НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ" ФАКУЛЬТЕТ ІНФОРМАТИКИ ТА ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ Кафедра обчислювальної техніки

КУРСОВА РОБОТА з дисципліні "Комп'ютерна логіка"

Виконав Заколенко Роман Костянтинович
Факультет ІОТ,
Група 10-33
Залікова книжка № 3308
Допущений до захисту

Опис альбому

№ рядка	Формат	Позначення	Найменування	Кількість	Примітка
1			Документація загальна		
2					
3			<u>розроблена заново</u>		
4					
5	A	IAЛЦ.463626.001 OA	Οπυς αльδοму	1	
6					
7	Α4	IAЛЦ.463626.002 ТЗ	Технічне завдання	4	
8					
9	ΑŻ	P IA/IЦ.463626.003 E2	Керуючий автомат	1	
10			Схема електрична		
11			функціональна		
12					
13	A	IAЛЦ.463626.004 ПЗ	Пояснювальна записка	19	
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
3м. Ад	DK 1	№ докум. Підпис Лат	IAЛЦ.109112.001 DA	-	
Розра	οδ. 3	аколенко	//im.	Арк	
Перев Н. коні Затв.	mp.	Поспішний Пр Жабін В.І.		I "КП yna l	<u>1</u> I" ФІОТ 0-33

Технічне завдання

Зміст

7.	Призначення розроолюваного пристрою	. Z
2.	Вхідні дані для розробки	.2
3.	Εκлαд πρυσπροϊβ	.
4.	Етапи проектування	. 4
5	Пепелік текстової та графічної докиментації	/,

				<i>IAЛЦ.463626.002</i>	? <i>T3</i>		
Зм. Арк	№ докум.	Підпис	Патс				
Розроб.	Заколенко				Літ.	Аркуш	Аркушів
Перевір.	Поспішний			Пристрій управляючий. Технічне завдання		1	4
Н. контр.				Технічне завдання		Ύ "ΚΠΙ' Γργηα 10:	_
Затв.	Жабін В.І.				,	pyna IU	-33

1. Призначення розроблюваного пристрою

Керуючий автомат — це електрична схема, що виконує відображення множини вхідних логічних сигналів у вихідні по заданому алгоритму. Комбінаційні схеми зберігають і перетворюють двійкові змінні за заданим алгоритмом. Такі автомати знаходять застосування в області обчислювальної техніки.

2. Вхідні дані

Варіант завдання визначається дев'ятьма молодшими розрядами залікової книжки, представленої в двійковій системі числення.

Запишемо свої дані в таблиці.

Підп

Умови для синтезу автомату

$egin{array}{c c c c c c c c c c c c c c c c c c c $		The same same same same same same same sam
О 1 1 1 0 1 1 0 0 Табл. 2.2 Порядок з'єднання фрагментів h _в h ₄ h ₂ 4, 1, 2 Табл. 2.3 Логічні умови Табл. 2.4 Послідовність сигналів h ₉ h ₄ h ₁ (Y1 Y2), (Y4 Y5), Y2, Y3, (Y1 Y3), Y3 Табл. 2.5 Логічні елементи h ₃ h ₂ h ₁ 2AБО-НЕ, 4I Табл. 2.6 Сигнали тривалістю 2t h ₆ h ₂ Y3		Табл. 2.1 Варіант в двійковій системі
$Ta\delta n. \ 2.2 \ Порядок \ 3' єднання фрагментів \ h_8 \ h_4 \ h_2 \ 4, 1, 2$ $Ta\delta n. \ 2.3 \ Логічні \ умови \ h_8 \ h_7 \ h_3 \ not \ X2, \ X2, \ not \ X1$ $Ta\delta n. \ 2.4 \ Послідовність \ сигналів \ h_9 \ h_4 \ h_1 \ (Y1\ Y2), \ (Y4\ Y5), \ Y2, \ Y3, \ (Y1\ Y3), \ Y3$ $Ta\delta n. \ 2.5 \ Логічні \ елементи \ h_3 \ h_2 \ h_1 \ 2A50-HE, \ 4I$ $Ta\delta n. \ 2.6 \ Сигнали \ тривалістю \ 2t \ h_6 \ h_2 \ Y3$ $Ta\delta n. \ 2.7 \ Tun \ тригера \ h_6 \ h_5 \ JK$	h_9 h_8 h_7	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
h_8 h_4 h_2 4, 1, 2	0 1 1	1 0 1 1 0 0
h_8 h_4 h_2 4, 1, 2		T-S- 2.2 /
$Ta\delta n. \ 2.3 \ \textit{Логічні} \ \textit{умови}$ $h_8 \ h_7 \ h_3 \ \textit{пот X2, X2, пот X1}$ $Ta\delta n. \ 2.4 \ \textit{Послідовність} \ \textit{сигналів}$ $h_9 \ h_4 \ h_1 \ (Y1 \ Y2), \ (Y4 \ Y5), \ Y2, \ Y3, \ (Y1 \ Y3), \ Y3$ $Ta\delta n. \ 2.5 \ \textit{Логічні} \ \textit{елементи}$ $h_3 \ h_2 \ h_1 \ 2A \delta \mathcal{D} - HE, \ 4I$ $Ta\delta n. \ 2.6 \ \textit{Сигнали тривалістю} \ 2t$ $h_6 \ h_2 \ Y3$ $Ta\delta n. \ 2.7 \ \textit{Tun тригера}$ $h_6 \ h_5 \ \textit{JK}$	h h h	
h_8 h_7 h_3 $not X2, X2, not X1$ $Ta\delta n. 2.4 \ \PiocnidoBhicm $ сигналів h_9 h_4 h_1 $(Y1\ Y2), (Y4\ Y5), Y2, Y3, (Y1\ Y3), Y3$ $Ta\delta n. 2.5 \ Ioziчні$ елементи h_3 h_2 h_1 $2Abo-HE, 4I$ $Ta\delta n. 2.6 \ Cu$ гнали тривалістю $2t$ h_6 h_2 $Y3$ $Ta\delta n. 2.7 \ Tun$ тригера h_6 h_5 JK	II_8 II_4 II_2	4, 1, 2
h_8 h_7 h_3 $not X2, X2, not X1$ $Ta\delta n. 2.4 \ \PiocnidoBhicm $ сигналів h_9 h_4 h_1 $(Y1\ Y2), (Y4\ Y5), Y2, Y3, (Y1\ Y3), Y3$ $Ta\delta n. 2.5 \ \Lambdaoziчні$ елементи h_3 h_2 h_1 $2Abo-He, 4I$ $Ta\delta n. 2.6 \ Cuгнали \ mpubanicm 2t$ h_6 h_2 $Y3$ $Ta\delta n. 2.7 \ Tun \ mpuzepa$ h_6 h_5 JK		Табл 23 Логічні имови
Табл. 2.4 Послідовність сигналів	h_8 h_7 h_3	
hg h4 h1 (Y1 Y2), (Y4 Y5), Y2, Y3, (Y1 Y3), Y3 Табл. 2.5 Логічні елементи h3 h2 h1 2АБО-НЕ, 4І Табл. 2.6 Сигнали тривалістю 2† h6 h2 Y3 Табл. 2.7 Тип тригера h6 h5 JK	, , ,	
$Ta\delta n. \ 2.5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		Табл. 2.4 Послідовність сигналів
h3 h2 h1 2AБО-НЕ, 4I Табл. 2.6 Сигнали тривалістю 2t h6 h2 Y3 Табл. 2.7 Тип тригера h6 h5 JK	h_9 h_4 h_1	(Y1 Y2), (Y4 Y5), Y2, Y3, (Y1 Y3), Y3
h3 h2 h1 2AБО-НЕ, 4I Табл. 2.6 Сигнали тривалістю 2t h6 h2 Y3 Табл. 2.7 Тип тригера h6 h5 JK		,
Табл. 2.6 Сигнали тривалістю 2t h ₆ h ₂ Y3 Табл. 2.7 Тип тригера h ₆ h ₅		
h ₆ h ₂ Y3 Taδn. 2.7 Tun mpuzepa h ₆ h ₅ JK	$h_3 h_2 h_1$	2ABO-HE, 41
h ₆ h ₂ Y3 Ταδη. 2.7 Τυπ πρυгера h ₆ h ₅		T. T. O. C. G
Ταδη. 2.7 Tun mpuzepa	<i>L L</i>	
h_6 h_5 JK	$\Pi_6 \mid \Pi_2 \mid$	13
h_6 h_5 JK		Taδn. 2.7 Tun mpuzepa
	h_6 h_5	, ,
		Табл. 2.8 Tun автомату
h ₄ Mypa	h_4	Мура

IA/ILI.463626.002 T3

Табл. 2.9 Таблиця істинності функцій

X_4 X_3 X_2 X_1	f_1	f_2	f_3	f_4
0 0 0 0	1	1	1	0
0 0 0 1	1	1	0	1
0 0 1 0	1	1	1	1
0 0 1 1	0	0	0	1
0 1 0 0	_	0	1	0
0 1 0 1	0	0	0	0
0 1 1 0	1	-	-	0
0 1 1 1	-	-	1	1
1 0 0 0	1	1	1	1
1 0 0 1	0	0	1	1
1 0 1 0	0	0	0	1
1 0 1 1	0	0	0	0
1 1 0 0	1	-	1	1
1 1 0 1	0	0	0	0
1 1 1 0	1	1	0	0
1 1 1 1	1	1	1	1

Функцію f_4 необхідно представити в канонічних формах алгебр Буля, Жегалкіна, Пірса і Шеффера. Визначити приналежність даної функції до п'яти чудових класів. Виконати мінімізацію функції f_4 методами:

- невизначених коефіцієнтів;
- Квайна (Квайна Мак-Класкі);
- діаграм Вейча.

Виконати спільну мінімізацію функцій f_1 , f_2 , і f_3 . Одержати операторні представлення для реалізації системи функцій на програмувальних логічних матрицях і програмувальних матрицях вентилів. В результаті синтезу повинні бути отримані мнемонічні схеми, карти програмування відповідних логічних схем, визначені мінімальні параметри логічних схем.

3. Склад пристроїв

Керуючий автомат

Керуючий автомат складається з комбінаційної схеми і пам'яті на тригерах. Тип тригерів та елементний базис подані в технічному завданні.

Зм.	Ασκ.	Nº	Підп.	Дата

Програмувальна логічна матриця

ПЛМ складається з двох кон'юнктивних матриць, де виходи першої з'єднуються з входами другої і дозволяють реалізувати комбінаційну схему в базисі І/АБО, І/АБО-НЕ.

4. Етапи проектування

Синтез автомата

- 1) Побудова графічної схеми алгоритму структурного автомата..
- 2) Розмітка графічної схеми алгоритму структурного автомата.
- 3) Побудова графа структурного автомата..
- 4) Кодування станів структурного автомата.
- 5) Складання структурної таблиці автомата.
- 6) Синтез комбінаційних схем для функцій збудження тригерів та вхідних сигналів.
 - 7) побудова схеми автомата в заданому базисі.

Синтез комбінаційних схем

- 1) Представлення функції f4 в канонічних формах алгебр Буля, Шеффера, Пірса та Жегалкіна
 - 2) Визначення належності функції f4 до п'яти передповних класів.
 - 3) Мінімізація функції f4.
 - 4) Спільна мінімізація функцій f1, f2, f3.
 - 5) Одержання операторних форм для реалізації на ПЛМ.
 - 5. Перелік текстової та графічної документації
 - 1) Титульний аркуш.
 - 2) Опис альбому.
 - 3) Технічне завдання.
 - 4) Керуючий автомат схема електрична функціональна.
 - 5) Пояснювальна записка.

Зм.	Арк.	Nº	Підп.	Дата

Керуючий автомат. Схема електрична функціональна

Зміст

1. Вступ	2
2. Синтез автомата	2
2.1. Побудова графічної алгоритму, графу автомата	2
2.2. Побудова структурної таблиці автомата	4
2.3. Синтез комбінаційних схем для функцій збудження тригерів та вихідних	X
сигналів	4
3. Синтез комбінаційних схем	7
3.1. Представлення функції f4 в канонічних формах алгебр Буля, Шеффера	
Пірса та Жегалкіна	7
3.2. Визначення належності функції f4 до п'яти передповних класів	9
3.3. Мінімізація функції f4	9
3.4.Спільна мінімізація функцій f1, f2, f3	12
3.5. Одержання операторних форм для реалізації на ПЛМ	14
4. Висновок	17
5. Список літератури	.18

Арк	№ докум.		
зроб.	Заколенко		
ревір.	Поспішний	Підпис	Дат
онтр.			
שה.	Жабін В.І.		
	вроб. ревір. гонтр.	ревір. Поспішний гонтр.	вроб. Заколенко ревір. Поспішний Підпис гонтр.

IAЛЦ.463626.004 ПЗ

Пристрій управляючий. Пояснювальна записка

/lim.			Аркуш	Аркушів	
			1	18	
	ΗΤΥΥ "ΚΠΙ" ΦΙΟΤ Γργηα 10-33				

1. Вступ

Дана курсова робота виконана за номером технічного завдання $3308_{(10)}$ (100001000000 $_{(2)}$). Вона складається з двох частин:

- 1) Синтез автомата.
- 2) Синтез комбінаційних схем.
- 2. Синтез автомата
 - 2.1. Побудова графічного алгоритму та графу автомата

Складаємо графічну схему алгоритму відповідно до технічного завдання з урахуванням тривалості сигналів (рис. 2.1.1) і виконуємо розмітку станів автомата.

Рисунок 2.1.1. Графічна схема алгоритму з розміченими станами

Зм.	Арк.	Nº	Підп.	Дата

Рисунок 2.1.2. Граф автомата з закодованими вершинами

Для синтезу логічної схеми тригера необхідно провести синтез функцій збудження тригерів та вихідних функцій автомата. Автомат має 12 станів. Кількість тригерів знайдемо за формулою $K \ge \lceil \log_2 N \rceil = \lceil \log_2 12 \rceil = 4$. За умовою для синтезу автомату потрібно використовувати ЈК-тригери. Таблиця переходів для ЈК-тригера зображена на рисунку 2.1.3.

Рисинок 2.1.3. Таблиця переходів ЈК-тригера

Зам	Арк.	Nº	Підп.	Дата

2.2. Побудова структурної таблиці автомата

Використовуючи дані з рисунку 2.1.2 заповнимо структурну таблицю автомата
Таблиця 2.2.1. Структурна таблиця автомата

Переходи		Κοд [Π Κοд Π[Вх	ідні	Вихідні сигнали			ЛИ	Функції збудження												
							CUZ	нали					тригерів										
	Q_4	Q_3	Q_2	Q_1	Q_4	Q_3	Q_2	Q_1	<i>X</i> ₁	X ₂	y ₁	y ₂	y ₃	y ₄	y ₅	J_4	K ₄	J ₃	<i>K</i> ₃	J_2	K ₂	J_1	<i>K</i> ₁
$Z_1 \rightarrow Z_2$	0	0	0	0	0	0	0	1	-	1	0	0	0	0	0	0	-	0	-	0	-	1	-
$Z_2 \rightarrow Z_2$	0	0	0	1	0	0	0	1	-	1	1	1	0	0	0	0	-	0	1	0	-	-	0
$Z_f \rightarrow Z_3$	0	0	0	0	0	0	1	0	-	0	0	0	0	0	0	0	ı	0	-	1	1	0	-
$Z_3 \rightarrow Z_4$	0	0	1	0	0	0	1	1	1	-	0	0	0	1	1	0	ı	0	ı	1	0	1	-
$Z_4 \rightarrow Z_4$	0	0	1	1	0	0	1	1	1	0	0	1	0	0	0	0	ı	0	ı	1	0	ı	0
$Z_4 \rightarrow Z_5$	0	0	1	1	0	1	1	1	1	1	0	1	0	0	0	0	ı	1	1	1	0	-	0
$Z_5 \rightarrow Z_6$	0	1	1	1	0	1	0	1	1	-	0	0	1	0	0	0	ı	-	0	1	1	ı	0
$Z_6 \rightarrow Z_7$	0	1	0	1	1	1	0	1	1	-	0	0	1	0	0	1	ı	-	0	0	ı	ı	0
$Z_T \rightarrow Z_8$	1	1	0	1	1	1	0	0	1	-	1	0	1	0	0	1	0	-	0	0	ı	ı	1
$Z_8 \rightarrow Z_{12}$	1	1	0	0	1	0	0	0	1	-	0	0	1	0	0	-	0	-	1	0	-	0	-
$Z_{12} \rightarrow Z_1$	1	0	0	0	0	0	0	0	1	-	0	0	0	0	0	1	1	0	1	0	1	0	-
$Z_g \rightarrow Z_g$	1	1	0	0	1	1	1	0	0	-	0	0	1	0	0	-	0	-	0	1	ı	0	-
$Z_g \rightarrow Z_{10}$	1	1	1	0	0	1	1	0	-	-	0	0	1	0	0	-	1	-	0	-	0	0	-
$Z_{10} \rightarrow Z_{11}$	0	1	1	0	0	1	0	0	-	-	0	0	1	0	0	0	ı	-	0	1	1	0	-
$Z_{11} \rightarrow Z_{12}$	0	1	0	0	0	0	0	0	-	-	0	0	0	0	0	0	1	-	1	0	ı	0	-

2.3. Синтез комбінаційних схем для функцій збудження тригерів та вихідних сигналів.

Аргументами функцій є коди станів, а тригерів – коди станів та вхідні сигнали. Мінімізація буде проводитись методом діаграм Вейча. З врахуванням елементарного базису (2AБO-HE, 4I), мінімізацію функцій будемо проводити від ДДНФ.

Рисунок 2.3.1. Мінімізація функцій

Зм.	ADK.	Nº	Підп.	Дата

Рисунок 2.3.2. Мінімізація тригерів

Зм.	Арк.	Nº	Підп.	Дата

Рисунок 2.3.2. Мінімізація тригерів

$$y_{1} = \overline{Q_{2} \vee \overline{Q_{1}} \vee \overline{Q_{4}}Q_{3}};$$

$$y_{2} = \overline{Q_{3} \vee \overline{Q_{1}}};$$

$$y_{3} = \overline{\overline{Q_{3}} \vee \overline{Q_{2}}Q_{2}};$$

$$y_{4} = \overline{Q_{3} \vee \overline{Q_{2}} \vee Q_{1}};$$

$$y_{5} = \overline{Q_{3} \vee \overline{Q_{2}} \vee Q_{1}};$$

$$J_{4} = \overline{\overline{Q_{3}} \vee Q_{2} \vee \overline{Q_{1}}};$$

$$K_{4} = \overline{Q_{1} \vee Q_{3}}\overline{\overline{Q_{2}}};$$

$$K_{3} = \overline{Q_{1} \vee Q_{2} \vee Q_{4}}\overline{Q_{2}}\overline{x_{1}};$$

$$J_{2} = \overline{Q_{1} \vee Q_{4}}\overline{Q_{2}}\overline{x_{1}} \vee \overline{Q_{3}}\overline{Q_{1}}\overline{x_{2}};$$

$$K_{2} = \overline{Q_{4} \vee \overline{Q_{3}}};$$

$$J_{1} = \overline{Q_{4} \vee Q_{3} \vee \overline{Q_{2}}}\overline{Q_{1}}\overline{x_{2}};$$

$$K_{1} = \overline{Q_{4}};$$

Після мінімізації ми отримали достатньо даних для побудови функцій сигналів виходів і комбінаційних схем функцій збудження тригерів. Тобто ми маємо достатньо даних для побудови всієї комбінаційної схеми. Будуємо автомат на основі ЈК-тригерів. Автомат є синхронним, оскільки його роботу синхронізує генератор. ЈК-тригер керований перепадом сигналу.

Зм.	Арк.	Nº	Підп.	Дата

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	IA.	ЛЦ.	463626.	004	ПЗ
---	-----	-----	---------	-----	----

- 3. Синтез комбінаційних схем
 - 3.1. Представлення функції f4 в канонічних формах алгебр Буля, Шеффера Пірса та Жегалкіна

Дана система перемикальних функцій (табл. 3.1.1)

Таблиця З.1.1. Система перемикальних функцій

		•		
X_4 X_3 X_2 X_1	f_1	f_2	f_3	f_{λ}
0 0 0 0	1	1	1	0
0 0 0 1	1	1	0	1
0 0 1 0	1	1	1	1
0 0 1 1	0	0	0	1
0 1 0 0	-	0	1	0
0 1 0 1	0	0	0	0
0 1 1 0	1	-	-	0
0 1 1 1	ı	ı	1	1
1 0 0 0	1	1	1	1
1 0 0 1	0	0	1	1
1 0 1 0	0	0	0	1
1 0 1 1	0	0	0	0
1 1 0 0	1	1	1	1
1 1 0 1	0	0	0	0
1 1 1 0	1	1	0	0
1 1 1 1	1	1	1	1

Представимо функцію f_4 в канонічних формах алгебр Буля, Шеффера, Пірса та Жегалкіна.

Алгебра Буля {І, АБО, НЕ}:

$$f4_{ABH\phi} = \overline{X_{4}} \overline{X_{3}} \overline{X_{2}} X_{1} \vee \overline{X_{4}} \overline{X_{3}} \overline{X_{2}} \overline{X_{1}} \vee \overline{X_{4}} \overline{X_{3}} \overline{X_{2}} X_{1} \vee \overline{X_{4}} \overline{X_{3}} \overline{X_{2}} X_{1} \vee \overline{X_{4}} \overline{X_{3}} \overline{X_{2}} \overline{X_{1}} \vee \overline{X_{1}} \vee \overline{X_{1}} \overline{X_{2}} \overline{X_{1}} \vee \overline{X_{1}} \overline{X_{2}} \overline{X_{1}} \vee \overline{X_{1}} \overline{X_{1}} \vee \overline{X_{1}} \overline{X_{1}} \overline{X_{1}} \overline{X_{1}} \vee \overline{X_{1}} \overline{X_{1}$$

$$f4_{MJH\Phi}=x_4\overline{x_2x_1}\vee x_3x_2x_1\vee \overline{x_3}x_2\overline{x_1}\vee \overline{x_3}x_2\overline{x_1}\vee \overline{x_3}x_2\overline{x_1}\vee \overline{x_4}x_2\overline{x_1};$$

Алгебра Шеффера {I-HE}:

$$f4_{IIIIHO} = \frac{\overline{x_{4}x_{3}x_{2}x_{1}} \vee \overline{x_{4}x_{3}x_{2}x_{1}} \vee \overline{x_{4}x_{3}x_{2}x_{1}}) \vee \overline{(\overline{x_{4}x_{3}x_{2}x_{1}}) \vee (\overline{x_{4}x_{3}x_{2}x_{1}}) \vee \overline{(\overline{x_{4}x_{3}x_{2}x_{1}}) \vee (\overline{x_{4}x_{3}x_{2}x_{1}}) \vee \overline{(\overline{x_{4}x_{3}x_{2}x_{1}}) \vee \overline{(\overline{x_{4}x_{3}x_{2}x_{1})} \vee \overline$$

Зм.	ADK.	Nº	Підп.	Дата

Алгебра Пірса {ABO-HE}. Отримуємо з ДКНФ із застосуванням аксіоми $\overline{\theta} = x \uparrow x$ і правила де Моргана.

$$f4_{2lKH\Phi} = \overline{(\overline{x_4} \vee \overline{x_3} \vee \overline{x_2} \vee \overline{x_1}) \cdot (\overline{x_4} \vee x_3 \vee \overline{x_2} \vee \overline{x_1}) \cdot (\overline{x_4} \vee x_3 \vee \overline{x_2} \vee x_1) \cdot (\overline{x_4} \vee x_3 \vee \overline{x_2} \vee \overline{x_1})} = \overline{(\overline{x_4} \vee \overline{x_3} \vee \overline{x_2} \vee \overline{x_1}) \vee (\overline{x_4} \vee \overline{x_3} \vee \overline{x_2} \vee \overline{x_1}) = \overline{(\overline{x_4} \wedge \overline{x_3} \wedge \overline{x_2} \wedge \overline{x_1}) \wedge (\overline{x_4} \wedge \overline{x_3} \wedge \overline{x$$

Алгебра Жегалкіна {виключне A50, I, const 1}. Алгоритм отримання:

- Записуємо ДДНФ

$$f4_{IIIH\phi} = \overline{X_{4}} \overline{X_{3}} \overline{X_{2}} X_{1} \vee \overline{X_{4}} \overline{X_{3}} X_{2} \overline{X_{1}} \vee \overline{X_{4}} \overline{X_{3}} X_{2} X_{1} \vee \overline{X_{4}} \overline{X_{3}} X_{2} X_{1} \vee \overline{X_{4}} \overline{X_{3}} \overline{X_{2}} \overline{X_{1}} \vee \overline{X_{1}} \vee \overline{X_{1}} \overline{X_{2}} \overline{X_{1}} \vee \overline{X_{1}} \vee \overline{X_{1}} \overline{X_{1}} \times \overline{X_{1}} \overline{X_{1}} \vee \overline{X_{1}} \overline{X_{1}} \times \overline{X_{1}} \vee \overline{X_{1}} \overline{X_{1}} \times \overline{X_{1}} \overline{X_{1}} \vee \overline{X_{1}} \overline{X_{1}} \times \overline{X_{1}} \overline{X_{1}} \vee \overline{X_{1}} \overline{X_{1}} \times \overline{X_{1}} \times \overline{X_{1}} \overline{X_{1}} \times \overline{X_{1}} \overline{X_{1}} \times \overline{X_{1}} \times \overline{X_{1}} \times \overline{X_{1}} \overline{X_{1}} \times \overline{X_{1}} \times \overline{X_{1}} \times \overline{$$

- Виконуємо заміну знака операції АБО між термами на ВИКЛЮЧНЕ АБО

$$f4_{\text{ДДН}\phi} = \overline{X_4} \overline{X_3} \overline{X_2} \overline{X_1} \oplus \overline{X_4} \overline{X_1} \oplus \overline{X_4} \overline{X_2} \overline{X_1} \oplus \overline{X_4} \overline{X_2} \overline{X_1} \oplus \overline{X_4} \overline{X_1} \oplus \overline{X_4} \overline{X_1} \overline{X_1} \oplus \overline{X_1} \overline{X_1} \oplus \overline{X_2} \overline{X_1} \oplus \overline{X_1} \overline{X_1} \oplus \overline{X_2} \overline{X_1} \oplus \overline{X_1} \overline{X$$

$$f4_{ABH\phi} = (x_4 \oplus 1)(x_3 \oplus 1)(x_2 \oplus 1)x_1 \oplus (x_4 \oplus 1)(x_3 \oplus 1)x_2(x_1 \oplus 1) \oplus (x_4 \oplus 1)(x_3 \oplus 1)x_2x_1 \oplus (x_4 \oplus 1)x_3x_2x_1 \oplus x_4(x_3 \oplus 1)(x_2 \oplus 1)(x_1 \oplus 1) \oplus x_4(x_3 \oplus 1)(x_2 \oplus 1)x_1 \oplus x_4(x_3 \oplus 1)x_2(x_1 \oplus 1) \oplus x_4x_3(x_2 \oplus 1)(x_1 \oplus 1) \oplus x_4x_3x_2x_1;$$

Зм.	ADK.	Nº	Підп.	Дата

- Розкриваємо дужки і спрощуємо вираз шляхом виключення парних термів згідно з аксіомами $x \oplus x = 0$ і $x \oplus 0 = x$

$$f4_{\varOmega\varOmega\varTheta\diamondsuit} = \underbrace{x_4x_3x_2x_1}_{A_4X_3X_7} \oplus \underbrace{x_4x_2x_7}_{A_4X_2X_7} \oplus \underbrace{x_3x_2x_1}_{A_3X_2} \oplus \underbrace{x_3x_2x_1}_{A_3X_2X_7} \oplus \underbrace{x_2x_7}_{A_2X_7} \oplus \underbrace{x_2x_2}_{A_3X_2X_7} \oplus \underbrace{x_2x_2}_{A_3X_2X_7} \oplus \underbrace{x_2x_2}_{A_2X_7} \oplus \underbrace{x_2x_2}_{A_2X_2} \oplus \underbrace{x_2x_$$

- 3.2. Визначення належності функції f4 до п'яти передповних класів
- f(0000)=0 функція зберігає нуль.
- f(1111)=1 функція зберігає одиницю.
- f(0011)=f(1100)=1 функція не самодвоїста..
- f(1101)<f(0001) функція не монотонна.
- функція не лінійна, оскільки поліном Жегалкіна не лінійний.
 - 3.3. Мінімізація функції f_4

Мінімізація функції методом Квайна-Мак-Класкі.

Випишемо ДДНФ з таблиці 4.2 розподіливши терми за кількістю одиниць.
Проведемо попарне склеювання між сусідніми групами. Після проведення попарного склеювання виконаємо поглинання термів (рис. 3.3.1)

$$A_0$$
 A_1
 0001 $00x1$
 0010 $x001$
 1000 $001x$
 0011 $x010$
 1001 $100x$
 1010 $10x0$
 1100 $1x00$
 0111 $0x11$
 1111 $x111$

Рис. 3.3.1 Склеювання та поглинання термів

Зм.	Арк.	Nº	Підп.	Дата	

ІАЛЦ.463626.004 ПЗ

Для отриманих простих імплікант побудуємо таблицю покриття (табл. 3.3.1)

Ταδлиця 3.3.1 Ταδлиця покриття

	0001	0010	1000	0011	1001	1010	1100	0111	1111
00x1	+			+					
x001	+				+				
001x		+		+					
x010		+				+			
100x			+		+				
10x0			+			+			
1x00			\oplus				\oplus		
0x11				+				+	
X111								\oplus	\oplus

До ядра функції входять ті терми, без яких не можливо, покрити хоча б одну імпліканту.

Ядро =
$$X_4 \overline{X_2} \overline{X_1} \vee X_3 X_2 X_1$$

МДНФ включає в себе всі терми ядра і ті терми, які забезпечують покриття всієї функції з мінімальною ціною.

$$f4_{MJH\phi} = x_4 x_2 x_1 \lor x_3 x_2 x_1 \lor x_3 x_2 x_1 \lor x_3 x_2 x_1 \lor x_3 x_2 x_1 \lor x_4 x_2 x_1;$$

Мінімізація функції методом невизначених коефіцієнтів.

Метод ґрунтується на пошуці ненульових коефіцієнтів при кожній імпліканті. Складається з декількох етапів:

- 1. На основі рівняння для знаходження коефіцієнтів складається таблиця(табл. 3.3.2)
- 2. Виконується викреслення нульових рядків.
- 3. Викреслюються нульові коефіцієнти на рядках, які залишились.
- 4. Поглинання імплікантами, імплікант, які знаходяться праворуч від них.

Зм.	ADK.	Nº	Підп.	Дата

Таблиця 3.3.2 Метод невизначених коефіцієнтів

f	X_4	X ₃	X ₂	X ₁	X_4X_3	X_4X_2	X_4X_1	X_3X_2	X_3X_1	X_2X_1	$X_4X_3X_2$	$X_4X_3X_1$	$X_4X_2X_1$	$X_3X_2X_1$	$X_4X_3X_2X_1$
0	θ	0	θ	θ	00	00	00	00	00	00	000	000	000	000	
1	$-\theta$	θ	θ	1	00	00	01	-00	01	01	000	<i>001</i>	001 -	001	0011- -
1	-0	0	1	0	00	01	00	01	00	10	001	000	010	010	<i>-0000</i>
1	-0	О	1	1	-00	01	01	01	01	-11	-001	<i>001</i>	011	-011	0011 -
0	$-\theta$	1	θ	θ	01	-00	00	10	10	-00	010	010	000	100	<i>0100</i>
0	_0_	1	0	1	-01	00	01	10	11	-01	010	011	001	101	<i>0111</i>
0	-0	1	1	0	01	01	00	11	10	10	011	010	010	110	<i>0100</i>
1	$-\theta$	1	1	1	01	01	01	11	11	11	011	011	011	111	0111-
1	_1	θ	θ	θ	10	10	10	00	00	00	100	100	100	-000	1000
1	-1	θ	θ	1	10	10	11	00	01	01	100	101	101-	001	-1011 -
1	1	θ	1	θ	10	11	10	01	00	10	101	100	- 110 -	010	-1000 -
0	_1_	0	1	1	10	11	11	01	01	11	101	101	111	011	1011
1	1	1	θ	θ	11	10	10	10	10	-00	110	110	100	-100	1100
0	_1	1	θ	1	11	10	11	10	11	01	110	111	101	101	1111
0	_1_	1	1	0	11	11	10	11	10	10	111	110	110	110	1100
1	1	1	1	1	11	11	11	11	11	11	111	111	111	111	

МДНФ включає в себе всі терми ядра і ті терми, які забезпечують покриття всієї функції з мінімальною ціною.

$$f4_{MJH\phi} = x_4 \overline{x_2} \overline{x_1} \vee x_3 x_2 x_1 \vee \overline{x_3} \overline{x_2} \overline{x_1} \vee \overline{x_3} \overline{x_2} x_1 \vee \overline{x_4} x_2 x_1;$$

Мінімізація функції f4 методом діаграм Вейча

Метод діаграм Вейча— це один з графічних методів мінімізіції. Він призначений для ручної мінімізації. Його наочність зберігається лише при невеликій кількості аргументів.

Кожна клітинка відповідає конституенті, а кожний прямокутник, який містить 2^N елементів, відповідає імпліканті. Прямокутник максимального розміру відповідає простій імпліканті

Рисунок 3.3.2 Мінімізація методом діаграм Вейча

	·			
Зм.	Арк.	Nº	Підп.	Дата

3.4. Спільна мінімізація $f_1f_2f_3$

Для того, щоб отримати схему з мінімальними параметрами, потрібно провести спільну мінімізацію системи функцій і їй заперечень. Мінімізацію будемо виконувати методом Квайна-Мак-Класкі за ДДНФ. Випишемо ДДНФ функцій у вигляді списку термів. Проведемо склеювання з поглинанням (рис. 3.4.1).

$\mathcal{K}_{\mathcal{O}}$	K_1	K_2
0000 {1,2,3}	<u>000x</u> {1,2}	<u>0xx0</u> {1,3}
0001 {1,2}	<u>00x0</u> {1,2,3}	<u>xx00</u> {1,3}
0010 {1,2,3}	0x00 {1,3}	<u>x1x0</u> {1]
0100 {1,3}	<u>x000</u> {1,2,3}	<u>x11x</u> {1,2}
-1000 {1,2,3}	<u>0x10</u> {1,2,3}	
0110 {1,2,3}	01x0 {1,3}	
1001 {3}	x100 {1,3}	
1100 {1,2,3}	<u>100x</u> {3}	
0111 {1,2,3}	<u>1x00</u> {1,2,3}	
-1110 {1,2}	<u>011x</u> {1,2,3}	
1111 {1,2,3}	x 110 {1,2}	
	<u>11x0</u> {1,2}	
	<u>x111</u> {1,2,3}	
	-111x {1,2}	

Рис. 3.4.1. Склеювання та поглинання термів системи Побудуємо таблицю покриття(табл. 3.4.1)

Таблиця 3.4.1. Таблиця покриття системи

				j	f_1						1	2						i	f_3			
	0000	0001	0100	0110	1000	1100	1110	1111	0000	0001	0000	1000	1110	1111	0000	0010	0010	1110	1000	1001	1100	1111
000x {1,2}	\oplus	\oplus							\oplus	\oplus												
00x0 {1,2,3}	+		+						+		+				+	+						
x000 {1,2,3}	+				+				+			+			+				+			
0x10 {1,2,3}			+	+							+					+						
100x {3}																			+	+		
1x00 {1,2,3}						+	+					+							+		+	
011x {1,2,3}					+													+				
11x0 {1,2}							+	+					+									
x111 {1,2,3}									\oplus					\oplus				\oplus				\oplus
0xx0 {1,3}	+		+	+											+	+	+					
xx00 {1,3}	+				+	+									+		+		+		+	
x1x0 {1]				+		+	+															
x11x {1,2}				+			+	+					+	+								

Зм.	Арк.	Nº	Підп.	Дата

Мінімізуємо систему, і визначаємо кожну з функцій в формі І/АБО:

$$y_{1} = \overline{X_{4}} \overline{X_{3}} \overline{X_{2}} \vee X_{3} X_{2} X_{1} \vee \overline{X_{2}} \overline{X_{1}} \vee \overline{X_{4}} X_{2} \overline{X_{1}} \vee X_{3} X_{2} \vee X_{4} \overline{X_{2}} \overline{X_{1}};$$

$$y_{2} = \overline{X_{4}} \overline{X_{3}} \overline{X_{2}} \vee X_{3} X_{2} X_{1} \vee \overline{X_{4}} \overline{X_{2}} \overline{X_{1}} \vee X_{3} X_{2} \vee X_{4} \overline{X_{2}} \overline{X_{1}};$$

$$y_{3} = X_{4} \overline{X_{3}} \overline{X_{2}} \vee X_{3} X_{2} X_{1} \vee \overline{X_{2}} \overline{X_{1}} \vee \overline{X_{4}} \overline{X_{2}} \overline{X_{1}} \vee X_{4} \overline{X_{2}} \overline{X_{1}};$$

Проведемо мінімізацію системи функцій методом Квайна-Мак-Класкі за ДДНФ. Випишемо ДДНФ функцій у вигляді списку термів. Проведемо попарне склеювання і поглинання.

$$K_0$$
 K_1 K_2
 $0001 \{3\}$ $00x1 \{3\}$ $01xx \{2\}$
 $0100 - \{1,2\}$ $0x01 \{3\}$ $x10x \{2\}$
 $0011 - \{1,2,3\}$ $010x \{1,2\}$
 $0101 \{2,3\}$ $x100 \{2\}$
 $0110 \{2,3\}$ $x100 \{2\}$
 $1001 \{1,2\}$ $x011 \{1,2,3\}$
 $1010 \{1,2,3\}$ $0x11 \{1,2\}$
 $1100 \{2\}$ $01x1 \{1,2\}$
 $1101 \{1,2,3\}$ $x101 \{1,2,3\}$
 $0111 \{1,2\}$ $x101 \{1,2,3\}$
 $0111 \{1,2\}$ $x101 \{1,2,3\}$
 $0111 \{1,2\}$ $1101 \{1,2,3\}$
 $1101 \{1,2,3\}$ $1101 \{1,2\}$
 $1101 \{1,2\}$
 $1101 \{1,2\}$
 $1101 \{1,2\}$
 $1101 \{1,2\}$

Рисунок 3.4.2. Склеювання і поглинання термів системи

Зм.	Арк.	Nº	Підп.	Дата

Ποδηдμεмο παδλυμю ποκρυππя (παδλ. 3.4.2).

Таблиця 3.4.2. Таблиця покриття систем

			1	r 1						f_2							f_3			
	0011	0101	1001	1010	1011	1101	0011	0100	0101	1001	1010	1011	1101	0001	0011	0101	1010	1011	1101	1110
0110 {2,3}																				
00x1 {3}														+	+					
0x01 {3}														+		+				
010x {1,2}		+						+	+											
X011 {1,2,3}	+				+		+					+			+			+		
0x11 {1,2}	+						+													
01x1 {1,2}		+							+											
x101 {1,2,3}		\oplus				\oplus			\oplus				\oplus			\oplus			\oplus	
x110 {3}																				+
10x1 {1,2}			+		+					+		+								
1x01 {1,2}			+			+				+			+							
101x {1,2,3}				\oplus	\oplus						\oplus	\oplus					\oplus	\oplus		
1x10 {3}																	+			+
01xx {2}								+	+											
x10x {2}								+	+				+							

Після мінімізації визначимо кожну функцію в формі І/АБО-НЕ

$$y_{1} = \overline{X_{3}} \overline{X_{2}} X_{1} \vee X_{4} \overline{X_{3}} X_{2} \vee \overline{X_{3}} X_{2} X_{1} \vee X_{4} \overline{X_{2}} X_{1};$$

$$y_{2} = \overline{X_{3}} \overline{X_{2}} X_{1} \vee X_{4} \overline{X_{3}} X_{2} \vee \overline{X_{3}} X_{2} X_{1} \vee X_{4} \overline{X_{2}} X_{1} \vee X_{3} \overline{X_{2}};$$

$$y_{3} = \overline{X_{3}} \overline{X_{2}} X_{1} \vee X_{4} \overline{X_{3}} X_{2} \vee \overline{X_{3}} X_{2} X_{1} \vee X_{4} \overline{X_{2}} \overline{X_{1}} \vee \overline{X_{4}} \overline{X_{2}} X_{1};$$

3.5. Одержання операторних форм для реалізації на ПЛМ

Для програмування ПЛМ використовують нормальні форми I/AБО, I/AБО-HE.

Виконаємо програмування ПЛМ для системи перемикальних функцій, що представлена в базисі I/AБO.

$$y_{1} = \overline{X_{4}} \overline{X_{3}} \overline{X_{2}} \vee X_{3} X_{2} X_{1} \vee \overline{X_{2}} \overline{X_{1}} \vee \overline{X_{4}} X_{2} \overline{X_{1}} \vee X_{3} X_{2} \vee X_{4} \overline{X_{2}} \overline{X_{1}};$$

$$y_{2} = \overline{X_{4}} \overline{X_{3}} \overline{X_{2}} \vee X_{3} X_{2} X_{1} \vee \overline{X_{4}} \overline{X_{2}} \overline{X_{1}} \vee X_{3} X_{2} \vee X_{4} \overline{X_{2}} \overline{X_{1}};$$

$$y_{3} = \overline{X_{4}} \overline{X_{3}} \overline{X_{2}} \vee X_{3} X_{2} X_{1} \vee \overline{X_{2}} \overline{X_{1}} \vee \overline{X_{4}} \overline{X_{2}} \overline{X_{1}} \vee X_{4} \overline{X_{2}} \overline{X_{1}};$$

Зм.	Αρκ.	Nº	Підп.	Дата

Проведемо розмітку термів системи:

$$P_{1} = \overline{X_{4}} \overline{X_{3}} \overline{X_{2}};$$

$$P_{2} = X_{3} X_{2} X_{1};$$

$$P_{3} = \overline{X_{2}} \overline{X_{1}};$$

$$P_{4} = \overline{X_{4}} \overline{X_{2}} \overline{X_{1}};$$

$$P_{5} = X_{3} X_{2};$$

$$P_{6} = X_{4} \overline{X_{2}} \overline{X_{1}};$$

$$P_{7} = X_{4} \overline{X_{3}} \overline{X_{2}};$$

Після заміни функції виходів описуються системою:

$$y_1 = P_1 \lor P_2 \lor P_3 \lor P_4 \lor P_5 \lor P_6;$$

$$y_2 = P_1 \lor P_2 \lor P_4 \lor P_5 \lor P_6;$$

$$y_3 = P_7 \lor P_2 \lor P_3 \lor P_4 \lor P_6;$$

Мінімальні параметри ПЛМ:

п = 4 - число інформаційних входів, що рівне кількості аргументів системи перемикальних функцій.

р = 7 - число проміжних внутрішніх шин, яке рівне кількості різних термів системи.

т = 3 - число інформаційних виходів, що рівне кількості функцій виходів. Виконаємо побудову спрощеної мнемонічної схеми ПЛМ(4,7,3) - рис. 3.5.1.

Рисунок 3.5.1. Мнемонічна схема (І/АБО)

Зм.	ADK.	Nº	Підп.	Дата

Виконаємо програмування ПЛМ для системи перемикальних функцій, що представлена в базисі I/AБO-HE.

$$y_{1} = \overline{X_{3}} \overline{X_{2}} X_{1} \vee X_{4} \overline{X_{3}} X_{2} \vee \overline{X_{3}} X_{2} X_{1} \vee X_{4} \overline{X_{2}} X_{1};$$

$$y_{2} = \overline{X_{3}} \overline{X_{2}} X_{1} \vee X_{4} \overline{X_{3}} X_{2} \vee \overline{X_{3}} X_{2} X_{1} \vee X_{4} \overline{X_{2}} X_{1} \vee X_{3} \overline{X_{2}};$$

$$y_{3} = \overline{X_{3}} \overline{X_{2}} X_{1} \vee X_{4} \overline{X_{3}} X_{2} \vee \overline{X_{3}} X_{2} X_{1} \vee X_{4} \overline{X_{2}} \overline{X_{1}} \vee \overline{X_{4}} \overline{X_{2}} X_{1};$$

Проведемо розмітку термів системи:

$$P_{1} = X_{3} \overline{X_{2}} X_{1};$$

$$P_{2} = X_{4} \overline{X_{3}} X_{2};$$

$$P_{3} = \overline{X_{3}} X_{2} X_{1};$$

$$P_{4} = X_{4} \overline{X_{2}} X_{1};$$

$$P_{5} = X_{3} \overline{X_{2}};$$

$$P_{6} = X_{4} \overline{X_{2}} \overline{X_{1}};$$

$$P_{7} = \overline{X_{4}} \overline{X_{2}} X_{1};$$

Після заміни функції виходів описуються системою:

$$y_1 = \overline{P_1 \vee P_2 \vee P_3 \vee P_4};$$

$$y_2 = \overline{P_1 \vee P_2 \vee P_3 \vee P_4 \vee P_5};$$

$$y_3 = \overline{P_1 \vee P_2 \vee P_3 \vee P_6 \vee P_7};$$

Мінімальні параметри ПЛМ:

п = 4 – число інформаційних входів, що рівне кількості аргументів системи перемикальних функцій.

р = 7 - число проміжних внутрішніх шин, яке рівне кількості різних термів системи.

т = 3 - число інформаційних виходів, що рівне кількості функцій виходів. Виконаємо побудову спрощеної мнемонічної схеми ПЛМ(4,7,3) - рис. 3.5.2.

Зм.	ADK.	Nº	Підп.	Дата

Рисунок 3.5.2. Мнемонічна схема (І/АБО-НЕ)

4. Висновок

Завдання курсової роботи полягало у виконанні абстрактного і структурного синтезу автомата. Функціональна схема автомата приведена у документі «Керуючий автомат. Схема електрична функціональна» і виконана згідно з вимогами єдиної системи конструкторської документації. Автомат працює по заданому алгоритму і може бути використаний у сфері обчислювальної техніки.

Для виконання завдання потрібно було за двійковим номером залікової книжки отримати унікальний варіант роботи. За отриманим варіантом роботи потрібно було побудувати графічну схему алгоритму, граф з урахуванням сигналів подвійної тривалості і виконати сусіднє кодування, побудувати структурну схему автомата, провести мінімізацію системи із функцій виходів і функцій збудження тригерів. На основі цього побудувати і відлагодити автомат.

При виконанні другої частини курсової роботи, функція f_4 була мінімізована методами Квайна-Макласкі, невизначених коефіцієнтів і діаграмами Вейча . Також функція f_4 була представлена в канонічних формах алгебр Буля, Пірса, Жегалкіна і Шефера. Крім цього була проведена також сумісна мінімізація системи перемикальних функцій з наступною реалізацією на програмованих логічних матрицях.

Під час виконання роботи були закріплені знання теоритичного курсу, отримані навички їх практичного застосування, також були покращені навички роботи з конструкторською документацією.

Зм.	Арк.	Nº	Підп.	Дата

- 5. Список літератури
- 1. Жабін В.І., Жуков І.А. Прикладна теорія цифрових автоматів. Навчальний посібник Київ: книжкове видавництво НАУ, 2009р.
 - 2. Конспект лекцій з курсу «Комп'ютерна логіка», 2012р.

Зм.	ADK.	Nº	Підп.	Дата