Co-ordinate Bond

CHEMICAL BONDING

9t is a special type of Co-valent bond in which shared electron poin of electrons is from one atom called acceptor

atom and formed Bond called co-ordinate bond.

La After shaving no of é of A = 8 After shaving no of é of B = 8

$$0_2 + 0 \rightarrow 0_3$$

$$\Rightarrow 0 = 0$$

$$\Rightarrow 0 = 0$$

vacant orbital = Lewis acid
lone pair = Lewis base

Lewis Acid : BF3

Lewis Base! NH3

Co-ordinate bond

Once a Co-ordinaile bond is formed it behave as single co-voilent bond [or bond]

CHEMICAL BONDING

(ii) By equal contribution(sharing) of electrons:- Covalent bond is formed.

(iii) By unequal contribution(sharing) of electrons:- Coordinate bond is formed.

IONIC BOND/ELECTROVALENT BOND

- It is the electrostatic force of attraction between cation and anion.
- The chemical bond formed between two or more atoms as a result of the complete transfer of one or more electrons from one atom to another is called lonic or electrovalent bond.
- Total number of electron lost or gained is called electro valency.

- · Favourable Condition for formation of Ionic Bond.
- easialy loose electrons that means that have very
- · Other atom must be Electron-gative can easialy gain electrons that means high electron affinity
 - · |AEN| > 1.9
 - Energy released during formation of bond must be very high.

Constal Lattice : A reguleur 3D arrangements of lons (Cation/Anion) called crystal lattice.

Lattice energy so when I mole of Ionic solid is formed from its gasseous ions the amount of energy released is called Lattice energy.

Ex Natcg) + ctigg - Naclis (Exothermic)

Ex Nat cg) + ct cg) — Nall (s) (-ve)

energy released = LE(Naci)

Ex. $2 \text{ Mgf}^2(g) + 2F(g) \longrightarrow \text{MgF}_2(s)$ energy release = LE(mgFz) Ex. $2 \text{ Nat}_{g} + 2F(g) \longrightarrow 2 \text{ NaF(s)}$

energy released = a LE (Na Fis)

(OR)
Energy absorbed when I mole of Ionic solid
is converted into gasseous 1 ons Called Lattice energy

(endothermic)

-
$$Al_2O_3(s)$$
 \longrightarrow $2Al^{+3}(g) + 3\delta^2(g)$
energy whosobed = LELAl₂O₃)]

factors Affecting LE +

- (1) Prc. Pal increase then lattice increases.
- (2) 1901 enèreases lattice energy increases
 - (3) [9a] increases lattice energy increases
- (4) rc increases Lattre energy decreases.
- # (6) A inicreases lattice encogy micreases

A - hous higher value if Cation and Anion have almost same size.

```
Extra

CSF

Lif / CSI

CiI
```

```
Ex. Arrange the following in merealing order of
   lattice energy
 (i) NaF < MgF2 < Alf3 (Anion is same)
       9c 1 LEA
    +1 -1
NaF < Mg0 < A1N
(11)
      9c. 9a) 1
                LE A
    Na F < Na20 < Na3N
        19a 9 LE 1
                                  [ Soft large Anim]
     Be SO4
                      Bas04
```

becaus Bat has large eize (similarsize)

(V) Be CO3

Baso4

[So4² large Anim

[so4² large Anim

[co5² small

Anim)

«Calculation of Lattice energy +

Enthalpy of Formation : Formation of 1 mole compound from its elemental constituent.

 $Ex^{(1)}$ Na(15) + $\frac{1}{2}Cl_2(g)$ — Na(115) , Energy released enthalpy of formation (Na(115)) ΔH_4 (Na(11))

$$2 \text{ Alis)} + \frac{3}{2} O_2(9) \longrightarrow \text{AlisO}_3(s)$$

Energy released win be enthalpy of tormation of Alabais)

iii) $mg(s) + F_2(g) \longrightarrow mg F_2(s)$ $energy released = Enthally y of formation (mgF_2(s))$ $\Delta H_f(mgF_2(s))$

Hz(g) + S(s) +20z(g)
$$\longrightarrow$$
 HzC04(aq.)

energy released = Δ H (HzC04(aq.))

BORN HABER CYCle + this is based on Hessis

law.

Chemical reaction is algebric sum of enthalpy of each step reaction.

HABER CYCLE FOY Nacles) BORN

AHT (Nacios)

exothermic

Q. In how many of following compound the enthalpy of formation is - ne only due to lattice energy

MgO, Nau, NgN, CaF2, Cq2N2, CaU2,

MgO, Nau, N93N, CaF2, Ca3N2, CaU2, SiF4, CaO. N92S

Atteg for polyvalent Anions is endothermic

Q- draw Born Haber cycle for mgc12, A1203, NaBr mgF2, A1F3, C93N2, Cab.

AH+ (A12031S)

A1203 (51 (1) (2A)(5) + 3 02(9) 20Hsub 3 A HBD(0=0) 2 Alcgj 2(IE1+IE3) LE 3 (A Hegy + A Hegy) 2 Al+3 (9) 300

ΔHf (Ab203(S) = 2 Δ Hsub (Alcs) +2 (2 HIE; + ΔHIE; + 3HIE; + 3 (2 Heg; + ΔHegs) + LE


```
(i)
                                                → Ca3 N2 (5)
               3 Cec (S)
        34Hcub
                               AHBD(NZN)
                           2Ncg)
      3 Calgy
                             2(a Heg + A Heg 2+ A Heg 2)
3 AHIE +IE2
                          2 N 3(9)
```

AH ((43 N2)

$$\Delta H_f (G_3N_1) = 3 \Delta H_{Sub}(G_{9S}) + 3(\Delta H_{IE_1} + \Delta H_{IE_2}) + \Delta H_{BD}(N=N) + 2(\Delta H_{eg_1} + \Delta H_{eg_2})$$
+ LE

PROPERTIES OF IONIC COMPOUND

Physical state:-

- lonic compounds are hard, crystalline due to strong electrostatic force of attraction.
- They are brittle in nature.

{ Same charged ions come closer. So they repel each other.}

IONIC BOND/ELECTROVALENT BOND

Isomorphism:-

- (1) Two compounds are said to be isomorphous if they have similar no. of electrons i.e. similar configuration of their cation and anion.
- (2) They have similar crystal structure.

Example :- Na
$$^+$$
 F $^-$ Mg $^{2+}$ and O $^{2-}$ Valency +1 -1 +2 -2 Electronic (2,8) (2,8) (2,8) configuration

Isomorphous pair

similarly Ca^{+2} $2Cl^{-}$ $2K^{+1}$ and S^{-2} (2,8,8) (2,8,8) (2,8,8)

Polyamorphous

Isomorphous

pair

wurtzite Structure

(2,8)