

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 1 217 066 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 26.06.2002 Bulletin 2002/26

(51) Int Cl.7: C12N 15/11, C07K 14/705, A61K 38/17, G01N 33/68

(21) Application number: 00870316.7

(22) Date of filing: 21.12.2000

(84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR **Designated Extension States:**

AL LT LV MK RO SI

(71) Applicant: UNIVERSITEIT GENT 9000 Gent (BE)

(72) Inventor: The designation of the inventor has not yet been filed

(74) Representative: De Clercq, Ann et al De Clercq, Brants & Partners cv., **Edgard Gevaertdreef 10a** 9830 Sint-Martens-Latem (BE)

Remarks:

The sequence listing, which is published as annex to the application documents, was filed after the date of filing. The applicant has declared that it does not include matter which goes beyond the content of the application as filed.

(54)Modulation of ATP-binding cassette transporter activity

The invention relates to the field of ATP-Binding Cassette (ABC) transporter molecules, and to molecules selectively modulating the activity of said ABC transporters. Herein are provided molecules and compounds which selectively modulate the activity of specifc

ABC transporters. The invention also relates to molecules, compounds and compositions for preventing, treating or alleviating cancer or diseases related to bacterial, fungal or protozoal infections.

Description

FIELD OF THE INVENTION

[0001] The invention relates to the field of ATP-Binding Cassette (ABC) transporter molecules and to molecules selectively modulating the activity of said ABC transporters.

BACKGROUND OF THE INVENTION

[0002] The ATP-binding cassette (ABC)-transporters constitute one of the largest and most highly conserved protein super families, which are found in large numbers in all organisms (Holland and Blight, 1999). These transmembrane proteins transport a wide range of compounds through biological membranes. The ABC transport proteins can import essential nutrients into cells, such as ions, sugars, amino acids etc... ABC-transporters can further protect cells by exporting a wide range of toxic compounds, signal the presence of infectious agents, and regulate development in microorganisms and mammals (Higgins, 1992). ABC-transporters participate in the regulation of several tissues such as the liver, lungs, retina and the immune system (Holland and Blight, 1999; Higgins, 1992). Consequently, mutations affecting ABC-transporters are associated with a variety of human inherited diseases, including the cystic fibrosis transmembrane conductance regulator (CFTR) linked to cystic fibrosis (Sheppard and Welsh, 1999), and the ABC-A1 transporter linked to Tangier Disease (Rust et al., 1999; Bodzioch et al., 1999; Brooks-Wilson et al., 1999). Disease treatment is also dependent upon the function of ABC-transporters. For example in cancer treatment, expression of the P-glycoprotein or MDR1 (multidrug resistance gene product) in cancer cells, confers multidrug resistance against chemotherapeutic agents and decreases the efficacy of treatment (Borst et al., 1986; Hipfner et al., 1999). The resistance of some bacteria to certain classes of antibiotics can be attributed to the activity of transmembrane ABC transporters (Higgins, 1992).

[0003] ABC-transporters consist of at least two basic subunits: an ATPase domain (also named NBD (domain) or (nucleotide binding domain)) which provides the energy required for the transport function, and a domain composed of six membrane-spanning helices, which form a channel and confer substrate specificity. Most ABC-transporters function as oligomers consisting of two ATPase and two transmembrane domains, which are either encoded separately, or tandemly replicated within a single polypeptide (Fig. 1). The transport of compounds across the membrane is accompanied by ATP hydrolysis. The ATPase domain becomes activated by binding of the allocrite and provides energy for transmembrane transport. It is thus obvious that there is strong cooperativity between the TM and ATPase domains of the ABC-transporters and they cannot function independently.

[0004] ATPase domains, homologous to those of the ABC-transporters have recently been identified in DNA repair proteins such as in Rad50, where it was found associated to a DNA binding domain (Hopfner *et al.*, 2000). ATP hydrolysis by the ATPase domain of Rad50 provides the energy required for DNA binding and dissociation. In ABC-transporters, the two ATPase domains or NBD's do not function separately but rather show cooperative ATP hydrolysis, allosterically regulated by ligand binding (Higgins, 1992).

[0005] The crystal structure recently reported for a dimer of the ATPase domains of the Rad50, protein, shows that conserved motifs, in the ATPase domains form a dimerization interface. This interface holds both the ATP molecules and the two NBD monomers in an optimal conformation for the function of the transporter (Hopfner *et al.*, 2000).

Sequence and structure of the ATPase domains of ABC-transporters.

[0006] At the sequence level, ABC-ATPases are well conserved, displaying 30 % or more identity between different ABC-transporters. This identity is concentrated in several motifs, which have been used for the recognition of new ABC-transporters. The following sequence elements are typical for ABC-transporter NBD domains: the P-loop or Walker A motif: GAXXGXGKS/TT, where X can be any residue, which is critical for the binding of the beta-phosphate of the ATP nucleotide; the Walker B motif (consensus: HyHyHyHyDE where Hy is a hydrophobic residue). Upstream of the Walker B motif there is a signature motif, SXG where X is mostly G, which is typical for ATPases in ABC-transporters. Except for the Walker A motif, the functional significance of the other structural motifs was unclear until the crystal structure of several ABC transporters became available.

[0007] The crystal structure of HisP from Salmonella typhimurium (Hung et al., 1998), showed that the overall shape of the NBD domain is that of an "L", with two arms or lobes (I and II). Lobe I consists primarily of an $\beta/\alpha/\beta$ fold formed by the packing of helix A between two β -sheets consisting of six hydrogen-bonded (3 strands. Lobe II is generated by the packing of three helices against a five-stranded mixed β -sheet. The two lobes are joined into a single folded domain by a central beta-sheet II. The nucleotide binding site formed by the Walker A motif (P loop), is located in Lobe I near the interface of both lobes

[0008] Several studies have shown that the two NBD domains, NBD1 and NBD2, of ABC-transporters function co-

operatively and that inactivation of one catalytic site completely abolishes ATPase activity and transport function (Holland and Blight, 1999; Higgins, 1992). This can be achieved either by mutations in the Walker A or Walker B site, or by vanadate trapping (Holland and Blight, 1999) of ADP in the catalytic sites. An allosteric regulation of the cooperativity between the two NBD domains is probably a mode of "fine" regulation of these transporters.

[0009] The ABC-transporter family represents a class of proteins with widespread distribution in the human organism sufficing a variety of functions. Moreover, related ABC-transporters are prominent in other eukaryotes and bacteria. A possible way to interfere with the function of these transporters would be to prevent the binding of ATP. Alignment of the nucleotide binding domains of different ABC transporters from mammal and bacterial origin already enabled the identification and localization of the structural elements in the NBD domains of these transporters. Since these elements and especially the P loop are well conserved, problems arise when searching for means of blocking specific ABC-transporters without interfering with the action of other vital members of this protein family. Therefore it is an aim of the present invention to identify molecules and compounds which selectively modulate the activity of ABC transporters.

[0010] It is furthermore an aim of the present invention to provide methods for identifying and inhibiting the dimeric interfaces between the two ATPase domains of ABC-transporters. It is another aim of the invention to provide molecules, compounds and compositions for preventing, treating or alleviating cancer or diseases related to bacterial, fungal and protozoal infections.

SUMMARY OF THE INVENTION

[0011] Three stretches of sequence are crucial for the heterodimeric NBD1-NBD2 structure of ABC-transporters: the residues corresponding to the signature motif, the Walker B motif and the D loop. The present inventors have identified the D-loop as the third important sequence which is conserved amongst ABC transporters. The D-loop immediately follows the Walker B motif and has been named as such by the inventors because they surprisingly found that the last amino acid (Aspartic acid, D) at the end of the conserved loop is very conserved among known ABC-transporter molecules. From several studies supported by extensive molecular modelling of the nucleotide binding domains of HisP. Rad50 and ABC-A1, the present inventors found that this D-loop is also structurally conserved amongst ABC-transporters and forms a central protein-protein dimerization interface (Figure 2). Contacts between the central residues of the D loop may contribute to the optimal dimer interface configuration. A central residue in the D loop could also be involved in the nucleophile attack on the ATP γ phosphate, through hydrogen bonding of an attacking water molecule. [0012] As described above, the signature motif and Walker A motif, which are part of the dimer interface, belong to the best-conserved elements of the ATPase of ABC-transporters. Until now, the sequence and structure conservation of the D loop had not been described yet for the ABC-transporters. Using the sequence multiple alignment programs, the present inventors identified and analyzed the sequence conservation of these motifs in the ABC-transporters family. Consensus sequences for the D loop in different families of human ABC transporters and in bacterial, protozoal, fungal, and yeast ABC transporters are listed in Tables 1 and 2.

The D-loop as target for inhibition of dimerization of ABC-transporters

[0013] Assembly of different proteins or of different domains within the same protein is a widespread mechanism used for growth and cellular control (Zutshi *et al.*, 1998). Many enzymes, viral proteins, and receptor-ligand interactions are comprised of oligomeric protein complexes (Jones and Thornton, 1996). Assembly of entire proteins or of protein domains are essential elements in allosteric control (Frieden, 1971), signal transduction, viral assembly and replication (Gibson, 1996). The ubiquitous nature of protein-protein interactions in essential cellular processes provides the possibility of developing novel control mechanisms based on inhibition of active protein assemblies. In the past five years, protein-protein interactions in viral enzymes and receptors were inhibited by peptides and small molecules, which led to the development of new antiviral drugs (Brickner and Chmielewski, 1998).

[0014] In the structure of the NBD1-NDB2 heterodimer, only the D-loop provides both efficiency and selectivity for inhibition or enhancement of dimerization of selected transporters. The D-loop residues ensures protein-protein interactions which are specific for sub-families of transporters, whereas dimerization via the signature and Walker A motif involves ATP binding and hydrolysis, a mechanism common to all transporters in the entire ABC family.

DETAILED DESCRIPTION OF THE INVENTION

[0015] The present invention relates to a method for selectively modulating the activity of ABC transporters. One of the possible ways to modulate the activity of ABC transporters is by influencing the dimerization of the nucleotide binding domains.

[0016] Therefore, according to a first embodiment the present invention relates to a method for selectively modulating the activity of ABC transporters by influencing the dimerization of the nucleotide binding domains comprising the use of:

- a) a polypeptide consisting of 6 to 50 amino acids comprising the D loop sequence of an ABC transporter,
- b) a polypeptide consisting of the D loop sequence of an ABC transporter,
- c) a peptide mimetic of any of the polypeptides of a) or b), or,
- d) an antisense peptide of the polypeptides of a) or b).

5

40

[0017] A list of known human ABC transporter molecules organized by family is provided in Table 1. In Table 2 bacterial, fungal and protozoal ABC transporters are listed. The amino acid sequences of some known examples of ABC transporters are listed in Figure 3.

[0018] The human ABC transporters have been organized in subfamilies, trivially named from ABCA to ABCF transporters and recently reviewed by Klein et al. (1999). Some of these transporters are generally known by their common names, as additionally noted in Table 1 and Figure 3. For instance, the multidrug resistance proteins or P-glycoproteins, now belonging to the ABCB transporters, have been long known as MDR proteins or belonging to the MDR/TAP subfamily.

[0019] In Table 1 and 2, the amino acid sequences of the D loop (in NBD1 and NBD2) are given for each member of the ABC transporter family listed. The D loop sequences are represented in SEQ ID NOs 1 to 43. In cases where only one nucleotide binding domain is present in the protein, for instance when the ABC transporter consists of at least two monomers or subunits, only one D loop sequence is noted in the table(s).

[0020] The expression "ABC transporter(s)", "ABC transporter protein(s)" and "ABC transporter molecule(s)" as used herein are interchangeable.

[0021] As used herein the terms "peptides" and "polypeptides" are interchangeable.

[0022] The term "modulating" relates to increasing, decreasing, inhibiting, abolishing or blocking the activity of selected transporters or groups of transporters within the ABC transporter family. For instance inhibiting the activity results at least in preventing the NBD1-NBD2 hetero-dimerization in such a way that the overall function of the ABC transporter in transporting molecules from one side to the other side of the cellular membrane is affected.

[0023] The expression "selectively modulating the activity" means that only the activity of one specific or at most a few very closely related ABC transporter molecules will be modulated in such a way that it influences the normal activity of said molecule. The "selectivity" resides in the amino acid sequence of the D loop of the nucleotide binding domain (s) of each particular ABC transporter molecule.

[0024] With the expression "D loop" is meant a sequence of 6 to 8 amino acids (ending with an aspartic acid (D)) which immediately follows the highly conserved Walker B motif in the primary structure of the ABC transporters. In each NBD domain of an ABC transporter, a D loop is present at the dimerization interface between the nucleotide binding domains. Interactions between the two D loops or between residues from one D loop and the ATP molecule bound by the second NBD play a key role in the dimerization of NBD's, and as such in the activity of the ABC transporter.

[0025] Therefore, in a more preferred embodiment the invention relates to a method for selectively modulating the activity of ABC transporters by influencing the dimerization of the nucleotide binding domains comprising the use of:

- a) a polypeptide consisting of 6 to 50 amino acids, preferably 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45 or 50 amino acids, comprising the amino acid sequence represented in any of SEQ ID NOs 1 to 43,
- b) a polypeptide consisting of the amino acid sequence as represented in any of SEQ ID NOs 1 to 43 or a functional homologue thereof,
- c) a peptide mimetic of any of the polypeptides of a) or b), or,
- d) an antisense peptide of the polypeptides of a) or b).

[0026] The expression "influencing the dimerization" can be used for inhibiting or blocking the formation of dimeric interfaces between the two ATPase domains of an ABC-transporter molecule.

[0027] The expression "functional homologue" relates to the corresponding sequences identifiable in other related ABC transporter molecules or relates to the homologous ABC transporter molecule from other organisms. As can be seen from Tables 1 and 2, some of the human ABC transporters have a bacterial or protozoal homologue with an identical D loop sequence. For instance, the D loop sequence of the human ABC transporter B7, belonging to the group of multidrug resistance proteins, is identical to the Pfmdr2 protein of *Plasmodium falciparum*, also known as a multidrug resistance protein. Therefore, it should also be understood that the person skilled in the art from the information herewith provided will know which D-loop sequence and molecules derived therefrom can be used for modulation of specific ABC transporters.

[0028] The expression "peptide mimetic" relates to a molecule that mimics the biological activity of a peptide but is no loner peptidic in chemical structure (Moore, 1996) The term mimetic is sometimes used to describe molecules that are no longer completely peptidic in nature, such as pseudopeptides and peptoids, but a strict definition is a molecule that no longer contains any peptide bonds and has a molecular weight of less than 700 daltons. The production and use of peptide mimetics is known to the one skilled in the art (see for instance Zutshi et al. (1997).

[0029] The term "antisense peptide" is reviewed by Blalock (1990) and by Roubos (1990). In this respect, the molecular recognition theory (Blalock, 1990) states that not only the complementary nucleic acid sequences interact but that, in addition, interacting sites in proteins are composed of complementary amino acid sequences (sense-receptor ligand or sense-antisense peptides). Thus, two peptides derived from complementary nucleic acid sequences in the same reading frame will show a total interchange of their hydrophobic and hydrophilic amino acids when the amino terminus of one is aligned with the carboxy terminus of the other. This inverted hydropathic pattern might allow two such peptides to assume complementary conformations responsible for specific interaction.

[0030] The present inventors found that the D loop is highly conserved in amino acid sequence as well as in structure among all members of ABC transporter family. Nevertheless, said D loop still displays sufficient variability between subfamilies and even between members of a single subfamily to serve as a target for selective interaction with inhibitory peptides or peptide mimetics. In some ABC transporter subfamilies (e.g. ABCB transporters) the sequence of the D loop seems to be conserved in all members of this subfamily for NBD2. In other families, a consensus sequence can be deducted for the D loops (in NBD1 and/or NBD2), as represented in Table 1. Therefore, in some applications it is possible to modulate or block the activity of all members of a specific ABC transporter subfamily using only one polypeptide prototype. Otherwise, in other ABC transporter subfamilies, the activity of specific members can be modulated because sufficient variability in the amino acid sequences of the respective D loops exists. Additionally, in the latter case is it also possible to modulate the activity of all members of said specific ABC transporter subfamily, provided that the consensus D-loop sequence (Tables 1 and 2) is used as a prototype polypeptide.

[0031] The term "prototype polypeptide" should be interpreted as the consensus sequence for the D-loop (e.g. for the ABCG transporter family, the consensus sequence represented in SEQ ID NO 36) on which all possible variants are patterned (e.g. the amino acid sequences represented in SEQ ID NOs 34 and 35).

[0032] "Very closely related" ABC transporter molecules for instance are molecules belonging to the same subfamily.

[0033] Furthermore, it is known that different isoforms exist for particular ABC transporter molecules. The invention thus also relates to possible variants of the D loop between isoforms of the same ABC transporter molecule.

[0034] It should be understood that the possible function and importance of the D loop has not been recognized until the present invention. Also, not all the sequences of ABC transporters are known so that also the consensus sequences for the NBD domain(s) of the transporter(s) may change. Nevertheless it should be recognized that the present invention relates to a general concept and applications of the D loop, which was recognized for the first time by the present inventors. It should therefore, be understood that the invention also relates to all applications and research tools wherein the existence, and the duality between "conserved" and at the same time "variability within the sequence" of the D-loop is used in any possible way already known in the art.

[0035] Furthermore, it should be understood that according to the present invention, molecules comprising the D loop sequences itself can be used or the D loop sequences can be used as a target for modulation or blocking.

[0036] In a preferred embodiment, the invention thus relates to a method for selectively decreasing (or increasing) the activity of an ABC transporter.

[0037] One way of modulating the activity of an ABC transporter is by blocking (or inhibiting) one of the D loops in the dimerization event for instance by a molecule comprising the corresponding amino acid sequence of the second D loop.

[0038] In several diseases associated with the functionality of ABC transporters, inhibition or blocking of the activity of ABC transporters can be beneficial for therapy. Some examples of such ABC transporters are given in bold in Table 1.

[0039] According to the invention, the activity of specific members of the ABC transporter family or groups (e.g. subfamilies) of ABC transporters can be modulated using specific prototype polypeptides as a target.

[0040] Therefore according to a preferred embodiment, the invention relates to a method for selectively modulating, preferably inhibiting or blocking, the activity of an ABC transporter, wherein said ABC transporter belongs to the group of multidrug transporter/P-glycoproteins comprising the use of:

- a) a polypeptide consisting of 6 to 50 amino acids, preferably 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45 or 50 amino acids, comprising the amino acid sequence represented in any of SEQ ID NO 1 to 3, more preferably SEQ ID NO 1 and SEQ ID NO 2,
- b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NO 1 to 3, or a functional homologue thereof,
 - c) a peptide mimetic of any of the polypeptides of a) or b), or,
 - d) an antisense peptide of the polypeptide of a) or b).

15

20

45

50

Furthermore, the invention also relates to a method for selectively modulating, preferably inhibiting or blocking, the activity of an ABC transporter wherein said ABC transporter belongs to the group of the multidrug resistance associated proteins comprising the use of:

- a) a polypeptide consisting of 6 to 50 amino acids, preferably 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45 or 50 amino acids, comprising the amino acid sequence represented in any of SEQ ID NOs 4 to 15, more preferably SEQ ID NOs 4, 5, 7, 8, 9, 10, 11, 12, 13, 14 or 15,
- b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 4 to 15, more preferably SEQ ID NOs 4, 5, 7, 8, 9, 10, 11, 12, 13, 14 or 15, or a functional homologue thereof,
- c) a peptide mimetic of any of the polypeptides of a) or b), or,
- d) an antisense peptide of the polypeptide of a) or b).

5

40

- [0042] The ABC transporter molecules belonging to the group of the multidrug transporter/P-glycoproteins and/or multidrug resistance associated proteins are very important in diseases such as cancer.
 - [0043] The multidrug resistance protein or P-glycoprotein (MDR1 or Pgp1) was the first human ABC protein cloned and is still one of the most intensively studied proteins of the family of the ABCB transporters. This special attention was attracted by the fact that multidrug resistance of cancer cells was found to be caused by this protein.
 - [0044] Other important candidate ABC transporters belonging to this group are the TAP1 and TAP2 transporters which are associated with antigen processing which activity needs to be suppressed upon transplantation of organs. For the moment, blocking of the activity of said transporters needs the administration of high doses of drugs such as cyclosporine. Reduction in the use of this cyclosporine and avoiding the rejection of the transplant by inhibition of the TAP transporter would increase the success of the transplant.
 - [0045] Additionally, also the human multidrug resistance associated protein (belonging to the MRP/CFTR or ABCC transporters) confers multidrug resistant phenotype to tumor cells. The majority of non-P-glycoprotein mediated multidrug resistance is due to the over-expression of hMRP1. HMRP1 transports both hydrophobic anticancer agents and anionic (e.g. glutathione) drug conjugates. Its physiological functioning may provide a wide range of cellular xenobiotic resistance. Therefore ABC transporters belonging to this family are especially envisaged in several applications of the present invention.
 - [0046] Alternatively, the modulation of the activity of an ABC transporter can also result in an improvement of the binding or dimerization of the nucleotide binding domains. Said improvement can be the result of an increase in length of the binding-time period or can be the result of an increase in frequency of dimerization events per time period between the nucleotide binding domains. A positive effect on the dimerization can for instance be achieved by the activity of small peptides or peptide mimetics which directly or indirectly interact with the D loop in a structural (conformational) sense or in an interaction between or with the amino acids constituting the D-loop motif.
 - [0047] One example of an ABC transporter which is envisaged to benefit from enhancement of activity or of increasing the dimerization event is for instance the CFTR transporter (cystic fibrosis transmembrane conductance regulator. The CFTR transporter is involved with the transport of chloride ions through the membrane. Increasing the activity of said transporter would be beneficial for the treatment of cystic fibrosis patients in which said transporter is defective.
 - [0048] Aso the activity of other ABC transporters can be modulated in a way that increasing the activity is beneficial for therapy. Some examples of such ABC transporters are underlined in Table 1.
 - [0049] According to a further preferred embodiment the invention relates to a method for selectively modulating, preferably enhancing, the activity of an ABC transporter wherein said ABC transporter is the cystic fibrosis transmembrane conductance regulator (CFTR) comprising the use of:
 - a) a polypeptide consisting of 6 to 50 amino acids, preferably 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45 or 50 amino acids, comprising the amino acid sequence represented in any of SEQ ID NOs 11 or 12,
 - b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 11 or 12, or a functional homologue thereof,
 - c) a peptide mimetic of any of the polypeptides of a) or b), or,
 - d) an antisense peptide of the peptide of a) or b).
 - (claims 24-28) Therefore the present invention also relates to the use of a (poly)peptide, antisense peptide or peptide mimetic as defined above or a compound obtainable by one of the compound screening methods described further for treatment of cancer, optionally in combination with chemotherapy. Said (poly)peptides, antisense peptide, peptide mimetic or compound can also be used for treating resistance to drugs in mammals. Said (poly)peptide, antisense peptide, peptide mimetic or compound can also be used for the preparation of a medicine for treating cancer or for preventing, treating or alleviating diseases associated with drug resistance in a mammal.
 - [0050] ABC transporters are not only important in humans or higher eukaryotes but also bacterial, fungal and protozoal ABC transporters are known wherein a D loop can be recognized as an important structural feature for dimerization and/or functionality and/or activity of said transporter.
 - [0051] Therefore according to yet another preferred embodiment, the invention relates to a method for selectively modulating the activity of an ABC transporter wherein said ABC transporter is a bacterial transporter comprising the

use of:

5

15

25

50

55

- a) a polypeptide consisting of 6 to 50 amino acids, preferably 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45 or 50 amino acids, comprising the amino acid sequence represented in any of SEQ ID NOs 27, 37 to 39,
- b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 27, 37 to 39, or a functional homologue thereof,
- c) a peptide mimetic of any of the polypeptides of a) or b), or,
- d) an antisense peptide of the peptide of a) or b).
- 10 [0052] According to yet another preferred embodiment, the invention relates to a method for selectively modulating the activity of an ABC transporter wherein said ABC transporter is a fungal ABC transporter, comprising the use of:
 - a) a polypeptide consisting of 6 to 50 amino acids, preferably 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45 or 50 amino acids, comprising the amino acid sequence represented in any of SEQ ID NOs 40 to 42,
 - b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 40 to 42, or a functional homologue thereof,
 - c) a peptide mimetic of any of the polypeptides of a) or b), or,
 - d) an antisense peptide of the peptide of a) or b).
- [0053] According to yet another preferred embodiment, the invention relates to a method for selectively modulating the activity of an ABC transporter wherein said ABC transporter is a protozoal ABC transporter, comprising the use of:
 - a) a polypeptide consisting of 6 to 50 amino acids, preferably 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45 or 50 amino acids, comprising the amino acid sequence represented in any of SEQ ID NO 2, 8 or 43,
 - b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 2, 8 or 43, or a functional homologue thereof,
 - c) a peptide mimetic of any of the polypeptides of a) or b), or,
 - d) an antisense peptide of the peptide of a) or b).
- 30 [0054] Preferably, said bacterial, fungal or protozoal ABC transporter(s) is involved in bacterial, fungal or protozoal infection of a mammal.
 - [0055] According to a further preferred embodiment, said bacterial, fungal or protozoal ABC transporter is involved in the induction of resistance to antibiotics or other drugs in mammals.
 - [0056] The activity of bacterial, fungal or protozoal ABC transporters can be explained in a way that they transport antibiotics (or certain classes of antibiotics, or other drugs) which are administered to a human or other mammal in need thereof, to the outside of the bacterial or fungal or protozoal cell wall so that said antibiotics can not exert there anti-bacterial or anti-fungal or anti-protozoal action. Therefore, the (poly)peptides or antisense peptides, or peptide mimetics or compounds that specifically block the ABC transporters in bacteria, fungi and protozoa could potentially be used for the treatment of infections caused by these pathogens. For instance blocking the D loops in the ABC transporters of said pathogens might result in a specific treatment method for bacterial, fungal or protozoal infections. The resulting inhibition of ABC transporter function in these pathogens will cause the death of said pathogen and will be beneficial to the patients. As such these (poly)peptides antisense peptides, peptide mimetics or compounds can be considered as an alternative for antibiotics, antifungicide or anti-protozoal treatment for instance in cases in which a number of organisms have developed already a drug resistance.
 - [0057] Also co-administration of (poly)peptides or antisense peptides, or peptide mimetic which inhibit or block the activity of bacterial ABC transporters which are involved in such processes or compounds obtainable by one of the compound screening methods described further together with the antibiotic (or drug) would be beneficial to the antibacterial action of said antibiotic (or drug).
 - [0058] Therefore, according to another embodiment the invention also relates to the use of a molecule selected from :
 - a) a polypeptide consisting of 6 to 50 amino acids, preferably 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45 or 50 amino acids, comprising the amino acid sequence represented in any of SEQ ID NOs 2, 8, 29 and 37 to 43,
 - b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 2, 8, 29 and 37 to 43, or a functional homologue thereof,
 - c) a peptide mimetic of any of the polypeptides of a) or b), or,
 - d) an antisense peptide of the peptide of a) or b),

as a anti-bacterial or ant-fungal or anti-protozoal agent.

[0059] It should be noted that SEQ ID NOs 2, 8, and 29 have a homologue in human ABC transporters. However the person skilled in the art perfectly knows which molecules or sequences represented by their SEQ ID NOs to choose when the activity of only bacterial and/or fungal and/or protozoal ABC transporters needs to be modulated. For instance in case an anti-bacterial agent is used, molecules based on SEQ ID NO 43 will be used and not for instance based on SEQ ID NO 2 or 8.

[0060] The recognition of the D-loop as a tool for selectively modulating the activity of ABC transporters can be further exploited in therapy for instance for treatment or for preparation of medicaments.

[0061] Therefore the invention also relates to a method for preventing, treating or alleviating diseases associated with the functionality of a human ABC-transporter comprising the use of:

a) a polypeptide consisting of 5 to 50 amino acids comprising the amino acid sequence represented in any of SEQ ID NOs 1 to 36,

- b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 1 to 36, or a functional homologue thereof,
- c) a peptide mimetic of any of the polypeptides of a) or b), or,
- d) an antisense peptide of the peptide of a) or b).

[0062] Alternatively the invention also relates to a method for the preparation of a medicament for the prevention, treatment or alleviation of diseases associated with the functionality of a human ABC-transporter comprising the use of:

- a) a polypeptide consisting of 5 to 50 amino acids comprising the amino acid sequence represented in any of SEQ ID NOs 1 to 36.
- b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 1 to 36, or a functional homologue thereof,
- c) a peptide mimetic of any of the polypeptides of a) or b), or,
- d) an antisense peptide of the peptide of a) or b).

[0063] The invention furthermore relates to a method for preventing, treating or alleviating diseases related with bacterial infections comprising the use of:

- a) a polypeptide consisting of 6 to 50 amino acids, preferably 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45 or 50 amino acids, comprising the amino acid sequence represented in any of SEQ ID NOs 29, 37, 38 or 39,
- b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 29, 37, 38 or 39, or a functional homologue thereof.
- c) a peptide mimetic of any of the polypeptides of a) or b), or,
- d) an antisense peptide of the peptide of a) or b).

[0064] Alternatively the invention also relates to a method for the preparation of a medicament for the prevention, treatment or alleviation of diseases associated with bacterial infections comprising the use of:

- a) a polypeptide consisting of 6 to 50 amino acids, preferably 8, 10, 12, 14,16,18, 20, 25, 30, 35, 40, 45 or 50 amino acids, comprising the amino acid sequence represented in any of SEQ ID NOs 29, 37, 38 or 39,
- b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 29, 37, 38 or 39, or a functional homologue thereof,
- c) a peptide mimetic of any of the polypeptides of a) or b), or,
- d) an antisense peptide of the peptide of a) or b).

[0065] The invention furthermore relates to a method for preventing, treating or alleviating diseases related with fungal infections comprising the use of:

- a) a polypeptide consisting of 6 to 50 amino acids, preferably 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45 or 50 amino acids, comprising the amino acid sequence represented in any of SEQ ID NOs 40 to 42.
- b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 40 to 42, or a functional homologue thereof,
- c) a peptide mimetic of any of the polypeptides of a) or b), or,
- d) an antisense peptide of the peptide of a) or b).

[0066] Alternatively the invention also relates to a method for the preparation of a medicament for the prevention,

8

45

10

15

20

25

30

35

40

50

treatment or alleviation of diseases associated with fungal infections comprising the use of:

- a) a polypeptide consisting of 6 to 50 amino acids, preferably 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45 or 50 amino acids, comprising the amino acid sequence represented in any of SEQ ID NOs 40 to 42,
- b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 40 to 42, or a functional homologue thereof,
 - c) a peptide mimetic of any of the polypeptides of a) or b), or,
 - d) an antisense peptide of the peptide of a) or b).

5

15

- [0067] The invention furthermore relates to a method for preventing, treating or alleviating diseases related with protozoal infections comprising the use of:
 - a) a polypeptide consisting of 6 to 50 amino acids, preferably 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45 or 50 amino acids, comprising the amino acid sequence represented in any of SEQ ID NOs 2, 8, or 43.
 - b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 2, 8 or 43, or a functional homologue thereof,
 - c) a peptide mimetic of any of the polypeptides of a) or b), or,
 - d) an antisense peptide of the peptide of a) or b).
- 20 [0068] Alternatively the invention also relates to a method for the preparation of a medicament for the prevention, treatment or alleviation of diseases associated with protozoal infections comprising the use of:
 - a) a polypeptide consisting of 6 to 50 amino acids, preferably 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45 or 50 amino acids, comprising the amino acid sequence represented in any of SEQ ID NOs 2, 8, or 43.
 - b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 2, 8 or 43, or a functional homologue thereof,
 - c) a peptide mimetic of any of the polypeptides of a) or b), or,
 - d) an antisense peptide of the peptide of a) or b).
- [0069] The present invention also relates to the use of any of the molecules as defined above or a compound obtainable by any of the compound screening methods described further for preventing, treating or alleviating diseases associated with bacterial, fungal or protozoal infections or for the preparation of a medicament for preventing, treating or alleviating diseases associated with bacterial, fungal or protozoal infections. Furthermore, these molecules or compounds may be used for treating resistance to antibiotics in a mammal or for preparing a medicament for treating resistance to antibiotics or other drugs in a mammal.
 - [0070] According to another embodiment, the present invention provides methods of identifying compounds which selectively modulate, inhibit, activate or interfere with the properties of ABC transporters. Compounds may carry agonistic or antagonistic properties. The compounds to be screened may be of extracellular, intracellular, biologic or chemical origin.
- [0071] Such a screening method may comprise the following steps (a) contacting a compound to be tested with at least one of the polypeptide as defined above under any of a) to d) or with a polypeptide corresponding to the D loop or a nucleotide binding domain of an ABC transporter, (b) detecting a diminution or inhibition of the activity of said ABC transporter, and, (c) identifying said compound.
- [0072] Alternatively, in step (b) of the above mentioned method, the effectiveness of said compound can also be investigated by measurement of the ATPase activity in case the compound is contacted with a functional ATPase domain (nucleotide binding domain). Methods to measure ATPase activity are known in the art but are also described further in the examples section.
 - [0073] The polypeptides according to the invention employed in such a method may be for example in solution or coated on suspended beads. Alternatively, these can be affixed to a solid support, borne on a cell or phage surface or located intracellularly.
 - [0074] When polypeptide fragments are coated on solid supports, they can be tested for their binding affinity for large numbers of compounds. These can be used in different kinds of high throughput screenings in order to identify compounds having suitable binding affinity to the polypeptides according to the invention. Platform technologies or technologies based on SPR (surface plasmon resonance) can be applied.
- 55 [0075] The invention also relates to methods for identifying compounds which selectively bind to or selectively modulate the properties of ABC transporters, which method comprises:
 - a) providing a yeast two-hybrid system wherein the nucleotide binding domains NBD1 and NBD2 of an ABC trans-

porter are expressed, or,

- b) providing a mammalian expression system wherein the nucleotide binding domains NBD1 and NBD2 of an ABC transporter are expressed, or,
- c) providing a bacterial expression system wherein the nucleotide binding domains NBD1 and NBD2 of an ABC transporter are expressed (and/) or secreted, and,
- d) interacting said compound with the complex formed by the expressed polypeptides as defined in any of a) to c),
- e) inferring from the interaction between said compound and one of the nucleotide binding domains a modulation of the properties of said ABC transporter, and,
- f) identifying said compound.

10

5

[0076] Compounds found using this approach and modulating the activity of a selected ABC transporter may additionally be tested on their efficiency to modulate other ABC transporter in order to avoid undesired cross-activity of said compounds on non selected ABC transporters.

[0077] Alternatively additional tests can be performed to test the influence of the compound onto protein stability, post-translational modification, precursor processing and protein translocation. All these aspects influence the concentration and/or activity of corresponding proteins and consequently influence the effect of these onto the metabolism of the cell. Also here, medium or low throughput systems can be used to confirm results obtained by the high throughput assays.

[0078] Compounds obtainable by one of the methods described above or the use of said compounds as a medicament also form part of the invention.

[0079] The invention also relates to an isolated nucleic acid encoding at least one of the polypeptides defined above in a) to d) comprising an ABC transporter D loop represented in any of SEQ ID NOs 1 to 43.

[0080] The invention further relates to a polypeptide encodable by and isolated nucleic acid as defined above.

[0081] The invention also relates to a composition, preferably a pharmaceutical composition, comprising at least one polypeptides of the invention and to the use of said polypeptide or of the composition comprising said polypeptide as a medicament.

[0082] The invention also relates to a cellular host for use in a method described above, said cellular host transformed with a nucleic acid encoding at least one nucleotide binding domain of an ABC transporter protein or a nucleic acid comprising a nucleic acid as described above, said nucleic acid in an expressible format.

[0083] The cellular hosts used in the invention can be from bacterial, fungal, vegetal or mammalian origin. There are numerous vectors, expression systems and methods known in the art to allow the skilled in the art for transforming, transfecting or infecting the desired host cell with the desired nucleic acid in order to obtain desired expression of any of the polypeptides of the invention.

[0084] The invention, now being generally described, will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects and embodiments of the present invention and are not intended to limit the invention. All of the references_mentioned herein are incorporated by reference.

BRIEF DESCRIPTION OF TABLES AND FIGURES

[0085]

40

50

55

- Figure 1. Schematic representation of the ABC transporters.
- Figure 2. Schematic presentation of positioning of the ATP-binding site and the dimerization-interface in the ABC transporter molecule.
 - Figure 3. Amino acid sequences of human, bacterial, protozoal and fungal transporters: examples. The underlined sequences refer to the D loops in these sequences. The names of the sequences given after each ">" refer to the names given in Tables 1 and 3.
 - Sequences of the D loops in different human ABC transporters, and derived consensus sequence for each family. Marked in *bold are the candidate transporters for inhibition of activity. Marked underlined are the candidate transporters for increase of activity.

Table 2:

Sequences of the D loops in different ABC transporters from bacteria fungi and protozoa. All transporters are candidate transporters for inhibition.

TABLE 1 : D loops in human ABC transporter families.

ABCA TRANSPORTERS

NAME	COMMON NAME	SEQUENCE	SEQ ID NO
<u>A1</u>	ABC1	PTAGVD	SEQ ID NO 16
L		PTTGMD	SEQ ID NO 17
A2	ABC2	PTAGVD	
		PTTGMD	
A3	ABC-C	PTSGMD	SEQ ID NO 18
		PSTGMD	SEQ ID NO 19
<u>A4</u>	ABC-R	PTSGVD	SEQ ID NO 20
		PTTGMD	
A7	ABCX	PTAGVD	
		PTTGMD	
A8	ACGA8	PTAGLD	SEQ ID NO 21
		PSTGMD	

CONSENSUS

NBD1 PTAG (V/L) D (SEQ ID NO 22) or PTSG (MV) D (SEQ ID NO 23) NBD2 P (T/S) TG M D (SEQ ID NO 24)

ABCB TRANSPORTERS -(MDR/TAP)

NAME	COMMON NAME	SEQUENCE	SEQ ID NO
*B1	MDR1 or	ATSALD	SEQ ID NO 1
	P GLYCOPROT	ATSALD	1
B2	TAP1	ATSALD	
B3	TAP2	ATSALD	
*B4	MDR2/3	ATSALD	
		ATSALD	
B6		ATSALD	
B7		ATSSLD	SEQ ID NO 2
B8		ATSALD	
B9		ATSALD	
B10		ATSALD	
*B11	SPGP	ATSALD	
L		ATSALD	

CONSENSUS:

SEQUENCE

PLSAVD

ATAAVD

PLSAVD ATAAVD

PLSAVD ATAAID

PLSAVD ATANVD

PLSALD

ATAAMD

PLAALD

ATAAVD

PFGYLD

PSAHLD

PFSALD

ATASID

PFSALD ATASID

PLAAVD ATASVD SEQ ID NO

SEQ ID NO 4

SEQ ID NO 5

SEQ ID NO 6

SEQ ID NO 7

SEQ ID NO 8

SEQ ID NO 9

SEQ ID NO 10

SEQ ID NO 11

SEQ ID NO 12

SEQ ID NO 13

SEQ ID NO 14

SEQ ID NO 15

COMMON NAME

MRP1 (Multidrug resistance

associated protein

MRP2

MRP3

MRP4

MRP5

MRP6

CFTR

SUR1 (Sulfonurea receptor)

SUR2

TABLE 1 - Continued

NAME

*C1

C2

C3

*C4

*C5

*C6

<u>C7</u>

*C8

*C9

C10

5

ABCC TRANSPORTERS (MRP/SUR/CFTR)

1	0

15

20

25

30

35

ABCD TRANPORTERS

40

NAME	COMMON NAME	SEQUENCE	SEQ ID NO
D1	ALDP	CTSAVSID	SEQ ID NO 25
D2	ALDR	CTSAVSID	
D3	PXMP1	CTSAVSVD	SEQ ID NO 26
D4	PXMP1L	ATSALTEE	SEQ ID NO 27

50

45

TABLE 1 - Continued

ABCE TRANSPORTER

NAME	COMON NAME	SEQUENCE	SEQ ID NO
E1	RNASELI	PSAYLD	SEQ ID NO 28

ABCF TRANSPORTER

10

15

20

25

30

35

40

50

55

NAME	COMMON NAME	SEQUENCE	SEQ ID NO
F1	MDR	PTNHLD	SEQ ID NO 29
		PTNNLD	SEQ ID NO 30
F2		PTNHLD	
		PTNHLD	
F3		PTNMLD	SEQ ID NO 31
		PTNHLD	

CONSENSUS

NBD1 PTN (H/M) LD (SEQ ID NO 32) NBD2 PTN (N/H) LD (SEQ ID NO 33)

ABCG TRANSPORTERS

NAME	COMMON NAME	SEQUENCE	SEQ ID NO
G1	ABC8White	PTSGLD	SEQ ID NO 34
*G2	BCRP1	PTTGLD	SEQ ID NO 35
<u>G5</u>		PTTGLD	
<u>G8</u>		PTSGLD	

CONSENSUS PT (T/S) G L D (SEQ ID NO 36)

TABLE 2: D LOOPS IN BACTERIAL, FUNGAL AND PROTOZOAL ABC TRANSPORTERS

5

BACTERIA

PROTEIN	SEQUENCE	FUNCTION	SPECIES	SEQ ID NO
LmrA	mrA ATASLD	Lincomycin resistance	Streptomyces lincolnensis Lactoccocus lactis	SEQ ID NO 37
DrrA	ADOLAD	daunorubicin resistance	Streptomyces peucetius	SEQ ID NO 38
OLEB	PTNHLD	oleandomycin resistance	Straptomyces coelicolor	SEO ID NO 39
-	L INDE			

FUNGI

PROTEIN	SEQUENCE	SPECIES	SEQ ID NO
Bfr1	+	Schizosaccharomyces pombe	SEQ ID NO 40 SEQ ID NO 41
Cdr1	ATRGLD PTSGLD	Candida albicans	SEQ ID NO 42
Cdr2	ATRGLD PTSGLD	Candida albicans	
Pdr5p	ATRGLD PTSGLD	Saccharomyces cerevisiae	
Snq2p	ATRGLD PTSGLD	Saccharomyces cerevisiae	

PROTOZOA

			01.01.0		
PROTEIN	<u>у</u>	FUNCTION	SPECIES	סוים וויס	_
Pfmdr2	ATSSLD	Multidrug resistance protein 2	Plasmodium falciparum		_
MDR-PLAFS	ATSSLD	chloroquine, meloquine	Plasmodium falciparum		
	ATSSLD	halofantine resistance	Malaria		_
DVLNS?	PLSALD	methotrexate resistance	Leishmania tarentolae		
	ATANIO			SEQ ID NO 43	_

EXAMPLES

Example 1

1. Molecular modeling of the ATP binding cassette (ABC) domain.

[0086] The ABC-1 transporter contains two different nucleotide binding domains (NBD1 and NBD2), involved in the hydrolysis of ATP. The first structure of a nucleotide binding domain of an ABC transporter that has been determined by crystallization and X-ray diffraction analysis is the ATP binding cassette HisP of the Salmonella typhimurium histidine permease. There is significant sequence homology between HisP and both nucleotide binding domains of ABCA1, and the major structure elements of HisP are conserved The two nucleotide binding domains (NBD) of ABCA1 can therefore be modeled, based on the coordinates of the crystal structure of HisP.

[0087] The structure of the ATPase domain of the Rad50 protein, determined by crystallisation and X-ray diffraction is very similar to the HisP structure. In the presence of a non-hydrolyzable ATP analogue, the Rad50 ATPase crystallised as a dimer. This dimeric structure forms a reliable template to model dimerization of two HisP monomers and to model the putative dimeric configuration of NBD1 and NBD2 of ABCA1 and of other related ABC transporters. From these models, the actual dimer interface is be studied in closer detail and mutations impairing dimerization of the nucleotide binding domains are proposed.

20 2. Homology modeling

[0088] Sequence homology and alignments between the NBD domains of different human and bacterial ABC transporters were analyzed using BLAST, CLUSTALX and DIALIGN. Secondary structure prediction were carried out using the PHD, JPRED softwares. 3D homology calculations and model building were performed using MSI Insight 2000 software on a Silicon Graphics 02 computer, combined with SCWRL. Models are checked using Procheck, Prosa II, WHATIFF and 3D- profiles.

[0089] The built models for the two ABCA1 ATP nucleotide binding domains allow identification and characterization of the ATP binding site and dimerization site, and the design of ABCA1 mutants that lose either ATP binding, or ATPase activity or without significant structure perturbations. The models also help identify residues involved in protein-protein interactions between NBD1 and NBD2 of ABCA1.

Example 2

35

45

1. Cloning of the nucleotide binding domains and transformation of E. coli.

[0090] The ABCA1 cDNA is cloned in the pcDNA3.1 plasmid under control of the T7 promotor. Because no unique restriction sites are present close to the boundaries of the NBD domains the individual nucleotide binding domains are generated by direct PCR of these regions (Taq polymerase). These PCR products are introduced in the pTrcHis TOPO plasmid (Invitrogen) that introduces directly a 6X His tail at the N-terminus and is under control of a Trc promotor. After purification, the His tag can be removed by treatment with enterokinase. Point mutations in these domains are introduced by the Quickchange mutagenesis kit (Stratagene).

[0091] Transformation of TOP10 Oneshot competent *E.coli* is performed by 'heat-shock' at 42°C during 30 seconds. The transformed *E.coli* are grown overnight at 37°C in Luria-Bertani (LB) medium. Plasmid DNA is isolated using the MiniPrep kit (Invitrogen) and checked by sequencing.

2. Expression and purification of the nucleotide binding domains

[0092] The optimal conditions for growth and expression are determined using standard proceduresOnce the optimal conditions for expression are determined, a larger scale culture is prepared.

[0093] The expressed NBD proteins are isolated from the *E.coli* after lysis of the bacteria by sonication. Nucleic acids are precipitated with streptomycine sulphate (10%) and removed by centrifugation. The supernatant containing the NBD-His proteins is purified by affinity chromatography using a Ni²+agarosematrix (ProBond). The presence of the NBD protein in the eluate is verified by SDS-PAGE and Coomassie staining. The N-terminal 6xHis tag is removed by treatment with enterokinase Max.

Example 3: ATP binding and hydrolysis after incubation with the NBD's.

1. ATP binding using a fluorescent labeled ATP-analogue: 2'-0-(2,4,6-trinitrophenyl) adenosine 5'-trifosfaat (TNP-ATP).

[0094] Unbound TNP nucleotides (Molecular Probes) dissolved in water display no fluorescence emission but become fluorescent once bound to nucleotide binding proteins such as ATPases. 150 µg/ml NBD1 are incubated at 25°C with 2µM TNP-ATP, 0,8 mM EDTA in a 40 mM Tris-HCl buffer (pH 7,4). Fluorescence emission is measured on an Aminco Bowman fluorescence spectrophotometer (excitation wavelength 405 nm, emission 546 nm). The concentration of the TNP-ATP is determined spectrophotometrically at 408 nm using an extinction coefficient of 2,64 x 10⁴ M⁻¹cm⁻¹.

2. ATP hydrolysis measured using radiolabeled ATP.

[0095] ATP-ase activity is measured as described by Gradia et al. (1997). The NBD proteins (\pm 100 nM) are incubated in 40 mM HEPES (pH 7,8), 75 mM NaCl, 10 mM MgCl₂, 1,75 mM DTT, 0,075 mM EDTA, 15% glycerol, 75 μ g/ml acetylated BSA (Promega) and 500 mM ATP supplemented with 1 μ Ci γ -32P-ATP. This mixture is incubated during 30 min at 37°C and stopped by adding an excess 10% activated charcoal dissolved in 1 mM EDTA. After removal of the charcoal by centrifugation the ³²P-orthophosphate is measured by liquid scintillation counting.

ATP hydrolysis measured by following the amount of anorganic phosphate formed using a colorimetric assay.

[0096] The EnzChek phosphate assay kit (Molecular Probes) permits the measurement of ATPase activity measurements. During the enzymatic reaction the substrate MESG (2-amino-6-mercapto-7-methylpurineribonucleoside absorbance 330 nm) is converted, in the presence of inorganic phosphate and purine nucleoside phosphorylase (PNP), to ribose-1-phosphate and 2-amino-6mercapto7-methylpurine which absorbs at 355 nm. The change in the absorption maximum of the MESG and the methylpurine allows quantification of the inorganic phosphate consumed in the reaction mixture. The NBD proteins are incubated in 50 mM HEPES (pH 7.3) containing 150 mM KCI, 10 mM MgCl2, 1 mM DTT and 400 µM ATP. The reaction mixture is then mixed with the substrates and enzymes contained in the kit according to the instructions of the manufacturer.

Example 4: Interaction between NBD1 and NBD2

1. Gel-filtration

20

50

55

[0097] $50 \mu g$ NBD1 and $50 \mu g$ NBD2 in $50 \mu g$ NBD2

2. Dynamic lightscattering to determine the size of the dimer-monomer

[0098] These measurements are performed on a DLS-700 photometer (Otsuka). Samples (NBD1 or NBD 2 only or NBD1/NBD2 mixtures) are prepared at a concentration of ± 1 mg/ml in a 0.1 M Tris-HCl (pH 7.5) containing 200 mM NaCl and 10 mM MgCl₂ at 22°C. ATP at concentrations up to 10 mM can be added to the mixture to promote dimerization. Scattering intensity is recorded for 5-10 min.

3. Native gradient polyacrylamide gelelectroforese.

[0099] 4-20% Tris-HCI Ready gels (Biorad) are run in 90 mM Tris-HCI, 2 mM EDTA, 30 mM NaN $_3$ en 80 mM boric acid. 15 μ g NBD protein (either NBD1, NBD2 or the mixture) are incubated with 0,2 μ M ATP. After equilibration of the samples they are run on the gel for 1 hour at 70V, and then overnight (with cooling) at 120 V. The gels are stained with Coomassie Brilliant Blue and destained in 40% methanol/10% acetic acid

4. Solid phase assay for evaluating of the binding of NBD1 and NBD2

[0100] The NBD1 protein is coated at the surface of polystyrene microtiterplates and the excess protein is washed

(PBS (pH 7.5-Tween 20 0.1%) and remaining binding sites on the plate are blocked with case in (0.1% in PBS pH 7.5). The NBD2 protein is added in increasing amounts to the coated protein in the presence or absence of ATP in a PBS-0.1% case in buffer. Bound NBD2 (containing the N-terminal His tag) is detected using an anti-His monoclonal antibody () followed by incuabtion with an anti-mouse IgG peroxidase labeled antibody. Alternatively NBD2 directly labelled with peroxidase or alkaline phosphatase can be used for detection. The amount of bound enzyme is revealed using chromogenic or fluorometric substrates. This type of assay can be adapted for evaluation in plasmon resonance technique (BIACORE system (Amersham)), where either NBD1 or NBD2 is adsorbed on the surface.

5. Inhibition of dimerization using competitor peptides or peptides or small compounds blocking the D-loop

[0101] The assays mentioned above are performed in the presence of synthetic peptides corresponding to the D-loop (competition) or in the presence of peptides or small compounds that sterically block access to the D-loop (cf. modeling). Peptides are prepared using standard protocols and are added to the incubation mixtures at varying concentrations.

6. Evaluation of mutant NBD proteins

[0102] As described in the modeling section mutations in the NBD proteins will be proposed. Special emphasis will be given to the mutations aimed at influencing the dimer interface properties of these proteins. The ATPase activity and dimerization properties of the mutant NBDs will be tested as described above.

REFERENCES

[0103]

25

30

35

45

50

55

10

15

Bodzioch M, Orso E, Klucken J, Langmann T, Bottcher A, Diederich W, Drobnik W, Barlage S, Buchler C, Porsch-Ozcurumez M, Kaminski WE, Hahmann HW, Oette K, Rothe G, Aslanidis C, Lackner KJ, Schmitz G: The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat.Genet. 22:347,1999.

Borst P, Zelcer N, van Helvoort A: ABC transporters in lipid transport. Biochim.Biophys.Acta 2000.Jun.26.;1486. (1.):128.-44. 1486:128.

Blalock, JE: Complementarity of peptides specified by 'sense' and 'antisense' strands of DNA. Trends Biotechnol. 8(6): 140-144, 1990.

Brickner M, Chmielewski J: Inhibiting the dimeric restriction endonuclease EcoRI using interfacial helical peptides. Chem.Biol. 5:339, 1998.

Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, Yu L, Brewer C, Collins JA, Molhuizen HO, Loubser O, Ouelette BF, Fichter K, Ashbourne-Excoffon KJ, Sensen CW, Scherer S, Mott S, Denis M, Martindale D, Frohlich J, Morgan K, Koop B, Pimstone S, Kastelein JJ, Hayden MR: Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency Nat.Genet. 22:336, 1999.

Frieden C: Protein-protein interaction and enzymatic activity. Annu.Rev.Biochem. 40:653, 1971.

Gibson W: Structure and assembly of the virion. Intervirology 39:389, 1996.

Gradia, S., Acharya, S., Fishel, R. The human mismatch recognition complex hMSH2-hMSH6 functions as a novel molecular switch. Cell, 91: 995,1997.

Holland IB, Blight MA: ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans. J.Mol.Biol. 293:381, 1999.

Higgins CF: ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8:67, 1992.

Hipfner DR, Deeley RG, Cole SP: Structural, mechanistic and clinical aspects of MRP1. Biochim.Biophys.Acta 1461:359, 1999.

Hopfner KP, Karcher A, Shin DS, Craig L, Arthur LM, Carney JP, Tainer JA: Structural biology of Rad50 ATPase
ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cel
2000.Jun.23.;101.(7.):789800. 101:789.

- Hung LW, Wang IX, Nikaido K, Liu PQ, Ames GF, Kim SH: Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396:703, 1998.
 - Jones S, Thornton JM: Principles of protein-protein interactions. Proc.Natl.Acad.Sci.U.S.A. 93:13, 1996.
- 10 Klein I, Sarkadi B, Varad A. An inventory of human ABC proteins. Biochim Biophys Acta 1461(2): 237-262, 1999.
 - Roubos E. Sense-antisense complementarity of hormone-receptor interaction sites. Trends Biotechnol 8(10): 279-281, 1990.
- Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, Deleuze JF, Brewer HB, Duverger N, Denefle P, Assmann G: Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1 Nat.Genet. 22:352, 1999
 - Sheppard DN, Welsh MJ: Structure and function of the CFTR chloride channel. Physiol.Rev. 79:S23, 1999
 - Zielenski J, Tsui LC: Cystic fibrosis: genotypic and phenotypic variations. Annu.Rev.Genet. 29:777, 1995

20

25

30

35

40

45

50

- Zutshi R, Franciskovich J, Shultz M, Schweitzer B, Bishop P, Wilson M, Chmielewski J. Targeting the dimerization interface of HIV-1 protease: inhibition with Cross-linked Interfacial peptides. J AM Chem Soc, 119: 4841-4845, 1997
- Zutshi R, Brickner M, Chmielewski J: Inhibiting the assembly of protein-protein interfaces. Curr.Opin.Chem.Biol. 2:62, 1998

SEQUENCE LISTING

```
<110> UNIVERSITEIT GENT
5
               <120> Modulation of ATP-binding cassette transporter activity
               <130> UG-013-EP
10
               <140> EP 00870316.7
               <141> 2000-12-21
               <160> 92
15
               <170> PatentIn Ver. 2.1
               <210> 1
20
               <211> 6
               <212> PRT
               <213> Homo sapiens
               <400> 1
               Ala Thr Ser Ala Leu Asp
                1
                                 5
30
               <210> 2
               <211> 6
               <212> PRT
               <213> Homo sapiens
               <400> 2
               Ala Thr Ser Ser Leu Asp
                 1
                                 5
40
               <210> 3
               <211> 6
               <212> PRT
               <213> Homo sapiens
               <220>
50
               <221> VARIANT
               <222> (4)
               <223> Xaa = Ala or Ser
55
               <400> 3
```

	Ala Thr Ser Xaa L	eu Asp
	1	5
5		
-		
	<210> 4	
40	<211> 6	
10	<212> PRT	
	<213> Homo sapien	s
	<400> 4	
15	Pro Leu Ser Ala V	al Asp
	1	5
20		
	<210> 5	
	<211> 6	
	<212> PRT	
25	<213> Homo sapien	s
•		
	<400> 5	
	Ala Thr Ala Ala V	
22	1	5
30		
	<210 C	
	<210> 6	
35	<211> 6	
	<212> PRT	
	<213> Homo sapien	ıs
	<100× 6	
40	<400> 6	.1
	Ala Thr Ala Ala I	
	1	5
45		
	Z210× 7	
	<210> 7	
	<211> 6	
	<212> PRT	_
50	<213> Homo sapier	ıs
	4400- 7	
	<400> 7	
		- -
	Ala Thr Ala Asn V	al Asp 5

	<210> 8
	<211> 6
5	<212> PRT
	<213> Homo sapiens
	<400> 8
10	Pro Leu Ser Ala Leu Asp
	1 5
15	<210> 9
	<211> 6
	<212> PRT
20	<213> Homo sapiens
	<400> 9
	Ala Thr Ala Ala Met Asp
	1 5
25	
	<210> 10
	<211> 6
30	<212> PRT
	<213> Homo sapiens
	<400> 10
35	Pro Leu Ala Ala Leu Asp
	1 5
40	<210> 11
	<211> 6
	<212> PRT
45	<213> Homo sapiens
	<400> 11
	Pro Phe Gly Tyr Leu Asp
50	1 5
	<210> 12
55	<211> 6
	<212> PRT

	<213> Homo sapiens
5	<400> 12
	Pro Ser Ala His Leu Asp
	1 5
10	<210> 13
	<210> 13 <211> 6
	<211> 6 <212> PRT
	<213> Homo sapiens
15	C213> HOMO Sapiens
	<400> 13
	Pro Phe Ser Ala Leu Asp
	1 5
20	1
	<210> 14
25	<211> 6
	<212> PRT
	<213> Homo sapiens
20	<400> 14
30	Ala Thr Ala Ser Ile Asp
	1 5
35	
	<210> 15
	<211> 6
	<212> PRT
40	<213> Homo sapiens
	4400- 15
	<400> 15 Pro Leu Ala Ala Val Asp
	1 5
45	1 3
	<210> 16
50	<211> 6
	<212> PRT
	<213> Homo sapiens
55	<400> 16
55	Pro Thr Ala Gly Val Asp

	1	5
5		
	<210> 17	
	<211> 6	
	<212> PRT	
10	<213> Homo sapie	ns
	<400> 17	
	Pro Thr Thr Gly	Met Asp
15	1	5
20	<210> 18	
	<211> 6	
	<212> PRT	
	<213> Homo sapie	ns
25	-	
25	<400> 18	
	Pro Thr Ser Gly	Met Asp
	1	5
<i>30</i>		
	<210> 19	
	<211> 6	
35	<212> PRT	
	<213> Homo sapie	ns
	<400> 19	
	Pro Ser Thr Gly	Met Asp
40	1	5
45	<210> 20	
	<211> 6	
	<212> PRT	
	<213> Homo sapie	ens
50	-	
	<400> 20	

55

Pro Thr Ser Gly Val Asp

	<210> 21
	<211> 6
_	<212> PRT
5	<213> Homo sapiens
	<400> 21
	Pro Thr Ala Gly Leu Asp
10	1 5
	<210> 22
15	
	<211> 6
	<212> PRT
	<213> Homo sapiens
20	<220>
	<221> VARIANT
	<222> (5)
	<223> Xaa = Val or Leu
25	
	<400> 22
	Pro Thr Ala Gly Xaa Asp
	1 5
30	
	<210> 23
	<211> 6
35	<212> PRT
	<213> Homo sapiens
	<220>
40	<221> VARIANT
	<222> (5)
	<223> Xaa = Met or Val
	12257 Aug - Met Of Var
45	<400> 23
45	Pro Thr Ser Gly Xaa Asp
	1 5
50	
	<210> 24
	<211> 6
	<212> PRT
55	<213> Homo sapiens

	<220>
	<221> VARIANT
	<222> (2)
5	<223> Xaa = Thr or Ser
	<400> 24
	Pro Xaa Thr Gly Met Asp
10	1 5
15	<210> 25
	<211> 8
	<212> PRT
	<213> Homo sapiens
20	<400> 25
	Cys Thr Ser Ala Val Ser Ile Asp
	1 5
25	
	<210> 26
	<211> 8
	<212> PRT
30	<213> Homo sapiens
	<400> 26
	Cys Thr Ser Ala Val Ser Val Asp
35	1 5
40	<210> 27
	<211> 8
	<212> PRT
	<213> Homo sapiens
45	<400> 27
	Ala Thr Ser Ala Leu Thr Glu Glu
	1 5
50	
	<210> 28
	<211> 6
55	<212> PRT
	<213> Homo sapiens

	<400> 28
	Pro Ser Ala Tyr Leu Asp
5	1 5
10	<210> 29
	<211> 6
	<212> PRT
	<213> Homo sapiens
	Depleted States
15	<400> 29
	Pro Thr Asn His Leu Asp
	1 5
	1 3
20	
	<210> 30
	<211> 6
-	
25	<212> PRT
	<213> Homo sapiens
	-400- 20
	<400> 30
30	Pro Thr Asn Asn Leu Asp
30	
30	1 5
30	
30	
	1 5
35	210> 31
	1 5 <210> 31 <211> 6
	1 5 <210> 31 <211> 6 <212> PRT
	1 5 <210> 31 <211> 6
	1 5 <210> 31 <211> 6 <212> PRT <213> Homo sapiens
35	1 5 <210> 31 <211> 6 <212> PRT <213> Homo sapiens <400> 31
35	1 5 <210> 31 <211> 6 <212> PRT <213> Homo sapiens <400> 31 Pro Thr Asn Met Leu Asp
35	1 5 <210> 31 <211> 6 <212> PRT <213> Homo sapiens <400> 31
<i>35 40</i>	1 5 <210> 31 <211> 6 <212> PRT <213> Homo sapiens <400> 31 Pro Thr Asn Met Leu Asp
35	1 5 <210> 31 <211> 6 <212> PRT <213> Homo sapiens <400> 31 Pro Thr Asn Met Leu Asp
<i>35 40</i>	1 5 <210> 31 <221> 6 <212> PRT <213> Homo sapiens <400> 31 Pro Thr Asn Met Leu Asp 1 5
<i>35 40</i>	1 5 <210> 31 <211> 6 <212> PRT <213> Homo sapiens <400> 31 Pro Thr Asn Met Leu Asp 1 5 <210> 32
<i>35 40</i>	1 5 <210> 31 <211> 6 <212> PRT <213> Homo sapiens <400> 31 Pro Thr Asn Met Leu Asp 1 5 <210> 32 <211> 6
<i>35 40</i>	1 5 <210> 31 <211> 6 <212> PRT <213> Homo sapiens <400> 31 Pro Thr Asn Met Leu Asp 1 5 <210> 32 <211> 6 <212> PRT
35 40 45	1 5 <210> 31 <211> 6 <212> PRT <213> Homo sapiens <400> 31 Pro Thr Asn Met Leu Asp 1 5 <210> 32 <211> 6
35 40 45	1 5 <210> 31 <211> 6 <212> PRT <213> Homo sapiens <400> 31 Pro Thr Asn Met Leu Asp 1 5 <210> 32 <211> 6 <212> PRT
35 40 45	1 5 <210> 31 <211> 6 <212> PRT <213> Homo sapiens <400> 31 Pro Thr Asn Met Leu Asp 1 5 <210> 32 <211> 6 <212> PRT <213> Homo sapiens <220>
35 40 45	1 5 <210> 31 <211> 6 <212> PRT <213> Homo sapiens <400> 31 Pro Thr Asn Met Leu Asp 1 5 <210> 32 <211> 6 <212> PRT <213> Homo sapiens

	<223> Xaa = His or Met
	<400> 32
5	Pro Thr Asn Xaa Leu Asp
	1 5
10	
	<210> 33
	<211> 6
	<212> PRT
15	<213> Homo sapiens
	<220>
	<221> VARIANT
20	<222> (4)
20	<223> Xaa = Asn or His
	4600- 22
	<400> 33
25	Pro Thr Asn Xaa Leu Asp 1 5
25	1 3
	<210> 34
30	<211> 6
	<212> PRT
	<213> Homo sapiens
35	<400> 34
	Pro Thr Ser Gly Leu Asp
	1 5
40	
	<210> 35
	<211> 6
45	<212> PRT
	<213> Homo sapiens
	4400- 35
	<400> 35
50	Pro Thr Thr Gly Leu Asp
50	1 5
	<210> 36
55	<211> 6
	-C11- 0

	<212> PRT <213> Homo sapiens
5	<220> <221> VARIANT
	<222> (3)
	<223> Xaa = Thr or Ser
10	
	<400> 36
	Pro Thr Xaa Gly Leu Asp
	1 5
15	
	<210> 37
	<211> 6
20	<212> PRT
	<213> Streptomyces lincolnensis
	<400> 37
25	Ala Thr Ala Ser Leu Asp
	1 5
30	<210> 38
	<211> 6
	<212> PRT
	<213> Streptomyces peucetius
35	
	<400> 38
	Ala Asp Gln Leu Ala Asp
	1 5
40	
	<210> 39
45	<211> 6
	<212> PRT
	<213> Streptomyces coelicolor
	<400> 39
50	Pro Thr Asn His Leu Ser
	1 5
55	
	<210> 40

	<211> 6
	<212> PRT
5	<213> Schizosaccharomyces pombe
	<400> 40
	Ser Thr Arg Gly Leu Asp
	1 5
10	
	<210> 41
15	<211> 6
15	<212> PRT
	<213> Schizosaccharomyces pombe
	variable bentzesideendromyees pombe
20	<400> 41
20	Pro Thr Ser Gly Leu Asp
	1 5
25	
	<210> 42
	<211> 6
	<212> PRT
30	<213> Candida albicans
	<400> 42
	Ala Thr Arg Gly Leu Asp
35	1 5
	<210> 43
40	<211> 6
	<212> PRT
	<213> Leishmania tarentolae
45	<400> 43
	Ala Thr Ala Asn Ile Asp
	1 5
50	
	23.05 44
	<210> 44 <211> 2261
	<212> PRT
55	<213> Homo sapiens

)> 44														
5	Met 1	Ala	Cys	Ттр	Pro 5	Gln	Leu	Arg	Leu	Leu 10	Leu	Trp	Lys	Asn	Leu 15	Thr
	Phe	Arg	Arg	Arg 20	Gln	Thr	Cys	Gln	Leu 25	Leu	Leu	Glu	Val	Ala 30	Trp	Pro
10	Leu	Phe	Ile 35	Phe	Leu	Ile	Leu	Ile 40	Ser	Val	Arg	Leu	Ser 45	Tyr	Pro	Pro
15	Туг	Glu 50	Gln	His	Glu	Cys	His 55	Phe	Pro	Asn	Lys	Ala 60	Met	Pro	Ser	Ala
	Gly 65	Thr	Leu	Pro	Trp	Val 70	Gln	Gly	Ile	Ile	Суs 75	Asn	Ala	Asn	Asn	Pro 80
20	Cys	Phe	Arg	Tyr	Pro 85	Thr	Pro	Gly	Glu	Ala 90	Pro	Gly	Val	Val	Gly 95	Asn
25	Phe	Asn	Lys	Ser 100	Ile	Val	Ala	Arg	Leu 105	Phe	Ser	Asp	Ala	Arg 110	Arg	Leu
	Leu	Leu	Тут 115	Ser	Gln	Lys	Asp	Thr 120	Ser	Met	Lys	Asp	Met 125	Arg	Lys	Val
30	Leu	Arg 130	Thr	Leu	Gln	Gln	Ile 135	Lys	Lys	Ser	Ser	Ser 140	Asn	Leu	Lys	Leu
35	Gln 145		Phe	Leu	Val	Asp 150	Asn	Glu	Thr	Phe	Ser 155	Gly	Phe	Leu	Tyr	His 160
40	Asn	Leu	Ser	Leu	Pro 165	Lys	Ser	Thr	Val	Asp 170	Lys	Met	Leu	Arg	Ala 175	Asp
40	Val	Ile	Leu	His 180	Lys	Val	Phe	Leu	Gln 185	_	Tyr	Gln	Leu	His 190	Leu	Thr
45	Ser	Leu	Cys 195		Gly	Ser	Lys	Ser 200	Glu	Glu	Met	Ile	Gln 205	Leu	Gly	Asp
50	Gln	Glu 210		Ser	Glu	Leu	Cys 215		Leu	Pro	Arg	Glu 220	Lys	Leu	Ala	Ala
	Ala 225		. Arg	Val	Leu	Arg 230		Asn	Met	Asp	Ile 235		Lys	Pro	Ile	Leu 240
55	Arg	Thr	Leu	Asn	Ser 245		Ser	Pro	Phe	Pro 250		Lys	Glu	Leu	Ala 255	

5	Ala	Thr	Lys	Thr 260	Leu	Leu	His	Ser	Leu 265	Gly	Thr	Leu	Ala	Gln 270	Glu	Leu
	Phe	Ser	Met 275	Arg	Ser	Trp	Ser	Asp 280	Met	Arg	Gln	Glu	Val 285	Met	Phe	Leu
10	Thr	Asn 290	Val	Asn	Ser	Ser	Ser 295	Ser	Ser	Thr	Gln	Ile 300	Tyr	Gln	Ala	Val
15	Ser 305	Arg	Ile	Val	Суѕ	Gly 310	His	Pro	Glu	Gly	Gly 315	Gly	Leu	Lys	Ile	Lys 320
	Ser	Leu	Asn	Trp	Туг 325	Glu	Asp	Asn	Asn	Tyr 330	Lys	Ala	Leu	Phe	Gly 335	Gly
20	Asn	Gly	Thr	Glu 340	Glu	Asp	Ala	Gl u	Thr 345	Phe	Tyr	Asp	Asn	Ser 350	Thr	Thr
25	Pro	Tyr	Cys 355	Asn	Asp	Leu	Met	Ъуз 360	Asn	Leu	Glu	Ser	Ser 365	Pro	Leu	Ser
00	Arg	Ile 370	Ile	Trp	Lys	Ala	Leu 375	Lys	Pro	Leu	Leu	Val 380	Gly	Lys	Ile	Leu
30	Tyr 385	Thr	Pro	Asp	Thr	Pro 390	Ala	Thr	Arg	Gln	Val 395	Met	Ala	Glu	Val	Asn 400
35	Lys	Thr	Phe	Gln	Glu 405	Leu	Ala	Val	Phe	His 410	Asp	Leu	Glu	Gly	Met 415	Trp
40	Glu	Glu	Leu	Ser 420	Pro	Lys	Ile	Trp	Thr 425	Phe	Met	Glu	Asn	Ser 430	Gln	Glu
	Met	Asp	Leu 435	Val	Arg	Met	Leu	Leu 440	Asp	Ser	Arg	Asp	Asn 445	Asp	His	Phe
45	Trp	Glu 450	Gln	Gln	Leu	Asp	Gly 455	Leu	Asp	Trp	Thr	Ala 460	Gln	Asp	Ile	Val
50	Ala 465		Leu	Ala	Lys	His 470	Pro	Glu	Asp	Val	Gln 475	Ser	Ser	Asn	Gly	Ser 480
	Val	Tyr	Thr	Trp	Arg 485	Glu	Ala	Phe	Asn	Glu 490	Thr	Asn	Gln	Ala	Ile 495	Arg
55	Thr	Ile	Ser	Arg 500	Phe	Met	Glu	Суѕ	Val 505	Asn	Leu	Asn	Lys	Leu 510	Glu	Pro

5	Ile Ala	Thr 515	Glu	Val	Trp	Leu	Ile 520	Asn	Lys	Ser	Met	Glu 525	Leu	Leu	Asp
	Glu Arg		Phe	Trp	Ala	Gly 535	Ile	Val	Phe	Thr	Gly 540	Ile	Thr	Pro	Gly
10	Ser I16 545	e Glu	Leu	Pro	His 550	His	Val	Lys	Tyr	Lys 555	Ile	Arg	Met	Asp	Ile 560
15	Asp Ası	val	Glu	Arg 565	Thr	Asn	Lys	Ile	Lys 570	Asp	Gly	Tyr	Trp	Asp 575	Pro
	Gly Pro	Arg	Ala 580	Asp	Pro	Phe	Glu	Asp 585	Met	Arg	Tyr	Val	Trp 590	Gly	Gly
20	Phe Ala	3 Tyr 595	Leu	Gln	Asp	Val	Val 600	Glu	Gln	Ala	Ile	Ile 605	Arg	Val	Leu
25	Thr Gl;		Glu	Lys	Lys	Thr 615	Gly	Val	Tyr	Met	Gln 620	Gln	Met	Pro	Tyr
30	Pro Cy 625	s Tyr	Val	Asp	Asp 630	Ile	Phe	Leu	Arg	Val 635	Met	Ser	Arg	Ser	Met 640
	Pro Le	ı Phe	Met	Thr 645	Leu	Ala	Trp	Ile	Туг 650	Ser	Val	Ala	Val	Ile 655	Ile
35	Lys Gl	y Ile	Val 660	Туr	Glu	Lys	Glu	Ala 665	Arg	Leu	Lys	Glu	Thr 670	Met	Arg
40	Ile Me	675	Leu	Asp	Asn	Ser	Ile 680	Leu	Trp	Phe	Ser	Trp 685	Phe	Ile	Ser
	Ser Le 69		Pro	Leu	Leu	Val 695	Ser	Ala	Gly	Leu	Leu 700	Val	Val	Ile	Leu
45	Lys Le 705	u Gly	Asn	Leu	Leu 710	Pro	Tyr	Ser	Asp	Pro 715	Ser	Val	Val	Phe	Val 720
50	Phe Le	u Ser	Val	Phe 725		Val	Val	Thr	Ile 730	Leu	Gln	Cys	Phe	Leu 735	Ile
	Ser Th	r Leu	Phe 740	Ser	Arg	Ala	Asn	Leu 745	Ala	Ala	Ala	Суз	Gly 750	Gly	Ile
55	Ile Ty	r Phe 755		Leu	Туг	Leu	Pro 760	Tyr	Val	Leu	Суз	Val 765	Ala	Trp	Gln

5	Asp	Tyr 770	Val	Gly	Phe	Thr	Leu 775	Lys ·	Ile	Phe	Ala	Ser 780	Leu	Leu	Ser	Pro
	Val 785	Ala	Phe	Gly	Phe	Gly 790	Cys	Glu	Tyr	Phe	Ala 795	Leu	Phe	Glu	G1u	Gln 800
10	Gly	Ile	Gly	Val	Gln 805	Trp	Asp	Asn	Leu	Phe 810	Glu	Ser	Pro	Val	Glu 815	Glu
15	Asp	Gly	Phe	Asn 820	Leu	Thr	Thr	Ser	Val 825	Ser	Met	Met	Leu	Phe 830	Asp	Thr
	Phe	Leu	Tyr 835	Gly	Val	Met	Thr	Ттр 840	Tyr	Ile	Glu	Ala	Val 845	Phe	Pro	Gly
20	Gln	Туг 850	Gly	Ile	Pro	Arg	Pro 855	Trp	Tyr	Phe	Pro	Суs 860	Thr	Lys	Ser	Tyr
25	Trp 865	Phe	Gly	Glu	Glu	Ser 870	Asp	Glu	Lys	Ser	His 875	Pro	Gly	Ser	Asn	Gln 880
-	Lys	Arg	Ile	Ser	Glu 885	Ile	Cys	Met	Glu	Glu 890	Glu	Pro	Thr	His	Leu 895	Lys
30	Leu	Gly	Val	Ser 900	Ile	Gln	Asn	Leu	Val 905	Lys	Val	Tyr	Arg	Asp 910	Gly	Met
35	Lys	Val	Ala 915	Val	Asp	Gly	Leu	Ala 920	Leu	Asn	Phe	Tyr	Glu 925	Gly	Gln	Ile
40	Thr	Ser 930	Phe	Leu	Gly	His	Asn 935	Gly	Ala	Gly	Lys	Thr 940	Thr	Thr	Met	Ser
	Ile 945	Leu	Thr	Gly	Leu	Phe 950	Pro	Pro	Thr	Ser	Gly 955	Thr	Ala	Tyr	Ile	Leu 960
45	Gly	Lys	Asp	Ile	Arg 965	Ser	Glu	Met	Ser	Thr 970	Ile	Arg	Gln	Asn	Leu 975	Gly
50	Val	Суз	Pro	Gln 980		Asn	Val	Leu	Phe 985	Asp	Met	Leu	Thr	Val 990	Glu	Glu
	His	Ile	Trp 995		Tyr	Ala	_	Leu 1000	Lys	Gly	Leu		Glu 1005	Lys	His	Val
55	Lys	Ala 1010		Met	Glu	Gln	Met 1015		Leu	Asp		Gly 1020	Leu	Pro	Ser	Ser

5	Lys Leu Lys Ser Lys Thr Ser Gln Leu Ser Gly Gly Met Gln Arg Lys 1025 1030 1035 1040
	Leu Ser Val Ala Leu Ala Phe Val Gly Gly Ser Lys Val Val Ile Leu 1045 1050 1055
10	Asp Glu Pro Thr Ala Gly Val Asp Pro Tyr Ser Arg Arg Gly Ile Trp 1060 1065 1070
15	Glu Leu Leu Lys Tyr Arg Gln Gly Arg Thr Ile Ile Leu Ser Thr 1075 1080 1085
	His His Met Asp Glu Ala Asp Val Leu Gly Asp Arg Ile Ala Ile Ile 1090 1095 1100
20	Ser His Gly Lys Leu Cys Cys Val Gly Ser Ser Leu Phe Leu Lys Asn 1105 1110 1115 1120
25	Gln Leu Gly Thr Gly Tyr Tyr Leu Thr Leu Val Lys Lys Asp Val Glu 1125 1130 1135
	Ser Ser Leu Ser Ser Cys Arg Asn Ser Ser Ser Thr Val Ser Tyr Leu 1140 1145 1150
30	Lys Lys Glu Asp Ser Val Ser Gln Ser Ser Ser Asp Ala Gly Leu Gly 1155 1160 1165
35	Ser Asp His Glu Ser Asp Thr Leu Thr Ile Asp Val Ser Ala Ile Ser 1170 1175 1180
40	Asn Leu Ile Arg Lys His Val Ser Glu Ala Arg Leu Val Glu Asp Ile 1185 1190 1195 1200
~	Gly His Glu Leu Thr Tyr Val Leu Pro Tyr Glu Ala Ala Lys Glu Gly 1205 1210 1215
45	Ala Phe Val Glu Leu Phe His Glu Ile Asp Asp Arg Leu Ser Asp Leu 1220 1225 1230
50	Gly Ile Ser Ser Tyr Gly Ile Ser Glu Thr Thr Leu Glu Glu Ile Phe 1235 1240 1245
	Leu Lys Val Ala Glu Glu Ser Gly Val Asp Ala Glu Thr Ser Asp Gly 1250 1255 1260
55	Thr Leu Pro Ala Arg Arg Asn Arg Arg Ala Phe Gly Asp Lys Gln Ser 1265 1270 1275 1280

5	Cys Leu Arg Pro Phe Thr Glu Asp Asp Ala Ala Asp Pro Asn Asp Ser 1285 1290 1295
	Asp Ile Asp Pro Glu Ser Arg Glu Thr Asp Leu Leu Ser Gly Met Asp 1300 1305 1310
10	Gly Lys Gly Ser Tyr Gln Val Lys Gly Trp Lys Leu Thr Gln Gln Gln 1315 1320 1325
15	Phe Val Ala Leu Leu Trp Lys Arg Leu Leu Ile Ala Arg Arg Ser Arg 1330 1335 1340
20	Lys Gly Phe Phe Ala Gln Ile Val Leu Pro Ala Val Phe Val Cys Ile 1345 1350 1355 1360
20	Ala Leu Val Phe Ser Leu Ile Val Pro Pro Phe Gly Lys Tyr Pro Ser 1365 1370 1375
25	Leu Glu Leu Gln Pro Trp Met Tyr Asn Glu Gln Tyr Thr Phe Val Ser 1380 1385 1390
30	Asn Asp Ala Pro Glu Asp Thr Gly Thr Leu Glu Leu Leu Asn Ala Leu 1395 1400 1405
	Thr Lys Asp Pro Gly Phe Gly Thr Arg Cys Met Glu Gly Asn Pro Ile 1410 1415 1420
35	Pro Asp Thr Pro Cys Gln Ala Gly Glu Glu Glu Trp Thr Thr Ala Pro 1425 1430 1435 1440
40	Val Pro Gln Thr Ile Met Asp Leu Phe Gln Asn Gly Asn Trp Thr Met 1445 1450 1455
	Gln Asn Pro Ser Pro Ala Cys Gln Cys Ser Ser Asp Lys Ile Lys Lys 1460 1465 1470
45	Met Leu Pro Val Cys Pro Pro Gly Ala Gly Gly Leu Pro Pro Pro Gln 1475 1480 1485
50	Arg Lys Gln Asn Thr Ala Asp Ile Leu Gln Asp Leu Thr Gly Arg Asn 1490 1495 1500
	Ile Ser Asp Tyr Leu Val Lys Thr Tyr Val Gln Ile Ile Ala Lys Ser 1505 1510 1515 1520
55	Leu Lys Asn Lys Ile Trp Val Asn Glu Phe Arg Tyr Gly Gly Phe Ser 1525 1530 1535

	Leu Gly Val Ser Asn Thr Gln Ala Leu Pro Pro Ser Gln Glu Val Asn 1540 1545 1550
5	Asp Ala Thr Lys Gln Met Lys Lys His Leu Lys Leu Ala Lys Asp Ser 1555 1560 1565
10	Ser Ala Asp Arg Phe Leu Asn Ser Leu Gly Arg Phe Met Thr Gly Leu 1570 1575 1580
15	Asp Thr Arg Asn Asn Val Lys Val Trp Phe Asn Asn Lys Gly Trp His 1585 1590 1595 1600
	Ala Ile Ser Ser Phe Leu Asn Val Ile Asn Asn Ala Ile Leu Arg Ala 1605 1610 1615
20	Asn Leu Gln Lys Gly Glu Asn Pro Ser His Tyr Gly Ile Thr Ala Phe 1620 1625 1630
25	Asn His Pro Leu Asn Leu Thr Lys Gln Gln Leu Ser Glu Val Ala Pro 1635 1640 1645
	Met Thr Thr Ser Val Asp Val Leu Val Ser Ile Cys Val Ile Phe Ala 1650 1655 1660
30	Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu Ile Gln Glu Arg 1665 1670 1675 1680
35	Val Ser Lys Ala Lys His Leu Gln Phe Ile Ser Gly Val Lys Pro Val 1685 1690 1695
40	Ile Tyr Trp Leu Ser Asn Phe Val Trp Asp Met Cys Asn Tyr Val Val 1700 1705 1710
	Pro Ala Thr Leu Val Ile Ile Ile Phe Ile Cys Phe Gln Gln Lys Ser 1715 1720 1725
45	Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu Leu Leu Leu 1730 1740
50	Tyr Gly Trp Ser Ile Thr Pro Leu Met Tyr Pro Ala Ser Phe Val Phe 1745 1750 1755 1760
	Lys Ile Pro Ser Thr Ala Tyr Val Val Leu Thr Ser Val Asn Leu Phe 1765 1770 1775
55	Ile Gly Ile Asn Gly Ser Val Ala Thr Phe Val Leu Glu Leu Phe Thr 1780 1785 1790

	_	ys Leu As 195		Asn Asp Ile	Leu Lys Ser 1805	Val Phe Leu
5	1,	,,	•	.800	1003	
	Ile Phe F	Pro His Ph	e Cys Leu 1815	Gly Arg Gly	Leu Ile Asp 1820	Met Val Lys
10	Asn Gln A	ula Met Al	a Asp Ala 1830		Phe Gly Glu 1835	Asn Arg Phe 1840
	Val Ser F	Pro Leu Se 184		Leu Val Gly 1850	Arg Asn Leu	Phe Ala Met 1855
15	Ala Val G	Glu Gly Va 1860	l Val Phe	Phe Leu Ile 1865	Thr Val Leu	Ile Gln Tyr 1870
20	=	Phe Ile Ar 375		Pro Val Asn 1880	Ala Lys Leu 1885	Ser Pro Leu
25	Asn Asp (Glu Asp Gl	u Asp Val 1895	Arg Arg Glu	Arg Gln Arg	Ile Leu Asp
	Gly Gly (Gly Gln As	n Asp Ile 1910	Leu Glu Ile	: Lys Glu Leu 1915	Thr Lys Ile 1920
30	Tyr Arg	Arg Lys Ai 192		Ala Val Asp	Arg Ile Cys	Val Gly Ile 1935
35	Pro Pro (Gly Glu Cy 1940	ys Phe Gly	Leu Leu Gly 1945	Val Asn Gly	Ala Gly Lys 1950
		Thr Phe Ly 955		Thr Gly Asp 1960	Thr Thr Val	
40	Asp Ala 1970	Phe Leu A	sn Arg Asn 1975		Ser Asn Ile 1980	His Glu Val
45	His Gln 1985	Asn Met G	ly Tyr Cys 1990	Pro Gln Phe	e Asp Ala Ile 1995	Thr Glu Leu 2000
50	Leu Thr	Gly Arg G 20		Glu Phe Phe 2010	e Ala Leu Leu)	Arg Gly Val 2015
	Pro Glu	Lys Glu V 2020	al Gly Lys	Val Gly Glu 2025	ı Trp Ala Ile	Arg Lys Leu 2030
55		Val Lys T 1035	yr Gly Glu	Lys Tyr Ala 2040	a Gly Asn Tyr 2045	

	Asn 2	Lys 050	Arg	Lys	Leu		Thr 2055	Ala	Met	Ala		Ile 2060	Gly	Gly	Pro	Pro
.	Val 2065		Phe	Leu		Glu 2070	Pro	Thr	Thr		Met 2075	Asp	Pro	Lys		Arg 2080
10	Arg	Phe	Leu		Asn 2085	Cys	Ala	Leu		Val 2090	Val	Lys	Glu		Arg 2095	Ser
15	Val	Val		Thr 2100	Ser	His	Ser		Glu 2105	Glu	Cys	Glu		Leu 2110	Суз	Thr
	Arg		Ala 2115	Ile	Met	Val		Gly 2120	Arg	Phe	Arg		Leu 2125	Gly	Ser	Val
20		His 130	Leu	Lys	Asn		Phe 2135	Gly	Asp	Gly	Tyr	Thr 2140	Ile	Val	Val	Arg
25	Ile 2145		Gly	Ser		Pro 2150	Asp	Leu	Lys		Val 2155	Gln	Asp	Phe		Gly 2160
	Leu	Ala	Phe		Gly 2165	Ser	Val	Pro		Glu 2170	Lys	His	Arg		Met 2175	Leu
30	Gln	Tyr		Leu 2180	Pro	Ser	Ser		Ser 2185	Ser	Leu	Ala		Ile 2190	Phe	Ser
35	Ile		Ser 2195	Gln	Ser	Lys		Arg 2200	Leu	His	Ile		Asp 2205	Tyr	Ser	Val
40		Gln 2210	Thr	Thr	Leu		Gln 2215	Val	Phe	Val	Asn	Phe 2220	Ala	Lys	Asp	Gln
•	Ser 222		Asp	Asp		Leu 2230		Asp	Leu		Leu 2235		Lys	Asn		Thr 2240
45	Val	Val	Asp	Val	Ala 2245	Val	Leu	Thr		Phe 2250	Leu	Gln	Asp		Lys 2255	Val
50	Lys	Glu		Tyr 2260	Val											
	<21	0> 4	5													
55	<21	1> 2 2> P	436													

<213> Homo sapiens <400> 45 Met Gly Phe Leu His Gln Leu Gln Leu Leu Leu Trp Lys Asn Val Thr Leu Lys Arg Arg Ser Pro Trp Val Leu Ala Phe Glu Ile Phe Ile Pro Leu Val Leu Phe Phe Ile Leu Leu Gly Leu Arg Gln Lys Lys Pro Thr Ile Ser Val Lys Glu Val Pro Phe Tyr Thr Ala Ala Pro Leu Thr Ser Ala Gly Ile Leu Pro Val Met Gln Ser Leu Cys Pro Asp Gly Gln Arg Asp Glu Phe Gly Phe Leu Gln Tyr Ala Asn Ser Thr Val Thr Gln Leu Leu Glu Arg Leu Asp Arg Val Val Glu Glu Gly Asn Leu Phe Asp Pro Ala Arg Pro Ser Leu Gly Ser Glu Leu Glu Ala Leu Arg Gln His Leu Glu Ala Leu Ser Ala Gly Pro Gly Thr Ser Gly Ser His Leu Asp Arg Ser Thr Val Ser Ser Phe Ser Leu Asp Ser Val Ala Arg Asn Pro Gln Glu Leu Trp Arg Phe Leu Thr Gln Asn Leu Ser Leu Pro Asn Ser Thr Ala Gln Ala Leu Leu Ala Ala Arg Val Asp Pro Pro Glu Val Tyr His Leu Leu Phe Gly Pro Ser Ser Ala Leu Asp Ser Gln Ser Gly Leu His Lys Gly Gln Glu Pro Trp Ser Arg Leu Gly Gly Asn Pro Leu Phe Arg

Met Glu Glu Leu Leu Ala Pro Ala Leu Leu Glu Gln Leu Thr Cys

	Thr	Pro	Gly	Ser	Gly 245	Glu	Leu	Gly	Arg	Ile 250	Leu	Thr	Val	Pro	Glu 255	Ser
5	Gln	Lys	Gly	Ala 260	Leu	Gln	Gly	Tyr	Arg 265	Asp	Ala	Val	Cys	Ser 270	Gly	Gln
10	Ala	Ala	Ala 275	Arg	Ala	Arg	Arg	Phe 280	Ser	Gly	Leu	Ser	Ala 285	Glu	Leu	Arg
15	Asn	Gln 290	Leu	Asp	Val	Ala	Lys 295	Val	Ser	Gln	Gln	Leu 300	Gly	Leu	Asp	Ala
	Pro 305	Asn	Gly	Ser	Asp	Ser 310	Ser	Pro	Gln	Ala	Pro 315	Pro	Pro	Arg	Arg	Leu 320
20	Gln	Ala	Leu	Leu	Gly 325	Asp	Leu	Leu	Asp	Ala 330	Gln	Lys	Val	Leu	Gln 335	Asp
25	Val	Asp	Val	Leu 340	Ser	Ala	Leu	Ala	Leu 345	Leu	Leu	Pro	Gln	Gly 350	Ala	Cys
	Thr	Gly	Arg 355	Thr	Pro	Gly	Pro	Pro 360	Ala	Ser	Gly	Ala	Gly 365	Gly	Ala	Ala
30	Asn	Gly 370	Thr	Gly	Ala	Gly	Ala 375	Val	Met	Gly	Pro	Asn 380	Ala	Thr	Ala	Glu
35	G1u 385	Gly	Ala	Pro	Ser	Ala 390	Ala	Ala	Leu	Ala	Thr 395	Pro	Asp	Thr	Leu	Gln 400
	Gly	Gln	Cys	Ser	Ala 405		Val	Gln	Leu	Trp 410	Ala	Gly	Leu	Gln	Pro 415	Ile
40	Leu	Cys	Gly	Asn 420		Arg	Thr	Ile	Glu 425		Glu	Ala	Leu	Arg 430	Arg	Gly
45	Asn	Met	Ser 435		Leu	Gly	Phe	Thr 440		Lys	Glu	Gln	Arg 445	Asn	Leu	Gly
50	Leu	450		His	Leu	Met	455		Asn	Pro	.Lys	11e 460		Tyr	Ala	Pro
50	Ala 465	_	ser Ser	Glu	Val	. Asp 470	_	Val	Ile	Leu	475		Asn	Glu	Thr	Phe 480
55	Ala	Phe	e Val	. Gly	485		Thr	His	Tyr	Ala 490		Val	Trp	Leu	Asn 495	Ile

	Ser	Ala	Glu	Ile 500	Arg	Ser	Phe	Leu	Glu 505	Gln	Gly	Arg	Leu	Gln 510	Gln	His
5	Leu	Arg	Trp 515	Leu	Gln	Gln	Tyr	V al 520	Ala	Glu	Leu	Arg	Leu 525	His	Pro	Glu
10	Ala	Leu 530	Asn	Leu	Ser	Leu	Asp 535	Glu	Leu	Pro	Pro	Ala 540	Leu	Arg	Gln	Asp
15	Asn 545	Phe	Ser	Leu	Pro	Ser 550	Gly	Met	Ala	Leu	Leu 555	Gln	Gln	Leu	Asp	Thr 560
	Ile	Asp	Asn	Ala	Ala 565	Cys	Gly	Trp	Ile	Gln 570	Phe	Met	Ser	Lys	Val 575	Ser
20	Val	Asp	Ile	Phe 580	Lys	Gly	Phe	Pro	Asp 585	Glu	Glu	Ser	Ile	V al	Asn	Tyr
25	Thr	Leu	Asn 595	Gln	Ala	Tyr	Gln	Asp 600	Asn	Va1	Thr	Val	Phe 605	Ala	Ser	Val
	Ile	Phe 610	Gln	Thr	Arg	Lys	Asp 615	Gly	Ser	Leu	Pro	Pro 620	His	Val	His	Tyr
30	Lys 625	Ile	Arg	Gln	Asn	Ser 630	Ser	Phe	Thr	Glu	L y s 635	Thr	Asn	Glu	Ile	Arg 640
35	Arg	Ala	Tyr	Trp	Arg 645	Pro	Gly	Pro	Asn	Thr 650	Gly	Gly	Arg	Phe	Tyr 655	Phe
	Leu	Tyr	Gly	Phe 660	Val	Trp	Ile	Gln	Asp 665	Met	Met	Glu	Arg	Ala 670	Ile	Ile
40	Asp	Thr	Phe 675	Val	Gly	His	Asp	Val 680	Val	Glu	Pro	Gly	Ser 685	Tyr	Val	Gln
45	Met	Phe 690		Tyr	Pro	Cys	туг 695					Phe 700		Phe	Val	Ile
	Glu 705	His	Met	Met	Pro	Leu 710		Met	Val	Ile	Ser 715	Trp	Val	Tyr	Ser	Val 720
50	Ala	Met	Thr	Ile	Gln 725		Ile	Val	Ala	Glu 730		Glu	His	Arg	Leu 735	Lys
55	Glu	Val	Met	Lys 740		Met	Gly	Leu	Asn 745		Ala	Val	His	Trp 750	Val	Ala

	Trp Ph	ne Ile 755	Thr	Gly	Phe	Val	Gln 760	Leu	Ser	Ile	Ser	Val 765	Thr	Ala	Leu
5	Thr Al		Leu	Lys	Tyr	Gly 775	Gln	Val	Leu	Met	His 780	Ser	His	Val	Val
10	Ile II 785	e Trp	Leu	Phe	Leu 790	Ala	Val	Tyr	Ala	Val 795	Ala	Thr	Ile	Met	Phe 800
15	Cys Pi	ie Leu	Val	Ser 805	Val	Leu	Tyr	Ser	Lys 810	Ala	Lys	Leu	Ala	Ser 815	Ala
	Cys G	y Gly	Ile 820	Ile	Туr	Phe	Leu	Ser 825	Tyr	Val	Pro	Tyr	Met 830	Tyr	Val
20	Ala Il	835					840					845			_
25	Cys II	50				855					860				
	Tyr Pl 865				870					875					880
30	Phe Se			885					890					895	
35	Val T		900					905					910		_
40	Tyr I	915					920					925			
40		30				935					940				
45	Ala T: 945				950					955					960
50	Met G	lu Glu	Asp	Gln 965		Cys	Ala	Met	Glu 970	Ser	Arg	Arg	Phe	Glu 975	Glu
	Thr A	rg Gly	Met 980		Glu	Glu	Pro	Thr 985	His	Leu	Pro	Leu	Val 990	Val	Cys
55	Val A	sp Lys 995		Thr	Lys		Туг 1000	Lys	Asp	Asp		Lys 1005	Leu	Ala	Leu

	Asn Lys Leu Ser Leu Asn Leu Tyr Glu Asn Gln Val Val Ser Phe Leu 1010 1015 1020
5	Gly His Asn Gly Ala Gly Lys Thr Thr Thr Met Ser Ile Leu Thr Gly 1025 1030 1035 1040
10	Leu Phe Pro Pro Thr Ser Gly Ser Ala Thr Ile Tyr Gly His Asp Ile 1045 1050 1055
15	Arg Thr Glu Met Asp Glu Ile Arg Lys Asn Leu Gly Met Cys Pro Gln 1060 1065 1070
	His Asn Val Leu Phe Asp Arg Leu Thr Val Glu Glu His Leu Trp Phe 1075 1080 1085
20	Tyr Ser Arg Leu Lys Ser Met Ala Gln Glu Glu Ile Arg Arg Glu Met 1090 1095 1100
25	Asp Lys Met Ile Glu Asp Leu Glu Leu Ser Asn Lys Arg His Ser Leu 1105 1110 1115 1120
	Val Gln Thr Leu Ser Gly Gly Met Lys Arg Lys Leu Ser Val Ala Ile 1125 1130 1135
30	Ala Phe Val Gly Gly Ser Arg Ala Ile Ile Leu Asp Glu Pro Thr Ala 1140 1145 1150
35	Gly Val Asp Pro Tyr Ala Arg Arg Ala Ile Trp Asp Leu Ile Leu Lys 1155 1160 1165
	Tyr Lys Pro Gly Arg Thr Ile Leu Leu Ser Thr His His Met Asp Glu 1170 1175 1180
40	Ala Asp Leu Leu Gly Asp Arg Ile Ala Ile Ile Ser His Gly Lys Leu 1185 1190 1195 1200
45	Lys Cys Cys Gly Ser Pro Leu Phe Leu Lys Gly Thr Tyr Gly Asp Gly 1205 1210 1215
	Tyr Arg Leu Thr Leu Val Lys Arg Pro Ala Glu Pro Gly Gly Pro Gln 1220 1225 1230
50	Glu Pro Gly Leu Ala Ser Ser Pro Pro Gly Arg Ala Pro Leu Ser Ser 1235 1240 1245
55	Cys Ser Glu Leu Gln Val Ser Gln Phe Ile Arg Lys His Val Ala Ser 1250 1255 1260

	Cys Leu Leu Val Ser Asp Thr Ser Thr Glu Leu Ser Tyr Ile Leu Pro 1265 1270 1275 1280
5	Ser Glu Ala Ala Lys Lys Gly Ala Phe Glu Arg Leu Phe Gln His Leu 1285 1290 1295
10	Glu Arg Ser Leu Asp Ala Leu His Leu Ser Ser Phe Gly Leu Met Asp 1300 1305 1310
15	Thr Thr Leu Glu Glu Val Phe Leu Lys Val Ser Glu Glu Asp Gln Ser 1315 1320 1325
	Leu Glu Asn Ser Glu Ala Asp Val Lys Glu Ser Arg Lys Asp Val Leu 1330 1335 1340
20	Pro Gly Ala Glu Gly Pro Ala Ser Gly Glu Gly His Ala Gly Asn Leu 1345 1350 1355 1360
25	Ala Arg Cys Ser Glu Leu Thr Gln Ser Gln Ala Ser Leu Gln Ser Ala 1365 1370 1375
	Ser Ser Val Gly Ser Ala Arg Gly Asp Glu Gly Ala Gly Tyr Thr Asp 1380 1385 1390
30	Val Tyr Gly Asp Tyr Arg Pro Leu Phe Asp Asn Pro Gln Asp Pro Asp 1395 1400 1405
35	Asn Val Ser Leu Gln Glu Val Glu Ala Glu Ala Leu Ser Arg Val Gly 1410 1415 1420
	Gln Gly Ser Arg Lys Leu Asp Gly Gly Trp Leu Lys Val Arg Gln Phe 1425 1430 1435 1440
40	His Gly Leu Leu Val Lys Arg Phe His Cys Ala Arg Arg Asn Ser Lys 1445 1450 1455
45	Ala Leu Phe Ser Gln Ile Leu Leu Pro Ala Phe Phe Val Cys Val Ala 1460 1465 1470
50	Met Thr Val Ala Leu Ser Val Pro Glu Ile Gly Asp Leu Pro Pro Leu 1475 1480 1485
	Val Leu Ser Pro Ser Gln Tyr His Asn Tyr Thr Gln Pro Arg Gly Asn 1490 1495 1500
55	Phe Ile Pro Tyr Ala Asn Glu Glu Arg Arg Glu Tyr Arg Leu Arg Leu 1505 1510 1515 1520

	Ser Pro Asp Ala Ser Pro Gln Gln Leu Val Ser Thr Phe Arg Leu Pro 1525 1530 1535
5	Ser Gly Val Gly Ala Thr Cys Val Leu Lys Ser Pro Ala Asn Gly Ser 1540 1545 1550
10	Leu Gly Pro Thr Leu Asn Leu Ser Ser Gly Glu Ser Arg Leu Leu Ala 1555 1560 1565
	Ala Arg Phe Phe Asp Ser Met Cys Leu Glu Ser Phe Thr Gln Gly Leu 1570 1575 1580
15	Pro Leu Ser Asn Phe Val Pro Pro Pro Pro Ser Pro Ala Pro Ser Asp 1585 1590 1595 1600
20	Ser Pro Ala Ser Pro Asp Glu Asp Leu Gln Ala Trp Asn Val Ser Leu 1605 1610 1615
25	Pro Pro Thr Ala Gly Pro Glu Met Trp Thr Ser Ala Pro Ser Leu Pro 1620 1625 1630
	Arg Leu Val Arg Glu Pro Val Arg Cys Thr Cys Ser Ala Gln Gly Thr 1635 1640 1645
30	Gly Phe Ser Cys Pro Ser Ser Val Gly Gly His Pro Pro Gln Met Arg 1650 1655 1660
35	Val Val Thr Gly Asp Ile Leu Thr Asp Ile Thr Gly His Asn Val Ser 1665 1670 1675 1680
	Glu Tyr Leu Leu Phe Thr Ser Asp Arg Phe Arg Leu His Arg Tyr Gly 1685 1690 1695
40	Ala Ile Thr Phe Gly Asn Val Leu Lys Ser Ile Pro Ala Ser Phe Gly 1700 1705 1710
45	Thr Arg Ala Pro Pro Met Val Arg Lys Ile Ala Val Arg Arg Ala Ala 1715 1720 1725
	Gln Val Phe Tyr Asn Asn Lys Gly Tyr His Ser Met Pro Thr Tyr Leu 1730 1735 1740
50	Asn Ser Leu Asn Asn Ala Ile Leu Arg Ala Asn Leu Pro Lys Ser Lys 1745 1750 1755 1760
55	Gly Asn Pro Ala Ala Tyr Gly Ile Thr Val Thr Asn His Pro Met Asn 1765 1770 1775

	Lys Thr Ser Ala Ser Leu Ser Leu Asp Tyr Leu Leu Gln Gly Thr Asp 1780 1785 1790
5	Val Val Ile Ala Ile Phe Ile Ile Val Ala Met Ser Phe Val Pro Ala 1795 1800 1805
10	Ser Phe Val Val Phe Leu Val Ala Glu Lys Ser Thr Lys Ala Lys His 1810 1815 1820
45	Leu Gln Phe Val Ser Gly Cys Asn Pro Ile Ile Tyr Trp Leu Ala Asn 1825 1830 1835 1840
15	Tyr Val Trp Asp Met Leu Asn Tyr Leu Val Pro Ala Thr Cys Cys Val 1845 1850 1855
20	Ile Ile Leu Phe Val Phe Asp Leu Pro Ala Tyr Thr Ser Pro Thr Asn 1860 1865 1870
25	Phe Pro Ala Val Leu Ser Leu Phe Leu Leu Tyr Gly Trp Ser Ile Thr 1875 1880 1885
	Pro Ile Met Tyr Pro Ala Ser Phe Trp Phe Glu Val Pro Ser Ser Ala 1890 1895 1900
30	Tyr Val Phe Leu Ile Val Ile Asn Leu Phe Ile Gly Ile Thr Ala Thr 1905 1910 1915 1920
35	Val Ala Thr Phe Leu Leu Gln Leu Phe Glu His Asp Lys Asp Leu Lys 1925 1930 1935
	Val Val Asn Ser Tyr Leu Lys Ser Cys Phe Leu Ile Phe Pro Asn Tyr 1940 1945 1950
40	Asn Leu Gly His Gly Leu Met Glu Met Ala Tyr Asn Glu Tyr Ile Asn 1955 1960 1965
45	Glu Tyr Tyr Ala Lys Ile Gly Gln Phe Asp Lys Met Lys Ser Pro Phe 1970 1975 1980
	Glu Trp Asp Ile Val Thr Arg Gly Leu Val Ala Met Ala Val Glu Gly 1985 1990 1995 2000
50	Val Val Gly Phe Leu Leu Thr Ile Met Cys Gln Tyr Asn Phe Leu Arg 2005 2010 2015
55	Arg Pro Gln Arg Met Pro Val Ser Thr Lys Pro Val Glu Asp Asp Val 2020 2025 2030

	Asp Val Ala Ser Glu Arg Gln Arg Val Leu Arg Gly Asp Ala Asp Asn 2035 2040 2045
5	Asp Met Val Lys Ile Glu Asn Leu Thr Lys Val Tyr Lys Ser Arg Lys 2050 2055 2060
10	Ile Gly Arg Ile Leu Ala Val Asp Arg Leu Cys Leu Gly Val Arg Pro 2065 2070 2075 2080
16	Gly Glu Cys Phe Gly Leu Leu Gly Val Asn Gly Ala Gly Lys Thr Ser 2085 2090 2095
15	Thr Phe Lys Met Leu Thr Gly Asp Glu Ser Thr Thr Gly Gly Glu Ala 2100 2105 2110
20	Phe Val Asn Gly His Ser Val Leu Lys Glu Leu Leu Gln Val Gln Gln 2115 2120 2125
<i>25</i>	Ser Leu Gly Tyr Cys Pro Gln Cys Asp Ala Leu Phe Asp Glu Leu Thr 2130 2135 2140
	Ala Arg Glu His Leu Gln Leu Tyr Thr Arg Leu Arg Gly Ile Ser Trp 2145 2150 2155 2160
30	Lys Asp Glu Ala Arg Val Val Lys Trp Ala Leu Glu Lys Leu Glu Leu 2165 2170 2175
35	Thr Lys Tyr Ala Asp Lys Pro Ala Gly Thr Tyr Ser Gly Gly Asn Lys 2180 2185 2190
	Arg Lys Leu Ser Thr Ala Ile Ala Leu Ile Gly Tyr Pro Ala Phe Ile 2195 2200 2205
40	Phe Leu Asp Glu Pro Thr Thr Gly Met Asp Pro Lys Ala Arg Arg Phe 2210 2215 2220
45	Leu Trp Asn Leu Ile Leu Asp Leu Ile Lys Thr Gly Arg Ser Val Val 2225 2230 2235 2240
	Leu Thr Ser His Ser Met Glu Glu Cys Glu Ala Leu Cys Thr Arg Leu 2245 2250 2255
50	Ala Ile Met Val Asn Gly Arg Leu Arg Cys Leu Gly Ser Ile Gln His 2260 2265 2270
55	Leu Lys Asn Arg Phe Gly Asp Gly Tyr Met Ile Thr Val Arg Thr Lys 2275 2280 2285

	Ser Ser Gln Ser Val Lys Asp Val Val Arg Phe Phe Asn Arg Asn Phe 2290 2295 2300
5	Pro Glu Ala Met Leu Lys Glu Arg His His Thr Lys Val Gln Tyr Gln 2305 2310 2315 2320
10	Leu Lys Ser Glu His Ile Ser Leu Ala Gln Val Phe Ser Lys Met Glu 2325 2330 2335
15	Gln Val Ser Gly Val Leu Gly Ile Glu Asp Tyr Ser Val Ser Gln Thr 2340 2345 2350
	Thr Leu Asp Asn Val Phe Val Asn Phe Ala Lys Lys Gln Ser Asp Asn 2355 2360 2365
20	Leu Glu Gln Gln Glu Thr Glu Pro Pro Ser Ala Leu Gln Ser Pro Leu 2370 2375 2380
25	Gly Cys Leu Leu Ser Leu Leu Arg Pro Arg Ser Ala Pro Thr Glu Leu 2385 2390 2395 2400
	Arg Ala Leu Val Ala Asp Glu Pro Glu Asp Leu Asp Thr Glu Asp Glu 2405 2410 2415
30	Gly Leu Ile Ser Phe Glu Glu Glu Arg Ala Gln Leu Ser Phe Asn Thr 2420 2425 2430
35	Asp Thr Leu Cys 2435
40	<210> 46 <211> 1704 <212> PRT <213> Homo sapiens
45	<400> 46 Met Ala Val Leu Arg Gln Leu Ala Leu Leu Leu Trp Lys Asn Tyr Thr 1 5 10 15
50	Leu Gln Lys Arg Lys Val Leu Val Thr Val Leu Glu Leu Phe Leu Pro 20 25 30
	Leu Leu Phe Pro Gly Ile Leu Ile Trp Leu Arg Leu Lys Ile Gln Ser 35 40 45
55	Glu Asn Val Pro Asn Ala Thr Ile Tyr Pro Gly Gln Ser Ile Gln Gl

		50					55					60				
5	Leu 65	Pro	Leu	Phe	Phe	Thr 70	Phe	Pro	Pro	Pro	Gly 75	Asp	Thr	Trp	Glu	Leu 80
10	Ala	Tyr	Ile	Pro	Ser 85	His	Ser	Asp	Ala	Ala 90	Lys	Thr	Val	Thr	Glu 95	Thr
	Val .	Arg	Arg	Ala 100	Leu	V al	Ile	Asn	Met 105	Arg	Val	Arg	Gly	Phe 110	Pro	Ser
15	Glu	Lys	Asp 115	Phe	Glu	Asp	Tyr	Ile 120	Arg	Туг	Asp	Asn	Суs 125	Ser	Ser	Ser
20	Val	Leu 130	Ala	Ala	Val	Val	Phe 135	Glu	His	Pro	Phe	Asn 140	His	Ser	Lys	Glu
	Pro 145	Leu	Pro	Leu	Ala	Val 150	Lys	Tyr	His	Leu	Arg 155	Phe	Ser	Tyr	Thr	Arg 160
25	Arg	Asn	Tyr	Met	Trp 165	Thr	Gln	Thr	Gly	Ser 170	Phe	Phe	Leu	Lys	Glu 175	Thr
30	Glu	Gly	Trp	His 180	Thr	Thr	Ser	Leu	Phe 185	Pro	Leu	Phe	Pro	Asn 190	Pro	Gly
	Pro	Arg	Glu 195	Leu	Thr	Ser	Pro	Asp 200	Gly	Gly	Glu	Pro	Gly 205	Tyr	Ile	Arg
35	Glu	Gly 210	Phe	Leu	Ala	Val	Gln 215	His	Ala	Val	Asp	Arg 220	Ala	Ile	Met	Glu
40	Tyr 225	His	Ala	Asp	Ala	Ala 230		Arg	Gln	Leu	Phe 235	Gln	Arg	Leu	Thr	Val 240
	Thr	Ile	Lys	Arg	Phe 245		Tyr	Pro	Pro	Phe 250		Ala	Asp	Pro	Phe 255	
45	Val	Ala	Ile	Gln 260	_	Gln	. Leu	Pro	Leu 265		Leu	Leu	Leu	Ser 270		Thr
50	Tyr	Thr	Ala 275		Thr	: Ile	: Ala	280		Val	. Val	Gln	Glu 285		Glu	Arg
	Arg	Leu 290	_	Glu	і Туз	Met	295		: Met	: Gly	Leu	Ser 300		Trp	Leu	His
55	Trp	Ser	Ala	Trp	Phe	Lev	ı Lev	Phe	e Phe	e Lev	Phe	Leu	Leu	Ile	Ala	Ala

	305					310					315					320
5	Ser	Phe	Met	Thr	Leu 325	Leu	Phe	Cys	Val	Lys 330	Val	Lys	Pro	Asn	Val 335	Ala
10	Val	Leu	Ser	Arg 340	Ser	Asp	Pro	Ser	Leu 345	Val	Leu	Ala	Phe	Leu 350	Leu	Суѕ
	Phe	Ala	Ile 355	Ser	Thr	Ile	Ser	Phe 360	Ser	Phe	Met	Val	Ser 365	Thr	Phe	Phe
15	Ser	Lys 370	Ala	Asn	Met	Ala	Ala 375	Ala	Phe	Gly	Gly	Phe 380	Leu	Tyr	Phe	Phe
20	Thr 385	Tyr	Ile	Pro	Тут	Phe 390	Phe	Val	Ala	Pro	Arg 395	Tyr	Asn	Trp	Met	Thr 400
	Leu	Ser	Gln	Lys	Leu 405	Cys	Ser	Cys	Leu	Leu 410	Ser	Asn	Val	Ala	Met 415	Ala
25	Met	Gly	Ala	Gln 420	Leu	Ile	Gly	Lys	Phe 425	Glu	Ala	Lys	Gly	Met 430	Gly	Ile
30	Gln	Trp	Arg 435	Asp	Leu	Leu	Ser	Pro 440	Val	Asn	Val	Asp	Asp 445	Asp	Phe	Cys
	Phe	Gly 450	Gln	Val	Leu	Gly	Met 455	Leu	Leu	Leu	Asp	Ser 460	Val	Leu	Tyr	Gly
35	Leu 465	Val	Thr	Trp	Tyr	Met 470	Glu	Ala	Val	Phe	Pro 475	Gly	Gln	Phe	Gly	Val 480
40	Pro	Gln	Pro	Trp	Tyr 485	Phe	Phe	Ile	Met	Pro 490	Ser	Tyr	Trp	Cys	Gly 495	Lys
	Pro	Arg	Ala	Val 500	Ala	Gly	Lys	Glu	Glu 505	Glu	Asp	Ser	Asp	Pro 510	Glu	Lys
45	Ala	Leu	Arg 515		Glu	Туr	Phe	Glu 520	Ala	Glu	Pro	Glu	Asp 525		Val	Ala
50	Gly	Ile 530		Ile	Lys	His	Leu 535	Ser	Lys	Val	Phe	Arg 540	Val	Gly	Asn	Lys
	Asp 545	Arg	Ala	Ala	Val	Arg 550		Leu	Asn	Leu	Asn 555	Leu	Tyr	Glu	Gly	Gln 560
55	Ile	Thr	Val	Leu	Leu	Gly	His	Asn	Gly	Ala	Gly	Lys	Thr	Thr	Thr	Leu

					565					570					575	
5	Ser	Met	Leu	Thr 580	Gly	Leu	Phe	Pro	Pro 585	Thr	Ser	Gly	Arg	Ala 590	Tyr	Ile
10	Ser	Gly	Tyr 595	Glu	Ile	Ser	Gln	Asp 600	Met	Val	Gln	Ile	Arg 605	Lys	Ser	Leu
	Gly	Leu 610	Cys	Pro	Gln	His	Asp 615	Ile	Leu	Phe	Asp	Asn 620	Leu	Thr	Val	Ala
15	Glu 625	His	Leu	Туг	Phe	Туг 630	Ala	Gln	Leu	Lys	Gly 635	Leu	Ser	Arg	Gln	Lys 640
20	Cys	Pro	Glu	Glu	Val 645	Lys	Gln	Met	Leu	His 650	Ile	Ile	Gly	Leu	Glu 655	Asp
	Lys	Trp	Asn	Ser 660	Arg	Ser	Arg	Phe	Leu 665	Ser	Gly	Gly	Met	Arg 670	Arg	Lys
25	Leu	Ser	Ile 675	Gly	Ile	Ala	Leu	Ile 680	Ala	Gly	Ser	Lys	Val 685	Leu	Ile	Leu
30	Asp	Glu 690	Pro	Thr	Ser	Gly	Met 695	Asp	Ala	Ile	Ser	Arg 700	Arg	Ala	Ile	Trp
	Asp 705	Leu	Leu	Gln	Arg	Gln 710		Ser	Asp	Arg	Thr 715	Ile	Val	Leu	Thr	Thr 720
35	His	Phe	Met	Asp	Glu 725		Asp	Leu	Leu	Gly 730	-	Arg	Ile	Ala	Ile 735	Met
40	Ala	Lys	Gly	Glu 740		Gln	Cys	Суѕ	Gly 745		Ser	Leu	Phe	1eu 750	-	Gln
	Lys	Тух	Gly 755		Gly	туг	His	M et		Leu	Val	Lys	765		His	Суѕ
45	Asn	770		a Asp	Ile	e Ser	775		ı Val	. His	His	780		. Pro	Asn	- Ala
50	Thr 785		ı Glu	ı Ser	Sea	790	_	Ala	a Glu	ı Lev	795		: Ile	e Leu	Pro	800
	Glu	sei	Thu	c His	80:	_	e Glu	ı Gly	, Let	Phe 810		Lys	Leu	ı Glu	1 Lys 815	Lys i
55	Glr	ı Ly:	s Glu	ı Le	ı Gl	y Ile	e Ala	a Se	r Phe	e Gly	y Ala	a Sei	: Ile	e Thr	Thr	Met

		820	825	830
5	Glu Glu Val 835	-	l Gly Lys Leu Val As 840	p Ser Ser Met Asp 845
	Ile Gln Ala 850	Ile Gln Leu Pr	o Ala Leu Gln Tyr Gl 5 86	
10	Ala Ser Asp 865	Trp Ala Val As	sp Ser Asn Leu Cys Gl 875	y Ala Met Asp Pro 880
15	Ser Asp Gly	Ile Gly Ala Le 885	eu Ile Glu Glu Glu Ar 890	g Thr Ala Val Lys 895
20	Leu Asn Thr	Gly Leu Ala Le 900	eu His Cys Gln Gln Ph 905	e Trp Ala Met Phe 910
	Leu Lys Lys 915		er Trp Arg Glu Trp Ly 920	s Met Val Ala Ala 925
25	Gln Val Let 930		nr Cys Val Thr Leu Al 35 94	
30	Asn Tyr Sei 945	r Ser Glu Leu P 950	he Asp Asp Pro Met Le 955	eu Arg Leu Thr Leu 960
	Gly Glu Ty	r Gly Arg Thr V	al Val Pro Phe Ser Va 970	al Pro Gly Thr Ser 975
35	Gln Leu Gl	y Gln Gln Leu S 980	er Glu His Leu Lys As 985	sp Ala Leu Gln Ala 990
40	Glu Gly Gl 99	_	lu Val Leu Gly Asp Lo 1000	eu Glu Glu Phe Leu 1005
	Ile Phe Ar 1010	_	lu Gly Gly Gly Phe A 15 10	- -
45	Val Ala Al 1025	a Ser Phe Arg A 1030	sp Val Gly Glu Arg T 1035	nr Val Val Asn Ala 1040
50	Leu Phe As	n Asn Gln Ala T 1045	yr His Ser Pro Ala T 1050	hr Ala Leu Ala Val 1055
	Val Asp As	n Leu Leu Phe I 1060	ys Leu Leu Cys Gly P 1065	ro His Ala Ser Ile 1070
55	Val Val Se	er Asn Phe Pro (Gln Pro Arg Ser Ala I	eu Gln Ala Ala Lys

	1075		1080	1085
5	Asp Gln Phe 1090	Asn Glu Gly Arg		le Ala Leu Asn Leu .00
10	Leu Phe Ala 1105	Met Ala Phe Leu 1110	Ala Ser Thr Phe S	Ger Ile Leu Ala Val 1120
	Ser Glu Arg	Ala Val Gln Ala 1125	Lys His Val Gln I 1130	Phe Val Ser Gly Val 1135
15		Ser Phe Trp Lev	Ser Ala Leu Leu 1 1145	Orp Asp Leu Ile Ser 1150
20	Phe Leu Ile 1155	Pro Ser Leu Leu	Leu Leu Val Val I 1160	Phe Lys Ala Phe Asp 1165
	Val Arg Ala 1170	Phe Thr Arg Asp		Asp Thr Leu Leu Leu 180
25	Leu Leu Leu 1185	Tyr Gly Trp Ala	Ile Ile Pro Leu N 1195	Met Tyr Leu Met Asn 1200
30	Phe Phe Phe	Leu Gly Ala Ala 1205	Thr Ala Tyr Thr A	Arg Leu Thr Ile Phe 1215
		Ser Gly Ile Ala 1220	Thr Phe Leu Met N 1225	Val Thr Ile Met Arg 1230
35	Ile Pro Ala 1235	Val Lys Leu Glu	n Glu Leu Ser Lys 3 1240	Thr Leu Asp His Val 1245
40	Phe Leu Val 1250	Leu Pro Asn His		Ala Val Ser Ser Phe 260
	1265	1270	1275	Ser Ser Glu Val Ala 1280
45	Ala His Tyr	Cys Lys Lys Tys 1285	Asn Ile Gln Tyr (Gln Glu Asn Phe Tyr 1295
50		Ala Pro Gly Va	l Gly Arg Phe Val i 1305	Ala Ser Met Ala Ala 1310
	Ser Gly Cys 1315	=	E Leu Leu Phe Leu 1 1320	Ile Glu Thr Asn Leu 1325
55	Lou Gla Ara	Leu Ara Gly Il	e Leu Cys Ala Leu	Arg Arg Arg Arg Thr

	1330	1335	1340	
5	Leu Thr Glu Leu 1345	Tyr Thr Arg Met Pr 1350	o Val Leu Pro Glu 1355	Asp Gln Asp 1360
10	•	Arg Thr Arg Ile Le 365	eu Ala Pro Ser Pro 1370	Asp Ser Leu 1375
	Leu His Thr Pro 1380	Leu Ile Ile Lys Gl 138	=	Tyr Glu Gln 1390
15	Arg Val Pro Leu 1395	Leu Ala Val Asp Ar 1400	rg Leu Ser Leu Ala 1405	Val Gln Lys
20	Gly Glu Cys Phe 1410	Gly Leu Leu Gly Ph 1415	ne Asn Gly Ala Gly 1420	Lys Thr Thr
	Thr Phe Lys Met 1425	Leu Thr Gly Glu Gl 1430	lu Ser Leu Thr Ser 1435	Gly Asp Ala 1440
25		His Arg Ile Ser Se 445	er Asp Val Gly Lys 1450	Val Arg Gln 1455
30	Arg Ile Gly Tyr 1460	Cys Pro Gln Phe As	-	His Met Thr 1470
	Gly Arg Glu Met 1475	Leu Val Met Tyr Al 1480	la Arg Leu Arg Gly 1485	
35	Arg His Ile Gly 1490	Ala Cys Val Glu As 1495		Leu Leu Leu
40	Glu Pro His Ala 1505	Asn Lys Leu Val A	rg Thr Tyr Ser Gly 1515	Gly Asn Lys 1520
-		Thr Gly Ile Ala L	eu Ile Gly Glu Pro 1530	Ala Val Ile 1535
45	Phe Leu Asp Glu 1540	Pro Ser Thr Gly M	et Asp Pro Val Ala 45	Arg Arg Leu 1550
50	Leu Trp Asp Thr 1555	Val Ala Arg Ala A 1560	arg Glu Ser Gly Lys 1565	
55	Ile Thr Ser His 1570	Ser Met Glu Glu C 1575	Cys Glu Ala Leu Cys 1580	s Thr Arg Leu
-	Ala Ile Met Val	Gln Gly Gln Phe L	Lys Cys Leu Gly Se	Pro Gln His

	1585	1590	1595	1600
5	Leu Lys Ser Lys	Phe Gly Ser Gly 1605	y Tyr Ser Leu Arg Ala 1610	Lys Val Gln 1615
10	Ser Glu Gly Gln 1620		u Glu Glu Phe Lys Ala 1625	Phe Val Asp 1630
	Leu Thr Phe Pro	o Gly Ser Val Le 164	u Glu Asp Glu His Gln 0 1645	_
15	His Tyr His Lev 1650	u Pro Gly Arg As	p Leu Ser Trp Ala Lys 1660	Val Phe Gly
20	Ile Leu Glu Lys 1665	s Ala Lys Glu Ly 1670	s Tyr Gly Val Asp Asp 1675	Tyr Ser Val 1680
	Ser Gln Ile Sen	r Leu Glu Gln Va 1685	l Phe Leu Ser Phe Ala 1690	His Leu Gln 1695
25	Pro Pro Thr Ala 170	a Glu Glu Gly Ar 0	g	
30	<210> 47			
	<211> 2273 <212> PRT <213> Homo sap	iens		
35	<400> 47		n Leu Leu Leu Trp Lys	3 Asn Trp Thr
40	1	5	10	15
	2	20	25 le Trp Leu Arg Asn Ala	30
45	35	4	10 4!	5
50	50	55	60 ly Ile Phe Cys Asn Va	
	65	70	75	80
55	cys Phe Gin Se	er Pro Thr Pro G. 85	ly Glu Ser Pro Gly Il 90	e Val Ser Asn 95

	Tyr	Asn	Asn	Ser 100	Ile	Leu	Ala	Arg	Val 105	Tyr	Arg	Asp	Phe	Gln 110	Glu	Leu
5	Leu	Met	Asn 115	Ala	Pro	Glu	Ser	Gln 120	His	Leu	Gly	Arg	Ile 125	Trp	Thr	Glu
10	Leu	His 130	Ile	Leu	Ser	Gln	Phe 135	Met	Asp	Thr	Leu	Arg 140	Thr	His	Pro	Glu
15	Arg 145	Ile	Ala	Gly	Arg	Gly 150	Ile	Arg	Ile	Arg	Asp 155	Ile	Leu	Lys	Asp	Glu 160
	Glu	Thr	Leu	Thr	Leu 165	Phe	Leu	Ile	Lys	Asn 170	Ile	Gly	Leu	Ser	Asp 175	Ser
20	Val	Val	Tyr	Leu 180	Leu	Ile	Asn	Ser	Gln 185	Val	Arg	Pro	Glu	Gln 190	Phe	Ala
25	His	Gly	Val 195	Pro	Asp	Leu	Ala	Leu 200	Lys	Asp	Ile	Ala	Cys 205	Ser	G1u	Ala
	Leu	Leu 210	Glu	Arg	Phe	Ile	Ile 215	Phe	Ser	Gln	Arg	Arg 220	Gly	Ala	Lys	Thr
30	Val 225	Arg	Tyr	Ala	Leu	Cys 230	Ser	Leu	Ser	Gln	Gly 235	Thr	Leu	Gln	Trp	Ile 240
35	Glu	Asp	Thr	Leu	Туг 245	Ala	Asn	Val	Ąsp	Phe 250	Phe	Lys	Leu	Phe	Arg 255	Val
_	Leu	Pro	Thr	Leu 260	Leu	Asp	Ser	Arg	Ser 265	Gln	Gly	Ile	Asn	Leu 270	Arg	Ser
40	Trp	Gly	Gly 275		Leu	Ser	Asp	Met 280	Ser	Pro	Arg	Ile	Gln 285	Glu	Phe	Ile
45	His	Arg 290		Ser	Met	Gln	Asp 295	Leu	Leu	Trp	Val	Thr 300		Pro	Leu	Met
50	Gln 305		Gly	Gly	Pro	Glu 310		Phe	Thr	Lys	Leu 315		Gly	Ile	Leu	Ser 320
	Asp	Leu	. Leu	Cys	Gly 325	_	Pro	Glu	Gly	330		Ser	Arg	Val	Leu 335	
55	Phe	: Asr	Trp	340		Asp	Asn	Asn	Туг 345	_	Ala	Phe	Leu	Gly 350		Asp

	Ser	Thr	Arg 355	Lys	Asp	Pro	Ile	Туr 360	Ser	Tyr	Asp	Arg	Arg 365	Thr	Thr	Ser
5	Phe	Cys 370	Asn	Ala	Leu	Ile	Gln 375	Ser	Leu	Glu	Ser	Asn 380	Pro	Leu	Thr	Lys
10	Ile 385	Ala	Trp	Arg	Ala	Ala 390	Lys	Pro ·	Leu	Leu	Met 395	Gly	Lys	Ile	Leu	Туг 400
15	Thr	Pro	Asp	Ser	Pro 405	Ala	Ala	Arg	Arg	Ile 410	Leu	Lys	Asn	Ala	Asn 415	Ser
	Thr	Phe	Glu	Glu 420	Leu	Glu	His	Val	Arg 425	Lys	Leu	Val	Lys	Ala 430	Trp	Glu
20	Glu	Val	Gly 435	Pro	Gln	Ile	Trp	Tyr 440	Phe	Phe	qaA	Asn	Ser 445	Thr	Gln	Met
25	Asn	Met 450	Ile	Arg	Asp	Thr	Leu 455	Gly	Asn	Pro	Thr	Val 460	Lys	Asp	Phe	Leu
	Asn 465	Arg	Gln	Leu	Gly	Glu 470	Glu	Gly	Ile	Thr	Ala 475	Glu	Ala	Ile	Leu	Asn 480
30	Phe	Leu	Tyr	Lys	Gly 485	Pro	Arg	Glu	Ser	Gln 490	Ala	Asp	Asp	Met	Ala 495	Asn
35	Phe	Asp	Trp	Arg 500	Asp	Ile	Phe	Asn	Ile 505	Thr	Asp	Arg	Thr	Leu 510	Arg	Leu
	Val	Asn	Gln 515	_	Leu	Glu	Cys	Leu 520		Leu	Asp	Lys	Phe 525	Glu	Ser	Tyr
40	Asn	Asp 530		Thr	Gln	Leu	Thr 535		Arg	Ala	Leu	Ser 540		Leu	Glu	Glu
45	Asn 545		. Phe	Trp	Ala	Gly 550		Val	Phe	Pro	Asp 555		Tyr	Pro	Trp	Thr 560
50	Ser	Ser	Leu	Pro	9ro 565		val	Lys	Tyr	Lys 570		Arg	Met	Asp	Ile 575	
	Val	. Val	Glu	Lys 580		Asr	ı Lys	: Ile	Lys 585		Arg	Tyr	Trp	Asp 590		Gly
55	Pro	Arç	3 Ala 599	_	Pro	Va]	l Glu	Asr 600		e Arg	Туг	Ile	605		Gly	Phe

	Ala	Tyr 610	Leu (Gln /	Asp 1	Met	Val 615	Glu	Gln (Gly :		Thr .	Arg	Ser	Gln	Val
5	Gln 625	Ala	G1u	Ala		Val 630	Gly	Ile	Tyr		G1n 635	Gln	Met	Pro		Pro 640
10	Суѕ	Phe	Val		Asp 645	Ser	Phe	Met	Ile	Ile 650	Leu	Asn	Arg	Cys	Phe 655	Pro
15	Ile	Phe	Met	Val 660	Leu	Ala	Trp	Ile	Tyr 665	Ser	Val	Ser	Met	Thr 670	Val	Lys
	Ser	Ile	Val 675	Leu	Glu	Lys	Glu	Leu 680	Arg	Leu	Lys	Glu	Thr 685	Leu	Lys	Asn
20	Gln	Gly 690	Val	Ser	Asn	Ala	Val 695	Ile	Trp	Cys	Thr	Trp 700	Phe	Leu	Asp	Ser
25	Phe 705	Ser	Ile	Met	Ser	Met 710		Ile	Phe	Leu	Leu 715	Thr	Ile	Phe	Ile	Met 720
	His	Gly	Arg	Ile	Leu 725	His	Туг	Ser	Asp	Pro 730	Phe	Ile	Leu	Phe	Leu 735	Phe
30	Leu	Leu	Ala	Phe 740	Ser	Thr	Ala	Thr	Ile 745	Met	Leu	Cys	Phe	Leu 750	Leu	Ser
35	Thr	Phe	Phe 755		Lys	Ala	Ser	760		Ala	Ala	Cys	Ser 765		Val	Ile
	Туг	770		Leu	Tyr	Lev	775		Ile	Leu	Суѕ	780		Trp	Gln	Asp
40	Arg 785		: Thr	Ala	Glu	790		: Lys	Ala	Val	Ser 795		Leu	Ser	Pro	Val 800
45 .	Ala	a Phe	e Gly	y Phe	e Gly 805		c Glu	а Туг	Leu	810		y Phe	Glu	Glu	61n 815	Gly
50	Lei	u Gl	y Lei	u Glr 820		Se:	r Ası	n Ile	825		ı Sei	r Pro	Thi	830		Asp
Ju	Gl	u Ph	e \$e: 83:		e Lei	ı Le	u Se:	r Met		n Met	: Me	t Lei	1 Let 845		Ala	a Ala
55	Су	s Ty 85		y Le	u Le	u Al	a Tr		r Lei	u Ası	o Gl	n Va 860		e Pro	o Gly	y Asp

	Tyr Gly Thr Pro Leu Pro Trp Tyr Phe Leu Leu Gln Glu Ser Tyr Trp 865 870 875 880
5	Leu Ser Gly Glu Gly Cys Ser Thr Arg Glu Glu Arg Ala Leu Glu Lys 885 890 895
10	Thr Glu Pro Leu Thr Glu Glu Thr Glu Asp Pro Glu His Pro Glu Gly 900 905 910
15	Ile His Asp Ser Phe Phe Glu Arg Glu His Pro Gly Trp Val Pro Gly 915 920 925
	Val Cys Val Lys Asn Leu Val Lys Ile Phe Glu Pro Cys Gly Arg Pro 930 935 940
20	Ala Val Asp Arg Leu Asn Ile Thr Phe Tyr Glu Asn Gln Ile Thr Ala 945 950 955 960
25	Phe Leu Gly His Asn Gly Ala Gly Lys Thr Thr Thr Leu Ser Ile Leu 965 970 975
	Thr Gly Leu Leu Pro Pro Thr Ser Gly Thr Val Leu Val Gly Gly Arg 980 985 990
30	Asp Ile Glu Thr Ser Leu Asp Ala Val Arg Gln Ser Leu Gly Met Cys 995 1000 1005
35	Pro Gln His Asn Ile Leu Phe His His Leu Thr Val Ala Glu His Met 1010 1015 1020
40	Leu Phe Tyr Ala Gln Leu Lys Gly Lys Ser Gln Glu Glu Ala Gln Leu 1025 1030 1035 1040
	Glu Met Glu Ala Met Leu Glu Asp Thr Gly Leu His His Lys Arg Asn 1045 1050 1055
45	Glu Glu Ala Gln Asp Leu Ser Gly Gly Met Gln Arg Lys Leu Ser Val 1060 1065 1070
50	Ala Ile Ala Phe Val Gly Asp Ala Lys Val Val Ile Leu Asp Glu Pro 1075 1080 1085
	Thr Ser Gly Val Asp Pro Tyr Ser Arg Arg Ser Ile Trp Asp Leu Leu 1090 1095 1100
55	Leu Lys Tyr Arg Ser Gly Arg Thr Ile Ile Met Pro Thr His His Met 1105 1110 1115 1120

	Asp Glu Ala Asp His Gln Gly Asp Arg Ile Ala Ile Ile Ala Gln Gly 1125 1130 1135
5	Arg Leu Tyr Cys Ser Gly Thr Pro Leu Phe Leu Lys Asn Cys Phe Gly 1140 1145 1150
10	Thr Gly Leu Tyr Leu Thr Leu Val Arg Lys Met Lys Asn Ile Gln Ser 1155 1160 1165
	Gln Arg Lys Gly Ser Glu Gly Thr Cys Ser Cys Ser Ser Lys Gly Phe 1170 1175 1180
15	Ser Thr Thr Cys Pro Ala His Val Asp Asp Leu Thr Pro Glu Gln Val 1185 1190 1195 1200
20	Leu Asp Gly Asp Val Asn Glu Leu Met Asp Val Val Leu His His Val 1205 1210 1215
25	Pro Glu Ala Lys Leu Val Glu Cys Ile Gly Gln Glu Leu Ile Phe Leu 1220 1225 1230
	Leu Pro Asn Lys Asn Phe Lys His Arg Ala Tyr Ala Ser Leu Phe Arg 1235 1240 1245
30	Glu Leu Glu Glu Thr Leu Ala Asp Leu Gly Leu Ser Ser Phe Gly Ile 1250 1255 1260
35	Ser Asp Thr Pro Leu Glu Glu Ile Phe Leu Lys Val Thr Glu Asp Ser 1265 1270 1275 1280
	Asp Ser Gly Pro Leu Phe Ala Gly Gly Ala Gln Gln Lys Arg Glu Asn 1285 1290 1295
40	Val Asn Pro Arg His Pro Cys Leu Gly Pro Arg Glu Lys Ala Gly Gln 1300 1305 1310
45	Thr Pro Gln Asp Ser Asn Val Cys Ser Pro Gly Ala Pro Ala Ala His 1315 1320 1325
	Pro Glu Gly Gln Pro Pro Pro Glu Pro Glu Cys Pro Gly Pro Gln Leu 1330 1335 1340
50	Asn Thr Gly Thr Gln Leu Val Leu Gln His Val Gln Ala Leu Leu Val 1345 1350 1355 1360
55	Lys Arg Phe Gln His Thr Ile Arg Ser His Lys Asp Phe Leu Ala Gln 1365 1370 1375

	Ile Val Leu Pro Ala Thr Phe Val Phe Leu Ala Leu Met Leu Ser Ile 1380 1385 1390
5	Val Ile Leu Pro Phe Gly Glu Tyr Pro Ala Leu Thr Leu His Pro Trp 1395 1400 1405
10	Ile Tyr Gly Gln Gln Tyr Thr Phe Phe Ser Met Asp Glu Pro Gly Ser 1410 1415 1420
15	Glu Gln Phe Thr Val Leu Ala Asp Val Leu Leu Asn Lys Pro Gly Phe 1425 1430 1435 1440
	Gly Asn Arg Cys Leu Lys Glu Gly Trp Leu Pro Glu Tyr Pro Cys Gly 1445 1450 1455
20	Asn Ser Thr Pro Trp Lys Thr Pro Ser Val Ser Pro Asn Ile Thr Gln 1460 1465 1470
25	Leu Phe Gln Lys Gln Lys Trp Thr Gln Val Asn Pro Ser Pro Ser Cys 1475 1480 1485
	Arg Cys Ser Thr Arg Glu Lys Leu Thr Met Leu Pro Glu Cys Pro Glu 1490 1495 1500
30	Gly Ala Gly Gly Leu Pro Pro Pro Gln Arg Thr Gln Arg Ser Thr Glu 1505 1510 1515 1520
35	Ile Leu Gln Asp Leu Thr Asp Arg Asn Ile Ser Asp Phe Leu Val Lys 1525 1530 1535
	Thr Tyr Pro Ala Leu Ile Arg Ser Ser Leu Lys Ser Lys Phe Trp Val 1540 1545 1550
40	Asn Glu Gln Arg Tyr Gly Gly Ile Ser Ile Gly Gly Lys Leu Pro Val 1555 1560 1565
45	Val Pro Ile Thr Gly Glu Ala Leu Val Gly Phe Leu Ser Asp Leu Gly 1570 1575 1580
50	Arg Ile Met Asn Val Ser Gly Gly Pro Ile Thr Arg Glu Ala Ser Lys 1585 1590 1595 1600
-	Glu Ile Pro Asp Phe Leu Lys His Leu Glu Thr Glu Asp Asn Ile Lys 1605 1610 1615
55	Val Trp Phe Asn Asn Lys Gly Trp His Ala Leu Val Ser Phe Leu Asn 1620 1625 1630

	Val Ala His 1635	Asn Ala Ile	Leu Arg Ala Se 1640	er Leu Pro Lys 1645	Asp Arg Ser
5	Pro Glu Glu 1650	-	Thr Val Ile Se 1655	er Gln Pro Leu 1660	Asn Leu Thr
10	Lys Glu Gln 1665	Leu Ser Glu 1670	Ile Thr Val Le	eu Thr Thr Ser 1675	Val Asp Ala 1680
15	Val Val Ala	Ile Cys Val 1685	Ile Phe Ser Me	et Ser Phe Val	Pro Ala Ser 1695
		Tyr Leu Ile 700	Gln Glu Arg Va 1705	al Asn Lys Ser 1	Lys His Leu .710
20	Gln Phe Ile 1715	Ser Gly Val	Ser Pro Thr Th	nr Tyr Trp Val 1725	Thr Asn Phe
25	Leu Trp Asp 1730		Tyr Ser Val Se	er Ala Gly Leu 1740	Val Val Gly
	Ile Phe Ile 1745	Gly Phe Gln 1750	Lys Lys Ala Ty	yr Thr Ser Pro 1755	Glu Asn Leu 1760
30	Pro Ala Leu	Val Ala Leu 1765	Leu Leu Leu Ty	yr Gly Trp Ala 70	Val Ile Pro 1775
35		Pro Ala Ser 1780	Phe Leu Phe As	sp Val Pro Ser	Thr Ala Tyr 1790
	Val Ala Leu 1795	Ser Cys Ala	Asn Leu Phe II	le Gly Ile Asn 1805	Ser Ser Ala
40	Ile Thr Phe 1810		Leu Phe Asp As 1815	sn Asn Arg Thr 1820	Leu Leu Arg
45	Phe Asn Ala 1825	Val Leu Arg 1830	Lys Leu Leu I	le Val Phe Pro 1835	His Phe Cys 1840
50	Leu Gly Arg	Gly Leu Ile 1845	Asp Leu Ala Le	eu Ser Gln Ala 50	Val Thr Asp 1855
-		Arg Phe Gly 1860	Glu Glu His So 1865	er Ala Asn Pro	Phe His Trp 1870
55	Asp Leu Ile 1875	Gly Lys Asn	Leu Phe Ala M	et Val Val Glu 1885	Gly Val Val

	Tyr Phe Leu Leu Thr Leu Leu Val Gln Arg His Phe Phe Leu Ser Gln 1890 1895 1900
5	Trp Ile Ala Glu Pro Thr Lys Glu Pro Ile Val Asp Glu Asp Asp Asp 1905 1910 1915 1920
10	Val Ala Glu Glu Arg Gln Arg Ile Ile Thr Gly Gly Asn Lys Thr Asp 1925 1930 1935
15	Ile Leu Arg Leu His Glu Leu Thr Lys Ile Tyr Leu Gly Thr Ser Ser 1940 1945 1950
	Pro Ala Val Asp Arg Leu Cys Val Gly Val Arg Pro Gly Glu Cys Phe 1955 1960 1965
20	Gly Leu Leu Gly Val Asn Gly Ala Gly Lys Thr Thr Thr Phe Lys Met 1970 1975 1980
25	Leu Thr Gly Asp Thr Thr Val Thr Ser Gly Asp Ala Thr Val Ala Gly 1985 1990 1995 2000
	Lys Ser Ile Leu Thr Asn Ile Ser Glu Val His Gln Asn Met Gly Tyr 2005 2010 2015
30	Cys Pro Gln Phe Asp Ala Ile Asp Glu Leu Leu Thr Gly Arg Glu His 2020 2025 2030
35	Leu Tyr Leu Tyr Ala Arg Leu Arg Gly Val Pro Ala Glu Glu Ile Glu 2035 2040 2045
40	Lys Val Ala Asn Trp Ser Ile Lys Ser Leu Gly Leu Thr Val Tyr Ala 2050 2055 2060
	Asp Cys Leu Ala Gly Thr Tyr Ser Gly Gly Asn Lys Arg Lys Leu Ser 2065 2070 2075 2080
45	Thr Ala Ile Ala Leu Ile Gly Cys Pro Pro Leu Val Leu Leu Asp Glu 2085 2090 2095
50	Pro Thr Thr Gly Met Asp Pro Gln Ala Arg Arg Met Leu Trp Asn Val 2100 2105 2110
	Ile Val Ser Ile Ile Arg Lys Gly Arg Ala Val Val Leu Thr Ser His 2115 2120 2125
55	Ser Met Glu Glu Cys Glu Ala Leu Cys Thr Arg Leu Ala Ile Met Val 2130 2135 2140

	Lys Gly Ala Phe Arg Cys Met Gly Thr Ile Gln His Leu Lys Ser Lys 2145 2150 2155 2160
5	Phe Gly Asp Gly Tyr Ile Val Thr Met Lys Ile Lys Ser Pro Lys Asp 2165 2170 2175
10	Asp Leu Leu Pro Asp Leu Asn Pro Val Glu Gln Phe Phe Gln Gly Asn 2180 2185 2190
15	Phe Pro Gly Ser Val Gln Arg Glu Arg His Tyr Asn Met Leu Gln Phe 2195 2200 2205
	Gln Val Ser Ser Ser Leu Ala Arg Ile Phe Gln Leu Leu Ser 2210 2215 2220
20	His Lys Asp Ser Leu Leu Ile Glu Glu Tyr Ser Val Thr Gln Thr Thr 2225 2230 2235 2240
25	Leu Asp Gln Val Phe Val Asn Phe Ala Lys Gln Gln Thr Glu Ser His 2245 2250 2255
	Asp Leu Pro Leu His Pro Arg Ala Ala Gly Ala Ser Arg Gln Ala Gln 2260 2265 2270
30	Asp
30	<210> 48 <211> 2146
	<210> 48
35	<210> 48 <211> 2146 <212> PRT <213> Homo sapiens
35 40	<210> 48 <211> 2146 <212> PRT <213> Homo sapiens <400> 48 Met Ala Phe Trp Thr Gln Leu Met Leu Leu Trp Lys Asn Phe Met
35 40	<pre><210> 48 <211> 2146 <212> PRT <213> Homo sapiens <400> 48 Met Ala Phe Trp Thr Gln Leu Met Leu Leu Trp Lys Asn Phe Met 1</pre>

5	Gly 65	Thr	Val	Pro	Trp	Leu 70	Gln	Gly	Leu	Ile	Cys 75	Asn	Val	Asn	Asn	Thr 80
	Cys	Phe	Pro	Gln	Leu 85	Thr	Pro	Gly	Glu	Glu 90	Pro	Gly	Arg	Leu	Ser 95	Asn
10	Phe	Asn	Asp	Ser 100	Leu	Val	Ser	Arg	Leu 105	Leu	Ala	Asp	Ala	Arg 110	Thr	Val
15	Leu	Gly	Gly 115	Ala	Ser	Ala	His	Arg 120	Thr	Leu	Ala	Gly	Leu 125	Gly	Lys	Leu
	Ile	Ala 130	Thr	Leu	Arg	Ala	Ala 135	Arg	Ser	Thr	Ala	Gln 140	Pro	Gln	Pro	Thr
20	Lys 145	Gln	Ser	Pro	Leu	Glu 150	Pro	Pro	Met	Leu	Аз р 155	Val	Ala	Glu	Leu	Leu 160
25	Thr	Ser	Leu	Leu	Arg 165	Thr	Glu	Ser	Leu	Gly 170	Leu	Ala	Leu	Gly	Gln 175	Ala
	Gln	Glu	Pro	Leu 180	His	Ser	Leu	Leu	Glu 185	Ala	Ala	Glu	Asp	Leu 190	Ala	Gln
30	Glu	Leu	Leu 195	Ala	Leu	Arg	Ser	Leu 200	Val	Glu	Leu	Arg	Ala 205	Leu	Leu	Gln
35	Arg	Pro 210	Arg	Gly	Thr	Ser	Gly 215	Pro	Leu	Glu	Leu	Leu 220	Ser	Glu	Ala	Leu
	Cys 225		Val	Arg	Gly	Pro 230	Ser	Ser	Thr	Val	Gly 235	Pro	Ser	Leu	Asn	Trp 240
40	Tyr	Glu	Ala	Ser	Asp 245	Leu	Met	Glu	Leu	Val 250	Gly	Gln	Glu	Pro	Glu 255	Ser
45	Ala	Leu	Pro	Asp 260	Ser	Ser	Leu	Ser	Pro 265	Ala	Cys	Ser	Glu	Leu 270	Ile	Gly
	Ala	Leu	Asp 275	Ser	His	Pro	Leu	Ser 280	Arg	Leu	Leu	Trp	Arg 285	Arg	Leu	Lys
50	Pro	Leu 290	Ile	Leu	Gly	Lys	Leu 295	Leu	Phe	Ala	Pro	Asp 300	Thr	Pro	Phe	Thr
55	Arg 305		Leu	Met	Ala	Gln 310		Asn	Arg	Thr	Phe 315	Glu	Glu	Leu	Thr	Leu 320

5	Leu	Arg	Asp	Val	Arg 325	Glu	Val	Trp	Glu	Met 330	Leu	Gly	Pro	Arg	Ile 335	Phe
	Thr	Phe	Met	Asn 340	Asp	Ser	Ser	Asn	Val 345	Ala	Met	Leu	Gln	Arg 350	Leu	Leu
10	Gln	Met	Gln 355	Asp	Glu	Gly	Arg	Arg 360	Gln	Pro	Arg	Pro	Gly 365	Gly	Arg	Asp
15	His	Met 370	Glu	Ala	Leu	Arg	Ser 375	Phe	Leu	Asp	Pro	Gly 380	Ser	Gly	Gly	Туг
	Ser 385	Trp	Gln	Asp	Ala	His 390	Ala	Asp	Val	Gly	His 395	Leu	Val	Gly	Thr	Leu 400
20	Gly	Arg	Val	Thr	Glu 405	Cys	Leu	Ser	Leu	Asp 410	Lys	Leu	Glu	Ala	Ala 415	Pro
25	Ser	Glu	Ala	Ala 420	Leu	Val	Ser	Arg	Ala 425	Leu	Gln	Leu	Leu	Ala 430	Glu	His
	Arg	Phe	Trp 435	Ala	Gly	Val	Val	Phe 440	Leu	Gly	Pro	Glu	Asp 445	Ser	Ser	Asp
30	Pro	Thr 450	Glu	His	Pro	Thr	Pro 455	Asp	Leu	Gly	Pro	Gly 460	His	Val	Arg	Ile
35	Lys 465	Ile	Arg	Met	Asp	Ile 470	Asp	Val	Val	Thr	Arg 475	Thr	Asn	Lys	Ile	Arg 480
	Asp	Arg	Phe	Trp	Asp 485	Pro	Gly	Pro	Ala	Ala 490	Asp	Pro	Leu	Thr	Asp 495	Leu
40	Arg	Туг	Val	Trp 500	Gly	Gly	Phe	Val	Тут 505	Leu	Gln	Asp	Leu	Val 510	Glu	Arg
45	Ala	Ala	Val 515	Arg	Val	Leu	Ser	Gly 520	Ala	Asn	Pro	Arg	Ala 525	Gly	Leu	Tyr
50	Leu	Gln 530	Gln	Met	Pro	Tyr	Pro 535	Cys	Tyr	Val	Asp	Asp 540	Val	Phe	Leu	Arg
50	Val 545		Ser	Arg	Ser	Leu 550	Pro	Leu	Phe	Leu	Thr 555	Leu	Ala	Trp	Ile	Tyr 560
55	Ser	Val	Thr	Leu	Thr 565		Lys	Ala	Val	Val 570	Arg	Glu	Lys	Glu	Thr 575	Arg

_	Leu	Arg	Asp	Thr 580	Met	Arg	Ala	Met	Gly 585	Leu	Ser	Arg	Ala	Va1 590	Leu	Trp
5	Leu	Gly	Trp 595	Phe	Leu	Ser	Cys	Leu 600	Gly	Pro	Phe	Leu	Leu 605	Ser	Ala	Ala
10	Leu	Leu 610	Val	Leu	Val	Leu	Lys 615	Leu	Gly	Asp	Ile	Leu 620	Pro	Tyr	Ser	His
15	Pro 625	Gly	Val	Val	Phe	Leu 630	Phe	Leu	Ala	Ala	Phe 635	Ala	Val	Ala	Thr	Val 640
	Thr	Gln	Ser	Phe	Leu 645	Leu	Ser	Ala	Phe	Phe 650	Ser	Arg	Ala	Asn	Leu 655	Ala
20	Ala	Ala	Суѕ	Gly 660	Gly	Leu	Ala	Тут	Phe 665	Ser	Leu	Tyr	Leu	Pro 670	Tyr	Val
25	Leu	Cys	Val 675	Ala	Trp	Arg	Asp	Arg 680	Leu	Pro	Ala	Gly	Gly 685	Arg	Val	Ala
	Ala	Ser 690	Leu	Leu	Ser	Pro	Val 695	Ala	Phe	Gly	Phe	Gly 700	Cys	Glu	Ser	Leu
30	Ala 705	Leu	Leu	Glu	Glu	Gln 710	Gly	Glu	Gly	Ala	Gln 715	Тгр	His	Asn	Val	Gly 720
35	Thr	Arg	Pro	Thr	Ala 725	Asp	Val	Phe	Ser	Leu 730	Ala	Gln	Val	Ser	Gly 735	Leu
	Leu	Leu	Leu	Asp 740	Ala	Ala	Leu	Tyr	Gly 745		Ala	Thr	Trp	Tyr 750	Leu	Glu
40	Ala	Val	Суs 755		Gly	Gln	Туг	Gly 760		Pro	Glu	Pro	Trp 765		Phe	Pro
45	Phe	770		Ser	Tyr	Trp	775		Pro	Arg	Pro	780		Ser	Pro	Ala
50	Pro 785		Pro	Thr	Pro	790		Pro	Lys	. Val	Leu 795		. Glu	. Gl v	Ala	Pro 800
50	Pro	Gly	/ Leu	ı Ser	805		/ Val	. Sei	· Val	Arg 810		Leu	ı Glu	ı Lys	815	Phe
-55	Pro	Gly	/ Sei	Pro 820		Pro	o Ala	ı Lev	825		Leu	ı Seı	: Leu	ı Ası 830		e Tyr

	Gln Gly His		la Phe Leu 6 840	Gly His Asn Gly	Ala Gly Lys Thr 845
	Thr Thr Let	Ser Ile Le	eu Ser Gly I 855	Seu Phe Pro Pro 860	Ser Gly Gly Ser
10	Ala Phe Ile 865		is Asp Val A 70	Arg Ser Ser Met 875	Ala Ala Ile Arg 880
15	Pro His Le	Gly Val Cy 885	ys Pro Gln T	Tyr Asn Val Leu 890	Phe Asp Met Leu 895
	Thr Val As	Glu His Va 900		Tyr Gly Arg Leu 905	Lys Gly Leu Ser 910
20	Ala Ala Va 91		ro Glu Gln <i>I</i> 920	Asp Arg Leu Leu	Gln Asp Val Gly 925
25	Leu Val Se 930	C Lys Gln Se	er Val Gln 1 935	Thr Arg His Leu 940	Ser Gly Gly Met
	Gln Arg Ly 945		al Ala Ile # 50	Ala Phe Val Gly 955	Gly Ser Gln Val 960
30	Val Ile Le	1 Asp Glu P: 965	ro Thr Ala (Gly Val Asp Pro 970	Ala Ser Arg Arg 975
35	Gly Ile Tr	980		Tyr Arg Glu Gly 985	Arg Thr Leu Ile 990
40	Leu Ser Th		eu Asp Glu 1		Gly Asp Arg Val 1005
	Ala Val Va 1010	l Ala Gly G	Gly Arg Leu (1015	Cys Cys Cys Gly 1020	Ser Pro Leu Phe
45	Leu Arg Ar 1025		Sly Ser Gly 9	Tyr Tyr Leu Thr 1035	Leu Val Lys Ala 1040
50	Arg Leu Pr	o Leu Thr T 1045	Thr Asn Glu	Lys Ala Asp Thr 1050	Asp Met Glu Gly 1055
	Ser Val As	p Thr Arg G 1060		Lys Asn Gly Ser 065	Gln Gly Ser Arg 1070
55	Val Gly Th		Leu Leu Ala : 1080		Trp Val Pro Gly 1085

	Ala Arg 1090	Leu Va	al Glu		Leu 1	Pro 1	His G	lu Leu	Val 1100	Leu	Val 1	Leu 1	Pro
5	Tyr Thr 1105	Gly A		Asp l110	Gly :	Ser :	Phe A	la Thr 1115		Phe	Arg (Leu 120
10	Asp Thr	Arg L	eu Ala 1125	Glu	Leu .	Arg :		hr Gly	Tyr	Gly		Ser 1 135	Asp
15	Thr Ser	Leu G		Ile	Phe		Lys V 145	al Val	Glu		Cys / 150	Ala .	Ala
	Asp Thr	Asp M 1155	et Glu	Asp	_	Ser 160	Cys (Gly Glr		Leu 1165	Cys	Thr	Gly
20	Ile Ala 1170	_	eu Asp		Thr 1175	Leu	Arg I	Leu Lys	Met 1180	Pro	Pro	Gln	Glu
<i>2</i> 5	Thr Ala	Leu G		Gly 1190	Glu	Pro	Ala (Gly Ser 1195		Pro	Glu		Asp 200
	Gln Gly	Ser G	ly Pro 1205	_	Ala	Val	_	Arg Val 210	l Gln	Gly		Ala 215	Leu
30	Thr Arg		ln Leu 20	Gln	Ala		Leu 1 1225	Leu Ly:	s Arg		Leu 1230	Leu	Ala
35	Arg Arg	Ser A 1235	rg Arg	Gly		Phe L240	Ala	Gln Il		Leu 1245	Pro	Ala	Leu
40	Phe Val	_	eu Ala		Val 1255	Phe	Ser :	Leu Il	e Val 1260		Pro	Phe	Gly
•	His Ty1 1265	Pro A	da Lev	Arg 1270		Ser	Pro	Thr Me 127	_	Gly	Ala		Val 1280
45	Ser Phe	e Phe S	Ser Glu 1285	_	Ala	Pro	_	Asp Pr 290	o Gly	Arg		Arg 1295	Leu
50	Leu Gli	13	300			;	1305				1310		
	His Se	1315				1320				1325			
55	Lys Va 133		Ala Se	r Gly	Asn 1335		Thr	Pro Gl	u Sei 1340		Ser	Pro	Ala

	Cys Gln Cys Ser Gln Pro Gly Ala Arg Arg Leu Leu Pro Asp Cys Pro 1345 1350 1355 1360
5	Ala Ala Ala Gly Gly Pro Pro Pro Gln Ala Val Thr Gly Ser Gly 1365 1370 1375
10	Glu Val Val Gln Asn Leu Thr Gly Arg Asn Leu Ser Asp Phe Leu Val 1380 1385 1390
15	Lys Thr Tyr Pro Arg Leu Val Arg Gln Gly Leu Lys Thr Lys Lys Trp 1395 1400 1405
	Val Asn Glu Val Arg Tyr Gly Gly Phe Ser Leu Gly Gly Arg Asp Pro 1410 1415 1420
20	Gly Leu Pro Ser Gly Gln Glu Leu Gly Arg Ser Val Glu Glu Leu Trp 1425 1430 1435 1440
. 25	Ala Leu Leu Ser Pro Leu Pro Gly Gly Ala Leu Asp Arg Val Leu Lys 1445 1450 1455
	Asn Leu Thr Ala Trp Ala His Ser Leu Asp Ala Gln Asp Ser Leu Lys 1460 1465 1470
30	Ile Trp Phe Asn Asn Lys Gly Trp His Ser Met Val Ala Phe Val Asn 1475 1480 1485
35	Arg Ala Ser Asn Ala Ile Leu Arg Ala His Leu Pro Pro Gly Arg Ala 1490 1495 1500
	Arg His Ala His Ser Ile Thr Thr Leu Asn His Pro Leu Asn Leu Thr 1505 1510 1515 1520
40	Lys Glu Gln Leu Phe Glu Ala Ala Leu Met Ala Ser Ser Val Asp Val 1525 1530 1535
45	Leu Val Ser Ile Cys Val Val Phe Ala Met Ser Phe Val Pro Ala Ser 1540 1545 1550
	Phe Thr Leu Val Leu Ile Glu Glu Arg Val Thr Arg Ala Lys His Leu 1555 1560 1565
50	Gln Leu Met Gly Gly Leu Ser Pro Thr Leu Tyr Trp Leu Gly Asn Phe 1570 1575 1580
55	Leu Trp Asp Met Cys Asn Tyr Leu Val Pro Ala Cys Ile Val Val Leu 1585 1590 1595 1600

5	Ile Phe Leu Ala Phe Gln Gln Arg Ala Tyr Val Ala Pro Ala Asn Leu 1605 1610 1615	
	Pro Ala Leu Leu Leu Leu Leu Leu Tyr Gly Trp Ser Ile Thr Pro 1620 1625 1630	
10	Leu Met Tyr Pro Ala Ser Phe Phe Phe Ser Val Pro Ser Thr Ala Tyr 1635 1640 1645	
15	Val Val Leu Thr Cys Ile Asn Leu Phe Ile Gly Ile Asn Gly Ser Met 1650 1655 1660	
	Ala Thr Phe Val Leu Glu Leu Phe Ser Asp Gln Lys Leu Gln Glu Val 1665 1670 1675 1680	
20	Ser Arg Ile Leu Lys Gln Val Phe Leu Ile Phe Pro His Phe Cys Leu 1685 1690 1695	i
25	Gly Arg Gly Leu Ile Asp Met Val Arg Asn Gln Ala Met Ala Asp Ala 1700 1705 1710	ì
	Phe Glu Arg Leu Gly Asp Arg Gln Phe Gln Ser Pro Leu Arg Trp Glu 1715 1720 1725	l
30	Val Val Gly Lys Asn Leu Leu Ala Met Val Ile Gln Gly Pro Leu Phe 1730 1735 1740	;
35	Leu Leu Phe Thr Leu Leu Leu Gln His Arg Ser Gln Leu Leu Pro Glr 1745 1750 1755 1760	
_	Pro Arg Val Arg Ser Leu Pro Leu Leu Gly Glu Glu Asp Glu Asp Val 1765 1770 1775	L
40	Ala Arg Glu Arg Glu Arg Val Val Gln Gly Ala Thr Gln Gly Asp Val 1780 1785 1790	L
45	Leu Val Leu Arg Asn Leu Thr Lys Val Tyr Arg Gly Gln Arg Met Pro 1795 1800 1805	o
50	Ala Val Asp Arg Leu Cys Leu Gly Ile Pro Pro Gly Glu Cys Phe Gly 1810 1815 1820	Y
	Leu Leu Gly Val Asn Gly Ala Gly Lys Thr Ser Thr Phe Arg Met Val 1825 1830 1835 1846	
55	Thr Gly Asp Thr Leu Ala Ser Arg Gly Glu Ala Val Leu Ala Gly His 1845 1850 1855	S

5	Ser Val Ala Arg Glu Pro Ser Ala Ala His Leu Ser Met Gly Tyr Cys 1860 1865 1870
	Pro Gln Ser Asp Ala Ile Phe Glu Leu Leu Thr Gly Arg Glu His Leu 1875 1880 1885
10	Glu Leu Leu Ala Arg Leu Arg Gly Val Pro Glu Ala Gln Val Ala Gln 1890 1895 1900
15	Thr Ala Gly Ser Gly Leu Ala Arg Leu Gly Leu Ser Trp Tyr Ala Asp 1905 1910 1915 1920
	Arg Pro Ala Gly Thr Tyr Ser Gly Gly Asn Lys Arg Lys Leu Ala Thr 1925 1930 1935
20	Ala Leu Ala Leu Val Gly Asp Pro Ala Val Val Phe Leu Asp Glu Pro 1940 1945 1950
25	Thr Thr Gly Met Asp Pro Ser Ala Arg Arg Phe Leu Trp Asn Ser Leu 1955 1960 1965
	Leu Ala Val Val Arg Glu Gly Arg Ser Val Met Leu Thr Ser His Ser 1970 1975 1980
30	Met Glu Glu Cys Glu Ala Leu Cys Ser Arg Leu Ala Ile Met Val Asn 1985 1990 1995 2000
35	Gly Arg Phe Arg Cys Leu Gly Ser Pro Gln His Leu Lys Gly Arg Phe 2005 2010 2015
	Ala Ala Gly His Thr Leu Thr Leu Arg Val Pro Ala Ala Arg Ser Gln 2020 2025 2030
40	Pro Ala Ala Ala Phe Val Ala Ala Glu Phe Pro Gly Ser Glu Leu Arg 2035 2040 2045
45	Glu Ala His Gly Gly Arg Leu Arg Phe Gln Leu Pro Pro Gly Gly Arg 2050 2055 2060
	Cys Ala Leu Ala Arg Val Phe Gly Glu Leu Ala Val His Gly Ala Glu 2065 2070 2075 2080
50	His Gly Val Glu Asp Phe Ser Val Ser Gln Thr Met Leu Glu Glu Val 2085 2090 2095
55	Phe Leu Tyr Phe Ser Lys Asp Gln Gly Lys Asp Glu Asp Thr Glu Glu 2100 2105 2110

	Gln Lys Glu Ala Gly Val Gly Val Asp Pro Ala Pro Gly Leu Gln His 2115 2120 2125
5	Pro Lys Arg Val Ser Gln Phe Leu Asp Asp Pro Ser Thr Ala Glu Thr 2130 2135 2140
10	Val Leu 2145
15	<210> 49 <211> 1581 <212> PRT <213> Homo sapiens
20	<pre><400> 49 Met Arg Lys Arg Lys Ile Ser Val Cys Gln Gln Thr Trp Ala Leu Leu 1 5 10 15</pre>
25	Cys Lys Asn Phe Leu Lys Lys Trp Arg Met Lys Arg Glu Ser Leu Met 20 25 30
30	Glu Trp Leu Asn Ser Leu Leu Leu Leu Leu Cys Leu Tyr Ile Tyr Pro 35 40 45
	His Ser His Gln Val Asn Asp Phe Ser Ser Leu Leu Thr Met Asp Leu 50 55 60
35	Gly Arg Val Asp Thr Phe Asn Glu Ser Arg Phe Ser Val Val Tyr Thr 65 70 75 80
40	Pro Val Thr Asn Thr Thr Gln Gln Ile Met Asn Lys Val Ala Ser Thr 85 90 95
	Pro Phe Leu Ala Gly Lys Glu Val Leu Gly Leu Pro Asp Glu Glu Ser 100 105 110
45	Ile Lys Glu Phe Thr Ala Asn Tyr Pro Glu Glu Ile Val Arg Val Thr 115 120 125
50	Phe Thr Asn Thr Tyr Ser Tyr His Leu Lys Phe Leu Leu Gly His Gly 130 135 140
55	Met Pro Ala Lys Lys Glu His Lys Asp His Thr Ala His Cys Tyr Glu 145 150 155 160
	Thr Asn Glu Asp Val Tyr Cys Glu Val Ser Val Phe Trp Lys Glu Gly

				165					170					175	
5	Phe Va	al Ala	Leu 180	Gln	Ala	Ala	Ile	Asn 185	Ala	Ala	Ile	Ile	Glu 190	Ile	Thr
40	Thr As	sn His 195		Val	Met	Glu	Glu 200	Leu	Met	Ser	Val	Thr 205	Gly	Lys	Asn
10	Met Ly	ys Met 10	His	Ser	Phe	Ile 215	Gly	Gln	Ser	Gly	Val 220	Ile	Thr	Ąsp	Leu
15	Tyr Lo 225	eu Phe	Ser	Cys	Ile 230	Ile	Ser	Phe	Ser	Ser 235	Phe	Ile	Tyr	Tyr	Ala 240
20	Ser V	al Asr	Val	Thr 245	Arg	Glu	Arg	Lys	Arg 250	Met	Lys	Ala	Leu	Met 255	Thr
	Met M	et Gly	260	Arg	Asp	Ser	Ala	Phe 265	Trp	Leu	Ser	Trp	Gly 270	Leu	Leu
25	Tyr A	la Gly 275		Ile	Phe	Ile	Met 280	Ala	Leu	Phe	Leu	Ala 285	Leu	Val	Ile
30		er Thi	Gln	Phe	Ile	Ile 295	Leu	Ser	Gly	Phe	Met 300	Val	Val	Phe	Ser
	Leu P	he Le	ı Leu	Tyr	Gly 310		Ser	Leu	Val	Ala 315	Leu	Ala	Phe	Leu	Met 320
35	Ser I	le Le	ı Val	Lys 325		Ser	Phe	Leu	Thr 330		Leu	Val	Val	Phe 335	Leu
40	Leu T	Thr Va	1 Phe 340	-	Gly	Cys	Leu	Gly 345		Thr	Ser	Leu	Туг 350	Arg	His
	Leu F	Pro Al 35		Leu	Glu	Trp	360		Ser	Leu	Leu	Ser 365		Phe	Ala
45		Met Le 370	u Gly	/ Met	Ala	375		Leu	His	Leu	Asp 380		Asp	Leu	Asn
50	Ser <i>I</i> 385	Asn Al	a Phe	e Pro	His 390		Ser	Asp	Gly	Ser 395		Leu	lle	Val	Ala 400
	Thr A	Asn Ph	e Me	Leu 409		n Ph∈	e Asr	Thi	Cys 410		Туг	Leu	Ala	415	
55	Ile '	Tyr Pi	e Gl	u Lys	s Ile	e Lei	ı Pro) Ası	n Glu	а Туз	Gly	/ His	s Arg	Arg	g Pro

				420					425					430		
5	Pro	Leu	Phe 435	Phe	Leu	Lys	Ser	Ser 440	Phe	Trp	Ser	Gln	Thr 445	Gln	Lys	Thr
10	Asp	His 450	Val	Ala	Leu	Glu	Asp 455	Glu	Met	Asp	Ala	Asp 460	Pro	Ser	Phe	His
	Asp 465	Ser	Phe	Glu	Gln	Ala 470	Pro	Pro	Glu	Phe	Gln 475	Gly	Lys	Glu	Ala	Ile 480
15	Arg	Ile	Arg	Asn	Val 485	Thr	Lys	Glu	Tyr	Lys 490	Gly	Lys	Pro	Asp	Lys 495	Ile
20	Glu	Ala	Leu	Lys 500	Asp	Leu	Val	Phe	Asp 505	Ile	Туг	Glu	Gly	Gln 510	Ile	Thr
	Ala	Ile	Leu 515	Gly	His	Ser	Gly	Ala 520	Gly	Lys	Ser	Thr	Leu 525	Leu	Asn	Ile
25	Leu	Ser 530	Gly	Leu	Ser	Val	Pro 535	Thr	Lys	Gly	Ser	Val 540	Thr	Ile	Tyr	Asn
30	Asn 545	Lys	Leu	Ser	Glu	Met 550	Ala	Asp	Leu	Glu	Asn 555	Leu	Ser	Lys	Leu	Thr 560
	Gly	Val	Суѕ	Pro	Gln 565	Ser	Asn	Val	Gln	Phe 570	Asp	Phe	Leu	Thr	Val 575	Arg
35	Glu	Asn	Leu	Arg 580	Leu	Phe	Ala	Lys	Ile 585	Lys	Gly	Ile	Leu	Pro 590	Gln	Glu
40	Val	Asp	Lys 595	Glu	Ile	Phe	Leu	Leu 600	Asp	Glu	Pro	Thr	Ala 605	Gly	Leu	Asp
45	Pro	Phe 610	Ser	Arg	His	Gln	Val 615	Trp	Asn	Leu	Leu	Lys 620	Glu	Arg	Lys	Thr
•	Asp 625	Arg	Val	Ile	Leu	Phe 630	Ser	Thr	Gln	Phe	Met 635	Asp	Glu	Ala	Asp	Ile 640
50	Leu	Ala	Asp	Arg	Lys 645	Val	Phe	Leu	Ser	Gln 650	Gly	Lys	Leu	Lys	Cys 655	Ala
55	Gly	Ser	Ser	Leu 660	Phe	Leu	Lys	Lys	Lys 665	Trp	Gly	Ile	Gly	Туг 670	His	Leu
	Ser	Leu	Gln	Leu	Asn	Glu	Ile	Суѕ	Val	Glu	Glu	Asn	Ile	Thr	Ser	Leu

		675		(680		685	
5	Val Lys		: Ile Pr	o Asp 2	Ala Lys I	Leu Ser Ala 70		Glu Gly
10	Lys Leu 705	Ile Ty:	Thr Le		Leu Glu i	Arg Thr As 715	n Lys Phe	Pro Glu 720
	Leu Tyr	Lys As	Leu As 725	p Ser		Asp Leu Gl 730	y Ile Glu	Asn Tyr 735
15	Gly Val	Ser Me 74		ır Leu	Asn Glu 745	Val Phe Le	u Lys Leu 750	Glu Gly
20	Lys Sei	755	e Asn Gl		Asp Ile . 760	Ala Ile Le	u Gly Glu 765	Val Gln
	Ala Gli 770		a Asp As	5p Thr 775	Glu Arg	Leu Val Gl 78		Gln Val
25	Leu Se: 785	r Ser Le	u Asn Ly 79		Arg Lys	Thr Ile Gl 795	y Gly Val	Ala Leu 800
30	Trp Are	g Gln Gl	n Ile Cy 805	ys Ala	Ile Ala	Arg Val Ar 810	g Leu Leu	Lys Leu 815
	Lys Hi	s Glu Ar 82		la Leu	Leu Ala 825	Leu Leu Le	u Ile Leu 830	Met Ala
35	Gly Ph	e Cys Pr 835	o Leu Le	eu Val	Glu Tyr 840	Thr Met Va	al Lys Ile 845	Tyr Gln
40	Asn Se 85		r Trp G	lu Leu 855	Ser Pro	His Leu T	yr Phe Leu 50	Ala Pro
	Gly Gl 865	n Gln Pi		sp Pro 70	Leu Thr	Gln Leu L 875	eu Ile Ile	Asn Lys 880
45	Thr Gl	y Ala S	er Ile A 885	sp Asp	Phe Ile	Gln Ser V 890	al Glu His	Gln Asn 895
50	Ile Al		lu Val A 00	sp Ala	Phe Gly 905	Thr Arg A	sn Gly Thi	
	Pro Se	er Tyr A 915	sn Gly A	Ala Ile	Thr Val	Cys Cys A	sn Glu Ly: 925	s Asn Tyr
55	Ser Pl	ne Ser L	eu Ala C	Cys Asn	Ala Lys	arg Leu A	sn Cys Pho	e Pro Val

	930	9	35	940
5	Leu Met Asp Ilo 945	e Val Ser A 950	sn Gly Leu Leu Gly 955	Met Val Lys Pro Ser 960
10	Val His Ile Ar	Thr Glu A 965	rg Ser Thr Phe Leu 970	Glu Asn Gly Gln Asp 975
	Asn Pro Ile Gl		la Tyr Ile Met Phe 985	Trp Leu Val Leu Thr 990
15	Ser Ser Cys Pro	o Pro Tyr I	le Ala Met Ser Ser 1000	Ile Asp Asp Tyr Lys 1005
20	Asn Arg Ala Ar 1010	_	- -	Leu Ser Pro Ser Ala 020
	Tyr Trp Phe Gl 1025	y Gln Ala L 1030	eu Val Asp Val Ser 1035	Leu Tyr Phe Leu Val 1040
25	Phe Val Phe Il	e Tyr Leu M 1045	Met Ser Tyr Ile Ser 1050	Asn Phe Glu Asp Met 1055
30	Leu Leu Thr Il 106		le Ile Gln Ile Pro 1065	Cys Ala Val Gly Tyr 1070
25	Ser Phe Ser Le 1075	u Ile Phe M	Met Thr Tyr Val Ile 1080	Ser Phe Ile Phe Arg 1085
35	Lys Gly Arg Ly 1090		_ = = = = = = = = = = = = = = = = = = =	Cys Phe Tyr Val Val 1100
40	1105	1110	1115	Ile Phe Glu Ser Asp 1120
45	Ile Pro Phe Il	e Phe Thr E 1125	Phe Leu Ile Pro Pro 1130	Ala Thr Met Ile Gly 1135
	114	0	1145	Ser Leu Phe Ser Glu 1150
50	1155	-	1160	Leu Ile Pro Phe Leu 1165
55	His Phe Ile Il			Leu Glu Trp Lys Phe 1180
	Gly Lys Lys Se	er Met Arg 1	Lys Asp Pro Phe Phe	Arg Ile Ser Pro Arg

	1185	1190	1195	1200
5	Ser Ser Asp V	al Cys Gln Asn Pro 1205	o Glu Glu Pro Glu Gly 1210	Glu Asp Glu 1215
10	Asp Val Gln M		g Thr Ala Asn Ala Leu 1225	Asn Ser Thr 1230
	Asn Phe Asp G	lu Lys Pro Val Ile 1240	e Ile Ala Ser Cys Leu 0 1245	_
15	Tyr Ala Gly Ly 1250	ys Arg Lys Gly Cy: 1255	s Phe Ser Lys Arg Lys 1260	Asn Lys Ile
20	Ala Thr Arg A	sn Val Ser Phe Cy: 1270	s Val Arg Lys Gly Glu 1275	Val Leu Gly 1280
	Leu Leu Gly H	is Asn Gly Ala Gly 1285	y Lys Ser Thr Ser Ile 1290	Lys Val Ile 1295
25	Thr Gly Asp T		a Gly Gln Val Leu Leu 1305	Lys Gly Ser 1310
30	Gly Gly Gly A 1315	sp Ala Leu Glu Pho 1320	e Leu Gly Tyr Cys Pro 0 1325	
	Ala Leu Trp P. 1330	ro Asn Leu Thr Va 1335	l Arg Gln His Leu Glu 1340	Val Tyr Ala
35	Ala Val Lys G 1345	ly Leu Arg Lys Gly 1350	y Asp Ala Glu Val Ala 1355	lle Thr Arg
40	Leu Val Asp A	la Leu Lys Leu Gli 1365	n Asp Gln Leu Lys Ser 1370	Pro Val Lys 1375
		lu Gly Ile Lys Ar 80	g Lys Leu Cys Phe Val 1385	Leu Ser Ile 1390
45	Leu Gly Asn P	ro Ser Val Val Le 140	u Leu Asp Glu Pro Sex 0 1405	
50	Asp Pro Glu G 1410	ly Gln Gln Gln Me 1415	t Trp Gln Ala Ile Arg 1420	, Ala Thr Phe
55	Arg Asn Thr G	lu Arg Gly Ala Le 1430	u Leu Thr Thr His Tyr 1435	r Met Ala Glu 1440
55	Ala Glu Ala V	Val Cys Asp Arg Va	al Ala Ile Met Val Ser	Gly Arg Leu

	144	45	1450	1455
5	Arg Cys Ile Gly So	er Ile Gln His Le 146		Phe Gly Lys Asp 1470
10	Tyr Leu Leu Glu Me 1475	Met Lys Val Lys As 1480		Val Glu Pro Leu 485
	His Ala Glu Ile Lo 1490	eu Arg Leu Phe Pi 1495	o Gln Ala Ala 1500	Arg Gln Glu Arg
15	Tyr Ser Ser Leu M 1505	Met Val Tyr Lys Lo 1510	eu Pro Val Glu 1515	Asp Val Gln Pro 1520
20		525	1530	1535
	Leu Glu Glu Tyr S 1540	15	45	1550
25	Glu Leu Ser Lys G 1555	1560	1	L565
30	Pro Ser Val Lys T 1570	1575	1580	P10
35	<210> 50 <211> 1279 <212> PRT <213> Homo sapier	ns		
40	<400> 50 Met Asp Leu Glu (Gly Asp Arg Asn G 5	Cly Gly Ala Lys 10	Lys Lys Asn Phe 15
45	Phe Lys Leu Asn A	Asn Lys Ser Glu I	Lys Asp Lys Lys 25	Glu Lys Lys Pro 30
50	Thr Val Ser Val 3	Phe Ser Met Phe A	Arg Tyr Ser Asn	Trp Leu Asp Lys 45
	50	Val Gly Thr Leu <i>I</i> 55	60)
55	Leu Pro Leu Met : 65	Met Leu Val Phe 0 70	Gly Glu Met Thr 75	Asp Ile Phe Ala 80

5	Asn	Ala	Gly	Asn	Leu 85	Glu	Asp	Leu	Met	Ser 90	Asn	Ile	Thr	Asn	Arg 95	Ser
	Asp	Ile	Asn	Asp 100	Thr	Gly	Phe	Phe	Met 105	Asn	Leu	Glu	Glu	Asp 110	Met	Thr
10	Arg	Tyr	Ala 115	Туг	Tyr	Туг	Ser	Gly 120	Ile	Gly	Ala	Gly	Val 125	Leu	Val	Ala
15	Ala	Туг 130	Ile	Gln	Val	Ser	Phe 135	Trp	Cys	Leu	Ala	Ala 140	Gly	Arg	Gln	Ile
	His 145	Lys	Ile	Arg	Lys	Gln 150	Phe	Phe	His	Ala	Ile 155	Met	Arg	Gln	Glu	Ile 160
20	Gly	Trp	Phe	Asp	Va1 165	His	Asp	Val	Gly	Glu 170	Leu	Asn	Thr	Arg	Leu 175	Thr
25	Asp	Asp	Val	Ser 180	Lys	Ile	Asn	Glu	Gly 185	Ile	Gly	Asp	Lys	Ile 190	Gly	Met
	Phe	Phe	Gln 195	Ser	Met	Ala	Thr	Phe 200	Phe	Thr	Gly	Phe	Ile 205	Val	Gly	Phe
30	Thr	Arg 210	Gly	Trp	Lys	Leu	Thr 215	Leu	Val	Ile	Leu	Ala 220	Ile	Ser	Pro	Val
35	Leu 225	Gly	Leu	Ser	Ala	Ala 230	Val	Trp	Ala	Lys	Ile 235	Leu	Ser	Ser	Phe	Thr 240
_	Asp	Lys	Glu	Leu	Leu 245	Ala	Туr	Ala	Lys	Ala 250	Gly	Ala	Val	Ala	Glu 255	Glu
40	Val	Leu	Ala	Ala 260		Arg	Thr	Val	Ile 265		Phe	Gly	Gly	Gln 270	Lys	Lys
45	Glu	Leu	Glu 275		Tyr	Asn	Lys	Asn 280		Glu	Glu	Ala	Lys 285		Ile	Gly
50	Ile	Lys 290	_	Ala	Ile	Thr	Ala 295		Ile	Ser	Ile	Gly 300		Ala	Phe	Leu
	Leu 305		Tyr	Ala	Ser	Туг 310		Leu	Ala	Phe	Trp 315		Gly	Thr	Thr	Leu 320
55	Val	Leu	Ser	. Glà	Glu 325	_	Ser	Ile	e Gly	Gln 330		Leu	Thr	Val	Phe 335	Ser

5	Val	Leu	Ile	Gly 340	Ala	Phe	Ser	Val	Gly 345	Gln	Ala	Ser	Pro	Ser 350	Ile	Glu
	Ala	Phe	Ala 355	Asn	Ala	Arg	Gly	Ala 360	Ala	Tyr	Glu	Ile	Phe 365	Lys	Ile	Ile
10	Asp	Asn 370	Lys	Pro	Ser	Ile	Asp 375	Ser	Tyr	Ser	Lys	Ser 380	Gly	His	Lys	Pro
15	Asp 385	Asn	Ile	Lys	Gly	Asn 390	Leu	Glu	Phe	Arg	Asn 395	Val	His	Phe	Ser	Tyr 400
	Pro	Ser	Arg	Lys	Glu 405	Val	Lys	Ile	Leu	Lys 410	Gly	Leu	Asn	Leu	Lys 415	Val
20	Gln	Ser	Gly	Gln 420	Thr	Val	Ala	Leu	Val 425	Gly	Asn	Ser	Gly	Суs 430	Gly	Lys
25	Ser	Thr	Thr 435	Val	Gln	Leu	Met	Gln 440	Arg	Leu	Tyr	Asp	Pro 445	Thr	Glu	Gly
	Met	Val 450	Ser	Val	Asp	Gly	Gln 455	Asp	Ile	Arg	Thr	11e 460	Asn	Val	Arg	Phe
30	Leu 465	Arg	Glu	Ile	Ile	Gly 470	Val	Val	Ser	Gln	Glu 475	Pro	Val	Leu	Phe	Ala 480
35	Thr	Thr	Ile	Ala	Glu 485	Asn	Ile	Arg	Tyr	Gly 490	Arg	Glu	Asn	Val	Thr 495	Met
40	Asp	Glu	Ile	Glu 500	Lys	Ala	Val	Lys	Glu 505		Asn	Ala	Tyr	Asp 510	Phe	Ile
40	Met	Lys	Leu 515		His	Lys	Phe	Asp 520		Leu	Val	Gly	Glu 525	_	Gly	Ala
45	Gln	Leu 530		Gly	Gly	Gln	Ъуs 535		. Arg	Ile	Ala	Ile 540		Arg	Ala	Leu
50	Val 545	_	Asn	Pro	Lys	11e 550		. Leu	Leu	Asp	61u 555		Thi	Ser	Ala	Leu 560
	Asp	Thr	Glu	Ser	Glu 565		Val	. Val	Gln	Val		Leu	Asp	Lys	575	Arg
55	Lys	Gly	Arg	Thr 580		Ile	· Val	l Ile	Ala 585		Arg	Let	ı Sei	Thi 590		Arg

5	Asn	Ala	Asp 595	Val	Ile :	Ala		Phe 600	Asp	Asp (Gly '		Ile ' 605	Val	Glu	Lys
·		Asn 610	His	Asp	Glu :		Met 615	Lys	Glu	Lys		Ile 620	Tyr	Phe	Lys	Leu
10	Val 625	Thr	Met	Gln		Ala 630	Gly	Asn	Glu	Val	G1u 635	Leu	Glu	Asn	Ala	Ala 640
15	Asp	Glu	Ser	Lys	Ser 645	Glu	Ile	Asp	Ala	Leu 650	Glu	Met	Ser	Ser	Asn 655	Asp
	Ser	Arg	Ser	Ser 660	Leu	Ile	Arg	Lys	Arg 665	Ser	Thr	Arg	Arg	Ser 670	Val	Arg
20	Gly	Ser	Gln 675	Ala	Gln	Asp	Arg	Lys 680	Leu	Ser	Thr	Lys	Glu 685	Ala	Leu	Asp
25	Glu	Ser 690	Ile	Pro	Pro	Val	Ser 695	Phe	Trp	Arg	Ile	Met 700	Lys	Leu	Asn	Leu
	Thr 705	Glu	Тгр	Pro	Tyr	Phe 710	Val	Val	Gly	Val	Phe 715	Cys	Ala	Ile	Ile	720
30	Gly	Gly	Leu	Gln	Pro 725	Ala	Phe	Ala	Ile	Ile 730		Ser	Lys	Ile	735	Gly
35	Val	Phe	Thr	Arg 740	Ile	Asp	Asp	Pro	Glu 745		Lys	Arg	Gln	Asn 750		Asn
40	Leu	Phe	Ser 755		Leu	Phe	Leu	760		Gly	Ile	Ile	Ser 765		: Ile	e Thr
	Phe	770		Gln	Gly	Phe	775		Gly	' Lys	: Ala	780		Ile	e Lei	ı Thr
45	Lys 785		J Lev	Arg	Туг	790		L Ph∈	e Arg	g Ser	795		a Arg	Glı	n Ası	9 Val 800
50	Ser	Tr	Phe	e Asp	Asr 805) Lys	s Ası	Thi	810		/ Ala	a Lev	ı Th	r Th:	r Arg 5
	Lei	ı Ala	a Ası	1 Asg 820		a Ala	a Glı	n Vai	l Ly:		y Ala	a Ile	e Gly	y Se. 83	_	g Leu
55	Ala	a Va	1 Ile 83		r Gli	n Ası	n Il	e Ala 84		n Lei	u Gly	y Th	r Gl; 84		e I1	e Ile

5	er Phe Ile Tyr Gly Trp Gln 850 855	Leu Thr Leu Leu Leu 860	Leu Ala Ile Val
	ro Ile Ile Ala Ile Ala Gly	Val Val Glu Met Lys	Met Leu Ser Gly
	65 870	875	880
10	ln Ala Leu Lys Asp Lys Lys	Glu Leu Glu Gly Ser	Gly Lys Ile Ala
	885	890	895
15	hr Glu Ala Ile Glu Asn Phe	Arg Thr Val Val Ser	Leu Thr Gln Glu
	900	905	910
	ln Lys Phe Glu His Met Tyr	Ala Gln Ser Leu Gln	Val Pro Tyr Arg
	915	920	925
20	sn Ser Leu Arg Lys Ala His 930 935	Ile Phe Gly Ile Thr 940	Phe Ser Phe Thr
25	ln Ala Met Met Tyr Phe Ser 45 950	Tyr Ala Gly Cys Phe 955	Arg Phe Gly Ala 960
30	yr Leu Val Ala His Lys Leu	Met Ser Phe Glu Asp	Val Leu Leu Val
	965	970	975
	he Ser Ala Val Val Phe Gly	Ala Met Ala Val Gly	Gln Val Ser Ser
	980	985	990
35	he Ala Pro Asp Tyr Ala Lys 995		Ala His Ile Ile 1005
40	et Ile Ile Glu Lys Thr Pro 1010 1015	Leu Ile Asp Ser Tyr 1020	Ser Thr Glu Gly
	eu Met Pro Asn Thr Leu Glu	Gly Asn Val Thr Phe	Gly Glu Val Val
	025 1030	1035	1040
45	he Asn Tyr Pro Thr Arg Pro	Asp Ile Pro Val Leu	Gln Gly Leu Ser
	1045	1050	1055
50	eu Glu Val Lys Lys Gly Gln	Thr Leu Ala Leu Val	Gly Ser Ser Gly
	1060	1065	1070
	ys Gly Lys Ser Thr Val Val 1075		Phe Tyr Asp Pro 1085
55	eu Ala Gly Lys Val Leu Leu 1090 1095		

5	Val Gln Trp Leu Arg Ala His Leu Gly Ile Val Ser Gln Glu Pro Ile 1105 1110 1115 1120
	Leu Phe Asp Cys Ser Ile Ala Glu Asn Ile Ala Tyr Gly Asp Asn Ser 1125 1130 1135
10	Arg Val Val Ser Gln Glu Glu Ile Val Arg Ala Ala Lys Glu Ala Asn 1140 1145 1150
15	Ile His Ala Phe Ile Glu Ser Leu Pro Asn Lys Tyr Ser Thr Lys Val 1155 1160 1165
	Gly Asp Lys Gly Thr Gln Leu Ser Gly Gly Gln Lys Gln Arg Ile Ala 1170 1175 1180
20	Ile Ala Arg Ala Leu Val Arg Gln Pro His Ile Leu Leu Leu Asp Glu 1185 1190 1195 1200
25	Ala Thr Ser Ala Leu Asp Thr Glu Ser Glu Lys Val Val Gln Glu Ala 1205 1210 1215
<i>30</i>	Leu Asp Lys Ala Arg Glu Gly Arg Thr Cys Ile Val Ile Ala His Arg 1220 1225 1230
•	Leu Ser Thr Ile Gln Asn Ala Asp Leu Ile Val Val Phe Gln Asn Gly 1235 1240 1245
35	Arg Val Lys Glu His Gly Thr His Gln Gln Leu Leu Ala Gln Lys Gly 1250 1255 1260
40	Ile Tyr Phe Ser Met Val Ser Val Gln Ala Gly Thr Lys Arg Gln 1265 1270 1275
	<210> 51
45	<211> 808 <212> PRT <213> Homo sapiens
50	<400> 51 Met Ala Glu Leu Leu Ala Ser Ala Gly Ser Ala Cys Ser Trp Asp Phe
	1 5 10 15 Pro Arg Ala Pro Pro Ser Phe Pro Pro Pro Ala Ala Ser Arg Gly Gly
55	20 25 30

	Leu Gly	Gly Thr 35	Arg :	Ser F	he A	Arg 40	Pro	His i	Arg	Gly .	Ala 45	Glu	Ser	Pro
5	Arg Pro 50	Gly Arg	Asp 2	Arg A	Asp (55	Gly	Val	Arg ¹	Val	Pro 60	Met .	Ala	Ser	Ser
10	Arg Cys 65	Pro Ala	Pro .	Arg (Gly (Cys	Arg	Cys	Leu 75	Pro	Gly	Ala	Ser	Leu 80
	Ala Trp	Leu Gly	Thr 85	Val I	Leu 1	Leu	Leu	Leu 90	Ala	Asp	Trp	Val	Leu 95	Leu
15	Arg Thr	Ala Leu 100		Arg I	Ile	Phe	Ser 105	Leu	Leu	Val	Pro	Thr 110	Ala	Leu
20	Pro Leu	Leu Arg	Val	Trp 1		Val 120	Gly	Leu	Ser	Arg	Trp 125	Ala	Val	Leu
95	Trp Leu 130	Gly Ala	Cys	_	Val 135	Leu	Arg	Ala	Thr	Val 140	Gly	Ser	Lys	Ser
25	Glu Asn 145	Ala Gly	Ala	Gln (150	Gly	Trp	Leu	Ala	Ala 155	Leu	Lys	Pro	Leu	Ala 160
30	Ala Ala	Leu Gly	Leu 165	Ala	Leu	Pro	Gly	Leu 170	Ala	Leu	Phe	Arg	G1u 175	Leu
35	Ile Ser	Trp Gl ₃		Pro	Gly	Ser	Ala 185	Asp	Ser	Thr	Arg	Leu 190	Leu	His
	Trp Gly	Ser His	Pro	Thr	Ala	Phe 200	Val	Val	Ser	Tyr	Ala 205	Ala	Ala	Leu
40	Pro Ala 210	a Ala Ala)	a Leu	Trp	His 215	Lys	Leu	Gly	Ser	Leu 220	Trp	Val	Pro	Gly
45	Gly Gla 225	n Gly Gly	y Ser	Gly 230				Arg			Leu	Gly	Cys	Leu 240
	Gly Se	r Glu Th	r Arg 245	-	Leu	Ser	Leu	Phe 250		Val	Leu	Val	Val 255	
50	Ser Se	r Leu Gly 26		Met	Ala	Ile	Pro 265		Phe	Thr	Gly	270		Thr
55	Asp Tr	p Ile Le 275	u Gln	Asp	Gly	Ser 280		Asp	Thr	Phe	285		, Asr	ı Leu

	Thr	Leu 290	Met	Ser	Ile	Leu	Thr 295	Ile	Ala	Ser	Ala	Val 300	Leu	Glu	Phe	Val
5	Gly 305	Asp	Gly	Ile	Туг	Asn 310	Asn	Thr	Met	Gly	His 315	Val	His	Ser	His	Leu 320
10	Gln	Gly	Glu	Val	Phe 325	Gly	Ala	Val	Leu	Arg 330	Gln	Glu	Thr	Glu	Phe 335	Phe
15	Gln	Gln	Asn	Gln 340	Thr	Gly	Asn	Ile	Met 345	Ser	Arg	Val	Thr	Glu 350	Asp	Thr
	Ser	Thr	Leu 355	Ser	Asp	Ser	Leu	Ser 360	Glu	Asn	Leu	Ser	Leu 365	Phe	Leu	Trp
20	Tyr	Leu 370	Val	Arg	Gly	Leu	Cys 375	Leu	Leu	Gly	Ile	Met 380	Leu	Trp	Gly	Ser
25	Val 385	Ser	Leu	Thr	Met	Val 390	Thr	Leu	Ile	Thr	Leu 395	Pro	Leu	Leu	Phe	Leu 400
					405					Gln 410					415	
30	٠			420					425	Val				430		
35			435					440		Asn			445			
		450					455			Lys		460				
40	465					470				Thr	475					480
45					485					Gly 490					495	
50				500					505	Thr				510		
30			515					520		Leu			525			
55	Gln	Lys 530	Ala	Val	Gly	Ser	Ser 535		Lys	Ile	Phe	Glu 540	Tyr	Leu	Asp	Arg

	Thr 545	Pro	Arg	Cys	Pro	Pro 550	Ser	Gly	Leu	Leu	Thr 555	Pro	Leu	His	Leu	Glu 560
5	Gly	Leu	Val	Gln	Phe 565	Gln	Asp	Val	Ser	Phe 570	Ala	Tyr	Pro	Asn	Arg 575	Pro
10	Asp	Val	Leu	Val 580	Leu	Gln	Gly	Leu	Thr 585	Phe	Thr	Leu	Arg	Pro 590	Gly	Glu
15	Val	Thr	Ala 595	Leu	Val	Gly	Pro	Asn 600	Gly	Ser	Gly	Lys	Ser 605	Thr	Val	Ala
15	Ala	Leu 610	Leu	Gln	Asn	Leu	Tyr 615	Gln	Pro	Thr	Gly	Gly 620	Gln	Leu	Leu	Leu
20	Asp 625	Gly	Lys	Pro	Leu	Pro 630	Gln	Tyr	Glu	His	Arg 635	Tyr	Leu	His	Arg	Gln 640
<i>2</i> 5	Val	Ala	Ala	Val	Gly 645	Gln	Glu	Pro	Gln	Val 650	Phe	Gly	Arg	Ser	Leu 655	Gln
	Glu	Asn	Ile	Ala 660	Tyr	Gly	Leu	Thr	Gln 665	Lys	Pro	Thr	Met	Glu 670	Glu	Ile
30	Thr	Ala	Ala 675	Ala	Val	Lys	Ser	Gly 680	Ala	His	Ser	Phe	11e 685	Ser	Gly	Leu
35	Pro	Gln 690	Gly	Tyr	Asp	Thr	Glu 695	Val	Asp	Glu	Ala	Gly 700	Ser	Gln	Leu	Ser
	Gly 705	Gly	Gln	Arg	Gln	Ala 710	Val	Ala	Leu	Ala	Arg 715	Ala	Leu	Ile	Arg	Lys 720
40	Pro	Cys	Val	Leu	Ile 725	Leu	Asp	Asp	Ala	Thr 730	Ser	Ala	Leu	Asp	Ala 735	Asn
45	Ser	Gln	Leu	Gln 740		Glu	Gln	Leu	Leu 745	_	Glu	Ser	Pro	Glu 750	_	Tyr
	Ser	Arg	Ser 755		Leu	Leu	Ile	Thr 760		His	Leu	Ser	Leu 765		Glu	Gln
50	Ala	Asp 770		Ile	Leu	Phe	Leu 775		Gly	Gly	Ala	780		Glu	Gly	Gly
55	Thr 785		Glm	Gln	Leu	790		Lys	Lys	: Gly	795		Trp	Ala	Met	Val 800

Gln Ala Pro Ala Asp Ala Pro Glu 805

5	
10	<210> 52 <211> 808 <212> PRT <213> Homo sapiens
15	<pre><400> 52 Met Ala Glu Leu Leu Ala Ser Ala Gly Ser Ala Cys Ser Trp Asp Phe 1</pre>
20	Pro Arg Ala Pro Pro Ser Phe Pro Pro Pro Ala Ala Ser Arg Gly Gly 20 25 30 Leu Gly Gly Thr Arg Ser Phe Arg Pro His Arg Gly Ala Glu Ser Pro 35 40 45
25	Arg Pro Gly Arg Asp Arg Asp Gly Val Arg Val Pro Met Ala Ser Ser 50 55 60
30	Arg Cys Pro Ala Pro Arg Gly Cys Arg Cys Leu Pro Gly Ala Ser Leu 65 70 75 80 Ala Trp Leu Gly Thr Val Leu Leu Leu Leu Ala Asp Trp Val Leu Leu
35	85 90 95 Arg Thr Ala Leu Pro Arg Ile Phe Ser Leu Leu Val Pro Thr Ala Leu 100 105 110
40	Pro Leu Leu Arg Val Trp Ala Val Gly Leu Ser Arg Trp Ala Val Leu 115 120 125
45	Trp Leu Gly Ala Cys Gly Val Leu Arg Ala Thr Val Gly Ser Lys Ser 130 135 140 Glu Asn Ala Gly Ala Gln Gly Trp Leu Ala Ala Leu Lys Pro Leu Ala
50	Ala Ala Leu Gly Leu Ala Leu Pro Gly Leu Ala Leu Phe Arg Glu Leu 165 170 175
55	Ile Ser Trp Gly Ala Pro Gly Ser Ala Asp Ser Thr Arg Leu Leu His 180 185 190 Trp Cly Ser His Bro Thr Ala Pho Val Val Ser Tyr Ala Ala Ala Leu
	Trp Gly Ser His Pro Thr Ala Phe Val Val Ser Tyr Ala Ala Ala Leu

			195					200					205			
5	Pro	Ala 210	Ala	Ala	Leu	Trp	His 215	Lys	Leu	Gly	Ser	Leu 220	Trp	Val	Pro	Gly
10	Gly 225	Gln	G1y	Gly	Ser	Gly 230	Asn	Pro	Val	Arg	Arg 235	Leu	Leu	Gly	Cys	Leu 240
	Gly	Ser	Glu	Thr	Arg 245	Arg	Leu	Ser	Leu	Phe 250	Leu	Val	Leu	Val	Val 255	Leu
15	Ser	Ser	Leu	Gly 260	Glu	Met	Ala	Ile	Pro 265	Phe	Phe	Thr	Gly	Arg 270	Leu	Thr
20	Asp	Trp	Ile 275	Leu	Gln	Asp	Gly	Ser 280	Ala	Asp	Thr	Phe	Thr 285	Arg	Asn	Leu
	Thr	Leu 290	Met	Ser	Ile	Leu	Thr 295	Ile	Ala	Ser	Ala	Val 300	Leu	Glu	Phe	Val
25	Gly 305	Asp	Gly	Ile	Tyr	Asn 310	Asn	Thr	Met	Gly	His 315	Val	His	Ser	His	Leu 320
30	Gln	Gly	Glu	Val	Phe 325	Gly	Ala	Val	Leu	Arg 330	Gln	Glu	Thr	Glu	Phe 335	Phe
	Gln	Gln	Asn	Gln 340	Thr	Gly	Asn	Ile	Met 345	Ser	Arg	Val	Thr	Glu 350	Asp	Thr
35	Ser	Thr	Leu 355	Ser	Asp	Ser	Leu	Ser 360	Glu	Asn	Leu	Ser	Leu 365	Phe	Leu	Trp
40	Tyr	Leu 370	Val	Arg	Gly	Leu	Cys 375	Leu	Leu	Gly	Ile	Met 380	Leu	Trp	Gly	Ser
	Val 385	Ser	Leu	Thr	Met	Val 390	Thr	Leu	Ile	Thr	Leu 395	Pro	Leu	Leu	Phe	Leu 400
45	Leu	Pro	Lys	Lys	Val 405	Gly	Lys	Trp	Tyr	Gln 410	Leu	Leu	Glu	Val	Gln 415	
50	Arg	Glu	Ser	Leu 420	Ala	Lys	Ser	Ser	Gln 425	Val	Ala	Ile	Glu	Ala 430	Leu	Ser
	Ala	Met	Pro 435	Thr	Val	Arg	Ser	Phe 440	Ala	Asn	Glu	Glu	Gly 445	Glu	Ala	Gln
55	Lys	Phe	Arg	Glu	Lys	Leu	Gln	Glu	Ile	Lys	Thr	Leu	Asn	Gln	Lys	Glu

		450					455					460				
5	Ala 465	Val	Ala	Tyr	Ala	Val 470	Asn	Ser	Trp	Thr	Thr 475	Ser	Ile	Ser	Gly	Met 480
10	Leu	Leu	Lys	Val	Gly 485	Ile	Leu	Tyr	Ile	Gly 490	Gly	Gln	Leu	Val	Thr 495	Ser
	Gly	Ala	Val	Ser 500	Ser	Gly	Asn	Leu	Val 505	Thr	Phe	Val	Leu	Tyr 510	Gln	Met
15	Gln	Phe	Thr 515	Gln	Ala	Val	Glu	Val 520	Leu	Leu	Ser	Ile	Туг 525	Pro	Arg	Val
20	Gln	Lys 530	Ala	Val	Gly	Ser	Ser 535	Glu	Lys	Ile	Phe	Glu 540	Tyr	Leu	Asp	Arg
	Thr 545	Pro	Arg	Cys	Pro	Pro 550	Ser	Gly	Leu	Leu	Thr 555	Pro	Leu	His	Leu	Glu 560
25	Gly	Leu	Val	Gln	Phe 565	G1n	Asp	Val	Ser	Phe 570	Ala	Tyr	Pro	Asn	Arg 575	Pro
30	Asp	Val	Leu	Val 580	Leu	Gln	Gly	Leu	Thr 585	Phe	Thr	Leu	Arg	Pro 590	Gly	Glu
	Val	Thr	Ala 595	Leu	Val	Gly	Pro	Asn 600	Gly	Ser	Gly	Lys	Ser 605	Thr	Val	Ala
35	Ala	Leu 610	Leu	Gln	Asn	Leu	Tyr 615	Gln	Pro	Thr	Gly	Gly 620	Gln	Leu	Leu	Leu
40	Asp 625	Gly	Lys	Pro	Leu	Pro 630	Gln	Tyr	Glu	His	Arg 635	Tyr	Leu	His	Arg	Gln 640
	Val	Ala	Ala	Val	Gly 645	Gln	Glu	Pro	Gln	Val 650	Phe	Gly	Arg	Ser	Leu 655	Gln
45	Glu	Asn	Ile	Ala 660	Туг	Gly	Leu	Thr	Gln 665	Lys	Pro	Thr	Met	Glu 670		Ile
50	Thr	Ala	Ala 675	Ala	Val	Lys	Ser	Gly 680	Ala	His	Ser	Phe	Ile 685	Ser	Gly	Leu
	Pro	Gln 690	Gly	Туг	Asp	Thr	Glu 695	Val	Asp	Glu	Ala	Gly 700	Ser	Gln	Leu	Ser
55	Gly	Gly	Gln	Arg	Gln	Ala	Val	Ala	Leu	Ala	Arg	Ala	Leu	Ile	Arg	Lys

	705	710	715 720
5	Pro Cys Val Leu Il 72		Ser Ala Leu Asp Ala Asn 735
10	Ser Gln Leu Gln Va 740	al Glu Gln Leu Leu Tyr 745	Glu Ser Pro Glu Arg Tyr 750
	Ser Arg Ser Val Le 755	eu Leu Ile Thr Gln His 760	Leu Ser Leu Val Glu Gln 765
15	Ala Asp His Ile Le 770	eu Phe Leu Glu Gly Gly 775	Ala Ile Arg Glu Gly Gly 780
20	Thr His Gln Gln Le	eu Met Glu Lys Lys Gly 790	Cys Tyr Trp Ala Met Val 795 800
	Gln Ala Pro Ala As	sp Ala Pro Glu 05	
25			
	<210> 53 <211> 1232		
30	<212> PRT <213> Homo sapiens	s	
	<400> 53		
35	Met Asp Leu Glu Al 1	Ia Ala Lys Asn Gly Thr 5 10	Ala Trp Arg Pro Thr Ser 15
40	Ala Glu Gly Asp Pl 20	he Glu Leu Gly Ile Ser 25	Ser Lys Gln Lys Arg Lys 30
	Lys Thr Lys Thr Va 35	Val Lys Met Ile Gly Val 40	Leu Thr Leu Phe Arg Tyr 45
45	Ser Asp Trp Gln A	usp Lys Leu Phe Met Ser 55	Leu Gly Thr Ile Met Ala
50	Ile Ala His Gly S	Ser Gly Leu Pro Leu Met 70	Met Ile Val Phe Gly Glu 75 80
	" -	Phe Val Asp Thr Ala Gly 85 90	Asn Phe Ser Phe Pro Val
55	Asn Phe Ser Leu S 100	Ser Leu Leu Asn Pro Gly 105	Lys Ile Leu Glu Glu Glu 110

5	Met	Thr	Arg 115	Tyr	Ala	Туг	Tyr	Туг 120	Ser	Gly	Leu	Gly	Ala 125	Gly	Val	Leu
	Val	Ala 130	Ala	Tyr	Ile	Gln	Va1 135	Ser	Phe	Trp	Thr	Leu 140	Ala	Ala	Gly	Arg
10	Gln 145	Ile	Arg	Lys	Ile	Arg 150	Gln	Lys	Phe	Phe	His 155	Ala	Ile	Leu	Arg	Gln 160
15	Glu	Ile	Gly	Trp	Phe 165	Asp	Ile	Asn	Asp	Thr 170	Thr	Glu	Leu	Asn	Thr 175	Arg
	Leu	Thr	Asp	Asp 180	Ile	Ser	Lys	Ile	Ser 185	Glu	Gly	Ile	Gly	Asp 190	Lys	Val
20	Gly	Met	Phe 195	Phe	Gln	Ala	Val	Ala 200	Thr	Phe	Phe	Ala	Gly 205	Phe	Ile	Val
25	Gly	Phe 210	Ile	Arg	Gly	Тгр	Lys 215	Leu	Thr	Leu	Val	11e 220	Met	Ala	Ile	Ser
30	Pro 225	Ile	Leu	Gly	Leu	Ser 230	Ala	Ala	Val	Trp	Ala 235	Lys	Ile	Leu	Ser	Ala 240
	Phe	Ser	Asp	Lys	Glu 245	Leu	Ala	Ala	Tyr	Ala 250	Lys	Ala	Gly	Ala	Val 255	Ala
35	Glu	Glu	Ala	Leu 260	Gly	Ala	Ile	Arg	Thr 265	Val	Ile	Ala	Phe	Gly 270	Gly	Gln
40	Asn	Lys	Glu 275	Leu	Glu	Arg	Tyr	Gln 280	Lys	His	Leu	Glu	Asn 285	Ala	Lys	Glu
	Ile	Gly 290	Ile	Lys	Lys	Ala	Ile 295	Ser	Ala	Asn	Ile	Ser 300	Met	Gly	Ile	Ala
45	Phe 305	Leu	Leu	Ile	Туr	Ala 310	Ser	Tyr	Ala	Leu	Ala 315	Phe	Trp	Tyr	Gly	Ser 320
50	Thr	Leu	Val	Ile	Ser 325	Lys	Glu	Tyr	Thr	Ile 330	Gly	Asn	Ala	Met	Thr 335	Va1
	Phe	Phe	Ser	Ile 340	Leu	Ile	Gly	Ala	Phe 345	Ser	Val	Gly	Gln	Ala 350	Ala	Pro
55	Суѕ	Ile	Asp 355		Phe	Ala	Asn	Ala 360	Arg	Gly	Ala	Ala	Туг 365		Ile	Phe

5	Asp	Ile 370	Ile	Asp	Asn	Asn	Pro 375	Lys	Ile	Asp	Ser	Phe 380	Ser	Glu	Arg	G1y
	His 385	Lys	Pro	Asp	Ser	Ile 390	Lys	Gly	Asn	Leu	Glu 395	Phe	Asn	qeA	Val	His 400
10	Phe	Ser	Tyr	Pro	Ser 405	Arg	Ala	Asn	Val	Lys 410	Ile	Leu	Lys	Gly	Leu 415	Asn
15	Leu	Lys	Val	Gln 420	Ser	Gly	Gln	Thr	Val 425	Ala	Leu	Val	Gly	Ser 430	Ser	Gly
	Cys	Gly	Lys 435	Ser	Thr	Thr	Val	Gln 440	Leu	Ile	Gln	Arg	Leu 445	Tyr	Asp	Pro
20	Asp	Glu 450	Gly	Thr	Ile	Asn	Ile 455	Asp	Gly	Gln	Asp	Ile 460	Arg	Asn	Phe	Asn
25	Val 465	Asn	Tyr	Leu	Arg	Glu 470	Ile	Ile	Gly	Val	Val 475	Ser	Gln	Glu	Pro	Val 480
30	Leu	Phe	Ser	Thr	Thr 485	Ile	Ala	Glu	Asn	Ile 490	Суз	Туг	Gly	Arg	Gly 495	Asn
	Val	Thr	Met	Asp 500	Glu	Ile	Lys	Lys	Ala 505	Val	Lys	Glu	Ala	Asn 510	Ala	Tyr
35	Glu	Phe	Ile 515	Met	Lys	Leu	Pro	Gln 520	Lys	Phe	Asp	Thr	Leu 525	Val	Gly	Glu
40	Arg	Gly 530	Ala	Gln	Leu	Ser	Gly 535	Gly	Gln	Lys	Gln	Arg 540	Ile	Ala	Ile	Ala
	Arg 545		Leu	Val	Arg	Asn 550		Lys	Ile	Leu	Leu 555		Asp	Glu	Ala	Thr 560
45	Ser	Ala	Leu	Asp	Thr 565	Glu	Ser	Glu	Ala	Glu 570		Gln	Ala	Ala	Leu 575	Asp
50	Lys	Ala	Arg	Glu 580		Arg	Thr	Thr	Ile 585		Ile	Ala	His	Arg 590		Ser
	Thr	· Val	Arg 595		Ala	Asp	Val	ile 600		Gly	Phe	Glu	Asp 605	_	Val	Ile
55	Val	Glu 610		Gly	Ser	His	Ser 615		Leu	Met	Lys	620		Gly	Val	. Tyr

5	Phe 625	Lys	Leu	Val	Asn	Met 630	Gln	Thr	Ser	Gly	Ser 635	Gln	Ile	Gln	Ser	Glu 640
	Glu	Phe	Glu	Leu	Asn 645	Asp	Glu	Lys	Ala	Ala 650	Thr	Arg	Met	Ala	Pro 655	Asn
10	Gly	Trp	Lys	Ser 660	Arg	Leu	Phe	Arg	His 665	Ser	Thr	Gln	Lys	Asn 670	Leu	Lys
15	Asn	Ser	Gln 675	Met	Cys	Gln	Lys	Ser 680	Leu	Asp	Val	G1u	Thr 685	Asp	Gly	Leu
	Glu	Ala 690	Asn	Val	Pro	Pro	Val 695	Ser	Phe	Leu	Lys	Val 700	Leu	Lys	Leu	Asn
20	Lys 705	Thr	Glu	Trp	Pro	Туr 710	Phe	Val	Val	Gly	Thr 715	Val	Cys	Ala	Ile	Ala 720
25	Asn	Gly	Gly	Leu	Gln 725	Pro	Ala	Phe	Ser	Val 730	Ile	Phe	Ser	Glu	Ile 735	Ile
30	Ala	Ile	Phe	Gly 740	Pro	Gly	Asp	Asp	Ala 745	Val	Lys	Gln	Gln	Lys 750	Cys	Asn
30	Ile	Phe	Ser 755	Leu	Ile	Phe	Leu	Phe 760	Leu	Gly	Ile	Ile	Ser 765	Phe	Phe	Thr
35	Phe	Phe 770	Leu	Gln	Gly	Phe	Thr 775	Phe	Gly	Lys	Ala	Gly 780	Glu	Ile	Leu	Thr
40	Arg 785	Arg	Leu	Arg	Ser	Met 790	Ala	Phe	Lys	Ala	Met 795	Leu	Arg	Gln	Asp	Met 800
	Ser	Trp	Phe	Asp	Asp 805	His	Lys	Asn	Ser	Thr 810	Gly	Ala	Leu	Ser	Thr 815	Arg
45	Leu	Ala	Thr	Asp 820	Ala	Ala		Va1		Gly	Ala	Thr	Gly	Thr 830	Arg	Leu
50	Ala	Leu	I1e 835	Ala	Gln	Asn	Ile	Ala 840	Asn	Leu	Gly	Thr	Gly 845	Ile	Ile	Ile
	Ser	Phe 850		Tyr	Gly	Trp	Gln 855	Leu	Thr	Leu	Leu	Leu 860		Ala	Val	Val
55	Pro 865		Ile	Ala	Val	Ser 870		Ile	Val	Glu	Met 875		Leu	Leu	Ala	Gly 880

5	Asn Ala Lys Arg Asp Lys Lys Glu Leu Glu Ala Ala Gly Lys Ile Al 885 890 895	а
	Thr Glu Ala Ile Glu Asn Ile Arg Thr Val Val Ser Leu Thr Gln Gl 900 905 910	u
10	Arg Lys Phe Glu Ser Met Tyr Val Glu Lys Leu Tyr Gly Pro Tyr Ar 915 920 925	g
15	Val Phe Ser Ala Ile Val Phe Gly Ala Val Ala Leu Gly His Ala Se 930 935 940	r
	Ser Phe Ala Pro Asp Tyr Ala Lys Ala Lys Leu Ser Ala Ala His Le 945 950 955 96	
20	Phe Met Leu Phe Glu Arg Gln Pro Leu Ile Asp Ser Tyr Ser Glu Gl 965 970 975	Lu
25	Gly Leu Lys Pro Asp Lys Phe Glu Gly Asn Ile Thr Phe Asn Glu Va 980 985 990	ıl
<i>30</i>	Val Phe Asn Tyr Pro Thr Arg Ala Asn Val Pro Val Leu Gln Gly Le 995 1000 1005	∍u
•	Ser Leu Glu Val Lys Lys Gly Gln Thr Leu Ala Leu Val Gly Ser Se 1010 1015 1020	er:
35	Gly Cys Gly Lys Ser Thr Val Val Gln Leu Leu Glu Arg Phe Tyr As 1025 1030 1035 104	
40	Pro Leu Ala Gly Thr Val Leu Leu Asp Gly Gln Glu Ala Lys Lys Le 1045 1050 1055	≘u
	Asn Val Gln Trp Leu Arg Ala Gln Leu Gly Ile Val Ser Gln Glu Pr 1060 1065 1070	ro
45	Ile Leu Phe Asp Cys Ser Ile Ala Glu Asn Ile Ala Tyr Gly Asp As 1075 1080 1085	sn
50	Ser Arg Val Val Ser Gln Asp Glu Ile Val Ser Ala Ala Lys Ala Al 1090 1095 1100	la
	Asn Ile His Pro Phe Ile Glu Thr Leu Pro His Lys Tyr Glu Thr A 1105 1110 1115 11:	
55	Val Gly Asp Lys Gly Thr Gln Leu Ser Gly Gly Gln Lys Gln Arg I 1125 1130 1135	le

	Ala I	le Ala	Arg 1140	Ala	Leu	Ile		Gln 1145	Pro	Gln	Ile			Leu	Asp
5			1140				-	1145				J	150		
	Glu A	la Thr 1155		Ala	Leu		Thr 160	Glu	Ser	Glu		Val 165	Val	Gln	Glu
10		eu Asp 70	Lys	Ala		Glu 175	Gly	Arg	Thr		Ile 180	Val	Ile	Ala	His
15	Arg L 1185	eu Ser	Thr		Gln 190	Asn	Ala	Asp		Ile 195	Val	Val	Phe		Asn 200
	Gly A	rg Val		Glu L205	His	Gly	Thr		Gln 1210	Gln	Leu	Leu		Gln .215	Lys
20	Gly I	le Tyr	Phe 1220	Ser	Met	Val		Val 1225	Gln	Ala	Gly		Gln 1230	Asn	Leu
25															
30	<210><211><211><212><213>	842	sapie	ens											
35	<400> Met V	54 al Thr	· Val	Glv	Asn	Tvr	Cvs	Glu	Ala	Glu	Glv	Pro	Val	G1v	Pro
	1			5		-3-	•,, •		10	0.10	CLJ	110	var	15	110
40	Ala T	rp Met	Gln 20	Asp	Gly	Leu	Ser	Pro 25	Суз	Phe	Phe	Phe	Thr 30	Leu	Val
45	Pro S	Ser Thr		Met	Ala	Leu	Gly 40	Thr	Leu	Ala	Leu	Val 45	Leu	Ala	Leu
	Pro C	ys Arg 50	Arg	Arg	Glu	Arg 55	Pro	Ala	Gly	Ala	Asp 60	Ser	Leu	Ser	Trp
50	Gly A	ıla Gly	Pro	Arg	Ile 70	Ser	Pro	Tyr	Val	Leu 75	Gln	Leu	Leu	Leu	Ala 80
55	Thr L	eu Glr	Ala	Ala 85	Leu	Pro	Leu	Ala	Gly 90	Leu	Ala	Gly	Arg	Val 95	Gly

	Thr	Ala	Arg	Gly 100	Ala	Pro	Leu	Pro	Ser 105	Tyr	Leu	Leu	Leu	Ala 110	Ser	Val
5	Leu	Glu	Ser 115	Leu	Ala	Gly	Ala	Cys 120	Gly	Leu	Trp	Leu	Leu 125	Val	Val	Glu
10	Arg	Ser 130	Gln	Ala	Arg	Gln	Arg 135	Leu	Ala	Met	Gly	Ile 140	Trp	Ile	Lys	Phe
15	Arg 145	His	Ser	Pro	Gly	Leu 150	Leu	Leu	Leu	Trp	Thr 155	Val	Ala	Phe	Ala	Ala 160
	Glu	Asn	Leu	Ala	Leu 165	Val	Ser	Trp	Asn	Ser 170	Pro	Gln	Trp	Trp	Trp 175	Ala
20	Arg	Ala	Asp	Leu 180	Gly	Gln	Gln	Val	Gln 185	Phe	Ser	Leu	Trp	Val 190	Leu	Arg
25	Tyr	Val	Val 195	Ser	Gly	Gly	Leu	Phe 200	Val	Leu	Gly	Leu	Trp 205	Ala	Pro	Gly
	Leu	Arg 210	Pro	Gln	Ser	Tyr	Thr 215	Leu	Gln	Val	His	Glu 220	Glu	Asp	Gln	Asp
30	Val 225	Glu	Arg	Ser	Gln	Val 230	Arg	Ser	Ala	Ala	Gln 235	Gln	Ser	Thr	Trp	Arg 240
35	Asp	Phe	Gly	Arg	Lys 245	Leu	Arg	Leu	Leu	Ser 250	Gly	Tyr	Leu	Trp	Pro 255	Arg
	Gly	Ser	Pro	Ala 260	Leu	Gln	Leu	Val	Val 265	Leu	Ile	Cys	Leu	Gly 270	Leu	Met
40	Gly	Leu	Glu 275	Arg	Ala	Leu	Asn	Val 280	Leu	Val	Pro	Ile	Phe 285	Туг	Arg	Asn
45	Ile	Val 290	Asn	Leu	Leu	Thr	Glu 295	Lys	Ala	Pro	Trp	Asn 300	Ser	Leu	Ala	Trp
	Thr 305	Val	Thr	Ser	Tyr	Val 310	Phe	Leu	Lys	Phe	Leu 315	Gln	Gly	Gly	Gly	Thr 320
50	Gly	Ser	Thr	Gly	Phe 325	Val	Ser	Asn	Leu	Arg 330	Thr	Phe	Leu	Trp	Ile 335	Arg
55	Val	Gln	Gln	Phe 340	Thr	Ser	Arg	Arg	Val 345	Glu	Leu	Leu	Ile	Phe 350	Ser	His

	Leu	His	Glu 355	Leu	Ser	Leu	Arg	Trp 360	His	Leu	Gly	Arg	Arg 365	Thr	Gly	Glu
5	Val	Leu 370	Arg	Ile	Ala	Asp	Arg 375	Gly	Thr	Ser	Ser	Va1 380	Thr	Gly	Leu	Leu
10	Ser 385	Tyr	Leu	Val	Phe	Asn 390	Val	Ile	Pro	Thr	Leu 395	Ala	Asp	Ile	Ile	Ile 400
15	Gly	Ile	Ile	Tyr	Phe 405	Ser	Met	Phe	Phe	Asn 410	Ala	Trp	Phe	Gly	Leu 415	Ile
	Val	Phe	Leu	Cys 420	Met	Ser	Leu	Tyr	Leu 425	Thr	Leu	Thr	Ile	Val 430	Val	Thr
20		Trp	435					440					445			
25		Arg 450					455					460				
	465	Tyr				470					475					480
30		Lys			485					490					495	
35		Asn		500					505					510		
40		Leu	515					520					52 5			_
40		Tyr 530					535					540				
45	545	Trp				550					555					560
50		Glu			565					570					57 5	
		Pro		580					585					590		
55	Glu	Asn	Val 595	His	Phe	Ser	Tyr	Ala 600	Asp	Gly	Arg	Glu	Thr 605	Leu	Gln	Asp

	Val	Ser 610	Phe	Thr	Val	Met	Pro 615	Gly	Gln	Thr	Leu	Ala 620	Leu	Val	Gly	Pro
5	Ser 625	Gly	Ala	Gly	Lys	Ser 630	Thr	Ile	Leu	Arg	Leu 635	Leu	Phe	Arg	Phe	Tyr 640
10	Asp	Ile	Ser	Ser	Gly 645	Суѕ	Ile	Arg	Ile	Asp 650	Gly	Gln	Asp	Ile	Ser 655	Gln
15	Val	Thr	Gln	Ala 660	Ser	Leu	Arg	Ser	His 665	Ile	Gly	Val	Val	Pro 670	Gln	Asp
	Thr	Val	Leu 675	Phe	Asn	Asp	Thr	Ile 680	Ala	Asp	Asn	Ile	Arg 685	Tyr	Gly	Arg
20	Val	Thr 690	Ala	Gly	Asn	Asp	Glu 695	Val	Glu	Ala	Ala	Ala 700	Gln	Ala	Ala	Gly
25	Ile 705	His	Asp	Ala	Ile	Met 710	Ala	Phe	Pro	Glu	Gly 715	Tyr	Arg	Thr	Gln	Val 720
	Gly	Glu	Arg	Gly	Leu 725	Lys	Leu	Ser	Gly	Gly 730	Glu	Lys	Gln	Arg	Val 735	Ala
30	Ile	Ala	Arg	Thr 740	Ile	Leu	Lys	Ala	Pro 745	Gly	Ile	Ile	Leu	Leu 750	Asp	Glu
35			755					760					11e 765			
	Leu	Ala 770	Lys	Val	Cys	Ala	Asn 775	Arg	Thr	Thr	Ile	Val 780	Val	Ala	His	Arg
40	785					790					795		Ile			800
45					805					810			Ser		815	
50				820					825			Gln	Glu	Glu 830	Thr	Ser
	Glu	Asp	Thr 835	Lys	Pro	Gln	Thr	Met 840	Glu	Arg						

<210> 55

55

5	<212	L> 79 2> PI 3> Ho	RT	sapie	ens											
10		D> 55 Ala		Leu	Ala 5	Met	His	Ser	Trp	Arg 10	Trp	Ala	Ala	Ala	Ala 15	Ala
	Ala	Phe	Glu	Lys 20	Arg	Arg	His	Ser	Ala 25	Ile	Leu	Ile	Arg	Pro 30	Leu	Val
15	Ser	Val	Ser 35	Gly	Ser	Gly	Pro	Gln 40	Trp	Arg	Pro	His	Gln 45	Leu	Gly	Ala
20	Leu	Gly 50	Thr	Ala	Arg	Ala	Туг 55	Gln	Ile	Pro	Glu	Ser 60	Leu	Lys	Ser	Ile
	Thr 65	Trp	Gln	Arg	Leu	Gly 70	Lys	Gly	Asn	Ser	Gly 75	Gln	Phe	Leu	Asp	Ala 80
25	Ala	Lys	Ala	Leu	Gln 85	Val	Trp	Pro	Leu	Ile 90	Glu	Lys	Arg	Thr	Cys 95	Trp
30	His	Gly	His	Ala 100	Gly	Gly	Gly	Leu	His 105	Thr	Asp	Pro	Lys	Glu 110	Gly	Leu
	Lys	Asp	Val 115	Asp	Thr	Arg	Lys	11e 120	Ile	Lys	Ala	Met	Leu 125	Ser	Tyr	Val
35	Trp	Pro 130	Lys	Asp	Arg	Pro	Asp 135	Leu	Arg	Ala	Arg	Val 140	Pro	Ile	Ser	Leu
40	Gly 145	Phe	Leu	Gly	Gly	Ala 150	Lys	Ala	Met	Asn	11e 155	Val	Val	Pro	Phe	Met 160
	Phe	Lys	Tyr	Ala	Val 165	Asp	Ser	Leu	Asn	Gln 170	Met	Ser	Gly	Asn	Met 175	Leu
45	Asn	Leu	Ser	Asp 180	Ala	Pro	Asn	Thr	Val 185	Ala	Thr	Met	Ala	Thr 190	Ala	Val
50	Leu	Ile	Gly 195	Tyr	Gly	Val	Ser	Arg 200	Ala	Gly	Ala	Ala	Phe 205	Phe	Asn	Glu
EE.	Val	Arg 210	Asn	Ala	Val	Phe	Gly 215	Lys	Val	Ala	Gln	Asn 220		Ile	Arg	Arg
55	Ile	Ala	Lys	Asn	Val	Phe	Leu	His	Leu	His	Asn	Leu	Asp	Leu	Gly	Phe

	225				230					235					240
5	His Le	Ser	Arg	G1n 245	Thr	Gly	Ala	Leu	Ser 250	Lys	Ala	Ile	Asp	Arg 255	Gly
10	Thr Ar	g Gly	Ile 260	Ser	Phe	Val	Leu	Ser 265	Ala	Leu	Val	Phe	Asn 270	Pro	Leu
	Pro Asi	His 275	Val	Glu	Val	Met	Leu 280	Leu	Val	Ser	Gly	Val 285	Leu	Tyr	Tyr
15	Lys Cy 29		Ala	Gln	Leu	Leu 295	Gly	Asn	Leu	Gly	Thr 300	Leu	Gly	Thr	Tyr
20 .	Thr Al.	ı Phe	Thr	Val	Ala 310	Val	Thr	Arg	Trp	Arg 315	Thr	Arg	Phe	Arg	Leu 320
	Glu Il	e Asp	Gln	Ala 325	Asp	Asn	Asp	Ala	Gly 330	Asn	Ala	Ala	Ile	Asp 335	Ser
25	Leu Le	a Asn	Туг 340	Glu	Thr	Val	Lys	Tyr 345	Phe	Asn	Asn	Glu	Arg 350	Tyr	Glu
30	Ala Gl	a Arg 355	Tyr	Asp	Gly	Phe	Leu 360	Lys	Thr	Tyr	Glu	Thr 365	Ala	Ser	Leu
	Lys Se 37		Ser	Thr	Leu	Ala 375	Met	Leu	Asn	Phe	Gly 380	Gln	Ser	Ala	Ile
35	Phe Se 385	r Val	Gly	Leu	Thr 390	Ala	Ile	Met	Val	Leu 395	Ala	Ser	Gln	Gly	Ile 400
40	Val Al	a Gly	Thr	Leu 405	Thr	Val	Gly	Asp	Leu 410	Val	Met	Val	Asn	Gly 415	Leu
	Leu Ph	e Gln	Leu 420	Ser	Leu	Pro	Leu	Asn 425		Leu	Gly	Thr	Val 430		Arg
45	Glu Th	r Arg 435	Gln	Ala	Leu	Ile	Asp 440		Asn	Thr	Leu	Phe 445		Leu	Leu
50	Lys Va		Thr	Gln	Ile	Lys 455		Lys	Val	Met	Ala 460		Pro	Leu	Gln
55	Ile Th	r Pro	Gln	Thr	Ala 470	Thr	Val	Ala	Phe	Asp 475		Val	His	Phe	Glu 480
55	Tyr Il	e Glu	Gly	Gln	Lys	Val	Leu	Ser	Gly	Ile	Ser	Phe	Glu	Val	Pro

			485		490	495
5	Ala Gl	y Lys Lys 500		Ile Val Gly 505	Gly Ser Gly Ser	Gly Lys Ser 510
10	Thr Il	e Val Arg 515	Leu Leu	Phe Arg Phe 520	Tyr Glu Pro Gln 525	Lys Gly Ser
	Ile Ty		Gly Gln	Asn Ile Gln 535	Asp Val Ser Leu 540	Glu Ser Leu
15	Arg Ar	g Ala Val	Gly Val 550	Val Pro Gln	Asp Ala Val Leu 555	Phe His Asn 560
20	Thr Il	e Tyr Tyr	Asn Leu 565	Leu Tyr Gly	Asn Ile Ser Ala 570	Ser Pro Glu 575
	Glu Va	l Tyr Ala 580		Lys Leu Ala 585	Gly Leu His Asp	Ala Ile Leu 590
25	Arg Me	t Pro His 595	Gly Tyr	Asp Thr Gln 600	Val Gly Glu Arg 605	Gly Leu Lys
30	Leu Se 61		Glu Lys	Gln Arg Val 615	Ala Ile Ala Arg 620	Ala Ile Leu
	Lys As 625	p Pro Pro	Val Ile 630		Glu Ala Thr Ser 635	Ser Leu Asp 640
35	Ser Il	e Thr Glu	Glu Thr 645	lle Leu Gly	Ala Met Lys Asp 650	Val Val Lys 655
40	His Ar	g Thr Sei 660		: Ile Ala His 665	Arg Leu Ser Thr	Val Val Asp 670
45	Ala As	p Glu Ile 675	e Ile Val	. Leu Asp Gln 680	Gly Lys Val Ala 685	
•	Thr Hi		Leu Leu	Ala Asn Pro 695	His Ser Ile Tyr 700	Ser Glu Met
50	Trp Hi 705	s Thr Gli	n Ser Ser 710		Asn His Asp Asn 715	Pro Lys Trp 720
55	Glu Al	a Lys Ly:	S Glu Asr 725	n Ile Ser Lys	Glu Glu Glu Arg 730	Lys Lys Leu 735
	Gln Gl	u Glu Ilo	e Val Asr	n Ser Val Lys	Gly Cys Gly Asn	Cys Ser Cys

5	
10	<210> 56
10	<211> 718
	<212> PRT
45	<213> Homo sapiens
15	<400> 56
	Met Leu Val His Leu Phe Arg Val Gly Ile Arg Gly Gly Pro Phe Pro 1 5 10 15
20	Gly Arg Leu Leu Pro Pro Leu Arg Phe Gln Thr Phe Ser Ala Val Arg 20 25 30
	20 23
25	Tyr Ser Asp Gly Tyr Arg Ser Ser Ser Leu Leu Arg Ala Val Ala His 35 40 45
23	35 40 45
	Leu Arg Ser Gln Leu Trp Ala His Leu Pro Arg Ala Pro Leu Ala Pro 50 55 60
30	50 55 60
	Arg Trp Ser Pro Ser Ala Trp Cys Trp Val Gly Gly Ala Leu Leu Gly 65 70 75 80
	65 70 75 80
35	Pro Met Val Leu Ser Lys His Pro His Leu Cys Leu Val Ala Leu Cys 85 90 95
	85 90 95
	Glu Ala Glu Glu Ala Pro Pro Ala Ser Ser Thr Pro His Val Val Gly 100 105 110
40	100 105 110
	Ser Arg Phe Asn Trp Lys Leu Phe Trp Gln Phe Leu His Pro His Leu 115 120 125
	115 120 125
45	Leu Val Leu Gly Val Ala Val Val Leu Ala Leu Gly Ala Ala Leu Val 130 135 140
	130 135 140
	Asn Val Gln Ile Pro Leu Leu Leu Gly Gln Leu Val Lys Val Val Ala 145 150 155 160
50	145 150 155 160
	Lys Tyr Thr Arg Asp His Val Gly Ser Phe Met Thr Glu Ser Gln Asn
	165 170 175
55	Leu Ser Thr His Leu Leu Ile Leu Tyr Gly Val Gln Gly Leu Leu Thr
	180 185 190

5	Phe	Gly	Туг 195	Leu	Va1	Leu	Leu	Ser 200	His	Val	Gly	Glu	Arg 205	Met	Ala	Val
	Asp	Met 210	Arg	Arg	Ala	Leu	Phe 215	Ser	Ser	Leu	Leu	Arg 220	Gln	Asn	Ile	Thr
10	Phe 225	Phe	Asp	Ala	Asn	Lys 230	Thr	Gly	Gln	Leu	Val 235	Ser	Arg	Leu	Thr	Thr 240
15	Asp	Val	Gln	Glu	Phe 245	Lys	Ser	Ser	Phe	Lys 250	Leu	Val	Ile	Ser	Gln 255	Gly
	Leu	Arg	Ser	Cys 260	Ser	Gln	Val	Ala	Gly 265	Cys	Leu	Val	Ser	Leu 270	Ser	Met
20	Leu	Ser	Thr 275	Arg	Leu	Thr	Leu	Leu 280	Leu	Met	Val	Ala	Thr 285	Pro	Ala	Leu
25	Met	Gly 290	Val	Gly	Thr	Leu	Met 295	Gly	Ser	Gly	Leu	Arg 300	Lys	Leu	Ser	Arg
	Gln 305	Cys	Gln	Glu	His	Ile 310	Ala	Arg	Ala	Met	Gly 315	Val	Ala	Asp	Glu	Ala 320
30	Leu	Gly	Asn	Val	Arg 325	Thr	Val	Arg	Ala	Leu 330	Ala	Met	Glu	Gln	Arg 335	Glu
35	Glu	Glu	Arg	туr 340	Gly	Ala	Glu	Leu	Glu 345	Ala	Cys	Arg	Cys	Arg 350	Ala	Glu
40	Glu	Leu	Gly 355	Arg	Gly	Ile	Ala	Leu 360	Phe	Gln	Gly	Leu	Ser 365	Asn	Ile	Ala
•	Phe	Asn 370	Суѕ	Met	Val	Leu	Gly 375	Thr	Leu	Phe	Ile	Gly 380	Gly	Ser	Leu	Val
45	Ala 385	Gly	Gln	Gln	Leu	Thr 390	Gly	Gly	Asp	Leu	Met 395	Ser	Phe	Leu	Val	Ala 400
50	Ser	Gln	Thr	Val	Gln 405	Arg	Ser	Met	Ala	Asn 410	Leu	Ser	Val	Leu	Phe 415	Gly
	Gln	Val	Val	Arg 420	Gly	Leu	Ser	Ala	Gly 425	Ala	Arg	Val	Phe	Glu 430	Tyr	Met
55	Ala	Leu	Asn 435	Pro	Cys	Ile	Pro	Leu 440	Ser	Gly	Gly	Cys	Cys 445	Val	Pro	Lys

5	Glu	Gln 450	Leu	Arg	Gly	Ser	Val 455	Thr	Phe	Gln	Asn	Val 460	Cys	Phe	Ser	Tyr
	Pro 465	Суз	Arg	Pro	Gly	Phe 470	Glu	Val	Leu	Lys	Asp 475	Phe	Thr	Leu	Thr	Leu 480
10	Pro	Pro	Gly	Lys	Ile 485	Val	Ala	Leu	Val	Gly 490	Gln	Ser	Gly	Gly	Gly 495	Lys
15	Thr	Thr	Val	Ala 500	Ser	Leu	Leu	Glu	Arg 505	Phe	Tyr	Asp	Pro	Thr 510	Ala	Gly
	Val	Val	Met 515	Leu	Asp	Gly	Arg	Asp 520	Leu	Arg	Thr	Leu	Asp 525	Pro	Ser	Trp
20	Leu	Arg 530	Gly	Gln	Val	Val	Gly 535	Phe	Ile	Ser	Gln	Glu 540	Pro	Val	Leu	Phe
25	Gly 545	Thr	Thr	Ile	Met	Glu 550	Asn	Ile	Arg	Phe	Gly 555	Lys	Leu	Glu	Ala	Ser 560
30	Asp	Glu	Glu	Val	Туг 565	Thr	Ala	Ala	Arg	Glu 570	Ala	Asn	Ala	His	G1u 575	Phe
30	Ile	Thr	Ser	Phe 580	Pro	Glu	Gly	Tyr	Asn 585	Thr	Val	Val	Gly	Glu 590	Arg	Gly
35	Thr	Thr	Leu 595	Ser	Gly	Gly	Gln	Lys 600	Gln	Arg	Leu	Ala	11e 605	Ala	Arg	Ala
40	Leu	Ile 610	Lys	Gln	Pro	Thr	Val 615	Leu	Ile	Leu	Asp	Glu 620	Ala	Thr	Ser	Ala
	Leu 625	Asp	Ala	Glu	Ser	Glu 630	Arg	Val	Val	Gln	Glu 635	Ala	Leu	Asp	Arg	Ala 640
45	Ser	Ala	Gly	Arg	Thr 645		Leu	Val		Ala 650				Ser	Thr 655	Val
50	Arg	Gly	Ala	His 660	Суз	Ile	Val	Val	Met 665	Ala	Asp	Gly	Arg	Val 670	Trp	Glu
	Ala	Gly	Thr 675	His	Glu	Glu	Leu	Leu 680	Lys	Lys	Gly	Gly	Leu 685		Ala	Glu
55	Leu	Ile 690	Arg	Arg	Gln	Ala	Leu 695	Asp	Ala	Pro	Arg	Thr 700		Ala	Pro	Pro

5	Pro Lys Lys Pro Glu Gly Pro Arg Ser His Gln His Lys Ser 705 710 715
10	<210> 57 <211> 723 <212> PRT <213> Homo sapiens
15	<pre><400> 57 Met Arg Leu Trp Lys Ala Val Val Thr Leu Ala Phe Met Ser Val 1 5 10 15</pre>
20	Asp Ile Cys Val Thr Thr Ala Ile Tyr Val Phe Ser His Leu Asp Arg 20 25 30
25	Ser Leu Leu Glu Asp Ile Arg His Phe Asn Ile Phe Asp Ser Val Leu 35 40 45
	Asp Leu Trp Ala Ala Cys Leu Tyr Arg Ser Cys Leu Leu Cly Ala 50 55 60
30	Thr Ile Gly Val Ala Lys Asn Ser Ala Leu Gly Pro Arg Arg Leu Arg 65 70 75 80
35	Ala Ser Trp Leu Val Ile Thr Leu Val Cys Leu Phe Val Gly Ile Tyr 85 90 95
	Ala Met Val Lys Leu Leu Leu Phe Ser Glu Val Arg Arg Pro Ile Arg 100 105 110
40	Asp Pro Trp Phe Trp Ala Leu Phe Val Trp Thr Tyr Ile Ser Leu Gly 115 120 125
45	Ala Ser Phe Leu Leu Trp Trp Leu Leu Ser Thr Val Arg Pro Gly Thr 130 135 140
	Gln Ala Leu Glu Pro Gly Ala Ala Thr Glu Ala Glu Gly Phe Pro Gly 145 150 155 160
50	Ser Gly Arg Pro Pro Pro Glu Gln Ala Ser Gly Ala Thr Leu Gln Lys 165 170 175
<i>55</i>	Leu Leu Ser Tyr Thr Lys Pro Asp Val Ala Phe Leu Val Ala Ala Ser 180 185 190

	Phe	Phe	Leu 195	Ile	Val	Ala	Ala	Leu 200	Gly	Glu	Thr	Phe	Leu 205	Pro	Tyr	Tyr
5	Thr	Gly 210	Arg	Ala	Ile	Asp	Gly 215	Ile	Val	Ile	Gln	Lys 220	Ser	Met	Asp	Gln
10	Phe 225	Ser	Thr	Ala	Val	Val 230	Ile	Val	Cys	Leu	Leu 235	Ala	Ile	Gly	Ser	Ser 240
	Phe	Ala	Ala	Gly	Ile 245	Arg	Gly	Gly	Ile	Phe 250	Thr	Leu	Ile	Phe	Ala 255	Arg
15	Leu	Asn	Ile	Arg 260	Leu	Arg	Asn	Cys	Leu 265	Phe	Arg	Ser	Leu	Val 270	Ser	Gln
20	Glu	Thr	Ser 275	Phe	Phe	Asp	Glu	Asn 280	Arg	Thr	Gly	Asp	Leu 285	Ile	Ser	Arg
25	Leu	Thr 290	Ser	Asp	Thr	Thr	Met 295	Val	Ser	Asp	Leu	Val 300	Ser	Gln	Asn	Ile
	Asn 305	Val	Phe	Leu	Arg	Asn 310		Val	Lys	Val	Thr 315	Gly	Val	Val	Val	Phe 320
30	Met	Phe	Ser	Leu	Ser 325	Trp	Gln	Leu	Ser	Leu 330	Val	Thr	Phe	Met	Gly 335	Phe
35	Pro	Ile	Ile	Met 340	Met	Val	Ser	Asn	Ile 345	Tyr	Gly	Lys	Tyr	Туг 350	Lys	Arg
	Leu	Ser	Lys 355	Glu	Val	Gln	Asn	Ala 360	Leu	Ala	Arg	Ala	Ser 365		Thr	Ala
40	Glu	Glu 370		Ile	Ser	Ala	Met 375	_	Thr	Val	Arg	Ser 380		Ala	Asn	Glu
45	Glu 385		Glu	Ala	Glu	Val 390	_	Leu	Arg	Lys	Leu 395		Gln	Val	Туг	400
	Leu	Asn	Arg	Lys	405		Ala	Ala	Tyr	Met 410	_	Туг	Val	Trp	Gly 415	Ser
50	G1y	Ser	Val	Gly 420		· Val	Туг	Ser	Gly 425		Met	: Gln	Gly	Val 430		Ala
55	Ala	Glu	Lys 435		. Phe	e Glı	ı Phe	11e 440	-	Arg	Glr	n Pro	Thr 445		: Val	l His

	Asp	Gly 450	Ser	Leu	Ala	Pro	Asp 455	His	Leu	Glu	Gly	Arg 460	Val	qzA	Phe	Glu
5	Asn 465	Val	Thr	Phe	Thr	Tyr 470	Arg	Thr	Arg	Pro	His 475	Thr	Gln	Val	Leu	Gln 480
10	Asn	Val	Ser	Phe	Ser 485	Leu	Ser	Pro	Gly	Lys 490	Val	Thr	Ala	Leu	Val 495	Gly
	Pro	Ser	Gly	Ser 500	Gly	Lys	Ser	Ser	Cys 505	Val	Asn	Ile	Leu	Glu 510	Asn	Phe
15	Tyr	Pro	Leu 515	Glu	Gly	Gly	Arg	Val 520	Leu	Leu	Asp	Gly	Lys 525	Pro	Ile	Ser
20	Ala	Туг 530	Asp	His	Lys	Туг	Leu 535	His	Arg	Val	Ile	Ser 540	Leu	Val	Ser	Gln
25	Glu 545	Pro	Val	Leu	Phe	Ala 550	Arg	Ser	Ile	Thr	Asp 555	Asn	Ile	Ser	Tyr	Gly 560
_	Leu	Pro	Thr	Val	Pro 565	Phe	Glu	Met	Val	Val 570	Glu	Ala	Ala	Gln	Lys 575	Ala
30	Asn	Ala	His	Gly 580	Phe	Ile	Met	Glu	Leu 585	Gln	Asp	Gly	Tyr	Ser 590	Thr	Glu
35	Thr	Gly	Glu 595	Lys	Gly	Ala	Gln	Leu 600	Ser	Gly	Gly	Gln	Lys 605	Gln	Arg	Val
	Ala	Met 610	Ala	Arg	Ala	Leu	Val 615	Arg	Asn	Pro	Pro	Val 620	Leu	Ile	Leu	Asp
40	Glu 625		Thr	Ser	Ala	Leu 630	Asp	Ala	Glu	Ser	Glu 635	Tyr	Leu	Ile	Gln	Gln 640
45	Ala	Ile	His	Gly	Asn 645		Gln	Lys	His		Val		Ile	Ile	Ala 655	
	Arg	Leu	Ser	Thr 660		Glu	His	Ala	Нis 665		Ile	Val	Val	Leu 670		Lys
50	G1y	Arg	Val 675		Gln	Gln	Gly	Thr 680		Gln	Gln	Leu	Leu 685		Gln	Gly
55	Gly	r Leu 690	_	Ala	Lys	Leu	val 695		Arg	, Gln	Met	: Leu 700	_	Leu	ı Glr	Pro

Ala Ala Asp Phe Thr Ala Gly His Asn Glu Pro Val Ala Asn Gly Ser

	705 710 715 720
5	His Lys Ala
10	
	<210> 58 <211> 738 <212> PRT
15	<213> Homo sapiens
	<pre><400> 58 Met Arg Gly Pro Pro Ala Trp Pro Leu Arg Leu Leu Glu Pro Pro Ser 1 5 10 15</pre>
20	Pro Ala Glu Pro Gly Arg Leu Leu Pro Val Ala Cys Val Trp Ala Ala 20 25 30
25	Ala Ser Arg Val Pro Gly Ser Leu Ser Pro Phe Thr Gly Leu Arg Pro 35 40 45
<i>30</i>	Ala Arg Leu Trp Gly Ala Gly Pro Ala Leu Leu Trp Gly Val Gly Ala 50 55 60
	Ala Arg Arg Trp Arg Ser Gly Cys Arg Gly Gly Gly Pro Gly Ala Ser 65 70 75 80
<i>35</i>	Arg Gly Val Leu Gly Leu Ala Arg Leu Leu Gly Leu Trp Ala Arg Gly 85 90 95
40	Pro Gly Ser Cys Arg Cys Gly Ala Phe Ala Gly Pro Gly Ala Pro Arg 100 105 110
	Leu Pro Arg Ala Arg Phe Pro Gly Gly Pro Ala Ala Ala Trp Ala 115 120 125
45	Gly Asp Glu Ala Trp Arg Arg Gly Pro Ala Ala Pro Pro Gly Asp Lys 130 135 140
50	Gly Arg Leu Arg Pro Ala Ala Ala Gly Leu Pro Glu Ala Arg Lys Leu 145 150 155 160
	Leu Gly Leu Ala Tyr Pro Glu Arg Arg Leu Ala Ala Ala Val Gly 165 170 175
55	Phe Leu Thr Met Ser Ser Val Ile Ser Met Ser Ala Pro Phe Phe Leu

				180					185					190		
5	Gly	Lys	Ile 195	Ile	Asp	Val	Ile	Туг 200	Thr	Asn	Pro	Thr	Val 205	Asp	Tyr	Ser
10	Asp	Asn 210	Leu	Thr	Arg	Leu	Cys 215	Leu	Gly	Leu	Ser	Ala 220	Val	Phe	Leu	Cys
	Gly 225	Ala	Ala	Ala	Asn	Ala 230	Ile	Arg	Val	Tyr	Leu 235	Met	Gln	Thr	Ser	Gly 240
15	Gln	Arg	Ile	Val	Asn 245	Arg	Leu	Arg	Thr	Ser 250	Leu	Phe	Ser	Ser	11e 255	Leu
20	Arg	Gln	Glu	Val 260	Ala	Phe	Phe	Asp	Lys 265	Thr	Arg	Thr	Gly	Glu 270	Leu	Ile
	Asn	Arg	Leu 275	Ser	Ser	qaA	Thr	Ala 280	Leu	Leu	Gly	Arg	Ser 285	Val	Thr	Glu
25	Asn	Leu 290	Ser	Asp	Gly	Leu	Arg 295	Ala	Gly	Ala	Gln	Ala 300	Ser	Val	Gly	lle
30	Ser 305	Met	Met	Phe	Phe	Val 310	Ser	Pro	Asn	Leu	Ala 315	Thr	Phe	Val	Leu	Ser 320
	Val	Val	Pro	Pro	Val 325	Ser	Ile	Ile	Ala	Val 330	Ile	Tyr	Gly	Arg	Tyr 335	
35	Arg	Lys	Leu	Thr 340	Lys	Val	Thr	Gln	Asp 345	Ser	Leu	Ala	Gln	Ala 350		Gln
40	Leu	Ala	Glu 355	Glu	Arg	Ile	Gly	Asn 360	Val	Arg	Thr	Val	Arg 365	Ala	Phe	Gly
	Lys	Glu 370	Met	Thr	Glu	Ile	Glu 375	Lys	Tyr	Ala	Ser	Lys 380		Asp	His	Val
45	Met 385		Leu	Ala	Arg	Lys 390		Ala	Val	Ala	Arg 395		Gly	Phe	Phe	Gly 400
50	Ala	Thr	Gly	Leu	Ser 405	_	Asn	Leu	Ile	Val 410		Ser	Val	Leu	1 Tyr 415	Lys
	Gly	Gly	Leu	Leu 420		Gly	Ser	Ala	His 425		Thr	Val	Gly	Glu 430		ser
55	Ser	Phe	Leu	Met	Туг	Ala	Phe	Trp	Val	Gly	Ile	Ser	Ile	: Gly	, Gl	, Leu

		435		440	445
5	Ser Ser 450		Ser Glu Let		Gly Ala Gly Gly Arg 460
	Leu Trp 465	Glu Leu	Leu Glu Arg 470	g Glu Pro Lys Leu 475	Pro Phe Asn Glu Gly 480
10	Val Ile	e Leu Asn	Glu Lys Set 485	Phe Gln Gly Ala 490	Leu Glu Phe Lys Asn 495
15	Val His	Phe Ala		a Arg Pro Glu Val 505	Pro Ile Phe Gln Asp 510
20	Phe Ser	Leu Ser 515	Ile Pro Se	r Gly Ser Val Thr 520	Ala Leu Val Gly Pro 525
	Ser Gly	_	Lys Ser Th		Leu Leu Arg Leu Tyr 540
25	Asn Pro	o Ala Ser	Gly Thr Il 550	e Ser Leu Asp Gly 555	His Asp Ile Arg Gln 560
<i>30</i>	Leu Ası	n Pro Val	Trp Leu Ar 565	g Ser Lys Ile Gly 570	Thr Val Ser Gln Glu 575
	Pro Ile	E Leu Phe 580		r Ile Ala Glu Asn 585	Ile Ala Tyr Gly Ala 590
35	Asp Asj	p Pro Ser 595	Ser Val Th	r Ala Glu Glu Ile 600	Gln Arg Val Ala Glu 605
40	Val Ala		a Val Ala Ph 61		Pro Gln Gly Phe Asn 620
	Thr Va	l Val Gly	y Glu Lys Gl 630	y Val Leu Leu Ser 635	Gly Gly Gln Lys Gln 640
45	Arg Il	e Ala Ile	e Ala Arg Al 645	a Leu Leu Lys Asn 650	Pro Lys Ile Leu Leu 655
50	Leu As	p Glu Ala 66		a Leu Asp Ala Glu 665	Asn Glu Tyr Leu Val 670
	Gln Gl	u Ala Le 675	u Asp Arg Le	eu Met Asp Gly Arg 680	Thr Val Leu Val Ile 685
55	Ala Hi	s Arg Le	u Ser Thr I	le Lys Asn Ala Asr	n Met Val Ala Val Leu

	690	695	700
5		Thr Glu Tyr Gly Lys His 710 715	
	Lys Pro Asn Gly Ile '	Tyr Arg Lys Leu Met Asn 730	Lys Gln Ser Phe Ile 735
10	Ser Ala		
15	-210, 50		
	<210> 59 <211> 1321 <212> PRT		
20	<213> Homo sapiens <400> 59		
25	Met Ser Asp Ser Val 1 5	Ile Leu Arg Ser Ile Lys 10	Lys Phe Gly Glu Glu 15
	Asn Asp Gly Phe Glu 20	Ser Asp Lys Ser Tyr Asn 25	Asn Asp Lys Lys Ser 30
30	Arg Leu Gln Asp Glu 35	Lys Lys Gly Asp Gly Val 40	Arg Val Gly Phe Phe 45
35	Gln Leu Phe Arg Phe 50	Ser Ser Ser Thr Asp Ile 55	e Trp Leu Met Phe Val 60
	Gly Ser Leu Cys Ala 65	Phe Leu His Gly Ile Ala	-
40	Leu Ile Phe Gly Thr 85	Met Thr Asp Val Phe Ile	e Asp Tyr Asp Val Glu 95
45	Leu Gln Glu Leu Gln 100	Ile Pro Gly Lys Ala Cys 105	s Val Asn Asn Thr Ile 110
	Val Trp Thr Asn Ser 115	Ser Leu Asn Gln Asn Met 120	t Thr Asn Gly Thr Arg 125
50	Cys Gly Leu Leu Asn 130	Ile Glu Ser Glu Met Ile 135	e Lys Phe Ala Ser Tyr 140
55	Tyr Ala Gly Ile Ala 145	Val Ala Val Leu Ile Th	

5	Cys	Phe	Trp	Val	Ile 165	Ala	Ala	Ala	Arg	Gln 170	Ile	Gln	Lys		Arg 175	Lys
	Phe	Tyr	Phe	Arg 180	Arg	Ile	Met	Arg	Met 185	Glu	Ile	Gly	Trp	Phe 190	Asp	Cys
10	Asn	Ser	Val 195	Gly	Glu	Leu	Asn	Thr 200	Arg	Phe	Ser	Asp	Asp 205	Ile	Asn	Lys
15	Ile	Asn 210	Asp	Ala	Ile	Ala	Asp 215	Gln	Met	Ala	Leu	Phe 220	Ile	Gln	Arg	Met
	Thr 225	Ser	Thr	Ile	Cys	Gly 230	Phe	Leu	Leu	Gly	Phe 235	Phe	Arg	Gly	Trp	Lys 240
20	Leu	Thr	Leu	Val	Ile 245	Ile	Ser	Val	Ser	Pro 250	Leu	Ile	Gly	Ile	Gly 255	Ala
25	Ala	Thr	Ile	Gly 260	Leu	Ser	Val	Ser	Lys 265	Phe	Thr	Asp	Tyr	Glu 270	Leu	Lys
	Ala	Tyr	Ala 275	Lys	Ala	Gly	Val	Val 280	Ala	Asp	Glu	Val	Ile 285	Ser	Ser	Met
30	Arg	Thr 290	Val	Ala	Ala	Phe	Gly 295	Gly	Glu	Lys	Arg	Glu 300	Val	Glu	Arg	Tyr
35	Glu 305	Lys	Asn	Leu	Val	Phe 310	Ala	Gln	Arg	Trp	Gly 315	Ile	Arg	Lys	Gly	Ile 320
	Val	Met	Gly	Phe	Phe 325	Thr	Gly	Phe	Val	Trp 330	Cys	Leu	Ile	Phe	Leu 335	Cys
40	Tyr	Ala	Val	Ala 340	Phe	Тгр	Tyr	Gly	Ser 345	Thr	Leu	Val	Leu	Asp 350	Glu	Gly
45	Glu	Tyr	Thr 355	Pro	Gly	Thr	Leu	Val 360	Gln	Ile	Phe	Leu	Ser 365	Val	Ile	Val
	Gly	Ala 370	Leu	Asn	Leu	Gly	Asn 375		Ser	Pro	Cys	Leu 380		Ala	Phe	Ala
50	Thr 385		Arg	Ala	Ala	Ala 390		Ser	Ile	Phe	Glu 395		Ile	Asp	Arg	Lys 400
55	Pro	Ile	Ile	Asp	Cys 405		Ser	Glu	Asp	Gly 410	-	Lys	Leu	Asp	Arg 415	Ile

5	Lys	Gly	Glu	Ile 420	G1u	Phe	His	Asn	Val 425	Thr	Phe	His	Tyr	Pro 430	Ser	Arg
	Pro	Glu	Val 435	Lys	Ile	Leu	Asn	Asp 440	Leu	Asn	Met		Ile 445	Lys	Pro	Gly
10	Glu	Met 450	Thr	Ala	Leu	Val	Gly 455	Pro	Ser	Gly	Ala	Gly 460	Lys	Ser	Thr	Ala
15	Leu 465	Gln	Leu	Ile	Gln	Arg 470	Phe	Tyr	Asp	Pro	Cys 475	Glu	Gly	Met	Val	Thr 480
	Val	Asp	Gly	His	Asp 485	Ile	Arg	Ser	Leu	Asn 490	Ile	Gln	Trp	Leu	Arg 495	Ąsp
20	Gln	Ile	Gly	Ile 500	Val	Glu	Gln	Glu	Pro 505	Val	Leu	Phe	Ser	Thr 510	Thr	Ile
25	Ala	Glu	Asn 515	Ile	Arg	Туг	Gly	Arg 520	Glu	Asp	Ala	Thr	Met 525	Glu	Asp	Ile
	Val	Gln 530	Ala	Ala	Lys	Glu	Ala 535	Asn	Ala	Tyr	Asn	Phe 540	Ile	Met	Asp	Leu
30	Pro 545	Gln	Gln	Phe	Asp	Thr 550	Leu	Val	Gly	Glu	Gly 555	Gly	Gly	Gln	Met	Ser 560
35	Gly	Gly	Gln	Lys	Gln 565	Arg	Val	Ala	Ile	Ala 570	Arg	Ala	Leu	Ile	Arg 575	Asn
	Pro	Lys	Ile	Leu 580	Leu	Leu	Asp	Met	Ala 585	Thr	Ser	Ala	Leu	Asp 590	Asn	Glu
40	Ser	Glu	Ala 595		Val	Gln	Glu	Val 600	Leu	Ser	Lys	Ile	Gln 605		Gly	His
45	Thr	Ile 610		Ser	Val	Ala	His 615	_	Leu	Ser	Thr	Val 620		Ala	Ala	Asp
50	Thr 625		lle	Gly	Phe	Glu 630		Gly	Thr	Ala	Val 635		Arg	Gly	Thr	His 640
50	Glu	Glu	. Leu	Leu	Glu 645		J Lys	Gly	Val	Tyr 650		Thr	Leu	Val	Thr 655	Leu
55	Glr	Ser	Glr	Gly 660		Glr	n Ala	Leu	Asn 665		Glu	Asp	Ile	670		Ala

5	Thr	Glu	Asp 675	Asp	Met	Leu	Ala	Arg 680	Thr	Phe	Ser	Arg	Gly 685	Ser	Tyr	Gln
	Asp	Ser 690	Leu	Arg	Ala	Ser	Ile 695	Arg	Gln	Arg	Ser	Lys 700	Ser	Gln	Leu	Ser
10	Tyr 705	Leu	Val	His	Glu	Pro 710	Pro	Leu	Ala	Val	Val 715	Asp	His	Lys	Ser	Thr 720
15	Tyr	Glu	Glu	Asp	Arg 725	Lys	Asp	Lys	Asp	Ile 730	Pro	Val	Gln	Glu	Glu 735	Val
	Glu	Pro	Ala	Pro 740	Val	Arg	Arg	Ile	Leu 745	Lys	Phe	Ser	Ala	Pro 750	Glu	Trp
20	Pro	Tyr	Met 755	Leu	Val	Gly	Ser	Val 760	Gly	Ala	Ala	Val	Asn 765	Gly	Thr	Val
25	Thr	Pro 770	Leu	Tyr	Ala	Phe	Leu 775	Phe	Ser	Gln	Ile	Leu 780	Gly	Thr	Phe	Ser
	Ile 785	Pro	Asp	Lys	Glu	G1u 790	Gln	Arg	Ser	Gln	Ile 795	Asn	Gly	Val	Cys	Leu 800
30	Leu	Phe	Val	Ala	Met 805	Gly	Cys	Val	Ser	Leu 810	Phe	Thr	Gln	Phe	Leu 815	Gln
35	Gly	Туr	Ala	Phe 820		Lys	Ser	Gly	Glu 825		Leu	Thr	Lys	Arg 830	Leu	Arg
	Lys	Phe	Gly 835		Arg	Ala	Met	Leu 840	Gly	Gln	Asp	Ile	Ala 845		Phe	Asp
40	Asp	Leu 850		Asn	Ser	Pro	Gly 855		Leu	Thr	Thr	Arg 860		Ala	Thr	Asp
45	Ala 865		Gln	Val	. Gln	G1y 870		Ala	Gly	Ser	Gln 875		Gly	Met	: Ile	Val 880
	Asn	Ser	Phe	Thr	885		Thr	Val	Ala	Met 890		: Ile	Ala	a Phe	895	Phe
50	Ser	Trp	Lys	900		Let	ı Val	Ile	909		Ph∈	Phe	e Pro	910		ı Ala
55	Lev	. Ser	Gly 915		a Thi	Glı	n Thi	920		t Lei	ı Thi	c Gly	7 Pho 92		a Sei	r Arg

5	Asp Lys Gln Ala Leu Glu Met Val Gly Gln Ile Thr Asn Glu Ala Leu 930 935 940
	Ser Asn Ile Arg Thr Val Ala Gly Ile Gly Lys Glu Arg Arg Phe Ile 945 950 955 960
10	Glu Ala Leu Glu Thr Glu Leu Glu Lys Pro Phe Lys Thr Ala Ile Gln 965 970 975
15	Lys Ala Asn Ile Tyr Gly Phe Cys Phe Ala Phe Ala Gln Cys Ile Met 980 985 990
	Phe Ile Ala Asn Ser Ala Ser Tyr Arg Tyr Gly Gly Tyr Leu Ile Ser 995 1000 1005
20	Asn Glu Gly Leu His Phe Ser Tyr Val Phe Arg Val Ile Ser Ala Val 1010 1015 1020
25	Val Leu Ser Ala Thr Ala Leu Gly Arg Ala Phe Ser Tyr Thr Pro Ser 1025 1030 1035 1040
	Tyr Ala Lys Ala Lys Ile Ser Ala Ala Arg Phe Phe Gln Leu Leu Asp 1045 1050 1055
30	Arg Gln Pro Pro Ile Ser Val Tyr Asn Thr Ala Gly Glu Lys Trp Asp 1060 1065 1070
35	Asn Phe Gln Gly Lys Ile Asp Phe Val Asp Cys Lys Phe Thr Tyr Pro 1075 1080 1085
40	Ser Arg Pro Asp Ser Gln Val Leu Asn Gly Leu Ser Val Ser Ile Ser 1090 1095 1100
	Pro Gly Gln Thr Leu Ala Phe Val Gly Ser Ser Gly Cys Gly Lys Ser 1105 1110 1115 1120
45	Thr Ser Ile Gln Leu Leu Glu Arg Phe Tyr Asp Pro Asp Gln Gly Lys 1125 1130 1135
50	Val Met Ile Asp Gly His Asp Ser Lys Lys Val Asn Val Gln Phe Leu 1140 1145 1150
	Arg Ser Asn Ile Gly Ile Val Ser Gln Glu Pro Val Leu Phe Ala Cys 1155 1160 1165
55	Ser Ile Met Asp Asn Ile Lys Tyr Gly Asp Asn Thr Lys Glu Ile Pro 1170 1175 1180

5	Met Glu Arg Val Ile Ala Ala Ala Lys Gln Ala Gln Leu His Asp Phe 1185 1190 1195 1200
	Val Met Ser Leu Pro Glu Lys Tyr Glu Thr Asn Val Gly Ser Gln Gly 1205 1210 1215
10	Ser Gln Leu Ser Arg Gly Glu Lys Gln Arg Ile Ala Ile Ala Arg Ala 1220 1225 1230
15	Ile Val Arg Asp Pro Lys Ile Leu Leu Leu Asp Glu Ala Thr Ser Ala 1235 1240 1245
	Leu Asp Thr Glu Ser Glu Lys Thr Val Gln Val Ala Leu Asp Lys Ala 1250 1255 1260
20	Arg Glu Gly Arg Thr Cys Ile Val Ile Ala His Arg Leu Ser Thr Ile 1265 1270 1275 1280
25	Gln Asn Ala Asp Ile Ile Ala Val Met Ala Gln Gly Val Val Ile Glu 1285 1290 1295
30	Lys Gly Thr His Glu Glu Leu Met Ala Gln Lys Gly Ala Tyr Tyr Lys 1300 1305 1310
	Leu Val Thr Thr Gly Ser Pro Ile Ser 1315 1320
35	<210> 60 <211> 1481 <212> PRT
40	<213> Homo sapiens
	<pre><400> 60 Met Ala Leu Arg Gly Phe Cys Ser Ala Asp Gly Ser Asp Pro Leu Trp 1 5 10 15</pre>
45	Asp Trp Asn Val Thr Trp Asn Thr Ser Asn Pro Asp Phe Thr Lys Cys 20 25 30
50	Phe Gln Asn Thr Val Leu Val Trp Val Pro Cys Phe Tyr Leu Trp Ala 35 40 45
55	Cys Phe Pro Phe Tyr Phe Leu Tyr Leu Ser Arg His Asp Arg Gly Tyr 50 55 60

	Ile 65	Gln	Met	Thr	Pro	Leu 70	Asn	Lys	Thr	Lys	Thr 75	Ala	Leu	Gly	Phe	Leu 80
5	Leu	Trp	Ile	Val	Cys 85	Trp	Ala	Asp	Leu	Phe 90	Tyr	Ser	Phe	Trp	Glu 95	Arg
10	Ser	Arg	Gly	Ile 100	Phe	Leu	Ala	Pro	Val 105	Phe	Leu	Val	Ser	Pro 110	Thr	Leu
45	Leu	Gly	Ile 115	Thr	Thr	Leu	Leu	Ala 120	Thr	Phe	Leu	Ile	Gln 125	Leu	Glu	Arg
15	Arg	Lys 130	Gly	Val	Gln	Ser	Ser 135	Gly	Ile	Met	Leu	Thr 140	Phe	Trp	Leu	Val
20	Ala 145	Leu	Val	Cys	Ala	Leu 150	Ala	Ile	Leu	Arg	Ser 155	Lys	Ile	Met	Thr	Ala 160
25	Leu	Lys	Glu	Asp	Ala 165	Gln	Val	Asp	Leu	Phe 170	Arg	Asp	Ile	Thr	Phe 175	Tyr
	Val	Tyr	Phe	Ser 180	Leu	Leu	Leu	Ile	Gln 185	Leu	Val	Leu	Ser	Cys 190	Phe	Ser
30	Asp	Arg	Ser 195	Pro	Leu	Phe	Ser	Glu 200	Thr	Ile	His	Asp	Pro 205	Asn	Pro	Cys
35	Pro	Glu 210	Ser	Ser	Ala	Ser	Phe 215	Leu	Ser	Arg	Ile	Thr 220	Phe	Trp	Trp	Ile
	Thr 225		Leu	Ile	Val	Arg 230		Туr	Arg	Gln	Pro 235	Leu	Glu	Gly	Ser	Asp 240
40	Leu	Trp	Ser	Leu	Asn 245	_	Glu	Asp	Thr	Ser 250	Glu	Gln	Val	Val	Pro 255	
45	Leu	Val	Lys	Asn 260		Lys	Lys	Glu	Cys 265		Lys	Thr	Arg	Lys 270		Pro
	Val	. Lys	Val 275		Тут	Ser	Ser	Lys 280	_	Pro	Ala	. Gln	Pro 285	_	Glu	Ser
50	Sex	Lys 290		. Asp	Ala	Asr	1 Glu 295		Val	Glu	Ala	300		· Val	. Lys	Ser
55	Pro 305		Lys	: Glu	Trp	31(Ser	Leu	ı Phe	2 Lys		. Leu	туз	Lys	320

	Phe Gly	Pro	_	Phe 325	Leu	Met	Ser	Phe	Phe 330	Phe	Lys	Ala		His 335	Asp
5	Leu Me	Met	Phe 340	Ser	Gly	Pro	Gln	Ile 345	Leu	Lys	Leu	Leu	Ile 350	Lys	Phe
10	Val Ası	355	Thr	Lys	Ala	Pro	Asp 360	Trp	Gln	Gly	Tyr	Phe 365	Tyr	Thr	Val
45	Leu Le		Val	Thr	Ala	Cys 375	Leu	Gln	Thr	Leu	Val 380	Leu	His	Gln	Tyr
_. 15	Phe Hi:	s Ile	Cys	Phe	Val 390	Ser	Gly	Met	Arg	Ile 395	Lys	Thr	Ala	Val	Ile 400
20	Gly Ala	a Val	Tyr	Arg 405	Lys	Ala	Leu	Val	Ile 410	Thr	Asn	Ser	Ala	Arg 415	Lys
25	Ser Se	Thr	Val 420	Gly	Glu	Ile	Val	Asn 425	Leu	Met	Ser	Val	Asp 430	Ala	Gln
	Arg Ph	e Met 435	Asp	Leu	Ala	Thr	Tyr 440	Ile	Asn	Met	Ile	Trp 445	Ser	Ala	Pro
30	Leu Gl 45		Ile	Leu	Ala	Leu 455	Tyr	Leu	Leu	Trp	Leu 460	Asn	Leu	Gly	Pro
35	Ser Va 465	l Leu	Ala	Gly	Val 470	Ala	Val	Met	Val	Leu 475	Met	Val	Pro	Val	Asn 480
	Ala Va	l Met	Ala	Met 485	_	Thr	Lys	Thr	Tyr 490	Gln	Val	Ala	His	Met 495	Lys
40	Ser Ly	s Asp	Asn 500	Arg	Ile	Lys	Leu	Met 505		Glu	Ile	Leu	Asn 510	Gly	Ile
45	Lys Va	1 Leu 515	-		-		_		Leu			Lys 525	_	Lys	Val
	Leu Al		Arg	Gln	Glu	Glu 535		Lys	Val	Leu	Lys 540	_	Ser	Ala	Tyr
50	Leu Se 545	r Ala	Val	Gly	7 Thr 550		Thr	Trp	Val	Cys 555		Pro	Phe	Leu	Ala 560
55	Ser Va	l Ser	Leu	Lys 565	_	Leu	Arg	Ile	9he		Ser	His	Glu	Glu 575	

	Glu	Pro	Asp	Ser 580	Ile	Glu	Arg	Arg	Pro 585	Val	Lys	Asp	Gly	Gly 590	Gly	Thr
5	Asn	Ser	Ile 595	Thr	Val	Arg	Asn	Ala 600	Thr	Phe	Thr	Trp	Ala 605	Arg	Ser	Asp
10	Pro	Pro 610	Thr	Leu	Asn	Gly	Ile 615	Thr	Phe	Ser	Ile	Pro 620	Glu	Gly	Ala	Leu
	Val 625	Ala	Val	Val	Gly	Gln 630	Val	Gly	Cys	Gly	Lys 635	Ser	Ser	Leu	Leu	Ser 640
15	Ala	Leu	Leu	Ala	Glu 645	Met	Asp	Lys	Val	Glu 650	Gly	His	Val	Ala	Ile 655	Lys
20	Gly	Ser	Val	Ala 660	Tyr	Val	Pro	Gln	Gln 665	Ala	Trp	Ile	Gln	Asn 670	Asp	Ser
25	Leu	Arg	Glu 675	Asn	Ile	Leu	Phe	Gly 680	Cys	Gln	Leu	Glu	Glu 685	Pro	Туr	Туr
	Arg	Ser 690	Val	Ile	Gln	Ala	Cys 695	Ala	Leu	Leu	Pro	Asp 700	Leu	Glu	Ile	Leu
30	Pro 705	Ser	Gly	Asp	Arg	Thr 710	Glu	Ile	Gly	Glu	Lys 715	Gly	Val	Asn	Leu	Ser 720
35	Gly	Gly	Gln	Lys	Gln 725	Arg	Val	Ser	Leu	Ala 730	Arg	Ala	Val	Tyr	Ser 735	Asn
	Ala	Asp	Ile	Туг 740	Leu	Phe	Asp	Asp	Pro 745	Leu	Ser	Ala	Val	Asp 750	Ala	His
40	Val	Gly	Lys 755	His	Ile	Phe	Glu	Asn 760	Val	Ile	Gly	Pro	Lys 765	Gly	Met	Leu
45	Lys	Asn 770	Lys	Thr	Arg	Ile	Leu 775		Thr	His	Ser	Met 780	Ser	Tyr	Leu	Pro
	Gln 785		Asp	Val	Ile	Ile 790		Met	Ser	Gly	Gly 795	-	Ile	Ser	Glu	Met 800
50	Gly	Ser	Tyr	Gln	Glu 805		Leu	Ala	Arg	Asp 810	-	Ala	Phe	Ala	Glu 815	
55	Leu	Arg	Thr	Туr 820		Ser	Thr	Glu	Gln 825		Gln	Asp	Ala	Glu 830		Asn

	Gly Val Thr Gly Val Ser Gly Pro Gly Lys Glu Ala Lys Gln Met Glu 835 840 845	
5	Asn Gly Met Leu Val Thr Asp Ser Ala Gly Lys Gln Leu Gln Arg Gln 850 855 860	
10	Leu Ser Ser Ser Ser Tyr Ser Gly Asp Ile Ser Arg His His Asn 865 870 875 880	
	Ser Thr Ala Glu Leu Gln Lys Ala Glu Ala Lys Lys Glu Glu Thr Trp 885 890 895	
15	Lys Leu Met Glu Ala Asp Lys Ala Gln Thr Gly Gln Val Lys Leu Ser 900 905 910	
20	Val Tyr Trp Asp Tyr Met Lys Ala Ile Gly Leu Phe Ile Ser Phe Leu 915 920 925	
25	Ser Ile Phe Leu Phe Met Cys Asn His Val Ser Ala Leu Ala Ser Asn 930 935 940	
_	Tyr Trp Leu Ser Leu Trp Thr Asp Asp Pro Ile Val Asn Gly Thr Gln 945 950 955 960	
30	Glu His Thr Lys Val Arg Leu Ser Val Tyr Gly Ala Leu Gly Ile Ser 965 970 975	
35	Gln Gly Ile Ala Val Phe Gly Tyr Ser Met Ala Val Ser Ile Gly Gly 980 985 990	
	Ile Leu Ala Ser Arg Cys Leu His Val Asp Leu Leu His Ser Ile Leu 995 1000 1005	
40	Arg Ser Pro Met Ser Phe Phe Glu Arg Thr Pro Ser Gly Asn Leu Val 1010 1015 1020	
45	Asn Arg Phe Ser Lys Glu Leu Asp Thr Val Asp Ser Met Ile Pro Glu 1025 1030 1035 1040	
	Val Ile Lys Met Phe Met Gly Ser Leu Phe Asn Val Ile Gly Ala Cys 1045 1050 1055	;
50	Ile Val Ile Leu Leu Ala Thr Pro Ile Ala Ala Ile Ile Ile Pro Pro 1060 1065 1070	•
55	Leu Gly Leu Ile Tyr Phe Phe Val Gln Arg Phe Tyr Val Ala Ser Ser 1075 1080 1085	.

	Arg Gln Leu Lys Arg Leu Glu Ser Val Ser Arg Ser Pro Val Tyr Ser 1090 1095 1100
5	His Phe Asn Glu Thr Leu Leu Gly Val Ser Val Ile Arg Ala Phe Glu 1105 1110 1115 1120
10	Glu Gln Glu Arg Phe Ile His Gln Ser Asp Leu Lys Val Asp Glu Asn 1125 1130 1135
15	Gln Lys Ala Tyr Tyr Pro Ser Ile Val Ala Asn Arg Trp Leu Ala Val 1140 1145 1150
	Arg Leu Glu Cys Val Gly Asn Cys Ile Val Leu Phe Ala Ala Leu Phe 1155 1160 1165
20	Ala Val Ile Ser Arg His Ser Leu Ser Ala Gly Leu Val Gly Leu Ser 1170 1175 1180
25	Val Ser Tyr Ser Leu Gln Val Thr Thr Tyr Leu Asn Trp Leu Val Arg 1185 1190 1195 1200
	Met Ser Ser Glu Met Glu Thr Asn Ile Val Ala Val Glu Arg Leu Lys 1205 1210 1215
30	Glu Tyr Ser Glu Thr Glu Lys Glu Ala Pro Trp Gln Ile Gln Glu Thr 1220 1225 1230
35	Ala Pro Pro Ser Ser Trp Pro Gln Val Gly Arg Val Glu Phe Arg Asn 1235 1240 1245
	Tyr Cys Leu Arg Tyr Arg Glu Asp Leu Asp Phe Val Leu Arg His Ile 1250 1255 1260
40	Asn Val Thr Ile Asn Gly Gly Glu Lys Val Gly Ile Val Gly Thr Gly 1265 1270 1275 1280
45	Ala Gly Lys Ser Ser Leu Thr Leu Gly Leu Phe Arg Ile Asn Glu Ser 1285 1290 1295
	Ala Glu Gly Glu Ile Ile Ile Asp Gly Ile Asn Ile Ala Lys Ile Gly 1300 1305 1310
50	Leu His Asp Leu Arg Phe Lys Ile Thr Ile Ile Pro Gln Asp Pro Val 1315 1320 1325
55	Leu Phe Ser Gly Ser Leu Arg Met Asn Leu Asp Pro Phe Ser Gln Tyr 1330 1335 1340

	Ser Asp Glu Glu Val Trp Thr Ser Leu Glu Leu Ala His Leu Lys Asp 1345 1350 1355 1360
5	Phe Val Ser Ala Leu Pro Asp Lys Leu Asp His Glu Cys Ala Glu Gly 1365 1370 1375
10	Gly Glu Asn Leu Ser Val Gly Gln Arg Gln Leu Val Cys Leu Ala Arg 1380 1385 1390
15	Ala Leu Leu Arg Lys Thr Lys Ile Leu Val Leu Asp Glu Ala Thr Ala 1395 1400 1405
13	Ala Val Asp Leu Glu Thr Asp Asp Leu Ile Gln Ser Thr Ile Arg Thr 1410 1415 1420
20	Gln Phe Glu Asp Cys Thr Val Leu Thr Ile Ala His Arg Leu Asn Thr 1425 1430 1435 1440
25	Ile Met Asp Tyr Thr Arg Val Ile Val Leu Asp Lys Gly Glu Ile Gln 1445 1450 1455
	Glu Tyr Gly Ala Pro Ser Asp Leu Leu Gln Gln Arg Gly Leu Phe Tyr 1460 1465 1470
30	Ser Met Ala Lys Asp Ala Gly Leu Val 1475 1480
35	<210> 61 <211> 1545 <212> PRT <213> Homo sapiens
40	<400> 61
	Met Leu Glu Lys Phe Cys Asn Ser Thr Phe Trp Asn Ser Ser Phe Leu 1 5 10 15
45	Asp Ser Pro Glu Ala Asp Leu Pro Leu Cys Phe Glu Gln Thr Val Leu 20 25 30
50	Val Trp Ile Pro Leu Gly Phe Leu Trp Leu Leu Ala Pro Trp Gln Leu 35 40 45
66	Leu His Val Tyr Lys Ser Arg Thr Lys Arg Ser Ser Thr Thr Lys Leu 50 55 60
55	Tyr Leu Ala Lys Gln Val Phe Val Gly Phe Leu Leu Ile Leu Ala Ala

	65					70					75					80
5	Ile	Glu	Leu	Ala	Leu 85	Val	Leu	Thr	Glu	Asp 90	Ser	Gly	Gln	Ala	Thr 95	Val
10	Pro	Ala	Val	Arg 100	Tyr	Thr	Asn	Pro	Ser 105	Leu	Tyr	Leu	Gly	Thr 110	Ттр	Leu
	Leu	Val	Leu 115	Leu	Ile	Gln	Tyr	Ser 120	Arg	Gln	Trp	Cys	Val 125	Gln	Lys	Asn
15	Ser	Trp 130	Phe	Leu	Ser	Leu	Phe 135	Trp	Ile	Leu	Ser	Ile 140	Leu	Cys	Gly	Thr
20	Phe 145	Gln	Phe	Gln	Thr	Leu 150	Ile	Arg	Thr	Leu	Leu 155	Gln	Gly	Asp	Asn	Ser 160
	Asn	Leu	Ala	Тут	Ser 165	Cys	Leu	Phe	Phe	Ile 170	Ser	Tyr	Gly	Phe	Gln 175	Ile
25	Leu	Ile	Leu	Ile 180	Phe	Ser	Ala	Phe	Ser 185	Glu	Asn	Asn	Glu	Ser 190	Ser	Asn
30	Asn	Pro	Ser 195	Ser	Ile	Ala	Ser	Phe 200	Leu	Ser	Ser	Ile	Thr 205	Tyr	Ser	Trp
	Туr	Asp 210	Ser	Ile	Ile	Leu	Lys 215	Gly	Tyr	Lys	Arg	Pro 220	Leu	Thr	Leu	Glu
35	Asp 225	Val	Trp	Glu	Val	Asp 230	Glu	Glu	Met	Lys	Thr 235	Lys	Thr	Leu	Val	Ser 240
40	Lys	Phe	Glu	Thr	His 245		Lys	Arg	Glu	Leu 250		Lys	Ala	Arg	Arg 255	
45	Leu	Gln	Arg	Arg 260	Gln	Glu	Lys	Ser	Ser 265		Gln	Asn	Ser	Gly 270		Arg
45	Leu	Pro	Gly 275		Asn	Lys	Asn	Gln 280		Gln	Ser	Gln	Asp 285		Leu	Val
50	Leu	Glu 290	_	Val	Glu	Lys	Lys 295	_	Lys	Lys	Ser	300 Gly		Lys	Lys	Asp
55	Val 305		Lys	Ser	Trp	310		. Lys	: Ala	Leu	315	_	Thr	Phe	тут	Met 320
	Val	Leu	Leu	Lys	Ser	Phe	Leu	Lev	Lys	Leu	Val	Asn	Asp	Ile	Phe	Thr

		325	330	335
5	Phe Val Ser Pr	o Gln Leu Leu Lys L 0 3	eu Leu Ile Ser Phe 45	Ala Ser Asp 350
10	Arg Asp Thr Ty 355	r Leu Trp Ile Gly T 360	yr Leu Cys Ala Ile 365	Leu Leu Phe
	Thr Ala Ala Le 370	u Ile Gln Ser Phe C 375	ys Leu Gln Cys Tyr 380	Phe Gln Leu
15	Cys Phe Lys Le 385	u Gly Val Lys Val A 390	arg Thr Ala Ile Met 395	Ala Ser Val 400
20	Tyr Lys Lys Al	a Leu Thr Leu Ser A 405	usn Leu Ala Arg Lys 410	Glu Tyr Thr 415
	Val Gly Glu Th	r Val Asn Leu Met S 0 4	Ser Val Asp Ala Gln 125	Lys Leu Met 430
25	Asp Val Thr As 435	n Phe Met His Met L 440	eu Trp Ser Ser Val 445	Leu Gln Ile
30	Val Leu Ser Il 450	e Phe Phe Leu Trp A 455	arg Glu Leu Gly Pro 460	Ser Val Leu
	Ala Gly Val Gl 465	y Val Met Val Leu V 470	Val Ile Pro Ile Asn 475	Ala Ile Leu 480
35	Ser Thr Lys Se	er Lys Thr Ile Gln V 485	/al Lys Asn Met Lys 490	Asn Lys Asp 495
40	Lys Arg Leu Ly 50	rs Ile Met Asn Glu I 00 5	lle Leu Ser Gly Ile 505	Lys Ile Leu 510
	Lys Tyr Phe Al 515	a Trp Glu Pro Ser E 520	Phe Arg Asp Gln Val 525	
45	Arg Lys Lys Gl 530	u Leu Lys Asn Leu I 535	Leu Ala Phe Ser Gln 540	Leu Gln Cys
50	Val Val Ile Ph 545	ne Val Phe Gln Leu 1 550	Thr Pro Val Leu Val 555	Ser Val Val 560
	Thr Phe Ser Va	al Tyr Val Leu Val <i>I</i> 565	Asp Ser Asn Asn Ile 570	e Leu Asp Ala 575
55	Gln Lys Ala Ph	ne Thr Ser Ile Thr I	Leu Phe Asn Ile Leu	Arg Phe Pro

		580	585	590
5	Leu Ser Met		Met Ile Ser Ser Met 600	Leu Gln Ala Ser Val 605
10	Ser Thr Glu	ı Arg Leu Glu	Lys Tyr Leu Gly Gly 615	Asp Asp Leu Asp Thr 620
	Ser Ala Ile 625	e Arg His Asp 630	Cys Asn Phe Asp Lys 635	Ala Met Gln Phe Ser 640
15	Glu Ala Sei	Phe Thr Trp	Glu His Asp Ser Glu 650	Ala Thr Val Arg Asp 655
20	Val Asn Le	Asp Ile Met 660	Ala Gly Gln Leu Val 665	Ala Val Ile Gly Pro 670
	Val Gly Ser 67!		Ser Leu Ile Ser Ala 680	Met Leu Gly Glu Met 685
25	Glu Asn Vai	l His Gly His	Ile Thr Ile Lys Gly 695	Thr Thr Ala Tyr Val
30	Pro Gln Gli 705	Ser Trp Ile 710	Gln Asn Gly Thr Ile 715	Lys Asp Asn Ile Leu 720
	Phe Gly Th	r Glu Phe Asn 725	Glu Lys Arg Tyr Gln 730	Gln Val Leu Glu Ala 735
35	Cys Ala Le	u Leu Pro Asp 740	Leu Glu Met Leu Pro 745	Gly Gly Asp Leu Ala 750
40	Glu Ile Gly		Ile Asn Leu Ser Gly 760	Gly Gln Lys Gln Arg 765
	Ile Ser Le 770	u Ala Arg Ala	Thr Tyr Gln Asn Leu 775	Asp Ile Tyr Leu Leu 780
45	Asp Asp Pr 785	o Leu Ser Ala 790	Val Asp Ala His Val 795	Gly Lys His Ile Phe 800
50	Asn Lys Va	l Leu Gly Pro 805	Asn Gly Leu Leu Lys 810	Gly Lys Thr Arg Leu 815
	Leu Val Th	r His Ser Met 820	His Phe Leu Pro Gln 825	Val Asp Glu Ile Val 830
55	Val Leu Gl	y Asn Gly Thr	The Val Glu Lys Gly	Ser Tyr Ser Ala Leu

		835		840		845
5	Leu Ala 850		Gly Glu	Phe Ala Lys 855	Asn Leu Lys 860	Thr Phe Leu Arg
10	His Thr 865	Gly Pro	Glu Glu 870	Glu Ala Thr	Val His Asp 875	Gly Ser Glu Glu 880
	Glu Asp	Asp Asp	Tyr Gly 885	Leu Ile Ser	Ser Val Glu 890	Glu Ile Pro Glu 895
15	Asp Ala	Ala Ser 900		Met Arg Arg 905	Glu Asn Ser	Phe Arg Arg Thr 910
20	Leu Ser	Arg Sei 915	Ser Arg	Ser Asn Gly 920	Arg His Leu	Lys Ser Leu Arg 925
	Asn Ser 930		Thr Arg	Asn Val Asn 935	Ser Leu Lys 940	Glu Asp Glu Glu
25	Leu Val 945	Lys Gly	Gln Lys 950		Lys Glu Phe 955	Ile Glu Thr Gly 960
30	Lys Val	Lys Phe	e Ser Ile 965	Tyr Leu Glu	Tyr Leu Gln 970	Ala Ile Gly Leu 975
	Phe Ser	Ile Pho		Ile Leu Ala 985		Asn Ser Val Ala 990
35	Phe Ile	Gly Ser	Asn Leu	Trp Leu Ser 1000		Ser Asp Ser Lys 1005
40	Ile Phe			Tyr Pro Ala 1015	Ser Gln Arg	Asp Met Arg Val
	Gly Val	. Tyr Gl	y Ala Leu 1030		Gln Gly Ile 1035	Phe Val Phe Ile
45	Ala His	Phe Tr	p Ser Ala 1045	Phe Gly Phe	· Val His Ala 1050	Ser Asn Ile Leu 1055
50	His Lys	Gln Le 106		Asn Ile Leu 1065		Met Arg Phe Phe 1070
	Asp Thr	Thr Pr 1075	o Thr Gly	Arg Ile Val	. Asn Arg Phe	e Ala Gly Asp Ile 1085
55	Ser Thi	. Val As	p Asp Thi	Leu Pro Gl	n Ser Leu Arg	Ser Trp Ile Thr

	1090	1095	1100	
5	Cys Phe Leu (Sly Ile Ile Ser 1110	Thr Leu Val Met Ile 1115	Cys Met Ala Thr 1120
10	Pro Val Phe	Thr Ile Ile Val 1125	Ile Pro Leu Gly Ile 1130	Ile Tyr Val Ser 1135
		Phe Tyr Val Ser 140	Thr Ser Arg Gln Leu 1145	Arg Arg Leu Asp 1150
15	Ser Val Thr	_	Tyr Ser His Phe Ser 1160	Glu Thr Val Ser 1165
20	Gly Leu Pro	Jal Ile Arg Ala 1175	Phe Glu His Gln Gln 1180	Arg Phe Leu Lys
	His Asn Glu 1185	Val Arg Ile Asp 1190	Thr Asn Gln Lys Cys 1195	Val Phe Ser Trp
25	Ile Thr Ser	Asn Arg Trp Leu 1205	Ala Ile Arg Leu Glu 1210	Leu Val Gly Asn 1215
30		Phe Phe Ser Ala 220	Leu Met Met Val Ile 1225	Tyr Arg Asp Thr 1230
	Leu Ser Gly	-	Phe Val Leu Ser Asn 1240	Ala Leu Asn Ile 1245
35	Thr Gln Thr 1250	Leu Asn Trp Leu 1255	Val Arg Met Thr Ser 1260	
40	Asn Ile Val 1265	Ala Val Glu Arg 1270	Ile Thr Glu Tyr Thr 1275	Lys Val Glu Asn 1280
45	Glu Ala Pro	Trp Val Thr Asp 1285	Lys Arg Pro Pro Pro 1290	Asp Trp Pro Ser 1295
•		Ile Gln Phe Asn 300	Asn Tyr Gln Val Arg 1305	Tyr Arg Pro Glu 1310
50	Leu Asp Leu 1315	Val Leu Arg Gly	lle Thr Cys Asp Ile 1320	e Gly Ser Met Glu 1325
55	Lys Ile Gly 1330	Val Val Gly Arg	Thr Gly Ala Gly Lys	
	Asn Cys Leu	Phe Arg Ile Leu	Glu Ala Ala Gly Gly	Gln Ile Ile Ile

	1345	1350	1355	1360
5	Asp Gly Val A	sp Ile Ala Sen 1365	r Ile Gly Leu His 1370	Asp Leu Arg Glu Lys 1375
10		le Pro Gln Ası 80	o Pro Ile Leu Phe 1385	Ser Gly Ser Leu Arg 1390
	Met Asn Leu A 1395	sp Pro Phe Ası	n Asn Tyr Ser Asp 1400	Glu Glu Ile Trp Lys 1405
15	Ala Leu Glu L 1410	eu Ala His Le 141	=	Ala Ser Leu Gln Leu 1420
20	Gly Leu Ser H 1425	is Glu Val Th	r Glu Ala Gly Gly 1435	Asn Leu Ser Ile Gly 1440
	Gln Arg Gln L	eu Leu Cys Le 1445	u Gly Arg Ala Leu 1 4 50	Leu Arg Lys Ser Lys 1455
25		eu Asp Glu Al 60	a Thr Ala Ala Val 1465	Asp Leu Glu Thr Asp 1470
30	Asn Leu Ile G 1475	iln Thr Thr Il	e Gln Asn Glu Phe 1480	Ala His Cys Thr Val 1485
	Ile Thr Ile A	la His Arg Le 149		Asp Ser Asp Lys Val 1500
35	Met Val Leu A 1505	asp Asn Gly Ly 1510	s Ile Ile Glu Cys 1515	Gly Ser Pro Glu Glu 1520
40	Leu Leu Gln I	Tle Pro Gly Pr 1525	o Phe Tyr Phe Met 1530	Ala Lys Glu Ala Gly 1535
45		Val Asn Ser Th 540	r Lys Phe 1545	
50	<210> 62 <211> 1527 <212> PRT <213> Homo sa	apiens		
55	<400> 62 Met Asp Ala 1 1	Leu Cys Gly Se 5	er Gly Glu Leu Gly 10	Ser Lys Phe Trp Asp

5	Ser As	n Leu	Ser 20	Val	His	Thr	Glu	Asn 25	Pro	Asp	Leu	Thr	Pro 30	Cys	Phe
	Gln As	sn Ser 35	Leu	Leu	Ala	Trp	Val 40	Pro	Cys	Ile	Tyr	Leu 45	Trp	Val	Ala
10	Leu Pr	co Cys 50	Tyr	Leu	Leu	Туг 55	Leu	Arg	His	His	Cys	Arg	Gly	Туг	Ile
15	Ile Le	eu Ser	His	Leu	Ser 70	Lys	Leu	Lys	Met	Val 75	Leu	Gly	Val	Leu	Leu 80
	Trp Cy	/s Val	Ser	Trp 85	Ala	Asp	Leu	Phe	Tyr 90	Ser	Phe	His	Gly	Leu 95	Val
20	His G	ly Arg	Ala 100	Pro	Ala	Pro	Val	Phe 105	Phe	Val	Thr	Pro	Leu 110	Val	Val
25	Gly V	al Thr 115	Met	Leu	Leu	Ala	Thr 120	Leu	Leu	Ile	Gln	Tyr 125	Glu	Arg	Leu
30	Gln G	ly Val 30	Gln	Ser	Ser	Gly 135	Val	Leu	Ile	Ile	Phe 140	Trp	Phe	Leu	Cys
	Val V 145	al Cys	Ala	Ile	Val 150	Pro	Phe	Arg	Ser	Lys 155	Ile	Leu	Leu	Ala	Lys 160
35	Ala G	lu Gly	Glu	11e 165	Ser	Asp	Pro	Phe	Arg 170	Phe	Thr	Thr	Phe	Туг 175	Ile
40	His P	he Ala	Leu 180	Val	Leu	Ser	Ala	Leu 185	Ile	Leu	Ala	Cys	Phe 190	Arg	Glu
	Lys P	ro Pro 195		Phe	Ser	Ala	Lys 200	Asn	Val	Asp	Pro	Asn 205		Tyr	Pro
45		hr Ser 10	Ala	Gly	Phe	Leu 215		Arg	Leu	Phe	Phe 220	_	Trp	Phe	Thr
50	Lys M 225	et Ala	lle	Tyr	Gly 230	-	Arg	His	Pro	Leu 235		Glu	Lys	Asp	Leu 240
	Trp S	er Lei	Lys	Glu 245		Asp	Arg	Ser	Gln 250		. Val	Val	Gln	Gln 255	
55	Leu G	lu Ala	1 Trp 260	_	Lys	Gln	Gl u	Lys 265		Thr	Ala	Arg	His 270	_	; Ala

5	Ser	Ala	Ala 275	Pro	Gly	Lys	Asn	Ala 280	Ser	Gly	Glu	Asp	Glu 285	Val	Leu	Leu
	Gly	Ala 290	Arg	Pro	Arg	Pro	Arg 295	Lys	Pro	Ser	Phe	Leu 300	Lys	Ala	Leu	Leu
10	Ala 305	Thr	Phe	Gly	Ser	Ser 310	Phe	Leu	Ile	Ser	Ala 315	Cys	Phe	Lys	Leu	Ile 320
15	Gln	Asp	Leu	Leu	Ser 325	Phe	Ile	Asn	Pro	Gln 330	Leu	Leu	Ser	Ile	Leu 335	Ile
	Arg	Phe	Ile	Ser 340	Asn	Pro	Met	Ala	Pro 345	Ser	Ттр	Trp	Gly	Phe 350	Leu	Val
20	Ala	Gly	Leu 355	Met	Phe	Leu	Cys	Ser 360	Met	Met	Gln	Ser	Leu 365	Ile	Leu	Gln
25	His	Туг 370	Tyr	His	Tyr	Ile	Phe 375	Val	Thr	Gly	Val	Lуs 380	Phe	Arg	Thr	Gly
30	Ile 385	Met	Gly	Val	Ile	Tyr 390	Arg	Lys	Ala	Leu	Val 395	Ile	Thr	Asn	Ser	Val 400
	Lys	Arg	Ala	Ser	Thr 405	Val	Gly	Glu	Ile	Val 410	Asn	Leu	Met	Ser	Val 415	Asp
35	Ala	Gln	Arg	Phe 420	Met	Asp	Leu	Ala	Pro 425	Phe	Leu	Asn	Leu	Leu 430	Trp	Ser
40	Ala	Pro	Leu 435	Gln	Ile	Ile	Leu	Ala 440	Ile	Tyr	Phe	Leu	Trp 445	Gln	Asn	Leu
	Gly	Pro 450	Ser	Val	Leu	Ala	Gly 455	Val	Ala	Phe	Met	Val 460	Leu	Leu	Ile	Pro
45	Leu 465	Asn	Gly	Ala	Val		Val	_		Arg			Gln	Val	Lys	Gln 480
50	Met	Lys	Leu	Lys	Asp 485		Arg	Ile	Lys	Leu 490	Met	Ser	Glu	Ile	Leu 495	Asn
	Gly	Ile	Lys	Val 500		Lys	Leu	Tyr	Ala 505		Glu	Pro	Ser	Phe 510	Leu	Lys
55	Gln	Val	Glu 515	_	Ile	Arg	Gln	Gly 520		Leu	Gln	Leu	Leu 525	_	Thr	Ala

5	Ala T	yr 1 530	Leu	His	Thr	Thr	Thr 535	Thr	Phe	Thr	Trp	M et 540	Суѕ	Ser	Pro	Phe
	Leu V 545	/al '	Thr	Leu	Ile	Thr 550	Leu	Trp	Val	Tyr	Val 555	Tyr	Val	Asp	Pro	Asn 560
10	Asn V	/al 1	Leu	Asp	Ala 565	Glu	Lys	Ala	Phe	Val 570	Ser	Val	Ser		Phe 575	Asn
15	Ile L	Leu i	Arg	Leu 580	Pro	Leu	Asn	Met	Leu 585	Pro	Gln	Leu	Ile	Ser 590	Asn	Leu
	Thr G		Ala 595	Ser	Val	Ser	Leu	Lys 600	Arg	Ile	Gln	Gln	Phe 605	Leu	Ser	Gln
20	Glu G	31u 1 510	Leu	Asp	Pro	Gln	Ser 615	Val	Glu	Arg	Lys	Thr 620	Ile	Ser	Pro	Gly
25	Tyr A 625	Ala :	Ile	Thr	Ile	ніs 630	Ser	Gly	Thr	Phe	Thr 635	Trp	Ala	Gln	Asp	Leu 640
30	Pro P	?ro'	Thr	Leu	His 645	Ser	Leu	Asp	Ile	Gln 650	Val	Pro	Lys	Gly	Ala 655	Leu
-	Val A	Ala '	Val	Val 660	Gly	Pro	Val	Gly	Cys 665	Gly	Lys	Ser	Ser	Leu 670	Val	Ser
35	Ala I		Leu 675	Gly	Glu	Met	Glu	Lys 680	Leu	Glu	Gly	Lys	Val 685	His	Met	Lys
40	Gly S	Ser ' 590	Val	Ala	Tyr	Val	Pro 695	Gln	Gln	Ala	Trp	Ile 700	Gln	Asn	Сув	Thr
	Leu 0	Gln (Glu	Asn	Val	Leu 710	Phe	Gly	Lys	Ala	Leu 715	Asn	Pro	Lys	Arg	Туг 720
45	Gln G	3ln	Thr	Leu	Glu 725		Суѕ	Ala		Leu 730		Asp	Leu	Glu	Met 735	Leu
50	Pro (Gly	Gly	Asp 740	Gln	Thr	Glu	Ile	Gly 745	Glu	Lys	Gly	Ile	Asn 750	Leu	Ser
	Gly (Gln 755	Arg	Gln	Arg	Val	Ser 760	Leu	Ala	Arg	Ala	Val 765	Tyr	Ser	Asp
55	Ala A	Asp 770	Ile	Phe	Leu	Leu	Asp 775	Asp	Pro	Leu	Ser	Ala 780	Val	Asp	Ser	His

5	Va1 785	Ala	Lys	His	Ile	Phe 790	Asp	His	Val	Ile	Gly 795	Pro	Glu	Gly	Val	Leu 800
	Ala	Gly	Lys	Thr	Arg 805	Val	Leu	Val	Thr	His 810	Gly	Ile	Ser	Phe	Leu 815	Pro
10	Gln	Thr	Asp	Phe 820	Ile	Ile	Val	Leu	Ala 825	Asp	Gly	Gln	Val	Ser 830	Glu	Met
15	Gly	Pro	Tyr 835	Pro	Ala	Leu	Leu	Gln 840	Arg	Asn	Gly	Ser	Phe 845	Ala	Asn	Phe
	Leu	Cys 850	Asn	Tyr	Ala	Pro	Asp 855	Glu	Asp	Gln	Gly	His 860	Leu	Glu	Asp	Ser
20	Trp 865	Thr	Ala	Leu	Glu	Gly 870	Ala	Glu	Asp	Lys	Glu 875	Ala	Leu	Leu	Ile	Glu 880
25	Asp	Thr	Leu	Ser	Asn 885	His	Thr	Asp	Leu	Thr 890	Asp	Asn	Asp	Pro	Val 895	Thr
30	Tyr	Val	Val	Gln 900	Lys	Gln	Phe	Met	Arg 905	Gln	Leu	Ser	Ala	Leu 910	Ser	Ser
30	Asp	Gly	Glu 915	Gly	Gln	Gly	Arg	Pro 920	Val	Pro	Arg	Arg	His 925	Leu	Gly	Pro
35	Ser	Glu 930	Lys	Val	Gln	Val	Thr 935	Glu	Ala	Lys	Ala	Asp 940	Gly	Ala	Leu	Thr
40	Gln 945	Glu	Glu	Lys	Ala	Ala 950	Ile	Gly	Thr	Val	Glu 955	Leu	Ser	Val	Phe	Trp 960
	Asp	Tyr	Ala	Lys	Ala 965	Val	Gly	Leu	Cys	Thr 970	Thr	Leu	Ala	Ile	Cys 975	Leu
45	Leu	Tyr	Val	Gly 980	Gln	Ser	Ala	Ala	Ala 985	Ile	Gly	Ala	Asn	Val 990	Trp	Leu
50	Ser	Ala	Trp 995	Thr	Asn	Asp		Met 1000		Asp	Ser	_	Gln 1005		Asn	Thr
		Leu 1010		Leu	Gly		Туr 1015		Ala	Leu	_	Ile 1020		Gln	Gly	Phe
55	Leu 102		Met	Leu		Ala 1030		Ala	Met		Ala 1035	_	Gly	Ile		Ala 1040

5	Ala Arg Va	al Leu His 1045	Gln Ala	Leu Leu His 1050	Asn Lys Ile	Arg Ser Pro 1055
	Gln Ser Pl	ne Phe Asp 1060	Thr Thr	Pro Ser Gly 1065		Asn Cys Phe 1070
10	Ser Lys As			Asp Glu Val .080	Leu Ala Pro 1085	Val Ile Leu
15	Met Leu Le 1090	eu Asn Ser	Phe Phe 1095	Asn Ala Ile	Ser Thr Leu 1100	Val Val Ile
	Met Ala Se		Leu Phe 1110		Ile Leu Pro 1115	Leu Ala Val 1120
20	Leu Tyr Th	nr Leu Val 1125	Gln Arg	Phe Tyr Ala 1130	Ala Thr Ser	Arg Gln Leu 1135
25	Lys Arg Le	eu Glu Ser 1140	Val Ser	Arg Ser Pro 1145		His Phe Ser 1150
	Glu Thr Va			Val Ile Arg 1160	Ala Tyr Asn 1165	Arg Ser Arg
30	Asp Phe G	lu Ile Ile	Ser Asp 1175	Thr Lys Val	Asp Ala Asn 1180	Gln Arg Ser
35	Cys Tyr P:		Ile Ser 1190		Leu Ser Ile 1195	Gly Val Glu 1200
40	Phe Val G	ly Asn Cys 1205		Leu Phe Ala 1210	Ala Leu Phe	Ala Val Ile 1215
	Gly Arg So	er Ser Leu 1220	Asn Pro	Gly Leu Val 1225		Val Ser Tyr 1230
45	Ser Leu G			Leu Asn Trp 1240	Met Ile Arg 1245	Met Met Ser
50	Asp Leu G 1250	lu Ser Asn	Ile Val 1255	Ala Val Glu	Arg Val Lys 1260	Glu Tyr Ser
	Lys Thr G 1265		Ala Pro 1270		Glu Gly Ser 1275	Arg Pro Pro 1280
55	Glu Gly T	rp Pro Pro 1285		Glu Val Glu 1290		Tyr Ser Val 1295

5	Arg Tyr Ar	g Pro Gly L 1300		Val Leu Arg Asp 305	Leu Ser Leu His 1310
	Val His Gl		Lys Val Gly 1320		Thr Gly Ala Gly 1325
10	Lys Ser Se 1330	er Met Thr L	Leu Cys Leu 1335	Phe Arg Ile Leu 1340	Glu Ala Ala Lys
15	Gly Glu II 1345	_	Asp Gly Leu 350	Asn Val Ala Asp 1355	Ile Gly Leu His 1360
	Asp Leu Ar	g Ser Gln I 1365	Leu Thr Ile	Ile Pro Gln Asp 1370	Pro Ile Leu Phe 1375
20	Ser Gly Th	ır Leu Arg M 1380		Asp Pro Phe Gly 385	Ser Tyr Ser Glu 1390
25	Glu Asp II		Ala Leu Glu 1400	Leu Ser His Leu	His Thr Phe Val
30	Ser Ser G	n Pro Ala (Gly Leu Asp 1415	Phe Gln Cys Ser 1420	Glu Gly Gly Glu
	Asn Leu Se 1425	=	Gln Arg Gln 430	Leu Val Cys Leu 1435	Ala Arg Ala Leu 1440
35	Leu Arg Ly	ys Ser Arg 1 1445	Ile Leu Val	Leu Asp Glu Ala 1450	Thr Ala Ala Ile 1455
40	Asp Leu G	lu Thr Asp 1 1460		Gln Ala Thr Ile .465	Arg Thr Gln Phe
	Asp Thr C		Leu Thr Ile 1480	Ala His Arg Leu	Asn Thr Ile Met 1485
45	Asp Tyr T	nr Arg Val 1	Leu Val Leu 1495	Asp Lys Gly Val	. Val Ala Glu Phe
50	Asp Ser P 1505		Leu Ile Ala 510	Ala Arg Gly Ile 1515	e Phe Tyr Gly Met 1520
	Ala Arg A	sp Ala Gly 1	Leu Ala		

5	<210> 63 <211> 1325 <212> PRT <213> Homo sapiens
10	<pre><400> 63 Met Leu Pro Val Tyr Gln Glu Val Lys Pro Asn Pro Leu Gln Asp Ala 1 5 10 15</pre>
15	Asn Ile Cys Ser Arg Val Phe Phe Trp Trp Leu Asn Pro Leu Phe Lys 20 25 30 Ile Gly His Lys Arg Arg Leu Glu Glu Asp Asp Met Tyr Ser Val Leu
20	Pro Glu Asp Arg Ser Gln His Leu Gly Glu Glu Leu Gln Gly Phe Trp 50 55 60
25	Asp Lys Glu Val Leu Arg Ala Glu Asn Asp Ala Gln Lys Pro Ser Leu 65 70 75 80
30	Thr Arg Ala Ile Ile Lys Cys Tyr Trp Lys Ser Tyr Leu Val Leu Gly 85 90 95 Ile Phe Thr Leu Ile Glu Glu Ser Ala Lys Val Ile Gln Pro Ile Phe
35	Leu Gly Lys Ile Ile Asn Tyr Phe Glu Asn Tyr Asp Pro Met Asp Ser 115 120 125
40	Val Ala Leu Asn Thr Ala Tyr Ala Tyr Ala Thr Val Leu Thr Phe Cys 130 135 140
45	Thr Leu Ile Leu Ala Ile Leu His His Leu Tyr Phe Tyr His Val Gln 145 150 155 160 Cys Ala Gly Met Arg Leu Arg Val Ala Met Cys His Met Ile Tyr Arg
v	Lys Ala Leu Arg Leu Ser Asn Met Ala Met Gly Lys Thr Thr Gly 180 185 190
50	Gln Ile Val Asn Leu Leu Ser Asn Asp Val Asn Lys Phe Asp Gln Val 195 200 205
55	Thr Val Phe Leu His Phe Leu Trp Ala Gly Pro Leu Gln Ala Ile Ala 210 215 220

5	Val 225	Thr	Ala	Leu	Leu	Trp 230	Met	Glu	Ile	Gly	Ile 235	Ser	Cys	Leu	Ala	Gly 240
J	Met	Ala	Val	Leu	11e 245	Ile	Leu	Leu	Pro	Leu 250	Gln	Ser	Cys	Phe	Gly 255	Lys
10	Leu	Phe	Ser	Ser 260	Leu	Arg	Ser'	Lys	Thr 265	Ala	Thr	Phe	Thr	Asp 270	Ala	Arg
15	Ile	Arg	Thr 275	Met	Asn	Glu	Val	Ile 280	Thr	Gly	Ile	Arg	Ile 285	Ile	Lys	Met
	Tyr	Ala 290	Trp	Glu	Lys	Ser	Phe 295	Ser	Asn	Leu	Ile	Thr 300	Asn	Leu	Arg	Lys
20	Lys 305	Glu	Ile	Ser	Lys	Ile 310	Leu	Arg	Ser	Ser	Cys 315	Leu	Arg	Gly	Met	Asn 320
25	Leu	Ala	Ser	Phe	Phe 325	Ser	Ala	Ser	Lys	Ile 330	Ile	Val	Phe	Val	Thr 335	Phe
	Thr	Thr	Tyr	Val 340	Leu	Leu	Gly	Ser	Val 345	Ile	Thr	Ala	Ser	Arg 350	Val	Phe
30	Val	Ala	Val 355	Thr	Leu	Tyr	Gly	Ala 360	Val	Arg	Leu	Thr	Val 365	Thr	Leu	Phe
35	Phe	Pro 370	Ser	Ala	Ile	Glu	Arg 375	Val	Ser	Glu	Ala	11e 380	Val	Ser	Ile	Arg
40	Arg 385	Ile	Gln	Thr	Phe	Leu 390		Leu	Asp	Glu	11e 395	Ser	Gln	Arg	Asn	Arg 400
	Gln	Leu	Pro	Ser	Asp 405	_	Lys	Lys	Met	Val 410		Val	Gln	Asp	Phe 415	
45	Ala	Phe	Trp	Asp 420		Ala	Ser	Glu	Thr 425		Thr	Leu	Gln	Gly 430		Ser
50	Phe	Thr	Val 435		Pro	Gly	Glu	Leu 440		Ala	Val	Val	Gly 445		Val	Gly
	Ala	Gly 450	-	Ser	Ser	Leu	455		Ala	Val	Leu	Gly 460		. Leu	ı Ala	Pro
55	Ser 465		Gly	Leu	(Val	Ser 470		His	: Gly	Arg	475		Туг	Va]	Ser	Gln 480

5	Gln	Pro	Trp	Val	Phe 485	Ser	Gly	Thr	Leu	Arg 490	Ser	Asn	Ile	Leu	Phe 495	Gly
	Lys	Lys	Tyr	Glu 500	Lys	Glu	Arg	Tyr	Glu 505	Lys	Val	Ile	Lys	Ala 510	Суѕ	Ala
10	Leu	Lys	Lys 515	Asp	Leu	Gln	Leu	Leu 520	Glu	Asp	Gly	Asp	Leu 525	Thr	Val	Ile
15	Gly	Asp 530	Arg	Gly	Thr	Thr	Leu 535	Ser	Gly	Gly	Gln	Lys 540	Ala	Arg	Val	Asn
	Leu 545	Ala	Arg	Ala	Val	Tyr 550	Gln	Asp	Ala	Asp	Ile 555	Tyr	Leu	Leu	Asp	Asp 560
20	Pro	Leu	Ser	Ala	Val 565	Asp	Ala	Glu	Val	Ser 570	Arg	His	Leu	Phe	Glu 575	Leu ·
25	Cys	Ile	Cys	Gln 580	Ile	Leu	His	Glu	Lys 585	Ile	Thr	Ile	Leu	Val 590	Thr	His
	Gln	Leu	Gln 595	Tyr	Leu	Lys	Ala	Ala 600	Ser	Gln	Ile	Leu	Ile 605	Leu	Lys	Asp
30	Gly	Lys 610	Met	Val	Gln	Lys	Gly 615	Thr	Tyr	Thr	Glu	Phe 620	Leu	Lys	Ser	Gly
35	Ile 625	Asp	Phe	Gly	Ser	Leu 630	Leu	Lys	Lys	Asp	Asn 635	Glu	Glu	Ser	Glu	Gln 640
	Pro	Pro	Val	Pro	Gly 645	Thr	Pro	Thr	Leu	Arg 650	Asn	Arg	Thr	Phe	Ser 655	Glu
40	Ser	Ser	Val	Trp 660	Ser	Gln	Gln	Ser	Ser 665	_	Pro	Ser	Leu	Lys 670	Asp	Gly
45	Ala	Leu	Glu 675		Gln	Asp		Glu 680		Val	Pro	Val	Thr 685		Ser	Glu
50	Glu	Asn 690	Arg	Ser	Glu	Gly	Lys 695		Gly	Phe	Gln	Ala 700	_	Lys	Asn	Tyr
	Phe 705		Ala	Gly	Ala	His 710	_	Ile	· Val	Phe	715		Leu	Ile	Leu	Leu 720
55	Asn	Thr	Ala	Ala	Gln 725		Ala	Туг	Val	Leu 730		. Asp	Trp	Trp	735	Ser

_	Tyr Tr	p Ala	Asn 740	Lys	Gln	Ser	Met	Leu 745	Asn	Val	Thr	Val	Asn 750	Gly	Gly
5	Gly As	n Val 755	Thr	Glu	Lys	Leu	Asp 760	Leu	Asn	Trp	Tyr	Leu 765	Gly	Ile	Tyr
10	Ser G1		Thr	Val	Ala	Thr 775	Val	Leu	Phe	Gly	Ile 780	Ala	Arg	Ser	Leu
15	Leu Va 785	l Phe	Tyr	Val	Leu 790	Val	Asn	Ser	Ser	Gln 795	Thr	Leu	His	Asn	Lys 800
	Met Ph	e Glu	Ser	Ile 805	Leu	Lys	Ala	Pro	Val 810	Leu	Phe	Phe	Asp	Arg 815	Asn
20	Pro Il	e Gly	Arg 820	Ile	Leu	Asn	Arg	Phe 825	Ser	Lys	Asp	Ile	Gly 830	His	Leu
25	Asp As	p Leu 835	Leu	Pro	Leu	Thr	Phe 840	Leu	Asp	Phe	Ile	Gln 845	Thr	Leu	Leu
	Gln Va 85		Gly	Val	Val	Ser 855	Val	Ala	Val	Ala	Val 860	Ile	Pro	Trp	Ile
30	Ala Il 865				870					875					880
35	Tyr Ph			885					890					895	
40	Arg Se	r Pro	Val 900	Phe	Ser	His	Leu	Ser 905	Ser	Ser	Leu	Gln	Gly 910	Leu	Trp
10	Thr Il	e Arg 915	Ala	Туг	Lys	Ala	Glu 920	Glu	Arg	Cys	Gln	Glu 925	Leu	Phe	Asp
45	Ala Hi 93		Asp	Leu	His	Ser 935	Glu	Ala	Trp	Phe	Leu 940		Leu	Thr	Thr
50	Ser Ar 945	g Trp	Phe	Ala	Val 950	Arg	Leu	Asp	Ala	Ile 955	Cys	Ala	Met	Phe	Val 960
	Ile I	e Val	Ala	Phe 965		Ser	Leu	Ile	Leu 970		Lys	Thr	Leu	Asp 975	
55	Gly G	n Val	Gly 980		Ala	Leu	Ser	Tyr 985		Leu	Thr	Leu	Met 990		Met

		rp Cys Val 95		Ser Ala Glu .000	Val Glu Asn 1005	Met Met Ile
	Ser Val G	lu Arg Val	Ile Glu 1015	Tyr Thr Asg	Leu Glu Lys 1020	Glu Ala Pro
10	Trp Glu T 1025		Arg Pro 1030	Pro Pro Ala	Trp Pro His 1035	Glu Gly Val 1040
15	Ile Ile P	he Asp Asn 1045		Phe Met Tyr 1050	Ser Pro Gly	Gly Pro Leu 1055
	Val Leu L	ys His Leu 1060	Thr Ala	Leu Ile Lys 1065	Ser Gln Glu	Lys Val Gly 1070
20		Gly Arg Thr 175		Gly Lys Ser 1080	Ser Leu Ile 1085	Ser Ala Leu
25	Phe Arg L 1090	æu Ser Glu	Pro Glu 1095	Gly Lys Ile	Trp Ile Asp 1100	Lys Ile Leu
	Thr Thr G	Slu Ile Gly	Leu His	Asp Leu Arg	g Lys Lys Met 1115	Ser Ile Ile 1120
30	Pro Gln G	Slu Pro Val 1125		Thr Gly Thi	r Met Arg Lys)	Asn Leu Asp 1135
35	Pro Phe L	ys Glu His 1140	Thr Asp	Glu Glu Lev 1145	ı Trp Asn Ala	Leu Gln Glu 1150
40		eu Lys Glu 155		Glu Asp Let 1160	ı Pro Gly Lys 1165	Met Asp Thr
40	Glu Leu A 1170	Ala Glu Ser	Gly Ser 1175	Asn Phe Sea	r Val Gly Gln 1180	Arg Gln Leu
45	Val Cys I 1185	Leu Ala Arg	Ala Ile 1190	Leu Arg Ly	s Asn Gln Ile 1195	Leu Ile Ile 1200
50	Asp Glu A	Ala Thr Ala 1205		Asp Pro Ar	g Thr Asp Glu 0	Leu Ile Gln 1215
	Lys Lys 1	Ile Arg Glu 1220	ı Lys Phe	Ala His Cy 1225	s Thr Val Leu	Thr Ile Ala 1230
55		Leu Asn Thi 235		Asp Ser As 1240	p Lys Ile Met 1245	Val Leu Asp

	Ser Gly Arg Leu Lys Glu Tyr Asp Glu Pro Tyr Val Leu Leu Gln Asn 1250 1255 1260
5	Lys Glu Ser Leu Phe Tyr Lys Met Val Gln Gln Leu Gly Lys Ala Glu 1265 1270 1275 1280
10	Ala Ala Ala Leu Thr Glu Thr Ala Lys Gln Val Tyr Phe Lys Arg Asn 1285 1290 1295
15	Tyr Pro His Ile Gly His Thr Asp His Met Val Thr Asn Thr Ser Asn 1300 1305 1310
	Gly Gln Pro Ser Thr Leu Thr Ile Phe Glu Thr Ala Leu 1315 1320 1325
20	
	<210> 64 <211> 1437 <212> PRT
25	<213> Homo sapiens
	<400> 64 Met Lys Asp Ile Asp Ile Gly Lys Glu Tyr Ile Ile Pro Ser Pro Gly
30	1 5 10 15
	Tyr Arg Ser Val Arg Glu Arg Thr Ser Thr Ser Gly Thr His Arg Asp 20 25 30
35	Arg Glu Asp Ser Lys Phe Arg Arg Thr Arg Pro Leu Glu Cys Gln Asp 35 40 45
40	Ala Leu Glu Thr Ala Ala Arg Ala Glu Gly Leu Ser Leu Asp Ala Ser 50 55 60
	Met His Ser Gln Leu Arg Ile Leu Asp Glu Glu His Pro Lys Gly Lys 65 70 75 80
45	Tyr His His Gly Leu Ser Ala Leu Lys Pro Ile Arg Thr Thr Ser Lys 85 90 95
50	His Gln His Pro Val Asp Asn Ala Gly Leu Phe Ser Cys Met Thr Phe 100 105 110
_	Ser Trp Leu Ser Ser Leu Ala Arg Val Ala His Lys Lys Gly Glu Leu 115 120 125
55	Ser Met Glu Asp Val Trp Ser Leu Ser Lys His Glu Ser Ser Asp Val

	130			135		140	
5	Asn Cys 145	Arg Arg	Leu Glu 150	Arg Leu	Trp Gln Glu 155		n Glu Val 160
10	Gly Pro	Asp Ala	Ala Ser 165	Leu Arg	Arg Val Val 170	Trp Ile Ph	e Cys Arg 175
	Thr Arg	Leu Ile 180		Ile Val	Cys Leu Met 185	Ile Thr Gl	
15	Gly Phe	Ser Gly 195	Pro Ala	Phe Met 200	Val Lys His	Leu Leu Gl 205	u Tyr Thr
20	Gln Ala 210	Thr Glu	Ser Asn	Leu Gln 215	Tyr Ser Leu	Leu Leu Va 220	l Leu Gly
	Leu Leu 225	Leu Thr	Glu Ile 230		Ser Trp Ser 235		eu Thr Trp 240
25	Ala Leu	Asn Tyr	Arg Thr 245	Gly Val	Arg Leu Arg 250	Gly Ala II	e Leu Thr. 255
30	Met Ala	Phe Lys 260		Leu Lys	Leu Lys Asn 265	lle Lys Gl 27	
	Leu Gly	Glu Leu 275	lle Asn	Ile Cys 280	Ser Asn Asp	Gly Gln Ar 285	rg Met Phe
35	Glu Ala 290	Ala Ala	Val Gly	Ser Leu 295	Leu Ala Gly	Gly Pro Va	al Val Ala
40	Ile Leu 305	Gly Met	Ile Tyr 310		Ile Ile Leu 315		or Gly Phe 320
	Leu Gly	Ser Ala	Val Phe	: Ile Leu	Phe Tyr Pro	Ala Met Me	et Phe Ala 335
45	Ser Arg	Leu Thr		Phe Arg	Arg Lys Cys		la Thr Asp 50
50	Glu Arg	Val Glr 355	Lys Met	Asn Glu 360	Val Leu Thr	Tyr Ile Ly 365	ys Phe Ile
_	Lys Met	_	a Trp Val	Lys Ala 375	Phe Ser Glr	n Ser Val G	ln Lys Ile
55	Arg Glu	ı Glu Glı	ı Arg Arg	, Ile Leu	Glu Lys Ala	a Gly Tyr P	he Gln Gly

	385		3:	90		395			400
5	Ile Thr	Val Gly	Val A 405	la Pro	Ile Val	Val Val 410	Ile Ala S	Ser Val 415	Val
10	Thr Phe	Ser Val		let Thr	Leu Gly 425	Phe Asp	Leu Thr A	Ala Ala 130	Gln
	Ala Phe	Thr Val	Val T		Phe Asn 440	Ser Met	Thr Phe 1 445	Ala Leu	Lys
15	Val Thr		Ser V	Val Lys 455	Ser Leu	Ser Glu	Ala Ser V 460	Val Ala	Val
20	Asp Arg	Phe Lys		eu Phe 170	Leu Met	Glu Glu 475	Val His I	Met Ile	Lys 480
	Asn Lys	Pro Ala	Ser P 485	Pro His	Ile Lys	Ile Glu 490	Met Lys i	Asn Ala 495	Thr
25	Leu Ala	Trp Ası 500		Ser His	Ser Ser 505	Ile Gln	Asn Ser	Pro Lys 510	Leu
30	Thr Pro	Lys Met 515	Lys L	Lys Asp	Lys Arg 520	Ala Ser	Arg Gly : 525	Lys Lys	Glu
_	Lys Va:	-	ı Leu G	Sln Arg 535	Thr Glu	His Gln	Ala Val	Leu Ala	Glu
35	Gln Ly: 545	s Gly Hi:		Leu Leu 550	Asp Ser	Asp Glu 555	Arg Pro	Ser Pro	Glu 560
40	Glu Gl	ı Glu Gl	y Lys 1 565	His Ile	His Leu	Gly His 570	Leu Arg	Leu Gln 575	_
45	Thr Le	u His Se 58		Asp Leu	Glu Ile 585	Gln Glu	Gly Lys	Leu Val 590	Gly
45	Ile Cy	s Gly Se 595	r Val (Gly Ser	Gly Lys 600	Thr Ser	Leu Ile 605	Ser Ala	Ile
50	Leu Gl	7	t Thr I	Leu Leu 615	_	Ser Ile	Ala Ile 620	Ser Gly	Thr
55	Phe Al 625	a Tyr Va		Gln Gln 630	Ala Trp	Ile Leu 635	Asn Ala	Thr Lev	Arg 640
	Asp As	n Ile Le	u Phe	Gly Lys	Glu Tyr	Asp Glu	Glu Arg	Tyr Asr	Ser

					645					650					655	
5	Val	Leu	Asn	Ser 660	Суѕ	Cys	Leu	Arg	Pro 665	Asp	Leu	Ala	Ile	Leu 670	Pro	Ser
10	Ser	Asp	Leu 675	Thr	Glu	Ïle	Gly	Glu 680	Arg	Gly _	Ala	Asn	Leu 685	Ser	Gly	Gly
		Ar g 690	Gln	Arg	Ile	Ser	Leu 695	Ala	Arg	Ala	Leu	Tyr 700	Ser	Asp	Arg	Ser
15	Ile 705	Tyr	Ile	Leu	Asp	Asp 710	Pro	Leu	Ser	Ala	Leu 715	Asp	Ala	His	Val	Gly 720
20	Asn	His	Ile	Phe	Asn 725	Ser	Ala	Ile	Arg	Lys 730	His	Leu	Lys	Ser	Lys 735	Thr
	Val	Leu	Phe	Val 740	Thr	His	Gln	Leu	Gln 745	Tyr	Leu	Val	Asp	Cys 750	Asp	Glu
25	Val	Ile	Phe 755	Met	Lys	Glu	Gly	Cys 760	Ile	Thr	Glu	Arg	Gly 765	Thr	His	Glu
30	Glu	Leu 770	Met	Asn	Leu	Asn	Gly 775	Asp	Tyr	Ala	Thr	Ile 780	Phe	Asn	Asn	Leu
	Leu 785	Leu	Gly	Glu	Thr	Pro 790	Pro	Val	Glu	Ile	Asn 795	Ser	Lys	Lys	Glu	Thr 800
35	Ser	Gly	Ser	Gln	Lys 805	Lys	Ser	Gln	Asp	Lys 810	Gly	Pro	Lys	Thr	Gly 815	
40	Val	Lys	Lys	Glu 820	Lys	Ala	Val	Lys	Pro 825		Glu	Gly	Gln	Leu 830		Gln
	Leu	Glu	G1u 835	Lys	Gly	Gln	Gly	Ser 840		Pro	Trp	Ser	Val 845		Gly	Val
45	Tyr	Ile 850		Ala	Ala	Gly	Gly 855		Leu	Ala	Phe	Leu 860		Ile	Met	Ala
50	Leu 865	Phe	Met	Leu	Asn	Val 870	_	Ser	Thr	Ala	Phe 875		Thr	Trp	Trp	Leu 880
	Ser	Tyr	Trp	Ile	Lys 885		Gly	Ser	Gly	890		Thr	· Val	. Thr	895	Gly
55	Asn	Glu	Thr	Ser	Val	Ser	. Asp	Ser	Met	: Lys	Asp	Asr	Pro	His	s Met	Gln

	900 905	910
5	Tyr Tyr Ala Ser Ile Tyr Ala Leu Ser Met Ala Val Met 915 920 925	
10	Lys Ala Ile Arg Gly Val Val Phe Val Lys Gly Thr Leu 930 935 940	Arg Ala Ser
	Ser Arg Leu His Asp Glu Leu Phe Arg Arg Ile Leu Arg 945 950 955	Ser Pro Met 960
15	Lys Phe Phe Asp Thr Thr Pro Thr Gly Arg Ile Leu Asn 965 970	Arg Phe Ser 975
20	Lys Asp Met Asp Glu Val Asp Val Arg Leu Pro Phe Gln 980 985	Ala Glu Met 990
	Phe Ile Gln Asn Val Ile Leu Val Phe Phe Cys Val Gly 995 1000 1005	
25	Gly Val Phe Pro Trp Phe Leu Val Ala Val Gly Pro Leu 1010 1015 1020	ı Val Ile Leu
30	Phe Ser Val Leu His Ile Val Ser Arg Val Leu Ile Arg 1025 1030 1035	g Glu Leu Lys 1040
	Arg Leu Asp Asn Ile Thr Gln Ser Pro Phe Leu Ser His 1045 1050	s Ile Thr Ser 1055
35		1055
<i>35</i>	1045 1050 Ser Ile Gln Gly Leu Ala Thr Ile His Ala Tyr Asn Lys	1055 s Gly Gln Glu 1070 n Ala Pro Phe
	Ser Ile Gln Gly Leu Ala Thr Ile His Ala Tyr Asn Lys . 1060 1065 Phe Leu His Arg Tyr Gln Glu Leu Leu Asp Asp Asn Glr	1055 s Gly Gln Glu 1070 n Ala Pro Phe
	Ser Ile Gln Gly Leu Ala Thr Ile His Ala Tyr Asn Lys . 1060 1065 Phe Leu His Arg Tyr Gln Glu Leu Leu Asp Asp Asn Glr 1075 1080 1085 Phe Leu Phe Thr Cys Ala Met Arg Trp Leu Ala Val Arg	1055 s Gly Gln Glu 1070 n Ala Pro Phe 5
40	Ser Ile Gln Gly Leu Ala Thr Ile His Ala Tyr Asn Lys . 1060 1065 Phe Leu His Arg Tyr Gln Glu Leu Leu Asp Asp Asn Glr 1075 1080 1085 Phe Leu Phe Thr Cys Ala Met Arg Trp Leu Ala Val Arg 1090 1095 1100	1055 s Gly Gln Glu 1070 n Ala Pro Phe 5 g Leu Asp Leu e Val Leu Met 1120
40 45	Ser Ile Gln Gly Leu Ala Thr Ile His Ala Tyr Asn Lys 1060 1065 Phe Leu His Arg Tyr Gln Glu Leu Leu Asp Asp Asn Glr 1075 1080 1085 Phe Leu Phe Thr Cys Ala Met Arg Trp Leu Ala Val Arg 1090 1095 1100 Ile Ser Ile Ala Leu Ile Thr Thr Thr Gly Leu Met Ile 1105 1110 1115 His Gly Gln Ile Pro Pro Ala Tyr Ala Gly Leu Ala Ile	1055 s Gly Gln Glu 1070 n Ala Pro Phe 5 g Leu Asp Leu e Val Leu Met 1120 e Ser Tyr Ala 1135

	1155	1160	1165
5	Thr Leu Ser Leu	Glu Ala Pro Ala Arg	Ile Lys Asn Lys Ala Pro Ser
	1170	1175	1180
10	Pro Asp Trp Pro	Gln Glu Gly Glu Val	Thr Phe Glu Asn Ala Glu Met
	1185	1190	1195 1200
			Leu Lys Lys Val Ser Phe Thr 210 1215
15	Ile Lys Pro Lys	Glu Lys Ile Gly Ile	Val Gly Arg Thr Gly Ser Gly
	1220	1225	1230
20	Lys Ser Ser Leu	Gly Met Ala Leu Phe	Arg Leu Val Glu Leu Ser Gly
	1235	1240	1245
	Gly Cys Ile Lys	Ile Asp Gly Val Arg	Ile Ser Asp Ile Gly Leu Ala
	1250	1255	1260
25	Asp Leu Arg Ser	Lys Leu Ser Ile Ile	Pro Gln Glu Pro Val Leu Phe
	1265	1270	1275 1280
30			Pro Phe Asn Gln Tyr Thr Glu 1295
	Asp Gln Ile Trp	Asp Ala Leu Glu Arg	Thr His Met Lys Glu Cys Ile
	1300	1305	1310
35	Ala Gln Leu Pro	Leu Lys Leu Glu Ser	Glu Val Met Glu Asn Gly Asp
	1315	1320	1325
40	Asn Phe Ser Val	Gly Glu Arg Gln Leu 1335	Leu Cys Ile Ala Arg Ala Leu 1340
	Leu Arg His Cys	Lys Ile Leu Ile Leu	Asp Glu Ala Thr Ala Ala Met
	1345	1350	1355 1360
45			Glu Thr Ile Arg Glu Ala Phe 1370 1375
50	Ala Asp Cys Thr 1380		His Arg Leu His Thr Val Leu 1390
	Gly Ser Asp Arg	Ile Met Val Leu Ala	Gln Gly Gln Val Val Glu Phe
	1395	1400	1405
55	Asp Thr Pro Ser	Val Leu Leu Ser Asn	Asp Ser Ser Arg Phe Tyr Ala

	1410		1	L 41 5	:	1420	
5	Met Phe 2	Ala Ala	Ala Glu 1430	Asn Lys	Val Ala Val 1435	Lys Gly	
10	<210> 65 <211> 15 <212> PR'						
15	<213> Hore	mo sapie	Ala Glu	Pro Cys	Ala Gly Gln	Gly Val Tr	o Asn Gln
20	Thr Glu	Pro Glu 20	5 Pro Ala	Ala Thr	10 Ser Leu Leu 25	Ser Leu Cys	
25	Arg Thr	Ala Gly 35	Val Trp	Val Pro 40	Pro Met Tyr	Leu Trp Val	l Leu Gly
30	50 Met Ser		Phe Lys	55	His His Gly	60 Gly Phe Ala	a Leu Ile
35	65 Val Leu	Cys Thr	70 Ser Ser 85	Val Ala	75 Val Ala Leu 90		80 e Gln Gln 95
40	Thr Thr	100			Leu Ile His	11	0
45	Gly Val	Gln Ser	Ser Gly	Val Leu 135	Phe Gly Tyr	Trp Leu Le	u Cys Phe
50	145	•	150		Gln Gln Ala	5	160
55		Ala Gln	165 Phe Val		170 Cys Leu Ala	a Asp Gln Pr	175 o Pro Phe
		180			185	19	0

5	Phe 1		Glu 195	Asp	Pro	Gln	Gln	Ser 200	Asn	Pro	Cys		G1u 205	Thr	Gly	Ala
	Ala :	Phe 210	Pro	Ser	Lys	Ala	Thr 215	Phe	Trp	Trp	Val	Ser 220	Gly	Leu	Val	Trp
10	Arg (Gly	Tyr	Arg	Arg	Pro 230	Leu	Arg	Pro	_	Asp 235	Leu	Trp	Ser	Leu	Gly 240
15	Arg (G1u	Asn	Ser	Ser 245	Glu	Glu	Leu	Val	Ser 250	Arg	Leu	Glu	Lys	Glu 255	Trp
	Met .	Arg	Asn	Arg 260	Ser	Ala	Ala	Arg	Arg 265	His	Asn	Lys	Ala	Ile 270	Ala	Phe
20	Lys .	Arg	Lys 275	Gly	Gly	Ser	Gly	Met 280	Lys	Ala	Pro	Glu	Thr 285	Glu	Pro	Phe
25	Ŀeu	Arg 290	Gln	Glu	Gly	Ser	Gln 295	Trp	Arg	Pro	Leu	Leu 300	Lys	Ala	Ile	Trp
30	Gln 305	Val	Phe	His	Ser	Thr 310	Phe	Leu	Leu	Gly	Thr 315	Leu	Ser	Leu	Ile	11e 320
	Ser	Asp	Val	Phe	Arg 325	Phe	Thr	Val	Pro	Lys 330	Leu	Leu	Ser	Leu	Phe 335	Leu
35	Glu	Phe	Ile	Gly 340	Asp	Pro	Lys	Pro	Pro 345	Ala	Trp	Lys	Gly	Tyr 350	Leu	Leu
40	Ala	Val	Leu 355	Met	Phe	Leu	Ser	Ala 360	Cys	Leu	Gln	Thr	Leu 365	Phe	Glu	Gln
	Gln	Asn 370	Met	Tyr	Arg	Leu	Lys 375	Val	Leu	Gln	Met	Arg 380	Leu	Arg	Ser	Ala
45	Ile 385	Thr	Gly	Leu	Val	Туг 390	_	Lys	Val	Leu	Ala 395	Leu	Ser	Ser	Gly	Ser 400
50	Arg	Lys	Ala	Ser	Ala 405		Gly	Asp	Val	Val 410		Leu	Val	Ser	Val 415	Asp
	Val	Gln	Arg	Leu 420		Glu	Ser	Val	Leu 425	-	Leu	Asn	Gly	Leu 430	-	Leu
55	Pro	Leu	Val 435	_	Ile	Val	Val	Cys 440		Val	Tyr	Leu	Trp		. Leu	Leu

5	Gly	Pro 450	Ser	Ala	Leu	Thr	Ala 455	Ile	Ala	Val	Phe	Leu 460	Ser	Leu	Leu	Pro
	Leu 465	Asn	Phe	Phe	Ile	Ser 470	Lys	Lys	Arg	Asn	His 475	His	Gln	Glu	Glu	Gln 480
10	Met	Arg	Gln	Lys	Asp 485	Ser	Arg	Ala	Arg	Leu 490	Thr	Ser	Ser	Ile	Leu 495	Arg
15	Asn	Ser	Lys	Thr 500	Ile	Lys	Phe	His	Gly 505	Trp	Glu	Gly	Ala	Phe 510	Leu	Asp
	Arg	Val	Leu 515	Gly	Ile	Arg	Gly	Gln 520	Glu	Leu	Gly	Ala	Leu 525	Arg	Thr	Ser
20	Gly	Leu 530	Leu	Phe	Ser	Val	Ser 535	Leu	Val	Ser	Phe	Gln 540	Val	Ser	Thr	Phe
25	Leu 545	Val	Ala	Leu	Val	Val 550	Phe	Ala	Val	His	Thr 555	Leu	Val	Ala	Glu	Asn 560
30	Ala	Met	Asn	Ala	Glu 565	Lys	Ala	Phe	Val	Thr 570	Leu	Thr	Val	Leu	Asn 575	Ile
30	Leu	Asn	Lys	Ala 580	Gln	Ala	Phe	Leu	Pro 585	Phe	Ser	Ile	His	Ser 590	Leu	Val
35	Gln	Ala	Arg 595	Val	Ser	Phe	Asp	Arg 600	Leu	Val	Thr	Phe	Leu 605	Cys	Leu	G1u
40	Glu	Val 610	Asp	Pro	Gly	Val	Val 615	Asp	Ser	Ser	Ser	Ser 620	Gly	Ser	Ala	Ala
	Gly 625		Asp	Суз	Ile	Thr 630	Ile	His	Ser	Ala	Thr 635	Phe	Ala	Trp	Ser	Gln 640
45	Glu	Ser	Pro	Pro	Cys 645	Leu	His	Arg	Ile	Asn 650	Leu	Thr	Val	Pro	Gln 655	Gly
50	Cys	Leu	Leu	Ala 660	Val	Val	Gly	Pro	Val 665	_	Ala	Gly	Lys	Ser 670	Ser	Leu
	Leu	Ser	Ala 675	Leu	Leu	Gly	Glu	Leu 680		Lys	Val	Glu	Gly 685		Val	Ser
55	Ile	Glu 690		Ala	Val	Ala	Тут 695		Pro	Gln	Glu	Ala 700	_	Val	Gln	Asn

PATENT COOPERATION TREATY

From the INTERNATIONAL SEARCHING AUTHORITY	RECEIV
To: BARRY L. DAVISON 2600 CENTURY SQUARE	PCT MAR 3 1 2
1501 FOURTH AVENUE SEATTLE, WA 98101-1688	NOTIFICATION OF TRANSMITTAL OF THE INTERNATIONAL SEARCH REPORT AND THE WRITTEN OPINION OF THE INTERNATIONAL SEARCHING AUTHORITY, OR THE DECLARATION
·	(PCT Rule 44.1)
	Date of mailing (day/month/year) 2 9 MAR 2006
Applicant's or agent's file reference 55382-28	FOR FURTHER ACTION See paragraphs 1 and 4 below
International application No. PCT/US05/14668	International filing date (day/month/year) 27 April 2005 (27.04.2005)
Applicant ILLUMIGEN BIOSCIENCES, INC.	
The applicant is hereby notified that the international sear have been established and are transmitted herewith.	rch report and the written opinion of the International Searching Authority
Filing of amendments and statement under Article 19 The applicant is entitled, if he so wishes, to amend the c	
When? The time limit for filing sw search report.	rmally two months from the control of transmittal control of transmi
Wher Directly e Internat 1211 G 20, Switz	2 i de des C. gε − °C. i0.
For t etail uctions,	in heet.
2. The apr er d that Article the first state of the	ere international Searching Authority are transmitted herewith.
3. 🔛 re не s insi раупел от (an) addi	itional fee(s) under Rule 40.2, the applicant is notified that:
the period gether with the decision thereon has be request to forward the texts of both the protest and to	· · · · · · · · · · · · · · · · · · ·
4. Reminders	opineant with be notified as soon as a decision is made.
Shortly after the expiration of 18 months from the priority dat Bureau. If the applicant wishes to avoid or postpone publicati	te, the international application will be published by the International ion, a notice of withdrawal of the international application, or of the in Rules 90bis.1 and 90bis.3, respectively, before the completion of the
International Bureau. The International Bureau will send a cop	n the written opinion of the International Searching Authority to the py of such comments to all designated Offices unless an international in the comments would also be made available to the public but not
examination must be filed if the applicant wishes to postpone the	t of some designated Offices, a demand for international preliminary he entry into the national phase until 30 months from the priority date thin 20 months from the priority date, perform the prescribed acts for
	ths (or later) will apply even if no demand is filed within 19 months.
See the Annex to Form PCT/IB/301 and, for details about the a Volume II, National Chapters and the WIPO Internet site.	applicable time limits, Office by Office, see the PGT applicant's Guide,

Mail Stop PCT, Attn: ISA/US
Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450
Facsimile No. (703) 305-3230
Form PCT/ISA/220 (January 2004)

Name and mailing address of the ISA/ US

notes on accompanying sheet)

Authorized officer

David Humphrey

Telephone No. (571) 272

5	Thr 705	Ser	Val	Va1	Glu	Asn 710	Val	Cys	Phe	G1y	Gln 715	Glu	Leu	Asp	Pro	Pro 720
	Trp	Leu	Glu	Arg	Val 725	Leu	Glu	Ala	Cys	Ala 730	Leu	Gln	Pro	Asp	Val 735	Asp
10	Ser	Phe	Pro	Glu 740	Gly	Ile	His	Thr	Ser 745	Ile	Gly	Glu	Gln	Gly 750	Met	Asn
15	Leu	Ser	Gly 755	Gly	Gln	Lys	Gln	Arg 760	Leu	Ser	Leu	Ala	Arg 765	Ala	Val	Tyr
20	Arg	Lys 770	Ala	Ala	Val	Tyr	Leu 775	Leu	Asp	Asp	Pro	Leu 780	Ala	Ala	Leu	Asp
-	Ala 785	His	Val	Gly	Gln	His 790	Val	Phe	Asn	Gln	Val 795	Ile	Gly	Pro	Gly	800
25	Leu	Leu	Gln	Gly	Thr 805	Thr	Arg	Ile	Leu	Val 810	Thr	His	Ala	Leu	His 81 5	Ile
30	Leu	Pro	Gln	Ala 820	Asp	Trp	Ile	Ile	Val 825	Leu	Ala	Asn	Gly	Ala 830	Ile	Ala
	Glu	Met	Gly 835	Ser	Tyr	Gln	Glu	Leu 840	Leu	Gln	Arg	Lys	Gly 845	Ala	Leu	Val
35	Cys	Leu 850	Leu	Asp	Gln	Ala	Arg 855	Gln	Pro	Gly	Asp	Arg 860	Gly	Glu	Gly	Glu
40	Thr 865		Pro	Gly	Thr	Ser 870	Thr	Lys	Asp	Pro	Arg 875	Gly	Thr	Ser	Ala	Gly 880
	Arg	Arg	Pro	Glu	Leu 885	_	Arg	Glu	Arg	Ser 890		Lys	Ser	Val	Pro 895	Glu
45	Lys	Asp	Arg	Thr 900	Thr	Ser	Glu	Ala	905		Glu	Val	Pro	10 June 1	-	Asp
50	Pro	Asp	Arg 915		Gly	Trp	Pro	Ala 920	_	Lys	Asp	Ser	Ile 925		Tyr	Gly
	Arg	930	-	Ala	Thr	Val	His 935		Ala	Туг	Leu	Arg 940		Val	Gly	Thr
55	Pro 945		Cys	Leu	Туг	950		Phe	e Leu	ı Phe	955	_	Gln	Gln	Val	Ala 960

5	Ser Phe Cys Arg Gly Tyr Trp Leu Ser Leu Trp Ala Asp Asp Pro Ala 965 970 975
40	Val Gly Gly Gln Gln Thr Gln Ala Ala Leu Arg Gly Gly Ile Phe Gly 980 985 990
10	Leu Leu Gly Cys Leu Gln Ala Ile Gly Leu Phe Ala Ser Met Ala Ala 995 1000 1005
15	Val Leu Leu Gly Gly Ala Arg Ala Ser Arg Leu Leu Phe Gln Arg Leu 1010 1015 1020
20	Leu Trp Asp Val Val Arg Ser Pro Ile Ser Phe Phe Glu Arg Thr Pro 1025 1030 1035 1040
	Ile Gly His Leu Leu Asn Arg Phe Ser Lys Glu Thr Asp Thr Val Asp 1045 1050 1055
25	Val Asp Ile Pro Asp Lys Leu Arg Ser Leu Leu Met Tyr Ala Phe Gly 1060 1065 1070
<i>30</i>	Leu Leu Glu Val Ser Leu Val Val Ala Val Ala Thr Pro Leu Ala Thr 1075 1080 1085
	Val Ala Ile Leu Pro Leu Phe Leu Leu Tyr Ala Gly Phe Gln Ser Leu 1090 1095 1100
35	Tyr Val Val Ser Ser Cys Gln Leu Arg Arg Leu Glu Ser Ala Ser Tyr 1105 1110 1115 1120
40	Ser Ser Val Cys Ser His Met Ala Glu Thr Phe Gln Gly Ser Thr Val 1125 1130 1135
	Val Arg Ala Phe Arg Thr Gln Ala Pro Phe Val Ala Gln Asn Asn Ala 1140 1145 1150
45	Arg Val Asp Glu Ser Gln Arg Ile Ser Phe Pro Arg Leu Val Ala Asp 1155 1160 1165
50	Arg Trp Leu Ala Ala Asn Val Glu Leu Leu Gly Asn Gly Leu Val Phe 1170 1175 1180
	Ala Ala Ala Thr Cys Ala Val Leu Ser Lys Ala His Leu Ser Ala Gly 1185 1190 1195 1200
55	Leu Val Gly Phe Ser Val Ser Ala Ala Leu Gln Val Thr Gln Thr Leu 1205 1210 1215

	Gln Trp Val Val Arg Asn Trp Thr Asp Leu Glu Asn Ser Ile Val Ser
_	1220 1225 1230
5	
	Val Glu Arg Met Gln Asp Tyr Ala Trp Thr Pro Lys Glu Ala Pro Trp
	1235 1240 1245
	Ave Iou Dec Obe Ose Ala Ala Cla Dec Dec Dec Dec Cla Cla Cla Cla Cla
10	Arg Leu Pro Thr Cys Ala Ala Gln Pro Pro Trp Pro Gln Gly Gln 1250 1255 1260
	1230 1233 1200
	Ile Glu Phe Arg Asp Phe Gly Leu Arg Tyr Arg Pro Glu Leu Pro Leu
	1265 1270 1275 1280
15	
	Ala Val Gln Gly Val Ser Phe Lys Ile His Ala Gly Glu Lys Val Gly
	1285 1290 1295
20	Ile Val Gly Arg Thr Gly Ala Gly Lys Ser Ser Leu Ala Ser Gly Leu
	1300 1305 1310
	Leu Arg Leu Gln Glu Ala Ala Glu Gly Gly Ile Trp Ile Asp Gly Val 1315 1320 1325
25	1315 1320 1325
	Pro Ile Ala His Val Gly Leu His Thr Leu Arg Ser Arg Ile Ser Ile
	1330 1335 1340
30	Ile Pro Gln Asp Pro Ile Leu Phe Pro Gly Ser Leu Arg Met Asn Leu
	1345 1350 1355 1360
25	Asp Leu Glu Glu His Ser Asp Glu Ala Ile Trp Ala Ala Leu Glu
35	1365 1370 1375
	When Well Clanton Ton Ble You Well Ble Con You Day Clar Clanton Clan
	Thr Val Gln Leu Lys Ala Leu Val Ala Ser Leu Pro Gly Gln Leu Gln 1380 1385 1390
40	1300 1303 1390
40	Tyr Lys Cys Ala Asp Arg Gly Glu Asp Leu Ser Val Gly Gln Lys Gln
	1395 1400 1405
45	Leu Leu Cys Leu Ala Arg Ala Leu Leu Arg Lys Thr Gln Ile Leu Ile
10	1410 1415 1420
	Leu Asp Glu Ala Thr Ala Ala Val Asp Pro Gly Thr Glu Leu Gln Met
50	1425 1430 1435 1440
30	Ola Nie Met Lou Ola Con Mar Dhe Nie Cia Car Man Mei Lou Lou Tie
	Gln Ala Met Leu Gly Ser Trp Phe Ala Gln Cys Thr Val Leu Leu Ile 1445 1450 1455
	7230 7330 7333
55	Ala His Arg Leu Arg Ser Val Met Asp Cys Ala Arg Val Leu Val Met
	1460 1465 1470

5	Asp Lys Gly Gln Val Ala Glu Ser Gly Ser Pro Ala Gln Leu Leu Ala 1475 1480 1485
	Gln Lys Gly Leu Phe Tyr Arg Leu Ala Gln Glu Ser Gly Leu Val 1490 1495 1500
10	
15	<210> 66 <211> 1480 <212> PRT <213> Homo sapiens
	<400> 66
20	Met Gln Arg Ser Pro Leu Glu Lys Ala Ser Val Val Ser Lys Leu Phe 1 5 10 15
25	Phe Ser Trp Thr Arg Pro Ile Leu Arg Lys Gly Tyr Arg Gln Arg Leu 20 25 30
	Glu Leu Ser Asp Ile Tyr Gln Ile Pro Ser Val Asp Ser Ala Asp Asn 35 40 45
30	Leu Ser Glu Lys Leu Glu Arg Glu Trp Asp Arg Glu Leu Ala Ser Lys 50 55 60
35	Lys Asn Pro Lys Leu Ile Asn Ala Leu Arg Arg Cys Phe Phe Trp Arg 65 70 75 80
	Phe Met Phe Tyr Gly Ile Phe Leu Tyr Leu Gly Glu Val Thr Lys Ala 85 90 95
40	Val Gln Pro Leu Leu Gly Arg Ile Ile Ala Ser Tyr Asp Pro Asp 100 105 110
45	Asn Lys Glu Glu Arg Ser Ile Ala Ile Tyr Leu Gly Ile Gly Leu Cys 115 120 125
	Leu Leu Phe Ile Val Arg Thr Leu Leu Leu His Pro Ala Ile Phe Gly 130 135 140
50	Leu His His Ile Gly Met Gln Met Arg Ile Ala Met Phe Ser Leu Ile 145 150 155 160
55	Tyr Lys Lys Thr Leu Lys Leu Ser Ser Arg Val Leu Asp Lys Ile Ser 165 170 175

	Ile Gly	Gln Leu 180	Val S	Ser Leu	Leu Ser 185		ı Leu .	Asn Lys 190	Phe	Asp
5	Glu Gly	Leu Ala 195	Leu A	da His	Phe Val 200	Trp Ile		Pro Leu 205	Gln	Val
10	Ala Leu 210	Leu Met	Gly L	Leu Ile 215	Trp Glu	Leu Le	220	Ala Ser	Ala	Phe
15	Cys Gly 225	Leu Gly		Seu Ile 230	Val Leu	Ala Le		Gln Ala	Gly	Leu 240
	Gly Arg	Met Met	Met L 245	bys Tyr	Arg Ası	Gln Ar	g Ala	Gly Lys	Ile 255	Ser
20	Glu Arg	Leu Val		Thr Ser	Glu Met 265		u Asn	Ile Glr 270		Val
25	Lys Ala	Tyr Cys 275	Trp G	Glu Glu	Ala Med 280	Glu Ly	s Met	Ile Glu 285	Asn	Leu
	Arg Glr 290	Thr Glu	Leu I	Lys Leu 295	Thr Arg	g Lys Al	a Ala 300	Tyr Val	Arg	Tyr
30	Phe Asr 305	n Ser Ser		Phe Phe 310	Phe Se	r Gly Pb 31		Val Val	Phe	Leu 320
35	Ser Val	l Leu Pro	325	Ala Leu	Ile Ly	330	e Ile	Leu Arq	335	Ile
40	Phe Thi	Thr Ile		Phe Cys	Ile Va 34		g Met	Ala Vai		Arg
40	Gln Phe	e Pro Try 355	Ala V	Val Gln	Thr Tr 360	p Tyr As	p Ser	Leu Gly 365	/ Ala	Ile
45	Asn Lys	s Ile Gli O	Asp 1	Phe Leu 375	_	s Gln G	u Tyr 380	Lys Th	r Leu	Glu
50	Tyr Ass	n Leu Th		Thr Glu 390	Val Va		lu Asn 95	Val Th	r Ala	Phe 400
	Trp Gl	u Glu Gl	Phe 405	Gly Glu	Leu Ph	e Glu Ly 410	/s Ala	Lys Gl	n Asn 415	
55	Asn As	n Arg Ly 42		Ser Asr	n Gly As		er Leu	Phe Ph		Asn

	Phe Se	r Leu 435	Leu	Gly	Thr	Pro	Val 440	Leu	Lys	Asp	Ile	Asn 445	Phe	Lys	Ile
5	Glu Ar		Gln	Leu	Leu	Ala 455	Val	Ala	Gly	Ser	Thr 460	Gly	Ala	Gly	Lys
10	Thr Se	r Leu	Leu	Met	Met 470	Ile	Met	Gly	Glu	Leu 475	Glu	Pro	Ser	Glu	Gly 480
15	Lys Il	e Lys	His	Ser 485	Gly	Arg	Ile	Ser	Phe 490	Cys	Ser	Gln	Phe	Ser 495	Trp
	Ile Me	t Pro	Gly 500	Thr	Ile	Lys	Glu	Asn 505	Ile	Ile	Phe	Gly	Val 510	Ser	Tyr
20	Asp Gl	u Tyr 515	_	Tyr	Arg	Ser	Val 520	Ile	Lys	Ala	Cys	Gln 525	Leu	Glu	Glu
25	Asp Il 53		Lys	Phe	Ala	Glu 535	Lys	Asp	Asn	Ile	Val 540	Leu	Gly	Glu	Gly
22	Gly Il 545	e Thr	Leu	Ser	Gly 550	Gly	Gln	Arg	Ala	Arg 555	Ile	Ser	Leu	Ala	Arg 560
30	Ala Va	l Tyr	Lys	Asp 565	Ala	Asp	Leu	Tyr	Leu 570	Leu	Asp	Ser	Pro	Phe 575	Gly
35	Tyr Le	u Asp	Val 580		Thr	Glu	Lys	Glu 585	Ile	Phe	Glu	Ser	Cys 590	Val	Cys
40	Lys Le	u Met 595		Asn	Lys	Thr	Arg 600	Ile	Leu	Val	Thr	Ser 605	Lys	Met	Glu
	His Le	_	Lys	Ala	Asp	Lys 615	Ile	Leu	Ile	Leu	His 620		Gly	Ser	Ser
45	Tyr Pl 625	_			630					635				-	640
50	Ser Se	-		645	-	-	_		650	•				655	
	Arg A		660)				665					670		
55	Gly A	5p Ala 675		Val	Ser	Trp	680		Thr	Lys	Lys	685		Phe	Lys

_	Gln	Thr 690	Gly	Glu	Phe	Gly	Glu 695	Lys	Arg	Lys	Asn	Ser 700	Ile	Leu	Asn	Pro
5	Ile 705	Asn	Ser	Ile	Arg	Lys 710	Phe	Ser	Ile	Val	Gln 715	Lys	Thr	Pro	Leu	Gln 720
10	Met	Asn	Gly	Ile	Glu 725	Glu	Asp	Ser	Asp	Glu 730	Pro	Leu	Glu	Arg	Arg 735	Leu
15	Ser	Leu	Val	Pro 740	Asp	Ser	Glu	Gln	Gly 745	Glu	Ala	Ile	Leu	Pro 750	Arg	Ile
	Ser	Val	Ile 755	Ser	Thr	Gly	Pro	Thr 760	Leu	Gln	Ala	Arg	Arg 765	Arg	Gln	Ser
20	Val	Leu 770	Asn	Leu	Met	Thr	His 775	Ser	Val	Asn	Gln	Gly 780	Gln	Asn	Ile	His
25	Arg 785	Lys	Thr	Thr	Ala	Ser 790	Thr	Arg	Lys	Val	Ser 795	Leu	Ala	Pro	Gln	Ala 800
	Asn	Leu	Thr	Glu	Leu 805	Asp	Ile	Tyr	Ser	Arg 810	Arg	Leu	Ser	Gln	Glu 815	Thr
30	Gly	Leu	Glu	Ile 820	Ser	Glu	Glu	Ile	Asn 825	Glu	Glu	Asp	Leu	Lys 830	Glu	Суз
35	Phe	Phe	Asp 835	Asp	Met	Glu	Ser	Ile 840	Pro	Ala	Val	Thr	Thr 845	Trp	Asn	Thr
40	Tyr	Leu 850	Arg	Tyr	Ile	Thr	Val 855	His	Lys	Ser	Leu	Ile 860	Phe	Val	Leu	Ile
•	Trp 865	Cys	Leu	Val	Ile	Phe 870	Leu	Ala	Glu	Val	Ala 875	Ala	Ser	Leu	Val	Val 880
45	Leu	Trp	Leu	Leu	Gly 885		Thr	Pro	Leu	Gln 890	Asp	Lys	Gly	Asn	Ser 895	
50	His	Ser	Arg	Asn 900	Asn	Ser	Tyr	Ala	Val 905		Ile	Thr	Ser	Thr 910		Ser
	Tyr	Tyr	Val 915		Tyr	Ile	Tyr	Val 920		Val	Ala	Asp	Thr 925		Leu	Ala
55	Met	Gly 930		Phe	Arg	Gly	Leu 935		Leu	Val	His	Thr 940		Ile	Thr	Val

5	Ser Lys Ile Leu His His Lys Met Leu His Ser Val Leu Gln Ala Pro 945 950 955 960
	Met Ser Thr Leu Asn Thr Leu Lys Ala Gly Gly Ile Leu Asn Arg Phe 965 970 975
10	Ser Lys Asp Ile Ala Ile Leu Asp Asp Leu Leu Pro Leu Thr Ile Phe 980 985 990
15	Asp Phe Ile Gln Leu Leu Ile Val Ile Gly Ala Ile Ala Val Val 995 1000 1005
	Ala Val Leu Gln Pro Tyr Ile Phe Val Ala Thr Val Pro Val Ile Val 1010 1015 1020
20	Ala Phe Ile Met Leu Arg Ala Tyr Phe Leu Gln Thr Ser Gln Gln Leu 1025 1030 1035 1040
25	Lys Gln Leu Glu Ser Glu Gly Arg Ser Pro Ile Phe Thr His Leu Val 1045 1050 1055
30	Thr Ser Leu Lys Gly Leu Trp Thr Leu Arg Ala Phe Gly Arg Gln Pro 1060 1065 1070
w.	Tyr Phe Glu Thr Leu Phe His Lys Ala Leu Asn Leu His Thr Ala Asn 1075 1080 1085
35	Trp Phe Leu Tyr Leu Ser Thr Leu Arg Trp Phe Gln Met Arg Ile Glu 1090 1095 1100
40	Met Ile Phe Val Ile Phe Phe Ile Ala Val Thr Phe Ile Ser Ile Leu 1105 1110 1115 1120
	Thr Thr Gly Glu Gly Glu Gly Arg Val Gly Ile Ile Leu Thr Leu Ala 1125 1130 1135
45	Met Asn Ile Met Ser Thr Leu Gln Trp Ala Val Asn Ser Ser Ile Asp 1140 1145 1150
50	Val Asp Ser Leu Met Arg Ser Val Ser Arg Val Phe Lys Phe Ile Asp 1155 1160 1165
	Met Pro Thr Glu Gly Lys Pro Thr Lys Ser Thr Lys Pro Tyr Lys Asn 1170 1175 1180
55	Gly Gln Leu Ser Lys Val Met Ile Ile Glu Asn Ser His Val Lys 1185 1190 1195 1200

5	Asp Asp Ile Trp Pro Ser Gly Gly Gln Met Thr Val Lys Asp Leu Thr 1205 1210 1215
	Ala Lys Tyr Thr Glu Gly Gly Asn Ala Ile Leu Glu Asn Ile Ser Phe 1220 1225 1230
10	Ser Ile Ser Pro Gly Gln Arg Val Gly Leu Leu Gly Arg Thr Gly Ser 1235 1240 1245
15	Gly Lys Ser Thr Leu Leu Ser Ala Phe Leu Arg Leu Leu Asn Thr Glu 1250 1255 1260
	Gly Glu Ile Gln Ile Asp Gly Val Ser Trp Asp Ser Ile Thr Leu Gln 1265 1270 1275 1280
20	Gln Trp Arg Lys Ala Phe Gly Val Ile Pro Gln Lys Val Phe Ile Phe 1285 1290 1295
25	Ser Gly Thr Phe Arg Lys Asn Leu Asp Pro Tyr Glu Gln Trp Ser Asp 1300 1305 1310
	Gln Glu Ile Trp Lys Val Ala Asp Glu Val Gly Leu Arg Ser Val Ile 1315 1320 1325
30	Glu Gln Phe Pro Gly Lys Leu Asp Phe Val Leu Val Asp Gly Gly Cys 1330 1335 1340
35	Val Leu Ser His Gly His Lys Gln Leu Met Cys Leu Ala Arg Ser Val 1345 1350 1355 1360
40	Leu Ser Lys Ala Lys Ile Leu Leu Leu Asp Glu Pro Ser Ala His Leu 1365 1370 1375
40	Asp Pro Val Thr Tyr Gln Ile Ile Arg Arg Thr Leu Lys Gln Ala Phe 1380 1385 1390
45	Ala Asp Cys Thr Val Ile Leu Cys Glu His Arg Ile Glu Ala Met Leu 1395 1400 1405
50	Glu Cys Gln Gln Phe Leu Val Ile Glu Glu Asn Lys Val Arg Gln Tyr 1410 1415 1420
	Asp Ser Ile Gln Lys Leu Leu Asn Glu Arg Ser Leu Phe Arg Gln Ala 1425 1430 1435 1440
55	Ile Ser Pro Ser Asp Arg Val Lys Leu Phe Pro His Arg Asn Ser Ser 1445 1450 1455

	Lys Cys Lys Ser Lys Pro Gln Ile Ala Ala Leu Lys Glu Glu Thr Glu 1460 1465 1470
5	Glu Glu Val Gln Asp Thr Arg Leu 1475 1480
10	
	<210> 67 <211> 1581 <212> PRT
15	<213> Homo sapiens
	<pre><400> 67 Met Pro Leu Ala Phe Cys Gly Ser Glu Asn His Ser Ala Ala Tyr Arg 1 5 10 15</pre>
20	Val Asp Gln Gly Val Leu Asn Asn Gly Cys Phe Val Asp Ala Leu Asn
	20 25 30
25	Val Val Pro His Val Phe Leu Leu Phe Ile Thr Phe Pro Ile Leu Phe 35 40 45
30	Ile Gly Trp Gly Ser Gln Ser Ser Lys Val His Ile His His Ser Thr 50 55 60
	Trp Leu His Phe Pro Gly His Asn Leu Arg Trp Ile Leu Thr Phe Met 65 70 75 80
35	Leu Leu Phe Val Leu Val Cys Glu Ile Ala Glu Gly Ile Leu Ser Asp 85 90 95
40	Gly Val Thr Glu Ser His His Leu His Leu Tyr Met Pro Ala Gly Met 100 105 110
	Ala Phe Met Ala Ala Val Thr Ser Val Val Tyr Tyr His Asn Ile Glu 115 120 125
45	Thr Ser Asn Phe Pro Lys Leu Leu Ile Ala Leu Leu Val Tyr Trp Thr 130 135 140
50	Leu Ala Phe Ile Thr Lys Thr Ile Lys Phe Val Lys Leu Leu Asp His 145 150 155 160
	Ala Ile Gly Phe Ser Gln Leu Arg Phe Cys Leu Thr Gly Leu Leu Val 165 170 175
55	Ile Leu Tyr Gly Met Leu Leu Leu Val Glu Val Asn Val Ile Arg Val

				180					185					190		
5	Arg .	Arg	Tyr 195	Ile	Phe	Phe	Lys	Thr 200	Pro	Arg	Glu	Val	Lys 205	Pro	Pro	Glu
10	Asp :	Leu 210	Gln	Asp	Leu	Gly	Val 215	Arg	Phe	Leu	Gln	Pro 220	Phe	Val	Asn	Leu
	Pro 225	Ser	Lys	Gly	Thr	Tyr 230	Trp	Trp	Met	Asn	Ala 235	Phe	Ile	Lys	Thr	Ala 240
15	His	Lys	Lys	Pro	Ile 245	Asp	Leu	Arg	Ala	Ile 250	Gly	Lys	Leu	Pro	Ile 255	Val
20	Met	Arg	Ala	Leu 260	Thr	Asn	Туr	Gln	Arg 265	Leu	Cys	Glu	Ala	Phe 270	Asp	Ala
	Gln	Val	Arg 275	Lys	Asp	Ile	Gln	Gly 280	Thr	Gln	Gly	Ala	Arg 285	Ala	Ile	Trp
25		Ala 290	Leu	Ser	His	Ala	Phe 295	Gly	Arg	Arg	Leu	Val 300	Leu	Ser	Ser	Thr
30	Phe 305	Arg	Ile	Leu	Ala	Asp 310	Leu	Leu	Gly	Phe	Ala 315	Gly	Pro	Leu	Cys	11e 320
	Phe	Gly	Ile	Val	Asp 325	His	Leu	Gly	Lys	Glu 330	Asn	Asp	Val	Phe	Gln 335	Pro
35	Lys	Thr	Gln	Phe 340	Leu	Gly	Val	Tyr	Phe 345	Val	Ser	Ser	Gln	Glu 350	Phe	Leu
40	Ala	Asn	Ala 355	Tyr	Val	Leu	Ala	Val 360	Leu	Leu	Phe	Leu	Ala 365	Leu	Leu	Leu
_	Gln	Arg 370	Thr	Phe	Leu	Gln	Ala 375	Ser	Tyr	Туг	Val	Ala 380	Ile	Glu	Thr	Gly
45	Ile 385	Asn	Leu	Arg	Gly	Ala 390		Gln	Thr	Lys	Ile 395		Asn	Lys	Ile	Met 400
50	His	Leu	Ser	Thr	Ser 405		Leu	Ser	Met	Gly 410		Met	Thr	Ala	Gly 415	Gln
66	Ile	Cys	Asn	Leu 420		Ala	Ile	Asp	Thr 425		Gln	Leu	Met	Trp 430		Phe
55	Phe	Leu	Cys	Pro	Asn	Leu	Trp	Ala	Met	Pro	Val	Gln	Ile	Ile	Val	Gly

		435				440					445			
5	Val Ile		Leu Tyr	Tyr	Ile 455	Leu	Gly	Val	Ser	Ala 460	Leu	Ile	Gly	Ala
10	Ala Val	l Ile I	(le Lev	Leu 470	Ala	Pro	Val	Gln	Tyr 475	Phe	Val	Ala	Thr	Lys 480
	Leu Se	Gln A	Ala Glr 485		Ser	Thr	Leu	Glu 490	Tyr	Ser	Asn	Glu	Arg 495	Leu .
15	Lys Gl		Asn Glu 500	. Met	Leu	Arg	Gly 505	Ile	Lys	Leu	Leu	Lys 510	Leu	Tyr
20	Ala Tr	9 Glu <i>I</i> 515	Asn Ile	Phe	Arg	Thr 520	Arg	Val	Glu	Thr	Thr 525	Arg	Arg	Lys
	Glu Me 53		Ser Le	ı Arg	Ala 535	Phe	Ala	Ile	Tyr	Thr 540	Ser	Ile	Ser	Ile
25	Phe Me 545	t Asn (Thr Ala	550	Pro	Ile	Ala	Ala	Val 555	Leu	Ile	Thr	Phe	Val 560
30	Gly Hi	s Val :	Ser Pho		Lys	Glu	Ala	Asp 570	Phe	Ser	Pro	Ser	Val 575	Ala
	Phe Al	a Ser 1	Leu Se: 580	r Leu	Phe	His	Ile 585	Leu	Val	Thr	Pro	Leu 590	Phe	Leu
35	Leu Se	r Ser ' 595	Val Va	l Arg	Ser	Thr 600	Val	Lys	Ala	Leu	Val 605		Val	Gln
40	Lys Le	u Ser (Glu Ph	e Leu	Ser 615		Ala	Glu	Ile	Arg 620		Glu	Gln	Cys
	Ala Pr 625	o His	Glu Pr	o Thr 630		Gln	Gly	Pro	Ala 635		Lys	Tyr	Gln	Ala 640
45	Val Pr	o Leu	Arg Va 64		. Asn	Arg	Lys	Arg 650		Ala	Arg	Glu	Asp 655	_
50	Arg Gl	y Leu	Thr Gl 660	y Pro	Leu	Gln	Ser 665		Val	. Pro	Ser	Ala 670	-	Gly
	Asp Al	.a Asp 675	Asn Cy	s Cys	s Val	. Gln 680		Met	: Gly	Gly	туг 685		Thi	Trp
55	Thr Pr	o Asp	Gly Il	e Pro	Thr	Leu	Ser	Asr	ı Ile	Thr	: Ile	e Arg	j Ile	e Pro

	690			695	700	
5	Arg Gly 705	Gln Leu	Thr Met 710	Ile Val Gly	Gln Val Gly (715	Cys Gly Lys Ser 720
10	Ser Leu		Ala Ala 725		Met Gln Lys V 730	Val Ser Gly Ala 735
	Val Phe	Trp Ser 740	Ser Leu	Pro Asp Ser	Glu Ile Gly (Glu Asp Pro Ser 750
15	Pro Glu	Arg Glu 755	Thr Ala	Thr Asp Leu . 760		Lys Arg Gly Pro 765
20	Val Ala 770	_	Ser Gln	Lys Pro Trp 775	Leu Leu Asn 780	Ala Thr Val Glu
	Glu Asn 785	Ile Ile	Phe Glu 790	Ser Pro Phe	Asn Lys Gln . 795	Arg Tyr Lys Met 800
25	Val Ile	Glu Ala	Cys Ser 805		Asp Ile Asp 810	Ile Leu Pro His 815
30	Gly Asp	Gln Thr 820	Gln Ile	Gly Glu Arg 825	Gly Ile Asn	Leu Ser Gly Gly 830
	Gln Arg	Gln Arg 835	Ile Ser	Val Ala Arg 840		Gln His Ala Asn 845
35	Val Val 850		Asp Asp	Pro Phe Ser 855	Ala Leu Asp 860	Ile His Leu Ser
40 .	Asp His 865	Leu Met	Gln Ala 870	Gly Ile Leu	Glu Leu Leu 875	Arg Asp Asp Lys 880
	Arg Thr	Val Val	Leu Val 885	Thr His Lys	Leu Gln Tyr 890	Leu Pro His Ala 895
45	Asp Trp	o Ile Ile 900	Ala Met	Lys Asp Gly 905	Thr Ile Gln	Arg Glu Gly Thr 910
.50	Leu Lys	Asp Phe 915	Gln Arg	Ser Glu Cys 920	Gln Leu Phe	Glu His Trp Lys 925
55	Thr Let		Arg Gln	Asp Gln Glu 935	Leu Glu Lys 940	Glu Thr Val Thr
~	Glu Arg	g Lys Ala	Thr Glu	Pro Pro Gln	Gly Leu Ser	Arg Ala Met Ser

	945 950 955 960
5	Ser Arg Asp Gly Leu Leu Gln Asp Glu Glu Glu Glu Glu Glu Glu Ala 965 970 975
10	Ala Glu Ser Glu Glu Asp Asp Asn Leu Ser Ser Met Leu His Gln Arg 980 985 990
	Ala Glu Ile Pro Trp Arg Ala Cys Ala Lys Tyr Leu Ser Ser Ala Gly 995 1000 1005
15	Ile Leu Leu Ser Leu Leu Val Phe Ser Gln Leu Leu Lys His Met 1010 1015 1020
20	Val Leu Val Ala Ile Asp Tyr Trp Leu Ala Lys Trp Thr Asp Ser Ala 1025 1030 1035 1040
	Leu Thr Leu Thr Pro Ala Ala Arg Asn Cys Ser Leu Ser Gln Glu Cys 1045 1050 1055
25	Thr Leu Asp Gln Thr Val Tyr Ala Met Val Phe Thr Val Leu Cys Ser 1060 1065 1070
	Leu Gly Ile Val Leu Cys Leu Val Thr Ser Val Thr Val Glu Trp Thr
30	1075 1080 1085
30	
30	1075 1080 1085 Gly Leu Lys Val Ala Lys Arg Leu His Arg Ser Leu Leu Asn Arg Ile
	1075 1080 1085 Gly Leu Lys Val Ala Lys Arg Leu His Arg Ser Leu Leu Asn Arg Ile 1090 1095 1100 Ile Leu Ala Pro Met Arg Phe Phe Glu Thr Thr Pro Leu Gly Ser Ile
35 40	1075 1080 1085 Gly Leu Lys Val Ala Lys Arg Leu His Arg Ser Leu Leu Asn Arg Ile 1090 1095 1100 Tle Leu Ala Pro Met Arg Phe Phe Glu Thr Thr Pro Leu Gly Ser Ile 1105 1110 1115 1120 Leu Asn Arg Phe Ser Ser Asp Cys Asn Thr Ile Asp Gln His Ile Pro
35	Gly Leu Lys Val Ala Lys Arg Leu His Arg Ser Leu Leu Asn Arg Ile 1090 1095 1100 Ile Leu Ala Pro Met Arg Phe Phe Glu Thr Thr Pro Leu Gly Ser Ile 1105 1110 1115 1120 Leu Asn Arg Phe Ser Ser Asp Cys Asn Thr Ile Asp Gln His Ile Pro 1125 1130 1135 Ser Thr Leu Glu Cys Leu Ser Arg Ser Thr Leu Leu Cys Val Ser Ala
35 40	Gly Leu Lys Val Ala Lys Arg Leu His Arg Ser Leu Leu Asn Arg Ile 1090 1095 1100 The Leu Ala Pro Met Arg Phe Phe Glu Thr Thr Pro Leu Gly Ser Ile 1105 1110 1115 1120 Leu Asn Arg Phe Ser Ser Asp Cys Asn Thr Ile Asp Gln His Ile Pro 1125 1130 1135 Ser Thr Leu Glu Cys Leu Ser Arg Ser Thr Leu Leu Cys Val Ser Ala 1140 1145 1150 Leu Ala Val Ile Ser Tyr Val Thr Pro Val Phe Leu Val Ala Leu Leu
35 40 45	Gly Leu Lys Val Ala Lys Arg Leu His Arg Ser Leu Leu Asn Arg Ile 1090 1095 1100 Ile Leu Ala Pro Met Arg Phe Phe Glu Thr Thr Pro Leu Gly Ser Ile 1105 1110 1115 1120 Leu Asn Arg Phe Ser Ser Asp Cys Asn Thr Ile Asp Gln His Ile Pro 1125 1130 1135 Ser Thr Leu Glu Cys Leu Ser Arg Ser Thr Leu Leu Cys Val Ser Ala 1140 1145 1150 Leu Ala Val Ile Ser Tyr Val Thr Pro Val Phe Leu Val Ala Leu Leu 1155 1160 1165 Pro Leu Ala Val Val Cys Tyr Phe Ile Gln Lys Tyr Phe Arg Val Ala

	1205	1210	1215
5	Arg Tyr Glu Ala Arg	Phe Gln Gln Lys Leu Leu G 1225	Glu Tyr Thr Asp Ser 1230
10	Asn Asn Ile Ala Ser : 1235	Leu Phe Leu Thr Ala Ala A 1240	Asn Arg Trp Leu Glu 1245
	Val Arg Met Glu Tyr 1250	Ile Gly Ala Cys Val Val I 1255 12	Leu Ile Ala Ala Val 260
15		Ser Leu His Arg Glu Leu S 270 1275	Ser Ala Gly Leu Val 1280
20	Gly Leu Gly Leu Thr 1285	Tyr Ala Leu Met Val Ser 2 1290	Asn Tyr Leu Asn Trp 1295
	Met Val Arg Asn Leu 1300	Ala Asp Met Glu Leu Gln 1 1305	Leu Gly Ala Val Lys 1310
25	Arg Ile His Gly Leu 1315	Leu Lys Thr Glu Ala Glu S 1320	Ser Tyr Glu Gly Leu 1325
30	1330		340
		Ser Val Arg Tyr Asp Ser (1350 1355	Ser Leu Lys Pro Val 1360
35	Leu Lys His Val Asn 1365	Ala Leu Ile Ser Pro Gly (Gln Lys Ile Gly Ile 1375
40	Cys Gly Arg Thr Gly 1380	Ser Gly Lys Ser Ser Phe 1385	Ser Leu Ala Phe Phe 1390
	Arg Met Val Asp Thr 1395	Phe Glu Gly His Ile Ile 1400	Ile Asp Gly Ile Asp 1405
45	Ile Arg Lys Leu Pro 1410	Leu His Thr Leu Pro Ser	Arg Leu Ser Ile Ile 420
50	_	Leu Phe Ser Gly Thr Ile 1430 1435	Arg Phe Asn Leu Asp 1440
	Pro Glu Arg Lys Cys 1445	Ser Asp Ser Thr Leu Trp 1450	Glu Ala Leu Glu Ile 1455
55	Ala Gln Leu Lys Leu	Val Val Lys Ala Leu Pro	Gly Gly Leu Asp Ala

	1460	1465	1470
5	Ile Ile Thr Glu Gly Gly Gl 1475	u Asn Phe Ser Gln (1480	Gly Gln Arg Gln Leu 1485
10	Phe Cys Leu Ala Arg Ala Ph 1490 149	~ ~	Ser Ile Phe Ile Met 500
	Asp Glu Ala Thr Ala Ser Il 1505 1510	e Asp Met Ala Thr (1515	Glu Asn Ile Leu Gln 1520
15	Lys Val Val Met Thr Ala Ph 1525	ne Ala Asp Arg Thr v 1530	Val Val Thr Ile Ala 1535
20	His Arg Val His Thr Ile Le 1540	eu Ser Ala Asp Leu ' 1545	Val Ile Val Leu Lys 1550
	Arg Gly Ala Ile Leu Glu Ph 1555	ne Asp Lys Pro Glu i 1560	Lys Leu Leu Ser Arg 1565
25	Lys Asp Ser Val Phe Ala Se 1570 157	-	Asp Lys 580
30	<210> 68		
	<211> 1549 <212> PRT		
35	<213> Homo sapiens <400> 68		
40	Met Ser Leu Ser Phe Cys G	ly Asn Asn Ile Ser 10	Ser Tyr Asn Ile Asn 15
	Asp Gly Val Leu Gln Asn So 20	er Cys Phe Val Asp 25	Ala Leu Asn Leu Val 30
45	Pro His Val Phe Leu Leu P 35	he Ile Thr Phe Pro 40	Ile Leu Phe Ile Gly 45
50	Trp Gly Ser Gln Ser Ser L	ys Val Gln Ile His 55	His Asn Thr Trp Leu 60
	His Phe Pro Gly His Asn L 65 70	eu Arg Trp Ile Leu 75	Thr Phe Ala Leu Leu 80
55	Phe Val His Val Cys Glu I 85	le Ala Glu Gly Ile 90	Val Ser Asp Ser Arg 95

5	Arg	Gl u	Ser	Arg 100	His	Leu	His	Leu	Phe 105	Met	Pro	Ala	Val	Met 110	G1y	Phe
3	Val	Ala	Thr 115	Thr	Thr	Ser	Ile	Val 120	Tyr	Tyr	His	Asn	Ile 125	Glu	Thr	Ser
10	Asn	Phe 130	Pro	Lys	Leu	Leu	Leu 135	Ala	Leu	Phe	Leu	Tyr 140	Trp	Val	Met	Ala
15	Phe 145	Ile	Thr	Lys	Thr	Ile 150	Lys	Leu	Val	Lys	Туг 155	Суѕ	Gln	Ser	Gly	Leu 160
	Asp	Ile	Ser	Asn	Leu 165	Arg	Phe	Cys	Ile	Thr 170	Gly	Met	Met	Val	Ile 175	Leu
20	Asn	Gly	Leu	Leu 180	Met	Ala	Val	Glu	Ile 185	Asn	Val	Ile	Arg	Val 190	Arg	Arg
25	Туг	Val	Phe 195	Phe	Met	Asn	Pro	Gln 200	Lys	Val	Lys	Pro	Pro 205	Glu	Asp	Leu
	Gln	Asp 210	Leu	Gly	Val	Arg	Phe 215	Leu	Gln	Pro	Phe	Val 220	Asn	Leu	Leu	Ser
30	Lys 225	Ala	Thr	Tyr	Trp	Trp 230	Met	Asn	Thr	Leu	11e 235	Ile	Ser	Ala	His	Lys 240
35	Lys	Pro	Ile	Asp	Leu 245	Lys	Ala	Ile	Gly	Lys 250	Leu	Pro	Ile	Ala	Met 255	Arg
40	Ala	Val	Thr	Asn 260	Tyr	Val	Cys	Leu	Lys 265	Asp	Ala	Tyr	Glu	Glu 270	Gln	Lys
	Lys	Lys	Val 275		Asp	His	Pro	Asn 280	Arg	Thr	Pro	Ser	Ile 285	Trp	Leu	Ala
45	Met	Туг 290	_	Ala	Phe	Gly	Arg 295	Pro	Ile	Leu	Leu	Ser 300		Thr	Phe	Arg
50	Туr 305		Ala	Asp	Leu	Leu 310		Phe	Ala	Gly	Pro 315		Суѕ	Ile	Ser	Gly 320
	Ile	Val	Gln	Arg	Val 325		Glu	Thr	Gln	330	_	Thr	Asn	Asn	Thr 335	Thr
55	Gly	Ile	Ser	Glu 340		Leu	. Ser	Ser	Lys 345		Phe	. Leu	Glu	Asn 350		Tyr

5	Val	Leu	Ala 355	Val	Leu	Leu	Phe	Leu 360	Ala	Leu	Ile	Leu	Gln 365	Arg	Thr	Phe
j	Leu	Gln 370	Ala	Ser	Tyr	Tyr	Val 375	Thr	Ile	Glu	Thr	Gly 380	Ile	Asn	Leu	Arg
10	Gly 385	Ala	Leu	Leu	Ala	Met 390	Ile	Tyr	Asn	Lys	Ile 395	Leu	Arg	Leu	Ser	Thr 400
15	Ser	Asn	Leu	Ser	Met 405	Gly	Glu	Met	Thr	Leu 410	Gly	Gln	Ile	Asn	Asn 415	Leu
	Val	Ala	Ile	Glu 420	Thr	Asn	Gln	Leu	Met 425	Trp	Phe	Leu	Phe	Leu 430	Cys	Pro
20	Asn	Leu	Trp 435	Ala	Met	Pro	Val	Gln 440	Ile	Ile	Met	Gly	Val 445	Ile	Leu	Leu
25	Tyr	Asn 450	Leu	Leu	Gly	Ser	Ser 455	Ala	Leu	Val	Gly	Ala 460	Ala	Val	Ile	Val
	Leu 465	Leu	Ala	Pro	Ile	Gln 470	Tyr	Phe	Ile	Ala	Thr 475	Lys	Leu	Ala	Glu	Ala 480
30	Gln	Lys	Ser	Thr	Leu 485	Asp	Tyr	Ser	Thr	Glu 490	Arg	Leu	Lys	Lys	Thr 495	Asn
35	Glu	Ile	Leu	Lys 500	Gly	Ile	Lys	Leu	Leu 505	Lys	Leu	Tyr	Ala	Trp 510	Glu	His
40	Ile	Phe	Суs 515	Lys	Ser	Val	Glu	Glu 520	Thr	Arg	Met	Lys	Glu 525	Leu	Ser	Ser
	Leu	Lys 530	Thr	Phe	Ala	Leu	Tyr 535	Thr	Ser	Leu	Ser	Ile 540	Phe	Met	Asn	Ala
45	Ala 545	Ile	Pro	Ile	Ala	Ala 550	Val	Leu	Ala	Thr	Phe 555	Val	Thr	His	Ala	Tyr 560
50	Ala	Ser	Gly	Asn	Asn 565	Leu	Lys	Pro	Ala	Glu 570	Ala	Phe	Ala	Ser	Leu 575	Ser
	Leu	Phe	His	Ile 580		Val	Thr	Pro	Leu 585		Leu	Leu	Phe	Thr 590		Val
55	Arg	Phe	Ala 595		Lys	Ala	Ile	Ile 600		Val	Gln	Lys	Leu 605		Glu	Phe

5	Leu	Leu 610	Ser	Asp	Glu	Ile	Gly 615	Asp	Asp	Ser	Trp	Arg 620	Thr	Gly	Glu	Ser
J	Ser 625	Leu	Pro	Phe	Glu	Ser 630	Cys	Lys	Lys	His	Th <i>r</i> 635	Gly	Val	Gln	Pro	Lys 640
10	Thr	Ile	Asn	Arg	Lys 645	Gln	Pro	Gly	Arg	Tyr 650	His	Leu	Asp	Ser	Tyr 655	Glu
15	Gln	Ser	Thr	Arg 660	Arg	Leu	Arg	Pro	Ala 665	Glu	Thr	Glu	Asp	Ile 670	Ala	Ile
	Lys	Val	Thr 675	Asn	Gly	Тух	Phe	Ser 680	Trp	Gly	Ser	Gly	Leu 685	Ala	Thr	Leu
20	Ser	Asn 690	Ile	Asp	Ile	Arg	Ile 695	Pro	Thr	Gly	Gln	Leu 700	Thr	Met	Ile	Val
25	Gly 705	Gln	Val	Gly	Cys	Gly 710	Lys	Ser	Ser	Leu	Leu 715	Leu	Ala	Ile	Leu	Gly 720
	Glu	Met	Gln	Thr	Leu 725	Glu	Gly	Lys	Val	His 730	Trp	Ser	Asn	Val	Asn 735	Glu
30	Ser	Glu	Pro	Ser 740	Phe	Glu	Ala	Thr	Arg 745	Ser	Arg	Asn	Arg	Туг 750	Ser	Val
35	Ala	Tyr	Ala 755	Ala	Gln	Lys	Pro	Ттр 760	Leu	Leu	Asn	Ala	Thr 765	Val	Glu	Glu
40	Asn	Ile 770	Thr	Phe	Gly	Ser	Pro 775	Phe	Asn	Lys	Gln	Arg 780	Tyr	Lys	Ala	Val
	Thr 785	Asp	Ala	Cys	Ser	Leu 790	Gln	Pro	Asp	Ile	Asp 795	Leu	Leu	Pro	Phe	Gly 800
45	Asp	Gln	Thr	Glu	Ile 805	Gly	Glu	Arg	Gly	Ile 810	Asn	Leu	Ser	Gly	Gly 815	Gln
50	Arg	Gln	Arg	11e 820	Суз	Val	Ala	Arg	Ala 825		Tyr	Gln	Asn	Thr 830	Asn	Ile
	Val	Phe	Leu 835	Asp	Asp	Pro	Phe	Ser 840	Ala	Leu	Asp	Ile	His 845	Leu	Ser	Asp
55	His	Leu 850		Gln	Glu	Gly	Ile 855		Lys	Phe	Leu	Gln 860	_	Asp	Lys	Arg

_	Thr Leu 865	Val Leu	Val Thr 870	His Lys	Leu Gln	Tyr Leu 875	Thr His Ala Asp 880
5	Trp Ile	Ile Ala	Met Lys 885	Asp Gly	Ser Val 890	Leu Arg	Glu Gly Thr Leu 895
10	Lys Asp	Ile Gln 900	Thr Lys		Glu Leu 905	Tyr Glu	His Trp Lys Thr 910
15		Asn Arg 915	Gln Asp	Gln Glu 920	Leu Glu	Lys Asp	Met Glu Ala Asp 925
	Gln Thr 930	Thr Leu	Glu Arg	Lys Thr 935	Leu Arg	Arg Ala 940	Met Tyr Ser Arg
20	Glu Ala 945	Lys Ala	Gln Met 950	Glu Asp	Glu Asp	Glu Glu 955	Glu Glu Glu Glu 960
25	Glu Asp	Glu Asp	Asp Asn 965	Met Ser	Thr Val 970	Met Arg	Leu Arg Thr Lys 975
	Met Pro	Trp Lys 980	Thr Cys	Trp Arg	Tyr Leu 985	Thr Ser	Gly Gly Phe Phe 990
30		Ile Leu 995	Met Ile	Phe Ser 1000	Lys Leu	-	His Ser Val Ile 1005
35	Val Ala 1010	Ile Asp		Leu Ala 1015	Thr Trp	Thr Ser	Glu Tyr Ser Ile
40	Asn Asn 1025	Thr Gly	Lys Ala 1030	Asp Gln		Tyr Val 1035	Ala Gly Phe Ser 1040
40	Ile Leu		Ala Gly 1045	Ile Phe	Leu Cys 1050	Leu Val	Thr Ser Leu Thr 1055
45	Val Glu	Trp Met 1060	-		Ala Lys 1065	Asn Leu	His His Asn Leu 1070
50		Lys Ile 1075	Ile Leu	Gly Pro 1080	Ile Arg	Phe Phe	Asp Thr Thr Pro 1085
	Leu Gly 1090	Leu Ile		Arg Phe 1095	Ser Ala	Asp Thr	Asn Ile Ile Asp
55	Gln His 1105	Ile Pro	Pro Thr 1110		Ser Leu	Thr Arg	Ser Thr Leu Leu 1120

	Cys Leu Ser Ala Ile Gly Met Ile Ser Tyr Ala Thr Pro Val Phe Leu 1125 1130 1135
5	Val Ala Leu Leu Pro Leu Gly Val Ala Phe Tyr Phe Ile Gln Lys Tyr 1140 1145 1150
10	Phe Arg Val Ala Ser Lys Asp Leu Gln Glu Leu Asp Asp Ser Thr Gln 1155 1160 1165
15	Leu Pro Leu Cys His Phe Ser Glu Thr Ala Glu Gly Leu Thr Thr 1170 1175 1180
	Ile Arg Ala Phe Arg His Glu Thr Arg Phe Lys Gln Arg Met Leu Glu 1185 1190 1195 1200
20	Leu Thr Asp Thr Asn Asn Ile Ala Tyr Leu Phe Leu Ser Ala Ala Asn 1205 1210 1215
<i>25</i>	Arg Trp Leu Glu Val Arg Thr Asp Tyr Leu Gly Ala Cys Ile Val Leu 1220 1225 1230
	Thr Ala Ser Ile Ala Ser Ile Ser Gly Ser Ser Asn Ser Gly Leu Val 1235 1240 1245
30	Gly Leu Gly Leu Leu Tyr Ala Leu Thr Ile Thr Asn Tyr Leu Asn Trp 1250 1255 1260
35	Val Val Arg Asn Leu Ala Asp Leu Glu Val Gln Met Gly Ala Val Lys 1265 1270 1275 1280
40	Lys Val Asn Ser Phe Leu Thr Met Glu Ser Glu Asn Tyr Glu Gly Thr 1285 1290 1295
40	Met Asp Pro Ser Gln Val Pro Glu His Trp Pro Gln Glu Gly Glu Ile 1300 1305 1310
45	Lys Ile His Asp Leu Cys Val Arg Tyr Glu Asn Asn Leu Lys Pro Val 1315 1320 1325
50	Leu Lys His Val Lys Ala Tyr Ile Lys Pro Gly Gln Lys Val Gly Ile 1330 1335 1340
	Cys Gly Arg Thr Gly Ser Gly Lys Ser Ser Leu Ser Leu Ala Phe Phe 1345 1350 1355 1360
55	Arg Met Val Asp Ile Phe Asp Gly Lys Ile Val Ile Asp Gly Ile Asp 1365 1370 1375

	Ile Ser Lys Leu Pro Leu His Thr Leu Arg Ser Arg Leu Ser Ile Ile 1380 1385 1390
5	Leu Gln Asp Pro Ile Leu Phe Ser Gly Ser Ile Arg Phe Asn Leu Asp 1395 1400 1405
10	Pro Glu Cys Lys Cys Thr Asp Asp Arg Leu Trp Glu Ala Leu Glu Ile 1410 · 1415 1420
15	Ala Gln Leu Lys Asn Met Val Lys Ser Leu Pro Gly Gly Leu Asp Ala 1425 1430 1435 1440
	Val Val Thr Glu Gly Gly Glu Asn Phe Ser Val Gly Gln Arg Gln Leu 1445 1450 1455
20	Phe Cys Leu Ala Arg Ala Phe Val Arg Lys Ser Ser Ile Leu Ile Met 1460 1465 1470
25	Asp Glu Ala Thr Ala Ser Ile Asp Met Ala Thr Glu Asn Ile Leu Gln 1475 1480 1485
	Lys Val Val Met Thr Ala Phe Ala Asp Arg Thr Val Val Thr Met Ala 1490 1495 1500
30	His Arg Val Ser Ser Ile Met Asp Ala Gly Leu Val Leu Val Phe Ser 1505 1510 1515 1520
35	Glu Gly Ile Leu Val Glu Cys Asp Thr Val Pro Asn Leu Phe Ala His 1525 1530 1535
	Lys Asn Gly Pro Phe Ser Thr Leu Val Met Thr Asn Lys 1540 1545
40	
45	<210> 69 <211> 1513 <212> PRT <213> Homo sapiens
50	<pre><400> 69 Gly Ser Gly Cys Leu Gly Ala Glu Lys Arg Glu Gly Lys Asn Arg Trp 1 5 10 15</pre>
55	Gln Gly Glu Ala Ser Met Glu Arg Leu Leu Ala Gln Leu Cys Gly Ser 20 25 30

	Ser Ala	Ala Tr) Pro	Leu	Pro	Leu 40	Trp	Glu	Gly	Asp	Thr 45	Thr	Gly	His
5	Cys Phe	Thr Gl	ı Leu	Val	Leu 55	Ser	Ala	Leu	Pro	His 60	Ala	Leu	Leu	Ala
10	Val Leu 65	Ser Al	a Cys	Tyr 70	Leu	Gly	Thr	Pro	Arg 75	Ser	Pro	Asp	Tyr	Ile 80
	Leu Pro	Cys Se	Pro 85	Gly	Trp	Arg	Leu	Arg 90	Leu	Ala	Ala	Ser	Phe 95	Leu
15	Leu Ser	Val Ph		Leu	Leu	Asp	Leu 105	Leu	Pro	Val	Ala	Leu 110	Pro	Pro
20	Gly Ala	Gly Pr 115	o Gly	Pro	Ile	Gly 120	Leu	Glu	Val	Leu	Ala 125	Gly	Суѕ	Val
<i>25</i>	Ala Ala 130	val Al	a Trp	Ile	Ser 135	His	Ser	Leu	Ala	Leu 140	Trp	Val	Leu	Ala
	His Ser 145	Pro Hi	s Gly	His 150	Ser	Arg	Gly	Pro	Leu 155	Ala	Leu	Ala	Leu	Val 160
30	Ala Leu	ı Leu Pr	o Ala 165	Pro	Ala	Leu	Va1	Leu 170	Thr	Val	Leu	Trp	His 175	Cys
35	Gln Arg	g Gly Th		Leu	Pro	Pro	Leu 185	Leu	Pro	Gly	Pro	Met 190	Ala	Arg
	Leu Cys	Leu Le 195	u Ile	Leu	Gln	Leu 200	Ala	Ala	Leu	Leu	Ala 205	Tyr	Ala	Leu
40	Gly Try 210	o Ala Al O	a Pro	Gly	Gly 215	Pro	Arg	Glu	Pro	Trp 220	Ala	Gln	Glu	Pro
45	Leu Lei 225	ı Pro Gl	u Asp	Gln 230	Glu	Pro	Glu	Val	Ala 235	Glu	Asp	Gly	Glu	Ser 240
	Trp Le	u Ser Aı	g Phe 245		Tyr	Ala	Trp	Leu 250		Pro	Leu	Leu	Ala 255	
50	Gly Al	a Cys G		. Leu	Arg	Gln	Pro 265		. Asp	Ile	Cys	Arg 270		Pro
55	His Ar	g Leu G 275	n Pro	Thr	Tyr	Leu 280		Arg	Val	Phe	Gln 285		His	Trp

_	Gln	Glu 290	Gly	Ala	Arg	Leu	Trp 295	Arg	Ala	Leu	Tyr	Gly 300	Ala	Phe	Gly	Arg
5	Cys 305	Tyr	Leu	Ala	Leu	Gly 310	Leu	Leu	Lys	Leu	Val 315	Gly	Thr	Met	Leu	Gly 320
10	Phe	Ser	Gly	Pro	Leu 325	Leu	Leu	Ser	Leu	Leu 330	Val	Gly	Phe	Leu	Glu 335	Glu
15	Gly	Gln	Glu	Pro 340	Leu	Ser	His	Gly	Leu 345	Leu	Tyr	Ala	Leu	Gly 350	Leu	Ala
	Gly	Gly	Ala 355	Val	Leu	Gly	Ala	Val 360	Leu	Gln	Asn	Gln	Tyr 365	Gly	Tyr	Glu
20	Val	Туr 370	Lys	Val	Thr	Leu	Gln 375	Ala	Arg	Gly	Ala	Val 380	Leu	Asn	Ile	Leu
25	Tyr 385	Cys	Lys	Ala	Leu	Gln 390	Leu	Gly	Pro	Ser	Arg 395	Pro	Pro	Thr	Gly	Glu 400
	Ala	Leu	Asn	Leu	Leu 405	Gly	Thr	Asp	Ser	Glu 410	Arg	Leu	Leu	Asn	Phe 415	Ala
30	Gly	Ser	Phe	His 420	Glu	Ala	Trp	Gly	Leu 425	Pro	Leu	Gln	Leu	Ala 430	Ile	Thr
35	Leu	Tyr	Leu 435	Leu	Тух	Gln	Gln	Val 440	Gly	Val	Ala	Phe	Val 445	Gly	Gly	Leu
40	Ile	Leu 450	Ala	Leu	Leu	Leu	Val 455	Pro	Val	Asn	Lys	Val 460	Ile	Ala	Thr	Arg
	Ile 465		Ala	Ser	Asn	Gln 470	Glu	Met	Leu	Gln	His 475	Lys	Asp	Ala	Arg	Val 480
45	Lys	Leu	Val	Thr	Glu 485		Leu	Ser	Gly	11e 490	_	Val	Ile	Lys	Phe 495	_
50	Gly	Trp	Glu	Gln 500		Leu	Gly	Ala	Arg 505		Glu	Ala	Cys	Arg 510		Arg
	Glu	Leu	Gly 515	_	Leu	Arg	Val	Ile 520	_	Тух	Leu	Asp	Ala 525		Суѕ	Val
55	Tyr	Leu 530	_	Ala	Ala	Leu	Pro 535		Val	Ile	Ser	Ile 540		Ile	Phe	Ile

	Thr 545	Tyr	Val	Leu	Met	Gly 550	His	Gln	Leu		Ala 555	Thr	Lys	Val	Phe	Thr 560
5	Ala	Leu	Ala	Leu	Val 565	Arg	Met	Leu	Ile	Leu 570	Pro	Leu	Asn	Asn	Phe 575	Pro
10	Trp	Val	Ile	Asn 580	Gly	Leu	Leu	G1u	Ala 585	Lys	Val	Ser	Leu	Asp 590	Arg	Ile
15	Gln	Leu	Phe 595	Leu	Asp	Leu	Pro	Asn 600	His	Asn	Pro	Gln	Ala 605	Tyr	Tyr	Ser
	Pro	Asp 610	Pro	Pro	Ala	Glu	Pro 615	Ser	Thr	Val	Leu	Glu 620	Leu	His	Gly	Ala
20	Leu 625	Phe	Ser	Trp	Asp	Pro 630	Val	Gly	Thr	Ser	Leu 635	Glu	Thr	Phe	Ile	Ser 640
25	His	Leu	Glu	Val	Lys 645	Lys	Gly	Met	Leu	Val 650	Gly	Ile	Val	Gly	Lys 655	Val
	Gly	Суѕ	Gly	Lys 660	Ser	Ser	Leu	Leu	Ala 665	Ala	Ile	Ala	Gly	Glu 670	Leu	His
30	Arg	Leu	Arg 675	Gly	His	Val	Ala	Val 680	Arg	Gly	Leu	Ser	Lys 685	Gly	Phe	Gly
35	Leu	Ala 690	Thr	Gln	Glu	Pro	Trp 695	Ile	Gln	Phe	Ala	Thr 700	Ile	Arg	Asp	Asn
_	Ile 705	Leu	Phe	Gly	Lys	Thr 710	Phe	Asp	Ala	Gln	Leu 715	Туг	Lys	Glu	Val	Leu 720
40	Glu	Ala	Cys	Ala	Leu 725		Asp	Asp	Leu	Ser 730	Ile	Leu	Pro	Ala	Gly 735	Asp
45	Gln	Thr	Gl u	Val 740	_	Glu	Lys	Gly	Val 745		Leu	Ser	Gly	Gly 750		Arg
50	Ala	Arg	11e 755		Leu	Ala	Arg	760		Tyr	Gln	Glu	Lys 765		Leu	Tyr
	Leu	Leu 770		Asp	Pro	Leu	775		Val	Asp	Ala	Asp 780		Ala	. Asn	His
55	Leu 785		His	Arg	Cys	790		ı Gly	Met	Leu	Ser 795	_	Thr	Thr	Arg	Leu 800

_	Leu Cys Th	r His Arg 1 805	Thr Glu Tyr	Leu Glu Arg Ala 810	Asp Ala Val Leu 815
5	Leu Met Gl	u Ala Gly A 820		Arg Ala Gly Pro 825	Pro Ser Glu Ile 830
10	Leu Pro Le 83		Ala Val Pro 840	Lys Ala Trp Ala	Glu Asn Gly Gln 845
15	Glu Ser As 850	p Ser Ala T	Thr Ala Gln 855	Ser Val Gln Asn 860	Pro Glu Lys Thr
	Lys Glu Gl 865		Glu Glu Gln 870	Ser Thr Ser Gly 875	Arg Leu Leu Gln 880
20	Glu Glu Se	r Lys Lys (885	Glu Gly Ala	Val Ala Leu His 890	Val Tyr Gln Ala 895
25 .	Tyr Trp Ly	s Ala Val (900	Gly Gln Gly	Leu Ala Leu Ala 905	Ile Leu Phe Ser 910
<i>30</i>	91	5	920	-	Trp Trp Leu Ser 925
30	930		935	940	Gln Glu Ala Gln
35	945	!	950	955	Pro Gln Leu Leu 960
40		965		970	Pro Leu Pro Lys 975
		980	_	985	Leu Thr Val Tyr 990
45	99	95	1000	-	Leu Arg Ala Val
50	1010		1015	1020	
	Leu Leu H	_	Leu Met Ala .030	Pro Val Thr Phe	Phe Asn Ala Thr 1040
55	Pro Thr G	ly Arg Ile 1045	Leu Asn Arg	Phe Ser Ser Asp 1050	Val Ala Cys Ala 1055

_	Asp Asp	Ser Leu 1060	Pro Phe		Asn Ile La .065		Asn Ala Ala .070
5		Leu Gly	Leu Leu	Ala Val 1080	Leu Gly S	er Gly Leu 1085	Pro Trp Leu
10	Leu Leu 1090	Leu Leu		Leu Ser 1095	Ile Met T	yr Tyr His 1100	Val Gln Arg
15	His Tyr 1105	Arg Ala	Ser Ser 1110	Arg Glu	Leu Arg A	-	Ser Leu Thr 1120
	Leu Ser		Tyr Ser .125	His Leu	Ala Asp T 1130	hr Leu Ala	Gly Leu Ser 1135
20	Val Leu	Arg Ala 1140	Thr Gly		Tyr Arg P 1145		Glu Asn Leu 1150
25	_	Leu Glu 1155	Leu Asn	Gln Arg 1160	Cys Gln P	he Ala Thr 1165	Ser Ala Thr
	Met Gln 1170	Trp Leu	_	Arg Leu 1175	Gln Leu M	et Gly Ala 1180	Ala Val Val
30	Ser Ala 1185	Ile Ala	Gly Ile 1190	Ala Leu		is Gln Gln 95	Gly Leu Ala 1200
35	Asn Pro		Val Gly 1205	Leu Ser	Leu Ser 1 1210	γr Ala Leu	Ser Leu Thr 1215
	Gly Leu	Leu Ser 1220	Gly Leu		Ser Phe 1 1225		Glu Ala Met 1230
40		Ser Val 1235	Glu Arg	Leu Glu 1240	Glu Tyr 1	Thr Cys Asp 1245	Leu Pro Gln
45	Glu Pro 1250	Gln Gly		Leu Gln 1255	Leu Gly T	Thr Gly Trp 1260	Leu Thr Gln
50	Gly Gly 1265	Val Glu	Phe Gln 1270	-		Ala Tyr Arg 275	Pro Gly Leu 1280
	Pro Asn		Asp Gly 1285	Val Thr	Phe Cys 1	Val Gln Pro	Gly Glu Lys 1295
55	Leu Gly	Ile Val		Thr Gly	Ser Gly 1	Lys Ser Ser	Leu Leu Leu 1310

	Val Leu Phe Arg Leu Leu Glu Pro Ser Ser Gly Arg Val Leu Leu Asp 1315 1320 1325
5	Gly Val Asp Thr Ser Gln Leu Glu Leu Ala Gln Leu Arg Ser Gln Leu 1330 1335 1340
10	Ala Ile Ile Pro Gln Glu Pro Phe Leu Phe Ser Gly Thr Val Arg Glu 1345 1350 1355 1360
	Asn Leu Asp Pro Gln Gly Leu His Lys Asp Arg Ala Leu Trp Gln Ala 1365 1370 1375
15	Leu Lys Gln Cys His Leu Ser Glu Val Ile Thr Ser Met Gly Gly Leu 1380 1385 1390
20	Asp Gly Glu Leu Gly Glu Gly Gly Arg Ser Leu Ser Leu Gly Gln Arg 1395 1400 1405
25	Gln Leu Leu Cys Leu Ala Arg Ala Leu Leu Thr Asp Ala Lys Ile Leu 1410 1415 1420
	Cys Ile Asp Glu Ala Thr Ala Ser Val Asp Gln Lys Thr Asp Gln Leu 1425 1430 1435 1440
30	Leu Gln Gln Thr Ile Cys Lys Arg Phe Ala Asn Lys Thr Val Leu Thr 1445 1450 1455
35	Ile Ala His Arg Leu Asn Thr Ile Leu Asn Ser Asp Arg Val Leu Val 1460 1465 1470
	Leu Gln Ala Gly Arg Val Val Glu Leu Asp Ser Pro Ala Thr Leu Arg 1475 1480 1485
40	Asn Gln Pro His Ser Leu Phe Gln Gln Leu Leu Gln Ser Ser Gln Gln 1490 1495 1500
45	Gly Val Pro Ala Ser Leu Gly Gly Pro 1505 1510
50	<210> 70 <211> 745 <212> PRT <213> Homo sapiens
55	<400> 70 Met Pro Val Leu Ser Arg Pro Arg Pro Trp Arg Gly Asn Thr Leu Lys

	1		5			1	0		1	.5
5	Arg	Thr Ala	Val Leu 20	Leu A	Ala Leu	Ala Al 25	a Tyr G	ly Ala	His Ly 30	rs Val
10	Туг	Pro Leu 35	Val Arg	Gln C	Cys Leu 40	Ala Pr	o Ala A	arg Gly	Leu Gl	n Ala
	Pro	Ala Gly 50	Glu Pro	Thr G	Gln Glu 55	Ala Se	er Gly V	al Ala 60	Ala Al	a Lys
15	Ala 65	Gly Met	Asn Arg	Val F 70	Phe Leu	Gln Ar	g Leu I 75	Leu Trp	Leu Le	eu Arg 80
20	Leu	Leu Phe	Pro Arg		Leu Cys	_	u Thr 0	Gly Leu		la Leu 95
	His	Ser Ala	Ala Leu 100	Val S	Ser Arg	Thr Ph	ne Leu S	Ser Val	Tyr Va 110	al Ala
25	Arg	Leu Asp 115	Gly Arg	Leu A	Ala Arg 120	Cys Il	le Val <i>I</i>	Arg Lys 125	Asp P	ro Arg
30	Ala	Phe Gly	Trp Glr		Leu Gln 135	Trp Le		Ile Ala 140	Leu P	ro Ala
	Thr 14 5		. Asn Ser	150	Ile Arg	Tyr Le	eu Glu (155	Gly Gln	Leu A	la Leu 160
35	Ser	Phe Arg	Ser Arg		Val Ala		la Tyr i 70	Arg Leu		he Ser 75
40	Gln	Gln Thr	туг туг 180	r Arg V	Val Ser	Asn Me	et Asp (Gly Arg	Leu A 190	rg Asn
	Pro	Asp Glr 195	ı Ser Let	ı Thr (Glu Asp 200	Val Va	al Ala	Phe Ala 205	Ala S	er Val
45	Ala	His Let 210	ı Tyr Sei		Leu Thr 215	Lys P		Leu Asp 220	Val A	la Val
50	Thr 225		Thr Le	230	Arg Ala	Ala A	rg Ser 235	Arg Gly	Ala G	ly Thr 240
	Ala	Trp Pro	Ser Al		Ala Gly		al Val	Phe Leu		la Asn !55
55	Val	Leu Ar	g Ala Ph	e Ser	Pro Lys	Phe G	ly Glu	Leu Val	Ala (Glu Glu

		260	265	270
5	Ala Arg Arg		Leu Arg Tyr Met His 280	Ser Arg Val Val Ala 285
10	Asn Ser Glu 290	ı Glu Ile Ala	Phe Tyr Gly Gly His 295	Glu Val Glu Leu Ala 300
	Leu Leu Gla 305	n Arg Ser Tyr 310	Gln Asp Leu Ala Ser 315	Gln Ile Asn Leu Ile 320
15	Leu Leu Gl	a Arg Leu Trp 325	Tyr Val Met Leu Glu 330	Gln Phe Leu Met Lys 335
20	Tyr Val Tr	Ser Ala Ser 340	Gly Leu Leu Met Val 345	Ala Val Pro Ile Ile 350
	Thr Ala Th		Glu Ser Asp Ala Glu 360	Ala Val Lys Lys Ala 365
25	Ala Leu Gl 370	ı Lys Lys Glu	Glu Glu Leu Val Ser 375	Glu Arg Thr Glu Ala 380
30	Phe Thr Il	e Ala Arg Asn 390	Leu Leu Thr Ala Ala 395	Ala Asp Ala Ile Glu 400
	Arg Ile Me	t Ser Ser Tyr 405	Lys Glu Val Thr Glu 410	Leu Ala Gly Tyr Thr 415
35	Ala Arg Va	l His Glu Met 420	Phe Gln Val Phe Glu 425	Asp Val Gln Arg Cys 430
40	His Phe Ly 43	-	Glu Leu Glu Asp Ala 440	Gln Ala Gly Ser Gly 445
	Thr Ile Gl 450	y Arg Ser Gly	Val Arg Val Glu Gly 455	Pro Leu Lys Ile Arg 460
45	Gly Gln Va 465	l Val Asp Val 470	-	Cys Glu Asn Ile Pro 480
50	Ile Val Th	r Pro Ser Gly 485	y Glu Val Val Val Ala 490	Ser Leu Asn Ile Arg 495
	Val Glu G	u Gly Met Hi: 500	s Leu Leu Ile Thr Gly 505	Pro Asn Gly Cys Gly 510
55	Lys Ser Se	er Leu Phe Ar	g Ile Leu Gly Gly Leu	Trp Pro Thr Tyr Gly

		515		520		525
5	Gly Val	_	Lys Pro	Pro Pro G 535	In Arg Met Phe 540	Tyr Ile Pro Gln
10	Arg Pro	Tyr Met	Ser Val	_	eu Arg Asp Gln 555	Val Ile Tyr Pro 560
	Asp Ser	Val Glu	Asp Met 565	: Gln Arg L	Lys Gly Tyr Ser 570	Glu Gln Asp Leu 575
15	Glu Ala	Ile Lei 580	_		ieu His His Ile 185	e Leu Gln Arg Glu 590
20	Gly Gly	Trp Glu 595	ı Ala Met	Cys Asp T	frp Lys Asp Val	Leu Ser Gly Gly 605
	Glu Lys 610		J Ile Gly	Met Ala A	Arg Met Phe Tyr 620	His Arg Pro Lys
25	Tyr Ala	Leu Le	Asp Glu 630		Ser Ala Val Ser 635	r Ile Asp Val Glu 640
30	Gly Lys	ile Ph	e Gln Ala 645	a Ala Lys <i>I</i>	Asp Ala Gly Ile 650	e Ala Leu Leu Ser 655
	Ile Th	r His Ar 66			Lys Tyr His Th 665	r His Leu Leu Gln 670
35	Phe Ası	675	u Gly Gly	y Trp Lys 1 680	Phe Glu Lys Le	u Asp Ser Ala Ala 685
40	Arg Let		u Thr Glu	u Glu Lys (695	Gln Arg Leu Gl 70	u Gln Gln Leu Ala O
	Gly Il	e Pro Ly	s Met Gli 710		Leu Gln Glu Le 715	u Cys Gln Ile Leu 720
45	Gly Gl	u Ala Va	1 Ala Pro 725	o Ala His '	Val Pro Ala Pr 730	o Ser Pro Gln Gly 735
50	Pro Gl	y Gly Le 74		y Ala Ser	Thr 745	
55	<210> <211>					

	<212 <213			sapie	ens											
5	<400 Met 1			Met	Leu 5	Asn	Ala	Ala	Ala	Asp 10	Arg	Val	Lys	Trp	Thr 15	Arg
10	Ser	Ser	Ala	Ala 20	Lys	Arg	Ala	Ala	Суs 25	Leu	Val	Ala	Ala	Ala 30	Tyr	Ala
15	Leu	Lys	Thr 35	Leu	Туr	Pro	Ile	Ile 40	Gly	Lys	Arg	Leu	Lys 45	Gln	Ser	Gly
20	His	Gly 50	Lys	Lys	Lys	Ala	Ala 55	Ala	Tyr	Pro	Ala	Ala 60	Glu	Asn	Thr	Glu
	Ile 65	Leu	His	Cys	Thr	Glu 70	Thr	Ile	Cys	Glu	Lys 75	Pro	Ser	Pro	Gly	Val 80
25	Asn	Ala	Asp	Phe	Phe 85	Lys	Gln	Leu	Leu	Glu 90	Leu	Arg	Lys	Ile	Leu 95	Phe
30				100					Gly 105					110		
	Ala	Leu	Ile 115	Ser	Arg	Thr	Phe	Leu 120	Ser	Ile	Tyr	Val	Ala 125	Gly	Leu	Asp
35		130			_		135		Glu	_	_	140	_			
40	145					150			Ile		155					160
					165					170					175	
45				180				_	185		_			190		Thr
50		_	195					200	_	_			205		_	Gln
		210					215					220	1			Leu
55	Tyr 225		Asn	Leu	Thr	230		Ile	Leu	Asp	Val 235		Leu	Thr	Ser	Tyr 240

5	Thr I	Leu	Ile		Thr 245	Ala	Thr	Ser	Arg	Gly 250	Ala	Ser	Pro	Ile	Gly 255	Pro
	Thr 1	Leu	Ĺeu	Ala 260	Gly	Leu	Val	Val	Туг 265	Ala	Thr	Ala	Lys	Val 270	Leu	Lys
10	Ala (Cys	Ser 275	Pro	Lys	Phe	Gly	Lys 280	Leu	Val	Ala	Glu	Glu 285	Ala	His	Arg
15	Lys (Gly 290	Tyr	Leu	Arg	Tyr	Val 295	His	Ser	Arg	Ile	Ile 300	Ala	Asn	Val	Glu
	Glu :	Ile	Ala	Phe	Tyr	Arg 310	G1y	His	Lys	Val	Glu 315	Met	Lys	Gln	Leu	Gln 320
20	Lys :	Ser	Туг	Lys	Ala 325	Leu	Ala	Asp	Gln	Met 330	Asn	Leu	Ile	Leu	Ser 335	Lys
25	Arg 1	Leu	Trp	Tyr 340	Ile	Met	Ile	Glu	Gln 345	Phe	Leu	Met	Lys	Туг 350	Val	Trp
30	Ser	Ser	Ser 355	Gly	Leu	Ile	Met	Val 360	Ala	Ile	Pro	Ile	Ile 365	Thr	Ala	Thr
	Gly	Phe 370	Ala	Asp	Gly	Glu	Asp 375	Gly	Gln	Lys	Gln	Val 380	Met	Val	Ser	Glu
35	Arg '	Thr	Glu	Ala	Phe	Thr 390	Thr	Ala	Arg	Asn	Leu 395	Leu	Ala	Ser	Gly	Ala 400
40	Asp	Ala	Ile	Glu	Arg 405	Ile	Met	Ser	Ser	Tyr 410	Lys	Glu	Val	Thr	Glu 415	Leu
	Ala	Gly	Tyr	Thr 420	Ala	Arg	Val	Tyr	Asn 425	Met	Phe	Trp	Val	Phe 430	Asp	Glu
45	Val	Lys	Arg 435	Gly	Ile	Tyr	Lys	Arg 440		Ala	Val	Ile	Gln 445	Glu	Ser	G1u
50	Ser	His 450	Ser	Lys	Asn	Gly	Ala 455		Val	Glu	Leu	Pro 460		Ser	Asp	Thr
	Leu 465	Ala	Ile	Lys	Gly	Lys 470		Ile	Asp	Val	Asp 475		Gly	Ile	Ile	Cys 480
55	Glu	Asn	Val	Pro	Ile 485		Thr	Pro	Ala	Gly 490		Val	Val	Ala	Ser 495	Arg

5	Leu	Asn	Phe	Lys 500	Val	Glu	Glu	Gly	Met 505	His	Leu	Leu	Ile	Thr 510	Gly	Pro
	Asn	Gly	Cys 515	Gly	Lys	Ser	Ser	Leu 520	Phe	Arg	Ile	Leu	Ser 525	Gly	Leu	Trp
10	Pro	Val 530	Туг	Glu	Gly	Val	Leu 535	Tyr	Lys	Pro	Pro	Pro 540	Gln	His	Met	Phe
15	Туг 545	Ile	Pro	Gln	Arg	Pro 550	Tyr	Met	Ser	Leu	Gly 555	Ser	Leu	Arg	Asp	Gln 560
	Val	Ile	Туr	Pro	Asp 565	Ser	Val	Asp	Asp	Met 570	His	Asp	Lys	Gly	Туr 575	Thr
20	Asp	Gln	Asp	Leu 580	Glu	Arg	Ile	Leu	His 585	Asn	Val	His	Leu	Туr 590	His	Ile
25	Val	Gln	Arg 595	Glu	Gly	Gly	Trp	Asp 600	Ala	Val	Met	Asp	Trp 605	Lys	Asp	Val
30	Leu	Ser 610	Gly	Gly	Glu	Lys	Gln 615	Arg	Met	Gly	Met	Ala 620	Arg	Met	Phe	Tyr
30	His 625	Lys	Pro	Lys	Tyr	Ala 630	Leu	Leu	Asp	Glu	Cys 635	Thr	Ser	Ala	Val	Ser 640
35	Ile	Asp	Val	Glu	Gly 645	Lys	Ile	Phe	Gln	Ala 650	Ala	Lys	Gly	Ala	Gly 655	Ile
40	Ser	Leu	Leu	Ser 660	Ile	Thr	His	Arg	Pro 665	Ser	Leu	Trp	Lys	Tyr 670	His	Thr
	His	Leu	Leu 675	Gln	Phe	Asp	Gly	Glu 680	Gly	Gly	Trp	Arg	Phe 685	Glu	Gln	Leu
45	Asp	Thr 690		Ile	Arg	Leu	Thr 695		Ser	Glu	G1u	Ъуs 700		Lys	Leu	Glu
50	Ser 705		Leu	Ala	Gly	710		Lys	Met	Gln	Gln 715		Leu	Asn	Glu	Leu 720
	Cys	Lys	Ile	Leu	Gly 725		Asp	Ser	Val	730	_	Thr	Ile	Lys	Asn 735	Glu
55	Asp	Glu	Thr	Ser 740												

	<210	> 72	2													
5	<211	.> 65	59													
	<212	?> PF	TS													
	<213	> Hc	omo s	sapie	ens											
40	<400)> 72	2													
10	Met	Ala	Ala	Phe	Ser	Lys	Tyr	Leu	Thr	Ala	Arg	Asn	Ser	Ser	Leu	Ala
	1				5					10					15	
	Gly	Ala	Ala	Phe	Leu	Leu	Leu	Cys	Leu	Leu	His	Lys	Arg	Arg	Arg	Ala
15				20					25					30		
	Leu	Gly	Leu	His	Gly	Lys	Lys	Ser	Gly	Lys	Pro	Pro	Leu	Gln	Asn	Asn
			35					40					45			
20																
	Glu	Lys	Glu	${\tt Gly}$	Lys	Lys	Glu	Arg	Ala	Val	Val	Asp	Lys	Val	Phe	Phe
		50					55					60				
25	Ser	Arg	Leu	Ile	Gln	Ile	Leu	Lys	Ile	Met	Val	Pro	Arg	Thr	Phe	Cys
	65					70					75					80
	Lys	Glu	Thr	Gly	Tyr	Leu	Val	Leu	Ile	Ala	Val	Met	Leu	Val	Ser	Arg
30					85					90					95	
<i></i>																
	Thr	Tyr	Cys	Asp	Val	Trp	Met	Ile	Gln	Asn	Gly	Thr	Leu	Ile	Glu	Ser
				100					105					110		
35	GIY	He		Gly	Arg	Ser	Arg		Asp	Phe	Lys	Arg		Leu	Leu	Asn
			115					120					125			
		~ 7				_	_		_	_		_	_		_	_
	Pne		Ата	Ala	wer	Pro		11e	Ser	Leu	Val		Asn	Pne	Leu	Lys
40		130					135					140				
	(The same		T 0	3	01	7	T	T	~	Dl	3	**- 7	.	*	mb	T
		GTĀ	ьеu	Asn	GLU		_	ren	cys	Pne	_	var	Arg	Leu	THE	_
	145					150					155					160
45	(Th. 1704	T	<i>m</i>	c1	01	(Th	T	01		DL.	M b		M	T	1 5-4	07
	TAL	rea	TYL	GIU			ьeu	GIN	Ата			ıyr	туг	ьys		Gly
					165					170					175	
	Δer	Len	Δαν	λen	D~~	TIA	- ומ	700	D~~	200	Cln	Lou	Lov	ጥኮ~	Gla	Asp
50	וופא	neu	nap	180		116	nia	nall	185	_	GIII	neu	Deu	190		uah
				100					100	•				190		
	1721	G1.,	Laro	Dho	Cvc	Δος	Ç^~	Tr-1	W-1	λ ~~	T.A.	T1 - ~	· C^~	λεν	T.ev	Ser
	VAI	Giu	. цуз 195		cys	nəti	. SEI	200		. дор	neu	TAT	205		nea	Jer
55			100					200					203			

_	Lys Pro		Leu	Asp	Ile	Val 215	Leu	Tyr	Ile	Phe	Lys 220	Leu	Thr	Ser	Ala
5	Ile Gly 225	Ala	Gln	Gly	Pro [.]	Ala	Ser	Met	Met	Ala 235	Tyr	Leu	Val	Val	Ser 240
10	Gly Let	Phe	Leu	Thr 245	Arg	Leu	Arg	Arg	Pro 250	Ile	Gly	Lys	Met	Thr 255	Ile
15	Thr Glu	Gln	Lys 260	Tyr	Glu	Gly	Glu	Tyr 265	Arg	Tyr	Val	Asn	Ser 270	Arg	Leu
	Ile Th	275	Ser	Glu	Glu	Ile	Ala 280	Phe	Tyr	Asn	Gly	Asn 285	Lys	Arg	Glu
20	Lys Gla		Val	His	Ser	Val 295	Phe	Arg	Lys	Leu	Val 300	Glu	His	Leu	His
25	Asn Pho	e Ile	Leu	Phe	Arg 310	Phe	Ser	Met	Gly	Phe 315	Ile	Asp	Ser	Ile	11e 320
	Ala Ly	з Туг	Leu	Ala 325	Thr	Val	Val	Gly	Tyr 330	Leu	Val	Val	Ser	Arg 335	Pro
30	Phe Le	ı Asp	Leu 340	Ser	His	Pro	Arg	His 345	Leu	Lys	Ser	Thr	His 350	Ser	Glu
35	Leu Le	355	Asp	Tyr	Tyr	Gln	Ser 360	Gly	Arg	Met	Leu	Leu 365	Arg	Met	Ser
·	Gln Al		Gly	Arg	Ile	Val 375	Leu	Ala	Gly	Arg	Glu 380	Met	Thr	Arg	Leu
40	Ala Gl; 385	y Phe	Thr	Ala	Arg 390	Ile	Thr	Glu	Leu	Met 395	Gln	Val	Leu	Lys	Asp 400
45	Leu As	n His	Gly	Lys 405	_	Glu	_	Thr			Ser	Gln	Gln	Glu 415	_
50	Gly Il	e Glu	Gly 420		Gln	Val	Ile	Pro 425		Ile	Pro	Gly	Ala 430		Glu
30	Ile Il	e Ile 435		Asp	Asn	Ile	11e 440	_	Phe	Asp	His	Val 445		Leu	Ala
55	Thr Pr		Gly	Asp	Val	Leu 455		Arg	Asp	Leu	Asn 460		Glu	Val	Arg

	Ser Gly Ala 465	Asn Val	Leu Ile 470	Cys Gly Pr	o Asn Gly 475	Cys Gly Lys Ser 480
5	Ser Leu Phe	Arg Val 485	Leu Gly	Glu Leu Tr		Phe Gly Gly Arg 495
10	Leu Thr Lys	Pro Glu 500	Arg Gly	Lys Leu Ph 505	e Tyr Val	Pro Gln Arg Pro 510
15	Tyr Met Thr 515	Leu Gly	Thr Leu	Arg Asp Gl 520	n Val Ile	Tyr Pro Asp Gly 525
	Arg Glu Asp 530	Gln Lys	Arg Lys 535	Gly Ile Se	r Asp Leu 540	Val Leu Lys Glu
20	Tyr Leu Asp 545	Asn Val	Gln Leu 550	Gly His Il	e Leu Glu 555	Arg Glu Gly Gly 560
25	Trp Asp Ser	Val Gln 565	Asp Trp	Met Asp Va 57		Gly Gly Glu Lys 575
		580		585		Pro Gln Phe Ala 590
30	595			600		Val Glu Gly Tyr 605
35	610		615		620	Phe Thr Val Ser
	625		630		635	Leu His Met Asp 640
40		645	Glu Phe	Lys Gln II		Asp Thr Val Glu 655
45	Phe Gly Ser	`				
	<210> 73					
50	<211> 606 <212> PRT <213> Homo	sapiens				
55	<400> 73 Met Ala Val	Ala Gly	Pro Ala	Pro Gly A	la Gly Ala	Arg Pro Arg Leu

	1				5					10					15	
5	Asp	Leu	Gln	Phe 20	Leu	Gln	Arg	Phe	Leu 25	Gln	Ile	Leu	Lys	Val 30	Leu	Phe
10	Pro	Ser	Trp 35	Ser	Ser	Gln	Asn	Ala 40	Leu	Met	Phe	Leu	Thr 45	Leu	Leu	Cys
	Leu	Thr 50	Leu	Leu	Glu	Gln	Phe 55	Val	Ile	Тут	Gln	Val 60	Gly	Leu	Ile	Pro
15	Ser 65	Gln	Tyr	Tyr	Gly	Val 70	Leu	Gly	Asn	Lys	Asp 75	Leu	Glu	Gly	Phe	Lys 80
20	Thr	Leu	Thr	Phe	Leu 85	Ala	Val	Met	Leu	Ile 90	Val	Leu	Asn	Ser	Thr 95	Leu
	Lys	Ser	Phe	Asp 100	Gln	Phe	Thr	Cys	Asn 105	Leu	Leu	Туr	Val	Ser 110	Trp	Arg
25	Lys	Asp	Leu 115	Thr	Glu	His	Leu	His 120	Arg	Leu	Tyr	Phe	Arg 125	Gly	Arg	Ala
30	Tyr	Tyr 130	Thr	Leu	Asn	Val	Leu 135	Arg	Asp	Asp	Ile	Asp 140	Asn	Pro	Asp	Gln
25	145	Ile				150					155					160
35		Ser			165					170					175	
40				180			-		185					190		Gly
45	_		195					200		-			205			Ile
		210	•				215					220	ı			Phe
50	225					230)				235					240
55					245	5				250)	_			255	
	Leu	Gln	Thr	Glr	ı Arç	g Glu	ı Lei	ı Met	: Ser	: Lys	Glu	ı Lev	Tr	Let	ту:	: Ile

		260			265	270
5	Gly Ile	Asn Thr 275	Phe Asp	Tyr Leu 280	Gly Ser Ile	Leu Ser Tyr Val Val 285
10	Ile Ala 290	Ile Pro	Ile Phe	Ser Gly 295	Val Tyr Gly	Asp Leu Ser Pro Ala 300
	Glu Leu 305	Ser Thr	Leu Val	Ser Lys	Asn Ala Phe 315	Val Cys Ile Tyr Leu 320
15	Ile Ser	Cys Phe	Thr Gln 325	Leu Ile	Asp Leu Ser 330	Thr Thr Leu Ser Asp 335
20	Val Ala	Gly Tyr 340	Thr His	Arg Ile	Gly Gln Leu 345	Arg Glu Thr Leu Leu 350
	Asp Met	Ser Leu 355	Lys Ser	Gln Asp 360	Cys Glu Ile	Leu Gly Glu Ser Glu 365
25	Trp Gly		Thr Pro	Pro Gly 375	Trp Pro Ala	Ala Glu Pro Ala Asp 380
30	Thr Ala	Phe Leu	Leu Glu 390	-	Ser Ile Ser 395	Ala Pro Ser Ser Asp 400
	Lys Pro	Leu Ile	Lys Asp 405	Leu Ser	Leu Lys Ile 410	Ser Glu Gly Gln Ser 415
35	Leu Leu	lle Thr 420	-	Thr Gly	Thr Gly Lys 425	Thr Ser Leu Leu Arg 430
40	Val Leu	Gly Gly 435	Leu Trp	Thr Ser		Ser Val Gln Met Leu 445
	Thr Asy 450	_	Pro His	Gly Val	. Leu Phe Leu	Pro Gln Lys Pro Phe 460
45	Phe Thi 465	r Asp Gly	Thr Leu 470		Gln Val Ile 475	Tyr Pro Leu Lys Glu 480
50	Val Ty	r Pro Ası	Ser Gly 485	Ser Ala	a Asp Asp Glu 490	Arg Ile Leu Arg Phe 495
	Leu Gl	u Leu Ala 50		ı Ser Ası	ı Leu Val Ala 505	Arg Thr Glu Gly Leu 510
55	Asp Gl	n Gln Va	l Asp Tr	Asn Tr	o Tyr Asp Val	. Leu Ser Pro Gly Glu

	515	520	525
5	Met Gln Arg Leu Ser Phe Ala 530 535	-	Gln Pro Lys Tyr
10	Ala Val Leu Asp Glu Ala Thr 545 550	Ser Ala Leu Thr Glu 6	Glu Val Glu Ser 560
	Glu Leu Tyr Arg Ile Gly Gln 565	Gln Leu Gly Met Thr 570	Phe Ile Ser Val 575
15	Gly His Arg Gln Ser Leu Glu 580	Lys Phe His Ser Leu 585	Val Leu Lys Leu 590
20	Cys Gly Gly Gly Arg Trp Glu 595		Val Glu 605
25	<210> 74 <211> 599 <212> PRT <213> Homo sapiens		
30	<400> 74 Met Ala Asp Lys Leu Thr Arg 1 5	Ile Ala Ile Val Asn 10	His Asp Lys Cys
35	Lys Pro Lys Lys Cys Arg Gli 20	ı Glu Cys Lys Lys Ser 25	Cys Pro Val Val
40	Arg Met Gly Lys Leu Cys Ile 35	e Glu Val Thr Pro Gln 40	Ser Lys Ile Ala 45
70	Trp Ile Ser Glu Thr Leu Cys 50 59		Cys Ile Lys Lys
45	Cys Pro Phe Gly Ala Leu Ser 65 70	r Ile Val Asn Leu Pro 75	Ser Asn Leu Glu 80
50	Lys Glu Thr Thr His Arg Ty 85	r Cys Ala Asn Ala Phe 90	Lys Leu His Arg 95
	Leu Pro Ile Pro Arg Pro Gl	y Glu Val Leu Gly Leu 105	Val Gly Thr Asn 110

5	Pro	Asn 130	Leu	Gly	Lys	Tyr	Asp 135	Asp	Pro	Pro	Asp	Trp 140	Gln	Glu	Ile	Leu
	Thr 145	Tyr	Phe	Arg	Gly	Ser 150	Glu	Leu	Gln	Asn	Тут 155	Phe	Thr	Lys	Ile	Leu 160
10	Glu	Asp	Asp	Leu	Lys 165	Ala	Ile	Ile	Lys	Pro 170	Gln	Tyr	Val	Ala	Arg 175	Phe
15	Leu	Arg	Leu	Ala 180	Lys	Gly	Thr	Val	Gly 185	Ser	Ile	Leu	Asp	Arg 190	Lys	Asp
	Glu	Thr	Lys 195	Thr	Gln	Ala	Ile	Val 200	Cys	Gln	Gln	Leu	Asp 205	Leu	Thr	His
20	Leu	Lys 210	Glu	Arg	Asn	Val	Glu 215	Asp	Leu	Ser	Gly	Gly 220	Glu	Leu	Gln	Arg
25	Phe 225	Ala	Cys	Ala	Val	Val 230	Cys	Ile	Gln	Lys	Ala 235	Asp	Ile	Phe	Met	Phe 240
	Asp	Glu	Pro	Ser	Ser 245	Tyr	Leu	Asp	Val	Lys 250	Gln	Arg	Leu	Lys	Ala 255	Ala
30	Ile	Thr	Ile	Arg 260	Ser	Leu	Ile	Asn	Pro 265	Asp	Arg	Tyr	Ile	Ile 270	Val	Val
35	Glu	His	Asp 275	Leu	Ser	Val	Leu	Asp 280	Tyr	Leu	Ser	Asp	Phe 285	Ile	Cys	Cys
	Leu	Tyr 290	Gly	Val	Pro	Ser	Ala 295	Tyr	Gly	Val	Val	Thr 300	Met	Pro	Phe	Ser
40	Val 305		Glu	Gly	Ile	Asn 310	Ile	Phe	Leu	Asp	Gly 315	Tyr	Val	Pro	Thr	Glu 320
45	Asn	Leu	Arg	Phe	Arg 325	Asp	Ala	Ser	Leu	Val 330	Phe	Lys	Val	Ala	Glu 335	Thr
	Ala	Asn	Glu	Glu 340		Val	Lys	Lys	Met 345	Cys	Met	Tyr	Lys	Tyr 350		Gly
50	Met	Lys	Lys 355	_	Met	Gly	Glu	Phe 360		Leu	Ala	Ile	Val 365		Gly	Glu
55	Phe	Thr 370		Ser	Glu	Ile	Met 375		Met	Leu	Gly	Glu 380		Gly	Thr	Gly

5	Lys 385	Thr	Thr	Phe	Ile	Arg 390	Met	Leu	Ala	Gly	Arg 395	Leu	Lys	Pro	Asp	Glu 400
	Gly	Gly	Glu	Val	Pro 405	Val	Leu	Asn	Val	Ser 410	Туг	Lys	Pro	Gln	Lys 415	Ile
10	Ser	Pro	Lys	Ser 420	Thr	Gly	Ser	Val	Arg 425	Gln	Leu	Leu	His	Glu 430	Lys	Ile
15	Arg	Asp	Ala 435	Tyr	Thr	His	Pro	Gln 440	Phe	Val	Thr	Asp	Val 445	Met	Lys	Pro
	Leu	Gln 450	Ile	Glu	Asn	Ile	Ile 455	Asp	Gln	Glu	Val	Gln 460	Thr	Leu	Ser	Gly
20	Gly 465	Glu	Leu	Gln	Arg	Val 470	Arg	Leu	Arg	Leu	Cys 475	Leu	Gly	Lys	Pro	Ala 480
25	Asp	Val	Туг	Leu	Ile 485	Asp	Glu	Pro	Ser	Ala 490	Туг	Leu	Asp	Ser	Glu 495	Gln
30	Arg	Leu	Met	Ala 500	Ala	Arg	Val	Val	Lys 505	Arg	Phe	Ile	Leu	His 510	Ala	Lys
	Lys	Thr	Ala 515	Phe	Va1	Val	Glu	His 520	Asp	Phe	Ile	Met	Ala 525	Thr	Tyr	Leu
35		530					535					540				Val
40	Ala 545		Ser	Pro	Gln	Thr 550	Leu	Leu	Ala	Gly	Met 555	Asn	Lys	Phe	Leu	Ser 560
	Gln	Leu	Glu	Ile	Thr 565	Phe	Arg	Arg	Asp	Pro 570	Asn	Asn	Tyr	Arg	Pro 575	Arg
45	Ile	Asn	Lys	Leu 580	Asn	Ser	Ile	Lys	Asp 585	Val	Glu	Gln	Lys	Lys 590	Ser	Gly
50	Asn	Tyr	Phe 595		Leu	Asp	Asp									
	<21	.0> 7	5													
55		.1> 8 .2> P														

<213> Homo sapiens
<400> 75

5	<400>	75	•												
	Met P	ro Lys	Ala	Pro 5	Lys	Gln	Gln	Pro	Pro 10	Glu	Pro	Glu	Trp	Ile 15	Gly
10	Asp G	ly Glu	Ser 20	Thr	Ser	Pro	Ser	Asp 25	Lys	Val	Val	Lys	Lys 30	Gly	Lys
15	Lys A	sp Lys 35	Lys	Ile	Lys	Lys	Thr 40	Phe	Phe	Glu	Glu	Leu 45	Ala	Val	Glu
•		ys Gln 50	Ala	Gly	Glu	G1u 55	Glu	Lys	Val	Leu	Lys 60	Glu	Lys	Glu	Gln
20	Gln G 65	ln Gln	Gln	Gln	Gln 70	Gln	Gln	Gln	Lys	Lys 75	Lys	Arg	Asp	Thr	Arg 80
25	Lys G	ly Arg	Arg	Lys 85	Lys	Asp	Val	Asp	Asp 90	Asp	Gly	Glu	Glu	Lys 95	Glu
	Leu M	et Glu	Arg 100	Leu	Lys	Lys	Leu	Ser 105	Val	Pro	Thr	Ser	Asp 110	Glu	Glu
30	Asp G	lu Val 115		Ala	Pro	Lys	Pro 120	Arg	Gly	Gly	Lys	Lys 125	Thr	Lys	Gly
35		sn Val 30	Phe	Ala	Ala	Leu 135	Ile	Gln	Asp	Gln	Ser 140	Glu	Glu	Glu	Glu
	Glu G 145	lu Glu	Lys	His	Pro 150	Pro	Lys	Pro	Ala	Lys 155	Pro	Glu	Lys	Asn	Arg 160
40	Ile A	sn Lys	Ala	V al 165		Glu	Glu	Gln	Gln 170	Pro	Ala	Leu	Lys	Gly 175	-
45	Lys G	Sly Lys	Glu 180	Glu	Lys	Ser	Lys	Gly 185		Ala	Lys	Pro	Gln 190	Asn	Lys
	Phe A	Ala Ala 195		Asp	Asn	Glu	Glu 200		Asp	Lys	Glu	Glu 205		Ile	Ile
50	_	Glu Lys 210	: Glu	Pro	Pro	Lys 215		Gly	Lys	Glu	Lys 220		Lys	Lys	Ala
55	Glu (225	Gln Met	: Glu	Туг	Glu 230	-	Gln	Val	Ala	Ser 235		Lys	Ala	Ala	Asn 240

	Ala A	ıla G	lu i		Asp 245	Phe	Ser	Val	Ser	Gln 250	Ala	Glu	Met		Ser 255	Arg
5	Gln A	la M		Leu 260	Glu	Asn	Ala	Ser	Asp 265	Ile	Lys	Leu	Glu	Lys 270	Phe	Ser
10	Ile S		Ala : 275	His	Gly	Lys	Glu	Leu 280	Phe	Val	Asn		Asp 285	Leu	Tyr	Ile
15	Val A	Ala 6 290	Sly .	Arg	Arg	Tyr	Gly 295	Leu	Val	Gly	Pro	Asn 300	Gly	Lys	Gly	Lys
	Thr 1 305	Thr I	ieu	Leu	Lys	His 310	Ile	Ala	Asn	Arg	Ala 315	Leu	Ser	Ile	Pro	Pro 320
20	Asn I	[le A	Asp	Val	Leu 325	Leu	Cys	Glu	Gln	Glu 330	Val	Val	Ala	Asp	Glu 335	Thr
25	Pro A	la l		Gln 340	Ala	Val	Leu	Arg	Ala 345	Asp	Thr	Lys	Arg	Leu 350	Lys	Leu
	Leu (355	Glu	Arg	Arg	Leu	Gln 360	Gly	Gln	Leu	Glu	Gln 365	Gly	Asp	Asp
30	Thr A	Ala <i>1</i> 370	Ala	Glu	Arg	Leu	Glu 375	Lys	Val	Tyr	Glu	Glu 380	Leu	Arg	Ala	Thr
35	Gly 1 385	Ala A	Ala	Ala	Ala	Glu 390	Ala	Lys	Ala	Arg	Arg 395	Ile	Leu	Ala	Gly	Leu 400
	Gly I				405					410					415	
40	Gly :			420					425					430		
45	Thr 1		435					440					445			
	Val	Ile' 450	Ттр	Leu	Asn	Asn	Tyr 455		Gln	Gly	Trp	Arg 460	_	Thr	Leu	Leu
50	465					470					475					1le 480
55	Ile	His	Leu	Asp	Ala 485		Arg	Leu	His	490		Arg	Gly	' Asn	495	Met

	Thr	Phe	Lys	Lys 500	Met	Tyr	Gln	Gln	Lys 505	Gln	Lys	Glu	Leu	Leu 510	Lys	Gln
5	Туг	Glu	Lys 515	Gln	Glu	Lys	Lys	Leu 520	Lys	Glu	Leu	Lys	Ala 525	Gly	Gly	Lys
10	Ser	Thr 530	Lys	Gln	Ala	Glu	Lys 535	Gln	Thr	Lys	Glu	Ala 540	Leu	Thr	Arg	Lys
15	Gln 545	Gln	Lys	Cys	Arg	Arg 550	Lys	Asn	Gln	Asp	Glu 555	Glu	Ser	Gln	Glu	Ala 560
	Pro	Glu	Leu	Leu	Lys 565	Arg	Pro	Lys	Glu	Туг 570	Thr	Val	Arg	Phe	Thr 575	Phe
20	Pro	Asp	Pro	Pro 580	Pro	Leu	Ser	Pro	Pro 585	Val	Leu	Gly	Leu	His 590	Gly	Val
25	Thr	Phe	Gly 595	Tyr	Gln	Gly	Gln	Lys 600	Pro	Leu	Phe	Lys	Asn 605	Leu	Asp	Phe
	Gly	Ile 610	Asp	Met	Asp	Ser	Arg 615	Ile	Cys	Ile	Va1	Gly 620	Pro	Asn	Gly	Val
30	Gly 625	Lys	Ser	Thr	Leu	Leu 630	Leu	Leu	Leu	Thr	Gly 635	Lys	Leu	Thr	Pro	Thr 640
35		Gly			645	_				650	_				655	
		Gln	_	660					665					670		
40			675					680					685			Leu
45	_	690					695					700				Lys
	705	5				710)				715	5				720
50					725	i				730	ı				735	
55	Ile	e Glu	ı Ser	740	_	Ala	a Lev	ı Gly	745		ı Ile	e Asr	ı Glu	750		: Gly

5	Ala	Val	Ile 755	Val	Val	Ser	His	Asp 760	Ala	Arg	Leu	Ile	Thr 765	Glu	Thr	Asn
	Суз	Gln 770	Leu	Trp	Val	Val	Glu 775	Glu	Gln	Ser	Val	Ser 780	Gln	Ile	Asp	Gly
10	Asp 785	Phe	Glu	Asp	Tyr	Lys 790	Arg	Glu	Val	Leu	Glu 795	Ala	Leu	Gly	Glu	Val 800
15	Met	Val	Ser	Arg	Pro 805	Arg	Glu									
20	<211 <212)> 76 L> 63 2> PF B> Ho	84 RT	sapie	ens											
25)> 76 Pro		Asp	Leu 5	Ala	Lys	Lys	Lys	Ala 10	Ala	Lys	Lys	Lys	Glu 15	Ala
30	Ala	Lys	Ala	Arg 20	Gln	Arg	Pro	Arg	Lys 25	Gly	His	G1u	Glu	Asn 30	Gly	Asp
	Val	Val	Thr 35	Glu	Pro	Gln	Val	Ala 40	Glu	Lys	Asn	Glu	Ala 45	Asn	Gly	Arg
35	Glu	Thr 50	Thr	Glu	Val	Asp	Leu 55	Leu	Thr	Lys	Glu	Leu 60	Glu	Asp	Phe	Glu
40	Met 65	Lys	Lys	Ala	Ala	Ala 70		Ala	Val	Thr	Gly 75		Leu	Ala	Ser	His 80
4-	Pro	Asn	Ser	Thr	Asp 85		His	Ile	Ile	Asn 90		Ser	Leu	Thr	Phe 95	
4 5	Gly	Gln	Glu	Leu 100		Ser	Asp	Thr	Lys 105		Glu	Leu	Asn	Ser 110		Arg
50	Arg	Tyr	Gly 115		Ile	Gly	Leu	120	_	Ile	Gly	Lys	Ser 125		Leu	Leu
	Ser	Ala 130		Gly	Lys	Arg	Glu 135		Pro	Ile	Pro	Glu 140		Ile	Asp	, Ile
55	Tyr	His	Leu	Thr	Arg	Glu	Met	Pro	Pro	Ser	Asp	Lys	Thr	Pro	Lev	His

	145					150					155					160
5	Cys V	al M	let (Val 165	Asp	Thr	Glu	Arg	Ala 170	Met	Leu	Glu	Lys	Glu 175	Ala
10	Glu A	rg L		Ala 180	His	Glu	Asp	Ala	Glu 185	Cys	Glu	Lys	Leu	Met 190	Glu	Leu
	Tyr G		rg 1	Leu	Glu	Glu	Leu	Asp 200	Ala	Asp	Lys	Ala	Glu 205	Met	Arg	Ala
15	Ser A	Arg I	le	Leu	His	Gly	Leu 215	Gly	Phe	Thr	Pro	Ala 220	Met	Gln	Arg	Lys
20	Lys I 225	Ceu L	ys i	Asp	Phe	Ser 230	Gly	Gly	Trp	Arg	Met 235	Arg	Val	Ala	Leu	Ala 240
	Arg A	Ala L	.eu	Phe	Ile 245	Arg	Pro	Phe	Met	Leu 250	Leu	Leu	Asp	Glu	Pro 255	Thr
25	Asn H	His L		Asp 260	Leu	Asp	Ala	Cys	Val 265	Trp	Leu	G1u	Glu	Glu 270	Leu	Lys
30	Thr F		ys . 275	Arg	Ile	Leu	Val	Leu 280	Val	Ser	His	Ser	Gln 285	Asp	Phe	Leu
	Asn G	31y V 290	/al	Cys	Thr	Asn	11e 295	Ile	His	Met	His	Asn 300	Lys	Lys	Leu	Lys
35	Tyr 1	Tyr 1	Chr ·	Gly	Asn	туr 310	Asp	Gln	Tyr	Val	Lys 315	Thr	Arg	Leu	Glu	Leu 320
40	Glu (Glu A	Asn	Gln	Met 325	L y s	Arg	Phe	His	Trp 330	Glu	Gln	Asp	Gln	Ile 335	Ala
	His N	Met I		Asn 340	Tyr	Ile	Ala	Arg	Phe 345	Gly	His	Gly	Ser	Ala 350	Lys	Leu
45	Ala I		31n 355	Ala	Gln	Ser	Lys	Glu 360	Lys	Thr	Leu	Gln	Lys 365		Met	Ala
50	Ser (Gly I 370	Leu	Thr	Glu	Arg	Val 375	Val	Ser	Asp	Lys	Thr 380	Leu	Ser	Phe	Tyr
	Phe 1	Pro I	Pro	Cys	Gly	Lys 390		Pro	Pro	Pro	Val 395	Ile	Met	Val	Gln	Asn 400
55	Val :	Ser 1	Phe	Lys	Tyr	Thr	Lys	Asp	Gly	Pro	Cys	Ile	Tyr	Asn	Asn	Leu

					405					410					415	
5	Glu	Phe	Gly	Ile 420	Asp	Leu	Asp	Thr	Arg 425	Val	Ala	Leu	Val	Gly 430	Pro	Asn
10	Gly	Ala	Gly 435	Lys	Ser	Thr	Leu	Leu 440	Lys	Leu	Leu	Thr	Gly 445	Glu	Leu	Leu
	Pro	Thr 450	Asp	Gly	Met	Ile	Arg 455	Lys	His	Ser	His	Val 460	Lys	Ile	Gly	Arg
15	Туг 465	His	Gln	His	Leu	Gln 470	Glu	Gln	Leu	Asp	Leu 475	Asp	Leu	Ser	Pro	Leu 480
20	Glu	Tyr	Met	Met	Lys 485	Cys	Tyr	Pro	Glu	Ile 490	Lys	Glu	Lys	Glu	Glu 495	Met
	Arg	Lys	Ile	Ile 500	Gly	Arg	Tyr	Gly	Leu 505	Thr	Gly	Lys	Gln	Gln 510	Val	Ser
25	Pro	Ile	Arg 515	Asn	Leu	Ser	Asp	Gly 520	Gln	Lys	Суз	Arg	Val 525	Cys	Leu	Ala
30	Trp	Leu 530	Ala	Trp	Gln	Asn	Pro 535	His	Met	Leu	Phe	Leu 540	Asp	Glu	Pro	Thr
	Asn 545	His	Leu	Asp	Ile	G1u 550		Ile	Asp	Ala	Leu 555	Ala	Asp	Ala	Ile	Asn 560
35	Glu	Phe	Glu	Gly	Gly 565	Met	Met	Leu	Val	Ser 570		Asp	Phe	Arg	Ьеи 575	Ile
40	Gln	Gln	Val	Ala 580		Glu	Ile	Trp	Val 585	_	Glu	Lys	Gln	Thr 590		Thr
	Lys	Trp	Pro 595		Asp	Ile	Leu	Ala 600		Lys	Glu	His	605		Ser	. Lys
45	Leu	Val 610		Glu	Glu	Pro	615		Thr	Lys	: Arg	620		Asn	. Val	Cys
50	Thr 625		Thr	Leu	Ala	Sex 630		Pro	Arg	Pro	•					
55		.0> 7 .1> 7														

	<212> PRT <213> Homo sapiens
5	<400> 77 Met Ala Thr Cys Ala Glu Ile Leu Arg Ser Glu Phe Pro Glu Ile Asp 1 5 10 15
10	Gly Gln Val Phe Asp Tyr Val Thr Gly Val Leu His Ser Gly Ser Ala 20 25 30
15	Asp Phe Glu Ser Val Asp Asp Leu Val Glu Ala Val Gly Glu Leu Leu 35 40 45
	Gln Glu Val Ser Gly Asp Ser Lys Asp Asp Ala Gly Ile Arg Ala Val 50 55 60
20	Cys Gln Arg Met Tyr Asn Thr Leu Arg Leu Ala Glu Pro Gln Ser Gln 65 70 75 80
25	Gly Asn Ser Gln Val Leu Leu Asp Ala Pro Ile Gln Leu Ser Lys Ile 85 90 95
	Thr Glu Asn Tyr Asp Cys Gly Thr Lys Leu Pro Gly Leu Leu Lys Arg 100 105 110
30	Glu Gln Ser Ser Thr Val Asn Ala Lys Lys Leu Glu Lys Ala Glu Ala 115 120 125
35	Arg Leu Lys Ala Lys Gln Glu Lys Arg Ser Glu Lys Asp Thr Leu Lys 130 135 140
	Thr Ser Asn Pro Leu Val Leu Glu Glu Ala Ser Ala Ser Gln Ala Gly 145 150 155 160
40	Ser Arg Lys Glu Ser Arg Leu Glu Ser Ser Gly Lys Asn Lys Ser Tyr 165 170 175
45	Asp Val Arg Ile Glu Asn Phe Asp Val Ser Phe Gly Asp Arg Val Leu 180 185 190
	Leu Ala Gly Ala Asp Val Asn Leu Ala Trp Gly Arg Arg Tyr Gly Leu 195 200 205
50	Val Gly Arg Asn Gly Leu Gly Lys Thr Thr Leu Leu Lys Met Leu Ala 210 215 220
55	Thr Arg Ser Leu Arg Val Pro Ala His Ile Ser Leu Leu His Val Glu 225 230 235 240

5	Gln (Glu	Val		Gly 245	Asp	Asp	Thr	Pro	Ala 250	Leu	Gln	Ser	Val	Leu 255	Glu
	Ser i	Asp	Ser	Val 260	Arg	Glu	Asp	Leu	Leu 265	Arg	Arg	Glu	Arg	Glu 270	Leu	Thr
10	Ala		Ile 275	Ala	Ala	Gly	Arg	Ala 280	Glu	Gly	Ser	Glu	Ala 285	Ala	Glu	Leu
15	Ala (Glu 290	Ile	Tyr	Ala	Lys	Leu 295	Glu	Glu	Ile	Glu	Ala 300	Asp	Lys	Ala	Pro
	Ala 7	Arg	Ala	Ser	Val	Ile 310	Leu	Ala	Gly	Leu	Gly 315	Phe	Thr	Pro	Lys	Met 320
20	Gln	Gln	Gln	Pro	Thr 325	Arg	Glu	Phe	Ser	Gly 330	Gly	Trp	Arg	Met	Arg 335	Leu
25	Ala	Leu	Ala	Arg 340	Ala	Leu	Phe	Ala	Arg 345	Pro	Asp	Leu	Leu	Leu 350	Leu	Asp
	Glu	Pro	Thr 355	Asn	Met	Leu	Asp	Val 360	Arg	Ala	Ile	Leu	Trp 365	Leu	Glu	Asn
30	Туr	Leu 370	Gln	Thr	Trp	Pro	Ser 375	Thr	Ile	Leu	Val	Val 380	Ser	His	Asp	Arg
35	Asn 385	Phe	Leu	Asn	Ala	Ile 390	Ala	Thr	Asp	Ile	11e 395	His	Leu	His	Ser	Gln 400
40	Arg	Leu	Asp	Gly	Tyr 405	Arg	Gly	Asp	Phe	Glu 410	Thr	Phe	Ile	Lys	Ser 415	Lys
40	Gln	Glu	Arg	Leu 420	Leu	Asn	Gln	Gln	Arg 425		Туr	Glu	Ala	Gln 430	Gln	Gln
45	Туr	Arg	Gln 435	His	Ile	Gln	Val	Phe 440		Asp	Arg	Phe	Arg 445	_	Asn	Ala
50	Asn	Arg 450	Ala	Ser	Gln	Val	Gln 455		Lys	Leu	Lys	Met 460		Glu	Lys	Leu
	Pro 465	Glu	Leu	Arg	Pro	Val 470	-	Lys	Glu	Ser	Glu 475		Val	Met	Lys	Phe 480
55	Pro	Asp	Gly	Phe	Glu 485	_	Phe	Ser	Pro	Pro 490		Leu	Gln	Leu	Asp 495	Glu

5	Val	Asp	Phe	Туг 500	Tyr	Asp	Pro	Lys	His 505	Val	Ile	Phe	Ser	Arg 510	Leu	Ser
	Val	Ser	Ala 515	Asp	Leu	Glu	Ser	Arg 520	Ile	Cys	Val	Va1	Gly 525	Glu	Asn	Gly
10	Ala	Gly 530	Lys	Ser	Thr	Met	Leu 535	Lys	Leu	Leu	Leu	Gly 540	Asp	Leu	Ala	Pro
15	Val 545	Arg	Gly	Ile	Arg	His 550	Ala	His	Arg	Asn	Leu 555	Lys	Ile	Gly	Туг	Phe 560
	Ser	Gln	His	His	Val 565	Glu	Gln	Leu	Asp	Leu 570	Asn	Val	Ser	Ala	Val 575	Glu
20	Leu	Leu	Ala	Arg 580	Lys	Phe	Pro	Gly	Arg 585	Pro	Glu	Glu	Glu	Tyr 590	Arg	His
25	Gln	Leu	Gly 595	Arg	Tyr	Gly	Ile	Ser 600	Gly	Glu	Leu	Ala	Met 605	Arg	Pro	Leu
	Ala	Ser 610	Leu	Ser	Gly	Gly	Gln 615	Lys	Ser	Arg	Val	Ala 620	Phe	Ala	Gln	Met
30	Thr 625		Pro	Cys	Pro	Asn 630		Tyr	Ile	Leu	Asp 635	Glu	Pro	Thr	Asn	His 640
35	Leu	Asp	Met	Glu	Thr 645	Ile	Glu	Ala	Leu	Gly 650		Ala	Leu	Asn	Asn 655	
40	Arg	Gly	Gly	Val 660	Ile	Leu	Val	Ser	His 665		Glu	Arg	Phe	Ile 670		Leu
40	Val	Cys	Arg 675		Leu	Trp	Val	Суs 680		Gly	Gly	Gly	Val 685		Arg	Val
45	Glu	Gly 690		Phe	Asp	Gln	1 Tyr 695		Ala	Leu	Leu	Gln 700		Gln	Phe	e Arg
50	Arg 705		Gly	Phe	Leu	l										
30	.01															
55	<21	LO> 7 L1> 6 L2> I	574													

<213> Homo sapiens <400> 78 Met Ala Ala Phe Ser Val Gly Thr Ala Met Asn Ala Ser Ser Tyr Ser Ala Glu Met Thr Glu Pro Lys Ser Val Cys Val Ser Val Asp Glu Val Val Ser Ser Asn Met Glu Ala Thr Glu Thr Asp Leu Leu Asn Gly His Leu Lys Lys Val Asp Asn Asn Leu Thr Glu Ala Gln Arg Phe Ser Ser Leu Pro Arg Arg Ala Ala Val Asn Ile Glu Phe Arg Asp Leu Ser Tyr Ser Val Pro Glu Gly Pro Trp Trp Arg Lys Lys Gly Tyr Lys Thr Leu Leu Lys Gly Ile Ser Gly Lys Phe Asn Ser Gly Glu Leu Val Ala Ile Met Gly Pro Ser Gly Ala Gly Lys Ser Thr Leu Met Asn Ile Leu Ala Gly Tyr Arg Glu Thr Gly Met Lys Gly Ala Val Leu Ile Asn Gly Leu Pro Arg Asp Leu Arg Cys Phe Arg Lys Val Ser Cys Tyr Ile Met Gln Asp Asp Met Leu Leu Pro His Leu Thr Val Gln Glu Ala Met Met Val Ser Ala His Leu Lys Leu Gln Glu Lys Asp Glu Gly Arg Arg Glu Met Val Lys Glu Ile Leu Thr Ala Leu Gly Leu Leu Ser Cys Ala Asn Thr Arg Thr Gly Ser Leu Ser Gly Gly Gln Arg Lys Arg Leu Ala Ile Ala

Leu Glu Leu Val Asn Asn Pro Pro Val Met Phe Phe Asp Glu Pro Thr

5	Ser	Gly	Leu	Asp	Ser 245	Ala	Ser	Суѕ	Phe	G1n 250	Val	Val	Ser	Leu	Met 255	Lys
	Gly	Leu	Ala	Gln 260	Gly	Gly	Arg	Ser	Ile 265	Ile	Cys	Thr	Ile	His 270	Gln	Pro
10	Ser	Ala	Lys 275	Leu	Phe	Glu	Leu	Phe 280	Asp	Gln	Leu	Tyr	Val 285	Leu	Ser	Gln
15	Gly	Gln 290	Суѕ	Val	Tyr	Arg	Gly 295	Lys	Val	Cys	Asn	Leu 300	Val	Pro	Tyr	Leu
	Arg 305	Asp	Leu	G1y	Leu	Asn 310	Cys	Pro	Thr	Tyr	His 315	Asn	Pro	Ala	ĄzĄ	Phe 320
20	Val	Met	G1u	Val	Ala 325	Ser	Gly	Glu	Туr	Gly 330	Asp	Gln	Asn	Ser	Arg 335	Leu
25	Val	Arg	Ala	Val 340	Arg	Glu	Gly	Met	Cys 345	Asp		Asp	His	Lys 350	Arg	Asp
	Leu	Gly	Gly 355	Asp	Ala	Glu	Val	Asn 360	Pro	Phe	Leu	Trp	His 365	Arg	Pro	Ser
30	Glu	Glu 370	Val	Lys	Gln	Thr	Lys 375	Arg	Leu	Lys	Gly	Leu 380	Arg	Lys	Asp	Ser
35	Ser 385	Ser	Met	Glu	Gly	Cys 390	His	Ser	Phe	Ser	Ala 395	Ser	Cys	Leu	Thr	Gln 400
	Phe	Суз	Ile	Leu	Phe 405	Lys	Arg	Thr	Phe	Leu 410	Ser	Ile	Met	Arg	Asp 415	
40	Val	Leu	Thr	His 420		Arg	Ile	Thr	Ser 425		Ile	Gly	Ile	Gly 430		Leu
45	Ile	Gly	Leu 435		Tyr	Leu	Gly	11e 440	_	Asn	Glu	Thr	Lys 445	_	Val	Leu
	Ser	450		Gly	Phe	Leu	Phe 455		Ser	Met	Leu	Phe 460		Met	Phe	Ala
50	Ala 465		Met	Pro	Thr	Va]		Thr	Phe	Pro	Leu 475		Met	Gly	Val	Phe 480
55	Leu	Arg	Glu	His	485		Туг	Trp	Туг	Ser 490		ı Lys	: Ala	туг	Tyr 495	Leu

5	Ala Lys	Thr Me		Asp	Val	Pro	Phe 505	Gln	Ile	Met	Phe	Pro 510	Val	Ala
	Tyr Cys	Ser Il 515	e Val	Tyr	Trp	Met 520	Thr	Ser	Gln	Pro	Ser 525	Asp	Ala	Val
10	Arg Phe 530		u Phe	Ala	Ala 535	Leu	Gly	Thr	Met	Thr 540	Ser	Leu	Val	Ala
15	Gln Ser 545	Leu Gl	y Leu	Leu 550	Ile	Gly	Ala	Ala	Ser 555	Thr	Ser	Leu	Gln	Val 560
	Ala Thr	Phe Va	1 Gly 565		Val	Thr	Ala	Ile 570	Pro	Val	Leu	Leu	Phe 575	Ser
20	Gly Phe	Phe Va		Phe	Asp	Thr	Ile 585	Pro	Thr	Tyr	Leu	Gln 590	Trp	Met
25	Ser Tyr	Ile Se	r Tyr	Val	Arg	Туг 600	Gly	Phe	Glu	Gly	Val 605	Ile	Leu	Ser
	Ile Tyr 610		u Asp	Arg	Glu 615	qaA	Leu	His	Cys	Asp 620	Ile	Asp	Glu	Thr
30	Cys His 625	Phe G	n Lys	Ser 630	Glu	Ala	Ile	Leu	Arg 635	Glu	Leu	Asp	Val	Glu 640
35	Asn Ala	Lys Le	u Tyr 645		Asp	Phe	Ile	Val 650	Leu	Gly	Ile	Phe	Phe 655	Ile
	Ser Leu	Arg Le		Ala	Tyr	Leu	Val 665	Leu	Arg	Tyr	Lys	Ile 670	Arg	Ala
40	Glu Arg	ī												
45	<210> 7	19												
	<211> 6 <212> F	555	ni en s											
50		-												
•	<400> 7	19												
	Met Ser 1	Ser S	er Asr		Glu	Val	Phe	Ile 10	Pro	Val	Ser	Gln	Gly 15	Asn
55	Thr Ası	Gly P	ne Pro	Ala	Thr	Val	Ser	Asn	Asp	Leu	Lys	Ala	Phe	Thr

				20					25					30		
5	Glu	Gly	Ala 35	Va1	Leu	Ser	Phe	His 40	Asn	Ile	Cys	Tyr	Arg 45	Val	Lys	Leu
10	Lys	Ser 50	Gly	Phe	Leu	Pro	Cys 55	Arg	Lys	Pro	Val	Glu 60	Lys	Glu	Ile	Leu
	Ser 65	Asn	Ile	Asn	Gly	Ile 70	Met	Lys	Pro	Gly	Leu 75	Asn	Ala	Ile	Leu	Gly 80
15	Pro	Thr	Gly	Gly	Gly 85	Lys	Ser	Ser	Leu	Leu 90	Asp	Val	Leu	Ala	Ala 95	Arg
.20	Lys	Asp	Pro	Ser 100	Gly	Leu	Ser	Gly	Asp 105	Val	Leu	Ile	Asn	Gly 110	Ala	Pro
	Arg	Pro	Ala 115	Asn	Phe	Lys	Суѕ	Asn 120	Ser	Gly	Tyr	Val	Val 125	Gln	Asp	Asp
25	Val	Val 130	Met	Gly	Thr	Leu	Thr 135	Val	Arg	Glu	Asn	Leu 140	Gln	Phe	Ser	Ala
30	Ala 145	Leu	Arg	Leu	Ala	Thr 150	Thr	Met	Thr	Asn	His 155	Glu	Lys	Asn	Glu	Arg 160
	Ile	Asn	Arg	Val	11e 165	Glu	Glu	Leu	Gly	Leu 170	Asp	Lys	Val	Ala	Asp 175	Ser
35	Lys	Val	Gly	Thr 180	Gln	Phe	Ile	Arg	Gly 185	Val	Ser	Gly	Gly	Glu 190	Arg	Lys
40	Arg	Thr	Ser 195	Ile	Gly	Met	Glu	Leu 200	Ile	Thr	Asp	Pro	Ser 205	Ile	Leu	Ser
45	Leu	Asp 210	Glu	Pro	Thr	Thr	Gly 215	Leu	Asp	Ser	Ser	Thr 220	Ala	Asn	Ala	Val
45	Leu 225		Leu	Leu	Lys	Arg 230		Ser	Lys	Gln	Gly 235		Thr	Ile	Ile	Phe 240
50	Ser	Ile	His	Gln	Pro 245	_	Tyr	Ser	Ile	Phe 250	_	Leu	Phe	Asp	Ser 255	Leu
e.	Thr	Leu	Leu	Ala 260		Gly	Arg	Leu	Met 265		His	Gly	Pro	Ala 270		Glu
55	Ala	Leu	Gly	Туг	?he	Glu	Ser	Ala	Gly	Tyr	His	Cys	Glu	Ala	Тут	Asn

		275				280					285			
5	Asn Pro		Asp Phe	Phe	Leu 295	Asp	Ile	Ile	Asn	Gly 300	Asp	Ser	Thr	Ala
10	Val Al	a Leu A	Asn Arg	Glu 310	Glu	Asp	Phe	Lys	Ala 315	Thr	Glu	Ile	Ile	Glu 320
	Pro Se	r Lys (Gln Asp 325	Lys	Pro	Leu	Ile	Glu 330	Lys	Leu	Ala	Glu	Ile 335	Tyr
15	Val As		Ser Phe 340	Tyr	Lys	Glu	Thr 345	Lys	Ala	Glu	Leu	His 350	Gln	Leu
20	Ser Gl	y Gly (355	Glu Lys	Lys	Lys	Lys 360	Ile	Thr	Val	Phe	Lys 365	Glu	Ile	Ser
	Tyr Th		Ser Phe	Cys	His 375	Gln	Leu	Arg	Trp	Val 380	Ser	Lys	Arg	Ser
25	Phe Ly 385	s Asn 1	Leu Leu	Gly 390	Asn	Pro	Gln	Ala	Ser 395	Ile	Ala	Gln	Ile	Ile 400
30	Val Th	r Val	Val Leu 405		Leu	Val	Ile	Gly 410	Ala	Ile	Tyr	Phe	Gly 415	Leu
	Lys As		Ser Thr 420	Gly	Ile	Gln	Asn 425	Arg	Ala	Gly	Val	Leu 430	Phe	Phe
35	Leu Th	r Thr .	Asn Gln	Cys	Phe	Ser 440	Ser	Val	Ser	Ala	Val 445	Glu	Leu	Phe
40	Val Va 45		Lys Lys	Leu	Phe 455	Ile	His	Glu	Tyr	Ile 460	Ser	Gly	Tyr	Tyr
	Arg Va 465	l Ser	Ser Tyı	Phe 470		Gly	Lys	Leu	Leu 475	Ser	Asp	Leu	Leu	Pro 480
45	Met Ai	g Met	Leu Pro		Ile	Ile	Phe	Thr 490	_	Ile	Val	Туг	Phe 495	
50	Leu G	ly Leu	Lys Pro	Lys	Ala	Asp	Ala 505		Phe	Val	Met	Met 510		Thr
	Leu Me	et Met 515	Val Ala	а Туг	Ser	Ala 520		Ser	Met	Ala	Leu 525		Ile	Ala
55	Ala G	ly Gln	Ser Va	l Val	Ser	Val	Ala	Thr	Leu	Leu	Met	. Thr	Ιlε	. Cys

	530	535	540
5	Phe Val Phe Met Met Ile	Phe Ser Gly Leu Leu	Val Asn Leu Thr Thr
	545 550	555	560
10	Ile Ala Ser Trp Leu Ser	Trp Leu Gln Tyr Phe	Ser Ile Pro Arg Tyr
	565	570	575
	Gly Phe Thr Ala Leu Gln	His Asn Glu Phe Leu	Gly Gln Asn Phe Cys
	580	585	590
15	Pro Gly Leu Asn Ala Thr	Gly Asn Asn Pro Cys	Asn Tyr Ala Thr Cys
	595	600	605
20	Thr Gly Glu Glu Tyr Leu	Val Lys Gln Gly Ile	Asp Leu Ser Pro Trp
	610	615	620
	Gly Leu Trp Lys Asn His 625 630	=	
25	Leu Thr Ile Ala Tyr Leu	Lys Leu Leu Phe Leu	Lys Lys Tyr Ser
	645	650	655
30	<210> 80 <211> 649		
35	<212> PRT <213> Homo sapiens		
~	<400> 80 Met Gly Asp Leu Ser Ser	Leu Thr Pro Gly Gly	Ser Met Gly Leu Gln
40	1 5 Val Asn Arg Gly Ser Glr 20	10 a Ser Ser Leu Glu Gly 25	15 Ala Pro Ala Thr Ala 30
45	Pro Glu Pro His Ser Leu	ı Gly Ile Leu His Ala	Ser Tyr Ser Val Ser
	35	40	45
50	His Arg Val Arg Pro Trp 50	o Trp Asp Ile Thr Ser 55	Cys Arg Gln Gln Trp 60
	Thr Arg Gln Ile Leu Lys	-	-
55	Ile Met Cys Ile Leu Gly	y Ser Ser Gly Ser Gly	y Lys Thr Thr Leu Leu
	85	90	95

5	Asp	Ala	Met	Ser 100	Gly	Arg	Leu	Gly	Arg 105	Ala	Gly	Thr	Phe	Leu 110	Gly	Glu
	Val	Tyr	Val 115	Asn	Gly	Arg	Ala	Leu 120	Arg	Arg	Glu	Gln	Phe 125	Gln	Asp	Cys
10		Ser 130	Tyr	Val	Leu	Gln	Ser 135	Asp	Thr	Leu	Leu	Ser 140	Ser	Leu	Thr	Val
15	Arg 145	Glu	Thr	Leu	His	Туг 150	Thr	Ala	Leu	Leu	Ala 155	Ile	Arg	Arg	Gly	Asn 160
	Pro	Gly	Ser	Phe	Gln 165	Lys	Lys	Val	Glu	Ala 170	Val	Met	Ala	Glu	Leu 175	Ser
20	Leu	Ser	His	Val 180	Ala	Asp	Arg	Leu	Ile 185	Gly	Asn	Tyr	Ser	Leu 190	Gly	Gly
25	Ile	Ser	Thr 195	Gly	Glu	Arg	Arg	Arg 200	Val	Ser	Ile	Ala	Ala 205	Gln	Leu	Leu
	Gln	Asp 210	Pro	Lys	Val	Met	Leu 215	Phe	Pro	Thr	Thr	Gly 220	Leu	Asp	Суз	Met
30	Thr 225	Ala	Asn	Gln	Ile	Val 230	Val	Leu	Leu	Val	Glu 235	Leu	Ala	Arg	Arg	Asn 240
35	Arg	Ile	Val	Val	Leu 245	Thr	Ile	His	Gln	Pro 250	Arg	Ser	Glu	Leu	Phe 255	Gln
	Leu	Phe	Asp	Lys 260	Ile	Ala	Ile	Leu	Ser 265	Phe	Gly	Glu	Leu	11e 270	Phe	Cys
40	Gly	Thr	Pro 275	Ala	Glu	Met	Leu	Asp 280		Phe	Asn	Asp	Cys 285	Gly	Tyr	Pro
45	Cys	Pro 290	Glu	His	Ser	Asn	Pro 295		Asp	Phe	Tyr	Met 300	Asp	Leu	Thr	Ser
	Val 305	Asp	Thr	Gln	Ser	Lys 310		Arg	Glu	Ile	G1u 315		Ser	Lys	Arg	Val 320
50	Gln	Met	Ile	Glu	Ser 325		Tyr	Lys	Lys	Ser 330		Ile	Cys	His	Lys 335	Thr
55	Leu	Lys	Asn	1le 340		Arg	Met	Lys	His 345		Lys	Thr	Leu	350		Val

5	Pro Phe	Lys Thr 355	Lys Asp		Pro Gl; 360	y Val I	Phe Ser	Lys Le 365	ı Gly	Val
	Leu Leu 370	Arg Arg	Val Thr	375	Asn Le	u Val A	Arg Asn 380	Lys Le	ı Ala	Val
10	Ile Thr	Arg Leu	Leu Glr 390		Leu Il		Gly Leu 395	Phe Le	u Leu	Phe 400
15	Phe Val	Leu Arg	Val Arg 405	Ser .	Asn Va	l Leu I 410	Lys Gly	Ala Il	e Gln 415	Asp
	Arg Val	Gly Leu 420	_	Gln	Phe Va 42	_	Ala Thr	Pro Ty 43		Gly
20	Met Leu	Asn Ala 435	Val Ası		Phe Pr 440	o Val i	Leu Arg	Ala Va 445	l Ser	Asp
25	Gln Glu 450	Ser Gln	Asp Gly	y Leu 455	Tyr Gl	n Lys '	Trp Gln 460	Met Me	t Leu	Ala
00	Tyr Ala 465	Leu His	Val Let		Phe Se		Val Ala 475	Thr Me	t Ile	Phe 480
30	Ser Sei	Val Cys	485	p Thr	Leu Gl	y Leu . 490	His Pro	Glu Va	1 Ala 495	Arg
35	Phe Gly	Tyr Phe 500		a Ala		eu Ala)5	Pro His	Leu II		Glu
40	Phe Le	Thr Let 515	ı Val Le	u Leu	Gly II 520	le Val	Gln Asn	Pro As 525	n Ile	Val
10	Asn Ser 530	r Val Val	l Ala Le	u Leu 535	Ser I	le Ala	Gly Val 540	Leu Va	al Gly	Ser
45	Gly Pho	e Leu Arg	g Asn Il 55		Glu Me	et Pro	Ile Pro 555	Phe Ly	ys Ile	11e 560
50	Ser Ty	r Phe Thi	r Phe Gl 565	n Lys	Tyr C	ys Ser 570	Glu Ile	Leu V	al Val 575	
	Glu Ph	e Tyr G1; 58	=	n Phe		ys Gly 85	Ser Ser		al Ser 90	val
55	Thr Th	r Asn Pr	o Met Cy	rs Ala	Phe T	hr Gln	Gly Ile	Gln P 605	he Ile	e Glu

5	Lys Th		Pro	Gly	Ala	Thr 615	Ser	Arg	Phe	Thr	Met 620	Asn	Phe	Leu	Ile
10	Leu Ty 625	r Ser	Phe	Ile	Pro 630	Ala	Leu	Val	Ile	Leu 635	Gly	Ile	Val	Val	Phe 640
	Lys Il	e Arg	Asp	His 645	Leu	Ile	Ser	Arg							
15															
	<210>	81													
	<211>	673													
	<212>		•												
20	<213>	Homo	sapıe	ens											
	<400>	81													
	Met Al	a Gly	Lys	Ala	Ala	Glu	Glu	Arg	Gly	Leu	Pro	Lys	Gly	Ala	Thr
25	1			5					10					15	
	Pro Gl	n Asn	ጥh r	Ser	Glv	Len	Gln	Δen	Δτα	T.e.ii	Pho	Sar	Ser	Glu	Ser
	110 01	u nap	20	501	GLy	Deu	GIII	25	мy	nea	rne	Jer	30	GIU	361
<i>30</i>	Asp As			Tyr	Phe	Thr	-	Ser	Gly	Gln	Pro		Thr	Leu	Glu
		35					40					45			
	Val Ar	g Asp	Leu	Asn	Tyr	Gln	Val	Asp	Leu	Ala	Ser	Gln	Val	Pro	Trp
35	5	0				55					60				
	Dh = 01	(1)	•	- 1 -	01	5 3				_	m1	_	_	_	_
	Phe GI 65	iu Gin	ьeu	AIa	70	Pne	гуs	Met	Pro	Trp 75		Ser	Pro	Ser	Cys 80
	00				,,					,,					00
40	Gln As	sn Ser	Суѕ	Glu	Leu	Gly	Ile	Gln	Asn	Leu	Ser	Phe	Lys	Val	Arg
				85					90					95	
	Ser G	lv Gln	Met	ī.en	Δla	Tle	Tle	Glv	Ser	Ser	Glv	Cve	Glv	Δra	λla
4.5	002 0	-7	100	200				105	501		OL,	0,0	110	9	7114
45															
	Ser Le	eu Leu		Val	Ile	Thr			Gly	His	Gly			Ile	Lys
		115	•				120					125			
50	Ser G	ly Gln	Ile	Trp	Ile	Asn	Gly	Gln	Pro	Ser	Ser	Pro	Gln	Leu	Val
		30		_		135	-				140				
								_							
	Arg L:	ys Cys	: Val	Ala	His 150		Arg	Gln	His	155		Leu	Leu	Pro	Asn 160
55	147				100					133	•				100

5	Leu Th	r Val	Arg	Glu 165	Thr	Leu	Ala	Phe	Ile 170	Ala	Gln	Met		Leu 175	Pro
Š	Arg Th	r Phe	Ser 180	Gln	Ala	Gln	Arg	Asp 185	Lys	Arg	Val		Asp 190	Val	Ile
10	Ala Gl	u Leu 195	Arg	Leu	Arg	Gln	Cys 200	Ala	Asp	Thr	Arg	Val 205	Gly	Asn	Met
15	Tyr Va		Gly	Leu	Ser	Gly 215	Gly	Glu	Arg	Arg	Arg 220	Val	Ser	Ile	Gly
	Val G1 225	ln Leu	Leu	Trp	Asn 230	Pro	Gly	Ile	Leu	Ile 235	Leu	Asp	Glu	Pro	Thr 240
20	Ser G	ly Leu	Asp	Ser 245	Phe	Thr	Ala	His	Asn 250	Leu	Val	Lys	Thr	Leu 255	Ser
25	Arg Le	eu Ala	Lys 260	Gly	Asn	Arg	Leu	Val 265	Leu	Ile	Ser	Leu	His 270	Gln	Pro
	Arg S	er Asp 275	Ile	Phe	Arg	Leu	Phe 280	Asp	Leu	Val	Leu	Leu 285	Met	Thr	Ser
30	_	hr Pro 90	Ile	Tyr	Leu	Gly 295	Ala	Ala	Gln	His	Met 300	Val	Gln	Туг	Phe
35	Thr A	la Ile	Gly	Tyr	Pro 310	Cys	Pro	Arg	Tyr	Ser 315	Asn	Pro	Ala	Asp	Phe 320
	Tyr V	al Asp	Leu	Thr 325	Ser	Ile	Asp	Arg	Arg 330	Ser	Arg	Glu	Gln	Glu 335	Leu
40	Ala T	hr Arg	Glu 340	-	Ala	Gln	Ser	Leu 345		Ala	Leu	Phe	Leu 350		Lys
45	Val A	rg Asp 355		Asp	Asp	Phe	360	_	Lys	Ala	G1u	Thr 365	_	Asp	Leu
50	_	lu Asp 70	Thr	Cys	Val	. Glu 375		Ser	· Val	Thr	Pro 380		Asp	Thr	Asn
50	Cys L 385	eu Pro	Ser	Pro	Thr 390	-	Met	Pro	Gly	Ala 395		. Gln	Gln	Phe	thr 400
55	Thr I	eu Ile	e Arg	Arg 405		ı Ile	e Ser	: Asr	410		Arg	Asp	Leu	415	

	Leu 1	Leu		His 420	Gly	Ala	Glu	Ala	Cys 425	Leu	Met	Ser	Met	Thr 430	Ile	Gly
5	Phe :		Tyr 435	Phe	Gly	His	Gly	Ser 440	Ile	Gln	Leu	Ser	Phe 445	Met	Asp	Thr
10	Ala	Ala 450	Leu	Leu	Phe	Met	Ile 455	Gly	Ala	Leu	Ile	Pro 460	Phe	Asn	Val	Ile
15	Leu . 465	qzA	Val	Ile	Ser	Lys 470	Cys	Tyr	Ser	Glu	Arg 475	Ala	Met	Leu	Tyr	Tyr 480
	Glu	Leu	Glu	Asp	Gly 485	Leu	туг	Thr	Thr	Gly 490	Pro	Tyr	Phe	Phe	Ala 495	Lys
20	Ile	Leu	Gly	G1u 500	Leu	Pro	Glu	His	Cys 505	Ala	Tyr	Ile	Ile	Ile 510	Tyr	Gly
25	Met	Pro	Thr 515	Tyr	Trp	Leu	Ala	Asn 520	Leu	Arg	Pro	Gly	Leu 525	Gln	Pro	Phe
	Leu	Leu 530	His	Phe	Leu	Leu	Val 535	Trp	Leu	Val	Val	Phe 540	Cys	Cys	Arg	Ile
30	Met 545	Ala	Leu	Ala	Ala	Ala 550	Ala	Leu	Leu	Pro	Thr 555	Phe	His	Met	Ala	Ser 560
35	Phe	Phe	Ser	Asn	Ala 565	Leu	Туг	Asn	Ser	Phe 570	Tyr	Leu	Ala	Gly	Gly 575	
			Asn	580				_	585					590		_
40			595			_	_	600		_			605			Phe
45		610					615					620)			Val
50	625	-		_		630)				635					640
50	•			-	645	,			-	650	1	-	-		655	
55	Leu	Туг	Tyr	• Va] 660		: Leu	ı Arç	j Phe	11e	-	Gln	Lys	s Pro	671		n Asp

Trp

5																	
10		<211 <212	0> 82 L> 59 2> PI 3> St	90	опус	es l	linco	olnen	ısis								
15			0> 82 Glu	2 Arg	Gly	Pro 5	Gln	Met	Ala	Asn	Arg 10	Ile	Glu	Gly	Lys	Ala 15	Val
20	,	Asp	Lys	Thr	Ser 20	Ile	Lys	His	Phe	Val 25	Lys	Leu	Ile	Arg	Ala 30	Ala	Lys
		Pro	Arg	Туr 35	Leu	Phe	Phe	Val	Ile 40	Gly	Ile	Val	Ala	Gly 45	Ile	Ile	Gly
25	ī	Thr	Leu 50	Ile	Gln	Leu	Gln	Val 55	Pro	Lys	Met	Val	Gln 60	Pro	Leu	Ile	Asr
30	,	Ser 65		Gly	His	Gly	Val 70	Asn	Gly	Gly	Lys	Val 75	Ala	Leu	Val	Ile	Ala
		Leu	Tyr	Ile	Gly	Ser 85		Ala	Val	Ser	Ala 90	Ile	Ala	Ala	Ile	Val 95	
35	;	Gly	Ile	Phe	Gly 100		Ser	Val	Val	Lys 105		Leu	Arg	Thr	Arg 110	Val	Tr
40	,	Asp	Lys	Met 115		His	Leu	Pro	Val 120		Tyr	Phe	Asp	Glu 125		Lys	Th
		Gly	Glu 130	Met	Ser	Ser	Arg	Leu 135		Asn	Asp	Thr	Thr 140		Val	Lys	As
45	5	Let 149		e Ala	. Asn	Ser	11e		Gln	a Ala	Phe	Thr 155		Ile	. Leu	Leu	Le 16
50	0	Va]	l Gly	y Ser	· Ile	11e		e Met	: Lev	ı Glr	Met 170		1 Trp	Arg	, Leu	175	
		Ala	a Me	t Ile	180		a Val	l Pro	ıle	val		: Leu	ı Ile	e Met	: Phe) Il

Met Thr Phe Gly Gln Lys Ile Gly Trp Thr Arg Gln Asp Ser Leu Ala

		195				200					205			
5	Asn Phe		y Ile	Ala	Ser 215	Glu	Ser	Leu	Ser	Glu 220	Ile	Arg	Leu	Val
10	Lys Ser 225	Ser As	n Ala	Glu 230	Lys	Gln	Ala	Ser	Lys 235	Lys	Ala	Glu	Asn	Asp 240
	Val Asr	Ala Le	u Tyr 245	Lys	Ile	Gly	Val	Lys 250	Glu	Ala	Val	Phe	Asp 255	Gly
15	Leu Met		o Val	Met	Met	Leu	Ser 265	Met	Met	Leu	Met	Ile 270	Phe	Gly
20	Leu Lei	1 Ala T	r Gly	Ile	Tyr	Leu 280	Ile	Ser	Thr	Gly	Val 285	Met	Ser	Leu
	Gly Thi		eu Gly	Met	Met 295	Met	Tyr	Leu	Met	Asn 300	Leu	Ile	Gly	Val
25	Val Pro	Thr V	al Ala	Thr 310	Phe	Phe	Thr	Glu	Leu 315	Ala	Lys	Ala	Ser	Gly 320
30	Ser Th	r Gly A	rg Leu 325		Glu	Leu	Leu	Asp 330	Glu	Glu	Gln	Glu	Val 335	Leu
	His Gl	n Gly A	sp Ser 40	Leu	Asp	Leu	Glu 345	Gly	Lys	Thr	Leu	Ser 350	Ala	His
35	His Va	1 Asp P 355	he Ala	Tyr	Asp	Asp 360	Ser	Glu	Gln	Ile	Leu 365	His	Asp	Ile
40	Ser Ph	e Glu A O	la Glr	n Pro	Asn 375	Ser	Ile	Ile	Ala	Phe 380	Ala	Gly	Pro	Ser
	Gly Gl 385	y Gly I	ys Sei	390		Phe	Ser	Leu	Leu 395		Arg	Phe	Туг	Gln 400
45	Pro Th	r Ala (ly Glu 40!		Thr	Ile	Gly	Gly 410		Pro	Ile	Asp	Ser 415	
50	Ser Le	eu Glu A	sn Trj 20	o Arg	ßer	Gln	1le 425	_	Phe	val	Ser	Gln 430	_	Ser
	Ala Il	e Met 1	la Gl	y Thi	: Ile	Arg		Asr	Le.	ı Thr	145 445		, Lei	ı Glu
55	Gly As	on Phe '	Thr As	p Gli	ı Asr	Leu	Trp	Glr	ı Val	l Lei	ı Ası) Let	ı Ala	a Phe

	450 455 460	
5	Ala Arg Ser Phe Val Glu Asn Met Pro Asp Gln Leu Asn Thr Glu Va 465 470 475 48	al 30
10	Gly Glu Arg Gly Val Lys Ile Ser Gly Gly Gln Arg Gln Arg Leu Al 485 490 495	la
	Ile Ala Arg Ala Phe Leu Arg Asn Pro Lys Ile Leu Met Leu Asp Gl 500 505 510	iu
15	Ala Thr Ala Ser Leu Asp Ser Glu Ser Glu Ser Met Val Gln Arg Al 515 520 525	la
20	Leu Asp Ser Leu Met Lys Gly Arg Thr Thr Leu Val Ile Ala His A 530 535 540	rg
	Leu Ser Thr Ile Val Asp Ala Asp Lys Ile Tyr Phe Ile Glu Lys G 545 550 555 5	ly 60
25	Glu Ile Thr Gly Ser Gly Lys His Asn Glu Leu Val Ala Thr His P 565 570 575	ro
30	Leu Tyr Ala Lys Tyr Val Ser Glu Gln Leu Thr Val Gly Gln 580 585 590	
35	<210> 83 <211> 330 <212> PRT <213> Streptomyces peucetius	
40	<pre><400> 83 Met Asn Thr Gln Pro Thr Arg Ala Ile Glu Thr Ser Gly Leu Val I</pre>	ıys
45	Val Tyr Asn Gly Thr Arg Ala Val Asp Gly Leu Asp Leu Asn Val E	?ro
50	Ala Gly Leu Val Tyr Gly Ile Leu Gly Pro Asn Gly Ala Gly Lys S	Ser
	Thr Thr Ile Arg Met Leu Ala Thr Leu Leu Arg Pro Asp Gly Gly 55 60	Fhr
55	Ala Arg Val Phe Gly His Asp Val Thr Ser Glu Pro Asp Thr Val 765 75	Arg 80

5	Arg Arg	Ile Ser	Val Thr 85	Gly G	ln Tyr <i>l</i>	Ala Ser 90	Val Asp		y Leu 5
	Thr Gly	Thr Glu 100	Asn Leu	Val Me	et Met (Gly Arg	Leu Gln	Gly Ty 110	r Ser
10	Trp Ala	Arg Ala 115	Arg Glu		la Ala (20	Glu Leu	Ile Asp 125	Gly Ph	ne Gly
15	Leu Gly 130	Asp Ala	Arg Asp	Arg L	eu Leu 1	Lys Thr	Tyr Ser 140	Gly Gl	y Met
	Arg Arg 145	Arg Leu	Asp Ile		la Ser	Ile Val 155	Val Thr	Pro As	sp Leu 160
20	Leu Phe	Leu Asp	Glu Pro 165	Thr T	-	Leu Asp 170	Pro Arg		rg Asn 75
25	Gln Val	Trp Asp 180		. Arg A	la Leu 185	Val Asp	Ala Gly	Thr T	hr Val
30	Leu Leu	Thr Thr 195	Gln Tyr		Asp Glu 200	Ala Asp	Gln Let 209		sp Arg
	Ile Ala 210	Val Ile	Asp His	215	Arg Val	Ile Ala	Glu Gly 220	Thr T	hr Gly
35	Glu Leu 225	ı Lys Ser	Ser Let 23	_	Ser Asn	Val Leu 235	-	ı.Arg L	eu His 240
40	Asp Ala	Gln Ser	245	a Glu A	Ala Glu	Arg Leu 250	Leu Se		lu Leu !55
	Gly Val	thr Ile		g Asp S	Ser Asp 265	Pro Thr	Ala Le	u Ser <i>P</i> 270	la Arg
45	Ile Ası	275	Arg Gl		Met Arg 280	Ala Leu	ı Ala Gl 28		Ser Arg
50	Thr Hi:	s Leu Glv 0	ı Val Ar	g Ser 1 295	Phe Ser	Leu Gly	Gln Se	r Ser I	eu Asp
	Glu Va 305	l Phe Le	u Ala Le 31		Gly His	Pro Ala		p Arg :	Ser Thr 320
55 _.	Glu Gl	u Ala Ala	a Glu Gl 325	u Glu	Lys Val	Ala 330			

	<210	> 84	:													
5	<211	> 56	9													
	<212	> PR	T													
	<213	> St	rept	omyc	es c	oeli	colo	r								
10	<400	> 84	ŀ													
	Met	Gln	Asn	Ala	His	Arg	Ser	Asp	Thr	Gly	Ala	Ala	Ala	Leu	Thr	Gly
	1				5					10					15	
15	Thr	Pro	Glu	Lys	Leu	Leu	Pro	Thr	Gln	Pro	Glu	Thr	Gly	Ser	Phe	Gln
15				20					25					30		
									_			_		_		_
	Val	Val		Asp	Asp	Val	Val		Ala	Pro	Gly	Gly		Pro	Leu	Leu
			35					40					45			
20		01	1		01 -	a	**- 1		T	Q1	63	3	17- 1	01	T1.	T1.0
	Asp	_	vaı	Asn	GII	ser		AIA	ren	GIĀ	GIU	Arg 60	vaı	Gly	Tre	116
		50					55					00				
	Clv	Glu	Δen	Glv	Ser	Glv	Lwe	Ser	Thr	Leu	Len	Arσ	Met	Leu	Ala	Glv
25	65	Gru	11311	023	DCI	70	2,5	002			75	9	1100			80
	•															
	Val	Asp	Arg	Pro	Asp	Gly	Gly	Gln	Val	Leu	Val	Arg	Ala	Pro	Gly	Gly
		-	Ŭ		85	_	_			90					95	
30																
	Cys	Gly	Tyr	Leu	Pro	Gln	Thr	Pro	Asp	Leu	Pro	Pro	Glu	Asp	Thr	Val
				100					105					110		
35	Gln	Asp	Ala	Ile	Asp	His	Ala	Leu	Ala	Glu	Leu	Arg		Leu	Glu	Arg
			115					120					125			
	_				_					_ •		_ •		_	~ *	~1
	Gly			GIu	Ala	GIu		Ala	Leu	Ala	GIY			Pro	GIU	Glu
40		130					135					140				
	T	C1		. T	T ON	C1.	. 21-	The same	Cly	, yan	Tou	LOU	Clv	ב הו	Dho	Glu
			GTĀ	, ren	Leu	150		ığı	GTĀ	ASP	155		GIU	AIG	rne	160
	145					130					100	1				100
45	Δla	Aro	. Acr	. Glv	ጥህን	Ala	Ala	Asn	Ala	Aro	val	Asn	Ala	Ala	Met	His
	ALG	my	յ ռաբ	, 013	165					170					175	
	Gly	Lev	ı Gly	, Leu	Ala	Gly	, Ile	Thr	Gly	Asp	Arg	Arg	Lei	Gly	Ser	Leu
50	4			180		-			185		_			190		
	Ser	: Gly	/ G13	g Glu	Glr	ı Ala	a Arg	Leu	ı Asr	ı Lev	ı Ala	Cys	Lei	ı Lev	Ala	Ala
			199	5				200)				205	5		
55																

216

	Ser Pro 210	Gln Leu	Met L		eu A:	sp Gl	lu Pro	Thr	Asn 220	His	Leu .	Asp	Val
5	Gly Ala 225	Leu Glu		Leu G 230	31u G	lu Ar	rg Leu	Arg 235	Ala	His	Arg		Ser 240
10	Val Leu	Val Val	Ser H 245	His A	Asp A	rg Va	al Phe 250	Leu	Glu	Arg		Ala 255	Thr
15	Ala Leu	Trp Glu 260		Asp G	Sly G		rg Arg 65	Thr	Val	Asn	Arg 270	His	Gly
	Gly Gly	Tyr Ala 275	Gly 7	Pyr I		ln A 80	la Lys	Ala	Ala	Ala 285	Arg	Arg	Arg
20	Trp Glu 290	Gln Ala	Tyr (Asp T 295	rp L	eu Glu	Asp	Leu 300	Ala	Arg	Gln	Arg
25	Glu Let 305	ı Ala Arç		Ala <i>l</i> 310	Ala A	H qa	is Leu	Ala 315	Thr	Gly	Pro	Arg	Arg 320
	Asn Thi	Glu Arq	325	Asn (Gln A	Arg H	is Gln 330	Arg	Asn	Val	Glu	Lys 335	Gln
30	Ile Sei	r Ala Arq 340		Arg i	Asn A		ys Glu 45	Arg	Val	Arg	Arg 350	Leu	Glu
35	Glu Ası	a Pro Val	l Pro .	Arg 1		Pro G 360	ln Pro	Met	Arg	Phe 365	Arg	Ala	Arg
	Val Glu	u Gly Gly O	y Gly		Val (375	Gly A	urg Gly	Gly	Ala 380		Ala	Glu	Leu
40	Tyr Ly: 385	s Val Th		Gly 390	Thr A	Arg I	eu Asp	Val 395		Ser	Phe	Thr	Val 400
45	Asp Pr	o Gly Gl	405	Ile	Leu :	Ile 1	Thr Gly 410		Asn	Gly	Ala	Gly 415	
50	Ser Th	r Leu Le 42	_	Val	Leu /		Gly Asp 125	Leu	Ala	Pro	Asp 430		Gly
	Glu Cy	s Glu Ar 435	g Pro	Glu	_	Ile (440	Gly Tr	Leu	Pro	Gln 445		Thr	Glu
55	Ile Th	r Asp Ar 0	g Gln	Gln	Ser 455	Leu 1	Leu Ala	a Alá	460		Ala	Gly	, Leu

	Pro Gly Ile Ala Glu Glu His Arg Gly Ala Leu Leu Gly Phe Gly Leu 465 470 475 480
5	Phe Arg Pro Ser Ala Leu Gly Thr Ala Val Gly Asp Leu Ser Thr Gly 485 490 495
10	Gln Leu Arg Arg Leu Ala Leu Ala Arg Leu Leu Arg Asp Pro Ala Asp 500 505 510
	Leu Leu Leu Asp Glu Pro Thr Asn His Leu Ser Pro Ala Leu Val 515 520 525
15	Glu Asp Leu Glu Glu Ala Leu Ala His Tyr Arg Gly Ala Leu Val Val 530 535 540
20	Val Ser His Asp Arg Met Phe Ala Gln Arg Phe Thr Gly Arg Arg Met 545 550 555 560
a.	His Met Glu Gly Gly Arg Phe Val Glu 565
25	<210> 85
30	<211> 1025 <212> PRT <213> Plasmodium falciparum
35	<pre><400> 85 Met Asp Val Ser Asn Tyr Glu Tyr Leu Arg Ser Tyr Gly Ile Lys Asn 1 5 10 15</pre>
40	Glu Leu Lys Arg Lys Arg Thr His Lys Lys Ile Ile Ile Tyr His Leu 20 25 30
	Leu Asp Ile Ile Ile Phe Phe Leu Leu Phe Phe Ser Cys Tyr Asn Phe 35 40 45
45	Asn Leu Glu Leu Cys Tyr Lys Tyr Glu Lys Ala Ile Phe Tyr Asn Phe 50 55 60
50	Phe Lys Ser Ser Val Asp Leu Phe Leu Leu Asn Val Ile Arg Ile Ile 65 70 75 80
	Tyr Thr Val Ile Leu Phe Arg Leu His Lys Lys Leu Thr Glu Leu Asn 85 90 95
55	Thr Leu Gly Lys Val Tyr Val Leu Ser Arg His Ile Thr Gly Ile Leu

		100	105	110
5	Val Ile Leu 115		Lys Met Ile Asn	Tyr Ser Tyr Val Ile Lys 125
10	Ser Glu Asr 130	ı Pro Leu Tyr	Asn Thr Asn Met	Tyr Leu Ile Thr Leu Lys 140
	Val Leu Phe 145	e Met Val Tyr 150		Ser Ile Tyr Tyr Tyr Phe 155 160
15	Ile Gln Phe	e Lys Leu Tyr 165	Asn Ile Lys Lys 170	Lys Tyr Ile Ile Ala Arg 175
20	Val Glu Le	Glu Lys Ile 180	Leu Ile Asn Asp 185	Ile Lys Ser Lys Lys Tyr 190
	Asn Ile Ty:		Glu Asn Ser Gly 200	Leu Leu Gly Thr Asp Asn 205
25	Asn Ser Th	r Ile Met Asn	Asn Glu Tyr Leu 215	Asn Leu Asp Tyr Lys Asn 220
30	Leu Leu As 225	o Met Asn Ile 230	Ser Tyr Asn Lys	Leu Asn Glu Lys Ile Asn 235 240
	Asn Asp Il	e Ile Asn Asn 245	Thr Ser Asp Val 250	Gln Glu Lys Asn Met Asp 255
<i>35</i>	Tyr Asn As	p Ile His Asn 260	Phe Gln Lys Lys 265	Lys Lys Ser Ser Asn Phe , 270
40	Ala Tyr Le 27		His Lys Glu Ser 280	Lys Asp Asn Lys Ile Asp 285
	Val Lys Gl 290	u Ser Phe Leu	Asn Lys Arg Tyr 295	Gly Ser Asn Lys Arg Ser 300
45	Ser Lys Il 305	e Tyr Asp Asn 310		Asn Asn Asn Asn Ile 315 320
50	Asn Ser Ly	s Ile Asp Tyr 325	Leu Glu Asn Asn 330	Ile Thr Tyr Thr Glu Phe 335
	Lys Lys Il	e Leu Leu Pro 340	Tyr Leu Trp Pro 345	Ser Lys Arg Ile Asp Met 350
55	Lys Gly As	n Ser Ser Ile	Leu Arg Thr Tyr	Ile Val Leu Ile Phe Leu

			355					360					365			
5	Phe	Ile 370	Leu	Val ·	Ser	Lys	Val 375	Phe	Ser	Val	Ile	Ser 380	Pro	Ile	Tyr	Leu
10	Gly 385	Trp	Ala	Ser	Asn	Glu 390	Val	Leu	Lys	Lys	Ser 395	Leu	Ser	Ser	Ser	Val 400
	Tyr	Tyr	Leu	Gly	Leu 405	Tyr	Val	Thr	Phe	Phe 410	Phe	Ile	Ser	Lys	Phe 415	Leu
15	Lys	Glu	Val	Cys 420	Gly	Val	Leu	Phe	Ser 425	Gln	Val	Gln	Gln	Ser 430	Ala	Phe
20	Ile	Glu	Leu 435	Gln	Glu	Ser	Ile	Phe 440	Gln	Thr	Phe	His	Asn 445	Leu	Ser	Tyr
	Glu	Trp 450	Tyr	Ser	Ser	Lys	Asn 455	Ser	Gly	Gly	Ile	Met 460	Arg	Ile	Val	Asp
25	Arg 465	Gly	Thr	Glu	Ser	Ala 470	Asn	Asn	Leu	Met	Ser 475	Ser	Val	Leu	Met	Тут 480
30	Ile	Ile	Pro	Ala	Thr 485	Ile	Glu	Gly	Leu	Ile 490	Thr	Cys	Ile	Ile	Phe 495	Ile
	Phe	Lys	Tyr	Lys 500	Asn	Ser	Leu	Leu	Gly 505	Ser	Val	Leu	Phe	Ile 510	Gly	Leu
35	Thr	Leu	Туг 515	Ile	Туг	Ser	Thr	Ile 520	Lys	Ile	Thr	Lys	Trp 525	Arg	Lys	Lys
40	Ile	Arg 530	Thr	Lys	Ala	Asn	Glu 535	Met	Asp	Asn	Val	Туг 540	His	Asp	Ile	Ala
	His 5 4 5	Asp	Ser	Leu	Thr	Asn 550		Glu	Asn	Val	Lys 555	Туг	Phe	Ser	Asn	Glu 560
45	Lys	Phe	Glu	Ile	Lys 565		Phe	Cys	Asn	Ala 570		Ser	Asn	Tyr	His 575	Arg
50	Туr	Asn	Leu	եys 580		Leu	Asn	Ser	Leu 585	_	Ile	Leu	Asn	Thr 590		G1n
	Gln	Phe	11e 595		Asn	Gly	Thr	Leu 600		Phe	Thr	Leu	Leu 605	_	Val	Ile
55	Туг	Met	Ile	val	Lys	Glu	ı Gly	Ser	Asp	Pro	Gly	Thr	Phe	ıle	e Ser	Val

	610			615	620	
5	Val Val 625	Tyr Thr	Ser Asn 630	Val Phe Al	a Pro Leu Ser 635	Ile Leu Gly Thr 640
10	Leu Tyr	Ala Thr	Ile Ile 645	Lys Ser Ph	e Thr Asp Ile 650	Ser Asp Leu Ile 655
	Asp Ile	Leu Arg 660	Asp Lys	Ile Asp Il 66		Lys Asn Leu Lys 670
15	Asn Phe	Asp Leu 675	Thr Ser	Gln Glu Ly 680	rs Lys Phe Gly	Val Ser Ile Glu 685
20	Phe Asn 690		His Phe	Asn Tyr Pr 695	o Thr Gln Pro	Leu His Thr Ser
	Leu Lys 705	Asp Ile	Asn Ile		s Pro Gly Thr 715	Thr Cys Ala Leu 720
25	Val Gly	His Thr	Gly Ser 725	Gly Lys Th	nr Thr Ile Ser 730	Lys Leu Leu Tyr 735
30	Arg Phe	Tyr Asp 740	_	-	le Lys Ile Gly 15	Gly Arg Asn Ile 750
	Asn Glu	Tyr Thr 755	Arg Asr	n Ser Ile An 760	rg Asn Ile Ile	Gly Ile Val Pro 765
35	Gln Asg 770		Leu Phe	e Asn Glu Se 775	er Ile Lys Tyr 780	Asn Ile Leu Tyr
40	Gly Lys 785	s Leu Asp	Ala Thi		lu Leu Ile Glm 795	Ala Val Lys Ser 800
-	Ala Gl	ı Leu Tyr	Asp Pho 805	e Ile Gln S	er Leu Pro Lys 810	Lys Trp Asp Thr 815
45	Leu Vai	l Gly Ası 820			eu Ser Gly Gly 25	Glu Arg Gln Arg 830
50	Ile Se	r Ile Ala 835	a Arg Cy	s Leu Leu L 840	ys Asp Pro Lys	s Ile Val Ile Phe 845
55	Asp Gla 85		r Ser Se	r Leu Asp S 855	Ser Arg Thr Glu 860	ı Tyr Leu Phe Gln)
55	Lys Al	a Val Gl	u Asp Le	u Arg Lys A	Asn Arg Thr Ile	e Ile Ile Ile Ala

	865	870	875	880
5	His Lys Leu Cys Thr 885	Ile Thr Thr Ala Glu 890	Leu Ile Ile Leu Leu 895	Asn
10	Lys Gly Lys Ile Ile 900	Glu Arg Gly Thr His 905	Leu Asp Leu Leu Lys 910	Cys
	Asn Gly Glu Tyr Thr 915	Glu Met Trp Asn Met 920	Gln Ser Lys Ser Asn 925	Glu
15	Pro His Thr Glu Thr 930	Asn Ser Ser Ile Asp 935	Lys Asp Asp Val Asn 940	Lys
20	Asn Asn Asn Lys Asn 945	Asn Asp Val Ile Leu 950	Asn Thr Cys Lys Asn 955	Asp 960
	Ile Thr Thr Ser Phe	e Arg Ser Asn Ser Glu 970	Lys Ser Ser Gln Glu 975	
25	Ser Asp Ala Ser Asm 980	n His Ile Lys Gln Ser 985	Lys Thr Ser Asn Asp 990	His
30	Asn Asn Asn Ile Asn 995	n Val His Lys Lys Asn 1000	Glu Gln Glu Gln Leu 1005	Phe
	Leu Thr Asn Asp Lys 1010	s Thr Asp Met Asp Asp 1015	Asn Met Asn Asn Lys 1020	Lys
35	Lys 1025			
40	<210> 86 <211> 1419 <212> PRT			
45	<213> Plasmodium fa	alciparum		
		n Lys Glu Lys Lys Asp 5 10		
50	Glu Glu Val Glu Ly. 20	s Glu Leu Asn Lys Lys 25	s Ser Thr Ala Glu Let 30	ı Phe
55	Arg Lys Ile Lys As	n Glu Lys Ile Ser Phe 40	e Phe Leu Pro Phe Ly: 45	s Cys

5	Leu :	Pro 50	Ala	Gln	His	Arg	Lys 55	Leu	Leu	Phe	Ile	Ser 60	Phe	Val	Cys	Ala
	Val :	Leu	Ser	Gly	Gly	Thr 70	Leu	Pro	Phe	Phe	Ile 75	Ser	Val	Phe	Gly	Val 80
10	Ile :	Leu	Lys	Asn	Met 85	Asn	Leu	Gly	Asp	Asp 90	Ile	Asn	Pro	Ile	Ile 95	Leu
15	Ser	Leu	Val	Ser 100	Ile	Gly	Leu	Val	Gln 105	Phe	Ile	Leu	Ser	Met 110	Ile	Ser
	Ser	Tyr	Cys 115	Met	Asp	Val	Ile	Thr 120	Ser	Lys	Ile	Leu	Lys 125	Thr	Leu	Lys
20	Leu	Glu 130	Тут	Leu	Arg	Ser	Val 135	Phe	Tyr	Gln	Asp	Gly 140	Gln	Phe	His	Asp
25	Asn 145	Asn	Pro	Gly	Ser	Lys 150	Leu	Arg	Ser	Asp	Leu 155	Asp	Phe	Туг	Leu	Glu 160
30	Gln	Val	Ser	Ser	Gly 165	Ile	Gly	Thr	Lys	Phe 170	Ile	Thr	Ile	Phe	Thr 175	Tyr
	Ala	Ser	Ser	Phe 180	Leu	Gly	Leu	Tyr	Ile 185	Trp	Ser	Leu	Ile	Lys 190	Asn	Ala
35	Arg	Leu	Thr 195	Leu	Cys	Ile	Thr	Cys 200	Val	Phe	Pro	Leu	Ile 205	Tyr	Val	Cys
40	Gly	Val 210	Ile	Cys	Asn	Lys	Lys 215	Val	Lys	Leu	Asn	Lys 220	Lys	Thr	Ser	Leu
	Leu 225	Tyr	Asn	Asn	Asn	Thr 230	Met	Ser	Ile	Ile	G1u 235	Glu	Ala	Leu	Met	Gly 240
45	Ile	Arg	Thr	Val	Ala 245		Tyr	Cys	Gly	Glu 250		Thr	Ile	Leu	Asn 255	Lys
50	Phe	Asn	Leu	Ser 260	Glu	Thr	Phe	Туr	Ser 265		Tyr	Ile	Leu	Lys 270	Ala	Asn
	Phe	Val	Glu 275	Ala	Leu	His	Ile	Gly 280		Ile	Asn	Gly	Leu 285		Leu	Val
55	Ser	Туг 290	Ala	Phe	Gly	Phe	Trp 295	-	Gly	Thr	Arg	Ile 300		Ile	Asn	Ser

5	Ala 305	Thr	Asn	Gln	Tyr	Pro 310	Asn	Asn	Asp	Phe	Asn 315	Gly	Ala	Ser	Val	Ile 320
	Ser	Ile	Leu	Leu	Gly 325	Val	Leu	Ile	Ser	Met 330	Phe	Met	Leu	Thr	Ile 335	Ile
10	Leu	Pro	Asn	Ile 340	Thr	Glu	Tyr	Met	Lys 345	Ala	Leu	Glu	Ala	Thr 350	Asn	Ser
15	Leu	Tyr	G1u 355	Ile	Ile	Asn	Arg	Lys 360	Pro	Leu	Val	Glu	Asn 365	Asn	Asp	Asp
	Gly	Glu 370	Thr	Leu	Pro	Asn	Ile 375	Lys	Lys	Ile	Glu	Phe 380	Lys	Asn	Val	Arg
20	Phe 385	His	Tyr	Asp	Thr	Arg 390	Lys	Asp	Val	Glu	Ile 395	Tyr	Lys	Asp	Leu	Ser 400
25	Phe	Thr	Leu	Lys	Glu 405	Gly	Lys	Thr	Туг	Ala 410	Phe	Val	Gly	Glu	Ser 415	Gly
	Cys	Gly	Lys	Ser 420	Thr	Ile	Leu	Lys	Leu 425	Ile	Glu	Arg	Leu	Туг 430	Asp	Pro
30	Thr	Glu	Gly 435	Asp	Ile	Ile	Val	Asn 440	Asp	Ser	His	Asn	Leu 445	Lys	Asp	Ile
35	Asn	Leu 450	Lys	Trp	Trp	Arg	Ser 455	Lys	Ile	Gly	Val	Val 460	Ser	Gln	Asp	Pro
40	Leu 465	Leu	Phe	Ser	Asn	Ser 470	Ile	Lys	Asn	Asn	Ile 475	Lys	Tyr	Ser	Leu	Tyr 480
•	Ser	Leu	Lys	Asp	Leu 485	Glu	Ala	Met	Glu	Asn 490		Tyr	Glu	Glu	Asn 495	Thr
45	Asn	Asp	Thr	Tyr 500		Asn	Lys	Asn	Phe 505		Leu	Ile	Ser	Asn 510	Ser	Met
50	Thr	Ser	Asn 515		Leu	Leu	Glu	Met 520		Lys	Glu	Tyr	Gln 525		Ile	Lys
	Asp	Ser 530		Val	Val	Asp	Val 535		Lys	Lys	Val	Leu 540		His	Asp	Phe
55	Val 545		Ser	Leu	Pro	Asp 550		Tyr	Asp	Thr	Leu 555		Gly	Ser	Asn	Ala 560

5	Ser	Lys	Leu	Ser	Gly 565	Gly	Gln	Lys	Gln	Arg 570	Ile	Ser	Ile	Ala	Arg 575	Ala
	Ile	Met	Arg	Asn 580	Pro	Lys	Ile	Leu	Ile 585	Leu	Asp	Glu	Ala	Thr 590	Ser	Ser
10	Leu	Asp	Asn 595	Lys	Ser	Glu	Tyr	Leu 600	Val	Gln	Lys	Thr	Ile 605	Asn	Asn	Leu
15	Lys	Gly 610	Asn	Glu	Asn	Arg	Ile 615	Thr	Ile	Ile	Ile	Ala 620	His	Arg	Leu	Ser
	Thr 625	Ile	Arg	Tyr	Ala	Asn 630	Thr	Ile	Phe	Val	Leu 635	Ser	Asn	Arg	Glu	Arg 640
20	Ser	Asp	Asn	Asn	Asn 645	Asn	Asn	Asn	Asn	Asp 650	Asp	Asn	Asn	Asn	Asn 655	Asn
25	Asn	Asn	Asn	Asn 660	Asn	Lys	Ile	Asn	Asn 665	Glu	Gly	Ser	Tyr	Ile 670	Ile	Glu
	Gln	Gly	Thr 675	His	Asp	Ser	Leu	Met 680	Lys	Asn	Lys	Asn	Gly 685	Ile	Tyr	His
30	Leu	Met 690	Ile	Asn	Asn	Gln	Lys 695	Ile	Ser	Ser	Asn	Lys 700	Ser	Ser	Asn	Asn
35	Gly 705	Asn	Asp	Asn	Gly	Ser 710	Asp	Asn	Lys	Ser	Ser 715	Ala	Tyr	Lys	Asp	Ser 720
40	Asp	Thr	Gly	Asn	Asp 725		Asp	Asn	Met	Asn 730	Ser	Leu	Ser	Ile	His 735	Glu
	Asn	Glu	Asn	Ile 740	Ser	Asn	Asn	Arg	Asn 745	_	Lys	Asn	Thr	Ala 750	Glu	Asn
45	Glu	Lys	Glu 755	Glu	Lys	Val	Pro	Phe 760		Lys	Arg	Met	Phe 765		Arg	Lys
50	Lys	Lys 770		Pro	Asn	Asn	Leu 775	_	Ile	Ile	Tyr	Lys 780		Ile	Phe	Ser
-	Tyr 785	Lys	Lys	Asp	Val	Thr 790		Ile	Phe	Phe	Ser 795		Leu	Val	Ala	800
55	Gly	Leu	Tyr	Pro	Val 805		Ala	Leu	Leu	810		Arg	Tyr	Val	Ser 815	Thr

5	Leu Phe Asp	Phe Ala Asn 820	Leu Glu Tyr Asn 825	Ser Asn Lys Tyr Ser Ile 830
	Tyr Ile Leu 835		Ile Ala Met Phe 840	Ile Ser Glu Thr Leu Lys 845
10	Asn Tyr Tyr 850	Asn Asn Lys	Ile Gly Glu Lys 855	Val Glu Lys Thr Met Lys 860
15	Arg Arg Leu 865	Phe Glu Asn 870	=	Glu Met Ser Phe Phe Asp 875 880
	Gln Asp Lys	Asn Thr Pro 885	Gly Val Leu Ser 890	Ala His Ile Asn Arg Asp 895
20	Val His Leu	Leu Lys Thr 900	Gly Leu Val Asn 905	Asn Ile Val Ile Phe Ser 910
25	His Phe Ile		Leu Val Ser Met 920	Val Met Ser Phe Tyr Phe 925
<i>30</i>	Cys Pro Ile 930	Val Ala Ala	. Val Leu Thr Phe 935	Ile Tyr Phe Ile Asn Met 940
	Arg Val Phe	Ala Val Arg		Lys Ser Lys Glu Ile Glu 955 960
35	Lys Lys Glu	Asn Met Ser 965	Ser Gly Val Phe	Ala Phe Ser Ser Asp Asp 975
40	Glu Met Phe	e Lys Asp Pro 980	Ser Phe Leu Ile 985	Gln Glu Ala Phe Tyr Asn 990
	Met His Thr 995		Tyr Gly Leu Glu 1000	Asp Tyr Phe Cys Asn Leu 1005
45	Ile Glu Lys 1010	s Ala Ile Asp	Tyr Lys Asn Lys 1015	Gly Gln Lys Arg Arg Ile 1020
50	Ile Val Asr 1025	n Ala Ala Leu 1030		Gln Ser Ala Gln Leu Phe 1035 1040
	Ile Asn Sen	Phe Ala Tyr 1045	r Trp Phe Gly Sei 1050	Phe Leu Ile Lys Arg Gly
55	Thr Ile Le	ı Val Asp Asp 1060	p Phe Met Lys Ser 1065	Leu Phe Thr Phe Ile Phe 1070

5	Thr Gly Ser Tyr Ala Gly Lys Leu Met Ser Leu Lys Gly Asp Ser Glu 1075 1080 1085
	Asn Ala Lys Leu Ser Phe Glu Lys Tyr Tyr Pro Leu Met Ile Arg Lys 1090 1095 1100
10	Ser Asn Ile Asp Val Arg Asp Asp Gly Gly Ile Arg Ile Asn Lys Asn 1105 1110 1115 1120
15	Leu Ile Lys Gly Lys Val Asp Ile Lys Asp Val Asn Phe Arg Tyr Ile 1125 1130 1135
	Ser Arg Pro Asn Val Pro Ile Tyr Lys Asn Leu Ser Phe Thr Cys Asp 1140 1145 1150
20	Ser Lys Lys Thr Thr Ala Ile Val Gly Glu Thr Gly Ser Gly Lys Ser 1155 1160 1165
25	Thr Phe Met Asn Leu Leu Leu Arg Phe Tyr Asp Leu Lys Asn Asp His 1170 1175 1180
30	Ile Ile Leu Lys Asn Asp Met Thr Asn Phe Gln Asp Tyr Gln Asn Asn 1185 1190 1195 1200
30	Asn Asn Asn Ser Leu Val Leu Lys Asn Val Asn Glu Phe Ser Asn Gln 1205 1210 1215
35	Ser Gly Ser Ala Glu Asp Tyr Thr Val Phe Asn Asn Asn Gly Glu Ile 1220 1225 1230
40	Leu Leu Asp Asp Ile Asn Ile Cys Asp Tyr Asn Leu Arg Asp Leu Arg 1235 1240 1245
	Asn Leu Phe Ser Ile Val Ser Gln Glu Pro Met Leu Phe Asn Met Ser 1250 1255 1260
45	Ile Tyr Glu Asn Ile Lys Phe Gly Arg Glu Asp Ala Thr Leu Glu Asp 1265 1270 1275 1280
50	Val Lys Arg Val Ser Lys Phe Ala Ala Ile Asp Glu Phe Ile Glu Ser 1285 1290 1295
	Leu Pro Asn Lys Tyr Asp Thr Asn Val Gly Pro Tyr Gly Lys Ser Leu 1300 1305 1310
55	Ser Gly Gly Gln Lys Gln Arg Ile Ala Ile Ala Arg Ala Leu Leu Arg 1315 1320 1325

- · · ·

5	Glu Pro Lys Ile Leu Leu Leu Asp Glu Ala Thr Ser Ser Leu Asp Ser 1330 1335 1340
	Asn Ser Glu Lys Leu Ile Glu Lys Thr Ile Val Asp Ile Lys Asp Lys 1345 1350 1355 1360
10	Ala Asp Lys Thr Ile Ile Thr Ile Ala His Arg Ile Ala Ser Ile Lys 1365 1370 1375
15	Arg Ser Asp Lys Ile Val Val Phe Asn Asn Pro Asp Arg Asn Gly Thr 1380 1385 1390
	Phe Val Gln Ser His Gly Thr His Asp Glu Leu Leu Ser Ala Gln Asp 1395 1400 1405
20	Gly Ile Tyr Lys Lys Tyr Val Lys Leu Ala Lys 1410 1415
25	<210> 87
	<pre><210> 67 <211> 1548 <212> PRT <213> Leishmania tarentolae</pre>
30	<213> Deishmania tarentolae
	<400> 87
	Met Val Asp Asn Gly His Val Thr Ile Ala Met Ala Asp Leu Gly Thr 1 5 10 15
35	
	Val Val Glu Ile Ala Gln Val Arg Cys Gln Gln Glu Ala Gln Arg Lys 20 25 30
40	Phe Ala Glu Gln Leu Asp Glu Leu Trp Gly Gly Glu Pro Ala Tyr Thr 35 40 45
45	Pro Thr Val Glu Asp Gln Ala Ser Trp Phe Gln Gln Leu Tyr Tyr Gly 50 55 60
	Trp Ile Gly Asp Tyr Ile Tyr Lys Ala Ala Ala Gly Asn Ile Thr Glu 65 70 75 80
50	Ala Asp Leu Pro Pro Pro Thr Arg Ser Thr Arg Thr Tyr His Ile Gly 85 90 95
55	Arg Lys Leu Ser Arg Gln Ala His Ala Asp Ile Asp Ala Ser Arg Arg 100 105 110

	Trp	Gln	Gly 115	Tyr	Ile	Gly	Cys	Glu 120	Val	Val	Тух	Lys	Ser 125	Glu	Ala	Glu
5	Ala	Lys 130	Gly	Val	Leu	Arg	Trp 135	Val	Gly	His	Leu	Gln 140	Gln	Ser	Asp	Tyr
10	Pro 145	Arg	Ser	Leu	Val	Ala 150	Gly	Va1	Glu	Trp	Arg 155	Met	Pro	Pro	Arg	His 160
15	Arg	Arg	Leu	Ala	Val 165	Leu	Gly	Ser	Ala	Ala 170	Ala	Leu	His	Asn	Gly 175	Val
.5	Val	His	G1y	Glu 180	Arg	Leu	Phe	Ттр	Pro 185	His	Glu	Asp	Asn	Туг 190	Leu	Cys
20	Ser	Суз	Glu 195	Pro	Val	Glu	Gln	Leu 200	Tyr	Val	Lys	Ser	Lys 205	Tyr	Asn	Leu
25	Ile	Pro 210	Pro	Arg	Pro	Pro	Pro 215	Ser	Pro	Asp	Leu	Leu 220	Arg	Thr	Leu	Phe
	225					230					235					240
30					245		Met			250					255	•
35				260			Asn		265					270		
			275					280					285			His
40		290					295	,				300				Ser Ser
45	305	_			٠	310)		_		315	•		_		320 Gly
50					325	,				330					335	
3 -				340	1		_		345	i	_			350)	e Arg
55		~~ -	355			~		360		-1-			365			- 3

_	Leu	Val 370	Gly	Trp	Leu	Arg	Va1 375	Pro	Gly	Met	Ala	Val 380	Leu	Phe	Val	Thr
5	Leu 385	Pro	Leu	Gln	Ala	Val 390	Ile	Ser	Lys	His	Val 395	Gln	Asp	Val	Ser	Glu 400
10	Arg	Met	Ala	Ser	Val 405	Val	Asp	Leu	Arg	Ile 410	Lys	Arg	Thr	Asn	Glu 415	Leu
15	Leu	Ser	Gly	Val 420	Arg	Ile	Val	Lys	Phe 425	Met	Gly	Trp	Glu	Pro 430	Val	Phe
	Leu	Ala	Arg 435	Ile	Gln	Asp	Ala	Arg 440	Ser	Arg	Glu	Leu	Arg 445	Cys	Leu	Arg
20		450	His				455					460		_		
25	465		Leu			470					475	-				480
30			Leu		485					490					495	
30			Cys	500					505					510		
35	Pro	Asp	515 Thr	His	Ser	Gln	Val	520 Gln	Asp	Ile	Ala	Ser	525 Ile	Asp	Val	Pro
40	Asp	530 Ala	Ala	Ala	Ile	Phe	535 Lys	Gly	Ala	Ser	Ile	540 His	Thr	Туг	Leu	Pro
	545 Val	Lys	Leu	Pro	Arg	550 Cys		Ser	Arg	Leu	555 Thr		Met	Gln	Arg	560 Ser
45	Thr	Leu	Trp		-		Arg	Gly				Thr	Glu	_	_	Glu
50	Val	Asp) Ala	Ser				Leu	Ala				Thr
	Thr				Gly	ser Ser				. Val	: Ile		-		Asp	Gly
55		610	1				615	•				620	1			

	Ala 625	Ala	Gly	Glu	Asp	Glu 630	Lys	Gly	Glu		Glu 635	GLu	Gly	Asp	Arg	Glu 640
5	Tyr	Tyr	Gln	Leu	Val 645	Ser	Lys	Glu	Leu	Leu 650	Arg	Asn	Va1	Ser	Leu 655	Thr
10	Ile	Pro	Lys	Gly 660	Lys	Leu	Thr	Met	Val 665	Ile	Gly	Ser	Thr	Gly 670	Ser	Gly
15	Lys	Ser	Thr 675	Leu	Leu	Gly	Ala	Leu 680	Met	Gly	Glu	Туr	Ser 685	Val	Glu	Ser
19	Gly	Glu 690	Leu	Trp	Ala	Glu	Arg 695	Ser	Ile	Ala	Tyr	Val 700	Pro	Gln	Gln	Ala
20	Trp 705	Ile	Met	Asn	Ala	Thr 710	Leu	Arg	Gly	Asn	Ile 715	Leu	Phe	Phe	Asp	Glu 720
25	Glu	Arg	Ala	Glu	Asp 725	Leu	Gln	Asp	Val	Ile 730	Arg	Cys	Cys	Gln	Leu 735	Glu
	Ala	Asp	Leu	Ala 740	Gln	Phe	Суѕ	Gly	Gly 745	Leu	Asp	Thr	Glu	Ile 750	Gly	Glu
30	Met	Gly	Val 755	Asn	Leu	Ser	Gly	Gly 760	Gln	Lys	Ala	Arg	Val 765	Ser	Leu	Ala
35	Arg	Ala 770		Tyr	Ala	Asn	Arg 775	Asp	Val	Tyr	Leu	Leu 780	Asp	Asp	Pro	Leu
	Ser 785		Leu	Asp	Ala	His 790		Gly	Gln	Arg	Ile 795		Gln	Asp	Val	11e 800
40	Leu	Gly	Arg	Leu	Arg 805	_	Lys	Thr	Arg	Val 810		Ala	Thr	His	61n 815	Ile
45				820	1		-	-	825	•				830	1	Ser
			835	;				840	ł				845	•		ı Glu
50		850)				855	5				860	•			Cys
55	Se:		c Asp	Val	l As _l	9 Th: 87		ı Sei	Alá	a Tho	875		ı Thi	Ala	a Pro	880

	Val Ala Lys Ala Lys Gly Leu Asn Ala Glu Gln Glu Thr Ser Leu Ala 885 890 895
5	Gly Glu Asp Pro Leu Arg Ser Asp Val Glu Ala Gly Arg Leu Met 900 905 910
10	Thr Thr Glu Glu Lys Ala Thr Gly Lys Val Pro Trp Ser Thr Tyr Val 915 920 925
15	Ala Tyr Leu Lys Ser Cys Gly Gly Leu Glu Ala Trp Gly Cys Leu Leu 930 935 940
	Ala Thr Phe Ala Leu Thr Glu Cys Val Thr Ala Ala Ser Ser Val Trp 945 950 955 960
20	Leu Ser Ile Trp Ser Thr Gly Ser Leu Met Trp Ser Ala Asp Thr Tyr 965 970 975
25	Leu Tyr Val Tyr Leu Phe Ile Val Phe Leu Glu Ile Phe Gly Ser Pro 980 985 990
	Leu Arg Phe Phe Leu Cys Tyr Tyr Leu Ile Arg Ile Gly Ser Arg Asn 995 1000 1005
30	Met His Arg Asp Leu Leu Glu Ser Ile Gly Val Ala Arg Met Ser Phe 1010 1015 1020
35	Phe Asp Thr Thr Pro Val Gly Arg Val Leu Asn Arg Phe Thr Lys Asp 1025 1030 1035 1040
	Met Ser Ile Leu Asp Asn Thr Leu Asn Asp Gly Tyr Leu Tyr Leu Leu 1045 1050 1055
40	Glu Tyr Phe Phe Ser Met Cys Ser Thr Val Ile Ile Met Val Val 1060 1065 1070
45	Gln Pro Phe Val Leu Val Ala Ile Val Pro Cys Val Tyr Ser Tyr Tyr 1075 1080 1085
	Lys Leu Met Gln Val Tyr Asn Ala Ser Asn Arg Glu Thr Arg Arg Ile 1090 1095 1100
50	Lys Ser Ile Ala His Ser Pro Val Phe Thr Leu Leu Glu Glu Ser Leu 1105 1110 1115 1120
55	Gln Gly Gln Arg Thr Ile Ala Thr Tyr Gly Lys Leu His Leu 1125 1130 1135

	Gln Glu Ala Leu Gly Arg Leu Asp Val Val Tyr Ser Ala Leu Tyr Met 1140 1145 1150
5	Gln Asn Val Ser Asn Arg Trp Leu Gly Val Arg Leu Glu Phe Leu Ser 1155 1160 1165
10	Cys Val Val Thr Phe Met Val Ala Phe Ile Gly Val Ile Gly Lys Met 1170 1175 1180
	Glu Gly Ala Ser Ser Gln Asn Ile Gly Leu Ile Ser Leu Ser Leu Thr 1185 1190 1195 1200
15	Met Ser Met Thr Leu Thr Glu Thr Leu Asn Trp Leu Val Arg Gln Val 1205 1210 1215
20	Ala Met Val Glu Ala Asn Met Asn Ser Val Glu Arg Val Leu His Tyr 1220 1225 1230
25	Thr Gln Glu Val Glu His Glu His Val Pro Glu Met Gly Glu Leu Val 1235 1240 1245
	Ala Gln Leu Val Arg Ser Glu Ser Gly Arg Gly Ala Asn Val Thr Glu 1250 1255 1260
30	Thr Val Val Ile Glu Ser Ala Gly Ala Ala Ser Ser Ala Leu His Pro 1265 1270 1275 1280
35	Val Gln Ala Gly Ser Leu Val Leu Glu Gly Val Gln Met Arg Tyr Arg 1285 1290 1295
	Glu Gly Leu Pro Leu Val Leu Arg Gly Val Ser Phe Gln Ile Ala Pro 1300 1305 1310
40	Arg Glu Lys Val Gly Ile Val Gly Arg Thr Gly Ser Gly Lys Ser Thr 1315 1320 1325
45	Leu Leu Thr Phe Met Arg Met Val Glu Val Cys Gly Gly Val Ile 1330 1335 1340
	His Val Asn Gly Arg Glu Met Ser Ala Tyr Gly Leu Arg Glu Leu Arg 1345 1350 1355 1360
50	Arg His Phe Ser Met Ile Pro Gln Asp Pro Val Leu Phe Asp Gly Thr 1365 1370 1375
55	Val Arg Gln Asn Val Asp Pro Phe Leu Glu Ala Ser Ser Ala Glu Val 1380 1385 1390

	Trp Al	a Ala 1395	Leu	Glu	Leu		Gly .400	Leu	Arg	Gĺu		Val .405	Ala	Ser	Glu
5	Ser Gl 141	_	Ile	Asp		Arg 1415	Val	Leu	Glu	_	Gly 1420	Ser	Asn	Tyr	Ser
10	Val Gl 1425	y Gln	Arg		Leu 1430	Met	Cys	Met		Arg L435	Ala	Leu	Leu		Arg 440
15	Gly Se	er Gly		Ile 1445	Leu	Met	Asp		Ala 1450	Thr	Ala	Asn		Asp .455	Pro
	Ala Le	_	Arg 1460	Gln	Ile	Gln		Thr 1465	Val	Met	Ser		Phe 1470	Ser	Ala
20	Tyr Ti	nr Val 1475		Thr	Ile		His 1480	Arg	Leu	His		Val 1485	Ala	Gln	Tyr
25	Asp Ly 149		Ile	Val		Asp 1495	His	Gly	Val		Ala 1500	Glu	Met	Gly	Ser
	Pro A				1510					1515				1	L520
30	Glu S			1525					1530					Leu 1535	Met
35	Gly A		, Ile 1540		. Gln	Pro		Val 1545		Ser	Asp				
40	<210><211><211><212><213>	1530	zosac	char	comyc	es p	ombe	:							
45	<400> Met A	88 sn Gli	n Asn	Ser 5		Thr	Thr	His	: Gly 10		Ala	Leu	Gly	Ser 15	
50	Leu A	sn Hi	s Thr		c Glu	ı Val	. Thr	25		e Ser	Asn	Ser	Ser 30	_	His
	Phe G	lu Ası	-	s Sei	r Sei	Asr	1 Val	_	Gl:	ı Sei	Leu	Asp 45		Ser	Asn
55	Pro S	Ser Se	r Ası	ı Glı	u Ly:	s Ala	a Se	c His	s Th	r Ası	ı Glı	ı Glu	Туг	Arg	Ser

~~

	ģ	50				55					60				
5	Lys G	ly Asn	Gln	Ser	Tyr 70	Val	Pro	Ser	Ser	Ser 75	Asn	G1u	Pro	Ser	Pro 80
10	Glu S	er Ser	Ser	Asn 85	Ser	Asp	Ser	Ser	Ser 90	Ser	Asp	Asp	Ser	Ser 95	Val
	Asp A	rg Leu	Ala 100	Gly	Asp	Pro	Phe	Glu 105	Leu	Gly	Glu	Asn	Phe 110	Asn	Leu
15	Lys H	is Tyr 115	Leu	Arg	Ala	Tyr	Lys 120	Asp	Ser	Leu	Gln	Arg 125	Asp	Asp	Ile
20		hr Arg 30	Ser	Ser	Gly	Val 135	Суз	Met	Arg	Asp	His 140	Ser	Val	Tyr	Gly
	Val G 145	ly Ser	Gly	Tyr	Glu 150	Phe	Leu	Lys	Thr	Phe 155	Pro	Asp	Ile	Phe	Leu 160
25	Gln P	ro Tyr	Arg	Ala 165	Ile	Thr	Glu	ГÀЗ	Gln 170	Va1	Val	Glu	Lys	Ala 175	Ile
30	Leu S	er His	Cys 180	His	Ala	Leu	Ala	Asn 185	Ala	Gly	Glu	Leu	Val 190	Met	Val
	Leu G	ly Gln 195		Gly	Ser	Gly	Cys 200	Ser	Thr	Phe	Leu	Arg 205	Ser	Val	Thr
35		sp Thr	Val	His	туг	Lys 215	Arg	Val	Glu	Gly	Thr 220	Thr	His	Tyr	Asp
40	Gly I 225	le Asp	Lys	Ala	Asp 230	Met	Lys	Lys	Phe	Phe 235	Pro	Gly	Asp	Leu	Leu 240
	Tyr S	er Gly	Glu	Asn 245		Val	His	Phe	Pro 250	Ser	Leu	Thr	Thr	Ala 255	Glu
45	Thr I	eu Asp	Phe 260		Ala	Lys	Cys	Arg 265		Pro	Asn	Asn	Arg 270		Cys
50	Asn I	eu Thi		Gln	Glu	Tyr	Val 280		Arg	Glu	Arg	His 285		ı Ile	Ala
		Ala Phe 290	e Gly	Leu	Thr	His 295		Phe	. Asn	Thr	100		G1y	Asn	Asp
<i>55</i>	Phe V	/al Arg	g Gly	val	Ser	Gly	Gly	Glu	. Arg	Lys	Arg	Val	Thr	Ile	Ser

	305					310					315					320
5	Glu	Gly	Phe	Ala	Thr 325	Arg	Pro	Thr	Ile	Ala 330	Cys	Trp	Asp	Asn	Ser 335	Thr
10	Arg	Gly	Leu	Asp 340	Ser	Ser	Thr	Ala	Phe 345	Glu	Phe	Val	Asn	V al 350	Leu	Arg
	Thr	Cys	Ala 355	Asn	Glu	Leu	Lys	Met 360	Thr	Ser	Phe	Val	Thr 365	Ala	Tyr	Gln
15	Ala	Ser 370	Glu	Lys	Ile	Tyr	Lys 375	Leu	Phe	Asp	Arg	Ile 380	Cys	Val	Leu	Tyr
20	Ala 385	Gly	Arg	Gln		Tyr 390	Туг	Gly	Pro	Ala	Asp 395	Lys	Ala	Lys	Gln	Tyr 400
	Phe	Leu	Asp	Met	Gly 405	Phe	Asp	Cys	His	Pro 410	Arg	Glu	Thr	Thr	Pro 415	Asp
25	Phe	Leu	Thr	Ala 420	Ile	Ser	Asp	Pro	Lys 425	Ala	Arg	Phe	Pro	Arg 430	Lys	Gly
30	Phe	Glu	Asn 435	Arg	Val	Pro	Arg	Thr 440	Pro	Asp	Glu	Phe	Glu 445	Gln	Met	Trp
	Arg	Asn 450	Ser	Ser	Val	Tyr	Ala 455	Asp	Leu	Met	Ala	Glu 460	Met	Glu	Ser	Tyr
35	Asp 465	Lys	Arg	Trp	Thr	Glu 470	Thr	Thr	Pro	Ala	Ser 475	Ser	Glu	Ala	Pro	Glu 480
40	Lys	Asp	Asn	Phe	Gly 485	Ser	Asp	Ile	Ser	Ala 490	Thr	Thr	Lys	His	Glu 495	Leu
45	Tyr	Arg	Gln	Ser 500	Ala	Val	Ala	Glu	Lys 505	Ser	Lys	Arg	Val	Lys 510	Asp	Thr
•	Ser	Pro	Tyr 515	Thr	Val	Thr	Phe	Ser 520	Gln	Gln	Leu	Trp	Туг 525		Leu	Ala
50	Arg	Ser 530	Тrp	Glu	Arg	Tyr	11e 535	Asn	Asp	Pro	Ala	Туг 540	Ile	Gly	Ser	Met
55	Ala 545		Ala	Phe	Leu	Phe 550	Gln	Ser	Leu	Ile	Ile 555		Ser	Ile	Phe	Tyr 560
35	Asp	Met	Lys	Leu	Asn	Thr	Val	Asp	Val	Phe	Ser	Arg	Gly	Gly	Val	Leu

					565					570					575	
5	Phe	Phe	Ser	Ile 580	Leu	Phe	Cys	Ala	Leu 585	Gln	Ser	Leu	Ser	Glu 590	Ile	Ala
10	Asn	Met	Phe 595	Ser	Gln	Arg	Pro	Ile 600	Ile	Ala	Lys	His	Arg 605	Ala	Ser	Ala
	Leu	Тут 610	His	Pro	Ala	Ala	Asp 615	Val	Ile	Ser	Ser	Leu 620	Ile	Va1	Asp	Leu
15	Pro 625	Phe	Arg	Phe	Ile	Asn 630	Ile	Ser	Val	Phe	Ser 635	Ile	Val	Leu	Tyr	Phe 640
20	Leu	Thr	Asn	Leu	Lys 645	Arg	Thr	Ala	Gly	Gly 650	Phe	Trp	Thr	Tyr	Phe 655	Leu
	Phe	Leu	Phe	11e 660	Gly	Ala	Thr	Cys	Met 665	Ser	Ala	Phe	Phe	Arg 670	Ser	Leu
25	Ala	Gly	Ile 675	Met	Pro	Asn	Val	Glu 680	Ser	Ala	Ser	Ala	Leu 685	Gly	Gly	Ile
30	Gly	Val 690	Leu	Ala	Ile	Ala	Ile 695	Tyr	Thr	Gly	Tyr	Ala 700	lle	Pro	Asn	Ile
	Asp 705	Val	Gly	Trp	Trp	Phe 710	Arg	Trp	Ile	Ala	Туг 715	Leu	Asp	Pro	Leu	Gln 720
35	Phe	Gly	Phe	Glu	Ser 725	Leu	Met	Ile	Asn	Glu 730	Phe	Lys	Ala	Arg	Gln 735	
40	Glu	Cys	Ser	Gln 740	Leu	Ile	Pro	Tyr	Gly 745	Ser	Gly	Туг	Asp	750	_	Pro
	Val	Ala	Asn 755	-	Ile	Cys	Pro	760		Ser	Ala	Glu	765	-	Thr	Asp
45	Tyr	Val 770	_	Gly	Ser	Thr	775		Туг	lle	Ser	780		Тут	: Lys	Thr
50	Arg 785		Leu	Trp	Arg	790		ı Ala	ı Ile	: Ile	11e	_	Туг	Туг	Ala	800
	Leu	Val	Phe	. Val	Asr 805		e Val	Ala	ser	61u 810		Leu	ı Asr	n Phe	815	Asp
55	Leu	Lys	Gly	Glu	туг	: Le	ı Val	L Phe	e Arg	y Arc	g Gly	/ His	s Ala	a Pro	Asp	Ala

		820	825	830
5	Val Lys Ala 835		ly Gly Lys Pro Leu A 40 84	sp Leu Glu Thr 45
10	Gly Gln Asp 850	Thr Gln Gly Gly A	sp Val Val Lys Glu Se 860	er Pro Asp Asn
	Glu Glu Glu 865	Leu Asn Lys Glu Ty 870	yr Glu Gly Ile Glu Ly 875	ys Gly His Asp 880
15	Ile Phe Ser	Trp Arg Asn Leu A	sn Tyr Asp Ile Gln I 890	le Lys Gly Glu 895
20	His Arg Arg	Leu Leu Asn Gly V	al Gln Gly Phe Val Va 905	al Pro Gly Lys 910
	Leu Thr Ala 915		er Gly Ala Gly Lys T 20 9:	hr Thr Leu Leu 25
25	Asn Val Leu 930	Ala Gln Arg Val A 935	sp Thr Gly Val Val Ti 940	hr Gly Asp Met
30	Leu Val Asn 945	Gly Arg Gly Leu A 950	sp Ser Thr Phe Gln A 955	rg Arg Thr Gly 960
	Tyr Val Gln	Gln Gln Asp Val H 965	is Ile Gly Glu Ser T 970	hr Val Arg Glu 975
35	Ala Leu Arg	Phe Ser Ala Ala L 980	eu Arg Gln Pro Ala S 985	er Val Pro Leu 990
40	Ser Glu Lys 995		Glu Ser Val Ile Lys L 100 10	
	Glu Ser Tyr 1010	Ala Glu Ala Ile I 1015	le Gly Thr Pro Gly S 1020	er Gly Leu Asn
45	Val Glu Gln 1025	Arg Lys Arg Ala T 1030	Chr Ile Gly Val Glu L 1035	eu Ala Ala Lys 1040
50	Pro Ala Leu	Leu Leu Phe Leu A 1045	Asp Glu Pro Thr Ser G 1050	ly Leu Asp Ser 1055
	Gln Ser Ala	Trp Ser Ile Val C	Cys Phe Leu Arg Lys L 1065	eu Ala Asp Ala 1070
55	Gly Gln Ala	Ile Leu Cys Thr I	le His Gln Pro Ser A	ala Val Leu Phe

	1075	1080	1085
5	Asp Gln Phe Asp Arg 1090	Leu Leu Leu Gln L 1095	ys Gly Gly Lys Thr Val
10			Thr Leu Leu Asn Tyr Phe 1120
	Glu Ser His Gly Ala 1125	Val His Cys Pro Asp A 1130	Asp Gly Asn Pro Ala Glu 1135
15	Tyr Ile Leu Asp Val 1140	Ile Gly Ala Gly Ala 1 1145	Thr Ala Thr Thr Asn Arg 1150
20	Asp Trp His Glu Val 1155	Trp Asn Asn Ser Glu 0 1160	Glu Arg Lys Ala Ile Ser 1165
	Ala Glu Leu Asp Lys 1170	Ile Asn Ala Ser Phe S	Ser Asn Ser Glu Asp Lys 1180
25	- · · · · · · · · · · · · · · · · · · ·		Tyr Ala Met Pro Leu Trp 195 1200
30	Phe Gln Val Lys Met 1205	-	Phe Gln Ser Tyr Trp Arg 1215
	Glu Pro Ser Ile Leu 1220	Met Ser Lys Leu Ala 1 1225	Leu Asp Ile Phe Ala Gly 1230
35	Leu Phe Ile Gly Phe 1235	Thr Phe Tyr Asn Gln (Gly Leu Gly Val Gln Asn 1245
40	Ile Gln Asn Lys Leu 1250	Phe Ala Val Phe Met . 1255	Ala Thr Val Leu Ala Val 1260
•			Ile Glu Leu Arg Asn Val 275 1280
45	Phe Glu Val Arg Glu 1285		Tyr Ser Trp Val Ala Phe 1295
50	Val Phe Ser Ala Ile 1300	e Ile Val Glu Ile Pro 1305	Phe Asn Leu Val Phe Gly 1310
	Thr Leu Phe Phe Leu 1315	Cys Trp Phe Tyr Pro	Ile Lys Phe Tyr Lys His 1325
55	Ile His His Pro Gly	Asp Lys Thr Gly Tyr	Ala Trp Leu Leu Tyr Met

	1330	1335	1340
5		Phe Ser Thr Phe Gly	y Gln Ala Val Ala Ser Ala 1355 1360
10	Cys Pro Asn Ala Gln 1365		1 Asn Ser Leu Leu Phe Thr 0 1375
	Phe Val Ile Thr Phe	e Asn Gly Val Leu Gl 1385	n Pro Asn Ser Asn Leu Val 1390
15	Gly Phe Trp His Trp 1395	p Met His Ser Leu Th 1400	r Pro Phe Thr Tyr Leu Ile 1405
20	Glu Gly Leu Leu Ser 1410	r Asp Leu Val His Gl 1415	y Leu Pro Val Glu Cys Lys 1420
	Ser His Glu Met Lev 1425	u Thr Ile Asn Pro Pr 1430	o Ser Gly Gln Thr Cys Gly 1435 1440
25	Glu Tyr Met Ser Ala 1445		n Thr Ala Ala Gly Asn Leu 0 1455
<i>30</i>	Leu Asn Pro Asn Ala 1460	a Thr Thr Ser Cys Se 1465	r Tyr Cys Pro Tyr Gln Thr 1470
	Ala Asp Gln Phe Let 1475	u Glu Arg Phe Ser Me 1480	et Arg Tyr Thr His Arg Trp 1485
35	Arg Asn Leu Gly I10 1490	e Phe Val Gly Tyr Va 1495	al Phe Phe Asn Ile Phe Ala 1500
40	Val Leu Leu Leu Pho 1505	e Tyr Val Phe Arg Va 1510	al Met Lys Leu Arg Ser Thr 1515 1520
	Trp Leu Gly Lys Ly 152	ys Ile Thr Gly Thr Gl 25 153	-
45	<210> 89		
50	<211> 1501 <212> PRT <213> Candida albi	icans	
55	<400> 89 Met Ser Asp Ser Ly 1		sp Glu Ser Lys Leu Glu Lys 10 15

5	Ala Il	e Ser	Gln a	Asp	Ser	Ser	Ser	Glu 25	Asn	His	Ser	Ile	Asn 30	Glu	Tyr
	His Gl	y Phe 35	Asp .	Ala	His	Thr	Ser 40	Glu	Asn	Ile	Gln	Asn 45	Leu	Ala	Arg
10	Thr Ph		His .	Asp	Ser	Phe 55	Lys	Asp	Asp	Ser	Ser 60	Ala	Gly	Leu	Leu
15	Lys Ty 65	r Leu	Thr	His	Met 70	Ser	Glu	Val	Pro	Gly 75	Val	Asn	Pro	Tyr	Glu 80
20	His Gl	u Glu	Ile	Asn 85	Asn	Asp	Gln	Leu	Asn 90	Pro	Asp	Ser	Glu	Asn 95	Phe
20	Asn Al	a Lys	Phe 100	Trp	Val	Lys	Asn	Leu 105	Arg	Lys	Leu	Phe	Glu 110	Ser	Asp
25	Pro Gl	u Tyr 115	Tyr	Lys	Pro	Ser	Lys 120	Leu	Gly	Ile	Gly	Tyr 125	Arg	Asn	Leu
30	Arg Al		Gly	Val	Ala	Asn 135	Asp	Ser	Asp	Tyr	Gln 140	Pro	Thr	Val	Thr
	Asn Al	a Leu	Trp	Lys	Leu 150	Ala	Thr	Glu	Gly	Phe 155	Arg	His	Phe	Gln	Lys 160
35	Asp As	p Asp	Ser	Arg 165	Tyr	Phe	Asp	Ile	Leu 170	Lys	Ser	Met	Asp	Ala 175	Ile
40	Met Ai	g Pro	Gly 180	Glu	Leu	Thr	Val	Val 185	Leu	Gly	Arg	Pro	Gly 190	Ala	Gly
	Cys Se	r Thr 195	Leu	Leu	Lys	Thr	11e 200	Ala	Val	Asn	Thr	Тут 205	_	Phe	His
45	2:	ly Lys 10				215		-	_	_	220				-
50	Ile G 225	lu Arg	His	Tyr	Arg 230		Asp	Val	Ile	Tyr 235	Ser	Ala	. Glu	Thr	Asp 240
	Val H	is Phe	Pro	His 245		Ser	Val	Gly	Asp 250		Leu	Glu	Phe	Ala 255	
55	Arg L	eu Arg	Thr 260	Pro	Gln	Asn	Arg	Gly 265		Gly	Ile	Asp	270		Thr

5	Tyr	Ala	Lys 275	His	Met	Ala	Ser	Val 280	Tyr	Met	Ala	Thr	Tyr 285	Gly	Leu	Ser
	His	Thr 290	Arg	Asn	Thr	Asn	Val 295	Gly	Asri	Asp	Phe	Val 300	Arg	Gly	Val	Ser
10	Gly 305	Gly	Glu	Arg	Lys	Arg 310	Val	Ser	Ile	Ala	Glu 315	Ala	Ser	Leu	Ser	Gly 320
15	Ala	Asn	Ile	Gln	Суs 325	Trp	Asp	Asn	Ala	Thr 330	Arg	Gly	Leu	Asp	Ser 335	Ala
	Thr	Ala	Leu	Glu 340	Phe	Ile	Arg	Ala	Leu 345	Lys	Thr	Ser	Ala	Val 350	Ile	Leu
20	Asp	Thr	Thr 355	Pro	Leu	Ile	Ala	Ile 360	Tyr	Gln	Суз	Ser	Gln 365	Asp	Ala	Tyr
25	Asp	Leu 370	Phe	Asp	Lys	Val	Val 375	Val	Leu,	Tyr	Glu	Gly 380	Tyr	Gln	Ile	Phe
	Phe 385	Gly	Lys	Ala	Thr	Lys 390	Ala	Lys	Glu	Tyr	Phe 395	Glu	Lys	Met	Gly	Trp 400
30	Lys	Суѕ	Pro	Gln	Arg 405	Gln	Thr	Thr	Ala	Asp 410	Phe	Leu	Thr	Ser	Leu 415	Thr
35	Asn	Pro	Ala	Glu 420	Arg	Glu	Pro	Leu	Pro 425	Gly	Tyr	Glu	Asp	Lys 430	Val	Pro
40	Arg	Thr	Ala 435	Gln	Glu	Phe	Glu	Thr 440	Tyr	Trp	Lys	Asn	Ser 445	Pro	Glu	Tyr
	Ala	Glu 450	Leu	Thr	Lys	Glu	Ile 455	Asp	Glu	Tyr	Phe	Val 460	Glu	Cys	Glu	Arg
45	Ser 465	Asn	Thr	Arg	Glu	Thr 470	Tyr	Arg	Glu	Ser	His 475	Val	Ala	Lys	Gln	Ser 480
50	Asn	Asn	Thr	Arg	Pro 485	Ala	Ser	Pro	Tyr	Thr 490		Ser	Phe	Phe	Met 495	Gln
	Val	Arg	Туг	Gly 500	Val	Ala	Arg	Asn	Phe 505		Arg	Met	Lys	Gly 510	Asp	Pro
55	Ser	Ile	Pro 515		Phe	Ser	Val	Phe 520		Gln	Leu	Val	Met 525		Leu	Ile

5	Leu	Ser 530	Ser	Val	Phe	Tyr	Asn 535	Leu	Ser	Gln	Thr	Thr 540	Gly	Ser	Phe	Tyr
	Tyr 545	Arg	Gly	Ala		Met 550	Phe	Phe	Ala		Leu 555	Phe	Asn	Ala	Phe	Ser 560
10	Ser	Leu	Leu	Glu	Ile 565	Met	Ser	Leu	Phe	Glu 570	Ala	Arg	Pro	Ile	Val 575	Glu
15	Lys	His	Lys	Lys 580	Tyr	Ala	Leu	Tyr	Arg 585	Pro	Ser	Ala	Asp	Ala 590	Leu	Ala
	Ser	Ile	Ile 595	Ser	Glu	Leu	Pro	Val 600	Lys	Leu	Ala	Met	Ser 605	Met	Ser	Phe
20	Asn	Phe 610	Val	Phe	Туг	Phe	Met 615	Val	Asn	Phe	Arg	Arg 620	Asn	Pro	Gly	Arg
25	Phe 625	Phe	Phe	Туr	Trp	Leu 630	Met	Cys	Ile	Trp	Cys 635	Thr	Phe	Val	Met	Ser 640
-	His	Leu	Phe	Arg	Ser 645	Ile	Gly	Ala	Val	Ser 650	Thr	Ser	Ile	Ser	Gly 655	Ala
30	Met	Thr	Pro	Ala 660	Thr	Val	Leu	Leu	Leu 665	Ala	Met	Va1	Ile	Tyr 670	Thr	Gly
35	Phe	Val	Ile 675		Thr	Pro	Ser	Met 680	Leu	Gly	Trp	Ser	Arg 685	Trp	Ile	Asn
40	Tyr	11e 690		Pro	Val	Gly	Tyr 695		Phe	Glu	Ser	Leu 700		Val	Asn	Glu
40	Phe 705		Gly	Arg	Glu	710		Суя	Ala	Gln	Туг 715		Pro	Ser	Gly	720
45	Gly	Туг	Glu	Asn	1le 725		r Arg	Ser	Asn	730		. Cys	Thr	Ala	735	Gly
50	Ser	Val	Pro	740		Gl:	ı Met	: Val	Ser 745		Thi	Asr	туг	750		a Gly
	Ala	туг	75!		туг	. Ası	n Ser	760		Trp	Ar(j Asr	765		/ Ile	e Thr
. 55	Ιle	9 Gly 770		e Ala	a Val	l Ph	e Phe 779		ı Ala	a Ile	≘ Ту	r Ile 780		a Lei	ı Th	r Glu

5	Phe Asn 785	Lys Gly	Ala Met 790		Gly Glu	Ile Val Le 795	u Phe Leu Lys 800
	Gly Ser	Leu Lys	Lys His 805	Lys Arg	Lys Thr 810	Ala Ala Se	r Asn Lys Gly 815
	Asp Ile	Glu Ala 820	Gly Pro	Val Ala	Gly Lys 825	Leu Asp Ty	r Gln Asp Glu 830
15	Ala Glu	Ala Val 835	Asn Asn	Glu Lys 840	Phe Thr	Glu Lys Gl 84	y Ser Thr Gly 5
-	Ser Val 850	Asp Phe	Pro Glu	Asn Arg 855	Glu Ile	Phe Phe Tr 860	p Arg Asp Leu
20	Thr Tyr 865	Gln Val	Lys Ile 870		Glu Asp	Arg Val II 875	e Leu Asp His 880
25	Val Asp	Gly Trp	Val Lys	Pro Gly	Gln Ile 890	Thr Ala Le	u Met Gly Ala 895
30	Ser Gly	Ala Gly 900		Thr Leu	Leu Asn 905	Cys Leu Se	r Glu Arg Val 910
	Thr Thr	Gly Ile 915	Ile Thr	Asp Gly 920	Glu Arg	Leu Val As	n Gly His Ala 5
35	Leu Asp 930		Phe Glr	Arg Ser 935	Ile Gly	Tyr Val G	n Gln Gln Asp
40	Val His 945	Leu Pro	Thr Sei 950		Arg Glu	Ala Leu Gl 955	n Phe Ser Ala 960
	Tyr Leu	Arg Gln	Ser Ası 965	n Lys Ile	Ser Lys 970	Lys Glu Ly	vs Asp Asp Tyr 975
45	Val Asp	Tyr Val 980	_) Leu Leu	Glu Met 985	Thr Asp Ty	yr Ala Asp Ala 990
50	Leu Val	. Gly Val 995	Ala Gly	y Glu Gly 1000		Val Glu G	ln Arg Lys Arg)5
	Leu Thr		/ Val Gl	u Leu Val 1015	Ala Lys	Pro Lys L 1020	eu Leu Phe
55	Leu Ası 1025	Glu Pro	Thr Se		Asp Ser	Gln Thr A	la Trp Ser Ile 1040

5	Cys Lys Leu Met Arg Lys Leu Ala Asp His Gly Gln Ala Ile Leu Cys 1045 1050 1055	
	Thr Ile His Gln Pro Ser Ala Leu Ile Met Ala Glu Phe Asp Arg Leu 1060 1065 1070	
10	Leu Phe Leu Gln Lys Gly Gly Arg Thr Ala Tyr Phe Gly Glu Leu Gly 1075 1080 1085	
15	Glu Asn Cys Gln Thr Met Ile Asn Tyr Phe Glu Lys Tyr Gly Ala Asp 1090 1095 1100	
	Pro Cys Pro Lys Glu Ala Asn Pro Ala Glu Trp Met Leu Gln Val Val 1105 1110 1115 1120	
20	Gly Ala Ala Pro Gly Ser His Ala Lys Gln Asp Tyr Phe Glu Val Trp 1125 1130 1135	
25	Arg Asn Ser Ser Glu Tyr Gln Ala Val Arg Glu Glu Ile Asn Arg Met 1140 1145 1150	
	Glu Ala Glu Leu Ser Lys Leu Pro Arg Asp Asn Asp Pro Glu Ala Leu 1155 1160 1165	
30	Leu Lys Tyr Ala Ala Pro Leu Trp Lys Gln Tyr Leu Leu Val Ser Trp 1170 1175 1180	
35	Arg Thr Ile Val Gln Asp Trp Arg Ser Pro Gly Tyr Ile Tyr Ser Lys 1185 1190 1195 1200	
40	Ile Phe Leu Val Val Ser Ala Ala Leu Phe Asn Gly Phe Ser Phe Phe 1205 1210 1215	:
40	Lys Ala Lys Asn Asn Met Gln Gly Leu Gln Asn Gln Met Phe Ser Val	•
45	Phe Met Phe Phe Ile Pro Phe Asn Thr Leu Val Gln Gln Met Leu Pro 1235 1240 1245	,
50	Tyr Phe Val Lys Gln Arg Asp Val Tyr Glu Val Arg Glu Ala Pro Ser 1250 1255 1260	:
	Arg Thr Phe Ser Trp Phe Ala Phe Ile Ala Gly Gln Ile Thr Ser Glu 1265 1270 1275 1286	
55	Ile Pro Tyr Gln Val Ala Val Gly Thr Ile Ala Phe Phe Cys Trp Ty:	r

5	Tyr Pro Leu Gly Leu Tyr Asn Asn Ala Thr Pro Thr Asp Ser Val Asn 1300 1305 1310
	Pro Arg Gly Val Leu Met Trp Met Leu Val Thr Ala Phe Tyr Val Tyr 1315 1320 1325
10	Thr Ala Thr Met Gly Gln Leu Cys Met Ser Phe Ser Glu Leu Ala Asp 1330 1335 1340
15	Asn Ala Ala Asn Leu Ala Thr Leu Leu Phe Thr Met Cys Leu Asn Phe 1345 1350 1355 1360
	Cys Gly Val Leu Ala Gly Pro Asp Val Leu Pro Gly Phe Trp Ile Phe 1365 1370 1375
20	Met Tyr Arg Cys Asn Pro Phe Thr Tyr Leu Val Gln Ala Met Leu Ser 1380 1385 1390
25	Thr Gly Leu Ala Asn Thr Phe Val Lys Cys Ala Glu Arg Glu Tyr Val 1395 1400 1405
30	Ser Val Lys Pro Pro Asn Gly Glu Ser Cys Ser Thr Tyr Leu Asp Pro 1410 1415 1420
30	Tyr Ile Lys Phe Ala Gly Gly Tyr Phe Glu Thr Arg Asn Asp Gly Ser 1425 1430 1435 1440
35	Cys Ala Phe Cys Gln Met Ser Ser Thr Asn Thr Phe Leu Lys Ser Val 1445 1450 1455
40	Asn Ser Leu Tyr Ser Glu Arg Trp Arg Asn Phe Gly Ile Phe Ile Ala 1460 1465 1470
	Phe Ile Ala Ile Asn Ile Ile Leu Thr Val Ile Phe Tyr Trp Leu Ala 1475 1480 1485
45	Arg Val Pro Lys Gly Asn Arg Glu Lys Lys Asn Lys Lys 1490 1495 1500
50	<210> 90
	<211> 1499 <212> PRT <213> Candida albicans
55	<400> 90

5	Met 1	Ser	Thr	Ala	Asn 5	Thr	Ser	Leu	Ser	Gln 10	Gln	Leu	Asp	Glu	Asn 15	Pro
•	Trp	Val	Asp	Ala 20	Ser	Asp	Asn	Ser	Ser 25	Val	Gln	Glu	Tyr	Gln 30	Gly	Phe
10	Asp	Ala	Thr 35	Ala	Ser	His	Asn	Ile 40	Gln	Asp	Leu	Ala	Arg 45	Lys	Leu	Thr
15	His	Gly 50	Ser	Thr	Asn	Gly	Asp 55	His	His	Ser	Ala	Asn 60	Asp	Leu	Ala	Arg
	Tyr 65	Leu	Ser	His	Met	Ser 70	Asp	Ile	Pro	Gly	Val 75	Ser	Pro	Phe	Asn	Gly 80
20	Asn	Ile	Ser	His	G1u 85	Gln	Leu	Asp	Pro	Asp 90	Ser	Glu	Asn	Phe	Asn 95	Ala
25	Lys	Tyr	Trp	Val 100	Lys	Asn	Leu	Lys	Lys 105	Leu	Phe	Glu	Ser	Asp 110	Ser	Asp
·	Tyr	Tyr	Lys 115	Pro	Ser	Lys	Leu	Gly 120	Val	Ala	Tyr	Arg	Asn 125	Leu	Arg	Ala
30	Tyr	Gly 130	Ile	Ala	Asn	Asp	Ser 135	Asp	Tyr	Gln	Pro	Thr 140	Val	Thr	Asn	Ala
35	Leu 145		Lys	Phe	Thr	Thr 150	Glu	Ala	Ile	Asn	Lys 155	Leu	Lys	Lys	Pro	Asp 160
	Asp	Ser	Lys	Туг	Phe 165	_	Ile	Leu	Lys	Ser 170		Asp	Ala	Ile	Met 175	_
40	Pro	Gly	Glu	Leu 180		Val	Val	Leu	Gly 185	_	Pro	Gly	Ala	Gly 190	-	Ser
45	Thr	Leu	Leu 195		Thr	Ile	Ala	Val 200		Thr	Туг	Gly	Phe 205		Ile	Gly
	Lys	210		Gln	Ile	Thr	Tyr 215		Gly	r Leu	Ser	220		Asp	Ile	Glu
50	Arg 225		Туг	Arg	Gly	Asp 230		Ile	туг	: Ser	235		Thr	Asp	Val	His 240
55	Phe	e Pro	His	. Leu	Ser 245		. Gly	Asr	Thi	250		ı Phe	e Ala	a Ala	255	J Leu

5	Arg	Thr	Pro	Gln 260	Asn	Arg	Gly	Glu	Gly 265	Ile	Asp	Arg	Glu	Thr 270	Tyr	Ala
	Lys	His	Met 275	Ala	Ser	Val	Tyr	Met 280	Ala	Thr	Tyr	Gly	Leu 285	Ser	His	Thr
10	Arg	Asn 290	Thr	Asn	Val	Gly	Asn 295	Asp	Phe	Val	Arg	300	Val	Ser	Gly	Gly
15	Glu 305	Arg	Lys .	Arg	Val	Ser 310	Ile	Ala	Glu	Ala	Ser 315	Leu	Ser	Gly	Ala	Asn 320
	Ile	Gln	Суз	Trp	Asp 325	Asn	Ala	Thr	Arg	Gly 330	Leu	Asp	Ser	Ala	Thr 335	Ala
20	Leu	Glu	Phe	Ile 340	Arg	Ala	Leu	Lys	Thr 345	Ser	Ala	Thr	Ile	Leu 350	Asp	Thr
25	Thr	Pro	Leu 355	Ile	Ala	Ile	Tyr	G1n 360	Cys	Ser	Gln	Asp	Ala 365	Tyr	Glu	Leu
		370					375			Gly		380				
30	385					390				Glu	395					400
35					405					Leu 410					415	
				420					425	Glu				430		
40			435					440					445			Glu
45	Leu	450		Glu	Ile	Asp	Glu 455	Tyr	Phe	Val	Glu	Cys 460		Arg	Ser	Asn
	Thr 465		Glu	Thr	Tyr	Arg 470		Ser	His	Val	Gly 475	_	Gln	Ser	Asn	480
50	Thr	Arg	Pro	Ser	Ser 485		Tyr	Thr	Val	Ser 490		Phe	Met	. Gln	Val 495	Arg
55	Туг	Val	Ile	Ala 500		Asn	Phe	Leu	Arg 505		Lys	Gly	Asp	9 Pro		Ile

	Pro	Leu	Ile 515	Ser	Ile	Leu	Ser	Gln 520	Leu	Val	Met	Gly	Leu 525	Ile	Leu	Ala
5	Ser	Val 530	Phe	Phe	Asn	Leu	Arg 535	Lys	Ser	Thr	Asp	Thr 540	Phe	Tyr	Phe	Arg
10	Gly 545	Gly	Ala	Leu	Phe	Phe 550	Ser	Val	Leu	Phe	Asn 555	Ala	Phe	Ser	Ser	Leu 560
15	Leu	Glu	Ile	Leu	Ser 565	Leu	Tyr	Glu	Ala	Arg 570	Pro	Ile	Val	Glu	Lys 575	His
	Arg	Lys	Tyr	Ala 580	Leu	Tyr	Arg	Pro	Ser 585	Ala	Asp	Ala	Leu	Ala 590	Ser	Ile
20	Ile	Ser	Glu 595	Leu	Pro	Val	Lys	Leu 600	Leu	Met	Thx	Met	Ser 605	Phe	Asn	Ile
25	Val	Туг 610	Tyr	Phe	Met	Val	Asn 615	Leu	Arg	Arg	Thr	Ala 620	Gly	Asn	Phe	Phe
	Phe 625	Tyr	Trp	Leu	Met	Cys 630	Ala	Ser	Cys	Thr	Leu 635	Val	Met	Ser	His	Met 640
30	Phe	Arg	Ser	Ile	Gly 645	Ala	Val	Thr	Thr	Thr 650	Ile	Ala	Thr	Ala	Met 655	Ser
35	Leu	Ser	Thr	Val 660	Phe	Leu	Leu	Ala	Met 665	Ile	Ile	Tyr	Ala	Gly 670	Phe	Val
	Leu	Pro	Ile 675	Pro	Tyr	Ile	Leu	Gly 680	Ттр	Ser	Arg	Trp	Ile 685	Arg	Tyr	Ile
40	Asn	Pro 690	Val	Thr	Tyr	Ile	Phe 695	Glu	Ser	Leu	Met	Val 700	Asn	Glu	Phe	His
45	Gly 705		Glu	Phe	Glu	Cys 710		Gln	Tyr	Ile	Pro 715		Gly	Pro	Gly	Phe 720
	Glu	Asn	Leu	Pro	Val 725		Asn	Lys	Val	Cys 730		Thr	Val	Gly	Ser 735	Thr
50	Pro	Gly	Ser	Thr 740		Val	Gln	Gly	745		Туг	Ile	Lys	150		Tyr
55	Gln	Phe	Tyr 755		Ser	His	. Lys	760	_	Asn	Phe	Gly	765		· Val	. Ala

	Phe	Ala 770	Val	Phe	Phe	Leu	Gly 775	Val	Tyr	Val	Ala	Leu 780	Thr	Glu	Phe	Asn
5	Lys 785	Gly	Ala	Ser	Gln	Lys 790	Gly	Glu	Ile	Val	Leu 795	Phe	Leu	Lys	Gly	Ser 800
10	Leu	Lys	Lys	His	Lys 805	Arg	Lys	Thr	Ala	Al a 810	Ser	Asn	Lys	Gly	Asp 815	Ile
15	Glu	Ala	Gly	Pro 820	Val	Ala	Gly	Lys	Leu 825	Asp	Tyr	Gln	Asp	Glu 830	Ala	Glu
	Ala	Val	Asn 835	Asn	Glu	Lys	Phe	Thr 840	Glu	Lys	Gly	Ser	Thr 845	Gly	Ser	Val
20	Asp	Phe 850	Pro	Glu	Asn	Arg	Glu 855	Ile	Phe	Phe	Trp	Arg 860	Asp	Leu	Thr	Туг
25	Gln 865	Val	Lys	Ile	Lys	Lys 870	Glu	Asp	Arg	Val	Ile 875	Leu	Asp	His	Val	Asp 880
	Gly	Trp	Val	Lys	Pro 885	Gly	Gln	Ile	Thr	Ala 890	Leu	Met	Gly	Ala	Ser 895	Gly
30	Ala	Gly	Lys	Thr 900	Thr	Leu	Leu	Asn	Cys 905	Leu	Ser	Glu	Arg	Val 910	Thr	Thr
35	Gly	Ile	Ile 915	Thr	Asp	Gly	G1u	Arg 920	Leu	Val	Asn	Gly	His 925	Ala	Leu	Asp
	Ser	Ser 930		Gln	Arg	Ser	Ile 935	Gly	Tyr	Val	Gln	Gln 940		Asp	Val	His
40	Leu 945	Glu	Thr	Thr	Thr	Va1 950		Glu	Ala	Leu	Gln 955		Ser	Ala	Tyr	Leu 960
45	Arg	g Gln	Ser	Asn	Lys 965		: Ser	Lys	Lys	Glu 970	-	Asp	Asp	Tyr	Val 975	Asp
	Туз	· Val	Ile	980		Lev	Glu	Met	Thr 985	_	Туг	Ala	Asp	Ala 990		Val
50	Gly	/ Val	Ala 995	-	Glu	Gly	/ Leu	1000		. G lu	G1r	a Arg	Lys 1005	_	Leu	Thr
55	110	e Gly 1010		Glu	ı Lev	ı Va]	l Ala 1015	-	Pro	Lys	: Le	1020		Phe	e Leu	Asp

	Glu Pro Thr Ser Gly Leu Asp Ser Gln Thr Ala Trp Ser Ile Cys Lys 1025 1030 1035 1040
5	Leu Met Arg Lys Leu Ala Asp His Gly Gln Ala Ile Leu Cys Thr Ile 1045 1050 1055
10	His Gln Pro Ser Ala Leu Ile Met Ala Glu Phe Asp Lys Leu Leu Phe 1060 1065 1070
15	Leu Gln Lys Gly Gly Arg Thr Ala Tyr Phe Gly Glu Leu Gly Glu Asn 1075 1080 1085 Cys Gln Thr Met Ile Asn Tyr Phe Glu Lys Tyr Gly Ala Asp Pro Cys 1090 1095 1100
20	Pro Lys Glu Ala Asn Pro Ala Glu Trp Met Leu Gln Val Val Gly Ala 1105 1110 1115 1120
<i>2</i> 5	Ala Pro Gly Ser His Ala Lys Gln Asp Tyr Phe Glu Val Trp Arg Asn 1125 1130 1135
30	Ser Ser Glu Tyr Gln Ala Val Arg Glu Glu Ile Asn Arg Met Glu Ala 1140 1145 1150 Glu Leu Ser Lys Leu Pro Arg Asp Asn Asp Pro Glu Ala Leu Leu Lys 1155 1160 1165
35	Tyr Ala Ala Pro Leu Trp Lys Gln Tyr Leu Leu Val Ser Trp Arg Thr 1170 1175 1180 Ile Val Gln Asp Trp Arg Ser Pro Gly Tyr Ile Tyr Ser Lys Leu Ile
40	1185 1190 1195 1200 Leu Val Ile Ser Ser Leu Phe Ile Gly Phe Ser Phe Phe Lys Ser 1205 1210 1215
45	Lys Asn Asn Leu Gln Gly Leu Gln Ser Gln Met Leu Ala Val Phe Met 1220 1225 1230
	Phe Phe Val Pro Phe Thr Thr Phe Ile Asp Gln Met Leu Pro Tyr Phe 1235 1240 1245
50	Val Lys His Arg Ala Val Tyr Glu Val Arg Glu Ala Pro Ser Arg Thr 1250 1255 1260
55	Phe Ser Trp Phe Ala Phe Ile Ala Gly Gln Ile Thr Ser Glu Ile Pro 1265 1270 1275 1280

	Phe Gl	n Ile		Val 285	Gly	Thr	Ile		Tyr 290	Phe	Суѕ	Trp		Tyr 295	Pro
5	Val Gl	y Leu	Tyr	Ala	Asn	Ala	Glu	Pro	Thr	Asp	Ser	Val	Asn	Ser	Arg
			L300					305		_			310		
10	Gly Va	l Leu 1315	Met	Trp	Met		Leu 1320	Thr	Ala	Phe	_	Val 1325	Tyr	Thr	Ser
	Thr Me	_	Gln	Leu		Ile .335	Ser	Leu	Asn		Leu .340	Ile	Asp	Asn	Ala
15	Ala As 1345	n Leu	Ala		Thr 1350	Leu	Phe	Thr		Cys 1355	Leu	Met	Phe	-	G1y
20	Val Le	eu Ala	_	Pro 1365	Asn	Val	Ile		Gly 1370	Phe	Trp	Ile		Met 1375	тут
25	Arg C		Pro 1380	Phe	Thr	Tyr		Ile 1385	Gln	Ala	Ile		Ser 1390	Thr	Gly
	Leu A	la Asn 1395		Lys	Val		Cys 1400	Ala	Pro	Arg		Leu 1405	Val	Thr	Leu
30	Lys P:	ro Pro 10	Met	Gly		Thr 1415	Cys	Ser	Ser		Ile 1420		Pro	Tyr	Thr
35	Glu A 1425	la Ala	Gly		Тут 1430	Phe	Ser	Thr		Ser 1435	_	Gly	Thr		Ser 1440
	Val C	ys Arg		Asp 1445		Thr	Asn		Phe 1450		Glu	Ser		Asn 1455	
40	Leu P	he Ser	Gln 1460	Arg	Trp	Arg		Phe 1465	_	Ile	Ph∈		Ala 1470		Ile
45	Gly I	le Asr 1475		Ile	Leu	Thr	11e		Phe	Tyr	Tr	Leu 1485		Arg	Val
		ys Gl ₎ 90	/ Asn	Arg	Glu	Lys 1499	_	Met	: Lys	: Lys	1				
50															
	<210>	91 1511													
55	<212> <213>	PRT Sacc	haron	тусея	cei	evis	siae								

	<400>	> 91														
5	Met I	Pro (Glu .	Ala	Lys 5	Leu	Asn	Asn	Asn	Val 10	Asn	Asp	Val	Thr	Ser 15	Tyr
10	Ser S	Ser I	Ala	Ser 20	Ser	Ser	Thr	Glu	Asn 25	Ala	Ala	Asp	Leu	His 30	Asn	Tyr
	Asn (Gly :	Phe 35	Asp	Glu	His	Thr	Glu 40	Ala	Arg	Ile	Gln	Lys 45	Leu	Ala	Arg
15	Thr I	Leu ' 50	Thr	Ala	Gln	Ser	Met 55	Gln	Asn	Ser	Thr	Gln 60	Ser	Ala	Pro	Asn
20	Lys :	Ser .	Asp	Ala	Gln	Ser 70	Ile	Phe	Ser	Ser	Gly 75	Val	Gl u	Gly	Val	Asn 80
	Pro :	Ile	Phe	Ser	Asp 85	Pro	Gl u	Ala	Pro	Gly 90	Tyr	Asp	Pro	Lys	Leu 95	Asp
25	Pro i	Asn	Ser	Glu 100	Asn	Phe	Ser	Ser	Ala 105	Ala	Trp	Val	Lys	Asn 110	Met	Ala
30	His 1		Ser 115	Ala	Ala	Asp	Pro	Asp 120	Phe	Tyr	Lys	Pro	Тут 125	Ser	Leu	Gly
	Cys	Ala 130	Trp	Lys	Asn	Leu	Ser 135	Ala	Ser	Gly	Ala	Ser 140	Ala	Asp	Val	Ala
35	Tyr (Gln	Ser	Thr	Val	Val 150	Asn	Ile	Pro	Tyr	Lys 155	Ile	Leu	Lys	Ser	Gly 160
40	Leu	Arg	Lys	Phe	Gln 165	Arg	Ser	Lys	G1u	Thr 170	Asn	Thr	Phe	Gln	Ile 175	
	Lys	Pro	Met	Asp 180	Gly	Суs	Leu	Asn	Pro 185	Gly	Glu	Leu	Leu	Val 190		Leu
45	Gly	Arg	Pro 195		Ser	Gly	Суз	Thr 200		Leu	Leu	Lys	Ser 205		Ser	Ser
50	Asn	Thr 210	His	Gly	Phe	Asp	Leu 215		Ala	Asp	Thr	Lys 220		Ser	Туг	Ser
	Gly 225	Tyr	Ser	G1y	Asp	Asp 230		Lys	Lys	His	Phe 235		Gly	Glu	(Val	Val 240
55	Tyr	Asn	Ala	Glu	Ala	Asp	Val	His	Leu	Pro	His	Leu	Thr	Val	. Phe	Glu

		245	250	255
5	Thr Leu Val Th	r Val Ala Arg Leu Lys 0 265	Thr Pro Gln Asn Arg	Ile Lys
10	Gly Val Asp Ar 275	g Glu Ser Tyr Ala Asn 280	His Leu Ala Glu Val 285	Ala Met
	Ala Thr Tyr Gl 290	y Leu Ser His Thr Arg 295	Asn Thr Lys Val Gly 300	Asn Asp
15	Ile Val Arg Gl 305	y Val Ser Gly Gly Glu 310	Arg Lys Arg Val Ser 315	Ile Ala 320
20	Glu Val Ser Il	e Cys Gly Ser Lys Phe 325	Gln Cys Trp Asp Asn 330	Ala Thr 335
	Arg Gly Leu As	p Ser Ala Thr Ala Leu 0 345		_
25	Thr Gln Ala As	p Ile Ser Asn Thr Ser 360	Ala Thr Val Ala Ile 365	Tyr Gln
30	Cys Ser Gln As	p Ala Tyr Asp Leu Phe 375	Asn Lys Val Cys Val 380	Leu Asp
	Asp Gly Tyr Gl 385	n Ile Tyr Tyr Gly Pro 390	Ala Asp Lys Ala Lys 395	Lys Tyr 400
35	Phe Glu Asp Me	et Gly Tyr Val Cys Pro 405	Ser Arg Gln Thr Thr 410	Ala Asp 415
40	Phe Leu Thr Se	er Val Thr Ser Pro Ser 20 425		
	Met Leu Lys Ly 435	s Gly Ile His Ile Pro 440	Gln Thr Pro Lys Glu 445	Met Asn
45	Asp Tyr Trp Va 450	al Lys Ser Pro Asn Tyr 455	Lys Glu Leu Met Lys 460	Glu Val
50	Asp Gln Arg Le 465	eu Leu Asn Asp Asp Glu 470	a Ala Ser Arg Glu Ala 475	lle Lys 480
ee.	Glu Ala His Il	le Ala Lys Gln Ser Lys 485	Arg Ala Arg Pro Ser 490	Ser Pro 495
55	Tyr Thr Val Se	er Tyr Met Met Gln Val	Lys Tyr Leu Leu Ile	e Arg Asn

				500					505					510		
5	Met 1		Arg 515	Leu	Arg	Asn	Asn	Ile 520	Gly	Phe	Thr	Leu	Phe 525	Met	Ile	Leu
10 ·	Gly A	Asn 530	Cys	Ser	Met	Ala	Leu 535	Ile	Leu	Gly	Ser	Met 540	Phe	Phe	Lys	Ile
	Met I 545	Lys	Lys	Gly	Asp	Thr 550	Ser	Thr	Phe	Туг	Phe 555	Arg	Gly	Ser	Ala	Met 560
15	Phe I	Phe	Ala	Ile	Leu 565	Phe	Asn	Ala	Phe	Ser 570	Ser	Leu	Leu	Glu	Ile 575	Phe
20	Ser 1	Leu	Tyr	Glu 580	Ala	Arg	Pro	Ile	Thx 585	Glu	Lys	His	Arg	Thr 590	Tyr	Ser
•	Leu '	Туг	His 595	Pro	Ser	Ala	Asp	Ala 600	Phe	Ala	Ser	Val	Leu 605	Ser	Glu	Ile
25	Pro	Ser 610	Lys	Leu	Ile	Ile	Ala 615	Val	Cys	Phe	Asn	Ile 620	Ile	Phe	Тyr	Phe
30	Leu ' 625	Val	Asp	Phe	Arg	Arg 630	Asn	Gly	Gly	Val	Phe 635	Phe	Phe	Туr	Leu	Leu 640
	Ile	Asn	Ile	Val	Ala 645		Phe	Ser	Met	Ser 650		Leu	Phe	Arg	Cys 655	Val
35	Gly	Ser	Leu	Thr 660	Lys	Thr	Leu	Ser	Glu 665		Met	Val	Pro	Ala 670		Met
40	Leu	Leu	Leu 675	Ala	Leu	Ser	Met	Tyr 680		Gly	Phe	Ala	1le 685		Lys	Lys
	Lys	Ile 690	Leu	Arg	Trp	Ser	695	_	Ile	Trp	Туг	700		Pro	Leu	ı Ala
45	Tyr 705	Leu	Phe	Glu	Ser	710		Ile	e Asn	Glu	715		Gly	r Ile	e Lys	720
50	Pro	Суз	Ala	Glu	Тут 725		l Pro	Arg	g Gly	730		туг	Ala	a Asr	1 Ile 739	e Ser
	Ser	Thr	Glu	740		l Cys	s Thr	· Val	1 Va]		y Ala	a Val	l Pro	750		n Asp
55	Tyr	Val	Let	Gly	, Ası	o Ası	o Phe	e Ile	e Arg	g Gly	y Th	r Ty	c Gl	а Ту	г Ту	r His

		755				760					765			
. 5	Lys Asp) Lys Tr	p Arg	Gly	Phe 775	Gly	Ile	Gly	Met	Ala 780	Tyr	Val	Val	Phe
10	Phe Pho 785	e Phe Va	l Tyr	Leu 790	Phe	Leu	Суз	Glu	Туr 795	Asn	Glu	Gly	Ala	Lys 800
	Gln Ly	s Gly Gl	u Ile 805	Leu	Val	Phe	Pro	Arg 810	Ser	Ile	Val	Lys	Arg 815	Met
15	Lys Ly	s Arg Gl 82		Leu	Thr	Glu	Lys 825	Asn	Ala	Asn	Asp	Pro 830	Glu	Asn
20	Val Gl	y Glu Ai 835	g Ser	Asp	Leu	Ser 840	Ser	Asp	Arg	Lys	Met 845	Leu	Gln	Glu
	Ser Se 85	r Glu Gi 0	u Glu	Ser	Asp 855	Thr	Tyr	Gly	Glu	Ile 860	Gly	Leu	Ser	Lys
25	Ser Cl 865	u Ala I	e Phe	His 870	-	Arg	Asn	Leu	Суя 875	Туг	Glu	Val	Gln	Ile 880
30	Lys Al	a Glu T	r Arg 885	_	Ile	Leu	Asn	Asn 890	Val	Asp	Gly	Trp	Val 895	_
	Pro Gl	y Thr L	eu Thr	Ala	Leu	Met	Gly 905		Ser	Gly	Ala	Gly 910	_	Thr
35	Thr Le	u Leu A 915	вр Суз	Leu	Ala	Glu 920	-	Val	Thr	Met	Gly 925		Ile	Thr
40	Gly As	p Ile L	eu Val	l Asn	Gly 935		Pro	Arg	Asp	Lys 940		Phe	Pro	Arg
	Ser II 945	e Gly T	yr Cy:	950		Gln	Asp	Leu	955		Lys	Thr	· Ala	960
45	Val A	g Glu S	er Let 969		J Phe	e Ser	Ala	970		ı Arg	Glr	Pro	975	
50	Val S	er Ile G	lu G1: 80	u Lys	s Asr	Arg	985		l Gli	ı Glu	val	990		; Ile
	Leu G	lu Met G 995	lu Ly	з Туз	c Ala	1000		a Val	L Vai	l Gly	7 Va:		a Gly	y Glu
55	Gly L	eu Asn \	al Gl	u Gli	n Arg	j Lys	s Arg	g Lei	ı Th	r Ile	e Gly	y Vai	l Gl	ı Leu

	1010	1015	1020	
5	Thr Ala Lys Pro 1025	Lys Leu Leu Val Ph 1030	ne Leu Asp Glu Pro Th 1035 '	r Ser Gly 1040
10		Thr Ala Trp Ser Il 1045	le Cys Gln Leu Met Ly 1050	s Lys Leu 1055
	Ala Asn His Gly 1060	Gln Ala Ile Leu Cy 106	ys Thr Ile His Gln Pr 55 107	
15	Ile Leu Met Gln 1075	Glu Phe Asp Arg Le	eu Leu Phe Met Gln Ar 1085	g Gly Gly
20	Lys Thr Val Tyr 1090	Phe Gly Asp Leu Gl 1095	ly Glu Gly Cys Lys Th 1100	r Met Ile
	Asp Tyr Phe Glu 1105	Ser His Gly Ala Hi 1110	is Lys Cys Pro Ala As 1115	p Ala Asn 1120
25		Met Leu Glu Val Va 1125	al Gly Ala Ala Pro Gl 1130	y Ser His 1135
30	Ala Asn Gln Asp 1140		rp Arg Asn Ser Glu Gl 45 115	
	Ala Val Gln Ser 1155	Glu Leu Asp Trp Me	et Glu Arg Glu Leu Pr 1165	o Lys Lys
35	Gly Ser Ile Thr 1170	Ala Ala Glu Asp Ly 1175	ys His Glu Phe Ser Gl 1180	n Ser Ile
40	Ile Tyr Gln Thr 1185	Lys Leu Val Ser Il 1190	le Arg Leu Phe Gln Gl 1195	n Tyr Trp 1200
_		Tyr Leu Trp Ser Ly 1205	ys Phe Ile Leu Thr Il 1210	le Phe Asn 1215
45	Gln Leu Phe Ile 1220		he Lys Ala Gly Thr Se 25 123	
50	Gly Leu Gln Asn 1235	Gln Met Leu Ala Va 1240	al Phe Met Phe Thr Va 1245	al Ile Phe
55	Asn Pro Ile Leu 1250	Gln Gln Tyr Leu Pi 1255	ro Ser Phe Val Gln G 1260	ln Arg Asp
55	Leu Tyr Glu Ala	Arg Glu Arg Pro Se	er Arg Thr Phe Ser Th	rp Ile Ser

	1265	1270	1275	1280
5	Phe Ile Phe Ale	a Gln Ile Phe Val	Glu Val Pro Trp Asn 1290	Ile Leu Ala 1295
10	Gly Thr Ile Al		Tyr Tyr Pro Ile Gly	Phe Tyr Ser 310
	Asn Ala Ser Ala 1315	a Ala Gly Gln Leu 1320	His Glu Arg Gly Ala 1325	Leu Phe Trp
15	Leu Phe Ser Cy	vs Ala Phe Tyr Val 1335	Tyr Val Gly Ser Met 1340	Gly Leu Leu
20	Val Ile Ser Ph 1345	ne Asn Gln Val Ala 1350	Glu Ser Ala Ala Asn 1355	Leu Ala Ser 1360
	Leu Leu Phe Th	nr Met Ser Leu Ser 1365	Phe Cys Gly Val Met 1370	Thr Thr Pro 1375
25	Ser Ala Met Pr 138		Phe Met Tyr Arg Val 1385 1	Ser Pro Leu
30	Thr Tyr Phe Il 1395	le Gln Ala Leu Leu 1400	Ala Val Gly Val Ala 1405	Asn Val Asp
	Val Lys Cys Al 1410	la Asp Tyr Glu Leu 1415	Leu Glu Phe Thr Pro 1420	Pro Ser Gly
35	Met Thr Cys Gl 1425	ly Gln Tyr Met Glu 1430	Pro Tyr Leu Gln Leu 1435	Ala Lys Thr 1440
40	Gly Tyr Leu Th	hr Asp Glu Asn Ala 1445	Thr Asp Thr Cys Ser 1450	Phe Cys Gln 1455
	Ile Ser Thr Th		Ala Asn Val Asn Ser 1465	Phe Tyr Ser 1470
45	Glu Arg Trp Ar 1475	rg Asn Tyr Gly Ile 1480	Phe Ile Cys Tyr Ile 1485	
50	Tyr Ile Ala Gl 1490	ly Val Phe Phe Tyr 1495	Trp Leu Ala Arg Val	Pro Lys Lys
	Asn Gly Lys Le	eu Ser Lys Lys 1510		
55				

	<210	> 92	:													
5	<211	> 15	01													
	<212	> PF	T													
	<213	> Sa	ccha	romy	ces	cere	visi	ae								
	<400	> 92	?													
10	Met	Ser	Asn	Ile	Lys	Ser	Thr	Gln	Asp	Ser	Ser	His	Asn	Ala	Val	Ala
	1				5					10					15	
	Arg	Ser	Ser	Ser	Ala	Ser	Phe	Ala	Ala	Ser	Glu	Glu	Ser	Phe	Thr	Gly
15				20					25					30		
	Ile	Thr	His	Asp	Lys	Asp	Glu		Ser	Asp	Thr	Pro		Asp	Lys	Leu
			35					40					45			
20	m1	•	W - L	•	mt	01			•		m)			~1		_
	Thr		Met	ren	Thr	GIY		Ата	Arg	Asp	unr		ser	GIN	Пе	ser
		50					55					60				
	Δla	Thr	Val	Sar	Glu	Mot	λla	Pro	Acn	T/al	Val	Sar	Tare	17a]	Clu	Cor
25	65	1111	Var	DCI	GIU	70	A.u	110	тэр	Vai	75	J CI	пуз	Val	GIU	80
	0.5					,,					,,					00
	Phe	Ala	Asp	Ala	Leu	Ser	Arg	His	Thr	Thr	Arq	Ser	Gly	Ala	Phe	Asn
			_		85		•			90	•				95	
30																
	Met	Asp	Ser	Asp	Ser	Asp	Asp	Gly	Phe	Asp	Ala	His	Ala	Ile	Phe	G1u
				100					105					110		
35	Ser	Phe	Val	Arg	Asp	Ala	Asp	Glu	Gln	Gly	Ile	His	Ile	Arg	Lys	Ala
33			115					120					125			
	~ 4					_		_		_				_	_	_
	GIĀ		Thr	TTE	GLu	Asp		ser	Ala	гÀг	GTA		Asp	Ala	Ser	Ala
		130					135					140				
40	Leu	Glu	Gly	Ala	Thr	Phe	Glv	Acn	Tle	Len	Cve	T.011	Pro	Len	Thr	Tlo
	145	014	O.J	1114	****	150	-1	11011		200	155	Deu	110	DCu	****	160
	Phe	Lys	Gly	Ile	Lys	Ala	Lys	Arg	His	Gln	Lys	Met	Arg	Gln	Ile	Ile
45		_	_		165		_			170			_		175	
	Ser	Asn	Val	Asn	Ala	Leu	Ala	Glu	Ala	Gly	Glu	Met	Ile	Leu	Val	Leu
				180					185					190		
50																
	Gly	Arg	Pro	Gly	Ala	Gly	Cys	Ser	Ser	Phe	Leu	Lys	Val	Thr	Ala	Gly
			195					200					205			
55	Glu		Asp	Gln	Phe	Ala			Val	Ser	Gly			Ala	Туг	Asp
		210	•				215					220	ı			

5	Gly : 225	Ile	Pro	Gln	Glu	Glu 230	Met	Met	Lys	Arg	Tyr 235	Lys	Ala	Asp	Val	Ile 240
	Tyr i	Asn	Gly	Glu	Leu 245	Ąsp	Val	His	Phe	Pro 250	Tyr	Leu	Thr	Val	Lys 255	Gln
10	Thr 1	Leu	Asp	Phe 260	Ala	Ile	Ala	Cys	Lys 265	Thr	Pro	Ala	Leu	Arg 270	Val	Asn
15	Asn '	Val	Ser 275	Lys	Lys	Glu	Tyr	Ile 280	Ala	Ser	Arg	Arg	Asp 285	Leu	Tyr	Ala
	Thr	Ile 290	Phe	Gly	Leu	Arg	His 295	Thr	Tyr	Asn	Thr	Lys 300	Val	Gly	Asn	Asp
20	Phe '	Val	Arg	Gly	Val	Ser 310	Gly	Gly	Glu	Arg	Lys 315	Arg	Val	Ser	Ile	Ala 320
25	Glu .	Ala	Leu	Ala	Ala 325	Lys	Gly	Ser	Ile	Туг 330	Cys	Trp	Asp	Asn	Ala 335	Thr
	Arg	Gly	Leu	Asp 340	Ala	Ser	Thr	Ala	Leu 345	Glu	Tyr	Ala	Lys	Ala 350	Ile	Arg
30	Ile	Met	Thr 355	Asn	Leu	Leu	Lys	Ser 360	Thr	Ala	Phe	Val	Thr 365	Ile	Tyr	Gln
35	Ala	Ser 370	Glu	Asn	Ile	Tyr	Glu 375	Thr	Phe	Asp	Lys	Val 380	Thr	Val	Leu	Tyr
40	Ser 385	Gly	Lys	Gln	Ile	Туг 390	Phe	Gly	Leu	Ile	His 395	Glu	Ala	Lys	Pro	туг 400
	Phe	Ala	Lys	Met	Gly 405	Tyr	Leu	Cys	Pro	Pro 410	Arg	Gln	Ala	Thr	Ala 415	Glu
45	Phe	Leu	Thr	Ala 420	Leu	Thr	Asp	Pro	Asn 425	Gly	Phe	His	Leu	Ile 430	Lys	Pro
50	Gly	туг	Glu 435		Lys	Val	Pro	Arg 440		Ala	Glu	Glu	Phe 445		Thr	Туг
	Trp	Leu 450	Asn	Ser	Pro	Glu	Phe 455		Gln	Met	Lys	Lys 460		Ile	Ala	Ala
55	Tyr 465	Lys	Glu	Lys	Val	Asn 470		Glu	Lys	Thr	Lys 475		Val	Туr	Asp	Glu 480

5	Ser	Met	Ala	Gln	Glu 485	Lys	Ser	Lys	Tyr	Th <i>r</i> 490	Arg	Lys	Lys	Ser	Tyr 495	Tyr
3	Thr	Val	Ser	Tyr 500	Trp	Glu	Gln	Val	Lys 505	Leu	Cys	Thr	Gln	Arg 510	Gly	Phe
10	Gln	Arg	Ile 515	Tyr	Gly	Asn	Lys	Ser 520	Tyr	Thr	Val	Ile	Asn 525	Val	Cys	Ser
15	Ala	Ile 530	Ile	Gln	Ser	Phe	Ile 535	Thr	Gly	Ser	Leu	Phe 540	Туг	Asn	Thr	Pro
	Ser 545	Ser	Thr	Ser	Gly	Ala 550	Phe	Ser	Arg	Gly	Gly 555	Val	Leu	Tyr	Phe	Ala 560
20	Leu	Leu	туг	Туг	Ser 565	Leu	Met	Gly	Leu	Ala 570	Asn	Ile	Ser	Phe	Glu 575	His
25	Arg	Pro	Ile	Leu 580	Gln	Lys	His	Lys	Gly 585	Tyr	Ser	Leu	Тут	His 590	Pro	Ser
	Ala	Glu	Ala 595	Ile	Gly	Ser	Thr	Leu 600	Ala	Ser	Phe	Pro	Phe 605	Arg	Met	Ile
30	Gly	Leu 610	Thr	Cys	Phe	Phe	Ile 615	Ile	Leu	Phe	Phe	Leu 620	Ser	Gly	Leu	His
35	Arg 625		Ala	Gly	Ser	Phe 630	Phe	Thr	Ile	Tyr	Leu 635	Phe	Leu	Thr	Met	Cys 640
	Ser	Glu	Ala	Ile	Asn 645	Gly	Leu	Phe	G1u	Met 650	Val	Ser	Ser	Val	Суз 655	Asp
40	Thr	Leu	Ser	Gln 660	Ala	Asn	Ser	Ile	Ser 665	Gly	Ile	Leu	Met	Met 670	Ser	Ile
45	Ser	Met	Tyr 675		Thr	Tyr	Met	Ile 680		Leu	Pro	Ser	Met 685		Pro	Trp
50	Phe	690		Ile	Ser	Tyr	Val 695		Pro	Ile	Arg	Туг 700		Phe	Glu	Ser
	Met 705		Asn	Ala	Glu	Phe 710		Gly	Arg	His	Met 715		Cys	Ala	Asn	720
55	Leu	val	Pro	Ser	G1y 725	-	/ Asp	Туг	Asp	730		Ser	Asp	Asp	735	Lys

	Val (Cys	Ala	Phe 740	Val	Gly	Ser	Lys	Pro 745	Gly	Gln	Ser	Tyr	Val 750	Leu	Gly
5	Asp (Asp	Ту г 755	Leu	Lys	Asn	Gln	Phe 760	Gln	Туг	Val	Tyr	Lys 765	His	Thr	Trp
10	Arg .	Asn 770	Phe	Gly	Ile	Leu	Trp 775	Cys	Phe	Leu	Leu	Gly 780	Tyr	Val	Val	Leu
15	Lys 785	Val	Ile	Phe	Thr	Glu 790	Tyr	Lys	Arg	Pro	Val 795	Lys	Gly	Gly	Gly	Asp 800
·	Ala	Leu	Ile	Phe	Lys 805	Lys	Gly	Ser	Lys	Arg 810	Phe	Ile	Ala	His	Ala 815	Asp
20	Glu	Glu	Ser	Pro 820	Asp	Asn	Val	Asn	Asp 825	Ile	Asp	Ala	Lys	Glu 830	Gln	Phe
25			835			_		840		Glu			845			
		850					855	_		Val	_	860				-
30	865					870				Asn	875					880
35		-			885					61u 890					895	
40				900					905					910		Gly
			915					920					925	•		Val
45		930)				935	i				940)			s Leu
50	945					950)				955	•				960 Leu
					965	;				970)				97	5
55	GIY	met	. GIV	980 980		. A16	a G11	ı Alá	98!		. GI)	, GT	u Vd	99		s Gly

	Leu Asn	Val Glu 995	Gln A		Lys Leu 000	Ser Ile (Gly Val (1005	Slu Leu Va	1
5	Ala Lys 1010	Pro Asj	Leu I	eu Leu 1015	Phe Leu		Pro Thr 9	Ser Gly Le	eu
10	Asp Ser 1025	Gln Se		Erp Ala	Ile Ile	Gln Leu 1035	Leu Arg 1	Lys Leu Se 104	
15	Lys Ala	Gly Gl	n Ser 1 1045	lle Leu	_	Ile His .050	Gln Pro	Ser Ala Th	ır
	Leu Phe	Glu Gl		Asp Arg	Leu Leu 1065	Leu Leu		Gly Gly G1 070	ln
20		Tyr Ph 1075	e Gly A	-	Gly Lys .080	Asn Ser	Ala Thr 1085	Ile Leu As	sn
25	Tyr Phe 1090		g Asn (Gly Ala 1095	Arg Lys		Ser Ser 100	Glu Asn P	ro
	Ala Glu 1105	Tyr Il		Glu Ala 110	Ile Gly	Ala Gly 1115	Ala Thr	Ala Ser Va	
30	Lys Glu	Asp Tr	p His (Glu Lys	_	Asn Ser 1130	Val Glu	Phe Glu G 1135	ln
35	Thr Lys	Glu Ly 114		Gln Asp	Leu Ile 1145			Lys Gln G	lu
	Thr Lys	Ser Gl 1155	u Val		Lys Pro 1160	Ser Lys	Tyr Ala 1165	Thr Ser T	уr
40	Ala Tyr 1170		e Arg	Tyr Val 1175	Leu Ile		Ser Thr 1180	Ser Phe T	rp
45	Arg Ser 1185	c Leu As		Ile Met 190		Met Met 1195		Leu Val G	3ly 200
	Gly Let	ı Tyr I	le Gly 1205	Phe Thr	Phe Phe	Asn Val	Gly Lys	Ser Tyr V 1215	J al
50	Gly Le	u Gln A:		Met Phe	Ala Ala 1225			Ile Leu S 1230	Ser
55	Ala Pro	o Ala M 1235	et Asn	Gln Ile	Gln Gly 1240	y Arg Ala	Ile Ala 1245	Ser Arg (Glu

5	Leu Phe Glu Val Arg Glu Ser Gln Ser Asn Met Phe His Trp Ser Leu 1250 1255 1260
	Val Leu Ile Thr Gln Tyr Leu Ser Glu Leu Pro Tyr His Leu Phe Phe 1265 1270 1275 1280
10	Ser Thr Ile Phe Phe Val Ser Ser Tyr Phe Pro Leu Arg Ile Phe Phe 1285 1290 1295
15	Glu Ala Ser Arg Ser Ala Val Tyr Phe Leu Asn Tyr Cys Ile Met Phe 1300 1305 1310
	Gln Leu Tyr Tyr Val Gly Leu Gly Leu Met Ile Leu Tyr Met Ser Pro 1315 1320 1325
20	Asn Leu Pro Ser Ala Asn Val Ile Leu Gly Leu Cys Leu Ser Phe Met 1330 1335 1340
25	Leu Ser Phe Cys Gly Val Thr Gln Pro Val Ser Leu Met Pro Gly Phe 1345 1350 1355 1360
	Trp Thr Phe Met Trp Lys Ala Ser Pro Tyr Thr Tyr Phe Val Gln Asn 1365 1370 1375
30	Leu Val Gly Ile Met Leu His Lys Lys Pro Val Val Cys Lys Lys Lys 1380 1385 1390
35	Glu Leu Asn Tyr Phe Asn Pro Pro Asn Gly Ser Thr Cys Gly Glu Tyr 1395 1400 1405
40	Met Lys Pro Phe Leu Glu Lys Ala Thr Gly Tyr Ile Glu Asn Pro Asp 1410 1415 1420
40	Ala Thr Ser Asp Cys Ala Tyr Cys Ile Tyr Glu Val Gly Asp Asn Tyr 1425 1430 1435 1440
45	Leu Thr His Ile Ser Ser Lys Tyr Ser Tyr Leu Trp Arg Asn Phe Gly 1445 1450 1455
50	Ile Phe Trp Ile Tyr Ile Phe Phe Asn Ile Ile Ala Met Val Cys Val 1460 1465 1470
	Tyr Tyr Leu Phe His Val Arg Gln Ser Ser Phe Leu Ser Pro Val Ser 1475 1480 1485
55	Ile Leu Asn Lys Ile Lys Asn Ile Arg Lys Lys Gln 1490 1495 1500

Claims

- A method for selectively modulating the activity of ABC transporters by influencing the dimerization of the nucleotide binding domains comprising the use of:
 - a) a polypeptide consisting of 5 to 50 amino acids comprising the D loop sequence of an ABC transporter,
 - b) a polypeptide consisting of the D loop sequence of an ABC transporter,
 - c) a peptide mimetic of any of the polypeptides of a) or b), or
 - d) an antisense peptide of the polypeptdes of a) or b).

10

15

5

- A method for selectively modulating the activity of ABC transporters by influencing the dimerization of the nucleotide binding domains according to claim 1 comprising the use of:
- a) a polypeptide consisting of 5 to 50 amino acids comprising the amino acid sequence represented in any of SEQ ID NOs 1 to 43,
 - b) a polypeptide consisting of the amino acid sequence as represented in any of SEQ ID NOs 1 to 43 or a functional homologue thereof,
 - c) a peptide mimetic of any of the polypeptides of a) or b), or
 - d) an antisense peptide of the polypeptides of a) or b).

20

25

- 3. A method for selectively modulating the activity of an ABC transporter according to claim 1 or 2, wherein said ABC transporter belongs to the group of multidrug transporter/P-glycoproteins comprising the use of:
 - a) a polypeptide consisting of 5 to 50 amino acids comprising the amino acid sequence represented in any of SEQ ID NOs 1 to 3.
 - b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 1 to 3 or a functional homologue thereof,
 - c) a peptide mimetic of any of the polypeptides of a) or b), or
 - d) an antisense peptide of the peptide of a) or b).

30

- 4. A method for selectively modulating the activity of an ABC transporter according to claim 1 or 2, wherein said ABC transporter belongs to the group of the multidrug resistance associated proteins comprising the use of:
 - a) a polypeptide consisting of 5 to 50 amino acids comprising the amino acid sequence represented in any of SEQ ID NOs 4 to 15,
 - b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 4 to 15, or a functional homologue thereof,
 - c) a peptide mimetic of any of the polypeptides of a) or b), or
 - d) an antisense peptide of the peptide of a) or b).

40

45

35

- 5. A method for selectively modulating the activity of an ABC transporter according to claim 1 or 2, wherein said ABC transporter is a bacterial transporter comprising the use of:
 - a) a polypeptide consisting of 5 to 50 amino acids comprising the amino acid sequence represented in any of SEQ ID NOs 29, 37, 38 or 39,
 - b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 29, 37, 38 or 39, or a functional homologue thereof,
 - c) a peptide mimetic of any of the polypeptides of a) or b), or,
 - d) an antisense peptide of the peptide of a) or b).

50

- 6. A method for selectively modulating the activity of an ABC transporter according to claim 1 or 2, wherein said ABC transporter is a fungal transporter comprising the use of:
 - a) a polypeptide consisting of 5 to 50 amino acids comprising the amino acid sequence represented in any of SEQ ID NOs 40, 41 or 42.
 - b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 40, 41 or 42, or a functional homologue thereof,
 - c) a peptide mimetic of any of the polypeptides of a) or b), or

d) an antisense peptide of the peptide of a) or b).

5

10

15

25

30

35

40

45

50

- 7. A method for selectively modulating the activity of an ABC transporter according to claim 1 or 2, wherein said ABC transporter is a protozoal transporter comprising the use of:
 - a) a polypeptide consisting of 5 to 50 amino acids comprising the amino acid sequence represented in any of SEQ ID NOs 2, 8 or 43,
 - b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 2, 8, or 43, or a functional homologue thereof,
 - c) a peptide mimetic of any of the polypeptides of a) or b), or,
 - d) an antisense peptide of the peptide of a) or b).
- 8. A method according to any of claims 5 to 7 wherein said ABC transporter is involved in bacterial, fungal or protozoal infection of a mammal.
- 9. A method according to any of claims 5 to 7 wherein said ABC transporter is involved in the induction of resistance to antibiotics or drugs in a mammal.
- 10. Method for preventing, treating or alleviating diseases diseases associated with the functionality of a human ABCtransporter comprising the use of:
 - a) a polypeptide consisting of 5 to 50 amino acids comprising the amino acid sequence represented in any of SEQ ID NOs 1 to 36.
 - b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 1 to 36, or a functional homologue thereof,
 - c) a peptide mimetic of any of the polypeptides of a) or b), or,
 - d) an antisense peptide of the peptide of a) or b).
 - 11. Method for preventing, treating or alleviating diseases related with bacterial infections comprising the use of:
 - a) a polypeptide consisting of 5 to 50 amino acids comprising the amino acid sequence represented in any of SEQ ID NOs 29, 37, 38 or 39.
 - b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 29, 37, 38 or 39, or a functional homologue thereof,
 - c) a peptide mimetic of any of the polypeptides of a) or b), or,
 - d) an antisense peptide of the peptide of a) or b).
 - 12. Method for preventing, treating or alleviating diseases related with fungal infections comprising the use of:
 - a) a polypeptide consisting of 5 to 50 amino acids comprising the amino acid sequence represented in any of SEQ ID NOs 40 to 42,
 - b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 40 to 42, or a functional homologue thereof,
 - c) a peptide mimetic of any of the polypeptides of a) or b), or,
 - d) an antisense peptide of the peptide of a) or b).
 - 13. Method for preventing, treating or alleviating diseases related with protozoal infections comprising the use of:
 - a) a polypeptide consisting of 5 to 50 amino acids comprising the amino acid sequence represented in any of SEQ ID NOs 2, 8 or 43,
 - b) a polypeptide consisting of the amino acid sequence represented in any of SEQ ID NOs 2, 8, or 43, or a functional homologue thereof,
 - c) a peptide mimetic of any of the polypeptides of a) or b), or,
 - d) an antisense peptide of the peptide of a) or b).
 - 14. A method for identifying compounds which selectively bind to or selectively modulate the properties of ABC transporters, which method comprises:

- a) contacting a compound to be tested with a polypeptide as defined in any of claims 1 to 7, or with a polypeptide corresponding to the D loop of an ABC transporter,
- b) detecting a diminution or inhibition of the activity of said ABC transporter, and,
- c) identifying said compound.

5

- 15. A method for identifying compounds which selectively bind to or selectively modulate the properties of ABC transporters, which method comprises:
- a) providing a yeast two-hybrid system wherein the nucleotide binding domains NBD1 and NBD2 of an ABC
 transporter are expressed, or
 - b) providing a mammalian expression system wherein the nucleotide binding domains NBD1 and NBD2 of an ABC transporter are expressed, or
 - c) providing a bacterial expression system wherein the nucleotide binding domains NBD1 and NBD2 of an ABC transporter are expressed, and,
 - d) interacting said compound with the complex formed by the expressed polypeptides as defined in any of a) to c),
 - e) inferring from the interaction between said compound and one of the nucleotide binding domains a modulation of the properties of said ABC transporter, and,
 - f) identifying said compound.

20

15

- 16. An isolated nucleic acid encoding a polypeptide comprising an ABC transporter D-loop as defined in claim 1 or 2.
- 17. A polypeptide encodable by a nucleic acid of claim 16.
- 25 18. A cellular host transformed with a nucleic acid encoding at least one nucleotide binding domain of an ABC transporter protein or a nucleic acid comprising a nucleic acid according to claim 16, said nucleic acid in an expressible format for use in a method of claim 15.
 - 19. A pharmaceutical composition comprising at least one polypeptide of claim 1 or 2.

30

- 20. A compound obtainable by any of the methods of claims 14 or 15.
- 21. Use of a polypeptide as defined in claim 1 or 2 as a medicament.
- 22. Use of a compound according to claim 20 as a medicament.
 - 23. Use of a polypeptide as defined in claim 17 or a compound obtainable by any of the methods of claims 14 or 15 for preventing, treating or alleviating diseases associated with the functionality of an ABC-transporter.
- 40 24. Use of a polypeptide as defined in claim 3 or 4 or a compound obtainable by any of the methods of claims 14 or 15 for treatment of cancer.
 - Use of a polypeptide according to claim 24 in combination with chemotherapy.
- 45 26. Use of a polypeptide as defined in claim 3 or 4 or a compound obtainable by any of the methods of claims 14 or 15 for the preparation of a medicine for treating cancer.
 - 27. Use of a polypeptide as defined in claim 3 or 4 or a compound obtainable by any of the methods of claims 14 or 15 for treating resistance to drugs in a mammal.

- 28. Use of a polypeptide as defined in claim 3 or 4 or a compound obtainable by any of the methods of claims 14 or 15 for the preparation of a medicament for preventing, treating or alleviating diseases associated with drug resistance in a mammal.
- 29. Use of a molecule as defined in claim 5 or a compound obtainable by any of the methods of claims 14 or 15 for preventing, treating or alleviating diseases associated with bacterial infections.
 - 30. Use of a molecule as defined in claim 5 or a compound obtainable by any of the methods of claims 14 or 15 for

the preparation of a medicament for preventing, treating or alleviating diseases associated with bacterial infections.

- 31. Use of a molecule as defined in claim 5 or a compound obtainable by any of the methods of claims 14 or 15 for treating resistance to antibiotics in a mammal.
- 32. Use of a molecule as defined in claim 5 or a compound obtainable by any of the methods of claims 14 or 15 for the preparation of a medicament for treating antiblotic resistance in a mammal.
- **33.** Use of a molecule as defined in claim 5 or a compound obtainable by any of the methods of claims 14 or 15 as an anti-bacterial agent.

5

20

30

35

40

45

50

55

- 34. Use of a molecule as defined in claim 6 or a compound obtainable by any of the methods of claims 14 or 15 for preventing, treating or alleviating diseases associated with fungal infections.
- 15 35. Use of a molecule as defined in claim 6 or a compound obtainable by any of the methods of claims 14 or 15 for the preparation of a medicament for preventing, treating or alleviating diseases associated with fungal infections.
 - 36. Use of a molecule as defined in claim 6 or a compound obtainable by any of the methods of claims 14 or 15 as a fungicide or anti- fungal agent.
 - 37. Use of a molecule as defined in claim 7 or a compound obtainable by any of the methods of claims 14 or 15 for preventing, treating or alleviating diseases associated with protozoal infections.
- 38. Use of a molecule as defined in claim 7 or a compound obtainable by any of the methods of claims 14 or 15 for the preparation of a medicament for preventing, treating or alleviating diseases associated with protozoal infections.
 - 39. Use of a molecule as defined in claim 7 or a compound obtainable by any of the methods of claims 14 or 15 as a fungicide or anti- fungal agent.

Figure 3 - 1 Figure 3 - 1

>ABCA1=ABC1

MACWPQLRLLLWKNLTFRRRQTCQLLLEVAWPLFIFLILISVRLSYPPYEQHECHFPNKAMPSAGTLPW VQGIICNANNPCFRYPTPGEAPGVVQNFNKSIVARLFSDARRLLLYSOKDTSMKDMRKVLRTLQOIKKS SSNLKLQDFLVDNETFSGFLYHNLSLPKSTVDKMLRADVILHKVFLQGYQLHLTSLCNGSKSEEMIQLG DOEVSELCGLPREKLAAAERVLRSNMDILKPILRTLNSTSPFPSKELAEATKTLLHSLGTLAQELFSMR SWSDMRQEVMPLTNVNSSSSSTQIYQAVSRIVCGHPEGGGLKIKSLNWYEDNNYKALFGGNGTEEDAET FYDNSTTPYCNDLMKNLESSPLSRIIWKALKPLLVGKILYTPDTPATRQVMAEVNKTFQELAVFHDLEG MWEELSPKIWTFMENSQEMDLVRMLLDSRDNDHFWEOOLDGLDWTAODIVAFLAKHPEDVOSSNGSVYT WREAFNETNQAIRTISRFMECVNLNKLEPIATEVWLINKSMELLDERKFWAGIVFTGITPGSIELPHHV KYKIRMDIDNVERTNKIKDGYWDPGPRADPFEDMRYVWGGFAYLQDVVEQAIIRVLTGTEKKTGVYMQQ MPYPCYVDDIFLRVMSRSMPLFMTLAWIYSVAVIIKGIVYEKEARLKETMRIMGLDNSILWFSWFISSL IPLLVSAGLLVVILKLGNLLPYSDPSVVFVFLSVFAVVTILQCFLISTLFSRANLAAACGGIIYFTLYL PYVLCVAWQDYVGFTLKIFASLLSPVAFGFGCEYFALFEEQGIGVOWDNLFESPVEEDGFNLTTSVSMM LFDTFLYGVMTWYIEAVFPGQYGIPRPWYFPCTKSYWFGEESDEKSHPGSNQKRISEICMEEEPTHLKL GVSIONLVKVYRDGMKVAVDGLALNFYEGQITSFLGHNGAGKTTTMSILTGLFPPTSGTAYILGKDIRS ${\tt EMSTIRQNLGVCPQHNVLFDMLTVEEHIWFYARLKGLSEKHVKAEMEQMALDVGLPSSKLKSKTSQLSG}$ CMQRKLSVALAFVGGSKVVILDEPTAGVDPYSRRGIWELLLKYRQGRTIILSTHHMDEADVLGDRIAII SHGKLCCVGSSLFLKNQLGTGYYLTLVKKDVESSLSSCRNSSSTVSYLKKEDSVSQSSSDAGLGSDHES DTLTIDVSAISNLIRKHVSEARLVEDIGHELTYVLPYEAAKEGAFVELFHEIDDRLSDLGISSYGISET TLEEIFLKVAEESGVDAETSDGTLPARRNRRAFGDKQSCLRPFTEDDAADPNDSDIDPESRETDLLSGM DGKGSYQVKGWKLTQQQFVALLWKRLLIARRSRKGFFAQIVLPAVFVCIALVFSLIVPPFGKYPSLELQ PWMYNEQYTFVSNDAPEDTGTLELLNALTKDPGFGTRCMEGNPIPDTPCQAGEEEWTTAPVPQTIMDLF QNGNWTMQNPSPACQCSSDKIKKMLPVCPPGAGGLPPPQRKQNTADILQDLTGRNISDYLVKTYVQIIA KSLKNKIWVNEFRYGGFSLGVSNTQALPPSQEVNDATKQMKKHLKLAKDSSADRPLNSLGRFMTGLDTR NNVKVWFNNKGWHAISSFLNVINNAILRANLQKGENPSHYGITAFNHPLNLTKOOLSEVAPMTTSVDVL VSICVIFAMSFVPASFVVFLIQERVSKAKHLQFISGVKPVIYWLSNFVWDMCNYVVPATLVIIIFICFQ QKSYVSSTNLPVLALLLLLLYGWSITPLMYPASFVFKIPSTAYVVLTSVNLFIGINGSVATFVLELFTDN KLNNINDILKSVFLIFPHFCLGRGLIDMVKNQAMADALERFGENRFVSPLSWDLVGRNLFAMAVEGVVF FLITVLIQYRFFIRPRPVNAKLSPLNDEDEDVRRERQRILDGGGQNDILEIKELTKIYRRKRKPAVDRI CVGIPPGECFGLLGVNGAGKSSTFKMLTGDTTVTRGDAFLNRNSILSNIHEVHQNMGYCPQFDAITELL TGREHVEFFALLRGVPEKEVGKVGEWAIRKLGLVKYGEKYAGNYSGGNKRKLSTAMALIGGPPVVFLDE PTTGMDPKARRFLWNCALSVVKEGRSVVLTSHSMEECEALCTRMAIMVNGRFRCLGSVQHLKNRFGDGY TIVVRIAGSNPDLKPVQDFFGLAFPGSVPKEKHRNMLQYQLPSSLSSLARIFSILSOSKKRLHTEDYSV SQTTLDQVFVNFAKDQSDDDHLKDLSLHKNQTVVDVAVLTSFLQDEKVKESYV

>ABCA2=ABC2

MGFLHQLQLLLWKNVTLKRRSPWVLAFEIFIPLVLFFILLGLRQKKPTISVKEVPFYTAAPLTSAGILP VMQSLCPDGQRDEFGFLQYANSTVTQLLERLDRVVEEGNLFDPARPSLGSELEALRQHLEALSAGPGTS GSHLDRSTVSSFSLDSVARNPQELWRFLTQNLSLPNSTAQALLAARVDPPEVYHLLFGPSSALDSQSGL HKGQEPWSRLGGNPLFRMEELLLAPALLEQLTCTPGSGELGRILTVPESQKGALQGYRDAVCSGQAAAR ARRFSGLSAELRNQLDVAKVSQQLGLDAPNGSDSSPQAPPPRRLQALLGDLLDAOKVLODVDVLSALAL LLPQGACTGRTPGPPASGAGGAANGTGAGAVMGPNATAEEGAPSAAALATPDTLQGQCSAFVQLWAGLO PILCGNNRTIEPEALRRGNMSSLGFTSKEORNLGLLVHLMTSNPKILYAPAGSEVDRVILKANETPAFV GNVTHYAQVWLNISAEIRSFLEQGRLQQHLRWLQQYVAELRLHPEALNLSLDELPPALRQDNFSLPSGM ALLQQLDTIDNAACGWIQFMSKVSVDIFKGFPDEESIVNYTLNQAYQDNVTVFASVIFQTRKDGSLPPH VHYKIRQNSSFTEKTNEIRRAYWRPGPNTGGRFYFLYGFVWIQDMMERAIIDTFVGHDVVEPGSYVQMF PYPCYTRDDFLFVIEHMMPLCMVISWVYSVAMTIQHIVAEKEHRLKEVMKTMGLNNAVHWVAWFITGFV QLSISVTALTAILKYGQVLMHSHVVIIWLFLAVYAVATIMFCFLVSVLYSKAKLASACGGIIYFLSYVP YMYVAIREEVAHDKITAFEKCIASLMSTTAFGLGSKYFALYEVAGVGIOWHTFSOSPVEGDDFNLILAV TMLMVDAVVYGILTWYIEAVHPGMYGLPRPWYFPLQKSYWLGSGRTEAWEWSWPWARTPRLSVMEEDQA CAMESRRFEETRGMEEEPTHLPLVVCVDKLTKVYKDDKKLALNKLSLNLYENQVVSFLGHNGAGKTTTM SILTGLFPPTSGSATIYGHDIRTEMDEIRKNLGMCPQHNVLFDRLTVEEHLWFYSRLKSMAQEEIRREM DKMIEDLELSNKRHSLVQTLSGGMKRKLSVAIAFVGGSRAIILDEPTAGVDPYARRAIWDLILKYKPGR TILLSTHHMDEADLLGDRIAIISHGKLKCCGSPLFLKGTYGDGYRLTLVKRPAEPGGPOEPGLASSPPG RAPLSSCSELQVSQFIRKHVASCLLVSDTSTELSYILPSEAAKKGAFERLFOHLERSLDALHLSSFGLM DTTLEEVFLKVSEEDQSLENSEADVKESRKDVLPGAEGPASGEGHAGNLARCSELTQSQASLQSASSVG ${\tt SARGDEGAGYTDVYGDYRPLFDNPQDPDNVSLQEVEAEALSRVGQGSRKLDGGWLKVRQFHGLLVKRFH}$ CARRNSKALFSQILLPAFFVCVAMTVALSVPEIGDLPPLVLSPSQYHNYTQPRGNFIPYANEERREYRL RLSPDASPQQLVSTFRLPSGVGATCVLKSPANGSLGPTLNLSSGESRLLAARFFDSMCLESFTOGLPLS NFVPPPPSPAPSDSPASPDEDLQAWNVSLPPTAGPEMWTSAPSLPRLVREPVRCTCSAOGTGF SCPSSV GCHPPQMRVVTGDILTDITGHNVSEYLLFTSDRFRLHRYGAITFGNVLKSIPASFGTRAPPMVRKIAVR RAAQVFYNNKGYHSMPTYLNSLNNAILRANLPKSKGNPAAYGITVTNHPMNKTSASLSLDYLLQGTDVV IAIFIIVAMSFVPASFVVFLVAEKSTKAKHLQFVSGCNP11YWLANYVWDMLNYLVPATCCV11LFVFD

Figure 3 - 2

LPAYTSPTNFPAVLSLFLLYGWSITPIMYPASFWFEVPSSAYVFLIVINLFIGITATVATFLLQLFEHD KDLKVVNSYLKSCFLIFPNYNLGHGLMEMAYNEYINEYYAKIQQFDKMKSPFEWDIVTRGLVAMAVEGV VGFLLTIMCQYMFLRRPQRMPVSTKPVEDDVDVASERQRVLRGDADNDMVKI ENLTKVYKSRKIGRILA VDRICLGVRPGECFGLLGVNGAGKTSTFKMLTGDESTTGGEAFVNGHSVLKBLLQVQQSLGYCPQCDAL FDELTAREHLQLYTRLRGISWKDEARVVKWALEKLELTKYADKPAGTYSGGNKRKLSTALALIGYPAFI FLDBPTTGMDPKARRFLWNLILDLIKTGRSVVLTSHSMEECEALCTRLAIMVNGRLRCLGSIQHLKNRF GDGYMITVRTKSSQSVKDVVRFFNRNFPEAMLKERHHTKVQYQLKSEHISLAQVFSKMEQVSGVLGIED YSVSQTTLDNVFVNFAKKQSDNLEQQETEPPSALQSPLGCLLSLLRPRSAPTELRALVADEPEDLDTED EGLISFEEERAQLSFNTDTLC

>ABCA3=ABC-C

MAVLROLALLLWKNYTLOKRKVLVTVLELFLPLLFPGILIWLRLKIOSENVPNATIYPGOSIOELPLFF TFPPPGDTWELAYIPSHSDAAKTVTETVRRALVINMRVRGFPSEKDFEDYIRYDNCSSSVLAAVVFEHP FNHSKEPLPLAVKYHLRFSYTRRNYMWTQTGSFFLKETEGWHTTSLFPLFPNPGPRELTSPDGGEPGYI REGFLAVQHAVDRAIMEYHADAATRQLFQRLTVTIKRFPYPPFIADPFLVAIQYQLPLLLLLSFTYTAL TIARAVVQEKERRLKEYMRMMGLSSWLHWSAWFLLFFLFLLIAASFMTLLFCVKVKPNVAVLSRSDPSL VLAFLLCFAISTISFSFMVSTFFSKANMAAAFGGFLYFFTYIPYFFVAPRYNWMTLSOKLCSCLLSNVA MAMGAQLIGKFEAKGMGIQWRDLLSPVNVDDDFCFGQVLGMLLLDSVLYGLVTWYMEAVFPGQFGVPQP WYFFIMPSYWCGKPRAVAGKEEEDSDPEKALRNEYPEAEPEDLVAGIKIKHLSKVFRVGNKDRAAVRDL NLNLYEGQITVLLGHNGAGKTTTLSMLTGLFPPTSGRAYISGYEISQDMVQIRKSLGLCPQHDILFDNL TVAEHLYFYAQLKGLSRQKCPBEVKQMLHIIGLEDKWNSRSRFLSGGMRRKLSIGIALIAGSKVLILDE PTSGMDAISRRAIWDLLQRQKSDRTIVLTTHFMDEADLLGDRIAIMAKGELQCCGSSLFLKQKYGAGYH MTLVKE PHCNPEDISOLVHHHVPNATLESSAGAELSFILPRESTHRFEGLFAKLEKKOKELGIASFGAS ITTMEEVFLRVGKLVDSSMDIQAIQLPALQYQHERRASDWAVDSNLCGAMDPSDGIGALIEEERTAVKL ${\tt NTGLALHCQQFWAMFLKKAAYSWREWKMVAAQVLVPLTCVTLALLAINYSSELFDDPMLRLTLGEYGRT}$ VVPFSVPGTSQLGQQLSEHLKDALQAEGQEPREVLGDLEEFL1FRASVEGGGFNERCLVAASFRDVGER TVVNALFNNQAYHSPATALAVVDNLLFKLLCGPHASIVVSNFPQPRSALQAAKDQFNEGRKGFDIALNL LFAMAFLASTFSILAVSERAVQAKHVQFVSGVHVASFWLSALLWDLISFLIPSLLLLVVFKAFDVRAFT RDGHMADTLILLLLYGWAIIPLMYLMNFFFLGAATAYTRLTIFNILSGIATFLMVTIMRIPAVKLEELS KTLDHVFLVLPNHCLGMAVSSFYENYETRRYCTSSEVAAHYCKKYNIQYQENFYAWSAPGVGRFVASMA ASGCAYLILLFLIETNLLQRLRGILCALRRRRTLTELYTRMPVLPEDQDVADERTRILAPSPDSLLHTP LIIKELSKVYEQRVPLLAVDRLSLAVQKGECFGLLGFNGAGKTTTFKMLTGEESLTSGDAFVGGHRISS DVGKVRQRIGYCPQFDALLDHMTGREMLVMYARLRGIPERHIGACVENTLRGLLLEPHANKLVRTYSGG NKRKLSTGIALIGEPAVIFLDEPSTGMDPVARRLLWDTVARARESGKAIIITSHSMEECEALCTRLAIM VQGQFKCLGSPQHLKSKFGSGYSLRAKVQSEGQQEALEEFKAFVDLTFPGSVLEDEHQGMVHYHLPGRD LSWAKVFGILEKAKEKYGVDDYSVSQISLEQVFLSFAHLQPPTAEEGR

>ABCA4=ABC-R

MGFVRQIQLLLWKNWTLRKRQKIRFVVELVWPLSLFLVLIWLRNANPLYSHHECHFPNKAMPSAGMLPW LQGIFCNVNNPCFQSPTPGESPGIVSNYNNSILARVYRDFOELLMNAPESOHLGRIWTELHILSOFMDT LRTHPERIAGRGIRIRDILKDEETLTLFLIKNIGLSDSVVYLLINSQVRPEQPAHGVPDLALKDIACSE ALLERFIIFSQRRGAKTVRYALCSLSQGTLQWIEDTLYANVDFFKLFRVLPTLLDSRSQGINLRSWGGI LSDMSPRIQEFIHRPSMQDLLWVTRPLMQNGGPETFTKLMGILSDLLCGYPEGGGSRVLSFNWYEDNNY KAFLGIDSTRKDPIYSYDRRTTSFCNALIQSLESNPLTKIAWRAAKPLLMGKILYTPDSPAARRILKNA NSTFEELEHVRKLVKAWEEVGPQIWYFFDNSTQMNMIRDTLGNPTVKDFLNRQLGEEGITAEAILNFLY KGPRESQADDMANFDWRDIFNITDRTLRLVNQYLECLVLDKFESYNDETQLTQRALSLLEENMFWAGVV FPDMYPWTSSLPPHVKYKIRMDIDVVEXTNKIKDRYWDSGPRADPVEDFRYIWGGFAYLODMVEOGITR SQVQAEAPVGIYLQQMPYPCFVDDSFMIILNRCFPIFMVLAWIYSVSMTVKSIVLEKELRLKETLKNQG VSNAVIWCTWFLDSFSIMSMSIFLLTIFIMHGRILHYSDPFILFLFLLAFSTATIMLCFLLSTFFSKAS LAAACSGVIYFTLYLPHILCFAWQDRMTAELKKAVSLLSPVAFGFGTEYLVRFEEQGLGLQWSNIGNSP TEGDEFSPLLSMQMMLLDAACYGLLAWYLDQVFPGDYGTPLPWYFLLQESYWLSGEGCSTREERALEKT EPLTEETEDPEHPEGIHDSFFEREHPGWVPGVCVKNLVKIFEPCGRPAVDRLNITFYENQITAFLGHNG AGKTTTLSILTGLLPPTSGTVLVGGRDIETSLDAVROSLGMCPOHNILFHHLTVAEHMLFYAOLKGKSO EEAQLEMEAMLEDTGLHHKRNEEAQDLSGGMQRKLSVA1AFVGDAKVVILDEPTSGVDPYSRRSIWDLL LKYRSGRTIIMPTHHMDEADHQGDRIAIIAQGRLYCSGTPLFLKNCFGTGLYLTLVRKMKNIQSQRKGS EGTCSCSSKGFSTTCPAHVDDLTPEQVLDGDVNELMDVVLHHVPEAKLVECIGQELIFLLPNKNFKHRA YASLFRELEETLADLGLSSFGISDTPLEEIFLKVTEDSDSGPLFAGGAQQKRENVNPRHPCLGPREKAG QTPQDSNVCSPGAPAAHPEGQPPPEPECPGPQLNTGTQLVLQHVQALLVKRFQHTIRSHKDFLAQIVLP ATFVPLALMLSIVILPFGEYPALTLHPWIYGOOYTFFSMDEPGSEOFTVLADVLLNKPGFGNRCLKEGW LPEYPCGNSTPWKTPSVSPNITQLFQKQKWTQVNPSPSCRCSTREKLTMLPECPEGAGGLPPPQRTQRS TEILQDLTDRNISDFLVKTYPALIRSSLKSKFWVNEQRYGGISIGGKLPVVPITGEALVGFLSDLGRIM NVSGGPITREASKEIPDFLKHLETEDNIKVWFNNKGWHALVSFLNVAHNAILRASLPKDRSPEEYGITV ISQPLNLTKEQLSEITVLTTSVDAVVAICVIFSMSFVPASFVLYLIQERVNKSKHLOFISGVSPTTYWV TNFLWDIMNYSVSAGLVVGIFIGFOKKAYTSPENLPALVALLLLYGWAVIPMMYPASFLFDVPSTAYVA LSCANLFIGINSSAITFILELFDNNRTLLRFNAVLRKLLIVFPHFCLGRGLIDLALSQAVTDVYARFGE

Figure 3 - 3 EHSANPFHWDLIGKNLPAMVVEGVVYFLLTLLVQRHFFLSQWIAEPTKEPIVDEDDDVAEERQRIITGG NKTDILRLHELTKIYLGTSSPAVDRLCVGVRPGECFGLLGVNGAGKTTTFKMLTGDTTVTSGDATVAGK SILTNISEVHONMGYCPOFDAIDELLTGREHLYLYARLRGVPAEEIEKVANWSIKSLGLTVYADCLAGT ${\tt YSGGNKRKLSTAIALIGCPPLVLLDEPTTGMDPQARRMLWNVIVSIIRKGRAVVLTSHSMEECEALCTR}$ LAIMVKGAFRCMGTIQHLKSKFGDGYTVTMKIKSPKDDLLPDLN2VEQFFQGNFPGSVQRERHYNMLQF OVSSSSLARIFOLLLSHKDSLLIEEYSVTQTTLDQVFVNFAKQQTESHDLPLHPRAAGASRQAQD

>ABCA7=ABCX

MAFWTOLMILLWKNFMYRRQPVQLLVELLWPLFLFFILVAVRHSHPPLEHHECHFPNKPLPSAGTVPW LQGLICNVNNTCFPQLTPGEEPGRLSNFNDSLVSRLLADARTVLGGASAHRTLAGLGKLIATLRAARST AOPOPTKOSPLEPPMLDVAELLTSLLRTESLGLALGOAOEPLHSLLEAAEDLAQELLALRSLVELRALL ORPRGTSGPLELLSEALCSVRGPSSTVGPSLNWYEASDLMELVGQEPESALPDSSLSPACSELIGALDS HPLSRLLWRRLKPLILGKLLFAPDTPFTRKLMAQVNRTFEELTLLRDVREVWEMLGPRIFTFMNDSSNV AMLQRLLQMQDEGRRQPRPGGRDHMEALRSFLDPGSGGYSWQDAHADVGHLVGTLGRVTECLSLDKLEA APSEAALVSRALOLLAEHRFWAGVVFLGPEDSSDPTEHPTPDLGPGHVRIKIRMDIDVVTRTNKIRDRF WDPGPAADPL/TDLRYVWGGFVYLQDLVERAAVRVLSGANPRAGLYLQQMPYPCYVDDVFLRVLSRSLPL FLTLAWIYSVTLTVKAVVREKETRLRDTMRAMGLSRAVLWLGWFLSCLGPFLLSAALLVLVLKLGDILP YSHPGVVFLFLAAFAVATVTQSFLLSAFFSRANLAAACGGLAYFSLYLPYVLCVAWRDRLPAGGRVAAS LLSPVAFGFGCESLALLEEQGEGAQWHNVGTRPTADVFSLAQVSGLLLLLDAALYGLATWYLEAVCPGQY GIPEPWNFPFRRSYWCGPRPPKSPAPCPTPLDPKVLVEEAPPGLSPGVSVRSLEKRFPGSPQPALRGLS LDFYQGHITAFLGHNGAGKTTTLSILSGLFPPSGGSAFILGHDVRSSMAAIRPHLGVCPQYNVLFDMLT VDEHVWFYGRLKGLSAAVVGPEQDRLLQDVGLVSKQSVQTRHLSGGMQRKLSVAIAFVGGSQVVILDEP TAGVDPASRRGIWELLLKYREGRTLILSTHHLDEAELLGDRVAVVAGGRLCCCGSPLFLRRHLGSGYYL TLVKARLPLTTNEKADTDMEGSVDTRQEKKNGSQGSRVGTPQLLALVQHWVPGARLVERLPHELVLVLP ${\tt YTGAHDGSFATLFRELDTRLAELRLTGYGISDTSLEEIFLKVVEECAADTDMEDGSCGQHLCTGIAGLD}$ VTLRLKMPPOETALENGEPAGSAPETDQGSGPDAVGRVQGWALTRQQLQALLLKRFLLARRSRRGLFAQ IVLPALFVGLALVFSLIVPPFGHYPALRLSPTMYGAQVSFFSEDAPGDPGRARLLEALLQEAGLEEPPV OHSSHRFSAPEVPAEVAKVLASGNWTPESPSPACOCSOPGARRLLPDCPAAAGGPPPPQAVTGSGEVVQ NLTGRNLSDFLVKTYPRLVROGLKTKKWVNEVRYGGFSLGGRDPGLPSGQELGRSVEELWALLSPLPGG ALDRVLKNLTAWAHSLDAODSLKIWFNNKGWHSMVAFVNRASNAILRAHLPPGRARHAHSITTLNHPLN LTKEQLPEAALMASSVDVLVSICVVFAMSFVPASFTLVLIEERVTRAKHLQLMGGLSPTLYWLGNFLWD MCNYLVPACIVVLIFLAFQQRAYVAPANLPALLLLLLLYGWSITPLMYPASFFFSVPSTAYVVLTCINL FIGINGSMATFVLELFSDQKLQEVSRILKQVFLIFPHFCLGRGLIDMVRNQAMADAFERLGDRQFQSPL RWEVVGKNLLAMVIQGPLFLLFTLLLQHRSQLLPQPRVRSLPLLGEEDEDVARERERVVQGATQGDVLV LRNLTKVYRGQRMPAVDRLCLGIPPGECFGLLGVNGAGKTSTFRMVTGDTLASRGEAVLAGHSVAREPS AAHLSMGYC POSDAI FELLTGREHLELLARLRGVPEAQVAQTAGSGLARLGLSWYADRPAGTYSGGNKR KLATALALVGDPAVVFLDEPTTCMDPSARRFLWNSLLAVVREGRSVMLTSHSMEECEALCSRLAIMVNG RFRCLGSPOHLKGRFAAGHTLTTRVPAARSQPAAAFVAAEPPGSELREAHGGRLRFQLPPGGRCALARV PGELAVHGAEHGVEDFSVSQTMLEEVFLYFSKDQGKDEDTEEQKEAGVGVDPAPGLQHPKRVSQFLDDP STAETVL

>ABCA8

MRKRKISVCQQTWALLCKNFLKKWRMKRESLMEWLNSLLLLLCLYIYPHSHQVNDFSSLLTMDLGRVDT FNESRFSVVYTPVTNTTQQIMNKVASTPFLAGKEVLGLPDEESIKEFTANYPEEIVRVTFTNTYSYHLK ${\tt FLIGHGMPAKKEHKDHTAHCYETNEDVYCEVSVFWKEGFVALQAAINAAIIEITTNHSVMEELMSVTGK}$ NMKMHSFIGOSGVITDLYLFSCIISFSSFIYYASVNVTRERKRMKALMTMMGLRDSAFWLSWGLLYAGF IFIMALFLALVIRSTQFIILSGFMVVFSLFLLYGLSLVALAFLMSILVKKSFLTGLVVFLLTVFWGCLG FTSLYRHLPASLEWILSLLSPFAFMLGMAOLLHLDYDLNSNAFPHPSDGSNLIVATNFMLAFDTCLYLA LAIYFEKILPNEYGHRRPPLFFLKSSFWSQTQKTDHVALEDEMDADPSFHDSFEQAPPEFQGKEAIRIR NVTKEYKGKPDKIEALKDLVFDIYEGQITAILGHSGAGKSTLLNILSGLSVPTKGSVTIYNNKLSEMAD ${\tt LENLSKLTGVCPQSNVQFDFLTVRENLRLPAKIKGILPQEVDKEIFLLDE\underline{PT}AGL\underline{D}PFSRHQVWNLLKE}$ RKTDRVILFSTQFMDEADI:ADRKVFLSQGKLKCAGSSLFLKKKWGIGYHLSLQLNEICVEENITSLVK OHIPDAKLSAKSEGKLIYTLPLERTNKFPELYKDLDSYPDLGIENYGVSMTTLNEVFLKLEGKSTINES DIAILGEVOAEKADDTERLVEMEOVLSSLNKMRKTIGGVALWRQQICAIARVRLLKLKHERKALLALLL ILMAGFCPLLVEYTMVKIYQNSYTWELSPHLYFLAPGQQPHDPLTQLLIINKTGASIDDFIQSVEHQNI ALEVDAFGTRNGTDDPSYNGAITVCCNEKNYSFSLACNAKRLNCFPVLMDIVSNGLLGMVKPSVHIRTE RSTFLENGODNPIGFLAYIMFWLVLTSSCPPYIAMSSIDDYKNRARSQLRISGLSPSAYWFGQALVDVS LYPLVFVFIYLMSYISNFEDMLLTIIHIIQIPCAVGYSFSLIFMTYVISFIFRKGRKNSGIWSFCFYVV TVFSVAGFAFSIFESDIPFIFTFLIPPATMIGCLFLSSHLLFSSLFSEERMDVQPFLVFLIPFLHFIIF LFTLRCLEWKFGKKSMRKDPFFRISPRSSDVCONPEEPEGEDEDVQMERVRTANALNSTNFDEKPVIIA SCLRKEYAGKRKGCFSKRKNKIATRNVSFCVRKGEVLGLLGHNGAGKSTSIKVITGDTKPTAGQVLLKG ${\tt SGGGDALEFLGYCPQENALWPNLTVRQHLEVYAAVKGLRKGDAEVAITRLVDALKLQDQLKSPVKTLSE}$ GIKRKLCFVLSILGNPSVVLLDEPSTGMDPEGQQQMWQAIRATFRNTERGALLTTHYMAEAEAVCDRVA IMVSGRLRCIGSIQHLKSKFGKDYLLEMKVKNLAQVEPLHAEILRLFPQAARQERYSSLMVYKLPVEDV QPLAQAFFKLEKVKQSFDLEEYSLSQSTLEQVFLELSKEQELGDFEEDFDPSVKWKLLPQEEP

Figure 3 - 4

>ABCB1=MDR1 (multidrug resistance protein1 or P-glycoprotein) MDLEGDRNGGAKKKNFFKLNNKSEKDKKEKKPTVSVFSMFRYSNWLDKLYMVVGTLAAIIHGAGLPLMM LVFGEMTDIFANAGNLEDLMSNITNRSDINDTGFFMNLEEDMTRYAYYYSGIGAGVLVAAYIOVSFWCL AAGROIHKIRKOFFHAIMROEIGWFDVHDVGELNTRLTDDVSKINEGIGDKIGMFFOSMATFFTGFIVG FTRGWKLTLVILAISPVLGLSAAVWAKILSSFTDKELLAYAKAGAVAEEVLAAIRTVIAFGGQKKELER YNKNLBEAKRIGIKKAITANISIGAAFLLIYASYALAPWYGTTLVLSGEYSIGQVLTVFSVLIGAFSVG QASPSIEAFANARGAAYEIFKIIDNKPSIDSYSKSGHKPDNIKGNLEFRNVHFSYPSRKEVKILKGLNL KVQSGQTVALVGNSGCGKSTTVQLMQRLYDPTEGMYSVDGQDIRTINVRFLREIIGVVSQEPVLFATTI AENIRYGRENVTMDEIEKAVKEANAYDFIMKLPHKPDTLVGERGAQLSGGQKQRIAIARALVRNPKILL LDEATSALDTESEAVVQVALDKARKGRTTIVIAHRLSTVRNADVIAGPDDGVIVEKGNHDELMKEKGIY FKLVTMQTAGNEVELENAADESKSEIDALEMSSNDSRSSLIRKRSTRRSVRGSQAQDRKLSTKEALDES IPPVSFWRIMKLNLTEWPYFVVGVFCAIINGGLOPAFAIIFSKIIGVFTRIDDPETKRONSNLFSLLFL ALGIISFITFFLQGFTFGKAGEILTKRLRYMVFRSMLRQDVSWFDDPKNTTGALTTRLANDAAQVKGAI GSRLAVITONIANLGTGIIISFIYGWQLTLLLLAIVPIIAIAGVVEMKMLSGQALKDKKELEGSGKIAT EAIENFRTVVSLTQEQKFEHMYAQSLQVPYRNSLRKAHIFGITFSFTQAMMYFSYAGCFRFGAYLVAHK LMSFEDVLLVFSAVVFGAMAVGQVSSFAPDYAKAKISAAHIIMIIEKTPLIDSYSTEGLMPNTLEGNVT FGEVVFNYPTRPDIPVLQGLSLEVKKGQTLALVGSSGCGKSTVVQLLERFYDPLAGKVLLDGKEIKRLN VQWLRAHLGIVSQEPILFDCSIAENIAYGDNSRVVSQEEIVRAAKEANIHAFIESLPNKYSTKVGDKGT QLSGGQKQRIAIARALVRQPHILLLDBATSALDTESEKVVQEALDKAREGRTCIVIAHRLSTIQNADLI VVFQNGRVKEHGTHQQLLAQKGIYFSMVSVQAGTKRQ

>ABCB2=TAP1 (transporter associated with antigen processing)
MAELLASAGSACSWDFPRAPPSFPPPAASRGGLGGTRSFRPHRGAESPRPGRDRDGVRVPMASSRCPAP
RGCRCLPGASLAWLGTVLLLLADWVLLRTALPRIFSLLVPTALPLLRVWAVGLSRWAVLWLGACGVLRA
TVGSKSENAGAQGWLAALKPLAALGLALPGLALFRELISWGAPGSADSTRLLHWGSHPTAFVVSYAAA
LPAAALWHKLGSLWVPGGQGGSGNPVRRLLGCLGSETRRLSLFLVLVVLSSLGEMAIPFFTGRLTDWIL
QDGSADTFTRNLTLMSILTIASAVLEFVGDGIYNNTMGHVHSHLQGEVFGAVLRQETEFFQQNQTGNIM
SRVTEDTSTLSDSLSENLSLPLWYLVRGLCLLGIMLWGSVSLTMVTLITLPLLFLLPKKVGKWYQLLEV
QVRESLAKSSQVAIEALSAMPTVRSFANEEGEAQKFREKLQEIKTLNQKEAVAYAVNSWTTSISGMLLK
VGILYIGGQLVTSGAVSSGNLVTFVLYQMQFTQAVEVLLSIYPRVQKAVGSSEKIFEYLDRTPRCPPSG
LLTPLHLEGLVQFQDVSFAYPNRPDVLVLQGLTFTLRPGEVTALVGPNGSGKSTVAALLQNLYQPTGGQ
LLLDGKPLPQYEHRYLHRQVAAVGQEPQVFGRSLQENIAYGLTQKPTMEEITAAAVKSGAHSFISGLPQ
GYDTEVDEAGSQLSGGQRQAVALARALIRKPCVLILDDATSALDANSQLQVEQLLYESPERYSRSVLLI
TQHLSLVEQADHILFLEGGAIREGGTHQQLMEKKGCYWAMVQAPADAPE

>ABCB3=TAP2 (transporter associated with antigen processing)
MAELLASAGSACSWDFPRAPPSFPPPAASRGGLGGTRSFRPHRGAESPRPGRDRDGVRVPMASSRCPAP
RGCRCLPGASLAWLGTVLLLLADWYLLRTALPRIPSLLVPTALPLLRVWAVGLSRWAVIWLGACGVLRA
TVGSKSENAGAQGWLAALKPLAAALGLALPGLALFRELISWGAPGSADSTRLLHWGSHPTAFVVSYAAA
LPAAALWHKLGSLWVPGGQGGSGNPVRRLLGCLGSETRRLSLFLVLVVLSSLGEMAIPFFTGRLTDWIL
QDGSADTFTRNLTLMSILTIASAVLEFVGDGIYNNTMGHVHSHLQGEVFGAVLRQETEFFQQNQTGNIM
SRVTEDTSTLSDSLSENLSLFLWYLVRGLCLLGIMLWGSVSLTMVTLITLPLLFLLPKKVGKWYQLLEV
QVRESLAKSSQVAIEALSAMPTVRSFANEEGEAQKFREKLQEIKTLNQKEAVAYAVNSWTTSISGMLLK
VGILYIGGQLVTSGAVSGNLVTFVLYQMQFTQAVEVLLSIYPRVQKAVGSSEKIFEYLDRTPRCPPSG
LLTPLHLEGLVQFQDVSFAYPMRPDVLVLQGLTFTLRPGEVTALVGPNGSGKSTVAALLQNLYQPTGGQ
LLLDGKPLPQYEHRYLHRQVAAVGQEPQVFGRSLQENIAYGLTQKPTMEEITAAAVKSGAHSFISGLPQ
LGYDTEVDEAGSQLSGGQRQAVALARALIRKPCVLILDDATSALDANSQLQVEQLLYESPERYSRSVLLI
TQHLSLVEQADHILFLEGGAIREGGTHQQLMEKKGCYWAMVQAPADAPE

>ABCB4= MDR3= Multidrug Resistance Protein 2 and 3 or P-glycoprotein 3

MDLEAAKNGTAWRPTSAEGDFELGISSKQKRXKTKTVKMIGVLTLFRYSDWQDKLFMSLGTIMAIAHGS
GLPLMMIVFGEMTDKFVDTAGNFSFPVNFSLSLLNPGKILEEEMTRYAYYYSGLGAGVLVAAYIQVSFW
TLAAGRQIRKIRQKFFHAILRQBIGWFDINDTTELNTRLTDDISKISEGIGDKVGMFFQAVATFFAGFI
VGFIRGWKLTLVIMAISPILGLSAAVWAKILSAFSDKELAAYAKAGAVAEEALGAIRTVIAFGGQNKEL
ERYQKHLENAKEIGIKKAISANISMGIAFLLIYASYALAFWYGSTLVISKEYTIGNAMTVFFSILIGAF
SVGQAAPCIDAFANARGAAYVIFDIIDNNPKIDSFSERGHKPDSIKGNLEFNDVHFSYPSRANVKILKG
LNLKVQSGQTVALVGSSGCGKSTTVQLIQRLYDPDEGTINIDGQDIRNFNVNYLREIIGVVSQEPVLFS
TTIAENICYGRGNVTMDEIKKAVKEANAYEFIMKLPQKFDTLVGERGAQLSGGQKQRIAIARALVRNPK
ILLLDEATSALDTESEAEVQAALDKAREGRTTIVIAHRLSTVRNADVIAGFEDGVIVEQGSHSELMKKE
GVYFKLVNMQTSGSGIQSEEFELNDEKAATRMAPNGWKSRLFRHSTQKNLKKSQMCQKSLDVETDGLEA
NVPPVSFLKVLKLNKTEWPYFVVGTVCAIANGGLQPAFSVIFSEIIAIFGPGDDAVKQQKCNIFSLIFL
FIGIISFFTFFLQGFTFGKAGEILTRRLRSMAFKANLRQDMSWFDDHKNSTGALSTRLATDAAQVQGAT
GTRLALIAQNIANLGTGIIISFIYGWQLTLLLAVVPIIAVSGIVEMKLLAGNAKRDKKELEAAGKIAT

Figure 3 - 5

EAIENIRTVVSLTQERKFESMYVEKLYGPYRVFSAIVFGAVALGHASSFAPDYAKAKLSAAHLFMLFER QPLIDSYSEEGLKPDKFEGNITFNEVVFNYPTRANVPVLQGLSLBVKKGQTLALVGSSGCGKSTVVQLL ERFYDPLAGTVLLDGQEAKKLNVQMLRAQLGIVSQEPILFDCSIAENIAYGDNSRVVSQDEIVSAAKAA NIHPFIETLPHKYETRVGDKGTQLSGGQKQRIAIARALIRQPQILLLDBATSALDTESEKVVQEALDKA REGRTCIVIAHRLSTIQNADLIVVFQNGRVKEHGTHQQLLAQKGIYFSMVSVQAGTQNL

>ABCB6

MVTVGNYCEAEGFVGPAWMQDGLSPCFFFTLVPSTRMALGTLALVLALPCRRRERPAGADSLSWGAGPR ISPYVLQLLLATLQAALPLAGLAGRVGTARGAPLPSYLLLASVLESLAGACGLWLLVVERSQARQRLAM GIWIKFRHSPGLLLLWTVAFAAENLALVSWNSPQWWARADLGQQVQPSLWVLRYVVSGGLFVLGLWAP GLRPQSYTLQVHEEDQDVERSQVRSAAQQSTWRDFGRKLRLLSGYLWPRGSPALQLVVLICLGLMGLER ALNVLVPIFYRNIVNLLTEKAPWNSLAWTVTSYVFLKFLQGGGTGSTGFVSNLRTFLWIRVQQFTSRRV ELLIPSHLHELSLRWHLGRRTGEVLRIADRGTSSVTGLLSYLVFNVIPTLADIIIGIIYPSMFFNAWFG LIVFLCNSLYLTLTIVVTEWRTKFRRAMNTQENATRARAVDSLLNPETVKYYNAESYEVERYREAIIKY QGLEWKSSASLVLLNQTQNLVIGLGLLAGSLLCAYFVTEQKLQVGDYVLFGTYIIQLYMPLNWFGTYYR MIQTNFIDMENMFDLLKEETEVKDLPGAGPLRFQKGRIEFENVHFSYADGRETLQDVSFTVMPGQTLAL VGPSGAGKSTILRLLFRFYDISSGCIRIDGQDISQVTQASLRSHIGVVPQDTVLFNDTIADNIRYGRVT AGNDEVEAAAQAAGIHDAIMAFPEGYRTQVGERGLKLSGGEKQRVAIARTILKAPGIILLDEATSALDT SNERAIQASLAKVCANRTTIVVAHRLSTVVNADQILVIKDGCIVERGRHEALLSRGGVYADMWQLQQGQ EETSEDTKPPOTMER

>ABCB7

MALLAMISWRWAAAAAAFEKRRISAILIRPLVSVSGSGPOWRPHQLGALGTARAYQIPESLKSITWQRL
GKGNSGQFLDAAKALQVWPLIEKRTCWHGHAGGGLHTDPKEGLKDVDTRKIIKAMLSYVWPKDRPDLRA
RVPISLGFLGGAKAMNIVVPFMFKYAVDSLNQMSGMMLNLSDAPNTVATMATAVLIGYGVSRAGAAFFN
EVRNAVFGKVAQNSIRRIAKNVFLHLHINLDLGFHLSRQTGALSKAIDRGTRGISFVLSALVFNPLPPHV
EVMLLYSGVLYYKCCAQLLGNLGTLGTYTAFTVAVTRWRTRFRLEIDQADNDAGNAAIDSLLNYETVKY
FNNERYEAQRYDGFLKTYETASLKSTSTLAMLMFGQSAIFSVGLTAIMVLASQGIVAGTLTVGDLVMVN
GLLFQLSLPLNPLGTVYRETRQALIDMNTLFTLLKVDTQIKDKVMASPLQITPQTATVAFDNVHFEYIE
GQKVLSGISFEVPAGKKVAIVGGSGSGKSTIVRLLFRFYEPDKGSIYLAGQNIQDVSLESLARAVGVVP
QDAVLFHNTIYYNLLYGNISASPEEVYAVAKLAGLHDAILRMPHGYDTQVGERGLKLSGGEKQRVAIAR
AILKDPPVILYDEATSSLDSITEETILGAMKDVVKHRTSIFIAHRLSTVVDADEIIVLDQGKVAERGTH
HGLLANPHSIYSEMMHTQSSRVQNHDNPKWEAKKENISKEEERKKLQEEIVNSVKGCGNCSC

>ABCB8

MLVHLFRVGIRGGPFPGRLLPPLRFQTFSAVRYSDGYRSSSLLRAVAHLRSQLWAHLPRAPLAPRWSPS AWCWVGGALLGPMVLSKHPHLCLVALCEAEEAPPASSTPHVVGSRFNWKLFWQFLHPHLLVLGVAVVLA LGAALVNVQIPLLLGQLVKVVAKYTRDHVGSFMTESQNLSTHLLILYGVQGLLTFGYLVLLSHVGERMA VDMRRALFSSLLRQNITFFDANKTGQLVSRLTTDVQEFKSSFKLVISQGLRSCSQVAGCLVSLSMLSTR LTILLLMVATPALMGVGTLMGSGLRKLSRQCQEHIARAMGVADEALGNVRTVRALAMEQREEERYGAELE ACRCRAEELGRGIALFQGLSNIAFNCMVLGTLFIGGSLVAGQQLTGGDLMSFLVASQTVQRSMANLSVL FGQVVRGLSAGARVFEYMALNPCIPLSGGCCVPKEQLRGSVTFQNVCFSYPCRPGFEVLKDFTLTLPPG KIVALVGQSGGKKTTVASLLERFYDPTAGVVMLDGRDLRTLDPSWLRGQVVGFISQEPVLFGTTIMENI RFGKLEASDEEVYTAAREANAHEFITSFPEGYNTVVGERGTTLSGGQKQRLAIARALIKQPTVLILDEA TSALDAESERVVQEALDRASAGRTVLVIAHRLSTVRGAHCIVVMADGRVWEAGTHEELLKKGGLYAELI RRQALDAPRTAAPPPKKPEGPRSHOHKS

>ABCB9

MRLWKAVVVTLAFMSVDICVTTAIYVFSHLDRSLLEDIRHFNIFDSVLDLWAACLYRSCLLLGATIGVA KNSALGPRRLRASWLVITLVCLFVGIYAMVKLLLFSEVRRPIRDPWFWALFVWTYISLGASFLLWWLLS TVRPGTQALEPGAATEAEGFPGSGRPPPEQASGATLQKLLSYTKPDVAFLVAASFFLIVAALGETFLPY YTGRAIDGIVIQKSMDQFSTAVVIVCLLAIGSSFAAGIRGGIFTLIFARLNIRLRNCLFRSLVSQETSF FDENRTGDLISRLTSDTTMVSDLVSQNINVFLRNTVKVTGVVVFFPFSLSWQLSLVTFMGFPIIMMVSNI YGKYYKRLSKEVQNALARASNTAEETISAMKTVRSFANEEEEAEVYLRKLQQVYKLNRKEAAAYMYYVW GSGSVGSVYSGLMQGVGAAEKVFEFIDRQPTMVHDGSLAPDHLEGRVDFENVTFTYRTRPHTQVLQNVS FSLSPGKVTALVGPSGSGKSSCVNILENFYPLEGGRVLLDGKPISAYDHKYLHRVISLVSQEPVLFARS ITDNISYGLPTVPFEMVVEAAQKANAHGFIMELQDGYSTETGEKGAQLSGGQKQRVAMARALVRNPPVL ILDEATSALDAESEYLIQQAIHGNLQKHTVLIIAHRLSTVEHAHLIVVLDKGRVVQQGTHQQLLAQGGL YAKLVQRQMLGLQPAADFTAGHNEPVANGSHKA

>ABCCB10

MRGPPAWPLRLLEPPSPAEPGRLLPVACVWAAASRVPGSLSPFTGLRPARLWGAGPALLWGVGAARRWR SGCRGGGPGASRGVLGLARLLGLWARGPGSCRCGAFAGPGAPRLPRARFPGGPAAAAWAGDEAWRRGPA APPGDKGRLRPAAAGLPEARKLLGLAYPERRRLAAVGFLTMSSVISMSAPFFLGKIIDVIYTNPTVDY SDNLTRLCLGLSAVFLCGAAANAIRVYLMQTSGQRIVNRLRTSLFSSILRQEVAFFDKTRTGELINRLS SDTALLGRSVTENLSDGLRAGAQASVGISMMFFVSPNLATFVLSVVPPVSIIAVIYGRYLRKLTKVTOD

Figure 3 - 6

SLAQATQLAEERIGNVRTVRAFGKEMTEIEKYASKVDHVMQLARKEAVARAGFFGATGLSGNLIVLSVL YKGGLLMGSAHMTVGELSSFLMYAFWVGISIGGLSSFYSELMKGLGAGGRLWELLEREPKLPFNEGVIL NEKSFQGALEFKNVHFAYPARPEVPIFQDFSLSIPSGSVTALVGPSGSGKSTVLSLLLRIYNPASGTIS LDGHDIRQLNPVWLRSKIGTVSQEPILPSCSIAENIAYGADDPSSVTAEEIQRVAEVANAVAFIRNFPQ GFNTVVGEKGVLLSGGQKQRIAIARALLKNPKILLLDEATSALDAENEYLVQEALDRLMDGRTVLVIAH RLSTIKNANMVAVLDQGKITEYGKHEELLSKPNGIYRKLMNKQSFISA

>ABCB11=SPGP= Sister of P-glycoprotein MSDSVILRSIKKFGEENDGFESDKSYNNDKKSRLQDEKKGDGVRVGFFQLFRFSSSTDIWLMFVGSLCA FLHGIAQPGVLLIFGTMTDVFIDYDVELQELQIPGKACVNNTIVWTNSSLNONMTNGTRCGLLNIESEM IKFASYYAGIAVAVLITGYIQICFWVIAAARQIQKMRKFYFRRIMRMBIGWFDCNSVGELNTRFSDDIN KINDAIADQMALFIQRMTSTICGFLLGFFRGWKLTLVIISVSPLIGIGAATIGLSVSKFTDYELKAYAK AGVVADEVISSMRTVAAFGGEKREVERYEKNLVFAQRWGIRKGIVMGFFTGFVWCLIFLCYAVAFWYGS TLVLDEGEYTPGTLVQIFLSVIVGALNLGNASPCLEAFATGRAAATSIFETIDRKPIIDCMSEDGYKLD RIKGEIEFHNVTFHYPSRPEVKILNDLNMVIKPGEMTALVGPSGAGKSTALQLIQRFYDPCEGMVTVDG HDIRSLNIQWLRDQIGIVEQEPVLFSTTIAENIRYGREDATMEDIVQAAKEANAYNFIMDLPQQFDTLV GEGGCQMSGGQKQRVAIARALIRNPKILLLDMATSALDNESEAMVQEVLSKIQHGHTIISVAHRLSTVR AADTIIGFEHGTAVERGTHEELLERKGVYFTLVTLQSQGNQALNEEDIKDATEDDMLARTFSRGSYQDS LRASIRQRSKSQLSYLVHEPPLAVVDHKSTYEEDRKDKDIPVQEEVEPAPVRRILKFSAPEWPYMLVGS VGAAVNGTVTPLYAFLFSQILGTFSIPDKEEQRSQINGVCLLFVAMGCVSLFTOFLOGYAFAKSGELLT KRLRKFGFRAMLGQDIAWFDDLRNSPGALTTRLATDASQVQGAAGSQIGMIVNSFTNVTVAMIIAFSFSWKLSLVILCFFPFLALSGATQTRMLTGFASRDKQALEMVGQITNEALSNIRTVAGIGKERRFIRALETE LEKPFKTAIQKANIYGFCFAFAQCIMFIANSASYRYGGYLISNEGLHFSYVFRVISAVVLSATALGRAF SYTPSYAKAKISAARFFQLLDRQPPISVYNTAGEKWDNFQGKIDFVDCKFTYPSRPDSQVLNGLSVSIS PGQTLAFVGSSGCGKSTSIQLLERFYDPDQGKVMIDGHDSKKVNVQFLRSNIGIVSQEPVLFACSIMDN IKYGDNTKEIPMERVIAAAKQAQLHDFVMSLPEKYETNVGSQGSQLSRGEKQRIAIARAIVRDPKILLL DEATSALDTESEKTVQVALDKAREGRTCIVIAHRLSTIONADIIAVMAOGVVIEKGTHEELMAOKGAYY KLVTTGSPIS

>ABCC1=MRP1= multidrug resistance associated protein 1 MALRGFCSADGSDPLWDWNVTWNTSNPDFTKCFQNTVLVWVPCFYLWACFPFYFLYLSRHDRGYIQMTP LNKTKTALGFLLWIVCWADLFYSFWERSRGIFLAPVFLVSPTLLGITTLLATFLIQLERRKGVQSSGIM LTFWLVALVCALAILRSKIMTALKEDAQVDLFRDITFYVYFSLLLIQLVLSCFSDRSPLFSETIHDPNP CPESSASFLSRITFWWITGLIVRGYRQPLEGSDLWSLNKEDTSEQVVPVLVKNWKKECAKTRKQPVKVV YSSKDPAQPKESSKVDANEEVEALIVKSPOKEWNPSLFKVLYKTFGPYFLMSFFFKAIHDLMMFSGPOT LKLLIKFVNDTKAPDWQGYFYTVLLFVTACLQTLVLHQYFHICFVSGMRIKTAVIGAVYRKALVITNSA RKSSTVGEIVNLMSVDAQRFMDLATYINMIWSAPLQVILALYLLWLNLGPSVLAGVAVMVLMVPVNAVM AMKTKTYQVAHMKSKDNRIKLMNEILNGIKVLKLYAWELAFKDKVLAIRQEELKVLKKSAYLSAVGTFT WVCTPFLASVSLKRLRIFLSHEELEPDSIERRPVKDGGGTNSITVRNATFTWARSDPPTLNGITFSIPE GALVAVVGQVGCGKSSLLSALLAEMDKVEGHVAIKGSVAYVPQQAWIQNDSLRENILFGCQLEEPYYRS VIQACALLPDLEILPSGDRTEIGEKGVNLSGCQKQRVSLARAVYSNADIYLFDDPLSAVDAHVGKHIFE NVIGPKGMLKNKTRILVTHSMSYLPQVDVIIVMSGGKISEMGSYQELLARDGAFAEFLRTYASTEQEOD AEENGVTGVSGPGKEAKQMENGMLVTDSAGKQLQRQLSSSSSYSGDISRHHNSTAELQKAEAKKEETWK LMEADKAQTGQVKLSVYWDYMKAIGLFISFLSIFLFMCNHVSALASNYWLSLWTDDPIVNGTQEHTKVR LSVYGALGISQGIAVFGYSMAVSIGGILASRCLHVDLLHSILRSPMSPFERTPSGNLVNRFSKELDTVD SMIPEVIKMFMGSLFNVIGACIVILLATPIAAIIIPPLGLIYFFVQRFYVASSRQLKRLESVSRSPVYS HFNETLLGVSVIRAFEEQERFIHQSDLKVDENQKAYYPSIVANRWLAVRLECVGNCIVLFAALFAVISR HSLSAGLVGLSVSYSLQVTTYLNWLVRMSSEMETNIVAVERLKEYSETEKEAPWQIQETAPPSSWPQVG RVEFRNYCLRYREDLDFVLRHINVTINGGEKVGIVGTGAGKSSLTLGLFRINESAEGEIIIDGINIAKI GLHDLRFKITIIPQDPVLFSGSLRMNLDPFSQYSDEEVWTSLELAHLKDFVSALPDKLDHECAEGGENL SVGQRQLVCLARALLRKTKILVLDBATAAVDLETDDLIQSTIRTQFEDCTVLTIAHRLNTIMDYTRVIV LDKGEIQEYGAPSDLLQQRGLFYSMAKDAGLV

>ABCC2=MRP2= Multi Drug Resistance Associated Protein 2
MLEKFCNSTFWNSSFLDSPEADLPLCFEQTVLVWIPLGFLWLLAPWQLLHVYKSRTKRSSTTKLYLAKQ
VFVGFLLILAAIELALVLTEDSGQATVPAVRYTYPSLYLGTWLLVLLIQYSRQWCVQKNSWFLSLFWIL
SILCGTFQFQTLIRTLLQGDNSNLAYSCLFFISYGFQILILIFSAFSENNESSNNPSSIASFLSSITYS
WYDSIILKGYKRPLTLEDVWEVDEEMKTKTLVSKFETHMKRELQKARRALQRRQEKSSQQNSGARLPGL
NKNQSQSQDALVLEDVEKKKKKSGTKKDVPKSWLMKALFKTFYMVLLKSFLLKLVNDIFTFVSPQLLKL
LISFASDRDTYLWIGYLCAILLFTAALIQSFCLQCYFQLCFKLGVKVRTAIMASVYKKALTLSNLARKE
YTVGETVNLMSVDAQKLMDVTNFMHMLWSSVLQIVLSIFFLWRELGPSVLAGVGVMVLVIPINAILSTK
SKTIQVKNMKNKNKRKLKIMNEILSGIKILKYFAWEPSFRDQVQNLRKKELKNLLAFSQLQCVVIFVFQL
TPVLVSVVTFSVYVLVDSNNILDAQKAFTSITLFNILRFPLSMLPMMISSMLQASVSTERLEKYLGGDD
LDTSAIRHDCNFDKAMQFSEASFTWEHDSEATVRDVNLDIMAGQLVAVIGPVGSGKSSLISAMLGEMEN
VHGHITIKGTTAVVPQQSWIQNGTIKDNILFGTEFNEKRYQQVLEACALLPDLEMLPGGDLAEIGEKGI
NLSGGQKQRISLARATYQNLDIYLLDDPLSAVDAHVGKHIFNKVLGPNGLLKGKTRLLVTHSMHFLPQV

Figure 3 - 7

DEIVVLGNGTIVEKGSYSALLAKKGEFAKNLKTFLRHTGPEEEATVHDGSEEEDDDYGLISSVEEIPED
AASITMRRENSFRRTLSRSSRSNGRHLKSLRNSLKTRNVNSLKEDEELVKGQKLIKKEFIETGKVKFSI
YLEYLQAIGLFSIFFIILAFVNNSVAFIGSNLWLSAWTSDSKIFNSTDYPASQRDMRVGYYGALGLAQG
IFVFIAHFWSAFGFVHASNILIKQLLNNILRAPMRFFDTTPTGRIVNRFAGDISTVDDTLPQSLRSWIT
CPLGIISTLVMICMATPVPTIIVIPLGIIYVSVQMFYVSTSRQLRRLDSVTRSPIYSHFSETVSGLPVI
RAFEHQQRFLKINEVRIDTNQKCVPSWITSNRWLAIRLELVGNLTVFFSALMMVIYRDTLSGDTVGFVL
SNALNITQTLNWLVRMTSEIETNIVAVERITEYTKVENEAPWVTDKRPPPDWPSKGKIQFNNYQVRYRP
ELDLVLRGITCDIGSMEKIGVVGRTGAGKSSLTNCLFRILEAAGGQIIIDGVDIASIGLHDLREKLTII
PQDPILFSGSLRMNLDPFNNYSDEEIWKALELAHLKSFVASLQLGLSHEVTEAGGNLSIGQRQLLCLGR
ALLRKSKILVLDBATAAVDLETDNLIQTTIQNEFAHCTVITIAHRLHTIMDSDKVMVLDNGKIIECGSP
EELLQIPGPFYFMAKEAGIENVNSTKF

>ABCC3=MRP3= Multi Drug Resistance Associated Protein 3 MDALCGSGELGSKFWDSNLSVHTENPDLTPCFQNSLLAWVPCIYLWVALPCYLLYLRHHCRGYIILSHL SKLKMVLGVLLWCVSWADLFYSFHGLVHGRAPAPVFFVTPLVVGVTMLLATLLIOYERLOGVOSSGVLI IFWFLCVVCAIVPFRSKILLAKAEGEISDPFRPTTFYIHFALVLSALILACFREKPPFFSAKNVDPNPY PETSAGFLSRLFFWWPTKMAIYGYRHPLEEKDLWSLKEEDRSQMVVQQLLEAWRKQEKQTARHKASAAP GKNASGEDEVLLGARPRPRKPSFLKALLATFGSSFLISACFKLIQDLLSFINPQLLSILIRFISNPMAP SWWGFLVAGLMFLCSMMQSLILQHYYHYIFVTGVKFRTGIMGVIYRKALVITNSVKRASTVGEIVNLMS VDAORFMDLAPFLNLLWSAPLOIILAIYFLWONLGPSVLAGVAFMVLLIPLNGAVAVKMRAFOVKOMKL KDSRIKLMSEILNGIKVLKLYAWEPSFLKOVEGIROGELOLLRTAAYLHTTTTFTWMCSPFLVTLITLW VYVYVDPNNVLDAEKAFVSVSLFNILRLPLNMLPQLISNLTQASVSLKRIQQFLSQEELDPQSVERKTI SPGYAITIHSGTFTWAQDLPPTLHSLDIQVPKGALVAVVGPVGCGKSSLVSALLGEMEKLEGKVHMKGS VAYVPQQAWIQNCTLQENVLFGKALNPKRYQQTLEACALLADLEMLPGGDQTEIGEKGINLSGGQRQRV SLARAVYSDADIFLLDDPLSAVDSHVAKHIFDHVIGPEGVLAGKTRVLVTHGISFLPQTDFIIVLADGQ VSEMGPYPALLORNGSFANFLCNYAPDEDOGHLEDSWTALEGAEDKEALLIEDTLSNHTDLTDNDPVTY VVQKQFMRQLSALSSDGEGQGRPVPRRHLGPSEKVQVTEAKADGALTQEEKAAIGTVELSVFWDYAKAV GLCTTLAICLLYVGOSAAAIGANVWLSAWTNDAMADSRQNNTSLRLGVYAALGILQGFLVMLAAMAMAA GGIQAARVLHQALLHNKIRSPQSFFDTTPSGRILNCFSKDIYVVDEVLAPVILMLLNSFFNAISTLVVI MASTPLFTVVILPLAVLYTLVQRFYAATSRQLKRLESVSRSPIYSHFSETVTGASVIRAYNRSRDFEII SDTKVDANQRSCYPYIISNRWLSIGVEFVGNCVVLFAALFAVIGRSSLNPGLVGLSVSYSLQVTFALNW MIRMMSDLESNIVAVERVKEYSKTETEAPWVVEGSRPPEGWPPRGEVEFRNYSVRYRPGLDLVLRDLSL HVHGGEKVGIVGRTGAGKSSMTLCLFRILEAAKGBIRIDGLNVADIGLHDLRSQLTIIPQDPILFSGTL RMNLDPFGSYSEEDIWWALELSHLHTFVSSOPAGLDFOCSEGGENLSVGOROLVCLARALLRKSRILVL DEATAAIDLETDNLIQATIRTOFDTCTVLTIAHRLNTIMDYTRVLVLDKGVVAEFDSPANLIAARGIFY **GMARDAGLA**

>ABCC4= MRP4= Multidrug Resistance Associated Protein 4 MLPVYQEVKPNPLQDANICSRVFFWWLNPLFKIGHKRRLEEDDMYSVLPEDRSQHLGEELQGFWDKEVL RAENDAQKPSLTRAIIKCYWKSYLVLGIFTLIEESAKVIOPIFLGKIINYFENYDPMDSVALNTAYAYA TVLTFCTLILAILHHLYFYHVQCAGMRLRVAMCHMIYRKALRLSNMAMGKTTTGQIVNLLSNDVNKFDQ VTVFLHFLWAGPLOAIAVTALLWMEIGISCLAGMAVLIILLPLOSCFGKLFSSLRSKTATFTDARIRTM NEVITGIRIIKMYAWEKSFSNLITNLRKKEISKILRSSCLRGMNLASFFSASKIIVFVTFTTYVLLGSV ITASRVFVAVTLYGAVRLTVTLFFPSAIERVSEAIVSIRRIOTFLLLDEISORNROLPSDGKKMVHVOD FTAFWDKASETPTLQGLSFTVRPGELLAVVGPVGAGKSSLLSAVLGELAPSHGLVSVHGRIAYVSQQPW VFSGTLRSNILFGKKYEKERYEKVIKACALKKDLQLLEDGDLTVIGDRGTTLSGGQKARVNLARAVYQD ADIYLLDDPLSAVDAEVSRHLFELCICQILHEKITILVTHQLQYLKAASQILILKDGKMVQKGTYTEFL KSGIDFGSLLKKDNEESEOPPVPGTPTLRNRTFSESSVWSOOSSRPSLKDGALESODTENVPVTLSEEN RSEGKVGFQAYKNYFRAGAHWIVFIFLILLNTAAOVAYVLODWWLSYWANKOSMLNVTVNGGGNVTEKL DLNWYLGIYSGLTVATVLFGIARSLLVFYVLVNSSOTLHNKMFESILKAPVLFFDRNPIGRILNRFSKD IGHLDDLLPLTFLDFIQTLLQVVGVVSVAVAVIPWIAIPLVPLGIIFIFLRRYFLETSRDVKRLESTTR SPVFSHLSSSLQGLWTIRAYKAEERCQELFDAHQDLHSEAWFLFLTTSRWFAVRLDAICAMFVIIVAFG SLILAKTLDAGQVGLALSYALTLMGMFQWCVRQSAEVENMMISVERVIEYTDLEKEAPWBYQKRPPPAW PHEGVIIFDNVNFMYSPGGPLVLKHLTALIKSOEKVGIVGRTGAGKSSLISALFRLSEPEGKIWIDKIL TTEIGLHDLRKKMSIIPQEPVLFTGTMRKNLDPFKEHTDEELWNALQEVQLKETIEDLPGKMDTELAES GSNFSVGQRQLVCLARAILRKNQILIIDEATANVDPRTDELIQKKIREKFAHCTVLTIAHRLNTIIDSD KIMVLDSGRLKEYDEPYVLLQNKESLFYKMVQQLGKAEAAALTETAKQVYFKRNYPHIGHTDHMVTNTS NGQPSTLTIFETAL

>ABCC5= MRP5= Multidrug Resistance Associated Protein 5
MKDIDIGKEYIIPSPGYRSVRERTSTSGTHRDREDSKFRRTRPLECQDALETAARAEGLSLDASMHSQL
RILDEEHPKGKYHHGLSALKPIRTTSKHQHPVDNAGLFSCMTFSWLSSLARVAHKKGELSMEDVWSLSK
HESSDVNCRRLERLWQEELNEVGPDAASLRRVVWHFCRTRLILSIVCLMITQLAGFSGPAFMVKHLLEY
TQATESNLQYSLLLVLGLLLTEIVRSWSLALTWALNYRTGVRLRGAILTMAFKKILKLKNIKEKSLGEL
INICSNDGQRMFEAAAVGSLLAGGPVVAILGMIYNVIILGPTGFLGSAVFILFYPAMMFASRLTAYFRR
KCVAATDERVQKMNEVLTYIKFIKMYAWVKAFSQSVQKIREEERRILEKAGYFQGITVGVAPIVVVIAS

Figure 3 - 8
VVTFSVHYTLGFDLTAAOAFTVVTVFNSMTFALKVTPFSVKSLSEASVAVDRFKSLFLMEEVHMIKNKP ASPHIKIEMKNATLAWDSSHSSIQNSPKLTPKMKKDKRASRGKKEKVRQLQRTEHQAVLAEQKGHLLLD SDERPSPEEEEGKHIHLGHLRLQRTLHSIDLEIQEGKLVGICGSVGSGKTSLISAILGQMTLLEGSIAI SGTFAYVAQQAWILNATLRDNILFGKEYDEERYNSVLNSCCLRPDLAILPSSDLTEIGERGANLSGGQR QRISLARALYSDRSIYILDDPLSALDAHVGNHIFNSAIRKHLKSKTVLFVTHOLOYLVDCDEVIFMKEG CITERGTHEBLMNLNGDYATIFNNLLLGETPPVBINSKKETSGSQKKSQDKGPKTGSVKKEKAVKPEBG QLVQLEEKGQGSVPWSVYGVYIQAAGGPLAFLVIMALFMLNVGSTAFSTWWLSYWIKQGSGNTTVTRGN **ETSVSDSMKDNPHMQYYASIYALSMAVMLILKAIRGVVFVKGTLRASSRLHDELFRRILRSPMKFFDTT** PTGRILNRFSKDMDEVDVRLPFQAEMFIQNVILVFFCVGMIAGVFPWFLVAVGPLVILFSVLHIVSRVL IRELKRLDNITQSPFLSHITSSIQGLATIHAYNKGOEFLHRYOELLDDNOAPFFLFTCAMRWLAVRLDL ISIALITTIGLMIVLMHGQIPPAYAGLAISYAVQLTGLFQFTVRLASETEARFTSVERINHYIKTLSLE APARIKNKAPSPDWPQEGEVTFENAEMRYRENLPLVLKKVSFTIKPKEKIGIVGRTGSGKSSLGMALFR LVELSGGCIKIDGVRISDIGLADLRSKLSIIPQEPVLFSGTVRSNLDPFNQYTEDQIWDALERTHMKEC IAQLPLKLESEVMENGDNFSVGERQLLCIARALLRHCKILILDEATAAMDTETDLLIOETIREAFADCT MLTIAHRLHTVLGSDRIMVLAQGQVVEFDTPSVLLSNDSSRFYAMPAAAENKVAVKG

>ABCC6= MRP6= Multidrug Resistance Associated Protein 6 MAAPAEPCAGQGVWNQTEPEPAATSLLSLCFLRTAGVWVPPMYLWVLGPIYLLFIHHHGRGYLWMSPLF KAKMVLGFALIVLCTSSVAVALWKIOOGTPEAPEFLIHPTVWLTTMSFAVFLIHTERKKGVOSSGVLFG YWLLCFVLPATNAAQQASGAGFQSDPVRHLSTYLCLSLVVAQFVLSCLADQPPFFPEDPQQSNPCPETG AAFPSKATFWWVSGLVWRGYRRPLRPKDLWSLGRENSSEELVSRLEKEWMRNRSAARRHNKAIAFKRKG GSGMKAPETEPFLRQEGSQWRPLLKAIWQVFHSTFLLGTLSLIISDVFRFTVPKLLSLFLEFIGDPKPP AWKGYLLAVLMFLSACLQTLFEQQNMYRLKVLQMRLRSAITGLVYRKVLALSSGSRKASAVGDVVNLVS VDVQRLTESVLYLNGLWLPLVWIVVCFVYLWQLLGPSALTAIAVFLSLLPLNFFISKKRNHHQEEQMRQ KDSRARLTSSILRNSKTIKFHGWEGAFLDRVLGIRGOELGALRTSGLLFSVSLVSFOVSTFLVALVVFA VHTLVAENAMNAEKAFVTLTVLNILNKAQAFLPFSIHSLVQARVSFDRLVTFLCLEEVDPGVVDSSSSG SAAGKDCITIHSATFAWSOESPPCLHRINLTVPOGCLLAVVGPVGAGKSSLLSALLGELSKVEGFVSIE GAVAYVPQEAWVQNTSVVENVCFGQELDPPWLERVLEACALQPDVDSPPEGIHTSIGEQGMNLSGGQKQ ${\tt RLSLARAVYRKAAVYLLDDPLAALDAHVGQHVFNQVIGPGGLLQGTTRILVTHALHILPQADWIIVLAN}$ GAIAEMGSYQELLQRKGALVCLLDQARQPGDRGEGETEPGTSTKDPRGTSAGRRPELRRERSIKSVPEK DRTTSEAQTEVPLDDPDRAGWPAGKDSIQYGRVKATVHLAYLRAVGTPLCLYALFLFLCQQVASFCRGY WLSLWADDPAVGGQQTQAALRGGIFGLLGCLQAIGLFASMAAVLLGGARASRLLFQRLLWDVVRSPISF FERTPIGHLLNRFSKETDTVDVDIPDKLRSLLMYAFGLLEVSLVVAVATPLATVAILPLFLLYAGFOSL YVVSSCQLRRLESASYSSVCSHMAETFOGSTVVRAFRTQAPFVAQNNARVDESQRISFPRLVADRWLAA NVELLGNGLVFAAATCAVLSKAHLSAGLVGFSVSAALQVTQTLQWVVRNWTDLENSIVSVERMODYAWT PKEAPWRLPTCAAQPPWPQGGQIEFRDFGLRYRPBLPLAVQGVSFKIHAGEKVGIVGRTGAGKSSLASG LLRLQEAAEGGIWIDGVPIAHVGLHTLRSRISIIPQDPILFPGSLRMNLDLLQEHSDEAIWAALETVQL KALVASLPGQLQYKCADRGEDLSVGQKQLLCLARALLRKTQILILDEATAAVDPGTELQMQAMLGSWFA QCTVLLIAHRLRSVMDCARVLVMDKGQVAESGSPAQLLAQKGLFYRLAQESGLV

>ABCC7= cystic fibrosis transmembrane conductance regulator MQRSPLEKASVVSKLFFSWTRPILRKGYRQRLELSDIYQIPSVDSADNLSEKLEREWDRELASKKNPKL INALRRCFFWRFMFYGIFLYLGEVTKAVOPLLLGRIIASYDPDNKEERSIAIYLGIGLCLLFIVRTLLL HPAIFGLHHIGMONRIAMFSLIYKKTLKLSSRVLDKISIGQLVSLLSNNLNKFDEGLALAHFVWIAPLQ VALLMGLIWELLQASAFCGLGFLIVLALFQAGLGRMMMKYRDQRAGKISERLVITSEMIENIQSVKAYC WEEAMEKMIENLRQTELKLTRKAAYVRYFNSSAFFFSGFFVVFLSVLPYALIKGIILRKIFTTISFCIV LRMAVTRQFPWAVQTWYDSLGAINKIQDFLQKQEYKTLEYNLTTTEVVMENVTAFWEEGFGELFEKAKQ NNNNRKTSNGDDSLFFSNFSLLGTPVLKDINFKIERGQLLAVAGSTGAGKTSLLMMIMGELEPSEGKIK HSGRISFCSOFSWIMPGTIKENIIFGVSYDEYRYRSVIKACOLEEDISKFAEKDNIVLGEGGITLSGGO RARISLARAVYKDADLYLLDSPFGYLDVLTEKEIFESCVCKLMANKTRILVTSKMEHLKKADKILILHE ${\tt GSSYFYGTFSELQNLQPDFSS} \overline{KLMGCD} {\tt SFDQFSA} {\tt ZRRNSILITETLHRFSLEGDAPVSWTETKKQSFKQT}$ GEFGEKRKNSILNPINSIRKFSIVQKTPLQMNGIZEDSDEPLERRLSLVPDSEQGEAILPRISVISTGP TLQARRRQSVLNLMTHSVNQGQNIHRKTTASTRKVSLAPQANLTELDIYSRRLSQETGLEISEEINEED LKECFFDDMESIPAVTTWNTYLRYITVHKSLIFVLIWCLVIFLAEVAASLVVLWLLGNTPLODKGNSTH SRNNSYAVIITSTSSYYVFYIYVGVADTLLAMGFFRGLPLVHTLITVSKILHHKMLHSVLOAPMSTLNT LKAGGILNRFSKDIAILDDLLPLTIFDFIQLLLIVIGAIAVVAVLQPYIFVATVPVIVAFIMLRAYFLQ TSQQLKQLESEGRSPIFTHLVTSLKGLWTLRAFGRQPYFETLFHKALNLHTANWFLYLSTLRWFQMRIE MIFVIFFIAVTFISILTTGEGEGRVGIILTLAMNIMSTLQWAVNSSIDVDSLMRSVSRVFKFIDMPTEG KPTKSTKPYKNGQLSKVMIIENSHVKKDDIWPSGGQMTVKDLTAKYTEGGNAILENISFSISPGQRVGL LGRTGSGKSTLLSAFLRLLNTEGEIOIDGVSWDSITLOOWRKAFGVIPOKVFIFSGTFRKNLDPYEOWS DOEIWKVADEVGLRSVIEOFPGKLDFVLVDGGCVLSHGHKOLMCLARSVLSKAKILLLDEPSAHLDPVT YQIIRRTLKQAFADCTVILCEHRIEAMLECQQFLVIEENKVRQYDSIQKLLNERSLFRQAISPSDRVKL **FPHRNSSKCKSKPQIAALKEETEEEVQDTRL**

>ABCC8=SUR1=Sulfonurea Receptor 1

Figure 3 - 9
MPLAFCGSENHSAAYRVDQGVLNNGCFVDALNVVPHVFLLFITFPILFIGWGSQSSKVHIHHSTWLHFP CHNLRWILTFMLLFVLVCEIAEGILSDGVTESHHLHLYMPAGMAFMAAVTSVVYYHNIETSNFPKLLIA LLVYWTLAFITKTIKFVKLLDHAIGFSQLRFCLTGLLVILYGMLLLVEVNVIRVRRYIFFKTPREVKPP EDLQDLGVRFLQPFVNLPSKGTYWWMNAF1KTAHKKP1DLRAIGKLPIVMRALTNYQRLCEAFDAQVRK DIQGTQGARAIWQALSHAFGRRLVLSSTFRILADLLGFAGPLCIFGIVDHLGKENDVFQPKTQFLGVYF VSSQEFLANAYVLAVILIFLALLLQRTFLQASYYVA1ETGINLRGA1QTK1YNKIMHLSTSNLSMGEMTA GQICNLVAIDTNQLMWFFFLCPNLWAMPVQIIVGVILLYYILGVSALIGAAVIILLAPVQYFVATKLSQ AQRSTLEYSNERLKQTNEMLRGIKLLKLYAWENIFRTRVETTRRKEMTSLRAFAIYTSISIFMNTAIPI AAVLITFVGHVSFFKEADFSPSVAFASLSLFHILVTPLFLLSSVVRSTVKALVSVQKLSEFLSSAEIRE EQCAPHEPTPQGPASKYQAVPLRVVNRKRPAREDCRGLTGPLQSLVPSADGDADNCCVQIMGGYFTWTP DGIPTLSNITIRIPRGQLTMIVGQVGCGKSSLLLAALGEMOKVSGAVFWSSLPDSEIGEDPSPERETAT DLDIRKRGPVAYASQKPWLLNATVEENIIFESPFNKQRYKMVIZACSLQPDIDILPHGDQTQIGERGIN ${\tt LSGCQRQRISVARALYQHANVVFLDD\underline{PFSALD}IHLSDHLMQAGILELLRDDKRTVVLVTHKLQYLPHAD}$ WI LAMKDGTIQREGTLKDFQRSECQLFEHWKTLMNRQDQELEKETVTERKATEPPQGLSRAMSSRDGLL QDEEEEEEEAAESEEDDNLSSMLHQRAEIPWRACAKYLSSAGILLLSLLVFSQLLKHMVLVAIDYWLAK WTDSALTLTPAARNCSLSQECTLDQTVYAMVFTVLCSLGTVLCLVTSVTVEWTGLKVAKRLHRSLLNRI ILAPMRPFETTPLGSILNRFSSDCNTIDQHIPSTLECLSRSTLLCVSALAVISYVTPVFLVALLPLAVV CYFIQKYFRVASRDLQQLDDTTQLPLLSHFAETVEGLTTIRAFRYEARFQQKLLEYTDSNNIASLFLTA ANRWLEVRMEYIGACVVLIAAVTSISNSLHRELSAGLVGLGLTYALMVSNYLNWMVRNLADMELQLGAV KRIHGLLKTEAESYEGLLAPSLIPKNWPDQGKIQIQNLSVRYDSSLKPVLKHVNALISPGQKIGICGRT GSGKSSPSLAFFRMVDTFEGHIIIDGIDIRKLPLHTLPSRLSIILQDPVLFSGTIRFNLDPERKCSDST LWEALEIAQLKLVVKALPGGLDAIITEGGENFSOGOROLFCLARAFVRKTSIFIMDEATASIDMATENI LQKVVMTAFADRTVVTIAHRVHTILSADLVIVLKRGAILEFDKPEKLLSRKDSVFASFVRADK

>ABCC9= SUR2= Sulfonurea Receptor 2 MSLSFCGNNISSYNINDGVLQNSCFVDALNLVPHVFLLFITFPILFIGWGSQSSKVQIHHNTWLHFPGH NLRWILTPALLFVHVCEIAEGIVSDSRRESRHLHLFMPAVMGFVATTTSIVYYHNIETSNFPKLLLALF LYWVMAFITKTIKLVKYCQSGLDISNLRFCITGMMVILNGLLMAVEINVIRVRRYVFFMNPOKVKPPED LQDLGVRFLQPFVNLLSKATYWWMYTLIISAHKKPIDLKAIGKLPIAMRAVTNYVCLKDAYEEOKKKVA DHPNRTPSIWLAMYRAFGRPILLSSTFRYLADLLGPAGPLCISGIVQRVNETQNGTNNTTGISETLSSK EFLENAYVLAVLLFLALILQRTFLQASYYVTIETGINLRGALLAMIYNKILRLSTSNLSMGEMTLGQIN NLVAIETNQLMWFLFLCPNLWAMPVQIIMGVILLYNLLGSSALVGAAVIVLLAPIQYFIATKLAEAQKS TLDYSTERLKKTNEILKGIKLLKLYAWEHIFCKSVEETRMKELSSLKTFALYTSLSIFMNAAIPIAAVL ATFVTHAYASGNNLKPAEAFASLSLFHILVTPLSLLFTVVRFAVKAIISVQKLNEFLLSDEIGDDSWRT GESSLPFESCKKHTGVQPKTINRKQPGRYHLDSYEQSTRRLRPAETEDIAIKVTNGYFSWGSGLATISN IDIRIPTGQLTMIVGQVGCGKSSLLLAILGEMOTLEGKVHWSNVNESEPSFEATRSRNRYSVAYAAOKP WLLNATVEENITFGSPFNKQRYKAVTDACSLQPDIDLLPFGDQTEIGERGINLSGGQRQRICVARALYO NTNIVFLDDPFSALDIHLSDHLMQEGILKFLQDDKRTLVLVTHKLQYLTHADWIIAMKDGSVLREGTLK DIQTKDVELYEHWKTLMNRQDQELEKDMEADQTTLERKTLRRAMYSREAKAQMEDEDEEEEEEEEDEDDN MSTVMRLRTKMPWKTCWRYLTSGGFFLLILMIFSKLLKHSVIVAIDYWLATWTSEYSINNTGKADQTYY VAGFSILCGAGIFLCLVTSLTVEWMGLTAAKNLHHNLLNKIILGPIRFFDTTPLGLILNRFSADTNIID QHIPPTLESLTRSTLLCLSAIGMISYATPVFLVALLPLGVAFYFIQKYFRVASKDLQELDDSTQLPLLC HFSETAEGLTTIRAFRHETRFKQRMLELTDTNNIAYLFLSAANRWLEVRTDYLGACIVLTASIASISGS SNSGLVGLGLLYALTITNYLNWVVRNLADLEVOMGAVKKVNSFLTMESENYEGTMDPSOVPEHWPOEGE IKIHDLCVRYENNLKPVLKHVKAYIKPGOKVGICGRTGSGKSSLSLAFFRMVDIFDGKIVIDGIDISKL PLHTLRSRLSIILQDPILFSGSIRFNLDPECKCTDDRLWEALEIAQLKNMVKSLPGGLDAVVTEGGENF SVGQRQLFCLARAFVRKSSILIMDEATASIDMATENILQKVVMTAFADRTVVTMAHRVSSIMDAGLVLV **FSEGILVECDTVPNLFAHKNGPFSTLVMTNK**

>ABCC10 (partial sequence)

GSGCLGAEKREGKNRWQGEASMERLLAQLCGSSAAWPLPLWEGDTTCHCFTQLVLSALPHALLAVLSAC YLGTPRSPDYILPCSPGWRLRLAASFLLSVFPLLDLLPVALPPGAGPGPIGLEVLAGCVAAVAWISHSL ALWVLAHSPHGHSRGPLALALVALLPAPALVLTVIWHCQRGTLLPPLLPGPMARLCLLILQLAALLAYA LGWAAPGGPREPWAQEPLLPEDQEPEVAEDGESWLSRFSYAWLAPLLARGACGELRQPQDICRLPHRLQ PTYLARVFQAHWQEGARLWRALYGAFGRCYLALGLKLVGTMLGFSGPLLLSLLVGFLEEGQEPLSHGL LYALGLAGGAVLGAVLQNQYGYEVYKVTLQARGAVLNILYCKALQLGPSRPPTGEALNLLGTDSERLLN FAGSFHEAWGLPLQAITLYLLYQQVGVAFVGGLILALLLVPVNKVLATRIMASNQEMLQHKDARVKLV TELLSGIRVIKFCGWEQALGARVEACRARELGRLRVIKYLDAACVYLWAALPVVISIVIFITYVLMGHQ LTATKVFTALALVRMLILPLNNFPWVINGLLEAKVSLDRIQLFLDLPNHNPQAYYSPDPPAEPSTVLEL HGALFSWDPVGTSLETFISHLEVKKGMLVGIVGKVGCGKSSLLAAIAGELHRLRGHVAVRGLSKGFGLA TQEPWIQFATIRDNILFGKTFDAQLYKEVLEACALNDDLSILPAGDQTEVGEKGVTLSGGQRARIALAR AVYQEKELYLLDDPLAAVDADVANHLLHRCILGMLSYTTRLCTHRTEYLERADAVLLMEAGRLIRAGP PSEILPLVQAVPRAWAENGQESDSATAQSVQNPEKTKEGLEBEQSTSGRLLQEESKKEGAVALHVYQAY WXAVGQGLALAILFSLLLMQATRNAADWWLSHWISQLKAENSSQEAGPSTSPASMGLFSPQLLLFSPGN LYIPVFPLPXAAPNGSSDIRFYLTVYATIAGVNSLCTLLRAVLFAAGTLQAAATLHRRLHRVLMAPVT

Figure 3 - 10

FFNATPTGRILNRFSSDVACADDSLPFILNILLANAAGLIGLAVLGSGLPWLLLLLPPLSIMYYHVQR
HYRASSRELRRIGSLTLSPLYSHLADTLAGLSVLAATGATYRFEBENLRLLELNQRCQFATSATMQWLD
IRLQLMGAAVVSAIAGIALVQHQQGLANPGLVGLSLSYALSLTGLLSGLVSSFTQTEAMLVSVERLEEY
TCDLPQEPQGQPLQLGTGWLTQGGVEFQDVVLAYRPGLPNALDGVTFCVQPGEKLGIVGRTGSGKSSLL
LVLFRLLEPSSGRVLLDGVDTSQLELAQLRSQLAIIPQEPFLFSGTVRENLDPQGLHKDRALWQALKQC
HLSEVITSMGGLDGELGEGGRSLSLGQRQLLCLARALLTDAKILCIDEATASVDQKTDQLLQQTICKRF
ANKTVLTIAHRLNTILNSDRVLVLQAGRVVELDSPATLRNQPHSLFQQLLQSSQQGVPASLGGP

>ABCD1=ALDP= adrenoleukodystrophy protein
MPVLSRPRPWRGNTLKRTAVLLALAAYGAHKVYPLVRQCLAPARGLQAPAGEPTQEASGVAAAKAGMNR
VFLQRLLWLLRLLFPRVLCRETGLLALHSAALVSRTFLSVYVARLDGRLARCIVRKDPRAFGWQLLQWL
LIALPATFVNSAIRYLEGQLALSFRSRLVAHAYRLYFSQQTYYRVSNMDGRLRNPDQSLTEDVVAFAAS
VAHLYSNLTRPLLDVAVTSYTLLRAARSRGAGTAWPSAIAGLVVFLTANVLRAFSPKFGELVAEEARRK
GELRYMHSRVVANSEEIAFYGGHEVELALLQRSYQDLASQINLILLERLWYVMLEQFILMKYVWSASGLL
MVAVPIITATGYSESDAEAVKKAALEKKEEBLVSERTEAFTIARNLLTAAADAIERIMSSYKEVTELAG
YTARVHEMFQVFEDVQRCHFKRPRELEDAQAGSGTIGRSGVRVEGPLKIRGQVVDVEQGIICENIPIVT
PSGEVVVASLMIRVEEGMHLLITGPNGCGKSSLFRILGGLWPTYGGVLYKPPPQRMFYIPQRPYMSVGS
LRDQVIYPDSVEDMQRKGYSEQDLEAILDVVHLHILQREGGWEAMCDWKDVLSGGEKQRIGMARMFYH
RPKYALLDECTSAVSIDVEGKIPQAAKDAGIALLSITHRPSLWKYHTHLLQFDGEGGWKFEKLDSAARL
SLTEEKQRLEQQLAGIPKMORRLQELCOILGEAVAPAHVPAPSPOGPGGLOGAST

>ABCD2=ALDR= adrenoleukodystrophy related protein
MTHMLNAAADRVKWTRSSAAKRAACLVAAAYALKTLYPIIGKRLKQSGHGKKKAAAYPAAENTEILHCT
ETICEKPSPGVNADFFKQLLELRKILFPKLVTTETGWLCLHSVALISRTFLSIYVAGLDGKIVKSIVEK
KPRTFIIKLIKWLMIAIPATFVNSAIRYLECKLALAFRTRLVDHAYETYFTNQTYYKVINMDGRLANPD
QSLTEDIHMFSQSVAHLYSNLTKPILDVMLTSYTLIQTATSRGASPIGPTLLAGLVVYATAKVLKACSP
KFGKLVAEEAHRKGYLRYVHSRIIANVEEIAFTRGHKVEMKQLQKSYKALADQMNLILISKRLWYIMIEQ
FLMKYVWSSSGLIMVAIPIITATGPADGEDGQKQVMVSERTEAFTTARNLLASGADAIERIMSSYKEVT
ELAGYTARVYNMFWVFDEVKRGIYKRTAVIQESESHSKNGAKVELPLSDTLAIKGKVIDVDHGIICENV
PIITPAGEVVASRLNFKVEEGHHLLITGPNGCGKSSLFRILSGLWPVYEGVLYKPPPOHMFYIPQRPYM
SLGSLRDQVIYPDSVDDMHDKGYTDQDLERILHNVHLYHIVQREGGWDAVMDWKDVLSGGEKQRMGMAR
MFYHKPKYALLDECTSAVSIDVEGKIFQAAKGAGISLLSITHRPSLWKYHTHLLQFDGEGGWRFEQLDT
AIRLTLSEEKQKLESQLAGIPKMQQRLNELCKILGEDSVLKTIKNEDETS

>ABCD3=PXMP1= Peroxisomal membrane protein 1
MAAFSKYLTARNSSLAGAAPLLLCLLHKRRALGLHGKKSGKPPLQNNEKEGKKERAVVDKVFFSRLIQ
ILKIMVPRTFCKETGYLVLIAVMLVSRTYCDVWMIQNGTLIESGIIGRSRKDFKRYLLNFIAAMPLISL
VNNFLKYGLNELKLCFRVRLTKYLYEEYLQAFTYYKMGNLDNRIANPDQLLTQDVEKFCNSVVDLYSNL
SKPFLDIVLYIFKLTSAIGAQGPASMMAYLVVSGLFLTRLRPIGKMTITEQKYEGEYRYVNSRLITNS
EEIAFYNGNKREKQTVHSVFRKLVEHLHNFILFRFSMGFIDSIIAKYLATVVGYLVVSRPFLDLSHPRH
LKSTHSELLEDYYQSGRMLLRMSQALGRIVLAGREMTRLAGFTARITELMQVLKDLNHGKYERTMVSQQ
EKGIEGVQVIPLIFGAGEIIIADNIIKFDHVPLATPNGDVLIRDLNFEVRSGANVLICGPNGCGKSSLF
RVLGELWPLFGGRLTKPERGKLFYVPQRPYMTLGTLRDQVIYPDGREDQKRKGISDLVLKEYLDNVQLG
HILEREGGWDSVQDWMDVLSGGEKQRMAMARLFYHKPQFAILDECTSAVSVDVEGYIYSHCRKVGITLP
TVSHRKSLWKHHEYYLHMDGRGNYEFKQITEDTVEFGS

>ABCD4=PXMP1L= Peroxisomal membrane protein 1-like 1
MAVAGPAPGAGARPRLDLQFLQRFLQILKVLFPSWSSQNALMFLTILLCLTLLEQFVIYQVGLIPSQYYG
VLGNKDLEGPKTLTFLAVMLIVLNSTLKSFDQFTCNLLYVSWRKDLTEHLHRLYFRGRAYYTLNVLRDD
IDNPDQRISQDVERFCRQLSSMASKLIISPFTLVYYTYQCFQSTGWLGPVSIFGYFILGTVVNKTLMGP
IVMKLVHQEKLEGDFRFKHMQIRVNAEPAAFYRRGHVEHMRTDRRLQRLLQTQRELMSKELWLYIGINT
FDYLGSILSYVVIAIPIFSGVYGDLSPAELSTLVSKNAFVCIYLISCFTQLIDLSTTLSDVAGYTHRIG
QLRETLLDMSLKSQDCEILGESEWGLDTPPGWPAAEPADTAFLLERVSISAPSSDKPLIKDLSLKISEG
QSLLITGNTGTGKTSLLRVLGGLWTSTRGSVQMLTDFGPHGVFLPPQKPFFTDGTLREQVIYPLKEVYP
DSGSADDERILRFLELAGLSNLVARTEGLDQQVDWNWYDVLSPGEMQRLSFARLFYLQPKYAVLDEATS
ALTEEVESELYRIGQQLGMTFISVGHRQSLEKFHSLVLKLCGGGRWELMRIKVE

>ABCE1= Ribonuclease L inhibitor
MADKLTRIAIVNHDKCKPKKCRQECKKSCPVVRMGKLCIEVTPQSKIAWISETLCIGCGICIKKCPFGA
LSIVNLPSNLEKETTHRYCANAFKLHRLPIPRPGEVIGLVGTNGIGKSAALKILAGKQKPNLGKYDDPP
DWQEILTYFRGSELQNYFTKILEDDLKAIIKPQYVARFLRLAKGTVGSILDRKDETKTQAIVCQQLDLT
HLKERNVEDLSGGELQRFACAVVCIQKADIFMFDEPSSYLDVKQRLKAAITIRSLINPDRYIIVVEHDL
SVLDYLSDFICCLYGVPSAYGVVTMPFSVREGINIFLDGYVPTENLRFRDASLVFKVAETANEEEVKKM
CMYKYPGMKKKMGEFELAIVAGEFTDSEIMVMLGENGTGKTTFIRMLAGRLKPDEGGEVPVLNVSYKPQ
KISPKSTGSVRQLHEKIRDAYTHPOFVTDVMKPEOIENIIDOEVOTLSGGELORVRLRLCLGKPADVY

Figure 3 - 11

LIDEPSAYLDSEQRLMAARVVKRFILHAKKTAFVVEHDFIMATYLADRVIVFDGVPSKNTVANSPQTLL AGMNKFLSQLEITFRRDPNNYRPRINKLNSIKDVEQKKSGNYFFLDD

>ABCF1

MPKAPKQQPPEPEWIGDGESTSPSDKVVKKGKKDKKIKKTFFEELAVEDKQAGEEEKULKEKEQQQQQQ
QQQKKKRDTRKGRRKKDVDDDGEEKELMERLKKLSVPTSDEEDEVPAPKPRGGKKTKGGNVFAALIQD
QSEEEEEEEKHPPKPARPEKNRINKAVSEEQQPALKGKKGKEEKSKGKAKPONKPAALDNEEEDKEEEI
IKEKEPPKQGKEKAKKAEQMEYERQVASLKAANAAENDFSVSQAEMSSRQAHENASDIKLEKFSISAH
GKELFVNADLYIVAGRRYGLVGPNGKGKTTLLKHIANRALSIPPNIDVLLCEQEVVADETPAVQAVLRA
DTKRLKLLEEERRLQGOLEQGDDTAABRLEKVYEELRATGAAAABAKARRILAGLGFDPEMQNRPTQKF
SGGWRMVSLARALFMEPTLLMLDEPTNHLDLNAVIWLNNYLQGWRKTLLIVSHDQGFLDDVCTDIIHL
DAQRLHYYRGNYMTFKKMYQQKQKELLKQYEKQEKKLKELKAGGKSTKQAEKQTKEALTRKQQKCRKN
QDESQEAPELLKRPKETTVRFTFPDPPLSPPVLGLHGVTFGYQGQKPLFKNLDFGIDMDSRICIVGP
NGVGKSTLLLLLTGKLTPTHGEMRKNHRLKIGPFNQQYAEQLRMEETPTEYLQRGFNLPYQDARKCLGR
FGLESHAHTIQICKLSGGQKARVVFAELACREPDVLILDBPTNNLDIESIDALGEAINEYKGAVIVVSH
DARLITETNCOLWVVEDOSVSOIDGDFEDYKREVLEALGEVMVSRPRE

>ABCF2

MPSDLAKKKAAKKEAAKARQRPRKGHEENGDVVTEPQVAEKNEANGRETTEVDLLTKELEDFEMKKAA ARAVTGYLASHPNSTTUHTINLSLTFHGQELLSDTKLELNSGRRYGLIGLNGTGKSMLLSATGKREVPT PEHIDTYHLTREMPPSDKTPLHCVMEVDTERAMLEKEAERLAHEDAECEKLMELYERLEELDADKAEMR ASRILHGLGFTPAMQRKKLKDFSGGWRMRVALARALFIRPFMLLLDEPTNHLDLDACVWLEEELKTFKR ILVLVSHSQDFLNGVCTNIIHMINKKLKYYTGNYDQYVKTRLELEENGMKRFHWEQDQIAHMKNYIARFGHGSAKLARQAQSKEKTLQKMMASGLTERVVSDKTLSFYFPPCGKIPPVIMVQNVSFKYTKDGPCIYN NLEFGTDLDTRVALVGPNGAGKSTLLKLLTGELLPTDGMIRKHSHVKIGRYHQHLQEQLDLDLSPLEYM MKCYPEIKEKEEMRXITGRYGLTGKQQVSPIRNLSDGQKCRVCLAWLAWQNPHMLFLDEPTNHLDIBTI DALADAINEFEGGMMLVSHDFRLIQQVAQEIWVCEKQTITKWPGDILAYKEHLKSKLVDEEPQLTKRTH NVCTLTLASLPRP

>ABCF3

MATCABILRSEFPEIDGQVFDYVTGVLHSGSADFESVDDLVEAVGELLQEVSGDSKDDAGIRAVCQRMY
NTLRLAEPQSQGNSQVLLDAPIQLSKITENYDCGTKLPGLLKREQSSTVNAKKLEKAEARLKAKQEKRS
EKDTLKTSNPLVLBEASASQAGSRKESRLESSGKNKSYDVRIENFDVSFGDRVLLAGADVNLAWGRRYG
LVGRNGLGKTTLLKMLATRSLRVPAHISLLHVEQEVAGDDTPALQSVLESDSVREDLLRRERELTAQIA
AGRAEGSEAAELAEIYAKLEEIFADKAPARASVILAGLGFTPKMQQQPTREFSGGWRMRLALARALFAR
PDLLLLDEPTMMLDVRAILWLENYLQTWPSTILVVSHDRNFLNAIATDIIHLHSQRLDGYRGDFETFIK
SKQERLLNQQREYEAQQQYRQHIQVFIDRFRYNANRASQVQSKLKMLEKLPELRPVDKESEVVMKFPDG
FEKFSPPILQLDEVDFYYDPKHVIFSRLSVSADLESRICVVGENGAGKSTMLKLLLGDLAPVRGIRHAH
RNLKIGYFSQHHVEQLDLNVSAVELLARKFPGRPEEEYRHQLGRYGISGELAMRPLASLSGGQKSRVAF
AQMTMPCPNFYILDEPTNHLDMETIEALGRALNNFRGGVILVSHDERFIRLVCRELWVCEGGGVTRVEG
GFDOYRALLQEGFREGFL

>ABCG1=ABC8 WHITE protein homolog

MAAPSVGTAMNASSYSAEMTEPKSVCVSVDEVVSSNMEATETDLLNGHLKKVDNNLTEAQRFSSLPRRA AVNIEFRDLSYSVPEGPWWRKKGYKTLLKGISGKFNSGELVAIMGPSGAGKSTLMNILAGYRETGMKGA VLINGLPRDLRCFRKVSCYIMQDDMLLPHLTVQEAMMVSAHLKLQEKDEGRREMVKEILTALGLLSCAN TRTGSLSGGQRKRLAIALELVNNPPVMFFDEPTSGLDSASCFQVVSLMKGLAQGGRSIICTIHQPSAKL FELFDQLYVLSQGQCVPYRGKVCNLVPYLRDLGLNCPTYHNPADFVMEVASGEYGDQNSRLVRAVREGMC DSDHKRDLGGDAEVNPFLWHRPSEEVKQTKRLKGLRKDSSSMEGCHSFSASCLTQFCILFKRTFLSIMR DSVLTHLRITSHIGIGLLIGLLYLGIGNETKKVLSNSGFLFFSMLFLMFAALMPTVLTFPLEMGVFLRE HLNYWYSLKAYYLAKTMADVPFQIMFPVAYCSIVYMMTSQPSDAVRFVLFAALGTMTSLVAQSLGLLIG AASTSLQVATFVGPVTAIPVLLFSGFFVSFDTIPTTLQWMSYISYVRYGFEGVILSIYGLDREDLHCDI DETCHFQKSEAILRELDVENAKLYLDFIVLGIFFISLRLIAYLVLRYKIRAER

>ABCG2= BCRP or Breast Cancer Resistance Protein

MSSSNVEVFIPVSQGNTNGFPATVSNDLKAFTEGAVLSFHNICYRVKLKSGFLPCRKPVEKEILSNING IMKPGLNAILGPTGGGKSSLLDVLAARKDPSGLSGDVLINGAPRPANFKCNSGYVVQDDVVMGTLTVRE NLQFSAALRLATTMTNHEKNERINRVIEELGLDKVADSKVGTQFIRGVSGGERKRTSIGMELITDPSIL SLDEPTTGLDSSTANAVLLLLKRMSKQGRTIIFSTHQPRYSIFKLFDSLTLLASGRLMFHGPAQEALGY FESAGYHCEAYNNPADFFLDIINGDSTAVALNREEDFKATEIIEPSKQDKPLIEKLAEIYVNSSFYKET KAELHQLSGGEKKKKITVFKEISYTTSFCHQLRWVSKRSFKNLLGNPQASIAQIIVTVVLGLVIGAIYF GLKNDSTGIQNRAGVLFFLTTNQCFSSVSAVELFVVEKKLFIHEYISGYYRVSSYFLGKLLSDLLPMRM LPSIIFTCIVYFMLGLKPKADAFFVMMFTLMMVAYSASSMALAIAAGQSVVSVATLLMTICFVFMMIFS GLLVNLTTIASWLSWLQYFSIPRYGFTALQHNEFLGQNFCPGLNATGNNPCNYATCTGEEYLVKQGIDL SPWGLWKNHVALACMIVIFLTIAYKLLFLKKYS

Figure 3 - 12

>ABCG5

MGDLSSLTPGGSMGLQVNRGSQSSLEGAPATAPEPHSLGILHASYSVSHRVRPWWDITSCRQQWTRQIL KDVSLYVESGQIMCILGSSGSGKTTLLDAMSGRLGRAGTFLGEVYVNGRALRREQFQDCFSYVLQSDTL LSSLTVRETLHYTALLAIRRGNPGSFQKKVEAVMAELSLSHVADRLIGNYSLGGISTGERRRVSIAAQL LQDPKVMLFPTGLDCMTANQIVVLLVBLARRNRIVVLTIHQPRSELFQLFDKIAILSFGELIFCGTPA EMLDFFNDCGYPCPEHSNPFFFYMDLTSVDTQSKEREIETSKRVQMIESAYKKSAICHKTLKNIERMKH LKTLPMVPFKTKDSPGVFSKLGVLLRRVTRNLVRNKLAVITRLLQNLIMGLFLLFFVLRVRSNVLKGAI QDRVGLLYQFVGATPYTGMLNAVLFPVLRAVSDQESQDGLYQKWQMMLAYALHVLPFSVVATMIFSSV CYWTLGLHPEVARFGYFSAALLAPHLIGEFLTLVLLGIVQNPNIVNSVVALLSIAGVLVGSGPLRNIQE MPIPPKIISYFTFQKYCSEILVVNEFYGLNFTCGSSNVSVTTNPMCAFTQGIQFIEKTCPGATSRFTMN FLILYSFIPALVILGIVVFKIRDHLISR

>ARCGE

MAGKAAEERGLPKGATPQDTSGLQDRLFSSESDNSLYFTYSGQPNTLEVRDLNYQVDLASQVPWFEQLA
QFKMPWTSPSCQNSCELGIQNLSPKVRSGQMLAIIGSSGCGRASLLDVITGRGHGGKIKSGQIWINGQP
SSPQLVRKCVAHVRQHNQLLPNLTVRETLAFIAQMRLPRTFSQAQRDKRVEDVIAELRLRQCADTRVGM
MYVRGLSGGERRRVSIGVQLLWNPGILILDEPTSGLDSFTAHNLVKTLSRLAKGNRLVLISLHQPRSDI
FRLFDLVLLMTSGTPIYLGAAQHMVQYFTAIGYPCPRYSNPADFYVDLTSIDRRSREQELATREKAQSL
AALFLEKVRDLDDFLWKAETKDLDEDTCVESSVTPLDTNCLPSPTKMPGAVQQPTTLIRRQISNDFRDL
PTLLIHGAEACLMSMTIGFLYFGHGSIQLSFMDTAALLFMIGALIPFNVILDVISKCYSERAMLYYELE
DGLYTTGPYFFAKILGELPEHCAYIIIYGMPTYWLANLRPGLQPFLLHFLLVWLVVFCCRIMALAAAAL
LPTFHMASFFSNALYNSFYLAGGFMINLSSLWTVPAWISKVSFLRWCFEGLMKIQFSRRTYKMPLGNLT
IAVSGDKILSVMELDSYPLYAIYLIVIGLSGGFMVLYYVSLRFIKQKPSODW

Bacterial Transporters (examples)

>LmrA= lincomycin resistance protein

MERGPQMANRIEGKAVDKTSIKHFVKLIRAAKPRYLFFVIGIVAGIIGTLIQLQVPKMVQPLINSFGHG VNGGKVALVIALYIGSAAVSAIAAIVLGIFGESVVKNLRTRVWDKMIHLPVKYFDEVKTGEMSSRLAND TTQVKNLIANSIPQAFTSILLLVGSIIFMLQMQWRLTLAMIIAVPIVMLIMFPIMTFGQKIGWTRQDSL ANFQGIASESLSEIRLVKSSNAEKQASKKAENDVNALYKIGVKEAVFDGLMSPVMMLSMMLMIFGLLAY GIYLISTGVMSLGTLLGMMYYLMNLIGVVPTVATFFTELAKASGSTGRITELLDEQEVLHQGDSLDLE GKTLSAHHVDFAYDDSEQILHDISFEAQPNSIIAFAGPSGGKSTIFSLLERFYQPTAGEITIGGQPID SVSLENWRSQIGFVSQDSAIMAGTIRENLTYGLEGNFTDEDLWQVLDLAFARSFVENMPDQLNTEVGER GVKISGGQRQRLAIARAFLRNPKILMLDEATASLDSESESMVQRALDSLMKGRTTLVIAHRLSTIVDAD KIYFIEKGEITGSGKHNELVATHPLYAKYVSEOLTVGO

>DrrA=daunorubicin resistance protein

MNTQPTRAIETSGLVKVYNGTRAVDGLDLNVPAGLVYGILGPNGAGKSTTIRMLATLLRPDGGTARVFG HDVTSEPDTVRRRISVTGQYASVDEGLTGTENLVMMGRLQGYSWARARERAAELIDGFGLGDARDRLLK TYSGGMRRRLDIAASIVVTPDLLFLDEPTTGLDPRSRNQVWDIVRALVDAGTTVLLTTQYLDEADQLAD RIAVIDHGRVIAEGTTGELKSSLGSNVLRLRLHDAQSRAEAERLLSAELGVTIHRDSDPTALSARIDDP RQGMRALAELSRTHLEVRSFSLGQSSLDEVFLALTGHPADDRSTEEAABEEKVA

>0leB=oleandomycin resistance protein Streptomyces coelicor MONAHRSDTGAAALTGTPEKLLPTOPETGSFQVVLDDVVRAPGGRPLLDGVNQSVALGERVGIIGENGS GKSTLLRMLAGVDRPDGGQVLVRAPGGCGYLPQTPDLPPEDTVQDATDHALAELRSLERGLREAEQALA GAEPEELEGLLGAYGDLLEAFEARDGYAADARVDAAMHGLGLAGITGDRRLGSLSGGEQARLNLACLLA ASPQLMLLDEPTMHLDVGALEWLEERLRAHRGSVLVVSHDRVFLERVATALWEVDGERRTVNRHGGGYA GYLQAKAAARRWEQAYQDWLEDLARQRELARSAADHLATGPRRNTERSNQRHQRNVEKQISARVRNAK ERVRRLEENPVPRPPQPMRFRARVEGGGTVGRGGALAELYKVTVGTRLDVPSFTVDPGERILITGHNGA GKSTLLRVLAGDLAPDQGECERPERIGWLPQETEITDRQQSLLAAFAAGLPGIAEEHRGALLGFGLFRP SALGTAVGDLSTGQLRRLALARLLRDPADLLLLDEPTNHLSPALVEDLEEALAHYRGALVVVSHDRMFA ORFTGRRMHMEGGRFVE

PROTOZOA (examples)

>Pfmdr2= multidrug resistance protein 2 - malaria parasite

(Plasmodium falciparum)

MDVSNYEYLRSYGIKNELKRKRTHKKIIIYHLLDIIIFFLLFFSCYNFNLELCYKYEKAIFYNFFKSSV DLFLLNVIRIIYTVILFRLHKKLTELNTLGKVYVLSRHITGILVILNVIKMINYSYVIKSENPLYNTNM YLITLKVLFMVYSMISSIYYYFIQFKLYNIKKKYIIARVELEKILINDIKSKKYNIYKSDENSGLLGTD NNSTIMNNEYLNLDYKNLLDMNISYNKLNEKINNDIINNTSDVQEKNMDYNDIHNFQKKKKSSNFAYLN FFHKESKDNKIDVKESFLNKRYGSNKRSSKIYDNNNNNNNNNNNNSKIDYLENNITYTEFKKILLPYLW

Figure 3 - 13

PSKRIDMKGNSSILRTYIVLIFLPILVSKVFSVISPIYLGWASNEVLKKSLSSSVYYLGLYVTFFISK FLKEVCGVLFSQVQQSAFIELQESIFQTFHNLSYEWYSSKNSGGIMRIVDRGTESANNLMSSVLMYIIP ATIEGLITCIIFIFKYKNSLLGSVLFIGLTLYIYSTIKITKWRKKIRTKANEMDNVYHDIAHDSLTNYE NVKYFSNEKFEIKKFCNALSNYHRYNLKILNSLGILNTVQQFILNGTLFFTLLCVIYMIVKEGSDPGTFISVVVYTSNVFAPLSILGTLYATIIKSFTDISDLIDIIRDKIDISNDKNLKNFDLTSQEKKFGVSIEFN NVHFNYPTQPLHTSLKDINIYIKPGTTCALVGHTGSGKTTISKLLYRFYDSKGEIKIGGRNINEYTRNSIRNIIGIVPQDTILFNESIKYNILYGKLDATEEELIQAVKSAQLYDFIQSLPKKWDTLVGDKGVKLSGGERQRISIARCLLKDPKIVIFDEATSSLDSRTEYLFQKAVEDLRKNRTIIIAHKLCTITTAELIILLNKGKIIERGFHLDLLKCNGEYTEMWNMQSKSNEPHTETNSSIDKDDVNKNNNKNDVILNTCKNDITTSFRSNSEKSSQEFSDASNHIKQSKTSNDHNNNINVHKKNEQEQLFLTNDKTDMDDNMNNKKK

>DVLQF=MDR-PLAFF= Pfmr1= chloroquine resistance protein (Plasmodium falciparum)

MGKEOKEKKDGNLSIKEEVEKELNKKSTAELFRKIKNEKISFFLPFKCLPAOHRKLLFISFVCAVLSGG TLPFFISVFGVILKNMNLGDDINPIILSLVSIGLVQFILSMISSYCMDVITSKILKTLKLEYLRSVFYQ DCQFHDNNPGSKLRSDLDFYLEQVSSGIGTKFITIFTYASSFLGLYIWSLIKNARLTLCITCVFPLIYV CGVICNKKVKLNKKTSLLYNNNYMSIIEEALMGIRTVASYCGEKTILNKFNLSETFYSKYILKANFVEA LHIGLINGLILVSYAFGFWYGTRIIINSATNOYPNNDFNGASVISILLGVLISMFMLTIILPNITEYMK ALEATNSLYEIINRKPLVENNDDGETLPNIKKIEFKNVRFHYDTRKDVEIYKDLSFTLKEGKTYAFVGE SGCGKSTILKLIERLYDPTEGDIIVNDSHNLKDINLKWWRSKIGVVSQDPLLFSNSIKNNIKYSLYSLK DLEAMENYYEENTNDTYENKNFSLISNSMTSNELLEMKKEYQTIKDSDVVDVSKKVLIHDFVSSLPDKY DTLVGSNASKLSGGQKQRISIARAIMRNPKILILDEATSSLDNKSEYLVQKTINNLKGNENRITIIIAH RLSTIRYANTIFVLSNRERSDNNNNNNNDDNNNNNNNNNNNNNNNNNNNNNEGSYIIEQGTHDSLMKNKNGIYHLM INNOKI SSNKSSNNGNDNGSDNKSSAYKDSDTGNDADNMNSLSI HENENI SNNRNCKNTAENEKEEKVP FFKRMFRRKKKAPNNLRIIYKEIFSYKKDVTIIFFSILVAGGLYPVFALLYARYVSTLFDFANLEYNSN ${\tt KYSIYILLIAIAMFISETLKNYYNNKIGEKVEKTMKRRLFENILYQEMSFFDQDKNTPGVLSAHINRDV}$ HLLKTGLVNNIVIFSHFIMLFLVSMVMSFYFCPIVAAVLTFIYFINMRVFAVRARLTKSKEIEKKENMS SGVFAFSSDDEMFKDPSFLIQEAPYNMHTVINYGLEDYFCNLIEKAIDYKNKGQKRRIIVNAALWGFSQ SAQLFINSFAYWFGSFLIKRGTILVDDFMKSLFTFIFTGSYAGKLMSLKGDSENAKLSFEKYYPLMIRK SNIDVRDDGGIRINKNLIKGKVDIKDVNFRYISRPNVPIYKNLSFTCDSKKTTAIVGETGSGKSTFMNL LLRFYDLKNDHIILKNDMTNFQDYQNNNNNSLVLKNVNEFSNQSGSAEDYTVFNNNGEILLDDINICDY NLRDLRNLFSIVSQBPMLFNMSIYENIKFGREDATLEDVKRVSKPAAIDEPIESLPNKYDTNVGPYGKS LSGGQKQRIAIARALLREPKILLLDEATSSLDSNSEKLIEKTIVDIKDKADKTIITIAHRIASIKRSDK IVVFNNPDRNGTFVQSHGTHDELLSAQDGIYKKYVKLAK

>DVLNS= Methothrexate resistance proten Leishmania tarentolae MVDNGHVTIAMADLGTVVEIAQVRCQQEAQRKFAEQLDELWGGEPAYTPTVEDQASWFQQLYYGWIGDY IYKAAAGNITEADLPPPTRSTRTYHIGRKLSRQAHADIDASRRWQGYIGCEVVYKSEAEAKGVLRWVGH LQQSDYPRSLVAGVEWRMPPRHRRLAVLGSAAALHNGVVHGERLFWPHEDNYLCSCEPVEQLYVKSKYN LTPPRPPPSPDLLRTLFKVHWYHVWAOILPKLLSDVTALMLPVLLBYFVKYLNADNATWGWGLGLAL/TI ${\tt FLTNVIQSCSAHKYDHISIRTAALFETSSMALLFEKCFTVSRRSLQRPDMSVGRIMNMVGNDVDNIGSL}$ NWYVMYFWSAPLQLVLCLLLLIRLVGWLRVPGMAVLFVTLPLQAVISKHVQDVSERMASVVDLRIKRTN ELLSGVRIVKFMGWEPVFLARIQDARSRELRCLRDVHVANVFFMFVNDATPTLVIAVVFILYHVSGKVL KPEVVFPTIALLNTMRVSPFMIPIIISSILQCFVSAKRVTAFIECPDTHSQVQDIASIDVPDAAAIFKG ASIHTYLPVKLPRCKSRLTAMORSTLWFRRRGVPETEWYEVDSPDASASSLAVHSTTVHMGSTQTVITD SDGAAGEDEKGEVEEGDREYYOLVSKELLRNVSLTIPKGKLTMVIGSTGSGKSTLLGALMGEYSVESGE LWAERSIAYVPQQAWIMNATLRGNILFFDEERAEDLQDVIRCCQLEADLAQFCGGLDTEIGEMGVNLSG ${\tt GQKARVSLARAVYANRDVYLLDD} \underline{{\tt PLSALD}} {\tt AHVGQRIVQDVILGRLRGKTRVLATHQIHLLPLADYIVVL}$ QHGSIVFAGDFAAFSATALEETLRGELKGSKDVESCSSDVDTESATAETAPYVAKAKGLNAEQETSLAG GEDPLRSDVEAGRLMTTEEKATGKVPWSTYVAYLKSCGGLEAWGCLLATFALTECVTAASSVWLSIWST GSLMWSADTYLYVYLFIVFLEIFGSPLRFFLCYYLIRIGSRNMHRDLLESIGVARMSFFDTTPVGRVLN RFTKDMSILDNTLNDGYLYLLEYFFSMCSTVIIMVVVQPFVLVAIVPCVYSYYKLMQVYNASNRETRRI KSIAHSPVFTLLEESLQGQRTIATYGKLHLVLQEALGRLDVVYSALYMQNVSNRWLGVRLEFLSCVVTF MVAFIGVIGKMEGASSQNIGLISLSLTMSMTLTETLMWLVRQVAMVEANMNSVERVLHYTQEVEHEHVP EMGELVAOLVRSESGRGANVTETVVIESAGAASSALHPVQAGSLVLEGVQMRYREGLPLVLRGVSFQIA PREKYGIVGRTGSGKSTLLLTFMRMVEYCGGVIHVNGREMSAYGLRELRRHFSMIPQDPVLFDGTVRQN VDPFLEASSAEVWAALELVGLRERVASESEGIDSRVLEGGSNYSVGOROLMCMARALLKRGSGFILMDE ATANIDPALDROIQATVMSAFSAYTVITIAHRLHTVAQYDKIIVMDHGVVAEMGSPRELVMNHQSMFHS MVESLGSRGSKDFYELLMGRRIVQPAVLSD

FUNGAL TRANSPORTERS (examples)

>Bfrl= Brefeldin A resistance protein Schizosaccahromyces pombe MNQNSDTTHGQALGSTLNHTTEVTRISNSSDHFEDSSSNVDESLDSSNPSSNEKASHTNEEYRSKGNQS YVPSSSNEPSPESSSNSDSSSSDDSSVDRLAGDPFELGENFNLKHYLRAYKDSLQRDDIITRSSGVCMR DHSVYGVGSGYEFLKTFPDIFLQPYRAITEKQVVEKAILSHCHALANAGELVMVLGQPGSGCSTFLRSV

 $\textbf{Figure 3-14} \\ \textbf{TSDTVHYKRVEGTTHYDGIDKADMKKFFPGDLLYSGENDVHFPSLTTAETLDFAAKCRTPNNRPCNLTR} \\$ QEYVSRERHL1ATAFGLTHTFNTKVGNDFVRGVSGGBRKRVT1SEGFATRPT1ACWDNSTRGLDSSTAF EFVNVLRTCANELKMTSFVTAYQASEKIYKLFDRICVLYAGRQIYYGPADKAKQYFLDMGFDCHPRETT PDPLTAISDPKARFPRKGFENRVPRTPDEFEOMWRNSSVYADLMAEMESYDKRWTETTPASSEAPEKDN FGSDISATTKHELYRQSAVAEKSKRVKDTSPYTVTFSQQLWYCLARSWERYINDPAYIGSMAFAFLFQS LIIGSIFYDMKLNTVDVFSRGGVLFFSILFCALQSLSEIANMFSQRPIIAKHRASALYHPAADVISSLI VDLPFRFINISVFSIVLYFLTNLKRTAGGFWTYFLFLFIGATCMSAFFRSLAGIMPNVESASALGGIGV LAIAIYTGYAIPNIDVGWWFRWIAYLDPLOFGFESLMINEFKAROFECSOLIPYGSGYDNYPVANKICP VTSAEPGTDYVDGSTYLY ISFNYKTRQLWRNLAIIIGYYAFLVFVNIVASETLNFNDLKGEYLVFRRGH APDAVKAAVNEGGKPLDLETGQDTQGGDVVKESPDNEEELNKEYEGIEKGHDIFSWRNLNYDIQIKGEH RRLLNGVQGFVVPGKLTALMGESGAGKTTLLNVLAQRVDTGVVTGDMLVNGRGLDSTFORRTGYVOOOD vhigestvrealrfsaalropasvplsekyeyvesvikllemesyaeaiigtpgsglnveorkratigv ELAAKPALLLFLDEPTSGLDSQSAWSIVCFLRKLADAGQAILCTIHQPSAVLFDQFDRLLLLQKGGKTV YFGDIGEHSKTLLNYFESHGAVHCPDDGNPAEYILDVIGAGATATTNRDWHEVWNNSEERKAISAELDK INASPSNSEDKKTLSKEDRSTYAMPLWFQVKMVMTRNPQSYWREPSILMSKLALDIFAGLFIGFTFYNO GLGVQNIQNKLFAVFMATVLAVPLINGLQPKFIELRNVFEVRBKPSNIYSWVAFVFSAIIVEIPFNLVF GTLFFLCWFYP1KFYKH1HHPGDKTGYAWLLYMFFOMYFSTFGOAVASACPNAOTASVVNSLLFTFV1T FNGVLQPNSNLVGFWHWMHSLTPFTYLIEGLLSDLVHGLPVECKSHEMLTINPPSGOTCGEYMSAFLTN NTAAGNLLNPNATTSCSYCPYQTADQFLERFSMRYTHRWRNLGIFVGYVFFNIFAVLLLFYVFRVMKLR STWLGKKITGTG

>Cdrl= multidrug resistance protein 1 Candida albicans MSDSKMSSQDESKLEKAISQDSSSENHSINEYHGFDAHTSENIONLARTFTHDSFKDDSSAGLLKYLTH MSEVPGVNPYEHEBINNDQLNPDSENFNAKFWVKNLRKLFESDPEYYKPSKLGIGYRNLRAYGVANDSD YQPTVTNALWKLATEGFRHFQKDDDSRYFDILKSMDAIMRPGELTVVLGRPGAGCSTLLKTIAVNTYGF HIGKESQITYDGLSPHDIERHYRGDVIYSAETDVHFPHLSVGDTLEFAARLRTPQNRGEGIDRETYAKH MASVYMATYCLSHTRNTNVGNDFVRGVSGGERKRVSIAEASLSGANIQCWDNATRGLDSATALEFIRAL KTSAVILDTTPLIAIYQCSQDAYDLFDKVVVLYEGYQIFFGKATKAKEYFEKMGWKCPQRQTTADFLTS LTNPAEREPLPGYEDKVPRTAQEFETYWKNSPEYAELTKEIDEYFVECERSNTRETYRESHVAKQSNNT RPASPYTVSFFMQVRYGVARNFLRMKGDPSIPIFSVFGQLVMGLILSSVFYNLSQTTGSFYYRGAAMFF AVLFNAFSSLLEIMSLFEARPIVEKHKKYALYRPSADALASI ISELPVKLAMSMSFNFVFYFMVNFRRN PGRFFFYWLMCIWCTFVMSHLFRSIGAVSTSISGAMTPATVLLLAMVIYTGFVIPTPSMLGWSRWINYI NPVGYVFESLMVNEFHGREFQCAQYVPSGPGYENISRSNQVCTAVGSVPGNEMVSGTNYLAGAYQYYNS HKWRNLGITIGFAVFFLAIYIALTEFNKGAMQKGEIVLFLKGSLKKHKRKTAASNKGDIEAGPVAGKLD YQDEAEAVNNEKFTEKGSTGSVDFPENREIFFWRDLTYQVKIKKEDRVILDHVDGWVKPGQITALMGAS GAGKTTLLNCLSERVTTGIITDGERLVNGHALDSSFQRSIGYVQQQDVHLPTSTVREALQFSAYLRQSN KISKKEKDDYVDYVIDLLEMTDYADALVGVAGEGLNVEQRKRLTIGVELVAKPKLLLFLDEPTSGLDSQ TAWSICKLMRKLADHGQAILCTIHQPSALIMAEFDRLLFLQKGGRTAYFGELGENCQTMINYFEKYGAD PCPKEANPAEWMLQVVGAAPGSHAKQDYFEVWRNSSEYOAVREEINRMEAELSKLPRDNDPEALLKYAA PLWKQYLLVSWRTIVQDWRSPGYIYSKIFLVVSAALFNGFSPFKAKNNMQGLQNQMFSVFMFFIPFNTL VQQMLPYPVKQRDVYEVREAPSRTFSWFAFIAGQITSEIPYQVAVGTIAFFCWYYPLGLYNNATPTDSV NPRGVLMWMLVTAFYVYTATMGQLCMSFSELADNAANLATLLFTMCLNFCGVLAGPDVLPGFWIFMYRC NPFTYLVQAMLSTGLANTFVKCAEREYVSVKPPNGESCSTYLDPY1KFAGGYFETRNDGSCAFCQMSST NTFLKSVNSLYSERWRNFGIFIAFIAINIILTVIFYWLARVPKGNREKKNKK

>Cdr2= multidrug resistance protein 2 Candida albicans MSTANTSLSQQLDENPWVDASDNSSVQEYQGFDATASHNIQDLARKLTHGSTNGDHHSANDLARYLSHM SDIPGVSPFNGNISHEQLDPDSENFNAKYWVKNLKKLFESDSDYYKPSKLGVAYRNLRAYGIANDSDYQ PTVTNALWKFTTEAINKLKKPDDSKYFDILKSMDAIMRPGELTVVLGRPGAGCSTLLKTIAVNTYGFHĪ GKESQITYDGLS PHDIERHYRGDVIYSAETDVHFPHLSVGDTLEFAARLRTPQNRGEGIDRETYAKHMA SVYMATYGLSHTRNTNVGNDFVRGVSGGERKRVSIAEASLSGANIOCWDNATRGLDSATALEFIRALKT SATILDTTPLIATYOCSODAYELPDNVVVLYEGYOIFFGKASKAKEYFENMGWKCPOROTTADFIJTSIJT NPAEREPLPGYEDKVPRTAQEFETFWKNSPEYAELTKEIDEYFVECERSNTGETYRESHVGKQSNNTRP ${\tt SSPYTVSFFMQVRYVIARNFLRMKGDPSIPLISILSQLVMGLILASVFFNLRKSTDTFYFRGGALFFSV}$ LFNAPSSLLEILSLYEARPIVEKHRKYALYRPSADALASIISELPVKLLMTMSFNIVYYFMVNLRRTAG NFFFYWLMCASCTLVMSHMFRSIGAVTTTIATAMSLSTVFLLAMIIYAGFVLPIPYILGWSRWIRYINP VTY1FESLMVNEFHGREFECGQY1PSGPGFENLPVENKVCTTVGSTPGSTVVQGTEY1KLAYQFYSSHK wrnfgitvafavfflgvyvaltefnkgasokgeivlflkgslkkhkrktaasnkgdieagpvagkldyo DEAEAVNNEKFTEKGSTGSVDFPENRETFFWRDLTYQVK1KKEDRV1LDHVDGWVKPGQ1TALMGASGA GKTTLLNCLSERVTTGIITDGERLVNGHALDSSFQRSIGYVQQQDVHLETTTVREALQFSAYLRQSNKI SKKEKDDYVDYVIDLLEMTDYADALVGVAGEGLNVEQRKRLTIGVELVAKPKLLLFLDEPTSGLDSQTA WSICKLMRKLADHGQAILCTIHQPSALIMAEFDKLLFLOKGGRTAYFGELGENCOTMINYFEKYGADPC PKEANPAEWMLQVVGAAPGSHAKQDYFEVWRNSSEYQAVREEINRMEAELSKLPRDNDPEALLKYAAPL WKQYLLVSWRTIVQDWRSPGYIYSKLILVISSSLFIGFSFFKSKNNLQGLQSQMLAVFMFFVPFTTFID QMLPYFVKHRAVYEVREAPSRTFSWFAFIAGQITSEIPFQIVVGTISYFCWYYPVGLYANAEPTDSVNS RGVLMWMLLTAFYVYTSTMGQLAISLNELIDNAANLATTLFTLCLMFCGVLAGPNVIPGFWIFMYRCNP

Figure 3 - 15

FTYLIQAILSTGLANAKVTCAPRELVTLKPPMGETCSSFIGPYTEAAGGYFSTNSDGTCSVCRIDSTNQ FLESINALFSQRWRNFGIFVAFIGINIILTIFFYWLARVPKGNREKKMKK

>Pdr5p= multidrug resistance transporter Saccharomyces cerevisiae MPEAKLNNNVNDVTSYSSASSSTENAADLHNYNGFDEHTEARIOKLARTLTAQSMQNSTQSAPNKSDAQ SIFSSGVEGVNPIFSDPEAPGYDPKLDPNSENPSSAAWVKNMAHLSAADPDFYKPYSLGCAWKNLSASG ASADVAYOSTVVNI PYKILKSGLRKFORSKETNTFOILKPMDGCLNPGELLVVLGRPGSGCTTLLKSIS SNTHGFDLGADTKISYSGYSGDDIKKHFRGEVVYNAEADVHLPHLTVFETLVTVARLKTPQNRIKGVDR ESYANHLAEVAMATYGLSHTRNTKVGNDIVRGVSGGERKRVSIAEVSICGSKFOCWDNATRGLDSATAL EFIRALKTQADISNTSATVAIYQCSQDAYDLFNKVCVLDDGYQIYYGPADKAKKYFEDMGYVCPSRQTT ADFLTSVTSPSERTLNKDMLKKGIHIPOTPKEMNDYWVKSPNYKELMKEVDQRLLNDDEASREAIKEAH IAKQSKRARPSSPYTVSYMMQVKYLLIRNMWRLRNNIGFTLFMILGNCSMALILGSMFFKIMKKGDTST FYFRGSAMFFAILFNAFSSLLEIFSLYEARPITEKHRTYSLYHPSADAFASVLSEIPSKLIIAVCFNII FYFLVDFRRNGGVFFFYLLINIVAVFSMSHLFRCVGSLTKTLSEAMVPASMLLLALSMYTGFAIPKKKI LRWSKWIWYINPLAYLFESLLINEFHGIKFPCAEYVPRGPAYANISSTESVCTVVGAVPGQDYVLGDDF IRGTYQYYHKDKWRGFGIGMAYVVFFFFVYLFLCEYNEGAKOKGEILVFPRSIVKRMKKRGVLTEKNAN DPENVGERSDLSSDRKMLQESSEEESDTYGEIGLSKSEAIFHWRNLCYEVQIKAETRRILNNVDGWVKP GTLTALMGASGAGKTTLLDCLAERVTMGVITGDILVNGIPRDKSFPRSIGYCQQQDLHLKTATVRESLR FSAYLRQPAEVSIEEKNRYVEEVIKILEMEKYADAVVGVAGEGLNVEQRKRL/TIGVELTAKPKLLVFLD EPTSGLDSQTAWSICOLMKKLANHGOAILCTIHOPSAILMOEFDRLLFMORGGKTVYFGDLGEGCKTMI DYFESHGAHKCPADANPAEWMLEVVGAAPGSHANQDYYEVWRNSEEYRAVQSELDWMERELPKKGSITA AEDKHEFSQSIIYQTKLVSIRLFQQYWRSPDYLWSKFILTIFNQLFIGFTFFKAGTSLQGLQNQMLAVF MFTVIFNPILQQYLPSFVQQRDLYEARERPSRTFSWISFIFAQIFVEVPWNILAGTIAYFIYYYPIGFY SNASAAGQLHERGALFWLFSCAFYVYVGSMGLLVISFNQVAESAANLASLLFTMSLSFCGVMTTPSAMP RFWIFMYRVSPLTYFIQALLAVGVANVDVKCADYELLEFTPPSGMTCGQYMEPYLQLAKTGYLTDENAT DTCSFCQISTTNDYLANVNSFYSERWRNYGIFICYIAFNYIAGVFFYWLARVPKKNGKLSKK

>Snq2P Saccharomyces cerevisiae MSNIKSTODSSHNAVARSSSASFAASEESFTGITHDKDEOSDTPADKL/TKML/TGPARDTASQISATVSE MAPDVVSKVESFADALSRHTTRSGAFNMDSDSDDGFDAHAIFESFVRDADEQGIHIRKAGVTIEDVSAK GVDASALEGATFGNILCLPLTIFKGIKAKRHOKMROIISNVNALAEAGEMILVLGRPGAGCSSFLKVTA GEIDQFAGGVSGEVAYDGIPQEEMMKRYKADVIYNGELDVHFPYLTVKQTLDFAIACKTPALRVNNVSK KEYIASRRDLYATIFGLRHTYNTKVGNDFVRGVSGGERKRVSIAEALAAKGSIYCWDNATRGLDASTAL EYAKAIRIMTNLLKSTAFVTIYQASENIYETFDKVTVLYSGKQIYFGLIHEAKPYFAKMGYLCPPRQAT AEFLTALTDPNGFHLIKPGYENKVPRTAEEFETYWLNSPEFAOMKKDIAAYKEKVNTEKTKEVYDESMA QEKSKYTRKKSYYTVSYWEQVKLCTQRGFQRIYGNKSYTVINVCSAIIQSFITGSLFYNTPSSTSGAFS RGGVLYFALLYYSLMGLANISFEHRPILOKHKGYSLYHPSAEAIGSTLASFPFRMIGLTCFFIILFFLS GLHRTAGSFFTIYLFLTMCSEAINGLFEMVSSVCDTLSQANSISGILMMSISMYSTYMIQLPSMHPWFK WISYVLPIRYAFESMLNAEFHGRHMDCANTLVPSGGDYDNLSDDYKVCAFVGSKPGQSYVLGDDYLKNQ FQYVYKHTWRNFGILWCFLLGYVVLKVIFTEYKRPVKGGGDALIFKKGSKRFIAHADEESPDNVNDIDA KEOFSSESSGANDEVFDDLEAKGVFIWKDVCFTIPYEGGKRMLLDNVSGYCIPGTMTALMGESGAGKTT LLMTLAQRNVGIITGDMLVNGRPIDASFERRTGYVQQQDIHIAELTVRESLQFSARMRRPQHLPDSEKM DYVEKI I RVLGMEEYAEALVGEVGCGLNVEORKKLS I GVELVAKPDLLLFLDEPTSGLDSQS SWAII QL LRKLSKAGQSILCTIHQPSATLFEEFDRLLLLRKGGQTVYFGDIGKNSATILNYFERNGARKCDSSENP AEYILEAIGAGATASVKEDWHEKWLNSVEFEOTKEKVODLINDLSKOETKSEVGDKPSKYATSYAYOFR YVLIRTSTSFWRSLNYIMSKMMLMLVGGLYIGFTFFNVGKSYVGLQNAMFAAFISIILSAPAMNQIQGR AIASRELFEVRESOSNMFHWSLVLITOYLSELPYHLFFSTIFFVSSYFPLRIFFEASRSAVYFLNYCIM FQLYYVGLGLMILYMSPNLPSANVILGLCLSFMLSFCGVTQPVSLMPGFWTFMWKASPYTYFVQNLVGI MLHKKPVVCKKKELNYFNPPNGSTCGEYMKPFLEKATGYIENPDATSDCAYCIYEVGDNYLTHISSKYS YLWRNFGIFWIYIFFNIIAMVCVYYLFHVRQSSFLSPVSILNKIKNIRKKKQ

PARTIAL EUROPEAN SEARCH REPORT

Application Number

which under Rule 45 of the European Patent ConventionEP 00 87 0316 shall be considered, for the purposes of subsequent proceedings, as the European search report

		RED TO BE RELEVANT	1	
ategory	Of relevant pass	dication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.7)
A	of the nucleotide b cystic fibrosis tra regulator (CFTR)" retrieved from STN Database accession of XP002178151 & JOURNAL OF BIOENE	"Modeling of domains of ABC s based on a logy: structural model inding domains of the namembrane conductance	1-39	C12N15/11 C07K14/705 A61K38/17 G01N33/68
		•]	
				TECHNICAL FIELDS SEARCHED (Int.CI.7)
				C12N C07K A61K G01N
INCO	MPLETE SEARCH		- !	
not complibe carried Claims se Claims se	oh Division considers that the present- by with the EPC to such an extent that it out, or can only be carried out partial earched completely: earched incompletely:	application, or one or more of its claims, doe a meaningful search into the state of the art y, for these claims.	s/do cannot	
	or the limitation of the search:			
see	sheet C			
	Place of search THE HAGUE	Date of completion of the search 25 September 200	1 Mas	Examiner Sturzo, P
X:part Y:part doc A:tech	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anot ument of the same category inclogical background immediate document	L : document cited (curnert, but publi to In the application to other reasons	isted on, or

INCOMPLETE SEARCH SHEET C

Application Number EP 00 87 0316

Although claims 1-9 (at least partially), 10-15, 23-25, 27, 29, 31, 33-34, 36-37 are directed to a method of treatment of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition. Claim(s) not searched: 20, 22 Reason for the limitation of the search: Claim 20, referring to a compound identified by the method of claims 1-9 and not further defined, could not be searched. Claim 22, referring to the applications of compounds of claim 20, was not searched as well.

PARTIAL EUROPEAN SEARCH REPORT

Application Number EP 00 87 0316

	CLASSIFICATION OF THE APPLICATION (Int.Cl.7)	
Citation of document with Indication, where appropriate, of relevant passages	Relevant to claim	
N I TARASOVA ET AL.: "Inhibition of G-protein-coupled receptor function by disruption of transmembrane domain interaction " JOURNAL OF BIOLOGICAL CHEMISTRY. (MICROFILMS), vol. 274, no. 49, 3 December 1999 (1999-12-03), pages 34911-34915, XP002168073 AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD., US * the whole document *	1-39	
I N TARASOVA ET AL: "Disruption of transporter protein function by transmembrane domain analogs" PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH ANNUAL, SAN FRANCISCO, CALIFORNIA, USA, vol. 41, March 2000 (2000-03), page 398 XP001004628 * abstract *	1-39	TECHNICAL FIELDS SEARCHED (Int.Cl.7)
WO 97 35881 A (GORDON NG ET AL.) 2 October 1997 (1997-10-02) * page 41 - page 44 *	1-39	
the transmembrane signalling pathway in an ATP binding cassette (ABC) transporter" EMBO JOURNAL., vol. 13, no. 7, 1994, pages 1752-1759, XP002178148 OXFORD UNIVERSITY PRESS, SURREY., GB ISSN: 0261-4189 * the whole document *	1-39	
-/- -		
	N I TARASOVA ET AL.: "Inhibition of G-protein-coupled receptor function by disruption of transmembrane domain interaction " JOURNAL OF BIOLOGICAL CHEMISTRY. (MICROFILMS), vol. 274, no. 49, 3 December 1999 (1999-12-03), pages 34911-34915, XPO02168073 AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD., US * the whole document * I N TARASOVA ET AL: "Disruption of transporter protein function by transmembrane domain analogs" PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH ANNUAL, SAN FRANCISCO, CALIFORNIA, USA, vol. 41, March 2000 (2000-03), page 398 XPO01004628 * abstract * WO 97 35881 A (GORDON NG ET AL.) 2 October 1997 (1997-10-02) * page 41 - page 44 * K-M COVITZ ET AL.: "Mutations that alter the transmembrane signalling pathway in an ATP binding cassette (ABC) transporter" EMBO JOURNAL, vol. 13, no. 7, 1994, pages 1752-1759, XPO02178148 OXFORD UNIVERSITY PRESS, SURREY., GB ISSN: 0261-4189 * the whole document *	Citation of document with indication, where appropriate, of relevant passages N I TARASOVA ET AL.: "Inhibition of G-protein-coupled receptor function by disruption of transmembrane domain interaction" JOURNAL OF BIOLOGICAL CHEMISTRY. (MICROFILMS), vol. 274, no. 49, 3 December 1999 (1999—12-03), pages 34911—34915, XPO02168073 AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD., US * the whole document * I N TARASOVA ET AL: "Disruption of transporter protein function by transmembrane domain analogs" PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH ANNUAL, SAN FRANCISCO, CALIFORNIA, USA, vol. 41, March 2000 (2000—03), page 398 XP001004628 * abstract * WO 97 35881 A (GORDON NG ET AL.) 1-39 2 October 1997 (1997—10—02) * page 41 — page 44 * K-M COVITZ ET AL.: "Mutations that alter the transmembrane signalling pathway in an ATP binding cassette (ABC) transporter" EMBO JOURNAL., vol. 13, no. 7, 1994, pages 1752—1759, XP002178148 OXFORD UNIVERSITY PRESS, SURREY., GB ISSN: 0261—4189 * the whole document *

PARTIAL EUROPEAN SEARCH REPORT

Application Number EP 00 87 0316

	Citation of document with Indication, where appropriate,	Relevant	APPLICATION (Int.CI.7)
Category	of relevant passages	to claim	
A	J A SHEPS ET AL.: "Hemolysin transport in Escherichia Coli" JOURNAL OF BIOLOGICAL CHEMISTRY. (MICROFILMS), vol. 270, no. 24, 16 June 1995 (1995-06-16), pages 14829-14834, XPO02178149 AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD., US * the whole document *	1-39	
X	K-I KAWABATA ET AL.: "Protein interactions of Gtslp of Saccharomyces cerevisiae throughout a region similar to a cytoplasmic portion of some ATP-binding cassette transporters " EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 259, 1999, pages 112-119, XP002178150 BERLIN, DE ISSN: 0014-2956 * the whole document *	1-39	TECHNICAL FIELDS SEARCHED (Int.Cl.7)
E	WO 01 36477 A (THE GOVERNMENT OF USA) 25 May 2001 (2001-05-25) * the whole document *	1-39	

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 00 87 0316

This armsx lists the patent tamity members relating to the patent documents cited in the above—mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

25-09-2001

Patent docume cited in search re	ent port	Publication date		Patent family member(s)	Publication date
WO 9735881	A	02-10-1997	AU CA WO EP	2020497 A 2250567 A1 9735881 A2 0906339 A2	17-10-1997 02-10-1997 02-10-1997 07-04-1999
WO 0136477	A	25-05-2001	AU WO	1922601 A 0136477 A2	30-05-2001 25-05-2001
					·

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82