# Clasificación y agrupamiento

Métodos para formar colecciones de objetos.

### Contenidos

- Agrupamiento
  - Descripción
  - ▶ Ejercicio con K-means
- Clasificación



2

## Agrupamiento (clustering)

- ▶ Consiste en acomodar elementos en grupos.
  - Elementos en el mismo grupo deben ser más similares entre ellos
    - ... y menos similares con respecto a otros grupos.
- Los grupos **no** se conocen de antemano.
- ▶ En los enfoques clásicos, la información se representa con vectores de características
  - ej. coordenadas en un plano cartesiano, vectores binarios, pesos reales, etc.

3

Programación de Sistemas Adaptativos: Clasificación y agrupamiento

### Datos

- Los datos pueden representar lo que Uds. quieran.
  - Películas
  - Páginas Web (documentos)
  - Superhéroes
  - Proteínas
  - Canciones
  - Personas
  - ▶ El límite es la creatividad.

4

## Teorema del patito feo

- Necesitamos un criterio para agrupar
  - i.e., nunca tenemos grupos libres de sesgos.
- Existen diferentes métricas y enfoques.



## Distancia y similitud

- ▶ Similitud = parecido entre un par de elementos
- Distancia = disimilitud entre un par de elementos
- Métricas comunes

  - ▶ Distancia euclidiana → Espacios geométricos
  - ▶ Coseno → Vectores de pesos

6



### Algoritmo K-means

- Algoritmo clásico de agrupamiento
  - Particional
- Inspiración para muchos otros algoritmos
- Introducido en los 70's
- ▶ Español: K-medias

**8** 

### K-means

► <a href="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http://www.youtube.com/watch?v=74rv4snLl70&feature="http:/



. 9

Programación de Sistemas Adaptativos: Clasificación y agrupamiento

## K-means: ¿Cómo funciona?

- Dado un conjunto de datos (vectores)
  - en N dimensiones
- Colocar k centroides.
  - al azar



- Asignar cada vector al centroide más cercano.
- Con los grupos formados, calcular nuevos centroides.
  - Que queden en el centro del grupo recién formado...
- Repetir esto hasta que el error sea menor a un umbral.

10

### Recalculando centroides

- Dobtener el promedio por cada dimensión del vector.
- ▶ Ejemplo (3D):

Ci = (5,7,10) 
$$Ci_x = \frac{pa_x + pb_x + pc_x + pd_x}{\text{cant. puntosen } Ci} \quad Ci_y = \frac{pa_y + pb_y + pc_y + pd_y}{\text{cant. puntosen } Ci}$$

$$pa = (1,2,5)$$

$$pb = (3,4,6)$$

$$pc = (8,12,20)$$

$$pd = (4,17,5)$$

$$= \frac{16}{4}$$

$$= \frac{35}{4}$$

$$= 8.75$$

**II** 

Programación de Sistemas Adaptativos: Clasificación y agrupamiento

## Recalculando centroides

$$Ci_z = \frac{pa_z + pb_z + pc_z + pd_z}{\text{cant. puntosen } Ci}$$

$$= \frac{5 + 6 + 20 + 5}{4}$$

$$= \frac{36}{4}$$

$$= 9$$

Ci = 
$$\frac{(5, 7, 10)}{(4, 8.75, 9)}$$

12

## Ejemplo

| Puntos (datos) |
|----------------|
| P1=(1,7)       |
| P2=(2,6)       |
| P3=(4,8)       |
| P4=(10,19)     |
| DF-/11 1F)     |

| Centroides |  |
|------------|--|
| C1=(3,5)   |  |
| C2=(12,13) |  |
|            |  |

#### Cálculo de distancia a cada centroide (para asignar al más cercano)

| Punto   | Distancia euclidiana a C1 (3, 5) | Distancia C2 (12, 13) |
|---------|----------------------------------|-----------------------|
| (1,7)   | 2.8                              | 12.5                  |
| (2,6)   | 1.4                              | 12.2                  |
| (4,8)   | 3.2                              | 9.4                   |
| (10,19) | 15.7                             | <mark>6.3</mark>      |
| (11,15) | 12.8                             | <mark>2.2</mark>      |

### Ejemplo de cálculo distancia euclidiana

 $dist(P1,C1) = \sqrt{(1-3)^2 + (7-5)^2}$  $dist(P1,C1) = \sqrt{4+4} = \sqrt{8}$ dist(P1,C1) = 2.8

#### Asignación de puntos a grupos

| Grupo 1 (C1) | Grupo 2 (C2) |
|--------------|--------------|
| (1,7)        | (10, 19)     |
| (2,6)        | (11, 15)     |
| (4,8)        |              |

#### Centroides recalculados

C1 (x) = (1+2+4)/3 = 7/3 = 2.3C1 (y) = (7+6+8)/3 = 21/3 = 7C1 = (2.3, 7)

C2 (x) = (10+11)/2 = 21/2 = 10.5C2 (y) = (19+15)/2 = 34/2 = 17C2 = (10.5, 17)

13

Programación de Sistemas Adaptativos: Clasificación y agrupamiento

# Ejemplo

| Puntos (datos) |
|----------------|
| P1=(1,7)       |
| P2=(2,6)       |
| P3=(4,8)       |
| P4=(10,19)     |
| P5=(11,15)     |

| Centroides |  |
|------------|--|
| C1=(3,5)   |  |
| C2=(12,13) |  |

#### Ejemplo de cálculo distancia euclidiana

$$dist(P1,C1) = \sqrt{(1-3)^2 + (7-5)^2}$$
$$dist(P1,C1) = \sqrt{4+4} = \sqrt{8}$$
$$dist(P1,C1) = 2.8$$

#### Centroides recalculados

C1 (x) = 
$$(1+2+4)/3 = 7/3 = 2.3$$
  
C1 (y) =  $(7+6+8)/3 = 21/3 = 7$   
C1 =  $(2.3, 7)$ 

C2 (x) = (10+11)/2 = 21/2 = 10.5C2 (y) = (19+15)/2 = 34/2 = 17C2 = (10.5, 17)

- 14

# K-means: ejercicio

- Puntos:
  - ▶ pl=(1,1),
  - ▶ p2=(2,4),
  - ▶ p3=(3,2),
  - ▶ p4=(7,2),
  - ▶ p5=(8,3)
- Centroides
  - ▶ k=2
  - $\rightarrow$  c1=(3,5)
  - c2= (9,1)

15

Programación de Sistemas Adaptativos: Clasificación y agrupamiento

## K-means: ejercicio

- Utiliza la distancia euclidiana como métrica de disimilitud.
- ▶ Realiza dos iteraciones del algoritmo.

16

### K-means: OJO

- No siempre es fácil colocar los centroides iniciales.
  - ▶ También es difícil saber cuántos poner.
- Susceptible a intrusos (outliers)

**17** 

Programación de Sistemas Adaptativos: Clasificación y agrupamiento

## Otros tipos de clustering

- ▶ Basado en grafos
- Basado en densidad
- Kernels
- Co-clustering

18

# ¿Cómo evaluar un agrupamiento?

- Visualmente
  - Matrices de similitud
- Precisión y recuerdo (precision and recall)
  - Correctitud y completez
  - Medidas integradoras: F

19



## Clasificación

 Igual que agrupamiento, pero los grupos (llamados clases o categorías) ya se encuentran pre-establecidos.

21







### Clasificación: Análisis de sentimiento

- Una aplicación reciente es el análisis de sentimiento para documentos (opiniones).
  - ▶ Tres clases: Positivo, negativo, neutro.
  - ▶ Ejemplo **positivo**: "La película estuvo muy divertida."
  - ▶ Ejemplo negativo: "El nuevo dispositivo es poco funcional."
  - ▶ Ejemplo **neutro**: "El motor viene con dos sensores."

25

Programación de Sistemas Adaptativos: Clasificación y agrupamiento

### Resumen

- Agrupamiento = colocar datos en grupos de acuerdo a su parecido.
- ▶ Tipos de grupos
  - ▶ Sin traslape
  - Con traslape
- K-medias (k-means)
  - Asignar el dato al centroide más cercano. Al final, centroides.



26

### Resumen

- Agrupamiento = colocar datos en grupos de acuerdo a su parecido.
- ▶ Tipos de grupos
  - ▶ Sin traslape
  - ▶ Con traslape



- ► K-medias (k-means)
  - Asignar el dato al centroide más cercano. Al final, recalcular los centroides.

27

Programación de Sistemas Adaptativos: Clasificación y agrupamiento

### Referencias

- ▶ Tan et al. <u>Introduction to Data Mining</u>. Addison Wesley, EUA, 2006.
- ► A Tutorial on Clustering Algorithms.

  <a href="http://home.dei.polimi.it/matteucc/Clustering/tutorial\_htm">http://home.dei.polimi.it/matteucc/Clustering/tutorial\_htm</a>

  l/index.html

28