AIDL: PROJECTS

•••

Session 1 (2019-03-05): Introduction

Issey Masuda Mora

Education: Telecommunications Engineer

Currently working: Deep learning team lead at Vilynx

Technologies:

Hand-raised poll

- Programming skills?
- Working on software development? Or management?

Subject goals

"Give them the tools to apply DL in the industry"

Expectations: what not to expect

Expectations

- Implement NN models
- Ready to prod
- Useful for current job
- Product MVP
- Solve real-world problems
- State of the art

Subject goals

Subject goals

Tangibles:

- Implement DL models
- Optimize resource usage / increase efficiency
- Optimize models
- Deploy to production

Intangibles:

- Add a DL implementation into the roadmap
- Acquire a data scarcity mindset
- It's not all about DL!

Course overview

How is this all going to work?!?!?

Deep learning

Tensorflow

TF building blocks

End2End model

Low-level API

Keras / High level API

To prod!

Classes

Classes

What they should be:

- Guide + DIY + review solution \rightarrow what did we learn?
- Align each one with the subject goals

What they should not be:

- Medium blog post
- Tensorflow tutorial
- TF API reference summary

Classes

Jupyter & Codalab

Old & good python

Begin!

Computational graph

What is it?

Nodes: operations

Edges: data / tensors

Example

Linear regression: y = Wx + b

Directed Acyclic Graph (DAG)

- Edged are directed from one node to another
- Nodes have a topological ordering
- No closed loops!

Static computational graphs

Define-and-Run methodology.

Pros:

- Speed: can spend a long time optimizing the graph
- Memory: can predict and allocate all mem ahead of time

Cons:

- Inflexible: once compiled, it cannot be modified at run time
- Debugging: graph representation doesn't match code
- Static: more difficult to support flexible sized inputs

Slide credit: Kevin McGuinness (adapted from the original one)

Dynamic computational graphs

Define-by-Run strategy

Pros:

- Can change structure of NN at runtime (add layers, change shape, etc.)
- Support flexible sized inputs
- Easier to debug
- More natural to code

Cons:

- Compile at runtime, can be slower
- Dynamic batching more difficult

Slide credit: Kevin McGuinness (adapted from the original one)

Deep learning frameworks

theano

DEEPLEARNING4J

Framework basic comparison

Tensorflow:

- Production ready
- Multiple languages supported (Python, C, Java, JavaScript, Go)
- Multi device (Android, iOS, Web browser)
- Mature with a big community
- Tensorboard
- Keras
- Static graph

... Tensorflow 2.0 coming soon! → dynamic graph

Pytorch:

- Pythonic
- Easy to learn
- Framework rather than library
- Integration with Caffe2
- Dynamic graph

... Pytorch 1.0 finally released! → production ready

Surrounding technologies

Git

- Course repository (for the coding sessions)
- Use a personal branch to keep track of your progress
- Master branch will be updated each week with the solutions of previous sessions & required material for the current one

Virtualenv & virtualenvwrapper

- Isolate python environment

Docker

- Development reproducibility
- Containerize production environment
- TF Serving

NVIDIA

CUDA: "is a parallel computing platform and application programming interface (API) model created by Nvidia"

cuDNN: "is a GPU-accelerated library of primitives for deep neural networks. cuDNN provides highly tuned implementations for standard routines such as forward and backward convolution, pooling, normalization, and activation layers"

TF preview

Computational graph & Dataflow

Programs are represented as directed graphs with data flowing through them where:

- **Nodes**: Operations of the program \rightarrow **tf.Operation**
- **Edges**: Data flowing through the graph → **tf.Tensor**

From symbolic to real numbers

Two phases:

- **Definition phase**: build the computational graph \rightarrow **tf.Graph**
- Execution phase: interact with the graph feeding data and fetching results.
 Run a subgraph of the original graph & change its state → tf.Session

Micro example I: the graph

Micro example II: the code

```
import tensorflow as tf
import random
                                                                      Fetching
graph = tf.Graph()
with graph.as_default():
                                                                       Feeding
    x = tf.placeholder(tf.float32, shape=[], name='x')
    A = tf.get_variable('A', shape=[], dtype=tf.float32,
initializer=tf.initializers.random_normal())
    b = tf.random_normal(shape=[], dtype=tf_float32_name='b')
    y = A * x
                                                                  Definition phase
    z = v + b
with tf.Session(graph=graph) as sess:
    sess.run(tf.global_variables_intializer())
                                                                  Execution phase
    result = sess.run(z, feed_dict={x: random.random()})
```

Demo time

Questions?

