Clustering

1 Open issues

- What about the source/greeness of energy production? These are also in the energy balance data set
 - **Suggestion**: For total domestic energy supply export of energy only use energy that has been produced by green sources?
- Consideration of employment dimension
- Consideration of green products in export basket
- Discuss results against the descriptives for the clusters below, so far the discrimination is not very convincing

2 Data setup

Additional variables?

We focus on the time between 2014 and 2018 and consider the following variables:

Dimension	Rationale	Variable	Source
Externalization	Countries that externalize more have a	Net GWP imports	EXIOBASE
of ecological stressors	less sustainable more of provisioning.	per capita	own calcu- lation.
Total domestic	Countries the emit a lot GHG need to	GWP emissions per	EXIOBASE
GHG emissions	change more drastically.	capita	own calcu- lation.
Economic	Countries with more economic	Domestic value	EXIOBASE
strength	strength can more easily support the	added	own calcu-
	transition and counter challenges.		lation.

Dimension	Rationale	Variable	Source
Domestic energy supply	Countries with high domestic supply IF GREEN? are more independent and more flexible.	Total primary energy production per capita	Eurostat
Domestic energy demand	Countries with high domestic demand are less flexible and more dependent.	Total energy consumption per capita	Eurostat
Export of energy	Countries that export more energy IF GREEN? are more likely to benefit.	Total energy exports per capita	Eurostat
Innovation in green technologies Dependence on brown employment	Countries with technological capabilities in green areas are likely to benefit more. Countries that depend a lot on brown jobs face bigger challenge of transition.	Green patents per million people (EPO classification) TBD	PATSTAT
Production of green products	Countries that produce many green products are likely to benefit more.	TBD	

3 Conduct the clustering

3.1 Choice of the clustering algorithm

Data preparation:

There are four different agglomerative cluster algorithm. Usually one chooses the one that yields the highest clustering coefficient:

Algorithm	Coefficient
average	0.7946210
single	0.7881721
complete	0.8240961
ward	0.8372194

Thus, in our case we should use the WARD algorithm.

We might also assess the quality by comparing the cophenetic distance of the clustered data and the original euclidean distances:

[1] 0.7022006

This is a satisfactory number.

What remains open is the right number of clusters, but this is also a question of interpretation.

3.2 Result of the clustering

Here is the overall result of the clustering assuming 4 clusters.

Titel

Ecological model 1	Ecological model 2	Ecological model 3	Ecological model 4
Austria	Bulgaria	Spain	Luxembourg
Belgium	Cyprus	Croatia	
Germany	Czechia	Hungary	
Denmark	Estonia	Italy	
Finland	Greece	Lithuania	
France	Poland	Latvia	
Ireland		Malta	
Netherlands		Portugal	
Sweden		Romania	
		Slovakia	
		Slovenia	

Here I visualize the relationship to the development models classification:

Development and ecological models

Development model

Ecological model

3.3 Descriptive statistics for the clusters

This is not weighted by population. Should we do this?

