Homework 2

Zachary Probst

September 23, 2021

Problem 1: Show that a set $E \subset \mathbb{R}$ is measurable if and only if for every interval $I \subset \mathbb{R}$ we have

$$m^{\star}(I) = m^{\star}(I \cap E) + m^{\star}(I \cap E^{c}) \tag{1}$$

To prove the nontrivial direction, we assume (1) and need to show that given any $A \subset \mathbb{R}$ with $m^{\star}(A) < \infty$ we have

$$m^{\star}(A) \ge m^{\star}(A \cap E) + m^{\star}(A \cap E^{c}) \tag{2}$$

First we will show that we have

$$m^{\star}(U) = m^{\star}(U \cap E) + m^{\star}(U + E^{c})$$

for any open set $U \subset \mathbb{R}$. Since U is open, it can be written as a countable union of disjoint open intervals $U = \bigcup_{k=1}^{\infty} I_k$. Let $n \in \mathbb{N}$ be any natural number. Define $F_n := \bigcup_{k=1}^n I_k$. Since F_n is a countable union of intervals and intervals are measurable, F_n is measurable by *Proposition* 7.

By Proposition 6 we have:

$$m^{\star}(E \cap F_n) = \sum_{k=1}^{n} m^{\star}(E \cap I_k)$$

$$m^{\star}(F_{n}) = m^{\star} \left(\bigcup_{k=1}^{n} I_{k}\right)$$

$$= \sum_{k=1}^{n} m^{\star}(I_{k}) \qquad (Proposition 6)$$

$$= \sum_{k=1}^{n} m^{\star}(I_{k} \cap E) + m^{\star}(I_{k} \cap E^{c}) \qquad (Equation (1))$$

$$= m^{\star}(F_{n} \cap E) + m^{\star}(F_{n} \cap E^{c}) \qquad (Proposition 6)$$

Now take the limit as $n \to \infty$ on both sides of this equation and we arrive at

$$m^{\star}(U) = m^{\star}(U \cap E) + m^{\star}(U \cap E^{c}) \tag{3}$$

Next let $\epsilon > 0$. By the definition of infimum, There exists some $U = \bigcup_{k=1}^{\infty} I_k \in \mathcal{C}_A$ such that $\sum_{k=1}^{\infty} \ell(I_k) < m^{\star}(A) + \epsilon$. U is a countable union of nonempty open bounded intervals, so it must be its own minimal cover. This means $m^{\star}(U) = \sum_{k=1}^{\infty} \ell(I_k)$. Using monotonicity and the fact that $A \subset U$

$$m^{\star}(A) \leq m^{\star}(U) < m^{\star}(A) + \epsilon$$

Since we have $m^{\star}(A) < \infty$ we can subtract $m^{\star}(A)$ to arrive at

$$0 \le m^{\star}(U) - m^{\star}(A) < \epsilon$$

For all ϵ so $m^{\star}(U) = m^{\star}(A)$.

Now to conclude:

$$m^{\star}(A) = m^{\star}(U)$$

$$= m^{\star}(U \cap E) + m^{\star}(U \cap E^{c}) \qquad \text{(Equation (3))}$$

$$\geq m^{\star}(A \cap E) + m^{\star}(A \cap E^{c}) \qquad (A \subset U)$$

So putting this result together with the trivial inequality in the other direction

$$m^{\star}(A) = m^{\star}(A \cap E) + m^{\star}(A \cap E^{c})$$

Problem 2: Let $E \subset \mathbb{R}$ be any set. Show that there is a G_{δ} set $F \supset E$ (in particular F is measurable) with

$$m^{\star}(F) = m^{\star}(E)$$

By monotonicity we have $m^{\star}\left(E\right)\leq m^{\star}\left(F\right)$ for any F.

To show the reverse inequality, $\forall n \in \mathbb{N}$, from the definition of infimum, there must exist a collection $\{I_{n_k}\}_{k=1}^{\infty}$ of open intervals such that $\{I_{n_k}\}_{k=1}^{\infty} \in \mathcal{C}_E$ and

$$m^{\star}(E) \leq \sum_{k=1}^{\infty} \ell(I_{n_k}) < m^{\star}(E) + \frac{1}{n}$$

Define F to be

$$F := \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty} I_{n_k}$$

F is a countable intersection since the natural numbers are countable and it is an open set since it is composed of intervals. Therefore F is a G_{δ} .

For any $\epsilon > 0$, let $N \in \mathbb{N}$ be such that $\frac{1}{N} < \epsilon$.

$$m^{\star}(F) = \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty} I_{n_{k}}$$

$$\leq m^{\star} \left(\bigcup_{k=1}^{\infty} I_{N_{k}}\right) \qquad (Monotonicity)$$

$$\leq \sum_{k=1}^{\infty} m^{\star} (I_{N_{k}}) \qquad (Subadditivity)$$

$$< m^{\star}(E) + \frac{1}{N}$$

$$< m^{\star}(E) + \epsilon$$

This must mean that $m^{\star}(F) = m^{\star}(E)$

Chapter 2 Problem 10 Let A and B be bounded sets for which there is an $\alpha > 0$ such that $|a - b| \ge \alpha$ for all $a \in A, b \in B$. Prove that $m^*(A \cup B) = m^*(A) + m^*(B)$

 $A\cap B=\emptyset$ because otherwise there would be some $a\in A,b\in B$ such that $a=b\Rightarrow |a-b|=0$ but |a-b|>0 by definition.

Since A and B are disjoint, any minimal collection of bounded open intervals I_k that cover $A \cup B$ can be split up into two disjoint collections $I_k^A \supseteq A$ and $I_k^B \supseteq B$ where $I_k^A \cap I_k^B = \emptyset \ \forall k$

$$m^{\star}(A \cup B) = \inf_{\{I_{k}\} \in \mathcal{C}_{A \cup B}} \sum_{k=1}^{\infty} \ell(I_{k})$$

$$= \inf_{\{I_{k}^{A} \cup I_{k}^{B}\} \in \mathcal{C}_{A \cup B}} \sum_{k=1}^{\infty} \ell(I_{k}^{A}) + \sum_{k=1}^{\infty} \ell(I_{k}^{B})$$

$$= \inf_{\{I_{k}^{A}\} \in \mathcal{C}_{A}} \sum_{k=1}^{\infty} \ell(I_{k}^{A}) + \inf_{\{I_{k}^{B}\} \in \mathcal{C}_{B}} \sum_{j=1}^{\infty} \ell(I_{k}^{B})$$

$$= m^{\star}(A) + m^{\star}(B)$$

Chapter 2 Problem 14: Show that if a set E has positive outer measure, then there is a bounded subset of E that also has positive outer measure.

Define an open interval $I_j := (-j, j) \cap E$. We claim that there is some $N \in \mathbb{N}$ such that $m^*(I_N) > 0$. If there were no such N, then $m^*(I_j) = 0 \, \forall j$ and we could let $j \to \infty$

$$m^{\star}(E) = m^{\star} \left(\bigcup_{j=1}^{\infty} I_{j} \right)$$

$$\leq \sum_{j=1}^{\infty} m^{\star}(I_{j}) \qquad \text{(Countable Subadditivity)}$$

$$= 0$$

But this is a contradiction since $m^{\star}(E) > 0$. Therefore there exists an I_N bounded subset of E that also has positive outer measure.