MAT185 Test 2 Review

QiLin Xue

April 21, 2021

Contents

1 Eigenvectors and Diagonalization

1

1 Eigenvectors and Diagonalization

Definition: Let A be an $n \times n$ matrix. A vector x is an eigenvector of A if $x \neq 0$ and:

$$A\mathbf{x} = \lambda \mathbf{x} \tag{1}$$

for some scalar λ , known as the **eigenvalue** of A corresponding to \mathbf{x} . For a given eigenvalue λ , the **eigenspace** of A corresponding to eigenvalue λ is:

$$E_{\lambda}(A) = \{ \mathbf{x} \in {}^{n}\mathbb{R} | A\mathbf{x} = \lambda \mathbf{x} \}$$
 (2)

Note that we also have:

$$E_{\lambda}(A) = \text{null}(\lambda I - A) \tag{3}$$

It can be helpful to think about eigenvectors geometrically. If we interpret multiplying vectors by A as a linear transformation, then the eigenvectors are vectors that undergo only a stretching under A.

Let A be an $n \times n$ matrix. The following statements are equivalent:

 λ is an eigenvalue of $A \iff A\mathbf{x} = \lambda\mathbf{x}$ for some $\mathbf{x} \in {}^n\mathbb{R}$ $\iff (\lambda I - A)\mathbf{x} = \mathbf{0}$ has infinitely many solutions $\iff \dim \operatorname{null}(\lambda I - A) \neq 0$ $\iff \lambda I - A$ is not invertible.

Proposition 1: Let λ and μ be distinct eigenvalues of $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$. Then:

$$E_{\lambda} \cap E_{\mu} = \{ \mathbf{0} \} \tag{4}$$

Definition: Let A be an $n \times n$ matrix. The characteristic polynomial of A is:

$$p_A(\lambda) = \det(\lambda I - A) \tag{5}$$

The eigenvalues are the solutions to $p_A(\lambda) = 0$.

Theorem: Let A be an $n \times n$ matrix. The characteristic polynomial of A has the form:

$$p_A(\lambda) = \lambda^n + c_{n-1}\lambda^{n-1} + c_{n-2}\lambda^{n-2} + \dots + c_1\lambda + c_0$$
(6)

where $c_{n-1} = -\operatorname{tr} A$ and $c_0 = (-1)^n \det A$. Recall that the trace is the sum of the main diagonal.

MAT185 QiLin Xue

Definition: The matrix $\mathbf{P} \in {}^{n}\mathbb{R}^{n}$ is said to diagonalize $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$ if \mathbf{P} is invertible such that:

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{\Lambda} \tag{7}$$

where $\Lambda = \operatorname{diag} \{\lambda_{\alpha}\}$ is the diagonal matrix of the eigenvalues of A.

Theorem: The matrix $\mathbf{P} \in {}^{n}\mathbb{R}^{n}$ diagonalizes $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$ where:

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$$
 (8)

if and only if the columns of \mathbf{P} form a basis for ${}^n\mathbb{R}$ consisting of the eigenvectors \mathbf{p}_{α} of \mathbf{A} where $\mathbf{A}\mathbf{p}_{\alpha}=\lambda_{\alpha}\mathbf{p}_{\alpha}$.

The corollary is that the matrix $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$ is diagonalizable if and only if ${}^{n}\mathbb{R}$ has a basis consisting of eigenvectors of \mathbf{A} .

Proposition 2: Let $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$ and let $\mathbf{T} \in {}^{n}\mathbb{R}^{n}$ be invertible. Then the characteristic polynomials of \mathbf{A} and of $\mathbf{T}^{-1}\mathbf{A}\mathbf{T}$ are identical and so the eigenvalues of the two matrices are identical.

Theorem: Let $\mathbf{P} \in {}^{n}\mathbb{R}^{n}$ diagonalize $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$ and let $\lambda_{1} \cdots \lambda_{n}$ be the eigenvalues of \mathbf{A} . Then:

- (a) $c_{\mathbf{A}}(\lambda) = c_{\Lambda}(\lambda) = (\lambda \lambda_1)(\lambda \lambda_2) \cdots$
- (b) $\det \mathbf{A} = \det \mathbf{\Lambda} = \lambda_1 \lambda_2 \cdots \lambda_n$.
- (c) $\operatorname{tr} \mathbf{A} = \operatorname{tr} \Lambda = \lambda_1 + \lambda_2 + \cdots + \lambda_n$.

Not all matrices are diagonalizable.

Theorem: Let $\mathbf{A} \in {}^n\mathbb{R}^n$ with distinct eigenvalues $\lambda_1 \cdots \lambda_r$, $r \leq n$. If $\mathbf{x}_{\alpha} \in E_{\lambda_{\alpha}} \setminus \{\mathbf{0}\}, \alpha = 1 \cdots r$, then $\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_r\}$ is linearly independent.

Theorem: If $A \in {}^{n}\mathbb{R}^{n}$ has n distinct eigenvalues, then A is diagonalizable.

Theorem: Let $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$ with distinct eigenvalues $\lambda_{1} \cdots \lambda_{r}$, $r \leq n$. If $\mathbf{x}_{\alpha} \in E_{\lambda_{\alpha}}$ and

$$\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_r = \mathbf{0} \tag{9}$$

then:

$$\mathbf{x}_{\alpha} = \mathbf{0}, \quad /\alpha = 1 \cdots r \tag{10}$$

Theorem: Let $\mathbf{A} \in {}^n\mathbb{R}^n$ with distinct eigenvalues $\lambda_1 \cdots \lambda_r$, $r \leq n$. If H_{λ_α} is a linearly independent set in E_{λ_α} , then:

$$H = H_{\lambda_1} \cup H_{\lambda_2} \cup \dots \cup H_{\lambda_r} \equiv \bigcup_{\alpha=1}^r H_{\lambda_\alpha}$$
(11)

is linearly independent and:

$$m_1 + m_2 + \dots + m_r \le n \tag{12}$$

where $m_{\alpha} = \dim E_{\lambda_{\alpha}}$.

Definition: Let $\mathbf{A} \in {}^n\mathbb{R}^n$ with eigenvalues λ_{α} . The highest power n_{α} of $\lambda - \lambda_{\alpha}$ that divides the characteristic polynomial $p(\lambda)$ such that $p(\lambda) = (\lambda - \lambda_{\alpha})^{n_{\alpha}} g(\lambda)$ is the algebraic multiplicity of λ_{α} . The dimension m_{α} of $E_{\lambda_{\alpha}}$ is the geometric multiplicity of λ_{α} .

MAT185 QiLin Xue

Proposition 3: Let:

$$\mathbf{A} = \begin{bmatrix} \mathbf{1} & \mathbf{B} \\ \mathbf{O} & \mathbf{C} \end{bmatrix} \in {}^{n}\mathbb{R}^{n} \tag{13}$$

where $\mathbf{B} \in {}^r\mathbb{R}^{n-r}$, $\mathbf{C} \in {}^{n-r}\mathbb{R}^{n-r}$, and $\mathbf{1} \in {}^r\mathbb{R}^n$ is the $r \times r$ identity matrix. Then: $\det \mathbf{A} = \det \mathbf{C}$.

Theorem: Multiplicity Theorem: Let λ_{α} be an eigenvalue of $\mathbf{A} \in {}^n\mathbb{R}^n$. Then $1 \leq m_{\alpha} \leq n_{\alpha}$, where m_{α} and n_{α} are respectively, the geometric and algebraic multiplicities of λ_{α} . In particular, if $n_{\alpha} = 1$, then $m_{\alpha} = n_{\alpha} = 1$.

Theorem: Diagonalization Test: Let $\mathbf{A} \in {}^n\mathbb{R}^n$ with distinct eigenvalues $\lambda_{\alpha}, \alpha = 1 \cdots r$. Then, \mathbf{A} is diagonalizable if and only if $m_{\alpha} = n_{\alpha}$, $\alpha = 1 \cdots R$, i.e. the geometric and algebraic multiplicities of each eigenvalue are equal.