Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра систем управления и информатики

Отчет по лабораторной работе №1 «НАЗВАНИЕ РАБОТЫ» по дисциплине «Название дисциплины»

Выполнили: студенты гр. Р4135

Фамилия И.О.,

Фамилия И.О.

Преподаватель: Фамилия И.О.,

должность каф. СУиИ

Санкт-Петербург

Содержание

	0	бозн	ачения	и сокраще	кина	3
	Bı	веде	ение			5
	1	Оп	исание	манипулят	тора	6
	2	M a			дель манипулятора пулятора	8 8
			2.1.2	Прямая зад	ечания	
		2.2	2.2.1	Общие заме	лятораечаниявнений движения	16 16 18
	3	Си	нтез си	стем упран	вления	21
Подп. и дата			очение ок испол	тьзованны 	іх источников	22 23
цоп	Π_1	рило	эмнэжо	А Матрип	цы однородного преобразования	24
Инв. № дубл.	Π_1	рило	ожение	Б Термин	ология относительных измерений	26
Взам. инв. №						
Подп. и дата						
	И зм. <i>J</i> .		№ докум.	Подп. Дата		
Инв. № подл.	Разра Пров. Н. кон Утв.	K	нтонов, Артемо отельников Ю.Г	+ + + + + + + + + + + + + + + + + + + +	Разработка системы управления для манипулятора Kuka Youbot Пояснительная записка Пояснительная записка Лит. Лист Л Университет ИТ Кафедра СУи	

Обозначения и сокращения

Используемые далее по тексту общие обозначения:

- СК система координат;
- КП кинематическая пара;
- ДХ Денавита-Хартенберга (Denavit-Hartenberg), например, соглашение;
- ИСО инерциальная система отсчета;
- ПЗК прямая задача кинематики;
- ОЗК обратная задача кинематики;
 - n количество звеньев робота, n = 5;
 - q_i-i -ая $(i=\overline{1,n})$ обобщенная координата манипулятора (угол, регистрируемый энкодером робота в i-ом сочленении);
 - q вектор-столбец обобщенных координат робота, $q = [q_1 \ q_2 \ q_3 \ q_4 \ q_5]^T$;
 - ${}^{i}R_{j}$ матрица поворота, характеризующая поворот СК $Ox_{j}y_{j}z_{j}$ относительно СК $Ox_{i}y_{i}z_{i}$;
 - ${}^{i}A_{j}$ матрица однородного преобразования, описывающая смещение и поворот СК $Ox_{j}y_{j}z_{j}$ относительно СК $Ox_{i}y_{i}z_{i}^{*}$;
 - $r^i_{j,\,k}$ вектор из начала $Ox_jy_jz_j$ в начало $Ox_ky_kz_k$, выраженный относительно $Ox_iy_i{z_i}^{**};$
 - g_i ускорение свободного падения, выраженное относительно $Ox_iy_iz_i;$
 - v_j^i линейная скорость начала $Ox_jy_jz_j$ относительно используемой в решении ИСО,*** выраженная относительно $Ox_iy_iz_i$;
 - a_j^i линейное ускорение начала $Ox_jy_jz_j$ относительно ИСО, выраженное относительно $Ox_iy_iz_i$;
 - * За пояснениями обратитесь к Приложению А
- ** За пояснениями к применяемой здесь и далее терминологии, касающейся относительных измерений, обратитесь к Приложению Б.
 - *** В качестве ИСО в документе используется $Ox_0y_0z_0$.

Изм. Лист № докум. Подп. Дата

инв. $\mathcal{N}^{\underline{o}}$

Взам. 1

Подп.

Инв. № подл.

КСУИ.101.4135.001 ПЗ

- ω_j^i угловая скорость вращения $Ox_jy_jz_j$ относительно ИСО, выраженная относительно $Ox_iy_iz_i$;
- $\omega_{j,\,k}^i$ угловая скорость вращения $Ox_ky_kz_k$ относительно $Ox_jy_jz_j$, выраженная относительно $Ox_iy_iz_i$;
 - $\dot{\omega}^i_j$ угловое ускорение $Ox_jy_jz_j$ относительно ИСО, выраженное относительно $Ox_iy_iz_i;$
 - z_j^i орт $[0\ 0\ 1]^T$ системы координат $Ox_jy_jz_j$, выраженный относительно $Ox_iy_iz_i$;
 - f_j^i сила, действующая на j-ое звено (тело) механизма со стороны (j-1)го звена (тела), выраженная относительно $Ox_iy_iz_i$;
 - au_j^i момент силы, действующий на j-ое звено (тело) механизма со стороны (j-1)-го звена (тела), выраженный относительно $Ox_iy_iz_i$;
 - au_i обобщенный момент, ответственный за изменение обобщенной координаты q_i ;
 - m_i масса i-го звена;
 - \mathcal{I}^i_j тензор инерции j-го звена относительно $Ox_iy_iz_i;$
- a_i, d_i обозначения для длин, входящих в число параметров Денавита-Хартенберга, $i = \overline{1,n};$
- α_i, θ_i обозначения для углов, входящих в число параметров Денавита-Хартенберга, $i=\overline{1,n};$
- s_{γ}, c_{γ} синус и косинус угла γ соответственно;
- s_i, c_i синус и косинус угла θ_i соответственно;
- $x\{a\}$ абсцисса вектора a; аналогично $y\{a\}$ и $z\{a\}$ означают его ординату и аппликату соответственно.

Изм. Лист № докум. Подп. Дата

Инв. № подл.

КСУИ.101.4135.001 ПЗ

Введение

В данном документе будет рассказано о процессе разработки системы управления для манипулятора робота Kuka Youbot [1], дающей ему возможность для совершения двух действий: занятия позиции, при которой его схват будет принимать заданные положение и ориентацию, а также перемещения схвата по заданной траектории*. В целом содержание пояснительной записки можно описать примерно так:

- в разделе 1 будут приведены технические сведения о роботе, необходимые для решения поставленных задач;
- раздел 2 расскажет о процессе составления математической модели манипулятора, а именно о решении применительно к нему прямой и обратной задач кинематики и о составлении дифференциальных уравнений, описывающих протекающие в роботе электрические и механические процессы;
- в разделе 3 речь пойдет о синтезе соответствующих систем управления, о проверке их работоспособности с помощью моделирования, о результатах аппробации на реальном роботе и проч.

Изм. Лист № докум. Подп. Дата

Подп. и дата

Взам. инв. №

Подп.

Инв. № подл.

 $KCУИ.101.4135.001\ \Pi 3$

^{*} Здесь и далее, когда речь будет идти о траектории движении схвата, под последней будет подразумеваться не просто кривая, описываемая при этом схватом в пространстве, но таковая, явно параметризованная временем.

1 Описание манипулятора

Рассматриваемый в данной работе манипулятор робота Kuka Youbot представляет собой пятизвенный манипулятор, снабженный двухпальцевым схватом. Описание его массогабаритных параметров дается таблицей 1.1 и рисунком 1.1. Неуказанные там параметры робота, требуемые для дальнейших расчетов, неизвестны и поэтому подлежат измерению или идентификации, речь о которых пойдет ниже по тексту.

Таблица 1.1 – Общая информация о манипуляторе робота Kuka Youbot.

Параметр	Значение
Количество сочленений	5
Macca	5.3 кг
Допустимая нагрузка	0.5 кг
Точность повторного воспроизведения позиции	1 MM
Максимальная скорость в сочленении	$90^{\circ} {\rm c}^{-1}$
Интерфейс	EtherCAT
Напряжение питание	24 B

Инв. № подл. Подп. и дата Взам. инв. № Инв. № дубл. Подп. и д

Изм. Лист № докум. Подп. Дата

 $KCУИ.101.4135.001\ \Pi 3$

Рисунок 1.1 – Некоторые параметры манипулятора Kuka Youbot: а — размеры рабочей области (вид сбоку); б — размеры рабочей области (вид сверху); в длины звеньев и предельные значения для углов вращения по каждому из сочленений [2].

Подп. Лист № докум. Дата

Подп. и дата

Инв. № подл.

б)

 $KCУИ.101.4135.001\ \Pi 3$

в)

Лист

A1: +/-169°

0 mm

2 Математическая модель манипулятора

2.1 Кинематика манипулятора

2.1.1 Общие замечания

Последовательная кинематическая цепь рассматриваемого манипулятора, включающая только вращательные КП V-класса (цилиндрические шарниры), изображена на рисунке 2.1а.

Рисунок 2.1 – Схемы рассматриваемого манипулятора: а — кинематическая при $q_i=0,\,i=\overline{1,5};\,$ б — расположения СК КП.

Для описания положений звеньев манипулятора друг относительно друга воспользуемся методом Денавита—Хартенберга, состоящим из трех данных шагов:

Изм.	Лист	№ докум.	Подп.	Дата

подл.

КСУИ.101.4135.001 ПЗ

- а) «привязка» к каждому звену СК, чьи оси удовлетворяют следующим условиям:
 - 1) ось z_{i-1} направлена вдоль оси i-ой КП;
 - 2) ось x_i перпендикулярна оси z_{i-1} и пересекает ее;
 - 3) ось y_i дополняет оси z_i и x_i до правой декартовой СК.
- б) определение параметров ДХ:
 - 1) a_i расстояния от z_{i-1} до z_i вдоль x_i ;
 - 2) α_i угла от z_{i-1} до z_i вокруг x_i ;
 - 3) d_i расстояния от x_{i-1} до x_i вдоль z_{i-1} ;
 - 4) θ_i угла от x_{i-1} до x_i вокруг z_{i-1} .
- в) расчет матриц однородного преобразования в соответствии со следующими формулами:

$$^{i-1}A_i = R_{z,\theta_i} \cdot T_{z,d_i} \cdot T_{x,a_i} \cdot R_{x,\alpha_i}$$
(2.1)

где R_{z,θ_i} — матрица поворота вокруг оси z на угол θ_i , T_{z,d_i} — матрица смещения вдоль оси z на расстояние d, T_{x,a_i} —матрица смещения вдоль оси x на расстояние a_i , R_{x,α_i} — матрица поворота вокруг оси x на угол α_i , равные

$$R_{z,\theta_i} = \begin{bmatrix} \cos \theta_i & -\sin \theta_i & 0 & 0 \\ \sin \theta_i & \cos \theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad T_{z,d_i} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}, \tag{2.2}$$

$$T_{x,a_i} = \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad R_{x,\alpha_i} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha_i & -\sin \alpha_i & 0 \\ 0 & \sin \alpha_i & \cos \alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; \tag{2.3}$$

Изм. Лист № докум. Подп. Дата

Взам. инв. №

подл.

 $KСУИ.101.4135.001\ \Pi 3$

ИТОГО

$$^{i-1}A_{i} = \begin{bmatrix} \cos\theta_{i} & -\cos\alpha_{i}\sin\theta_{i} & \sin\alpha_{i}\sin\theta_{i} & a_{i}\cos\theta_{i} \\ \sin\theta_{i} & \cos\alpha_{i}\cos\theta_{i} & -\sin\alpha_{i}\cos\theta_{i} & a_{i}\sin\theta_{i} \\ 0 & \sin\alpha_{i} & \cos\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.4)

Результаты выполнения для исследуемого манипулятора двух первых шагов представлены на рисунке 2.16 и в таблице 2.1, а третьего — в лице следующих выражений:

$${}^{0}A_{1} = \begin{bmatrix} c_{1} & 0 & s_{1} & a_{1}c_{1} \\ s_{1} & 0 & -c_{1} & a_{1}s_{1} \\ 0 & 1 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{1}A_{2} = \begin{bmatrix} c_{2} & -s_{2} & 0 & a_{2}c_{2} \\ s_{2} & c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{2}A_{3} = \begin{bmatrix} c_{3} & -s_{3} & 0 & a_{3}c_{3} \\ s_{3} & c_{3} & 0 & a_{3}s_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

$${}^{3}A_{4} = \begin{bmatrix} c_{4} & 0 & s_{4} & 0 \\ s_{4} & 0 & -c_{4} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{4}A_{5} = \begin{bmatrix} c_{5} & -s_{5} & 0 & 0 \\ s_{5} & c_{5} & 0 & 0 \\ 0 & 0 & 1 & d_{5} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
 (2.5)

Таблица 2.1 – Параметры Денавита-Хартенберга

Звено	a_i , MM	α_i , рад	d_i , mm	θ_i , рад
1	33	$\pi/2$	147	q_1
2	155	0	0	$q_2 + \pi/2$
3	135	0	0	q_3
4	0	$\pi/2$	0	q_4
5	0	0	218	q_5

2.1.2 Прямая задача кинематики

Информация о смещении и повороте СК $Ox_5y_5z_5$ относительно СК $Ox_0y_0z_0$ содержится в матрице 0A_5 . Следовательно, для того чтобы решить ПЗК, оста-

Изм.	Лист	№ докум.	Подп.	Дата

 $KCУИ.101.4135.001\ \Pi 3$

ется лишь найти эту матрицу в соответствии с формулой:

$${}^{0}A_{5} = \prod_{i=1}^{5} {}^{i-1}A_{i}(q_{i}). \tag{2.6}$$

Рисунок 2.2 – Конфигурация манипулятора при $q = [q_1, q_2, q_3, q_4, q_5]^T = [0, 0, 0, \pi/2, 0]^T$.

Для проверки рассмотрим конфигурацию манипулятора, изображенную на рисунке 2.2. В результате решения для нее ПЗК должны получиться следующие матрица поворота и вектор смещения :

$${}^{0}R_{5} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad r_{0,5}^{0} = \begin{bmatrix} 0.033 \\ 0 \\ 0.655 \end{bmatrix}.$$
 (2.7)

Изм. Лист № докум. Подп. Дата

инв.

Инв. № подл.

КСУИ.101.4135.001 ПЗ

Выполняя соответствующие вычисления получаем:

$${}^{0}A_{5} = {}^{0}A_{1} \cdot {}^{1}A_{2} \cdot {}^{2}A_{3} \cdot {}^{3}A_{4} \cdot {}^{4}A_{5} = \begin{bmatrix} 1 & 0 & 0 & 0.033 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0.147 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0.155 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0.033 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 0.135 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0.218 \\
0 & 0 & 0 & 1
\end{bmatrix}
=
\begin{bmatrix}
-1 & 0 & 0 & 0.033 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0.655 \\
0 & 0 & 0 & 1
\end{bmatrix}, (2.8)$$

что предложенный способ решения ПЗК в данном случае приводит к правильному ответу.

2.1.3 Обратная задача кинематики

Заданные смещение и поворот СК $Ox_5y_5z_5$ относительно СК $Ox_0y_0z_0$ можно описать с помощью матрицы 0A_5 . Используя ее и матрицы из (2.5), найти расчетные формулы для углов q_i $(i=\overline{1,5})$ можно из следующих соображений.

Введем обозначения для элементов матрицы 0A_5 в соответствии с формулой:

$${}^{0}A_{5} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
 (2.9)

Приравняв матрицу 0A_5 и правую часть выражения (2.6) и домножив с обеих сторон на ${}^0A_1^{-1}$, придем к выражению:

$${}^{0}A_{1}^{-1} \cdot {}^{0}A_{5} = {}^{1}A_{2} \cdot {}^{2}A_{3} \cdot {}^{3}A_{4} \cdot {}^{4}A_{5}, \tag{2.10}$$

где левая часть с учетом (2.5) равна

$${}^{0}A_{1}^{-1} \cdot {}^{0}A_{5} = \begin{bmatrix} r_{11}c_{1} + r_{21}s_{1} & r_{12}c_{1} + r_{22}s_{1} & r_{13}c_{1} + r_{23}s_{1} & p_{x}c_{1} + p_{y}s_{1} - a_{1} \\ r_{31} & r_{32} & r_{33} & p_{z} - d_{1} \\ r_{11}s_{1} - r_{21}c_{1} & r_{12}s_{1} - r_{22}c_{1} & r_{13}s_{1} - r_{23}c_{1} & p_{x}s_{1} - p_{y}c_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}, (2.11)$$

Изм. Лист № докум. Подп. Дата

Инв. № дубл.

инв. $N^{\underline{o}}$

Взам.

подл.

Инв. №

КСУИ.101.4135.001 ПЗ

а правая —

$${}^{1}A_{2} \cdot {}^{2}A_{3} \cdot {}^{3}A_{4} \cdot {}^{4}A_{5} = \begin{bmatrix} c_{5}c_{234} & -s_{5}c_{234} & s_{234} & a_{2}c_{2} + a_{3}c_{23} + d_{5}s_{234} \\ c_{5}s_{234} & -s_{5}s_{234} & -c_{234} & a_{2}s_{2} + a_{3}s_{23} - d_{5}c_{234} \\ s_{5} & c_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, (2.12)$$

где в свою очередь

$$\theta_{23} = \theta_2 + \theta_3, \qquad \theta_{234} = \theta_2 + \theta_3 + \theta_4.$$
 (2.13)

Теперь, сопоставляя элементы матриц с одинаковыми индексами из выражений (2.11) и (2.12), получим, что расчетные формулы для двух наборов значений углов θ_1 , θ_5 и θ_{234} дают

— равенство элементов (3,4):

$$p_x s_1 - p_y c_1 = 0 \implies \operatorname{tg} \theta_1 = \frac{p_y}{p_x} \implies \begin{cases} \theta_1^{\mathsf{I}} = \operatorname{atan2}(p_y, p_x) \\ \theta_1^{\mathsf{II}} = \operatorname{atan2}(-p_y, -p_x) \end{cases}$$
 (2.14)

- равенство элементов (3,1) и (3,2):

$$\begin{cases} s_{5} = r_{11}s_{1} - r_{21}c_{1} \\ c_{5} = r_{12}s_{1} - r_{22}c_{1} \end{cases} \Rightarrow \\ c_{5} = r_{12}s_{1} - r_{22}c_{1} \end{cases} \Rightarrow \begin{cases} \theta_{5}^{\mathsf{I}} = \operatorname{atan2}(r_{11}\sin\theta_{1}^{\mathsf{I}} - r_{21}\cos\theta_{1}^{\mathsf{I}}, \ r_{12}\sin\theta_{1}^{\mathsf{I}} - r_{22}\cos\theta_{1}^{\mathsf{I}}) \\ \theta_{5}^{\mathsf{II}} = \operatorname{atan2}(r_{11}\sin\theta_{1}^{\mathsf{II}} - r_{21}\cos\theta_{1}^{\mathsf{II}}, \ r_{12}\sin\theta_{1}^{\mathsf{II}} - r_{22}\cos\theta_{1}^{\mathsf{II}}) \end{cases}$$
(2.15)

- равенство элементов (2,3) и (1,3):

$$\begin{cases} c_{234} = -r_{33} \\ s_{234} = r_{13}c_1 + r_{23}s_1 \end{cases} \Rightarrow \begin{cases} \theta_{234}^{\mathsf{I}} = \operatorname{atan2}(r_{13}\cos\theta_1^{\mathsf{I}} + r_{23}\sin\theta_1^{\mathsf{I}}, -r_{33}) \\ \theta_{234}^{\mathsf{II}} = \operatorname{atan2}(r_{13}\cos\theta_1^{\mathsf{II}} + r_{23}\sin\theta_1^{\mathsf{II}}, -r_{33}) \end{cases}$$
(2.16)

Изм. Лист № докум. Подп. Дата

инв. $N^{\underline{\varrho}}$

Взам. 1

подл.

Инв. №

 $KCУИ.101.4135.001\ \Pi 3$

Далее домножим выражение (2.11) на $^4A_5^{-1}$ справа — получим матрицу 1A_4 :

$${}^{1}A_{4} = \begin{bmatrix} \cdots & \cdots & (p_{y} - d_{5}r_{23})s_{1} + (p_{x} - d_{5}r_{13})c_{1} - a_{1} \\ \cdots & \cdots & p_{z} - d_{1} - d_{5}r_{33} \\ \cdots & \cdots & p_{x}s_{1} - p_{y}c_{1} - d_{5}(r_{13}s_{1} - r_{23}c_{1}) \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad (2.17)$$

в которой символами \cdots обозначены элементы, не представляющие интереса в дальнейших расчетах. Заметим, что с учетом (2.14) и равенства элементов (3,3) в (2.11) и (2.12) справедливо

$$p_x s_1 - p_y c_1 - d_5(r_{13} s_1 - r_{23} c_1) = 0. (2.18)$$

С учетом этого и (2.17), имеем что

$$r_{1,4}^{1} = \begin{bmatrix} (p_y - d_5 r_{23})s_1 + (p_x - d_5 r_{13})c_1 - a_1 \\ p_z - d_1 - d_5 r_{33} \\ 0 \end{bmatrix}.$$
 (2.19)

Далее заметим, что одно и то же положение 4-го звена может достигаться при двух разных способах расположения звеньев 2 и 3 (см. рисунок 2.3). Следовательно, углы θ_2 , θ_3 и θ_4 при одних и тех же значениях углов θ_1 и θ_5 имеют по два возможных значения. Ниже выводятся формулы для последних.

Выпишем, пользуясь теоремой косинусов, выражение для $\cos \theta_3$ (его зависимость от θ_1 обуславливается зависимостью от этого угла вектора $r_{1,4}^1$):

$$c_3(\theta_1) = \frac{(r_{1,4}^1)^T \cdot r_{1,4}^1 - a_2^2 - a_3^2}{2a_2 a_3}$$
 (2.20)

С учетом этого для θ_3 можно получить следующие формулы

$$\theta_3^{\mathsf{I},\mathsf{II}} = \mp \operatorname{atan2}(\sqrt{1 - c_3^2(\theta_1^{\mathsf{I}})}, c_3(\theta_1^{\mathsf{I}}))$$
 (2.21)

$$\theta_3^{\text{III,IV}} = \mp \operatorname{atan2}\left(\sqrt{1 - c_3^2(\theta_1^{\text{II}})}, \ c_3(\theta_1^{\text{II}})\right) \tag{2.22}$$

Как видно из рисунка 2.3, $\theta_2=\varphi+\beta$ при $\theta_3^{\mathsf{I,III}}<0$ и $\theta_2=\varphi-\beta$ при $\theta_3^{\mathsf{II,IV}}>0$. Следовательно, принимая во внимание то, что

$$\varphi(\theta_1) = \text{atan2}(y_r, x_r), \qquad \beta(\theta_3) = \text{atan2}(a_3 \sin |\theta_3|, a_2 + a_3 \cos |\theta_3|), \qquad (2.23)$$

Изм. Лист № докум. Подп. Дата

Инв. № дубл.

подл.

Инв. №

КСУИ.101.4135.001 ПЗ

Рисунок 2.3 – Плоская часть манипулятора

где x_r и y_r — проекции вектора $r_{1,4}^1$ на оси абсцисс и ординат (их значения см. в (2.19)), для возможных значений угла θ_2 получаем следующие формулы:

$$\theta_2^{\mathsf{I}} = \varphi(\theta_1^{\mathsf{I}}) + \beta(\theta_3^{\mathsf{I}}), \qquad \qquad \theta_2^{\mathsf{II}} = \varphi(\theta_1^{\mathsf{I}}) - \beta(\theta_3^{\mathsf{II}}), \qquad (2.24)$$

$$\theta_2^{\mathsf{III}} = \varphi(\theta_1^{\mathsf{II}}) + \beta(\theta_3^{\mathsf{III}}), \qquad \qquad \theta_2^{\mathsf{IV}} = \varphi(\theta_1^{\mathsf{II}}) - \beta(\theta_3^{\mathsf{IV}}). \tag{2.25}$$

Формулы для значений угла θ_4 после этого с учетом (2.13) приобретают простой вид:

$$\theta_4^{\mathsf{I},\mathsf{II}} = \theta_{234}^{\mathsf{I}} - \theta_2^{\mathsf{I},\mathsf{II}} - \theta_3^{\mathsf{I},\mathsf{II}}, \qquad \theta_4^{\mathsf{III},\mathsf{IV}} = \theta_{234}^{\mathsf{II}} - \theta_2^{\mathsf{III},\mathsf{IV}} - \theta_3^{\mathsf{III},\mathsf{IV}}. \tag{2.26}$$

Таким образом, любые положение и ориентацию схвата относительно основания манипулятор может обеспечить 4-мя собственными конфигурациями, которым соответствуют следующие наборы значений для его обобщенных координат $q = [q_1, q_2, q_3, q_4, q_5]^T$ (с учетом таблицы 2.1):

$$q^{\mathsf{I}} = \begin{bmatrix} \theta_1^{\mathsf{I}} & \theta_2^{\mathsf{I}} - \frac{\pi}{2} & \theta_3^{\mathsf{I}} & \theta_4^{\mathsf{I}} & \theta_5^{\mathsf{I}} \end{bmatrix}^T, \qquad q^{\mathsf{II}} = \begin{bmatrix} \theta_1^{\mathsf{I}} & \theta_2^{\mathsf{II}} - \frac{\pi}{2} & \theta_3^{\mathsf{II}} & \theta_4^{\mathsf{II}} & \theta_5^{\mathsf{I}} \end{bmatrix}^T, \tag{2.27}$$

$$q^{\text{III}} = \begin{bmatrix} \theta_1^{\text{II}} & \theta_2^{\text{III}} - \frac{\pi}{2} & \theta_3^{\text{III}} & \theta_4^{\text{III}} & \theta_5^{\text{II}} \end{bmatrix}^T, \quad q^{\text{IV}} = \begin{bmatrix} \theta_1^{\text{II}} & \theta_2^{\text{IV}} - \frac{\pi}{2} & \theta_3^{\text{IV}} & \theta_4^{\text{IV}} & \theta_5^{\text{II}} \end{bmatrix}^T. \quad (2.28)$$

Изм. Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

инв. $\mathcal{N}^{\underline{o}}$

Взам. 1

Подп.

Инв. № подл.

КСУИ.101.4135.001 ПЗ

2.2 Динамика манипулятора

2.2.1 Общие замечания

Введем в рассмотрение барицентрические СК $Ox_{ci}y_{ci}z_{ci}^*$, где $i=\overline{1,5}$, показанные на рисунке 2.4. Заметим, что каждая СК $Ox_{ci}y_{ci}z_{ci}$ сонаправлена с $Ox_iy_iz_i$.

Рисунок 2.4 – Положение барицентрических СК и направление вектора \vec{g} .

^{*} Системы координат, чьи начала совпадают с центрами масс соответствующих звеньев.

Изм.	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

инв.

Взам.

и дата

Подп.

Инв. № подл.

 $KСУИ.101.4135.001\ \Pi 3$

Для описания положения введенных СК воспользуемся следующими векторами:

$$r_{i,ci}^{i} = \begin{bmatrix} x_{ci} \\ y_{ci} \\ z_{ci} \end{bmatrix}, \quad i = \overline{1,5}, \tag{2.29}$$

где x_{ci}, y_{ci} и z_{ci} — некоторые постоянные величины.

Для компонент тензоров инерции $\mathcal{I}_i^i = const$ введем следующие обозначения:

$$\mathcal{I}_{i}^{i} = \begin{bmatrix} I_{i,xx} & I_{i,xy} & I_{i,xz} \\ I_{i,xy} & I_{i,yy} & I_{i,yz} \\ I_{i,xz} & I_{i,yz} & I_{i,zz} \end{bmatrix}.$$
(2.30)

Заметим, что

$$g_0 = \begin{bmatrix} 0 \\ 0 \\ -g \end{bmatrix}, \tag{2.31}$$

где $g = 9.82 \text{ м/c}^2$.

Подп. и дата

Инв. № дубл.

инв. $N^{\underline{o}}$

Взам.

Подп. и дата

В заключении раздела приведем формулы для расчета величин, которые потребуются в дальнейшем (везде $i=\overline{1,5}$):

— для расчета $r_{0,i}^0$ и 0R_i (см. Приложение A):

$${}^{0}A_{i} = {}^{0}A_{1} \cdot {}^{1}A_{2} \cdot \dots \cdot {}^{i-1}A_{i};$$
 (2.32)

— для расчета $r_{0,i}^i$:

$$r_{0,i}^i = {}^{0}R_i^T \cdot r_{0,i}^0; (2.33)$$

— для расчета z_i^0 :

$$z_i^0 = {}^{0}R_i \cdot z_i^i = {}^{0}R_i \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}; \tag{2.34}$$

— для расчета g_i, v_i^i и ω_i^i :

$$g_i = {}^{0}R_i^T \cdot g_0, \qquad v_i^i = {}^{0}R_i^T \cdot v_i^0, \qquad \omega_i^i = {}^{0}R_i^T \cdot \omega_i^0.$$
 (2.35)

Изм.	Лист	№ докум.	Подп.	Дата

2.2.2 Вывод уравнений движения

Потенциальная энергия манипулятора

$$U = -\sum_{i=1}^{5} \left(m_i g_i^T r_{0,ci}^i \right) = -\sum_{i=1}^{5} \left(m_i g_i^T r_{0,i}^i + g_i^T (m_i r_{i,ci}^i) \right), \tag{2.36}$$

Якобианы, устанавливающие в соответствии с формулой

$$v_i^0 = J_{vi}\dot{q}, \quad i = \overline{1,5} \tag{2.37}$$

связь между линейными скоростями начал соответствующих CK и вектором \dot{q} :

$$J_{v1} = \left[z_0^0 \times \left(r_{0,1}^0 - r_{0,0}^0 \right) \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \right], \tag{2.38}$$

$$J_{v2} = \left[z_0^0 \times \left(r_{0,2}^0 - r_{0,0}^0 \right) \ z_1^0 \times \left(r_{0,2}^0 - r_{0,1}^0 \right) \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \right], \tag{2.39}$$

$$J_{v3} = \begin{bmatrix} z_0^0 \times (r_{0,3}^0 - r_{0,0}^0) & z_1^0 \times (r_{0,3}^0 - r_{0,1}^0) & z_2^0 \times (r_{0,3}^0 - r_{0,2}^0) & \mathbf{0} \end{bmatrix}, \quad (2.40)$$

$$J_{v4} = \begin{bmatrix} z_0^0 \times (r_{0,4}^0 - r_{0,0}^0) \\ z_1^0 \times (r_{0,4}^0 - r_{0,1}^0) \\ z_2^0 \times (r_{0,4}^0 - r_{0,2}^0) \\ z_3^0 \times (r_{0,4}^0 - r_{0,3}^0) \\ \mathbf{0} \end{bmatrix}, \qquad J_{v5} = \begin{bmatrix} z_0^0 \times (r_{0,5}^0 - r_{0,0}^0) \\ z_1^0 \times (r_{0,5}^0 - r_{0,1}^0) \\ z_2^0 \times (r_{0,5}^0 - r_{0,2}^0) \\ z_3^0 \times (r_{0,5}^0 - r_{0,3}^0) \\ z_4^0 \times (r_{0,5}^0 - r_{0,3}^0) \end{bmatrix}, \qquad (2.41)$$

где $\mathbf{0} = [0 \ 0 \ 0]^T$ — нулевой вектор.

Якобианы, устанавливающие в соответствии с формулой

$$\omega_i^0 = J_{\omega i}\dot{q}, \quad i = \overline{1,5} \tag{2.42}$$

связь между угловыми скоростями звеньев и вектором \dot{q} :

$$J_{\omega 1} = \begin{bmatrix} z_0^0 & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}, \qquad J_{\omega 2} = \begin{bmatrix} z_0^0 & z_1^0 & \mathbf{0} & \mathbf{0} \end{bmatrix}, \tag{2.43}$$

$$J_{\omega 3} = \begin{bmatrix} z_0^0 & z_1^0 & z_2^0 & \mathbf{0} & \mathbf{0} \end{bmatrix}, \qquad J_{\omega 4} = \begin{bmatrix} z_0^0 & z_1^0 & z_2^0 & z_3^0 & \mathbf{0} \end{bmatrix}, \tag{2.44}$$

$$J_{\omega 5} = \begin{bmatrix} z_0^0 & z_1^0 & z_2^0 & z_3^0 & z_4^0 \end{bmatrix}. \tag{2.45}$$

Кинетическая энергия манипулятора

$$K = \sum_{i=1}^{5} \left(\frac{1}{2} m_i (v_i^i)^T v_i^i + \frac{1}{2} (\omega_i^i)^T \mathcal{I}_i^i \omega_i^i + (m_i r_{i,ci}^i)^T \cdot (v_i^i \times \omega_i^i) \right). \tag{2.46}$$

Изм. Лист № докум. Подп. Дата

инв. $N^{\underline{o}}$

Взам.

Инв. № подл.

КСУИ.101.4135.001 ПЗ

Функция Лагранжа

$$L = K - U =$$

$$= \sum_{i=1}^{5} \left(m_{i} \left(\frac{1}{2} (v_{i}^{i})^{T} v_{i}^{i} + g_{i}^{T} r_{0,i}^{i} \right) + (m_{i} r_{i,ci}^{i})^{T} \cdot \left(v_{i}^{i} \times \omega_{i}^{i} + g_{i} \right) + \frac{1}{2} (\omega_{i}^{i})^{T} \mathcal{I}_{i}^{i} \omega_{i}^{i} \right) =$$

$$= \sum_{i=1}^{5} \left(m_{i} \underbrace{\left(\frac{1}{2} (v_{i}^{i})^{T} v_{i}^{i} + g_{i}^{T} r_{0,i}^{i} \right)}_{L_{i,1}} + m_{i} x_{ci} \cdot \underbrace{x \left\{ v_{i}^{i} \times \omega_{i}^{i} + g_{i} \right\}}_{L_{i,2}} + \right.$$

$$+ m_{i} y_{ci} \cdot \underbrace{y \left\{ v_{i}^{i} \times \omega_{i}^{i} + g_{i} \right\}}_{L_{i,3}} + m_{i} z_{ci} \cdot \underbrace{z \left\{ v_{i}^{i} \times \omega_{i}^{i} + g_{i} \right\}}_{L_{i,4}} + I_{i,xx} \cdot \underbrace{\frac{1}{2} \cdot \left(x \left\{ \omega_{i}^{i} \right\} \right)^{2}}_{L_{i,5}} + \right.$$

$$+ I_{i,yy} \cdot \underbrace{\frac{1}{2} \cdot \left(y \left\{ \omega_{i}^{i} \right\} \right)^{2}}_{L_{i,6}} + I_{i,zz} \cdot \underbrace{\frac{1}{2} \cdot \left(z \left\{ \omega_{i}^{i} \right\} \right)^{2}}_{L_{i,7}} + I_{i,xy} \cdot \underbrace{x \left\{ \omega_{i}^{i} \right\} \cdot y \left\{ \omega_{i}^{i} \right\}}_{L_{i,8}} + \right.$$

$$+ I_{i,xz} \cdot \underbrace{x \left\{ \omega_{i}^{i} \right\} \cdot z \left\{ \omega_{i}^{i} \right\}}_{L_{i,9}} + I_{i,yz} \cdot \underbrace{y \left\{ \omega_{i}^{i} \right\} \cdot z \left\{ \omega_{i}^{i} \right\}}_{L_{i,10}} \right). \tag{2.47}$$

Уравнения движения робота:

Подп. и дата

Инв. № дубл.

инв.

Взам.

Подп. и дата

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = \tau_i, \quad i = \overline{1,5} \qquad \Rightarrow \tag{2.48}$$

$$\Rightarrow \begin{cases}
\sum_{i=1}^{5} \left(m_{i} \cdot \mathcal{L}_{1} \{ L_{i,1} \} + m_{i} x_{ci} \cdot \mathcal{L}_{1} \{ L_{i,2} \} + \ldots + I_{i,yz} \cdot \mathcal{L}_{1} \{ L_{i,10} \} \right) = \tau_{1} \\
\sum_{i=1}^{5} \left(m_{i} \cdot \mathcal{L}_{2} \{ L_{i,1} \} + m_{i} x_{ci} \cdot \mathcal{L}_{2} \{ L_{i,2} \} + \ldots + I_{i,yz} \cdot \mathcal{L}_{2} \{ L_{i,10} \} \right) = \tau_{2} \\
\vdots \\
\sum_{i=1}^{5} \left(m_{i} \cdot \mathcal{L}_{5} \{ L_{i,1} \} + m_{i} x_{ci} \cdot \mathcal{L}_{5} \{ L_{i,2} \} + \ldots + I_{i,yz} \cdot \mathcal{L}_{5} \{ L_{i,10} \} \right) = \tau_{5}
\end{cases} (2.49)$$

где \mathcal{L}_j — оператор, работающий в соответствии с формулой:

$$\mathcal{L}_j: \quad \mathcal{L}_j\{f\} = \frac{d}{dt} \frac{\partial f}{\partial \dot{q}_j} - \frac{\partial f}{\partial q_j},$$
 (2.50)

Изм.	Лист	№ докум.	Подп.	Дата

где в свою очередь $f = f(\dot{q}(t), q(t))$. Если же заметить, что

$$\mathcal{L}_{j}\{L_{i,k}\} = 0$$
 при $j > i$, $i, j = \overline{1, 5}$, $k = \overline{1, 10}$, (2.51)

то выражения для них упрощаются до:

$$\begin{cases}
\sum_{i=1}^{5} \left(m_{i} \cdot \mathcal{L}_{1} \{ L_{i,1} \} + m_{i} x_{ci} \cdot \mathcal{L}_{1} \{ L_{i,2} \} + \ldots + I_{i,yz} \cdot \mathcal{L}_{1} \{ L_{i,10} \} \right) = \tau_{1} \\
\sum_{i=2}^{5} \left(m_{i} \cdot \mathcal{L}_{2} \{ L_{i,1} \} + m_{i} x_{ci} \cdot \mathcal{L}_{2} \{ L_{i,2} \} + \ldots + I_{i,yz} \cdot \mathcal{L}_{2} \{ L_{i,10} \} \right) = \tau_{2} \\
\vdots \\
m_{5} \cdot \mathcal{L}_{5} \{ L_{5,1} \} + m_{5} x_{c5} \cdot \mathcal{L}_{5} \{ L_{5,2} \} + \ldots + I_{5,yz} \cdot \mathcal{L}_{5} \{ L_{5,10} \} \right) = \tau_{5}
\end{cases} (2.52)$$

или в матричном виде

Инв. № дубл.

NHB. $N^{\underline{\varrho}}$

подл.

Инв. №

$$\tau = \xi \chi, \tag{2.53}$$

где $\tau=[\tau_1,\ \tau_2,\ \dots,\ \tau_5]^T$ — вектор обобщенных моментов, $\chi=[\chi_1,\ \chi_2,\ \dots,\ \chi_5]^T\in\mathbb{R}^{50}$ — вектор параметров робота, где в свою очередь

$$\chi_i = \begin{bmatrix} m_i & m_i x_{ci} & m_i y_{ci} & m_i y_{ci} & I_{i,xx} & I_{i,yy} & I_{i,zz} & I_{i,xy} & I_{i,xz} & I_{i,yz} \end{bmatrix}_{;}^T \qquad (2.54)$$

 ξ — так называемый регрессор, равный

$$\xi = \begin{bmatrix} \xi_{1,1} & \xi_{1,2} & \cdots & \xi_{1,5} \\ O_{1\times 10} & \xi_{2,2} & \cdots & \xi_{2,5} \\ \vdots & \vdots & \ddots & \vdots \\ O_{1\times 10} & O_{1\times 10} & O_{1\times 10} & \xi_{5,5} \end{bmatrix}, \tag{2.55}$$

где в свою очередь $O_{1\times 10}$ — вектор-строка, состоящая из 10 нулей, а $\xi_{j,i}=\xi_{j,i}(\ddot{q},\dot{q},q)$ — вектор-строка, рассчитываемый по формуле

$$\xi_{j,i} = \left[\mathcal{L}_j \{ L_{i,1} \} \ \mathcal{L}_j \{ L_{i,2} \} \ \dots \ \mathcal{L}_j \{ L_{i,10} \} \right].$$
 (2.56)

Изм. Лист № докум. Подп. Дата

КСУИ.101.4135.001 ПЗ

	EN 100.3	KCVM.101.4135		
	3	Синтез сис	стем управления	
П				
Подп. и дата				
Под				
Инв. № дубл.				
$\mathcal{N}^{\underline{o}}$ $M_{HB}.$				
Взам. инв.				
Подп. и дата				
Инв. № подл.			IZOVIII 101 1105 001 FID	Лист
Инв	Изм. Лист № д	докум. Подп. Дата	КСУИ.101.4135.001 ПЗ	21

	KCVM.101.4135.001 ПЗ		
	Заключение		
	Текст заключения		
га	_		
Подп. и дата			
	_		
Инв. № дубл.			
_			
Взам. инв. №			
л дата			
Подп. и дата			
• подл.	 		
Инв. № подл.	Изм Лист № покум Поли Лэтэ	КСУИ.101.4135.001 ПЗ	<i>Лист</i> 22

Список использованных источников

- $1\ \mathrm{KUKA}\ \mathrm{YOUBOT.}-\ \mathrm{URL:}\ \mathrm{http://www.technomatix.ru/kuka-youbot}$ (дата обращения: 08.03.2017).
- 2 YouBot Detailed Specifications. — URL: http://www.youbotstore.com/wiki/index.php/YouBot_Detailed_Specifications (дата обращения: 04.04.2017).

инв. $\mathcal{N}^{\underline{o}}$ Взам. 1 Подп. и дата Инв. № подл. Лист $KCУИ.101.4135.001\ \Pi 3$ 23 Изм. Лист № докум. Подп. Дата

Приложение A (рекомендуемое)

Матрицы однородного преобразования

Матрицей однородного преобразования iA_j называется матрица размера 4×4 , служащая для описания смещения и поворота СК $Ox_jy_jz_j$ относительно СК $Ox_iy_iz_i$ и имеющая следующую структуру:

$${}^{i}A_{j} = \begin{bmatrix} {}^{i}R_{j} & r_{i,j}^{i} \\ O_{1\times 3} & 1 \end{bmatrix}, \tag{A.1}$$

где $O_{1\times 3} = [0\ 0\ 0].$

Подп. и дата

Инв. № дубл.

инв.

Взам.

подл.

Инв. №

Принципы ее использования поясняет следующий пример.

Рассмотрим рисунок А.1. Чтобы найти координаты точки C относительно $Ox_0y_0z_0$ при известных векторах r_C^2 , $r_{0,1}^0$ и $r_{1,2}^1$ и поворотах всех СК друг относительно друга, могут быть использованы следующие выражения:

$$\begin{cases} r_C^0 = {}^{0}R_1r_C^1 + r_{0,1}^0 \\ r_C^1 = {}^{1}R_2r_C^2 + r_{1,2}^1 \end{cases} \Rightarrow r_C^0 = {}^{0}R_1{}^{1}R_2r_C^2 + {}^{0}R_1r_{1,2}^1 + r_{0,1}^0$$
 (A.2)

где $r_C^0,\,r_C^1,\,r_C^2$ — радиус-векторы точки C в $Ox_0y_0z_0,\,Ox_1y_1z_1$ и $Ox_2y_2z_2$ соответственно. В это же время можно воспользоваться и матрицами 0A_1 и 1A_2 :

$$\begin{cases}
\begin{bmatrix} r_{C}^{0} \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} {}^{0}R_{1} & r_{0,1}^{0} \\ {}^{O_{1\times3} & 1} \end{bmatrix}}_{{}^{0}A_{1}} \begin{bmatrix} r_{C}^{1} \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{0}R_{1}r_{C}^{1} + r_{0,1}^{0} \\ 1 \end{bmatrix} \\
\Rightarrow \begin{bmatrix} r_{C}^{1} \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} {}^{1}R_{2} & r_{1,2}^{1} \\ {}^{O_{1\times3} & 1} \end{bmatrix}}_{{}^{1}A_{2}} \begin{bmatrix} r_{C}^{2} \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ 1 \end{bmatrix} \\
\Rightarrow \begin{bmatrix} r_{C}^{0} \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} {}^{0}R_{1} & r_{0,1}^{0} \\ {}^{O_{1\times3} & 1} \end{bmatrix}}_{{}^{0}A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2} & r_{1,2}^{1} \\ {}^{O_{1\times3} & 1} \end{bmatrix}}_{{}^{0}A_{2}} \begin{bmatrix} r_{C}^{2} \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} {}^{0}R_{1} & r_{0,1}^{0} \\ {}^{O_{1\times3} & 1} \end{bmatrix}}_{{}^{0}A_{1}} \underbrace{\begin{bmatrix} {}^{1}R_{2}r_{C}^{2} + r_{1,2}^{1} \\ {}^{O_{1\times3} & 1} \end{bmatrix}}_{{}^{0}A_{1}} = \underbrace{\begin{bmatrix} {}^{0}R_{1}^{1}R_{2}r_{C}^{2} + {}^{0}R_{1}r_{1,2}^{1} + r_{0,1}^{0} \\ {}^{1}R_{2}r_{C}^{2} + {}^{0}R_{1}r_{1,2}^{1} + r_{0,1}^{0} \\ {}^{1}R_{2}r_{C}^{2} + {}^{0}R_{1}r_{1,2}^{1} + r_{0,1}^{0} \\ {}^{0}R_{1}^{1}R_{2}r_{C}^{2} + {}^{0}R_{1}r_{1,2}^{1} + r_{0,1}^{0}R_{1}^{1} + r_{0,1}^{0} \\ {}^{0}R_{1}^{1}R_{2}^{1}R_{2}^{1}R_{2}^{1}R_{2}^{1} + r_{0,1}^{1}R_{2}^{1}R_{2}^{1}R_{2}^{1} + r_{0,1}^{1}R_{2}^{1}R_{2}^{1}R_{2}^{1}R_{2}^{1}R_{2}^{1}R_{2}^{1}R_{2}^{1}R_{2}^{1}R_{2}^{1}R_{2}^{1}R_{2}^{1$$

Изм. Лист № докум. Подп. Дата

КСУИ.101.4135.001 ПЗ

Дополнительная информация о матрицах однородного преобразования доступна, например, в [].

Рисунок А.1 – Системы координат из пояснительного примера.

Подп. и дата	
Инв. № дубл.	
Бзам. инв. №	
Подп. и дата	
Тнв. № подл.	КСУИ.101.4135.001 ПЗ

Дата

Подп.

Изм. Лист

№ докум.

Приложение Б (рекомендуемое)

Терминология относительных измерений

Относительно координат некоторых векторов, являющихся в большинстве своем некоторыми кинематическими величинами, в тексте документа можно встретить указания на то, что они получены (или отсчитаны) «... относительно такой-то системы координат...» и при этом «... выражены относительно такой-то системы координат...». Это приложение разъясняет смысл данных фраз нижеследующим простым примером.

Рассмотрим рисунок Б.1. На нем изображены стоящий неподвижно куст, тележка, катящаяся со скоростью $v=1\,\mathrm{m/c}$, облако, движущееся со скоростью $u=3\,\mathrm{m/c}$, и жестко связанные с ними правосторонние системы координат $Ox_0y_0z_0,\,Ox_1y_1z_1$ и $Ox_2y_2z_2$. Опишем скорость движения облака вектором V. В зависимости от своего физического смысла он будет иметь разные координаты. Наглядно это демонстрирует таблица Б.1.

Рисунок Б.1 – Воображаемая ситуация из пояснительного примера.

Изм. Лист № докум. Подп. Дата

Подп.

Инв. № дубл.

инв.

Взам. 1

Подп.

Инв. № подл.

КСУИ.101.4135.001 ПЗ

Таблица Б.1 – Координаты вектора V в зависимости от его физического смысла.

Смысл вектора V	Значение V^T
Скорость $Ox_2y_2z_2$ относительно $Ox_0y_0z_0$, выраженная относительно $Ox_0y_0z_0$	$\begin{bmatrix} 3 & 0 & 0 \end{bmatrix}$
Скорость $Ox_2y_2z_2$ относительно $Ox_0y_0z_0$, выраженная относительно $Ox_1y_1z_1$	$\begin{bmatrix} 0 & 3 & 0 \end{bmatrix}$
Скорость $Ox_2y_2z_2$ относительно $Ox_0y_0z_0$, выраженная относительно $Ox_2y_2z_2$	$\begin{bmatrix} 0 & 0 & -3 \end{bmatrix}$
Скорость $Ox_2y_2z_2$ относительно $Ox_1y_1z_1$, выраженная относительно $Ox_0y_0z_0$	$\begin{bmatrix} 2 & 0 & 0 \end{bmatrix}$
Скорость $Ox_2y_2z_2$ относительно $Ox_1y_1z_1$, выраженная относительно $Ox_1y_1z_1$	$\begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$
Скорость $Ox_2y_2z_2$ относительно $Ox_1y_1z_1$, выраженная относительно $Ox_2y_2z_2$	$\begin{bmatrix} 0 & 0 & -2 \end{bmatrix}$

Изм. Лист № докум. Подп. Дата

Взам. инв. №

Подп. и дата

 \overline{M} нв. $\mathcal{N}^{\underline{o}}$ подл.

 $KСУИ.101.4135.001\ \Pi 3$