

DISTORTION FUNCTIONS

Why

We want to quantify the error of compressing a real-valued random variable.¹

Definition

Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space, $x : \Omega \to \mathbf{R}$ a random variable, let \mathcal{X} a finite set and $q : \mathbf{R} \to \mathcal{X}$ a quantization.

The compression $\hat{x}:\Omega\to\mathcal{X}$ of x under q is $q\circ x$. A distortion function for x and \hat{x} is a function

$$d: (\Omega \to \mathbf{R}) \times (\Omega \to \mathcal{X}) \to \mathbf{R}.$$

Roughly speaking, a distortion function is meant to quantify the error in using this compression.

Examples

As a first example, consider the mean-squared-error distortion d_{mse} defined by

$$d_{\text{mse}}(x, \hat{x}) = E[(x - \hat{x})^2]$$

As a second example, consider the Kulback-Liebler distortion d_{kld} defined by

$$d_{\text{kld}}(x, \hat{x}) = \mathbb{E}[d_{\text{kl}}(\mathbf{P}(y \in \cdot \mid x, \hat{x}) \mid \mathbf{P}(y \in \cdot \mid \hat{x}))]$$

where y is some random variable that depends on x.²

¹Future editions may expand.

²Future editions will clarify this sentence.

