M2.951 - TIPOLOGIA I CICLE DE VIDA DE LES DADES

Pràctica 2 - World Health Indicators Dataset

Anna de la Torre Suñe, Xavier Ventura de los Ojos

9/6/2020

Contents

1 Descripció del dataset. Perquè és important i quina pregunta/problema pretén respondre?	2
2 Integració i selecció de les dades d'interès a analitzar. \hdots	3
3. Neteja de les dades	6
3.1. Les dades contenen zeros o elements buits? Com gestionaries aquests casos?	6
3.2. Identificació i tractament de valors extrems	13
4. Anàlisi de les dades	27
4.1. Selecció dels grups de dades que es volen analitzar/comparar (planificació dels anàlisis a aplicar)	27
4.2. Comprovació de la normalitat i homogeneïtat de la variància.	29
4.3. Aplicació de proves estadístiques per comparar els grups de dades. En funció de les dades i de l'objectiu de l'estudi, aplicar proves de contrast d'hipòtesis, correlacions, regressions, etc. Aplicar almenys tres mètodes d'anàlisi diferents	46
5 Representació dels resultats a partir de taules i gràfiques	53
Histogrames de Life expectancy en funció del rang de despesa sanitària pública	53
Visualització dels coeficients de correlació entre les variables del dataset (no agrupades) $$	55
6 Resolució del problema. A partir dels resultats obtinguts, quines són les conclusions? Els resultats permeten respondre al problema?	57
Contribucions	58

1 Descripció del dataset. Perquè és important i quina pregunta/problema pretén respondre?

El dataset que analitzarem és el **World Health Indicators** que vàrem obtenir de les Nacions Unides i del Banc Mundial a la pràctica 1 - web scraping. El WHI està format per 572 files i 22 columnes i conté dades relacionades amb l'àmbit de la salut pública i dades socioeconòmiques referents a 194 països i regions del món dels anys 2005, 2010 i 2019 (*).

El dataset té la següent estructura:

- country code Codi ISO3 de país
- country Nom del país
- year Any
- population Població total
- population_grow Creixement de la població (% anual)
- population_under_14 Població d'edats entre els 0 14 anys (% de la població total)
- population_above_65 Població d'edats superior als 65 anys (% de la població total)
- gdp Producte Interior Brut (milions de dòlars actuals) GDP per les seves sigles en anglès
- gdp_growth_rate Taxa de creixement del Producte Interior Brut (% anual a preus constants de 2010)
- unemployment Atur (% de població en edat laboral)
- education gov expenditure Despesa governamental en educació (% GDP)
- health_expenditure Despesa en salut (% GDP)
- life_expectancy_fem Esperança de vida, dones (anys)
- life_expectancy_male Esperança de vida, homes (anys)
- non_commun_disease_death Morts per malalties no transmissibles (% del total)
- commun_disease_death Morts per malalties transmissibles i condicions d'embaràs, prenatals i nutricionals (% del total)
- tuberculosis Incidència de tuberculosi (per cada 100.000 habitants)
- hiv Prevalença de VIH (en % de població d'edats entre els 15 i 49 anys)
- infant mortality Mortalitat infantil (per cada 1000 naixements amb vida)
- undernourishment Prevalença de desnutrició (% població)
- hospital beds Llits d'hospital (per cada 1000 habitants)
- physicians metges (per cada 1000 habitants)

(*) En el cas del Banc Mundial, s'ha hagut d'assimilar les dades de 2018 a les de 2019 a l'espera que es publiquin les dades de 2019.

Considerem que aquest és un dataset interessant que ens pot ajudar a entendre la situació sociosanitària de les diferents regions del món, determinar vulnerabilitats o zones de risc i per tant identificar on es fa més necessari actuar. S'analitzarà la correlació entre indicadors socioeconòmics i indicadors sanitaris, amb especial èmfasi en aquelles variables que afecten l'esperança de vida d'homes i dones. S'estudiarà amb detall les diferències en l'esperança de vida segons diferents rangs de despesa sanitària pública. Finalment s'implementarà un model de regressió que permeti predir l'esperança de vida en funció de diferents variables correlacionades.

2 Integració i selecció de les dades d'interès a analitzar.

En aquest cas no cal realitzar un procés d'integració de dades, ja que ja es va dur a terme en la Pràctica 1, de manera que partim d'un dataset que ja integra dades de diferents fonts.

Respecte a la selecció de dades, d'una banda s'eliminaran les columnes non_commun_disease_death, commun_disease_death, hospital_beds i undernourishment a causa de la important proporció de dades buides que contenen (veure secció 3.1), de manera que els tests i models que s'apliquin se sustentin en dades de major qualitat. I d'altra banda, gràcies als testos de correlació que s'aplicaran en la secció 4.3. observarem que necessitarem crear quatre noves variables calculades, que mostrin les variables gdp, gdp_growth_rate, education_gov_expenditure i health_expenditure per càpita. Si no es prenen els valors per càpita, s'observen correlacions molt febles entre les dades d'interès relacionades amb la salut dels habitants i les dades globals de gdp, gdp_growth_rate, education_gov_expenditure i health_expenditure pel conjunt del país.

Procedim ara a llegir les dades del fitxer "world_health_indicators.csv" i fem una anàlisi descriptiva de les variables d'interès.

```
# Carreguem el fitxer de dades world_health_indicators.csv
health_data <- read.csv('world_health_indicators.csv', stringsAsFactors = F)
health_rows=dim(health_data)[1]</pre>
```

Visualitzem les primeres files del dataset

country_code	country	year	population	population_grow	population_under_14	population_above_65
ARE	United Arab Emirates (the)	2005	4588225	12.02	18.34	0.89
ARE	United Arab Emirates (the)	2010	8549988	7.69	13.16	0.69
ARE	United Arab Emirates (the)	2019	9630959	1.50	14.60	1.09
AFG	Afghanistan	2005	25654277	3.68	47.86	2.23
AFG	Afghanistan	2010	29185507	2.75	48.18	2.33
AFG	Afghanistan	2019	37172386	2.38	43.09	2.58
ATG	Antigua and Barbuda	2005	81465	1.40	26.51	6.98
ATG	Antigua and Barbuda	2010	88028	1.47	24.34	7.36
ATG	Antigua and Barbuda	2019	96286	0.90	22.08	8.80

country_code	year	gdp	gdp_growth_rate	unemployment	$education_gov_expenditure$
ARE	2005	182978	4.9	3.1	NA
ARE	2010	289787	1.6	3.7	NA
ARE	2019	382575	0.8	1.7	NA
AFG	2005	6622	9.9	8.5	NA
AFG	2010	16078	3.2	7.8	3.5
AFG	2019	21993	2.5	8.8	3.9
ATG	2005	1022	6.4	8.4	3.4
ATG	2010	1152	-7.2	NA	2.5
ATG	2019	1510	3.0	NA	NA

${\rm country_code}$	year	$health_expenditure$	$life_expectancy_fem$	$life_expectancy_male$	$non_commun_disease_death$	$commun_disease_death$
ARE	2005	2.3	76.82	74.60	NA	NA
ARE	2010	3.9	77.77	75.62	70.4	7.5
ARE	2019	3.5	79.16	77.13	NA	NA
AFG	2005	9.9	59.63	57.04	NA	NA
AFG	2010	8.6	62.46	59.68	39.2	50.2
AFG	2019	10.2	66.03	63.05	NA	NA
ATG	2005	4.5	76.34	73.58	NA	NA
ATG	2010	5.4	77.12	74.44	79.1	13.2
ATG	2019	4.3	77.98	75.72	NA	NA

country_code	year	tuberculosis	hiv	infant_mortality	undernourishment	hospital_beds	physicians
ARE	2005	2.6	NA	9.0	4.1	2.2	1.5
ARE	2010	1.8	NA	7.7	5.9	1.9	1.5
ARE	2019	1.0	NA	6.5	NA	NA	2.4
AFG	2005	189.0	0.1	84.6	33.2	0.4	0.2
AFG	2010	189.0	0.1	72.2	22.1	0.4	0.2
AFG	2019	189.0	0.1	60.1	NA	NA	0.3
ATG	2005	8.5	NA	11.5	NA	2.4	NA
ATG	2010	9.1	NA	9.0	NA	2.2	1.6
ATG	2019	6.0	NA	6.8	NA	NA	2.8

```
# Verifiquem l'estructura del joc de dades
str(health_data)
```

```
## 'data.frame':
                    572 obs. of 22 variables:
   $ country_code
                                      "ARE" "ARE" "AFG" ...
                               : chr
                                      "United Arab Emirates (the)" "United Arab Emirates (the)" "United
##
   $ country
                               : chr
##
   $ year
                               : int
                                      2005 2010 2019 2005 2010 2019 2005 2010 2019 2005 ...
##
   $ population
                                      4588225 8549988 9630959 25654277 29185507 ...
                               : num
                                      12.02 7.69 1.5 3.68 2.75 ...
   $ population_grow
                               : num
##
   $ population_under_14
                                      18.3 13.2 14.6 47.9 48.2 ...
                               : num
                                      0.89 0.69 1.09 2.23 2.33 2.58 6.98 7.36 8.8 8.5 ...
   $ population_above_65
                               : num
## $ gdp
                               : int
                                      182978 289787 382575 6622 16078 21993 1022 1152 1510 8052 ...
##
   $ gdp_growth_rate
                                      4.9 1.6 0.8 9.9 3.2 2.5 6.4 -7.2 3 5.5 ...
                               : num
                                      3.1 3.7 1.7 8.5 7.8 8.8 8.4 NA NA 17.5 ...
##
   $ unemployment
                               : num
##
   $ education_gov_expenditure: num
                                      NA NA NA NA 3.5 3.9 3.4 2.5 NA 3.2 ...
  $ health_expenditure
                                      2.3 3.9 3.5 9.9 8.6 10.2 4.5 5.4 4.3 6.3 ...
                               : num
                                      76.8 77.8 79.2 59.6 62.5 ...
##
   $ life_expectancy_fem
                               : num
   $ life_expectancy_male
                                      74.6 75.6 77.1 57 59.7 ...
##
                               : num
   \ non_commun_disease_death : num NA 70.4 NA NA 39.2 NA NA 79.1 NA NA ...
## $ commun_disease_death
                               : num
                                      NA 7.5 NA NA 50.2 NA NA 13.2 NA NA ...
                                      2.6 1.8 1 189 189 189 8.5 9.1 6 19 ...
## $ tuberculosis
                               : num
## $ hiv
                                      NA NA NA O.1 O.1 O.1 NA NA NA NA ...
                               : num
## $ infant_mortality
                               : num 9 7.7 6.5 84.6 72.2 60.1 11.5 9 6.8 21.2 ...
## $ undernourishment
                               : num 4.1 5.9 NA 33.2 22.1 NA NA NA NA 10.9 ...
                                      2.2 1.9 NA 0.4 0.4 NA 2.4 2.2 NA 3.1 ...
   $ hospital_beds
                               : num
   $ physicians
                               : num
                                     1.5 1.5 2.4 0.2 0.2 0.3 NA 1.6 2.8 NA ...
# Convertim la variable gdp de "integer" a numèrica:
health_data$gdp <- as.numeric(health_data$gdp)</pre>
# Anàlisi estadístic descriptiu de health_data
summary(health data)
```

```
country_code
                         country
                                                            population
                                                year
  Length:572
                       Length: 572
                                                  :2005
                                                                 :1.978e+04
                                          Min.
                                                          Min.
## Class :character
                       Class :character
                                           1st Qu.:2005
                                                          1st Qu.:2.073e+06
## Mode :character
                       Mode :character
                                                          Median :7.655e+06
                                          Median :2010
##
                                           Mean
                                                  :2011
                                                          Mean
                                                                 :3.660e+07
##
                                           3rd Qu.:2019
                                                          3rd Qu.:2.530e+07
##
                                           Max.
                                                  :2019
                                                                 :1.393e+09
                                                          Max.
##
```

```
population grow
                     population_under_14 population_above_65
                                                                  gdp
##
   Min.
         :-3.980
                     Min.
                           :11.90
                                         Min. : 0.690
                                                                           112
                                                             Min.
   1st Qu.: 0.490
                     1st Qu.:18.88
                                         1st Qu.: 3.310
                                                                          6296
                                                             1st Qu.:
  Median : 1.350
                     Median :28.16
                                         Median : 5.720
                                                             Median :
                                                                         22979
   Mean
         : 1.462
                     Mean
                           :29.09
                                         Mean
                                                : 7.863
                                                             Mean
                                                                       337383
##
   3rd Qu.: 2.370
                     3rd Qu.:38.85
                                         3rd Qu.:11.980
                                                             3rd Qu.: 147788
   Max.
          :13.870
                     Max.
                           :50.04
                                         Max.
                                                :27.580
                                                             Max.
                                                                     :19485394
   NA's
                     NA's
                                                             NA's
##
           :3
                                         NA's
                            :3
                                                :3
                                                                     :1
   gdp_growth_rate
##
                       unemployment
                                      education_gov_expenditure health_expenditure
##
          :-14.000
                      Min. : 0.10
                                      Min. : 1.000
                                                                Min.
                                                                       : 1.300
   Min.
   1st Qu.: 2.100
                      1st Qu.: 4.20
                                      1st Qu.: 3.300
                                                                1st Qu.: 4.325
   Median : 3.900
                      Median: 6.65
                                      Median : 4.400
                                                                Median : 6.000
##
                                             : 4.602
                      Mean : 8.24
                                                                      : 6.285
   Mean
          : 4.365
                                      Mean
                                                                Mean
                      3rd Qu.:10.70
                                      3rd Qu.: 5.500
##
   3rd Qu.: 6.450
                                                                3rd Qu.: 8.100
##
   Max.
           : 64.000
                      Max.
                             :37.20
                                      Max.
                                             :12.800
                                                                Max.
                                                                        :17.100
##
   NA's
           :1
                      NA's
                             :10
                                      NA's
                                             :113
                                                                NA's
                                                                        :34
##
   life_expectancy_fem life_expectancy_male non_commun_disease_death
           :44.60
                        Min. :40.57
                                             Min. :14.90
##
   1st Qu.:66.82
                        1st Qu.:62.72
                                             1st Qu.:42.35
   Median :75.46
                        Median :69.32
                                             Median :73.00
##
##
   Mean
           :72.68
                        Mean
                              :67.83
                                             Mean
                                                    :66.07
##
   3rd Qu.:79.40
                        3rd Qu.:74.33
                                             3rd Qu.:87.05
   Max.
           :87.70
                                             Max.
                                                    :95.10
##
                        Max.
                               :82.30
##
   NA's
           :3
                        NA's
                               :3
                                             NA's
                                                    :389
##
    commun disease death tuberculosis
                                               hiv
                                                           infant mortality
   Min.
         : 1.50
                         Min. :
                                    0.0
                                          Min.
                                                 : 0.100
                                                           Min. : 1.60
##
   1st Qu.: 6.60
                         1st Qu.: 15.0
                                          1st Qu.: 0.100
                                                           1st Qu.: 8.30
##
   Median :13.50
                         Median: 51.0
                                          Median : 0.400
                                                           Median : 19.10
##
          :24.79
                                                                 : 30.59
   Mean
                         Mean
                               : 131.1
                                          Mean
                                                : 1.985
                                                           Mean
   3rd Qu.:46.60
                         3rd Qu.: 176.0
                                          3rd Qu.: 1.500
                                                           3rd Qu.: 51.10
                                :1280.0
                                                                  :141.90
##
   Max.
           :71.50
                         Max.
                                          Max.
                                                 :27.400
                                                           Max.
##
   NA's
           :389
                         NA's
                                :3
                                          NA's
                                                 :157
                                                           NA's
                                                                  :3
##
   undernourishment hospital_beds
                                        physicians
          : 2.50
                     Min. : 0.100
                                            :0.000
   Min.
                                      Min.
   1st Qu.: 2.50
                     1st Qu.: 1.600
##
                                      1st Qu.:0.200
##
   Median : 7.40
                     Median : 3.000
                                      Median :1.100
##
   Mean
          :12.48
                     Mean
                           : 3.502
                                      Mean :1.491
##
   3rd Qu.:18.20
                     3rd Qu.: 5.100
                                      3rd Qu.:2.400
##
   Max.
           :57.10
                     Max.
                            :14.300
                                      Max.
                                             :8.200
##
   NA's
           :247
                     NA's
                            :319
                                      NA's
                                             :102
```

3. Neteja de les dades.

3.1. Les dades contenen zeros o elements buits? Com gestionaries aquests casos?

Analitzem els casos de zeros

Mostrem les files amb alguna columna amb valor 0.

```
columnes <- colSums(health_data == 0,na.rm=TRUE) > 0
columnes[c('country','year')] <- TRUE

zeros <- health_data[rowSums(health_data == 0,na.rm = TRUE) > 0,columnes]
```

Table 1: Valors zero

country	year	$population_grow$	gdp_growth_rate	tuberculosis	physicians
Burkina Faso	2010	3.02	8.4	58	0
Burundi	2005	3.22	0.9	195	0
Burundi	2010	3.26	5.1	144	0
Burundi	2019	3.17	0	111	0
Benin	2005	2.95	1.7	73	0
Central African Republic (the)	2010	1.13	3.6	540	0
Spain	2010	0.46	0	17	3.7
Ethiopia	2005	2.8	11.8	341	0
Ethiopia	2010	2.78	12.6	268	0
Saint Kitts and Nevis	2005	1.14	8.8	0	1.1
Liberia	2005	2.6	5.3	267	0
Liberia	2010	3.59	7.3	293	0
Liberia	2019	2.45	2.5	308	0
Lesotho	2005	-0.49	2.7	1280	0
Malawi	2005	2.6	3.3	398	0
Malawi	2010	2.87	5.5	310	0
Malawi	2019	2.64	5.1	181	0
Mozambique	2005	2.89	8.7	523	0
Mozambique	2010	2.74	6.7	545	0
Niger (the)	2005	3.73	7.4	143	0
Niger (the)	2010	3.84	8.4	113	0
Niger (the)	2019	3.82	4.9	87	0
Papua New Guinea	2005	2.19	3.9	432	0
Poland	2019	0	4.8	16	2.4
Qatar	2019	2.07	1.6	31	0
Sierra Leone	2005	3.82	4.5	316	0
Sierra Leone	2010	2.25	5.3	317	0
Sierra Leone	2019	2.14	3.8	298	0
Somalia	2010	2.75	2.6	286	0
Somalia	2019	2.83	1.8	262	0
Chad	2005	3.65	7.9	151	0
Chad	2010	3.33	15	147	0
Chad	2019	3.02	-3.1	142	0
Togo	2005	2.6	-4.7	71	0
Togo	2019	2.45	4.4	36	0
Tanzania, United Republic of	2005	2.82	7.4	510	0
Tanzania, United Republic of	2019	2.98	7	253	0

Hi ha quatre casuístiques diferents:

• Un valor 0 al creixement de la població de Polònia l'any 2019.

health_data[health_data\$country=="Poland",c('country','year',"population","population_grow")]

	country	year	population	population_grow
417	Poland	2005	38165445	-0.04
418	Poland	2010	38042794	-0.29
419	Poland	2019	37974750	0.00

Observem que podria ser un valor correcte tenint en compte que la variació de la població entre els anys 2010 i 2019 a Polonia ha estat del -0.1788617%.

• Paisos amb GDP Growth Rate igual a 0

```
cgdp0 <- health_data[health_data$gdp_growth_rate == 0,"country"]
health_data[health_data$country %in% cgdp0,c('country','year',"gdp","gdp_growth_rate")]</pre>
```

	country	year	gdp	gdp_growth_rate
55	Burundi	2005	1117	0.9
56	Burundi	2010	2032	5.1
57	Burundi	2019	3155	0.0
158	Spain	2005	1157248	3.7
159	Spain	2010	1431617	0.0
160	Spain	2019	1314314	3.0

Consultant altres fonts (tradingeconomics.com), corregim el valor del gdp_growth de Burundi per a l'any 2019 que va ser de 3.3.

```
health_data[health_data$country == "Burundi" & health_data$year == 2019,]$gdp_growth_rate <- 3.3
```

En el cas d'Espanya, el valor 0 per l'any 2010 és correcte.

• Paisos amb 0 casos de tuberculosi per 100.000 habitants.

```
ctry <- health_data[which(health_data$tuberculosis == 0), "country"]
health_data[health_data$country %in% ctry,c("country", "year", "population", "tuberculosis")]</pre>
```

	country	year	population	tuberculosis
275	Saint Kitts and Nevis	2005	46857	0

Es tracta d'un terrori tant petit que és possible que aquest valor sigui correcte.

• Països amb 0.0 metges per cada 1000 habitants

	country	year	health_expenditure	population	physicians
46	Burkina Faso	2005	4.4	13421930	0.1
47	Burkina Faso	2010	5.9	15605217	0.0
48	Burkina Faso	2019	6.8	19751535	0.1
55	Burundi	2005	8.4	7364862	0.0
56	Burundi	2010	11.3	8675602	0.0
57	Burundi	2019	7.7	11175378	0.0
58	Benin	2005	4.0	7982225	0.0
59	Benin	2010	4.1	9199259	0.1
60	Benin	2019	3.9	11485048	0.2
91	Central African Republic (the)	2005	4.8	4038382	0.1
92	Central African Republic (the)	2010	3.7	4386768	0.0
93	Central African Republic (the)	2019	4.3	4666377	0.1
161	Ethiopia (****)	2005	4.1	76346311	0.0
162	Ethiopia	2010	5.5	87639964	0.0
163	Ethiopia	2019	4.0	109224559	0.1
300	Liberia	2005	8.8	3218116	0.0
301	Liberia	2010	8.8	3891356	0.0
302	Liberia	2019	9.6	4818977	0.0
$\frac{302}{303}$	Lesotho	2005	5.1	1996114	0.0
$\frac{304}{304}$	Lesotho	2010	7.7	1995581	0.1
$\frac{304}{305}$	Lesotho	2019	8.1	2108132	NA
$\frac{305}{357}$	Malawi	2005	6.1	12625952	0.0
$\frac{357}{358}$	Malawi	2010	7.2	14539612	0.0
$\frac{350}{359}$	Malawi	2019	9.8	18143315	0.0
$\frac{366}{366}$	Mozambique	2019	6.4	20493925	0.0
$\frac{360}{367}$	Mozambique	2010	5.1	23531574	0.0
$\frac{367}{368}$	Mozambique Mozambique	2010	5.1	29495962	0.0
	Niger (the)	2019	7.5	13624467	0.0
$\frac{375}{376}$	Niger (the)	2005	6.5	16464025	0.0
$\frac{370}{377}$	Niger (the)	2010	6.2	22442948	0.0
	Papua New Guinea			6494903	
408		2005	2.5		0.0
409	Papua New Guinea	2010	2.1	7310507	0.1 NA
$\frac{410}{433}$	Papua New Guinea	2019	2.0	8606316 865416	$\frac{NA}{2.5}$
	Qatar			1856327	3.9
434	Qatar	2010	1.8		
$\frac{435}{472}$	Qatar Cianna Lagna	2019	3.1	2781677	0.0
472	Sierra Leone	2005	11.0	5645624	0.0
473	Sierra Leone	2010	10.9	6415634	0.0
474	Sierra Leone	2019	16.5	7650154	0.0
478	Somalia	2005	NA NA	10446863	NA
479	Somalia	2010	NA	12043883	0.0
480	Somalia	2019	NA	15008154	0.0
498	Chad	2005	4.8	10096633	0.0
499	Chad	2010	4.1	11952136	0.0
500	Chad	2019	4.5	15477751	0.0
501	Togo	2005	3.9	5611640	0.0
502	Togo	2010	5.9	6421679	0.2
503	Togo	2019	6.6	7889094	0.0
528	Tanzania, United Republic of	2005	6.4	38450320	0.0
529	Tanzania, United Republic of	2010	5.3	44346525	NA
530	Tanzania, United Republic of	2019	4.1	56318348	0.0

Segons la WHO, Available statistics show that over 45% of WHO Member States report to have less than 1 physician per 1000 population això vol dir que aquests valors 0 poden ser correctes.

Analitzem els casos amb elements buits.

Sobre un total de 572 files, els casos amb valors buits (NA) són:

```
# Estadístiques de valors buits
vb <- colSums(is.na(health_data))
kable(vb[vb>0],col.names="Valors buits")
```

	Valors buits
population_grow	3
population_under_14	3
population_above_65	3
gdp	1
gdp_growth_rate	1
unemployment	10
education_gov_expenditure	113
health_expenditure	34
life_expectancy_fem	3
life_expectancy_male	3
non_commun_disease_death	389
commun_disease_death	389
tuberculosis	3
hiv	157
infant_mortality	3
undernourishment	247
hospital_beds	319
physicians	102

Mostrem la proporció de valors buits de les diferents variables i les seves possibles combinacions pel dataset complert (anys 2005, 2010 i 2019).


```
##
    Variables sorted by number of missings:
                     Variable
##
                                     Count
     non_commun_disease_death 0.680069930
##
         commun_disease_death 0.680069930
##
##
                hospital_beds 0.557692308
##
             undernourishment 0.431818182
##
                          hiv 0.274475524
##
    education_gov_expenditure 0.197552448
##
                   physicians 0.178321678
##
           health_expenditure 0.059440559
##
                 unemployment 0.017482517
##
              population_grow 0.005244755
##
          population_under_14 0.005244755
##
          population_above_65 0.005244755
##
          life_expectancy_fem 0.005244755
##
         life_expectancy_male 0.005244755
##
                 tuberculosis 0.005244755
##
             infant_mortality 0.005244755
##
                           gdp 0.001748252
```

##

```
## gdp_growth_rate 0.001748252
## year 0.000000000
## population 0.000000000
```

En vista de la important proporció de buits existent a les columnes non_commun_disease_death, commun_disease_death, hospital_beds i undernourishment, que oscil·la entre el 43 i el 68%, decidim realitzar una selecció de les dades, eliminant aquestes columnes de l'estudi, de manera que els tests i models que realitzem es sustentin en dades de major qualitat.

```
health_miss <- health_data[, !(colnames(health_data) %in% c("country_code", "country",
    "non_commun_disease_death", "commun_disease_death", "hospital_beds",
    "undernourishment"))]

aggr(health_miss, numbers=T, sortVars=T, labels=names(health_miss), cex.axis=0.4,
    cex.lab=1, cex.numbers=0.5, prop=c(T,F))</pre>
```



```
##
##
    Variables sorted by number of missings:
##
                     Variable
                                     Count
##
                           hiv 0.274475524
##
    education_gov_expenditure 0.197552448
                   physicians 0.178321678
##
##
           health_expenditure 0.059440559
##
                 unemployment 0.017482517
##
              population_grow 0.005244755
##
          population_under_14 0.005244755
##
          population_above_65 0.005244755
          life_expectancy_fem 0.005244755
##
```

```
## life_expectancy_male 0.005244755
## tuberculosis 0.005244755
## infant_mortality 0.005244755
## gdp 0.001748252
## gdp_growth_rate 0.001748252
## year 0.000000000
## population 0.000000000
```

Un cop fet això, implementarem el mètode missForest per imputar valors buits a la resta de columnes del dataset.

```
# missForest
missForest.imp <- missForest(health_miss, variablewise=T)

# Conservem el dataframe original canviant-li el nom a health_data_na.
health_data_na <- health_data

# Construim ara el dataframe de treball amb les dades imputades gràcies a aplicar el
# mètode MissForest, utilitzant per a aquest el nom de health_data:
health_data <- data.frame(health_data[, c("country_code", "country")], missForest.imp$ximp)

# Verifiquem que efectivament el mètode missForest ha omplert els valors buits.
colSums(is.na(health_data))</pre>
```

```
##
                                                   country
                 country_code
                                                                                   year
##
                                                          0
                                                                                       0
##
                                                                  population_under_14
                   population
                                          population_grow
##
                                                                                       0
                             0
                                                          0
         population_above_65
##
                                                        gdp
                                                                       gdp_growth_rate
##
                             0
                                                          0
##
                               education_gov_expenditure
                 unemployment
                                                                    health_expenditure
##
##
         life_expectancy_fem
                                                                          tuberculosis
                                     life_expectancy_male
##
##
                           hiv
                                         infant_mortality
                                                                            physicians
##
                             0
                                                                                      0
```

Anàlisi estadístic descriptiu de health_data desprès d'aplicar MissForest summary(health_data)

```
##
    country_code
                          country
                                                              population
                                                 year
##
    Length:572
                        Length: 572
                                                                   :1.978e+04
                                            Min.
                                                   :2005
                                                            Min.
##
    Class :character
                        Class : character
                                            1st Qu.:2005
                                                            1st Qu.:2.073e+06
##
    Mode :character
                        Mode :character
                                            Median:2010
                                                            Median :7.655e+06
                                                   :2011
##
                                                                   :3.660e+07
                                            Mean
                                                            Mean
##
                                            3rd Qu.:2019
                                                            3rd Qu.:2.530e+07
##
                                            Max.
                                                   :2019
                                                            Max.
                                                                   :1.393e+09
    population_grow
                      population_under_14 population_above_65
                                                                     gdp
##
   Min.
           :-3.980
                      Min.
                             :11.90
                                           Min.
                                                  : 0.690
                                                                Min.
                                                                              112
##
    1st Qu.: 0.480
                      1st Qu.:18.99
                                           1st Qu.: 3.317
                                                                1st Qu.:
                                                                             6298
   Median : 1.340
                      Median :28.14
                                           Median : 5.745
                                                                Median:
                                                                            23372
```

```
: 1.455
                              :29.08
                                                   : 7.858
                                                                            336864
##
    Mean
                      Mean
                                            Mean
                                                                 Mean
##
    3rd Qu.: 2.362
                      3rd Qu.:38.85
                                            3rd Qu.:11.920
                                                                 3rd Qu.:
                                                                            147658
                              :50.04
##
    Max.
           :13.870
                      Max.
                                            Max.
                                                   :27.580
                                                                 Max.
                                                                         :19485394
                        unemployment
##
    gdp_growth_rate
                                          education_gov_expenditure
##
    Min.
            :-14.000
                       Min.
                               : 0.100
                                          Min.
                                                 : 1.000
                                          1st Qu.: 3.500
##
    1st Qu.: 2.100
                       1st Qu.: 4.200
              3.900
                       Median : 6.800
##
    Median :
                                          Median: 4.465
##
    Mean
            :
              4.376
                       Mean
                               : 8.289
                                          Mean
                                                 : 4.596
##
    3rd Qu.:
              6.500
                       3rd Qu.:10.862
                                          3rd Qu.: 5.400
##
    Max.
           : 64.000
                       Max.
                               :37.200
                                          Max.
                                                 :12.800
    health_expenditure life_expectancy_fem life_expectancy_male
                                                                     tuberculosis
##
    Min.
           : 1.300
                        Min.
                                :44.60
                                              Min.
                                                      :40.57
                                                                    Min.
                                                                                0.0
##
    1st Qu.: 4.488
                        1st Qu.:66.90
                                              1st Qu.:62.81
                                                                    1st Qu.:
                                                                               15.0
##
    Median : 6.085
                        Median :75.47
                                              Median :69.39
                                                                    Median :
                                                                               51.5
            : 6.288
##
    Mean
                        Mean
                                :72.70
                                              Mean
                                                      :67.84
                                                                    Mean
                                                                            : 131.6
##
    3rd Qu.: 8.000
                        3rd Qu.:79.40
                                              3rd Qu.:74.32
                                                                    3rd Qu.: 181.0
##
    Max.
            :17.100
                        Max.
                                :87.70
                                                      :82.30
                                                                    Max.
                                                                            :1280.0
                                              Max.
                                           physicians
##
         hiv
                      infant_mortality
##
            : 0.100
    Min.
                      Min.
                              :
                                 1.60
                                        Min.
                                                :0.000
##
    1st Qu.: 0.200
                      1st Qu.:
                                 8.30
                                        1st Qu.:0.300
##
    Median : 0.500
                      Median: 19.20
                                        Median :1.200
                              : 30.53
##
    Mean
            : 1.761
                      Mean
                                        Mean
                                                :1.546
                      3rd Qu.: 51.10
##
    3rd Qu.: 1.500
                                         3rd Qu.:2.580
            :27.400
                              :141.90
##
    Max.
                      Max.
                                        Max.
                                                :8.200
```

3.2. Identificació i tractament de valors extrems.

Mostrem dos gràfics de boxplot per cada variable, un amb la variable no transformada i l'altre gràfic aplicant una transformació de la variable amb el logaritme natural, per tal d'identificar els valors extrems. Analitzarem posteriorment els valors extrems tenint en compte el logaritme natural.

log(population)

population_grow

log(population_grow)

population_under_14

20 30 40 50

log(population_under_14)

population_above_65

log(population_above_65)

unemployment

0 10 20 30

education_gov_expenditure

log(unemployment)

log(education_gov_expenditure

health_expenditure

life_expectancy_fem

log(health_expenditure)

log(life_expectancy_fem)

life_expectancy_male

log(life_expectancy_male)

physicians

log(physicians)

Llistem els outliers que s'obtenen a partir de la transformació logarítmica. Amb aquesta transformació aconseguim reduir el nombre de dades que es consideren outliers, per tal d'analitzar-ne la seva validesa.

```
# Mostrem outliers considerant la transformació logarítmica.

log_outliers <- function(x) {
   var_b <- boxplot.stats(log(x))
   log(x) %in% var_b$out
}

out_list <- lapply(4:ncol(health_data), function (i, df){
   df[log_outliers(df[,i])==T, c(1,2,3,i)]
}, df=health_data)</pre>
```

 ${\it valors} \ {\it extrems}$

	country_code	country	year	population
109	CHN	China	2005	1303720000
110	CHN	China	2010	1337705000
111	CHN	China	2019	1392730000
236	IND	India	2005	1147609927
237	IND	India	2010	1234281170
238	IND	India	2019	1352617328
275	KNA	Saint Kitts and Nevis	2005	46857
429	PLW	Palau	2005	19781

 ${\it valors}$ extrems

	country_code	country	year	population_grow
34	BIH	Bosnia and Herzegovina	2005	0.0300
118	CUB	Cuba	2005	0.1000
209	GUY	Guyana	2005	0.0600
257	JPN	Japan	2005	0.0100
258	JPN	Japan	2010	0.0200
322	MDA	Moldova (the Republic of)	2010	0.0122
331	MKD	Republic of North Macedonia	2010	0.0800
332	MKD	Republic of North Macedonia	2019	0.0500
353	MUS	Mauritius	2019	0.0500
419	POL	Poland	2019	0.0000
427	PRT	Portugal	2010	0.0500
443	RUS	Russian Federation (the)	2010	0.0400
469	SVK	Slovakia	2005	0.0100
470	SVK	Slovakia	2010	0.0900
520	TON	Tonga	2010	0.0900
540	URY	Uruguay	2005	0.0100
546	VCT	Saint Vincent and the Grenadines	2005	0.0900

${\it valors}$ extrems

	${\rm country_code}$	country	year	gdp
539	USA	United States of America (the)	2019	19485394

valors extrems

	${\rm country_code}$	country	year	gdp_growth_rate
31	AZE	Azerbaijan	2005	28.0
33	AZE	Azerbaijan	2019	0.1
38	BRB	Barbados	2010	0.3
61	BRN	Brunei Darussalam	2005	0.4
84	BLZ	Belize	2019	0.5
159	ESP	Spain	2010	0.0
200	GRC	Greece	2005	0.6
293	LBN	Lebanon	2019	0.6
295	LCA	Saint Lucia	2010	0.2
317	LBY	Libya	2019	64.0
332	MKD	Republic of North Macedonia	2019	0.2
429	PLW	Palau	2005	0.2
440	SRB	Serbia	2010	0.6
510	TLS	Timor-Leste	2005	35.9
532	UKR	Ukraine	2010	0.3

 ${\it valors}$ extrems

	country_code	country	year	unemployment
58	BEN	Benin	2005	0.9
59	BEN	Benin	2010	1.0
79	BLR	Belarus	2005	0.9
81	BLR	Belarus	2019	0.5
267	KHM	Cambodia	2010	0.4
268	KHM	Cambodia	2019	0.2
289	LAO	Lao People's Democratic Republic (the)	2010	0.7
290	LAO	Lao People's Democratic Republic (the)	2019	0.7
336	MMR	Myanmar	2005	0.8
337	MMR	Myanmar	2010	0.8
338	MMR	Myanmar	2019	0.8
376	NER	Niger (the)	2010	0.9
377	NER	Niger (the)	2019	0.4
415	PAK	Pakistan	2010	0.6
434	QAT	Qatar	2010	0.4
435	QAT	Qatar	2019	0.1
505	THA	Thailand	2010	0.6

${\it valors}$ extrems

1	country_code	country	year	education_gov	_expenditure
42	BGD	Bangladesh	2019		1.5
76	BWA	Botswana	2005		10.7
89	COD	Congo (the Democratic Republic of the)	2010		1.5
90	COD	Congo (the Democratic Republic of the)	2019		1.5
91	CAF	Central African Republic (the)	2005		1.7
92	CAF	Central African Republic (the)	2010		1.2
93	CAF	Central African Republic (the)	2019		1.2
94	COG	Congo (the)	2005		1.8
118	CUB	Cuba	2005		10.6
119	CUB	Cuba	2010		12.8
141	DOM	Dominican Republic (the)	2005		1.8
147	ECU	Ecuador	2005		1.2
172	FSM	Micronesia (Federated States of)	2019		12.5
191	GMB	Gambia (the)	2005		1.1
194	GIN	Guinea	2005		1.8
266	KHM	Cambodia	2005		1.7
267	KHM	Cambodia	2010		1.5
269	KIR	Kiribati	2005		12.0
289	LAO	Lao People's Democratic Republic (the)	2010		1.7
292	LBN	Lebanon	2010		1.6
298	LKA	Sri Lanka	2010		1.7
303	LSO	Lesotho	2005		12.1
304	LSO	Lesotho	2010		11.4
457	SDN	Sudan (the)	2005		1.6
485	SSD	South Sudan	2019		1.0
498	TCD	Chad	2005		1.7
567	ZMB	Zambia	2005		1.7
568	ZMB	Zambia	2010		1.1
571	ZWE	Zimbabwe	2010		1.8

valors extrems

	country_code	country	year	health_expenditure
197	GNQ	Equatorial Guinea	2005	1.4
198	GNQ	Equatorial Guinea	2010	1.5
434	QAT	Qatar	2010	1.8
510	TLS	Timor-Leste	2005	1.3
511	TLS	Timor-Leste	2010	1.4

 ${\it valors}$ extrems

	country_code	country	year	life_expectancy_fem
91	CAF	Central African Republic (the)	2005	45.97
92	CAF	Central African Republic (the)	2010	48.79
303	LSO	Lesotho	2005	45.10
304	LSO	Lesotho	2010	48.07
357	MWI	Malawi	2005	50.38
378	NGA	Nigeria	2005	49.03
379	NGA	Nigeria	2010	51.66
472	SLE	Sierra Leone	2005	45.25
473	SLE	Sierra Leone	2010	50.23
495	SWZ	Eswatini	2005	44.60
496	SWZ	Eswatini	2010	49.19
498	TCD	Chad	2005	49.73
567	ZMB	Zambia	2005	50.66
570	ZWE	Zimbabwe	2005	44.96

${\it valors}$ extrems

	${\rm country_code}$	country	year	life_expectancy_male
16	AGO	Angola	2005	47.89
91	CAF	Central African Republic (the)	2005	43.50
92	CAF	Central African Republic (the)	2010	45.82
100	CIV	Côte d'Ivoire	2005	48.66
303	LSO	Lesotho	2005	40.57
304	LSO	Lesotho	2010	42.41
357	MWI	Malawi	2005	45.50
366	MOZ	Mozambique	2005	48.21
378	NGA	Nigeria	2005	47.50
472	SLE	Sierra Leone	2005	43.73
473	SLE	Sierra Leone	2010	48.50
495	SWZ	Eswatini	2005	40.66
496	SWZ	Eswatini	2010	44.37
498	TCD	Chad	2005	47.38
567	ZMB	Zambia	2005	46.40
570	ZWE	Zimbabwe	2005	41.57

valors extrems

	${\rm country_code}$	country	year	tuberculosis
275	KNA	Saint Kitts and Nevis	2005	0

valors extrems

	country_code	country	year	physicians
47	BFA	Burkina Faso	2010	0
55	BDI	Burundi	2005	0
56	BDI	Burundi	2010	0
57	BDI	Burundi	2019	0
58	BEN	Benin	2005	0
92	CAF	Central African Republic (the)	2010	0
161	ETH	Ethiopia	2005	0
162	ETH	Ethiopia	2010	0
300	LBR	Liberia	2005	0
301	LBR	Liberia	2010	0
302	LBR	Liberia	2019	0
303	LSO	Lesotho	2005	0
357	MWI	Malawi	2005	0
358	MWI	Malawi	2010	0
359	MWI	Malawi	2019	0
366	MOZ	Mozambique	2005	0
367	MOZ	Mozambique	2010	0
375	NER	Niger (the)	2005	0
376	NER	Niger (the)	2010	0
377	NER	Niger (the)	2019	0
408	PNG	Papua New Guinea	2005	0
435	QAT	Qatar	2019	0
472	SLE	Sierra Leone	2005	0
473	SLE	Sierra Leone	2010	0
474	SLE	Sierra Leone	2019	0
479	SOM	Somalia	2010	0
480	SOM	Somalia	2019	0
498	TCD	Chad	2005	0
499	TCD	Chad	2010	0
500	TCD	Chad	2019	0
501	TGO	Togo	2005	0
503	TGO	Togo	2019	0
528	TZA	Tanzania, United Republic of	2005	0
530	TZA	Tanzania, United Republic of	2019	0

Analitzant els valors dels outliers, veiem que la majoria són valors legítims, excepte un valor que es mostra a continuació, que és un error provinent de la font de dades des de la que es va fer web scraping. El que farem és substituir aquest outlier no legítim cercant una font fiable (https://tradingeconomics.com/libya/gdp-growth-annual) i introduint manualment la dada correcta.

health_data\$gdp_growth_rate[health_data\$country == "Libya" & health_data\$year == "2019"] <- 4.0

4. Anàlisi de les dades.

4.1. Selecció dels grups de dades que es volen analitzar/comparar (planificació dels anàlisis a aplicar).

D'una banda, els grups de dades que interessa comparar són directament les diferents columnes del dataset entre elles, ja que l'objectiu d'aquest estudi és trobar correlacions entre els indicadors socioeconòmics dels països i els indicadors de salut pública que afecten la població, per tal de construir un model que pugui predir l'impacte en l'esperança de vida de la població segons diferents variables.

D'altra banda, també compararem les dades del dataframe agrupades en 5 grups diferents segons el nivell de despesa sanitària pública per càpita.

```
# Creem quatre noves variables calculades, que mostrin les variables gdp, gdp_growth_rate,
# education_gov_expenditure, i health_expenditure per capita:

health_data$gdp_capita <- (health_data$gdp / health_data$population) * 1e6

health_data$gdp_growth_capita <-
    ((health_data$gdp_growth_rate / 100) * health_data$gdp * 1e6) /
    health_data$population

health_data$educ_exp_capita <-
    ((health_data$education_gov_expenditure/100) * health_data$gdp * 1e6) /
    health_data$population

health_data$health_exp_capita <-
    ((health_data$health_expenditure/100) * health_data$gdp * 1e6) / health_data$population

summary(health_data)</pre>
```

```
##
    country_code
                         country
                                                             population
                                                year
    Length: 572
                       Length: 572
                                                  :2005
                                                                  :1.978e+04
##
                                           Min.
                                                           Min.
   Class :character
##
                       Class : character
                                           1st Qu.:2005
                                                           1st Qu.:2.073e+06
    Mode :character
                       Mode
                             :character
                                           Median:2010
                                                           Median :7.655e+06
##
                                                  :2011
                                                                  :3.660e+07
                                           Mean
                                                           Mean
##
                                           3rd Qu.:2019
                                                           3rd Qu.:2.530e+07
##
                                           Max.
                                                  :2019
                                                           Max.
                                                                  :1.393e+09
##
    population grow
                     population_under_14 population_above_65
                                                                    gdp
##
  Min.
           :-3.980
                     Min.
                             :11.90
                                          Min.
                                                 : 0.690
                                                               Min.
                                                                            112
   1st Qu.: 0.480
##
                     1st Qu.:18.99
                                          1st Qu.: 3.317
                                                               1st Qu.:
                                                                           6298
## Median: 1.340
                     Median :28.14
                                          Median : 5.745
                                                               Median:
                                                                          23372
           : 1.455
                                                                         336864
##
  Mean
                     Mean
                             :29.08
                                          Mean
                                                 : 7.858
                                                               Mean
                                                                      :
##
    3rd Qu.: 2.362
                     3rd Qu.:38.85
                                          3rd Qu.:11.920
                                                               3rd Qu.:
                                                                         147658
                     Max.
## Max.
           :13.870
                             :50.04
                                                 :27.580
                                                               Max.
                                                                      :19485394
                                          Max.
##
    gdp_growth_rate
                       unemployment
                                        education_gov_expenditure
           :-14.000
                              : 0.100
                                               : 1.000
## Min.
                      Min.
                                        Min.
##
   1st Qu.: 2.100
                      1st Qu.: 4.200
                                        1st Qu.: 3.500
## Median: 3.900
                      Median : 6.800
                                        Median: 4.465
## Mean
           : 4.271
                              : 8.289
                                               : 4.596
                      Mean
                                        Mean
## 3rd Qu.:
                      3rd Qu.:10.862
                                        3rd Qu.: 5.400
              6.425
## Max.
           : 35.900
                      Max.
                              :37.200
                                        Max.
                                               :12.800
## health_expenditure life_expectancy_fem life_expectancy_male tuberculosis
   Min.
          : 1.300
                       Min.
                               :44.60
                                            Min.
                                                   :40.57
                                                                  Min.
```

```
1st Qu.: 4.488
                      1st Qu.:66.90
                                         1st Qu.:62.81
                                                              1st Qu.: 15.0
##
  Median : 6.085
                      Median :75.47
                                         Median :69.39
                                                              Median: 51.5
                                               :67.84
   Mean : 6.288
                      Mean
                           :72.70
                                         Mean
                                                              Mean
                                                                   : 131.6
                      3rd Qu.:79.40
                                                              3rd Qu.: 181.0
##
   3rd Qu.: 8.000
                                         3rd Qu.:74.32
##
   Max.
         :17.100
                      Max.
                             :87.70
                                         Max.
                                                :82.30
                                                              Max.
                                                                    :1280.0
##
                    infant_mortality
                                      physicians
        hiv
                                                      gdp_capita
                          : 1.60 Min.
                                           :0.000
   Min.
         : 0.100
                    Min.
                                                    Min.
                                                                90.75
                    1st Qu.: 8.30
   1st Qu.: 0.200
                                                    1st Qu.:
##
                                    1st Qu.:0.300
                                                             1318.87
##
   Median : 0.500
                    Median : 19.20
                                    Median :1.200
                                                    Median: 4200.13
##
  Mean
         : 1.761
                    Mean
                          : 30.53
                                   Mean
                                           :1.546
                                                    Mean
                                                          : 12107.31
   3rd Qu.: 1.500
                    3rd Qu.: 51.10
                                    3rd Qu.:2.580
                                                    3rd Qu.: 14796.79
                                                           :104964.37
## Max.
          :27.400
                           :141.90
                                           :8.200
                                                    Max.
                    Max.
                                    Max.
   gdp_growth_capita educ_exp_capita
                                        health_exp_capita
## Min.
          :-1537.25
                      Min.
                           : 2.924
                                        Min.
                                                    4.875
## 1st Qu.:
              43.64
                      1st Qu.: 55.862
                                        1st Qu.:
                                                   64.483
## Median:
            137.60
                      Median : 191.675
                                        Median :
                                                  249.534
## Mean
          : 423.12
                           : 610.703
                      Mean
                                        Mean
                                                  902.114
   3rd Qu.: 498.48
                      3rd Qu.: 713.700
                                        3rd Qu.:
                                                  903.858
  Max.
         :13220.22
                      Max.
                             :5902.146
                                        Max.
                                               :10199.357
##
```

Establirem diferents categories de dades segons la despesa sanitària pública. Per això es crea una nova variable que representa el tram de despesa sanitària pública. Es calcula prenent igual freqüència d'ocurrència en cada tram per crear un total de 5 intervals.

```
health_data$health_expend_category <- cut2(health_data$health_exp_capita, g=5)
health_data[1:20,c("country_code", "country", "health_expend_category")]</pre>
```

country_code	country	health_expend_category
ARE	United Arab Emirates (the)	[388.99, 1246.4)
ARE	United Arab Emirates (the)	[1246.40,10199.4]
ARE	United Arab Emirates (the)	[1246.40,10199.4]
AFG	Afghanistan	[4.87, 50.5)
AFG	Afghanistan	[4.87, 50.5)
AFG	Afghanistan	[50.50, 159.1)
ATG	Antigua and Barbuda	[388.99, 1246.4)
ATG	Antigua and Barbuda	[388.99, 1246.4)
ATG	Antigua and Barbuda	[388.99, 1246.4)
ALB	Albania	[159.14, 389.0)
ALB	Albania	[159.14, 389.0)
ALB	Albania	[159.14, 389.0)
ARM	Armenia	[50.50, 159.1)
ARM	Armenia	[159.14, 389.0)
ARM	Armenia	[159.14, 389.0)
AGO	Angola	[50.50, 159.1)
AGO	Angola	[50.50, 159.1)
AGO	Angola	[50.50, 159.1)
ARG	Argentina	[388.99, 1246.4)
ARG	Argentina	[388.99, 1246.4)

```
# Convertim aquests intervals en nivells categòrics
levels(health_data$health_expend_category) <- c("very low", "low", "medium", "high", "very high")</pre>
```

```
# Creem subgrups
cat_very_low_fem <-
 health data$life expectancy fem[health data$health expend category=="very low"]
cat low fem <-
 health_data$life_expectancy_fem[health_data$health_expend_category=="low"]
cat medium fem <-
 health_data$life_expectancy_fem[health_data$health_expend_category=="medium"]
cat_high_fem <-
 health_data$life_expectancy_fem[health_data$health_expend_category=="high"]
cat_very_high_fem <-
 health_data$life_expectancy_fem[health_data$health_expend_category=="very high"]
cat_very_low_male <-</pre>
  health_data$life_expectancy_male[health_data$health_expend_category=="very low"]
cat_low_male <-
 health_data$life_expectancy_male[health_data$health_expend_category=="low"]
cat_medium_male <-</pre>
 health_data$life_expectancy_male[health_data$health_expend_category=="medium"]
cat_high_male <-
 health_data$life_expectancy_male[health_data$health_expend_category=="high"]
cat_very_high_male <-</pre>
 health_data$life_expectancy_male[health_data$health_expend_category=="very high"]
```

4.2. Comprovació de la normalitat i homogeneïtat de la variància.

Comprovació de la normalitat de les variables del dataset

Comprovem amb proves estadístiques la no normalitat de cadascuna de les variables de health_data. Utilitzarem la prova de Shapiro-Wilk, mitjançant la funció shapiro.test().

<pre>lshap <- sapply(health_data[,</pre>	!(colnames(health_data)	<pre>%in% c("country_code",</pre>	"country",	"year",
"health expend category"))]	. shapiro.test)			

	statistic	p.value
population	c(W = 0.224805695864548)	2.61199611414149e-43
population_grow	c(W = 0.856648816515033)	2.09227247124823e-22
population_under_14	c(W = 0.940801412476724)	2.58122508887395e-14
population_above_65	c(W = 0.865321511204978)	9.03529227264668e-22
gdp	c(W = 0.223298491255859)	2.44779060132266e-43
gdp_growth_rate	c(W = 0.904386002338808)	1.85848345262076e-18
unemployment	c(W = 0.870134905848752)	2.0985898367291e-21
education_gov_expenditure	c(W = 0.93783097725515)	1.03549136314357e-14
health_expenditure	c(W = 0.97032983679328)	2.35252177009053e-09
life_expectancy_fem	c(W = 0.926139507634802)	3.72622713328277e-16
life_expectancy_male	c(W = 0.954150796228931)	2.427215142594e-12
tuberculosis	c(W = 0.683257747888483)	2.491997322588e-31
hiv	c(W = 0.431511393877858)	6.26568542903413e-39
infant_mortality	c(W = 0.862335257593656)	5.41743670223244e-22
physicians	c(W = 0.904151214239933)	1.76394639791389e-18
gdp_capita	c(W = 0.697428853997288)	9.01265856754629e-31
gdp_growth_capita	c(W = 0.46417985056566)	4.02904770137275e-38
educ_exp_capita	c(W = 0.651030488572157)	1.57478069623714e-32
health_exp_capita	c(W = 0.60351163461669)	3.81006383467123e-34

La prova de Shapiro-Wilk dona com a resultat un p-valor menor al nivell de significació alpha = 0.05 per a cadascuna de les variables numèriques del dataset, per tant, es rebutja la hipòtesi nul·la i es conclou que cap de les variables segueix una distribució normal de manera significativa.

Intentem ara aplicar alguna transformació a les dades per veure si podem així obtenir una normalització, amb la intenció d'aplicar testos paramètrics posteriorment a les variables transformades:

```
# Transformació de Box-Cox
for (i in 4:ncol(health_data)) {
  if (is.numeric(health_data[, i])){
  x <- health_data[, i]</pre>
  bxcx <- BoxCox(x, lambda=BoxCoxLambda(x))</pre>
  shapiro.test(bxcx)
  par(mfrow=c(2,2))
  # Grāfica Q-Q per Fare sense transformat
  qqnorm(x, main=colnames(health_data)[i])
  qqline(x, col=2)
  # Grāfica Q-Q per Fare transformat
  qqnorm(bxcx, main="x Box_Cox")
  qqline(bxcx, col=2)
  hist(x, main=colnames(health_data)[i])
  hist(bxcx, main="x Box_Cox")
  par(mfrow=c(1,1))
  }
}
```


population_above_65

bxcx

Х

-25000

-15000

bxcx

0

200

600

Х

1000

-5000

0

Observant els gràfics resultats, s'intueix que les variables no semblen seguir una distribució normal, ja que els quantils de la mostra s'allunyen dels quantils teòrics de la distribució normal i els histogrames no semblen adaptar-se a una distribució normal en la majoria de casos.

Apliquem el test de Shapiro a totes les variables transformades per veure si alguna segueix una distribució normal un cop aplicada la transformació Box-Cox:

```
test_box_cox <- function(x){
   tryCatch({
      y <- (BoxCox(x,lambda=BoxCoxLambda(x)))
      shapiro.test(y)
   }, error=function(cond) {
      return(NA)})
}
lshap <- sapply(health_data[,4:ncol(health_data)], test_box_cox)

lshap.df <- as.data.frame(sapply(lshap[!is.na(lshap)], function(x) {as.character(x$p.value)}))
colnames(lshap.df) <- c("p-value")

lshap.df</pre>
```

	p-value
population	5.33231572943436e-10
population_grow	1.66986864121624e-12
population_under_14	3.30511182204066e-18
population_above_65	7.29195365020304e-17
gdp	1.18414632276054e-06
gdp_growth_rate	1.85846405934116e-18
unemployment	1.14074265042466e-09
education_gov_expenditure	5.37877587612958e-05
health_expenditure	0.00774826569829806
life_expectancy_fem	4.84845748496625e-13
life_expectancy_male	1.35325818982158e-08
tuberculosis	8.59559045008251e-47
hiv	8.72364995745125e-15
infant_mortality	1.42666788278048e-16
physicians	6.4729166592922e-31
gdp_capita	2.09368428262233e-11
gdp_growth_capita	2.48212564749547e-21
educ_exp_capita	1.68697964091817e-09
health_exp_capita	5.95948979095356e-08

La prova de Shapiro-Wilk dona com a resultat un p-valor menor al nivell de significació alpha = 0.05 i es rebutja la hipòtesi nul·la. Podem concloure que la transformació de Box-Cox no ens permet obtenir distribucions normals de les variables transformades.

Provem d'aplicar altres transformacions, com ara una transformació amb logaritme natural $\ln(x+1)$ a aquelles variables que no prenen valors negatius.

```
# Transformació amb logaritme natural ln(x+1)
# Apliquem de nou la prova de Shapiro-Wilk

alpha <- 0.05
col.names = colnames(health_data)

df1 <- data.frame()

for (i in 1:ncol(health_data)) {
   if (is.numeric(health_data[,i])) {
      p_val <- shapiro.test(log(health_data[,i] + 1))$p.value

      df1 <- rbind(df1,data.frame(variable = col.names[i],p.value = p_val))
   }
}</pre>
```

transformació logaritme natural ln(x+1)

variable	p.value
year	1.93390306054842e-27
population	1.44082311399075e-05
population_grow	3.70247085819278e-18
population_under_14	4.13120209437311e-14
population_above_65	1.21859150365859e-13
gdp	0.022874218863429
gdp_growth_rate	1.61969476980565e-18
${f unemployment}$	0.0667112002176143
education_gov_expenditure	0.000123839689027428
health_expenditure	0.00733962110012018
life_expectancy_fem	2.08590783070286e-19
$life_expectancy_male$	1.49295649564815e- 16
tuberculosis	5.7748123202955e-07
hiv	$4.02228403468883\mathrm{e}\text{-}27$
infant_mortality	6.67178147791763e-11
physicians	1.31487675046107e-14
gdp_capita	5.39532011884959e-07
gdp_growth_capita	$4.42221519831865\mathrm{e}\text{-}05$
$educ_exp_capita$	$2.98897434524832\mathrm{e}\text{-}06$
health_exp_capita	2.76810192563359e-07

Veiem que la transformació amb $\ln(x+1)$ només permet obtenir una distribució normal per **unemployment**, però aquesta és una variable que es relaciona poc amb les variables de salut d'interès, com veurem mitjançant els testos de correlació.

Per últim, provem les transformacions x^2 $x^{0.5}$ $\frac{1}{x}$

transformacions x^2 , $x^{0.5}$ i $\frac{1}{x}$ (p-valor)

	x^2	$x^{0.5}$	$\frac{1}{x}$
population	$1.11174052061957\mathrm{e}\text{-}45$	$4.45250112196058\mathrm{e}\text{-}33$	$4.95062120162108\mathrm{e}\text{-}41$
population_grow	1.19273119673814 e-42	$2.48416049313479 \mathrm{e}\text{-}09$	NaN
population_under_14	6.39247783130799e-18	1.30663283531676e-13	3.30219479433097e-18
population_above_65	8.36308383367867e-29	$9.94559098418343 \mathrm{e}\text{-}17$	$3.67221730448156 \mathrm{e}\text{-}26$
gdp	6.28832556782952e-46	1.19071249162523e-34	9.2626891752471e-41
gdp_growth_rate	7.74887206327507e-41	3.55005875741414e-07	NaN
unemployment	1.84226857300485e-34	3.40049125297959e-07	1.76142712700465e-42
education_gov_expenditure	$6.16431515033913 \mathrm{e}\text{-}29$	$7.20890762866251\mathrm{e}\text{-}06$	$4.04125739743022 \mathrm{e}\text{-}26$
${\it health_expenditure}$	5.65863434182227e-24	0.229011008725573	$2.48790577424472 \mathrm{e}\hbox{-}24$
$life_expectancy_fem$	$4.85093340643569\mathrm{e}\text{-}13$	$8.50879099847691\mathrm{e}\text{-}18$	$9.5198069936323\mathrm{e}\text{-}23$
life_expectancy_male	1.35401317250285e-08	1.86569784343562e-14	6.44510686223952e- 21
tuberculosis	$5.61853111069281\mathrm{e}\text{-}41$	$8.24532828415412\mathrm{e}\text{-}20$	NaN
hiv	2.21631192918501e-43	$4.58271028174038\mathrm{e}\text{-}30$	3.96570678656274e-27
infant_mortality	1.29027055053794 e-31	4.1518111359678e-14	3.4421312673684e-28
physicians	8.22647624544166e-32	3.51079225985604e-10	NaN
gdp_capita	6.03975566470943e-39	3.79911193330601e-21	6.33206999224329e-35
gdp_growth_capita	$1.55128829953758\mathrm{e}\text{-}45$	$1.21500239336428\mathrm{e}\text{-}24$	NaN
$educ_exp_capita$	$1.81288907367127\mathrm{e}\text{-}40$	$5.97249558166292 \mathrm{e}\text{-}22$	$3.8347813239709\mathrm{e}\text{-}36$
$health_exp_capita$	1.09895840140002e-40	6.6724267317477e-25	$6.56938396168317\mathrm{e}\text{-}35$

Les transformacions x^2 i $\frac{1}{x}$ tampoc no ens permeten obtenir distribucions normals de les variables transformades, i amb $x^{0.5}$ només es podria normalitzar **health_expenditure**.

Per tant, haurem de considerar que les variables no segueixen una distribució normal, ni tan sols transformades, de manera que haurem d'aplicar tests no paramètrics.

Comprovació de la normalitat de les variables life_expectancy_fem/male segons les categories de despesa sanitària.

Comprovem amb la prova de Shapiro-Wilk la normalitat de la variable life_expectancy per cada grup.

```
shapiro.test(cat_very_low_fem)

##

## Shapiro-Wilk normality test

##

## data: cat_very_low_fem

## W = 0.99364, p-value = 0.8805

shapiro.test(cat_low_fem)

##

## Shapiro-Wilk normality test

##

## data: cat_low_fem

## W = 0.92715, p-value = 1.049e-05
```

```
shapiro.test(cat_medium_fem)
##
##
  Shapiro-Wilk normality test
## data: cat_medium_fem
## W = 0.70846, p-value = 8.376e-14
shapiro.test(cat_high_fem)
##
## Shapiro-Wilk normality test
##
## data: cat_high_fem
## W = 0.7209, p-value = 2.007e-13
shapiro.test(cat_very_high_fem)
##
## Shapiro-Wilk normality test
## data: cat_very_high_fem
## W = 0.94056, p-value = 7.242e-05
shapiro.test(cat_very_low_male)
##
## Shapiro-Wilk normality test
## data: cat_very_low_male
## W = 0.98253, p-value = 0.1399
shapiro.test(cat_low_male)
##
## Shapiro-Wilk normality test
##
## data: cat_low_male
## W = 0.91903, p-value = 3.558e-06
shapiro.test(cat_medium_male)
##
## Shapiro-Wilk normality test
## data: cat_medium_male
## W = 0.81849, p-value = 1.366e-10
```

```
shapiro.test(cat_high_male)
##
##
    Shapiro-Wilk normality test
##
## data: cat_high_male
## W = 0.85014, p-value = 2.236e-09
shapiro.test(cat very high male)
##
    Shapiro-Wilk normality test
##
##
## data: cat_very_high_male
## W = 0.94746, p-value = 0.0002126
La prova de Shapiro-Wilk dona com a resultat un p-valor major al nivell de significació alpha = 0.05
pels subgrups cat_very_low_fem i cat_very_low_male, de manera que es pot considerar que segueixen
una distribució normal. Però la resta de subgrups no segueixen una distribució normal. Per tant, si fem
comparacions entre la totalitat dels grups haurem de considerar proves no paramètriques.
Comprovació de la homoscedasticitat entre les variables life_expectancy_fem/male segons les
categories de despesa sanitària.
Per comprovar la homoscedasticitat entre diversos grups de dades, atès que les dades no compleixen la
condició de normalitat, apliquem proves no paramètriques:
# Comprovació de homoscedasticitat entre les variables life_expectancy_fem i
# life_expectancy_male segons els diferents grups de despesa sanitària pública.
fligner.test(life_expectancy_fem ~ health_expend_category, data=health_data)
##
## Fligner-Killeen test of homogeneity of variances
##
```

```
##
## Fligner-Killeen test of homogeneity of variances
##
## data: life_expectancy_fem by health_expend_category
## Fligner-Killeen:med chi-squared = 93.664, df = 4, p-value < 2.2e-16

fligner.test(life_expectancy_male ~ health_expend_category, data=health_data)

##
## Fligner-Killeen test of homogeneity of variances
##
## data: life_expectancy_male by health_expend_category
## Fligner-Killeen:med chi-squared = 59.72, df = 4, p-value = 3.322e-12</pre>
```

Del test de Fligner-Killeen obtenim un p_valor < 0.05, de manera que es conclou que les variables life_expectancy_fem i life_expectancy_male presenten variànces estadísticament diferents segons els diferents grups de despesa sanitària pública.

4.3. Aplicació de proves estadístiques per comparar els grups de dades. En funció de les dades i de l'objectiu de l'estudi, aplicar proves de contrast d'hipòtesis, correlacions, regressions, etc. Aplicar almenys tres mètodes d'anàlisi diferents.

Comparació entre distribucions de les variables life_expectancy_fem/male entre els diferents grups segons despesa pública sanitària per càpita.

Un cop comprovat que les variables no cumpleixen les suposicions per l'aplicació de tests paramètrics a la secció 4.2, s'implementa el test de Wilcoxon per comprovar la similitud de distribucions entre alguns dels grups, dos a dos.

```
wilcox.test(life_expectancy_fem ~ health_expend_category, data=health_data,
            subset=health_expend_category %in% c("very low", "low"))
##
   Wilcoxon rank sum test with continuity correction
##
##
## data: life_expectancy_fem by health_expend_category
## W = 2777, p-value = 4.852e-14
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(life_expectancy_male ~ health_expend_category, data=health_data,
            subset=health_expend_category %in% c("very low", "low"))
##
##
   Wilcoxon rank sum test with continuity correction
## data: life_expectancy_male by health_expend_category
## W = 2868, p-value = 1.919e-13
\mbox{\tt \#\#} alternative hypothesis: true location shift is not equal to 0
wilcox.test(life_expectancy_fem ~ health_expend_category, data=health_data,
            subset=health_expend_category %in% c("high", "very high"))
##
   Wilcoxon rank sum test with continuity correction
##
##
## data: life_expectancy_fem by health_expend_category
## W = 1120.5, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(life_expectancy_male ~ health_expend_category, data=health_data,
            subset=health_expend_category %in% c("high", "very high"))
##
##
   Wilcoxon rank sum test with continuity correction
## data: life_expectancy_male by health_expend_category
## W = 1304.5, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0
```

Amb el test de Krustal_Wallis comprovarem la similitud de distribucions entre tots els grups.

```
## ## Kruskal-Wallis rank sum test
## ## data: life_expectancy_fem by health_expend_category
## Kruskal-Wallis chi-squared = 418.07, df = 4, p-value < 2.2e-16

kruskal.test(life_expectancy_male ~ health_expend_category, data=health_data)

## ## Kruskal-Wallis rank sum test
## ## Kruskal-Wallis rank sum test
## ## Kruskal-Wallis rank sum test
## ## Kruskal-Wallis chi-squared = 398.48, df = 4, p-value < 2.2e-16</pre>
```

S'observa doncs una diferència estadísticament significativa entre les distribucions d'esperança de vida per diferents rangs de despesa sanitària pública. La mitja de l'esperança de vida és notablement major quan major és la despesa sanitària pública, i la variància es redueix, fent disminuir la dispersió de l'esperança de vida entre individus.

Observem que es podria fer una anàlisi en més profunditat si a part dels 5 grups creats segons el rang de despesa sanitària per cada sexe, també apliquéssim alhora una divisió segons els 3 anys dels quals tenim dades (2005, 2010 i 2019). Amb això es podria comprovar si cadascun dels grups segons despesa i sexe ha patit algun tipus d'evolució durant els 3 anys, o bé si l'esperança de vida ha quedat estancada.

Comprovació de la correlació entre variables del dataset - Test de correlació

A la secció 4.2 hem comprovat que cap de les variables del dataset segueix una distribució normal, de manera que basarem l'anàlisi de correlacions en el mètode de Spearman, que és un mètode no paramètric:

Per aquelles relacions entre parells de variables on el p-valor és menor que el nivell de significació alpha = 0.05, l'hipòtesi nul·la és rebutjada i per tant es pot afirmar que el coeficient de correlació és significativament diferent de 0, i per tant, existeix una certa correlació entre els parells de variables, i aquest nivell de correlació es descriu mitjançant el coeficient de correlació obtingut.

Filtrem doncs la taula de correlacions en funció de si el p-valor és inferior a 0.05 i a la vegada si el coeficient de correlació és major a 0.7 o menor a -0.7, per tal d'obtenir un cert nivell mínim de correlació entre parells de variables:

```
# Parells de variables on el p-valor és inferior a 0.05 i el coefficient de correlació
# és major a 0.7 o menor a -0.7.

corr_matrix_filtered <- corr_matrix_flat[which((corr_matrix_flat$p < 0.05) &
```

((corr_matrix_flat\$cor >= 0.7) | (corr_matrix_flat\$cor <= -0.7))),]</pre>

	row	column	cor	р
5	gdp	population	0.7018366	0
22	population_under_14	population_grow	0.7214206	0
23	population_above_ 65	$population_grow$	-0.8177937	0
40	$population_grow$	population_under_14	0.7214206	0
42	population_above_65	population_under_14	-0.8660948	0
48	$life_expectancy_fem$	population_under_14	-0.8670608	0
49	$life_expectancy_male$	population_under_14	-0.7981425	0
52	$infant_mortality$	population_under_14	0.8911321	0
53	physicians	population_under_14	-0.8513685	0
54	gdp_capita	population_under_14	-0.8003325	0
56	educ_exp_capita	population_under_14	-0.7888940	0
57	$health_exp_capita$	population_under_14	-0.8177001	0
59	population_grow	population_above_65	-0.8177937	0
60	population_under_14	population_above_65	-0.8660948	0
67	$life_expectancy_fem$	$population_above_65$	0.8079803	0
68	life_expectancy_male	population_above_65	0.7069169	0
71	$infant_mortality$	population_above_ 65	-0.8002756	0
72	physicians	population_above_ 65	0.8103749	0
76	health_exp_capita	population_above_65	0.7256508	0
77	population	gdp	0.7018366	0
174	population_under_14	$life_expectancy_fem$	-0.8670608	0
175	$population_above_65$	$life_expectancy_fem$	0.8079803	0
182	$life_expectancy_male$	$life_expectancy_fem$	0.9574130	0
183	tuberculosis	$life_expectancy_fem$	-0.7618016	0
185	infant_mortality	$life_expectancy_fem$	-0.9506028	0
186	physicians	$life_expectancy_fem$	0.8228037	0
187	gdp_capita	$life_expectancy_fem$	0.8437640	0
189	$educ_exp_capita$	$life_expectancy_fem$	0.8263818	0
190	$health_exp_capita$	$life_expectancy_fem$	0.8648388	0
193	population_under_14	life_expectancy_male	-0.7981425	0
194	population_above_65	$life_expectancy_male$	0.7069169	0
200	$life_expectancy_fem$	$life_expectancy_male$	0.9574130	0
202	tuberculosis	$life_expectancy_male$	-0.7980531	0
204	$infant_mortality$	life_expectancy_male	-0.9138937	0
205	physicians	life_expectancy_male	0.7438026	0
206	gdp_capita	$life_expectancy_male$	0.8360465	0
208	$educ_exp_capita$	$life_expectancy_male$	0.8182075	0
209	$health_exp_capita$	$life_expectancy_male$	0.8441780	0
219	$life_expectancy_fem$	tuberculosis	-0.7618016	0
220	life_expectancy_male	tuberculosis	-0.7980531	0
223	$infant_mortality$	tuberculosis	0.7708805	0
225	gdp_capita	tuberculosis	-0.7299326	0

	row	column	cor	p
227	educ_exp_capita	tuberculosis	-0.7356304	0
228	health_exp_capita	tuberculosis	-0.7506836	0
250	population_under_14	$infant_mortality$	0.8911321	0
251	population_above_65	infant_mortality	-0.8002756	0
257	life_expectancy_fem	infant_mortality	-0.9506028	0
258	life_expectancy_male	infant_mortality	-0.9138937	0
259	tuberculosis	infant_mortality	0.7708805	0
262	physicians	infant_mortality	-0.8271644	0
263	gdp_capita	infant mortality	-0.8684935	0
265	educ_exp_capita	infant_mortality	-0.8639795	0
266	health_exp_capita	infant_mortality	-0.8826174	0
269	population_under_14	physicians	-0.8513685	0
270	$population_above_65$	physicians	0.8103749	0
276	life expectancy fem	physicians	0.8228037	0
277	life_expectancy_male	physicians	0.7438026	0
280	infant_mortality	physicians	-0.8271644	0
282	gdp_capita	physicians	0.7424032	0
284	$educ_exp_capita$	physicians	0.7305911	0
285	health_exp_capita	physicians	0.7767078	0
288	population_under_14	gdp_capita	-0.8003325	0
295	life_expectancy_fem	gdp_capita	0.8437640	0
296	$life_expectancy_male$	gdp_capita	0.8360465	0
297	tuberculosis	gdp_capita	-0.7299326	0
299	infant_mortality	gdp_capita	-0.8684935	0
300	physicians	gdp_capita	0.7424032	0
302	gdp_growth_capita	gdp_capita	0.7177587	0
303	$educ_exp_capita$	gdp_capita	0.9771321	0
304	$health_exp_capita$	gdp_capita	0.9711640	0
320	gdp_capita	gdp_growth_capita	0.7177587	0
326	population_under_14	$educ_exp_capita$	-0.7888940	0
333	$life_expectancy_fem$	$educ_exp_capita$	0.8263818	0
334	$life_expectancy_male$	$educ_exp_capita$	0.8182075	0
335	tuberculosis	educ_exp_capita	-0.7356304	0
337	$infant_mortality$	$educ_exp_capita$	-0.8639795	0
338	physicians	$educ_exp_capita$	0.7305911	0
339	gdp_capita	$educ_exp_capita$	0.9771321	0
342	$health_exp_capita$	$educ_exp_capita$	0.9665048	0
345	population_under_14	$health_exp_capita$	-0.8177001	0
346	$population_above_65$	$health_exp_capita$	0.7256508	0
352	$life_expectancy_fem$	$health_exp_capita$	0.8648388	0
353	life_expectancy_male	$health_exp_capita$	0.8441780	0
354	tuberculosis	health_exp_capita	-0.7506836	0
356	infant_mortality	health_exp_capita	-0.8826174	0
357	physicians	$health_exp_capita$	0.7767078	0
358	gdp_capita	$health_exp_capita$	0.9711640	0
360	$educ_exp_capita$	$health_exp_capita$	0.9665048	0

D'aquesta anàlisi obtenim diferents correlacions d'interès, que queden descrites a la secció 6.

Entre elles, veiem que existeix una relació significativa entre major health_exp_capita, educ_exp_capita i physicians, i una major life_expectancy_fem/male. I a major proporció de population_under_14 i infant_mortality, menor life_expectancy_fem.

Model de Regressió

Analitzar aquestes correlacions ens permet implementar un model de regressió, que permeti estimar el life_expectancy_fem en funció de nous valors per les variables "physicians", "health_exp_capita" i "infant_mortality" (que són variables sobre les que els governs poden actuar directament).

plot(health_data\$life_expectancy_fem, health_data\$health_exp_capita)

plot(health_data\$life_expectancy_fem, health_data\$physicians)

plot(health_data\$life_expectancy_fem, health_data\$infant_mortality)


```
health_exp_cap = health_data$health_exp_capita
physn = health_data$physicians
inf_mort = health_data$infant_mortality

# Variable a predir:
life_exp_fem = health_data$life_expectancy_fem

ml <- lm(life_exp_fem ~</pre>
```

```
##
## Call:
## lm(formula = life exp fem ~ health exp cap + physn + I(physn^2) +
##
       inf_mort, data = health_data)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                    3Q
                                            Max
##
  -16.6456 -1.4927
                       0.2127
                                1.8213
                                         8.2361
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   7.864e+01
                              4.546e-01 172.997 < 2e-16 ***
## health_exp_cap
                   5.346e-04
                              9.154e-05
                                          5.840 8.79e-09 ***
## physn
                   1.775e+00
                              3.022e-01
                                          5.873 7.30e-09 ***
## I(physn^2)
                  -2.316e-01
                              5.282e-02 -4.384 1.39e-05 ***
## inf_mort
                  -2.677e-01
                             6.622e-03 -40.423 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.792 on 567 degrees of freedom
## Multiple R-squared: 0.9109, Adjusted R-squared: 0.9102
## F-statistic: 1448 on 4 and 567 DF, p-value: < 2.2e-16
```

S'obté un model amb un coeficient de determinació R^2 de 0.9109, cosa que podem considerar acceptable.

Aquest model permet predir l'esperança de vida femenina establint nous valors per les variables "health_exp_capita", "physicians" i "infant_mortality".

```
# Indicadors de partida
newdata <- data.frame(
  health_exp_cap = 250,
  physn = 1.2,
  inf_mort = 19
  )

# Predicció de life_expectancy_fem
predict(ml, newdata)</pre>
```

```
## 1
## 75.48384
```

Amb aquest model podem observar com amb lleus millores dels 3 paràmetres "health_exp_capita", "physicians" i "infant_mortality", s'obtenen ràpidament millores notables en l'esperança de vida femenina. Per exemple, en la predicció feta anteriorment observem que fixant valors d'aquests paràmetres propers a les medianes de cada variable en qüestió, obtenim una esperança de vida superior a la mediana (75.48734 years > median(life_expectancy_fem) = 72.70 years). Degut a que l'esperança de vida masculina té una elevada correlació amb la femenina, es comprovaria el mateix efecte si analitzessim un model per life_expectancy_male.

5 Representació dels resultats a partir de taules i gràfiques.

Histogrames de Life expectancy en funció del rang de despesa sanitària pública

```
par(mfrow=c(2,3))
hist(cat_very_low_fem, breaks=5, col="red")
hist(cat_low_fem, breaks=5, col="orange")
hist(cat_medium_fem, breaks=5, col="yellow")
hist(cat_high_fem, breaks=5, col="blue")
hist(cat_very_high_fem, breaks=5, col="green")
par(mfrow=c(2,3))
```

Histogram of cat_very_low_fer

Histogram of cat_low_fem

Histogram of cat_medium_fen

Histogram of cat_high_fem

Histogram of cat_very_high_fe


```
hist(cat_very_low_male, breaks=5, col="red")
hist(cat_low_male, breaks=5, col="orange")
hist(cat_medium_male, breaks=5, col="yellow")
hist(cat_high_male, breaks=5, col="blue")
hist(cat_very_high_male, breaks=5, col="green")
par(mfrow=c(1,1))
```

Histogram of cat_very_low_ma

Histogram of cat_low_male

Histogram of cat_medium_mal

Histogram of cat_high_male Histogram of cat_very_high_material Histogram Histogram of cat_very_high_material Histogram of cat_very_high_ma

Gràcies als testos estadístics s'ha observat una diferència estadísticament significativa entre les distribucions d'esperança de vida per diferents rangs de despesa sanitària pública. La mitja de l'esperança de vida és notablement major quan major és la despesa sanitària pública, i la variància es redueix, fent disminuir la dispersió de l'esperança de vida entre individus.

Visualització dels coeficients de correlació entre les variables del dataset (no agrupades)

Les correlacions observades es descriuen a la secció 6.

Model de Regressió - Estimació de Life expectancy

Mostrem la gràfica del model de regressió tenint en compte únicament el terme amb major grau del polinomi obtingut, en aquest cas, health_data\$physicians:

6 Resolució del problema. A partir dels resultats obtinguts, quines són les conclusions? Els resultats permeten respondre al problema?

Gràcies a l'anàlisi de les dades d'esperança de vida segons el rang de despesa sanitària pública, hem pogut comprovar que existeix una diferència estadísticament significativa entre les distribucions segons aquests rangs de despesa. No només la mitja de l'esperança de vida és notablement major quan major és la despesa sanitària pública, sinó que a mesura que la despesa augmenta, la variància de l'esperança de vida es redueix. A efectes pràctics, això significa una menor dispersió del valor d'esperança de vida entre la població de països amb major despesa sanitària, i per tant una menor desigualtat en anys viscuts pels individus, cosa que podria traduir-se en una qualitat de vida més homogènia i igualitària entre la població.

De l'anàlisi mitjançant el test de correlació hem identificat diferents correlacions d'interès entre variables:

- La població total i el gdp total no semblen relacionar-se significativament amb la resta de variables analitzades. És a dir, a priori viure en un país més o menys poblat o amb més o menys gdp total no és un indicador de millors o pitjors condicions de salut.
- Les dades globals de gdp, gdp_growth_rate, education_gov_expenditure i health_expenditure tenen coeficients de correlació baixos en relació amb la resta de variables del dataset, però en canvi existeixen coeficients més elevats en el cas d'aquestes variables considerades per càpita.
- Existeix una relació significativa entre major health_exp_capita, educ_exp_capita i physicians, i una major life_expectancy_fem/male. I a major proporció de population_under_14 i infant_mortality, menor life expectancy fem.
- Existeix una relació significativa entre major gdp_capita, health_exp_capita, educ_exp_capita i physicians, i menor infant_mortality. Tanmateix, a major prevalença de tuberculosi, major infant mortality.
- La prevalença de tuberculosi es relaciona més fortament amb la reducció de l'esperança de vida que la prevalença de VIH. Això es pot deure al fet que per la tuberculosi existeix un tractament efectiu, però els països amb menor esperança de vida (i alhora amb menys recursos econòmics) tenen més dificultats d'accés a aquest tractament comparat amb els països amb major esperança de vida (desenvolupats), i alhora, al fet que ni els països desenvolupats ni els no desenvolupats encara no disposen d'una cura per l'VIH.

Aquesta anàlisi de correlacions ens permet establir models de regressió. En aquest cas hem optat per implementar un model de regressió que permeti estimar l'esperança de vida femenina segons 3 paràmetres d'entrada: "health_exp_capita", "physicians" i "infant_mortality", que són variables sobre les que cada govern pot realitzar actuacions de millora. Analitzant el model podem concloure que lleus increments en despesa sanitària pública, nombre de metges i en l'aplicació de mesures per la reducció de la mortalitat infantil produirien notables increments en l'esperança de vida de la població, cosa que reduiria la desigualtat en qualitat de vida entre territoris.

Contribucions

Contribucions	Firma
Investigació prèvia	ADS,XVD
Redacció de les respostes	ADS,XVD
Desenvolupament codi	ADS,XVD