Table 1: The Scott-Knott rank (r), mean MRE, and standard error (SEM) of all target-tasks and training sizes for DeepArch.

Sizo	$ au_{target}$		SeMPL		MAML		MetaSGD		Beetle		tEAMS		MORF		$RF+_e$	De	eepPerf+ $_e$	SPI	_Conqueor+ $_e$
Size	I target	r	MRE	r	MRE (SEM)	r	MRE (SEM)	r	MRE	r	MRE	r	MRE (SEM)	r	MRE (SEM)	r	MRE	r	MRE
			(SEM)						(SEM)		(SEM)						(SEM)		(SEM)
	1	1	82.5 (5.4)	3	139.9 (8.8)	4	163.3 (10.1)	2	120.2 (5.1)	2	120.3 (6.9)	6	226.5 (14.7)	7	267.9 (22.0)	1	83.8 (0.1)	5	206.2 (8.9)
S_1	2	2	76.6 (5.8)	5	172.1 (11.1)	7	217.3 (14.1)	4	152.3 (6.5)	3	139.5 (9.5)	8	342.1 (25.5)	6	189.4 (14.3)	1	56.6 (0.0)	3	142.8 (5.1)
	3	1	60.4 (3.8)	4	118.9 (8.5)	5	161.3 (15.7)	5	161.2 (7.8)	3	87.8 (7.0)	7	239.5 (17.4)	8	271.7 (23.6)	2	66.4 (0.1)	6	197.5 (8.2)
	1	1	62.7 (3.6)	4	86.8 (5.8)	4	88.7 (6.3)	3	84.4 (4.2)	2	77.3 (4.9)	5	144.6 (8.2)	6	156.3 (8.7)	3	83.1 (0.1)	6	159.6 (6.3)
S_2	2	2	74.5 (4.9)	3	103.3 (6.1)	5	127.3 (17.8)	4	112.6 (5.3)	2	80.8 (6.4)	6	213.7 (9.8)	5	118.0 (4.9)	1	54.6 (0.1)	5	116.0 (4.6)
	3	1	50.8 (2.7)	3	68.2 (4.2)	4	77.2 (6.4)	5	86.8 (5.1)	1	50.8 (4.0)	6	147.5 (7.6)	7	158.3 (8.0)	2	64.8 (0.1)	6	149.4 (5.7)
	1	1	50.2 (2.3)	3	68.3 (3.0)	3	69.2 (3.2)	3	67.4 (3.2)	2	65.2 (3.1)	5	97.9 (4.5)	6	119.1 (4.6)	4	82.7 (0.3)	7	149.9 (4.6)
S_3	2	3	66.4 (5.0)	4	87.3 (3.7)	5	92.3 (3.9)	5	91.5 (5.3)	2	61.2 (3.6)	7	155.6 (6.3)	5	93.0 (3.6)	1	52.8 (0.2)	6	107.9 (3.5)
	3	2	45.4 (3.1)	3	55.7 (1.7)	4	59.7 (3.4)	4	61.0 (2.7)	1	37.5 (2.1)	5	102.2 (4.8)	6	116.7 (4.9)	4	62.3 (0.5)	7	136.7 (4.6)
	1	1	46.9 (2.6)	3	62.9 (2.5)	4	66.6 (2.8)	2	59.1 (2.9)	2	58.3 (2.7)	5	74.3 (3.0)	7	102.5 (3.1)	6	81.7 (0.3)	8	145.8 (3.5)
S_4	2	3	62.6 (5.7)	4	82.0 (3.3)	4	82.2 (3.9)	4	81.0 (4.5)	2	57.6 (2.4)	6	117.2 (4.8)	4	80.2 (2.5)	1	51.9 (0.3)	5	107.4 (3.4)
	3	2	40.1 (1.6)	3	50.1 (1.3)	4	52.7 (2.9)	4	52.5 (2.0)	1	33.7 (1.7)	6	75.3 (3.4)	7	97.3 (3.6)	5	60.1 (0.4)	8	130.7 (3.6)
	1	1	42.3 (1.9)	3	59.8 (2.0)	3	58.9 (3.1)	2	54.7 (2.8)	2	53.2 (2.5)	4	64.3 (2.4)	6	91.2 (2.4)	5	80.0 (0.5)	7	144.0 (2.5)
S_5	2	2	55.1 (3.4)	4	79.2 (3.6)	4	81.1 (3.6)	4	77.2 (3.9)	1	50.3 (2.2)	5	101.1 (3.6)	3	72.8 (1.6)	1	50.1 (0.4)	6	107.2 (2.2)
	3	2	35.9 (1.1)	4	47.2 (1.4)	3	45.1 (1.6)	4	46.3 (1.3)	1	30.1 (1.8)	5	61.8 (2.4)	6	84.4 (2.2)	5	60.4 (0.3)	7	135.0 (2.6)
Av	erage r	1.7	1	3.5	i	4.2		3.7	1	1.8		5.7	'	5.9	1	2.8	3	6.1	

Table 2: The Scott-Knott rank (r), mean MRE, and standard error (SEM) of all target-tasks and training sizes for SAC.

C:	τ		SeMPL		MAML		MetaSGD		Beetle		tEAMS		MORF		$RF+_e$	-	DeepPerf+ _e	SF	PLConqueor+e
Size	\mathcal{T}_{target}	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)
	1	2	1353.0 (191.7)	1	775.0 (148.5)	1	909.4 (124.4)	2	1358.2 (237.9)	2	1317.1 (98.8)	3	2437.0 (231.2)	3	2611.2 (218.0)	4	2811.5 (50.3)	3	2568.8 (245.6)
S_1	2	2	105.4 (8.4)	2	105.1 (8.1)	1	91.7 (9.1)	1	88.1 (7.1)	1	80.9 (16.3)	2	113.9 (8.5)	3	191.0 (5.1)	4	207.1 (1.0)	5	346.5 (12.3)
	3	1	41.9 (6.7)	3	81.4 (8.9)	3	73.9 (9.6)	3	80.5 (13.3)	2	62.7 (12.8)	1	47.4 (3.1)	4	224.5 (5.2)	5	265.0 (0.6)	6	405.1 (18.0)
	1	1	754.1 (143.1)	1	616.3 (114.0)	1	670.3 (96.1)	1	715.7 (91.9)	2	985.0 (149.4)	3	1926.7 (169.9)	5	2440.4 (128.1)	4	2342.8 (61.4)	5	2472.7 (143.8)
S_2	2	2	59.1 (4.0)	3	70.7 (4.5)	1	52.8 (5.4)	2	60.3 (3.8)	4	86.1 (18.2)	3	70.1 (4.4)	5	163.0 (3.0)	6	202.5 (1.4)	7	300.5 (10.9)
	3	1	26.9 (2.4)	4	49.6 (4.1)	3	38.0 (3.9)	2	31.7 (2.5)	3	39.8 (4.4)	1	29.1 (1.7)	5	201.4 (2.5)	6	258.9 (0.7)	7	299.4 (14.2)
	1	1	438.6 (90.4)	1	469.0 (79.9)	1	482.7 (77.1)	2	577.6 (108.3)	3	918.9 (173.4)	4	1505.5 (128.7)	5	2319.3 (99.7)	5	2332.8 (63.6)	6	2450.0 (123.6)
S_3	2	1	30.8 (2.3)	4	47.1 (2.7)	2	40.9 (3.5)	5	52.1 (3.0)	6	107.4 (28.6)	3	44.3 (2.5)	7	156.7 (1.9)	8	197.4 (1.6)	9	251.0 (7.7)
	3	1	20.9 (1.1)	5	36.5 (1.6)	4	33.4 (2.7)	3	25.2 (1.9)	6	40.9 (4.6)	2	22.3 (1.4)	7	193.1 (1.9)	8	254.9 (0.8)	9	303.3 (11.8)
	1	1	287.3 (72.9)	2	551.4 (147.1)	2	521.4 (98.1)	2	484.6 (106.2)	3	842.4 (126.7)	4	1380.6 (111.1)	5	2324.6 (106.0)	6	2420.8 (54.5)	6	2503.5 (121.2)
S_4	2	1	32.8 (2.2)	3	38.9 (2.1)	2	34.7 (2.5)	4	44.9 (2.3)	5	116.1 (31.8)	2	35.8 (2.0)	6	153.9 (2.1)	8	369.6 (27.0)	7	239.2 (7.3)
	3	1	17.7 (0.9)	3	34.6 (1.8)	2	27.7 (1.7)	2	27.5 (2.7)	3	38.7 (5.5)	1	18.4 (1.2)	4	190.0 (1.9)	5	256.2 (30.4)	6	295.5 (12.7)
	1	1	234.4 (63.4)	1	281.5 (72.9)	1	311.3 (90.7)	2	378.0 (89.5)	3	712.0 (103.4)	4	1142.8 (116.7)	6	2175.3 (126.3)	5	2021.9 (74.9)	7	2346.8 (118.5)
S_5	2	1	30.4 (2.9)	2	37.8 (2.0)	1	31.6 (3.0)	2	38.2 (2.2)	3	52.8 (7.4)	1	31.3 (2.1)	4	150.3 (1.7)	6	278.2 (15.7)	5	250.0 (7.5)
	3	1	15.9 (0.7)	5	31.4 (1.4)	4	26.7 (2.7)	3	19.4 (1.5)	6	50.7 (9.6)	2	17.1 (1.1)	7	189.4 (1.5)	7	201.7 (18.2)	8	262.4 (14.6)
Av	erage r	1.2	2	2.7	7	1.9)	2.4		3.5	i	2.4		5.1		5.8	3	6.4	

Table 3: The Scott-Knott rank (r), mean MRE, and standard error (SEM) of all target-tasks and training sizes for SQLITE.

Cino	$\boldsymbol{\tau}$		SeMPL		MAML		MetaSGD		Beetle		tEAMS		MORF		$RF+_e$	D	eepPerf+ _e	SP	_Conqueor+ $_e$
Size	\mathcal{T}_{target}	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)
	1	1	1.0 (0.0)	5	1.5 (0.1)	3	1.2 (0.1)	4	1.2 (0.1)	4	1.2 (0.0)	2	1.1 (0.0)	6	3.7 (0.0)	7	4.5 (0.0)	8	9.6 (0.4)
S_1	2	1	1.0 (0.0)	4	1.3 (0.0)	2	1.0 (0.1)	3	1.1 (0.1)	4	1.3 (0.2)	4	1.2(0.0)	5	7.8 (0.1)	6	10.7 (0.0)	7	12.2 (0.4)
J_1	3	1	1.1 (0.1)	5	2.0 (0.5)	4	1.6 (0.3)	2	1.1 (0.1)	3	1.3 (0.1)	2	1.2(0.0)	5	2.3 (0.0)	6	2.6 (0.0)	7	9.4 (0.4)
	4	1	1.2 (0.1)	4	1.7 (0.1)	5	1.8 (0.3)	2	1.3 (0.1)	3	1.4(0.0)	1	1.2 (0.0)	6	2.2 (0.0)	7	2.5 (0.0)	8	9.4 (0.4)
	1	2	0.9 (0.0)	5	1.2 (0.0)	4	1.1 (0.1)	3	1.0 (0.0)	3	1.0 (0.0)	1	0.9 (0.0)	6	3.6 (0.0)	8	4.5 (0.0)	7	4.0 (0.1)
S_2	2	1	0.8 (0.0)	4	1.0 (0.0)	2	0.9 (0.1)	3	0.9 (0.1)	2	0.9 (0.0)	3	0.9 (0.0)	5	7.9 (0.0)	6	10.6 (0.0)	5	7.9 (0.1)
\mathcal{S}_2	3	1	0.9 (0.0)	4	1.2(0.0)	3	1.1 (0.1)	2	1.0 (0.0)	3	1.1 (0.0)	1	0.9 (0.0)	5	2.2 (0.0)	6	2.6 (0.0)	7	3.0 (0.1)
	4	1	1.0 (0.0)	3	1.3 (0.0)	2	1.2(0.1)	2	1.1 (0.0)	2	1.1 (0.0)	1	1.0 (0.0)	4	2.1 (0.0)	5	2.5 (0.0)	6	3.0 (0.1)
	1	2	0.9 (0.0)	5	1.1 (0.0)	5	1.1 (0.1)	3	0.9 (0.0)	4	0.9 (0.0)	1	0.9 (0.0)	6	3.5 (0.0)	8	4.4 (0.0)	7	3.6 (0.1)
S_3	2	1	0.7 (0.0)	4	0.9 (0.0)	3	0.8 (0.1)	3	0.8 (0.0)	2	0.8 (0.0)	1	0.7 (0.0)	5	7.9 (0.0)	6	10.6 (0.0)	5	7.9 (0.1)
33	3	1	0.9 (0.0)	3	1.1 (0.0)	3	1.1 (0.1)	1	0.9 (0.0)	2	0.9 (0.0)	1	0.9 (0.0)	4	2.1 (0.0)	6	2.6 (0.0)	5	2.3 (0.1)
	4	1	1.0 (0.0)	3	1.2(0.0)	4	1.3 (0.1)	2	1.1 (0.0)	2	1.1 (0.0)	1	1.0 (0.0)	5	2.0 (0.0)	7	2.5 (0.0)	6	2.3 (0.1)
	1	1	0.8 (0.0)	4	0.9 (0.0)	4	0.9 (0.1)	1	0.8 (0.0)	3	0.9 (0.0)	2	0.9 (0.0)	5	3.5 (0.0)	6	4.4 (0.0)	5	3.5 (0.0)
S_4	2	2	0.7 (0.0)	4	0.8 (0.0)	3	0.8 (0.0)	3	0.8 (0.0)	2	0.7 (0.0)	1	0.7 (0.0)	6	7.9 (0.0)	7	10.5 (0.0)	5	7.7 (0.1)
34	3	1	0.9 (0.0)	3	1.0 (0.0)	3	1.0 (0.0)	2	0.9 (0.0)	1	0.9 (0.0)	2	0.9 (0.0)	4	2.1 (0.0)	6	2.5 (0.0)	5	2.2(0.0)
	4	1	1.0 (0.0)	4	1.1 (0.0)	4	1.1 (0.1)	3	1.0 (0.0)	2	1.0 (0.0)	3	1.0 (0.0)	5	2.1 (0.0)	6	2.5 (0.0)	5	2.1 (0.0)
	1	1	0.8 (0.0)	4	0.9 (0.0)	4	1.0 (0.1)	3	0.9 (0.0)	3	0.9 (0.0)	2	0.8 (0.0)	6	3.5 (0.0)	7	4.4 (0.0)	5	3.5 (0.0)
C-	2	1	0.7 (0.0)	3	0.8 (0.0)	2	0.7 (0.0)	1	0.7 (0.0)	1	0.7 (0.0)	1	0.7 (0.0)	4	7.9 (0.0)	5	10.5 (0.0)	4	7.9 (0.0)
S_5	3	2	0.9 (0.0)	5	0.9 (0.0)	4	0.9 (0.0)	1	0.8 (0.0)	3	0.9 (0.0)	4	0.9 (0.0)	6	2.1 (0.0)	8	2.5 (0.0)	7	2.2 (0.0)
	4	1	1.0 (0.0)	3	1.0 (0.0)	4	1.2 (0.1)	1	1.0 (0.0)	2	1.0 (0.0)	3	1.0 (0.0)	5	2.1 (0.0)	7	2.4 (0.0)	6	2.1 (0.0)
Av	erage r	1.2	2	4		3.4	1	2.2	2	2.5		1.9)	5.2		6.5	i	6	

1

Table 4: The Scott-Knott rank (r), mean MRE, and standard error (SEM) of all target-tasks and training sizes for NGINX.

Cino	τ		SeMPL		MAML		MetaSGD		Beetle		tEAMS		MORF		$RF+_e$	D	eepPerf+ _e	SP	LConqueor+ $_e$
Size	\mathcal{T}_{target}	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)
	1	3	130.2 (23.3)	8	578.2 (43.5)	5	209.2 (21.4)	5	207.2 (27.4)	2	101.7 (15.8)	6	298.1 (22.4)	4	165.9 (22.6)	1	50.5 (1.0)	7	422.7 (16.5)
S_1	2	3	186.4 (34.2)	7	619.7 (46.2)	4	264.5 (44.9)	4	256.2 (35.1)	2	105.4 (17.7)	5	357.2 (25.7)	4	229.1 (33.7)	1	26.9 (1.9)	6	520.7 (15.0)
\mathcal{S}_1	3	3	313.4 (48.7)	6	745.1 (55.3)	3	341.8 (52.3)	3	321.0 (36.1)	2	82.4 (12.4)	4	496.2 (35.3)	3	346.9 (51.1)	1	31.6 (1.7)	5	680.3 (15.0)
	4	3	252.7 (51.3)	7	743.6 (55.2)	5	468.7 (78.7)	4	319.6 (38.6)	2	65.2 (9.0)	5	496.4 (35.4)	4	345.7 (51.3)	1	34.3 (2.3)	6	679.6 (15.0)
	1	1	26.4 (3.2)	7	585.3 (30.2)	4	69.0 (11.7)	3	43.6 (7.6)	1	27.1 (3.9)	5	100.3 (14.5)	3	43.3 (13.2)	2	30.4 (2.1)	6	443.7 (14.7)
c	2	1	11.7 (1.2)	8	639.7 (31.5)	5	90.5 (21.7)	4	56.4 (11.9)	3	25.8 (4.0)	6	117.9 (18.9)	4	50.5 (19.8)	2	18.9 (1.0)	7	525.0 (11.3)
S_2	3	1	31.8 (20.7)	5	757.8 (37.1)	3	220.8 (65.9)	2	78.7 (19.6)	1	23.7 (3.0)	3	167.4 (28.4)	2	81.6 (30.0)	1	24.9 (1.3)	4	669.5 (9.9)
	4	1	36.9 (20.7)	6	756.0 (37.2)	3	119.8 (49.5)	2	59.9 (17.3)	1	21.5 (2.5)	4	167.4 (28.4)	2	81.9 (30.2)	1	28.8 (2.3)	5	668.3 (9.8)
	1	2	17.0 (1.4)	7	577.2 (22.9)	5	70.9 (36.7)	3	18.7 (1.5)	1	13.5 (1.5)	5	45.6 (7.3)	2	16.3 (0.5)	4	27.4 (0.9)	6	434.1 (10.9)
c	2	1	9.1 (1.2)	7	630.7 (23.8)	5	43.7 (12.6)	3	19.1 (2.3)	2	13.2 (1.5)	5	51.6 (9.4)	1	9.2 (0.9)	4	24.5 (2.4)	6	517.3 (8.9)
S_3	3	1	5.4 (0.5)	7	749.8 (29.3)	5	83.4 (43.7)	4	26.9 (6.5)	2	15.0 (1.8)	5	73.7 (14.1)	3	20.2 (1.4)	4	29.4 (2.4)	6	658.6 (8.6)
	4	1	6.7 (0.8)	8	750.9 (29.1)	5	28.9 (3.6)	3	19.8 (3.0)	2	15.6 (2.4)	6	73.8 (14.2)	3	20.1 (1.4)	4	25.4 (1.7)	7	657.4 (8.5)
	1	1	10.4 (0.7)	7	567.1 (14.8)	5	94.5 (42.4)	2	15.9 (1.1)	1	10.7 (1.4)	3	21.8 (5.1)	2	15.1 (0.3)	4	27.9 (0.9)	6	433.3 (10.3)
c	2	2	7.4 (0.6)	7	616.2 (16.7)	5	23.5 (3.3)	4	20.0 (4.0)	3	11.2 (1.7)	5	23.3 (6.8)	1	6.5 (0.5)	4	19.2 (1.7)	6	516.0 (8.1)
S_4	3	1	4.6 (0.3)	6	733.5 (21.1)	4	28.5 (6.0)	2	10.9 (1.5)	2	10.6 (0.9)	4	32.9 (10.2)	3	16.5 (0.7)	4	27.7 (2.2)	5	656.9 (7.9)
	4	1	5.2 (0.3)	7	732.3 (21.2)	5	78.3 (53.3)	2	11.1 (1.3)	2	10.7 (1.0)	4	33.0 (10.2)	3	16.4 (0.7)	4	25.6 (1.8)	6	655.8 (7.8)
	1	1	6.4 (0.6)	8	571.5 (16.3)	6	31.4 (3.8)	4	13.2 (1.2)	2	7.2 (0.7)	3	9.4 (1.7)	4	13.9 (0.2)	5	27.2 (1.1)	7	431.2 (6.5)
c	2	2	7.9 (1.6)	7	617.5 (17.8)	5	81.3 (45.3)	3	10.5 (0.9)	2	7.2 (0.8)	2	7.8 (2.1)	1	4.8 (0.2)	4	19.2 (0.9)	6	514.0 (5.5)
S_5	3	1	4.2 (0.3)	8	728.3 (22.4)	6	118.7 (68.2)	3	10.5 (2.3)	2	6.3 (0.5)	3	9.6 (3.1)	4	14.8 (0.4)	5	24.2 (1.1)	7	650.0 (5.3)
	4	1	4.9 (0.3)	7	727.4 (22.4)	5	106.0 (61.0)	2	8.2 (0.6)	2	7.5 (0.3)	2	9.6 (3.1)	3	14.7 (0.4)	4	22.4 (1.3)	6	648.9 (5.3)
Av	erage r	1.6	5	7		4.7	7	3.1		1.9		4.2	2	2.8		3		6	

Table 5: The Scott-Knott rank (r), mean MRE, and standard error (SEM) of all target-tasks and training sizes for SPEAR.

C:	τ		SeMPL		MAML		MetaSGD		Beetle		tEAMS		MORF		$RF+_e$	D	eepPerf+ _e	SI	PLConqueor+ _e
Size	$ au_{target}$	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)
	4	2	44.5 (8.8)	6	116.3 (13.6)	4	56.7 (5.5)	3	50.1 (3.0)	6	105.0 (10.7)	5	74.6 (8.0)	1	34.3 (0.8)	2	42.9 (0.0)	7	191.1 (14.1)
S_1	5	1	59.3 (15.3)	5	1149.8 (202.1)	4	589.6 (207.0)	4	595.6 (194.2)	3	378.0 (72.2)	3	405.4 (75.3)	3	357.5 (18.6)	2	304.5 (0.5)	6	1955.3 (133.9)
	6	1	34.1 (2.1)	6	401.3 (63.5)	5	192.6 (60.6)	2	57.0 (6.4)	5	181.3 (31.6)	5	179.8 (30.3)	4	117.3 (7.2)	3	82.6 (0.1)	7	784.7 (55.0)
	4	2	34.2 (1.3)	5	50.3 (3.3)	4	45.1 (2.4)	4	45.6 (2.5)	6	57.7 (4.3)	3	42.3 (2.1)	1	32.7 (0.6)	3	42.9 (0.0)	7	71.5 (6.9)
S_2	5	1	30.1 (2.6)	4	124.1 (21.5)	3	83.6 (14.0)	3	76.8 (21.6)	4	110.1 (15.6)	2	66.2 (1.8)	6	357.0 (11.5)	5	304.5 (0.4)	7	746.9 (64.6)
	6	3	52.4 (33.0)	3	62.5 (7.1)	3	60.1 (7.5)	1	34.0 (2.8)	3	62.7 (5.3)	2	42.2 (1.6)	5	117.1 (4.6)	4	82.5 (0.1)	6	287.7 (27.5)
	4	3	40.9 (1.9)	4	44.7 (2.4)	4	42.5 (2.5)	1	31.3 (1.2)	5	50.9 (2.7)	3	38.9 (1.8)	2	32.5 (0.5)	4	42.8 (0.0)	6	68.7 (6.4)
S_3	5	1	28.4 (3.4)	5	91.0 (9.7)	4	74.9 (5.8)	2	37.0 (1.8)	4	78.2 (9.1)	3	62.7 (1.2)	7	331.3 (7.5)	6	304.8 (0.5)	8	702.2 (61.1)
	6	1	19.0 (2.2)	4	47.5 (3.3)	4	53.0 (6.7)	2	29.2 (1.5)	4	47.8 (3.6)	3	39.1 (1.2)	6	106.8 (2.9)	5	82.4 (0.1)	7	267.6 (25.9)
	4	3	37.7 (1.6)	4	41.3 (2.0)	4	40.8 (1.5)	1	30.3 (0.9)	6	44.8 (2.1)	3	37.2 (1.3)	2	32.4 (0.5)	5	42.8 (0.0)	7	62.8 (5.0)
S_4	5	1	26.2 (2.7)	6	85.9 (8.1)	4	65.4 (1.8)	2	34.8 (1.5)	5	70.5 (5.4)	3	60.6 (1.0)	8	319.0 (6.9)	7	304.2 (0.5)	9	625.5 (48.5)
	6	1	21.1 (2.2)	4	42.4 (1.8)	4	41.7 (2.0)	2	26.6 (1.0)	5	45.3 (3.0)	3	37.2 (0.9)	7	101.8 (2.7)	6	82.5 (0.1)	8	240.4 (20.9)
	4	2	32.6 (1.0)	5	39.9 (1.9)	4	38.3 (1.4)	1	27.9 (0.7)	5	40.6 (1.6)	3	36.7 (1.2)	2	32.1 (0.3)	6	42.8 (0.0)	7	58.9 (3.9)
S_5	5	1	29.0 (3.1)	4	77.6 (5.5)	3	61.8 (1.0)	1	30.8 (1.5)	4	72.3 (6.2)	2	59.5 (0.9)	6	312.1 (6.6)	5	305.0 (0.6)	7	569.3 (37.4)
	6	1	14.6 (1.0)	4	42.1 (1.8)	4	40.6 (1.2)	2	25.2 (1.0)	5	46.4 (3.0)	3	36.5 (0.9)	7	99.1 (2.5)	6	82.3 (0.1)	8	220.1 (16.1)
Av	erage <i>r</i>	1.0	5	4.6	5	3.9	1	2.1		4.7	'	3.1	I	4.5	5	4.6	i	7.1	

Table 6: The Scott-Knott rank (r), mean MRE, and standard error (SEM) of all target-tasks and training sizes for STORM.

Size	$ au_{target}$		SeMPL		MAML		MetaSGD		Beetle		tEAMS		MORF		RF+ _e		DeepPerf+ _e		SPLConqueor+ $_e$
3126	l target	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)
	1	2	31.2 (1.7)	3	281.7 (41.9)	5	2369.9 (2105.5)	4	340.1 (25.9)	5	2369.2 (190.0)	1	21.8 (2.0)	8	36239.4 (740.3)	6	9416.9 (53.5)	7	28147.9 (679.9)
S_1	2	4	144.5 (29.1)	5	208.0 (31.8)	3	100.3 (26.5)	2	21.6 (1.4)	6	681.1 (138.0)	1	14.3 (1.3)	9	71222.3 (1237.7)	8	68082.6 (261.6)	7	56364.5 (1363.3)
	3	2	251.3 (18.3)	3	363.2 (24.9)	4	608.4 (294.7)	5	1197.5 (61.3)	4	715.8 (149.0)	1	159.0 (20.2)	7	52452.0 (1447.2)	8	59449.7 (248.0)	6	39741.6 (1437.2)
	1	2	31.4 (2.6)	3	303.0 (37.3)	3	339.8 (53.9)	3	297.0 (12.7)	4	2790.9 (159.2)	1	14.2 (0.3)	7	36884.2 (477.3)	5	9879.8 (138.0)	6	28602.0 (652.3)
S_2	2	4	119.0 (21.9)	5	145.4 (25.1)	3	54.8 (9.3)	2	17.5 (1.2)	6	536.5 (83.2)	1	10.1 (0.3)	9	73177.1 (954.3)	8	68074.6 (361.5)	7	55569.5 (1267.6)
	3	2	214.9 (15.2)	3	323.5 (21.3)	3	316.9 (36.5)	5	1041.5 (65.2)	4	625.8 (46.6)	1	154.7 (25.1)	7	53872.3 (1024.4)	8	59420.6 (310.6)	6	41228.5 (1375.8)
	1	2	27.4 (1.2)	3	264.6 (25.3)	3	250.3 (44.8)	3	278.1 (11.9)	4	2800.0 (144.2)	1	12.9 (0.2)	7	36325.8 (401.9)	5	10229.0 (180.6)	6	27694.4 (693.7)
S_3	2	4	146.3 (25.5)	4	141.2 (17.6)	3	89.3 (17.1)	2	15.4 (1.2)	5	605.1 (127.1)	1	9.2 (0.2)	8	72952.0 (698.3)	7	68585.6 (390.1)	6	54200.9 (1000.9)
	3	2	193.0 (12.6)	3	328.6 (18.4)	4	796.3 (406.4)	5	995.8 (70.3)	4	654.4 (35.4)	1	155.0 (25.4)	7	53747.5 (867.6)	8	59405.0 (372.2)	6	38563.6 (1046.5)
	1	2	27.5 (1.2)	5	335.4 (29.1)	3	184.8 (24.9)	4	248.3 (8.4)	6	2869.7 (199.1)	1	11.9 (0.1)	9	35839.6 (443.7)	7	10962.8 (255.2)	8	28408.2 (512.9)
S_4	2	4	149.5 (13.0)	4	159.0 (19.0)	3	99.1 (19.6)	2	17.2 (1.1)	5	547.8 (98.6)	1	8.8 (0.2)	8	72643.4 (669.9)	7	68725.5 (636.5)	6	55844.9 (1020.5)
	3	2	173.4 (9.7)	3	315.4 (10.2)	4	660.6 (322.1)	4	907.2 (59.3)	4	700.2 (47.0)	1	126.9 (9.6)	6	54237.4 (763.5)	7	58882.2 (570.3)	5	40936.3 (1020.4)
	1	2	25.7 (0.9)	5	357.6 (19.4)	3	158.4 (31.2)	4	268.4 (12.3)	6	2617.0 (174.9)	1	11.3 (0.1)	9	36118.0 (494.1)	7	10980.9 (346.4)	8	27074.7 (722.8)
S_5	2	5	153.5 (14.8)	4	133.9 (10.3)	3	71.6 (11.9)	2	17.3 (1.2)	6	468.0 (92.4)	1	8.5 (0.2)	9	72425.0 (621.0)	8	68200.5 (832.6)	7	54098.8 (1213.8)
	3	2	161.2 (10.1)	3	391.0 (22.7)	4	634.7 (305.4)	4	736.8 (39.6)	4	715.4 (53.5)	1	105.1 (6.8)	6	53315.6 (645.5)	7	58671.6 (804.6)	5	39932.5 (780.3)
Av	erage r	2.7		3.7	7	3.4	ł	3.4		4.9)	1.0)	7.7		7.1	l .	6.4	1

Table 7: The Scott-Knott rank (r), mean MRE, and standard error (SEM) of all target-tasks and training sizes for IMAGEMAGICK.

Size	$ au_{target}$		SeMPL		MAML		MetaSGD		Beetle		tEAMS		MORF		$RF+_e$	D	DeepPerf+ $_e$	SP	LConqueor+ $_e$
Size	' target	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)
	1	1	5.3 (0.3)	4	11.2 (1.1)	3	9.6 (0.7)	2	6.8 (0.5)	3	9.3 (0.6)	6	17.5 (1.1)	6	16.7 (1.4)	5	14.0 (0.0)	7	32.6 (0.9)
S_1	2	2	6.0 (0.2)	5	11.2 (1.1)	4	9.6 (0.9)	3	7.6 (0.6)	5	10.5 (0.8)	6	19.9 (1.3)	5	11.3 (1.3)	1	4.7 (0.0)	7	28.0 (0.9)
J_1	3	2	6.9 (0.7)	5	11.9 (1.1)	4	10.2 (0.8)	1	5.8 (0.3)	3	9.2 (0.5)	8	17.9 (1.1)	7	16.3 (1.4)	6	13.8 (0.0)	9	27.4 (1.0)
	4	3	7.3 (0.6)	5	11.5 (1.0)	4	9.5 (0.9)	2	6.6 (0.4)	5	10.7 (1.0)	6	16.8 (1.1)	5	11.3 (1.4)	1	3.8 (0.0)	7	27.8 (0.9)
	1	1	4.5 (0.1)	3	5.6 (0.3)	4	6.0 (0.2)	2	4.8 (0.1)	5	8.7 (0.8)	4	6.0 (0.3)	6	12.2 (0.2)	7	14.0 (0.1)	8	30.6 (0.9)
c	2	2	5.6 (0.2)	4	6.2 (0.3)	3	5.8 (0.2)	3	5.9 (0.2)	6	10.0 (0.9)	4	6.2 (0.3)	5	6.8 (0.1)	1	4.6 (0.0)	7	25.9 (0.8)
S_2	3	2	5.4(0.3)	3	6.3 (0.3)	3	6.4 (0.2)	1	5.0 (0.2)	4	9.7 (1.0)	3	6.5 (0.3)	5	12.1 (0.3)	6	13.7 (0.1)	7	25.8 (0.9)
	4	4	5.7 (0.3)	3	5.4 (0.2)	3	5.5 (0.2)	2	5.2 (0.2)	5	7.0 (0.5)	4	5.9 (0.3)	4	5.9 (0.2)	1	3.7 (0.0)	6	25.4 (0.8)
	1	1	4.2 (0.1)	2	4.5 (0.1)	2	4.5 (0.1)	2	4.4 (0.2)	3	7.1 (0.7)	1	4.3 (0.1)	4	11.4 (0.2)	5	13.7 (0.1)	6	30.3 (0.7)
c	2	2	5.0 (0.2)	2	5.0 (0.1)	2	4.9 (0.1)	3	5.2 (0.1)	5	8.1 (0.7)	1	4.6 (0.1)	4	5.6 (0.1)	1	4.6 (0.1)	6	25.4 (0.6)
S_3	3	1	4.2 (0.1)	2	4.5 (0.1)	2	4.6 (0.2)	2	4.4 (0.1)	4	7.8 (0.7)	3	4.8 (0.2)	5	11.2 (0.1)	6	13.5 (0.1)	7	25.2 (0.7)
	4	3	4.4 (0.2)	2	4.2 (0.1)	2	4.3 (0.1)	3	4.5 (0.1)	5	8.1 (0.7)	3	4.5 (0.1)	4	4.6 (0.1)	1	3.8 (0.1)	6	24.4 (0.5)
	1	1	3.7 (0.1)	2	3.8 (0.1)	2	3.9 (0.2)	3	4.1 (0.1)	4	7.6 (0.8)	1	3.7 (0.1)	5	11.6 (0.1)	6	13.6 (0.1)	7	29.7 (0.8)
c	2	2	4.4 (0.1)	2	4.4 (0.1)	2	4.4 (0.1)	3	4.9 (0.1)	4	10.1 (1.0)	1	3.9 (0.1)	3	5.0 (0.2)	2	4.4 (0.1)	5	24.8 (0.7)
S_4	3	1	3.8 (0.1)	1	3.8 (0.1)	1	3.6 (0.1)	2	4.0 (0.1)	4	8.8 (0.9)	3	4.2 (0.1)	5	11.0 (0.2)	6	13.2 (0.1)	7	24.9 (0.8)
	4	2	3.9 (0.2)	2	3.9 (0.2)	2	4.0 (0.1)	3	4.1 (0.1)	4	7.6 (0.8)	3	4.0 (0.1)	3	4.1 (0.1)	1	3.6 (0.1)	5	24.5 (0.7)
	1	2	3.7 (0.1)	3	3.9 (0.1)	2	3.7 (0.1)	4	4.2 (0.2)	5	7.8 (0.6)	1	3.5 (0.1)	6	11.5 (0.1)	7	13.5 (0.2)	8	29.7 (0.8)
c	2	2	4.3 (0.1)	3	4.5 (0.2)	2	4.4 (0.2)	3	4.5 (0.1)	5	7.9 (1.0)	1	3.8 (0.1)	4	4.9 (0.1)	3	4.4 (0.1)	6	24.7 (0.8)
S_5	3	2	3.8 (0.1)	1	3.7 (0.1)	1	3.7 (0.1)	3	3.9 (0.1)	5	9.2 (1.2)	4	4.0 (0.1)	6	11.0 (0.2)	7	13.1 (0.1)	8	25.3 (0.8)
	4	2	3.9 (0.2)	2	4.0 (0.2)	2	3.9 (0.1)	3	4.2 (0.2)	4	8.3 (0.9)	2	4.0 (0.2)	2	4.0 (0.1)	1	3.7 (0.1)	5	24.6 (0.8)
Av	erage r	1.9	9	2.8	8	2.5	i	2.5		4.4		3.2	2	4.7		3.7	7	6.7	

Table 8: The Scott-Knott rank (r), mean MRE, and standard error (SEM) of all target-tasks and training sizes for ExaStencils.

C:			SeMPL		MAML		MetaSGD		Beetle		tEAMS		MORF		$RF +_e$	D	eepPerf+ _e	SP	_Conqueor+ _e
Size	$ au_{target}$	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)
	1	1	3.1 (0.0)	8	18.9 (0.1)	6	14.8 (0.7)	5	13.4 (0.6)	2	6.0 (0.2)	4	8.4 (0.2)	3	8.1 (0.3)	6	15.4 (0.6)	7	17.0 (0.2)
S_1	2	2	4.3 (0.5)	8	19.8 (0.2)	5	14.6 (0.5)	7	17.3 (0.7)	1	3.5 (0.4)	4	9.1 (0.2)	3	8.8 (0.3)	6	15.8 (0.6)	7	17.3 (0.2)
\mathcal{I}_1	3	2	4.4 (0.4)	8	20.7 (0.2)	6	16.8 (0.8)	5	15.6 (0.6)	1	3.6 (0.4)	4	9.4 (0.3)	3	8.9 (0.3)	7	18.9 (0.9)	7	18.3 (0.2)
	4	1	3.4 (0.3)	7	21.7 (0.2)	4	16.7 (0.7)	4	17.4 (0.7)	1	3.4 (0.4)	3	9.8 (0.3)	2	9.0 (0.3)	6	19.5 (1.0)	5	18.2 (0.2)
	1	1	2.7 (0.0)	8	18.7 (0.2)	4	8.9 (0.6)	5	9.7 (0.5)	2	5.4 (0.3)	3	6.1 (0.1)	3	6.2 (0.1)	6	15.7 (0.7)	7	16.7 (0.1)
S_2	2	1	2.9 (0.2)	7	19.4 (0.2)	4	8.7 (0.4)	5	11.8 (0.6)	2	3.3 (0.4)	3	6.6 (0.1)	3	6.7 (0.1)	6	16.7 (0.8)	6	17.0 (0.1)
\mathcal{I}_2	3	1	3.0 (0.1)	6	20.3 (0.2)	3	10.4 (0.7)	4	12.2 (0.6)	1	2.8 (0.4)	2	6.8 (0.2)	2	6.7 (0.2)	6	19.6 (1.0)	5	18.0 (0.1)
	4	1	2.5 (0.1)	7	21.3 (0.2)	3	10.5 (0.7)	4	13.7 (0.7)	1	2.5 (0.3)	2	6.9 (0.2)	2	6.8 (0.2)	6	18.6 (0.7)	5	17.9 (0.1)
	1	1	2.3 (0.0)	7	18.2 (0.1)	5	5.0 (0.4)	5	5.3 (0.3)	2	3.7 (0.2)	3	4.1 (0.1)	4	4.7 (0.1)	6	16.3 (0.9)	6	16.6 (0.1)
S_3	2	1	2.3 (0.0)	8	19.0 (0.1)	3	4.8 (0.2)	5	6.7 (0.4)	1	2.4 (0.2)	2	4.5 (0.1)	4	5.0 (0.1)	6	16.0 (0.6)	7	16.8 (0.1)
33	3	2	2.3 (0.0)	9	19.9 (0.1)	5	5.9 (0.5)	6	6.9 (0.3)	1	2.0 (0.2)	3	4.4 (0.1)	4	5.0 (0.1)	8	18.7 (0.9)	7	17.9 (0.1)
	4	1	1.9 (0.0)	9	20.9 (0.1)	5	6.1 (0.6)	6	6.8 (0.4)	2	2.3 (0.3)	3	4.5 (0.1)	4	5.1 (0.1)	8	19.3 (0.7)	7	17.7 (0.1)
	1	1	2.0 (0.0)	6	18.1 (0.1)	3	3.8 (0.3)	3	3.7 (0.1)	3	3.7 (0.3)	2	3.5 (0.0)	4	4.2 (0.0)	5	16.1 (0.6)	5	16.5 (0.1)
S_4	2	1	2.0 (0.0)	8	18.9 (0.1)	3	3.6 (0.1)	5	4.4 (0.3)	2	2.5 (0.3)	4	3.8 (0.0)	5	4.5 (0.0)	6	16.2 (0.5)	7	16.7 (0.1)
34	3	1	2.0 (0.0)	8	19.7 (0.1)	5	4.8 (0.4)	6	5.4 (0.3)	2	2.5 (0.3)	3	3.7 (0.0)	4	4.4 (0.1)	7	17.9 (0.6)	7	17.8 (0.1)
	4	1	1.4 (0.0)	8	20.7 (0.1)	3	3.8 (0.2)	5	5.0 (0.3)	2	1.8 (0.1)	3	3.7 (0.0)	4	4.5 (0.0)	7	18.5 (0.6)	6	17.7 (0.1)
	1	1	1.8 (0.0)	9	18.0 (0.1)	2	2.7 (0.0)	4	3.1 (0.1)	5	3.5 (0.2)	3	2.9 (0.0)	6	3.7 (0.0)	7	15.5 (0.4)	8	16.4 (0.1)
S_5	2	1	1.4 (0.0)	8	18.8 (0.1)	3	3.1 (0.1)	4	3.4 (0.2)	2	2.7 (0.3)	3	3.1 (0.0)	5	3.9 (0.0)	6	15.0 (0.2)	7	16.7 (0.1)
<i>J</i> 5	3	1	1.1 (0.1)	7	19.6 (0.1)	4	4.2 (0.3)	3	3.8 (0.1)	2	2.7 (0.3)	2	2.9 (0.0)	3	3.8 (0.0)	5	16.7 (0.5)	6	17.8 (0.1)
	4	1	1.4 (0.0)	7	20.6 (0.1)	4	3.9 (0.3)	4	3.8 (0.1)	2	1.9 (0.2)	3	2.9 (0.0)	5	4.0 (0.0)	6	17.4 (0.3)	6	17.6 (0.1)
Av	erage r	1.:	1	7.7	7	4		4.8	1	1.9		3		3.6		6.3		6.4	

Table 9: The Scott-Knott rank (r), mean MRE, and standard error (SEM) of all target-tasks and training sizes for x264.

Cino	$ au_{target}$		SeMPL		MAML		MetaSGD		Beetle		tEAMS		MORF		$RF+_e$		DeepPerf+ $_e$	SP	_Conqueor+ $_e$
Size	I target	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	MRE (SEM)	r	(- ,	r	MRE (SEM)
	1	2	26.5 (0.8)	4	42.3 (2.5)	4	42.8 (2.6)	1	25.7 (0.6)	3	37.1 (2.3)	5	60.6 (3.3)	6	82.0 (2.4)	7	85.5 (0.5)	8	133.4 (4.9)
	2	2	16.3 (0.8)	6	37.4 (2.3)	7	40.4 (2.6)	4	19.6 (0.6)	5	24.9 (1.6)	8	53.6 (2.8)	3	18.4 (0.6)	1	10.7 (0.1)	9	64.7 (2.9)
	3	2	19.3 (0.9)	6	37.6 (2.6)	6	39.3 (2.7)	3	20.9 (0.6)	5	31.0 (3.0)	7	54.4 (2.8)	4	24.1 (0.9)	1	15.6 (0.1)	8	77.7 (3.3)
	4	2	25.1 (1.4)	4	38.4 (2.5)	5	42.2 (3.0)	2	25.3 (1.0)	3	26.0 (2.6)	6	53.7 (3.1)	1	24.4 (0.4)	3	27.2 (0.0)	6	53.2 (1.8)
c	5	3	17.6 (0.9)	5	31.5 (1.6)	5	33.8 (2.5)	2	16.8 (0.5)	4	22.9 (1.5)	6	42.1 (2.2)	2	16.4 (0.6)	1	11.6 (0.0)	7	56.9 (2.3)
S_1	6	1	15.3 (1.2)	3	29.5 (1.4)	3	30.2 (1.7)	1	15.6 (0.5)	2	23.3 (1.7)	6	41.7 (2.0)	5	36.9 (1.2)	4	31.3 (0.1)	7	89.7 (3.7)
	7	3	19.6 (1.3)	4	27.7 (1.4)	4	27.8 (1.5)	2	18.4 (1.2)	3	19.3 (0.9)	5	38.4 (2.0)	2	18.4 (0.5)	1	12.7 (0.0)	6	61.0 (2.6)
	8	2	11.2 (0.5)	4	15.7 (0.6)	3	13.3 (0.7)	1	10.2 (0.4)	5	17.2 (1.2)	5	16.7 (0.9)	6	22.2 (0.5)	7	24.3 (0.1)	8	56.7 (2.1)
	9	1	19.3 (1.1)	6	35.4 (2.5)	6	35.9 (2.3)	3	22.9 (0.8)	5	26.7 (2.9)	7	51.7 (2.6)	2	22.0 (0.5)	4	24.2 (0.1)	8	56.0 (2.2)
	10	1	14.4 (1.1)	4	34.3 (1.9)	4	34.5 (2.3)	2	16.8 (0.5)	3	23.6 (1.7)	5	47.0 (2.4)	6	192.1 (2.0)	7	200.0 (0.5)	8	257.4 (8.5)
	1	1	21.5 (0.4)	3	27.7 (0.7)	3	27.2 (1.0)	2	22.3 (0.6)	4	34.4 (3.2)	5	46.1 (1.7)	6	78.8 (1.4)	7	83.8 (0.9)	8	129.4 (2.9)
	2	2	14.2 (0.5)	6	23.6 (0.7)	5	21.7 (1.0)	4	16.5 (0.4)	7	25.9 (2.9)	8	38.7 (1.9)	3	15.2 (0.5)	1	10.5 (0.1)	9	58.6 (2.0)
	3	1	15.7 (0.6)	5	25.5 (0.8)	5	24.8 (1.4)	2	17.7 (0.6)	4	23.1 (1.6)	6	39.7 (2.0)	3	19.7 (0.9)	1	15.6 (0.1)	7	71.1 (2.4)
	4	1	19.0 (0.7)	4	25.6 (0.9)	4	25.4 (0.9)	2	21.1 (0.7)	2	22.0 (1.7)	6	35.4 (2.2)	3	24.6 (0.4)	5	27.0 (0.1)	7	51.4 (1.6)
S_2	5	2	13.4 (0.4)	6	21.8 (0.6)	5	20.8 (1.1)	3	14.4 (0.3)	4	18.4 (1.3)	7	34.3 (1.9)	3	14.3 (0.5)	1	11.6 (0.0)	8	53.7 (1.7)
32	6	1	10.5 (0.2)	3	19.9 (0.5)	3	19.9 (0.9)	2	13.5 (0.4)	3	19.0 (1.1)	4	30.5 (1.6)	5	33.5 (1.0)	4	31.2 (0.2)	6	84.0 (2.4)
	7	2	13.2 (0.3)	4	18.5 (0.5)	4	18.0 (0.7)	2	13.4 (0.4)	5	21.1 (2.1)	6	25.4 (1.2)	3	16.0 (0.4)	1	12.6 (0.1)	7	55.6 (2.0)
	8	2	8.8 (0.3)	4	10.9 (0.3)	3	9.6 (0.3)	1	8.4 (0.2)	6	15.6 (1.3)	5	12.2 (0.5)	7	21.9 (0.7)	8	23.9 (0.1)	9	53.8 (1.7)
	9	1	13.4 (0.4)	4	22.4 (0.6)	3	21.9 (0.9)	2	19.3 (0.6)	5	22.8 (1.9)	6	34.8 (1.8)	3	21.7 (0.6)	5	23.8 (0.1)	7	53.1 (1.7)
	10	1	11.4 (0.3)	3	23.3 (0.8)	3	23.0 (1.4)	2	14.8 (0.5)	3	22.6 (1.8)	4	34.6 (2.1)	5	188.0 (2.8)	6	198.5 (0.6)	7	241.3 (7.5)
	1	2	21.1 (0.5)	4	24.7 (0.7)	3	22.6 (0.5)	1	20.4 (0.4)	5	26.9 (1.7)	6	34.5 (1.7)	7	77.4 (1.5)	8	83.3 (1.3)	9	122.7 (2.2)
	2	2	13.2 (0.4)	5	20.6 (0.6)	5	20.9 (1.0)	4	15.4 (0.4)	5	21.5 (1.1)	6	27.7 (1.7)	3	13.8 (0.3)	1	10.4 (0.2)	7	53.2 (1.7)
	3	1	13.7 (0.2)	5	22.3 (0.6)	5	22.4 (0.9)	3	16.6 (0.5)	5	21.8 (1.1)	6	28.5 (1.6)	4	17.7 (0.4)	2	15.2 (0.1)	7	64.0 (1.7)
	4	1	17.9 (0.6)	3	23.3 (0.8)	4	24.3 (2.5)	2	19.1 (0.4)	2	18.9 (1.4)	4	24.9 (1.5)	4	24.3 (0.2)	5	26.7 (0.1)	6	49.8 (1.4)
S_3	5	2	12.4 (0.4)	6	19.7 (0.7)	5	18.2 (0.8)	3	13.4 (0.3)	4	17.1 (1.1)	7	24.6 (1.6)	3	13.5 (0.2)	1	11.5 (0.1)	8	49.2 (1.5)
33	6	1	10.2 (0.3)	3	17.1 (0.5)	3	17.6 (0.8)	2	12.3 (0.3)	4	20.6 (1.0)	5	22.2 (1.4)	7	31.2 (0.6)	6	30.6 (0.3)	8	77.3 (1.9)
	7	2	12.4 (0.3)	4	16.1 (0.4)	4	15.7 (0.6)	1	12.1 (0.3)	5	18.4 (1.1)	5	18.5 (0.9)	3	15.1 (0.2)	2	12.4 (0.1)	6	52.2 (1.5)
	8	1	8.0 (0.2)	3	9.6 (0.2)	2	8.7 (0.4)	1	7.8 (0.2)	4	14.4 (1.0)	3	9.8 (0.4)	5	21.5 (0.2)	6	23.7 (0.1)	7	50.5 (1.3)
	9	1	12.9 (0.4)	3	19.4 (0.6)	4	21.0 (1.2)	2	17.3 (0.4)	4	21.2 (1.7)	6	25.0 (1.4)	4	21.1 (0.2)	5	23.6 (0.1)	7	50.1 (1.2)
	10	1	10.2 (0.3)	4	20.2 (0.6)	4	19.8 (1.0)	2	13.6 (0.4)	3	18.4 (1.2)	5	24.4 (1.6)	6	184.0 (0.8)	7	197.7 (1.0)	8	221.7 (5.9)
	1	2	20.8 (0.5)	3	24.8 (1.0)	2	21.0 (0.5)	1	19.7 (0.4)	3	23.7 (1.8)	4	26.7 (1.6)	5	77.7 (1.9)	6	83.4 (1.8)	7	114.3 (1.9)
	2	2	13.0 (0.3)	5	18.9 (0.5)	4	17.8 (0.8)	3	14.6 (0.4)	6	20.5 (1.1)	6	21.1 (1.5)	2	13.3 (0.4)	1	10.5 (0.2)	7	45.6 (1.1)
	3	1	12.6 (0.3)	5	19.7 (0.7)	5	19.8 (0.8)	2	14.4 (0.5)	6	21.0 (1.5)	6	21.7 (1.5)	4	17.3 (0.5)	3	15.3 (0.2)	7	56.1 (1.3)
	4	1	16.0 (0.4)	3	21.6 (0.7)	3	21.4 (0.9)	2	17.8 (0.6)	1	16.7 (1.0)	2	18.6 (1.3)	4	24.3 (0.3)	5	26.4 (0.1)	6	42.9 (0.9)
S_4	5	2	11.7 (0.3)	5	18.5 (0.6)	4	17.0 (0.8)	3	13.4 (0.3)	5	19.6 (1.3)	5	19.7 (1.5)	3	13.2 (0.2)	1	11.2 (0.1)	6	42.0 (1.0)
\mathcal{O}_4	6	1	9.8 (0.3)	3	16.3 (0.5)	3	15.7 (0.6)	2	12.2 (0.4)	5	20.9 (2.7)	4	17.2 (1.3)	6	30.9 (0.8)	6	30.4 (0.4)	7	67.8 (1.4)
	7	2	11.6 (0.3)	5	15.0 (0.4)	4	14.4 (0.6)	1	10.2 (0.2)	6	16.4 (1.3)	4	14.2 (0.8)	4	14.6 (0.3)	3	12.3 (0.2)	7	43.5 (1.1)
	8	1	7.3 (0.1)	4	8.8 (0.2)	2	7.8 (0.2)	1	7.5 (0.2)	5	12.5 (0.8)	3	8.2 (0.3)	6	21.3 (0.3)	7	23.5 (0.2)	8	45.6 (0.7)
	9	1	12.1 (0.3)	3	18.5 (0.6)	3	18.7 (0.8)	2	16.6 (0.4)	2	16.7 (1.1)	3	18.8 (1.3)	4	21.2 (0.3)	5	23.6 (0.2)	6	44.8 (0.8)
	10	1	9.5 (0.2)	3	18.9 (0.6)	3	18.6 (1.1)	2	13.2 (0.4)	3	19.1 (2.7)	3	18.7 (1.5)	4	183.4 (1.1)	5	194.6 (1.6)	6	212.9 (5.8)
	1	2	21.3 (0.7)	3	23.8 (0.9)	2	21.1 (0.7)	1	19.9 (0.4)	4	42.2 (5.8)	3	23.3 (1.2)	5	79.0 (2.0)	6	85.4 (2.1)	7	114.2 (2.1)
	2	2	12.6 (0.4)	6	19.3 (0.5)	6	19.3 (1.0)	4	15.1 (0.5)	7	22.8 (2.4)	5	17.8 (1.0)	3	13.3 (0.4)	1	10.6 (0.3)	8	42.8 (1.0)
	3	1	12.2 (0.3)	5	20.0 (0.5)	5	19.9 (0.8)	2	15.0 (0.6)	6	24.5 (3.3)	4	18.5 (1.0)	3	16.6 (0.4)	2	15.0 (0.2)	7	52.9 (1.1)
	4	1	15.8 (0.4)	3	20.4 (0.8)	3	20.6 (0.8)	2	17.3 (0.5)	3	21.4 (2.9)	1	16.0 (0.7)	4	24.6 (0.3)	5	26.3 (0.2)	6	41.8 (0.8)
S_5	5	1	11.1 (0.3)	4	18.9 (0.6)	3	17.8 (0.8)	2	13.2 (0.6)	5	21.2 (1.8)	3	16.9 (0.9)	2	13.0 (0.2)	1	11.2 (0.1)	6	39.7 (1.0)
- 5	6	1	9.8 (0.3)	4	16.7 (0.7)	4	16.0 (0.7)	2	12.1 (0.4)	5	18.6 (1.7)	3	14.6 (0.8)	6	30.1 (0.8)	6	30.1 (0.5)	7	66.2 (1.8)
	7	2	10.9 (0.2)	5	15.8 (0.4)	4	15.0 (0.5)	1	10.2 (0.3)	6	17.7 (1.1)	3	12.4 (0.6)	4	14.8 (0.3)	3	12.6 (0.2)	7	41.8 (1.3)
	8	1	7.1 (0.2)	4	8.7 (0.2)	3	8.1 (0.3)	1	7.2 (0.2)	5	14.7 (1.1)	2	7.8 (0.2)	6	21.6 (0.3)	7	23.5 (0.2)	8	42.2 (0.8)
	9	1	12.1 (0.4)	3	18.3 (0.6)	4	19.4 (0.9)	2	16.3 (0.5)	2	15.5 (1.0)	2	15.8 (0.8)	5	21.5 (0.3)	6	23.5 (0.2)	7	41.9 (0.8)
	10	1	9.2 (0.3)	4	19.9 (0.7)	4	19.8 (0.8)	2	13.5 (0.4)	3	16.7 (1.6)	3	15.7 (0.8)	5	181.9 (1.3)	6	192.6 (1.6)	7	208.0 (6.5)
Av	erage <i>r</i>	1.5		4.2	2	3.9		2		4.2		4.8	1	4.2		4.1		7.2	