Examples

$a^i + b_{j+1} + c_l^h$	$\boxed{\text{Alt =}} a^i + b_{(j+1)} + c_1^h \boxed{\text{Alt =}} (\text{note the space})$
R, R , R , R , R	R, "R", \scriptR, \doubleR, \frakturR, Ctl b RCtl b
$i, \iota, l, \ell, \epsilon, \varepsilon, \phi, \varphi$	i, \iota, l, \ell, \epsilon, \varepsilon, \phi, \varphi
Ø, ∞, ط	\emptyset, \infty, 2132Alt x (hex Unicode)
\vec{a} , \vec{a} , \hat{a} , \vec{a} , \vec{a} , \vec{a}	a\ vec , a\hvec, a\hat, a\check, a\tilde, (ab)\vec
á, à, ă, â	a\acute, a\grave, a\breve, 0311Alt x Lefta
a', a'', a"	a' (same as a\prime), a'', a\pprime
à, ä, å, å, å	a\dot, a\ddot, 030aAlt x Left a, a\above\circ, a\above "o"
\overline{f} , \overline{f} , \overline{fg} \overline{fg}	f\bar, \overbar f, \overbar(fg), (fg)\bar
\underline{f} , \underline{f} , \underline{fg} , \underline{fg}	f\ubar, \underbar f, \underbar(fg), (fg)\ubar
a , a_{\Box}	\rect a, a_"\rect" (also a_\\rect)
a , a , [a], [a]	a , \norm a\norm, \lfloor a\rfloor, \lceil a\rceil
\sqrt{a} , $\sqrt[3]{a}$, $\sqrt[4]{a}$, $\sqrt[n]{a}$	\sqrt a, \cbrt a, \qdrt a, \sqrt(n&a) (or \root n\of a)
$a \cdot b, \ a \times b, \ \langle a, b \rangle$	a\cdot b, a\times b, \bra a,b\ket
$a*b, a*b, a\oplus b, a\otimes b$	a*b, a\ star b, a\ oplus b, a\ otimes b
$a \lor b$, $a \land b$, $\neg a$, $^{\wedge}a$, $\sim a$	a\vee b, a\wedge b, \neg a, ^a, ~a
$a \le b, \ a \ne b, \ a \cong b, \ a \approx b$	a<=b, a/=b, a~=b, a\ approx b
$a \sim b, \ a \propto b, \ a \notin B, \ A \nsubseteq B$	a\sim b, a\propto b, a/\in B, A/\subseteq B
$A \cup B$, $A \cap B$, $A \setminus B$, $A \sqcup B$	A\cup B, A\cap B, A\setminus B, A\sqcup B
$f: a \to b, \ a \mapsto b, \ a \Longleftrightarrow b$	f :a->b (or \to, \rightarrow), a\mapsto b, a\Longleftrightarrow b
L+1, L-1, L+1, L-1	L+1, L-1, L"+"1, L"2013 Alt x "1 (en-dash)
$m \times n$, $m \times n$, $d = 1$, $d=1$	m\times n, m"\times"n, d=1, d"="1
$1 \dots n, \ a \cdots b, \ \vdots, \ \ddots$	1n (or \ldots), a\cdots b, \vdots, \ddots
$\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$	(\matrix(0@1)), (0\atop 1), \pmatrix(1&2@3&4)
Zp, Zp, Zp	Z\hairsp p (1/18em), Z\thinsp p (3/18), Z\nbsp p (or Ctl Shft SP)
$\sum_{i} a_{i}, \prod_{i=1}^{n} a_{i}, \int_{0}^{1} f(x) dx$	\sum_i a_i, \prod_(i=1)^n a_i, \int_0^1 f(x)\dd x
$\iiint_V f, \ \oint_{\partial \Sigma}$	\iiint_V f, \coint_(\partial\Sigma) \zwsp (zero-width arg)
$\frac{a}{b}$, a/b , a/b , $\frac{a}{b}$, $a \div b$, $\frac{a}{b}$	a/b, a\/b, a\ldiv b, a\sdiv b, a\div b, ribbon UI fraction —
$rg \max_{oldsymbol{\phi},T} f_{oldsymbol{\phi},T}$	"arg max" \below (\phi,T) \funcapply f_(\phi,T)
$f = \left\{ \begin{array}{c} a \\ b \text{ if } y \end{array} \right.$	f={\eqarray(a@ b" if "y)\close or f=\cases(a@ b" if "y)
$f = \left\{ \begin{array}{l} a \\ b \text{ if } y \end{array} \right.$	f={\matrix(a@ b" if "y)\close "Column Alignment" \rightarrow Left on $\begin{bmatrix} a \\ b \text{ if } y \end{bmatrix}$
$f = \begin{cases} a+b & \text{if } a < 5\\ c & \text{otherwise.} \end{cases}$	f={\matrix(a+b&" if "a<5@c&"otherwise.")\close
f^{g^h}	\smash(f^g^h) (reduce vertical space)
$\{x \mid f_x > 0\}, \ \{x \mid f_x > 0\}$	$\{x \mid f_x>0\}, \{x \mid f_x>0 \mid A^A^A \}$ (taller)
W, a⊕b	\hsmash U "\thinsp I", a\hsmash"\otimes" "\oplus" b
$\tilde{E}'[S[p+\varphi(\Delta)]]$	First apply red text color to $\varphi(\Delta)$, then apply black text color to Δ .

Useful links

Murray Sargent's reference document and blog.

Equation numbering

This equation is created using a table:

$$e(B) = \sum_{p \in B} ||I'[p] - I[p]||^2.$$
 (1)

It renumbers automatically if copied. We replace its content:

$$x = \int_0^1 e^{-\sqrt{t^2 + 1}} dt.$$
 (2)

Creating a reference to "Equation (2)" involves two steps:

- Click on the "2" to the right side of the equation, and perform
 Insert → Bookmark with some name such as eq_x.
- Type "Equation" and perform Insert → Cross-reference → BookMark → Paragraph number and select eq x.

See also these macros for equation numbers (Office 2007/2010).

Line spacing

Within a paragraph, formulas such as f^g^h may be taller than the paragraph text, e.g., f^{g^h} , resulting in uneven vertical spacing. Instead, we can ignore vertical size using \smash(f^g^h) to create the formula f^{g^h} which does not alter the line spacing.

An alternative used in this paragraph is to force the paragraph line spacing to a specific value, here 10pt – thus we get f^{g^h} .

Display versus inline

Display mode: A paragraph containing just a math formula, without any characters before or after the formula, is autocentered. (The period is *inside* the formula.)

$$\sum_{i} a + b.$$

Inline mode: To obtain this more compact style, append a space after the formula (or place the period outside the formula) and set paragraph formatting to "center":

$$\sum_{i} a + b_{i}$$

To preserve display-mode, insert text inside math using double-quotes, e.g., " where " in:

$$\sum_{i} a + b \quad \text{where} \quad a \neq b.$$

i.e.: $Alt = \sum_{a=0}^{n} a+b Right$ where " a/=b. Alt = b.

Horizontal alignment

To align these two equations, we select each "=" and right-click-select Align at this Character.

$$(x+a)^n = \sum_{k=0}^n \binom{n}{k} x^k a^{n-k}$$
$$(1+x)^n = 1 + \frac{nx}{1!} + \frac{n(n-1)x^2}{2!} + \cdots$$

Some large equations can be made to fit by using an almost imperceptibly smaller font size (here 8.5pt instead of 9pt):

$$\mathrm{Mag}_{E_H}(p) = \sum\nolimits_{\Delta = p - \lfloor p \rfloor - \delta, \, \delta \in \{\binom{0}{0}, \binom{1}{0}, \binom{0}{1}, \binom{1}{1}\}} w(\Delta) E_H[S[p - \Delta] + \Delta] \,.$$

Other built-in examples

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, \quad -\infty < x < \infty$$

Hugues Hoppe (Microsoft Research) 2014-08-27