الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية الديوان الوطني للامتحانات والمسابقات

امتحان بكالوريا التعليم الثانوي

دورة: 2024

الشعبة: علوم تجريبية

المدة: 03 سا و30 د

a - Aile - 1 d

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

يحتوي كيس على 11 كريّة متماثلة لا نفرّق بينها باللمس موزعة كما يلي: كريّتان بيضاوان مرقمتان بـ: 1 ، 3 وأربع كريّات حمراء مرقمة بـ: 0 ، 1 ، 1 ، 3 ، 4 ، 3 ، 4

I) نسحب عشوائيا وفي آن واحد 3 كريّات من الكيس ونعتبر الحوادث الآتية:

" على 3 كريّات من نفس اللون " ، B ، " الحصول على 3 كريّات جُداء أرقامها عدد فردي " A : " الحصول على 3 كريّات جُداء أرقامها عدد زوجي " B : " الحصول على 3 كريّات جُداء أرقامها عدد زوجي "

P(C) احتمال الحادثة A و بيّن أنّ: $P(B) = \frac{56}{165}$ ثمّ استنتج P(A) ثمّ استنج (1)

 $P_{\Lambda}(B)$ ب) احسب الاحتمال الشرطي ($P_{\Lambda}(B)$

2) X المتغير العشوائي الذي يرفق بكل عملية سحب لثلاث كريّات، عدد الكريّات التي تحمل رقما زوجيا.

E(X) عين قانون الاحتمال للمتغيّر العشوائي X ثمّ احسب أمله الرياضياتي E(X)

(X>1) احسب احتمال الحادثة

الآن من الكيس عشوائيا 3 كريّات على التوالي وبدون إرجاع.

- احسب احتمال الحادثة D : " الحصول على 3 كريّات جُداء أرقامها معدوم "

التمرين الثاني: (04 نقاط)

I) حل في مجموعة الأعداد المركبة C المعادلة ذات المجهول Z الآتية:

$$(z-1+2\sqrt{3})[z^2-2(1-\sqrt{3})z+5-2\sqrt{3}]=0$$

C و B ، A نعتبر النقط B ، A المعلم المتعامد والمتجاس (0; \overline{u} , \overline{v}) ، نعتبر النقط $Z_C=\overline{Z_A}$ و $Z_B=1-2\sqrt{3}$ ، $Z_A=1-\sqrt{3}+i$ و $Z_C=\overline{Z_A}$ و $Z_B=1-2\sqrt{3}$ ، $Z_A=1-\sqrt{3}+i$ التي لاحقاتها على الترتيب Z_B ، Z_B ، Z_B و Z_B

. اكتب كلا من $Z_A - 1$ ، $Z_C - 1$ و Z_B على الشكل المثلثي (1

 $\{(A;1),(B;-1),(C;1)\}$ جد لاحقة النقطة $\{(A;1),(B;-1),(C;1)\}$ مرجح الجملة المثقلة و $\{(A;1),(B;-1),(C;1)\}$

3) بين أنّ الرباعي ABCD معين.

التمرين الثالث: (05 نقاط)

$$u_{n+1}=rac{4-u_n}{2+u_n}$$
 ، n هند طبيعي $u_0=0$ و من أجل كل عدد طبيعي $u_0=0$ المنتالية العددية المعرّفة ب

 $0 \le u_n \le 2$ ، n و u_3 و u_3 التراجع أنه: من أجل كلّ عدد طبيعي u_2 ، u_1 ، u_3) احسب الحدود u_1 ، u_2 ، u_3 التراجع أنه: من أجل كلّ عدد طبيعي u_2 ، u_3)

$$v_n = \frac{u_n - 1}{u_n + 4}$$
 :ب المنتالية العددية المعرّفة على (v_n) (2)

$$n$$
 اثبت أنّ المتتالية (v_n) هندسية أساسها $\frac{2}{3}$ ثمّ اكتب عبارة v_n بدلالة v_n

$$\lim_{n\to +\infty} u_n$$
 بين أنه: من أجل كل عدد طبيعي $u_n = \frac{5}{1-v_n} - 4$ ، n عدد طبيعي (ب

3) من أجل كل عدد طبيعي n ، نضع:

$$T_n = \frac{1}{4 + u_n} + \frac{1}{4 + u_{n+1}} + \dots + \frac{1}{4 + u_{n+2024}} \qquad S_n = v_n + v_{n+1} + \dots + v_{n+2024}$$

n بدلالة n ثمّ استنتج S_n بدلالة -

التمرين الرابع: (07 نقاط)

 $g(x)=x\ e^{-x+1}-2$ بـ الجدول المقابل تغيّرات الدّالة g المعرّفة على \mathbb{R} بـ الجدول المقابل تغيّرات الدّالة و

x	∞	1	+00
g'(x)	+	0	-
g(x)	/	g(1)	1

$$g(x)$$
 احسب $g(1)$ ثمّ استنتج إشارة

$$f(x)=-2x+3-x\ e^{-x+1}$$
 بد: \mathbb{R} على $f(x)=f(x)$

- . (2 cm وحدة الطول (c_f) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس ((c_f,j))، (وحدة الطول)
 - $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x)$ $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x)$
 - $+\infty$ عند (C_f) عند المعادلة y=-2x+3 عند (Δ) عند المستقيم (Δ) بيّن أنّ المستقيم (Δ) عند (C_f) عند (Δ) عند ثمّ ادرس الوضع النسبي للمنحني (C_f) والمستقيم (Δ)
 - $f'(x) = g(x) e^{-x+1}$ ، x عدد حقیقی $g(x) = g(x) e^{-x+1}$ ، $g(x) = g(x) e^{-x+1}$ ، $g(x) = g(x) e^{-x+1}$
 - ب) استنتج اتجاه تغيّر الدّالة f ثمّ شكّل جدول تغيّراتها.
 - . هادلة له عيين أنّ (c_f) يقبل مماسا (T) موازيا له (Δ) ، يُطلب تعيين معادلة له.
 - (C_f) و (T) ، (Δ) ارسم (4)
 - f(x) = -2x + m عين بيانيا قيم الوسيط الحقيقي m التي من أجلها تقبل المعادلة
 - $\int_0^1 xe^{-x+1} dx = e-2$: أ) باستعمال المكاملة بالتجزئة، بين أنّ (5) باستعمال المكاملة بالتجزئة، بين أنّ
 - ب) استنتج بالسنتيمتر المربع A مساحة الحيّز المستوي المحدّد ب (C_f) و (Δ) والمستقيمين اللذين x=1 معادلتاهما: x=1 و x=1

انتهى الموضوع الأول

الموضوع الثاني

التمرين الأول: (04 نقاط)

يحتوي كيس على 5 قطع كهربائية غير متمايزة ولا نفرق بينها باللمس، منها 3 قطع سليمة وقطعتان غير سليمتين. نرمز إلى القطعة السليمة بالزمز كم وإلى القطعة غير السليمة بالزمز \(\overline{S}\)

نسحب عشوائيا من الكيس 3 قطع على التوالي مع الإرجاع ، ونعتبر الحوادث:

" القطعة الأولى المسحوبة سليمة " ، B " سحب قطعة واحدة فقط سليمة " : C " القطعة الثالثة المسحوبة سليمة " : C

- 1) شكّل شجرة الاحتمالات التي تُنمذج هذه التجرية.
- $P(C)=rac{3}{5}$ احسب P(A) ، P(A) احتمالي الحادثتين A و B ثمّ بيّن أنّ: P(B) ، P(A)
 - ? احسب الاحتمال الشرطي $P_{C}(A)$ ، هل الحادثتان A و A مستقلتان $P_{C}(A)$
- 4) نُرفق بكل قطعة سليمة العدد 10 وبكل قطعة غير سليمة العدد -10 ، ونعتبر X المتغير العشوائي الذي يرفق بكل عملية سحب من الكيس لثلاث قطع مجموع الأعداد المرفقة بها.
 - أ) برّر أنّ قيم المتغير العشوائي X هي: 30 ، 10 ، -10 ، -30)
 - E(X)عين قانون الاحتمال للمتغيّر العشوائي X ثمّ احسب أمله الرياضياتي

التمرين الثاني: (04 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة مع التبرير في كل حالة مما يلي:

z+i عدد مركب مرافقه z ، مزافق العدد المركب z+i هو:

$$z-i$$
 ($\bar{z}+i$ ($\bar{z}-i$ ($\bar{z}-i$ ($\bar{z}-i$

$$-1$$
 (ب $= \frac{i}{1-i}$) يساوي: أ (أ $= \frac{1+i}{1-i}$) يساوي: (2)

 $z=2(1+i\sqrt{3})$ عدد مرکب حیث z (3

من أجل كل عدد طبيعي غير معدوم n ، نضع: $\left| z \right|^{2} + \dots + \ln \left| z \right|^{n}$ ، لدينا:

$$S_n = 2\left(\frac{1-(2\ln 2)^n}{1-2\ln 2}\right)\ln 2$$
 (\Rightarrow $S_n = n(n+1)\ln 2$ (\Rightarrow $S_n = (n+1)^2 \ln 2$ (\Rightarrow

 $z = \sin \frac{\pi}{8} + i \cos \frac{\pi}{8}$ عدد مركب حيث: $z = \sin \frac{\pi}{8} + i \cos \frac{\pi}{8}$ ، الشّكل المثلثي للعدد المركب z هو:

$$\cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8} \quad (\Rightarrow \qquad \cos\frac{\pi}{8} + i\sin\frac{\pi}{8} \quad (\Rightarrow \qquad -\cos\frac{\pi}{8} + i\sin$$

التمرين الثالث: (05 نقاط)

$$f(x) = \frac{x+1}{2x}$$
 : كما يلي: $f(x) = \frac{x+1}{2x}$ كما يلي: $f(x) = \frac{x+1}{2}$

اختبار في مادة: الرياضيات // الشعبة: علوم تجريبية // بكالوريا 2024

$$u_n=rac{n}{2^n}$$
: $n\geq 2$ ، n عدد طبیعي n ، $n\geq 2$ ، n بین أنه: من أجل كل n من n ، $n\geq 2$ ، n فإن $n\geq 2$ ، n من n من $n\geq 2$ ، n فإن $n\geq 2$

$$\frac{u_{n+1}}{u_n} \le \frac{3}{4}$$
 آ) بین أنه: من أجل كل n من n من $n \ge 2$ ، n فإنّ

$$\lim_{n \to +\infty} u_n$$
 ثبت أنّه: من أجل كل n من n من $n \geq 2$ ، $n \geq 2$ من أجل كل $n \geq 2$ ، $n \geq 3$ فإنّ

$$S_n = \frac{u_2}{2} + \frac{u_3}{3} + \dots + \frac{u_n}{n}$$
 : $n \ge 2$ ، \mathbb{N} نضع من أجل كل n من $n \ge 2$ ، $n \ge 2$

$$S_n = \frac{511}{1024}$$
 حتى يكون $n = \frac{511}{2} \left(1 - \left(\frac{1}{2}\right)^{n-1}\right)$ حتى يكون $n = \frac{511}{2} \left(1 - \left(\frac{1}{2}\right)^{n-1}\right)$ حتى يكون أنّ:

التمرين الرابع: (07 نقاط)

. الذَّالة المعرَّفة على
$$]0;+\infty$$
 كما يلي: $2 - \ln x + \frac{1}{2} - \ln x$ تمثيلها البياني كما في الشّكل g (I

- بقراءة بيانية ، عين إشارة (g(x)

$$f(x)=-x-rac{\ln x}{x^2}:$$
ب]0;+∞ على]0;+∞ الذالة المعرّفة على $f(x)$

تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد (C_f)

والمتجانس $(0; \vec{i}, \vec{j})$ ، (وحدة الطول 2cm).

$$\lim_{x\to 0} f(x) \int_{x\to +\infty} \lim_{x\to 0} f(x)$$
 $\lim_{x\to 0} f(x)$

$$f'(x) = \frac{-2g(x)}{x^3}$$
 اً) بین أنّه من أجل كل x من x من x من أزه من أجل كل x من أرد (2)

+) استنتج اتجاه تغيّر الدّالة f ثمّ شكّل جدول تغيراتها.

$$\alpha < 0.71$$
 تقبل حلا وحيدا α حيث $\alpha = 0.7$ تقبل حلا وحيدا α حيث $\alpha = 0.7$

. (Δ) أ) بيّن أنّ المنحني (c_f) يقبل مستقيما مقاربا مائلا (Δ) ، يطلب تعيين معادلة له.

$$(\Delta)$$
 ادرس الوضع النسبي للمنحني (C_f) والمستقيم

4) بيّن أنّ المنحني (c_f) يقبل مماسا (T) معامل توجيهه -1 ، يطلب تعيين معادلة له.

$$(C_f)$$
 ارسم کلّا من (Δ) ، (T) و (5

ب)
$$m$$
 وسيط حقيقي، عين بيانيا قيم m التي من أجلها تقبل المعادلة: m حلين مختلفين.

]0;+∞ على
$$h:x\mapsto \frac{\ln x}{x^2}$$
 على $h:x\mapsto \frac{\ln x}{x}$ على)) أ) أثبت أنّ الدّالة $h:x\mapsto \frac{\ln x}{x}$ هي دالة أصلية للذّالة $h:x\mapsto \frac{\ln x}{x}$

$$(C_f)$$
 المساحة بالسنتيمتر المربع للحيّز المستوي المحدّد بالمنحني (C_f) والمستقيمات $\mathcal{A}(\alpha)$

$$x=1$$
 ، $x=\alpha$ ، $y=-x$ التي معادلاتها:

$$\mathcal{A}(\alpha) = 4(\alpha^2 - \frac{1}{\alpha} + 1)$$
 : بین آن -

