Job No.:Roger Townley AdditionAddress:19 Stafford St, Grovetown, New ZealandDate:16/10/2024Latitude:-41.483447Longitude:173.973007Elevation:1.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N3	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	4.8 m
Wind Region	NZ2	Terrain Category	2.5	Design Wind Speed	36.54 m/s
Wind Pressure	0.8 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	Medium	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Gable Open

For roof Cp, i = 0.6705

For roof CP,e from 0 m To 4.5 m Cpe = -0.9 pe = -0.50 KPa pnet = -0.95 KPa

For roof CP,e from 4.5 m To 9 m Cpe = -0.5 pe = -0.28 KPa pnet = -0.73 KPa

For wall Windward Cp, i = 0.6705 side Wall Cp, i = -0.5953

For wall Windward and Leeward CP,e from 0 m To 6 m Cpe = 0.7 pe = 0.47 KPa pnet = 0.95 KPa

For side wall CP,e from 0 m To 4.5 m Cpe = pe = -0.44 KPa pnet = 0.04 KPa

Maximum Upward pressure used in roof member Design = 0.95 KPa

Maximum Downward pressure used in roof member Design = 0.38 KPa

Maximum Wall pressure used in Design = 0.95 KPa

Maximum Racking pressure used in Design = 0.72 KPa

Design Summary

Purlin Design

Purlin Spacing = 800 mm Purlin Span = 5850 mm Try Purlin 250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =0.54 S1 Downward =12.68 S1 Upward =22.76

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	1.16 Kn-m	Capacity	3.40 Kn-m	Passing Percentage	293.10 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.64 Kn-m	Capacity	4.53 Kn-m	Passing Percentage	171.59 %
$M_{0.9 D ext{-W} n Up}$	-2.48 Kn-m	Capacity	-3.16 Kn-m	Passing Percentage	127.42 %
V _{1.35D}	0.79 Kn	Capacity	12.06 Kn	Passing Percentage	1526.58 %

Second page

 $V_{1.2D+1.5L\;1.2D+Sn\;1.2D+WnDn}$ 1.59 Kn Capacity 16.08 Kn Passing Percentage 1011.32 % $V_{0.9D-WnUp}$ -1.70 Kn Capacity -20.10 Kn Passing Percentage 1182.35 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 16.21 mm

Limit by Woolcock et al, 1999 Span/240 = 24.17 mm

Deflection under Dead and Service Wind = 18.65 mm

Limit by Woolcock et al, 1999 Span/100 = 58.00 mm

Reactions

Maximum downward = 1.59 kn Maximum upward = -1.70 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Intermediate Design Front and Back

Intermediate Spacing = 3000 mm Intermediate Span = 4050 mm Try Intermediate 2x200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =1.00 S1 Downward =11.27 S1 Upward =0.76

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 5.84 Kn-m Capacity 7.46 Kn-m Passing Percentage 127.74 % V_{0.9D-WnUp} 5.77 Kn Capacity -32.16 Kn Passing Percentage 557.37 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 27.735 mm Limit byWoolcock et al, 1999 Span/100 = 40.50 mm

Reactions

Maximum = 5.77 kn

Intermediate Design Sides

Intermediate Spacing = 3000 mm Intermediate Span = 4350 mm Try Intermediate 2x200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 11.27 S1 Upward = 0.78

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

MWind+Snow Capacity

3/8

3.37 Kn-m 7.46 Kn-m Passing Percentage **221.36 %**V_{0.9D-WnUp} 3.10 Kn Capacity 32.16 Kn Passing Percentage **1037.42 %**

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 36.91 mm

Limit by Woolcock et al, 1999 Span/100 = 43.50 mm

Reactions

Maximum = 3.10 kn

Girt Design Front and Back

Girt's Spacing = 1300 mm Girt's Span = 3000 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.79 S1 Downward =9.63 S1 Upward =17.59

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$ 1.39 Kn-m Capacity 1.65 Kn-m Passing Percentage 118.71 % $V_{0.9D-WnUp}$ 1.85 Kn Capacity 12.06 Kn Passing Percentage 651.89 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 13.82 mm Limit by Woolcock et al, 1999 Span/100 = 30.00 mm

Sag during installation = 4.91 mm

Reactions

Maximum = 1.85 kn

Girt Design Sides

Girt's Spacing = 1300 mm Girt's Span = 3000 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.79 S1 Downward =9.63 S1 Upward =17.59

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 1.39 Kn-m Capacity 1.65 Kn-m Passing Percentage 118.71 % V_{0.9D-WnUp} 1.85 Kn Capacity 12.06 Kn Passing Percentage 651.89 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 13.82 mm

Limit by Woolcock et al. 1999 Span/100 = 30.00 mm

Sag during installation =4.91 mm

Reactions

Maximum = 1.85 kn

Middle Pole Design

Geometry

225 SED H5 (Minimum 250 dia. at Floor Level)	Dry Use	Height	4500 mm
Area	44279 mm2	As	33209.1796875 mm2
Ix	156100441 mm4	Zx	1314530 mm3
Iy	156100441 mm4	Zx	1314530 mm3
Lateral Restraint	1300 mm c/c		

Loads

Total Area over Pole = 36 m^2

Dead	9.00 Kn	Live	9.00 Kn
Wind Down	13.68 Kn	Snow	0.00 Kn
Moment wind	12.41 Kn-m		
Phi	0.8	K8	1.00
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNcx Wind	637.62 Kn	PhiMnx Wind	38.17 Kn-m	PhiVnx Wind	78.64 Kn
PhiNcx Dead	382.57 Kn	PhiMnx Dead	22.90 Kn-m	PhiVnx Dead	47.18 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.37 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.16 < 1 OK$

Deflection at top under service lateral loads = 26.07 mm < 45.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
K0 =	$(1-\sin(30))/(1+\sin(30))$				

5/8

 $Kp = \frac{(1+\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds = 0.6 mm Pile Diameter

L = 1600 mm Pile embedment length

f1 = 3600 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Pile Properties

Safety Factory 0.55

Hu = 7.02 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 14.88 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.83 < 1 OK

End Pole Design

Geometry For End Bay Pole

Geometry

175 SED H5 (Minimum 200 dia. at Floor Level)	Dry Use	Height	4500 mm
Area	27598 mm2	As	20698.2421875 mm2
Ix	60639381 mm4	Zx	646820 mm3
Iy	60639381 mm4	Zx	646820 mm3

Lateral Restraint mm c/c

Loads

Total Area over Pole = 18 m^2

Dead	4.50 Kn	Live	4.50 Kn
Wind Down	6.84 Kn	Snow	0.00 Kn
Moment Wind	6.21 Kn-m		
Phi	0.8	K8	0.49
K1 snow	0.8	K1 Dead	0.6
K 1 wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

6/8

PhiNcx Wind	196.09 Kn	PhiMnx Wind	9.27 Kn-m	PhiVnx Wind	49.01 Kn
PhiNcx Dead	117.66 Kn	PhiMnx Dead	5.56 Kn-m	PhiVnx Dead	29.41 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.75 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.53 < 1 OK$

Deflection at top under service lateral loads = 35.70 mm < 47.88 mm

Ds = 0.6 mm Pile Diameter

L= 1300 mm Pile embedment length

f1 = 3600 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 18 m^2

Pile Properties

Safety Factory 0.55

Hu = 3.99 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 8.33 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.74 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1300 mm Pile embedment length

f1 = 3600 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

Loads

Pile Properties

0.55

Safety Factory

Hu = 3.99 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 8.33 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.74 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1600) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1600)

Skin Friction = 20.68 Kn

Weight of Pile + Pile Skin Friction = 24.34 Kn

Uplift on one Pile = 26.10 Kn

Uplift is ok