High-dimensional mean tests and extensions

- 1. Hotelling's T^2
- 2. Sum-of-squares type tests
- 3. Max (over dimension) type tests
- 4. Refinements and extensions to time series
- 5. Testing for (auto) covariances

Problem of interest

- ▶ Interested in one/two-sample mean test in the high dimension setting. For example, interested in identifying sets of genes which are significant with respect to certain treatments from microarray data, brain-connectivity detection using fMRI data, etc.
- ▶ Let $\{X_1, \ldots, X_n\}$ be IID $p \times 1$ vectors with

$$\mu := \mathbb{E}X_1 = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_p \end{pmatrix}, \Sigma := \operatorname{Cov}(X_1) = \mathbb{E}(X_1 - \mu)(X_1 - \mu)'$$

(In previous classes, p = d and n = T.)

▶ Interested in two-sample *p*-dimensional mean test, namely,

$$X_1,\ldots,X_{n_1}\sim F_1$$
 with mean $\mu_1,\Sigma_1,$ $Y_1,\ldots,Y_{n_2}\sim F_2$ with mean $\mu_2,\Sigma_2,$ $H_0:\mu_1=\mu_2$ vs $H_1:\mu_1
eq\mu_2.$

Hotelling's T^2 for fixed $p \ll n$

▶ If the dimension p is smaller than the sample sizes n_1 and n_2 , the state-of-the-art method is Hotelling's T^2 test.

$$T^{2} = (\overline{X} - \overline{Y})' \left\{ S_{n} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) \right\}^{-1} (\overline{X} - \overline{Y})$$

$$S_n = \frac{1}{n} \left\{ (n_1 - 1)\hat{\Sigma}_1 + (n_2 - 1)\hat{\Sigma}_2 \right\}, \quad n = n_1 + n_2 - 2.$$

▶ Under $H_0: \mu_1 = \mu_2$ and Gaussianity, we have

$$\frac{n_1 + n_2 - p - 1}{pn}T^2 \sim F(p, n_1 + n_2 - p - 1)$$

▶ Under $H_1: \mu_1 = \mu_2$, it is non-central F-distribution.

Hotelling's T^2 in high dimension

- ▶ If $p > n_1 + n_2 2$, then S_n is not invertible.
- Poor power when $p\approx n$. For example, Yin, Bai and Krishnaiah (1988) show that when $p/n\to c$, the smallest and the largest eigenvalues of the sample covariance $\hat{\Sigma}$ do not converge to the respective eigenvalues of Σ .
- ▶ Therefore, Hotelling's T^2 cannot be used for HD mean test.
- Here, we overview several high-dimensional mean tests based on
 - Sum-of-squares type statistics
 - Max-type statistics

and their refinements and extensions to TS setting.

Sum of squares type tests

It starts with Bai and Saranadasa (1996) assuming $\Sigma_1 = \Sigma_2 = \Sigma$.

▶ Just get rid of S_n^{-1} in Hotelling's T^2 , and work with

$$(\overline{X} - \overline{Y})'(\overline{X} - \overline{Y})$$

 Subtract mean and divided by standard deviation gives the test statistic as

$$T_{BS} = \frac{(\overline{X} - \overline{Y})'(\overline{X} - \overline{Y}) - \frac{n_1 + n_2}{n_1 n_2} tr(S_n)}{\frac{n_1 + n_2}{n_1 n_2} \sqrt{\frac{2(n+1)n}{(n+2)(n-1)}} (tr(S_n^2) - n^{-1} (tr(S_n))^2)},$$

where $n = n_1 + n_2 - 2$.

▶ For example $(\mu_1 = 0)$

$$\mathbb{E}\overline{X}'\overline{X} = \mathbb{E}\frac{1}{n_1^2} \sum_{s,t} X_t' X_s$$

$$= \mathbb{E}\frac{1}{n_1^2} \sum_{t,s} tr(X_s X_t') = \frac{1}{n_1} tr(\Sigma_1) \approx \frac{1}{n_1} tr(\hat{\Sigma}_1)$$
(1)

B&S test

CLT: Assume factor-like model

$$X_i = \Gamma z_i + \mu_1, \quad Y_i = \Gamma z_i + \mu_2,$$

 Γ is a $p \times m$ matrix $(m \leq \infty)$ with $\Gamma\Gamma' = \Sigma$ (hence common covariance), z_i are i.i.d. random vectors with some moments conditions.

$$p/n \to c \in [0, \infty), \quad \lambda_{max}(\Sigma) = o(\sqrt{p}).$$

Then, under $H_0: \mu_1 = \mu_2$

$$T_{BS} \to \mathcal{N}(0,1)$$

Note that the dimension could be larger than the sample size $(n = n_1 + n_2 - 2)$.

B&S test

About the assumption on $\lambda_{\max}(\Sigma)$:

▶ Small exercise in (1) gives

$$\|\overline{X} - \mu\|^2 = O\left(\frac{tr(\Sigma)}{n}\right)$$

Similarly, we can show that

$$\operatorname{Var}((\overline{X} - \overline{Y})'(\overline{X} - \overline{Y})) = O(n^{-2}tr(\Sigma^2)).$$

► Hence, eigenvalue condition says that the variance term vanishes as sample size increases:

$$\frac{1}{n^2}tr(\Sigma^2) \le \frac{p(\lambda_{max}^2(\Sigma))}{n^2} = o(p^2/n^2) \to 0.$$

Extensions of B&S

 Many extensions are suggested, for example, Srivastava and Du (2008) suggested weighted version

$$(\overline{X} - \overline{Y})' D_s^{-1} (\overline{X} - \overline{Y}), \quad D_s = \operatorname{diag}(s_{11}, \dots, s_{pp}),$$

where s_{ii} are the diagonal elements of pooled sample covariance S.

- ▶ However, B&S assumes $p/n \to c$, so it is not working for ultra high dimension when $p/n \to \infty$.
- ▶ Chen and Qin (2010) modified B&S by removing cross-term $\sum_t X_t' X_t$. Essentially, p and n are related in the proof by $\lambda_{\max}(\Sigma)$ condition which involves the square term calculation $X_t' X_t$, $Y_t' Y_t$.

Extension of B&S

▶ The CQ test statistic is given by

$$T_n = \frac{\sum_{s \neq t} X_s' X_t}{n_1(n_1 - 1)} + \frac{\sum_{s \neq t} Y_s' Y_t}{n_2(n_2 - 1)} - 2 \frac{\sum_{s, t} X_s' Y_t}{n_1 n_2}$$

and satisfies

$$\frac{T_n - \|\mu_1 - \mu_2\|^2}{\sqrt{Var(T_n)}} \to \mathcal{N}(0, 1)$$

as $p, n \to \infty$ but with only

$$\frac{tr(\Sigma^4)}{tr^2(\Sigma^2)} \to 0 \quad as \quad p \to \infty.$$

Max-type tests

► Cai et al. (2014) suggested max-type test statistic:

$$T_{CLX} = \frac{n_1 n_2}{n_1 + n_2} \max_{1 \le i \le p} \frac{|\overline{X}^{(i)} - \overline{Y}^{(i)}|^2}{s_{ii}}$$

Then, under suitable conditions, it converges to Type I extreme value Gumbel distribution.

$$P(T_{CLX} - 2\log p + \log\log p \le x) \to \exp\left(-\frac{1}{\sqrt{\pi}}\exp(-x/2)\right).$$

► Finite sample improvement using bootstrap. For example, Chernozhukov et al. (2013) proposed a (Gaussian) multiplier bootstrap and Chang et al. (2017) proposed a Gaussian parametric bootstrap.

Multiplier/Wild Bootstrap

Multiplier boostrap or wild bootstrap for IID observations was originally proposed to replicate residuals in regression with nonconstant variance. For example, assume that

$$\mathbb{E}u_t = 0, \quad \mathbb{E}u_t^2 = \sigma_t^2.$$

Then, multiplier bootstrap gives

$$\mathbb{E}\epsilon_t u_t = \mathbb{E}\epsilon_t \mathbb{E}u_t = 0$$

$$\mathbb{E}\epsilon_t^2 u_t^2 = \mathbb{E}\epsilon_t^2 \mathbb{E}u_t^2 = \sigma_t^2.$$

- ▶ Hence the key condition for WB is zero mean, unit variance. Further assumption $\mathbb{E}\epsilon_t^3 = 1$ gives more efficiency.
- ► For high dimensional WB, normal distribution is widely used for the reasons given in later slides.

Gaussian Approximation for IID HD

The key result is due to Chernozhukov et al. (2013). Gaussian approximation for HD IID observations. For IID HD obsrevations X_1, \ldots, X_n with mean μ and $\Sigma = \mathbb{E} X_t X_t'$,

$$\sup_{u\geq 0} \left| P(\sqrt{n}|\overline{X} - \mu|_{\infty} \geq u) - P(\sqrt{n}|\overline{Z} - \mu|_{\infty} \geq u) \right| \to 0,$$

where Z_1, \ldots, Z_n are i.i.d $\mathcal{N}(\mu, \Sigma)$ and $|\nu|_{\infty} = \max_{j < p} \nu_j$.

► Main idea of proof is first to approximate max by smooth differentiable function

$$F_{\beta}(z) = \beta^{-1} \log \left(\sum_{j=1}^{p} \exp(\beta z_j) \right), \quad \beta > 0$$

and use the bounds

$$0 \le F_{\beta}(z) - \max_{1 \le j \le p} z_j \le \frac{\log p}{\beta}$$

Gaussian Approximation for IID HD

► Then, the maximum of non-Gaussian random variables can be approximated by that of Gaussian with the following error bound:

$$|\mathbb{E}\{g(F_{\beta}(\sqrt{n}|\overline{X}-\mu|)) - g(F_{\beta}(\sqrt{n}|\overline{Z}-\mu|))\}| \le D_n$$
 for $g \in C_b^3(\mathbb{R})$.

By using Taylor expansion of F_{β} and anti-concentration inequality for Gaussian random variable due to Nazarov (2003)

$$P(Z \le z + a) - P(Z \le z) \le Ca\sqrt{\log p},$$

we bound the KS distance.

Multiplier Bootstrap

Gaussian multiplier boostrap is obtained by considering

$$\max_{1 \le j \le p} \sum_{t=1}^{n} X_{jt} \epsilon_{t}, \quad \epsilon_{t} \sim \mathcal{N}(0, 1)$$

lacktriangle This works because comparing the distribution functions of maxima of two-Gaussian vectors V and W gives

$$\sup_{u \in \mathbb{R}} \left| P(\max_{1 \le j \le p} V_j \le u) - P(\max_{1 \le j \le p} W_j \le u) \right| = O(\Delta_0^{1/3}),$$

where

$$\Delta_0 = \max_{1 \le j,k \le p} |\sigma_{jk}^V - \sigma_{jk}^W|$$

Very roughly speaking:

$$\max \sum_{t=1}^{n} X_t \approx \max \sum_{t=1}^{n} Z_t \approx \max \sum_{t=1}^{n} X_t \epsilon_t$$

Finite Sample Performance

- Many simulations/empirical analyses suggest that max-type tests perform well in sparse signals in the sense that means possibly differ in only a small number of coordinates. In contrast, SS-type works better for "dense signals" as the opposite of sparsity.
- In principal, however, all tests are related to estimation of Σ in some way. If the dimension is too high, this is a non-trivial task and it is hard to expect good performance.
- This leads to the development of thresholding/screening before applying mean tests.

Thresholding/Screening

- Basic idea is to reduce dimension before applying tests.
- ► Chen et al. (2018) suggests thresholding for their SS-type test as

$$L_1(s) = \sum_{k=1}^{p} nT_{nk}I\left\{nT_{nk} + 1 > 2s\log p\right\}, n = \frac{n_1n_2}{n_1 + n_2}, s \in (0, 1),$$

where

$$T_{nk} = \frac{\sum_{s \neq t} X_s^{(k)} X_t^{(k)}}{n_1(n_1 - 1)} + \frac{\sum_{s \neq t} Y_s^{(k)} Y_t^{(k)}}{n_2(n_2 - 1)} - 2 \frac{\sum_{s, t} X_s^{(k)} Y_t^{(k)}}{n_1 n_2}.$$

Then, for $s \in (0,1)$,

$$\frac{L_1(s) - \mathbb{E}L_1(s)}{\sqrt{\operatorname{Var}(L_1(s))}} \to \mathcal{N}(0,1)$$

as $n \to \infty$, $p/n \to \infty$.

Thresholding/Screening

▶ Chang et al. (2017) suggest the screening for max-type test with significance level α . Select components satisfying

$$\left| \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \frac{\overline{X}^{(i)} - \overline{Y}^{(i)}}{\sqrt{s_{ii}}} \right| > \sqrt{2 \log p} + \frac{1}{\sqrt{2 \log p}} + \sqrt{-2 \log \alpha}$$

and perform max-type tests such as CLX with Gaussian parametric bootstrap for p-value calculation.

Illustration with gene sets

- Technically gene sets are defined in gene ontology (GO) system that provides structured and controlled vocabularies producing names of gene sets.
- ► Two treatments for cancer are given, and interested whether the population mean of each treatment group is the same.

Illustration with gene sets

- ► Readily implemented in highmean, HDtest packages in R.
- Result gives the following:

```
$pval
Bai1996
0.04818344
```

\$pval
Chen2010
0.04570195

\$pval
Cai2014
0.1331871

Extensions to TS setting

- Only few papers address the case for temporally dependent observations.
- ► Extension of B&S to time series context is done by Ayyala et al. (2017).
- Max-type test is considered in Zhang and Chen (2014) and Zhang and Wu (2018).
- For the shortness sake, let us consider one-sample test, that is, H_0 : $\mu=0$ versus H_1 : $\mu\neq0$.

SS-type test for TS

Observe for TS that

$$\mathbb{E}(\overline{X}'\overline{X}) = \frac{1}{n^2}\mathbb{E}\sum_{s,t}X_s'X_t = \frac{1}{n^2}\sum_{s,t}tr\mathbb{E}X_tX_s'$$

$$= \frac{1}{n^2} \sum_{s,t} tr(\mathbb{E}X_t X_s') = \frac{1}{n} \sum_{h=-(n-1)}^{n-1} \left(1 - \frac{|h|}{n}\right) \gamma_X(h) = \frac{1}{n} tr(\Omega_n),$$

where Ω_n is the long-run variance!

► Hence, B&S test in TS context is based on

$$T_A = \frac{\overline{X}'\overline{X} - n^{-1}tr(\Omega_n)}{\sqrt{\operatorname{Var}(\overline{X}'\overline{X})}} \to N(0, 1)$$

See Ayyala et al. (2017) for the test statistic with estimation of $tr(\Omega_n)$ and variance term.

Max-type test for TS

► Test statistic is given by

$$\sqrt{n}\max_{1\leq j\leq p}|\overline{X}_j|$$

- p-value is calculated from block multiplier (wild) bootstrap (BWB).
- ▶ Block Wild Bootstrap (BWB) sample is obtained by

$$X_{jt}^* = X_{jt}\epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0,1)$$

where t-th observations falling into ith block share the same multiplier ϵ_i .

Gaussian Approximation for dependent HD TS

- Extension depends heavily on the measure of dependence in HDTS.
- ▶ Zhang and Cheng (2018) extend this to weakly dependent series $\{X_t\}$ under functional dependence with some restrictions.
- ► Furthermore, Zhang and Wu (2017) extended further scaled maximum under general functional dependence measure,

$$\sup\nolimits_{u\geq0}\left|P(\sqrt{n}|D_0^{-1/2}(\overline{X}-\mu)|_{\infty}\geq\!u)-P(\sqrt{n}|D_0^{-1/2}(\overline{Z}-\mu)|_{\infty}\geq\!u)\right|\to0,$$

where $D_0 = \operatorname{diag}(\Omega)$ is the diagonal matrix of long-run variance Ω .

Test for Covariance

▶ For IID samples X_1, \ldots, X_n and Y_1, \ldots, Y_n , wish to test the hypotheses

$$H_0: \Sigma_1 = \Sigma_2$$
 versus $H_1: \Sigma_1 \neq \Sigma_2$,

▶ Cai et al. (2013) suggest the max-type statistic

$$M_n = \max_{1 \le i \le j \le p} \frac{(\hat{\sigma}_{ij1} - \hat{\sigma}_{ij2})^2}{\theta_{ij1}/n_1 + \theta_{ij2}/n_2},$$

where

$$\hat{\sigma}_{ij1} = \frac{1}{n_1} \sum_{t=1}^{n_1} (X_{ti} - \overline{X}_i)(X_{tj} - \overline{X}_j), \hat{\sigma}_{ij2} = \frac{1}{n_2} \sum_{s=1}^{n_2} (Y_{si} - \overline{Y}_i)(Y_{sj} - \overline{Y}_j)$$

$$\hat{\theta}_{ij1} = \frac{1}{n_1} \sum_{t=1}^{n_1} [(X_{ti} - \overline{X}_i)(X_{tj} - \overline{X}_j) - \hat{\sigma}_{ij1}]^2,$$

$$\hat{\theta}_{ij2} = \frac{1}{n_2} \sum_{t=1}^{n_2} [(Y_{si} - \overline{Y}_i)(Y_{sj} - \overline{Y}_j) - \hat{\sigma}_{ij2}]^2.$$

Test for Covariance

► Then, under the null, it converges to Gumbel distribution

$$P(M_n - 4\log p + \log\log p \le t) \to \exp\left(-\frac{1}{\sqrt{8\pi}}\exp(-t/2)\right)$$

Zhang and Wu (2015) also showed the Gaussian approximation result:

$$\sup_{u \ge 0} \left| P(\sqrt{n} \max_{ij} \frac{|\hat{\sigma}_{ij} - \sigma_{ij}|}{\tau_{ij}} \ge u) - P(\max_{ij} \frac{|Z_{ij}|}{\tau_{ij}} \ge u) \right| \to 0,$$

where $Z \sim N(0,T)$, and τ_{ij} is the ij element of T which is the covariance matrix of $\text{vec}(X_tX_t' - \mathbb{E}X_tX_t')$.

Test for Autocovariance

▶ Baek et al. (2019+) further interested in

$$H_0: \gamma_X(h) = \gamma_Y(h), \quad h = 0, \dots, \pm K,$$
 (2)

for fixed K, where $\gamma_X(h) = \mathbb{E} X_{t+h} X_t'$ and $\gamma_Y(h) = \mathbb{E} Y_{t+h} Y_t'$, $h \in \mathbb{Z}$, (assume $\mathbb{E} X_t = 0$, $\mathbb{E} Y_t = 0$) are the (matrix) autocovariance functions (ACVFs) of the two series.

It is equivalent to

$$H_0: \mathbb{E}Z_t = 0, \tag{3}$$

where

$$Z_{t} = \begin{pmatrix} \operatorname{vech}(X_{t}X'_{t} - Y_{t}Y'_{t}) \\ \operatorname{vec}(X_{t+1}X'_{t} - Y_{t+1}Y'_{t}) \\ \vdots \\ \operatorname{vec}(X_{t+K}X'_{t} - Y_{t+K}Y'_{t}) \end{pmatrix}. \tag{4}$$

Test for Autocovariances and discussion

- ▶ Previously introduced SS-type, Max-type testing procedures can be adapted to transformed data observations $\{Z_1, \ldots, Z_{n-K-1}\}.$
- Determining optimal block size is also interesting and important for finite sample performance.
- ▶ We can embed factor models for the tests of autocovariances.

References

- Ayyala, D. N., Park, J. and Roy, A. (2017). Mean vector testing for high-dimensional dependent observations, Journal of Multivariate Analysis 153, 136–155.
- Bai, Z. and Sarandasa, H. (1996). Effect of high dimension: By an example of a two sample problem. Statist. Sinica 6, 311–329.
- Cai, T., Liu, W. D. and Xia, Y.(2013). Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings. J.Am.Stat.Assoc.108, 265–277.
- Cai, T. T., Liu, W. and Xia, Y. (2014). Two-sample test of high dimensional means under dependence. Journal of the Royal Statistical Society, Series B, 76, 349–372.
- Chang, J., Zheng, C., Zhou, W. and Zhou, W. (2017). Simulation-based hypothesis testing of high dimensional means under covariance heterogeneity. Biom, 73: 1300–1310. doi:10.1111/biom.12695
- Chen, S. X. and Qin, Y. (2010). A two sample test for high dimensional data with applications to gene-set testing. The Annals of Statistics, 38, 808–835.
- Chen, S. X., Li, J. and Zhong, P. S. (2018) Two-sample and ANOVA tests for high dimensional means. To appear in The Annals of Statistics.
- Chernozhukov, V., Chetverikov, D. and Kato, K. (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Statist. 41 2786–2819.
- Nazarov, F. (2003). On the maximal perimeter of a convex set in \mathbb{R}^n with respect to a Gaussian measure. In Geometric Aspects of Functional Analysis. Lecture Notes in Math. 1807, 169–187. Springer, Berlin.
- Srivastava M. S. and Du M. (2008). A test for the mean vector with fewer observations than the dimension, J. Multivariate Anal. 99, 386–402.
- Yin, Y., Bai, Z. and Krishnatah, P. R. (1988). On the limit of the largest eigenvalue of the large dimensional sample covariance matrix. Probab. Theory Related Fields 78 509–521.
- Zhang, D. and Wu, W. B. (2017). Gaussian approximation for high dimensional time series, The Annals of Statistics 45(5), 1895–1919.
- Zhang, X. and Cheng, G. (2018). Gaussian approximation for high dimensional vector under physical dependence. Bernoulli 24, no. 4A, 2640–2675.