Convex nonsmooth optimization Part III: Algorithms

Barbara Pascal

LS2N, CNRS, Centrale Nantes, Nantes University, Nantes, France barbara.pascal@cnrs.fr

Collaboration

This course has been built by Jean-Christophe Pesquet (CentraleSupélec) and Nelly Pustelnik (LPENSL)

Optimization algorithm: Forward-Backward

Let \mathcal{H} be a Hilbert space.

Let $f \in \Gamma_0(\mathcal{H})$.

Let $g \in \Gamma_0(\mathcal{H})$ be differentiable with a ν -Lipschitzian gradient where $\nu \in]0,+\infty[$.

Let $\gamma \in]0, 2/\nu[$ and $\delta = \min\{1, 1/(\nu\gamma)\} + 1/2$.

Let $(\lambda_n)_{n\in\mathbb{N}}$ be a sequence in $[0,\delta[$ such that $\sum_{n\in\mathbb{N}}\lambda_n(\delta-\lambda_n)=+\infty.$

We assume that $\operatorname{Argmin}(f+g) \neq \emptyset$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = x_n - \gamma \nabla g(x_n) \\ x_{n+1} = x_n + \lambda_n (\operatorname{prox}_{\gamma f} y_n - x_n). \end{cases}$$

Then, $(x_n)_{n\in\mathbb{N}}$ converges weakly to a minimizer of f+g.

Optimization algorithm: projected gradient

Let \mathcal{H} be a Hilbert space.

Let C a nonempty closed convex subset of \mathcal{H} .

Let $g \in \Gamma_0(\mathcal{H})$ be differentiable with a ν -Lipschitzian gradient where $\nu \in]0, +\infty[$.

Let $\gamma \in]0, 2/\nu[$ and $\delta = \min\{1, 1/(\nu\gamma)\} + 1/2$.

Let $(\lambda_n)_{n\in\mathbb{N}}$ be a sequence in $[0,\delta[$ such that $\sum_{n\in\mathbb{N}}\lambda_n(\delta-\lambda_n)=+\infty.$

We assume that $\operatorname{Argmin}_{x \in C} g(x) \neq \emptyset$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = x_n - \gamma \nabla g(x_n) \\ x_{n+1} = x_n + \lambda_n (P_C y_n - x_n). \end{cases}$$

Then, $(x_n)_{n\in\mathbb{N}}$ converges weakly to a minimizer of g over C.

Optimization algorithm: gradient descent

Let \mathcal{H} be a Hilbert space.

Let $g \in \Gamma_0(\mathcal{H})$ be a differentiable function with a ν -lipschitzian gradient where $\nu \in]0, +\infty[$.

Le $\gamma \in]0,2/\nu[$.

We assume that $\operatorname{Argmin} g \neq \varnothing$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N})$$
 $x_{n+1} = x_n - \gamma \nabla g(x_n)$

Then, $(x_n)_{n\in\mathbb{N}}$ converges weakly to a minimizer of f.

Let \mathcal{H} be a Hilbert space.

Let $f \in \Gamma_0(\mathcal{H})$ and $g \in \Gamma_0(\mathcal{H})$.

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = \operatorname{prox}_{\gamma g} x_n \\ z_n = \operatorname{prox}_{\gamma f} (2y_n - x_n) \\ x_{n+1} = x_n + \lambda_n (z_n - y_n). \end{cases}$$

Let \mathcal{H} be a Hilbert space.

Let $f \in \Gamma_0(\mathcal{H})$ and $g \in \Gamma_0(\mathcal{H})$.

Let $\gamma \in]0, +\infty[$ and let $(\lambda_n)_{n \in \mathbb{N}}$ be a sequence in [0,2] such that $\sum_{n \in \mathbb{N}} \lambda_n (2 - \lambda_n) = +\infty.$

We assume that $\operatorname{zer}(\partial f + \partial g) \neq \emptyset$. Let $x_0 \in \mathcal{H}$ and

$$(\forall n \in \mathbb{N}) \qquad \begin{cases} y_n = \operatorname{prox}_{\gamma g} x_n \\ z_n = \operatorname{prox}_{\gamma f} (2y_n - x_n) \\ x_{n+1} = x_n + \lambda_n (z_n - y_n). \end{cases}$$

The following properties are satisfied:

- $\rightarrow x_n \rightarrow \hat{x}$
- $z_n y_n \to 0, \ y_n \rightharpoonup \widehat{y}, \ z_n \rightharpoonup \widehat{y} \text{ where } \widehat{y} = \operatorname{prox}_{\gamma g} \widehat{x} \in \operatorname{Argmin}(f + g).$

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.

Let $g \in \Gamma_0(\mathcal{H})$ and $L \in \mathcal{B}(\mathcal{G}, \mathcal{H})$ such that $\operatorname{ran} L$ (image) is closed and L^*L is a isomorphism.

Let $\gamma\in \]0,+\infty[$ and let $(\lambda_n)_{n\in\mathbb{N}}$ a sequence in [0,2] such that

$$\sum_{n\in\mathbb{N}}\lambda_n(2-\lambda_n)=+\infty.$$

We assume that $\operatorname{zer}(L^* \circ \partial g \circ L) \neq \emptyset$. Let $x_0 \in \mathcal{H}$, $v_0 = (L^*L)^{-1}L^*x_0$ et

$$(\forall n \in \mathbb{N}) \begin{cases} y_n = \operatorname{prox}_{\gamma g} x_n \\ c_n = (L^* L)^{-1} L^* y_n \\ x_{n+1} = x_n + \lambda_n (L(2c_n - v_n) - y_n) \\ v_{n+1} = v_n + \lambda_n (c_n - v_n). \end{cases}$$

We have then:

 $v_n \rightharpoonup \widehat{v}$ where $\widehat{v} \in \operatorname{Argmin}(g \circ L)$.

Sketch of proof:

$$\underset{v \in \mathcal{G}}{\operatorname{minimize}} \ g(Lv) \ \Leftrightarrow \ \underset{x \in \mathcal{H}}{\operatorname{minimize}} \ \iota_E(x) + g(x)$$

where $E = \operatorname{ran} L$.

We apply Douglas-Rachford algorithm with

$$f = \iota_E \Rightarrow \operatorname{prox}_{\gamma f} = P_E$$
 by setting

$$(\forall n \in \mathbb{N})$$
 $P_E y_n = Lc_n \text{ and } P_E x_n = Lv_n$

where
$$c_n = \underset{c \in \mathcal{H}}{\operatorname{argmin}} \|y_n - Lc\|^2 = (L^*L)^{-1}L^*y_n$$
.

Particular case of Douglas-Rachford algorithm:

 $\mathcal{H} = \mathcal{H}_1 \times \cdots \mathcal{H}_m$ where $\mathcal{H}_1, \dots, \mathcal{H}_m$ Hilbert spaces $(\forall x = (x_1, \dots, x_m) \in \mathcal{H}) \ g(x) = \sum_{i=1}^m g_i(x_i)$

where $(\forall i \in \{1, ..., m\} \ g_i \in \Gamma_0(\mathcal{H}_i))$

 $L: v \mapsto (L_1v, \ldots, L_mv)$ where $(\forall i \in \{1, \ldots, m\})$ $L_i \in \mathcal{B}(\mathcal{G}, \mathcal{H}_i)$.

PPXA+ algorithm

Let $(x_{0,i})_{1 \le i \le m} \in \mathcal{H}$, $v_0 = (\sum_{i=1}^m L_i^* L_i)^{-1} \sum_{i=1}^m L_i^* x_{0,i}$ and

$$(\forall n \in \mathbb{N}) \begin{cases} y_{n,i} = \operatorname{prox}_{\gamma g_i} x_{n,i}, & i \in \{1, \dots, m\} \\ c_n = (\sum_{i=1}^m L_i^* L_i)^{-1} \sum_{i=1}^m L_i^* y_{n,i} \\ x_{n+1,i} = x_{n,i} + \lambda_n (L_i (2c_n - v_n) - y_{n,i}), & i \in \{1, \dots, m\} \\ v_{n+1} = v_n + \lambda_n (c_n - v_n). \end{cases}$$

We have then $v_n \rightharpoonup \widehat{v} \in \operatorname{Argmin} \sum_{i=1}^m g_i \circ L_i$.

Particular case of Douglas-Rachford algorithm:

$$\mathcal{H} = \mathcal{H}_1 \times \cdots \mathcal{H}_m$$
 where $\mathcal{H}_1 = \ldots = \mathcal{H}_m$ Hilbert spaces $(\forall x = (x_1, \ldots, x_m) \in \mathcal{H})$ $g(x) = \sum_{i=1}^m g_i(x_i)$ where $(\forall i \in \{1, \ldots, m\} \ g_i \in \Gamma_0(\mathcal{H}_i)$ $L: v \mapsto (L_1 v, \ldots, L_m v)$ where $L_1 = \ldots = L_m = \mathrm{Id}$.

PPXA algorithm

Let $(x_{0,i})_{1 \le i \le m} \in \mathcal{H}$, $v_0 = \frac{1}{m} \sum_{i=1}^m x_{0,i}$ and

$$(\forall n \in \mathbb{N}) \begin{cases} y_{n,i} = \text{prox}_{\gamma g_i} x_{n,i}, & i \in \{1, \dots, m\} \\ c_n = \frac{1}{m} \sum_{i=1}^m y_{n,i} \\ x_{n+1,i} = x_{n,i} + \lambda_n (2c_n - v_n - y_{n,i}), & i \in \{1, \dots, m\} \\ v_{n+1} = v_n + \lambda_n (c_n - v_n). \end{cases}$$

We have then $v_n \rightharpoonup \widehat{v} \in \operatorname{Argmin} \sum_{i=1}^m g_i$.

Optimization algorithms

Forward-Backward	f_1+f_2	f_1 gradient Lipschitz	[Combettes,Wajs,2005]
		$\operatorname{prox}_{f_2}$	
ISTA	f_1+f_2	f_1 gradient Lipschitz	[Daubechies et al, 2003]
		$f_2 = \lambda \ \cdot \ _1$	
Projected gradient	$f_1 + f_2$	f_1 gradient Lipschitz	
		$f_2 = \iota_C$	
Gradient descent	$f_1 + f_2$	f ₁ gradient Lipschitz	
		$f_2=0$	
Douglas-Rachford	$f_1 + f_2$	$\operatorname{prox}_{f_1}$	[Combettes,Pesquet, 2007]
		$\operatorname{prox}_{f_2}$	
PPXA	$\sum_{i} f_{i}$	$\operatorname{prox}_{f_i}$	[Combettes,Pesquet, 2008]
PPXA+	$\sum_{i} f_{i} \circ L_{i}$	$\operatorname{prox}_{f_i}$	[Pesquet, Pustelnik, 2012]
		$\Pr_{(\sum_{i=1}^m L_i^* L_i)^{-1}}$	-