Department of Mathematics & Computing Session: 2021-2022 (winter semester)

Course Type	Course Code	Name of Course	L	T	P	Credit
DC	MCC509	Statistical Inference	3	0	0	9

Course Objective

Statistical Inference is one of the fundamental course which requires in higher studies for anyone who intends to practices statistical tools and methodologies for data analysis. Keeping these points in view, the course structure of statistical inference has been finalized.

Learning Outcomes

After completion of this course, students will be equipped with the knowledge of estimation techniques for population parameters and different statistical tests required in data analysis.

C1	T:	NI. af	I coming Outcom:
Sl.	Topics	No. of	Learning Outcome
No		Lectures	7 1 1 2
1.	Estimation: Criteria of a good estimator,	12	Introduces the features of
	related theorems and results, uniformly		good estimators and provides
	minimum variance unbiased estimation,		the idea and applications of
	Cramer Rao inequality, Rao-Blackwell		important theorems useful in
	theorem.		statistical inference.
2.	Methods of estimation: method of maximum	6	Introduces different methods
	likelihood, method of moments, method of		to find good estimators.
	least squares; Interval Estimation		
3.	Test of Hypothesis: Definition of various	12	Provides the concept of
	terms, NeymanPearson's Lemma, Likelihood		hypothesis testing and
	ratio test. Tests for mean and variance in		introduces various tests
	normal distribution (one and two population		required in data analysis.
	case), tests for correlation co-efficient and		
	regression coefficient, pair t-test, Chi-square		
	test for goodness of fit, contingency table,		
	Large sample tests through normal		
	approximations, test of independence of		
	attributes.		
4.	Sequential analysis, Non-parametric tests for	4	Gives the concepts of
	non-normal population: run test, sign test,		sequential analysis where
	Mann-Whitney Wilcoxon Utest.		sample size is a random
	č		variable and also introduces
			the non-parametric tests
			applicable where normality
			assumption does not holds
			good.
5.	Analysis of variance: One-way and Two-ways	5	Give the idea about analyzing
	with their applications.		the variations creep in the
	apparentono.		data due to various factors.

Text Books

1. Lehmann, E.L and Casella G., Theory of Point Estimation, 2nd Ed, Springer, 1998. 2. Lehmann, E.L and Joseph P. Romano, Testing Statistical Hypotheses, 3rd Ed, Springer, 2005.

Reference Books

1. Gupta S.C. and Kapoor, V. K., Fundamentals of Mathematical Statistics, Sultan Chand and Sons. 2. Mood M., Graybill F.A. and Boes D.C. Introduction to the Theory of Statistics, Tata McGrawHill, New Delhi. 3. Gupta S.C. and Kapoor, V. K., Fundamentals of Applied Statistics, Sultan Chand and Sons.

(G. N. Singh) Professor