Домашнее задание 2 (линал)

Андрей Зотов

Июнь 2023

Задача 1

Ответ: -8.

Решение.
$$\det \begin{pmatrix} 1 & 2 & 3 \\ 5 & 1 & 4 \\ 3 & 2 & 5 \end{pmatrix} = 5 + 24 + 30 - 9 - 8 - 50 = 59 - 67 = -8.$$

Задача 2

Ответ: $\chi_A(\lambda) = (\lambda - 1)(\lambda - 2)(\lambda - 3) = \lambda^3 - 6\lambda^2 + 11\lambda - 6$; Spec $A = \{1, 2, 3\}$.

Решение. Пусть $A = \begin{pmatrix} 1 & 2 & -3 \\ -5 & 1 & -4 \\ 0 & -2 & 4 \end{pmatrix}$, тогда характеристический многочлен матрицы A по определе-

нию будет: $\chi_A(\lambda) = \det(\lambda E - A) = \det\begin{pmatrix} \lambda - 1 & -2 & 3 \\ 5 & \lambda - 1 & 4 \\ 0 & 2 & \lambda - 4 \end{pmatrix} = (\lambda - 1)^2(\lambda - 4) + 30 - 8(\lambda - 1) + 10(\lambda - 4) = (\lambda - 1)^2(\lambda - 4) + 30 - 8(\lambda - 1) + 10(\lambda - 1) - 30 = (\lambda - 1)((\lambda - 1)(\lambda - 4) + 2) = (\lambda - 1)(\lambda^2 - 5\lambda + 6).$

Вторая скобка - это квадратный трехчлен, его корни будут:

$$\lambda_{1,2} = \frac{5 \pm \sqrt{25 - 4 * 6}}{2} = \frac{5 \pm 1}{2} \Leftrightarrow \lambda \in \{2,3\}$$

Таким образом

$$\chi_A(\lambda) = (\lambda - 1)(\lambda - 2)(\lambda - 3) = \lambda^3 - 6\lambda^2 + 11\lambda - 6$$

Т.е. корни $\chi_A(\lambda)$ будут $\lambda \in \{1, 2, 3\}$, поэтому Spec $A = \{1, 2, 3\}$.

Задача 3

Ответ: 2a - 8b + c + 5d.

Решение. Разложение по 2-му столбцу будет иметь вид:

$$\det \begin{pmatrix} 5 & a & 2 & -1 \\ 4 & b & 4 & -3 \\ 2 & c & 3 & -2 \\ 4 & d & 5 & -4 \end{pmatrix} = a(-1)^{1+2} \begin{vmatrix} 4 & 4 & -3 \\ 2 & 3 & -2 \\ 4 & 5 & -4 \end{vmatrix} + b(-1)^{2+2} \begin{vmatrix} 5 & 2 & -1 \\ 2 & 3 & -2 \\ 4 & 5 & -4 \end{vmatrix} + c(-1)^{3+2} \begin{vmatrix} 5 & 2 & -1 \\ 4 & 4 & -3 \\ 4 & 5 & -4 \end{vmatrix} + d(-1)^{4+2} \begin{vmatrix} 5 & 2 & -1 \\ 4 & 4 & -3 \\ 2 & 3 & -2 \end{vmatrix}$$

Найдем все определители в этом выражении:

$$\begin{vmatrix} 4 & 4 & -3 \\ 2 & 3 & -2 \\ 4 & 5 & -4 \end{vmatrix} = \begin{vmatrix} 4 & 4 & -3 \\ 2 & 3 & -2 \\ 0 & -1 & 0 \end{vmatrix} = 6 - 8 = -2$$

$$\begin{vmatrix} 5 & 2 & -1 \\ 2 & 3 & -2 \\ 4 & 5 & -4 \end{vmatrix} = \begin{vmatrix} 5 & 2 & -1 \\ 2 & 3 & -2 \\ 0 & -1 & 0 \end{vmatrix} = 2 - 10 = -8$$

$$\begin{vmatrix} 5 & 2 & -1 \\ 4 & 4 & -3 \\ 4 & 5 & -4 \end{vmatrix} = \begin{vmatrix} 5 & 2 & -1 \\ 4 & 4 & -3 \\ 0 & 1 & -1 \end{vmatrix} = \begin{vmatrix} 5 & 1 & 0 \\ 4 & 4 & -3 \\ 0 & 1 & -1 \end{vmatrix} = -20 + 15 + 4 = -1$$

$$\begin{vmatrix} 5 & 2 & -1 \\ 4 & 4 & -3 \\ 2 & 3 & -2 \end{vmatrix} = \begin{vmatrix} 5 & 2 & -1 \\ 0 & -2 & 1 \\ 2 & 3 & -2 \end{vmatrix} = \begin{vmatrix} 5 & 2 & -1 \\ 0 & -2 & 1 \\ 2 & -1 & 0 \end{vmatrix} = 4 - 4 + 5 = 5$$

Таким образом

$$\det \begin{pmatrix} 5 & a & 2 & -1 \\ 4 & b & 4 & -3 \\ 2 & c & 3 & -2 \\ 4 & d & 5 & -4 \end{pmatrix} = 2a - 8b + c + 5d.$$

Задача 4

Ответ: $-t^5 + a_1 a_2 a_3 a_4 a_5$.

Решение. Пусть $X=\begin{pmatrix} -t & 0 & 0 & 0 & a_1\\ a_2 & -t & 0 & 0 & 0\\ 0 & a_3 & -t & 0 & 0\\ 0 & 0 & a_4 & -t & 0\\ 0 & 0 & 0 & a_5 & -t \end{pmatrix}$. Вычислим определитель, разлагая матрицу по первой

строке:

$$\det X = \begin{vmatrix} -t & 0 & 0 & 0 & a_1 \\ a_2 & -t & 0 & 0 & 0 \\ 0 & a_3 & -t & 0 & 0 \\ 0 & 0 & a_4 & -t & 0 \\ 0 & 0 & 0 & a_5 & -t \end{vmatrix} = -t \cdot (-1)^{1+1} \begin{vmatrix} -t & 0 & 0 & 0 \\ a_3 & -t & 0 & 0 \\ 0 & a_4 & -t & 0 \\ 0 & 0 & a_5 & -t \end{vmatrix} + a_1 \cdot (-1)^{1+5} \begin{vmatrix} a_2 & -t & 0 & 0 \\ 0 & a_3 & -t & 0 \\ 0 & 0 & a_4 & -t \\ 0 & 0 & 0 & a_5 \end{vmatrix}$$

Обе матрицы в правой части имеют треугольный вид, поэтому их определители - это произведения диагональных элементов. Таким образом:

$$\det X = -t \cdot t^4 + a_1 \cdot a_2 a_3 a_4 a_5 = -t^5 + a_1 a_2 a_3 a_4 a_5$$

Задача 5

Ответ: 0.

Решение. Рассмотрим матрицу A размера $n \times n$, где n > 1. Пусть A_i - і-я строка матрицы A. Если к 1-й строке прибавить любую другую строку, умноженную на коэффициент, то определитель не меняется, поэтому:

$$\det A = \det \begin{pmatrix} A_1 \\ \vdots \\ A_n \end{pmatrix} = \det \begin{pmatrix} A_1 - A_2 + A_3 - \dots - (-1)^n A_n \\ \vdots \\ A_n \end{pmatrix}$$

Но строка $A_1' = A_1 - A_2 + A_3 - \ldots - (-1)^n A_n$ - это сумма всех нечетных строк минус сумма всех четных строк матрицы A, и т.к. эти две суммы по условию равны как вектора, то A_1' - это нулевой вектор (или строка) длины n, т.е. $A_1' = \underbrace{(0,0,\ldots,0)}_n$. А т.к. определитель матрицы с нулевой строкой равен 0, то и $\det A = 0$.

Задача 6

$$A_{11} = (-1)^{1+1} \begin{vmatrix} 1 & 0 \\ 3 & 3 \end{vmatrix} = 3, \ A_{12} = (-1)^{1+2} \begin{vmatrix} 0 & 0 \\ 0 & 3 \end{vmatrix} = 0, \ A_{13} = (-1)^{1+3} \begin{vmatrix} 0 & 1 \\ 0 & 3 \end{vmatrix} = 0;$$

$$A_{21} = (-1)^{2+1} \begin{vmatrix} 1 & 0 \\ 3 & 3 \end{vmatrix} = -3, \ A_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 0 \\ 0 & 3 \end{vmatrix} = 3, \ A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 1 \\ 0 & 3 \end{vmatrix} = -3;$$

$$A_{31} = (-1)^{3+1} \begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix} = 0, \ A_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} = 0, \ A_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1.$$

то получаем:

$$\tilde{A} = \begin{pmatrix} 3 & 0 & 0 \\ -3 & 3 & -3 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\downarrow \downarrow$$

$$\tilde{A}^{\mathsf{T}} = \begin{pmatrix} 3 & -3 & 0 \\ 0 & 3 & 0 \\ 0 & -3 & 1 \end{pmatrix}$$

$$\downarrow \downarrow$$

$$A^{-1} = \frac{1}{\det A} \tilde{A}^{\mathsf{T}} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1/3 \end{pmatrix}.$$

Задача 7

Ответ:
$$X = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 0 \end{array} \right).$$

Решение. Если матрица $A=\begin{pmatrix}1&1&1\\1&2&3\\1&4&9\end{pmatrix}$ обратима, то $X=\begin{pmatrix}1&2&3\\2&4&6\\3&6&9\end{pmatrix}A^{-1}$. Проверим существование A^{-1} :

$$(A|E) = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 1 & 4 & 9 & 0 & 0 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 & 1 & 0 \\ 1 & 4 & 9 & 0 & 0 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 & 1 & 0 \\ 0 & 3 & 8 & -1 & 0 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 & 1 & 0 \\ 0 & 0 & 2 & 2 & -3 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -3 & 4 & -1 \\ 0 & 0 & 2 & 2 & -3 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 & 1 & 4 & -4 & 1 \\ 0 & 1 & 0 & -3 & 4 & -1 \\ 0 & 0 & 2 & 2 & -3 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 & 1 & 4 & -4 & 1 \\ 0 & 1 & 0 & -3 & 4 & -1 \\ 0 & 0 & 1 & 1 & -1.5 & 0.5 \end{pmatrix}$$

$$\updownarrow$$

$$\begin{pmatrix} 1 & 0 & 0 & 3 & -2.5 & 0.5 \\ 0 & 1 & 0 & -3 & 4 & -1 \\ 0 & 0 & 1 & 1 & -1.5 & 0.5 \end{pmatrix} = (E|A^{-1})$$

Таким образом существует $A^{-1}=\begin{pmatrix}3&-2.5&0.5\\-3&4&-1\\1&-1.5&0.5\end{pmatrix}$ и поэтому $X=\begin{pmatrix}1&2&3\\2&4&6\\3&6&9\end{pmatrix}\begin{pmatrix}3&-2.5&0.5\\-3&4&-1\\1&-1.5&0.5\end{pmatrix}$.

Отсюда

$$x_{11} = 3 - 6 + 3 = 0, \ x_{12} = -2.5 + 8 - 4.5 = 1, \ x_{13} = 0.5 - 2 + 1.5 = 0;$$

 $x_{21} = 6 - 12 + 6 = 0, \ x_{22} = -5 + 16 - 9 = 2, \ x_{23} = 1 - 4 + 3 = 0;$
 $x_{31} = 9 - 18 + 9 = 0, \ x_{32} = -7.5 + 24 - 13.5 = 3, \ x_{33} = 1.5 - 6 + 4.5 = 0$

Таким образом $X = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 0 \end{pmatrix}$. При этом в силу обратимости A других решений нет, т.к., если существует

$$X' \neq X$$
, такая что $X'A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$, то, домножая справа на A^{-1} , получим $X' = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix} A^{-1}$, т.е.

X' = X, что невозможно по предположению.