B)
$$\frac{A}{x} \left[1 - \left(1 + \frac{x}{100} \right)^{-n} \right]; \quad \Gamma) = \frac{\ln 2}{\ln \left(1 + \frac{x}{101} \right)}.$$

1412. Считая x малым по абсолютной величине, вывести приближенную формулу вида $x = \alpha \sin x + \beta \tan x$ с точностью до члена с x^5 .

Применить эту формулу для приближенного спрямления дуг малой угловой величины.

1413. Оценить относительную погрешность следующего правила Чебышева: круговая дуга приближенно равна сумме боковых сторон равнобедренного треугольника, построенного на хорде этой дуги и имеющего высотой $\sqrt{4/3}$ ее стрелки.

§ 11. Экстремум функции. Наибольшее и иаименьшее значения функции

1°. Необходимое условне экстремума. Говорят, что функция f(x) имеет в точке x_0 экстремум (максимум или минимум), если функция определена в двухсторонней окрестности точки x_0 и для всех точек x некоторой области: $0 < |x-x_0| < \delta$, выполнено соответственно неравенство

$$\underline{i}(x) < \underline{i}(x_0)$$
 или $\underline{i}(x) > \underline{i}(x_0)$.

В точке экстремума производная $f'(x_0) = 0$, есля она существует.

 2° . Достаточные условия экстремума. Первое правило. Если 1) функция f(x) определена и непрерывна в некоторой окрестности $|x-x_0| < \delta$ точки x_0 такой, что $f'(x_0) = 0$ или не существует (критическая точка); 2) f(x) имеет конечиую производную f'(x) в области $0 < |x-x_0| < \delta$; 3) производная f'(x) сохраняет определенный знак слева от x_0 в справа от x_0 , то поведение функции f(x) характеризуется следующей таблицей:

	Знак производной		
	x < x ₀	x > x ₀	Вывод
l II III IV	‡ =	± +	Экстремума нет Максимум Минимум Экстремума нет