3.20 1) Si une limite a existe, alors elle vérifie l'équation

$$a^2 = a$$

$$a^2 - a = 0$$

$$a\left(a-1\right)=0$$

de sorte que cette limite ne peut valoir que 0 ou 1.

2) (a) $k = \frac{1}{2}$

Les premiers termes de la suite sont $u_1 = \frac{1}{2}$, $u_2 = (\frac{1}{2})^2 = \frac{1}{4}$, $u_3 =$ $(\frac{1}{4})^2 = \frac{1}{16}, \ldots$ de sorte que la suite $(u_n)_{n \in \mathbb{N}}$ semble manifestement décroissante et minorée par 0.

i. Montrons par récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante. L'initialisation est clairement établie : $u_1 > u_2 > u_3$. L'hypothèse de récurrence $u_n > u_{n+1}$ implique aussitôt $(u_n)^2 >$ $(u_{n+1})^2$, c'est-à-dire $u_{n+1} > u_{n+2}$.

ii. Montrons par récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ est minorée par 0. L'initialisation est manifeste : $u_1 > 0$.

L'hypothèse de récurrence $u_n > 0$ implique directement $(u_n)^2 > 0$ 0, à savoir $u_{n+1} > 0$.

Puisque la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée, elle converge. Vu que $u_1 = \frac{1}{2}$ et que la suite est décroissante, sa limite ne peut pas être 1; c'est pourquoi elle ne peut converger que vers 0.

(b) k = 1

La suite est constante : $u_n = 1$ pour tout $n \in \mathbb{N}$.

En effet, si $u_n = 1$, alors $u_{n+1} = (u_n)^2 = 1^2 = 1$.

La suite constante $(u_n)_{n\in\mathbb{N}}$ converge de toute évidence vers 1.

(c) k = 2

Montrons par récurrence que $u_n = 2^{2^{n-1}}$ pour tout $n \in \mathbb{N}$.

Initialisation: $u_1 = 2 = 2^1 = 2^{2^0} = 2^{2^{1-1}}$

Hérédité: Supposons que
$$u_n = 2^{2^{n-1}}$$
 pour un certain $n \in \mathbb{N}$.
$$u_{n+1} = (u_n)^2 = \left(2^{2^{n-1}}\right)^2 = 2^{2 \cdot 2^{n-1}} = 2^{2^1 \cdot 2^{n-1}} = 2^{2^{1+n-1}} = 2^{2^n}$$

$$= 2^{2^{(n+1)-1}}$$

La suite $(u_n)_{n\in\mathbb{N}}$ n'est donc pas majorée, car quel que soit $M\in\mathbb{R}$, il existe $n \in \mathbb{N}$ tel que $u_n = 2^{2^{n-1}} > M$.

Par conséquent, la suite $(u_n)_{n\in\mathbb{N}}$ diverge, car l'exercice 3.8 a prouvé que toute suite convergente est bornée.