

```
In [15]: # Import Libraries
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         pd.set option("display.max columns", None)
         sns.set(style="whitegrid")
In [9]: # Load the Dataset
         df=pd.read csv('/content/train.csv')
In [23]: # Structure of dataset
         print(df.info())
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 891 entries, 0 to 890
       Data columns (total 12 columns):
                         Non-Null Count Dtype
            Column
                         -----
            PassengerId 891 non-null
        0
                                         int64
        1
            Survived 891 non-null int64
            Pclass 891 non-null int64
Name 891 non-null object
Sex 891 non-null object
        2
        3
        4
        5
                       714 non-null float64
            Age
                       891 non-null int64
        6
           SibSp
                      891 non-null int64
891 non-null object
        7
           Parch
        8
            Ticket
        9
            Fare
                        891 non-null float64
        10 Cabin
                        204 non-null
                                         object
        11 Embarked 889 non-null
                                         object
       dtypes: float64(2), int64(5), object(5)
       memory usage: 83.7+ KB
       None
In [ ]: # Statistical summary
         df.describe()
```

Out[]:		PassengerId	Survived	Pclass	Age	SibSp	Parch
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000
	75 %	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000

```
In [ ]: # Missing values
    df.isnull().sum()
```

Out[]: **0**

Passengerld 0
Survived 0
Pclass 0
Name 0
Sex 0
Age 177

 Parch
 0

 Ticket
 0

0

SibSp

Fare 0 **Cabin** 687

Embarked 2

dtype: int64

```
In [24]: # Value counts of categorical columns
for col in ['Sex', 'Embarked', 'Pclass']:
    print(df[col].value_counts())
    print("-----")
```

```
Sex
male
       577
female
        314
Name: count, dtype: int64
-----
Embarked
S
    644
C
     168
     77
Name: count, dtype: int64
Pclass
3
    491
1
     216
2
     184
Name: count, dtype: int64
```

In [16]: # Histogram of Age sns.histplot(df['Age'].dropna(), kde=True) plt.title("Age Distribution") plt.show()


```
In [17]: # Countplot of Survived
    sns.countplot(x='Survived', data=df)
    plt.title("Survival Count")
```



```
In [18]: # Survival rate by gender
sns.countplot(x='Sex', hue='Survived', data=df)
plt.title("Survival by Gender")
plt.show()
```



```
In [19]: # Survival rate by Pclass
sns.countplot(x='Pclass', hue='Survived', data=df)
plt.title("Survival by Passenger Class")
plt.show()
```

Survival by Passenger Class


```
In [20]: # Heatmap of correlation
    plt.figure(figsize=(10,6))
    sns.heatmap(df.corr(numeric_only=True), annot=True, cmap="coolwarm")
    plt.title("Correlation Heatmap")
    plt.show()
```


In [21]: # Pairplot (only selected features to avoid clutter)
 sns.pairplot(df[['Survived', 'Age', 'Fare', 'Pclass']], hue='Survived')
 plt.show()


```
In [22]: # Boxplot of Fare
sns.boxplot(x=df['Fare'])
plt.title("Fare Distribution with Outliers")
plt.show()
```

Fare Distribution with Outliers

