Documentatie proiect programare procedurala

noiembrie 2018

Biro Balan Antonia

Grupa 132

Introducere

Acest proiect cripteaza, decripteaza si detecteaza pattern-uri intr-o imagine. Mai jos sunt descrise pe scurt functiile si structurile folosite.

Structuri

- pixel contine cele trei canale de culori RGB
- imagine contine un vector de pixeli si dimensiunea imaginii
- detectie contine scorul, coordonatele coltului stanga sus a ferestrei, dimensiunea ferestrei si culoarea cu care trebuie
- vect_detectii contine un vector de detectii si lungimea sirului

Headere

Pentru criptare/decriptare:

criptare.h

- criptare care liniarizeaza imaginea primita in fisierul imagine_init, modifica vectorul de pixeli obtinut si rescrie imaginea modificata (criptata) in fisierul imagine fin, iar in fisierul cheie returneaza seed-ul si sv-ul.
- rescrie construieste in memoria externa o imagine primita ca parametru in forma liniarizata. Header-ul se copiaza din fisierul inital fisier_init transmis ca parametru.
- liniarizare primeste ca parametru un fisier .bmp si transforma imaginea intr-un vector de pixeli. Returneaza adresa la care a fost memorat.
- XORSHIFT32 genereaza un numar aleator in functie de seed-ul transmis ca parametru.
- permutare creeaza o permutare de n elemente cu ajutorul sirului pseudo-aleator r.
- permutare imagine aplica o permutare asupra pixelilor unei imagini.
- criptare_cu_XOR primeste o imagine cu pixelii permutati si aplica criptarea cu XOR. Este folosita a doua jumatate a sirului pseudo-aleator r.
- generare_sir_nr_pseudo_aleatoare creeaza un sir pseudo-aleator de lungime n folosind algoritmul XORSHIFT32 pornind de la valoarea initiala seed.

decriptare.h

- permutare_inversa generaza permutarea initiala si o cu ajutorul ei permuta invers imaginea.
- decriptare_cu_XOR primeste o imagine criptata si aplica decriptarea cu XOR. Este folosita a doua jumatate a sirului pseudo-aleator r.
- decriptare decripteaza o imagine primita ca parametru folosind o cheie secreta. Apeleaza functiile permutare_inversa si decriptare_cu_XOR.

test_chi_patrat.h

- frecvente_pe_canale creeaza trei vectori de frecventa pentru fiecare canal de culoare.
- test_chi_patrat_pe_un_canal calculeaza valoarea χ2 pentru un canal de culoare
- test_chi_patrat afiseaza valoarea testului chi patrat pentru toate canalele de culoare.

Pentru Pattern-matching

grayscale.h

• grayscale_image transforma o imagine color intr-una gri.

cross_correlation.h

- calculare_scor calculeaza intensitatea_medie si deviatie_standard pentru un sablon si o fereastra date si le foloseste in determinarea scorului de corelatie.
- template_matching construieste un vector de detectii pentru un sablon si o fereastra date.

colorare.h

- colorez foloseste apelurile utile ale functiei color_fereastra pentru a colora toate detectiile din vector
- aleg culoare decide culoarea corespunzatoare fiecarui sablon

eliminare non-maxime.h

• elimin_non_maxime parcurge vectorul sortat de detectii si elimina detectiile non maxime marcandu-le cu un scor negativ, mai mic ca -1

identificare_patternuri.h

• identificare_patternuri ruleaza functia template_matching pentru fiecare sablon, reuneste detectiile intr-un vector final, il sorteaza, elimina non-maximele si apeleaza colorez.