Land Surface Modeling and Data Assimilation at NASA/SPoRT for Improved Situational Awareness and Local Model Initialization

Bradley Zavodsky (NASA/MSFC)

Jonathan Case (ENSCO, Inc.)
Clay Blankenship (USRA)

Outline

- Overview of real-time, high-resolution Short-term Prediction Research and Transition (SPoRT) Land Information System (LIS) and situational awareness applications
- Satellite datasets to improve LIS output for situational awareness and numerical weather prediction
 - Green vegetation fraction (GVF) from Visible Infrared Imaging Radiometer Suite (VIIRS)
 - Soil moisture from Soil Moisture Ocean Salinity (SMOS) as a precursor for Soil Moisture Active Passive (SMAP)

Operational SPoRT LIS

- NASA LIS used to perform long-term integration of Noah Land Surface Model (LSM) updated in real-time
- Assimilation of soil moisture during 2nd LIS restart should give even more accurate LSM soil moisture fields
- Output used for situational awareness and local modeling by forecasters at select NWS offices and international forecasting agencies

Application: Areal Flood Potential

March – moderate antecedent soil moisture, moderate rain

September - low antecedent soil moisture case

- Contrasting antecedent soil moisture likely played a strong role in the different outcomes
- Analysis of several events suggests typical moderate-heavy synoptic rainfall events over deep-layer relative soil moisture values exceeding 55-60% will lead to more substantial moderate or heavier flooding events

Application: Drought Monitoring

- Soil moisture from SPoRT LIS has been used by NWS forecasters to refine drought indices on the county scale
- Soil moisture and GVF output from LIS could also be applied to situational awareness and forecasts of red flag warnings and potential for fires

Application: Objective Drought Indexing

- Proxy percentiles of USDM categories
 - NLDAS-2 drought index in Xia et al. (2014; JHM)
- Straight-up, uncalibrated 0-2 m relative soil moisture (i.e., available water)
- Good correspondence in east
- Incorporating snow information over the western U.S. for better representation

Outline

- Overview of real-time, high-resolution SPoRT Land Information System (LIS) and situational awareness applications
- Satellite datasets to improve LIS output for situational awareness and numerical weather prediction
 - Green vegetation fraction (GVF) from Visible Infrared Imaging Radiometer Suite (VIIRS)
 - Soil moisture from Soil Moisture Ocean Salinity (SMOS) as a precursor for Soil Moisture Active Passive (SMAP)

VIIRS GVF vs. Climatology

Green Vegetation Fraction (%)
Control 0-h Forecast Valid: 00Z 31 MAY 2015

Mt. Kenya

- NWP models use a lowerresolution climatology of vegetation
- Large differences may occur depending on weather patterns or land surface features that aren't resolved
- Differences in vegetation can lead to different representation of surface fluxes in NWP models
- Using global 4-km
 resolution GVF product
 developed by NESDIS

Mt. Kilimanjaro

Model Initialization

- Hourly LIS output soil moisture provides information
- Initializing models with higher-resolution LIS data result in more accurate fields used to predict convection (figure at left)
- Convective summer storms can generate heavy rain (flash flooding)

Outline

- Overview of real-time, high-resolution SPoRT Land Information System (LIS) and situational awareness applications
- Satellite datasets to improve LIS output for situational awareness and numerical weather prediction
 - Green vegetation fraction (GVF) from Visible Infrared Imaging Radiometer Suite (VIIRS)
 - Soil moisture from Soil Moisture Ocean Salinity (SMOS) as a precursor for Soil Moisture Active Passive (SMAP)

Assimilation of Soil Moisture Data

SMOS DA Validation

- 0-10 cm model soil moisture
- Results from validation against soil moisture networks in US (North American Soil Moisture Database)
 - Better correlations
 - Improved dynamic range

SMOS DA Validation

Comparisons to ground observations for LIS runs from 1 Mar. to 30 Sept. 2011

	Near Surface (0-10 cm)			Root Zone (10-100 cm)		
	Bias	Err SD	Corr.	Bias	Err SD	Corr.
Control	3.6%	23.5%	0.47	4.0%	10.6%	0.61
SMOS DA	-0.5%	21.8%	0.57	10.6%	11.8%	0.67

SMOS NWP Impact Study Open Loop SMOS DA

Initial Soil Moisture

CAPE (48-h Fcst)

Summary

- NASA SPoRT generates real-time, high-resolution land surface data for use as a situational awareness and model initialization tool in support of local forecasters at select NWS offices and international meteorological agencies
- Satellite observations are incorporated into this real-time system to improve over climatological fields and fill in observations gaps in data sparse regions and have been demonstrated to improve soil moisture analyses and some preliminary NWP initialization
 - Global GVF product from VIIRS
 - Retrieved soil moisture from SMOS as a precursor to use of SMAP
- Future work will focus on studying the impacts of satellite-enhanced soil moisture on regional NWP with a focus on convection

