Complex Analysis

Ikhan Choi

November 29, 2021

Contents

1	Holomorphic functions		
	1.1	Ho	2
	1.2	The residue theorem	3
	1.3	Argument principle	3

Chapter 1

Holomorphic functions

1.1 Ho

- **1.1.** Let $p \in \mathbb{C}[z]$ with $p(z) = \sum_{k=0}^{n} a_k z^k$.
- (a) $|p(z)| \lesssim |z|^n$.
- (b) There is R > 0 such that $|p(z)| \gtrsim |z|^n$ for $|z| \ge R$.

Proof. If we take R > 0 such that

$$\sum_{k=0}^{n-1} \frac{|a_k|}{R^{n-k}} \le \frac{|a_n|}{2},$$

then $|z| \ge R$ implies

$$|p(z)| \ge |a_n||z|^n - \sum_{k=0}^{n-1} |a_k||z|^k$$

$$\ge |a_n||z|^n - \sum_{k=0}^{n-1} \frac{|a_k|}{R^{n-k}}|z|^n$$

$$\ge \frac{|a_n|}{2}|z|^n.$$

1.2. Let $f: \Omega \to \mathbb{C}$ be a holomorphic function on a domain. Then, $\overline{f(z)} = f(\overline{z})$ if and only if $f(z) \in \mathbb{R}$ for $z \in \Omega \cap \mathbb{R}$.

1.2 The residue theorem

$$\int_0^{2\pi} \frac{dx}{1 + a\cos x} = \frac{2\pi}{\sqrt{1 - a^2}}, \quad -1 < a < 1$$

1.3 (Semicircles). (a)

$$\int_0^\infty \frac{1}{1+x^2} \, dx =$$

(b)

$$\int_0^\infty \frac{\sin x}{x} \, dx = \frac{\pi}{2}$$

(c)

$$\int_0^\infty \frac{\log x}{1+x^2} \, dx =$$

(d)

$$\int_{0}^{\infty} \frac{x^{a-1}}{1+x} = \frac{\pi}{\sin \pi a}, \quad 0 < a < 1$$

- 1.4 (Computation of Fourier transforms).
- **1.5** (Laplace transforms).
- 1.6 (Gamma function).

1.3 Argument principle

1.7. (a)

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = i \text{ winding number.}$$

(b)

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi i \text{(number of zeros - number of poles)}.$$

- **1.8.** Let f be a meromorphic function on Ω . Let γ be a curve...
- (a) If $h:[0,1]\times\Omega\to\mathbb{C}$ is continuous and

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = \int_{\gamma} \frac{g'(z)}{g(z)} dz.$$

(b) In particular, if |g(z)| < |f(z)| on $z \in \gamma$, then

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = \int_{\gamma} \frac{f'(z) + g'(z)}{f(z) + g(z)} dz.$$

1.9. Fundamental theorem of algebra, proof by the Liouville theorem, and proof by the Rouché theorem.