

Inteligência Artificial

Profa. Patrícia R. Oliveira EACH / USP

Parte 5 – Aprendizado Conexionista: Redes Neurais Artificiais (Modelos Perceptron)

- Modelos que incorporam funções matemáticas (complexas).
- Podem ser usadas para a tarefa de classificação:
 - tomam uma instância como entrada e produzem uma saída, que é interpretada como a classe estimada pelo modelo.

Aprendizado de funções

- Aprendizado do mapeamento de instâncias em categorias (classes):
 - cada categoria é dada por um número.
 - ou por um intervalo de valores reais (por ex., 0.5 0.9).
- Exemplos de aprendizado de funções:
 - Entrada = 1, 2, 3, 4 Saída = 1, 4, 9, 16
 - Aqui, o conceito a ser aprendido é o quadrado dos números inteiros.
 - Entrada = [1,2,3], [2,3,4], [3,4,5], [4,5,6]
 - Saída = 1, 5, 11, 19
 - Aqui, o conceito é: [a,b,c] -> a*c b

Exemplo: Classificando Veículos

- Entrada para a função: dados de pixels obtidos de imagens de veículos.
 - Saída: números: 1 para carro; 2 para ônibus; 3 para tanque

INPUT INPUT INPUT INPUT

OUTPUT = 3

OUTPUT = 2

OUTPUT = 1

OUTPUT=1

Por que usar Redes Neurais?

- Motivação biológica:
 - O cérebro faz com que tarefas de classificação pareçam fáceis.
 - O processamento cerebral é realizado por redes de neurônios.
 - Cada neurônio é conectado a vários outros neurônios.
- Redes Neurais "Naturais":
 - A entrada de um neurônio é formada pelas saídas de vários outros neurônios.
 - Um neurônio é ativado se a soma ponderada de suas entradas > limiar.

O neurônio biológico

- O neurônio recebe impulsos (sinais) de outros neurônios por meio dos seus <u>dendritos</u>.
- O neurônio envia impulsos para outros neurônios por meio do seu axônio.
- O axônio termina num tipo de contato chamado <u>sinapse</u>, que conecta-o com o dendrito de outro neurônio.

O neurônio biológico

- A sinapse libera substâncias químicas, chamadas de <u>neurotransmissores</u>, em função do pulso elétrico disparado pelo axônio.
- O neurônio envia impulsos para outros neurônios por meio do seu axônio.
- O fluxo de neurotransmissores nas sinapses pode ter um efeito excitatório ou inibitório sobre o neurônio receptor.

Processo de aprendizado

- O aprendizado ocorre por sucessivas modificações nas sinapses que interconectam os neurônios, em função da maior ou menor liberação de neurotransmissores.
- A medida que novos eventos ocorrem, determinadas ligações entre neurônios são reforçadas, enquanto outras são enfraquecidas.
- Este ajuste nas ligações entre os neurônios durante o processo de aprendizado é uma das mais importantes características das redes neurais artificiais.

Redes Neurais Artificiais (RNAs)

- Redes Neurais Artificiais (RNAs)
 - Hierarquia similar ao funcionamento do sistema biológico.
 - Neurônios que podem ser ativados por estímulos de entrada.
 - Mas essa analogia não vai muito longe...
 - Cérebro humano: aproximadamente 100.000.000.000 de neurônios.
 - RNAs: < 1000 geralmente

Ideia Geral

2º semestre 2011

Processamento das RNAs

- Cada unidade da rede realiza o mesmo cálculo.
 - geralmente baseado na soma ponderada das entradas na unidade.
- O conhecimento obtido pela rede fica armazenado nos pesos correspondentes a cada uma de suas unidades (neurônios).
- Representação "Caixa Preta":
 - É difícil extrair o conhecimento sobre o conceito aprendido.

Aprendizado Supervisionado em RNAs

- <u>Dados</u>: conjunto de exemplos rotulados e representados numericamente.
- <u>Tarefa</u>: treinar uma rede neural usando esses exemplos.
 - O desempenho deve ser medido pela capacidade da rede em produzir saídas corretas para dados não contidos no conjunto de treinamento.

Aprendizado Supervisionado em RNAs

- Etapas preliminares ao treinamento:
 - escolha da arquitetura de rede correta.
 - número de neurônios
 - número de camadas ocultas
 - escolha da função de ativação (a mesma) para cada neurônio.
- A etapa de treinamento resume-se a:
 - ajustar os pesos das conexões entre as unidades para que a rede produza saídas corretas.

Perceptrons

- O tipo mais simples de Rede Neural.
- Possui um único neurônio de saída.
 - Considera uma soma ponderada das entradas.
 - A função de ativação da unidade calcula a saída da rede.
 - Exemplo: unidade com threshold (limiar) linear.

$$-Netinput = \sum_{i=1}^{n} x_i w_i$$
$$-if \ Netinput \ge T \ then \ y = 1 \ else \ y = 0$$

Perceptrons

Algumas funções de transferência:

- Função Step (degrau):
 - Saída +1 se Netinput > Threshold T
 - Saída –1 caso contrário
 - Aqui, os dados binários são representados por +1 e -1
- Problema principal: como aprender os valores dos pesos da rede?

Perceptrons: Exemplo

- Classificação de imagens preto e branco representadas por uma matriz de pixels 2x2.
 - Em "clara" ou "escura".
- Pode-se representar o problema por essa regra:
 - Se apresentar 2, 3 ou 4 pixels brancos, é "clara".
 - Se apresentar 0 ou 1 pixels brancos, é "escura".
- Arquitetura do Perceptron:
 - Quatro unidades de entrada, uma para cada pixel.
 - Uma unidade de saída: +1 para "clara", -1 para "escura".

Perceptrons: Exemplo

- Exemplo de entrada: $x_1=-1$, $x_2=1$, $x_3=1$, $x_4=-1$ -S=0.25*(-1)+0.25*(1)+0.25*(1)+0.25*(-1)=0
- 0 > -0.1, portanto a saída para a rede é +1
 - A imagem é classificada como "clara"

Aprendizagem em Perceptrons

- É necessário aprender:
 - Os pesos entre as unidades de entrada e saída.
 - O valor do threshold.
- Para tornar os cálculos mais fáceis:
 - Considera-se o threshold como um peso referente a uma unidade de entrada especial, cujo sinal é sempre 1 (ou -1).
 - Agora, o único objetivo resume-se a aprender os pesos da rede.

Representação Alternativa para Perceptrons

Perceptrons: Algoritmo de Aprendizagem (1)

- Os valores dos pesos são inicializados aleatoriamente, geralmente no intervalo (-1, 1).
- Para cada exemplo de treinamento E:
 - Calcule a saída observada da rede o(E).
 - Se a saída desejada t(E) for diferente de o(E):
 - Ajuste os pesos da rede, para que o(E) chegue mais próximo de t(E).
 - Isso é feito aplicando-se a regra de aprendizado do Perceptron.

Perceptrons: Algoritmo de Aprendizagem (2)

- O processo de aprendizado não para necessariamente depois de todos os exemplos terem sido apresentados.
 - Repita o ciclo novamente (uma "época").
 - Até que a rede produza saídas corretas (ou boas o suficiente).
 - Considerando todos os exemplos no conjunto de treinamento.

Regra de Aprendizagem para Perceptrons

- Quando t(E) for diferente de o(E)
 - Adicione Δ_i ao peso w_i
 - Em que $\Delta_i = \eta(t(E) o(E))x_i$
 - Faça isso para todos os pesos da rede.

Regra de Aprendizagem para Perceptrons

Interpretação:

(t(E) - o(E)) será igual a +2 ou -2

- Portanto, pode-se pensar na adição de Δ_i como uma movimentação do peso em uma determinada direção.
 - que irá melhorar o desempenho da rede com relação a E.
- Multiplicação por x_i
- O movimento aumenta proporcionalmente ao sinal de entrada.

Taxa de Aprendizado

- O parâmetro η é chamado de taxa de aprendizagem.
 - Geralmente escolhido como uma pequena constante entre 0 e 1 (por exemplo, 0.1).
- Controla o movimento dos pesos.
 - não deixa haver uma mudança grande para um único exemplo.
- Se uma mudança grande for mesmo necessária para que os pesos classifiquem corretamente um determinado exemplo:
 - Essa deve ocorrer graduamente, em várias épocas.

• 1) Suponha que a rede Percepton em treinamento apresente, em um dado instante de tempo, o seguinte conjunto de pesos:

 2) Use o exemplo de treinamento, e₁, abaixo, para atualizar os pesos da rede:

- Use a taxa de aprendizado $\eta = 0.1$

2º semestre 2011

Solução:

- Aqui, $x_1 = -1$, $x_2 = 1$, $x_3 = 1$, $x_4 = -1$
- Propagando essa informação através da rede:

•
$$S = (-0.5 * 1) + (0.7 * -1) + (-0.2 * +1) + (0.1 * +1) + (0.9 * -1) = -2.2$$

- Portanto, a saída da rede é o(e₁) = -1 ("escura")
- Mas deveria ter sido +1 ("clara")
 - Portanto $t(e_1) = +1$ _{2° semestre 2011}

- Cálculo dos valores de erro:
 - $\Delta_0 = \eta(t(E)-o(E))x_0$
 - = 0.1 * (1 (-1)) * (1) = 0.1 * (2) = 0.2
 - $\Delta_1 = \eta(t(E)-o(E))x_1$
 - = 0.1 * (1 (-1)) * (-1) = 0.1 * (-2) = -0.2
 - $\Delta_2 = \eta(t(E)-o(E))x_2$
 - = 0.1 * (1 (-1)) * (1) = 0.1 * (2) = 0.2
 - $\Delta_3 = \eta(t(E)-o(E))x_3$
 - = 0.1 * (1 (-1)) * (1) = 0.1 * (2) = 0.2
 - $\Delta_4 = \eta(t(E)-o(E))x_4$

$$= 0.1 * (1 - (-1)) * (-1) = 0.1 * (-2) = -0.2$$

2° semestre 2011

Ajuste dos pesos:

•
$$w'_0 = -0.5 + \Delta_0 = -0.5 + 0.2 = -0.3$$

•
$$w'_1 = 0.7 + \Delta_1 = 0.7 + -0.2 = 0.5$$

•
$$w'_2 = -0.2 + \Delta_2 = -0.2 + 0.2 = 0$$

•
$$w'_3 = 0.1 + \Delta_3 = 0.1 + 0.2 = 0.3$$

•
$$w'_4 = 0.9 + \Delta_4 = 0.9 - 0.2 = 0.7$$

-0.3

Nova configuração da rede:

■ Calcule a saída para o exemplo, e₁, novamente:

$$S = (-0.3 * 1) + (0.5 * -1) + (0 * +1) + (0.3 * +1) + (0.7 * -1) = -1.2$$

- Portanto, a nova saída da rede é o(e1) = -1 ("escura")
- Ainda resulta em classificação errada.
- Mas o valor de S já está mais próximo de zero (de -2.2 para -1.2)
- Em poucas épocas, esse exemplo será classificado corretamente.

 2º semestre 2011

Exemplo: Aprendizado de Funções Booleanas

- Entradas assumem dois valores posssíveis (+1 ou -1).
- Produz um valor como saída (+1 ou -1).
 - Exemplo 1: Função AND
 - Produz +1 somente se ambas as entradas forem iguais a +1.
 - Exemplo 2: Função OR
 - Produz +1 se pelo menos uma das entradas for igual a +1.

Exemplo: Aprendizado de Funções Booleanas

An ANN for AND

An ANN for OR

Capacidade de Aprendizado da Rede Perceptron

- O que a rede neural Perceptron é capaz de aprender?
 - somente a discriminação de classes que sejam linearmente separáveis.
 - Por exemplo, as funções boolenas AND e OR.

Capacidade de Aprendizado da Rede Perceptron

- Redes Perceptron não conseguem aprender a função XOR.
 - provado em 1969 por Minsky e Papert.
- A função XOR não é linearmente separável.
 - Não é possível traçar uma linha divisória que classifique corretamente todos os pontos.

Redes Perceptron Multicamadas

- Redes Perceptron não são capazes de aprender conceitos complexos.
- Porém, os perceptrons formam a base para a construção de um tipo de rede que pode aprender conceitos mais sofisticados.
 - Redes Perceptron Multicamadas (Multilayer Perceptron
 MLP).
 - Pode-se pensar nesse modelo como sendo uma rede formada por vários neurônios similares ao "tipo perceptron".

Redes Perceptron Multicamadas

- Limitações das unidades Perceptron
 - A regra de aprendizado na MLP baseia-se em cálculo diferencial.
 - Funções do tipo degrau não são diferenciáveis.
 - Não são contínuas no valor do threshold.
 - Uma função de ativação alternativa deve ser considerada.
 - Tem que ser diferenciável.

Unidades com função sigmóide

 Unidades com função de ativação sigmóide podem ser usadas em redes MLP.

• Função sigmóide: $\sigma(x) = \frac{1}{1 + e^{-x}}$

• Derivada da função sigmóide: $\frac{d\sigma(x)}{dx} = \sigma(x)(1)$

Exemplo de MLP

- Considere a seguinte MLP já treinada e que classifica um exemplo como sendo da classe 1 se O1 > O2 e da classe 2, caso contrário.
- Qual a classe estimada pela rede para o exemplo: [10, 30, 20]?

Exemplo de MLP

Primeiro, calcule as somas ponderadas para a camada oculta:

$$S_{H1} = (0.2*10) + (-0.1*30) + (0.4*20) = 2-3+8 = 7$$

 $S_{H2} = (0.7*10) + (-1.2*30) + (1.2*20) = 7-6+24= -5$

- A seguir, calcule a saída da camada oculta:
 - Usando: $\sigma(S) = 1/(1 + e^{-S})$
 - $\sigma(S_{H1}) = 1/(1 + e^{-7}) = 1/(1+0.000912) = 0.999$
 - $\sigma(S_{H_2}) = 1/(1 + e^5) = 1/(1+148.4) = 0.0067$

Exemplo de MLP

A seguir, calcule as somas ponderadas para a camada de saída:

$$S_{01} = (1.1 * 0.999) + (0.1 * 0.0067) = 1.0996$$

$$S_{02} = (3.1 * 0.999) + (1.17 * 0.0067) = 3.1047$$

- Finalmente, calcule a saída da rede:
 - Usando: $\sigma(S) = 1/(1 + e^{-S})$

•
$$\sigma(S_{01}) = 1/(1 + e^{-1.0996}) = 1/(1+0.333) = 0.750$$

•
$$\sigma(S_{02}) = 1/(1 + e^{-3.1047}) = 1/(1+0.045) = 0.957$$

- Como a saída do neurônio O2 > saída do neurônio O1
 - a classe estimada para o exemplo é a classe 2.

Características da MLP

- Rede Neural do tipo "feedforward":
 - Alimentação de entradas pela camada mais à esquerda;
 - Propagação dos sinais para frente através da rede;
- Neurônios entre camadas vizinhas estão completamente conectados.

Características da MLP

- Camada de entrada: exemplos (sinais) de entrada.
- Camada(s) oculta(s): necessária(s) para o aprendizado de funções complexas.
- Camada de saída: saídas da rede.

2º semestre 2011

Esquema de Aprendizagem para a rede MLP

- 1) Obtenha um conjunto de dados rotulados.
 - a saída desejada para cada exemplo deve ser conhecida!
- 2) Gere um conjunto de pesos com valores aleatórios para a rede (por exemplo entre -1 e 1).

Enquanto o critério de convergência não for alcançado, faça:

Para todos os exemplos do conjunto de treinamento:

- 3) Apresente um exemplo para a rede e calcule as suas saídas. A diferença entre a saída da rede e a saída desejada é considerada como o valor de <u>erro</u> para essa iteração.
- 4) Ajuste os pesos da rede.
- 5) Volte para o passo 3.

Idéia Geral

- O ajuste de pesos em uma rede MLP se dá por meio da aplicação do algoritmo de aprendizagem <u>Backpropagation</u>.
- Idéia geral: Erro = f(w_{ij})
 - Deseja-se minimizar o valor de Erro.
 - Problema de otimização multidimensional.

- Obs: aqui considera-se uma MLP com apenas uma camada oculta.
- Inicialize todos os pesos da rede com pequenos valores aleatórios.
- Enquanto o critério de convergência não for alcançado, faça:
 - Para todos os exemplos no conjunto de treinamento, faça:
 - 1) Apresente um exemplo para a rede e calcule as suas saídas.
 - 2) Para cada neurônio k, da camada de saída faça:

$$\delta_k \leftarrow o_k (1 - o_k)(t_k - o_k)$$

3) Para cada neurônio h, da camada oculta faça:

$$\delta_h \leftarrow o_h(1-o_h) \sum_{k \in outputs} w_{hk} \delta_k$$

4) Ajuste cada peso wij da rede

$$w_{ij} \leftarrow w_{ij} + \Delta w_{ij}$$
 where $\Delta w_{ij} = \eta \delta_j x_{ij}$

2° semestre 2011

Ajuste dos pesos via Backpropagation

- A notação w_{ii} é usada para:
 - especificar o peso da conexão entre o neurônio i e o neurônio j.
- Para cada exemplo, calcule o ajuste Δw_{ii} para cada peso w_{ii} da rede.
 - e depois adicione Δw_{ii} à w_{ii}
- Para calcular os ajustes, é necessário calcular os termos de erro δ_i para cada i-ésimo neurônio.
 - Primeiro, calcula-se o termo de erro para as unidades na camada de saída;
 - Depois, essas informações são usadas para calcular os termos de erro para as unidades da camada oculta.
- Dessa forma, os erros são propagados de volta através da rede.

Algoritmo Backpropagation - Critério de Parada

- Várias condições podem ser usadas como critério de parada.
 - Pode-se optar por parar depois de um número fixo de iterações.
 - em que uma iteração é definida pela <u>apresentação completa do</u> <u>conjunto de treinamento</u> ("<u>época</u>").
 - Ou até que o erro sobre o conjunto de treinamento esteja abaixo de um determinado <u>limiar</u> ("threshold").
 - Em que o erro é definido como:

$$\frac{1}{2} \sum_{E \in examples} \left(\sum_{k \in out puts} (t_k(E) - o_k(E))^2 \right)$$

 Ou até que o erro sobre um conjunto de validação esteja abaixo de um determinado limiar ("threshold").

Redes MLP para Tarefas de Classificação

- Objetivo: treinar uma rede MLP, utilizando um conjunto de exemplos de treinamento, para classificar corretamente exemplos pertencentes a um conjunto de teste.
- Consideraremos aqui, redes MLP com apenas uma camada oculta e neurônios com função de ativação sigmóide.
- Para modelar a tarefa de classificação usando uma MLP, devem, inicialmente ser escolhidos:
 - O número de neurônios na camada oculta;
 - A maneira com que as unidades de entrada representarão os exemplos;
 - A maneira como os neurônios de saída representarão as classes estimadas.
 - O valor da taxa de aprendizagem (por exemplo, 0.1).

Redes MLP para Tarefas de Classificação

- Para treinar a rede MLP a classificar corretamente um determinado exemplo E, os seguintes passos devem ser executados.
 - Passo 1: Propagar o exemplo E (para frente) através da rede.
 - Passo 2: Calcular os termos de erro δ_i para cada neurônio da rede.
 - Passo 3: Ajustar os pesos da rede.
- O treinamento completo para um problema de classificação consiste em apresentar todo o conjunto de exemplos, várias vezes se necessário, até que o algoritmo de aprendizagem atinja o critério de parada.

Passo 1: propagando um exemplo através da rede

- Passo 1.1) Dado o exemplo E como entrada da rede, determine:
 - as saídas dos neurônios ocultos (que serão os sinais de entrada para as unidades de saída).
 - as saídas dos neurônios de saída (que indicam a estimativa de classe para o exemplo E).

Passo 1: propagando um exemplo através da rede

- Passo 1.2) Registre os valores desejado e obtido para o exemplo E.
 - considere t_i(E) o valor desejado para a unidade de saída i, para o exemplo E.
 - considere o_i(E) o valor obtido para a unidade de saída i, para o exemplo E.
- Para tarefas de classificação, por exemplo:
 - Cada t_i(E) será igual a 0, exceto para um único t_j(E), que será igual a 1.
 - Mas, o_i(E) será, na verdade, um valor real.
- Os valores de saída dos neurônios ocultos h_i também devem ser registrados.

2º semestre 2011

Passo 2: calculando os termos de erro para cada unidade

Passo 2.1) Calcule os termos de erro para cada neurônio de saída k:

$$\delta_k \leftarrow o_k (1 - o_k)(t_k - o_k)$$

Passo 2.2) Calcule os termos de erro para cada neurônio oculto h:

$$\delta_h \leftarrow o_h(1-o_h) \sum_{k \in outputs} w_{hk} \delta_k$$

- Ou seja, para cada unidade oculta h:
 - Some todos os erros das unidades de saída que recebem sinais de h, ponderando esses valores de erro pelos pesos apropriados.
 - Multiplique o resultado dessa somatória por $o_h(1 o_h)$.

Passo 3: ajustando os pesos da rede

- Passo 3.1) Para cada peso de conexão w_{ij} entre uma unidade de entrada i e uma unidade oculta j:
 - Calcule: $\Delta w_{ij} = \eta \delta_j x_{ij}$
 - em que x_{ij} é a i-ésima entrada para a unidade h_{ij} .
- Passo 3.2) Para cada peso de conexão w_{ij} entre uma unidade oculta i e uma unidade de saída j:
 - Calcule: $\Delta w_{ij} = \eta \delta_j x_{ij}$
 - em que x_{ii}, nesse caso, equivale à saída da unidade oculta h_i.
- Finalmente, some Δw_{ij} a todos os pesos w_{ij}.

Considere uma MLP com a seguinte configuração:

- Atualize os pesos dessa rede, supondo que o exemplo E = (10,30,20) seja dado como entrada para o modelo acima.
- Considere ainda que:
 - e deva ser classificado como sendo da classe 1.
 - a taxa de aprendizagem seja $\eta = 0.1$.

A propagação do exemplo E através da rede é resumida pelos seguintes cálculos:

Inpu	it units		Hidden units		Output units		
Unit	Output	Unit	Weighted Sum Input	Output	Unit	Weighted Sum Input	Output
I1	10	H1	7	0.999	01	1.0996	0.750
I2	30	H2	-5	0.0067	02	3.1047	0.957
I3	20			7			

Ainda:

•
$$t_1(E) = 1$$
 e $t_2(E) = 0$

•
$$o_1(E) = 0.750$$
 e $o_2(E) = 0.957$

2° semestre 2011

Algoritmo Backpropagation - Exemplo

Dado que:

•
$$t_1(E) = 1$$
 e $t_2(E) = 0$

•
$$o_1(E) = 0.750$$
 e $o_2(E) = 0.957$

Os termos de erro para os neurônios de saída, são calculados da seguinte forma:

$$\delta_{O1} = o_1(E)(1 - o_1(E))(t_1(E) - o_1(E)) = 0.750(1 - 0.750)(1 - 0.750) = 0.0469$$

$$\delta_{O2} = o_2(E)(1 - o_2(E))(t_2(E) - o_2(E)) = 0.957(1 - 0.957)(0 - 0.957) = -0.0394$$

Exemplo

Dado que:

•
$$\delta_{01} = 0.0469$$
 e $\delta_{02} = -0.0394$

•
$$h_1(E) = 0.999$$
 e $h_2(E) = 0.0067$

- Os termos de erro para os neurônios ocultos, são calculados da seguinte forma:
 - Para H1, realiza-se a somatória:

$$(w_{11} * \delta_{01}) + (w_{12} * \delta_{02}) = (1.1 * 0.0469) + (3.1 * -0.0394) = -0.0706$$

E depois multiplica-se o resultado acima por h1(E)(1-h1(E)):

$$-0.0706 * (0.999 * (1-0.999)) = -0.0000705 = \delta_{H1}$$

Algoritmo Backpropagation - Exemplo

Para H2, realiza-se a somatória:

$$(w_{21} * \delta_{01}) + (w_{22} * \delta_{02}) = (0.1 * 0.0469) + (1.17 * - 0.0394) = -0.0414$$

 E depois multiplica-se o resultado acima por h2(E)(1h2(E)):

$$-0.0414 * (0.067 * (1-0.067)) = -0.00259 = \delta_{H2}$$

Exemplo

 Os cálculos das mudanças de pesos para as conexões entre a camada de entrada e a camada oculta estão resumidos na tabela:

Input unit	Hidden unit	η	δ _H	X,	$\Delta = \eta * \delta_{H} * x_{i}$	Old weight	New weight
I1	H1	0.1	-0.0000705	10	-0.0000705	0.2	0.1999295
I1	H2	0.1	-0.00259	10	-0.00259	0.7	0.69741
I2	H1	0.1	-0.0000705	30	-0.0002115	-0.1	-0.1002115
I2	H2	0.1	-0.00259	30	-0.00777	-1.2	-1.20777
I3	H1	0.1	-0.0000705	20	-0.000141	0.4	0.39999
I3	H2	0.1	-0.00259	20	-0.00518	1.2	1.1948

Exemplo

 Os cálculos das mudanças de pesos para as conexões entre a camada oculta e a camada de saída estão resumidos na tabela:

Hidden unit	Output unit	η	δο	h _i (E)	$\Delta = \eta * \delta_{O} * h_{i}(E)$	Old weight	New weight
H1	01	0.1	0.0469	0.999	0.000469	1.1	1.100469
H1	O2	0.1	-0.0394	0.999	-0.00394	3.1	3.0961
H2	01	0.1	0.0469	0.0067	0.00314	0.1	0.10314
H2	O2	0.1	-0.0394	0.0067	-0.0000264	1.17	1.16998

Leituras

- MITCHELL, T. Machine Learning. McGraw Hill, 1997
 - Capítulo 4: Artificial Neural Networks.