CS244: Theory of Computation

Fu Song ShanghaiTech University

Fall 2022

Outline

Visibly pushdown automata (VPA)

Closure properties

Visibly pushdown grammar (VPG)

Logical characterization

Equivalence of NFA and MSO Equivalence of VPA and MSO

Decision problems

Parenthesises in arithmetic expressions

Curly brackets in C Programs

XML documents

```
(library)
                      √catalog⟩
/// /book)
/// /title
// Computational Complexity
// title
// title
// author
// Fu Song
// author
// book
// catalog/
                   //\langle book \rangle
```

Recursive function calls and returns

```
frac(3)
frac(int y)
                                                   frac(2)
 int x = y;
 if (y >= 2)
                                                             frac(1)
  x = y * \operatorname{frac}(y - 1);
  return x;
                                                             return 1
 else
  return x;
                                                  return 2
                                          return 6
```

```
( ( ( ( 5 + x ) * y + z ) * ( u - v ) ) / w
```

```
( ( ( 5 + x ) * y + z ) * ( u - v ) ) / w (: Push ): Pop
```


The alphabet Σ is partitioned into $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$

- \triangleright Σ_c : finite set of calls,
- \triangleright Σ_r : finite set of returns,
- \triangleright Σ_I : finite set of local actions.

The alphabet Σ is partitioned into $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$

- $\triangleright \Sigma_c$: finite set of calls,
- \triangleright Σ_r : finite set of returns,
- \triangleright Σ_l : finite set of local actions.

A (nondeterministic) VPA \mathcal{A} is a 7-tuple $(Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$, where

- Q is a finite set of states,
- $ightharpoonup \widetilde{\Sigma}$ is the input alphabet,
- Γ is the stack alphabet,
- ▶ $q_0 \in Q$ is the initial state,
- ▶ ⊥ is the bottom symbol of the stack,
- ▶ $F \subseteq Q$ is the set of final states.

The alphabet Σ is partitioned into $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$

- $\triangleright \Sigma_c$: finite set of calls,
- \triangleright Σ_r : finite set of returns,
- \triangleright Σ_l : finite set of local actions.

A (nondeterministic) VPA \mathcal{A} is a 7-tuple $(Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$, where

- Q is a finite set of states,
- $ightharpoonup \widetilde{\Sigma}$ is the input alphabet,
- Γ is the stack alphabet,
- ▶ $q_0 \in Q$ is the initial state,
- ▶ ⊥ is the bottom symbol of the stack,
- $ightharpoonup F \subseteq Q$ is the set of final states.

Remark:

- ▶ No ε -transitions,
- Exactly one symbol is pushed in each call transition.

A deterministic VPA is a VPA $\mathcal{A}=(Q,\widetilde{\Sigma},\Gamma,\delta,q_0,\bot,F)$ such that Call: for every $(q,a)\in Q\times \Sigma_c$, there is at most one pair $(q',\gamma)\in Q\times (\Gamma\setminus\{\bot\})$ such that $(q,a,q',\gamma)\in \delta$,

A deterministic VPA is a VPA $\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$ such that

Call: for every $(q, a) \in Q \times \Sigma_c$, there is at most one pair $(q', \gamma) \in Q \times (\Gamma \setminus \{\bot\})$ such that $(q, a, q', \gamma) \in \delta$,

Return: for every $(q, a, \gamma) \in Q \times \Sigma_r \times \Gamma$, there is at most one $q' \in Q$ such that $(q, a, \gamma, q') \in \delta$,

A deterministic VPA is a VPA $\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$ such that

Call: for every $(q, a) \in Q \times \Sigma_c$, there is at most one pair $(q', \gamma) \in Q \times (\Gamma \setminus \{\bot\})$ such that $(q, a, q', \gamma) \in \delta$,

Return: for every $(q, a, \gamma) \in Q \times \Sigma_r \times \Gamma$, there is at most one $q' \in Q$ such that $(q, a, \gamma, q') \in \delta$,

Local: for every $(q, a) \in Q \times \Sigma_I$, there is at most one $q' \in Q$ such that $(q, a, q') \in \delta$.

A deterministic VPA is a VPA $\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$ such that

Call: for every $(q, a) \in Q \times \Sigma_c$, there is at most one pair $(q', \gamma) \in Q \times (\Gamma \setminus \{\bot\})$ such that $(q, a, q', \gamma) \in \delta$,

Return: for every $(q, a, \gamma) \in Q \times \Sigma_r \times \Gamma$, there is at most one $q' \in Q$ such that $(q, a, \gamma, q') \in \delta$,

Local: for every $(q, a) \in Q \times \Sigma_I$, there is at most one $q' \in Q$ such that $(q, a, q') \in \delta$.

A deterministic VPA is complete if "at most" is replaced by "exactly".

A run of a VPA \mathcal{A} over a word $w = a_1 \dots a_n$ is a sequence $(q_0, \alpha_0)(q_1, \alpha_1) \dots (q_n, \alpha_n)$ of configurations

A run of a VPA $\mathcal A$ over a word $w=a_1\ldots a_n$ is a sequence $(q_0,\alpha_0)(q_1,\alpha_1)\ldots (q_n,\alpha_n)$ of configurations s.t.

 $ightharpoonup \forall i.q_i \in Q$,

A run of a VPA \mathcal{A} over a word $w = a_1 \dots a_n$ is a sequence $(q_0, \alpha_0)(q_1, \alpha_1) \dots (q_n, \alpha_n)$ of configurations s.t.

- $ightharpoonup \forall i.q_i \in Q$,
- $ightharpoonup lpha_0 = ot,$

A run of a VPA \mathcal{A} over a word $w = a_1 \dots a_n$ is a sequence $(q_0, \alpha_0)(q_1, \alpha_1) \dots (q_n, \alpha_n)$ of configurations s.t.

- $ightharpoonup \forall i.q_i \in Q$,
- $ightharpoonup \alpha_0 = \bot$,
- ▶ $\forall i : 1 \le i < n$, one of the following holds,

A run of a VPA $\mathcal A$ over a word $w=a_1\ldots a_n$ is a sequence $(q_0,\alpha_0)(q_1,\alpha_1)\ldots (q_n,\alpha_n)$ of configurations s.t.

- $ightharpoonup \forall i.q_i \in Q$,
- $ightharpoonup lpha_0 = \perp$,
- ▶ $\forall i: 1 \leq i < n$, one of the following holds, Call: $a_i \in \Sigma_c$, $\exists \gamma \in \Gamma \setminus \{\bot\}.(q_i, a_i, q_{i+1}, \gamma) \in \delta$, $\alpha_{i+1} = \gamma \alpha_i$,

A run of a VPA \mathcal{A} over a word $w = a_1 \dots a_n$ is a sequence $(q_0, \alpha_0)(q_1, \alpha_1) \dots (q_n, \alpha_n)$ of configurations s.t.

- $ightharpoonup \forall i.q_i \in Q$,
- $ightharpoonup \alpha_0 = \bot$.
- $\forall i: 1 \leq i < n$, one of the following holds,

Call: $a_i \in \Sigma_c$, $\exists \gamma \in \Gamma \setminus \{\bot\}.(q_i, a_i, q_{i+1}, \gamma) \in \delta$, $\alpha_{i+1} = \gamma \alpha_i$,

Return: $a_i \in \Sigma_r$,

 $\exists \gamma \in \Gamma \setminus \{\bot\}.(q_i, a_i, \gamma, q_{i+1}) \in \delta, \alpha_i = \gamma \alpha_{i+1},$

A run of a VPA \mathcal{A} over a word $w = a_1 \dots a_n$ is a sequence $(q_0, \alpha_0)(q_1, \alpha_1) \dots (q_n, \alpha_n)$ of configurations s.t.

- $ightharpoonup \forall i.q_i \in Q$,
- $ightharpoonup lpha_0 = \perp$,
- $ightharpoonup \forall i: 1 \leq i < n$, one of the following holds,

Call:
$$a_i \in \Sigma_c$$
, $\exists \gamma \in \Gamma \setminus \{\bot\}.(q_i, a_i, q_{i+1}, \gamma) \in \delta$, $\alpha_{i+1} = \gamma \alpha_i$, Return: $a_i \in \Sigma_r$,

- $\exists \gamma \in \Gamma \setminus \{\bot\}.(q_i, a_i, \gamma, q_{i+1}) \in \delta, \ \alpha_i = \gamma \alpha_{i+1},$
- ightharpoonup or $(q_i, a_i, \bot, q_{i+1}) \in \delta$ and $\alpha_i = \alpha_{i+1} = \bot$.

A run of a VPA $\mathcal A$ over a word $w=a_1\ldots a_n$ is a sequence $(q_0,\alpha_0)(q_1,\alpha_1)\ldots (q_n,\alpha_n)$ of configurations s.t.

- $ightharpoonup \forall i.q_i \in Q$,
- $ightharpoonup lpha_0 = \perp$,
- ▶ $\forall i : 1 \le i < n$, one of the following holds,

Call:
$$a_i \in \Sigma_c$$
, $\exists \gamma \in \Gamma \setminus \{\bot\}.(q_i, a_i, q_{i+1}, \gamma) \in \delta$, $\alpha_{i+1} = \gamma \alpha_i$, Return: $a_i \in \Sigma_r$.

- $\exists \gamma \in \Gamma \setminus \{\bot\}.(q_i, a_i, \gamma, q_{i+1}) \in \delta, \ \alpha_i = \gamma \alpha_{i+1},$
- ightharpoonup or $(q_i, a_i, \bot, q_{i+1}) \in \delta$ and $\alpha_i = \alpha_{i+1} = \bot$.

Local: $a_i \in \Sigma_I$, $(q_i, a_i, q_{i+1}) \in \delta$ and $\alpha_{i+1} = \alpha_i$.

A run of a VPA \mathcal{A} over a word $w = a_1 \dots a_n$ is a sequence $(q_0, \alpha_0)(q_1, \alpha_1) \dots (q_n, \alpha_n)$ of configurations s.t.

- $\forall i.q_i \in Q$,
- $\alpha_0 = \bot$.
- $\forall i : 1 < i < n$, one of the following holds,

Call:
$$a_i \in \Sigma_c$$
, $\exists \gamma \in \Gamma \setminus \{\bot\}.(q_i, a_i, q_{i+1}, \gamma) \in \delta$, $\alpha_{i+1} = \gamma \alpha_i$, Return: $a_i \in \Sigma_r$.

- ▶ $\exists \gamma \in \Gamma \setminus \{\bot\}.(q_i, a_i, \gamma, q_{i+1}) \in \delta, \alpha_i = \gamma \alpha_{i+1},$ ▶ or $(q_i, a_i, \bot, q_{i+1}) \in \delta$ and $\alpha_i = \alpha_{i+1} = \bot$.

Local: $a_i \in \Sigma_I$, $(q_i, a_i, q_{i+1}) \in \delta$ and $\alpha_{i+1} = \alpha_i$.

A run $(q_0, \alpha_0) \dots (q_n, \alpha_n)$ is accepting if $q_n \in F$.

A run of a VPA \mathcal{A} over a word $w = a_1 \dots a_n$ is a sequence $(q_0, \alpha_0)(q_1, \alpha_1) \dots (q_n, \alpha_n)$ of configurations s.t.

- $\forall i.q_i \in Q$,
- $\alpha_0 = \bot$.
- $\forall i: 1 < i < n$, one of the following holds,

Call:
$$a_i \in \Sigma_c$$
, $\exists \gamma \in \Gamma \setminus \{\bot\}.(q_i, a_i, q_{i+1}, \gamma) \in \delta$, $\alpha_{i+1} = \gamma \alpha_i$, Return: $a_i \in \Sigma_r$.

- $\exists \gamma \in \Gamma \setminus \{\bot\}.(q_i, a_i, \gamma, q_{i+1}) \in \delta, \alpha_i = \gamma \alpha_{i+1},$
- \triangleright or $(q_i, a_i, \perp, q_{i+1}) \in \delta$ and $\alpha_i = \alpha_{i+1} = \perp$.

Local: $a_i \in \Sigma_I$, $(q_i, a_i, q_{i+1}) \in \delta$ and $\alpha_{i+1} = \alpha_i$.

A run $(q_0, \alpha_0) \dots (q_n, \alpha_n)$ is accepting if $q_n \in F$.

A word w is accepted by a VPA \mathcal{A} if \exists an accepting run of \mathcal{A} over w.

A run of a VPA \mathcal{A} over a word $w = a_1 \dots a_n$ is a sequence $(q_0, \alpha_0)(q_1, \alpha_1) \dots (q_n, \alpha_n)$ of configurations s.t.

- $\forall i.q_i \in Q$,
- $\alpha_0 = \bot$.
- $\forall i: 1 < i < n$, one of the following holds,

Call:
$$a_i \in \Sigma_c$$
, $\exists \gamma \in \Gamma \setminus \{\bot\}.(q_i, a_i, q_{i+1}, \gamma) \in \delta$, $\alpha_{i+1} = \gamma \alpha_i$, Return: $a_i \in \Sigma_r$.

- ▶ $\exists \gamma \in \Gamma \setminus \{\bot\}.(q_i, a_i, \gamma, q_{i+1}) \in \delta, \alpha_i = \gamma \alpha_{i+1},$ ▶ or $(q_i, a_i, \bot, q_{i+1}) \in \delta$ and $\alpha_i = \alpha_{i+1} = \bot$.

Local: $a_i \in \Sigma_I$, $(q_i, a_i, q_{i+1}) \in \delta$ and $\alpha_{i+1} = \alpha_i$.

A run $(q_0, \alpha_0) \dots (q_n, \alpha_n)$ is accepting if $q_n \in F$.

A word w is accepted by a VPA \mathcal{A} if \exists an accepting run of \mathcal{A} over w.

The set of words accepted by A is denoted by $\mathcal{L}(A)$.

A run of a VPA \mathcal{A} over a word $w = a_1 \dots a_n$ is a sequence $(q_0, \alpha_0)(q_1, \alpha_1) \dots (q_n, \alpha_n)$ of configurations s.t.

- $\forall i.q_i \in Q$,
- $ightharpoonup \alpha_0 = \bot$.
- $\forall i: 1 < i < n$, one of the following holds,

Call:
$$a_i \in \Sigma_c$$
, $\exists \gamma \in \Gamma \setminus \{\bot\}.(q_i, a_i, q_{i+1}, \gamma) \in \delta$, $\alpha_{i+1} = \gamma \alpha_i$, Return: $a_i \in \Sigma_r$.

- ▶ $\exists \gamma \in \Gamma \setminus \{\bot\}.(q_i, a_i, \gamma, q_{i+1}) \in \delta, \alpha_i = \gamma \alpha_{i+1},$ ▶ or $(q_i, a_i, \bot, q_{i+1}) \in \delta$ and $\alpha_i = \alpha_{i+1} = \bot$.

Local: $a_i \in \Sigma_I$, $(q_i, a_i, q_{i+1}) \in \delta$ and $\alpha_{i+1} = \alpha_i$.

A run $(q_0, \alpha_0) \dots (q_n, \alpha_n)$ is accepting if $q_n \in F$.

A word w is accepted by a VPA \mathcal{A} if \exists an accepting run of \mathcal{A} over w.

The set of words accepted by A is denoted by $\mathcal{L}(A)$.

Remark: Acceptance of VPAs are defined by final states, not by empty stack.

Let
$$\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$$
.

Let $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$.

The set of well-matched words $w \in \Sigma^*$ is defined inductively as follows,

ightharpoonup ε is well-matched,

Let
$$\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$$
.

- $ightharpoonup \varepsilon$ is well-matched,
- ightharpoonup if w' is well matched, then

$$w = aw'$$
 or $w = w'a$ such that $a \in \Sigma_l$ is well-matched.

Let $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$.

- \triangleright ε is well-matched,
- ▶ if w' is well matched, then w = aw' or w = w' a such that $a \in \Sigma_l$ is well-matched.
- ▶ if w' is well-matched, then w = aw'b such that $a \in \Sigma_c$, $b \in \Sigma_r$ is well-matched.

Let $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$.

- \triangleright ε is well-matched,
- ▶ if w' is well matched, then w = aw' or w = w' a such that $a \in \Sigma_l$ is well-matched.
- ▶ if w' is well-matched, then w = aw'b such that $a \in \Sigma_c$, $b \in \Sigma_r$ is well-matched.
- if w' and w'' are well-matched, then w = w'w'' is well-matched.

Let
$$\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$$
.

The set of well-matched words $w \in \Sigma^*$ is defined inductively as follows,

- \triangleright ε is well-matched,
- ▶ if w' is well matched, then w = aw' or w = w'a such that $a \in \Sigma_l$ is well-matched.
- ▶ if w' is well-matched, then w = aw'b such that $a \in \Sigma_c$, $b \in \Sigma_r$ is well-matched.
- ▶ if w' and w'' are well-matched, then w = w'w'' is well-matched.

Example: (())() is well-matched, while neither ()()) nor (() is.

Let
$$\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$$
.

The set of well-matched words $w \in \Sigma^*$ is defined inductively as follows,

- \triangleright ε is well-matched,
- ▶ if w' is well matched, then w = aw' or w = w'a such that $a \in \Sigma_l$ is well-matched.
- ▶ if w' is well-matched, then w = aw'b such that $a \in \Sigma_c$, $b \in \Sigma_r$ is well-matched.
- if w' and w'' are well-matched, then w = w'w'' is well-matched.

Example: (())() is well-matched, while neither ()()) nor (() is.

Remark. As a result of the acceptance by final states,

VPAs over $\widetilde{\Sigma}$ may accept non-well-matched words.

A language $L \subseteq \Sigma^*$ is a visibly pushdown language with respect to $\widetilde{\Sigma}$ if there is a VPA $\mathcal A$ over $\widetilde{\Sigma}$, satisfying that $\mathcal L(\mathcal A) = L$.

A language $L \subseteq \Sigma^*$ is a visibly pushdown language with respect to $\widetilde{\Sigma}$ if there is a VPA $\mathcal A$ over $\widetilde{\Sigma}$, satisfying that $\mathcal L(\mathcal A) = L$.

Example:

The language
$$\{a^nb^n\mid n\geq 1\}$$
 is a VPL with respect to $\widetilde{\Sigma}=\langle\{a\},\{b\},\emptyset\rangle.$

A language $L \subseteq \Sigma^*$ is a visibly pushdown language with respect to $\widetilde{\Sigma}$ if there is a VPA $\mathcal A$ over $\widetilde{\Sigma}$, satisfying that $\mathcal L(\mathcal A) = L$.

Example:

The language
$$\{a^nb^n\mid n\geq 1\}$$
 is a VPL with respect to $\widetilde{\Sigma}=\langle\{a\},\{b\},\emptyset\rangle$. But, $\{b^na^n\mid n\geq 1\}$ is not a VPL with respect to $\widetilde{\Sigma}=\langle\{a\},\{b\},\emptyset\rangle$.

A language $L \subseteq \Sigma^*$ is a visibly pushdown language with respect to $\widetilde{\Sigma}$ if there is a VPA \mathcal{A} over $\widetilde{\Sigma}$, satisfying that $\mathcal{L}(\mathcal{A}) = L$.

Example:

The language
$$\{a^nb^n\mid n\geq 1\}$$
 is a VPL with respect to $\widetilde{\Sigma}=\langle\{a\},\{b\},\emptyset\rangle$. But, $\{b^na^n\mid n\geq 1\}$ is not a VPL with respect to $\widetilde{\Sigma}=\langle\{a\},\{b\},\emptyset\rangle$.

Theorem

 $VPL \subsetneq CFL$.

Proposition. For every CFL $L \subseteq \Sigma^*$, there are a VPL $L' \subseteq (\Sigma')^*$ with respect to some $\widetilde{\Sigma'}$ and a homomorphism $h: (\Sigma')^* \to \Sigma^*$ such that L = h(L').

Proposition. For every CFL $L \subseteq \Sigma^*$, there are a VPL $L' \subseteq (\Sigma')^*$ with respect to some $\widetilde{\Sigma'}$ and a homomorphism $h: (\Sigma')^* \to \Sigma^*$ such that L = h(L').

Let L be a CFL defined by a PDA $\mathcal{A}=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ (accept. by final states).

Proposition. For every CFL $L \subseteq \Sigma^*$, there are a VPL $L' \subseteq (\Sigma')^*$ with respect to some $\widetilde{\Sigma'}$ and a homomorphism $h: (\Sigma')^* \to \Sigma^*$ such that L = h(L').

Let L be a CFL defined by a PDA $\mathcal{A}=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ (accept. by final states). W.l.o.g, suppose that each $(q,a,X,q',\alpha)\in\delta$ satisfies that $\alpha=\varepsilon$ (pop) or $\alpha=X$ (stable) or $\alpha=YX$ (push).

Proposition. For every CFL $L \subseteq \Sigma^*$, there are a VPL $L' \subseteq (\Sigma')^*$ with respect to some $\widetilde{\Sigma'}$ and a homomorphism $h: (\Sigma')^* \to \Sigma^*$ such that L = h(L').

Let L be a CFL defined by a PDA $\mathcal{A}=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ (accept. by final states). W.l.o.g, suppose that each $(q,a,X,q',\alpha)\in\delta$ satisfies that $\alpha=\varepsilon$ (pop) or $\alpha=X$ (stable) or $\alpha=YX$ (push). Let $\Sigma'=(\Sigma\cup\{\sigma_\varepsilon\})\times\{c,r,l\}$ and $\widetilde{\Sigma}'=\langle(\Sigma\cup\{\sigma_\varepsilon\})\times\{c\},(\Sigma\cup\{\sigma_\varepsilon\})\times\{r\},(\Sigma\cup\{\sigma_\varepsilon\})\times\{l\}\rangle$

Proposition. For every CFL $L \subseteq \Sigma^*$, there are a VPL $L' \subseteq (\Sigma')^*$ with respect to some $\widetilde{\Sigma'}$ and a homomorphism $h: (\Sigma')^* \to \Sigma^*$ such that L = h(L').

Let L be a CFL defined by a PDA $\mathcal{A}=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ (accept. by final states). W.l.o.g, suppose that each $(q,a,X,q',\alpha)\in\delta$ satisfies that

$$\alpha = \varepsilon$$
 (pop) or $\alpha = X$ (stable) or $\alpha = YX$ (push).

Let
$$\Sigma' = (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{c, r, l\}$$
 and

$$\widetilde{\Sigma}' = \langle (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{c\}, (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{r\}, (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{l\} \rangle$$

From \mathcal{A} , define a VPA $\mathcal{A}' = (Q, \widetilde{\Sigma}', \Gamma, \delta', q_0, Z_0, F)$ over $\widetilde{\Sigma}'$, where δ' is defined by the following rules,

Proposition. For every CFL $L \subseteq \Sigma^*$, there are a VPL $L' \subseteq (\Sigma')^*$ with respect to some $\widetilde{\Sigma'}$ and a homomorphism $h: (\Sigma')^* \to \Sigma^*$ such that L = h(L').

Let L be a CFL defined by a PDA $\mathcal{A}=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ (accept. by final states). W.l.o.g, suppose that each $(q,a,X,q',\alpha)\in\delta$ satisfies that

$$\alpha = \varepsilon$$
 (pop) or $\alpha = X$ (stable) or $\alpha = YX$ (push).

Let $\Sigma' = (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{c, r, l\}$ and

$$\widetilde{\Sigma}' = \langle (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{c\}, (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{r\}, (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{l\} \rangle$$

From \mathcal{A} , define a VPA $\mathcal{A}' = (Q, \widetilde{\Sigma}', \Gamma, \delta', q_0, Z_0, F)$ over $\widetilde{\Sigma}'$, where δ' is defined by the following rules,

▶ if $(q, a, X, q', \varepsilon) \in \delta$, then $[Return](q, (a, r), X, q') \in \delta'$,

Proposition. For every CFL $L \subseteq \Sigma^*$, there are a VPL $L' \subseteq (\Sigma')^*$ with respect to some $\widetilde{\Sigma'}$ and a homomorphism $h: (\Sigma')^* \to \Sigma^*$ such that L = h(L').

Let L be a CFL defined by a PDA $\mathcal{A}=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ (accept. by final states). W.l.o.g, suppose that each $(q,a,X,q',\alpha)\in\delta$ satisfies that

$$\alpha = \varepsilon$$
 (pop) or $\alpha = X$ (stable) or $\alpha = YX$ (push).

Let
$$\Sigma' = (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{c, r, l\}$$
 and

$$\widetilde{\Sigma}' = \langle (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{c\}, (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{r\}, (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{l\} \rangle$$

From \mathcal{A} , define a VPA $\mathcal{A}' = (Q, \widetilde{\Sigma}', \Gamma, \delta', q_0, Z_0, F)$ over $\widetilde{\Sigma}'$, where δ' is defined by the following rules,

- if $(q, a, X, q', \varepsilon) \in \delta$, then $[Return](q, (a, r), X, q') \in \delta'$,
- ▶ if $(q, a, X, q', X) \in \delta$, then add a new state q_1 , $[Return](q, (a, r), X, q_1), [Call](q_1, (\sigma_{\varepsilon}, c), q', X) \in \delta'$.

Proposition. For every CFL $L \subseteq \Sigma^*$, there are a VPL $L' \subseteq (\Sigma')^*$ with respect to some $\widetilde{\Sigma'}$ and a homomorphism $h: (\Sigma')^* \to \Sigma^*$ such that L = h(L').

Let L be a CFL defined by a PDA $\mathcal{A}=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ (accept. by final states). W.l.o.g, suppose that each $(q,a,X,q',\alpha)\in\delta$ satisfies that

$$\alpha = \varepsilon$$
 (pop) or $\alpha = X$ (stable) or $\alpha = YX$ (push).

Let $\Sigma' = (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{c, r, l\}$ and

$$\widetilde{\Sigma}' = \langle (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{c\}, (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{r\}, (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{l\} \rangle$$

From \mathcal{A} , define a VPA $\mathcal{A}' = (Q, \widetilde{\Sigma}', \Gamma, \delta', q_0, Z_0, F)$ over $\widetilde{\Sigma}'$, where δ' is defined by the following rules,

- ▶ if $(q, a, X, q', \varepsilon) \in \delta$, then $[Return](q, (a, r), X, q') \in \delta'$,
- ▶ if $(q, a, X, q', X) \in \delta$, then add a new state q_1 , $[Return](q, (a, r), X, q_1), [Call](q_1, (\sigma_{\varepsilon}, c), q', X) \in \delta'$.
- if $(q, a, X, q', YX) \in \delta$, then add two new states q_1, q_2 , and $[Return](q, (a, r), X, q_1), [Call](q_1, (\sigma_{\varepsilon}, c), q_2, X), [Call](q_2, (\sigma_{\varepsilon}, c), q', Y) \in \delta'$.

Proposition. For every CFL $L \subseteq \Sigma^*$, there are a VPL $L' \subseteq (\Sigma')^*$ with respect to some $\widetilde{\Sigma'}$ and a homomorphism $h: (\Sigma')^* \to \Sigma^*$ such that L = h(L').

Let L be a CFL defined by a PDA $\mathcal{A}=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ (accept. by final states). W.l.o.g, suppose that each $(q,a,X,q',\alpha)\in\delta$ satisfies that

$$\alpha = \varepsilon$$
 (pop) or $\alpha = X$ (stable) or $\alpha = YX$ (push).

Let
$$\Sigma' = (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{c, r, l\}$$
 and

$$\widetilde{\Sigma}' = \langle (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{c\}, (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{r\}, (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{l\} \rangle$$

From \mathcal{A} , define a VPA $\mathcal{A}' = (Q, \widetilde{\Sigma}', \Gamma, \delta', q_0, Z_0, F)$ over $\widetilde{\Sigma}'$, where δ' is defined by the following rules,

- if $(q, a, X, q', \varepsilon) \in \delta$, then $[Return](q, (a, r), X, q') \in \delta'$,
- ▶ if $(q, a, X, q', X) \in \delta$, then add a new state q_1 , $[Return](q, (a, r), X, q_1), [Call](q_1, (\sigma_{\varepsilon}, c), q', X) \in \delta'$.
- ▶ if $(q, a, X, q', YX) \in \delta$, then add two new states q_1, q_2 , and $[Return](q, (a, r), X, q_1), [Call](q_1, (\sigma_\varepsilon, c), q_2, X), [Call](q_2, (\sigma_\varepsilon, c), q', Y) \in \delta'$.

Let $h: (\Sigma')^* \to \Sigma^*$ be a homomorphism defined by $\forall a \in \Sigma, s \in \{c, r, l\}. \ h((a, s)) = a, h(\sigma_{\varepsilon}, s) = \varepsilon.$

Proposition. For every CFL $L \subseteq \Sigma^*$, there are a VPL $L' \subseteq (\Sigma')^*$ with respect to some $\widetilde{\Sigma'}$ and a homomorphism $h: (\Sigma')^* \to \Sigma^*$ such that L = h(L').

Let L be a CFL defined by a PDA $\mathcal{A}=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ (accept. by final states). W.l.o.g, suppose that each $(q,a,X,q',\alpha)\in\delta$ satisfies that

$$\alpha = \varepsilon$$
 (pop) or $\alpha = X$ (stable) or $\alpha = YX$ (push).

Let
$$\Sigma' = (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{c, r, l\}$$
 and

$$\widetilde{\Sigma}' = \langle (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{c\}, (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{r\}, (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{l\} \rangle$$

From \mathcal{A} , define a VPA $\mathcal{A}' = (Q, \widetilde{\Sigma}', \Gamma, \delta', q_0, Z_0, F)$ over $\widetilde{\Sigma}'$, where δ' is defined by the following rules,

- ▶ if $(q, a, X, q', \varepsilon) \in \delta$, then $[Return](q, (a, r), X, q') \in \delta'$,
- ▶ if $(q, a, X, q', X) \in \delta$, then add a new state q_1 , $[Return](q, (a, r), X, q_1), [Call](q_1, (\sigma_{\varepsilon}, c), q', X) \in \delta'$.
- ▶ if $(q, a, X, q', YX) \in \delta$, then add two new states q_1, q_2 , and $[Return](q, (a, r), X, q_1), [Call](q_1, (\sigma_{\varepsilon}, c), q_2, X), [Call](q_2, (\sigma_{\varepsilon}, c), q', Y) \in \delta'$.

Let $h: (\Sigma')^* \to \Sigma^*$ be a homomorphism defined by $\forall a \in \Sigma, s \in \{c, r, l\}. \ h((a, s)) = a, h(\sigma_\varepsilon, s) = \varepsilon.$ Then $L = h(\mathcal{L}(\mathcal{A}')).$

Outline

Visibly pushdown automata (VPA)

Closure properties

Visibly pushdown grammar (VPG)

Logical characterization

Equivalence of NFA and MSO Equivalence of VPA and MSO

Decision problems

Proposition. VPLs with respect to $\widetilde{\Sigma}$ are closed under union and intersection.

Proposition. VPLs with respect to $\widetilde{\Sigma}$ are closed under union and intersection. Let $\mathcal{A}_1 = (Q_1, \widetilde{\Sigma}, \Gamma_1, \delta_1, q_0^1, \bot_1, F_1)$ and $\mathcal{A}_2 = (Q_2, \widetilde{\Sigma}, \Gamma_2, \delta_2, q_0^2, \bot_2, F_2)$ be two VPAs.

Proposition. VPLs with respect to $\widetilde{\Sigma}$ are closed under union and intersection. Let $\mathcal{A}_1 = (Q_1, \widetilde{\Sigma}, \Gamma_1, \delta_1, q_0^1, \bot_1, F_1)$ and $\mathcal{A}_2 = (Q_2, \widetilde{\Sigma}, \Gamma_2, \delta_2, q_0^2, \bot_2, F_2)$ be two VPAs.

Union.

Without loss of generality, suppose $\bot_1 = \bot_2 = \bot$.

Proposition. VPLs with respect to $\widetilde{\Sigma}$ are closed under union and intersection. Let $\mathcal{A}_1 = (Q_1, \widetilde{\Sigma}, \Gamma_1, \delta_1, q_0^1, \bot_1, F_1)$ and $\mathcal{A}_2 = (Q_2, \widetilde{\Sigma}, \Gamma_2, \delta_2, q_0^2, \bot_2, F_2)$ be two VPAs.

Union.

Without loss of generality, suppose $\bot_1 = \bot_2 = \bot$.

The VPA $\mathcal{A}=(Q_1\cup Q_2\cup \{q_0\},\widetilde{\Sigma},\Gamma_1\cup \Gamma_2,\delta,q_0,\bot,F_1\cup F_2)$ such that

$$\delta = \left(\begin{array}{c} \delta_1 \cup \delta_2 \cup \\ \{(q_0, a, q', \gamma) \mid (q_0^1, a, q', \gamma) \in \delta_1 \text{ or } (q_0^2, a, q', \gamma) \in \delta_2\} \cup \\ \{(q_0, a, \gamma, q') \mid (q_0^1, a, \gamma, q') \in \delta_1 \text{ or } (q_0^2, a, \gamma, q') \in \delta_2\} \cup \\ \{(q_0, a, q') \mid (q_0^1, a, q') \in \delta_1 \text{ or } (q_0^2, a, q') \in \delta_2\} \end{array}\right)$$

Proposition. VPLs with respect to $\widetilde{\Sigma}$ are closed under union and intersection. Let $\mathcal{A}_1 = (Q_1, \widetilde{\Sigma}, \Gamma_1, \delta_1, q_0^1, \bot_1, F_1)$ and $\mathcal{A}_2 = (Q_2, \widetilde{\Sigma}, \Gamma_2, \delta_2, q_0^2, \bot_2, F_2)$ be two VPAs.

Union.

Without loss of generality, suppose $\bot_1 = \bot_2 = \bot$.

The VPA $\mathcal{A}=(Q_1\cup Q_2\cup \{q_0\},\widetilde{\Sigma},\Gamma_1\cup \Gamma_2,\delta,q_0,\bot,F_1\cup F_2)$ such that

$$\delta = \left(\begin{array}{c} \delta_1 \cup \delta_2 \cup \\ \{(q_0, a, q', \gamma) \mid (q_0^1, a, q', \gamma) \in \delta_1 \text{ or } (q_0^2, a, q', \gamma) \in \delta_2\} \cup \\ \{(q_0, a, \gamma, q') \mid (q_0^1, a, \gamma, q') \in \delta_1 \text{ or } (q_0^2, a, \gamma, q') \in \delta_2\} \cup \\ \{(q_0, a, q') \mid (q_0^1, a, q') \in \delta_1 \text{ or } (q_0^2, a, q') \in \delta_2\} \end{array}\right)$$

defines $\mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$.

Proposition. VPLs with respect to Σ are closed under union and intersection. Let $\mathcal{A}_1=(Q_1,\widetilde{\Sigma},\Gamma_1,\delta_1,q_0^1,\bot_1,F_1)$ and $\mathcal{A}_2=(Q_2,\widetilde{\Sigma},\Gamma_2,\delta_2,q_0^2,\bot_2,F_2)$ be two VPAs.

Union.

Without loss of generality, suppose $\bot_1 = \bot_2 = \bot$.

The VPA $\mathcal{A}=(Q_1\cup Q_2\cup \{q_0\},\widetilde{\Sigma},\Gamma_1\cup \Gamma_2,\delta,q_0,\bot,F_1\cup F_2)$ such that

$$\delta = \left(\begin{array}{c} \delta_1 \cup \delta_2 \cup \\ \{(q_0, a, q', \gamma) \mid (q_0^1, a, q', \gamma) \in \delta_1 \text{ or } (q_0^2, a, q', \gamma) \in \delta_2\} \cup \\ \{(q_0, a, \gamma, q') \mid (q_0^1, a, \gamma, q') \in \delta_1 \text{ or } (q_0^2, a, \gamma, q') \in \delta_2\} \cup \\ \{(q_0, a, q') \mid (q_0^1, a, q') \in \delta_1 \text{ or } (q_0^2, a, q') \in \delta_2\} \end{array}\right)$$

defines $\mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$.

Intersection. Using the fact that A_1 and A_2 , being VPAs, synchronize on the push and pop operations on the stack.

The VPA $\mathcal{A}=\left(Q_1\times Q_2,\widetilde{\Sigma},\Gamma_1\times \Gamma_2,\delta,(q_0^1,q_0^2),(\bot_1,\bot_2),F_1\times F_2\right)$ such that

$$\delta = \left(\begin{array}{l} \{((q_1,q_2),a,(q_1',q_2'),(\gamma_1,\gamma_2)) \mid (q_1,a,q_1',\gamma_1) \in \delta_1, (q_2,a,q_2',\gamma_2) \in \delta_2\} \cup \\ \{((q_1,q_2),a,(\gamma_1,\gamma_2),(q_1',q_2')) \mid (q_1,a,\gamma_1,q_1') \in \delta_1, (q_2,a,\gamma_2,q_2') \in \delta_2\} \cup \\ \{((q_1,q_2),a,(q_1',q_2')) \mid (q_1,a,q_1') \in \delta_1, (q_2,a,q_2') \in \delta_2\} \end{array} \right)$$

Proposition. VPLs with respect to Σ are closed under union and intersection. Let $\mathcal{A}_1 = (Q_1, \widetilde{\Sigma}, \Gamma_1, \delta_1, q_0^1, \bot_1, F_1)$ and $\mathcal{A}_2 = (Q_2, \widetilde{\Sigma}, \Gamma_2, \delta_2, q_0^2, \bot_2, F_2)$ be two VPAs.

Union.

Without loss of generality, suppose $\bot_1 = \bot_2 = \bot$.

The VPA $\mathcal{A}=(Q_1\cup Q_2\cup \{q_0\},\widetilde{\Sigma},\Gamma_1\cup \Gamma_2,\delta,q_0,\bot,F_1\cup F_2)$ such that

$$\delta = \left(\begin{array}{c} \delta_1 \cup \delta_2 \cup \\ \{(q_0, a, q', \gamma) \mid (q_0^1, a, q', \gamma) \in \delta_1 \text{ or } (q_0^2, a, q', \gamma) \in \delta_2\} \cup \\ \{(q_0, a, \gamma, q') \mid (q_0^1, a, \gamma, q') \in \delta_1 \text{ or } (q_0^2, a, \gamma, q') \in \delta_2\} \cup \\ \{(q_0, a, q') \mid (q_0^1, a, q') \in \delta_1 \text{ or } (q_0^2, a, q') \in \delta_2\} \end{array}\right)$$

defines $\mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$.

Intersection. Using the fact that A_1 and A_2 , being VPAs, synchronize on the push and pop operations on the stack.

The VPA $\mathcal{A}=(\mathcal{Q}_1\times\mathcal{Q}_2,\widetilde{\Sigma},\Gamma_1\times\Gamma_2,\delta,(q_0^1,q_0^2),(\bot_1,\bot_2),\mathit{F}_1\times\mathit{F}_2)$ such that

$$\delta = \begin{pmatrix} \{((q_1,q_2),a,(q_1',q_2'),(\gamma_1,\gamma_2)) \mid (q_1,a,q_1',\gamma_1) \in \delta_1, (q_2,a,q_2',\gamma_2) \in \delta_2\} \cup \\ \{((q_1,q_2),a,(\gamma_1,\gamma_2),(q_1',q_2')) \mid (q_1,a,\gamma_1,q_1') \in \delta_1, (q_2,a,\gamma_2,q_2') \in \delta_2\} \cup \\ \{((q_1,q_2),a,(q_1',q_2')) \mid (q_1,a,q_1') \in \delta_1, (q_2,a,q_2') \in \delta_2\} \end{pmatrix}$$

defines $\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2)$.

For every VPA \mathcal{A} , can we construct a deterministic VPA \mathcal{A}' such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$?

For every VPA \mathcal{A} , can we construct a deterministic VPA \mathcal{A}' such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$?

For every VPA \mathcal{A} , can we construct a deterministic VPA \mathcal{A}' such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$?

Let
$$\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$$
 be a VPA. we construct $\mathcal{A}' = (Q', \widetilde{\Sigma}, \Gamma', \delta', (\mathrm{Id}_Q, \{q_0\}), \bot, F')$, where $\mathrm{Id}_Q = \{(q, q) \mid q \in Q\}$

For every VPA \mathcal{A} , can we construct a deterministic VPA \mathcal{A}' such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$?

Theorem. For every VPA \mathcal{A} , a deterministic VPA \mathcal{A}' can be constructed such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$. Moreover, if \mathcal{A} has n states, we can construct \mathcal{A}' with $O(2^{n^2})$ states and with stack alphabet of size $O(2^{n^2} \cdot |\Sigma_c|)$.

Let
$$\mathcal{A} = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$$
 be a VPA. we construct $\mathcal{A}' = (Q', \widetilde{\Sigma}, \Gamma', \delta', (\mathrm{Id}_Q, \{q_0\}), \bot, F')$, where $\mathrm{Id}_Q = \{(q, q) \mid q \in Q\}$

Do a subset construction but postpone handling the push-transitions that A does.

For every VPA \mathcal{A} , can we construct a deterministic VPA \mathcal{A}' such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$?

Let
$$\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$$
 be a VPA. we construct $\mathcal{A}' = (Q', \widetilde{\Sigma}, \Gamma', \delta', (\mathrm{Id}_Q, \{q_0\}), \bot, F')$, where $\mathrm{Id}_Q = \{(q, q) \mid q \in Q\}$

- Do a subset construction but postpone handling the push-transitions that A does.
- Instead, we store the call actions and simulate the push-transitions corresponding to them later, namely at the time of the corresponding pop-transition.

For every VPA \mathcal{A} , can we construct a deterministic VPA \mathcal{A}' such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$?

Let
$$\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$$
 be a VPA. we construct $\mathcal{A}' = (Q', \widetilde{\Sigma}, \Gamma', \delta', (\operatorname{Id}_Q, \{q_0\}), \bot, F')$, where $\operatorname{Id}_Q = \{(q, q) \mid q \in Q\}$

- Do a subset construction but postpone handling the push-transitions that A does.
- Instead, we store the call actions and simulate the push-transitions corresponding to them later, namely at the time of the corresponding pop-transition.
- ► The construction will have a component *S* that is a set of "summary" edges that keeps track of what state transitions are possible from a push-transition to the corresponding pop-transition.

For every VPA \mathcal{A} , can we construct a deterministic VPA \mathcal{A}' such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$?

Let
$$\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$$
 be a VPA. we construct $\mathcal{A}' = (Q', \widetilde{\Sigma}, \Gamma', \delta', (\operatorname{Id}_Q, \{q_0\}), \bot, F')$, where $\operatorname{Id}_Q = \{(q, q) \mid q \in Q\}$

- Do a subset construction but postpone handling the push-transitions that A does.
- Instead, we store the call actions and simulate the push-transitions corresponding to them later, namely at the time of the corresponding pop-transition.
- ► The construction will have a component *S* that is a set of "summary" edges that keeps track of what state transitions are possible from a push-transition to the corresponding pop-transition.
- ▶ Using the summary information, the set of reachable states is updated.

Let $\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$ be a VPA. we construct $\mathcal{A}' = (Q', \widetilde{\Sigma}, \Gamma', \delta', (\operatorname{Id}_Q, \{q_0\}), \bot, F')$, where $\operatorname{Id}_Q = \{(q, q) \mid q \in Q\}$

Let $\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$ be a VPA. we construct $\mathcal{A}' = (Q', \widetilde{\Sigma}, \Gamma', \delta', (\operatorname{Id}_Q, \{q_0\}), \bot, F')$, where $\operatorname{Id}_Q = \{(q, q) \mid q \in Q\}$ \blacktriangleright Consider an input string $w = xa_1ya_2z$ such that

Let
$$\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$$
 be a VPA. we construct $\mathcal{A}' = (Q', \widetilde{\Sigma}, \Gamma', \delta', (\operatorname{Id}_Q, \{q_0\}), \bot, F')$, where $\operatorname{Id}_Q = \{(q, q) \mid q \in Q\}$
 \blacktriangleright Consider an input string $w = xa_1ya_2z$ such that

Let
$$\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$$
 be a VPA. we construct $\mathcal{A}' = (Q', \widetilde{\Sigma}, \Gamma', \delta', (\operatorname{Id}_Q, \{q_0\}), \bot, F')$, where $\operatorname{Id}_Q = \{(q, q) \mid q \in Q\}$

- ► Consider an input string $w = xa_1ya_2z$ such that
 - ightharpoonup $a_1, a_2 \in \Sigma_c$
 - $\mathbf{x} \in \Sigma^*$ such that every call in \mathbf{x} is matched by a return, but there may be unmatched returns

Let
$$\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$$
 be a VPA. we construct $\mathcal{A}' = (Q', \widetilde{\Sigma}, \Gamma', \delta', (\operatorname{Id}_Q, \{q_0\}), \bot, F')$, where $\operatorname{Id}_Q = \{(q, q) \mid q \in Q\}$

- ► Consider an input string $w = xa_1ya_2z$ such that
 - $ightharpoonup a_1, a_2 \in \Sigma_c$
 - $x \in \Sigma^*$ such that every call in x is matched by a return, but there may be unmatched returns
 - ▶ $y, z \in \Sigma^*$ such that all calls and returns are matched

Let
$$\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$$
 be a VPA. we construct $\mathcal{A}' = (Q', \widetilde{\Sigma}, \Gamma', \delta', (\operatorname{Id}_Q, \{q_0\}), \bot, F')$, where $\operatorname{Id}_Q = \{(q, q) \mid q \in Q\}$

- ► Consider an input string $w = xa_1ya_2z$ such that
 - $ightharpoonup a_1, a_2 \in \Sigma_c$
 - $x \in \Sigma^*$ such that every call in x is matched by a return, but there may be unmatched returns
 - $ightharpoonup y,z\in \Sigma^*$ such that all calls and returns are matched
- ▶ After reading $w = xa_1ya_2z$, the VPA \mathcal{A}' we construct will reach the configuration

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

Let
$$\mathcal{A}=(Q,\widetilde{\Sigma},\Gamma,\delta,q_0,\perp,F)$$
 be a VPA. we construct $\mathcal{A}'=(Q',\widetilde{\Sigma},\Gamma',\delta',(\operatorname{Id}_Q,\{q_0\}),\perp,F')$, where $\operatorname{Id}_Q=\{(q,q)\mid q\in Q\}$

- ► Consider an input string $w = xa_1ya_2z$ such that
 - $ightharpoonup a_1, a_2 \in \Sigma_c$
 - $x \in \Sigma^*$ such that every call in x is matched by a return, but there may be unmatched returns
 - $ightharpoonup y,z\in \Sigma^*$ such that all calls and returns are matched
- After reading $w = xa_1ya_2z$, the VPA \mathcal{A}' we construct will reach the configuration

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

▶ $S_1 \subseteq Q \times Q$ is the summary for all pairs of states (q, q') such that we have $(q, \alpha) \xrightarrow{X} (q', \alpha)$ in A

Let
$$\mathcal{A}=(Q,\widetilde{\Sigma},\Gamma,\delta,q_0,\perp,F)$$
 be a VPA. we construct $\mathcal{A}'=(Q',\widetilde{\Sigma},\Gamma',\delta',(\operatorname{Id}_Q,\{q_0\}),\perp,F')$, where $\operatorname{Id}_Q=\{(q,q)\mid q\in Q\}$

- ► Consider an input string $w = xa_1ya_2z$ such that
 - $ightharpoonup a_1, a_2 \in \Sigma_c$
 - $x \in \Sigma^*$ such that every call in x is matched by a return, but there may be unmatched returns
 - $lackbox{} y,z\in \Sigma^*$ such that all calls and returns are matched
- After reading $w = xa_1ya_2z$, the VPA \mathcal{A}' we construct will reach the configuration

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

- ▶ $S_1 \subseteq Q \times Q$ is the summary for all pairs of states (q, q') such that we have $(q, \alpha) \xrightarrow{\times} (q', \alpha)$ in A
- $S_2 \subseteq Q \times Q$ is the summary for all pairs of states (q, q') such that we have $(q, \alpha) \xrightarrow{y} (q', \alpha)$ in A

Let
$$\mathcal{A}=(Q,\widetilde{\Sigma},\Gamma,\delta,q_0,\perp,F)$$
 be a VPA. we construct $\mathcal{A}'=(Q',\widetilde{\Sigma},\Gamma',\delta',(\operatorname{Id}_Q,\{q_0\}),\perp,F')$, where $\operatorname{Id}_Q=\{(q,q)\mid q\in Q\}$

- ► Consider an input string $w = xa_1ya_2z$ such that
 - $ightharpoonup a_1, a_2 \in \Sigma_c$
 - $x \in \Sigma^*$ such that every call in x is matched by a return, but there may be unmatched returns
 - $lackbox{} y,z\in \Sigma^*$ such that all calls and returns are matched
- After reading $w = xa_1ya_2z$, the VPA \mathcal{A}' we construct will reach the configuration

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

- ▶ $S_1 \subseteq Q \times Q$ is the summary for all pairs of states (q, q') such that we have $(q, \alpha) \xrightarrow{\times} (q', \alpha)$ in A
- ▶ $S_2 \subseteq Q \times Q$ is the summary for all pairs of states (q, q') such that we have $(q, \alpha) \xrightarrow{y} (q', \alpha)$ in A
- ► $S \subseteq Q \times Q$ is the summary for all pairs of states (q, q') such that we have $(q, \alpha) \stackrel{\mathsf{Z}}{\longrightarrow} (q', \alpha)$ in \mathcal{A}

Let
$$\mathcal{A}=(Q,\widetilde{\Sigma},\Gamma,\delta,q_0,\perp,F)$$
 be a VPA. we construct $\mathcal{A}'=(Q',\widetilde{\Sigma},\Gamma',\delta',(\operatorname{Id}_Q,\{q_0\}),\perp,F')$, where $\operatorname{Id}_Q=\{(q,q)\mid q\in Q\}$

- ▶ Consider an input string $w = xa_1ya_2z$ such that
 - $ightharpoonup a_1, a_2 \in \Sigma_c$
 - $x \in \Sigma^*$ such that every call in x is matched by a return, but there may be unmatched returns
 - $lackbox{} y,z\in \Sigma^*$ such that all calls and returns are matched
- After reading $w = xa_1ya_2z$, the VPA \mathcal{A}' we construct will reach the configuration

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

- ▶ $S_1 \subseteq Q \times Q$ is the summary for all pairs of states (q, q') such that we have $(q, \alpha) \xrightarrow{\times} (q', \alpha)$ in A
- ► $S_2 \subseteq Q \times Q$ is the summary for all pairs of states (q, q') such that we have $(q, \alpha) \xrightarrow{y} (q', \alpha)$ in A
- ► $S \subseteq Q \times Q$ is the summary for all pairs of states (q, q') such that we have $(q, \alpha) \stackrel{z}{\longrightarrow} (q', \alpha)$ in A
- $ightharpoonup R_1$ is the set of states reachable by $\mathcal A$ from any initial state on x

Let
$$\mathcal{A}=(Q,\widetilde{\Sigma},\Gamma,\delta,q_0,\perp,F)$$
 be a VPA. we construct $\mathcal{A}'=(Q',\widetilde{\Sigma},\Gamma',\delta',(\operatorname{Id}_Q,\{q_0\}),\perp,F')$, where $\operatorname{Id}_Q=\{(q,q)\mid q\in Q\}$

- ► Consider an input string $w = xa_1ya_2z$ such that
 - $ightharpoonup a_1, a_2 \in \Sigma_c$
 - $x \in \Sigma^*$ such that every call in x is matched by a return, but there may be unmatched returns
 - ▶ $y, z \in \Sigma^*$ such that all calls and returns are matched
- After reading $w = xa_1ya_2z$, the VPA \mathcal{A}' we construct will reach the configuration

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

- ▶ $S_1 \subseteq Q \times Q$ is the summary for all pairs of states (q, q') such that we have $(q, \alpha) \xrightarrow{\times} (q', \alpha)$ in A
- $S_2 \subseteq Q \times Q$ is the summary for all pairs of states (q, q') such that we have $(q, \alpha) \xrightarrow{y} (q', \alpha)$ in A
- $S \subseteq Q \times Q$ is the summary for all pairs of states (q, q') such that we have $(q, \alpha) \stackrel{z}{\longrightarrow} (q', \alpha)$ in \mathcal{A}
- $ightharpoonup R_1$ is the set of states reachable by $\mathcal A$ from any initial state on x
- $ightharpoonup R_2$ is the set of states reachable by $\mathcal A$ from any initial state on xa_1y

Let
$$\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$$
 be a VPA. we construct $\mathcal{A}' = (Q', \widetilde{\Sigma}, \Gamma', \delta', (\operatorname{Id}_Q, \{q_0\}), \bot, F')$, where $\operatorname{Id}_Q = \{(q, q) \mid q \in Q\}$

- ► Consider an input string $w = xa_1ya_2z$ such that
 - $ightharpoonup a_1, a_2 \in \Sigma_c$
 - $x \in \Sigma^*$ such that every call in x is matched by a return, but there may be unmatched returns
 - ▶ $y, z \in \Sigma^*$ such that all calls and returns are matched
- After reading $w = xa_1ya_2z$, the VPA \mathcal{A}' we construct will reach the configuration

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

- ▶ $S_1 \subseteq Q \times Q$ is the summary for all pairs of states (q, q') such that we have $(q, \alpha) \xrightarrow{\times} (q', \alpha)$ in A
- ▶ $S_2 \subseteq Q \times Q$ is the summary for all pairs of states (q, q') such that we have $(q, \alpha) \xrightarrow{y} (q', \alpha)$ in A
- ▶ $S \subseteq Q \times Q$ is the summary for all pairs of states (q, q') such that we have $(q, \alpha) \stackrel{z}{\longrightarrow} (q', \alpha)$ in A
- $ightharpoonup R_1$ is the set of states reachable by ${\cal A}$ from any initial state on x
- $ightharpoonup R_2$ is the set of states reachable by $\mathcal A$ from any initial state on xa_1y
- ightharpoonup R is the set of states reachable by A from any initial state on xa_1ya_2z

In an obviously way, we can define $(q, \alpha) \xrightarrow{w} (q', \alpha')$: the reachability of the config. (q', α') from (q, α) by reading w.

Observation. Suppose $(q, \alpha) \stackrel{w}{\longrightarrow} (q', \alpha')$ and w is well-matched, then $\alpha = \alpha'$.

In an obviously way, we can define $(q, \alpha) \xrightarrow{w} (q', \alpha')$: the reachability of the config. (q', α') from (q, α) by reading w.

Observation. Suppose $(q, \alpha) \xrightarrow{w} (q', \alpha')$ and w is well-matched, then $\alpha = \alpha'$.

Point I.

A well-matched word w can be seen as a relation $S_w \subseteq Q \times Q$, without changing the content of the stack.

In an obviously way, we can define $(q, \alpha) \xrightarrow{w} (q', \alpha')$: the reachability of the config. (q', α') from (q, α) by reading w.

Observation. Suppose $(q, \alpha) \xrightarrow{w} (q', \alpha')$ and w is well-matched, then $\alpha = \alpha'$.

Point I.

A well-matched word w can be seen as a relation $S_w \subseteq Q \times Q$, without changing the content of the stack.

Point II.

Suppose w is well-matched.

- $\triangleright S_{\varepsilon} = \mathrm{Id}_{Q}.$
- If w = aw' with $a \in \Sigma_l$, then $S_w = \{(q, q') \mid \exists q''.(q, a, q'') \in \delta, (q'', q') \in S_{w'}\}.$ Similarly for w = w'a.
- ▶ If w = aw'b with $a \in \Sigma_c$ and $b \in \Sigma_r$, then $S_w = \{(q, q') \mid \exists q_1, q_2, \gamma. (q, a, q_1, \gamma) \in \delta, (q_1, q_2) \in S_{w'}, (q_2, b, \gamma, q') \in \delta\}.$

In an obviously way, we can define $(q, \alpha) \xrightarrow{w} (q', \alpha')$: the reachability of the config. (q', α') from (q, α) by reading w.

Observation. Suppose $(q, \alpha) \stackrel{w}{\longrightarrow} (q', \alpha')$ and w is well-matched, then $\alpha = \alpha'$.

In an obviously way, we can define $(q, \alpha) \xrightarrow{w} (q', \alpha')$: the reachability of the config. (q', α') from (q, α) by reading w.

Observation. Suppose $(q, \alpha) \xrightarrow{w} (q', \alpha')$ and w is well-matched, then $\alpha = \alpha'$. **Point III**. Get inspirations from the subset construction for NFAs.

In an obviously way, we can define $(q, \alpha) \xrightarrow{w} (q', \alpha')$: the reachability of the config. (q', α') from (q, α) by reading w.

Observation. Suppose $(q, \alpha) \stackrel{w}{\longrightarrow} (q', \alpha')$ and w is well-matched, then $\alpha = \alpha'$. **Point III**. Get inspirations from the subset construction for NFAs.

Question:

What info. should be remembered after reading a word w in a NFA?

In an obviously way, we can define $(q, \alpha) \xrightarrow{w} (q', \alpha')$: the reachability of the config. (q', α') from (q, α) by reading w.

Observation. Suppose $(q, \alpha) \xrightarrow{w} (q', \alpha')$ and w is well-matched, then $\alpha = \alpha'$. **Point III**. Get inspirations from the subset construction for NFAs.

Question:

What info. should be remembered after reading a word w in a NFA?

Answer:

The set of states reachable from q_0 after reading w.

In an obviously way, we can define $(q, \alpha) \xrightarrow{w} (q', \alpha')$: the reachability of the config. (q', α') from (q, α) by reading w.

Observation. Suppose $(q, \alpha) \xrightarrow{w} (q', \alpha')$ and w is well-matched, then $\alpha = \alpha'$. **Point III**. Get inspirations from the subset construction for NFAs.

Question:

What info. should be remembered after reading a word w in a nondeterministic VPA?

Answer:

Let me think for a while ...

In an obviously way, we can define $(q, \alpha) \xrightarrow{w} (q', \alpha')$: the reachability of the config. (q', α') from (q, α) by reading w.

Observation. Suppose $(q, \alpha) \xrightarrow{w} (q', \alpha')$ and w is well-matched, then $\alpha = \alpha'$. **Point III**. Get inspirations from the subset construction for NFAs.

In an obviously way, we can define $(q, \alpha) \xrightarrow{w} (q', \alpha')$: the reachability of the config. (q', α') from (q, α) by reading w.

Observation. Suppose $(q, \alpha) \xrightarrow{w} (q', \alpha')$ and w is well-matched, then $\alpha = \alpha'$. **Point III**. Get inspirations from the subset construction for NFAs.

In an obviously way, we can define $(q, \alpha) \xrightarrow{w} (q', \alpha')$: the reachability of the config. (q', α') from (q, α) by reading w.

Observation. Suppose $(q, \alpha) \xrightarrow{w} (q', \alpha')$ and w is well-matched, then $\alpha = \alpha'$. **Point III**. Get inspirations from the subset construction for NFAs.

In an obviously way, we can define $(q, \alpha) \xrightarrow{w} (q', \alpha')$: the reachability of the config. (q', α') from (q, α) by reading w.

Observation. Suppose $(q, \alpha) \xrightarrow{w} (q', \alpha')$ and w is well-matched, then $\alpha = \alpha'$. **Point III**. Get inspirations from the subset construction for NFAs.

In an obviously way, we can define $(q, \alpha) \xrightarrow{w} (q', \alpha')$: the reachability of the config. (q', α') from (q, α) by reading w.

Observation. Suppose $(q, \alpha) \xrightarrow{w} (q', \alpha')$ and w is well-matched, then $\alpha = \alpha'$. **Point III**. Get inspirations from the subset construction for NFAs.

In an obviously way, we can define $(q, \alpha) \xrightarrow{w} (q', \alpha')$: the reachability of the config. (q', α') from (q, α) by reading w.

Observation. Suppose $(q, \alpha) \xrightarrow{w} (q', \alpha')$ and w is well-matched, then $\alpha = \alpha'$. **Point III**. Get inspirations from the subset construction for NFAs.

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\bot)$$

▶ After reading $w = xa_1ya_2z$, the VPA \mathcal{A}' we construct will reach the configuration

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

▶ If a_3 is the current input at configuration $((S, R), (S_2, R_2, a_2)(S_1, R_1, a_1)\bot)$

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

- ▶ If a_3 is the current input at configuration $((S, R), (S_2, R_2, a_2)(S_1, R_1, a_1)\bot)$
- ▶ If $a_3 \in \Sigma_c$: \mathcal{A}' goes to $((S', R'), (S, R, a_3)(S_2, R_2, a_2)(S_1, R_1, a_1)\bot)$, where
- ▶ $S' = Id_Q$ (note $Id_Q = \{(q, q) \mid q \in Q\}$), the initialization of the summary;
- ▶ $R' = \{q' \mid \exists q \in R, \gamma \in \Gamma : (q, a_3, q', \gamma) \in \delta\}$, all the states reachable by A after reading a_3

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

- ▶ If a_3 is the current input at configuration $((S, R), (S_2, R_2, a_2)(S_1, R_1, a_1)\bot)$
- ▶ If $a_3 \in \Sigma_c$: \mathcal{A}' goes to $((S', R'), (S, R, a_3)(S_2, R_2, a_2)(S_1, R_1, a_1)\bot)$, where
- ▶ $S' = Id_Q$ (note $Id_Q = \{(q, q) \mid q \in Q\}$), the initialization of the summary;
- ▶ $R' = \{q' \mid \exists q \in R, \gamma \in \Gamma : (q, a_3, q', \gamma) \in \delta\}$, all the states reachable by A after reading a_3

```
If a_3 \in \Sigma_c, then ((S,R), a_3, (\operatorname{Id}_Q, R'), (S, R, a_3)) \in \delta', where R' = \{q' \mid \exists q \in R, \gamma \in \Gamma. (q, a_3, q', \gamma) \in \delta\}.
```

▶ After reading $w = xa_1ya_2z$, the VPA \mathcal{A}' we construct will reach the configuration

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

▶ If a_3 is the current input at configuration $((S, R), (S_2, R_2, a_2)(S_1, R_1, a_1)\bot)$

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

- ▶ If a_3 is the current input at configuration $((S, R), (S_2, R_2, a_2)(S_1, R_1, a_1)\bot)$
- ▶ If $a_3 \in \Sigma_r$: \mathcal{A}' goes to $((S', R'), (S_1, R_1, a_1)\bot)$, where S' and R' are defined below.

$$(q,q_1) \in S_2: (q,\alpha) \stackrel{y}{\Longrightarrow}^* (q_1,\alpha)$$

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

- ▶ If a_3 is the current input at configuration $((S, R), (S_2, R_2, a_2)(S_1, R_1, a_1)\bot)$
- ▶ If $a_3 \in \Sigma_r$: A' goes to $((S', R'), (S_1, R_1, a_1)\bot)$, where S' and R' are defined below.

$$(q, q_1) \in S_2$$
: $(q, \alpha) \stackrel{y}{\Longrightarrow} (q_1, \alpha)$ and $(q_1, a_2, q_2, \gamma) \in \delta$: $(q_1, \alpha) \stackrel{a_2}{\Longrightarrow} (q_2, \gamma\alpha)$

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

- ▶ If a_3 is the current input at configuration $((S, R), (S_2, R_2, a_2)(S_1, R_1, a_1)\bot)$
- ▶ If $a_3 \in \Sigma_r$: A' goes to $((S', R'), (S_1, R_1, a_1)\bot)$, where S' and R' are defined below.

$$(q, q_1) \in S_2$$
: $(q, \alpha) \stackrel{y}{\Longrightarrow}^* (q_1, \alpha)$ and $(q_1, a_2, q_2, \gamma) \in \delta$: $(q_1, \alpha) \stackrel{a_2}{\Longrightarrow}^* (q_2, \gamma\alpha)$
 $(q_2, q_3) \in S$: $(q_2, \gamma\alpha) \stackrel{z}{\Longrightarrow}^* (q_3, \gamma\alpha)$

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

- ▶ If a_3 is the current input at configuration $((S, R), (S_2, R_2, a_2)(S_1, R_1, a_1)\bot)$
- ▶ If $a_3 \in \Sigma_r$: A' goes to $((S', R'), (S_1, R_1, a_1)\bot)$, where S' and R' are defined below.

$$\left\{ \begin{array}{l} ((S,R),a_3,(S_2,R_2,a_2),(S',R')) \in \delta', \text{ where} \\ S' = \left\{ (q,q') \middle| \begin{array}{l} \exists q_1,q_2,q_3,\gamma \in \Gamma: (q,q_1) \in S_2, (q_2,q_3) \in S, \\ (q_1,a_2,q_2,\gamma) \in \delta, (q_3,a_3,\gamma,q') \in \delta \end{array} \right\}, \\ R' = \left\{ q' \middle| \begin{array}{l} \exists q_1,q_2,q_3,\gamma \in \Gamma: q_1 \in R_2, (q_2,q_3) \in S, \\ (q_1,a_2,q_2,\gamma) \in \delta, (q_3,a_3,\gamma,q') \in \delta \end{array} \right\}$$

$$(q, q_1) \in S_2$$
: $(q, \alpha) \stackrel{y}{\Longrightarrow}^* (q_1, \alpha)$ and $(q_1, a_2, q_2, \gamma) \in \delta$: $(q_1, \alpha) \stackrel{a_2}{\Longrightarrow}^* (q_2, \gamma\alpha)$
 $(q_2, q_3) \in S$: $(q_2, \gamma\alpha) \stackrel{z}{\Longrightarrow}^* (q_3, \gamma\alpha)$ and $(q_3, a_3, \gamma, q') \in \delta$: $(q_3, \gamma\alpha) \stackrel{a_3}{\Longrightarrow}^* (q', \alpha)$

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

- ▶ If a_3 is the current input at configuration $((S, R), (S_2, R_2, a_2)(S_1, R_1, a_1)\bot)$
- ▶ If $a_3 \in \Sigma_r$: A' goes to $((S', R'), (S_1, R_1, a_1)\bot)$, where S' and R' are defined below.

$$(q, q_1) \in S_2$$
: $(q, \alpha) \stackrel{y}{\Longrightarrow}^* (q_1, \alpha)$ and $(q_1, a_2, q_2, \gamma) \in \delta$: $(q_1, \alpha) \stackrel{a_2}{\Longrightarrow}^* (q_2, \gamma \alpha)$
 $(q_2, q_3) \in S$: $(q_2, \gamma \alpha) \stackrel{z}{\Longrightarrow}^* (q_3, \gamma \alpha)$ and $(q_3, a_3, \gamma, q') \in \delta$: $(q_3, \gamma \alpha) \stackrel{a_3}{\Longrightarrow}^* (q', \alpha)$
 $(q, \alpha) \stackrel{ya_2za_3}{\Longrightarrow}^* (q', \alpha)$

▶ After reading $w = xa_1ya_2z$, the VPA \mathcal{A}' we construct will reach the configuration

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

- ▶ If a_3 is the current input at configuration $((S, R), (S_2, R_2, a_2)(S_1, R_1, a_1)\bot)$
- ▶ If $a_3 \in \Sigma_r$: \mathcal{A}' goes to $((S', R'), (S_1, R_1, a_1)\bot)$, where S' and R' are defined below.

$$\begin{split} &((S,R),a_3,(S_2,R_2,a_2),(S',R')) \in \delta', \text{ where} \\ &S' = \left\{ (q,q') \left| \begin{array}{c} \exists q_1,q_2,q_3,\gamma \in \Gamma: (q,q_1) \in S_2, (q_2,q_3) \in S, \\ (q_1,a_2,q_2,\gamma) \in \delta, (q_3,a_3,\gamma,q') \in \delta \end{array} \right. \right\}, \\ &R' = \left\{ q' \left| \begin{array}{c} \exists q_1,q_2,q_3,\gamma \in \Gamma: q_1 \in R_2, (q_2,q_3) \in S, \\ (q_1,a_2,q_2,\gamma) \in \delta, (q_3,a_3,\gamma,q') \in \delta \end{array} \right. \right\}, \\ &\text{or} \\ &((S,R),a_3,\bot,(S',R')) \in \delta', \text{ where} \\ &S' = \{ (q,q') \mid \exists q''.(q,q'') \in S, (q'',a_3,\bot,q') \in \delta \}, \\ &R' = \{ q' \mid \exists q \in R.(q,a_3,\bot,q') \in \delta \}. \end{split}$$

▶ After reading $w = xa_1ya_2z$, the VPA \mathcal{A}' we construct will reach the configuration

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

▶ After reading $w = xa_1ya_2z$, the VPA \mathcal{A}' we construct will reach the configuration

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

▶ If a_3 is the current input at configuration $((S, R), (S_2, R_2, a_2)(S_1, R_1, a_1)\bot)$

After reading $w = xa_1ya_2z$, the VPA \mathcal{A}' we construct will reach the configuration

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

- ▶ If a_3 is the current input at configuration $((S, R), (S_2, R_2, a_2)(S_1, R_1, a_1)\bot)$
- ▶ If $a_3 \in \Sigma_I$: A' goes to $((S', R'), (S_2, R_2, a_2)(S_1, R_1, a_1)\bot)$, where
 - ► $S' = \{(q, q') \mid \exists q'' : (q, q'') \in S, (q'', a_3, q') \in \delta\}$, the initialization of the summary;

If
$$a_3 \in \Sigma_I$$
, then $((S,R),a_3,(S',R')) \in \delta'$, where $S' = \{(q,q') \mid \exists q'' : (q,q'') \in S, (q'',a_3,q') \in \delta\}$ and $R' = \{q' \mid \exists q \in R : (q,a_3,q') \in \delta\}.$

$$(q,q'') \in S: (q,\alpha) \stackrel{z}{\Longrightarrow}^* (q'',\alpha)$$

After reading $w = xa_1ya_2z$, the VPA \mathcal{A}' we construct will reach the configuration

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

- ▶ If a_3 is the current input at configuration $((S, R), (S_2, R_2, a_2)(S_1, R_1, a_1)\bot)$
- ▶ If $a_3 \in \Sigma_I$: A' goes to $((S', R'), (S_2, R_2, a_2)(S_1, R_1, a_1)\bot)$, where
 - ► $S' = \{(q, q') \mid \exists q'' : (q, q'') \in S, (q'', a_3, q') \in \delta\}$, the initialization of the summary;
 - ► $R' = \{q' \mid \exists q \in R : (q, a_3, q') \in \delta\}$

If
$$a_3 \in \Sigma_I$$
, then $((S,R),a_3,(S',R')) \in \delta'$, where $S' = \{(q,q') \mid \exists q'' : (q,q'') \in S, (q'',a_3,q') \in \delta\}$ and $R' = \{q' \mid \exists q \in R : (q,a_3,q') \in \delta\}$.

$$(q,q'') \in S: (q,\alpha) \stackrel{z}{\Longrightarrow}^* (q'',\alpha) \text{ and } (q'',a_3,q') \in \delta: (q'',\alpha) \stackrel{a_3}{\Longrightarrow}^* (q',\alpha)$$

▶ After reading $w = xa_1ya_2z$, the VPA \mathcal{A}' we construct will reach the configuration

$$((S,R),(S_2,R_2,a_2)(S_1,R_1,a_1)\perp)$$

- ▶ If a_3 is the current input at configuration $((S, R), (S_2, R_2, a_2)(S_1, R_1, a_1)\bot)$
- ▶ If $a_3 \in \Sigma_I$: A' goes to $((S', R'), (S_2, R_2, a_2)(S_1, R_1, a_1)\bot)$, where
 - ► $S' = \{(q, q') \mid \exists q'' : (q, q'') \in S, (q'', a_3, q') \in \delta\}$, the initialization of the summary;

If
$$a_3 \in \Sigma_I$$
, then $((S,R),a_3,(S',R')) \in \delta'$, where $S' = \{(q,q') \mid \exists q'' : (q,q'') \in S, (q'',a_3,q') \in \delta\}$ and $R' = \{q' \mid \exists q \in R : (q,a_3,q') \in \delta\}$.

$$(q,q'') \in S: (q,\alpha) \stackrel{z}{\Longrightarrow}^* (q'',\alpha) \text{ and } (q'',a_3,q') \in \delta: (q'',\alpha) \stackrel{a_3}{\Longrightarrow}^* (q',\alpha)$$

$$(q,\alpha) \stackrel{za_3}{\Longrightarrow}^* (q',\alpha)$$

We construct $\mathcal{A}' = (Q', \widetilde{\Sigma}, \Gamma', \delta', (\mathrm{Id}_Q, \{q_0\}), F')$:

```
We construct \mathcal{A}' = (Q', \Sigma, \Gamma', \delta', (\mathrm{Id}_{Q}, \{q_0\}), F'):
   \triangleright Q': (S,R) such that S \subseteq Q \times Q, R \subseteq Q,

ightharpoonup \Gamma': letters (S, R, a) such that S \subseteq Q \times Q, R \subseteq Q, a \in \Sigma_c,
   ► F' = \{(S, R) \mid R \cap F \neq \emptyset\}.
   \triangleright \delta':
      Local if a \in \Sigma_I, then ((S, R), a, (S', R')) \in \delta', where
                  R' = \{q' \mid \exists q \in R.(q, a, q') \in \delta\},\
                  S' = \{(q, q') \mid \exists q_1, (q, q_1) \in S, (q_1, a, q') \in \delta\}.
         Call if a \in \Sigma_c, then ((S, R), a, (\operatorname{Id}_Q, R'), (S, R, a)) \in \delta', where
                   R' = \{ g' \mid \exists g \in R, \gamma \in \Gamma.(g, a, g', \gamma) \in \delta \}.
    Return if a \in \Sigma_r, then ((S, R), a, (S'', R'', a'), (S', R')) \in \delta', where
                   \begin{cases} - \\ (q,q') \middle| & \exists q_1,q_2,q_3,\gamma \in \Gamma. \\ (q,q_1) \in \mathcal{S}'', (q_1,a',q_2,\gamma) \in \delta, (q_2,q_3) \in \mathcal{S}, (q_3,a,\gamma,q') \in \delta \end{cases} \right\}, 
                  R' = \left\{ q' \middle| \begin{array}{c} \exists q_1, q_2, q_3, \gamma \in \Gamma. \\ q_1 \in R'', (q_1, a', q_2, \gamma) \in \delta, (q_2, q_3) \in S, (q_3, a, \gamma, q') \in \delta \end{array} \right\},
                  or ((S, R), a, \bot, (S', R')) \in \delta', where
                  S' = \{(q, q') \mid \exists q''. (q, q'') \in S, (q'', a, \bot, q') \in \delta\},\
                   R' = \{a' \mid \exists a \in R.(a, a, \bot, a') \in \delta\}.
```

Complementation

Theorem. VPLs with respect to $\widetilde{\Sigma}$ are closed under complementation.

Complementation

Theorem. VPLs with respect to $\widetilde{\Sigma}$ are closed under complementation.

For a VPA \mathcal{A} , first construct a deterministic VPA \mathcal{A}' such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$. Then, complement the set of final states.

Outline

Visibly pushdown automata (VPA)

Closure properties

Visibly pushdown grammar (VPG)

Logical characterization

Equivalence of NFA and MSO Equivalence of VPA and MSO.

Decision problems

Visibly pushdown grammar (VPG)

A CFG $G = (\mathcal{N}, \Sigma, \mathcal{P}, S)$ is a VPG over $\widetilde{\Sigma}$ if \mathcal{N} can be partitioned into \mathcal{N}_0 and \mathcal{N}_1 , and each rule in \mathcal{P} is of the following forms,

- $ightharpoonup X
 ightharpoonup \varepsilon$.
- ▶ $X \to aY$ such that if $X \in \mathcal{N}_0$, then $a \in \Sigma_I, Y \in \mathcal{N}_0$,
- ▶ $X \to aYbZ$ such that $a \in \Sigma_c$, $b \in \Sigma_r$, $Y \in \mathcal{N}_0$, and if $X \in \mathcal{N}_0$, then $Z \in \mathcal{N}_0$.

The non-terminals in \mathcal{N}_0 derive only well-matched words where there is a one-to-one correspondence between calls and returns.

The non-terminals in \mathcal{N}_1 derive words that can contain unmatched calls as well as unmatched returns.

Visibly pushdown grammar (VPG)

A CFG $G = (\mathcal{N}, \Sigma, \mathcal{P}, S)$ is a VPG over $\widetilde{\Sigma}$ if \mathcal{N} can be partitioned into \mathcal{N}_0 and \mathcal{N}_1 , and each rule in \mathcal{P} is of the following forms,

- $\triangleright X \rightarrow \varepsilon$.
- ▶ $X \to aY$ such that if $X \in \mathcal{N}_0$, then $a \in \Sigma_I, Y \in \mathcal{N}_0$,
- ▶ $X \to aYbZ$ such that $a \in \Sigma_c$, $b \in \Sigma_r$, $Y \in \mathcal{N}_0$, and if $X \in \mathcal{N}_0$, then $Z \in \mathcal{N}_0$.

The non-terminals in \mathcal{N}_0 derive only well-matched words where there is a one-to-one correspondence between calls and returns.

The non-terminals in \mathcal{N}_1 derive words that can contain unmatched calls as well as unmatched returns.

Example: Let $\widetilde{\Sigma} = (\{a\}, \{b\}, \emptyset)$. Then the VPG

$$S \rightarrow aSbC \mid aTbC, T \rightarrow \varepsilon, C \rightarrow \varepsilon,$$

such that $\mathcal{N}_0 = \{S, T, C\}$ defines $\{a^n b^n \mid n \geq 1\}$.

Theorem. VPA \equiv VPG.

Theorem. VPA \equiv VPG.

From VPA to VPG. Let $\mathcal{A}=(Q,\widetilde{\Sigma},\Gamma,\delta,q_0,\perp,F)$ be a VPA.

Theorem. VPA \equiv VPG.

From VPA to VPG. Let $\mathcal{A}=(Q,\widetilde{\Sigma},\Gamma,\delta,q_0,\perp,F)$ be a VPA.

The intuition: Utilizing the nonterminals $[q, \gamma, p]$ with the meaning

the top symbol of the stack is γ , and from state q, by reading a well-matched word, state p can be reached.

From VPA to VPG. Let $\mathcal{A}=\left(Q,\widetilde{\Sigma},\Gamma,\delta,q_0,\perp,F\right)$ be a VPA.

From VPA to VPG. Let $\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$ be a VPA. Construct a VPG $(\mathcal{N}_0, \mathcal{N}_1, \widetilde{\Sigma}, \mathcal{P}, \mathcal{S})$ as follows.

From VPA to VPG. Let $\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$ be a VPA. Construct a VPG $(\mathcal{N}_0, \mathcal{N}_1, \widetilde{\Sigma}, \mathcal{P}, S)$ as follows.

 $ightharpoonup S = (q_0, \perp),$

From VPA to VPG.

Let $\mathcal{A} = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ be a VPA.

- $ightharpoonup S = (q_0, \perp),$
- $\blacktriangleright \ \mathcal{N}_0 = \{ [q, \gamma, p] \mid q, p \in Q, \gamma \in \Gamma \setminus \{\bot\} \},\$

From VPA to VPG.

Let $\mathcal{A} = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ be a VPA.

- $\triangleright S = (q_0, \perp),$
- $\blacktriangleright \ \mathcal{N}_0 = \{ [q, \gamma, p] \mid q, p \in Q, \gamma \in \Gamma \setminus \{\bot\} \},\$
- $\blacktriangleright \ \mathcal{N}_1 = \{(q, \bot) \mid q \in Q\} \cup \{q \mid q \in Q\},\$

From VPA to VPG.

Let $\mathcal{A} = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ be a VPA.

- $ightharpoonup S = (q_0, \perp),$
- $\blacktriangleright \ \mathcal{N}_0 = \{ [q, \gamma, p] \mid q, p \in Q, \gamma \in \Gamma \setminus \{\bot\} \},\$
- $\blacktriangleright \ \mathcal{N}_1 = \{(q, \bot) \mid q \in Q\} \cup \{q \mid q \in Q\},\$
 - $ightharpoonup (q, \perp)$: the state is q and the stack is empty,
 - ightharpoonup q: the state is q and the stack is nonempty.

From VPA to VPG.

Let $\mathcal{A} = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ be a VPA.

- \triangleright $S=(q_0,\perp),$
- $\blacktriangleright \ \mathcal{N}_0 = \{ [q, \gamma, p] \mid q, p \in Q, \gamma \in \Gamma \setminus \{\bot\} \},\$
- ▶ $\mathcal{N}_1 = \{(q, \bot) \mid q \in Q\} \cup \{q \mid q \in Q\},$
 - $ightharpoonup (q, \perp)$: the state is q and the stack is empty,
 - ightharpoonup q: the state is q and the stack is nonempty.
- $ightharpoonup \mathcal{P}$ is defined by the following rules,

From VPA to VPG.

Let $\mathcal{A} = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ be a VPA.

- $ightharpoonup S = (q_0, \perp),$
- $\blacktriangleright \ \mathcal{N}_0 = \{ [q, \gamma, p] \mid q, p \in Q, \gamma \in \Gamma \setminus \{\bot\} \},\$
- ▶ $\mathcal{N}_1 = \{(q, \bot) \mid q \in Q\} \cup \{q \mid q \in Q\},$
 - $ightharpoonup (q, \perp)$: the state is q and the stack is empty,
 - ightharpoonup q: the state is q and the stack is nonempty.
- P is defined by the following rules,
 - ▶ if $(q, a, q') \in \delta$ s.t. $a \in \Sigma_I$, then $(q, \bot) \to a(q', \bot)$, $q \to aq'$, $[q, \gamma, p] \to a[q', \gamma, p]$.

From VPA to VPG.

Let $\mathcal{A} = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ be a VPA.

- $ightharpoonup S = (q_0, \perp),$
- $\blacktriangleright \ \mathcal{N}_0 = \{ [q, \gamma, p] \mid q, p \in Q, \gamma \in \Gamma \setminus \{\bot\} \},\$
- ▶ $\mathcal{N}_1 = \{(q, \bot) \mid q \in Q\} \cup \{q \mid q \in Q\},$
 - $ightharpoonup (q, \perp)$: the state is q and the stack is empty,
 - ightharpoonup q: the state is q and the stack is nonempty.
- P is defined by the following rules,
 - if $(q, a, q') \in \delta$ s.t. $a \in \Sigma_I$, then $(q, \bot) \to a(q', \bot)$, $q \to aq'$, $[q, \gamma, p] \to a[q', \gamma, p]$.
 - ▶ if $(q, a, q', \gamma), (p', b, \gamma, p) \in \delta$ s.t. $a \in \Sigma_c, b \in \Sigma_r$, then $[q, \gamma_1, r] \rightarrow a[q', \gamma, p']b[p, \gamma_1, r], (q, \bot) \rightarrow a[q', \gamma, p']b(p, \bot), q \rightarrow a[q', \gamma, p']bp.$

From VPA to VPG.

Let $\mathcal{A} = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ be a VPA.

- $ightharpoonup S = (q_0, \perp),$
- $\blacktriangleright \mathcal{N}_0 = \{ [q, \gamma, p] \mid q, p \in Q, \gamma \in \Gamma \setminus \{\bot\} \},\$
- ▶ $\mathcal{N}_1 = \{(q, \bot) \mid q \in Q\} \cup \{q \mid q \in Q\},$
 - $ightharpoonup (q, \perp)$: the state is q and the stack is empty,
 - ightharpoonup q: the state is q and the stack is nonempty.
- P is defined by the following rules,
 - ▶ if $(q, a, q') \in \delta$ s.t. $a \in \Sigma_I$, then $(q, \bot) \rightarrow a(q', \bot)$, $q \rightarrow aq'$, $[q, \gamma, p] \rightarrow a[q', \gamma, p]$.
 - ▶ if (q, a, q', γ) , $(p', b, \gamma, p) \in \delta$ s.t. $a \in \Sigma_c$, $b \in \Sigma_r$, then $[q, \gamma_1, r] \rightarrow a[q', \gamma, p']b[p, \gamma_1, r]$, $(q, \bot) \rightarrow a[q', \gamma, p']b(p, \bot)$, $q \rightarrow a[q', \gamma, p']bp$.
 - ▶ if $(q, a, q', \gamma) \in \delta$ s.t. $a \in \Sigma_c$, then $(q, \bot) \rightarrow aq'$, $q \rightarrow aq'$, $(q, \bot) \rightarrow a[q', \gamma, p]$, $q \rightarrow a[q', \gamma, p]$.

From VPA to VPG.

Let $\mathcal{A} = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ be a VPA.

- $ightharpoonup S = (q_0, \perp),$
- $\blacktriangleright \mathcal{N}_0 = \{ [q, \gamma, p] \mid q, p \in Q, \gamma \in \Gamma \setminus \{\bot\} \},\$
- ▶ $\mathcal{N}_1 = \{(q, \bot) \mid q \in Q\} \cup \{q \mid q \in Q\},$
 - $ightharpoonup (q, \perp)$: the state is q and the stack is empty,
 - ightharpoonup q: the state is q and the stack is nonempty.
- P is defined by the following rules,
 - ▶ if $(q, a, q') \in \delta$ s.t. $a \in \Sigma_I$, then $(q, \bot) \rightarrow a(q', \bot)$, $q \rightarrow aq'$, $[q, \gamma, p] \rightarrow a[q', \gamma, p]$.
 - ▶ if (q, a, q', γ) , $(p', b, \gamma, p) \in \delta$ s.t. $a \in \Sigma_c$, $b \in \Sigma_r$, then $[q, \gamma_1, r] \rightarrow a[q', \gamma, p']b[p, \gamma_1, r]$, $(q, \bot) \rightarrow a[q', \gamma, p']b[p, \bot)$, $q \rightarrow a[q', \gamma, p']b[p$.
 - ▶ if $(q, a, q', \gamma) \in \delta$ s.t. $a \in \Sigma_c$, then $(q, \bot) \to aq', q \to aq', (q, \bot) \to a[q', \gamma, p], q \to a[q', \gamma, p]$.
 - ▶ if $(q, a, \bot, q') \in \delta$ s.t. $a \in \Sigma_r$, then $(q, \bot) \rightarrow a(q', \bot)$.

From VPA to VPG.

Let $\mathcal{A} = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ be a VPA.

- $ightharpoonup S = (q_0, \perp),$
- $\blacktriangleright \mathcal{N}_0 = \{ [q, \gamma, p] \mid q, p \in Q, \gamma \in \Gamma \setminus \{\bot\} \},\$
- ▶ $\mathcal{N}_1 = \{(q, \bot) \mid q \in Q\} \cup \{q \mid q \in Q\},$
 - $ightharpoonup (q, \perp)$: the state is q and the stack is empty,
 - ightharpoonup q: the state is q and the stack is nonempty.
- P is defined by the following rules,
 - if $(q, a, q') \in \delta$ s.t. $a \in \Sigma_I$, then $(q, \bot) \to a(q', \bot)$, $q \to aq'$, $[q, \gamma, p] \to a[q', \gamma, p]$.
 - ▶ if (q, a, q', γ) , $(p', b, \gamma, p) \in \delta$ s.t. $a \in \Sigma_c$, $b \in \Sigma_r$, then $[q, \gamma_1, r] \rightarrow a[q', \gamma, p']b[p, \gamma_1, r]$, $(q, \bot) \rightarrow a[q', \gamma, p']b(p, \bot)$, $q \rightarrow a[q', \gamma, p']bp$.
 - ▶ if $(q, a, q', \gamma) \in \delta$ s.t. $a \in \Sigma_c$, then $(q, \bot) \to aq'$, $q \to aq'$, $(q, \bot) \to a[q', \gamma, p]$, $q \to a[q', \gamma, p]$.
 - if $(q, a, \bot, q') \in \delta$ s.t. $a \in \Sigma_r$, then $(q, \bot) \to a(q', \bot)$.
 - $ightharpoonup \forall q \in Q.[q,\gamma,q] \rightarrow \varepsilon$,

From VPG to VPA. Let $G = (\mathcal{N}_0, \mathcal{N}_1, \widetilde{\Sigma}, \mathcal{P}, S)$ be a VPG.

- Construct VPA $\mathcal{A} = (\mathcal{N}, \widetilde{\Sigma}, \Sigma_r \times \mathcal{N} \cup \{\bot, \$\}, \delta, S, F)$ as follows. δ is defined by the following rules,
 - if $X \to aY$ s.t. $a \in \Sigma_I$, then $(X, a, Y) \in \delta$,

From VPG to VPA.

Let
$$G = (\mathcal{N}_0, \mathcal{N}_1, \widetilde{\Sigma}, \mathcal{P}, S)$$
 be a VPG.

Construct VPA $\mathcal{A} = (\mathcal{N}, \widetilde{\Sigma}, \Sigma_r \times \mathcal{N} \cup \{\bot, \$\}, \delta, S, F)$ as follows.

- $ightharpoonup \delta$ is defined by the following rules,
 - ▶ if $X \to aY$ s.t. $a \in \Sigma_I$, then $(X, a, Y) \in \delta$,
 - if $X \to aY$ s,t. $a \in \Sigma_c$, then $(X, a, Y, \$) \in \delta$,

From VPG to VPA.

Let
$$G = (\mathcal{N}_0, \mathcal{N}_1, \widetilde{\Sigma}, \mathcal{P}, S)$$
 be a VPG.

Construct VPA $\mathcal{A} = (\mathcal{N}, \widetilde{\Sigma}, \Sigma_r \times \mathcal{N} \cup \{\bot, \$\}, \delta, S, F)$ as follows.

- \triangleright δ is defined by the following rules,
 - ▶ if $X \to aY$ s.t. $a \in \Sigma_I$, then $(X, a, Y) \in \delta$,
 - ▶ if $X \to aY$ s,t. $a \in \Sigma_c$, then $(X, a, Y, \$) \in \delta$,
 - ▶ if $X \to aY$ s.t. $a \in \Sigma_r$, then $(X, a, \$, Y) \in \delta$ and $(X, a, \bot, Y) \in \delta$,

From VPG to VPA.

Let
$$G = (\mathcal{N}_0, \mathcal{N}_1, \widetilde{\Sigma}, \mathcal{P}, S)$$
 be a VPG.

Construct VPA $\mathcal{A} = (\mathcal{N}, \Sigma, \Sigma_r \times \mathcal{N} \cup \{\bot, \$\}, \delta, S, F)$ as follows.

- \triangleright δ is defined by the following rules,
 - ▶ if $X \to aY$ s.t. $a \in \Sigma_I$, then $(X, a, Y) \in \delta$,
 - ▶ if $X \to aY$ s,t. $a \in \Sigma_c$, then $(X, a, Y, \$) \in \delta$,
 - ▶ if $X \to aY$ s.t. $a \in \Sigma_r$, then $(X, a, \$, Y) \in \delta$ and $(X, a, \bot, Y) \in \delta$,
 - ▶ if $X \to aYbZ$, then $(X, a, Y, (b, Z)) \in \delta$,

From VPG to VPA.

Let
$$G = (\mathcal{N}_0, \mathcal{N}_1, \widetilde{\Sigma}, \mathcal{P}, S)$$
 be a VPG.

Construct VPA $\mathcal{A} = (\mathcal{N}, \widetilde{\Sigma}, \Sigma_r \times \mathcal{N} \cup \{\bot, \$\}, \delta, S, F)$ as follows.

- \triangleright δ is defined by the following rules,
 - ▶ if $X \to aY$ s.t. $a \in \Sigma_I$, then $(X, a, Y) \in \delta$,
 - ▶ if $X \to aY$ s,t. $a \in \Sigma_c$, then $(X, a, Y, \$) \in \delta$,
 - ▶ if $X \to aY$ s.t. $a \in \Sigma_r$, then $(X, a, \$, Y) \in \delta$ and $(X, a, \bot, Y) \in \delta$,
 - ▶ if $X \to aYbZ$, then $(X, a, Y, (b, Z)) \in \delta$,
 - ▶ if $X \to \varepsilon$ and $X \in \mathcal{N}_0$, then $(X, b, (b, Y), Y) \in \delta$.

From VPG to VPA.

Let
$$G = (\mathcal{N}_0, \mathcal{N}_1, \widetilde{\Sigma}, \mathcal{P}, S)$$
 be a VPG.

Construct VPA $\mathcal{A} = (\mathcal{N}, \Sigma, \Sigma_r \times \mathcal{N} \cup \{\bot, \$\}, \delta, S, F)$ as follows.

- $ightharpoonup \delta$ is defined by the following rules,
 - if $X \to aY$ s.t. $a \in \Sigma_I$, then $(X, a, Y) \in \delta$,
 - ▶ if $X \to aY$ s,t. $a \in \Sigma_c$, then $(X, a, Y, \$) \in \delta$,
 - ▶ if $X \to aY$ s.t. $a \in \Sigma_r$, then $(X, a, \$, Y) \in \delta$ and $(X, a, \bot, Y) \in \delta$,
 - ▶ if $X \to aYbZ$, then $(X, a, Y, (b, Z)) \in \delta$,
 - ▶ if $X \to \varepsilon$ and $X \in \mathcal{N}_0$, then $(X, b, (b, Y), Y) \in \delta$.
- A accepts if the state is in X s.t. $X \to \varepsilon$ and the top symbol is \$ or \bot .

From VPG to VPA.

Let $G = (\mathcal{N}_0, \mathcal{N}_1, \widetilde{\Sigma}, \mathcal{P}, S)$ be a VPG.

Construct VPA $\mathcal{A} = (\mathcal{N}, \widetilde{\Sigma}, \Sigma_r \times \mathcal{N} \cup \{\bot, \$\}, \delta, S, F)$ as follows.

- \triangleright δ is defined by the following rules,
 - if $X \to aY$ s.t. $a \in \Sigma_I$, then $(X, a, Y) \in \delta$,
 - ▶ if $X \to aY$ s,t. $a \in \Sigma_c$, then $(X, a, Y, \$) \in \delta$,
 - ▶ if $X \to aY$ s.t. $a \in \Sigma_r$, then $(X, a, \$, Y) \in \delta$ and $(X, a, \bot, Y) \in \delta$,
 - ▶ if $X \to aYbZ$, then $(X, a, Y, (b, Z)) \in \delta$,
 - ▶ if $X \to \varepsilon$ and $X \in \mathcal{N}_0$, then $(X, b, (b, Y), Y) \in \delta$.
- $ightharpoonup \mathcal{A}$ accepts if the state is in X s.t. $X \to \varepsilon$ and the top symbol is \$ or \bot .

Adapt
$$\mathcal{A}$$
 into $\mathcal{A}' = (\mathcal{N} \times \Gamma, \widetilde{\Sigma}, \Gamma, \delta', (S, \bot), \{(X, \gamma) \mid X \to \varepsilon, \gamma = \$, \bot\})$ by adding the top symbol of the stack into the states.

From VPG to VPA.

Let
$$G = (\mathcal{N}_0, \mathcal{N}_1, \widetilde{\Sigma}, \mathcal{P}, S)$$
 be a VPG.

Construct VPA $\mathcal{A} = (\mathcal{N}, \widetilde{\Sigma}, \Sigma_r \times \mathcal{N} \cup \{\bot, \$\}, \delta, S, F)$ as follows.

- \triangleright δ is defined by the following rules,
 - if $X \to aY$ s.t. $a \in \Sigma_I$, then $(X, a, Y) \in \delta$,
 - if $X \to aY$ s,t. $a \in \Sigma_c$, then $(X, a, Y, \$) \in \delta$,
 - ▶ if $X \to aY$ s.t. $a \in \Sigma_r$, then $(X, a, \$, Y) \in \delta$ and $(X, a, \bot, Y) \in \delta$,
 - ▶ if $X \to aYbZ$, then $(X, a, Y, (b, Z)) \in \delta$,
 - ▶ if $X \to \varepsilon$ and $X \in \mathcal{N}_0$, then $(X, b, (b, Y), Y) \in \delta$.
- $ightharpoonup \mathcal{A}$ accepts if the state is in X s.t. $X \to \varepsilon$ and the top symbol is $s \to \bot$.

Adapt
$$\mathcal{A}$$
 into $\mathcal{A}' = (\mathcal{N} \times \Gamma, \widetilde{\Sigma}, \Gamma, \delta', (S, \bot), \{(X, \gamma) \mid X \to \varepsilon, \gamma = \$, \bot\})$ by adding the top symbol of the stack into the states.

• if $X \to aY$ s.t. $a \in \Sigma_I$, then $\forall \gamma.((X, \gamma), a, (Y, \gamma)) \in \delta'$,

From VPG to VPA.

Let $G = (\mathcal{N}_0, \mathcal{N}_1, \widetilde{\Sigma}, \mathcal{P}, S)$ be a VPG.

Construct VPA $\mathcal{A} = (\mathcal{N}, \widetilde{\Sigma}, \Sigma_r \times \mathcal{N} \cup \{\bot, \$\}, \delta, S, F)$ as follows.

- \triangleright δ is defined by the following rules,
 - ▶ if $X \to aY$ s.t. $a \in \Sigma_I$, then $(X, a, Y) \in \delta$,
 - ▶ if $X \to aY$ s,t. $a \in \Sigma_c$, then $(X, a, Y, \$) \in \delta$,
 - ▶ if $X \to aY$ s.t. $a \in \Sigma_r$, then $(X, a, \$, Y) \in \delta$ and $(X, a, \bot, Y) \in \delta$,
 - ▶ if $X \to aYbZ$, then $(X, a, Y, (b, Z)) \in \delta$,
 - ▶ if $X \to \varepsilon$ and $X \in \mathcal{N}_0$, then $(X, b, (b, Y), Y) \in \delta$.
- A accepts if the state is in X s.t. $X \to \varepsilon$ and the top symbol is \$ or \bot .

Adapt
$$\mathcal{A}$$
 into $\mathcal{A}' = (\mathcal{N} \times \Gamma, \widetilde{\Sigma}, \Gamma, \delta', (S, \bot), \{(X, \gamma) \mid X \to \varepsilon, \gamma = \$, \bot\})$ by adding the top symbol of the stack into the states.

- ▶ if $X \to aY$ s.t. $a \in \Sigma_I$, then $\forall \gamma.((X, \gamma), a, (Y, \gamma)) \in \delta'$,
- if $X \to aY$ s,t. $a \in \Sigma_c$, then $\forall \gamma.((X,\gamma),a,(Y,\$),(\$,\gamma)) \in \delta'$,

From VPG to VPA.

Let
$$G = (\mathcal{N}_0, \mathcal{N}_1, \widetilde{\Sigma}, \mathcal{P}, S)$$
 be a VPG.

Construct VPA $\mathcal{A} = (\mathcal{N}, \Sigma, \Sigma_r \times \mathcal{N} \cup \{\bot, \$\}, \delta, S, F)$ as follows.

- $ightharpoonup \delta$ is defined by the following rules,
 - ▶ if $X \to aY$ s.t. $a \in \Sigma_I$, then $(X, a, Y) \in \delta$,
 - ▶ if $X \to aY$ s,t. $a \in \Sigma_c$, then $(X, a, Y, \$) \in \delta$,
 - ▶ if $X \to aY$ s.t. $a \in \Sigma_r$, then $(X, a, \$, Y) \in \delta$ and $(X, a, \bot, Y) \in \delta$,
 - ▶ if $X \to aYbZ$, then $(X, a, Y, (b, Z)) \in \delta$,
 - if $X \to \varepsilon$ and $X \in \mathcal{N}_0$, then $(X, b, (b, Y), Y) \in \delta$.
- A accepts if the state is in X s.t. $X \to \varepsilon$ and the top symbol is \$ or \bot .

Adapt
$$\mathcal{A}$$
 into $\mathcal{A}' = (\mathcal{N} \times \Gamma, \widetilde{\Sigma}, \Gamma, \delta', (S, \bot), \{(X, \gamma) \mid X \to \varepsilon, \gamma = \$, \bot\})$ by adding the top symbol of the stack into the states.

- ▶ if $X \to aY$ s.t. $a \in \Sigma_I$, then $\forall \gamma.((X, \gamma), a, (Y, \gamma)) \in \delta'$,
- if $X \to aY$ s,t. $a \in \Sigma_c$, then $\forall \gamma.((X,\gamma),a,(Y,\$),(\$,\gamma)) \in \delta'$,
- if $X \to aY$ s.t. $a \in \Sigma_r$, then $\forall \gamma.((X, \gamma), a, \bot, (Y, \bot)) \in \delta'$ and $\forall \gamma.((X, \$), a, (\$, \gamma), (Y, \gamma)) \in \delta'$,

From VPG to VPA.

Let $G = (\mathcal{N}_0, \mathcal{N}_1, \widetilde{\Sigma}, \mathcal{P}, S)$ be a VPG.

Construct VPA $\mathcal{A} = (\mathcal{N}, \Sigma, \Sigma_r \times \mathcal{N} \cup \{\bot, \$\}, \delta, S, F)$ as follows.

- \triangleright δ is defined by the following rules,
 - ▶ if $X \to aY$ s.t. $a \in \Sigma_I$, then $(X, a, Y) \in \delta$,
 - ▶ if $X \to aY$ s,t. $a \in \Sigma_c$, then $(X, a, Y, \$) \in \delta$,
 - ▶ if $X \to aY$ s.t. $a \in \Sigma_r$, then $(X, a, \$, Y) \in \delta$ and $(X, a, \bot, Y) \in \delta$,
 - ▶ if $X \to aYbZ$, then $(X, a, Y, (b, Z)) \in \delta$,
 - ▶ if $X \to \varepsilon$ and $X \in \mathcal{N}_0$, then $(X, b, (b, Y), Y) \in \delta$.
- $ightharpoonup \mathcal{A}$ accepts if the state is in X s.t. $X \to \varepsilon$ and the top symbol is $s \to \bot$.

Adapt
$$\mathcal{A}$$
 into $\mathcal{A}' = (\mathcal{N} \times \Gamma, \widetilde{\Sigma}, \Gamma, \delta', (S, \bot), \{(X, \gamma) \mid X \to \varepsilon, \gamma = \$, \bot\})$ by adding the top symbol of the stack into the states.

- ▶ if $X \to aY$ s.t. $a \in \Sigma_I$, then $\forall \gamma.((X, \gamma), a, (Y, \gamma)) \in \delta'$,
- if $X \to aY$ s,t. $a \in \Sigma_c$, then $\forall \gamma.((X, \gamma), a, (Y, \$), (\$, \gamma)) \in \delta'$,
- if $X \to aY$ s.t. $a \in \Sigma_r$, then $\forall \gamma.((X, \gamma), a, \bot, (Y, \bot)) \in \delta'$ and $\forall \gamma.((X, \S), a, (\S, \gamma), (Y, \gamma)) \in \delta'$,
- ▶ if $X \to aYbZ$, then $\forall \gamma.((X,\gamma),a,(Y,(b,Z)),((b,Z),\gamma)) \in \delta'$,

From VPG to VPA.

Let $G = (\mathcal{N}_0, \mathcal{N}_1, \widetilde{\Sigma}, \mathcal{P}, S)$ be a VPG.

Construct VPA $\mathcal{A} = (\mathcal{N}, \Sigma, \Sigma_r \times \mathcal{N} \cup \{\bot, \$\}, \delta, S, F)$ as follows.

- $ightharpoonup \delta$ is defined by the following rules,
 - ▶ if $X \to aY$ s.t. $a \in \Sigma_I$, then $(X, a, Y) \in \delta$,
 - ▶ if $X \to aY$ s,t. $a \in \Sigma_c$, then $(X, a, Y, \$) \in \delta$,
 - ▶ if $X \to aY$ s.t. $a \in \Sigma_r$, then $(X, a, \$, Y) \in \delta$ and $(X, a, \bot, Y) \in \delta$,
 - ▶ if $X \to aYbZ$, then $(X, a, Y, (b, Z)) \in \delta$,
 - ▶ if $X \to \varepsilon$ and $X \in \mathcal{N}_0$, then $(X, b, (b, Y), Y) \in \delta$.
- $ightharpoonup \mathcal{A}$ accepts if the state is in X s.t. $X \to \varepsilon$ and the top symbol is $s \to \bot$.

Adapt
$$\mathcal{A}$$
 into $\mathcal{A}' = (\mathcal{N} \times \Gamma, \widetilde{\Sigma}, \Gamma, \delta', (S, \bot), \{(X, \gamma) \mid X \to \varepsilon, \gamma = \$, \bot\})$ by adding the top symbol of the stack into the states.

- ▶ if $X \to aY$ s.t. $a \in \Sigma_I$, then $\forall \gamma.((X, \gamma), a, (Y, \gamma)) \in \delta'$,
- if $X \to aY$ s,t. $a \in \Sigma_c$, then $\forall \gamma.((X, \gamma), a, (Y, \$), (\$, \gamma)) \in \delta'$,
- ▶ if $X \to aY$ s.t. $a \in \Sigma_r$, then $\forall \gamma.((X,\gamma), a, \bot, (Y, \bot)) \in \delta'$ and $\forall \gamma.((X,\$), a, (\$, \gamma), (Y, \gamma)) \in \delta'$,
- if $X \to aYbZ$, then $\forall \gamma.((X,\gamma),a,(Y,(b,Z)),((b,Z),\gamma)) \in \delta'$,
- if $X \to \varepsilon$ and $X \in \mathcal{N}_0$, then $\forall \gamma.((X,(b,Z)),b,((b,Z),\gamma),(Z,\gamma)) \in \delta'$.

Outline

Visibly pushdown automata (VPA)

Closure properties

Visibly pushdown grammar (VPG)

Logical characterization

Equivalence of NFA and MSO Equivalence of VPA and MSO

Decision problems

Outline

Visibly pushdown automata (VPA)

Closure properties

Visibly pushdown grammar (VPG)

Logical characterization
Equivalence of NFA and MSO
Equivalence of VPA and MSO,

Decision problems

Syntax.

$$\varphi := P_{\sigma}(x) \mid x = y \mid \mathsf{suc}(x, y) \mid X(x) \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi_1 \mid \exists x \varphi_1 \mid \exists X \varphi_1,$$

where $\sigma \in \Sigma$, x,y are position (first-order) variables, X is a set (second-order) variables

An MSO sentence is a MSO formula without free variables.

Syntax.

$$\varphi := P_{\sigma}(x) \mid x = y \mid \mathsf{suc}(x, y) \mid X(x) \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi_1 \mid \exists x \varphi_1 \mid \exists X \varphi_1,$$

where $\sigma \in \Sigma$, x,y are position (first-order) variables, X is a set (second-order) variables

An MSO sentence is a MSO formula without free variables.

Semantics.

A structure S over Σ is

- ightharpoonup a domain $S = \{1, \ldots, n\}$,
- ▶ an interpretation of all the unary predicates $P_{\sigma} \in \Sigma$ over S, denoted by $(P_{\sigma})^{S}$.

Syntax.

$$\varphi := P_{\sigma}(x) \mid x = y \mid \mathsf{suc}(x, y) \mid X(x) \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi_1 \mid \exists x \varphi_1 \mid \exists X \varphi_1,$$

where $\sigma \in \Sigma$, x,y are position (first-order) variables, X is a set (second-order) variables

An MSO sentence is a MSO formula without free variables.

Semantics.

A structure S over Σ is

- ightharpoonup a domain $S = \{1, \ldots, n\}$,
- ▶ an interpretation of all the unary predicates $P_{\sigma} \in \Sigma$ over S, denoted by $(P_{\sigma})^{S}$.

Example. Let $\Sigma = \{a, b\}$. Then $S = (\{1, 2, 3\}, (P_a)^S = \{1\}, (P_b)^S = \{2, 3\})$ is a structure over Σ .

Syntax.

$$\varphi := P_{\sigma}(x) \mid x = y \mid \mathsf{suc}(x, y) \mid X(x) \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi_1 \mid \exists x \varphi_1 \mid \exists X \varphi_1,$$

where $\sigma \in \Sigma$, x,y are position (first-order) variables, X is a set (second-order) variables

An MSO sentence is a MSO formula without free variables.

Semantics.

A structure S over Σ is

- ightharpoonup a domain $S = \{1, \ldots, n\}$,
- ▶ an interpretation of all the unary predicates $P_{\sigma} \in \Sigma$ over S, denoted by $(P_{\sigma})^{S}$.

Example. Let $\Sigma = \{a, b\}$. Then $S = (\{1, 2, 3\}, (P_a)^S = \{1\}, (P_b)^S = \{2, 3\})$ is a structure over Σ .

A word $w = a_1 \dots a_n$ can be seen as a structure S_w over Σ ,

- ▶ the domain of S_w , denoted by S_w , is $\{1, ..., n\}$,
- ▶ the interpretation of every $P_σ ∈ Σ$ is the set of positions with the letter σ in w.

Syntax.

 $\varphi := P_{\sigma}(x) \mid x = y \mid \operatorname{suc}(x,y) \mid X(x) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid \exists x \varphi_1 \mid \exists X \varphi_1,$ where $\sigma \in \Sigma$, x,y are position (first-order) variables, X is a set (second-order) variables

An MSO sentence is a MSO formula without free variables.

Semantics. Given a MSO formula φ , a valuation of $\operatorname{free}(\varphi)$ over a structure $\mathcal S$ is a mapping $\mathcal I$ such that

- ▶ for every $x \in \text{free}(\varphi)$, $\mathcal{I}(x) \in S$,
- ▶ for every $X \in \text{free}(\varphi)$, $\mathcal{I}(X) \subseteq S$.

Syntax.

variables

$$\varphi := P_{\sigma}(x) \mid x = y \mid \mathsf{suc}(x,y) \mid X(x) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid \exists x \varphi_1 \mid \exists X \varphi_1,$$
 where $\sigma \in \Sigma$, x,y are position (first-order) variables, X is a set (second-order)

An MSO sentence is a MSO formula without free variables.

Semantics. A MSO formula φ is satisfied over a word $w = a_1 \dots a_n$, with a valuation \mathcal{I} of free(φ) over \mathcal{S}_w , denoted by $(w, \mathcal{I}) \models \varphi$, is defined as follows,

- $(w, \mathcal{I}) \models P_{\sigma}(x) \text{ iff } a_{\mathcal{I}(x)} = \sigma,$
- $(w, \mathcal{I}) \models x = y \text{ iff } \mathcal{I}(x) = \mathcal{I}(y),$
- $(w, \mathcal{I}) \models \mathsf{suc}(x, y) \text{ iff } \mathcal{I}(x) + 1 = \mathcal{I}(y),$
- \blacktriangleright $(w, \mathcal{I}) \models X(x) \text{ iff } \mathcal{I}(x) \in \mathcal{I}(X),$
- $\blacktriangleright (w,\mathcal{I}) \models \varphi_1 \lor \varphi_2 \text{ iff } (w,\mathcal{I}) \models \varphi_1 \text{ or } (w,\mathcal{I}) \models \varphi_2,$
- \blacktriangleright $(w,\mathcal{I}) \models \neg \varphi_1$ iff not $(w,\mathcal{I}) \models \varphi_1$,
- \blacktriangleright $(w,\mathcal{I}) \models \exists x \varphi_1$ iff there is $j \in S_w$ such that $(w,\mathcal{I}[x \to j]) \models \varphi_1$,
- ▶ $(w, \mathcal{I}) \models \exists X \varphi_1$ iff there is $J \subseteq S_w$ such that $(w, \mathcal{I}[X \to J]) \models \varphi_1$.

Syntax.

$$\varphi := P_{\sigma}(x) \mid x = y \mid \text{suc}(x, y) \mid X(x) \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi_1 \mid \exists x \varphi_1 \mid \exists X \varphi_1,$$

where $\sigma \in \Sigma$, x, y are position (first-order) variables, X is a set (second-order)

variables

An MSO sentence is a MSO formula without free variables.

Semantics.

Let φ be a MSO sentence.

The language defined by φ , denoted $\mathcal{L}(\varphi)$: The set of words satisfying φ .

A language
$$L \subseteq \Sigma^*$$
 is MSO-definable if

there is a MSO sentence φ such that $\mathcal{L}(\varphi) = L$.

Abbreviations.

- $first(x) = \forall y (x = y \lor x < y),$

Abbreviations.

- $first(x) = \forall y (x = y \lor x < y),$

Example.

$$\neg \exists x \text{ first}(x), \text{ i.e., } \varepsilon$$

Abbreviations.

- $first(x) = \forall y (x = y \lor x < y),$
- $\blacktriangleright \mathsf{last}(x) = \forall y (x = y \lor y < x).$

Example.

$$\neg \exists x \text{ first}(x), \text{ i.e., } \varepsilon$$

$$\exists x \exists y (P_a(x) \land P_b(y) \land x < y),$$

i.e., all the words that has two positions where b occurs later than a

Abbreviations.

$$first(x) = \forall y (x = y \lor x < y),$$

$$\blacktriangleright \mathsf{last}(x) = \forall y (x = y \lor y < x).$$

Example.

$$\neg \exists x \text{ first}(x), \text{ i.e., } \varepsilon$$

$$\exists x \exists y (P_a(x) \land P_b(y) \land x < y),$$

i.e., all the words that has two positions where b occurs later than a

$$\exists X \left(\begin{array}{c} \exists x (\mathsf{first}(x) \land X(x)) \land \\ \forall x \forall y \forall z (\mathsf{suc}(x,y) \land \mathsf{suc}(y,z) \land X(x) \to X(z)) \\ \land \forall x (X(x) \to P_a(x)) \end{array}\right),$$

i.e., non-empty words and all the even positions have a

NFA=MSO

From NFA to MSO

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a NFA.

From NFA to MSO

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a NFA. Let $Q = \{q_0, q_1, \dots, q_n\}$. Construct the MSO formula φ as follows,

$$\exists X_{q_0} \dots X_{q_n} (\varphi_{unique} \wedge \varphi_{init} \wedge \varphi_{trans} \wedge \varphi_{final}),$$

where

- \triangleright X_q stands for the positions where the run is in state q,
- $\varphi_{unique} = \bigwedge_{q \neq q'} \forall x \neg (X_q(x) \land X_{q'}(x))$
- $\qquad \qquad \varphi_{init} = \exists x (\mathrm{first}(x) \land \bigvee_{(q_0, a, q) \in \delta} (P_a(x) \land X_q(x))),$
- $\qquad \qquad \varphi_{\textit{trans}} = \forall x \forall y (\mathsf{suc}(x,y) \to \bigvee_{(q,a,q') \in \delta} X_q(x) \land P_{\mathsf{a}}(y) \land X_{q'}(y)),$

Then $\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{A})$ if $q_0 \notin F$ and $\mathcal{L}(\varphi \vee \forall x(\neg \mathrm{first}(x))) = \mathcal{L}(\mathcal{A})$ if $q_0 \in F$.

NFA\(\subseteq\) MSO

From MSO to NFA.

A normal form for MSO formulas

New modalities,

$$X \subseteq Y$$
, Singleton(X), $suc(X, Y)$.

Then a MSO formula φ can be transformed into a normal form φ' by the following rules,

- if $\varphi = P_{\sigma}(x)$, then $\varphi' = \text{Singleton}(X) \land X \subseteq P_{\sigma}$,
- ▶ if $\varphi = x = y$, then $\varphi' = \text{Singleton}(X) \land \text{Singleton}(Y) \land X \subseteq Y \land Y \subseteq X$,
- if $\varphi = \operatorname{suc}(x, y)$, then $\varphi' = \operatorname{suc}(X, Y)$,
- if $\varphi = Z(x)$, then $\varphi' = \operatorname{Singleton}(X) \wedge X \subseteq Z$,
- if $\varphi = \varphi_1 \vee \varphi_2$, then $\varphi' = \varphi'_1 \vee \varphi'_2$,
- $\qquad \qquad \textbf{if } \varphi = \neg \varphi_1 \text{, then } \varphi' = \neg \varphi_1' \text{,}$
- if $\varphi = \exists x \varphi_1$, then $\varphi' = \exists X (\operatorname{Singleton}(X) \wedge \varphi_1')$,
- ▶ if $\varphi = \exists X \varphi_1$, then $\varphi' = \exists X \varphi'_1$.

From MSO to NFA.

$$\varphi := X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Singleton}(X) \mid \operatorname{suc}(X,Y) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid \exists X \varphi_1.$$

Let $\varphi(X_1,\ldots,X_k)$ be a MSO formula in the prefix normal form. We construct a NFA $\mathcal{A}=(Q,\Sigma\times\{0,1\}^k,\delta,q_0,F)$ as follows. Consider $\varphi(X_1,\cdots,X_k)$ with X_1,\cdots,X_k free variables, $(a,b_1\cdots b_k)$ at position p such that $a\in\Sigma$ and $b_i\in\{0,1\}$ denotes that

- a is the symbol at position p,
- ▶ $b_i = 1$ denotes that $p \in X_i$
- \triangleright $b_i = 0$ denotes that $p \notin X_i$

From MSO to NFA.

$$\varphi := X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Singleton}(X) \mid \operatorname{suc}(X,Y) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid \exists X \varphi_1.$$

Let $\varphi(X_1,\ldots,X_k)$ be a MSO formula in the prefix normal form. We construct a NFA $\mathcal{A}=(Q,\Sigma\times\{0,1\}^k,\delta,q_0,F)$ as follows. Consider $\varphi(X_1,\cdots,X_k)$ with X_1,\cdots,X_k free variables, $(a,b_1\cdots b_k)$ at position p such that $a\in\Sigma$ and $b_i\in\{0,1\}$ denotes that

- a is the symbol at position p,
- ▶ $b_i = 1$ denotes that $p \in X_i$
- ▶ $b_i = 0$ denotes that $p \notin X_i$

 X_1 : even positions X_2 : prime positions

From MSO to NFA.

$$\varphi := X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Singleton}(X) \mid \operatorname{suc}(X,Y) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid \exists X \varphi_1.$$

Let $\varphi(X_1,\ldots,X_k)$ be a MSO formula in the prefix normal form.

We construct a NFA $\mathcal{A} = (Q, \Sigma \times \{0, 1\}^k, \delta, q_0, F)$ as follows. Consider $\varphi(X_1, \dots, X_k)$ with X_1, \dots, X_k free variables,

$$X \subseteq P_a \longrightarrow \boxed{q_0} \begin{pmatrix} a \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} A \\ - \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix}$$

$$P_a \subseteq X \longrightarrow \boxed{q_0}$$

From MSO to NFA.

$$\varphi := X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Singleton}(X) \mid \operatorname{suc}(X,Y) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid \exists X \varphi_1.$$

Let $\varphi(X_1,\ldots,X_k)$ be a MSO formula in the prefix normal form.

We construct a NFA $\mathcal{A} = (Q, \Sigma \times \{0,1\}^k, \delta, q_0, F)$ as follows.

Consider $\varphi(X_1, \dots, X_k)$ with X_1, \dots, X_k free variables,

From MSO to NFA.

$$\varphi := X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Singleton}(X) \mid \operatorname{suc}(X, Y) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid \exists X \varphi_1.$$

Let $\varphi(X_1,\ldots,X_k)$ be a MSO formula in the normal form. We construct a NFA $\mathcal{A}=(Q,\Sigma\times\{0,1\}^k,\delta,q_0,F)$ as follows.

- $\varphi = \varphi_1 \lor \varphi_2$ NFAs are closed under union,
- $\varphi = \neg \varphi_1$ NFAs are closed under complementation,
- ▶ $\varphi = \exists X_1 \varphi_1$ NFAs are closed under projection (a special case of homomorphisms), e.g. $(b_1, \ldots, b_k) \to (b_2, \ldots, b_k)$.

Then
$$\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{A})$$

Outline

Visibly pushdown automata (VPA)

Closure properties

Visibly pushdown grammar (VPG)

Logical characterization

Equivalence of NFA and MSO

Equivalence of VPA and MSO_μ

Decision problems

 $\text{Fix }\widetilde{\Sigma}.$

Given a word $w=a_1\dots a_n\in \Sigma^*$, a binary relation $\mu(x,y)$ can be defined such that

 $\mu(i,j)$ iff a_i is a call and a_j is a matching return.

 $\text{Fix } \widetilde{\Sigma}.$

Given a word $w=a_1\dots a_n\in \Sigma^*$, a binary relation $\mu(x,y)$ can be defined such that

 $\mu(i,j)$ iff a_i is a call and a_j is a matching return.

Example. In the word "(()) () ((", $\mu(1,4), \mu(2,3), \mu(5,6)$ hold.

 $\text{Fix }\widetilde{\Sigma}.$

Given a word $w=a_1\dots a_n\in \Sigma^*$, a binary relation $\mu(x,y)$ can be defined such that

 $\mu(i,j)$ iff a_i is a call and a_j is a matching return.

Example. In the word "(()) () ((", $\mu(1,4), \mu(2,3), \mu(5,6)$ hold.

Syntax of MSO_{μ} over $\widetilde{\Sigma}$.

$$\varphi := P_{\sigma}(x) \mid x = y \mid \mathsf{suc}(x,y) \mid X(x) \mid \underline{\mu(x,y)} \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid \exists x \varphi_1 \mid \exists X \varphi_1,$$

where $\sigma \in \Sigma$.

Fix $\widetilde{\Sigma}$.

Given a word $w=a_1\dots a_n\in \Sigma^*$, a binary relation $\mu(x,y)$ can be defined such that

 $\mu(i,j)$ iff a_i is a call and a_j is a matching return.

Example. In the word "(()) () ((", $\mu(1,4), \mu(2,3), \mu(5,6)$ hold.

Syntax of MSO_{μ} over $\widetilde{\Sigma}$.

$$\varphi := P_{\sigma}(x) \mid x = y \mid \mathsf{suc}(x,y) \mid X(x) \mid \underline{\mu}(x,y) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid \exists x \varphi_1 \mid \exists X \varphi_1,$$

where $\sigma \in \Sigma$.

Semantics of MSO_{μ} over $\widetilde{\Sigma}$.

• $(w, \mathcal{I}) \models \mu(x, y)$ iff $\mu(\mathcal{I}(x), \mathcal{I}(y))$ holds on w.

Fix $\widetilde{\Sigma}$.

Given a word $w=a_1\dots a_n\in \Sigma^*$, a binary relation $\mu(x,y)$ can be defined such that

 $\mu(i,j)$ iff a_i is a call and a_j is a matching return.

Example. In the word "(()) () ((", $\mu(1,4), \mu(2,3), \mu(5,6)$ hold.

Syntax of MSO_{μ} over $\widetilde{\Sigma}$.

$$\varphi := P_{\sigma}(x) \mid x = y \mid \mathsf{suc}(x,y) \mid X(x) \mid \underline{\mu(x,y)} \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid \exists x \varphi_1 \mid \exists X \varphi_1,$$

where $\sigma \in \Sigma$.

Semantics of MSO_{μ} over $\widetilde{\Sigma}$.

• $(w, \mathcal{I}) \models \mu(x, y)$ iff $\mu(\mathcal{I}(x), \mathcal{I}(y))$ holds on w.

Example. Let $\widetilde{\Sigma} = (\{a\}, \{b\}, \{c\})$

$$\forall x (P_a(x) \to \exists y \exists z (P_b(y) \land P_c(z) \land x < z \land z < y \land \mu(x,y)))$$

Let
$$\mathcal{A}=(Q,\widetilde{\Sigma},\Gamma,\delta,q_0,\perp,F)$$
 be a VPA, $Q=\{q_0,\ldots,q_n\}$, $\Gamma=\{\gamma_1,\ldots,\gamma_k\}$.

Let $\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$ be a VPA, $Q = \{q_0, \ldots, q_n\}$, $\Gamma = \{\gamma_1, \ldots, \gamma_k\}$. Define $\varphi := \exists X_{q_0} \ldots X_{q_n} P_{\gamma_1} \ldots P_{\gamma_k} (\varphi_{unique} \land \varphi_{init} \land \varphi_{trans} \land \varphi_{final})$ as follows,

Let
$$\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$$
 be a VPA, $Q = \{q_0, \ldots, q_n\}$, $\Gamma = \{\gamma_1, \ldots, \gamma_k\}$. Define $\varphi := \exists X_{q_0} \ldots X_{q_n} P_{\gamma_1} \ldots P_{\gamma_k} (\varphi_{\textit{unique}} \land \varphi_{\textit{init}} \land \varphi_{\textit{trans}} \land \varphi_{\textit{final}})$ as follows,

 \triangleright X_q stands for the positions where the run is in state q

Let $\mathcal{A}=(Q,\widetilde{\Sigma},\Gamma,\delta,q_0,\perp,F)$ be a VPA, $Q=\{q_0,\ldots,q_n\}$, $\Gamma=\{\gamma_1,\ldots,\gamma_k\}$. Define $\varphi:=\exists X_{q_0}\ldots X_{q_n}P_{\gamma_1}\ldots P_{\gamma_k}(\varphi_{unique}\wedge\varphi_{init}\wedge\varphi_{trans}\wedge\varphi_{final})$ as follows,

- X_q stands for the positions where the run is in state q
- $ightharpoonup P_{\gamma}$ stands for the positions where r is pushed/popped

Let
$$\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$$
 be a VPA, $Q = \{q_0, \ldots, q_n\}$, $\Gamma = \{\gamma_1, \ldots, \gamma_k\}$. Define $\varphi := \exists X_{q_0} \ldots X_{q_n} P_{\gamma_1} \ldots P_{\gamma_k} (\varphi_{\textit{unique}} \land \varphi_{\textit{init}} \land \varphi_{\textit{trans}} \land \varphi_{\textit{final}})$ as follows,

- $ightharpoonup X_q$ stands for the positions where the run is in state q
- $ightharpoonup P_{\gamma}$ stands for the positions where r is pushed/popped
- $\blacktriangleright \ \varphi_{\textit{unique}} = \bigwedge_{q \neq q'} \forall x \neg (X_q(x) \land X_{q'}(x)) \land \bigwedge_{\gamma \neq \gamma'} \forall x \neg (P_\gamma(x) \land P_{\gamma'}(x))$

Let
$$\mathcal{A}=(Q,\widetilde{\Sigma},\Gamma,\delta,q_0,\perp,F)$$
 be a VPA, $Q=\{q_0,\ldots,q_n\}$, $\Gamma=\{\gamma_1,\ldots,\gamma_k\}$. Define $\varphi:=\exists X_{q_0}\ldots X_{q_n}P_{\gamma_1}\ldots P_{\gamma_k}(\varphi_{unique}\wedge\varphi_{init}\wedge\varphi_{trans}\wedge\varphi_{final})$ as follows,

- $ightharpoonup X_q$ stands for the positions where the run is in state q
- $ightharpoonup P_{\gamma}$ stands for the positions where r is pushed/popped

$$\blacktriangleright \ \varphi_{\textit{unique}} = \bigwedge_{q \neq q'} \forall x \neg (X_q(x) \land X_{q'}(x)) \land \bigwedge_{\gamma \neq \gamma'} \forall x \neg (P_\gamma(x) \land P_{\gamma'}(x))$$

Let $\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$ be a VPA, $Q = \{q_0, \ldots, q_n\}$, $\Gamma = \{\gamma_1, \ldots, \gamma_k\}$. Define $\varphi := \exists X_{q_0} \ldots X_{q_n} P_{\gamma_1} \ldots P_{\gamma_k} (\varphi_{unique} \land \varphi_{init} \land \varphi_{trans} \land \varphi_{final})$ as follows,

Let $\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$ be a VPA, $Q = \{q_0, \ldots, q_n\}$, $\Gamma = \{\gamma_1, \ldots, \gamma_k\}$. Define $\varphi := \exists X_{q_0} \ldots X_{q_n} P_{\gamma_1} \ldots P_{\gamma_k} (\varphi_{\textit{unique}} \land \varphi_{\textit{init}} \land \varphi_{\textit{trans}} \land \varphi_{\textit{final}})$ as follows, $\blacktriangleright \varphi_{\textit{trans}} = \forall x \forall y \left(\text{suc}(x, y) \rightarrow \psi_{\textit{call}} \lor \psi_{\textit{return}} \lor \psi_{\textit{local}} \right)$,

Let
$$\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$$
 be a VPA, $Q = \{q_0, \ldots, q_n\}$, $\Gamma = \{\gamma_1, \ldots, \gamma_k\}$. Define $\varphi := \exists X_{q_0} \ldots X_{q_n} P_{\gamma_1} \ldots P_{\gamma_k} (\varphi_{\textit{unique}} \land \varphi_{\textit{init}} \land \varphi_{\textit{trans}} \land \varphi_{\textit{final}})$ as follows,
$$\blacktriangleright \varphi_{\textit{trans}} = \forall x \forall y \left(\text{suc}(x, y) \rightarrow \psi_{\textit{call}} \lor \psi_{\textit{return}} \lor \psi_{\textit{local}} \right), \text{ where } \\ \blacktriangleright \psi_{\textit{call}} = \bigvee_{(q, a, q', \gamma) \in \delta} (X_q(x) \land P_a(y) \land X_{q'}(y) \land P_\gamma(y)),$$

Let $\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$ be a VPA, $Q = \{q_0, \dots, q_n\}$, $\Gamma = \{\gamma_1, \dots, \gamma_k\}$. Define $\varphi := \exists X_{q_0} \dots X_{q_n} P_{\gamma_1} \dots P_{\gamma_k} (\varphi_{\textit{unique}} \land \varphi_{\textit{init}} \land \varphi_{\textit{trans}} \land \varphi_{\textit{final}})$ as follows, • $\varphi_{\textit{trans}} = \forall x \forall y \left(\text{suc}(x, y) \rightarrow \psi_{\textit{call}} \lor \psi_{\textit{return}} \lor \psi_{\textit{local}} \right)$, where • $\psi_{\textit{call}} = \bigvee_{(q, a, q', \gamma) \in \delta} (X_q(x) \land P_a(y) \land X_{q'}(y) \land P_\gamma(y))$, • $\psi_{\textit{local}} = \bigvee_{(q, a, q') \in \delta} (X_q(x) \land P_a(y) \land X_{q'}(y))$,

Let
$$\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$$
 be a VPA, $Q = \{q_0, \ldots, q_n\}$, $\Gamma = \{\gamma_1, \ldots, \gamma_k\}$. Define $\varphi := \exists X_{q_0} \ldots X_{q_n} P_{\gamma_1} \ldots P_{\gamma_k} (\varphi_{unique} \wedge \varphi_{init} \wedge \varphi_{trans} \wedge \varphi_{final})$ as follows,
$$\blacktriangleright \varphi_{trans} = \forall x \forall y \left(\text{suc}(x, y) \rightarrow \psi_{call} \vee \psi_{return} \vee \psi_{local} \right), \text{ where } \\ \blacktriangleright \psi_{call} = \bigvee_{(q, a, q', \gamma) \in \delta} (X_q(x) \wedge P_a(y) \wedge X_{q'}(y) \wedge P_{\gamma}(y)), \\ \blacktriangleright \psi_{local} = \bigvee_{(q, a, q') \in \delta} (X_q(x) \wedge P_a(y) \wedge X_{q'}(y)), \\ \blacktriangleright \psi_{return} = \bigvee_{(q, a, \gamma, q') \in \delta} (X_q(x) \wedge P_a(y) \wedge X_{q'}(y) \wedge P_{\gamma}(y) \wedge \exists z (\mu(z, y) \wedge P_{\gamma}(z))) \vee \\ \bigvee_{(q, a, \gamma, q') \in \delta} (q(x) \wedge P_a(y) \wedge X_{q'}(y) \wedge P_{\bot}(y) \wedge \neg \exists z (\mu(z, y))) \\ \cdot \bigvee_{(q, a, \gamma, q') \in \delta} (q(x) \wedge P_a(y) \wedge X_{q'}(y) \wedge P_{\bot}(y) \wedge \neg \exists z (\mu(z, y)))$$

Let
$$\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$$
 be a VPA, $Q = \{q_0, \ldots, q_n\}$, $\Gamma = \{\gamma_1, \ldots, \gamma_k\}$.
Define $\varphi := \exists X_{q_0} \ldots X_{q_n} P_{\gamma_1} \ldots P_{\gamma_k} (\varphi_{\textit{unique}} \land \varphi_{\textit{init}} \land \varphi_{\textit{trans}} \land \varphi_{\textit{final}})$ as follows,
 $\blacktriangleright \varphi_{\textit{trans}} = \forall x \forall y \left(\text{suc}(x, y) \rightarrow \psi_{\textit{call}} \lor \psi_{\textit{return}} \lor \psi_{\textit{local}} \right)$, where
 $\blacktriangleright \psi_{\textit{call}} = \bigvee_{(q, a, q', \gamma) \in \delta} (X_q(x) \land P_a(y) \land X_{q'}(y) \land P_{\gamma}(y))$,

$$\psi_{\textit{return}} = \\ \bigvee_{\substack{(q, a, \gamma, q') \in \delta \\ \bigvee \\ (q, a, \perp, q') \in \delta}} (X_q(x) \wedge P_a(y) \wedge X_{q'}(y) \wedge P_{\gamma}(y) \wedge \exists z (\mu(z, y) \wedge P_{\gamma}(z))) \setminus \\ \bigvee_{\substack{(q, a, \perp, q') \in \delta}} (q(x) \wedge P_a(y) \wedge X_{q'}(y) \wedge P_{\perp}(y) \wedge \neg \exists z (\mu(z, y)))$$

From VPA to MSO_μ

Let
$$\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$$
 be a VPA, $Q = \{q_0, \ldots, q_n\}$, $\Gamma = \{\gamma_1, \ldots, \gamma_k\}$.
 Define $\varphi := \exists X_{q_0} \ldots X_{q_n} P_{\gamma_1} \ldots P_{\gamma_k} (\varphi_{unique} \land \varphi_{init} \land \varphi_{trans} \land \varphi_{final})$ as follows,

- $\varphi_{trans} = \forall x \forall y (suc(x, y) \rightarrow \psi_{call} \lor \psi_{return} \lor \psi_{local})$, where
 - $\psi_{call} = \bigvee_{(q,a,q',\gamma) \in \delta} (X_q(x) \wedge P_a(y) \wedge X_{q'}(y) \wedge P_{\gamma}(y)),$
 - $\qquad \qquad \psi_{local} = \bigvee_{(q,a,q') \in \delta} (X_q(x) \wedge P_a(y) \wedge X_{q'}(y)),$
 - $\psi_{\textit{return}} = \\ \bigvee_{\substack{(q, a, \gamma, q') \in \delta \\ \forall (q, a, \perp, q') \in \delta}} (X_q(x) \wedge P_{a}(y) \wedge X_{q'}(y) \wedge P_{\gamma}(y) \wedge \exists z (\mu(z, y) \wedge P_{\gamma}(z))) \vee \\ \downarrow_{\substack{(q, a, \perp, q') \in \delta}} (q(x) \wedge P_{a}(y) \wedge X_{q'}(y) \wedge P_{\perp}(y) \wedge \neg \exists z (\mu(z, y))) }$

Then $\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{A})$ if $q_0 \notin F$ and $\mathcal{L}(\varphi \vee \forall x(\neg \mathrm{first}(x))) = \mathcal{L}(\mathcal{A})$ if $q_0 \in F$.

From MSO_{μ} to VPA.

$$\varphi := \begin{array}{l} X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Singleton}(X) \mid \\ \operatorname{suc}(X,Y) \mid \mu(X,Y) \mid \varphi_{1} \vee \varphi_{2} \mid \neg \varphi_{1} \mid \exists X \varphi_{1} \end{array},$$

Let $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$ and assume that the MSO $_\mu$ formula φ is given in prefix normal form.

From MSO_{μ} to VPA.

$$\varphi := \begin{array}{l} X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Singleton}(X) \mid \\ \operatorname{suc}(X,Y) \mid \mu(X,Y) \mid \varphi_{1} \vee \varphi_{2} \mid \neg \varphi_{1} \mid \exists X \varphi_{1} \end{array},$$

Let $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$ and assume that the MSO $_\mu$ formula φ is given in prefix normal form.

We construct the VPA by structural induction.

From MSO_{μ} to VPA.

$$\varphi := \begin{array}{l} X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Singleton}(X) \mid \\ \operatorname{suc}(X,Y) \mid \mu(X,Y) \mid \varphi_{1} \vee \varphi_{2} \mid \neg \varphi_{1} \mid \exists X \varphi_{1} \end{array},$$

Let $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$ and assume that the MSO_{μ} formula φ is given in prefix normal form.

We construct the VPA by structural induction.

Consider a MSO_{μ} $\phi(X_1,\cdots,X_k)$ with free variables X_1,\cdots,X_k .

From MSO_{μ} to VPA.

$$\varphi := \begin{array}{l} X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Singleton}(X) \mid \\ \operatorname{suc}(X,Y) \mid \mu(X,Y) \mid \varphi_{1} \vee \varphi_{2} \mid \neg \varphi_{1} \mid \exists X \varphi_{1} \end{array},$$

Let $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$ and assume that the MSO_{μ} formula φ is given in prefix normal form.

We construct the VPA by structural induction.

Consider a MSO_{μ} $\phi(X_1, \dots, X_k)$ with free variables X_1, \dots, X_k .

Define, $\widetilde{\Sigma'} = \langle \Sigma'_c, \Sigma'_r, \Sigma'_l \rangle$, where $\Sigma'_s = \Sigma_s \times \{0, 1\}^k$ for $s \in \{c, r, l\}$.

From MSO_{μ} to VPA.

$$\varphi := \begin{array}{l} X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Singleton}(X) \mid \\ \operatorname{suc}(X,Y) \mid \mu(X,Y) \mid \varphi_{1} \vee \varphi_{2} \mid \neg \varphi_{1} \mid \exists X \varphi_{1} \end{array},$$

Let $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$ and assume that the MSO_{μ} formula φ is given in prefix normal form.

We construct the VPA by structural induction.

Consider a $\mathsf{MSO}_{\mu} \ \phi(X_1, \cdots, X_k)$ with free variables X_1, \cdots, X_k .

Define, $\widetilde{\Sigma'} = \langle \Sigma'_c, \Sigma'_r, \Sigma'_l \rangle$, where $\Sigma'_s = \Sigma_s \times \{0, 1\}^k$ for $s \in \{c, r, l\}$.

From MSO_{μ} to VPA.

$$\varphi := \begin{array}{l} X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Singleton}(X) \mid \\ \operatorname{suc}(X,Y) \mid \mu(X,Y) \mid \varphi_{1} \vee \varphi_{2} \mid \neg \varphi_{1} \mid \exists X \varphi_{1} \end{array},$$

Let $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$ and assume that the MSO_{μ} formula φ is given in prefix normal form.

We construct the VPA by structural induction.

Consider a MSO_{μ} $\phi(X_1, \dots, X_k)$ with free variables X_1, \dots, X_k .

Define, $\widetilde{\Sigma'} = \langle \Sigma'_c, \Sigma'_r, \Sigma'_l \rangle$, where $\Sigma'_s = \Sigma_s \times \{0, 1\}^k$ for $s \in \{c, r, l\}$.

A word w' over Σ' encodes a word w over Σ with valuations of all X_i 's.

$$\sigma', \sigma'' \neq \sigma : \begin{array}{c} (\sigma', 0), \downarrow (\sigma', 0) & (\sigma', 0), \uparrow (\sigma'', 0) \\ (\sigma', 0), \uparrow (\sigma, 1) & (\sigma', 0), \uparrow \bot (\sigma', 0), \uparrow (\sigma, 0) \\ (\sigma, 1), \downarrow (\sigma, 1) & (\sigma, 0), \downarrow (\sigma, 0) \end{array}$$

$$X \subseteq P_{\sigma} : \sigma \in \Sigma_{c}$$

$$(\sigma', 0)$$

where $\downarrow =$ push, $\uparrow =$ pop. If push, $\sigma' \in \Sigma_c$; If pop, $\sigma' \in \Sigma_r$; otherwise $\sigma' \in \Sigma_l$; If σ'' in stack, $\sigma'' \in \Sigma_c$.

From MSO_{μ} to VPA.

$$\varphi := \begin{array}{l} X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \mathrm{Singleton}(X) \mid \\ \mathrm{suc}(X,Y) \mid \mu(X,Y) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid \exists X \varphi_1 \end{array},$$

Let $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$ and assume that the MSO_{μ} formula φ is given in prefix normal form.

We construct the VPA by structural induction.

Consider a MSO_{μ} $\phi(X_1, \dots, X_k)$ with free variables X_1, \dots, X_k .

Define, $\widetilde{\Sigma'} = \langle \Sigma'_c, \Sigma'_r, \Sigma'_l \rangle$, where $\Sigma'_s = \Sigma_s \times \{0, 1\}^k$ for $s \in \{c, r, l\}$.

A word w' over Σ' encodes a word w over Σ with valuations of all X_i 's.

$$\sigma', \sigma'' \neq \sigma : \begin{array}{c} (\sigma', 0), \downarrow (\sigma', 0) & (\sigma', 0), \uparrow (\sigma'', 0) \\ (\sigma', 0), \uparrow (\sigma, 1) & (\sigma', 0), \uparrow \bot (\sigma', 0), \uparrow (\sigma, 0) \\ (\sigma, 1), \downarrow (\sigma, 1) & (\sigma, 0), \downarrow (\sigma, 0) \end{array}$$

$$X \subseteq P_{\sigma} : \sigma \in \Sigma_{c}$$

$$(\sigma', 0)$$

where $\downarrow =$ push, $\uparrow =$ pop. If push, $\sigma' \in \Sigma_c$; If pop, $\sigma' \in \Sigma_r$; otherwise $\sigma' \in \Sigma_l$; If σ'' in stack, $\sigma'' \in \Sigma_c$. $P_{\sigma} \subseteq X$ can be handled similarly!

From MSO_{μ} to VPA.

$$\varphi := \begin{array}{l} X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Singleton}(X) \mid \\ \operatorname{suc}(X,Y) \mid \mu(X,Y) \mid \varphi_{1} \vee \varphi_{2} \mid \neg \varphi_{1} \mid \exists X \varphi_{1} \end{array},$$

Let $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$ and assume that the MSO $_\mu$ formula φ is given in prefix normal form.

We construct the VPA by structural induction.

Consider a MSO_{μ} $\phi(X_1, \dots, X_k)$ with free variables X_1, \dots, X_k .

Define, $\widetilde{\Sigma'} = \langle \Sigma'_c, \Sigma'_r, \Sigma'_l \rangle$, where $\Sigma'_s = \Sigma_s \times \{0, 1\}^k$ for $s \in \{c, r, l\}$.

$$(\sigma',0),\downarrow(\sigma',0) \qquad (\sigma',0),\uparrow(\sigma'',0)$$

$$\sigma',\sigma'' \neq \sigma: (\sigma',0),\uparrow\bot \qquad (\sigma,0),\uparrow\bot \qquad (\sigma,1),\uparrow\bot$$

$$(\sigma,1),\uparrow(\sigma',0) \qquad (\sigma,0),\uparrow(\sigma',0)$$

$$X \subseteq P_{\sigma}: \sigma \in \Sigma_{r}$$

$$(\sigma',0)$$

From MSO_{μ} to VPA.

$$\varphi := \begin{array}{l} X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Singleton}(X) \mid \\ \operatorname{suc}(X,Y) \mid \mu(X,Y) \mid \varphi_{1} \vee \varphi_{2} \mid \neg \varphi_{1} \mid \exists X \varphi_{1} \end{array},$$

Let $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$ and assume that the MSO $_\mu$ formula φ is given in prefix normal form.

We construct the VPA by structural induction.

Consider a MSO_{μ} $\phi(X_1, \dots, X_k)$ with free variables X_1, \dots, X_k .

Define, $\widetilde{\Sigma'} = \langle \Sigma'_c, \Sigma'_r, \Sigma'_l \rangle$, where $\Sigma'_s = \Sigma_s \times \{0, 1\}^k$ for $s \in \{c, r, l\}$.

A word w' over Σ' encodes a word w over Σ with valuations of all X_i 's.

$$(\sigma',0),\downarrow(\sigma',0) \qquad (\sigma',0),\uparrow(\sigma'',0)$$

$$\sigma',\sigma''\neq\sigma: (\sigma',0),\uparrow\bot \qquad (\sigma,0),\uparrow\bot \qquad (\sigma,1),\uparrow\bot$$

$$(\sigma,1),\uparrow(\sigma',0) \qquad (\sigma,0),\uparrow(\sigma',0)$$

$$X\subseteq P_{\sigma}:\sigma\in\Sigma_{r}$$

$$(\sigma',0)$$

 $P_{\sigma} \subseteq X$ can be handled similarly!

From MSO_{μ} to VPA.

Let $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$ and assume that the MSO $_\mu$ formula φ is given in prefix normal form.

We construct the VPA by structural induction.

Consider a MSO_{μ} $\phi(X_1, \dots, X_k)$ with free variables X_1, \dots, X_k .

Define, $\Sigma' = \langle \Sigma'_c, \Sigma'_r, \Sigma'_l \rangle$, where $\Sigma'_s = \Sigma_s \times \{0, 1\}^k$ for $s \in \{c, r, l\}$.

$$\varphi := \begin{array}{l} X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Singleton}(X) \mid \\ \operatorname{suc}(X,Y) \mid \mu(X,Y) \mid \varphi_{1} \vee \varphi_{2} \mid \neg \varphi_{1} \mid \exists X \varphi_{1} \end{array},$$

$$\sigma', \sigma'' \neq \sigma : \frac{(\sigma', 0), \downarrow (\sigma', 0) \ (\sigma', 0), \uparrow (\sigma'', 0)}{(\sigma', 0), \uparrow \bot \ (\sigma', 0)}$$

$$X \subseteq P_{\sigma} : \sigma \in \Sigma_{l}$$

$$(\sigma, 0)$$

From MSO_{μ} to VPA.

Let $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$ and assume that the MSO $_\mu$ formula φ is given in prefix normal form.

We construct the VPA by structural induction.

Consider a MSO_{μ} $\phi(X_1, \dots, X_k)$ with free variables X_1, \dots, X_k .

Define, $\Sigma' = \langle \Sigma'_c, \Sigma'_r, \Sigma'_l \rangle$, where $\Sigma'_s = \Sigma_s \times \{0, 1\}^k$ for $s \in \{c, r, l\}$.

A word w' over Σ' encodes a word w over Σ with valuations of all X_i 's.

$$\varphi := \begin{array}{l} X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Singleton}(X) \mid \\ \operatorname{suc}(X,Y) \mid \mu(X,Y) \mid \varphi_{1} \vee \varphi_{2} \mid \neg \varphi_{1} \mid \exists X \varphi_{1} \end{array},$$

$$\sigma', \sigma'' \neq \sigma : \frac{(\sigma', 0), \downarrow (\sigma', 0) \ (\sigma', 0), \uparrow (\sigma'', 0)}{(\sigma', 0), \uparrow \bot \ (\sigma', 0)}$$

$$X \subseteq P_{\sigma} : \sigma \in \Sigma_{l}$$

$$(\sigma, 0)$$

 $P_{\sigma} \subseteq X$ can be handled similarly!

From MSO_{μ} to VPA.

$$\varphi := \begin{array}{l} X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \mathrm{Singleton}(X) \mid \\ \mathrm{suc}(X,Y) \mid \mu(X,Y) \mid \varphi_{1} \vee \varphi_{2} \mid \neg \varphi_{1} \mid \exists X \varphi_{1} \end{array},$$

Let $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$ and assume that the MSO_{μ} formula φ is given in prefix normal form.

We construct the VPA by structural induction.

Consider a MSO_{μ} $\phi(X_1, \dots, X_k)$ with free variables X_1, \dots, X_k .

Define, $\widetilde{\Sigma'} = \langle \Sigma'_c, \Sigma'_r, \Sigma'_l \rangle$, where $\Sigma'_s = \Sigma_s \times \{0, 1\}^k$ for $s \in \{c, r, l\}$.

$$(a, \theta_1, \theta_2), \downarrow (a, \theta_1, \theta_2) : \theta_1 \leq \theta_2$$

$$(a, \theta_1, \theta_2), \uparrow (b, \theta_1', \underline{\theta}') : \theta_1 \leq \theta_2, \theta_1' \leq \theta_2'$$

$$(a, \theta_1, \theta_2), \uparrow \bot : \theta_1 \leq \theta_2$$

$$X \subseteq Y$$

$$(a, \theta_1, \theta_2) : \theta_1 \leq \theta_2$$

From MSO_{μ} to VPA.

$$\varphi := \begin{array}{l} X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Singleton}(X) \mid \\ \operatorname{suc}(X,Y) \mid \mu(X,Y) \mid \varphi_{1} \vee \varphi_{2} \mid \neg \varphi_{1} \mid \exists X \varphi_{1} \end{array},$$

Let $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$ and assume that the MSO $_\mu$ formula φ is given in prefix normal form.

We construct the VPA by structural induction.

Consider a MSO_{μ} $\phi(X_1, \dots, X_k)$ with free variables X_1, \dots, X_k .

Define, $\widetilde{\Sigma'} = \langle \Sigma'_c, \Sigma'_r, \Sigma'_l \rangle$, where $\Sigma'_s = \Sigma_s \times \{0, 1\}^k$ for $s \in \{c, r, l\}$.

From MSO_{μ} to VPA.

$$\varphi := \begin{array}{l} X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \mathrm{Singleton}(X) \mid \\ \mathrm{suc}(X,Y) \mid \mu(X,Y) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid \exists X \varphi_1 \end{array},$$

Let $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$ and assume that the MSO_{μ} formula φ is given in prefix normal form.

We construct the VPA by structural induction.

Consider a MSO_{μ} $\phi(X_1, \dots, X_k)$ with free variables X_1, \dots, X_k .

Define, $\widetilde{\Sigma'} = \langle \Sigma'_c, \Sigma'_r, \Sigma'_l \rangle$, where $\Sigma'_s = \Sigma_s \times \{0, 1\}^k$ for $s \in \{c, r, l\}$.

$$\begin{array}{c} (a,0,0),\downarrow(a,0,0) \\ (a,0,0),\uparrow(b,0,0)/\bot \\ (a,0,0),\uparrow(b,0,0)/\bot \\ (a,0,0) \\ \end{array} \\ \begin{array}{c} (a,0,0),\downarrow(a,0,0) \\ (a,0,0),\uparrow(b,0,0)/(b,1,0)/(b,0,1)/\bot \\ (a,0,0) \\ \end{array} \\ \begin{array}{c} (a,0,0),\downarrow(a,0,0) \\ (a,0,0) \\ \end{array} \\ \begin{array}{c} (a,0,0),\downarrow(a,0,0) \\ (a,0,0) \\ \end{array} \\ \begin{array}{c} (a,0,0),\downarrow(a,0,0)/(b,0,0$$

From MSO_{μ} to VPA.

$$\varphi := \begin{array}{l} X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Singleton}(X) \mid \\ \operatorname{suc}(X,Y) \mid \mu(X,Y) \mid \varphi_{1} \vee \varphi_{2} \mid \neg \varphi_{1} \mid \exists X \varphi_{1} \end{array},$$

Let $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$ and assume that the MSO $_\mu$ formula φ is given in prefix normal form.

We construct the VPA by structural induction.

Consider a MSO_{μ} $\phi(X_1, \dots, X_k)$ with free variables X_1, \dots, X_k .

Define, $\widetilde{\Sigma'} = \langle \Sigma'_c, \Sigma'_r, \Sigma'_l \rangle$, where $\Sigma'_s = \Sigma_s \times \{0, 1\}^k$ for $s \in \{c, r, l\}$.

A word w' over Σ' encodes a word w over Σ with valuations of all X_i 's.

Satisfiability of MSO and MSO $_{\mu}$

 \blacktriangleright A MSO formula ϕ over finite words is satisfiable iff the NFA \mathcal{A}_ϕ is nonempty.

Satisfiability of MSO and MSO $_{\mu}$

- ▶ A MSO formula ϕ over finite words is satisfiable iff the NFA \mathcal{A}_{ϕ} is nonempty.
- ▶ A MSO $_{\mu}$ formula ϕ over visibly pushdown words is satisfiable iff the VPA \mathcal{A}_{ϕ} is nonempty.

Satisfiability of MSO and MSO $_{\mu}$

- ▶ A MSO formula ϕ over finite words is satisfiable iff the NFA \mathcal{A}_{ϕ} is nonempty.
- ▶ A MSO $_{\mu}$ formula ϕ over visibly pushdown words is satisfiable iff the VPA \mathcal{A}_{ϕ} is nonempty.
- ► Upper Bound [Büchi, Elgot, Trakhtenbrot, 1957-8 (independently)]:

 Nonelementary Growth 2..., (tower of height *O*(*n*)), due to complementation
- ► Lower Bound [Stockmeyer, 1974]: Satisfiability of FO over finite words is nonelementary (no bounded height tower).

Outline

Visibly pushdown automata (VPA)

Closure properties

Visibly pushdown grammar (VPG)

Logical characterization

Equivalence of NFA and MSO Equivalence of VPA and MSO

Decision problems

Nonemptiness

Theorem. The nonemptiness of VPA can be solved in $O(n^3)$ time.

A VPA can be transformed into an equivalent VPG in $O(n^3)$ time.

The emptiness of a CFG can be solved in linear time.

Theorem. The language inclusion problem and universality problem of VPA is EXPTIME-complete.

Upper bound.

Given two VPAs A_1 and A_2 ,

- ightharpoonup determinize A_2 into A_2' ,
- ightharpoonup complement \mathcal{A}_2' into \mathcal{B} ,
- ▶ test whether $\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{B}) = \emptyset$.

Theorem. The language inclusion problem and universality problem of VPA is EXPTIME-complete.

Upper bound.

Given two VPAs A_1 and A_2 ,

- ightharpoonup determinize A_2 into A_2' ,
- ightharpoonup complement \mathcal{A}_2' into \mathcal{B} ,
- ▶ test whether $\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{B}) = \emptyset$.

$$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2) \iff \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{B}) = \emptyset$$

$$\mathcal{L}(\mathcal{A}_2) = \widetilde{\Sigma}^* \iff \mathcal{L}(\mathcal{B}) = \emptyset$$

The determinization procedure can be fulfilled in EXPTIME.

Theorem. The language inclusion problem and universality problem of VPA is EXPTIME-complete.

Upper bound.

Given two VPAs A_1 and A_2 ,

- ightharpoonup determinize A_2 into A_2' ,
- ightharpoonup complement \mathcal{A}_2' into \mathcal{B} ,
- ▶ test whether $\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{B}) = \emptyset$.

$$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2) \iff \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{B}) = \emptyset$$

$$\mathcal{L}(\mathcal{A}_2) = \widetilde{\Sigma}^* \iff \mathcal{L}(\mathcal{B}) = \emptyset$$

The determinization procedure can be fulfilled in EXPTIME. To show EXPTIME-hardness, we show that universality of VPA is EXPTIME-hard.

$$\mathcal{L}(\mathcal{A}) = \widetilde{\Sigma}^* \iff \mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$$

where $\mathcal{L}(\mathcal{A}') = \widetilde{\Sigma}^*$

Theorem. The language inclusion of VPA is EXPTIME-complete. *Lower bound*.

The universality of VPA is EXPTIME-hard.

Theorem. The language inclusion of VPA is EXPTIME-complete. *Lower bound*.

The universality of VPA is EXPTIME-hard.

Result from complexity theory: **APSPACE**= EXPTIME.

Theorem. The language inclusion of VPA is EXPTIME-complete. *Lower bound*.

The universality of VPA is EXPTIME-hard.

Result from complexity theory: **APSPACE**= EXPTIME.

An alternating TM (ATM) is a TM $M = (Q_\exists, Q_\forall, \Sigma, \Gamma, \delta, q_0, B, F)$ such that

- ▶ the state set is divided into two disjoint subsets, Q_{\exists} ("existential" state), Q_{\forall} ("universal" state),
- ▶ for every $q \in Q$ and $a \in \Gamma$, $|\delta(q, a)| = 2$.

A run of an ATM M over an input $w \in \Sigma^*$ is a configuration tree s.t.

- the root of the tree is the initial configuration,
- we assume that for every node (configuration) $\alpha q\beta$ in the tree, if $q\in Q_{\exists}$, then
 - $\alpha q \beta$ has one of its successor config. as its unique child in the tree,
- for every node (configuration) $\alpha q\beta$ in the tree, if $q \in Q_{\forall}$, then the two successor config. of $\alpha q\beta$ are both its children in the tree.

APSPACE: The class of languages accepted by ATMs using polynomial space.

Theorem. The language inclusion of VPA is EXPTIME-complete. *Lower bound*.

The universality of VPA is EXPTIME-hard.

Theorem. The language inclusion of VPA is EXPTIME-complete.

Lower bound.

The universality of VPA is EXPTIME-hard.

Reduction from

the membership problem of alternating TMs using polynomial space.

Let $M = (Q_\exists, Q_\forall, \Sigma, \Gamma, \delta, q_0, B, F)$ be an ATM using linear space, say cn.

Theorem. The language inclusion of VPA is EXPTIME-complete. *Lower bound*.

The universality of VPA is EXPTIME-hard.

Reduction from

the membership problem of alternating TMs using polynomial space.

Let $M = (Q_\exists, Q_\forall, \Sigma, \Gamma, \delta, q_0, B, F)$ be an ATM using linear space, say cn.

► We will construct a VPA B that accepts all the non-accepting computation histories of M over an input w, then

$$\mathcal{L}(\mathcal{B}) = \widetilde{\Sigma}^* \iff M \text{ does not accept } w$$

▶ To construct \mathcal{B} , we first construct a deterministic VPA \mathcal{A} that accepts all the accepting computation histories of M over an input w, then complement \mathcal{A}

Theorem. The language inclusion of VPA is EXPTIME-complete.

Lower bound.

The universality of VPA is EXPTIME-hard.

Reduction from

the membership problem of alternating TMs using polynomial space.

Let $M = (Q_{\exists}, Q_{\forall}, \Sigma, \Gamma, \delta, q_0, B, F)$ be an ATM using linear space, say cn.

Theorem. The language inclusion of VPA is EXPTIME-complete.

Lower bound.

The universality of VPA is EXPTIME-hard.

Reduction from

the membership problem of alternating TMs using polynomial space.

Let $M = (Q_{\exists}, Q_{\forall}, \Sigma, \Gamma, \delta, q_0, B, F)$ be an ATM using linear space, say cn.

Let t be an accepting computation history of M over an input w.

Theorem. The language inclusion of VPA is EXPTIME-complete.

Lower bound.

The universality of VPA is EXPTIME-hard.

Reduction from

the membership problem of alternating TMs using polynomial space.

Let $M = (Q_{\exists}, Q_{\forall}, \Sigma, \Gamma, \delta, q_0, B, F)$ be an ATM using linear space, say cn.

Let t be an accepting computation history of M over an input w.

Use C_x 's (where $x \in \{0,1\}^*$) to denote the nodes of t, e.g. the root is C_{ε} , while the left child of the root is C_0 , and so on.

Theorem. The language inclusion of VPA is EXPTIME-complete.

Lower bound.

The universality of VPA is EXPTIME-hard.

Reduction from

the membership problem of alternating TMs using polynomial space.

Let $M = (Q_{\exists}, Q_{\forall}, \Sigma, \Gamma, \delta, q_0, B, F)$ be an ATM using linear space, say cn.

Let t be an accepting computation history of M over an input w.

Use C_x 's (where $x \in \{0,1\}^*$) to denote the nodes of t,

e.g. the root is C_{ε} , while the left child of the root is C_0 , and so on.

Encode t by a word θ which is generated by a DFS traversal of t.

Theorem. The language inclusion of VPA is EXPTIME-complete.

The universality of VPA is EXPTIME-hard.

Initially set $\theta = \varepsilon$.

- 1. The traversal starts from the root C_{ε} .
- 2. When a node C_x is visited for the first time, then $\theta = \theta(fC_x)$,
- 3. When a node C_x is visited again by backtracking from its right-child, then $\theta = \theta(b\overline{C_x})^r$.
- 4. Each leaf is an accepting configuration.

Theorem. The language inclusion of VPA is EXPTIME-complete.

The universality of VPA is EXPTIME-hard.

Initially set $\theta = \varepsilon$.

- 1. The traversal starts from the root C_{ε} .
- 2. When a node C_x is visited for the first time, then $\theta = \theta(fC_x)$,
- 3. When a node C_x is visited again by backtracking from its right-child, then $\theta = \theta(b\overline{C_x})^r$.
- 4. Each leaf is an accepting configuration.

Let
$$\Gamma' = \Gamma \cup Q \cup \overline{\Gamma} \cup \overline{Q} \cup \{f, b\}, \ \widetilde{\Gamma'} = \langle \Gamma \cup Q \cup \{f\}, \overline{\Gamma} \cup \overline{Q} \cup \{b\} \rangle.$$

Theorem. The language inclusion of VPA is EXPTIME-complete.

The universality of VPA is EXPTIME-hard.

Initially set $\theta = \varepsilon$.

- 1. The traversal starts from the root C_{ε} .
- 2. When a node C_x is visited for the first time, then $\theta = \theta(fC_x)$,
- 3. When a node C_x is visited again by backtracking from its right-child, then $\theta = \theta(b\overline{C_x})^r$.
- 4. Each leaf is an accepting configuration.

Let $\Gamma' = \Gamma \cup Q \cup \overline{\Gamma} \cup \overline{Q} \cup \{f, b\}$, $\widetilde{\Gamma'} = \langle \Gamma \cup Q \cup \{f\}, \overline{\Gamma} \cup \overline{Q} \cup \{b\} \rangle$. The format of a successful computation θ , e.g. well-matched call-returns.

Theorem. The language inclusion of VPA is EXPTIME-complete. *Lower bound*.

The universality of VPA is EXPTIME-hard.

The set of unsuccessful computations of M can be accepted by a nondeterministic VPA $\mathcal B$ of polynomial size.

M does not accept w iff $\mathcal{L}(\mathcal{B}) = (\Gamma')^*$.

Equivalence problem

Theorem. The equivalence of VPA is EXPTIME-complete.

Equivalence problem

Theorem. The equivalence of VPA is EXPTIME-complete.

Upper bound.

Invoke two times of inclusion testing.

Equivalence problem

Theorem. The equivalence of VPA is EXPTIME-complete.

Upper bound.

Invoke two times of inclusion testing.

Lower bound.

$$\mathcal{L}(\mathcal{A}) = \widetilde{\Sigma}^* \iff \mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$$
 where $\mathcal{L}(\mathcal{A}') = \widetilde{\Sigma}^*$

Summary

Closure Properties

	Union	Intersection	Complement	Concatenation	Kleene-*
Regular	YES	YES	YES	YES	YES
CFL	YES	NO	NO	YES	YES
DCFL	NO	NO	YES	NO	NO
VPL	YES	YES	YES	YES	YES

Summary

Closure Properties

	Union	Intersection	Complement	Concatenation	Kleene-*
Regular	YES	YES	YES	YES	YES
CFL	YES	NO	NO	YES	YES
DCFL	NO	NO	YES	NO	NO
VPL	YES	YES	YES	YES	YES

Decision problems

	Emptiness	Universality/Equivalence	Inclusion
NFA	NL	PSPACE	PSPACE
PDA	P	Undecidable	Undecidable
DPDA	P	Decidable	Undecidable
VPA	P	EXPTIME	EXPTIME