DEPARTAMENT DE MATEMÀTICA APLICADA (etsinf) CUESTIONARIO DE LA OCTAVA PRÁCTICA (Modelo A)

1. La suma s_n de los n primeros naturales impares es $s_n = \sum_{k=1}^{n} \frac{1}{s_k}$	
2. Obtén la suma exacta de la serie numérica $k=1$	
2. Obten la suma exacta de la serie indinerica $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n^4} = \boxed{\frac{712}{720}} \approx \boxed{0,9470328294}$	
La suma $s_{50} = 0,9470327526$ proporciona 6 decimales exactos.	
3. Sabiendo que la suma parcial n-ésima de la serie $\sum a_n$ es $s_n = \frac{n}{2n+1}$, determina el término general,	a_n , y
suma de la serie en caso de convergencia. $n \ge 1$	
La serie tiene por término general $a_n = \boxed{\frac{1}{9n^2-1}}$, y su suma es $\boxed{\frac{1}{2}}$.	
4. Halla el valor exacto para la suma de la serie $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n\cdot 2^n} = 2$	
¿Cuántos términos necesitas sumar para aproximar la suma de la serie con 4 decimales exactos? $N=$	12
La aproximación que proporciona la suma parcial correspondiente será 0,40 5 4 5 861,9	
5. Halla el polinomio de McLaurin de grado 9 de la función $f(x) = \log\left(\frac{1+x}{1-x}\right)$	
$P_9(x) := \frac{2x^9}{9} + \frac{2x^2}{7} + \frac{2x}{5} + \frac{2x^3}{3} + 2x$	
Obtén la aproximación que proporciona el polinomio anterior para $\log(3)$, al sustituir x por	en P_9 ,
log(3) ≈ 1,09 8612288 1,09 8 499503	
Mejora la estimación anterior hallando la aproximación que proporciona el polinomio de Taylor de grac	lo 20
log(3) ≈ 1.84 8612269	
Compara este valor con el que calcula Derive y concluye que la aproximación garantiza 7 decimales o	correcto
6. Sabiendo que la función $f(x) = \cos(x)$ se puede escribir como	
$f(x) = P_n(x) + R_n(x)$, $x \in \mathbb{R}$	
siendo $P_n(x)$ el polinomio de Taylor de grado $n \ y \ R_n(x)$ el resto de Lagrange $f^{(n+1)}(s) = \sum_{n=1}^{n} f^{(n+1)}(s)$	
$R_n(x) = \frac{f^{(n+1)}(s)}{(n+1)!} (x-a)^{n+1} , s \in]a, x[$	
Aproxima los 20 primeros decimales de cos(0.05) utilizando el polinomio de McLaurin de grado 8	
$cos(0.05) \approx P_8(0.05) = 0,9987502603$	
El error cometido vendrá dado por	
$ R_8(0.05) = (0.05)^9 < 10^-$	

APELLIDOS: NOMBRE:

GRUPO:

Verifícalo calculando el valor de $\cos(0.05)$ con Derive.

DEPARTAMENT DE MATEMÀTICA APLICADA (etsinf) CUESTIONARIO DE LA OCTAVA PRÁCTICA (Modelo B)

1. Comprueba que la suma de los n primeros cubos de los números naturales coincide con el cuadrado de la suma de los n primeros naturales

 $\sum_{k=1}^{\lfloor h \rfloor} = \left(\sum_{k=1}^{n} \bigsqcup\right)^{\frac{1}{2}}$

- 2. Obtén la suma exacta de las serie numérica $\sum_{n \ge 3} \frac{(n-1)(2n-5)^2}{5^{n-1}} = \boxed{\frac{43}{160}}$
- 3. Sabiendo que la suma parcial n-ésima de la serie $\sum_{n\geq 1} a_n$ es $s_n = \frac{4n}{8n+1}$, determina el término general, a_n , y la suma de la serie en caso de convergencia.

La serie tiene por término general $a_n = \frac{4}{(9n+1)(9n-7)}$, y su suma es $\frac{4}{2}$.

4. Considera la serie $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n\cdot 3^n}$. Halla el valor exacto para su suma $s=\sqrt{\ln(\frac{3}{4})}\approx \sqrt{2276920724}$

¿Cuántos términos necesitas sumar para aproximar la suma de la serie con 5 decimales exactos? N = 10La aproximación que proporciona la suma parcial correspondiente será 0.2876916791.

5. Halla el polinomio de McLaurin de grado 6 de la función $f(x) = \log\left(\frac{1}{1-x}\right)$

$$P_6(x) := \frac{x^6}{6} + \frac{x^5}{5} + \frac{x^4}{4} + \frac{x^3}{3} + \frac{x^2}{2} + x$$

Obtén la aproximación que proporciona el polinomio anterior para $\log(2)$, al sustituir x por 0.5 en P_6

Mejora la estimación anterior hallando la aproximación que proporciona el polinomio de Taylor de grado 15

Compara este valor con el que calcula Derive y concluye que la aproximación garantiza 5 decimales correctos.

6. Sabiendo que la función $f(x) = \sin(x)$ se puede escribir como

$$f(x) = P_n(x) + R_n(x)$$
 , $x \in \mathbb{R}$

siendo $P_n(x)$ el polinomio de Taylor de grado $n \; \text{ y } \; R_n(x)$ el resto de Lagrange

$$R_n(x) = \frac{f^{(n+1)}(s)}{(n+1)!} (x-a)^{n+1} , \quad s \in]a, x[$$

Aproxima el valor de sin(1) utilizando el polinomio de McLaurin de grado 9

$$\sin(1) \approx P_9(1) = 0.8414710097$$

El error cometido vendrá dado por

APELLIDOS: NOMBRE: GRUPO: