3. Dedução Natural para o Cálculo Proposicional

- 3.1 a) Indique uma derivação em DNP com conclusão $p_0 \wedge p_1$ e cuja única hipótese não cancelada seja $p_1 \wedge p_0$.
 - b) Indique uma derivação em DNP com conclusão $(p_0 \wedge p_1) \rightarrow p_1$ e sem hipóteses por cancelar.
 - c) Indique uma derivação em DNP com conclusão $p_0 \rightarrow p_2$ e cujas hipóteses não canceladas sejam $p_0 \to p_1$ e $p_1 \to p_2$.
 - d) Indique duas derivações distintas em DNP com conclusão $p_0 \to (p_1 \to (p_0 \lor p_1))$ e sem hipóteses por cancelar.
 - e) Indique as subderivações de cada uma das derivações apresentadas nas alíneas anteriores.
- **3.2** Sejam $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$. Encontre demonstrações em DNP das fórmulas abaixo indicadas.

 - $\mathbf{a)} \quad (\varphi \wedge \psi) \to (\varphi \vee \psi). \qquad \mathbf{b)} \quad (\varphi \to (\psi \to \sigma)) \to ((\varphi \to \psi) \to (\varphi \to \sigma)).$

- **3.3** Mostre que:
 - a) $p_0 \leftrightarrow p_1, \neg p_1 \vdash \neg p_0$.
 - **b)** $p_0 \rightarrow p_1, p_1 \rightarrow p_2, p_2 \rightarrow p_0 \vdash ((p_0 \leftrightarrow p_1) \land (p_1 \leftrightarrow p_2)) \land (p_0 \leftrightarrow p_2).$
 - c) $\{p_0 \lor p_1, \neg p_0 \land \neg p_1\}$ é sintaticamente inconsistente.
- **3.4** Demonstre as seguintes proposições, para todo $\varphi, \psi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$.
 - a) $\Gamma \vdash \varphi \land \psi$ se e só se $\Gamma \vdash \varphi$ e $\Gamma \vdash \psi$.
 - **b)** $\Gamma \vdash \varphi$ se e só se $\Gamma, \neg \varphi \vdash \bot$.
 - c) $\Gamma \vdash \perp$ se e só se $\Gamma \vdash p_0 \land \neg p_0$.
 - d) Se Γ , $\neg \varphi \vdash \varphi$, então $\Gamma \vdash \varphi$.
- **3.5** Sejam $\varphi, \psi \in \mathcal{F}^{CP}$ fórmulas. A fórmula $((\varphi \to \psi) \to \varphi) \to \varphi$ é chamada a *Lei de Peirce*. Mostre que a Lei de Peirce é um teorema de DNP. (Sugestão: tenha em atenção a resolução da alínea d) do exercício anterior.)
- **3.6** Sejam $\varphi, \psi \in \mathfrak{F}^{CP}$ e $\Gamma \subseteq \mathfrak{F}^{CP}$. Mostre que:
 - a) $(p_0 \vee p_1) \to (p_0 \wedge p_1)$ não é um teorema de DNP.
 - **b)** $p_0 \vee p_1 \not\vdash p_0 \wedge p_1$.
 - c) $\{p_0 \lor p_1, \neg p_0 \land p_1\}$ é sintaticamente consistente.
 - d) $\Gamma \vdash \varphi \in \Gamma \vdash \neg \varphi$ se e só se Γ é semanticamente inconsistente.
 - e) Se $\Gamma, \varphi \vdash \psi$ e φ é uma tautologia, então $\Gamma \vdash \psi$.

(Sugestão: aplique o Teorema da Correção e/ou o Teorema da Completude.)