ERO1

Еріта

Contrôle Juin 2025

Exercice 1 (Dérouler l'algorithme – Minimiser le coût de transport – 8 points)

Pour le problème de transport ci-dessous, trouver l'affectation des variables dans la table de transport qui minimise le coût total de transport.

- 1. Utilisez l'heuristique de Vogel vu en cours;
- 2. Justifiez si la solution obtenue est optimale ou non. Si la solution n'est pas optimale, on s'arrête là quand $m \hat{e} m e$ (pas d'amélioration itérative).

Vous ne devriez pas avoir plus de 4 itérations à faire.

	A	В	C	Supply	
	A	Б	C	Suppry	
	10	10	6		
1				600	
	2	15	3		
2				400	
	7	7	8		
3				500	
	9	8	6		
4				800	
Demand	800	700	800	2,300	

Exercice 2 (Transport et terminaison – 2 points)

Dans l'algorithme utilisant les coûts marginaux vu en cours pour résoudre le problème de transport, comment prouve-t-on la terminaison de l'algorithme?

Donnez l'idée de la preuve, avec les arguments clés, sans pour autant rédiger et formaliser cette preuve.

Exercice 3 (Modélisation – Régime bon marché – 5 points)

Nous cherchons à atteindre les apports journaliers recommandés à moindre coût. Nous nous intéressons ici à deux types de légumineuses L_1 , L_2 ainsi qu'à leur apports en amidon, protéines et vitamines. Le tableau suivant donne toutes ces informations, ainsi que le prix au kilo des légumineuses.

	Amidon	Protéines	Vitamines	Coût (€/kg)
L_1	6	15	5	0.4
L_2	10	5	8	0.65

Les apports journaliers recommandés en amidon, protéines et vitamines sont 4, 12 et 7 respectivement. Le problème est de trouver quelle quantité de légumineuses L_1 et L_2 acheter pour couvrir les apports journaliers recommandés au plus bas coût.

Modélisez ce problème avec un programme linéaire.

Exercice 4 (Modélisation – Organisation de parties amicales – 5 points)

Les organisateurs d'un évènement d'échec veulent organiser des parties entre des joueurs de deux clubs qui n'ont pas encore joué ensemble et ne sont pas dans le même club. Le tableau suivant liste pour chaque joueur, les joueurs de l'autre club et s'il a déjà joué avec (\spadesuit) ou non (\heartsuit).

	Aïssa	John	Luc	Sarah
Bob	•	\Diamond	^	\Diamond
Nasrine	0	^	\Diamond	•
Ahmed	Δ.	^	^	Δ.
Marcel	•	\Diamond	\Diamond	•

Nous voulons donc proposer aux organisateurs le maximum de parties entre des joueurs de club différents, n'ayant pas encore joué ensemble.

- 1. Représentez ces données sous forme d'un graphe de compatibilité.
- 2. Grâce au graphe précédent, modélisez ce problème comme un problème de flot.