5.4 Closest Pair of Points

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

 fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

†
to make presentation cleaner

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.

2

Closest Pair of Points

Algorithm.

Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.

Closest Pair of Points

Algorithm.

- \blacksquare Divide: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side. \leftarrow seems like $\Theta(n^2)$
- Return best of 3 solutions.

Closest Pair of Points

Algorithm.

- \blacksquare Divide: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- Conquer: find closest pair in each side recursively.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < $\delta.$

28

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $\langle \delta \rangle$.

 \blacksquare Observation: only need to consider points within δ of line L.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < $\delta.$

- \blacksquare Observation: only need to consider points within δ of line L.
- Sort points in 2δ -strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < $\delta.$

- \blacksquare Observation: only need to consider points within δ of line L.
- Sort points in 2δ -strip by their y coordinate.

Closest Pair of Points

Def. Let $\mathbf{s}_{\rm i}$ be the point in the $2\delta\text{-strip},$ with the ith smallest y-coordinate.

Claim. If |i – j| \geq 12, then the distance between s_i and s_j is at least $\delta.$ Pf.

- \blacksquare No two points lie in same $\frac{1}{2}\delta$ -by- $\frac{1}{2}\delta$ box.
- Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$. ■

Fact. Still true if we replace 12 with 7.

32

Closest Pair Algorithm

Closest Pair of Points: Analysis

Running time.

$$\mathrm{T}(n) \leq 2T \big(n/2\big) + O(n\log n) \ \Rightarrow \mathrm{T}(n) = O(n\log^2 n)$$

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.

- Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
- Sort by merging two pre-sorted lists.

$$T(n) \leq 2T \Big(n/2\Big) + O(n) \ \Rightarrow \ \mathrm{T}(n) = O(n \log n)$$