Esempio di branch and bound con visita in profondità

Esempio 2

min
$$x_1 - 3x_2$$

 $6x_1 + 5x_2 \le 30$
 $-7x_1 + 8x_2 \le 12$
 $x_1 + 4x_2 \ge 4$
 $2x_2 \le 5$
 $x \ge 0$
 $x \in \mathbb{Z}^2$

Algoritmo B&B con visita in profondità

Soluzione di P_0 , rilassato lineare di S_0

Inizializzazione

$$Q = \{S_0\}, \qquad L = -\infty, \qquad U = +\infty, \qquad \bar{x} = \perp$$

 $-\infty < z_{PLI}^* < +\infty$

Soluzione di P_0

$$x_{P0}^* = \left(\frac{8}{7}, \frac{5}{2}\right)^T$$
 intersezione iperpiani 2 e 4
$$z_{P0}^* = -\frac{89}{14} \approx -6.35 = L_0$$

 $L_0 < z_{PLI}^* < +\infty$ aggiornamento intervallo di incertezza

Si esegue il test: $U \leq L_0$?

Test non verificato e x_{P0}^* non intero. Si esegue il branching.

Branching su
$$x_1$$
 $\alpha = \frac{8}{7}$
 $S_1 = S_0 \cap \{x \in \mathbb{R}^2 | x_1 \le 1\}$
 $S_2 = S_0 \cap \{x \in \mathbb{R}^2 | x_1 \ge 2\}$
 $Q = \{S_1, S_2\}$

 $L_0 = -6.35$

Soluzione di P_1 , rilassato lineare di S_1

Estraiamo S_1 da Q

$$Q = \{S_2\}, \qquad U = +\infty, \qquad \bar{x} = \perp \quad L_0 < z_{PLI}^* < +\infty$$

Soluzione di P_1

$$x_{P1}^* = \left(1, \frac{19}{8}\right)^T$$
 intersezione iperpiani 2 e $x_1 = 1$ $z_{P1}^* = -\frac{49}{8} \approx -6.125 = L_1$

Si esegue il test: $U \leq L_1$?

Test non verificato e x_{P1}^* non intero. Si esegue il branching.

Branching su
$$x_2$$
 $\alpha = \frac{19}{8}$
$$S_3 = S_1 \cap \{x \in \mathbb{R}^2 | x_2 \le 2\}$$

$$S_4 = S_1 \cap \{x \in \mathbb{R}^2 | x_2 \ge 3\}$$

$$Q = \{S_3, S_4, S_2\}$$

min

· · · · · · · · · · · · · · · · · · ·		
$x_1 - 3x_2$		
$6x_1 + 5x_2$	\leq	30
$-7x_1 + 8x_2$	\leq	12
$x_1 + 4x_2$	\geq	4
$2x_2$	\leq	5
x_1	\leq	1
x_2	\leq	2
$\boldsymbol{\chi}$	\geq	0
$x \in \mathbb{Z}^2$		

Soluzione di P_3 , rilassato lineare di S_3

Estraiamo
$$S_3$$
 da Q
$$Q=\{S_4,S_2\}, \qquad U=+\infty, \qquad \bar{x}=\perp \quad L_0 < z^*_{PLI} < +\infty$$

Soluzione di P_3 $x_{P3}^* = \left(\frac{4}{7}, 2\right)^T$ intersezione iperpiani 2 e $x_2 = 2$ $z_{P3}^* = -\frac{38}{7} \approx -5.42 = L_3$

Si esegue il test: $U \leq L_3$?

Test non verificato e x_{P3}^* non intero. Si esegue il branching.

Branching su
$$x_1$$
 $\alpha = \frac{4}{7}$
$$S_5 = S_3 \cap \{x \in \mathbb{R}^2 | x_1 \le 0\}$$

$$S_6 = S_3 \cap \{x \in \mathbb{R}^2 | x_1 \ge 1\}$$

$$Q = \{S_5, S_6, S_4, S_2\}$$

min	$x_1 - 3x_2$		
	$6x_1 + 5x_2$	\leq	30
	$-7x_1 + 8x_2$	\leq	12
	$x_1 + 4x_2$	\geq	4
	$2x_2$	\leq	5
	x_1	\leq	1
	x_2	\leq	2
	x_1	\leq	0
	\boldsymbol{x}	\geq	0
	$x \in \mathbb{Z}^2$		

Soluzione di P_5 , rilassato lineare di S_5

Estraiamo S_5 da Q $Q = \{S_6, S_4, S_2\}, \ U = +\infty, \ \bar{x} = \perp \quad L_0 < z_{PLI}^* < +\infty$ Soluzione di P_5 $x_{P5}^* = \left(0, \frac{3}{2}\right)^T \text{ intersezione iperpiani 2 e } x_1 = 0$ $z_{P5}^* = -\frac{9}{2} = -4.5 = L_5$

Si esegue il test: $U \le L_5$? Test non verificato e x_{P5}^* non intero. Si esegue il branching.

Branching su
$$x_2$$
 $\alpha = \frac{3}{2}$
$$S_7 = S_5 \cap \{x \in \mathbb{R}^2 | x_2 \le 1\}$$

$$S_8 = S_5 \cap \{x \in \mathbb{R}^2 | x_2 \ge 2\}$$

$$Q = \{S_7, S_8, S_6, S_4, S_2\}$$

Soluzione di P_7 , rilassato lineare di S_7

Estraiamo S_7 da Q

$$Q = \{S_8, S_6, S_4, S_2\}, U = +\infty, \bar{x} = \perp L_0 < z_{PLI}^* < +\infty$$

Soluzione di P_7

La regione ammissibile le rilassato lineare di S_7 è costituita dal solo punto di coordinate (0,1).

$$x_{P7}^* = (0,1)^T$$
 intersezione iperpiani 3 e $x_2 = 1$

$$z_{P7}^* = -3 = L_7$$

Si esegue il test: $U \le L_7$. Il test non è verificato, e x_{P7}^* è intero. Si chiude S_7 e si aggiorna l'ottimo corrente

$$U = L_7 = -3, \ \bar{x} = (0,1)^T \ L_0 < z_{PLI}^* \le U$$

Si esegue il test: $U \le L_0$? Il test non è verificato. Si procede con la soluzione di un altro sottoproblema. $Q = \{S_8, S_6, S_4, S_2\}$

•			
min	$x_1 - 3x_2$		
	$6x_1 + 5x_2$	\leq	30
	$-7x_1 + 8x_2$	\leq	12
	$x_1 + 4x_2$	\geq	4
	$2x_2$	\leq	5
	x_1	\leq	1
	x_2	\leq	2
	x_1	\leq	0
	x_2	\geq	2
	\boldsymbol{x}	\geq	0
	$x \in \mathbb{Z}^2$		

 S_8 è inammissibile

Estraiamo
$$S_8$$
 da Q
$$Q=\{S_6,S_4,S_2\},\ U=-3\ ,\ \bar{x}=(0,1)^T\ ,\ L_0< z^*_{PLI}\leq U$$

Soluzione di P_8

La regione ammissibile di $P_8 = P_5 \cap \{x \in \mathbb{R}^2 \mid x_2 \ge 2\}$, rilassato lineare di S_8 , è vuota. S_8 è inammissibile ($L_8 = +\infty$) e può essere chiuso.

min	$x_1 - 3x_2$		
	$6x_1 + 5x_2$	\leq	30
	$-7x_1 + 8x_2$	\leq	12
	$x_1 + 4x_2$	\geq	4
	$2x_2$	\leq	5
	x_1	\leq	1
	x_2	\leq	2
	x_1	\geq	1
	\boldsymbol{x}	\geq	0
	$x \in \mathbb{Z}^2$		

Soluzione di P_6 , rilassato lineare di S_6

Estraiamo S_6 da Q

$$Q = \{ S_4, S_2 \}, U = -3, \bar{x} = (0,1)^T, L_0 < z_{PLI}^* \le U$$

Soluzione di P_6

La regione ammissibile di $P_6 = P_3 \cap \{x \in \mathbb{R}^2 \mid x_1 \geq 1\}$, rilassato lineare

di S_6 , è costituita da tutti i punti di P_3 , con ascissa $x_1 = 1$.

 $x_{P6}^* = (1,2)^T$ intersezione iperpiani $x_1 = 1$ e $x_2 = 1$ $z_{P6}^* = -5 = L_6$.

Si esegue il test: $U \leq L_6$?

Test non verificato ma x_{P6}^* intero.

Si chiude S_6 e si aggiorna l'ottimo corrente.

$$\bar{x} = (1,2)^T$$
 , $U = -5$.

Si esegue il test: $U \le L_0$? Il test non è verificato. Si procede con la soluzione di un altro sottoproblema.

min	$x_1 - 3x_2$		
	$6x_1 + 5x_2$	\leq	30
	$-7x_1 + 8x_2$	\leq	12
	$x_1 + 4x_2$	\geq	4
	$2x_2$	\leq	5
	x_1	\leq	1
	x_2	\geq	3
	$\boldsymbol{\chi}$	\geq	0
	$x \in \mathbb{Z}^2$		

 P_4 , è inammissibile

Estraiamo
$$S_4$$
 da Q $Q = \{S_2\}, \ U = -5$, $\bar{x} = (1,2)^T$, $L_0 < z^*_{PLI} \le U$

Soluzione di P_4

La regione ammissibile di $P_4 = P_1 \cap \{x \in \mathbb{R}^2 \mid x_2 \geq 3\}$, rilassato lineare di S_4 , è vuota. S_4 è inammissibile ($L_4 = +\infty$) e può essere chiuso.

min	$x_1 - 3x_2$		
	$6x_1 + 5x_2$	\leq	30
	$-7x_1 + 8x_2$	\leq	12
	$x_1 + 4x_2$	\geq	4
	$2x_2$	\leq	5
	x_1	\geq	2
	\boldsymbol{x}	\geq	0
	$x \in \mathbb{Z}^2$		

Soluzione di P_2 , rilassato lineare di S_2

Estraiamo S_2 da Q

$$Q = \{\emptyset\}, \ U = -5, \ \bar{x} = (1,2)^T, \ L_0 < z_{PLI}^* \le U$$

Soluzione di P_2

$$x_{P2}^* = \left(2, \frac{5}{2}\right)^T$$
 intersezione iperpiani 4 e $x_1 = 2$ $z_{P2}^* = -5.5 = L_2$

Si esegue il test: $U - L_2 < 1$?

Test verificato. Si chiude S_2 . $\mathcal{Q} = \{\emptyset\}$. l'algoritmo si arresta fornendo come soluzione ottima

$$x^* = \bar{x} = (1,2)^T$$

$$z_{PLI}^* = U = -5$$

 $L_7 = -3 = U$

 $\bar{x} = x_{P7}^*$

