqrt{x^2 + a^2}$$

este adevărată oricare ar fi $x \in \mathbb{R}$ și oricare ar fi $n \in \mathbb{N}^*$.

Gazeta Matematică

Problema 2.

a) Arătați că există funcțiile $f: \mathbb{R} \to \mathbb{R}$ și $g: \mathbb{R} \to \mathbb{R}$ cu proprietățile:

$$f \circ g = g \circ f$$
, $f \circ f = g \circ g$ și $f(x) \neq g(x), \forall x \in \mathbb{R}$.

b) Arătați că dacă $f: \mathbb{R} \to \mathbb{R}$ și $g: \mathbb{R} \to \mathbb{R}$ sunt funcții continue cu proprietățile $f \circ g = g \circ f$ și $f(x) \neq g(x), \forall x \in \mathbb{R}$, atunci

$$(f \circ f)(x) \neq (g \circ g)(x), \forall x \in \mathbb{R}.$$

Problema 3.

Se consideră două matrice $A, B \in M_2(\mathbb{R})$ ce nu comută.

- a) Știind că $A^3 = B^3$, arâtați că A^n și B^n au aceeași urmă, pentru orice număr natural nenul n.
- b) Dați exemplu de două matrice $A, B \in M_2(\mathbb{R})$ ce nu comută, astfel ca pentru orice număr natural nenul n, A^n și B^n să fie diferite dar să aibă acceași urmă.

Problema 4.

Fie $A \in M_n(\mathbb{C})$ $(n \ge 2)$ cu det A = 0 şi A^* adjuncta sa. Arătați că $(A^*)^2 = (\operatorname{tr} A^*)A^*$, unde $\operatorname{tr} A^*$ este urma matricei A^* .

(Se poate folosi faptul că rang $(XY) \ge \operatorname{rang}(X) + \operatorname{rang}(Y) - n, \forall X, Y \in M_n(\mathbb{C})$.)

Timp de lucru 4 ore.

Fiecare problemă este notată cu 7 puncte.