МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА Механико математический факультет

Курс лекций по уравнения с частными производными

Лектор — Шапошникова Татьяна Ардолионовна

III курс, 6 семестр, поток математиков

Содержание

1	Гармонические функции, их свойства	
	1.1 Формулы Грина	
	1.2 Фундаментальное решение оператора Лапласа	
	1.3 Представление в виде суммы трёх потенциалов	
	1.4 Теоремы о среднем для гармонических функций	
	1.5 Принцип максимума	
2	Лекция 16.	
	2.1 Лемма о знаке нормальной производной гармонической функции в точке макси	мума
	2.2 Основные краевые задачи для уравнения Лапласа и единственность решения эт	•
	2.2.1 Задача Дирихле	
	2.2.2 Задача Неймана.	
	2.3 Оценки производных гармонической функции	
	2.4 Аналитичность гармонических функций	1
9	TT 18	1
3	Лекция 17.	1
	3.1 Функция Грина. Задача Дирихле для уравнения Лапласа	1
4	Лекция 18.	1
	4.1 Интеграл Пуассона	1
	4.2 Неравенство Харнака	1
	4.3 Обратная теорема о среднем	1
	4.4 Теорема об устранимой особенности	1
5	Лекция 19	1
J	5.1 Теория потенциала	
	от теория потенциала.	
6	Лекция 20.	1
	6.1 Объемный потенциал	1
	6.2 Потенциал двойного слоя	1
7	Лекция 21	2
•	7.1 Теорема о скачке потенциала двойного слоя	
	1.1 Teopena e ena inc notempiana abomiero estori.	
8	Лекция 22.	2
	8.1 Потенциал простого слоя	2
9	Лекция 23.	2
9	9.1 Постановка краевых задач	
	у.т Постановка красвых задач	
10	Лекция 24.	2
	10.1 Решение внутренней задачи Дирихле и внешней задачи Неймана в виде потенци	иала 2
	10.1.1 Теоремы Фредгольма	
	10.2 Решение внешней задачи Дирихле и внутренней задачи Неймана в виде потенци	иала 2
11	Лекция 25.	3
11	11.1 Вариационный метод решения задачи Дирихле.	
	тт. г. Варнационный метод решения зада и диримие.	
12	· · · · · · · · · · · · · · · · · · ·	3
	12.1 Метод Ритца	
	12.2 Уравнение теплопроводности	
13	Лекция 27.	3
19	13.1 Принципы максимума	
	13.2 Начально-краевые задачи	
	13.3 Теоремы единственности	

Предисловие

Документ перерабатывается В.В. Харламовым под курс лекций 2020 года. Важно, что дальнейший текст не является в полной мере конспектом, но в то же время есть хорошее приближение материала лекций.

Так как DMVN не подаёт признаков жизни, то огромная просьба писать на мою почту при обнаружении ошибок. Самая актуальная версия конспекта находится на Github. В 2020 году Bitbucket прекращает поддержку репозиториев с системой контроля версий Mercurial, поэтому я скопировал репозиторий на Github.

B.X.

Последняя компиляция: 30 мая 2020 г. г. Обновления документа на сайтах http://dmvn.mexmat.net, http://dmvn.mexmat.ru. IATEX исходники https://bitbucket.org/dmvn/mexmat.lectures Об опечатках и неточностях пишите на dmvn@mccme.ru.

1 Гармонические функции, их свойства

Определение. Пусть $u \in C^2(\Omega), \ \Omega \subset (R)^n$ - область. Функция и называется *гармонической* в Ω , если $\forall x \in \Omega \ \Delta u = 0$.

Примеры

- 1. $u = \sum_{i=1}^{n} a_i x_i + b$ гармоническая в \mathbb{R}^n .
- 2. n=3: $u=\frac{1}{r}$, $r=|x-x_0|$ гармоническая при $x\neq x_0$.
- 3. n=2: $\ln r$, $r^{\pm m}\cos m\varphi$, $r^{\pm m}\sin m\varphi$ гармонические.

Пусть теперь $u,v\in C^2(\overline{\Omega}),\ \Omega$ ограниченная область в $\mathbb{R}^n,\ \partial\Omega\in C^1$ тогда вспомним, что

$$\int_{\Omega} u v_{x_j x_j} dx = \int_{\Omega} \frac{\partial u}{\partial x_j} \frac{\partial v}{\partial x_j} dx + \int_{\partial \Omega} u \frac{\partial v}{\partial x_j} \nu_j dS$$

$$\int_{\Omega} div A dx = \int_{\partial \Omega} (A, \nu) dS: A = (0, \dots, u \frac{\partial v}{\partial x_j}, \dots, 0)$$

1.1 Формулы Грина

Утверждение 1.1 (Первая формула Грина).

$$\int_{\Omega} u \Delta v dx = -\int_{\Omega} (\nabla u, \nabla v) dx + \int_{\partial \Omega} u \frac{\partial v}{\partial \nu} dS, \tag{1}$$

 $r\partial e \nu - e\partial u + u + u + a s$ внешняя нормаль κ границе.

Утверждение 1.2 (Вторая формула Грина).

$$\int_{\Omega} (u\Delta v - v\Delta u)dx = \int_{\partial\Omega} \left(u\frac{\partial v}{\partial \nu} - v\frac{\partial u}{\partial \nu} \right) dS. \tag{2}$$

1.2 Фундаментальное решение оператора Лапласа

Рассмотрим гармонические функции, зависящие только от расстояния до точки, т.е гармонические функции вида:

$$v(x) = v(|x - x_0|), x \neq x_0, \Delta v = 0.$$

Найдём такие гармонические функции v, что для любых финитных функций ϕ в области Ω имеет есто тождество

$$\int_{\mathbb{R}^n} v(|x - x_0|) \Delta \varphi(x) dx = \varphi(x_0). \tag{3}$$

Положим $r:=|x-x_0|$. Тогда оператор Лапласа переписывается как

$$\Delta v(r) = v'' + \frac{n-1}{2}v'.$$

Учитывая гармоничность функции v, получаем

$$v(|x-x_0|) = C_1|x-x_0|^{2-n} + C_2, n \ge 3, v(|x-x_0|) = C_1 \ln|x-x_0| + C_2, n = 2.$$
 (4)

Рассмотрим левую часть равенства (3). Для $n \geq 3$ в силу гармоничности v она равна

$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}^n \setminus \overline{T}_{\varepsilon}^{x_0}} v(|x - x_0|) \Delta \varphi dx = \lim_{\varepsilon \to 0} \int_{\mathbb{R}^n \setminus \overline{T}_{\varepsilon}^{x_0}} (v(|x - x_0|) \Delta \varphi - \varphi \Delta v(|x - x_0|)) dx.$$
 (5)

К правой части выражения (5) применим вторую формулу Грина (2), тогда

$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}^n \setminus \overline{T}_{\varepsilon}^{x_0}} v(|x - x_0|) \Delta \varphi dx = \lim_{\varepsilon \to 0} \int_{\partial \Omega \cup S_{\varepsilon}^{x_0}} \left(v(|x - x_0|) \partial_{\nu} \varphi - \varphi(x) \partial_{\nu} v(|x - x_0|) \right) dS. \tag{6}$$

В силу финитности φ интеграл по $\partial\Omega$ равен нулю. Положим $K:=\max_{\Omega}\partial_{\nu}\varphi,\ \omega_{n}$ — площадь поверхности n-мерного шара. Заметим, что имеет место оценка

$$\left| \int_{S_{-}^{x_0}} |x - x_0|^{2-n} \partial_{\nu} \varphi dS \right| \le \varepsilon^{2-n} \omega_n K \varepsilon^{n-1} = \omega_n K \varepsilon.$$

Следовательно, в силу представления (4) для v получаем

$$\lim_{\varepsilon \to 0} \int_{S^{x_0}} v(|x - x_0|) \partial_{\nu} \varphi dS = 0.$$

Далее заметим, что

$$C_1 \frac{\partial}{\partial \nu} r^{2-n} = -C_1 \frac{\partial}{\partial r} r^{2-n} = -(2-n)C_1 r^{1-n}.$$

Подставляя в выражение (6) полученные результаты, приходим к

$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}^n \setminus \overline{T}_{\varepsilon}^{x_0}} v(|x - x_0|) \Delta \varphi dx = -C_1(n - 2) \lim_{\varepsilon \to 0} \int_{S_{\varepsilon}^{x_0}} \varphi(x) dS = -C_1(n - 2) \lim_{\varepsilon \to 0} \varphi(x_{\epsilon}) \omega_n \varepsilon^{n - 1} \varepsilon^{1 - n} =$$

$$= -C_1(n - 2) \omega_n \varphi(x_0).$$

Учитывая представление (4), получаем

$$C_1 = \frac{-1}{\omega_n(n-2)}, n \geqslant 3, \qquad C_1 = \frac{1}{2\pi}, n = 2.$$

Определение. Фундаментальное решение оператора Лапласа.

$$E(x, x_0) = \begin{cases} -\frac{|x - x_0|^{2-n}}{\omega_n(n-2)}, & n \geqslant 3\\ \frac{1}{2\pi} \ln(x - x_0), & n = 2 \end{cases}$$

Основное характерное свойство фундаментального решения:

$$\int_{\mathbb{P}^n} E(x, x_0) \Delta \varphi(x) dx = \varphi(x_0), \, \forall \varphi \in C_0^{\infty}(\Omega).$$

На языке обобщенных функций это выглядит так

$$(\Delta E(x, x_0), \varphi(x)) = \varphi(x_0) = (\delta(x - x_0), \varphi), \qquad \Delta E(x, x_0) = \delta(x - x_0).$$

1.3 Представление в виде суммы трёх потенциалов

Пусть Ω – ограниченная область в \mathbb{R}^n , $\partial\Omega$ – липшецева, $u\in C^2(\overline{\Omega}), x_0\in\Omega$. Положим $\Omega_\varepsilon:=\Omega\setminus \overline{T}_\varepsilon^{x_0}$. В силу соотношения (4) справедливо равенство

$$\Delta_x E(x, x_0) = 0, \ x \in \Omega_{\varepsilon}. \tag{7}$$

По второй формуле Грина 1.2

$$\int_{\Omega_{\varepsilon}} (u\Delta E - \Delta uE) \, dx = \int_{\partial\Omega} (u\partial_{\nu}E - \partial_{\nu}uE) \, dS + \int_{\partial T_{\varepsilon}^{x_0}} (u\partial_{\nu}E - \partial_{\nu}uE) \, dS. \tag{8}$$

В равенстве (8) устремим ε к нулю, в силу тождества (7) получим

$$-\int_{\Omega} \Delta u E dx = \int_{\partial \Omega} (u \partial_{\nu} E - \partial_{\nu} u E) dS + \lim_{\varepsilon \to 0} \int_{\partial T_{\varepsilon}^{x_{0}}} u \partial_{\nu} E dS = \int_{\partial \Omega} (u \partial_{\nu} E - \partial_{\nu} u E) dS - u(x_{0}).$$

Таким образом, получаем, что

$$u(x_0) = \int_{\Omega} E(x, x_0) \Delta u dx + \int_{\partial \Omega} u \partial_{\nu} E(x, x_0) dS - \int_{\partial \Omega} E(x, x_0) \partial_{\nu} u dS.$$
 (9)

Каждое слагаемое в полученном представении имеет своё название.

Определение. Выражение

$$P_1(x_0) := \int_{\Omega} E(x, x_0) \Delta u dx$$

называется объёмным потенциалом.

Выражение

$$P_2(x_0) := \int_{\partial\Omega} u \partial_{\nu} E(x, x_0) dS$$

называется потенциалом двойного слоя.

Выражение

$$P_3(x_0) := \int_{\partial\Omega} E(x, x_0) \partial_{\nu} u dS$$

называется потенциалом простого слоя.

1.4 Теоремы о среднем для гармонических функций

Теорема 1.3 (О среднем по сфере). Пусть $u \in C^2(T_R^{x_0}) \cap C(\overline{T}_R^{x_0})$, предположим, что $\Delta u = 0$ в $T_R^{x_0}$ тогда

$$u(x_0) = \frac{1}{|S_R^{x_0}|} \int_{S_R^{x_0}} u(x) dS$$

 \square Рассмотрим $T_{\rho}^{x_0}$, $\rho < R$. Тогда в силу представления в виде суммы трёх потенциалов (9), где один из них равен нулю в силу гармоничности, имеем

$$u(x_0) = \int_{S_{\rho}^{x_0}} u \partial_{\nu} E(x, x_0) dS - \int_{S_{\rho}^{x_0}} E(x, x_0) \partial_{\nu} u dS = \frac{1}{\omega_n \rho^{n-1}} \int_{S_{\rho}^{x_0}} u(x) dS$$

Заметим, что по формуле Гаусса - Остроградского

$$\int_{S_{\rho}^{x_0}} E(x,x_0) \partial_{\nu} u dS = \int_{S_{\rho}^{x_0}} \frac{\rho^{2-n}}{(2-n)\omega_n} \partial_{\nu} u dS = \frac{\rho^{2-n}}{(2-n)\omega_n} \int_{T_{\rho}^{x_0}} \operatorname{div} \nabla u dx = 0.$$

Из того, что

$$\partial_{\nu}E(x,x_0) = \frac{1}{\omega_n \rho^{n-1}} = \frac{1}{|S_{\rho}^{x_0}|},$$

следует

$$u(x_0) = \frac{1}{|S_{\rho}^{x_0}|} \int_{S_{\rho}^{x_0}} u dS.$$

Переходя к пределу при $\rho \to R$, получаем искомое.

Теорема 1.4 (О среднем по шару). Пусть $u \in C^2(T_R^{x_0}) \cap C(\overline{T}_R^{x_0})$. Предположим, что $\Delta u = 0$ в $T_R^{x_0}$. Тогда

$$u(x_0) = \frac{1}{|T_R^{x_0}|} \int_{T_R^{x_0}} u(x) dS.$$

 \square Из теоремы о среднем по сфере 1.3 следует, что для $\rho < R$

$$\omega_n \rho^{n-1} u(x_0) = \int_{S_{\rho}^{x_0}} u(x) dS.$$
 (10)

В силу теоремы Фубини получаем

$$|T_R^{x_0}|u(x_0) = \frac{\omega_n}{n} R^n u(x_0) = \int_0^R \omega_n \rho^{n-1} u(x_0) u(x_0) d\rho = \int_0^R \int_{S_\rho^{x_0}} u(x) dS d\rho = \int_{T_R^{x_0}} u(x) dS.$$

Теорема 1.5. Пусть $\varphi \in C[0,R]$. Положим

$$A_{\varphi} := \int_0^R \varphi(|x - x_0|) dx.$$

Прдположим, что A_{φ} отлично от нуля. Пусть $u \in C^2(T_R^{x_0}) \cap C(\overline{T}_R^{x_0})$. Тогда

$$u(x_0) = \frac{1}{A_{\varphi}} \int_{T_{\pi^0}} u(x) \varphi(|x - x_0|) dx.$$

 \square Умножим тождество (10) обоих сторон на $\varphi(\rho) = \varphi(|x-x_0|)$ и проинтегрируем по ρ .

$$u(x_0) \int_0^R \omega_n \rho^{n-1} \varphi(\rho) d\rho = \int_0^R \int_{S_{\rho}^{x_0}} \varphi(|x - x_0|) dS dx = \int_{T_R^{x_0}} \varphi(|x - x_0|) dS dx.$$

Теорема 1.6 (О бесконечной дифференцируемости). Пусть Ω область в \mathbb{R}^n , u(x) гармоническая в Ω . Тогда $u \in C^{\infty}(\Omega)$.

 \square Пусть $x \in \Omega, h > 0, \overline{T}_h^x \subset \Omega, \omega_h$ – ядро усреднения. Рассмотрим

$$u_h(x) = \int_{\mathbb{R}^n_y} \omega_h(|x-y|) u(y) dy = \int_{|x-y| < h} \omega_h(|x-y|) u(y) dy = \int_0^h \omega_h(\rho) \int_{S^x_\rho} u(y) dS d\rho.$$

В силу теоремы о среднем $\int_{S^x_{\varrho}} u(y) dS = u(x) |S^x_{\varrho}|$, поэтому

$$u_h(x) = u(x) \int_0^h \omega_h(\rho) |S_\rho^x| d\rho = u(x) \int_0^h \int_{S_\rho^x} \omega_h(|x - y|) dS_y d\rho$$

В силу свойств ядра усреднения $\int_0^h \int_{S_\rho^x} \omega_h(|x-y|) dS_y d\rho = 1$, откуда для достаточно малых h имеет место тождество $u_h(x) = u(x)$. Так как функция $u_h(x)$ является бесконечно дифференцируемой.

1.5 Принцип максимума

Теорема 1.7 (Слабый принцип максимума). Пусть Ω – ограниченная область в \mathbb{R}^n , $u \in C^2(\Omega) \cap C(\overline{\Omega})$, $\Delta u \geq 0$ в Ω . Тогда справедливо тождество

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u.$$

 \square Предположим сначала, что $\Delta u>0$ в $\Omega.$ Так как функция u непрерывна в $\overline{\Omega}$, то её максимум достигается в какой-то точке x_0 .

Пусть $x_0 \in \Omega$. Тогда матрица Якоби J_u является нулевой в этой точке, и квадратичная форма матрицы вторых частных производных неположительна, то есть

$$\sum_{i,j=1}^{n} \partial_{x_i x_j} u(x_0) \xi_i \xi_j \le 0.$$

В частности, $\partial_{x_i x_i} u(x_0) \le 0$, откуда $\Delta u(x_0) \le 0$. Противоречие с предположением, что $\Delta u > 0$ в Ω . Поэтому в этом случае максимум достигается в точке x_0 , лежащей на $\partial \Omega$.

Рассмотрим общий случай, когда $\Delta u \geq 0$. Введём новую функцию

$$v_{\varepsilon}(x) := u(x) + \varepsilon l(x) = u(x) + \varepsilon \sum_{i=1}^{n} x_i^2.$$

Тогда

$$\Delta v_{\varepsilon} = \Delta u + n\varepsilon \Delta x_i^2 = \Delta u + 2n\varepsilon > 0.$$

Так как l является непрерывной функцией на компакте $\overline{\Omega}$, то её значения ограничены по модулю какой-то константой K. Тогда

$$\max_{\overline{\Omega}} u \le \max_{\overline{\Omega}} v_{\varepsilon} = \max_{\partial \Omega} v_{\varepsilon} \le \max_{\partial \Omega} u + nK\varepsilon.$$

Устремляя ε к нулю, получаем искомое.

Теорема 1.8 (Строгий принцип максимума). Пусть $u \in C^2(\Omega) \cap C(\overline{\Omega})$, Ω – ограниченная область с гладкой границей. Предположим, что $\Delta u = 0$ в Ω . Положим

$$\max_{\overline{\Omega}} u(x) := M, \qquad \min_{\overline{\Omega}} u(x) := m.$$

Тогда, если для $x_0 \in \Omega$ справедливо тождество $u(x_0) = M$ ($u(x_0) = m$), то $u(x) \equiv \text{const.}$

 \square Рассмотрим случай, когда в некоторой точке $x_0 \in \Omega$ достигается значение M функции u. Положим

$$L := \{ x \in \Omega \mid u(x) = M \}.$$

Докажем, что множество L является открыто-замкнутым подмножеством $\Omega.$ Оно непусто, потому что $x_0 \in L.$ Замкнутость следует из непрерывности u.

Докажем открытость. От противного, пусть существует $x_1 \in L$ такой, что любая его окрестность в Ω содержит точку не из L. Выберем такую окрестность $T_{\varepsilon_1}^{x_1}$, что $\overline{T}_{\varepsilon_1}^{x_1} \subset \Omega$. Тогда существует $x_2 \in T_{\varepsilon_1}^{x_1}$ такой, что $u(x_2) < M$. В силу непрерывности функции u существует окрестность $T_{\varepsilon_2}^{x_2}$, $\overline{T}_{\varepsilon_2}^{x_2} \subset T_{\varepsilon_1}^{x_1}$ точки x_2 такая, что для любого $x \in T_{\varepsilon_2}^{x_2}$ справедливо неравенство $u(x) < M - \delta$. Тогда в силу теоремы о среднем по шару 1.4 имеет место оценка

$$u(x_{1}) = \frac{1}{|T_{\varepsilon_{1}}^{x_{1}}|} \int_{T_{\varepsilon_{1}}^{x_{1}}} u(x)dx = \frac{1}{|T_{\varepsilon_{1}}^{x_{1}}|} \left(\int_{T_{\varepsilon_{1}}^{x_{1}} \setminus \overline{T}_{\varepsilon_{2}}^{x_{2}}} u(x)dx + \int_{T_{\varepsilon_{2}}^{x_{2}}} u(x)dx \right) \leq \frac{M(|T_{\varepsilon_{1}}^{x_{1}}| - |T_{\varepsilon_{2}}^{x_{2}}|) + (M - \delta)|T_{\varepsilon_{2}}^{x_{2}}|}{|T_{\varepsilon_{1}}^{x_{1}}|} = M - \delta \frac{|T_{\varepsilon_{2}}^{x_{2}}|}{|T_{\varepsilon_{1}}^{x_{1}}|} < M.$$

Но так как $x_1 \in L$, то $u(x_1) = M$. Противоречие с не открытостью L. По теореме об открыто-замкнутом подмножестве области $L = \Omega$, то есть $u \equiv M$. Для рассмотрения минимума достаточно рассмотреть v := -u.

Следствие 1.1. Пусть Ω – ограниченная область в \mathbb{R}^n , $u \in C^2(\Omega) \cap C(\overline{\Omega})$, $\Delta u \leq 0$ в Ω . Тогда справедливо тождество

$$\min_{\overline{\Omega}} u = \min_{\partial \Omega} u.$$

Применяем слабый принцип максимума 1.3 для v := -u.

Следствие 1.2. Пусть Ω – ограниченная область в \mathbb{R}^n , $u \in C^2(\Omega) \cap C(\overline{\Omega})$, $\Delta u \equiv 0$ в Ω . Тогда справедливы тождества

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u, \qquad \min_{\overline{\Omega}} u = \min_{\partial \Omega} u, \qquad \max_{\overline{\Omega}} |u| = \max_{\partial \Omega} |u|.$$

□ Применяем слабый принцип максимума 1.3 и следствие 1.1.

Теорема 1.9 (лемма Вейля). Пусть $u \in L^p(\Omega)$, где $p \ge 1$, Ω – ограниченная область в \mathbb{R}^n , u для любой финитной φ на Ω справедливо тождество

$$\int_{\Omega} u \Delta \varphi dx = 0.$$

Тогда функция и является гармонической.

Теорема 5 (О знаке нормальной производной гармонической функции в точке минимума(максимума)). Пусть $u \in C^2(T_R^{x_0}) \cap C(\overline{T}_R^{x_0})$, предположим, что $\Delta u = 0$ в $T_R^{x_0}$ $u \neq const$ в $T_R^{x_0}$ Также предположим, что в точке $x' \in S_R^{x_0}$, $\min_{\overline{T}_R^{x_0}} u(x) = u(x')$

Тогда, если существует нормальная производная $\frac{\partial u}{\partial \nu}(x')$, ν - внешняя единичная нормаль к границе в точке x', то

$$\frac{\partial u}{\partial \nu}(x') < 0$$

2 Лекция 16.

Лемма о знаке нормальной производной гармонической функции в точке максимума.

Пусть $u(x) \neq const$ - гармоническая в $\Omega, \ x_0 \in \partial \Omega$ - точка максимума $u(x), \ \exists B^{x'}_{\rho} \subset \Omega : S^{x'}_{\rho} \cap \partial \Omega = \{x_0\},$ $\exists \frac{\partial u}{\partial \nu}(x_0) = \lim_{s \longrightarrow +0} \frac{u(x_0) - u(x_0 - s \nu)}{s}$. Тогда $\frac{\partial u}{\partial \nu}(x_0) > 0$. Доказательство.

Можно считать, что $u(x_0) = 0, u(x) < 0$ в Ω . Вспомним следствие принципа максимума: если $\Delta u = \Delta v = 0$ в Ω , $u(x) \le v(x)$ на $\partial\Omega$, то $u(x) \le v(x)$ в Ω .

Рассмотрим $w(x) = -(|x-x'|^{2-n} - \rho^{2-n})$. При $n \ge 3$ w(x) будет гармонической в $\mathbb{R}^n \setminus \{x'\}$. Рассмотрим шаровой слой $K=B^{x'}_{\rho}\setminus\overline{B}^{x'}_{\rho/2}$ и функции $u(x),\varepsilon w(x)$ на K. Внешняя граница: $|x-x'|=\rho,$ и на ней $w(x)=0,u(x)\leq 0.$

Внутренняя граница: $|x-x'|=\rho/2$, и на ней $u(x)<-c<0, w(x)=-(\left(\frac{\rho}{2}\right)^{2-n}-\rho^{2-n})=-\frac{2^{n-2}-1}{\rho^{n-2}}.$ $\exists \varepsilon>0: \varepsilon w(x)\geq u(x)$ на $\partial K, \ \varepsilon=c\frac{\rho^{n-2}}{2^{n-2}-1}.$ Значит, $\varepsilon w(x)\geq u(x)$ в K. $\varepsilon w(x_0)-\varepsilon w(x_0-s\nu)\leq u(x_0)-u(x_0-s\nu)\Rightarrow 0<\varepsilon\frac{\partial w}{\partial \nu}(x_0)\leq \frac{\partial u}{\partial \nu}(x_0)$

Примечание. В случае n=2 достаточно рассмотреть функцию $w(x)=\ln|x-x_0|-\ln\rho$.

2.2 Основные краевые задачи для уравнения Лапласа и единственность решения этих задач.

2.2.1 ЗАДАЧА ДИРИХЛЕ.

$$\begin{cases} \Delta u=0 \quad \text{в ограниченной области } \Omega, \quad u\in C^2(\Omega)\cap C^0(\overline{\Omega})\\ u|_{\partial\Omega}=\varphi \quad \varphi\in C(\partial\Omega) \end{cases}$$

Решение задачи Дирихле единственно. Если мы рассмотрим w(x) - разность двух решений, то имеем $\Delta w =$ $0,w|_{\partial\Omega}=0,$ тогда по принципу максимума/минимума $w\equiv0.$

2.2.2 ЗАДАЧА НЕЙМАНА.

$$\begin{cases} \Delta u=0 & \text{в ограниченной области } \Omega, \quad u\in C^2(\Omega)\cap C^1(\overline{\Omega})\\ \\ \frac{\partial u}{\partial \nu}|_{\partial\Omega}=\psi \quad \psi\in C(\partial\Omega) \end{cases}$$

Условие разрешимости: $\int_{\partial \Omega} \psi ds = 0$.

Решение задачи Неймана определено с точностью до константы. Если мы рассмотрим w(x) - разность двух решений, то имеем $\Delta w = 0$, $\frac{\partial w}{\partial u}|_{\partial\Omega} = 0$, тогда по лемме о нормальной производной w = const.

Оценки производных гармонической функции.

$$u(x_0) = \frac{1}{\omega_n R^n} \int_{|x - x_0| \le R} u(x) dx$$

u(x) - гармоническая $\Rightarrow \frac{\partial u}{\partial x_k}$ - гармоническая.

$$\left|\frac{\partial u}{\partial x_k}(x_0)\right| = \frac{1}{\omega_n R^n} \int_{|x-x_0| \le R} \frac{\partial u}{\partial x_k} dx = \frac{1}{\omega_n R^n} \int_{|x-x_0| \le R} u \cos(\nu, x) ds$$

$$\left|\frac{\partial u}{\partial x_k}(x_0)\right| \leq \frac{\sigma_n R^{n-1}}{\omega_n R^n} \max_{|x-x_0=R|} |u|$$

,где σ_n - площадь единичной сферы, ω_n - объем единичного шара в \mathbb{R}^n .

$$\left| \frac{\partial u}{\partial x_k}(x_0) \right| \le \frac{n}{R} \max_{|x - x_0 = R|} |u|$$

Пусть $\overline{\Omega}_1 \subset \Omega_0$ - ограниченная область в \mathbb{R}^n и $dist(\partial \Omega_1, \partial \Omega_0) \geq d > 0$. Пусть u - гармоническая в $\Omega_0, u \in C^2(\Omega) \cap C(\overline{\Omega})$. Тогда

$$\forall x \in \Omega_1 \quad \left| \frac{\partial u}{\partial x_k}(x_0) \right| \le \frac{n}{d} \max_{\overline{\Omega}_0} |u|$$

Аналогично (методом математической индукции) доказывается неравенство

$$|\mathcal{D}^{\alpha}u(x)| \leq \left(\frac{nm}{\sigma}\right)^m max_{\overline{\Omega}_0}|u|$$

, где $x \in \Omega_0$, $dist(x,\partial\Omega_0) = \sigma > 0$. Действительно, пусть оценка доказана для всех $\alpha: |\alpha| \le k-1$. Возьмем два шара $B^x_{\sigma'}$ и $B^x_{\sigma'/k}$, где σ' - любое положительное число, меньшее σ . По предположению индукции для любой точки ξ из шара $B^x_{\sigma'/k}$ и любого $\beta, |\beta| = k-1$, имеет место неравенство

$$|\mathcal{D}^{\beta}u(\xi)| \leq \left(\frac{n(k-1)}{\sigma' - \sigma'/k}\right)^{k-1} \max_{\overline{\Omega}_0} |u| = \left(\frac{nk}{\sigma'}\right)^{k-1} \max_{\overline{\Omega}_0} |u|$$

Таким образом, для любого β , $|\beta|=k-1$, гармоническая функция $|\mathcal{D}^{\beta}u(\xi)|$ ограничена в шаре $B^x_{\sigma'/k}$ постоянной $\left(\frac{nk}{\sigma'}\right)^{k-1} \max_{\overline{\Omega}_0} |u|$. Тогда для первых производных этой функции по уже доказанному имеем

$$|\mathcal{D}^{\beta}u(\xi)_{\xi_l}| \leq \left(\frac{nk}{\sigma'}\right)^k max_{\overline{\Omega}_0}|u|$$

Переходя в этом неравенстве к пределу при $\sigma' \to \sigma - 0$, получаем требуемое неравенство. Ч.т.д.

2.4 Аналитичность гармонических функций.

Теорема. Гармоническая в области Ω функция u(x) является аналитической в Ω .

$$u(x) = \sum_{|\alpha| < m} \frac{\mathcal{D}^{\alpha} u(x_0)}{\alpha!} (x - x_0)^{\alpha} + \sum_{|\alpha| = m} \frac{\mathcal{D}^{\alpha} u(\tilde{x})}{\alpha!} (x - x_0)^{\alpha}$$

, где $\alpha!=\alpha_1!\dots\alpha_n!,\quad (x-x_0)^\alpha=(x_1-x_{0\,1})^{\alpha_1}\dots(x_n-x_{0\,n})^{\alpha_n}.$ Обозначим

$$\gamma_m(x_0, x, \tilde{x}) = \sum_{|\alpha| = m} \frac{\mathcal{D}^{\alpha} u(\tilde{x})}{\alpha!} (x - x_0)^{\alpha}$$

Пусть $|x-x_0|<arepsilon,\quad x, ilde{x}\in B^{x_0}_{
ho},\quad u$ - гармоническая в $B^{x_0}_{2
ho}.$ Тогда

$$|\gamma_m(x_0, x, \tilde{x})| \le \varepsilon^m \left(\frac{nm}{\rho}\right)^m \max_{B_{2\rho}^{x_0}} |u| \sum_{|\alpha| = m} \frac{1}{\alpha!}$$

Но

$$\sum_{|\alpha|=m} \frac{1}{\alpha!} = \frac{1}{m!} \sum_{|\alpha|=m} \frac{m!}{\alpha!} = \frac{n^m}{m!}$$

Получаем

$$|\gamma_m(x_0, x, \tilde{x})| \le \left(\frac{\varepsilon n^2 m}{\rho}\right)^m \frac{1}{m!} \max_{B_{2\rho}^{x_0}} |u|$$

Согласно формуле Стирлинга, $m! \sim \sqrt{2\pi m} \left(\frac{m}{e}\right)^m$, тогда $|\gamma_m(x_0, x, \tilde{x})|$ оценивается сверху величиной, эквивалентной

$$\frac{c}{\sqrt{m}} \left(\frac{\varepsilon e n^2}{\rho}\right)^m \to 0$$
при $m \to \infty, \varepsilon \ll 1$

3 Лекция 17.

3.1 Функция Грина. Задача Дирихле для уравнения Лапласа.

Теорема 3.1 (Лиувилль). Пусть u(x) - гармоническая в \mathbb{R}^n , неотрицательная функция. Тогда u=const. Доказательство: Зафиксируем точку x_0 и шар $Q_R^{x_0}$ радиуса R с центром в нашей точке.Поскольку производная гармонической функции – также функция гармоническая, по теореме о среднем имеем:

$$\frac{\partial u}{\partial x_j}(x_0) = \frac{1}{|Q_R^{x_0}|} \int_{Q_R^{x_0}} \frac{\partial u}{\partial x_j}(x) \, dx = \frac{1}{|Q_R^{x_0}|} \int_{S_R^{x_0}} u(x) \nu_j(x) dS$$

Мы использовали формулу Стокса, чтобы перейти к интегрированию по границе шара. А теперь используем еще одну теорему о среднем, на этот раз из курса математического анализа:

$$=\frac{1}{|{_R^{x_0}}|}\nu_j(\tilde{x})\int_{S_R^{x_0}}u(x)dS=\frac{|S_R^{x_0}|}{|Q_R^{x_0}|}\nu_j(\tilde{x})|u(x_0)|$$

Здесь $|S_R^{x_0}| = w_n R^{n-1}$,
а $|Q_R^{x_0}| = \frac{w_n}{n} R^n$. Таким образом,

$$\left|\frac{\partial u}{\partial x_j}(x_0)\right| \le \frac{n}{R}|u(x_0)| \to 0 \quad R \to \infty$$

Ничего не мешает нам выбрать радиус шара сколь угодно большим, а значит, $|\frac{\partial u}{\partial x_j}(x_0)|=0 \quad \forall j=1,\ldots,n.$ Следовательно, u=const, что и требовалось.

Задача: Пусть u(x) - гармоническая в \mathbb{R}^n и $u(x) \ge -C(1+|x|^m)$, где c,m>0 u(x). Показать, что в этом случае u(x) есть полином степени не выше [m].

Рассмотрим задачу Дирихле для оператора Лапласа:

$$\begin{cases} \Delta u(x) = 0 & x \in \Omega \\ u(x) = \varphi(x) & x \in \partial\Omega, f \in C(\partial\Omega) \end{cases}$$

Под классическим решением понимается решение из класса $C^2(\Omega) \cap C(\overline{\Omega})$.

Для такого решения ранее была получена формула

$$u(x_0) = \int_{\Omega} E(|x - x_0|) \Delta u(x) \, dx + \int_{\partial \Omega} u(x) \frac{\partial E(|x - x_0|)}{\partial \nu} \, dS - \int_{\partial \Omega} E(|x - x_0|) \frac{\partial u}{\partial \nu}(x) \, dS$$

Пусть существует функция $g(x,x_0)$ со следующими свойствами:

 $g(x,x_0)\in C^2_x(\overline{\Omega})$, $\Delta_x g(x,x_0)=0$ $\forall x_0\in\Omega$ и при этом $g(x,x_0)|_{x\in\partial\Omega}=-E(|x-x_0|)|_{x\in\partial\Omega},\ \forall x_0\in\Omega$ Запишем вторую формулу Грина для $u(x),g(x,x_0)$:

$$\int_{\Omega} (u\Delta g - g\Delta u) \, dx = \int_{\partial\Omega} u \frac{\partial g}{\partial \nu} - g \frac{\partial u}{\partial \nu}$$

Поскольку функции u и g — гармонические в области, то левая часть формулы обращается в ноль. Теперь прибавим к левой и правой частям уже упоминавшееся соотношение:

$$u(x_0) = \int_{\partial \Omega} u(x) \frac{\partial E(|x - x_0|)}{\partial \nu} dS - \int_{\partial \Omega} E(|x - x_0|) \frac{\partial u}{\partial \nu}(x) dS$$

И поскольку $g(x, x_0) + E(|x - x_0|) = 0$ на $\partial \Omega$, получаем:

$$u(x_0) = \int_{\partial \Omega} u(x) \frac{\partial (E(|x - x_0|) + g(x, x_0))}{\partial \nu} dS$$

Определение: Функцией Грина называется функция $G(x,x_0) = E(|x-x_0|) + g(x,x_0)$, где функция $g(x,x_0)$ введена ранее. Точка x_0 называется *полюсом*.

Итак, если $u \in C^2(\overline{\Omega})$ – решение задачи Дирихле, то:

$$u(x_0) = u(x_0) = \int_{\partial\Omega} u(x) \frac{\partial G(x, x_0)}{\partial \nu} dS$$

Лемма 3.2. $\forall x_1, x_0 \in \Omega$ $G(x_1, x_0) = G(x_0, x_1)$

Доказательство: Исходя из определения функции Грина, $\Delta_x G(x,x_0) = 0$ при $\neq x_0$. Вырежем вокруг точек x и x_0 шарики маленького радиуса ε , и то что осталось обозначим за Ω_{ε} :

$$\Omega_{\varepsilon} = \Omega(\overline{Q_{\varepsilon}^{x_0} \cup Q_{\varepsilon}^{x_1}})$$

Введем функции $u(x) = G(x, x_0)$, и $v(x) = G(x, x_1)$. В области Ω_{ε} они гармонические, поэтому по второй формуле Грина:

$$0 = \int_{\Omega_{\varepsilon}} (u \Delta v - v \Delta u) \, dx = \int_{\partial \Omega_{\varepsilon}} \left(u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu} \right) dS$$

Поскольку $G(x,x_0)|_{\partial\Omega}=0$ (вспомним, что функция g определялась условием $g(x,x_0)|_{x\in\partial\Omega}=-E(|x-x_0|)|_{x\in\partial\Omega}, \ \forall x_0\in \mathbb{R}$ Ω), то $u(x)|_{\partial\Omega}=v(x)|_{\partial\Omega}=0$. Поэтому

$$0 = \int_{S_{\varepsilon}^{x_0}} G(x, x_0) \frac{\partial G(x, x_1)}{\partial \nu} dS + \int_{S_{\varepsilon}^{x_1}} G(x, x_0) \frac{\partial G(x, x_1)}{\partial \nu} dS$$

Перейдем к пределу при $\varepsilon \to 0$, воспользовавшись тем, что

$$\frac{\partial E(|x-x_1|)}{\partial \nu} = -\frac{\partial E}{\partial r}(r) = -\frac{1}{w_n r^{n-1}}$$

Получаем,что

$$\int_{S_\varepsilon^{x_1}} G(x,x_0) \frac{\partial G(x,x_1)}{\partial \nu} \, dS = -\frac{1}{w_n \varepsilon^{n-1}} \int_{S_\varepsilon^{x_1}} G(x,x_0) \, dS \to -G(x_1,x_0)$$

Аналогично переходя к пределу в другом слагаемом, имеем

$$0 = -G(x_1, x_0) + G(x_0, x_1)$$

что и требовалось доказать.

4 Лекция 18.

Интеграл Пуассона.

 $u(x) \in C^2(\overline{\Omega}), \quad \Omega$ - ограниченная область в $\mathbb{R}^n, \quad \partial \Omega \in C^1$ Будем решать следующую задачу (1):

$$\begin{cases} \Delta u = f(x) & \text{в } \Omega \\ u|_{\partial\Omega} = \varphi(x) \end{cases}$$

$$u(x_0) = \int_{\Omega} f(x)G(x, x_0)dx + \int_{\partial \Omega} \varphi(x)\frac{\partial G}{\partial \nu_x}(x, x_0)ds$$

 $G(x,x_0)$ - функция Грина, G не более чем единственна. $\Omega = Q_R^0 \subset \mathbb{R}^n, \quad G(x, x_0) = E(|x - x_0|) - E\left(\frac{\rho}{R}|x - x_*|\right)$

$$\begin{cases} \Delta u = f(x), x \in \Omega, & u \in C^2(\overline{Q_R^0}) \\ & u|_{S_R^0} = \varphi(x) \end{cases}$$

,то $u(x_0) = \int_{S_p^0} \varphi(x) \frac{\partial G(x,x_0)}{\partial \nu_x} ds_x$

$$\frac{\partial G(x,x_0)}{\partial \nu}|_{x \in S_R^0, x_0 \in Q_R^0} = E'(r)\frac{\partial |x-x_0|}{\partial \nu} - \frac{\rho}{R}E'(\frac{\rho}{R}r_1)\frac{\partial |x-x_*|}{\partial \nu}$$

, где $r=|x-x_0|, r_1=|x-x_*|$. $\frac{\partial |x-x_0|}{\partial \nu}=\sum_{j=1}^n \frac{x_j-x_{0_j}}{|x-x_0|}=\cos\gamma,$ где γ - угол между ν и $x-x_0$. Аналогично $\frac{\partial |x-x_*|}{\partial \nu}=\cos\beta$.

По теореме косинусов $\rho^2=R^2+r^2-2Rr\cos\gamma\Rightarrow\cos\gamma=rac{R^2+r^2ho^2}{2Rr}$

Аналогично

$$\cos \beta = \frac{R^2 + r_1^2 - \rho_1^2}{2Rr_1} = \frac{R^2 + \frac{R^2r^2}{\rho^2} - \frac{r^4}{\rho^2}}{2R\frac{r_2}{\rho}} = \frac{1}{\rho} \frac{\rho^2 + r^2 - R^2}{2r}$$

Т.к. $E(r)=-\frac{r^{2-n}}{\omega_n(n-2)},$ то $E'(r)=\frac{1}{\omega_nr^{n-1}}.$

Тогда

$$\frac{\partial G(x, x_0)}{\partial \nu}|_{x \in S_R^0, x_0 \in Q_R^0} = E'(r)(\cos \gamma - \frac{\rho}{R}\cos \beta) = E'(r)\frac{R^2 - \rho^2}{Rr} = \frac{R^2 - |x_0|^2}{\omega_n R} \frac{1}{|x - x_0|^n}$$

Следовательно.

$$u(x_0)=rac{R^2-|x_0|^2}{\omega_nR}\int_{S^0_p}rac{arphi(x)}{|x-x_0|^n}ds_x$$
 - интеграл Пуассона

 $r^2 = R^2 + \rho^2 - 2R\rho\cos\alpha$, тогда

$$u(x_0) = \frac{R^2 - |x_0|^2}{\omega_n R} \int_{S_p^0} \frac{\varphi(x) ds_x}{(R^2 + |x_0|^2 - 2R|x_0|\cos\alpha)^{n/2}}$$

Пусть $\varphi \in C(S_R^0)$. Тогда функция u(x), задаваемая интегралом Пуассона, есть решение задачи (1). Необходимо проверить 2 условия: $1)\;u(x_0)=\int_{\partial\Omega}\varphi(x)\frac{\partial G(x,x_0)}{\partial\nu_x}ds_x\text{- гармоническая по }x_0,\quad x_0\in Q^0_R.$ 2) $\forall\hat{x}\in S^0_R\quad\exists\lim_{x_0\longrightarrow\hat{x}}u(x_0)=\varphi(\hat{x})$

Докажем это.

- 1) При $x \neq x_0$ $\Delta_x G(x,x_0) = 0 \Rightarrow \Delta_{x_0} G(x_0,x) = 0 \Rightarrow \Delta_{x_0} G(x,x_0) = 0$ в силу симметричности G. $x_0 \in \Omega \subset\subset Q_R^0 \Rightarrow \Delta_{x_0} u(x_0) = \int_{\partial\Omega} \varphi(x) \frac{\partial}{\partial \nu_x} \Delta_{x_0} G(x,x_0) ds_x = 0$ 2) В силу решения задачи Дирихле задача

$$\begin{cases} \Delta u = 0, x \in Q_R^0 \\ u|_{S_R^0} = 1 \end{cases}$$

имеет единственное решение $u \equiv 1$, тогда

$$1 = \frac{R^2 - |x_0|^2}{\omega_n R} \int_{S_n^0} \frac{ds_x}{r^n}$$

$$\varphi(\hat{x}) = \frac{R^2 - |x_0|^2}{\omega_n R} \int_{S_D^0} \frac{\varphi(\hat{x})}{r^n} ds_x$$

$$|u(x_0) - \varphi(\hat{x})| = \left| \frac{R^2 - |x_0|^2}{\omega_n R} \int_{S_R^0} \frac{\varphi(x) - \varphi(\hat{x})}{r^n} ds_x \right| \le \frac{R^2 - |x_0|^2}{\omega_n R} \int_{S_R^0} \frac{|\varphi(x) - \varphi(\hat{x})|}{r^n} ds_x =$$

$$= \frac{R^2 - |x_0|^2}{\omega_n R} \int_{\sigma_{\delta(\varepsilon)}} \frac{|\varphi(x) - \varphi(\hat{x})|}{r^n} ds_x + \frac{R^2 - |x_0|^2}{\omega_n R} \int_{S_R^0 \setminus \sigma_{\delta(\varepsilon)}} \frac{|\varphi(x) - \varphi(\hat{x})|}{r^n} ds_x$$

Первое слагаемое обозначим за I_1 , второе за I_2 . Здесь мы пользовались тем, что $\forall \varepsilon \quad \exists \delta > 0: \quad x \in \sigma_\delta = Q^{\hat x}_\delta \cap S^0_R \Rightarrow |\varphi(x) - \varphi(\hat x)| < \frac{\varepsilon}{2}.$

$$I_1 \leq \frac{\varepsilon}{2} \frac{R^2 - |x_0|^2}{\omega_n R} \int_{S_R^0} \frac{ds_x}{r^n} = \frac{\varepsilon}{2}$$

Что можно сказать об I_2 ? При $x\in S^0_R\setminus\sigma_{arepsilon}$ имеем $|x-x_0|\geq a>0$, как только $|x_0-x|<\delta_1$. Тогда

$$I_2 \le 2max_{S_R^0} |\varphi(x)| a^{-n} \frac{\omega_n R^{n-1}}{\omega_n R} (R^2 - |x_0|^2) = c_1 (R^2 - |x_0|^2)$$

С другой стороны, $\exists \tilde{\delta} > 0: |x_0 - \hat{x}| < \tilde{\delta} \Rightarrow R^2 - |x_0|^2 < \frac{\varepsilon}{c_1}$. Тогда $I_2 < \frac{\varepsilon}{2}$. Ч.т.д.

4.2 Неравенство Харнака.

Пусть u(x) - гармоническая в Q_R^0 функция, непрерывная вплоть до границы; $u(x) \geq 0$. Тогда $\forall x \in Q_R^0$

$$\frac{R^{n-2}(R-\rho)}{(R+\rho)^{n-1}} \le u(x_0) \le \frac{R^{n-2}(R+\rho)}{(R-\rho)^{n-1}}$$

,где $\rho = |x_0|$.

Доказательство.

$$u(x_0) = \frac{R^2 - |x_0|^2}{\omega_n R} \int_{S_R^0} \frac{u(x)}{r^n} ds_x; \quad R - \rho \le r \le R + \rho$$

$$\frac{R^2 - |x_0|^2}{\omega_n R} \frac{1}{(R + \rho)^n} \int_{S_R^0} u(x) ds_x \le u(x_0) \le \frac{R^2 - |x_0|^2}{\omega_n R} \frac{1}{(R - \rho)^n} \int_{S_R^0} u(x) ds_x$$

Но $\int_{S_R^0} u(x) ds_x = u(0) \omega_n R^{n-1}$, откуда и получаем нужное нам утверждение. Ч.т.д.

4.3 Обратная теорема о среднем.

Пусть $u \in C(\Omega)$ и для любого шара $\overline{Q_r^{x_0}} \subset \Omega$ для u справедлива теорема о среднем по сфере. Тогда u(x) гармоническая в Ω функция.

Доказательство.

Задача

$$\begin{cases} \Delta v = 0, x \in Q_R^{x_0}, \overline{Q_r^{x_0}} \subset \Omega \\ v|_{S_R^{x_0}} = u|_{S_R^{x_0}} \end{cases}$$

имеет единственное решение, которое задается интегралом Пуассона.

Тогда имеем $v(x) \equiv u(x)$ в $Q_R^{x_0}$, что следует из равенства u(x) и v(x) на $\partial Q_R^{x_0}$, выполнения теоремы о среднем и принципа максимума.

4.4 Теорема об устранимой особенности.

Пусть u(x) - гармоническая в $\Omega \setminus \{x_0\}$ функция, $m(\rho) = \sup_{\Omega \setminus Q_a^{x_0}} |u(x)|$.

Пусть $m(\rho) \leq a(\rho)E(\rho)$, где $a(\rho) \to 0$ при $\rho \to 0$.

Тогда u(x) можно доопределить в x_0 таким образом, что полученная функция будет гармонична в Ω .

5 Лекция 19

Доказательство теоремы об устранимой особенности

Рассмотрим $Q_{\rho_1}^{x_0}: \overline{Q_{\rho_1}^{x_0}} \in \Omega$

Найдем:

$$\begin{cases} \Delta v(x) = 0, \ x \in Q_{\rho_1}^{x_0} \\ v(x) = u(x), \ x \in Q_{\rho_1}^{x_0} \end{cases}$$

Наша цель показать, что u(x)=v(x) в шаре всюду, кроме его центра x_0 . Рассмотрим $\omega(x)=v(x)-u(x), x\in Q_{\rho_1}^{x_0}/\overline{Q_{\rho_1}^{x_0}}$. $\Delta\omega=0,\ x\in Q_{\rho_1}^{x_0}/\overline{Q_{\rho_1}^{x_0}}$ $\omega=0$ на $S_{\rho_1}^{x_0}$

$$\max_{\overline{Q_{\rho_1}^{x_0}}}|v(x)|\leqslant \max_{S_{\rho_1}^{x_0}}|u(x)|=M$$

Возьмем произвольное $\varepsilon > 0, \ Q_{\rho_1}^{x_0}/\left\{x_0\right\}, \ |\omega(x)| \leqslant \varepsilon E(|x-x_0|)$

$$\max_{S_{\rho_1}^{x_0}} |\omega(x)| \leqslant \max_{S_{\rho_1}^{x_0}} |u(x)| + \max_{S_{\rho_1}^{x_0}} |v(x)| \leqslant$$
(19.1)

 $\forall \varepsilon > 0 \exists \rho \leqslant \rho_0 : M \leqslant \frac{\varepsilon}{2} |E(\rho)|$

С другой стороны по условию теоремы

$$\max_{S_{\sigma}^{2}} |u(x)| \leqslant a(\rho)|E(\rho)| \ \forall \varepsilon > 0 \ \exists \widetilde{\rho}_{0} : \forall \rho \leqslant \widetilde{\rho}_{0}, \ a(\rho) \leqslant \frac{\varepsilon}{2}$$

$$\Rightarrow \max_{S_a^{x_0}} |u(x)| \leqslant \frac{\varepsilon}{2} |E(\rho)|$$

Тогда (19.1) можно продолжить

$$\leq \varepsilon |E(\rho)|, \ \forall \rho \leq \widehat{\rho}$$

По принципу максимума:

$$|\omega(x)| \leq \varepsilon |E(|x-x_0|)|, \ \forall x \in Q_{\rho_1}^{x_0}/\{x_0\}$$

Следовательно, полагая $u(x_0) := v(x_0)$, получаем гармоническую функцию во всем шаре

5.1 Теория потенциала.

$$u(x) \in C^2(\overline{\Omega}), \ \partial \Omega \in C^1$$

Вспомним, что

$$u(x_0) = \int_{\Omega} E(x, x_0) \Delta u dx + \int_{\partial \Omega} u \frac{\partial E(x, x_0)}{\partial \nu} dS - \int_{\partial \Omega} E(x, x_0) \frac{\partial u}{\partial \nu} dS$$

- представяется в виде трех потенциалов.

Введем для каждого из потенциалов обозначения:

$$P_0(x)=\int\limits_{\Omega}
ho(\xi) rac{1}{|x-\xi|^{n-2}} d\xi, \ n\geqslant 3$$
 - объемный потенциал.

$$P_1(x) = \int\limits_{\Gamma} \mu(\xi) rac{1}{|x-\xi|^{n-2}} dS_{\xi}$$
 - потенциал простого слоя.

$$P_2(x)=\int\limits_{\Gamma}\sigma(\xi)rac{\partial}{\partial
u_\xi}rac{1}{|x-\xi|^{n-2}}dS_\xi$$
 - потенциал двойного слоя.

Здесь $E|x-\xi| = c_n \frac{1}{|x-\xi|^{n-2}}$.

Теорема 2

Пусть $\mu(x),\ \sigma(x)\in L_1(\Gamma).$ Тогда $P_1(x),\ P_2(x)$ - гармонические функции в R^n/Γ Доказательство

Можно дифференцировать 2 раза P_1 , P_2 под знаком интеграла.

$$\forall x \in \Omega_1; \ \Omega, \ \partial \Omega = \Gamma, \ \Omega_0 = R^n / \overline{\Omega} \ \Omega_1 \subset \subset \Omega$$

Возьмем Ω_1 , $\rho(\Omega_1,\Gamma) \geqslant \alpha > 0$. В $P_1(x)$ можно дифференцировать под знаком интеграла. То же самое и для Ω_0

$$\Delta_x P_1(x) = \int_{\Gamma} \mu(\xi) \Delta_x \frac{1}{|x - \xi|^{n-2}} dS_{\xi} = 0$$

Теперь посмотрим на потенциал двойного слоя

$$\frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} = -(n-2) \frac{1}{|x - \xi|^{n-1}} \sum_{k=1}^{n} \frac{\partial |x - \xi|}{\partial \xi_{k}} \nu_{\xi}^{k} = -(n-2) \frac{1}{|x - \xi|^{n-1}} \sum_{k=1}^{n} \frac{\xi_{k} - x_{k}}{|x - \xi|} \nu_{\xi}^{k} = -(n-2) \frac{\cos(r, \nu_{\xi})}{r^{n-1}}$$

Тогда

$$P_2(x) = \int_{\Gamma} \sigma(\xi) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} dS_{\xi} = \int_{\Gamma} \sigma(\xi) \sum_{k=1}^{n} \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} \nu_k^{\xi} dS_{\xi}$$

Теперь по тем же соображениям можно дифференцировать и потенциал двойного слоя.

Посмотрим, как ведут себя P_1 , P_2 на бесконечности. Если $\xi \in \Gamma$, |x| >> 1, $\Rightarrow |x - \xi| \geqslant |x| - |\xi| \geqslant \frac{|x|}{2}$ Тогда для P_1 :

$$|P_1(x)| \le \frac{2^{n-2}}{|x|^{n-2}} \int_{\Gamma} |\mu(\xi)| dS_{\xi} = \frac{M_0}{|x|^{n-2}}$$

Следовательно для $n \geqslant 3, \ P_1(x) \to 0, \ x \to \infty.$

По тем же соображениям

$$|P_2(x)| \leqslant \frac{M_1}{|x|^{n-2}}$$

 $|P_0(x)| \leqslant \frac{M_2}{|x|^{n-2}}$

Теорема 3

Пусть $\rho(x) \in C(\overline{\Omega})$. Тогда $P_0(x) \in C^1(\mathbb{R}^n)$ и $P_0(x)$ гармоническая функция при $x \in \mathbb{R}^n/\overline{\Omega}$ Доказательство.

Доказательство.
$$x \in \Omega \subset\subset \mathbb{R}^n/\overline{\Omega} \Rightarrow \Delta_x P_0(x) = \int_{\Omega} \rho(\xi) \Delta_x \frac{1}{|x-\xi|^{n-2}} d\xi = 0$$

 $x \in \overline{\Omega}, \ Q_{\varepsilon}^x$ - map.

$$P_{0}(x) \leqslant \int_{\overline{\Omega} \cap Q_{\varepsilon}^{x}} |\rho(\xi)| \frac{1}{|x-\xi|^{n-2}} d\xi + \int_{\overline{\Omega}/\overline{Q}_{\varepsilon}^{x}} |\rho(\xi)| \frac{1}{|x-\xi|^{n-2}} d\xi$$

$$\int_{\overline{\Omega} \cap Q_{\varepsilon}^{x}} |\rho(\xi)| \frac{1}{|x-\xi|^{n-2}} d\xi \leqslant \max_{\overline{\Omega}} |\rho(x)| \int_{Q_{\varepsilon}^{x}} \frac{1}{|x-\xi|^{n-2}} d\xi$$

$$\int_{\overline{\Omega}/O^{x}} |\rho(\xi)| \frac{1}{|x-\xi|^{n-2}} d\xi \leqslant M_{1,\varepsilon}$$

 $x \in \mathbb{R}^n/\overline{\Omega} \Rightarrow |P_0(x)| \leqslant M$ $\forall x_0 \in \mathbb{R}^n$

$$\begin{split} |P_0(x_0+h)-P_0(x_0)| &\leqslant \int\limits_{\overline{\Omega}\cap Q_\delta^x} |\rho(\xi)| \frac{1}{|x_0+h-\xi|^{n-2}} d\xi + \int\limits_{\overline{\Omega}\cap Q_\delta^x} |\rho(\xi)| \frac{1}{|x_0-\xi|^{n-2}} d\xi + \int\limits_{\overline{\Omega}\cap Q_\delta^x} |\rho(\xi)| \left| \frac{1}{|x_0+h-\xi|^{n-2}} - \frac{1}{|x_0-\xi|^{n-2}} \right| d\xi \\ & \int\limits_{\overline{\Omega}/\overline{Q}_\delta^x} |\rho(\xi)| \frac{1}{|x_0-\xi|^{n-2}} d\xi \text{ гладкая поверхность.} \end{split}$$

$$\forall \varepsilon > 0 \ \exists h_0 > 0, \ \forall |h| < h_0$$

$$\int\limits_{\overline{\Omega}/\overline{O}_{\xi}^{x}}|\rho(\xi)|\left|\frac{1}{|x_{0}+h-\xi|^{n-2}}-\frac{1}{|x_{0}-\xi|^{n-2}}\right|d\xi\leqslant\frac{\varepsilon}{3}$$

$$\begin{split} \int\limits_{\overline{\Omega}\cap Q^x_\delta} |\rho(\xi)| \frac{1}{|x_0-\xi|^{n-2}} d\xi \leqslant \max_{\overline{\Omega}} |\rho(x)| \int\limits_{Q^{x_0}_\delta} \frac{1}{|x-\xi|^{n-2}} d\xi &= C_1 \int\limits_0^\delta r dr = C_2 \delta^2 < \frac{\varepsilon}{3} \text{ при } \delta << 1 \\ |\int\limits_{\overline{\Omega}\cap Q^x_\delta} |\rho(\xi)| \frac{1}{|x_0+h-\xi|^{n-2}} d\xi |(|h|<\delta/2)(|x_0+h-\xi|\leqslant |x_0-\xi|+|h|<3\delta/2) \leqslant \\ \leqslant \max_{\overline{\Omega}} |\rho(x)| C_2 \int\limits_0^{3\delta/2} r dr &= C_3 \delta^2 \leqslant \varepsilon/3 \text{ при } \delta << 1 \end{split}$$

Окончательно получаем, что при малых h

$$|P_0(x_0+h) - P(x_0)| < \varepsilon \to P_0 \in C(\mathbb{R}^n)$$

Упраженение.

$$\frac{\partial P_0}{\partial x_k} \in C(\mathbb{R}^n)$$

$$\begin{array}{l} \Delta P_0(x) = 0, \ x \in \mathbb{R}^n / \overline{\Omega} \\ \Delta P_0(x) = -(n-2) \omega_n \rho(x), \ x \in \Omega', \ \omega_n = |S_1^0| \\ (n = 2: \ \Delta P_0 = -2 \pi \rho(x)) \end{array}$$

Теорема 4

Пусть $\rho \in C^1(\overline{(\Omega)})$. Тогда $P_0(x) \in C^2(\Omega)$, при $x \in \Omega$

$$\Delta P_0(x) = \begin{cases} -(n-2)\omega_n \rho(x), & n \geqslant 3\\ -2\pi\rho(x), & n = 2 \end{cases}$$

Доказательство:

 $n \geqslant 3$, вычислим

$$\begin{split} \frac{\partial P_0(x)}{\partial x_k} &= \int\limits_{\Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} d\xi = -\int\limits_{\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} d\xi = \\ &= \lim_{\varepsilon \to 0} -\int\limits_{\Omega/\Omega_\varepsilon^x} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} d\xi \end{split}$$

И получим то, что требуется доказать в условии.

6 Лекция 20.

Обьемный потенциал: $P_0(x) = \int_{\Omega} \rho(\xi) \frac{1}{|x-\xi|^{n-2}} d\xi$ Потенциал простого слоя: $P_1(x) = \int_{\Omega} \mu(\xi) \frac{1}{|x-\xi|^{n-2}} d\xi$ Потенциал двойного слоя: $P_2(x) = \int_{\Omega} \sigma(\xi) \frac{1}{|x-\xi|^{n-2}} d\xi$ $\Delta P_i(x) = 0, \ x \in \mathbb{R}^n/\Gamma, \ i = 1, 2;$

6.1 Обьемный потенциал.

 $\Delta P_0(x) = 0, \ x \in \mathbb{R}^n / \overline{\Omega}, \ P_0(x) \in C^1(\mathbb{R}^n), \ \rho \in C(\overline{\Omega})$

Уравнение Пуассона
$$\begin{cases} \Delta P_0 = -(n-2)\omega_n \rho(x), \ x \in \Omega, \ n \geqslant 3; \\ \Delta P_0 = -2\pi \rho(x), \ x \in \Omega, \ n = 2 \end{cases}$$
 (20.1)

Теорема 1.

Пусть $\rho \in C^1(\overline{\Omega})$. Тогда $P_0 \in C^2(\Omega)$, P_0 удовлетворяет уравнению (20.1)

$$\begin{split} \frac{\partial P_0}{\partial x_k} &= \int_{\Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} d\xi = -\int_{\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} d\xi = \\ &= \lim_{\varepsilon \to 0} \int_{\Omega/\overline{Q}_{\varepsilon}^x} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} d\xi = \\ &= \lim_{\varepsilon \to 0} \left(\int_{\Omega/\overline{Q}_{\varepsilon}^x} \frac{\partial \rho}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} d\xi - \int_{\partial(\Omega/\overline{Q}_{\varepsilon}^x)} \rho(\xi) \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_x i \right) = \\ &= \int_{\Omega} \frac{\partial \rho}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} d\xi - \int_{\partial(\Omega)} \rho(\xi) \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_x i - \lim_{\varepsilon \to 0} \int_{S_{\varepsilon}^x} \rho(\xi) \varepsilon^{2-n} \nu_{\xi}^k dS_\xi \\ &|\int_{S_{\varepsilon}^x} \rho(\xi) \varepsilon^{2-n} \nu_{\xi}^k dS_\xi| \leqslant M \varepsilon^{2-n} \varepsilon^{n-1} = M \varepsilon \\ &\Rightarrow -\lim_{\varepsilon \to 0} \int_{S_{\varepsilon}^x} \rho(\xi) \varepsilon^{2-n} \nu_{\xi}^k dS_\xi = 0 \end{split}$$

Т.е получаем что $\frac{\partial P_0}{\partial x_k} \in C^1(\Omega)$, поскольку первое слагаемое есть объемный потенциал с плотностью $\frac{\partial \rho}{\partial \xi_k} \in C(\Omega)$, а второе - потенциал простого слоя с $\rho(\xi)\nu_\xi^k \in L_1(\Gamma)$

$$\begin{split} \frac{\partial^2 P_0}{\partial x_k^2}(x) &= -\int_{\Omega} \frac{\partial \rho(\xi)}{\partial \xi_k} \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} d\xi - \int_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS - \xi = \\ &= -\lim_{\varepsilon \to 0} \int_{\Omega/\overline{Q}_{\varepsilon}^x} \frac{\partial \rho(\xi)}{\partial \xi_k} \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} d\xi - \int_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} = \\ &= \lim_{\varepsilon \to 0} \left\{ \int_{\Omega/\overline{Q}_{\varepsilon}^x} \rho(\xi) \frac{\partial^2}{\partial \xi_k^2} \frac{1}{|x - \xi|^{n-2}} d\xi - \int_{\partial (\Omega/\overline{Q}_{\varepsilon}^x)} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} \right\} - \\ &- \int_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} \end{split}$$

Записываем эти равенства для всех $k=1,\ldots,n$ и складываем

$$\Delta P_0(x) = \lim_{\varepsilon \to 0} \int_{\Omega/\overline{Q}_{\varepsilon}^x} \rho(\xi) \Delta_{\xi} \frac{1}{|x - \xi|^{n-2}} d\xi - \sum_{k=1}^n \int_{\partial\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} - \sum_{k=1}^n \int_{\partial\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} - \sum_{k=1}^n \int_{\partial\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} - \sum_{k=1}^n \int_{\partial\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} - \sum_{k=1}^n \int_{\partial\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} - \sum_{k=1}^n \int_{\partial\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} - \sum_{k=1}^n \int_{\partial\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} - \sum_{k=1}^n \int_{\partial\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} - \sum_{k=1}^n \int_{\partial\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} - \sum_{k=1}^n \int_{\partial\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} - \sum_{k=1}^n \int_{\partial\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} - \sum_{k=1}^n \int_{\partial\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} - \sum_{k=1}^n \int_{\partial\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} - \sum_{k=1}^n \int_{\partial\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} - \sum_{k=1}^n \int_{\partial\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} - \sum_{k=1}^n \int_{\partial\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} - \sum_{k=1}^n \int_{\partial\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{1}{|x - \xi|^{n-2}} \nu_{\xi}^k dS_{\xi} - \sum_{k=1}^n \int_{\partial\Omega} \rho(\xi) \frac{\partial}{\partial \xi_k} \frac{\partial}{\partial \xi_$$

$$\lim_{\varepsilon \to 0} \int\limits_{S^x_-} \rho(\xi) \frac{\partial}{\partial \nu_\xi} \frac{1}{|x - \xi|^{n-2}} dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi|^{n-2}} \nu_\xi^k dS_\xi - \sum_{k=1}^n \int\limits_{\partial \Omega} \rho(\xi) \frac{\partial}{\partial x_k} \frac{1}{|x - \xi$$

В $\Omega/\overline{Q}^x_{\varepsilon}$, $\frac{1}{|x-\xi|^{n-2}}$ гармоническая, тогда первое слагаемое равно 0. Второе и четвертое слагаемое отличаются знаком, т.к $\frac{\partial}{\partial x_k} \frac{1}{|x-\xi|^{n-2}} = -\frac{\partial}{\xi_k} \frac{1}{|x-\xi|^{n-2}}$

$$\int_{S_{\varepsilon}^{x}} \rho(\xi) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} dS_{\xi} = -\int_{S_{\varepsilon}^{x}} \rho(\xi) \frac{\partial}{\partial r} \frac{1}{r^{n-2}} dS_{\xi} =$$

$$= (n-2)\varepsilon^{1-n} \int_{S_{\varepsilon}^{x}} \rho(\xi) dS_{\xi} = (n-2)\omega_{n} \frac{1}{\omega_{n}\varepsilon^{n-1}} \int_{S_{\varepsilon}^{x}} \rho(\xi) dS_{\xi} \to (n-2)\omega_{n}\rho(x), \ \varepsilon \to 0.$$

Получаем (20.1).

Упражнение.

Самостоятельно провести доказательство для n=2. $(P_0(x)=\int_{\Omega}\rho(\xi)\ln|x-\xi|d\xi)$

Теорема доказана.

Подведем итоги.

Свойства $P_0(x) = \int_{\Omega} \rho(\xi) \frac{1}{|x-\xi|^{n-2}} d\xi$

Пусть $\rho \in C(\bar{\Omega})$, тогда

a) $P_0(x) \in C^1(\mathbb{R}^n)$

6) $|P_0(x)| \le \frac{c}{|x|^{n-2}}, |x| \to \infty$

B) $\Delta P_0(x) = 0, \ x \in \mathbb{R}^n/\bar{\Omega}$

Пусть $\rho \in C^1(\bar{\Omega})$, тогда

 $\Gamma) \Delta P_0(x) = -(n-2)\omega_n \rho(x), \ x \in \Omega$

Замечание. Используя эти свойства, можно вычислить P_0 не через \int_{Ω} , а как решение г) со свойствами а)-в)

6.2 Потенциал двойного слоя.

Замкнутая поверхность $\Gamma\subset\mathbb{R}^n$ называется поверхностью Ляпунова, если

а) $\forall x \in \Gamma \exists$ номаль ν_x к Γ в точке х. (ν_x -внешняя)

б)
З $a>0,\ \alpha>0\ \forall x,\xi\in\Gamma,\ \nu_x,\nu_\xi$ - нормали; θ - угол между ними
 $\Rightarrow\theta\leqslant a|x-\xi|^\alpha$

Отметим некоторые очевидные свойства:

1. $\Gamma \in C^2 \Rightarrow \Gamma$ - поверхность Ляпунова.

2. Γ - поверхность Ляпунова $\Rightarrow \Gamma \in \mathbb{C}^2$

Упраженение.

Доказать, что из условия б) следует условие Гелдера для нормали: $|\nu_x - \nu_\xi| \leqslant a |x - \xi|^{\alpha}$

Теорема 2.

Пусть Γ - поверхность Ляпунова. Тогда $\exists d>0: \ \forall x\in \Gamma$ любая прямая, параллельная ν_x , пересекает Γ внутри Q_d^x не более чем в одной точке.

Доказательство.

Берем d таким, чтобы $ad^{\alpha}<1$, предположим противное, т.е пусть в точке ξ_1 прямая l вышла из Ω , а в ξ_2 - вошла. Проведем касательную плоскость Π в ξ_2 . Прямая $\mathbbm{1}$ и внешняя нормаль ν_{ξ_2} будут лежать по разные стороны от Π , $\nu_{\xi_2} \perp \Pi$

$$\widehat{(l,\nu_{\xi_2})}\Rightarrow \widehat{(\nu_x,\nu_{\xi_2})}\geqslant \pi/2;\ |x-\xi_2|\leqslant d,\ \mathrm{t.k}\ \xi_2\in Q^x_d$$

Тогда $\pi/2 \leqslant ad^{\alpha}$. Противоречие.

 $\Gamma' = \Gamma \cap Q_d^x$ однозначно проектируется на касательную плоскость в х \Rightarrow Γ' можно рассматривать в некоторой системе координат, как график функции.

Фиксируем $x \in \Gamma$. S_d^x называется сферой Ляпунова .

 Γ' : $\xi_n = f(\xi_n, \dots, \xi_{n-1})$, f задана на проекции Γ' на касательную плоскость.

При этом $f(0,\ldots,0)=0;\ \nu_x=(0,\ldots,0,1)$

Теперь будет некоторая муторная работа, целью которой будет следующее:

 $\forall x, \xi \in \Gamma \mid \cos{(r, \nu_{\xi})} \mid \leqslant cr^{\alpha}, \ \alpha$ из определения поверхности Ляпунова.

$$(P_2(x) = -(n-2) \int_{\Gamma} \sigma(\xi) \frac{\cos(r, \nu_{\xi})}{|x-\xi|^{n-1}} dS_{\xi})$$

$$\nu_x = \left(-\frac{f_{\xi_1}(0)}{\sqrt{1 + |\nabla_{\xi'} f|^2}}, -\frac{f_{\xi_2}(0)}{\sqrt{1 + |\nabla_{\xi'} f|^2}}, \dots, -\frac{f_{\xi_{n-1}}(0)}{\sqrt{1 + |\nabla_{\xi'} f|^2}}, -\frac{1}{\sqrt{1 + |\nabla_{\xi'} f|^2}} \right)$$

Здесь и далее $\xi' = (\xi_1, \dots, \xi_n)$.

Сравнивая это выражение с выражением раньше, получаем $f_{\xi_j} = 0, \ j = 1, \dots, n-1$ Упражение.

$$\cos(r, \nu_{\xi}) = \sum_{k=1}^{n} \cos(r, \xi_k) \cos(\nu_{\xi}, \xi_k)$$

Выделим в этой сумме последнее слагаемое.

$$\cos(r,\xi_n)\cos(\nu_{\xi},\xi_n) + \sum_{k=1}^{n-1}\cos(r,\xi_k)\cos(\nu_{\xi},\xi_k) \tag{*}$$

Хочется оценить $|\xi_n| = |f|$ и $|\cos{(\nu_{\xi}, \xi_k)}|, \ k = 1, \dots, n-1$

$$\nu_{\xi} = \left(-\frac{f_{\xi_{1}}(\xi)}{\sqrt{1 + |\nabla_{\xi'} f|^{2}}}, -\frac{f_{\xi_{2}}(\xi)}{\sqrt{1 + |\nabla_{\xi'} f|^{2}}}, \dots, -\frac{f_{\xi_{n-1}}(\xi)}{\sqrt{1 + |\nabla_{\xi'} f|^{2}}}, -\frac{1}{\sqrt{1 + |\nabla_{\xi'} f|^{2}}} \right)$$

$$\cos(\nu_{\xi}, \xi_{k}) = -\frac{f_{\xi_{k}}(\xi)}{\sqrt{1 + |\nabla_{\xi'} f|^{2}}}, \quad k = 1, \dots, n-1;$$

$$\cos\theta = \cos(\nu_{\xi}, \nu_{x}) = \cos(\nu_{\xi}, \xi_{n}) = -\frac{1}{\sqrt{1 + |\nabla_{\xi'} f|^{2}}}$$

 θ из определения поверхности Ляпунова. $\cos\theta\geqslant 1-\frac{\theta^2}{2}$ (из математического анализа), $\theta\leqslant ar^{\alpha}\leqslant ad^{\alpha}<1\Rightarrow\cos\theta\geqslant 1/2$

$$\begin{split} -\frac{1}{\sqrt{1+|\nabla_{\xi'}f|^2}} \geqslant 1 - \frac{a^2r^{2\alpha}}{2} \\ \sqrt{1+|\nabla_{\xi'}f|^2} \leqslant \frac{1}{1-\frac{a^2r^{2\alpha}}{2}} &= 1 + \frac{a^2r^{2\alpha}}{2-a^2r^{2\alpha}} \geqslant (a^2r^{2\alpha} < 1)1 + a^2r^{2\alpha} \\ |\nabla_{\xi'}f|^2 \leqslant 2a^2r^{2\alpha} + a^4r^{4\alpha} \leqslant 3a^2r^{2\alpha} \end{split}$$

Окончательно получаем, что

$$|\nabla_{\xi'} f| \leqslant \sqrt{3} a r^{\alpha}$$

$$|f_{\xi_k}(\xi)| \leqslant |\nabla_{\xi'} f| \leqslant \sqrt{3} a r^{\alpha}, \ k = 1, ..., n - 1$$

В (*) последнее слагаемые оцениваются

$$|\cos(r,\xi_k)\cos(\nu_{\xi},\xi_k)| \le |\cos(\nu_{\xi},\xi_k)| \le \sqrt{3}ar^{\alpha}$$

$$r^2 = \xi_n^2 + \rho^2, \ \rho^2 = \sum_{k=1}^{n-1} \xi_k^2$$

$$\left| \frac{\partial f}{\partial \rho} \right| = \left| \sum_{k=1}^{n-1} \frac{\partial f}{\partial \xi_k} \frac{\xi_k}{\rho} \right| \leqslant \sum_{k=1}^{n-1} \left| \frac{\partial f}{\partial \xi_k} \right| \leqslant \sqrt{3} anr^{\alpha} \leqslant \sqrt{3} and^{\alpha} = C_1$$

$$f(0) = 0 \Rightarrow |f(\xi)| \leqslant \int_{0}^{\rho} \left| \frac{\partial f}{\partial \rho'} \right| d\rho' \leqslant C_1 \rho \Rightarrow |\xi_n| = |f(\xi)| \leqslant C_1 \rho$$

Отсюда

$$\rho^2 < r^2 \leqslant C_1 \rho^2 + \rho^2 = C_2 \rho^2 \Rightarrow \left| \frac{\partial f}{\partial \rho} \right| \leqslant C_3 \rho^{\alpha}$$

$$|\xi_n| = |f(\xi)| \leqslant C_4 \rho^{\alpha+1} \Rightarrow |\xi_n| = |f(\xi)| \leqslant C_4 r^{\alpha+1}$$

Из (*):

$$|\cos r, \nu_{\xi}| \leqslant \frac{|\xi_n|}{2} + C_0 r^{\alpha} \leqslant \bar{C} r^{\alpha}$$

что и требовалось.

Лекция 21

Теорема 1. Пусть Γ - замкнутая поверхность Ляпунова, $\sigma(\xi) \equiv 1$. Тогда $\forall x \in \mathbb{R}^n, n \geq 3$

$$\int_{\Gamma} \left| \frac{\partial}{\partial \xi} \frac{1}{r^{n-2}} \right| ds_{\xi} = (n-2) \int_{\Gamma} \frac{|\cos(r, \nu_{\xi})|}{r^{n-1}} ds_{\xi} \le M < \infty$$

Доказательство.

1. Пусть $\rho(x,\Gamma) \geq \frac{d}{2}$. Тогда $r = |x - \xi| \geq \frac{d}{2}$, откуда

$$\int_{\Gamma} \frac{|\cos(r,\nu_{\xi})|}{r^{n-1}} ds_{\xi} \le \frac{2^{n-1}}{d^{n-1}} |\Gamma| \le \infty$$

2. Пусть $\rho(x,\Gamma) < \frac{d}{2}$. 2а. Пусть $x \in \Gamma$, тогда

$$\int_{\Gamma} \frac{|\cos(r,\nu_{\xi})|}{r^{n-1}} ds_{\xi} = \int_{\Gamma'} \frac{|\cos(r,\nu_{\xi})|}{r^{n-1}} ds_{\xi} + \int_{\Gamma''} \frac{|\cos(r,\nu_{\xi})|}{r^{n-1}} ds_{\xi}$$

,где $\Gamma' = \Gamma \cap Q_d^x$, $\Gamma'' = \Gamma \setminus \Gamma'$

$$\int_{\Gamma''} \frac{|\cos(r, \nu_{\xi})|}{r^{n-1}} ds_{\xi} \le \frac{1}{d^{n-1}} |\Gamma|$$

$$\int_{\Gamma'} \frac{|\cos(r, \nu_{\xi})|}{r^{n-1}} ds_{\xi} \le \int_{\Gamma'} \frac{cr^{\alpha}}{r^{n-1}} ds_{\xi} \le c_{2} \int_{\mathcal{D}} \frac{\rho^{\alpha}}{\rho^{n-1}} d\xi_{1} \dots d\xi_{n-1} = c_{3} \int_{0}^{d_{1}} \rho^{\alpha+1-n} \rho^{n-2} d\rho =$$

$$= c_{3} \int_{0}^{d_{1}} \rho^{\alpha-1} d\rho \le c_{4} < \infty$$

К последним неравенствам мы переходили, заменяя интегрирование по Γ' интегрированием по проекции Γ' на касательную плоскость, $\cos(r,\nu_\xi)ds_\xi=d\xi_1\dots d\xi_{n-1}; \quad \rho^2=\sum_{k=1}^{n-1}\xi_k^2; \quad \rho^2\leq r^2=\rho^2+\xi_n^2; \quad |\xi_n|\leq c_1\rho^{\alpha+1}$ 26. x не принадлежит $\Gamma,\,|x-x_0|<\frac{d}{2}.$ В $\{\xi_i\}$ x имеет координаты $(0,\dots,0,\pm\delta),\delta>0.$

$$\cos(r, \nu_{\xi}) = \sum_{k=1}^{n} \cos(r, \xi_k) \cos(\nu_{\xi}, \xi_k)$$
 - это упражнение из предыдущей лекции

$$\cos(r, \nu_{\xi}) = \sum_{k=1}^{n-1} \cos(r, \xi_{k}) \cos(\nu_{\xi}, \xi_{k}) + \cos(r, \xi_{n}) \cos(\nu_{\xi}, \xi_{n})$$

$$|\cos(\nu_{\xi}, \xi_{k})| \le Cr_{0}^{\alpha}, \quad r_{0} = |x_{0} - \xi|, \quad k = 1, \dots, n - 1, \quad r_{0}^{2} = \rho^{2} + \xi_{n}^{2}$$

$$|\cos(r, \xi_{n})| \le \frac{|\xi_{n} \pm \delta|}{r}$$

$$\cos(r, \nu_{\xi}) \le Cr_{0}^{\alpha} + \frac{|\xi_{n} \pm \delta|}{r}$$

Теперь разбиваем наш интеграл на 2 других интеграла:

$$\int_{\Gamma} \frac{|\cos(r,\nu_{\xi})|}{r^{n-1}} ds_{\xi} = \int_{\Gamma'} \frac{|\cos(r,\nu_{\xi})|}{r^{n-1}} ds_{\xi} + \int_{\Gamma''} \frac{|\cos(r,\nu_{\xi})|}{r^{n-1}} ds_{\xi}$$

 $\int_{\Gamma''} \frac{|\cos(r,\nu_\xi)|}{r^{n-1}} ds_\xi$ оценивается так же, как в пункте 2а. Оценим $\int_{\Gamma'} \frac{|\cos(r,\nu_\xi)|}{r^{n-1}} ds_\xi$.

$$r^2 = \sum_{k=1}^n (x_k - \xi_k)^2 = \sum_{k=1}^{n-1} \xi_k^2 + (\xi_n \pm \delta)^2 = \rho^2 + (\xi_n \pm \delta)^2$$
$$\pm \xi_n \delta \ge -\frac{\delta^2}{2} - 2\xi^2 \quad r^2 \ge \rho^2 - \xi_n^2 + \frac{\delta^2}{2}, \text{ и еще } |\xi_n| \le c_1 \rho^{\alpha+1} \le c_1 d^{\alpha} \rho$$

Уменьшим, если надо, d, чтобы $c_1 d^{\alpha} \leq \frac{1}{\sqrt{2}}$, тогда $|\xi_n| \leq \frac{\rho}{\sqrt{2}}$. Итак, $r^2 \geq \frac{\rho^2 + \delta^2}{2}$.

$$\int_{\Gamma'} \frac{|\cos(r,\nu_{\xi})|}{r^{n-1}} ds_{\xi} \le C_0 \left(\int_{\Gamma'} \frac{r_0^{\alpha}}{(\rho^2 + \delta^2)^{\frac{n-1}{2}}} ds_{\xi} + \int_{\Gamma'} \frac{\rho^{\alpha+1}}{(\rho^2 + \delta^2)^{\frac{n}{2}}} ds_{\xi} + \delta \int_{\Gamma'} \frac{ds_{\xi}}{(\rho^2 + \delta^2)^{\frac{n}{2}}} \right)$$

Первый интеграл обозначим I_1 , второй I_2 , третий I_3 . $r_0^2 = \rho^2 + \xi_n^2 \leq \tilde{c}\rho^2$.

$$I_1 \le K_1 \int_{\mathcal{D}} \frac{\rho^{\alpha}}{(\rho^2 + \delta^2)^{\frac{n-1}{2}}} d\xi_1 \dots d\xi_{n-1} \le K_2 \int_0^{d_1} \rho^{\alpha+1-n} \rho^{n-2} d\rho < \infty$$

Аналогично оценивается I_2 .

$$I_3 \leq K\delta \int_0^{d_1} \frac{\rho^{n-2}d\rho}{(\rho^2+\delta^2)^{\frac{n}{2}}} = K\delta \int_0^{d_1} \frac{\rho^{n-2}d\rho}{\rho^n(1+\frac{\delta^2}{\rho^2})^{\frac{n}{2}}} = K\int_0^{d_1} \frac{-d\frac{\delta}{\rho}}{(1+\frac{\delta^2}{\rho^2})^{\frac{n}{2}}} = K\int_{\delta/d_1}^{\infty} \frac{dt}{(1+t^2)^{\frac{n}{2}}} \leq \infty$$

 Σ - часть поверхности, на которой задано положительное направление нормали, x не принадлежит Σ . Предполагаем $\xi \in \Sigma$ $\cos(\overrightarrow{x\xi}, \nu_{\xi}) \geq 0$. Соединим теперь x с каждой точкой Σ . Полученную коническую границу обозначим K. $\widetilde{\partial K} = K \cup \Sigma$. $Q_R^x \cap \Sigma = \emptyset$. K высечет на S_R^x некоторую поверхность, обозначим ее $\sigma_R \subset S_R^x$.

$$\omega_x(\Sigma) = \frac{|\sigma_R|}{R^{n-1}} = |\sigma_1|$$

В случае $cos(\overrightarrow{x\xi},\nu_\xi)<0$ считаем $\omega_x(\Sigma)=-\frac{|\sigma_R|}{R^{n-1}}.$ В общем случае мы разбиваем Σ на соответствующие части.

Теорема 2.

$$\omega_x(\Sigma) = -\frac{1}{n-2} \int_{\Sigma} \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x-\xi|^{n-2}} ds_{\xi} \quad (n \ge 3)$$

(т.е. ω_x - потенциал двойного слоя)

$$\Omega_{\varepsilon} = \widetilde{K} \setminus \overline{Q_{\varepsilon}^x}; \quad K_{\varepsilon} = K \setminus \overline{Q_{\varepsilon}^x}$$

 $\Omega_{\varepsilon} = \widetilde{K} \setminus \overline{Q_{\varepsilon}^x}; \quad K_{\varepsilon} = K \setminus \overline{Q_{\varepsilon}^x}.$ В $\Omega_{\varepsilon} = \frac{1}{|x-\xi|^{n-2}}$ - гармоническая, тогда запишем $\Delta_{\xi} \frac{1}{|x-\xi|^{n-2}} = 0$ в Ω_{ε} .

$$0 = \int_{\Omega_{\varepsilon}} \Delta_{\xi} \frac{1}{|x - \xi|^{n - 2}} d\xi = int_{\partial\Omega_{\varepsilon}} \frac{\partial}{\partial\nu_{\xi}} \frac{1}{|x - \xi|^{n - 2}} ds_{\xi} =$$

$$= \int_{\Sigma} \frac{\partial}{\partial\nu_{\xi}} \frac{1}{|x - \xi|^{n - 2}} ds_{\xi} + \int_{K_{\varepsilon}} \frac{\partial}{\partial\nu_{\xi}} \frac{1}{|x - \xi|^{n - 2}} ds_{\xi} + \int_{\sigma_{\varepsilon}} \frac{\partial}{\partial\nu_{\xi}} \frac{1}{|x - \xi|^{n - 2}} ds_{\xi}$$

$$\frac{\partial}{\partial\nu_{\xi}} \frac{1}{|x - \xi|^{n - 2}} |_{\xi \in \sigma_{\varepsilon}} = -\frac{\partial}{\partial r} \frac{1}{|x - \xi|^{n - 2}} |_{\xi \in \sigma_{\varepsilon}} = = (n - 2)\varepsilon^{1 - n}$$

$$\int_{\sigma_{\varepsilon}} \frac{\partial}{\partial\nu_{\xi}} \frac{1}{|x - \xi|^{n - 2}} ds_{\xi} = = (n - 2)\varepsilon^{1 - n} |_{\sigma_{\varepsilon}}| = (n - 2)\omega_{x}(\Sigma)$$

$$\int_{K_{\varepsilon}} \frac{\partial}{\partial\nu_{\xi}} \frac{1}{|x - \xi|^{n - 2}} ds_{\xi} = -(n - 2) \int_{K_{\varepsilon}} \frac{\cos(r, \nu_{\xi})}{r^{n - 1}} ds_{\xi} = 0, \quad \text{T.K. } \cos(r, \nu_{\xi}) = 0$$

Итак.

$$0 = \int_{\Sigma} \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} ds_{\xi} + (n - 2)\omega_{x}(\Sigma)$$

Cnedcmbue. Γ - замкнутая поверхность Ляпунова, ограничивающая область $\Omega.$ Тогда $\int_{\Gamma} \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x-\xi|^{n-2}} ds_{\xi}$ может принимать следующие значения:

$$\begin{cases}
-\omega_n(n-2), & x \in \Omega \\
0, & x \in \mathbb{R}^n \setminus \overline{\Omega} \\
-\frac{\omega_n(n-2)}{2}, & x \in \Gamma
\end{cases}$$

, где $n \geq 3$, $\omega_n = |S_1|$.

Доказательство.

1)

$$x \in \Omega \Rightarrow \omega_x(\Gamma) = \omega_n \Rightarrow \int_{\Gamma} \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} ds_{\xi} = -\omega_n(n-2)$$

$$x\in\mathbb{R}^n\setminus\overline{\Omega}\Rightarrow\frac{1}{|x-\xi|^{n-2}}$$
 - гармоническая по $\xi\in\Omega$

3) $x\in\Gamma.\quad\pi_x\text{ - касательная плоскость к }\Gamma\text{ в точке }x\text{. Рассмотрим }Q^x_\varepsilon,\varepsilon\ll d\text{. }\Gamma_\varepsilon=\Gamma\cap Q^x_\varepsilon.\ \widetilde{S^x_\varepsilon}=S^x_\varepsilon\cap\Omega.\quad \widehat{S^x_\varepsilon}\text{ - полусфера. }\widehat{S^x_\varepsilon}=\widetilde{S^x_\varepsilon}+B_\varepsilon.\quad\Omega_\varepsilon=\Omega\setminus\overline{Q^x_\varepsilon}.$ $\frac{1}{|x-\xi|^{n-2}}\text{ гармоническая по }\xi\text{ в }\Omega.$

$$\int_{\Gamma \setminus \Gamma_{\varepsilon}} \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} ds_{\xi} = -\int_{\widetilde{S_{\varepsilon}^{x}}} \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} ds_{\xi} =$$

$$= -\int_{\widehat{S_{\varepsilon}^{x}}} \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} ds_{\xi} + \int_{B_{\varepsilon}} \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} ds_{\xi}$$

$$\int_{B_{\varepsilon}} \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} ds_{\xi} = -(n - 2) \int_{B_{\varepsilon}} \frac{\cos(r, \nu_{\xi})}{r^{n-1}} ds_{\xi}$$

$$\int_{B_{\varepsilon}} \frac{|\cos(r, \nu_{\xi})|}{r^{n-1}} ds_{\xi} \le K_{0} \varepsilon^{\alpha + 1 - n} |B_{\varepsilon}| \to 0 \text{ при } \varepsilon \to 0$$

Кроме того,

$$\int_{\Gamma\backslash\Gamma_{\varepsilon}} \frac{\partial}{\partial\nu_{\xi}} \frac{1}{|x-\xi|^{n-2}} ds_{\xi} \to \int_{\Gamma} \frac{\partial}{\partial\nu_{\xi}} \frac{1}{|x-\xi|^{n-2}} ds_{\xi} \text{ при } \varepsilon \to 0$$
$$-\int_{\widehat{S^{x}}} \frac{\partial}{\partial\nu_{\varepsilon}} \frac{1}{|x-\xi|^{n-2}} ds_{\xi} \to -\frac{\omega_{n}(n-2)}{2} \text{ при } \varepsilon \to 0$$

И

Ч.т.д.

7.1 Теорема о скачке потенциала двойного слоя.

 $x_0\in\Gamma$ $P_2^+(x_0)=\lim_{x\longrightarrow x_0,x\in\Omega}P_2(x),$ $P_2^-(x_0)=\lim_{x\longrightarrow x_0,x\in\mathbb{R}^n\setminus\Omega}P_2(x),$ $\overline{P_2(x_0)}$ - прямое значение. Пусть Γ - замкнутая поверхность Ляпунова, $x_0\in\Gamma$, $\sigma(x)\in C(\Gamma)$.

$$P_2^+(x_0) = -\frac{\omega_n(n-2)}{2}\sigma(x_0) + \overline{P_2(x_0)}$$
$$P_2^-(x_0) = \frac{\omega_n(n-2)}{2}\sigma(x_0) + \overline{P_2(x_0)}$$

Лекция 22. 8

Пусть Γ – замкнутая поверхность Ляпунова, тогда для потенциала двойного слоя с $\sigma(x) \equiv 1$ мы получили результат

$$P(x) = \begin{cases} 0, & x \in \mathbb{R}^n \backslash \bar{\Omega} \\ -\frac{(n-2)w_n}{2}, & x \in \Gamma \\ -(n-2)w_n, & x \in \Omega \end{cases}$$

Теорема 8.1. Пусть Γ – замкнутая поверхность Ляпунова, $\sigma(x) \in C(\Gamma)$, тогда $\forall x_0 \in \Gamma$:

$$P_2^+(x_0) = \lim_{x \to x_0, x \in \Omega} P_2(x) = -\frac{(n-2)w_n}{2}\sigma(x_0) + \overline{P}_2(x_0)$$

$$P_2^-(x_0) = \lim_{x \to x_0, x \in \mathbb{R}^n \setminus \bar{\Omega}} P_2(x) = \frac{(n-2)w_n}{2} \sigma(x_0) + \overline{P}_2(x_0)$$

 $\Gamma \partial e \ \overline{P}_2(x_0)$ – прямое значение в точке x_0

Доказательство:

$$P_2(x) = \int_{\Gamma} \sigma(\xi) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} dS_{\xi} = \int_{\Gamma} (\sigma(\xi) - \sigma(x_0)) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} dS_{\xi} + \sigma(x_0) \int_{\Gamma} \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} dS_{\xi}$$

Первое слагаемое назовем $W_0(x)$,а второе W(x). Если мы докажем непрерывность $W_0(x)$ в точке x_0 , то тем самым мы докажем теорему.В самом деле, если $W_0^+(x_0)=W_0^-(x_0)=\bar{W}_0(x_0)$, то $\bar{P}_2(x_0)=\bar{W}_0(x_0)-\sigma(x_0)\frac{(n-2)w_n}{2}$, тогда $P_2^+(x_0)=\bar{W}_0(x_0)-\sigma(x_0)(n-2)w_n=\bar{P}_2(x_0)-\sigma(x_0)\frac{(n-2)w_n}{2}$ и аналогично для $P_2^-(x_0)$. Докажем непрерывность. Выбросим из Γ маленькую шаровую окрестность Γ' , тогда $\Gamma=\Gamma'\cup\Gamma''$.

$$|W_0(x) - W_0(x_0)| = |W_0'(x) + W_0''(x) - W_0'(x_0) - W_0''(x_0)| \le |W_0'(x)| + |W_0'(x_0)| + |W_0''(x) - W_0''(x_0)|$$

Здесь $W_0'(x)$ - интеграл по Γ' , а $W_0''(x)$ - интеграл по Γ'' .

 $W_0'(x)$ в точке x_0 дифференцируема, поэтому $|W_0''(x)-W_0''(x_0)|\to 0$ при $x\to x_0$. Функция $\sigma(x)$ непрерывна, поэтому $\forall \varepsilon>0$ $\exists \eta_0\, \forall \eta<\eta_0\, \forall \xi\in\Gamma: |\xi-x_0|<\eta$ $|\sigma(\xi)-\sigma(x_0)|<\varepsilon$ А значит можно оценить

$$|W_0(x)| \le \varepsilon \int_{\Gamma} \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} dS \le \varepsilon \cdot Const$$

И уменьшая ε , можно и первые слагаемые сделать сколь угодно малыми. Непрерывность доказана.

8.1 Потенциал простого слоя

Напоминаем: Это

$$P_1(x) = \int_{\Gamma} \mu(\xi) \frac{1}{|x - \xi|^{n-2}} dS_{\xi}$$

Где $\mu(x) \in C(\Gamma)$, Γ – замкнутая поверхность Ляпунова.

Теорема 8.2. Потенциал простого слоя непрерывен в \mathbb{R}^n .

Доказательство: Непрерывность может нарушаться только при переходе через Г. Вначале проверим, что потенциал определен в точках поверхности. Заметим, что $\forall x_0 \in \Gamma$:

$$|P_1(x_0)| \le \max_{\Gamma} |\mu(x)| \int_{\Gamma} \frac{1}{|x_0 - \xi|^{n-2}} dS_{\xi} = M \left(\int_{\Gamma'} \frac{1}{|x_0 - \xi|^{n-2}} dS_{\xi} + \int_{\Gamma''} \frac{1}{|x_0 - \xi|^{n-2}} dS_{\xi} \right)$$

Где $M = \max_{\Gamma} |\mu(x)|$, Γ' -пересечение Γ с маленьким шариком с центром в x_0 , а Γ'' – оставшаяся часть Γ . Второй интеграл конечен, а конечность первого проверяется переходом к системе координат $r^2 = \rho^2 + \xi_n^2$:

$$\int_{\Gamma'} \frac{1}{|x_0 - \xi|^{n-2}} \, dS_{\xi} = \int_{\Gamma'} \frac{dS_{\xi}}{r^{n-2}} = \int_{D(x_0)} \frac{d\xi_1 \dots d\xi_{n-1}}{\rho^{n-2} \cos(\nu_{\xi}, \xi_n)} \le C \int_0^d \rho^{2-n} \rho^{n-2} \, d\rho = C d$$

Непрерывность доказывается аналогично предыдущей теореме:

$$|P_1(x) - P_1(y)| < |P_1'(x)| + |P_1'(y)| + |P_1''(x) - P_1''(y)|$$

Где, как обычно, $P_1'(x)$ и $P_1''(x)$ – соответственно интегралы по $\Gamma' = \Gamma \cap Q_\eta^x$, $\eta \ll 1$ и по $\Gamma'' = \Gamma \backslash \Gamma'$. Последнее слагаемое стремится к нолю ввиду дифференцируемости P'', а первые в силу оценки

$$|P_1'(x)| \le M \int_{\Gamma'} \frac{dS_{\xi}}{|x - \xi|^{n-2}} \le M\eta$$

и выбора достаточно маленького η

Покажем, что $\forall x \in \mathbb{R}^n$ определена (конечна) нормальная производная

$$\frac{\partial P_1}{\partial \nu_x} = \int_{\Gamma} \mu(\xi) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} dS_{\xi}$$

Достаточно проверить существование для $x \in \Gamma$. Аналогично выкладкам для потенциала двойного слоя, $\frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x-\xi|^{n-2}} = -\frac{|\cos(r,\nu_{\xi})|}{r^{n-1}}$, поэтому

$$\big| \int_{\Gamma} \mu(\xi) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x-\xi|^{n-2}} \, dS_{\xi} \Big| \leq M \Big(\int_{\Gamma'} \frac{|cos(r,\nu_{x})|}{r^{n-1}} \, dS_{\xi} + \int_{\Gamma''} \frac{|cos(r,\nu_{x})|}{r^{n-1}} \, dS_{\xi} \Big)$$

Второй интеграл конечен, а первый, в силу сделанной ранее оценки,

$$\int_{\Gamma'} \frac{|\cos(r,\nu_x)|}{r^{n-1}} dS_{\xi} \le C_1 \int_{D(r)} \frac{r^{\alpha}}{r^{n-1}} d\xi_1 \dots d\xi_n \le C_2 \int_0^d \rho^{\alpha-n+1} \rho^{n-2} d\rho = C_3 d^{\alpha}$$

следовательно, нормальная производная определена $\forall x \in \mathbb{R}^n$.

9 Лекция 23.

Теорема 9.1 (О скачке нормальной производной потенциала простого слоя). Пусть Γ – замкнутая поверхность Ляпунова, $\mu(x) \in C(\Gamma)$, тогда $\forall x_0 \in \Gamma$:

$$\left(\frac{\partial P_1}{\partial \nu_x}\right)^+(x_0) = \lim_{\Omega \ni x \to x_0, x \in \nu_x} \left(\frac{\partial P_1}{\partial \nu_x}\right) = \frac{(n-2)w_n}{2} \mu(x_0) + \overline{\left(\frac{\partial P_1}{\partial \nu_x}\right)}$$

$$\left(\frac{\partial P_1}{\partial \nu_x}\right)^-(x_0) = \lim_{\mathbb{R}^n \setminus \bar{\Omega} \ni x \to x_0, x \in \nu_x} \left(\frac{\partial P_1}{\partial \nu_x}\right) = -\frac{(n-2)w_n}{2} \mu(x_0) + \overline{\left(\frac{\partial P_1}{\partial \nu_x}\right)}$$

 $\Gamma \partial e \ \overline{\left(rac{\partial P_1}{\partial
u_x}
ight)}$ – прямое значение в точке $x_0.$

Доказательство:

$$\frac{\partial P_1}{\partial \nu_x}(x) = \int_{\Gamma} \left[\mu(\xi) \frac{\partial}{\partial \nu_x} \frac{1}{|x - \xi|^{n-2}} + \frac{\partial}{\partial \nu_\xi} \frac{1}{|x - \xi|^{n-2}} \right] dS_\xi - \int_{\Gamma} \mu(\xi) \frac{\partial}{\partial \nu_\xi} \frac{1}{|x - \xi|^{n-2}} dS_\xi = W_0(x) + W(x)$$

Достаточно доказать непрерывность $W_0(x)$.В самом деле, пусть $W_0^+(x) = W_0^-(x) = \overline{W_0(x)}$. функция W(x) уже была фактически вычислена в предыдущей теореме, поэтому

$$\frac{\overline{\partial P_1}}{\partial \nu_x}(x_0) = \overline{W_0(x_0)} - \overline{P_2(x_0)}$$

$$\left(\frac{\partial P_1}{\partial \nu_x}\right)^+(x_0) = \overline{W_0(x_0)} + \mu(x_0)\frac{(n-2)w_n}{2} - \overline{P_2(x_0)} = \overline{\frac{\partial P_1}{\partial \nu_x}}(x_0) + \mu(x_0)\frac{(n-2)w_n}{2}$$

Аналогично,

$$\left(\frac{\partial P_1}{\partial \nu_x}\right)^{-}(x_0) = \overline{W_0(x_0)} - \mu(x_0) \frac{(n-2)w_n}{2} - \overline{P_2(x_0)} = \overline{\frac{\partial P_1}{\partial \nu_x}}(x_0) - \mu(x_0) \frac{(n-2)w_n}{2}$$

Докажем непрерывность $W_0(x)$. Опять рассмотрим разбиение $\Gamma = \Gamma' \cup \Gamma''$,где $\Gamma' = \Gamma \cap Q_\eta^x$, $\eta \ll d$, d – радиус Ляпунова нашей поверхности. Интеграл распадется в сумму двух, причем интеграл по Γ'' непрерывен в точке x_0 и,значит, стремится к нолю при $x \to x_0$. Оценим интеграл по Γ' .

Поскольку

$$\frac{\partial}{\partial \nu_x} \frac{1}{|x-\xi|^{n-2}} = (n-1) \frac{\cos(r,\nu_x)}{|x-\xi|^{n-1}}$$

$$\frac{\partial}{\partial \nu_x} \frac{1}{|x-\xi|^{n-2}} = (n-1) \frac{\cos(r,\nu_\xi)}{|x-\xi|^{n-1}}$$

То справедливо равенство:

$$\Big|\frac{\partial}{\partial \nu_x}\frac{1}{|x-\xi|^{n-2}}+\frac{\partial}{\partial \nu_x}\frac{1}{|x-\xi|^{n-2}}\Big|=\frac{(n-2)}{r^{n-1}}\Big|\cos(r,\nu_x)-\cos(r,\nu_\xi)\Big|$$

Введем локальную систему координат $\xi_1, \dots \xi_n$ с центром в x_0 . Тогда

$$\cos(r, \nu_x) = \cos(r, \xi_n)$$

$$\cos(r,\nu_{\xi}) = \sum_{k=1}^{n-1} \cos(r,\xi_k) \cos(\nu_{\xi},\xi_k) + \cos(r,\xi_n) \cos(\nu_{\xi},\xi_n)$$

Поэтому

$$\frac{(n-2)}{r^{n-1}} \Big| \cos(r, \nu_x) - \cos(r, \nu_\xi) \Big| \le \frac{(n-2)}{r^{n-1}} \Big(\sum_{k=1}^{n-1} |\cos(\nu_\xi, \xi_k)| + |1 - \cos(\nu_\xi, \xi_n)| \Big)$$

Из неравенства $|1-cos\theta| \leq \frac{\theta^2}{2}$ и свойства поверхности Ляпунова $|\cos(\nu_\xi,\xi_k)| \leq c r_0^\alpha$:

$$\left| \int_{\Gamma_n'} \mu(\xi) \left[\frac{\partial}{\partial \nu_x} \frac{1}{|x - \xi|^{n-2}} + \frac{\partial}{\partial \nu_\xi} \frac{1}{|x - \xi|^{n-2}} \right] dS_\xi \right| \le M_1 \int_{\Gamma_n'} \frac{r_0^{\alpha}}{r^{n-1}} dS_\xi$$

Поскольку $r_0^2 = \sum_{k=1}^n \xi_k^2 = \rho^2 + \xi_n^2 \le C_1 \rho^2$ (Так как $|\xi_n| \le C \rho^{\alpha+1}$), то

$$M_1 \int_{\Gamma_n'} \frac{r_0^{\alpha}}{r^{n-1}} \, dS_{\xi} \le M_2 \int_{\Gamma_n'} \rho^{\alpha - n + 1} \, dS_{\xi} = M_3 \int_0^{\eta} \rho^{\alpha - n + 1} \rho^{n - 2} \, d\rho = M_4 \eta^{\alpha}$$

Так что выбрав подходящее η , можно сделать сколь угодно малым и этот интеграл. Это доказывает непрерывность, а значит и всю теорему.

9.1 Постановка краевых задач

D_i (внутренняя задача Дирихле):

Пусть Ω - ограниченная область, $\partial\Omega=\Gamma$ - поверхность Ляпунова.

$$\Delta u = 0, \quad x \in \Omega \quad u \mid_{\Gamma} = f(x) \quad f \in C(\Gamma)$$

Решение ищем в классе функций $C^2(\Omega) \cap C(\overline{\Omega})$

D_e (внешняя задача Дирихле):

$$\Delta u = 0, \quad x \in \mathbb{R}^n \setminus \overline{\Omega} \quad u \mid_{\Gamma} = f(x) \quad f \in C(\Gamma) \quad u \to 0 \mid x \mid \to \infty$$

Решение также ищем в классе $C^2(\Omega) \cap C(\overline{\Omega})$

Пусть
$$u \in C^2(\Omega) \cap C(\overline{\Omega}), x_0 \in \Gamma = \partial \Omega$$

Определение: правильная нормальная производная функции u на поверхности Γ – равномерный по x_0 предел (если таковой существует и непрерывен)

$$\lim \Omega \ni x \to x_0, x \in \nu_x \frac{\partial u}{\partial \nu_x}$$

Определение: Г – регулярная поверхность, если:

- 1. $\forall x_0 \in \Gamma \quad \nu_{x_0}$
- 2. В локальной системе координат ξ_1, \dots, ξ_n с началом координат x_0 , такой что ξ_n направлено по ν_x , может быть записано $\xi_n = f(\xi_1, \dots, \xi_{n-1})$ в некоторой окрестности x_0 .
- 3. $f \in C^2(D)$, где D проекция окрестности x_0 на касательную плоскость.

10 Лекция 24.

10.1 Решение внутренней задачи Дирихле и внешней задачи Неймана в виде потенциала.

 Ω - ограниченная область, $\partial\Omega=\Gamma$ - регулярная поверхность.

Будем искать решение внутренней задачи Дирихле в виде потенциала двойного слоя с неизвестной плотностью.

$$u(x) = \int_{\Gamma} \sigma(\xi) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} ds_{\xi}$$

$$\sigma(x) - \frac{2}{\omega_{n}(n-2)} \int_{\Gamma} \sigma(\xi) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} ds_{\xi} = -\frac{2}{\omega_{n}(n-2)} \varphi(x) \quad (*)$$

Будем искать решение внешней задачи Неймана в виде потенциала простого слоя.

$$u(x) = \int_{\Gamma} \mu(\xi) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} ds_{\xi}$$

$$\mu(x) - \frac{2}{\omega_{n}(n-2)} \int_{\Gamma} \mu(\xi) \frac{\partial}{\partial \nu_{x}} \frac{1}{|x - \xi|^{n-2}} ds_{\xi} = -\frac{2}{\omega_{n}(n-2)} \psi(x) \quad (**)$$

В обоих случаях интегральное уравнение имеет вид $\sigma(x) - \lambda T \sigma = f(x)$.

Пусть X - банахово пространство, $T:X\to X$ - вполне непрерывен (компактен).

 $T^*:X^* \to X^*. \quad \lambda \in \mathbb{C}.$

$$u - \lambda T u = f, \quad f \in X, u \in X$$

$$v - \bar{\lambda} T^* v = g, \quad g \in X^*, v \in X^*$$

$$u - \lambda T u = 0, \quad u \in X$$

$$v - \bar{\lambda} T^* v = 0, \quad v \in X^*$$

$$(4)$$

<u>Определение.</u> λ - характеристическое число T, если существует нетривиальное решение (3); это решение будем называть собственным элементом T. Размерность пространства решений (3), отвечающих данному характеристическому числу λ , назовем рангом λ .

10.1.1 Теоремы Фредгольма.

<u>**Теорема 1.**</u> Пусть T - вполне непрерывный оператор в банаховом пространстве X. Тогда любое характеристическое число T имеет конечный ранг.

<u>**Теорема 2.**</u> Пусть T - вполне непрерывный оператор в банаховом пространстве X. Тогда если λ - характеристическое число T, то $\bar{\lambda}$ - характеристическое число T^* того же ранга.

 $\underline{Teopema~3.}$ Пусть T - вполне непрерывный оператор в банаховом пространстве X. Тогда множество характеристических чисел T либо конечно, либо счетно, причем если оно счетно, то имеет единственную предельную точку на бесконечности.

Теорема 4. Пусть T - вполне непрерывный оператор в банаховом пространстве X. Тогда (1) разрешимо $\Leftrightarrow f \perp v$, где v - произвольное решение (4).

Теорема 5 (альтернатива Фредгольма) Пусть T - вполне непрерывный оператор в гильбертовом пространстве H. Тогда либо (3) имеет только тривиальное решение, и тогда (1) имеет единственное решение $\forall f \in H$, либо (3) имеет нетривиальное решение, и тогда (1) или не имеет решений, или имеет бесконечно много решений (это зависит от f).

Рассмотрим оператор $T: L_2(\Gamma) \to L_2(\Gamma)$.

$$Tu = \int_{\Gamma} u(\xi) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} ds_{\xi}$$

Тот факт, что $Tu \in L_2(\Gamma)$, будет доказан позднее. Тогда

$$T^*v = \int_{\Gamma} v(\xi) \frac{\partial}{\partial \nu_x} \frac{1}{|x - \xi|^{n-2}} ds_{\xi}$$

Обозначим

$$K(x,\xi) = \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x-\xi|^{n-2}} \quad K_1(x,\xi) = \frac{\partial}{\partial \nu_x} \frac{1}{|x-\xi|^{n-2}}$$

Легко заметить, что $K_1(\xi, x) = K(x, \xi)$.

покажем, что из разрешимости соответствующих интегральных уравнений следует разрешимость внутренней задачи Дирихле и внешней задачи Неймана.

Рассмотрим сопряженное однородное уравнение

$$\mu(x) - \frac{2}{\omega_n(n-2)} \int_{\Gamma} \mu(\xi) \frac{\partial}{\partial \nu_x} \frac{1}{|x-\xi|^{n-2}} ds_{\xi} = 0$$

и докажем, что у него есть только тривиальное решение.

Пусть $\mu_0(x) \in L_2(\Gamma)$ - решение нашего уравнения (то,что $\mu_0 \in C(\Gamma)$, мы докажем позже). Можно построить потенциал простого слоя с плотностью $\mu_0(x)$:

$$P_1(x) = \int_{\Gamma} \mu_0(\xi) \frac{1}{|x - \xi|^{n-2}} d\xi$$

По свойствам потенциала простого слоя:

$$\Delta P_1(x) = 0, \quad x \in \mathbb{R}^n \setminus \overline{\Omega}$$

$$P_1(x) \to 0, \quad |x| \to \infty$$

Поскольку μ_0 - решение нашего уравнения, то $\lim_{x \to x_0 \in \Gamma} \frac{\partial P_1}{\partial \nu_x} = 0$, т.е. P_1 - решение внешней задачи Неймана. В силу единственности решения такой задачи получаем $P_1 \equiv 0$ в $\mathbb{R}^n \setminus \overline{\Omega}$. По свойствам потенциала простого слооя $P_1 \in C(\mathbb{R}^n)$, откуда $P_1 \equiv 0$ на Γ .

Внутри области Ω имеем $\Delta P_1(x)=0, \quad x\in\Omega, \, P_1(x)=0, x\in\Gamma.$ В силу единственности решения внутренней задачи Дирихле получаем $P_1\equiv 0$ на $\Omega.$

Итак, $P_1 \equiv 0$ в \mathbb{R}^n . По теореме о скачке нормальной производной потенциала простого слоя $\mu_0(x) \equiv 0$ на Γ , что и требовалось доказать.

По теореме 5 уравнение (**) имеет единственное решение $\forall \psi \in L_2(\Gamma)$, а,значит, и для $\forall \psi \in C(\Gamma)$, т.е. внешняя задача Неймана разрешима. Но тогда $\lambda = \frac{2}{\omega_n(n-2)}$ не является характеристическим числом T^* , следовательно, $\bar{\lambda} = \frac{2}{\omega_n(n-2)}$ не является характеристическим числом T. Отсюда получаем, что внутренняя задача Дирихле разрешима $\forall \varphi \in L_2(\Gamma)$, а,значит, и для $\forall \varphi \in C(\Gamma)$, что и требовалось.

Теперь можно окончательно сформулировать доказанные теоремы.

Теорема. Внутренняя задача Дирихле (\mathcal{D}_i) имеет единственное классическое решение для любой непрерывной граничной функции φ , и это решение представимо в виде потенциала двойного слоя.

<u>Теорема.</u> Внешняя задача Неймана (\mathcal{N}_e) имеет единственное классическое решение для любой непрерывной граничной функции ψ , и это решение представимо в виде потенциала простого слоя.

10.2 Решение внешней задачи Дирихле и внутренней задачи Неймана в виде потенциала.

Будем искать решение наших задач в таком же виде, что и в предыдущем разделе, где

$$\sigma(x) + \frac{2}{\omega_n(n-2)} \int_{\Gamma} \sigma(\xi) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x-\xi|^{n-2}} ds_{\xi} = \frac{2}{\omega_n(n-2)} \varphi(x) \quad (*)$$

$$\mu(x) + \frac{2}{\omega_n(n-2)} \int_{\Gamma} \mu(\xi) \frac{\partial}{\partial \nu_x} \frac{1}{|x-\xi|^{n-2}} ds_{\xi} = \frac{2}{\omega_n(n-2)} \psi(x) \quad (**)$$

Однородное уравнение D_l :

$$\sigma(x) + \frac{2}{(n-2)\omega_n} \int_{\Gamma} \sigma(\xi) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x-\xi|^{n-2}} dS_{\xi} = 0, \ x \in \Gamma.$$

Есть нетривиальное решение $\sigma(x) \equiv 1$:

$$\int_{\Gamma} \sigma(\xi) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x-\xi|^{n-2}} dS_{\xi} = -\frac{(n-2)\omega_n}{2}, \ x \in \Gamma$$

Ранг $\lambda = -\frac{2}{(n-2)\omega_n} \geqslant 1 \ \Rightarrow$ у сопряженного однородного уравнения

$$\mu(x) + \frac{2}{(n-2)\omega_n} \int_{\Gamma} \mu(\xi) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x-\xi|^{n-2}} dS_{\xi} = 0, \ x \in \Gamma.$$

Есть нетривиальное решение $\mu_{\ell}x$).

Покажем, что любое нетривиальное решение линейно выражается через это тогда и только тогда, когда $rank\ \lambda =$

Пусть $\mu_1(x)$ - другое нетривиальное решение. Построим два потенциала простого слоя:

$$\begin{split} P_1^0(x) &= \int\limits_{\Gamma} \mu_0(\xi) \frac{1}{|x - \xi|^{n - 2}} dS_{\xi} P_1^1(x) = \int\limits_{\Gamma} \mu_1(\xi) \frac{1}{|x - \xi|^{n - 2}} dS_{\xi} \\ &\left\{ \frac{\Delta P_1^0(x) = 0, \ x \in \Omega}{\lim\limits_{x \to x_0 \in \Gamma} \frac{\partial P_1^0}{\partial \nu_x}} = 0 \right. \end{split}$$

Т.е P_1^0 есть решение $N_i \Rightarrow P_1^0 \equiv c_0 = const, \ x \in \Omega$ То же самое относится к $P_1^1 \Rightarrow P_1^1 \equiv c_1 = const, \ x \in \Omega$ Возьмем плотность $\tilde{\mu} = c_1 \mu_0(x) - c_0 \mu_1(x)$ и рассмотрим потенциал простого слоя

$$P_1(x) = \int_{\Gamma} \tilde{\mu}(\xi) \frac{1}{|x - \xi|^{n-2}} dS_{\xi} = c_1 c_0 - c_0 c_1 = 0, \ x \in \Omega$$

 $P_1\equiv 1,\ x\in\Omega\Rightarrow P_1\equiv 0,\ x\in\Gamma\ ;\ \Delta P_1=0,\ x\in\mathbb{R}^n/\overline{\Omega},\ P_1\to 0,\ |x|\to\infty$ В силу единственности решения $D_l,\ P_1\equiv 0,\ x\in\mathbb{R}^n\Rightarrow \tilde{\mu},\ x\in\Gamma\Rightarrow \mu_0,\mu_1$ линейно независимы.

Согласно теореме Фредгольма (**) разрешимо $\Leftrightarrow \psi$ ортогональна константе:

$$(\psi,1)_{L_2(\Gamma)}=\int_{\Gamma}\psi dS=0$$
 - условие разрешимости необходимое и достаточное

Теорема 3

Внутренняя задача Неймана (N_i) имеет (классическое) решение для тех и только для тех непрерывных ограниченных функций $\psi(x)$, для которых $\int_{\Gamma} \psi(x) dS = 0$. Если есть решение, то оно единственное, с точностью до прибавления постоянной.

 D_l : согласно теореме Фредгольма (*) разрешимо $\Leftrightarrow (\varphi,\mu_0)_{L_2(\Gamma)},\ \mu_0(x)+\frac{2}{(n-2)\omega_n}\int\limits_{\Gamma}\mu_0(\xi)\frac{\partial}{\partial\nu_\xi}\frac{1}{|x-\xi|^{n-2}}dS_\xi=0$

Решение $D_l \; \exists \; \forall \; \varphi \in C(\Gamma)$, но в общем случае его нельзя найти в виде потенциала двойного слоя. Для (φ, μ_0) все хорошо.

В общем случае ищем решение в виде (считаем, что $0 \in \Omega$)

$$u(x) = \int_{\Gamma} \sigma(\xi) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} dS_{\xi} + \frac{1}{|x|^{n-2}} \int_{\Gamma} \sigma(\xi) dS_{\xi}$$

Тогда на границе

$$\begin{split} \varphi(x) - \frac{1}{|x|^{n-2}} \int_{\Gamma} \sigma(\xi) dS_{\xi} &= (\text{теорема о скачке}) = \\ &= \frac{(n-2)\omega_n}{2} \sigma(x) + \int_{\Gamma} \sigma(\xi) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x-\xi|^{n-2}} dS_{\xi}, \ x \in \Gamma \\ \\ \sigma(x) + \frac{2}{(n-2)\omega_n} \int_{\Gamma} \sigma(\xi) (\frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x-\xi|^{n-2}} + \frac{1}{|x|^{n-2}}) dS_{\xi} = \frac{2}{(n-2)\omega_n} \varphi(x), \ x \in \Gamma \end{split}$$

Рассмотрим соответствующее однородное уравнение:

$$\sigma(x) + \frac{2}{(n-2)\omega_n} \int\limits_{\Gamma} \sigma(\xi) (\frac{\partial}{\partial \nu_\xi} \frac{1}{|x-\xi|^{n-2}} + \frac{1}{|x|^{n-2}}) dS_\xi = 0$$

Докажем, что $\sigma \equiv 0$.

Пусть существует решение $\sigma_0 \in L_2(\Gamma)(\Rightarrow C(\Gamma) - \text{ докажем дальше})$:

$$u_0(x) = \int_{\Gamma} \sigma_0(\xi) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} dS_{\xi} + \frac{1}{|x|^{n-2}} \int_{\Gamma} \sigma_0(\xi) dS_{\xi}$$

 $\Delta u_0=0$ вне $\overline{\Omega};\ u_0(x) \to 0,\ x \to \infty;\ u_0|_{\Gamma}=0.$

В силу единственности решения $D_l:\ u_0\equiv 0,\ x\in\mathbb{R}^n/\overline{\Omega}$ имеем

$$\int\limits_{\Gamma} \sigma_0(\xi) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x-\xi|^{n-2}} dS_{\xi} + \frac{1}{|x|^{n-2}} \int_{\Gamma} \sigma_0(\xi) dS_{\xi} = 0$$

Умножим обе части уравнения на $|x|^{n-2}$, устремим $x \to \infty$ и воспользуемся тем, что $|P_2(x)| \leqslant \frac{c}{|x|^{n-1}}$ получаем, что

$$\int_{\Gamma} \sigma_0(\xi) dS_{\xi} = 0$$

Вспоминая уравнение для σ_0 получаем (т.к $\int_{\Gamma} \sigma_0(\xi) \frac{1}{|x|^{n-2}} dS_{\xi} = 0$)

$$\sigma_0(x) + \frac{2}{(n-2)\omega_n} \int_{\Gamma} \sigma_0(\xi) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x-\xi|^{n-2}} dS_{\xi} = 0$$

Как мы уже доказали, в таком случае $\sigma_0(\xi) \equiv c = const.$ Подставляя, получаем $\int_{\Gamma} cdS_{\xi} = 0 \Rightarrow c = 0 \Rightarrow \sigma_0 \equiv 0$, что и требовалось.

Теперь по теореме Фредгольма неоднородное уравнение разрешимо $\forall \varphi \in C(\Gamma)$.

Теорема 4.

Внешняя задача Дирихле D_l имеет единственное (классическое) решение для любой непрерывной граничной функции φ и это решение представляется в виде (выше).

11 Лекция 25.

$$T: L_2(\Gamma) \to L_2(\Gamma), \ Tu = \int_{\Gamma} u(\xi) \frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} dS_{\xi}$$
$$\frac{\partial}{\partial \nu_{\xi}} \frac{1}{|x - \xi|^{n-2}} = K(\xi, \varepsilon) = -(n-2) \frac{\cos(r, \nu_{\xi})}{r^{n-1}}$$

 $|\cos(r,\nu_{\xi})| \leqslant |x-\xi|^{\alpha},$ Γ - поверхность Ляпунова с показателем $\alpha.$

$$K(\xi,\varepsilon) = -(n-2)\frac{\cos{(r,\nu_\xi)}r^{-\alpha/2}}{r^{n-1-\alpha/2}} = \frac{A(x,\xi)}{r^{n-1-\alpha/2}}$$

 $Tu \equiv \int_{\Gamma} \frac{A(x,\xi)}{r^{n-1-\alpha/2}} u(\xi) dS_{\xi}$ - операторы со слабой обобенностью

 $A(x,\xi)\in C(\Gamma\times\Gamma)$ - продолжение по непрерывности. Пусть $u\in L_2(\Gamma),\ \beta=\alpha/2,$ тогда

$$||Tu||_{L_2(\Gamma)}^2 = \int_{\Gamma} \left(\int_{\Gamma} \frac{A(x,\xi)}{r^{n-1-\beta}} u(\xi) dS_{\xi} \right)^2 dS_x$$

$$\left(\int_{\Gamma} \frac{A(x,\xi)}{r^{\frac{n-1-\beta}{2}}} \frac{u(\xi)}{r^{\frac{n-1-\beta}{2}}} dS_{\xi} \right)^2 \leqslant \int_{\Gamma} \left(\frac{A(x,\xi)}{r^{\frac{n-1-\beta}{2}}} \right)^2 dS_{\xi} \int_{\Gamma} \left(\frac{u(\xi)}{r^{\frac{n-1-\beta}{2}}} \right)^2 dS_{\xi}$$

 $|A(x,\xi)|\leqslant M_0,\ x,\xi\in\Gamma$ $\eta\leqslant d$ - радиус сферы.

$$\int_{\Gamma} \frac{A(x,\xi)}{r^{n-1-\beta}} dS_{\xi} \leqslant M_0^2 \left(\int_{\Gamma'_\eta} \frac{dS_{\xi}}{r^{n-1-\beta}} + \int_{\Gamma''_\eta} \frac{dS_{\xi}}{r^{n-1-\beta}} \right)$$

$$\int_{\Gamma''_\eta} \frac{dS_{\xi}}{r^{n-1-\beta}} \leqslant \infty$$

$$\int_{\Gamma'_\eta} \frac{dS_{\xi}}{r^{n-1-\beta}} \leqslant C_0 \int_0^{\eta} \rho^{1+\beta-n} \rho^{n-2} d\rho \leqslant \infty \Rightarrow \int_{\Gamma} \frac{A(x,\xi)}{r^{n-1-\beta}} dS_{\xi} \leqslant \infty$$

$$||Tu||_{L_2(\Gamma)}^2 \leqslant M_1 \int_{\Gamma} \int_{\Gamma} \frac{u^2(\xi)}{r^{n-1-\beta}} dS_{\xi} dS_x = M_1 \int_{\Gamma} u^2(\xi) \left(\int_{\Gamma} \frac{dS_x}{r^{n-1-\beta}} dS_{\xi} \right) \leqslant$$

$$\leqslant M_1 M_2 \int_{\Gamma} u^2(\xi) dS_{\xi} = M_1 M_2 ||u||_{L_2\Gamma}^2 \Rightarrow Tu \in L_2(\Gamma), T \quad \text{ограничен.}$$

Теорема 4.

Т - вполне непрерывен.

Доказательство.

 $\{T_n\},\ T_n:X\to X$ (банахово), T_n компактны, $T_n\xrightarrow{||.||}T,\ T:X\to X\Rightarrow T$ компактен. $T=T^1_\varepsilon+T^2_\varepsilon$

$$K^1_\varepsilon(x,\xi) = \begin{cases} K(x,\xi), \ |x-\xi| < \varepsilon \\ 0, |x-\xi| \geqslant \varepsilon \end{cases} \quad K^2_\varepsilon(x,\xi) = \begin{cases} K(x,\xi), \ |x-\xi| \geqslant \varepsilon \\ 0, |x-\xi| < \varepsilon \end{cases}$$

При фиксированном ε , T_{ε}^2 - фредгольмов, т.к $|K_{\varepsilon}^2| \leqslant K_0$ Осталось доказать, что $||T_{\varepsilon}^1|| \to 0, \ \varepsilon \to +0.$

$$||T_{\varepsilon}^{1}u||_{L_{2}(\Gamma)}^{2} = \int_{\Gamma} \left(\int_{\Gamma_{\varepsilon}'} K(x,\xi)u(\xi)dS_{\xi} \right)^{2} dS_{x}$$

$$\left(\int_{\Gamma_{\varepsilon}'} \frac{A(x,\xi)}{r^{\frac{n-1-\beta}{2}}} \frac{u(\xi)}{r^{\frac{n-1-\beta}{2}}} dS_{\xi} \right)^{2} \leqslant \int_{\Gamma_{\varepsilon}'} \left(\frac{A(x,\xi)}{r^{\frac{n-1-\beta}{2}}} \right)^{2} dS_{\xi} \int_{\Gamma_{\varepsilon}'} \left(\frac{u(\xi)}{r^{\frac{n-1-\beta}{2}}} \right)^{2} dS_{\xi}$$

$$\int_{\Gamma_{\varepsilon}'} \frac{A(x,\xi)}{r^{n-1-\beta}} dS_{\xi} \leqslant M \int_{\Gamma_{\varepsilon}'} \frac{dS_{\xi}}{r^{n-1-\beta}} \leqslant M \int_{0}^{\varepsilon} \rho^{1+\beta-n} \rho^{n-2} d\rho = M_{2} \varepsilon^{\beta}$$

$$||T_{\varepsilon}^{1}u||_{L_{2}(\Gamma)}^{2} \leqslant M_{2}\varepsilon^{\beta} \int_{\Gamma} \int_{\Gamma} \frac{u^{2}(\xi)}{r^{n-1-\beta}} dS_{\xi} dS_{x} = M_{2}\varepsilon^{\beta} \int_{\Gamma} \left(\int_{\Gamma} \frac{dS_{\xi}}{r^{n-1-\beta}} \right) u^{2}(\xi) dS_{x} \leqslant M_{3}\varepsilon^{\beta} ||u||_{L_{2}(\Gamma)}^{2}$$

Теорема 2

Пусть $u(x) \in L_2(\Gamma)$ решение интегрального уравнения со слабой особенностью:

$$u(x) - \int_{\Gamma} \frac{A(x,\xi)}{r^{n-1-\beta}} u(\xi) dS_{\xi} = \varphi(x), \ A(x,\xi) \in C(\Gamma \times \Gamma), \ \varphi(x) \in C(\Gamma), \ \beta > 0$$

Тогда
$$u\in C(\Gamma)$$
. Доказательство.
$$T=T_{\varepsilon}^1+T_{\varepsilon}^2,\ K_{\varepsilon}^1(x,\xi)=K(x,\xi)\eta(|x-\xi|),\ K_{\varepsilon}^2(x,\xi)=K(x,\xi)(1-\eta(|x-\xi|)),$$
 $\eta-$ "шапочка до " ε . $u(x)-T_{\varepsilon}^1=T_{\varepsilon}^2+\varphi=:g(x),\ ||T_{\varepsilon}^1||< M\varepsilon^{\beta/2},\ \varepsilon<<1$ T_{ε}^2u непрерывен, т.к $K_{\varepsilon}^2\in C^\infty\Rightarrow g(x)\in C(\Gamma)$ $(Id-T_{\varepsilon}^1)u=g(x)\in C(\Gamma), ||T_{\varepsilon}^1||<1.$

Теорема Банаха.

 ${\bf A}$ - линейный ограниченный оператор на банаховых пространствах и норма ${\bf A}$ меньше 1, тогда существует ограниченный оператор $(Id-A)^{-1}$ и при этом $(Id-A)^{-1}=\sum\limits_{n=0}^{\infty}A^{n}$ продолжим доказательство

$$u(x) = \sum_{n=0}^{\infty} (T_{\varepsilon}^1)^n g(x); \ (T_{\varepsilon}^1)^n g(x) \in C(\Gamma)$$

$$\begin{split} |T_{\varepsilon}^{1}g| &\leqslant \int_{\Gamma_{\varepsilon}'} \frac{|A(x,\xi)|}{r^{n-1-\beta}} |g(\xi)| dS_{\xi}, \ |g(\xi)| \leqslant M_{0}, \ |A(x,\xi)| \leqslant M_{1} \Rightarrow \\ &\Rightarrow |T_{\varepsilon}^{1}g| \leqslant M_{0}M_{1} \int_{\Gamma_{\varepsilon}'} \frac{dS_{\xi}}{r^{n-1-\beta}}, \int_{\Gamma_{\varepsilon}'} \frac{dS_{\xi}}{r^{n-1-\beta}} \leqslant M_{2}\varepsilon^{\beta} \Rightarrow \\ &\Rightarrow \max_{x} |T_{\varepsilon}^{1}g| \leqslant M_{0}M_{1}M_{2}\varepsilon^{\beta} \\ &|(T_{\varepsilon}^{1})^{2}g| = |T_{\varepsilon}^{1}(T_{\varepsilon}^{1}g)| \leqslant (M_{0}M_{1}M_{2}\varepsilon^{\beta})^{2} \\ &|(T_{\varepsilon}^{1})^{n}g| \leqslant (M_{0}M_{1}M_{2}\varepsilon^{\beta})^{n} \end{split}$$

Берем ε : $M_0M_1M_2\varepsilon^\beta=q<1$ тогда исходный ряд будет сходится равномерно $\Rightarrow u\in C(\Gamma)$

Вариационный метод решения задачи Дирихле.

 Ω - ограниченная область в \mathbb{R}^n , $H' \subset H_1(\Omega)$ произвольное подпространство - линейное подпространство, на котором задано (.,.), и оно эквивалентно (.,.) на $H_1(\Omega)$, причем H' полно относительно (.,.) $c||u||_{H_1} \leqslant ||u||_{H'} \leqslant$ $C||u||_{H_1}$.

Рассмотрим:

 $E: H' \to \mathbb{R}, \ Eu = ||u||_{H'}^2 + 2(f,u)_{L_2}, \ f \in L_2(\Omega)$ фиксирована.

$$|(f,u)_{L_2(\Omega)}|\leqslant ||f||_{L_2(\Omega)}||u||_{L_2(\Omega)}\leqslant ||f||_{L_2(\Omega)}||u||_{H_1(\Omega)}\leqslant c||f||_{L_2(\Omega)}||u||_{H'}$$

$$Eu = ||u||_{H'}^2 + 2(f,u)_{L_2} \geqslant ||u||_{H'}^2 - 2c||f||_{L_2(\Omega)}||u||_{H'} = (|u||_{H'} - ||f||_{L_2})^2 - c^2||f||_{L_2} \geqslant -c^2||f||_{L_2}$$

 $\Rightarrow \inf_{H'} Eu < -\infty, \ \exists v_n: \ \lim_{m o \infty} E(v_m) = d$ - минимизирующая последовательность.

 $u \in H'$ называется элементом, реализующим minE на H', если Eu = d

Для любого подпрастранства H' пространства $H(\Omega)$ \exists ! элемент $u \in H'$, реализующий минимум функционала E на Н'.

Любая минимизирующая последовательность сходится к этому элементу.

Доказательство леммы

 $\{v_m\}$ минимизирующая последовательность. $\forall \varepsilon > 0 \ \exists M(\varepsilon) \ \forall m > M \ d \leqslant Ev_m < d + \varepsilon$

$$||\frac{v_m \pm v_n}{2}||_{H'}^2 = \frac{1}{4}||v_m||_{H'}^2 + \frac{1}{4}||v_n||_{H'}^2 \pm \frac{1}{2}(v_m, v_n)_{H'}$$

$$||\frac{v_m - v_n}{2}||_{H'}^2 = \frac{1}{2}||v_m||_{H'}^2 + \frac{1}{2}||v_n||_{H'}^2 - ||\frac{v_m + v_n}{2}||_{H'}^2 = \frac{1}{2}E(v_n) + \frac{1}{2}E(v_n) - E(\frac{v_n + v_m}{2})$$

 $m,n\geqslant M,\Rightarrow ||\frac{v_m-v_n}{2}||^2_{H'}<\frac{1}{2}(d+\varepsilon)+\frac{1}{2}(d-\varepsilon)-d=\varepsilon\Rightarrow \{v_m\}$ фундаментальная, тогда сходится по норме в H', т.к они эквивалентны

 $v_m \xrightarrow{||.||_{H'}} \Rightarrow Eu = d$. Единственность очевидна.

12 Лекция 26

12.1 Метод Ритца

Возьмем в H' произвольную линейно независимую систему функций $\phi_1,\ldots,\phi_k,\ldots$, линейная оболочка которой плотна в H'. обозначим через R_k линейную оболочку первых k функций из этой системы. Мы знаем, что $\exists! v_k \in R_k$: $\min_{R_k} E(u) = E(v_k)$. Ищем $v_k = \sum_{j=1}^k c_j^k \phi_j$. ВВедем функцию

$$F(c_1,\ldots,c_k) = E(\sum_{i=1}^k c_j^k \phi_j)$$

В точке минимума должны выполняться условия $\frac{\partial F}{\partial c_j}=0 \ \forall j=1,\ldots,k,$ что эквивалентно системе линейных уравнений

$$\sum_{i=1}^{k} c_i(\phi_i, \phi_j)_{H'} + (f, \phi_j)_{L_2(\Omega)} \quad j = 1, \dots, k$$

Определитель системы представляет собой определитель Грамма для системы ϕ_1, \ldots, ϕ_k и не равен нолю в силу их линейной независимости. Поэтому существует решение c_1^k, \ldots, c_k^k , и элемент $v_k = \sum_{j=1}^k c_j^k \phi_j$, реализующий минимум на R_k .

Последовательность $\{v_k\}$ называется последовательностью Ритца.

Теорема 12.1. Последовательность Ритца является минимизирующей функционал $E(\cdot)$ на подпространстве H' последовательностью.

Доказательство:

Имеем

$$R_1 \subset R_2 \subset R_3 \subset \dots$$

 $E(v_1) \ge E(v_2) \ge E(v_3) \ge \dots \ge d$

Так как система $\{\phi_k\}$ полна, то

$$\forall \varepsilon > 0 \ \exists K(\varepsilon) \ \exists u_{\varepsilon}(x) = C_1(\varepsilon)\phi_1 + \ldots + C_{K(\varepsilon)}\phi_{K(\varepsilon)} \in R_{K(\varepsilon)} : \ ||u - u_{\varepsilon}||_{H'} < \varepsilon$$

Где E(u) = d.Рассмотрим

$$E(u_{\varepsilon}) = ||u_{\varepsilon}||_{H'}^{2} + 2(f, u_{\varepsilon})_{L_{2}} = ||u_{\varepsilon} - u + u||_{H'}^{2} + 2(f, u_{\varepsilon} - u)_{L_{2}} + 2(f, u)_{L_{2}} =$$

$$= E(u) + E(u_{\varepsilon} - u) + 2(u_{\varepsilon} - u, u)_{H'} \le d + ||u_{\varepsilon} - u||_{H'}^{2} + 2(f, u_{\varepsilon} - u)_{L_{2}} + 2(u_{\varepsilon} - u, u)_{H'} \le d + \varepsilon^{2} + C_{0}\varepsilon \le d + C_{1}\varepsilon$$

Получили $E(u_{\varepsilon}) \leq d + C_1 \varepsilon$, Но $d \leq E(v_{K_{\varepsilon}}) \leq E(u_{\varepsilon}) \leq d + C_1 \varepsilon$, поэтому $\forall \varepsilon > 0 \ \exists K(\varepsilon) \ \forall s > K(\varepsilon) \ d \leq E(v_s) \leq d + C_1 \varepsilon$, откуда $\lim_{s \to \infty} E(v_s) = d$. Что и требовалось доказать.

Итак, пусть E(u)=d – минимум функционала в H'. Рассмотрим функцию w(t)=u+tw, где $t\in\mathbb{R},\ w\in H'$, и многочлен

$$P(t) = E(u + wt) = ||u + tw||_{H'}^2 + 2(f, u + tw)_{L_2} =$$

$$= ||u||_{H'}^2 + 2(f, u)_{L_2} + 2t(u, w)_{H'} + t^2||w||_{H'} + 2t(f, w)_{L_2} \ge d \quad \forall t$$

Кроме того, P(0) = E(u) = d, значит $P'(0) = 2(u, w)_{H'} + (f, w)_{L_2} = 0 \ \forall w \in H'$.

Рассмотрим $H'=H_1^0(\Omega),$ тогда это соотношение примет вид

$$(u,w)_{H'} = (u,w)_{H_1^0(\Omega)} = \int_{\Omega} \nabla u \nabla w \, dx = -\int_{\Omega} fw \, dx \quad \forall w \in H_1^0(\Omega)$$

Тогда $u \in H_1^0(\Omega)$ есть обобщенное решение задачи Дирихле.

Подведем итог.

Теорема 12.2. Существует единственная функция ,реализующая минимум функционала на. Если скалярное произведение на задается формулой ,то эта функция является обобщенным решением задачи Дирихле

$$\begin{cases} \Delta u = f, \ x \in \Omega \\ u|_{\partial\Omega} = 0 \\ u \in H_1^0(\Omega), \quad f \in L_2(\Omega) \end{cases}$$

Последовательность Ритца может быть рассмотрена как последовательность, приближающая решение.

12.2 Уравнение теплопроводности

Рассмотрим дифференциальный оператор (теплопроводности):

$$Tu = u_t - \Delta_x u$$

тогда сопряженный оператор

$$T^*v = -v_t - \Delta_x v$$

Уравнение теплопроводности имеет вид Tu=f(x,t), где $x\in\Omega$ – ограниченная область, $t\geq0$. Для уравнения теплопроводности имеет место аналог формулы Грина: пусть

$$u, v \in C^{2,1}(\widetilde{\omega}_{\tau}) \cap C^1(\overline{\omega}_{\tau}),$$

где

$$\tilde{\omega}_{\tau} = \left\{ (x, t) \mid x \in \Omega, \ 0 < t \le \tau \right\}$$

$$\omega_{\tau} = \left\{ (x, t) \mid x \in \Omega, \ 0 < t < \tau \right\}$$

здесь $C^{2,1}$ – пространство функций, дважды дифференцируемых по ${\bf x}$ и один раз по ${\bf t}$. Тогда

$$\int_{\omega_{\tau}} (vTu - uT^*v) \, dxdt = \int_{\omega_{\tau}} (vu_t + uv_t - v\Delta u + u\Delta v) \, dxdt =$$

$$= \int_{\Omega} u(x,\tau)v(x,\tau) \, dx - \int_{\Omega} u(x,0)v(x,0) \, dx + \int_{S_{\tau}} \left(u\frac{\partial v}{\partial \nu} + v\frac{\partial u}{\partial \nu}\right) \, dS$$

Проверим, что фундаментальным решение для оператора теплопроводности является

$$\Gamma(x, x_0, t, t_0) = \frac{\theta(t - t_0)}{(2\sqrt{\pi(t - t_0)})^n} e^{-\frac{|x - x_0|^2}{4(t - t_0)}}$$

То есть нужно проверить

$$(T_{x,t}\Gamma(x,x_0,t,t_0),f(x,t))=(\Gamma(x,x_0,t,t_0),T^*f(x,t))=f(x_0,t_0)$$

Убедимся, что $\Gamma \in L_{1,loc}(\mathbb{R}^{n+1})$:

$$\frac{1}{2^{n}\pi^{n/2}} \int_{t_{0}}^{t_{0}+R} \int_{|x-x_{0}| < C} \frac{1}{|t-t_{0}|^{n/2}} e^{-\frac{|x-x_{0}|^{2}}{4(t-t_{0})}} dx dt \bigg|_{\xi = \frac{x-x_{0}}{2\sqrt{t-t_{0}}}} = \frac{1}{\pi^{n/2}} \int_{t_{0}}^{t_{0}+R} \int_{|\xi| < \frac{C}{2\sqrt{t-t_{0}}}} e^{-|\xi|^{2}} d\xi dt \le \frac{1}{\pi^{n/2}} \int_{0}^{t_{0}+R} \int_{|\xi| < \frac{C}{2\sqrt{t-t_{0}}}} e^{-|\xi|^{2}} d\xi dt = R$$

То есть

$$\left(\Gamma(x, x_0, t, t_0), T^* f(x, t)\right) = \int_{\mathbb{R}^{n+1}} \Gamma(x, x_0, t, t_0) T^* f(x, t) \, dx dt =$$

$$\lim_{\varepsilon \to 0} \int_{t_0 + \varepsilon}^{\infty} \int_{\mathbb{R}^n} \Gamma(x, x_0, t, t_0) T^* f(x, t) \, dx dt =$$

Пользуясь формулой Грина,

$$= \lim_{\varepsilon \to 0} \left(\int_{t_0 + \varepsilon}^{\infty} \int_{\mathbb{R}^n} T\Gamma(x, x_0, t, t_0) Tf(x, t) \, dx dt + \int_{\mathbb{R}^n} \Gamma(x, x_0, t_0 + \varepsilon, t_0) f(x, t_0 + \varepsilon) \, dx \right)$$

Упражнение: Для любого $t > t_0$ $T\Gamma = 0$.

Используя этот факт, пишем:

$$= \lim_{\varepsilon \to 0} \int_{\mathbb{R}^n} \Gamma(x, x_0, t_0 + \varepsilon, t_0) f(x, t_0 + \varepsilon) dx = \lim_{\varepsilon \to 0} \frac{1}{(2\sqrt{\pi\varepsilon})^n} \int_{\mathbb{R}^n} e^{-\frac{|x - x_0|^2}{4\varepsilon}} f(x, t_0 + \varepsilon) dx \bigg|_{\xi = \frac{x - x_0}{2\sqrt{\varepsilon}}} =$$

$$= \lim_{\varepsilon \to 0} \frac{1}{\pi^{n/2}} \int_{\mathbb{R}^n} e^{-|\xi|^2} f(x_0 + 2\sqrt{\varepsilon}\xi, t_0 + \varepsilon) d\xi =$$

$$= \lim_{\varepsilon \to 0} \left\{ \frac{1}{\pi^{n/2}} \int_{|\xi| > N} e^{-|\xi|^2} (f(x_0 + 2\sqrt{\varepsilon}\xi, t_0 + \varepsilon) - f(x_0, t_0)) d\xi + \frac{1}{\pi^{n/2}} \int_{|\xi| < N} e^{-|\xi|^2} (f(x_0 + 2\sqrt{\varepsilon}\xi, t_0 + \varepsilon) - f(x_0, t_0)) d\xi \right\} + f(x_0, t_0)$$

Покажем, что интегралы стремятся к нолю:

$$M = \sup_{\mathbb{R}^n} |f(x,t)| < \infty \quad \forall \varepsilon > 0 \quad \exists N \quad \frac{M}{\pi^{n/2}} \int_{|\xi| > N} e^{-|\xi|^2} d\xi < \varepsilon/2$$

$$\forall \varepsilon > 0 \quad \delta > 0 \quad \forall x, t : |x - x_0| < \delta, |t - t_0| < \delta \quad |f(x, t) - f(x_0, t_0)| < \varepsilon$$

Возьмем $2\sqrt{\varepsilon}N < \delta, \varepsilon < \delta$, тогда и второй интеграл меньше ε ,что мы и хотели показать. Итак, мы доказали, что $\Gamma(x,x_0,t,t_0)$ является фундаментальным решением.

Теорема 12.3 (Принцип максимума в ограниченной области). Пусть u(x,t) - решение уравнения Tu=0 в слое \tilde{w}_{τ} , принадлежащее классу $C^{2,1}(\tilde{w}_{\tau}) \cap C(\overline{w_{\tau}})$. Тогда $\forall (x,t) \in \tilde{w}_{\tau}$:

$$\min_{\sigma_{\tau}} u(x,t) \le u(x,t) \le \max_{\sigma_{\tau}} u(x,t)$$

 $\Gamma \partial e \ \sigma_{\tau} = \Omega \cup S_{\tau}, \ S_{\tau}$ – боковая поверхность цилиндра.

Доказательство:

Достаточно доказать, что $\min_{\sigma_{\tau}} u(x,t) \leq u(x,t)$, потому что применив это рассуждение к функции v=-u, получим утверждение для максимума.

Из непрерывности $u \exists M > 0: |u(x,t)| < M$ в $\overline{w_{\tau}}$. Выберем M_1 такое, что

$$v(x,t) = u(x,t) - M_1 < 0 \quad \forall (x,t) \in \overline{w_\tau}$$

Тогда Tv=0 в \tilde{w}_{τ} и v<0 в $\overline{w_{\tau}}$. Положим $v=e^{\gamma t}w$, $\gamma=const>0$. Покажем, что минимум отрицательного значения w может достигаться лишь на σ_{τ} . Предположим противное: $\exists (x_0,t_0)\in \tilde{w}_{\tau}: 0>w(x_0,t_0)=\min_{\overline{w_{\tau}}}w(x,t)$. Ясно, что w(x,t)<0 в $\overline{w_{\tau}}, \frac{\partial w}{\partial x_j}(x_0,t_0)=0, \ \frac{\partial w}{\partial t}(x_0,t_0)\leq 0$, а $\frac{\partial^2 w}{\partial x_j^2}(x_0,t_0)\geq 0$. Но тогда

$$Tv\Big|_{(x_0,t_0)} = \left(\gamma e^{\gamma t} w(x,t) + e^{\gamma t} \frac{\partial w}{\partial t}(x,t) - e^{\gamma t} \Delta w(x,t)\right)\Big|_{(x_0,t_0)} < 0$$

Что противоречит равенству Tv = 0.

Следовательно

$$w(x,t) \ge \min_{\sigma_{\tau}} w(x,t)$$

Или, что то же самое,

$$e^{-\gamma t}v(x,t) \ge \min_{\sigma_{\tau}} e^{-\gamma t}v(x,t)$$

Переходя к пределу при $\gamma \to 0$ получаем $v(x,t) \ge \min_{\sigma_\tau} v(x,t)$, а отсюда и требуемое неравенство для u(x,t).

13 Лекция 27.

13.1 Принципы максимума

Теорема 13.1 (Принцип максимума в неограниченной области). Пусть u(x,t) - решение уравнения Tu=0 в слое $G_{\tau}=\left\{ (x,t) \ \middle|\ x\in\mathbb{R}^n,\ 0< t\leq \tau \right\}$, принадлежащее классу $C^{2,1}(G_{\tau})\cap C(\overline{G_{\tau}})$. Предположим, что $\forall (x,t)\in G_{\tau} \ |\ u(x,t)|\leq M$. Тогда $\forall (x,t)\in G_{\tau}$:

$$\inf_{x \in \mathbb{R}^n} u(x,0) \le u(x,t) \le \sup_{x \in \mathbb{R}^n} u(x,0)$$

Доказательство:

Обозначим

$$M_0 = \sup_{x \in \mathbb{R}^n} u(x,0), m_0 = \inf_{x \in \mathbb{R}^n} u(x,0)$$

Введем вспомогательную функцию $v(x,t)=|x|^2+2nt$. Легко видеть, что в G_{τ} $Tv=v_t-\Delta|x|^2=2n-2n=0$. Введем еще функции

$$W_1(x,t) = M_0 - u(x,t) + \varepsilon v(x,t)$$

$$W_2(x,t) = M_0 - u(x,t) - \varepsilon v(x,t)$$

Заметим, что $TW_1 = TW_2 = 0$ в G_{τ} , и кроме того

$$W_1(x,0) = M_0 - u(x,0) + \varepsilon |x|^2 \ge 0$$

$$W_2(x,0) = m_0 - u(x,0) - \varepsilon |x|^2 < 0$$

Далее, $\forall \varepsilon > 0 \quad \exists R(\varepsilon) \quad \forall x: |x| \geq R(\varepsilon) \quad W_1(x,t) \geq 0, W_2(x,t) \leq 0$ Теперь применим принцип максимума для ограниченной области к функциям W_1 и W_2 в области G_{τ} :

$$W_1(x,t) \ge 0, \quad W_2(x,t) \le 0 \qquad (x,t) \in G_{\tau}$$

Что равносильно

$$m_0 - \varepsilon v(x,t) \le u(x,t) \le M_0 + \varepsilon v(x,t) \qquad \forall (x,t) \in G_\tau$$

Переходя к пределу при $\varepsilon \to 0$, получим утверждение теоремы.

Теорема 13.2 (строгий принцип максимума). Пусть функция u(x,t) в цилиндре $\tilde{w}_{\tau} = \left\{ (x,t) \, \middle| \, x \in \Omega, \, 0 < t \leq \tau \right\}$ удовлетворяет уравнению Tu = 0, принадлежит классу $C^{2,1}(\tilde{w}_{\tau}) \cap C(\overline{w}_{\tau})$ и принимает в точке $(x_0,t_0) \in \tilde{w}_{\tau}$ наибольшее значение, то $u(x,t) \equiv u(x_0,t_0) = const$ в цилиндре $\tilde{w}_{\tau_0} = \tilde{w}_{\tau} \cap \{t \leq \tau_0\}$.

Доказательство:

Предположим противное. Пусть $u(x_1,t_1) < u(x_0,t_0) := M$, где $t_1 < t_0$. Соединим точки (x_0,t_0) и (x_1,t_1) ломаной, содержащейся в \tilde{w}_{τ} с вершинами в точках $t_1,\ldots,t_n,t_{n+1}=t_0$, причем $t_1 < t_2 < \ldots < t_{n+1}=t_0$. Если мы докажем, что из неравенства $u(x_s,t_s) < M$ следует $u(x_{s+1},t_{s+1}) < M$, то, двигаясь по ломаной, получим $u(x_0,t_0) < M$ противоречие, и теорема будет доказана.

Пусть точки (x_s, t_s) и (x_{s+1}, t_{s+1}) лежат на прямой

$$x_i = k_i t + a_i, \quad j = 1, \dots, n$$

Рассмотрим цилиндр $P(x,t) < \rho^2$, где $P(x,t) = \sum_{j=1}^n (x_j - k_j t - a_j)^2$. Выберем $\rho > 0$: $u(x,t_s) < M - \varepsilon_1 \quad \forall x: P(x,t_s) < \rho^2$. Построим вспомогательную функцию

$$v(x,t) = e^{-\gamma t} (\rho^2 - P(x,t))^2, \quad \gamma > 0$$

Тогда

$$Tv = e^{-\gamma t} (-\gamma(\rho^2 - P)^2 - 2(\rho^2 - P)\frac{\partial P}{\partial t} + 4n(\rho^2 - 8P) - 8P$$

Покажем, что можно γ выбрать настолько большим, что Tv<0 внутри цилиндра. Действительно, на боковой поверхности цилиндра $Tv=-8e^{-\gamma t}\rho^2<0$, поэтому неравенство справедливо и в некоторой δ -окрестности поверхности. Если же $P(x,t)<\rho^2-\delta$, то $\rho^2-P(x,t)>\delta$ и при достаточно большом γ первый член в скобках будет больше по модулю, чем сумма модулей остальных членов, то есть Tv<0 внутри цилиндра. Рассмотрим функцию

$$W(x,t) = M - u(x,t) - \alpha v(x,t)$$

Ясно, что $TW = -\alpha Tv > 0$ в цилиндре. Тогда по принципу максимума для ограниченной области,

$$W(x,t) \ge \min_{x \in \mathcal{X}} W(x,t)$$

Где σ — "наклонный стакан" (боковая поверхность плюс нижнее основание нашего цилиндра).На боковой поверхности цилиндра W(x,t)=M-u(x,t)>0, а на нижнем основании $W(x,t_s)=M-u(x,t_s)-\alpha v(x,t_s)\geq \varepsilon_1-\alpha v(x,t_s)>0$, при достаточно маленьком α . Значит, и во всем цилиндре $W(x,t)\geq 0$, в частности $W(x_{s+1},t_{s+1})\geq 0$, то есть

$$u(x_{s+1}, t_{s+1}) \le M - \alpha v(x_s, t_s) < M$$

Что и хотели доказать.

Теорема 13.3 (о стабилизации). Пусть $u(x,t) \in C^{2,1}(w_{\infty}) \cap C(\overline{w}_{\infty})$ – решение уравнения Tu = 0,

$$w_{\infty} = \left\{ (x, t) \mid x \in \Omega, \ 0 < t < \infty, \right\}$$

$$S_{\infty} = \left\{ (x, t) \mid x \in \partial \Omega, \ 0 < t < \infty, \right\}$$

Пусть $u|_{S_{\infty}}=0,$ тогда $u(x,t)\to 0$ $t\to \infty$ равномерно по всем $x\in \overline{\Omega}$

Доказательство:

Для удобства положим $0 \in \Omega$. Рассмотрим функцию

$$v(x,t) = e^{-at} \prod_{j=1}^{n} \cos bx_j, \quad a > 0$$

Поскольку $v_t = -av$ и $v_{x_jx_j} = -b^2v$, то $Tv = (nb^2 - a)v$. Следовательно при $a = nb^2 \ v(x,t)$ – решение уравнения теплопроводности. Выберем b настолько малым, что

$$\Omega \subset \left\{ |x_j| < \frac{\pi}{4b}, \quad j = 1, \dots, n \right\}$$

Внутри этого параллелепипеда v(x,0)>0, поэтому (из непрерывности u и v) $\exists M>0: |u(x,0)|< v(x,0), \quad x\in\Omega.$ Кроме того, $v|_{S_{\infty}}>0$. Рассмотрим функции

$$W_1(x,t) = Mv(x,t) - u(x,t)$$

$$W_2(x,t) = Mv(x,t) + u(x,t)$$

Очевидно, $TW_1=TW_2=0$, при этом M мы выбрали так, что $W_1(x,0)=Mv(x,0)+u(x,0)\geq 0$ и кроме того, $W_1|_{S_\infty}>0$, отсюда по принципу максимума $W_1(x,t)\geq 0, \quad x\in \overline{w}_\infty$, то есть $u(x,t)\leq Mv(x,t)$. Аналогично применяя принцип максимума к W_2 , получаем $-u(x,t)\leq Mv(x,t)$. Итак,

$$|u(x,t)| \le Mv(x,t) \quad x \in \overline{w}_{\infty}$$

Но v(x,t) убывает к нолю равномерно по $x \in \overline{\Omega}$, так что теорема доказана.

13.2 Начально-краевые задачи

1) Первая начально-краевая задача:

 $C^{2,1}(\bar{w}_\tau)\cap C(\overline{w}_\tau)$

$$Tu = f(x,t) \quad (x,t) \in \tilde{w}_{\tau}$$

$$u|_{S_{\tau}} = \psi(x,t), \quad S_{\tau} = \partial\Omega \times (0,\tau)$$

 $u|_{t=0} = \varphi(x)$

Здесь f, ψ, φ – заданные непрерывные функции.

2) Вторая начально-краевая задача:

$$C^{2,1}(\tilde{w}_{\tau}) \cap C(\overline{w}_{\tau})$$

$$Tu = f(x,t) \quad (x,t) \in \tilde{w}_{\tau}$$

$$\frac{\partial u}{\partial \nu}|_{S_{\tau}} = \psi(x,t)$$

$$u|_{t=0} = \varphi(x)$$

Здесь f, ψ, φ – заданные непрерывные функции, а поверхность $\partial \Omega$ – регулярна.

3) Третья начально-краевая задача:

$$C^{2,1}(\tilde{w}_{\tau}) \cap C(\overline{w}_{\tau})$$

$$Tu = f(x,t) \quad (x,t) \in \tilde{w}_{\tau}$$

$$\left(\frac{\partial u}{\partial \nu} + a(x,t)u\right)|_{S_{\tau}} = \psi(x,t)$$

$$u|_{t=0} = \varphi(x)$$

Здесь f, a, ψ, φ – заданные непрерывные функции, а поверхность $\partial \Omega$ – регулярна.

4) Задача Коши:

$$C^{2,1}(G_{\tau})\cap C(\overline{G}_{\tau})$$
 $Tu=f(x,t)\quad (x,t)\in G_{\tau}=\mathbb{R}^n imes (0, au]$
 $u|_{t=0}=\varphi(x),\quad x\in\mathbb{R}^n$
Здесь f,φ — заданные непрерывные функции.

13.3 Теоремы единственности

Теорема 13.4. Первая краевая задача для оператора теплопроводности имеет единственное решение.

Доказательство:

Как обычно, рассмотрим разность $v=u_1-u_2$ двух решений этой задачи. Тогда $Tv=0, \quad v|_{S_{\tau}}=0, \quad v|_{t=0}=0.$ Согласно принципу максимума для ограниченных областей,

$$0 = \min_{\sigma_\tau} v(x,t) \leq v(x,t) \leq \max_{\sigma_\tau} v(x,t) = 0$$

Поэтому v(x,t)=0 в $\tilde{w}_{ au}$ и единственность доказана.

Теорема 13.5. Задача Коши для уравнения теплопроводности в классе ограниченных функций имеет единственное решение.

Доказательство:

Рассмотрим разность $v=u_1-u_2$ двух решений этой задачи. Тогда $Tv=0, \quad v|_{t=0}=0, |v|\leq M$ для $v\in G_{\tau}$. Согласно принципу максимума для неограниченных областей,

$$0 = \min_{\mathbb{R}^n} v(x,0) \le v(x,t) \le \max_{\mathbb{R}^n} v(x,0) = 0$$

Поэтому v(x,t)=0 в $G_{ au}$ и единственность доказана.