

In Case of Failure

ELAG 2011 Prague

Patrick Hochstenbach * Ghent University

Email: Patrick. Hochstenbach@UGent.be

Twitter: @hochstenbach

BOM-VL/Archipel

http://www.slideshare.net/hochstenbach/20081007-workshop-bomvl-wp3

Life expectancies of media

Growth of digital data

Growth in formats

Formats of formats

MIME type image/tiff:

- TIFF (alle versies)
- TIFF/IT
- TIFF G4/LZW/UNC
- Digital Negative Format (DNG)
- GeoTIFF
- Pyramid TIFF

• ...

Bron: PRONOM Technical Registry [http://www.nationalarchives.gov.uk/pronom/]

Short & long term risks

I. Create a preservation plan

- I. Create a preservation plan
- 2. Backup and replicate your data

- I. Create a preservation plan
- 2. Backup and replicate your data
- 3. Store preservation metadata

- I. Create a preservation plan
- 2. Backup and replicate your data
- 3. Store preservation metadata
- 4. Store technical metadata

- I. Create a preservation plan
- 2. Backup and replicate your data
- 3. Store preservation metadata
- 4. Store technical metadata
- 5. Store representation metadata

- I. Create a preservation plan
- 2. Backup and replicate your data
- 3. Store preservation metadata
- 4. Store technical metadata
- 5. Store representation metadata
- 6. Don't trust software

- I. Create a preservation plan
- 2. Backup and replicate your data
- 3. Store preservation metadata
- 4. Store technical metadata
- 5. Store representation metadata
- 6. Don't trust software
- 7. Store descriptive metadata

Preservation Plan

- Preservation policies (what to preserve)
- Legal obligations
- Organizational & Technical constraints
- User requirements
- Context
- http://plato.ifs.tuwien.ac.at:8080/plato

Risk Analysis

Random error

Random error

Random error

1.9

Systematic error

Systematic error

Keeping Bits Safe: How Hard Can It Be?

MTBF

MTBF = Mean Time Between Failure

Time ——

MTTF

Time ——

EXTERNAL DRIVES INTERNAL DRIVES SOLID STATE DRIVES SOFTWARE SUPPORT WHERE TO BUY

ULTRASTAR 7K3000

World's first shipping 7200 RPM 3TB enterprise-class HDD rated at 2M hours MTBF

LIFESTUDIO MOBILE PLUS

>>

Automatically organize your photos into a stunning, easy to navigate, 3D wall

> EXTERNAL MOBILE

> ENTERPRISE

WESTERN DIGITAL TO ACQUIRE HITACHI GLOBAL STORAGE TECHNOLOGIES

Combination of Hard Drive Companies Will Create Industry's Broadest Product Portfolio and a Significant Pool of Resources for Innovation GO >

EXTERNAL DRIVES INTERNAL DRIVES SOLID STATE DRIVES SOFTWARE SUPPORT WHERE TO BUY

ULTRASTAR 7K3000

World's first shipping 7200 RPM 3TB enterprise-class HDD rated at 2M hours MTBF

LIFESTUDIO MOBILE PLUS

>>

Automatically organize your photos into a stunning, easy to navigate, 3D wall

> EXTERNAL MOBILE

> ENTERPRISE

WESTERN DIGITAL TO ACQUIRE HITACHI GLOBAL STORAGE TECHNOLOGIES

Combination of Hard Drive Companies Will Create Industry's Broadest Product Portfolio and a Significant Pool of Resources for Innovation GO >

MTTF = 2 M hours = 228 years!

EXTERNAL DRIVES INTERNAL DRIVES SOLID STATE DRIVES SOFTWARE SUPPORT WHERE TO BUY

ULTRASTAR 7K3000

World's first shipping 7200 RPM 3TB enterprise-class HDD rated at 2M hours MTBF

LIFESTUDIO MOBILE PLUS

>>

Automatically organize your photos into a stunning, easy to navigate, 3D wall

> EXTERNAL MOBILE

> ENTERPRISE

WESTERN DIGITAL TO ACQUIRE HITACHI GLOBAL STORAGE TECHNOLOGIES

Combination of Hard Drive Companies Will Create Industry's Broadest Product Portfolio and a Significant Pool of Resources for Innovation GO >

MTTF = 2 M hours = 228 years!

AFR = I/MTTF = 0.004 = 0.4 %

EXTERNAL DRIVES INTERNAL DRIVES S

SOLID STATE DRIVES SC

SOFTWARE

ULTRASTAR 7K3000

World's first shipping 7200 RPM 3TB enterprise-class HDD rated at 2M hours MTBF

LIFESTUDIO MOBILE PLUS

Automatically organize your photos into a stunning, easy to navigate, 3D wall

> EXTERNAL MOBILE

> ENTERPRISE

WESTERN DIGITAL TO ACQUIRE HITACHI GLOBAL STORAGE TECHNOLOGIES

Combination of Hard Drive Companies Will Create Industry's Broadest Product Portfolio and a Significant Pool of Resources for Innovation GO >

MTTF = 2 M hours = 228 years!

AFR = I/MTTF = 0.004 = 0.4 %

$$R(t) = \exp(-t/\Theta)$$

> ENTERPRISE

ULTRASTAR 7K3000

World's first shipping 7200 RPM 3TB enterprise-class HDD rated at 2M hours MTBF

LIFESTUDIO MOBILE PLUS

Automatically organize your photos into a stunning, easy to navigate, 3D wall

> EXTERNAL MOBILE

Combination of Hard Drive Companies Will Create Industry's Broadest Product Portfolio and a Significant Pool of Resources for Innovation GO >

WESTERN DIGITAL TO ACQUIRE HITACHI GLOBAL STORAGE TECHNOLOGIES

$$AFR = I/MTTF = 0.004 = 0.4 \%$$

$$R(t) = \exp(-t/\Theta)$$

$$R(5) = \exp(-5/228) = 0.98 = 98\%$$

>>

World's first shipping 7200 RPM 3TB enterprise-class HDD rated at 2M hours MTBF

LIFESTUDIO MOBILE PLUS

Automatically organize your photos into a stunning, easy to navigate, 3D wall

> EXTERNAL MOBILE

> ENTERPRISE

WESTERN DIGITAL TO ACQUIRE HITACHI GLOBAL STORAGE TECHNOLOGIES

Combination of Hard Drive Companies Will Create Industry's Broadest Product Portfolio and a Significant Pool of Resources for Innovation GO >

MTTF = 2 M hours = 228 years!

AFR = I/MTTF = 0.004 = 0.4 %

$$R(t) = \exp(-t/\Theta)$$

 $R(5) = \exp(-5/228) = 0.98 = 98\%$

 $50 \text{ disks} = 0.98^{50} = 0.36 = 36\%$

Experiments

- Simulate 100 disks with a 200 MTTF using Processing. What happens if the AFR is not 0.4% but 4% (hint: what is MTTF in that case)?
- Given a MTTF of 200 years and 50 disks what is the reliability in 1,2 and 5 years?

Experiments

- Amazon S3 claims an AFR per object of 0.00000001% [1]. What is the MTTF?
- There are 100 billion objects in S3. Given an estimated average size of 1 MB how big is S3?
- What is the chance (reliability) none of these 100 billion objects are lost in 1 year?

Disk failures in the real world: What does an MTTF of 1,000,000 hours mean to you?

Bianca Schroeder Garth A. Gibson Computer Science Department Carnegie Mellon University {bianca, garth}@cs.cmu.edu

http://db.usenix.org/events/fast07/tech/schroeder/schroeder_html/index.html

Shroeder & Gibson

Data set	Type of	Duration	#Disk	# Servers	Disk	Disk	MTTF	Date of first	ARR
	cluster		events		Count	Parameters	(Mhours)	Deploym.	(%)
HPC1	HPC	08/01 - 05/06	474	765	2,318	18GB 10K SCSI	1.2	08/01	4.0
"	n	"	124	64	1,088	36GB 10K SCSI	1.2	n	2.2
HPC2	НРС	01/04 - 07/06	14	256	520	36GB 10K SCSI	1.2	12/01	1.1
НРС3	НРС	12/05 - 11/06	103	1,532	3,064	146GB 15K SCSI	1.5	08/05	3.7
п	НРС	12/05 - 11/06	4	N/A	144	73GB 15K SCSI	1.5	n	3.0
п	НРС	12/05 - 08/06	253	N/A	11,000	250GB 7.2K SATA	1.0	n	3.3
HPC4	Various	09/03 - 08/06	269	N/A	8,430	250GB SATA	1.0	09/03	2.2
п	НРС	11/05 - 08/06	7	N/A	2,030	500GB SATA	1.0	11/05	0.5
"	clusters	09/05 - 08/06	9	N/A	3,158	400GB SATA	1.0	09/05	0.8
COM1	Int. serv.	May 2006	84	N/A	26,734	10K SCSI	1.0	2001	2.8
COM2	Int. serv.	09/04 - 04/06	506	9,232	39,039	15K SCSI	1.2	2004	3.1
сомз	Int. serv.	01/05 - 12/05	2	N/A	56	10K FC	1.2	N/A	3.6
н	"	"	132	N/A	2,450	10K FC	1.2	N/A	5.4
"	n n	"	108	N/A	796	10K FC	1.2	N/A	13.6
"	"	"	104	N/A	432	10K FC	1.2	1998	24.1

Experiments

- Given the lifetime of the universe (13 billion years) as the lifetime of one storage byte. What is the probability one Tera byte (1 billion bytes) will survive 100 years?
- Discuss

Why Do Computers Stop and What Can Be Done About It?

http://www.hpl.hp.com/techreports/tandem/TR-85.7.html

Jim Gray

87 years

87 years

75 years

87 years

75 years

50 years

$$\frac{I}{SYSTEM} = \frac{I}{A} + \frac{I}{B} + \frac{I}{C} + \frac{I}{D} +$$

E.g.: components: I, 100, 1000, 10000 System: 0.989 years

Parallel Failures

= 200 years

= ?? years

Parallel Failures

$$SYSTEM = A * B * C * D$$

E.g.: components: 200,200

System: 40000 years

Composite Failures

Composite Failures

$$\frac{1}{\text{SYSTEM}} = \frac{1}{40.000} \text{ years}$$

$$= \frac{1}{40.000} + \frac{1}{40.000}$$

SYSTEM = 20.000

Experiments

- Calculate the composite failure of the Tandem example (administration, software, hardware, environment)
- How would you make this setup more reliable? Calculate the effect
- What is the MTTF of a 5-way mirror of 7K3000 disks?

Volker Heydegger; Universität zu Köln; Cologne, Germany

http://old.hki.uni-koeln.de/people/herrmann/forschung/heydegger_archiving2008_40.pdf

Bit Errors

BER = Bit Error Rate = 3/10 = 0.3 = 30 %

Bit Errors

- Soft error repeat the operation
- Hard error after some repeats data is lost
- Typical disk BER = 10⁻⁵ to 10⁻⁶ (every 10KB to 100 KB read)

Bit Errors

Drive Type	Hard Error
Consumer SATA	10-14
Enterprise SATA	10 ⁻¹⁵
Enterprise SAS	10 ⁻¹⁶

$$10^{14} = \sim 10 \text{ TB}$$
 $10^{15} = \sim 100 \text{TB}$
 $10^{16} = \sim 1 \text{ PB}$

*) BER-s are in bit = 1/8 byte

I sector error for every IOTB -> I PB read

Experiments

- Collect a few sample document from the web (images, documents, executables, etc); flip one or more random bits; explain the resulting effect
- Use the visual defects experiment to measure the effect of flipping bits on images files with various compressions
- Open and save an image file. Measure the visual effects.
- Calculate the checksum of the files and repeat the experiments. Check results.

JPEG

.css

 The goal of digital preservation is not preserving the bits and bytes but the means to access and use the information represented by them.

EVO is a Java application, and needs to have the Java virtual machine installed on t which it will be run. Version 1.5 and upward is supported by EVO.
Go to the Java website at http://java.com
Click on Verify installation to make sure that java is installed or to get version of Java
If you don't have it or want the newest version (recommended), click on D

1.2 REGISTER TO EVO

Before you can start any EVO meeting session, you have to register to get your login password.

a. From EVO website (http://evo.caltech.edu), select your language.

Bits

Software +

Environment

Information


```
Width = bit [1 .. 3]
Height = bit [4 .. 6]
Data = bit [7 .. 15]
```

With software you have only two options:

- I. The software works and is maintained
- 2. The software doesn't work and is not maintained

- I. The software works and is maintained
- Your designated community has the software tools
- Your archive has the software tools
- In both cases you need to provide information which software you need and the steps required to get access to the data

2. The software doesn't work and is not maintained

- Archive the source code of the orginal software
- Emulate the original software

Experiments

- Experiment with different textencoding demo files to discover the bit content of these files.
- Use droid and jhove to characterize and validate the demo files.
- Invalidate the files using truncation, bit errors. Check the results.
- Use migration and emulation to get access to the demo.wp file.

Metadata

- Descriptive Metadata
- Administrative Metadata
- Structural Metadata
- Rights Metadata
- Representation Metadata

Packaging

- Digital objects are composite structures
- Need to be described, validated and accessed as a whole
- Complex Objects

Package Formats

- METS
- MPEG-21/DIDL
- LOM/IMS
- Baglt
- TIPR RXP

Baglt

- Library of Congress & California Digital Library
- NDIIP
- Generic Format

Baglt

ata data	Today, 13:37		Folder
bag-info.txt	Today, 13:37	4 KB	Plain Text
agit.txt	Today, 13:37	4 KB	Plain Text
manifest-md5.txt	Today, 13:37	4 KB	Plain Text
agmanifest-md5.txt	Today, 13:37	4 KB	Plain Text

Experiments

- Create using the Bagger toolkit a bag. Add Dublin Core descriptive metadata.
- Save the bag as ZIP-file and deposit it do the demo archive.
- As archivist access the deposit and validate its contents.

Conclusions

