

Batch: ELITE (CAT)

Subject: Quantitative Aptitude

Topic: Inequalities L2 & Function L1

DPP-07

- 1. $(x-1)(x-2)^2 (x-3)^3 (x-4)^4 < 0$, then how many integral values 4x can assume?
- **2.** Arrange the numbers in ascending order.

$$6^{\frac{1}{6}}, 2^{\frac{1}{2}}, 3^{\frac{1}{3}}, 8^{\frac{1}{8}}$$

- (a) $6^{\frac{1}{6}} > 2^{\frac{1}{2}} > 3^{\frac{1}{3}} > 8^{\frac{1}{8}}$ (b) $2^{\frac{1}{2}} > 3^{\frac{1}{3}} > 6^{\frac{1}{6}} > 8^{\frac{1}{8}}$
- (c) $3^{\frac{1}{3}} > 2^{\frac{1}{2}} > 6^{\frac{1}{6}} > 8^{\frac{1}{8}}$ (d) $2^{\frac{1}{2}} > 2^{\frac{1}{2}} > 6^{\frac{1}{6}} > 8^{\frac{1}{8}}$
- 3. If $(x^4 16x^3 + 86x^2 176x + 105) < 0$, then the number of integral values 3x can assume is:
- 4. If $(x-1)^{2017}(x-3)^{2019}(x-5)^{2021}(x-7)^{2023} < 0$, then how many integral values 3x can assume?
- 5. If $x^4 22x^3 + 159x^2 418x + 300 < 20$, then 3x can assume how many integral values?
- 6. If $x(x^2 16x + 65) > 50$ and $x^2 10x + 36 \le 20$, then find the values x can assume.
 - (a) π

- (b) $\frac{\pi}{\sqrt{3}}$
- (c) $\pi\sqrt{3}$
- (d) 2π
- 7. If $x(x-7)^2 < 64 7x$ and $x(x-8)^2 < 50 x$, then what can be the value of x if x > 1?
 - (a) π
- (b) $\pi\sqrt{3}$
- (c) $\frac{\pi}{\sqrt{3}}$
- (d) π^2
- 8. If $x(x-7)^2 < 64 7x$ and $x(x-8)^2 > 50 x$, then what can be the value of x?
 - (a) π
- (b) $\pi\sqrt{2}$
- (c) $\pi\sqrt{3}$
- (d) $\frac{\pi}{\sqrt{2}}$

9. If a + 3b + 5c + 7d < 31 where a, b, c, d are distinct natural numbers, then $\frac{(x-a)(x-d)^d}{(x-b)(x-c) + \frac{(b+c)^d}{a}}$

can assume which of the below values:

- 1. $-\frac{\pi}{3}$
- 2. $\frac{\pi}{3}$
- 3. $-\pi$
- 4. $\frac{\pi}{4}$
- (a) Only 1 and 2
- (b) Only 2, 3, and 4
- (c) Only 1 and 3
- (d) Only 1 and 4
- 10. If a + 3b + 5c + 7d < 31, where a, b, c, d are distinct natural numbers and if $\frac{(x-a)^a(x-d)^d}{(x-b)^b(x-c)^c} < 0$, then x

can assume which of the below values:

- (a) $-\frac{\pi}{3}$
- (b) $\frac{\pi}{3}$

(c) 2

- (d) $\frac{\pi}{4}$
- 11. If $x(x-6)^2 < 28 3x$, $x(x-9)^2 < 120 11x$ and (x-4)(x-8) < 5, then x can assume which of the following values?
 - (a) $\pi\sqrt{1}$
- (b) $\pi \sqrt{3}$
- (c) π^2
- (d) $\pi\sqrt{4}$
- 12. If $x(x-6)^2 > 28 3x$, $x(x-9)^2 < 120 11x$ and (x-4)(x-8) < 5, then x can assume which of the below values?
 - (a) $\pi\sqrt{1}$
- (b) $\pi\sqrt{3}$
- (c) $\pi\sqrt{4}$
- (d) $\pi\sqrt{6}$

- 13. If $(x^3 3^4) < 9(x 1)(2x 9)$ and $x^2(x 10)^2 < 9(10 x)(3x 2)$, then x can assume which of the below values?
 - 1. π

 2.2π

3. $\frac{\pi}{2}$

- 4. $\sqrt{\pi}$
- (a) Only 1 and 2
- (b) Only 2 and 3
- (c) Only 1 and 3
- (d) Only 2, 3 and 4
- 14. If $(x^3 3^4) > 9(x 1)(2x 9)$ and $x^2(x 10)^2 < 9(10 x)(3x 2)$, then x can assume which of the below values?
 - 1. π

 2.2π

 3.3π

- 4. π^{2}
- (a) Only 1 and 2
- (b) Only 2 and 3
- (c) Only 3 and 4
- (d) Only 2 and 4
- 15. If a + 3b + 5c + 7d < 31, where a, b, c, d are distinct natural numbers and if $\frac{(x-a)^a (x-d)^d}{(x-b)^b (x-c)^c} > 0$, then

x can assume which of the below values:

- 1. $-\frac{\pi}{3}$
- 2. π

3. 4

- 4. $\frac{\pi}{4}$
- (a) Only 1 and 2
- (b) Only 1, 2, and 4
- (c) Only 1 and 3
- (d) Only 2 and 4
- 16. If $\frac{x^3 12x^2 + 39x 28}{x^3 18x^2 + 99x 162} < 0$, then x can assume
 - 1. π

- 2. $\frac{\pi}{2}$
- 3. $\pi\sqrt{3}$
- 4.3π
- (a) Only 1 and 2
- (b) Only 2 and 3
- (c) Only 2, 3, and 4
- (d) Only 1 and 3
- 17. If $(x^3 3^4) < 9(x 1)(2x 9)$ and $x^2(x 10)^2 > 9(10 x)(3x 2)$, then x can assume which of the below values?
 - 1. π

2. $\frac{\pi}{2}$

3. $\frac{\pi}{3}$

- 4. $\frac{\pi}{4}$
- (a) Only 1, 2 and 5
- (b) Only 1 and 4

- (c) Only 3 and 4
- (d) Only 4
- 18. If $\sqrt{3-x} > \sqrt{x+1}$, then how many integral values 4x can assume?
- 19. If $\sqrt{20-x^2} > \sqrt{x+8}$, then how many integral values x can assume?
- 20. If $\sqrt{28-7x} > \sqrt{x(x-4)(x-8)}$, then how many values x can assume?
 - 1.0

2. 1

3. $\frac{\pi}{3}$

- 4. $\frac{\pi}{4}$
- (a) Only 1 and 3
- (b) Only 1 and 4
- (c) Only 2 and 3
- (d) Only 2 and 4
- 21. If $\sqrt{28-7x} < \sqrt{x(x-4)(x-8)}$, then how many values x can assume
 - 1.0

2. π

3. $\frac{\pi}{3}$

- 4. $\frac{\pi}{4}$
- (a) Only 1 and 3
- (b) Only 1 and 4
- (c) Only 2 and 3
- (d) Only 2 and 4
- 22. If $\sqrt{x+9} > \sqrt{16-x}$, then how many integral values x can assume?
- 23. If $\sqrt{36-x^2} > \sqrt{x+16}$, then find which of the below values x can assume?
 - 1. π
 - 2. $-\pi\sqrt{2}$
 - 3. $\pi\sqrt{2}$
 - 4. π^2
 - (a) Only 2
- (b) Only 1 and 2
- (c) Only 2, 3 and 4
- (d) Only 3
- 24. If $x^4 8x^3 + 14x^2 + 8x < 15$, then $x\sqrt{6+\sqrt{6+\sqrt{6+...\infty}}}$ can assume how many integral values?
- **25.** Let

$$(\sqrt{x} + \sqrt{4})^2 (\sqrt{x} + \sqrt{2})^3 (\sqrt{x} - \sqrt{2})^4 (\sqrt{x} - \sqrt{4})^5 < 0$$

If $P=x^{\frac{1}{\sqrt{2\sqrt{2\sqrt{2...\infty}}}}}$ is a real number, then

- (a) $-\sqrt{4} < P < \sqrt{4}$
- (b) $0 < P\sqrt{4}$
- (c) $0 \le P < \sqrt{2}, \sqrt{2} < P < \sqrt{4}$
- (d) $\sqrt{2} < P < \sqrt{4}$
- $\left(x^2 17\right)^{\left(x^3 6x^2 + 11x 6\right)} = 1$ **26.** $(x+4)^{2021}(x-5)^{2023} < 0$, then find the number of values x can assume.
- If $x^3 9x^2 + 23x 15 > 0$ and if $x^2 6x + 5 < 0$, 27. then find the possible numbers of integer values 3x can assume.
- If $|x^2 9x + 18| > x^2 9x + 18$, then which is true? 28.

- (a) $x \le 3$ or $x \ge 6$ (b) $3 \le x \le 6$
- (c) 3 < x < 6
- (d) None of the above

29.
$$\left(\sqrt{x\sqrt{x\sqrt{x....\infty}}}\right)^{\sqrt{2+\sqrt{2+\sqrt{2+....\infty}}}} (x-3)(x^2-x+4)^{\frac{3}{2}}$$

 $(x-9)^3 < 0$. So, find the number of integral values that x can assume.

30. If
$$\frac{x^3 - 12x^2 + 39x - 28}{x^3 - 18x^2 + 99x - 162} > 0$$
, then x can assume

- 3. $\pi \sqrt{3}$
- 4.3π
- (a) Only 1 and 2
- (b) Only 2 and 3
- (c) Only 1, 3, and 4
- (d) Only 1 and 4

Answer Key

1.	(6)

2. **(c)**

(10) 3.

4. **(10)**

(16) 5.

6. (a)

(b) 7.

8. **(b)**

9. **(d)** 10. **(b)**

11. (d)

12. (d)

13. (d)

14. **(c)**

15. (b) 16. **(b)**

17. (d)

(8) 18.

19. **(6)**

20. **(b)**

21. **(c)**

22. (13)

23.

(b)

24. **(10)** 25.

(c)

(5) 26.

27. **(5)** 28. (c)

29. **(5)**

30. (d)

Hints & Solutions

$$(x-1)(x-2)^2(x-3)^3(x-4)^4 < 0$$

As, $(x-2)^2 \ge 0$ and $(x-4)^4 \ge 0$

So,
$$(x-1)(x-3)^3 < 0$$

$$\Rightarrow$$
 $(x-1)(x-3) < 0$ [Since, $(x-3)^2 \ge 0$]

$$\Rightarrow 1 < x < 3$$

But,
$$x \ne 2$$
 as $x = 2$ will give $(x - 1)(x - 2)^2(x - 3)^3(x - 4)^4 = 0$

So,
$$1 < x < 2$$
 and $2 < x < 3$

$$\Rightarrow$$
 4 < 4x < 8 and 8 < 4x < 12

So, 4x can assume values from 5, 6, 7, 9, 10, 11 Therefore, total 6 values can be assumed by 4x.

2. (c)

Let
$$a = 6^{\frac{1}{6}}$$

 $\Rightarrow a^6 = 6$ (i)

Again,
$$b = 2^{\frac{1}{2}}$$

$$b^2 = 2$$

$$\Rightarrow$$
 b⁶ = 2³ = 8

$$\Rightarrow$$
 $b^6 > a^6$ (ii)

Also,
$$c = 3^{\frac{1}{3}}$$

$$\Rightarrow$$
 c³ = 3

$$\Rightarrow$$
 c⁶ = 3² = 9

$$\Rightarrow$$
 c⁶ > b⁶ > a⁶

$$\Rightarrow$$
 c > b > a (iii)

Also,
$$d = 8^{\frac{1}{8}}$$

$$\Rightarrow$$
 d⁸ = 8 = 2³

$$\Rightarrow d^8 = b^6$$

$$\Rightarrow$$
 d⁶ < b⁶

$$\Rightarrow$$
 d < b (iv)

Again,

$$d^{24} = 2^9 = 512$$

$$a^{24} = 6^4 > d^{24}$$

$$\Rightarrow$$
 a > d (v)

Hence, from (iii), (iv) and (v), we can conclude that, c > b > a > d

So,
$$3^{\frac{1}{3}} > 2^{\frac{1}{2}} > 6^{\frac{1}{6}} > 8^{\frac{1}{8}}$$

3. (10)

$$x^{4} - 16x^{3} + 86x^{2} - 176x + 105 < 0$$

$$\Rightarrow (x^{4} - 4x^{3} + 3x^{2} - 12x^{3} + 48x^{2} - 36x + 35x^{2} - 140x + 105) < 0$$

$$\Rightarrow (x^{2} - 4x + 3)(x^{2} - 12x + 35) < 0$$

$$\Rightarrow (x - 1)(x - 3)(x - 5)(x - 7) < 0$$

So,
$$1 < x < 3$$
 and $5 < x < 7$.

Thus, 3x can assume a total of 10 integer values.

4. (10)

As
$$(x-1)^{2016} \ge 0$$
, $(x-3)^{2018} \ge 0$, $(x-5)^{2020} \ge 0$ and $(x-7)^{2022} \ge 0$, so $(x-1)^{2017}(x-3)^{2019}(x-5)^{2021}(x-7)^{2023} < 0$

$$\Rightarrow$$
 $(x-1)(x-3)(x-5)(x-7) < 0$

So,
$$1 < x < 3$$
; $5 < x < 7$

$$\Rightarrow 3 < 3x < 9 ; 15 < 3x < 21$$

So, 3x can assume 10 integral values.

5. (16)

Given that,

$$x^4 - 22x^3 + 159x^2 - 418x + 300 < 20$$

$$\Rightarrow$$
 $x^4 - 22x^3 + 159x^2 - 418x + 280 < 0$

$$\Rightarrow (x^4 - 17x^3 + 70x^2 - 5x^3 + 85x^2 - 350x + 4x^2 - 68x + 280) < 0$$

$$\Rightarrow (x^2 - 5x + 4)(x^2 - 17x + 70) < 0$$

$$\Rightarrow$$
 $(x-1)(x-4)(x-7)(x-10) < 0$

So,
$$1 < x < 4$$
 and $7 < x < 10$
 $\Rightarrow 3 < 3x < 12$ and $21 < 3x < 30$
 $3x$ can assume 16 integral values.

6. (a)

Given that,

$$x(x^2 - 16x + 65) > 50$$

$$\Rightarrow$$
 $x^3 - 16x^2 + 65x - 50 > 0$

$$\Rightarrow$$
 $x^3 - 6x^2 + 5x - 10x^2 + 60x - 50 > 0$

$$\Rightarrow$$
 $(x^2 - 6x + 5)(x - 10) > 0$

$$\Rightarrow (x-1)(x-5)(x-10) > 0$$

Again,
$$x^2 - 10x + 36 \le 20$$

$$\Rightarrow$$
 $x^2 - 10x + 16 \le 0$

$$\Rightarrow (x-2)(x-8) \le 0$$

Combining the two conditions, we can say that $2 \le x < 5$

Hence, the only value of x satisfying this range is π .

7. **(b)**

Given that, $x(x-7)^2 < 64 - 7x$

$$\Rightarrow x^3 - 14x^2 + 49x < 64 - 7x$$
$$\Rightarrow x^3 - 14x^2 + 56x < 64$$

$$\Rightarrow$$
 $x^3 - 6x^2 + 8x - 8x^2 + 48x - 64 < 0$

$$\Rightarrow$$
 $(x^2 - 6x + 8)(x - 8) < 0$

$$\Rightarrow$$
 $(x-2)(x-4)(x-8) < 0$

Again,
$$x(x-8)^2 \le 50 - x$$

$$\Rightarrow x^3 - 16x^2 + 65x < 50$$

$$\Rightarrow$$
 $x^3 - 6x^2 + 5x - 10x^2 + 60x < 50$

$$\Rightarrow (x^2 - 6x + 5)(x - 10) < 0$$

$$\Rightarrow$$
 $(x-1)(x-5)(x-10) < 0$

Hence, combining these two conditions, we get 5 < x < 8

In this range, the only x that can be satisfied is $\pi\sqrt{3}$.

8. (b)

The given inequation is

$$x(x-7)^2 \le 64-7x$$

$$\Rightarrow x^3 - 14x^2 + 49x < 64 - 7x$$

$$\Rightarrow x^3 - 14x^2 + 56x < 64$$

$$\Rightarrow x^3 - 6x^2 + 8x - 8x^2 + 48x - 64 < 0$$

$$\Rightarrow (x^2 - 6x + 8)(x - 8) < 0$$

$$\Rightarrow$$
 $(x-2)(x-4)(x-8) < 0$

Again,
$$x(x-8)^2 > 50 - x$$

$$\Rightarrow x^3 - 16x^2 + 65x > 50$$

$$\Rightarrow x^3 - 6x^2 + 5x - 10x^2 + 60x > 50$$

$$\Rightarrow (x^2 - 6x + 5)(x - 10) > 0$$

$$\Rightarrow (x - 1)(x - 5)(x - 10) > 0$$

Combining these two conditions, we get 4 < x < 5.

In this range, the only value of x will be $\pi\sqrt{2}$.

9. (d)

 $a + 3b + 5c + 7d \le 30$ as a, b, c, d are distinct natural numbers.

Minimum value of the expression will be obtained if the lower number is multiplied with the higher coefficients.

So, Min (a + 3b + 5c + 7d) = 4 + 9 + 10 + 7 = 30 which satisfy the equation.

Thus,
$$a = 4$$
, $b = 3$, $c = 2$, and $d = 1$
Now, we have

$$\frac{(x-4)(x-1)}{(x-3)(x-2) + \frac{(3+2)^1}{4}}$$

$$= \frac{(x-4)(x-1)}{(x-3)(x-2) + \frac{5}{4}}$$

$$= \frac{x^2 - 5x + 4}{x^2 - 5x + 6 + \frac{5}{4}}$$

$$= \frac{x^2 - 5x + 4}{\left(x - \frac{5}{2}\right)^2 + 1}$$

$$= 1 - \frac{\frac{13}{4}}{\left(x - \frac{5}{2}\right)^2 + 1}$$

Minimum value of the expression can be obtained

at
$$x = \frac{5}{2}$$
, where $\left(x - \frac{5}{2}\right)^2 + 1$ is minimum.

So, Min
$$\left\{ \frac{(x-4)(x-1)}{(x-3)(x-2) + \frac{5}{4}} \right\} = -\frac{9}{4}$$

Also, the maximum value of the expression will be

obtained if
$$\left(x - \frac{5}{2}\right)^2 + 1$$
 is maximized.

Thus, maximum value of the expression will be very close to 1 (but less than 1) as x assumes a very high value.

So,
$$-\frac{9}{4} \le \frac{(x-1)(x-4)}{(x-3)(x-2) + \frac{5}{4}} < 1$$

10. (b)

 $a + 3b + 5c + 7d \le 30$ as a, b, c, d are distinct natural numbers. Then, the minimum value of the expression will be obtained if the lower number is multiplied with the higher coefficients.

So, Min (a + 3b + 5c + 7d) = 4 + 9 + 10 + 7 = 30 which satisfies the equation.

Thus,
$$a = 4$$
, $b = 3$, $c = 2$, and $d = 1$

Therefore,
$$\frac{(x-4)^4(x-1)}{(x-3)^3(x-2)^2} < 0$$

$$\Rightarrow \frac{x-1}{x-3} < 0$$
 [Since, the even powered expressions are non-negative]

$$\Rightarrow \frac{(x-1)(x-3)}{(x-3)^2} < 0[x \neq 2, 3]$$

$$\Rightarrow$$
 $(x-1)(x-3) < 0$

$$\Rightarrow$$
 1 < x < 3 except x = 2 and 3.

11. (d)

$$x(x-6)^2 \le 28-3x$$

$$\Rightarrow x^3 - 12x^2 + 39x - 28 < 0$$

$$\Rightarrow x^3 - 5x^2 + 4x - 7x^2 + 35x - 28 < 0$$

$$\Rightarrow (x^2 - 5x + 4)(x - 7) < 0$$

$$\Rightarrow$$
 $(x-1)(x-4)(x-7) < 0$

$$x(x-9)^2 < 120 - 11x$$

$$\Rightarrow x^3 - 18x^2 + 81x < 120 - 11x$$

$$\Rightarrow$$
 $x^3 - 18x^2 + 92x < 120$

$$\Rightarrow$$
 $x^3 - 8x^2 + 12x - 10x^2 + 80x < 120$

$$\Rightarrow$$
 $(x^2 - 8x + 12)(x - 10) < 0$

$$\Rightarrow$$
 $(x-2)(x-6)(x-10) < 0$

$$(x-4)(x-8) < 5$$

$$\Rightarrow x^2 - 12x + 27 < 0$$

$$\Rightarrow$$
 $(x-3)(x-9) < 0$

Combining three conditions, we get 6 < x < 7.

Hence, the only value that satisfy this range is $\pi\sqrt{4}$.

12. (d)

$$x(x-6)^2 > 28 - 3x$$

$$\Rightarrow x^3 - 12x^2 + 39x - 28 > 0$$

$$\Rightarrow x^3 - 5x^2 + 4x - 7x^2 + 35x > 28$$

$$\Rightarrow$$
 $(x^2 - 5x + 4)(x - 7) > 0$

$$\Rightarrow$$
 $(x-1)(x-4)(x-7) > 0$

$$x(x-9)^2 \le 120 - 11x$$

$$\Rightarrow x^3 - 18x^2 + 81x < 120 - 11x$$

$$\Rightarrow$$
 $x^3 - 18x^2 + 9^2x < 120$

$$\Rightarrow$$
 $x^3 - 8x^2 + 12x - 10x^2 + 80x < 120$

$$\Rightarrow (x^2 - 8x + 12)(x - 10) < 0$$

$$\Rightarrow$$
 $(x-2)(x-6)(x-10) < 0$

Combining three conditions, we get 7 < x < 9.

Hence, the only value that satisfy this range is $\pi\sqrt{6}$.

13. (d)

Given that $(x^3 - 3^4) \le 9(x - 1)(2x - 9)$

$$\Rightarrow \left(\frac{x^3}{9} - 9\right) < 2x^2 - 11x + 9$$

$$\Rightarrow \frac{x^3}{9} < 2x^2 - 11x + 18$$

$$\implies x^3 - 18x^2 + 99x - 162 < 0$$

$$\Rightarrow$$
 $x^3 - 9x^2 + 18x - 9x^2 + 81x - 162 < 0$

$$\Rightarrow$$
 $(x^2 - 9x + 18)(x - 9) < 0$

$$\Rightarrow (x-3)(x-6)(x-9) < 0$$

Again,
$$x^2(x-10)^2 \le 9(10-x)(3x-2)$$

$$\Rightarrow x^2(x-10)^2 + 9(x-10)(3x-2) < 0$$

$$\Rightarrow x^2(x-10)^2 + 9(3x^2 - 30x - 2x + 20) < 0$$

$$\Rightarrow x^4 - 20x^3 + 127x^2 - 288x + 180 < 0$$

$$\Rightarrow x^4 - 4x^3 + 3x^2 - 16x^3 + 64x^2 - 48x + 60x^2 - 240x + 180 < 0$$

$$\Rightarrow$$
 $(x^2 - 4x + 3)(x^2 - 16x + 60) < 0$

$$\Rightarrow$$
 $(x-1)(x-3)(x-6)(x-10) < 0$

Hence, combining these two conditions, we get 6 < x < 9 and 1 < x < 3.

14. (c)

Given that $(x^3 - 3^4) > 9(x - 1)(2x - 9)$

$$\Rightarrow \left(\frac{x^3}{9} - 9\right) > 2x^2 - 11x + 9$$

$$\Rightarrow \frac{x^3}{9} > 2x^2 - 11x + 18$$

$$\Rightarrow$$
 x³ - 18x² + 99x - 162 > 0

$$\Rightarrow$$
 $x^3 - 9x^2 + 18x - 9x^2 + 81x > 162$

$$\Rightarrow (x^2 - 9x + 18)(x - 9) > 0$$

$$\Rightarrow (x-3)(x-6)(x-9) > 0$$

Again,
$$x^2(x-10)^2 < 9(10-x)(3x-2)$$

$$\Rightarrow$$
 $x^2(x-10)^2 + 9(x-10)(3x-2) < 0$

$$\Rightarrow$$
 $x^2(x-10)^2 + 9(3x^2 - 30x - 2x + 20) < 0$

$$\Rightarrow$$
 $x^4 - 20x^3 + 127x^2 - 288x + 180 < 0$

$$\Rightarrow x^4 - 4x^3 + 3x^2 - 16x^3 + 64x^2 - 48x + 60x^2 - 240x$$

< - 180

$$\Rightarrow$$
 $(x^2 - 4x + 3)(x^2 - 16x + 60) < 0$

$$\Rightarrow$$
 $(x-1)(x-3)(x-6)(x-10) < 0$

Hence, combining these two conditions, we get 9 < x < 10.

15. (b)

 $a + 3b + 5c + 7d \le 30$ as a, b, c, d are distinct natural numbers. Then, the minimum value of the expression will be obtained if the lower number is multiplied with the higher coefficients.

So, Min (a + 3b + 5c + 7d) = 4 + 9 + 10 + 7 = 30 which satisfies the equation.

Thus,
$$a = 4$$
, $b = 3$, $c = 2$, and $d = 1$

Therefore,
$$\frac{(x-4)^4(x-1)}{(x-3)^3(x-2)^2} > 0$$

$$\Rightarrow \frac{x-1}{x-3} > 0$$
 [Since, the even powered

expressions are non-negative]

$$\Rightarrow \frac{(x-1)(x-3)}{(x-3)^2} > 0 \ [x \neq 2, 3]$$

$$\Rightarrow$$
 $(x-1)(x-3) > 0$

$$\Rightarrow$$
 x < 1 and x > 3 [x \neq 4 and 1 as it'll make the value 0]

16. (b)

The expression $x^3 - 18x^2 + 99x - 162$ can be written as

with this

$$x^{3} - 18x^{2} + 99x - 162$$

$$= x^{3} - 9x^{2} + 18x - 9x^{2} + 81x - 162$$

$$= (x^{2} - 9x + 18) (x - 9)$$

$$= (x - 3) (x - 6) (x - 9)$$
Also,
$$x^{3} - 12x^{2} + 39x - 28$$

$$= x^{3} - 5x^{2} + 4x - 7x^{2} + 35x - 28$$

$$= (x^{2} - 5x + 4)(x - 7)$$

$$= (x-1)(x-4)(x-7)$$

Now,

$$\frac{x^3 - 12x^2 + 39x - 28}{x^3 - 18x^2 + 99x - 162} < 0$$

$$\Rightarrow \frac{(x - 1)(x - 4)(x - 7)}{(x - 3)(x - 6)(x - 9)} < 0$$

$$\Rightarrow \frac{(x - 1)(x - 3)(x - 4)(x - 6)(x - 7)(x - 9)}{(x - 3)^2(x - 6)^2(x - 9)^2} < 0$$

17. (d)

Given that
$$(x^3 - 3^4) < 9(x - 1)(2x - 9)$$

$$\Rightarrow \left(\frac{x^3}{9} - 9\right) < 2x^2 - 11x + 9$$

$$\Rightarrow \frac{x^3}{9} < 2x^2 - 11x + 18$$

$$\Rightarrow x^3 - 18x^2 + 99x - 162 < 0$$

$$\Rightarrow x^3 - 9x^2 + 18x - 9x^2 + 81x < 162$$

$$\Rightarrow (x^2 - 9x + 18)(x - 9) < 0$$

$$\Rightarrow (x - 3)(x - 6)(x - 9) < 0$$

Again,
$$x^2(x-10)^2 > 9(10-x)(3x-2)$$

$$\Rightarrow$$
 x²(x - 10)² + 9(x - 10)(3x - 2) > 0

$$\Rightarrow$$
 $x^2(x-10)^2 + 9(3x^2 - 30x - 2x + 20) > 0$

$$\Rightarrow$$
 $x^4 - 20x^3 + 127x^2 - 288x + 180 > 0$

$$\Rightarrow x^4 - 4x^3 + 3x^2 - 16x^3 + 64x^2 - 48x + 60x^2 - 240x > -180$$

$$\Rightarrow$$
 $(x^2 - 4x + 3)(x^2 - 16x + 60) > 0$

$$\Rightarrow$$
 $(x-1)(x-3)(x-6)(x-10) > 0$

Hence, combining these two conditions, we get x < 1.

18. (8)

$$\sqrt{3-x} > \sqrt{x+1}$$

As square of any non–negative number ≥ 0

$$3 - x > x + 1$$

$$\Rightarrow 2 > 2x$$

$$\Rightarrow$$
 x < 1

Also, $\sqrt{x+1}$ is a real number, so $x+1 \ge 0$

$$\Rightarrow$$
 x \geq -1

So,
$$-1 \le x < 1$$

$$\Rightarrow$$
 $-4 \le 4x < 4$

Thus, 4x can assume 8 integral values.

19. (6)

$$\sqrt{20-x^2} > \sqrt{x+8}$$

$$\Rightarrow 20 - x^2 > x + 8$$

$$\Rightarrow 0 > x^2 + x - 12$$

$$\Rightarrow$$
 $(x + 4)(x - 3) < 0$

$$\Rightarrow$$
 $-4 < x < 3$

So, x can assume 6 integral values.

20. (b)

Given that,
$$\sqrt{28-7x} > \sqrt{x(x-4)(x-8)}$$

$$\Rightarrow x^3 - 12x^2 + 39x - 28 < 0$$

$$\Rightarrow$$
 $x^3 - 5x^2 + 4x - 7x^2 + 35x - 28 < 0$

$$\Rightarrow (x^2 - 5x + 4)(x - 7) < 0$$

$$\Rightarrow$$
 $(x-1)(x-4)(x-7) < 0$

As, $\sqrt{28-7x}$ is a real number, so

$$28 - 7x \ge 0$$

$$\Rightarrow x \le 4$$

As,
$$\sqrt{x(x-4)(x-8)}$$
 is a real number, so

$$x(x-8)(x-4) \ge 0$$

 \Rightarrow 0 \le x \le 4 and x \ge 8.

Combining these two conditions, we get $0 \le x \le 1$

21. (c)

Given that,
$$\sqrt{28-7x} < \sqrt{x(x-4)(x-8)}$$

$$\Rightarrow$$
 $x^3 - 12x^2 + 39x - 28 > 0$

$$\Rightarrow$$
 $x^3 - 5x^2 + 4x - 7x^2 + 35x - 28 > 0$

$$\Rightarrow (x^2 - 5x + 4)(x - 7) > 0$$

$$\Rightarrow$$
 $(x-1)(x-4)(x-7) > 0$

As, $\sqrt{28-7x}$ is a real number, so

$$\Rightarrow 28 - 7x > 0$$

$$\Rightarrow x \leq 4$$

As,
$$\sqrt{x(x-4)(x-8)}$$
 is a real number, so

$$x(x-8)(x-4) \ge 0$$

$$\Rightarrow 0 \le x \le 4$$
 and $x \ge 8$.

Combining these two conditions, we get 1 < x < 4.

22. (13)

Given that,

$$\sqrt{x+9} > \sqrt{16-x}$$

$$x + 9 > 16 - x$$

$$\Rightarrow$$
 x > 3.5

Also,
$$16 - x \ge 0$$

$$\Rightarrow$$
 x \leq 16

So,
$$3.5 < x \le 16$$

Therefore, x can assume 13 integral values.

23. (b)

$$\sqrt{36 - x^2} > \sqrt{x + 16}$$
$$\Rightarrow 36 - x^2 > x + 16$$

$$\rightarrow 30 - x > x + 10$$

$$\Rightarrow$$
 x² + x - 20 < 0

$$\Rightarrow$$
 $(x-4)(x+5) < 0$

Also,
$$36 - x^2 \ge 0$$

$$\Rightarrow$$
 $-6 \le x \le 6$

And,

$$x + 16 \ge 0$$

$$\Rightarrow$$
 x \geq - 16

Combining all the conditions, we get -5 < x < 4

24. (10)

Given that,
$$x^4 - 8x^3 + 14x^2 + 8x < 15$$

$$\Rightarrow x^4 - 8x^3 + 15x^2 - x^2 + 8x - 15 < 0$$

$$\Rightarrow (x^2 - 1)(x^2 - 8x + 15) < 0$$

$$\Rightarrow (x + 1)(x - 1)(x - 3)(x - 5) < 0$$

Again, let
$$\sqrt{6 + \sqrt{6 + \sqrt{6 + \dots \infty}}} = y$$

Then,
$$y^2 = 6 + y$$

$$y^2 - y - 6 = 0$$

$$\Rightarrow$$
 $(y-3)(y+2)=0$

$$\Rightarrow$$
 y = 3 [Since, y > 0]

So, 3x can assume

$$-3 < 3x < 3$$
; $9 < 3x < 15$

So, 3x can assume 10 values.

25. (c)

Let
$$k = \sqrt{2\sqrt{2\sqrt{2...\infty}}}$$

$$\Rightarrow$$
 $k^2 = 2k$

$$\Rightarrow$$
 k = 2 (Since, k \neq 0)

So, $P = x^{\frac{1}{2}}$ is a real number.

Also,
$$\sqrt{x} \ge 0 \Rightarrow P \ge 0$$

So,
$$(P + \sqrt{4})^2 (P + \sqrt{2})^3 (P - \sqrt{2})^4 (P - \sqrt{4})^5 < 0$$

$$\Rightarrow (P + \sqrt{2})(P - \sqrt{4}) < 0$$

[Since,
$$(P + \sqrt{4})^2 \ge 0$$
, $(P + \sqrt{2})^2 \ge 0$; $(P - \sqrt{4})^4$

$$\geq 0, (P - \sqrt{2})^4 \geq 0$$

$$\Rightarrow -\sqrt{2} < P < 2$$

As,
$$P \ge 0$$
, so $0 \le P < 2$, but $P \ne \sqrt{2}$ as $\left(P - \sqrt{2}\right)^4 = 0$ and the expression will become 0.

So,
$$0 \le P < \sqrt{2}; \sqrt{2} < P < 2$$

$$x^{3} - 6x^{2} + 11x - 6$$

$$= (x^{3} - 3x^{2} + 2x - 3x^{2} + 9x - 6)$$

$$= (x^{2} - 3x + 2)(x - 3)$$

$$= (x - 1)(x - 2)(x - 3)$$

Now,
$$(x^2 - 17)^{(x^3 - 6x^2 + 11x - 6)} = 1$$
 implies

either,
$$x^3 - 6x^2 + 11x - 6 = 0$$

$$\Rightarrow$$
 $(x-1(x-2)(x-3)=0$

$$\Rightarrow$$
 x = 1, 2, 3

or,
$$x^2 - 17 = 1$$

$$\Rightarrow$$
 x = $\pm 3\sqrt{2}$

or,
$$x^2 - 17 = -1$$

$$\Rightarrow$$
 x = \pm 4

Therefore,

$$(x+4)^{2021}(x-5)^{2023} < 0$$

As,
$$(x+4)^{2020} \ge 0$$
 and $(x-5)^{2022} \ge 0$

So,
$$(x+4)(x-5) < 0$$

$$\Rightarrow$$
 $-4 < x < 5$

So, the values of x in this range are 1, 2, 3, 4, $3\sqrt{2}$ Hence, x can assume 5 values.

27. (5

$$x^{3} - 9x^{2} + 23x - 15 > 0$$

$$\Rightarrow x^{3} - 4x^{2} + 3x - 5x^{2} + 20x - 15 > 0$$

$$\Rightarrow (x^{2} - 4x + 3)(x - 5) > 0$$

Also,
$$x^2 - 6x + 5 < 0$$

$$\Rightarrow$$
 $(x-1)(x-5) < 0$

$$\Rightarrow 1 < x < 3$$

So,
$$3 < 3x < 9$$
.

Hence, 3x can assume total of 5 integer values.

28. (c)

We have the inequality

$$|x^2 - 9x + 18| > x^2 - 9x + 18$$

First let,
$$x^2 - 9x + 18 \ge 0$$

$$=> (x-3)(x-6) \ge 0$$

$$=> x \le 3 \text{ or } x \ge 6.$$

Again, if
$$x^2 - 9x + 18 < 0$$

$$=> (x-3)(x-6) < 0$$

$$=> 3 < x < 6$$

Therefore, if $x^2 - 9x + 18 > 0$, then $x^2 - 9x + 18 > x^2 - 9x + 18$ and there is no solution.

If
$$x^2 - 9x + 18 < 0$$
, then $-(x^2 - 9x + 18) > x^2 - 9x + 18$

$$=> -x^2 + 9x - 18 > 0$$

$$=> -(x-3)(x-6) > 0$$

$$=> 3 < x < 6$$

Hence, option (c) is correct.

29. (5)

Let
$$\sqrt{x\sqrt{x\sqrt{x...\infty}}} = p$$

Then,
$$p^2 = xp$$

$$\Rightarrow$$
 p = x [Since, x \neq 0]

Also,
$$\sqrt{2+\sqrt{2+\sqrt{2+...\infty}}} = q$$

$$\Rightarrow$$
 q² = 2 + q

$$\Rightarrow$$
 q² - q - 2 = 0

$$\Rightarrow (q-2)(q+1) = 0$$

$$\Rightarrow$$
 q = 2, since q > 0

So,
$$\left(\sqrt{x\sqrt{x\sqrt{x...\infty}}}\right)^{\sqrt{2+\sqrt{2+\sqrt{2+...\infty}}}}$$

$$(x-3)(x^2-x+4)^{\frac{3}{2}}(x-9)^3 < 0$$

$$\Rightarrow x^{2}(x^{2}-x+4)^{\frac{3}{2}}(x-3)(x-9)^{3} < 0$$

Now
$$x^2 - x + 4 = \left(x - \frac{1}{2}\right)^2 + \frac{15}{4} > 0$$

or
$$\left(x^2 - x + 4\right)^{\frac{3}{2}} > 0$$

Also
$$x^2 \ge 0$$

So,
$$(x-3)(x-9)^3 < 0$$

Because
$$(x-9)^2 \ge 0$$

So,
$$(x-3)(x-9) < 0$$

So,
$$3 < x < 9$$

So, x can assume integral values from 4 to 8. So, total of 5 values can be assumed by x.

30. (d)

The expression $x^3 - 18x^2 + 99x - 162$ can be written as $x^3 - 18x^2 + 99x - 162$

$$= x^3 - 9x^2 + 18x - 9x^2 + 81x - 162$$

$$= (x^2 - 9x + 18)(x - 9)$$

$$= (x-3)(x-6)(x-9)$$

Also,
$$x^3 - 12x^2 + 39x - 28$$

$$= x^3 - 5x^2 + 4x - 7x^2 + 35x - 28$$

$$= (x^2 - 5x + 4)(x - 7)$$
$$= (x - 1)(x - 4)(x - 7)$$

Now,

$$\frac{x^3 - 12x^2 + 39x - 28}{x^3 - 18x^2 + 99x - 162} > 0$$

$$\frac{(x-1)(x-4)(x-7)}{(x-3)(x-6)(x-9)} > 0$$

$$\Rightarrow \frac{(x-1)(x-3)(x-4)(x-6)(x-7)(x-9)}{(x-3)^2(x-6)^2(x-9)^2} > 0$$

The values of x which satisfies the inequation, $x > 9 \cup (6,7) \cup (3,4) \cup x < 1$

