UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA DISCIPLINA: CIRCUITOS ELÉTRICOS I

Data:	
Matrícula:	

Avaliação 1º Estágio

- 1 Para o circuito da figura 1, responda as questões abaixo:
- a) O circuito é planar ou não-planar? Justifique (0.5)
- b) Determine, QUANDO POSSÍVEL, o valor da corrente que circula pelas fontes de tensão e a tensão entre os terminais das fontes de corrente. Indique sentidos e polaridades. (1.5)
- c) O circuito respeita a LKT? Justifique (1.0)

Aluno(a):_

d) O circuito respeita a LKC? Justifique (1.0)

Figura 1

- 2 Para o circuito da figura 2, responda.
- a) Determine o valor das correntes ia e ib. Utilize o método de tensões de nó. (1.5)
- b) Refaça o cálculo usando o método das correntes de malha. (1.5)

- 3 Para o circuito da figura 3, que contém os resistores R1, R e a fonte de tensão v_s , cujos valores não são conhecidos, determine o que se pede.
- a) Determine o circuito equivalente Norton visto entre os terminais do resistor R. Utilize os dados das linhas de 1 a 3 da tabela 1;(1.0)
- b) Preencha os valores em branco na tabela; (0.5)
- c) Determine os valore de R1 e I_s.(1.5)

Tabela 1					
Linha	$R(\Omega)$	I (A)	V(V)		
1	0	3	0		
2	10	1,333	13,33		
3	20	0,857	17,14		
4	40	0,5	?		
5	80	?	21,82		

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA DISCIPLINA: CIRCUITOS ELÉTRICOS I

Data:	
Matrícula:	

Avaliação 1º Estágio

- 1 Para o circuito da figura 1, responda as questões abaixo:
- a) O circuito é planar ou não-planar? Justifique (0.5)
- b) Determine, QUANDO POSSÍVEL, o valor da corrente que circula pelas fontes de tensão e a tensão entre os terminais das fontes de corrente. Indique sentidos e polaridades. (1.5)
- c) O circuito respeita a LKT? Justifique (1.0)

Aluno(a):_

d) O circuito respeita a LKC? Justifique (1.0)

Figura 1

- 2 Para o circuito da figura 2, responda.
- a) Determine o valor das correntes ia e ib. Utilize o método de tensões de nó. (1.5)
- b) Refaça o cálculo usando o método das correntes de malha. (1.5)

- 3 Para o circuito da figura 3, que contém os resistores R1, R e a fonte de tensão v_s , cujos valores não são conhecidos, determine o que se pede.
- a) Determine o circuito equivalente Norton visto entre os terminais do resistor R. Utilize os dados das linhas de 1 a 3 da tabela 1;(1.0)
- b) Preencha os valores em branco na tabela; (0.5)
- c) Determine os valore de R1 e I_s.(1.5)

Tabela 1					
$R(\Omega)$	I (A)	V(V)			
0	3	0			
10	1,333	13,33			
20	0,857	17,14			
40	0,5	?			
80	?	21,82			
	R(Ω) 0 10 20 40	$\begin{array}{ccc} R(\Omega) & I \ (A) \\ 0 & 3 \\ 10 & 1,333 \\ 20 & 0,857 \\ 40 & 0,5 \end{array}$			

