Models of Lambek calculus enriched with subexponentials

Daniel Rogozin^{1,2}

¹Lomonosov Moscow State University ²Serokell OÜ

Abstract

1 The Lambek Calculus with subexponentials

Definition 1. A subexponential signature is an ordered quintuple: $\Sigma = \langle I, \leq, W, C, E \rangle$,

where $I = \{s_1, \ldots, s_n\}, \langle I, \leq \rangle$ is a preorder. W, C, E are upwardly closed subsets of I and $W \cap C \subseteq E$.

Definition 2

$$\mathcal{F}_{\Sigma} ::= Tp \mid (\mathcal{F}_{\Sigma}/\mathcal{F}_{\Sigma}) \mid (\mathcal{F}_{\Sigma} \setminus \mathcal{F}_{\Sigma}) \mid (\mathcal{F}_{\Sigma} \bullet \mathcal{F}_{\Sigma}) \mid (\mathcal{F}_{\Sigma} \vee \mathcal{F}_{\Sigma}) \mid (\mathcal{F}_{\Sigma} \wedge \mathcal{F}_{\Sigma}) \mid !_{s} \mathcal{F}_{\Sigma}$$

Definition 3. Noncommutative linear logic with subexponentials $(SMALC_{\Sigma})$, where Σ is a subexponential signature.

$$\frac{\Gamma \to A \qquad \Delta, B, \Theta \to C}{\Delta, \Gamma, A \setminus B, \Theta \to C} \setminus \to \qquad \qquad \frac{A, \Pi \to B}{\Pi \to A \setminus B} \to \setminus \\
\frac{\Gamma \to A \qquad \Delta, B, \Theta \to C}{\Delta, B \setminus A, \Gamma, \Theta \to C} / \to \qquad \qquad \frac{\Pi, A \to B}{\Pi \to B \setminus A} \to / \\
\frac{\Gamma, A, B, \Delta \to C}{\Gamma, A \bullet B, \Delta \to C} \bullet \to \qquad \qquad \frac{\Gamma \to A \qquad \Delta \to B}{\Gamma, \Delta \to A \bullet B} \to \bullet \\
\frac{\Gamma, A_1 \& A_2, \Delta \to B}{\Gamma, A_1 \& A_2, \Delta \to B} \&, i = 1, 2 \to \qquad \qquad \frac{\Gamma \to A \qquad \Gamma \to B}{\Gamma \to A \& B} \to \& \\
\frac{\Gamma, A, \Delta \to C \qquad \Gamma, B, \Delta \to C}{\Gamma, A \lor B, \Delta \to C} \lor \to \qquad \qquad \frac{\Gamma \to A_i}{\Gamma \to A_1 \lor A_2} \to \lor, i = 1, 2 \\
\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 1 \to \qquad \qquad \frac{P \to A_i}{\Gamma \to A_1 \lor A_2} \to \lor, i = 1, 2 \\
\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to C \to \frac{P \to A_i}{\Gamma, 1, \Delta \to A} \to 0$$

Structural rules:

$$\frac{\Gamma, !^s A, \Delta, !^s A, \Theta \to B}{\Gamma, !^s A, \Delta, \Theta \to B} \quad \mathbf{ncontr}_1, s \in C \qquad \qquad \frac{\Gamma, !^s A, \Delta, !^s A, \Theta \to B}{\Gamma, \Delta, !^s A, \Theta \to B} \quad \mathbf{ncontr}_2, s \in C$$

$$\frac{\Gamma, \Delta, !^s A, \Theta \to B}{\Gamma, !^s A, \Delta, \Theta \to A} \quad \mathbf{ex}_1, s \in E \qquad \qquad \frac{\Gamma, !^s A, \Delta, \Theta \to B}{\Gamma, \Delta, !^s A, \Theta \to A} \quad \mathbf{ex}_2, s \in E$$

$$\frac{\Gamma, \Delta \to B}{\Gamma, !^s A, \Delta \to B} \quad \mathbf{weak}_!, s \in C \qquad \qquad \frac{\Gamma \to A}{\Gamma, \Pi, \Delta \to B} \quad \mathbf{cut}$$

Definition 4. By $L_1^* \wedge \vee_{S4}$ we mean $SMALC_{\Sigma}$, where $\Sigma = \{s\}$ and $C = W = E = \emptyset$.

Theorem 1.

- 1. Cut-rule is admissable;
- 2. $SMALC_{\Sigma}$ is undecidable, if $C \neq \emptyset$;
- 3. If C is empty, then the decidability problem of SMALC_{Σ} belongs to PSPACE.

2 Semantics

Definition 5. Quantale

A quantale is a triple $\langle A, \bigvee, \cdot \rangle$, such that $\langle A, \bigvee \rangle$ is a complete lattice and $\langle A, \cdot \rangle$ is a semi-group. A quantate is called unital, if $\langle A, \cdot \rangle$ is a monoid.

Some example of quantales:

- Let A be a semigroup (monoid), then $\langle \mathcal{P}(A), \cdot, \subseteq \rangle$ is a free (unital) quantale.
- Let R be a ring and Sub(R) be a set of additive subgroups of R. We define $A \cdot B$ as an additive subgroup generated by finite sums of products ab and order is defined by inclusion.
- Any locale is a quantale with $\cdot = \wedge$.

It is easy to see, that any (unital) quantale is a residual (monoid) semigroup. We define divisions as follows:

- 1. $a \setminus b = \bigvee \{c \mid a \cdot c \leq b\}$
- 2. $b/a = \bigvee \{c \mid c \cdot a \leq b\}$

Definition 6.

Let $Q = \langle A, \bigvee, \cdot \rangle$ be a quantale. The center of a quantale is the set $\mathcal{Z}(Q) = \{a \in A \mid \forall b \in A, a \cdot b = b \cdot a\}$

Definition 7. An open modality (or quantic conucleus) on quantale Q is a map $\square : Q \to Q$, such that

- 1. $\Box x \leq x$;
- $2. \ \Box x = \Box \Box x;$
- 3. $x \leqslant y \Rightarrow \Box x \leqslant \Box y$;

```
For unital quantale, we require that \Box e = e.
             Note that, we may replace the last condition on equivalent condition \Box(x) \cdot \Box(y) \leq \Box(x \cdot y).
Definition 8. We define a partial order on open modalities on \mathcal{Q} as \square_1 \leqslant \square_2 \Leftrightarrow \forall a \in \mathcal{Q}, \square_1(a) \leqslant \square_1
Lemma 1. Let \mathcal{Q} be a quantale and \square_{\mathcal{Q}} be a set of all open modalities on \mathcal{Q}. Then \square_{\mathcal{Q}} is a
small\ category.
Proof. \langle \Box_{\mathcal{Q}}, \leqslant \rangle form a partial order, so \langle \Box_{\mathcal{Q}}, \leqslant \rangle is a small category.
                                                                                                                                                                                                                                                                                                                                                                                                          Definition 9.
            1. An open modality is called central, if \forall a, b \in Q, \Box(a) \cdot b = b \cdot \Box(a).
           2. An open modality is called pseudo-idempotent, if \forall a,b \in Q, \Box(a) \cdot b \leq \Box(a) \cdot b \cdot \Box(a) and
                       b \cdot \Box(a) \leq \Box(a) \cdot b \cdot \Box(a).
            3. An open modality is called unital, if \forall a \in Q, \Box(a) \leq e.
Lemma 2. Let \square be an open modality on some unital quantale \mathcal{Q} = \langle A, \bigvee, \cdot, e \rangle. Then, if \square is
unital and weak idempotent, then \square is central.
Proof.
                            b \cdot \Box(a) \leqslant
                                    Right weak idempotence
                             \Box(a) \cdot b \cdot \Box(a) \leqslant
                                    Unitality
                             \Box(a) \cdot b \cdot e \leqslant
                                    Identity
                             \Box(a) \cdot b \leqslant
                                    Left weak idempotence
                             \Box(a) \cdot b \cdot \Box(a) \leqslant
                                    Unitality
                             e \cdot b \cdot \Box(a) \leqslant
                                    Identity
                            b \cdot \Box(a)
             Hence, b \cdot \Box(a) = \Box(a) \cdot b, so \forall a \in A, \Box(a) \in \mathcal{Z}(Q).
                                                                                                                                                                                                                                                                                                                                                                                                          Proposition 1.
               Let \mathcal{Q} be a quantale and S \subseteq \mathcal{Q} a subquantale, then \square : \mathcal{Q} \to \mathcal{Q}, such that \square(a) = \bigvee \{s \in \mathcal{Q} : s \in \mathcal{Q} 
S \mid s \leq a, is an open modality.
Proof. See
                                                                                                                                                                                                                                                                                                                                                                                                          Proposition 2.
               Let Q be a quantale and S_1 \subseteq S_2 \subseteq Q.
               Then \Box_1(a) \leqslant \Box_2(a).
Proof. Immediatly.
```

4. $\Box x \cdot \Box y = \Box (\Box x \cdot \Box y)$.

Proposition 3.

Let Q be a quantale and $S \subseteq Q$ a subquantale, then the following operations are open modalities:

- 1. $\Box_z(a) = \bigvee \{ s \in S \mid s \leqslant a, s \in \mathcal{Z}(\mathcal{Q}) \};$
- 2. $\Box_{1}(a) = \bigvee \{s \in S \mid s \leq a, s \leq 1\};$
- 3. $\Box_{idem}(a) = \bigvee \{s \in S \mid s \leqslant a, \forall b \in Q, b \cdot s \lor s \cdot b \leqslant s \cdot b \cdot s\};$
- $4. \ \Box_{z,1}, I_{z,idem}, I_{1,idem}, I_{z,1,idem}.$

Proof. Immediatly.

Proposition 4.

- 1. $\forall a \in \mathcal{Q}, \Box_{1,idem}(a) \leq \Box_z(a)$.
- 2. $\forall a \in \mathcal{Q}, \Box_{z,1,idem} = \Box_{1,idem}(a)$

Proof. Follows from Lemma 3.

Lemma 3. $\Box_1(a_1) \cdot \Box_2(a_2) \leq \Box'(\Box_1(a_1) \cdot \Box_2(a_2)), \text{ where } \Box_i \leq \Box', i = 1, 2.$

Proof.

$$\Box_{1}(a_{1}) \cdot \Box_{2}(a_{2}) \leqslant
\Box_{1}(\Box_{1}(a_{1})) \cdot \Box_{2}(\Box_{2}(a_{2})) \leqslant
\Box'(\Box_{1}(a_{1})) \cdot \Box'(\Box_{2}(a_{2})) \leqslant
\Box'(\Box_{1}(a_{1}) \cdot \Box_{2}(a_{2}))$$

Definition 10. Interpretation of subexponential signature

Let $\Sigma = \langle I, \leq, W, C, E \rangle$ be a subexponential signature, where |I| = n and $\square_{\mathcal{Q}}$ is a category of open modalities on a quantale \mathcal{Q} . Subexponential interpretation is a contravariant functor $\sigma: I \to \square_{\mathcal{Q}}$ defined as follows:

$$: I \rightarrow \Box_{\mathcal{Q}} \ defined \ as \ follows:$$

$$= \begin{cases} \Box_i : \mathcal{Q} \rightarrow \mathcal{Q}, \ s.t. \forall a \in \mathcal{Q}, \Box_i(a) = \{s \in S_i \mid s \leqslant a\}, \\ if \ s_i \notin W \cap C \cap E \\ \Box_i : \mathcal{Q} \rightarrow \mathcal{Q}, \ s.t. \forall a \in \mathcal{Q}, \Box_i(a) = \{s \in S_i \mid s \leqslant a, s \leqslant 1\}, \\ if \ s_i \in W \\ \Box_i : \mathcal{Q} \rightarrow \mathcal{Q}, \ s.t. \forall a \in \mathcal{Q}, \Box_i(a) = \{s \in S_i \mid s \leqslant a, s \in \mathcal{Z}(\mathcal{Q})\}, \\ if \ s_i \in E \\ \Box_i : \mathcal{Q} \rightarrow \mathcal{Q}, \ s.t. \forall a \in \mathcal{Q}, \Box_i(a) = \{s \in S_i \mid s \leqslant a, \forall b, b \cdot s \vee s \cdot b \leqslant s \cdot b \cdot s\}, \\ if \ s_i \in E \\ otherwise, \ if \ s_i \ belongs \ to \ some \ intersection \ of \ subsets, \ then \ we \ combine \ the \ relevant \ conditions \end{cases}$$

Definition 11. Let Q be an unital quantale, $f: Tp \to Q$ a valuation and $\sigma: I \to \square_Q$ a subexponential interpretation, then interpretation is defined inductively:

Definition 12. $\Gamma \models A \Leftrightarrow \forall f, \forall \sigma, \llbracket \Gamma \rrbracket \leqslant \llbracket A \rrbracket$

Theorem 2. $\Gamma \to A \Rightarrow \llbracket \Gamma \rrbracket \leqslant \llbracket A \rrbracket$

Proof. We consider the promotion case, the rest modal cases are immediatly shown.

Let $!_{s_1}A_1, \ldots, !_{s_n}A_n \to A$ and $\forall i, s \leq s_i$.

Then $\forall a \in Q, \sigma(s_i)(a) \leq \sigma(s)(a)$.

By IH, $\sigma(s_1)[\![A_1]\!] \cdot \cdots \cdot \sigma(s_n)[\![A_n]\!] \leq [\![A]\!].$

Thus, $\sigma(s)(\sigma(s_1)[A_1]] \cdot \cdots \cdot \sigma(s_n)[A_n]) \leq \sigma(s)([A]).$ By Lemma 5, $\sigma(s_1)[A_1]] \cdot \cdots \cdot \sigma(s_n)[A_n] \leq \sigma(s)(\sigma(s_1)[A_1]) \cdot \cdots \cdot \sigma(s_n)[A_n]).$

So, $\sigma(s_1)[\![A_1]\!] \cdot \cdots \cdot \sigma(s_n)[\![A_n]\!] \leq \sigma(s)([\![A]\!]).$

3 Quantale completeness

Definition 13.

Let $\mathcal{F} \subseteq Fm$, an ideal is a subset $\mathcal{I} \subseteq \mathcal{F}$, such that:

- If $B \in \mathcal{I}$ and $A \to B$, then $A \in \mathcal{I}$;
- If $A, B \in \mathcal{I}$, then $A \vee B \in \mathcal{I}$.

Definition 14.

Let
$$S \subseteq \mathcal{F} \subseteq Fm$$
, then $\bigvee S = \bigcap \{ \mathcal{I} \subseteq \mathcal{F} \mid S \subseteq \mathcal{I} \}$

Proposition 5. $\bigvee S$ is an ideal.

Lemma 4. $A \subseteq Fm$, then $\{B \mid B \to A\} = \bigvee \{A\}$.

Let $A \in Fm$. Then $\{B \mid B \to A', A' \in A\} \subseteq \bigvee \{A\}$, so far as $\bigvee A$ is an ideal.

On the other hand, $\{B \mid B \to A\}$ is an ideal, it is easy to see that this set is closed under \vee . So, $\bigvee A \subseteq \{B \mid B \to A\}$.

Lemma 5. $\bigvee \{A\} \subseteq \bigvee \{B\} \ iff \ A \to B.$

Proof. Let $\bigvee \{A\} \subseteq \bigvee \{B\}$, then $\{C | C \to A\} \subseteq \{D \mid D \to B\}$.

Thus, $A \in \{C | C \to A\}$, then $A \in \{D | D \to B\}$, hence $A \to B$.

On the other hand, let $A \to B$ and $C \in \bigvee \{A\}$.

Thus, $C \to A$, then $C \to B$ by cut.

Lemma 6. Let $Q = \{ \bigvee S \mid S \subseteq Fm \}$ and $\bigvee A \cdot \bigvee B = \bigvee \{ A \bullet B \mid A \in A, B \in B \}$. Then $\langle \mathcal{Q}, \subseteq, \cdot, \bigvee \mathbf{1} \rangle$ is a quantale.

Proof. See

Lemma 7. Let $!_s \in I$ and A be an arbitrary formula, then $\Box_s(\bigvee\{A\}) = \bigvee\{B \mid !_s B \to A\}$ is a quantic conucleus.

Proof.

See Yetter.

Lemma 8. Let A be a formula, then $\Box_s \bigvee \{A\} = \bigvee \{!_s A\}$, for each $s \in \mathcal{I}$.

Proof. Let $A \in Fm$ and $s \in \mathcal{I}$.

Let $!_sB \in \square_s \bigvee \{A\}$, then $!_sB \to A$, then $!_sB \to !_sA$ by promotion. So, $!_sB \in \bigvee \{!_sA\}$. Let $C \in \bigvee \{!_sA\}$, then $C \to !_sA$, so $!_sC \to !_sA$ by dereliction, but $!_sA \to A$, hence $!_sC \to A$ by cut. So, $!_sC \in \square_s \bigvee \{A\}$.

Lemma 9.

Let $i, j \in I$ and $i \leq j$, then for all $A \in Fm$, $\Box_j(\bigvee \{A\}) \subseteq \Box_i(\bigvee \{A\})$.

Proof.

Let $i, j \in I$ and $i \leq j$. Then for all $A \in Fm$, $!_j A \to !_i A$ by promotion. Then $\bigvee \{!_j A\} \subseteq \bigvee \{!_i A\}$, so $\Box_j (\bigvee \{A\}) \subseteq \Box_i (\bigvee \{A\})$.

Lemma 10.

- 1. Let $s \in W$, then for all $A \subseteq Fm$, $\square_s\{A\} \subseteq \{1\}$;
- 2. Let $s \in E$, then $\Box_s(\bigvee \{A\}) \cdot \bigvee \{B\} = \bigvee \{B\} \cdot \Box_s(\bigvee \{A\})$.
- 3. Let $s \in C$, then $(\Box_s \bigvee A \cdot \bigvee B) \cup (\bigvee B \cdot \Box_s \bigvee A) \subseteq \Box_s \bigvee A \cdot \bigvee B \cdot \Box_s \bigvee A$, for all $B \subseteq Fm$.

Proof.

Follows from $!_s A \to \mathbf{1}$, so $s \in W$;

Follows from $!_s A \bullet B \leftrightarrow B \bullet !_s A$;

Follows from $!_s A \bullet B \to !_s A \bullet B \bullet !_s A$ and similarly for $B \bullet !_s A$.

Definition 15.

Let Q be a syntactic quantale as proposed above and $\mathcal{I} = \langle I, \leq, W, C, E \rangle$ be a subexponential signature.

We define a map $\Box: \mathcal{I} \to Mod_{\mathcal{Q}}$ as follows: $\Box(i)(\bigvee\{A\}) = \{!_iB \mid !_iB \to A\}.$

Lemma 11. \square *is a subexponential interpretation.*

Proof. Follows from lemmas above.

Lemma 12.

Let Q be a quantale constructed above and \Box_1, \ldots, \Box_n be a family of quantic conuclei on Q. Then there exist a model $\langle Q, \llbracket. \rrbracket \rangle$, such that $\llbracket A \rrbracket = \bigvee \{A\}, A \in Fm$.

Proof.

We define an interpretaion as follows:

- 1. $[\![p_i]\!] = \bigvee \{p_i\}$
- 2. $[1] = \bigvee \{1\}$
- 3. $\llbracket A \bullet B \rrbracket = \bigvee \{A \bullet B\}$
- 4. $[A/B] = \bigvee \{A/B\}$
- 5. $[B A] = \bigvee \{B A\}$
- 6. $[A\&B] = \bigvee \{A\&B\}$
- 7. $[A \lor B] = \bigvee \{A \lor B\}$

8.
$$[[!_s A]] = \Box(s)(\bigvee \{A\}) = \bigvee \{!_s A\}.$$

Theorem 3. $\Gamma \models A \Rightarrow \Gamma \rightarrow A$.

Proof. Follows from lemmas above.

Relational semantics 4

Definition 16.

Let A be a set. Then relational quantale on A is a tuple $Q = \langle A, \mathcal{I} \rangle$ where $A \subseteq 2^{A \times A}$:

- $\langle \mathcal{A}, \subseteq \rangle$ is a complete semi-lattice;
- Multiplication is defined as $R \circ S = \{\langle a, c \rangle \mid \exists b \in A, \langle a, b \rangle \in R \text{ and } \langle b, c \rangle \in S\}$
- $\langle \mathcal{A}, \circ, \mathcal{I} \rangle$ is a monoid;
- For each indexing set J, $R \circ \bigvee_{j \in J} S_j = \bigvee_{j \in J} (R \circ S_j)$ and $\bigvee_{j \in J} R_j \circ S = \bigvee_{j \in J} (R_j \circ S)$.

Proposition 6.

Let Q_1 , Q_2 be quantales and $S \subseteq Q_1$ is a subquantale of Q_2 .

Then, if $f: \mathcal{Q}_1 \to \mathcal{Q}_2$ is a quantale homomorphism, then $f(\mathcal{S}) \subseteq \mathcal{Q}_2$ is a subquantale of \mathcal{Q}_2 .

Proof. It is clearly that $f(S) \subseteq Q_2$ is a submonoid of Q_2 .

Let $a \in S$, so $\bigvee a \in S$, but $f(a) \in f(S)$, so $f(\bigvee a) = \bigvee (f(a)) \in f(S)$, so f(S) is closed under joins, so f(S) is a subquantale of Q_2

Theorem 4.

Let $Q = \langle A, \leq, \cdot, \bigvee \rangle$ be a unital quantale and S is a subquantale of Q.

Then $\langle \mathcal{Q}, \square_{\mathcal{S}} \rangle$ is isomorphic to some relational quantale of A wit some quantic conucleus $\hat{\square}$.

Proof. Consider a relational quantale proposed by Brown and Gurr. This quantale is 4-tuple $\theta(\mathcal{Q}) = \langle \mathcal{R}, \subseteq, \circ, \bigvee \rangle$ defined as follows:

- 1. $\theta(a) = \{\langle b, c \rangle \mid b \leq a \cdot c\};$
- 2. $\theta(a \cdot b) = \theta(a) \circ \theta(b)$;
- 3. $\theta(\bigvee a) = \bigvee \theta(a)$;
- 4. $\theta(\varepsilon) = \{\langle b, c \rangle \mid b \cdot \varepsilon \leqslant c\} = \{\langle b, c \rangle \mid b \leqslant c\}$

Let $S \subseteq Q$, we define $\Box a = \{s \mid s \in S, s \leq a\}$ is quantic conucleus.

So, $\theta(S) \subseteq \theta(Q)$ is a subquantale of $\theta(Q)$.

Let us define $\theta(\Box)\theta a := \bigvee \{\theta s \mid \theta s \in \theta S, \theta s \subseteq \theta a\}$, so

$$\theta(\Box a) = \{\langle p, q \rangle \mid p \leqslant \Box a \cdot q\} =$$

$$\{\langle p,q\rangle \mid p\leqslant \bigvee \{s\mid s\in S, s\leqslant a\}\cdot q\}=$$

$$\theta(\bigvee\nolimits_{s\in S,s\leqslant a}s)=$$

$$\bigvee_{s \in S, s \leqslant a} \theta(s) =$$

$$\bigvee_{s \in S, s \leqslant a} \theta(s) =$$

$$\bigvee \{\theta(s) \mid s \in S, s \leqslant a\} =$$

$$\bigvee \{\theta(s) \mid \theta(s) \in \theta(S), \theta(s) \subseteq \theta(a)\} = \theta(\Box)\theta(a)$$

Theorem 5. $\Gamma \models A$, then $L_1^* \wedge \vee_{S4} \vdash \Gamma \rightarrow A$

Definition 17. Let W be a set. A Kripke frame is a 3-tuple $W = \langle W, R, I \rangle$, where R is a ternary relation on W and I is an unary relation on W with additional requirements:

- 1. $R^2a(bc)d \Leftrightarrow R^2(ab)cd$;
- 2. $I(b) \Leftrightarrow Raba \& Rbaa;$
- 3. $a \leq b \Leftrightarrow I(c) \& Rcab;$

4.

Definition 18. A Kripke model is a triple $\mathcal{M} = \langle \mathcal{W}, v \rangle$, where \mathcal{W} is a Kripke frame and $v: Tp \to 2^W$.

A forcing relation is defined as follows:

- 1. $\mathcal{M}, w \Vdash p_i \Leftrightarrow w \in v(p_i);$
- 2. $\mathcal{M}, w \Vdash \mathbf{1} \Leftrightarrow I(w)$;
- 3. $\mathcal{M}, w \Vdash A \bullet B \Leftrightarrow \exists u, v \in W, Ruvw \ and \ W, u \Vdash A \ and \ W, v \Vdash B;$
- 4. $\mathcal{M}, w \Vdash A \backslash B \Leftrightarrow \forall u, v \in W, Ruwv \ and \ \mathcal{W}, u \Vdash A \ implies \ \mathcal{W}, v \Vdash B;$
- 5. $\mathcal{M}, w \Vdash B/A \Leftrightarrow \forall u, v \in W, Rwuv \ and \ W, u \Vdash A \ implies \ W, v \Vdash B;$
- 6. $\mathcal{M}, w \Vdash A \lor B \Leftrightarrow \exists u, v \in W, Swuv \ and \ W, u \Vdash A \ and \ W, v \Vdash B;$
- 7. $\mathcal{M}, w \Vdash A \land B \Leftrightarrow \mathcal{W}, w \Vdash A \text{ and } \mathcal{W}, w \Vdash A;$
- 8. $\mathcal{M}, w \Vdash \Gamma \to A \Leftrightarrow \mathcal{W}, w \Vdash \bullet \Gamma \text{ implies } \mathcal{W}, w \Vdash A.$

Theorem 6. Soundness

Let \mathbb{F} be a class of Kripke frames, then $Log(\mathbb{F}) = L_1^* \wedge \vee$.

Proof.

- 1. Let $\Gamma \to A$. By IH, for each $\mathcal{W}, w \Vdash \Gamma \to A$.
- 2. Let $\Gamma, A, \Delta \to C$ and $\Gamma, B, \Delta \to C$,
- 3. Let $\Gamma \to A$ and $\Gamma \to B$
- 4. Let $\Gamma \to A_1 \wedge A_2$, so $\mathcal{W}, w \Vdash \Gamma \to A_i$, i = 1, 2.

Theorem 7. Strong completeness

 $\Gamma \models A \text{ implies that } L_1^* \land \lor \vdash \Gamma \rightarrow A$

Proof.

Definition 19. Minimal normal modal Lambek calculus (LK) is $L_1^* \wedge \vee$ with additional rule:

$$\frac{\Gamma \to A}{!\Gamma \to !A}$$

Definition 20. A modal Kripke frame is a 4-tuple $W_! = \langle W, R, Q, I \rangle$, where Q is a preorder on W, a Kripke model is tuple $\mathcal{M}\langle \mathcal{W}_!, v \rangle$. A forcing relation for ! is defined as follows:

$$\mathcal{M}, w \Vdash !A \Leftrightarrow \forall v, Q(w, v) \Rightarrow \mathcal{W}, v \Vdash A;$$

Theorem 8. Soundness Let \mathbb{F} be a class of modal Kripke frames, then $Log(\mathbb{F}) = L_1^* \wedge \vee_{\mathbf{S4}}$.

$$\Gamma \models A$$
, then $L_1^* \wedge \vee_{\mathbf{S4}} \vdash \Gamma \to A$