Distributed Control Systems

Course Project 2019 Distributed Dual Gradient Tracking for Microgrid Control

The project deals with the design and implementation of a distributed optimization algorithm in order to solve an optimization problem arising in microgrid control.

Task 1

Suppose we have N agents that want to cooperatively solve the concave program

$$\max_{\lambda} \sum_{i=1}^{N} q_i(\lambda) \tag{1}$$

where $\lambda \in \mathbb{R}^S$, and $q_i : \mathbb{R}^S \to \mathbb{R}$ are strictly concave quadratic functions, i.e.,

$$q_i(\lambda) = -(\lambda^\top Q_i \lambda + r_i^\top \lambda), \qquad i \in \{1, \dots, N\},$$

where Q_i is a positive definite matrix. Design a software, written in MATLAB, implementing the Distributed Gradient Tracking algorithm presented in [1]. Use the software to solve a random instance of problem (1).

Task 2

Consider the microgrid control problem described in [2, Section 5], i.e.,

$$\begin{aligned} \min_{p_1, \dots, p_N} & \sum_{i=1}^N f_i(p_i) \\ \text{subj. to} & \sum_{i \in \text{GEN}} p_{\text{gen}, i}^{\tau} + \sum_{i \in \text{STOR}} p_{\text{stor}, i}^{\tau} + \sum_{i \in \text{CONL}} p_{\text{conl}, i}^{\tau} + p_{\text{tr}}^{\tau} - D^{\tau} = 0, \\ & \forall \tau \in [0, T], \\ p_i \in X_i, & \forall i \in \{1, \dots, N\}, \end{aligned} \tag{2}$$

with slightly modified cost functions f_i and local sets X_i , summarized in Table 1. In particular, we added a small strictly convex perturbation to each cost (except for $i \in \text{GEN}$ which are already strictly convex), with a small positive $\varepsilon > 0$. Moreover, to make all the local sets compact, we also consider box constraints for $i \in \text{CONL}$. Derive the dual problem of (2), when dualizing only the coupling constraints $\sum_{i \in \text{GEN}} p_{\text{gen},i}^{\tau} + \sum_{i \in \text{STOR}} p_{\text{stor},i}^{\tau} + \sum_{i \in \text{CONL}} p_{\text{conl},i}^{\tau} + p_{\text{tr}}^{\tau} - D^{\tau} = 0$. The dual problem should have a structure similar to problem (1).

Index	Cost function $f_i(p_i)$	Local constraints X_i
GEN	$\sum_{i=1}^{T} \left[\alpha_1 p_{\mathtt{gen},i}^{\tau} + \alpha_2 \left(p_{\mathtt{gen},i}^{\tau} \right)^2 \right]$	$\underline{p} \le p_{gen,i}^{\tau} \le \bar{p}, \tau \in [0,T]$
	$\tau=0$	$\underline{r} \le p_{\mathtt{gen},i}^{\tau+1} - p_{\mathtt{gen},i}^{\tau} \le \bar{r}, \tau \in [0, T-1]$
		$-d_{\mathtt{stor}} \le p_{\mathtt{stor},i}^{\tau} \le c_{\mathtt{stor}}, \tau \in [0,T]$
STOR	$arepsilon \ p_{\mathtt{stor},i}\ ^2$	$q_{\mathtt{stor},i}^{\tau+1} = q_{\mathtt{stor},i}^{\tau} + p_{\mathtt{stor},i}^{\tau}, \tau \in [0, T-1]$
		$0 \le q_{\mathtt{stor},i}^{ au} \le q_{\mathrm{max}}, \ \ au \in [0,T]$
CONL	$\sum_{\tau=0}^{T} \beta \max\{0, p_{\mathtt{des},i}^{\tau} - p_{\mathtt{conl},i}^{\tau}\} + \varepsilon \ p_{\mathtt{conl},i}\ ^{2}$	$-P \leq p_{\mathtt{conl},i}^{\tau} \leq P, \tau \in [0,T]$
$\{N\}$	$\sum_{\tau=0}^{T} (-c_1 p_{\mathtt{tr}}^{\tau} + c_2 p_{\mathtt{tr}}^{\tau}) + \varepsilon \ p_{\mathtt{tr},i}\ ^2$	$-E \le p_{\mathtt{tr}}^{\tau} \le E, \tau \in [0, T]$

Table 1: Cost functions and local constraints for the microgrid control problem.

Task 3

Make the necessary modifications to the software developed in Task 1 to solve an instance of the derived dual problem. The software should also return the optimal solution of the primal problem (2). The problem data must be generated randomly. Generate a set of simulations and show the results.

Notes

- 1. Any other information and material necessary for the project development will be given during project "meetings".
- 2. The project report must be written in Latex and follow the main structure of the attached template.
- 3. Any email for project support must have the subject DCS2019"NAME OF THE GROUP" "rest of the subject".

References

- [1] G. Qu and N. Li, "Harnessing smoothness to accelerate distributed optimization," *IEEE Transactions on Control of Network Systems*, vol. 5, no. 3, pp. 1245–1260, 2018.
- [2] I. Notarnicola and G. Notarstefano, "Constraint coupled distributed optimization: Relaxation and duality approach," preprint arXiv:1711.09221, 2017.