姓名: - 学号:

上海科技大学

学院和年级:

2022-2023 学年第二学期期中考试卷

开课单位: 数学科学研究所

授课教师: 陈浩, 李铮, 赵俐俐, 朱佐农

考试科目:《高等数学 II》

课程代码:

考生须知:

1. 请严格遵守考场纪律, 禁止任何形式的作弊行为.

- 2. 参加闭卷考试的考生,除携带必要考试用具外,书籍、笔记、掌上电脑和其他电子设备等物品一律按要求放在指定位置.
- 3. 参加开卷考试的考生,可以携带教师指定的材料独立完成考试,但不准相互讨论,不准交换材料.

考试成绩录入表:

题目	_	<u></u>	三	四	Tî.	六	七	总分
计分								
复核								

评卷人签名: 复核人签名:

日期: 日期:

一、 选择题 (每小题 3 分, 共 15 分)))					
1. $ = $	-z-1=0, x-y-z+1=0的位置关系					
是().						
(A)其中两个平面平行,且都与另一个平面相交;						
(B)三个平面相交于同一条直线;						
(C)两两相交,三条交线相交于一点;						
(D)两两相交,三条交线两两平行.						
2. 对函数						
$f(x,y) = \begin{cases} y + \\ \end{cases}$	$x \sin\left(\frac{1}{y}\right), y \neq 0;$ $0, y = 0,$					
下面三个极限().						
$\lim_{(x,y)\to(0,0)}f(x,y), \lim_{x\to 0}$	$\lim_{y\to 0} f(x,y), \lim_{y\to 0} \lim_{x\to 0} f(x,y)$					
(A)全都不存在; (I	B)仅有一个存在;					
(C)仅有两个存在; (I	D)全都存在.					
3. 微分方程 $y'' + 2y' + y = xe^{-x}$ 的特解是().						
(A) $(ax+b)e^{-x}$; (1)	B) $x(ax+b)\cos x$;					
(C) $x^2(ax+b)e^{-x}$; (1)	$O) (ax + b) \sin x.$					
4. $\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)(n^2+j^2)} = ($) .					
(A) $\int_0^1 dx \int_0^x \frac{1}{(1+x)(1+y^2)} dy$;	(B) $\int_0^1 dx \int_0^x \frac{1}{(1+x)(1+y)} dy$;					
(C) $\int_0^1 dx \int_0^1 \frac{1}{(1+x)(1+y)} dy$;	(D) $\int_0^1 dx \int_0^1 \frac{1}{(1+x)(1+y^2)} dy$.					

5. 设 D_k 是椭圆区域 $D = \{(x,y)|x^2 + 4y^2 \le 1\}$ 位于第k象限的部分,记二重积分 $I_k = \iint_{D_k} (y^2 - x^2) dx dy, \quad \text{则} \qquad \qquad) \ .$

(A); $I_1 > 0$; (B) $I_2 = 0$; (C) $I_3 < 0$; (D) $I_4 > 0$.

- 二、 填空题(每小题 3 分,共 15 分)
- 6. 若曲线 $x = t, y = t^2, z = t^3$ 在点P处的切线平行于平面x + 2y + z = 4,则P点对应的参数 $t = ________.$
- 7. 设函数 $z = e^{xy}$,则 $dz|_{(1,2)} =$ _______.
- 8. 函数 $u = x^2 + y^2 + z^2$ 在椭球面 $x^2 + 2y^2 + 3z^2 = 6$ 上一点 $P_0(1,1,1)$ 沿椭球面向外的**单位**法线方向的方向导数为 .
- 9. 设锥面S以原点为顶点,以空间曲线 $\begin{cases} x^2 + 2y^2 = 6 \\ z = 1 \end{cases}$ 处的法线方程为______.
- 10. 交换积分次序 $\int_1^e dx \int_0^{\ln x} f(x,y)dy = _____.$

- 三、 多元函数的微分计算(每小题7分,共14分)
- 11. 设隐函数z = z(x,y)由方程 $x + y + z = e^{-(x+y+z)}$ 确定.

$$\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x \partial y}.$$

12. 在x + 2y + 3z = 6(x, y, z > 0)的条件下, 用拉格朗日乘数法求函数 $u = xy^2z^3$ 的最大值点和最大值.

四、 二重积分的计算(每小题 10分, 共 20分)

13.计算螺旋面

$$x = r \cos \varphi$$
, $y = r \sin \varphi$, $z = \varphi$

上满足0 < r < a且 $0 < \varphi < 2\pi$ 的部分的面积.

.

14. 计算

$$\iint\limits_{D} \sqrt{1 + \frac{x^2}{a^2} + \frac{y^2}{b^2}} \, dx \, dy \, ,$$

其中D是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$.

五、 三重积分的计算题(每小题 10 分, 共 20 分)

15. 计算

$$\iiint\limits_V \sqrt{x^2 + y^2 + z^2} \, dx \, dy \, dz \,,$$

其中V是区域 $x^2 + y^2 + z^2 \le z$.

16.两个大小一样的球体,每个球的球心都在另一个球的球面上.求两球相交部分体积占单个球体体积的比例.

六、 应用题(8分)

17. (费马点)设锐角三角形ABC,平面上一点P到三角形顶点的距离和|PA| + |PB| + |PC|最小.利用多元函数极值的知识,证明 $\angle APB = \angle BPC = \angle CPA =$ 120°. (提示:作为热身练习,可先验证 $f(x,y) = \sqrt{x^2 + y^2}$ 的梯度是单位向量。)

七、 证明题(8分)

18. 设f(x)与g(x)都是[a,b]区间上的连续递增函数.证明不等式

$$\int_{a}^{b} f(x) dx \int_{a}^{b} g(x) dx \leq (b-a) \int_{a}^{b} f(x)g(x)dx.$$