Dynamic market potential, m(t)

A generalization of the Bass Model considers a dynamic market potential, $\boldsymbol{m}(t)$

$$z'(t) = m(t) \left\{ \left(p + q \frac{z(t)}{m} \right) \left(1 - \frac{z(t)}{m(t)} \right) \right\} + z(t) \frac{m'(t)}{m(t)}$$
$$\frac{z'(t)m(t) - z(t)m'(t)}{m^2(t)} = \left(\frac{z(t)}{m(t)} \right)' = \left(p + q \frac{z(t)}{m(t)} \right) \left(1 - \frac{z(t)}{m(t)} \right)$$

and, by setting y(t) = z(t)/m(t), we have

$$y'(t) = p + qy(t)(1 - y(t))$$

which is a standard Bass Model.

Dynamic market potential, m(t)

- 1. Market of new products is unstable and uncertain in the first phase of diffusion: incubation
- 2. Advertising and promotional efforts play a central role to overcome this phase
- 3. These efforts influence the structure of the market potential, which depends on information on the product
- 4. Communication and adoption are two separate phases, needing a distinct modelling

Dynamic market potential, m(t)

We may notice that di m(t) is 'free'

$$z(t) = m(t)F(t) = m(t) \frac{1 - e^{-(p+q)t}}{1 + \frac{q}{p}e^{-(p+q)t}}$$

Dynamic market potential, m(t): GGM

The GGM (Guseo and Guidolin, 2009) is a generalization of the Bass Model, where m(t) is time-dependent

$$z(t) = m(t)F(t) = m(t) \frac{1 - e^{-(p+q)t}}{1 + \frac{q}{p}e^{-(p+q)t}}$$

and function of a communication process

$$z(t) = KG(t)F(t) = K\sqrt{\frac{1 - e^{-(p_c + q_c)t}}{1 + \frac{q_c}{p_c}e^{-(p_c + q_c)t}}} \frac{1 - e^{-(p_s + q_s)t}}{1 + \frac{q_s}{p_s}e^{-(p_s + q_s)t}}$$

GGM

GGM

Samsung smartphones

Esempio: Samsung smartphones

GGM for Samsung: estimates and 95% Cls

	Estimate	Std.Error	Lower	Upper	P-value
\overline{K}	4030.7	75.47	3882.8	4178.6	< 0.0001
p_c	0.0015	0.00001	0.0014	0.0016	< 0.0001
q_c	0.08	0.0026	0.08	0.09	< 0.0001
p_s	0.012	0.0006	0.011	0.014	< 0.0001
q_s	0.21	0.008	0.20	0.23	< 0.0001

 $R^2 = 0.9999$

Samsung smartphones

Samsung smartphones

Model comparison . . .

Apple iPod

Model comparison . . .

Competition between two products

Unbalanced competition and regime change diachronic model

$$z'_{1}(t) = m \left\{ \left[p_{1a} + q_{1a} \frac{z(t)}{m} \right] (1 - I_{t>c_{2}}) + \left[p_{1c} + (q_{1c} + \delta) \frac{z_{1}(t)}{m} + q_{1c} \frac{z_{2}(t)}{m} \right] I_{t>c_{2}} \right\} \left[1 - \frac{z(t)}{m} \right],$$

$$z'_{2}(t) = m \left[p_{2} + (q_{2} - \gamma) \frac{z_{1}(t)}{m} + q_{2} \frac{z_{2}(t)}{m} \right] \left[1 - \frac{z(t)}{m} \right] I_{t>c_{2}},$$

Competition between two products

Unbalanced competition and regime change diachronic model

$$z'_{1}(t) = m \left\{ \left[p_{1a} + q_{1a} \frac{z(t)}{m} \right] (1 - I_{t>c_{2}}) + \left[p_{1c} + \frac{(q_{1c} + \delta)}{m} \frac{z_{1}(t)}{m} + q_{1c} \frac{z_{2}(t)}{m} \right] I_{t>c_{2}} \right\} \left[1 - \frac{z(t)}{m} \right],$$

$$z'_{2}(t) = m \left[p_{2} + (q_{2} - \gamma) \frac{z_{1}(t)}{m} + \frac{q_{2}}{m} \frac{z_{2}(t)}{m} \right] \left[1 - \frac{z(t)}{m} \right] I_{t>c_{2}},$$

within imitation

Competition between two products

Unbalanced competition and regime change diachronic model

$$z'_{1}(t) = m \left\{ \left[p_{1a} + q_{1a} \frac{z(t)}{m} \right] (1 - I_{t>c_{2}}) + \left[p_{1c} + (q_{1c} + \delta) \frac{z_{1}(t)}{m} + q_{1c} \frac{z_{2}(t)}{m} \right] I_{t>c_{2}} \right\} \left[1 - \frac{z(t)}{m} \right],$$

$$z'_{2}(t) = m \left[p_{2} + (q_{2} - \gamma) \frac{z_{1}(t)}{m} + q_{2} \frac{z_{2}(t)}{m} \right] \left[1 - \frac{z(t)}{m} \right] I_{t>c_{2}},$$

within imitation cross imitation

Model

Sign of cross-imitation coefficients: competition-collaboration

q_{1c}	$q_2 - \gamma$	interpretation		
negative	negative	full competition		
negative	positive	2 competes with 1, 1 collaborates with 2		
positive	negative	2 collaborates with 1, 1 competes with 2		
positive	positive	full collaboration		

Germany energy transition

Energy consumption in Germany

Germany energy transition

Competition between renewables and nuclear in Germany

Germany energy transition

UCRCD for renewables vs nuclear: estimates and 95% CIs

	Estimate	Std.Error	Lower	Upper
m_a	26.6	0.73	25.1	28.0
p_{1a}	0.0007	0.0000	0.0006	0.0007
q_{1a}	0.23	0.004	0.22	0.24
m_c	99.9	9.87	80.5	119.2
p_{1c}	0.012	0.0012	0.010	0.014
p_2	0.001	0.0015	-0.002	0.003
q_{1c}	-0.145	0.015	-0.176	-0.114
q_2	0.342	0.0683	0.208	0.475
δ	0.183	0.0186	0.146	0.219
γ	0.343	0.0730	0.200	0.487

$$R^2 = 0.9915$$

- nuclear $q_{1c} = -0.145$,
- renewables $q_2 \gamma = -0.002$