Dokumentation

zum Projekt

Sperrwandler

Gruppe / Klasse	Mitarbeiter	Unterschrift
5 / 4BHELS	HIRSCH L.	
Übungs- / Abgabedatum	Mitarbeiter	Unterschrift
7. Nov. 2014 10. Feb. 2015	HOFSTÄTTER A.	
Lehrer	Mitarbeiter	Unterschrift
Tillich		
Note	Mitarbeiter	Unterschrift

Projekt

Sperrwandler

Verwendete Geräte

Nr.	Gerät	Hersteller	Тур
1.	Netzgerät	EMG	18135
2.	Digital Multimeter	TE.Electronic	VA18B
3.	Oszilloskope	Tektronix	TDS 1001B

Verwendete Programme

Nr.	Name	Version
1.	Altium Designer	2013

1 Inhaltsverzeichnis

<u>1</u>	INHALTSVERZEICHNIS	1
2	AUFGABENSTELLUNG	1
2.1	Durchzuführende Messungen	
2.2	Vorgabewerte	4
3	GRUNDPRINZIP DES SPERRWANDLERS	5
_ 3.1	ABLAUF	
3.1 .		
3.2	IMPULSGENERATOR	
3.3	Power-Zener-Diode	
<u>4</u>	DIMENSIONIERUNG	
4.1	Primärseite (L_1)	
4.2	Sekundärseite (L_2)	
4.3	IMPULSGENERATOR	
4.4	POWER-ZENER-DIODE	9
5	HERSTELLUNG DER SPULE	9
<u>6</u>	KOMPLETTE SCHALTUNG	10
6.1	FUNKTIONSPRINZIP	10
6.2	GLEICHZEITIGE MESSUNG VON STROM UND SPANNUNG	
_		
<u>7</u>	STREUINDUKTIVITÄT	
7.1	Allgemein	
7.2	MESSAUFBAU	11
8	POWER-ZENER-DIODE	12
8.1	Schaltung	
8.2 8.3	KENNLINIE	
0.5	IVIESSPUNKTE	12
<u>9</u>	SCHALTREGLER MIT GERINGER LAST (TASTVERHÄLTNIS 1:10)	13
9.1	Messaufbau	13
9.2		
9.2.	1 NE555 (Taktsignal)	13
9.2.	2 MOS-FET (Schalter)	14
9.2.	3 SPULE <i>L</i> ₁ (PRIMÄR)	14
9.2.	4 Spule L_2^- (Sekundär)	15
9.2.	5 DIODE	15
9.2.	6 KONDENSATOR	16
10	SCHALTREGLER MIT VOLLER LAST (TASTVERHÄLTNIS 1:3)	17
<u>10</u>		
10.		
10.2		
10.2	,	
10.2	,	
10.2	2.3 Spule L_1 (Primär)	18

10.2.4	Spule L_2 (Sekundär)	19
10.2.5	DIODE	19
10.2.6	Kondensator	20
<u>11 RU</u>	CKKOPPLUNG MIT OPTOKOPPLER	<u> 21</u>
11.1 N	MESSAUFBAU	21
11.2 N	Messergebnisse aller Ströme und Spannungen	21
11.2.1	NE555 (TAKTSIGNAL)	21
11.2.2	MOS-FET (Schalter)	22
11.2.3	Spule L_1 (Primär)	22
11.2.4	Spule L_2 (Sekundär)	23
11.2.5	DIODE	23
11.2.6	KONDENSATOR	24
<u>12</u> SP	ERRWANDLER MIT DYNAMISCHE LAST	<u> 25</u>
12.1 N	VIESSAUFBAU	25
	VIESSERGEBNIS	
<u>13</u> <u>BO</u>	DEDIAGRAMM	26
13.1 E	Berechnungen	26
	MESSAUFBAU	
	VESSERGEBNISSE	
13.3.1	Amplitude response $(j\omega)$	
13.3.2	PHASENGANG	
13.3.2	THALINGARG	2 /
14 AB	BBILDUNGSVERZEICHNIS	28

2 Aufgabenstellung

Ziel des Projekts war es einen Sperrwandler mit teilweise gegebenen Parametern aufzubauen. Der Aufbau wurde komplett am Steckbrett realisiert und betrieben. Die Verwendung von externen Geräten war nur bei Messgeräten und Versorgungsquellen der Fall. Der Taktgeber ist ein NE555 als astabile Kippstufe. Unter anderem wurden folgende Aufgabenstellungen erledigt.

- Dimensionierung
- Berechnung
- Aufbau
- Funktionstest
- Messungen

Anschließend wurden verschiedene Messungen von Spannungen und Strömen mit unterschiedlichen Tastverhältnissen durchgeführt. Es fanden Messungen bei geringer Last, aber auch bei fast Volllast statt. Final wurde noch ein Optokoppler mit Rückkopplung eingebaut um unter anderem eine galvanische Trennung des Ausgangs zu ermöglichen. Weiteres wurden Messungen bei dynamischer Last durchgeführt und ein Bodediagramm erstellt.

2.1 Durchzuführende Messungen

Neben allgemeinen Messungen und Kennlinien (Power-Zener-Diode) wurden folgende Messpunkte bei verschiedenen Tastverhältnissen, Lasten und Messaufbauten gemessen.

Zusammengehörende Messpunkte sind immer gleichzeitig an zwei verschieden Kanälen aufgezeichnet worden. Falls möglich, wurde Spannung immer am Kanal 1 gemessen, Strom hingegen immer am Kanal 2.

- $U_{C1}(t)$ und $U_3(t)$
- $U_{DS}(t)$ und $I_{DS}(t)$
- $U_1(t)$ und $I_1(t)$
- $U_2(t)$ und $I_2(t)$
- $U_D(t)$ und $I_D(t)$
- $U_{\Delta C}(t)$ und $I_{\Delta C}(t)$

2.2 Vorgabewerte

Folgende Werte waren Teil der individuellen Aufgabenstellung und wurden als Basis für die folgende Dimensionierung herangenommen.

$$U_A = 5 V$$
 $U_B = 9 V$ $f_T = 120 kHz$ $P = 3 W$

Alle anderen benötigten Werte wurden anschließend eigenständig dimensioniert und berechnet.

3 Grundprinzip des Sperrwandlers

Das Grundprinzip des Sperrwandlers ist, dass eine kleine Menge Energie im Magnetfeld eines Trafos, bestehend aus dem idealen Übertrager L_1 und L_2 und der Hauptinduktivität L_H , gespeichert wird. Der eigentliche Energietransport auf die Sekundärseite findet während der Sperrphase statt, weshalb diese Schaltung als Sperrwandler bezeichnet wird.

Abbildung 1. - Grundprinzip eines Sperrwandlers

3.1 Ablauf

- 1. Die 1. Phase ist das "Laden" der Hauptinduktivität
- 2. Die 2. Phase ist nun das "Entladen" über die Sekundärseite.

Dieser Zyklus wird mit einer Schaltfrequenz von einigen tausend Mal pro Sekunde durchlaufen, so dass ein quasi kontinuierlicher Energiefluss von der Erzeuger- zur Verbraucherseite entsteht.

Die 1. Phase ist die Leitphase mit geschlossenem, die 2. Phase die Sperrphase mit geöffnetem Schalter S.

Während der Leitphase sperrt die Diode D und es fließt somit nur Strom durch die Hauptinduktivität L_h welcher aufgrund der Eingangsspannung U_E zu Stande kommt. Die Wicklung L_2 ist stromlos. Es baut sich im Luftspalt der Spule eine magnetische Spannung auf. In dieser Phase gibt es keine Energieübertragung, die Ausgangsspannung wird nur durch den Kondensator C gehalten.

Öffnet sich der Schalter S, so beginnt die Sperrphase. Der Strom I_1 wird durch den offenen Schalter schlagartig zu null, da aber der Strom durch die Hauptinduktivität Lh nicht springen kann, fließt er über den idealen Übertrager, also L_1 und L_2 , und über die Diode D zum Ausgang. Dort lädt er den Kondensator C auf die Ausgangsspannung U_A auf.

Dieser Strom nimmt linear ab und wird im lückenden Betrieb schließlich null, wenn alle Energie aus der Spule abgeflossen ist, die Spule also "entladen" ist. Danach schließt der Schalter wieder, die Leitphase beginnt wieder, und der Zyklus beginnt von neuem.

Eine nicht ideale Spule verfügt über Wicklungskapazitäten, die zu Beginn der Sperrphase ebenfalls aufgeladen wurden. Die dort gespeicherte Energie führt mit der Spule zusammen zu einer gedämpften Eigenresonanzschwingung (Schwingkreis), nachdem die Spule ihren gesamten Strom abgegeben hat.

In der Praxis wird als Schalter ein Transistor eingesetzt, wobei die Schaltfrequenz üblicherweise ca. von $16\ kHz$ (knapp über dem Hörbereich zur Vermeidung von Störgeräuschen) bis über $500\ kHz$ gewählt wirds werden – höhere Frequenzen erlauben die Verwendung kleinerer Spulen, bedingen aber höhere Verluste im Schaltelement und der Diode.

3.1.1 Gegenüberstellung

Vorteile:

- Relativ geringer Bauteilaufwand
- Leistungen bis einige 100 W
- Wenig Platzbedarf
- Geringes Gewicht

Nachteile:

- EMV Problematik
- Hoher Filteraufwand (hohe Frequenzen)
- Ansteuerelektronik (ICs)

3.2 Impulsgenerator

Der NE555 wird hier als astabiler Multivibrator betrieben, dieser erzeugt saubere Rechtecksignale mit nicht abgerundeten Flanken.

Abbildung 2. – Grundaufbau des Impulsgenerators (NE555)

Der frequenzbestimmende Kondensator $\mathcal{C}1$ liegt zwischen Pin 6 und Masse. Um ein Schwingen der Schaltung zu vermeiden, wird zusätzlich ein Kondensator $\mathcal{C}2$ zwischen Pin 1 und Masse gehängt. Aufgrund der nicht benötigten Reset Funktion, wurde der Pin 4 mit der dem positiven Versorgungspotential verbunden.

Um eine leistungsstarke Power Z-Diode zu schaffen wurde auf die Benutzung teurer vorgefertigter Power-Zener-Dioden verzichtet und mit die einfache Methode der Kombination mit einer kleinen Z-Diode (wahlweise LED) und zwei Transistoren, wobei der einer dieser beiden ein Leistungstransistor sein muss. Ein Vorteil dieser Methode ist die flexiblere Gestaltung von Begrenzungsspannung und Abbildung 3. zulässiger Verlustleistung. Standard Z-Diode

T1 TN 100E T2 BC557 Ue Ue Ua Ua R2 TLBD250

Abbildung 4. – Aufbau einer Power-Zener-Diode

Abbildung 4 zeigt rechts die Power-Z-Diode, bestehend aus einer kleinen leistungsschwachen Z-Diode als Referenzspannungsquelle und einer zweistufigen Transistorverstärkerschaltung. Wenn U_e niedriger ist als die Zenerspannung von D_Z , hat die Basis von T1 über R_1 Emitterpotential. T1 ist offen. Die Basis von T2hat über R_2 Emitterpotential. T2 ist ebenfalls offen. Durch die Power-Z-Diode fließt daher kein Strom. Übersteigt Ue die Zenerspannung von Z plus die Basis-Emitter-Spannung von T1, fließt ein Strom durch die Basis von T1 und durch Z. Dieser Basisstrom erzeugt verstärkt einen T1-Kollektorstrom, der grösstenteils dem Basisstrom von T2 entsprechen soll. Dadurch fließt ebenfalls stromverstärkt ein T2-Kollektorstrom. Die Zenerspannung von Z plus die Basis-Emitter-Spannung von T1 bestimmen die "Zenerspannung" U_a der Power-Z-Diode.

Steigt U_E weiter, fliessen einfach um so mehr Basisströme in T1 und T2 und der dadurch zunehmende T2-Kollektorstrom nimmt gerade soviel Strom auf, dass Ua konstant bleibt. Sieht man vom Strom durch R_1 ab, fließt durch Z ein Strom der aus dem T2 -Kollektorstrom dividiert durch die Stromverstärkungsfaktoren von T1 und T2 resultiert.

Anmerkung: In nachfolgenden Schaltungen wird die Power-Z-Diode unter einem einzigen Symbol zusammengefasst und verwendet.

Die Schaltung mit den hier verwendeten Bauteilen hat eine Zenerspannung von 5V1, welche als konstante Last konstruiert wurde.

Abbildung 5. - Verwendete Power-Z-Diode

Abbildung 6. – Verwendetes Power-Z Symbol

$$T_{T} = \frac{1}{f_{T}} = \frac{1}{120 \text{ kHz}} \rightarrow T_{T} = 8, \dot{3} \text{ } \mu \text{s}$$

$$t_{ON} = t_{OFF} = 50 \% = \frac{8, \dot{3} \text{ } \mu \text{s}}{2} \rightarrow t_{ON} = t_{OFF} = 4, 1\dot{6} \text{ } \mu \text{s}$$

$$I_{E} = \frac{P_{E}}{U_{E}} = \frac{3 \text{ } W}{9 \text{ } V} \rightarrow I_{E} = 0, \dot{3} \text{ } A$$

$$\ddot{\mathbf{u}} = \frac{U_{E}}{U_{A}} = \frac{N_{1}}{N_{2}} = \frac{9 \text{ } V}{5 \text{ } V} \rightarrow \ddot{\mathbf{u}} = 1, 8$$

$$R_{A} = \frac{U_{A}^{2}}{P_{A}} = \frac{(5 \text{ } V)^{2}}{3 \text{ } W} = 8, \dot{3} \text{ } \Omega \rightarrow R_{A} = 8, 2 \text{ } \Omega$$

4.1 Primärseite (L_1)

$$\Delta I_1 = \frac{U_E * t_{ON}}{L_1} = I_1 * 4 = \frac{P_E}{U_B} * 4 = 0, \dot{3} A * 4 \rightarrow \Delta I_1 = 1, \dot{3} A$$

$$L_1 = \frac{U_E * t_{ON}}{\Delta I_1} = \frac{9 V * 4, 1\dot{6} \mu s}{1, 3 A} \rightarrow L_1 = 28,8 \mu H$$

Aufgrund der Verwendung eines Ferrit Kerns konnte ein A_L Wert von $250 \ nH/N^2$ zur nachfolgenden Berechnung herangezogen werden.

$$L_1 = A_L * N_1^2 \to N_1 = \sqrt{\frac{L}{A_L}} = \sqrt{\frac{28,1 \, \mu H}{250 \, nH/N^2}} = 10,6 \, Wdg \to N_1 = 11 \, Wdg$$

4.2 Sekundärseite (L_2)

$$N_{2} = \frac{N_{1}}{\ddot{\mathbf{u}}} = \frac{11 \, Wdg}{1,8} \to N_{2} = 6 \, Wdg$$

$$\Delta I_{2} = \Delta I_{1} * \ddot{\mathbf{u}} = 1, \dot{3} \, A * 1,8 \to \Delta I_{2} = 2,3 \dot{9} \, A$$

$$\Delta U_{A} = \frac{U_{A}}{100} = \frac{5 \, V}{100} \to \Delta U_{A} = 50 \, mV$$

$$C = \frac{t_{ON} * \ddot{\mathbf{u}}}{\Delta U_{A}} = \frac{4,1 \dot{6} \, \mu s * 1,8}{50 \, mV} = 149, \dot{9} \, \mu F \to C = 220 \, \mu F$$

4.3 Impulsgenerator

$$t_{ON} = 0.69 * R_1 * C_1$$

 $t_{OFF} = 0.69 * R_2 * C_1$

Aufgrund des Taktverhältnisses von 50 % und oben genannter allgemeinen Formeln konnte folgendes angenommen werden.

$$t_{ON} = t_{OFF} \rightarrow R_1 = R_2$$

Die Annahmewerte der beiden Widerstände sind daher $R_1=R_2=39~k\Omega$.

$$C_1 = \frac{t_{ON}}{0.69 * R_1} = \frac{t_{OFF}}{0.69 * R_2} = \frac{4.1\dot{6} \,\mu s}{0.69 * 39k} = 154 \,pF \rightarrow C_1 = 120 \,pF$$

Die Rechnungen wurden durchgeführt bei der Verwendung einer 5V1 Zener Diode.

$$U_Z = \frac{R_1 + R_2}{R_1} * U_{Z'} + 0.6 V$$

$$R_3 = \frac{4 V}{1 mA} = 4 k\Omega \rightarrow R_3 = 3.9 k\Omega$$

$$R_4 = \frac{U_A - 4 V}{1 mA} = \frac{5 V - 4 V}{1 mA} = \frac{1 V}{1 mA} \rightarrow R_4 = 1 k\Omega$$

5 Herstellung der Spule

Die Spule wurde anschließend mit den zuvor dimensionierten Werten hergestellt. Zur Verwendung kam hierbei ein Ferrit Kern. Beide Spulen wurden durch Verwendung von isoliertem Spulendraht auf einen gemeinsamen Spulenkörper gewickelt.

Folgende Ansichten zeigen die Wickelrichtungen der beiden Spulen am Spulenkörper (Ferrit-Zylinder) sowie das Äquivalent in nachfolgenden Schaltplänen.

Die primärseitige Spule ${\cal L}_1$ hat 11 Windungen, die Sekundärseite ganze 6.

Abbildung 7. – Wickelrichtung/ Polung beider Spulen

Abbildung 8. - Schaltplan Äquivalentsymbol

6 Komplette Schaltung

Abbildung 9. – Komplette Schaltung des Sperrwandler

6.1 Funktionsprinzip

Durch den Timer Baustein NE555 wird ein Rechtecksignal erzeugt welches dann mithilfe des MOSFET (BD240) die Spannung auf der Primärseite des Übertragers ein- beziehungsweise ausschaltet. Auf der Sekundärseite wird die Spannung durch die Diode (D2) gleichgerichtet und durch den Kondensator (ΔC) geglättet. Die als Last verwendete Schaltung variiert je nach Messung.

6.2 Gleichzeitige Messung von Strom und Spannung

Um Strom und Spannung gleichzeitig mit dem Oszilloskop zu messen wurde ein $1\,\Omega$ Widerstand zur Stromabgreifung verwendet. Somit ist es möglich zu einem

Um Strom und Spannung gleichzeitig an zum Beispiel einer Spule zu messen wurde der folgende Messaufbau verwendet.

7.1 Allgemein

Der Begriff der Streuinduktivität beschreibt jenen Induktivitätsanteil, welcher bei magnetisch gekoppelten Systemen durch den Streufluss gebildet wird. Die Streu Induktivitäten, meist als L_s oder L_σ bezeichnet, spielen beispielsweise im Modell des Transformators eine wesentliche Rolle.

Die Streuinduktivität wird mit denselben Verfahren und Methoden wie jede andere Induktivität bestimmt, nur dass dabei ausschließlich der Streufluss Φ_{S} berücksichtigt wird.

Abbildung 11. – Darstellung des Streuflusses

Anmerkung zu Abbildung 11: Jener magnetische Flussanteil, der von der Schleife 1 ausgeht und nicht durch die Schleife 2 hindurchtritt, wird als Streufluss bezeichnet.

Bezugnehmend auf den Sperrwandler wurde primärseitig die Streuinduktivität jeweils einzeln gemessen und berechnet.

7.2 Messaufbau

Zur Messung der Streuinduktivität wurde auf der Primärseite bei kurzgeschlossener Sekundärseite die Induktivität bestimmt. Zur Kontrolle wurde danach im Normalbetrieb die Impulsbreite und Spannung des Hochspannungsimpulses an U_{DS} gemessen daraus lässt sich die Streuinduktivität mit folgender Formel bestimmen.

$$L\sigma_1 = \frac{\hat{\mathbb{U}}^*\Delta t}{\Delta I} \qquad \qquad \ddot{\mathbb{U}}^2 = \frac{L\sigma_1}{L\sigma_2} \qquad \qquad \begin{array}{cccc} L\sigma_1 & \dots & \text{Streuinduktivität [H]} \\ \Delta t & \dots & \text{Impulsbreite [s]} \\ \hat{\mathbb{U}} & \dots & \text{Impulsspannung [V]} \\ \Delta I & \dots & \text{Stromripple [A]} \end{array}$$

Abbildung 12. – Messung der Streuinduktivität

Die Messung ergab eine primärseitige Streuinduktivität von $L\sigma_1=3$, $6\mu H$. Die Berechnung ergab eine Streuinduktivität von $L\sigma_1=3$, $08\mu H$.

8 Power-Zener-Diode

Um die Effektivität und Funktionsweise der aufgebauten Power-Zener-Diode zu messen wurde eine Kennlinie dieser erstellt.

8.1 Schaltung

Abbildung 13. – Power-Z-Diode

8.2 Kennlinie

Abbildung 14. – Kennlinie der Power-Zener-Diode

8.3 Messpunkte

Spannung [V]	Strom [mA]
0,00	000
4,50	001
4,90	002
5,00	051
5,05	132
5,10	251
5,15	368
5,20	478
5,25	590
5,30	704
5,35	810

Zur Durchführung der folgenden Messungen wurde mit dem Potentiometer beim NE555 ein Tastverhältnis von 1 zu 10 eingestellt.

9.1 Messaufbau

Abbildung 15. – Messschaltung für einen Schaltregler mit geringer Last

9.2 Messergebnisse aller Ströme und Spannungen

9.2.1 NE555 (Taktsignal)

Abbildung 16. – Messungen am NE555

Signalinformationen

Ch1: $U_{c_1}(t)$ Ch2: $U_3(t)$

Trigger: Ch2

Ch1: 2 V pro Div. Ch2: 5 V pro Div. Zeit: 50 μ s pro Div.

Messwerte

 $\begin{array}{c|cc} Ch1 & Ch2 \\ \hat{U} & 3,2 \ V & 10,4 \ V \\ f & 4,509 \ kHz \end{array}$

9.2.2 MOS-FET (Schalter)

Signalinformationen

Ch1: $U_{DS}(t)$ Ch2: $I_{DS}(t)$

Trigger: Ch1

Ch1: 20 V pro Div. Ch2: 50 mA pro Div. Zeit: 2,5 μs pro Div.

Messwerte

	Ch1	Ch2
Û	60 V	158 mA
f	16,9176 <i>kHz</i>	

Abbildung 17. – Messungen am Transistor

9.2.3 Spule L_1 (Primär)

Abbildung 18. – Messungen an der Primärspule

Signalinformationen

Ch1: $U_1(t)$ Ch2: $I_1(t)$

Trigger: Ch1

Ch1: 10 V pro Div. Ch2: 50 mA pro Div. Zeit: 2,5 μs pro Div.

	Ch1	Ch2
Û	20,16 V	156 mA
f	5,653	91 <i>kHz</i>

9.2.4 Spule L_2 (Sekundär)

Signalinformationen

Ch1: $U_{2}\left(t\right)$ Ch2: $I_2(t)$

Trigger: Ch1

Ch1: 5 V pro Div. Ch2: 20 mA pro Div. Zeit: 5 μs pro Div.

Messwerte

	Ch1	Ch2
Û	16,2 V	69,6 mA
f	7,791	64 <i>kHz</i>

Signalinformationen

 $U_{D}\left(t\right)$ $I_{D}\left(t\right)$

10 V

5 μs

20 mA

Ch1: Ch2:

Ch2:

Zeit:

Trigger: Ch1 Ch1:

Messwerte

Abbildung 19. – Messungen an der Sekundärspule

9.2.5 Diode

	Ch1	Ch2
Û	16 V	94,4 mA
f	4,39127 kHz	

pro Div.

pro Div.

pro Div.

	Ch1	Ch2
Û	16 V	94,4 mA
f	4,39127 kHz	

9.2.6 Kondensator

Signalinformationen

 $egin{aligned} U_{\Delta C}\left(t
ight)\ I_{\Delta C}\left(t
ight) \end{aligned}$ Ch1: Ch2:

Trigger: Ch1

Ch1: pro Div. 1 V Ch2: 100 mA pro Div. Zeit: pro Div. **5** μs

	Ch1	Ch2
Û	2,4 V	184 mA
f	4,273	31 <i>kHz</i>

Zur Durchführung der folgenden Messungen wurde mit den Potentiometern am NE555 ein Tastverhältnis von fast 1 zu 1 eingestellt. Die Leistung wurde somit fast auf den Maximalwert von 3W eingestellt.

10.1 Messaufbau

Abbildung 22. – Messschaltung für einen Schaltregler mit voller Last

10.2 Messergebnisse aller Ströme und Spannungen

10.2.1 NE555 (Taktsignal)

Abbildung 23. – Messungen am NE555

Signalinformationen

Ch1: $U_{c_1}(t)$ Ch2: $U_3(t)$

Trigger: Ch1
Ch1: 2 V

Ch1: 2V pro Div. Ch2: 5V pro Div. Zeit: $5\mu s$ pro Div.

	Ch1	Ch2
Û	3,6 V	14 V
f	49,41 <i>kHz</i>	

10.2.2 MOS-FET (Schalter)

Abbildung 24. – Messungen am Transistor

Signalinformationen

Ch1: $U_{DS}(t)$ Ch2: $I_{DS}(t)$

Trigger: Ch1

Ch1: 10 V pro Div. Ch2: 100 mA pro Div. Zeit: $5 \mu s$ pro Div.

Messwerte

	Ch1	Ch2
Û	51,6 V	296 mA
f	49,08 <i>kHz</i>	

10.2.3 Spule L_1 (Primär)

Abbildung 25. – Messungen an der Primärspule

Signalinformationen

Ch1: $U_1(t)$ Ch2: $I_1(t)$

Trigger: Ch1

Ch1: 10 V pro Div. Ch2: 200 mA pro Div. Zeit: $5 \mu s$ pro Div.

	Ch1	Ch2
Û	10 V	320 mA
f	206,249 kHz	

10.2.4 Spule L_2 (Sekundär)

Signalinformationen

Ch1: Ch2:

Trigger: Ch1

Ch1: 10 V pro Div. Ch2: 50 mA pro Div. Zeit: 5 μς pro Div.

Messwerte

Abbildung 26. – Messungen an der Sekundärspule

10.2.5 Diode

Signalinformationen

 $U_{D}\left(t\right)$ $I_{D}\left(t\right)$ Ch1: Ch2:

Trigger: Ch1

Ch1: 2 V pro Div. Ch2: 1 A pro Div. Zeit: **5** μs pro Div.

10.2.6 Kondensator

Signalinformationen

 $egin{aligned} U_{\Delta C}\left(t
ight)\ I_{\Delta C}\left(t
ight) \end{aligned}$ Ch1: Ch2:

Trigger: Ch1

Ch1: pro Div. 2 V Ch2: pro Div. 100 mA Zeit: pro Div. **5** μs

11 Rückkopplung mit Optokoppler

Zur dynamischen Lastregelung wurde die Schaltung so modifiziert, dass über den Pin 5 des NE555 eine Regelspannung zugeführt wurde. Die Messpunkte gleichen denen der vorherigen Messungen.

Abbildung 29. – CNY17 Pinning

Als Optokoppler, zur galvanischen Trennung des Ausgangs wurde ein CNY17 des Herstellers Vishay Semiconductors verbaut.

11.1 Messaufbau

Abbildung 30. – Messschaltung für eine Rückkopplung mit Optokoppler

11.2 Messergebnisse aller Ströme und Spannungen

11.2.1 NE555 (Taktsignal)

Abbildung 31. – Messungen am NE555

Signalinformationen

Ch1: $U_{C_1}(t)$ Ch2: $U_3(t)$

Trigger: Ch1

Ch1: 2V pro Div. Ch2: 5V pro Div. Zeit: $10 \mu s$ pro Div.

	Ch1	Ch2
Û	4,2 V	12,5 V
f	44,703 kHz	

11.2.2 MOS-FET (Schalter)

Abbildung 32. – Messungen am Transistor

Signalinformationen

Ch1: $U_{DS}(t)$ Ch2: $I_{DS}(t)$

Trigger: Ch1

Ch1: 20 V pro Div. Ch2: 100 mA pro Div. Zeit: $5 \mu s$ pro Div.

Messwerte

	Ch1	Ch2
Û	67 V	350 mA
f	45.704 kHz	

11.2.3 Spule L_1 (Primär)

Abbildung 33. – Messungen an der Primärspule

Signalinformationen

Ch1: $U_1(t)$ Ch2: $I_1(t)$

Trigger: Ch1

Ch1: 20 V pro Div. Ch2: 100 mA pro Div. Zeit: $5 \mu s$ pro Div.

	Ch1	Ch2
Û	56 V	306 mA
f	45 183 kHz	

11.2.4 Spule L_2 (Sekundär)

Abbildung 34. – Messungen an der Sekundärspule

Signalinformationen

 $\begin{array}{ll} \text{Ch1:} & \textit{U}_2\left(t\right) \\ \text{Ch2:} & \textit{I}_2\left(t\right) \end{array}$

Trigger: Ch2

Ch1: 10 V pro Div. Ch2: 100 mA pro Div. Zeit: $5 \mu s$ pro Div.

Messwerte

	Ch1	Ch2	
Û	34,6 V	205 mA	
f	59,095 kHz		

11.2.5 Diode

Abbildung 35. – Messungen an der Diode

Signalinformationen

Ch1: $U_D(t)$ Ch2: $I_D(t)$

Trigger: Ch1

Ch1: 10 V pro Div. Ch2: 100 mA pro Div. Zeit: $5 \mu s$ pro Div.

	Ch1	Ch2
Û	32,2 V	185 mA
f	59 25	6 kH2

11.2.6 Kondensator

Abbildung 36. – Messungen am Kondensator

Signalinformationen

Ch1: $U_{\Delta C}(t)$ Ch2: $I_{\Delta C}(t)$

Trigger: Ch1

Ch1: 1 V pro Div. Ch2: 100 mA pro Div. Zeit: $5 \mu s$ pro Div.

	Ch1	Ch2
Û	2,25 V	205 mA
f	55 42	26 kHz

12 Sperrwandler mit dynamische Last

Die Last wurde mittels Transistor und Funktionsgenerator dynamisch ein- und ausgeschaltet.

12.1 Messaufbau

Abbildung 37. – Schaltung für dynamische Last

12.2 Messergebnis

Abbildung 38. – Messung der dynamischen Last

Signalinformationen

Ch1: $U_{f_G}(t)$ Ch2: $U_A(t)$

Trigger: Ch1

Ch1: 2V pro Div. Ch2: 1V pro Div. Zeit: $200 \mu s$ pro Div.

$$\begin{array}{c|cc} Ch1 & Ch2 \\ \hat{U} & 5,03 \ V & 1,704 \ V \\ f & 1 \ kHz \end{array}$$

13 Bodediagramm

Um die Messung der Übertragungsfunktion durchführen zu können, wurde die Regelschleife geöffnet und die Spannungen an den jeweiligen Punkten fix eingestellt. Zur weiteren Messung wurde dann an Pin 5 des NE555 ein Sinus-Signal angelegt.

13.1 Berechnungen

$$\Delta U = \frac{2}{3} * U_E - U_5 = 2 V$$

$$I_5 = \frac{\Delta U}{R_I} = 606 \,\mu A$$

$$R_5 = \frac{U_5}{I_5} = 3.3 \,k\Omega$$

13.2 Messaufbau

Abbildung 39. – Schaltung zur Messung der Übertragungsfunktion

13.3.1 Amplitude response $(j\omega)$

Abbildung 40. – Amplitudengang des Sperrwandlers

13.3.2 Phasengang

Abbildung 41. – Phasengang des Sperrwandlers

14 Abbildungsverzeichnis

Abbildung 1. – Grundprinzip eines Sperrwandlers	5
Abbildung 2. – Grundaufbau des Impulsgenerators (NE555)	6
Abbildung 3. – Standard Z-Diode	7
Abbildung 4. – Aufbau einer Power-Zener-Diode	7
Abbildung 5. – Verwendete Power-Z-Diode	
Abbildung 6. – Verwendetes Power-Z Symbol	7
Abbildung 7. – Wickelrichtung/ Polung beider Spulen	9
Abbildung 8. – Schaltplan Äquivalentsymbol	9
Abbildung 9. – Komplette Schaltung des Sperrwandler	10
Abbildung 10. – Messaufbau zur Strommessung	10
Abbildung 11. – Darstellung des Streuflusses	11
Abbildung 12. – Messung der Streuinduktivität	11
Abbildung 13. – Power-Z-Diode	12
Abbildung 14. – Kennlinie der Power-Zener-Diode	12
Abbildung 15. – Messschaltung für einen Schaltregler mit geringer Last	13
Abbildung 16. – Messungen am NE555	13
Abbildung 17. – Messungen am Transistor	14
Abbildung 18. – Messungen an der Primärspule	14
Abbildung 19. – Messungen an der Sekundärspule	15
Abbildung 20. – Messungen an der Diode	15
Abbildung 21. – Messungen am Kondensator	
Abbildung 22. – Messschaltung für einen Schaltregler mit voller Last	17
Abbildung 23. – Messungen am NE555	17
Abbildung 24. – Messungen am Transistor	18
Abbildung 25. – Messungen an der Primärspule	18
Abbildung 26. – Messungen an der Sekundärspule	19
Abbildung 27. – Messungen an der Diode	19
Abbildung 28. – Messungen am Kondensator	20
Abbildung 29. – CNY17 Pinning	21
Abbildung 30. – Messschaltung für eine Rückkopplung mit Optokoppler	21
Abbildung 31. – Messungen am NE555	21
Abbildung 32. – Messungen am Transistor	22
Abbildung 33. – Messungen an der Primärspule	
Abbildung 34. – Messungen an der Sekundärspule	23
Abbildung 35. – Messungen an der Diode	23
Abbildung 36. – Messungen am Kondensator	24
Abbildung 37. – Schaltung für dynamische Last	25
Abbildung 38. – Messung der dynamischen Last	
Abbildung 39. – Schaltung zur Messung der Übertragungsfunktion	
Abbildung 40. – Amplitudengang des Sperrwandlers	
Abbildung 41. – Phasengang des Sperrwandlers	27