

DECISIONES DE LAS FAMILIAS: ELECCIÓN ENTRE BIENES

Erick Sequeira Benavides

Preguntas

- ¿Cómo se toman decisiones con restricciones?
- ¿Qué son preferencias?
- ¿De qué manera la curva de indiferencia representa las preferencias del consumidor?
- ¿Cómo divide una familia sus recursos entre diferentes bienes?
- ¿De qué manera la teoría de la elección del consumidor explica las decisiones de cuánto ahorrar y cuánto trabajo ofrecer?

Uno de los 10 principios indica que las personas enfrentan disyuntivas:

- Comprar más de un bien deja menos ingreso para comprar más de otros bienes.
- Trabajar más horas significa más ingreso y más consumo, pero menos tiempo de ocio.
- Reducir ahorro permite un mayor consumo hoy pero reduce el consumo futuro.
- ¿Cómo explica la teoría económica esas decisiones?

La restricción presupuestaria es el límite en las canastas de consumo que un consumidor puede financiar. Por ejemplo:

- Keyssi divide sus recursos entre dos bienes: pescado y mangos.
- La canasta de bienes es una combinación de estos bienes, como 40 pescados y 300 mangos.

Ingreso de Keyssi: \$1200

$$\mathbf{P}_{\mathbf{P}} = \$4$$
 por pescado y $\mathbf{P}_{\mathbf{M}} = \1 por mango.

Si Keyssi gasta todo su ingreso en pescado, ¿cuántos puede comprar?

$$1200/4 = 300$$

Si gasta todo su ingreso en mangos, ¿cuántos puede comprar?

$$1200/1 = 1200$$

➤ Si compra 100 pescados, ¿cuántos mangos puede comprar?

$$(1200 - 400)/1 = 800$$

¿Qué pasa si el ingreso se reduce a \$800?

$$\mathbf{P}_{\mathbf{P}} = \$4 \text{ y } \mathbf{P}_{\mathbf{M}} = \$1$$

Ahora Keyssi puede comprar

$$$800/$4 = 200 \text{ pescados}$$

$$u $800/$1 = 800 \text{ mangos}$$

Keyssi consumiría 200 pescados, 800 mangos o una combinación de ambos.

Pescados

¿Qué pasa si el precio de los mangos sube a \$2?

$$P_P = \$4, P_M = \$2, I = \$1200$$

Ahora Keyssi puede comprar

$$1200/4 = 300 \text{ pescados}$$

o 1200/2 = 600 mangos

Preferencias

Se pueden describir las preferencias del consumidor entre diferentes tipos de bienes o canastas al pedirle que los compare e indique cuales prefiere.

Para esto existen tres supuestos básicos:

1- Las preferencias son completas.

Es decir, las personas pueden comparar y ranquear todas las canastas del mercado:

Para dos canastas de bienes A y B, la consumidora va a:

preferir A > B,

preferir B > A,

o es indiferente entre las dos A ~ B.

Preferencias

2- Las preferencias son transitivas.

Si un consumidor prefiere A > B y B > C, entonces A > C.

Esto asegura que las preferencias sean consistentes y racionales.

Los consumidores siempre prefieren más de cualquier bien que menos.

TODO ESTO SE CUMPLE INDEPENDIENTEMENTE DE LOS PRECIOS Y LA RESTRICCIÓN PRESUPUESTARIA.

Curva de indiferencia

Curva de indiferencia:

combinación de bienes que le dan al consumidor el mismo nivel de satisfacción

A, B, y todas las demás canastas de bienes en I_1 hacen igualmente feliz a Keyssi: ella es indiferente entre esas canastas. (A~ B).

Las curvas de indiferencia tienen 4 propiedades.

Pescados

Pendiente negativa

1. Las curvas de indiferencia tienen pendiente negativa.

Si se reduce la cantidad de pescado se debe aumentar la cantidad de mangos para mantener a Keyssi igualmente feliz.

Mangos

Pescados

Se prefieren curvas mayores

2. Las curvas de indiferencia mayores son preferidas a curvas menores.

Keyssi prefiere cada canasta en I_2 (como C) a las canastas en I_1 (como A).

Ella prefiere cada canasta en I_1 (como A) a las canastas en I_0 (como D).

Mangos

Pescados

No se cruzan

3. Las curvas de indiferencia no se cruzan.

Mangos

Asumiendo que sí se cruzan,

Keyssi preferiría **B** a **C**, porque **B** tiene más de ambos bienes.

Pero a ella le gusta C tanto como A (ambas están en I_4).

Y le gusta $\bf A$ tanto como $\bf B$ (ambas están en $\bf I_1$).

Entonces Keyssi debe ser indiferente entre B y C...

Eso es una contradicción

Pescados

Son convexas

4. Las curvas de indiferencia son convexas al origen; la pendiente aumenta.

Keyssi está dispuesta a ceder más mangos por un pescado cuando tiene pocos pescados (A) que cuando tiene muchos (B).

Mangos

Pescados

Tasa marginal de sustitución

La Tasa Marginal de Sustitución (TMS)

es la tasa a la cual un consumidor está dispuesto a intercambiar un bien por otro.

La TMS de Keyssi es la cantidad de mangos que ella está dispuesta a sustituir por un pescado adicional

Y la TMS disminuye conforme se mueve hacia abajo en la curva de indiferencia.

Y la forma de las curvas de indiferencia implican diferentes grados de disposición a sustituir un bien por otro.

Mangos

TMS = (-) pendiente de la curva de indiferencia

Pescados

Sustitutos perfectos

Sustitutos perfectos: dos bienes con una curva de indiferencia en línea recta y TMS constante.

Ejemplo: *nickels* (moneda de cinco centavos y *dimes* (moneda de 10 centavos)

El Consumidor siempre está dispuesto a intercambiar dos *nickels* por un *dime*.

Complementos perfectos

Complementos perfectos: dos bienes con curvas de indiferencia de ángulo recto

Ejemplo:
Tener {7 zapatos izquierdos, 5 derechos}
es tan bueno como
{5 izquierdos, 5 derechos}

Sustitutos y complementos cercanos

Optimización

A es el óptimo: el punto en la restricción presupuestaria tangente a la curva de indiferencia más alta posible.

Keyssi prefiere **B** a **A**, pero no puede financiar **B**.

Puede financiar **C** y **D**, pero **A** está en una curva de indiferencia más alta.

Efecto de un aumento en el ingreso

Un aumento del ingreso desplaza la restricción presupuestaria hacia la derecha.

Si ambos son bienes normales Keyssi podrá comprar más cantidad de ambos.

Ejercicio

Un incremento en el ingreso aumenta la cantidad demandada del **bien normal** y reduce la del **bien inferior**.

Suponga que el pescado es un bien normal y los mangos un bien inferior.

Muestre los efectos de un incremento del ingreso de Juanita sobre la canasta óptima de pescado y mangos de Juanita.

Si los mangos son un bien inferior, entonces la canasta óptima va a contener menos mangos.

Pescados

Efecto de un cambio en el precio

Inicialmente, $P_P = \$4 \text{ y } P_M = \1

$$\frac{\mathbf{P_P}}{\mathbf{P_M}} = 4 \text{ mangos}$$

P_P baja a \$2, entonces:

$$\frac{\mathbf{P_P}}{\mathbf{P_M}} = 2 \text{ mangos}$$

La restricción presupuestaria rota hacia afuera. Keyssi compra más pescado y menos mangos.

Efecto ingreso y efecto sustitución

Una caída en el precio del pescado tiene dos efectos sobre el consumo óptimo de ambos.

Efecto ingreso

Una caída en $\mathbf{P}_{\mathbf{P}}$ incrementa la capacidad de compra del ingreso de Keyssi, permitiéndole comprar más mangos y más pescado.

Efecto sustitución

Una caída en $\mathbf{P}_{\mathbf{P}}$ vuelve relativamente más caros los mangos con respecto al pescado, causando que Juanita compre menos mangos y más pescado.

Nota: El efecto neto sobre los mangos es ambiguo.

Efecto ingreso y efecto sustitución

Óptimo inicial en A.

 $\mathbf{P}_{\mathbf{P}}$ cae.

Efecto sustitución:

de **A** a **B**, compra más pescado y menos mangos.

Efecto ingreso:

de **B** a **C**, compra más de ambos bienes.

Efecto sustitución: sustitos vs. complementos

En ambos gráficos, el cambio en el precio relativo es el mismo.

Supongamos dos canastas de bienes distintas:

Coca y Pepsi.

Pan de *hot dog* y salchichas.

¿El efecto sustitución es mayor para sustitutos o para complementos? Pero el efecto sustitución es mayor para los bienes sustitutos que los complementarios.

Derivando la curva de demanda

B: Cuando $P_P = \$2$, Keyssi demanda 350 pescado.

Bien Giffen

¿Todos los bienes siguen la *Ley de la demanda*? Asuma que:

- Los bienes son papas y carne.
- Las papas son un bien inferior.

Si el precio de las papas sube,

- Efecto sustitución: se compran menos
- Efecto ingreso: se compran más

Si el EI > ES, entonces:

las papas son un **Bien Giffen**, este es un bien para el cual un aumento del precio genera un incremento en la cantidad demandada.

Conclusiones

- Las personas no deciden sus gastos escribiendo su restricción presupuestaria y sus curvas de indiferencia.
- Sin embargo, la gente trata de hacer una escogencia que maximice su satisfacción dados sus recursos limitados.
- La teoría del consumidor es una manera de formalizar la forma en que las personas toman sus decisiones.
- Explica bastante bien el comportamiento de los consumidores en muchas situaciones y provee las bases para el análisis económico más avanzado.

