## ACÁMICA

#### TEMA DEL DÍA

## Series de tiempo

Cuando podemos ver cómo una magnitud cambia en el tiempo, los análisis se hacen más interesantes y, a veces, complejos. Por suerte, las series de tiempo tienen una historia asegurada.



## **Agenda**

Daily

Explicación: Componentes de una Serie de Tiempo

**Break** 

Hands-on training

Cierre



# **Daily**





#### **Daily**

### Sincronizando...

#### **Bitácora**



¿Cómo te ha ido? ¿Obstáculos? ¿Cómo seguimos?

#### Challenge



¿Cómo te ha ido? ¿Obstáculos? ¿Cómo seguimos?



# Repaso de la bitácora Series de tiempo





## ¿Qué es una serie temporal?

Variable medida secuencialmente en el tiempo.



Pasajeros internacionales, Pan Am, EEUU, 1949 - 1960. Fuente: Introductory Time Series With R

## ¿Qué podemos hacer con las series de tiempo?

#### Clasificación/Regresión

- Tiempo para un terremoto
- Etc.

#### Forecasting - Predicción a futuro

- Pronóstico del clima
- Valor del dólar, moneda u acción a futuro
- Tráfico en una página web
- Compras de un negocio, empresa, etc.
- Etc.

#### Detección de puntos de quiebre

- Devaluación
- Etc.



## Otras aplicaciones · Speech recognition



## Series de tiempo · Tipos





Temperatura promedio Buenos Aires

Cotización histórica del Bitcoin. Fuente

**Temperatura**: proceso limitado por las características naturales del problema. Serie de tiempo con "estructura", periódica o semiperiódica.

**Bitcoin**: proceso con alto grado de aleatoriedad, más difícil de modelar

| Tiempo           | Señal            |
|------------------|------------------|
| t <sub>1</sub>   | У <sub>1</sub>   |
| t <sub>2</sub>   | У <sub>2</sub>   |
| t <sub>3</sub>   | У <sub>3</sub>   |
| t <sub>4</sub>   | У <sub>4</sub>   |
|                  |                  |
| t <sub>N-1</sub> | У <sub>N-1</sub> |
| t <sub>N</sub>   | У <sub>N</sub>   |

 N es la cantidad de puntos que tiene la serie de tiempo, asociada a la ventana de tiempo.

#### Tiempo de muestreo (mejor si es siempre igual)



- N es la cantidad de puntos que tiene la serie de tiempo, asociada a la ventana de tiempo.
- La diferencia entre dos tiempos consecutivos está asociada a la frecuencia de muestreo

#### Tiempo de muestreo (mejor si es siempre igual)



- N es la cantidad de puntos que tiene la serie de tiempo, asociada a la ventana de tiempo.
- La diferencia entre dos tiempos consecutivos está asociada a la frecuencia de muestreo
- La variable "temporal" no siempre tiene que ser el tiempo

# Componentes de una Serie





Tendencia - El comportamiento a largo plazo de la serie.
 ¿Tiende a crecer o decrecer? ¿Es estable (estacionaria en la media)?
 La tendencia no necesariamente tiene por qué ser lineal.

- Tendencia El comportamiento a largo plazo de la serie.
  ¿Tiende a crecer o decrecer? ¿Es estable (estacionaria en la media)?
  La tendencia no necesariamente tiene por qué ser lineal.
- **Estacionalidad** Cuando existen ciertos efectos sobre la serie que se repiten regularmente (alrededor de la misma fecha, por ejemplo) decimos que es un efecto estacional.

A veces, pueden haber componentes que se repitan (cíclicos) pero que no sean estacionales.

- Tendencia El comportamiento a largo plazo de la serie.
  ¿Tiende a crecer o decrecer? ¿Es estable (estacionaria en la media)?
  La tendencia no necesariamente tiene por qué ser lineal.
- Estacionalidad Cuando existen ciertos efectos sobre la serie que se repiten regularmente (alrededor de la misma fecha, por ejemplo) decimos que es un efecto estacional.
   A veces, pueden haber componentes que se repitan (cíclicos) pero que no sean estacionales.
- Ruido y Anomalías En general, lo que no entra dentro de las componentes anteriores.

- Tendencia El comportamiento a largo plazo de la serie.
  ¿Tiende a crecer o decrecer? ¿Es estable (estacionaria en la media)?
  La tendencia no necesariamente tiene por qué ser lineal.
- Estacionalidad Cuando existen ciertos efectos sobre la serie que se repiten regularmente (alrededor de la misma fecha, por ejemplo) decimos que es un efecto estacional.
   A veces, pueden haber componentes que se repitan (cíclicos) pero que no sean estacionales.
- **Ruido y Anomalías** En general, lo que no entra dentro de las componentes anteriores.

Existen varias formas de modelar cómo se combinan estos componentes



Fuente: Tendencia, estacionalidad, promedio móvil, modelo regresivo automático: mi viaje a datos de series temporales con código interactivo

# Hands-on training





# Hands-on training

DS\_Bitácora\_41\_Series\_de\_Tiempo.ipynb

Sección 2



## Dos procesos que pueden engañarnos

Ruido Blanco Caminata al Azar



### **Ruido Blanco**

Serie simulada de ruido blanco.

No tiene tendencia, pero sí parece tener una componente estacional. Sin embargo, esto es producto del azar.



Fuente: Introductory Time Series With R.

## Caminata al Azar

Gráfico de una caminata aleatoria simulada.

La serie exhibe una tendencia creciente y hasta parece tener cierta estacionalidad. Sin embargo, nuevamente, esto es puramente estocástico (azaroso).



Fuente: Introductory Time Series With R.

## Para la próxima

- Avanza con el notebook de hoy.
- Lee la bitácora 42 y carga las dudas que tengas al Trello.

## ACÁMICA