Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования «ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

(Финансовый университет)

Департамент анализа данных, принятия решений и финансовых технологий

Дисциплина «Программирование в среде R»

П.Б. Лукьянов

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ № 1

Расчет показателей эффективности торговой сети Часть 7

Для студентов, обучающихся по направлению подготовки 01.03.02 «Прикладная математика и информатика» (программа подготовки бакалавра)

Цель методических указаний — изучение графических возможностей среды R и способов построения графиков для наглядного представления результатов расчетов. При рассмотрении графических функций изучаются их параметры, а также особенности вызова основных и вспомогательных графических функций. В итоге информация на графиках обладает нужной информативностью и точно отображает зависимости исследуемых показателей.

Необходимый теоретический минимум

При необходимости выполнить графический анализ результатов у аналитика есть несколько возможностей (см. рис. 1):

- Использовать базовые графические функции R
- Подключить дополнительные специализированные пакеты и вызывать функции оттуда
- Разработать необходимые графические функции самостоятельно (рис. 2)

Основной подход к использованию в R-программе графических функций такой же, как и при использовании любых других функций, встроенных в R или написанных самостоятельно — вся необходимая для работы информация должна передаваться через параметры, а в качестве параметра может быть вектор, матрица, список, таблица или массив.

Прежде чем какие-либо данные будут отображены на графике, сами эти данные должны быть сформированы в результате вычислений или обработки других, первичных данных, полученных в экспериментах или исследованиях (рис. 3).

Далее будут рассматриваться графические функции из стандартного дистрибутива R. Эти функции можно разбить на две категории: основные и вспомогательные. К основным функциям относятся функции, вызов которых приводит к рисованию того или иного графика. Названия некоторых основных функций приведены на рис. 3 справа.

Рис. 1. Варианты использования графических функций R

Рис. 2. Примеры графических функций, написанных Пользователем

Рис. 3. Общая схема передачи данных в графические функции

Кроме основных функций существует определенное количество вспомогательных, которые предназначены для того, чтобы внести изменения на уже готовом графике, созданном ранее с помощью основной графической функции.

Использование вспомогательных функций существенно расширяет возможности основных функций, позволяя на уже нарисованную зависимость y1(x) накладывать зависимости y2(x), y3(x), ..., yN(x), менять и добавлять координатные оси, разметку, поясняющие надписи и т.д. Связь основных и вспомогательных графических функций представлена на рис. 4.

Итак, вся информация для рисования передается через параметры графических функций (см. рис. 5). Передаются

- данные
- всевозможные настройки для отображения данных

Чтобы не запутаться в очередности параметров при вызове функции, нужно в явном виде, используя формальные имена параметров функции, задавать им значения. Если значение параметра не указывать, график будет отрисован с использованием значения по умолчанию.

Рис. 4. Примеры и связь основных и вспомогательных функций

Все, что теоретически мы можем захотеть изменить, как правило, можно выполнить на практике, достаточно знать название параметра и его допустимые значения. Чаще всего требуется настраивать:

- Размер и толщину линий, точек, подписей, заголовков, разметки осей
- Цвет линий, точек, фона, масштабной сетки, текста надписей и подписей

Рис. 5. Основные типы и назначение параметров графической функции

- Тип представления данных (только точки, точки, соединенные линиями, только линии, вид соединительных линий)
- Различные шрифты для вывода сообщений

Одной ИЗ наиболее часто используемых функций является универсальная и гибкая в настройке графическая ϕ ункция **plot**(). Рассмотрим параметры и варианты вызова этой функции (см. рис. 6). Параметры для настройки отображения данных функции plot() работают графических функций аналогично И ДЛЯ других И ΜΟΓΥΤ использованы так же, как они используются в функции plot(). Напомним,

что информацию по всем возможным параметрам любой функции можно получить, запустив в консоли команду

?имя_графической_функции

где **имя_графической_функции** — название любой интересующей функции.

Рис. 6. Параметры графической функции plot()

Практические действия

Перейдем к изучению графических функций на практике, для чего подготовим числовой вектор res и передадим его как параметр в функцию plot() (рис. 7, 8).

```
res <- sample(x = -5:21, size = 30, replace = TRUE)
plot(x = res)
```

Рис. 7. Создание вектора случайных значений и вызов функции plot()

Проверьте, что произойдет, если запустить код res <- sample(..) без условия **replace** = **TRUE.** Программа должна выдать ошибку, так как среди 30 случайных значений в диапазоне от -5 до 21 обязательно будут повторяющиеся числа.

На графике (рис. 8) видим точки, случайным образом рассыпанные по прямоугольнику размером [1, 30] x [-5, 21].

Рис. 8. Отображение вектора случайных значений на графике

Заметим, что точки располагаются точно в узлах невидимой масштабной сетки, образованной вертикальными и горизонтальными линиями, проходящими через целочисленные значения на осях ОХ и ОУ.

Масштабная сетка

Нарисуем масштабную сетку. Масштабная сетка строится посредством вызова функции, рисующей так называемые опорные линии. Для рисования опорной линии нужна вспомогательная графическая функция abline().

В скрипте программы вызов **abline**() должен быть выполнен ПОСЛЕ вызова **plot**() (см. рис. 9), иначе **abline**() ничего не нарисует. Результат работы этой функции представлен на рис. 10.

```
res <- sample(x = -5:21, size = 30, replace = F)

plot(x = res)

# рисуем вертикальные линии on 1 до 30 синим цветом abline(v = seq(1,30,1), col = 'blue')

# рисуем горизонтальные линии зеленым цветом abline(h = seq(-5,21,1), col = 'green')
```

Рис. 9. Код рисования масштабной сетки на графике plot()

Вместо вызова функции abline() два раза ее можно вызвать один раз с тем же самым результатом. Подумайте, что нужно изменить в вызове abline(). Проверьте свои предположения.

Обратите внимание, что в параметрах функции **abline**() мы задаем тип линии — вертикальная (v = ...) или горизонтальная (h = ...), а также определяем цвет (color) через параметр col = '...'. Какие еще параметры есть у функции **abline**() ?

Выполните вызов функции с этими параметрами, объясните результат.

Рис. 10. Случайные точки в узлах масштабной сетки

Задание цвета

Все именованные цвета, доступные для использования в графике R, можно получить, вызвав специальную функцию **colors**(). Сколько всего цветов есть в нашем арсенале? Выберите любой цвет и раскрасьте наши случайные точки.

Каждый элемент графика может иметь свой цвет. Для задания цветов различных элементов графика используйте параметры, представленные в Таблице 1.

Вместо одного цвета можно указывать вектор цветов. В этом случае цвета будут присваиваться элементам по очереди. Если **col=c("red","blue")** и изображены три линии, первая будет красной, вторая – синей и третья снова – красной.

Таблица 1. Параметры, управляющие цветом различных элементов

col.* = ,	fg = ,	bg =
-----------	--------	------

Параметр	Результат применения
col.axis	Цвет значений на осях
col.lab	Цвет подписей на осях
col.main	Цвет заголовков
col.sub	Цвет подзаголовков
fg	Цвет графика
bg	Цвет фона

Раскрасим точки в несколько цветов (см. рис. 11). То, что цвета различны, практически не видно, возникает следующая задача — задать нужный размер элементам графика.

Рис. 11. Точки в узлах масштабной сетки раскрашены в разные цвета

Задание размера

На графике случайные точки видны плохо, нужно увеличить их размер. По умолчанию точки рисуются с некоторым коэффициентом, равным 1. Для изменения размера используется параметр сех, который будет увеличить размер точки, если сех>1, и уменьшать размер для сех<1. Так, для значения параметра сех=5 результат представлен на рис. 12.

Рис. 12. Использование параметров со1 и сех

Варианты использования параметров, меняющих размеры элементов графика, представлены в таблице 2.

Задание вида отображения данных графика

Кроме окружностей (этот тип представления данных задан в R по умолчанию) значение может быть отрисовано разными вариантами отображения, что дает широкие возможности по размещению на одном

графике различных наборов данных. Управление представлением данных задается параметром pch=N, где N - целое число от 0 до 25 (рис. 13). Результат отображения на графике для N = 23 представлен на рис. 14.

Таблица 2. Параметры для изменения размера элементов графика

Параметр	Результат применения
сех	Коэффициент изменения размера элемента. По умолчанию cex = 1 cex = 1.5 означает, что элемент на 50% больше cex = 0.5 — на 50% меньше
	ССК — 0.3 На 30/0 МСПВШС
cex.axis	Размер цифр на осях по отношению к сех
cex.lab	Размер названий осей по отношению к сех
cex.main	Размер заголовков по отношению к сех
cex.sub	Размер подзаголовков по отношению к сех

Рис. 8. Варианты отображения точки на графике

Для символов с 21 по 25 можно отдельно указывать цвет заполнения (bg= \dots), (рис. 14). Самостоятельно протестируйте параметр с N от 1 до 25.

Интересно, что вместо N можно задавать в качестве значения pch любой символ, в этом случае параметр задается так: pch = 'Ж' (рис.. Измените значение параметра pch на любой символ и оцените результат.

Рис. 13. Варианты отображения значений на графике

Рис. 14. Использование параметра pch для изменения вида графика

Рис. 15. Использование параметра pch со значением 'Ж'

Соединение точек между собой

Рассмотрим способы соединения точек на графике. Основным параметром, фактически задающим тип графика, является параметр **type**. По умолчанию используется параметр type = 'p'. Варианты значений для параметра **type** представлены на рис.16. Использование разных значений **type** дает большое разнообразие в оформлении данных, см. рис. 17.

На своих данных проверьте работу всех значений параметра **type**.

Вопросы возникают по поводу значения параметра type = 'n', зачем он нужен? Ответ следующий – порой нам нужно «пустой» график, чтобы затем размещать на нем необходимую информацию с помощью других функций.

"p" (points) отображаем точки "I" (lines) рисуем линии, проходящие через точки, точки не отображаются "b" (both) отображаем точки, рисуем линии между ними "c" рисуем линии, вместо точек - пробелы "o" аналог "b" "h" (high density) рисуем вертикальные линии до точек "s" (steps) рисуем ступеньки между точками, вариант 1 "S" (steps) рисуем ступеньки между точками, вариант 2 "n" (no) вообще ничего не рисуем

Рис. 16. Типы соединения точек графика

Рис. 17. Использование параметра type для изменения типа графика

Задание типа и толщины соединительной линии

По умолчанию точки на графике соединяются непрерывной линией. Вид этой линии можно менять, и отвечает за это параметр **lty**. Параметр может принимать 6 значений, значение по умолчанию = 1, все варианты представлены на рис. 18.

Рис. 18. Варианты соединительных линий между точками графика

Кроме задания типа линии мы можем менять ее толщину, используя параметр **lwd**. Параметр **lwd** — полный аналог параметра **cex** для точек. Вариант графика с использованием этих параметров представлен на рис. 19. Также на этом графике для функции **abline**() применен параметр **lty**. Подберите собственный набор параметров для отображения точек и линий. Добейтесь того, чтобы ваш график вам нравился.

Рис. 19. Пример графика с различными значениями параметров

Размещение на графике дополнительных данных

Нередко на одном графике нужно отразить несколько наборов данных. Для размещения на готовом графике дополнительных наборов данных используются вспомогательные функции lines() и points().

Параметры этих функций такие же, как и у функции **plot**(). Разместим на нашем графике функцию, формула которой представлена на рис. 20.

Рис. 20. Задание векторов х2 и у2 для размещения на графике

Рис. 21. Наложение двух наборов данных на одном графике

Создание заголовка, подписей осей

Одна из важных работ при оформлении графика — добавление поясняющего текста в заголовок, подписывание осей, создание подзаголовка, настройка размеров осей и т.д.

Для задания заголовка в plot() используется параметр **main**, например: main = 'Динамика продаж по регионам'. Аналогичным образом для задания подписей по осям используются параметры **xlab**, **ylab**. Для задания подзаголовка (размещается под осью X) служит параметр **sub**. Эти параметры представлены в таблице 3.

Таблица 3. Поясняющие параметры графика

main = , sub = , xlab = , ylab =

Параметр	Результат применения
main	Задает заголовок графика
sub	Поясняющая надпись под графиком
xlab	Подпись оси X
ylab	Подпись оси Ү

Хорошая практика подготовки отчетов – к каждому графику делать заголовки и необходимые подписи. У того, кто смотрит ваш график, не должно быть вопросов о том, что изображено на графике. Плохо подготовленный график – это график, по оформлению которого вам вынуждены задавать вопросы.

Примечание. В графических функциях используется множество параметров. В коде программы лучше записывать эти параметры так, чтобы на каждой строчке был один параметр. В этом случае их удобно менять, убирать в комментарии и видеть всю картину настроек. Пример см. на рис. 16.

Для того, чтобы автоматически выстроить параметры таким образом, в RStudio используют следующие команды: выделение кода (Ctrl-A) и его последующее форматирование (Ctrl-Shift-A).

Результат представлен на рис. 17.

```
plot(
  x = res,
  col = c('red','cyan', 'black', 'yellow'),
  cex = 10,
  pch = 23,
  bg = 'green',
  type = 'b',
  lwd = 12,
  lty = 3,
  main = 'Продуктивность рекламных компаний банка ПЕРИМЕТР',
  sub = 'Данные из открытых источников',
  xlab = 'Декады',
  ylab = 'Выручка, млн. руб'
)
```

Рис. 16. Пример оформления вызова функции plot()

Рис. 17. Результат вызова функции plot() с набором параметров

Самостоятельные задания

- 1. По двум-трем магазинам подготовить графики с различными вариантами оформления. Каждый график строится по одному товару и должен отображать динамику по дням периода (неделя или месяц) следующих показателей:
 - объем продаж
 - выручка
 - прибыль
 - списание
 - равномерность продаж
 - рентабельность

На графиках по прибыли и рентабельности рассмотреть случай отрицательных значений в некоторые дни, объяснить причину появления отрицательных значений.

В предположении, что объем продаж не зависит от цены, изменить цены таким образом, чтобы не допустить отрицательных значений. Какие варианты коррекции цен могут быть? Какие цены и на сколько процентов нужно скорректировать?