

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété
Intellectuelle
Bureau international

(43) Date de la publication internationale
25 janvier 2001 (25.01.2001)

PCT

(10) Numéro de publication internationale
WO 01/05422 A2

(51) Classification internationale des brevets⁷: A61K 38/17

(21) Numéro de la demande internationale:

PCT/FR00/02057

(22) Date de dépôt international: 17 juillet 2000 (17.07.2000)

(25) Langue de dépôt:

français

(26) Langue de publication:

français

(30) Données relatives à la priorité:

99/09372 15 juillet 1999 (15.07.1999) FR

(71) Déposant (*pour tous les États désignés sauf US*):
BIOMERIEUX STELHYS [FR/FR]; Chemin de L'Orme, F-69280 Marcy L'Etoile (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (*pour US seulement*): **ROECKLIN, Dominique [FR/FR]**; 14 Rue de la Paix, F-67500 Niederschaeffolsheim (FR). **KOLBE, Hanno [FR/FR]**; 6

Rue des Tuiliers, F-67204 Achenheim (FR). **CHARLES, Marie-Hélène [FR/FR]**; 3 Allée de la Lamperte, F-69420 Condrieu (FR). **MALCUS, Carine [FR/FR]**; 9 Rue des Ronzières, F-69530 Brignais (FR). **SANTORO, Lyse [FR/FR]**; 47 Avenue Bergeron, F-69260 Charbonnières les Bains (FR). **PERRON, Hervé [FR/FR]**; 15 Rue de Boyer, F-69005 Lyon (FR).

(74) Mandataire: **DIDIER, Mireille**; Cabinet Germain et Maureau, Boîte Postale 6153, F-69466 Lyon Cedex 06 (FR).

(81) États désignés (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) États désignés (*régional*): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,

[Suite sur la page suivante]

(54) Title: USE OF A POLYPEPTIDE FOR DETECTING, PREVENTING OR TREATING A PATHOLOGICAL CONDITION ASSOCIATED WITH A DEGENERATIVE, NEUROLOGICAL OR AUTOIMMUNE DISEASE

(54) Titre: UTILISATION D'UN POLYPEPTIQUE POUR DETECTER, PREVENIR OU TRAITER UN ETAT PATHOLOGIQUE ASSOCIE A UNE MALADIE DEGENERATIVE, NEUROLOGIQUE AUTOIMMUNE

(57) Abstract: The invention concerns the use of at least one polypeptide comprising a protein fragment to obtain a diagnostic, prognostic, prophylactic or therapeutic composition for detecting, preventing or treating a pathological condition associated with a degenerative and/or neurological and/or autoimmune disease, said protein being selected among the proteins whereof the peptide sequence in native state corresponds to SEQ ID No 1, SEQ ID No 2, SEQ ID No 3, SEQ ID No 4, SEQ ID No 5, SEQ ID No 6, SEQ ID No 7, SEQ ID No 8, SEQ ID No 9, SEQ ID No 10, SEQ ID No 11, SEQ ID No 12, SEQ ID No 13, SEQ ID No 14, SEQ ID No 15, SEQ ID No 16, SEQ ID No 17, SEQ ID No 18, SEQ ID No 19, SEQ ID No 20, SEQ ID No 21, SEQ ID No 22, SEQ ID No 23, SEQ ID No 24, SEQ ID No 25, SEQ ID No 26, SEQ ID No 27, SEQ ID No 28 and SEQ ID No 29, and the peptide sequences having at least 70 % identity, preferably at least 80 % identity and advantageously at least 98 % identity with any one of the peptide sequences SEQ ID No 1 to SEQ ID No 8 and SEQ ID No 10 to SEQ ID No 29, and the peptide sequences or fragments of said sequences belonging to a common family of proteins selected among perlecan, the precursor of the retinol-binding plasmatic protein, of the precursor of the activator of GM2 ganglioside, of calgranulin B and of saponin B.

WO 01/05422 A2

(57) Abrégé: Utilisation d'au moins un polypeptide comprenant au moins un fragment d'une protéine pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29, et les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à SEQ ID N° 8 et SEQ ID N° 10 à SEQ ID N° 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatische de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saponine B.

MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée:

- *Sans rapport de recherche internationale, sera republiée dès réception de ce rapport.*

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

**UTILISATION DUN POLYPEPTIDE POUR DETECTER, PREVENIR OU
TRAITER UN ETAT PATHOLOGIQUE ASSOCIE A UNE MALADIE
DEGENERATIVE, NEUROLOGIQUE AUTOIMMUNE**

5 La présente invention concerne notamment l'utilisation d'au moins un polypeptide, pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou auto-immune et/ou neurologique.

10 Selon l'invention, on entend par maladie dégénérative, une maladie dans laquelle un processus de mort cellulaire ou de destruction cellulaire est associé à des troubles physiologiques et/ou cliniques. La maladie d'Alzheimer, la sclérose latérale amyotrophique, la maladie de Parkinson sont classées parmi les maladies neurodégénératives. On entend par maladie auto-immune, une hyperréactivité du système immunitaire vis à vis d'un ou de plusieurs auto-antigène(s). La sclérose en plaques (SEP), la polyarthrite rhumatoïde (PR) et le lupus érythémateux sont classés 15 dans les maladies auto-immunes.

20 La sclérose en plaques est une maladie chronique du système nerveux central de l'homme, évoluant par succession de phases de rémission et de poussée ou selon une progression régulière, dont la caractéristique anatomopathologique consiste en la formation de zones de démyélinisation bien délimitées dans la substance blanche du cerveau et de la moelle épinière.

25 Au niveau histologique, ces zones présentent au stade précoce du processus lésionnel, une dégradation de la myéline péri-axonale associée à une atteinte des cellules gliales responsable de cette démyélinisation. Une activation macrophagique inflammatoire impliquant les cellules microgliales (macrophages tissulaires résidants du système nerveux central), ainsi que, probablement, des macrophages provenant de monocytes sanguins infiltrés, est associée à ce processus de démyélinisation et contribue à la destruction des feuillets myélinisés. Au centre de la zone démyélinisée, une déplétion relative en cellules gliales est retrouvée alors qu'une prolifération d'astrocytes se développe à la périphérie et peut envahir la plaque démyélinisée pour générer une plaque fibreuse ou gliotique. Ces structures sclérotiques sont à l'origine du nom donné à la maladie.

Une autre caractéristique de ces plaques est leur association quasi systématique avec un élément vasculaire autour duquel elles se développent.

Au niveau histologique, on observe une altération fréquente de la barrière hémato-encéphalique (BHE) constituée par l'endothélium capillaire. Un des éléments déterminants dans le maintien de la BHE est constitué par la présence sous-jacente d'extensions cytoplasmiques des astrocytes, appelées pieds astrocytaires. Vraisemblablement, les pieds astrocytaires induisent la formation ou permettent le maintien de structures de jonction étanches qui assurent la cohésion de la barrière endothéliale capillaire concrétisant la BHE. Or, différents modèles pathologiques font état de l'altération de la BHE et d'une déplétion des pieds astrocytaires.

Par ailleurs, dans le processus lésionnel de la SEP, l'altération de la BHE contribue à amplifier la réponse inflammatoire associée, par l'afflux de cellules lymphoïdes provenant de la circulation sanguine. La contribution de l'inflammation associée aux cellules immunitaires est importante dans la SEP et participe au processus lésionnel.

L'étiologie de la SEP est source d'un débat d'actualité car la maladie pourrait avoir des origines diverses. Des hypothèses ont été émises sur une origine bactérienne et/ou virale. Par ailleurs, comme décrit dans la demande de brevet WO 95/21859, H. Perron et al. ont été conduits à rechercher un ou des agents effecteurs du processus pathogénique aboutissant à la formation typique de plaques de démyélinisation et à une gliose astrocytaire. Dans le cadre de cette étude, ils ont mis en évidence la présence dans le liquide céphalo-rachidien (LCR) et le sérum de patients SEP d'au moins un facteur qui présente une activité toxique vis à vis des cellules astrocytaires et oligodendrocytaires humaines ou animales. Cette activité toxique se caractérise par une désorganisation cytomorphologique du réseau de filaments intermédiaires et/ou une dégradation des protéines desdits filaments et/ou une mort cellulaires par apoptose des cellules gliales. Ils ont établi une corrélation significative entre la détection *in vitro* de cette activité toxique dans des échantillons de LCR et de sérum de patients SEP et la sclérose en plaques par un dosage colorimétrique quantitatif au bromure de méthyltétrazolium (MTT) des cellules vivantes, comme décrit dans la demande de brevet WO 95/21859. Par ailleurs, C. Malcus-Vocanson *et al.* ont montré que l'urine est un fluide biologique très favorable pour la détection de

l'activité de ce facteur toxique et développé un procédé utilisant la cytométrie de flux pour détecter et/ou quantifier les cellules gliales adhérentes mortes par apoptose. Toutes les informations concernant ce procédé sont décrites dans la demande de brevet WO 98/11439, dont le contenu est incorporé à titre de référence.

5 Des essais ont été réalisés à partir d'une fraction protéique de LCR et d'urine de patients SEP pour tenter d'identifier ce facteur toxique. Le contenu protéique de chaque fraction a été séparé sur gel SDS-PAGE 12 % et observé après coloration du gel à l'argent. Parmi les protéines observées, une fraction protéique centrée sur un poids moléculaire apparent d'environ 21 kD a été trouvée
10 minoritairement associée à l'activité toxique détectée *in vitro* et une fraction centrée sur un poids moléculaire apparent d'environ 17 kD a été trouvée majoritairement associée à cette activité toxique.

15 Une injection de la fraction provenant de LCR de patients SEP dans le cerveau de rat Lewis et une observation histologique post-mortem de coupes de cerveau des rats a permis d'observer, trois mois après l'injection, une apoptose de la population astrocytaire et la formation de plaques de démyélinisation. Toutes les informations sont contenues dans la demande de brevet WO 97/33466, dont le contenu est incorporé à titre de référence. Ces observations sont conformes à celles qui ont pu être faites sur des coupes de cerveau de patients atteints de SEP, après biopsie (N.
20 Benjelloun et al. Cell. Mol. Biol., 1998, 44 (4), 579-583).

Les présents inventeurs ont maintenant identifié et analysé les protéines associées à cette activité toxique vis à vis des cellules gliales dans des échantillons biologiques de patients SEP, en particulier dans l'urine, le liquide céphalo-rachidien et le sérum.

25 Après purification des protéines et séparation sur gel SDS-TRICINE, les inventeurs ont mis en évidence la présence de quatre bandes d'intérêt de différents poids moléculaires apparents, respectivement de 8, 14, 18 et 20 kD correspondant à au moins cinq familles de protéines différentes. Les protéines de ces familles ont ensuite été analysées par spectrométrie de masse et/ou séquençage et recherche d'homologie
30 dans les banques de données (NCBI <http://www.ncbi.nlm.nih.gov>, Basic Blast Search, Protein Blastp, les séquences protéiques sont entrées en format FASTA dans la base de données nr, l'algorithme utilisé est Matrix BLOSUM62, l'identité dénommée

“ Identities ” correspond au nombre d’acides aminés identiques donné en pourcentage et la positivité “ Positives ” correspond aux acides aminés présentant une équivalence biologique selon les paramètres susmentionnés du logiciel donnés en pourcentage). Ces protéines appartiennent aux familles des protéines du Perlecan, du précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l’activateur du ganglioside GM2, de la calgranuline et de la saposine B. Plus précisément, les protéines sont (i) pour la bande de 20 kD le fragment C-terminal du Perlecan qui commence à l’acide aminé 3464 et se termine à l’acide aminé 3707 (Murdoch AD et al. J Biol Chem, 1992, April 25 ;267 (12) :8544-47), et référencé dans l’identificateur de séquences SEQ ID N° 2 (la protéine entière Perlecan étant référencée en SEQ ID N°1), (ii) pour la bande de 20 kD le précurseur de la protéine plasmatique de liaison au rétinol (Monaco HL et al., Science, 1995, 268 (5213) :1039-1041) dont la séquence est donnée en SEQ ID N° 4, (iii) pour la bande de 18 kD le précurseur de l’activateur du ganglioside GM2 (Furst W et al., Euro J Biochem, 1990, Sep 24 ; 193(3) :709-14) identifié en SEQ ID N° 8, (iv) pour la bande de 14 kD la calgranuline B (Lagasse E et al., Mol Cell Biol, 1988, Jun ;8(6) :2402-10) identifiée en SEQ ID N° 17 et (v) pour la bande de 8 kD la saposine B (Kleinschmidt T et al., Biol Chem Hoppe Seyler, 1988, Dec ;369(12) :1361-5) représentée en SEQ ID N° 24. Ils ont par ailleurs mis également en évidence la présence de séquences variantes auxdites séquences de référence, en particulier pour la bande de 18 kD une séquence variante du précurseur de l’activateur du ganglioside GM2 référencée SEQ ID N° 9. Ces séquences protéiques variantes sont le produit de mutations au niveau des gènes codant pour lesdites protéines ou sont le résultats de phénomènes d’épissage. Il est à noter par exemple que la calprotectine est un variant de la calgranuline B.

Le fragment C-terminal de la protéine Perlecan (SEQ ID N° 2) est codée par exemple par la séquence nucléotidique ADN SEQ ID N° 69, en tenant compte du code génétique. La protéine précurseur de la protéine plasmatique de liaison au rétinol (SEQ ID N° 4) est codée par exemple par la séquence nucléotidique ADN SEQ ID N° 70, en tenant compte du code génétique. La protéine activatrice du GM2 (SEQ ID N° 8) est codée par exemple par la séquence nucléotidique ADN SEQ ID N° 31, en tenant compte du code génétique. Les peptides FSWDNCFEGK DPAVIR et YSLPKSEFAV issus du polypeptide muté activateur du GM2 (SEQ ID N°9) sont codés par les

séquences nucléotidiques ADN SEQ ID N° 66 et SEQ ID N° 67 respectivement, en tenant compte du code génétique. La protéine calgranuline B (SEQ ID N° 17) est codée par exemple par la séquence nucléotidique ADN SEQ ID N° 42, en tenant compte du code génétique. La protéine saposine B (SEQ ID N° 24) est codée par exemple par la 5 séquence nucléotidique ADN SEQ ID N° 53, en tenant compte du code génétique.

Par famille de protéines on entend l'ensemble des protéines codées à partir d'un même gène d'ADN et qui résultent d'un multi-épissage différentiel du gène et/ou d'un cadre de lecture différent. Le gène ADN est transcrit avec des phénomènes d'épissage alternatif ce qui conduit à la traduction de différentes séquences primaires 10 de protéines. Toutes ces protéines appartiennent à une même famille protéique. On inclut également dans le terme "famille protéique", les protéines qui présentent au moins 70% d'identité, de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec une séquence protéique de référence de la famille.

On entend par multi-épissage, un épissage intervenant au moins une fois 15 dans la région nucléotidique d'intérêt.

Par exemple, par famille de protéine précurseur de la protéine plasmatique de liaison au rétinol, on désigne la famille de protéines comprenant *au moins* les protéines ou fragment de protéines de séquence SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, et les protéines codées par le gène correspondant selon différents 20 cadres de lecture.

Par exemple, par famille de protéine activatrice du GM2, on désigne la famille de protéines comprenant *au moins* les protéines ou fragments de protéines de séquence SEQ ID N° 8, SEQ ID N° 9, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, et les protéines codées 25 par le gène correspondant selon différents cadres de lecture, qui résultent d'un multi-épissage différentiel du gène et/ou d'un cadre de lecture différent.

Par exemple, par famille de protéine calgranuline B, on désigne la famille de protéines comprenant *au moins* les protéines ou fragments de protéines de séquence SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID 30 N° 22, SEQ ID N° 23, et les protéines codées par le gène correspondant selon différents cadres de lecture, qui résultent d'un multi-épissage différentiel du gène et/ou d'un cadre de lecture différent. Les protéines MRP14 (SEQ ID N° 17) et MRP8 (SEQ ID N°

18) ont une séquence protéique différente tout en étant codées par un même gène ; elles appartiennent à la même famille protéique.

Par exemple, par famille de protéine saposine B, on désigne la famille de protéines comprenant *au moins* les protéines ou fragments de protéines de séquence SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28, SEQ 5 ID N° 29, et les protéines codées par le gène correspondant selon différents cadres de lecture, qui résultent d'un multi-épissage différentiel du gène et/ou d'un cadre de lecture différent.

Par famille d'acides nucléiques codant pour une protéine on entend 10 l'ensemble des séquences nucléiques ADNc et/ou ARN transcrits à partir d'un même gène ADN et, qui résultent d'un multi-épissage différentiel. Le gène ADN est transcrit avec des phénomènes d'épissage différentiels et conduit à la synthèse de différents acides nucléiques (ADNc, ARN) de séquences différentes. Toutes ces séquences ADNc 15 et ARNm sont considérées comme appartenant à une même famille d'acides nucléiques.

Par exemple, par famille d'acides nucléiques codant pour la famille de protéine précurseur de la protéine plasmatique de liaison au rétinol, on désigne la famille d'acides nucléiques comprenant *au moins* les acides nucléiques ou fragments de séquence SEQ ID N° 30.

Par exemple, par famille d'acides nucléiques codant pour la famille de 20 protéine activatrice du GM2, on désigne la famille d'acides nucléiques comprenant *au moins* les acides nucléiques ou fragments de séquences SEQ ID N° 31, SEQ ID N° 32, SEQ ID N° 33, SEQ ID N° 34, SEQ ID N° 35, SEQ ID N° 36, SEQ ID N° 37, SEQ ID N° 38, SEQ ID N° 39, SEQ ID N° 40, SEQ ID N° 41 qui résultent d'un multi-épissage 25 différentiel du gène et/ou d'un cadre de lecture différent.

Par exemple, par famille d'acides nucléiques codant pour la famille de protéine calgranuline B, on désigne la famille d'acides nucléiques comprenant *au moins* les acides nucléiques ou fragments de séquences SEQ ID N° 42, SEQ ID N° 43, SEQ ID N° 44, SEQ ID N° 45, SEQ ID N° 46, SEQ ID N° 47, SEQ ID N° 48, SEQ ID 30 N° 49, SEQ ID N° 50, SEQ ID N° 51, SEQ ID N° 52 qui résultent d'un multi-épissage différentiel du gène et/ou d'un cadre de lecture différent.

Par exemple, par famille d'acides nucléiques codant pour la famille de protéine saposine B, on désigne la famille d'acides nucléiques comprenant *au moins* les acides nucléiques ou fragment de séquences SEQ ID N° 53, SEQ ID N° 54, SEQ ID N° 55 qui résultent d'un multi-épissage différentiel du gène et/ou d'un cadre de lecture différent.

Par « épissage » on entend un mécanisme d'excision des introns et de raboutage des exons au cours de la maturation des transcrits et par “épissage différentiel ” on entend l'existence de plusieurs schémas d'épissage d'un transcript primaire aboutissant à la formation de différents ARN messagers et, pouvant donner lieu à la synthèse de plusieurs protéines différentes (Kaplan et Delpech, Biologie Moléculaire et Médecine, 1993, 2^{ème} édition, Médecine et Sciences, Flammarion, pages 73-77). CE phénomène est largement décrit dans la littérature scientifique. A titre d'exemple, on peut citer le modèle des gènes qui codent pour les chaînes lourdes et légères des immunoglobulines, le modèle du gène de la dystrophine, le modèle du gène de l'alpha amylase, le gène de la myéline, etc...

Il est connu que les gènes eucaryotes, notamment, comprennent des régions (exons) qui codent pour des fragments de la protéine codée par ledit gène et d'autres régions (introns) qui n'ont pas d'équivalent protéique. Ceci est dû au fait que les gènes sont d'abord transcrits en un ARN “ primaire ” qui est ensuite coupé par des enzymes d'épissage au niveau de sites nucléotidiques spécifiques (sites d'épissage). Ces enzymes rabotent ensuite les régions codant pour la protéine, reconstituant ainsi un ARN “ secondaire ” dont les régions introniques ont été éliminées. Par ailleurs, selon les phénotypes cellulaires (et donc les tissus ou la différenciation) ces enzymes ne sont pas toutes exprimées et, ainsi, un même ARN peut être épissé différemment dans les cellules d'un même individu, générant ainsi des protéines avec des différences de séquence. Cependant, ces phénomènes peuvent aussi s'appliquer à des régions nucléotidiques qui sont entièrement codantes (exons), mais qui, selon différents épissages possibles vont générer plusieurs protéines différentes à partir de la même région nucléotidique, par phénomène d'épissage différentiel entre les différents produits protéiques.

De plus, il est connu que des régions nucléotidiques peuvent avoir plusieurs cadres de lecture selon les trois trames potentielles du code génétique. Ainsi,

la présence de plusieurs codons initiateurs de traduction dans plusieurs phases de lecture et/ou un épissage d'ARN primaire raboutant des séquences nucléotiques présentes dans des phases de lectures différentes sur l'ADN, permet à une même région ADN de générer des produits protéiques sans rapports entre eux, du point de vue de la séquence peptidique.

Enfin, le polymorphisme génétique existant entre les individus d'une même espèce et/ou des mutations individuelles peuvent créer ou supprimer des sites d'épissage dans une région ADN donnée et, ainsi, modifier la séquence et la structure du ou des produits protéiques normalement produits par cette région.

Ainsi, la combinaison de ces différents phénomènes peut permettre qu'une même séquence nucléotidique correspondant à un segment d'ADN, identifiée comme déterminant une région génétique d'intérêt dans une étude donnée, comprenne l'information nécessaire et suffisante pour définir toute une famille d'ARN épissés selon des schémas différentiels et alternatifs, dans des cadres de lecture divers et, par là évidemment, de protéines et de polypeptides ayant des séquences "mosaïques" selon un cadre de lecture voire selon les trois cadres potentiels et des mutations éventuellement liées au polymorphisme génétique.

Un exemple de ce phénomène peut être représenté par la région nucléotidique du gène *env* du rétrovirus HIV-1. En effet, plusieurs protéines différentes sont codées par des segments de la même séquence : par exemple, la glycoprotéine d'enveloppe, et les protéines régulatrices TAT, REV, NEF, VIF.

Il est encore connu que des protéines peuvent résulter de l'assemblage de sous-unités identiques (homodimères, homomultimères) ou différentes (hétérodimères, hétéromultimères). Ainsi, les différents produits protéiques codés par une même région ADN peuvent aussi s'assembler entre eux pour constituer des entités protéiques complexes multimériques. Ce phénomène s'ajoute aux précédents et, lorsqu'une protéine est identifiée par un fragment peptidique, on peut logiquement identifier tous les autres éléments constitutifs de cette protéine complexe et les segments ADN et ARN épissé qui les codent, ainsi que tous les membres de la famille de produits protéiques et leurs assemblages.

Un autre exemple est fourni par la région d'ADN humain codant pour la famille de protéines MRP14 ou calgranuline B, MRP8, calprotectine, psoriasine etc...

Aussi, la présente invention a pour objet l'utilisation d'au moins un polypeptide comprenant au moins un fragment d'une protéine pour obtenir une

composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou auto-immune, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID
5 N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29 et les séquences peptidiques qui
10 présentent au moins 70 % d'identité, de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques précitées, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur
15 de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B. Dans des modes de réalisation particuliers au moins deux polypeptides précités sont utilisés en combinaison pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou auto-immune.

20 L'invention concerne également l'utilisation d'au moins un polypeptide comprenant au moins un fragment d'une protéine pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou auto-immune, ladite protéine étant choisie parmi les protéines dont
25 la séquence peptidique à l'état natif correspond à SEQ ID N° 2 , SEQ ID N° 4, SEQ ID N° 8, SEQ ID N° 17 et SEQ ID N° 24 et les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques précitées. Avantageusement les cinq polypeptides qui répondent à la définition précédente sont
30 utilisés en combinaison.

De préférence, la séquence peptidique dudit polypeptide comprend, ou consiste en une séquence choisie parmi l'une quelconque des SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 8, SEQ ID N° 17 et SEQ ID N° 24.

L'invention concerne encore l'utilisation d'au moins un fragment d'un des polypeptidiques précités pour la préparation d'un peptide immunogène, ledit peptide comprenant tout ou partie d'au moins une des séquences référencées SEQ ID N°s 58 à 65 et étant utilisé pour la production d'anticorps monoclonaux.

L'invention a également pour objet, l'utilisation d'au moins un fragment nucléotidique, pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou auto-immune, selon laquelle ledit fragment nucléotidique est choisi parmi des fragments qui codent pour au moins un fragment d'une protéine, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 ET SEQ ID N° 29 et les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques ci dessus, et les fragments complémentaires desdits fragments, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B. Il est à la portée de l'homme du métier de déterminer les séquences nucléiques des fragments nucléotidiques à partir des séquences peptidiques et du code génétique, ceci faisant partie de ses connaissances générales.

De préférence, ledit fragment nucléotidique code pour une protéine qui à l'état natif consiste en une séquence choisie parmi l'une quelconque des SEQ ID N°s 1 à 8 et SEQ ID N°s 10 à 29 précitées, et parmi les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies

parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

Un autre objet de l'invention est l'utilisation d'au moins un fragment nucléotidique pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune selon laquelle ledit fragment est un fragment d'une séquence nucléique choisie parmi l'une quelconque des SEQ ID N° 30, SEQ ID N° 31, SEQ ID N° 32, SEQ ID N° 33, SEQ ID N° 34, SEQ ID N° 35, SEQ ID N° 36, SEQ ID N° 37, SEQ ID N° 38, SEQ ID N° 39, SEQ ID N° 40, SEQ ID N° 41, SEQ ID N° 42, SEQ ID N° 43, SEQ ID N° 44, SEQ ID N° 45, SEQ ID N° 46 et SEQ ID N° 47, SEQ ID N° 48, SEQ ID N° 49 et SEQ ID N° 50, SEQ ID N° 51, SEQ ID N° 52, SEQ ID N° 53, SEQ ID N° 54, SEQ ID N° 55, SEQ ID N° 56, SEQ ID N° 57, SEQ ID N° 67, SEQ ID N° 66, SEQ ID N° 69, SEQ ID N° 70 et SEQ ID N° 71 et leurs séquences complémentaires.

L'invention concerne également l'utilisation d'un ligand spécifique d'un polypeptide ou d'un fragment nucléotidique tel que défini ci dessus pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou auto-immune.

Par ligand, on entend toute molécule susceptible de s'associer au polypeptide, tel que un anticorps monoclonal, un anticorps polyclonal, un récepteur, un substrat d'activité enzymatique, une enzyme dont ledit polypeptide est un cofacteur. La production d'anticorps polyclonaux et monoclonaux fait partie des connaissances générales de l'homme du métier. On peut citer à titre de référence Köhler G. et Milstein C. (1975) : Continuous culture of fused cells secreting antibody of predefined specificity, Nature 256 :495-497 et Galfre G. et al. (1977) Nature, 266 : 522-550 pour la production d'anticorps monoclonaux et Roda A., Bolelli G.F. : Production of high-titer antibody to bile acids, Journal of Steroid Biochemistry, Vol. 13, pp. 449-454 (1980) pour la production d'anticorps polyclonaux.

Par ligand, on entend également toute molécule susceptible de s'associer à un fragment nucléotidique, tel qu'un fragment nucléotidique partiellement ou

5 totalement complémentaire, un polynucléotide complémentaire, un anticorps anti-acides nucléiques. La production de fragments nucléotidiques ou de polynucléotides fait partie des connaissances générales de l'homme du métier. On peut notamment citer l'utilisation d'enzymes de restriction, et la synthèse chimique sur synthétiseur automatique, par exemple sur des synthétiseurs commercialisés par la société Applied Biosystem. Par ailleurs, on connaît des techniques pour la production d'anticorps anti-acides nucléiques. On peut citer à titre d'exemples Philippe Cros et al., Nucleic Acids Researc, 1994, Vol. 22, N°. 15, 2951-2957 ; Anderson, W.F. et al. (1988) Bioessays, 8
10 (2), 69-74 ; Lee, J.S. et al. (1984) FEBS Lett., 168, 303-306 ; Malfoy, B. et al. (1982) Biochemistry, 21(22), 5463-5467 ; Stollar, B.D. et al., J.J. (eds) Methods in Enzymology, Academic Press, pp. 70-85 ; Traincard, F. et al. (1989) J. Immunol. Meth., 123, 83-91 et Traincard, F. et al. (1989) Mol. Cell. Probes, 3, 27-38).

15 L'invention a encore pour objet un procédé pour détecter au moins une protéine associée à une maladie dégénérative et/ou auto-immune, dans un échantillon biologique dans lequel on met en contact l'échantillon biologique avec au moins un ligand spécifique d'au moins un polypeptide, ledit polypeptide comprenant au moins un fragment d'une protéine et ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N°
20 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29 et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à SEQ ID N° 8 et SEQ ID N° 10 à 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B, puis on détecte la formation d'un complexe entre ledit polypeptide et ledit ligand. Ledit ligand
25 est avantageusement un anticorps monoclonal, un anticorps polyclonal, un récepteur,
30

un substrat d'activité enzymatique ou une enzyme dont ledit polypeptide est un cofacteur.

De même, l'invention concerne un procédé pour détecter au moins un ligand associé à une maladie dégénérative et/ou auto-immune, dans un échantillon biologique, caractérisé en ce que l'on met en contact l'échantillon biologique avec au moins un polypeptide comprenant au moins un fragment d'une protéine, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29 et les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à SEQ ID N° 8 et SEQ ID N°s 10 à SEQ ID N° 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B, puis on détecte la formation d'un complexe entre ledit polypeptide et ledit ligand. Le ligand est toute molécule qui répond aux conditions précédemment décrites.

De préférence, dans les procédés décrits ci dessus la séquence du polypeptide comprend ou consiste en une séquence peptidique choisie parmi l'une quelconque des SEQ ID N° 1 à 8 et SEQ ID N° 10 à 29 précédentes et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

L'invention concerne également un nouveau polypeptide qui comprend au moins un fragment d'une protéine dont la séquence peptidique correspond à SEQ ID N° 9, ledit fragment présentant au moins une mutation, en particulier au moins deux mutations par rapport à la séquence de référence SEQ ID N° 8. Le polypeptide est

avantageusement choisi parmi les polypeptides qui comprennent la séquence en acides aminés FSWDNCFEGKDPAVIR, référencée SEQ ID N° 68 et la séquence en acides aminés YSLPKSEFAVPDLELP, référencée SEQ ID N° 72.

En particulier, ledit polypeptide comprend ou consiste en SEQ ID N° 9.
5 Ce polypeptide est utilisé pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou auto-immune, seul ou en mélange avec au moins un polypeptide tel que défini précédemment.

L'un des objets de l'invention est également un fragment nucléotidique qui
10 code pour le fragment de la protéine dont la séquence peptidique correspond à SEQ ID N° 9, ledit fragment de ladite protéine présentant au moins une mutation, en particulier deux mutations par rapport à la séquence de référence SEQ ID N° 8. Ledit fragment nucléotidique, en particulier, comprend ou consiste en un fragment qui code pour SEQ ID N° 9. Ce fragment est utilisé pour obtenir une composition diagnostique,
15 pronostique, prophylactique ou thérapeutique destinée à détecter, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou auto-immune, seul ou en mélange avec au moins un fragment nucléotidique tel que défini précédemment.

L'invention a aussi pour objet un procédé pour détecter au moins un ligand associé à une maladie dégénérative et/ou auto-immune, dans un échantillon biologique, selon lequel on met en contact l'échantillon biologique avec au moins le polypeptide qui comprend ou consiste en SEQ ID N° 9 ou un mélange de polypeptides comprenant ce polypeptide et au moins un polypeptide tel que décrit ci dessus, puis on détecte la formation d'un complexe ou de complexes entre le ou les polypeptides et le ou les ligands correspondants ; étant entendu que par ligand on entend une molécule
25 qui répond aux conditions précitées.

L'invention concerne également un procédé pour détecter au moins le polypeptide référence SEQ ID N° 9 ou un fragment dudit polypeptide, ce fragment comprenant au moins une et de préférence deux mutations par rapport à la séquence de référence SEQ ID N°8, dans un échantillon biologique selon lequel on met en contact l'échantillon biologique avec au moins un ligand spécifique dudit polypeptide, puis on détecte la formation d'un complexe entre ledit polypeptide et ledit ligand. La définition de ligand correspond à celle définie précédemment. Il peut s'agir entre autres d'un

anticorps monogonal , d'un anticorps polyclonal, d'un substrat d'activité enzymatique, ou d'une enzyme dont ledit polypeptide est un cofacteur, d'un récepteur.

On peut également mettre en contact l'échantillon biologique avec un ligand spécifique du polypeptide référence SEQ ID N°9 et au moins un ligand 5 spécifique d'au moins un autre polypeptide tel que défini précédemment, puis on détecte la formation de complexes entre lesdits polypeptides et lesdits ligands spécifiques desdits polypeptides ; étant entendu que par ligand on entend une molécule qui répond aux conditions décrites précédemment.

Un autre objet de l'invention est un fragment nucléotidique codant pour 10 tout ou partie du polypeptide SEQ ID N° 9, et son utilisation pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou auto-immune, éventuellement en association avec au moins un fragment nucléotidique tel que défini précédemment, et les fragments complémentaires 15 desdits fragments.

Par fragment polypeptidique, on entend au moins tout ou partie de la séquence peptidique d'une protéine, en particulier un fragment polypeptidique qui comprend environ entre 5 et 15 acides aminés et plus précisément environ entre 5 et 10 acides aminés et 6 et 15 acides aminés. Et par fragment nucléotidique, on entend au 20 moins tout ou partie d'une séquence nucléotidique, étant entendu que par séquence nucléotidique, sont couvertes les séquences ADN et ARN.

En particulier, par fragment polypeptidique ou nucléotidique, on entend soit des fragments associés à une même unité moléculaire, soit des fragments dans un complexe moléculaire comprenant plusieurs sous-unités homologues ou hétérologues 25 obtenues de manière naturelle ou artificielle, notamment par multi-épissage différentiel ou par synthèse sélective.

L'invention concerne aussi un procédé pour détecter au moins un polypeptide tel que défini précédemment, selon lequel on prélève un échantillon d'un fluide biologique d'un patient présentant un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune et éventuellement après 30 purification dudit échantillon de fluide biologique, on analyse par spectrométrie de

masse le profil de masse obtenu à partir du fluide biologique et on compare à un profil de masse de référence.

La présente invention concerne également l'utilisation *d'au moins* un polypeptide de l'invention pour définir des agents efficaces thérapeutiquement, et
5 l'utilisation de ces agents pour prévenir et/ou traiter une maladie auto-immune et/ou neurologique et/ou dégénérative, en particulier la sclérose en plaques.

Ainsi, d'autres objets de l'invention sont les suivants :

- Utilisation d'au moins un polypeptide comprenant au moins un fragment d'une protéine pour tester l'efficacité d'un agent thérapeutique, ladite protéine étant
10 choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 9, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23,
15 SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29, les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisie parmi le perlecan, le précurseur de la protéine plasmatique de liaison
20 au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B ;

- Utilisation d'au moins un polypeptide comprenant au moins un fragment d'une protéine pour définir un matériel biologique pour la préparation d'une
25 composition pharmaceutique destinée au traitement d'une maladie dégénérative et/ou neurologique et/ou auto-immune, telle que la sclérose en plaques, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 9, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ

5 ID N° 29, les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisie parmi le perlacan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline et de la saposine ;

10 Selon une variante avantageuse de l'une des utilisations précédentes, le polypeptide est choisi parmi SEQ ID N° 2, 4, 8, 9, 17, 24 ;

15 - Utilisation d'au moins un fragment nucléotidique, pour tester l'efficacité d'un agent thérapeutique pour un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, selon laquelle ledit fragment nucléotidique est choisi parmi les fragments qui codent pour au moins un fragment d'une protéine, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 9, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ
20 ID N° 28 et SEQ ID N° 29, les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et les fragments complémentaires desdits fragments et les fragments qui codent pour les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisie parmi le perlcan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

25 - Utilisation pour tester l'efficacité d'un agent thérapeutique pour un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, de protéines recombinantes et/ou codées par tout ou partie des fragments nucléotidiques définis au paragraphe précédent ;

- Utilisation d'au moins un fragment nucléotidique pour la préparation d'une composition pharmaceutique destinée au traitement d'une maladie dégénérative et/ou neurologique et/ou auto-immune, telle que la sclérose en plaques, selon laquelle ledit fragment nucléotidique est choisi parmi des fragments qui codent pour au moins un fragment d'une protéine, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 9, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29, les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et les fragments complémentaires desdits fragments et les fragments qui codent pour les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisie parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B ;

- Utilisation pour la préparation d'une composition pharmaceutique destinée au traitement d'une maladie dégénérative et/ou neurologique et/ou auto-immune, telle que la sclérose en plaques, de protéines recombinantes et/ou codées par tout ou partie des fragments nucléotidiques définis au paragraphe précédent.

Avantageusement, ledit fragment nucléotidique utilisé code pour ladite protéine.

De préférence, la séquence peptidique de ladite protéine à l'état natif consiste en une séquence choisie parmi l'une quelconque des SEQ ID N° 1 à 29, les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du

précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saponine B. Les polypeptides sont préférentiellement choisis parmi SEQ ID N° 2, 4, 8, 9, 17, 24.

- Utilisation d'au moins un fragment nucléotidique, pour tester l'efficacité d'un agent thérapeutique pour un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune selon laquelle ledit fragment est un fragment d'une séquence nucléique choisie parmi l'une quelconque des SEQ ID N° 30, SEQ ID N° 31, SEQ ID N° 32, SEQ ID N° 33, SEQ ID N° 34, SEQ ID N° 35, SEQ ID N° 36, SEQ ID N° 37, SEQ ID N° 38, SEQ ID N° 39, SEQ ID N° 40, SEQ ID N° 41, SEQ ID N° 42, SEQ ID N° 43, SEQ ID N° 44, SEQ ID N° 45, SEQ ID N° 46 et SEQ ID N° 47, SEQ ID N° 48, SEQ ID N° 49 et SEQ ID N° 50, SEQ ID N° 51, SEQ ID N° 52, SEQ ID N° 53, SEQ ID N° 54, SEQ ID N° 55, SEQ ID N° 56, SEQ ID N° 57, SEQ ID N° 66, SEQ ID N° 67, SEQ ID N° 69, SEQ ID N° 70, SEQ ID N° 71, et leurs séquences complémentaires.

- Utilisation d'au moins un fragment nucléotidique pour la préparation d'une composition pharmaceutique destinée au traitement d'une maladie dégénérative et/ou neurologique et/ou auto-immune, telle que la sclérose en plaques selon laquelle ledit fragment est un fragment d'une séquence nucléique choisie parmi l'une quelconque des SEQ ID N° 30, SEQ ID N° 31, SEQ ID N° 32, SEQ ID N° 33, SEQ ID N° 34, SEQ ID N° 35, SEQ ID N° 36, SEQ ID N° 37, SEQ ID N° 38, SEQ ID N° 39, SEQ ID N° 40, SEQ ID N° 41, SEQ ID N° 42, SEQ ID N° 43, SEQ ID N° 44, SEQ ID N° 45, SEQ ID N° 46 et SEQ ID N° 47, SEQ ID N° 48, SEQ ID N° 49 et SEQ ID N° 50, SEQ ID N° 51, SEQ ID N° 52, SEQ ID N° 53, SEQ ID N° 54, SEQ ID N° 55, SEQ ID N° 56, SEQ ID N° 57, SEQ ID N° 66, SEQ ID N° 67, SEQ ID N° 68, SEQ ID N° 69, SEQ ID N° 70, SEQ ID N° 71, et leurs séquences complémentaires.

La séquence nucléique est de préférence choisie parmi SEQ ID N° 30, 31, 42, 53.

- Utilisation de la lycorine pour la préparation d'une composition pour la prévention et/ou le traitement de maladie dégénérative et/ou neurologique et/ou auto-immune.

Par efficacité thérapeutique, on entend le bénéfice clinique et biologique acquis après administration d'un agent thérapeutique en vue d'une amélioration, voire

d'une guérison de la maladie. Ce bénéfice se traduit entre autre par une diminution des signes cliniques, biologiques, et des effets pathologiques de la maladie après une analyse clinique par le médecin et/ou des analyses biologiques, telles que imagerie par résonance magnétique, analyse des bandes oligoclonales dans le liquide céphalo-rachidien, analyse de potentiels évoqués et le test de détection de gliotoxicité appelé bio-essai, dont le principe est décrit dans la demande de brevet WO 98/11439 précédemment citée. Cette diminution des signes cliniques et effets pathologiques doit entraîner un bénéfice pour le patient (Schwartz et Lazar, 1995, Elements de statistique médicale et biologique, eds Flammarion ; Lazar et Schwartz, 1995, Eléments de statistique médicale et biologique, eds Flammarion). La maladie étudiée de préférence est la sclérose en plaques.

On entend par composition à usage prophylactique et/ou thérapeutique, toute composition qui comprend un agent thérapeutiquement efficace. Ces agents thérapeutiques sont capables (i) d'influencer de manière qualitative et/ou quantitative l'activité biologique et/ou la fonction des protéines d'intérêt identifiées dans la présente invention, de préférence l'activité gliotoxique et/ou (ii) de moduler et/ou d'inhiber l'expression de ces protéines et/ou (iii) de diminuer la concentration de ces protéines dans un compartiment extracellulaire et/ou intracellulaire, et/ou de substituer une forme non pathogène à une forme pathogène, par exemple mutée, d'une de ces protéines et/ou de moduler leur fixation à au moins un de leur ligand ; ledit ligand étant une molécule qui répond aux critères précédemment décrits. Différents agents thérapeutiques sont produits en suivant les approches classiques largement décrites dans la littérature. Les différents groupes d'agents thérapeutiques définis à partir des protéines d'intérêt identifiées dans cette présente invention sont décrits ci-dessous. Leur activité ou efficacité prophylactique et/ou thérapeutique est évaluée *in vitro* et/ou *in vivo*.

Evaluation de l'efficacité d'un agent thérapeutique *in vitro* : des échantillons d'urine d'individus sains et de patients atteints de la sclérose en plaque, de préférence en phase active, sont testés pour leur activité gliotoxique *in vitro* en suivant le protocole du bio-essai décrit dans la demande de brevet WO 98/11439, précédemment citée. L'expérience est réalisée en parallèle en ajoutant ou non dans les échantillons d'urine testés l'agent thérapeutique dont l'efficacité est à tester. Des essais sont réalisés à différentes concentrations de cet agent, et après différents temps

d'incubation avec l'échantillon, à une température d'environ 37°C ou à température ambiante, pour chaque concentration d'agent testé, avant la réalisation du test bio-essai. L'activité gliotoxique est déterminée pour chaque échantillon brut ou purifié d'urine témoin et de patient en présence ou en absence de l'agent thérapeutique testé. Un agent prophylactique et/ou thérapeutique pour la sclérose en plaques est un agent qui permet une diminution ou une inhibition de l'activité gliotoxique dans un fluide biologique des patients, en particulier dans l'urine. Cette diminution ou inhibition est évaluée par rapport à l'activité gliotoxique détectée dans le fluide biologique des patients SEP en absence de l'agent testé qui fixe la borne supérieure et par rapport à l'activité gliotoxique détectée dans l'urine d'individu sain qui détermine la borne inférieure (Schwartz et Lazar, 1995, Elements de statistique médicale et biologique, eds Flammarion ; Lazar et Schwartz, 1995, Elements de statistique médicale et biologique, eds Flammarion). L'efficacité thérapeutique de plusieurs agents peuvent être évaluée en combinaison dans un même essai.

Evaluation de l'efficacité d'un agent thérapeutique utilisant un modèle animal : à un animal sont injectées des fractions d'urine purifiée et/ou au moins un polypeptide de l'invention et/ou au moins une protéine obtenue par recombinaison génétique qui correspond à au moins un polypeptide de l'invention et/ou au moins un polypeptide de synthèse dont la séquence en acides aminés correspond à la séquence d'au moins un polypeptide de l'invention. Les injections sont effectuées, à différentes concentrations établies, à des animaux mammifères, tels que souris ou rat, de préférence un rat Lewis selon le protocole décrit dans la demande de brevet WO97/33466 citée précédemment. A des séries d'animaux sont injectées, par voie intradermique, intraveineuse, intrathécale, intracérébrale, intramusculaire, ou autres, différentes concentrations d'une fraction d'urine brute ou purifiée ou d'au moins un polypeptide et/ou une protéine, tels que définis ci-dessus. Un contrôle négatif est effectué en parallèle. L'agent prophylactique et/ou thérapeutique à évaluer et ensuite injecté à différentes concentrations et par différentes voies d'administration à un animal mammifère, de préférence à une souris ou à un rat. Les injections sont réalisées en une seule dose ou en doses répétées, avec différents temps d'intervalle entre chaque administration. Quelques heures à quelques semaines après l'administration, des

échantillons biologiques, de préférence du sang, du sérum, du liquide céphalo-rachidien, de l'urine sont prélevés. Sur ces échantillons sont réalisés :

(i) une mesure de l'activité gliotoxique par le bio-essai, et/ou

(ii) une mesure d'activité des polypeptides et/ou protéines d'intérêt de l'invention,

5 seuls ou en combinaison comme décrit au moins dans : Li et al., 1983, Am J Hum Genet 35 :629-634 ; Li et al., 1988 J Biol Chem 263 : 6588-6591 ; Li et al., 1981 J Biol Chem 256 : 6234-6240 ;Li et al., 1976 J Biol Chem 251 :1159 ; Kase et al., 1996, FebsLetters 393 : 74-76 ; Kishimoto et al., 1992, J Lipid Res 33 : 1255-1267 ; O'Brien et al., 1991 Faseb J 5 : 301-308 ; Murthy et al.,1993 J Immunol 151 : 6291-6301 ;
10 Murao et al., 1990 Cell growth Differ 1 : 447-454, et/ou

(iii) un dosage des polypeptides et/ou protéines d'intérêt, seuls ou en combinaison, par ELISA (Enzyme Linked-Immunosorbant Assay) et/ou Western Blot, en utilisant des anticorps ou des fragments d'anticorps capables de se fixer à au moins un des polypeptides et/ou protéines de l'invention, ou leur fragment, et/ou

15 iv) un dosage d'anticorps spécifiques des polypeptides et/ou protéines d'intérêt ou leurs fragments, seuls ou en combinaison ou le dosage d'au moins un ligand capable de se fixer aux polypeptides et/ou protéines d'intérêt ou leurs fragments, et/ou

(v) un dosage de la réponse immune cellulaire « helper » et/ou cytotoxique induite contre les polypeptides et protéines d'intérêt ou leurs fragments et tout peptide immunogène dérivant de ces polypeptides, protéines et fragments, en réalisant, par exemple, un test d'activation *in vitro* de cellules lymphocytes T “ helper ” spécifiques de l'antigène administré ; en quantifiant les lymphocytes T cytotoxiques selon la technique dite ELISPOT décrite par Scheibenbogen et al.,1997 Clinical Cancer Research 3 : 221-226. Une telle détermination est particulièrement avantageuse lorsque
20 l'on veut évaluer l'efficacité d'une approche vaccinale pour la mise en œuvre chez un patient donné ou pour diagnostiquer et/ou pronostiquer un état pathologique potentiel en cherchant à mettre en évidence une réponse immune naturellement développée par le patient contre l'antigène, les polypeptides, les protéines d'intérêt ou les fragments immunogènes dérivés de ces protéines.
25

30 Par « ligand capable de se fixer à une protéine », on entend toute molécule capable de reconnaître la protéine ou une partie de la protéine. Cela peut être vérifié par exemple *in vitro* par tests Elisa et/ou Western blot .

On désigne par « polypeptides et/ou protéines d'intérêt de l'invention » le fragment C-terminal du perlecan (SEQ ID N°2), le précurseur de la protéine plasmatique de liaison au rétinol (SEQ ID N°4), la protéine activateur du GM2 (SEQ ID N° 8), la protéine mutée de l'activateur du GM2 (SEQ ID N° 9), la calgranuline B (SEQ ID N° 17), la saposine B (SEQ ID N° 24), les protéines ou fragments appartenant à la famille du précurseur de la protéine plasmatique de liaison au rétinol (par exemple SEQ ID N° 5 à 7), les protéines ou fragments appartenant à la famille de la protéine activateur du GM2 (par exemple SEQ ID N° 10 à 16), les protéines ou fragments appartenant à la famille de la protéine calgranuline B (par exemple SEQ ID N° 18 à 23), les protéines ou fragments appartenant à la famille de la protéine saposine B (par exemple SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29.

L'animal est ensuite sacrifié et des coupes histologiques de différents tissus sont réalisées, de préférence des coupes de cerveaux. Différentes études et observations sont réalisées pour détecter et/ou quantifier les effets caractéristiques des polypeptides et/ou protéines actives associées à la fraction gliotoxique, c'est à dire une apoptose des cellules gliales, et/ou l'ouverture de la barrière hémato-encéphalique, et/ou une démyélinisation. La présence ou l'expression des polypeptides et/ou protéines d'intérêt identifiées est également observée et/ou quantifiée dans ces tissus :

- (i) par des analyses d'immunohistologie classiques en utilisant des ligands des polypeptides et/ou protéines d'intérêt et/ou leurs fragments et/ou des anticorps monoclonaux ou polyclonaux ou des fragments desdits qui se lient aux polypeptides et/ou protéines d'intérêt, ou à leurs fragments, et/ou
- (ii) par des techniques d'hybridation *in situ* classiques en utilisant des fragments d'acides nucléiques ou des oligonucléotides définis à partir des séquences polypeptidiques et/ou protéiques d'intérêt ; et/ou
- (iii) par des techniques d'amplification par PCR et/ou RT-PCR *in situ* en utilisant des fragments d'acides nucléiques ou des amorces définis à partir des séquences polypeptidiques et/ou protéiques d'intérêt.

Par anticorps capable de se fixer à un polypeptide, à une protéine ou à leurs fragments, on entend tout anticorps monoclonal ou polyclonal et tout fragment

desdits anticorps capable de reconnaître le polypeptide, la protéine ou leurs fragments. La capacité des anticorps à reconnaître lesdits polypeptides, protéines ou leurs fragments est vérifiée *in vitro*, par exemple en ELISA et/ou Western Blot. Un anticorps capable de se fixer à la protéine saposine B (SEQ ID N° 24) ou à tout fragment de cette protéine est décrit par Misasi *et al.* 1998, J. NeuroChem. 71 : 2313 et Klein *et al.* 1994, BBRC 200 : 1440-1448 ou peut être produit en utilisant les méthodes conventionnelles, par exemple celles référencées précédemment pour la production d'anticorps monoclonaux et polyclonaux, par immunisation à partir de la protéine naturelle, d'une protéine recombinante, d'un polypeptide de synthèse ou de leurs fragments. Les peptides immunogènes pour la production d'anticorps monoclonaux anti-saposine B sont les peptides correspondant aux séquences SEQ ID N° 61 et SEQ ID N° 62.

Par exemple, un anticorps capable de se fixer à la protéine activatrice du GM2 (SEQ ID N° 8) ou à tout fragment de cette protéine est illustré par Yuziuk *et al.*, 1998 J Biol Chem 273 : 66-72 ou peut être produit en utilisant les méthodes conventionnelles connues de l'homme de l'art. Cet anticorps peut être par exemple produit après injection à des souris ou lapin de la protéine naturelle ou tout fragment, et/ou de la protéine recombinante ou tout fragment, et/ou de peptides définis et synthétisés à partir de la séquence protéique de la protéine. Les peptides immunogènes utilisés pour la production d'anticorps monoclonaux anti-GM2 sont les peptides références SEQ ID N° 58, SEQ ID N° 59 et SEQ ID N° 60. Un anticorps capable de se fixer à la protéine Galgranuline B (SEQ ID N° 17) ou à tout fragment de cette protéine est décrit par Saintigny *et al.*, 1992 J Invest Dermatol 99 : 639-644 et Goebeler *et al.* 1994 J Leukoc Biol 55 : 259-261, ou peut être produit en utilisant les méthodes conventionnelles. Les peptides immunogènes pour la production d'anticorps monoclonaux anti-calgranuline B sont les peptides correspondant aux séquences SEQ ID N° 63, SEQ ID N° 64 et SEQ ID N° 65. Un anticorps capable de se fixer à la protéine mutée activatrice du GM2 (SEQ ID N° 9) ou à tout fragment de cette protéine peut être produit en utilisant les méthodes conventionnelles définies ci dessus.

Par protéine naturelle et fragment, on entend toute protéine isolée, purifiée totalement ou partiellement obtenue à partir d'échantillon humain ou animal et tout fragment obtenu à partir de cette protéine. Par exemple, on obtient la protéine naturelle

correspondant à la saposine B (SEQ ID N° 24) en suivant la technique décrite par Waring et al. 1998 Mol Genet Metab 63 : 14-25 ; la protéine naturelle correspondant à la protéine activatrice du GM2 (SEQ ID N° 8) en suivant la technique décrite par DeGasperi et al., 1989 Biochem J 260 : 777-783, Vogel et al., 1987 Arch Biochem Biophys 259 : 627-638, Mitsuyama, 1983 Hokkaido Igaku Zasshi 58 : 502-512 ; Hirabayashi et al 1983 J Neurochem 40 : 168-175, Conzelmann et al, 1979 Hoppe Seylers Z Physiol Chem 360 : 1837-1849, Li et al., 1976 J Biol Chem 251 : 1159-1163. La protéine naturelle correspondant à la calgranuline B (SEQ ID N° 17) est obtenue en suivant la technique décrite par Hitomi et al. 1996 J Cell Sci 109 : 805-815, Van den Bos et al. 1998 Protein Expr Purif 13 : 313-318 et Raftery et al. 1996 Biochem J 316 : 285-293.

Par protéine recombinante ou fragment d'une protéine recombinante, on fait référence à toute protéine ou fragment de protéine produit dans une cellule procaryote ou eucaryote à partir d'une séquence nucléotidique codant pour la protéine ou son fragment et transfectée dans la cellule, cette protéine ou son fragment étant ensuite purifiée. D'une manière générale, toute cellule issue d'un organisme procaryote ou eucaryote peut être utilisée dans le cadre de la présente invention, mais les cellules issues d'organismes eucaryotes sont préférées. On peut citer à titre d'exemple les cellules CHO, les cellules COS, les cellules Semliki. Aux fins de la présente invention, ladite cellule peut être sauvage ou mutante. Par exemple, la protéine recombinante correspondant à la saposine B (SEQ ID N° 24) peut être obtenue en suivant les techniques décrites par Zaltash et al. 1998 Bebbs letter 423 : 1-4 et Qi et al. 1994 J Biol Chem 269 : 16746-16753. Une telle protéine recombinante est au moins disponible auprès de Kase et al. 1996 Febs Lett 393 : 74-76. La protéine recombinante correspondant à la protéine activatrice du GM2 (SEQ ID N° 8) peut être produite par les techniques décrites par Yuziuk et al. 1998 J Biol Chem 273 : 66-72 et Bierfreund et al., 1999 Neurochem Res 24 : 295-300. La protéine recombinante correspondant à la calgranuline B (SEQ ID N° 17) peut être obtenue selon le protocole de Longbottom et al. 1992 Biochim Biophys Acta 1120 : 215-222, Raftery et al. 1999 Protein Expr Purif 15 : 228-235. Une telle protéine recombinante est disponible au moins auprès de Klemp et al. 1997 Febs Letter 408 : 81-84.

Par séquence nucléotidique d'ADN ou fragment nucléotidique d'ADN codant pour tout ou partie de la protéine saposine B (SEQ ID N°24), on entend la séquence d'acides nucléiques SEQ ID N° 53 ou un fragment de cette séquence. Par 5 séquence ou fragment nucléotidique ARN codant pour tout ou partie de la protéine saposine B (SEQ ID N° 24), on entend toute séquence déduite de la séquence d'ADN SEQ ID N° 53, en tenant compte du code génétique et des phénomènes d'épissage.

Par séquence nucléotidique d'ADN ou fragment nucléotidique d'ADN codant pour tout ou partie de la protéine activatrice du GM2 (SEQ ID N° 8), on entend la séquence d'acides nucléiques SEQ ID N° 31 ou un fragment de cette séquence. Par 10 séquence ou fragment nucléotidique d'ARN codant pour tout ou partie de la protéine activatrice du GM2 (SEQ ID N° 8), on entend toute séquence déduite de la séquence ADN SEQ ID N° 31, en tenant compte du code génétique et des phénomènes d'épissage.

Par séquence nucléotidique d'ADN ou fragment nucléotidique d'ADN 15 codant pour tout ou partie de la protéine calgranuline B (SEQ ID N° 17), on entend la séquence d'acides nucléiques SEQ ID N° 42 ou un fragment de cette séquence. Par séquence ou fragment nucléotidique d'ARN codant pour tout ou partie de la protéine calgranuline B (SEQ ID N° 17), on entend toute séquence déduite de la séquence ADN SEQ ID N° 42, en tenant compte du code génétique et des phénomènes d'épissage.

Par séquence ou fragment nucléotidique codant pour tout ou partie de la protéine mutée (SEQ ID N° 9), on entend la séquence d'acides nucléiques déduite de la 20 séquence SEQ ID N° 9, en tenant compte du code génétique. Par séquence ou fragment nucléotidique ARN codant pour tout ou partie de cette protéine mutée B (SEQ ID N° 9), on entend toute séquence déduite de la séquence ADN, en tenant compte du code génétique et des phénomènes d'épissage.

Par activité protéique, on entend une fonction caractéristique biologique 25 de la protéine. Cette activité protéique peut être mise en évidence par des techniques connues de l'homme de l'art. Par exemple, l'activité de la saposine B (SEQ ID N° 24) et des protéines de la famille de la saposine B (par exemple SEQ ID N° 25 à 29), peut être détectée par la mise en œuvre des protocoles décrits par Li et al., 1983, Am J Hum Genet 35 :629-634.; Li et al., 1988 J Biol Chem 263 : 6588-6591, Li et al., 1981 J Biol Chem 256 : 6234-6240 et Li et al., 1976 J Biol Chem 251 :1159. Par activité de la

protéine activatrice du GM2 (SEQ ID N° 8) et des protéines de la même famille (par exemple SEQ ID N° 10 à 16), on entend au moins l'activité détectée par la mise en œuvre des protocoles décrits par exemple par Kase et al., 1996, Febs Letters 393 : 74-76, Kishimoto et al., 1992, J Lipid Res 33 : 1255-1267 et O'Brien et al., 1991 Faseb J 5 : 301-308. Par activité de la calgranuline B (SEQ ID N° 17) et les protéines de la même famille de la calgranuline b (par exemple SEQ ID N° 18à 23) et toute, on entend au moins l'activité détectée par la mise en œuvre des protocoles décrits par exemple par Murthy et al.,1993 J Immunol 151 : 6291-6301 et Murao et al., 1990 Cell growth Differ 1 : 447-454.

10 L'obtention d'un modèle animal transgénique, de préférence murin, pour une pathologie humaine est techniquement réalisable. Brièvement, l'animal transgénique est produit en utilisant les techniques conventionnelles décrites et possède intégré dans son génome les acides nucléiques codant pour les protéines ou leurs fragments.

15 Evaluation de l'efficacité d'un agent thérapeutique et suivi thérapeutique *ex vivo*, chez l'homme :

les agents thérapeutiques à tester pour une activité thérapeutique et/ou pour un suivi thérapeutique sont administrés par différentes voies à l'homme, telles que les voies intradermique, intraveineuse, intramusculaire, intracérébrale, orale, ou autres.
20 Différentes doses sont administrées à l'être humain. Le dossier clinique du patient au moment de la première administration est parfaitement connu. Une ou plusieurs administrations peuvent être réalisées avec des temps d'intervalle différents entre chaque administration pouvant aller de quelques jours à quelques années. Des échantillons biologiques sont prélevés à des intervalles de temps déterminés après administration de l'agent thérapeutique, de préférence du sang, du sérum, du liquide céphalo-rachidien et de l'urine. Différentes analyses sont réalisées à partir de ces échantillons. Juste avant la première administration de l'agent thérapeutique, ces prélèvements et ces mêmes analyses sont également réalisés. Un examen clinique et biologique classique (IRM, bandes oligoclonales dans le liquide céphalo-rachidien, 25 potentiels évoqués) est réalisé également en parallèle des analyses supplémentaires qui sont être décrites ci dessous, à différentes temps de l'analyse. Les analyses réalisées sont :

(i) une mesure de l'activité gliotoxique par le bio-essai à partir d'échantillons de sérum, de LCR et d'urine, et/ou

5 (ii) une mesure d'activité des protéines d'intérêt identifiées dans la présente invention seules ou en combinaison comme décrit par exemple par : Li et al., 1983, Am J Hum Genet 35 :629-634 ; Li et al., 1988 J Biol Chem 263 : 6588-6591 ; Li et al., 1981 J Biol Chem 256 : 6234-6240 ;Li et al., 1976 J Biol Chem 251 :1159 ; Kase et al., 1996, FebsLetters 393 : 74-76 ; Kishimoto et al., 1992, J Lipid Res 33 : 1255-1267 ; O'Brien et al., 1991 Faseb J 5 : 301-308 ; Murthy et al.,1993 J Immunol 151 : 6291-6301 ; Murao et al., 1990 Cell growth Differ 1 : 447-454, et/ou

10 (iii) un dosage des protéines d'intérêt ou de leurs fragments, seuls ou en combinaison, dans les échantillons de sang/sérum, LCR, urine par ELISA et/ou Western Blot, en utilisant des anticorps ou des fragments d'anticorps capables de se fixer à au moins une des protéines ou à un de leur fragment, et/ou

15 (iv) un dosage d'anticorps spécifiques des protéines d'intérêt ou de leurs fragments dans des échantillons de sang/sérum, LCR, urine, par ELISA et/ou Western blot en utilisant une protéine naturelle ou un fragment de la protéine naturelle et/ou une protéine recombinante ou un fragment de cette protéine recombinante, seuls ou en combinaison. De même un dosage de ligands capables de se fixer aux protéines d'intérêt identifiées, seules ou en combinaison, peut être réalisé, et/ou

(v) un dosage de la réponse immune cellulaire « helper » et/ou cytotoxique induite contre les protéines d'intérêt et tout peptide immunogène dérivant de ces protéines, par exemple en réalisant un test d'activation *in vitro* de cellules lymphocytes T spécifiques de l'antigène administré (exemple). Par exemple en réalisant un test d'activation *in vitro* de cellules lymphocytes T helper spécifiques de l'antigène administré (exemple) ; Par exemple en quantifiant les lymphocytes T cytotoxiques selon la technique dite ELISPOT décrite par Scheibenbogen et al.,1997 Clinical Cancer Research 3 : 221-226. Une telle détermination est particulièrement avantageuse lorsque l'on souhaite évaluer l'efficacité d'une approche vaccinale mise en œuvre chez un patient donné ou pour diagnostiquer un état pathologique potentiel chez un patient en cherchant à mettre en évidence une réponse immune naturellement développée par ledit patient contre l'antigène les protéines d'intérêt ou tout fragment immunogène dérivés de ces protéines, seuls ou en combinaison, et/ou

20 25 30 (vi) une détection de fragments d'ADN et/ou d'ARN codant pour les protéines ou un fragment des protéines d'intérêt par hybridation nucléotidique selon les techniques bien

connues de l'homme de l'art (Southern blot, Northern blot, ELOSA "Enzyme-Linked Oligosorbent Assay" (Katz JB et al., Am. J. Vet. Res., 1993 Dec ; 54 (12) :2021-6 et François Mallet et al., Journal of Clinical Microbiology, June 1993, p1444-1449)) et/ou par méthode d'amplification de l'ADN et/ou l'ARN, par exemple par PCR, RT-PCR, 5 en utilisant des fragments d'acides nucléiques codant pour la séquence des protéines d'intérêt, et/ou
(vii) par biopsie de tissus, de préférence du cerveau, et l'observation des effets caractéristiques des protéines actives associées à la fraction gliotoxique, c'est à dire une apoptose des cellules gliales et/ou l'ouverture de la barrière hémato-encéphalique 10 et/ou l'observation de phénomènes de démyélinisation, et/ou
(viii) par biopsie de tissus ou sur cellules circulantes (sang, LCR), l'observation de la présence des protéines d'intérêt et l'estimation de leur expression par observation immunohistologique sur des coupes histologiques réalisées à partir des tissus, en utilisant des ligands et/ou des anticorps ou leurs fragments capables de se fixer aux 15 protéines d'intérêt, et/ou
(ix) par biopsie de tissus ou sur cellules circulantes (sang, LCR), l'observation de l'expression des protéines d'intérêt par hybridation in situ des molécules d'ARN codant pour les protéines d'intérêt en utilisant des acides nucléiques définis à partir des séquences des protéines d'intérêt, et/ou
20 (x) par biopsie de tissus ou sur cellules circulantes (sang, LCR), la détermination de l'expression des protéines d'intérêt par amplification de ces ARN par des techniques classiques, comme par exemple, la RT-PCR, en utilisant des acides nucléiques définis à partir des séquences des protéines d'intérêt.

On désigne par « polypeptides et/ou protéines d'intérêt de l'invention » le 25 fragment C-terminal du perlecan (SEQ ID N°2), le précurseur de la protéine plasmatique de liaison au rétinol (SEQ ID N°4), la protéine activateur du GM2 (SEQ ID N° 8), la protéine mutée de l'activateur du GM2 (SEQ ID N° 9), la calgranuline B (SEQ ID N° 17), la saposine B (SEQ ID N° 24), les protéines ou fragments appartenant à la famille du précurseur de la protéine plasmatique de liaison au rétinol (par exemple SEQ ID N° 5 à 7), les protéines ou fragments appartenant à la famille de la protéine activateur du GM2 (par exemple SEQ ID N° 10 à 16), les protéines ou fragments appartenant à la famille de la protéine calgranuline B (par exemple SEQ ID N° 18 à 30 30 à 32).

23), les protéines ou fragments appartenant à la famille de la protéine saposine B (par exemple SEQ ID N° 25 à 29), et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29.

5 On désigne par séquence d'acides nucléiques ADN ou fragments codant pour les 'polypeptides et/ou protéines d'intérêt de l'invention' la séquence d'acides nucléiques codant pour le fragment C-terminal du perlecan (SEQ ID N°2), la séquence d'acides nucléiques codant pour le précurseur de la protéine plasmatique de liaison au rétinol (SEQ ID N°4), la séquence d'acides nucléiques (SEQ ID N° 31) codant pour la 10 protéine activateur du GM2 (SEQ ID N° 8), la séquence d'acides nucléiques codant pour la protéine mutée de l'activateur du GM2 (SEQ ID N° 9), la séquence d'acides nucléique (SEQ ID N° 42) codant pour la calgranuline B (SEQ ID N° 17), la séquence d'acides nucléiques (SEQ ID N°53) codant pour la saposine B (SEQ ID N° 24), les 15 séquences d'acides nucléiques ADN et/ou ARN (SEQ ID N° 30 à 57) codant pour les protéines ou fragments appartenant à la famille du précurseur de la protéine plasmatique de liaison au rétinol (par exemple SEQ ID N° 5 à 7), les protéines ou fragments appartenant à la famille de la protéine activateur du GM2 (par exemple SEQ ID N° 10 à 16), les protéines ou fragments appartenant à la famille de la protéine calgranuline B (par exemple SEQ ID N° 18 à 23), les protéines ou fragments 20 appartenant à la famille de la protéine saposine B (par exemple SEQ ID N° 25 à 29).

Une protéine ou un variant d'une protéine choisie plus particulièrement parmi les séquences définies dans les identificateurs SEQ ID N°s 2, 4, 8 , 9, 17 et 24 ou leurs fragments, ou parmi les séquences correspondant aux protéines des familles de ces dites séquences (par exemple SEQ ID N° 1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ 25 ID N° 10 à 16, SEQ ID N° 18 à 24, SEQ ID N° 25 à 29), et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, indépendamment ou en combinaison, présente un effet toxique directement ou indirectement, vis à vis de cellules, en particulier vis à vis des 30 cellules gliales, qui est mis en évidence par le bio-essai précité. Les auto-anticorps produits en réponse à la présence de cette protéine ou de ces protéines sont associés au processus auto-immun. Ainsi, la cible du ou des agent(s) thérapeutique(s) est par

exemple (i) la protéine naturelle ou les protéines naturelles ou leurs variants dans le but de réguler leur expression et/ou leur concentration intracellulaire et/ou leur concentration dans la circulation, (ii) un anticorps spécifique d'au moins une telle protéine. L'agent thérapeutique ou les agents thérapeutiques définis éliminent la cible 5 directement, par induction d'une réponse immunitaire spécifique et/ou la neutralisent.

La présente invention concerne donc un matériel biologique pour la préparation d'une composition pharmaceutique destinée au traitement de mammifères atteints de pathologies dégénérative et/ou auto-immune et/ou neurologique, de préférence la sclérose en plaques, ladite composition comprenant :

(i) soit au moins une protéine naturelle et/ou une protéine recombinante ou leurs fragments dont la séquence correspond à tout ou partie des séquences référencées SEQ ID N° 2, 4, 8, 9, 17 et 24 et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisie parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29), et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, 10 indépendamment ou en combinaison,

(ii) soit au moins un ligand spécifique d'au moins une desdites protéines ou leurs fragments dont la séquence correspond à tout ou partie des séquences référencées SEQ ID N° 2, 4, 8, 9, 17 et 24, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisie parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29), et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, 15 indépendamment ou en combinaison,

(iii) soit au moins un anticorps polyclonal ou monoclonal spécifique d'au moins une desdites protéines ou leurs fragments dont la séquence correspond à tout ou partie des séquences référencées SEQ ID N° 2, 4, 8, 9, 17 et 24, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29), et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, indépendamment ou en combinaison,

(iv) soit au moins une séquence d'acide nucléique comprenant au moins un gène d'intérêt thérapeutique dont la séquence nucléique est déduite des séquences d'ADN et d'ARN codant pour tout ou partie des protéines dont les séquences sont référencées SEQ ID N° 2, 4, 8, 9, 17 et 24, et les séquences d'ADN et/ou ARN (par exemple SEQ ID N° 30 à 57) codant pour tout ou partie des protéines appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmique de liaison au rétinol, du précurseur de l'activateur du GM2, de la calgranuline B et de la saposine B, en association avec des éléments assurant l'expression dudit gène d'intérêt thérapeutique *in vivo* dans des cellules cibles destinées à être génétiquement modifiées par la séquence nucléique du gène d'intérêt thérapeutique,

(v) soit au moins une cellule de mammifère ne produisant pas naturellement la protéine d'intérêt ou les protéines d'intérêt ou tout fragment de cette ou de ces protéine(s) ou des anticorps spécifiques d'au moins une desdites protéines ou de ses fragments ladite cellule mammifère étant génétiquement modifiée *in vitro* par au moins une séquence d'acide nucléique ou un fragment d'une séquence d'acide nucléique ou une association de séquences d'acides nucléiques correspondant à des fragments d'acides nucléiques issus d'un même gène ou de gènes différents, la ou lesdites séquences nucléiques étant déduite(s) des séquences d'ADN et ARN codant pour les protéines référencées SEQ ID N° 2, 4, 8, 9, 17 et 24, et les séquences d'ADN et/ou ARN (par exemple SEQ ID N° 30 à 57) codant pour tout ou partie des protéines

appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du GM2, de la calgranuline B et de la saposine B, ledit gène d'intérêt thérapeutique codant pour tout ou partie de la protéine d'intérêt, d'un fragment de la protéine d'intérêt ou d'un 5 anticorps spécifique de la protéine d'intérêt qui sera exprimé à la surface de ladite cellule de mammifère (Toes et al., 1997,PNAS 94 : 14660-14665). La composition pharmaceutique peut contenir un agent thérapeutique seul dirigé contre une cible seule ou des agents pris en combinaison dirigés contre plusieurs cibles..

On désigne par « polypeptides et/ou protéines d'intérêt de l'invention » le 10 fragment C-terminal du perlecan (SEQ ID N° 2), le précurseur de la protéine plasmatique de liaison au rétinol (SEQ ID N°4), la protéine activateur du GM2 (SEQ ID N° 8), la protéine mutée de l'activateur du GM2 (SEQ ID N° 9), la calgranuline B (SEQ ID N° 17), la saposine B (SEQ ID N° 24), les protéines ou fragments appartenant à la famille du précurseur de la protéine plasmatique de liaison au rétinol (par exemple SEQ ID N° 5 à 7), les protéines ou fragments appartenant à la famille de la protéine activateur du GM2 (par exemple SEQ ID N° 10 à 16), les protéines ou fragments appartenant à la famille de la protéine calgranuline B (par exemple SEQ ID N° 18 à 23), les protéines ou fragments appartenant à la famille de la protéine saposine B (par exemple SEQ ID N° 25 à 29 et les séquences peptidiques qui présentent au moins 70 % 15 d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % 20 d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29.

A partir des connaissances des séquences en acides aminés des protéines d'intérêt identifiées dans la présente invention, il est à la portée de l'homme de l'art de définir et utiliser les molécules décrites ci dessus et/ou toute molécule capable de se 25 fixer au dites molécules, et/ou toute molécule capable d'inhiber lesdites molécules. Ainsi la présente invention concerne l'utilisation de protéines naturelles et/ou recombinantes et/ou de polypeptides de synthèse et leurs fragments, de ligand capables de se fixer au dites protéines ou à leur(s) fragment(s), par exemple des anticorps ; de protéines inhibitrices de la fonction et/ou de l'expression et/ou de la fixation desdites 30 protéines.

Utilisation de protéine(s) et/ou peptide(s) naturel(s) et/ou de protéine(s) recombinante(s) et/ou de polypeptide(s) de synthèse correspondant aux protéines d'intérêt identifiées dans la présente invention.

La présente invention concerne un matériel biologique pour la préparation de compositions pharmaceutiques destinées au traitement de mammifères atteint de maladie auto-immune, de préférence la sclérose en plaques, comprenant :

(i) soit au moins une protéine naturelle et/ou une protéine recombinante et/ou un polypeptide de synthèse choisi parmi les protéines dont les séquences en acides aminés sont référencées SEQ ID N° 2, 4, 8, 9, 17 et 24, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29), et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, seules ou en combinaison,

(ii) soit au moins un fragment naturel et/ou synthétique de ces protéines d'intérêt, par exemple un fragment immunogène capable d'induire une réponse immune contre un polypeptide cible,

(iii) soit au moins un peptide mimotope défini à partir des séquences de référence SEQ ID N° 2, 4, 8, 9, 17 et 24 et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29), et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, ou une combinaison de mimotopes, capable d'induire une réponse immune contre le polypeptide cible,

(iv) soit au moins toute protéine ou peptide pouvant réguler *in vivo* la transcription et/ou la traduction des protéines d'intérêt (SEQ ID N° 2, 4, 8, 9, 17 et 24) et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29. L'administration de ces protéines et/ou peptides seuls ou en combinaison peut rétablir la concentration d'une protéine d'intérêt dans l'organisme.

La réponse immune dirigée contre un antigène spécifique peut être divisée en deux catégories distinctes, l'une mettant en jeu les anticorps (réponse immune de type humorale), l'autre les cellules effectrices cytotoxiques telles que par exemple les macrophages, les lymphocytes cytotoxiques (CTL) ou les cellules tueuses (NK) ainsi que les lymphocytes T « helper », notamment les lymphocytes T CD4+ (réponse immune de type cellulaire). Plus particulièrement, les deux types de réponse se distinguent en ce que les anticorps reconnaissent les antigènes sous leur forme tridimensionnelle alors que les lymphocytes T, par exemple, reconnaissent des portions peptidiques desdits antigènes, associés à des glycoprotéines codées par les gènes du complexe majeur d'histocompatibilité (CMH), notamment les gènes du complexe majeur d'histocompatibilité de type I qui sont exprimés de façon ubiquitaire à la surface des cellules ou les gènes du complexe majeur d'histocompatibilité de type II qui sont exprimés de façon spécifique à la surface des cellules impliquées dans la présentation des antigènes (APC). 1) Selon un premier aspect, la réponse immune de type cellulaire est caractérisée en ce que les cellules T de type CD4+ (cellules T helper), suite à un phénomène d'activation bien connu (pour une revue voir Alberola-lia 1997, Annu Rev Immunol 15, 125-154) produisent des cytokines qui à leur tour induisent la prolifération de cellules APC capables de produire lesdites cytokines, la différenciation cellulaire des lymphocytes B capables de produire des anticorps spécifiques de l'antigène, et la stimulation des lymphocytes T cytotoxiques (CTL). 2)

Selon un second aspect de la réponse immune cellulaire, les cellules effectrices cytotoxiques telles que par exemple les lymphocytes de type CD8+ (CTL) sont activés
5 a) après interaction avec des peptides antigéniques fixés sur et présentés par les glycoprotéines portées par les cellules ubiquitaires et codées par les gènes appartenant au système CMHI, et b) éventuellement par les cytokines produites par les CD4+.

La présente invention concerne l'administration d'une protéine ou d'un peptide dérivés des protéines d'intérêt (SEQ ID N° 2, 4, 8, 9, 17 et 24) ou de leur(s) fragment(s), et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur
10 de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29), et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec
15 l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, seuls ou en combinaison, pour la prophylaxie et/ou la thérapie d'une maladie auto-immune, telle que la sclérose en plaques. Ces protéines et peptides administrés sont caractérisés en ce que ils doivent avoir perdu leur activité毒ique, par exemple leur activité gliotoxicité, ou avoir perdu leur capacité à se fixer à un ligand, et peuvent induire significativement
20 une réponse immune médiée par les lymphocytes T ou/et les anticorps dirigée contre cette protéine sont utilisés. De telles protéines sont dites 'modifiées', cependant leur immunogénicité est conservée. De telles molécules immunogéniques modifiées sont obtenues par un nombre de traitements conventionnels, par exemple la dénaturation chimique ou à la chaleur, la troncation ou la mutation avec délétion, insertion ou
25 emplacement d'acides aminés. Un exemple de troncation consiste en la troncation d'acides aminés à l'extrémité carboxy-terminale pouvant aller jusqu'à 5-30 acides aminés. Les molécules modifiées peuvent être obtenues par des techniques synthétiques ou/et recombinantes ou par des traitements chimiques ou physiques des molécules naturelles.

30 Les protéines d'intérêt naturelles et/ou recombinantes identifiées dans la présente invention (SEQ ID N° 2, 4, 8, 9, 17 et 25), et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies

parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29), et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, ou leur(s) fragment(s), sont utilisées en vaccination prophylactique et thérapeutique contre les maladies auto-immunes, de préférence la SEP. Un vaccin comprend une quantité immunogénique effective de la protéine immunogène en association avec un véhicule pharmaceutiquement acceptable et éventuellement un adjuvant et/ou un diluant. Les véhicules, adjuvants et diluants pharmaceutiquement acceptables sont bien connus de l'homme du métier. On peut citer à titre de référence le Remington's Pharmaceutical Sciences. L'utilisation de compositions vaccinales est particulièrement avantageuse en association avec un diagnostic précoce de la maladie. La protéine immunogène est utilisée dans la préparation de médicament pour la vaccination prophylactique ou thérapeutique. Les protéines d'intérêt peuvent être éliminées de l'organisme sans induire d'effets secondaires indésirables. L'identification de telles protéines ou peptides vaccins est réalisée comme suit : les molécules candidates modifiées comme décrit précédemment (protéines naturelles, recombinantes, peptides) sont analysées dans un test fonctionnel pour vérifier qu'elles ont perdues leur toxicité, par exemple leur activité gliotoxique en utilisant le test appelé bio-essai, et pour vérifier leur immunogénicité (i) en réalisant un test *in vitro* de prolifération de lymphocytes T CD4+ spécifiques de l'antigène administré (T cell assay) ou un test *in vitro* de cytotoxicité des lymphocytes CD8+ spécifiques de l'antigène administré et (ii) en mesurant entre autre le taux d'anticorps circulants dirigés contre la protéine naturelle. Ces formes modifiées sont utilisées pour immuniser des hommes par des procédures standard avec des adjuvants appropriés.

Les vaccins préparés sont injectables, c'est-à-dire en solution liquide ou en suspension. En option, la préparation peut aussi être émulsifiée. La molécule antigénique peut être mélangée avec des excipients qui sont pharmaceutiquement acceptables et compatibles avec l'ingrédient actif. Des exemples d'excipients favorables sont l'eau, une solution saline, le dextrose, le glycérol, l'éthanol ou des

équivalents et leurs combinaisons. Si désiré, le vaccin peut contenir des quantités mineures de substances auxiliaires comme des agents "wetting" ou émulsifiants, des agents qui tamponnent le pH ou des adjuvants comme l'hydroxyde d'aluminium, le dipeptide muramyl ou leurs variations. Dans le cas des peptides, leur couplage à une plus grosse molécule (KLH, toxine tétanique) augmente quelquefois l'immunogénicité. Les vaccins sont administrés conventionnellement par injection par exemple sous cutanée ou intramusculaire. Des formulations additionnelles favorables avec d'autres modes d'administration incluent des suppositoires et quelquefois des formulations orales.

En général la concentration du polynucléotide dans la composition utilisée pour une administration *in vivo* est de 0.1µg /ml jusqu'à 20 mg /ml. Le polynucléotide peut être homologue ou hétérologue de la cellule cible dans laquelle il va être introduit.

La présente invention concerne également l'utilisation de vaccins incluant des molécules d'acides nucléiques qui codent pour les protéines d'intérêt ou des peptides immunogènes ou leur fragment(s), non actifs, correspondant aux protéines d'intérêt (SEQ ID N° 2, 4, 8, 9, 17 et 24) et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29. Les vaccins d'acides nucléiques, en particulier les vaccins ADN, sont administrés généralement en association avec un véhicule pharmaceutiquement acceptable en injection intramusculaire.

A partir de la séquence en acides aminés des protéines d'intérêt décrites (SEQ ID N° 2, 4, 8, 9, 17 et 24) et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23,

SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, des peptides ou des fragments correspondant à tout ou partie de la séquence primaire de ces protéines peuvent être synthétisés par des méthodes classiques de synthèse peptidique ou obtenus par recombinaison génétique.

Des protéines recombinantes correspondante aux protéines d'intérêt, produites dans un système cellulaire procaryote ou eucaryote, sont disponibles auprès de différentes équipes et sont décrites dans la littérature. Elles peuvent être également produite par l'homme du métier à partir de la connaissance des séquences des gènes correspondants décrits dans la littérature et en tenant compte de la dégénérescence du code génétique. Toutes les séquences protéiques identifiées dans la présente invention sont ainsi susceptibles d'être obtenues par recombinaison génétique. Les gènes sont clonés dans des vecteurs adaptés. Des vecteurs différents sont utilisés pour transformer des cellules procaryotes (par exemple *E. coli*) et des cellules eucaryotes (par exemple cellules COS, CHO et cellules Simliki). Les protéines recombinantes correspondant aux protéines d'intérêt ou à des fragments des protéines d'intérêt peuvent être ainsi produits dans des systèmes cellulaires procaryotes et/ou encaryotes. Dans les cellules *E. coli*, les protéines recombinantes sont produites avec une queue poly-histidine. La fraction protéique insoluble est solubilisée dans de l'urée 8M. L'enrichissement du produit a été effectué sur résine chélatée au nickel (Qiagen). La colonne a été lavée avec des concentrations décroissantes d'urée. L'élution a été faite avec de l'imidazole en l'absence d'urée. La séquence complète des protéines d'intérêt peut être également clonée dans un plasmide adapté puis transférée dans le virus de la vaccine pour obtenir un virus recombinant.

Utilisation de ligands capables de se fixer aux protéines d'intérêt identifiées dans la présente invention.

La présente invention concerne un matériel biologique pour la préparation de compositions pharmaceutiques destinées au traitement de mammifères atteint de maladie auto-immune, de préférence la sclérose en plaques, comprenant :

(i) soit au moins un ligand capable de se fixer aux protéines et/ou fragments des protéines choisies parmi les protéines cibles SEQ ID N° 2, 4, 8, 9, 14 et

24 et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, le ligand étant capable ou non d'inhiber l'activité protéique,

10 (ii) soit au moins un anticorps polyclonal ou monoclonal capable de se fixer à au moins une protéine ou un de ses fragments choisie parmi les protéines cibles SEQ ID N° 2, 4, 8, 9, 14 et 24 et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29. Cet anticorps peut être ou non neutralisant, c'est-à-dire capable ou non d'inhiber l'activité de la protéine d'intérêt. Le ligand peut être choisi parmi toute molécule ou fragment molécule capable de se fixer aux protéines cibles, par exemple les récepteurs de ce protéines, les cofacteurs de ces protéines, les anticorps polyclonaux ou monoclonaux capables de se fixer aux protéines ou tout fragment de ces protéines.

25 Ces anticorps sont très utiles notamment pour permettent la mise en œuvre de compositions thérapeutiques car ils conduisent par exemple, à des réactions immunes, dirigées spécifiquement à l'encontre d'épitopes immunodominants ou contre des antigènes présentant une grande variabilité. On administre chez le patient soit des anticorps solubles neutralisants pour inhiber leur fonction, soit des anticorps solubles spécifiques pour éliminer le peptide par formation de complexes immuns. L'invention décrit l'utilisation d'anticorps capables de reconnaître spécifiquement au moins une protéine décrite dans la présente invention pour le traitement et /ou pour le suivi

thérapeutique de maladie dégénérative et/ou neurologique et/ou auto-immune, de préférence la sclérose en plaques. Ces anticorps sont polyclonaux et de préférence monoclonaux. De préférence ces anticorps reconnaissent le site actif de la protéine et en se fixant, inhibe la fonction de la protéine. La capacité de l'anticorps à se fixer spécifiquement à la protéine est analysé par des techniques conventionnelle décrites, comme par exemple par des tests ELISA ou de Western blot en utilisant la protéine ou le peptide immunogène naturel ou synthétique. Le titre de l'anticorps est déterminé. La capacité de l'anticorps à neutraliser la fonction de la protéine peut être analysée par différents moyen, par exemple en déterminant la diminution de l'activité de la protéine ou du peptide immunogène en présence de l'anticorps, de préférence en déterminant la diminution de l'activité gliotoxique en utilisant le test bio-essai *in vitro*.

Par exemple, les anticorps monoclonaux dirigés contre la protéine cible ou une partie de cette protéine sont produits par des techniques conventionnelles utilisées pour produire des anticorps contre des antigènes de surface Des souris ou des lapins sont immunisées (i) soit avec la protéine naturelle ou recombinante d'intérêt, (ii) soit avec tout peptide immunogène de cette protéine d'intérêt, (iii) soit avec des cellules murines qui expriment la protéine ou le peptide d'intérêt et les molécules du CMHII. La lignée murine Balb/c est la plus fréquemment utilisée. L'immunogène est également un peptide choisi parmi les peptides définis à partir des séquences primaires des protéines d'intérêt. Par exemple, l'immunogène suivant a été préparé : les peptides SEQ ID N°s 58, 59, 60 issus de la séquence du précurseur du ganglioside GM2, les peptides SEQ ID N°s 61, 62 issus de la séquence de la saposine B et les peptides SEQ ID N°s 63, 64, 65 issus de la calgranuline B ont été couplé à de l'hémocyanine de Lymphet Keyhole, en abrégé peptide-KLH, comme support pour son utilisation en immunisation, ou couplé à de l'albumine de sérique humaine, en abrégé peptide-HSA. Les animaux ont été soumis à une injection de peptide-KLH ou de peptide-HSA en utilisant de l'adjuvant complet de Freund (IFA). Les sérums et les surnageants de culture d'hybridome issus des animaux immunisés avec chaque peptide ont été analysés pour la présence d'anticorps anti-protéines par un test ELISA utilisant les protéines initiales. Les cellules spléniques de ces souris ont par conséquent été récupérées et fusionnées avec des cellules de myélome. Le polyéthylèneglycol (PEG) est l'agent de fusion le plus fréquemment utilisé. Les hybridomes produisant les

anticorps les plus spécifiques et les plus sensibles sont sélectionnés. Les anticorps monoclonaux peuvent être produits *in vitro* par culture cellulaire des hybridomes produits ou par récupération de liquide d'ascite murin après injection intrapéritonéale des hybridomes chez la souris. Quel que soit le mode de production en surnageant ou en ascite, il importe ensuite de purifier l'anticorps monoclonal. Les méthodes de purification utilisées sont essentiellement la filtration sur gel échangeur d'ions ou par chromatographie d'exclusion, voire l'immunoprecipitation. Pour chaque anticorps il faut choisir la méthode qui permettra d'obtenir le meilleur rendement. Un nombre suffisant d'anticorps anti-protéines sont ciblés dans des tests fonctionnels pour identifier les anticorps les plus performants pour fixer la protéine d'intérêt et/ou pour bloquer l'activité de la protéine d'intérêt. Les anticorps monoclonaux sélectionnés sont humanisés par des méthodes standard de « CDR grafting » (protocole réalisé par de nombreuses compagnies, sous forme de service). Ces anticorps humanisés peuvent être testés cliniquement chez le patient. L'efficacité de ces anticorps peut être suivie par des paramètres cliniques.

La production *in vitro* d'anticorps, de fragments d'anticorps ou de dérivés d'anticorps, tels que les anticorps chimères, produits par génie génétique, dans des cellules eucaryotes a été décrite (EP 120 694 ou EP 125 023) et est aussi applicable à la présente invention.

Utilisation de molécules inhibitrices des protéines d'intérêt identifiées dans la présente invention.

La présente invention concerne un matériel biologique pour la préparation de compositions pharmaceutiques destinées au traitement de mammifères atteint de maladie dégénérative et/ou neurologique et/ou auto-immune, de préférence la sclérose en plaques, ladite composition comprenant (i) soit au moins une molécule inhibitrice de la fonction d'au moins une protéine choisie parmi les protéines identifiées dans la présente invention (SEQ ID N° 2, 4, 8, 9, 17, 24) et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au

moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, par exemple inhibitrice de l'activité gliotoxique, (ii) soit au moins une molécule régulatrice de l'expression d'au moins une protéine choisie parmi les protéines SEQ ID N° 2, 4, 8, 9, 17, 24 et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, par exemple pour bloquer la transcription ou la traduction, (iii) soit au moins une molécule régulatrice du métabolisme d'au moins une protéine choisie parmi les protéines SEQ ID N° 2, 4, 8, 9, 17, 24 et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, (iv) soit au moins une molécule régulatrice de l'expression et/ou du métabolisme d'un ligand d'au moins une protéine choisie parmi les protéines SEQ ID N° 2, 4, 8, 9, 17, 24 et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à SEQ ID N° 8 et SEQ ID N° 10 à 29 et les séquences peptidiques qui présentent au

moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, par exemple un récepteur ou un cofacteur. On peut penser que ces protéines de l'organisme humain peuvent être inhibées sans effet secondaire.

5 Un autre aspect important de l'invention concerne l'identification et l'évaluation de l'efficacité thérapeutique de substances naturelles et/ou synthétiques (i) capables de bloquer et/ou d'inhiber l'activité des protéines d'intérêt de l'invention et/ou de leur fragment : SEQ ID N° 2, 4, 8, 9, 17, 24 et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies
10 parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29 et/ou (ii) capables d'inhiber leur métabolisme tels les inhibiteurs du métabolisme correspondant, les inhibiteurs d'enzymes activées par les coenzymes, (iii) capables de réguler l'expression des protéines d'intérêt (SEQ ID N° 2, 4, 8, 9, 17, 24 et les séquences peptidiques ou les fragments desdites séquences appartenant à une même
15 famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 %
20 d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, (iv) capables d'inhiber la fonction et/ou l'expression des ligands des protéines d'intérêt SEQ ID N° 2, 4, 8, 9, 17, 24 et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences
25
30

peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, comme par exemple des récepteurs. Ces substances peuvent être utilisées dans des traitements prophylactiques et thérapeutiques
5 de la maladie. L'invention concerne également des méthodes pour traiter et prévenir une maladie auto-immune, par exemple la SEP, en administrant des quantités effectives de ces substances. Les substances peuvent être des protéines, des anticorps, de petites molécules synthétiques ou naturelles, des dérivés des protéines identifiées dans cette invention, des lipides, des glycolipides etc... Les petites molécules peuvent être ciblées
10 et identifiées en grande quantité en utilisant des librairies combinatoires chimiques. L'invention concerne également des compositions pharmaceutiques comprenant ces substances en association avec des carriers physiologiques acceptables, et des méthodes pour la préparation de médicaments à utiliser en thérapie ou en prévention de maladies auto-immunes dont la SEP en utilisant ces substances.

15 Pour identifier des molécules inhibitrices de faible poids moléculaire comme des drogues candidates pour les maladies dégénératives et/ou neurologiques et/ou auto-immunes, telles que la sclérose en plaques, on utilise les tests et protocoles décrits dans précédemment et dans les demandes de brevet incorporés à titre de référence, en utilisant des échantillons prélevés du patient non traité ou traité, du modèle animal non traité ou traité, ou de tissus du modèle animal non traité ou traité.
20 Cet aspect de l'invention inclue également un procédé pour identifier des substances capables de bloquer ou d'inhiber l'activité des protéines d'intérêt, comprenant l'introduction de ces substances dans un test *in vitro* ou dans un modèle animal *in vivo*. Les molécules sélectionnées sont testées à différentes concentrations. Ces inhibiteurs
25 sont aussi testés dans des essais de toxicité et pharmacocinétique pour savoir si ils peuvent représenter des drogues candidates valables. Les substances testées pour l'inhibition ou le blocage des activités protéiques ou de l'expression des protéines, dans ces procédures de criblage peuvent être des protéines, des anticorps, des fragments d'anticorps, de petites molécules synthétiques ou naturelles, des dérivés des protéines d'intérêt, etc Les petites molécules peuvent être ciblées et identifiées en grande quantité en utilisant des librairies combinatoires chimiques.

30 A titre d'exemple, on peut citer comme substances inhibitrices :

Les inhibiteurs des protéines identifiées dans la présente invention (SEQ ID N° 2, 4, 8, 9, 17, 24), les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et les inhibiteurs des fragments desdites protéines. Ces inhibiteurs peuvent être compris dans une composition prophylactique et thérapeutique, en particulier pour le traitement de la sclérose en plaques. Par exemple, la lycorine, alcaloïde extrait de Amaryllidaceae (ex : Crinum Asiaticum) est utilisée *in vitro* à une concentration comprise entre 0.1 et 0.5 µg /ml et *in vivo* à une concentration comprise entre 0.1 et 1 mg / kg /jour. Par exemple, le Rolipram (nom commercial) et l'Ibudilast (nom commercial), qui sont deux molécules de la même famille des inhibiteurs des phosphodiestérases 4(PDE4) sont utilisées *in vitro* à des concentrations comprises entre 1 et 10 µM/l et *in vivo* à des concentrations comprises entre environ 10 mg/kg/jour.

▲ A partir des séquences d'acides aminés des protéines SEQ ID N° 2, 4, 8, 9, 17, 24 et des séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29), il est évident que l'on peut déduire les séquences nucléotidiques ADN et ARN (SEQ ID N° 30, 31, 42, 53) correspondant aux protéines d'intérêt et les séquences codant pour les protéines de la famille de ces protéines d'intérêt (par exemple SEQ ID N° 32 à 41, SEQ ID N° 43 à 52, SEQ ID N° 54 à 57, SEQ ID N° 66 à 67), en tenant compte du code génétique et de sa dégénérescence. Ainsi la présente invention concerne l'utilisation de ces séquences nucléotidiques sous forme :

- de séquences anti-sens,
- de séquences codant pour un gène thérapeutique,

- de séquences pouvant être contenue dans un vecteur pour la réalisation de transformation cellulaire ex vitro et/ou in vivo (thérapie génique).

Utilisation d'acides nucléiques déduits des séquences en acides aminés des protéines d'intérêt identifiées dans la présente invention ; acides nucléiques anti-sens et/ou codant pour un gène thérapeutique.

La présente invention concerne un matériel biologique pour la préparation de compositions pharmaceutiques destinées au traitement de mammifères atteint de maladie dégénérative et/ou neurologique et/ou auto-immune, en particulier la sclérose en plaques, la composition comprenant (i) soit au moins une séquence d'acide nucléique capable de s'hybrider à une séquence d'acides nucléiques codant pour les protéines d'intérêt (SEQ ID N° 2, 4, 8, 9, 17, 24) et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, ou leur(s) fragment(s), (ii) soit au moins une séquence d'acide nucléique comprenant au moins un gène d'intérêt thérapeutique codant pour les protéines ou un fragment de protéines (SEQ ID N° 2, 4, 8, 9, 17, 24), les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et des éléments assurant l'expression dudit gène *in vivo* dans des cellules cibles destinées à être génétiquement modifiées par ladite séquence nucléique.

Par séquence d'acide nucléique, on entend un fragment d'ADN et/ou d'ARN, double brin ou simple brin, linéaire ou circulaire, naturel et isolé ou de

synthèse, désignant un enchaînement précis de nucléotides, modifiés ou non, permettant de définir un fragment ou une région d'un acide nucléique choisi dans le groupe consistant en un ADNc ; un ADN génomique ; un ADN plasmidique ; un ARN messager. Ces séquences d'acides nucléiques sont déduites de la séquence d'acides 5 aminés des protéines SEQ ID N° 2, 4, 8, 9, 17, 24 et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ 10 ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, en utilisant le code génétique. En raison de la dégénérescence du code génétique 15 l'invention englobe également des séquences équivalentes ou homologues. Ces séquences définies permettent à l'homme de l'art de définir lui-même les acides nucléiques adaptés.

Aussi, la présente invention concerne un matériel biologique pour la préparation de compositions pharmaceutiques comprenant au moins une séquence d'acide nucléique capable de s'hybrider à une séquence d'acides nucléiques codant 20 pour les protéines d'intérêt ou leur(s) fragment(s) (SEQ ID N° 2, 4, 8, 9, 17, 24) et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences 25 peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29.

L'invention consiste à définir et utiliser des molécules d'acides nucléiques 30 complémentaires des séquences ADN et/ou ARN codant pour les protéines d'intérêt ou leur(s) fragment(s). Ces fragments correspondent à des molécules anti-sens ou ribozyme et peuvent être synthétisés à l'aide de synthétiseurs automatiques, tels que

ceux commercialisés par la société Applied Biosystem. L'invention décrit l'utilisation de ces acides nucléiques capables de s'hybrider dans des conditions stringentes à l'ADN ou/et ARN codant pour les protéines de l'invention ou pour leu(s) fragment(s). Des conditions de stringence caractéristiques sont celles qui correspondent à une 5 combinaison de la température et de la concentration saline choisie approximativement entre 12 à 20°C sous le Tm (« melting temperature ») de l'hybride à l'étude. De telles molécules sont synthétisées et peuvent être marquées en utilisant des méthodes de marquage conventionnelles utilisées pour les sondes moléculaires, ou peuvent être utilisées comme amorces dans les réactions d'amplification. Les séquences qui 10 présentent au moins 90% d'homologie par rapport à une séquence de référence font également partie de l'invention, de même que les fragments de ces séquences qui présentent au moins 20 nucléotides et de préférence 30 nucléotides contigus homologues par rapport à une séquence de référence. Afin de réduire la proportion de peptides naturels ou variants, il est possible d'envisager une approche anti-sens et/ou 15 ribozyme. Une telle approche est largement décrite dans la littérature. Bien entendu, de telles molécules anti-sens peuvent constituer en tant que telles des vecteurs. On peut également utiliser des vecteurs qui comprennent une séquence d'acides nucléique qui code pour un anti-sens.

La présente invention concerne un matériel biologique pour la préparation 20 de compositions pharmaceutiques destinées au traitement de mammifères atteint de maladie dégénérative et/ou neurologique et/ou auto-immune, telle que la sclérose en plaques, ladite composition comprenant au moins une séquence d'acide nucléique contenant au moins un gène d'intérêt thérapeutique et des éléments assurant l'expression dudit gène *in vivo* dans des cellules cibles destinées à être génétiquement 25 modifiées par ladite séquence nucléique.

Ces séquences d'acides nucléiques et/ou vecteurs (anti-sens ou codant pour une protéine ou un fragment d'une protéine) permettent de cibler les cellules dans lesquelles le peptide est exprimé, telles que les cellules macrophages : (i) soit par l'utilisation d'une molécule de ciblage introduite sur le vecteur, (ii) soit par l'utilisation 30 d'une propriété particulière de ces cellules.

Utilisation de vecteurs comprenant un gène d'intérêt thérapeutique correspondant aux gènes des protéine d'intérêt identifiées dans la présente invention.

La présente invention concerne un matériel biologique pour la préparation de compositions pharmaceutiques destinées à la prévention et au traitement de maladies dégénérative et/ou neurologique et/ou auto-immune, telles que la sclérose en plaques, la composition comprenant une séquence d'acide nucléique comprenant un gène d'intérêt thérapeutique et des éléments d'expression dudit gène d'intérêt. Les gènes peuvent être non mutés ou mutés. Ils peuvent également consister en des acides nucléiques modifiés de sorte qu'il ne leur est pas possible de s'intégrer dans le génome de la cellule cible ou des acides nucléiques stabilisés à l'aide d'agents, tels que la spermine.

10 Un tel gène d'intérêt thérapeutique code notamment :

(i) soit au moins pour une protéine choisie parmi les protéines identifiées dans la présente invention (SEQ ID N° 2, 4, 8, 9, 17, 24) et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, ou leur(s) fragment(s),

(ii) soit au moins pour tout ou partie d'un anticorps polyclonal ou monoclonal capable de se fixer à au moins une protéine ou un fragment de protéine choisi parmi les protéines identifiées dans la présente invention (SEQ ID N° 2, 4, 8, 9, 17, 24) et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29. Il peut notamment s'agir d'anticorps transmembranaire natif, ou de fragment ou dérivé d'un tel anticorps, pour autant que

l'edit anticorps, fragment ou dérivé d'anticorps soit exprimé à la surface de la cellule cible du mammifère génétiquement modifiée et soit capable de se fixer à un polypeptide présent à la surface d'une cellule effectrice cytotoxique ou d'un lymphocyte T helper impliqué dans le procédé d'activation d'une telle cellule,

5 (iii) soit au moins pour une molécule inhibitrice d'au moins une protéine ou de ses fragments, ladite protéine étant choisie parmi les protéines identifiées (SEQ ID N° 2, 4, 8, 9, 17, 24) et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de
10 l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 %
15 d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29; les protéines inhibitrices de la fonction et/ou du métabolisme et/ou de la fixation des protéines SEQ ID N° 2, 4, 8, 9, 17, 24 et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 %
20 d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29,
25 (iv) soit au moins pour un ligand ou toute partie d'un ligand capable de se fixer à au moins une protéine ou un fragment de protéine choisi parmi les protéines identifiées (SEQ ID N° 2, 4, 8, 9, 17, 24) et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 %
30 d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 %

d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et/ou d'inhiber sa fonction.

Plus particulièrement, par fragment d'anticorps, on entend les fragments F(ab)2, Fab', Fab, sFv (Blazar et al., 1997, Journal of Immunology 159 : 5821-5833 ; 5 Bird et al., 1988 Science 242 : 423-426) d'un anticorps natif et par dérivé on entend, par exemple, un dérivé chimérique d'un tel anticorps (voir par exemple les chimères des anticorps antiCD3 Souris/Homme dans Arakawa et al., 1996 J Biochem 120 : 657-10 662 ou les immunotoxines telles que sFv-toxine de Chaudary et al 1989, Nature 339 : 394-397). Par anticorps transmembranaire on entend un anticorps dont au moins la région fonctionnelle capable de reconnaître et de se fixer à son antigène spécifique est exprimée à la surface des cellules cibles pour permettre lesdites reconnaissance et fixation. Plus particulièrement, les anticorps selon la présente invention consistent en 15 des polypeptides de fusion comprenant les amino acides définissant ladite région fonctionnelle et une séquence d'amino acides (polypeptide transmembranaire) permettant l'ancre au sein de la double couche lipidique membranaire de la cellule cible ou à la surface externe de cette bi-couche. Les séquences nucléiques codant pour de nombreux polypeptides transmembranaires sont décrites dans la littérature. Selon un cas tout à fait avantageux, la séquence d'acide nucléique codant pour la chaîne lourde de l'anticorps est fusionnée avec la séquence d'acide nucléique codant pour undit 20 polypeptide transmembranaire.

Par éléments assurant l'expression dudit gène *in vivo* on fait notamment référence aux éléments nécessaires pour assurer l'expression dudit gène après son transfert dans une cellule cible. Il s'agit notamment des séquences promotrices et/ou des séquences de régulation efficaces dans ladite cellule, et éventuellement les 25 séquences requises pour permettre l'expression à la surface des cellules cibles dudit polypeptide. Le promoteur utilisé peut être un promoteur viral, ubiquitaire ou spécifique de tissu ou encore un promoteur synthétique. A titre d'exemple, on mentionnera les promoteurs tels que les promoteurs des virus RSV (Rous Sarcoma Virus), MPSV, SV40 (Simian Virus); CMV (Cytomegalovirus) ou du virus de la 30 vaccine, les promoteurs du gène codant pour la créatine kinase musculaire, pour l'actine. Il est en outre possible de choisir une séquence promotrice spécifique d'un

type cellulaire donné, ou activable dans des conditions définies. La littérature procure un grand nombre d'informations relatives à de telles séquences promotrices.

Par ailleurs, ledit acide nucléique peut comprendre au moins deux séquences, identiques ou différentes, présentant une activité de promoteur transcriptionnel et/ou au moins deux gènes, identiques ou différents, situés l'un par rapport à l'autre de manière contiguë, éloignée, dans le même sens ou dans le sens inverse, pour autant que la fonction de promoteur transcriptionnel ou la transcription desdits gènes ne soit pas affectée.

De même dans ce type de construction d'acide nucléique, il est possible 10 d'introduire des séquences nucléiques « neutres » ou introns qui ne nuisent pas à la transcription et sont épissées avant l'étape de traduction. De telles séquences et leurs utilisations sont décrites dans la littérature (référence : demande de brevet PCT WO 94/29471).

Ledit acide nucléique peut également comprendre des séquences requises 15 pour le transport intracellulaire, pour la réPLICATION et/ou pour l'intégration, pour la transcription et/ou la traduction. De telles séquences sont bien connues de l'homme de l'art.

Par ailleurs, les acides nucléiques utilisables selon la présente invention peuvent également être des acides nucléiques modifiés de sorte qu'il ne leur est pas 20 possible de s'intégrer dans le génome de la cellule cible ou des acides nucléiques stabilisés à l'aide d'agents, tels que par exemple la spermine, qui en tant que tels n'ont pas d'effet sur l'efficacité de la transfection.

Selon un mode de réalisation de l'invention, la séquence d'acide nucléique est une séquence d'ADN ou ARN nue, c'est à dire libre de tout composé facilitant son 25 introduction dans les cellules (transfert de séquence d'acide nucléique). Toutefois, selon un second mode de réalisation de l'invention, afin de favoriser son introduction dans les cellules cibles et afin d'obtenir les cellules génétiquement modifiées de l'invention, cette séquence d'acide nucléique peut être sous la forme d'un « vecteur », et plus particulièrement sous la forme d'un vecteur viral, tel que par exemple un 30 vecteur adénoviral, rétroviral, un vecteur dérivé d'un poxvirus, notamment dérivé du virus de la vaccine ou du Modified Virus Ankara (MVA) ou d'un vecteur non viral tel que, par exemple, un vecteur consistant en au moins une dite séquence d'acide

nucléique complexée ou conjuguée à au moins une molécule ou substance porteuse sélectionnée parmi le groupe consistant en un amphiphile cationique, notamment un lipide cationique, un polymère cationique ou neutre, un composé polaire pratique notamment choisi parmi le propylène glycol, le polyéthylène glycol, le glycérol, 5 l'éthanol, la 1-méthyl L-2-pyrrolidone ou leurs dérivés, et un composé polaire aprotique notamment choisi parmi le diméthylsulfoxyde (DMSO), le diéthylsulfoxyde, le di-n-propylsulfoxyde, le diméthylsulfone, le sulfolane, la diméthylformamide, le diméthylacetamide, la tetraméthylurée, l'acetonitrile ou leurs dérivés. La littérature procure un nombre important d'exemples de tels vecteurs viraux et non viraux.

De tels vecteurs peuvent en outre et de préférence comprendre des éléments de ciblage pouvant permettre de diriger le transfert de séquence d'acide nucléique vers certains types cellulaires ou certains tissus particuliers tels que les cellules cytotoxiques et les cellules présentatrices de l'antigène). Ils peuvent également permettre de diriger le transfert d'une substance active vers certains compartiments intracellulaires préférés tel que le noyau, les mitochondries ou les peroxysomes, par exemple. Il peut en outre s'agir d'éléments facilitant la pénétration à l'intérieur de la cellule ou la lyse de compartiments intracellulaires. De tels éléments de ciblage sont largement décrits dans la littérature. Il peut par exemple s'agir de tout ou partie de lectines, de peptides, notamment le peptide JTS-1 (voir demande de brevet PCT WO 94/40958), d'oligonucléotides, de lipides, d'hormones, de vitamines, d'anticorps, de ligands spécifiques de récepteurs membranaires, de ligands susceptibles de réagir avec un anti-ligand, de peptides fusogènes, de peptides de localisation nucléaire, ou d'une composition de tels composés.

Utilisation de cellules transformées *in vivo* après injection de vecteurs contenant au moins un gène d'intérêt thérapeutique défini à partir des protéines d'intérêt identifiées dans la présente invention (SEQ ID N° 2, 4, 8, 9, 17, 24) et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 %

d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29.

La présente invention concerne un matériel biologique pour la préparation de compositions pharmaceutiques destinée à la prévention et au traitement de mammifères atteint de maladies dégénérative et/ou neurologique et/ou auto-immune, de préférence la sclérose en plaques, la composition comprenant au moins un vecteur contenant un gène thérapeutique comme décrit ci-dessous, capable d'être introduit dans une cellule cible *in vivo* et d'exprimer le gène d'intérêt thérapeutique *in vivo*. L'avantage de cette invention repose sur la possibilité de maintenir sur le long terme un niveau basal de molécules exprimées dans le patient traité. Des vecteurs ou acides nucléiques codant pour des gènes d'intérêt thérapeutique sont injectés. Ces vecteurs et acides nucléiques doivent être transportés jusqu'aux cellules cibles et transfecter ces cellules dans lesquelles ils doivent être exprimés *in vivo*.

L'invention concerne l'expression *in vivo* de séquences nucléotidiques et/ou de vecteurs tels que désignés dans le paragraphe précédent, c'est-à-dire des séquences correspondant à des gènes d'intérêt thérapeutique codant notamment :

(i) soit au moins pour une protéine choisie parmi les protéines identifiées dans la présente invention (SEQ ID N° 2, 4, 8, 9, 17, 24) et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N° 1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, ou leur(s) fragment(s),

(ii) soit au moins pour tout ou partie d'un anticorps polyclonal ou monoclonal capable de se fixer à au moins une protéine choisie parmi les protéines identifiées dans la présente invention (SEQ ID N° 2, 4, 8, 9, 17, 24) et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la

calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29. Il peut s'agir d'anticorps transmembranaire natif, ou de fragment ou dérivé d'un tel anticorps, pour autant que ledit anticorps, fragment ou dérivé d'anticorps soit exprimé à la surface de la cellule cible de mammifère génétiquement modifiée et en ce que ledit anticorps est capable de se fixer à un polypeptide présent à la surface d'une cellule effectrice cytotoxique ou d'un lymphocyte T helper et impliqué dans le procédé d'activation d'une telle cellule. Il peut s'agir de fragments d'anticorps exprimés par des cellules capables de sécréter lesdits anticorps dans la circulation sanguine d'un mammifère ou patient porteur des cellules génétiquement modifiées par le gène codant pour l'anticorps,

(ii) soit au moins pour une molécule inhibitrice d'au moins une protéine choisie parmi les protéines identifiées (SEQ ID N° 2, 4, 8, 9, 17, 24) et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatische de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29; protéine inhibitrice de la fonction et/ou du métabolisme et/ou de la fixation des protéines SEQ ID N° 2, 4, 8, 9, 17, 24 et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatische de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement

au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29,

(iii) soit au moins pour un ligand ou toute partie du ligand capable de se fixer sur au moins une protéine choisie parmi les protéines identifiées (SEQ ID N° 2, 4, 8, 9, 17, 24) et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et/ou d'inhiber sa fonction.

Selon un mode de réalisation particulier, il s'agit d'utiliser la thérapie génique de manière à diriger la réponse immune contre la protéine, le peptide ou la molécule d'intérêt cible, c'est-à-dire contre toute protéine choisie parmi les protéines SEQ ID N° 2, 4, 8, 9, 17, 24 et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, leur(s) fragment(s) et/ou contre toute molécule inhibitrice de la fonction et/ou de l'expression et/ou du métabolisme desdites protéines d'intérêt, et/ou des ligands desdites protéines comme par exemple les récepteurs. Pour cela il est évident que les cellules à cibler pour la transformation avec un vecteur sont des cellules appartenant au système immun, soit des cellules de type lymphocytes (CD4/CD8), soit des cellules présentatrices de l'antigène (cellules dendritiques, macrophages, ...).

Selon un mode de réalisation particulier, on modifie génétiquement, notamment *in vivo*, les cellules présentatrices de l'antigène (CPA). Les CPA comme les

macrophages, les cellules dendritiques, les microgliocytes, les astrocytes jouent un rôle dans l'initiation de la réponse immunitaire. Elles sont les premiers composants cellulaires qui capturent l'antigène, l'apprête dans la cellule et expriment des molécules du CMHI et CMHII transmembranaires impliquées dans la présentation de l'immunogène aux cellules T CD4+ et CD8+, elles produisent des protéines accessoires spécifiques qui participent à l'activation des cellules T (Debrick et al., 1991, J. Immunol 147 : 2846 ; Reis et al., 1993, J Ep Med 178 : 509 ; Kovacsics-bankowski et al., 1993, PNAS 90 : 4942; Kovacsics-bankowski et al., 1995 Science 267 : 243 ; Svensson et al., 1997, J Immunol 158 : 4229 ; Norbury et al., 1997, Eur J Immunol 27 : 280). Pour une vaccination, il peut être avantageux de disposer d'un système de thérapie génique qui peut cibler le transfert de gène dans de telles cellules APC, c'est-à-dire un gène qui code pour un polypeptide qui peut, après sa production intracellulaire et son « processing », être présenté aux cellules CD8+ et/ou CD4+ par les molécules des complexes CMHI et CMHII respectivement à la surface de ces cellules.

On choisit d'exprimer à la surface des cellules CPA *in vivo* tout ou partie d'un anticorps et/ou d'un ligand comme par exemple un récepteur, capable de réagir avec la protéine ou le peptide cible choisis parmi les protéines SEQ ID N° 2, 4, 8, 9, 17, 24 et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29. De telles cellules vont alors spécifiquement phagocytter ladite protéine ou ledit peptide, le « processer » de façon à ce que des fragments de ce peptide soient présentés à la surface des cellules présentatrices de l'antigène.

La littérature propose un grand nombre d'exemples de gènes codant pour des anticorps capables de réagir avec des polypeptides ou récepteurs. Il est à la portée de l'homme de l'art d'obtenir les séquences d'acides nucléiques codant pour de tels anticorps. Citons par exemple les gènes codant pour les chaînes légère et lourde de

l'anticorps YTH 12.5 (anti-CD3) (Routledge et al. 1991, Eur J Immunol 21 : 2717-2725), de l'anti-CD3 selon Arakawa et al ; 1996, J. Biochem. 120 : 657-662. Les séquences d'acide nucléique de tels anticorps sont aisément identifiables à partir des bases de données communément utilisées par l'homme du métier. Il est également 5 possible à partir d'hybridomes disponibles auprès de l'ATCC de cloner les séquences d'acides nucléiques codant pour les chaînes lourdes et/ou légères de ces différents anticorps par les méthodes d'amplification telles que la RT-PCR à l'aide d'oligonucléotides spécifiques ou les techniques mettant en œuvre des banques d'ADNc (Maniatis et al., 1982, Molecular cloning. A laboratory manual CSH 10 Laboratory, Cold Spring Harbor, New York). Les séquences ainsi clonées sont alors disponibles pour leur clonage dans des vecteurs. Selon un cas préféré de l'invention, la séquence d'acide nucléique codant pour la chaîne lourde de l'anticorps est fusionnée 15 par recombinaison homologue avec la séquence d'acide nucléique codant pour un polypeptide transmembranaire tel que la glycoprotéine rabique ou la gp160 (Polydefkis et al., 1990, J Exp Med 171 : 875-887). Ces techniques de biologie moléculaire ont été parfaitement bien décrites.

On choisit d'exprimer à la surface des cellules CPA *in vivo* des fragments immunogènes correspondant à au moins une protéines choisie parmi les protéines SEQ ID N° 2, 4, 8, 9, 17, 24 et les séquences peptidiques ou les fragments desdites 20 séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % 25 d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29. Pour cela, on peut choisir de faire exprimer par le vecteur soit le polypeptide complet soit de manière préférée des polypeptides sélectionnés pour réagir avec des ligands et/ou récepteurs spécifiques. Le peptide immunogène codé par le polynucléotide introduit 30 dans la cellule du vertébré *in vivo* peut être produit et/ou sécrété, apprêté puis présenté à une cellule présentatrice de l'antigène (APC) dans le contexte des molécules du CMH. Les APC ainsi transférées *in vivo* induisent une réponse immune dirigée contre

l'immunogène exprimé *in vivo*. Les APC possèdent différents mécanismes pour capturer les antigènes : (a) la capture des antigènes par des récepteurs membranaires comme les récepteurs aux immunoglobulines (Fc) ou pour le complément disponibles à la surface des granulocytes, des monocytes ou macrophages permettant une délivrance efficace de l'antigène dans les compartiments intracellulaires après phagocytose 5 médiée par les récepteurs. (b) l'entrée dans les APC par pinocytose en phase fluide, impliquant différents mécanismes : la micropinocytose c'est-à-dire la capture de petites vésicules ($0.1\mu\text{m}$) par les puits recouverts de clathrine et la macropinocytose c'est-à-dire la capture de plus grosses vésicules (avec une taille variant entre $0.5\ \mu\text{m}$ et environ 10 $6\ \mu\text{m}$) (Sallusto et al. 1995, J Exp Med 182 : 389-400). Tandis que la micropinocytose existe de façon constitutive dans toutes les cellules, la macropinocytose est limitée à 15 des types cellulaires, comme par exemple les macrophages, les cellules dendritiques, les astrocytes, les cellules épithéliales stimulées par des facteurs de croissance (Racoosin et al., J Cell Sci 1992, 102 : 867-880). Dans cette invention, on entend par 15 cellules capables de macropinocytose, les cellules qui peuvent réaliser les événements décrits ci-dessus et les cellules qui peuvent capturer des macromolécules de préférence entre $0.5\ \mu\text{m}$ et environ $6\ \mu\text{m}$ dans le cytoplasme.

Selon un mode de réalisation particulier, on modifie génétiquement 20 notamment *in vivo*, les cellules effectrices cytotoxiques ou les lymphocytes T helper de façon à ce qu'elles expriment à leur surface un polypeptide correspondant aux protéines SEQ ID N° 2, 4, 8, 9, 17, 24 et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur 25 de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, à des ligands desdites protéines, naturellement non exprimés par ces cellules, et capables 30 d'induire le procédé d'activation de telles cellules, par l'introduction dans ces cellules de séquences d'acide nucléique renfermant le gène codant pour un tel polypeptide. Conformément à la présente invention, il est également possible de sélectionner une

séquence d'acide nucléique contenant un gène d'intérêt thérapeutique codant pour tout ou partie d'un anticorps dirigé contre une protéine choisie parmi les protéines SEQ ID N° 2, 4, 8, 9, 17, 24 et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur 5 de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec 10 l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, susceptible d'être exprimé à la surface des cellules cibles du patient à traiter, ledit anticorps étant capable de se fixer à un polypeptide naturellement non exprimé par ces cellules effectrices cytotoxiques ou lymphocytes T helper.

Par cellules effectrices cytotoxiques, on entend désigner les macrophages, 15 les astrocytes, les lymphocytes T cytotoxiques (TCL) et les cellules tueuses (NK) ainsi que leurs dérivés telles que par exemple les LAK (Versteeg 1992 Immunology today 13 : 244-247 ;Brittende et al 1996, Cancer 77 :1226-1243). Par 'lymphocytes T helper' on entend désigner notamment les CD4 qui permettent après activation la sécrétion de facteurs d'activation des cellules effectrices de la réponse immune. Les polypeptides et 20 notamment les récepteurs exprimés à la surface de ces cellules et qui sont impliqués dans l'activation de telles cellules consistent notamment en tout ou partie du complexe TCR ou le CD3, tout ou partie des complexes CD8, CD4, CD28, LFA-1, 4-1BB (Melero et al., 1998, Eur J Immunol 28 : 1116-1121), CD47, CD2, CD1, CD9, CD45, CD30, CD40, tout ou partie des récepteurs de cytokines (Finke et al., 1998, Gene 25 therapy 5 : 31-39), telles que IL-7, IL-4, IL-2, IL-15 ou GM-CSF, tout ou partie du complexe récepteur des cellules NK tel que par exemple NKAR, Nkp46, .. ; (Kawano et al., 1998 Immunology 95 :5690-5693 ; Pessino et al., 1998 J Exp Med188 :953-960), Nkp44, tout ou partie des récepteurs de macrophages tels que par exemple le récepteur Fc (Deo et al.. 1997, Immunology Today 18 : 127-135).

30 De nombreux outils ont été développés pour introduire différents gènes hétérologues et/ou vecteurs dans des cellules, en particulier des cellules de mammifères. Ces techniques peuvent être divisées en deux catégories : la première

catégorie implique des techniques physiques comme la micro-injection, l'électroporation ou le bombardement de particules. La seconde catégorie est basée sur l'utilisation de techniques en biologie moléculaire et cellulaire avec lesquelles le gène est transféré avec un vecteur biologique ou synthétique qui facilite l'introduction du matériel dans la cellule *in vivo*. Aujourd'hui, les vecteurs les plus efficaces sont les vecteurs viraux en particulier les adénoviraux et rétroviraux. Ces virus possèdent des propriétés naturelles pour traverser les membranes plasmiques, éviter la dégradation de leur matériel génétique et introduire leur génome dans le noyau de la cellule. Ces virus ont été largement étudiés et certains sont déjà utilisés expérimentalement dans des applications humaines en vaccination, en immunothérapie, ou pour compenser des déficiences génétiques. Cependant cette approche virale a des limitations notamment due à la capacité de clonage restreinte dans ces génomes viraux, le risque de disséminer les particules virales produites dans l'organisme et l'environnement, le risque de mutagenèse artificielle par insertion dans la cellule hôte dans le cas des rétrovirus, et la possibilité d'induire une forte réponse immune inflammatoire *in vivo* pendant le traitement, ce qui limite le nombre d'injections possibles (Mc Coy et al. 1995, Human Gene Therapy 6 : 1553-1560 ; Yang et al., 1996 Immunity 1 : 433-422). D'autres systèmes alternatifs à ces vecteurs viraux existent. L'utilisation de méthodes non virales comme par exemple la co-précipitation avec le phosphate de calcium, l'utilisation de récepteurs qui miment les systèmes viraux (pour un résumé voir Cotten et Wagner 1993, Current Opinion in Biotechnology, 4 : 705-710), ou l'utilisation de polymères comme les polyamidoamines (Haensler et Szoka 1993, Bioconjugate Chem 4 : 372-379). D'autres techniques non virales sont basées sur l'utilisation de liposomes dont l'efficacité pour l'introduction de macromolécules biologiques comme l'ADN, l'ARN des protéines ou des substances pharmaceutiques actives a été largement décrite dans la littérature scientifique. Dans ce domaine des équipes ont proposé l'utilisation de lipides cationiques ayant une forte affinité pour les membranes cellulaires et/ou les acides nucléiques. En fait, il a été montré qu'une molécule d'acide nucléique elle-même pouvait traverser la membrane plasmique de certaines cellules *in vivo* (WO 90/11092), l'efficacité étant dépendante en particulier de la nature polyanionique de l'acide nucléique. Dès 1989 (Felgner et al., Nature 337 : 387-388) les lipides cationiques ont été proposés pour faciliter l'introduction de larges molécules

anioniques, ce qui neutralise les charges négatives de ces molécules et favorise leur introduction dans les cellules. Différentes équipes ont développés de tels lipides cationiques : le DOTMA (Felgner et al., 1987, PNAS 84 : 7413-7417), le DOGS ou TransfectamTM (Behr et al., 1989, PNAS 86 : 6982-6986), le DMRIE et le DORIE (Felgner et al., 1993 methods 5 : 67-75), le DC-CHOL (Gao et Huang 1991, BBRC 179 : 280-285), le DOTAPTM (McLachlan et al., 1995, Gene therapy 2 : 674-622) ou la LipofectamineTM, et les autres molécules décrites dans les brevets WO9116024, WO9514651, WO9405624. D'autres groupes ont développés des polymères cationiques qui facilitent le transfert de macromolécules en particulier des macromolécules anioniques dans les cellules. Le brevet WO95/24221 décrit l'utilisation de polymères dendritiques, le document WO96/02655 décrit l'utilisation du polyéthylèneimine ou polypropylèneimine et les document US-A-5595897 et FR 2719316, l'utilisation des conjugués polylysine.

Etant donné que l'on souhaite obtenir *in vivo* une transformation ciblée vers un type cellulaire donné, il est évident que le vecteur utilisé doit pouvoir être lui-même « ciblé », comme décrit ci dessus.

Utilisation de cellules transformées *in vitro* ou *ex vivo* avec des vecteurs contenant un gène d'intérêt thérapeutique défini par rapport aux protéines d'intérêt identifiées dans la présente invention (SEQ ID N° 2, 4, 8, 9, 17, 24) et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29.

La présente invention concerne un matériel biologique pour la préparation de compositions pharmaceutiques destinée à la prévention et au traitement de maladies dégénérative et/ou neurologique et/ou auto-immune, de préférence la sclérose en plaques, la composition comprenant au moins une cellule, notamment une cellule ne produisant pas naturellement des anticorps, sous une forme permettant leur

administration dans l'organisme d'un mammifère, humain ou animal, ainsi qu'éventuellement leur culture préalable, ladite cellule étant génétiquement modifiée *in vitro* par au moins une séquence d'acide nucléique contenant au moins un gène codant *in vivo* pour :

5 (i) au moins une protéine choisie parmi les protéines SEQ ID N° 2, 4, 8, 9, 17, 24, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29 et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et tout fragment

20 (ii) au moins un peptide défini à partir de la séquence primaire d'au moins une protéine choisie parmi les protéines SEQ ID N° 2, 4, 8, 9, 17, 24, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29,

25 (iii) au moins toute molécule inhibitrice de la fonction et/ou de la fixation et/ou de l'expression de ces protéines,

30 (iv) au moins un peptide issu de la séquence primaire d'une protéine choisie parmi les protéines SEQ ID N° 2, 4, 8, 9, 17, 24, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de

protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et capable de se fixer sur au moins une glycoprotéine du CMHI,

(v) au moins tout anticorps et toute partie d'anticorps capables de se fixer à au moins une protéine choisie parmi les protéines SEQ ID N° 2, 4, 8, 9, 17, 24, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B (par exemple SEQ ID N°1, SEQ ID N° 3, SEQ ID N° 5 à 7, SEQ ID N° 10 à 16, SEQ ID N° 18 à 23, SEQ ID N° 25 à 29) et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29.

Plus particulièrement, ladite cellule cible provient soit du mammifère à traiter, soit d'un autre mammifère que celui à traiter. Dans ce dernier cas, il convient de noter que ladite cellule aura subi un traitement la rendant compatible avec le mammifère à traiter. Par «mammifère» on entend, de préférence, un mammifère humain. Ces cellules sont établies en lignées cellulaires et sont préférentiellement CMHII+ ou CMHII+-inductibles comme les lymphocytes, les monocytes, les astrocytes, les oligodendrocytes.

L'invention concerne également les cellules modifiées et un procédé de préparation d'une cellule telle que décrite ci dessus caractérisé en ce que l'on introduit dans une cellule de mammifère ne produisant pas naturellement d'anticorps, par tout moyen approprié, au moins une séquence d'acide nucléique contenant au moins un gène d'intérêt thérapeutique et des éléments assurant l'expression dudit gène dans ladite cellule, ledit gène d'intérêt thérapeutique contenant une séquence d'acide nucléique codant pour une molécule ou un fragment de molécule *in vivo*, comme décrit

juste ci-dessus. Plus particulièrement, elle concerne des cellules procaryotes , des cellules de levure et des cellules animales, en particulier des cellules de mammifères transformées par au moins une séquence nucléotidique et/ou un vecteur tel que décrit précédemment.

5 Selon un mode de réalisation particulier, les cellules (cellules dendritiques, macrophages, astrocytes, lymphocytes T CD4+, lymphocytes T CD8+,) du patient ou allogéniques sont placées en contact d'une préparation purifiée du polypeptide cible, celui-ci étant internalisé, apprêté et présenté à la surface cellulaire associé aux molécules du CMHI et/ou CMHII et ainsi induire une réponse immune spécifique contre le peptide. Les cellules « activées » sont ensuite administrées au patient chez lequel elles vont induire une réponse immune spécifique des antigènes (on utilise une voie naturelle de la réponse immune, mais on contrôle ce que la cellule présentatrice de l'antigène va présenter)

10 15 Selon un mode de réalisation particulier, les cellules présentatrices d'antigène (cellule dendritique, macrophage, astrocytes,..) sont modifiées *in vitro* pour exprimer les antigènes dans la cellule transformée qui vont s'associer aux molécules du CMHI et/ou CMHII et être présentées à la surface des cellules pour induire chez le patient chez lequel on administre la cellule modifiée une réaction immune parfaitement ciblée.

20 25 30 Toutes les approches vaccinales ne sont pas toujours satisfaisantes et conduisent par exemple à des réactions immunes limitées dirigées uniquement à l'encontre d'épitopes immunodominants ou contre des antigènes présentant une grande variabilité. De même la présentation incorrecte des antigènes par les glycoprotéines du système CMH à la surface des cellules, ne permet pas de développer chez le patient traité une immunité anti-protéine d'intérêt convenable. Afin de pallier ces problèmes, certains auteurs ont proposé dans le cadre de tels procédés vaccinaux, de sélectionner les fragments minimaux antigéniques correspondant aux portions de peptide susceptibles d'être reconnus spécifiquement par les lymphocytes T cytotoxiques, de les exprimer dans les cellules afin qu'ils s'associent aux molécules du CMHI et soient présentés à la surface des cellules pour induire chez le patient traité une réaction immunitaire parfaitement ciblée (Toes et al. 1997, PNAS 94 : 14660-14665). Plus particulièrement, il a été montré que des épitopes de très petites tailles (variant de 7 à

environ 13 acides aminés) qui sont exprimés à partir de minigènes introduits dans un virus de la vaccine, pouvaient induire une immunisation de type cellulaire. Il a par ailleurs été montré que plusieurs minigènes pouvaient être exprimés conjointement à partir d'un même vecteur (cette construction particulière est appelée « string of beads »). Une telle construction présente l'avantage d'induire une réaction immune de type CTL synergique (Whitton et al ;, 1993 J. of Virology 67 : 348-352).

5 Protocole de mise en contact des cellules et du fragment antigénique :

La présentation des fragments antigéniques par les molécules CMHI repose sur un procédé intracellulaire identifié (voir Groettrup et al., 1996 Immunology Today 17 : 429-435 pour une revue) au cours duquel des peptides antigéniques de très courtes tailles (environ 7-13 acides aminés) sont produits par dégradation d'un polypeptide plus complexe contre lequel la réaction immune finale sera dirigée. Ces courts peptides sont ensuite associés aux molécules du CMHI ou du CMHII pour former un complexe protéique qui est transporté à la surface cellulaire afin de présenter lesdits peptides aux lymphocytes T cytotoxiques circulants ou aux lymphocytes T helper circulants, respectivement. Il convient en outre de noter que la spécificité des molécules CMH I ou CMH II vis-à-vis des peptides antigéniques varie en fonction des molécules CMH I ou CMH II (exemple pour le CMHI : HLA-A, HLA-B, ...) et de l'allèle (exemple pour le CMH I : HLA-A2, HLA-A3, HLA-A11) considérés. Au sein 10 d'une même espèce animale, d'un individu à l'autre, il existe une grande variabilité des gènes codant pour les molécules du système CMH (à ce sujet, voir notamment George et al., 1995, Immunology Today 16 : 209-212).

Selon un mode de réalisation particulier, les cellules, telles que les cellules dendritiques, les macrophages, les astrocytes, les lymphocytes T CD4+, les 25 lymphocytes T CD8+, sont modifiées de manière à exprimer à leur surface des anticorps spécifiques du peptide ciblé. Le peptide est neutralisé par les anticorps exprimés à la surface des cellules. Ces cellules sont de préférence immunes, de préférence du patient, de préférence cytotoxiques, modifiées pour exprimer tout ou partie d'un anticorps spécifique du polypeptide cible.

30 Isolement de cellules mononucléées à partir de sang périphérique :

En 1968, Boyum décrivit une technique rapide qui permet par centrifugation du sang sur gradient de densité, de séparer les cellules mononucléées

(lymphocytes et monocytes) avec un bon rendement (rendement théorique 50 %, c'est-à-dire 10^6 cellules /ml de sang). 50 ml de sang périphérique prélevés stérilement dans des tubes héparinés sont centrifugés 20 minutes à 150g à 20°C. Les cellules récupérées sont diluées dans deux volumes de sang périphérique initial de PBS stérile. 10 ml de cette suspension sont déposés sur 3ml d'une solution de Ficoll-Hypaque (milieu de séparation des lymphocytes, Flow). Après centrifugation pendant 20 minutes à 400g et 20°C sans freinage de décélération , les cellules mononucléées sédimentent à l'interface PBS-Ficoll, en une couche dense, opalescente, alors que la quasi-totalité des globules rouges et des polynucléaires sédimentent au fond du tube. Les cellules mononucléées sont récupérées et lavées en PBS stérile.

Internalisation des antigènes par les cellules présentatrices de l'antigène :

Traitement préalable des cellules présentatrices de l'antigène : les cellules présentatrices de l'antigène sont préalablement lavées avec un tampon PBS-BSA à 0.5% (p/v) puis énumérées puis elle sont préincubées en présence de différents inhibiteurs de réduction trois fois en PBS-BSA 0.5% contenant de 10 µM à 10 mM final de DTNB (acide 5,5'-dithio-bis-2-nitrobenzoïque) ou de NEM (N-éthylmaléimide). Les étapes ultérieures de fixation d'antigènes à la surface cellulaire ou d'internalisation d'antigènes se réalisent aussi en présence des différentes concentrations d'inhibiteurs.

Protocole d'internalisation des antigènes par les cellules présentatrices de l'antigène :

8. 10^6 cellules sont internalisées en présence de quantité saturante de protéines radiomarquées à l'iode 125 (1 µg) dans des micropuits dans 70 µl. Après une heure d'incubation à 4°C sous agitation, les antigènes sont fixés à la surface des cellules. La suspension cellulaire est lavée deux fois en PBS-BSA et les culots cellulaires sont repris dans 70 µl de tampon et incubées à 37°C pendant différentes périodes allant jusqu'à 2 heures. Cellules et surnageants sont séparés par centrifugation à 800g pendant 5 minutes 4°C. Pour des plus longues périodes d'incubation, l'étape préliminaire de préfixation des antigènes à la surface des cellules est supprimée. Les cellules sont diluées dans un milieu RPMI-10% SVF en présence de 20 mM Hépès, à 10 6 cellules /ml. Les cellules sont incubées en présence d'un excès d'antigène pendant

différentes périodes à 37°C (1 µg de molécules /5.10⁷ cellules monocytes/macrophages ou /10⁸ cellules B-EBV).

Tous les agents thérapeutiques définis dans le cadre de la présente invention sont utilisés pour prévenir et/ou traiter une maladie dégénérative et/ou neurologique et/ou auto-immune, telle que la sclérose en plaques, seuls ou en combinaison. Ils peuvent être utilisés également pour évaluer leur efficacité *in vitro* ou *in vivo*.

Administration chez l'homme des agents thérapeutiques:

Le matériel biologique selon l'invention peut être administré *in vivo* notamment sous forme injectable. On peut également envisager une injection par voie épidermique, intraveineuse, intra-artérielle, intramusculaire, intracérébrale par seringue ou tout autre moyen équivalent. Selon un autre mode de réalisation par administration orale ou tout autre moyen parfaitement connu de l'homme de l'art et applicable à la présente invention. L'administration peut avoir lieu en dose unique ou répétée, une ou plusieurs fois après un certain délai d'intervalle. La voie d'administration et le dosage les mieux appropriés varient en fonction de différents paramètres tels que par exemple l'individu ou la maladie à traiter, du stade et/ou de l'évolution de la maladie, ou encore de l'acide nucléique et/ou de la protéine et/ou peptide et/ou molécule et/ou cellule à transférer ou de l'organe/tissus cible.

Pour la mise en œuvre du traitement du mammifère mentionné dans la présente invention, il est possible de disposer de compositions pharmaceutiques comprenant un matériel biologique tel que précédemment décrit, avantageusement associé avec un véhicule pharmaceutiquement acceptable pour l'administration à l'homme ou à l'animal. L'utilisation de tels supports est décrite dans la littérature (voir, par exemple Remington's Pharmaceutical Sciences 16th ed. 1980, Mack Publishing Co). Ce véhicule pharmaceutiquement acceptable est préférentiellement isotonique, hypotonique ou présente une faible hypertonicité et a une force ionique relativement basse, tel que par exemple une solution de sucre. Par ailleurs, ladite composition peut contenir des solvants, des véhicules aqueux ou partiellement aqueux tels que de l'eau stérile, libre d'agents pyrogène et des milieux de dispersion par exemple. Le pH de ces compositions pharmaceutiques est convenablement ajusté et tamponné selon les techniques conventionnelles.

Figures :

La figure 1 représente la séquence en amino acides de la protéine GM2AP, et la localisation des peptides, qui est soulignée, et qui sont utilisés pour la production des anticorps anti-peptides GM2AP.

La figure 2 représente la séquence en amino acides de la protéine MRP14, et la localisation des peptides, qui est soulignée, et qui sont utilisés pour la production des anticorps anti-peptides MRP14.

La figure 3 représente la séquence en amino acides de la protéine Saposine B, et la localisation des peptides, qui est soulignée, et qui sont utilisés pour la production des anticorps anti-peptides Saposine B.

La figure 4 représente le dosage de la protéine MRP8 (ng/ml - en ordonnée) dans les urines de patients atteints de sclérose en plaques (SEP), dans les urines de patients atteints d'autres maladies neurologiques (AMN) et dans les urines de témoins considérés sains (TS). n signifie le nombre d'urines testées par catégorie.

La figure 5 représente le dosage de la protéine MRP14 (ng/ml - en ordonnée) dans les urines de patients atteints de sclérose en plaques (SEP), dans les urines de patients atteints d'autres maladies neurologiques (AMN) et dans les urines de témoins considérés sains (TS). n signifie le nombre d'urines testées par catégorie.

La figure 6 représente le dosage de la protéine MRP8/14 (ng/ml - en ordonnée) dans les urines de patients atteints de sclérose en plaques (SEP), dans les urines de patients atteints d'autres maladies neurologiques (AMN) et dans les urines de témoins considérés sains (TS). n signifie le nombre d'urines testées par catégorie.

La figure 7 représente les concentrations moyennes des protéines MRP8, MRP14, MRP8/14 (ng/ml - en ordonnée) dans les urines de patients atteints de sclérose en plaques (SEP), dans les urines de patients atteints d'autres maladies neurologiques (AMN) et dans les urines de témoins considérés sains (TS). n signifie le nombre d'urines testées par catégorie.

La figure 8 représente le dosage de la protéine GM2AP (ng/ml - en ordonnée) dans les urines de patients atteints de sclérose en plaques (SEP), dans les urines de patients atteints d'autres maladies neurologiques (AMN) et dans les urines de témoins considérés sains (TS). n signifie le nombre d'urines testées par catégorie. MS

signifie SEP, OND signifie AMN et Healthy signifie prélèvements de témoins supposés sains (TS).

La figure 9 représente le dosage de la protéine Saposine B ($\mu\text{g}/\text{ml}$ - en ordonnée) dans les urines de patients atteints de sclérose en plaques (SEP), dans les urines de patients atteints d'autres maladies neurologiques (AMN) et dans les urines de témoins considérés sains (TS). n signifie le nombre d'urines testées par catégorie. MS signifie SEP, OND signifie AMN et Healthy signifie prélèvements de témoins supposés sains (TS).

La figure 10 représente la co-détection des protéines Saposine B ($\mu\text{g}/\text{ml}$ - en ordonnée) et GM2AP (ng/ml - en abscisse) dans des échantillons d'urine de patients SEP, de témoins supposés sains et de patients atteints d'autres maladies neurologiques et la corrélation observée entre les taux des deux protéines.

La figure 11 représente : figure 11A, le dosage de la protéine GM2AP en ng/ml dans les urines d'un patient SEP en forme rémittente progressive (courbe claire) et la gliotoxicité en pourcentage de cellules mortes estimées par le test MTT (courbe foncée) ; figure 11B le dosage de la protéine Saposine B en $\mu\text{g}/\text{ml}$ dans les urines d'un patient SEP en forme rémittente progressive (courbe claire) et la gliotoxicité en pourcentage de cellules mortes estimées par le test MTT (courbe foncée).

La figure 12 représente le produit des concentrations des protéines GM2AP et saposine B en $\text{ng} \times \mu\text{g}/\text{ml}^2$ dans les urines d'un patient SEP en forme rémittente progressive (courbe claire) et la gliotoxicité en pourcentage de cellules mortes estimées par le test MTT (courbe foncée).

La figure 13 : figure 13A, le dosage de la protéine GM2AP en ng/ml dans les urines d'un patient SEP en forme progressive (courbe claire) et la gliotoxicité en pourcentage de cellules mortes estimées par le test MTT (courbe foncée) ; figure 13B le dosage de la protéine Saposine B en $\mu\text{g}/\text{ml}$ dans les urines d'un patient SEP en forme progressive (courbe claire) et la gliotoxicité en pourcentage de cellules mortes estimées par le test MTT (courbe foncée).

La figure 14 représente le produit des concentrations des protéines GM2AP et saposine B en $\text{ng} \times \mu\text{g}/\text{ml}^2$ dans les urines d'un patient SEP en forme progressive (courbe claire) et la gliotoxicité en pourcentage de cellules mortes estimées par le test MTT (courbe foncée).

La figure 15 représente la corrélation entre les concentrations de GM2AP en ng/ml (abscisse) et de gliotoxicité en pourcentage de cellules mortes estimées par le test MTT (ordonnée) déterminées dans des urines de patients SEP et de témoins.

La figure 16 représente la corrélation entre les concentrations de Saposine B en $\mu\text{g}/\text{ml}$ (abscisse) et de gliotoxicité en pourcentage de cellules mortes estimées par le test MTT (ordonnée) déterminées dans des urines de patients SEP et de témoins.

La figure 17 représente la corrélation entre le produit des concentrations de GM2AP et Saposine B en $\text{ng} \times \mu\text{g}/\text{ml}^2$ (abscisse) et de gliotoxicité en pourcentage de cellules mortes estimées par le test MTT (ordonnée) déterminées dans des urines de patients SEP et de témoins.

La figure 18 représente la corrélation entre les concentrations en GM2AP (ng/ml - en ordonnée gauche), les concentrations en Saposine B ($\mu\text{g}/\text{ml}$ - ordonnée droite) et la gliotoxicité en pourcentage de cellules mortes estimées par le test MTT (abscisse). Deux droites de corrélation estimées sont représentées sur le graphe. Les lignes en gras sont relatives aux concentrations en saposine B ; les lignes en noir clair sont relatives aux concentrations en GM2AP.

Exemples :

Exemple 1 : Recueil et pool d'urines.

Des échantillons d'urine de volumes différents ont été prélevés à partir d'individus sains (SEP négatifs) n'ayant a priori aucune maladie neurologique ou autoimmune. L'activité toxique de chaque prélèvement vis à vis de cellules astrocytaires murines a été testée *in vitro* en utilisant le test MTT. Au total un pool de 20 litres d'urine a été constitué (pool SEP négatif). Parallèlement, des échantillons d'urine de volumes différents ont été prélevés à partir d'individus atteints de sclérose en plaques (SEP positifs) à différents stade de la maladie. L'activité toxique de chaque prélèvement vis à vis de cellules astrocytaires murines a été testée *in vitro* en utilisant le test MTT. Au total un pool de 80 litres d'urine a été constitué (pool SEP positif).

Exemple 2 : Purification des protéines urinaires.

Les pools d'urine SEP positif et SEP négatif, recueillis et testés selon l'exemple 1, ont été purifiés pour obtenir une concentration en protéines élevée et éliminer au maximum les protéines de haut poids moléculaire.

Précipitation : des précipitations au sulfate d'ammonium (Prolabo - réf. 21 5 333 365) ont été effectuées sur les pools d'urine SEP positif et SEP négatif. Le pourcentage de 60 % de sulfate d'ammonium saturé pour 40 % d'urine, soit 390 grammes de sulfate d'ammonium par litre d'urine a été utilisé. Chaque pool est réparti en fractions de 1,8 litres dans des flacons de 2 litres pour améliorer la précipitation. La précipitation a été effectuée durant 2 x 8 heures, à température ambiante, sous agitation 10 douce. Après centrifugation des pools d'urine à 3 000 tpm pendant 10 min., à une température de 10°C, le culot obtenu est repris dans un tampon Tris 20 mM contenant du CaCl₂ 1 mM et de l'urée à 0,25 M. Le mélange a ensuite été centrifugé à 3 000 tpm pendant 10 min. Le surnageant contient les protéines concentrées. Il est soit utilisé immédiatement pour l'étape suivante, soit congelé si l'étape suivante ne peut être 15 effectuée en continu.

Chromatographie par échange d'ions : la solution contenant les protéines a ensuite été passée sur un gel DEAE fast Flow (commercialisé par PHARMACIA). Cette étape est effectuée à basse pression sur une colonne PHARMACIA remplie de gel. Les tampons sont amenés sur la colonne par une pompe péristaltique qui permet un 20 débit régulier. Le tampon d'équilibration de la colonne est le tampon Tris 20 mM, pH 7. La fraction correspondant au surnageant de précipitation et contenant une quantité de sels trop élevée est dialysée contre ce tampon avant dépôt sur la colonne. Une élution par un gradient salin permet de récupérer les protéines. Le gradient d'élution est effectué par palier de NaCl 100, 200, 300, 500 mM dans le tampon d'équilibration de 25 la colonne. Les fractions d'élution sont testées par le test MTT et ne seront conservées que les fractions positives, soit la fraction éluée à 200 mM NaCl. Ces fractions pourront être traitées immédiatement ou conservées à l'état lyophilisé.

Purification : Une chromatographie d'exclusion stérique basée sur la différence de taille et de forme des protéines à éluer a été utilisée. La fraction correspondant à l'élution 200 mM NaCl est déposée sur la colonne. Au cours de l'élution, les protéines de faible masse moléculaire sont retenues et donc éluées plus tardivement que les grosses molécules. Les purifications ont été effectuées sur HPLC 30

avec une colonne TosoHaas TSK Prep G 3000 SW, d'un diamètre de 21,5 mm et d'une longueur de 300 mm, la limite d'exclusion en masse moléculaire est de 500 000 daltons. Le tampon d'élution utilisé contient du phosphate 100 mM, du sulfate de sodium 100 mM, à pH 6,8. La séparation du mélange de protéines a été effectué en 60 min. Seule la fraction correspondant à une masse de 15-20 000 daltons a été conservée. Cette fraction est dialysée dans un tampon Tris 20 mM contenant du CaCl₂ 0,2 mM, pH 7,2, puis lyophilisée.

A chaque étape, seules les fractions présentant une activité毒ique significative ont été retenues pour l'étape suivante. Un contrôle de l'activité毒ique des protéines a été effectué à chaque étape, à l'aide du test MTT. Seules les fractions présentant une activité毒ique significative ont été retenues pour l'étape de purification supplémentaire décrite dans l'exemple 3.

Exemple 3 : Purification supplémentaire des protéines urinaires par chromatographie phase inverse.

Des pools d'urine provenant de patients SEP (pool SEP positif) et de patients non SEP (pool SEP négatif), obtenus après purification selon l'exemple 2, ont été repris dans de l'eau distillée, puis dilués avec une solution 0,2% TFA/10% acétonitrile pour obtenir une concentration finale d'environ 130 à 140 µg/ml.

La séparation par HPLC phase inverse C8 a été effectuée sur une colonne Brownlee Aquapore (nom commercial) commercialisée par la société Perkin Elmer (caractéristiques de la colonne : 300 angstroms/7 µm/(100x4,6) mm). Deux colonnes distinctes ont été utilisées respectivement pour les pools positif et négatif. Les injections ont été réalisées par multi-injections de 250 µl. Les protéines ont été élues avec un gradient linéaire de 5% à 15% de tampon B en 5 min., puis de 15% à 100% de tampon B en 95 min., à un débit de 0,5 ml/min. Les tampons de séparation A et B utilisés sont respectivement le tampon 0,1% TFA (Pierce n° 28904)/ eau MilliQ et le tampon 0,09% TFA/80% acétonitrile (Baker). La détection a été effectuée par mesure de l'absorbance UV à 205 et 280 nm. La collecte des fractions a été effectuée en fractions de 1,5 ml et de 0,5-1 ml dans la zone d'intérêt. Les fractions ont été congelées après la collecte dans de la carboglace.

Les fractions collectées ont ensuite été séchées en speed vac et reprises dans 100 µl de 0,1% TFA/30% acétonitrile. 20µl des fractions ont été transférés dans des eppendorfs de 500 µl, séchés et lavés à deux reprises avec 100 µl d'eau MilliQ, puis séchés de nouveau.

5 L'activité toxique des protéines contenues dans chaque fraction recueillie après élution a été déterminée à l'aide du test MTT. Seule la fraction 21 présentant une activité toxique significative a été retenue. Le numéro de cette fraction correspond à l'ordre de l'élution en fonction des conditions d'élution énoncée dans cet exemple.

10 Exemple 4: Analyse des protéines obtenues par séparation sur HPLC sur gel SDS-TRICINE.

Le pool de collecte de la fraction 21 obtenue par HPLC, comme décrit dans l'exemple 3, et provenant de 20 injections du pool SEP positif, a été déposé sur un gel SDS-TRICINE 16% précoulé de 10 puits et de 1 mm d'épaisseur (commercialisé 15 par la société Novex). Les conditions d'utilisation du gel correspondent à celles préconisées par le fournisseur. L'échantillon est repris dans 75 µl du tampon d'échantillon 1 fois concentré (SDS-TRICINE N° LC 1676, 1 ml deux fois concentré + 50µl de β-mercaptopropanoïde (Pierce) dilué au 1/2 dans de l'eau) et 25µl de l'échantillon sont déposés sur le gel en trois fois. Le pool de collecte de la fraction 21 provenant de 6 20 injections du pool SEP négatif a été déposé sur le gel dans les mêmes conditions que celles décrites pour le pool SEP positif. La migration sur les deux gels a été effectuée en parallèle dans la même cuve de migration (XCELL II NOVEX (nom commercial)) à 25 un voltage constant de 125 mV pendant 2 heures. La cuve est placée dans un bac contenant de la glace. Les gels ont été colorés directement après la migration par coloration au zinc/imidazole (kit de coloration 161-0440 commercialisé par la société BIORAD) pour obtenir une coloration négative réversible. Les bandes de protéines sont translucides sur fond opaque.

Exemple 5 : Digestion à la trypsine des bandes de gel.

30 Toutes les bandes de protéines visualisées dans les dépôts de la fraction 21 ont été découpées et soumises à une protéolyse par la trypsine.

Les bandes de gels sont découpées au scalpel en tranches de 1 mm et transférées dans des tubes eppendorfs. Les eppendorfs sont soumis à un pic de centrifugation pour faire tomber les morceaux de gel et après centrifugation 100 µl de tampon de lavage (100 Mm NH₄CO₃/50% CH₃CN) sont ajoutés aux morceaux de gel.

5 Après 30 min. d'agitation à température ambiante, le surnageant est enlevé par fractions de 20 µl et l'étape de lavage est renouvelée deux fois. Les eppendorfs sont séchés pendant 5 min. en speed vac. 20 µg de trypsine (Modified sequenal grade PROMEGA V5111) sont repris dans 200 µl de tampon de digestion (5 mM TRIS, pH 8) et sont dissous pendant 30 min. à température ambiante, sous agitation intermittente

10 et 20 à 30 µl de trypsine resuspendue sont ajoutés aux morceaux de gel. Les eppendorfs sont centrifugés et conservés en chambre chaude à 28°C pendant une nuit. Après digestion les bandes de gel peuvent être utilisées immédiatement pour les mesures de masse ou congelées pour usage ultérieur.

15 Exemple 6 : Digestion chimique au CNBR des bandes de gel.

Dans l'éventualité d'une protéine résistante aux clivages enzymatiques, en particulier à l'action de la trypsine comme décrit dans l'exemple 5, les bandes entre 16kD et 20kD ont été traitées avec du CNBR. Les bandes de gel, déjà utilisées pour les digestions avec la trypsine, sont séchées 5 à 10 min. en speed vac.

20 Une solution de CNBR (FLUKA) à 200 mg/ml a été préparée dans 70 % acide formique (BAKER). 20 µl de cette solution ont été utilisées pour réhydrater les morceaux de gel. La réaction s'est faite pendant 20 h à température ambiante et à l'obscurité. Les peptides sont extraits 3 fois 30 min. avec 100 µl de 0.1 % TFA / 60% Acetonitrile. Les solutions d'extraction sont réunies et concentrées à 20 µl. Ces échantillons sont dilués 5 fois dans 0,1 % TFA/eau. Les conditions de séparation sont celles décrites pour les peptides de la digestion avec la trypsine.

Exemple 7 : Analyse par spectrométrie MALDI-TOF.

30 30 µl de tampon d'extraction (2 % TFA/50 % acétonitrile) sont ajoutés aux échantillons. Les eppendorfs à analyser sont soumis à une centrifugation de 5 min., puis à une sonication de 5 min. et finalement à une centrifugation de 1 min.

Sur un disque en acier inoxydable, 14 dépôts de 0,5 µl de matrice (acide α -cyano-4-hydroxy-trans-cinnamique à saturation dans de l'acétone) sont réalisés. Une fine couche microcristalline uniforme est obtenue. 0,5 µl d'une solution de 2 % TFA/eau sont déposés sur cette sous-couche sur les 14 dépôts, puis 0,5 µl d'échantillon à analyser sont ajoutés. Dans cette goutte ainsi formée, 0,5 µl d'une solution à saturation d'acide d'acide α -cyano-4-hydroxy-trans-cinnamique dans 50 % acétonitrile/eau sont ajoutés. Après un séchage à température ambiante pendant 30 min., les dépôts cristallins sont lavés avec 2 µl d'eau qui sont immédiatement évacués par un souffle d'air. Tous les spectres sont obtenus sur un spectromètre de masse BRUKER BIFLEX (marque de commerce) équipé d'un réflectron. Les mesures (90 à 120 tirs laser sur l'ensemble du dépôt) sont accumulées pour obtenir un spectre de masse qui soit le plus représentatif de l'ensemble des peptides présents dans le sandwich matrice-échantillon. Pour chaque dépôt, une calibration avec les peptides de l'autolyse de la trypsine a été faite afin de pouvoir utiliser une précision de mesure inférieure à 100 ppm.

Les recherches dans les banques de données ont été exécutées dans MS-FIT PROTEINPROSPECTOR (<http://prospector.ucsf.edu>). Les paramètres communs, utilisés dans ces recherches, sont (1) base de données : NCBInr, (2) une tolérance de 100-50 ppm, (3) les cystéines ne sont pas modifiées, (4) les méthionines peuvent être oxydées, (5) gamme de poids moléculaire : 1000-100000 Da, (6) jusqu'à 3 sites de coupure peuvent être ignorés.

Exemple 8 : Séquençage N-terminal des peptides de digestion.

(i) Extraction et séparation par HPLC des peptides de digestion.

Après les mesures de masse sur la totalité de la digestion, le reste des peptides est extrait en 3 fois 30 min. dans un bain de sonication avec 0,1 % TFA/60 % acétonitrile. Les solutions d'extraction sont réunies et séchées jusqu'à 20 µl en speed vac. Après dilution dans 80 µl de tampon A (0,1 % TFA/eau), les extractions des bandes de gel, digérées avec de la trypsine, sont injectées sur une colonne C18/MZ-Vydac/(125x1.6)mm/5 µm. L'élution des peptides se fait à un débit de 150 µl/min. et dans un gradient allant de 5 % de tampon B (0,09 % TFA/80 % acétonitrile) à 40 % de tampon B en 40 min., puis de 40 % de tampon B à 100 % de tampon B en 10 min. La

détection est faite par mesure de l'absorbance UV à 205 nm. La collecte des pics est effectuée dans des tubes eppendorf de 500 µl. Les fractions sont conservées sur la glace et pour la bande de 18-20 kD du pool 21 SEP positif analysées par spectrométrie de masse MALDI-TOF.

5 (ii) Séquençage N-terminal.

Les fractions ne correspondant qu'à un seul pic de masse ont été analysées par dégradation d'Edman sur un séquenceur (Modèle 477A PERKIN ELMER/Applied Biosystems). Les conditions de séquençage sont celles décrites par le constructeur. Une micro cartouche a été utilisée pour le dépôt des échantillons et les PTH-AminoAcid 10 sont identifiés avec un système HPLC online (Modèle 120A PERKIN ELMER/Applied Biosystems).

Le dépôt de la fraction à séquencer s'est fait en plusieurs dépôts de 15 µl 15 avec des séchages intermédiaires. Le tube ayant contenu le peptide est lavé avec 15 µl d'acide formique 85 % (BAKER). Les séquences d'acides aminés correspondent toujours aux masses mesurées. Les peptides, dont les masses ne correspondent pas à la protéine principale identifiée, ont été séquencés en priorité. De cette manière, il a été possible d'identifier jusqu'à trois protéines dans une bande de gel.

Exemple 9 : Résultats et discussion.

Après HPLC inverse du pool témoin SEP négatif et du pool SEP positif, 20 l'activité toxique de chaque fraction d'élution a été déterminée en utilisant le test MTT. Seule la fraction 21 du pool SEP positif présente une activité toxique *in vitro*. La fraction 21 du pool témoin SEP négatif ne présente aucune activité toxique. L'activité 25 toxique de la fraction 21 du pool SEP positif a été confirmée *in vitro* par FACS, comme décrit dans la demande de brevet WO 98/11439 sur des cellules astrocytaires murines.

Le contenu protéique de la fraction 21 du pool témoin SEP négatif et du pool SEP positif a été observé après séparation sur gel SDS-TRICINE 16% et coloration du gel au zinc/imidazole. Des protéines de poids moléculaires apparents élevés ont été trouvées dans les deux fractions. Par contre cinq bandes différentes et de 30 poids moléculaires apparents faibles ne sont visibles que dans la fraction 21 du pool SEP positif (bandes 8, 14, 18 et 20 kD). A chaque bande correspond au moins une protéine et des variants desdites protéines qui ont un poids moléculaire apparent proche

de celui de la protéine native. Ces séquences variantes présentent un pourcentage d'homologie ou d'identité avec les séquences natives d'au moins 70%, de préférence d'au moins 80% et avantageusement d'au moins 98 %.

Les protéines d'intérêt de la fraction 21 du pool SEP positif ont ensuite été 5 analysées par spectrométrie de masse et/ou séquençage et recherche d'homologie dans les banques de données. Les résultats montrent la présence de cinq bandes de protéines migrant entre 22 et 5 kD dans la fraction 21 du pool SEP positif et des variants desdites protéines.

Ces protéines sont le fragment C-terminal du Perlecan, qui commence à 10 l'acide aminé 3464 et se termine à l'acide aminé 3707 de la séquence protéique complète, identifiée dans l'identificateur de séquences SEQ ID N° 2, le précurseur de la protéine plasmatique de liaison au rétinol dont la séquence est donnée en SEQ ID N° 4, le précurseur de l'activateur du ganglioside GM2 identifié en SEQ ID N° 8, la calgranuline B identifiée en SEQ ID N° 17 et la saposine B représentée en SEQ ID N° 15 24. Comme décrit ci dessus des homologues ou variants desdites protéines ont également été identifiés par séquençage. Ces séquences protéiques homologues ou variantes sont le produit de mutations au niveau des gènes codant pour lesdites protéines. A titre d'exemple, la SEQ ID N° 9 présente 99 % d'homologie ou d'identité 20 avec la SEQ ID N° 8 du précurseur de l'activateur du ganglioside GM2 et le fragment de SEQ ID N° 9 qui commence à l'acide aminé 34 et se termine à l'acide aminé 202 présente 98,88 % d'homologie ou d'identité avec le fragment correspondant de la protéine native identifiée en SEQ ID N° 8.

Exemple 10 : Mise en évidence des protéines dans un échantillon urinaire.

Des échantillons d'urine provenant d'un individu SEP négatif et d'un patient SEP positif ont été prélevés. Ces échantillons d'urine ont été purifiés selon le protocole décrit précédemment. Les fractions d'élution finales 21 ont été analysées séparément par spectrométrie de masse. Le profil de masse de chaque fraction correspondant à chaque échantillon d'urine a été comparé au profil de masse obtenu 30 pour les protéines identifiées dans les exemples précédents. Les résultats montrent que pour l'échantillon d'urine provenant du patient SEP positif les masses correspondent aux molécules (i) fragment C-terminal du Perlecan, (ii) précurseur de la protéine

activatrice du ganglioside GM2, (iii) calgranuline B et (iv) saposine B identifiées précédemment. Par contre aucune de ces masses n'a été identifiée dans le profil de masse obtenu après analyse de l'échantillon d'urine provenant de l'individu SEP négatif. Le procédé décrit est utilisable comme essai de diagnostic.

5

Exemple 11 : Essai en Western Blot.

Des Western Blot ont été réalisés sur différentes fractions d'urine brute ou purifiée comme décrit dans l'exemple 2. Des échantillons d'urine provenant d'individus sains et de patients atteints de sclérose en plaques sont testés en parallèle.

10 Les échantillons sont déposés sur un gel d'électrophorèse permettant de séparer les différentes protéines en fonction de leur masse moléculaire sous l'action d'un champ électrique. Les Western Blot sont réalisés après transfert des protéines du gel sur une membrane. Pour révéler les protéines transférées, la membrane est saturée en tampon de saturation, puis incubée avec un anticorps directement marqué à la phosphatase

15 alcaline. L'anticorps utilisé est un anticorps anti-calgranuline (anticorps monoclonal de souris, clone CF 145 sous-type IgG 2b commercialisé par la société Valbiotech : référence MAS 696p lot PC96G696). Le substrat de l'enzyme est le dichlorure de 3,3'-
(1,1'-biphényl)4,4'diazonium et 2-naphtalenyl phosphate de sodium (commercialisé sous la dénomination β Naphtyl acid phosphate Sigma réf. N7375 et α dianisine Tetrazotized D3502) est ajouté pour la révélation des bandes et la visualisation des protéines liées à l'anticorps. Une molécule de masse moléculaire apparente d'environ 14 000 est révélée dans les urines purifiées de patients atteints de SEP, avec un signal relativement intense. Cette protéine correspond à la calgranuline B (masse moléculaire apparente : 14 kD). Par contre, aucun signal n'est observé à partir d'urine d'individus

20 sains. Cette observation confirme la présence de cette protéine spécifiquement dans les urines de patients atteints de SEP et la mise en œuvre d'un procédé de détection

25 utilisant un anticorps reconnaissant la protéine.

Exemple 12 : Production d'anticorps monoclonaux.

30 La production d'anticorps monoclonaux par ascite impose une compatibilité du système H-2 entre l'hybridome et la souris productrice. 20 souris femelles Balb/c, âgées de 6 semaines, subissent une injection de 0.5ml de Pristane (2-6-

10-14 acide tétraméthylpentadécane) dans leur cavité péritonéale, pour la production d'ascite (Porter et al., 1972). Une semaine à 10 jours plus tard, 5.10^6 à 10.10^6 hybridomes dilués dans 0.5ml de tampon stérile NaCl 0,145M, Na₂HPO₄ 10 mM, KCl 2.7 mM, KH₂PO₄ 1.5 mM à pH 7.4. sont injectés par voie intrapéritonéale. L'ascite apparaît une à deux semaines plus tard. Les liquides d'ascites présents dans la cavité péritonéale sont alors recueillis avec une seringue après incision du péritoine. Le liquide recueilli est centrifugé à 3000g pendant 15 minutes à température ambiante, filtré sur gaze pour éliminer le gras, puis tamponné en ajoutant 1/20^{ème} de son volume de tris-HCl 1M à pH 8.0. Cette méthode permet d'obtenir des quantités d'anticorps 10 fois supérieures à celles obtenues par culture d'hybridomes.

Les immunoglobulines présentes dans le liquide d'ascite sont relarguées par les sels (sulfate d'ammonium ou sulfate de sodium). Le liquide d'ascite est précipité par le sulfate d'ammonium 40%. Après 20 minutes au froid la solution est centrifugée 15 minutes 8000g à 4°C. Le précipité est lavé et resuspendu à froid dans une solution de sulfate d'ammonium 40% puis de nouveau centrifugé. Le nouveau précipité enrichi en IgG est remis en solution dans du tampon PBS et dialysé la nuit contre le tampon Tris-HCl 25 mM, NaCl 150 mM pH 7,4. Parallèlement une colonne d'agarose-Protéine A (ou protéine G) (commercialisée sous forme lyophilisée, Pierce) est lavée extensivement avec le tampon Tris-HCl 25 mM, NaCl 150mM pH7,4. La solution enrichie en IgG est déposé sur la colonne puis la colonne est lavée. Les IgG retenues par la colonne sont élues à pH acide (glycine 200 mM pH 2.8). Les fractions élues sont neutralisées avec un volume de Tris-Base 1M pH 10.5. Le contenu en immunoglobulines de chaque fraction recueillie est quantifiée par lecture d'absorbance à 280 nm ($e 1\%, 1\text{cm} = 14.0$ Prahl et Porter 1968). Les fractions riches sont poolées. Le degré de purification des IgGs poolées est analysé par électrophorèse en gel d'acrylamide en présence de SDS. Les IgGs purifiées sont dialysées une nuit contre le tampon Tris-HCl 25 mM, NaCl 150mM pH7,4, filtrées stérilement, aliquotées et conservées à -20°C. leur concentration finale est déterminée par lecture de l'absorbance à 280 nm ou par dosage micro-BCA. Les peptides immunogènes référencés SEQ ID N° 58, SEQ ID N° 54, SEQ ID N° 55, SEQ ID N° 56, SEQ ID N° 57, SEQ ID N° 58, SEQ ID N° 59 et SEQ ID N° 65 ont été utilisés pour la production d'anticorps monoclonaux, selon le protocole décrit ci dessus. Mais, il est à la portée de l'homme du

métier de définir d'autres protocoles pour la production d'anticorps monoclonaux, par exemple à partir des techniques décrites par Köhler et Milstein et par Galfre G. *et al.* précédemment cités ou des techniques dérivées de celles ci.

Production de protéines recombinantes et d'anticorps polyclonaux et
5 monoclonaux.

Protéines recombinantes :

Les protéines recombinantes GM2AP (SEQ ID NO :73) et Saposine B (SEQ ID NO :74) utilisées pour réaliser la gamme étalon de cette étude ont été produites en système procaryote et purifiées à partir des clones de ces deux protéines 10 obtenus dans notre laboratoire en utilisant les méthodes et protocoles bien connus de l'homme de l'art.

Anticorps anti-GM2AP ou anti-Saposine B :

Les anticorps anti-GM2AP ou anti-Saposine B utilisés pour réaliser l'étude ont été soit produits dans notre laboratoire ou donnés généreusement.
15 Des anticorps polyclonaux anti-Saposine B et anti-GM2AP (Li *et al.*, Glycoconjugate, 1984) ont été utilisés pour l'étude (cf les exemples ci-dessous) : ils sont dénommés SAP84 et GM2AP84.

Des anticorps polyclonaux anti-GM2AP ou anti-Saposine B ont été produits et purifiés dans le laboratoire en utilisant les protocoles et méthodes bien connus de l'homme de l'art : 50 µg de protéine GM2AP ou Saposine B procaryote achetée ont été injectés à des lapins aux jours J0, J28 et J56 ; deux injections de rappel ont été réalisées une fois par mois pendant deux mois consécutifs. Les deux anticorps polyclonaux anti-GM2AP et deux anticorps polyclonaux anti-Saposine B ont ainsi été obtenus et leur spécificité vis-à-vis de la protéine recombinante a été vérifiée par 25 Western blot et par Elisa.

Des anticorps polyclonaux anti-peptides GM2AP ou Saposine B ont été produits et purifiés dans le laboratoire en utilisant les protocoles et méthodes bien connus de l'homme de l'art : 75 µg de peptides GM2AP ou Saposine B définis, produits et couplés à KLH dans notre laboratoire ont été injectés aux jours J0, J28 et 30 J56 ; plusieurs boosts ont été réalisés une fois par mois pendant 5 mois consécutifs avec injection de 75 µg à chaque fois. Quatre anticorps polyclonaux anti-peptides GM2AP, quatre anticorps polyclonaux anti-peptides Saposine B et quatre anticorps

polyclonaux de lapins anti-peptides MRP14 ont ainsi été obtenus et leur spécificité vis-à-vis de la protéine recombinante a été vérifiée par Western blot et par Elisa. La séquence des peptides GM2AP, Saposine B et MRP14 choisis sont décrites dans les figures de 1 à 3.

5 Il a été obtenu :

- un anticorps anti-mélange de deux peptides de 13 et 15 acides aminés de GM2AP : 189-190 ; un anticorps anti-peptide de 18 acides aminés de GM2AP : 191-192 (cf. Figure 1),

10 - un anticorps anti-mélange de deux peptides de 13 et 19 acides aminés de MRP14 : 193 ; un anticorps anti-peptide de 17 acides aminés de MRP14 : 195-196 (cf. Figure 2),

- un anticorps anti-mélange de trois peptides de 12, 15 et 15 acides aminés de Saposine B: 74-75 ; un autre anticorps anti-mélange de 3 peptides de 12, 15 et 15 acides aminés de Saposine B : 72-73 (cf. Figure 3).

15 Des anticorps monoclonaux anti-fraction native ont été produits et purifiés dans le laboratoire en utilisant les protocoles et méthodes bien connus de l'homme de l'art. La « fraction native » correspond à la fraction d'élution cytotoxique obtenue à partir du pool des 80 litres d'urine de patients SEP et après purification. C'est la dernière fraction d'élution qui contient les trois protéines GM2AP, Saposine B, 20 MRP14. 30 µg de cette fraction de purification ont été injectés à trois souris aux jours J0, J14, J28 et le prélèvement a été effectué à J38. Après « screening » et fusion cellulaire, protocoles connus de l'homme de l'art pour l'établissement d'hybridomes et d'anticorps monoclonaux, les hybridomes ont été ré-injectés à la souris et le liquide d'ascite a été récupéré 10 jours après. Les anticorps ont été purifiés sur colonne 25 sépharose-Protéine A et la spécificité vis-à-vis de la fraction utilisée pour l'immunisation a été vérifiée par Western blot et par Elisa. Ainsi quatre anticorps monoclonaux ont été obtenus : 19C1A7, 3D3F9, 18C8C5 et 7D12A8.

Exemple 13 : Dosage des protéines MRP14 dans les urines par technique
30 ELISA.

Les protéines MRP14, MRP8 et l'hétérocomplex MRP8/14 ont été dosés dans des urines humaines en utilisant (i) soit une technique de dosage Elisa selon le

procédé connu de l'homme de l'art et en utilisant les anticorps anti-MRP décrits dans les exemples précédents ; (ii) soit le kit 'MRP Enzyme Immunoassay' commercialisé par BMA Biomedicals AG, Augst, Switzerland, en utilisant les anticorps du kit, le protocole étant réalisé suivant la notice du kit..

5 Déttection de MRP14 et MRP8/14 dans des urines.

Les dosages a été réalisés à partir de 17 urines d'individus issus de la population active (TS), de 27 urines de patients atteints de sclérose en plaques (SEP) et de 7 urines de patients atteints d'autres maladies neurologiques (AMN).

10 - La figure 4 illustre les taux de MRP8 dosés dans ces urines : alors que la concentration en MRP8 est quasiment nulle dans les urines AMN, il n'y a pas vraiment de différence de distribution entre les urines TS et SEP. Notons cependant que les différences observées sont quasiment négligeables car les concentrations dosées sont extrêmement faibles.

15 - La figure 5 illustre les taux de MRP14 dosés dans les mêmes urines : alors qu'il n'y a pas vraiment de différences de distribution des concentrations entre les urines TS et AMN, les concentrations sont plus élevées dans certaines urines SEP.

20 - La figure 6 illustre les taux d'hétérodimère MRP8/14 dosés dans les mêmes urines :alors qu'il n'y a pas vraiment de différence entre les concentrations des urines TS et AMN, on observe des plus fortes concentrations dans certaines urines SEP, correspondant peut-être à une sous population de patients SEP caractérisée par une activité de la maladie. MRRP8/14 dosé dans les urines est un marqueur de l'activité de la maladie SEP caractérisée par un pic d'inflammation).

25 - La figure 7 récapitulative confirme qu'il n'y a pas de différence significative de concentration en MRP8 et en MRP14 entre les urines TS, AMN et SEP, alors qu'une faible différence de concentration en MRP8/14 est observée entre ces urines, cette concentration étant plus élevée en moyenne dans les urines SEP et étant un marqueur de l'activité de la maladie (pic d'inflammation).

Exemple 14 : Protocoles ELISA utilisés pour le dosage des protéines
30 GM2AP et Saposine B.

Les protéines GM2AP ou Saposine B ont été dosées dans des urines humaines en utilisant des anticorps polyclonaux anti-GM2AP ou anti-Saposine B ? en

suivant le protocole Elisa décrit par Gardas et al. (Glycoconjugate Journal 1, 37-42, 1984). Les principales étapes sont brièvement décrites ci-dessous :

A chaque étape, les puits d'une microplaqué de 96 puits sont remplis avec 200 µl de la solution désignée. Les puits sont d'abord « coatés » avec une solution de GM2AP (protéine recombinante procaryote) diluée à 50 ng/ml dans un tampon carbonate-bicarbonate, pH 9,6. Après incubation une nuit à 4°C, la solution est éliminée et les puits sont lavés quatre fois avec du tampon PBS pH 7,4 contenant du Tween-20 0,05% (PBS-Tween). Les microplaques ainsi coatées sont stockées à 4°C pendant environ 2 semaines.

Les échantillons d'urine à trois dilutions différentes (20x, 40x et 80x ou d'autres dilutions appropriées) sont incubés avec une dilution appropriée de l'anticorps polyclonal de lapin anti-GM2AP ou anti-Saposine B pendant une nuit à 4°C. Une série de dilutions standard d'une protéine recombinante allant de 2,0 à 62,5 ng/ml est utilisée pour réaliser la gamme étalon et sont traitée de la même façon. Toutes les dilutions sont faites en tampon PBS-Tween contenant 1 mg/ml d'ovalbumine. Ainsi, 0,2 ml de chaque solution incubée est ajoutée dans des puits « coatés » en duplicité et les plaques sont laissées pendant 2 heures à température ambiante. Les puits sont alors lavés quatre fois en PBS-Tween et remplis encore avec une solution d'anticorps de chèvre anti-IgG de lapin couplés à la peroxidase et diluée environ 1200 fois. Après une incubation de 2 heures à température ambiante, les puits sont lavés quatre fois en PBS-Tween et remplis à nouveau avec le réactif de coloration. Le réactif de coloration consiste en 100 µg d'acide 2,2'-azino-di-(3-éthylbenzothiazoline) sulfonique et 10µl de 30% de peroxyde d'hydrogène pendant une heure à température ambiante et le degré de coloration de chaque micropuits est estimé par lecture d'absorbance à 405 nm.

Une courbe standard est construite en mettant en abscisse la concentration de GM2AP de la gamme étalon où de Saposine B avec une échelle logarithmique et en ordonnant le pourcentage d'absorbance avec une échelle linéaire. Le pourcentage d'absorbance de l'échantillon est le rapport d'absorbance entre l'échantillon d'urine et le contrôle qui contient seulement l'antisérum, sans l'antigène soluble.

Une solution de protéine recombinante GM2AP produite en système procaryote, et de concentration 3 mg/ml est diluée en tampon carbonate 50 mM, pH 9,6 et 50µl sont ajoutés dans chaque puits d'une microplaqué à 96 puits, soit 50µl par puits

d'une solution à 0,5 µg/ml. Les plaques ainsi préparées sont incubées une nuit à température ambiante. L'anticorps polyclonal anti-GM2AP produit dans le laboratoire (lapin 79) a été purifié et dilué en tampon PBS-Tween 0,05% en présence de sérum de cheval 10%. Cette solution est diluée au 1/8000^{ème}. La solution est utilisée pour réaliser 5 une gamme étalon avec 8 points de gamme couvrant les concentrations de 0 à 500 ng/ml. Une préincubation est réalisée pendant une nuit à température ambiante entre 100 µl d'anticorps et 100 µl d'échantillon d'urine à doser ou de solution protéine recombinante GM2AP ou Saposine B servant pour la gamme étalon. Après lavage de la microplaqué en PBS-Tween, 50µl du mélange d'incubation sont ajoutés par puits, puis 10 incubés pendant deux heures à température ambiante. La microplaqué est de nouveau lavée en PBS-Tween, puis 50 µl d'anticorps anti-IgG de lapin couplé à la peroxidase et dilués au 1/5000 sont ajoutés dans chaque micropuits de la plaque et incubés pendant deux heures à température ambiante. Après de nouveaux lavages de la microplaqué, 15 100µl d'OPD sont ajoutés dans chaque puits et incubés pendant 20 minutes à température ambiante. La coloration de chaque puits, proportionnelle à la concentration de GM2AP ou de Saposine B reconnue par l'anticorps spécifique utilisé, est estimée par lecture d'absorbance.

Une solution de protéine recombinante GM2AP ou Saposine B produite 20 en système procaryote, et de concentration 3 mg/ml est diluée en tampon carbonate 50 mM, pH 9,6 et 50µl sont ajoutés dans chaque puits d'une microplaqué à 96 puits, soit 50µl par puits d'une solution à 1,5 µg /ml. Les plaques ainsi préparées sont incubées une nuit à température ambiante. Les anticorps polyclonaux anti-peptides GM2AP produits dans le laboratoire (lapin 190 et lapin 191) purifiés sont utilisés seuls ou en 25 mélange dilués au 1/1000 pour chacun en tampon PBS-Tween 0,05% en présence de sérum de cheval 10%. La gamme étalon est réalisée en utilisant de la protéine recombinante procaryote GM2AP ou Saposine B diluée de façon à couvrir la gamme de concentration 0 à 1500 ng/ml avec 8 points. 100 µl d'anticorps (un anticorps ou les deux ensemble) sont pré-incubés en présence de 100µl d'échantillon d'urine à tester ou 30 de solution GM2AP ou Saposine B recombinante, pendant une nuit à température ambiante. Après lavage de la microplaqué en PBS-Tween, 50µl du mélange d'incubation est ajouté par puits puis incubés pendant deux heures à température

ambiante. La microplaqué est de nouveau lavée en PBS-Tween, puis 50 µl d'anticorps anti-IgG de lapin couplé à la peroxydase, dilués au 1/5000, sont ajoutés dans chaque micropuits de la plaque et incubés pendant deux heures à température ambiante. Après lavage de la microplaqué, 100µl d'OPD sont ajoutés dans chaque puits et incubés 5 pendant 20 minutes à température ambiante. La coloration de chaque puits, proportionnelle à la concentration de GM2AP ou Saponine B reconnue par l'anticorps spécifique utilisé, est estimée par lecture d'absorbance.

Exemple 15 : Dosage des protéines GM2AP dans les urines.

10 La protéine GM2AP a été dosée dans les urines de 22 patients atteints de sclérose en plaques (SEP), 5 patients atteints d'autres maladies neurologiques (OND) et 9 individus choisis parmi la population active et recueillies pendant une visite médicale (Healthy), en suivant le protocole Elisa décrit ci-dessous, utilisant des anticorps polyclonaux anti-GM2AP. Les patients SEP sélectionnés pour cette étude sont des 15 patients tout azimut, c'est-à-dire avec différents stades et profils de la maladie, et différents traitements, etc...

Les résultats du dosage sont rapportés dans la figure 8. Alors que seulement 0/5 urines OND et 2/9 urines dites 'Healthy' présentent une concentration en 20 GM2AP supérieure à 200 ng/ml, 10/22 (soit 45%) présentent une concentration supérieure à 200 ng/ml.

Ces résultats indiquent que si la protéine GM2AP est présente en très faible concentration (<400 ng/ml) dans les urines d'individus de la population active, elle est présente en plus forte concentration dans les urines de patients SEP. Cependant 25 12 urines SEP présentent également des taux faibles de GM2AP. Parmi ces 12 patients, 10 sont en traitement. Les fortes concentrations urinaires de GM2AP semblent être un marqueur de la pathologie SEP, et plus précisément un marqueur d'un stade ou d'une forme de la maladie, de l'activité de la maladie, et est certainement influencé par tout traitement en cours. Notons que deux individus de la population active ont des concentrations élevées de GM2AP (ces deux cas ont été inclus volontairement dans 30 l'étude, car ils présentaient tous deux une activité gliotoxique dans leur urines contrairement aux autres individus de cette même catégories). Il est impossible de savoir s'il s'agit d'individus sains, ou atteints d'une pathologie, ou des individus

atteints d'une sclérose en plaques car les échantillons des individus dits « Healthy » ont été prélevés de manière anonyme, sans connaissance du dossier clinique.

Des concentrations urinaires plus élevées de GM2AP sont détectées dans les urines de patients SEP ; une concentration élevée de GM2AP peut être alors un marqueur de la pathologie SEP, et plus précisément d'une forme de la maladie, d'un stade de la maladie, d'une période d'activité, et peut être influencée par tout traitement en cours. Ces concentrations urinaires élevées en GM2AP peuvent également avoir une valeur prédictive d'un début d'aggravation de la maladie, ou d'une SEP benigne en début d'évolution, etc

10 Les valeurs absolues des concentrations GM2AP détectées dans les urines sont dépendantes de l'affinité et de la spécificité de l'anticorps utilisé, mais d'une façon générale, la tendance entre les trois groupes d'individus est conservée quelque soit l'anticorps utilisé.

15 Exemple 16 : Dosage des protéines Saposine B dans les urines.

La protéine Saposine B a été détectée dans les mêmes échantillons d'urines que ceux utilisés pour l'étude de la détection de GM2AP. Les dosages ont été réalisés en parallèle avec ceux du GM2AP, dans une même étude, en suivant le protocole Elisa décrit ci-dessous, utilisant des anticorps polyclonaux anti-Saposine B.

20 Les résultats du dosage Saposine B sont reportés dans la Figure 9. 0/5 urines OND et 2/9 urines Healthy présentent une concentration en Saposine B supérieure à 2 µg/ml, alors que 6/22 (soit 27%) présentent une concentration supérieure à 2 µg /ml.

Ces résultats indiquent que la protéine Saposine B est présente dans 25 chaque urine (population dite saine ou population dite malade) à des concentrations non négligeables, c'est-à-dire < 2µg /ml. Ces résultats de dosage sont compatibles avec ceux décrits dans la bibliographie. Cependant même si la Saposine B est présente dans chaque urine, elle semble être présente en plus forte concentration dans certaines urines SEP. Cette augmentation de concentration de saposine B dans les urines Sep est peut-être masquée par la concentration basale de cette protéine à l'état ordinaire. Ainsi les 30 fortes concentrations urinaires de Saposine B semblent être un marqueur de la pathologie SEP. et plus précisément un marqueur d'un stade ou d'une forme de la

maladie, de l'activité de la maladie, et est certainement influencée par tout traitement en cours. La Saposine B dosée seule semble être cependant un marqueur un peu moins discriminant d'une forme ou d'une activité de la maladie que le GM2AP. Notons encore une fois que deux individus de la population active ont des concentrations 5 élevées de Saposine B et que ce sont les deux même individus qui présentaient aussi une forte concentration en GM2AP dans leurs urines.

En conclusion, des concentrations urinaires plus élevées de Saposine B sont détectées dans les urines de patients SEP ; une concentration élevée de Saposine B peut être alors un marqueur de la pathologie SEP, et plus précisément d'une forme de 10 la maladie, d'un stade de la maladie, d'une période d'activité, et peut être influencée par tout traitement en cours. Ces concentrations urinaires élevées en GM2AP peuvent également avoir une valeur prédictive d'un début d'aggravation de la maladie, ou d'une SEP benigne en début d'évolution, etc Mais d'une façon générale, les sortes 15 de concentrations de Saposine B seules semblent être des marqueurs moins discriminants que les fortes concentrations de GM2AP seules.

Les valeurs absolues des concentrations Saposine B détectées dans les urines sont dépendantes de l'affinité et de la spécificité de l'anticorps utilisé, mais d'une façon générale, la tendance entre les trois groupes d'individus est conservée quelque soit l'anticorps utilisé.

20

Exemple 17 : Co-dosage des protéines GM2AP et Saposine B dans les urines.

La Figure 10 reporte les concentrations de GM2AP dosée dans les échantillons d'urine décrites dans la Figure 5 par rapport à la concentration de Saposine 25 B dosée dans ces mêmes échantillons et décrite dans la Figure 6. Dans ce graphe sont reportés les échantillons SEP (losanges foncés) et les échantillons OND et 'Healthy' (losanges blancs).

Sur ce graphe, il apparaît clairement que :

- plus la concentration en GM2AP est élevée dans les urines, plus la 30 concentration en Saposine B est élevée. (Nous avons montré que ce n'est pas un cas général avec d'autres protéines et que cela ne traduit pas une perturbation rénale, avec le dosage de la créatinine en parallèle pour chacun des échantillons testés.) ;

- les concentrations élevées de GM2AP et Saposine B sont caractéristiques des échantillons SEP (à l'exception des deux urines de la population active, mentionnées ci-dessus). Ces concentrations élevées conjointes de GM2AP et Saposine B sont des marqueurs de la pathologie SEP, plus précisément d'une fenêtre de la maladie (quadran à droite et en haut du graphe).

En conclusion, cette analyse confirme que des concentrations urinaires élevées de GM2AP ($>400 \text{ ng /ml}$) et de Saposine B ($>2 \mu\text{g /ml}$) sont co-détectées dans les urines de patients SEP et peuvent représenter des marqueurs de la pathologie SEP, plus précisément d'une forme de la maladie, d'un stade de la maladie, d'une période d'activité, et peuvent être influencée par tout traitement en cours. Il est avantageux de doser les deux protéines en parallèle dans chaque échantillon, et de considérer les deux concentrations.

Dosage de GM2AP et Saposine B dans l'urine de deux patients en cinétique.

15 Patient SEP n°1 - Forme Rémittente Progressive.

Des urines de ce patient ont été prélevées au cours de l'évolution de sa maladie. Le patient a été hospitalisé à J0 pour une poussée. Il a subit à J1 un flash de corticoïdes puis a été suivi dans le temps d'un point de vue clinique (le flash a apporté une amélioration clinique). La figure 11 montre le profil de dosage du GM2AP et de la Saposine B dans ces urines au cours de l'évolution, et la figure 12 montre le profil du produit des deux concentrations en GM2AP et Saposine B, traduisant une co-détection de concentrations élevées. Les concentrations en GM2AP et Saposine B élevées au moment de la poussée et de l'hospitalisation, diminuent progressivement dans le temps après le flash de corticoïdes jusqu'à 90 jours.

25 Patient SEP n°2 - Forme Progressive.

Des urines de ce patient ont été prélevées au cours de l'évolution de sa maladie. Le patient a été hospitalisé à J0 pour une poussée. Il a subit à J1 un flash d'Endoxan puis a été suivi dans le temps d'un point de vue clinique (le flash a apporté une amélioration clinique et à J60, des signes d'aggravation de la maladie ont été observés). La figure 13 montre le profil de dosage du GM2AP et de la Saposine B dans ces urines au cours de l'évolution, et la figure 14 montre le profil du produit des deux concentrations en GM2AP et Saposine B, traduisant une co-détection de concentrations

élevées. Les concentrations en GM2AP et Saposine B élevées au moment de la poussée et de l'hospitalisation, diminuent progressivement dans le temps après le flash d'Endoxan (ou encore appelé cyclophosphamide) jusqu'à 23 jours et semblent augmenter pour devenir élevées à J60, montrant ainsi une parfaite corrélation avec l'évolution des signes cliniques.

Ces résultats confirment que :

- des concentrations fortes de GM2AP et Sapsoine B dans les urines sont des marqueurs de la pathologies SEP, et en particulier la co-détection des fortes concentrations des deux protéines conjointement (traduit par le produit des deux concentrations) ;

- les fortes concentrations de GM2AP et Saposine B dans les urines sont des marqueurs de l'activité de la maladie (ici pendant la poussée) ou sont des marqueurs influencés par les traitements immuno-supresseurs comme les corticoïdes ou l'Endoxan qui abaissent les concentrations.

Cet exemple illustre le fait que ces marqueurs peuvent être utilisés entre autres :

- pour réaliser un suivi thérapeutique d'un patient et évaluer le bénéfice thérapeutique d'un traitement pour un patient donné ; ou

- de prédire une aggravation de la maladie, prédire un pic d'activité, etc...

- de décider une (re)prise thérapeutique anticipée sur les signes cliniques

Exemple 18 : Corrélation entre la détection des protéines MRP14, GM2AP et Saposine B dans les urines et la gliotoxicité mesurée dans ces urines.

Afin de vérifier une corrélation entre la présence de ces protéines seules ou en combinaison dans les urines et la gliotoxicité des urines, ont été dosées en parallèle les concentrations en protéine d'intérêt et la gliotoxicité d'un échantillonage d'urines de patients atteints de sclérose en plaques (SEP), de patients atteints d'autres maladies neurologiques (OND) et d'individus issus de la population active dit « Healthy ». Parmi les patients SEP, on note des patients avec différentes formes et stades de la maladie, sous traitement ou non, à différentes activités de la maladie.

Les protéines MRP, GM2AP et Saposine B ont été dosées dans des urines humaines en suivant les protocoles Elisa décrits ci-dessus. Les dosages analysés dans

cet exemples sont ceux décrits dans les exemples précédents. Chaque échantillon d'urine analysé en Elisa a été analysé par le test MTT pour mesurer la gliotoxicité de chaque échantillon. La gliotoxicité est exprimée en pourcentage de cellules mortes (estimé par colorimétrie en utilisant les sels de tetrazolium) d'une lignée cellulaire astrocytaire murine (CLTT1.1) après 48 heures d'incubation en présence d'urine centrifugée.

La figure 15 représente la concentration en GM2AP en fonction de la gliotoxicité des urines déterminée par test MTT.

22 urines SEP (losanges gris), 5 urines AMN (losanges noirs) et 9 urines dites « Healthy » (losanges noirs) ont été reportés sur le graphe. Ce sont les mêmes urines qui ont été étudiées dans les exemples 15 et 16. On observe que toutes les urines témoins (OND et Healthy) ont des taux en GM2AP faibles (<400 ng/ml) et une gliotoxicité faible (<15%), à l'exception d'une urine témoin Healthy (déjà commentée dans l'exemple 15) pour laquelle on observe une forte concentration en GM2AP et une gliotoxicité.

Les urines SEP sont réparties en trois sous-populations :

- urines à faible concentration en GM2AP (<400 ng /ml) et faible gliotoxicité (<15%),
- urines à faible concentration en GM2AP (<400 ng /ml) et gliotoxicité (>15%), soit essentiellement 3 urines,
- urines à forte concentration en GM2AP (>400 ng /ml) et forte gliotoxicité (>15%).

Ces trois sous populations traduisent peut-être des sous populations SEP, c'est-à-dire différentes formes ou stades de la maladie, différentes activités de la maladie, différents bénéfices thérapeutiques,

Cependant on peut noter que toutes les urines présentant une forte concentration en GM2AP présentent également une forte gliotoxicité.

En conclusion : on observe une corrélation entre concentration urinaire élevée en GM2AP et gliotoxicité (toutes les urines avec une forte concentration en GM2AP sont gliotoxiques (10/10), et toutes les urines avec une faible concentration en GM2AP ne sont pas gliotoxiques (<15%), à l'exception de 3 urines/12 SEP). Ceci traduit l'implication de la protéine GM2AP dans le mécanisme de gliotoxicité, seule ou

en combinaison, sous sa forme naturelle ou modifiée, mais reconnaissable par un anticorps anti-GM2AP. De plus la co-détection d'une forte concentration en GM2AP dans les urines et d'une forte gliotoxicité corrèle avec une sous population de patients atteints de SEP.

5 La figure 16 représente la concentration en Saposine B en fonction de la gliotoxicité des urines déterminée par test MTT.

22 urines SEP (losanges gris), 5 urines AMN (losanges noirs) et 9 urines dites «Healthy » (losanges gris clair) ont été reportés sur le graphe. Ce sont les mêmes urines qui ont été étudiées dans les exemples .15 et 16. On observe que plus les urines 10 sont riches en Saposine B, plus elles sont gliotoxiques. Il y a une corrélation assez nette entre concentration de Saposine B et gliotoxicité des urines.

En conclusion : on observe une corrélation entre concentration urinaire élevée en Saposine B et gliotoxicité. Ceci traduit l'implication de la protéine Saposine 15 B dans le mécanisme de gliotoxicité, seule ou en combinaison, sous sa forme naturelle ou modifiée mais reconnaissable par l'anticorps anti-saposine B utilisé pour le dosage.

La figure 17 représente le produit des concentrations en GM2AP et Saposine B en fonction de la gliotoxicité des urines déterminée par test MTT.

20 Les 22 urines SEP (losanges gris), 5 urines AMN (losanges noirs) et 9 urines dites «Healthy » (losanges gris clair) des exemples 15 et 16 ont été reportés dans la figure 17. La gliotoxicité de ces urines est analysée en fonction du produit des concentrations en GM2AP et Saposine B, c'est-à-dire en fonction de la co-détection des deux protéines dans les urines. On observe très nettement une corrélation entre le 25 produit des deux concentrations GM2AP et Saposine B et la gliotoxicité, bien plus importante qu'en ne considérant qu'une seule protéine. On observe que 5/5 des urines OND ont un produit de concentration GM2AP et Saposine B faible et une gliotoxicité faible ; 8/9 urines « Healthy » ont un produit de concentration GM2AP et SaposineB faible et/ou une gliotoxicité faible. Par contre, on distingue essentiellement trois sous- 30 populations d'urines SEP :

- urines à faible concentration en GM2AP.Saposine B et faible gliotoxicité (<15%),

- urines à forte concentration en GM2AP. Saposine B et forte gliotoxicité (>15%).

Ces deux sous populations traduisent peut-être des sous populations SEP, c'est-à-dire différentes formes ou stades de la maladie, différentes activités de la maladie, différents bénéfices thérapeutiques, Cependant il est très important de noter que toutes les urines présentant une forte concentration en GM2AP et Saposine B, c'est-à-dire ayant conjointement une forte concentration en GM2AP et Saposine B, présentent également une forte gliotoxicité. Les deux sous populations de patients SEP sont d'autant plus marquées et nettes que l'on considère conjointement les trois marqueurs : gliotoxicité, concentration élevée en GM2AP et concentration élevée en Saposine B. Ceci est confirmé à la figure 18.

En conclusion : on observe une corrélation entre concentration urinaire élevée de GM2AP et Saposine B et Gliotoxicité. Toutes les urines avec une forte concentration en GM2AP et Saposine B sont gliotoxiques, et toutes les urines avec une faible concentration en GM2AP et Saposine B ne sont pas gliotoxiques (<15%), à l'exception de 2 urines/22 SEP. Ceci traduit l'implication des deux protéines GM2AP et Saposine conjointement ou en combinaison dans le mécanisme de gliotoxicité, sous leur forme naturelle ou modifiée mais reconnaissable par les anticorps anti-GM2AP et anti-saposine B utilisés pour le dosage. De plus la co-détection d'une forte concentration urinaire en GM2AP et Saposine B et d'une forte gliotoxicité corrèle avec une sous population de patients atteints de SEP (stade, forme, activité, traitement de la maladie ?), par rapport à une autre sous population. Ces trois marqueurs considérés conjointement permettent de discriminer entre deux sous populations de patients SEP.

Evolution de la gliotoxicité et des concentrations en GM2AP et Saposine B en fonction de l'évolution de la maladie de deux patients après et pendant traitement.

La corrélation entre gliotoxicité, forte concentration en GM2AP ET Saposine dans les urines et pathologie SEP a également été confirmée en mesurant ces trois paramètres dans l'urine de deux patients au cours de l'évolution de leur maladie.

Patient n°1 : SEP forme rémittente-progressive, hospitalisé à J0 pour une poussée et ayant reçu un flash de corticoïde à J1. Après le flash, il a montré une amélioration clinique jusqu'à J90 - (cf. figures 11,12).

Patient n°2 : SEP forme progressive, hospitalisé à J0 pour une poussée et ayant reçu un flash d'Endoxan (encore appelé cyclophosphamide) à J1. A J60, il présente de nouveaux des signes cliniques d'aggravation de sa maladie - (cf. figures 13,14).

5 Pour les deux patients, il a été montré :

- une corrélation entre la gliotoxicité urinaire et l'évolution clinique de la maladie (lorsque les signes cliniques sont sévères, la gliotoxicité est élevée ; lorsque les signes cliniques diminuent suite au traitement, la gliotoxicité diminue et devient stationnaire ; lorsque les signes d'aggravation apparaissent après le traitement, la gliotoxicité semble augmenter de nouveau),
- 10 - une corrélation entre le taux de gliotoxicité dans les urines de patients et les concentrations de GM2AP et Saposine B, et
- une corrélation entre les concentrations élevées de GM2AP et Saposine B et l'évolution clinique de la maladie.

15 En conclusion : le dosage des protéines GM2AP ET Saposine B dans les urines est un bon marqueur discriminatif d'une sous population de la SEP (stade, forme, activité, traitement de la maladie). Les protéines GM2AP et/ou Saposine B sont impliquées dans le mécanisme de gliotoxicité, seules ou en combinaison, sous leur forme naturelle ou sous une forme reconnaissable par les anticorps polyclonaux utilisés
20 pour leur dosage. Comme les protéines GM2AP et Saposine sont co-détectées en forte concentration dans les urines gliotoxiques, il est possible que ces deux protéines agissent en combinaison pour induire la gliotoxicité.

Exemple 19 : Analyse immunohistochimique de l'expression des protéines
25 GM2A, SAPB, MRP14 et MRP8 dans un système de culture producteur de gliotoxine in vitro (cultures de monocytes), ainsi que dans le tissu cérébral normal et pathologique de SEP et de témoins.

Protocole : Des cultures de monocytes d'un patient atteint de SEP et d'un témoin sain ont été réalisées en parallèle, selon le protocole présent décrit brièvement.
30 A partir de sang périphérique de ces deux volontaires prélevé sur ACD, les PBMC (Peripheral Blood Mononuclear Cells) sont isolés sur Ficoll en utilisant la technique connue de l'homme de l'art. Les cellules récupérées (au niveau de l'anneau) sont lavées

deux fois en milieu RPMI. Les cellules sont alors énumérées sur Kovas-slide et sont ensemencées en flacon primaire de 25 cm² ou sur lame Labtek (8 cupules) (en permanox) en milieu RPMI supplémenté avec 15% de sérum AB humain à J0. Les cellules sont cultivées sur des lames alvéolées de type « Labtek » afin de disposer d'un support direct pour l'analyse des monocytes qui adhèrent au support et se différencient ultérieurement en macrophages. Pour les lames, 2.10⁶ cellules sont ainsi ensemencées à raison de 0,25 10⁶ cellules/puits. Pour les flacons, 4.10⁶ cellules sont ensemencées à raison de 0,25 10⁶ cellules/puits. A J1, les cellules en suspension sont récupérées et les puits des Labtek ou les flacons sont lavés deux fois en RPMI (au préalable chauffé à 10 37°C) avant de rajouter du milieu RPMI supplémenté avec 5% de sérum AB humain. A J1, J3, J6, J9, J12 ou 14, J15 le milieu de culture est changé ; les surnageants sont prélevés et les cellules fixées sur lames en utilisant les techniques connues de l'homme de l'art. A chaque changement de milieu, au moins deux lames ont été fixées en paraformaldéhyde et conservées pour l'analyse immunohistochimique.

15 Composition du milieu : RPMI (500 ml) avec 15ml de glutamate 200 mM, 5 ml de pyruvate de sodium 100 µM, 5 ml d'acides aminés non essentiels (100x), des antibiotiques penicilline et streptomycine 100 000 U /µl et des anticorps anti-interferon humains à 100 U/µl.

Résultats : Quatre cultures de monocytes *in vitro* ont été ainsi étudiées en 20 cinétique : deux cultures de monocytes issus de sang d'individus contrôles et deux cultures de monocytes issus de patients SEP. A différents temps de la culture (J0, J1, J3, J6, J9, J12,), les surnageants correspondants ont été également récupérés. Une fois la cinétique complétée, les lames correspondant aux différents jours de cultures ont été incubées en présence d'anticorps polyclonaux anti-GM2A, SAP-B, MRP-8 et 25 MRP14. La gliotoxicité de chaque surnageant ainsi récupéré a été estimé par test MTT. La concentration en protéine GM2AP, MRP14 et Saposine B a également été déterminée dans chaque surnageant par protocole Elisa comme décrit dans les exemples 13 et 14.

Les résultats d'immunofluorescence sur cellules fixées sont résumés ci-dessous ; on peut noter :

- une absence d'expression de MRP8 à tous les stades des 2 cultures

- une expression nette de MRP-14 dans la période entre J9 et J15, retrouvée dans les deux cultures, quoique plus forte dans la culture SEP. Cette expression semble corréler une étape de différenciation macrophagique.

5 - une très faible expression (faible intensité et faible nombre de cellules) est observée en début de culture dans la culture témoin et correspond vraisemblablement à la présence physiologique de GM2A dans les lysosomes macrophagiques.

10 - Dans la culture SEP, une expression beaucoup plus nette de GM2A (plus forte intensité et nombre de cellules plus important) est observée, avec un marquage cytoplasmique relativement homogène entre J3 et J6, disparaît à J9 et est à nouveau notée à J14-J15 avec un marquage intense et localisé à la périphérie cytoplasmique, dessinant le contour interne de la membrane plasmique. Ces observations ne sont pas retrouvées dans l'ensemble des lames témoins.

15 L'analyse avec le anticorps anti-SAP-B n'a pas permis d'obtenir un marquage immuno-histochimique interprétable.

20 Dans les cultures de monocytes SEP déjà effectuées, 3/3 ont présenté un pic de gliotoxicité à J9 et 2/3 un pic plus faible à J6. Aucun pic n'étant détecté dans les cultures de monocytes de 2/2 témoins non-SEP analysés en parallèle. De même, le dosage des protéines MRP14, GM2AP et Saposine B dans le surnageant des cultures cellulaires au cours de la cinétique a montré que les protéines SapB et GM2AP sont détectées par Elisa dans les surnageants des monocytes SEP et non dans ceux des monocytes témoins, aux jours J6 et surtout J9 de la culture ; les protéines ne sont pas détectées au-delà de cette cinétique. Notons que les anticorps utilisés pour le dosage peuvent reconnaître les formes physiologiques des protéines, mais également des formes complexées et/ou modifiées.

25 On constate donc que la période J6-J9 pendant laquelle on observe une gliotoxicité la plus importante dans le surnageant, est couverte par la période J3-J15 pendant laquelle on observe une production moins différenciée du témoin négatif de GM2A dans les cellules avec des fluctuations quantitatives et qualitatives de son expression cellulaire (quantité d'expression et localisation cellulaire).

Exemple 20: Technique d'immunohistologie sur coupes de cerveaux en paraffine.

Les coupes histologique préparées en paraffine sont déparaffinées en xylène et alcool avant de subir un prétraitement qui a pour but de démasquer les antigènes ; ce prétraitement peut correspondre à (i) deux fois 5 minutes sous micro-onde (750W) en présence d'un tampon citrate de sodium, acide citrique, (ii) un traitement à l'acide par incubation 15 minutes dans une solution d'acide périodique 1% ou par incubation 5 minutes dans une solution d'acide formique 99%. Les peroxydases endogènes sont ensuite bloquées par incubation des lames 30 minutes en eau oxygénée 1% puis lavage extensif en eau pendant 15 minutes. Le bruit de fond est bloqué en incubant les lames 30 minutes en présence de PBS Triton 0.03%, 10% sérum Donkey (pour les anticorps polyclonaux) ou 10% sérum Goat (pour les anticorps monoclonaux). Un marquage avec l'anticorps primaire est réalisé en appliquant 100 à 200 µl de solution d'anticorps primaire par lame (0.5 à 5 µg /ml selon le titre) dans du PBS Triton 0.03% puis en incubant 2 heures à température ambiante. Les lames sont ensuite rincées 3 fois en PBS-Triton pendant 10 minutes. Un marquage anticorps secondaire est réalisé en utilisant des anticorps biotinylés capables de se fixer spécifiquement aux anticorps primaires, par exemple des anti-IgG de lapin ou anti-IgG de souris dilués dans du PBS-Triton 0.03%. Les lames sont lavées et incubées dans une solution pendant 2 heures (2 µl complexe streptavidine-biotine-peroxydes, 1600 µl PBS-Triton 0.03%). Les lames sont de nouveau lavées avant d'être révélées à l'abri de la lumière dans le tampon A puis rincées à l'eau avant observation microscopique. Tampon A pour 5 lames : 25 ml Tris0.05M pH 7.6, 2.5 ml Imidazole 1M, 15 ml eau stérile, 2 ml DAB 5 mg/ml, 5 ml Nickel d'ammonium 10%, 30 µl H₂O₂ 1%.

Les mêmes anticorps ont été utilisés pour une étude immunohistochimique, selon la technique décrite brièvement ci-dessous, sur lames paraffinées obtenues par coupe au microtome de cerveaux prélevés post-mortem de SEP et de témoins décédés de pathologies non-neurologiques.

Les résultats de l'analyse sont résumés ci-dessous :

Il n'y a pas de marquage des cerveaux « non-SEP » et SEP dans la substance grise et la substance blanche « normale (non lésée) avec les différents anticorps anti- MRP8, MRP14, GM2A. Une réactivité non spécifique n'a pas permis

d'interpréter les résultats avec l'anticorps anti-saposine B dans cette application immunohistochimique.

Par contre on note, dans les zones de plaques des cerveaux SEP :

- une réactivité anti-MRP14 dans les cellules macrophagiques et microgliales, ayant une distribution relativement homogène sur toute l'étendue des zones de démyélinisation (plaques),
- une plus faible (moins fréquente) réactivité anti-MRP8 liée essentiellement aux infiltrats lymphoïdes périvasculaires
- une nette réactivité anti-GM2A dans les macrophages et microgliocytes des zones de plaques, avec une densité particulière dans les zones constituant le « mur glial » en limite périphérique de plaque. Un marquage de quelques astrocytes a aussi été retrouvé dans les zones de démyélinisation.

Ces différentes observations montrent qu'il existe une hyperexpression particulière des protéines MRP-14 et GM2A dans les cultures de monocytes de SEP produisant une activité gliotoxique dans leur surnageant, ainsi que dans les zones définissant des plaques de démyélinisation dans les cerveaux de SEP. Elles témoignent donc de la réalité de la coïncidence entre leur co-expression anormale, la production d'activité gliotoxique et les lésions de démyélinisation.

De plus, leur production anormale dans le contexte de la SEP, dans les cellules macrophagiques sanguines ainsi que dans celles du cerveau, indique qu'il est fondé de réaliser leur dosage dans les fluides biologiques pour corrélérer leur quantité avec l'activité lésionnelle et inflammatoire de la SEP.

Exemple 21 : Mesure de l'activité des cellules T par prolifération des cellules T (Sredni et al., 1981).

Les cellules T sont lavées deux fois en milieu de culture pour éliminer toute trace d'IL2 présente dans le milieu initial de culture. Des lymphocytes B (EBV-LCL) ou des monocytes/macrophages pris comme cellules présentatrices de l'antigène, sont irradiées à 10000 rads, lavées deux fois avec du milieu de culture (RPMI). 2.10^4 cellules T (2.10^5 cellules /ml) et 2.10^4 cellules B autologues irradiées (2.10^5 cellules /ml) sont incubées ensemble en présence d'une gamme de concentration croissante de

l'antigène sous un volume final de 200 µl dans des micropuits. Après 48 heures de culture à 37°C, 1 µCi de 3H-thymidine dans 50 µl de milieu RPMI est ajouté dans chaque puits. Les cellules T, seules à se diviser, incorporent la thymidine tritiée dans l'ADN. Après 18 heures de culture, les cellules de chaque micropuits sont récoltées sur des pastilles de laine de verre par aspiration. Après lyse osmotique des cellules, la radioactivité incorporée dans l'ADN est absorbée sur les pastilles (cell Harvester 530, Inotech). Chaque pastille séchée est placée dans un tube plastique qui contient 2 ml de scintillant ; la radioactivité adsorbée sur chacune des pastilles est quantifiée dans un compteur bêta à scintillation liquide (LKB Rackbeta 1217). Les résultats sont exprimés comme moyenne arithmétique de cpm/culture ('coups par minute').

Exemple 22 : Protocole de détection de l'association entre les peptides et les molécules d'histocompatibilité (approche APC transformées avec un peptide se fixant au CMH I).

1) Matériel :

Les sources de molécules d'histocompatibilité sont actuellement de deux types principaux : les cellules mutantes et les molécules d'histocompatibilité purifiées.

La cellule mutante utilisée est la cellule humaine T2 qui est un variant de la lignée T1 produite par fusion du lymphome T CEM et du lymphome B 721.174 (Salter and Cresswell Embo J 1986, 5: 943-949). Cette cellule qui est dépourvue de transporteurs de peptides contient des chaînes lourdes de molécules de classe I libres de peptides qui vont pouvoir accepter de peptides exogènes.

Des molécules d'histocompatibilité de classe I purifiées par chromatographie d'affinité à partir de lignées de cellules B humaines transformées par l'EBV peuvent également être utilisées. Dans ce cas les peptides endogènes doivent être éliminés par un traitement avec de l'urée 1.5 M et de la soude 12.5 mM (pH 11.7) pendant 1 heure à 4°C, suivi de leur élimination par une colonne de désalage (PDLO, Pharmacia). Les molécules d'histocompatibilité sont immédiatement remises en présence des peptides à tester dans un tampon PBS avec 0.05% Tween 20, 2 mM EDTA, 0.1% NP40 et 6 mM CHAPS, en présence de 2 µg/ml B2m pour faciliter la réassociation (Gnjatic et al., Eur J Immunol 1995 25 : 1638-1642).

Les peptides testés ont en général 8 à 10 résidus, parfois 11 ou 12. Ils ont été synthétisés par Néosystems (Strasbourg), ou par Chiron mimotopes (Victoria, Australie). Ils sont utilisés à des concentrations variant de 100 µM à 0.1 nM.

2) Protocole de l'assemblage (Connan et al., Eur J Immunol 1994, 24 : 5 777 ; Couillin et al. Eur J Immunol 1995, 25 : 728-732).

Des aliquotes de 8.105 cellules dans un volume de 64 µl, répartis dans des tubes microfuge Eppendorf, sont mis en présence d'un tampon de lyse contenant 10 mM PBS, pH 7.5 1% NP40, des inhibiteurs de protéases (1 mM PMSF, 100 µM iodoacétamide, 2 µg /ml aprotinine, 10 µM leupeptine, 10 µM pepstatine et 10 µg/ml inhibiteur de trypsine). La lyse se fait en présence des peptides à tester pendant 30 minutes ou 1 heure à 37°C. Après élimination du matériel non solubilisé par une centrifugation à 15 000 tours /minute à 4°C, le surnageant est additionné de 140 µl de PBS contenant 0.05% de Tween 20, 3 mM d'azide de sodium, 1 mM PMSF et 10 mg /ml d'albumine bovine. Chaque échantillon est incubé pendant 20 heures à 4°C dans 2 puits d'une plaque à microtitration de type Nunc, Maxisorb, préalablement recouverts d'un anticorps monoclonal (10 µg /ml en PBS) qui reconnaît les molécules d'histocompatibilité ayant une(des) conformation(s) conforme(s) pour la présentation de peptides et semblable(s) à celle(s) présente(s) à la surface des cellules. La plaque recouverte d'anticorps est préalablement saturée par de l'albumine bovine à 10 mg /ml dans du PBS-Tween avant la mise de l'échantillon. Le second anticorps qui permet la détection de l'assemblage des molécules d'histocompatibilité est dirigé contre la B2m. Il est couplé soit à la biotine (NHS-LC biotin, Pierce) soit à la phosphatase alcaline (P-552, Sigma) et est incubé à 2 µg /ml pendant une heure à 37°C. Dans le cas de l'emploi de la biotine, une incubation de 45 minutes à 20-25°C avec de la streptavidine couplée à la phosphatase alcaline (E-2636, Sigma) est réalisée. L'activité de la phosphatase alcaline est mesurée en utilisant comme substrat le 4-méthyl-umbelliféryl-phosphate (M-8883, Sigma) à 100 µM dans de la diéthanolamine 50 mM, pH 9.5 avec du MgCl₂ 1 mM. La lecture est faite à 340/460 nm à l'aide d'un cytofluorimètre.

3) Stabilité des complexes HLA/peptides :

La stabilité des complexes précités a été étudiée car elle conditionne la bonne présentation de l'antigène et l'induction de la réponse T. A cet effet, on a utilisé soit du HLA purifié, soit le lysat de la cellule T2. Avec le HLA purifié, on a éliminé les

peptides endogènes (comme décrit en 2)) puis on l'a mis en présence du peptide à tester en tube Eppendorf à 37°C, pendant des temps variables de quelques minutes à plusieurs jours. La phase suivante d'incubation sur plaque de 96 puits (comme décrit en 2) avec l'anticorps anti-HLA se fait pendant une heure à 37°C. La révélation est effectuée de manière classique. Avec le lysat de la cellule T2, toutes les incubations sont également faites à 37°C, après ajout de tous les inhibiteurs de protéases.

REVENDICATIONS

1. Utilisation d'au moins un polypeptide comprenant au moins un fragment d'une protéine pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29, et les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à SEQ ID N° 8 et SEQ ID N° 10 à SEQ ID N° 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.
2. Utilisation d'au moins deux polypeptides en combinaison, lesdits polypeptides comprenant chacun au moins un fragment d'une protéine, pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à une séquence peptidique choisie parmi SEQ ID N° 1 à SEQ ID N° 8 et SEQ ID N° 10, SEQ ID N° 29, et les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à SEQ ID N° 8 et SEQ ID N° 10 à SEQ ID N° 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine

plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

3. Utilisation d'au moins un polypeptide comprenant au moins un fragment d'une protéine pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 8, SEQ ID N° 17 et SEQ ID N° 24 et les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 8, SEQ ID N° 17 et SEQ ID N° 24.

4. Utilisation selon la revendication 3, de cinq polypeptides en combinaison, lesdits polypeptides comprenant chacun au moins un fragment d'une protéine, pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 8, SEQ ID N° 17 et SEQ ID N° 24 et les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 8, SEQ ID N° 17 et SEQ ID N° 24.

5. Utilisation selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la séquence peptidique dudit polypeptide comprend une séquence choisie parmi l'une quelconque des SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 8, SEQ ID N° 17 et SEQ ID N° 24.

6. Utilisation selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la séquence peptidique dudit polypeptide consiste en une séquence choisie parmi l'une quelconque des SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 8, SEQ ID N° 17 et SEQ ID N° 24.

7. Utilisation d'un fragment polypeptidique défini dans la revendication 1 ou dans la revendication 3 pour la préparation d'un peptide immunogène, caractérisé en ce que ledit peptide comprend tout ou partie d'au moins une des séquences référencée SEQ ID N° 58 à 65.

8. Utilisation d'au moins un fragment nucléotidique, pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, selon laquelle ledit fragment nucléotidique est choisi parmi des fragments qui codent pour au moins un fragment d'une protéine, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29 et les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à SEQ ID N° 8 et SEQ ID N° 10 à 29, les fragments complémentaires desdits fragments et les fragments qui codent pour les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisie parmi le perlecan, le précurseur de la protéine plasmique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

9. Utilisation selon la revendication 8, caractérisée en ce que ledit fragment nucléotidique code pour ladite protéine.

10. Utilisation selon la revendication 9, caractérisée en ce que la séquence peptidique de ladite protéine à l'état natif consiste en une séquence choisie parmi l'une quelconque des SEQ ID N° 1 à 8 et SEQ ID N° 10 à 29 et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

11. Utilisation d'au moins un fragment nucléotidique pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à déetecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune selon laquelle ledit fragment est un fragment d'une séquence nucléique choisie parmi l'une quelconque des SEQ ID N° 30, SEQ ID N° 31, SEQ ID N° 32, SEQ ID N° 33, SEQ ID N° 34, SEQ ID N° 35, SEQ ID N° 36, SEQ ID N° 37, SEQ ID N° 38, SEQ ID N° 39, SEQ ID N° 40, SEQ ID N° 41, SEQ ID N° 42, SEQ ID N° 43, SEQ ID N° 44, SEQ ID N° 45, SEQ ID N° 46 et SEQ ID N° 47, SEQ ID N° 48, SEQ ID N° 49 et SEQ ID N° 50, SEQ ID N° 51, SEQ ID N° 52, SEQ ID N° 53, SEQ ID N° 54, SEQ ID N° 55, SEQ ID N° 56, SEQ ID N° 57, SEQ ID N° 67, SEQ ID N° 66, SEQ ID N° 69, SEQ ID N° 70 et SEQ ID N° 71 et leurs séquences complémentaires.

12. Utilisation d'un ligand spécifique d'un polypeptide ou d'un fragment nucléotidique selon l'une quelconque des revendications précédentes pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à déetecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune.

13. Utilisation selon l'une quelconque des revendications précédentes, caractérisée en ce que la maladie dégénérative et/ou auto-immune est la sclérose en plaques.

14. Procédé pour déetecter au moins une protéine associée à une maladie dégénérative et/ou auto-immune, dans un échantillon biologique, caractérisé en ce que l'on met en contact l'échantillon biologique avec au moins un ligand spécifique d'au moins un polypeptide, ledit polypeptide comprenant au moins un fragment d'une protéine et ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29 et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 %

d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à SEQ ID N° 8 et SEQ ID N° 10 à 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de 5 l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B, puis on détecte la formation d'un complexe entre ledit polypeptide et ledit ligand.

15. Procédé selon la revendication 14, caractérisé en ce que ledit ligand est un anticorps monoclonal, un anticorps polyclonal, un récepteur, un substrat d'activité enzymatique ou une enzyme dont ledit polypeptide est un cofacteur.

10 16. Procédé pour détecter au moins un ligand associé à une maladie dégénérative et/ou auto-immune, dans un échantillon biologique, caractérisé en ce que l'on met en contact l'échantillon biologique avec au moins un polypeptide comprenant au moins un fragment d'une protéine, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, 15 SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5 SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29, les séquences peptidiques qui 20 présentent au moins 70 % d'identité, de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à SEQ ID N° 8 et SEQ ID N° 10 à SEQ ID N° 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même 25 famille de protéines choisie parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B, puis on détecte la formation d'un complexe entre ledit polypeptide et ledit ligand.

30 17. Procédé selon la revendication 16, caractérisé en ce que le ligand est un anticorps, un récepteur, un substrat d'activité enzymatique ou une enzyme dont ledit polypeptide est un cofacteur.

18. Procédé selon l'une quelconque des revendications 14 à 17, caractérisé en ce que la séquence dudit polypeptide comprend une séquence peptidique choisie parmi l'une quelconque des SEQ ID N° 1 à 8 et SEQ ID N° 10 à 29.

19. Procédé selon l'une quelconque des revendications 14 à 17, caractérisé en ce que la séquence dudit polypeptide consiste en une séquence peptidique choisie parmi l'une quelconque des SEQ ID N° 1 à 8 et SEQ ID N° 10 à 29.

20. Procédé selon l'une quelconque des revendications 14 à 19, caractérisé en ce que l'échantillon biologique est l'urine, le liquide céphalo-rachidien ou le sérum.

21. Procédé selon l'une quelconque des revendications 14 à 20, caractérisé en ce que la maladie dégénérative et/ou auto-immune est la sclérose en plaques.

22. Polypeptide caractérisé en ce qu'il comprend au moins un fragment d'une protéine dont la séquence peptidique correspond à SEQ ID N° 9, ledit fragment comprenant au moins une mutation par rapport à la séquence de référence SEQ ID N° 8.

23. Polypeptide selon la revendication 22, caractérisé en ce qu'il comprend au moins deux mutations par rapport à la séquence de référence SEQ ID N° 8.

24. Polypeptide selon la revendication 22, caractérisé en ce qu'il est choisi parmi les polypeptides qui comprennent la séquence en acides aminés FSWDNCFEGKDPAVIR, référencée SEQ ID N° 68 et la séquence en acides aminés YSLPKSEFAVPDLELP, référencée SEQ ID N° 72.

25. Polypeptide selon l'une des revendications 22 à 24, caractérisé en ce qu'il comprend une protéine dont la séquence peptidique correspond à SEQ ID N° 9.

26. Polypeptide selon l'une des revendications 22 à 25, caractérisé en ce qu'il consiste en une protéine dont la séquence peptidique correspond à SEQ ID N° 9.

27. Utilisation d'au moins un polypeptide selon l'une quelconque des revendications 22 à 26 pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou autoimmune.

28. Utilisation selon la revendication 26, caractérisée en ce que le polypeptide tel que défini dans l'une quelconque des revendications 22 à 26 est utilisé

en mélange avec au moins un polypeptide tel que défini dans l'une quelconque des revendications 1 à 5.

29. Procédé pour détecter au moins un ligand associé à une maladie dégénérative et/ou auto-immune, dans un échantillon biologique, caractérisé en ce que
5 l'on met en contact l'échantillon biologique avec au moins un polypeptide tel que défini dans l'une quelconque des revendications 22 à 26, puis on détecte la formation d'un complexe entre ledit polypeptide et le ligand.

30. Procédé selon la revendication 29, caractérisé en ce que l'on met en
10 contact l'échantillon biologique avec un polypeptide tel que défini dans l'une quelconque des revendications 22 à 26 et avec au moins un polypeptide tel que défini dans l'une quelconque des revendications 1 à 5.

31. Procédé selon la revendication 29 ou 30, caractérisé en ce que ledit
15 ligand est un anticorps, un récepteur, un substrat d'activité enzymatique ou une enzyme dont ledit polypeptide est un cofacteur.

32. Procédé pour détecter au moins un polypeptide tel que défini dans l'une quelconque des revendications 22 à 26 dans un échantillon biologique caractérisé
20 en ce que l'on met en contact l'échantillon biologique avec au moins un ligand spécifique dudit polypeptide, puis on détecte la formation d'un complexe entre ledit polypeptide et ledit ligand.

33. Procédé selon la revendication 32, caractérisé en ce que ledit ligand est
25 anticorps monoclonal, un anticorps polyclonal, un récepteur, un substrat d'activité .. . enzymatique ou une enzyme dont ledit polypeptide est un cofacteur.

34. Procédé selon la revendication 30 ou 31, caractérisé en ce que l'on met en contact l'échantillon biologique avec un ligand tel que défini dans l'une quelconque
30 des revendications 31 et 33 et au moins un ligand spécifique d'au moins un polypeptide tel que défini dans l'une quelconque des revendications 1 à 5, puis on détecte la

formation de complexes entre lesdits polypeptides et lesdits ligands spécifiques desdits polypeptides.

35. Procédé selon la revendication 34, caractérisé en ce que le ligand est
5 un anticorps monoclonal, un anticorps polyclonal, un récepteur, un substrat d'activité enzymatique ou une enzyme dont ledit polypeptide est un cofacteur.

36. Fragment nucléotidique caractérisé en ce qu'il code pour un polypeptide tel que défini dans l'une quelconque des revendications 22 à 26.

10 37. Utilisation d'un fragment nucléotidique pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou auto-immune, selon laquelle ledit fragment nucléotidique est le fragment nucléotidique défini dans la revendication 35, éventuellement en association avec au moins un fragment nucléotidique tel que défini dans l'une quelconque des revendications 8 à 11, et les fragments complémentaires desdits fragments.

20 38. Procédé selon l'une quelconque des revendications 29 à 35, caractérisé en ce que l'échantillon biologique est l'urine, le liquide céphalo-rachidien ou le sérum.

39. Procédé selon l'une quelconque des revendications 29 à 36 caractérisé en ce que la maladie dégénérative et/ou auto-immune est la sclérose en plaques.

25 40. Procédé pour détecter au moins un polypeptide tel que défini dans l'une quelconque des revendications 1 à 5 ou dans l'une quelconque des revendications 22 à 26, selon lequel on prélève un échantillon d'un fluide biologique d'un patient présentant un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune et éventuellement après purification dudit échantillon de fluide biologique, on analyse par spectrométrie de masse le profil de masse obtenu à partir du fluide biologique et on compare à un profil de masse de référence.

41. Utilisation d'au moins un polypeptide comprenant au moins un fragment d'une protéine pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 8, SEQ ID N° 9, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29, et les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 8 à SEQ ID N° 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B, et de préférence SEQ ID Nos :8, 9, 17 et 24.

42. Utilisation, selon la revendication 41, dans laquelle les séquences peptidiques sont comprennent les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le précurseur de l'activateur du ganglioside GM2 et de la saposine B.

43. Utilisation, selon l'une quelconque des revendications 41 ou 42, qui est associée à l'utilisation d'une détection d'une activité gliotoxique.

44. Procédé de diagnostic ou de pronostic dans lequel on dose au moins un polypeptide, selon l'une quelconque des revendications 41 à 43, pour détecter ou prévenir un état pathologique, le dosage permettant d'obtenir une valeur de concentration qui est comparer à une valeur seuil représentative d'une maladie dégénérative et/ou neurologique et/ou auto-immune.

30

45. Procédé, selon la revendication 44, dans lequel la valeur seuil est obtenu par un test ELISA pour un échantillon d'urine, cette valeur étant de :

- 400 ng/ml pour le précurseur de l'activateur du ganglioside GM2, pour l'anticorps GM2AP84, et
- 2 µg/ml pour la saposine B, pour l'anticorps SAPB84.

5 46. Procédé de diagnostic ou de pronostic dans lequel on détecte au moins un polypeptide, selon l'une quelconque des revendications 41 à 43, pour prévenir un état pathologique, la détection s'effectuant dans des cellules ou dans les surnageants desdites cellules d'un patient susceptible d'être atteint par une maladie dégénérative et/ou neurologique et/ou auto-immune.

10 47. Procédé, selon la revendication 46, dans lequel la détection s'effectue sur des cellules monocytes ou macrophages ou dans les surnageants de ces cellules issues d'un patient susceptible d'être atteint par une maladie dégénérative et/ou neurologique et/ou auto-immune.

15 48. Procédé, selon l'une quelconque des revendications 46 ou 47, dans lequel la détection s'effectue sur des cellules ou dans les surnageants de ces cellules en culture, après un délai compris entre 6 et 12 jours de culture, préférentiellement après 9 jours.

20 49. Procédé, selon l'une quelconque des revendications 46 ou 47, dans lequel la détection s'effectue sur des cellules, *in vivo* ou *ex vivo*, préférentiellement monocytes ou macrophages, dans des cerveaux de patient susceptible d'être atteint par une maladie dégénérative et/ou neurologique et/ou auto-immune.

25 50. Utilisation ou procédé, selon l'une quelconque des revendications 41 à 49, caractérisée en ce que la maladie dégénérative et/ou neurologique et/ou auto-immune est la sclérose en plaques ou bien une forme (progressive, rémittente, rémittente-progressive) ou phase d'activité (poussées) de cette maladie.

30 51. Utilisation d'au moins un polypeptide comprenant au moins un fragment d'une protéine pour tester l'efficacité d'un agent thérapeutique, ladite

protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 9, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ
5 ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29, les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et les
10 séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisie parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

15 52. Utilisation d'au moins un polypeptide comprenant au moins un fragment d'une protéine pour la préparation d'une composition pharmaceutique destinée au traitement d'une maladie dégénérative et/ou neurologique et/ou autoimmune, telle que la sclérose en plaques, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 9, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29, les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisie parmi le perlacan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline et de la saposine.
20
25
30

53. Utilisation selon la revendication 51 ou 52, caractérisée en ce que le polypeptide est choisi parmi SEQ ID N° 2, 4, 8, 9, 17, 24.

54. Utilisation d'au moins un fragment nucléotidique, pour tester l'efficacité d'un agent thérapeutique pour un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, selon laquelle ledit fragment nucléotidique est choisi parmi les fragments qui codent pour au moins un fragment d'une protéine, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 9, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29, les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et les fragments complémentaires desdits fragments et les fragments qui codent pour les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisie parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

55. Utilisation pour tester l'efficacité d'un agent thérapeutique pour un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, de protéines recombinantes et/ou codées par tout ou partie des fragments nucléotidiques définis à la revendication 54.

56. Utilisation d'au moins un fragment nucléotidique pour la préparation d'une composition pharmaceutique destinée au traitement d'une maladie dégénérative et/ou neurologique et/ou auto-immune, telle que la sclérose en plaques, selon laquelle ledit fragment nucléotidique est choisi parmi des fragments qui codent pour au moins un fragment d'une protéine, ladite protéine étant choisie parmi les protéines dont la

séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 9, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29, les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et les fragments complémentaires desdits fragments et les fragments qui codent pour les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisie parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

15 57. Utilisation pour la préparation d'une composition pharmaceutique destinée au traitement d'une maladie dégénérative et/ou neurologique et/ou autoimmune, telle que la sclérose en plaques, de protéines recombinantes et/ou codées par tout ou partie des fragments nucléotidiques définis à la revendication 56.

20 58. Utilisation selon la revendication 54 ou 56, caractérisée en ce que ledit fragment nucléotidique code pour ladite protéine.

25 59. Utilisation selon la revendication 58, caractérisée en ce que la séquence peptidique de ladite protéine à l'état natif consiste en une séquence choisie parmi l'une quelconque des SEQ ID N° 1 à 29, les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

60. Utilisation selon la revendication 59, caractérisée en ce que les polypeptides sont choisis parmi SEQ ID N° 2, 4, 8, 9, 17, 24.

61. Utilisation d'au moins un fragment nucléotidique, pour tester l'efficacité d'un agent thérapeutique pour un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune selon laquelle ledit fragment est un fragment d'une séquence nucléique choisie parmi l'une quelconque des SEQ ID N° 30, SEQ ID N° 31, SEQ ID N° 32, SEQ ID N° 33, SEQ ID N° 34, SEQ ID N° 35, SEQ ID N° 36, SEQ ID N° 37, SEQ ID N° 38, SEQ ID N° 39, SEQ ID N° 40, SEQ ID N° 41, SEQ ID N° 42, SEQ ID N° 43, SEQ ID N° 44, SEQ ID N° 45, SEQ ID N° 46 et SEQ ID N° 47, SEQ ID N° 48, SEQ ID N° 49 et SEQ ID N° 50, SEQ ID N° 51, SEQ ID N° 52, SEQ ID N° 53, SEQ ID N° 54, SEQ ID N° 55, SEQ ID N° 56, SEQ ID N° 57, SEQ ID N° 66, SEQ ID N° 67, SEQ ID N° 69, SEQ ID N° 70, SEQ ID N° 71, et leurs séquences complémentaires.

15

62. Utilisation d'au moins un fragment nucléotidique pour la préparation d'une composition pharmaceutique destinée au traitement d'une maladie dégénérative et/ou neurologique et/ou auto-immune, telle que la sclérose en plaques selon laquelle ledit fragment est un fragment d'une séquence nucléique choisie parmi l'une quelconque des SEQ ID N° 30, SEQ ID N° 31, SEQ ID N° 32, SEQ ID N° 33, SEQ ID N° 34, SEQ ID N° 35, SEQ ID N° 36, SEQ ID N° 37, SEQ ID N° 38, SEQ ID N° 39, SEQ ID N° 40, SEQ ID N° 41, SEQ ID N° 42, SEQ ID N° 43, SEQ ID N° 44, SEQ ID N° 45, SEQ ID N° 46 et SEQ ID N° 47, SEQ ID N° 48, SEQ ID N° 49 et SEQ ID N° 50, SEQ ID N° 51, SEQ ID N° 52, SEQ ID N° 53, SEQ ID N° 54, SEQ ID N° 55, SEQ ID N° 56, SEQ ID N° 57, SEQ ID N° 58, SEQ ID N° 59, SEQ ID N° 60, SEQ ID N° 61, SEQ ID N° 62, SEQ ID N° 63, SEQ ID N° 64, SEQ ID N° 65, SEQ ID N° 66, SEQ ID N° 67, SEQ ID N° 68, SEQ ID N° 69, SEQ ID N° 70, SEQ ID N° 71, et leurs séquences complémentaires.

20

63. Utilisation selon la revendication 61 ou 62, caractérisée en ce que la séquence nucléique est choisie parmi SEQ ID N° 30, 31, 42, 53.

25

30

64. Utilisation de la lycorine pour la préparation d'une composition pour la prévention et/ou le traitement de maladie dégénérative et/ou neurologique et/ou autoimmune.

Lapins anti GM2

► Ganglioside GM2 activator

2 peptides de 13,15 acides aminés lapins 189 190

1 peptide de 18 acides aminés lapin 191 et 192

MQSLMQQAPLL IALGLLLATP AQAHLKKPSQ
LSSFSWDNCD EGKDPAVIRS LTLEPDPIVV
PGNVTLSVG STSVPLSSPL KVDLVLEKEV
AGLWIKIPCT DYIGSCTFEH FCDVLDMLIP
TGEPCPEPLR TYGLPCHCPF KEGTYSLPKS
EFVVPDLELP SWLTTGNYRI ESQLSSSGKR
LGCIIKIAASLKGII

GM2A

ATG CAG TCC CTG ATG CAG CCC CTC CTC GCG ACC CCT CTC GCG ACC CCT GCG CAA GCC CAC CTG
 M Q S L H Q A P L I A L G L L A T P A Q A H L
 CCA TCC CAG CTC AGT AGC TTT TCC TGG GAT AAC TGT GAT GAA GGG AGG GAC CCT GCG GTG ATC AGA AGC CTG ACT
 P S Q L S F S W D N C D E G K D P A V I R S L T
 CCT GAC CCC ATC GTC GTC CCT GGA ATT GTG ACC CTC AGT GTC GTC GGC AGC ACC AGT GTC CCC CTG AGT TCT CCT
 P D P I V G N V T L S V G S T S V P L S S P
 GTG GAT TTA GAT TTG GAG GAG GAG GTC ATC AAG GCA TGC ACA GAC TAC ATT GCC AGC TGT
 V D I V L E K P V A G I W I K I P C T D Y I G S C
 GAA CAC TTC TGT GAT GTG CTT GAC ATG TTA ATT CCT ACT GGG GAG CCC TCC CCA GAG CCC CTG CGT ACC TAT GGG
 E H F C D V L D H L I P T G E P C P E P L R T Y G
 TGC CAC TGT CCC TTC AAA GAA GGA ACC TAC TCA CTG CCC AGG AGC GAA TTC GTT GTG CCT GAC CTG GAG CTG CCC
 F C H C P F K E G T Y S L P K S E V V P D L E L P
 CTC ACC ACC GGG AAC TAC CGC ATA GAG AGC GTC CTG AGC AGC ACT CGG AAG CGT CTG GGC TGC ATC AAG ATC CCT
 L T T G N Y R I E S V L S S V G K R C I K I A
 CTA AAG GGC ATA L K G I *

FIG. 1

2/18

Lapins anti MRP14

2 peptides de 13, 19 acides aminés lapin 193
 1 peptide de 17 acides aminés lapin 195-196

MTCKMSQLER NIETIINTFH QYSVKLGHPD
TLNQGEFKEL VRKDLQLQNFLK KENKNEKVIE
HIMEDDLDTN ADKQLLSFEEF IMLMARLTWA
SHEKMHEGDE GPGHHHKPGL GEGTP

MRP1

```

ATG ACT TGC AAA ATG TCG CAG CTG GAA CGC AAC ATA GAG ACC ATC ATC AAC ACC TTC CAC CAA TAC TGT GTC AAG CTC TGT GGG CAC CCA
M T C K H S Q L E R N I E T F H Q Y S V K L G H
CTG AAC CAG GGG GAA TTC AAA GAG CTC GTG CGA AAA GAT CTC GAA AAT TTT CTC AAG AAG GAG AAT GAA AAG GTC ATA
L N Q G E F K E L V R K D L Q N F L K K E N K N E K V I E
ATG GAG GAC CAG CAC ACA ATT GCA GAC AAG CAG CTC ACC TTC GAG GAG TTC ATC ATG CTC ATG GCG AGG CTA ACC TGG GCC TCC CAC
H E D L D T N A D K Q L S F P I H L W A R L T W A S H
ATG CAC GAG GGT GAC GAG CCT GGC CAC CAC CAT AAG CCA GGC CTC GGG GAG GGC ACC CCC
H B G D E G P G H H K P G L G E G T

```

FIG. 2

3/18

Lapin anti Saposine

3 peptides de 12,15, 15 acides aminés lapin 74-75
3 peptides de 12,15,15 acides aminés lapin 72-73

**GDVCQDCIQM VTDIQTAVRT NSTFVQALVE
HVKEECDRRLG PGMAIDICKNY ISQYSEIAIQ
MMMHMQDQQQP KEICALVGFC DEV**

Sap
Arg GGG GAC GTT TGC CAG GAC TGC ATT CAG Arg GTG ACT GAC ATC CAG ACT GCT GAA CGG ACC AAC TCC ACC CGG ACC AAC TCC ACC TTT GTC CAG
GCC M G D V C Q D C I Q M V T D I Q T A V R T N S T F V Q
A L V E H V K E E C D R L G P G W A D I C K N Y I S Q Y
TTC TGT GAA CAT GTC AAG GAG GAG TGT GAC CCG CTC GGC GGC ATG GAC ATA TGC AAG AAC TAT ATC AGC CAG TAT
TCT TCA ATT CCT CAG ATG ATG CAC ATG CAA CCC AAG GAG ATC TGT ACC CTC CCT CCT GTC TGT GAT GAG TGA
S E I A T Q W M H M Q P K E I C A L V G F C D E * FIG. 3

4/18

Dosage MRP 8

FIG. 4

5/18

Dosage MRP14

FIG. 5

6/18

Dosage MRP8/14

FIG. 6

Taux urinaire moyen par catégorie de population

FIG. 7

8/18

Figure 8

9/18

Figure 9

10/18

Figure 10

Patient SEP forme Rémittent Progressive

Figure 11

12/18

Figure 12

Figure 13
Patient SEP - Progressive

14/18

Figure 14

15/18

Figure 15

16/18

Figure 16

17/18

Figure 17

18/18

Figure 18

LISTE DE SEQUENCES

<110> BIOMERIEUX STELHYS
5 <120> Utilisation d'un polypeptide pour détecter, prévenir ou traiter un état pathologique associé à une maladie dégénérative, neurologique ou auto-immune
10 <130> SEP22
<140>
<141>
15 <150> FR9909372
<151> 1999-07-15
<160> 75
20 <170> PatentIn Ver. 2.1
<210> 1
<211> 4393
<212> PRT
<213> Homo sapiens
25 <400> 1
Met Gly Trp Arg Ala Pro Gly Ala Leu Leu Leu Ala Leu Leu His
1 5 10 15
30 Gly Arg Leu Leu Ala Val Thr His Gly Leu Arg Ala Tyr Asp Gly Leu
20 25 30
Ser Leu Pro Glu Asp Ile Glu Thr Val Thr Ala Ser Gln Met Arg Trp
35 40 45
35 Thr His Ser Tyr Leu Ser Asp Asp Glu Asp Met Leu Ala Asp Ser Ile
50 55 60
40 Ser Gly Asp Asp Leu Gly Ser Gly Asp Leu Gly Ser Gly Asp Phe Gln
65 70 75 80
Met Val Tyr Phe Arg Ala Leu Val Asn Phe Thr Arg Ser Ile Glu Tyr
85 90 95
45 Ser Pro Gln Leu Glu Asp Ala Gly Ser Arg Glu Phe Arg Glu Val Ser
100 105 110
Glu Ala Val Val Asp Thr Leu Glu Ser Glu Tyr Leu Lys Ile Pro Gly
115 120 125
50 Asp Gln Val Val Ser Val Val Phe Ile Lys Glu Leu Asp Gly Trp Val
130 135 140
55 Phe Val Glu Leu Asp Val Gly Ser Glu Gly Asn Ala Asp Gly Ala Gln
145 150 155 160
Ile Gln Glu Met Leu Leu Arg Val Ile Ser Ser Gly Ser Val Ala Ser
165 170 175

Tyr Val Thr Ser Pro Gln Gly Phe Gln Phe Arg Arg Leu Gly Thr Val
 180 185 190
 5 Pro Gln Phe Pro Arg Ala Cys Thr Glu Ala Glu Phe Ala Cys His Ser
 195 200 205
 Tyr Asn Glu Cys Val Ala Leu Glu Tyr Arg Cys Asp Arg Arg Pro Asp
 210 215 220
 10 Cys Arg Asp Met Ser Asp Glu Leu Asn Cys Glu Glu Pro Val Leu Gly
 225 230 235 240
 Ile Ser Pro Thr Phe Ser Leu Leu Val Glu Thr Thr Ser Leu Pro Pro
 15 245 250 255
 Arg Pro Glu Thr Thr Ile Met Arg Gln Pro Pro Val Thr His Ala Pro
 260 265 270
 20 Gln Pro Leu Leu Pro Gly Ser Val Arg Pro Leu Pro Cys Gly Pro Gln
 275 280 285
 Glu Ala Ala Cys Arg Asn Gly His Cys Ile Pro Arg Asp Tyr Leu Cys
 290 295 300
 25 Asp Gly Gln Glu Asp Cys Glu Asp Gly Ser Asp Glu Leu Asp Cys Gly
 305 310 315 320
 Pro Pro Pro Pro Cys Glu Pro Asn Glu Phe Pro Cys Gly Asn Gly His
 320 325 330 335
 Cys Ala Leu Lys Leu Trp Arg Cys Asp Gly Asp Phe Asp Cys Glu Asp
 340 345 350
 35 Arg Thr Asp Glu Ala Asn Cys Pro Thr Lys Arg Pro Glu Glu Val Cys
 355 360 365
 Gly Pro Thr Gln Phe Arg Cys Val Ser Thr Asn Met Cys Ile Pro Ala
 370 375 380
 40 Ser Phe His Cys Asp Glu Glu Ser Asp Cys Pro Asp Arg Ser Asp Glu
 385 390 395 400
 Phe Gly Cys Met Pro Pro Gln Val Val Thr Pro Pro Arg Glu Ser Ile
 45 405 410 415
 Gln Ala Ser Arg Gly Gln Thr Val Thr Phe Thr Cys Val Ala Ile Gly
 420 425 430
 50 Val Pro Ala Pro Phe Leu Ile Asn Trp Arg Leu Asn Trp Gly His Ile
 435 440 445
 Pro Ser Gln Pro Arg Val Thr Val Thr Ser Glu Gly Gly Arg Gly Thr
 450 455 460
 55 Leu Ile Ile Arg Asp Val Lys Glu Ser Asp Gln Gly Ala Tyr Thr Cys
 465 470 475 480

Glu Ala Met Asn Ala Arg Gly Met Val Phe Gly Ile Pro Asp Gly Val
485 490 495

5 Leu Glu Leu Val Pro Gln Arg Ala Gly Pro Cys Pro Asp Gly His Phe
500 505 510

Tyr Leu Glu His Ser Ala Ala Cys Leu Pro Cys Phe Cys Phe Gly Ile
515 520 525

10 Thr Ser Val Cys Gln Ser Thr Arg Arg Phe Arg Asp Gln Ile Arg Leu
530 535 540

Arg Phe Asp Gln Pro Asp Asp Phe Lys Gly Val Asn Val Thr Met Pro
545 550 555 560

15 Ala Gln Pro Gly Thr Pro Pro Leu Ser Ser Thr Gln Leu Gln Ile Asp
565 570 575

Pro Ser Leu His Glu Phe Gln Leu Val Asp Leu Ser Arg Arg Phe Leu
20 580 585 590

Val His Asp Ser Phe Trp Ala Leu Pro Glu Gln Phe Leu Gly Asn Lys
595 600 605

25 Val Asp Ser Tyr Gly Gly Ser Leu Arg Tyr Asn Val Arg Tyr Glu Leu
610 615 620

Ala Arg Gly Met Leu Glu Pro Val Gln Arg Pro Asp Val Val Leu Val
625 630 635 640

30 Gly Ala Gly Tyr Arg Leu Leu Ser Arg Gly His Thr Pro Thr Gln Pro
645 650 655

Gly Ala Leu Asn Gln Arg Gln Val Gln Phe Ser Glu Glu His Trp Val
35 660 665 670

His Glu Ser Gly Arg Pro Val Gln Arg Ala Glu Leu Leu Gln Val Leu
675 680 685

40 Gln Ser Leu Glu Ala Val Leu Ile Gln Thr Val Tyr Asn Thr Lys Met
690 695 700

Ala Ser Val Gly Leu Ser Asp Ile Ala Met Asp Thr Thr Val Thr His
705 710 715 720

45 Ala Thr Ser His Gly Arg Ala His Ser Val Glu Glu Cys Arg Cys Pro
725 730 735

Ile Gly Tyr Ser Gly Leu Ser Cys Glu Ser Cys Asp Ala His Phe Thr
50 740 745 750

Arg Val Pro Gly Gly Pro Tyr Leu Gly Thr Cys Ser Gly Cys Ser Cys
755 760 765

55 Asn Gly His Ala Ser Ser Cys Asp Pro Val Tyr Gly His Cys Leu Asn
770 775 780

Cys Gln His Asn Thr Glu Gly Pro Gln Cys Lys Lys Cys Lys Ala Gly

	785	790	795	800
	Phe Phe Gly Asp Ala Met Lys Ala Thr Ala Thr Ser Cys Arg Pro Cys			
	805	810	815	
5	Pro Cys Pro Tyr Ile Asp Ala Ser Arg Arg Phe Ser Asp Thr Cys Phe			
	820	825	830	
	Leu Asp Thr Asp Gly Gln Ala Thr Cys Asp Ala Cys Ala Pro Gly Tyr			
10	835	840	845	
	Thr Gly Arg Arg Cys Glu Ser Cys Ala Pro Gly Tyr Glu Gly Asn Pro			
	850	855	860	
15	Ile Gln Pro Gly Gly Lys Cys Arg Pro Val Asn Gln Glu Ile Val Arg			
	865	870	875	880
	Cys Asp Glu Arg Gly Ser Met Gly Thr Ser Gly Glu Ala Cys Arg Cys			
	885	890	895	
20	Lys Asn Asn Val Val Gly Arg Leu Cys Asn Glu Cys Ala Asp Arg Ser			
	900	905	910	
	Phe His Leu Ser Thr Arg Asn Pro Asp Gly Cys Leu Lys Cys Phe Cys			
25	915	920	925	
	Met Gly Val Ser Arg His Cys Thr Ser Ser Ser Trp Ser Arg Ala Gln			
	930	935	940	
30	Leu His Gly Ala Ser Glu Glu Pro Gly His Phe Ser Leu Thr Asn Ala			
	945	950	955	960
	Ala Ser Thr His Thr Thr Asn Glu Gly Ile Phe Ser Pro Thr Pro Gly			
	965	970	975	
35	Glu Leu Gly Phe Ser Ser Phe His Arg Leu Leu Ser Gly Pro Tyr Phe			
	980	985	990	
	Trp Ser Leu Pro Ser Arg Phe Leu Gly Asp Lys Val Thr Ser Tyr Gly			
40	995	1000	1005	
	Gly Glu Leu Arg Phe Thr Val Thr Gln Arg Ser Gln Pro Gly Ser Thr			
	1010	1015	1020	
45	Pro Leu His Gly Gln Pro Leu Val Val Leu Gln Gly Asn Asn Ile Ile			
	1025	1030	1035	1040
	Leu Glu His His Val Ala Gln Glu Pro Ser Pro Gly Gln Pro Ser Thr			
	1045	1050	1055	
50	Phe Ile Val Pro Phe Arg Glu Gln Ala Trp Gln Arg Pro Asp Gly Gln			
	1060	1065	1070	
	Pro Ala Thr Arg Glu His Leu Leu Met Ala Leu Ala Gly Ile Asp Thr			
55	1075	1080	1085	
	Leu Leu Ile Arg Ala Ser Tyr Ala Gln Gln Pro Ala Glu Ser Arg Val			
	1090	1095	1100	

Ser Gly Ile Ser Met Asp Val Ala Val Pro Glu Glu Thr Gly Gln Asp
1105 1110 1115 1120

5 Pro Ala Leu Glu Val Glu Gln Cys Ser Cys Pro Pro Gly Tyr Arg Gly
1125 1130 1135

Pro Ser Cys Gln Asp Cys Asp Thr Gly Tyr Thr Arg Thr Pro Ser Gly
1140 1145 1150

10 Leu Tyr Leu Gly Thr Cys Glu Arg Cys Ser Cys His Gly His Ser Glu
1155 1160 1165

Ala Cys Glu Pro Glu Thr Gly Ala Cys Gln Gly Cys Gln His His Thr
1170 1175 1180

Glu Gly Pro Arg Cys Glu Gln Cys Gln Pro Gly Tyr Tyr Gly Asp Ala
1185 1190 1195 1200

20 Gln Arg Gly Thr Pro Gln Asp Cys Gln Leu Cys Pro Cys Tyr Gly Asp
1205 1210 1215

Pro Ala Ala Gly Gln Ala Ala His Thr Cys Phe Leu Asp Thr Asp Gly
1220 1225 1230

25 His Pro Thr Cys Asp Ala Cys Ser Pro Gly His Ser Gly Arg His Cys
1235 1240 1245

Glu Arg Cys Ala Pro Gly Tyr Tyr Gly Asn Pro Ser Gln Gly Gln Pro
30 1250 1255 1260

Cys Gln Arg Asp Ser Gln Val Pro Gly Pro Ile Gly Cys Asn Cys Asp
1265 1270 1275 1280

35 Pro Gln Gly Ser Val Ser Ser Gln Cys Asp Ala Ala Gly Gln Cys Gln
1285 1290 1295

Cys Lys Ala Gln Val Glu Gly Leu Thr Cys Ser His Cys Arg Pro His
40 1300 1305 1310

His Phe His Leu Ser Ala Ser Asn Pro Asp Gly Cys Leu Pro Cys Phe
1315 1320 1325

Cys Met Gly Ile Thr Gln Gln Cys Ala Ser Ser Ala Tyr Thr Arg His
45 1330 1335 1340

Leu Ile Ser Thr His Phe Ala Pro Gly Asp Phe Glu Gly Phe Ala Leu
1345 1350 1355 1360

50 Val Asn Pro Gln Arg Asn Ser Arg Leu Thr Gly Glu Phe Thr Val Glu
1365 1370 1375

Pro Val Pro Glu Gly Ala Gln Leu Ser Phe Gly Asn Phe Ala Gln Leu
55 1380 1385 1390

Gly His Glu Ser Phe Tyr Trp Gln Leu Pro Glu Thr Tyr Gln Gly Asp
1395 1400 1405

Lys Val Ala Ala Tyr Gly Gly Lys Leu Arg Tyr Thr Leu Ser Tyr Thr
 1410 1415 1420

Ala Gly Pro Gln Gly Ser Pro Leu Ser Asp Pro Asp Val Gln Ile Thr
 5 1425 1430 1435 1440

Gly Asn Asn Ile Met Leu Val Ala Ser Gln Pro Ala Leu Gln Gly Pro
 1445 1450 1455

10 Glu Arg Arg Ser Tyr Glu Ile Met Phe Arg Glu Glu Phe Trp Arg Arg
 1460 1465 1470

Pro Asp Gly Gln Pro Ala Thr Arg Glu His Leu Leu Met Ala Leu Ala
 1475 1480 1485

15 Asp Leu Asp Glu Leu Leu Ile Arg Ala Thr Phe Ser Ser Val Pro Leu
 1490 1495 1500

Val Ala Ser Ile Ser Ala Val Ser Leu Glu Val Ala Gln Pro Gly Pro
 20 1505 1510 1515 1520

Ser Asn Arg Pro Arg Ala Leu Glu Val Glu Glu Cys Arg Cys Pro Pro
 1525 1530 1535

25 Gly Tyr Ile Gly Leu Ser Cys Gln Asp Cys Ala Pro Gly Tyr Thr Arg
 1540 1545 1550

Thr Gly Ser Gly Leu Tyr Leu Gly His Cys Glu Leu Cys Glu Cys Asn
 30 1555 1560 1565

Gly His Ser Asp Leu Cys His Pro Glu Thr Gly Ala Cys Ser Gln Cys
 1570 1575 1580

Gln His Asn Ala Ala Gly Glu Phe Cys Glu Leu Cys Ala Pro Gly Tyr
 35 1585 1590 1595 1600

Tyr Gly Asp Ala Thr Ala Gly Thr Pro Glu Asp Cys Gln Pro Cys Ala
 1605 1610 1615

40 Cys Pro Leu Thr Asn Pro Glu Asn Met Phe Ser Arg Thr Cys Glu Ser
 1620 1625 1630

Leu Gly Ala Gly Gly Tyr Arg Cys Thr Ala Cys Glu Pro Gly Tyr Thr
 45 1635 1640 1645

Gly Gln Tyr Cys Glu Gln Cys Gly Pro Gly Tyr Val Gly Asn Pro Ser
 1650 1655 1660

Val Gln Gly Gly Gln Cys Leu Pro Glu Thr Asn Gln Ala Pro Leu Val
 50 1665 1670 1675 1680

Val Glu Val His Pro Ala Arg Ser Ile Val Pro Gln Gly Gly Ser His
 1685 1690 1695

55 Ser Leu Arg Cys Gln Val Ser Gly Arg Gly Pro His Tyr Phe Tyr Trp
 1700 1705 1710

Ser Arg Glu Asp Gly Arg Pro Val Pro Ser Gly Thr Gln Gln Arg His

	1715	1720	1725
	Gln Gly Ser Glu Leu His Phe Pro Ser Val Gln Pro Ser Asp Ala Gly		
	1730	1735	1740
5	Val Tyr Ile Cys Thr Cys Arg Asn Leu His Arg Ser Asn Thr Ser Arg		
	1745	1750	1755
	Ala Glu Leu Leu Val Thr Glu Ala Pro Ser Lys Pro Ile Thr Val Thr		
10	1765	1770	1775
	Val Glu Glu Gln Arg Ser Gln Ser Val Arg Pro Gly Ala Asp Val Thr		
	1780	1785	1790
15	Phe Ile Cys Thr Ala Lys Ser Lys Ser Pro Ala Tyr Thr Leu Val Trp		
	1795	1800	1805
	Thr Arg Leu His Asn Gly Lys Leu Pro Thr Arg Ala Met Asp Phe Asn		
	1810	1815	1820
20	Gly Ile Leu Thr Ile Arg Asn Val Gln Leu Ser Asp Ala Gly Thr Tyr		
	1825	1830	1835
	Val Cys Thr Gly Ser Asn Met Phe Ala Met Asp Gln Gly Thr Ala Thr		
25	1845	1850	1855
	Leu His Val Gln Ala Ser Gly Thr Leu Ser Ala Pro Val Val Ser Ile		
	1860	1865	1870
30	His Pro Pro Gln Leu Thr Val Gln Pro Gly Gln Leu Ala Glu Phe Arg		
	1875	1880	1885
	Cys Ser Ala Thr Gly Ser Pro Thr Pro Thr Leu Glu Trp Thr Gly Gly		
	1890	1895	1900
35	Pro Gly Gly Gln Leu Pro Ala Lys Ala Gln Ile His Gly Gly Ile Leu		
	1905	1910	1915
	Arg Leu Pro Ala Val Glu Pro Thr Asp Gln Ala Gln Tyr Leu Cys Arg		
40	1925	1930	1935
	Ala His Ser Ser Ala Gly Gln Gln Val Ala Arg Ala Val Leu His Val		
	1940	1945	1950
45	His Gly Gly Gly Pro Arg Val Gln Val Ser Pro Glu Arg Thr Gln		
	1955	1960	1965
	Val His Ala Gly Arg Thr Val Arg Leu Tyr Cys Arg Ala Ala Gly Val		
	1970	1975	1980
50	Pro Ser Ala Thr Ile Thr Trp Arg Lys Glu Gly Gly Ser Leu Pro Pro		
	1985	1990	1995
	Gln Ala Arg Ser Glu Arg Thr Asp Ile Ala Thr Leu Leu Ile Pro Ala		
55	2005	2010	2015
	Ile Thr Thr Ala Asp Ala Gly Phe Tyr Leu Cys Val Ala Thr Ser Pro		
	2020	2025	2030

Ala Gly Thr Ala Gln Ala Arg Ile Gln Val Val Val Leu Ser Ala Ser
 2035 2040 2045

5 Asp Ala Ser Gln Pro Pro Val Lys Ile Glu Ser Ser Ser Pro Ser Val
 2050 2055 2060

Thr Glu Gly Gln Thr Leu Asp Leu Asn Cys Val Val Ala Gly Ser Ala
 2065 2070 2075 2080

10 His Ala Gln Val Thr Trp Tyr Arg Arg Gly Gly Ser Leu Pro His His
 2085 2090 2095

Thr Gln Val His Gly Ser Arg Leu Arg Leu Pro Gln Val Ser Pro Ala
 15 2100 2105 2110

Asp Ser Gly Glu Tyr Val Cys Arg Val Glu Asn Gly Ser Gly Pro Lys
 2115 2120 2125

20 Glu Ala Ser Ile Thr Val Ser Val Leu His Gly Thr His Ser Gly Pro
 2130 2135 2140

Ser Tyr Thr Pro Val Pro Gly Ser Thr Arg Pro Ile Arg Ile Glu Pro
 2145 2150 2155 2160

25 Ser Ser Ser His Val Ala Glu Gly Gln Thr Leu Asp Leu Asn Cys Val
 2165 2170 2175

Val Pro Gly Gln Ala His Ala Gln Val Thr Trp His Lys Arg Gly Gly
 30 2180 2185 2190

Ser Leu Pro Ala Arg His Gln Thr His Gly Ser Leu Leu Arg Leu His
 2195 2200 2205

35 Gln Val Thr Pro Ala Asp Ser Gly Glu Tyr Val Cys His Val Val Gly
 2210 2215 2220

Thr Ser Gly Pro Leu Glu Ala Ser Val Leu Val Thr Ile Glu Ala Ser
 2225 2230 2235 2240

40 Val Ile Pro Gly Pro Ile Pro Pro Val Arg Ile Glu Ser Ser Ser Ser
 2245 2250 2255

Thr Val Ala Glu Gly Gln Thr Leu Asp Leu Ser Cys Val Val Ala Gly
 45 2260 2265 2270

Gln Ala His Ala Gln Val Thr Trp Tyr Lys Arg Gly Gly Ser Leu Pro
 2275 2280 2285

50 Ala Arg His Gln Val Arg Gly Ser Arg Leu Tyr Ile Phe Gln Ala Ser
 2290 2295 2300

Pro Ala Asp Ala Gly Gln Tyr Val Cys Arg Ala Ser Asn Gly Met Glu
 2305 2310 2315 2320

55 Ala Ser Ile Thr Val Thr Val Thr Gly Thr Gln Gly Ala Asn Leu Ala
 2325 2330 2335

Tyr Pro Ala Gly Ser Thr Gln Pro Ile Arg Ile Glu Pro Ser Ser Ser
2340 2345 2350

5 Gln Val Ala Glu Gly Gln Thr Leu Asp Leu Asn Cys Val Val Pro Gly
2355 2360 2365

Gln Ser His Ala Gln Val Thr Trp His Lys Arg Gly Gly Ser Leu Pro
2370 2375 2380

10 Val Arg His Gln Thr His Gly Ser Leu Leu Arg Leu Tyr Gln Ala Ser
2385 2390 2395 2400

Pro Ala Asp Ser Gly Glu Tyr Val Cys Arg Val Leu Gly Ser Ser Val
2405 2410 2415

15 Pro Leu Glu Ala Ser Val Leu Val Thr Ile Glu Pro Ala Gly Ser Val
2420 2425 2430

Pro Ala Leu Gly Val Thr Pro Thr Val Arg Ile Glu Ser Ser Ser Ser
2435 2440 2445

20 Gln Val Ala Glu Gly Gln Thr Leu Asp Leu Asn Cys Leu Val Ala Gly
2450 2455 2460

25 Gln Ala His Ala Gln Val Thr Trp His Lys Arg Gly Ser Leu Pro
2465 2470 2475 2480

Ala Arg His Gln Val His Gly Ser Arg Leu Arg Leu Leu Gln Val Thr
2485 2490 2495

30 Pro Ala Asp Ser Gly Glu Tyr Val Cys Arg Val Val Gly Ser Ser Gly
2500 2505 2510

Thr Gln Glu Ala Ser Val Leu Val Thr Ile Gln Gln Arg Leu Ser Gly
35 2515 2520 2525

Ser His Ser Gln Gly Val Ala Tyr Pro Val Arg Ile Glu Ser Ser Ser
2530 2535 2540

40 Ala Ser Leu Ala Asn Gly His Thr Leu Asp Leu Asn Cys Leu Val Ala
2545 2550 2555 2560

Ser Gln Ala Pro His Thr Ile Thr Trp Tyr Lys Arg Gly Gly Ser Leu
2565 2570 2575

45 Pro Ser Arg His Gln Ile Val Gly Ser Arg Leu Arg Ile Pro Gln Val
2580 2585 2590

50 Thr Pro Ala Asp Ser Gly Glu Tyr Val Cys His Val Ser Asn Gly Ala
2595 2600 2605

Gly Ser Arg Glu Thr Ser Leu Ile Val Thr Ile Gln Gly Ser Gly Ser
2610 2615 2620

55 Ser His Val Pro Arg Val Ser Pro Pro Ile Arg Ile Glu Ser Ser Ser
2625 2630 2635 2640

Pro Thr Val Val Glu Gly Gln Thr Leu Asp Leu Asn Cys Val Val Ala

	2645	2650	2655
	Arg Gln Pro Gln Ala Ile Ile Thr Trp Tyr Lys Arg Gly Gly Ser Leu		
5	2660	2665	2670
	Pro Ser Arg His Gln Thr His Gly Ser His Leu Arg Leu His Gln Met		
	2675	2680	2685
10	Ser Val Ala Asp Ser Gly Glu Tyr Val Cys Arg Ala Asn Asn Asn Ile		
	2690	2695	2700
	Asp Ala Leu Glu Ala Ser Ile Val Ile Ser Val Ser Pro Ser Ala Gly		
	2705	2710	2715
15	Ser Pro Ser Ala Pro Gly Ser Ser Met Pro Ile Arg Ile Glu Ser Ser		
	2725	2730	2735
	Ser Ser His Val Ala Glu Gly Glu Thr Leu Asp Leu Asn Cys Val Val		
20	2740	2745	2750
	Pro Gly Gln Ala His Ala Gln Val Thr Trp His Lys Arg Gly Gly Ser		
	2755	2760	2765
25	Leu Pro Ser Tyr His Gln Thr Arg Gly Ser Arg Leu Arg Leu His His		
	2770	2775	2780
	Val Ser Pro Ala Asp Ser Gly Glu Tyr Val Cys Arg Val Met Gly Ser		
	2785	2790	2795
30	Ser Gly Pro Leu Glu Ala Ser Val Leu Val Thr Ile Glu Ala Ser Gly		
	2805	2810	2815
	Ser Ser Ala Val His Val Pro Ala Pro Gly Gly Ala Pro Pro Ile Arg		
35	2820	2825	2830
	Ile Glu Pro Ser Ser Arg Val Ala Glu Gly Gln Thr Leu Asp Leu		
	2835	2840	2845
40	Lys Cys Val Val Pro Gly Gln Ala His Ala Gln Val Thr Trp His Lys		
	2850	2855	2860
	Arg Gly Gly Asn Leu Pro Ala Arg His Gln Val His Gly Pro Leu Leu		
	2865	2870	2875
45	Arg Leu Asn Gln Val Ser Pro Ala Asp Ser Gly Glu Tyr Ser Cys Gln		
	2885	2890	2895
	Val Thr Gly Ser Ser Gly Thr Leu Glu Ala Ser Val Leu Val Thr Ile		
50	2900	2905	2910
	Glu Pro Ser Ser Pro Gly Pro Ile Pro Ala Pro Gly Leu Ala Gln Pro		
	2915	2920	2925
55	Ile Tyr Ile Glu Ala Ser Ser Ser His Val Thr Glu Gly Gln Thr Leu		
	2930	2935	2940
	Asp Leu Asn Cys Val Val Pro Gly Gln Ala His Ala Gln Val Thr Trp		
	2945	2950	2955
			2960

Tyr Lys Arg Gly Gly Ser Leu Pro Ala Arg His Gln Thr His Gly Ser
 2965 2970 2975

5 Gln Leu Arg Leu His His Val Ser Pro Ala Asp Ser Gly Glu Tyr Val
 2980 2985 2990

Cys Arg Ala Ala Gly Gly Pro Gly Pro Glu Gln Glu Ala Ser Phe Thr
 2995 3000 3005

10 Val Thr Val Pro Pro Ser Glu Gly Ser Ser Tyr Arg Leu Arg Ser Pro
 3010 3015 3020

Val Ile Ser Ile Asp Pro Pro Ser Ser Thr Val Gln Gln Gly Gln Asp
 15 3025 3030 3035 3040

Ala Ser Phe Lys Cys Leu Ile His Asp Gly Ala Ala Pro Ile Ser Leu
 3045 3050 3055

20 Glu Trp Lys Thr Arg Asn Gln Glu Leu Glu Asp Asn Val His Ile Ser
 3060 3065 3070

Pro Asn Gly Ser Ile Ile Thr Ile Val Gly Thr Arg Pro Ser Asn His
 3075 3080 3085

25 Gly Thr Tyr Arg Cys Val Ala Ser Asn Ala Tyr Gly Val Ala Gln Ser
 3090 3095 3100

Val Val Asn Leu Ser Val His Gly Pro Pro Thr Val Ser Val Leu Pro
 30 3105 3110 3115 3120

Glu Gly Pro Val Trp Val Lys Val Gly Lys Ala Val Thr Leu Glu Cys
 3125 3130 3135

35 Val Ser Ala Gly Glu Pro Arg Ser Ser Ala Arg Trp Thr Arg Ile Ser
 3140 3145 3150

Ser Thr Pro Ala Lys Leu Glu Gln Arg Thr Tyr Gly Leu Met Asp Ser
 3155 3160 3165

40 His Thr Val Leu Gln Ile Ser Ser Ala Lys Pro Ser Asp Ala Gly Thr
 3170 3175 3180

Tyr Val Cys Leu Ala Gln Asn Ala Leu Gly Thr Ala Gln Lys Gln Val
 45 3185 3190 3195 3200

Glu Val Ile Val Asp Thr Gly Ala Met Ala Pro Gly Ala Pro Gln Val
 3205 3210 3215

50 Gln Ala Glu Glu Ala Glu Leu Thr Val Glu Ala Gly His Thr Ala Thr
 3220 3225 3230

Leu Arg Cys Ser Ala Thr Gly Ser Pro Ala Arg Thr Ile His Trp Ser
 3235 3240 3245

55 Lys Leu Arg Ser Pro Leu Pro Trp Gln His Arg Leu Glu Gly Asp Thr
 3250 3255 3260

Leu Ile Ile Pro Arg Val Ala Gln Gln Asp Ser Gly Gln Tyr Ile Cys
 3265 3270 3275 3280

 5 Asn Ala Thr Ser Pro Ala Gly His Ala Glu Ala Thr Ile Ile Leu His
 3285 3290 3295

 Val Glu Ser Pro Pro Tyr Ala Thr Thr Val Pro Glu His Ala Ser Val
 3300 3305 3310

 10 Gln Ala Gly Glu Thr Val Gln Leu Gln Cys Leu Ala His Gly Thr Pro
 3315 3320 3325

 Pro Leu Thr Phe Gln Trp Ser Arg Val Gly Ser Ser Leu Pro Gly Arg
 3330 3335 3340

 15 Ala Thr Ala Arg Asn Glu Leu Leu His Phe Glu Arg Ala Ala Pro Glu
 3345 3350 3355 3360

 Asp Ser Gly Arg Tyr Arg Cys Arg Val Thr Asn Lys Val Gly Ser Ala
 20 3365 3370 3375

 Glu Ala Phe Ala Gln Leu Leu Val Gln Gly Pro Pro Gly Ser Leu Pro
 3380 3385 3390

 25 Ala Thr Ser Ile Pro Ala Gly Ser Thr Pro Thr Val Gln Val Thr Pro
 3395 3400 3405

 Gln Leu Glu Thr Lys Ser Ile Gly Ala Ser Val Glu Phe His Cys Ala
 3410 3415 3420

 30 Val Pro Ser Asp Arg Gly Thr Gln Leu Arg Trp Phe Lys Glu Gly Gly
 3425 3430 3435 3440

 Gln Leu Pro Pro Gly His Ser Val Gln Asp Gly Val Leu Arg Ile Gln
 35 3445 3450 3455

 Asn Leu Asp Gln Ser Cys Gln Gly Thr Tyr Ile Cys Gln Ala His Gly
 3460 3465 3470

 40 Pro Trp Gly Lys Ala Gln Ala Ser Ala Gln Leu Val Ile Gln Ala Leu
 3475 3480 3485

 Pro Ser Val Leu Ile Asn Ile Arg Thr Ser Val Gln Thr Val Val Val
 3490 3495 3500

 45 Gly His Ala Val Glu Phe Glu Cys Leu Ala Leu Gly Asp Pro Lys Pro
 3505 3510 3515 3520

 Gln Val Thr Trp Ser Lys Val Gly Gly His Leu Arg Pro Gly Ile Val
 50 3525 3530 3535

 Gln Ser Gly Gly Val Val Arg Ile Ala His Val Glu Leu Ala Asp Ala
 3540 3545 3550

 55 Gly Gln Tyr Arg Cys Thr Ala Thr Asn Ala Ala Gly Thr Thr Gln Ser
 3555 3560 3565

 His Val Leu Leu Leu Val Gln Ala Leu Pro Gln Ile Ser Met Pro Gln

	3570	3575	3580
	Glu Val Arg Val Pro Ala Gly Ser Ala Ala Val Phe Pro Cys Ile Ala		
	3585	3590	3595
5	Ser Gly Tyr Pro Thr Pro Asp Ile Ser Trp Ser Lys Leu Asp Gly Ser		
	3605	3610	3615
	Leu Pro Pro Asp Ser Arg Leu Glu Asn Asn Met Leu Met Leu Pro Ser		
10	3620	3625	3630
	Val Gln Pro Gln Asp Ala Gly Thr Tyr Val Cys Thr Ala Thr Asn Arg		
	3635	3640	3645
15	Gln Gly Lys Val Lys Ala Phe Ala His Leu Gln Val Pro Glu Arg Val		
	3650	3655	3660
	Val Pro Tyr Phe Thr Gln Thr Pro Tyr Ser Phe Leu Pro Leu Pro Thr		
	3665	3670	3675
20	3680	Ile Lys Asp Ala Tyr Arg Lys Phe Glu Ile Lys Ile Thr Phe Arg Pro	
	3685	3690	3695
	Asp Ser Ala Asp Gly Met Leu Leu Tyr Asn Gly Gln Lys Arg Val Pro		
25	3700	3705	3710
	Gly Ser Pro Thr Asn Leu Ala Asn Arg Gln Pro Asp Phe Ile Ser Phe		
	3715	3720	3725
30	Gly Leu Val Gly Gly Arg Pro Glu Phe Arg Phe Asp Ala Gly Ser Gly		
	3730	3735	3740
	Met Ala Thr Ile Arg His Pro Thr Pro Leu Ala Leu Gly His Phe His		
	3745	3750	3755
35	3760	Thr Val Thr Leu Leu Arg Ser Leu Thr Gln Gly Ser Leu Ile Val Gly	
	3765	3770	3775
	Asp Leu Ala Pro Val Asn Gly Thr Ser Gln Gly Lys Phe Gln Gly Leu		
40	3780	3785	3790
	Asp Leu Asn Glu Glu Leu Tyr Leu Gly Gly Tyr Pro Asp Tyr Gly Ala		
	3795	3800	3805
45	Ile Pro Lys Ala Gly Leu Ser Ser Gly Phe Ile Gly Cys Val Arg Glu		
	3810	3815	3820
	Leu Arg Ile Gln Gly Glu Glu Ile Val Phe His Asp Leu Asn Leu Thr		
	3825	3830	3835
50	3840	Ala His Gly Ile Ser His Cys Pro Thr Cys Arg Asp Arg Pro Cys Gln	
	3845	3850	3855
	Asn Gly Gly Gln Cys His Asp Ser Glu Ser Ser Ser Tyr Val Cys Val		
55	3860	3865	3870
	Cys Pro Ala Gly Phe Thr Gly Ser Arg Cys Glu His Ser Gln Ala Leu		
	3875	3880	3885

His Cys His Pro Glu Ala Cys Gly Pro Asp Ala Thr Cys Val Asn Arg
 3890 3895 3900

 5 Pro Asp Gly Arg Gly Tyr Thr Cys Arg Cys His Leu Gly Arg Ser Gly
 3905 3910 3915 3920

 Leu Arg Cys Glu Glu Gly Val Thr Val Thr Thr Pro Ser Leu Ser Gly
 10 3925 3930 3935

 Ala Gly Ser Tyr Leu Ala Leu Pro Ala Leu Thr Asn Thr His His Glu
 15 3940 3945 3950

 Leu Arg Leu Asp Val Glu Phe Lys Pro Leu Ala Pro Asp Gly Val Leu
 15 3955 3960 3965

 Leu Phe Ser Gly Gly Lys Ser Gly Pro Val Glu Asp Phe Val Ser Leu
 20 3970 3975 3980

 Ala Met Val Gly Gly His Leu Glu Phe Arg Tyr Glu Leu Gly Ser Gly
 20 3985 3990 3995 4000

 Leu Ala Val Leu Arg Thr Ala Glu Pro Leu Ala Leu Gly Arg Trp His
 25 4005 4010 4015

 Arg Val Ser Ala Glu Arg Leu Asn Lys Asp Gly Ser Leu Arg Val Asn
 25 4020 4025 4030

 Gly Gly Arg Pro Val Leu Arg Ser Ser Pro Gly Lys Ser Gln Gly Leu
 30 4035 4040 4045

 Asn Leu His Thr Leu Leu Tyr Leu Gly Gly Val Glu Pro Ser Val Pro
 30 4050 4055 4060

 35 Leu Ser Pro Ala Thr Asn Met Ser Ala His Phe Arg Gly Cys Val Gly
 35 4065 4070 4075 4080

 Glu Val Ser Val Asn Gly Lys Arg Leu Asp Leu Thr Tyr Ser Phe Leu
 40 4085 4090 4095

 Gly Ser Gln Gly Ile Gly Gln Cys Tyr Asp Ser Ser Pro Cys Glu Arg
 40 4100 4105 4110

 Gln Pro Cys Gln His Gly Ala Thr Cys Met Pro Ala Gly Glu Tyr Glu
 45 4115 4120 4125

 Phe Gln Cys Leu Cys Arg Asp Gly Ile Lys Gly Asp Leu Cys Glu His
 45 4130 4135 4140

 50 Glu Glu Asn Pro Cys Gln Leu Arg Glu Pro Cys Leu His Gly Gly Thr
 50 4145 4150 4155 4160

 Cys Gln Gly Thr Arg Cys Leu Cys Leu Pro Gly Phe Ser Gly Pro Arg
 55 4165 4170 4175

 Cys Gln Gln Gly Ser Gly His Gly Ile Ala Glu Ser Asp Trp His Leu
 55 4180 4185 4190

Glu Gly Ser Gly Gly Asn Asp Ala Pro Gly Gln Tyr Gly Ala Tyr Phe
 4195 4200 4205

His Asp Asp Gly Phe Leu Ala Phe Pro Gly His Val Phe Ser Arg Ser
 5 4210 4215 4220

Leu Pro Glu Val Pro Glu Thr Ile Glu Leu Glu Val Arg Thr Ser Thr
 4225 4230 4235 4240

Ala Ser Gly Leu Leu Leu Trp Gln Gly Val Glu Val Gly Glu Ala Gly
 10 4245 4250 4255

Gln Gly Lys Asp Phe Ile Ser Leu Gly Leu Gln Asp Gly His. Leu Val
 4260 4265 4270

Phe Arg Tyr Gln Leu Gly Ser Gly Glu Ala Arg Leu Val Ser Glu Asp
 15 4275 4280 4285

Pro Ile Asn Asp Gly Glu Trp His Arg Val Thr Ala Leu Arg Glu Gly
 20 4290 4295 4300

Arg Arg Gly Ser Ile Gln Val Asp Gly Glu Glu Leu Val Ser Gly Arg
 4305 4310 4315 4320

Ser Pro Gly Pro Asn Val Ala Val Asn Ala Lys Gly Ser Ile Tyr Ile
 25 4325 4330 4335

Gly Gly Ala Pro Asp Val Ala Thr Leu Thr Gly Gly Arg Phe Ser Ser
 4340 4345 4350

Gly Ile Thr Gly Cys Val Lys Asn Leu Val Leu His Ser Ala Arg Pro
 30 4355 4360 4365

Gly Ala Pro Pro Pro Gln Pro Leu Asp Leu Gln His Arg Ala Gln Ala
 35 4370 4375 4380

Gly Ala Asn Thr Arg Pro Cys Pro Ser
 4385 4390

40

<210> 2
 <211> 195
 <212> PRT
 45 <213> Homo sapiens

<400> 2
 Asp Ala Pro Gly Gln Tyr Gly Ala Tyr Phe His Asp Asp Gly Phe Leu
 1 5 10 15

Ala Phe Pro Gly His Val Phe Ser Arg Ser Leu Pro Glu Val Pro Glu
 50 20 25 30

Thr Ile Glu Leu Glu Val Arg Thr Ser Thr Ala Ser Gly Leu Leu Leu
 55 35 40 45

Trp Gln Gly Val Glu Val Gly Glu Ala Gly Gln Gly Lys Asp Phe Ile
 50 55 60

Ser Leu Gly Leu Gln Asp Gly His Leu Val Phe Arg Tyr Gln Leu Gly
 65 70 75 80

5 Ser Gly Glu Ala Arg Leu Val Ser Glu Asp Pro Ile Asn Asp Gly Glu
 85 90 95

Trp His Arg Val Thr Ala Leu Arg Glu Gly Arg Arg Gly Ser Ile Gln
 100 105 110

10 Val Asp Gly Glu Leu Val Ser Gly Arg Ser Pro Gly Pro Asn Val
 115 120 125

Ala Val Asn Ala Lys Gly Ser Val Tyr Ile Gly Gly Ala Pro Asp Val
 15 130 135 140

Ala Thr Leu Thr Gly Gly Arg Phe Ser Ser Gly Ile Thr Gly Cys Val
 145 150 155 160

20 Lys Asn Leu Val Leu His Ser Ala Arg Pro Gly Ala Pro Pro Pro Gln
 165 170 175

Pro Leu Asp Leu Gln His Arg Ala Gln Ala Gly Ala Asn Thr Arg Pro
 180 185 190

25 Cys Pro Ser
 195

30 <210> 3
 <211> 508
 <212> PRT
 <213> Homo sapiens

35 <400> 3
 Arg Thr Cys Arg Cys Lys Asn Asn Val Val Gly Arg Leu Cys Asn Glu
 1 5 10 15

40 Cys Ala Asp Arg Ser Phe His Leu Ser Thr Arg Asn Pro Asp Gly Cys
 20 25 30

Leu Lys Cys Phe Cys Met Gly Val Ser Arg His Cys Thr Ser Ser Ser
 35 40 45

45 Trp Ser Arg Ala Gln Leu His Gly Ala Ser Glu Glu Pro Gly His Phe
 50 55 60

50 Ser Leu Thr Asn Ala Ala Ser Thr His Thr Thr Asn Glu Gly Ile Phe
 65 70 75 80

Ser Pro Thr Pro Gly Glu Leu Gly Phe Ser Ser Phe His Arg Leu Leu
 85 90 95

55 Ser Gly Pro Tyr Phe Trp Ser Leu Pro Ser Arg Phe Leu Gly Asp Lys
 100 105 110

Val Thr Ser Tyr Gly Gly Glu Leu Arg Phe Thr Val Thr Gln Arg Ser

	115	120	125
	Gln Pro Gly Ser Thr Pro Leu His Gly Gln Pro Leu Val Val Leu Gln		
	130	135	140
5	Gly Asn Asn Ile Ile Leu Glu His His Val Ala Gln Glu Pro Ser Pro		
	145	150	155
	Gly Gln Pro Ser Thr Phe Ile Val Pro Phe Arg Glu Gln Ala Trp Gln		
10	165	170	175
	Arg Pro Asp Gly Gln Pro Ala Thr Arg Glu His Leu Leu Met Ala Leu		
	180	185	190
15	Ala Gly Ile Asp Thr Leu Leu Ile Arg Ala Ser Tyr Ala Gln Gln Pro		
	195	200	205
	Ala Glu Ser Arg Leu Ser Gly Ile Ser Met Asp Val Ala Val Pro Glu		
	210	215	220
20	Glu Thr Gly Gln Asp Pro Ala Leu Glu Val Glu Gln Cys Ser Cys Pro		
	225	230	235
	Pro Gly Tyr Leu Gly Pro Ser Cys Gln Asp Cys Asp Thr Gly Tyr Thr		
25	245	250	255
	Arg Thr Pro Ser Gly Leu Tyr Leu Gly Thr Cys Glu Arg Cys Ser Cys		
	260	265	270
30	His Gly His Ser Glu Ala Cys Glu Pro Glu Thr Gly Ala Cys Gln Gly		
	275	280	285
	Cys Gln His His Thr Glu Gly Pro Arg Cys Glu Gln Cys Gln Pro Gly		
	290	295	300
35	Tyr Tyr Gly Asp Ala Gln Arg Gly Thr Pro Gln Asp Cys Gln Leu Cys		
	305	310	315
	Pro Cys Tyr Gly Asp Pro Ala Ala Gly Gln Ala Ala Leu Thr Cys Phe		
40	325	330	335
	Leu Asp Thr Asp Gly His Pro Thr Cys Asp Ala Cys Ser Pro Gly His		
	340	345	350
45	Ser Gly Arg His Cys Glu Arg Cys Ala Pro Gly Tyr Tyr Gly Asn Pro		
	355	360	365
	Ser Gln Gly Gln Pro Cys Gln Arg Asp Ser Gln Val Pro Gly Pro Ile		
	370	375	380
50	Gly Cys Asn Cys Asp Pro Gln Gly Ser Val Ser Ser Gln Cys Asp Ala		
	385	390	395
	Ala Gly Gln Cys Gln Cys Lys Ala Gln Val Glu Gly Leu Thr Cys Ser		
55	405	410	415
	His Cys Arg Pro His His Phe His Leu Ser Ala Ser Asn Pro Asp Gly		
	420	425	430

Cys Leu Pro Cys Phe Cys Met Gly Ile Thr Gln Gln Cys Ala Ser Ser
 435 440 445

5 Ala Tyr Thr Arg His Leu Ile Ser Thr His Phe Ala Pro Gly Asp Phe
 450 455 460

Gln Gly Phe Ala Leu Val Asn Pro Gln Arg Asn Ser Arg Leu Thr Gly
 465 470 475 480

10 Glu Phe Thr Val Glu Pro Val Pro Glu Gly Ala Gln Leu Ser Phe Gly
 485 490 495

Asn Phe Ala Gln Leu Gly His Glu Ser Phe Tyr Trp
 15 500 505

20 <210> 4
 <211> 199
 <212> PRT
 <213> Homo sapiens

25 <400> 4
 Met Lys Trp Val Trp Ala Leu Leu Leu Ala Ala Trp Ala Ala Ala
 1 5 10 15

Glu Arg Asp Cys Arg Val Ser Ser Phe Arg Val Lys Glu Asn Phe Asp
 30 20 25 30

Lys Ala Arg Phe Ser Gly Thr Trp Tyr Ala Met Ala Lys Lys Asp Pro
 35 35 40 45

Glu Gly Leu Phe Leu Gln Asp Asn Ile Val Ala Glu Phe Ser Val Asp
 35 50 55 60

Glu Thr Gly Gln Met Ser Ala Thr Ala Lys Gly Arg Val Arg Leu Leu
 40 65 70 75 80

Asn Asn Trp Asp Val Cys Ala Asp Met Val Gly Thr Phe Thr Asp Thr
 45 85 90 95

Glu Asp Pro Ala Lys Phe Lys Met Lys Tyr Trp Gly Val Ala Ser Phe
 50 100 105 110

Leu Gln Lys Gly Asn Asp Asp His Trp Ile Val Asp Thr Asp Tyr Asp
 55 115 120 125

Thr Tyr Ala Val Gln Tyr Ser Cys Arg Leu Leu Asn Leu Asp Gly Thr
 60 130 135 140

Cys Ala Asp Ser Tyr Ser Phe Val Phe Ser Arg Asp Pro Asn Gly Leu
 65 145 150 155 160

Pro Pro Glu Ala Gln Lys Ile Val Arg Gln Arg Gln Glu Glu Leu Cys
 70 165 170 175

Leu Ala Arg Gln Tyr Arg Leu Ile Val His Asn Gly Tyr Cys Asp Gly

180 185 190

Arg Ser Glu Arg Asn Leu Leu
195

5

<210> 5
<211> 199
10 <212> PRT
<213> Homo sapiens

<400> 5
Met Lys Trp Val Trp Ala Leu Leu Leu Leu Ala Ala Trp Ala Ala Ala
15 1 5 10 15

Glu Arg Asp Cys Arg Val Ser Ser Phe Arg Val Lys Glu Asn Phe Asp
20 20 25 30

20 Lys Ala Arg Phe Ser Gly Thr Trp Tyr Ala Met Ala Lys Lys Asp Pro
35 35 40 45

Glu Gly Leu Phe Leu Gln Asp Asn Ile Val Ala Glu Phe Ser Val Asp
25 50 55 60

Glu Thr Gly Gln Met Ser Ala Thr Ala Lys Gly Arg Val Arg Leu Leu
25 65 70 75 80

Asn Asn Trp Asp Val Cys Ala Asp Met Val Gly Thr Phe Thr Asp Thr
30 85 90 95

Glu Asp Pro Ala Lys Phe Lys Met Lys Tyr Trp Gly Val Ala Ser Phe
35 100 105 110

Leu Gln Lys Gly Asn Asp Asp His Trp Ile Val Asp Thr Asp Tyr Asp
35 115 120 125

Thr Tyr Ala Val Gln Tyr Ser Cys Arg Leu Leu Asn Leu Asp Gly Thr
40 130 135 140

Cys Ala Asp Ser Tyr Ser Phe Val Phe Ser Arg Asp Pro Asn Gly Leu
40 145 150 155 160

Pro Pro Glu Ala Gln Lys Ile Val Arg Gln Arg Gln Glu Glu Leu Cys
45 165 170 175

Leu Ala Arg Gln Tyr Arg Leu Ile Val His Asn Gly Tyr Cys Asp Gly
45 180 185 190

50 Arg Ser Glu Arg Asn Leu Leu
50 195

55 <210> 6
<211> 199
<212> PRT
<213> Homo sapiens

<400> 6
 Met Lys Trp Val Trp Ala Leu Leu Leu Ala Ala Ala Trp Ala Ala Ala
 1 5 10 15
 5 Glu Arg Asp Cys Arg Val Ser Ser Phe Arg Val Lys Glu Asn Phe Asp
 20 25 30
 10 Lys Ala Arg Phe Ser Gly Thr Trp Tyr Ala Met Ala Lys Lys Asp Pro
 35 40 45
 Glu Gly Leu Phe Leu Gln Asp Asn Ile Val Ala Glu/Phe Ser Val Asp
 50 55 60
 15 Glu Thr Gly Gln Met Ser Ala Thr Ala Lys Gly Arg Val Arg Leu Leu
 65 70 75 80
 20 Asn Asn Trp Asp Val Cys Ala Asp Met Val Gly Thr Phe Thr Asp Thr
 85 90 95
 25 Glu Asp Pro Ala Lys Phe Lys Met Lys Tyr Trp Gly Val Ala Ser Phe
 100 105 110
 Leu Gln Lys Gly Asn Asp Asp His Trp Ile Val Asp Thr Asp Tyr Asp
 115 120 125
 Thr Tyr Ala Val Gln Tyr Ser Cys Arg Leu Leu Asn Leu Asp Gly Thr
 130 135 140
 30 Cys Ala Asp Ser Tyr Ser Phe Val Phe Ser Arg Asp Pro Asn Gly Leu
 145 150 155 160
 35 Pro Pro Glu Ala Gln Lys Ile Val Arg Gln Arg Gln Glu Glu Leu Cys
 165 170 175
 Leu Ala Arg Gln Tyr Arg Leu Ile Val His Asn Gly Tyr Cys Asp Gly
 180 185 190
 40 Arg Ser Glu Arg Asn Leu Leu
 195

45 <210> 7
 <211> 182
 <212> PRT
 <213> Homo sapiens

50 <400> 7
 Glu Arg Asp Cys Arg Val Ser Ser Phe Arg Val Lys Glu Asn Phe Asp
 1 5 10 15
 Lys Ala Arg Phe Ser Gly Thr Trp Tyr Ala Met Ala Lys Lys Asp Pro
 20 25 30
 55 Glu Gly Leu Phe Leu Gln Asp Asn Ile Val Ala Glu Phe Ser Val Asp
 35 40 45

Glu Thr Gly Gln Met Ser Ala Thr Ala Lys Gly Arg Val Arg Leu Leu
50 55 60

Asn Asn Trp Asp Val Cys Ala Asp Met Val Gly Thr Phe Thr Asp Thr
5 65 70 75 80

Glu Asp Pro Ala Lys Phe Lys Met Lys Tyr Trp Gly Val Ala Ser Phe
85 90 95

10 Leu Gln Lys Gly Asn Asp Asp His Trp Ile Val Asp Thr Asp Tyr Asp
100 105 110

Thr Tyr Ala Val Gln Tyr Ser Cys Arg Leu Leu Asn Leu Asp Gly Thr
115 120 125

15 Cys Ala Asp Ser Tyr Ser Phe Val Phe Ser Arg Asp Pro Asn Gly Leu
130 135 140

Pro Pro Glu Ala Gln Lys Ile Val Arg Gln Arg Gln Glu Glu Leu Cys
20 145 150 155 160

Leu Ala Arg Gln Tyr Arg Leu Ile Val His Asn Gly Tyr Cys Asp Gly
165 170 175

25 Arg Ser Glu Arg Asn Leu
180

30 <210> 8
<211> 193
<212> PRT
<213> Homo sapiens

35 <400> 8
Met Gln Ser Leu Met Gln Ala Pro Leu Leu Ile Ala Leu Gly Leu Leu
1 5 10 15

Leu Ala Thr Pro Ala Gln Ala His Leu Lys Lys Pro Ser Gln Leu Ser
40 20 25 30

Ser Phe Ser Trp Asp Asn Cys Asp Glu Gly Lys Asp Pro Ala Val Ile
35 40 45

45 Arg Ser Leu Thr Leu Glu Pro Asp Pro Ile Val Val Pro Gly Asn Val
50 55 60

Thr Leu Ser Val Val Gly Ser Thr Ser Val Pro Leu Ser Ser Pro Leu
65 70 75 80

50 Lys Val Asp Leu Val Leu Glu Lys Glu Val Ala Gly Leu Trp Ile Lys
85 90 95

Ile Pro Cys Thr Asp Tyr Ile Gly Ser Cys Thr Phe Glu His Phe Cys
55 100 105 110

Asp Val Leu Asp Met Leu Ile Pro Thr Gly Glu Pro Cys Pro Glu Pro
115 120 125

Leu Arg Thr Tyr Gly Leu Pro Cys His Cys Pro Phe Lys Glu Gly Thr
 130 135 140

5 Tyr Ser Leu Pro Lys Ser Glu Phe Val Val Pro Asp Leu Glu Leu Pro
 145 150 155 160

Ser Trp Leu Thr Thr Gly Asn Tyr Arg Ile Glu Ser Val Leu Ser Ser
 165 170 175

10 Ser Gly Lys Arg Leu Gly Cys Ile Lys Ile Ala Ala Ser Leu Lys Gly
 180 185 190

Ile
 15

20 <210> 9
 <211> 193
 <212> PRT
 <213> Homo sapiens

25 <400> 9
 Met Gln Ser Leu Met Gln Ala Pro Leu Leu Ile Ala Leu Gly Leu Leu
 1 5 10 15

Leu Ala Thr Pro Ala Gln Ala His Leu Lys Lys Pro Ser Gln Leu Ser
 20 25 30

30 Ser Phe Ser Trp Asp Asn Cys Phe Glu Gly Lys Asp Pro Ala Val Ile
 35 40 45

35 Arg Ser Leu Thr Leu Glu Pro Asp Pro Ile Val Val Pro Gly Asn Val
 50 55 60

Thr Leu Ser Val Val Gly Ser Thr Ser Val Pro Leu Ser Ser Pro Leu
 65 70 75 80

40 Lys Val Asp Leu Val Leu Glu Lys Glu Val Ala Gly Leu Trp Ile Lys
 85 90 95

Ile Pro Cys Thr Asp Tyr Ile Gly Ser Cys Thr Phe Glu His Phe Cys
 100 105 110

45 Asp Val Leu Asp Met Leu Ile Pro Thr Gly Glu Pro Cys Pro Glu Pro
 115 120 125

50 Leu Arg Thr Tyr Gly Leu Pro Cys His Cys Pro Phe Lys Glu Gly Thr
 130 135 140

Tyr Ser Leu Pro Lys Ser Glu Phe Ala Val Pro Asp Leu Glu Leu Pro
 145 150 155 160

55 Ser Trp Leu Thr Thr Gly Asn Tyr Arg Ile Glu Ser Val Leu Ser Ser
 165 170 175

Ser Gly Lys Arg Leu Gly Cys Ile Lys Ile Ala Ala Ser Leu Lys Gly

180

185

190

Ile

5

10 <210> 10
<211> 178
<212> PRT
<213> Homo sapiens

15 <400> 10
Leu Leu Ala Thr Pro Ala Gln Ala His Leu Lys Lys Pro Ser Gln Leu
1 5 10 15

20 Ser Ser Phe Ser Trp Asp Asn Cys Asp Glu Gly Lys Asp Pro Ala Val
20 25 30

25 Ile Arg Ser Leu Thr Leu Glu Pro Asp Pro Ile Val Val Pro Gly Asn
35 40 45

30 Val Thr Leu Ser Val Val Gly Ser Thr Ser Val Pro Leu Ser Ser Pro
50 55 60

35 Leu Lys Val Asp Leu Val Leu Glu Lys Glu Val Ala Gly Leu Trp Ile
65 70 75 80

40 Lys Ile Pro Cys Thr Asp Tyr Ile Gly Ser Cys Thr Phe Glu His Phe
85 90 95

45 Cys Asp Val Leu Asp Met Leu Ile Pro Thr Gly Glu Pro Cys Pro Glu
100 105 110

50 Pro Leu Arg Thr Tyr Gly Leu Pro Cys His Cys Pro Phe Lys Glu Gly
115 120 125

55 Thr Tyr Ser Leu Pro Lys Ser Glu Phe Val Val Pro Asp Leu Glu Leu
130 135 140

60 Pro Ser Trp Leu Thr Thr Gly Asn Tyr Arg Ile Glu Ser Val Leu Ser
145 150 155 160

65 Ser Ser Gly Lys Arg Leu Gly Cys Ile Lys Ile Ala Ala Ser Leu Lys
165 170 175

70 Gly Ile

75

80 <210> 11
<211> 200
<212> PRT
<213> Homo sapiens

85 <400> 11
Arg Ala Gly Pro Pro Phe Pro Met Gln Ser Leu Met Gln Ala Pro Leu

	1	5	10	15
	Leu Ile Ala Leu Gly Leu Leu Leu Ala Ala Pro Ala Gln Ala His Leu			
	20	25	30	
5	Lys Lys Pro Ser Gln Leu Ser Ser Phe Ser Trp Asp Asn Cys Asp Glu			
	35	40	45	
	Gly Lys Asp Pro Ala Val Ile Arg Ser Leu Thr Leu Glu Pro Asp Pro			
10	50	55	60	
	Ile Ile Val Pro Gly Asn Val Thr Leu Ser Val Met Gly Ser Thr Ser			
	65	70	75	80
15	Val Pro Leu Ser Ser Pro Leu Lys Val Asp Leu Val Leu Glu Lys Glu			
	85	90	95	
	Val Ala Gly Leu Trp Ile Lys Ile Pro Cys Thr Asp Tyr Ile Gly Ser			
	100	105	110	
20	Cys Thr Phe Glu His Phe Cys Asp Val Leu Asp Met Leu Ile Pro Thr			
	115	120	125	
	Gly Glu Pro Cys Pro Glu Pro Leu Arg Thr Tyr Gly Leu Pro Cys His			
25	130	135	140	
	Cys Pro Phe Lys Glu Gly Thr Tyr Ser Leu Pro Lys Ser Glu Phe Val			
	145	150	155	160
30	Val Pro Asp Leu Glu Leu Pro Ser Trp Leu Thr Thr Gly Asn Tyr Arg			
	165	170	175	
	Ile Glu Ser Val Leu Ser Ser Ser Gly Lys Arg Leu Gly Cys Ile Lys			
	180	185	190	
35	Ile Ala Ala Ser Leu Lys Gly Ile			
	195	200		
	<210> 12			
	<211> 189			
	<212> PRT			
	<213> Homo sapiens			
40	<400> 12			
	Met Gln Ala Pro Leu Leu Ile Ala Leu Gly Leu Leu Leu Ala Thr Pro			
	1	5	10	15
45	Ala Gln Ala His Leu Lys Lys Pro Ser Gln Leu Ser Ser Phe Ser Trp			
	20	25	30	
	Asp Asn Cys Asp Glu Gly Lys Asp Pro Ala Val Ile Arg Ser Leu Thr			
	35	40	45	
50	Leu Glu Pro Asp Pro Ile Val Val Pro Gly Asn Val Thr Leu Ser Val			
	50	55	60	

Val Gly Ser Thr Ser Val Pro Leu Ser Ser Pro Leu Lys Val Asp Leu
 65 70 75 80

Val Leu Glu Lys Glu Val Ala Gly Leu Trp Ile Lys Ile Pro Cys Thr
 5 85 90 95

Asp Tyr Ile Gly Ser Cys Thr Phe Glu His Phe Cys Asp Val Leu Asp
 100 105 110

10 Met Leu Ile Pro Thr Gly Glu Pro Cys Pro Glu Pro Leu Arg Thr Tyr
 115 120 125

Gly Leu Pro Cys His Cys Pro Phe Lys Glu Gly Thr Tyr Ser Leu Pro
 130 135 140

15 Lys Ser Glu Phe Val Val Pro Asp Leu Glu Leu Pro Ser Trp Leu Thr
 145 150 155 160

Thr Gly Asn Tyr Arg Ile Glu Ser Val Leu Ser Ser Ser Gly Lys Arg
 20 165 170 175

Leu Gly Cys Ile Lys Ile Ala Ala Ser Leu Lys Gly Ile
 180 185

25

<210> 13
 <211> 193
 <212> PRT
 30 <213> Homo sapiens

<400> 13
 Met Gln Ser Leu Met Gln Ala Pro Leu Leu Ile Ala Leu Gly Leu Leu
 1 5 10 15

35 Leu Ala Thr Pro Ala Gln Ala His Leu Lys Lys Pro Ser Gln Leu Ser
 20 25 30

Ser Phe Ser Trp Asp Asn Cys Asp Glu Gly Lys Asp Pro Ala Val Ile
 40 35 40 45

Arg Ser Leu Thr Leu Glu Pro Asp Pro Ile Val Val Pro Gly Asn Val
 50 55 60

45 Thr Leu Ser Val Val Gly Ser Thr Ser Val Pro Leu Ser Ser Pro Leu
 65 70 75 80

Lys Val Asp Leu Val Leu Glu Lys Glu Val Ala Gly Leu Trp Ile Lys
 85 90 95

50 Ile Pro Cys Thr Asp Tyr Ile Gly Ser Cys Thr Phe Glu His Phe Cys
 100 105 110

Asp Val Leu Asp Met Leu Ile Pro Thr Gly Glu Pro Cys Pro Glu Pro
 55 115 120 125

Leu Arg Thr Tyr Gly Leu Pro Cys His Cys Pro Phe Lys Glu Gly Thr
 130 135 140

Tyr Ser Leu Pro Lys Ser Glu Phe Val Val Pro Asp Leu Glu Leu Pro
 145 150 155 160

5 Ser Trp Leu Thr Thr Gly Asn Tyr Arg Ile Glu Ser Val Leu Ser Ser
 165 170 175

Ser Gly Lys Arg Leu Gly Cys Ile Lys Ile Ala Ala Ser Leu Lys Gly
 180 185 190

10 Ile

15 <210> 14
 <211> 193
 <212> PRT
 <213> Homo sapiens

20 <400> 14
 Met Gln Ser Leu Met Gln Ala Pro Leu Leu Ile Ala Leu Gly Leu Leu
 1 5 10 15

25 Leu Ala Thr Pro Ala Gln Ala His Leu Lys Lys Pro Ser Gln Leu Ser
 20 25 30

Ser Phe Ser Trp Asp Asn Cys Asp Glu Gly Lys Asp Pro Ala Val Ile
 35 40 45

30 Arg Ser Leu Thr Leu Glu Pro Asp Pro Ile Val Val Pro Gly Asn Val
 50 55 60

Thr Leu Ser Val Val Gly Ser Thr Ser Val Pro Leu Ser Ser Pro Leu
 35 65 70 75 80

Lys Val Asp Leu Val Leu Glu Lys Glu Val Ala Gly Leu Trp Ile Lys
 85 90 95

40 Ile Pro Cys Thr Asp Tyr Ile Gly Ser Cys Thr Phe Glu His Phe Cys
 100 105 110

Asp Val Leu Asp Met Leu Ile Pro Thr Gly Glu Pro Cys Pro Glu Pro
 115 120 125

45 Leu Arg Thr Tyr Gly Leu Pro Cys His Cys Pro Phe Lys Glu Gly Thr
 130 135 140

Tyr Ser Leu Pro Lys Ser Glu Phe Val Val Pro Asp Leu Glu Leu Pro
 50 145 150 155 160

Ser Trp Leu Thr Thr Gly Asn Tyr Arg Ile Glu Ser Val Leu Ser Ser
 165 170 175

55 Ser Gly Lys Arg Leu Gly Cys Ile Lys Ile Ala Ala Ser Leu Lys Gly
 180 185 190

Ile

5 <210> 15
 <211> 193
 <212> PRT
 <213> Homo sapiens

10 <400> 15
 Met Gln Ser Leu Met Gln Ala Pro Leu Leu Ile Ala Leu Gly Leu Leu
 1 5 10 15

15 Leu Ala Thr Pro Ala Gln Ala His Leu Lys Lys Pro Ser Gln Leu Ser
 20 25 30

20 Ser Phe Ser Trp Asp Asn Cys Asp Glu Gly Lys Asp Pro Ala Val Ile
 35 40 45

25 Arg Ser Leu Thr Leu Glu Pro Asp Pro Ile Val Val Pro Gly Asn Val
 50 55 60

30 Thr Leu Ser Val Val Gly Ser Thr Ser Val Pro Leu Ser Ser Pro Leu
 65 70 75 80

35 Lys Val Asp Leu Val Leu Glu Lys Glu Val Ala Gly Leu Trp Ile Lys
 85 90 95

40 Ile Pro Cys Thr Asp Tyr Ile Gly Ser Cys Thr Phe Glu His Phe Cys
 100 105 110

45 Asp Val Leu Asp Met Leu Ile Pro Thr Gly Glu Pro Cys Pro Glu Pro
 115 120 125

50 Leu Arg Thr Tyr Gly Leu Pro Cys His Cys Pro Phe Lys Glu Gly Thr
 130 135 140

55 Tyr Ser Leu Pro Lys Ser Glu Phe Val Val Pro Asp Leu Glu Leu Pro
 145 150 155 160

60 Ser Trp Leu Thr Thr Gly Asn Tyr Arg Ile Glu Ser Val Leu Ser Ser
 165 170 175

65 Ser Gly Lys Arg Leu Gly Cys Ile Lys Ile Ala Ala Ser Leu Lys Gly
 180 185 190

70 Ile

75 50

80 <210> 16
 <211> 193
 <212> PRT
 <213> Homo sapiens

85 <400> 16
 Met Gln Ser Leu Met Gln Ala Pro Leu Leu Ile Ala Leu Gly Leu Leu

	1	5	10	15
	Leu Ala Thr Pro Ala Gln Ala His Leu Lys Lys Pro Ser Gln Leu Ser			
	20	25	30	
5	Ser Phe Ser Trp Asp Asn Cys Asp Glu Gly Lys Asp Pro Ala Val Ile			
	35	40	45	
	Arg Ser Leu Thr Leu Glu Pro Asp Pro Ile Val Val Pro Gly Asn Val			
10	50	55	60	
	Thr Leu Ser Val Val Gly Ser Thr Ser Val Pro Leu Ser Ser Pro Leu			
	65	70	75	80
15	Lys Val Asp Leu Val Leu Glu Lys Glu Val Ala Gly Leu Trp Ile Lys			
	85	90	95	
	Ile Pro Cys Thr Asp Tyr Ile Gly Ser Cys Thr Phe Glu His Phe Cys			
	100	105	110	
20	Asp Val Leu Asp Met Leu Ile Pro Thr Gly Glu Pro Cys Pro Glu Pro			
	115	120	125	
	Leu Arg Thr Tyr Gly Leu Pro Cys His Cys Pro Phe Lys Glu Gly Thr			
25	130	135	140	
	Tyr Ser Leu Pro Lys Ser Glu Phe Val Val Pro Asp Leu Glu Leu Pro			
	145	150	155	160
30	Ser Trp Leu Thr Thr Gly Asn Tyr Arg Ile Glu Ser Val Leu Ser Ser			
	165	170	175	
	Ser Gly Lys Arg Leu Gly Cys Ile Lys Ile Ala Ala Ser Leu Lys Gly			
	180	185	190	
35	Ile			
40	<210> 17			
	<211> 114			
	<212> PRT			
	<213> Homo sapiens			
45	<400> 17			
	Met Thr Cys Lys Met Ser Gln Leu Glu Arg Asn Ile Glu Thr Ile Ile			
	1	5	10	15
50	Asn Thr Phe His Gln Tyr Ser Val Lys Leu Gly His Pro Asp Thr Leu			
	20	25	30	
	Asn Gln Gly Glu Phe Lys Glu Leu Val Arg Lys Asp Leu Gln Asn Phe			
	35	40	45	
55	Leu Lys Lys Glu Asn Lys Asn Glu Lys Val Ile Glu His Ile Met Glu			
	50	55	60	

Asp Leu Asp Thr Asn Ala Asp Lys Gln Leu Ser Phe Glu Glu Phe Ile
65 70 75 80

Met Leu Met Ala Arg Leu Thr Trp Ala Ser His Glu Lys Met His Glu
5 85 90 95

Gly Asp Glu Gly Pro Gly His His His Lys Pro Gly Leu Gly Glu Gly
100 105 110

10 Thr Pro

15 <210> 18
<211> 93
<212> PRT
<213> Homo sapiens

20 <400> 18
Met Leu Thr Glu Leu Glu Lys Ala Leu Asn Ser Ile Ile Asp Val Tyr
1 5 10 15

His Lys Tyr Ser Leu Ile Lys Gly Asn Phe His Ala Val Tyr Arg Asp
25 20 25 30

Asp Leu Lys Lys Leu Leu Glu Thr Glu Cys Pro Gln Tyr Ile Arg Lys
35 35 40 45

30 Lys Gly Ala Asp Val Trp Phe Lys Glu Leu Asp Ile Asn Thr Asp Gly
50 55 60

Ala Val Asn Phe Gln Glu Phe Leu Ile Leu Val Ile Lys Met Gly Val
65 70 75 80

35 Ala Ala His Lys Lys Ser His Glu Glu Ser His Lys Glu
85 90

40 <210> 19
<211> 92
<212> PRT
<213> Homo sapiens

45 <400> 19
Met Thr Lys Leu Glu Glu His Leu Glu Gly Ile Val Asn Ile Phe His
1 5 10 15

50 Gln Tyr Ser Val Arg Lys Gly His Phe Asp Thr Leu Ser Lys Gly Glu
20 25 30

Leu Lys Gln Leu Leu Thr Lys Glu Leu Ala Asn Thr Ile Lys Asn Ile
35 40 45

55 Lys Asp Lys Ala Val Ile Asp Glu Ile Phe Gln Gly Leu Asp Ala Asn
50 55 60

Gln Asp Glu Gln Val Asp Phe Gln Glu Phe Ile Ser Leu Val Ala Ile
65 70 75 80

Ala Leu Lys Ala Ala His Tyr His Thr His Lys Glu
5 85 90

10 <210> 20
<211> 92
<212> PRT
<213> Homo sapiens

15 <400> 20
Met Thr Lys Leu Glu Glu His Leu Glu Gly Ile Val Asn Ile Phe His
1 5 10 15

Gln Tyr Ser Val Arg Lys Gly His Phe Asp Thr Leu Ser Lys Gly Glu
20 20 25 30

20 Leu Lys Gln Leu Leu Thr Lys Glu Leu Ala Asn Thr Ile Lys Asn Ile
35 40 45

25 Lys Asp Lys Ala Val Ile Asp Glu Ile Phe Gln Gly Leu Asp Ala Asn
50 55 60

Gln Asp Glu Gln Val Asp Phe Gln Glu Phe Ile Ser Leu Val Ala Ile
65 70 75 80

30 Ala Leu Lys Ala Ala His Tyr His Thr His Lys Glu
85 90

35 <210> 21
<211> 91
<212> PRT
<213> Homo sapiens

40 <400> 21
Thr Lys Leu Glu Glu His Leu Glu Gly Ile Val Asn Ile Phe His Gln
1 5 10 15

45 Tyr Ser Val Arg Lys Gly His Phe Asp Thr Leu Ser Lys Gly Glu Leu
20 25 30

Lys Gln Leu Leu Thr Lys Glu Leu Ala Asn Thr Ile Lys Asn Ile Lys
35 40 45

50 Asp Lys Ala Val Ile Asp Glu Ile Phe Gln Gly Leu Asp Ala Asn Gln
50 55 60

Asp Glu Gln Val Asp Phe Gln Glu Phe Ile Ser Leu Val Ala Ile Ala
65 70 75 80

55 Leu Lys Ala Ala His Tyr His Thr His Lys Glu
85 90

5 <210> 22
 <211> 93
 <212> PRT
 <213> Homo sapiens

10 <400> 22
 Met Leu Thr Glu Leu Glu Lys Ala Leu Asn Ser Ile Ile Asp Val Tyr
 1 5 10 15
 His Lys Tyr Ser Leu Ile Lys Gly Asn Phe His Ala Val Tyr Arg Asp
 20 25 30
15 Asp Leu Lys Lys Leu Leu Glu Thr Glu Cys Pro Gln Tyr Ile Arg Lys
 35 40 45
 Lys Gly Ala Asp Val Trp Phe Lys Glu Leu Asp Ile Asn Thr Asp Gly
 50 55 60
20 Ala Val Asn Phe Gln Glu Phe Leu Ile Leu Val Ile Lys Met Gly Val
 65 70 75 80
25 Ala Ala His Lys Lys Ser His Glu Glu Ser His Lys Glu
 85 90

30 <210> 23
 <211> 92
 <212> PRT
 <213> Homo sapiens

35 <400> 23
 Met Thr Lys Leu Glu Glu His Leu Glu Gly Ile Val Asn Ile Phe His
 1 5 10 15
 Gln Tyr Ser Val Arg Lys Gly His Phe Asp Thr Leu Ser Lys Gly Glu
 20 25 30
40 Leu Lys Gln Leu Leu Thr Lys Glu Leu Ala Asn Thr Ile Lys Asn Ile
 35 40 45
 Lys Asp Lys Ala Val Ile Asp Glu Ile Phe Gln Gly Leu Asp Ala Asn
 50 55 60
 Gln Asp Glu Gln Val Asp Phe Gln Glu Phe Ile Ser Leu Val Ala Ile
 65 70 75 80
50 Ala Leu Lys Ala Ala His Tyr His Thr His Lys Glu
 85 90

55 <210> 24
 <211> 85
 <212> PRT
 <213> Homo sapiens

<400> 24
Asp Asn Gly Asp Val Cys Gln Asp Cys Ile Gln Met Val Thr Asp Ile
1 5 10 15
5 Gln Thr Ala Val Arg Thr Asn Ser Thr Phe Val Gln Ala Leu Val Glu
20 25 30
10 His Val Lys Glu Glu Cys Asp Arg Leu Gly Pro Gly Met Ala Asp Ile
35 40 45
Cys Lys Asn Tyr Ile Ser Gln Tyr Ser Glu Ile Ala Ile Gln Met Met
50 55 60
15 Met His Met Gln Asp Gln Gln Pro Lys Glu Ile Cys Ala Leu Val Gly
65 70 75 80
Phe Cys Asp Glu Val
85
20

<210> 25
<211> 381
25 <212> PRT
<213> Homo sapiens

<400> 25
Met Ala Glu Ser His Leu Leu Gln Trp Leu Leu Leu Leu Pro Thr
30 1 5 10 15
Leu Cys Gly Pro Gly Thr Ala Ala Trp Thr Thr Ser Ser Leu Ala Cys
20 25 30
35 Ala Gln Gly Pro Glu Phe Trp Cys Gln Ser Leu Glu Gln Ala Leu Gln
35 40 45
Cys Arg Ala Leu Gly His Cys Leu Gln Glu Val Trp Gly His Val Gly
50 55 60
40 Ala Asp Asp Leu Cys Gln Glu Cys Glu Asp Ile Val His Ile Leu Asn
65 70 75 80
45 Lys Met Ala Lys Glu Ala Ile Phe Gln Asp Thr Met Arg Lys Phe Leu
85 90 95
Glu Gln Glu Cys Asn Val Leu Pro Leu Lys Leu Leu Met Pro Gln Cys
100 105 110
50 Asn Gln Val Leu Asp Asp Tyr Phe Pro Leu Val Ile Asp Tyr Phe Gln
115 120 125
Asn Gln Ile Asp Ser Asn Gly Ile Cys Met His Leu Gly Leu Cys Lys
130 135 140
55 Ser Arg Gln Pro Glu Pro Glu Gln Glu Pro Gly Met Ser Asp Pro Leu
145 150 155 160

	Pro	Lys	Pro	Leu	Arg	Asp	Pro	Leu	Pro	Asp	Pro	Leu	Leu	Asp	Lys	Leu
							165									175
5	Val	Leu	Pro	Val	Leu	Pro	Gly	Ala	Leu	Gln	Ala	Arg	Pro	Gly	Pro	His
							180									190
	Thr	Gln	Asp	Leu	Ser	Glu	Gln	Gln	Phe	Pro	Ile	Pro	Leu	Pro	Tyr	Cys
							195				200					205
10	Trp	Leu	Cys	Arg	Ala	Leu	Ile	Lys	Arg	Ile	Gln	Ala	Met	Ile	Pro	Lys
							210			215						220
	Gly	Ala	Leu	Arg	Val	Ala	Val	Ala	Gln	Val	Cys	Arg	Val	Val	Pro	Leu
15							225			230				235		240
	Val	Ala	Gly	Gly	Ile	Cys	Gln	Cys	Leu	Ala	Glu	Arg	Tyr	Ser	Val	Ile
							245				250					255
20	Leu	Leu	Asp	Thr	Leu	Leu	Gly	Arg	Met	Leu	Pro	Gln	Leu	Val	Cys	Arg
							260			265						270
	Leu	Val	Leu	Arg	Cys	Ser	Met	Asp	Asp	Ser	Ala	Gly	Pro	Arg	Ser	Pro
							275			280						285
25	Thr	Gly	Glu	Trp	Leu	Pro	Arg	Asp	Ser	Glu	Cys	His	Leu	Cys	Met	Ser
							290			295						300
	Val	Thr	Thr	Gln	Ala	Gly	Asn	Ser	Ser	Glu	Gln	Ala	Ile	Pro	Gln	Ala
30							305			310				315		320
	Met	Leu	Gln	Ala	Cys	Val	Gly	Ser	Trp	Leu	Asp	Arg	Glu	Lys	Cys	Lys
							325				330					335
35	Gln	Phe	Val	Glu	Gln	His	Thr	Pro	Gln	Leu	Leu	Thr	Leu	Val	Pro	Arg
							340			345						350
	Gly	Trp	Asp	Ala	His	Thr	Thr	Cys	Gln	Ala	Leu	Gly	Val	Cys	Gly	Thr
							355			360						365
40	Met	Ser	Ser	Pro	Leu	Gln	Cys	Ile	His	Ser	Pro	Asp	Leu			
							370			375						380
45	<210>	26														
	<211>	379														
	<212>	PRT														
	<213>	Homo sapiens														
50	<400>	26														
	Met	Ala	Glu	Ser	His	Leu	Leu	Gln	Trp	Leu	Leu	Leu	Leu	Pro	Thr	
							1			5						15
	Leu	Cys	Gly	Pro	Gly	Thr	Ala	Ala	Trp	Thr	Thr	Ser	Ser	Leu	Ala	Cys
55							20				25					30
	Ala	Gln	Gly	Pro	Glu	Phe	Trp	Cys	Gln	Ser	Leu	Glu	Gln	Ala	Leu	Gln
							35				40					45

Cys Arg Ala Leu Gly His Cys Leu Gln Glu Val Trp Gly His Val Gly
50 55 60

5 Ala Asp Asp Leu Cys Gln Glu Cys Glu Asp Ile Val His Ile Leu Asn
65 70 75 80

Lys Met Ala Lys Glu Ala Ile Phe Gln Asp Thr Met Arg Lys Phe Leu
10 85 90 95

Glu Gln Glu Cys Asn Val Leu Pro Leu Lys Leu Leu Met Pro Gln Cys
100 105 110

Asn Gln Val Leu Asp Asp Tyr Phe Pro Leu Val Ile Asp Tyr Phe Gln
15 115 120 125

Asn Gln Thr Asp Ser Asn Gly Ile Cys Met His Leu Gly Cys Lys Ser
130 135 140

20 Arg Gln Pro Glu Pro Glu Gln Glu Pro Gly Met Ser Asp Pro Leu Pro
145 150 155 160

Lys Pro Leu Arg Asp Pro Leu Pro Asp Pro Leu Leu Asp Lys Leu Val
165 170 175

25 Leu Pro Val Leu Pro Gly Ala Leu Gln Ala Arg Pro Gly Pro His Thr
180 185 190

Gln Asp Leu Ser Glu Gln Gln Phe Pro Ile Pro Leu Pro Tyr Cys Trp
30 195 200 205

Cys Arg Ala Leu Ile Lys Arg Ile Gln Ala Met Ile Pro Lys Gly Ala
210 215 220

35 Leu Arg Val Ala Val Ala Gln Val Cys Arg Val Val Pro Leu Val Ala
225 230 235 240

Gly Gly Ile Cys Gln Cys Leu Ala Glu Arg Tyr Ser Val Ile Leu Leu
245 250 255

40 Asp Thr Leu Leu Gly Arg Met Leu Pro Gln Leu Val Cys Arg Leu Val
260 265 270

Leu Arg Cys Ser Met Asp Asp Ser Ala Gly Pro Arg Ser Pro Thr Gly
45 275 280 285

Glu Trp Leu Pro Arg Asp Ser Glu Cys His Leu Cys Met Ser Val Thr
290 295 300

50 Thr Gln Ala Gly Asn Ser Ser Glu Gln Ala Ile Pro Gln Ala Met Leu
305 310 315 320

Gln Ala Cys Val Gly Ser Trp Leu Asp Arg Glu Lys Cys Lys Gln Phe
55 325 330 335

Val Glu Gln His Thr Pro Gln Leu Leu Thr Leu Val Pro Arg Gly Trp
340 345 350

	Asp Ala His Thr Thr Cys Gln Ala Leu Gly Val Cys Gly Thr Met Ser			
	355	360		
	Ser Pro Leu Gln Cys Ile His Ser Pro Asp Leu			
5	370	375		
	<210> 27			
10	<211> 527			
	<212> PRT			
	<213> Homo sapiens			
	<400> 27			
15	Met Tyr Ala Leu Phe Leu Leu Ala Ser Leu Leu Gly Ala Ala Leu Ala			
	1	5	10	15
	Gly Pro Val Leu Gly Leu Lys Glu Cys Thr Arg Gly Ser Ala Val Trp			
	20	25	30	
20	Cys Gln Asn Val Lys Thr Ala Ser Asp Cys Gly Ala Val Lys His Cys			
	35	40	45	
25	Leu Gln Thr Val Trp Asn Lys Pro Thr Val Lys Ser Leu Pro Cys Asp			
	50	55	60	
	Ile Cys Lys Asp Val Val Thr Ala Ala Gly Asp Met Leu Lys Asp Asn			
	65	70	75	80
30	Ala Thr Glu Glu Ile Leu Val Tyr Leu Glu Lys Thr Cys Asp Trp			
	85	90	95	
	Leu Pro Lys Pro Asn Met Ser Ala Ser Cys Lys Glu Ile Val Asp Ser			
	100	105	110	
35	Tyr Leu Pro Val Ile Leu Asp Ile Ile Lys Gly Glu Met Ser Arg Pro			
	115	120	125	
40	Gly Glu Val Cys Ser Ala Leu Asn Leu Cys Glu Ser Leu Gln Lys His			
	130	135	140	
	Leu Ala Glu Leu Asn His Gln Lys Gln Leu Glu Ser Asn Lys Ile Pro			
	145	150	155	160
45	Glu Leu Asp Met Thr Glu Val Val Ala Pro Phe Met Ala Asn Ile Pro			
	165	170	175	
	Leu Leu Leu Tyr Pro Gln Asp Gly Pro Arg Ser Lys Pro Gln Pro Lys			
	180	185	190	
50	Asp Asn Gly Asp Val Cys Gln Asp Cys Ile Gln Met Val Thr Asp Ile			
	195	200	205	
55	Gln Thr Ala Val Arg Thr Asn Ser Thr Phe Val Gln Ala Leu Val Glu			
	210	215	220	
	His Val Lys Glu Glu Cys Asp Arg Leu Gly Pro Gly Met Ala Asp Ile			
	225	230	235	240

	Cys Lys Asn Tyr Ile Ser Gln Tyr Ser Glu Ile Ala Ile Gln Met Met			
	245	250	255	
5	Met His Met Gln Asp Gln Gln Pro Lys Glu Ile Cys Ala Leu Val Gly			
	260	265	270	
	Phe Cys Asp Glu Val Lys Glu Met Pro Met Gln Thr Leu Val Pro Ala			
	275	280	285	
10	Lys Val Ala Ser Lys Asn Val Ile Pro Ala Leu Glu Leu Val Glu Pro			
	290	295	300	
15	Ile Lys Lys His Glu Val Pro Ala Lys Ser Asp Val Tyr Cys Glu Val			
	305	310	315	320
	Cys Glu Phe Leu Val Lys Glu Val Thr Lys Leu Ile Asp Asn Asn Lys			
	325	330	335	
20	Thr Glu Lys Glu Ile Leu Asp Ala Phe Asp Lys Met Cys Ser Lys Leu			
	340	345	350	
	Pro Lys Ser Leu Ser Glu Glu Cys Gln Glu Val Val Asp Thr Tyr Gly			
	355	360	365	
25	Ser Ser Ile Leu Ser Ile Leu Leu Glu Val Ser Pro Glu Leu Val			
	370	375	380	
30	Cys Ser Met Leu His Leu Cys Ser Gly Thr Arg Leu Pro Ala Leu Thr			
	385	390	395	400
	Val His Val Thr Gln Pro Lys Asp Gly Gly Phe Cys Glu Val Cys Lys			
	405	410	415	
35	Lys Leu Val Gly Tyr Leu Asp Arg Asn Leu Glu Lys Asn Ser Thr Lys			
	420	425	430	
	Gln Glu Ile Leu Ala Ala Leu Glu Lys Gly Cys Ser Phe Leu Pro Asp			
	435	440	445	
40	Pro Tyr Gln Lys Gln Cys Asp Gln Phe Val Ala Glu Tyr Glu Pro Val			
	450	455	460	
	Leu Ile Glu Ile Leu Val Glu Val Met Asp Pro Ser Phe Val Cys Leu			
45	465	470	475	480
	Lys Ile Gly Ala Cys Pro Ser Ala His Lys Pro Leu Leu Gly Thr Glu			
	485	490	495	
50	Lys Cys Ile Trp Gly Pro Ser Tyr Trp Cys Gln Asn Thr Glu Thr Ala			
	500	505	510	
	Ala Gln Cys Asn Ala Val Glu His Cys Lys Arg His Val Trp Asn			
	515	520	525	

<211> 523
 <212> PRT
 <213> Homo sapiens

5 <400> 28
 Met Tyr Ala Leu Phe Leu Leu Ala Ser Leu Leu Gly Ala Ala Leu Ala
 1 5 10 15

10 Gly Pro Val Leu Gly Leu Lys Glu Cys Thr Arg Gly Ser Ala Val Trp
 20 25 30

Cys Gln Asn Val Lys Thr Ala Ser Asp Cys Gly Ala Val Lys His Cys
 35 40 45

15 Leu Gln Thr Val Trp Asn Lys Pro Thr Val Lys Ser Leu Pro Cys Asp
 50 55 60

Ile Cys Lys Asp Val Val Thr Ala Ala Gly Asp Met Leu Lys Asp Asn
 65 70 75 80

20 Ala Thr Glu Glu Glu Ile Leu Val Tyr Leu Glu Lys Thr Cys Asp Trp
 85 90 95

Leu Pro Lys Pro Asn Met Ser Ala Ser Cys Lys Glu Ile Val Asp Ser
 25 100 105 110

Tyr Leu Pro Val Ile Leu Asp Ile Ile Lys Gly Glu Met Ser Arg Pro
 115 120 125

30 Gly Glu Val Cys Ser Ala Leu Leu Cys Glu Ser Leu Gln Lys His Leu
 130 135 140

Ala Glu Leu Asn His Gln Lys Gln Leu Glu Ser Asn Lys Ile Pro Glu
 145 150 155 160

35 Leu Asp Met Thr Glu Val Val Ala Pro Phe Met Ala Asn Ile Pro Leu
 165 170 175

Leu Leu Tyr Pro Gln Asp Gly Pro Arg Ser Lys Pro Gln Pro Lys Asp
 40 180 185 190

Asn Gly Asp Val Cys Gln Asp Cys Ile Gln Met Val Thr Asp Ile Gln
 195 200 205

45 Thr Ala Val Arg Thr Asn Ser Thr Phe Val Gln Ala Leu Val Glu His
 210 215 220

Val Lys Glu Glu Cys Asp Arg Leu Gly Pro Gly Met Ala Asp Ile Cys
 225 230 235 240

50 Lys Asn Tyr Ile Ser Gln Tyr Ser Glu Ile Ala Ile Gln Met Met Met
 245 250 255

His Met Gln Pro Lys Glu Ile Cys Ala Leu Val Gly Phe Cys Asp Glu
 55 260 265 270

Val Lys Glu Met Pro Met Gln Thr Leu Val Pro Ala Lys Val Ala Ser
 275 280 285

Lys Asn Val Ile Pro Ala Leu Glu Leu Val Glu Pro Ile Lys Lys His
 290 295 300

5 Glu Val Pro Ala Lys Ser Asp Val Tyr Cys Glu Val Cys Glu Phe Leu
 305 310 315 320

Val Lys Glu Val Thr Lys Leu Ile Asp Asn Asn Lys Thr Glu Lys Glu
 325 330 335

10 Ile Leu Asp Ala Phe Asp Lys Met Cys Ser Lys Leu Pro Lys Ser Leu
 340 345 350

Ser Glu Glu Cys Gln Glu Val Val Asp Thr Tyr Gly Ser Ser Ile Leu
 15 355 360 365

Ser Ile Leu Leu Glu Glu Val Ser Pro Glu Leu Val Cys Ser Met Leu
 370 375 380

20 His Leu Cys Ser Gly Thr Arg Leu Pro Ala Leu Thr Val His Val Thr
 385 390 395 400

Gln Pro Lys Asp Gly Gly Phe Cys Glu Val Cys Lys Lys Leu Val Gly
 405 410 415

25 Tyr Leu Asp Arg Asn Leu Glu Lys Asn Ser Thr Lys Gln Glu Ile Leu
 420 425 430

Ala Ala Leu Glu Lys Gly Cys Ser Phe Leu Pro Asp Pro Tyr Gln Lys
 30 435 440 445

Gln Cys Asp Gln Phe Val Ala Glu Tyr Glu Pro Val Leu Ile Glu Ile
 450 455 460

35 Leu Val Glu Val Met Asp Pro Ser Phe Val Cys Leu Lys Ile Gly Ala
 465 470 475 480

Cys Pro Ser Ala His Lys Pro Leu Leu Gly Thr Glu Lys Cys Ile Trp
 485 490 495

40 Gly Pro Ser Tyr Trp Cys Gln Asn Thr Glu Thr Ala Ala Gln Cys Asn
 500 505 510

Ala Val Glu His Cys Lys Arg His Val Trp Asn
 45 515 520

<210> 29
 50 <211> 380
 <212> PRT
 <213> Homo sapiens

<400> 29
 55 Met Ala Glu Ser His Leu Leu Gln Trp Leu Leu Leu Leu Pro Thr
 1 5 10 15

Leu Cys Gly Pro Gly Thr Ala Ala Trp Thr Thr Ser Ser Leu Ala Cys

	20	25	30
	Ala Gln Gly Pro Glu Phe Trp Cys Gln Ser Leu Glu Gln Ala Leu Gln		
	35	40	45
5	Cys Arg Ala Leu Gly His Cys Leu Gln Glu Val Trp Gly His Val Gly		
	50	55	60
10	Ala Asp Asp Leu Cys Gln Glu Cys Glu Asp Ile Val His Ile Leu Asn		
	65	70	75
	Lys Met Ala Lys Glu Ala Ile Phe Gln Asp Thr Met Arg Lys Phe Leu		
	85	90	95
15	Glu Gln Glu Cys Asn Val Leu Pro Leu Lys Leu Leu Met Pro Gln Cys		
	100	105	110
	Asn Gln Val Leu Asp Asp Tyr Phe Pro Leu Val Ile Asp Tyr Phe Gln		
	115	120	125
20	Asn Gln Thr Asp Ser Asn Gly Ile Cys Met His Gly Leu Cys Lys Ser		
	130	135	140
	Arg Gln Pro Glu Pro Glu Gln Glu Pro Gly Met Ser Asp Pro Leu Pro		
25	145	150	155
	Lys Pro Leu Arg Asp Pro Leu Pro Asp Pro Leu Leu Asp Lys Leu Val		
	165	170	175
30	Leu Pro Val Leu Pro Gly Ala Leu Gln Ala Arg Pro Gly Pro His Thr		
	180	185	190
	Gln Asp Leu Ser Glu Gln Gln Phe Pro Ile Pro Leu Pro Tyr Cys Trp		
	195	200	205
35	Leu Cys Arg Ala Leu Ile Lys Arg Ile Gln Ala Met Ile Pro Lys Gly		
	210	215	220
	Ala Leu Ala Val Ala Val Ala Gln Val Cys Arg Val Val Pro Leu Val		
40	225	230	235
	Ala Gly Gly Ile Cys Gln Cys Leu Ala Glu Arg Tyr Ser Val Ile Leu		
	245	250	255
45	Leu Asp Thr Leu Leu Gly Arg Met Leu Pro Gln Leu Val Cys Arg Leu		
	260	265	270
	Val Leu Arg Cys Ser Met Asp Asp Ser Ala Gly Pro Arg Ser Pro Thr		
	275	280	285
50	Gly Glu Trp Leu Pro Arg Asp Ser Glu Cys His Leu Cys Met Ser Val		
	290	295	300
	Thr Thr Gln Ala Gly Asn Ser Ser Glu Gln Ala Ile Pro Gln Ala Met		
55	305	310	315
	Leu Gln Ala Cys Val Gly Ser Trp Leu Asp Arg Glu Lys Cys Lys Gln		
	325	330	335

Phe Val Glu Gln His Thr Pro Gln Leu Leu Thr Leu Val Pro Arg Gly
 340 345 350

5 Trp Asp Ala His Thr Thr Cys Gln Ala Leu Gly Val Cys Gly Thr Met
 355 360 365

Ser Ser Pro Leu Gln Cys Ile His Ser Pro Asp Leu
 370 375 380

10

<210> 30
<211> 4124
15 <212> ADN
<213> Homo sapiens

<400> 30
atgagagaat gggttctgct catgtccgtg ctgctctgtg gcctggctgg cccccacacac 60
20 ctgttccagc caaggctggt gctggacatg gccaagggcc tcttggataaa ctactgcttc 120
ccggagaacc tgctggcat gcaggaagcc atccagcagg ccatcaagag ccatgagatt 180
ctgagcatct cagaccgcac gacgctggcc agtgtctga cagccgggtt gcagagctcc 240
ctgaacgatc ctcgccttgtt catctcttat gagcccagca ccccccagcc tcccccacaa 300
gtcccagcac tcaccaggct ctcagaagag gaactgcttg cctggctgca aaggggcctc 360
25 cgccatgagg ttctggaggg taatgtggc tacctgcggg tggacagcgt cccggggccag 420
gaggtgctga gcatgatggg ggagtccctg gtggcccacg tgtgggggaa tctcatggc 480
acctccgcct tagtgcgtga tctccggcac tgcacaggag gccaggcttc tggcattccc 540
tacatcatct cctacctgca cccagggAAC accatctgc acgtggacac tatctacaac 600
cgccccctcca acaccaccac ggagatctgg accttgcggg aggtctctgg agaaaaggta 660
30 ggtgccgaca aggatgtggt ggtcctcacc agcagccaga ccagggcgt ggccgaggac 720
atcgcgacaca tccttaagca gatgcgcagg gccatctgg tggcgagcg gactggggga 780
ggggccctgg acctccggaa gctgaggata ggcgagtcg acttcttctt cacgggtgcc 840
gtgtccaggt ccctggggcc ctttgggtgg ggcagccaga cgtggggagg cagcgggggt 900
ctgcccctgtg tggggactcc ggccgagcag gcccctggaga aagccctggc catcctact 960
35 ctgcgcagcg cccttccagg ggtagtcac tgccctccagg aggtctctgaa ggactactac 1020
acgctgggtgg accgtgtgcc caccctgctg cagcaactgg ccagcatgga cttctccacg 1080
gtggctcccg aggaagatct ggtcaccacag ctcaatggcc gcctgcaggc tgcgtctgag 1140
gatcccaggc tcctgggtcg agccatcggg cccacagaaa ctccttcttgc gccccggccc 1200
gacgctgcag ccgaagactc accagggggtg gcccctggact tgccctgagga cgaggctatc 1260
40 cgccaagcac tgggtggactc tgggttccag gtgtcggtgc tgccaggcaa tggggctac 1320
ctgcgcctcg atagtttgc tgacgcctcc gtccctgggtg tggggccccc atatgtccctg 1380
cgccagggtgt gggagccgct acaggacacg gaggacatca tcatggacat ggcacacaac 1440
cctggaggggc catcctctgc tggccctctg ctccctgtt acttccaggcc ctctgaggcc 1500
ggccccgtgc accttcac cactatgtat cgccgcacca acatcacgca ggagcacttc 1560
45 agccacatgg agctcccgaa cccacgctac agcaccacaaat gtgggggtgtt tctgctcacc 1620
agccacccgca cccacccggc cggggaggag ttgcgcctcc ttatgcgtc gctgggtgg 1680
gccacactgg taggtgagat cccgcggggc aacctgtgc acaccgcac ggtgcggctg 1740
ctggacacac ccgaaggcag cctcgccctc acctgtccgg tccctcacctt catgcacaat 1800
caaggcgagg cctggctggg tgggtggact gtggcccgat ccacatgtctt ggccgaggag 1860
50 gccctggaca aagcccagga agtgcgtggat ttccacaaaaa gcctggggcc cttgggtgg 1920
ggcacagggc acctgcgtga ggcccaactat gtccggccatg aggtgcgtgg gcaagaccagt 1980
gccttcctgc gggccaagct ggcccaaggcc gcttcacccgc cagctgtggat cttggagtt 2040
ctggcctctc agtcacacgc agacccatgg gaggtgtctg gggaccaccc cttgcgttagt 2100
ttccacagcc ctggcgagct ggtggtagag gaagcaccaccc caccaccccc tgcgtcccc 2160
55 tctccagagg agtcacacta ctttattgtat gcccgttca agacagaggt gctggccggc 2220
cagctgggtt acctgcgttt tgacgcctat gtcgaactgg agacagtgaa ggccgtgggg 2280
ccacagctgg tgcggctggat atgcacacag ctggtgccaca cggctgcgt ggtgatcgac 2340
ctgcgcatac accctggcag ctactccacg gccatccccgc tgctctgtc ctacttctt 2400

5 gaggcagagc cccgccagca cctgtattct gtctttgaca gggccaccc aaaagtcacg 2460
 gaggtgtgga ccttgcucca ggtgcggc cagcgtacg gtcacacaa ggacctctac 2520
 atcctgatga gccacaccag tggctctgcg gcccggcct ttgcacacac catgcaggac 2580
 ctgcagcggg ccacggcat tggggagccc acggccggag gcgactctc tgtggcatc 2640
 taccaggtgg gcagcagccc cttatatgc tccatgcca cccagatggc catgagtgcc 2700
 accacaggca aggcctggga cctggctggt gtggagcccg acatcaactgt gccccatgagc 2760
 gaagccctt ccatagccca ggacatactg gctctggctg ccaaggtgcc cacggtgctg 2820
 cagacggccg ggaagctggt ggctgataac tatgcctctg ccgagctggg ggccaagatg 2880
 10 gccacccaaac tgagcggtct gcagagccgc tactccaggg tgacctcaga agtggcccta 2940
 gcccggatcc tgggggctga cctgcagatg ctctccggag acccacacct gaaggcagcc 3000
 catatccctg agaatccaa ggaccgcatt cctgaaattt tgcccatgca gatcccttcc 3060
 cctgaagttat ttgaagagct gatcaagttt tccttccaca ctaacgtct tgaggacaac 3120
 attggctact tgagggttga catgtttggg gacggtgagc tgctcaccctt ggtctccagg 3180
 15 ctgctgggtgg agcacatctg gaagaagatc atgcacacgg atgcccattatg catcgacatg 3240
 agttcaaca tcggtgccc cacatccctcc attcccatct tgcgtccata cttcttttat 3300
 gaaggccctc cagttctgtt ggacaagatc tacagccggc ctgatgactc tgcgtgtt 3360
 ctctggacac acgcccagg ttaggtgaa cgctatgctt ccaagaagag catggtcatt 3420
 ctgaccagca gtgtgacggc cggcaccggc gaggagttca cctatatcat gaagaggctg 3480
 gggccggggcc tggtcattgg ggaggtgacc agtgggggtt gcccggccacc acagacccatc 3540
 20 cacgtggatg acaccaaccc ctacacttact atccccacgg cccgttctgtt gggggccctcg 3600
 gatggcagct cctgggaaagg ggtgggggtt acacccatcg tgggtgtccc tgcagaagag 3660
 gctctcgcca gggccaagga gatgctccag cacaaccaggc tgagggtgaa gccggagccca 3720
 ggccctgcagg accacctgtt gggaaaggggcc ccataggcag agcccccaggg cagacagaac 3780
 ctctgggaca cacaccaagg gcactcctgc aggtggcccg gcctgagggtt cccaggagca 3840
 25 gcaaaggggc ctgctgagct ctggttaggt tacagctgga ggtgtgtata tatacacacaca 3900
 cacacatgttata tatacacata tataatgttata tgcgtatata tgcgtatata tgcgtatata 3960
 caataaccac ctaaaatttt acaaagggttc cttctaaatg tgcgtatata tgcgtatata 4020
 tttaccttcc ttcttcatac ttgctcttt ttcttaata ctcattaatg tgcgtatata tgcgtatata 4080
 attattttca gatgcagcttca tcattattcc aaaatacataaa ataa 4124
 30
 <210> 31
 <211> 579
 <212> ADN
 35 <213> Homo sapiens
 <400> 31
 atgcarwsny tnatgcargc nccnytnytn athgcnytn gnytnytnyt ngcnacncn 60
 gcncargcnc ayytnaaraa rccnwsncar ytnwsnwnt tywsntggga yaaytgygay 120
 40 garggnaarg ayccngengt nathmgwnsn ytnacnytn arccngaycc nathgtngtn 180
 ccnggnaayg tnacnytnws ntngtnngn wsnaclnwsng tnccnytnws nwsnccnytn 240
 aargtngayy tngtnytna raargargtn gcnngnyntt ggathaarat hcctngyacn 300
 gaytayathg gnwsntgyac nttygarcay ttytgygayg tnytnyayat gytnathccn 360
 acnggngarc cntgyccng rccnytnmgn acntayggny tnccntgyca ytgyccntty 420
 45 aargarggna cntaywsnyt nccnaarwsn garttygtng tnccngayyt ngarytnccn 480
 wsntgggytna cnacnggnaa ytaymgnath garwsngtny tnwsnwsnws ngnnaarmgn 540
 ytnnggntgya thaarathgc ngcnwsnytn aarggnath 579
 50 <210> 32
 <211> 633
 <212> ADN
 <213> Homo sapiens
 55 <400> 32
 tttcttgcg taaccaatac tggaaggcat taaaaggacc tctggccctt cagaccttgc 60
 agttaactcc gcccgtaccc acccttcccg atgcagtccc tgatgcaggc tccctctctg 120
 atcgccctgg gcttgctct cgcgaccctt ggcgaagccccc acctgaaaaa ggtgagtgc 180

ccctttta agagtctgtt tgcagcctcc tggcccagct acgggtgtgc gggctcgct 240
 gagatatggg ggtggccact ccgttctcta gaattgttc tctgcactag agccttcaa 300
 agtaactaat tatggattc tggtctgtac aatgagggtg gcctctaaag acttgttctg 360
 ctccaggccc tttttgaga gattaatctc acgtctgcac tctcctgccc tccctccaag 420
 cgccggagtg aaaatgcaga cagccttaaa actaaggcat tgcccccaag agattcagtc 480
 ctgttaacc tgcacccctac tccgtacccc cactccttat gtcccccatg ataaggctg 540
 ctgcctcata tcttccctg ctgaaatgcc ctgaggctt cctgagagtt gggagggttt 600
 gagagcttca aggccaaag aggattcaact aag 633

10 <210> 33
 <211> 1047
 <212> ADN
 <213> Homo sapiens

15 <400> 33
 caggagcttgc ccctttgtt gggattccaa cgctggctgg agaggagtgg gcagcaggga 60
 ggtggaaagt cagagaaggt gcccacaaa ggcctattag gtcagtcctc tgtttggaaag 120
 ttccagggtct atcatatctt gccttatagt ttacaatataca cttttggag attatgtt 180
 20 ttgagtcttt tagtttagtc ctgcctataa aatgagtagg ataagtgtt tcccaagggtc 240
 ataggtatgg agtctcatag atgaggctca gggacggggg tgccctcaccc aaggtcacac 300
 tgccaggagc tcattttcc tggatctgt gatagtttctt tttgtcaacc tttttcttct 360
 ttccttcctt tgctgcctga ttgtccccag ccattcccaagc tcagtagctt ttccctggat 420
 aactgtgatg aagggaagga ccctgcgggtg atcagaagcc tgactctggc gcctgacccc 480
 25 atcgtcgttcc ctggaaatgt gaccctcagt gtcgtggca gcaccagtgt cccccctgagt 540
 ttcctctgtt aggtgagcct ggggggtgggt ggagaaggggg aggtgcgagg gtctggccag 600
 caggggtact ggggcatgtt tgcttggggaa actgtgaaga atttcagaat cctggattcc 660
 cagagaataag tacaggacat gttagattcag acacttttc acaggttcat ggaatctcag 720
 gatcataaga ttgaaaggaa tctctgtatgt cagcgcacgc aacctcctgg tgagggcagg 780
 30 agtgacggat accttgcacc tggcagaagc gtcctggct tctctggcc tggtgcccaa 840
 ctgctcatta ttatctgaca gctctgggtt gccaattttgg ttttgcgttt aattataaaa 900
 ttgatataacc aattagccag taatatataag tcactttaga aaacacaagt ggtcaaaaaaa 960
 taaataaaaat aggccaagtg tggtaacttc atgcctgtaa ttcccacacc cttaggaggc 1020
 tgaagggtggg tggatccctt tttgagg 1047

35 <210> 34
 <211> 1706
 <212> ADN
 <213> Homo sapiens

40 <400> 34
 acagtagatg ccagtgcatt tcaatgcagaag tggtagagcc aatcaatggg tagtgactac 60
 ctaaaagaatt ttaagactat ggattgagca tggatggctca cggccctgtaa tcccaaggccc 120
 45 tggaaagggtga aggtgaaagg attgctttag ggcaggagtt ccagaccagc ttgggcaaca 180
 aagtggcc catctctaca aaaaatacaa aattagctgg gtgtgggtggc atgtgcctgt 240
 ctgtgtttcc cacctacatg ggaggcttag gcaggaggat cgtctgagcc caggagttt 300
 agctgcagt gagtgcagtg agccatgata caaaaaaaaaa aataaaagaa ttctaagtct 360
 atgtatagtt cagtgttaggg gggaaaattca catttggat ttaatgtctg ccatgggcac 420
 50 aataatacac tataactcaca catggccac aatgttgcac tcccttagaaac agactatctc 480
 taagatctca tccagttaaa aattctatga taaaatata ttgcgtcttt ttgaagaca 540
 gaagagctgg tatgttgcc ctgaaattta cacttataac cttttcaaa cttttgtttt 600
 atttttttt accaggttgg aatttttg gagaaggagg tggctggccct ctggatcaag 660
 atccccatgcac cagactacat tggcagctgt acctttgaac acttctgtga tggcttgac 720
 55 atgttaattt ctaactggggc gcccctgcac gggccctgc gtacccatgg gttcccttgc 780
 cactgtccct tcaaagaagt aagttacttag ggaggagaga ggcgttacccc tggcttcaaa 840
 gagatgggggt ttggagagaa gggctttgc atttccttc tgcagatctg catgtctctg 900
 gatttgcgttgc ccaacttgcactt cttttttttt tccggagcc tcagttatcc 960

atctacgaaa tgggagactt gaacttagat gtgatcttc gggcccttta tccatataat 1020
 ccatgtctca cagtgcatac gcccgtctc atcttgcggc gctgtttga gaatggaaag 1080
 aggggtggta gttcatggct gcaatcctag cagtggctc aggagaaaaga ccccatcagt 1140
 5 aggctccac tgactggcg tccactggct ttcccgcagg gaacctactc actgccccaaag 1200
 agcgaattcg ttgtgcctga cctggagctg cccagttggc tcaccacccgg gaactaccgc 1260
 atagagagcg tcctgagcag cagtggaaag cgtctggctc gcatcaagat cgctgcctc 1320
 ctaaaggggca tatagcatgg catctgcac acgcagaatgg agcgggtgtga ggaagggtccc 1380
 ttttcctctg ttttgcgtt gccaaggcca aactccact ctctgcccccc cttaatccc 1440
 10 ctttctacag tgagttcaact accctcactg aaaatcattt tgaccactt acattttagg 1500
 ctggggcaag cagccctgac ctaaggaga atgagttgaa cagttctga tagcccagg 1560
 catctgctgg gctgaccacg ttactcattc ccgttaacat tctctctaaa gagcctcg 1620
 catttccaaa gcagtttaagg aatggaaaca gagtgtttta ggacctgaag aatctttatg 1680
 actctctctc tttctctttt tttttt 1706

15 <210> 35
 <211> 633
 <212> ADN
 <213> Homo sapiens

20 <400> 35
 ttctttgcg taaccaatac tggaaggcat taaaaggacc tctgcgcct cagacccgtc 60
 agtttaactcc gccctgaccc accctcccg atgcagtccc tgatgcagggc tcccttcctg 120
 atgcgcctgg gcttgcttct cgcgacccct ggcgaagccc acctgaaaaaa ggtgagtgtca 180
 25 ccctctttta agagtctgtt tgcagccctcc tggcccagct acgggtgtgc gggtctggct 240
 gagatatggg ggtggccact cggttctcta gaattgggtc tctgactag agccttccaa 300
 agtaactaat tatgggattc tggctgtac aatgagggtg gctctaaag acttgttctg 360
 ctccaggccc ttttggaga gattaatctc acgtctgcac tctctgcac tccctccaag 420
 30 cgccggagtg aaaatgcaga cagcctaaa actaaggcat tgcccccagg agattcagtc 480
 ctgttaaccc tgcacccctac tctgaccccc cactccttat gtcccccattg ataaggcctg 540
 ctgcctcatac tcttccctg ctgaatgcc ctgaggctt cctgagagtt gggagggttt 600
 gagagcttcc caaggccaag aggattcaact aag 633

35 <210> 36
 <211> 1047
 <212> ADN
 <213> Homo sapiens

40 <400> 36
 caggagcttgc cccctttgtt gggattccaa cgctggctgg agaggagtgg gcagcaggga 60
 ggtggaaagt cagagaaggt gcccacccaa ggcctattag gtcagtcctc tgtttggaaag 120
 ttccaggctt atcatatcct gccttatagt ttacaataca cttttggag attatgtctt 180
 ttgagtcttt tagtttagtc ctgcctataa aatgagtagg ataagtgtta tccctgggtc 240
 45 ataggtatgg agtctcatag atgaggctca gggacgggg tgcctcaccc aaggtcacac 300
 tgccaggagc tcattttcc tggatctgt gatagttct tttgtcaacc tttttcttct 360
 tctcttctt tgctgcctga ttgtccccag ccattccacg tcagtagctt ttcctggat 420
 aactgtgatg aaggaaagga ccctgcgggtg atcagaagcc tgactctggc gctgacccc 480
 atcgtcgttc ctggaaatgt gaccctcagt gtcgtggca gcaccgtgt cccctgagt 540
 50 tctctcttgc aggtgagct ggggggttgg gggaaagggg aggtgcgagg gtctggccag 600
 caggggtact ggggcatgtt tgcttggggaa actgtgaaga atttcagaat cttggattcc 660
 cagagaatag tacaggacat gttagattcag aacactttc acagttcat ggaatctcag 720
 gatcataaga ttgaaaggaa tctctgtatgt cagcggccacg aacttctgg tgagggcagg 780
 agtgcggat accttgcacc tggcagaagc gtcctggct tctctggcc ttgtggccaa 840
 55 ctgctcatat ttatctgaca gtcctgggtt gccaatttttgg ttttgcgtt aattataaaa 900
 ttgatataacc aattagccag taatataatgc tcactttttaga aaacacaatg ggtcaaaaaaa 960
 taaataaaaat aggccaaatgt tggttaacttc atgcctgtaa ttcccacacc ctttaggaggc 1020
 tgaaggtggg tgggatccctt tttgagg 1047

5 <210> 37
 <211> 1706
 <212> ADN
 <213> Homo sapiens

10 <400> 37
 acagttagat ccagtgcatt tcaatgcaag tgtagagcc aatcaatggg tagtgactac 60
 ctaaagaatt ttaagactat ggattgagca ttagtgcctaa cggcctgtaa tcccagcctt 120
 tggaaaggatga aggtgaaagg attgcttgcg gcccaggatcc gagaccaggc ttgggcaaca 180
 aagttagcccc catcttaca aaaaatacaa aatttagtgg gtgtggggc atgtgcctgt 240
 ctgtgtttcc cacctacatg ggaggctgag gcaggaggat cgtctgagcc caggagttg 300
 aggctgcagt gaggctgagtg agccatgata caaaaaaaaaaa aataaaagaa ttctaagtt 360
 15 atgtatagtt cagtgttaggg gggaaaattca catttgcattttaatgtctg ccatggcac 420
 aataatacac tataactcaca catgggccac aatgttgccttccatcagaac agactatctc 480
 taagatctca tccagttaaa aattctatga taaaatata ttgtgtctt tttgaagaca 540
 gaagagctgg tatgtttgc ctggaaattta cacttataac cttttcaaa cttttgttt 600
 atttttttt accagggtgg ttttagtttgc gagaaggagg tggctggccct ctggatcaag 660
 20 atccccatgca cagactacat tggcagctgt acctttgaaacttctgtga tggcttgac 720
 atgttaattt ctaactggggc gcccctggccaa gggcccttcgtaccttatgg gtttccttc 780
 cactgtccct tcaaagaatg aagtacttag ggaggagaga gcgttacccc tggctggctaa 840
 gagatgggggt ttggagagaa gggttcttcatttc tgcagatctg catgtctctg 900
 gattttaag ccagtgtgac ctatcaggaa tcacttatct tccggggcc tcagttatcc 960
 25 atctacgaaa tggggagactt gaacttagat gtgatcttca gggcccttta tccatataat 1020
 ccatgctcta cagtgtatg gccgtctctc atcttgcgt gctgttttga gaatgggaag 1080
 aaaaaatgggtt gttcatggct gcaatccttag cagtggctctt aggagaaaaga ccccatcagt 1140
 aggctccac tggactggcg tccactggct tccccggcagg gaaacctactc actgccc 1200
 30 agcgaatttcg ttgtgcctgaa cctggagctg cccagttggc tcaccacccgg gaaactaccgc 1260
 atagagagcgt tcctgagcag cagtgggaaag cgtctggct gcataagat cgctgcctct 1320
 ctaaaaggcca tatagcatgg catctgcccac agcagaatgg agcggtgtga ggaagggtccc 1380
 ttttcccttg ttttgcgtt gccaaggcca aactccact ctctgccccctttaatccc 1440
 ctttctacag tgagttccact accctcaactg aaaatcattt tgtaccactt acattttagg 1500
 ctggggcaag cagccctgac ctaagggaga atgagttgaa cagttctgaa tagcccaggg 1560
 35 catctgctgg gctgaccacg ttactcatcc cctttaacat tctctctaaa gagcctcg 1620
 catttccaaa gcagttaaagg aatgggaaca gagggttttgcgacctgaaag aatctttatg 1680
 actctctctc tttctctctt tttttt 1706

40 <210> 38
 <211> 1043
 <212> ADN
 <213> Homo sapiens

45 <400> 38
 tttctttgcg taaccaatac tggaaaggcat ttaaaggacc tctggccctt cagaccccttc 60
 agttaactcc gcccctgaccc acccttcccg atgcagtccc ttagtgcagggc tccccctcc 120
 atcgccctgg gtttgcgtt cggcaccctt ggcgaagccc acctgaaaaaa gccatcccag 180
 ctcagtagct tttccctggta taactgtgtat gaaggaaagg accctgcggt gatcagaagc 240
 50 ctgactctgg agcctgaccc catcgtcggtt cctggaaatg tgaccctcag tggctgggc 300
 agcaccaggat tccccctggat ttctctctg aagggtggatt tagttttggaa gaaggagggtg 360
 gctggccctt ggtatcaagat cccatgcaca gactacatggcagctgtac ctttgaacac 420
 ttctgtgatg tggttgcacat gttaaattccctt actggggagc cctggccaga gcccctgcgt 480
 acctatgggc ttccttgcca ctgtcccttc aaagaaggaa cctactcaact gcccacagac 540
 55 gaattcgttg tgccctgaccc ggagctgccc agttggctca ccaccggaa ctaccgcata 600
 gagagcgtcc tgagcagcag tggttgcgtt ctgggctgca tcaagatgcg tgcctctcta 660
 aaggccatata agcatggcat ctggccacagc agaatggagc ggtgtgagga aggtcccttt 720
 tcctctgtttt tgggtttgc aaggccaaac tcccaactctc tgccccctt taatccccctt 780

tctacagtga gtccactacc ctcactgaaa atcattttgt accacttaca ttttaggctg 840
 gggcaagcag ccctgaccta agggagaatg agttggacag ttcttgatag cccagggcat 900
 ctgctggct gaccacgtta ctcatccccg ttaacattct ctctaaagag cctcgttcat 960
 ttccaaagca gttaaggaaat gggAACAGAG tgTTTtagga cctgaagaat ctttatgact 1020
 5 ctctctctttt ctctctttt ttt 1043

<210> 39
 <211> 1047
 10 <212> ADN
 <213> Homo sapiens

<400> 39
 caggagcttg ccctcttgct gggattccaa cgctggctgg agaggagtgg gcagcaggga 60
 15 ggtggaaagt cagagaaggt gccacccaaa ggcctattag gtcagtctcc tgTTTggaaag 120
 ttccaggctt atcatatcct gccttatagt ttacaataca cttttggag attatgtt 180
 ttgagtttt tagtttagtc ctgcctataaa aatgagtagg ataagtgtta tcccaggttc 240
 ataggtatgg agtctcatag atgaggctca gggacggggg tgcctcaccc aaggtcacac 300
 tgccaggagc tcattttcc tggatctgt gatagttct tttgtcaacc ttttttttct 360
 20 ttccttcct tgctgcctga ttgtccccag ccatcccagc tcagtagctt ttccctggat 420
 aactgtgatg aagggaagga ccctgcgggt atcagaagcc tgactctggc gcctgacccc 480
 atcgtcggtc ctggaaatgt gaccctcagt gtcgtggca gcaccagtgt cccctgtagt 540
 ttcctctga aggtgagcct ggggggtgggt ggagaagggg aggtgcgagg gtctggccag 600
 caggggtact ggggcattgtc tgcttggggc actgtgaaga atttcagaat cctggattcc 660
 25 cagagaatag tacaggacat gtagattcag acacttttc acagggtcat ggaatctcag 720
 gatcataaga ttgaaaggaa tctctgatgt cagcggcagc aacttcctgg tgagggcagg 780
 agtgcggat accttgcacc tggcagaagc gtcctggct tctctggcc tggggccaa 840
 ctgctcatta ttatctgaca gctctgggt gccaatttgg ttttgtgtt aattataaaaa 900
 ttgatataacc aattagccag taatataatag tcactttaga aaacacaatg ggtcaaaaaaa 960
 30 taaataaaaat aggccaatgt tggtaacttc atgcctgtaa ttcccacacc ctttaggagc 1020
 tgaagggtggg tggatctt tttgagg 1047

<210> 40
 35 <211> 1705
 <212> ADN
 <213> Homo sapiens

<400> 40
 40 acagtagatg ccagtgattt caatgcaagt gtttagagcca atcaatgggt agtgactacc 60
 taaaagaattt taagactatg gattgagcat gatggctcac ggcctgtaat cccagccctt 120
 ggaagggtgaa ggtgaaaggaa ttgcttgagg ccaggagttc cagaccagct tggcaaccaa 180
 agtgagcccc atctctacaa aaaatacAAA attagctggg tgggtggca tggcctgtc 240
 tggttttccc acctacatgg gaggctgagg caggaggatc gtctgagccc aggagtttga 300
 45 ggctgcagt agtgcagtga gccatgatac aaaaaaaaaa aataaagaat tctaagtct 360
 tgtatagttc agtgttaggg gaaaattcac atttgattat taatgtctgc catgggcaca 420
 ataataact atactcacac atgggccaca atgtgcctt ccctagaaca gactatctct 480
 aagatctcat ccagttaaaa attctatgtat taaaatatat tgctgtttt tggagacag 540
 aagagctggt atgTTGCCC tggaaatttac acttataacc ttttcaaac ctttggttt 600
 50 ttttttttta ccagggtggat ttagtttgg agaaggaggt ggctggctc tggatcaaga 660
 tcccattgcac agactacatt ggcagctgtt ctttgaaca cttctgtat gtgcctgaca 720
 tggtaattcc tactggggag ccctggccag agcccctgcg tacctatggg cttccttgcc 780
 actgtccctt caaagaagta agtacttagg gaggagagag cgtaaccct gtggctaaag 840
 agatgggggt tggagagaag ggtctttgca ttctccttgc gcaatctgc atgtctctgg 900
 55 atttgcatac cagtgtgacc tatcaggaat cacttatctt ccggagaccc cagttatcca 960
 tctacgaaat gggagacttg aacttagatg tgatcttcag ggccctttat ccatataatc 1020
 catgcctac agtgcstatgg ccgtctctca tcttgcgg ctgttttag aatgggaaga 1080
 ggggtggtag ttcattggctg caatccttagc agtggctca ggagaaagac cccatcagta 1140

ggctcccaact gactggcggt ccactggct tcccgcaggg aacctactca ctgccaaga 1200
 gCGaattcgt tGtgCtgc acTggagctgc ccAGTggct caccaccggg aactaccgca 1260
 tagagagcgt cctgaggcgc agTgggaAGC gCTGggctg catcaagatc gCTGccTtc 1320
 taaaggcat atagcatggc atctGCCaca gcagaatgga gCGGTgtgag gaaggTCCT 1380
 5 tttcctctgt ttGtgGtttG ccaaggccaa actcccaactc tctGcccccc ttaatcccc 1440
 ttctacagt gagtccacta cectcactga aaatcattt gtaccacta catTTtaggc 1500
 tggggcaage agcccTGacc taaggagaa tgagtggac agtGttgat agcccAGGGC 1560
 atctgctgg ctgaccacgt tactcatccc cgTTAACATT ctctctaaAG agcctcgTTc 1620
 atttccaaag cagttaagga atggAACAG agtGttttag garGtgaaga atcttatga 1680
 10 ctctctctct ttctctcttt tttt 1705

<210> 41
 <211> 1043
 15 <212> ADN
 <213> Homo sapiens

<400> 41
 tttctttgcg taaccaatac tggaaaggcat taaaaggacc tctGCCGcct cagacCTTgc 60
 20 agttAACTCC GccCTGACCC accCTTCCG AtGCAGTCCC tGATGcAGGc tcccCTCCTG 120
 atcgCCCTGG GCTTGTCTC CGCGACCCCT GCGCAAGCCC acCTGAaaaaa GccATCCAG 180
 CTCAGTAGCT ttCCTGGGA taACTGTGAT gaAGGGAAAGG accCTGCGGT GATCAGAAGC 240
 CTGACTCTGG AGCCTGACCC CATCGTCGTT CCTGGAAATG TGACCCTCAG TGTGTTGGC 300
 AGCACCAAGTG tCCCCCTGAG ttCTCCTCTG aAGGTGGATT TAGTTTGGA gaAGGGAGGTG 360
 25 GCTGGCCTCT GGTCAAGAT CCCATGACA GACTACATTG GCAGCTGTAC CTTGAACAC 420
 TTCTGTGATG TGCTTGACAT GTTAATTCCT ACTGGGGAGC CCTGCCCAGA GCCCTGCGT 480
 ACCTATGGGc tTCCTTGCCA CTGTCCTTC AAAGAAGGAA CCTACTCACT GCCCAAGAGC 540
 GAATTCTGTT TGCTGACCT GGAGCTGCC AGTTGGCTCA CCACCGGGAA CTACCGCATA 600
 30 GAGAGCCTCC TGAGCAGCAG TGGAAAGCAGT CTGGCTGCA TCAAGATCAG TGCCTCTCTA 660
 AAGGGCATAT AGCATGGCAT CTGCCACAGO AGAATGGAGC GGTGTGAGGA AGGTCCCTT 720
 TCCTCTGTT TGTGTTGCC AAGGCCAAAC TCCCACTCTC TGCCCCCTT TAATCCCCCTT 780
 TCTACAGTGA GTCCACTACC CTCACTGAAA ATCATTTGT ACCACTTACA TTTAGGCTG 840
 GGGCAAGCAG CCCTGACCTA AGGGAGAATG AGTTGGACAG TTCTTGATAG CCCAGGGCAT 900
 CTGCTGGGCT GACCACGTTA CTCACTCCCCG TTAACATTCT CTCTAAAGAG CCTCGTTCAT 960
 35 TTCCAAAGCA GTTAAGGAAT GGGAAACAGAG TGTTTGTAGGA CCTGAAGAAT CTTTATGACT 1020
 CTCTCTCTTT CTCTCTTTT TTT 1043

<210> 42
 40 <211> 342
 <212> ADN
 <213> Homo sapiens

<400> 42
 45 ATGACNTGYA ARATGWSNCA RYTNGARMGN AAYATHGARA CNATHATHAA YACNTTYCAY 60
 CARTAYWSNG TNAARYTNNG NCAYCCNGAY ACNYTNAAYC ARGNGARTT YAARGARYTN 120
 GTNMGNAARG AYYTNCARAA YTYYTNAAR AARGARAAYA ARAAYGARAA RGTNATHGAR 180
 CAYATHATGG ARGAYYTNGA YACNAAYGCN GAYAARCARY TNWSNTTYGA RGARTTYATH 240
 ATGYTNATGG CNMGNYTNAC NTGGGCNWSN CAYGARAARA TGCAYGARGG NGAYGARGN 300
 50 CCNGGNCAYC AYCAYAARCC NGGNYTNNGN GARGGNACNC CN 342

<210> 43
 <211> 4195
 55 <212> ADN
 <213> Homo sapiens

<400> 43

	tccacccctt	tggctctgt	aaataatgct	gctatgaaca	tgaatgtaca	aacatctgtt	60
	tgaatccctg	cattcaattc	tttgcatat	ataccaggaa	gcagaatgat	ggatcatatg	120
	gtaattctgt	gtttatttat	ttgaggaaca	aacttgcgt	tttccataac	agtcacta	180
	tttacattc	ccactaacag	tgcattagc	ttccaattct	ctatgccctc	accaacactt	240
5	gtttctggg	ttttaaaga	agtagtagtc	atcctttag	gtgtcagggt	gtatctcatt	300
	gtcggtttgc	ttcatgttt	cctaaagatt	agtaattttc	atatgcttat	tgaccatttg	360
	tatatcttct	tcggagaagt	gtctatttga	gtcttcccc	aattttgatt	ggttgtttg	420
	tttttgcgtt	ttgagttgt	gggattcttt	tatattctgg	atattaatcc	cttatcagat	480
10	atttgcgttta	aaaaatttt	ctttaaaca	acagaaaacac	accacagtct	tcaagggtgg	540
	aagccagttt	atctgagtag	catttggta	gtgggtgggg	gaggatttg	tccctctgaa	600
	atccctgggg	attggccacc	tcctcttctc	ctcttagga	tgaagcgcgt	ctggcttc	660
	caaagaactc	ttcccctcca	ctacccaga	gttagctcc	tctcttcage	cagtgatect	720
	ggggtcccgag	acacaataat	taaccaagag	agggtgaag	gtccctgt	gtgttatgc	780
	aatggctcag	gcccttgcga	agtggcgagg	gaccccaac	ageccctatc	tcccaggggca	840
15	tggccatcc	ccagcttca	cagaacaggaa	aagctgtgg	ggagtgtgg	cagcagggt	900
	ggaatggata	tagcccttgg	caaaacaca	tttccccaca	aagcaccac	ccaaaagaac	960
	aacaacgata	gttttaggtt	ttagaatga	gaacaatagt	tctcatgact	aaaagccatc	1020
	agccaggaca	ctgttctcaa	cccttttgcg	gtcttggac	cctttgaaac	tctgacagaa	1080
20	gcatggagg	aatgttctca	ctgagtgcat	gcaactaaaa	tgtgcattc	aacttcatt	1140
	cagtttcagg	gatgtatggc	ctgaccacat	atgcagggg	ttagcaatcg	caatagtgg	1200
	gagggcattgg	gagtggaaat	ctggctggat	caagcaagt	gatgcagca	gcccagaaaa	1260
	agagccccc	tacctgc	ttccttctg	ggcactattt	cccagaaat	gccttcctc	1320
25	ttccgcctct	cctacctccc	cacccaaaat	tttattctg	cacagtgatt	gcccacattca	1380
	ctgggttggaa	aacagagact	gtagcaactc	tggcagggg	aagctgtctc	tgatggctg	1440
	aagctgtggg	cagctggca	agcctaaccg	ctataaaaag	gagctgcctc	tcagccctgc	1500
	atgtctcttg	tcagctgtct	ttcagaagac	ctggtaagt	ggactgtctg	ggttggcccc	1560
	gcactttggg	cttctcttgg	ggagggtcag	ggaagtggag	cagcccttct	gagagaggag	1620
	agagaaaagct	caggagggtc	tggagcaaaag	atactcttg	aggtggggag	tgaggcaggg	1680
	ataaggaagg	agagtatcc	ccagcacctt	ccagtgggt	agggcacatt	gtcttcctagg	1740
30	ctggactttt	cttggcaga	gggtgggggt	gtaaggaaaag	tctacggg	ccctgtgtg	1800
	tgcacatgtc	tctgtgtgaa	tggacccttc	cccttccccac	acgtgtatcc	ctatcatccc	1860
	acccttccca	ccagaggcca	tagccatctg	ctgggttgg	tattttagag	tgaggcaggg	1920
	gacaaggcca	tcgcttgggg	catgaatcc	ctgcgtact	ccctggccag	atgcaattc	1980
35	cctgcatgg	gattccca	aagggtctgt	ttttcaggt	ggcaagttc	cgtggcattc	2040
	atgttgaccg	agctggagaa	agccttgaac	tctatcatcg	acgtctacca	caagtactcc	2100
	ctgataaaagg	ggaatttcca	tgcgtctac	agggtatgacc	tgaagaaatt	gttagagacc	2160
	gagtgtcctc	agtatatcc	ggtgaggagg	ggctgggtgt	ggcgggg	ctctgcctgg	2220
	tcctggggct	gcccctggcc	agcggtctc	cctgcccaccc	ttcataagat	ctatgcctcg	2280
40	gctctctctg	agatctttaa	actctggctt	tttcttcttc	aatcttgaca	aaaaaaagggt	2340
	gcagacgtct	ggttcaaaaga	gttggatatac	aaactgtat	gtcagttaa	cttccaggag	2400
	ttcctcattc	tggtgataaa	gatgggcgt	gcagccacaa	aaaaaaaggca	tgaagaaagg	2460
	cacaaagagt	agctgagtt	ctggggcc	aggctgggg	cctggacat	tactgtcaga	2520
	ataataaaatg	catcaatacc	tcatgcctc	ctctttagt	tttggaaat	gagggttctc	2580
45	ggtgtggagg	gagggttgg	aaacccaaag	gaagaaaaag	aaatctatgt	tatcccaccc	2640
	tacctctcac	aaggcttcc	tgcatttacc	ctcacctg	ctctggccca	cattecttca	2700
	gccccctatt	tcgaggattt	gatttggagg	ttaaggattt	aaaaagtcgt	catgaatata	2760
	gctgtatgtt	ttatagttgt	tctgaaaatgg	gtcggggatt	tggcacagg	gtgttagtat	2820
	aagaacaact	gatactgtt	tctaagctaa	atcttagtt	ccagctacct	gtcttagat	2880
	tgctcttgg	gaaccttaga	gtgatagct	catagaagt	tgtgggtgt	tgtgtgtgt	2940
50	tctgtgtgt	tgtgtgtgag	agagagacag	acagaaaagag	agcaagagag	ggaagggggg	3000
	agaggctgat	tgtgtgtgt	gtgtgtat	gggtggacaat	gttcagatc	ctccattaaac	3060
	agataatcc	tcacacctgt	ccacatact	gtagttgtc	cttggggattt	ttaaaaattt	3120
	ttcctccctc	tccactccca	aactcccaac	tcaattaaat	gataaaggaa	taggcaataa	3180
	ggaaaataaaa	ttagtaaaac	ttaagtcaaa	gaataggta	ttcatacgt	gcctatggga	3240
55	ttctatgttt	tgtgtatcaga	aaattatcta	aaaaataactt	cccaaggggct	gttacaagggg	3300
	aggccagaag	acgagtgttt	cttctctgag	gtggacattt	aaaaaagaag	aaaatgaagg	3360
	gaaacctttt	gacaagaatg	tcaccccaaa	ctggattttc	atgctgtgt	gtggggaaatt	3420
	ttctgtgttc	tcactttagg	tgctggggca	gtgggtttag	tgtgtgtttaa	aaaggttagga	3480

agctgtcaca gaatcaactaa accagggttc ttaacttgc tgcatacata tctctgaaat 3540
 tgggttgaag ttgtgtgcat cattttgagt gacgcaactg gaacattcc ccacggcttc 3600
 catcgagagt ctcgaaaagg cccaacacct caaaaagggtt aagaacactt gtccctgccta 3660
 ctggtttta gtaacaatg gcagagtatt tctctctgtc tctctctt tttttttttt 3720
 5 ttttttttag acacagggtc ttgtctgtca cgtggactag agtacaatgg gcatgatcat 3780
 gggctcactg tagcctcgaa cacctgggtc caagtaatcc tcccaccta gcctctttag 3840
 tagctggac tacagcatga gccactgccc ttggctaatt tttaaattat tttttttag 3900
 agatggaaac ttgctatgtt gcccaggctt gtctcaaaact cctggactca agcgatcctc 3960
 10 ctaccttgc cttccaaatg gctgagatta cagtgtgatc cacaccac ac 4020
 attggagtat ttttattgtc attgttgtgc ttgggtgggtt ggtgggtgt 4080
 ggacgtgtgt tggtgccaag ggctaaatca gttcctaccc tgctgcccac agtcctccac 4140
 agcttcctg ctctgtgaag ctaaggatac accccgatga taagctgtca acata 4195

15 <210> 44
 <211> 477
 <212> ADN
 <213> Homo sapiens

20 <400> 44
 tttttttttt ttttttttgg ataaagactt atttatttatt tatcttatca tttcccaagaa 60
 caaaggccat ttagtaagcc attcccttta aacttgggtt ggcagctgtc acatggctga 120
 cctcttaatt acttccaca gccttgcac tgactgtggc catgcccacg tgggttggtc 180
 tcatgcagct tctcatgaca ggcaaagatc aactttgcca tcagcatcat acactcctca 240
 25 aagctcagct gattgtcctg gtttgtgtcc aggtcctcca tgatgtcatt tatgagggtt 300
 tcatttctct tcttttctt cataaaaggt tgccaaactg tgcttccac cattttggct 360
 gaattccctt ttgetcaggg tgtagggng ggtcttccctt cttaaagatg tgatgaaagg 420
 gggccagatg ggggggttat gctgcgtcc atctgaaaag tggcttttgtt gggccat 477

30 <210> 45
 <211> 406
 <212> ADN
 <213> Homo sapiens

35 <400> 45
 tttttttttt ttttggagga agagacttta tttggccca gcccctagcc 60
 ccacagccaa gacagtttga cataacaggg cccggggccc tgggtggta gaggcagggt 120
 ggcctggccct cctgattagt ggctgtggcc tgccacca tgactgtggc cgtggccggg 180
 40 gccaactgtga tcttgccac tgggtctta ggggggtccc tccccagggc ctggctttag 240
 gtgggtggccca gggccctcgat caccctcgat catttttgc tggggggccc aggttagct 300
 cgcacatcagc atgatgaaact cctggagctc agctgcttgc ctgcatttgg gtccagggtcc 360
 tccatgatgtt gttctatgac cttttcatc ttattctctt tcttga 406

45 <210> 46
 <211> 425
 <212> ADN
 <213> Homo sapiens

50 <400> 46
 ggaggaagag actttatgg gccccagccc ctatccccac agccaagaca gtttgacata 60
 acaggccccg gggccctggt tggtaaagg cagggtggcc tggctcctt attagtggct 120
 gtggccgtgg ccaccatgac tggccctgtg gccgtggcc ctgtatctt ggccactgtg 180
 55 gtcttagggg gtggccctcc cggggctgg cttatgggtt tggccaggcc cctcgatcacc 240
 ctcgtgcattt ttctcgatgg agggccaggt tagcctcgcc atcagcatga tgaactcctc 300
 gaagctcagc tgcttgcctt cattttgtgtc caggtccctcc atgatgtgtt ctatgaccctt 360
 ttcattctta ttctccttct tgagaaaatt ttgcagatct tttcgacca gctcttngaa 420

425

ttccc

5 <210> 47
<211> 565
<212> ADN
<213> Homo sapiens

10 <400> 47
aattcgctcg gctttgacag agtgcacagc gatgacttgc aaaatgtcgc agctggaaacg 60
caacatagag accatcatca acaccccca ccaatactt gtgaagctgg ggcacccaga 120
caccctgaac caggggaat tcaaagagct ggtgcgaaaa gatctgcaaa attttctcaa 180
gaaggagaat aagaatgaaa aggtcataga acacatcatg gaggacctgg acacaaatgc 240
agacaagcag ctgagctcg aggagttcat catgctgtat gcgaggctaa cctgggcctc 300
15 ccacgagaag atgcacgagg gtgacgaggg ccctggccac caccataagc caggcctcg 360
ggagggcacc ccctaagacc acagtggca agatcacagt ggccacggcc atggccacag 420
tcatggtggc cacggccaca ggccactaat caggaggccca ggccaccctg cctctaccca 480
accagggccc cggggcctgt tatgtcaaac tgtcttgct gtggggctag gggctgggc 540
565
caaataaagt ctcttcctcc aagct

20

25 <210> 48
<211> 430
<212> ADN
<213> Homo sapiens

30 <400> 48
gacttggagg aagagacttt atttggccccc agccccctag cccacagccca agacagttt 60
acataacagg ccccggggccc ctgggtgggt agaggcaggg tggcctggcc tcctgattag 120
tggctgtggc cgtggccacc atgactgtgg ccgtggccgt ggccactgtg atcttggcca 180
ctgtggtctt aggggggtgcc ctcccccggagg cctggcttat ggtgggtggcc agggccctcg 240
tcaccctctgt gcatcttcgc ttggggaggcc caggttagcc tcgcctatcag catgatgaac 300
tcctcagaagc tcagctgttt gtctgcattt gtgtccaggt cctccatgtat gtgttctatg 360
420
35 accttttcat ttttatttc cttcttgaga aaattttgca gatctttcg caccagctct 430
ttgaattccc

40 <210> 49
<211> 305
<212> ADN
<213> Homo sapiens

45 <400> 49
tgacttggag gaaaaaaaaactt tattttggccc cagccccctag ccccacagcc aaaacagttt 60
gacataacag gccccggggc cctgggtggg tagaggcagg ggggcctggc ctcctgatta 120
gtggctgtgg cccggggccac catgactgtg gccggggcccg gggccactgt gatcttgcca 180
ctgggggtctt aggggggtgcc ctcccccggagg cctggtttat ggtgggtggcc agggcccttg 240
tcacccttgtt gcattttttc gtggggaggcc caggttagcc tcgcctatcag catgatgaac 300
305
tcctc

50

55 <210> 50
<211> 452
<212> ADN
<213> Homo sapiens

<400> 50
ggaggaagag actttatgg gccccagccc ctggccac agccaagaca gtttgacata 60

acaggccccg gggccctgg tgggttagagg cagggtgccc tggccctctg attagtggct 120
 gtggccgtgg ccaccatgac tggcccgctg gccgtggca ctgtgatctt ggccactgtg 180
 5 gtcttagggg ggcgcctccc cgaggcctgg cttatggtgg tggccaggc cctcgtaacc 240
 ctcgtgcatt ttctcggtgg aggcccaggt tagcctcgcc atcagcatga tgaactccctc 300
 gaagctcagc tgcttgcctg catttgcgtc caggccctcc atgatgtgtt ctatgaccc 360
 ttcattctta ttctccttct tgagaaaatt ttgcagatct ttgcacca gctcttgaa 420
 ttccccctgg ttcaagggtgt ctgggtgccc ca 452

10 <210> 51
 <211> 4439
 <212> ADN
 <213> Homo sapiens

15 <400> 51
 atcactgtgg agtagggaa gggcactcctt ggggtggcaa ggtgggaggt gggccctgtg 60
 ttcccacagt gggcagggag gtatgtaaag ggaagctggc cggacaggaa gggccattcc 120
 aagagggctt tgcgcagg gctaagccaa gcttctcca taggcaatgg ggagcaactg 180
 gaggttcgtt gcaaggagaag gacacatcaa gcccaccagg aggctaagta aaaacagtt 240
 20 tctcccaagt tataagttcc tggAACCTT gctggagca ggatTTAGAA aaatgtatgt 300
 gagagatgtc agaaacatat tcgcctgag gctctctcac tcagactgca agaggaaggt 360
 atcatcagaa ttgccttaa ccaggaacca gaatagctgg gtccccttcc tgccaagtc 420
 gcaaccagct atgtgaccc tgcagggtcc atctccgggt gtcagttct tcatactacaa 480
 tgcaagaggg ttgcccaccc ctgagaaccc ttctaacccc aaatctcacc ctatgaatct 540
 25 aagaacacaa cccctcgcca tcctaagtat cacagagcc ggcaggatcg ggtgagat 600
 cagaccatcc ttgttggact aaaaggaagg ggcagactgc catggggggc agccgagagg 660
 gtcaggcccc cataggctt cagcctgtt caacctaaaa ggggatgggg ggctgagttg 720
 tgccagagga gcagcaggct cgcctggga gatgtggcc tttagataga agggaaatga 780
 actaaacaac cagcttcctg caaaccagtt tcaggccagg gctggaaatt tcacaaaaaa 840
 30 gcagaaggcg ctctgtgaac atttcctgcc ccccccagc ccccttcctg gcagcattag 900
 cacactgctc acctgtgaag caatcttcgg gagacaggc caaaggccaa gtgccccagt 960
 caggagctgc ctataaatgc cgagcctgca cagctctggc aaacactctg tggggctct 1020
 cggctttgtt aagtggactc ccagcttccc caggcagaag cctgcctgca gattcctct 1080
 ttcttcctt gacccaaattt cttccatca gaaggccctcc ttgggtggcc 1140
 35 ctgcctactt taaagcttctt ttacatccc ctaggtcat gttcccttgg ggccttcctg 1200
 cctcaaatgc ttgtctttt ggcaactctgt agatattcta aaaaatcatt ttgtacatgt 1260
 gtgtgacagg ccacatccccca gtaagttgc agcctgtgtc ttctttttat ttgcacttc 1320
 ccccaattt tctgtgatgt ctttagtaga agtgcataag aagcttgcata gattttctt 1380
 ctaagtgtcc caactttggg ttcccattt cacagacaga gtgcaggacg atgacttgc 1440
 40 aaatgtgcga gtcggaaacgc aacatagaa ccatcatcaa caccctccac caataactctg 1500
 tgaagctgg gcacccagac accctgaacc agggggaaat caaagagctg gtgcggaaaag 1560
 atctgcaaaa ttttctcaag gtggggctgg actctggcag gtctgacccca gcctcaccgc 1620
 agtttgggtt gacaaggagg gatggggatg tgggtctacag caatcaaggg gaagatttga 1680
 gtcctggag cccagccccca agacgcagcg agtgtctgt tatacaggc aggtgctcac 1740
 45 agttacacag gacgacaggc tcaagaaaatt gctcaattga acacctgtc tttgtcgccc 1800
 cctgttctgg gcagaggat gtatgtgtt atggggaccc actatccat gaggagacac 1860
 acagtaaaatgt tggggccaa taaagagcac agataaaagcc aaatgccaat aagtgcctgg 1920
 aagaaaaatgt gatagagtgc gctgtggca atggggctgg gtgggtggaa ggtgaccagt 1980
 tagggtatcat gagaaggccc tcttggat ggtacatcc gagctgagcc ccaatgttt 2040
 50 gggagggaaag cccctgagga tgacacttgg cacaaggctg aggagaccct aagcctcagg 2100
 gcaacttgg ggtggaaagac ttgggggctt ttctaatctt aagggtctgc ggtggaaaat 2160
 gaatgcataa agagcacatg gagagcaccc gcacagcact cagggaaactg ggagggtttt 2220
 ccccccgtcc aaaaatgatt aggcaggatctt aagaaaaagg ctgagcactt ccaacagcc 2280
 ttttgggtttc ttttcaattt tggggaaaatgt cggggaaacag aggctgcatt taagaagggt 2340
 55 ggaacacatcg ggtctcagtc tcagttccag tcccgagcc agacatctg ggttaggtcc 2400
 ccagccctcc cagtgcctt ccctccgcct tggtaagggt gagaattgca gccttcagag 2460
 tttagggcccc tgacagctt ccataggtgg aggctcagg caggcaggat gtcgggtggg 2520
 gtaggcaaga aaggccccag cagagaggcc gcacatcgaaa actatccctc atgtgaccc 2580

ctatgccgc ttcacccccc acctgacatc ccccaccaga agcaaagcg 2640
 aaggaagcag agcctcatgg atgggctgca caggagagt ctcgcattgg ctgggtaccc 2700
 cacaggttct gggagggac tttagcgaggt gactcagtgc ctcggctcc caaagtgctg 2760
 ggattacaag catgagccac cctgtccgac catctccctt ttatacttt atcacacccct 2820
 5 tgaggtcagc ggagcacata ctctgctctc tgaccctcca tctccctgc ccacacccat 2880
 gttttctag tgtttccccg ttgtatttgt tgaaataagt ttcaactatt gtaacacctcc 2940
 agagggaaagg gaagggaggg caggggaagg agtgaagtgc agagggtag cagagtggaa 3000
 ctggcctcta agtcagatct gaatttgcat gccctcaata gtcagcctg taaaaactaa 3060
 10 tgaccctctc taggactggt t'-saagtctt cctccaggaa gataccattc cttagctgtta 3120
 aagttgttat aaggacaaa tgaggtaca tttccaggt tactcatgcc atgaccagg 3180
 caagaccctg gaactcatgt tccttctca taaatagaga atcagacccc aagtacacagg 3240
 gtcatggagg gaataaaactg gagagcgtt ggtatgtgtc cagtgctgc tccattgtgc 3300
 gcaactcagcc tatggtcatt ttaatttttt aaatccagcc ccagggtcga ggcttcctt 3360
 tacatttgcg agctggcat ttactgtgtc cccagtcctt acctctggcc acacccagct 3420
 15 ctcacagcct tctctccca cccgcagaag gagaataaga atgaaaaggat catagaacac 3480
 atcatggagg acctggacac aaatcgac aagcagctg gctcgagga gtcatcatg 3540
 ctgatggcga ggctaacctg ggcctccac gagaagatgc acgagggtga cgagggccct 3600
 ggcaccaccataaagccagg cctccggag ggcacccctt aagaccacag tggccaagat 3660
 cacagtggcc acggccacgg ccacagtcat ggtggccacg gccacaggcc actaatcagg 3720
 20 aggccaggcc accctgcctc tacccaacca gggccccggg gctgttatgt caaactgtct 3780
 tgctgtggg gctagggct ggggcaaaa agtctcttcc tccaagtcag tgctctgtgt 3840
 gcttcttcca ccttcttcc aaccctgcct tcccagggtt ctggcattta gacagccctg 3900
 tctttatctg tgactcagcc ccctcattca gtattaacaa aatgagaagc agaaaaacat 3960
 gggctgtgc tggggccctt ggctcacetc cctgaccatg tcctcacetc tgacttcagg 4020
 25 ccccactgtt cagatcccac gctccctgccc ccatctcaga caccctgtcc agcctgtcca 4080
 gcctgacaaa tggcccttgt cactgtacac tgttagaaagc aaaaaggcat atctctaccc 4140
 ctgtatatgc ctgctacetc accaaccacgc cccaaaggctg tcttcaccca tcaactgtct 4200
 cacagccctc tctctcttcc aacagaattt tattcctctg aaagtcttca gaaactggac 4260
 30 cttagatagtccatgtcgg ggaggaatat ggcaccaggc agtggaaaca aggacagatc 4320
 ggtgtgttat ctcacatggc atcagagac atgatctctc ttaacagacc tgccaccctt 4380
 atcaacggga gtgctcacac aagtggagt ctgagagctt agccctatgc ccaccctgg 4439

35 <210> 52
 <211> 565
 <212> ADN
 <213> Homo sapiens

40 <400> 52
 aattcgctcg gctttgacag agtgcacac gatgacttgc aaaatgtcg agctggaaacg 60
 caacatagag accatcatca acacccatca ccaatactct gtgaagctgg ggcacccaga 120
 caccctgaac cagggggaaat tcaaagagct ggtgcgaaaa gatctcaaa attttctcaa 180
 gaaggagaat aagaatgaaaa aggtcataga acacatcatg gaggacctgg acacaaaatgc 240
 agacaagcag ctgagctcg aggagttcat catgctgatg gcgaggtaa cctggccctc 300
 45 ccaacgagaag atgcacgagg gtgacgaggg ccctggccac caccataagc caggcctcgg 360
 ggagggcacc ccctaagacc acagtggcca agatcacagt ggcacggcc atggccacag 420
 tcatggtgc cacggccaca ggcactaat caggaggcca ggcacccctg cctctaccca 480
 accaggggccc cggggctgt tatgtcaaac tgcgtttgtt gtggggctag gggctggggc 540
 caaataaaagt ctcttcttcc aagct 565

50

<210> 53
 <211> 255
 <212> ADN
 55 <213> Homo sapiens

<400> 53
 gayaayggng aygtntgyca rgaytgyath caratggtna cngayathca racngcngtn 60

mgnacnaayw snacnntygt ncargcnytn gtngarcayg tnaargarga rtgygaymgn 120
 ytnnnccng gnatggcnga yathgyaar aaytayathw sncartayws ngarathgcn 180
 athcaratga tgatgcayat gcargaycar carccnaarg arathgygc nytnnggn 240
 ttytgayg argtn 255

5

<210> 54
 <211> 2724
 <212> ADN
 10 <213> Homo sapiens

 <400> 54
 cgcgctatgt acgcctcttt cctcctggcc agcctcctgg gcgcggctct agccggcccc 60
 gtccttggac tgaaaatg caccaggccc tcggcagtgt ggtgccagaa tgtgaagacg 120
 15 gcgccact gcccggcagt gaagcaactgc ctgcagaccg tttggAACAA gccaacagt 180
 aaatcccttc cctgcacat atgaaagac gttgtcaccg cagctggta tatgctgaag 240
 gacaatgcca ctgaggagga gatccttggta tacttgaga agacctgtga ctggcttccg 300
 aaaccgaaca tgtctgttc atgcaaggag atagtggact cctacctccc tgtcatcctg 360
 gacatcatta aaggagaaat gagccgtcct ggggaggtgt gctctgtct caacctctgc 420
 20 gagtctctcc agaagcacct agcagagctg aatcaccaga agcagctgga gtccaataag 480
 atccccagagc tggacatgac tgaggtgggt gcccccttca tggccaacat ccctctctc 540
 ctctaccctc aggacggccc cccgaccaag ccccaagccaa aggataatgg ggacgttgc 600
 caggactgca ttcatgtgt gactgacatc cagactgtg tacggaccaa ctccaccttt 660
 gtccaggcct tggtaaca tggtaaggag gagggtgtgacc gcctggggccc tggcatggcc 720
 25 gacatatgca agaactatata cagccagtat tctgaaattt ctatccagat gatgatgcac 780
 atgcaaccca aggagatctg tgcgtgggtt gggttctgtg atgaggtgaa agagatgccc 840
 atgcagactc tggccccccgcaaaatggcc tccaagaatg tcacccctgc cctggaaactg 900
 gtggagccca ttaagaagca cgaggccc gcaaagtctg atgatgtgt tgaggtgtgt 960
 30 gaattctgg tgaaggaggt gaccaagctg attgacaaca acaagactga gaaagaaaata 1020
 ctcgacgctt ttgacaaaat gtgtcgaag ctgccaagt ccctgtcgaa agagtgcac 1080
 gaggtgggtt acacgtacgg cagctccatc ctgtccatcc tgctggagga ggtcagccct 1140
 gagctgggtgt gcagcatgct gcacctctgc tctggcacgc ggctgcctgc actgaccgtt 1200
 cacgtgactc agccaaagga cgtggcttc tgcgaagtgt gcaagaagct ggtgggttat 1260
 ttggatcgca acctggagaa aaacagcacc aagcaggaga tcctggctgc tcttgagaaa 1320
 35 ggctgcagct tcctggcaga cccttaccag aagcagtgtg atcagtttgt ggcagagttac 1380
 gagcccggtgc tgatcgagat cctgggtggag gtgtatggatc ctcccttcgt gtgtttgaaa 1440
 attggagccct gccccctggc ccataagccc ttgttggaa ctgagaagtg tatatggggc 1500
 ccaagctact ggtggccagaa cacagagaca gcagccctgt gcaatgtgtt cgagcattgc 1560
 aaacgcccattgttggaaacta ggaggaggaa tattccatct tggcagaaac cacagcatg 1620
 40 gtttttttctt acttgggtgt ctgggggaaat gaacgcacag atctgtttga ctttttttata 1680
 aaaatagggc tccccccaccc cccccatttc tggatgtttt atttgttagat tgctgtctgc 1740
 aaggggagccc ctggcccttg gcaagacatag ctgttttgcgtt gcccccttc tctctgttag 1800
 atggatgttg atgcactgaa ggttttttag cctggcccttg catggcctt gctggaggag 1860
 gagagagctc tgctggcatg agccacatgt ttttgactgg agggccatcaa ccctttttgtt 1920
 45 tgaggcccttg ttctgagcccc tgacatgtgc ttggggcactg gtggccctgg gcttctgagg 1980
 tggccctctg ccctgtatcgg ggaccctccc cgctttctg ggcctctcag ttgaacccaa 2040
 gcagcaaaac aaaggcgtt ttatatggaa gattagaagc ctgaaataat caggctttt 2100
 aatgtatgtt atccccactg taatagcata gggattttgg aaggcactgc tggatgtttt 2160
 ggacatcagt gggcccaagg ttctctgtc cttgggttcaat ctgtgatttg gttttccctgt 2220
 50 gtctttctg gtgtatgcctt gtttgggtt ctgtgggtt gggggaaag agggcccatc 2280
 tggctgtatgtaa taaacctgtca gctctccgaa gcccctgggg cttggcttgcgtt gttgtggaggc 2340
 ggacagtgggt ggccggctg tggctgtcg tggatgttttgc tcatagatgc tcccttttgc 2400
 gctgtttcag cttggccatccc tccctttgtc tcatagatgc tcccttttgc tttttcaaat 2460
 aatatggat ggcaagctcc tagggctctg cttccctggta gagggcggca tggccaaagg 2520
 55 tctgtgggtt gttgtggatggta tggatgttttgc tgggggttgg aagctgtctg tggcccaactt 2580
 gggccatcccac gcttctgtcc acttctgtttt gccaggagac agcaagcaaa gccagcaggaa 2640
 catgaagttt ctatataattt gacttcgtga tttttttttt gactaaagt ttctgtgatt 2700
 taacaataaa attctgttag ccag 2724

5 <210> 55
 <211> 2171
 <212> ADN
 <213> Homo sapiens

10 <400> 55
 cgcgctatgt acgccccttt cctcc' ggcc agcctcctgg gcgcggctct agccggcccg 60
 gtccttggac taaaagaatg caccaggggc tcggcagtgt ggtgccagaa tgtgaagacg 120
 gcttcgact gggggcagt gaagcactgc ctgcagacgg tttggAACAA gccaacagt 180
 aaatcccttc cctgcgacat atgaaAGAC gttgtcaccc cagctggta tatgctgaag 240
 gacaatGCCA ctgaggagga gatccttgtt tacttggaga agacctgtga ctggcttccg 300
 aaaccaaca tgcgttcc atgcaaggag atagtgact cctacctccc tgcatacctg 360
 15 gacatcatta aaggagaaat gaggcgtctt ggggaggtgt gctctgtctt caacctctgc 420
 gagtctctcc agaagcacct agcagagctg aatcaccaga agcagctgga gtccaataag 480
 atccccagacg tgacatgac tgagggtgtt gcccccttca tggccaaacat ccctctcctc 540
 ctctaccctc aggacggccc ccgcagcaag ccccaGGCCAA aggataatgg ggacgtttgc 600
 caggactgca ttcatgtgt gactgacatc cagactgtg tacggaccaa ctccaccttt 660
 20 gtcCAGGCT tggtaaaca tgcataaggag gagtgtgacc gcctggggccc tggcatggcc 720
 gacatatgca agaactat cagccagtat tctgaaattt ctatccagat gatgatgcac 780
 atgcaacccca aggagatctg tgcgtgggtt gggttctgtg atgaggtgaa agagatgccc 840
 atgcagactc tggccccccg caaagtggcc tccaagaatg tcataccctgc cctggaaactg 900
 25 gttggagccca ttaagaagca cgagggtccca gcaaagtctg atgtttactg tgaggtgtgt 960
 gaattcctgg tgaaggaggt gaccaagctg attgacaaca acaagactga gaaagaaaata 1020
 ctcgacgctt ttgacaaaat gtgtcgaag ctgcgaagt ccctgtcgga agagtgcac 1080
 gaggtgggtt acacgtacgg cagtcacatc ctgtccatcc tgctggagga ggtcggccct 1140
 gagctgggtgt gtagcatgt gcacctctgc tctggcaccc ggtgcctgc actgaccgtt 1200
 cacgtgactc agccaaagga cgggtggcttc tgcaagatg gcaagaagct ggtgggttat 1260
 30 ttggatcgca acctggagaa aaacagcacc aagcaggaga tcctggctgc ttttggaaaa 1320
 ggctgcagct tcctgcaga cccttaccatc aagcagtgtg atcagtttgc ggcagagttac 1380
 gagcccggtc tgatcgagat cctgggtggag gtatggatc ctgcggatc gtgcttgaaa 1440
 attggagccct gcccctcgcc ccataagccc ttgttggaa ctgagaagtg tatatggggc 1500
 ccaagctact ggtggccagaa cacagagaca gcaagccctgt gcaatgtgtt cgagcattgc 1560
 35 aaacggccatg tggtaaacta ggaggaggaa tattccatc tggcagaaac cacagcatttgc 1620
 gttttttctt acttgggtgt ctgggggaat gaaacgcacatc atctgtttga ctttggatata 1680
 aaaatagggg tccccccaccc ccccccatttc tggccctttt attgttagcat tgctgtctgc 1740
 aaggggagccctt ctageccctg gcaagatcgt ctgcggatc gcccctttc tctctgttag 1800
 atggatgtt atgcactggaa ggttttttag ctggcccttgc catggccctt gctggaggag 1860
 40 gagagagctc tgctggcatg agccacatgt ttttggactgg aggcacatcaa ccctttgggt 1920
 tgaggccttg ttctgagccc tgacatgtgc ttggcactg gtggcctgg gcttctgagg 1980
 tggccctctgt ccctgatcgt ggaccctccc cgcttctgtt ggcctctcgt ttgaacccaaa 2040
 gcaaaaaaac aaaggcagtt ttatatggaa gattagaagc ctggataaat caggcttttt 2100
 aaatgtatgtt attcccaactg taatagcata gggatTTTgg aagcagctgc tgggtggcttg 2160
 45 ggacatcagt g 2171

50 <210> 56
 <211> 35465
 <212> ADN
 <213> Homo sapiens

55 <400> 56
 gatcttggct cactgcaacc tccgcctcca aggttcaagc gatcctccca cctcagcctc 60
 ccaagtagct gggattacaa gctgtgtcta tcacacctgg ctaatTTTA tattttgggt 120
 agagatgggg tttcaccttg ttgggttaggc tggcttgaa ctccctgacatc caggtgatct 180
 ccctgcctca gcctccaaa gtgctggat tacaggtgtg agccacccgcg cccagcctga 240
 ccctttctt ctctactggc aaaactcctg ctccctttta aagccaagct catgtcacct 300

cctctgtgaa gtcctcgctg actccccaa cggtcagtgt ctctctcgta tgggctcccc 360
 ggcccccgtca ctgctctcca tcacaccctcg accactctgg gcagtggccc ccctccccac 420
 ccactgacta tgggctccctt gaaggcaggg cctgggtctg ccccatctct gtgtccccag 480
 caatgctggg catgagtcag cctcagaaga catctgtga atggctgcaa accagagaa 540
 5 atatctccag cctcaggctg ggacccctcc cctctccct cccacctctg acttcataacc 600
 actcacccctc cagagtcttc aatgcccact attactcac acagttggcc tgtgacaggg 660
 aatcagggtca tcgtccacgg ctaccaggt tttcatgtct actgtgactt ccaggaccac 720
 aagcccttt gcccacca tgtcttcacc taagagatct tcaaagccca gtatgtctct 780
 ggcacccagt ggatcctcca tgcccactgc ggatcccaag cctcctgcct cttgaagtc 840
 10 caccaaataca gcaacaccca acagatcctt agtgcaccacc aaaccagcga catcccgtaa 900
 ctcagtcatg agcccaagca gttcaagtc caccaaatacg accagtacaa aaagagcccc 960
 ttctaaacccgg cccagcagca ggtcccgagt ccgcagcaaa gcaagaacac ccagcagggt 1020
 gagcaccgac accaggacca gcaaagccag caaggccagc gacgtgagat gccaccagcg 1080
 gagggggaca cacagccggg gttaggacacc tggcagaagg ggaagccgca gctccaagag 1140
 15 gtcacccagc agggccagca ctcctggcag gataagaact catggtgcca gaccaggcat 1200
 ggccagcagg gtgagaactc ccacttcaca gcaaaaagg agccggggaa agagttacgg 1260
 ccggcctaga accagcaaca gggaaaggag tgacagccag cctagaaatc tgagcaagaa 1320
 gagttaccgc ccaccaggag gtcaggtat agggaggagt tccgagctgg ctgttaactcc 1380
 cagtagcc aagtgtcaaa ccccgactgg aattccctcc aaggagaaga gtgacaaccc 1440
 20 atctccatcc tcatcaagga aggtgaagag ctacggtcag atgatcatcc ccagtaggga 1500
 aaagagttac agccccactg aaatgtccag cagggtcaag agttataacc aggccagcac 1560
 ccgcagcagg cgc当地atc acagccaaatc tagaagcccc agaaggtaa gaagtggcag 1620
 tcagaagagg acgcacagca gagtgagaag tcacagttgg aagagaaacc atagcaggc 1680
 aagaagtcgc acccggaaagg gaattctgag ccagatggga agacacagcc agtctagaag 1740
 25 ccacagcaag gggaaaagtc aaaaccaatc tagaacccccc agaagaggaa gaagtcacaa 1800
 ctggtctaga aaccccgca agggaaaggag tcataggccat tccagaagct ccagcaaaaga 1860
 gagagatcac aggggatcta gcagccccag gaaggagagt ggtcgcagtc aatcaggaag 1920
 ccccaacaag cagagagatc acagccgatc tagaagtccc aacaaggcga gagatcgcag 1980
 ccgatctaga agtccctaca aggccgagaga tcgcagccga tctagaagtc ccaacaaggc 2040
 30 gagagattgc agccgatcta gaagtcccta caaggcgaga gatcgcagcc gatctagaag 2100
 tcccaacaag gcaagagatc atagccgatc tagaagtccc aacaaggcga gagatcgcag 2160
 ccgatctaga agcccccgca agggaaaggaga tcacagccaa ctggaaagcc ccagcaaaaga 2220
 gagagatcac agacgatcta gaagccccag caaggagaga cagtgcagac aatctagaag 2280
 ctcccgaaag gagagagatc acagacgatc tagaagcccc agcaaggaga gacagcgcag 2340
 35 acaatctaga agccccaaaca aggagagaga tcgcagccaa tctagaagcc ccagcgagga 2400
 gagagagcagc agacaatcca gaaggccccag caaagagaga gatcgcagcc gatggagaag 2460
 ccccgaaag gagagagagc gcagacaatc tagaagctcc agcggaggaga gagatcacaag 2520
 ccgatctaga agccccaaata agcagagtgg ttacagtctga cctagagccct ccagcaagga 2580
 gaaagctcat agccgatcta gaaccccccag caaagaagga aatcatagcc aatctagaac 2640
 40 ctctagcaag gagagcgacc ccagtcaatc tacagttcccc agaagtcccc actggaaagag 2700
 atccccctact aggacaagca gtctcagtca gaatagaacc cctagcaaga caagcagcca 2760
 ctccccatca acatttccca gtggggggcca aaccctaaatc cagatgaca gtcaagccca 2820
 cggccaccacc tctaaggcca cttacctgg ggaaagggtct tcatacatctt cttccaagct 2880
 ggcgttagccc ccagtcctcag ctggctcagc ggtctctgtc atgaccgggg gagggggacag 2940
 45 gagacaggagcagcagca gctgagcagc gtcctcccc ggcagctct ccacagccac 3000
 acctccggcc acaaggatctc taatacagga tggggcagg tagagaggga tgctggatag 3060
 ggggaaaggaa aagacctgtg atgattcaat aaatttttac atagcaccacca tccccccacaa 3120
 gcccacactgt gtgctactg ctggcatggg gcacagagga ccccgatct gtcctctgact 3180
 gtctacaggg tcttgactgc aagccctgcc cctctctagg tcttttttt ttttgagaca 3240
 50 gatgtctctc ctggccca ggctggagtg cagtgggtgt atctcagctc actgcaacct 3300
 ccaccccccggcc ggctcaagca attctccatc ctcagcttcc cgagtagctg gaactacaag 3360
 tggcgtctctc caegccccggc taattttgtt ttttttagtag agatggggct tcaccatgtt 3420
 ggccaggctg ggctcaact cctgacccca ggtgatccac atgcctcaac ctcgcaaaagt 3480
 gctgggattta taggcatgag ccacccgacc cgtccccctc tctaggtctt aatcccgca 3540
 55 tgtgggcaac aaggctgcct tctgggtctt attcagtggg ttagggagag gtgacactcc 3600
 aaatattcaa cagtggggac tgggtgtggc accaatcaga actgagagtg gagcgggacg 3660
 gataccaggc cttaaaccctt tagttgctgg accatggggaa ggctctgggt tggggaaagt 3720
 ttatggggaa aaaaaaccctt caaactgtgt tttccctcta ctctcacact atcacaacaa 3780

tcatcaacac agaattctgt gaccaaatgt gtggggctt ttccccacac actacacagc 3840
 agacaacagc taggtgtccc ctccgattcc attccaacgc tgccccaca cccagcta 3900
 ttttgtatcc ttggaaagaga cagggttca ccatgttgc cagagctaa gcaatctgcc 3960
 cacttcagcc ctccaaagtg ctgggattac aggctgtgac caccacaccc gacttttta 4020
 5 aaaaaataaa aataaggccg ggcgcagtga cccatgcctg taatcccacg acrrggag 4080
 gccgaggtgg gcagatcacc tgagtcagg agtttgacac cagcctaggc aacatggcaa 4140
 acttgtctct aaaaaaaaaaaa aaaaggtagc cggtgtggt gcatgtgctt 4200
 atagcccaag ctacctgaga ggctgaggca ggaggataaa ttgagccctgg aaggtcaagg 4260
 10 ctgcagtgag ccgtgaccct gccactgcac tcaagcctgg atgaccatc ttacaaa aa 4320
 aaaatttttgc ctggagctgc tcacagaact caagggaaatg cttacttgc ttactgggtt 4380
 tattatagaa gatattgcaaa agaacaaga tgaagagatg tggtagggca ggtataaggg 4440
 aaggggcagg gagcttcacg ccctccctgg ggtgctaccc tacaggaaacc ctcagggtgg 4500
 tagctatgcg gaagctctcc aaacccagtc ctcttgggtt ttacggagg cttaagaca 4560
 gcagcattgg gcatggactt ctctgaaaag tggcttaaga ccaacaatca agaaggtggg 4620
 15 gaagatttgcgttggccct gggcaggaa atggaggggca ggaggagggtc agagagattc 4680
 tggttctca gacctccccc aggccctaagg tacacaacat tataacaaga gactgtaaaca 4740
 aaggctgttag gagttaccag ccaggaactg tggatgaaaa ccaatatatt tatatatata 4800
 ataccacaag gggggtccaa agtggcagtt agggacagg agtacttgc tagcagtgc 4860
 acaccaaccc atctggaaatg attttatataa ttaaacaatg ggtatggct tactagttt 4920
 20 tgattatcaag ccttagttct gtatcaattt gcaagatagt gtc taggtttt gccacactct 4980
 agctgtgttag caccaagcaa agaacttaac ttctctagcc tggttcttc tctggaaagaa 5040
 aggggcttcc accgcctaacc tcacgtactc cccataacta gactggaaat tatctcttt 5100
 gtacagatgaa gggaaacagac acagagggtga taagtggatg gcccaagggtc accatctgg 5160
 aagtggatgaa actaggattt gaaaggccagc ctttcataaa atgttttctc agctcaaaag 5220
 25 gtttttctgaa agattcagta ggctcaactgaa tagaaatgc tgggtgtgg ctggatttcc 5280
 atcaagagtg gccattacta ctcccccccccc tgcccccttca taaaactccag atgttccaga 5340
 cctctcatct ctccctgtgc acacaaggcc ttccatcactc tgggtgtttt agtacacccca 5400
 ctgttgcgtt caagaatgtc ctccctccctt tttttttttt tttttttttagt atggagtctc 5460
 30 actttgttgc ccaggtggaa gtacagtgc gcatctcgatccactgaaatccct 5520
 gcatcagcct cccttagtgc tggttatttccatc ggcagccacc accaccatgc cccgctaatt 5580
 ttttggatt tttagtagag acagggttttccatcattatgtc ccaggtgc tggattaca ggcaagagcc 5640
 tgacccctagg tgatccattt acctggccctt cccttttttgcctggagaa ctcccttca cccttcaaag 5700
 accacgcccccc gcccttcccttcccttttgcctggagaa ctcccttca cccttcaaag 5760
 cccaccacaa acataagaac ctctataactt ctggccctgaaatctgc ctctgcccagg 5820
 35 aaggccttcgt tgacttctct ctccctccctt tcaccaacgg accggccccccg cccccccacca 5880
 acccccaccc acacacacac cactactgtc ttccactgtc ctccctgaca gtagagaacc 5940
 aaggcaggccc agttgtatgc gcttcagcta tatctcttac atgccaaggc ccatgcactg 6000
 gggatataat ggtggaaaat acatggtccc ttcaaaatgtt ggtatgtcaag ttaatgtctg 6060
 gggactaaag agaaaagctt cagattgaaa cctggaggtg gctggggcaaa aggaccattt 6120
 40 gcatcattgg caggccaaact tcctaaagaa agcacctaaa tcttggcttt taaagacaga 6180
 tttcataattt ggcagaggag aattctaatg ataccctatt gcttacaggcccccattaa 6240
 tttggaaattt ctactttata ccaagataag attggccagat ttagaaataaaaacagaag 6300
 acatccaaattt aatttttttgc ttttttttgc ttttttttgc ttttttttgc ttttttttgc 6360
 ttttttttgc ttttttttgc ttttttttgc ttttttttgc ttttttttgc ttttttttgc 6420
 45 ttcccaaaat gctgggatta caggcatgag ctaccacacc tggcccttat ttatattttt 6480
 attaattttt cttttttttttgc acggaggatgc actctgtgc ccagggttgg ggcgcaggatc 6540
 gcatctcgatccactgca cctctgcctc ctgggttcaaa gcatctcgatcc tggccctcc 6600
 tcccaagtag ctgggactac aggccgcgtgc caccatggcc ggctttttt ttttttttgc 6660
 ttttttttgc ttttttttgc ttttttttgc ttttttttgc ttttttttgc ttttttttgc 6720
 50 cggctcaactg caagctccgc ctccctgggtt cacggccattc tcctgcctca gccttcccgag 6780
 tagctgggac tacaggccgc tgccaccacg cccgactatt ttttgtatcc ttagtagaga 6840
 tggggttca ccgtgtttagc caggatgatc tggatcttgc gactctgtca tccacccggcc 6900
 tcggccctccaaatgtgg gattacaggc tgagccacc gcccggccacttatttttta 6960
 tatttttttgc ttttttttgc ttttttttgc ttttttttgc ttttttttgc ttttttttgc 7020
 55 gtaggaaagg ggcttcagg cttaactca tggactcccaatggatcttgc ttttttttgc 7080
 agctcaactgt aacccaaatccatgcgca ggccttatttttgc ttttttttgc ttttttttgc 7140
 ctgggactac aggtatgcgc caccatgcgc ggccttatttttgc ttttttttgc ttttttttgc 7200
 ttttttttgc ttttttttgc ttttttttgc ttttttttgc ttttttttgc ttttttttgc 7260

caagcgatcc tcctgcctta gcctcccaa gtattggat cactgcaact agcccaaaga 7320
 attaatatac ctatgttcca tgttatatt gggacatact tttctaaaag gttgtatctt 7380
 ttggatataa ttgttatct gaaattcaaa tttaactaga cattgtatctt ttatacggc 7440
 aaccacacac ctgggacaat caagacattc cctgaagttt ccaggagaca atgeccatca 7500
 5 gcctacactt ttccaagccc acgtcacaca aggcccccc cagagtattc cagacgtcag 7560
 gtagggccat cccttgggtc acaagtcaca ctcctaccac gcctatggca gccaaactga 7620
 aaggcaaca cagtgcttga gacccacaa tgccctggc ctatagcgtt caattccaa 7680
 gatgccccgc gtgaacacaa taggcacccg ttcaatgtt cgagcaaaaga gaccaggc 7740
 aaacccctca ctacgggaca ataacggcata gttccacaa ttctgttgcg cagttctcc 7800
 10 caggatgcct taggcctata ggcaccaccc tcccagactc cccgtgttgcg agcgcctcaa 7860
 gcctccagga cggtcagcgg caggtgttgcg ataaaaggaa ccggctctcgca caaggatctg 7920
 ggacactttt tcccaggatg caccaggcc acgactagcg gaccgactcc cacagcgctt 7980
 caaggcggag cgctcgggtc tcccaggatg ccccaaggccg gcacaaaacgc gttaggggag 8040
 aaaaagaagc cctcggtca ccacggcccc agaccggccg ctcccccgtg acgggagtcg 8100
 15 tcgctcccat catgcagcgg ggcgttagcg cccgcttccc ggcacgcctc ggcacccct 8160
 gcccgggaca ctcacccggc cccggccccc cccgtccggc tctgccccggc cggctgcacg 8220
 cccagccctt ggcctgcgtt cgcacgttggt gtaggacagc ggcagggggg cgtgaagagc 8280
 ctaggcgcgtt tgcggggcga gacggacttag tccctgttgcg ctgtgggaag agggctatg 8340
 cgcgtcgccgc cgtcgacgag accccggcgg gggggccgt gctttggccc tcgctgcctg 8400
 20 ggtttacttg gtacagccccg cggcccaaag gaacaagaag ctgaagggtt cgcgcgtgcg 8460
 tggcgccccgc aggaacgcgc cttacaaaac tggatgcgc tgggggttgcg gggcgctagt 8520
 tcggacttgcg tccctggccc gaggcctgtt tatttgcata atcctagcgc gggacaatga 8580
 aaggcctccc gcaactggaa gaggatgttgcg catattcccc ggaggggccct tactccagag 8640
 cgcagtgtt agcatatggc gggggcaacc tgagcaagc gcatgcgcgc agggactgca 8700
 25 gactgacgcg aagtgggttag ccttgcgttc gtagggatc agtttgcate ctgagagagg 8760
 gcacgaggggc caggaccctt cccaaaccagg ataaaagggtt attgatctcc taggtgtcag 8820
 gccccatgtt ggcggattctt gtggtttctg cagtgaacca tactcctgtt ctcacggcac 8880
 cccagtcgaa ggagatacgc acctaatttag acaactacta cccagaaggc cagaccttgg 8940
 gtgaggaaca cagggggctg tgggagccta agaggccgtt gccccggccct ctgggtcttag 9000
 30 aaagacttcc aggaggtgtt gatccttaag ccaagttacga ataggagcca actagaatgg 9060
 gaatgggtt ggcacatgtt actgcacgc ccaaggccca gagggccaaaa aaaaaaaaaa 9120
 aaaaatagaa ggcacatgtt tgatttggaga agcaagagca gcttagatgtt ccttagaacct 9180
 aacttggagac gggaaatggt tctatagacg atgttagatgt tcaactatgg ctacattcca 9240
 gtcttcctgtt aagtgtatctt gtcacattctt ggcttaaaac tcccccaaaag ggtatcccatt 9300
 35 agggaaaaaaa aaaaatccaa aaatctttat catggcctca gggctataca cctggcttgc 9360
 cctgtcttat ctttctgacc ccacctactt cctcctccctt ccatttctgtt ccagctccac 9420
 cttaccccaa actcttacc agtcggccct tctgtcttgc cccgtccctc cgcctgaaaa 9480
 tgctttccc tctgacccctt gaatacttac tcttgcgttcc accatttata tcttggtaca 9540
 gatgtcaatc tgagaggctt ttctgtatctt ctccataata gcacttacac atttgactgg 9600
 40 agttatggat aaatcggtt gggccatgttgc ttgggttgcg ttgttactgg catgaagagt 9660
 acatggggctt gggcgccgtt gtcacgcggc gtaatcccac cactttggga ggccgaggct 9720
 ggtgtatcac ctgaggtcgtt gacgttgcgtt ccagcctggg caacatgggtt aaaccctgcc 9780
 tctattaaaaa ctacaaaaat tagccagggg ttatgggggg tgcttgcataat ccttgcctact 9840
 tgggaggctt aggcacgaaatccatgttgc ccctggaggc agagggttgc ttgagtcgag 9900
 45 attgagccac tgcactccat cctggggccac ccagcgagac tctgggtctc gcctgtatc 9960
 ccagcactttt gggaggccga ggcggggccga tcacgtcaga agatcgagac catcctggcc 10020
 atcctagacc atttctacta aaaatacaaa aaaaaaaaaa aaaaaattag ccggggcttgc 10080
 tggcaggccgc ctgttagtccc agtactcggtt gaggcttgcgtt caggagaatg gctgtacac 10140
 gggaggccggc gcttgcgttgc atccgagatgtt ggcgtactgc actccggccctt gggcgacaga 10200
 50 ggcacgtt gtcctaaaaa aaaggttaca tgggacgttta ttgttgcgtt tactcctgtt 10260
 gttttgttgcgtt ttccataat gacaatggca taccacatca ccatactctg cattttatatt 10320
 aatagttctt atcacaatctt gacttttttgcgtt ttgttgcgtt ttccctcatg 10380
 aaagcttcatt gagggttaca atgggttcgtt cttttttccat tttttttttttt cttttttttttt 10440
 agcaggatca gatttgcgtt tagtgcgttgcgtt cttttttttttt cttttttttttt 10500
 55 tattcaccat ggactctaga accttgcgttgcgtt ccacccggca catcgtaaga ggttattttt 10560
 taaaatgttaca ataaatacatc taaaatgttaca atgaatgtt gaggccctt ggtatggccaga 10620
 ctaaaatgttaca ttgttgcgtt cttttttttttt cttttttttttt 10680
 aactttatc caaagttccat ttggagacta atgttgcgttgcgtt cttttttttttt 10740

ggtccgggcc atggaatggg gtagctcagt cgctatcaaa aagacaagac tggacttatt 10800
 tggctgaaga aatggccaaa cccaggtttc tggggagggtc gaggtaccct cagtgggtc 10860
 aggaccttct cctggcctat actgtccacc agcaaccatc acactccttc ctcccccttc 10920
 ccttagttcc cctcccaatg gtacagccct tgacagcagg acagacacac agccacccca 10980
 5 aacacttgtt ctctcctcag tttaatgggt gtttgtgaga ttgccaacc ccctccccat 11040
 tcccctcccc accccgtaca aaatgtgtgt gtggttttt gtttttgtt tttgttttt 11100
 taacaagaaa aagggggcaa aagccaggaa tggggagagg ggggtgcaat ctgtatttt 11160
 catacagact tttgatttt taatataatta tatataaaac catgaagacc acgaatcctc 11220
 10 cccaaactcc ttcccccttc cccggggggc ctggggaggaa gatggggaaag gccccccca 11280
 gagtgggtgg acagagagac aaatatggat gggacagacg tggggggaga aggttagagag 11340
 aaggggagcc caggaacctg gggagggggg attggagaaa agggttgggg ctgtctccct 11400
 cactgcccccc atcaaaggta tgacacaaag acacagaatc cctatttcca cgcctcccc 11460
 ccacccatcc ccccacccgtg caaacatggc ttgcaaaga agtgcggaga gctctgtgga 11520
 actcttacaa tggctggcat ggggtctagg acccccaaag aaatctgtt tccccctccc 11580
 15 tgccccccccc acccttccca gaaactgacc ccctccccac aagacctggg tttgtggct 11640
 agggggccctg gccttcccccc agtttatcttc ccccaacccca atccctactg ccctcaactgg 11700
 acttggggggg tctggaccc ttggccctgc cccctggggg acccagaccc ctggggccctc 11760
 acttctggcc cttacagaga tccaggcatc caacacccccc atccctgccc aagcgctctga 11820
 ggtttagtg gtggggggag aagccacca tcccaagactc tggtaaatgt ctttgtgg 11880
 20 tccttgcgc tggcagtggg ggggacccca gcccaggccc aggcttaggc ctgggggtgg 11940
 gatagggtca gatgaagaat tccttcttcc tcttgttcc gtcgtgcca ttgaggaagg 12000
 ctctcttgc ttctccctgt tcatccaagc cactggcttc gtgggtcaga taggaacctg 12060
 agggggtgac agaccccccgg ggcagggggg acatatttg ggttccagga gtggacaga 12120
 agtataaggg aagagggaga cagacaagac acatggcagg cgaaggaaaga gggagaaacg 12180
 25 gaacacacag ggagagggcag agaaagaggt aaacagtggc agagaaagag gtaaaagcag 12240
 aatttaggaag actccaaaag ctacccggaa gtgccaccc tatttttttctt ctggaggt 12300
 tttccttgcc ctgctccctc cgaattcagc aatttagggaa ataaatttgt ttattcaaat 12360
 ccatgtctt tttttccctt aatttttgtt attttttagt gaaaaggggc tgccatgg 12420
 tgcccaggct ggtctcgacc tcctagcttc tcaagtgcctt tattttttctt ggcctcccaa 12480
 30 cgtgtctggg ttacaggcgt gggccaccgc gcccacccgc aaatctatgc ttttaattca 12540
 gcttctaaat tctaccctt ttccagttt gtcggaaag ccccgcccccc tttgtcatct 12600
 ccggcccccgg tgccgggggaa ttccggatcc agagcctagg ctccggccctc tggtaaccct 12660
 ggtcttaggc cccgcctttt tccggccctt acaaccaacc aaccgttagag tccaggcccc 12720
 gtcccactca cccttctggc gtacccggca ccagaccatc cccactagca cacatatgtat 12780
 35 cagaaacacc agcagcggca ggttgcgc cacaatggca tagggaaaccg acgtctgagc 12840
 ctctaccacc gcaccagggtt ctggcagagg gacacggcac aggaccagg catcagagga 12900
 cgatccctagt ctggccccat cgctgccaag ctttttaagcc attctgcaca cgcttaaccg 12960
 tgccctttta tggccacac ccctcaaaaa ttactgcccac ttgttagtct ctctctttc 13020
 cagatgttttgggttgcactggccga cccctccctt ggttcatgtt acattttctt 13080
 40 ttctttttttt ttgtttttt ttgcagagac gggggctca ctatgtggcc caggctgatc 13140
 ttaaaactccctt gggctcaagc gatccctccgg cctaggccctc ccaaagtact gggatttagag 13200
 gcgtgagcga ccgcacccag ccatccctttt tttttgtact caaggttttt cctccactaa 13260
 gaaacagagt ccaagaaaaca ggttccaagtc cttttccacc ttgttcaaaa cgctccaagt 13320
 attttaaatgtt ctggccccaa ctaccaaaaat ttctgccccca cggccataga gttaaacaca 13380
 45 gaacagctgt gtcttagagc ccattccaaac cacccttacat attttgttca cataatcttc 13440
 acaacagccct tttttatataatgtt gttttttttt ttacttccac tttactgtat gttaaactga 13500
 ggcgcagaca ggttccgtt cctgcaatag aatgcagccca acccaattt gagcccccg 13560
 ggcctgttgc tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt 13620
 50 gcagcctgtt ctcaccgtt accacaagaatg cttttttttt cttttttttt cttttttttt 13680
 tggacgcctc gcaagtgttag gttttttttt tttttttttt tttttttttt tttttttttt 13740
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 13800
 ggtttggctt ggggtggggat aaagtatagt gagatgttgg aaccggagggtt ccagcacc 13860
 attttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 13920
 55 aggcttcctg ctatctttt cttttttttt tttttttttt tttttttttt tttttttttt 13980
 atcaccaccaagg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 14040
 cagcacttta ggaggctgag acggggaggac tttttttttt tttttttttt tttttttttt 14100
 gggcaacaca gggagacccctt gttttttttt tttttttttt tttttttttt tttttttttt 14160
 gggcaacaca gggagacccctt gttttttttt tttttttttt tttttttttt tttttttttt 14220

	tcttagccctc	ccacgcgcatt	ccatcctcgag	caaccaggag	tctgaggctg	cacagcttc	14280
	gtattggggta	gtctgagcct	ccagattcct	cctccctcg	gatccaggag	tccaggctcc	14340
	agatccctat	tgcgtccagg	ccccagctct	ctccctccca	ggaccaggaa	atccaggctcc	14400
	tagctccctg	tttgcgtccagg	tcctcagctc	tctccctt	aggaccagg	agtccaagtc	14460
5	cctggcccct	gttcttccag	gtccccagct	ttctccctct	gaggacgcag	gaggccccca	14520
	gagctcacct	ggggttcccc	gtgacagcac	acgtcaacac	cagcgtgtct	ccctccctca	14580
	ccacagcttg	ggaggcatga	atccggggcg	tggggagtc	tgttaggcaa	aagaagagg	14640
	agagagtagt	ttccaagcca	tcacgcaggaa	caagggggac	cctcgcgggt	gcgggtggct	14700
10	ggcggtggta	tcccttgggt	cctggccccc	cggtaactta	cactgcacat	ccagcacgt	14760
	ctgcgtctgc	ttgctgtgtc	cggaggcgag	cgcctgggtc	tgcgcctcac	agatgtatgt	14820
	accaccgtcg	tccttacgg	ccacacgaaa	cgtactgtg	tttgcacgc	tccagacctt	14880
	gccattttcc	tggctgtgtc	tcactcctgc	cacacccogg	tcagacactg	tcaggccaca	14940
15	atcccggtc	catccaccca	cccaccccgag	ccaacgccaa	agcaggctat	ttgccaagct	15000
	ccacccctta	cccacaggcc	ccgccttctg	tcctccaagc	tacgccttc	ccctaaccaa	15060
	gcccacgtgc	tcctcccaa	agctttttcc	tctttcacgc	tcatgtttc	tcgtctatca	15120
	atccatataa	ttgctatata	tataaaaaca	taaattata	tatataactta	gagacagggt	15180
20	ctcacaatgt	tggcaggtt	gaactcctga	cctcaagcaa	tcctccatc	tcagcctccc	15240
	aaagtgtctag	gactacaggc	gtgagccacc	gctgcgacaa	tcaaccacta	catattgaat	15300
	gtccagtgtc	tgtaaaaacc	tgtggctct	ctccacat	aaacaacctc	tcctaagtcc	15360
25	caccccttcc	ccatcccttgc	tcagcactcg	gcccagggt	ccttcagct	ccttgcggtc	15420
	ccggtaccag	cgcagggttgg	cagccggacg	ggaccgcgga	acgaggcagc	tgagctccac	15480
	ctcgccgccc	tctaccgcct	gctcccgac	ctccaccaca	ggattctctg	ggccactgc	15540
	cgcagggaga	agggaaagtaa	gggtttaaag	aaggcacgaa	cgtgggtct	aagcgatcg	15600
30	gtgcctgtt	cccagegacc	atagggaaacc	agggtcccag	gtggcagggg	tcaaagggga	15660
	gaggtcagga	gccagatgcc	catccaggat	gttaaaaata	gccatggct	aaaagtctca	15720
	ggagaagaga	gaagcagaga	agaaaaggagg	agaggatgcg	tctgacaaagg	gggaggggcg	15780
	taccttagtac	cgtgagcgtg	gcaatctgtt	ggtgggtgtc	ttctgtgtag	agctggcaga	15840
35	aatagccccc	ctcgccctcc	aggcgggcat	ctgagagccg	gatccgcacc	ccgcgtgggg	15900
	agaactcttc	aagctggaaa	cgctcattct	tcaaggctag	agagagttag	ggggaaagggt	15960
	tgaatttcgg	gagtcctggc	ctcacaagtc	ccacccttcc	gacaggagct	tagtccag	16020
	ccctctgcct	cttttctcca	gccatctcta	tgagtcgtag	gtgtccaact	atttactccc	16080
40	tttggggacc	agcattattc	aagtcctct	gctctcggag	ccagcgtcc	ggggacccca	16140
	ccctttcttc	tccgagaccc	aggagaccaa	acttcaggt	gtgtctctt	tcaggacat	16200
	ggagcctggg	ccccagccct	cttttcttt	aagactcttc	gtgtgggtcc	ccagcactca	16260
45	ccacgggtgc	cattgaagaa	gagggtctgc	cgggctgggt	tctggatgac	aatatggac	16320
	ccatcatact	ggtcagacg	gcaggtgatc	tcagccaccc	caccctcagc	cactgtcag	16380
	ttctctgtct	gtacttcgt	tcctccccct	ggacgattag	acaaaagagac	aggatagaag	16440
	acttaactgag	agtcgcatt	caatttttc	tttctccctc	ttccccatcc	aaacctccaa	16500
50	tccctctctt	ccccctcatt	cattccattg	cactgaacat	ttcctcgagg	ctagagtcca	16560
	ggacaggggag	gaaatctgt	ccctactcta	aaagagctgc	agtcaagatt	tagtagaata	16620
	tgcctctaatg	agggcagcac	agggcacact	aggagcccag	agcaaggggag	gactattata	16680
	gaattgccta	gagagatggg	tagccagaga	gggctctgca	agaaagctcc	attggatctg	16740
55	gatcttaaag	agtaagcagg	aggctgagcg	cggtggctca	tgcctgtat	cccagcactt	16800
	ttagaggccg	aggtggccgg	atcgcaaggt	caagagatag	agaccatctt	ggccaaatcg	16860
	gtgaaaccct	gtcactacta	aaaataaaaa	aaaaaaaaaa	aaattagctg	gggtgggtgg	16920
	tgcgcacctg	tagtcccagc	tactcgggag	gctgaggcag	ggaaatcgct	tgaacccggg	16980
	agtttggaaat	tgcagtgtgc	cgagatggag	ccactgcact	ccaggctggg	cgacagagcg	17040
	agactctgtc	tcaaaaaaaaaa	aaagaaaagaa	aaaaaaagagt	aagcaggagt	tcacaagggt	17100
	tgggagactg	ctgtgtgttc	accaagccct	atcttcacca	cctggcaca	tgttagtgc	17160
55	cgtttgcaaa	gatagccgt	atattctct	gtccctggac	atgcctttt	caagttgatt	17220
	ttgccattcc	tcccatttgc	aaggcacttt	gtccctact	agtctggta	agccttgaga	17280
	gttgccttgc	ccaatagaat	ttgttagaag	ttctggccatc	ttctggccat	aaagggccctt	17340
	gtagcttcc	ctccctccct	aagactgttgc	catgaagata	cccagactag	tgtcttgca	17400
	gatgaacaat	catggtggaaa	gagaagccca	gccccgcagcc	agcaccaatc	gccagctgtg	17460
	ttagtgtggc	catcctggat	catccagcccc	cagctgcccc	accagctgac	agcagccaca	17520
	caagtgcacc	cagttgagac	caataaaaaga	tctggccatc	tgatacagcc	caaactgtcg	17580
	aacccccagaa	tcatgaacaa	ataagggtgt	ggttggttt	agctcttaag	ttgtgggtga	17640
	tctgttctac	tgctaaagtt	aactgtatca	atacataatt	aggctatact	ccccagcatc	17700

gctcgcttagc cttgtgtcc ctcaaacatg ctgagctgc tcccaccaca gggccctttc 21240
 ccttttcttc cttctgcctg gaatgttctt ctccccacct cccaagcccc atcttcccaag 21300
 ggctgactcc tggttccatt tgggtctcaa atcatatcg taccttctca gagaggcctt 21360
 ccctcaactgc tcatcccttc accttttagaa cactttttt tcttttaaga gacaaagtca 21420
 5 gcccagtgcg gtggctcacg cctgtataac cagcactttt gagaggccaa ggcgggcaga 21480
 tcacctcagg tcaggagttc aagaccagcc tggccaacgt ggcgaaaaccc cgtctctact 21540
 aaaaaaatac aaaaattagc taggcagtgg tagccccggc tactcaggag gctgaggcag 21600
 aattgcttga acccaggagg cagagggtgc agtgagccg gattgagcca ctgcacccca 21660
 acctgggtga cagagagaga ctctgtctca aaaaaaaaaa aaaaaaaaaaag agacaggta 21720
 10 ttgctctgtc acccaggctg gagtgactgt gtgcataatcat ggctcaactgc agcctcaac 21780
 tcctgggctc aagccatcct cccacctcag cctcctaagt agctgagatt ataggctcct 21840
 cccaccacac ctggctaatt ttgtgtctt ttgtggagac acagattctc catgttgccc 21900
 aggctggctc ccaactcctg gggtaaaagg atcctcctgc ctggcttcc caaagtgctg 21960
 15 ggattacagg cgtgagccac tgccctggc ccagaacact tgctatttcc tcaccatgc 22020
 tttatttctt ctatgaagat ttcactggaa ttatcagatt aatttgccta ttgtttact 22080
 gtctgttgtt caccatgac tggaaatgtat actctaggaa ggcagggata taatccaatg 22140
 ggtttactgc tgcaccccta gtacccagaa gagtgttgg cacctgataa gtgtctggg 22200
 aacttgcac atgaattaca tgtgtcagat gggatactg ttctcttcc ttctcttcc 22260
 tttctttctc tctttctc tctctttctt tctcttttcc ttcttttctt tttttgaga 22320
 20 taaggctctcg ctctgtcacc caggcttagag tgcagtggtg caatcatggc tcactgcaac 22380
 cttgaacatg tgggctcaag cgatcctccc acctcaggct accaaatagc taagactaca 22440
 gaggtgcgta gctatgcca gctaattaaa aaaaaaaaaa ttttttttt tttttagaga 22500
 tgggggtctc aatatcttc ccaggttggt cttgaactcc taggctcaag caatccccct 22560
 25 gccttggctt cccaaagtgc tgggattata ggcatgagcc attgcagctg gcccagacag 22620
 aatctcattt cagcccgaca actttgtgac atcattattt tcatcttaaa cacctagggt 22680
 gateccagct caaccacttg ccatctgtgt gacctgtggg caagtgcaccc taccttcgg 22740
 agcctcaggat gccccatcta taaaatggga atgatgccag tgccctgcctc ataaggatga 22800
 gccccctcc tgaagctcag ggagccctct ctgcaaggct gttttagtgc aaccccccga 22860
 aacatgcca tgcattgtgaa aacttgcatg cacattctgg tgcttttaaa aacatctcga 22920
 30 agcctatcca cagatcctgg acctcaagac tggttcagtg ctggccccc attttacaga 22980
 tggggagaat gaggcttagc gggtcccagg caagtcagtg gcaaaactca ccatctcctg 23040
 ggagccatca gtttctctg gatctgcccc caccaattt atccccctgt ctctgttga 23100
 gggtgacat ggggtgaggg tgggggtctt ttgtttact ccctccccct cctgaggagt 23160
 cagtaaccaa cagtgtctgt gccttggaaa ttaatgtctc agecagctttt gtttgggggg 23220
 35 ttgggggtgg tggggccggg actttctggt cagagagggg ctgagctttt gggactgagg 23280
 cactggccct taaaactgtg ttgacagcca ggagtgcctca tggggatggt gcttggaaaa 23340
 ggggacaggg agggttggg aaagagtggc ggagcaggta atgcgtaaaga cccaggaatc 23400
 cagcccccaa ctacccctc tcccaggacc caggagtcta ggctcccagc ccctccctca 23460
 tcaggttcca ggagcttggc accccggctt ctccctccct tagaccagg aattcagccc 23520
 40 ccaaccaccc cctctctcg gtccccggaaa tccagacccc tagccccctt ctgcatcagg 23580
 accccaggagt ctgggtgtc agcagccccc tccttcaaaac ctaggagtca gagccccccag 23640
 ccctctctca gcttagacac aggagtctgg gcctccagcc ccctccctct tcaggacccca 23700
 ggagccaggg gtccagagta cacagctggt ggtatgttcc acggagacta agcaggggtgg 23760
 gggggcgcgt tctctgggtcc tgagtctcg aatacccaag ggagtctcaa ggtcatagg 23820
 45 ccggaaagggt caccaccacc ccctctgtat ccgcctccca gggggctctt ggcatcctgc 23880
 ctccctccccc ctccctccct tagggaggtg gtacatccct gcgcctgc tgaacccccc 23940
 tcagccccccc atcaatggcg gatcccgaaac atccctcgac aaagcgtcaa ttcttccccca 24000
 gctcaggctt gtgaaggcgc ctgtattcgc aggacctagg cgtcagggtc tcagcccccc 24060
 ctccctcaga aacctgcagt ggaatcccccc gcctccagcc cctccctccc tcaggacccca 24120
 50 ggagtctgtt tcctcatccc ttccctccctc aagacctagg agtgtggact cccagcccc 24180
 ttcccttccctt ggacacagga gtccctggcc tcggccctct cctctttaaa acccagggggt 24240
 ctaagacccc agcctctcc tccctcaaaac tcaggagtct aagatcccag gccccctcc 24300
 cctcagactc aggagtctaa gatcccaggc ccctccctccc tcagactcag gagtctaaaga 24360
 ccccaggccc ctccctccctc agactcagga gtctaaagatc ccaggcccct cctccctcag 24420
 55 acccaggagt ctaagacccc agccccctct ccctcagact caggagtcta agacccccagc 24480
 ccctccctccc tcagactcag gagtctaaaga cccaggcccc ccctccctgt gacccaggag 24540
 cctaagaccc tggcccccctt ctcccttggaa cccaggagtc taagacccta gctccctct 24600
 ctcccttagacc cattagtcca gggcccccaga ccctccctcca tcagacccag gagtccaggc 24660

5 ccccagcccc tcctccatca gatccagccc ctccctccct gaaaactttt gactctaact 24720
 ccccagtctt caaccccttag aagcacagtc ctgcctttcc tcaatcctct gtccccctcc 24780
 atctggggac ctaggcatca ggtggggcg taggggttag tcagcaacct cacacacaaa 24840
 gtccccctgt tgccccccac attccctggga tattcgggac tccctggatt ccaggcctca 24900
 10 gccccagcca gggagtgggg agtccccag aggttcctccc tgggtgtggg gtacgagagg 24960
 aattcctgtct ccgggaaggg tgcaggcctg cactgagctc cctctgtccg aaccctccacg 25020
 cccagtgcctt ctattcacc cccttctccc agaagagccc aggtctagca cctgcccctt 25080
 gccccactgg gtgcccacgg aggagctgc gtgcctgtcc cctatggcc tgggtgtcc 25140
 acaggcggaa atcagtgggt gcttccgttc tgatgccaca ggcattggg tgctggcggg 25200
 15 tctgactgtc tccaggccac ccccccacccc tcccagagag agaaagctgc ctttgttcc 25260
 tccaagatgg ggacaggcca ggctcgacg acattaaccc agccttaggc cccagccctg 25320
 ctgtgtctaa ggttctggaa tccactcgag aacctgaccc ccacccccc gctctggga 25380
 cacaggcggcc tggctcatgg gtgggtggg ggggggggtca gtgatagaaa cctccaaaac 25440
 ctgttcccttg gggtgactca caatggggg agggtcccccc tattctcaag agtggctgg 25500
 20 cagaattttt gcaggaaaaaa gtgatgcacc ctggggagga aacattattt aggaccaac 25560
 aactgccttttcccaacaagac ccctcaactc ctaatagctt ctctattttt tctttgtatt 25620
 ggatatctgt ttccctctctt cttttctgtt tcaccaggat tctggctcg ggtcccattt 25680
 ctgcctgggt gcatccctgg gcaggcaacc catccctccc tcttgccttc tctcctctgc 25740
 ccaccccttggaa tccttcttttggcataaaatc tcatcttctt ctgctatgtc cagaagatga 25800
 25 atgaaccagg agagagagaa catgtttta aaatggcga aatgcacccc atctccccc 25860
 attcctgtgt gctggcaag gtgagagagg aagaagtgc taagagagaa atgtgggaac 25920
 aacagatacc ccctaaaatg tggtagccaa ggccactgag aaatatccaa tgaaaaggag 25980
 agcaggaagg gcccctccaag accacatgtc acagcctctt accccatgtc ttacagaacg 26040
 ggaaagtaag gcccagagag ggacaaggac tgatgcaaaa ttatactaaa ggttcttggg 26100
 30 taaggcttgg acccaagtcc ttagctccc agctgagagc tcttccatg acaccaagct 26160
 cagtttctac tggtaaaatc cacatactat ttactttaga gaaagtttac agagagggtt 26220
 aggggtccag gaagcaatgt cttggaaatc aaacgagggg cagggctgtc gacctaactc 26280
 ccagaagcac cagagaaagg ctttgcacg gggcggtgg tcaccaaag ctatattctg 26340
 atcctgagaa ttcaaagtct gatgattcta agctgtcagg attctaaatg tcatagatgt 26400
 35 caagatccag gaactccaag acatcaagat ttacacgatt ttaagacgtc aagatgtcg 26460
 catgctaaca ccatcacggc tctagaactt taaaggtgtc aagattctaa agccttctgg 26520
 attctagaat cctgttagatg tcagcattct aaagttccat caggttcttt atttactgg 26580
 ttcatttagtt ccaggattct atgagcctgg tggtagctt aaaaaataaa gataaattaa 26640
 aattgtatggaa aatgtcaactg agtacccaa gtttcatct gggaaattgt ggcatgtctg 26700
 ttgttaaagaa aggaggtat gatcaagtt ctaaaggact cacagaagac tagagaagaa 26760
 40 agaaagacag tgagaggaca gtttggccc tcatctggc cgagggtgagg atggctctgc 26820
 ctcaaaacccctt ggagtggggaa acatgtaaacc gcactcaact tgccagaaac cccttcacgg 26880
 tctgagctgg cttttccctt catgtcaactg agttcaacat cttcaactt cagaaagaga 26940
 aacagaagcc tggagaggg aaggtgtta ccattggctg cgatggcaaa tggcaagagc 27000
 45 caagattttaa gcccaggccg ccagcccat gccacctgg tataactctt ctcaccaatc 27060
 tctggccgaac accccagccctt cttttccat cttttccat tttttccat tttttccat 27120
 caaaagtggc ttatccacc aggggggggt gacccgtggc aggttcaaga cttacacagt 27180
 gtgagagttt gtgtgggtga cattttctga cttttccat attttccat tttttccat 27240
 tcgggggtct ccagttctc acagtgtgt atgagggtat gtggatggct ccctggatgt 27300
 cttggacagg ggcttctctg tgagtcaagc ctgggtgtgt gaatgggtga gcaagggtttg 27360
 gagaggcatt cgctaatcc acgtgtgtgc tttttccat tttttccat tttttccat 27420
 cccacacaca tgcacacaga tttttccat cttttccat tttttccat tttttccat 27480
 aattcctttt cagggcaca gagggataga gagggataga gagggataga gagggataga 27540
 gatccggga tggaggctgt aagcgttagag agaggagca cagcagaaag acaggatgg 27600
 50 agatagtggg acagagaagg gggaaagaga caggtgacag aaagggttag agaaacgagt 27660
 gacagaaaaga caggggacag agacaagggg atggggcaga tagggacag agaaaaagg 27720
 acagaaaaaaac aagggtgaca gcgagacaga gacaggaccc aagaataggg gcagagagg 27780
 agggcagaaa tccggggaa agagaataga caggatgtc gagggacag agtgcaccc 27840
 gaaaagggggaa cagagaccag gggacacggg tagggacaa agacagaata gatggggac 27900
 55 accgaggccaa gaagagaggg agacagacag aaggaggac aggacttcga gactgagg 27960
 tagaggacaa gggtaaggggg acgaggaccc agacgggggg gttcagagac gggcggac 28020
 agggacgcag agactggaca gaaggacacg gggacggcc tggggaggcc ggacttgcgt 28080
 gtgttaggggg gtctcgccccc ctttgtccccc gcccggatcc agctgcgcg ggtggggggg 28140

	ctggcgccacg	gcggccggggc	cccgcgcccc	ctcccccgct	cgtcgctccc	ggctcccgcc	28200
	ccgcgcgtcg	cttgcgtccc	gggagggggc	ccggcccgcc	cccgcgccca	ttgttcggcc	28260
5	tctgcggccc	cgaggctgcc	gggtgtcac	cacagcgccg	cccccgcccc	agcccgccg	28320
	gccgaccccc	gcccccgacc	ctaacctggcc	ccggcccgcc	cgcccacagc	agcagcagc	28380
	gccactggaa	gcccggggc	cgccccatgg	tgccgccc	gccggcccg	ccgctcgctc	28440
	ccggcccgcc	acctgcaccc	cccgcgccgc	ccgccccgcc	cccccgcccc	cgccccctgc	28500
10	ccgccccggg	gcggggcgcc	gaggccgggg	cgggggccgg	gaggggaggg	ggagacggag	28560
	gagaggcccc	gagacaatcg	gggggacggc	acggtgtgggg	aacggtgtgg	gtgtcgaaaag	28620
	ctggagagga	gaggggtgag	gagggcggg	aggggtgcgc	gggagggcga	cagcggcgtg	28680
15	ggagcagggtg	ggggatctcg	gtgagcgccg	gaaatggagg	gtgttgggt	agggtgtgc	28740
	gtgcggggcc	aggtgctcg	cgcgaggggt	cggagttgt	ggcatgcagg	gtgttgcgc	28800
	tgcgcggagg	ggaggggtggc	agggtgttgc	tggaggctgt	gcgaggggtgg	ggcgccgggc	28860
	gtcgtgggg	gcggtgtgt	cgaagggaga	gcgtggccag	cgtgacgggg	gagcgttaagg	28920
20	gagggagtgc	gacgtgggaa	aggtgagtgt	gagaggcgtg	ctgcgggcag	gtgggtgtct	28980
	ggagtcttagc	gagaggctgt	gagctgagcc	accgggacag	gggaggctgc	agctggaggt	29040
	ccggagggtc	cgaggttcga	ggcaggtcaa	ggatctcca	ggcagggcgc	aggctggggc	29100
	tcaggagtgg	ggtggggtca	gttccctccc	tccctctc	ctgtcctgac	ctgaaaaccc	29160
25	cgtgtttccg	cgtcatttctc	cgggaggggc	cccctgaaag	tgaactaact	ggaaggaagc	29220
	ctgaatctcg	gttcccagga	gggagggct	cctgtgaaca	ctttccaagc	cctggcgtcc	29280
	cctctccctc	ctgtgttctc	cctgccccag	cctctctccc	tctctctgca	tgtatttgc	29340
	tctgccttcc	ctctctcccc	atctttgagg	gtgactcacc	cctccagact	taggtccctt	29400
30	ctccctctcg	ggagtggggtt	tccctgagcc	cacttctgt	acaccctgta	gacctgatgc	29460
	gggatcatta	cctatggac	ccagaaaagag	tgagaaacca	tggaaaagaag	gcctcgaccc	29520
	ctctcatgcc	catttgcag	gcaactgtag	gtccagaagt	gccaattatg	aacatctttc	29580
35	cttccccctt	ccccctcccc	cgcccagacg	gagtctcgct	ctgttgc	ggctggagtg	29640
	cagtggcacg	atctcgactc	actgcaacct	ctgcctccca	ggttccagtg	attctctgc	29700
	ctcagccctc	cgagtagctg	agattacagg	ccggccgcac	catgccttagc	taatttttat	29760
	atttttagta	gagacggagt	tttgcctatgc	tggccaggt	ggtcttgaac	tccttacctc	29820
40	aggtgatcca	tctgtcttgc	ctcccaaagt	gctggattac	aggcgtgagc	caccatgcct	29880
	ggctgaaaat	ccttactttt	tatccgact	aaaaaaattt	acatccagtc	ccacaaggga	29940
	cttcagcttc	acacaccctt	tctgtcttca	gtacccagct	cccagtatcc	tttctgaccc	30000
	caaaaaccata	gctaccatca	acccttgg	cccaggacca	tggctccag	tgtcttctct	30060
45	gtcttcaggg	tccaagtc	catcaactcc	tgtgtcttca	ggaccacggc	tcccgatcc	30120
	cttcctgtcc	ttcagg	agctccatc	aaccctgt	aagcaggacc	atggctccca	30180
	gtatcccttc	tgtcttcagg	gttcaagtc	ctatcaactc	ctgtgtcccc	aggacgatgg	30240
	cttcagcaat	cctctctgtc	ctgagagccc	aagttctaa	ctgcctctgt	gtccccagat	30300
50	ccatagccct	gagcaacttc	ctttttttc	agtcctcage	tcccaagtt	ctgttagactt	30360
	gggaagagat	agtctctaatt	cctttttcca	gggtcacaat	tctgtactt	ttgcttagatg	30420
	ggagagggat	gtttgatctg	cctttggat	actggtccaa	gggtaacta	gtagttgcct	30480
55	tttcccgccag	gagcaatag	gccccgtcac	tctgtcttct	gacagatgtc	tcctgtccca	30540
	gctgaaggggg	aaccttggga	gatgttgggt	tggttcteac	ctgtcatctt	taagtcccac	30600
	catccatgt	gaagacatca	caagagtat	ggtcctgacg	ggcgcgttgg	ctcacacctg	30660
	taatcccagc	actttggag	gccaagggtgg	gccgatcaat	tgaggtcagg	agtttgagac	30720
	caggctgacc	aaccggccaa	catggtaaa	caccatctt	accaaaaaaaaa	aaaaaaaaaa	30780
	ttagcaaggc	gtggtggcac	gtgcctgtaa	tcccagctgg	tcggaaaggct	gaggcatgag	30840
	aatccccctga	acttgggagg	cagagggtgc	agtgagctaa	gatcatgc	ctgcactcc	30900
	gcctgggtga	cagaatgaga	ctcagtctaa	ataataataa	taataataat	aataataata	30960
	ataataataa	taaatagaat	agtgtccctg	tccctatctt	acttcagggt	accctgtcc	31020
	ttagggattt	agtgcagtg	acagaacatg	caacccaact	ggtttgagag	aaagagaact	31080
55	ggttcacaca	taacaaaaag	tcctctatg	gctggcttt	gcgaggtctg	tcaatctctg	31140
	tcctaaggat	gcatggctcc	cctccctgtag	caagatggct	ggcagatacc	cctggggccca	31200
	gattcatatt	tggggtgatt	aagattctgc	aagagagaga	caaccctttat	ttcacacagc	31260
	tttcaattt	ttgcctgtcc	ctggtagac	tcggagaccc	agctttgtcc	tggtttctaa	31320
	acttcaata	acaccgtttt	tgcttaagtc	agcacaaaaca	gattttat	cttgcagca	31380
	aagattccctg	aacaacaact	tcagagccgt	taacaatgag	gtcctgatca	caagctatgg	31440
	tataggacgt	gagaaatttgc	tcccttagcct	caatatctgc	tggagggcat	catggaataaa	31500
	gtatttctat	cctctgtatcc	ccactgttagg	gcatcatggg	atatataatc	ctaaccttca	31560
	atctctgc	tagagtttca	taggcaatgc	agtcttagcc	tcaatatgtt	gtagggaaatt	31620

atgggaaagg taaaattatc ctaaattata atacagagca ttcagaaaa tgcgtttt 31680
 gcctcatctc tgctgttagg catcatggg gatatactt tggcccaatt ttgttgtaa 31740
 gttgccatag aagatcgat ctttccttc tccccctttt tctttcttct 31800
 tttttttttt ttttattatg tagagacagg gtctctcgat atgttgccta ggctggcc 31860
 5 gaactcctgg gctcaagcag ttctcctgcc ttggccccc aaagtgtgg gattacaggc 31920
 aagagccatt gcaccaggc ccttccttc tttttttt catcacatgc catattccag 31980
 gcacttaggaa taaatcatca agtaaataaa cggccattacc ctccctggca attataatgg 32040
 ggaaagttag ctaaaaacaa acaaaaaat ctgttccatt taaccatcg tgaataacaa 32100
 aataccccc aacgttagtgg tggaaaacaacaa caaccttta attttatgt tctgtgagtc 32160
 10 aggaatttggc gcaggattgg tggatcttg cttcatgtat aactggagcc aaaaatgaac 32220
 tagctggaaac agctggagat ggagggggggg ggcattcaagg gccatataatc taaggctgg 32280
 ggttgggtttt gtgggtttt aatagtgtcc tccaaatggg atatatgtt aagttctagc 32340
 ccctggatcc tgcataatgtt accttattttt gaaataaaat ctttgcataat gtaatttact 32400
 tttttttttt tttgttgtt tgctcgagac tgagtctcg tctgtcacc aggctggagt 32460
 15 gcagtggcat gatctcgat cactgttaacc ttcacccctt ggggtcaagg gattctcc 32520
 cctcaggcctc ccaagtagct gggattatag gcacgtgtca ccatggcc 32580
 tattttcagt agggacgggg tttcaccatg ttggccaggc tggctctgaa ctccctgac 32640
 caaatgatct gccacccatg cctcccaaag tgctggatt ataggcatgg ggcactgcat 32700
 cctggccaga tggatataac ttctaaatccc tggatctttt gcatgtgact tattttggaa 32760
 20 ataagggtggg tttttttt tttttttt gacagttca ctttgcgtc 32820
 caggctggag ttcagttca taatctcagc tcactgaaac ctctgcctt gggctcaag 32880
 cgatcctccc gcctcagat cccgagtcac tggactaag ggcaggcc accacaccc 32940
 gctaattttt gcaatgggg tagagatggg gtttgcatt gttggccagg cggctccaa 33000
 ttggccaccat caagcaattt atccgcctcg gcctcccaaga gtgtggat tataagggtg 33060
 25 agccatggcg cccggccaga aagtcttgc agatttatgaaatgaa ctaaatgttt 33120
 ccatgctgag ttagagtggg ctctaaatcc aatgattatgat atgggtttt aaggagagat 33180
 atttggagac atagccacag tcccagggg ggtggacatt ggaagacaga gtagggatt 33240
 agagtgtatgc agctacaagc caaggaaatgg caaagatgc tggcgttccc tcagaagcaa 33300
 aggagaggca aggaagggtt cttccctgtga gactttttt tttttttt agacggagtc 33360
 30 tcactgctgt cagccatc tggatgtca cttccctgc tggcgcgtc 33420
 cttccctggat tccagaaattt cttccctgc ttagatggat gtaactgaga ttacaggcac 33480
 cccggccaccat gcctgcttag tttttgcatt tttagatggat atgggattt accctgttgg 33540
 ccaggctgtt ctcgaactcc tggatctcg tggatccccc gcctggccct cccaaagtgc 33600
 tgggattaca ggtgtcagcc cccggagactt taaaagcatg gctttttttt tgacgcttta 33660
 35 aaagcgtggc tttccctgt agacttcaac accttggttt tggacattta gatttcgaa 33720
 ctgtgagaga acaaggttt agtgtgtgt tggatgtgt tggatgtgt 33780
 tggatgtgt tggatgtgtt acagaggctc attctgttc ccaggctgga gtgcagtgg 33840
 tcaatctcg tcaactgcac actccgcctt tggatccccc gcaatgggg 33900
 tcccaagtag ctggattac agaggagcgc catcacagcc ggttattttt tttttttt 33960
 40 tttgtactt tagtagagac agggtttcaac tggatgtgtt aggtggatc caaattcc 34020
 gcctcaagtgc atatgccttc ctggccctt cttccctgc tggatccccc tggatgtgtt 34080
 cacacccatgc ctaaggttt tggatgtgtt tggatgtgtt tttttttttt 34140
 tttgagtggat gtcctcgat tggcccccagg ctggatgtca gtggatgtat ctcgactcac 34200
 tgcaagctcc gcctccggg ttcacccat tttccctgc tggatgtgtt cttccctgc tggatgtgtt 34260
 45 actacaggca cccaccatca cggccatgtt atttttgtt tttttatag tggatgtgtt 34320
 tcatacatgtt agccaggatg gtcctcgatct cttccctgc tggatgtgtt ggtggatgtt 34380
 cccgaattgc tgggattaca ggcattggcc accaaacccg gccaatgggg tggatgtgtt 34440
 agccacccatgc tttgtatgtt tggatgtgtt tttttttt tttttatag 34500
 tgaatacata atagggtgtt atatttacag gacatgtt atagggtttt ggtttttt 34560
 50 gttttttttt tggagacaga gtcctggctt tggcccccagg ctggatgtca gtggatgtgtt 34620
 catggctcac tgcaggcttgc acctcccccggg ctcaaggat tttccctgc tggatgtgtt 34680
 tggatgtgtt accacaggca tggcccccacca catccagccaa atttttttt tttttatag 34740
 gagatggatgtt ctcactgtgt tggcccccaggat gatgttgc tttccctgc tggatgtgtt 34800
 ctttctcac cttcccaagg tggatgtgtt acaggatgtca gccaatgtgc tggatgtgtt 34860
 55 atgatgtttt gatataaggca cacaatgtgtt tagtttataa agttttaat aatttacac 34920
 aggcaggccct aggaactaa tataaggca tttccctgtt tttccctata tcaatctgc 34980
 tggggctaca tggatgtgtt ggcttctca cccactgtc tggatgtgtt ggtggatgtgtt 35040
 ctgaaacatc tggggctaca tttccacatgtt gatgttgc tggatgtgtt 35100

cacagcatgg tggctcagg gcagtagtac ttttacatgg caaccagctt ccccagagt 35160
 agcgttctaa gattcagaaa gtgaaaaatg aaagtttctt aaaacttggt tccagaacat 35220
 agcacagcaa aacttccacc acattctact ggtcaagca gtcacagagt cactcatatt 35280
 caagaggcag aagtacagac ctcaacttctt taagccacta cagtgcacagg tggtgatatg 35340
 5 tcattagaga aagccctaaa caagaacctt gtcctcacc tgcccccaaa taccatggaa 35400
 gatgtctttt tttttttttt ttttttttgg gggatagtct cactgtgtca tgcagtgtg 35460
 tgatc 35465

10 <210> 57
 <211> 14327
 <212> ADN
 <213> Homo sapiens

15 <400> 57
 ggccggcgag cggggggctg cgggcggcgc ggagcgggagc ggcggagcg agcgagcgag 60
 agagcggcgc gggccgggccc atggggtggc gggcggcggc cgccgtctg ctggcgctgc 120
 tgctgcacgg gcccgtctg gcccgtgaccc atgggtctgag ggcatacgtat ggcttgc 180
 tgcctgagga catagagacc gtcacagcaa gccaaatgcgc ctggacacat tcgtaccc 240
 20 ctgatgtatga gtacatgtctg gtcacagaca ttcaggaga cgacccggc agtggggacc 300
 tgggcggcgg ggacttccag atggtttatt tccggccctt ggttaatttc actcgctcca 360
 tcgactacag ccctcagctg gaggatgcag gtcacagaga ttgtccgagag gtgtccgagg 420
 ctgtggtaga cacgtggag tcggactact tgaaaattcc cggagaccag gttgtca 480
 tgggtttcat caaggagctg atggctggg tttttgtgg gtcgtatgtg ggctcgaa 540
 25 ggaatgcgga tgggtctcag attcaggaga tgcgtctcag ggtcatctcc agcggctctg 600
 tggcctcttca cgtcacctct ccccaaggat tccagttccg acgcctggc acagtgc 660
 agttcccaag agcctgcacg gaggccgagt ttgcctgcca cagtcataat gagtgtgtgg 720
 ccctggagta tcgctgtgac cggggggccc actgcaggaa catgtctcat gagtcatt 780
 gtgaggagcc agtccctgggt atcagccca cattctctt ccttggag acgacatctt 840
 30 taccggcccg gccagagaca accatcatgc gacagccacc agtcacccac gtcctcagc 900
 ccctgcttcc cgggtccgtc aggcccctgc cctgtggcc ccaggaggcc gcatgccca 960
 atgggcactg catccccaga gactacctct ggcacggaca ggaggactgc gaggacggca 1020
 gcgatgagct agactgtggc ccccccgcac cctgtgagcc caacgagttc ccctgcggg 1080
 atggacattt tgcctcaag ctgtggcgt ggcgtgtga ctttgcactt gaggaccgaa 1140
 35 ctgatgtatgc caactgcccc accaagcgtc ctgaggaaat gtgcgggccc acacagtcc 1200
 gatgcgtctc taccacatgc tgcattccat ccagtttccat ctgtgacgag gagagcact 1260
 tgcctgaccg gagcgtacgag tttggctgca tgcctccca ggttgtgaca cctcccccgg 1320
 agtccatcca ggctttccgg ggcctggacag tgacccatccat ctgcgtggcc attggcgatcc 1380
 ccaccccccattt catcaatttttgg aggtcaact gggccacat cccctctcat cccagggtga 1440
 40 cagtgaccag cgagggtggc cgtggcacac tgcgtatccat tgatgtgaag gagtcagacc 1500
 aggggtcccta cacctgttag gccatgaacg cccggggcat ggtgtttggc attcctgacg 1560
 gtgtcccttgc gtcgtccca caacgaggcc cctgccttgc cggccacttc tacctggagc 1620
 acagcggccgc ctgcctgcggc tgcttctgtt ttggcatcac cagcgtgtgc cagagcaccc 1680
 gcccgttcccg ggaccagatc aggtgtcgct ttgaccaacc cgatgacttc aagggtgtga 1740
 45 atgtgacaat gcctgcgcag cccggcacgc caccctctc ctccacgcag ctgcagatcg 1800
 acccateccct gcacgagtcc cagcttagtag acctgtcccg cccgttccctc gtccacgcact 1860
 ctttctgggc tctgcctgaa cagttccctgg gcaacaaggat ggactcttat ggcggctccc 1920
 tgcgttacaa cgtgcgtac gagttggccc gtggcatgtt ggagccatgt cagcggccgg 1980
 acgtggcttcc cgtgggtggc ggttaccggcc tccctcccttggcc agggccacaca cccacccaa 2040
 50 ctgggtctctt gaaccagcgc cagggtccatgt tctctgagga gcaactggc catgagtctg 2100
 gcccggccggt gcagcgcgc gagggtgtgc aggtgtgtca gaggctggag gcccgtctca 2160
 tccagaccgt gtacaacacc aagatggcta ggcgtggact tagcgcacatc gccatggata 2220
 ccaccgtcac ccatgccacc accatggcc gtcggccacag tggggaggag tgcagatgcc 2280
 ccattggcttca ttctggcttgc tccgtcgaga gtcgtgtatgc ccacttactt cgggtgcctg 2340
 55 gtggggcccta cctggccacc tgcctctgggtt gcaatgtca tggccatggcc agtcctgtg 2400
 accctgtgttca tggccacttgc ctgcatttgc accacaacac ggagggccca cagtgcacaca 2460
 agtgcaaggc tggcttctttt gggacgcca tgaaggccac ggcacttcc tgcggccct 2520
 gcccctggccc atacatcgat gctcccccgc gattctcaga cacttgcctt ctggacacgg 2580

atggccaagg cacatgtgac gcctgtgcc caggctacac tggccggc 2640
 gtgcggccgg atacgaggggc aaccccatcc agcccgccgg gaagtgcagg cccgtcaacc 2700
 agagattgt gcgctgtgac gagcgtggca gcatggggac ctccggggag gctgtccgct 2760
 gtaagaacaa tgtggtgggg cgcttgcata atgaatgtgc tgacggctct ttccacctga 2820
 5 gtacccgaaa ccccgatggc tgctcaagt gcttctgcata gggtgtcagt cggccactgca 2880
 ccagctttc atggagccgt gcccagggtgc atggggcttc tgaggagcct ggtcaacttca 2940
 gcctgaccaa cgccgcacgc acccacacca ccaacgagg catctctcc cccacgcccc 3000
 gggaaactggg attctctcc ttcacagac tcttatctgg accctacttc tggagcctcc 3060
 10 cttcacgctt cctgggggac aagggtgacct cctatggagg agagctgcgc ttacacgtga 3120
 cccagaggtc ccagccggc tccacaccc tcacggggca gcggtggtg gtgtgcaag 3180
 gtaacaacat catcctagag caccatgtgg cccaggagcc cagcccgcc cagcccagca 3240
 ccttcattgt gccttcggg gagaagcat ggcagcggcc cgatgggcag ccagccacac 3300
 gggagcacct gctgtggca ctggcaggca tcgacacccct cctgatecga gcatectacg 3360
 15 cccagcagcc cgtcgagagc agggtctctg gcatcagcat ggacgtggct gtgcccggagg 3420
 aaacccggcca ggacccggcg ctggaaagtgg aacagtgtc ctgcccaccc gggtaaccgtg 3480
 ggccgtcctg ccaggactgt gacacaggct acacacgcac gcccagtggc ctctacctgg 3540
 gtacctgtga acgtgcgc tgccatggcc actcagaggc ctgcagcca gaaacagggtg 3600
 cttcgccagg ctggcagcat cacacggagg gcccctggtg tgagcagtgc cagccaggat 3660
 actacggggc cggccagcgg gggacaccac aggactgcca gctgtcccc tgctacggag 3720
 20 accctgtgc cggccaggct gcccacaccc ttttctgg aacagacggc caccacccac 3780
 gtgatgcgtg ctcccccaggc cacagtggg gtcactgtga gaggtgcgc cctggctact 3840
 atggcaaccc cagccaggcc cagccatgcc agagagacag ccaggtgcca gggcccatag 3900
 gctgcaactg tgaccccaa ggcagcgtca gcagccagtg tgatgtctgt ggtcagtgc 3960
 agtgcacaggc ccaggttagaa ggcttcactt gcagccactg cggggccac cacttccacc 4020
 25 tgagtgccag caacccagac ggctgcctgc cctgttttg tatggcata acccagcagt 4080
 gcccagctc tgcttacaca cggccacccat tctccacca ctttgcctt ggggacttcc 4140
 aaggcttgc cttggtaac ccacagcgaa acagccgcct gacaggagaa ttcactgtgg 4200
 aacccgtgcc cgaggggtgcc cagctcttt ttggcaactt tgcccaactc gcccattgatg 4260
 ctttctactg gcagctgccc gagacatacc agggagacaa ggtggccggc tacgggtggg 4320
 30 agttgcata caccctctcc tacacagcag gcccacagg cagccactc tcggaccccg 4380
 atgtgcatac cacggcaac aacatcatgc tagtggcctc ccagccagcg ctgcaggggc 4440
 cagagaggag gagctacagag atcatgtcc gagaggatt ctggcgcgg cccgtgggc 4500
 agccggccac acgcgagcac ctccgtatgg cactggcga cctggatgag ctccgtatcc 4560
 gggccacgtt ctccctcg cccgtgggtgg ccagcatcag cgcagtcgc ctggagggtcg 4620
 35 cccagccggg gcccctaaac agacccggcg ccctcgaggt ggaggagtgc cgctgcccgc 4680
 caggctacat cggctgtcc tggcaggact gtggcccggtt ctacacgcgc accggggatgtg 4740
 ggctctacct cggccactgc gagctatgtg aatgcaatgg ccactcagac ctgtgccaacc 4800
 cagagactgg ggcctgtcg caatgccagc acaacgcgc aggggatgc tgcgagcttt 4860
 gtggccctgg ctactacggat gatgccacag cgggacgc tgaggactgc cagccctgtg 4920
 40 cctggccact gaccaaccca gagaacatgt tttccgcac ctgtgagac ctggggccgc 4980
 gcggttaccc ctgcacggcc tgcgaaccccg gctacactgg ccagtactgt gaggactgtg 5040
 gcccaggtta cgtggtaac cccaggtgtc aagggggcca gtgcctgcca gagacaaacc 5100
 aagccccact ggtggtcag gtcacatctg ctgcgaagcat agtgcaccaaa ggtggctccc 5160
 actccctgcg gtgtcagggtc agtggggagcc caccaccaactt cttctattgg tccctgtgagg 5220
 45 atggggccgc tggcccccggc ggcacccgc acgcacatca aggtccgcag ctccacttcc 5280
 ccagcgtccca gcccctggat gctggggctt acatgtgcac ctggcgtaat ctccaccaat 5340
 ccaataccag cggggcagag ctgtgtgtca ctgaggctcc aagcaagccc atcacagtga 5400
 ctgtggagga gcagcggagc cagacgtgc gcccggagg tgacgtcacc ttcatctgca 5460
 cagccaaaag caagtcacca gcctatacc tgggtggac cccgctgcac aacggggaaac 5520
 50 tgcccaccccg agccatggat ttcacatggca tcctgaccat tcgcaacgtc cagctgagtg 5580
 atgcaggcac ctacgtgtgc accggctccaa acatgtttgc catggaccag ggcacagcca 5640
 ctctacatgt gcagggctcg ggcacccctt gggcccccgt ggtctccatc catccggccac 5700
 agctcatacgat gcagccccggg caactggcg agtcccgctg cagccgcacca gggagcccc 5760
 55 cggccacccct caggtggaca gggggccccc gcccggcact ccctgcgaag gcacaaatcc 5820
 acggcggcat cctgcgcctg ccagctgtcg agccccacgg tcaggcccag tacttgc 5880
 gagccacag cagcgtgggg cagcagggtgg ccagggtgt gtcacacgtg catggggccg 5940
 gtggggccacag agtccaatgt agccccagaga ggacccaggat ccacgcaggc cggaccgtca 6000
 ggctgtactg cagggtgtca ggcgtgccta ggcgcacccat cacctggagg aaggaagggg 6060

5 gcagcctccc accacaggcc cggtcagagc gcacagacat cgcgacactg ctcatccag 6120
 ccatcacgac tgctgacgcc ggcttctacc tctgcgtggc caccagccct gcagggactg 6180
 cccaggcccg gatgaagt gttgtccctt cagcctcaga tgccagccca ccgggggtca 6240
 agattgagtc ctcatcgcc tctgtgacag aaggcggaaac actcgaccc tcactgtgtgg 6300
 10 tggcagggtc agcccatgcc caggtcacct ggtacaggcg agggtttagc ctgcctcccc 6360
 acacccaggt gcacggtcc cgctgccc tcccccaagg ctccaccgt gattctggag 6420
 aatatgtgtg ccgtgtggag aatggatcg gccccaaagg ggctccatt actgtgtctg 6480
 tgctccacgg cacccattct ggccccaggct acacccaggc gcccggcagc accccggcca 6540
 tccgcatacga gccccttcc tcaacacgtgg cggaaaggcga gaccctggat ctgaactgcg 6600
 15 tggtgccccc gcagggccac gcccaggta cgtggcacaa gcgtgggggc agcctccctg 6660
 cccggcacca gaccacggc tcgctgctgc ggctgcacca ggtgaccccg gccgactcag 6720
 gcgagttatgt gtgcctatgtg gtgggcacct ccggccccc agaggcctca gtccctggta 6780
 ccatcgaagc ctctgtcata cctggacccca tccccactgt caggatcgag tcttcatctt 6840
 ccacagtggc cgagggccag accctggatc tgagctgcgt ggtggcaggc caggccacg 6900
 20 cccaggtcac atggtacaag cgtggggca gcctccctgc ccggcaccag gttcgtggct 6960
 cccgcctgta catctccag gcctcacctg cegatgcggg acagtacgct tgccgggcca 7020
 gcaacggcat ggaggcctcc atcacggta cagtaactgg gaccagggg gccaacttag 7080
 cctaccctgc cggcagcacc cagccccatcc gcatcgagcc ctccctctcg caagtggcgg 7140
 aaggcagac cctggatctg aactgcgtgg tgccccggca gtcccatgcc caggtcacgt 7200
 25 ggcacaagcg tggggcagc ctccctgtcc ggcaccagac ccacggctcc ctgctgagac 7260
 tctaccaagc gtccccccgc gactcggggg agtacgtgtg ccgagtgtt ggcagctccg 7320
 tgcctctaga ggcctctgtc ctggtcacca ttgagctgc gggctcagtg cctgcacttg 7380
 gggtcacccc cacggtccgg atcgagtcat cgtttcgca agtggccgag gggcagaccc 7440
 tggacctgaa ctgcctcggt gctggtcagg cccatgccc ggtcacgtgg cacaagcgcg 7500
 30 ggggcagcc cccggcccg caccaggta atggctcgag gctacgcctg ctccagggtga 7560
 cccagctga ttcaggggg tacgtgtgcc gtgtggtcgg cagctcaggat acccaggaag 7620
 cctcagtcct tgtcaccatc cagcagcggc ttagtggctc ccactccctg ggtgtggcgt 7680
 accccgtccg catcgagtc tccctcagcct ccctggccaa tggacacacc ctggacctca 7740
 actgcctggt tgccagccag gtcffffcaca ccatcacctg gtataagcgt ggaggcagct 7800
 35 tacccagccg gcaccagatc gtgggcctcc ggttgeggat ccctcagggtg actccggcag 7860
 actcgggca gtacggtgt cacgtcagta acgggtcagg ctcccccggg acctcgctca 7920
 tctgtcaccat ccaggccage gtttctccc acgtgcccag cgttcccca ccgatcagga 7980
 tctgatcggtc tttccccacg gtgggtggaa ggcagaccc ggtatctgaac tgcgtggcgt 8040
 ccaggcagcc ccaggtatc atcacatgtt acaagegtgg gggcagccct ccctcccgac 8100
 40 accagccca tggctccac ctgcgggtc accaaaatgtc tgggtgtac tggggcagat 8160
 atgtgtgccc ggcacaaac aacatecgatc ccctggggcgttccatcgatc atctccgtct 8220
 cccctagccgc cggcagcccc tccgccttgc gcaatccat gcccacatcata attgagtcat 8280
 cctcctcaca cgtggccgaa ggggagaccc tggatctgaa ctgcgtggc cccggcagg 8340
 cccatgccc ggtcacatgg cacaagcgtg gggcagccct cccagtcac catcagaccc 8400
 45 ggggctcacc gtcgggtcgtt caccatgtt cccggccga ctgggtgaa tacgtgtgcc 8460
 ggggtatggg cagctctggc cccctggagg ctcagtcctt ggtcaccatc gaagcctctg 8520
 gctcaagtgc tgcacatgtc cccggcccg gtggagcccc acccatccgc atcgagccct 8580
 cctcctcccg agtggcagaa gggcagaccc tggatctgaa gtgcgtggtg cccggcagg 8640
 cccacgcccc ggtcacatgg cacaagcgtg gaggaaacct ccctggcccg caccaggccc 8700
 50 acggcccaact gtcgggtcgtt aaccagggtt cccggctga ctctggcggat tactcgtgcc 8760
 aagtgaccgg aagctcaggc accctggagg catctgtctt ggtcacaatt gagccctcca 8820
 gcccaggacc cattctgtc ccaggactgg cccagccat ctacatcgatc gcctcccttt 8880
 cacacgtgac tgaaggcag actctggatc tgaactgtgtt ggtggccggg caggccatg 8940
 cccaggtcac gtgtacaag cggggggca gcctccccc cccggcaccag acccatggct 9000
 55 cccagctgc gtcacccctc gtcccttgc ccgactcagg cgagtatgtg tgcgtggcag 9060
 ccagcggccc agggccctgag caagaaggct cttcacatgtt caccgtcccg cccagtgagg 9120
 ggtcttccta ccgccttggg agcccggtca tctccatcgatc cccggccagg agcaccgtgc 9180
 agcaggccca ggtatgcggc ttcaagtgc tcatccatga cggggcagcc cccatcaggcc 9240
 tctgatcggtt gacccggaaac caggatgtgg aggacaacgt ccacatcagt cccaaatggct 9300
 ccatcatcac catcggtggc accccggccca gcaaccacgg tacatccatgc tgcgtggcct 9360
 ccaatgccta cgggtgtggc cagagtgtgg tgaacccctc tgcgtacggg cccctacag 9420
 tgcgtgtgtc ccccgaggcc cccgtgtggg taaaatgtgg aaaggctgtc accctggagt 9480
 gtgtcagtgc cggggagcc cgtccctctg ctgcgtggac ccggatcagc agcaccctcg 9540

ccaagttgga gcagcggaca tatgggctca tggacagcca cgccgtgctg cagatttcat 9600
 cagctaaacc atcagatcg ggcacttatg tgtgccttgc tcagaatgca cttaggcacag 9660
 cacagaagca ggtggaggt atcgtggaca cggggccat ggccccaggg gcccctcagg 9720
 tccaagctga agaagctgag ctgactgtgg aggctggaca cacggccacc ttgcgtct 9780
 5 cagccacagg cagcccccg cccaccatcc actggtccaa gtcgcgttcc ccactgcct 9840
 ggcagcaccg gctggaaagt gacacactca tcatacccg ggtagcccag caggactcg 9900
 gccagtacat ctgcaatgcc actagccctg ctgggcacg tgagggcacc atcatcctgc 9960
 acgtggagag cccaccatat gccaccaacgg tcccagagca cgcttcgtg caggcagggg 10020
 10 agacggtgca gctccagtgc ctggctcaacgg gtagccatcc actcaccttc cagtggagcc 10080
 gctgtggcag cagcccttcc 9990 gggagggggca cggccaggaa cgagctgctg cactttgagc 10140
 gtgcagcccc tgaggactca ggcgcgttcc 10200 gtcgcgttcc caccaacaag gtgggctcag 10200
 ccgaggccctt tgcccagctg ctcgtccaa 10260 gcccctccgg ctctctccct gccaccccttcca 10260
 tcccagcagg gtccacggcc accgtgcagg tcacgcctca gctagagacc aagagcattg 10320
 gggccagcgt tgagttccac tggctgtgc ccagcggacca gggtaaccag ctccgttggg 10380
 15 tcaaggaagg gggtcagtg cttccgggtc acagcgtgca ggatgggtg ctccgaatcc 10440
 agaacttggaa ccagactgca caagggacgt atatatgcca ggcgcattggaa ccttggggg 10500
 agggccaggc cagtgcccg 10560 ctggttatcc aagccctgcc ctgggtgctc atcaacatcc 10560
 ggacccctgt gcagaccgtg gtggggggc acggccgtgaa gttcgaatgc ctggcactgg 10620
 gtgaccccaa gcctcagggtg acatggagca aagttggagg gcacccgtgg ccaggcattg 10680
 20 tgcagagcg 10740 aggtgtcg 10740 aggtgtcg 10740 acgttagagct ggctgtatcg 10740
 gtcactgc 10800 caccacgc 10800 gtcgcacca 10800 cacaatccca 10800 cgtccgtc 10800
 cttggccca 10860 gatctcaatg 10860 ccccaagaag 10860 tccgtgtgcc 10860 tgctgttct 10860
 tcccctgcat 10920 agcctcaggc 10920 taccggactc 10920 ctgacatcag 10920 ctggagcaag 10920
 gcctgcacc 10980 tgacaggccg 10980 ctggagaaca 10980 acatgtgtat 10980 gtcgcctca 10980
 25 aggacgcagg 11040 tacctacgtc 11040 tgcacccgca 11040 ctaacccgca 11040 gggcaagg 11040
 cccacctgca 11100 ggtgcacag 11100 cgggtgtgc 11100 cctacttcac 11100 gcacccccc 11100
 taccgtgtcc 11160 caccatcaag 11160 gatgcctaca 11160 ggaagttcga 11160 gatcaagatc 11160
 ccgactcagg 11220 cgtatggatg 11220 ctgtgttaca 11220 atggggcaga 11220 gcgagtc 11220
 30 ccaacccggc 11280 caaccggc 11280 cccgacttca 11280 tctcccttgg 11280 cctctgtggg 11280
 agttccgggt 11340 cgatgcaggc 11340 tcaggcatgg 11340 ccacccatcg 11340 ccatcccaca 11340
 tggggccattt 11400 ccacccctgt 11400 acctgtgc 11400 gcagcctcac 11400 ccagggtctc 11400
 gtgacctggc 11460 cccggtaat 11460 gggacccccc 11460 agggcaatt 11460 ccagggtctc 11460
 aggaactcta 11520 cctggggc 11520 tattctact 11520 atgggtccat 11520 ccccaaggcg 11520
 gcccgttcat 11580 aggctgtgc 11580 cgggagctgc 11580 gcatccagg 11580 cgaggagatc 11580
 35 acctcaaccc 11640 cacggccac 11640 ggcacccccc 11640 actgcaccc 11640 ctgtcg 11640
 agaatgggg 11700 tcagtggcat 11700 gactctgaga 11700 gcagcagcta 11700 cgtgtcg 11700
 gtttcacccg 11760 gagccgtgt 11760 gacgtcg 11760 aggcctgc 11760 ctgcaccc 11760 gaggccctgt 11760
 gggccgacgc 11820 cacctgtgt 11820 aaccggctg 11820 acggtcgagg 11820 ctacaccc 11820 cgtgtccacc 11820
 tggggccgtc 11880 ggggttggg 11880 tgggggg 11880 gtgtgacat 11880 gaccacccc 11880 tgggtgtcgg 11880
 40 gtgtggctc 11940 taccctggca 11940 ctggccccc 11940 tcaccaacac 11940 acaccac 11940
 acgtggagt 12000 caagccactc 12000 gcccctgacg 12000 gggctctgt 12000 gttcagggg 12000
 ggccctgtgg 12060 ggacttcgt 12060 tccctggcga 12060 tgggtggccg 12060 ccacctggag 12060
 agttggggtc 12120 agggctggcc 12120 gtctgtcg 12120 gcccgc 12120 gtcgcctc 12120
 accgtgtgtc 12180 tgcagacgt 12180 ctcacacaagg 12180 acggcagct 12180 ggggtgtat 12180
 45 ctgtgtcg 12240 ctccctggcc 12240 gcaagagac 12240 agggcctcaa 12240 cctgcacacc 12240
 tgggggggt 12300 ggagcccttc 12300 gtgcactgt 12300 ccccgccac 12300 caacatgac 12300
 gcccgtgt 12360 gggcgagggt 12360 tcgtgtat 12360 gcaacccggt 12360 ggaccccttc 12360
 taggcagcca 12420 gggcatcg 12420 caatgtat 12420 atgtctccc 12420 tacagtttcc 12420
 aacatgggtc 12480 cacgtgtcat 12480 cccgctggc 12480 agtgtgtat 12480 ccagtgc 12480
 50 gattcaaagg 12540 agacctgtgt 12540 gggccatcc 12540 gggccatcc 12540 ccagtc 12540
 tgcacccggg 12600 caccctggca 12600 ggcaccccg 12600 gcccctgc 12600 ccctgtcc 12600
 gctgccaaca 12660 aggctctgg 12660 catggcat 12660 cagatcc 12660 ctggcat 12660
 ggggcaatga 12720 tgccctggg 12720 cagatcc 12720 cttatcc 12720 cgtatgtggc 12720
 tccctggcca 12780 tggctcttc 12780 aggacccctc 12780 cccgagg 12780 ccgaggatc 12780
 55 ttcggaccag 12840 cacagccat 12840 ggcctctgc 12840 tctggcagg 12840 tggtggat 12840
 gccaaggcaa 12900 ggacttcatc 12900 agcctcg 12900 ttcaagacgg 12900 gcaccc 12900
 agctgggtag 12960 tggggaggcc 12960 cgcctggct 12960 ctggggaccc 12960 catcaatgac 12960
 accgggtgac 13020 agcaactgc 13020 gaggccat 13020 ccaagtc 13020 ggcgagtggc 13020

tggtcagcgg ccggccccca ggtcccaacg tggcagtcaa cgccaaggc agcgtctaca 13080
 tcggcgagc ccctgacgtg gccacgctga cgggggcag attctctcg ggcacacag 13140
 gctgtgtcaa gaacctggtg ctgcactcg cccgaccgg cggccccc ccacagcccc 13200
 tggacctgca gcaccgcgc caggccgggg ccaacacacg cccctgcccc tcgttaggcac 13260
 5 ctgcctgccc cacacggact cccggccac gccccagccc gacaatgtcg agtataattat 13320
 tattaatatt attatgaatt ttgttaagaa accgaggcga tgccacgctt tgctgctacc 13380
 gccctggct ggactggagg tggcatgcc accctcacac acacagctgg gcaaaggccac 13440
 aaggctggcc agcaaggcag gttggatggg agtgggcacc tcagaaagtc accaggactt 13500
 ggggtcagga acagttggctg gttggggcca gaactgcccc cactgtcccc ctacccaccc 13560
 10 atggagcccc cagatagagc tgggtggctt gttctgcag cccttggca gttctactc 13620
 ctaggagagc caacccctggc ttgtggctg gtccccaca gctacctgag acgggcacac 13680
 caggagtctc tgccacccac tcaggattgg gaattgtctt tagtgcggc tggagcaa 13740
 aaggcagctc accccctggc aggccgtccc catccccacc agctcgcccc tcagcaccccc 13800
 caccaccc caccagcccc ctggcacctc ctctggcaga ctccccctcc taccacgtcc 13860
 15 tcctggcctg cattccacc ccctctgccc agcacacacg ctggggtccc tccctcaggg 13920
 gctgttaaggg aaggccccacc ccaactctta ccaggagctg ctacaggcag agcccagcac 13980
 tgataggccc ccccccaccg gccccccccc accccaggcc acatccccac ccattctgaa 14040
 gtgaaggccc agggactctt ccaacagaca acggacggac ggatgcccgt ggtgctcagg 14100
 aagagctagt gccttaggtg ggggaaggca ggactcacga ctgagagaga gaggaggggg 14160
 20 atatgaccac cctgccccat ctgcaggagc ctgaagatcc agctcaagtg ccattctgccc 14220
 agtggccccc agactgtggg gttggacgc ctggcctctg tgtcctagaa gggaccctcc 14280
 tgtggtctt gtcttattaa acgggtctat ccccgcc 14327

25 <210> 58
 <211> 15
 <212> PRT
 <213> Homo sapiens

30 <400> 58
 Ile Pro Thr Gly Glu Pro Cys Pro Glu Pro Leu Arg Thr Tyr Gly
 1 5 10 15

35 <210> 59
 <211> 13
 <212> PRT
 <213> Homo sapiens

40 <400> 59
 Ile Glu Ser Val Leu Ser Ser Ser Gly Lys Arg Leu Gly
 1 5 10

45 <210> 60
 <211> 18
 <212> PRT
 <213> Homo sapiens

50 <400> 60
 Ala Thr Pro Ala Gln Ala His Leu Lys Lys Pro Ser Gln Leu Ser Ser
 1 5 10 15

55 Phe Ser

5 <210> 61
<211> 15
<212> PRT
<213> Homo sapiens

10 <400> 61
Arg Ile Gln Ala Met Ile Pro Lys Gly Ala Leu Arg Val Ala Val
1 5 10 15

15 <210> 62
<211> 15
<212> PRT
<213> Homo sapiens

20 <400> 62
Gly Ile Cys Gln Cys Leu Ala Glu Arg Tyr Ser Val Ile Leu Leu
1 5 10 15

25 <210> 63
<211> 17
<212> PRT
<213> Homo sapiens

30 <400> 63
Glu Lys Met His Glu Gly Asp Glu Gly Pro Gly His His His Lys Pro
1 5 10 15

35 Gly

40 <210> 64
<211> 13
<212> PRT
<213> Homo sapiens

45 <400> 64
Asp Leu Gln Asn Phe Leu Lys Lys Glu Asn Lys Asn Glu
1 5 10

50 <210> 65
<211> 19
<212> PRT
<213> Homo sapiens

55 <400> 65
Val Lys Leu Gly His Pro Asp Thr Leu Asn Gln Gly Glu Phe Lys Glu
1 5 10 15

Leu Val Arg
 5
 <210> 66
 <211> 48
 <212> ADN
 <213> Homo sapiens
 10
 <400> 66
 ttywsntggg ayaaytgytt ygarggnaar gayccngcng tnathmgn 48
 15
 <210> 67
 <211> 48
 <212> ADN
 <213> Homo sapiens
 20
 <400> 67
 taywsnytnc cnaarwsnga rttygcngtn ccngayytn arytncn 48
 25
 <210> 68
 <211> 16
 <212> PRT
 <213> Homo sapiens
 <400> 68
 30 Phe Ser Trp Asp Asn Cys Phe Glu Gly Lys Asp Pro Ala Val Ile Arg
 1 5 10 15
 35
 <210> 69
 <211> 585
 <212> ADN
 <213> Homo sapiens
 40
 <400> 69
 gaygcnccng gncartaygg ncgtaytty caygaygayg gnttaytngc nttyccnggn 60
 caygtnttlyw snmgnwsnyt nccngargtn ccngaracna thgarytnga rgtnmgnacn 120
 wsnaacngcnw snggnnytnt nynttgcar ggngtngarg tngngargc nggncarggn 180
 aargaytta thwsnytngg nytncargay ggncayytn tnttymgnnta ycarytnggn 240
 45 wsngggngarg cnmgnytngt nwsgargay ccnathaayg ayggngartg gcaymgngtn 300
 acngcnytnm gngarggnmg nmgnnggnwsn mgncargtng ayggngarga rytngtwnsn 360
 ggnmgnwsnc cnggncncaa ygtngcngtn aaygcnaarg gnwsngtnta yathggnggn 420
 gcnccngcngay tngcnacnyt nacngggngn mgnntywsnw snggnathac nggntgygt 480
 50 aaraaytng tnytncayws ngcnmgnccn ggngcncnc cncncarcc nytngayyt 540
 carcaymgng cncargcngg ngcnaayacn mgncntgyc cnwsn 585
 <210> 70
 <211> 597
 <212> ADN
 <213> Homo sapiens
 55
 <400> 70

atgaartggg tntgggcnyt nytnytnyt gcngcntggg cngcngcnga rmngngaytgy 60
 mngtnwsnw snntymngt naargaraay ttygayaarg cnmgnttyws ngnacntgg 120
 taygcnatgg cnaaraarga yccngarggn ytntyytnc argayaayat htngcngar 180
 ttysngtng aygaracngg ncaratgwsn gcnaacngcna arggnmngt nmgnytnyt 240
 5 aayaaytggg aygtntgygc ngayatggtn ggnacnnty a cngayacnga rgayccngcn 300
 aarttyaara tgaartaytg gggngtngcn wsntyytnc araarggnaa ygaygaycay 360
 tgathgtng ayacngayta ygacyntay gcngtnarc aywsntgymg nytnytnaay 420
 ytnyngaygna cntgycngna ywsntaywsn ttgtnttyw snmgngaycc naayggnytn 480
 ccnccngnagcncaraarat hgtmgnrcar mgncargarg arytnytyt ngcnmgnrcar 540
 10 taymgnytua thgtncayaa yggntaytgy gayggnmgnw sngarmgnaa yytnytn 597

<210> 71
<211> 579
15 <212> ADN
<213> Homo sapiens

<400> 71
atcarwsny tnatgcargc nccnytnyt athgcnytng gnytnytnyt ncnaacncn 60
20 gncncargcnc ayytnaaraa rccnwsncar ytnwsnwsnt tywsntggaa yaaytgytty 120
garggnaarg aycengcngt nathmgnwsn ytnacnytng arccngaycc nathgtngtn 180
ccnggnaayg tnacnytnws ntngtnggn wsnaclnwsn tnccnytnws nwsnccnytn 240
aargtngayy tngtngaytngaa raargargtn gcnggnytnt ggathaarat hcctgyacn 300
25 gaytayathg gnwsntgyac nttygarcay ttgtgygag ytnyngayat gytnathccn 360
acngngarc cntgycngna rccnytnmgn acntayggn ytnccntgyca ytgyccntty 420
aargarggnna cntaywsnyt nccnaarwsn garttygeng tnccngayyt ngarytnccn 480
wsntggytyna cnacngnnaa ytaymgnath garwsngtyn tnwsnwsnws ngnnaarmgn 540
579 ytnngtgya thaarathgc ncwswsnyt aarggnath

30 <210> 72
<211> 16
<212> PRT
<213> Homo sapiens

35 <400> 72
Tyr Ser Leu Pro Lys Ser Glu Phe Ala Val Pro Asp Leu Glu Leu Pro
1 5 10 15

40 <210> 73
<211>
<212> PRT
<213> Homo sapiens

45 <400> 73

50 MQSLMQAPLL IALGLLLATP AQAHILKKPSQ
LSSFSWDNCD EGKDPAVIRS LTLEPPIVV
PGNVTLSVG STSVPLSSPL KVDLVLEKEV
AGLWIKIPCT DYIGSCTFEH FCDVLDMLJP
TGEPCPEPLR TYGLPCHCPL KEGTYSLPKS
EFVVPDLELP SWLTTGNYRI ESVLSSSGKR
LGCIIKIAASLKGI

<210> 74
<211>
<212> PRT
<213> Homo sapiens
5
<400> 74

10 **GDVCQDCIQM VTDIQTAVRT NSTFVQUALVE
HVKEECDRLG PGMAICKNY ISQYSEIAIQ
MMMHMQDQQP KEICALVGFC DEV**

15
<210> 75
<211>
<212> PRT
20 <213> Homo sapiens

<400> 75

25 **MTCKMSQLER NIETIINTFH QYSVKLGHPD
TLNQGEFKEL VRKDLQNFLK KENKNEKVIE
HIMEDDLTN ADKQLSFEF IMLMARLTWA
SHEKMHEGDE GPGHHHKPGL GEGTP**

30

35

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété
Intellectuelle
Bureau international

(43) Date de la publication internationale
25 janvier 2001 (25.01.2001)

PCT

(10) Numéro de publication internationale
WO 01/05422 A3

(51) Classification internationale des brevets⁷ :
G01N 33/68. 33/564. C07K 14/47. A61K 38/17

(21) Numéro de la demande internationale :
PCT/FR00/02057

(22) Date de dépôt international : 17 juillet 2000 (17.07.2000)

(25) Langue de dépôt : **français**

(26) Langue de publication : **français**

(30) Données relatives à la priorité :
99/09372 15 juillet 1999 (15.07.1999) FR

(71) Déposant (pour tous les États désignés sauf US) :
BIOMERIEUX STELIHYS [FR/FR]: Chemin de L'Orme, F-69280 Marcy L'Etoile (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (pour US seulement) : **ROECKLIN, Dominique [FR/FR]**; 14 Rue de la Paix, F-67500 Niederschaeffolsheim (FR). **KOLBE, Hanno [FR/FR]**; 6

Rue des Tuiliers, F-67204 Achenheim (FR). **CHARLES, Marie-Hélène [FR/FR]**; 3 Allée de la Lamperte, F-69420 Condrieu (FR). **MALCUS, Carine [FR/FR]**; 9 Rue des Ronzières, F-69530 Brignais (FR). **SANTORO, Lyse [FR/FR]**; 47 Avenue Bergeron, F-69260 Charbonnières les Bains (FR). **PERRON, Hervé [FR/FR]**; 15 Rue de Boyer, F-69005 Lyon (FR).

(74) Mandataire : **DIDIER, Mireille**; Cabinet Germain et Maureau, Boîte Postale 6153, F-69466 Lyon Cedex 06 (FR).

(81) États désignés (national) : AE. AG. AL. AM. AT. AU. AZ. BA. BB. BG. BR. BY. BZ. CA. CI. CN. CR. CU. CZ. DE. DK. DM. DZ. EE. ES. FI. GB. GD. GE. GH. GM. HR. HU. ID. IL. IN. IS. JP. KE. KG. KP. KR. KZ. LC. LK. LR. LS. LT. LU. LV. MA. MD. MG. MK. MN. MW. MX. MZ. NO. NZ. PL. PT. RO. RU. SD. SE. SG. SI. SK. SL. TJ. TM. TR. TT. TZ. UA. UG. US. UZ. VN. YU. ZA. ZW.

(84) États désignés (régional) : brevet ARIPO (GH. GM. KE. LS. MW. MZ. SD. SL. SZ. TZ. UG. ZW), brevet eurasien (AM. AZ. BY. KG. KZ. MD. RU. TJ. TM), brevet européen (AT. BE. CH. CY. DE. DK. ES. FI. FR. GB. GR. IE. IT. LU.

[Suite sur la page suivante]

(54) Title: USE OF A POLYPEPTIDE FOR DETECTING, PREVENTING OR TREATING A PATHOLOGICAL CONDITION ASSOCIATED WITH A DEGENERATIVE, NEUROLOGICAL OR AUTOIMMUNE DISEASE

(54) Titre : UTILISATION D'UN POLYPEPTIQUE POUR DETECTER, PRÉVENIR OU TRAITER UN ETAT PATHOLOGIQUE ASSOCIE A UNE MALADIE DEGENERATIVE, NEUROLOGIQUE AUTOIMMUNE

(57) Abstract: The invention concerns the use of at least one polypeptide comprising a protein fragment to obtain a diagnostic, prognostic, prophylactic or therapeutic composition for detecting, preventing or treating a pathological condition associated with a degenerative and/or neurological and/or autoimmune disease, said protein being selected among the proteins whereof the peptide sequence in native state corresponds to SEQ ID No 1, SEQ ID No 2, SEQ ID No 3, SEQ ID No 4, SEQ ID No 5, SEQ ID No 6, SEQ ID No 7, SEQ ID No 8, SEQ ID No 9, SEQ ID No 10, SEQ ID No 11, SEQ ID No 12, SEQ ID No 13, SEQ ID No 14, SEQ ID No 15, SEQ ID No 16, SEQ ID No 17, SEQ ID No 18, SEQ ID No 19, SEQ ID No 20, SEQ ID No 21, SEQ ID No 22, SEQ ID No 23, SEQ ID No 24, SEQ ID No 25, SEQ ID No 26, SEQ ID No 27, SEQ ID No 28 and SEQ ID No 29, and the peptide sequences having at least 70 % identity, preferably at least 80 % identity and advantageously at least 98 % identity with any one of the peptide sequences SEQ ID No 1 to SEQ ID No 8 and SEQ ID No 10 to SEQ ID No 29, and the peptide sequences or fragments of said sequences belonging to a common family of proteins selected among perlecan, the precursor of the retinol-binding plasmatic protein, of the precursor of the activator of GM2 ganglioside, of calgranulin B and of saposin B.

A3

(57) Abrégé : Utilisation d'au moins un polypeptide comprenant au moins un fragment d'une protéine pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune. ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29, et les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à SEQ ID N° 8 et SEQ ID N° 10 à SEQ ID N° 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatische de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

WO 01/05422 A3

MC, NL, PT, SE), brevet OAPI (BE, BJ, CF, CG, CI, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

Publiée :

avec rapport de recherche internationale

(88) Date de publication du rapport de recherche internationale: 28 février 2002

INTERNATIONAL SEARCH REPORT

International Application No

PCT/FR 00/02057

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 G01N33/68 G01N33/564 C07K14/47 A61K38/17

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 G01N C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

BIOSIS, WPI Data, PAJ, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 876 954 A (DOBROANSKY TOMAS ET AL) 2 March 1999 (1999-03-02) column 28; claim 17 & EP 0 667 354 A 16 August 1995 (1995-08-16) claim 5 & WO 95 21859 A cited in the application ---	1-21, 40, 51-62
X	WO 97 33466 A (BIO MERIEUX ; RIEGER FRANCOIS (FR); PERRON HERVE (FR); BENJELLOUN N) 18 September 1997 (1997-09-18) cited in the application claims ---	1-21, 40, 51-62 -/-

 Further documents are listed in the continuation of box C: Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

30 January 2001

Date of mailing of the international search report

08.02.2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Hoekstra, S

INTERNATIONAL SEARCH REPORT

Inte
onal Application No
PCT/FR 00/02057

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 08 308582 A (KAO CORP) 26 November 1996 (1996-11-26) the whole document ---	23
A	RIEGER F ET AL: "UN FACTEUR GLIOTOXIQUE ET LA SCLEROSE EN PLAQUES GLIOTOXICITY IN MULTIPLE SCLEROSIS" COMPTES RENDUS DES SEANCES DE L'ACADEMIE DES SCIENCES. SERIE III: SCIENCES DE LA VIE, NL, ELSEVIER, AMSTERDAM, vol. 319, no. 4, 1 April 1996 (1996-04-01), pages 343-350, XP000602023 ISSN: 0764-4469 abstract ---	1-21, 40, 51-62
A	KISILEVSKY R ET AL: "ARRESTING AMYLOIDOSIS IN VIVO USING SMALL-MOLECULE ANIONIC SULPHONATES OR SULPHATES: IMPLICATIONS FOR ALZHEIMER'S DISEASE" NATURE MEDICINE, US, NATURE PUBLISHING, CO, vol. 1, no. 2, 1 February 1995 (1995-02-01), pages 143-148, XP000611547 ISSN: 1078-8956 the whole document ---	1-21, 40, 51-62
A	WO 90 07712 A (BISSENDORF PEPTIDE GMBH) 12 July 1990 (1990-07-12) page 2 ---	1-21, 40, 51-62
A	WO 98 11439 A (BIO MERIEUX ; PERRON HERVE (FR); MALCUS VOCANSON CARINE (FR); MANDR) 19 March 1998 (1998-03-19) the whole document ---	1-21, 40, 51-62
A	CA 2 214 843 A (HSC RESEARCH AND DEVELOPMENT LIMITED PARTNERSHIP, CA) 30 April 1999 (1999-04-30) the whole document -----	1-63

INTERNATIONAL SEARCH REPORT

International application No.

PCT/FR 00/02057

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See additional sheet

After review as per PCT Rule 40.2(e), no fee is to be refunded.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

22-39 (completely); 1-21, 40-63 (partly)

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/FR 00 A2057

The International Searching Authority found several (groups of) inventions in the international application, namely:

1. Claims: 1-21, 40, 51-62 (partly)

Perlecan polypeptides involved in diagnostic, prognostic, prophylactic or therapeutic methods (For example: SEQ ID No. 1, 2, 69).

2. Claims: 1-21, 40, 51-63 (partly)

Polypeptides precursor of the retinol-binding plasmatic protein involved in diagnostic, prognostic, prophylactic or therapeutic methods (For example: SEQ ID No. 4, 5, 6, 7, 30, 70).

3. Claims: 22-39 (completely); 1-21, 40-63 (partly)

Polypeptides precursor of the GM2 ganglioside involved in diagnostic, prognostic, prophylactic or therapeutic methods (For example: SEQ ID No. 8-16, 66-68, 72).

4. Claims: 1-21, 40-44, 46-63 (partly)

Polypeptides calgranulin B involved in diagnostic, prognostic, prophylactic or therapeutic methods (For example: SEQ ID No. 17-23, 43-52).

5. Claims: 1-21, 40-63 (partly)

Polypeptides saposin B involved in diagnostic, prognostic, prophylactic or therapeutic methods (For example: SEQ ID No. 24-29, 53-55).

6. Claim: 64

Use of lycorin.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/FR 00/02057

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 5876954	A 02-03-1999	FR 2716198 A		18-08-1995
		AU 701972 B		11-02-1999
		AU 1815295 A		29-08-1995
		CA 2142557 A		16-08-1995
		EP 0667354 A		16-08-1995
		FI 954876 A		13-10-1995
		WO 9521859 A		17-08-1995
		JP 2803910 B		24-09-1998
		JP 8511808 T		10-12-1996
		NO 954081 A		13-12-1995
		NZ 281260 A		27-05-1998
		US 5728540 A		17-03-1998
WO 9733466	A 18-09-1997	FR 2745974 A		19-09-1997
		AU 2165897 A		01-10-1997
		CA 2221028 A		18-09-1997
		EP 0825811 A		04-03-1998
		JP 11512623 T		02-11-1999
JP 08308582	A 26-11-1996	NONE		
WO 9007712	A 12-07-1990	NONE		
WO 9811439	A 19-03-1998	EP 0925504 A		30-06-1999
CA 2214843	A	NONE		

RAPPORT DE RECHERCHE INTERNATIONALE

Demande internationale N°
PCT / FR 00 / 02057

A. CLASSEMENT DE L'OBJET DE LA DEMANDE IPC 7 G01N 33/68, G01N 33/564 C07K 14/47 A61K 38/17		
Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la (CIB)		
B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE Documentation minimale consultée (système de classification suivi des symboles de classement) IPC 7 G01N C07K		
Documentation consultée au que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche		
Base de données électroniques consultées au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés) BIOSIS, WPI Data, PAJ, EPO-Internal		
C. DOCUMENTS CONSIDÉRÉS COMME PERTINENTS		
Catégorie ^o	Identification des documents cités avec, le cas échéant, l'indication des passages pertinents	n° des revendications visées
X	US 5 876 954 A (DOBRANSKY TOMAS ET AL) 2 mars 1999 (02.03.99) colonne 28; revendication 17 & EP 0 667 354 A 16 août 1995 (16.08.95) revendication 5 & WO 95 21859 A cité dans la demande	1-21, 40, 51-62
X	WO 97 33466 A (BIO MERIEUX; RIEGER FRANCOIS (FR); PERRON HERVE (FR); BENJELLOUN N) 18 septembre 1997 (18.09.97) cité dans la demande revendications	1-21, 40, 51-62
<input checked="" type="checkbox"/> Voir la suite du cadre C pour la fin de la liste des documents		<input checked="" type="checkbox"/> Les documents de familles de brevets sont indiqués en annexe
<p>^o Catégorie spéciale de documents cités :</p> <ul style="list-style-type: none"> "A" document définissant l'état général de la technique, n'étant pas considéré comme particulièrement pertinent "E" document antérieur, mais publié à la date de dépôt international ou après cette date "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée "T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour permettre de comprendre le principe ou la théorie constituant la base de l'invention "X" document particulièrement pertinent: l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément "Y" document particulièrement pertinent: l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier "&" document qui fait partie de la même famille de brevets 		
Date à laquelle la recherche a été effectivement achevée 30 janvier 2001 (30.01.01)	Date d'expédition du rapport de recherche 08 février 2001 (08.02.01)	
Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen Brevets n° de télécopieur	Fonctionnaire autorisé n° de téléphone	

RAPPORT DE RECHERCHE INTERNATIONALE

Demande internationale n°
PCT / FR 00 / 02057

C. (suite). DOCUMENTS CONSIDÉRÉS COMME PERTINENTS		
Catégorie°	Documents cités avec, le cas échéant, l'indication des passages pertinents	n° des revendications visées
X	JP 08 308582 A (KAO CORP) 26 novembre 1996 (26.11.96) le document en entier	23
A	RIEGER F ET AL : "UN FACTEUR GLIOTOXIQUE ET LA SCLEROSE EN PLAQUES GLIOTOXICITY IN MULTIPLE SCLEROSIS" COMPTES RENDUS DES SEANCES DE L'ACADEMIE DES SCIENCES. SERIE III: SCIENCE DE LA VIE, NL, ELSEVIER, AMSTERDAM, Vol. 319, no. 4, 1 avril 1996 (01.04.96), pages 343-350, XP000602023 ISSN: 0764-4469 Abrégé	1-21, 40, 51-62
A	KISILEVSKY R ET AL: "ARRESTING AMYLOIDOSIS IN VIVO USING SMALL-MOLECULE ANIONIC SULPHONATES OR SULPHATES: IMPLICATIONS FOR ALZHEIMER'S DISEASE" NATURE MEDICINE, US, NATURE PUBLISHING, CO, Vol. 1, no. 4, 1 février 1995 (01.02.95), pages 143-148, XP0611547 ISSN: 1078-8956 Le document en entier	1-21, 40, 51-62
A	WO 90 07712 A (BISSENDORE PEPTIDE GMBH) 12 juillet 1990 (12.07.90) page 2	1-21, 40, 51-62
A	WO 98 11439 A (BIO MERJEUX ; PERRON HERVE (FR); MALCUS VOCANSON CARINE (FR); MANDOR) 19 mars 1998 (19.03.98) Le document en entier	1-21, 40, 51-62
A	CA 2 214 843 A (HSC RESEARCH AND DEVELOPMENT LIMITED PARTNERSHIP, CA) 30 avril 1999 (30.04.99) Le document en entier	1-63

RAPPORT DE RECHERCHE INTERNATIONALEDemande internationale n°
PCT/FR 00/02057**Cadre I Observations – lorsqu'il a été estimé que certaines revendications ne pouvaient pas faire l'objet d'une recherche (suite du point 1 de la première feuille)**

Conformément à l'article 17.2(a), certaines revendications n'ont pas fait l'objet d'une recherche pour les motifs suivants:

1. Les revendications n°s _____ se rapportent à un objet à l'égard duquel l'administration n'est pas tenue de procéder à la recherche, à savoir:

2. Les revendications n°s _____ se rapportent à des parties de la demande internationale qui ne remplissent pas suffisamment les conditions prescrites pour qu'une recherche significative puisse être effectuée, en particulier:

3. Les revendications n°s _____ sont des revendications dépendantes et ne sont pas rédigées conformément aux dispositions de la deuxième et de la troisième phrases de la règle 6.4.a).

Cadre II Observations – lorsqu'il y a absence d'unité de l'invention (suite du point 2 de la première feuille)

L'administration chargée de la recherche internationale a trouvé plusieurs inventions dans la demande internationale, à savoir:

voir feuille supplémentaire

Après réexamen selon la Règle 40.2(e) PCT,
aucune taxe additionnelle n'est à rembourser.

1. Comme toutes les taxes additionnelles ont été payées dans les délais par le déposant, le présent rapport de recherche internationale porte sur toutes les revendications pouvant faire l'objet d'une recherche.

2. Comme toutes les recherches portant sur les revendications qui s'y prêtaient ont pu être effectuées sans effort particulier justifiant une taxe additionnelle, l'administration n'a sollicité le paiement d'aucune taxe de cette nature.

3. Comme une partie seulement des taxes additionnelles demandées a été payée dans les délais par le déposant, le présent rapport de recherche internationale ne porte que sur les revendications pour lesquelles les taxes ont été payées, à savoir les revendications n°s
22-39 complet, 1-21 and 40-63 en partie

4. Aucune taxe additionnelle demandée n'a été payée dans les délais par le déposant. En conséquence, le présent rapport de recherche internationale ne porte que sur l'invention mentionnée en premier lieu dans les revendications; elle est couverte par les revendications n°s _____

Remarque quant à la réserve

Les taxes additionnelles étaient accompagnées d'une réserve de la part du déposant.
 Le paiement des taxes additionnelles n'était assorti d'aucune réserve.

SUITE DES RENSEIGNEMENTS INDIQUES SUR PCT/ISA/ 210

L'administration chargée de la recherche internationale a trouvé plusieurs (groupes d') inventions dans la demande internationale, à savoir:

1. revendications: 1-21, 40, 51-62 en partie

Polypeptides perlecans être impliquées dans les méthodes diagnostiques, pronostique, prophylactiques ou thérapeutiques (Par exemple: SEQ ID No 1, 2, 69).

2. revendications: 1-21, 40, 51-63 en partie

Polypeptides précurseur de la protéine plasmatique de liaison de rétinol être impliquées dans les méthodes diagnostiques, pronostique, prophylactiques ou thérapeutiques (Par exemple: SEQ ID No 4, 5, 6, 7, 30, 70).

3. revendications: 22-39 complet; 1-21, 40-63 en partie

Polypeptides précurseur de l'activateur du ganglioside GM2 être impliquées dans les méthodes diagnostiques, pronostique, prophylactiques ou thérapeutiques (Par exemple: SEQ ID No. 8-16, 66-68, 72).

4. revendications: 1-21, 40-44, 46-63 en partie

Polypeptides calgranuline B être impliquées dans les méthodes diagnostiques, pronostique, prophylactiques ou thérapeutiques (Par exemple: SEQ ID No. 17-23, 43-52).

5. revendications: 1-21, 40-63 en partie

Polypeptides saposine B être impliquées dans les méthodes diagnostiques, pronostique, prophylactiques ou thérapeutiques (Par exemple: SEQ ID No. 24-29, 53-55).

6. revendication : 64

Utilisation de la lycorine

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Demande Internationale No

I PCT/FR 00/02057

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publicati n
US 5876954 A	02-03-1999	FR 2716198 A AU 701972 B AU 1815295 A CA 2142557 A EP 0667354 A FI 954876 A WO 9521859 A JP 2803910 B JP 8511808 T NO 954081 A NZ 281260 A US 5728540 A	18-08-1995 11-02-1999 29-08-1995 16-08-1995 16-08-1995 13-10-1995 17-08-1995 24-09-1998 10-12-1996 13-12-1995 27-05-1998 17-03-1998
WO 9733466 A	18-09-1997	FR 2745974 A AU 2165897 A CA 2221028 A EP 0825811 A JP 11512623 T	19-09-1997 01-10-1997 18-09-1997 04-03-1998 02-11-1999
JP 08308582 A	26-11-1996	NONE	
WO 9007712 A	12-07-1990	NONE	
WO 9811439 A	19-03-1998	EP 0925504 A	30-06-1999
CA 2214843 A		NONE	