Key formulas

- Asymptotic distribution of ML estimator

 - $\begin{array}{l} \bullet \ \theta_{ML} \sim N(\theta_0,I(\theta_0)^{-1}) \ \text{as} \ n \to \infty \\ \bullet \ \text{where} \ I(\theta_0) = -\sum_{i=1}^n \frac{\partial^2 I(\theta_0;y_i)}{\partial \theta_0 \partial \theta_0'} \end{array}$
- KL Divergence
 - $lacksquare D_{KL} = \int_{-\infty}^{\infty} g(y) log \frac{g(y)}{n(y)} dy$
- cross-entropy
 - $\sum \left[-y_i log(p_i) (1-y_i) log(1-p_i) \right]$
- · variance and bias
 - $\begin{array}{l} \bullet \ E[y-\hat{y}]^2 = E[\hat{y}-E[\hat{y}]]^2 + [E[\hat{y}]-E[y|x]]^2 + E[y-E[y|x]]^2 \\ \bullet \ E[y-\hat{y}]^2 = Var[\hat{y}] + [E[\hat{y}]-E[y|x]]^2 + Var[y|x] \end{array}$

 - $E[y \hat{y}]^2 = Var[\hat{y}] + [bias(\hat{y})]^2 + Var[y|x]$
- · variance-bias trade-off
 - more richly parametrized models (splines) and more flexible (KNN with small K) models, or smaller dataset (less bad periods), have:
 - higher variance
 - lower bias

Financial Series

- Low signal-to-noise ratio
 - even qualied humans can't use x explained most y
- · Fat tails
- · high persistence
 - can be thought of as a smaller number of independent observations
- · Markets are dynamic
 - economy/institutions/ideas all change
 - long period data is not always good
 - central banks control interest rate more tightly (more persistant)
- · substantial measure error
 - (GDP, ination, earnings, book value, debt quantity and quality)
 - Measurement errors tend to penalize complex models more severely

Maximum Log Likelihood

- · good at: unbiased and efficient
- · but rely on model assumption correct: errors be iid and normal (or student-
- · gaussian errors: equal to OLS
- student t errors
 - $\sigma_t^2 = \sigma_g^2 rac{v}{v-2}$
 - v small: great differece
 - large sample: OLS (gaussian errors) better point forecast (not full distribution)
 - small sample: OLS (gaussian errors) high variance and tail risk
- Asymptotic distribution of ML estimator

 - $\begin{array}{l} \bullet \ \, \theta_{ML} \sim N(\theta_0,I(\theta_0)^{-1}) \ \text{as} \ n \to \infty \\ \bullet \ \, \text{where} \ I(\theta_0) = -\sum_{i=1}^n \frac{\partial^2 \! I(\theta_0;y_i)}{\partial \theta_0 \partial \theta_0'} \end{array}$
- · when misspecied models
 - minimizes the KL Divergence

$$\circ~D_{KL}=\int_{-\infty}^{\infty}g(y)lograc{g(y)}{p(y)}dy$$

- · measure the information lost, still sensible
- · modications of ML
 - Penalization
 - the penalization introduces some bias but reduces the variance
 - o penalization disappear asymptotically
 - validation
 - o a natural loss function: minus log-likelihood.

Loss function of classication problems

- · why not error rate loss function
 - one category has a small average probability (default)
 - low signal-to-noise rate
- · cross-entropy
 - loss function = $\sum [-y_i log(p_i) (1-y_i) log(1-p_i)]$
- alternative
 - use a loss function close to the one that will be used when the model is deployed

Variance & Bias

- · MSE into variance and bias
- $E[y-\hat{y}]^2 = E[\hat{y} E[\hat{y}]]^2 + [E[\hat{y}] E[y|x]]^2 + E[y E[y|x]]^2$
- $E[y-\hat{y}]^2 = Var[\hat{y}] + [E[\hat{y}] E[y|x]]^2 + Var[y|x]$
 - they are "variance", "bias" and "true error"
 - ullet $E[\hat{y}]$ is point forecast of y given x
 - y is **really real** y, E[y|x] is observed y
 - variance: 预测值的波动
 - bias: 模型误差
 - true error: 观测误差 or 真·随机扰动
- · variance-bias trade-off
 - more richly parametrized models (splines) and more flexible (KNN with small K) models, or smaller dataset (less bad periods), have:
 - higher variance
 - lower bias

Linear model and KNN

- linear
 - OLS gives highest R2
 - linear projection has lowest MSE if model correct and error is NIID

$$y_i^* = \alpha' x_i$$

- OLS is an asymptotically consistent estimator of the linear projection
- Comparison
 - OLS make strong assumptions about the form
 - KNN alternative and more flexible approach. (bias at the boundaries)
 - linear better:
 - if the linear is close to the true form.
 - high dimensions
 - KNN better:
 - o non-linearty, perhaps interation effects
 - high signal-to-noise ratio
 - large sample size
 - low dimension
- use both
 - local regression

linear estimator

· estimator is linear if it can be expressed as a linear function of y

nonlinear estimator

· student t errors, min MAD estimators, logit model

Cross-Validation

- Leave-One-Out CV
 - unbiased estimates of the test error
 - higher variance and less bias (than K-Fold)
- · one-standard-error rule
 - best model in test set with one standard error bound, select simplest within this bound
- · Remarks on CV
 - nonparametric: makes no assumption about the models
 - general: can be applied to any model, with any loss function (MSE, likelihood or profit)
 - intuitive
- · Cross validation on time series
 - problem with assumption: parameter stability
 - expanding window: training set becomes progressively larger

WLS and local regression

- WLS
 - when errors are very far from iid and we have good weights
- · Local regression
 - capture additive nonlinearities and interaction effects (with interpretability)
 - Cross-products create leverage points (even gaussian)
 - similar to the "varying parameter model"
- Gaussian kernel
 - λ determines the amount of smoothing, replace k in KNN
 - as p (used in computing distance and weights) grows, all near the boundary, method breaks down
- · Exponential smoothing
 - lower variance and higher bias
 - the distance is only relevant to compute the ordering

Splines

- · Polynomial functions (are global)
 - very high variance particularly near the boundaries
- Dummy variables (are local)
 - have lower variance but have jumps
- · Linear splines
 - In low signal-to-noise environments, linear splines may be more robust
- · Polynomial splines
 - m = 3 is common (cubic regression splines)
- · Natural cubic splines:
 - required to be linear at the boundary
 - good if K is large
- · penalization for knots
 - Ridge if the function is smooth.
 - Lasso if the function changes rapidly in some parts and slowly in others

Generalized Additive Models (GAMs)

- · Advantages:
 - 1. avoids curse of dimension
 - 2. high interpretability
- limitation
 - 1. restricted to be additive
 - 2. curse of dimension for interaction effects

interaction effects:

- 1. Use regression splines on standard interaction effects
 - GAM model on x1, x2, z=x1*x2
- 2. Interact basis expansions (tensor products)
 - · Interact all the terms of the basis expansions
- 3. Local GAMs
 - · local + splines
 - · The local captures interaction effects
 - splines allows larger p and K
 - pick local variables (1-2 variables compute distance):
 - thought to drive the interaction effect
 - or use CV to pick

Ridge & Lasso

- · ridge regression
 - $lacksquare Min_{(eta)}[(y-Xeta)'(y-Xeta)+eta'\Lambdaeta]$
 - $\quad \bullet \ \ \hat{\beta}^{ridge}(\lambda) = (X'X + \Lambda)^{-1}X'y$
 - Covariates should be standardized (also for PCR)
 - reducing over-fit
 - performs well when many covariates are highly correlated (than lasso)
- The Lasso
 - penalize term is absolute beta
 - set some coefficients to zero
- · advantange and disadvantage
 - improve performance
 - large p
 - · low signal-to-noise ratio
 - large "measurement" error
 - o regression splines
 - perform poorly
 - covariates strongly positively correlated (bad forLasso)
 - only a small percentage actually matter

PCR

- Dimension reduction
 - reduce dimensiona while minimizing the loss of information
- · Principal Components Regression
 - reduce variance while bias increases slightly
 - (eigen value)^2/N is the variance of factor
 - PCR do well when the first few principal components are sufficient
- · PCR and Ridge
 - Ridge regression can be seen as a smooth version of principal components analysis
 - lacksquare df of ridge: $\sum d_i^2/(d_i^2+\lambda)$

Bootstrap and Bagging

- · takes independent draws (with reimmission)
 - nonparametric
- · when improves most
 - non-linear in parameters
 - different bootstrap samples have high variance
 - likelihood is multimodal
- Block bootstrap
 - In time series
 - data is not independent
 - highly persistent
 - o not iid
 - Its a nonparametric bootstrap
 - the data is split into contiguous blocks of equal size M
 - draw blocks
 - ∘ y{m+i} and y{i} are nearly independent

subset selection

- · cross-validated prediction error
 - AIC or BIC (small is good)
 - adjusted R2 (large is good)
- · assumptions:
 - 1. Model form is correct
 - 2. The errors are iid
- · requiring:
 - 1. parametric model
 - 2. p is "obvious"
 - 3. loss function is mse