A novel reinforcement learning algorithm for virtual network embedding

A.Zamani

Supervised by: Dr. pourahmadi

Amirkabir University of Technology

Statistical Machine Learning, December 2018

Outline

- Network modeling
- Policy network
 - Feature extraction
 - convolutional layer
 - Softmax layer
 - Filter
- Training and testing
 - Training
 - Testing
- Reward
- Evaluation

Network modeling

Figure: An example of virtual network embedding.

Network modeling

- Substrate network: $G^S = (N^S, L^S, A_N^S, A_L^S)$
- Request: $G^V = (N^V, L^V, C_N^V, C_L^V)$
- virtual network embedding process can be formulated as— mapping G^V to $G^S: G^S(N^V, L^V) \to G^S(N^i, P^i)$ where $N^i \subset N^S, P^i \subset P^S$

Policy network

Figure: Policy network.

Feature extraction

- Computing capacity (CPU)
- Degree (DEG)
- Sum of bandwidth (SUM^(BW))

$$\rightarrow$$
 $SUM^{(BW)}(n^S) = \sum_{I^s \in L(n^S)} BW(I^S)$

Average distance to other host nodes AVG^{DST}

$$\rightarrow AVG^{(DST)}(n^S) = \frac{\sum_{\hat{n}^S \in \hat{N}^S} DST(n^S, \hat{n}^S)}{|\hat{N}^S| + 1}$$

- feature vector $V_K \rightarrow V_K = (CPU(n_k^S), DEG(n_k^S), SUM^{(BW)}(n_K^S), AVG^{(DST)}(n_K^S))^T$
- feature matrix M_f $\rightarrow M_f = (v_1, v_2, \dots, v_{|N^S|})$

Feature extraction

Figure: Policy network.

convolutional layer

- performs a convolution operation on th input
- produces a vector representing the available resources of each node

$$h_K^c = w.v_K + b$$

convolutional layer

Figure: Policy network.

Softmax layer

- the n-dimensional vector into real values between 0 and 1 that add up to 1
- probability distribution over n different possible mappings

$$p_K = \frac{e^{h_k^c}}{\sum_i e^{h_K^c}}$$

Filter

- Some of the nodes are not able to host
- because they do not have enough computing resources
- add a filter to choose a set of candidate nodes with enough CPU capacities

Softmax & Filter

Figure: Policy network.

Training

- randomly initialize the parameters in the policy network
- cannot simply select the node with a maximal probability as the host
- exploration & exploitation
- sample from the set of available substrate nodes according to their probability
- select a node as the host

Training

- repeat this process until all the virtual nodes in a virtual request are assigned
- proceed to link mapping
- breadth-first search to find the shortest paths between each pair of nodes
- If no substrate node is available, the mapping fails
- in reinforcement learning, agent relies on reward signals to know if it is working properly

Training

- \bullet If we choose the ith node \to vector y filled with zeros except the i th position which is one
- Cross-entropy loss $\rightarrow L(y, P) = -\sum_i y_i log(P_i)$
- use backpropagation to compute the gradients of parameters
- stack the gradients g_f
- $g = \alpha.r.g_f$

Testing

greedy strategy

Reward

• revenue of accepting a virtual network request

$$R(G^{v}, t, t_{d}) = t_{d}.[\sum_{n^{v} \in N^{v}} CPU(n^{v}) + \sum_{l^{v} \in L^{v}} BW(l^{v})]$$

- cost function: $C(G^v, t, t_d) = t_d \cdot \left[\sum_{l^v \in L^v} \sum_{l^s \in P^i_{l^v}} BW(l^v) \right]$
- long-term average revenue: $\lim_{T \to \infty} \frac{\sum_{t=0}^{T} R(G^{v}, t, t_d)}{T}$
- long-term revenue to cost ratio: $\lim_{T \to \infty} \frac{\sum_{t=0}^{T} R(G^{v}, t, t_{d})}{\sum_{t=0}^{T} C(G^{v}, t, t_{d})}$

- network with 100 nodes and approximately 550 links
- \bullet capacity of every substrate node \rightarrow uniform distribution between 50 and 100
- ullet bandwidth of every link o uniform distribution between 20 and 50
- generated a number of virtual requests →each with 210 virtual nodes
- ullet computing capacity requirement of every virtual node o uniform distribution between 0 and 50 units
- bandwidth requirement of every virtual link \rightarrow uniform distribution between 0 and 50 units
- 100 epochs
- gradient descent with a learning rate of 0.005

Figure: Performance on training set

Figure: Loss on training set

Figure: Performance on testing set

