Lecture 34, Nov. 11

34.1 Theorem (Fermat's Little Theorem). *let p be a prime then*

1. for all $a \in \mathbb{Z}$ such that gcd(a, p) = 1,

$$a^{p-1} = 1 \mod p$$

2. for all $a \in \mathbb{Z}$,

$$a^p = a \mod p$$

34.2 Theorem (Euler-Fermat Theorem). Let $n \in \mathbb{Z}^+$. For all $a \in \mathbb{Z}$ with gcd(a, n) = 1,

$$a^{\varphi(n)} = 1 \mod n$$

34.3 Example. Find 2^{-1} in $\mathbb{Z}_1 1$

Solution (Solution 1). In \mathbb{Z}_1 1, $2^{-1} = 6$ because $2 \cdot 6 = 12 = 1$.

Solution (Solution 2). Since $2^{10} = 1 \mod 11$ by Fermat's Little Theorem, so $2^{-1} = 2^9 = 6 \mod 11$.

34.4 Definition (Cyclic). We say that a group G with |G| = n is cyclic and is generated by $u \in G$ when

$$G = \langle u \rangle = \{ u^k \mid k \in \mathbb{Z} \}$$

Fact: When p is an odd prime, U_p^k is cyclic.

Remark.

$$U_11 = <2> = <2^k>$$
 for all $k \in U_{10} = <2> = <5> = <7> = <6>$

34.5 Example. Consider the Diophantine equation $x^2 + y^2 = n$ where $n \in \mathbb{N}$. Show that if $n = 3 \mod 4$ then there are no solutions.

Solution. In \mathbb{Z}_4 ,

For $x, y \in \mathbb{Z}_4$,

$$x^2 + y^2 \in \{0 + 0, 0 + 1, 1 + 0, 1 + 1\}$$

= $\{0, 1, 2\}$

Solution. In \mathbb{Z}_7 ,

For $x, y \in \mathbb{Z}_7$, since $3x^2 + 4 = y^3$ in \mathbb{Z}_7 ,

It follows that if $3x^2 + 4 = y^3$ in \mathbb{Z}_7 , then $x = 0, 6 \mod 7$ and $y = 0 \mod 7$.

- **34.6 Exercise.** Try the example in \mathbb{Z}_9 .
- **34.7 Example.** Determine whether $2^{70} + 3^{70}$ is prime.

Solution. In \mathbb{Z}_{13} , powers repeat every 12, so $2^{70} + 3^{70} = 2^{10} + 3^{10} = 10 + 3 = 13$, thus $13 \mid 2^{70} + 3^{70}$

34.8 Theorem (Linear Congruence Theorem). Let $n \in \mathbb{Z}^+$, let $a, b \in \mathbb{Z}$, let d = gcd(a, n). Consider the equation

$$ax = b \mod n$$

- 1. The equation $ax = b \mod n$ has a solution $x \in \mathbb{Z}$ if and only if $d \mid b$
- 2. If x = u is a solution (so that $au = b \mod n$), then the general solution is

$$x = u + k \frac{n}{d}$$
 for $k \in \mathbb{Z}$.

Proof. This is essentially a restatement of the Linear Congruence Theorem (the LDET) because x is a solution to $ax = b \mod n \iff there exist k \in \mathbb{Z} ax = b + kn \iff there exist y \in \mathbb{Z} ax + ny = b$

Proof. 1. TFAE

- (a) The equation $ax = b \mod n$ has a solution $x \in \mathbb{Z}$
- (b) Exists $x, y \in \mathbb{Z}$ such that ax + ny = b
- (c) $d \mid b$ (By LDET)
- 2. Suppose x = u is a solution so that $au = b \mod n$. Thus by the LDET, the general solution to the equation ax + ny = b is

$$(x,y) = u + k \frac{n}{d}, \dots$$

Thus $u + k \frac{n}{d}$ are solutions.