* .	SAMPLING AND STATISTICAL INFERENCE (SECTION 2)
	Method of Moments (A SIMPLE METRIOD FOR FINDING ESTIMATORS)
To design the second se	Here, we equate population moments to corresponding sample moment — and them solve for the parameters. One Parameter Case
	(assuming that the popmean involves the favameter)
· · · · · · · · · · · · · · · · · · ·	eq. $X_i \sim Poisson(m)$; sample of size x $E(X_i) = m$; equate this to X $\Rightarrow m = X$
	Sim $X_{i} \sim \text{Neque } \text{Exp}(\Omega)$ $= \frac{1}{2} \qquad \text{equate this } \text{to } X$ $= \frac{1}{2} \qquad \text{equate this } \text{to } X$
	Coordine: $P(X = r) = q^{r-1} P$ $E(X) = 40$
	Data: X, X, X3 (Yapeater observations of # trials to 1st Success) Set to = 7
	$P = \overline{X}$ (Sim to hogve exh.)
	Two Parameter Case Here we need 2 equs: Set 1st p 2 nd Pop mounts = 1 2 2 Souple mon
	1st Moment: $E(X_{:}) = X$ as before
	example binomit: $X_i \sim B(n,p)$: Observe X_i, X_2, \dots, X_N
1 p(1-p)+	$= \chi_i = \mu $ set $= \mu$.
	$E(X^{2}) = np(i-p) + (np)^{2} S_{n}t = M_{2} = \sum_{i=1}^{n} \frac{M_{1} - M_{2} + M_{1}^{2} = M_{2}}{N}$ $np - (np)^{2} + (np)^{2} = M_{2} \qquad M_{1} - \frac{M_{1}^{2}}{N} + M_{1}^{2} = M_{2}$ $N_{1} - \frac{M_{1}^{2}}{N} + M_{2}^{2} = M_{2}$
	$ = \frac{m^2}{m^2}$

Example
$$X$$
: \sim Gamm (\prec, β)

Data X_1, X_2, \dots, X_N

Set $E(X_i) = \prec \beta = \overline{X}$

M

 $(X_i) = \prec \beta = \overline{X}$
 $(X_i) = \prec \beta$
 $(X_i) = \prec \beta$

METHOD OF MOMENTS

ESTIMATORS

MSE (MEAN SQUARED ERROR)

MSE (g(X)) =
$$E(g(x) - 9)$$

Easy to show that

 $MSE = Various + (Bias)^2$
 $MSE = E[g(x) - E[g) + E[g] - 9]^2$
 $= E[g(x) - E[g])^2 + E[g(g) - 9]^2$
 $= V(g) + (Bias)^2$

The Nethod of Maximum Likelihood

This is regarded as a very good method for finding estimators.

We consider vandom variables $X_1, X_2, ..., X_n$ having joint Pdf $f(x_1, x_2, ..., x_n)$ — or, if discrete, having joint fredratility function $f(x_1, x_2, ..., x_n)$ — which contains one or more favameters Θ .

The Likelihood of Θ as a function of $X_1, X_2, ..., X_n$ is defined as $L(\Theta) = f(x_1, x_2, ..., x_n; \Theta)$ Here, we shall confine our consideration to random samples $X_1, X_2, ..., X_n$, so that $L(\Theta) = Tf(x_i; \Theta)$

where $X_1, X_2, ..., X_n$ are i.i.d. from a population (or process) with pdf (or probability function—if discrete) $f(x; \theta)$

NOTE that the likelihood function gives the probability of observing the given values (x, x, ..., xn), as a function of the parameter O, in the discrete case — and in the continuous case the likelihood function is proportional to the probability of observing values in the neighbourhood of the given values.

The maximum likelihood estimate (MLE) of θ is that value that maximizes the likelihood -1.c. that would make the observed data the most likely to be observed.

It is usually more convenient to maximize the natural log of the likelihood function—known as the log likelihood.

The process of maximization is often done by differentiation (with respect to 2), setting the derivative(s) to zero, and solving.

Some Examples: A vandom sample from Poisson (m)
$$L(m) = \prod_{i=1}^{n} (m)^{X_i} e^{-m}$$

$$log L(m) = \sum_{i=1}^{n} (X_i log m) - (m_i) - log(X_i!)$$

$$\lim_{i \to \infty} [log L(m)] = \lim_{i \to \infty} X_i - n$$
Setting this to zero:
$$m = X$$
(some as for Mathod of Moments.)

To check that this M yields a maximum of the likelihood function, differentiate again — and check the Sign (for M = X) — turns out to be negative, indicating that this is indeed a maximum.

Continuous case: A random sample from Negve Exp. (7) $L(x) = \prod_{i=1}^{\infty} \lambda e^{-\lambda X_i}$ $\log L(x) = n \log x - \lambda \sum_{i=1}^{\infty} X_i$

3 [log L(x)] = 3 - = X.

Setting this to zero:

(same as for method of moments)

ML ESTIMATION FOR TWO PARAMETERS

There are some important two-parameter distributions

Such as $N(M, \sigma)$ and $Gamma(\alpha, \beta)$. Consider a sample (X, X2, --, Xn) from N(M, o) $L(\mu,\sigma^2) = \frac{\eta}{11} \sqrt{\frac{2\eta}{\sigma}} \sigma e^{-\frac{\kappa}{\kappa}(\frac{\chi_1-\mu}{\sigma})^2}$ log L (4,0) = - 12 log 21 - nlog 0 - 20 1 (X-1) Get the hartial derivatives with respect to per and or $\frac{\partial \log L}{\partial \mu} = \frac{1}{\sqrt{2}} \sum_{i=1}^{n} (X_i - \mu)$ $\frac{\text{olight}}{\text{obs}} = -\frac{n}{6} + \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{5^3}$ Setting ologh = 0, and solving for M $\Rightarrow \sum_{i=1}^{\infty} (X_i - \mu) = 0 \Rightarrow \hat{\mu} = \overline{X}$ Setting slogh =0, and then substituting in for 1, $\Rightarrow \frac{n}{6} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sum_{i=1}^{n} (X_i - \overline{X})^2}$

 $\Rightarrow \hat{\sigma} = \sqrt{\frac{2}{2}(X_{i} - \overline{X})^{2}}$

(Same as for the Method of Moments)

To check that (û, ô) maximizes $L(\mu, \delta)$ one could consider the Hessian matrix (of Second hartial derivatives). We shall not deal with this — but it's been Shown that (û, ô) values do provide a maximum in the two-dimensional likelihood function.

ML Estimation of (X,B) from the Gamma Distribution We have a sample $(X_1, X_2, ..., X_n)$ from Gamma (X, λ) log $L(\alpha, \lambda) = \log \left[\frac{\pi}{\Gamma(\alpha)} \left\{ \frac{1}{\Gamma(\alpha)} (\lambda X_i)^{\alpha-1} - \lambda X_i \lambda \right\} \right]$ $= \underset{i=1}{\overset{\sim}{=}} \left[\propto \log \lambda - \log \Gamma(\alpha) + (\alpha - 1) \log \lambda_i - \lambda \lambda_i \right]$ = $n \propto \log \lambda - n \log \Gamma(\alpha) + (\alpha - 1) \sum_{i=1}^{n} \log \lambda_i$ — λ <u>> χ</u> χ. Taking hartial derivatives of lag L: $\frac{\sigma Log L}{\sigma L} = n log \lambda + \sum_{i=1}^{n} log \lambda_i - n \frac{\Gamma(x)}{\Gamma(x)}$ $\frac{\partial Log L}{\partial \lambda} = \frac{\pi \alpha}{\lambda} - \frac{\tilde{S}}{\tilde{S}} \chi_{c}$ Setting these partial derivatives to zero, the second one $\hat{J} = \frac{N \hat{X}}{\sum X_i} = \frac{\hat{X}}{\sum}$ We now substitute this into the first equation (2 log L =0) $\gamma \log \left(\frac{\lambda}{X}\right) + \frac{\sum_{i=1}^{N} \log X_i}{\sum_{i=1}^{N} \log X_i} - n \frac{\Gamma(\lambda)}{\Gamma(\lambda)} = 0$ This is a non-linear equation for $\hat{\mathcal{A}}$, and it cannot be solved explicitly (i.e. in closed form) form). It is necessary to use numerical (iterative) methods to solve for $\hat{\alpha}$ (and hence to find $\hat{\beta}$).

The (simpler) method of moments could be used to get a starting value for 2 (to start the iterative method).

ث

INVARIANCE PROPERTY FOR ML ESTIMATORS

IF
$$\hat{\theta}$$
 is the MLE for θ , then $g(\hat{\theta})$ is the MLE for $g(\theta)$

e.g. for the case of estimation of μ , σ for data from $N(\mu, \hat{\sigma})$ we found that $\hat{\sigma} = \sqrt{\frac{n}{n}} (X_i - \bar{X})^2$ We can see that the MLE for σ^2 is $\frac{n}{n} (X_i - \bar{X})^2$

APPLICABILITY TO TRUNCATED OR CENSORED DATA

This is a very useful aspect of ML estimation, which will be used in a later course on SURVIVAL ANALYSIS.

The deata may consist of M, observations of a variable X, and a further Mr observations where we know only that the observation is greater than a value t.

Then the likelihood function is

 $L(\theta) = \left[\frac{1}{i} f(x_i, \theta) \right] \left[P(x > t) \right]^{n_2}$

and the MLE for & could be found by maximizing 4(A).

BIASED ESTIMATORS AND MEAN SQUARED ERROR

Remander that if $E(\hat{\sigma}) = 0$, then $\hat{\sigma}$ is an unbriased estimator. A measure of performance for a biased estimator is the MEAN SQUARED ERROR (MSE).

 $MSE(\hat{\theta}) = E[\hat{\theta} - \theta]^2$

THIS IS NOT THE VARANCE OF A

Which is the Second moment of 3 about 0.

 $MSE(\hat{\Theta}) = E[\hat{\Theta} - E(\hat{\Theta}) + E(\hat{\Theta}) - \Theta]^{2}$ $= E[\hat{\Theta} - E(\hat{\Theta})]^{2} + [E(\hat{\Theta}) - \Theta]^{2} + 2E(\hat{\Theta} - E\hat{\Theta})[E\hat{\Theta} - \Theta]^{2}$ $= Variance(\hat{\Theta}) + (Bias)^{2}$

(The bias = (E)) -0

A BIASED ESTIMATOR CAN HAVE SMALLER MSE THAN AN UNBIASED ESTIMATOR.

THE DISTRIBUTION OF AN ML ESTIMATOR FOR LARGE M (This is referred to as the asymptotic distribution of an MLE.) Suffose that ô is the MLE for O It can be shown that, as n -> 00 (i) 3 is untilased (ii) θ is Normally distributed

(iii) $V(\theta) = \frac{-1}{E\left[\frac{D^{2}}{D\theta^{2}}\log L(\theta)\right]}$ attenuating $E\left[\frac{\partial}{\partial \theta}\log L(\theta)\right]^{2}$ The expression given for $V(\hat{\Theta})$ is known as the CRAMER-RAD LOWER BOUND (CRLB). IN FACT, NO UNB.IASED ESTIMATOR FOR & CAN HAVE A SMALLER VARIANCE THAN THE CRLB. (THE CRLB does not affly when the range of values for the distribution is related to θ , e.g. the uniform distrib $U(0,\theta)$.) EXAMPLES OF CRLB EVALUATION We found that for a random sample X1, X2, ..., Xn from a Poisson distribution, with mean m: The MLE for M = X Now we know that $E(\hat{m}) = E(\overline{X}) = m$ and $V(\hat{m}) = V(\overline{X}) = \frac{m}{n}$ [KNOW THIS?] Let's find the CRLB here: (From PACE2) [log L(m) = = (Xi log m) - mn - (log Xi!) $\frac{\partial^2 \log L(m)}{\partial m^2} = -\frac{1}{m^2} \sum_{i=1}^{\infty} \chi_i$ So that $E\left[\frac{\sigma^2 \log L(m)}{\sigma m^2}\right] = -\frac{1}{m^2} \sum_{i=1}^{\infty} E(X_i) = -\frac{n}{m}$ and thus, the CRLB = m

We can soy that the sample mean X attains the

CR Lower bound for V(m) in this case.

FOR A SAMPLE FROM $N(\mu, \sigma^2)$ The expression for $\log L(\mu, \sigma^2)$ is on hoge 3. Let's express it in terms of $\theta = \sigma^2$.

The log $L(\mu, \theta) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \theta - \frac{1}{2\theta}\sum_{i=1}^{\infty}(X_i - \mu)^2$ The expression for $\log L(\mu, \theta) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \theta - \frac{1}{2\theta}\sum_{i=1}^{\infty}(X_i - \mu)^2$ The expression for $\log L(\mu, \theta) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \theta - \frac{1}{2\theta}\sum_{i=1}^{\infty}(X_i - \mu)^2$ The expression for $\log L(\mu, \theta) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \theta - \frac{1}{2\theta}\sum_{i=1}^{\infty}(X_i - \mu)^2$ The expression for $\log L(\mu, \theta) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \theta - \frac{1}{2\theta}\sum_{i=1}^{\infty}(X_i - \mu)^2$ The expression for $\log L(\mu, \theta) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log 2\pi -$

 $= \frac{r}{2\theta^{2}} - \frac{1}{\theta^{2}} \frac{\sum_{i=1}^{n} (x_{i} - x_{i})^{2}}{\sum_{i=1}^{n} (x_{i} - x_{i})^{2}}$ $= \left[\frac{2}{2\theta^{2}} - \frac{1}{\theta^{2}} - \frac{r}{\theta^{2}}\right]$ $= -\frac{r}{2\theta^{2}}$

Thus the CRLB for estimation of $\frac{\partial^2}{\partial t}$ from a random. Sample from $N(\mu, \frac{\partial^2}{\partial t})$: $= \frac{20^2}{N} = \frac{20^4}{N}$

Thus for any untriased estimator $\hat{\theta}$ for $\hat{\sigma}$, $V(\hat{\theta}) \geq \frac{2\sigma^2}{n}$

```
EXAMPLE: A random sample {Xi} from the paf f(x) = = e
                              log L(x_1, x_1, ... x_n) = \frac{\ddot{z}}{z} log x_1 - n log \theta - \frac{\ddot{z}}{z} x_1^2
                                                                                                                                 = -\frac{1}{6} + \frac{2}{74}
                                                                                                  = \underbrace{\frac{n}{i=1}}_{i=1} \int_{0}^{\infty} x^{2} \frac{x}{\varphi} e^{-\frac{x^{2}}{2\theta}} dx 
                                                                                                        = \int_{c=1}^{\infty} \int_{c}^{\infty} 2\theta U e du
                                                                                                                                                   \frac{\partial^2}{\partial \theta^2} \log L = \frac{2}{\theta^2} = \frac{2}{\theta^2} \times \frac{2}{\theta^2}
E\left[\frac{1}{2} - \frac{1}{2} - \frac
                                                                                                                                                                      = \frac{n}{9} - \frac{2\theta}{3}
            => (RLB
```