Team Member

Alan Xing ID: 101144347 Chien-I Chao ID: 101135366 Nicholas Rasmussen ID: 1839739

GitHub Link: https://github.com/Sup3000gt/Machine-Learning-Project)

Machine Learning Fundamental Project

```
In [89]: from sklearn import datasets
  import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
```

Step1. Load and Preprocessing the Data

```
In [90]: iris = datasets.load_iris()
```

```
In [91]: # Create a DataFrame
df_iris = pd.DataFrame(data=iris.data, columns=iris.feature_names)

# Add the target variable to the DataFrame
df_iris['species'] = iris.target

# Map the target integers to the actual species names for better readabilit
df_iris['species'] = df_iris['species'].map(dict(enumerate(iris.target_name))

# Show the DataFrame
df_iris
```

Ο.	. 4	$\Gamma \cap A \cap$	١.
()	IT.		٠.
\mathbf{v}	<i>.</i>	/ _	

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

```
In [92]: # Split our X and Y
X = df_iris.drop('species', axis=1)
Y = df_iris['species']
```

Step 1.1 check if there is any NaN value

Step 1.2 Normalize the data to see if any outlier

```
In [94]: # we will implement Z-score Normalize

def Z_scores(df): # take in a date frame as a parameter
    means = df.mean()
    stds = df.std()
    z_score = (df - means) / stds
    return z_score
```

In [95]: normalized_df = Z_scores(X)
normalized_df

_			
m	14-1	1 05	
Uι		וככו	

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	-0.897674	1.015602	-1.335752	-1.311052
1	-1.139200	-0.131539	-1.335752	-1.311052
2	-1.380727	0.327318	-1.392399	-1.311052
3	-1.501490	0.097889	-1.279104	-1.311052
4	-1.018437	1.245030	-1.335752	-1.311052
145	1.034539	-0.131539	0.816859	1.443994
146	0.551486	-1.278680	0.703564	0.919223
147	0.793012	-0.131539	0.816859	1.050416
148	0.430722	0.786174	0.930154	1.443994
149	0.068433	-0.131539	0.760211	0.788031

150 rows × 4 columns

Step 1.3 Scatter Plot Visualizations

```
In [96]: # Load the Iris dataset
    iris = datasets.load_iris()
    df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
    df['species'] = iris.target_names[iris.target]

# Pair Plot
    sns.pairplot(df, hue="species", markers=["o", "s", "D"])
    plt.suptitle("Pair Plot of Iris Dataset", y=1.02)

# Show the plot
    plt.show()
```


Step 1. Correlation Visualization

Step 1.5 Split the data for training

```
In [99]: from sklearn.model_selection import train_test_split
         # 80/20 split
         X_train, X_test, y_train, y_test = train_test_split(normalized_df, Y, test
         # Double the training data
         X_train_doubled = np.vstack((X_train, X_train, X_train, X_train))
         y_train_doubled = np.append(y_train, y_train)
         y_train_doubled = np.append(y_train_doubled, y_train)
         y_train_doubled = np.append(y_train_doubled, y_train)
         # Add Gaussian noise to the training data
         mean = 0
         std_dev = 0.05
         noise = np.random.normal(mean, std_dev, size=X_train_doubled.shape)
         X_train_noisy = X_train_doubled + noise
         # check the shape
         (X_train_noisy.shape, X_test.shape), (y_train_doubled.shape, y_test.shape)
Out[99]: (((480, 4), (30, 4)), ((480,), (30,)))
```

Model building/Cross-Validation/Evaluation

```
In [100]: from sklearn.svm import SVC
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold, cross_validate
```

K-fold Cross-validation with shuffle and K= 5

```
In [101]: # set up K-fold Cross-validation with shuffle
kf = KFold(n_splits=5, shuffle=True, random_state=42)
```

List of Kernels we want to try

```
In [102]: kernels = ['linear', 'rbf', 'poly']
```

Evaluation Metrics

```
In [103]: # Accuracy, Precision, Recall, F1 scores
metrics = ['accuracy', 'precision_macro', 'recall_macro', 'f1_macro']
```

Functions to evaluate different kernels

```
In [104]:
          this function will take in 4 hyper-parameters
          - Kernels
          - X_train
          - y_train
          - Cross-Validation we define early
          def eval_kernels(kernels, X_train, y_train, cv):
              # dictionary to save the result
              results = {}
              for kernel in kernels:
                  # create our support vector classifier
                  model = SVC(kernel = kernel, random_state=42)
                  cv_results = cross_validate(model, X_train, y_train, cv=cv, scoring
                  scores = {
                       'Accuracy': round(cv_results['test_accuracy'].mean() * 100, 2),
                      'Precision': round(cv_results['test_precision_macro'].mean() *
                       'Recall': round(cv_results['test_recall_macro'].mean() * 100, 2
                       'F1 Score': round(cv_results['test_f1_macro'].mean() * 100, 2)
                  results[kernel.capitalize()] = scores
              return results
```

Call our Functions

```
In [105]:
          result are now a form of dictionary with kernel name as key, and value is a
          with different evaluation metrics as a key and value is the float represent
          results = eval_kernels(kernels, X_train_noisy, y_train_doubled, kf)
In [106]: # display our result
          for kernel, metrics in results.items():
              print(f"{kernel} Kernel:")
              for metric, value in metrics.items():
                  print(f" {metric}: {value}%")
              print() # better separation
          Linear Kernel:
            Accuracy: 96.88%
            Precision: 96.92%
            Recall: 96.96%
            F1 Score: 96.82%
          Rbf Kernel:
            Accuracy: 97.5%
            Precision: 97.52%
            Recall: 97.6%
            F1 Score: 97.47%
          Poly Kernel:
            Accuracy: 95.62%
            Precision: 95.74%
            Recall: 95.66%
            F1 Score: 95.57%
```

Performance Visualizations

```
In [107]:
          from sklearn.metrics import *
In [108]:
          # Since Linear Kernel have best accuracy, let's use it
          kernel = 'rbf'
          model = SVC(kernel=kernel, random_state=42)
          # Fit the model
          model.fit(X_train_noisy, y_train_doubled)
          # Prediction
          y_pred = model.predict(X_test)
          # Generate the confusion matrix
          cm = confusion_matrix(y_test, y_pred)
          # Plot using matplotlib and seaborn
          plt.figure(figsize=(6, 4))
          sns.heatmap(cm, annot=True, fmt="d", cmap='Purples', xticklabels=iris.targe
          plt.xlabel('Predicted Label')
          plt.ylabel('True Label')
          plt.title(f'Confusion Matrix for {kernel.capitalize()} Kernel')
          plt.show()
```

c:\users\nick_\appdata\local\programs\python\python38\lib\site-packages\sk
learn\base.py:458: UserWarning: X has feature names, but SVC was fitted wi
thout feature names
 warnings.warn(

In []: