Algebra SS16

Prof Wedhorn, Mitschrift von Daniel Kallendorf

9. November 2016

Inhaltsverzeichnis

3	Tensorprodukte	4
	3.1 Erinnerung	4
	3.9 Multilineare Abbildungen	•
	3.11	•
	3.19 Basiswechsel von Tensorprodukten	,
4	Lokalisierung	(

Bemerkung 2.1. $A[X_1,...,X_n]$ ist ein freier A-Modul, wobei die Monome eine Basis bilden.

Satz 2.2 (Universaleigenschaft des Polynomrings). Sei $\phi:A\to B$ eine A-Algebra und seine $b_1,...,b_n\in B$ Elemente. Dann existiert genau ein A-Algebra-Homomorphismus $\psi:A[X_1,...,X_n]\to B$, so dass $\psi(x_i)=b_i$ für alle i=1,...,n, nämlich

$$\psi \underbrace{\left(\sum_{i_1, \dots, i_n \ge 0} a_{i_1, \dots, i_n} X_1^{i_1} \cdot \dots \cdot X_n^{i_1}\right)}_{=:f} = \underbrace{\sum_{i_1, \dots, i_n \ge 0} \phi(a_{i_1, \dots, i_n}) b_1^{i_1} \cdot \dots \cdot b_n^{i_n}}_{=f(b_1, \dots, b_n)}$$

Bemerkung 2.3.

$$\mathrm{Im}(\psi)=$$
kleinste A-Unteralgebra die $b_1,...,b_n$ enthält
$$=A[b_1,...,b_n]\subset B$$

Beispiel 2.4. Sei $\phi: A \to B$ eien A-Algebra, $b \in B$. Es existiere ein $g \in A[X]$ mit g(b) = 0. Sei g nomriert. Dann gilt

$$A[b] = \{ f(b) | f \in A[x], \deg(f) < \deg(g) \}$$

Beispiel 2.5. Sei $A = \mathbb{Q} \hookrightarrow \mathbb{C}, i \in \mathbb{C}$.

Dann gilt g(i) = 0 wobei $g = X^3 + X = X(X^2 + 1)$. Es folgt:

$$\mathbb{Q}[i] = \{a_0 + q_1 i + a_2 i^2 | a_0, a_1, a_2 \in \mathbb{Q}\}\$$

$$\mathbb{Q}[i] = \operatorname{Im}(\mathbb{Q}[X] \xrightarrow{\psi} \mathbb{C})$$

Dann $\tilde{g} \in \mathbb{Q}[X] : \psi(\tilde{g}) = 0 \Leftrightarrow \tilde{g}(i) = 0.$ Also $g \in \text{Ker}(\psi) \Rightarrow (g) \subseteq \text{Ker}(\psi).$ In diesem Fall Ker $\psi = (X^2 + 1)$.

Begründung von 2.8:

$$(g) \subseteq \operatorname{Ker}\left(A[X] \xrightarrow{\psi} B\right)$$

Also ψ faktorisiert:

$$A[X]/(g) \xrightarrow{\overline{\psi}} A[b] \subseteq B$$

mit $\overline{\psi}$ surjektiv.

Proposition 2.6. Sei $g \in A[X]$ normiert. Dann ist

$$\{f \in A[X], \deg(f) < \deg(g)\} \hookrightarrow A[X] \to A[X]/(g)$$

bijektiv.

Beweis. Gilt, da für alle $f \in A[X]$ genau ein $r \in A[X]$ exitiert mit $\deg(r) < \deg(g)$ mit $f \in r + (g)$

3 Tensorprodukte

- (A) Tensorprodukte von Moduln
- (B) Tensorprodukte von Algebren und Basiswechsel
- (C) Exaktheitseigenschaften des Tensorprodukts

3.1 Erinnerung

Definition 3.2. A-Modul:= $(M,+,\cdot)$ wobei (M,+) abelsche Gruppe und $\cdot: A \times X \to M$ ein Skalarprodukt.

Bemerkung 3.3. Z-Modul=ablesche Gruppe

Beispiel 3.4. Sei I eine Menge

$$A^{(I)} = \{(a_i)_{i \in I} | a_i \in A, a_i = 0 \text{ für fast alle } i \in I\}$$

A-Modul mit Addition und Skalarprodukt.

Für $i \in I : e_i \in A^{(I)}$ mit

$$e_i = \begin{cases} 1 \text{ an der i-ten Stelle} \\ 0 \text{ sonst} \end{cases}$$

Definition 3.5. Ein A-Modul heißt frei, falls $M \cong A^{(I)}$ für eine Menge I

Definition 3.6. Sei M,N A-Modul. Dann heißt $u:M\to N$ A-linear oder Homomorphismus von A-Moduln, falls

$$u(am + m') = au(m) + u(m') \forall a \in A, m, m' \in M$$

Bemerkung 3.7. Sei I eine Menge, M ein A-Modul $\underline{m} = (m_i)_{i \in I}$ ein Tupel von Elementen $m_i \in M$. Dann Existiert genau eine Abbildung:

$$A^{(I)} \xrightarrow{u_{\underline{m}}} M$$

 $mit \ u_m(e_i) = m_i.$

 $(m_i)_i = \underline{m}$ heißt linear Unabhängig/ Erzeugende-System/ Basis, falls $u_{\underline{m}}$ injektiv/ surjektiv / bijektiv ist.

Bemerkung 3.8. Der A-Modul M ist endlich erzeugt, genau dann wenn ein $n \in \mathbb{N}$ und eine A-lineare Surjektion $A^m \to M$ existieren.

3.9 Multilineare Abbildungen

Definition 3.10. Sei $r \in \mathbb{N}_0, M_1, ..., M_r, P$ A-Moduln.

Eine Abbildung $\alpha: M_1 \times ... \times M_r \to P$ heißt <u>r-multilinear</u>, falls sie in jeder Komponente linear ist, d.h. Für alle i=1,...,r gilt:

$$\alpha(m_1,...,am_i+m_i',m_{i+1},...,m_r)=a\alpha(m_1,...,m_i,...,m_r)+\alpha(m_1,...,m_i',...,m_r)$$

Für alle $m_j \in M_j, m_i \in M_i, a \in A$. (r = 1: linear, r = 2: bilinear)

3.11 .

Definition 3.12. Sei $r \geq 2, M_1, ..., M_r$ A-Moduln.

Dann existiert ein A-Modul $M_1 \otimes_A M_2 \otimes_A ... \otimes_A M_r$ und eine r-multilineare Abbildung $\tau: M_1 \times ... \times M_r \to M_1 \otimes_A M_2 \otimes_A ... \otimes_A M_r$, sodass für jede r-multilineaer Abbildung:

$$\alpha M_1 \times ... \times M_r \to P$$

wobei P ein A-Modul, genau ein A-lineare Abbildung

$$\overline{\alpha}: M_1 \otimes_A ... \otimes_A M_r \to P$$

existiert.

$$M_1 \times ... \times M_r^{\text{r-multilinear}} \rightarrow P$$

$$M_1 \otimes_A M_2 \otimes_A ... \otimes_A M_r$$

Satz 3.13 (Eindeutigkeit des Tensorprodukts). Seien $(T, \tau: M_1 \times ... \times M_r \to T)$ und (T', τ') Tensorprodukte:

$$\begin{array}{c|c} M_1 \times \ldots \times M_r \\ & \downarrow^\tau & \stackrel{\tau'}{\xrightarrow{}} \\ T & \xrightarrow{\exists ! v} & T' \end{array}$$

u existiert aufgrund der universellen Eigenschaft von (T, τ) . v existiert aufgrund der universellen Eigenschaft von (T', τ') . Ferner kommutiert

Die Universelle Eigschaft von (T,τ) zeigt, dass $v\circ u=id_T$, genauso $u\circ v=id_T.$

Satz 3.14 (Existenz des Tensorprodukts). 1. Suche einen A-Modul N und eine Abbildung $c: M_1 \times ... \times M_r \to R$, sodass

$$\operatorname{Hom}_A(N,P) \xrightarrow[u \mapsto u \circ \tau]{} \operatorname{Abb}(M_1 \times ... \times M_r, P)$$

Für alle A-Moduln P.

2. Wir wollen, dass $(am_1 + m'_1, m_2, ..., m_r)$ und $a(m_1, ..., m_r) + (m'_1, ..., m_r)$ auf das gleiche Element abgebildet werden. Sei $Q \subseteq N$ der von

$$e_{(m_1,\ldots,m_{i-1},am_i+m'_i,m_{i+1},\ldots,m_r)} - \left(ae_{(m_1,\ldots,m_i,\ldots,m_r)} + e_{(m_1,\ldots,m'_i,\ldots,m_r)}\right)$$

für alle i=1,...,r und $m_i,m_i'\in M_i$ und $a\in A$ erzeugt Untermodul. Dann setze T:=N/Q. Dann gilt

$$\operatorname{Hom}_{A}(T, P) = \{ u \in \operatorname{Hom}(N, P) | u(Q) = 0 \}$$

= $L_{A}(M_{1}, ..., M_{r}, P)$

mit
$$\tau: M_1 \times ... \times M_r \to N \to N/Q$$
.

Bemerkung 3.15. 3.4

Dann definiert

 $e_{(m_1,\ldots,m_r)} \in A^{(M_1 \times \ldots \times M_r)}$ bilden ein Erzeugndensystem.

Also bilden auch die $\tau(m_1,...,m_r)=:m_1\otimes...\otimes m_r$ eine Erzeugenden-System des $A-\text{Moduls }M_1\otimes...\otimes M_r$.

Aber: Nicht jedes Element von $M_1 \otimes ... \otimes M_r$ ist in dieser Form.

Also genüt es eine lineare Abbildung $u: M_1 \otimes ... \otimes M_r \to P$ auf den erzeugdnesn $m_1 \otimes ... \otimes m_r$ mit $(m_i \in M_i)$ anzugeben.

Umgekehrt sei P ein A-mOdul und es seien elemente $u(m_1 \otimes ... \otimes m_r) \in P$ gegeben für alle $m_i \in M_i$.

Genau dann existiert eine A-lineare Abbildung $u: M_1 \otimes ... \otimes M_r \to P$ mit $m_1 \otimes ... \otimes m_r \mapsto u(m_1 \otimes ... \otimes m_r)$, wenn für alle $i = 1, ..., r, a \in A, m_j \in M_j$ und $m'_i \in M_i$ gilt:

$$u(m_1 \otimes ... \otimes am_i + m_i' \otimes ... \otimes m_r) = au(m_1 \otimes ... \otimes m_i \otimes ... \otimes m_r) + u(m_1 \otimes ... \otimes am_i' \otimes ... \otimes m_r)$$

Satz 3.16 (Tensorprodukt linearer Abbildungen). Seien M, M', N, n' A-Moduln, $u: M \to M', v: N \to N'$ A-lineare Abbildungen.

$$M \otimes_A N \to M' \otimes AN'$$

 $m \otimes n \mapsto u(m) \otimes u(n)$

eine A-lineare Abbildung bezüglich $u \otimes v : M \otimes N \to M' \otimes N$.

Beweis. Zu zeigen: $u(am + m') \otimes v(n) = a(u(m) \otimes v(n)) + u(m') \otimes v(n)$ Es gilt da das Tensorprodukt r-linear ist.

$$u(am + m') \otimes v(n) = (au(m) + u(n)) \otimes v(n)$$
$$= (au(m) \otimes v(n)) + u(m') \otimes v(n)$$

Außerdem zu zeigen:
$$u(m) \otimes v(an+n') = a(u(m) \otimes v(n)) + u(m) \otimes v(n)$$
 $(\to \text{Genauso.})$

Bemerkung 3.17. 3.6

1. $A \otimes_A M \cong M$

 $u: a \otimes m \mapsto am$

 $v: 1 \otimes m...m$ Dabei ist u wohldefiniert, d.h. $(a, m) \to am$ ist bilinear.

- 2. $M\otimes_A N\xrightarrow{\sim} N\otimes_A M, m\otimes n\mapsto n\otimes m$ ist ... von A-Moduln. Zu zeigen: Wohldefineirtheit
- 3. $M \otimes_A N \otimes_A P \simeq (M \otimes_A N) \otimes_A P$ $m \otimes n \otimes p \mapsto (m \otimes n) \otimes p$ $m \otimes n \otimes p \mapsto m \otimes (n \otimes p)$

Proposition 3.18. 3.7 Sei $(M_i)_{i \in I}$ eine Familie von A-Moduln, N ein A-Modul:

$$\left(\bigotimes_{i\in I} M_i\right) \otimes_A N \xrightarrow{\sim} \bigotimes_{i\in I} (M_1 \otimes_A N)$$
$$(m_i)_{i\in I} \otimes n \mapsto (m_i \otimes n)_{i\in I}$$

Beweis. Umkehrabbildung gegeben durch:

$$Inhalt..m_i \otimes n \mapsto (m_j)_{j \in I} \otimes n$$

$$\text{mit } m_j := \begin{cases} m_i, & j = i \\ 0 & j \neq i \end{cases}$$

3.19 Basiswechsel von Tensorprodukten

Satz 3.20. 1. Sei M ein A-Modul. Dann wird

$$\varphi^*(M) := B \otimes_A M$$

zu einerm B-Modul mit dem Skalarprodukt

$$B \times (B \otimes_A M) \to B \otimes_A M$$

 $(b, b' \otimes m) \mapsto bb' \otimes m$

2. Sei $U:M\to M'$ ein Homomorphismus von A-Moduln. Dann ist

$$id_B \otimes u : B \otimes M \to B \otimes_A M'$$

 $b \otimes m \mapsto b \otimes u(m)$

eine B-lineare Abbildung.S

Proposition 3.21. Sei $\varphi:A\to B$ eine A-Algebra. Sei M ein freier A-Modul. Dann ist $B\otimes_A M$ ein freier B-Modul und

$$\vartheta_A(M) = \vartheta_B(B \otimes_A M)$$

Beweis. Sei Mein freier A-Modul. Dazu ist äquivalent, dass $M \simeq A^{(I)}.$ Daraus folgt, dass

$$B \otimes_A M \simeq B \otimes_A A^{(I)}$$

$$\simeq B \otimes_A \left(\bigoplus_{i \in I} A \right)$$

$$\simeq \left(\bigoplus_{i \in I} B \otimes_A A \right)$$

$$\simeq \bigoplus_{i \in I} B$$

$$= B^{(I)}$$

Also ist $B \otimes_A M$ frei.

Proposition 3.22. Sei $\mathfrak{a} \subseteq A$ ein Ideal, M ein A-Modul. Setze

$$\begin{split} \mathfrak{a} \cdot M &= \langle \{am | a \in \mathfrak{a}, m \in M \} \\ &= \left\{ \sum_{i=1}^m a_i m_i \mid n \in \mathbb{N}_0, a_i \in \mathfrak{a}, m_i \in M \right\} \\ &\subseteq M \quad \text{Untermodul} \end{split}$$

Dann ist

$$A/\mathfrak{a} \otimes_A M \xrightarrow{\sim} M/\mathfrak{a}M$$
$$\overline{a} \otimes m \mapsto \overline{am}$$

ein Homomorphismus von A/\mathfrak{a} -Moduln.

 $Beweis.\ \overline{a}\oplus m\mapsto \overline{am}$ ist wohldefiniert: Zu zeigen:

- 1. Sei $a' \in A$ mit $\overline{a'} = \overline{a} \in A/\mathfrak{a}$. Dann ist $\overline{am} = \overline{a'm} \in M/\mathfrak{a}M$. Es gilt $\overline{a}' = \overline{a}$ gena dann wenn es ein $x\imath\mathfrak{a}$ gibt sodass a' = a + x. Daruas folgt, dass a'm = am + xm, und da $xm \in \mathfrak{a}M$ folgt $\overline{a'm} = \overline{am}$.
- 2. \overline{am} is linear in a, d.h.

$$\overline{(ba+a')m} = b\overline{am} + a'\overline{m}$$
 für $a, a' \in A, b \in A$

3. \overline{am} ist linear in m, d.h.

$$\overline{a(bm+m')} = b\overline{am} + \overline{am'}$$
 für $m, m' \in M, b \in A$

Proposition 3.23. Eine Umkehrabbildung ist gegeben durch

$$v: M \to A/\mathfrak{a} \otimes_A M$$
$$m \mapsto 1 \otimes m$$

6

Beweis. Zu zeigen: $\mathfrak{a}M \subseteq Ker(v)$, also für alle $x \in \mathfrak{a}, m \in M$ gilt v(xm) = 0.

$$v(xm) = 1 \otimes xm = \overline{x} \otimes m = 0$$

da $\overline{x} = \overline{0} \in A/\mathfrak{a}$.

Noch zu zeigen:: v ist Umkehrabbildung zu $\overline{a} \otimes m \mapsto \overline{am}$.

Definition 3.24 (Tensorprodukte von Algebren). Sei $A \to B_1$, $A \to B_2$ A-Algebren.

Dann definieren wir auf dem A-Modul $B_1 \otimes_A B_2$ eine Multiplikation:

$$(B_1 \otimes B_2) \times (B_1 \otimes B_2) \to B_1 \otimes B_1 \otimes B_2$$
$$(a_1 \otimes b_2, b'_1 \otimes b'_2) \mapsto b_1 b'_1 \otimes b_2 b'_2$$

und erhalten die A-Algebra $B_1 \otimes_A B_2$.

Beispiel 3.25. Sei $A \xrightarrow{\varphi} B$ eine A-Algebra und sei $C = A[X_1,...,X_n]/(f_1,...,f_r)$ und $f_i \in A[X-1,...,X_n]$. Dann ist

$$B \otimes_A A[X-1,...,X_n]/(f_1,...,f_r) = B[X_1,...,X_n]/(\tilde{f}_1,...,\tilde{d}_r)$$

wobei

$$f_i = \sum_{j \in \mathbb{N}_0^n} a_{\underline{j}} X^{\underline{j}} \to \tilde{f}_i = \sum_j \varphi(a_j)$$

- 1. Sei $A = \mathbb{Q}$, $C = \mathbb{Q}[i] = \{a + b_i | a, b \in \mathbb{Q}\} = \mathbb{Q}[X]/(X^2 + 1)$
- 2. $\mathbb{R} \otimes_{\mathcal{O}} Q[i] = \mathbb{R}[X]/(X^2+1) = \mathbb{C}$
- 3. $C \otimes_Q Q[i] = C[X]/(X^2+1) = \mathbb{C}[X]/(X+i) \times \mathbb{C}[X]/(X-i) \simeq \mathbb{C} \times \mathbb{C}$

Beispiel 3.26. $A[X] \otimes_A A[Y] = (A[X])[Y] = A[X,Y]$ mit $f \otimes g \mapsto fg$. Dann ist die Umkehrabbildung

C) Exaktheitseigenschaften

Definition 3.27 (Homomorphismen-Funktor). Seien M, P A-Moduln. Wir Definiere auf $\operatorname{Hom}_A(M, P) := \{u : M \to P \text{A-linear}\}$ die Struktur eines A-Moduls.

$$(u+v)(m) := u(m) + v(m)$$
 $u, v \in \operatorname{Hom}_A(M, P)$
 $(au)(m) := au(m)$ $a \in A, m \in M$

Sei $u:M\to M'$ eine A-lineare Abbildung. Wir erhalten die A-lineare Abbildung

$$\operatorname{Hom}_A(u,P) : \operatorname{Hom}_A(M',P) \to \operatorname{Hom}_A(M,P)$$

 $w' \mapsto w' \cdot u$

Sei $v: P \to P'$ eine A-lineare Abbildung. Wir erhalten die A-lineare Abbildung

$$\operatorname{Hom}_A(M, v) : \operatorname{Hom}_A(M, P) \to \operatorname{Hom}_A(M, P')$$

$$w' \mapsto v \cdot w$$

Erinnerung 3.28. Eine Sequnez von A-lineare Abbildungen

$$\dots \to M_{i-1} \xrightarrow{u_{i-1}} M_i \xrightarrow{u_{u_i}} M_{i+1} \to \dots$$

heißt exakt, falls $Ker(u_i) = Im(u_{i-1})$

 $Beispiel~3.29.~0\to M*\xrightarrow{u}M$ ist exakt genau dann wenn uinjektiv ist. $M\xrightarrow{v}M''\to 0$ ist exakt genau dann wenn vsurjektiv ist

Satz 3.30. 1. Sei $0 \to M' \xrightarrow{u} M \xrightarrow{v} M''(*)$ eine Sequenz von A-Moduln. Dann ist (*) genau dann exakt, wenn für jeden A-Modul P die Sequenz

$$\operatorname{Hom}_A(P,(*)): 0 \to \operatorname{Hom}_A(P,M') \to \operatorname{Hom}_A(P,M) \longrightarrow \operatorname{Hom}_A(P,M'')$$

 $w' \mapsto u \circ w' \qquad w \mapsto v \circ w$

exakt ist.

2.

Beweis. Wir beweisen Schrittweise:

- 1. "(*) ist exakt $\Rightarrow \operatorname{Hom}_A(P,(*))$ ist exakt "
 - (a) $w' \mapsto u \circ w'$ injektiv: Sei $w \in \operatorname{Hom}_A(P, M')$ mit $u \circ w' = 0$. Dann ist (da u injektiv) w' = 0. Also ist $\operatorname{Ker}(w' \mapsto u \circ w') = 0$.
 - (b) $\operatorname{Im}(w' \mapsto u \circ w') \subseteq \operatorname{Ker}(w \mapsto v \circ w)$: $\operatorname{Kompoosition:} w' \mapsto u \circ w' \mapsto \underbrace{(v \circ u)}_{=0} \circ w' \text{ ist Null.}$
 - (c) $\operatorname{Im}(w \mapsto v \circ w) \subseteq \operatorname{Ker}(w' \mapsto u \circ w')$: Sei $w \in \operatorname{Hom}_A(P, M)$ mit $v \circ w = 0$, sodass $\operatorname{Im}(w) \subseteq \operatorname{Ker}(v) = \operatorname{Im}(u)$.

"⇔"

(a) u injektiv: Sie $m' \in M$ mit u(m') = 0, $P := < m' >= Am' \subseteq M'$, $w' : P \to M'$ Inklusion. Dann ist...

Bemerkung3.31. Seiene M,N,P A-Moduln. Dann ist

$$\operatorname{Hom}_{A}(M \otimes_{A} N, P) = L_{A}(M, N; P)$$

$$= \operatorname{Hom}_{A}(M, \operatorname{Hom}_{A}(N, P))$$

$$(\alpha : M \times N \to P) \mapsto (n \mapsto \alpha(m, n))$$

$$(*)$$

Sei
$$T_N: (A\text{-Modul}) \to (A\text{-Modul})$$

$$M \mapsto M \otimes_A N$$

$$(u: M \to M') \mapsto u \otimes id_N$$

$$N_N: (A\text{-Modul}) \to (A\text{-Modul})$$

$$P \mapsto \operatorname{Hom}_A(N, P)$$

Dann besagt (*):

$$\operatorname{Hom}(T_M(M), P) = \operatorname{Hom}(M, H_N(P))$$

d.h. T_N ist linksadjungiert zu H_N .

Dann ist T_N rechtsexakt und H_N ist linksexakt.

Proposition 3.32. Sei $M' \xrightarrow{u} M \xrightarrow{v} M'' \to 0$ eine exakte Sequenz von A-Moduln. Dann ist für jeden A-Modul N die Sequenz

$$M' \otimes N \xrightarrow{u \otimes id_N} M \otimes_A N \xrightarrow{u \otimes id_N} M'' \otimes_A N \to 0$$

exakt.

Beweis. Formal mit 3.31.

Sei $M' \to M \to M'' \to 0$ exakt.

Dann gilt mit $\ref{eq:condition}$, dass für alle A-Mdouln P:

$$0 \to \operatorname{Hom}_A(M'', H_N(P)) \to \operatorname{Hom}_A(M, H_N(P)) \to \operatorname{Hom}_A(M', H_N(P))$$

Ist jeweils gleich (3.31)

$$0 \to \operatorname{Hom}_A(T_N(M''), P) \to \operatorname{Hom}_A(T_N(M), P) \to \operatorname{Hom}_A(T_N(M'), P)$$

exakt, sodass mit??

$$T_N(M') \to \underbrace{T_N(M)}_{=M \otimes_A N} \to T_N(M'') \to 0$$

exakt ist.

Beispiel 3.33. Sei $A=\mathbb{Z},\ u:\mathbb{Z}\xrightarrow{x\mapsto 2x}\mathbb{Z}.$ Dann ist $0\to\mathbb{Z}\xrightarrow{u}\mathbb{Z}$ exakte und $A\otimes_A M=M.$ Aber

$$0 \to \mathbb{Z} \otimes \mathbb{Z}/2\mathbb{Z} \xrightarrow{u \otimes id_{\mathbb{Z}/2\mathbb{Z}}} \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$$
$$\mathbb{Z}/2\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z}/2\mathbb{Z}$$

ist nicht injektiv.

4 Lokalisierung

A) Lokalisierung von Ringen und Moduln

Definition 4.1. Eine Teilmenge $S\subseteq A$ heißt <u>multiplikativ</u>, falls $1\in S$ uns $s,t\in S\Rightarrow st\in A$.

Beispiel 4.2. 1. $S = \mathbb{Z} \setminus \{0\} \subseteq A = \mathbb{Z}$

- 2. Sei $f \in A$, dann ist $S_f = \{1, f, f^2, ..., \}$ eine multiplikative Teilmenge.
- 3. Sei $y \subset A$ Primideal. Dann ist $A \setminus y \subset A$ eine multiplikative Teilmenge.

Definition 4.3. Sei A ein Ring, $S \subseteq A$ eine multiplikative Teilmenge. Definiere auf $A \times S$ eine Äquivalenzrelation durch

$$(a,s) \sim (b,t) :\Leftrightarrow at = bs$$

Beweis. Dies ist eine Äquivalenzrelation:

- Refelxivität
- Symmetrie
- Transitiv: $(a, s) \sim (b, t), (b, t) \sim (c, u)$

$$\exists v, w \in S : vat = bvs , wba = wtc$$

Dann ist vbsw = !

Satz 4.4 (Universelle Eigenschaft). Sei $S\subseteq A$ eine multiplikative Teilmenge und sei $1:A\to S^{-1}$ kanonisch. Sei B ein Ring, $\varphi:A\to B$ ein Ring-Homomorphimsmus mit $\varphi(s)\in B^\times=\{b\in B\mid \exists c\in B:bc=1\}$ für alle $s\in S$. Dann existiert ein eindeutiger RIng-Homomorphismus $\tilde{\varphi}S^{-1A\to B}$ mit $\tilde{\varphi}\circ 1=\varphi:$

Beweis. Eindeutigkeit Für $\frac{a}{s} - inS^{-1}A$ muss für $\tilde{\varphi}$ gilt:

$$\tilde{\varphi}\left(\frac{a}{a}\right) = \tilde{\varphi}\left(\frac{a}{1}\left(\frac{s}{1}\right)^{-1}\right) = \tilde{\varphi}\left(\frac{a}{1}\right)\tilde{\varphi}\left(\frac{s}{1}\right)^{-1}$$

$$= \varphi(a)\varphi(s)^{-1}$$
(*)

Eindeutigkeit Definiere $\tilde{\varphi}$ durch (*) Z.z. $\tilde{\varphi}$ ist wohldefiniert.

Bemerkung 4.5. Sei $S \subseteq A$ eine multilineare Teilmenge. Dann gilt: $A \to S^{-1}A$ ist injektive \Leftrightarrow S enthält keien Nullteiler.

Beweis.

1 ist injektiv

 $\Leftrightarrow \operatorname{Ker}(1) = 0$

 $\Leftrightarrow (\forall a \in A: \frac{a}{1} = 1 \Rightarrow a = 0) \Leftrightarrow \quad (\forall a \in A: \exists s \in S: as = 0 \Rightarrow a = 0) \Leftrightarrow S \text{ enthält eine Nullteiler}$

Satz 4.6 (Lokalisierung von Moduln). Sei $S \subseteq A$ ein multiplikative Teilmenge, M ein A-Modul. Definiere auf $M \times S$ eine Äquivalenz Relation:

$$(m,s) \sim (n,t) \Leftrightarrow \exists v \in S : vtm = vsm$$

Man erhält den $S^{-1}A$ -Modul $S^{-1}M = (M \times S)/\sim$:

- Mit Addition: $\frac{m}{s} + \frac{n}{t} := \frac{tm + sn}{st}$
- Mit Skalarmultiplikation: $\frac{a}{s} \cdot \frac{m}{t} := \frac{am}{st}$

Satz 4.7 (Lokalisierung als Funktor). Sei $u: M \to N$ eine A-lineare Abbildung, $S \subseteq A$ ein multiplikative Teilgruppe. Dann ist

$$S^{-1}u:S^{-1}M\to S^{-1}N$$

$$\frac{m}{s}\mapsto \frac{u(m)}{s}$$

eine $S^{-1}A$ lineare Abbildung.

Satz 4.8 (Lokalisierung ist exakt). InhaltSei $M' \xrightarrow{u} M \xrightarrow{v} M''$ eine exakte Sequenz von A-Moduln, $S \subseteq$ eine multilineare Teilmenge. Dann ist

$$S^{-1}M' \xrightarrow{S^{-1}u} S^{-1}M \xrightarrow{S^{-1}v} S^{-1}M''$$

eine exakte Sequnez von $S^{-1}A$ Moduln.

Beweis. $v \circ u = 0$. Also ist $S^{-1}v \circ S^{-1}u = 0$.

Noch zu zeigen: $\operatorname{Ker}(S^{-1}v) \subseteq \operatorname{Im}(S^{-1}u)$. Sei $\frac{m}{s} \in S^{-1}M$ mit $S^{-1}v\frac{v}{s} = \frac{v(m)}{s} = 0$. Also gibt es $t \in S : tv(m) = v(tm) = 0$.

Damit liegt $tm \in \text{Ker}(v) = \Im(u)$.

Also existiert $m \in M : u(m' = tm)$. Dann ist $S^{-1}u\left(\frac{m'}{st}\right) = \frac{u(m')}{st} = \frac{m}{s}$ und damit $\frac{m}{s} \in \operatorname{Im}(S^{-1}u)$

Proposition 4.9. Sei M ein A-Modul, $S \subseteq A$ eine multiplikative Teilmenge, dann ist

$$u: S^{-1}A \otimes_A M \xrightarrow{\sim} S^{-1M}$$
$$\frac{a}{s} \otimes m \mapsto \frac{am}{s}$$

ist Homomorphismus von $S^{-1}A$ -Moduln.

Beweis. 1. 1 ist wohldefiniert: z.Z:

- (a) $\frac{a}{s} = \frac{b}{t} \Rightarrow \frac{am}{s} = \frac{bm}{t}$. (b) $\frac{am}{s}$ ist linear in $\frac{a}{s}$ und in m.

2.

Satz 4.10 (Ideal in $S^{-1}A$). Sei $S \subseteq A$ eine multilineare Teilmenge.

$$\{\text{Ideale in A}\} \xrightarrow[b \mapsto \iota^{-1}(b)]{\mathfrak{a} \mapsto S^{-1\mathfrak{a}}} \left\{\text{Ideale in } S^{-1}A\right\}$$

$$1: A \to S^{-1}A, a \mapsto \frac{a}{1}$$

Nicht zu einander invers.

- 1. Sei $\mathfrak{a} \subseteq A$ ein Ideal. Dann ist $S^{-1\mathfrak{a}} = S^{-1}A$ genau dann wenn $\mathfrak{a} \cap S \neq 0$. Dann folgt auch, dass $\mapsto S^{-1\mathfrak{a}}$ ist nur invertierbar , falls $S \subseteq A^{\times}$.
- 2. Für $b \subseteq S^{-1}A$ Ideal gilt:

$$S^{-1}(\iota^{-1}(b)) = b$$

Dann folgt $b \mapsto \iota^{-1}(b)$ ist injektiv und jedes Ideal von $S^{-1}A$ ist von der Form $S^{-1}\mathfrak{a}$ für einIdeal $\mathfrak{a} \subseteq A$.

- 3. Sei $\mathfrak{a} \subseteq A$ ein Ideal. Dann gilt: Es gibt ein Ideal $b \subseteq S^{-1}A$ mit $\mathfrak{a} = \iota^{-1(b)}$. Dies ist Äquivalent dazu, dass kein $s \in S$ ins A/\mathfrak{a} Nullteiler ist.
- 4. Man hat zueinander inverse Bijektionen:

Beweis. 1. $\frac{1}{1} - inS^{/1A}$ ist genau dann wenn es ein $a \in \mathfrak{a}, s \in S$ gibt, sodass $\frac{a}{s} = \frac{1}{1}$.

$$\Leftrightarrow \exists a \in \mathfrak{a}, s, t \in S : ta = ts$$
$$\Leftrightarrow \mathfrak{a} \cap S \neq 0$$

2. Sei $\frac{a}{s} \in S^{-1}(\iota^{-1(b)})$.

Ist äquivalent zu $\exists t \in S$ und $b \in A$ mit $\frac{b}{1} \in b$, so dass

$$\frac{a}{s} = \frac{b}{t} = \frac{b}{1} \frac{1}{t}$$

$$\Leftrightarrow \frac{a}{s} \in b$$

3. Sei $\mathfrak{a} = \iota^{-1}(b)$ für ein Ideal $b \subseteq S^{-1}A$.

$$\Leftrightarrow \mathfrak{a} = \iota^{-1}(S^{-1}\mathfrak{a})$$

$$\Leftrightarrow A/\mathfrak{a} \xrightarrow{\overline{a} \mapsto \left(\frac{a}{1}\right)} S^{-1}A/S^{-1}\mathfrak{a} = ?? S^{-1}A/\mathfrak{a} \quad \text{injektiv}$$

(Wende ?? an auf die exakte Sequenz

$$0 \to \mathfrak{a} \to A \to A/\mathfrak{a} \to 0$$

Dann ist auch

$$0 \to S^{-1}\mathfrak{a} \to S^{-1}A \to S^{-1}(A/\mathfrak{a}) \to 0$$

exakt.) Mit ?? gilt äquivalenz dazu, dass kein $s \in S$ ist Nullteiler in A/\mathfrak{a} .

4.

Satz 4.11 (Universelle Eigenschaft des Quotientenkörpers). Sei $\iota: A \to \operatorname{Qud}(A)$ kanonisch und sei $\varphi: A \to K$ ein injektiver Ring-Homomorphismus wobei K ein Körper.

Dann existiert genau ein Homomorphismus von Körpern $\tilde{\varphi}: \operatorname{Qud}(A) \to K$.

(B) Lokale Ringe und Restklassenkörper

Definition 4.12. Ein Ring A heißt <u>lokal</u> wenn er genau ein Maximales Ideal besitzt.

Dann bezeichnet \mathfrak{m}_A dieses Maximales Ideal.

Der Körper $\kappa(A) := A/\mathfrak{m}_A$ heißt Restklassenkörper von A.

Beispiel 4.13. • Jeder Körper ist ein lokaler Ring.

 Ein Hauptidealring A ist genau dann lokal, wenn bis auf Multiplikation mit Einheiten genau ein irreduzibles Element existiert.
 Oder wenn A Körper ist

Definition 4.14. Ein lokaler Hauptideal Ring der kein Körper ist, heißt diskreter Bewertungsring.

Beispiel 4.15. Sei $\mathfrak{p} \subset A$ Primideal, $S := A \backslash \mathfrak{p}$ multiplikative Teilmenge, $A_{\mathfrak{p}} := S^{-1}A$.

$$\{\text{Primideals in } A - \mathfrak{p}\} \leftrightarrow \{\text{Primideals } q \subset A \text{ mit } q \subseteq \mathfrak{p}\}$$

(mit 4).

Also ist $A_{\mathfrak{p}}$ ein lokaler Ring mit maximalem Ideal $S^{-1}\mathfrak{p}$.

Der Körper $\kappa(\mathfrak{p}) := A/S^{-1}\mathfrak{p}$ heißt Restklassenkörper in \mathfrak{p} .

Bemerkung 4.16. Seien $q \subseteq \mathfrak{p} \subset A$ Primideale.

1.

{Primideale in
$$A_{\mathfrak{p}}$$
} = {Primideale in A , die in \mathfrak{p} enthalten sind}
{Primideal in A/q } = {Primideal in A , die q enthalten.}

2. Sei
$$S := S \backsim \mathfrak{p}$$
. Dann ist $S^{-1}(A/q) = S^{-1}A/S^{-1}q$ und

 $\{\text{Primideal in } S^{-1}(A/q)\} = \{\text{Primideals in } A \text{ die zwischen } q \text{ und } \mathfrak{p} \text{ liegen}\}$

3. Speziell für $q = \mathfrak{p}$:

$$S^{-1}(A/\mathfrak{p}) = \kappa(\mathfrak{p})$$
$$= \operatorname{Qud}(A/\mathfrak{p})$$

(C)Spektren

Erinnerung 4.17. Ein Topologischer Raum ist ein Paar $(X; \mathfrak{T})$ wobei X eine Menge, $\mathfrak{T} \subseteq \mathscr{P}(X)$, sodass gilt:

- 1. $\emptyset \in \mathfrak{T}, X \in \mathfrak{T}$
- 2. Sei $(U_i)_{i\in I}$ eine Familie von Mengen $U_i\in\mathfrak{T}$ dann gilt $\forall i\in I:\bigcup_{i\in I}U_i\in\mathfrak{T}$
- 3. $U, V \in \mathfrak{T}$, dann $U \cap V \in \mathfrak{T}$

Die Mengen in $\mathfrak T$ heißen offen.

Erinnerung 4.18. Seine X, Y topologische Räume. Eine Abbildung $f: X \to Y$ heißt stetig, falls $f^{-1}(V) \subseteq X$ ist offen für alle offenen $V \subseteq Y$.

Erinnerung 4.19. Sei (X, \mathfrak{T}) ein topologischer Raum $B \subseteq \mathfrak{T}$ heißt Basis der Topologie, falls jeder offenen Teilmenge Vereinigung von Menge aus B ist.

Beispiel 4.20. Sei (X, d) eien metrischer Raum, dann heißt $U \subseteq X$ offen, falls

$$\forall x \in U \exists \epsilon > 0 : B_{\epsilon}(x) \{ y \in X \mid M(x, y) < \epsilon \} \subseteq U$$

Basis der Topologie: $\{B_{\epsilon}(x) \mid \epsilon \in \mathbb{R}^{>0}, x \in X\}$

Definition 4.21. Sein topologischer Raum X heißt <u>Hausdorffsch</u>, falls $\forall x,y \in X$ mit $x \neq y$ existieren $x \in U \subseteq X$, $y \in V \subseteq X$ offen, sodass $U \cap V = \emptyset$. Metrische Räume sind Hausdorffsch.

Definition 4.22. Ein topologischer Raum X heißt <u>quasikompakt</u>, falls jede offene Überdeckung $(U_i)_{i\in I}$ von X (d.h. $U_i\subseteq X$ offen für alle $i\in I$ mit $\bigcup_{i\in I}U_i=X$) eine endliche Teilüberdeckung besitzt. (d.h. $\exists J\subseteq I$ endliche Teilmenge, sodass $\bigcup_{i\in I}U_i=X$.)