

# Introducción al desarrollo de aplicaciones de IA

Ana Jiménez Pastor Head Strategic Projects and Frontiers in Al Quibim SL

INTELIGENCIA ARTIFICIAL



# Índice

- Creación de la base de datos
- Anotación
- Estrategias de entrenamiento:
  - Modelos basados en características
  - Modelos basados en imagen
- Estrategias de validación
- Despliegue de modelos de IA



# Índice

- Creación de la base de datos
- Anotación
- Estrategias de entrenamiento:
  - Modelos basados en características
  - Modelos basados en imagen
- Estrategias de validación
- Despliegue de modelos de IA





Los modelos de IA son muy sensibles a pequeñas variaciones de la imagen de entrada







Requerimientos para el desarrollo de un modelo de IA robusto:

#### 1. Base de datos heterogénea:

- Mujeres y hombres
- Diferentes edades
- Diferentes nacionalidades
- Multi-céntrico
- Diferentes escáneres
- Diferentes protocolos de adquisición
- ...



Requerimientos para el desarrollo de un modelo de IA robusto:

- 1. Base de datos heterogénea
- 2. Técnicas de aumento de datos:



Rotaciones



Ruido



Zoom



Translaciones

. . .



Requerimientos para el desarrollo de un modelo de IA robusto:

- I. Base de datos heterogénea
- 2. Técnicas de aumento de datos
- 3. Validación externa

Design Characteristics of Studies Reporting the Performance of Artificial Intelligence Algorithms for Diagnostic Analysis of Medical Images: Results from Recently Published Papers

Dong Wook Kim, MD<sup>1</sup>\*, Hye Young Jang, MD<sup>2</sup>\*, Kyung Won Kim, MD, PhD<sup>2</sup>, Youngbin Shin, MS<sup>2</sup>, Seong Ho Park, MD, PhD<sup>2</sup>

<sup>1</sup>Department of Radiology, Taean-gun Health Center and County Hospital, Taean-gun, Korea; <sup>2</sup>Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea

Results: Of 516 eligible published studies, only 6% (31 studies) performed external validation. None of the 31 studies adopted all three design features: diagnostic cohort design, the inclusion of multiple institutions, and prospective data collection for external validation. No significant difference was found between medical and non-medical journals.



Requerimientos para el desarrollo de un modelo de IA robusto:

- 1. Base de datos heterogénea
- 2. Técnicas de aumento de datos
- 3. Validación externa

Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers

©John Mongan, ©Linda Moy, ©Charles E. Kahn, Jr ⊠

Author Affiliations

Published Online: Mar 25 2020 https://doi.org/10.1148/ryai.2020200029

| Section/Topic        | No.  | Item                                                                                                                                                                                                                |
|----------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TITLE or ABSTRACT    | 9    |                                                                                                                                                                                                                     |
|                      | 1    | Identification as a study of AI methodology, specifying the category of technology used (eg. deep learn<br>ing)                                                                                                     |
| ABSTRACT             |      |                                                                                                                                                                                                                     |
|                      | 2    | Structured summary of study design, methods, results, and conclusions                                                                                                                                               |
| INTRODUCTION         |      |                                                                                                                                                                                                                     |
|                      | 3    | Scientific and clinical background, including the intended use and clinical role of the AI approach                                                                                                                 |
|                      | 4    | Study objectives and hypotheses                                                                                                                                                                                     |
| METHODS              |      |                                                                                                                                                                                                                     |
| Study Design         | 5    | Prospective or retrospective study                                                                                                                                                                                  |
|                      | 6    | Study goal, such as model creation, exploratory study, feasibility study, noninferiority trial                                                                                                                      |
| Data                 | 7    | Data sources                                                                                                                                                                                                        |
|                      | 8    | Eligibility criteria: how, where, and when potentially eligible participants or studies were identified (eq<br>symptoms, results from previous tests, inclusion in registry, patient-care setting, location, dates) |
|                      | 9    | Data preprocessing steps                                                                                                                                                                                            |
|                      | 10   | Selection of data subsets, if applicable                                                                                                                                                                            |
|                      | - 11 | Definitions of data elements, with references to common data elements                                                                                                                                               |
|                      | 12   | De-identification methods                                                                                                                                                                                           |
|                      | 13   | How missing data were handled                                                                                                                                                                                       |
| Ground Truth         | 14   | Definition of ground truth reference standard, in sufficient detail to allow replication                                                                                                                            |
|                      | 15   | Rationale for choosing the reference standard (if alternatives exist)                                                                                                                                               |
|                      | 16   | Source of ground truth annotations; qualifications and preparation of annotators                                                                                                                                    |
|                      | 17   | Annotation tools                                                                                                                                                                                                    |
|                      | 18   | Measurement of inter- and intrarater variability; methods to mitigate variability and/or resolve<br>discrepancies                                                                                                   |
| Data Partitions      | 19   | Intended sample size and how it was determined                                                                                                                                                                      |
|                      | 20   | How data were assigned to partitions; specify proportions                                                                                                                                                           |
|                      | 21   | Level at which partitions are disjoint (eg. image, study, patient, institution)                                                                                                                                     |
| Model                | 22   | Detailed description of model, including inputs, outputs, all intermediate layers and connections                                                                                                                   |
|                      | 23   | Software libraries, frameworks, and packages                                                                                                                                                                        |
|                      | 24   | Initialization of model parameters (eg. randomization, transfer learning)                                                                                                                                           |
| Training             | 25   | Details of training approach, including data augmentation, hyperparameters, number of models trained                                                                                                                |
|                      | 26   | Method of selecting the final model                                                                                                                                                                                 |
|                      | 27   | Ensembling techniques, if applicable                                                                                                                                                                                |
| Evaluation           | 28   | Metrics of model performance                                                                                                                                                                                        |
|                      | 29   | Statistical measures of significance and uncertainty (eg. confidence intervals)                                                                                                                                     |
|                      | 30   | Robustness or sensitivity analysis                                                                                                                                                                                  |
|                      | 31   | Methods for explainability or interpretability (eg, saliency maps) and how they were validated                                                                                                                      |
|                      | 32   | Validation or testing on external data                                                                                                                                                                              |
| RESULTS              |      |                                                                                                                                                                                                                     |
| Data                 | 33   | Flow of participants or cases, using a diagram to indicate inclusion and exclusion                                                                                                                                  |
|                      | 34   | Demographic and clinical characteristics of cases in each partition                                                                                                                                                 |
| Model performance    | 35   | Performance metrics for optimal model(s) on all data partitions                                                                                                                                                     |
|                      | 36   | Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)                                                                                                                             |
|                      | 37   | Failure analysis of incorrectly classified cases                                                                                                                                                                    |
| DISCUSSION           |      |                                                                                                                                                                                                                     |
|                      | 38   | Study limitations, including potential bias, statistical uncertainty, and generalizability                                                                                                                          |
|                      | 39   | Implications for practice, including the intended use and/or clinical role                                                                                                                                          |
| OTHER<br>INFORMATION |      |                                                                                                                                                                                                                     |
|                      | 40   |                                                                                                                                                                                                                     |
|                      | 41   | Where the full study protocol can be accessed                                                                                                                                                                       |
|                      | 42   | Sources of funding and other support; role of funders                                                                                                                                                               |



- 1. Base de datos heterogénea
- 2. Técnicas de aumento de datos
- 3. Validación externa

| Ground Truth    | 14 | Definition of ground truth reference standard, in sufficient detail to allow replication             |  |  |  |  |  |
|-----------------|----|------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                 | 15 | Rationale for choosing the reference standard (if alternatives exist)                                |  |  |  |  |  |
|                 | 16 | Source of ground truth annotations; qualifications and preparation of annotators                     |  |  |  |  |  |
|                 | 17 | Annotation tools                                                                                     |  |  |  |  |  |
|                 | 18 | Measurement of inter- and intrarater variability; methods to mitigate variability and/or resolve     |  |  |  |  |  |
|                 |    | discrepancies                                                                                        |  |  |  |  |  |
| Data Partitions | 19 | Intended sample size and how it was determined                                                       |  |  |  |  |  |
|                 | 20 | How data were assigned to partitions; specify proportions                                            |  |  |  |  |  |
|                 | 21 | Level at which partitions are disjoint (eg, image, study, patient, institution)                      |  |  |  |  |  |
| Model           | 22 | Detailed description of model, including inputs, outputs, all intermediate layers and connections    |  |  |  |  |  |
|                 | 23 | Software libraries, frameworks, and packages                                                         |  |  |  |  |  |
|                 | 24 | Initialization of model parameters (eg, randomization, transfer learning)                            |  |  |  |  |  |
| Training        | 25 | Details of training approach, including data augmentation, hyperparameters, number of models trained |  |  |  |  |  |
|                 | 26 | Method of selecting the final model                                                                  |  |  |  |  |  |
|                 | 27 | Ensembling techniques, if applicable                                                                 |  |  |  |  |  |
| Evaluation      | 28 | Metrics of model performance                                                                         |  |  |  |  |  |
|                 | 29 | Statistical measures of significance and uncertainty (eg, confidence intervals)                      |  |  |  |  |  |
|                 | 30 | Robustness or sensitivity analysis                                                                   |  |  |  |  |  |
|                 | 31 | Methods for explainability or interpretability (eg, saliency maps) and how they were validated       |  |  |  |  |  |
|                 | 32 | Validation or testing on external data                                                               |  |  |  |  |  |



- 1. Base de datos heterogénea
- 2. Técnicas de aumento de datos
- 3. Validación externa

| Ground Truth    | 14 | Definition of ground truth reference standard, in sufficient detail to allow replication                       |
|-----------------|----|----------------------------------------------------------------------------------------------------------------|
|                 | 15 | Rationale for choosing the reference standard (if alternatives exist)                                          |
|                 | 16 | Source of ground truth annotations; qualifications and preparation of annotators                               |
|                 | 17 | Annotation tools                                                                                               |
|                 | 18 | Measurement of inter- and intrarater variability; methods to mitigate variability and/or resolve discrepancies |
| Data Partitions | 19 | Intended sample size and how it was determined                                                                 |
|                 | 20 | How data were assigned to partitions; specify proportions                                                      |
|                 | 21 | Level at which partitions are disjoint (eg, image, study, patient, institution)                                |
| Model           | 22 | Detailed description of model, including inputs, outputs, all intermediate layers and connections              |
|                 | 23 | Software libraries, frameworks, and packages                                                                   |
|                 | 24 | Initialization of model parameters (eg, randomization, transfer learning)                                      |
| Training        | 25 | Details of training approach, including data augmentation, hyperparameters, number of models trained           |
|                 | 26 | Method of selecting the final model                                                                            |
|                 | 27 | Ensembling techniques, if applicable                                                                           |
| Evaluation      | 28 | Metrics of model performance                                                                                   |
|                 | 29 | Statistical measures of significance and uncertainty (eg, confidence intervals)                                |
|                 | 30 | Robustness or sensitivity analysis                                                                             |
|                 | 31 | Methods for explainability or interpretability (eg, saliency maps) and how they were validated                 |
|                 | 32 | Validation or testing on external data                                                                         |



- 1. Base de datos heterogénea
- 2. Técnicas de aumento de datos
- 3. Validación externa

| Ground Truth    | 14 Definition of ground truth reference standard, in sufficient detail to allow replication                          |
|-----------------|----------------------------------------------------------------------------------------------------------------------|
|                 | 15 Rationale for choosing the reference standard (if alternatives exist)                                             |
|                 | 16 Source of ground truth annotations; qualifications and preparation of annotators                                  |
|                 | 17 Annotation tools                                                                                                  |
|                 | 18 Measurement of inter- and intrarater variability; methods to mitigate variability and/or resolve<br>discrepancies |
| Data Partitions | 19 Intended sample size and how it was determined                                                                    |
|                 | 20 How data were assigned to partitions; specify proportions                                                         |
|                 | 21 Level at which partitions are disjoint (eg. image, study, patient, institution)                                   |
| Model           | 22 Detailed description of model, including inputs, outputs, all intermediate layers and connections                 |
|                 | 23 Software libraries, frameworks, and packages                                                                      |
|                 | 24 Initialization of model parameters (eg. randomization, transfer learning)                                         |
| Training        | 2) Details of training approach, including data augmentation, hyperparameters, number of models trained              |
|                 | 26 Method of selecting the final model                                                                               |
|                 | 27 Ensembling techniques, if applicable                                                                              |
| Evaluation      | 28 Metrics of model performance                                                                                      |
|                 | 29 Statistical measures of significance and uncertainty (eg, confidence intervals)                                   |
|                 | 30 Robustness or sensitivity analysis                                                                                |
|                 | 31 Methods for explainability or interpretability (eg, saliency maps) and how they were validated                    |
|                 | 32 Validation or testing on external data                                                                            |



- 1. Base de datos heterogénea
- 2. Técnicas de aumento de datos
- 3. Validación externa

| Ground Truth    | 4 Definition of ground truth reference standard, in sufficient detail to allow replication                          |      |
|-----------------|---------------------------------------------------------------------------------------------------------------------|------|
|                 | 5 Rationale for choosing the reference standard (if alternatives exist)                                             |      |
|                 | 6 Source of ground truth annotations; qualifications and preparation of annotators                                  |      |
|                 | 7 Annotation tools                                                                                                  |      |
|                 | 8 Measurement of inter- and intrarater variability; methods to mitigate variability and/or resolve<br>discrepancies |      |
| Data Partitions | 9 Intended sample size and how it was determined                                                                    |      |
|                 | How data were assigned to partitions; specify proportions                                                           |      |
|                 | Level at which partitions are disjoint (eg, image, study, patient, institution)                                     |      |
| Model           | 2 Detailed description of model, including inputs, outputs, all intermediate layers and connections                 |      |
|                 | 3 Software libraries, frameworks, and packages                                                                      |      |
|                 | 4 Initialization of model parameters (eg. randomization, transfer learning)                                         |      |
| Training        | Details of training approach, including data augmentation, hyperparameters, number of models train                  | ie ł |
|                 | Method of selecting the final model                                                                                 |      |
|                 | 7 Ensembling techniques, if applicable                                                                              |      |
| Evaluation      | 8 Metrics of model performance                                                                                      |      |
|                 | 9 Statistical measures of significance and uncertainty (eg, confidence intervals)                                   |      |
|                 | O Robustness or sensitivity analysis                                                                                |      |
|                 | Methods for explainability or interpretability (eg, saliency maps) and how they were validated                      |      |
|                 | 2 Validation or testing on external data                                                                            |      |



- 1. Base de datos heterogénea
- 2. Técnicas de aumento de datos
- 3. Validación externa

| Ground Truth    | 14 | Definition of ground truth reference standard, in sufficient detail to allow replication                       |
|-----------------|----|----------------------------------------------------------------------------------------------------------------|
|                 | 15 | Rationale for choosing the reference standard (if alternatives exist)                                          |
|                 | 16 | Source of ground truth annotations; qualifications and preparation of annotators                               |
|                 | 17 | Annotation tools                                                                                               |
|                 | 18 | Measurement of inter- and intrarater variability; methods to mitigate variability and/or resolve discrepancies |
| Data Partitions | 19 | Intended sample size and how it was determined                                                                 |
|                 | 20 | How data were assigned to partitions; specify proportions                                                      |
|                 | 21 | Level at which partitions are disjoint (eg, image, study, patient, institution)                                |
| Model           | 22 | Detailed description of model, including inputs, outputs, all intermediate layers and connections              |
|                 | 23 | Software libraries, frameworks, and packages                                                                   |
|                 |    | Initialization of model parameters (eg, randomization, transfer learning)                                      |
| Training        | 25 | Details of training approach, including data augmentation, hyperparameters, number of models trained           |
|                 | 26 | Method of selecting the final model                                                                            |
|                 | 27 | F                                                                                                              |
| Evaluation      | 28 | Metrics of model performance                                                                                   |
|                 | 29 | Statistical measures of significance and uncertainty (eg, confidence intervals)                                |
|                 | 30 | Robustness or sensitivity analysis                                                                             |
|                 | 31 | Methods for explainability or interpretability (eg, saliency maps) and how they were validated                 |
|                 |    | Validation or testing on external data                                                                         |



Requerimientos para el desarrollo de un modelo de IA robusto:

- 1. Base de datos heterogénea
- Técnicas de aumento de datos
- 3. Validación externa

Certificados para poder vender como producto sanitario







#### Bases de datos públicas

#### The Cancer Imaging Archive (TCIA)



https://www.cancerimagingarchive.net/

#### **Grand Challenge**



https://grand-challenge.org/



# Índice

- Creación de la base de datos
- Anotación
- Estrategias de entrenamiento:
  - Modelos basados en características
  - Modelos basados en imagen
- Estrategias de validación
- Despliegue de modelos de IA



#### **Anotación**

# Segmentación



Segmentación semántica



Segmentación de instancias

#### Detección de objetos / Localización





#### **Anotación**

#### Herramientas





https://www.slicer.org/

http://www.itksnap.org/pmwiki/pmwiki.php



#### **Anotación**

Variabilidad intra- inter- observador -> Guías de anotación y consenso





# Índice

- Creación de la base de datos
- Anotación
- Estrategias de entrenamiento:
  - Modelos basados en características
  - Modelos basados en imagen
- Estrategias de validación
- Despliegue de modelos de IA



#### Modelos basados en características



#### Modelos basados en imagen



# Datos de entrenamiento



#### Modelos basados en características





#### Modelos basados en características

Características de radiómica



Características para el estudio de la heterogeneidad del tumor.





2. Second order: Statistical inter-relationships between neighboring voxels

GLCM GLRLM GLSZM GLDM NGTDM

3. Shape: Geometric properties of the delineated ROI



4. Higher order features

Square, exponential, logarithm, wavelet, LoG



#### Modelos basados en características

Características profundas (Deep features)

Se emplea la capacidad de aprendizaje de las CNN. Así, se entrena una autocodificador capaz de extraer la información más relevante de la imagen de entrada (características). Una vez entrenado, se emplea el codificador para extraer dichas características de imágenes nuevas.







Fuente imágenes: ADC, Ktrans and PDFF (Quibim SL, Valencia, Spain). SUV (Dimitrakopoulou-Strauss, A. et al. Kinetic modeling and parametric imaging with dynamic PET for oncological applications: general considerations, current clinical applications, and future perspectives. Eur J Nucl Med Mol Imaging (2021)



#### Modelos basados en características





#### Modelos basados en características

Entrenamiento del modelo

1. Armonización de características

Las técnicas de armonización permiten reducir las diferencias entre fabricantes y protocolos de adquisición.

**ComBat\*** es una técnica extendida que se empleó previamente en genómica.





#### Modelos basados en características

Entrenamiento del modelo





# Modelos basados en imagen





# Modelos basados en imagen





# Índice

- Creación de la base de datos
- Anotación
- Estrategias de entrenamiento:
  - Modelos basados en características
  - Modelos basados en imagen
- Estrategias de validación
- Despliegue de modelos de IA



#### Validación técnica

Comparación de los resultados contra una referencia (fantoma, DRO, dispositivo de referencia, anotaciones, etc.). Se emplea para la validación de los algoritmos de extracción de características.



#### Validación clínica

Correlación con un <u>objetivo clínico</u> (e.g., estadiaje, respuesta al tratamiento, tiempo de supervivencia, etc.).





#### Validación técnica. Fantoma

Objeto físico compuesto por tubos con valores conocidos (e.g., T1 y T2 en RM).



Validación de un algoritmo para la cuantificación del T2.



# Validación técnica. Objeto de referencia digital (DRO)

Imagen con los valores cuantitativos de referencia



Perfil de QIBA : Imagen potenciada en diffusion (DWI). Validación de un algoritmo de cuantificación del coeficiente aparente de diffusion (ADC)





# Validación técnica. Dispositivo de referencia

Comparativa con un dispositivo médico previamente validado.





#### Validación técnica. Anotaciones expertos

Comparativa con datos anotados manualmente y revisados por expertos. Para garantizar la robustez del modelo hay que evaluarlo en diferentes escenarios (origen, fabricantes, campo magnético, etc.)





# Validación técnica. Anotaciones expertos. Segmentación





| Métricas  | Métricas Media |             | Mediana     |  |  |
|-----------|----------------|-------------|-------------|--|--|
| DSC       | 0.85           | 0.09        | 0.87        |  |  |
|           | (0.84–0.87)    | (0.06–0.10) | (0.85–0.88) |  |  |
| Precision | 0.89           | 0.08        | 0.91        |  |  |
|           | (0.88–0.91)    | (0.07–0.10) | (89–0.92)   |  |  |
| Recall    | 0.81           | 0.12        | 0.82        |  |  |
|           | (0.79–0.83)    | (0.10–0.14) | (0.80–0.84) |  |  |

Validación de un algoritmo de segmentación automática de hiperintensidades de sustancia blanca.



#### Validación clínica

Comparación contra un objetivo clínico:

- **Modelos diagnósticos**: comparativa frente a estándar de referencia (e.g., biopsia). Estrategias de superioridad o no inferioridad.
- Modelos predictivos: análisis de supervivencia (e.g., supervivencia, tiempo libre de progresión), modelos de clasificación (e.g., response al tratamiento).



#### Validación clínica

Valores cuantitativos: Segmentación CNN vs manual



Valores de PDFF vs. Grados esteatosis (biopsia)

| Segmentation Grades  |     | Cut-off | AUC  | 95% CI    | Sn | Sp |  |  |  |
|----------------------|-----|---------|------|-----------|----|----|--|--|--|
| PDFF – Steatosis (%) |     |         |      |           |    |    |  |  |  |
| ROI                  | 5>1 | > 7.7   | 0.96 | 0.93-0.98 | 94 | 84 |  |  |  |
| VOI                  | S≥1 | > 7.8   | 0.97 | 0.94-0.99 | 95 | 84 |  |  |  |
| ROI                  |     | > 10.2  | 0.95 | 0.92-0.98 | 92 | 90 |  |  |  |
| voi                  | S≥2 | > 10.8  | 0.96 | 0.93-0.99 | 88 | 91 |  |  |  |
| ROI                  |     | > 12.8  | 0.96 | 0.93-0.99 | 93 | 87 |  |  |  |
| voi                  | S≥3 | > 14.1  | 0.96 | 0.93-0.99 | 89 | 91 |  |  |  |

Validación de un algoritmo para la cuantificación de PDFF y R2\* hepáticos

Jimenez-Pastor, A. et al. Precise whole liver automatic segmentation and quantification of PDFF and R2\* on MR images. Eur Radiol (2021). Marti-Aguado D. et al. Automated Whole-Liver MRI Segmentation for Quantitative Assessment of Steatosis and Iron in Chronic Liver Disease: Correlations with Histologic Grades and Digital Image Analysis. Radiology (2022)



#### Validación clínica

Validación de un algoritmo para la predicción del tiempo de supervivencia en pacientes con neuroblastoma

| Model                     | Modifications            | C. Index IPCW |       | C. Index |       | Mean AUC |       | Mean Brier Score |       |
|---------------------------|--------------------------|---------------|-------|----------|-------|----------|-------|------------------|-------|
|                           |                          | Train         | Test  | Train    | Test  | Train    | Test  | Train            | Test  |
| Cox                       | Boruta                   | 0.745         | 0.709 | 0.785    | 0.728 | 0.829    | 0.875 | 0.108            | 0.117 |
| ElasticNet Cox            | Boruta                   | 0.745         | 0.709 | 0.785    | 0.729 | 0.830    | 0.875 | 0.108            | 0.117 |
| Random Survival<br>Forest | PCA                      | 0.913         | 0.721 | 0.928    | 0.743 | 0.962    | 0.895 | 0.085            | 0.123 |
| Extra Survival<br>Trees   | PCA                      | 0.869         | 0.718 | 0.893    | 0.747 | 0.928    | 0.827 | 0.093            | 0.127 |
| Gradient Boosted<br>Model | PCA +<br>Remove Outliers | 0.856         | 0.712 | 0.884    | 0.736 | 0.924    | 0.900 | 0.107            | 0.139 |



#### Validación clínica

Validación de un algoritmo para la predicción del tiempo de supervivencia en pacientes con neuroblastoma







# Índice

- Creación de la base de datos
- Anotación
- Estrategias de entrenamiento:
  - Modelos basados en características
  - Modelos basados en imagen
- Estrategias de validación
- Despliegue de modelos de IA



# Despliegue de modelos de IA





# Despliegue de modelos de IA





# Despliegue de modelos de IA





#### **Conclusiones**

- La colección y anotación de datos es un paso esencial para garantizar un buen rendimiento y generalización del modelo.
- Cuando se desarrolla un modelo de IA basado en imagen, podemos aproximarlo de dos formas: basado en características o basado en imagen.
- La validación externa del modelo es necesaria para garantizar la robustez y generalización del modelo.
- Hay diferentes maneras de validar un modelo que dependerá de su uso final.