Отчёт по дифференциальным уравнениям Задача №1

18 июня 2020 г.

1 Постановка задачи и теоретическое обоснование

Для задачи

$$y'(x) + Ay(x) = 0, \ y(0) = 1, \ x \in [0, 10]$$
 (1)

с точным решением $y(x) = e^{-Ax}$ рассматриваются следующие разностные схемы:

$$1)\frac{y_{k+1} - y_k}{h} + Ay_k = 0, \ y_0 = 1.$$

$$2)\frac{y_{k+1} - y_k}{h} + Ay_{k+1} = 0, \ y_0 = 1.$$

$$3)\frac{y_{k+1} - y_k}{h} + A\frac{y_{k+1} + y_k}{2} = 0, \ y_0 = 1.$$

4)
$$\frac{y_{k+1} - y_{k-1}}{2h} + Ay_k = 0$$
, $y_0 = 1$, $y_1 = 1 - Ah$.

5)
$$\frac{1.5y_{k+1} - 2y_k + 0.5y_{k-1}}{h} + Ay_{k-1} = 0, \ y_0 = 1, \ y_1 = 1 - Ah.$$

Для каждой схемы найти порядок аппроксимации, проверить условие устойчивости, обосновать сходимость; численно оценить порядок сходимости при $A=1,2,5,10,\ h=10^{-m},\ m=1,\ldots,9.$

Определение 1. Говорят, что разностная схема аппроксимирует на решении у c порядком аппроксимации $p=\min(p_1,p_2)$ соответствующую дифференциальную задачу, если существуют такие постоянные $h_0,\ c_1,\ p_1,\ c_2$ и $p_2,$ что для всех $h\leq h_0$ выполняются неравенства

$$||L_h(u)_{U_h} - f_h||_{F_h} \le c_1 h^{p_1}, \quad ||l_h(u)_{U_h} - \varphi_h||_{\Phi_h} \le c_2 h^{p_2},$$

причём $c_1,\ p_1,\ c_2$ и p_2 не зависят от h и выполнены условия нормировки

$$\lim_{h \to 0} \|f_h - (f)_{F_h}\|_{F_h} = 0, \ \lim_{h \to 0} \|\varphi_h - (\varphi_h)_{\Phi_h}\|_{\Phi_h} = 0.$$

Определение 2. Разностная схема ycmoйчива, если существует такое $h_0>0$, что для любого $\varepsilon>0$ найдётся такое $\delta=\delta(\varepsilon)$, что для произвольных функций $u_h^{(i)}, i=1,2$, являющихся решениями разностной задачи, задаваемой этой схемой, из неравенств

 $h \le h_0, \|f_h^{(1)} - f_h^{(2)}\|_{F_h} \le \delta, \|\varphi_h^{(1)} - \varphi_h^{(2)}\|_{\Phi_h} \le \delta$

следует оценка $\|u_h^{(1)} - u_h^{(2)}\|_{U_h} \le \varepsilon$.

Определение 3. Разностная схема называется $\alpha-ycmoйчивой$, если все корни характеристического уравнения, соответствующего уравнению $(L_h y_h)_k = 0$, лежат внутри комплексной единичной окружности, причём корни с $|\mu_i| = 1$ должны иметь кратность 1.

Задача 1. Решение разностного аналога дифференциальной задачи (1)

$$\frac{y_{k+1} - y_k}{h} = -Ay_k, \ y_0 = 1.$$

сходится к решению этой дифф. задачи с порядком 1.

Доказательство. Необходимо проверить аппроксимацию на решении и устойчивость. Проверим по определению:

$$\frac{y(x_{k+1}) - y(x_k)}{h} + Ay(x_k) = \frac{y(x_k + h) - y(x_k)}{h} + Ay(x_k) =$$

$$= \frac{y(x_k) + y'(x_k)h + O(h^2) - y(x_k)}{h} + Ay(x_k) = y'(x_k) + O(h) + Ay(x_k) =$$

$$= y'(x_k) + Ay(x_k) + O(h) = O(h) \quad (y'(x_k) + Ay(x_k) = 0)$$

Значит, эта схема аппроксимирует задачу (1) на решении с порядком 1. Далее нужно проверить устойчивость. Известно, что в дифференциальных задачах первого порядка вместо устойчивости можно проверять α —устойчивость. Соответствующее уравнение:

$$\frac{y(x_{k+1}) - y(x_k)}{h} = 0.$$

Подставим $y_k = \mu^k$, получим уравнение $\mu - 1 = 0$ с единственным корнем $\mu = 1$ кратности 1. Значит, схема α -устойчива, и по теореме Филиппова решение разностной задачи сходится к решению дифференциальной с порядком 1.

Задача 2. Решение разностного аналога дифференциальной задачи (1)

$$\frac{y_{k+1} - y_k}{h} = -Ay_{k+1}, \ y_0 = 1.$$

сходится к решению этой дифф. задачи с порядком 1.

Доказательство. Необходимо проверить аппроксимацию на решении и устойчивость. Проверим по определению:

$$\frac{y(x_{k+1}) - y(x_k)}{h} + Ay(x_{k+1}) = \frac{y(x_k + h) - y(x_k)}{h} + Ay(x_k + h) =$$

$$= \frac{y(x_k) + y'(x_k)h + O(h^2) - y(x_k)}{h} + Ay(x_k) + O(h) = y'(x_k) + Ay(x_k) + O(h) =$$

$$= O(h) \quad (y'(x_k) + Ay(x_k) = 0)$$

Значит, эта схема аппроксимирует задачу (1) на решении с порядком 1. Далее нужно проверить устойчивость. Известно, что в дифференциальных задачах первого порядка вместо устойчивости можно проверять α —устойчивость. Соответствующее уравнение:

$$\frac{y(x_{k+1}) - y(x_k)}{h} = 0.$$

Подставим $y_k = \mu^k$, получим уравнение $\mu - 1 = 0$ с единственным корнем $\mu = 1$ кратности 1. Значит, схема α -устойчива, и по теореме Филиппова решение разностной задачи сходится к решению дифференциальной с порядком 1.

Задача 3. Решение разностного аналога дифференциальной задачи (1)

$$\frac{y_{k+1} - y_k}{h} = -A \frac{y_{k+1} + y_k}{2}, \ y_0 = 1.$$

сходится к решению этой дифф. задачи с порядком 2.

Доказательство. Необходимо проверить аппроксимацию на решении и устойчивость. В отличие от двух предыдущих задач, будем раскладывать решение в ряд Тейлора в точке $x_k + \frac{h}{2}$:

$$y(x_k + \frac{h}{2} \pm \frac{h}{2}) = y(x_k + \frac{h}{2}) \pm y'(x_k + \frac{h}{2}) \frac{h}{2} + y''(x_k + \frac{h}{2}) \frac{h^2}{8} + O(h^3)$$

$$y(x_{k+1}) - y(x_k) = y(x_k + \frac{h}{2} + \frac{h}{2}) - y(x_k + \frac{h}{2} - \frac{h}{2}) = y'(x_k + \frac{h}{2})h + O(h^3)$$

$$y(x_{k+1}) + y(x_k) = 2y(x_k + \frac{h}{2}) + O(h^2)$$

И тогда:

$$\frac{y_{k+1} - y_k}{h} + A \frac{y_{k+1} + y_k}{2} = y'(x_k + \frac{h}{2}) + O(h^2) + Ay(x_k + \frac{h}{2}) + O(h^2) = O(h^2)$$

Значит, эта схема аппроксимирует задачу (1) на решении с порядком 2. Устойчивость проверяется аналогично двум предыдущим задачам. Следовательно, по теореме Филиппова решение разностной задачи сходится к решению дифференциальной с порядком 2.

Задача 4. Решение разностного аналога дифференциальной задачи (1)

$$\frac{y_{k+1} - y_{k-1}}{2h} = -Ay_k, \ y_0 = 1, \ y_1 = 1 - Ah.$$

сходится к решению этой дифф. задачи с порядком 2.

Доказательство. Необходимо проверить аппроксимацию на решении и устойчивость. Будем раскладывать решение в ряд Тейлора в точке x_k :

$$y(x_k \pm h) = y(x_k) \pm y'(x_k)h + y''(x_k)\frac{h^2}{2} + O(h^3)$$

Тогда:

$$\frac{y_{k+1} - y_{k-1}}{h} + Ay_k = \frac{2y'(x_k)h + O(h^3)}{2h} + Ay_k = y'(x_k) + Ay_k + O(h^2) = O(h^2)$$

Значит, эта схема аппроксимирует задачу (1) на решении с порядком 2. Проверим α —устойчивость:

$$\frac{y(x_{k+1}) - y(x_{k-1})}{h} = 0.$$

Отсюда имеем характеристическое уравнение $\mu^2 - 1 = 0$ с корнями $\mu_{1,2} = \pm 1$, оба кратности 1, а значит достаточное условие α -устойчивости выполняется.

Следовательно, по теореме Филиппова решение разностной задачи сходится к решению дифференциальной **с порядком 2**.

Задача 5. Решение разностного аналога дифференциальной задачи (1)

$$\frac{1.5y_{k+1} - 2y_k + 0.5y_{k-1}}{h} = -Ay_{k-1}, \ y_0 = 1, \ y_1 = 1 - Ah.$$

сходится к решению этой дифф. задачи с порядком 1.

$$y(x_k \pm h) = y(x_k) \pm y'(x_k)h + O(h^2)$$

Тогда:

$$\frac{3y(x_k+h) - 4y(x_k) + y(x_k-h)}{2h} + Ay(x_{k-1}) = \frac{2y'(x_k)h + O(h^2)}{2h} + A(y(x_k) + O(h)) = y'(x_k) + Ay(x_k) + O(h) = O(h)$$

Значит, эта схема аппроксимирует задачу (1) на решении с порядком 1. Проверим α —устойчивость:

$$\frac{3y(x_{k+1}) - 4y_k + y(x_{k-1})}{2h} = 0.$$

Отсюда имеем характеристическое уравнение $3\mu^2 - 4\mu + 1 = 0$ с корнями $\mu_1 = 1, \mu_2 = 1/3$, оба кратности 1 и не выходят за пределы единичной комплексной окружности, а значит достаточное условие α -устойчивости выполняется.

Следовательно, по теореме Филиппова решение разностной задачи сходится к решению дифференциальной ${\bf c}$ порядком ${\bf 1}$.

2 Описание программы и численные результаты

Нужно фактически решить 5 задач. Совмещу их все в одной программе. Для каждого пункта нужно написать некоторую разновидность итеративного алгоритма, который будет от y_k переходить к y_{k+1} . В функции **main** с клавиатуры задаются множитель А из условия задачи и выбирается номер подпункта, который в данный момент программа будет решать. Далее запускается цикл по N от 10 до 10^7 с умножением N на 10 при переходе между итерациями. На каждой итерации запускается функция

где вместо знака * стоит номер решаемого в данный момент пункта задачи. Функции **step** * работают по формулам, приведённым ниже:

$$1)y_{k+1} = y_k + h \cdot f(y_k, A)$$

$$2)y_{k+1} = \frac{1}{1 + hA}y_k$$

$$3)y_{k+1} = \frac{2 - hA}{2 + hA}y_k$$

$$4)y_{k+1} = y_{k-1} + 2h \cdot f(y_k, A)$$

$$5)y_{k+1} = \frac{4}{3}y_k - \frac{1}{3}y_{k-1} + \frac{1}{3} \cdot 2h \cdot f(y_{k-1}, A);$$

Далее функция

void error(double* y, double* x, double h, double A, int N, int mode);

высчитывает С-норму разности вектора, получившегося в результате работы функции \mathbf{step}_{-}^* , и вектора-следа на узлы реальной функции решения в этой задаче - e^{-Ax} . А затем выводит её на экран, деля либо на h, либо на h^2 , в зависимости от порядка сходимости в данном подпункте задачи. Получаем почти константу, которая иногда начинает колебаться, приближаясь к последним значениям N.

Приведу графики поведения ошибки при увеличении N.

2.1 Пункт 1

2.2 Пункт 2

2.3 Пункт 3

2.4 Пункт 4

Остальные 3 слишком малы, чтобы попасть на график.

2.5 Пункт 5

