Прогнозирование результатов ЭКГ: Выбор лучшей модели

В этой презентации мы рассмотрим процесс выбора и сравнения моделей машинного обучения, примененных для предсказания результатов ЭКГ. Будут представлены этапы предобработки данных, подбора оптимальных параметров моделей и анализа их метрик.

Используемые модели

CatBoostClassifier

Градиентный бустинг, известный своей устойчивостью к выбросам и высокой точностью

LGBMClassifier

Еще один алгоритм градиентного бустинга, отличающийся быстротой обучения и хорошей обобщающей способностью

RandomForestClassifier

Ансамбль решающих деревьев, эффективный при работе с большим количеством данных и высокой размерностью

DecisionTreeClassifier

Простая модель, которая строит дерево решений для классификации, позволяющая легко интерпретировать результаты

XGBoost

Оптимизированная реализация градиентного бустинга и разновидность метода коллективного обучения

Предобработка данных

- 1 Из всех доступных заболеваний были выбраны 50 наиболее частых.
- 2 Пол пациента кодировался двоичным значением: Male = 0, Female = 1.
- 3 Проведены преобразования категориальных признаков, например, преобразование в числовые значения или использование one-hot encoding.
- 4 В результате анализа важности признаков были выбраны 20 наиболее значимых для прогнозирования.

When Carpes Contail Istems Refigs Stofd Stay

Сравнение метрик

Модель	Precision (Weighted)	Recall (Weighted)	F1-score (Weighted)
CatBoostClas sifier	0.945	0.958	0.945
LGBMClassifi er	0.950	0.959	0.944
RandomFore stClassifier	0.884	0.907	0.871
DecisionTree Classifier	0.856	0.870	0.862
XGBoost	0.514	0.310	0.320

Вывод: LGBMClassifier — лучший выбор

Модель LGBMClassifier + MultiOutputClassifier продемонстрировала лучшие результаты по всем метрикам, особенно по F1-score, что указывает на ее сбалансированность и высокую точность.