Notes on ∞ -category and Integral p-adic Hodge theory

Zou Haitao

Abstract

This is a short notes for ∞ -category and its applications.

Contents

1	∞-category	1
	1.1 Objects, morphisms and mapping spaces	1
	1.2 ∞-groupoids	2
	1.3 Stable ∞ -categories	2
2	Higher algebra	3
	2.1 E_{∞} -ring spectra	3

1 ∞ -category

In this section, we will give the definition of ∞ -category given by Jacob Lurie, which is defined with the notion of quasi-category. We assume that readers are familiar with simplicial homotopy theory and model category.

Definition 1.0.1. Suppose C be a simplicial set. C is called a ∞ -category if it is a weak Kan complex i.e., there is following extensions for each positive integers n and 0 < i < n.

Example 1.0.1: The nerve of a locally small category is a ∞ -category since is a Kan complex so is a weak Kan complex.

An **object** of ∞ -category \mathcal{C} is a simplicial sets morphism $\Delta[0] \to \mathcal{C}$ or equivalently a 0-simplic of \mathcal{C} . A **1-morphism** of \mathcal{C} is morphism $\Delta[1] \to \mathcal{C}$ or equivalently an 1-simplic of \mathcal{C}

$$x \to y$$

It is not very hard to verify that for any ∞ -category, there is small category \mathcal{C}' whose nerve is isomorhic to it [see 1] so any classical locally small category can be viewed as an ∞ -category with respect to its nerve and ∞ -category can be viewed as generalization of ordinary category from some viewpoint.

1.1 Objects, morphisms and mapping spaces

As in classical category theory, we can also define **initial object**, **terminal object** and **zero object** in the setting of ∞ -category. But this generalization is not obvious which relies on definition of mapping spaces.

Suppose \mathcal{C} be an ∞ -category. We now define an object $\operatorname{Map}_{\mathcal{C}}(X,Y)$ for any two objects X,Y in \mathcal{C} , which plays the role of morphism calss in ordinary category theory.

First, we need to recall the homotopy category of a simplicial set. Suppose S be a simplicial set, we make a simplicial category C[S] associated to S. Since C[S] has model structure and all objects are fibrant and cofibrant, localization of weak equivalences is homotopy category, denoted by hS.

The simplicial category $C[\Delta^n]$ is defined as follows

- Ob: Objects of [n]
- Mor:

$$\operatorname{Map}_{C[\Delta^n]}(i,j) = \begin{cases} \emptyset & \text{if } j < i \\ N(P_{ij}) & \text{if } i \leq j \end{cases}$$

 $P_{ij} = \{I \subset [n] | (i, j \in I) \land (\forall k \in I)[i \leq k \leq j] \}$ is a partial order set so can be viewed as a category.

Definition 1.1.1. Let \mathcal{C} be a ∞ -category.

- 1. an initial object of \mathcal{C} is an object which is initial object in associated homotopy category $h\mathcal{C}$ or equivalently mapping space $\operatorname{Map}_{\mathcal{C}}(0,Y)$ is weak contractible for any object $Y \in \mathcal{C}$.
- 2. a final object of \mathcal{C} is an object which is final object in associated homotopy category $h\mathcal{C}$ or equivalently mapping space $\operatorname{Map}_{\mathcal{C}}(X,0)$ is weak contractible for any object $X \in \mathcal{C}$.
- 3. a object is called **zero object** if it is both final and initial.

Definition 1.1.2. An ∞ -category is **pointed** if it is with zero object.

1.2 ∞ -groupoids

In ordinary category theory, groupoid is an important notion which is generalization of group. In ∞ -category version, groupoids are not just a generalization of groups but essential role in homotopy theory.

Informally, an ∞ -groupoid is an ∞ -category with all k-morphisms are invertable.

Definition 1.2.1. An ∞ -category \mathcal{G} is called ∞ -groupoid if it is a Kan complex.

Proposition 1.2.1 (Joyal): Suppose \mathcal{G} be an ∞ -category, then following conditions are equivalent

- 1. \mathcal{G} is an ∞ -groupoid
- 2. $\mathcal G$ satisfies extension condition for all horn inclusions Λ_n^n
- 3. \mathcal{G} satisfies extension condition for all horn inclusions Λ_0^n
- 4. homotopy category $h\mathcal{G}$ is a groupoid.

1.3 Stable ∞ -categories

Proposition 1.3.1: Let \mathcal{C} be a pointed ∞ -category. Then \mathcal{C} is stable iff the following conditions are satisfied

- 1. The ∞ -category $\mathcal C$ admits finite limits and colimits
- 2. A square

$$\begin{array}{ccc} X & \longrightarrow & Y \\ \downarrow & & \downarrow \\ X' & \longrightarrow & Y' \end{array}$$

is pull-back if and only if is push-out.

- 2 Higher algebra
- 2.1 E_{∞} -ring spectra

References

[1] Jacob Lurie. *Higher topos theory*, volume 170 of *Annals of Mathematics Studies*. Princeton University Press, Princeton, NJ, 2009.