Linear Algebra Standards

LE1.	Systems as matrices. I can translate back and forth between a system of linear equations, a vector equation, and the corresponding augmented matrix.
LE2.	Row reduction. I can explain why a matrix isn't in reduced row echelon form, and put a matrix in reduced row echelon form.
LE3.	Counting solutions of of linear systems. I can determine the number of solutions for a system of linear equations or a vector equation.
LE4.	Solution sets of linear systems. I can compute the solution set for a system of linear equations or a vector equation with infinitely many solutions.
VS1.	Vector spaces. I can explain why a given set with defined addition and scalar multiplication does satisfy a given vector space property, but nonetheless isn't a vector space.
VS2.	Linear combinations. I can determine if a Euclidean vector can be written as a linear combination of a given set of Euclidean vectors by solving an appropriate vector equation.
	Spanning sets. I can determine if a set of Euclidean vectors spans \mathbb{R}^n by solving appropriate vector equations.
VS4.	Subspaces. I can determine if a subset of \mathbb{R}^n is a subspace or not.
VS5.	Linear independence. I can determine if a set of Euclidean vectors is linearly dependent or independent by solving an appropriate vector equation.
VS6.	Basis verification. I can explain why a set of Euclidean vectors is or is not a basis of \mathbb{R}^n .
VS7.	Basis computation. I can compute a basis for the subspace spanned by a given set of Euclidean vectors, and determine the dimension of the subspace.
VS8.	Polynomial and Matrix computation. I can answer questions about vector spaces of polynomials or matrices.
VS9.	Basis of solution space. I can find a basis for the solution set of a homogeneous system of equations.
AT1.	Linear map verification. I can determine if a map between vector spaces of polynomials is linear or not.
AT2.	Linear maps and matrices. I can translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations.
AT3.	Kernel and Image. I can compute a basis for the kernel and a basis for the image of a linear map, and verify that the rank-nullity theorem holds for a given linear map.
AT4.	Injectivity and surjectivity. I can determine if a given linear map is injective and/or surjective.
MX1	Matrix Multiplication. I can multiply matrices.
MX2	Row operations as matrix multiplication. I can can express row operations through matrix multiplication.
MX3	Invertible Matrices. I can determine if a square matrix is invertible or not, and if so, compute its inverse.
GT1.	Row operations and Determinants. I can describe how a row operation affects the determinant of a matrix.
GT2.	Determinants. I can compute the determinant of a 4×4 matrix.
	Eigenvalues. I can find the eigenvalues of a 2×2 matrix.
	Eigenvectors. I can find a basis for the eigenspace of a 4×4 matrix associated with a given eigenvalue.