

What I Know and When I Say It

How Trading Order and Informativeness Affect Market Prices

Blake Martin, Mithun Chakraborty, Sindhu Kutty Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI

Introduction

- Prediction markets are a belief aggregation mechanism designed to elicit the personal beliefs of traders about a future uncertain event and aggregate those beliefs into the market price
- These markets have been empirically observed to outperform polls as they have built-in financial incentives and timely responses
- We study the impact of traders' informativeness and the sequence in which they trade on price convergence properties and trader compensation under a new prediction market design

Market Design

Suppose the random variable X under consideration in the market is binary and drawn from a Bernoulli distribution with success probability parameter p.

 $f(x;p) = p^x (1-p)^{1-x}$, for $x \in 0, 1$

Assuming traders are Bayesian, the market is set up to elicit the conjugate Beta prior on the Bernoulli success probability which has

$$f(p; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}$$

The market maker initializes the market with $\alpha^{(0)}$ and $\beta^{(0)}$, the initial prior beta distribution shape parameters. We elect to use a uniform prior distribution with $\alpha^{(0)} = \beta^{(0)} = 1$.

Prior Distribution

Trader Model

For each trader entering the market:

1) Trader's private information is modeled by sampling from the true distribution with N private sample observations

$$x_1, \ldots, x_N \stackrel{iid}{\sim} \mathrm{Bern}(p)$$

2) Taking the market's current state as prior beliefs, trader uses private sample to update Beta posterior beliefs by:

$$\hat{\alpha} := \alpha^{(t)} + \sum_{i=1}^{N} x_i$$

 $\hat{\beta} := \beta^{(t)} + \sum_{i=1}^{N} 1 - x_i$

3) Trader purchases shares such that market parameters move to

$$\alpha^{(t)} = \hat{\alpha}, \quad \beta^{(t)} = \hat{\beta}$$

Trader Informativeness and Sequencing

•The market has traders of high and low informativeness, where informativeness corresponds to private sample size N

High Informativeness $\leftrightarrow N = 5$

Low Informativeness $\leftrightarrow N = 1$

- Three sequences of traders are tested
 - 1) High Info First:

3) Interleaved:

Experimental Results

Trader Characteristics	After 1 Round	After 10 Rounds	After 100 Rounds	After 1000 Rounds
10 High Info	2.43 ± 0.02	2.60 ± 0.00	2.61 ± 0.00	2.62 ± 0.00
10 Low Info	1.86 ± 0.07	2.52 ± 0.01	2.61 ± 0.00	2.62 ± 0.00
	0.77 Price of Outcome x = 1	Converged Pric	ibution P(x = 1) es: 0.7500 = 0.0001 0.7498 ± 0.0003	
	0.71	10 ¹ 10 Rounds of Tradin		

Figure 1: Market prices averaged over 1000 simulations with a 95% confidence interval show variation in convergence speed and earlyround compensation ($\times 10^{-2}$) for traders with different levels of informativeness

Figure 2: Market prices averaged over 1000 simulations with a 95% confidence interval show no significant variation with different sequences of traders

Experimental Results Cont.

Figure 3: With shape parameters averaged over 1000 instances of the market, the evolution of the beta posterior distribution P(p|x) over rounds of trading is practically unaffected by trader sequence

	P(X = 1)	Sequence	Avg Rounds	Avg High Info Compensation ($\times 10^{-2}$)	Avg Low Info Compensation ($\times 10^{-2}$)
- (High Info First	8225.9 ± 99.8	2.53 ± 0.02	0.08 ± 0.02
	0.25	Low Info First	8188.1 ± 103.6	0.99 ± 0.09	1.62 ± 0.09
		Interleaved	8271.2 ± 89.0	2.04 ± 0.19	0.57 ± 0.29
		High Info First	341.3 ± 25.9	-0.08 ± 0.02	0.08 ± 0.02
	0.50	Low Info First	320.2 ± 25.8	1.15 ± 0.11	-1.15 ± 0.11
		Interleaved	313.9 ± 24.6	0.92 ± 0.07	-0.92 ± 0.07
		High Info First	8186.2 ± 105.8	2.53 ± 0.02	0.08 ± 0.02
	0.75	Low Info First	8214.3 ± 99.7	1.00 ± 0.09	1.61 ± 0.09
		Total continuous d	0155 5 1 100 0	1 05 1 0 10	0.00 - 1.0.10

Table 1: Despite no significant impact on convergence time over 1000 market instances, sequence impacts the apportioning of

Conclusions

- 1. Figure 1 confirms our intuition that market convergence is faster with only highly informative traders than with only low informativeness traders
- 2. Traders with the same overall informativeness induce the same price convergence characteristics regardless of the sequence in which they trade (Figs. 2-3)
- 3. The expected compensation of a trader depends not only on her informativeness but also strongly on the sequence as well as on prior parameters (Table 1)
- 4. Future work includes further experiments with other market designs and trader models as well as theoretical analysis to quantify the impact of the sequencing-informativeness interplay

Significant References

- Jacob Abernethy, Sindhu Kutty, Sébastien Lahaie, and Rahul Sami. "Information Aggregation in Exponential Family Markets." EC 2014
- Martin Wainwright and Michael Jordan. "Graphical Models, Exponential Families, and Variational Inference." Foundations and Trends in Machine Learning 2008
- Robin Hanson. "Logarithmic Market Scoring Rules for Modular Combinatorial Information Aggregation." Journal of Prediction Markets 2007

Introduction

- Prediction markets are a belief aggregation mechanism designed to elicit the personal beliefs of traders about a future uncertain event and aggregate those beliefs into the market price
- These markets have been empirically observed to outperform polls as they have built-in financial incentives and timely responses
- We study the impact of traders' informativeness and the sequence in which they trade on price convergence properties and trader compensation under a new prediction market design

Market Design

Suppose the random variable X under consideration in the market is binary and drawn from a **Bernoulli distribution** with success probability parameter p.

$$f(x;p) = p^x (1-p)^{1-x}$$
, for $x \in 0, 1$

Assuming traders are Bayesian, the market is set up to elicit the conjugate Beta prior on the Bernoulli success probability which has pdf

 $f(p; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}$

The market maker initializes the market with $\alpha^{(0)}$ and $\beta^{(0)}$, the initial prior beta distribution shape parameters. We elect to use a uniform prior distribution with $\alpha^{(0)} = \beta^{(0)} = 1$.

Trader Model

For each trader entering the market:

1) Trader's **private information** is modeled by sampling from the true distribution with *N* private sample observations

$$x_1, \dots, x_N \stackrel{iid}{\sim} \mathrm{Bern}(p)$$

2) Taking the market's current state as prior beliefs, trader uses private sample to update Beta posterior beliefs by:

$$\hat{\alpha} := \alpha^{(t)} + \sum_{i=1}^{N} x_i$$

$$\hat{\beta} := \beta^{(t)} + \sum_{i=1}^{N} 1 - x_i$$

3) Trader purchases shares such that market parameters move to

$$\alpha^{(t)} = \hat{\alpha}, \quad \beta^{(t)} = \hat{\beta}$$

Trader Informativeness and Sequencing

•The market has traders of **high and low informativeness**, where informativeness corresponds to private sample size *N*

Low Informativeness $\leftrightarrow N = 1$

- •Three sequences of traders are tested
 - 1) High Info First:
 - 2) Low Info First:
 - 3) Interleaved:

Experimental Results

Trader Characteristics	After 1 Round	After 10 Rounds	After 100 Rounds	After 1000 Rounds
10 High Info	2.43 ± 0.02	2.60 ± 0.00	2.61 ± 0.00	2.62 ± 0.00
10 Low Info	1.86 ± 0.07	2.52 ± 0.01	2.61 ± 0.00	2.62 ± 0.00

Figure 1: Market prices averaged over 1000 simulations with a 95% confidence interval show variation in convergence speed and early-round compensation ($\times 10^{-2}$) for traders with different levels of informativeness

Figure 2: Market prices averaged over 1000 simulations with a 95% confidence interval show no significant variation with different sequences of traders

Experimental Results Cont.

Figure 3: With shape parameters averaged over 1000 instances of the market, the evolution of the beta posterior distribution P(p|x) over rounds of trading is practically unaffected by trader sequence

P(X=1)	Sequence	Avg Rounds	Avg High Info Compensation $(\times 10^{-2})$	Avg Low Info Compensation $(\times 10^{-2})$
	High Info First	8225.9 ± 99.8	2.53 ± 0.02	0.08 ± 0.02
0.25	Low Info First	8188.1 ± 103.6	0.99 ± 0.09	1.62 ± 0.09
	Interleaved	8271.2 ± 89.0	$\boldsymbol{2.04 \pm 0.19}$	$\boldsymbol{0.57 \pm 0.29}$
	High Info First	341.3 ± 25.9	-0.08 ± 0.02	0.08 ± 0.02
0.50	Low Info First	320.2 ± 25.8	1.15 ± 0.11	-1.15 ± 0.11
	Interleaved	313.9 ± 24.6	0.92 ± 0.07	-0.92 ± 0.07
	High Info First	8186.2 ± 105.8	2.53 ± 0.02	0.08 ± 0.02
0.75	Low Info First	8214.3 ± 99.7	1.00 ± 0.09	1.61 ± 0.09
	Interleaved	8177.5 ± 103.3	1.95 ± 0.19	$\boldsymbol{0.66 \pm 0.19}$

Table 1: Despite no significant impact on convergence time over 1000 market instances, sequence impacts the apportioning of compensation between high and low informativeness traders

Conclusions

- 1. Figure 1 confirms our intuition that market convergence is faster with only highly informative traders than with only low informativeness traders
- 2. Traders with the same overall informativeness induce the same price convergence characteristics regardless of the sequence in which they trade (Figs. 2-3)
- 3. The expected **compensation** of a trader depends not only on her **informativeness** but also strongly on the **sequence** as well as on prior parameters (Table 1)
- 4. Future work includes further experiments with other market designs and trader models as well as theoretical analysis to quantify the impact of the sequencing-informativeness interplay

Significant References

- Jacob Abernethy, Sindhu Kutty, Sébastien Lahaie, and Rahul Sami. "Information Aggregation in Exponential Family Markets." EC 2014
- Martin Wainwright and Michael Jordan. "Graphical Models, Exponential Families, and Variational Inference." Foundations and Trends in Machine Learning 2008
- Robin Hanson. "Logarithmic Market Scoring Rules for Modular Combinatorial Information Aggregation." Journal of Prediction Markets 2007