USN					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

III Semester B. E. Examinations April/May - 2023

Computer Science and Engineering LOGIC DESIGN

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1 1.	What are state diagrams and state tables?	2
1.	16:1 multiplexer circuit will have select lines. 01	1
1.	The minterm designator for the term \overline{ABCD} is	1
1.	A n-stage Johnson counter has states. 01	1
1.	is an IC with programmable gates divided into an AND	
	array and an OR array to provide an $AND - OR - SOP$ implementation. 01	1
1.	The flip-flop that follows the input is a flip-flop. 01	1
1.	Draw the logical diagram of a 1bit magnitude comparator.	2
1.	Define a register.	1
1.	A counter with 4 flip-flops will have unique states. 01	1
1.		2
1.	Draw the timing diagram of a 2 bit down counter with negative edge	
	triggered flip-flops.	2
1.	What is the supply voltage level of <i>TTL IC's</i> ?	1
1.	Simplify the Boolean expression: $Y = \overline{(A+B+C)+(B+\bar{C})}$	2
1.	How many JK flip-flops are required to achieve the frequency division	
	of 8?	1
1.	A device which converts BCD to seven segment is called 01	1

PART-B

1	2	a	Minimize the following Boolean expression using K map:	
			i) $F(A, B, C, D) = \sum_{i=1}^{n} m(0, 1, 2, 5, 7, 8, 9, 10, 13, 15)$	
			ii) $F(A, B, C, D) = \sum m(1, 3, 4, 6, 8, 9, 11, 13, 15) + \sum d(0, 2, 14)$	80
		b	Simplify the following Boolean function	
			$f(w, x, y, z) = \sum (0, 2, 5, 7, 10, 13, 14, 15)$ using Quine-McCluskey tabular	
			method.	08
-	3	а	With a neat diagram, explain a decimal adder.	08
		b	Implement the Boolean function using 8:1 and also using 4:1	
			multiplexer $F(A, B, C, D) = \sum M(0, 2m (0, 1, 2, 4, 6, 9, 12, 14).$	08

		OR				
4	a b	Explain 2 bit magnitude comparator. Design a full adder and subtractor using 3 to 8 line decoder.				
5	a b	What is race condition? How this can be avoided? Illustrate how Master-Slave <i>JK</i> flip-flop overcomes this problem? With relevant function table and symbols, explain positive edge triggered <i>D</i> flip-flop.				
	D					
		OR				
6	a	What are registers? Explain with diagram SISO and SIPO				
	b	unidirectional shift registers. With a neat diagram, explain universal shift register.	08 08			
7	а	Design a synchronous counter to count the following sequence 7, 4, 3, 1, 5, 0, 7, 4, 3, Implement the circuit using <i>T</i> flip-flops.	08			
	b	Design a mod 4 synchronous up-counter using <i>JK</i> flip-flop.	08			
8	а	Differentiate between Mealy model and Moore models synchronous sequential networks.	08			
	b	Construct the excitation table, transition table, state table and state diagram for the sequential circuit shown in Fig 8b.				
		CLK Reset	00			
		Fig 8b	08			