无锡学院 2023-2024 学年第一学期 高等数学 II (1) 课程试卷参考答案与评分标准

一、填空题(每小题 3 分,共 15 分)
$$y=1, e^2, (1,-3/2), 0 < q < 1, dy = -\frac{\sin \sqrt{x}}{2\sqrt{x}}$$

1. 函数
$$y = \frac{x^2 - 3x + 1}{x^2 + 1}$$
 的图形的水平渐近线的方程为____y = 1_____.

2.
$$\lim_{x\to 0} (1+2\tan^2 x)^{\cot^2 x} = \underline{e^2}$$

3. 曲线
$$y = x^2 (\ln x - \frac{3}{2})$$
 的拐点坐标为___(1, -3/2)____.

4. 若反常积分
$$\int_a^b \frac{1}{(x-a)^q} dx$$
, $(q>0)$ 是收敛的,则 q 的取值范围是_____0 < $q<1$ _____.

5. 设函数
$$y = \cos \sqrt{x}$$
,则 $dx = \frac{-2\arccos y}{\sqrt{1-y^2}}$ dy 或 $dy = -\frac{\sin \sqrt{x}}{2\sqrt{x}} dx$ _____.

二、选择题(每小题 3 分, 共 15 分) DCACB

1. 下列各对函数中,表示同一个函数的是(D).

(A)
$$y = \frac{x^2 - 1}{x + 1}$$
 $\pi y = x - 1$ (B) $y = \ln(x^2)$ $\pi y = 2 \ln x$

(C)
$$y = \sqrt{1 - \cos^2 x} \neq y = \sin x$$
 (D) $y = |x| \neq y = \sqrt{x^2}$

- (A) 不连续
- (B) 连续但不可导
- (C) 连续且可导 (D) 可导但不连续

3. 设函数
$$y = f(x)$$
 在点 x_0 处可导,则 $\lim_{h\to 0} \frac{f(x_0 + 2h) - f(x_0 - h)}{2h} = (A)$.

(A)
$$\frac{3}{2}f'(x_0)$$
 (B) $\frac{1}{2}f'(x_0)$ (C) $2f'(x_0)$ (D) $f'(x_0)$

(B)
$$\frac{1}{2}f'(x_0)$$

(C)
$$2f'(x_0)$$

(D)
$$f'(x_0)$$

4. 曲线
$$y = \frac{2}{3}x^{\frac{3}{2}}$$
上对应 $0 \le x \le 2$ 的一段弧的长度为(C).

(A)
$$\frac{2}{3}(2\sqrt{2}-1)$$
 (B) $\frac{4}{3}\sqrt{2}$ (C) $\frac{2}{3}(3\sqrt{3}-1)$ (D) $3\sqrt{3}-1$

(B)
$$\frac{4}{3}\sqrt{2}$$

(C)
$$\frac{2}{3}(3\sqrt{3}-1)$$

(D)
$$3\sqrt{3}-1$$

5. 设
$$I_1 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} e^{\cos x} dx$$
, $I_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} e^{\tan x} dx$, $I_3 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} e^{\sin x} dx$,则 I_1, I_2, I_3 的大小关系

为(B).

(A)
$$I_1 > I_2 > I_3$$

(B)
$$I_2 > I_3 > I_1$$

(C)
$$I_3 > I_2 > I_1$$

$$\text{(A)} \ \ I_1 > I_2 > I_3 \qquad \text{(B)} \ \ I_2 > I_3 > I_1 \qquad \text{(C)} \ \ I_3 > I_2 > I_1 \qquad \text{(D)} \ \ I_2 > I_1 > I_3$$

三、计算题(每小题6分,共30分)

1. 求极限
$$\lim_{x\to 0} \left(\frac{1+x}{1-e^{-x}} - \frac{1}{x} \right)$$
.

$$\text{If } \lim_{x \to 0} \left(\frac{1+x}{1-e^{-x}} - \frac{1}{x} \right) = \lim_{x \to 0} \frac{x(1+x) - (1-e^{-x})}{x(1-e^{-x})}$$

$$= \lim_{x \to 0} \frac{x^2 + x - (1-e^{-x})}{x^2} \cdot \dots \cdot 3 \text{ if }$$

$$= \lim_{x \to 0} \frac{2x + 1 - e^{-x}}{2x} = \lim_{x \to 0} \frac{2 + e^{-x}}{2} = \frac{3}{2} \cdot \dots \cdot 3 \text{ if }$$

2. 设函数
$$y = y(x)$$
 由方程 $e^y - xy = e$ 所确定,求 $\frac{dy}{dx}$.

解 方程两边分别对 求导,得

$$e^{y} \frac{dy}{dx} - y - x \frac{dy}{dx} = 0 \cdot \dots \cdot 4$$

所以
$$\frac{dy}{dx} = \frac{y}{e^y - x} \cdots 2$$
分

3. 计算不定积分
$$\int \frac{1}{x^2-2x+6} dx$$
.

解
$$\int \frac{1}{x^2 - 2x + 6} dx = \int \frac{1}{(x - 1)^2 + (\sqrt{5})^2} dx \cdots 3$$

$$= \frac{1}{\sqrt{5}} \arctan \frac{x - 1}{\sqrt{5}} + C \cdots 3$$

4. 计算定积分 $\int_0^1 \arctan \sqrt{x} dx$.

解 令
$$t = \sqrt{x}$$
,则 $x = t^2$, $dx = 2tdt$,

$$\int_0^1 \arctan \sqrt{x} dx = \int_0^1 \arctan t \ dt^2 = [t^2 \arctan t]_0^1 - \int_0^1 \frac{t^2}{1+t^2} \ dt \ \cdots 3$$

$$= \frac{\pi}{4} - [t - \arctan t]_0^1 = \frac{\pi}{4} - (1 - \frac{\pi}{4}) = \frac{\pi}{2} - 1 \cdot \dots \cdot 3$$

5. 设函数
$$f(x) = \begin{cases} ke^x, & x \le 0, \\ \frac{x \sin 2x}{1 - \cos x}, & x > 0 \end{cases}$$
 应选择什么样的 k ,使 $f(x)$ 在 $x = 0$ 处连续.

解 因为 f(0) = k, 要使 f(x) 在 x = 0 处连续,需 ········2分

$$\lim_{x \to 0^+} \frac{x \sin 2x}{1 - \cos x} = \lim_{x \to 0^+} \frac{x \cdot 2x}{\frac{1}{2}x^2} = 4 = f(0) = k ,$$

故
$$k = 4$$
. ·······4分

四、解答题(每小题8分,共40分)

1. 设参数方程为
$$\begin{cases} x = a(t - \sin t), & 求 \frac{dy}{dx} 和 \frac{d^2y}{dx^2}. \end{cases}$$

$$\Re \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{a\sin t}{a(1-\cos t)} = \frac{\sin t}{1-\cos t}; \dots \dots 4$$

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}} = \frac{\frac{\cos t(1-\cos t) - \sin t \cdot \sin t}{(1-\cos t)^2}}{a(1-\cos t)} = -\frac{1}{a(1-\cos t)^2} \cdot \cdot \cdot \cdot \cdot 4$$

2. 计算定积分
$$\int_{-2}^{2} \left(\frac{x^2 \sin x}{1 + x^4} + x^2 \sqrt{4 - x^2} \right) dx$$
.

解
$$\int_{-2}^{2} \left(\frac{x^2 \sin x}{1 + x^4} + x^2 \sqrt{4 - x^2} \right) dx = 0 + 2 \int_{0}^{2} x^2 \sqrt{4 - x^2} dx. \dots 3$$
分

$$\Rightarrow x = 2\sin t (0 < t < \frac{\pi}{2}), \quad \text{if } dx = 2\cos t dt, \quad x = 0 \text{ if } t = 0; \quad x = 2 \text{ if } t = \frac{\pi}{2}.$$

$$\therefore \int_0^2 x^2 \sqrt{4 - x^2} \, dx = \int_0^{\frac{\pi}{2}} 4 \sin^2 t \cdot 2 \cos t \cdot 2 \cos t \, dt$$

$$=4\int_0^{\frac{\pi}{2}}4\sin^2t\cos^2t\ dt\cdots\cdots3$$

$$=4\int_0^{\frac{\pi}{2}}\sin^2 2t\ dt = 2\int_0^{\frac{\pi}{2}}(1-\cos 4t)\ dt = 2[t-\frac{\sin 4t}{4}]_0^{\frac{\pi}{2}} = \pi.$$

所以,原积分=
$$2\pi$$
·······2分

3. 求椭圆 $\frac{x^2}{4} + \frac{y^2}{5} = 1$ 绕 x 轴旋转而得到的旋转体的体积.

解 由对称性 $V = 2\int_0^2 \pi y^2 dx \cdots 4$ 分

$$=10\pi \int_0^2 (1-\frac{x^2}{4}) dx = 10\pi \left[x-\frac{x^3}{12}\right]_0^2 = \frac{40\pi}{3} \cdot \dots \cdot 4\pi$$

4. 设 $f(x) = \int_0^{x^2} (1 - \cos \sqrt{t}) dt, x \in (-\frac{\pi}{2}, \frac{\pi}{2})$, 求此函数的极值点和极值.

解
$$f'(x) = 2x(1-\cos x)$$
. ·······3分

当
$$x \in (-\frac{\pi}{2}, 0)$$
时, $f'(x) < 0$; 当 $x \in (0, \frac{\pi}{2})$ 时, $f'(x) > 0$, ……2分

且 f(x) 在 x=0 处连续,故 x=0 是极小值点,极小值 f(0)=0. ·······3分

5. 设函数 f(x) 在 [1,2] 上连续,在 (1,2) 内可导,且 f(2) = 4f(1). 证明至少存在一点 $c \in (1,2)$,使得 cf'(c) = 2f(c).

证明 令 $g(x) = \frac{f(x)}{x^2}$,则 g(x) 在[1,2]上连续,在(1,2)内可导,且

$$g(1) = f(1), g(2) = \frac{f(2)}{4} = \frac{4f(1)}{4} = f(1) = g(1),$$

即 g(x) 在 [1,2] 上满足罗尔中值定理的条件.4分

由于
$$g'(x) = \frac{xf'(x) - 2f(x)}{x^3}$$
, 存在 $c \in (1, 2)$, 使得

$$g'(c) = \frac{cf'(c) - 2f(c)}{c^3} = 0$$
, $\lim cf'(c) = 2f(c)$4