Package 'VARshrink'

October 12, 2022

Title Shrinkage Estimation Methods for Vector Autoregressive Models **Version** 0.3.1

Description Vector autoregressive (VAR) model is a fundamental and effective approach for multivariate time series analysis. Shrinkage estimation methods can be applied to high-dimensional VAR models with dimensionality greater than the number of observations, contrary to the standard ordinary least squares method. This package is an integrative package delivering nonparametric, parametric, and semiparametric methods in a unified and consistent manner, such as the multivariate ridge regression in Golub, Heath, and Wahba (1979) doi:10.2307/1268518>, a James-Stein type nonparametric shrinkage method in Opgen-Rhein and Strimmer (2007) doi:10.1186/1471-2105-8-S2-S3>, and Bayesian estimation methods using noninformative and informative priors in Lee, Choi, and S.-H. Kim (2016) doi:10.1016/j.csda.2016.03.007> and Ni and Sun (2005) doi:10.1198/073500104000000622.

```
License GPL-3
Depends R (>= 3.5.0)
Imports vars (>= 1.5.3), ars (>= 0.6), corpcor (>= 1.6.9),
     strucchange, stats, MASS, mvtnorm
Suggests knitr, rmarkdown, rticles, kableExtra
URL https://github.com/namgillee/VARshrink/
BugReports https://github.com/namgillee/VARshrink/issues/
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
VignetteBuilder knitr
NeedsCompilation no
Author Namgil Lee [aut, cre] (<a href="https://orcid.org/0000-0003-0593-9028">https://orcid.org/0000-0003-0593-9028</a>),
     Heon Young Yang [ctb],
     Sung-Ho Kim [aut]
Maintainer Namgil Lee <namgil.lee@kangwon.ac.kr>
Repository CRAN
Date/Publication 2019-10-09 15:10:03 UTC
```

Acoef_sh

R topics documented:

	20
VARshrink	24
summary.varshrinkest	
summary.shrinklm	
stability_sh	
simVARmodel	2
shrinkVARcoef	20
serial.test_sh	20
roots_sh	19
restrict_sh	18
print.varshsum	
print.varshrinkest	
predict.varshrinkest	17
Phi.varshrinkest	10
normality.test_sh	15
logLik.varshrinkest	15
lm_ShVAR_KCV	
lm_semi_Bayes_PCV	
lm_multiv_ridge	
lm_full_Bayes_SR	
irf.varshrinkest	
fevd.varshrinkest	
createVARCoefs_ltriangular	
convPsi2varresult	
causality sh	
calcSSE_Acoef	
BQ sh	
Bcoef sh	
arch.test_sh	
Acoef sh	

Acoef_sh

Index

Coefficient matrices of endogenous variables

Description

Returns the estimated coefficient matrices of the lagged endogenous variables of a VAR(p) model. This is a modification of vars::Acoef() for the class "varshrinkest".

Usage

Acoef_sh(x)

Arguments

x An object of class "varshrinkeset", generated by VARshrink().

arch.test_sh 3

Details

Consider VAR(p) model:

$$y_t = A_1 y_{t-1} + \dots + A_p y_{t-p} + C d_t + e_t.$$

The function returns the K-by-K matrices A_1, ..., A_p as a list object.

Value

A list object with K-by-K VAR coefficient matrices A_1, A_2, ..., A_p

See Also

Acoef

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
Acoef_sh(estim)</pre>
```

arch.test_sh

ARCH-LM test

Description

Performs univariate and multivariate ARCH-LM tests for a VAR. This is a modification of vars::arch.test() for the class "varshrinkest".

Usage

```
arch.test_sh(x, lags.single = 16, lags.multi = 5,
  multivariate.only = TRUE)
```

Arguments

x An object of class "varshrinkest" obtained by VARshrink()

 ${\tt lags.single} \qquad {\tt An integer \ of \ the \ lag \ order \ used \ for \ univariate \ ARCH \ statistics}.$

lags.multi An integer of the lag order used for multivariate ARCH statistic.

multivariate.only

If TRUE, only the multivariate statistic is computed.

See Also

arch.test

Bcoef_sh

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
arch.test_sh(estim)</pre>
```

Bcoef_sh

Coefficient matrix

Description

Returns the estimated coefficients of a VAR(p) model as a matrix. This is a modification of vars::Bcoef() for the class "varshrinkest".

Usage

```
Bcoef_sh(x)
```

Arguments

Х

An object of class "varshrinkest" generated by VARshrink().

Details

Consider VAR(p) model:

$$y_t = A_1 y_{t-1} + \dots + A_p y_{t-p} + C d_t + e_t.$$

The function returns the concatenated matrix (A_1, ..., A_p, C) as a matrix object.

Value

A matrix holding the estimated coefficients of a VAR.

See Also

Bcoef

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
Bcoef_sh(estim)</pre>
```

BQ_sh 5

BQ_sh

BQ function for class "varshrinkest"

Description

This is a modification of vars::BQ() for the class "varshrinkest".

Usage

```
BQ_sh(x)
```

Arguments

Х

An object of class "varshrinkest" obtained by VARshrink().

See Also

ΒQ

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
BQ_sh(estim)</pre>
```

calcSSE_Acoef

Sum of squared errors (SSE) between coefficients of two VARs

Description

Compute sum of squared errors of coefficients of lagged endogenous variables (Acoef) of two VAR models.

Usage

```
calcSSE_Acoef(Acoef1, Acoef2)
```

Arguments

Acoef1, Acoef2 Each one is a list object with K-by-K coefficient matrices of lagged endogenous variables. See help(Acoef_sh), or, help(Acoef).

6 causality_sh

Details

Consider VAR(p) model:

$$y_t = A_1 y_{t-1} + \dots + A_p y_{t-p} + C d_t + e_t.$$

The SSE of two VAR(p) models is expressed as

$$sum_{k=1}^{p}sum_{i=1}^{K}sum_{j=1}^{K}((A_{k})_{ij}-(A'_{k})_{ij})^{2}.$$

Value

SSE value.

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim1 <- VARshrink(y, p = 2, type = "const", method = "fbayes")
Acoef1 <- Acoef_sh(estim1)
estim2 <- VARshrink(y, p = 2, type = "const", method = "ridge")
Acoef2 <- Acoef_sh(estim2)
calcSSE_Acoef(Acoef1, Acoef2)</pre>
```

causality_sh

Causality Analysis for class "varshrinkest"

Description

A modification of vars::causality() for the class "varshrinkest".

Usage

```
causality_sh(x, cause = NULL, vcov. = NULL, boot = FALSE,
boot.runs = 100)
```

Arguments

```
x \, An object of class "varshrinkest" obtained by VARshrink(). cause, vcov., boot, boot.runs
```

Other arguments for causality analysis; see help(causality) for details.

See Also

```
causality
```

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
causality_sh(estim, cause = "e")</pre>
```

convPsi2varresult 7

convPsi2varresult

Convert format for VAR coefficients from Psi to varresult

Description

Convert a matrix of VAR coefficients estimated by a shrinkage method into a list of "shrinklm" object, where the class "shrinklm" inherits the class "lm".

Usage

```
convPsi2varresult(Psi, Y, X, lambda0, type = c("const", "trend", "both",
   "none"), ybar = NULL, xbar = NULL, Q_values = NULL, callstr = "")
```

Arguments

Psi	An M-by-K matrix of VAR coefficients
Υ	An N-by-K data matrix of dependent variables

lambda0 A rescaled shrinkage intensity parameter, based on which the effective number

of parameters is computed by

$$Trace(X(X'X + lambda0 * I)^{-1}X')$$

type Type of deterministic variables in the VAR estimation problem. Either of "const",

"trend", "both", or "none".

ybar, xbar NULL if Y and X are not centered. Mean vectors if Y and X had been cen-

tered. If Y and X had been centered (ybar and xbar are not NULL) and type is "const" or "both", then the coefficients for the constant term is computed and

concatenated to the coefficients.

Q_values Nonnegative weight vector of length N. Default is NULL. Take weights on rows

(samples) of Y and X by sqrt(Q).

callstr The call to VARshrink().

Details

Consider VAR(p) model:

$$y_t = A_1 y_{t-1} + \dots + A_p y_{t-p} + C d_t + e_t.$$

It can be written in the matrix form:

$$Y = XPsi + E,$$

where Psi is a concatenated M-by-K matrix, Psi = $(A_1, ..., A_p, C)^T$. It can be written in the multiple linear regression form of a VAR(p) model:

$$y_i = Xpsi_i + e_i, \quad j = 1, ..., K,$$

where y_j, psi_j, and e_j are the j-th column vectors of Y, Psi, and E, respectively. This function converts Psi into a list of "shrinklm" objects, where each "shrinklm" object contains the length-M vector psi_j as coefficients.

Considering that each coefficient vector psi_j is estimated by a shrinkage method, the effective number of parameters, k_eff, is computed as:

$$k_{eff} = Trace(X(X^TX + lambda0 * I)^{-1}X^T).$$

Then, the degree of freedom of residuals is computed as:

$$df.residual = N - k_{eff}$$

where N is the number of rows of data matrices Y and X.

Value

A list object with objects of class c("shrinklm", "lm"). Each "shrinklm" object has components: coefficients, residuals, fitted.values, rank, df.residual, lambda0, call, terms, svd

```
createVARCoefs_ltriangular
```

Create coefficients of a VAR model

Description

Randomly create sparse lower-triangular matrices for VAR coefficients of lagged endogenous variables, and set a constant vector.

Usage

```
createVARCoefs_ltriangular(p = 1, K = 5, diag_val = 1/p,
num_nonzero = 0, const_vector = NULL, range_min = 0.2,
range_max = 1/p)
```

Arguments

p lag order

K Number of time series variables.

diag_val diagonal values of A1,...,Ap

num_nonzero Number of nonzero entries on the lower-triangular parts of A1, ..., Ap

const_vector constant vector c of the VAR model

range_min, range_max

Each nonzero off-diagonal entry of coefficient matrices is drawn uniformly from the interval [-range_max, -range_min] U [range_min, range_max]

fevd.varshrinkest 9

Details

Consider VAR(p) model:

$$y_t = A_1 y_{t-1} + \dots + A_p y_{t-p} + c + e_t,$$

with the constant deterministic variable $(d_t = 1)$. The function creates the coefficient matrices A_1 , ..., A_p and constant vector c.

Diagonal elements of each K-by-K matrix A_k are all equal to diag_val, and off-diagonal elements are all zero except for a few randomly selected nonzero elements. Nonzero off-diagonal elements are selected from lower-triangular parts of A_i and the values are drawn from a uniform distribution over [-range_max, -range_min] U [range_min, range_max].

Value

A list object with components A and C. A is a list of C-by-C matrices A_1 , ..., A_p , and C is a constant vector of length C.

Examples

```
p <- 1; K <- 20;
const_vector <- c(rep(0.2, 5), rep(0.7, 15))
createVARCoefs_ltriangular(p = p, K = K, diag_val = 0.6,
num_nonzero = K, const_vector = const_vector, range_max = 1)
```

fevd.varshrinkest

Forecast Error Variance Decomposition

Description

Computes the forecast error variance decomposition of a VAR(p) for n.ahead steps. This is a modification of vars::fevd() for the class "varshrinkest".

Usage

```
## S3 method for class 'varshrinkest'
fevd(x, n.ahead = 10, ...)
```

Arguments

x Object of class 'varshrinkest'; generated by VARshrink().n. ahead Integer specifying the steps.... Currently not used.

See Also

fevd

10 irf.varshrinkest

f.varshrinkest Impulse response function

Description

Computes the impulse response coefficients of a VAR(p) (or transformed VECM to VAR(p)) for n.ahead steps. This is a modification of vars::irf() for the class "varshrinkest".

Usage

```
## S3 method for class 'varshrinkest'
irf(x, impulse = NULL, response = NULL,
    n.ahead = 10, ortho = TRUE, cumulative = FALSE, boot = TRUE,
    ci = 0.95, runs = 100, seed = NULL, ...)
```

Arguments

X	Object of class 'varshrinkest'; generated by VARshrink()
impulse	A character vector of the impulses, default is all variables.
response	A character vector of the responses, default is all variables.
n.ahead	Integer specifying the steps.
ortho	Logical, if TRUE (the default) the orthogonalised impulse response coefficients are computed (only for objects of class 'varshrinkest').
cumulative	Logical, if TRUE the cumulated impulse response coefficients are computed. The default value is false.
boot	Logical, if TRUE (the default) bootstrapped error bands for the imuplse response coefficients are computed.
ci	Numeric, the confidence interval for the bootstrapped errors bands.
runs	An integer, specifying the runs for the bootstrap.
seed	An integer, specifying the seed for the rng of the bootstrap.
• • •	Currently not used.

See Also

irf

Im_full_Bayes_SR

lm_full_Bayes_SR	Full Bayesian Shrinkage Estimation Method for Multivariate Regression
	sion

Description

Estimate regression coefficients and scale matrix for noise by using Gibbs MCMC algorithm. The function assumes 1) multivariate t-distribution for noise as a sampling distribution, and 2) noninformative priors for regression coefficients and scale matrix for noise.

Usage

```
lm_full_Bayes_SR(Y, X, dof = Inf, burnincycle = 1000,
    mcmccycle = 2000)
```

Arguments

Y An N x K matrix of dependent variables.

X An N x M matrix of regressors.

dof Degree of freedom for multivariate t-distribution. If dof = Inf (default), then

multivariate normal distribution is applied and weight vector \mathbf{q} is not estimated. If dof = NULL or $dof \le 0$, then dof and \mathbf{q} are estimated automatically. If dof is

a positive number, q is estimated.

burnincycle, mcmccycle

Number of burnin cycles is the number of initially generated sample values to drop. Number of MCMC cycles is the number of generated sample values to compute estimates.

Details

Consider the multivariate regression:

```
Y = XPsi + e, e mvt(0, dof, Sigma).
```

Psi is a M-by-K matrix of regression coefficients and Sigma is a K-by-K scale matrix for multivariate t-distribution for noise.

Sampling distribution for noise e is multivariate t-distribution with degree of freedom dof and scale matrix Sigma: e ~ mvt(0, dof, Sigma). The priors are noninformative priors: 1) the shrinkage prior for regression coefficients Psi, and 2) the reference prior for scale matrix Sigma.

The function implements Gibbs MCMC algorithm for estimating regression coefficients Psi and scale matrix Sigma.

Value

A list object with estimated parameters: Psi, Sigma, dof, delta (delta is the reciprocal of lambda), and lambda. Additional components are se.param (standard error of the parameters) and LINEX-VARmodel (estimates under LINEX loss).

lm_multiv_ridge

References

S. Ni and D. Sun (2005). Bayesian estimates for vector autoregressive models. Journal of Business & Economic Statistics 23(1), 105-117.

lm_multiv_ridge

Multivariate Ridge Regression

Description

Estimate regression coefficients by using ridge regression.

Usage

Arguments

Y An N x K matrix of dependent variables.

X An N x M matrix of regressors.

1ambda Numeric vector of lambda values

do_scale If true, X is centered and scaled, and Y is centered.

Details

Consider the multivariate regression:

$$Y = XPsi + e.$$

Psi is a M-by-K matrix of regression coefficients. The ridge regression estimate for the coefficients is

$$Psi = (X'X + lambda * I)^{-1}X'Y.$$

Value

A list object with the components: 1) Psi - A list of estimated Psi matrices, 2) lambda - A vector of lambda values, 3) GCV - A vector of GCV values

References

G. H. Golub, M. Heath, G. Wahba (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215-223. doi: 10.2307/1268518

lm_semi_Bayes_PCV	Semiparametric Bayesian Shrinkage Estimation Method for Multivari-
	ate Regression

Description

Estimate regression coefficients and scale matrix for noise by using a parameterized cross validation (PCV). The function assumes 1) multivariate t-distribution for noise as a sampling distribution, and 2) informative priors for regression coefficients and scale matrix for noise.

Usage

```
lm_semi_Bayes_PCV(Y, X, dof = Inf, lambda = NULL, lambda_var = NULL,
prior_type = c("NCJ", "CJ"), num_folds = 5, m0 = ncol(Y))
```

Arguments

Υ	An N x K matrix of dependent variables.
Χ	An N x M matrix of regressors.
dof	Degree of freedom for multivariate t-distribution. If dof = Inf (default), then multivariate normal distribution is applied and weight vector q is not estimated. If dof = NULL or a numeric vector, then dof is selected by K-fold CV automatically and q is estimated.
lambda	If NULL or a vector of length >=2, it is selected by PCV.
lambda_var	If NULL, it is selected by a Stein-type shrinkage method.
prior_type	"NCJ" for non-conjugate prior and "CJ" for conjugate prior for scale matrix Sigma.
num_folds	Number of folds for PCV.
m0	A hyperparameter for inverse Wishart distribution for Sigma

Details

Consider the multivariate regression:

```
Y = XPsi + e, e mvt(0, dof, Sigma).
```

Psi is a M-by-K matrix of regression coefficients and Sigma is a K-by-K scale matrix for multivariate t-distribution for noise.

Sampling distribution for noise e is the multivariate t-distribution with degree of freedom dof and scale matrix Sigma: e ~ mvt(0, dof, Sigma). The priors are informative priors: 1) a shrinkage prior for regression coefficients Psi, and 2) inverse Wishart prior for scale matrix Sigma, which can be either non-conjugate ("NCJ") or conjugate ("CJ") to the shrinkage prior for coefficients Psi.

The function implements parameterized cross validation (PCV) for selecting a shrinkage parameter lambda for estimating regression coefficients (0 < lambda <= 1). In addition, the function uses a Stein-type shrinkage method for selecting a shrinkage parameter lambda_var for estimating variances of time series variables.

14 lm_ShVAR_KCV

References

N. Lee, H. Choi, and S.-H. Kim (2016). Bayes shrinkage estimation for high-dimensional VAR models with scale mixture of normal distributions for noise. Computational Statistics & Data Analysis 101, 250-276. doi: 10.1016/j.csda.2016.03.007

lm_ShVAR_KCV	K-fold Cross Validation for Selection of Shrinkage Parameters of Semiparametric Bayesian Shrinkage Estimator for Multivariate Re-
	gression

Description

Estimate regression coefficients and scale matrix for noise by using semiparametric Bayesian shrinkage estimator, whose shrinkage parameters are selected by K-fold cross validation (KCV).

Usage

```
lm_ShVAR_KCV(Y, X, dof = Inf, lambda = NULL, lambda_var = NULL,
prior_type = c("NCJ", "CJ"), num_folds = 5, m0 = ncol(Y))
```

Arguments

Υ	An N x K matrix of dependent variables.
Χ	An N x M matrix of regressors.
dof	Degree of freedom for multivariate t-distribution. If dof = Inf (default), then multivariate normal distribution is applied and weight vector \mathbf{q} is not estimated. If dof = NULL or a numeric vector, then dof is selected by K-fold CV automatically and \mathbf{q} is estimated.
lambda	If NULL or a vector of length >=2, it is selected by KCV.
lambda_var	If NULL or a vector of length >=2, it is selected by KCV.
prior_type	"NCJ" for non-conjugate prior and "CJ" for conjugate prior for scale matrix Sigma.
num_folds	Number of folds for KCV.
m0	A hyperparameter for inverse Wishart distribution for Sigma

Details

The shrinkage parameters, lambda and lambda_var, for the semiparametric Bayesian shrinkage estimator are selected by KCV. See help(lm_semi_Bayes_PCV) for details about semiparametric Bayesian estimator.

References

N. Lee, H. Choi, and S.-H. Kim (2016). Bayes shrinkage estimation for high-dimensional VAR models with scale mixture of normal distributions for noise. Computational Statistics & Data Analysis 101, 250-276. doi: 10.1016/j.csda.2016.03.007

logLik.varshrinkest 15

logLik.varshrinkest Log-likelihood method for class "varshrinkest"

Description

Returns the log-likelihood of a VAR model estimated by VARshrink(). It extends vars::logLik.varest() to incorporate 1) multivariate t-distribution for residuals, 2) scale matrix Sigma provided by shrinkage methods, and 3) effective number of parameters provided by shrinkage methods.

Usage

```
## S3 method for class 'varshrinkest'
logLik(object, ...)
```

Arguments

```
object An object of class "varshrinkest"
... Currently not used.
```

Details

Acknowledgement: This code was contributed by Sung-Hoon Han & Dong-Han Lee @ Kangwon National University (2018.11.29.)

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
logLik(estim)</pre>
```

normality.test_sh

Normality, multivariate skewness and kurtosis test

Description

This function computes univariate and multivariate Jarque-Bera tests and multivariate skewness and kurtosis tests for the residuals of a VAR(p) or of a VECM in levels. This is a modification of vars::normality.test() for the class "varshrinkest".

Usage

```
normality.test_sh(x, multivariate.only = TRUE)
```

Phi.varshrinkest

Arguments

See Also

```
normality.test
```

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
normality.test_sh(estim)</pre>
```

Phi.varshrinkest

Coefficient matrices of the MA represention

Description

Returns the estimated coefficient matrices of the moving average representation of a stable VAR(p), of an SVAR as an array or a converted VECM to VAR. This is a modification of vars::Phi() for the class "varshrinkest".

Usage

```
## S3 method for class 'varshrinkest'
Phi(x, nstep = 10, ...)
```

Arguments

x An object of class 'varshrinkest', generated by VARshrink().

nstep An integer specifying the number of moving error coefficient matrices to be

calculated.

... Currently not used.

See Also

Phi

predict.varshrinkest 17

predict.varshrinkest Predict method for objects of class varshrinkest

Description

Forecating a VAR object of class 'varshrinkest' with confidence bands. This is a modification of vars::predict.varest() for the class "varshrinkest".

Usage

```
## S3 method for class 'varshrinkest'
predict(object, ..., n.ahead = 10, ci = 0.95,
  dumvar = NULL)
```

Arguments

object An object of class 'varshrinkest'; generated by VARshrink()

... currently not used.

n. ahead An integer specifying the number of forecast steps.

ci The forecast confidence interval

dumvar Matrix for objects of class 'vec2var' or 'varest', if the dumvar argument in

ca.jo() has been used or if the exogen argument in VARshrink() has been used, respectively. The matrix should have the same column dimension as in the call

to ca.jo() or to VARshrink() and row dimension equal to n.ahead.

print.varshrinkest Print method for class "varshrinkest"

Description

Print method for an object of class "varshrinkest"

Usage

```
## $3 method for class 'varshrinkest'
print(x, digits = max(3, getOption("digits") - 3),
    ...)
```

Arguments

```
x An object of class "varshrinkest" digits, ... Other arguments for print() method
```

18 restrict_sh

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
print(estim)</pre>
```

print.varshsum

Print method for class "varshsum"

Description

Print method for an object obtained by summary.varshrinkest().

Usage

```
## S3 method for class 'varshsum'
print(x, digits = max(3, getOption("digits") - 3),
    signif.stars = getOption("show.signif.stars"), ...)
```

Arguments

Details

This function extends print.varsum() for VAR models estimated by shrinkage methods. The output includes scale matrix Sigma and degree of freedom dof for multivariate t-distribution for residuals.

restrict_sh

Restricted VAR

Description

This is a modification of vars::restrict() for the class "varshrinkest". Warning: THIS CODE IS NOT COMPLETE: this function may raise an error because it ignores shrinkage estimation.

Usage

```
restrict_sh(x, ...)
```

Arguments

```
x An object of class "varshrinkest"
... Other arguments to vars::restrict()
```

roots_sh

See Also

```
restrict
```

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
restrict_sh(estim)</pre>
```

roots_sh

Eigenvalues of the companion coefficient matrix of a VAR(p)-process

Description

This is a variant of vars::roots() for an object of class 'varshrinkest', VAR parameters estimated by VARshrink().

Usage

```
roots_sh(x, modulus = TRUE)
```

Arguments

x An object of class "varshrinkest"modulusTRUE for modulus of the roots.

See Also

roots

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
roots_sh(estim)</pre>
```

20 shrinkVARcoef

serial.test_sh

Test for serially correlated errors for VAR shrinkage estimate

Description

An extension of vars::serial.test() to the class "varshrinkest".

Usage

```
serial.test_sh(x, lags.pt = 16, lags.bg = 5,
  type = c("PT.asymptotic", "PT.adjusted", "BG", "ES"))
```

Arguments

```
x An object of class "varshrinkest" obtained by VARshrink().

lags.pt, lags.bg, type

Other arguments for vars::serial.test(). see help(serial.test) for details.
```

See Also

```
serial.test
```

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
serial.test_sh(estim)</pre>
```

shrinkVARcoef

Semiparametric Bayesian Shrinkage Estimator for Multivariate Regression

Description

Compute the semiparametric Bayesian shrinkage estimator of Psi and Sigma for a given shrinkage parameter lambda. The function is a private function for lm_semi_Bayes_PCV() and lm_ShVAR_KCV().

Usage

```
shrinkVARcoef(Y, X, lambda, dof = Inf, prior_type = "NCJ",
   TolDRes = 1e-04, m0 = ncol(Y))
```

simVARmodel 21

Arguments

Y An N x K matrix of dependent variables.

X An N x M matrix of regressors.

lambda A shrinkage intensity parameter value between 0~1.

dof Degree of freedom for multivariate t-distribution. If NULL or Inf, then use

multivariate normal distribution.

prior_type "NCJ" for non-conjugate prior and "CJ" for conjugate prior for scale matrix

Sigma.

TolDRes Tolerance parameter for stopping criterion.

m0 A hyperparameter for inverse Wishart distribution for Sigma

References

N. Lee, H. Choi, and S.-H. Kim (2016). Bayes shrinkage estimation for high-dimensional VAR models with scale mixture of normal distributions for noise. Computational Statistics & Data Analysis 101, 250-276. doi: 10.1016/j.csda.2016.03.007

simVARmodel

Generate multivariate time series data using the given VAR model

Description

Generate a multivariate time series data set using the given VAR model.

Usage

```
simVARmodel(numT, model, burnin = 0)
```

Arguments

numT Number of observed time points, T.

model A list object with Coef, Sigma, dof; Coef is a list with A and c; A is a list object

of K-by-K coefficient matrices and c is a length-K vector. Sigma is a K-by-K scale matrix and dof is a degree of freedom for multivariate t-distribution for

noise.

burnin Number of initial points which are not included in the final values.

Details

First, it creates $(p+burnin+numT \times K)$ data, then it remove the first (p+burnin) vectors. Finally, it returns $(numT \times K)$ data.

Value

A numT-by-K matrix

22 summary.shrinklm

Examples

```
\label{eq:myCoef} \begin{tabular}{ll} myCoef <- list(A = list(matrix(c(0.5, 0, 0, 0.5), 2, 2)), c = c(0.2, 0.7)) \\ myModel <- list(Coef = myCoef, Sigma = diag(0.1^2, 2), dof = Inf) \\ simVARmodel(numT = 100, model = myModel, burnin = 10) \\ \end{tabular}
```

stability_sh

Stability function

Description

A variant of vars::stability(). Warning: this function has not been tested for small sample sizes yet.

Usage

```
stability_sh(x, type = c("OLS-CUSUM", "Rec-CUSUM", "Rec-MOSUM",
   "OLS-MOSUM", "RE", "ME", "Score-CUSUM", "Score-MOSUM", "fluctuation"),
   h = 0.15, dynamic = FALSE, rescale = TRUE, ...)
```

Arguments

```
x An object of class "varshrinkest"
type, h, dynamic, rescale, ...
Other arguments to strucchange::efp()
```

See Also

```
stability
```

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
stability_sh(estim)</pre>
```

summary.shrinklm

Summary method for class "shrinklm"

Description

Class "shrinklm" inherits the class "lm", and it extends the "lm" class to incorporate shrinkage estimates with effective number of parameter.

summary.varshrinkest 23

Usage

```
## S3 method for class 'shrinklm'
summary(object, correlation = FALSE,
symbolic.cor = FALSE, ...)
```

Arguments

object An object of class "shrinklm"

correlation If TRUE, the correlation matrix of the estimated coefficients is returned and

printed.

symbolic.cor If TRUE, print the correlations in a symbolic form rather than as numbers

... Currently not used.

summary.varshrinkest Summary method for an object of class 'varshrinkest', VAR parame-

ters estimated by VARshrink()

Description

Extend summary.varest() to class 'varshrinest' to incorporate adapted methods for new classes: summary.shrinklm(), logLik.varshrinkest(), roots.varshrinkest().

Usage

```
## S3 method for class 'varshrinkest'
summary(object, equations = NULL, ...)
```

Arguments

object An object of class "varshrinkest", usually a result of call to "VARshrink()".

equations Subset of names of endogenous time series variables to summarize.

... Currently not used.

Details

Code is modified to avoid call to data matrices (\$y, \$datamat) and to use effective numbers of parameters of shrinkage estimates.

Output includes the scale matrix, Sigma, and degree-of-freedom, dof, for multivariate t-distribution for residuals.

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ridge")
summary(estim)</pre>
```

24 VARshrink

VARshrink

Shrinkage estimation of VAR parameters

Description

Shrinkage estimation methods for high-dimensional VAR models. Consider VAR(p) model: $y_t = A_1 y_t - 1 + ... + A_p y_t - p + C d_t + e_t$, where y_t is K-dimensional time series, d_t is deterministic regressors, e_t is a noise process, and A_1 , ..., A_p , and C are coefficient matrices. Exogenous variables can be included additionally as regressors.

Usage

```
VARshrink(y, p = 1, type = c("const", "trend", "both", "none"),
  season = NULL, exogen = NULL, method = c("ridge", "ns", "fbayes",
  "sbayes", "kcv"), lambda = NULL, lambda_var = NULL, dof = Inf, ...)
```

Arguments

у	A T-by-K matrix of endogenous variables
p	Integer for the lag order
type	Type of deterministic regressors to include. #' 1) "const" - the constant. 2) "trend" - the trend. 3) "both" - both the constant and the trend. 4) "none" - no deterministic regressors. ***Note: In the package version <= 0.3, method='ns' does not accept type="const" and type="both" to avoid constant term.
season	An integer value of frequency for inclusion of centered seasonal dummy variables. $abs(season) >= 3$.

exogen A T-by-L matrix of exogenous variables. Default is NULL.

method 1) "ridge" - multivariate ridge regression. 2) "ns" - a Stein-type nonparametric

shrinkage method. 3) "fbayes" - a full Bayesian shrinkage method using noninformative priors. 4) "sbayes" - a semiparametric Bayesian shrinkage method using parameterized cross validation. 5) "kcv" - a semiparametric Bayesian shrinkage method using K-fold cross validation

shirilkage method using K-fold cross va

lambda, lambda_var

Shrinkage parameter value(s). Use of this parameter is slightly different for each method: the same value does not imply the same shrinkage estimates.

dof Degree of freedom of multivariate t-distribution for noise. Valid only for method

= "fbayes" and method = "sbayes". dof=Inf means multivariate normal distribu-

tion.

Extra arguments to pass to a specific function of the estimation method. For example, burnincycle and mcmccycle are for "fbayes".

Details

Shrinkage estimation methods can estimate the coefficients even when the dimensionality K is larger than the number of observations.

VARshrink 25

Value

An object of class "varshrinkest" with the components: varresult, datamat, y, type, p, K, obs, totobs, restrictions, method, lambda, call. The class "varshrinkest" inherits the class "varest" in the package vars.

Examples

```
data(Canada, package = "vars")
y <- diff(Canada)
VARshrink(y, p = 2, type = "const", method = "ridge")</pre>
```

Index

```
Acoef, 3
                                                 serial.test, 20
Acoef_sh, 2
                                                 serial.test_sh, 20
arch.test, 3
                                                 shrinkVARcoef, 20
arch.test_sh, 3
                                                 simVARmodel, 21
                                                 stability, 22
Bcoef, 4
                                                 stability_sh, 22
Bcoef_sh, 4
                                                 summary.shrinklm, 22
BQ, 5
                                                 summary.varshrinkest, 23
BQ_sh, 5
                                                 VARshrink, 24
calcSSE_Acoef, 5
causality, 6
causality_sh, 6
convPsi2varresult, 7
createVARCoefs_ltriangular, 8
fevd, 9
fevd.varshrinkest, 9
irf, 10
\quad \text{irf.varshrinkest}, \\ 10
lm_full_Bayes_SR, 11
lm_multiv_ridge, 12
lm_semi_Bayes_PCV, 13
lm_ShVAR_KCV, 14
logLik.varshrinkest, 15
normality.test, 16
normality.test_sh, 15
Phi, 16
Phi.varshrinkest, 16
predict.varshrinkest, 17
print.varshrinkest, 17
print.varshsum, 18
restrict, 19
restrict_sh, 18
roots, 19
roots_sh, 19
```