Categorias

Uma categoria ${\cal C}$ consiste de

- objetos A, B, C
- para cada par de objetos A e B, uma coleção H(A,B) de morfismos (mapas, setas, etc) $A \to B$.

Outra notação: $\text{Hom}(A, B), C(A, B), H_C(A, B), Hom_C(A, B).$

Para objetos A, B, C temos uma função

$$H(A,B) \times H(B,C) \to H(A,C), \quad (f,g) \mapsto f \circ g.$$

Esta função chama-se composição. Para cada objeto A temos $1_A \in H(A,A)$ tal que

$$1_B \circ h = h, \ h \circ 1_A = h, \ (f \circ g) \circ h = f \circ (g \circ h)$$

para todo $h \in H(A,B), g \in H(B,C)$ e $f \in H(C,D)$. Se $f \in H(A,B)$. então A é o domínio de f e B é o codomínio.

Exemplos

As seguintes são os exemplos mais comuns de categorias:

- Set: Os objetos são conjuntos, os mapas são mapas entre conjuntos.
- Grp: Os objetos são grupos, e os mapas são homomorfismos entre grupos.
- Ring: Os objetos são anéis (com 1), e os mapas são homomorfismos entre anéis.
- CRing: Os objetos são anéis comutativos (com 1), e os mapas são homomorfismos entre anéis comutativos.
- Vect_k: Os objetos são espaços vetoriais sobre um corpo k e os objetos são aplicações k-lineares.
- R-Mod: Os objetos são R-módulos (à esquerda) e os mapas são R-homomorfismos.
- Top: Os objetos são espaços topológicos e os mapas são funções contínuas.

Um mapa $f \in H(A, B)$ é dito **isomorfismo**, se existir $g \in H(B, A)$ tal que $fg = 1_B$ e $gf = 1_A$.

Outros exemplos,

- \bullet 0 com nenhum objeto e nenhuma seta
- $\{1\}$ com um objeto e uma seta 1_1
- $A \to B$ com dois objetos e três setas 1_A , 1_B , $A \to B$.

- Um monoide M pode ser visto como uma categoria com um objeto A e uma seta associada com cada elemento de M. A identidade de M corresponde a 1_A e a associatividade do monoide corresponde à associatividade da composição.
- Um grupo G pode ser visto como uma categoria com um objeto A e uma seta associada com cada elemento de G. Neste caso toda seta da categoria é um isomorfismo.
- Se P é um conjunto parcialmente ordenado, então P pode ser visto como uma categoria. Os objetos da categoria são os elementos de P e temos $\alpha \to \beta$ na categoria se e somente se $\alpha \le \beta$.

Categoria oposta ou dual.

Seja C uma categoria. Definimos o dual ou oposta C' de C. Os objetos de C' são os mesmos, 1_A é o mesmo, e $H_{C'}(A,B) = H_C(B,A)$.

Functores

Functor covariante

Sejam C e D categorias. Um functor $F:C\to D$ associa

- cada objeto $A \in C$ com um objeto $F(A) \in D$
- cada mapa $f \in H(A, B)$ com um mapa $F(f) \in H((F(A), F(B))$

tal que

$$F(1_A) = 1_{F(A)}$$
 e $F(fg) = F(f)F(g)$.

Functor de esquecimento

- Grp -> Set: associamos com cada grupo G o seu conjunto G e $F(\alpha)=\alpha$ para cada $\alpha\in H_{Grp}(G,H)$
- Ring -> Set,
- Ring -> Grp,
- R-mod \rightarrow Ab,
- Ab -> Grp.

Functores livres

- Set -> Grp,
- Set -> Vec_k,
- Set -> R-mod,
- Set -> CRing.

Um functor contravariante entre C e D é um functor $C \to D'$.

Exemplos

- Top -> CRing: Seja X um espaço topológico. Definimos o functor como $X \mapsto C(C, \mathbb{R})$ onde $C(X, \mathbb{R})$ é o anel das funções contínuas de X para \mathbb{R} . Se $f: X \to Y$ em Top, então $F(f): F(Y) \to F(X)$ com $F(f)(\psi) = \psi f$.
- Spec: CRing -> Top, $R \mapsto \operatorname{Spec}(R)$. Definimos uma topologia em $\operatorname{Spec}(R)$ com a regra que

$$V(I) = \{ P \in \operatorname{Spec}(R) \mid I \subseteq P \}$$

são fechados para $I \subseteq R$ ideais. Se $f: R \to S$, então $\operatorname{Spec}(f): \operatorname{Spec}(S) \to \operatorname{Spec}(R)$ está definido como $\operatorname{Spec}(f)(Q) = \varphi^{-1}(Q)$ para cada $Q \in \operatorname{Spec}(S)$.

Um functor $F: C \to D$ é dito fiel (cheio, full) se os mapas $H(A,B) \to H(F(A),F(B))$ são injetivos (sobrejetivos).

Uma subcategoria D de C contém objetos de C e $H_D(A, B) \subseteq H_C(A, B)$. Subcategoria é cheia se $H_D(A, B) = H_C(A, B)$. Por exemplo, Ab é uma subcategoria cheia de Grp.

Transformação natural

Sejam C e D categorias e $F,G:C\to D$ functores. Uma transformação natural α entre F e G é composta por uma família de morfismos $\alpha_A:F(A)\to G(A)$ para todo objeto A em C tal que para todo mapa $f:A\to B$ temos que o diagrama comuta.

Exemplos

- Seja C uma categoria discreta sobre um conjunto X. Então C não tem setas, exceto 1_x para todo $x \in X$. Seja D uma categoria qualquer. Então functores $F,G:C\to D$ escolhem um elemento F(x) e G(x) para cada $x\in X$. Uma transformação natural α é uma coleção de mapas $\alpha_x:F(x)\to G(x)$.
- Considere $F,G:CRing\to Grp.$ $F(R)=GL_n(R),$ $G(R)=R^*.$ Afirmamos que $\det_R:GL_n(R)\to R^*$ é uma transformação natural.

Transformações naturais podem ser compostas. Se $F,G,H:C\to D$ functores, $\alpha:F\to G,\ \beta:G\to H$ são transformações naturais, então a composição $\beta\alpha$ é transformação natural $F\to H$. A identidade $1_{F(A)}:F(A)\to F(A)$ natural $F\to F$. Assis se C e D são categorias, então a categoria dos funtores [C,D] tem objetos functores entre C e D a as transformações naturais como morfismos.

$$F(A) \xrightarrow{F(f)} F(B)$$

$$\alpha_A \downarrow \qquad \qquad \downarrow^{\alpha_B}$$

$$G(A) \xrightarrow{G(f)} G(B)$$

Figure 1: image

Isomorphismo natural entre F e G é uma transformação natural α tal que $\alpha_A:F(A)\to G(A)$ é um isomorfismo.

Exercício: Isomorphismo natural é um isomorfismo na categoria dos functores. Neste caso os functores F e G são naturalmente isomorfos.

Dados dois functores $F,G:C\to D$. Dizemos que F(A) e G(A) são naturalmente isomorfos se F e G são naturalmente isomorfos.

Duplo dual

Seja V e W espaços vetoriais. Para $\alpha:V\to W$, temos que $\alpha^*=-\circ\alpha$ e $\alpha^{**}(\beta)=\beta(-\circ\alpha)$. Temos que $v\mapsto\varphi_v$ é um mapa de $V\to V^{**}$ onde $\varphi_v(\beta)=\beta(v)$.

Afirmamos que $\varphi : v\varphi(v)$ é uma transformação natural de do funcor identidade ao functor $(-)^{**}$. Precisa provar que $\alpha^{**}(\varphi_v) = \varphi(\alpha_v)$. Mas isso segue dos fatos que

$$\alpha^{**}(\varphi_v)(\chi) = \varphi_v(-\circ \alpha)(\chi) = \varphi_v(\chi \circ \alpha) = \chi(\alpha(v))$$

e

$$\varphi_{\alpha(v)}(\chi) = \chi(\alpha(v)).$$

 $(-)^{**}$ é um isomorfismo natural na categoria FVec_k de espaços vetoriais de dimensão finita.