

REMARKS

Favorable reconsideration is respectfully requested in view of the foregoing amendments and the following remarks.

I. CLAIM STATUS & AMENDMENTS

Claims 1-3 and 5 were pending in this application when last examined and stand rejected.

Support for the amendment to claim 3 can be found in the disclosure, for example, at page 4, lines 9-14, page 5, line 6 and in claims 1 and 3 as filed. No new matter has been added.

Claim 2 has been canceled without prejudice or disclaimer thereto. Applicants reserve the right to file a continuation or divisional application on any cancelled subject matter.

Claim 1, 3 and 5 are pending upon entry of this amendment

II. OBVIOUSNESS REJECTION

In item 4 on pages 2-13 of the Office Action, claims 1, 3 and 5 were newly rejected under 35 U.S.C. § 103(a) as obvious over Yu et al. (Genome Res., vol. 7, no. 4, pp. 353-358, 1997) (of record as AF052135) in view of Hutchinson et al. (Nucleic Acids Research, vol. 20, no. 13, pp. 3453-3462, 1992), Solovyev et al. (Nucleic Acids Research, vol. 22, no. 24, pp. 5156-5163, 1994) and Eberhard Passarge (Color Atlas of Genetics, Georg Thieme Verlag Stuttgart, New York, Thieme Medical publishers, Inc. New York, pp. 49, 1995).

This rejection is respectfully traversed.

Amended claim 3 calls for An isolated polynucleotide encoding a human protein hAMSH having the amino acid sequence of SEQ ID No. 1, which is a signal transduction molecule for cell proliferation, wherein the polynucleotide consists of the nucleotide sequence of SEQ ID NO 2.

As acknowledged at pages 3-4 of the Office Action, Yu et al. (AF052135) only disclose a cDNA clone that contains the 1st-1356th nucleotide sequence of SEQ ID No: 2 of the instant

application. The 107th-1462nd nucleotide sequence of Yu (AF052135) is identical to the 1st-1356th nucleotide sequence of SEQ ID No: 2. The Office contends that Yu et al. (AF052135) teach a polynucleotide that is 100% identical to SEQ ID NO: 2 “over a span of” 1356 base pairs. The Office notes that the polynucleotide is “contained in” a vector, and that the polynucleotide of Yu et al. (AF052135) “contains” the polynucleotide of SEQ ID NO: 2.

Moreover, as acknowledged by the Office, Yu et al. (AF052135) does not disclose the polypeptide of SEQ ID 1, nor does it disclose which specific fragment of the polynucleotide encodes the peptide. Yu (AF052135) never discloses the coding region for a protein. The Office even acknowledges that Yu et al. (AF052135) does not disclose the start or stop coding regions of the protein. Yu et al. (AF052135) also does not disclose the functionality of the protein of the present invention.

Nonetheless, the Office argues that specific polynucleotide sequence encoding the polypeptide and the polypeptide itself would have been readily apparent to the skilled artisan based on the sequence and the knowledge in the art. The Examiner argues that it would have been obvious that three possible polypeptides can be translated “using the polynucleotide of SEQ ID NO: 2.” See the top of page 4.

However, how can the skilled artisan “use the polynucleotide of SEQ ID NO: 2”, if such sequence is not disclosed in the cited prior art. Again, as acknowledged by the Office, Yu et al. (AF052135) does not disclose or suggest a polynucleotide consisting of SEQ ID NO: 2 as claimed. Yu et al. (AF052135) only discloses a larger polynucleotide containing it. Since Yu et al. (AF052135) does not disclose SEQ ID NO: 2, it is illogical to assert that the skilled artisan could predict that three possible polypeptides can be translated “using the polynucleotide of SEQ ID NO: 2.” Instead, they would have to use the large sequence of Yu et al. containing the polynucleotide of SEQ ID NO: 2

Again, amended claim 3 is limited to a polynucleotide that consists of the nucleotide sequence of SEQ ID NO 2. Such language excludes the larger sequence in Yu et al. (AF052135) containing such sequence.

Nonetheless, the Office argues that it would have been obvious to use the polynucleotide in Yu et al. (AF052135) to determine and isolate possible DNA fragments encoding the three possible splice variants encoding the polypeptide of SEQ ID NO: 1 of the invention. See the top of page 12 of the Action. The Office asserts that the “ordinary artisan would have been motivated to identify the possible proteins encoded by the polynucleotide disclosed of Yu to determine the functionality encoded by the polynucleotide”, because “a piece of DNA is useless if it cannot be associated with a function.”

In reply, it is respectfully submitted that the mere existence of a DNA sequence is not a suggestion to investigate the sequence to identify a particular sequence contained therein that may encode a protein. To suggest otherwise is basically the same as saying that all proteins are obvious, if a larger DNA sequence exists that may encompass the specific sequence encoding the protein. Again, Yu et al. (AF052135) fail to disclose or suggest an hAMSH protein, let alone one having the amino acid sequence of SEQ ID No. 1. Moreover, Yu et al. (AF052135) does not disclose an amino acid sequence. In this regard, Yu et al. (AF052135) never discloses any protein encoded by the larger DNA sequence disclosed therein. Yu et al. (AF052135) only disclose a nucleic acid, and not a protein. Also, Yu et al. (AF052135) fail to disclose the function of the protein as a signal transduction molecule for cell proliferation. Accordingly, what motivation is there in the cited references for doing so other than the blanket assertion by the Office that “a piece of DNA is useless if it cannot be associated with a function.”

Consequently, Yu et al. (AF052135) fail to disclose or suggest the specific polynucleotide consisting of SEQ ID No: 2, encoding the hAMSH having the amino acid sequence of SEQ ID NO: 1 of the claims.

Furthermore, Yu et al. (AF052135) indicate that “All 65 cDNA clone sequences described in this paper have been submitted to the GenBank data library under accession nos. U79240-U79304.” See page 353, below the Abstract. Attached are a copy of U79240 and U79241 as an example of the submitted data. Please note that the submitted cDNA sequences are “partial” sequences. This means that the cDNAs do not encode a full length protein. More precisely, among the 65 clones, 17 clones are partial, 14 clones are complete (i.e., encoding full length protein), and the remaining 34 clones are mRNA sequences only to which partial or complete is not designated. Applicants respectfully submit that coding region for the remaining 34 clones was not determined.

Human clone 23625 is not contained in U79240-U79304, but it was submitted to GenBank under accession No. AF052135, which shows mRNA sequences only, similar to the remaining 34 clones.

Only mRNA sequences are shown for the remaining 34 clones of U79240-U79304 and AF052135. On page 4 of the Action, the Office asserts that a polypeptide can be determined from the positions of the start codon and stop codon of mRNA sequences. If this was correct, then any coding regions for the 34 clones and AF052135 might be easily determined. But Yu et al. (AF052135) did not do so. Again, please see the mRNA sequences of the attached U79240 and U79241. Even though the mRNA sequences contain some start codon (ATG), Yu et al. determined that the sequences were “partial.” In other words, contrary to the Office’s position, it would not be obvious to determine the DNA sequence encoding the polypeptide of the present invention.

As is well known in the art field, it is not easy to clone a complete cDNA fragment from mRNA molecules. The skilled artisan knows that the human clone 23625 (AF052135) was isolated by the same process as those of U79240-U79304. As such, the skilled artisan would understand that the cloning method in Yu et al. is inadequate for cloning “complete cDNA.”

For these reasons, it is clear that Yu et al. (AF052135) fail to disclose or suggest the specific polynucleotide consisting of SEQ ID No: 2, encoding the hAMSH having the amino acid sequence of SEQ ID NO: 1 of the claims. Moreover, it would not have been obvious to identify the coding region of the DNA and then obtain the hAMSH having the amino acid sequence of SEQ ID NO: 1.

In view of the above, the above-noted 103(a) obviousness rejection is untenable and should be withdrawn.

III. ANTICIPATION REJECTION

In item 5 on pages 14-24 of the Action, claims 1, 3 and 5 were newly rejected under 35 U.S.C. 102(a) as being anticipated by Tanaka et al. (*J. Biol. Chem.*, vol. 274, no. 27, pp. 19129-19135, July 2, 1999 and GenEmbl sequence Accession U73522 of the clone contained therein). The Office has asserted that Tanaka et al. (U73522) discloses the polynucleotide AMSH of SEQ ID NO: 2 of the present invention.

This rejection is respectfully traversed on the basis that Tanaka et al. (U73522) is not available as prior art against the present invention.

The instant application is a 371 of PCT/JP99/06309, filed November 12, 1999, which claims foreign priority to Japanese patent application No. 1998-322674, filed November 12, 1998. Kindly note that the Office has previously acknowledged the foreign priority claim and receipt of certified copies of the foreign priority document. See item 12(a)1 on page 1 of the Office Action of December 10, 2003.

Thus, Applicants' November 12, 1998 priority date precedes the July 2, 1999 publication date of Tanaka et al. (U73522). Therefore, Tanaka et al. (U73522) is not available as prior art against the present invention. For this reason, the rejection is improper and should be withdrawn.

IV. WRITTEN DESCRIPTION REJECTIONS

In item 7 on pages 24-27 of the Action, claims 2 was newly rejected under 35 U.S.C. § 112, first paragraph, as failing to comply with the written description requirement.

For the sole purpose of expediting prosecution and without intending to acquiesce to the rejection, the present amendment cancels claim 2, thereby obviating this rejection.

In items 8-9 on pages 27-28, claim 3 was newly rejected under 35 U.S.C. § 112, first paragraph, as failing to comply with the written description requirement. This is a new matter rejection. The amendment filed December 7, 2005 is also objected to for adding new matter. The Office has argued that the species of the polynucleotide which consists of the nucleotide sequence from the 11th to the 1285th nucleotide of SEQ ID No.2 constitutes new matter.

For the sole purpose of expediting prosecution and without intending to acquiesce to this rejection, the objected language has been removed from claim 3. Thus, the present amendment overcomes this rejection.

V. PATENTABLE SUBJECT MATTER

In item 10 on pages 28-29 of the Action, claim 3 was newly rejected under 35 U.S.C. 101 on the basis that the claimed invention is directed to non-statutory subject matter for lacking language indicating the polynucleotide is isolated or purified from nature.

The present amendment overcomes this rejection by amending the claim to recite an “isolated” before “polynucleotide” as suggested by the Office. As such, the amended claim no longer reads on a product of nature.

VI CONCLUSION

In view of the foregoing amendments and remarks, it is respectfully submitted that the present application is in condition for allowance and early notice to that effect is hereby requested.

Attorney Docket No. 2001_0572A
Serial No. 09/831,452
August 31, 2007

If the Examiner has any comments or proposals for expediting prosecution, please contact the undersigned attorney at the telephone number below.

Respectfully submitted,

Kazuo SUGAMURA et al.

By:

Jay R. Williams
Registration No. 48,036
Attorney for Applicant

JFW
Washington, D.C. 20006-1021
Telephone (202) 721-8200
Facsimile (202) 721-8250
August 31, 2007

Attorney Docket No. 2001_0572A
Serial No. 09/831,452
August 31, 2007

ATTACHMENTS:

1. Copy of U79240, U79241, and AF0523135 submitted in Yu et al. .

My NCBI
[\[Sign In\]](#) [\[Register\]](#)
[OMIM](#) [Books](#)

Search Nucleotide

for:

[Limits](#)[Preview/Index](#)[History](#)[Clipboard](#)[Details](#)

Display GenBank

 Show 5
 Send to
 Hide:
 sequence
 all but gene, CDS and mRNA features

Range: from begin

to end

 Reverse complemented strand

Features:

 SNP

1: U79240. Repons Human serine/thre...[gi:1710185]

Links

Features Sequence

LOCUS HSU79240 1876 bp mRNA linear PRI 25-MAR-1997
 DEFINITION Human serine/threonine kinase mRNA, partial cds.
 ACCESSION U79240
 VERSION U79240.1 GI:1710185
 KEYWORDS
 SOURCE Homo sapiens (human)
 ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 1876)
 AUTHORS Andersson,B., Wentland,M.A., Ricafrente,J.Y., Liu,W. and Gibbs,R.A.
 TITLE A 'double adaptor' method for improved shotgun library construction
 JOURNAL Anal. Biochem. 236 (1), 107-113 (1996)
 MEDLINE 96207227
 REFERENCE 2 (bases 1 to 1876)
 AUTHORS Yu,W., Andersson,B., Worley,K.C., Muzny,D.M., Ding,Y., Liu,W.,
 Ricafrente,J.Y., Wentland,M.A., Lennon,G. and Gibbs,R.A.
 TITLE Large Scale Concatenation cDNA Sequencing
 JOURNAL Unpublished
 REFERENCE 3 (bases 1 to 1876)
 AUTHORS Yu,W. and Gibbs,R.A.
 TITLE Direct Submission
 JOURNAL Submitted (22-NOV-1996) Molecular and Human Genetics, Baylor
 College of Medicine, One Baylor Plaza S930, Houston, TX 77030, USA
 FEATURES Location/Qualifiers
 source 1..1876
 /organism="Homo sapiens"
 /mol_type="mRNA"
 /db_xref="taxon:2606"
 /clone="23545"
 /sex="female"
 /tissue_type="brain"
 /clone_lib="Soares library 1NIB from IMAGE consortium"
 /dev_stage="infant"
 CDS <1..1379
 /note="similar to M. musculus serine/threonine protein
 kinase encoded by GenBank Accession Number X70764"
 /codon_start=3
 /product="serine/threonine protein kinase"
 /protein_id="AA350198.1"
 /db_xref="GI:1710186"
 /translation="RNVQVT5TPIVMRGAAGLQREIQEGAYSGCYHRDGLRLSIQ
 FEVRRVELQGPTPLFCCWLVKDLHLHSQRDSAARTRLFLASLPGSTHSTAAELTGPSLV
 EVLRARFWFEEPPKAVELEGLAACSGEYSQKYSTMSPLGSGAFGFVWTAVDKEKNKEV
 VVKFIKKEVLEDCKWIEDPKLGKVTLIEIAILSRVEHANIKVLDIFENQGFPQLVMEK
 HGSGLDLFAFIDRHPRLDEPLASYIFRQLVSAVGYLRLKDIIRDFKDENIVIAEDFT
 IKLIDPGSAAYLERGKLFYTFCGTIEYCAPEVLMGNPYRCPELEMWSLGVTLYTLVFE
 ENPPCELEETVAAIHPYPYLVSKELMSLVSGLLQPVPERRRTLEKLVTDPPWVTQPVNL
 ADYTWEFVFRVNKPESGVLSAASLEMGNRSLSDVQAQELCGGPVPG2APNGQGCLHP
 GDPRILTS"
 ORIGIN
 1 caaggctgaa cgtccaggtc acctccacgc ccgtgategt gatgcgcggg gctgtggcc
 61 tgcagcggga gatccaggag ggtgcctact cccggagctg ctaccatcga gatggcttac
 121 ggctgatcat acagttttag gtgggggggg tggagctcca gggccccaca cctctgttct
 181 gctgctggcc ggtgaaagac ctccctccaca gccaacgaga ctccggccccc aggacccccc
 241 tggcccttgc cagcctggcc ggcccccaccc actctaccgc tgctgagctc accggacccca
 301 gcttggtgga atgtgcaga gccagaccct gttttgagga gcccccaag gctgtggaaac

361 tggaggggtt ggccgcgtg gagggcgagt actcccaaaa gtacagtacc atgagccgc
421 tggcgtgg ggcccttgc ttcgtgtgga ccgcgtgga caaggaaaa aacaaggagg
481 tggtggtgaa gtttatttaag aaggagaagg ttctggagga ttgttggatt gaggatccca
541 aacttggaa agttacttta gagaccgcaa ttctatccag ggtggagcac gccaatatca
601 tcaaggatcc ggataatattt gaaaaccaag gtttcttcca ctgtgtgatg gagaagcacg
661 gctccggccct agaccccttc gcttcatcg accegcaccc caggtggat gagccccctgg
721 ctagtgcataat ttccgacaa ctagtgcag ctagtggata cctgcgcctt aaggacatca
781 tccaccgtga ttcaaggat gagaacaccc cgatcgccga ggacttcaca atcaagctga
841 tagactttgg otccggccgc tacttggaaa gggggaaaatttattatact ttttgtggga
901 ccatcgagta ctgtgcaccc gaagttctca tggggaaatcc ctacagaggg cccggactgg
961 agatgtggtc tctggggatc Actctgtaca cgctggatcc tgaggagaac cccttctytg
1021 agctggagga gaccgtggag gctccatcc acccccccata cctgggttcc aaagaactca
1081 tggcccttgt gtctgggtc ctgcagccag tccctgagag aecacccacc ttggagaagc
1141 tggtgacaga cccgtggta acacagccgt tgaatcttgc tgaactataca tgggaagagg
1201 tggggatcgt aaacaaggca gaaagtggag ttctgtccgc tgcgagccgt gagatgggg
1261 acaggagccct gaggatgtg gcccaggctc aggagcttgc tggggggccc ttccaggcg
1321 aggttccaa tggccaaagcc tggccatcc cccggggatcc cccgttgcgtg accagctaaa
1381 caccatcc ttccctgtt ttcacttgc ttccatggaaa tcacacagtt ttccaggctcc
1441 atccgtttgg agaaaaataca ttccgaagca tcccccaattt accttctaaa aactcatgtg
1501 cagggttgcgtt aaacaccaga acagaagaca gtgtatgtgtt attatttttag atttattaca
1561 tagatggaa -atttgcattt ttccatgcattt agaaaaaaaaac atccatgtt tcaactgtt
1621 tatattatca aagggtttt aatttgcattt ttccatgcattt catgatgtt ttccatgtt
1681 actttgtat atgtgcattt ttccatgcattt atccatgtt atatgcattt atccatgtt
1741 gatatgtgaa atccatgcattt ttccatgcattt aatggccag actatccat taatttattt
1801 ccccaaatgc ttccatggaaa aaggcacctt tgtagtggaaa cagttaaaaa aaaaaaaaaa
1861 aaaaaaaaaa aaaaaa

//

Disclaimer | Write to the Help Desk
NCBI | NLM | NIH

for D2007111600

Nucleotide

My NCBI
[Sign In] [Register]

Search Nucleotide

WILL FOR

Go **Clear**

Limits

Preview/Index

History

Clipboard

Details

Display GenBank

Show 5
to end

Reverse complemented strand Features: + Refresh

Refresh

1: U79241. Report Human clone 23759...[gi:1710187]

Links

Features Sequence

LOCUS HSU79241 **1410 bp mRNA linear PRI 25-MAR-1997**
DEFINITION Human clone 23759 mRNA, partial cds.
ACCESSION U79241
VERSION U79241.1 GI:1710187
KEYWORDS
SOURCE Homo sapiens (human)
ORGANISM Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE
AUTHORS Andersson, B., Wentland, M.A., Ricafrente, J.Y., Liu, W. and Gibbs, R.A.
TITLE A 'double adaptor' method for improved shotgun library construction
JOURNAL Anal. Biochem. 236 (1), 107-113 (1996).
MEDLINE 96207227
REFERENCE
AUTHORS Yu, W., Andersson, B., Worley, K.C., Muzny, D.M., Ding, Y., Liu, W., Ricafrente, J.Y., Wentland, M.A., Lennon, G. and Gibbs, R.A.
TITLE Large Scale Concatenation cDNA Sequencing
JOURNAL Unpublished
REFERENCE
AUTHORS Yu, W. and Gibbs, R.A.
TITLE Direct Submission
JOURNAL Submitted (22-NOV-1996) Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza S930, Houston, TX 77030, USA

FEATURES	Location/Qualifiers
source	1..1410 /organism="Homo sapiens" /mol_type="mRNA" /db_xref="taxon:9606" /clone="23759" /sex="female" /tissue_type="brain" /clone_lib="Soares library 1NIB from IMAGE consortium" /dev_stage="infant" <1..1316 /codon_start=3 /product="unknown" /protein_id="AA350189.1" /db_xref="GI:1710188" /translation="VVPDEVATIAAEVTSFSNRFTHVLTAGGIGPTHDDVTFEAVQAQAFGDELKPHPKLEAATKALGGEGWEKLSLVPSSARLHYGTDPCGTGQPFRFPLVSVRNVLFPFGIPPELLRRVLEGMKGLFQNPAVFHSKELYVAADEASIAPILAEAQAHFGRRRLGLGSYPDWGSNYYQVKLTLDSEEEGPLEECLAYLTARLPQGSLVPYMPNAVEQASEAVYKLAESGSSLGKVKAGALQTETSLAQYSLTQLCVGFNGGKDCTALLHLFHAAVQRKLPDVFNPQLQYLIRSIISPFPPELEQFLQDFTIKRYNLQMELAEGSMKQALGELQARHPQLEAVLMGTRRTDPSCSLCPFSPTDGPWPAPMIRINPLLDWTYRSDIWFDRFLQFLFPYCILYDGYTSLGSEERNTVBNPALKYCLSPCCCHPTYRPAVLLPNEKEERNSPTW"

CDS

```

ORIGIN
  1 cagtgttacc tgatgaggta gccaccattg cagctgaggt cacttcttc tccaaaccgct
  61 tcacccatgt cctcacagca gggggcateg gccccactca tgatgatgtg acctttgagg
 121 cagtggcaca ggccctttgga gatgagctga agccacaccc caagttggaa gcagccacca
 181 aaggcccttagg aggggaaaggc tgggagaagc tatcatttgtt gcccctctctt gccccctgc
 241 attatggcac agatccttgc actggtcAAC ctttccagatt ccctctggtc tccgttcgaa
 301 acgttccatcttcccaagge attcagage tgetcggggg ggtgetggag gggatgaagg
 361 gacttccca aaaccggact gttcagttcc actcaaaggag gttatatgtt gtcgtctgtt
 421 aaggccatccat cggccccccatt ctggctgagg ccacggccca ttggacgt aggcttggcc
 481 tggggatccca ccctgatctgg ggcagcaacc actatcaggt gaagctgact cttagactcag

```

541 aggaagaagg acccctggag gaatgttgg cttacccgac tgcccggttgc
601 cgctggtccc ctacatgccc aacgtgtgg agcaggccag tgaggctgtata
661 ctgaatcagg gtcttcatttg gggaaaaagg cggcaggtgc cttacagacc attgagac
721 ccctggctca gtacagctc accccatctt gtgtgggtt caacggggc aaagactgca
781 ctgcctcttgc acatcttc catcgatgt tgcagaggaa attacccatgt ttccaaacc
841 ccctccagat cctgtatcc cgcgcattt cccccccccc tgagctggaa cagttttcat
901 aggacatcat caaggatcat aatccgtcaga tggggggc tgaggccgc atgaaggcagg
961 ccctgggtga actgcaggca cggcaccccc agctggggc tggccatgt ggacccggc
1021 ggactgaccc ctactccctgt agecttgcctttcagccc cactgacccca ggctggccgg
1081 catccatgcg catcaacccatgtgtggact ggacccatcg agacatctgg gatccatgc
1141 gtcagctgtt tgccatcatgtatccctgt atgacccggg atacacatca ctgggggagtc
1201 gggagaatac cgtgcggaaac ccggccctga aytgcctgag cccaggaggg caccacat
1261 acgtccacgc ctatctactg gagaatcgaa agaggaggcg gaactccgc acatgaccc
1321 ccacccatgg agggaggggaa ggacccatcg cttgggtata acctggcaat aaaccgtgccc
1381 ttcacttgtt aaaaaaaaaaaa aaaaaaaaaaaa

11

[Disclaimer](#) | Write to the Help Desk
NCBI | NLM | NIH

Jug 10 2001 13.26.03

NCBI

Search CoreNucleotide for

Limits Preview/Index History Clipboard Details

Display GenBank Show 5 Send to Hide: sequence all but gene, CDS and mRNA features

Range: from begin to end Reverse complemented strand Features: [+] Refresh

1: AF052135. Reports Homo sapiens clon...[gi:3360444]

Links

Features Sequence

LOCUS AF052135 1462 bp mRNA linear PRI 05-AUG-1998
DEFINITION Homo sapiens clone 23625 mRNA sequence.
ACCESSION AF052135
VERSION AF052135.1 GI:3360444
KEYWORDS FLI_CDNA.
SOURCE Homo sapiens (human)
ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 1462)
AUTHORS Andersson,B., Wentland,M.A., Ricafrente,J.Y., Liu,W. and Gibbs,R.A.
TITLE A 'double adaptor' method for improved shotgun library construction
JOURNAL Anal. Biochem. 236 (1). 107-113 (1996)
PUBMED 8619474
REFERENCE 2 (bases 1 to 1462)
AUTHORS Yu,W., Andersson,B., Worley,K.C., Muzny,D.M., Ding,Y., Liu,W., Ricafrente,J.Y., Wentland,M.A., Lennon,G. and Gibbs,R.A.
TITLE Large-scale concatenation cDNA sequencing
JOURNAL Genome Res. 7 (4). 353-358 (1997)
PUBMED 9110174
REFERENCE 3 (bases 1 to 1462)
AUTHORS Yu,W., Sarginson,J. and Gibbs,R.A.
TITLE Direct Submission
JOURNAL Submitted (05-MAR-1998) Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza S930, Houston, TX 77030, USA
FEATURES Location/Qualifiers
source 1..1462
 /organism="Homo sapiens"
 /mol_type="mRNA"
 /db_xref="taxon:9506"
 /clone="I.M.A.G.E. Consortium clone ID 23625"
 /sex="female"
 /tissue_type="brain"
 /clone_lib="1NIB"
 /dev_stage="infant"

ORIGIN

```

1 gctgcatccc ctttttggaa ttgctcaacc aggtggtaac cggcgccgct tccggcctt
61 gggaggttgt tccttttcta acccacaaga acctctccca agagaacttg gtctgtatgt
121 ctgaccatgg agatgtgacg ctcccccccg aagaccgggt gagggtcttc tcccaagctgg
181 gtagtgccgt agagggtaat gagacatcc caccggctcg gtacttccgc tctggagttg
241 agatttatccg aatggcatcc atttactctg aggaaggc aa cattgaacat gccttcatcc
301 tctataacaa gtatatcacg ctcttattcg agaaactacc aaaacatcga gattacaat
361 ctgtgtcat tcctgaaaag aaagacacag taaaggat aaaggagatt gcattccca
421 aacgagaaga gctgaaggca gagctgttaa aacgatatac caaagaatata acagaatata
481 atgaagaaaa gaagaaggaa gcaaggaaat tggccoggaa catggccatc cagoaagagc
541 tggaaaagga aaaacagagg gtagcacaac agaaggcagca gcaattggaa caggaacagt
601 tccatgcctt cgaggagatg atccggaaacc aggagctaga aaaaagagcga ctggaaaactg
661 tacaggagtt cggaaaggta gaccctggcc tagtgtggcc gctagtgcct gacttggaga
721 agcccttcctt agatgtgttc cccaccaa cgtctcatc catacagcc tcagactgtc
781 acacaacctgt aaggccagct aaggccatcg tggcggacag gcccctgaaa cctggagcac
841 tgagcaactc agaaagtgtt ccacaaatcg atggattgcg ccattgtggc gtgcctggc
901 ggtgtggccc acatgttctc cagtrageca gtggccaaacac tggccggggaa gtggagacat
961 gtgaaattctt ctgtggaaaa ctgatggaga atgaaattac cattacccat gttttcatcc
1021 ccaagcaaaag tgctgggtct gattactgca acacagagaa cgaagaagaa cttttccca
1081 tacaggatca gcagggccctc atcacactgg gctggatcca tactcacccc acacagaccc
1141 cgtttcttccatgtgtcgac ctacacactc actgcttta ccagatgtg ttggccagagt

```

1201 cagtagccat tggttgttcc cccaaagtcc agggaaactgg attctttaaa ctaactgacc
1261 atggactaga ggagatttct tcctgtcgcc agaaaaggatt tcatccacac agcaaggatc
1321 caccctctgtt ctgttagctgc agccaaegtga ctgttgttggc cagagcagtg accatcacag
1381 accttcgtatg agcggttgag cccaaacacctt cccaagaaca acaabaccat atcagatgtac
1441 tgtageccccat taatttaaagc tt

//

Disclaimer | Write to the Help Desk
NCBI | NLM | NIH

From 192.68.131.60