DÉRIVABILITÉ

Théorème de Rolle

Solution 1

Quitte à changer f en $f - \ell$, on peut supposer que $\ell = 0$. Si f est nulle, le résultat est banal. Dans le cas contraire, quitte à changer f en -f, on peut supposer qu'elle prend une valeur $\beta > 0$ en α . Puisque

$$\lim_{x \to +\infty} f(x) = 0,$$

et d'après le théorème des valeurs intermédiaires, f prend la valeur $\beta/2$ sur les intervalles $]\alpha, +\infty[$ et $]-\infty, \alpha[$. Ainsi, d'après le lemme de Rolle, il existe $c \in \mathbb{R}$ tel que f'(c) = 0.

Remarque. On peut éviter le recours au lemme de Rolle en prouvant que f admet un extremum local, ce qui n'est d'ailleurs pas plus long à rédiger.

Solution 2

Par récurrence sur n; si n = 1, c'est le théorème de Rolle de base. Supposons que pour un certain n, le résultat soit vrai pour toute fonction f et prouvons qu'il est alors vrai pour n + 1; soient

$$a_0 = a < a_1 < \dots < a_n < a_{n+1} = b$$

et supposons que

$$f(a_0) = f(a_1) = \dots = f(a_n) = f(a_{n+1}).$$

L'application du théorème de Rolle ordinaire nous donne l'existence de points $c_0 < c_1 < \cdots < c_n$ tels que,

$$f'(c_0) = f'(c_1) = \cdots = f'(c_n) = 0.$$

L'hypothèse de récurrence appliquée à la fonction f', sur l'intervalle $[c_0, c_n]$, aux points $c_0 < c_1 < \cdots < c_n$, nous donne donc l'existence d'un réel $c \in]c_0, c_n[\subset]a, b[$, tel que $(f')^{(n)}(c) = 0$, i.e. $f^{(n+1)}(c) = 0$; la récurrence est établie.

Solution 3

Notons a et b les abscisses respectives de A et B. Pour simplifier, nous supposerons a < b. Le fait que B soit sur la tangente à C en A se traduit par :

$$f(b) = f(a) + f'(a)(b - a) \text{ ou encore } \frac{f(b) - f(a)}{b - a} = f'(a)$$

De même, on cherche donc un point M d'abscisse c vérifiant :

$$f(a) = f(c) + f'(c)(a - c)$$

Définissons une fonction g sur I par $\begin{cases} g(x) = \frac{f(x) - f(a)}{x - a} & \text{pour } x \in I \setminus \{a\} \\ g(a) = f'(a) \end{cases}$. g est continue sur]a, b] comme quotient de fonctions continues

dont le dénominateur ne s'annule pas. Comme f est dérivable en a, g est continue en a. g est donc continue sur [a,b]. De plus, g est dérivable sur]a,b[comme quotient de fonctions dérivables dont le dénominateur ne s'annule pas. Enfin, g(b)=g(a)=f'(a). D'après le théorème de Rolle, il existe $c \in]a,b[$ tel que g'(c)=0. Or pour $x \in]a,b[$, $g'(x)=\frac{f'(x)(x-a)-f(x)+f(a)}{(x-a)^2}$. On a donc

$$f'(c)(c-a) - f(c) + f(a) = 0$$

ce qui est bien l'égalité annoncée plus haut.

Théorème des accroissements finis

Solution 4

Notons f la fonction définie sur $]0, +\infty[$ par

$$x \mapsto xe^{1/x}$$
.

1

Cete fonction est de classe \mathcal{C}^{∞} et d'après le théorème des accroissements finis, pour tout x > 0, il existe $u_x \in]x, x + 1[$ tel que

$$f(x+1) - f(x) = f'(u_x) = e^{1/u_x} - \frac{e^{1/u_x}}{u_x},$$

puisque $u_x > x$,

$$\lim_{x\to +\infty} u_x = +\infty,$$

et d'après les croissantes comparées et la continuité de l'exponentielle,

$$\lim_{x \to +\infty} [f(x+1) - f(x)] = 1.$$

Solution 5

1. Soit φ la fonction définie sur [a, b] par

$$x \mapsto (g(x) - g(a))(f(b) - f(a)) - (f(x) - g(a))(g(b) - g(a)).$$

Cete fonction vérifie les mêmes hypothèses que f et l'on a $\varphi(a) = \varphi(b) = 0$, ainsi d'après le théorème de Rolle, il existe $c \in]a,b[$ tel que $\varphi'(c) = 0$, c'est-à-dire

$$g'(c)(f(b) - f(a)) = f'(c)(g(b) - g(a)).$$

2. D'après le théorème des accroissements finis, pour tout $x \neq x_0$, il existe $x' \neq x_0$ tel que

$$g(x) - g(x_0) = (x - x_0)g'(x') \neq 0$$

car g' ne s'annule pas sur I. Ainsi le quotient de l'énoncé est-il défini pour tout $x \neq x_0$. Soit $x \neq x_0$. D'après le résultat de la question 1., il existe c_x appartenant à $]x_0, x[$ ou $]x, x_0[$ tel que

$$\frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(c_x)}{g'(c_x)}.$$

Comme $x_0 < c_x < x$ ou $x < c_x < x_0$, d'après le théorème d'encadrement,

$$\lim_{x \to x_0} c_x = x_0,$$

puis par composition des limites,

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \ell.$$

3. En appliquant le résultat à $f = \sin$ et $g = id_{\mathbb{R}}$ sur $I =] - \pi/2, \pi/2[$ et en 0, puisque

$$\lim_{x \to 0} \frac{\cos(x)}{1} = 1,$$

on a

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1,$$

c'est-à-dire,

$$\sin(x) = x + o(x).$$

Puisque

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1,$$

par application de la r'egle de l'Hospital, on a aussi

$$\lim_{x \to 0} \frac{\cos(x) - 1}{x^2/2} = -1,$$

donc

$$\cos(x) = 1 - x^2/2 + o(x^2).$$

Puisque

$$\lim_{x \to 0} \frac{\cos(x) - 1}{x^2/2} = -1,$$

par application de la r'egle de l'Hospital, on a aussi

$$\lim_{x \to 0} \frac{\sin(x) - x}{x^3/6} = -1,$$

donc

$$\sin(x) = x - x^3/6 + o(x^3).$$

Solution 6

1. La fonction $t \mapsto \sin(t)$ est dérivable sur \mathbb{R} et a pour dérivée la fonction $t \mapsto \cos(t)$, dont la valeur absolue est majorée par 1; l'application de l'inégalité des accroissements finis entre 0 et x, à la fonction $t \mapsto \sin(t)$, conduit donc à l'inégalité,

$$\forall x \in \mathbb{R}, |\sin x| \leq |x|$$

2. La fonction $t\mapsto \ln(1+t)$ a pour dérivée la fonction $t\mapsto \frac{1}{1+t}$, qui est encadrée entre 0 et 1 sur \mathbb{R}_+ , d'où l'encadrement,

$$\forall x \geqslant 0, \ 0 \leqslant \ln(1+x) \leqslant x.$$

Solution 7

1. D'après le théorème des accroissements finis, $\forall 0 < x < 1, \exists 0 < \theta < x$,

$$\frac{\arcsin(x)}{x} = \frac{\arcsin(x) - \arcsin(0)}{x - 0} = \arcsin'(\theta)$$
$$= \frac{1}{\sqrt{1 - \theta^2}}$$

Comme $0 < \theta < x < 1$, on a

$$\frac{1}{\sqrt{1-\theta^2}} < \frac{1}{\sqrt{1-x^2}},$$

et donc

$$\forall \ 0 < x < 1, \qquad \arcsin(x) < \frac{x}{\sqrt{1 - x^2}}.$$

2. De façon analogue, d'après le théorème des accroissements finis, $\forall x > 0 \; \exists \; 0 < \theta < x$,

$$\frac{\arctan(x)}{x} = \frac{\arctan(x) - \arctan(0)}{x - 0} = \arctan'(\theta)$$
$$= \frac{1}{1 + \theta^2}$$

Comme $0 < \theta < x$, on a

$$\frac{1}{1+x^2}<\frac{1}{1+\theta^2},$$

On en déduit que

$$\forall x > 0$$
, $\arctan(x) > \frac{x}{1+x^2}$.

Solution 8

1. Comme quotient de fonctions continues, la fonction ϕ est continue sur l'intervalle [a, b]. Comme f est dérivable en a,

$$\phi(a) = f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \phi(x),$$

donc ϕ est aussi continue en x = a.

On justifie de manière analogue la continuité de ψ sur le segment [a, b].

2. Les fonctions ϕ et ψ sont continues sur le segment [a,b]. D'après le théorème des valeurs intermédiaires, ϕ prend toutes les valeurs comprises entre $\phi(a) = f'(a)$ et $\phi(b)$ et ψ prend toutes les valeurs comprises entre $\psi(a)$ et $\psi(b) = f'(b)$. Or $\psi(a) = \phi(b)$!

Voici les différents cas possibles, selon la valeur du réel $\gamma = \psi(a) = \phi(b)$:

- si $\gamma < 0 < f'(b)$, alors il existe $x \in [a, b[$ tel que $\psi(x) = 0$;
- si $f'(a) < 0 < \gamma$, alors il existe $x \in]a, b[$ tel que $\phi(x) = 0$;
- si $\gamma = 0$, alors $\psi(a) = \varphi(b) = 0$.

Mais d'après le théorème des accroissements finis,

$$\forall x \in [a, b], \exists c \in [a, b], \quad \phi(x) = f'(c)$$

et

$$\forall x \in [a, b[, \exists c \in]a, b[, \psi(x) = f'(c).$$

Ainsi, qu'elle soit ou non continue, l'application f' vérifie la propriété des valeurs intermédiaires (théorème attribué à Darboux).

Variations

Solution 9

Pour tout $x \in \mathbb{R}$,

$$f'(x) = nx^{n-1} + p$$
 et $f''(x) = n(n-1)x^{n-2}$.

Supposons que n soit pair. Alors f' est strictement croissante sur \mathbb{R} , tend vers $-\infty$ au voisinage de $-\infty$ et vers $+\infty$ au voisinage de $+\infty$, donc f' réalise une bijection de \mathbb{R} sur \mathbb{R} . Par conséquent, f est strictement décroissante sur un intervalle de la forme $]-\infty,\alpha]$ et strictement croissante sur l'intervalle $[\alpha, +\infty[$: la fonction f peut s'annuler au plus deux fois (une fois sur chacun de ces deux intervalles).

REMARQUE. On peut préciser que $\alpha = {n-1}\sqrt{-p/n}$, mais ça n'a aucun intérêt.

Supposons que n soit impair. Si p est positif, alors f est strictement croissante sur \mathbb{R} , tend vers $-\infty$ au voisinage de $-\infty$ et vers $+\infty$ au voisinage de $+\infty$. D'après le théorème d'inversion, f s'annule une seule fois. Si p est strictement négatif, alors f est strictement croissante sur les intervalles $]-\infty, -^{n-1}\sqrt{-p/n}]$ et $[n-1]\sqrt{-p/n}, +\infty[$ et strictement décroissante sur le segment $[-^{n-1}\sqrt{-p/n}, ^{n-1}\sqrt{-p/n}]$. D'après le théorème d'inversion, la fonction f s'annule au plus une fois sur chacun de ces trois intervalles.

Solution 10

L'inégalité de l'énoncé implique que f est bornée (entre -1 et 1) et que f' est négative. Ainsi f est décroissante sur \mathbb{R} et, d'après le théorème de la limite monotone, admet des limites finies en $-\infty$ et $+\infty$.

Supposons que f admette une limite non nulle en $+\infty$. Alors il existe c>0 et $A\in\mathbb{R}$ tel que $|f(x)|\geq c$ pour $x\geq A$. Si on pose $d=\sqrt{1-c^2}-1<0$, alors $f'(x)\leq d$ pour $x\geq A$. Mais, d'après le théorème des accroissements finis, $f(x)-f(A)\leq d(x-A)$ pour $x\geq A$. Ceci implique que $\lim_{+\infty} f=-\infty$ et donc une contradiction. Ainsi $\lim_{+\infty} f=0$.

On prouve de la même manière que $\lim_{\infty} f = 0$.

La décroissance de f permet alors de conclure que f est nulle.

Solution 11

- **1.** g est dérivable donc continue. Elle admet donc un minimum sur le segment [a, b].
- 2. Si le minimum était atteint en a, on aurait $g(x) \ge g(a)$ pour tout $x \in]a,b]$. Par conséquent $g'(a) = \lim_{x \to a} \frac{g(x) g(a)}{x a} \ge 0$. Or g'(a) = f'(a) y < 0.

On démontre de même que le minimum ne peut être atteint en b.

- 3. Le minimum de g est donc un minimum local : il existe donc $c \in]a,b[$ tel que g'(c)=0 i.e. f'(c)=y.
- **4.** On peut considérer le maximum de g sur [a, b]. Ou bien, on applique ce qui précède à la fonction -f. On a bien (-f)'(a) < -y < (-f)'(b). Il existe donc $c \in [a, b[$ tel que (-f)'(c) = -y i.e. f'(c) = y.

Solution 12

Posons $g(x) = e^{-x} f(x)$. La fonction g est positive et nulle en x = 0. En outre, elle est dérivable sur \mathbb{R}_+ et

$$\forall x \ge 0, \qquad g'(x) = (f'(x) - f(x))e^{-x} \le 0,$$

donc g est décroissante sur \mathbb{R}_+ . Par conséquent, elle est identiquement nulle sur \mathbb{R}_+ , ainsi que f bien sûr!

Equations fonctionnelles

Solution 13

Soit $f: \mathbb{R}^*_+ \to \mathbb{R}$ une fonction vérifiant les conditions de l'énoncé. En dérivant la relation de l'énoncé par rapport à x, on obtient :

$$\forall x, y \in \mathbb{R}_+^*, yf'(xy) = f'(x)$$

Fixons ensuite x=1 dans cette dernière relation, on a donc $f'(y)=\frac{a}{y}$ pour tout $y\in\mathbb{R}_+^*$ en posant a=f'(1). Ceci signifie qu'il existe $C\in\mathbb{R}$ tel que $f(y)=a\ln y+C$ pour tout $y\in\mathbb{R}_+^*$. Or $f(1\times 1)=f(1)+f(1)$ donc f(1)=0 et C=0.

Réciproquement toute fonction du type $x \mapsto a \ln x$ avec $a \in \mathbb{R}$ vérifie bien les conditions de l'énoncé. Ce sont donc exactement les fonctions recherchées.

Solution 14

Soit f une fonction vérifiant la condition de l'énoncé. Fixons $y \in \mathbb{R}$. Puisque exp et f sont dérivables en 0, $x \mapsto e^x f(y) + e^y f(x)$ est également dérivable en 0. Ainsi $x \mapsto f(x+y)$ est dérivable en 0 i.e. f est dérivable en y. Puisque le choix de y est arbitraire, f est dérivable sur \mathbb{R} .

Dérivons maintenant la condition de l'énoncé par rapport à la variable y. On obtient

$$\forall (x,y) \in \mathbb{R}^2, \ f'(x+y) = e^x f'(y) + e^y f(x)$$

Fixons maintenant y=0. On a donc pour tout $x\in\mathbb{R}$, $f'(x)=f'(0)e^x+f(x)$. Posons a=f'(0). La fonction f est donc solution de l'équation différentielle $y'-y=ae^x$. Les solutions de l'équation homogène y'-y=0 sont les fonctions de la forme $x\mapsto \lambda e^x$ avec $\lambda\in\mathbb{R}$. La méthode de variation de la constante fournit une solution particulière de l'équation différentielle $y'-y=ae^x$, à savoir $x\mapsto axe^x$. On en déduit que f est de la forme $x\mapsto axe^x+\lambda e^x$ avec $\lambda\in\mathbb{R}$. Enfin $f(0+0)=e^0f(0)+e^0f(0)$ et donc f(0)=0, ce qui impose $\lambda=0$. f est donc de la forme $x\mapsto axe^x$.

Réciproquement soit $a \in \mathbb{R}$ et $f : x \mapsto axe^x$. Alors pour tout $(x, y) \in \mathbb{R}^2$

$$f(x + y) = a(x + y)e^{x+y} = axe^x e^y + aye^x e^y = e^y f(x) + e^x f(y)$$

Ainsi f vérifie bien la condition de l'énoncé.

Les fonctions recherchées sont donc exactement les fonctions de la forme $x \mapsto axe^x$ avec $a \in \mathbb{R}$.

Solution 15

Soit f une fonction vérifiant l'équation fonctionnelle de l'énoncé.

Soit $x \in \mathbb{R}$, on montre facilement par récurrence que pour tout n dans N,

$$f\left(\frac{x}{2^n}\right) = \frac{1}{2^n}f(x).$$

On traduit alors l'hypothèse f est dérivable en zéro : il existe $\ell \in \mathbb{R}$ tel que

$$\lim_{y \to 0} \frac{f(y)}{y} = \ell.$$

Ainsi, d'après le critère séquentiel pour les limites, pour tout $x \neq 0$,

$$\lim_{n \to +\infty} \frac{f(x/2^n)}{x/2^n} = \ell.$$

Or, pour tout $n \in \mathbb{N}$,

$$\frac{f(x/2^n)}{x/2^n} = \frac{f(x)}{x},$$

on a donc par passage à la limite, pour tout $x \neq 0$, $f(x) = \ell x$. On remarque que cette relation est encore valable lorsque x est nul puisque

$$f(0) = 2f(0) \Longrightarrow f(0) = 0.$$

- ightharpoonup Réciproquement, les applications linéaires de $\mathbb R$ dans $\mathbb R$ répondent bien à la question, la vérification est immédiate.
- On a donc montré que les seules solutions dérivables en 0 de l'équation proposée sont les fonctions de la forme

$$f_a: \mathbb{R} \to \mathbb{R}, \ x \mapsto f_a(x) = ax.$$

Dérivées successives

Solution 16

1. La fonction g_n est de classe \mathcal{C}^{∞} sur $]0, +\infty[$ d'après le théorème sur les produits. En appliquant la formule de Leibniz, on trouve que la dérivée n+1-ième de $f_{n+1}: x \mapsto xf_n(x)$ est égale à

$$x \mapsto x f_n^{(n+1)}(x) + (n+1) f_n^{(n)}(x)$$

ainsi, pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}_+^*$,

$$g_{n+1} = xg'_n(x) + (n+1)g_n(x)$$

- **2.** Prouvons la formule par récurrence sur $n \in \mathbb{N}^*$.
 - La formule est banale pour n = 1.
 - Supposons la formule vraie pour un certain $n \in \mathbb{N}^*$. Alors g_n est dérivable sur \mathbb{R}_+^* et,

$$\forall x \in \mathbb{R}_+^*, \ g_n'(x) = (-1)^n \left[\frac{-(n+1)}{x^{n+2}} - \frac{1}{x^{n+3}} \right] e^{1/x}$$

On a donc, d'après la formule démontrée à la première question,

$$\forall x \in \mathbb{R}_+^*, \ g_{n+1}(x) = \frac{(-1)^{n+1}}{x^{n+2}} e^{1/x}$$

La formule est prouvée au rang n + 1.

• La formule est vraie pour tout $n \in \mathbb{N}^*$ d'après le principe de récurrence.

Solution 17

Notons u et v les fonctions définies sur \mathbb{R} par,

$$u(x) = x^2 + 1$$
, $v(x) = e^x$.

ces deux fonctions sont de classe \mathcal{C}^{∞} , la fonction f = uv est donc aussi de classe \mathcal{C}^{∞} et d'après la formule de Leibniz, $\forall n \ge 0, \forall x \in \mathbb{R}$,

$$f^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} u^{(k)}(x) e^x = \sum_{k=0}^{2} {n \choose k} u^{(k)}(x) e^x$$
$$= (x^2 + 2nx + n(n-1) + 1) e^x$$

Solution 18

- **1.** Une primitive de $x \mapsto nx 1$ étant $\frac{nx^2}{2} x$, les solutions de (E) sont les fonctions $x \mapsto \lambda \exp\left(\frac{nx^2}{2} x\right)$ avec $\lambda \in \mathbb{R}$. On a donc $f_n(x) = \exp\left(\frac{nx^2}{2} x\right)$.
- 2. On a $f_n'(x) = (nx 1) \exp\left(\frac{nx^2}{2} x\right)$. On en déduit que f_n admet un maximum en $\frac{1}{n}$. On a donc $u_n = \frac{1}{n}$ et $v_n = f_n\left(\frac{1}{n}\right) = \exp\left(-\frac{1}{2n}\right)$. On a donc u = 0 et v = 1. Comme $-\frac{1}{2n} \xrightarrow[n \to +\infty]{} 0$, $v_n v \underset{n \to +\infty}{\sim} -\frac{1}{2n}$.
- 3. Notons $g_n(x) = nx 1$. Comme f_n est solution de (E), on a $f'_n = g_n f_n$. Soit $p \in \mathbb{N}^*$. On dérive cette identité 2p fois en utilisant la formule de Leibniz :

$$f^{(2p+1)} = \sum_{k=0}^{2p} {2p \choose k} g_n^{(k)} f_n^{(2p-k)}$$

Or $\mathbf{g}_n^{(k)} = 0$ pour $k \geq 2$. La somme précédente se réduit donc à deux termes :

$$f^{(2p+1)}(x) = g_n(x)f_n^{(2p)} + 2pg_n'(x)f_n^{(2p-1)}(x)$$

Or
$$g_n\left(\frac{1}{n}\right) = 0$$
 et $g'_n = n$. Donc

$$f^{(2p+1)}\left(\frac{1}{n}\right) = 2npf^{(2p-1)}\left(\frac{1}{n}\right)$$

Soit HR(p) l'hypothèse de récurrence $f^{(2p+1)}\left(\frac{1}{n}\right) = 0$. HR(0) est vraie puisque $f' - n\left(\frac{1}{n}\right) = 0$. De plus, l'égalité précédente montre que HR(p-1) implique HR(p). Par récurrence, HR(p) est vraie pour tout $p \in \mathbb{N}$ et notamment pour p = n, ce qui nous donne le résultat voulu.

ATTENTION! Si on avait directement dérivé 2*n* fois, on aurait obtenu

$$f^{(2n+1)}\left(\frac{1}{n}\right) = 2n^2 f^{(2n-1)}\left(\frac{1}{n}\right)$$

et on n'aurait pas pu effectuer de récurrence sur n.

Solution 19

1. On note HR(n) la propriété à démontrer. HR(0) est vraie en posant $P_0 = 1$. Supposons HR(n) vraie pour un certain $n \in \mathbb{N}$. Alors il existe $P_n \in \mathbb{R}[X]$ tel que

$$\forall t \in \mathbb{R}_{+}^{*}, \ f^{(n)}(t) = \frac{P_{n}(t)e^{-\frac{1}{t}}}{t^{2n}}$$

En dérivant, on obtient

$$\forall t \in \mathbb{R}_{+}^{*}, \ f^{(n+1)}(t) = \frac{\left(t^{2} P'_{n}(t) - 2nt P_{n}(t) + P_{n}(t)\right) e^{-\frac{1}{t}}}{t^{2(n+1)}}$$

En posant $P_{n+1} = X^2 P'_n - 2nXP_n + P_n$, on e donc

$$\forall t \in \mathbb{R}_+^*, \ f^{(n+1)}(t) = \frac{P_{n+1}(t)e^{-\frac{1}{t}}}{t^{2(n+1)}}$$

Ainsi HR(n + 1) est vraie.

Par récurrence, HR(n) est vraie pour tout $n \in \mathbb{N}$.

2. Notons g la restriction de f à \mathbb{R}^* . g est clairement de classe \mathcal{C}^{∞} sur \mathbb{R}^* par opérations sur les fonctions de classe \mathcal{C}^{∞} . Soit $n \in \mathbb{N}$. Par croissances comparées, $\lim_{t\to 0^+} g^{(n)}(t) = 0$ et on a évidemment $\lim_{t\to 0^-} g^{(n)}(t) = 0$ puisque $g^{(n)}$ est nulle sur \mathbb{R}^* . Ainsi $\lim_{t\to 0} g^{(n)}(t) = 0$. Ceci prouve que g est prolongeable par continuité en 0 en une fonction de classe \mathcal{C}^{∞} sur \mathbb{R} . Mais puisque f est continue en 0 (étudier les limites en 0^+ et 0^-), f = g et donc f est de classe \mathcal{C}^{∞} sur \mathbb{R} .

Solution 20

- **1. a.** On a W' = u''v uv'' = (q p)uv.
 - **b.** Supposons que v ne s'annule pas sur [a,b]. Comme u et v sont continues, elles restent de signe constant respectivement sur]a,b[et [a,b]. Quitte à changer u en -u et/ou v en -v (qui sont aussi solution des mêmes équations différentielles que u et v), on peut supposer u>0 sur]a,b[et v>0 sur [a,b]. Alors $w'\geq0$ sur [a,b] et donc w est croissante sur [a,b]. De plus, w(a)=u'(a)v(a) et w(b)=u'(b)v(b). On a $w'(a)\geq0$ et $w'(b)\leq0$ en considérant la limite du taux de variation de u en u0. Par unicité de la solution d'un problème de Cauchy, on ne peut avoir u'(a)=0 ou u'(b)=0 sinon u serait nulle. Par conséquent, u'(a)>0 et u'(b)<0. Ainsi w(a)>0 et w(b)<0 ce qui contredit la décroissance de w0. On en déduit que v1 s'annule sur v2 s'annule sur v3.
- 2. **a.** Soit $a \in \mathbb{R}$. La fonction $u: x \mapsto \sin(M(x-a))$ vérifie $u'' + M^2u = 0$. De plus, u s'annule en a et $a + \frac{\pi}{M}$ mais ne s'annule pas sur $\left[a, a + \frac{\pi}{M}\right]$. On déduit de la question précédente que f s'annule sur $\left[a, a + \frac{\pi}{M}\right]$.
 - **b.** Soit $\varepsilon \in \left]0, \frac{\pi}{M}\right[$. La fonction $v: x \mapsto \sin(M(x-a+\varepsilon))$ vérifie $v'' + M^2v = 0$. La question précédente montre que v s'annule sur $\left[a, b\right]$. Comme v ne s'annule pas sur $\left[a, \frac{a}{+} \frac{\pi}{M} \varepsilon\right]$, on a $b \ge a + \frac{\pi}{M} \varepsilon$ i.e. $b a \ge \frac{\pi}{M} \varepsilon$. Ceci étant vrai pour tout $\varepsilon \in \left]0, \frac{\pi}{M}\right[$, $b a \ge \frac{\pi}{M}$.

Formules de Taylor

Solution 21

1. Comme f est nulle sur $\left[\frac{1}{2}; +\infty\right[$, $f^{(n)}(x) = 0$ pour $n \in \mathbb{N}$ et $x > \frac{1}{2}$. Comme f est \mathcal{C}^{∞} , les $f^{(n)}$ sont continues et donc $f^{(n)}\left(\frac{1}{2}\right) = 0$ pour $n \in \mathbb{N}$.

Appliquons l'inégalité de Taylor-Lagrange entre $\frac{1}{2}$ et 0 :

$$\left| f(0) - \sum_{k=0}^{n-1} \frac{1}{2^k k!} f^{(k)} \left(\frac{1}{2} \right) \right| \le \frac{1}{2^n n!} \sup_{[0; \frac{1}{n}]} \left| f^{(n)} \right|$$

On a vu précédemment que $f^{(k)}\left(\frac{1}{2}\right)=0$. Par ailleurs, $\sup_{\left[0;\frac{1}{2}\right]}\left|f^{(n)}\right|\leq\sup_{\mathbb{R}_{+}}\left|f^{(n)}\right|$ (on a même égalité). Enfin, f(0)=1 par hypothèse donc on obtient le résultat voulu.

2. Soit $n \ge 1$. Supposons $\sup_{\mathbb{R}_+} |f^{(n)}| = 2^n n!$ et posons

$$g(x) = f(x) - (1 - 2x)^n, \forall x \in \mathbb{R}_+.$$

On a donc $g^{(n)}(x) = f^{(n)}(x) - (-1)^n 2^n n!$. Montrons par récurrence finie décroissante sur $k \in [1; n]$ que $g^{(k)}$ est de signe constant sur $[0; \frac{1}{2}]$. D'après notre hypothèse, c'est clair pour k = n. Supposons $g^{(k)}$ de signe constant pour un certain k tel que $1 < k \le n$. Alors $g^{(k-1)}$ est monotone. Or

$$g^{(k-1)}(x) = f^{(k-1)}(x) - \frac{n!}{(n-k+1)!} (1-2x)^{n-k+1}$$

donc $g^{(k-1)}\left(\frac{1}{2}\right) = 0$ (puisque n-k+1>0). Ainsi $g^{(k-1)}$ est de signe constant sur $\left[0;\frac{1}{2}\right]$. Donc, par récurrence, g' est de signe constant sur $\left[0;\frac{1}{2}\right]$ et g est monotone sur $\left[0;\frac{1}{2}\right]$. Comme $g(0)=g\left(\frac{1}{2}\right)=0$, g est nulle sur $\left[0;\frac{1}{2}\right]$. Or $g^{(n)}\left(\frac{1}{2}\right)=-(-1)^n2^nn!\neq 0$. Il y a donc contradiction.

Solution 22

Soit $x \in \left] -\frac{1}{\lambda}; \frac{1}{\lambda} \right[$. L'inégalité de Taylor-Lagrange entre 0 et x au rang n donne :

$$|f(x)| \le \frac{|x|^n}{n!} \sup_{[0;x]} |f^{(n)}| \le |\lambda x|^n < 1.$$

En faisant tendre *n* vers $+\infty$, on obtient f(x) = 0.

Montrons par récurrence sur $k \in \mathbb{N}^*$ que f est nulle sur $\left] - \frac{k}{\lambda}; \frac{k}{\lambda} \right[$. On a vu que c'était vrai pour k = 1. Supposons-le vrai pour un $k \in \mathbb{N}^*$. Considérons les fonctions :

Comme f est nulle sur $\left] -\frac{k}{\lambda}; \frac{k}{\lambda} \right[$ par hypothèse de récurence et que les $f^{(n)}$ sont continues, on a donc :

$$f^{(n)}\left(-\frac{k}{\lambda}\right) = f^{(n)}\left(\frac{k}{\lambda}\right) = 0, \forall n \in \mathbb{N},$$

c'est-à-dire

$$g_1^{(n)}(0) = g_2^{(n)}(0) = 0 \forall n \in \mathbb{N}.$$

De plus $\sup_{\mathbb{R}} \left| g_1^{(n)} \right| = \sup_{\mathbb{R}} \left| g_2^{(n)} \right| = \sup_{\mathbb{R}} \left| f^{(n)} \right|$. Donc g_1 et g_2 vérifient les mêmes hypothèses que f: elles sont donc nulles $\sup_{\mathbb{R}} \left| -\frac{1}{\lambda}; \frac{1}{\lambda} \right|$. Par conséquent, f est nulle $\sup_{\mathbb{R}} \left| -\frac{k+1}{\lambda}; \frac{k+1}{\lambda} \right|$.

Par récurrence, f est donc nulle sur tout intervalle $\left|-\frac{k}{\lambda};\frac{k}{\lambda}\right|$ où $k \in \mathbb{N}^*$: elle est donc nulle sur \mathbb{R} .

Solution 23

On a clairement $\varphi(b) = 0$. On choisit donc A tel que $\varphi(a) = 0$. Il suffit ainsi de choisir A tel que :

$$A\frac{(b-a)^{n+1}}{(n+1)!} = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k - f(b)$$
 (*)

Comme f est de classe \mathcal{C}^n sur [a,b] et n+1 fois dérivable sur]a,b[, φ est continue sur [a,b] et dérivable sur]a,b[. D'après le théorème de Rolle, il existe $c \in]a,b[$ tel que $\varphi'(c)=0$. Or, pour $x \in]a,b[$:

$$\varphi'(x) = -\sum_{k=0}^{n} f^{(k+1)}(x)k!(b-x)^{k} + \sum_{k=1}^{n} \frac{f^{(k)}(x)}{(k-1)!}(b-x)^{k-1} - A\frac{(b-x)^{n}}{n!}$$

Par télescopage, on obtient :

$$\varphi'(x) = -\frac{f^{(n+1)}(x)}{n!}(b-x)^n - A\frac{(b-x)^n}{n!}$$

Comme $\varphi'(c) = 0$, on obtient :

$$A + f^{(n+1)}(c) = 0$$

Il suffit alors d'utiliser la relation (*) pour obtenir l'égalité voulue.

Solution 24

1. Soit l'hypothèse de récurrence : $\forall x \in]-1, +\infty[, f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}$ ».

Initialisation : Pour tout $x \in]-1, +\infty, f'(x) = \frac{1}{1+x} = \frac{(-1)^0 0!}{(1+x)^0}$. Donc HR(1) est vraie.

Hérédité : On suppose HR(n) vraie pour un certain $n \in \mathbb{N}^*$. On a donc pour tout $x \in]-1, +\infty[$, $f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}$. En dérivant, on obtient

$$\forall x \in]-1, +\infty[, f^{(n+1)}(x) = \frac{(-1)^n n!}{(1+x)^{n+1}}$$

Conclusion : HR(n) est vraie pour tout $n \in \mathbb{N}^*$.

2. Comme f est de classe \mathcal{C}^{∞} , on peut appliquer l'inégalité de Taylor-Lagrange entre 0 et 1 à un ordre $n \in \mathbb{N}^*$ quelconque. Pour $t \in [0, 1]$, $|f^{(n+1)}(t)| \leq n!$ donc

$$\left| f(1) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} (1-0)^{k} \right| \le n! \frac{(1-0)^{n+1}}{(n+1)!}$$

On en déduit que

$$|\ln 2 - u_n| \le \frac{1}{n+1}$$

3. Il est immédiat que (u_n) converge vers ln(2).

Remarque. On peut alors noter $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} = \ln 2.$

Solution 25

- Si M₀ = 0, alors f est constamment nulle donc M₀ = M₁ = M₂ = 0 et l'inégalité est vérifiée.
 Si M₂ = 0, alors f est affine. Mais comme f est bornée, f est constante. On a donc M₁ = 0 et l'inégalité est encore vérifiée.
- 2. Comme f est de classe \mathcal{C}^2 , on peut appliquer l'inégalité de Taylor-Lagrange à l'ordre 2 entre x et x+h, ce qui donne le résultat voulu.
- 3. Par inégalité triangulaire,

$$\begin{split} |f'(x)h| &\leq |f'(x)h + f(x) - f(x+h)| + |f(x+h) - f(x)| \\ &\leq \frac{\mathsf{M}_2 h^2}{2} + |f(x+h)| + |f(x)| \\ &\leq \frac{\mathsf{M}_2 h^2}{2} + 2\mathsf{M}_0 \end{split}$$

Puisque h > 0,

$$|f'(x)| \le \frac{\mathsf{M}_2 h}{2} + \frac{2\mathsf{M}_0}{h}$$

- **4.** g est dérivable sur \mathbb{R}_+^* et pour $t \in \mathbb{R}_+^*$, $g'(t) = b \frac{a}{t^2}$. On a donc $g'(t) \le 0$ pour $0 < t \le \sqrt{\frac{a}{b}}$ et $g'(t) \ge 0$ pour $t \ge \sqrt{\frac{a}{b}}$. On en déduit que g admet un minimum en $\sqrt{\frac{a}{b}}$ et que celui-ci vaut $g\left(\sqrt{\frac{a}{b}}\right) = 2\sqrt{ab}$.
- 5. L'inégalité

$$|f'(x)| \le \frac{\mathsf{M}_2 h}{2} + \frac{2\mathsf{M}_0}{h}$$

étant valable pour tout h > 0, elle est notamment valable pour h minimisant le membre de droite. Il suffit alors d'appliquer la question précédente avec $a = 2M_0$ et $b = \frac{M_2}{2}$. On en déduit que

$$|f'(x)| \le 2\sqrt{2M_0 \times \frac{M_2}{2}} = 2\sqrt{M_0 M_2}$$

Cette dernière inégalité étant valable pour tout $x \in \mathbb{R}$, on a par passage à la borne supérieure :

$$M_1 \le 2\sqrt{M_0 M_2}$$

Solution 26

1. Soit $n \in \mathbb{N}$. La formule de Taylor avec reste intégral assure que $R_n(x) = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$. En effectuant le changement de variable t = xu, on obtient

$$R_n(x) = \frac{x^{n+1}}{n!} \int_0^1 (1-u)^n f^{(n+1)}(xu) \, du$$

Comme $f^{(n+1)}$ est positive,

$$|R_n(x)| = \frac{|x|^{n+1}}{n!} \int_0^1 (1-u)^n f^{(n+1)}(xu) du$$

De même,

$$R_n(r) = \frac{r^{n+1}}{n!} \int_0^1 (1-u)^n f^{(n+1)}(ru) du$$

Mais $f^{(n+1)}$ est croissante sur I puisque $f^{(n+2)}$ est positive sur I. Ainsi puisque x < r, $f^{(n+1)}(xu) \le f^{(n+1)}(ru)$ pour tout $u \in [0,1]$ puis

$$\int_0^1 (1-u)^n f^{(n+1)}(xu) \, du \le \int_0^1 (1-u)^n f^{(n+1)}(ru) \, du$$

On en déduit l'inégalité demandée.

2. Soit $x \in I$. Il existe $r \in]0$, R[tel que |x| < r. D'après la question précédente, pour tout $n \in \mathbb{N}$:

$$|\mathsf{R}_n(x)| \le \frac{|x|^{n+1}}{r^{n+1}} \mathsf{R}_n(r)$$

D'une part, l'expression intégrale de $R_n(r)$ montre que $R_n(r) \ge 0$. D'autre part, $f(r) = S_n(r) + R_n(r)$ et $S_n(r) \ge 0$ en tant que somme de termes positifs. Ainsi $R_n(r) \le f(r)$. La suite $(R_n(r))_{n \in \mathbb{N}}$ est donc bornée. Puisque |x| < r, $\frac{|x|^{n+1}}{r^{n+1}} R_n(r) \xrightarrow[n \to +\infty]{} 0$. On en déduit que $R_n(x) \xrightarrow[n \to +\infty]{} i.e.$ $(S_n(x))_{n \in \mathbb{N}}$ converge vers f(x).

Solution 27

Soit $k \in [0, n]$. f est de classe C^2 sur $\left[0, \frac{k}{n^2}\right]$ donc on peut utiliser l'inégalité de Taylor-Lagrange pour f sur $\left[0, \frac{k}{n^2}\right]$ au premier ordre :

$$\left| f\left(\frac{k}{n^2}\right) - f'(0)\frac{k}{n^2} \right| \le \frac{M}{2} \left(\frac{k}{n^2}\right)^2$$

où M est un majorant de |f''| sur [0,1]. Par inégalité triangulaire, on a :

$$\left| \mathbf{S}_n - f'(0) \sum_{k=0}^n \frac{k}{n^2} \right| \le \frac{\mathbf{M}}{2} \sum_{k=0}^n \frac{k^2}{n^4}$$

Or on sait que $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$ et $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$. Ainsi

$$\left| S_n - f'(0) \frac{n(n+1)}{2n^2} \right| \le \frac{M}{2} \frac{n(n+1)(2n+1)}{6n^4}$$

On a $\lim_{n \to +\infty} \frac{n(n+1)}{2n^2} = \frac{1}{2}$ et $\lim_{n \to +\infty} \frac{n(n+1)(2n+1)}{6n^4} = 0$ donc $\lim_{n \to +\infty} S_n = \frac{f'(0)}{2}$.

Solution 28

1. Supposons f dérivable en a. On a alors

$$f(a+h) = f(a) + hf'(a) + o(h)$$

et

$$f(a-h) = f(a) - hf'(a) + o(h),$$

ainsi

$$\frac{f(a+h) - f(a-h)}{2h} = \frac{2hf'(a) + o(h)}{2h} = f'(a) + o(1)$$

et donc

$$\lim_{h \to 0} \frac{f(a+h) - f(a-h)}{2h} = f'(a).$$

2. La fonction valeur absolue n'est pas dérivable en 0 mais admet une dérivée symétrique en 0 car

$$\lim_{h \to 0} \frac{|h| - |-h|}{2h} = 0.$$

Solution 29

Ecrivons la formule de Taylor-Young à l'ordre deux en x_0 ,

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + o(h^2).$$

On a donc aussi

$$f(x_0 - h) = f(x_0) - hf'(x_0) + \frac{h^2}{2}f''(x_0) + o(h^2).$$

D'où , en notant $\tau(h)$ le quotient

$$\frac{f(x_0+h)+f(x_0-h)-2f(x_0)}{h^2},$$

on a,

$$\tau(h) = f''(x_0) + o(1),$$

ainsi

$$\lim_{h\to 0} \tau(h) = f''(x_0).$$

Solution 30

Fixons $x \in \mathbb{R}$. Appliquons l'inégalité de Taylor-Lagrange entre 0 et x.

$$\left| e^{x} - \sum_{k=0}^{n} \frac{x^{k}}{k!} \right| \le \frac{|x|^{n+1} \sup_{[0,x]} \exp^{(n+1)}}{(n+1)!}$$

et donc

$$\left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| \le \frac{|x|^{n+1} \max(1, e^x)}{(n+1)!}$$

Par croissances comparées, $\lim_{n\to+\infty}\frac{|x|^{n+1}\max(1,e^x)}{(n+1)!}=0$. On en déduit que

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^k}{k!} = e^x$$

Solution 31

D'après la formule de Taylor avec reste intégral appliquée à l'exponentielle (qui est de classe \mathcal{C}^{∞}), on pour tout $n \ge 0$,

$$e^{x} - \left(1 + x + \dots + \frac{x^{n}}{n!}\right) = \int_{0}^{x} \frac{(x-t)^{n}}{n!} e^{x} dx.$$

Lorsque n est impair, cette expression est positive pour $x \le 0$ (intégration d'une fonction négative pour des bornes dans le sens décroissant) alors qu'elle est négative lorsque n est pair. On en déduit en particulier que

$$\forall x \le 0, \ 1 + x \le e^x \le 1 + x + \frac{x^2}{2}.$$

Polynômes

Solution 32

1. Soit n le degré de P et $a_1 < a_1 < \dots < a_n$ les racines de P. Pour tout $k = 1, \dots, n-1$ il existe, d'après le théorème de Rolle, un $b_k \in [a_k, a_{k+1}]$ tel que $P'(b_k) = 0$. Comme les racines de P sont simples, P' ne s'anulle pas sur les a_k donc en fait b_k est dans l'intervalle ouvert $]a_k, a_{k+1}[$. Ainsi b_1, \dots, b_{k+1} sont n-1 racines distinctes de P' et pour raison de degré ce sont toutes.

2. Soit c une racine de $Q = P^2 + \alpha$. Il faut montrer que $Q'(c) \neq 0$. On a certainement $c \notin \mathbb{R}$ car

$$Q(x) = P(x)^2 + \alpha > 0$$

pour tout $x \in \mathbb{R}$. En particulier P et P' ne s'anullent pas en c. Ainsi

$$Q'(c) = 2P(c)P'(c) \neq 0,$$

ce qui montre que la racine c de Q est simple.

Solution 33

1. Prouvons par récurrence sur $n \in \mathbb{N}$ que f est de classe \mathcal{C}^n et qu'il existe un polynôme réel P_n tel que $\forall x \in I$,

$$f^{(n)}(x) = \frac{P_n(x)}{\left(1 - x^2\right)^{n + \frac{1}{2}}}.$$

L'hypothèse est banale au rang 0 puisque f est continue sur I et que $P_0 = 1$ convient.

Supposons la propriété vérifiée au rang n. D'après le théorème de dérivation des quotients , $g = f^{(n)}$ est dérivable et pour tout $x \in I$,

$$g'(x) = \frac{P'_n(x)(1-x^2)^{n+\frac{1}{2}} + (2n+1)xP_n(x)(1-x^2)^{n-\frac{1}{2}}}{(1-x^2)^{2n+1}}$$
$$= \frac{P'_n(x)(1-x^2) + (2n+1)xP_n(x)}{(1-x^2)^{n+1+\frac{1}{2}}}$$

En posant pour tout x réel

$$P_{n+1}(x) = P'_n(x)(1-x^2) + (2n+1)xP_n(x),$$

on a bien le résultat au rang n+1 puisque P_{n+1} est une fonction polynôme et que $f^{(n+1)}$ est clairement continue donc $f^{(n+1)}$ de classe C^{n+1} .

- La propriété est donc vérifiée pour tout $n \in \mathbb{N}$ d'après le principe de récurrence.
- **2.** Prouvons le résultat par récurrence sur $n \in \mathbb{N}$.
 - Le résultat est banal au rang 0 puisque $P_0 = 1$.
 - Supposons le résultat vrai au rang n. Puisque pour tout x réel,

$$P_{n+1}(x) = P'_n(x)(1 - x^2 + (2n+1)xP_n(x))$$

et que $P_n'(x)$ est un polynôme de degré n-1 (avec la convention degré de 0=-1) dont le monôme de plus haut degré a pour cœfficient nn!, $P_n'(x)(1-x^2)$ est un polynôme de degré n+1 dont le monôme de plus haut degré a pour cœfficient -nn!. De plus , $(2n+1)xP_n(x)$ est un polynôme de degré n+1 dont le monôme de plus haut degré a pour cœfficient (2n+1)n!, donc P_{n+1} est un polynôme de degré n+1 dont le monôme de plus haut degré a pour cœfficient (2n+1)n!. D'où le résultat au rang n+1.

- La propriété est donc vérifiée pour tout $n \in \mathbb{N}$ d'après le principe de récurrence.
- **3.** On a $\forall x \in I$,

$$f'(x) = \frac{x}{(1 - x^2)\sqrt{1 - x^2}},$$

donc $(1 - x^2)f'(x) - xf(x) = 0$.

4. D'après la formule de Leibniz, la dérivée *n*-ième de $x \mapsto xf(x)$ est

$$x \longmapsto x f^{(n)}(x) + n f^{(n-1)}(x).$$

De même , la dérivée n-ìeme de $x \mapsto (1-x^2)f'(x)$ est donnée par l'expression :

$$(1-x^2)f^{(n+1)}(x) - 2x(n+1)f^{(n)}(x) - 2\frac{n(n-1)}{2}f^{(n-1)}(x).$$

Ces deux fonctions étant égale d'après la question précédente , on a pour tout $x \in I$,

$$\frac{xP_n(x)}{\left(1-x^2\right)^{n+\frac{1}{2}}} + \frac{nP_{n-1}(x)}{\left(1-x^2\right)^{n-\frac{1}{2}}} =$$

$$\frac{P_{n+1}(x)}{\left(1-x^2\right)^{n+\frac{1}{2}}} - 2nx \frac{P_n(x)}{\left(1-x^2\right)^{n+\frac{1}{2}}} - n(n-1) \frac{P_{n-1}(x)}{\left(1-x^2\right)^{n-\frac{1}{2}}},$$

soit en multipliant cette égalité par $(1 - x^2)^{n + \frac{1}{2}}$,

$$xP_n(x) + n(1 - x^2)P_n = P_{n+1} - 2nxP_n(x)$$
$$- n(n-1)(1 - x^2)P_{n-1}(x),$$

donc

$$P_{n+1}(x) = (2n+1)xP_n(x) + n^2(1-x^2)P_{n-1}(x).$$

5. D'après la question précédente, $\forall n \ge 1$,

$$P_{n+1}(0) = n^2 P_{n-1}(0).$$

On prouve donc par une récurence sans difficulté que , $\forall n \ge 0$,

$$P_{2n+1}(0) = 0$$

et

$$P_{2n}(0) = ((2n-1) \times (2n-3) \times ... \times 1)^2 = \left(\frac{(2n)!}{2^n n!}\right)^2.$$

6. Puisque $\forall n \ge 1$ et tout $x \in I$,

$$P_{n+1}(x) = P'_n(x)(1-x^2) + (2n+1)xP_n(x),$$

mais aussi

$$P_{n+1}(x) = (2n+1)xP_n(x) + n^2(1-x^2)P_{n-1}(x),$$

d'où , après simplification par $1 - x^2 \neq 0$,

$$P_n'(x) = n^2 P_{n-1}(x).$$

7. D'après ce qui précède , on peut calculer les polynômes P_n par intégrations sucessives en utilisant le calcul de $P_n(0)$ entrepris à la question 5. On obtient successivement ,

$$P_1(x) = x$$
, $P_2(x) = 2x^2 + 1$, $P_3(x) = 6x^3 + 9x$,

$$P_4(x) = 24x^4 + 72x^2 + 9$$

et $P_5(x) = 120x^5 + 600x^3 + 225x$.

Solution 34

1. Aplliquons la formule de Leibniz au produit de fonctions polynômes (qui sont donc de classe \mathcal{C}^{∞}) définissant P_n . $\forall x \in \mathbb{R}$,

$$P_n^{(n)}(x) = \sum_{k=0}^n \binom{n}{k} \frac{n!}{(n-k)!} \frac{n!}{k!} \dots (x-a)^{n-k} (x-b)^k$$
$$= n! \sum_{k=0}^n \binom{n}{k}^2 (x-a)^{n-k} (x-b)^k$$

2. Lorsque a = b, on a bien-sûr

$$P_{(n)}^n(x) = \frac{(2n)!}{n!}(x-a)^n.$$

3. Lorsque a = b, on a donc, $\forall x \in \mathbb{R}$,

$$\frac{(2n)!}{n!}(x-a)^n = \left[n! \sum_{k=0}^n \binom{n}{k}^2\right] (x-a)^n,$$

ainsi

$$\binom{2n}{n} = \frac{(2n)!}{n!^2} = \sum_{k=0}^{n} \binom{n}{k}^2.$$

Solution 35

1. Soit HR(*n*) l'hypothèse de récurrence :

«Il existe un polynôme P_{n-1} tel que $\forall x \in \mathbb{R}, f^{(n)}(x) = \frac{P_{n-1}(x)}{(1+x^2)^n}$.»

HR(1) est vraie : il suffit de prendre $P_0 = 1$.

Supposons HR(n) pour un certain $n \ge 1$. Alors pour $x \in \mathbb{R}$:

$$f^{(n+1)}(x) = \frac{P'_{n-1}(x)}{(1+x^2)^n} - \frac{2nxP_{n-1}(x)}{(1+x^2)^{n+1}} = \frac{(1+x^2)P'_{n-1}(x) - 2nxP_{n-1}(x)}{(1+x^2)^{n+1}}$$

Il suffit donc de prendre $P_n = (1 + X^2)P'_{n-1} - 2nXP_{n-1}$.

Par récurrence, HR(n) est vraie pour tout $n \in \mathbb{N}^*$.

Si P_{n-1} et Q_{n-1} sont deux polynômes vérifiant la condition de l'énoncé, alors ils coïncident sur \mathbb{R} . Ils sont donc égaux. D'où l'unicité.

2. Commençons par la parité. Soit HR(n) l'hypothèse de récurrence :

« P_n a la parité de n.»

HR(0) est vraie puisque $P_0 = 0$ est pair. Supposons HR(n-1) pour un certain $n \ge 1$.

- Si n est pair, n-1 est impair donc P_{n-1} est impair d'après HR(n-1). Mais alors P'_{n-1} et XP_{n-1} sont pairs. Or $P_n = (1+X^2)P'_{n-1} 2nXP_{n-1}$ donc P_n est pair.
- Si n est impair, n-1 est pair donc P_{n-1} est pair d'après HR(n-1). Mais alors P'_{n-1} et XP_{n-1} sont impairs. Or $P_n = (1+X^2)P'_{n-1} 2nXP_{n-1}$ donc P_n est impair.

Donc HR(n) est vraie. Par récurrence, HR(n) est vraie pour tout $n \in \mathbb{N}$.

Occupons-nous maintenant du degré et du coefficient dominant. Soit HR(n) l'hypothèse de récurrence :

«deg $P_n = n$ et le coefficient dominant de P_n est (n + 1)! si n est pair, -(n + 1)! si n est impair.»

HR(0) est vraie puisque $P_0 = 1$. Supposons HR(n-1) pour un certain $n \ge 1$. On a donc deg $P_{n-1} = n-1$.

- Si n est pair, n-1 est impair et le coefficient dominant de P_{n-1} est -n!. On a deg $P'_{n-1}=n-2$ (éventuellement $-\infty$ si n=1) et le coefficient dominant de P'_{n-1} est -(n-1)n! (pas de coefficient dominant si n=1). Donc deg $(1+X^2)P'_{n-1}=n$ (éventuellement $-\infty$ si n=1) et le coefficient dominant de $(1+X^2)P'_{n-1}$ est -(n-1)n! (pas de coefficient dominant si n=1). De même, deg $2nXP_{n-1}=n$ et le coefficient dominant de $2nXP_{n-1}$ est -2nn!. Puisque $-(n-1)n!+2nn!=(n+1)!\neq 0$, on en déduit que deg $P_n=n$ et que le coefficient dominant de P_n est (n+1)!.
- Si n est impair, n-1 est pair et le coefficient dominant de P_{n-1} est n!. On a deg $P'_{n-1}=n-2$ (éventuellement $-\infty$ si n=1) et le coefficient dominant de P'_{n-1} est (n-1)n! (pas de coefficient dominant si n=1). Donc deg $(1+X^2)P'_{n-1}=n$ (éventuellement $-\infty$ si n=1) et le coefficient dominant de $(1+X^2)P'_{n-1}$ est (n-1)n! (pas de coefficient dominant si n=1). De même, deg $2nXP_{n-1}=n$ et le coefficient dominant de $2nXP_{n-1}$ est 2nn!. Puisque $(n-1)n!-2nn!=-(n+1)!\neq 0$, on en déduit que deg $P_n=n$ et que le coefficient dominant de P_n est -(n+1)!.

Ainsi HR(n) est vraie. Par conséquent, HR(n) est vraie pour tout $n \in \mathbb{N}$.

- 3. Comme deg $P_{n-1} = n 1 < 2n$ pour $n \ge 1$, $P_{n-1}(x) = (1 + x^2)^n$. On en déduit que $\lim_{x \to +\infty} f^{(n)}(x) = 0$ pour tout $n \ge 1$.
- **4.** Remarquons tout d'abord que les zéros de $f^{(n)}$ sont les zéros de P_{n-1} . Soit HR(n) l'hypothèse de récurrence :

 $\ll f^{(n)}$ s'annule au moins n-1 fois.»

HR(1) est évidemment vraie. Supposons HR(n) pour un certain $n \ge 1$. Si n = 1, $\lim_{x \to +\infty} f^{(2)}(x) = 0$, donc $f^{(2)}$ s'annule au moins une fois sur $\mathbb R$ d'après une généralisation classique du théorème de Rolle. Si n > 1, $f^{(n)}$ possède au moins n - 1 zéros que nous noterons $x_1 < \cdots < x_{n-1}$. En appliquant le théorème de Rolle à $f^{(n)}$ sur chacun des intervalles $[x_i, x_{i+1}]$, on montre que $f^{(n+1)}$ s'annule au moins une fois sur chacun des intervalles $]x_i, x_{i+1}[$. En appliquant la même généralisation du théorème de Rolle à $f^{(n)}$ sur les intervalles $]-\infty, x_1[$ et $[x_{n-1}, +\infty[$, on montre que $f^{(n+1)}$ s'annule au moins une fois sur chacun des intervalles $]-\infty, x_1[$ et $]x_{n-1}, +\infty[$. On fait le compte : on a monté que $f^{(n+1)}$ s'annule au moins n fois. Ainsi HR(n) est vraie. Par récurrence HR(n) est vraie pour tout $n \ge 1$. Comme les zéros de $f^{(n+1)}$ sont les zéro

Solution 36

1. La fonction $x \mapsto 1 + x^2$ étant strictement positive sur \mathbb{R} et de classe \mathcal{C}^{∞} . La fonction f, qui est son inverse, est de classe \mathcal{C}^{∞} .

2. a. Si

$$P_n(x) = (1 + x^2)^{n+1} f^{(n)}(x),$$

alors

$$P'_n(x) = (n+1)2x(1+x^2)^n f^{(n)}(x) + (1+x^2)^{n+1} f^{(n+1)}(x)$$

et un calcul immédiat donne

$$(1+x^2)P'_n(x) = 2(n+1)xP_n(x) + P_{n+1}(x)$$

- **b.** Montrons le résultat demandé par récurrence sur *n*.
 - $P_0 = 1$ vérifie l'hypothèse.
 - Supposons l'hypothèse vérifiée pour tout $k \le n$. Alors

$$\begin{aligned} \mathbf{P}_{n+1}(x) &= (1+x^2)\mathbf{P}_n'(x) - 2(n+1)x\mathbf{P}_n(x) \\ &= (1+x^2)[(-1)^n(n+1)!nx^{n-1} + \mathbf{R}'(x)] - 2(n+1)x((-1)^n(n+1)!x^n + \mathbf{R}(x)) \\ &= (-1)^{n+1}(n+2)!x^{n+1} + \mathbf{Q}(x) \end{aligned}$$

3. a. La fonction G est continue sur]0,1] et se prolonge par continuité en 0 par $\lim_{x\to+\infty} g(x) = 0$. Par composition, elle est dérivable sur]0,1[et pour tout x dans cet intevalle :

$$G'(x) = \frac{-1}{x^2} g'(\frac{1}{x} + a - 1).$$

- **b.** On peut appliquer le théorème de Rolle à la fonction G et on en déduit qu'il existe $C \in]0,1[$ tel que G'(C)=0. Donc, il existe $c \in]a,+\infty[$ tel que g'(c)=0, avec $c=\frac{1}{C}+a-1$.
- 4. Il suffit d'appliquer la proposition précédente à la fonction g définie par

$$g(x) = h(-x)$$
.

- 5. Montrons le résultat par récurrence.
 - On vérifie que P_0 et P_1 admettent respectivement 0 et une racine sur \mathbb{R} .
 - Supposons que le polynôme P_n admette n racines distinctes $a_1 < a_2 < \cdots < a_n$. La fonction $f^{(n)}$ s'annule donc en ces points. Du théorème de Rolle appliqué à chaque intervalle $[a_i, a_{i+1}], 1 \le i \le n-1$, on déduit que $f^{(n+1)}$ (donc P_{n+1}) s'annule en (n-1) point distincts $b_2 < b_3 < \cdots < b_n$, avec pour tout $1 \le i \le n-1$: $b_i \in]a_i, a_{i+1}[$. Or la fonction $f^{(n)}$ est continue sur l'intervalle $[a_n, +\infty[$, dérivable sur $]a_n, +\infty[$ et vérifie $f^{(n)}(a_n) = 0$, $\lim_{x \to +\infty} f^{(n)}(x) = 0$. D'après la question $f^{(n)}(a_n) = 0$, $f^{(n)}(a_n) = 0$. D'après la question $f^{(n)}(a_n) = 0$, $f^{(n)}(a_n) = 0$. D'après la question $f^{(n)}(a_n) = 0$. The points distincts où $f^{(n)}(a_n) = 0$. S'annule. C'après la question $f^{(n)}(a_n) = 0$. The points distincts où $f^{(n)}(a_n) = 0$ s'annule. C'après la question $f^{(n)}(a_n) = 0$. The points distincts où $f^{(n)}(a_n) = 0$ s'annule. C'après la question $f^{(n)}(a_n) = 0$. The points distincts où $f^{(n)}(a_n) = 0$ s'annule. C'après la question $f^{(n)}(a_n) = 0$. The points distincts où $f^{(n)}(a_n) = 0$ s'annule. C'après la question $f^{(n)}(a_n) = 0$. The points distincts où $f^{(n)}(a_n) = 0$ s'annule. C'après la question $f^{(n)}(a_n) = 0$. The points distincts où $f^{(n)}(a_n) = 0$ s'annule. C'après la question $f^{(n)}(a_n) = 0$. The points distincts où $f^{(n)}(a_n) = 0$ s'annule. C'après la question $f^{(n)}(a_n) = 0$ s'après la question $f^{(n)}(a_n) = 0$. The points distincts où $f^{(n)}(a_n) = 0$ s'après la question $f^{(n)}(a_n) = 0$ s'après la question

Solution 37

1. Le résultat est clair pour un polynôme P de degré inférieur ou égal à 1. Si $\deg(P) \ge 2$ et P admet n racines simples, alors en appliquant le lemme de Rolle à P entre ses racines, on obtient n-1 racines deux à deux distinctes de P'. Comme $\deg(P') = n-1$, P' est scindé à racines simples sur \mathbb{R} .

2. Raisonnons par l'absurde en supposant l'existence d'une racine multiple $\alpha \in \mathbb{C}$ de $Q = P^2 + 1$. On a alors

$$Q(\alpha) = Q'(\alpha) = 0$$
,

ie

$$P^{2}(\alpha) = -1, \quad 2P(\alpha)P'(\alpha) = 0,$$

d'où $P'(\alpha) = 0$. Comme P' est scindé à racines simples sur \mathbb{R} (d'après la question 1.), on a $\alpha \in \mathbb{R}$ d'où, comme $P \in \mathbb{R}[X]$,

$$P(\alpha)^2 \in \mathbb{R}_+$$

ce qui est absurde car $P^2(\alpha) = -1$.

Solution 38

- **1.** On trouve $P_0 = 1$, $P_1 = X$, $P_2 = \frac{3}{2}X^2 \frac{1}{2}$ et $P_3 = \frac{5}{2}X^3 \frac{3}{2}X$.
- 2. On a deg $Q_n = n \deg(X^2 1) = 2n$. Ainsi deg $P_n = \deg Q_n n = n$.
- **3.** Comme Q_n est pair, sa dérivée $n^{\text{ème}}$ P_n est pair est n est pair et impair si n est impair. Si n est impair, P_n est impair : on a donc $P_n(0) = 0$. Si n est pair, P_n est pair donc P'_n est impair : on a donc $P'_n(0) = 0$.
- 4. Via la formule du binôme

$$Q_n = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} X^{2k}$$

La formule de Taylor en 0 donne également

$$Q_n = \sum_{l=0}^{2n} \frac{Q_n^{(l)}(0)}{l!} X^l$$

Supposons n pair. Il existe donc $p \in \mathbb{N}$ tel que n = 2p. En identifiant les coefficients de X^n dans ces deux expressions, on obtient

$$\frac{\mathbf{Q}^{(n)}(0)}{n!} = \binom{2p}{p} (-1)^p$$

puis

$$P_n(0) = \frac{(-1)^p \binom{2p}{p}}{2^{2p}} = \frac{(-1)^p (2p)!}{2^{2p} (p!)^2}$$

Supposons n impair. Il existe donc $p \in \mathbb{N}$ tel que n = 2p + 1. En identifiant les coefficients de X^{n+1} dans les deux expressions précédentes, on obtient

$$\frac{\mathbf{Q}^{(n+1)}(0)}{(n+1)!} = \binom{2p+1}{p+1} (-1)^p$$

puis

$$P'_n(0) = \frac{(2p+2)(-1)^p \binom{2p+1}{p+1}}{2^{2p+1}} = \frac{(-1)^p (2p+1)!}{2^{2p} (p!)^2}$$

5. a. Pour $n \ge 1$, on a $Q'_n = 2nX(X^2 - 1)^{n-1}$ et donc $(X^2 - 1)Q'_n = 2nX(X^2 - 1)^n = 2nXQ_n$. On vérifie que cette égalité est encore valable pour n = 0 puisque $Q_0 = 1$.

b. On utilise la formule de Leibniz. Comme les dérivées de $X^2 - 1$ sont nulles à partir de l'ordre 3 et que celles de X sont nulles à partir de l'ordre 2, on a

$$\binom{n+1}{0}(X^2-1)Q_n^{(n+2)} + 2\binom{n+1}{1}XQ_n^{(n+1)} + 2\binom{n+1}{2}Q_n^{(n)} = 2n\binom{n+1}{0}XQ_n^{(n+1)} + 2n\binom{n+1}{1}Q_n^{(n)}$$

Autrement dit

$$(X^{2}-1)Q_{n}^{(n+2)} + 2(n+1)XQ_{n}^{(n+1)} + n(n+1)Q_{n}^{(n)} = 2nXQ_{n}^{(n+1)} + 2n(n+1)Q_{n}^{(n)}$$

ou encore

$$(X^2 - 1)Q_n^{(n+2)} + 2XQ_n^{(n+1)} = n(n+1)Q_n^{(n)}$$

Par définition de P_n , on a donc

$$(X^2 - 1)P_n'' + 2XP_n' = n(n+1)P_n$$

- **6. a.** $Q_n = (X-1)^n (X+1)^n$ ce qui prouve que 1 et -1 sont des racines de Q_n de multiplicité n. On a donc $Q_n^{(k)}(\pm 1) = 0$ pour $k \in [0, n-1]$.
 - **b.** On fait l'hypothèse de récurrence HR(k) suivante :

 $Q_n^{(k)}$ possède au moins k racines distinctes dans l'intervalle]-1,1[

HR(0) est vraie puisque les seules racines de Q_n sont -1 et 1 (pas de racine du tout si n=0).

Supposons que $\operatorname{HR}(k)$ soit vraie pour un certain $k \in [0, n-1]$. Posons $\alpha_0 = -1$, $\alpha_{k+1} = 1$ et α_i pour $1 \le i \le k$ k racines distinctes de $\operatorname{Q}_n^{(k)}$ dans l'intervalle]-1,1[rangées dans l'ordre croissant. D'après la question précédente, $\operatorname{Q}_n^{(k)}$ s'annule en α_0 et α_{k+1} . De plus, $\operatorname{Q}_n^{(k)}$ s'annule en les α_i pour $1 \le i \le k$. Comme Q_n est dérivable et continue sur $\mathbb R$, on peut appliquer le théorème de Rolle entre α_i et α_{i+1} pour $0 \le i \le k$. Ceci prouve que la dérivée de $\operatorname{Q}_n^{(k)}$, à savoir $\operatorname{Q}_n^{(k+1)}$ s'annule k+1 fois.

Par récurrence finie, $Q_n^{(n)}$ et donc P_n possède au moins n racines dans l'intervalle]-1,1[. Comme deg $P_n=n$, P_n possède au plus n racines réelles. On en déduit que P_n possède exactement n racines réelles toutes situées dans l'intervalle]-1,1[.

Etude de suites

Solution 39

• Définition de la suite : Introduisons la fonction

$$f: [0,2[\to \mathbb{R}, \ x \mapsto \sqrt{2-x}]$$

Cette fonction laisse stable l'intervalle [0,2] donc la suite est bien définie pour tout $u_0 \in [0,2]$. Son seul point fixe est clairement 1.

• Convergence de la suite : notons $I = [0, \sqrt{2}]$. Cet intervalle est stable par f et pout tout $u_0 \in [0, 2]$, on a $u_1 \in I$. la fonction f est dérivable sur I, de dérivée

$$\forall x \in I, \ f'(x) = \frac{-1}{2\sqrt{2-x}}.$$

On a

$$\sup_{x \in \mathcal{I}} \frac{1}{2\sqrt{2-x}} = \frac{1}{2\sqrt{2-\sqrt{2}}} < 1.$$

Appliquons l'inégalité des accroissements finis sur I

$$\forall x, y \in I, |f(x) - f(y)| \le \frac{1}{2\sqrt{2 - \sqrt{2}}} |x - y|.$$

Donc, $\forall n \ge 1$, puisque $u_{n+1} = f(u_n)$ et f(1) = 1,

$$\forall n \geqslant 1, \ |u_{n+1} - 4| \leqslant \frac{1}{2\sqrt{12}} |u_n - 4|,$$

et par une récurrence immédiate,

$$\forall n \geqslant 1, \ |u_n - 1| \leqslant \left(\frac{1}{2\sqrt{2 - \sqrt{2}}}\right)^{n-1} |u_1 - 1|.$$

Ainsi, d'après le théorème d'encadrement,

$$\lim_{n\to+\infty}u_n=1.$$

Solution 40

• Définition de la suite : le terme u_1 est défini si et seulement si

$$u_0 \geqslant -\frac{4}{3}$$

et dans ce cas $u_1\geqslant 0$. Notons $\mathbf{I}=\mathbb{R}_+$ et f l'application de \mathbf{I} dans \mathbb{R} définie par

$$x \longmapsto \sqrt{4+3x}$$
.

La suite est bien définie dès que $u_0 \geqslant -\frac{4}{3}$ puisque l'on a $f(I) \subset I$.

• Convergence de la suite : un réel x est point fixe de f si et seulement si

$$x \ge 0$$
 et $x^2 = 4 + 3x$,

ie x=4. La seule (et éventuelle!) limite de $(u_n)_{n\geqslant 0}$ est donc 4. La fonction f est dérivable sur I et sur cet intervalle,

$$f'(x) = \frac{3}{2\sqrt{4+3x}} \leqslant \frac{3}{4}.$$

Appliquons l'inégalités des accroissements finis sur I

$$\forall x, y \in I, |f(x) - f(y)| \le \frac{3}{4}|x - y|.$$

Donc, pour tout $n \ge 1$, puisque $u_{n+1} = f(u_n)$ et f(4) = 4,

$$|u_{n+1} - 4| \leqslant \frac{3}{4}|u_n - 4|,$$

et par une récurrence immédiate,

$$|u_n - 4| \le \left(\frac{3}{4}\right)^{n-1} |u_1 - 4|.$$

Ainsi, d'après le théorème d'encadrement,

$$\lim_{n\to+\infty}u_n=4.$$

Solution 41

• Définition de la suite : le terme u_1 est défini si et seulement si

$$u_0 \neq 0$$
.

Notons

$$I = \left[\frac{3}{4}, \frac{5}{4}\right]$$

et f l'application de I dans $\mathbb R$ définie par

$$x \longmapsto 1 + \frac{1}{4} \sin\left(\frac{1}{x}\right).$$

La suite est bien définie dès que $u_0 \neq 0$ puisque $f(I) \subset I$.

• Etude de la convergence : prouvons que f admet un unique point fixe appartenant à I. La fonction f est dérivable sur I et sur cet intervalle,

$$|f'(x)| = \frac{1}{4x^2} \left| \cos\left(\frac{1}{x}\right) \right| \leqslant \frac{4}{9}.$$

En notant g la fonction définie sur I par

$$x \in I \longrightarrow f(x) - x$$
.

L'application g est dérivable sur I et sur cet intervalle,

$$g'(x) = f'(x) - 1 \leqslant \frac{4}{9} - 1 < 0.$$

g est donc strictement décroissante sur I. Puisque

$$g(3/4) \geqslant 0, \ \ g(5/4) \leqslant 0,$$

g admet un zéro d'après le théorème des valeurs intermédiaires ; ce dernier est unique par stricte croissance de g, notons le ℓ . Appliquons à f l'inégalité des accroissements finis sur l'intervalle I

$$\forall x, y \in I, \ |f(x) - f(y)| \leqslant \frac{4}{9}|x - y|.$$

Donc, pour tout $n \ge 1$, puisque $u_{n+1} = f(u_n)$ et $f(\ell) = \ell$,

$$|u_{n+1}-\ell|\leqslant \frac{4}{9}|u_n-\ell|,$$

et par une récurrence immédiate,

$$|u_n-\ell| \leqslant \left(\frac{4}{9}\right)^{n-1} |u_1-\ell|.$$

Ainsi, d'après le théorème d'encadrement,

$$\lim_{n\to+\infty}u_n=\ell.$$

Divers

Solution 42

En dehors de l'origine, la fonction f est de classe C^1 par théorèmes généraux; en 0, elle est dérivable, de dérivée nulle, puisque son taux d'accroissement est $x \sin \frac{1}{x}$, qui tend vers 0 quand x tend vers 0. Cependant, elle n'est pas de classe C^1 sur \mathbb{R} , puisque sa dérivée, donnée sur \mathbb{R}^* par

$$f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x},$$

ne tend pas vers f'(0) = 0 (en fait, elle n'a pas de limite).

Solution 43

Convenons de dire qu'une fonction est dérivable (sans plus de précision) pour signifier qu'elle est dérivable sur son ensemble de définition.

1. La fonction \ln (la deuxième) est dérivable sur \mathbb{R}_+^* et (la première) strictement positive sur $]1, +\infty[$, donc $\ln \circ \ln$ est dérivable sur $]1, +\infty[$ et

$$\forall x > 1, \quad (\ln \circ \ln)'(x) = \frac{1}{x \ln(x)}.$$

2. La fonction arctan est dérivable sur \mathbb{R} et ln est dérivable sur \mathbb{R}^*_+ , donc arctan \circ ln est dérivable sur \mathbb{R}^*_+ et

$$\forall x > 0, \quad (\arctan \circ \ln)'(x) = \frac{1}{x(1 + \ln^2(x))}.$$

3. La fonction \sin^2 est périodique, de période π . La fonction $\sqrt{\cdot}$ est dérivable et strictement positive sur \mathbb{R}_+^* , donc la fonction f est (définie et) dérivable au point x si, et seulement si, $1 - 2\sin^2 x > 0$, c'est-à-dire si x est strictement compris entre $-\pi/4$ et $\pi/4$ (modulo π). Pour de tels x,

$$f'(x) = \frac{-2\sin(x)\cos(x)}{1 - 2\sin^2(x)} = -\tan(2x).$$

On peut faciliter le calcul de la dérivée en remarquant que

$$\ln \sqrt{1 - 2\sin^2(x)} = \frac{1}{2} \ln|\cos(2x)|$$

pour tout $x \neq \pi/4 \pmod{\pi/2}$.

4. La fonction f est définie et dérivable en tout point x tel que $\sin(x) \neq x \cos(x)$. Cette équation possède une infinité de solutions, une dans chaque intervalle de la forme $]-\pi/2 + k\pi, \pi/2 + k\pi[$ (avec $k \in \mathbb{Z}$). En tout point de son ensemble de définition,

$$f'(x) = \frac{-x^2}{(\sin(x) - x\cos(x))^2}.$$

5. La fonction f est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$,

$$f'(x) = -\sin^2(2)x + (1 + \cos(2x))\cos(2x) + 3\cos(2x)$$
$$= \cos(4x) + 4\cos(2x).$$

6. Un tableau de signes montre que (1-x)/(1+x) est strictement positif si, et seulement si, -1 < x < 1. Par conséquent, la fonction f est dérivable sur]-1,1[et pour tout x dans cet intervalle,

$$f'(x) = \frac{-1}{2\sqrt{1 - x^2}}.$$

Solution 44

1. Il suffit de considérer la fonction f définie par :

$$\forall x > 0, \ f(x) = \frac{\sin(x^2)}{x}.$$

Cette fonction est dérivable sur \mathbb{R}_+^* et on a clairement :

$$\lim_{x \to +\infty} f(x) = 0.$$

En revanche, pour tout x > 0, on a :

$$f'(x) = -\frac{\sin(x^2)}{x^2} + 2\cos(x)$$

et puisque

$$\lim_{x \to +\infty} \frac{\sin(x^2)}{x} = 0$$

et $2\cos(x)$ n'admet aucune limite en $+\infty$ (résultat classique qui se démontre en utilisant le critère séquentiel), f' n'admet aucune limite en $+\infty$.

2. Puisque f' tend vers $+\infty$ avec x, il existe A > 0 tel que

$$\forall x \ge A, f'(x) \ge 1.$$

Mais alors, d'après le théorème des accroissements finis, pour tout $x \ge A$, il existe $c \in [A, x]$ tel que

$$f(x) - f(A) = f'(c)(x - A).$$

Comme $f'(c) \ge 1$, on en déduit que $\forall x \ge A$,

$$f(x) \geqslant f(A) + (x - A)$$
.

Et donc, puisque le membre de droite tend vers $+\infty$ avec x, on a

$$\lim_{x \to +\infty} f(x) = +\infty.$$

3. Raisonnons par l'absurde en supposant que

$$\lim_{x \to +\infty} f^{(n)}(x) = \ell \neq 0.$$

Quitte à considérer -f au lieu de f, on peut toujours supposer $\ell > 0$. Il existe alors A > 0 tel que

$$\forall t \geqslant A, \ f^{(n)}(t) \geqslant \ell - \frac{\ell}{2} = \frac{\ell}{2}.$$

On déduit alors de l'inégalité (généralisée!) des accroissements finis que $\forall x \ge A$:

$$f^{(n-1)}(x) \ge f^{(n-1)}(A) + \frac{\ell(x-A)}{2}$$

puis, par les mêmes arguments, on aboutit à $\forall x \ge A$:

$$f^{(n-2)}(x) \ge f^{(n-2)}(A) + f^{(n-1)}(A)(x-A) + \frac{\ell(x-A)^2}{2 \times 2}.$$

Par une récurrence descendante sans difficulté, on prouve que $\forall 0 \le k \ge n$ et $\forall x \ge A$:

$$f^{(n-k)}(x) \geqslant \sum_{i=1}^{k} f^{(n-i)}(A) \frac{(x-A)^{k-i}}{(k-i)!} + \frac{\ell(x-A)^k}{2 \times k!}.$$

En particulier, on a $\forall x \ge A$:

$$f^{(n-k)}(x) \geqslant \sum_{i=1}^{n} f^{(n-i)}(A) \frac{(x-A)^{n-i}}{(n-i)!} + \frac{\ell(x-A)^{n}}{2 \times n!}.$$

Comme $\ell > 0$, le membre de droite de l'inégalité ci-dessus tend vers $+\infty$ avec x. Ainsi

$$\lim_{x \to +\infty} f(x) = +\infty,$$

ce qui est absurde et ainsi $\ell = 0$.