Blinkit

India's Last Mintue app

Project Overview:

Objective:

To analyze Blinkit's item sales performance across different outlet types, sizes, and geographic tiers in order to uncover insights that can help optimize product placement, outlet operations, and customer targeting strategies.

Business Context:

Blinkit is a quick commerce platform serving diverse customer segments across India. With rapid expansion into Tier 2 and Tier 3 cities, understanding sales trends at a granular level is critical for supply chain, merchandising, and marketing decisions.

Key Goals:

- •Evaluate sales trends by item type, fat content, and outlet characteristics.
- Identify high-performing outlet types, sizes, and locations.
- •Understand how visibility, item count, and ratings affect performance.
- •Leverage BI tools and programming to automate reporting and enhance data storytelling.

Outcome:

A dynamic dashboard (built using Power BI) with filterable views and performance KPIs, supported by Python, SQL, Excel, and Tableau for data prep, analysis, and visualization.

X Tools & Technologies Used:

Python

Tool Usage Description

SQL Data extraction, transformation, filtering outlet/item information

Excel Initial data cleaning, pivot tables for quick summaries

Power BI Interactive dashboard with filters, charts, and KPIs

Tableau (Optional) Exploratory visualizations to compare insights

Report automation and PDF generation, data manipulation (Pandas

Insights & Visualizations:

This section summarizes key findings derived from the Power BI dashboard, supported by data exploration in Tableau and Python. The dashboard allowed dynamic filtering by outlet type, size, location tier, and item characteristics.

Key Insights:

- **1.Tier 3 outlets generate the highest sales** (\$472K), showing strong demand in semi-urban and rural areas.
- 2.Fruits and Snacks are the top-performing categories, each contributing close to \$200K in revenue.
- 3.High-sized outlets account for 42.3% of total sales, suggesting that larger formats attract more customers and have more inventory.
- 4.Regular fat items lead with 64.6% of total item sales, while low-fat items represent a smaller but notable share.
- **5.Supermarket Type 1 and Grocery Stores outperform others**, despite differences in item count and visibility.
- 6.Sales in Tier 1 cities are the lowest (\$336K), indicating possible market saturation or competition.
- 7.Outlet visibility has a direct impact on item sales, especially in Supermarket Type 1 outlets.
- **8.Outlet establishment dipped in 2010**, but has remained consistent post-2015, showing stable growth.
- **9.Categories like Seafood and Breakfast have lower sales**, highlighting potential areas for marketing or inventory review.
- 10.Item sales follow the 80/20 rule, where a few categories drive most of the revenue.

Excel dashboard:

2020

Tier 1

28%

Tier 2

200

300

400

2022

Tableua Dashboard:

Outlet Establishment Year

Powerbi dashboard:

 \vee

ΑII

Outlet Type	Total Sales	Avg Rating	Avg Sales	No of items	item Visibil
Grocery Store	\$151.94K	3.93	\$140	1083	113.57
Supermarket Type1	\$787.55K	3.92	\$141	5577	338.65
Supermarket Type2	\$131.48K	3.93	\$142	928	56.62
Supermarket Type3	\$130.71K	3.91	\$140	935	54.80
Total	\$1,201.68K	3.92	\$141	8523	563.64

SQl Queries:


```
4. Average Rating
select cast(avg(Rating)as decimal(10,1))as avg_rating from blinkit_data;

100 % ▼
■ Results ■ Messages

avg_rating
1 4.0
```

```
2.Average Sales

select cast(avg(Sales) as int)as Avg_Sales from blinkit_data;

100 % ▼ 

■ Results Messages

Avg_Sales

1 140
```

```
B.Total Sales by Fat Content:
    select Item_Fat_Content, cast(sum(Sales)
    As decimal(10,2)) as Total_Sales
    from blinkit_data
    group by Item_Fat_Content;

100 % 
Results Messages

| Item_Fat_Content Total_Sales
| Low Fat 776319.69
| Regular 425361.80
```



```
d. Fat content by Outlet for Total sales:
          SELECT Outlet Location Type, ISNULL([Low Fat], 0) AS Low Fat,
            ISNULL([Regular], 0) AS Regular
     FROM
         SELECT Outlet Location Type, Item Fat Content,
                CAST(SUM(Sales) AS DECIMAL(10,2)) AS Total Sales
         FROM blinkit data
         GROUP BY Outlet Location Type, Item Fat Content
     ) AS SourceTable
     PIVOT
         SUM(Total Sales)
         FOR Item Fat Content IN ([Low Fat], [Regular])
     ) AS PivotTable
    ORDER BY Outlet Location Type;
100 % ▼
Outlet_Location_Type
                    Low_Fat
                             Regular
                    215047.91 121349.90
     Tier 1
     Tier 2
                    254464.78 138685.87
     Tier 3
                    306807.00 165326.04
```

```
E. Total sales by outlet Establishment
    select Outlet_Establishment_Year , Cast(SUM(Sales) As Decimal(10,1)) as total_sales
     from blinkit_data
    group by Outlet_Establishment_Year
    order by Outlet_Establishment_Year;-
100 % ▼ ◀
Outlet_Establishment_Year
                        total_sales
                        78131.6
                        130476.9
    2012
                        131809.0
    2014
    2015
                        130942.8
    2016
                        132113.4
     2017
                        133103.9
     2018
                        204522.3
     2020
                        129104.0
     2022
                        131477.8
```

G. Sales by Outlet Location

```
select Outlet_Location_Type, Cast(sum(Sales) as decimal(10,2)) as total_Sales
from blinkit_data
group by Outlet_Location_Type
order by Total_Sales desc;
```

100 % ▼ <

Results Messages

	Outlet_Location_Type	total_Sales
1	Tier 3	472133.03
2	Tier 2	393150.65
3	Tier 1	336397.81

100 % ▼ ◀

	Outlet_size	Total_Sales	Sales_Percentage
1	Medium	507895.74	42.27
2	Small	444794.17	37.01
3	High	248991.59	20.72

100 % ▼ ◀

	Outlet_Type	Total_Sales	Avg_sales	No_of_Items	Avg_Rating	Item_Visiblility
1	Supermarket Type1	787549.89	141	5577	3.96	0.06
2	Grocery Store	151939.15	140	1083	3.99	0.10
3	Supermarket Type2	131477.78	142	928	3.97	0.06
4	Supermarket Type3	130714.67	140	935	3.95	0.06

Python:

Data Analysis for Blinkit data

[5]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

import Raw data

[6]: df = pd.read_csv(r"C:\Users\sakshi wagh\Documents\Project\New folder\BlinkIt_data.csv")

[7]: **df**

]:	Item Fat Content	ltem Identifier	Item Type	Outlet Establishment Year	Outlet Identifier	Outlet Location Type	Outlet Size	Outlet Type	Item Visiblility	ltem Weight	Sales	Rating
	0 Regular	FDX32	Fruits and Vegetables	2012	OUT049	Tier 1	Medium	Supermarket Type1	0.100014	15.10	145.4786	5.0
	1 Low Fat	NCB42	Health and Hygiene	2022	OUT018	Tier 3	Medium	Supermarket Type2	0.008596	11.80	115.3492	5.0
	2 Regular	FDR28	Frozen Foods	2016	OUT046	Tier 1	Small	Supermarket Type1	0.025896	13.85	165.0210	5.0
	3 Regular	FDL50	Canned	2014	OUT013	Tier 3	High	Supermarket Type1	0.042278	12.15	126.5046	5.0
	4 Low Fat	DRI25	Soft Drinks	2015	OUT045	Tier 2	Small	Supermarket Type1	0.033970	19.60	55.1614	5.0
851	8 low fat	NCT53	Health and Hygiene	2018	OUT027	Tier 3	Medium	Supermarket Type3	0.000000	NaN	164.5526	4.0
851	9 low fat	FDN09	Snack Foods	2018	OUT027	Tier 3	Medium	Supermarket Type3	0.034706	NaN	241.6828	4.0
852	low fat	DRE13	Soft Drinks	2018	OUT027	Tier 3	Medium	Supermarket Type3	0.027571	NaN	86.6198	4.0
852	!1 reg	FDT50	Dairy	2018	OUT027	Tier 3	Medium	Supermarket Type3	0.107715	NaN	97.8752	4.0
852	22 reg	FDM58	Snack Foods	2018	OUT027	Tier 3	Medium	Supermarket Type3	0.000000	NaN	112.2544	4.0

8523 rows × 12 columns

[8]: df.head(10)

[8]:

]:	Item Fat Content	ltem Identifier	Item Type	Outlet Establishment Year	Outlet Identifier	Outlet Location Type	Outlet Size	Outlet Type	Item Visiblility	ltem Weight	Sales	Rating
0	Regular	FDX32	Fruits and Vegetables	2012	OUT049	Tier 1	Medium	Supermarket Type1	0.100014	15.10	145.4786	5.0
1	Low Fat	NCB42	Health and Hygiene	2022	OUT018	Tier 3	Medium	Supermarket Type2	0.008596	11.80	115.3492	5.0
2	Regular	FDR28	Frozen Foods	2016	OUT046	Tier 1	Small	Supermarket Type1	0.025896	13.85	165.0210	5.0
3	Regular	FDL50	Canned	2014	OUT013	Tier 3	High	Supermarket Type1	0.042278	12.15	126.5046	5.0
4	Low Fat	DRI25	Soft Drinks	2015	OUT045	Tier 2	Small	Supermarket Type1	0.033970	19.60	55.1614	5.0
5	low fat	FDS52	Frozen Foods	2020	OUT017	Tier 2	Small	Supermarket Type1	0.005505	8.89	102.4016	5.0
6	Low Fat	NCU05	Health and Hygiene	2011	OUT010	Tier 3	Small	Grocery Store	0.098312	11.80	81.4618	5.0
7	Low Fat	NCD30	Household	2015	OUT045	Tier 2	Small	Supermarket Type1	0.026904	19.70	96.0726	5.0
8	Low Fat	FDW20	Fruits and Vegetables	2014	OUT013	Tier 3	High	Supermarket Type1	0.024129	20.75	124.1730	5.0
9	Low Fat	FDX25	Canned	2018	OUT027	Tier 3	Medium	Supermarket Type3	0.101562	NaN	181.9292	5.0

[9]: df.tail(10)

:		Item Fat Content	ltem Identifier	Item Type	Outlet Establishment Year	Outlet Identifier	Outlet Location Type	Outlet Size	Outlet Type	Item Visiblility	ltem Weight	Sales	Rating
85	13	Regular	DRY23	Soft Drinks	2018	OUT027	Tier 3	Medium	Supermarket Type3	0.108568	NaN	42.9112	4.0
85	514	low fat	FDA11	Baking Goods	2018	OUT027	Tier 3	Medium	Supermarket Type3	0.043029	NaN	94.7436	4.0
85	15	low fat	FDK38	Canned	2018	OUT027	Tier 3	Medium	Supermarket Type3	0.053032	NaN	149.1734	4.0
85	16	low fat	FDO38	Canned	2018	OUT027	Tier 3	Medium	Supermarket Type3	0.072486	NaN	78.9986	4.0
85	517	low fat	FDG32	Fruits and Vegetables	2018	OUT027	Tier 3	Medium	Supermarket Type3	0.175143	NaN	222.3772	4.0
85	18	low fat	NCT53	Health and Hygiene	2018	OUT027	Tier 3	Medium	Supermarket Type3	0.000000	NaN	164.5526	4.0
85	19	low fat	FDN09	Snack Foods	2018	OUT027	Tier 3	Medium	Supermarket Type3	0.034706	NaN	241.6828	4.0
85	20	low fat	DRE13	Soft Drinks	2018	OUT027	Tier 3	Medium	Supermarket Type3	0.027571	NaN	86.6198	4.0
85	521	reg	FDT50	Dairy	2018	OUT027	Tier 3	Medium	Supermarket Type3	0.107715	NaN	97.8752	4.0
85	22	reg	FDM58	Snack Foods	2018	OUT027	Tier 3	Medium	Supermarket Type3	0.000000	NaN	112.2544	4.0

Size of data

[12]: print('Size of data', df.shape)

```
Size of data (8523, 12)
      Field info
[14]: df.columns
[14]: Index(['Item Fat Content', 'Item Identifier', 'Item Type',
              'Outlet Establishment Year', 'Outlet Identifier',
             'Outlet Location Type', 'Outlet Size', 'Outlet Type',
             'Item Visiblility', 'Item Weight', 'Sales', 'Rating'],
            dtype='object')
[13]: df.dtypes
[13]: Item Fat Content
                                    object
      Item Identifier
                                    object
      Item Type
                                    object
      Outlet Establishment Year
                                     int64
      Outlet Identifier
                                    object
      Outlet Location Type
                                    object
      Outlet Size
                                    object
                                    object
      Outlet Type
      Item Visiblility
                                   float64
                                   float64
      Item Weight
      Sales
                                   float64
      Rating
                                   float64
      dtype: object
[15]: print(df['Item Fat Content'] .unique())
      ['Regular' 'Low Fat' 'low fat' 'LF' 'reg']
[16]: df['Item Fat Content'] = df['Item Fat Content'].replace({'LF':'Low Fat',
                                                               'low fat': 'Low Fat',
                                                               'reg': 'Regular'
                                                              })
[17]: print(df['Item Fat Content'].unique())
      ['Regular' 'Low Fat']
```

Business Requirements

kpi's Requirements

```
# Total saless
[281: |
      Total sales = df['Sales'].sum()
      # Average Sales
      avg sales = df['Sales'].mean()
      # no of item sales
      no_of_item_sold = df['Sales'].count()
      # Ava ratina
       avg_rating = df['Rating'].mean()
      print(f"Total Sales: ${Total sales:..0f}")
      print(f"AVg Sales : ${avg_sales:,.0f}")
      print(f"no_of_item_sold :{no_of_item_sold:,.0f}")
      print(f"avg_rating :{avg_rating:,.1f}")
      Total Sales: $1,201,681
      AVg Sales : $141
      no of item sold :8,523
      avg_rating:4.0
```

Chart Requirements

Total Sales by Fat Content

Sales by Fat Content

Total sales by item type

Total sales by Item type

Fat Content by Outlet for total sales

```
[40]: grouped = df.groupby(['Outlet Location Type', 'Item Fat Content'])['Sales'].sum().unstack()
grouped = grouped[['Regular', 'Low Fat']]

ax = grouped.plot(kind ='bar', figsize=(8,5), title = 'Outlet tier by item fat content')
plt.xlabel('Outlet Location Tier')
plt.ylabel('Total Sales')
plt.legend(title = 'item fat content')
plt.tight_layout()
plt.show()
```

Outlet tier by item fat content

Sales by Outletsize

```
[54]: sales_by_size = df.groupby('Outlet Size')['Sales'].sum()

plt.figure(figsize =(4,4))
plt.pie(sales_by_size,labels=sales_by_size.index, autopct='%1.1f%%', startangle=90)
plt.title('Outlet Size')
plt.tight_layout()
plt.show()
```

Outlet Size


```
[52]: sales_by_year = df.groupby('Outlet Establishment Year')['Sales'].sum().sort_index()

plt.figure(figsize=(9,5))
plt.plot(sales_by_year.index, sales_by_year.values,marker='o', linestyle='-')

plt.xlabel('Outlet Establishment Year')
plt.ylabel('Total Sales')
plt.title('Outlet Establishment')

#for x,y in zip(sales_by_year.index,sales_by_year.values):
    #plt.text(x, y, f'{y:,.0f}', ha= 'center', va ='bottom', fontsize=8)

plt.tight_layout()
plt.show()
```


sales by location

```
[58]: sales_by_location = df.groupby('Outlet Location Type')['Sales'].sum().reset_index()
    sales_by_location = sales_by_location.sort_values('Sales', ascending=False)

plt.figure(figsize=(8,3)) # Smaller height, enough width
    ax = sns.barplot(x='Sales',y ='Outlet Location Type',data= sales_by_location)

plt.title('Total sales by outlet location type')
    plt.xlabel('total Sales')
    plt.ylabel('Outlet location type')

plt.tight_layout()
    plt.show()
```


