#### ポートフォリオ選択問題(平均・分散モデル)

要求される期待収益率を確保しつつ、リスク(分散)を最小にするポート フォリオを求める

: 資産数

 $r_E$  : 投資家の要求期待収益率  $\bar{r}_j$  : 資産jの期待収益率

 $\sigma_{jk}$  : 資産 j と資産 k の共分散  $x_j$  : 資産 j の投資比率

$$\begin{array}{ll} \text{minimize} & V(R) = \sum_{j=1}^n \sum_{k=1}^n \sigma_{jk} x_j x_k \\ \\ \text{subject to} & \overline{r}_P = \sum_{j=1}^n \overline{r}_j x_j \geq r_E \end{array}$$

$$\sum_{j=1}^{n} x_j = 1$$

$$x_i \ge 0$$



## 例題1.4.1 (最適ポートフォリオを求める)

資産数2個(簡単のため相関係数は0とする)



 $x_A + x_B = 1$  より、変数を1つ消去して解けばよい

| т, |        |             |         |
|----|--------|-------------|---------|
|    | 資産 (X) | 期待収益率 $r_X$ | 標準偏差 σχ |
|    | A      | 14 %        | 6 %     |
|    |        |             |         |

$$r_E = 12(\%)$$

$$\overline{r}_P = \sum_{i=1}^n \overline{r}_i x_i \ge r_E$$

$$\overline{r}_P = 14x_A + 8x_B = 14x_A + 8(1 - x_A) = 6x_A + 8 \ge 12$$

$$6x_A + 8 = 12$$

$$x_A = \frac{2}{3} \longrightarrow x_B = \frac{1}{3}$$

# 例題1.4.2 資産数3個の場合(相関係数は0)

| 資産 (X) | 期待収益率 $\overline{r}_X$ | 標準偏差 $\sigma_X$ |
|--------|------------------------|-----------------|
| A      | 14 %                   | 6 %             |
| В      | 8 %                    | 3 %             |
| C      | 20 %                   | 15 %            |

$$r_E = 14(\%)$$





$$\sigma_P^2 = 6^2 x_A^2 + 3^2 x_B^2 + 15^2 x_C^2$$
 $= 36(1 - 2x_B)^2 + 9x_B^2 + 225x_B^2$ 
 $= 378x_B^2 - 144x_B + 36$ 
 $= 378\left(x_B - \frac{72}{378}\right)^2 - \frac{72^2}{378} + 36$ 
 $= 378\left(x_B - \frac{4}{21}\right)^2 + \frac{156}{7}$ 
よって  $\sigma_P^2$  が最小になるのは

$$x_B = \frac{4}{21} = x_C$$
,  $x_A = 1 - 2x_B = \frac{13}{21}$ 

のときで、最小値は

$$\frac{156}{7} = 22.28 \cdots \quad (\sigma_P = 4.7207 \cdots)$$

#### 空売りを認める場合の最適ポートフォリオ

minimize 
$$V(R) = \sum_{j=1}^{n} \sum_{k=1}^{n} \sigma_{jk} x_j x_k$$
  
subject to  $\bar{r}_P = \sum_{j=1}^{n} \bar{r}_j x_j = r_E$ ,  $\sum_{j=1}^{n} x_j = 1$   
ラグランジュ未定乗数法

ラグランジュ関数:

$$L = \sum_{k=1}^n \sigma_{jk} x_j x_k + \lambda_1 \left(1 - \sum_{j=1}^n x_j\right) + \lambda_2 \left(r_E - \sum_{j=1}^n \overline{r}_j x_j\right)$$

を $x_j$ で偏微分して0とおけばよい

最適投資比率は 
$$x_j^* = \frac{(a_{22}D_{1j} - a_{12}D_{2j}) + (-a_{12}D_{1j} + a_{11}D_{2j})r_E}{a_{11}a_{22} - a_{12}^2}$$
ただし 
$$a_{11} = \sum_{j=1}^n D_{1j} \ , \quad a_{12} = \sum_{j=1}^n D_{2j} \ , \quad a_{22} = \sum_{j=1}^n D_{2j}\overline{r}_j$$

$$D_{1j} = \sum_{k=1}^n c_{jk} \ , \quad D_{2j} = \sum_{k=1}^n c_{jk}\overline{r}_k$$

$$\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{pmatrix}^{-1}$$

### リスク尺度の補足

- 分散を小さくすると、ばらつきがおさえられる □リスクが減少
  - □同時に一攫千金の機会も減少
- 下方リスクモデル
  - □収益が低いほうのみをリスクととらえる
  - □最小許容収益あるいは目標収益を設定し、収益 がそれを下回ることをリスクと解釈(閾値確率)
  - □信頼水準(確率)を与え、その範囲で得られる最 小収益以下をリスクと解釈(VaR)











#### 参考文献

- 枇々木規雄, 金融工学と最適化, 朝倉書店
- 山下智志, 市場リスクの計量化とVaR, 朝倉書店