## Unit 5

# ???

### 5.1 Lecture 18: Olefin Polymerization

5/10: • Another huge industrial-scale reaction

- The Great Pacific Garbage Patch is largely composed of plastics made by this process.
  - Plastics get a bad rep, but they are a remarkable material.
    - We can melt them, form them, and they have durability properties.
  - However, because of their environmental impact, a big thing in chemistry is the pursuit of materials
    with similar properties that are biodegradable.
  - Inorganic chemistry plays a large role in their synthesis.
  - In 2008, the US alone made 58.3 million metric tons of polyethylene and 17 million metric tons of polypropylene.
- General form:

$$R \xrightarrow{\operatorname{cat}} \left( \begin{array}{c} \\ \\ \\ \end{array} \right)_n$$

Figure 5.1: The general form of olefin polymerization.

- If R = H, we have polyethylene.
- If R = Me, we have polypropylene.
- This is a thermodynamically favorable, exothermic reaction since  $\pi$  bonds are weaker than  $\sigma$  bonds.
- The catalyst is typically Ti, Zr, Hf, Cr (early Group 4 transition metals). Sometimes we use Fe, Co, Ni, and Pd (these are a bit more specific).
- Most of the materials that mediate this catalysis are called Ziegler-Natta catalysts.
  - These are heterogeneous, even though they operate via the same kind of catalytic cycle that homogeneous systems use.
  - Nobel prize (1963).
- Polymer terms:
- Number averaged molecular weight: The quantity  $\frac{\sum N_x M_x}{\sum N_x}$ , where  $N_x$  is the number of chains with x monomers and  $M_x$  is the molecular weight of a chain with x monomers. Also known as  $M_N$ .

Unit 5 (???) CHEM 20200

- Weight averaged molecular weight: The quantity  $\frac{\sum N_x M_x^2}{\sum N_x M_x}$ . Also known as  $M_w$ .
- Molecular weight distribution: The quantity  $\frac{M_w}{M_N}$ . Also known as polydispersity index, PDI.
  - 1 is perfect. This means that you only have one type of chain.
  - 1.1 is good.
  - Above 1.5 is getting ill-defined.
- Stereochemistry:
  - Normally, the methyl groups in polypropylene all insert on the same side, but if one misinserts, then it faces the other direction.
  - If the catalyst corrects itself and continues on inserting in the original direction, this is site control.
- Site control: The catalyst controls the insertion.
  - More specifically, the direction the methyl groups point is controlled by the catalyst.
- Chain end control: One misinsertion causes the ensuing insertions to face the same way as the last inserted methyl group.
  - More specifically, the direction the methyl groups point is controlled by the last inserted methyl group.
- Mechanism:

$$L_nMR_2 \xrightarrow[-LAR^-]{LA} L_nMR^+ \xrightarrow{||} L_nM---R \longrightarrow L_nM-H$$

- The three steps are activation, growth, and termination.
- LA stands for Lewis acid. The lewis acid activates the catalyst by abstracting an anionic Lewis acid species.
- Olefin insertion grows the polymer.
- $-\beta$ -H elimination is the simplest way to terminate the chain, even though there are several possibilities.
- Activation:

$$- \operatorname{L}_n \operatorname{MCl}_2 \xrightarrow{\operatorname{AlR}_3/\operatorname{MAO}} \operatorname{L}_n \operatorname{MMe}_2 \xrightarrow{\operatorname{AlR}_3/\operatorname{MAO}} \operatorname{L}_n \operatorname{Me}^+.$$

$$- \operatorname{L}_n \operatorname{MCl}_2 \xrightarrow{\operatorname{AlR}_{3/}\operatorname{MAO}} \operatorname{L}_n \operatorname{MMe}_2 \xrightarrow[-\operatorname{MeBAr}^F_4^-]{\operatorname{BAr}^F_4^-} \operatorname{L}_n \operatorname{Me}^+.$$

$$- \operatorname{L}_n \operatorname{MCl}_2 \xrightarrow{\operatorname{AlR}_{3/}\operatorname{MAO}} \operatorname{L}_n \operatorname{MMe}_2 \xrightarrow{\operatorname{HBAr}^{\operatorname{F}}_4} \operatorname{L}_n \operatorname{Me}^+.$$

- MAO is methylated aluminum oxide.
  - An ill defined, amorphous gunk with some oxygens created by adding a pinch of water to AlMe<sub>3</sub>.
  - A cheap reagent that people chuck into their catalyst mixture.
  - **■** Functions:
    - 1. Alkylating agent.
    - 2. Activator (pulls off methyls to generate cationic species).
    - 3. Scavenger for water (primarily) and oxygen.
- The fluorinated aryl borates are really good because they're very weakly coordinating, and we really want an open coordination site.

- Chain growth:
  - $-MR(||) \longrightarrow M---R \xrightarrow{\ ||\ } M(||)(---R) \longrightarrow M---R \longrightarrow \ \longrightarrow \ .$
  - This is called the Cossee Arlman mechanism.
  - Sterics determine the rates: Ethylene > propylene > substituted olefins > disubstituted olefins ≈ geminal disubstituted olefins >>> trisubstituted or tetrasubstituted olefins.
- Termination:
  - How you get variability in chain lengths.
  - Control it by adding a chain-transfer reagent (a specific terminating reagent). Examples include...
    - $H_2$ :  $L_nM-pl \xrightarrow{H_2} L_nM-H+H-pl$ , where pl is a polymer<sup>[1]</sup>.
    - $\beta$ -H elimination:  $L_nM -pl \longrightarrow L_nM(H)(||pl) \longrightarrow L_nM H + = -pl.$
    - $\blacksquare$   $\beta$ -H abstraction:  $M(||)(--pl) \longrightarrow M(Et)(||pl) \longrightarrow MEt + = -pl.$
- The relative rates of growth vs. determination dictate the type of material we get.
  - $-K_p$  is the rate of growth/propogation;  $K_t$  is the rate of termination.
  - $-K_p$  vs.  $K_t$  dictates the product.
  - $-K_p>>>K_t$  yields high molecular weight polymers.
  - $-K_p \approx K_t$  (within the same order of magnitude) yields oligomers.
    - The geometric weight distribution of oligomers is called a **Schultz-Flory distribution**.
  - $-K_t >> K_p$  yields dimers exclusively.
    - This can be valuable if you just want to transform ethylene into butadiene (a higher value product), for instance.
- Types of polyethylene.



Figure 5.2: Polyethylene-type catalysts.

- A perfect zig-zag chain is HDPE (high density polyethylene).
  - High melting point.
  - Crystalline.
  - Example uses: Helmets for army soldiers, bulletproof plastics.
  - Usually formed with Ziegler-Natta catalysis:
    - $TiCl_x + AlR_x \longrightarrow$  a heterogeneous catalyst that's super active (>  $10^9$  kg of polymer per gram of catalyst).
    - $\blacksquare$  Note that x = 3 or 4.
    - Alternate catalysts:  $\operatorname{Cr}^{\operatorname{III}} + \operatorname{silica} \xrightarrow{\operatorname{O}_2, \Delta} \operatorname{CrO}_4 \xrightarrow{||} \operatorname{reduced} \operatorname{Cr} \operatorname{center}$  (the active catalyst).

 $<sup>^{1}\</sup>mathrm{Be}$  aware that Anderson uses a capital P in a circle.

Unit 5 (???) CHEM 20200

- A mess with a ton of branching is LDPE (low density polyethylene).
  - Lower melting point.
  - Often made by radical processes.
  - Also made by late transition metal catalysts, where there's less control over chain growth:
    - Square planar,  $d^8$ ,  $16e^-$  species.
    - Example metal centers: Ni, Pd.
    - High rates of  $\beta$ -H elimination leads to chain walking and branching.
- Longer chain with a few branches is linear low-density polyethylene (LLDPE).
  - Transition metal catalyzed.
  - Formed from a mixture of ethylene and substituted olefins or a controlled rate of branching from catalysts.
  - Catalysts:
    - Constrained geometry catalysts.
    - Example metal centers: Ti, Zr, Hf.
- Polyethylene gives a single chain, but polypropylene can be chiral depending on the orientation of the methyl groups. The orientation defines **tacticity**.
- Isotactic (polypropylene): All methyl groups are pointed in the same direction.
  - The most crystaline, highest melting point material.
- Atactic (polypropylene): Every methyl group is random.
  - The least crystaline, lowest melting point material.
- Syndiotactic (polypropylene): Every methyl group alternates.
  - Pretty highly ordered.
- **Hemiisotactic** (polypropylene): Every other methyl group points the same direction; the remaining ones are random.
- Stereoblock (polypropylene): Alternating blocks of isotactic polypropylene.
- Controlling stereochemistry:
  - Relies on the fact that propylene is pro-chiral.
  - Si (pro-S) and Re (pro-R) faces.
  - Catalyst symmetry controls tacticity.
- Catalyst types:



Figure 5.3: Polypropylene-type catalysts.

- Most well worked out for metallocenes.
- In Figure 5.3, boxes are open coordination sites; circles are space-filling ligands.
- Differences help dictate tacticity.
- $-C_2$ : Both binding sites are the same.
  - Steric clashing forces the olefin to point in inverted ways; but because the polymer switches sides, this leads to consistency in the direction the methyl is added.
  - Generates isotactic polypropylene.
  - Si-face selective.
  - Example: A diindene metallocene.
- $-C_s$ : Binding sites are enantiomers.
  - Generates syndiotactic polypropylene.
  - Two enantiotopic sites will alternate.
  - Example: A metallocene with Cp on top and fluorene on bottom.
- $-C_1$ : Binding sites are diastereomers.
  - Generates hemiisotactic polypropylene.
  - Example: A metallocene with Cp−R on top and fluorene on bottom.
- To make this work, the Cp rings are often tethered to prevent rotation.
  - However, rotation can be harnessed to make stereoblock copolymers.
- Note that stereoblock copolymers can also be synthesized with two isotactic catalysts, relying on chain transfer.
- Late-metals: Chain walking.
  - A chain can grow or it can chain walk (do  $\beta$ -H elimination followed by a 2, 1-insertion).
  - If it chain walks, we'll create a branch.
- We see this with late metals.
  - Early metals are terrible backbonders, so they will prefer to be on the alkyl side of the equilibrium.
  - Late metals can backbond, and will more readily form an olefin adduct (a necessary intermediate to chain walking).
- Thus, we use late metals...
  - Because sometimes we want branching, specifically finely tuned branching to a certain degree.
    - Recall that random branching can be achieved via a radical mechanism.
  - SHOP process:
    - We react ethylene with a nickel PO-type catalyst (a nickel catalyst with a bidentate ligand that chelates through a phosphorous and an oxygen), an enolate, or related phosphorous/oxygen based donors.
    - This creates olefin-terminating oligomers. This doesn't use chain walking, but rather the chain transfer process, which is much faster with late metals.
    - Products:  $C_4$ - $C_8$  (41%),  $C_{10}$ - $C_{18}$  (40.5%), and  $C_{20+}$  (18.5%).
    - The short ones and the long ones can be combined with Mo<sub>2</sub>O<sub>3/</sub>Al<sub>2</sub>O<sub>3</sub> to do olefin metathesis, yielding internal and terminal olefins.
    - Then, throwing in the medium-length ones and treating with HCo(CO)<sub>4</sub> (our hydroformylation catalyst) and syn gas yields terminal aldehydes, which with enough hydrogen can give us terminal alcohols, which are commodity chemicals.

• Oligomerization mechanism:



Figure 5.4: Oligomerization mechanism.

- A metathesis-like process.
- Example with nickel.
- Polar monomer incorporation.
  - One of the standing grand challenges in olefin polymerization.
  - Incorporating vinyl chlorides, vinyl ethers, vinyl esters, vinyl nitriles, etc.
  - We can do this with radical polymerizations, but there's no stereocontrol here.
  - PVC (pipe) is polyvinylchloride (robust, a great material, but opaque).
    - It's melting point would be even higher if we could make it isotactic (and it would be clear, which could potentially have applications).
  - The challenge with early metals is that if you  $\beta$ -Cl eliminate, the M-Cl bond will be too strong to break and reinsert the chloride. This kills the catalysis.
    - Additionally, the groups on the polymer adjacent to the metal center can donate to it, making the polymer a kind of chelating ligand and preventing olefin insertion. This also kills the catalysis.
  - Late metals are less halo/oxo-philic, which makes them better at incorporating these monomers.

# 5.2 Office Hours (Anderson)

- Chain walking is when the metal bonds to a  $\sigma$  bond, moves to an adjacent carbon, moves to a double bond next, and on and on.
  - The terminal olefins are sterically favored, even though the internal ones are typically thermodynamically favored.
  - Early metals typically make linear polyolefins, while late metals prefer branched ones.
- What is the difference between a Chatt, distal, and alternating mechanism?
  - Chatt and distal mechanisms are the same thing (known as Chatt due to Eurocentrism).

#### 5.3 Discussion Section

- 5/11: HW5 is due 5/21/2021.
  - Discussion recordings will be posted in the Panopto folder from now on, but there may be a delay.
  - Point out dipole on CO in Homework 4.1a.
  - Iron starts from Fe<sup>I</sup>.
  - Draws out and discusses the FeMoCO enzyme (which is actually an enzyme, not just iron, molybdenum, and a carbonyl ligand).
    - FeMoCO possibly binds to CO in bidentate fashion through two irons.
      - This could support a Chatt mechanism since it would be easier to delocalize the higher oxidation state across two irons.
    - The iron in the center of FeMoCO that forms six partial bonds and doesn't really make any sense is sometimes called a **Texas iron**.
  - Considers the 4-membered transition state and arrow-pushing for ROMP.
  - It's good to know what the end groups are for the purposes of NMR.
  - Goes over Figure 4.8 and Homework 4.4 in a bit more detail.
  - Goes over Homework 3.

### 5.4 Lecture 19: Oxidative Olefin Functionalization

- 5/12: More fine molecule synthesis than industrial, although there are industrial applications.
  - General form:

$$R = \xrightarrow{HX} R = X + R - CX = X$$

- Can also start from a double bond and make singly bonded products.
- Hydrocyanation:

$$R-= + HCN \xrightarrow{cat} R---CN$$

- HCN is really toxic, so surrogates are used in some cases.
- Used in the synthesis of adiponitrile, which becomes nylon.
- Controlling selectivity w/ catalysts:
  - $Ni(P(o-Tol)_3)_4^{[2]}$ : Selects for the terminal product, especially with sterically encumbered (i.e., geminal) olefins.
  - Styrene: Selects for the branched product.
- Mechanism:

$$L_{2}Ni(||) \xrightarrow{HCN} L_{2}Ni(H)(CN)(||)$$

$$\xrightarrow{-L} LNi(H)(CN)(||)$$

$$\xrightarrow{||} LNi(CN)(Et)(||)$$

$$\xrightarrow{L} L_{2}Ni(||)$$

<sup>&</sup>lt;sup>2</sup>o-Tol is an ortho-tolyl group.

- The precatalyst is L<sub>3</sub>Ni, and is activated when ethylene kicks out a ligand.
- The reductive elimination step is hard and requires a Lewis acid and a ligand to kick out ethyl
  cyanide.
- Can also have chain walking.
- Hydrosilylation:

$$R = + HSiR_3 \xrightarrow{cat} R = --SiR_3$$

- Note that our starting material can also be R-=X (where X can be oxygen, for instance), giving us  $R-CH(SiR_3)-XH$  as a product.
- Industrially important for making non-stick coatings.
- Common catalysts: Pd<sup>0</sup> and Karstedt's catalyst (a bridging mess of siloxanes bound to olefins and chelating).



Figure 5.5: Karstedt's catalyst.

- H<sub>2</sub>PtCl<sub>6</sub> also works (known as Speier's catalyst).
- We can also observe chain walking to bond a silyl away from where the olefin originally was.
- Mechanism:

$$\begin{split} M &\xrightarrow{\mathrm{HSIR}_3} \mathrm{M}(\mathrm{H})(\mathrm{SiR}_3) \\ &\xrightarrow{||} \mathrm{M}(\mathrm{H})(\mathrm{SiR}_3)(||) \\ &\longrightarrow \mathrm{M}(\mathrm{Et})(\mathrm{SiR}_3) \\ &\xrightarrow{-\mathrm{EtSiR}_3} \mathrm{M} \end{split}$$

- The above mechanism is called the Chalk-Herrod mechanism.
- However, we can also add the silyl group to the olefin first and the hydrogen second; this is the modified Chalk-Herrod mechanism.
- $\sigma$ -bond metathesis is also possible.
- Hydroboration:

$$R = + R_2BH \longrightarrow R = -BR_2$$

- We need a catalyst because otherwise we're stuck at the mercy of the electronics of this reaction.
- A catalyst is necessary for less electron-rich boranes.
- Mechanism:

$$L_n M \xrightarrow{HBR_2} L_n M(H)(BR_2)$$

$$\xrightarrow{R-=} L_n M(H)(BR_2)(||R)$$

$$\xrightarrow{-} L_n M(BR_2)(---R)$$

$$\xrightarrow{-R---BR_2} L_n M$$

- We could also get from the second intermediate to  $L_nM(H)(--C(H)(BR_2)(R))$ , from which we can reductively eliminate to get  $Me-C(H)(BR_2)(R)$  or  $\beta$ -H eliminate to get  $=C(BR_2)(R)$ .

- $\text{ Alternate mechanism: } L_n Rh(||R)(BR_2) \longrightarrow L_n Rh CRH -BR_2 \xrightarrow{R_2BH} L_n Rh(H)(BR_2)(CRH -BR_2) \xrightarrow{-R_2 -BR_2} L_n Rh(||R)(BR_2).$
- With early metals:  $L_nMH \xrightarrow{||R|} L_nM(H)(||R) \longrightarrow L_nM -R \xrightarrow{HBR_2} L_nM(H)(BR_2)(---R) \xrightarrow{-R---BR_2} L_nMH$ .
  - Done to avoid oxidative addition type processes.
- Hydroamination:

$$R = -H + HNR_2 \xrightarrow{cat} R = -NR_2 + C(R)(NR_2)$$

- Can also be done from a doubly bonded reactant (remove the double bond from each product).
- Mechanisms:
  - 1. Nucleophilic attack:  $L_nM \longrightarrow L_nM-||\xrightarrow{RNH_2} M--NH_2R \xrightarrow{-EtNRH} L_nM$ .
  - 2. Insertion:  $L_nM-NHR \xrightarrow{||} L_nM(||)(NHR) \longrightarrow L_nM--NRH \xrightarrow{RNH_2} L_nM-NRH$ .

3. 
$$2+2$$
:  $L_nM=NR$   $\longrightarrow$   $L_nM$   $\longrightarrow$   $L_nM(NRH)(NREt)$   $\longrightarrow$   $L_nM=NR$ .

- Goes through a 4-membered 2+2 transition state in the first step, as in Figure 3.17.
- Oxidative olefin functionalization.
- Wacker oxidation:

$$|| + \frac{1}{2}O_2 \xrightarrow{\text{cat PdCl}_2} \text{Me-COH}$$

- Millions of tons per year; acetaldehyde feeds into a lot of processes.
- Stoichiometry:
  - − It was discovered in the 1950s and 1960s that  $|| + H_2O + PdCl_2 \longrightarrow Me COH + Pd^0 + 2 HCl$ .
  - On the role of copper:
    - It was known that  $Pd^0 + 2 CuCl_2 \longrightarrow PdCl_2 + 2 CuCl$ . Thus, we can use  $CuCl_2$  to regenerate our palladium catalyst.
    - $\blacksquare$  Additionally,  $2\operatorname{CuCl} + \frac{1}{2}\operatorname{O}_2 + 2\operatorname{HCl} \longrightarrow 2\operatorname{CuCl}_2 + \operatorname{H}_2\operatorname{O}.$
  - Summing these three reactions, we have  $|| + \frac{1}{2}O_2 \xrightarrow{\text{PdCl}_2 \atop \text{CuCl}_2} \text{Me-COH}$ .
- Mechanism:
  - $\ \mathrm{Rate} = \frac{[\mathrm{PdCl_4}^{2-}][\mathrm{C_2H_4}]}{[\mathrm{Cl^-}]^2[\mathrm{H^+}]}.$
  - $[PdCl<sub>4</sub>]<sup>2-</sup> + || + H<sub>2</sub>O \longrightarrow Pd(Cl)<sub>2</sub>(OH)(||).$
  - C-O bond formation: Three main possibilities.
    - 1. Insertion:

$$\begin{split} \operatorname{Pd}(\operatorname{Cl})_2(\operatorname{H}_2\operatorname{O})(||) & \Longrightarrow [\operatorname{Pd}(\operatorname{Cl})_2(\operatorname{OH})(||)]^- \\ & \longrightarrow [\operatorname{Pd}(\operatorname{Cl})_2(\operatorname{L})(---\operatorname{OH})] - \\ & \longrightarrow [\operatorname{Pd}(\operatorname{Cl})_2(\operatorname{H})(||\operatorname{OH})]^- \\ & \longrightarrow [\operatorname{Pd}(\operatorname{Cl})_2(\operatorname{L})(-\operatorname{CMeHOH})] - \\ & \longrightarrow [\operatorname{Pd}(\operatorname{Cl})_2(\operatorname{H})(\operatorname{O}||\operatorname{Me})]^- \\ & \longrightarrow \operatorname{Me-COH} + \operatorname{Pd}^0 + 2\operatorname{HCl} \end{split}$$

2. External attack at a ligand: React the starting compound with  $OH^-$  to produce  $[Pd(Cl)_2(H_2O)(--OH)]^-$ , which then feeds into the third intermediate.

- 3. Water nucleophilic attack: React the starting compound with  $H_2O$  and remove a proton to produce  $[Pd(Cl)_2(H_2O)(--OH)]$ , which then feeds into the third intermediate.
- The  $\beta$ -H elimination step can also occur by a Cl<sup>-</sup>-assisted process where the chloride abstracts the H<sup>+</sup> from the alcohol.
- All four hydrogens in acetaldehyde come from ethylene.

#### • Stereochemical experiments:

- Draws a mechanism yielding stereochemistry consistent with mechanisms 2 and 3, but not 1. This means it's probably actually external attack at a ligand.
- If [Cl<sup>-</sup>] is high, we activate the following pathway:  $[Pd(Cl)_2(L)(--OH)] \longrightarrow [Pd(Cl)_3(--OH)]^{2-} \longrightarrow Cl--OH$ .
- Rate =  $\frac{[PdCl_4^{2-}][C_2H_4]}{[Cl-][H^+]}$ .
- Therefore, we'll make the chlorinated pathway more than the productive pathway if we add a bunch of chloride.

#### • Overall mechanism:

$$\begin{split} \operatorname{PdCl_4}^{2-} & \xrightarrow{||, \operatorname{H_2O}|} \operatorname{Pd(Cl)_2(H_2O)(||)} \\ & \xrightarrow{\frac{\operatorname{H_2O}}{-\operatorname{H}^+}} \left[\operatorname{Pd(Cl)_2(H_2O)(---OH)}\right]^- \\ & \longrightarrow \left[\operatorname{Pd(Cl)(H)(H_2O)(||OH)}\right]^- \\ & \longrightarrow \left[\operatorname{Pd(Cl)_2(H_2O)(-CMeHOH)}\right] - \\ & \xrightarrow{-\operatorname{Me-COH}} \operatorname{Pd(Cl)(H)(H_2O)_2} \\ & \xrightarrow{\frac{2\operatorname{CuCl_2}}{-2\operatorname{CuCl}}} \operatorname{PdCl_2} \\ & \xrightarrow{\frac{1}{2}\operatorname{O_2, 2HCl}} \operatorname{PdCl_4^{2--}} \end{split}$$

#### • Other applications:

- Higher olefins:  $R = +\frac{1}{2}O_2 \xrightarrow{Pd^{II}, CuCl_2, H_2} R-COH.$
- The nucleophile need not be  $H_2O$ :
  - $\blacksquare || + ROH \longrightarrow || OR.$
  - $\blacksquare || + [COOR]^- \longrightarrow C(O)(R)(O||).$
- Draws out another few useful processes.
- Useful chemistry with dienes.
  - Cyclohexadiene can become cyclohexene with para-acetates.
  - Useful applications of the above reaction in total synthesis: Setting stereochemistry with a catalytic attack, as used in the synthesis of paenilactane B.
- This chemistry also works with nitrogen-based nuleophiles.

### 5.5 Office Hours (Anderson)

- 5/17: Which molecules are anionic in the carbonylation mechanism and why?
  - They're all anions.
  - What is  $M_x$  in the definition of number averaged molecular weight?
    - $-N_x$  is number of chains with x number of monomers.  $M_x$  is the molecular weight of a chain with x monomers.
    - From the perspective of the video, you could think of  $N_x$  as the number of chains with molecular weight  $M_x$ .
  - Can you explain the oligomerization mechanism?
    - Oligomerization is baby polymerization (potentially more useful).
    - In principle, it could go through a regular insertion mechanism.
    - If you have competitive elimination of polymers, your polymers will be shorter on average.
    - Butene is a higher value product than oligomers.
    - Use half-type mechanisms to balance the stoichiometry. Necessitates bimolecular chemistry in real life.
  - Olefin polymerization catalysts are classically Group 4,  $d^0$  metals.
  - Homework 5.3:
    - Use chain walking or chain transfer.
    - You'll have a statistical mixture of branches if you're chain walking, so it's not this.
  - Is the catalyst resting state always the one before the step with the highest energy of activation?
    - The precatalyst can't technically be the resting state because it's an off-cycle intermediate.
    - Homework: It's the major species in solution; the other enantiomer being bound.
      - Each pathway could have a different resting state.
      - Recognize what state of the catalyst is sitting in the mixture; draw the two cycles and decide.
  - Principle of microscopic reversibility: To be mechanistically allowed, a reaction must be irreversible to *some* extent.
  - Homework 5.6:
    - Use either Chalk-Herrod or modified Chalk-Herrod.
  - Midterm 6:
    - NR<sub>2</sub> is a  $\sigma$  donor and a  $\pi$  donor because it has filled  $\pi$  orbitals on the nitrogen.
    - Phosphines are  $\pi$  acids.
    - Cp is all three.
    - Methyl is a pure  $\sigma$  donor.
    - Cyclobutadiene is both.
    - $O_2^-$  is a  $\pi$  donor.
    - Draw out like a Lewis structure two lone pairs on  $NR_2^-$  means filled  $\sigma$  and  $\pi$  orbitals; CH<sub>3</sub> has only filled  $\sigma$  orbitals.
    - Orbital diagrams.
    - If he wants an MO diagram, he'll say "MO diagram."