东南大学电工电子实验中心 实验报告

Company A As	Control of the Contro
课程名称:	数字逻辑电路实验
	数于这再中断失 测

第8次实验

头	捡名	称:	_	FPG	A 时序:	<u> 逻辑攻</u>	<u> </u>	
院	(3	系)	:	自动化	_ 专	<u> </u>		自动化
姓		名:	_	陈鲲龙	学	号: .		08022311
实	验	室:	<u>坤</u>	<u> </u>	<u>105</u> 实验	俭组别	: _	
同组	组人	.员:	_		实验	封间: <u>2(</u>) <u>23</u>	年12月14日
评第	定成	绩:			审阅	教师:		

一、 实验目的

- 1、 进一步学习时序逻辑电路的分析和设计方法,掌握状态机设计方法,
- 2、 了解可编程数字系统设计的流程,掌握 Quartus II 软件的使用方法
- 3、 掌握原理图输入方式设计时序逻辑电路的方法和流程

二、 实验原理 (预习报告内容)

1. 实验内容:

(1) **必做:** 用二进制编码设计一个"111001"序列检测器,对串行输入序列进行检测,当连续检测到 6 个码元符合检测码"111001"时,检测器输出为 1

选做:用 One-Hot 编码设计一个"111001"序列检测器,对串行输入序列进行检测,当连续检测到6个码元符合检测码"111001"时,检测器输出为1

注意: "111001"序列的最后一个码元不能作为当前待测序列的第一个码元

- (2) 用静态(单步)的测试方法对实验结果进行验证
- (3) 自行设计一个"1011011011100100"序列发生器用于对实验结果进行动态验证
- (4) 用双踪示波器观察并记录动态验证结果。

2. 实验要求:

- (1) 根据设计要求划分设计层次、单元模块和接口信号,在报告上记录设计过程,绘制系统框图,每个模块的状态转移图和 ASM 图,并设计验证方案。
- (2) 用原理图输入法设计所有单元模块并编译,分析编译时产生的错误和警告信息
- (3) 对所有的单元模块进行功能仿真,并记录和分析全部仿真结果
- (4) 在顶层文件中连接全部单元模块并编译、综合、分配管脚和适配。
- (5) 对整个系统进行时序仿真,并记录和分析仿真结果。
- (6) 将仿真正确的设计下载到实验箱上,连接输入输出设备和示波器进行板级验证

实验设计方案;

仿真时选用: Cyclone III - EP3C5E144C8

设置引脚、编译下载时选用: Cyclone IV E - EP4CE6F17C8

文字描述				二进制编码				74161 集成计数器								
现	次	输	输	Q2	Q1	Q0	Q2	Q1	Q0	功能	EN	LD	D3	D2	D1	DO
态	态	入	出	现	现	现	次	次	次							
S0	S0	Χ'	0	0	0	0	0	0	0	保持	0	1	X	X	X	X
	S1	X	0				0	0	1	计数	1	1	X	X	X	X
S1	S0	Χ'	0	0	0	1	0	0	0	置数	0	0	0	0	0	0
	S2	X	0				0	1	0	计数	1	1	Х	X	X	Х
S2	S0	Χ'	0	0	1	0	0	0	0	置数	0	0	0	0	0	0
	S3	X	0				0	1	1	计数	1	1	Х	X	X	Х
S3	S4	Χ'	0	0	1	1	1	0	0	计数	1	1	X	X	X	Х
	S3	X	0				0	1	1	保持	0	1	X	X	X	Х
S4	S5	Х'	0	1	0	0	1	0	1	计数	1	1	Х	Х	X	Х
	S1	X	0				0	0	1	置数	0	0	0	0	0	1
S5	S0	Χ'	0	1	0	1	0	0	0	置数	0	0	0	0	0	0
	S0	X	1				0	0	0	置数	0	0	0	0	0	0

序列检测器原理图:

序列发生器 1011011011100100 原理图:

封装元件:

功能仿真:

时序仿真:

可见序列检测功能正常

三、 实验仪器 (实验过程中用到的仪器设备型号,使用情况,使用软件)

EPI-EWB204+面包板:用于电路的搭接、输入输出效果验收FPGA板

Quartus 软件:用于电路设计的原理图绘制、功能的仿真、时序分析、功能的下载

四、 实验记录 与 五、实验分析 (根据实验记录分析描述各实验结果是否符合设计要求)

通过对于仿真波形的检查,可以确定设计的序列发生器和序列检测器符合预设功能,并且通过了课程教师当堂验收。

实验室示波器动态波形验证正确(蓝色为序列,黄色为检测)

六、 实验小结(总结实验完成情况,对设计方案和实验结果做必要的讨论,简述实验 收获和体会)

完成了实验题目,预习报告和现场验收均已通过。

在设计电路时,要掌握由下至上的设计理念,比如本实验中封装了序列发生器和序列检测器,通过例化元件这种方式使原理图简化、清晰。

特别注意:原理图绘制时,个信号不能直接接到不同的端口,中间用两个 not (非门)隔开。

使用 Quartus 软件时:

- 1 要注意 Devices 的选择: 仿真时选用: Cyclone III EP3C5E144C8; 设置引脚、编译下载时选用: Cyclone IV E EP4CE6F17C8; 切换 Devices 会丢失引脚的设置信息。
- 2编译、仿真要将原理图文件置顶
- 3下载到下载板前要记得全编译

在实物搭接时,下载板上的输入输出如果不够,可以连一个拓展口到 E 派上,并用 E 派的 开关控制,注意此时 E 派电压调到 3.3V,防止下载板烧坏。

*本次实验中尤其注意: FPGA 板上引脚定义不能紧挨在一起如 A8B8A7,这样会导致出错! 尽量隔开几个引脚如 B6B7B8。

七、 参考资料 (记录实验过程阅读的有关资料,包含资料名称、作者等)

黄正谨,数字电路与系统设计基础,高教版成立,数字电子技术基础,机工版 阎石,数字电子技术基础,高教版

康华光,电子技术基础数字部分,高教版