定義新增:

 $T_A \cdot T_B \cdot T_C : T_A \cdot T_B \cdot T_C$ 分別為過 $A \cdot B \cdot C$ 點的 ΔABC 外接圓切線。

- $-\cdot P_1$ 落在過 $\triangle ABC$ 的直線上
- 二、 P_1 落在 ΔABC 的外接圓切線上接著來討論當 P_1 位於 ΔABC 的外接圓切線上的情況。
- 1. △ABC 為等腰直角三角形的情況
- /* P_1 落在 T_A 、 T_B 、 T_C 時, O_1 移動軌跡為一直線,且與切點的對邊平行 */
 在此不失一般性,將其平移、旋轉、縮放後令 A=(0,0)、B=(1,0)、C=(1,1), \overline{AB} 與 x 軸重合、 \overline{BC} 垂直於 x 軸。此時發現 $\overline{A_1B_1}$ 的中垂線即為 T_B ;又 O_1 是三角形三邊 $\overline{A_1B_1}$ 、 $\overline{B_1C_1}$ 、 $\overline{A_1C_1}$ 的中垂線交點, O_1 必定位於 T_B 上,如圖 x。

當 $P_1=(x_1,y_1)$ 時, $A_1=(x_1,-y_1)$ 、 $B_1=(-x_1+1,y_1)$ 、 $C_1=(y_1,x_1)$ 。 以 T_A 為例,因 T_A : y=-x,以 $P_1(t,-t)$ 代入,則 $A_1=(t,t)$ 、 $B_1=(-t+1,-t)$ 、 $C_1=(-t,t)$,而 $\overline{A_1C_1}$ 的中垂線固定(x=0);又 O_1 是三角形三邊 $\overline{A_1B_1}$ 、 $\overline{B_1C_1}$ 、 $\overline{A_1C_1}$ 的中垂線交點, $\overline{A_1B_1}$ 、 $\overline{B_1C_1}$ 的中垂線則不固定,因此 O_1 的軌跡會形成一直線,且該軌跡(x=0)為過 A 點且平行 \overline{BC} 的直線。

因 $T_B: y = x - 1$,以 $P_1(t, t - 1)$ 代入,則 $A_1 = (t, -t + 1)$ 、 $B_1 = (-t + 1, t - 1)$ 、

 $C_1 = (t-1,t)$,而 $\overline{A_1B_1}$ 的中垂線固定(y = x-1);又 O_1 是三角形 三邊 $\overline{A_1B_1}$ 、 $\overline{B_1C_1}$ 、 $\overline{A_1C_1}$ 的中垂線交點, $\overline{A_1B_1}$ 、 $\overline{B_1C_1}$ 的中垂線則不固定,因此 O_1 的 軌跡會形成一直線,且該軌跡(y = x-1)為過 B 點且平行 \overline{AC} 的直線。

因 $T_C: y = -x + 2$,以 $P_1(t, -t + 2)$ 代入,則 $A_1 = (t, t - 2)$ 、

 $B_1 = (-t+1, -t+2) \cdot C_1 = (-t+2, t)$,而 $\overline{B_1C_1}$ 的中垂線固定(y=1);又 O_1 是 三角形三邊 $\overline{A_1B_1} \cdot \overline{B_1C_1} \cdot \overline{A_1C_1}$ 的中垂線交點, $\overline{A_1B_1} \cdot \overline{B_1C_1}$ 的中垂線則不固定,

因此 O_1 的軌跡會形成一直線,且該軌跡 (y=1) 為過 C 點且平行 \overline{AB} 的直線。

由此可得知,當 ΔABC 為等腰直角三角形, P_1 落在 ΔABC 的外接圓切線上時, O_1 的軌跡會形成一直線,且該軌跡為過切點且平行對邊的直線。

2. ΔABC 為正三角形的情況

 \equiv `

/* P_1 落在 T_B 上時, O_1 軌跡與 T_B 重合,且 O_1 與 P_1 之間有特殊關係 */如圖, P_1 位於 T_B 上,設 P_1 為 (x_1,x_1-1) 。

此時
$$O_1 = \left(\frac{(x_1+y_1)\cdot(x_1-1)}{x_1\cdot(x_1-1)+y_1\cdot(y_1-1)}, \frac{(x_1-y_1)\cdot(x_1-1)}{x_1\cdot(x_1-1)+y_1\cdot(y_1-1)}\right)$$
 ;以 $y_1 = x_1-1$ 代入,

$$\text{ for } O_1 = \left(\frac{2x_1-1}{2\cdot(x_1-1)}, \frac{1}{2\cdot(x_1-1)}\right), \text{ fix } \frac{2x_1-1}{2\cdot(x_1-1)}-1 = \frac{(2x_1-1)-2\cdot(x_1-1)}{2\cdot(x_1-1)} = \frac{2x_1-1-2x_1+2}{2\cdot(x_1-1)} = \frac{2x_1-1-2x_1+2}{2\cdot(x_1-1)}$$

 $\frac{1}{2\cdot(x_1-1)}$ 。因此可得知 O_1 也位於 y=x-1 這條直線上,且此直線與 T_B 重合。