บทที่ 8 การทดสอบสมมติฐาน

การทดสอบสมมติฐานขั้นแรกต้องกำหนดหรือสร้างสมมติฐานให้ชัดเจนก่อนว่าจะทำการ ทดสอบอะไร โดยกำหนดสมมติฐาน 2 ข้อ ข้อแรกเรียกว่าสมมติฐานหลัก (Null hypothesis) ใช้ สัญลักษณ์ H_0 ข้อสองเรียกว่าสมมติฐานแย้ง (Alternative hypothesis) ใช้สัญลักษณ์ H_1 เป็น สมมติฐานที่ระบุค่าพารามิเตอร์ต่างจากค่าที่ตั้งไว้ในสมมติฐานหลัก

ตัวอย่างเช่น หลอดไฟฟลูออเรสเซนยี่ห้อ A ขนาด 32 วัตต์ ราคาหลอดละ 79 บาท ระบุอายุการใช้งานไว้ 8,000 ชั่วโมง ในฐานะผู้บริโภคอาจสงสัยว่าข้อความที่ ผู้ผลิตแจ้งไว้เชื่อถือได้หรือไม่ ถ้าจะทำการทดสอบสมมติฐานของเ ค่าเฉลี่ยอายุการใช้งานของ หลอดไฟยี่ห้อ A คือ $\mu_{\scriptscriptstyle A}$ อาจจะตั้งสมมติฐานได้หลายวิธีตามแต่ความสนใจ

1) ถ้าต้องการทราบว่า $\mu_{\scriptscriptstyle A}$ = 8,000 ชั่วโมง จริงหรือไม่ จะตั้งสมมติฐานหลัก และ สมมติฐานแย้งเป็น

$$H_0: \mu_A = 8,000$$
 แย้งกับ $H_1: \mu_A \neq 8,000$

$$H_1: \mu_A \neq 8,000$$

สมมติฐานสองทาง

หรือ H_0 : อายุการใช้งานเฉลี่ยของหลอดไฟยี่ห้อ A ไม่ต่างจาก 8,000 ชั่วโมง

แย้งกับ H_1 : อายุการใช้งานเฉลี่ยของหลอดไฟยี่ห้อ A ต่างจาก 8,000 ชั่วโมง

2) ถ้าคาดว่า $\mu_{\scriptscriptstyle A}$ จะไม่ถึง 8,000 ชั่วโมงตามที่โฆษณา ต้องการดูว่าเป็นจริงตามที่คาดไว้ หรือไม่ อาจตั้งสมมติฐานเป็น

$$H_0: \mu_A \ge 8,000$$

แย้งกับ

$$H_1: \mu_A < 8,000$$

สมมติฐานทางเดียว

หรือ
$$H_0$$
: $\mu_{\scriptscriptstyle A}$ = 8,000 แย้งกับ H_1 : $\mu_{\scriptscriptstyle A}$ < 8,000

$$H_1: \mu_A < 8,000$$

3) ถ้าคาดว่า อายุการใช้งานของหลอดไฟจะมากกว่า 8,000 ชั่วโมง จะตั้งสมมติฐานว่า

$$H_0: \mu_A \leq 8,000$$

$$H_1: \mu_4 > 8,000$$

หรือ
$$H_0$$
: $\mu_A = 8,000$

$$H_1: \mu_A > 8,000$$

บริเวณยอมรับ (Acceptance region) คือบริเวณที่ทำให้ เกิดการยอมรับ H_0 ส่วน บริเวณปฏิเสช (Rejection region) หรือบริเวณวิกฤต (Critical region) คือบริเวณที่ทำให้เกิดการ ปฏิเสช H_0

ความผิดพลาดจากการตัดสินใจ

	ความจริง		
การตัดสินใจ	H _o : เป็นจริง	H _o : เป็นเท็จ	
Accept H _o :	✓	Type II Error	
Reject H _o :	Type I Error	✓	

ความผิดพลาดประเภท 1 คือ ความน่าจะเป็นที่จะปฏิเสธ \mathbf{H}_0 เมื่อ \mathbf{H}_0 เป็นจริง = ระดับนัยสำคัญ \mathbf{C} ความผิดพลาดประเภท 2 คือ ความน่าจะเป็นที่จะยอมรับ \mathbf{H}_0 เมื่อ \mathbf{H}_0 เป็นเท็จ => อำนาจการทดสอบ

8.3

ขั้นตอนการทดสอบสมมติฐานทางสถิติ

ขั้นตอนการทดสอบสมมติฐานเพื่อการปฏิบัติอาจแบ่งได้เป็น 5 ขั้นตอน ดังนี้
ขั้นตอนที่ 1 กำหนดสมมติฐาน เป็นการทดสอบทางเดียว หรือ สองทาง
ขั้นตอนที่ 2 กำหนดระดับนัยสำคัญ (α)
ขั้นตอนที่ 3 เลือกตัวสถิติที่ใช้ทดสอบและคำนวณค่า บทที่ 6
ชั้นตอนที่ 4 หาบริเวณวิกฤตของการทดสอบ เปิดตารางสถิติ ตามตัวสถิติทดสอบข้อที่ 3
ขั้นตอนที่ 5 สรุปผล

การสรุปผลว่าปฏิเสชหรือไม่ปฏิเสชสมมติฐานหลัก H_0 พิจารณาโดยนำค่าสถิติที่ได้จากข้อ 3 มาเปรียบเทียบกับจุดวิกฤตของการทดสอบในขั้นตอนที่ 4 จากนั้นพิจารณาการตั้งสมมติฐานแย้ง หรือ H_1 ในขั้นตอนที่ 1 ว่าบริเวณวิกฤตของการทดสอบมี 1 หรือ 2 บริเวณ สมมติตัวอย่างกรณี ทดสอบสมมติฐานเกี่ยวกับพารามิเตอร์ค่าเฉลี่ย 1 ประชากร กล่าวคือ

1) ถ้าตั้งสมมติฐาน $H_0: \mu = \mu_0$ แย้งกับ $H_1: \mu \neq \mu_0$ เมื่อ μ_0 เป็นค่าคงที่ ในกรณีนี้ บริเวณวิกฤตมี 2 บริเวณโดยดูว่า $H_1: \mu \neq \mu_0$ ซึ่งหมายความว่าถ้าปฏิเสช H_0 ค่า μ อาจน้อยกว่า μ_0 หรือมากกว่า μ_0 บริเวณวิกฤตจึงมี 2 บริเวณ และแบ่งค่าระดับนัยสำคัญออกเป็น 2 ส่วน ส่วน ละ $\alpha/2$ ลักษณะการตั้งสมมติฐานที่ทำให้บริเวณวิกฤตมี 2 บริเวณ เช่นนี้เรียกว่า **ทดสอบสองทาง** (Two-tail test)

รูปที่ 8.3 แสดงบริเวณวิกฤตของการทดสอบ 2 ทาง

1) ถ้าตั้งสมมติฐาน $H_0: \mu = \mu_0$ แย้งกับ $H_1: \mu \neq \mu_0$ เมื่อ μ_0 เป็นค่าคงที่ ในกรณีนี้ บริเวณวิกฤตมี 2 บริเวณโดยดูว่า $H_1: \mu \neq \mu_0$ ซึ่งหมายความว่าถ้าปฏิเสธ H_0 ค่า μ อาจน้อยกว่า μ_0 หรือมากกว่า μ_0 บริเวณวิกฤตจึงมี 2 บริเวณ และแบ่งค่าระดับนัยสำคัญออกเป็น 2 ส่วน ส่วน ละ $\alpha/2$ ถักษณะการตั้งสมมติฐานที่ทำให้บริเวณวิกฤตมี 2 บริเวณ เช่นนี้เรียกว่า **ทดสอบสองทาง** (Two-tail test)

รูปที่ 8.3 แสคงบริเวณวิกฤตของการทดสอบ 2 ทาง

2) ถ้าตั้งสมมติฐานว่า H_0 : $\mu=\mu_0$ แย้งกับ H_1 : $\mu<\mu_0$ เมื่อ μ_0 เป็นค่าคงที่ กรณีนี้ บริเวณวิกฤตมีบริเวณเดียว กล่าวคือ ถ้าปฏิเสธ H_0 จะยอมรับว่า $\mu<\mu_0$ เท่านั้น บริเวณวิกฤตจึงมี บริเวณเดียว และระดับนัยสำคัญไม่ถูกแบ่งเป็น 2 ส่วน

2) ถ้าตั้งสมมติฐานว่า $H_0: \mu = \mu_0$ แย้งกับ $H_1: \mu < \mu_0$ เมื่อ μ_0 เป็นค่าคงที่ กรณีนี้ บริเวณวิกฤตมีบริเวณเดียว กล่าวคือ ถ้าปฏิเสธ H_0 จะยอมรับว่า $\mu < \mu_0$ เท่านั้น บริเวณวิกฤตจึงมี บริเวณเดียว และระดับนัยสำคัญไม่ถูกแบ่งเป็น 2 ส่วน

รูปที่ 8.4 แสดงบริเวณวิกฤตของการทดสอบทางเดียวทางซ้าย

3) ถ้าตั้งสมมติฐานว่า $H_0: \mu = \mu_0$ แย้งกับ $H_1: \mu > \mu_0$ เมื่อ μ_0 เป็นค่าคงที่ กรณีนี้ เมื่อตั้งสมมติฐาน H_1 ให้อยู่ในลักษณะที่เมื่อปฏิเสธ $H_0: \mu = \mu_0$ แล้วมีกรณีเดียว คือ $\mu > \mu_0$ จึง มีบริเวณวิกฤตเพียงด้านเดียวทางขวามือและเรียกการทดสอบนี้ว่า การทดสอบทางเดียว (One-tail test)

รูปที่ 8.5 แสดงบริเวณวิกฤตของการทคสอบทางเดียวทางขวา

3) ถ้าตั้งสมมติฐานว่า $H_0: \mu = \mu_0$ แย้งกับ $H_1: \mu > \mu_0$ เมื่อ μ_0 เป็นค่าคงที่ กรณีนี้ เมื่อตั้งสมมติฐาน H_1 ให้อยู่ในลักษณะที่เมื่อปฏิเสธ $H_0: \mu = \mu_0$ แล้วมีกรณีเดียว คือ $\mu > \mu_0$ จึง มีบริเวณวิกฤตเพียงด้านเดียวทางขวามือและเรียกการทดสอบนี้ว่า การทดสอบทางเดียว (One-tail test)

รูปที่ 8.5 แสดงบริเวณวิกฤตของการทคสอบทางเดียวทางขวา

การทดสอบค่าเฉลี่ย 1 ประชากร

ตัวอย่างที่ 8.4 ยาสระผมยี่ห้อหนึ่งใช้เครื่องจักรในการผลิต ความสามารถในการผลิตมีการแจกแจง ปกติโดยทราบว่ามีค่าความแปรปรวนของความสามารถในการผลิตเท่ากับ 21.44 (ลิตร/ชั่วโมง)² ถ้าทำ การสุ่มตรวจสอบ 36 ครั้ง พบว่าค่าเฉลี่ยของความสามารถในการผลิตเท่ากับ 208.01 ลิตร/ชั่วโมง จง ทำการทดสอบที่ระดับนัยสำคัญ 0.01 ว่ามีความเป็นไปได้หรือไม่ว่าค่าเฉลี่ยของความสามารถในการ ผลิตของเครื่องจักรนี้เป็น 210 ลิตร/ชั่วโมง

สมมติฐานการทคสอบ คือ

$$H_0: \quad \mu=210$$
 โดย $\overline{x}=208.01\,, \quad \mu_0=210\,, \quad \sigma=\sqrt{21.44}\,\,, \quad n=36$ $H_1: \quad \mu\neq 210$ ระคับนัยสำคัญ $\alpha=0.01$ ค่าวิกฤต $Z_{0.005}=\pm 2.575$ สถิติที่ใช้คือ $z_c=\frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}$

เนื่องจาก ค่าสถิติทดสอบ $Z_c=-2.58$ ซึ่งพบว่า $|Z_c|>|Z_{0.005}|$ จึง ปฏิเสธสมมติฐาน นั่นคือ ค่าเฉลี่ยความสามารถในการผลิตของ เครื่องจักรไม่เท่ากับ 210 ลิตร/ชั่วโมง

= -2.58

คังนั้น $z_c = \frac{208.01 - 210}{\sqrt{21.44/36}}$

ตัวอย่างที่ 8.5 บริษัทผู้ผลิตรถยนต์ยี่ห้อหนึ่ง ได้ทำการสุ่มเลือกรถยนต์ที่บริษัทเป็นผู้ผลิตมา ตรวจสอบ 40 คัน บันทึกระยะทางที่วิ่งได้เป็นไมล์ของรถแต่ละคันต่อการใช้น้ำมัน 1 แกลลอน โดยวิ่ง ในอัตราความเร็วที่เท่ากัน ผลปรากฏว่าได้ระยะทางเฉลี่ย 15.5 ไมล์ ส่วนเบี่ยงเบนมาตรฐาน 4.0 ไมล์ ถ้าบริษัทผู้ผลิตตั้งเป้าหมายไว้ว่ารถที่ทำการผลิตนี้จะวิ่งได้เป็นระยะทางเฉลี่ย 17 ไมล์/แกลลอน จงทำการทดสอบสมมติฐานที่ระดับนัยสำคัญ 0.01 ว่า ผลการทดลองนี้สนับสนุนเป้าหมายของบริษัทหรือไม่ สมมติฐานการทดสอบ คือ

$$H_0: \mu = 17$$

$$H_1: \mu \neq 17$$

ระคับนัยสำคัญ $\alpha=0.01$ ค่าวิกฤต $Z_{0.005}=\pm 2.575$

โดย
$$\overline{x}=15.5$$
 , $\mu_0=17$, $s=4$, $n=40$

สถิติที่ใช้คือ
$$z_c = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} = \frac{15.5 - 17}{4 / \sqrt{40}} = -2.37$$

เนื่องจาก ค่าสถิติทดสอบ Z_c =-2.37 ซึ่งพบว่า $|Z_c| < |Z_{0.005}|$ จึงไม่ปฏิเสธสมมติฐาน นั่นคือ ค่าเฉลี่ยรถจะวิ่งได้ระยะทาง 17 ไมล์ / แกลลอน

ตัวอย่างที่ 8.6 จากการ โฆษณาของร้านบริการอาหารจานค่วนที่กล่าวว่า สามารถจัดส่งถึงบ้านโดย จะใช้เวลาไม่เกิน 30 นาที จึงสุ่มผู้ใช้บริการจำนวน 10 คน ได้ข้อมูลดังต่อไปนี้ 26, 32, 24, 37, 28, 29, 33, 31, 34 และ 36 นาที อยากทราบว่าการ โฆษณาดังกล่าวเป็นความจริงหรือไม่ ที่ระดับนัยสำคัญ 0.05 (เมื่อทราบว่าเวลาการจัดส่งอาหารมีการแจกแจงปกติ)

วิธีทำ สมมติฐานการทคสอบ คือ

$$H_0: \mu \leq 30$$

$$H_1: \mu > 30$$

ระดับนัยสำคัญ $\alpha = 0.05$ ค่าวิกฤต $t_{0.05,9} = 1.833$

สถิติที่ใช้คือ
$$t_c = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

ใค้ว่า
$$t_c = \frac{31-30}{4.24/\sqrt{10}} = 0.75$$

โดย
$$\overline{x}=\frac{26+32+\cdots+36}{10}=31$$
 $s=\sqrt{\frac{9772-(310)^2/10}{9}}=4.24$ $\mu_0=30$, $n=10$

เนื่องจาก ค่าสถิติทดสอบ t_c=0.75 ซึ่งพบว่า t_c< t_{0.05,9}=1.833 จึงไม่ปฏิเสธสมมติฐาน นั่นคือร้านค้าสามารถจัดส่งถึงบ้านโดยใช้ เวลาไม่เกิน 30 นาที

การทดสอบผลต่างค่าเฉลี่ย 2 ประชากร

ตัวอย่างที่ 8.7 ผู้ผลิตรายหนึ่งอ้างว่าค่าเฉลี่ยแรงเค้น (Tensile Strength) ของด้ายชนิด A มากกว่า ค่าเฉลี่ยแรงเค้นของด้ายชนิด B อย่างน้อย 12 กิโลกรัม เพื่อทดสอบข้อกล่าวอ้างนี้จึงทำการตรวจสอบ ด้ายชนิด A และ B ชนิดละ 50 เส้น ภายใต้เงื่อนไขเดียวกัน พบว่าค้ายชนิด A มีค่าเฉลี่ยแรงเค้น 86.7 กิโลกรัม ด้วยค่าส่วนเบี่ยงเบนมาตรฐาน 6.28 กิโลกรัม ขณะที่ด้ายชนิด B มีค่าเฉลี่ยแรงเค้น 77.8 กิโลกรัม ด้วยค่าส่วนเบี่ยงเบนมาตรฐาน 5.61 กิโลกรัม จงทำการทดสอบข้อกล่าวอ้างของผู้ผลิต รายนี้ ที่ขนาดทดสอบ 0.05

สมมติฐานการทคสอบ คือ

$$H_0: \mu_A - \mu_B \ge 12$$

$$H_1: \mu_A - \mu_B < 12$$

ขนาคทคสอบ $\alpha = 0.05$ ค่าวิกฤต $Z_{0.05} = -1.645$

โดย
$$\overline{x}_A = 86.7$$
, $\overline{x}_B = 77.8$, $d_0 = 12$, $s_A = 6.28$, $s_B = 5.61$, $n_A = 50$, $n_B = 50$

สถิติที่ใช้คือ
$$z_c = \frac{(\overline{x}_A - \overline{x}_B) - d_0}{\sqrt{\frac{s_A^2}{n_c} + \frac{s_B^2}{n_c}}} = \frac{(86.7 - 77.8) - 12}{\sqrt{\frac{6.28^2}{50} + \frac{5.61^2}{50}}} = -2.60$$

เนื่องจาก ค่าสถิติทดสอบ Z_c =-2.60 ซึ่งพบว่า Z_c < $Z_{0.05}$ จึงปฏิเสธสมมติฐาน นั่นคือ คำกล่าว อ้างของผู้ผลิตไม่เป็นจริง

ตัวอย่างที่ 8.8 การทดลองเพื่อเปรียบเทียบรอยสึกหรอของเหล็กที่ใช้ทำแหนบรถยนต์ที่แตกต่างกัน
 ชนิด ด้วยการตรวจสอบวัสดุชนิดที่ 1 จำนวน 12 ชิ้น โดยเครื่องตรวจสอบรอยสึกหรอ และ ตรวจสอบวัสดุชนิดที่ 2 จำนวน 10 ชิ้น ด้วยวิธีการเดียวกัน ซึ่งเหล็กแต่ละชิ้นงานจะถูกวัดความลึก ของรอยสึกหรอ ซึ่งวัสดุชนิดที่ 1 ได้ค่าเฉลี่ยความลึกของรอยสึกหรอ (ในรูปของดัชนี) เป็น 81 หน่วย และมีค่าส่วนเบี่ยงเบนมาตรฐานเป็น 4 หน่วย ขณะที่ชิ้นงานของวัสดุชนิดที่ 2 มีค่าเฉลี่ยความลึกของ รอยสึกหรอเป็น 81 หน่วยและมีค่าส่วนเบี่ยงเบนมาตรฐานเป็น 5 หน่วยจะสรุปด้วยระดับนัยสำคัญ 0.05 ได้หรือไม่ว่าค่าเฉลี่ยความลึกของรอยสึกหรอของวัสดุชนิดที่ 1 มีค่ามากกว่าชนิดที่ 2 เท่ากับ 2 หน่วย ถ้าสมมติ 2 ประชากรมีการแจกแจงแบบปกติ และมีส่วนเบี่ยงเบนมาตรฐานเท่ากัน

โดย
$$\overline{x}_1 = 81$$
 , $\overline{x}_2 = 81$, $s_1 = 4$, $s_2 = 5$, $n_1 = 12$, $n_2 = 10$

สถิติที่ใช้คือ
$$t_c = \frac{(\overline{x_1} - \overline{x_2}) - d_0}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{(81 - 81) - 2}{\sqrt{20.05 \left(\frac{1}{12} + \frac{1}{10}\right)}} = -1.04$$

เนื่องจาก ค่าสถิติทดสอบ t_{0.025,20}= ±2.086 ซึ่งพบว่า |t_c|<|t_{0.025,20}| จึงไม่ปฏิเสธสมมติฐาน นั่นคือ ค่าเฉลี่ยสึกหรอวัสดุ1 มากกว่าวัสดุ 2 เท่ากับ 2 หน่วย

วิธีทำ สมมติฐานการทดสอบ คือ

$$H_0: \mu_1 - \mu_2 = 2$$

$$H_1: \mu_1 - \mu_2 \neq 2$$

ระดับนัยสำคัญ lpha = 0.05

เนื่องจาก ความแปรปรวน เท่ากัน จึงหา S_p^2

$$s_p^2 = \frac{(11)4^2 + (9)5^2}{12 + 10 - 2} = 20.05$$

การทดสอบสมมติฐานผลต่างของค่าเฉลี่ย 2 ประชากร สำหรับข้อมูลรายคู่

$$\sum_{i=1}^{n} d_{i}$$

$$\overline{d} = \frac{i=1}{n}, \qquad s_{d}^{2} = \frac{i=1}{n-1}$$

การสรุปผล

- 1) ถ้ากำหนดสมมติฐานการทดสอบ $H_0: \mu_d = d_0$ แย้งกับ $H_1: \mu_d \neq d_0$ จะปฏิเสธสมมติฐานหลัก H_0 ที่ระดับนัยสำคัญ α เมื่อ $t_c < -t_{\alpha/2, \mathcal{V}}$ หรือ $t_c > t_{\alpha/2, \mathcal{V}}$, $\mathcal{V} = n-1$
- 2) ถ้ากำหนดสมมติฐานการทดสอบ $H_0: \mu_d = d_0$ แย้งกับ $H_1: \mu_d < d_0$ จะปฏิเสธสมมติฐานหลัก H_0 ที่ระดับนัยสำคัญ α เมื่อ $t_c < -t_{\alpha, \mathcal{V}}$
- 3) ถ้ากำหนดสมมติฐานการทดสอบ $H_0: \mu_d = d_0$ แย้งกับ $H_1: \mu_d > d_0$ จะปฏิเสธสมมติฐานหลัก H_0 ที่ระดับนัยสำคัญ α เมื่อ $t_c > t_{\alpha, V}$

ตัวอย่างที่ 8.10 จากการเปรียบเทียบเครื่องคอมพิวเตอร์จากบริษัท A ที่กล่าวว่า สามารถประมวลผล ได้ทัดเทียมกับเครื่องจากบริษัทมาตรฐานแต่ราคาถูกกว่า ดังนั้นจึงทดลองประมวลผลโปรแกรม 10 โปรแกรม ที่เขียนขึ้นในการทำงานแตกต่างกันกับเครื่องคอมพิวเตอร์จากทั้ง 2 บริษัทเพื่อเปรียบเทียบ เวลา (CPU-Time) ที่ใช้ในการประมวลผลโปรแกรม ได้ผลดังนี้

โปรแกรม	เวลาที่ใช้ในการประมวลผลโปรแกรม (วินาที)			
เมวเทรม	บริษัท A	บริษัทมาตรฐาน		
1	61	55		
2	60	54		
3	56	47		
4	63	59		
5	56	51		
6	63	61		
7	59	57		
8	56	54		
9	62	63		
10	61	58		

ณ ระดับนัยสำคัญ 0.01 อยากทราบว่าเวลาที่ใช้ในการประมวลผลโปรแกรมกับเครื่องคอมพิวเตอร์จาก บริษัท A มีค่ามากกว่าใช้กับเครื่องคอมพิวเตอร์จากบริษัทมาตรฐาน หรือไม่

คู่ที่	บริษัท A	มาตรฐาน	di (A-std)	di^2
1	61	55	6	36
2	60	54	6	36
3	56	47	9	81
4	63	59	4	16
5	56	51	5	25
6	63	61	2	4
7	59	57	2	4
8	56	54	2	4
9	62	63	-1	1
10	61	58	3	9
รวม	597	559	38	216

วิธีทำ สมมติฐานการทคสอบ คือ

$$H_0: \mu_d \leq 0$$

$$H_1: \mu_d > 0$$

ระคับนัยสำคัญ คือ $\alpha=0.01$ ค่าวิกฤต $t_{0.01.9}=2.821$

$$\overline{d} = \frac{\sum d_i}{n} = \frac{38}{10} = 3.8$$

$$S_d^2 = \frac{\sum d_i^2 - n\overline{d}^2}{n-1} = \frac{216 - 10(3.8^2)}{10 - 1} = 7.956$$

$$S_{d} = \sqrt{7.956} = 2.821$$

ดังนั้น
$$t_c = \frac{3.8 - 0}{2.82 / \sqrt{10}} = 4.26$$

เนื่องจาก ค่าสถิติทดสอบ t_{0.01,9}= 2.821 ซึ่งพบว่า t_c>t_{0.01,9} จึงปฏิเสธสมมติฐาน นั่นคือ เวลาในการประมวลผลเครื่อง คอมพิวเตอร์ บ. A นานกว่า บ.มาตรฐาน **ตัวอย่าง 1** Supplier ส่งเส้นใยให้กับ โรงงานทอผ้าแห่งหนึ่ง โดยโรงงานต้องการทราบว่าถ้าค่าเฉลี่ยความ เหนียวของเส้นใยเกิน 200 psi จึงจะยอมรับเส้นใยทั้งล็อต จากการผลิตที่ผ่านมาพบว่าค่าความแปรปรวนของ ความเหนียวของเส้นใยเท่ากับ 100 psi² จึงทำการสุ่มตัวอย่างเส้นใยอย่างสุ่มมา 4 เส้นใย พบว่าค่าเฉลี่ยความ เหนียวของเส้นใยเท่ากับ 214 psi จงทดสอบสมมติฐานที่ระดับนัยสำคัญ 0.05 ว่าค่าเฉลี่ยความเหนียวของ เส้นใยที่ได้รับจาก supplier เกินกว่า 200 psi หรือไม่ พร้อมทั้งหาช่วงความเชื่อมั่นของค่าเฉลี่ยความเหนียว ของเส้นใย

วิธีทำ สมมติฐานการทดสอบ

ค่าวิกฤต

ค่าสถิติ

สรุปผลการทดสอบ

ช่วงความเชื่อมั่น

ตัวอย่าง 2 การทดสอบว่ายาลดน้ำหนักชนิดหนึ่งจะมีผลต่อความดันโลหิตของผู้ได้รับยานี้มากน้อยเพียงใด ผู้ศึกษาได้วัดความ ดันโลหิตของกลุ่มทดลองก่อนได้รับยาลดน้ำหนักจำนวน 12 คน และทำการวัดความดันโลหิตอีกครั้งหนึ่งเมื่อได้รับยาลด น้ำหนักแล้ว ผลปรากฏดังตารางด้านล่าง ถ้ากำหนดให้ความดันโลหิตมีการแจกแจงปรกติ จงทดสอบว่าความดันก่อน และหลัง ได้รับยา แตกต่างกันหรือไม่ ที่ระดับนัยสำคัญ 0.05 พร้อมทั้งหาช่วงความเชื่อมั่น 95%

คนที่	1	2	3	4	5	6	7	8	9	10	11	12	รวม
ก่อนได้รับยา	125	120	118	134	138	125	123	126	140	133	127	131	
หลังได้รับยา	128	128	127	141	135	129	125	124	141	138	135	137	
d_i	3	8	9	7	-3	4	2	-2	1	5	8	6	48

การทดสอบความแปรปรวน 1 ประชากร

$$H_0: \sigma^2 = \sigma_0^2$$
 แย้งกับ $H_1: \sigma^2 \neq \sigma_0^2$
 $H_0: \sigma^2 = \sigma_0^2$ แย้งกับ $H_1: \sigma^2 < \sigma_0^2$
 $H_0: \sigma^2 = \sigma_0^2$ แย้งกับ $H_1: \sigma^2 < \sigma_0^2$

การทดสอบจะใช้สถิติ
$$\chi_c^2 = \frac{(n-1)S^2}{\sigma_0^2}$$
 ที่องศาแห่งความเป็นอิสระ ν = n-1

$\mathbf{H_0}$	$\mathbf{H_{1}}$	บริเวณวิกฤต
$H_0: \sigma^2 \leq \sigma_0^2$	$H_1: \sigma^2 > \sigma_0^2$	$\chi^2 \geq \chi^2_{\alpha(n-1)}$
$H_0: \sigma^2 \geq \sigma_0^2$	$H_1: \sigma^2 < \sigma_0^2$	$\chi^2 \leq \chi^2_{1-\alpha(n-1)}$
$H_0: \sigma^2 = \sigma_0^2$	$H_1: \sigma^2 \neq \sigma_0^2$	$\chi^2 \le \chi^2_{1-\frac{\alpha}{2}}$ អតី១ $\chi^2 \ge \chi^2_{\frac{\alpha}{2}(n-1)}$

ตัวอย่างที่ 8.11 ผู้ผลิตแบตเตอรี่รถยนต์กล่าวอ้างว่า อายุการใช้งานของแบตเตอรี่ที่เขาผลิตมี การแจกแจงปกติ มีค่าส่วนเบี่ยงเบนมาตรฐานเท่ากับ 0.9 ปี ถ้าในการสุ่มตรวจสอบแบตเตอรี่จำนวน 10 ถูกพบว่ามีค่าส่วนเบี่ยงเบนมาตรฐานเท่ากับ 1.2 ปี คุณจะเชื่อหรือไม่ว่าค่า $\sigma >$ 0.9 ปี

ที่ระดับนัยสำคัญ 0.05

สมมติฐานการทคสอบ คือ วิธีทำ

$$H_0: \sigma^2 \le 0.9^2$$

 $H_1: \sigma^2 > 0.9^2$

$$\chi_c^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

ค่าสถิติทดสอบ คือ
$$\chi_c^2 = \frac{(n-1)S^2}{\sigma^2}$$
 $\chi_c^2 = \frac{9(1.2)^2}{0.9^2} = 16$

ระคับนัยสำคัญ คือ $\alpha=0.05$

สรุปผล เนื่องจากค่า $\chi_c^2=16<16.919$ คังนั้นจึงไม่ปฏิเสธสมมติฐานหลัก H_0 ที่ ระดับนัยสำคัญ 0.05 นั่นคือ ส่วนเบี่ยงเบนมาตรฐานของอายุการใช้งานของแบตเตอรี่มีค่าไม่

ตัวอย่าง โรงงานผลิตหลอดภาพโทรทัศน์แห่งหนึ่ง ทราบว่าอายุการใช้งานหลอดภาพมีการแจกแจงปรกติ มีความ แปรปรวน 10,000 ชม² ในการตรวจสอบคุณภาพครั้งหนึ่ง โดยการสุ่มหลอดภาพมา 20 หลอด พบว่าความแปรปรวน ของอายุการใช้งานของหลอดภาพเท่ากับ 12,000 ชม² ที่ระดับนัยสำคัญ 0.05 จะกล่าวได้หรือไม่ว่า ความแปรปรวน ของอายุการใช้งานของหลอดภาพไม่เท่ากับ 10,000 ชม²

ขั้นที่ 1
$$H_0$$
 : $\mathbf{\sigma}^2$ = 10,000 H_1 : $\mathbf{\sigma}^2$ ≠ 10,000 ขั้นที่ 2 กำหนด $\mathbf{\alpha}$ = 0.05

ขั้นที่ 3 กำหนดตัวสถิติและคำนวนณค่า

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} \qquad \chi^2 = \frac{(20-1)(12000)}{10000} = 22.8$$

ขั้นที่ 4 ค่าวิกฤตคือ

$$\chi^2_{0.025} = 32.852$$
 และ $\chi^2_{0.975} = 8.907$

ขั้นที่ 5 สรุปผล

เนื่องจากค่าสถิติทดสอบ 22.8 มีค่า มากกว่า 8.907 และ มีค่า น้อยกว่า 32.852 ดังนั้น ไม่ปฏิเสธสมมติฐาน นั่นคือความแปรปรวนอายุการใช้งานของหลอดเป็น 10,000 ชั่วโมง²

8.907 1 32852

ตัวอย่าง 3 การสกัดพื้นผิว silicon ซึ่งเกิดขึ้นขณะทดลองสำหรับการกัดด้วยพลาสมา ได้ความหนาดังนี้ (หน่วย มิลลิเมตร)

.97 7.35 5.44 4.39 4.98 5.25 6.35 4.61 6.00 5.32
$$\sum X_i^2 = 661.3302$$

$$n = 20$$

- 1) จงหาช่วงความเชื่อมั่น 98% ของความแปรปรวน
- 2) จงทำการทดสอบสมมติฐานที่ระดับนัยสำคัญ 0.02 ว่าความแปรปรวน เท่ากับ 1 หรือไม่

 $\sum X_i = 113.26$

อบความแตกต่างความแปรปรวน 2 ประชากร

$$H_0: \sigma_1^2 = \sigma_2^2$$
 แย้งกับ $H_1: \sigma_1^2 \neq \sigma_2^2$ $H_0: \sigma_1^2 = \sigma_2^2$ แย้งกับ $H_1: \sigma_1^2 > \sigma_2^2$ $H_0: \sigma_1^2 = \sigma_2^2$ แย้งกับ $H_1: \sigma_1^2 < \sigma_2^2$

Hypotheses

$$H_0: \sigma_1^2 \le \sigma_2^2$$

$$H_1: \sigma_2^2 > \sigma_2^2$$

$$H_1: \sigma_2^2 > \sigma_2^2$$

$$H_0: \sigma_1^2 \ge \sigma_2^2$$

$$H_1: \sigma_1^2 < \sigma_2^2$$

$$H_1: \sigma_1^2 < \sigma_2^2$$

$$H_1: \sigma_1^2 \neq \sigma_2^2$$

Critical Region

$$F = \frac{s_1^2 \sigma_2^2}{s_2^2 \sigma_1^2} \ge f_{\alpha(\nu_1, \nu_2)}$$

$$F = \frac{s_1^2 \sigma_2^2}{s_2^2 \sigma_1^2} \le f_{1-\alpha(\nu_1,\nu_2)}$$

$$F = \frac{s_1^2 \sigma_2^2}{s_2^2 \sigma_1^2} \le f_{1-\frac{\alpha}{2}(\nu_1,\nu_2)}, F = \frac{s_1^2 \sigma_2^2}{s_2^2 \sigma_1^2} \ge f_{\frac{\alpha}{2}(\nu_1,\nu_2)}$$

$$df_1 = n_1 - 1$$
 และ $df_2 = n_2 - 1$

ตัวสถิติ F
$$F_c = rac{S_1^2}{S_2^2}$$

ตัวอย่างที่ 8.12 จากข้อมูลที่รวบรวมเพื่อตรวจสอบคำกล่าวอ้างที่ว่า เวลาที่พยาบาลมาพบคนไข้กรณี ได้รับสัญญาณเรียกฉุกเฉิน สำหรับคนไข้สามัญกับคนไข้พิเศษ ในตึกผู้ป่วยเคียวกันมีความแตกต่างกัน โดยคนไข้สามัญจะได้รับการบริการช้ากว่าคนไข้พิเศษ ซึ่งรวบรวมข้อมูลได้ดังนี้

คนไข้	จำนวน	ค่าเฉลี่ย	ส่วนเบี่ยงเบนมาตรฐาน
สามัญ	25	5.5 วินาที	0.4 วินาที
พิเศษ	16	5.3 วินาที	0.3 วินาที

จากข้อมูลในอดีตทราบว่า เวลามีการกระจายแบบปกติ จงทดสอบที่ระดับนัยสำคัญ 0.02 ว่า

1. ส่วนเบี่ยงเบนมาตรฐานของเวลาในการให้บริการเท่ากันหรือไม่

วิธีทำ 1. ให้ σ_1^2 แทนความแปรปรวนของเวลาในการให้บริการคนไข้สามัญ ให้ σ_2^2 แทนความแปรปรวนของเวลาในการให้บริการคนไข้พิเศษ สมมติฐานการทดสอบ คือ

$$H_0: \sigma_1^2 = \sigma_2^2$$

$$H_1: \sigma_1^2 \neq \sigma_2^2$$

ระดับนัยสำคัญ คือ lpha = 0.02

สถิติที่ใช้
$$f_c = \frac{s_1^2}{s_2^2}$$

โดยที่
$$s_1^2 = 0.4^2$$
, $s_2^2 = 0.3^2$

คังนั้น
$$f_c = \frac{0.4^2}{0.3^2} = 1.78$$

จะปฏิเสธสมมติฐานหลัก H_0 เมื่อ $f_c > 3.29\,$ หรือ $f_c < 0.346\,$ สรุปผล เนื่องจากค่า $f_c = 1.78\,$ อยู่นอกบริเวณปฏิเสธสมมติฐานหลัก คังนั้นจึงไม่ ปฏิเสธสมมติฐานหลัก H_0 ที่ระคับนัยสำคัญ 0.05 นั่นคือ ส่วนเบี่ยงเบนมาตรฐานของเวลาใน การให้บริการคนไข้สามัญกับคนไข้พิเศษไม่ต่างกัน ที่ระคับนัยสำคัญ 0.02

จากตาราง
$$f$$
 จะได้
$$f_{\alpha/2,(n_1-1,\,n_2-1)} = f_{0.01,\left(24,15\right)} = 3.29$$

$$f_{1-\alpha/2,(n_1-1,\,n_2-1)} = \frac{1}{f_{\alpha/2,(n_2-1,\,n_1-1)}} = \frac{1}{2.89} = 0.346$$

ตัวอย่างที่ 4 นักวิศวกรเคมีคนหนึ่งสังเกตเห็นความผันแปรของเครื่องมือ 2 ชนิดที่ใช้ตรวจจับผลลัพธ์จากกระบวนการผลิต เขาสงสัยว่าเครื่องมือตัวเก่า (ชนิดที่ 1) จะมีความแปรปรวนสูงกว่าเครื่องมือใหม่ เพื่อทดสอบความจริงดังกล่าว เขาจึงทำการ สุ่มค่าสังเกตที่ตรวจจับจากเครื่องมือตัวเก่า 13 ค่า พบว่ามีความแปรปรวนเท่ากับ 14.5 และสุ่มค่าสังเกตที่ตรวจจับจาก เครื่องมือใหม่ 10 ค่า พบว่ามีความแปรปรวน 10.8 ที่ระดับนัยสำคัญ 0.05 สามารถสรุปได้หรือไม่ว่านักวิศกรเคมีคนดังกล่าว คิดได้ถูกต้อง พร้อมทั้งหาช่วงความเชื่อมั่น 90% ของอัตราส่วนความแปรปรวน

การทดสอบสมมติฐานของสัดส่วนประชากร 1 ประชากร

$$H_0: p=p_0$$
 แย้งกับ $H_1: p\neq p_0$ การทดสอบจะใช้ตัวสถิติ Z_c โดย หรือ $H_0: p=p_0$ แย้งกับ $H_1: p< p_0$ Z_c

$$Z_{c} = \frac{\hat{p} - p_{0}}{\sqrt{\frac{p_{0}(1 - p_{0})}{n}}}$$

เมื่อ \hat{p} เป็นสัดส่วนจำนวนที่สนใจ จาก n ค่าสังเกต

สมมติฐาน H o	สมมติฐาน H 1	บริเวณปฏิเสธสมมติฐาน
$H_0 : p = p_0$	$H_1\ :\ p\ \neq\ p_0$	$ z >z_{\alpha/2}$
$H_0: p \leq p_0$	$H_1 : p > p_0$	$z > z_{\alpha}$
$H_0: p \geq p_0$	H_1 : $p < p_0$	$Z < -Z_{\alpha}$

ตัวอย่างที่ 8.14 จากการสุ่มถามครัวเรือนที่อยู่ในเขต ก.ท.ม. 500 ครัวเรือน พบว่ามีจำนวนผู้เป็น สมาชิกเคเบิลทีวี 340 ครัวเรือน อยากทราบว่าร้อยละของผู้เป็นสมาชิกเคเบิลทีวีในเขต ก.ท.ม. น้อยกว่า 75 เปอร์เซ็นต์หรือไม่ ณ ระดับนัยสำคัญ 0.05

วิธีทำ สมมติฐานการทดสอบ คือ

$$H_0: p = 0.75$$

$$H_1: p < 0.75$$

ระดับนัยสำคัญ คือ lpha = 0.05 ค่าวิกฤต $Z_{0.05}$ =-1.645

$$\hat{p} = \frac{340}{500} = 0.68 \qquad p_0 = 0.75 \quad \text{และ } n = 500$$

สถิติที่ใช้
$$z_c = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 \left(1 - p_0\right)}{n}}} = \frac{0.68 - 0.75}{\sqrt{\frac{0.75 \left(0.25\right)}{500}}} = -3.61$$

 Z_{c} = -3.61 < $Z_{0.05}$ = -1.645 ปฏิเสธ สมมติฐาน นั่นคือสมาชิกเคเบิล TV ใน กทม น้อยกว่า ร้อยละ 75

การทดสอบสมมติฐานผลต่างสัดส่วนของ 2 ประชากร

$$H_0:p_1-p_2=p_0$$
 แย้งกับ $H_1:p_1-p_2\neq p_0$ หรือ
$$H_0:p_1-p_2=p_0$$
 แย้งกับ $H_1:p_1-p_2< p_0$ หรือ
$$H_0:p_1-p_2=p_0$$
 แย้งกับ $H_1:p_1-p_2< p_0$

การทคสอบสมมติฐานจะใช้การแจกแจงปกติช่วยในการทคสอบ โดยแยกออกเป็น 2 กรณี ดังนี้

(1) ถ้า $p_0 \neq 0$ หรือ สมมติฐานของการทคสอบเป็น $H_0: p_1 - p_2 = p_0$ และทราบค่า p_1 และ p_2 โดยประสบการณ์หรือโดยวิธีใดก็ตาม สถิติที่ใช้ในการทคสอบคือ Z_c โดย

$$Z_c = \frac{(\hat{p}_1 - \hat{p}_2) - p_0}{\sqrt{\left\{p_1(1-p_1)/n_1\right\} + \left\{p_2(1-p_2)/n_2\right\}}}$$

(2) ถ้า $p_0 = 0$ หรือสมมติฐานของการทดสอบเป็น $H_0 : p_1 = p_2$ จะทำการประมาณค่าสัดส่วน

$$\hat{p} = rac{X_1 + X_2}{n_1 + n_2}$$
 เมื่อ X_1 เป็นจำนวนหน่วยตัวอย่างที่สนใจจากประชากรที่ 1 และ X_2 _____

เป็นจำนวนหน่วยตัวอย่างที่สนใจจากประชากรที่ 2 สถิติที่ใช้ในการทดสอบคือ Z_c โดย

$$Z_{c} = \frac{(\hat{p}_{1} - \hat{p}_{2}) - p_{0}}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$

สมมติฐาน H ₀	สมมติฐาน H 1	บริเวณปฏิเสธสมมติฐาน
$H_0 : p_1 - p_2 = p_0$	$H_1 : p_1 - p_2 \neq p_0$	$ z >z_{\alpha/2}$
$H_0: p_1 - p_2 \le p_0$	$H_1 : p_1 - p_2 > p_0$	$z > z_{\alpha}$
$H_{_0}: p_{_1}-p_{_2} \ge p_{_0}$	$H_1 : p_1 - p_2 < p_0$	$z < -z_{\alpha}$

ตัวอย่างที่ 8.16 จากการหยั่งเสียงการเลือกตั้ง อ.บ.ต. (แบบเลือกพรรค) ของพรรคปวงชนชาวไทยใน 2 เขตของการเลือกตั้งพบข้อมูลดังนี้

	จำนวนที่สุ่มถาม	จำนวนผู้ที่เลือก พรรคปวงชาวไทย
เขตที่ 1	200	120
เขตที่ 2	500	240

จากการเลือกตั้ง อ.บ.ต. ใน 2 เขตของการเลือกตั้งดังกล่าวที่ผ่านมานั้น พบว่าสัดส่วนจำนวน ผู้เลือกพรรคปวงชนชาวไทยได้รับการเลือกในเขต 1 มากกว่าเขต 2 อยากทราบว่าการหยั่งเสียงยัง ยืนยันเช่นข้อมูลที่ผ่านมาหรือไม่ ณ ระดับนัยสำคัญ 0.05

ไม่ทราบ p_1 และ p_2 แต่ทราบแค่จำนวน จึงต้องประมาณ

$$\hat{p} = \frac{X_1 + X_2}{n_1 + n_2}$$

วิธีทำ สมมติฐานการทคสอบ คือ

$$H_0: p_1 - p_2 = 0$$

$$H_1: p_1 - p_2 > 0$$

ระคับนัยสำคัญ คือ $\alpha = 0.05$ ค่าวิกฤต $Z_{0.05}$ =1.645

สถิติที่ใช้
$$z_c = \frac{(\hat{p}_1 - \hat{p}_2) - p_0}{\sqrt{\hat{p}(1-\hat{p}) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$\hat{p}_1 = \frac{120}{200} = 0.6 \quad \hat{p}_2 = \frac{240}{500} = 0.48$$

$$\hat{p} = \frac{120 + 240}{200 + 500} = 0.5143$$
 , $\hat{q} = 0.4857$,

$$= \frac{0.60 - 0.48}{\sqrt{(0.5143)(0.4857)\left(\frac{1}{200} + \frac{1}{500}\right)}} = 2.87$$

 $Z_{c} = 2.87 > Z_{0.05} = 1.645$ ปฏิเสธสมมติฐาน นั่น คือสัดส่วนจำนวนผู้เลือกพรรคปวงชนชาวไทย ใน เขต 1 มากกว่า เขตที่ 2 เป็นไปตามคำกล่าวอ้าง

ตัวอย่าง 8.17 จากการสำรวจแม่บ้านจำนวน 100 คนที่อาศัยอยู่ในเมือง พบว่าจะใช้เครื่องซักผ้า จำนวน 63 คน และสำรวจแม่บ้านจำนวน 125 คนที่อาศัยอยู่นอกเมือง ใช้เครื่องซักผ้าจำนวน 60 คน จงทดสอบสมมติฐานว่าสัดส่วนของแม่บ้านทั้งหมดที่อาศัยอยู่ในเมือง จะใช้เครื่องซักผ้ามากกว่า แม่บ้านทั้งหมดที่อยู่นอกเมือง เกิน 10% หรือไม่ ที่ระดับนัยสำคัญ 0.05

วิธีทำ จากโจทย์

- p₁ คือ สัดส่วนของแม่บ้านทั้งหมดที่อยู่ในเมืองและใช้เครื่องซักผ้า
- $\mathbf{p}_{\scriptscriptstyle 2}$ คือ สัดส่วนของแม่บ้านทั้งหมดที่อยู่นอกเมืองและใช้เครื่องซักผ้า
- p̂ กือ สัดส่วนของแม่บ้านตัวอย่างที่อยู่ในเมืองและใช้เครื่องซักผ้า
- p̂ กือ สัดส่วนของแม่บ้านตัวอย่างที่อยู่นอกเมืองและใช้เครื่องซักผ้า

ในเมือง
$$\hat{\mathbf{p}}_1 = \frac{\mathbf{x}_1}{\mathbf{n}_1} = \frac{63}{100} = 0.63$$
 $\hat{\mathbf{q}}_1 = 1 - \hat{\mathbf{p}}_1 = 0.37$

$$\hat{q}_1 = 1 - \hat{p}_1 = 0.37$$

ตัวอย่างที่ 6.5 จากการสำรวจแม่บ้านจำนวน 100 คนที่อาศัยอยู่ในเมือง พบว่าจะใช้เครื่องซักผ้า จำนวน 63 คน และสำรวจแม่บ้านจำนวน 125 คนที่อาศัยอยู่นอกเมือง ใช้เครื่องซักผ้าจำนวน 60 คน จงทคสอบสมมติฐานว่าสัดส่วนของแม่บ้านทั้งหมดที่อาศัยอยู่ในเมือง จะใช้เครื่องซักผ้ามากกว่า แม่บ้านทั้งหมดที่อยู่นอกเมือง เกิน 10% หรือไม่ ที่ระดับนัยสำคัญ 0.05

นอกเมือง
$$\hat{p}_2 = \frac{x_2}{n_2} = \frac{60}{125} = 0.48$$
 $\hat{q}_1 = 1 - \hat{p}_1 = 0.52$

$$\hat{q}_1 = 1 - \hat{p}_1 = 0.52$$

1.
$$H_0: p_1 - p_2 \leq 0.10$$

$$H_1: p_1 - p_2 > 0.10$$
 (ในเมืองใช้มากกว่านอกเมือง เกิน 10%)

- 2. ระดับนัยสำคัญ (α) = 0.05 ค่าวิกฤต $Z_{0.05}$ = 1.645
- 3. ดังนั้นตัวสถิติที่ใช้ในการทดสอบคือ

$$Z = \frac{(\hat{p}_1 - \hat{p}_2) - p_0}{\sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}} ; \quad \vec{\text{ide}} \quad p_0 \neq 0$$

$$= \frac{(0.63 - 0.48) - 0.10}{\sqrt{\frac{0.63 \cdot 0.37}{100} + \frac{0.48 \cdot 0.52}{125}}} = 0.760$$

 $Z_{c} = 0.76 < Z_{0.05} = 1.645$ ไม่ปฏิเสธสมมติฐาน นั่น คือสัดส่วนผู้ใช้เครื่องซักผ้าในเมืองไม่ได้มากไปกว่า แม่บ้านที่อยู่นอกเมือง ไม่เกินร้อยละ 10