Elementos de Cálculo Numérico / Cálculo Numérico

Primer Cuatrimestre 2021

Tercer ejercicio computacional: Problemas de valores Iniciales - Método de Euler 12/04/21 al 19/04/21

Recuerde subir el archivo en formato ejercicioX_NOMBREAPELLIDO.py Recuerde al hacer consultas postear su código

Un ejemplo de aplicación de Euler puede encontrarse en la lista de reproducción de videos de la parte computacional.

a) Partiendo de la ecuación

$$\begin{cases} y'(t) = 6e^{-t} - 2y \\ y(0) = 1 \end{cases}$$

cuya solución es

$$y(t) = 6e^{-t} - 5e^{-2t}.$$

Resuélvala empleando el método de Euler entre t=0 y t=10. Considere los números de pasos N con valores 10,50,100,500,1000. Grafique y(t) para los distintos valores de N y compare con la solución exacta. ¿Cómo cambia el error en t=10 en función de 1/N?

Ayuda: Construya una función

donde y0 es el valor de y en t0, T es el tiempo final de cálculo, y N es el número de pasos o iteraciones. Esta función deberá devolver dos listas (o dos arrays), t e y, con los tiempos y el valor calculado de y en los mismos:

def resuelve_y(y0,t0,T,N):

CODIGO

return([t,y]) # Notar que retorno una lista con dos listas

B) Partiendo de la ecuación:

$$y'' = -5y$$
$$y(0) = 0,$$
$$y'(0) = 5$$

cuya solución es

$$y(t) = \sqrt{5} \operatorname{sen}\left(\sqrt{5}t\right)$$

Resuélvala entre t=0 y t=10. Para esto, transforme la ecuación en un sistema de ecuaciones, usando el reemplazo $y_1=y,\ y_2=y'$, empleando el método de Euler en cada ecuación individual. Compare el resultado de actualizar primero y_1 y primero y_2 con la solución exacta:

A)
$$y_2(t+dt) = y_2(t) + F(t; y_1(t); y_2(t)) * dt$$
$$y_1(t+dt) = y_1(t) + F(t; y_1(t); y_2(t)) * dt$$

B)
$$y_1(t+dt) = y_1(t) + F(t; y_1(t); y_2(t)) * dt$$
$$y_2(t+dt) = y_2(t) + F(t; y_1(t+dt); y_2(t)) * dt$$

C)
$$y_2(t+dt) = y_2(t) + F(t; y_1(t); y_2(t)) * dt$$
$$y_1(t+dt) = y_1(t) + F(t; y_1(t); y_2(t+dt)) * dt$$

Habiendo elegido un método (A, B o C), calcule el error en función del tiempo para distinto número de pasos N como en el problema anterior. ¿Cómo aumenta el error en función del número de ciclos, para cada N?¿Respeta el período la solución?