Plus

1. DREME (Discriminative Regular Expression Motif Elicitation)

• **Purpose**: Identifies short, statistically significant **motifs** (usually 6-8 nucleotides long) that occur more frequently in an input set of sequences compared to a control set.

Method:

- Uses an efficient heuristic algorithm to find regular expression-like motifs that are overrepresented.
- Employs **p-values** and **E-values** to rank motifs based on significance.
- Faster than MEME, but finds simpler motifs.
- Output: Provides a list of short motifs with their occurrence frequency and statistical significance.

2. MEME (Multiple EM for Motif Elicitation)

- Purpose: Identifies longer, more complex de novo motifs in unbiased sequence data.
- Method:
 - Uses the **Expectation-Maximization (EM) algorithm** to iteratively refine motifs that best explain the observed sequences.
 - Can detect motifs in three different modes:
 - OOPS (One Occurrence Per Sequence) assumes each sequence contains exactly one instance of the motif.
 - ZOOPS (Zero or One Occurrence Per Sequence) assumes each sequence contains zero or one
 instance of the motif.
 - TCM (Two-Component Mixture) assumes motifs can occur multiple times in a sequence.
- **Limitations**: Computationally expensive, so it is run on a **subset (600 sequences) of the input data** in MEME-ChIP.
- Output: Provides motifs as position-specific probability matrices (PSPMs), along with E-values for statistical significance.

3. AME (Analysis of Motif Enrichment)

- **Purpose**: Determines whether known motifs (e.g., from the **JASPAR CORE database**) are statistically enriched in a given set of sequences.
- Method:
 - Takes an input motif database (like JASPAR, TRANSFAC, etc.) and compares it to the input sequences.
 - Uses rank-based enrichment tests to calculate p-values and E-values for each motif.
 - Can apply different scoring methods, such as Wilcoxon rank-sum test, Fisher's Exact Test, or Binomial
 Test.
- Output: Lists significantly enriched motifs with statistical scores, helping determine which known transcription factor (TF) motifs are most relevant to the dataset.

Comparison Summary

Tool	Purpose	Motif Length	Algorithm	Output
DREME	Finds short, statistically overrepresented motifs	Short (6-8 bp)	Heuristic, p-value based	List of simple enriched motifs
MEME	Identifies de novo motifs in unbiased sequences	Variable (longer)	Expectation- Maximization (EM)	PSPMs , probability matrices

Tool	Purpose	Motif Length	Algorithm	Output
AME	Tests for statistical enrichment of known motifs	Uses known motifs	Rank-based statistical tests	List of enriched known motifs