Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Side 1 av 2

Faglig kontakt under eksamen: Magnus Landstad 47259811, 73591753

EKSAMEN I TMA4110/15 MATEMATIKK 3 Bokmål Torsdag 9 August 2012 Tid: 9-13

Hjelpemidler (kode C): Enkel kalkulator (HP30S eller Citizen SR-270X) Rottman: Matematisk formelsamling

Sensur: 30 August 2012

Alle svar skal begrunnes, og det skal være med så mye mellomregning at framgangsmåten går tydelig fram. Hver av de 7 oppgavene har samme vekt.

Oppgave 1 Skriv alle løsningene av $z^3 = 1$ på formen z = x + iy.

Skriv alle løsningene av $z^3=\frac{-3+i}{\sqrt{2}(2+i)}$ på formen z=x+iy og tegn løsningene i det komplekse planet.

Oppgave 2 Finn løsningen av $y'' - 2y' + y = \frac{e^x}{x}$ for x > 0 med y(1) = y'(1) = 0.

Oppgave 3 Bevegelsen til et mekanisk system er gitt ved differensiallikningen y'' + 2cy' + 4y = 0 for en gitt konstant c > 0.

For hvilke verdier av c er bevegelsen underdempet, overdempet eller kritisk dempet?

Finn den stasjonære løsningen (the steady-state solution) y_s av likningen $y'' + 2y' + 4y = \cos t$.

Oppgave 4 La $T: \mathbb{R}^4 \to \mathbb{R}$ være lineær transformasjonen gitt ved

$$T\left(egin{bmatrix} x \ y \ z \ w \end{bmatrix}
ight) = 2x + 2y - z + w.$$

Finn en ortonormal basis for nullrommet til T.

			0

Oppgave 5 La
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -t & 1 & 0 & 1 \\ 0 & -t & 1 & 0 \\ 0 & 0 & -t & -1 \end{bmatrix}$$
 og $\mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$.

For hvilke verdier av t har likningen $A\mathbf{x} = \mathbf{b}$ ingen, en, eller uendelig mange løsninger?

Oppgave 6 For hvilke tall a har \mathbb{R}^2 en basis av eigenvektorer for matrisen $\begin{bmatrix} 0 & a \\ 1 & 0 \end{bmatrix}$?

Oppgave 7 Mellom to vanntanker, T_1 og T_2 , hver med volum V = 100 liter, er det to rør som vist på figuren nedenfor.

Tankene inneholder saltvann, der $x_1(t)$ og $x_2(t)$ er gram salt i hver tank ved tiden t. Det renner saltvann fra tank T_1 til tank T_2 , og tilsvarende fra T_1 inn i T_2 , med rate q=1 liter per sekund begge veier. Vi ser bort fra volumet til rørene, og antar umiddelbar miksing av saltvann (dvs saltkonsentrasjonen i hver tank er den samme overalt i tanken ved samme tidspunkt).

Vis at $x_1(t)$ og $x_2(t)$ oppfyller systemet:

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}' = \frac{1}{100} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

og finn $x_1(t)$ og $x_2(t)$ når $x_1(0) = 100$ g og $x_2(0) = 0$ g.

Når er $x_2(t) = 25 \text{ g}$?