Definición 5.5.1

Base

Un conjunto finito de vectores $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ es una base para un espacio vectorial V si

- i) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ es linealmente independiente.
- ii) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ genera a V.

Ya se han analizado algunos ejemplos de bases. En el teorema 5.4.7, por ejemplo, se vio que cualquier conjunto de n vectores linealmente independientes en \mathbb{R}^n genera a \mathbb{R}^n . De esta forma,

Todo conjunto de n vectores linealmente independiente en \mathbb{R}^n es una base en \mathbb{R}^n .

En \mathbb{R}^n se define

$$\mathbf{e}_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \mathbf{e}_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \mathbf{e}_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \mathbf{e}_{n} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Puesto que los vectores \mathbf{e}_i son las columnas de una matriz identidad (que tiene determinante 1), $\{\mathbf{e}_1, \mathbf{e}_2, \dots \mathbf{e}_n\}$ es un conjunto linealmente independiente y, por lo tanto, constituye una base en \mathbb{R}^n . Esta base especial se denomina **base canónica** en \mathbb{R}^n . Ahora se encontrarán bases para algunos otros espacios.

Base canónica

EJEMPLO 5.5.1 Base canónica para \mathbb{P}_n

Por el ejemplo 5.4.9, los polinomios $1, x, x^2 y x^3$ son linealmente independientes en \mathbb{P}_3 ; para el ejemplo 5.3.3, estos polinomios generan \mathbb{P}_3 . Así, $\{1, x, x^2, x^3\}$ es una base para \mathbb{P}_3 . En general, los monomios $\{1, x, x^2, x^3, \dots, x^n\}$ constituyen una base para \mathbb{P}_n . Ésta se denomina la **base canónica** para \mathbb{P}_n

EJEMPLO 5.5.2 Base canónica para M₂₂

En el ejemplo 5.3.6 se vio que $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ y $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ generan a \mathbb{M}_{22} . Si $\begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix} = c_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c_3 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + c_4 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, entonces es evidente que $c_1 = c_2 = c_3 = c_4 = 0$. Así, estas cuatro matrices son linealmente independientes y forman una base para \mathbb{M}_{22} , lo que se denomina base canónica para \mathbb{M}_{22} .

EJEMPLO 5.5.3 Una base para un subespacio de \mathbb{R}^3

Encuentre una base para el conjunto de vectores que se encuentra en el plano

$$\pi = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : 2x - y + 3z = 0 \right\}$$