Senior Division Solutions

1. Data Structures

The internal path length is: 2*1+4*2+5*3+1*4 = 29

1. 29

- **2. Data Structures** The construction is as follows: M, ME, MED, ED, EDI, EDIT, EDITE, EDIT, DIT, DITR, DITRA, ITRA, TRA, TR, TRE, TREA, TREAN, REAN, EAN, EANS, EANSE, ANSEA, NSEA The next popped item is A since it ended as a stack.
- 2. A

3. Digital Electronics The circuit translates to: $\overline{(AB)(B+C)} + \overline{C}$

$$\overline{(AB)(B+C)+\overline{C}} = \overline{(AB)(B+C)}C = (\overline{AB}+\overline{B+C})C$$

$$= ((\overline{A}+\overline{B})+\overline{BC})C = \overline{AC}+\overline{BC}+\overline{BC}C = (\overline{A}+\overline{B})C$$
So $(\overline{A}+\overline{B})C=1 \Rightarrow \overline{AB}=1 \land C=1 \Rightarrow AB=0 \land C=1$
Therefore $(0,0,1),(0,1,1),(1,0,1)$ make the circuit true.

- 3. (0,0,1) (0,1,1)
 - (1,0,1)
- **4. Digital Electronics** Circuit translates $(A + \overline{(A+B)(BC)} \oplus (\overline{(C+D)D})$

and simplifies to: $(A + \overline{B} + \overline{C}) \oplus \overline{C}\overline{D}$

A	В	C	D	\overline{B}	$\overline{\overline{C}}$	\overline{D}	$A + \overline{B} + \overline{C}$	\overline{CD}	\oplus
0	0	0	0	1	1	1	1	1	0
0	0	0	1	1	1	0	1	0	1
0	0	1	0	1	0	1	1	0	1
0	0	1	1	1	0	0	1	0	1
0	1	0	0	0	1	1	1	1	0
0	1	0	1	0	1	0	1	0	1
0	1	1	0	0	0	1	0	0	0
0	1	1	1	0	0	0	0	0	0
1	0	0	0	1	1	1	1	1	0
1	0	0	1	1	1	0	1	0	1
1	0	1	0	1	0	1	1	0	1
1	0	1	1	1	0	0	1	0	1
1	1	0	0	0	1	1	1	1	0
1	1	0	1	0	1	0	1	0	1
1	1	1	0	0	0	1	1	0	1
1	1	1	1	0	0	0	1	0	1

4. 6

- **5. LISP** (CAR(CAR(CDR(REV(CDR '((2(1 2))(4 1 3)((2 1)3)4)))))
 - = (CAR(CDR(REV '((4 1 3)((2 1)3)4)))))
 - = (CAR(CAR(CDR '(4((2 1)3)(4 1 3)))))
 - = (CAR(CAR'(((2 1)3)(4 1 3))))
 - = (CAR'((2 1)3)) = (2 1)

5. (21)