

Elementos de física Clase 3

David González, PhD.
Profesor Principal
Escuela de Ingeniería, Ciencia y Tecnología
Febrero 6, 2023

Capitulo 2 – Movimiento Rectilíneo

- 1. Cinemática Parte de la mecánica de describe el movimiento
- **2. Dinámica** Relación entre el movimiento y sus causas

Movimiento rectilíneo Vectores de velocidad y aceleración. (Magnitud y dirección)

2.1 Posiciones de un automóvil de arrancones en dos instantes durante su recorrido.

x es positiva a la derecha del origen (O), y negativa a la izquierda de este.

Cuando el automóvil se mueve en la dirección +x, el desplazamiento Δx es positivo, al igual que su velocidad media:

$$v_{\text{med-}x} = \frac{\Delta x}{\Delta t} = \frac{258 \text{ m}}{3.0 \text{ s}} = 86 \text{ m/s}$$

Cuando la camioneta se mueve en la dirección -x, Δx es negativa, al igual que la velocidad media:

$$v_{\text{med-}x} = \frac{\Delta x}{\Delta t} = \frac{-258 \text{ m}}{9.0 \text{ s}} = -29 \text{ m/s}$$

Si la coordenada x es: ... la velocidad x es:

Positiva y aumenta (volviéndose más positiva) Positiva: la partícula se mueve en la dirección +x

Positiva y disminuye (volviéndose menos positiva) Negativa: la partícula se mueve en la dirección –x

Negativa y aumenta (volviéndose menos negativa) Positiva: la partícula se mueve en la dirección +x

Negativa y disminuye (volviéndose más negativa)

Negativa: la partícula se mueve en la

dirección –x

Tabla 2.2 Magnitudes típicas de velocidad

Reptar del caracol	10^{-3}m/s
Caminata rápida	2 m/s
Ser humano más rápido	11 m/s
Velocidades en carretera	30 m/s
Automóvil más rápido	341 m/s
Movimiento aleatorio de moléculas de aire	500 m/s
Avión más rápido	1000 m/s
Satélite de comunicación en órbita	3000 m/s
Electrón en un átomo de hidrógeno	$2\!\times\!10^6\text{m/s}$
Luz que viaja en el vacío	$3\!\times\!10^8\text{m/s}$

Desplazamiento

$$\Delta x = x_2 - x_1$$

Velocidad media

$$v_{\text{med-}x} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$

$$v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

La velocidad instantánea es el limite de la velocidad media conforme el intervalo de tiempo se acerca a cero.

Cuando la velocidad media $v_{\text{med-}x}$ se calcula en intervalos cada vez más cortos ...

... su valor $v_{\text{med-}x} = \Delta x/\Delta t$ se acerca a la velocidad instantánea.

La velocidad instantánea v_x en un tiempo dado es igual a la pendiente de la tangente a la curva x-t en ese punto.

a) Gráfica x-t

Cuanto más pronunciada sea la pendiente (positiva o negativa) de la gráfica *x-t* de un objeto, mayor será la rapidez del objeto en la dirección positiva o negativa.

Ejercicio en clase:

Un guepardo acecha 20 m al este de un observador (figura 2.6a). En el tiempo t=0, el guepardo comienza a correr al este hacia un antílope que se encuentra 50 m al este del observador. Durante los primeros 2.0 s del ataque, la coordenada x del guepardo varía con el tiempo según la ecuación x=20 m + $(5.0 \text{ m/s}^2)t^2$. a) Obtenga el desplazamiento del guepardo entre $t_1=1.0$ s y $t_2=2.0$ s. b) Calcule la velocidad media en dicho intervalo. c) Calcule la velocidad instantánea en $t_1=1.0$ s tomando $\Delta t=0.1$ s, luego $\Delta t=0.01$ s, luego $\Delta t=0.001$ s. d) Deduzca una expresión general para la velocidad instantánea del guepardo en función del tiempo, y con ella calcule v_x en t=1.0 s y t=2.0 s.

- c) Consideraciones
- 1 El eje apunta en la dirección en que corre el guepardo, de manera que nuestros valores serán positivos.
- 2 El origen se coloca en el vehículo.
- (3) Marcamos las posiciones iniciales del guepardo y del antílope.
- (4) Marcamos las posiciones del guepardo en 1 y 2 s.
- (5) Agregamos las literales para las cantidades conocidas y desconocidas.

$$x_1 = 20 \text{ m} + (5.0 \text{ m/s}^2)(1.0 \text{ s})^2 = 25 \text{ m}$$

 $x_2 = 20 \text{ m} + (5.0 \text{ m/s}^2)(2.0 \text{ s})^2 = 40 \text{ m}$

El desplazamiento en este intervalo de 1.0 s es

$$\Delta x = x_2 - x_1 = 40 \text{ m} - 25 \text{ m} = 15 \text{ m}$$

b) La velocidad media durante este intervalo es

$$v_{\text{med-}x} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{40 \text{ m} - 25 \text{ m}}{2.0 \text{ s} - 1.0 \text{ s}} = \frac{15 \text{ m}}{1.0 \text{ s}} = 15 \text{ m/s}$$

c) Con $\Delta t = 0.1$ s, el intervalo es de $t_1 = 1.0$ s a un nuevo $t_2 = 1.1$ s. En t_2 , la posición es

$$x_2 = 20 \text{ m} + (5.0 \text{ m/s}^2)(1.1 \text{ s})^2 = 26.05 \text{ m}$$

La velocidad media durante este intervalo de 0.1 s es

$$v_{\text{med-x}} = \frac{26.05 \text{ m} - 25 \text{ m}}{1.1 \text{ s} - 1.0 \text{ s}} = 10.5 \text{ m/s}$$

d) Para calcular la velocidad instantánea en función del tiempo, se deriva la expresión de x con respecto a t. La derivada de una constante es cero, y para cualquier n la derivada de t^n es nt^{n-1} , así que la derivada de t^2 es 2t. Por lo tanto,

$$v_x = \frac{dx}{dt} = (5.0 \text{ m/s}^2)(2t) = (10 \text{ m/s}^2)t$$

En t = 1.0 s, esto produce $v_x = 10$ m/s, como vimos en el inciso c); en t = 2.0 s, $v_x = 20$ m/s.

Desplazamiento

$$\Delta x = x_2 - x_1$$

Velocidad media

$$v_{\text{med-}x} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$

Aceleración media

$$a_{\text{med-}x} = \frac{v_{2x} - v_{1x}}{t_2 - t_1} = \frac{\Delta v_x}{\Delta t}$$

Velocidad instantánea

$$v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

Aceleración instantánea

$$a_{x} = \lim_{\Delta t \to 0} \frac{\Delta v_{x}}{\Delta t} = \frac{dv_{x}}{dt}$$

$$a_x = \frac{dv_x}{dt} = \frac{d}{dt} \left(\frac{dx}{dt}\right) = \frac{d^2x}{dt^2}$$

Para un desplazamiento a lo largo del eje x, la aceleración media de un objeto es igual v_x a la pendiente de una línea que une los puntos correspondientes en una gráfica de velocidad (v_x) contra tiempo (t)

Cuanto más pronunciada sea la pendiente (positiva o negativa) de la gráfica v_x -t de un objeto, mayor será la aceleración del objeto en la dirección positiva o negativa.

Ejercicio en clase:

Suponga que la velocidad v_x del automóvil en la figura 2.11 en un instante t está dada por la ecuación

$$v_x = 60 \text{ m/s} + (0.50 \text{ m/s}^3)t^2$$

a) Calcule el cambio de velocidad del automóvil en el intervalo entre $t_1 = 1.0$ s y $t_2 = 3.0$ s. b) Calcule la aceleración media en este intervalo de tiempo. c) Obtenga la aceleración instantánea en $t_1 = 1.0$ s tomando Δt primero como 0.1 s, después como 0.01 s y luego como 0.001 s. d) Deduzca una expresión para la aceleración instantánea como función del tiempo y úsela para obtener la aceleración en t = 1.0 s y t = 3.0 s.

EJECUTAR: *a*) Antes de aplicar la ecuación (2.4), debemos obtener la velocidad en cada instante a partir de la ecuación dada. En el instante $t_1 = 1.0$ s, y en el $t_2 = 3.0$ s, las velocidades son

$$v_{1x} = 60 \text{ m/s} + (0.50 \text{ m/s}^3)(1.0 \text{ s})^2 = 60.5 \text{ m/s}$$

 $v_{2x} = 60 \text{ m/s} + (0.50 \text{ m/s}^3)(3.0 \text{ s})^2 = 64.5 \text{ m/s}$

El cambio en la velocidad Δv_x entre $t_1 = 1.0$ s y $t_2 = 3.0$ s es

$$\Delta v_x = v_{2x} - v_{1x} = 64.5 \text{ m/s} - 60.5 \text{ m/s} = 4.0 \text{ m/s}$$

b) La aceleración media durante este intervalo de duración $t_2 - t_1 = 2.0 \text{ s es}$

$$a_{\text{med-}x} = \frac{v_{2x} - v_{1x}}{t_2 - t_1} = \frac{4.0 \text{ m/s}}{2.0 \text{ s}} = 2.0 \text{ m/s}^2$$

Durante este intervalo, la velocidad y la aceleración media tienen el mismo signo algebraico (positivo en este caso) y el auto acelera.

c) Cuando $\Delta t = 0.1$ s, tenemos $t_2 = 1.1$ s. Procediendo como antes obtenemos

$$v_{2x} = 60 \text{ m/s} + (0.50 \text{ m/s}^3)(1.1 \text{ s})^2 = 60.605 \text{ m/s}$$

$$\Delta v_x = 0.105 \text{ m/s}$$

$$a_{\text{med-}x} = \frac{\Delta v_x}{\Delta t} = \frac{0.105 \text{ m/s}}{0.1 \text{ s}} = 1.05 \text{ m/s}^2$$

Repita este patrón para calcular $a_{\text{med-}x}$ con $\Delta t = 0.01$ s y $\Delta t = 0.001$ s; los resultados son $a_{\text{med-}x} = 1.005$ m/s² y $a_{\text{med-}x} = 1.0005$ m/s², respectivamente. Al reducirse Δt , la aceleración media se acerca a 1.0 m/s², por lo que concluimos que la aceleración instantánea en t = 1.0 s es 1.0 m/s².

d) Por la ecuación (2.5) la aceleración instantánea es $a_x = dv_x/dt$. La derivada de una constante es cero y la derivada de t^2 es 2t, por lo que

$$a_x = \frac{dv_x}{dt} = \frac{d}{dt} [60 \text{ m/s} + (0.50 \text{ m/s}^3)t^2]$$

= $(0.50 \text{ m/s}^3)(2t) = (1.0 \text{ m/s}^3)t$

Cuando t = 1.0 s,

$$a_x = (1.0 \text{ m/s}^3)(1.0 \text{ s}) = 1.0 \text{ m/s}^2$$

Cuando t = 3.0 s,

$$a_x = (1.0 \text{ m/s}^3)(3.0 \text{ s}) = 3.0 \text{ m/s}^2$$

Bibliografía

[1] Sears & Zemansky's University Physics (13th ed.); H.D. Young, R.A. Freedman. Addison-Wesley (2012)

¿Preguntas?

David González, PhD. Profesor Principal

<u>Davidfeli.gonzalez@urosario.edu.co</u>

Escuela de Ingeniería, Ciencia y Tecnología Universidad del Rosario

