

二氧化碳传感器模组

(型号: ZG01)

使用说明书

版本号: 1.0

实施日期: 2017-12-20

郑州炜盛电子科技有限公司 Zhengzhou Winsen Electronic Technology Co., Ltd

声明

本说明书版权属郑州炜盛电子科技有限公司(以下称本公司)所有,未经书面许可,本 说明书任何部分不得复制、翻译、存储于数据库或检索系统内,也不可以电子、翻拍、录音 等任何手段进行传播。

感谢您使用炜盛科技的系列产品。为使您更好地使用本公司产品,减少因使用不当造成的产品故障,使用前请务必仔细阅读本说明书并按照所建议的使用方法进行使用。如果您不依照本说明书使用或擅自去除、拆解、更换传感器内部组件,本公司不承担由此造成的任何 损失。

您所购买产品的颜色、款式及尺寸以实物为准。 本公司秉承科技进步的理念,不断致力于产品改进和技术创新。因此,本公司保留任何

产品改进而不预先通知的权力。使用本说明书时,请确认其属于有效版本。同时,本公司鼓励 使用者根据其使用情况,探讨本产品更优化的使用方法。

请妥善保管本说明书,以便在您日后需要时能及时查阅并获得帮助。

郑州炜盛电子科技有限公司

ZG01二氧化碳传感器模组

产品描述

ZG01二氧化碳传感器模组(以下简称传感器模组)是一个通用智能小型传感器模组,采用固体电解质电池原理对空气中存在的CO₂进行探测,具有较高的灵敏度和很好的选择性,寿命长。内置温湿度补偿;同时具有串口(UART)输出、模拟(DAC)输出及PWM波形输出,方便使用。

产品特点

- ▶ 高灵敏度、低功耗
- ▶ 优异的稳定性和重复性
- ▶ 温湿度补偿,卓越的线性输出
- ▶ 提供串口(UART)、模拟(DAC)、PWM波形等输出方式
- ▶ 抗水汽干扰、不中毒

产品应用场合

▶ 暖通制冷设备

▶ 空气质量监控设备

▶ 新风系统

▶ 空气净化设备

▶ 智能家居

学校

技术指标

表1

产品型号	ZG01
检测气体	二氧化碳
供电电压	4.5∼5.5V DC
平均电流	<150mA (@5V 供电)
峰值电流	300 mA (@5V 供电)
接口电平	5V(兼容3.3V)
测量范围	0~2500ppm
	串口(UART)(TTL 电平5V)
输出信号	PWM
	模拟输出(DAC)(0.4~2V)
预热时间	120min
响应时间	T ₉₀ < 120s
工作温度	0~50℃
工作湿度	0~95%RH(无凝结)
重量	5 g
寿命	>2 年

常用量程和精度

表2

气体名称	分子式	量程	精度
二氧化碳	CO ₂	$0{\sim}2500$ ppm	±(50ppm+10%读数值)

产品尺寸图

插针式尺寸(单位mm, 公差±0.5mm)

端子式尺寸(单位mm, 公差±0.5mm)

7 6 5 4 3 2 1

插针式管脚图示

端子式管脚图示

ZGO)1管脚定义 表3
管脚名称	管脚说明
Vin (Pin 4)	电源正极(Vin)
GND (Pin3)	电源负极(GND)
Vo	模拟输出(0.4~2 V)
PWM	PWM
HD (Pin 1)	HD(无)
Rx (Pin 5)	UART(RXD)TTL 电平数据输入
Tx (Pin 6)	UART(TXD)TTL 电平数据输出

输出方式

PWM 输出	
假设测量范围为0~2500ppm	
CO ₂ 浓度输出范围	0∼2500ppm
周期	1004ms±5%
周期起始段高电平输出	2ms(理论值)
中部周期	1000ms±5%
周期结束段低电平输出	2ms(理论值)

通过PWM 获得当前CO₂ 浓度值的计算公式: C_{ppm}=2500(T_H-2ms)/(T_H+T_L-4ms)

C_{ppm} 为通过计算得到的CO₂ 浓度值,单位ppm

TH 为一个输出周期中输出为高电平的时间

TL 为一个输出周期中输出为低电平的时间

串口输出(UART) 硬件连接

将传感器的Vin-GND-RXD-TXD 分别接至用户的5V-GND-TXD-RXD。(用户端须使用TTL 电平,如 果是RS232 电平,须进行转换)。

软件设置

将串口波特率设置为9600,数据位设置为8位,停止位设置为1位、奇偶校验位设置为无。

协议命令接口列表及含义		
0x86	读取气体浓度值	

0x86-读取 [△]	- 『体浓度值							
发送命令								
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始字节	预留	命令	-	=	-	-	-	校验值
0xFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79
返回值								
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始字节	命令	浓度高8位	浓度低8位	=	=	-	-	校验值
0xFF	0x86	HIGH	LOW	-	-	-	-	校验和

例:

发送命令 FF 01 86 00 00 00 00 00 79 返回命令 FF 86 02 20 00 00 00 58

气体浓度计算(单位为ppm): 十六进制02换算为十进制2,十六进制20换算为十进制32,然后2*256+32 = 544ppm 注

: 校验值请参照校验和计算方法

1	校验和	计曾	方法
Ι.	1 X 3W 11	IVI -774	· /.1 1/4

校验和 = (取反(Byte1+Byte2+Byte3+Byte4+Byte5+Byte6+Byte7))+1

例:

N1.								
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始字节	预留	命令	-	_	-	-	-	校验值
0xFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	校验和

计算如下:

- 1、从Byte1 加至Byte7: 0x01 + 0x86 + 0x00 + 0x00 + 0x00 + 0x00 + 0x00 = 0x87
- 2、取反: 0xFF 0x87 = 0x78
- 3、对取反后加1: 0x78 + 0x01 = 0x79
- C 语言计算校验和例程


```
UINT8 getCheck(UINT8 *rxdi,UINT8 iLength)
{
    UINT8 sum=0;
    UINT8 iFor=0;

    for(iFor=0;iFor<iLength;iFor++)
    {
        sum+=rxdi[iFor];
    }
    return (0xff-sum+1);
}
```

注意事项

- ▶ 在传感器的焊接、安装、使用等过程中应避免承受任何方向的压力。
- ▶ 传感器如需放置于狭小空间,此空间应通风良好。
- ▶ 传感器应远离热源,凝结水,碱金属,卤素(如氟利昂)等。
- ▶ 传感器不可暴露于可挥发性硅化合物蒸气中,高腐蚀性的环境,处于有机气体中等。
- ▶ 传感器不要在粉尘密度大、高湿、高温或高污染等极端环境下长期使用。
- ▶ 传感器不可频繁、过度振动,受到强烈冲击或跌落。
- ▶ 传感器应定期校准,校准周期建议不大于6个月。
- ▶ 为保证传感器能够正常工作,供电电压须保持在4.5V~5.5V DC 范围中,供电电流须不低于300mA,不在此范围内,可以会传感器故障,传感器输出浓度偏低或传感器不能正常工作。
- ▶ 传感器在不通电情况下长时间贮存,会产生可逆性漂移,这种漂移与贮存环境有关。传感器应贮存在不含可挥发性硅化合物的密封袋中。经长期贮存的传感器,在使用前需要更长时间通电以使其达到稳定。贮存时间及对应的老化时间建议如下表所示。

-	
≠	1
w	4

贮存时间	建议老化时间
1个月以下	不低于48小时
1-6个月	不低于72小时
6个月以上	不低于168小时

郑州炜盛电子科技有限公司

地址: 郑州市高新技术开发区金梭路299号电话:0371-60932955/60932966/60932977

传真:0371-60932988 微信号: winsensor

E-mail:sales@winsensor.com Http://www.winsensor.com

