PHOENIX: Pauli-based High-level Optimization Engine for Instruction Execution on NISQ Devices

Algorithm 1: Pauli Strings Simplification in BSF **Input**: Pauli strings list *pls* Output: Reconfigured circuit components list cfg 1 $cfg \leftarrow \emptyset$; $bsf \leftarrow BSF(pls)$; $cliffs_with_locals \leftarrow \emptyset$; 2 while bsf. TOTALWEIGHT() > 2 do $local_bsf \leftarrow bsf.POPLOCALPAULIS();$ $C \leftarrow \emptyset$; // Clifford2Q candidates $B \leftarrow \emptyset$; // Each element of \boldsymbol{B} results 5 from applying each Clifford2Q candidate on bsf $costs \leftarrow \emptyset$; // Cost functions calculated on each element of ${\it B}$ for cg in CLIFFORD_2Q_SET do 7 for i, j in COMBINATIONS(RANGE(n), 2) do $cliff \leftarrow cg.ON(i,j)$; // qubits acted on $bsf' \leftarrow bsf$.APPLYCLIFFORD2Q(cliff); 10 $cost \leftarrow CALCULATEBSFCost(bsf');$ 11 C.APPEND(cliff); 12 B.APPEND(bsf');13 costs.APPEND(cost); 14 end 16 $bsf \leftarrow BSFWITHMINCOST(B, costs);$ 17 $cliff \leftarrow CLIFFORDWITHMINCOST(C, costs);$ 18 19 cliffs_with_locals.APPEND((cliff, local_bsf)); 20 end 21 cfg.APPEND(bsf); 22 for cliff, local_bsf in cliffs_with_locals do // Clifford2Q operators are added as conjugations, with local Pauli strings peeled before each epoch cfg.PREPEND(cliff); 23 cfg.APPEND(local_bsf); 24

Abstract—Quantum computing ...

cfg.APPEND(cliff);

25 | 26 end

We propose a Pauli-based High-level Optimization ENgine for Instruction eXecution (PHOENIX) of Hamiltonian simulation programs on NISQ devices

I. Introduction

Quantum computing ...

II. MOTIVATION

[ZY: Motivation and preliminary knowledge]

TABLE I UCCSD BENCHMARK SUITE.

Benchmark	#Qubit	#Pauli	$\mathbf{w}_{\mathrm{max}}$	#Gate	#CNOT	Depth	Depth-2Q
CH2_cmplt_BK	14	1488	10	37780	19574	23568	19399
CH2_cmplt_JW	14	1488	14	34280	21072	23700	19749
CH2_frz_BK	12	828	10	19880	10228	12559	10174
CH2_frz_JW	12	828	12	17658	10344	11914	9706
H2O_cmplt_BK	14	1000	10	25238	13108	15797	12976
H2O_cmplt_JW	14	1000	14	23210	14360	16264	13576
H2O_frz_BK	12	640	10	15624	8004	9691	7934
H2O_frz_JW	12	640	12	13704	8064	9332	7613
LiH_cmplt_BK	12	640	10	16762	8680	10509	8637
LiH_cmplt_JW	12	640	12	13700	8064	9342	7616
LiH_frz_BK	10	144	9	2890	1442	1868	1438
LiH_frz_JW	10	144	10	2850	1616	1985	1576
NH_cmplt_BK	12	640	10	15624	8004	9691	7934
NH_cmplt_JW	12	640	12	13704	8064	9332	7613
NH_frz_BK	10	360	9	8303	4178	5214	4160
NH_frz_JW	10	360	10	7046	3896	4640	3674

TABLE II QAOA BENCHMARKING VERSUS 2QAN.

QAOA benchmarks		#CNOT		Depth		#SWAP		Routing overhead		
Bench	#Qubit	#Pauli	2QAN	Phx	2QAN	Phx	2QAN	Phx	2QAN	Phx
Rand-16	16	32	168	150	85	52	37	29	2.62	2.34
Rand-20	20	40	217	187	85	49	47	39	2.71	2.34
Rand-24	24	48	274	257	100	67	63	56	2.85	2.68
Reg3-16	16	24	149	99	61	28	44	17	3.10	2.06
Reg3-20	20	30	172	128	46	30	46	23	2.87	2.13
Reg3-24	24	36	218	158	62	34	62	30	3.03	2.19

III. OUR PROPSAL: PHOENIX

A. Overall framework

B. BSF simplification for each IR group

C. Ordering of IR groups

IV. EVALUATION

A. Experimental settings

B. Benchmarks

1) Metrics:

2) Baselines:

TKET

PAULIHEDRAL

TETRIS

Fig. 1. Bechmarking on logical-level synthesis (all2all topology)

Fig. 2. QAOA benchmarking

Fig. 3. Hardware-aware compilation for limited-topology NISQ device

Fig. 4. Algorithmic error

Fig. 5. SU(4) ISA comparison

- C. Logical-level compilation
- D. Breakdown analysis
- E. QAOA benchmarking
- F. Hardware-aware compilation
- G. Diverse ISA comparison
- H. Real system evaluation
- I. Scalability