(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 12 September 2003 (12.09.2003)

PCT

(10) International Publication Number WO 03/074493 A1

(51) International Patent Classification⁷: 409/12, 401/04, A01N 43/56

C07D 231/44,

(21) International Application Number:

PCT/EP03/02010

(22) International Filing Date: 27 February 2003 (27.02.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/361,328

5 March 2002 (05.03.2002) US

02027033.6

3 December 2002 (03.12.2002) EP

(71) Applicant (for all designated States except US): BAYER CROPSCIENCE S.A. [FR/FR]; 55, avenue René Cassin, F-69009 Lyon (FR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHOU, David, Teh-Wei [US/DE]; Joseph-Haydn-Strasse 18, 65812 Bad Soden (DE). BASTIAANS, Henricus, Maria, Martinus [NL/DE]; Bartolomaeus-Arnoldi-Strasse 35, 61250 Usingen (DE). KUHLMANN, Anke [DE/DE]; Bern 12, 42799 Leichlingen (DE). THÖNESSEN, Maria-Theresia [DE/DE]; Frauenlobstrasse 10, 55262 Heidesheim (DE). SCHNATTERER, Stefan [DE/DE]; Schillerring 10, 65795 Hattersheim (DE). DÖLLER, Uwe [DE/DE]; Rembrandtring 24a, 63110 Rodgau (DE). HUANG, Jamin [US/US]; 233 Old Forest Creek Drive, Chapel Hill, NC 27514 (US). SEEGER, Karl [DE/DE]; Schwalbenweg 9,

65719 Hofheim (DE). SCRIBNER, Andrew [US/US]; 4205 Ellisfield Drive, Durham, NC 27705 (US). PEREZ DE LEON, Adalberto, A. [MX/US]; 716 Sarratt Ridge Court, Wake Forest, NC 27587 (US).

- (74) Agent: RIPPEL, Hans, Christoph; Bayer CropScience GmbH, Patent- und Lizenzabteilung, Industriepark Höchst, Gebäude K 801, 65926 Frankfurt (DE).
- (81) Designated States (national): AE, AG, AL, AM, AU, AZ, BA, BB, BR, BY, BZ, CA, CN, CO, CR, CU, DM, DZ, EC, GD, GE, HR, ID, IL, IN, IS, JP, KG, KP, KR, KZ, LC, LK, LR, LT, LV, MA, MD, MG, MK, MN, MX, NO, NZ, OM, PH, PL, RO, RU, SC, SG, TJ, TM, TN, TT, UA, US, UZ, VC, VN, YU, ZA.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: 5-SUBSTITUTED-ALKYLAMINOPYRAZOLE DERIVATIVES AS PESTICIDES

(57) Abstract: The invention relates to the use for the control of parasites in animals, of a compound which is a 5-substituted-alkylaminopyrazole derivative of formula (I) or a salt thereof:, wherein the various symbols are as defined in the description, to novel 5-substituted-alkylaminopyrazole derivatives and pesticidal compositions thereof, and to processes for their preparation.

Description

DT09 Rec'd PCT/PTO 0 2 SEP 2004

5-SUBSTITUTED-ALKYLAMINOPYRAZOLE DERIVATIVES AS PESTICIDES

The invention relates to the use for the control of pests (including insects, arachnids and helminths (including nematodes)) of 5-substituted-alkylaminopyrazole derivatives, to novel compounds and compositions used therein, and to processes used for their preparation.

The control of insects, arachnids and helminths with 1-arylpyrazole compounds has been described in, for example, patent publication numbers WO 93/06089, WO 94/21606, WO 87/03781, EP 0295117, EP 659745, EP 679650, EP 201852 and U.S. 5,232,940. The control of parasites in animals with 1-arylpyrazole compounds has also been described in, for example, patent publication numbers WO 00/35884, EP 0846686, WO 98/24769 and WO 97/28126.

In addition, WO 02/066423 describes a process for preparing I-arylpyrazole compounds.

However, the level of action and/or duration of action of these prior-art compounds is not entirely satisfactory in all fields of application, in particular against certain organisms or when low concentrations are applied.

Since modern pesticides must meet a wide range of demands, for example regarding level, duration and spectrum of action, use spectrum, toxicity, combination with other active substances, combination with formulation auxiliaries or synthesis, and since the occurrence of resistances is possible, the development of such substances can never be regarded as concluded, and there is constantly a high demand for novel compounds which are advantageous over the known compounds, at least as far as some aspects are concerned.

It was an object of the present invention to provide compounds which widen the spectrum of the pesticides in various aspects, specifically with regard to the control of parasites in animals.

The present invention provides a method of controlling parasites in or on an animal comprising administering to the animal a parasiticidally effective amount of a 5substituted-alkylaminopyrazole derivative of formula (I):

$$R^{6}S(O)_{n}$$
 R^{1} $R^{5}-S(O)_{m}$ R^{2} W R^{3} R^{3}

wherein:

R¹ is CN:

W is C-halogen, C-CH₃ or N;

R² is hydrogen, halogen or CH₃:

 R^3 is (C_1-C_3) -haloalkyl, (C_1-C_3) -haloalkoxy or $S(O)_p$ - (C_1-C_3) -haloalkyl; R⁴ is hydrogen, (C₂-C₆)-alkenyl, (C₂-C₆)-haloalkenyl, (C₂-C₆)-alkynyl, (C₂-C₆) C₆)-haloalkynyl, (C₃-C₇)-cycloalkyl, CO-(CH₂)_q-R⁷, COR⁸, CO-(CH₂)_q-R⁹, -CO-(C₁- C_4)-alkyl- (C_1-C_6) -alkoxy, $-CO_2-(CH_2)_0-R^7$, $-CO_2R^8$, $-CO_2-(CH_2)_0-R^9$, $-CO_2-(C_3-C_3)$ C₇)-cycloalkyl, -CO₂-(C₁-C₄)-alkyl-(C₃-C₇)-cycloalkyl, -CO₂-(C₃-C₆)-alkenyl, -CO₂-(C₃-C₆)- C_6)-alkynyl, CONR¹⁰R¹¹, -CH₂R⁷, -CH₂R⁹, OR⁷, OR⁸ or OR⁹; or (C₁-C₆)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, (C₃-C₇)-cycloalkyl, $S(O)_pR^8$, CO_2 - $(C_1$ - $C_6)$ -alkyl, -O(C=O)- $(C_1$ - $C_6)$ -alkyl, $NR^{10}COR^{12}$, $NR^{10}R^{11}$, CONR¹⁰R¹¹, SO₂NR¹⁰R¹¹, OH, CN, NO₂, OR⁷, NR¹⁰SO₂R⁸, COR⁸ and OR⁹: A is (C₁-C₁₂)-alkylene [preferably (C₁-C₆)-alkylene] or (C₁-C₁₂)-haloalkylene [preferably (C₁-C₆)-haloalkylene] in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C₃-C₈)-cycloalkyl ring which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C₁-C₆)-alkyl and halogen; or is (C₁-C₁₂)-alkylene or (C₁-C₁₂)-haloalkylene in which last two mentioned groups a

methylene moiety is replaced by a group selected from -C(=O)-, -C(=NH)-, -O-, -S- and $-NR^{15}$ -, with the proviso that the replacing group is not bonded to the adjacent $S(O)_m$ group or N atom; or is (C_2-C_{12}) -alkenylene or (C_2-C_{12}) -haloalkenylene; R^5 is H, (C_3-C_6) -alkenyl, (C_3-C_6) -haloalkenyl, (C_3-C_6) -alkynyl, (C_3-C_6) -haloalkynyl, (C_3-C_7) -cycloalkyl, $-(CH_2)_qR^7$, $-(CH_2)_qR^9$ or $NR^{10}R^{11}$ provided that for the last mentioned radical m is 2; or is (C_1-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_3-C_6) -haloalkoxy, (C_3-C_6) -alkenyloxy, (C_3-C_6) -haloalkenyloxy, (C_3-C_6) -alkynyloxy, (C_3-C_6) -haloalkynyloxy, (C_3-C_6) -alkynyloxy, (C_3-C_7) -cycloalkyl, $S(O)_pR^8$, CN, NO_2 , CN, COR^{10} , COR^{10} , C

 R^6 is (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkynyl, (C_2-C_6) -haloalkynyl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_1-C_6) -alkoxy, (C_1-C_6) -alkoxy, (C_1-C_6) -alkylideneimino;

 R^8 is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl;

 R^9 is heterocyclyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -haloalkoxy, (C_1-C_4) -haloalkoxy, (C_1-C_4) -haloalkoxy, (C_1-C_4) -alkyl, (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_3-C_6) -alkyl, (C_3-C_6) -haloalkyl, (C_3-C_6) -alkenyl, (C_3-C_6) -haloalkenyl, (C_3-C_6) -alkynyl, (C_3-C_6) -haloalkynyl, (C_3-C_6) -cycloalkyl, (C_1-C_6) -alkyl- (C_3-C_6) -cycloalkyl, (C_1-C_6) -alkyl- (C_1-C_1) - (C_1-C_1) - (C_1-C_1)

 R^{11} and R^{14} are each independently H, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₃-C₆)-cycloalkyl or -(C₁-C₆)-alkyl-(C₃-C₆)-cycloalkyl;

 R^{13} is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)_pR⁸ and NR¹¹R¹⁴;

 R^{15} is R^{11} or $-(CH_2)_q R^{13}$;

m, n and p are each independently zero, one or two;

q is zero or one; and

each heterocyclyl in the above-mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S;

or a pesticidally acceptable salt thereof.

In a further aspect of the invention there is provided the use of compounds of formula (I) and pesticidally acceptable salts thereof for the control of parasites in and on animals.

In yet a further aspect of the invention there is provided the use of compounds of formula (I) and pesticidally acceptable salts thereof for preparing a veterinary medicament, preferably for the treatment of parasites, specifically ecto and endo parasites, in and on animals.

The invention also encompasses any stereoisomer, enantiomer or geometric isomer, and mixtures of the compounds of formula (I).

By the term "pesticidally acceptable salts" is meant salts the anions or cations of which are known and accepted in the art for the formation of salts for pesticidal use. Suitable salts with bases, e.g. formed by compounds of formula (I) containing a carboxylic acid group, include alkali metal (e.g. sodium and potassium), alkaline earth metal (e.g. calcium and magnesium), ammonium and amine (e.g. diethanolamine, triethanolamine, octylamine, morpholine and dioctylmethylamine) salts. Suitable acid addition salts, e.g. formed by compounds of formula (I) containing an amino group, include salts with inorganic acids, for example

hydrochlorides, sulphates, phosphates and nitrates and salts with organic acids for example acetic acid. In formula (I) when m is 0 the term salts is understood also to include sulfonium salts, for example alkyl or benzyl sulfonium halide salts such as the methyl sulfonium chloride salts.

It is to be understood that the above mentioned provisions are included only for reasons of chemical instability for the particular excluded moieties, and not for reasons of prior art.

In the present patent specification, including the accompanying claims, the aforementioned substituents have the following meanings:

Halogen atom means fluorine, chlorine, bromine or iodine.

The term "halo" before the name of a radical means that this radical is partially or completely halogenated, that is to say, substituted by F, Cl, Br, or I, in any combination, preferably by F or Cl.

Alkyl groups and portions thereof (unless otherwise defined) may be straight- or branched-chain.

The expression "(C₁-C₆)-alkyl" is to be understood as meaning an unbranched or branched hydrocarbon radical having 1, 2, 3, 4, 5 or 6 carbon atoms, such as, for example a methyl, ethyl, propyl, isopropyl, 1-butyl, 2-butyl, 2-methylpropyl or tert-butyl radical.

Alkyl radicals and also in composite groups, unless otherwise defined, preferably have 1 to 4 carbon atoms.

"(C₁-C₆)Haloalkyl" means an alkyl group mentioned under the expression "(C₁-C₆)alkyl" in which one or more hydrogen atoms are replaced by the same number of identical or different halogen atoms, such as monohaloalkyl, perhaloalkyl, CF₃, CHF₂, CH₂F, CHFCH₃, CF₃CH₂, CF₃CF₂, CHF₂CF₂, CH₂FCHCl, CH₂Cl, CCl₃, CHCl₂ or CH₂CH₂Cl.

The expression "(C₁-C₁₂)-alkylene" is to be understood as meaning an unbranched or branched saturated carbon chain having from 1 to 12 carbon atoms.

The expression "(C₁-C₁₂)-haloalkylene" is to be understood as meaning an unbranched or branched saturated carbon chain having from 1 to 12 carbon atoms,

in which one or more hydrogen atoms are replaced by the same number of identical or different halogen atoms.

The expression " (C_2-C_{12}) -alkenylene" is to be understood as meaning an unbranched or branched saturated carbon chain having from 2 to 12 carbon atoms, and which contains at least one double bond which can be located in any position of the respective unsaturated radical.

"(C₁-C₆)Alkoxy." means an alkoxy group whose carbon chain has the meaning given under the expression "(C₁-C₆)alkyl". "Haloalkoxy" is, for example, OCF₃, OCHF₂, OCH₂F, CF₃CF₂O, OCH₂CF₃ or OCH₂CH₂Cl.

"(C₂-C₆)Alkenyl" means an unbranched or branched non-cyclic carbon chain having a number of carbon atoms which corresponds to this stated range and which contains at least one double bond which can be located in any position of the respective unsaturated radical. "(C₂-C₆)Alkenyl" accordingly denotes, for example, the vinyl, allyl, 2-methyl-2-propenyl, 2-butenyl, pentenyl, 2-methylpentenyl or the hexenyl group.

"(C₂-C₆)Alkynyl" means an unbranched or branched non-cyclic carbon chain having a number of carbon atoms which corresponds to this stated range and which contains one triple bond which can be located in any position of the respective unsaturated radical. "(C₂-C₆)Alkynyl" accordingly denotes, for example, the propargyl, 1-methyl-2-propynyl, 2-butynyl or 3-butynyl group.

Cycloalkyl groups preferably have from three to seven carbon atoms in the ring and are optionally substituted by halogen or alkyl.

In compounds of formula (I) the following examples of radicals are provided: An example of alkyl substituted by cycloalkyl is cyclopropylmethyl; an example of alkyl substituted by alkoxy is methoxymethyl (CH₃OCH₂-); and an example of alkyl substituted by alkylthio is methylthiomethyl (CH₃SCH₂-). A "heterocyclyl" group can be saturated, unsaturated or heteroaromatic; it preferably contains one or more, in particular 1, 2 or 3, hetero atoms in the heterocyclic ring, preferably selected from the group consisting of N, O and S; it is preferably an aliphatic heterocyclyl radical having 3 to 7 ring atoms or a heteroaromatic radical having 5 to 7 ring atoms. The heterocyclic radical can be, for example, a heteroaromatic radical or ring (heteroaryl) such as, for example, a mono-, bi- or

polycyclic aromatic system in which at least 1 ring contains one or more hetero atoms, for example pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, thienyl, thiazolyl, thiadiazolyl, oxazolyl, isoxazolyl, furyl, pyrrolyl, pyrazolyl, imidazolyl and triazolyl, or it is a partially or fully hydrogenated radical such as oxiranyl, oxetanyl, oxolanyl (= tetrahydrofuryl), oxanyl, pyrrolidyl, piperidyl, piperazinyl, dioxolanyl, oxazolinyl, isoxazolinyl, pyrrolidyl, piperidyl, piperazinyl, dioxolanyl, oxazolinyl, isoxazolinyl and morpholinyl. The "heterocyclyl" group may be unsubstituted or substituted by one or more radicals (preferably 1, 2 or 3 radicals) selected from the group consisting of halogen, alkoxy, haloalkoxy, alkylthio, hydroxyl, amino, nitro, carboxyl, cyano, alkoxycarbonyl, alkylcarbonyl, formyl, carbamoyl, mono- and dialkylaminocarbonyl, substituted amino such as acylamino, mono- and dialkylamino, and alkylsulfinyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, alkyl and haloalkyl, and additionally also oxo. The oxo group can also be present at those hetero ring atoms where various oxidation numbers are possible, for example in the case of N and S.

The term pests means arthropod pests (including insects and arachnids), and helminths (including nematodes). The term parasites embraces all pests that live in or on animals.

A preferred class of compounds of formula (I) for use in the invention are those in which:

R¹ is CN:

W is C-halogen;

R² is hydrogen or halogen;

R³ is CF₃ or OCF₃;

 R^4 is hydrogen, (C₂-C₆)-alkenyl, (C₂-C₆)-haloalkenyl, (C₂-C₆)-alkynyl, (C₂-C₆)-haloalkynyl, (C₃-C₇)-cycloalkyl, CO₂R⁸, -CH₂R⁷, -CH₂R⁹, OR⁷, OR⁸ or OR⁹; or (C₁-C₆)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, (C₃-C₇)-cycloalkyl, $S(O)_pR^8$ and $S(O)_pR^8$

A is (C_1-C_6) -alkylene or (C_1-C_6) -haloalkylene, in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C_3-C_6) -cycloalkyl ring which is unsubstituted or

substituted by one or more radicals selected from the group consisting of (C₁-C₆)-alkyl and halogen;

 R^5 is (C_3-C_6) -cycloalkyl, $-(CH_2)_qR^7$; or (C_1-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_3-C_6) -cycloalkyl, $S(O)_pR^8$ and $CO_2-(C_1-C_6)$ -alkyl; or when A is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl and R^5 is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl, one or more of the carbon atoms of the R^5 group may, together with the $S(O)_m$ group and one or more of the carbon atoms of A, form a 5- or 6-membered ring;

R⁶ and R⁸ are each independently (C₁-C₆)-alkyl or (C₁-C₆)-haloalkyl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, CN, NO₂, S(O)₀R⁸ and NR¹¹R¹²;

 R^9 is heterocyclyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl and (C_1-C_4) -alkoxy; R^{11} and R^{12} are each the same or different hydrogen, (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl;

m, n and p are each independently zero, one or two; and q is zero or one.

Another preferred class of compounds of formula (I) for use in the invention are those in which:

R¹ is CN;

W is C-halogen;

R² is halogen;

R³ is CF₃ or OCF₃;

 R^4 is hydrogen, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_3-C_7) -cycloalkyl, $-CO_2$ - (C_1-C_3) -alkyl, $-CO_2$ - (C_3-C_6) -cycloalkyl, $-CO_2$ - (C_1-C_3) -alkyl- (C_3-C_6) -cycloalkyl, $-CH_2R^7$ or $-CH_2R^9$; or (C_1-C_4) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_3-C_6) -cycloalkyl, $S(O)_pR^8$, CO_2 - (C_1-C_3) -alkyl, -O(C=O)- (C_1-C_3) -alkyl, $NR^{10}R^{11}$, OH, CN, NO_2 , OR^7 or OR^9 ;

A is (C_1-C_9) -alkylene or (C_1-C_9) -haloalkylene in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C_3-C_8) -cycloalkyl ring which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkyl and halogen;

 R^5 is (C_3-C_7) -cycloalkyl or $-(CH_2)_qR^7$; or is (C_1-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkoxy, (C_1-C_4) -haloalkoxy, (C_3-C_7) -cycloalkyl, $S(O)_pR^8$, CN, $NR^{10}R^{11}$, $S(O)_pR^7$, $S(O)_pR^9$, OR^7 and OR^9 ;

R⁶ is (C₁-C₂)-haloalkyl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -haloalkoxy, (C_1-C_4) -alkoxy, (C_1-C_4) -alkoxy, (C

 R^8 is (C_1-C_4) -alkyl or (C_1-C_4) -haloalkyl;

 R^9 is heterocyclyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl and (C_1-C_4) -alkoxy; R^{10} is H, (C_1-C_3) -alkyl, (C_1-C_3) -haloalkyl, (C_3-C_4) -alkenyl, (C_3-C_4) -alkynyl,

 (C_3-C_6) -cycloalkyl, $-(C_1-C_6)$ -alkyl- (C_3-C_6) -cycloalkyl or $-(CH_2)_qR^{13}$; or

R¹⁰ and R¹¹ together with the attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen and (C₁-C₃)-alkyl;

 R^{11} and R^{14} are each independently H, (C1-C3)-alkyl, (C1-C3)-haloalkyl,

 (C_3-C_6) -cycloalkyl or $-(C_1-C_3)$ -alkyl- (C_3-C_6) -cycloalkyl;

 R^{13} is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkyl, (C_1-C_3) -haloalkyl, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_1-C_3) -alkoxy, (C_1-C_3) -alkyl, $(C_1-C_3$

m, n and p are each independently zero, one or two;

g is zero or one; and

each heterocyclyl in the above-mentioned radicals is independently a heteroaromatic radical having 5 or 6 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S.

A further preferred class of compounds of formula (I) for use in the invention are those in which:

R¹ is CN;

W is C-Cl;

R² is chlorine;

R³ is CF₃ or OCF₃;

 R^4 is hydrogen, CO_2 -(C_1 - C_3)-alkyl, or (C_1 - C_6)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen and (C_1 - C_3)-alkoxy;

A is (C₁-C₄)-alkylene;

 R^5 is (C_3-C_6) -cycloalkyl, $-(CH_2)_qR^7$, (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl; or when R^5 is (C_1-C_6) -alkyl, one or more of the carbon atoms of the R^5 group may, together with the $S(O)_m$ group and one or more of the carbon atoms of A, form a 5- or 6-membered ring;

R⁶ is CF₃, CF₂Cl, CFCl₂, CBrF₂ or CHF₂;

R⁷ is phenyl;

m and n are each independently zero, one or two; and q is zero or one.

A further preferred class of compounds of formula (I) for use in the invention are those in which:

R¹ is CN;

W is C-Cl;

R² is Cl;

 R^3 is CF_3 or OCF_3 ;

 R^4 is hydrogen, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_3-C_7) -cycloalkyl, COR^9 (where R^9 is tetrahydrofuryl), $-COCH_2-(C_1-C_6)$ -alkoxy, $-CO_2-(C_1-C_6)$ -alkyl, $-CO_2-(CH_2)_q-R^7$, OR^7 , OR^8 or OR^9 (where R^9 is pyridyl); or (C_1-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkoxy, (C_3-C_7) -cycloalkyl and $S(O)_pR^8$;

A is (C_1-C_6) -alkylene in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C_3-C_6) -cycloalkyl ring;

 R^5 is (C_3-C_6) -alkenyl, (C_3-C_7) -cycloalkyl, $-(CH_2)_qR^7$ or $NR^{10}R^{11}$ provided that for the last mentioned radical X is SO_2 ; or is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl; R^6 is CF_3 , CF_2Cl , $CFCl_2$, $CBrF_2$, CHF_2 or CH_3 ;

 R^7 is phenyl unsubstituted or substituted by one or more (C₁-C₆)-alkoxy groups; R^8 is (C₁-C₆)-alkyl;

R¹⁰ and R¹¹ are the same or different (C₁-C₆)-alkyl; or

R¹⁰ and R¹¹ together with the attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N;

m and n are each independently zero, one or two; and q is zero or one.

Another preferred class of compounds of formula (I) for use in the invention are those in which:

R1 is CN;

W is C-halogen;

R² is hydrogen or halogen;

R³ is CF₃ or OCF₃;

 R^4 is hydrogen, (C₂-C₆)-alkenyl, (C₂-C₆)-haloalkenyl, (C₂-C₆)-alkynyl, (C₂-C₆)-haloalkynyl, (C₃-C₆)-cycloalkyl, -CO₂-(C₁-C₆)-alkyl or -CH₂R⁷; or (C₁-C₆)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, (C₃-C₆)-cycloalkyl, S(O)_pR⁸ and CO₂-(C₁-C₆)-alkyl;

A is (C_1-C_6) -alkylene or (C_1-C_6) -haloalkylene in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C_3-C_6) -cycloalkyl ring which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkyl and halogen;

 R^5 is (C_3-C_6) -cycloalkyl or $-(CH_2)_qR^7$; or is (C_1-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_3-C_6) -cycloalkyl, $S(O)_pR^8$ and $S(C_1-C_6)$ -alkyl; or when A is $S(C_1-C_6)$ -alkylene or $S(C_1-C_6)$ -haloalkylene and $S(C_1-C_6)$ -alkyl unsubstituted or substituted by one or more halogen radicals, one or more of the

carbon atoms of R⁵ may, together with S(O)_m and one or more of the carbon atoms of A, form a 5- or 6-membered ring;

R⁶ and R⁸ are each independently (C₁-C₆)-alkyl or (C₁-C₆)-haloalkyl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, CN, NO₂, S(O)_pR⁸ and NR¹⁰R¹¹;

 R^{10} and R^{11} are each independently H, (C_1 - C_6)-alkyl or (C_1 - C_6)-haloalkyl; m, n and p are each independently zero, one or two; and q is zero or one.

A further preferred class of compounds of formula (I) for use in the invention are those in which:

R¹ is CN:

W is C-halogen;

R² is halogen;

R³ is CF₃ or OCF₃;

 R^4 is hydrogen, (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_3-C_7) -cycloalkyl, (C_1-C_4) -alkyl- (C_3-C_7) -cycloalkyl, $-CO_2$ - (C_1-C_6) -alkyl, (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl; A is (C_1-C_{12}) -alkylene which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkyl and halogen;

 R^5 is (C₁-C₆)-alkyl;

R⁶ is CF₃, CF₂CI, CFCl₂, CBrF₂ or CHF₂; and m and n are each independently zero, one or two.

Further especially preferred classes of compounds of formula (I) for use in the invention are those in which one or more of the following features are present: $R^4 \text{ is hydrogen, } (C_1\text{-}C_4)\text{-alkyl, } \text{-}CO_2\text{-}(C_1\text{-}C_4)\text{-alkyl, } (C_3\text{-}C_4)\text{-alkenyl, } (C_1\text{-}C_2)\text{-alkyl-}(C_3\text{-}C_4)\text{-cycloalkyl or } (C_3\text{-}C_4)\text{-cycloalkyl;}$

R⁵ is (C₁-C₂)-alkyl; and

A is (C₂-C₃)-alkylene.

Another especially preferred class of compounds for use in the invention are those wherein:

R¹ is CN;

R² is chlorine;

R³ is CF₃;

W is C-CI:

 R^4 is hydrogen, (C₁-C₄)-alkyl, -CO₂-(C₁-C₄)-alkyl, (C₃-C₄)-alkenyl, (C₁-C₂)-alkyl-(C₃-C₄)-cycloalkyl, or (C₃-C₄)-cycloalkyl;

R⁵ is (C₁-C₂)-alkyl;

R⁶ is CF₃:

A is (C₂-C₃)-alkylene; and

m and n are each independently zero, one or two.

A more preferred class of compounds of formula (I) for use in the invention are those in which:

 R^1 is CN; R^2 is chlorine; R^3 is CF₃ or OCF₃; W is C-CI; R^4 is hydrogen or (C₁-C₆)-alkyl; R^5 is (C₁-C₆)-alkyl; R^6 is CF₃; A is (C₁-C₄)-alkylene and m and n are each independently zero, one or two.

Further especially preferred classes of compounds of formula (I) for use in the invention are those wherein one or more of the following features are present:

W is C-CI; R² is chlorine;

R³ is CF₃ or OCF₃;

R⁴ is hydrogen, (C₁-C₆)-alkyl or (C₁-C₆)-haloalkyl;

 R^5 is (C_1-C_6) -alkyl;

 R^6 is $(\mathsf{C}_1\text{-}\mathsf{C}_3)$ -haloalkyl $(\mathsf{R}^6$ is more preferably $\mathsf{CF}_3)$; and/or

A is (C_1-C_6) -alkylene (more preferably A is (C_2-C_3) -alkylene).

Some of the compounds of formula (I) are new and a further feature of the present invention is therefore directed to the novel compounds of formula (I).

One class of novel 5-substituted-alkylaminopyrazole derivatives of formula (I), or pesticidally acceptable salts thereof, are those wherein:

R¹ is CN:

W is C-halogen or C-CH₃;

R² is hydrogen, halogen or CH₃;

 R^3 is (C_1-C_3) -haloalkyl, (C_1-C_3) -haloalkoxy or $S(O)_p$ - (C_1-C_3) -haloalkyl;

 R^4 is (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -alkynyl, (C_2-C_6) -haloalkynyl, (C_3-C_6) -haloalk

 C_7)-cycloalkyl, $CO-(CH_2)_q-R^7$, $CO-(CH_2)_q-R^9$, $-CO-(C_1-C_4)$ -alkyl- (C_1-C_6) -alkoxy,

-CO₂-(CH₂)_q-R⁷, -CO₂R⁸, -CO₂-(CH₂)_q-R⁹, -CO₂-(C₃-C₇)-cycloalkyl, -CO₂-(C₁-

C₄)-alkyl-(C₃-C₇)-cycloalkyl, -CO₂-(C₃-C₆)-alkenyl, -CO₂-(C₃-C₆)-alkynyl, CONR¹⁰R¹¹,

-CH₂R⁷, -CH₂R⁹, OR⁷, OR⁸ or OR⁹; or (C₁-C₆)-alkyl which is substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkoxy, (C₁-

 C_6)-haloalkoxy, (C_3 - C_7)-cycloalkyl, $S(O)_pR^8$, CO_2 -(C_1 - C_6)-alkyl,

 $-O(C=O)-(C_1-C_6)$ -alkyl, $NR^{10}COR^{12}$, $NR^{10}R^{11}$, $CONR^{10}R^{11}$, $SO_2NR^{10}R^{11}$, OH, CN, NO_2 , OR^7 , $NR^{10}SO_2R^8$, COR^8 and OR^9 ;

A is (C₁-C₁₂)-alkylene [preferably (C₁-C₆)-alkylene] and (C₁-C₁₂)-haloalkylene [preferably (C₁-C₆)-haloalkylene] in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C₃-C₈)-cycloalkyl ring which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C₁-C₆)-alkyl and halogen; or is (C₁-C₁₂)-alkylene or (C₁-C₁₂)-haloalkylene in which last two mentioned groups a methylene moiety is replaced by a group selected from -C(=O)-, -C(=NH)-, -O-, -Sand -NR¹⁵-, with the proviso that the replacing group is not bonded to the adjacent $S(O)_m$ group or N atom; or is (C_2-C_{12}) -alkenylene or (C_2-C_{12}) -haloalkenylene; R^5 is H, (C_3-C_6) -alkenyl, (C_3-C_6) -haloalkenyl, (C_3-C_6) -alkynyl, (C_3-C_6) -haloalkynyl, (C₃-C₇)-cycloalkyl, –(CH₂)_aR⁷, –(CH₂)_aR⁹ or NR¹⁰R¹¹ provided that for the last mentioned radical m is 2; or is (C₁-C₆)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkoxy, (C₁-C₆)haloalkoxy, (C₃-C₆)-alkenyloxy, (C₃-C₆)-haloalkenyloxy, (C₃-C₆)-alkynyloxy, (C₃-C₆)haloalkynyloxy, (C₃-C₇)-cycloalkyl, S(O)₀R⁸, CN, NO₂, OH, COR¹⁰, NR¹⁰COR¹², $NR^{10}SO_2R^8$, $CONR^{10}R^{11}$, $NR^{10}R^{11}$, $S(O)_0R^7$, $S(O)_0R^9$, OR^7 , OR^9 and CO_2R^{10} ; or when A is (C₁-C₁₂)-alkylene or (C₁-C₁₂)-haloalkylene and R⁵ is (C₁-C₆)-alkyl unsubstituted or substituted by one or more halogen radicals, one or more of the

carbon atoms of R^5 may, together with $S(O)_m$ and one or more of the carbon atoms of A, form a 5- or 6-membered ring;

 R^6 is (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -haloalkynyl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)_pR⁸, COR¹¹, COR¹³, CONR¹⁰R¹¹, SO₂NR¹⁰R¹¹, NR¹⁰R¹¹, OH, SO₃H and (C₁-C₆)-alkylideneimino;

 R^8 is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl;

 R^9 is heterocyclyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)-alkyl, (C₁-C₄)-haloalkyl, (C₁-C₄)-alkoxy, (C₁-C₄)-haloalkoxy, NO₂, CN, CO₂(C₁-C₆)-alkyl, S(O)_pR⁸, OH and oxo;

 R^{10} and R^{12} are each independently H, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₃-C₆)-alkenyl, (C₃-C₆)-haloalkenyl, (C₃-C₆)-alkynyl, (C₃-C₆)-haloalkynyl, (C₃-C₆)-cycloalkyl, -(C₁-C₆)-alkyl-(C₃-C₆)-cycloalkyl, -(CH₂)_qR¹³ or -(CH₂)_qR⁹; or

 R^{10} and R^{11} and/or R^{10} and R^{12} each together with the respective attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkyl and (C_1-C_6) -haloalkyl;

 R^{11} and R^{14} are each independently H, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₃-C₆)-cycloalkyl or -(C₁-C₆)-alkyl-(C₃-C₆)-cycloalkyl;

 R^{13} is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)_pR⁸ and NR¹¹R¹⁴;

 R^{15} is R^{11} or $-(CH_2)_a R^{13}$;

m, n and p are each independently zero, one or two;

q is zero or one; and

each heterocyclyl in the above-mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S.

A preferred class of compounds of formula (I) are those in which:

R¹ is CN;

W is C-halogen;

R² is hydrogen or halogen;

R³ is CF₃ or OCF₃;

 R^4 is (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -alkynyl, (C_2-C_6) -haloalkynyl, (C_3-C_7) -cycloalkyl, CO_2R^8 , $-CO_2$ - (C_3-C_6) -alkenyl, $-CO_2$ - (C_3-C_6) -alkynyl, $-CO_2$ - $-CH_2R^7$, $-CH_2R^9$, OR^7 , OR^8 or OR^9 ; or (C_1-C_6) -alkyl which is substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_3-C_7) -cycloalkyl, $S(O)_pR^8$ and CO_2 - (C_1-C_6) -alkyl; A is (C_1-C_6) -alkylene or (C_1-C_6) -haloalkylene, in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C_3-C_6) -cycloalkyl ring which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkyl and halogen;

 R^5 is (C_3-C_6) -cycloalkyl, $-(CH_2)_qR^7$; or (C_1-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_3-C_6) -cycloalkyl, $S(O)_pR^8$ and CO_2 - (C_1-C_6) -alkyl; or when A is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl and R^5 is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl, one or more of the carbon atoms of the R^5 group may, together with the $S(O)_m$ group and one or more of the carbon atoms of A, form a 5- or 6-membered ring;

 R^6 and R^8 are each independently (C_1 - C_6)-alkyl or (C_1 - C_6)-haloalkyl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, CN, NO₂, S(O)_pR⁸ and NR¹¹R¹²;

 R^9 is heterocyclyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)-alkyl, (C₁-C₄)-haloalkyl and (C₁-C₄)-alkoxy; R^{11} and R^{12} are each the same or different hydrogen, (C₁-C₆)-alkyl or (C₁-C₆)-haloalkyl;

m, n and p are each independently zero, one or two; and q is zero or one.

Another preferred class of compounds of formula (I) are those in which:

R1 is CN;

W is C-halogen;

R² is hydrogen or halogen;

R³ is CF₃ or OCF₃;

 R^4 is (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -alkynyl, (C_2-C_6) -haloalkynyl, (C_3-C_6) -cycloalkyl, CO_2R^8 , $-CO_2-(C_3-C_6)$ -alkynyl, or $-CH_2R^7$; or (C_1-C_6) -alkyl which is substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_3-C_6) -cycloalkyl, $S(O)_pR^8$ and $S(C_2-C_6)$ -alkyl;

A is (C_1-C_6) -alkylene or (C_1-C_6) -haloalkylene in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C_3-C_6) -cycloalkyl ring which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkyl and halogen;

 R^5 is (C_3-C_6) -cycloalkyl or $-(CH_2)_qR^7$; or is (C_1-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_3-C_6) -cycloalkyl, $S(O)_pR^8$ and $CO_2-(C_1-C_6)$ -alkyl; or when A is (C_1-C_6) -alkylene or (C_1-C_6) -haloalkylene and R^5 is (C_1-C_6) -alkyl unsubstituted or substituted by one or more halogen radicals, one or more of the carbon atoms of R^5 may, together with $S(O)_m$ and one or more of the carbon atoms of A, form a 5- or 6-membered ring;

 R^6 and R^8 are each independently (C₁-C₆)-alkyl or (C₁-C₆)-haloalkyl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, CN, NO₂, S(O)_pR⁸ and NR¹⁰R¹¹;

 R^{10} and R^{11} are each independently H, (C₁-C₆)-alkyl or (C₁-C₆)-haloalkyl; m, n and p are each independently zero, one or two; and q is zero or one.

Another preferred class of compounds of formula (I) are those in which:

R¹ is CN;

W is C-halogen;

R² is halogen;

R³ is CF₃ or OCF₃;

 R^4 is (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_3-C_7) -cycloalkyl, $-CO_2R^8$, $-CO_2-(C_3-C_6)$ -alkynyl, $-CO_2-(C_3-C_6)$ -cycloalkyl, $-CO_2-(C_1-C_3)$ -alkyl- (C_3-C_6) -cycloalkyl, $-CH_2R^7$ or $-CH_2R^9$; or (C_1-C_4) -alkyl which is substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_3-C_6) -cycloalkyl, $S(O)_pR^8$, $CO_2-(C_1-C_3)$ -alkyl, $-O(C=O)-(C_1-C_3)$ -alkyl, $NR^{10}R^{11}$, OH, CN, NO_2 , OR^7 or OR^9 ;

A is (C_1-C_9) -alkylene or (C_1-C_9) -haloalkylene in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C_3-C_8) -cycloalkyl ring which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkyl and halogen;

 R^5 is (C_3-C_7) -cycloalkyl or $-(CH_2)_qR^7$; or is (C_1-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkoxy, (C_1-C_4) -haloalkoxy, (C_3-C_7) -cycloalkyl, $S(O)_pR^8$, CN, $NR^{10}R^{11}$, $S(O)_pR^7$, $S(O)_pR^9$, OR^7 and OR^9 ;

R⁶ is (C₁-C₂)-haloalkyl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)-alkyl, (C₁-C₄)-haloalkyl, (C₁-C₄)-alkoxy, (C₁-C₄)-haloalkoxy, CN, NO₂, S(O)_pR⁸, COR¹¹, NR¹⁰R¹¹ and OH;

 R^8 is (C_1-C_4) -alkyl or (C_1-C_4) -haloalkyl;

 (C_3-C_6) -cycloalkyl or $-(C_1-C_3)$ -alkyl- (C_3-C_6) -cycloalkyl;

 R^9 is heterocyclyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, $(\mathsf{C}_1\text{-}\mathsf{C}_4)\text{-alkyl}$, $(\mathsf{C}_1\text{-}\mathsf{C}_4)\text{-haloalkyl}$ and $(\mathsf{C}_1\text{-}\mathsf{C}_4)\text{-alkoxy}$; R^{10} is H, $(\mathsf{C}_1\text{-}\mathsf{C}_3)\text{-alkyl}$, $(\mathsf{C}_1\text{-}\mathsf{C}_3)\text{-haloalkyl}$, $(\mathsf{C}_3\text{-}\mathsf{C}_4)\text{-alkenyl}$, $(\mathsf{C}_3\text{-}\mathsf{C}_4)\text{-alkynyl}$, $(\mathsf{C}_3\text{-}\mathsf{C}_6)\text{-cycloalkyl}$, $-(\mathsf{C}_1\text{-}\mathsf{C}_6)\text{-alkyl-}(\mathsf{C}_3\text{-}\mathsf{C}_6)\text{-cycloalkyl}$ or $-(\mathsf{CH}_2)_q\mathsf{R}^{13}$; or R^{10} and R^{11} together with the attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen and $(\mathsf{C}_1\text{-}\mathsf{C}_3)\text{-alkyl}$; R^{11} and R^{14} are each independently H, $(\mathsf{C}_1\text{-}\mathsf{C}_3)\text{-alkyl}$, $(\mathsf{C}_1\text{-}\mathsf{C}_3)\text{-haloalkyl}$,

 R^{13} is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₃)-alkyl, (C₁-C₃)-haloalkyl, (C₁-C₃)-alkoxy, (C₁-C₃)-haloalkoxy, CN, NO₂, S(O)_pR⁸ and NR¹¹R¹⁴;

m, n and p are each independently zero, one or two;

q is zero or one; and

each heterocyclyl in the above-mentioned radicals is independently a heteroaromatic radical having 5 or 6 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S.

A further preferred class of compounds of formula (I) are those in which:

R¹ is CN:

W is C-Cl;

R² is chlorine;

R³ is CF₃ or OCF₃;

 R^4 is CO_2 -(C_1 - C_3)-alkyl, or (C_1 - C_6)-alkyl which is substituted by one or more radicals selected from the group consisting of halogen and (C_1 - C_3)-alkoxy;

A is (C₁-C₄)-alkylene;

 R^5 is (C_3-C_6) -cycloalkyl, $-(CH_2)_qR^7$, (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl; or when R^5 is (C_1-C_6) -alkyl, one or more of the carbon atoms of the R^5 group may, together with the $S(O)_m$ group and one or more of the carbon atoms of A, form a 5- or 6-membered ring;

R⁶ is CF₃, CF₂CI, CFCl₂, CBrF₂ or CHF₂;

R⁷ is phenyl;

m and n are each independently zero, one or two; and q is zero or one.

A further preferred class of compounds of formula (I) are those in which:

R¹ is CN;

W is C-halogen;

R² is halogen;

R³ is CF₃ or OCF₃;

 R^4 is (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_3-C_7) -cycloalkyl, (C_1-C_4) -alkyl- (C_3-C_7) -cycloalkyl, $-CO_2-(C_1-C_6)$ -alkyl or (C_1-C_6) -haloalkyl;

A is (C_1-C_{12}) -alkylene which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkyl and halogen;

 R^5 is (C_1-C_6) -alkyl;

R⁶ is CF₃, CF₂CI, CFCl₂, CBrF₂ or CHF₂; and m and n are each independently zero, one or two.

An especially preferred class of compounds of formula (I) are those wherein:

R1 is CN;

R² is chlorine;

R³ is CF₃;

W is C-Cl;

 R^4 is $-CO_2$ - $(C_1$ - C_4)-alkyl, $(C_3$ - C_4)-alkenyl, $(C_1$ - C_2)-alkyl- $(C_3$ - C_4)-cycloalkyl or $(C_3$ - C_4)-cycloalkyl (more preferably R^4 is $-CO_2$ - $(C_1$ - C_4)-alkyl);

R⁵ is (C₁-C₂)-alkyl;

R⁶ is CF₃;

A is (C₂-C₃)-alkylene; and

m and n are each independently zero, one or two.

Another class of novel 5-substituted-alkylaminopyrazole derivatives of formula (I), or a pesticidally acceptable salt thereof, are those wherein:

R¹ is CN;

W is C-halogen or C-CH₃;

R² is hydrogen, halogen or CH₃;

 R^3 is (C_1-C_3) -haloalkyl, (C_1-C_3) -haloalkoxy or $S(O)_p$ - (C_1-C_3) -haloalkyl;

R⁴ is hydrogen, (C₁-C₆)-alkyl or COR⁸;

A is (C_1-C_{12}) -alkylene [preferably (C_1-C_6) -alkylene] and (C_1-C_{12}) -haloalkylene [preferably (C_1-C_6) -haloalkylene] in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C_3-C_8) -cycloalkyl ring which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkyl and halogen; or is (C_1-C_{12}) -alkylene or (C_1-C_{12}) -haloalkylene in which last two mentioned groups a

methylene moiety is replaced by a group selected from -C(=O)-, -C(=NH)-, -O-, -S- and $-NR^{15}$ -, with the proviso that the replacing group is not bonded to the adjacent $S(O)_m$ group or N atom; or is (C_2-C_{12}) -alkenylene or (C_2-C_{12}) -haloalkenylene; R^5 is H, (C_3-C_6) -alkenyl, (C_3-C_6) -haloalkenyl, (C_3-C_6) -alkynyl, (C_3-C_6) -haloalkynyl, (C_3-C_7) -cycloalkyl, $-(CH_2)_qR^7$, $-(CH_2)_qR^9$ or $NR^{10}R^{11}$ provided that for the last mentioned radical $S(O)_m$ is SO_2 ; or is (C_1-C_6) -alkyl substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_3-C_6) -alkenyloxy, (C_3-C_6) -haloalkenyloxy, (C_3-C_6) -alkenyloxy, (C_3-C_6) -haloalkynyloxy, (C_3-C_7) -cycloalkyl, $S(O)_pR^8$, CN, NO_2 , CN, COR^{10} , COR^{1

 R^6 is (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkynyl, (C_2-C_6) -haloalkynyl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)_pR⁸, COR¹¹, COR¹³, CONR¹⁰R¹¹, SO₂NR¹⁰R¹¹, NR¹⁰R¹¹, OH, SO₃H and (C₁-C₆)-alkylideneimino;

 R^8 is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl;

 R^9 is heterocyclyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -haloalkoxy, NO_2 , CN, $CO_2(C_1-C_6)$ -alkyl, $S(O)_pR^8$, OH and OR

 R^{10} and R^{12} are each independently H, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₃-C₆)-alkenyl, (C₃-C₆)-haloalkenyl, (C₃-C₆)-alkynyl, (C₃-C₆)-haloalkynyl, (C₃-C₆)-cycloalkyl, -(C₁-C₆)-alkyl-(C₃-C₆)-cycloalkyl, -(CH₂)_qR¹³ or -(CH₂)_qR⁹; or

 R^{10} and R^{11} and/or R^{10} and R^{12} each together with the respective attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkyl and (C_1-C_6) -haloalkyl;

 R^{11} and R^{14} are each independently H, (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_3-C_6) -cycloalkyl or $-(C_1-C_6)$ -alkyl- (C_3-C_6) -cycloalkyl;

 R^{13} is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)_pR⁸ and NR¹¹R¹⁴;

 R^{15} is R^{11} or $-(CH_2)_a R^{13}$;

m, n and p are each independently zero, one or two;

q is zero or one; and

each heterocyclyl in the above-mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S.

A preferred class of compounds of formula (I) are those in which:

R¹ is CN;

W is C-halogen;

R² is hydrogen or halogen;

R³ is CF₃ or OCF₃;

R⁴ is hydrogen, (C₁-C₆)-alkyl or COR⁸;

A is (C_1-C_6) -alkylene or (C_1-C_6) -haloalkylene, in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C_3-C_6) -cycloalkyl ring which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkyl and halogen;

 R^5 is (C_3-C_6) -cycloalkyl, $-(CH_2)_qR^7$; or (C_1-C_6) -alkyl substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_3-C_6) -cycloalkyl, $S(O)_pR^8$ and $CO_2-(C_1-C_6)$ -alkyl; or when A is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl and R^5 is (C_1-C_6) -haloalkyl, one or more of the carbon atoms of the R^5 group may, together with the $S(O)_m$ group and one or more of the carbon atoms of A, form a 5- or 6-membered ring;

 R^6 and R^8 are each independently (C₁-C₆)-alkyl or (C₁-C₆)-haloalkyl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, CN, NO₂, S(O)_pR⁸ and NR¹¹R¹²;

 R^9 is heterocyclyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl and (C_1-C_4) -alkoxy; R^{11} and R^{12} are each the same or different hydrogen, (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl;

m, n and p are each independently zero, one or two; and q is zero or one.

Another preferred class of compounds of formula (I) are those in which:

R1 is CN;

W is C-halogen;

R² is hydrogen or halogen;

R³ is CF₃ or OCF₃;

R⁴ is hydrogen, (C₁-C₆)-alkyl or COR⁸;

A is (C_1-C_6) -alkylene or (C_1-C_6) -haloalkylene in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C_3-C_6) -cycloalkyl ring which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkyl and halogen;

 R^5 is (C_3-C_6) -cycloalkyl or $-(CH_2)_qR^7$; or is (C_1-C_6) -alkyl substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_3-C_6) -cycloalkyl, $S(O)_pR^8$ and $CO_2-(C_1-C_6)$ -alkyl; or when A is (C_1-C_6) -alkylene or (C_1-C_6) -haloalkylene and R^5 is (C_1-C_6) -alkyl substituted by one or more halogen radicals, one or more of the carbon atoms of R^5 may, together with $S(O)_m$ and one or more of the carbon atoms of A, form a 5- or 6-membered ring; R^6 and R^8 are each independently (C_1-C_6) -alkyl-or (C_1-C_6) -haloalkyl; R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_1-C_6) -alkoxy, (C_1-C_6) -alkoxy, (C_1-C_6) -alkoxy, (C_1-C_6) -alkoxy, (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_1-C_6) -alkoxy, (C_1-C_6) -alkoxy, (C_1-C_6) -alkoxy, (C_1-C_6) -alkoxy, (C_1-C_6) -alkyl, (C_1-C_6) -alkoxy, (C_1-C_6) -alkoxy, (C_1-C_6) -alkoxy, (C_1-C_6) -alkoxy, (C_1-C_6) -alkyl, (C_1-C_6) -alkyl, (C_1-C_6) -alkoxy, (C_1-C_6) -alkoxy, (C_1-C_6) -alkyl, (C_1-C_6) -alkyl, (C_1-C_6) -alkoxy, (C_1-C_6) -alkyl, $(C_1$

 R^{10} and R^{11} are each independently H, (C₁-C₆)-alkyl or (C₁-C₆)-haloalkyl; m, n and p are each independently zero, one or two; and q is zero or one.

Another preferred class of compounds of formula (I) are those in which:

R¹ is CN;

W is C-halogen;

R² is halogen;

R³ is CF₃ or OCF₃;

R⁴ is hydrogen, (C₁-C₆)-alkyl or COR⁸;

A is (C_1-C_9) -alkylene or (C_1-C_9) -haloalkylene in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C_3-C_8) -cycloalkyl ring which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkyl and halogen;

 R^5 is (C_3-C_7) -cycloalkyl or $-(CH_2)_qR^7$; or is (C_1-C_6) -alkyl substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkoxy, (C_1-C_4) -haloalkoxy, (C_3-C_7) -cycloalkyl, $S(O)_pR^8$, CN, $NR^{10}R^{11}$ and $S(O)_pR^7$;

R⁶ is (C₁-C₂)-haloalkyl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)-alkyl, (C₁-C₄)-haloalkyl, (C₁-C₄)-alkoxy, (C₁-C₄)-haloalkoxy, CN, NO₂, S(O)_pR⁸, COR¹¹, NR¹⁰R¹¹ and OH;

 R^8 is (C_1-C_4) -alkyl or (C_1-C_4) -haloalkyl;

 R^9 is heterocyclyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)-alkyl, (C₁-C₄)-haloalkyl and (C₁-C₄)-alkoxy;

 R^{10} is H, (C₁-C₃)-alkyl, (C₁-C₃)-haloalkyl, (C₃-C₄)-alkenyl, (C₃-C₄)-alkynyl,

 (C_3-C_6) -cycloalkyl, $-(C_1-C_6)$ -alkyl- (C_3-C_6) -cycloalkyl or $-(CH_2)_qR^{13}$; or

R¹⁰ and R¹¹ together with the attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen and (C₁-C₃)-alkyl;

 R^{11} and R^{14} are each independently H, (C₁-C₃)-alkyl, (C₁-C₃)-haloalkyl,

 (C_3-C_6) -cycloalkyl or $-(C_1-C_3)$ -alkyl- (C_3-C_6) -cycloalkyl;

 R^{13} is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₃)-alkyl, (C₁-C₃)-haloalkyl, (C₁-C₃)-alkoxy, (C₁-C₃)-haloalkoxy, CN, NO₂, S(O)_pR⁸ and NR¹¹R¹⁴;

m, n and p are each independently zero, one or two;

g is zero or one; and

each heterocyclyl in the above-mentioned radicals is independently a heteroaromatic radical having 5 or 6 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S.

A further preferred class of compounds of formula (I) are those in which:

R1 is CN;

W is C-Cl;

R² is chlorine;

R³ is CF₃ or OCF₃;

R⁴ is hydrogen, (C₁-C₆)-alkyl or COR⁸;

A is (C₁-C₄)-alkylene;

 R^5 is (C_3-C_6) -cycloalkyl, $-(CH_2)_qR^7$ or (C_1-C_6) -haloalkyl; or when R^5 is (C_1-C_6) -haloalkyl, one or more of the carbon atoms of the R^5 group may, together with the $S(O)_m$ group and one or more of the carbon atoms of A, form a 5- or 6-membered ring;

R⁶ is CF₃, CF₂Cl, CFCl₂, CBrF₂ or CHF₂;

R⁷ is phenyl;

m and n are each independently zero, one or two; and q is zero or one.

A further preferred class of compounds of formula (I) are those in which:

R1 is CN;

W is C-halogen;

R² is halogen;

R³ is CF₃ or OCF₃;

R⁴ is hydrogen, (C₁-C₆)-alkyl or COR⁸;

A is (C_1-C_{12}) -alkylene which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkyl and halogen;

R5 is (C1-C6)-haloalkyl;

R⁶ is CF₃, CF₂Cl, CFCl₂, CBrF₂ or CHF₂; and m and n are each independently zero, one or two.

An especially preferred class of compounds of formula (I) are those wherein:

R1 is CN;

R² is chlorine;

R³ is CF₃;

W is C-Cl;

R⁴ is hydrogen, (C₁-C₆)-alkyl or COR⁸;

R⁵ is (C₁-C₂)-haloalkyl;

R⁶ is CF₃;

A.is (C2-C3)-alkylene; and

m and n are each independently zero, one or two.

Yet another class of novel 5-substituted-alkylaminopyrazole derivatives of formula (I), or a pesticidally acceptable salt thereof, are those wherein:

 R^1 is CN; R^2 is chlorine; R^3 is CF_3 or OCF_3 ; W is C-CI; R^4 is hydrogen or (C_1-C_6) -alkyl; R^5 is (C_1-C_6) -alkyl; R^6 is CF_3 ; A is (C_1-C_4) -alkylene (preferably A is (C_2-C_3) -alkylene) and m and n are each independently zero, one or two.

A further particularly preferred embodiment of the invention relates to novel 5-substituted-alkylaminopyrazole derivatives of formula (I), or pesticidally acceptable salts thereof, wherein:

R1 is CN:

W is C-Cl;

R² is chlorine;

R³ is CF₃;

R⁴ is hydrogen or (C₁-C₃)-alkyl (more preferably R⁴ is hydrogen or methyl);

A is -CH₂-CH₂- or -CH₂CH₂-CH₂-;

 R^5 is (C_1-C_4) -alkyl (more preferably R^5 is (C_1-C_2) -alkyl, most preferably R^5 is methyl);

R⁶ is CF₃; and

m and n are each independently zero, one or two.

The compounds of general formula (I) can be prepared by the application or adaptation of known methods (i.e. methods heretofore used or described in the chemical literature.

In the following description of processes when symbols appearing in formulae are not specifically defined, it is understood that they are "as defined above" in accordance with the first definition of each symbol in the specification.

According to a feature of the invention compounds of formula (I) wherein R^1 , R^2 , R^3 , R^6 , W, A and n are as defined above, R^4 and R^5 are as defined above with the exclusion of hydrogen, and R^4 is H, may be prepared by the reaction of a compound of formula (II):

wherein R^1 , R^2 , R^3 , R^6 , W and n are as defined above and L is a leaving group, generally halogen and preferably bromine, with a compound of formula (III):

$$R^{\underline{5}} - S(O)_{m} - A - NH_{2}$$
(III)

wherein A and m are as defined above and R⁵ is as defined above with the exclusion of hydrogen. The reaction is generally performed in the presence of a base such an alkali metal carbonate, for example potassium carbonate, in a solvent such as dioxan, tetrahydrofuran or N,N-dimethylformamide, at a temperature of from 0° to 100°C (preferably 0° to 50°C).

According to a further feature of the invention compounds of formula (I) wherein R¹, R², R³, R⁴, R⁶, W, A, m and n are as defined above and R⁴ is as defined above with the exclusion of hydrogen, OR⁷, OR⁸ and OR⁹, R⁵ is as defined above with the

exclusion of H, may also be prepared by the alkylation or acylation of a corresponding compound of formula (IV):

wherein R¹, R², R³, R⁶, W, A, m and n are as defined above and R⁵ is as defined above with the exclusion of hydrogen, with a compound of formula (V):

wherein R⁴ is as defined above with the exclusion of hydrogen, OR⁷, OR⁸ and OR⁹, and L¹ is a leaving group, generally halogen and preferably chlorine or iodine in the case of alkylation reactions, or preferably chlorine for acylations. The reaction is generally performed in the presence of a base such as sodium hydride, in a solvent such as dioxan, tetrahydrofuran or N,N-dimethylformamide, at a temperature of from 0° to 100°C (preferably 0° to 50°C).

According to a further feature of the invention compounds of formula (I) wherein R¹, R², R³, R⁴, R⁶, W, A, m and n are as defined above and R⁵ is as defined above with the exclusion of hydrogen, may also be prepared by the reaction of a compound of formula (VI):

29

(VI)

wherein R^1 , R^2 , R^3 , R^4 , R^6 , W and n are as defined above, with a compound of formula (VII):

$$R^5$$
-S(O)_m-A-L² (VII)

wherein m and A are as defined above, R⁵ is as defined above with the exclusion of hydrogen and L² is a leaving group, generally halogen and preferably chlorine. The reaction is generally performed in the presence of a base such sodium hydride, in a solvent such as dioxan, tetrahydrofuran or N,N-dimethylformamide, at a temperature of from 0° to 100°C (preferably 0° to 50°C).

According to a further feature of the invention compounds of formula (I) wherein R^1 , R^2 , R^3 , R^6 , W, m and n are as defined above, R^5 is as defined above with the exclusion of hydrogen, R^4 is hydrogen; m is 0 and A is -CH₂-, may be prepared by the reaction of a compound of formula (VIII):

wherein R¹, R², R³, R⁶, W and n are as defined above, with a mixture of formaldehyde and a compound of formula (IX):

wherein R⁵ is as defined above with the exclusion of hydrogen. The reaction may be performed in the presence or absence of a base such an alkali metal carbonate, for example potassium carbonate, in a solvent such as dioxan, tetrahydrofuran or N,N-dimethylformamide, at a temperature of from 0° to 100°C (preferably 0° to 50°C).

Various forms of formaldehyde may be used, for example paraformaldeyde, when water may also be present in the reaction mixture.

According to a further feature of the invention compounds of formula (I) wherein R^1 , R^2 , R^3 , R^4 , R^6 , A, W and n are as defined above, R^5 is as defined above with the exclusion of hydrogen, and m is 0, may be prepared by the reaction of a compound of formula (X):

wherein R¹, R², R³, R⁴, A, W and n are as defined above, with a compound of formula (XI):

$$R^5-L^3$$
 (XI)

wherein R⁵ is as defined above with the exclusion of hydrogen and L³ is a leaving group, generally a halogen for example chlorine or an alkylsulphonyloxy group. The reaction is generally performed using an alkali metal salt, for example the sodium salt, of the compound of formula (X), in an inert solvent such as tetrahydrofuran at a temperature from 0 to 60°C.

According to a further feature of the invention compounds of formula (I) wherein R¹, R², R³, R⁴, R⁵, R⁶, A, W and n are as defined above, and m is 0, may also be prepared by the reaction of a compound of formula (XII):

wherein R¹, R², R³, R⁴, A, W and n are as defined above and L⁴ is a leaving group, generally a halogen for example chlorine or an alkylsulphonyloxy group, with a compound of formula (IX) as defined above. The reaction is generally performed in the presence of a base, for example an alkali metal hydride such as sodium hydride, or an alkali metal alkoxide such as potassium tert-butoxide, in an inert solvent such as tetrahydrofuran at a temperature from 0 to 60°C, or an alkali metal carbonate such as potassium carbonate, in an inert solvent such as acetone, at a temperature from 0°C to the reflux temperature of the solvent.

According to a further feature of the invention compounds of formula (I) wherein R^1 , R^2 , R^3 , R^4 , R^6 , W, m and n are as defined above, R^5 is as defined above with the exclusion of hydrogen, and A is (C_2-C_{12}) -alkylene of which a two carbon chain links the $R^5S(O)_m$ - and $-NR^4$ - groups, may also be prepared by the reaction of a compound of formula (VI) above wherein R^1 , R^2 , R^3 , R^4 , R^6 , W and n are as defined above, with a compound of formula (XIII):

$$R^5$$
-S(O)_m-A¹
(XIII)

wherein R^5 and m are as defined above, and A^1 is a (C_2-C_{12}) -alkenyl group in which the double bond is adjacent to the $R^5S(O)_m$ group. The reaction is generally performed in an organic solvent, at a temperature of from 0° to 200°C (preferably 0° to 100°C).

According to a further feature of the invention compounds of formula (I) wherein R¹, R², R³, R⁴, R⁶, A, W, and n are as defined above, R⁵ is hydrogen and m is 0, may be

prepared by the reaction of the corresponding compound of formula (XII) as defined above, with a compound of formula (XIV):

$$R^a$$
-C(=S)SH (XIV)

wherein R^a is (C₁-C₆)-alkyl, to give a compound of formula (XV):

$$R^6S(O)_n$$
 R^4
 N
 N
 N
 R^3
 (XV)

wherein the various symbols are as defined above. The reaction is generally performed in the presence of a base such as an alkali metal hydride for example sodium hydride, an alkali metal alkoxide such as sodium ethoxide, or triethylamine, in a solvent such as dioxan, tetrahydrofuran or N,N-dimethylformamide, at a temperature of from 0° to 100°C. The compound of formula (XV) is then hydrolysed to give the corresponding compound of formula (I) in which R⁵ is H. The hydrolysis is generally carried out using a base such as aqueous ammonia or an alkali metal hydroxide such as sodium hydroxide, generally in the presence of a co-solvent such as an alcohol for example ethanol, at a temperature of from 0° to 100°C. Alternatively the hydrolysis may be performed in situ without isolation of (XV).

According to a further feature of the invention compounds of formula (I) wherein R¹, R², R³, R⁴, R⁵, R⁶, W and A are as defined above, and m and/or n is 1 or 2, may be prepared by oxidising a corresponding compound in which m and/or n is 0 or 1. The oxidation is generally performed using a peracid such as 3-chloroperbenzoic acid in a solvent such as dichloromethane or 1,2-dichloroethane, at a temperature of from 0°C to the reflux temperature of the solvent.

Collections of compounds of the formula (I) which can be synthesized by the above mentioned process may also be prepared in a parallel manner, and this may be

effected manually or in a semiautomated or fully automated manner. In this case, it is possible, for example, to automate the procedure of the reaction, work-up or purification of the products or of the intermediates. In total, this is to be understood as meaning a procedure as is described, for example, by S.H. DeWitt in "Annual Reports in Combinatorial Chemistry and Molecular Diversity: Automated Synthesis", Volume 1, Verlag Escom 1997, pages 69 to 77.

A series of commercially available apparatuses as are offered by, for example, Stem Corporation, Woodrolfe Road, Tollesbury, Essex, CM9 8SE, England or H+P Labortechnik GmbH, Bruckmannring 28, 85764 Oberschleißheim, Germany or Radleys, Shirehill, Saffron Walden, Essex, England, may be used for the parallel procedure of the reaction and work-up. For the parallel purification of compounds of the formula (I), or of intermediates obtained during the preparation, use may be made, inter alia, of chromatography apparatuses, for example those by ISCO, Inc., 4700 Superior Street, Lincoln, NE 68504, USA.

The apparatuses mentioned lead to a modular procedure in which the individual process steps are automated, but manual operations must be performed between the process steps. This can be prevented by employing semi-integrated or fully integrated automation systems where the automation modules in question are operated by, for example, robots. Such automation systems can be obtained, for example, from Zymark Corporation, Zymark Center, Hopkinton, MA 01748, USA.

In addition to what has been described here, compounds of the formula (I) may be prepared in part or fully by solid-phase-supported methods. For this purpose, individual intermediate steps or all intermediate steps of the synthesis or of a synthesis adapted to suit the procedure in question are bound to a synthetic resin. Solid-phase-supported synthesis methods are described extensively in the specialist literature, for example Barry A. Bunin in "The Combinatorial Index", Academic Press, 1998.

The use of solid-phase-supported synthesis methods permits a series of protocols which are known from the literature and which, in turn, can be performed manually or

in an automated manner. For example, the "tea-bag method" (Houghten, US 4,631,211; Houghten et al., Proc. Natl. Acad. Sci, 1985, 82, 5131-5135), in which products by IRORI, 11149 North Torrey Pines Road, La Jolla, CA 92037, USA, are employed, may be semiautomated. The automation of solid-phase-supported parallel syntheses is performed successfully, for example, by apparatuses by Argonaut Technologies, Inc., 887 Industrial Road, San Carlos, CA 94070, USA or MultiSynTech GmbH, Wullener Feld 4, 58454 Witten, Germany.

The preparation of the processes described herein yields compounds of the formula (I) in the form of substance collections which are termed libraries. The present invention also relates to libraries which comprise at least two compounds of the formula (I).

Intermediates of formula (II) wherein L is chlorine, bromine or iodine may be prepared according to known procedures, for example as described in EP 0295117, by the diazotisation of the corresponding amine of formula (VIII), generally using an alkyl nitrite such as t-butyl nitrite, in the presence of a suitable halogenating agent, preferably bromoform, iodine or anhydrous cupric chloride, optionally in the presence of a solvent such as acetonitrile or chloroform, at a temperature of from 0° to 100°C.

Some of the compounds of formula (IV) and (X) are included in the definition of formula (I) and may be prepared by the above-mentioned methods, whilst the other compounds of formula (IV) and (X) are known or may be prepared by known methods.

Compounds of formula (XV) are novel and as such form a further feature of the invention.

Compounds of formula (II), (III), (V), (VI), (VII), (VIII), (IX), (XI), (XII), (XIII) and (XIV) are known or may be prepared by known methods.

Chemical Examples

The following non-limiting Examples illustrate the preparation of the compounds of formula (I).

NMR spectra were run in deuterochloroform unless stated otherwise. In the Examples which follow, quantities (also percentages) are weight-based, unless stated otherwise.

Example 1

To a solution of 5-bromo-1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-4-trifluoromethylsulfonylpyrazole (5.0 g, 9.7 mmol) in 1,4-dioxane (20 ml) and N,N-dimethylformamide (20 ml) was added 3-ethylthiopropylamine (2.306 g, 19.3 mmol) and potassium carbonate (2.7 g, 19.3 mmol). The resulting mixture was stirred at 20°C for 2.75 hours, left to stand overnight, then poured into a mixture of water and dichloromethane. The organic phase was washed with water, dried (sodium sulfate), evaporated and chromatographed on silica gel, eluting with heptane-ethyl acetate (4:1) to give 1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-5-(3-ethylthiopropylamino)-4-trifluoromethylsulfonylpyrazole as a yellow solid (Compound number 1-14, 4.79 g, 86 % yield), mp 80°C.

Example 2

To a solution of 1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-5-(3-ethylthiopropylamino)-4-trifluoromethylsulfonylpyrazole (2.0 g, 3.6 mmol) in tetrahydrofuran at 20°C under nitrogen, was added sodium hydride (0.461 g, 60 % in oil, 11.5 mmol), and stirred for 0.5 hour. lodomethane (2.065 g, 14.4 mmol) was added and the mixture stirred for 4.5 hours at 20°C, then allowed to stand for 2.5 days. The mixture was added to ethyl acetate and saturated ammonium chloride solution. The organic layer was washed with water and brine, dried (sodium sulfate), evaporated and chromatographed on silica gel eluting with heptane-ethyl acetate (3:1) to give 1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-5-[N-(3-ethylthiopropyl)-N-methylamino]-4-trifluoromethylsulfonylpyrazole as a light brown solid (Compound number 2-14, 1.3 g, 57 % yield), mp 89°C.

Example 3

m-Chloroperbenzoic acid (0.091 g, 77 %, 0.4 mmol) was added to a solution of 1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-5-[N-(3-ethylthiopropyl)-N-methylamino]-4-trifluoromethylsulfonylpyrazole (0.23 g, 0.4 mmol) in 1,2-dichloroethane at 0-5°C. The mixture was stirred at 0-5°C for 0.5 hour, then poured into saturated sodium bicarbonate and ethyl acetate. The organic layer was washed with brine, dried (sodium sulfate), evaporated and chromatographed on silica gel eluting with heptane-ethyl acetate (1/1 to 3/7) to give 1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-5-[N-(ethylsulfinylpropyl)-N-methylamino]-4-trifluoromethylsulfonylpyrazole as a light brown oil (Compound number 2-15, 0.186 g, 71 %),19F: -63.8, -78.7.

Example 4

Sodium hydride (0.172 g, 4.3 mmol) was added to a solution of 1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-5-N-methylamino-4-trifluoromethylthiopyrazole (1.5 g, 3.4 mmol) in tetrahydrofuran cooled by an ice water bath. The ice bath was removed and the mixture stirred at 20°C for 0.75 hour and chloromethylmethylsulfide (0.456 g, 4.5 mmol) added. The mixture was stirred at 20°C for 6.5 hours and heated under reflux for 2 hours, then cooled and added to saturated ammonium chloride and ethyl acetate. The organic layer was washed with water and brine, dried (sodium sulfate), evaporated and chromatographed on silica gel eluting with heptane-ethyl acetate (9:1) to give 1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-5-[N-methyl-N-(methylthiomethyl)amino]-4-trifluoromethylthiopyrazole as a light yellow oil (Compound number 2-25, 0.59 g, 35 % yield), 19F: -43.9, -63.7.

Example 5

Sodium hydride (0.032 g, 60 %, 0.8 mmol) was added to a solution of 1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-5-(3-ethylthiopropylamino)-4-trifluoromethylsulfonylpyrazole (0.3 g, 0.54 mmol) in tetrahydrofuran 20°C under nitrogen. The mixture was stirred at 20°C for one hour then ethyl chloroformate (0.121 g, 1.1 mmol) was added. The mixture was stirred at 20°C for 5 hours, then poured into saturated ammonium chloride and ethyl acetate. The organic layer was

washed with water and brine, dried (sodium sulfate), evaporated to provide and purified by chromatography on silica gel eluting with heptane-ethyl acetate (4:1) to give 1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-5-[N-ethoxycarbonyl-N-(3-ethylthiopropyl)amino]-4-trifluoromethylsulfonylpyrazole as an oil (Compound number 3-14, 0.278 g, 81 % yield), 19F: -63.9;-77.9.

Example 6

To a solution of 3-cyano-5-methylamino-1-(2,6-dichloro-4-trifluoromethylphenyl)-4-trifluoromethylsulfonylpyrazole (0.5 g, 1.1 mmol) in tetrahydrofuran was added sodium hydride (60%, 0.06 g, 1.4 mmol), then 2-chloroethyl-phenylsulfone (0.27 g, 1.3 mmol). The mixture was heated at reflux for 10 hours. After extractive workup and column chromatography with heptane-ethyl acetate (1:1) there was obtained 1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-5-N-(2-phenylsulfonylethyl)-N-methylamino-4-trifluoromethylsulfinylpyrazole (Compound number 2-38, 0.26 g), 19F: -64.1;-73.0.

Example 7

To a solution of 1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-5-(2-phenylthioethyl)amino-4-trifluoromethylthiopyrazole (0.15 g, 0.27 mmol) in tetrahydrofuran was added ethyl chloroformate (58 mg, 0.54 mmol) and diisopropylethylamine (70 mg, 0.54 mmol) and 4-dimethylaminopyridine (10 mg). The mixture was heated at reflux for 1 hour. After extractive workup and column chromatography with heptane-ethyl acetate (1:1) there was obtained 1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-5-N-(2-phenylthioethyl)-N-ethoxycarbonylamino-4-trifluoromethylthiopyrazole (Compound number 3-109, 0.07 g), 19F: -63.7;-70.8.

The following Reference Example illustrates the preparation of intermediates used in the synthesis of the above Examples.

Reference Example 1

t-Butylnitrite (84 ml, 0.662 mol) was added to a suspension of 5-amino-1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-4-trifluoromethylsulfonylpyrazole (100 g,

0.221 mol) in bromoform (320 ml). The resulting mixture was heated to 60-70°C for 3 hours. Another portion of t-butylnitrite (84 ml, 0.662 mol) was added and the mixture stirred at 60-70°C for a further 2.5 hours. It was then cooled, washed with hexane, hexane-toluene, and then filtered. The solid was washed with pentane and vacuum dried to give 5-bromo-1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-4-trifluoromethylsulfonylpyrazole as a yellow solid (96.69 g, 79 % yield), mp 142°C.

The following preferred compounds shown in Tables 1 to 12 also form part of the present invention, and were or may be prepared in accordance with, or analogously to, the above-mentioned Examples 1 to 7 or the above-described general methods. In the Tables, Et means ethyl, i-Pr means isopropyl, n-Bu means n-butyl, t-Bu means tert-butyl, Ph means phenyl and 2-THF means 2-tetrahydrofuryl. Where subscripts are omitted after atoms it will be understood that they are intended, for example CH3 means CH3.

19F-NMR spectra shift values are given in ppm.

Compound numbers are given for reference purposes only.

Table I: Compounds of formula (I) in which the substituents have the following meanings:

 R^1 =CN, R^6 is CF₃, R^4 is hydrogen, W = C-Cl, R^2 = Cl, R^3 = CF₃.

Compound Number	A	S(O) _m	R5	n	m.p. (°C), or NMR(ppm)
1-1	CH2CH2	S	CH3	0	
1-2	CH2CH2	S	CH3	2	105-106
1-3	CH2CH2	so	CH3	2	
1-4	CH2CH2	SO2	CH3	2	161-164
1-5	CH2CH2	SO	СНЗ	1	190-191
1-6	CH2CH2CH2	S	CH3	Ō	
1-7	CH2CH2CH2	S	CH3	1	
1-8 .	CH2CH2CH2	S	CH3	2	121-122
1-9	CH2CH2CH2	so	CH3	2	140-141
1-10	CH2CH2CH2	SO2	CH3	2	183-184
1-11	CH2CH2CH2	so	CH3	0	
1-12	CH2CH2CH2	S	CH2CH3	0	
1-13	CH2CH2CH2	S	CH2CH3	1	
1-14	CH2CH2CH2	S	CH2CH3	2	80 .

Compound	A	IS(O)	m R5		- (°C)
Number	,	(0)	mili	n	m.p. (°C), or
1-15	CH2CH2CH2	so	CH2CH3	2	NMR(ppm)
1-16	CH2CH2CH2	SO2	CH2CH3	0	oil
1-17	CH2CH2	S	CH2Ph	2	13.7
1-18	CH2CH2	S	CH2CH3	0	13.7
1-19	CH2CH2	s	CH2CH3	2	86
1-20	CH2CH2	SO2	Ph	0	00
1-21	CH2CH2	S	cyclohexyl	0	
1-22	CH2	s	i-Pr	0	168.5
1-23	CH2	S	cyclopentyl	0	100.5
1-24	CH2	S	CH2CF3	2	
1-25	CH2	S	CH3	0	
1-26	CH2	s	CH3	1	
1-27	CH2	s	CH3		
1-28	CH2	so	CH3	2	ļ
1-29	CH2CH2CH2CH2	s	CH3	2	
1-30	CH2CH2CH2CH2	so	CH3	0	
1-31	CH2CH2CH2CH2	s	CH2CH3	1	
1-32	CH2CH2CH2	S	t-Bu		
1-33	CH2CH2CH2	so	t-Bu	2	
1-34	CH2CH2	SO2	Et	2	
1-35	CH2CH2	SO	CH2CH3	2	132
1-36	3-tetrahydrothienyl	100	101120113	2	172
1-37	3-tetrahydrothienyl sul	fovide		2	130-135
1-38	3-tetrahydrothienyl sul	fone		2	19F: -63.8, -79.8
1-39	CH2CH2	SO	CH2Ph	2	19F: -63.2, -79.9
1-40	CH2CH2	SO2	CH2Ph	2	162
1-41	CH2CH2	S	CH3	1	156 165
1-42	CH2CH2		Ph	1	
1-43	CH2CH2	S	Ph	0.	19F: -64.2;-74.0
1-44	CH2CH2		Ph	1	19F: -45.4;-63.6
1-45	CH2CH2	SO	CH3	0	19F: -64.2;-74.0
1-46	CH2CH2	SO2	CH3	0	
1-47	CH2CH2		CH3	1	
1-48	CH2CH2		Ph	2	
1-49	CH2CH2		Ph	2.	
1-50	CH2CH2		Ph	0	
1-51	CH2CH2		Ph	1	
1-52	CH2CH2		Ph		
1-53	CH2CH2		CH2Ph	0	
1-54	CH2CH2		CH2Ph	1	
1-55	CH2CH2		CH2Ph	Ö	
1-56	CH2CH2		CH2Ph	1	·
1-57	CH2CH2		cyclopropyl	0	
1-58	CH2CH2		cyclobropyi cyclobutyl		
1-59	CH2CH2		cyclobutyl	0	
1-60	CH2CH2		allyl	0	
1-61	CH2CH2		NMe2	0	
1-62	CH2CH2		NEt2	0	· ·
	0.120112	1002	I VIII	_U	

Α	19(O) ^u	R5	n	m.p. (°C), or NMR(ppm)
CH2CH2	502	NMe2	1	(Ppin)
				
				<u> </u>
				
		1		
				
				·
				ļ. <u>.</u>
				•
CH2CH2CH2	SO2		1	
		Ph	0	•
CH2CH2CH2	so	Ph	0	
CH2CH2CH2	SO2	Ph	0	
CH2CH2CH2	s	Ph	1	
CH2CH2CH2	so	Ph	1	
CH2CH2CH2	SO2	Ph	1	
CH2CH2CH2	s	Ph	2	
CH2CH2CH2	so	Ph		
CH2CH2CH2	SO2	Ph		
CH(CH3)CH2	s	СНЗ		
		CH3	1	
		СНЗ	2	
		СНЗ		
	so			
				
	Š			
	lš l	<u> </u>		<u> </u>
				,
				
				
CH2CH(CH3)	SO2	CH3	1	
			1 1	
	CH2CH2CH2 CH2CH2CH2 CH2CH2CH2 CH2CH2CH2 CH2CH2CH2 CH2CH2CH2 CH2CH2CH2 CH(CH3)CH2 CH2CH(CH3) CH2CH(CH3) CH2CH(CH3) CH2CH(CH3) CH2CH(CH3) CH2CH(CH3) CH2CH(CH3)	CH2CH2 SO2 CH2CH2 SO2 CH2CH2CH2 SO2 CH(CH3)CH2 SO2 CH(CH3)CH2	CH2CH2 SO2 NMe2 CH2CH2 SO2 NEt2 CH2CH2CH2 SO2 NMe2 CH2CH2CH2 SO2 NMe2 CH2CH2CH2 SO2 NMe2 CH2CH2CH2 SO2 NMe2 CH2CH2CH2 SO2 NEt2 CH2CH2CH2 SO2 NEt2 CH2CH2CH2 SO2 NF2 CH2CH2CH2 SO2 N-iPr2 CH2CH2CH2 SO2 N-pyrrolidinyl CH2CH2CH2 SO2 N-pyrrolidinyl CH2CH2CH2 SO2 CH3 CH2CH2CH2 SO2 <td>CH2CH2 SO2 NMe2 1 CH2CH2 SO2 NEt2 1 CH2CH2CH2 SO2 NMe2 0 CH2CH2CH2 SO2 NMe2 1 CH2CH2CH2 SO2 NMe2 2 CH2CH2CH2 SO2 NEt2 0 CH2CH2CH2 SO2 NEt2 1 CH2CH2CH2 SO2 NEt2 1 CH2CH2CH2 SO2 NFr2 1 CH2CH2CH2 SO2 N-iPr2 0 CH2CH2CH2 SO2 N-iPr2 1 CH2CH2CH2 SO2 N-iPr2 1 CH2CH2CH2 SO2 N-iPr2 2 CH2CH2CH2 SO2 N-iPr2 1 CH2CH2CH2 SO2 N-iPr3</td>	CH2CH2 SO2 NMe2 1 CH2CH2 SO2 NEt2 1 CH2CH2CH2 SO2 NMe2 0 CH2CH2CH2 SO2 NMe2 1 CH2CH2CH2 SO2 NMe2 2 CH2CH2CH2 SO2 NEt2 0 CH2CH2CH2 SO2 NEt2 1 CH2CH2CH2 SO2 NEt2 1 CH2CH2CH2 SO2 NFr2 1 CH2CH2CH2 SO2 N-iPr2 0 CH2CH2CH2 SO2 N-iPr2 1 CH2CH2CH2 SO2 N-iPr2 1 CH2CH2CH2 SO2 N-iPr2 2 CH2CH2CH2 SO2 N-iPr2 1 CH2CH2CH2 SO2 N-iPr3

Compound	А	S(O) _m	R5	n	m.p. (°C), or
Number				· <u>.</u>	NMR(ppm)
1-111	CH2CH2CH2	S	Ph ·	Q	
1-112	CH2CH2CH2	S	Ph	1	
1-113	CH2CH2CH2	S	Ph ·	2	
1-114	CH2CH2CH2	SO	Ph	1	
1-115	CH2CH2CH2	so	Ph	2	
1-116	CH2CH2CH2	SO	Ph	2	
1-117	CH2CH2CH2	SO2	Ph	0	
1-118	CH2CH2CH2	SO2	Ph	1	
1-119	CH2CH2CH2	SO2	Ph	2	
1-120	CH2CH2CH2	S	CH2Ph	0	
1-121	CH2CH2CH2	S	CH2Ph	1	
1-122	CH2CH2CH2	S	CH2Ph	['] 2	
1-123	CH2CH2CH2	so	CH2Ph	1	
1-124	CH2CH2CH2	so	CH2Ph	2	
1-125	CH2CH2CH2	SO	CH2Ph	2	
1-126	CH2CH2CH2	SO2	CH2Ph	0	. • .
1-127	CH2CH2CH2	SO2	CH2Ph	1	
1-128	CH2CH2CH2	SO2	CH2Ph	. 2	

Table II. $R^1 = CN$, $R^6 = CF_3$, $R^4 = CH_3$, W = C-CI, $R^2 = CI$, $R^3 = CF_3$

Compound Number	A	S(O) _m	R5	n	m. p. (°C); NMR(ppm)
2-1	CH2CH2	s	CH3	0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2-2	CH2CH2	S	CH3	2	81
2-3	CH2CH2	SO	CH3	2	142
2-4	CH2CH2	SO2	CH3	2	148
2-5	CH2CH2	so	CH3	1	55.5
2-6	CH2CH2CH2	S	CH3	0	
2-7	CH2CH2CH2	S	CH3	1	
2-8	CH2CH2CH2	S	CH3	2	94-95
2-9	CH2CH2CH2	so	CH3	2	106-107
2-10	CH2CH2CH2	SO2	CH3	2	160-161
2-11	CH2CH2CH2	SO	CH3	0	
2-12	CH2CH2CH2	S	CH2CH3	. 0	
2-13	CH2CH2CH2	S	CH2CH3	1	
2-14	CH2CH2CH2	S	CH2CH3	2	89
2-15	CH2CH2CH2	so	CH2CH3	2	19F: -63.8, -78.7
2-16	CH2CH2CH2	SO2	CH2CH3	0	
2-17	CH2CH2	S	CH2Ph	2	103
2-18	CH2CH2	S	CH2CH3	0	
2-19	CH2CH2	S	CH2CH3	2	103
2-20	CH2CH2	SO2	Ph	0	
2-21	CH2CH2	S	cyclohexyl	0	
2-22	CH2	S	i-Pr	0	
2-23	CH2	S	cyclopentyl	0	
2-24	CH2 ·	S	CH2CF3	2	

<u>,</u>		12/2			(00)
Compound	Α .	S(O) _m	R5 .	n	m. p. (°C);
Number					NMR(ppm)
2-25	CH2	S	СНЗ	0	19F: -43.9, -63.7
2-26	CH2	S	СН3	1	19F: -63.7, -71.9
2-27	CH2	S	СНЗ	2	19F: -63.8, -78.6
2-28	CH2	SO	CH3	2	
2-29	CH2CH2CH2CH2	S	CH3	2	
2-30	CH2CH2CH2CH2	so	CH3	0	
2-31	CH2CH2CH2CH2	S.	CH2CH3	1	
2-32	CH2CH2CH2	S	t-Bu	- 2	
2-33	CH2CH2CH2	SO	t-Bu	2	
2-34	CH2CH2	so	CH2CH3	2	19F: -63.8, -78.6
2-35	CH2CH2	SO2	CH2CH3	2	19F: -63.8, -78.7
2-36	CH2CH2CH2	SO2	CH2CH3	2	19F: -63.8, -78.6
2-37	CH2CH2	SO2	Ph	lo	157
2-38	CH2CH2	SO2	Ph	1	19F: -64.1;-73.0
2-39	CH2CH2	SO2	Ph	2	
2-40	CH2CH2	S	Ph	0	
2-41	CH2CH2	s	Ph	1	
2-42	CH2CH2	S	Ph	2	
2-43	CH2CH2	so	Ph	. 0	
2-44	CH2CH2	so	Ph	1	
2-45	CH2CH2	so	Ph	2	
2-46	CH2CH2	SO2	CH2Ph	ō	
2-47	CH2CH2	SO2	CH2Ph	1	
2-48	CH2CH2	SO2	CH2Ph	2	
2-49	CH2CH2	so	CH2Ph	0	
2-50	CH2CH2	so	CH2Ph	1	
2-51	CH2CH2	so	CH2Ph	2	
2-51	CH2CH2	S	CH2Ph	0	
2-52	CH2CH2	. S	CH2Ph	1	
2-53	CH2CH2	S	CH3	1	
	CH2CH2	so	CH3	0	88
2-55	CH2CH2	SO2	CH3	0	118-120
2-56	CH2CH2	SO2	CH3	1	130-132
2-57	CH2CH2CH2	SO_	CH3	1	130-132
2-58			CH3	0	
2-59	CH2CH2CH2	SO2 SO2	CH3		-
2-60	CH2CH2CH2				
2-61	CH(CH3)CH2	S	CH3	0	
2-62	CH(CH3)CH2	S	CH3		
2-63	CH(CH3)CH2	S	CH3	2	
2-64	CH(CH3)CH2	so	CH3	0	
2-65	CH(CH3)CH2	SO	CH3	1	<u> </u>
2-66	CH(CH3)CH2	SO	CH3	2	
2-67	CH(CH3)CH2	SO2	ICH3	0	<u> </u>
2-68	CH(CH3)CH2	SO2	CH3	1	<u> </u>
2-69	CH(CH3)CH2	SO2	CH3	2	
2-70	CH2CH(CH3)	<u>S.</u>	CH3	. 0	· · · · · · · · · · · · · · · · · · ·
2-71	CH2CH(CH3)	S	СНЗ	1	
2-72	CH2CH(CH3)	S	СНЗ	2	

A	S(O) _m	R5	n	m. p. (°C);
	- (-)			NMR(ppm)
CH2CH(CH3)	so	СНЗ	0	N. I.
CH2CH(CH3)	so	CH3	1	
				
				
				<u> </u>
				
				
· · · · · · · · · · · · · · · · · · ·				19F:-44.40, -63.71
				101111111111111111111111111111111111111
				<u> </u>
				
			1	
			2	
			0	
			1	
		Ph	2	
CH2CH2CH2	so	Ph	1	
CH2CH2CH2	so	Ph	2	
CH2CH2CH2	so	Ph	2	
CH2CH2CH2	SO2	Ph .	0	
CH2CH2CH2	SO2	Ph	1	
CH2CH2CH2	SO2	Ph .	2	
CH2CH2CH2		CH2Ph	0	
CH2CH2CH2	S	CH2Ph	1	
CH2CH2CH2	S	CH2Ph		
CH2CH2CH2	so	CH2Ph	1	
CH2CH2CH2	so	CH2Ph		
CH2CH2CH2	so .	CH2Ph :		
CH2CH2CH2	SO2	CH2Ph .	0	
CH2CH2CH2	SO2	CH2Ph	1	
CH2CH2CH2	SO2	CH2Ph	2.	
	CH2CH(CH3) CH2CH(CH3) CH2CH(CH3) CH2CH(CH3) CH2CH(CH3) CH2CH(CH3) CH2CH(CH3) CH2CH2 CH2CH2 CH2CH2 CH2CH2 CH2CH2 CH2CH2 CH2CH2 CH2CH2CH2	CH2CH(CH3) SO CH2CH(CH3) SO CH2CH(CH3) SO CH2CH(CH3) SO CH2CH(CH3) SO2 CH2CH(CH3) SO2 CH2CH(CH3) SO2 CH2CH(CH3) SO2 CH2CH2 SO2 CH2CH2CH2 SO3	CH2CH(CH3) CH2CH(CH3) CH2CH(CH3) CH2CH(CH3) CH2CH(CH3) SO CH3 CH2CH(CH3) CH2CH(CH3) CH2CH(CH3) CH2CH(CH3) CH2CH(CH3) CH2CH(CH3) CH2CH(CH3) CH2CH(CH3) CH2CH(CH3) CH2CH2 CH2CH2 SO2 CH3 CH2CH2 CH2CH2 SO2 CH2C CH2CH2 SO2 CH2C CH2CH2 SO2 CH2C CH2CH2 SO2 CH2CH2 SO2 CH2CH2 CH2CH2 SO2 CH2CH2 SO2 CH2CH2 CH2CH2 SO2 CH2CH2 SO2 CH2CH2 SO2 CH2CH2 CH2CH2 SO2 CH2CH2 SO2 CH2CH2 CH2CH2 SO2 CH2CH2 CH2CH2 SO2 CH2CH2 SO2 CH2CH2 CH2CH2 SO2 CH2CH2 CH2CH2 SO2 CH2CH2 SO2 CH2CH2 CH2CH2 SO2 CH2CH2 SO2 CH2CH2 CH2CH2 SO2 CH2CH2 CH2CH2 SO2 CH2CH2 CH2CH2 SO2 CH2CH2 SO2 CH2CH2 CH2CH2 CH2CH2 SO2 CH2CH2 CH2CH2 CH2CH2 SO2 CH2CH2 CH2CH2 CH2CH2 SO2 CH2CH2	CH2CH(CH3) SO CH3 0 CH2CH(CH3) SO CH3 1 CH2CH(CH3) SO CH3 2 CH2CH(CH3) SO CH3 0 CH2CH(CH3) SO2 CH3 0 CH2CH(CH3) SO2 CH3 1 CH2CH(CH3) SO2 CH3 1 CH2CH(CH3) SO2 CH3 2 CH2CH2 SO2 NMe2 0 CH2CH2 SO2 NMe2 0 CH2CH2 SO2 NMe2 1 CH2CH2CH2 SO2 NMe2 2 CH2CH2CH2 SO2 NMe2 2 CH2CH2CH2 SO2 NE12 1 CH2CH2CH2 SO2 NE12 0 CH2CH2CH2 SO2 NE12 1 CH2CH2CH2 SO2 NE12 1 CH2CH2CH2 SO2 NE12 1 CH2CH2CH2 SO2 NE12 1 CH2CH2CH2 SO2 N-iPr2 0 CH2CH2CH2 SO2 N-iPr2 1 CH2CH2CH2 SO2 N-iPr2 2 CH2CH2CH2 SO2 N-iPr2 2 CH2CH2CH2 SO2 N-iPr2 1 CH2CH2CH2 SO2 N-iPr2 2 CH2CH2CH2 SO2 N-iPr2 1 CH2CH2CH2 SO2 N-iPr2 1 CH2CH2CH2 SO2 N-iPr2 1 CH2CH2CH2 SO2 N-iPr2 1 CH2CH2CH2 SO2 N-iPr2 2 CH2CH2CH2 SO2 N-iPr2 1 CH2CH2CH2 SO2 N-iPr2 1 CH2CH2CH2 SO2 N-pyrrolidinyl 0 CH2CH2CH2 SO2 N-pyrrolidinyl 1 CH2CH2CH2 SO2 N-piperidinyl 1 CH2CH2CH2 SO2 N-piperidinyl 1 CH2CH2CH2 SO2 N-piperidinyl 2 CH2CH2CH2 SO2 N-piperidinyl 2 CH2CH2CH2 SO2 N-piperidinyl 1 CH2CH2CH2 SO2 N-piperidinyl 2 CH2CH2CH2 SO2 N-piperidinyl 1 CH2CH2CH2 SO2 N-piperidinyl 2 CH2CH2CH2 SO2 N-piperidinyl 2 CH2CH2CH2 SO2 N-piperidinyl 1 CH2CH2CH2 SO2 N-piperidinyl 2 CH2CH2CH2 SO2 N-piperidinyl 2 CH2CH2CH2 SO2 N-piperidinyl 2 CH2CH2CH2 SO2 N-piperidinyl 2 CH2CH2CH2 SO2 N-piperidinyl 1 CH2CH2CH2 SO2 N-piperidinyl 2 CH2CH2CH2 SO2 N-piperidinyl 1 CH2CH2CH2 SO2 N-piperidinyl 1 CH2CH2CH2 SO2 N-piperidinyl 2 CH2CH2CH2 SO2 N-piperidinyl 1 CH2CH2CH2 SO2 N-piperidinyl 2 CH2CH2CH2 SO2 N-piperidinyl 2 CH2CH2CH2 SO2 N-piperidinyl 1 CH2CH2CH2 SO2 N-piperidinyl 2 CH2CH2CH2 SO2 N-piperidinyl 2 CH2CH2CH2 SO2 N-piperidinyl 2 CH2CH2CH2 SO2 Ph 1 CH2CH2CH2 SO2 Ph 1 CH2CH2CH2 SO2 Ph 1 CH2CH2CH2 SO2 CH2Ph 1 CH2CH2CH2 SO2 CH2Ph 1

Table III. $R^1 = CN$, $R^6 = CF_3$, $R^4 = CO_2CH_2CH_3$, W = C-CI, $R^2 = CI$, $R^3 = CF_3$

Cpd Number	Α.	S(O) _m	R5	n	m. p. (°C) NMR(ppm)
3-1	CH2CH2	s	СНЗ	0	19F: -41.8;-63.8
3-2	CH2CH2	s	CH3	2	19F: -63.8;-77.7
3-3	CH2CH2	so	CH3	2	19F:-63.8,-63.9,-77.4, -
3-4	CH2CH2	SO2	СНЗ	2	152
3-5	CH2CH2	so	CH2CF2H	1	
3-6	CH2CH2CH2	S	CH3	0	
3-7	CH2CH2CH2	S	СНЗ	1	
3-8	CH2CH2CH2	S	СНЗ	2	82
3-9	CH2CH2CH2	so	CH3	2	19F: -63.7;-63.8;-77.5
3-10	CH2CH2CH2	SO2	CH3	2.	124-127
3-11	CH2CH2CH2	so	СНЗ	0	
3-12	CH2CH2CH2	S	CH2CH3	0	
3-13	CH2CH2CH2	S .	CH2CH3	1	
3-14	CH2CH2CH2	S	CH2CH3	2	19F: -63.9;-77.9
3-15	CH2CH2CH2	SO.	CH2CH3	2	
3-16	CH2CH2CH2	SO2	CH2CH3	0	
3-17 .	CH2CH2	S	CH2Ph	2.	
3-18	CH2CH2	S.	CH2CH3	0	
3-19	CH2CH2	S	CH2CH3	2	19F: -63.8;-77.7
3-20	CH2CH2	SO2	Ph	0	
3-21	CH2CH2	S	cyclohexyl	0	
3-22	CH2	S	i-Pr	0	
3-23	CH2	S	cyclopentyl	0	
3-24	CH2	S	CH2CF3	2	
3-25	CH2	S	CH3	0	
3-26 .	CH2	S	CH3	1	
3-27	CH2	S .	CH3	2	
3-28	CH2	SO	CH3	2	
3-29	CH2CH2CH2CH2	S .	CH3	2	
3-30	CH2CH2CH2CH2	SO	CH3	0	
3-31	CHCH2CH2CH2	S	CH2CH3	1	
3-32	CH2CH2CH2	S	t-Bu	2	
3-33	CH2CH2CH2	SO	t-Bu	2	
3-34	CH2CH2	S	CH3	1	134-136
3-35	CH2CH2	SO	СНЗ	0	19F: -41.9;-63.8
3-36	CH2CH2	SO	CH3	1	152-154
3-37	CH2CH2	SO2	CH3	0	132-135
3-38	CH2CH2	SO2	CH3	1	19F: -63.8;-70.8
3-39	CH2CH2CH2	SO	CH3	1	
3-40	CH2CH2CH2	SO2	CH3	0	· .
3-41	CH2CH2CH2	SO2	СНЗ	1	
3-42	CH(CH3)CH2	S	CH3	0	
3-43	CH(CH3)CH2	S	CH3	1	
3-44	CH(CH3)CH2	S .	СНЗ	2	
3-45	CH(CH3)CH2	so	СНЗ	0	

Cpd	Α	S(O) _m	R5	n	m. p. (°C) NMR(ppm)
Number					
3-46	CH(CH3)CH2	SO	CH3	1	
3-47	CH(CH3)CH2	so	СНЗ	2	
3-48	CH(CH3)CH2	SO2	CH3 -	0	
3-49	CH(CH3)CH2	SO2	СНЗ	1	
3-50	CH(CH3)CH2	SO2	CH3	2	
3-51	CH2CH(CH3)	S	CH3	0	
3-52	CH2CH(CH3)	S	CH3	1	
3-53	CH2CH(CH3)	S	CH3	2	
3-54	CH2CH(CH3)	SO·	CH3	0	
3-55	CH2CH(CH3)	SO	CH3	1	
3-56	CH2CH(CH3)	SO	CH3	2	·
3-57	CH2CH(CH3)	SO2	СНЗ	0	
3-58	CH2CH(CH3)	SO2	CH3	1	
3-59	CH2CH(CH3)	SO2	CH3	2	
3-60	CH2CH2	SO2	NMe2	0	_
3-61	CH2CH2	SO2	NEt2	0	
3-62	CH2CH2	SO2	NMe2	1	
3-63	CH2CH2	SO2	NEt2	1	
3-64	CH2CH2CH2	SO2	NMe2	0	
3-65	CH2CH2CH2	SO2	NMe2	1	•
3-66	CH2CH2CH2	SO2	NMe2	2	
3-67	CH2CH2CH2	SO2	NEt2	0	
3-68	CH2CH2CH2	SO2	NEt2	11	
3-69	CH2CH2CH2	SO2	NEt2	2	
3-70	CH2CH2CH2	SO2	N-iPr2	0	
3-71	CH2CH2CH2	SO2	N-iPr2	1	
3-72	CH2CH2CH2	SO2	N-iPr2	2	
3-73	CH2CH2CH2	SO2	N-nBu2	0	
3-74	CH2CH2CH2	SO2	N-nBu2	1	
3-75	CH2CH2CH2	SO2	N-nBu2	2	
3-76	CH2CH2CH2	SO2	N-pyrrolidinyl	0	
3-77	CH2CH2CH2	SO2	N-pyrrolidinyl	1	
3-78	CH2CH2CH2	SO2	N-pyrrolidinyl	2	
3-79	CH2CH2CH2	SO2	N-piperidinyl	0	
3-80	CH2CH2CH2	SO2	N-piperidinyl	1	
3-81	CH2CH2CH2	SO2	N-piperidinyl	2	·
3-82	CH2CH2CH2	S	Ph	0	
3-83	CH2CH2CH2	S	Ph	1	
3-84	CH2CH2CH2	S	Ph	2	
3-85	CH2CH2CH2	so	Ph	1	
3-86	CH2CH2CH2	so	Ph	2	.0
3-87	CH2CH2CH2	so	Ph	2	
3-88	CH2CH2CH2	SO2	Ph	0	
3-89	CH2CH2CH2	SO2	Ph	1	
3-90	CH2CH2CH2	SO2	Ph	2	
3-91	CH2CH2CH2	S.	CH2Ph	0	
3-92	CH2CH2CH2	S	CH2Ph	1	
3-93	CH2CH2CH2	S	CH2Ph .	2	

Cpd	. A .	S(O) _m	R5	n	m. p. (°C) NMR(ppm)
Number					<u> </u>
3-94	CH2CH2CH2	SO	CH2Ph	1.	
3-95	CH2CH2CH2	SO	CH2Ph	2	
3-96	CH2CH2CH2	SO	CH2Ph ·	2	
3-97	CH2CH2CH2	SO2	CH2Ph	0	
3-98	CH2CH2CH2	SO2	CH2Ph	1	
3-99	CH2CH2CH2	SO2	CH2Ph	2	
3-100	CH2CH2	SO2	Ph	- 1	
3-101	CH2CH2	SO2	Ph	2	
3-102	CH2CH2	S	Ph	0	19F: -42.4;-64.2
3-103	CH2CH2	S	Ph	1	
3-104	CH2CH2	S	Ph	2	
3-105	CH2CH2	so	Ph	0	
3-106	CH2CH2	SO	Ph	1	
3-107	CH2CH2	SO	Ph	2	
3-108	CH2CH2	SO2	CH2Ph	0	
3-109	CH2CH2	SO2	Ph	1	19F: -63.7;-70.8
3-110	CH2CH2	SO2	CH2Ph	2	
3-111	CH2CH2	SO	CH2Ph	0	
3-112	CH2CH2	so	CH2Ph	1	·
3-113	CH2CH2	SO	CH2Ph	2	
3-114	CH2CH2	S	CH2Ph	0	
3-115	CH2CH2	S	CH2Ph	1	

Table IV. $R^1 = CN$, $R^6 = CF_3$, $R^4 = CH_2OCH_2CH_3$, W = C-CI, $R^2 = CI$, $R^3 = CF_3$

Cpd	A	S(O) _m	R5	n	m. p. (°C) or
Number					NMR(ppm) -
4-1	CH2CH2	S	CH3	0	7
4-2	CH2CH2	S	СНЗ	2	19F: -63.7;-78.6
4-3	CH2CH2	SO	CH3	2	
4-4	CH2CH2	SO2	CH3	2	
4-5	CH2CH2	SO	CH3	1	
4-6	CH2CH2CH2	S	CH3	0	
4-7	CH2CH2CH2	S	CH3	1	
4-8	CH2CH2CH2	S	CH3	2	
4-9	CH2CH2CH2	SO	СНЗ	2	19F:-63.7,-78.6
4-10	CH2CH2CH2	SO2	CH3	2	
4-11	CH2CH2CH2	SO	CH3	0 .	
4-12	CH2CH2CH2	S	CH2CH3	0	
4-13	CH2CH2CH2	S	CH2CH3	1	
4-14	CH2CH2CH2	S	CH2CH3	2	•
4-15	CH2CH2CH2	SO	CH2CH3	2	
4-16	CH2CH2CH2	SO2	CH2CH3	0	
4-17	CH2CH2.	S	CH2Ph	2	
4-18	CH2CH2	S	CH2CH3	0	·

Cpd Number	A	S(O) _m	R5	n	m. p. (°C) or NMR(ppm)
4-19	CH2CH2	S	CH2CH3	2 ·	
4-20	CH2CH2	SO2	Ph	0	
4-21	CH2CH2	S	cyclohexyl	0	
4-22	CH2	S	i-Pr	0	
4-23	CH2	S	cyclopentyl	0	
4-24	CH2	S	CH2CF3	2	
4-25	CH2	S	CH3	0	·
4-26	CH2	S	CH3	1	
4-27	CH2	S	CH3	2	
4-28	CH2	so	CH3	2	
4-29	CH2CH2CH2CH2	S	CH3	2	·
4-30	CH2CH2CH2CH2	SO	CH3	0	
4-31	CHCH2CH2CH2	S	CH2CH3	1	
4-32	CH2CH2CH2	S	t-Bu	2	
4-33	CH2CH2CH2	SO	t-Bu	2	

Table V: $R^1 = CN$, $R^6 = CF_3$, $R^4 = H$, W = C-CI, $R^2 = CI$, $R^3 = OCF_3$

Cpd	Α	S(O) _m	R5	n	m. p. (°C)
Number					·
5-1	CH2CH2	S	CH3	0	
5-2	CH2CH2	S	CH3	2	93
5-3	CH2CH2	SO	CH3	2	·
5-4	CH2CH2	SO2	CH3	2	
5-5	CH2CH2	SO	CH3	1	
5-6	CH2CH2CH2	S	CH3	0	
5-7	CH2CH2CH2	S S	CH3	1	
5-8	CH2CH2CH2	s	CH3	2	80
5-9	CH2CH2CH2	SO	CH3	2	
5-10	CH2CH2CH2	SO2	CH3	2	
5-11	CH2CH2CH2	SO.	CH3	0	
5-12	CH2CH2CH2	S	CH2CH3	0	
5-13	CH2CH2CH2	S	CH2CH3	1	
5-14	CH2CH2CH2	S	CH2CH3	2	
5-15	CH2CH2CH2	SO.	CH2CH3	2	
5-16	CH2CH2CH2	SO2	CH2CH3	0 .	
5-17	CH2CH2	S	CH2Ph	2	·
5-18	CH2CH2	S	CH2CH3	0	
5-19	CH2CH2	S	CH2CH3	2	
5-20	CH2CH2	SO2	Ph	0	
5-21	CH2CH2	S	cyclohexyl	0	
5-22	CH2	S	i-Pr	0	
5-23	CH2	S	cyclopentyl.	0	
5-24	CH2	S	CH2CF3	2	

Cpd	Α	S(O) _m	R5	n	m. p. (°C)
Number				<u> </u>	<u> </u>
5-25	CH2	S_	CH3	0	
5-26	CH2	S	CH3	1	
5-27	CH2	S	CH3	2	
5-28	CH2	so	CH3	2	
5-29	CH2CH2CH2CH2	S	CH3	2	
5-30	CH2CH2CH2CH2	SO	CH3	0	
5-31	CHCH2CH2CH2	S	CH2CH3	1	
5-32	CH2CH2CH2	S	t-Bu	2	
5-33	CH2CH2CH2	SO	t-Bu	2	

Table VI: $R^1 = CN$, $R^6 = CF_3$, $R^4 = CH_3$, W = C-CI, $R^2 = CI$, $R^3 = OCF_3$

Cpd	Α .	S(O) _m	R5	n	m. p. (°C)
Number					·
6-1	CH2CH2	S	CH3	0	
6-2	CH2CH2	S	CH3	2	98
6-3	CH2CH2	SO	CH3	2	
6-4	CH2CH2	SO2	CH3	2	·
6-5	CH2CH2	SO	CH3	1	
6-6	CH2CH2CH2	S	CH3	0	
6-7	CH2CH2CH2	S	CH3	1	
6-8	CH2CH2CH2	S	CH3	2	79
6-9	CH2CH2CH2	SO	CH3	2 ·	
6-10	CH2CH2CH2	SO2	CH3	2	
6-11	CH2CH2CH2	SO	CH3	0	
6-12	CH2CH2CH2	S S	CH2CH3	0	
6-13	CH2CH2CH2	S	CH2CH3	1	
6-14 .	CH2CH2CH2		CH2CH3	2	
6-15	CH2CH2CH2	SO	CH2CH3		
6-16	CH2CH2CH2	SO2	CH2CH3	0	
6-17	CH2CH2	S	CH2Ph	2	
6-18	CH2CH2	S S	CH2CH3	0	
6-19	CH2CH2		CH2CH3	2	
6-20	CH2CH2	SO2	Ph	0	
6-21	CH2CH2	S	cyclohexyl	0	
6-22	CH2	S	i-Pr	0.	
6-23	CH2	S	cyclopentyl	0	·
6-24	CH2	S	CH2CF3	2	
6-25	CH2	S	СНЗ	0	•
6-26	CH2	S	СНЗ	1	
6-27	CH2	S	СНЗ	2	
6-28	CH2	SO	СНЗ	2	
6-29	CH2CH2CH2CH2	S.	CH3	2	
6-30	CH2CH2CH2CH2	SO	CH3	0	

Cpd Number	Α .	S(O) _m	R5	n	m. p. (°C)
6-31	CHCH2CH2CH2	S	CH2CH3	1	
6-32	CH2CH2CH2	S	t-Bu	2	
6-33	CH2CH2CH2	so	t-Bu	2	

Table VII: $R^5 = Me$, $R^2 = CI$, W = C-CI; $R^3 = CF_3$

Cpd No.	R ¹	R ⁶	R ⁴	n	Α	S(O)m	m.p. (°C)
7-1	CN	CCIF2	Н	2	CH2CH2	S	,p. (G)
7-2	CN	CCI2F	Н	1	CH2CH2CH2	S	<u> </u>
7-3	CN	CHF2	CH3	2	CH2CH2CH2	S	
7-4	CN	CBrF2	CH3	0	CH2	S	· · · · · · · · · · · · · · · · · · ·
7-5	CF3	CCIF2	Н	2	CH2CH2	S	
7-6	CF3	CCI2F ·	Н	1	CH2CH2CH2	S	1.
7-7	CF3	CHF2	CH3	2	CH2CH2CH2	S	
7-8	CF3	CBrF2	CH3	0	CH2	S	
7-9	CN	СНЗ	CH3	1	CH2CH2	S	
7-10	CN	CH3	Н	1	CH2CH2	S	

Table VIII: $R^1 = CN$; $R^2 = CI$; W = C-CI; $R^3 = CF_3$; $R^5 = CH_3$:

Cpd	R⁴	Α	S(O) _m	n	R ⁶	m. p. (°C)
No.						NMR `
8-1	CO2Me	CH2CH2	S	2	CF3	135
8-2	CH2CH3	CH2CH2	S	2	CF3	98
8-3	CH2SCH3	CH2CH2	S	2	CF3	19F: -63.6,-78.1
8-4	CO2CH3	CH2CH2CH2	so	2	CF3	19F: -63.7,-77.4
8-5	CH2CH2SCH3	CH2CH2CH2	S	2	CF3	19F: -67.7,-78.3
8-6	CH2SCH3	CH2CH2CH2	S	2	CF3	19F:-64.1,-78.7
8-7	CH2cyclopropyl	CH2CH2	S	2	CF3	Solid
8-8	CH2cyclopropyl	CH2CH2CH2CH2	S	2	CF3	19F: -63.9,-78.2
8-9	CH2CH3	CH2CH2CH2	S	2	CF3	19F: -64.1,-78.9
8-10	cyclopropyi	CH2	S	2	CF3	134
8-11	cyclopropyl	CH2CH2	S	2	CF3	151
8-12	CH2CH3	CH2CH2	so	2	CF3	19F: -63.7,-78.3
8-13	CH2CH=CH2	CH2CH2	so	2	CF3	147
8-14	CH2SCH3	CH2CH2	so	2	CF3	19F: -64.1,-78.7
8-15	CH2CH3	CH2CH2CH2	so	2	CF3	19F: -63.7,-78.3
8-16	CH2CH=CH2	CH2CH2CH2	so	2	CF3	124
8-17	CH2SCH3	CH2CH2CH2	so	2	CF3	19F: -64.1,-78.7
8-18	CH2cyclopropyl	CH2	S	0	CF3	19F: -43.3,-63.9
8-19	CH2cyclopropyl	CH2CH2	S	1	CF3	19F: -63.7,-71.9
8-20	CH2cyclopropyl	CH2	S	2	CF3	19F: -64.7,-78.6
8-21	CH2CH=CH2	CH2CH2	S	1	CF3	101
8-22	CH2CH3	CH2CH2	S	1	CF3	19F: -63.7,-72.1
8-23	CO2CH3	CH2CH2	SO	2	CF3.	152

-	т-и		- ₋			
	4	A .	S(O) _m	n	R⁵	m. p. (°C) NMR
8-24	cyclopropyl	CH2CH2	SO2	1	CF3	19F:-63.6,-78.3
8-25	CH2CH=CH2	CH2CH2CH2	S	2	CF3	103-106
8-26	CH2CH=CH2	CH2CH2	S	2	CF3	117-120
8-27	cyclobutyl	CH2CH2	S	1	CF3	
8-28	CH2C≡CH	CH2CH2	S	1	CF3	
8-29	CH2C≡CH	CH2CH2	S	2	CF3	89-92
8-30	cyclopropyl	CH2CH2	so	2	CF2H	
8-31	CH3	CH2CH2	S	2	CF2CI	
8-32	cyclopropyl	CH2CH2	so	1	CFCI2	
8-33	CH2CH3	CH2CH2	SO2	0	CF2Br	<u> </u>
8-34	CO2CH2CH3	CH2CH2CH2	so	2	CF2CI	
8-35	CH2cyclopropyl	CH2CH2	S	2	CF2CI	
8-36	CH2cyclopropyl	CH2CH2	S	2	CF2H	
8-37	cyclopropyl	CH2CH2	S	2	CF2Br	
8-38	CH2C≡CH	CH2CH2CH2	S	1	CF2CI	
8-39	cyclopropyl	CH2CH2	SO2	2	CF2CI	
8-40	CH2CH3	CH2CH2	SO2	2	CF3	19F:-64.278.8
8-41	cyclopropyl	CH2CH2	SO2	2	CF3	155
8-42	cyclopropyl	CH2CH2	SO	2	CF3	164-166
8-43	CO-(2-THF)	CH2CH2	S	0	CF3	135
8-44	CO-(2-THF)	CH2CH2	S	2	CF3	127
8-45	CO-(2-THF)	CH2CH2CH2	S	2	CF3	19F:-64.2,-80.9
8-46	COCH2OCH3	CH2CH2	S	2	CF3	
8-47	COCH2OCH3	CH2CH2	S ·	1	CF3	140 -
8-48	OCH3	CH2CH2	S	2	CF3	135
8-49	OPh	CH2CH2CH2	S	2	CF3	
8-50	O(3-pyridyl)	CH2CH2	S	1	CF3	
8-51	CO(2-THF)	CH2CH2	S	1	CF3	
8-52	OCH2CH3	CH2CH2	SO2	1	CF3	•
8-53	ОСН3	CH2CH2	SO	2	CF3	137
8-54	OCH3	CH2CH2	SO2	2	CF3 .	159
8-55	COCH2OEt	CH2CH2	S ·	1	CF3	52
8-56	COCH2OEt	CH2CH2	S	2	CF3	19F:-64.3,-81.0
8-57	CO-(2-THF)	CH2CH2	SO2	2	CF3	
8-58	CO-(2-THF)	CH2CH2	SO2	0	CF3	
8-59	COCH2OCH3	CH2CH2	S	0	CF3	gum
8-60	CO-(2-THF)	CH2CH2	SO	2	CF3	

Table IX: $R^1 = CN$; $R^2 = CI$; W = C-CI; $R^3 = CF_3$; $R^6 = CF_3$:

Cpd No	R⁴	Α	S(O)m	R ⁵	n .	m. p. (°C); or NMR (ppm)
9-1	COOnC4H9	CH2CH2	s	Ph	0	19F: -42.2;-63.7
9-2	COOiPr	CH2CH2	S	Ph	0	19F: -42.5;-64.2
9-3	COOPh	CH2CH2	SO ₂	Ph	1	13112.0,-04.2
9-4	COO-(4-OMe-Ph)	CH2CH2	S	СНЗ	2	19F: -63.7;-77.5
9-5	COOCH3	CH2CH2	s	CH3	0	19103.7,-77.3
9-6	COOCH3	CH2CH2	S	CH3	1	
9-7	CH2cyclopropyl	CH2CH2	SO2	CH3	2	
9-8	COOCH3	CH2CH2	SO	CH3	0	
9-9	COOCH3	CH2CH2	so	CH3	1	
9-10	CH2CH=CH2	CH2CH2	SO2	CH3	2	141
9-11	COOCH3	CH2CH2	SO2	CH3	0	141
9-12	COOCH3	CH2CH2	SO2	CH3	1	
9-12	COOCH3	CH2CH2	SO2	CH3	2	-
9-14	COOnPr	CH2CH2	S	CH3	0	
9-15	COOnPr	CH2CH2	0	CH3	1	
9-16	COOnPr	CH2CH2	S	CH3	2	
9-10	COOnPr	CH2CH2	SO	CH3	0	
9-18	COOnPr	CH2CH2	so	CH3	1	
9-19	COOnPr	CH2CH2	SO SO	CH3		
9-20	COOnPr	CH2CH2	SO2	CH3	0	
9-21	COOnPr	CH2CH2	SO2	CH3	11 ·	
9-22	COOnPr	CH2CH2	SO2	CH3	2	
9-23	COOiPr	CH2CH2	S S	CH3	0	
9-24	COOiPr	CH2CH2	S	CH3	1	
9-25	COOiPr	CH2CH2	S	CH3	2	
9-26	COOiPr	CH2CH2	SO	CH3	0	
9-27	COOiPr	CH2CH2	so	CH3	1	
9-28	COOiPr	CH2CH2	SO	CH3	2	
9-29	COOiPr	CH2CH2	SO2	CH3	0	
9-30	COOiPr	CH2CH2	SO2	CH3	1	
9-31	COOiPr	CH2CH2	SO2	CH3	2	
9-32	COOnBu	CH2CH2		CH3	0.	
9-33	COOnBu	CH2CH2	S	CH3	1	
9-34	COOnBu	CH2CH2	S	CH3		
9-35	COOnBu		SO		0	
9-36	COOnBu	CH2CH2	SO	CH3	1	
9-36	COOnBu	CH2CH2 CH2CH2	SO	CH3	2	
9-38	COOnBu	CH2CH2	SO2	CH3	0	
9-39	COOnBu	CH2CH2	SO2	CH3	1	. ,
9-39	COOnBu .	CH2CH2	SO2	CH3	2	· · · · · · · · · · · · · · · · · · ·
9-40					0	·
	COOCH3	CH2CH2CH2	S	CH3		
9-42	COOCH3	CH2CH2CH2	S	СНЗ	1	1

Cpd	R⁴	Α	S(O) _m	Ī₽ ⁵	n	m. p. (°C); or
No			13(0)	יווי	111	NMR (ppm)
9-43	COOCH3	· CH2CH2CH2	s	СНЗ	2 .	
9-44	COOCH3	CH2CH2CH2	so	CH3	0	
9-45	COOCH3	CH2CH2CH2	so	CH3	1	
9-46	CH2C≡CH	CH2CH2	SO2	CH3	2	
9-47	COOCH3	CH2CH2CH2	SO2		-	
9-48	COOCH3	CH2CH2CH2		CH3	0	
9-49	COOCH3	CH2CH2CH2	SO2	CH3	1	
9-50	COORPr		SO2	CH3	2	
9-51	COOnPr	CH2CH2CH2	S	CH3	0	
		CH2CH2CH2	S	CH3	1	
9-52	COOnPr	CH2CH2CH2	S	CH3	2	
9-53	COOnPr	CH2CH2CH2	so	СНЗ	0	
9-54	COOnPr	CH2CH2CH2	SO .	СНЗ	1 .	
9-55	COOnPr	CH2CH2CH2	SO	СНЗ	2	
9-56	COOnPr	CH2CH2CH2	SO2	СНЗ	0	
9-57	COOnPr	CH2CH2CH2	SO2_	СНЗ	1	
9-58	COOnPr	CH2CH2CH2	SO2	СНЗ	2	
9-59	CO0iPr	CH2CH2CH2	S	CH3	0	
9-60	COOiPr	CH2CH2CH2	S	CH3	1	
9-61	COOiPr	CH2CH2CH2	S	CH3	2	
9-62	COOiPr	CH2CH2CH2	SO	СНЗ	0	
9-63	CO0iPr	CH2CH2CH2	so	СНЗ	1	
9-64	COOiPr	CH2CH2CH2	so	CH3	2	
9-65	COOiPr	CH2CH2CH2	SO2	СНЗ	0	
9-66	COOiPr	CH2CH2CH2	SO2	СНЗ	1	
9-67	COOiPr	CH2CH2CH2	SO2	СНЗ	2	
9-68	COOnBu	CH2CH2CH2	S	СНЗ	0	<u></u>
9-69	COOnBu	CH2CH2CH2	S	СНЗ	1	
9-70	COOnBu	CH2CH2CH2	S	СНЗ	2	
9-71	COOnBu	CH2CH2CH2		СНЗ	0	
9-72	COOnBu	CH2CH2CH2	so	СН3	1	
9-73	COOnBu	CH2CH2CH2	so	СН3	2	
9-74	COOnBu	CH2CH2CH2		CH3	0	
9-75	COOnBu	CH2CH2CH2		CH3	1	
9-76	COOnBu	CH2CH2CH2	+	CH3	2	
9-77	COOPh	CH2CH2		CH3.	0	
9-78	COOPh	CH2CH2	 	CH3	1	
9-79	COOPh	CH2CH2		CH3	2	
9-80	COOPh	CH2CH2		CH3	0	
9-81	COOPh	CH2CH2		CH3	1	
9-82	COOPh	CH2CH2	 	CH3		
9-83	COOPh	CH2CH2	+	CH3	2	·
9-84	COOPh ·	CH2CH2		CH3	1	
9-85 -	COOPh	CH2CH2				
9-86	COOCH2Ph			CH3	2	
3-00	COUCHZEII	CH2CH2	S	CH3	0	

Cpd No	R ⁴	A	S(O) _m	R ⁵	n	m. p. (°C); or NMR (ppm)
9-87	COOCH2Ph	CH2CH2	S	СНЗ	1	
9-88	COOCH2Ph	CH2CH2	S	СНЗ	2	
9-89	COOCH2Ph	CH2CH2	SO	СНЗ	0	
9-90	COOCH2Ph	CH2CH2	SO	СНЗ	1	
9-91	COOCH2Ph	CH2CH2	SO	СНЗ	2	
9-92	COOCH2Ph	CH2CH2	SO2	СНЗ	0	•
9-93	COOCH2Ph	CH2CH2	SO2	СНЗ	1	
9-94	COOCH2Ph	CH2CH2	SO2	СНЗ	2	
9-95	COCH3	CH2CH2	S	СНЗ	0	
9-96	COCH3	CH2CH2	S.	СНЗ	1	
9-97	COCH3	CH2CH2	S	СНЗ	2	
9-98	COCH3	CH2CH2	SO	СНЗ	0	
9-99	COCH3	CH2CH2	SO	СНЗ	1	
9-100	COCH3	CH2CH2	SO	СНЗ	2	
9-101	COCH3	CH2CH2	SO2	CH3	0	
9-102	COCH3	CH2CH2	SO2	СНЗ	1	
9-103	COCH3	CH2CH2	SO2	CH3	2	,
9-104	CH2CH=CH2	CH2CH2	S	СНЗ	0	19F:-44.2,-64.1
.9-105	CH2CH=CH2	CH2CH2	SO	СНЗ	1	
.9-106	CH2C≡CH	CH2CH2	S	СНЗ	0	65
9-107	CH2C≡CH	CH2CH2	so	CH3	1	
9-108	CH2cyclopropyl	CH2CH2	S	СНЗ	0	72
9-109	CH2cyclopropyl	CH2CH2	so	СНЗ	1	
9-110	cyclobutyl	CH2CH2	S	СНЗ	2	116
9-111	cyclobutyl	CH2CH2	so	СНЗ	2	150
9-112	cyclobutyl	CH2CH2	SO2	СНЗ	2	167

Table X: Compounds of formula (la):

$$CF_3S(O)_n$$
 CN R^4 N N CI CI CF_3

(la)

<u> </u>		T =	· ·	··	
Cpd	R ⁴ .	R⁵	г	n	m.p.(°C)
Numbe					
10-1	H	CH3		0	
10-2	H	CH3	1	1	
10-3	H	CH3	1	2	
10-4	CH3.	CH3	1	0	
10-5	СНЗ	CH3	1	1	
10-6	СНЗ	CH3	1	2	
10-7	CH3	Et	1	0	
10-8	CH3 -	Et	1	1	
10-9	СНЗ	Et	1	2	
10-10	CH3	CH2CH=CH2	1	0	
10-11	CH3	CH2CH=CH2	1	1	
10-12	CH3	CH2CH=CH2	1	2	
10-13	CH3	CH2Ph	1	1	
10-14	CH3	Ph .	1	1	
10-15	Et	CH3	1	0	
10-16	Et	CH3	11 .	1	
10-17	Et	CH3	1	2	
10-18	CH2CH=CH2	CH3	1	0	
10-19	CH2CH=CH2	CH3	1	1	
10-20	CH2CH=CH2	CH3	1	2	
10-21	CH2C≡CH	CH3	1	0	
10-22	CH2C≡ĊH	CH3	1	1	
10-23	CH2C≡CH	СНЗ	1	2	
10-24	C(O)OEt	CH3	1	0	
10-25	C(O)OEt	CH3	1	1	
10-26	C(O)OEt	CH3	1	2	
10-27	CH2cyclopropyl	CH3	1	0	
10-28	CH2cyclopropyl	CH3	1	1	
10-29	CH2cyclopropyl	CH3	1		
10-30	Н	CH3	2	0	
10-31	Н	CH3	2	10	
10-32	Н	CH3	2		
10-33	CH3	CH3		0	
10-34	CH3	CH3	2	1	
10-35	CH3	CH3	2		
10-36	CH3	Et	2	2	
10-37	CH3	Et	2	0	
10-37	CH3	Et	2		
10-39	CH3			2.	
10-39	 	CH2CH=CH2	2 ·	0	
10-40	CH3	CH2CH=CH2	2 .	1	<u> </u>
10-41	CH3 CH3	CH2CH=CH2	2	2	
10-42		CH2Ph	2 -	1	
10-43	CH3	Ph	2 -	1	
10-44	Et	CH3	2	0	

Cpd	R ⁴	R ⁵	ŀr	n	m.p.(°C)
Number		•	T	["	,p(O
10-45	Et	CH3	2	1	<u> </u>
10-46	Et	CH3	2	2	
10-47	CH2CH=CH2	CH3	2	0	
10-48	CH2CH=CH2	СНЗ	2	1	
10-49	CH2CH=CH2	CH3 .		2	
10-50	CH2C≡CH	СНЗ	2	0	
10-51	CH2C≡CH	СНЗ	2	1	-
10-52	CH2C≡CH	CH3	2	2	
10-53	C(O)OEt	CH3	2	0	
10-54	C(O)OEt	CH3	2	1	
10-55	C(O)OEt	CH3	2	2	
10-56	CH2cyclopropyl	CH3	2	0	
10-57	CH2cyclopropyl	CH3	2 2 2 2 2 2 3	1	
10-58	CH2cyclopropyl	CH3	2	2	<u> </u>
10-59	Н	CH3	2	0 .	
10-60	Н	CH3	3	1	
10-61	Н	CH3	3	2	
10-62	CH3	CH3	3	0	
10-63	CH3	CH3	3	1	
10-64	CH3	CH3	3	2	
10-65	CH3	Et	3		
10-66	CH3	Et	3	0	
10-67	CH3	Et	3		
10-68	CH3	CH2CH=CH2	3	0	
10-69	CH3	CH2CH=CH2	3	1	
10-70	CH3	CH2CH=CH2	3		
10-71	CH3	CH2Ph	3	2	
10-72	CH3	Ph	3		
10-73	Et	CH3	3	0	
10-74	Et	CH3	3	1	
10-75	Et .	CH3	3		
10-76	CH2CH=CH2	CH3	3	2	
10-77	CH2CH=CH2	CH3	3	1	
10-78	CH2CH=CH2	CH3	3	2	
10-79	CH2C≡CH	CH3	10		
10-80	CH2C=CH				
10-81		CH3	3	1	
	CH2C≡CH	CH3	3		
10-82	C(O)OEt	CH3	3	0	
10-83	C(O)OEt	CH3	3	1	
10-84	C(O)OEt	CH3	3	2	
10-85	CH2cyclopropyl	CH3	3	0	
10-86	CH2cyclopropyl	CH3	3	1	
10-87	CH2cyclopropyl	CH3	3	2	
10-88	CH3	CH3	4	. 0	

Cpd	R⁴	R⁵ .	r	n	m.p.(°C)
Number					
10-89	CH3	CH3	4 .	1	
10-90	CH3	CH3	4	2	
10-91	CH3	Et	4	0	•
10-92	CH3	Et	4	1	
10-93	CH3	Et	4	2	

Table XI: Compounds of formula (lb):

Cpd	R⁴	R⁵	r	n .	m.p.(°C)
Number		·			
11-1	H	CH3	1	0	<u> </u>
11-2	Н	CH3	1	1	
11-3	Н	CH3	1	2	
11-4	CH3	CH3	1	0	
11-5	CH3	CH3	1	1.	
11-6	CH3	CH3	1	2	
11-7	CH3	Et	1	0 "	
11-8	CH3	Et	1	1	
11-9	CH3	Et	1	2	
.11-10	CH3	CH2CHCH2	1	0	
11-11	CH3	CH2CHCH2	1	1	
11-12	CH3	CH2CHCH2	1	2	
11-13	CH3	CH2Ph	1 . "	1	·
11-14	CH3	Ph	1 .	1	
11-15	Et .	CH3	1	0	
11-16	Et .	CH3	1	1	
11-17	Et .	CH3	1.	2	
11-18	CH2CHCH2	CH3 ⁻	1	0	•
11-19	CH2CHCH2	CH3	1	1	
11-20	CH2CHCH2	СНЗ	1	2	

Cpd	R ⁴	R⁵	r ·	n	m.p.(°C)
Number			ľ	''	m.p.(0)
11-21	CH2CCH	СНЗ	1	0	
11-22	CH2CCH	CH3	1	1	
11-23	CH2CCH	CH3	1		
11-24	C(O)OEt .	CH3	1	0	
11-25	C(O)OEt	CH3	- <u>-</u> 1	1	
		CH3	1	2	
11-26	C(O)OEt			0	
11-27	CH2cyclopropyl	CH3	1	1	
11-28	CH2cyclopropyl	CH3	1		
11-29	CH2cyclopropyl	CH3	1	2	
11-30	H	CH3	2	0	
11-31	Н	CH3	2	1	
11-32	H	CH3	2	2	
11-33	CH3	CH3	2	0	
11-34	CH3	CH3	2	· 1	
11-35	CH3	CH3	2	0	
11-36	CH3	Et	2		
11-37	CH3	Et	2	1	
11-38	CH3	Et	2	2	
11-39	CH3	CH2CHCH2	2	0	
11-40	CH3	CH2CHCH2	2	1	
11-41	CH3	CH2CHCH2	2	2	
11-42	CH3	CH2Ph	2	1	
11-43	CH3	Ph ·	2	1.	
11-44	Et	CH3	2	0	
11-45	Et	CH3	2	1	
11-46	Et	СНЗ	2	2	
11-47	CH2CHCH2	СНЗ	2	0	
11-48	CH2CHCH2	CH3	2	1	
11-49	CH2CHCH2	CH3	2		
11-50	CH2CCH	CH3	2	0	
11-51	CH2CCH	CH3	2	1	
11-52	CH2CCH	CH3	2	2	
11-53	C(O)OEt	CH3	2	0	
11-54	C(O)OEt	CH3	2	1	
11-55	C(O)OEt	CH3	2	2	
11-56	CH2cyclopropyl	CH3	2	0	
11-57	CH2cyclopropyl	CH3 .	2	1	-
11-57	CH2cyclopropyl	CH3	2	2	
11-59	Н	CH3	3	0.	
11-60	<u> </u>	CH3	3	14	
11-60	····	CH3	3	2	,
	H		3		
11-62	CH3	CH3		0	
11-63	CH3 · ·	CH3	3	1	-
11-64	CH3	CH3	3	2	

Cpd	R⁴	R⁵	r	n	m.p.(°C)
Number					
11-65	CH3 .	Et	3	0	-
11-66	CH3	Et	3	1	
11-67	CH3	Et	3	0	
11-68	CH3	CH2CHCH2	3	0	-
11-69	CH3	CH2CHCH2	3 .	1	
11-70	CH3	CH2CHCH2	3	2	
11-71	CH3	CH2Ph	3	1	
11-72	CH3	Ph	3	1	
11-73	Et .	CH3	3	0	
11-74	Et	СНЗ	3	1	
11-75	Et	CH3	3	2	
11-76	CH2CHCH2	CH3	3	0	
11-77	CH2CHCH2	CH3	3	1.	
11-78	CH2CHCH2	CH3	3	2	1
11-79	CH2CCH	CH3	3	0	
11-80	CH2CCH	CH3	3	1	
11-81	CH2CCH	CH3	3	2	
11-82	C(O)OEt	CH3	3	0	
11-83	C(O)OEt	CH3	3	1	
11-84	C(O)OEt	CH3	3	2	
11-85	CH2cyclopropyl	CH3	3	0	
11-86	CH2cyclopropyl	CH3	3	1	
11-87	CH2cyclopropyl	CH3	3	2	
11-88	CH3	CH3	4	0	
11-89	CH3	CH3	4	1	
11-90	CH3	CH3	4	2	
11-91	CH3	Et	4	0	
11-92	CH3	Et	4	1	
11-93	CH3	Et	4	2	

Table XII: Compounds of formula (Ic):

(lc)

Cpd	R⁴	R ⁵	ır	n	m.p.(°C)
Number	•	·		1.	p.(0)
12-1	Н	CH3	1	0	
12-2	Н	CH3	1	1	
12-3	Η.	CH3	1	2	-
12-4	CH3	CH3	1	0	
12-5	CH3	CH3	1	1	
12-6	CH3	CH3	1	2	
12-7	CH3	Et	1	0	
12-8	CH3	Et	1	1	<u> </u>
12-9	CH3	Et	1	2	· · · · · ·
12-10	CH3	CH2CHCH2	1	0	
12-11	CH3	CH2CHCH2	1	1	
12-12	CH3	CH2CHCH2	1	2	100
12-13	CH3	CH2Ph	1	1.	
12-14	CH3	Ph	1	1	* * * * * * * * * * * * * * * * * * * *
12-15	Et	CH3	1	0	
12-16	Et	CH3	1	1	
12-17	Et	CH3	1	2	
12-18	CH2CHCH2	СНЗ	1	0	
12-19	CH2CHCH2	CH3	1	1.	
12-20	CH2CHCH2	CH3	1	2	
12-21	CH2CCH	CH3	1	0	
12-22	CH2CCH	CH3 .	1	1	
12-23	CH2CCH	СНЗ	1	2	
12-24	C(O)OEt	CH3	1	0	
12-25	C(O)OEt	CH3	1	1	· · · · · ·
12-26	C(O)OEt	CH3	1	2	
12-27	CH2cyclopropyl	CH3	1	0	
12-28	CH2cyclopropyl	CH3	1	1	
12-29	CH2cyclopropyl	CH3	1	2	
12-30	H	CH3	2	0	
12-31	Н	СНЗ		1	
12-32	Н	CH3	2	2	

Cpd	R⁴	: R ⁵	r	ln	m.p.(°C)
Number			ľ	'	
12-33	CH3	СНЗ	2	0	-
12-34	CH3	СНЗ	2	1	· ·
12-35	СНЗ	CH3	2		
12-36	CH3	Et	2	0	1
12-37	CH3	Et	2	1 .	<u> </u>
12-38	CH3	Et	2	2	
12-39	CH3	CH2CHCH2	2	0	
12-40	CH3	CH2CHCH2	2	1	
12-41	CH3	CH2CHCH2	2		
12-42	CH3	CH2Ph	2 2	2	
12-43	CH3 .	Ph	2	1	
12-44	Et	CH3	2	o	1
12-45	Et	CH3	2	1	
12-46	Et	CH3	2	2	-
12-47	CH2CHCH2	CH3	2	0	
12-48	CH2CHCH2	CH3	2	1	
12-49	CH2CHCH2	CH3	2	2	+ .
12-50	CH2CCH	CH3	2	0	
12-51	CH2CCH	CH3	2	1	
12-52	CH2CCH	CH3	2	2	
12-52	C(O)OEt	CH3	2	0	
12-54	C(0)OEt	CH3	2	1	
12-55	C(O)OEt	CH3	2	2	-
12-56	CH2cyclopropyl	CH3	2	0	
12-57	CH2cyclopropyl	CH3	2	1	
12-57	CH2cyclopropyl	CH3	2	2	
12-59	Н	CH3	3	0	
12-60	H	CH3	3	1	+
12-61	H	CH3	3	2	
12-62	CH3	CH3	3	0	
12-63	CH3	CH3	3	1	
12-64	CH3	CH3	3	2	
12-65	CH3	Et	3	0	
12-66	CH3	Et	3	1	
12-67	CH3	Et	3	2	
12-68	CH3	CH2CHCH2	3	0	
12-69	CH3	CH2CHCH2	3	1	
12-70	CH3	CH2CHCH2	3	2	
12-70	CH3	CH2Ph	3	1	
12-71	CH3	Ph	3	1	
12-72	Et	CH3	3	0	
12-73	Et	CH3	3	1	· · ·
	Et .		3		
12-75		CH3	3	2	
12-76	CH2CHCH2	CH3	<u> </u>	0	

Cpd	R⁴	R⁵	r	n	m.p.(°C)
Number	<u> </u>		<u> </u>		
12-77	CH2CHCH2	CH3	3	1 .	-
12-78	CH2CHCH2	CH3	3	2	
12-79	CH2CCH	CH3	3	0	
12-80	CH2CCH	CH3	3	1	
12-81	CH2CCH	CH3	3	2	
12-82	C(O)OEt	CH3	3	0	
12-83	C(O)OEt	CH3	3	1	
12-84	C(O)OEt	CH3	3	2	
12-85	CH2cyclopropyl	CH3	3	0	
12-86	CH2cyclopropyl	CH3	3	1	
12-87	CH2cyclopropyl	CH3	3	2	
12-88	CH3	CH3	4	0	
12-89	CH3	CH3	4	1 .	
12-90	CH3	CH3	4	2	
12-91	CH3	Et	4	0	
12-92	CH3	Et	4	1	
12-93	CH3	Et	4	2	

The term "compound of the invention" as used hereinafter embraces a 5-substitutedalkylaminopyrazole of formula (I) as defined above and a pesticidally acceptable salt thereof.

In a preferred aspect of the invention the compounds of formula (I) are used for the control of parasites of animals. Preferably the animal to be treated is a domestic companion animal such as a dog or a cat.

In a further aspect of the invention the compounds of formula (I) or salts or compositions thereof are used for the preparation of a veterinary medicament, preferably for the control of parasites, spezifically ecto and endo parasites, in and on animals.

The compounds of the invention and methods of use thereof are of particular value in the control of arthropods or helminths which are injurious to, or spread or act as vectors of diseases domestic animals, for example those hereinbefore mentioned, and more especially in the control of ticks, mites, lice, fleas, midges, or biting, nuisance or myiasis flies. The compounds of the invention are particularly useful in

controlling arthropods or helminths which are present inside domestic host animals or which feed in or on the skin or suck the blood of the animal, for which purpose they may be administered orally, parenterally, percutaneously or topically.

The compositions hereinafter described may, in general, be employed to animals infested by or exposed to infestation by arthropods or helminths, by parenteral, oral or topical application of compositions in which the active ingredient exhibits an immediate and/or prolonged action over a period of time against the arthropods or helminths, for example by incorporation in feed or suitable orally-ingestible pharmaceutical formulations, edible baits, salt licks, dietary supplements, pour-on formulations, sprays, baths, dips, showers, jets, dusts, greases, shampoos, creams, wax smears or livestock self-treatment systems;

The compounds of formula (I) are particularly useful for the control of parasites of animals when applied orally, and in a further preferred aspect of the invention the compounds of formula (I) are used for the control of parasites of animals by oral application. The compounds of the formula (I) or salts thereof may be administered before, during or after meals. The compounds of the formula (I) or salts thereof may be mixed with a carrier and/or foodstuff.

The compound of the formula (I) or salt thereof is administered orally in a dose to the animal in a dose range generally from 0.1 to 500 mg/kg of the compound of the formula (I) or salt thereof per kilogram of animal body weight (mg/kg).

The frequency of treatment of the animal, preferably the domestic animal to be treated by the compound of the formula (I) or salt thereof is generally from about once per week to about once per year, preferably from about once every two weeks to once every three months.

The compounds of the invention may be administered most advantageously with another parasiticidally effective material, such as an endoparasiticide, and/or an ectoparasiticide, and/or an endectoparasiticide. For example, such compounds include macrocyclic lactones such as avermectins or milbemycins e.g., ivermectin, pyratel or an insect growth regulator such as lufenuron or methoprene.

According to a further feature of the present invention there is provided a method for the control of pests at a locus which comprises the application of an effective amount of a compound of formula (I) or a salt thereof. For this purpose, the said compound is normally used in the form of a pesticidal composition (i.e. in association with compatible diluents or carriers and/or surface active agents suitable for use in pesticidal compositions), for example as hereinafter described.

One aspect of the present invention as defined above is a method for the control of pests at a locus. The locus includes, for example, the pest itself, the place (plant, field, forest, orchard, waterway, soil, plant product, or the like) where the pest resides or feeds, or a place susceptible to future infestation by the pest. The compound of the invention may therefore be applied directly to the pest, to the place where the pest resides or feeds, or to the place susceptible to future infestation by the pest. As is evident from the foregoing pesticidal uses, the present invention provides pesticidally active compounds and methods of use of said compounds for the control of a number of pest species which includes: arthropods, especially insects or mites, or plant nematodes. The compound of the invention may thus be advantageously employed in practical uses, for example, in veterinary medicine or livestock husbandry, in agricultural or horticultural crops, in forestry, or in public health. The compounds of the invention may be used for example in the following applications and on the following pests:

In the field of veterinary medicine or livestock husbandry or in the maintenance of public health against arthropods which are parasitic internally or externally upon vertebrates, particularly warm-blooded vertebrates, for example domestic animals, e.g. cattle, sheep, goats, equines, swine, poultry, dogs or cats, for example Acarina, including ticks (e.g. sot-bodied ticks including Argasidae spp. e.g. Argas spp. and Ornithodorus spp. (e.g. Ornithodorus moubata); hard-bodied ticks including Ixodidae spp., e.g. Boophilus spp. e.g. Boophilus microplus, Rhipicephalus spp. e.g. Rhipicephalus appendiculatus and Rhipicephalus sanguineus; mites (e.g. Damalinia spp.); fleas (e.g. Ctenocephalides spp. e.g. Ctenocephalides felis (cat flea) and Ctenocephalides canis (dog flea)); lice e.g. Menopon spp.; Diptera (e.g. Aedes spp., Anopheles spp., Musca spp., Hypoderma spp.); Hemiptera.; Dictyoptera (e.g.

Periplaneta spp., Blatella spp.); Hymenoptera; for example against infections of the gastro-intestinal tract caused by parasitic nematode worms, for example members of the family Trichostrongylidae.

For the control of soil insects, such as corn rootworm, termites (especially for protection of structures), root maggots, wireworms, root weevils, stalkborers, cutworms, root aphids, or grubs. They may also be used to provide activity against plant pathogenic nematodes, such as root-knot, cyst, dagger, lesion, or stem or bulb nematodes, or against mites. For the control of soil pests, for example corn rootworm, the compounds are advantageously applied to or incorporated at an effective rate into the soil in which crops are planted or to be planted or to the seeds or growing plant roots.

In the area of public health, the compounds are especially useful in the control of many insects, especially filth flies or other Dipteran pests, such as houseflies, stableflies, soldierflies, hornflies, deerflies, horseflies, midges, punkies, blackflies, or mosquitoes.

In the protection of stored products, for example cereals, including grain or flour, groundnuts, animal feedstuffs, timber or household goods, e.g. carpets and textiles, compounds of the invention are useful against attack by arthropods, more especially beetles, including weevils, moths or mites, for example Ephestia spp. (flour moths), Anthrenus spp. (carpet beetles), Tribolium spp. (flour beetles), Sitophilus spp. (grain weevils) or Acarus spp. (mites).

In the control of cockroaches, ants or termites or similar arthropod pests in infested domestic or industrial premises or in the control of mosquito larvae in waterways, wells, reservoirs or other running or standing water.

For the treatment of foundations, structures or soil in the prevention of the attack on building by termites, for example, Reticulitermes spp., Heterotermes spp., Coptotermes spp..

In agriculture against adults, larvae and eggs of Lepidoptera (butterflies and moths), e.g. Heliothis spp. such as Heliothis virescens (tobacco budworm), Heliothis armigera and Heliothis zea. Against adults and larvae of Coleoptera (beetles) e.g. Anthonomus spp. e.g. grandis (cotton boll weevil), Leptinotarsa decembrae (Colorado potato beetle), Diabrotica spp. (corn rootworms). Against Heteroptera

(Hemiptera and Homoptera) e.g. Psylla spp., Bemisia spp., Trialeurodes spp., Aphis spp., Myzus spp., Megoura viciae, Phylloxera spp., Nephotettix spp. (rice leaf hoppers), Nilaparvata spp..

Against Diptera e.g. Musca spp.. Against Thysanoptera such as Thrips tabaci.

Against Orthoptera such as Locusta and Schistocerca spp., (locusts and crickets)

e.g. Gryllus spp., and Acheta spp. for example, Blatta orientalis, Periplaneta
americana, Blatella germanica, Locusta migratoria migratorioides, and Schistocerca
gregaria. Against Collembola e.g. Periplaneta spp. and Blatella spp. (roaches).

Against arthropods of agricultural significance such as Acari (mites) e.g. Tetranychus
spp., and Panonychus spp..

Against nematodes which attack plants or trees of importance to agriculture, forestry or horticulture either directly or by spreading bacterial, viral, mycoplasma or fungal diseases of the plants. For example root-knot nematodes such as Meloidogyne spp. (e.g. M. incognita).

In practical use for the control of arthropods, especially insects or mites, or nematode pests of plants, a method, for example, comprises applying to the plants or to the medium in which they grow an effective amount of a compound of the invention. For such a method, the compound of the invention is generally applied to the locus in which the arthropod or nematode infestation is to be controlled at an effective rate in the range of about 2g to about 1kg of the active compound per hectare of locus treated. Under ideal conditions, depending on the pest to be controlled, a lower rate may offer adequate protection. On the other hand, adverse weather conditions, resistance of the pest or other factors may require that the active ingredient be used at higher rates. The optimum rate depends usually upon a number of factors, for example, the type of pest being controlled, the type or the growth stage of the infested plant, the row spacing or also the method of application. Preferably an effective rate range of the active compound is from about 10g/ha to about 400g/ha, more preferably from about 50g/ha to about 200 g/ha. When a pest is soil-borne, the active compound generally in a formulated composition, is distributed evenly over the area to be treated (ie, for example broadcast or band treatment) in any convenient manner and is applied at rates from

about 10g/ha to about 400g ai/ha, preferably from about 50g/ha to about 200 g ai/ha. When applied as a root dip to seedlings or drip irrigation to plants the liquid solution or suspension contains from about 0.075 to about 1000 mg ai/l, preferably from about 25 to about 200 mg ai/l. Application may be made, if desired, to the field or crop-growing area generally or in close proximity to the seed or plant to be protected from attack. The compound of the invention can be washed into the soil by spraying with water over the area or can be left to the natural action of rainfall. During or after application, the formulated compound can, if desired, be distributed mechanically in the soil, for example by ploughing, disking, or use of drag chains. Application can be prior to planting, at planting, after planting but before sprouting has taken place, or after sprouting.

The compound of the invention and methods of control of pests therewith are of particular value in the protection of field, forage, plantation, glasshouse, orchard or vineyard crops, of ornamentals, or of plantation or forest trees, for example: cereals (such as wheat or rice), cotton, vegetables (such as peppers), field crops (such as sugar beets, soybeans or oil seed rape), grassland or forage crops (such as maize or sorghum), orchards or groves (such as of stone or pit fruit or citrus), ornamental plants, flowers or vegetables or shrubs under glass or in gardens or parks, or forest trees (both deciduous and evergreen) in forests, plantations or nurseries.

They are also valuable in the protection of timber (standing, felled, converted, stored or structural) from attack, for example, by sawflies or beetles or termites.

They have applications in the protection of stored products such as grains, fruits, nuts, spices or tobacco, whether whole, milled or compounded into products, from moth, beetle, mite or grain weevil attack. Also protected are stored animal products such as skins, hair, wool or feathers in natural or converted form (e.g. as carpets or textiles) from moth or beetle attack as well as stored meat, fish or grains from beetle, mite or fly attack.

The compositions hereinafter described for application to growing crops or crop growing loci or as a seed dressing may, in general, alternatively be employed in the protection of stored products, household goods, property or areas of the general environment. Suitable means of applying the compounds of the invention include:

to growing crops as foliar sprays (for example as an in-furrow spray), dusts, granules, fogs or foams or also as suspensions of finely divided or encapsulated compositions as soil or root treatments by liquid drenches, dusts, granules, smokes or foams; to seeds of crops via application as seed dressings by liquid slurries or dusts;

to the environment in general or to specific locations where pests may lurk, including stored products, timber, household goods, or domestic or industrial premises, as sprays, fogs, dusts, smokes, wax-smears, lacquers, granules or baits, or in tricklefeeds to waterways, wells, reservoirs or other running or standing water.

The compounds of the formula (I) can also be employed for controlling harmful organisms in crops of known genetically engineered plants or genetically engineered plants yet to be developed. As a rule, the transgenic plants are distinguished by especially advantageous properties, for example by resistances to particular crop protection agents, resistances to plant diseases or pathogens of plant diseases, such as particular insects or microorganisms such as fungi, bacteria or viruses. Other particular properties concern, for example, the harvested material with regard to quantity, quality, storage properties, composition and specific constituents. Thus, transgenic plants are known where the starch content is increased, or the starch quality is altered, or where the harvested material has a different fatty acid composition.

The use in economically important transgenic crops of useful plants and ornamentals is preferred, for example of cereals such as wheat, barley, rye, oats, millet, rice, cassava and maize or else crops of sugar beet, cotton, soya, oilseed rape, potatoes, tomatoes, peas and other types of vegetables.

When used in transgenic crops, in particular those which have resistances to insects, effects are frequently observed, in addition to the effects against harmful organisms to be observed in other crops, which are specific for application in the transgenic crop in question, for example an altered or specifically widened spectrum of pests

which can be controlled, or altered application rates which may be employed for application.

The invention therefore also relates to the use of compounds of the formula (I) for controlling harmful organisms in transgenic crop plants.

According to a further feature of the present invention there is provided a pesticidal composition comprising one or more compounds of the invention as defined above, in association with, and preferably homogeneously dispersed in one or more compatible pesticidally acceptable diluents or carriers and/or surface active agents [i.e. diluents or carriers and/or surface active agents of the type generally accepted in the art as being suitable for use in pesticidal compositions and which are compatible with compounds of the invention].

In practice, the compounds of the invention most frequently form parts of compositions. These compositions can be employed to control arthropods, especially insects, or plant nematodes or mites. The compositions may be of any type known in the art suitable for application to the desired pest in any premises or indoor or outdoor area. These compositions contain at least one compound of the invention as the active ingredient in combination or association with one or more other compatible components which are for example, solid or liquid carriers or diluents, adjuvants, surface-active-agents, or the like appropriate for the intended use and which are agronomically or medicinally acceptable. These compositions, which may be prepared by any manner known in the art, likewise form a part of this invention.

The compounds of the invention, in their commercially available formulations and in the use forms prepared from these formulations may be present in mixtures with other active substances such as insecticides, attractants, sterilants, acaricides, nematicides, fungicides, growth regulatory substances or herbicides.

The pesticides include, for example, phosphoric esters, carbamates, carboxylic esters, formamidines, tin compounds and materials produced by microorganisms.

Preferred components in mixtures are:

- 1. from the group of the phosphorus compounds acephate, azamethiphos, azinphos-ethyl, azinphos-methyl, bromophos, bromophosethyl, cadusafos (F-67825), chlorethoxyphos, chlorfenvinphos, chlormephos, chlorpyrifos, chlorpyrifos-methyl, demeton, demeton-S-methyl, demeton-S-methyl sulfone, dialifos, diazinon, dichlorvos, dicrotophos, dimethoate, disulfoton, EPN, ethion, ethoprophos, etrimfos, famphur, fenamiphos, fenitriothion, fensulfothion, fenthion, flupyrazofos, fonofos, formothion, fosthiazate, heptenophos, isazophos, isothioate, isoxathion, malathion, methacrifos, methamidophos, methidathion, salithion, mevinphos, monocrotophos, naled, omethoate, oxydemeton-methyl, parathion, parathion-methyl, phenthoate, phorate, phosalone, phosfolan, phosphocarb (BAS-301), phosmet, phosphamidon, phoxim, pirimiphos, pirimiphos-ethyl, pirimiphos-methyl, profenofos, propaphos, proetamphos, prothiofos, pyraclofos, pyridapenthion, quinalphos, sulprofos, temephos, terbufos, tebupirimfos, tetrachlorvinphos, thiometon, triazophos, trichlorphon, vamidothion;
- 2. from the group of the carbamates alanycarb (OK-135), aldicarb, 2-sec-butylphenyl methylcarbamate (BPMC), carbaryl, carbofuran, carbosulfan, cloethocarb, benfuracarb, ethiofencarb, furathiocarb, HCN-801, isoprocarb, methomyl, 5-methyl-m-cumenylbutyryl (methyl)carbamate, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, 1-methylthio(ethylideneamino)-N-methyl-N-(morpholinothio)carbamate (UC 51717), triazamate;
- 3. from the group of the carboxylic esters acrinathrin, allethrin, alphametrin, 5-benzyl-3-furylmethyl (E)- (1R)-cis-2,2-dimethyl-3-(2-oxothiolan-3-ylidenemethyl)cyclopropanecarboxylate, beta-cyfluthrin, alphacypermethrin, beta-cypermethrin, bioallethrin, bioallethrin ((S)-cyclopentylisomer), bioresmethrin, bifenthrin, (RS)-1-cyano-1-(6-phenoxy-2-pyridyl)methyl (1RS)-trans-3-(4-tert-butylphenyl)-2,2-dimethylcyclopropanecarboxylate (NCI 85193), cycloprothrin, cyfluthrin, cyhalothrin, cythithrin, cypermethrin, cyphenothrin, deltamethrin, empenthrin, esfenvalerate, fenfluthrin, fenpropathrin, fenvalerate, flucythrinate,

flumethrin, fluvalinate (D isomer), imiprothrin (S-41311), lambda-cyhalothrin, permethrin, phenothrin (® isomer), prallethrin, pyrethrins (natural products), resmethrin, tefluthrin, tetramethrin, theta-cypermethrin, transfluthrin, zeta-cypermethrin (F-56701);

- 4. from the group of the amidines amitraz, chlordimeform;
- 5. from the group of the tin compounds cyhexatin, fenbutatin oxide;

6. others

abamectin, ABG-9008, acetamiprid, acequinocyl, Anagrapha falcitera, AKD-1022, AKD-3059, ANS-118, azadirachtin, Bacillus thuringiensis, Beauveria bassianea. bensultap, bifenazate, binapacryl, BJL-932, bromopropylate, BTG-504, BTG-505, buprofezin, camphechlor, cartap, chlorobenzilate, chlorfenapyr, chlorfluazuron, 2-(4-chlorophenyl)-4,5-diphenylthiophene (UBI-T 930), chlorfentezine, chlorproxyfen. chromafenozide, clothianidine, 2-naphthylmethyl cyclopropanecarboxylate (Ro12-0470), cyromazin, diacloden (thiamethoxam), diafenthiuron, DBI-3204, ethyl 2chloro-N-(3,5-dichloro-4-(1,1,2,3,3,3-hexafluoro-1-propyloxy)phenyl)carbamoyl)-2carboximidate, DDT, dicofol, diflubenzuron, N-(2,3-dihydro-3-methyl-1,3-thiazol-2ylidene)-2,4-xylidine, dihydroxymethyldihydroxypyrrolidine, dinobuton, dinocap, diofenolan, emamectin benzoate, endosulfan, ethiprole (sulfethiprole), ethofenprox. etoxazole, fenazaquin, fenoxycarb, fipronil, fluazuron, flumite (flufenzine, SZI-121), 2-fluoro-5-(4-(4-ethoxyphenyl)-4-methyl-1-pentyl)diphenyl ether (MTI 800), granulosis and nuclear polyhedrosis viruses, fenpyroximate, fenthiocarb, fluacrypyrim, flubenzimine, flubrocythrinate, flucycloxuron, flufenoxuron, flufenzine, flufenprox, fluproxyfen, gamma-HCH, halfenozide, halofenprox, hexaflumuron (DE 473), hexythiazox, HOI-9004, hydramethylnon (AC 217300), IKI-220, indoxacarb, ivermectin, L-14165, imidacloprid, indoxacarb (DPX-MP062), kanemite (AKD-2023), lufenuron, M-020, M-020, methoxyfenozide, milbemectin, NC-196, neemgard, nidinoterfuran, nitenpyram, 2-nitromethyl-4,5-dihydro-6H-thiazine (DS

52618), 2-nitromethyl-3,4-dihydrothiazole (SD 35651), 2-nitromethylene-1,2-thiazinan-3-ylcarbamaldehyde (WL 108477), novaluron, pirydaryl, propargite, protrifenbute, pymethrozine, pyridaben, pyrimidifen, pyriproxyfen, NC-196, NC-1111, NNI-9768, novaluron (MCW-275), OK-9701, OK-9601, OK-9602, OK-9802, R-195, RH-0345, RH-2485, RYI-210, S-1283, S-1833, SI-8601, silafluofen, silomadine (CG-177), spinosad, spirodiclofen, SU-9118, tebufenozide, tebufenpyrad, teflubenzuron, tetradifon, tetrasul, thiacloprid, thiocyclam, thiamethoxam, tolfenpyrad, triazamate, triethoxyspinosyn A, triflumuron, verbutin, vertalec (mykotal), YI-5301.

The abovementioned components for combinations are known active substances, many of which are described in Ch.R Worthing, S.B. Walker, The Pesticide Manual, 12th Edition, British Crop Protection Council, Farnham 2000.

The effective use doses of the compounds employed in the invention can vary within wide limits, particularly depending on the nature of the pest to be eliminated or degree of infestation, for example, of crops with these pests. In general, the compositions according to the invention usually contain about 0.05 to about 95% (by weight) of one or more active ingredients according to the invention, about 1 to about 95% of one or more solid or liquid carriers and, optionally, about 0.1 to about 50% of one or more other compatible components, such as surface-active agents or the like. In the present account, the term "carrier" denotes an organic or inorganic ingredient, natural or synthetic, with which the active ingredient is combined to facilitate its application, for example, to the plant, to seeds or to the soil. This carrier is therefore generally inert and it must be acceptable (for example, agronomically acceptable, particularly to the treated plant).

The carrier may be a solid, for example, clays, natural or synthetic silicates, silica, resins, waxes, solid fertilizers (for example ammonium salts), ground natural minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite, bentonite or diatomaceous earth, or ground synthetic minerals, such as silica, alumina, or silicates especially aluminium or magnesium silicates. As solid carriers for granules the following are suitable: crushed or fractionated natural rocks such as calcite, marble, pumice, sepiolite and dolomite; synthetic granules of inorganic or

organic meals; granules of organic material such as sawdust, coconut shells, corn cobs, corn husks or tobacco stalks; kieselguhr, tricalcium phosphate, powdered cork, or absorbent carbon black; water soluble polymers, resins, waxes; or solid fertilizers. Such solid compositions may, if desired, contain one or more compatible wetting, dispersing, emulsifying or colouring agents which, when solid, may also serve as a diluent.

The carrier may also be liquid, for example: water; alcohols, particularly butanol or glycol, as well as their ethers or esters, particularly methylglycol acetate; ketones, particularly acetone, cyclohexanone, methylethyl ketone, methylisobutylketone, or isophorone; petroleum fractions such as paraffinic or aromatic hydrocarbons, particularly xylenes or alkyl naphthalenes; mineral or vegetable oils; aliphatic chlorinated hydrocarbons, particularly trichloroethane or methylene chloride; aromatic chlorinated hydrocarbons, particularly chlorobenzenes; water-soluble or strongly polar solvents such as dimethylformamide, dimethyl sulphoxide, or Nmethylpyrrolidone; liquefied gases; or the like or a mixture thereof. The surface-active agent may be an emulsifying agent, dispersing agent or wetting agent of the ionic or non-ionic type or a mixture of such surface-active agents. Amongst these are e.g., salts of polyacrylic acids, salts of lignosulphonic acids, salts of phenolsulphonic or naphthalenesulphonic acids, polycondensates of ethylene oxide with fatty alcohols or fatty acids or fatty esters or fatty amines, substituted phenols (particularly alkylphenols or arylphenols), salts of sulphosuccinic acid esters, taurine derivatives (particularly alkyltaurates), phosphoric esters of alcohols or of polycondensates of ethylene oxide with phenols, esters of fatty acids with polyols, or sulphate, sulphonate or phosphate functional derivatives of the above compounds. The presence of at least one surface-active agent is generally essential when the active ingredient and/or the inert carrier are only slightly water soluble or are not water soluble and the carrier agent of the composition for application is water. Compositions of the invention may further contain other additives such as adhesives or colorants. Adhesives such as carboxymethylcellulose or natural or synthetic polymers in the form of powders, granules or lattices, such as arabic gum, polyvinyl alcohol or polyvinyl acetate, natural phospholipids, such as cephalins or lecithins, or synthetic phospholipids can be used in the formulations. It is possible to use

colorants such as inorganic pigments, for example: iron oxides, titanium oxides or Prussian Blue; organic dyestuffs, such as alizarin dyestuffs, azo dyestuffs or metal phthalocyanine dyestuffs; or trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum or zinc.

For their agricultural application, the compounds of the invention are therefore generally in the form of compositions, which are in various solid or liquid forms. Solid forms of compositions which can be used are dusting powders (with a content of the compound of the invention, ranging up to 80%), wettable powders or granules (including water dispersible granules), particularly those obtained by extrusion, compacting, impregnation of a granular carrier, or granulation starting from a powder (the content of the compound of the invention, in these wettable powders or granules being between about 0.5 and about 80%). Solid homogenous or heterogenous compositions containing one or more compounds of the invention, for example granules, pellets, briquettes or capsules, may be used to treat standing or running water over a period of time. A similar effect may be achieved using trickle or intermittent feeds of water dispersible concentrates as described herein. Liquid compositions, for example, include aqueous or non-aqueous solutions or suspensions (such as emulsifiable concentrates, emulsions, flowables, dispersions, or solutions) or aerosols. Liquid compositions also include, in particular, emulsifiable concentrates, dispersions, emulsions, flowables, aerosols, wettable powders (or powder for spraying), dry flowables or pastes as forms of compositions which are liquid or intended to form liquid compositions when applied, for example as aqueous sprays (including low and ultra-low volume) or as fogs or aerosols. Liquid compositions, for example, in the form of emulsifiable or soluble concentrates most frequently comprise about 5 to about 80% by weight of the active ingredient, while the emulsions or solutions which are ready for application contain, in their case, about 0.01 to about 20% of the active ingredient. Besides the solvent, the emulsifiable or soluble concentrates may contain, when required, about 2 to about 50% of suitable additives, such as stabilizers, surface-active agents, penetrating agents, corrosion inhibitors, colorants or adhesives. Emulsions of any required concentration, which are particularly suitable for application, for example, to plants,

may be obtained from these concentrates by dilution with water. These

compositions are included within the scope of the compositions which may be employed in the present invention. The emulsions may be in the form of water-in-oil or oil-in-water type and they may have a thick consistency.

The liquid compositions of this invention may, in addition to normal agricultural use applications be used for example to treat substrates or sites infested or liable to infestation by arthropods (or other pests controlled by compounds of this invention) including premises, outdoor or indoor storage or processing areas, containers or equipment or standing or running water.

All these aqueous dispersions or emulsions or spraying mixtures can be applied, for example, to crops by any suitable means, chiefly by spraying, at rates which are generally of the order of about 100 to about 1,200 liters of spraying mixture per hectare, but may be higher or lower (eg. low or ultra-low volume) depending upon the need or application technique. The compound or compositions according to the invention are conveniently applied to vegetation and in particular to roots or leaves having pests to be eliminated. Another method of application of the compounds or compositions according to the invention is by chemigation, that is to say, the addition of a formulation containing the active ingredient to irrigation water. This irrigation may be sprinkler irrigation for foliar pesticides or it can be ground irrigation or underground irrigation for soil or for systemic pesticides.

The concentrated suspensions, which can be applied by spraying, are prepared so as to produce a stable fluid product which does not settle (fine grinding) and usually contain from about 10 to about 75% by weight of active ingredient, from about 0.5 to about 30% of surface-active agents, from about 0.1 to about 10% of thixotropic agents, from about 0 to about 30% of suitable additives, such as anti-foaming agents, corrosion inhibitors, stabilizers, penetrating agents, adhesives and, as the carrier, water or an organic liquid in which the active ingredient is poorly soluble or insoluble. Some organic solids or inorganic salts may be dissolved in the carrier to help prevent settling or as antifreezes for water.

The wettable powers (or powder for spraying) are usually prepared so that they contain from about 10 to about 80% by weight of active ingredient, from about 20 to about 90% of a solid carrier, from about 0 to about 5% of a wetting agent, from about 3 to about 10% of a dispersing agent and, when necessary, from about 0 to about

80% of one or more stabilizers and/or other additives, such as penetrating agents, adhesives, anti-caking agents, colorants, or the like. To obtain these wettable powders, the active ingredient is thoroughly mixed in a suitable blender with additional substances which may be impregnated on the porous filler and is ground using a mill or other suitable grinder. This produces wettable powders, the wettability and the suspendability of which are advantageous. They may be suspended in water to give any desired concentration and this suspension can be employed very advantageously in particular for application to plant foliage. The "water dispersible granules (WG)" (granules which are readily dispersible in water) have compositions which are substantially close to that of the wettable powders. They may be prepared by granulation of formulations described for the wettable powders, either by a wet route (contacting finely divided active ingredient with the inert filler and a little water, e.g. 1 to 20% by weight, or with an aqueous solution of a dispersing agent or binder, followed by drying and screening), or by a dry route (compacting followed by grinding and screening).

The rates and concentrations of the formulated compositions may vary according to the method of application or the nature of the compositions or use thereof. Generally speaking, the compositions for application to control arthropod or plant nematode pests usually contain from about 0.00001% to about 95%, more particularly from about 0.0005% to about 50% by weight of one or more compounds of the invention, or of total active ingredients (that is to say the compounds of the invention, together with other substances toxic to arthropods or plant nematodes, synergists, trace elements or stabilizers). The actual compositions employed and their rate of application will be selected to achieve the desired effect(s) by the farmer, livestock producer, medical or veterinary practitioner, pest control operator or other person skilled in the art.

Solid or liquid compositions for application topically to animals, timber, stored products or household goods usually contain from about 0.00005% to about 90%, more particularly from about 0.001% to about 10%, by weight of one or more compounds of the invention. For administration to animals orally or parenterally, including percutaneously solid or liquid compositions, these normally contain from about 0.1% to about 90% by weight of one or more compounds of the invention.

Medicated feedstuffs normally contain from about 0.001% to about 3% by weight of one or more compounds of the invention. Concentrates or supplements for mixing with feedstuffs normally contain from about 5% to about 90%, preferably from about 5% to about 50%, by weight of one or more compounds of the invention. Mineral salt licks normally contain from about 0.1% to about 10% by weight of one or more compounds of formula (I) or pesticidally acceptable salts thereof.

Dusts or liquid compositions for application to livestock, goods, premises or outdoor areas may contain from about 0.0001% to about 15%, more especially from about 0.005% to about 2.0%, by weight, of one or more compounds of the invention. Suitable concentrations in treated waters are between about 0.0001 ppm and about 20 ppm, more particularly about 0.001 ppm to about 5.0 ppm. of one or more compounds of the invention, and may be used therapeutically in fish farming with appropriate exposure times. Edible baits may contain from about 0.01% to about 5%, preferably from about 0.01% to about 1.0%, by weight, of one or more compounds of the invention.

When administered to vertebrates parenterally, orally or by percutaneous or other means, the dosage of compounds of the invention, will depend upon the species, age, or health of the vertebrate and upon the nature and degree of its actual or potential infestation by arthropod or helminth pests. A single dose of about 0.1 to about 100 mg, preferably about 2.0 to about 20.0 mg, per kg body weight of the animal or doses of about 0.01 to about 20.0 mg, preferably about 0.1 to about 5.0 mg, per kg body weight of the animal per day, for sustained medication, are generally suitable by oral or parenteral administration. By use of sustained release formulations or devices, the daily doses required over a period of months may be combined and administered to animals on a single occasion.

The following composition EXAMPLES 2A - 2M illustrate compositions for use against arthropods, especially mites or insects, or plant nematodes, which comprise, as active ingredient, compounds of the invention, such as those described in preparative examples. The compositions described in EXAMPLES 2A - 2M can each be diluted to give a sprayable composition at concentrations suitable for use in the field. Generic chemical descriptions of the ingredients (for which all of the

following percentages are in weight percent), used in the composition EXAMPLES 2A - 2M exemplified below, are as follows:

Trade Name

Chemical Description

Ethylan BCP

Nonylphenol ethylene oxide condensate

Soprophor BSU

Tristyrylphenol ethylene oxide condensate

Arylan CA

A 70% w/v solution of calcium dodecylbenzenesulfonate

Solvesso 150

Light C₁₀ aromatic solvent

Arylan S

Sodium dodecylbenzenesulfonate

Darvan NO₂

Sodium lignosulphonate

Celite PF

Synthetic magnesium silicate carrier

Sopropon T36

Sodium salts of polycarboxylic acids

Rhodigel 23

Polysaccharide xanthan gum

Bentone 38

Organic derivative of magnesium montmorillonite

Aerosil

Microfine silicon dioxide

EXAMPLE 2A

A water soluble concentrate is prepared with the composition as follows:

Active ingredient

7%

Ethylan BCP

10%

N-methylpyrrolidone

83%

To a solution of Ethylan BCP dissolved in a portion of N-methylpyrrolidone is added the active ingredient with heating and stirring until dissolved. The resulting solution is made up to volume with the remainder of the solvent.

EXAMPLE 2B

An emulsifiable concentrate (EC) is prepared with the composition as follows:

Active ingredient 25%(max)

Soprophor BSU 10%

Arylan CA 5%

N-methylpyrrolidone 50%

Solvesso 150 10%

The first three components are dissolved in N-methylpyrrolidone and to this is then added the Solvesso 150 to give the final volume.

EXAMPLE 2C

A wettable powder (WP) is prepared with the composition as follows:

Active ingredient	40%
Arylan S	2%
Darvan NO ₂	5%
Celite PF	53%

The ingredients are mixed and ground in a hammer-mill to a powder with a particle size of less than 50 microns.

EXAMPLE 2D

An aqueous-flowable formulation is prepared with the composition as follows:

Active ingredient	40.00%
Ethylan BCP	1.00%
Sopropon T360.	0.20%
Ethylene glycol	5.00%
Rhodigel 230.	0.15%
Water	53.65%

The ingredients are intimately mixed and are ground in a bead mill until a mean particle size of less than 3 microns is obtained.

EXAMPLE 2E

An emulsifiable suspension concentrate is prepared with the composition as follows:

Active ingredient	30.0%
Ethylan BCP	10.0%
Bentone 38	0.5%
Solvesso 150	59.5%

The ingredients are intimately mixed and ground in a beadmill until a mean particle size of less than 3 microns is obtained.

EXAMPLE 2F.

A water dispersible granule is prepared with the composition as follows:

Active ingredient 30%

Darvan No 2 15%

Arylan S 8%

Celite PF 47%

The ingredients are mixed, micronized in a fluid-energy mill and then granulated in a rotating pelletizer by spraying with water (up to 10%). The resulting granules are dried in a fluid-bed drier to remove excess water.

EXAMPLE 2G

A dusting powder is prepared with the composition as follows:

Talc powder-superfine

Active ingredient 1 to 10%

The ingredients are intimately mixed and further ground as necessary to achieve a fine powder. This powder may be appplied to a locus of arthropod infestation, for example refuse dumps, stored products or household goods or animals infested by, or at risk of infestation by, arthropods to control the arthropods by oral ingestion. Suitable means for distributing the dusting powder to the locus of arthropod infestation include mechanical blowers, handshakers or livestock self treatment devices.

99 to 90%

EXAMPLE 2H

An edible bait is prepared with the composition as follows:

Active ingredient 0.1 to 1.0%

Wheat flour 80%

Molasses 19.9 to 19%

The ingredients are intimately mixed and formed as required into a bait form. This edible bait may be distributed at a locus, for example domestic or industrial premises, e.g. kitchens, hospitals or stores, or outdoor areas, infested by arthropods, for example ants, locusts, cockroaches or flies, to control the arthropods by oral ingestion.

EXAMPLE 21

A solution formulation is prepared with a composition as follows:

Active ingredient

15%

Dimethyl sulfoxide

85%

The active ingredient is dissolved in dimethyl sulfoxide with mixing and or heating as required. This solution may be applied percutaneously as a pour-on application to domestic animals infested by arthropods or, after sterilization by filtration through a polytetrafluoroethylene membrane (0.22 micrometer pore size), by parenteral injection, at a rate of application of from 1.2 to 12 ml of solution per 100 kg of animal body weight.

EXAMPLE 2J

A wettable powder is prepared with the composition as follows:

Active ingredient		50%
Ethylan BCP	•	5%
Aerosil		5%
Celite PF		40%

The Ethylan BCP is absorbed onto the Aerosil which is then mixed with the other ingredients and ground in a hammer-mill to give a wettable powder, which may be diluted with water to a concentration of from 0.001% to 2% by weight of the active compound and applied to a locus of infestation by arthropods, for example, dipterous larvae or plant nematodes, by spraying, or to domestic animals infested by, or at risk of infection by arthropods, by spraying or dipping, or by oral administration in drinking water, to control the arthropods.

EXAMPLE 2K

A slow release bolus composition is formed from granules containing the following components in varying percentages(similar to those described for the previous compositions) depending upon need:

Active ingredient

Density agent

Slow-release agent

Binder

The intimately mixed ingredients are formed into granules which are compressed into a bolus with a specific gravity of 2 or more. This can be administered orally to ruminant domestic animals for retention within the reticulo-rumen to give a continual slow release of active compound over an extended period of time to control infestation of the ruminant domestic animals by arthropods.

EXAMPLE 2L

A slow release composition in the form of granules, pellets, brickettes or the like can be prepared with compositions as follows:

Active ingredient 0.5 to 25%

Polyvinyl chloride 75 to 99.5%

Dioctyl phthalate (plasticizer)

The components are blended and then formed into suitable shapes by melt-extrusion or molding. These composition are useful, for example, for addition to standing water or for fabrication into collars or eartags for attachment to domestic animals to control pests by slow release.

EXAMPLE 2M

A water dispersible granule is prepared with the composition as follows:

Active ingredient	•	85%(max)
Polyvinylpyrrolidone		5%
Attapulgite clay	fr,	. 6%
Sodium lauryl sulfate	= 6	2%
Glycerine ·		2%

The ingredients are mixed as a 45% slurry with water and wet milled to a particle size of 4 microns, then spray-dried to remove water.

METHODS OF PESTICIDAL USE

The following representative test procedures, using compounds of the invention, were conducted to determine the parasiticidal and pesticidal activity of compounds of the invention.

METHOD A: Screening method to test systemicity of compounds against Ctenocephalides felis (Cat flea)

A test container was filled with 10 adults of Ctenocephalides felis. A glass cylinder was closed on one end with parafilm and placed on top of the test container. The test compound solution was then pipetted into bovine blood and added to the glass cylinder. The treated Ctenocephalides felis were held in this artificial dog test (blood 37 °C, 40-60 % relative humidity; Ctenocephalides felis 20-22°C, 40-60 % relative humidity) and assessment performed at 24 and 48 hours after application. Compound numbers 1-2, 1-8, 1-9, 1-10, 1-14, 1-15, 1-16, 1-17, 1-19, 1-34, 1-35, 1-36, 1-37, 1-38, 1-39, 1-40, 2-2, 2-8, 2-9, 2-10, 2-14, 2-16, 2-17, 2-19, 2-35, 2-36 and 3-19 gave at least 90% control of Ctenocephalides felis at a test concentration of 5ppm or less.

METHOD B: Diabrotica undecimpunctata (southern corn rootworm) screen Two days before application, seeds of maize were soaked in water under warm conditions to elicit fast germination. One day before application, eggs of Diabrotica undecimpunctata were transferred to one half of a Japanese filter paper placed in a plastic petri dish. Afterwards, a sprouted maize seed was placed on a moistened pad beside the filter paper. Three drops of 200 microlitres of test compound solution were carefully pipetted onto the egg. The remainder of the solution was placed on the maize and then the Petri dish was closed. The treated eggs in the Petri dishes were held in a climate chamber for 6 days. The compound efficacy (percentage of dead eggs and/or larvae in comparison to untreated control) was assessed 6 days after application using a binocular microscope.

Compound numbers 1-17, 1-19, 1-35, 1-36, 1-38, 1-39, 2-9, 2-19, 2-35 and 2-36 gave at least 90% control of Diabrotica undecimpunctata at a test concentration of 10ppm.

METHOD C: Nephotettix Cinciceps (rice leafhopper) screen

The leaves of 12 rice plants having a stem length of 8 cm were dipped for 5 seconds into an aqueous solution of the formulated test compound. After the solution had run off, the rice plants treated in this manner were placed in a Petri dish and populated with about 20 larvae (L3 stage) of Nephotettix cincticeps. The Petri dish was closed and then stored in a climate chamber (16 hours of light/day, 25°C, 40-60% relative humidity). After 6 days storage, the percentage mortality of leafhopper larvae was determined.

Compound numbers 1-8, 1-9, 1-19, 1-35, 1-37, 2-2, 2-8, 2-19 and 2-36 gave at least 98% mortality of Nephotettix cinciceps larvae at a test concentration of 100 ppm.

METHOD D: Screening method to test contact activity against Ctenocephalides felis (Cat flea)

Solutions of the test compounds were dropped onto filter paper, dried and the filter paper placed into test tubes and infested with 10 adults of Ctenocephalides felis. The treated Ctenocephalides felis were held in a climate chamber (26°C, 80% RH) and the percentage efficacy assessed 24 hours and 48 hours after application in comparison with the untreated control.

Compound numbers 1-2, 8-2 and 8-10 gave at least 70% contact control of Ctenocephalides felis at a test concentration of 1000 ppm.

METHOD E: Screening method to test contact activity against Rhipicephalus sanguineus (Brown dog tick)

Solutions of the test compounds were dropped onto filter paper, dried and the filter paper placed into test tubes and infested with 20-30 larvae (L1) of Rhipicephalus sanguineus and the tubes closed with a clip. The treated Rhipicephalus sanguineus were held in a climate chamber (25°C, 90% RH) and the percentage efficacy assessed 24 hours after application in comparison with the untreated control. Compound numbers 1-2, 3-3, 8-8, 8-10 and 8-22 gave at least 70% contact control of Rhipicephalus sanguineus at a test concentration of 100 ppm.

CLAIMS

1. A method of controlling parasites in or on an animal comprising administering to the animal a parasiticidally effective amount of a 5-substituted-alkylaminopyrazole derivative of formula (I):

$$R^{6}S(O)_{n}$$
 R^{4}
 N
 N
 $R^{5}-S(O)_{m}$
 R^{2}
 R^{3}
 R^{3}

wherein:

R1 is CN;

W is C-halogen, C-CH₃ or N;

R² is hydrogen, halogen or CH₃;

 R^3 is (C_1-C_3) -haloalkyl, (C_1-C_3) -haloalkoxy or $S(O)_p$ - (C_1-C_3) -haloalkyl; R^4 is hydrogen, (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -alkynyl, (C_2-C_6) -haloalkynyl, (C_3-C_7) -cycloalkyl, CO- $(CH_2)_q$ - R^7 , COR^8 , CO- $(CH_2)_q$ - R^9 , -CO- (C_1-C_4) -alkyl- (C_1-C_6) -alkoxy, $-CO_2$ - $(CH_2)_q$ - R^7 , CO_2R^8 , $-CO_2$ - $(CH_2)_q$ - R^9 , $-CO_2$ - (C_3-C_7) -cycloalkyl, $-CO_2$ - (C_1-C_4) -alkyl- (C_3-C_7) -cycloalkyl, $-CO_2$ - (C_3-C_6) -alkenyl, $-CO_2$ - (C_3-C_6) -alkynyl, $CONR^{10}R^{11}$, $-CH_2R^7$, $-CH_2R^9$, OR^7 , OR^8 or OR^9 ; or (C_1-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_3-C_7) -cycloalkyl, $S(O)_pR^8$, CO_2 - (C_1-C_6) -alkyl, -O(C=O)- (C_1-C_6) -alkyl, $NR^{10}COR^{12}$, $NR^{10}R^{11}$, $CONR^{10}R^{11}$, $SO_2NR^{10}R^{11}$, OH, CN, NO_2 , OR^7 , $NR^{10}SO_2R^8$, COR^8 and OR^9 ; A is (C_1-C_{12}) -alkylene, or (C_1-C_{12}) -haloalkylene in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C_3-C_8) -cycloalkyl ring which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkyl and halogen; or is (C_1-C_{12}) -alkylene or (C_1-C_{12}) -haloalkylene in which last

two mentioned groups a methylene moiety is replaced by a group selected from -C(=O)-, -C(=NH)-, -O-, -S- and $-NR^{15}$ -, with the proviso that the replacing group is not bonded to the adjacent $S(O)_m$ group or N atom; or is (C_2-C_{12}) -alkenylene or (C_2-C_{12}) -haloalkenylene;

 R^5 is H, (C_3-C_6) -alkenyl, (C_3-C_6) -haloalkenyl, (C_3-C_6) -alkynyl, (C_3-C_6) -haloalkynyl, (C_3-C_7) -cycloalkyl, $-(CH_2)_qR^7$, $-(CH_2)_qR^9$ or $NR^{10}R^{11}$ provided that for the last mentioned radical m is 2; or is (C_1-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_3-C_6) -alkenyloxy, (C_3-C_6) -haloalkenyloxy, (C_3-C_6) -alkynyloxy, (C_3-C_6) -haloalkynyloxy, (C_3-C_7) -cycloalkyl, $S(O)_pR^8$, CN, NO_2 , OH, COR^{10} , $NR^{10}COR^{12}$, $NR^{10}SO_2R^8$, $CONR^{10}R^{11}$, $NR^{10}R^{11}$, $S(O)_pR^7$, $S(O)_pR^9$, OR^7 , OR^9 and CO_2R^{10} ; or when A is (C_1-C_{12}) -alkylene or (C_1-C_{12}) -haloalkylene and R^5 is (C_1-C_6) -alkyl unsubstituted or substituted by one or more halogen radicals, one or more of the carbon atoms of R^5 may, together with $S(O)_m$ and one or more of the carbon atoms of A, form a 5- or 6-membered ring;

 R^6 is (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -haloalkynyl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)_pR⁸, COR¹¹, COR¹³, CONR¹⁰R¹¹, SO₂NR¹⁰R¹¹, NR¹⁰R¹¹, OH, SO₃H and (C₁-C₆)-alkylideneimino;

 R^8 is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl;

 R^9 is heterocyclyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)-alkyl, (C₁-C₄)-haloalkyl, (C₁-C₄)-alkoxy, (C₁-C₄)-haloalkoxy, NO₂, CN, CO₂(C₁-C₆)-alkyl, S(O)_pR⁸, OH and oxo;

 R^{10} and R^{12} are each independently H, (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_3-C_6) -alkenyl, (C_3-C_6) -haloalkenyl, (C_3-C_6) -alkynyl, (C_3-C_6) -haloalkynyl, (C_3-C_6) -cycloalkyl, $-(C_1-C_6)$ -alkyl- (C_3-C_6) -cycloalkyl

R¹⁰ and R¹¹ and/or R¹⁰ and R¹² each together with the respective attached N atom , form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being

unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl and (C₁-C₆)-haloalkyl;

 R^{11} and R^{14} are each independently H, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl,

(C₃-C₆)-cycloalkyl or -(C₁-C₆)-alkyl-(C₃-C₆)-cycloalkyl;

 R^{13} is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)_pR⁸ and NR¹¹R¹⁴;

 R^{15} is R^{11} or $-(CH_2)_a R^{13}$;

m, n and p are each independently zero, one or two;

g is zero or one; and

each heterocyclyl in the above-mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S;

or a pesticidally acceptable salt thereof.

2. The method as claimed in claim 1, wherein the symbols and indices in formula (I) have the following meanings:

R¹ is CN;

W is C-Cl:

R² is chlorine;

R³ is CF₃ or OCF₃;

 R^4 is hydrogen, CO_2 -(C_1 - C_3)-alkyl, or (C_1 - C_6)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen and (C_1 - C_3)-alkoxy;

A is (C₁-C₄)-alkylene;

 R^5 is (C_3-C_6) -cycloalkyl, $-(CH_2)_qR^7$, (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl; or when R^5 is (C_1-C_6) -alkyl, one or more of the carbon atoms of the R^5 group may, together with the $S(O)_m$ group and one or more of the carbon atoms of A, form a 5- or 6-membered ring;

R⁶ is CF₃, CF₂CI, CFCl₂, CBrF₂ or CHF₂;

R⁷ is phenyl;

m and n are each independently zero, one or two; and

q is zero or one.

3. The method as claimed in claim 1, wherein the symbols and indices in formula (I) have the following meanings:

R¹ is CN;

W is C-CI:

R² is CI;

R³ is CF₃ or OCF₃;

 R^4 is hydrogen, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_3-C_7) -cycloalkyl, COR^9 (where R^9 is tetrahydrofuryl), $-COCH_2-(C_1-C_6)$ -alkoxy, $-CO_2-(C_1-C_6)$ -alkyl, $-CO_2-(CH_2)_q-R^7$, OR^7 , OR^8 or OR^9 (where R^9 is pyridyl); or (C_1-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkoxy, (C_3-C_7) -cycloalkyl and $S(O)_pR^8$;

A is (C_1-C_6) -alkylene in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C_3-C_6) -cycloalkyl ring;

 R^5 is (C_3-C_6) -alkenyl, (C_3-C_7) -cycloalkyl, $-(CH_2)_qR^7$ or $NR^{10}R^{11}$ provided that for the last mentioned radical X is SO_2 ; or is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl;

R⁶ is CF₃, CF₂CI, CFCl₂, CBrF₂, CHF₂ or CH₃;

 R^7 is phenyl unsubstituted or substituted by one or more (C₁-C₆)-alkoxy groups; R^8 is (C₁-C₆)-alkyl;

R¹⁰ and R¹¹ are the same or different (C₁-C₆)-alkyl; or

R¹⁰ and R¹¹ together with the attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N;

m and n are each independently zero, one or two; and q is zero or one.

4. 5-Substituted-alkylaminopyrazole derivatives of formula (I) as in claim 1, or pesticidally acceptable salts thereof, wherein the symbols and indices in formula (I)

have the following meanings:

R¹ is CN;

W is C-halogen or C-CH₃;

R² is hydrogen, halogen or CH₃;

 R^3 is $(\mathsf{C}_1\mathsf{-C}_3)$ -haloalkyl, $(\mathsf{C}_1\mathsf{-C}_3)$ -haloalkoxy or $\mathsf{S}(\mathsf{O})_\mathsf{p}\mathsf{-}(\mathsf{C}_1\mathsf{-C}_3)$ -haloalkyl; R^4 is $(\mathsf{C}_2\mathsf{-C}_6)$ -alkenyl, $(\mathsf{C}_2\mathsf{-C}_6)$ -haloalkenyl, $(\mathsf{C}_2\mathsf{-C}_6)$ -alkynyl, $(\mathsf{C}_2\mathsf{-C}_6)$ -haloalkynyl, $(\mathsf{C}_3\mathsf{-C}_7)$ -cycloalkyl, $\mathsf{CO}\mathsf{-}(\mathsf{CH}_2)_q\mathsf{-R}^7$, $\mathsf{CO}_2\mathsf{R}^8$, $\mathsf{CO}\mathsf{-}(\mathsf{CH}_2)_q\mathsf{-R}^9$, $\mathsf{-CO}\mathsf{-}(\mathsf{C}_1\mathsf{-C}_4)$ -alkyl- $(\mathsf{C}_1\mathsf{-C}_6)$ -alkoxy, $\mathsf{-CO}_2\mathsf{-}(\mathsf{CH}_2)_q\mathsf{-R}^7$, $\mathsf{-CO}_2\mathsf{-}(\mathsf{CH}_2)_q\mathsf{-R}^9$, $\mathsf{-CO}_2\mathsf{-}(\mathsf{C}_3\mathsf{-C}_7)$ -cycloalkyl, $\mathsf{-CO}_2\mathsf{-}(\mathsf{C}_1\mathsf{-C}_6)$ -alkenyl, $\mathsf{-CO}_2\mathsf{-}(\mathsf{C}_3\mathsf{-C}_6)$ -alkynyl, $\mathsf{CONR}^{10}\mathsf{R}^{11}$, $\mathsf{-CH}_2\mathsf{R}^7$, $\mathsf{-CH}_2\mathsf{R}^9$, OR^7 , OR^8 or OR^9 ; or $(\mathsf{C}_1\mathsf{-C}_6)$ -alkyl which is substituted by one or more radicals selected from the group consisting of halogen, $(\mathsf{C}_1\mathsf{-C}_6)$ -alkoxy, $(\mathsf{C}_1\mathsf{-C}_6)$ -haloalkoxy, $(\mathsf{C}_3\mathsf{-C}_7)$ -cycloalkyl, $\mathsf{S}(\mathsf{O})_\mathsf{p}\mathsf{R}^8$, $\mathsf{CO}_2\mathsf{-}(\mathsf{C}_1\mathsf{-C}_6)$ -alkyl, $\mathsf{-O}(\mathsf{C}=\mathsf{O})\mathsf{-}(\mathsf{C}_1\mathsf{-C}_6)$ -alkyl, $\mathsf{NR}^{10}\mathsf{COR}^{12}$, $\mathsf{NR}^{10}\mathsf{R}^{11}$, $\mathsf{CONR}^{10}\mathsf{R}^{11}$, $\mathsf{SO}_2\mathsf{NR}^{10}\mathsf{R}^{11}$, OH , CN , NO_2 , OR^7 , $\mathsf{NR}^{10}\mathsf{SO}_2\mathsf{R}^8$, COR^8 and OR^9 ;

A is (C_1-C_{12}) -alkylene and (C_1-C_{12}) -haloalkylene in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C_3-C_8) -cycloalkyl ring which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkyl and halogen; or is (C_1-C_{12}) -alkylene or (C_1-C_{12}) -haloalkylene in which last two mentioned groups a methylene moiety is replaced by a group selected from -C(=O)-, -C(=NH)-, -O-, -S- and $-NR^{15}$ -, with the proviso that the replacing group is not bonded to the adjacent $S(O)_m$ group or N atom; or is (C_2-C_{12}) -alkenylene or (C_2-C_{12}) -haloalkenylene;

 R^5 is H, (C_3-C_6) -alkenyl, (C_3-C_6) -haloalkenyl, (C_3-C_6) -alkynyl, (C_3-C_6) -haloalkynyl, (C_3-C_7) -cycloalkyl, $-(CH_2)_qR^7$, $-(CH_2)_qR^9$ or $NR^{10}R^{11}$ provided that for the last mentioned radical m is 2; or is (C_1-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_3-C_6) -alkenyloxy, (C_3-C_6) -haloalkenyloxy, (C_3-C_6) -alkynyloxy, (C_3-C_6) -haloalkynyloxy, (C_3-C_7) -cycloalkyl, $S(O)_pR^8$, CN, NO_2 , OH, COR^{10} , $NR^{10}COR^{12}$, $NR^{10}SO_2R^8$, $CONR^{10}R^{11}$, $NR^{10}R^{11}$, $S(O)_pR^7$, $S(O)_pR^9$, OR^7 , OR^9 and CO_2R^{10} ; or when A is (C_1-C_{12}) -alkylene or (C_1-C_{12}) -haloalkylene and R^5 is (C_1-C_6) -alkyl unsubstituted or substituted by one or more halogen radicals, one or more of the carbon atoms of R^5 may, together with $S(O)_m$ and one or more of the carbon atoms of A, form a 5- or 6-membered ring;

 R^6 is (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -haloalkynyl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)_pR⁸, COR¹¹, COR¹³, CONR¹⁰R¹¹, SO₂NR¹⁰R¹¹, NR¹⁰R¹¹, OH, SO₃H and (C₁-C₆)-alkylideneimino;

 R^8 is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl;

 R^9 is heterocyclyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -haloalkoxy, NO_2 , CN, $CO_2(C_1-C_6)$ -alkyl, $S(O)_pR^8$, OH and OXO;

 R^{10} and R^{12} are each independently H, (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_3-C_6) -alkenyl, (C_3-C_6) -haloalkenyl, (C_3-C_6) -alkynyl, (C_3-C_6) -haloalkynyl, (C_3-C_6) -cycloalkyl, $-(C_1-C_6)$ -alkyl- (C_3-C_6) -cycloalkyl

 R^{10} and R^{11} and/or R^{10} and R^{12} each together with the respective attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkyl and (C_1-C_6) -haloalkyl;

 R^{11} and R^{14} are each independently H, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₃-C₆)-cycloalkyl or -(C₁-C₆)-alkyl-(C₃-C₆)-cycloalkyl;

 R^{13} is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)_pR⁸ and NR¹¹R¹⁴;

 R^{15} is R^{11} or $-(CH_2)_q R^{13}$;

m, n and p are each independently zero, one or two;

q is zero or one; and

each heterocyclyl in the above-mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S.

5. 5-Substituted-alkylaminopyrazole derivatives of formula (I) as in claim 1, or pesticidally acceptable salts thereof, wherein:

R¹ is CN;

W is C-halogen or C-CH₃;

R² is hydrogen, halogen or CH₃;

 R^3 is (C_1-C_3) -haloalkyl, (C_1-C_3) -haloalkoxy or $S(O)_p$ - (C_1-C_3) -haloalkyl;

R⁴ is hydrogen, (C₁-C₆)-alkyl or COR⁸;

A is (C_1-C_{12}) -alkylene and (C_1-C_{12}) -haloalkylene in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C_3-C_8) -cycloalkyl ring which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkyl and halogen; or is (C_1-C_{12}) -alkylene or (C_1-C_{12}) -haloalkylene in which last two mentioned groups a methylene moiety is replaced by a group selected from -C(=O)-, -C(=NH)-, -O-, -S- and $-NR^{15}$ -, with the proviso that the replacing group is not bonded to the adjacent $S(O)_m$ group or N atom; or is (C_2-C_{12}) -alkenylene or (C_2-C_{12}) -haloalkenylene;

 R^5 is H, (C_3-C_6) -alkenyl, (C_3-C_6) -haloalkenyl, (C_3-C_6) -alkynyl, (C_3-C_6) -haloalkynyl, (C_3-C_7) -cycloalkyl, $-(CH_2)_qR^7$, $-(CH_2)_qR^9$ or $NR^{10}R^{11}$ provided that for the last mentioned radical $S(O)_m$ is SO_2 ; or is (C_1-C_6) -alkyl substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_3-C_6) -alkenyloxy, (C_3-C_6) -haloalkenyloxy, (C_3-C_6) -alkynyloxy, (C_3-C_6) -haloalkynyloxy, (C_3-C_7) -cycloalkyl, $S(O)_pR^8$, CN, NO_2 , OH, COR^{10} , $NR^{10}COR^{12}$, $NR^{10}SO_2R^8$, $CONR^{10}R^{11}$, $NR^{10}R^{11}$, $S(O)_pR^7$, $S(O)_pR^9$, OR^7 , OR^9 and CO_2R^{10} ; or when A is (C_1-C_{12}) -alkylene or (C_1-C_{12}) -haloalkylene and R^5 is (C_1-C_6) -alkyl substituted by one or more halogen radicals, one or more of the carbon atoms of R^5 may, together with $S(O)_m$ and one or more of the carbon atoms of A, form a 5- or 6-membered ring;

 R^6 is (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -alkynyl or (C_2-C_6) -haloalkynyl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)_pR⁸, COR¹¹, COR¹³, CONR¹⁰R¹¹, SO₂NR¹⁰R¹¹, NR¹⁰R¹¹, OH, SO₃H and (C₁-C₆)-alkylideneimino;

 R^8 is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl;

 R^9 is heterocyclyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -haloalkoxy, (C_1-C_4) -alkyl, (C_1-C_4) -a

 R^{10} and R^{12} are each independently H, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₃-C₆)alkenyl, (C_3-C_6) -haloalkenyl, (C_3-C_6) -alkynyl, (C_3-C_6) -haloalkynyl, (C_3-C_6) -cycloalkyl, $-(C_1-C_6)$ -alkyl- (C_3-C_6) -cycloalkyl, $-(CH_2)_qR^{13}$ or $-(CH_2)_qR^9$; or R¹⁰ and R¹¹ and/or R¹⁰ and R¹² each together with the respective attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl and (C₁-C₆)-haloalkyl; R¹¹ and R¹⁴ are each independently H, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C_3-C_6) -cycloalkyl or $-(C_1-C_6)$ -alkyl- (C_3-C_6) -cycloalkyl; R¹³ is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)haloalkoxy, CN, NO₂, S(O)_pR⁸ and NR¹¹R¹⁴; R^{15} is R^{11} or $-(CH_2)_0R^{13}$; m, n and p are each independently zero, one or two: q is zero or one; and each heterocyclyl in the above-mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S.

- 6. 5-Substituted-alkylaminopyrazole derivatives of formula (I), or pesticidally acceptable salts thereof, wherein the symbols and indices in formula (I) have the following meanings:
- R^1 is CN; R^2 is chlorine; R^3 is CF_3 or OCF_3 ; W is C-Cl; R^4 is hydrogen or (C_1-C_6) -alkyl; R^5 is (C_1-C_6) -alkyl; R^6 is CF_3 ; A is (C_2-C_3) -alkylene and m and n are each independently zero, one or two.
- 7. The use of compounds of formula (I) and pesticidally acceptable salts thereof according to one or more of claims 1 to 6 for the control of parasites in and on animals.

(

- 8. The use of compounds of formula (I) and pesticidally acceptable salts thereof according to one or more of claims 1 to 6 for preparing a veterinary medicament.
- 9. A pesticidal composition comprising a compound of formula (I) or a pesticidally acceptable salt thereof as defined in any one of claims 1 to 6, in association with a pesticidally acceptable diluent or carrier and/or surface active agent.
- 10. A process for the preparation of a compound of formula (I) or a salt thereof as defined in one or more of claims 1 to 6, which process comprises:
- a) where R¹, R², R³, R⁶, W, A, m and n are as defined in claim 1, R⁴ and R⁵ are as defined in claim 1 with the exclusion of hydrogen, and R⁴ is H, reacting a compound of formula (II):

wherein R^1 , R^2 , R^3 , R^6 , W and n are as defined in claim 1, and L is a leaving group, with a compound of formula (III):

$$R^5$$
— $S(O)_m$ — A — NH_2
(III)

wherein m and A are as defined in claim 1 and R^5 is as defined in claim 1 with the exclusion of hydrogen; or

b) where R¹, R², R³, R⁴, R⁶, W, A, m and n are as defined in claim 1 and R⁴ is as defined in claim 1 with the exclusion of hydrogen, OR⁷, OR⁸ and OR⁹, and R⁵ is as defined in claim 1 with the exclusion of H, reacting a compound of formula (IV):

$$R^{6}S(O)_{n}$$
 $R^{5}-S(O)_{m}$
 R^{2}
 R^{3}
 R^{3}

wherein R¹, R², R³, R⁶, W, A, m and n are as defined in claim 1 and R⁵ is as defined in claim 1 with the exclusion of hydrogen, with a compound of formula (V):

$$R^4-L^1$$
 (V)

wherein R^4 is as defined in claim 1 with the exclusion of hydrogen, OR^7 , OR^8 and OR^9 , and L^1 is a leaving group; or

c) where R¹, R², R³, R⁴, R⁶, W, A, m and n are as defined in claim 1 and R⁵ is as defined in claim 1 with the exclusion of hydrogen, reacting a compound of formula (VI):

wherein R¹, R², R³, R⁴, R⁶, W and n are as defined in claim 1, with a compound of formula (VII):

$$R^5$$
-S(O)_m-A-L² · (VII)

wherein m and A are as defined in claim 1, R^5 is as defined in claim 1 with the exclusion of hydrogen and L^2 is a leaving group;

d) where R¹, R², R³, R⁶, W and n are as defined in claim 1, R⁵ is as defined in claim 1 with the exclusion of hydrogen, R⁴ is hydrogen; A is -CH₂- and m is zero, reacting a compound of formula (VIII):

wherein R^1 , R^2 , R^3 , R^6 , W and n are as defined in claim 1, with a mixture of formaldehyde and a compound of formula (IX):

R⁵-SH (IX)

wherein R⁵ is as defined in claim 1 with the exclusion of hydrogen; or
e) where R¹, R², R³, R⁴, R⁶, A, W and n are as defined in claim 1, R⁵ is as defined in claim 1 with the exclusion of hydrogen, and m is zero, reacting a compound of formula (X):

(X) ·

wherein R^1 , R^2 , R^3 , R^4 , A, W and n are as defined in claim 1, with a compound of formula (XI):

$$R^5-L^3$$
 (XI)

wherein R⁵ is as defined in claim 1 with the exclusion of hydrogen, and L³ is a leaving group; or

f) where R¹, R², R³, R⁴, R⁵, R⁶, A, W and n are as defined in claim 1, and m is zero, reacting a compound of formula (XII):

$$R^{6}S(O)_{n}$$
 R^{4}
 N
 N
 R^{2}
 W
 R^{3}
 $(XIII)$

wherein R¹, R², R³, R⁴, A, W and n are as defined in claim 1 and L⁴ is a leaving group, with a compound of formula (IX) as defined above; or

g) where R^1 , R^2 , R^3 , R^4 , R^6 , W, and n are as defined in claim 1, R^5 is as defined in claim 1 with the exclusion of hydrogen, and A is (C_2-C_{12}) -alkylene of which a two carbon chain links the R^5 -S(O)_m- and -NR⁴- groups, reacting a compound of formula (VI) above wherein R^1 , R^2 , R^3 , R^4 , R^6 , W and n are as defined in claim 1, with a compound of formula (XIII):

$$R^5$$
-S-(O)_m-A¹
(XIII)

wherein R^5 is as defined in claim 1, and A^1 is a (C_2-C_{12}) -alkenyl group in which the double bond is adjacent to the R^5 -S(O)_m group; or

h) where R¹, R², R³, R⁴, R⁶, A, W, and n are as defined in claim 1, R⁵ is hydrogen, and m is zero, reacting the corresponding compound of formula (XII) as defined above, with a compound of formula (XIV):

$$R^{a}$$
-C(=S)SH (XIV)

wherein R^a is (C_1-C_6) -alkyl, to give a compound of formula (XV):

wherein the various symbols are as defined above, followed by hydrolysis of the compound of formula (XV) to give the corresponding compound of formula (I) in which \mathbb{R}^5 is H; or

(XV)

- i) where R¹, R², R³, R⁴, R⁵, R⁶, W and A are as defined in claim 1, and m and/or n is 1 or 2, oxidising a corresponding compound in which m and/or n is 0 or 1; and
- j) if desired, converting a resulting compound of formula (I) into a pesticidally acceptable salt thereof.