

Data-driven optimization of processes with degrading equipment

Iohannes Wiebe¹

Wednesday 1st August, 2018

Supervisors: Ruth Misener¹, Ines Cecilio²

¹Department of Computing, Imperial College London, London, UK

²Schlumberger Research Cambridge, Cambridge, UK London

First things first

Starting point: Process level MI(N)LP model

```
\begin{array}{ll} \min & \operatorname{cost}(\boldsymbol{x}, \boldsymbol{m} \quad) \\ \text{s.t.} & \operatorname{process} \operatorname{model}(\boldsymbol{x}, \boldsymbol{m} \quad) \\ & \operatorname{maintenance} \operatorname{model}(\boldsymbol{x}, \boldsymbol{m} \quad) \end{array} \qquad \text{(eg. balance equations)}
```

where \boldsymbol{x} are process variables, \boldsymbol{m} are maintenance variables

1

Starting point: Process level MI(N)LP model

```
\begin{array}{ll} \min \limits_{\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}} & \operatorname{cost}(\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}) \\ \text{s.t.} & \operatorname{process\ model}(\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}) & \text{(eg. balance\ equations)} \\ & \operatorname{maintenance\ model}(\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}) & \text{(eg. types\ of\ maint.)} \\ & \operatorname{health\ model}(\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}), & \text{(eq. prognosis\ model)} \end{array}
```

where x are process variables, m are maintenance variables, and h are health related variables.

Starting point: Process level MI(N)LP model

```
\begin{array}{ll} \min \limits_{\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}} & \operatorname{cost}(\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}) \\ \text{s.t.} & \operatorname{process\ model}(\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}) & \text{(eg. balance\ equations)} \\ & \operatorname{maintenance\ model}(\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}) & \text{(eg. types\ of\ maint.)} \\ & \operatorname{health\ model}(\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}), & \text{(eq. prognosis\ model)} \end{array}
```

where x are process variables, m are maintenance variables, and h are health related variables.

Idea

Combine process level MI(N)LP scheduling & planning with more sophisticated (stochastic) degradation modelling and robust optimization.

The degradation signal $s^{meas}(t)$ is often modelled by a stochastic process:

$$S(t) = \{S_t : t \in T\},\$$

where S_t is a random variable.

2

The degradation signal $s^{meas}(t)$ is often modelled by a stochastic process:

$$S(t) = \{S_t : t \in T\},\$$

where S_t is a random variable.

Often used: Lévy type processes

- Independent increments: $S_{t_2}-S_{t_1},...,S_{t_n}-S_{t_{n-1}}$ are independent for any $0 < t_1 < t_2 < ... < t_n < \infty$
- Stationary increments: $S_t S_s$ and S_{t-s} have the same distribution for any s < t
- Continuity in probability: $\lim_{h\to 0} P(|S_{t+h}-S_t|>\epsilon)=0$ for any $\epsilon>0$, $t\geq 0$.

Second things second

A health model based on Lévy processes

Assumption

The health of each unit j can be described by a Lévy process $S_j(t)$ with increments $S_{j,t} - S_{j,t-\Delta t} = D_j \sim \mathcal{D}_j(\Theta, \Delta t)$.

A health model based on Lévy processes

Assumption

The health of each unit j can be described by a Lévy process $S_j(t)$ with increments $S_{j,t} - S_{j,t-\Delta t} = D_j \sim \mathcal{D}_j(\boldsymbol{\Theta}, \boldsymbol{x}, \Delta t)$.

$$\begin{aligned} & \underset{\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}}{\text{min}} & & \operatorname{cost}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \\ & \text{s.t.} & & \operatorname{process\ model}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \\ & & & \operatorname{maintenance\ model}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \\ & & & & S_{j,t} \leq s_j^{max} & \forall t, j \in J \\ & & & S_{j,t} = \begin{cases} S_{j,t-1} + D_j, & \text{if } m_{j,t} = 0 \\ s_j^0, & \text{otherwise} \end{cases} & \forall t, j \in J \end{aligned}$$

where $m_{j,t} = 1$ if maintenance is performed on unit j at time t.

Accounting for effects of process variables

Assumption [Liao & Tian 2013]

All relevant operating variables are piecewise constant – i.e. the process has a set of discrete operating modes $k \in K$.

$$\begin{aligned} & \underset{x,m,h}{\min} & & \operatorname{cost}(\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}) \\ & \text{s.t.} & & \operatorname{process\ model}(\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}) \\ & & & \operatorname{maintenance\ model}(\boldsymbol{x},\boldsymbol{m},\boldsymbol{h}) \\ & & & S_{j,t} \leq s_j^{max} & & \forall t,j \in J \\ & & & S_{j,t} = \begin{cases} S_{j,t-1} + & D_j \ , & \text{if} \ m_{j,t} = 0 \\ s_j^0, & \text{otherwise} \end{cases} & \forall t,j \in J \end{aligned}$$

where $x_{j,k,t} = 1$ if unit j operates in mode k at time t.

Accounting for effects of process variables

Assumption [Liao & Tian 2013]

All relevant operating variables are piecewise constant – i.e. the process has a set of discrete operating modes $k \in K$.

$$\begin{aligned} & \underset{x,m,h}{\min} & & \operatorname{cost}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \\ & \text{s.t.} & & \operatorname{process\ model}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \\ & & & \operatorname{maintenance\ model}(\boldsymbol{x}, \boldsymbol{m}, \boldsymbol{h}) \\ & & & S_{j,t} \leq s_j^{max} & \forall t, j \in J \\ & & & S_{j,t} = \begin{cases} S_{j,t-1} + \sum\limits_{k \in \mathcal{K}} x_{j,k,t} \cdot D_{j,k}, & \text{if } m_{j,t} = 0 \\ s_j^0, & \text{otherwise} \end{cases} & \forall t, j \in J \end{aligned}$$

where $x_{j,k,t} = 1$ if unit j operates in mode k at time t.

Deriving a robust counterpart [Lappas & Gounaris 2016]

Random variables can be replaced by uncertain parameters

Replace $D_{i,k}$ by an uncertain parameter $\tilde{d}_{i,k}$ bounded by a set

$$\mathcal{U}: \\ s_{j,t} \leq s_j^{max} & \forall t, j \in J \\ s_{j,t} = \begin{cases} s_{j,t-1} + \sum_{k \in \mathcal{K}} x_{j,k,t} \cdot \tilde{d}_{j,k}, & \text{if } m_{j,t} = 0 \\ s_j^0, & \text{otherwise} \end{cases} \quad \forall \tilde{d}_{j,k} \in \mathcal{U}, t, j \in J$$

Reformulate:
$$m_{j,t}s_j^0 \leq s_{j,t} \leq s_j^{max} + m_{j,t} \cdot (s_j^0 - s_{j,max}) \qquad \forall t, j \in J, \tilde{d}_{j,k} \in \mathcal{U}$$

$$s_{j,t} \ge s_{j,t-\Delta t} + \sum_{j} x_{j,k,t} \tilde{d}_{j,k} + m_{j,t} \cdot (s_j^0 - s_j^{max}) \quad \forall t, j \in J, \tilde{d}_{j,k} \in \mathcal{U}$$

$$s_{j,t} \ge s_{j,t-\Delta t} + \sum_{k} x_{j,k,t} \tilde{d}_{j,k} + m_{j,t} \cdot (s_j^0 - s_j^{max}) \quad \forall t, j \in J, \tilde{d}_{j,k} \in \mathcal{U}$$

$$s_{j,t} \le s_{j,t-\Delta t} + \sum_{k} x_{j,k,t} \tilde{d}_{j,k} \qquad \forall t, j \in J, \tilde{d}_{j,k} \in \mathcal{U},$$

Replace
$$s_{j,t}$$
 by linear decision rule $s_{j,t} = [s_{j,t}]_0 + \sum_k [s_{j,t}]_k \tilde{d}_{j,k}$.

 $\forall \tilde{d}_{i,k} \in \mathcal{U}, t, j \in J$

How do we choose \mathcal{U} ?

Assume a simple box uncertainty set:

$$\mathcal{U} = \{\tilde{d}_{j,k} | \bar{d}_{j,k} (1 - \epsilon_{j,k})$$

$$\leq \tilde{d}_{j,k}$$

$$\leq \bar{d}_{j,k} (1 + \epsilon_{j,k}) \}$$

Choose $\epsilon_{j,k}$ from distribution $\mathcal{D}_{j,k}$:

$$\epsilon_{j,k} = 1 - F^{-1}(\alpha)/\bar{d}_{j,k}$$

Size of $\mathcal U$ depends on a single parameter α !

Objective function:

$$\begin{aligned} \text{cost} &= & \sum_{j \in J} c_j^{maint} \left(s_j^{fin} / s_j^{max} + \sum_{t \in T} m_{j,t} \right) + c_s^{storage} \left(q_s^{fin} + \sum_{t \in T_p} q_{s,t} \right) \\ &+ & U \left(\sum_{s \in S} \phi_s^d + \sum_{t \in T_S} \phi_{s,t}^Q \right) \end{aligned}$$

Scheduling horizon:

$$\sum_{k \in K_{j}} \sum_{i \in I_{j}} \sum_{t'=t-p_{i,j,k}+1}^{t} w_{i,j,k,t'} + \sum_{t'=t-\tau_{j}+1}^{t} m_{j,t'} \le 1 \quad \forall J, t \in T_{S} \quad (1)$$

$$v_{i,j}^{min} w_{i,j,k,t} \le b_{i,j,k,t} \le v_{i,j}^{max} w_{i,j,k,t} \qquad \forall J, i \in I_{j}, k \in K_{j}, t \in I_{s}, k \in K_{s}, t \in I_{s}, k \in I$$

Planning horizon:

What is left to do?

What should the value of α be?

There is a trade-off between cost c and probability of failure p_j^f that is governed by α (the size of the uncertainty set \mathcal{U}).

How can we save time?

Integrated MILP model can be very big - e.g 22500 variables (2400 discrete) and 12700 constraints. Obtaining a good solution over a long time horizon takes a long time (≈ 2 hours for a reasonable instance of the STN)

8

Optimizing α

Choosing α is its own optimization problem

We optimize α by solving

$$\min_{\alpha} c^*(\alpha) + \sum_{j} p_j^f(\alpha) \cdot c_j^f$$

- $c^*(\alpha)$ is the objective value of a MILP solution for a given α .
- $p_j^f(\alpha)$ is the corresponding probability of failure (of unit j) evaluated by Monte-Carlo simulation.
- · c_i^f is the cost of an unexpected failure.

Since evaluating c^* and p_j^f is expensive, we propose using Bayesian optimization (good for black box optimization with expensive function evaluations).

Saving time

An equivalent deterministic problem

Assume that $d_{j,k}$ only appears in health model constraints and that $\tilde{d}_{j,k} \geq 0, \forall \tilde{d}_{j,kt} \in \mathcal{U}$. Then we can prove that a solution to

$$\begin{split} & \underset{x,m}{\min} \quad \mathsf{cost}(\boldsymbol{x}, \boldsymbol{m}) \\ & \text{s.t.} \quad \mathsf{process, maint. model}(\boldsymbol{x}, \boldsymbol{m}) \\ & \quad m_{j,t} s_j^0 \leq s_{j,t}, \qquad \qquad \forall t \\ & \quad s_{j,t} \leq s_j^{max} + m_{j,t} (s_j^0 - s_j^{max}), \qquad \forall t \\ & \quad s_{j,t} \geq s_{j,t-1} + \sum_k x_{j,k,t} d_{j,k}^{max} + m_{j,t} (s_j^0 - s_j^{max}), \qquad \forall t \\ & \quad s_{j,t} \leq s_{j,t-1} + \sum_i x_{j,k,t} d_{j,k}^{max}, \qquad \forall t \end{split}$$

with $d_{i,k}^{max} = \max_{\mathcal{U}} \tilde{d}_{j,k}$ is also feasible in the robust problem.

Saving time

Avoiding rolling horizon

Estimating p_i^f from data

Instead of solving over long time horizon using rolling horizon we can estimate an upper bound \bar{p}_{j}^{f} on the probability of failure p_{j}^{f} from data.

Frequency approach

- 1. Estimate the distribution of the frequencies of occurrence N_k of the operating modes from data.
- 2. Randomly select n_k frequencies from this distribution.
- 3. Arrange the selected number of operating modes in a random order
- 4. Insert maintenance at the latest possible points in time.
- 5. Calculate p_i^f for the generated sequence.
- 6. Repeat steps 2 through 5 N_{mc} times and set $\bar{p}_i^f = \max p_i^f$

11

Avoiding rolling horizon

Markov-chain approach

 Model sequence of operating modes as Markov chain and estimate transition probabilities

$$\pi_{k,k^*} = P(X_n = k^* | X_{n-1} = k)$$

from data.

- 2. Randomly draw N_{mc} sequences of operating modes from Markov chain (inserting maintenance at latest point).
- 3. Evaluate p_i^f for each
- 4. $\bar{p}_j^f = \max p_j^f$

Estimating frequencies and transition probabilities

Covariate dependencies

Frequencies and transition probabilities depend on product demand p.

Estimating frequencies and transition probabilities

Covariate dependencies

Frequencies and transition probabilities depend on product demand p.

Logistic regression [Paton et al 2014]

Predict the probability η_{n_k} that mode k occurs n_k times using logistic regression:

$$\eta_{n_k}(\boldsymbol{p}(t)) = P(N_k = n_k, \boldsymbol{p}) = \frac{\exp(\boldsymbol{\beta}_{n_k} \boldsymbol{p})}{\sum_{n_k'} \exp(\boldsymbol{\beta}_{n_k'} \boldsymbol{p})}$$

Similarly predict transition probabilities based on demand:

$$\pi_{k,k^*}(\boldsymbol{p}(t)) = P(X_n = k^* | X_{n-1} = k, \boldsymbol{p}) = \frac{\exp(\boldsymbol{\beta}_{n_k} \boldsymbol{p})}{\sum_{n_k'} \exp(\boldsymbol{\beta}_{n_k'} \boldsymbol{p})}$$

Results

Results

Results

instance	bound	rms_all	rms_max	p_out
toy	freq	8.00	1.53	29.40
toy	mc	10.41	3.08	21.27
P1	freq	12.61	3.52	17.54
P1	mc	17.25	4.39	9.62
P2	freq	7.40	2.31	18.08
P2	mc	13.68	4.98	10.13
P4	freq	9.17	3.27	47.78
P4	mc	11.43	2.84	32.50
P6	freq	18.75	8.94	12.17
P6	mc	20.84	10.09	10.98
all	freq	11.19	3.91	24.99
all	mc	14.72	5.08	16.90

Table 1: Average performance metrics for probability estimates - all instances

Outlook

Optimizing $\boldsymbol{\alpha}$

$$\min_{\alpha} c^*(\alpha) + \sum_{j} p_j^f(\alpha) \cdot c_j^f$$

Degradation modelling with multiple operating modes

How does robust optimization work?

General idea

• Make constraints hold for all values in ${\cal U}$:

$$\sum_{j} \tilde{a}_{ij} x_j \leq b_i, \forall \tilde{a}_{ij} \in \mathcal{U}$$

· Reformulate semi-infinite constraint:

$$\sum_{j} a_{ij}x_{j} + \text{protection}(\mathcal{U}) \leq b_{i}$$

• How do we choose the right protection level?

Example: Soyster's method (worst case) [1973]

$$\max_{x_1, x_2} x_1 + x_2$$

s.t.
$$\tilde{a}_{11}x_1 + \tilde{a}_{12}x_2 \leq b_1$$
,

$$\forall \tilde{a}_{ij} \in \mathcal{U}$$

$$\max_{x_1, x_2} x_1 + x_2$$

Formulation

Scheduling
$$M_{j,t}S_{j,0} \leq S_{j,t} \leq S_{j,max} + M_{j,t} \cdot (S_{j,0} - S_{j,max}) \qquad \forall t,j \in J, D \in \mathcal{D}$$
 $S_{j,t} \geq S_{j,t-\Delta t} + \sum_{l} Z_{j,k,t}D_{j,k,t} + M_{j,t} \cdot (S_{j,0} - S_{j,max}) \quad \forall t,j \in J, D \in \mathcal{D}$

$$S_{j,t} \le S_{j,t-\Delta t} + \sum_{k} Z_{j,k,t} D_{j,k,t}$$

$$\forall t, j \in J, D \in \mathcal{D}$$

$$\begin{split} & \underset{S_{j,t} \leq S_{j,max}}{\mathsf{Planning}} \\ & S_{j,t} \leq S_{j,max} & \forall t,j \in J \\ & S_{j,t} \geq S_{j,t-\Delta t} + \sum_{k} N_{j,k,t} D_{j,k,t} + M_{j,t} \cdot (S_{j,0} - S_{j,max}) & \forall t,j \in J \\ & S_{j,t} \leq S_{j,t-\Delta t} + \sum_{k} N_{j,k,t} D_{j,k,t} & \forall t,j \in J \end{split}$$

Adjustable robust optimization

Affine decision rule

$$S_{j,t} = [S_{j,t}]_0 + \sum_{k} \sum_{t'=0}^{t} [S_{j,t}]_{k,t'} D_{j,k,t'}.$$
(1)

Size of toy problem

		deterministic	robust $D \neq f(t)$	robust $D = 1$
	# vars	913	3011	27719
	# binaries	338	338	338
	# constraints	1198	2356	13300
	time to solve [s]	2	0.3-10	0.3-10
	gap [%]	0	0	0
	scheduling periods	30	30	30
	planning periods	8	8	8
	task-unit-op. mode combinations	6	6	6

Size of realistic problem

	deterministic	robust $D \neq f(t)$	robust $D = 1$
# vars	5389		397361
# binaries	2492		2492
# constraints	6798		180858
time to solve [s]	7883		16756
gap [%]	3.62		31.02
scheduling periods	56	56	56
planning periods	24	24	24
task-unit-op. mode	24	24	24
combinations	24		

How do we choose \mathcal{U} ?

Choose \mathcal{U} from distribution

- Choose parameter lpha
- Choose D_{min} such that $P(D \le D_{min}) = \alpha$
- Choose D_{max} such that $P(D \ge D_{max}) = \alpha$
- $U = \{D|D_{min} \le D \le D_{max}\}$

