Theorem

Thesis notes

6th April

The echo chamber problem - notation

- $ightharpoonup G = (V, E^+, E^-)$ interaction graph
- \triangleright \mathcal{C} set of contents
- ▶ $C \in C$ content, \mathcal{T}_C set of threads associated with C. A thread $T \in \mathcal{T}_C$ is a subgraph of G
- ▶ $U \subseteq V$ subset of users, T[U] subgraph of T induced by U. |T(U)| is the number of edges of this subgraph

The echo chamber problem - notation

- ▶ $\eta(C)$ fraction of negative edges associated with C (analogous definition for a thread T). Content (or thread) controversial if $\eta \in [\alpha, 1]$
- $ightharpoonup \hat{\mathcal{C}} \subseteq \mathcal{C}$ set of *controversial* contents
- \triangleright $S_C(U)$ set of *non controversial* threads induced by U, for *controversial* contents, i.e.

$$\mathcal{S}_{C}(U) = \{T[U] \text{ s.t. } T[U] \text{ non controversial}, T \in \mathcal{T}_{C}, C \in \hat{\mathcal{C}}, U \subseteq V\}$$

$$\tag{1}$$

The echo chamber problem

Goal: given an interaction graph G, find $U \subseteq V$ maximing

$$\xi(U) = \sum_{C \in \hat{\mathcal{C}}} \sum_{T[U] \in S_C(U)} |T[U]| \tag{2}$$

The set of users maximing the expression is denoted as \hat{U} and the corresponding score is $\xi(G)$

An initial implementation

Algorithm 1: Greedy approach

 $U = \{ \text{ random node } \};$

while $\xi(U)$ can be increased by adding a node do

With probability β add to U the node increasing more the score $\xi(U)$ (taking into account variations in $S_C(U)$);

With probability $(1 - \beta)$ remove from U the node increasing less the score $\xi(U)$. This node will be ignored in the next iteration;

end

Another possible greedy approach

Algorithm 2: Greedy approach

```
U = \{ \text{ all nodes } \};

S = \xi(U);

while U is not empty do

remove from U the node contributing less to the score \xi(U);

update S if the current score is higher;

end
```

Computing exactly the score

Reconstructing solutions from relaxation results

Algorithm 3: Relaxation results reconstruction

```
E_{ordered} := Edges ordered in descending order according to their value x_{ij}; U := \emptyset; foreach e_{ij} \in E_{ordered} do

Add v_i and v_j if not present in U;

Calculate \xi(U);
```

Computing exactly the score - relaxation algorithm example

Figure: Model solution for a graph with a single thread, for $\alpha = 0.3$

The datasets - negative edge fractions for contents

An initial implementation - results

▶ Beta algorithm was repeated \sqrt{n} times for a graph with n nodes

Table: Echo chamber scores, greedy approach

Source	V	E	$(\xi_{eta}(G),eta)$	$\xi_{peel}(G)$
@emanews	1226	1842	(0, *)	0
<pre>@bbcscience</pre>	477	388	(3, 0.9)	7
@bbcentertainment	220	183	(21, 1.0)	16
@bbctech	793	719	(101, *)	107

Table: Echo chamber scores, MIP approaches

Source	$\xi_{MIP}(G)$	$\xi_{MIPr}(G)$	$\xi_{MIPr_alg}(G)$
@emanews	0	1.43	0
<pre>@bbcscience</pre>	7	10.76	7
@bbcentertainment	34	41.69	34
@bbctech	309	326.63	309

Computing exactly the score - relaxation algorithm counterexample

Figure: Small graph in which the algorithm may not find the optimum. The exact solution excludes the top-left vertex and scores 5.

Echo Chamber Problem hardness

Theorem

The Echo Chamber Problem is \mathcal{NP} -hard.