Universität Bonn Mathematisches Institut Dr. Michael Welter

12. und letztes Arbeitsblatt Analysis (BA-INF022)

== Sommersemester 2023 ==

Woche: 3.-14.7.

Thema: Integralrechnung

Videos: Video-17-Integralrechnung I, Video-18-Integralrechnung II

Video für P3-P5: Video-19-Uneigentliche Integrale und mehr

I. Präsenzaufgaben für die Übungsstunden:

Die Aufgaben P1 und P2 sind klausurrelevant.

Aufgabe P1.

Berechnen Sie die folgenden bestimmten Integrale

(i)
$$\int_0^1 \arctan x \ dx,$$

(ii)
$$\int_{3}^{4} \frac{dx}{x^2 - x - 1},$$

(iii)
$$\int_0^\pi x \cos(x^2) \ dx,$$

(iv)
$$\int_{1}^{2} x \log x \, dx,$$

$$\int_{\pi^2/16}^{\pi^2/9} \frac{\sin(\sqrt{x})}{\sqrt{x} \cdot \cos(\sqrt{x})} dx,$$

$$\int_{-1}^{1} x\sqrt{1-x^2} dx.$$

Tipp zu (i): partielle Integration.

Aufgabe P2.

Zeigen Sie, dass die Funktion $F: \mathbb{R} \to \mathbb{R}$ mit

$$F(x) := \int_0^{x^2} \frac{1}{1 + t^6} dt$$

differenzierbar ist und bestimmen Sie ihre Ableitung.

Die folgenden Aufgabentypen sind nicht klausurrelevant – das Berechnen von bestimmten Integralen natürlich schon! Man kann sich auch zur Klausurvorbereitung mit anderen Aufgabentypen beschäftigen, nachdem die Aufgaben P1 und P2 bearbeitet sind.

Aufgabe P3.

Untersuchen Sie, welche der uneigentlichen Integrale existieren und bestimmen Sie ggf. deren Wert.

(i)
$$\int_0^\infty 2xe^{-2x}dx,$$
 (ii)
$$\int_0^2 \frac{dx}{x^2}.$$

Aufgabe P4.

Berechnen Sie den Flächeninhalt des Sektors,

- (i) der durch die Kurven $y=\frac{x}{2},y=\frac{x}{3}$ und $y=\sqrt{x}$ begrenzt wird. (ii) der im 1. Quadranten von der Kurven $\frac{x^2}{3}+y^2=1$ und den Geraden y=0und y = x begrenzt wird.

Aufgabe P5.

(i) Berechnen Sie den Flächeninhalt der Fläche zwischen den Graphen der Funktionen f und g, die gegeben sind durch

$$f(x) = \sin x$$
 und $g(x) = \sqrt{x}$

über dem Intervall $[0, 2\pi]$.

- (ii) Berechnen Sie das Volumen einer Kugel mit Radius R.
- (iii) Berechnen Sie die Länge des Graphen der durch $f(x) := x^{3/2}$ definierten Funktion $f:[1,2]\to \mathbb{R}$.

Für die vorlesungsfreie Zeit:

Anwendung des Fixpunktsatzes von Arbeitsblatt 7

Die folgende Aufgabe schließt den Zyklus an Aufgaben ab, der auf dem 7. Arbeitsblatt behandelt worden ist.

Aufgabe Z.

(i) Es sei $f:[a,b] \to [a,b]$ eine differenzierbare Funktion und es gebe eine Konstante q < 1 derart, dass $|f'(x)| \le q$ für alle $x \in [a,b]$ gilt. Zeigen Sie, dass f dann genau einen Fixpunkt besitzt und das Iterationsverfahren $x_{n+1} = f(x_n)$ mit einem Startwert $x_1 \in [a,b]$ gegen diesen Fixpunkt konvergiert.

Hinweis: Aufgabe 4 von Blatt 8; Mittelwertsatz der Differentialrechnung.

- (ii) Zeigen Sie, dass die Cosinusfunktion cos genau einen Fixpunkt im Intervall [0, 1] besitzt.
- (iii) Es sei f wie in (i) und die Folge (x_n) durch $x_{n+1} = f(x_n)$ mit einem Startwert $x_1 \in [a, b]$ definiert. Aus dem Beweis von Aufgabe 2 des 8. Arbeitsblatts ergibt sich für den Fixpunkt x eine Fehlerabschätzung der Form

$$|x - x_n| \le \frac{q^{n-1}}{1 - q} |x_2 - x_1|.$$

Wie leitet man das her?

(iv) Es sei $g:[a,b]\to\mathbb{R}$ eine zweimal differenzierbare Funktion mit $g'(x)\neq 0$ für alle $x\in [a,b]$. Wir definieren die Funktion $f:[a,b]\to\mathbb{R}$ durch

$$f(x) := x - \frac{g(x)}{g'(x)}.$$

Leiten Sie aus (i) Bedingungen ab, die sicherstellen, dass die Funktion f genau einen Fixpunkt in [a,b] besitzt und das Iterationsverfahren $x_{n+1} = f(x_n)$ mit einem Startwert $x_1 \in [a,b]$ gegen diesen Fixpunkt konvergiert.

(v) Wenden Sie dies auf $g(x) = x^2 - 2$ im Intervall [1, 4; 1, 5] an. Wie viele Folgenglieder x_n müssen Sie nach der Abschätzung aus (iii) berechnen, wenn Sie die (unbekannte!) Nullstelle auf mindestens drei Nachkommastellen genau bestimmen wollen und als Startwert $x_1 = 1, 4$ wählen?

Hinweis: Bei dem letzten Aufgabenteil kann ein Taschenrechner/Computer hilfreich sein.