МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

образования "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

КАФЕДРА № 6

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ ПРЕПОДАВАТЕЛЬ

доц., канд. техн. наук

должность, уч. степень, звание

нодпись, дата

А.Ю. Туманов

инициалы, фамилия

ОТЧЁТ О ЛАБОРАТОРНОЙ РАБОТЕ № 2

«ИССЛЕДОВАНИЕ ЗАПЫЛЕННОСТИ ВОЗДУХА В ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЯХ»

по курсу: «БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ»

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ ГР. №

1842

27.10

H. BUWHEBCKUU

Санкт-Петербург, 2021

ПРОТОКОЛ ЛАБОРАТОРНОЙ РАБОТЫ №7

«ИССЛЕДОВАНИЕ ЗАПЫЛЕННОСТИ ВОЗДУХА В ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЯХ»

Группа: 1842 Студенты: Аничкий, Зюмков, Капранова, Гераенней	Вишиевский,
ДАТА: 15.09.21	
	(подписыиреподавателя)
- заполняется при проведении измерений.	15.05.2021
- заполняется при оформлении отчета.	

Измерение массовой концентрации аэрозоля (таблица №1)

Тип пылемера	№ измерения	Показания пылемеров, n0, мг/ м3	Среднее значение показаний пср, мг/м3	Интервал между измерениями, мин
	1	0,021		
ИКП-5	2	0,043	0.088	5
	3	0,035		

Измерение счетной концентрации аэрозоля пылемером АЗ-10 (таблица №2)

Нижняя граница диаметров, dнгр, мкм	Количеств о частиц N(d>dнгр), шт.	Интерва л диаметро в, мкм	Средний диаметр <i>i</i> -го интервала, <i>di</i> , мкм	Количество частиц ві-ом интервале, пі, шт.	Доля части ц, ni/N	Накопленна я доля частиц, $F(d)$
0,4	10 352	0,4-0,5	0,45	4499	0,435	0,435
0,5	5852	0,5-1,0	0,75	3986	0,385	0,82
1,0	1865	1,0-2,0	4,5	818	0.079	0.899
2,0	10473	2,0-5,0	3,5	19500	0,074	0.973
5,0	285	5,0-10,0	7,5	259	0,025	0,998
10,0	25	>10	>10	25	0,002	1

N= 10,348

do=%39%- среднегеометрический диаметр частиц;

 $\sigma = 0.3455$ среднеквадратическое отклонение логарифмов диаметров частиц.

при оформлении отчета вы должны

- 1. Рассчитать «средние» диаметры аэрозольных частиц.
- 2. Оценить результаты экспериментального исследования запыленности, сравнить их с санитарными и технологическими нормами, приведенными в методическом пособии.
- 3. Привести выводы по результатам исследования и рекомендации по уменьшению запыленности.

1. Цель работы

Ознакомление с вредным действием пыли на организм человека, влиянием ее на качество и надежность электронных изделий и приборов, требования санитарных и технологических норм на ПДК пыли в воздухе рабочей зоны; изучение методов и приборов для измерения запыленности и дисперсного состава пыли в производственных помещениях.

2. Функциональные схемы приборов, используемые в работе

Рисунок 1 — Функциональная схема анализатора пыли ИКП-5

3. Расчетные формулы

Средние диаметры частиц	Условное обозначение	Функциональная зависимость	Для логарифмически нормального закона
Средний арифметический	$ar{d}_{10}$	$\sum_i \frac{d_i n_i}{N}$	$d_0 \exp\left(\frac{\sigma^2}{2M^2}\right)$
Средний квадратичный	$ar{d}_{20}$	$\left(\sum_{i} \frac{d_i^2 n_i}{N}\right)^{\frac{1}{2}}$	$d_0 \exp\left(\frac{\sigma^2}{M^2}\right)$
Средний кубический	$ar{d}_{30}$	$\left(\sum_{i} \frac{d_{i}^{3} n_{i}}{N}\right)^{\frac{1}{3}}$	$d_0 \exp\left(\frac{3\sigma^2}{2M^2}\right)$

M — коэффициент перехода от натуральных логарифмов к десятичным логарифмам = 0.4343

 n_i — число частиц в i — м интервале диаметров;

 d_i — средний диаметр этого интервала;

N — общее количество частиц.

4. Результаты измерений и вычислений. Обработка экспериментальных данных; результатов расчета σ и d_0 .

 σ — среднеквадратическое отклонение логарифмов диаметров частиц = 0,3755 d_0 — среднегеометрический диаметр частиц = 0,8394

Измерение массовой концентрации аэрозоля

Таблица 1 - Выходные данные ИКП - 5

Тип пылемера		Показания	Среднее	Интервал
	№ измерения		значение	между
		пылемера, n_0 , мг/м 3	показаний	измерениями,
		π ₀ , M1 / M	n_{cp} , мг/м 3	МИН
	1	0,021		
ИКП-5	2	0,043	0,033	5
	3	0,035		

Измерение счетной концентрации аэрозоля пылемером A3-5

Таблица 2 - Выходные данные А3 - 5

Нижняя	Количество		Средний	Количество		
граница	частиц	Интервал	диаметр	частиц в	Доля	Накопленная
диаметров,	N	диаметров,	<i>i</i> — го	i — ом	частиц,	доля частиц,
$d_{ m Hrp}$, мкм	$(d>d_{\mathrm{Hrp}})$,	МКМ	интервала,	интервале	n_i/N	F(d)
онгр, тип	шт		d_i , мкм	n_i , um		
0,4	10352	0,4-0,5	0,45	4499	0,435	0,435
0,5	5852	0,5-1,0	0,75	3986	0,385	0,82
1,0	1865	1,0-2,0	1,5	818	0,079	0,899
2,0	1047	2,0-5,0	3,5	761	0,074	0,973
5,0	285	5,0-10,0	7,5	259	0,025	0,998
10,0	25	>10	>10	25	0,002	1

N = 10348

5. Результаты расчета «средних» диаметров аэрозольных частиц d_{10}, d_{20}, d_{30}

$$d_{10(\phi)} = \frac{(0,45\cdot4499+0,75\cdot3986+1,5\cdot818+3,5\cdot761+7,5\cdot259+10\cdot25)}{10348} = 1,072 \text{ MKM}$$

$$d_{10(\pi)} = 0,8394 \cdot e^{\left(\frac{0,3755^2}{2\cdot0,4343^2}\right)} = 1,219 \text{ MKM}$$

$$d_{20(\phi)} = \sqrt{\frac{(0,45^2\cdot4499+0,75^2\cdot3986+1,5^2\cdot818+3,5^2\cdot761+7,5^2\cdot259+10^2\cdot25)}{10348}} = 1,741 \text{ MKM}$$

$$d_{20(\pi)} = 0,8394 \cdot e^{\left(\frac{0,3755^2}{0,4343^2}\right)} = 1,772 \text{ MKM}$$

$$d_{30(\phi)} = \sqrt[3]{\frac{(0,45^3\cdot4499+0,75^3\cdot3986+1,5^3\cdot818+3,5^3\cdot761+7,5^3\cdot259+10^3\cdot25)}{10348}} = 2,550 \text{ MKM}$$

$$d_{30(\pi)} = 0,8394 \cdot e^{\left(\frac{3\cdot0,3755^2}{2\cdot0,4343^2}\right)} = 2,576 \text{ MKM}$$

6. Выводы по результатам исследования и рекомендации по использованию возможных мероприятий, направленных на уменьшение запыленности в производственных помещениях:

Мы ознакомились с вредным действием пыли на организм человека, влиянием ее на качество и надежность электронных изделий и приборов, требованиями санитарных и технологических норм на ПДК пыли в воздухе рабочей зоны. В ходе выполнения лабораторной работы были изучены методы и приборы для измерения запыленности и дисперсного состава пыли в производственных помещениях.

На основании проделанных измерений и расчетов сделали следующий вывод:

Согласно измеренным счетным концентрациям, класс чистоты помещения – P7.

Полученное значение частиц равное или превышающее 5 мкм равно примерно 500. Требования санитарных и технологических норм на ПДК пыли в воздухе рабочей зоны класса чистоты помещения Р7 не должно превышать 2930 частиц/м³, что удовлетворяет полученному значению.

Для поддержания чистоты текущего класса следует проводить регулярные уборки помещения и продолжать следить за концентрацией частиц в воздухе.