1. For any two sets points in the set $||Ax_1+b||_2 \le c^Tx_1+d$ and $\exists \in [0,1]$, $||Ax_2+b||_2 \le c^Tx_2+d$

 $\|A(\lambda x_1 + (1-\lambda) x_2) + b\|_2 = \|\lambda (A x_1 + b) + (1-\lambda) (A x_2 + b)\|_2 \le \lambda \|A x_1 + b\|_2 + (1-\lambda) \|A x_2 + b\|_2$ $\le \lambda (c^T x_1 + d) + (1-\lambda) (c^T x_2 + d) = c^T (\lambda x_1 + (1-\lambda) x_2) + d,$

Thus which means the convex combination of those two points is also in the set, so, the set is a convex point set.

- 2. (a) No, $M = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$. It's positive-semidefinite since $[v_1, v_2] \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = (v_1 + v_2)^2 \geqslant 0$, but $M_{11} < |M_{12}|$
 - (b) No, $M = \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & 1 \end{bmatrix}$. Mii \geq 1 Mij| for all i, j and M is symmetric, but M is not positive-semidefinit because $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = -3 < 0$
 - (c) Yes, $V^T M V = V^T \geq \alpha_i \alpha_i^T V = \sum_i V^T \alpha_i \alpha_i^T V = \sum_i (\alpha_i^T V)^2 \geq 0$, for any V.
 - (d) Yes, let $V = \begin{bmatrix} x \\ 0 \end{bmatrix}$, then $V^T M V = x^T M_1 X \ge 0$. Let $V = \begin{bmatrix} 0 \\ y \end{bmatrix}$, $V^T M V = y^T M_3 y \ge 0$. For any $V = \begin{bmatrix} x \\ y \end{bmatrix}$, $V^T \begin{bmatrix} M_1 & 0 \\ 0 & M_3 \end{bmatrix} V = x^T M_1 X + y^T M_3 y \ge 0$.
- 3. \Rightarrow direction: We know $M \geq 0$, which means VMV = VMV = Tr(VMV) = Tr(MVVV) > 0Then for any $Z \neq 0$, factorize it to $Z = \sum_{i=1}^{n} \pi_i V_i V_i^T$, where π_i , v_i are the eigenvalue and eigenvector of Z. $Tr(M^TZ) = Tr(M^T(\pi_i V_i V_i^T) + \cdots + \pi_n V_n V_n^T) = \frac{\pi_i Tr(M^T V_i V_i^T) + \cdots + \frac{\pi_n Tr(M^T V_n V_n^T)}{20} > 0$ $Tr(M^TZ) = Tr(M^T(\pi_i V_i V_i^T) + \cdots + \frac{\pi_n Tr(M^T V_n V_n^T)}{20} > 0$

3. (continued). \Leftarrow direction: We know $Tr(M^TZ) \ge 0$ for any $Z \succcurlyeq 0$. Then for any V, $V^TMV = Tr(V^TMV) = Tr(M^TV) \ge 0$, where $Z = VV^T \succcurlyeq 0$.

4. (a). $\chi_1 \in C \Rightarrow \chi_1^TA\chi_1 + b^T\chi_1 + c \le 0$ $\chi_2 \in C \Rightarrow \chi_1^TA\chi_2 + b^T\chi_2 + c \le 0$ $(\chi_1 + (1-\chi)\chi_2)^TA(\chi_1 + (1-\chi)\chi_2) + b^T(\chi_1 + (1-\chi)\chi_2) + c = \chi_1^TA\chi_1 + (1-\chi)\chi_2^TA(1-\chi)\chi_2 + \chi_1^TA\chi_1 + \chi_1^TA\chi_$

In other words, we just showed a convex combination of x_1, x_2 is also in C if $A \geq 0$.

 $= \frac{\lambda(1-\lambda)(x_1^TAx_1 + b^Tx_1 + c + x_2^TAx_2 + b^Tx_2 + c)}{\geq 0} \leq 0$

Hence, C is a convex set if A>0.

4. (continued) (b). No, consider a 1D counter-example where $C = \{x | -x^2 \le 0\} = R$. C is a convex set but A = -1 < 0 is obviously not positive-semidefinite

5. For any two points
$$\begin{bmatrix} x''' \\ y''' + y''' \end{bmatrix}$$
, $\begin{bmatrix} x'^{2} \\ y''' + y''' \end{bmatrix} \in S$, we know $\begin{bmatrix} x''' \\ y''' \end{bmatrix} \in S$, $\begin{bmatrix} x''' \\ y''' \end{bmatrix} \in S$.

We know S_1 , S_2 are convex sets so $\lambda \begin{bmatrix} x''' \\ y''' \end{bmatrix} + (1-\lambda) \begin{bmatrix} x'^{2} \\ y'^{2} \end{bmatrix} \in S$.

Hence,
$$\left[\frac{\chi(0) + (1-\chi)\chi^{(2)}}{\chi(0) + (1-\chi)\chi^{(2)} + \chi(0)} + \chi(1-\chi)\chi^{(2)} \right] \in S$$
.

In other nords, we showed $\lambda \begin{bmatrix} \chi^{(1)} \\ y_{1}^{(2)} + y_{2}^{(1)} \end{bmatrix} + (1-\lambda) \begin{bmatrix} \chi^{(2)} \\ y_{1}^{(2)} + y_{2}^{(2)} \end{bmatrix} \in S$ for $\lambda \in [0,1]$ Therefore, S is a convex S et.