

Fraternité

TRAITEMENT D'IMAGES

Partie Introductive

Frédéric Cointault
Institut Agro Dijon
Responsable Equipe ATIP
UMR Agroécologie
26 Bd Dr Petitjean
21000 Dijon
+33 3 80 77 27 54
frederic.cointault@agrosupdijon.fr

L'INSTITUT NATIONAL D'ENSEIGNEMENT SUPÉRIEUR POUR L'AGRICULTURE, L'ALIMENTATION ET L'ENVIRONNEMENT

- 0 Préambule
- I Introduction
- II Définitions
- III Pré-traitement des images
- IV Segmentation image et contours
- V Hough et morphologie mathématique
- VI Analyse et Reconnaissance de formes
 - VII Détection de mouvement
 - VIII Introduction au Deep Learning

* Représentations temporelles, spatiales et fréquentielles:

III – 4 Filtres numériques fréquentiels

- Pour un signal : Amplitude des variations du signal (tension, courant, pression, ...) en fonction du Temps (t)

-Pour une image: Amplitude des variations de l'Image (niveaux de gris) en fonction des variables Spatiales (X,Y)

- Plusieurs Images: Amplitude des variations de l'Image (niveaux de gris) en fonction des variables Spatiales et Temps (X,Y, t)

Trois cas de signaux:

avec:

S0=Amplitude du signal T0= Période du signal

f0= Fréquence du signal

S1 présente de nombreuses variations:

T1<<T0 and f1>>f0
Donc f1 correspond
aux hautes fréquences

S2 ne présente aucune variation: est infini and f2=0 Donc f2 correspond aux très basses fréquences (ici O!)

Fréquences et images:

- * Faibles variations en niveaux de gris (ex: Fond Image):

 Basses Fréquences
- * Grandes variations en niveaux de gris (ex: Contours, Bruit): Hautes Fréquences
- * Représentation fréquentielle obtenue avec la TRANSFORMEE de FOURIER 2D
- * Avantage: Représentation dans domaine spatial:

Filtrage = Convolution:
$$g(x,y)=h(x,y)*f(x,y)$$

* Représentation dans domaine fréquentiel: :

Filtrage = Simple Multiplication:
$$G(u,v)=H(u,v)$$
. $F(u,v)$

EXAMPLE:

$$F(u) = \int_{-\infty}^{+\infty} f(x) \cdot \exp(-j2\Pi ux) dx \quad avec \quad u : Fréquence$$

TF 1D d'un signal analogique

$$\left|F(u)\right| = A.X_{0} \left| \frac{\sin\left(\left| uX_{0} \right| \right)}{\left| uX_{0} \right|} \right|$$

Signal numérique 1D avec N échantillons

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) \cdot \exp(\frac{-j2\Pi ux}{N}) \quad avec \ u = 0,1,2,...,N-1$$

La transformée de Fourier 1D nécessite N^2 calculs

Alors que la Transformée de Fourier rapide (FFT-1D) nécessite $NLog_2N$ calculs

Application à une image de M*N pixels

→ Correspond à un Signal Numérique 2D

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{M-1} f(x,y) \cdot \exp(-j2\Pi(\frac{ux}{M} + \frac{vy}{N}))$$

avec
$$u = 0,1,2,...,M-1$$
 et $v = 0,1,2,...,N-1$

$$\longrightarrow$$
 Correspond à $M^2.N^2$ calculs

avec
$$FFT2D$$
: $MLog_2M.NLog_2N$ calculs

Exemple:
$$M = N = 512$$

Exemple FFT 2D

Spectre Image: F(u,v)

u,v: Coordonnées fréquentielles

$$G(u,v)=H(u,v).F(u,v)$$

avec : G(u,v): Image Filtrée F(u,v): Image Originale H(u,v): Filtre

Filtre Passe-Bas Idéal: G(u,v)=F(u,v) si $(u,v)<(u_0,v_0)$

Filtre idéal dans le domaine fréquentiel

Filtre Passe-Haut Idéal: G(u,v)=F(u,v) si (u,v)>(u0,v0)

Exemple de filtre passe-bas

Masque de Sobel

$$h_x = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} \text{ et } h_y = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

Original

Noyau [-1 1]

Noyau [-1 0 1]

Gradient horizontal (Sobel)

Gradient vertical (Sobel)

Module du gradient de Sobel

TYPES DE MASQUE	GRADIENTS PARTIELS	AMPLITUDE	DIRECTION	
Masques de Roberts -1 0 0 -1 0 1 0 0 0 1 1 0 0	$G_1,\ G_2$ Substitution du pixel supérieur gauche	$A = \sqrt{G_1^2 + G_2^2}$	$\theta = \frac{\pi}{4} + \arctan\left(\frac{G_2}{G_1}\right)$	
Masques de Sobel 1 0 -1 1 2 1 2 1 0 0 0 0 1 0 -1 -1 -2 -1	$G_x,\ G_y$	$A = \sqrt{G_x^2 + G_y^2}$	$\theta = \arctan\left(\frac{G_y}{G_x}\right)$	
Masques de Prewitt 1 0 -1 1 1 1 1 1 1 1 0 -1 1 0 0 0 0 1 1 0 -1 -1 -1 -1	$G_x,\ G_y$	$A = \sqrt{G_x^2 + G_y^2}$	$\theta = \arctan\left(\frac{G_y}{G_x}\right)$	

Masques de Kirsh 5 5 5 -3 0 -3 -3 -3 -3 -3 + les 7 autres masques obtenus par permutation circulaire des coefficients	G_i pour i de 1 à 8	maximum des $ G_i $	Direction $ {\it correspondant} \\ {\it au} \ G_i \ {\it s\'electionn\'e} $
Masques de Robinson 1 1 1 1 -2 1 -1 -1 -1 + les 7 autres masques obtenus par permutation circulaire des coefficients	G_i pour i de 1 à 8	maximum des $ G_i $	Idem
1 1 1 1 -8 1 1 1 1	1 -2 1 -2 4 -2 1 -2 1		

- 0 Préambule
- I Introduction
- II Définitions
- III Pré-traitement des images
- IV Segmentation image et contours
- V Hough et morphologie mathématique
 - VI Analyse et Reconnaissance de formes
 - VII Détection de mouvement
 - VIII Introduction au Deep Learning

IV-I Segmentation par les régions

IV-2 Segmentation par les contours

Segmentation par les régions

- Binarisation (cf chap III):

- Morphologie mathématique (cf chap VI)
- Clustering (algorithme K-Means)
- Mask-RCNN (Deep Learning)

- Clustering (algorithme K-Means):

https://github.com/suhas-nithyanand/Image-Segmentation-using-K-Means

- Mask-RCNN (Deep Learning):

https://github.com/matterport/Mask_RCNN

→Approche « Dérivative »

$$f(x) - f(x-1)$$

0001000

les contours

(Contours of the Image)

Exemple Gradient de Roberts:

$$g(x,y) = |f(x,y) - f(x+1,y+1)| + |f(x+1,y) - f(x,y+1)|$$

Exemple du Gradient de Roberts:

$$g(x,y) = |f(x,y) - f(x+1,y+1)| + |f(x+1,y) - f(x,y+1)|$$

Image d'un carré de 8x8 Pixels

7	1	0	0	0	0	0	0
0	A	×	g	0	D	N	0
0	g)	X	\nearrow	1	1	d	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Image « Contours »

0	0	0	0	0	0	0	_
0	1	2	2	2	1	0	_
0	2	0	0	0	2	0	_
0	2	0	0	0	2	0	_
0	2	0	0	0	2	0	_
0	1	2	2	2	1	0	_
0	0	0	0	0	0	0	_
_	-	-	-	-	-	_	_

Cours L3 ESIREM

21

Généralisation des opérateurs de contours:

- Opérateur de Roberts: 2 Masques de Convolution

$$hr1 = \begin{vmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{vmatrix} \qquad hr2 = \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{vmatrix}$$

$$hr2 = \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{vmatrix}$$

$$g(x,y) = |f(x,y) - f(x+1,y+1)| + |f(x+1,y) - f(x,y+1)| =$$

$$= |Hr1 * f(x,y)| + |Hr2 * f(x,y)|$$

- Opérateur de Prewitt: 2 Masques de Convolution

$$hp1 = \begin{vmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{vmatrix} \qquad hp2 = \begin{vmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{vmatrix}$$

$$hp2 = \begin{vmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{vmatrix}$$

$$g(x,y) = |Hp1*f(x,y)| + |Hp2*f(x,y)|$$

- Opérateur de Sobel: 2 Masques de Convolution

$$Hs1 = \begin{vmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{vmatrix} \qquad Hs2 = \begin{vmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{vmatrix}$$

$$Hs2 = \begin{vmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{vmatrix}$$

$$g(x,y) = |Hs1*f(x,y)| + |Hs2*f(x,y)|$$

Filtres de Roberts, Prewitt, Sobel efficaces pour des images peu bruitées

Pour des images bruitées : filtre de Canny ou filtrage passe-bas suivi de Sobel

Trois critères à prendre en considération :

1.bonne détection : faible taux d'erreur dans la signalisation des contours, 2.bonne localisation : minimisation des distances entre les contours détectés et les contours réels,

3.clarté de la réponse : une seule réponse par contour et pas de faux positifs

Filtre de Canny

- 0 Préambule
- I Introduction
- II Définitions
- III Pré-traitement des images
- IV Segmentation image et contours
- V Hough et morphologie mathématique
- VI Analyse et Reconnaissance de formes
 - VII Détection de mouvement
 - VIII Introduction au Deep Learning

Code de Freeman

- Reconnaissance de formes
- Calculs géométriques

Transformée de Hough

 Détections de formes géométriques: droites, cercles,...

· Principe: Codage de l'orientation des pixels de contours

Codage contours d'un rectangle

Code obtenu: 00002224444666

Codage contours d'un triangle

Code obtenu: 111444444777

- Première étape: Compression du code
 - Code original transformé en vecteurs (ou Segments).
 - Chaque vecteur contient deux composantes: Orientation et Longueur.

- Seconde Etape: Reconnaissance formes et/ou Calculs géométriques

Analyse du code

- Example 1: Rectangle -----

Code Obtenu: 00002224444666

Code Comprimé: 0:4; 2:3; 4:4; 6:3

4 vecteurs détectés : Quadrilatère

Périmètre= 4 + 3 + 4 + 3 = 14

- Example 2: Triangle -----

Code Obtenu: 111444444777

Code Comprimé: 1:3; 4:6; 7:3

3 vecteurs détectés : Triangle

Périmètre= 3x1.4+ 6 + 3x1.4= 14.4