第一章 MOSFET

回顾

MOS 的晶体电流公式:

线性区时:

$$I_d = \mu_0 C_{ox} \frac{W}{L} (V_{gs} - V_{th} - \frac{1}{2} V_{ds}) V_{ds}$$

饱和区时:

$$I_d = \frac{1}{2}\mu_0 C_{ox} \frac{W}{L} (V_{gs} - V_{th})^2$$

1.1 线性区: 电阻

在线性区满足 $V_{DS} < V_{GS} - V_{th}$, 当沟道打开时,沟道高度与 V_{gs} 成比例,通过面积 法理解电流中的 $V_{ds}/2$ 来源。

小信号的导通电阻求解为:

$$R = \frac{\partial V}{\partial I} \approx \frac{1}{\mu_0 C_{ox} \frac{W}{L} (V_{gs} - V_{th})}$$

电子迁移率大概是 $\mu_n\approx 600{\rm cm}^2/Vs$, $\mu_p\approx 250{\rm cm}^2/Vs$ 。 栅氧层电容 $C_{ox}=\frac{\epsilon_{ox}}{t_{ox}}$,基本可以按照特征尺寸 L_{min} 估计栅氧厚度 $t_{ox}=\frac{L_{min}}{50}$ 。一般使用 cm² 相关的单位。定义工艺量 $KP_n=\mu_nC_{ox,n}$ 。

根据以上的知识可以对 MOSFET 的电阻进行快速的估算。工艺越小,由于特征尺寸小,电阻更小; PMOS 由于迁移率小,电阻更大。

1.2 饱和区: 放大器

在 $V_{ds} > V_{gs} - V_{th}$ 时,进入饱和区。对于 I_d 公式,如何理解其系数 1/2 以及平方项:

$$I_d = \frac{1}{2}\mu_0 C_{ox} \frac{W}{L} (V_{gs} - V_{th})^2$$

同样是通过沟道图理解, V_{ds} 最多造成 $V_{gs} - V_{th}$ 的影响,沟道越长,调制效应越小。 其跨导定义如下,最后一种形式最常见,需要记忆: 和 I_d 直接相关。

$$g_m = \frac{\partial I_d}{\partial V_{gs}} = \mu_0 C_{ox} \frac{W}{L} (V_{gs} - V_{th})$$
$$= \sqrt{2I_d \cdot \mu_0 C_{ox} \frac{W}{L}}$$
$$= \frac{2I_d}{V_{gs} - V_{th}}$$

可以看到,跨导和漏极电流有着密切的要求,对于 $g_m \propto \sqrt{I_d}$ 在测试中尺寸是固定的,对于 $g_m \propto I_d$ 在设计中偏置固定。

其输出电阻 $r_0=V_{ds}/I_d\approx 1/(\lambda I_d)$ 。 $\lambda=1/(V_E\cdot L)$, V_E 是工艺相关的量,L 是沟道长度。一般来说, $V_{E,n}=4V/\mu mL$, $L=1\mu m$

1.2.1 单晶体管放大器

对于共源放大器:

$$A = g_m r_0 = \frac{2I_d}{V_{qs} - V_{th}} \cdot \frac{V_E L}{I_D} = \frac{2V_E L}{V_{qs} - V_{th}}$$

其中 $V_{qs} - V_{th} \approx 0.2V$

运算放大器的设计存在 Trade-off **表 ??**: 对于 $g_m \approx \frac{2I_{ds}}{V_{gs}-V_{th}}$, $A=\frac{2V_EL}{V_{gs}-V_{th}}$, 跨导越大,速度越快。

表 1.1: Trade-off

	高增益	高速
$V_{gs} - V_{th}$	down	up
L	up	down

1.3 弱反型区与

对于弱反型区有

$$I_{d,wi} = I_{d0} \frac{W}{L} e^{\frac{V_{gs}}{nkT/q}}$$

$$g_{m,wi} = I_{d,wi} \frac{1}{nkT/q}$$