Метод замороженного спина для поиска электрического дипольного момента дейтрона в накопительном кольце

Выступающий: Руководитель:

д-р. физ.-мат. наук, проф. Ю.В. Сеничев

канд. физ-мат. наук, доц.

А. Е. Аксентьев

С. М. Полозов

Национальный Исследовательский Ядерный Университет "МИФИ" (ИФИМ УРИН)

Москва, 2019

Цели и задачи

- Предмет исследования: методология частотной области для детектирования ЭДМ дейтрона в накопительном кольце с замороженным спином
- Исследуемые характеристики:
 - устойчивость к систематическим ошибкам
 - статистическая точность
- ▶ Цель исследования: оценка возможности детектирования ЭДМ дейтрона с точностью $10^{-29}~e\cdot$ см предложенным методом
- Актуальность: исследование велось в рамках проекта, посвящённого поиску ЭДМ элементарных частиц

Классификация методологий

Проблемы

- Возмущения спиновой динамики
- Декогеренция спинов частиц пучка
- Поля неидеальности машины
- Смена полярности ведущего поля ускорителя

Общие проблемы измерения ЭДМ

методом накопительного кольца

И их канонические решения

Спин-Колесо

- Возмущения полей
- Бетатронное движение
 - * Обе вызывают возмущение направления \bar{n}

Частное решение

- Спиновая декогеренция
- Р: Секступольные поля
- Неидеальности машины
- P: CW/CCW-инжекция

План работ

1. Возмущения спиновой динамики

- ▶ Постановка проблемы
- Результаты симуляции

2. Декогеренция спинов

- Симуляция подавления декогеренции в идеальном ускорителе
- Симуляция подавления декогеренции в неидеальном ускорителе
- Анализ механизма подавления декогеренции

3. Поля неидеальности ускорителя

- Исследование зависимости от распределения неидеальностей вдоль кольца
- Сравнение систематической ошибки при движении пучка в прямом и обратном направлениях в кольце

4. Смена полярности ведущего поля

- Алгоритм калибровки
- Результаты симуляции

- 5. Спин-тюн эквивалентность частиц с одинаковыми эффективными Лоренц-факторами
 - Формулировка А
 - Формулировка В
- 6. Структуры колец для поиска ЭДМ методом замороденного спина
 - BNL FS
 - QFS 6.3
 - QFS E+B

Постановка проблемы

 Решение Т-БМТ уравнения для вертикальной компоненты спина

$$s_y(n_{turn}) = \sqrt{(\bar{n}_y \bar{n}_z)^2 + \bar{n}_x^2} \cdot \sin(2\pi \nu_s \cdot n_{turn} + \delta).$$

Данные фитируются функцией

$$f(n_{turn}) = a \cdot \sin(b \cdot n_{turn} + c), (a, b, c) = const$$

ightharpoonup При значительной вариации u_s , olimins — ошибка спецификации уравнения регрессии

Симуляция

Симуляция

Неидеальности

- ► $\alpha \sim N(\mu_i, 3 \cdot 10^{-4})^{\circ}$
- μ_i симулирует
 Спин-Колесо

Частицы

- бетатронные колебания в вертикальной плоскости
- $ightharpoonup E_{FS}
 eq E_{kin}
 ightharpoonup E_{FS}$
- $\Rightarrow \bar{n}_{x} \ll 1 \Rightarrow$ повышенная чувствительность к возмущениям

Анализ

Данные

TRK данные трекера TR COSY Infinity

GEN вычислены по формуле, \bar{n} , ν_s вычислены на данном обороте

IDL как в GEN, но $\bar{n}=\langle \bar{n} \rangle$, $\nu_s=\langle \nu_s \rangle$

Сравнительные статистики

$$\epsilon_1(t) = s_y^{gen}(t) - s_y^{idl}(t) \ \epsilon_2(t) = s_v^{trk}(t) - s_v^{idl}(t)$$

Результаты

Результаты

Выводы

- 1. Влияние вариации $ar{n}$ на качество фита незначительно, по сравнению с вариацией u_s
- 2. $\sigma[\epsilon_2] \ll \sigma[P_y]$, значит суперпозиция систематической ошибки со случайной ошибкой измерений поляризации не будет обладать статистически значимой систематичностью

Выводы

- 3. $\sigma[\hat{a},\hat{b}]<10\%$, значит даже если вариация \bar{n} будет достаточной, чтобы повлиять на \hat{a} , её эффект на \hat{b} будет уменьшен как минимум в 10 раз
- 4. Этот систематический эффект контролируем. Увеличивая скорость вращения Спин-Колеса, мы непрерывно уменьшали амплитуду колебаний \bar{n}

Перспективы развития проекта

 Поляризованная программа на ускорительном комплексе НИКА, Дубна

Результаты работы

- Изучены эффекты спиновой динамики, составляющие систематические ошибки эксперимента:
 - возмущения спиновой динамики, вызванные бетатронным движением
 - декогеренция спинов
 - МДМ прецессия, связанная с неидеальностью машины
- Описаны средства борьбы с каждым из эффектов, проведено численное моделирование

- Сформулированы понятия:
 - методов пространственной и частотной областей
 - двумерно-замороженного спина
 - необходимые условия успешного измерения ЭДМ в накопительном кольце
 - методология, удовлетворяющая этим условиям
- Описаны структуры с замороженным и квази-замороженным спином

Спасибо за внимание!