Int. Cl.: BUNDESREPUBLIK DEUTSCHLAND **PATENTAMT** 19 c. 5/16 Deutsche Kl.: 1 534 278 Auslegeschrift 1 P 15 34 278.6-25 (M 58589) Aktenzeicher.: 18. Februar 1966 Armeldetag: Offenlegungstar: 18. November 1971 17. Mai 1973 Au:legetag: Ausstellungspriorität: Unionspriorität 63 27. September 1965 Datum: 8 V. St. v. Amerika Land: ❸ 490520 Aktenzeichen: 0 Metallbohle, insbesondere für behelfsmäßige Fahrbahnen Bezeichnung: ❷ Zusatz zu: **(51)** Ausscheidung aus: **8** Harvey Aluminum (Inc.), Torrance, Calif. (V. St. A.) Anmelder: **(17)** Ruschke, H., Dr.-Ing.; Agular, H., Dipl.-Ing.; Patentanwälte, Vertreter gem. § 16 PatG: 1000 Berlin und 8000 München Harvey, Leo M., Los Angeles, Calif. (V. St. A.) Als Erfinder benannt: **@** Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

US-PS 3 172 508

US-PS 3 175 476

E 01 c, 5/16

(S)

BE-PS 056 132

FR-PS 1 372 596 US-PS 2797449

Patentansprüche:

1. Metallbohle, insbesondere für behelfsmäßige Fahrbahnen od. dgl. mit als Nut bzw. als Feder ausgebildeten Längsseiten und einer Rinne an der Oberseite der Feder sowie einem hakenartig nach unten gebogenen, in die Rinne einer benachbarten Metallbohle greisenden Rand an der oberen 10 Begrenzung der Nut, dadurch gekennzeichnet, daß unterhalb der Rinne (44) eine längs verlaufende Einbuchtung (58) und an der gegenüberliegenden Bohlenseite ein entsprechender Vorsprung (30) angeordnet sind.

2. Metallbohle nach Anspruch 1, dadurch gekennzeichnet, daß die Unterseiten des Vorsprungs (30) und der Einbuchtung (58) in einem Winkel von etwa 10° gegen die Horizontale ge-

3. Metallbohle nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die obere Außenkante der Einbuchtung (58) in einem Winkel von etwa 45° angefast ist.

Die Erfindung betrifft eine Metallbohle insbesondere für behelfsmäßige Fahrbahnen od. dgl. mit als Nut bzw. als Feder ausgebildeten Längsseiten und 35 einer Rinne an der Oberseite der Feder sowie einem hakenartig nach unten gebogenen, in die Rinne einer benachbarten Metallbohle greifenden Rand an der oberen Begrenzung der Nut.

Bekannte Metallbohlen dieser Art (USA.-Patent- 40 schriften 3 172 50S, 3 175 476 und belgische Patentschrift 656 132) werden gegenseitig senkrecht und waagerecht durch den Eingriff der längs verlaufenden Feder in die Nut und des Randes in die Rinne gehalten. Dabei erfolgt die Krastübertragung jedoch 45 in erheblichem Umfang über die obere Begrenzung der Nut. Dies macht eine besonders starke Bemessung an dieser Stelle der Metallbohle erforderlich, um diese Belastung ohne Beschädigung aufnehmen zu können.

Außerdem muß zwischen den zusammenwirkenden Teilen der Metallbohlen ein verhältnismäßig gro-Bes Spiel in senkrechter Richtung vorhanden sein, da die Metallbohlen winkelig zueinander stehend zusammengefügt und dann durch Verschwenken der 55 einen Bohle die Nut und die Feder in den gegenseitigen Eingriff gebracht werden. Dadurch ist eine genaue senkrechte Ausfluchtung der Oberseiten der Platter nicht möglich.

Der Erfindung liegt die Aufgabe zugrunde, eine 60 Metallbohle der erwähnten Art so auszubilden, daß die die Horizontalkräfte aufnehmenden Teile von den Vertikalkräften entlastet sind und ein genaueres Ausrichten der Plattenoberseiten erreicht ist.

Gemäß der Erfindung wird dies bei einer Metall- 65 bohle der eingangs erwähnten Art dadurch erreicht, daß unterhalb der Rinne eine längs verlaufende Einbuchtung und an der gegenüberliegenden Bohlenseite

ein entsprechender Vorsprung angeordnet sind. Bei dieser Metallbohle werden Vertikalkräfte zwischen zwei Metallbohlen durch den sich in die Einbuchtung einer anschließenden Metallbohle erstreckenden Vorsprung aufgenommen. Der nach unten gebogene Rand überträgt dann praktisch nur noch die Horizontalkräfte und kann daher wesentlich schwächer bemessen werden als bei den bekannten Anordnun-

Um bei der Erstellung einer Fahrbahn ein leichteres Einfügen des Vorsprungs in die Einbuchtung und um eine sich bei der Montage einstellende genaue Höhenanpassung zu erreichen, sind vorzugsweise die Unterseiten des Vorsprungs und der Einbuchtung in 15 einem Winkel von etwa 10° gegen die Horizontale geneigt. Ferner kann die obere Außenkante der Einbuchtung in einem Winkel von etwa 45° angefast

In der Zeichnung sind Ausführungsbeispiele der 20 Erfindung dargestellt.

Es zeigen

Fig. I und 2 Querschnitte durch die Meta.lbohle

Fig. 3 zwei benachbarte Metallbohlen.

Das in Fig. 1 gezeigte linke Ende 16 der oberen Platte 18 bildet einen hakenartig nach unten gerichteten Rand 20. Das Ende 16 ist mit einer Schrägfläche 22 versehen, die in einer unter annähernd fünfundvierzig Winkelgraden verlaufenden Ebene 30 liegt. Der Rand 20 erstreckt sich nach unten unter einem Winkel von annähernd sieben Winkelgraden.

Eine lotrechte Wand 24 verbindet die obere Platte 18 und die untere Platte 26 der Metallbohle 12. Der untere linke Arschnitt der Wand 24 hat einen Seitenabschnitt 28, der unter einem Winkel von ungefähr dreißig Winkelgraden abgeschrägt ist. Weiter nach oben hat die Wand 24 einen nach außen gerichteten waagerechten Vorsprung 30. Der Rand 20, das Ende 16, die Wand 24 und der Vorsprung 30 bilden eine Nut 32 zur . ufnahme der Feder 34 einer benachbarten Metallbohle.

Fig. 2 zeigt die an der rechten Seite der benachbarten Metallbohle 12 a vorhandene Feder 34. Die Oberseite der Metallbohle 12 a setzt sich in einer Schrägfläche 39 fort. Die Schrägfläche 39 liegt in einer unter einem Winkel von annähernd fünfundvierzig Winkelgraden zur Waagerechten geneigten Ebene. Die Rinne 44 ist durch die obere Wand 36, den Rinnenboden 40 und den nach oben ragenden Flansch 42 begrenzt. Die Rinne 44 nimmt den Rand 20 der benachbarten Metallbohle auf. Die obere Außenkante der unterhalb der Rinne 44 befindlichen Einbuchtung 58 ist als Fase 46, deren Abschrägung ungefähr fünfundvierzig Winkelgrade beträgt, ausgebildet.

Die untere Platte 48 der Metallbohle 12 a erstreckt sich waagerecht über eine untere Wand 54 hinaus und bildet den Arm 50, der eine abgeschrägte Seite 52 in einer Neigung von annähernd dreißig Winkelgraden hat. Die ui . e Wand 54 verbindet die untere Platte 48 mit dem Flansch 42. Die Oberseite 56 des Armes 50 hat eine Neigung von ungefähr zehn Winkelgraden zur Waagerechten. Der Arm 50, die Verbindungswand 54 und der untere Abschnitt des Flansches 42 begrenzen die Einbuchtung 58, die den Vorsprung 30 der benachbarten Metallbohle 12 aufnimmt.

3

Fig. 3 zeigt zusammengefügte Längsseiten der Metallbohlen 12 und 12 a.

Beim Zusammensetzen einer Fahrbahn werden die Metallbohlen 12 und 12 a sicher in ihrer gegenseitigen Höhenlage gehalten. Die obere und untere V-försegenseitig spielfrei zu verbinden.

Hierzu 1 Blatt Zeichnungen