Lösungsvorschläge zum Übungsblatt 9

zur Vorlesung Mannigfaltigkeiten

Sommersemester 2016

- **Aufgabe 1.** (a) $\{w_1, \ldots, w_k\} \subset \mathbb{R}^n$ sei eine Basis für V. Dann gibt es Vektoren $w_{k+1}, \ldots, w_n \in \mathbb{R}^n$ s.d. $\{w_1, \ldots, w_n\}$ eine Basis für \mathbb{R}^n . Da $v = \sum_{i=1}^n \alpha_i w_i \in V \Leftrightarrow \alpha_i = 0$ für $i \in \{k+1, \ldots, n\}$, gilt $v \in V$ genau dann, wenn $\xi^i(v) = 0$ für $i \in \{1, \ldots, n-k\}$, wobei $\xi^i \in (\mathbb{R}^n)^*$ der zu w_{i+k} duale Vektor ist. Außerdem sind die $\{\xi^i\}_{i=1}^{n-k}$ linear unabhängig; folglich ist $\xi^1 \wedge \cdots \wedge \xi^{n-k} \neq 0$. Zum Schluß gilt $\xi(v) = (\xi^1(v), \ldots, \xi^{n-k}(v))^T = 0 \Leftrightarrow \xi^i(v) = 0$ für alle $i \in \{1, \ldots, n-k\}$. Deshalb ist $V = \ker \xi$.
- (b) (\Leftarrow) $\eta = A \circ \xi$ für $A \in GL(n-k,\mathbb{R}) \Rightarrow \eta(v) = 0 \Leftrightarrow A(\xi(v)) = 0 \Leftrightarrow \xi(v) = 0$, d.h. $V = \ker \xi = \ker \eta = W$.
 - (\Rightarrow) Schreibe $X = \ker \xi = \ker \eta$. Wir können \mathbb{R}^n als $X \oplus \mathbb{R}^{n-k}$ zerlegen (nicht kanonisch!). Bzgl. dieser Zerlegung lassen sich ξ und η als Matrizes der Form $(0_{n-k,k} \ (\xi_{\alpha\beta})_{\alpha,\beta=1}^{n-k})$ bzw. $(0_{n-k,k} \ (\eta_{\alpha\beta})_{\alpha,\beta=1}^{n-k})$ schreiben mit $(\xi_{\alpha\beta}), (\eta_{\alpha\beta}) \in GL(n-k,\mathbb{R})$. Es gibt daher eine invertierbare Matrix $A \ (= (\eta_{\alpha\beta}) \cdot (\xi_{\alpha\beta})^{-1})$ s.d. $(\eta_{\alpha\beta}) = A \cdot (\xi_{\alpha\beta})$, woher auch $\eta = A\xi$.
- (c) Die $\{U_i\}$ bilden eine Überdeckung von $G_k(n)$, da $V = \ker \xi \in G_k(n) \Rightarrow \det \xi_i \neq 0$ für irgendeinen (n-k)-Multiïndex i Ferner sind die Abbildingen $\{\phi_i\}$ wohl definiert wegen Teil b. Außerdem sind sie bijektiv: Die Injektivität folgt aus

$$\phi_i(\ker \xi) = \phi_i(\ker \eta) \Leftrightarrow \xi_i \xi_{i^c} = \eta_i^{-1} \eta_{i^c} \Leftrightarrow \eta^{i^c} = (\eta_i \xi_i^{-1}) \cdot \xi_{i^c} \Leftrightarrow \eta = (\eta_i \xi_i^{-1}) \cdot \xi \Leftrightarrow \ker \eta = \ker \xi,$$

während die Surjektivität daraus folgt, daß zu jeder Matrix $\delta \in \text{Mat}(k; n-k)$ wir die Matrix $\xi \in \text{Mat}(n; n-k)$ so definieren kann, daß $\xi_i = I_{(n-k)\times(n-k)}$ und $\xi_{i^c} = \delta$; folglich gelten det $\xi_i \neq 0$ und $\phi_i(\ker \xi) = \delta$.

Wir bestimmen nun $\phi_i(U_i \cap U_j)$. Wir können den Multiïndex j so zerlegen, daß $(j_{r_1}, \ldots, j_{r_l}) = (i_{p_1}, \ldots, i_{p_l})$ mit $p_1, \ldots, p_l \in \{1, \ldots, n-k\}$, und $(j_{r_{l+1}}, \ldots, j_{r_{n-k}}) = (i_{p_{l+1}}, \ldots, i_{p_{n-k}})$ mit $p_{l+1}, \ldots, p_{n-k} \in \{n-k+1, \ldots, n\}$. Sei ker $\xi \in U_i \cap U_j$ (O.B.d.A. mit $\xi_i = I_{(n-k)\times(n-k)}$); diese Bedingung ist äquivalent zur Aussage, daß die Spaltenvektoren $\xi_{\cdot j_1}, \ldots, \xi_{\cdot j_{n-k}}$ linear unabhängig sind, was äquivalent zur Aussage, daß $\phi_i(\ker \xi)_{\cdot p_1}, \ldots, \phi_i(\ker \xi)_{\cdot p_l}, e_{p_{l+1}}, \ldots, e_{p_{n-k}}$ linear unabhängig sind. Folglich gilt

$$\phi_i(U_i\cap U_j)=\{\delta\in \operatorname{Mat}(k;n-k):\delta_{\cdot p_1},\dots,\delta_{\cdot p_l},e_{p_{l+1}},\dots,e_{p_{n-k}} \text{ linear unabhängig}\},$$

wobei diese Menge offen ist, da sich die lineare Unabhängigkeitsbedingung als die Bedingung $\det(\delta_{p_1} \dots \delta_{p_l} e_{p_{l+1}} \dots e_{p_{n-k}})$ formulieren läßt.

Zum Schluß sind die Koordinaten Wechsel $\phi_i \circ \phi_j^{-1}$ glatt, da $\phi_i(\phi_j^{-1}(\delta)) = \xi_i^{-1}\xi_{i^c}$, wobei $\xi \in \operatorname{Mat}(n; n-k)$ erfüllt $\xi_j = I_{(n-k)\times(n-k)}$ und $\xi_{j^c} = \delta$. Da $\phi_i \circ \phi_j^{-1}$ eine rationale Funktion ist, ist sie glatt auf ihrem Definitionsbereich.

Aufgabe 2. (a) Zur Surjektivität: Aus lin. Alg. wissen wir, daß zu zwei k-dimensionalen Unterräumen V_0 und V des \mathbb{R}^n es eine Rotation gibt, die einen auf den anderen abbildet, d.h. $\exists A \in O(n)$ mit $V = A(V_0)$.

Zur Glattheit: Wir zeigen, daß die Abbildung $GL(n) \xrightarrow{F} G_k(n)$, $B \mapsto B(V_0)$ glatt ist, woraus die Glattheit unserer Abbildung folgt. Bemerke, daß $v \in B(V_0) \Leftrightarrow B^{-1}v \in V_0 \Leftrightarrow$

 $(\omega^i \circ B^{-1})v = 0$ für alle $i \in \{k+1,\ldots,n\}$, wobei $\{\omega^i\}_{i=1}^n$ die zu $\{e_i\}_{i=1}^n$ duale Basis ist. Daher ist $F^{-1}(U_i) = \{B \in \operatorname{GL}(n) : \det\left((\omega^{k+\alpha} \circ B^{-1})e_{i_\beta}\right) \neq 0\}$. Da die Abbildung $\operatorname{GL}(n) \ni B \mapsto \det\left((\omega^{k+\alpha} \circ B^{-1})e_{i_\beta}\right)$ stetig ist, ist $F^{-1}(U_i)$ offen.

Definiere nun $\xi \in \operatorname{Mat}(k, n - k)$ durch $\xi_{\alpha\beta} = (\omega^{k+\alpha} \circ B^{-1})e_{\beta}$ für $\alpha \in \{1, \dots, n - k\}$ und $\beta \in \{1, \dots, n\}$. Dann ist $(\phi_i \circ F)(B) = \xi_i^{-1}\xi_{i^c}$ für alle $B \in F^{-1}(U_i)$; da dieser Ausdruck eine rationale Funktion der Einträge von B ist, ist $\phi_i \circ F$ und daher F glatt.

Da F stetig ist, sind die Bilder kompakter Mengen kompakt, d.h. $F(O(n)) = G_k(n)$ ist kompakt.

(b) Die Abbildung p ist wegen Aufgaben 1a und 1b wohldefiniert. Sei i ein aufsteigender (n-k)-Multiïndex aus $\{1,\ldots,n\}$ und schreibe (ψ_i,V_i) für die übliche Karte auf $\mathbb{P}(\Lambda^{n-k}(\mathbb{R}^n)^*)$ mit $U_i = \{[\eta^1 \wedge \cdots \wedge \eta^{n-k}] : \eta^1 \wedge \cdots \wedge \eta^{n-k}(e_i) \neq 0\}$, wobei $e_i = e_{i_1} \wedge \cdots \wedge e_{i_{n-k}}$. Wir haben die Äquivalenz

$$\eta^1 \wedge \cdots \wedge \eta^{n-k}(e_i) \neq 0 \Leftrightarrow \det(\eta_i) \neq 0 \Leftrightarrow \ker \eta \in U_i$$

d.h. $p^{-1}(V_i) = U_i$, was offen ist. δ sei ein Element von $\operatorname{Mat}(k; n-k)$ und $\xi \in \operatorname{Mat}(n; n-k)$ so definiert, daß $\xi_i = I_{(n-k)\times(n-k)}$ und $\xi_{i^c} = \delta$. Dann gilt

$$(\psi_i \circ p \circ \phi_i^{-1})(\delta) = \psi_i(p(\ker \xi)) = \psi_i([\xi^1 \wedge \dots \wedge \xi^{n-k}]) = \sum_{I \neq i} \xi^1 \wedge \dots \wedge \xi^{n-k}(e_I)\omega^I,$$

wobei die Summe über aufsteigenden (n-k)-Multiïndizes ausgewertet wird und $\{\omega^I\}$ die zu $\{\varepsilon_I\}$ duale Basis bezeichnet. Die $\{\xi^{\alpha}\}_{\alpha=1}^{n-k}$ sind glatte Funktionen der Einträge von δ ; explizit:

$$\xi^{\alpha} = \omega^{i_{\alpha}} + \sum_{l=1}^{k} \delta_{\alpha l} \omega^{(i^{c})_{l}}.$$
 (1)

 $p \text{ ist ferner injektiv, da } [\xi^1 \wedge \cdots \wedge \xi^{n-k}] = [\widetilde{\xi}^1 \wedge \cdots \wedge \widetilde{\xi}^{n-k}] \Rightarrow \xi^1 \wedge \cdots \wedge \xi^{n-k} = C\widetilde{\xi}^1 \wedge \cdots \wedge \widetilde{\xi}^{n-k}$ für $C \in \mathbb{R} \setminus \{0\}$, s.d.

$$\operatorname{span}\{\xi^{1},\dots,\xi^{n-k}\} = \{u \in (\mathbb{R}^{n})^{*} : u \wedge \xi^{1} \wedge \dots \wedge \xi^{n-k} = 0\}$$
$$= \{u \in (\mathbb{R}^{n})^{*} : u \wedge \widetilde{\xi}^{1} \wedge \dots \wedge \widetilde{\xi}^{n-k} = 0\}$$
$$= \operatorname{span}\{\widetilde{\xi}^{1},\dots,\widetilde{\xi}^{n-k}\},$$

woher $\ker \xi = \ker \widetilde{\xi}$. p ist darüber hinaus eine Immersion: Wir berechnen unter Verwendung von (1)

$$\frac{\partial}{\partial \delta_{\alpha j}} (\xi^1 \wedge \dots \wedge \xi^{n-k})(e_I) = (\xi^1 \wedge \dots \wedge \underbrace{\omega^{(i^c)_j}}_{q^{\text{ter Eintrag}}} \wedge \dots \wedge \xi^{n-k})(e_I),$$

s.d. für $v \in Mat(k; n - k)$ gilt

$$d(\psi \circ p \circ \phi_i^{-1})_{\delta}(v) = \sum_{I \neq i} \sum_{\alpha=1}^{n-k} (\xi^1 \wedge \dots \wedge \sum_{j=1}^k v_{\alpha j} \omega^{(i^c)_j} \wedge \dots \wedge \xi^{n-k})(e_I) \omega^I.$$

Da $\omega^{(i^c)_j}(e_{i_r}) = 0$ für alle $j \in \{1, ..., k\}, r \in \{1, ..., n - k\}$, gilt

$$\sum_{\alpha=1}^{n-k} \xi^1 \wedge \dots \wedge \sum_{j=1}^k v_{\alpha j} \omega^{(i^c)_j} \wedge \dots \wedge \xi^{n-k} = 0.$$

Unter Verwendung von $\xi^{\beta} \wedge \cdot$ auf beide Seiten erhalten wir

$$\xi^1 \wedge \cdots \wedge \xi^{\beta} \wedge \sum_{i=1}^k v_{\beta j} \omega^{(i^c)_j} \wedge \cdots \wedge \xi^{n-k} = 0,$$

d.h. $\sum_{j=1}^k v_{\beta j} \omega^{(i^c)_j} \in \text{span}\{\xi^1, \dots, \xi^{n-k}\}$ für alle $\beta \in \{1, \dots, n-k\}$. Aus (1) folgt, daß $v_{\beta j} = 0$ für alle zuläßigen β, j sein muß, woraus die Injektivität von $dp_{\ker \xi}$ folgt. Da p eine injektive Immersion ist und ihr Definitionsbereich kompakt ist, so ist sie eine Einbettung.

Aufgabe 3. (a) Bemerke, daß $F^* dy = \sum_{i=1}^2 \partial_i F^2 dx^i = 2y^3 dx + 6xy^2 dy$ und ähnlicherweise $F^* dz = \cos x \cos y dx - \sin x \sin y dy$. Daher gilt

$$F^*\xi = 2xy^3(2y^3dx + 6xy^2dy) + \sin x \cos y(\cos x \cos y dx - \sin x \sin y dy)$$

= $(4xy^6 + \sin x \cos x \cos^2 y)dx + (12x^2y^5 - \sin^2 x \sin y \cos y)dy$.

Ähnlicherweise ist

$$F^*\eta = (x^2y) \cdot (2y^3 dx + 6xy^2 dy) \wedge (\cos x \cos y dx - \sin x \sin y dy)$$
$$= (-2x^2y^4 \sin x \sin y - 6x^3y^3 \cos x \cos y) dx \wedge dy.$$

(b) Es gelten $dx = \cos\theta dr - r\sin\theta d\theta$ und $dy = \sin\theta dr + r\cos\theta d\theta$, where

$$\omega = (\cos\theta dr - r\sin\theta d\theta) \wedge (\sin\theta dr + r\cos\theta d\theta) = r\cos^2\theta dr \wedge d\theta - r\sin^2\theta d\theta \wedge dr$$
$$= (r\cos^2\theta + r\sin^2\theta) dr \wedge d\theta = rdr \wedge d\theta.$$

Aufgabe 4. (a) Schreibe X_{\perp} für das innere Produkt mit $X \in \Gamma(TM)$. Es gilt

$$X_{f} \sqcup \omega = \left(\sum_{i=1}^{n} \partial_{q^{i}} f \frac{\partial}{\partial p^{i}} - \partial_{p^{i}} f \frac{\partial}{\partial q^{i}}\right) \sqcup \sum_{j=1}^{n} \left(\mathrm{d} p^{j} \wedge \mathrm{d} q^{j}\right)$$
$$= \sum_{i,j=1}^{n} \partial_{q^{i}} f \cdot \frac{\partial}{\partial p^{i}} \sqcup \left(\mathrm{d} p^{j} \wedge \mathrm{d} q^{j}\right) - \partial_{p^{i}} f \cdot \frac{\partial}{\partial q^{i}} \sqcup \left(\mathrm{d} p^{j} \wedge \mathrm{d} q^{j}\right).$$

Da das innere Produkt eine Anti-Derivation ist, gelten $\frac{\partial}{\partial p^i} \sqcup (\mathrm{d} p^j \wedge \mathrm{d} q^j) = \delta^j_i \mathrm{d} q^j$ und $\frac{\partial}{\partial q^i} \sqcup (\mathrm{d} p^j \wedge \mathrm{d} q^j) = -\delta^j_i \mathrm{d} p^j$. Daher ist

$$X_f \sqcup \omega = \sum_{i=1}^n \partial_{q^i} f dq^i + \partial_{p^i} f dp^i = df.$$

(b) Es gilt wegen Teil (a) und der Definitionen von $\{\cdot,\cdot\}$ und d, daß

$$-\omega(X_f, X_g) = \omega(X_g, X_f) = \mathrm{d}g(X_f) = X_f g = \{f, g\}.$$

(c) Bemerke, daß

$$\omega^n = \sum_{i_1, \dots, i_n = 1}^n \mathrm{d} p^{i_1} \wedge \mathrm{d} q^{i_1} \wedge \dots \wedge \mathrm{d} p^{i_n} \wedge \mathrm{d} q^{i_n}$$

und $\mathrm{d} p^{i_1} \wedge \mathrm{d} q^{i_1} \wedge \cdots \wedge \mathrm{d} p^{i_n} \wedge \mathrm{d} q^{i_n} \neq 0$ genau dann, wenn $\{i_1,\ldots,i_n\} = \{1,\ldots,n\}$. Andererseits gilt für alle $j,k\in\{1,\ldots,n\}$ $(\mathrm{d} p^j\wedge\mathrm{d} q^j)\wedge(\mathrm{d} p^k\wedge\mathrm{d} q^k)=(\mathrm{d} p^k\wedge\mathrm{d} q^k)\wedge(\mathrm{d} p^j\wedge\mathrm{d} q^j)$ (trotz der Schiefsymmetrie von \wedge !), woher die Gleichung $\mathrm{d} p^{i_1}\wedge\mathrm{d} q^{i_1}\wedge\cdots\wedge\mathrm{d} p^{i_n}\wedge\mathrm{d} q^{i_n}=\mathrm{d} p^1\wedge\mathrm{d} q^1\wedge\cdots\wedge\mathrm{d} p^n\wedge\mathrm{d} q^n$, falls $\{i_1,\ldots,i_n\}=\{1,\ldots,n\}$. Folglich gilt

$$\omega^n = \sum_{\{i_1,\dots,i_n\} = \{1,\dots,n\}} \mathrm{d}p^1 \wedge \mathrm{d}q^1 \wedge \dots \wedge \mathrm{d}p^n \wedge \mathrm{d}q^n = n! \cdot \mathrm{d}p^1 \wedge \mathrm{d}q^1 \wedge \dots \wedge \mathrm{d}p^n \wedge \mathrm{d}q^n.$$