第3章

代数学のあれこれ

この章では、主に代数学に関する内容を雑多にまとめる。詳細は [?] や、加群については [?] を参照されるのが良いと思う。

まず、部分群の定義と判定法を書いておく:

定義 3.1: 部分群

 $(G,\cdot\,,1_G)$ を群とする. 部分集合 $H\subset G$ が G の部分群 (subgroup) であるとは, H が演算・によって群になることを言う.

命題 3.1: 部分群であることの判定法

群 G の部分集合 H が G の部分群になるための必要十分条件は,以下の 3 条件が満たされることである:

- **(SG1)** $1_G \in H$
- **(SG2)** $x, y \in H \implies x \cdot y \in H$
- (SG3) $x \in H \implies x^{-1} \in H$

群の生成を定義しておく:

定義 3.2: word

 $(G, \cdot, 1_G)$ を群, $S \subset G$ を部分集合とする.

S の有限部分集合 $\{x_1, \ldots, x_n\} \subset S$ によって

$$x_1^{\pm 1} \cdot x_2^{\pm 1} \cdots x_n^{\pm 1}$$
 w/ $x_i^{\pm 1}$ は x_i か x_i^{-1} のどちらでも良い

と書かれる G の元を S の元による語 (word) と呼ぶ. ただし n=0 のときは単位元 1_G を表すものとする.

命題 3.2: 部分加群の生成

S の元による word 全体の集合を $\langle S \rangle$ と書く.

- (1) $\langle S \rangle$ は G の部分群である. これを S によって生成された部分群と呼び, S のことを生成系 (generator), S の元を生成元と呼ぶ.
- (2) G の部分群 H が $S \subset H$ を充たすならば $\langle S \rangle \subset H$ である. i.e. $\langle S \rangle$ は S を含む最小の部分群である.
- **証明** (1) 命題 3.1 の 3 条件を充していることを確認する. $x_1, \ldots, x_n, y_1, \ldots, y_m \in S$ とする.
 - (SG1) n=0 の場合から $1_G \in \langle S \rangle$
 - (SG2) $x_1, \ldots, x_n, y_1, \ldots, y_m \in S \ \text{E} \ \text{\supset} \ \text{\supset}$

$$(x_1^{\pm 1} \cdots x_n^{\pm 1}) \cdot (y_1^{\pm 1} \cdots y_m^{\pm 1}) = x_1^{\pm 1} \cdots x_n^{\pm 1} \cdot y_1^{\pm 1} \cdots y_m^{\pm 1} \in \langle S \rangle$$

(SG3) 複号同順で

$$(x_1^{\pm 1} \cdots x_n^{\pm 1}) \cdot (x_n^{\mp 1} \cdots x_1^{\mp 1}) = 1_G$$

かつ $x_n^{\mp 1} \cdots x_1^{\mp 1} \in \langle S \rangle$ なので良い.

(2) $1_G \in H$ なので n=0 のときは良い. n>0 として $x_1, \ldots, x_n \in S$ を任意にとると,仮定より $x_1, \ldots, x_n \in H$ である.故に命題 3.1 から $x_1^{\pm 1}, \ldots, x_n^{\pm 1} \in H$ であり,H が席について閉じている ことから $x_1^{\pm 1} \cdots x_n^{\pm 1} \in H$ である.i.e. $\langle S \rangle \subset H$.

定義 3.3: 巡回群

G を群とする. 一つの元 $x \in G$ で生成される群 $\langle x \rangle$ を**巡回群** (cyclic group) と言う. G の部分群であって、巡回群でもあるものを**巡回部分群**と呼ぶ.

3.1 群の準同型

3.1.1 定義

定義 3.4: 群準同型

 $(G_1,\cdot,1_{G_1}), (G_2,*,1_{G_2})$ を群とする. 写像 $\phi\colon G_1\to G_2$ が (群の) **準同型写像** (homomorphism) であるとは、

$$\phi(x \cdot y) = \phi(x) * \phi(y), \quad \forall x, y \in G_1$$

が成り立つことを言う.

 ϕ が準同型写像であって逆写像 ϕ^{-1} を持ち,かつ ϕ^{-1} もまた準同型写像であるとき, ϕ は**同型写像** (isomorphism) と呼ばれる.このとき G_1 , G_2 は同型 (isomorphic) であるといい, $G_1 \cong G_2$ と書く.

いちいち群の演算を明記するのは大変なので、以降では余程紛らわしくない限り省略する.

命題 3.3:

 $\phi: G_1 \to G_2$ を群の準同型とするとき、以下が成立する:

- (1) $\phi(1_{G_1}) = 1_{G_2}$
- (2) $\phi(x^{-1}) = \phi(x)^{-1}, \quad \forall x \in G_1$

証明 (1) $\phi(1_{G_1}) = \phi(1_{G_1}1_{G_1}) = \phi(1_{G_1})\phi(1_{G_1})$ より $\phi(1_{G_1}) = 1_{G_2}$

(2) (1)
$$\sharp \mathfrak{h} \phi(1_{G_1}) = \phi(x^{-1}x) = \phi(x^{-1})\phi(x) = 1_{G_2}$$

標語的には「準同型写像 $\phi\colon G_1\to G_2$ は群の演算,単位元,逆元の全てを保つ」ということになる.特に ϕ が全単射である,i.e. 同型写像であるならば, G_1 と G_2 の群論的な性質は同じである.この意味で G_1 と G_2 は同一視できる.

3.1.2 核と像

定義 3.5: 準同型の核・像

 G_1, G_2 を群, $\phi: G_1 \to G_2$ を準同型写像とする.

(1) ϕ の核 (kernel) Ker $\phi \subset G_1$ を次のように定義する:

$$\operatorname{Ker} \phi := \left\{ x \in G_1 \mid \phi(x) = 1_{G_2} \right\}$$

(2) ϕ の像 (image) Im $\phi \subset G_2$ を次のように定義する:

$$\operatorname{Im} \phi := \{ \phi(x) \mid x \in G_1 \}$$

命題 3.4:

 G_1,G_2 を群, $\phi\colon G_1\to G_2$ を準同型写像とする. このとき $\operatorname{Ker}\phi$, $\operatorname{Im}\phi$ はそれぞれ G_1,G_2 の部分群である.

証明 命題 3.1 の 3 条件を充していることを確認すれば良い.

- (SG1) 命題 3.3-(1) より $1_{G_1} \in \operatorname{Ker} \phi$, $1_{G_2} \in \operatorname{Im} \phi$
- (SG2) Ker ϕ に関しては

$$x, y \in \operatorname{Ker} \phi \implies \phi(xy) = \phi(x)\phi(y) = 1_{G_2}1_{G_2} = 1_{G_2}$$

$$\implies xy \in \operatorname{Ker} \phi$$

よりよい.

 $\operatorname{Im} \phi$ に関しては ϕ が準同型であることから自明.

(SG3) Ker ϕ に関しては命題 3.3-(2) から

$$x \in \operatorname{Ker} \phi \implies \phi(x^{-1}) = \phi(x)^{-1} = 1_{G_2}^{-1} = 1_{G_2}$$

$$\implies x^{-1} \in \operatorname{Ker} \phi$$

よりよい.

 $\operatorname{Im} \phi$ に関しても命題 3.3-(2) から

$$y \in \operatorname{Im} \phi \implies \exists x \in G_1, \ y = \phi(x)$$

$$\implies y^{-1} = \phi(x)^{-1} = \phi(x^{-1})$$

$$\implies y^{-1} \in \operatorname{Im} \phi$$

ただし、3行目で G_1 が群であるために $x \in G_1 \implies x^{-1} \in G_1$ であることを使った.

命題 3.4 より、 $\operatorname{Ker} \phi$ や $\operatorname{Im} \phi$ による剰余類を考えることができる.

命題 3.5: 準同型の単射性判定

準同型写像 $\phi: G_1 \to G_2$ に対して以下が成立する:

$$\phi$$
 が単射 \iff Ker $\phi = \{1_{G_1}\}$

証明(\Longrightarrow) ϕ は単射と仮定する.命題 3.3-(1) より $1_{G_1} \in \operatorname{Ker} \phi$ である.このとき $\forall x \in G_1$ に対して

$$x \in \operatorname{Ker} \phi \implies \phi(x) = 1_{G_2} = \phi(1_{G_1})$$

であり、仮定から $x = 1_{G_1}$ とわかる.

 (\Leftarrow) Ker $\phi = \{1_{G_1}\}$ と仮定する. このとき $\forall x, y \in G_1$ に対して

$$\phi(x) = \phi(y) \implies \phi(xy^{-1}) = \phi(x)\phi(y)^{-1} = \phi(x)\phi(x)^{-1} = 1_{G_2}$$
$$\implies xy^{-1} \in \operatorname{Ker} \phi$$

が成立し、仮定より $xy^{-1}=1_{G_1}$ とわかる. 故に x=y であり、 $\phi(x)=\phi(y) \Longrightarrow x=y$ が示された.

3.1.3 剰余類

群 G の部分群 H は G 上の同値関係を誘導する:

命題 3.6: 部分群による同値関係

群 $(G,\cdot,1_G)$ の部分群 $(H,\cdot,1_H)$ を与える.このとき,次のようにして定義される集合 $\sim_{\rm L},\sim_{\rm R}\subset G\times G$ は同値関係である。:

$$\sim_{\mathbf{L}} := \left\{ (x, y) \in G \times G \mid x^{-1}y \in H \right\}$$
$$\sim_{\mathbf{R}} := \left\{ (x, y) \in G \times G \mid yx^{-1} \in H \right\}$$

 $[^]a$ 群 G は可換とは限らない!

証明 同値関係の公理??を充していることを確認すればよい. ほぼ同じ議論なので $,\sim_{L}$ についてのみ示す.

- (1) 命題 3.1-(1) より $x^{-1}x = 1_G = 1_H \in H$ であるから $x \sim Lx$.
- (2) 命題 3.1-(3) より部分群 H は逆元をとる操作について閉じている. 故に

$$x \sim L y \implies x^{-1} y \in H$$

 $\implies y^{-1} x = (x^{-1} y)^{-1} \in H$
 $\implies y \sim L x.$

(3) 命題 3.1-(2) より部分群 H は演算・について閉じている. 故に

$$x \sim Ly$$
 かつ $y \sim Lz$ \Longrightarrow $x^{-1}y \in H$ かつ $y^{-1}z \in H$ \Longrightarrow $x^{-1}z = x^{-1}(yy^{-1})z = (x^{-1}y)(y^{-1}z) \in H$ \Longrightarrow $x \sim Lz$.

つまり、同値関係 \sim_L 、 \sim_R の気持ちは

- 反射律 ↔ 単位元
- 対称律 ↔ 逆元をとる操作
- 推移律 ↔ 群の演算

という対応を定式化したものと言える.

さて、集合 G の上に同値関係ができたので同値類を考えることができる:

定義 3.6: 剰余類

群 $(G, \cdot, 1_G)$ の部分群 $(H, \cdot, 1_H)$ を与える.

(1) G 上の同値関係 \sim_L による $x \in G$ の同値類を**左剰余類** (left coset) と呼び,xH と書く.あからさまには以下の通り:

$$\mathbf{x}H \coloneqq \left\{ y \in G \mid \mathbf{x}^{-1}y \in H \right\}$$

同値関係 $\sim_{\mathbf{L}}$ による G の商集合を G/H と書く:

$$G/H := G/\sim_{\mathbf{L}} = \{xH \mid x \in G\}$$

(2) G 上の同値関係 $\sim_{\mathbf{R}}$ による $x \in G$ の同値類を**右剰余類** (right coset) と呼び、Hx と書く. あ からさまには以下の通り:

$$H\mathbf{x} := \left\{ y \in G \mid y\mathbf{x}^{-1} \in H \right\}$$

同値関係 $\sim_{\mathbf{R}}$ による G の商集合を $H \setminus G$ と書く:

$$H \setminus G := G/\sim_{\mathbf{R}} = \{Hx \mid x \in G\}$$

左/右剰余類は H が G の部分群ならば**必ず**作ことができる.

命題 3.7: 剰余類の位数

H が G の部分群ならば以下が成り立つ(位数は ∞ でも良い):

- $(1) |G/H| = |H \backslash G|$
- $(2) |xH| = |Hx| = |H|, \quad \forall x \in G$
- 証明 (1) 集合の濃度が等しいことを示すには,G/H から $H\backslash G$ への全単射が存在することを示せば良い. 写像 $\alpha\colon G/H\to H\backslash G$ を $\alpha(xH)\coloneqq Hx^{-1}$ と定義する. α が well-defined であることを示す.実際, $\forall x\in G$ を一つ固定したとき xH の勝手な元は xh $(h\in H)$ と書かれるが, $(xh)^{-1}=h^{-1}x^{-1}\in Hx^{-1}$ なので,写像 α の xH への作用は xH の代表元の取り方によらない.i.e. α は well-defined である.

同様な議論から、写像 β : $H \setminus G \to G/H$ を $\beta(Hx) := x^{-1}H$ として定義すると β も well-defined であることがわかる.このとき $(\beta \circ \alpha)(xH) = \beta(Hx^{-1}) = xH$, $(\alpha \circ \beta)(Hx) = Hx$ が成立するので $\beta \circ \alpha = \mathrm{id}_{G/H}$, $\alpha \circ \beta = \mathrm{id}_{H \setminus G}$ であり、 α , β は両方とも全単射である.

(2) 写像 $\phi: H \to xH$ を $\phi(h) := xh$ と定義する. このとき, $\forall h_1, h_2 \in H$ に対して

$$\phi(h_1) = \phi(h_2) \implies xh_1 = xh_2 \implies h_1 = x^{-1}xh_1 = x^{-1}xh_2 = h_2$$

が成立するので ϕ は単射である. ϕ が全射であることは明らかなので全単射である. 故に |xH|=|H|. |Hg|=|H| も同様に示される.

同値類全体の集合は商集合を非交和 (disjoint union) に分割することを考えると,次の定理が即座に従う:

定理 3.1: Lagrange の定理

集合 G/H, $H \setminus G$ の濃度を (G: H) と書く。と,

$$|G| = (G:H)|H|.$$

 aG における H の指数 (index) と呼ぶ.

3.1.4 両側剰余類

命題 3.8:

群 $(G,\cdot,1_G)$ およびその部分群 $(H,\cdot,1_H),(K,\cdot,1_K)$ を与える。このとき、次のようにして定義される集合 $\sim_{\mathbb{D}}\subset G\times G$ は同値関係である:

$$\sim_{\mathbf{D}} := \{ (x, y) \mid \exists h \in H, \exists k \in K, x = h \cdot y \cdot k \}$$

証明 同値関係の公理??を充していることを確認すればよい. ほぼ同じ議論なので、 \sim_{L} についてのみ示す.

(1) 命題 3.1-(1) より $1_G = 1_H = 1_K$ であるから $x = 1_H x 1_K$.

(2) 命題 3.1-(3) より部分群は逆元をとる操作について閉じている. 故に

$$x \sim {}_{\mathbf{D}}y \implies \exists h \in H, \ \exists k \in K, \ x = hyk$$

 $\implies y = h^{-1}xk^{-1}$
 $\implies y \sim {}_{\mathbf{D}}x.$

(3) 命題 3.1-(2) より部分群は演算・について閉じている. 故に

$$x \sim_{\mathrm{D}} y$$
 かつ $y \sim_{\mathrm{D}} z$ $\Longrightarrow \exists h_1, h_2 \in H, \exists k_1, k_2 \in K, \ x = h_1 y k_1$ かつ $y = h_2 z k_2$ $\Longrightarrow \ x = (h_1 h_2) z (k_2 k_1)$ $\Longrightarrow \ x \sim_{\mathrm{D}} z.$

定義 3.7: 両側剰余類

命題 3.8 において,同値関係 \sim_D による G の商集合 G/\sim_D を $H\backslash G/K$ と書く. $H\backslash G/K$ の元を H,K による**両側剰余類** (double coset) と呼ぶ. $x\in G$ の両側剰余類をあからさまに書くと以下の 通り:

$$H\mathbf{x}K = \{ h\mathbf{x}k \mid h \in H, k \in K \}$$

3.1.5 正規部分群

定義 3.6 において右剰余類と左剰余類を定義したが,補題 3.1 より部分群 H が正規部分群ならば両者は一致する.そしてこのとき商集合 G/H と $H\backslash G$ が同一視され,自然に群構造が入る.

定義 3.8: 正規部分群

H を G の部分群とする. H が G の正規部分群 (normal subgroup) であるとは, $\forall g \in G, \forall h \in H$ に対して $ghg^{-1} \in H$ であることを言い a , 記号として $H \triangleleft G$, あるいは $G \triangleright H$ と書く.

 a このことを H は内部自己同型 (inner automorphism) の下で不変だ、とか言う

命題 3.9: Ker は正規部分群

 G_1, G_2 を群, $\phi: G_1 \to G_2$ を準同型写像とすると, $\operatorname{Ker} \phi \lhd G_1$ である.

証明 $\forall g \in G_1, h \in \operatorname{Ker} \phi$ に対して

$$\phi(ghg^{-1}) = \phi(g)\phi(h)\phi(g^{-1}) = \phi(g)\phi(g)^{-1} = 1_{G_2}$$

なので $ghg^{-1} \in \operatorname{Ker} \phi$ である. i.e. $\operatorname{Ker} \phi \triangleleft G_1$ である.

補題 3.1:

群 G およびその部分群 N を与える. このとき以下が成り立つ:

$$N \lhd G \iff \forall g \in G, \ gN = Ng$$

証明 (⇒)

• (\subset) $\forall x \in gN$ を一つとると、ある $n \in N$ が存在して x = gn と書ける、仮定より $N \lhd G$ だから $gng^{-1} \in N$ である、ゆえに

$$x = gn = gn(g^{-1}g) = (gng^{-1})g \in Ng.$$

 $x \in gN$ は任意だったから $gN \subset Ng$.

• (\supset) g を g^{-1} に置き換えて同じ議論をすれば良い.

 (\Longleftrightarrow) $\forall g \in G, \forall n \in N$ をとる. 仮定より $\exists n' \in N, gn = n'g$ が言える. 従って

$$qnq^{-1} = n'qq^{-1} = n' \in N.$$

定理 3.2: 剰余群

群 G とその正規部分群 N を与える. このとき,<u>左剰余類による</u>商集合(定義 3.6) G/N 上の二項演算 $: G/N \times G/N \to G/N$ を

$$gN \cdot hN \coloneqq (gh)N \tag{3.1.1}$$

と定義するとこれは well-defined であり、かつ $(G/N, \cdot, N)$ は群を成す. この群を G の N による 剰余群 (quotient group) と呼ぶ.

証明 well-definedness

要するに式 (3.1.1) の右辺が引数 gN, hN の代表元の取り方によらずに定まることを示せば良い. $\forall g, h \in G$ を固定する. このとき左剰余類 gN, hN の勝手な元 $x \in gN$, $y \in hN$ は x = gn, $y = hn'(n, n' \in N)$ と書ける. 故に

$$xy = (gn)(hn') = g(hh^{-1})nhn' = (gh)(h^{-1}nh)n'$$

だが、N が G の正規部分群であることにより $h^{-1}nh \in N$ が言える. よって $xy \in (gh)N$ であり、式 (3.1.1) の右辺が gN, hN の代表元の取り方によらないことが示された.

群であること

演算・の well-definedness が示されたので、後は群の公理を充していることを確認すれば良い.

単位元 G/N の任意の元は gN の形をしている. このとき

$$gN \cdot N = N \cdot gN = (g1_G)N = gN$$

なので $1_{G/N} = N$ である.

結合則 G/N の任意の元を 3 つとってきて,それらを gN,hN,kN(g,h, $k \in G$)と書く.このとき $gN \cdot (hN \cdot kN) = gN \cdot (hk)N = (ghk)N = ((gh)k)N = (gh)N \cdot kN = (gN \cdot hN) \cdot kN$ なので良い.

逆元 G/N の任意の元を 1 つとってきてそれを gN $(g \in G)$ と書く. このとき $g^{-1} \in G$ なので $g^{-1}N \in G/N$ であり、

$$gN \cdot g^{-1}N = (gg^{-1})N = N = 1_{G/N}$$

とわかる. i.e. $(gN)^{-1} = g^{-1}N$ である.

系 3.3: 標準射影と剰余群

群 G とその正規部分群 N を与える. このとき標準射影(定義??) $\pi\colon G\to G/N,\ g\mapsto gN$ は G/N を剰余群だと思うと全射準同型写像になる. また、 $\operatorname{Ker}\pi=N$ である.

証明 $\operatorname{Im} \pi = G/N$ は π の定義から明らか.

剰余群 G/N の積の定義 (3.1.1) より

$$\pi(gh) = (gh)N = gN \cdot hN = \pi(g) \cdot \pi(h)$$

であり、 π は準同型である.

剰余群 G/N の単位元は N なので、 $\forall g \in G$ に対して $\pi(g) = gN = 1_{G/N} \iff g \in N$.

系 3.3 より,標準射影 $\pi\colon G \twoheadrightarrow G/N$ のことを**自然な全射準同型**と呼ぶ場合がある.

3.1.6 直積・半直積

部分群の「割り算」を定義できたので、ついでに「積」も定義しておこう。まず群 G の部分集合の積が自然に定まることを見る。以下の定義 3.9 は部分群を作っているわけではないので注意。

定義 3.9: 群 G の部分集合の積

 S_1, S_2 を群 $(G, \cdot, 1_G)$ の部分集合とする^a. 集合

$$S_1 S_2 := \{ x \cdot y \mid x \in S_1, y \in S_2 \}$$

を部分集合の積と呼ぶ.

^a 部分群ではない!

命題 3.10: 部分集合の積が部分群になる必要十分条件

群 $(G, \cdot, 1_G)$ とその部分群 H_1, H_2 を与える. このとき, 以下が成り立つ:

- (1) $H_1H_2 \subset G$ が G の部分群 \iff $H_1H_2 = H_2H_1$
- (2) $H_1 \triangleleft G$ かつ $H_2 \triangleleft G$ \Longrightarrow $H_1H_2 \triangleleft G$

<u>証明</u> (1) (\Longrightarrow) H_1H_2 が G の部分群であると仮定する. H_1H_2 の勝手な元は $x=h_1h_2$ ($h_i\in H_i$) と書ける. このとき仮定より $x^{-1}\in H_1H_2$ だが, H_i が部分群なので

$$x^{-1} = h_2^{-1} h_1^{-1} \in H_2 H_1$$

でもある. よって $H_1H_2 = H_2H_1$.

 $(\Longleftrightarrow) H_1H_2 = H_2H_1$ と仮定する. 命題 3.1 の 2 条件を充していることを確認する.

- **(SG1)** H_i が部分群なので $1_G = 1_G 1_G \in H_1 H_2$.
- **(SG2)** H_1H_2 の勝手な 2 つの元は h_1h_2 , k_1k_2 $(h_i, k_i \in H_i)$ と書ける. 仮定より $\exists h_1' \in H_1$, $\exists k_2' \in H_2$, $h_2k_1 = h_1'k_2'$ が成立するから,

$$(h_1h_2)(k_1k_2) = h_1(h_2k_1)k_2 = (h_1h'_1)(k'_2k_2) \in H_1H_2.$$

(SG3) $h_1h_2 \in H_1H_2$ を任意にとる. 仮定から $\exists k_1' \in H_1$, $\exists k_2' \in H_2$, $h_2^{-1}h_1^{-1} = k_1'k_2'$ が成立するから

$$(h_1h_2)^{-1} = h_1'h_2' \in H_1H_2.$$

(2) 仮定と補題 3.1 より $\forall g \in G$ に対して $gH_2 = H_2g$ である. 故に

$$H_1H_2 = \bigcup_{h_1 \in H_1} h_1H_2 = \bigcup_{h_1 \in H_1} H_2h_1 = H_2H_1.$$

よって (1) から H_1H_2 は G の部分群である.

 $h_1h_2 \in H_1H_2$ を任意にとる. 仮定より $\forall g \in G$ に対して $gh_ig^{-1} \in H_i$ である.

$$g(h_1h_2)g^{-1} = (gh_1g^{-1})(gh_2g^{-1}) \in H_1H_2.$$

i.e. $H_1H_2 \triangleleft G$.

次に、群の直積集合を群にする方法を定める.

定義 3.10: 群の直積

• G_1,G_2 を群とする。直積集合 $G_1\times G_2$ に以下のように二項演算 $\cdot:G_1\times G_2\to G_1\times G_2$ を定義すれば、 $(G_1\times G_2,\cdot,(1_{G_1},1_{G_2}))$ は群になる:

$$(g_1, g_2) \cdot (h_1, h_2) \coloneqq (g_1 h_1, g_2 h_2)$$

証明 結合律 G_1, G_2 それぞれの結合則から明らか.

単位元 $\forall (g_1, g_2) \in G_1 \times G_2$ に対して

$$(g_1, g_2) \cdot (1_{G_1}, 1_{G_2}) = (g_1, g_2) = (1_{G_1}, 1_{G_2}) \cdot (g_1, g_2)$$

逆元 $\forall (g_1, g_2) \in G_1 \times G_2$ に対して

$$(g_1, g_2) \cdot (g_1^{-1}, g_2^{-1}) = (1_{G_1}, 1_{G_2}) = 1_{G_1 \times G_2}$$

i.e. $(g_1, g_2)^{-1} = (g_1^{-1}, g_2^{-1})$ resc.

命題 3.11: 群の直積の特徴付け

(1) G_1, G_2 を群とし、包含写像 $\iota_i: G_i \hookrightarrow G_1 \times G_2$ (i = 1, 2) を

$$\iota_1(g_1) := (g_1, 1_{G_2}), \quad \iota_2(g_2) := (1_{G_1}, g_2)$$

と定義する. このとき $\iota_1(G_1)$ の元と $\iota_2(G_2)$ の元は互いに可換であり、 $\iota_i(G_i) \triangleleft G_1 \times G_2$ が成り立つ.

(2) G を群, H, K \subset G を部分群とする. このとき H \lhd G かつ K \lhd G かつ H \cap $K = \{1_G\}$ かつ HK = G ならば $G \cong H \times K$ である.

証明 (1) 可換であることは

$$(g_1, 1_{G_2})(1_{G_1}, g_2) = (g_1, g_2) = (1_{G_1}, g_2)(g_1, 1_{G_2})$$

より従う.

 $\forall g_1 \in G_1, \ \forall (h_1, h_2) \in G_1 \times G_2$ をとる.

$$(h_1, h_2)\iota_1(g_1)(h_1, h_2)^{-1} = (h_1g_1h_1^{-1}, 1_{G_2}) \in \iota_1(G_1)$$

なので $\iota_1(G_1) \triangleleft G_1 \times G_2$ である. 全く同様にして $\iota_2(G_2) \triangleleft G_1 \times G_2$ もわかる.

(2) 写像 ϕ : $H \times K \to G$ を

$$\phi((h, k)) := hk$$

と定義する. 仮定より G=HK だから(部分集合の積) ϕ は全射.

まず $\forall h \in H, \forall k \in K$ に対して hk = kh であることを示す.

$$hk(kh)^{-1} = (hkh^{-1})k^{-1} = h(kh^{-1}k^{-1})$$

だが、仮定より K, $H \triangleleft G$ なので $hkh^{-1} \in K$, $kh^{-1}k^{-1} \in H$ であり、 $hk(kh)^{-1} \in K \cap H = \{1_G\}$ が言える. i.e. hk = kh.

従って $\forall (h, k), (h', k') \in H \times K$ に対して

$$\phi((h, k))\phi((h', k')) = h(kh')k' = h(h'k)k' = (hh')(kk') = \phi((h, k) \cdot (h', k'))$$

が成り立つから ϕ は群の準同型である. また,

$$(h, k) \in \operatorname{Ker} \phi \implies hk = 1_G \implies h = k^{-1} \in H \cap K = \{1_G\}$$

だから $\operatorname{Ker} \phi = \{1_G\}$ であり、命題 3.5 から ϕ は単射. よって ϕ は同型写像である.

最後に群の半直積を定義しておこう.

定義 3.11: 外部半直積

N, H を群とし、 $\phi: H \to \operatorname{Aut} N, h \mapsto \phi_h$ を準同型写像とする。 このとき、集合 $N \times H$ は次の二項演算 $\cdot: N \times H \to N \times H$ に関して群を成す:

$$(n_1, h_1) \cdot (n_2, h_2) \coloneqq (n_1 \phi_{h_1}(n_2), h_1 h_2)$$

この群 $\left(N\times H,\cdot,\left(1_{N},\,1_{H}\right)\right)$ のことを $N,\,H$ の (外部) 半直積 (semidirect product) と呼び, $\boldsymbol{H}\ltimes_{\phi}\boldsymbol{N}$ または $\boldsymbol{N}\rtimes_{\phi}\boldsymbol{H}$ と書く.

 a Aut N は,N から N 自身への同型写像全体の集合に,写像の合成を群の演算として群構造を入れたもので,自己同型 群 (automorphism group) と呼ばれる.

<u>証明</u> 結合律 $\phi: H \to \operatorname{Aut} N$ は準同型写像であるから $\phi_{h_1h_2} = \phi(h_1h_2) = \phi(h_1) \circ \phi(h_2) = \phi_{h_1} \circ \phi_{h_2}$ である.

$$((n_1, h_1) \cdot (n_2, h_2)) \cdot (n_3, h_3) = (n_1 \phi_{h_1}(n_2) \phi_{h_1 h_2}(n_3), h_1 h_2 h_3)$$

$$= (n_1 \phi_{h_1}(n_2) \phi_{h_1}(\phi_{h_2}(n_3)), h_1 h_2 h_3)$$

$$= (n_1 \phi_{h_1}(n_2 \phi_{h_2}(n_3)), h_1 (h_2 h_3))$$

$$= (n_1, h_1) \cdot (n_2 \phi_{h_2}(n_3), h_2 h_3)$$

$$= (n_1, h_1) \cdot ((n_2, h_2) \cdot (n_3, h_3))$$

単位元 $\phi \colon H \to \operatorname{Aut} N$ は準同型写像であるから $\phi_{1_H} = \operatorname{id}_N$ である. 故に $\forall n \in N, \forall h \in H$ に対して

$$(n, h) \cdot (1_N, 1_H) = (n\phi_h(1_N), h1_H) = (n, h) = (1_N\phi_{1_H}(n), 1_Hh) = (1_N, 1_H) \cdot (n, h)$$

逆元 $\phi\colon H \to \operatorname{Aut} N$ は準同型写像であるから,命題 3.4 より $\phi_{h^{-1}}=\phi(h^{-1})=\phi(h)^{-1}=\phi_h^{-1}$ である.故 に $\forall n\in N,\, \forall h\in H$ に対して

$$\begin{split} &(n,\,h)\cdot\left(\phi_{h^{-1}}(n^{-1}),\,h^{-1}\right)=\left(n\phi_{h}\left(\phi_{h^{-1}}(n^{-1})\right),\,1_{H}\right)=(nn^{-1},\,1_{H})=1_{N\rtimes_{\phi}H}\\ &\left(\phi_{h^{-1}}(n^{-1}),\,h^{-1}\right)\cdot(n,\,h)=\left(\phi_{h^{-1}}(n^{-1})\phi_{h^{-1}}(n),\,1_{H}\right)=(\phi_{h^{-1}}(n)^{-1}\phi_{h^{-1}}(n),\,1_{H})=1_{N\rtimes_{\phi}H}\\ &\text{i.e. } (\boldsymbol{n},\,\boldsymbol{h})^{-1}=\left(\phi_{h^{-1}}(\boldsymbol{n}^{-1}),\,\boldsymbol{h}^{-1}\right). \end{split}$$

3.1.7 準同型定理

群の準同型写像 ϕ : $G \to H$ が与えられると,命題 3.9 より $\operatorname{Ker} \phi \lhd G$ であるから $G/\operatorname{Ker} \phi$ は剰余群 3.2 になる.そして系 3.3 により,G と $G/\operatorname{Ker} \phi$ は自然に全射準同型 π で結ばれることもわかる.では,群 $G/\operatorname{Ker} \phi$ と群 H の関係はどうなっているのだろうか?

定理 3.4: 準同型定理 (第一同型定理)

群の準同型写像 $\phi\colon G\to H$ を与える. $\pi\colon G\to G/\operatorname{Ker}\phi$ を自然な準同型とする. このとき,図 3.1 が可換図式となるような準同型 $\psi\colon G/\operatorname{Ker}\phi\to H$ がただ一つ存在し, $\psi\colon G/\operatorname{Ker}\phi\to\operatorname{Im}\phi$ は同型写像になる.

図 3.1: 準同型定理

証明 $N = \operatorname{Ker} \phi$ とおく. $\forall g \in G$ に対して

$$\psi(gN) \coloneqq \phi(g) \tag{3.1.2}$$

と定義する.

 $\forall x \in gN$ はある $n \in N = \operatorname{Ker} \phi$ を使って x = gn と書くことができるから

$$\psi(xN) = \phi(x) = \phi(gn) = \phi(g)\phi(n) = \phi(g)1_G = \psi(gN)$$

が成立する. i.e. (3.1.2) によって定義される写像 $\psi \colon G/N \to H$ は well-defined である.

ψ は準同型写像で,図 3.1 は可換図式である

 $\forall g, h \in G$ に対して

$$\psi((gN)(hN)) = \psi((gh)N) = \phi(gh) = \phi(g)\phi(h) = \psi(gN)\psi(hN)$$

であるから ψ は準同型写像.

また、定義 (3.1.2) から明らかに写像の等式として $\psi \circ \pi = \phi$ が成り立つ. i.e. 図 3.1 は可換図式である.

ψ は単射である

 $\forall g \in G$ に対して

$$\psi(gN) = 1_H \implies \phi(g) = 1_H \iff g \in \operatorname{Ker} \phi = N$$

なので $\operatorname{Ker} \psi = \{N\}$ とわかる. $N = 1_{G/N}$ なので、命題 3.4 から ψ は単射である.

$\operatorname{Im}\psi=\operatorname{Im}\phi$ である

 $\forall g \in G$ に対して $\phi(g) = \psi(gN)$ なので $\operatorname{Im} \phi \subset \operatorname{Im} \psi$. G/N の勝手な元は gN $(g \in G)$ の形をして いるので $\psi(gN) = \phi(g)$ であり、 $\operatorname{Im} \psi \subset \operatorname{Im} \phi$ とわかる. よって $\operatorname{Im} \psi = \operatorname{Im} \phi$ である. ψ は単射だか ら $\psi \colon G/N \to \operatorname{Im} \phi$ は全単射であり、 $G/N \cong \operatorname{Im} \phi$ が言える.

ψ は一意的に定まる

図 3.1 が可換図式であるとき, i.e. $\psi\circ\pi=\phi$ が成り立つとき, $\forall x=gN\in G/N$ に対して $\psi(x)=\psi(gN)=(\psi\circ\pi)(g)=\phi(g)$ として値が定まり, 定義 (3.1.2) と一致する. 従って ψ は一意に 定まる.

定理 3.5: 準同型定理 (第二同型定理)

G を群, H を G の部分群, N を G の正規部分群とするとき, 次が成り立つ:

- (1) $H \cap N \triangleleft H$
- (2) $HN/N \cong H/H \cap N$

証明 写像 $\phi\colon H\to HN/N,\ h\mapsto hN/N$ は剰余群への自然な全射準同型と同様に well-defined な準同型写像である.

 $\forall y \in HN/N$ に対して

$$\exists h \in H, \exists n \in N, y = (hn)N = hN = \phi(h)$$

が成立するから $\operatorname{Im} \phi = HN/N$ である. また, $h \in H$ に対して

$$\phi(h) = 1_{HN/N} \iff hN = N \implies h \in H \cap N$$

だから $\operatorname{Ker} \phi = H \cap N$ である.

- (1) 命題 $prop.ker_qroup-1$ より $H \cap N \triangleleft H$ である.
- (2) 準同型定理(第一同型定理) 3.17 より、 ϕ によって $HN/N \cong H/H \cap N$ である.

定理 3.6: 準同型定理 (第三同型定理)

G を群, $N \subset M$ を G の正規部分群とするとき,次が成り立つ:

$$(G/N)/(M/N) \cong G/M$$

証明 $\forall x \in G, \forall y \in N$ をとる. $N \subset M$ なので (xy)M = xM である. 従って、写像 $\phi: G/N \to G/M$ を

$$\phi(xN) \coloneqq xM$$

とおくと ϕ は well-defined な準同型写像である.

また、 $x \in G$ に対して

$$\phi(xN) = 1_{G/M} \iff xM = M \implies x \in M$$

だから $\operatorname{Ker} \phi = M/N$ である. よって準同型定理 (第一同型定理) 3.17 を使うことで $(G/N)/(M/N) \cong G/M$ がわかる.

3.2 群の作用

定義 3.12: 群の作用

G を群, X を集合とする.

• G の X への左作用 (left action) とは写像

$$\phi \colon G \times X \to X, \ (g, x) \mapsto \phi(g, x)$$

であって以下の性質を充たすものを言う:

- (1) $\phi(1_G, x) = x$
- (2) $\phi(g, \phi(h, x)) = \phi(gh, x)$
- G の X への右作用 (right action) とは写像

$$\phi \colon X \times G \to X, \ (x, g) \mapsto \phi(x, g)$$

であって以下の性質を充たすものを言う:

- (1) $\phi(x, 1_G) = x$
- (2) $\phi(\phi(x, h), g) = \phi(hg, x)$

よく左作用 ϕ は $g\cdot x,\ gx\coloneqq\phi(g,x)$ と略記される.右作用 ϕ は $x\cdot g,\ xg,\ x^g\coloneqq\phi(g,x)$ などと略記される.

命題 3.12:

群 G が集合 X に左(右)から作用するとする。 $\forall g \in G$ を一つ固定すると、写像

$$\alpha \colon X \to X, \ x \mapsto g \cdot x$$

は全単射になる.

証明 左作用 $\forall x \in X$ に対して $y := g \cdot x$ とおく.

$$g^{-1} \cdot (g \cdot x) = (g^{-1}g) \cdot x = 1_G \cdot x = x = g^{-1} \cdot y$$

なので写像 $\beta: X \to X$, $x \mapsto g^{-1} \cdot x$ が α の逆写像である.

右作用 左作用のときとほぼ同様に $y \coloneqq x \cdot g$ とおくと,

$$(x \cdot g) \cdot g^{-1} = x \cdot (gg^{-1}) = x \cdot 1_G = y \cdot g^{-1}$$

であることから、 α^{-1} の逆写像の存在が示される.

3.2.1 種々の作用

定義 3.13: 剰余群への自然な作用

H を群 G の部分群とする. このとき $\forall g, \forall xH \in G/H$ に対して

$$g \cdot (xH) \coloneqq (gx)H \tag{3.2.1}$$

と定義すれば G の G/H への左作用が得られる. これを G の G/H への自然な作用と呼ぶ. 同様に $\forall g, \forall Hx \in H \backslash G$ に対して

$$(Hx) \cdot g \coloneqq H(xg)$$

と定義すれば G の $H \setminus G$ への右作用が得られる. これも自然な作用と呼ぶ.

証明 well-definedness を確認する.実際 xH の勝手な元 y は $h \in H$ を使って y = xh と書かれるから

$$gy = gxh \in (gx)H$$

であり、式 (3.2.1) の右辺は剰余類 xH の代表元の取り方によらない.右作用に関しても同様である.

定義 3.14: 随伴作用

G を群とし、 $\forall g \in G$ をとる. このとき、写像 $Ad(g): G \to G$ を

$$Ad(g)(h) := ghg^{-1}, \quad \forall h \in G$$

と定義すれば、 $Ad: G \times G \to G$ は G の G 自身への<u>左作用</u>になる. これを**随伴作用**^a (adjoint action) と呼ぶ.

証明 定義 3.12 の 2 条件を充していることを確認する.

- (1) $Ad(1_G)(h) = h$ より明らか.
- $(2) \forall g_1, g_2 \in G$ に対して

$$Ad(g_1g_2)(h) = (g_1g_2)h(g_1g_2)^{-1} = g_1(g_2hg_2^{-1})g_1^{-1} = Ad(g_1)(Ad(g_2)(h))$$

よりよい.

3.2.2 群の作用に関する諸定義

以下, 断らなければ作用は左作用であるとする.

^a 共役作用 (conjugation) とも言う.

定義 3.15: 軌道,等質空間,安定化群

群 G が集合 X に作用するとする.

- (1) $x \in X$ に対して、集合 $G \cdot x \coloneqq \{g \cdot x \mid g \in G\}$ を x の G による軌道 (orbit) と呼ぶ.
- (2) $x \in X$ に対して、集合 $G_x := \{g \in G \mid g \cdot x = x\}$ を x の安定化群 (stabilizer subgroup) と呼ぶ.
- (3) $\exists x \in X, G \cdot x = X$ であるとき,この作用は**推移的**^a (transitive) であると言う.このとき X は G の等質空間 (homogeneous space) であると言う.
- $(4) \forall x \in X, G_x = \{1_G\}$ であるとき、この作用は自由 b (free) であると言う.
- (5) $\exists x \in X, G_x = \{1_G\}$ であるとき、この作用は**効果的** c (effective) であると言う.
- ^a **可移**と言うこともある.
- b 半正則 (semiregular) とも言う.
- c 忠実 (faithful) とも言う.

命題 3.13:

群 G が X に作用するとする. $\forall x \in X$ を一つ固定する. このとき写像

$$\alpha \colon G/G_x \to G \cdot x, \ gG_x \mapsto g \cdot x$$

は全単射である. 従って

$$|G \cdot x| = (G : G_x).$$

<u>証明</u> gG_x の勝手な元 h は $g_1 \in G_x$ を用いて $h = gg_1$ と書かれるから $h \cdot x = (gg_1) \cdot x = g \cdot (g_1 \cdot x) = g \cdot x$ であり、 α は well-defined である.

 $\forall g_1, g_2 \in G \ \mathcal{E} \ \mathcal{E} \ \mathcal{E} \ \mathcal{E}$.

$$g_1 \cdot x = g_2 \cdot x \quad \Longleftrightarrow \quad (g_2^{-1}g_1) \cdot x = x$$

$$\iff \quad g_2^{-1}g_1 \in G_x$$

$$\iff \quad g_1 \in g_2G_x$$

$$\implies \quad g_1G_x = g_2G_x$$

だから α は単射である. 全射性は明らか.

定義 3.16: 正規化群,中心化群

H を群 G の部分群とする.

- (1) G の部分群 $N_G(H) := \{g \in G \mid gHg^{-1} = H\}$ を H の正規化群 (normalizer) と呼ぶ.
- (2) G の部分群 $Z_G(H) := \{g \in G \mid \forall h \in H, gh = hg\}$ を H の中心化群 (centralizer) と呼ぶ.
- (3) $Z(G) := Z_G(G)$ を G の中心 (center) と呼ぶ.

定義 3.17: 共役類

群 G の元 x, y に対して

$$\exists g \in G, \ y = gxg^{-1}$$

が成り立つとき、x と y は共役であると言う a . x と共役である元全体の集合を C(x) と書き、共役類 (conjugacy class) と呼ぶ.

3.3 環

公理 3.1: 環の公理

• R を集合とする. 環 (ring) とは, R と写像

$$+: R \times R \to R, (a, b) \mapsto a + b$$

 $\cdot: R \times R \to R, (a, b) \mapsto a \cdot b$

の組 $(R, +, \cdot)$ であって、 $\forall a, b, c \in R$ に対して以下を充たすもののことを言う:

- (R1) (R, +, 0) は可換群である
- **(R2)** $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- **(R3)** $a \cdot (b+c) = a \cdot b + a \cdot c$, $(a+b) \cdot c = a \cdot c + b \cdot c$
- **(R4)** $\exists 1 \in R, \ a \cdot 1 = 1 \cdot a = a$

(R2)-(R4) は、R が乗法・に関してモノイドであることを意味する.

- 環 $(R, +, \cdot)$ が以下の条件を充たすとき,R を可換環 (commutative ring) という:
 - (R5) $a \cdot b = b \cdot a$
- 可換環 (R, +, ·) において、∀a ∈ R \ {0} が乗法・に関して逆元を持つとき、R は体 (field) と呼ばれる。

定義 3.18: 単元

環 $(R, +, \cdot)$ を与える.

- $a \in R$ が乗法・に関して逆元を持つとき、a は**可逆元**または**単元**と呼ばれる.
- R の単元全体の集合を \mathbf{R}^{\times} と書く. 組 $(R^{\times},\cdot,1_R)$ を R の乗法群という.

(R4) を除いたものを環と呼ぶ流儀もある. このときは, (R1)-(R4) を充たすものを**単位元を持つ** 環 (unital ring, ring with unity) と呼ぶ.

さらに珍しい(古い?)が, $(\mathbf{R1})$, $(\mathbf{R3})$ のみを環の公理とする場合もある.これが Lie 「環」と呼ばれる所以である.

a 共役は明らかに同値関係である.

定義 3.19: 環の準同型・同型

 $(R_1, +, \cdot), (R_2, +, *)$ を環とする.

- 写像 ϕ : $R_1 \to R_2$ が以下の条件を充たすとき, ϕ は環の**準同型写像** (homomorphism) と呼ばれる:
 - $(1) \ \phi(x+y) = \phi(x) + \phi(y)$
 - (2) $\phi(x \cdot y) = \phi(x) * \phi(y)$
 - (3) $\phi(1_{R_1}) = 1_{R_2}$
- $\phi: R_1 \to R_2$ が環の準同型写像で逆写像 ϕ^{-1} を持ち, ϕ^{-1} もまた環の準同型写像であるとき, ϕ は同型写像 (isomorphism) であると言う.このことを記号として $R_1 \cong R_2$ と書く.

いちいち $(R, +, \cdot)$ と書くのは面倒なので、以下では環 R と略記する.

定義 3.20: 整域・零因子

R を零環でない**可換環**とする.

(1) R が整域 (domain) であるとは、次が成立することを言う:

$$\forall a, b \in R \setminus \{0\}, ab \neq 0$$

(2) $a \in R$ が以下の条件を充たすとき,a は零因子 (zero-divisor) であると言う:

$$\exists b \in R \setminus \{0\}, \ ab = 0$$

i.e. R が整域であるとは、零因子が 0 のみであること.

3.3.1 部分環

定義 3.21: <u>部分環</u>

R を環とする. R の部分集合 S が R の加法と乗法により環になり、かつ $1_R \in S$ ならば、S を R の 部分環 (subring)、R を S の拡大環と呼ぶ.

命題 3.14: 部分環の判定

R を環, $S \subset R$ を部分集合とする. S が部分環であるための必要十分条件は、次の条件が成り立つことである:

- (SR1) S は加法に関して部分群である
- (SR2) $a, b \in S \implies ab \in S$
- **(SR3)** $1_R \in S$

命題 3.15: 整域の部分環は整域

R が整域, S が R の部分環ならば, S も整域である.

<u>証明</u> $a,b \in S \setminus \{0\}$ ならば a,b は R の元としても 0 でない. 故に R は整域だから R の元として $ab \neq 0$ である. 部分環 S は R と加法逆元 0 および乗法を共有するから,S の元としても $ab \neq 0$ である. i.e. S は整域である.

定義 3.22: 核・像

 $\phi: R_1 \to R_2$ を環の準同型写像とする.

(1) ϕ の核 (kernel) を次のように定義する:

$$\operatorname{Ker} \phi := \left\{ x \in R_1 \mid \phi(x) = 0_{R_2} \right\} \subset R_1$$

 $\operatorname{Ker} \phi$ it R_1 $\mathcal{O} \setminus \mathcal{F} \cap \mathcal$

(2) ϕ の**像** (image) を次のように定義する:

$$\operatorname{Im} \phi := \left\{ \phi(x) \mid x \in R_1 \right\} \subset R_2$$

 $\operatorname{Im} \phi$ は R_2 の部分環である.

<u>証明</u> (1) ϕ は加法準同型なので、命題 3.4 から $\mathrm{Ker}\,\phi$ は R_1 の加法部分群である. ここで $a\in R,\,x\in\mathrm{Ker}\,\phi$ を任意にとると

$$\phi(ax) = \phi(a)\phi(x) = \phi(a)0_{R_2} = 0_{R_2}$$

なので $ax \in \text{Ker } \phi$ である. 以上より $\text{Ker } \phi$ は R_1 のイデアルである.

また, $\phi(1_{R_1}) = 1_{R_2} \neq 0_{R_2}$ なので $1_{R_1} \notin \text{Ker } \phi$ である. よって $\text{Ker } \phi \neq A$.

(2) 命題 3.14 の 3 条件を確認する.

(SR1) ϕ は加法準同型なので、命題 3.4 から $\mathrm{Im}\,\phi$ は加法部分群.

(SR2)

$$a, b \in \operatorname{Im} \phi \implies \exists x, y \in R_1, \ a = \phi(x), \ b = \phi(y) \implies ab = \phi(x)\phi(y) = \phi(xy) \in \operatorname{Im} \phi$$

(SR3) ϕ の定義から明らか.

命題 3.16: 環準同型の単射性判定

環準同型写像 $\phi: R_1 \to R_2$ に対して以下が成立する:

$$\phi$$
 が単射 \iff Ker $\phi = \{0_{R_1}\}$

証明 (\Longrightarrow) ϕ が単射であるとする. 命題 3.3-(1) より $0_{R_1} \in \operatorname{Ker} \phi$ だから,仮定より

$$x \in \operatorname{Ker} \phi \implies \phi(x) = \phi(0_{R_1}) = 0_{R_2} \implies x = 0_{R_1}$$

 (\longleftarrow) Ker $\phi = \{0_{R_1}\}$ とする. このとき命題 3.3-(2) より、 $\forall x, y \in R_1$ に対して

$$\phi(x) = \phi(y) \implies \phi(x) - \phi(y) = \phi(x) + \phi(-y) = \phi(x - y) = 0_{R_2}$$
$$\implies x - y \in \operatorname{Ker} \phi \implies x = y$$

i.e. ϕ は単射.

3.3.2 イデアル

環において正規部分群に対応するものがイデアルである.

定義 3.23: イデアル

R を環, I を R の部分集合とする.

- (1) I が以下を充たすとき、I は**左イデアル** (left ideal) と呼ばれる:
 - (a) I は R の加法部分群
 - (b) $\forall a \in R, \forall x \in I, \mathbf{ax} \in I$
- (2) I が以下を充たすとき、I は**右イデアル** (right ideal) と呼ばれる:
 - (a) I は R の加法部分群
 - (b) $\forall a \in R, \forall x \in I, \mathbf{xa} \in I$

I が左イデアルかつ右イデアルのとき,**両側イデアル** (two-sided ideal) と言う. R が可換環のときは 左右の区別はなく,単に**イデアル** (ideal) と言う.

 $\{0\}$, R は明らかに両側イデアルである. これらを**自明なイデアル**と呼ぶ.

定義 3.24: イデアルの生成

R を環とする.

• 任意の添字集合 Λ を与える.部分集合 $S\coloneqq \left\{s_{\lambda}\right\}_{\lambda\in\Lambda}\subset R$ を含む最小の<u>左</u>イデアル

$$\left\{ \sum_{\lambda \in \Lambda} a_{\lambda} s_{\lambda} \; \middle| \; a_{\lambda} \in R, \; \text{ 有限個の添字 } i_{1}, \dots, i_{n} \text{ を除いた} \atop \text{全ての添字 } \lambda \in \Lambda \text{ について } a_{\lambda} = 0 \right\}$$

は S で生成された R の左イデアル</mark>と呼ばれ、記号として $\sum_{\lambda \in \Lambda} Rs_{\lambda}$ と書かれる.

• S を含む最小の右イデアル

$$\left\{ \sum_{\lambda \in \Lambda} s_{\lambda} a_{\lambda} \; \middle| \; a_{\lambda} \in R, \; \substack{\text{有限個の添字 } i_{1}, \, \dots, \, i_{n} \text{ を除いた} \\ \text{全ての添字 } \lambda \in \Lambda} \ \text{について} \ a_{\lambda} = 0} \right\}$$

はS で生成されたR の右イデアル</mark>と呼ばれ、記号として $\sum_{\lambda \in \Lambda} s_{\lambda} R$ と書かれる.

• S を含む最小の両側イデアル

$$\left\{ \sum_{\lambda \in \Lambda} a_{\lambda} s_{\lambda} b_{\lambda} \; \middle| \; a_{\lambda}, \, b_{\lambda} \in R, \; \text{有限個の添字} \; i_{1}, ..., i_{n} \; \text{を除いた} \atop 全ての添字 \; \lambda \in \Lambda \; について \; a_{\lambda} = 0 \right\}$$

は $m{S}$ **で生成された** $m{R}$ **の両側イデアル**と呼ばれ、記号として $\sum Rs_{\lambda}R$ と書かれる.

- $\Lambda = \{1, \ldots, n\}$ のとき、S の生成する最小の左(resp. 右、両側)イデアルは $Rs_1 + \cdots + Rs_n$ (resp. $s_1R + \cdots + s_nR$, (s_1, \ldots, s_n)) と書かれる.特に R が可換環の場合,これは 有限生成なイデアル (finitly generated ideal) と呼ばれる.
- 1 つの元 $s \in R$ で生成される 可換環 R のイデアルを**単項イデアル** (principal ideal) と言い, (s) と書く.

定義 3.25: イデアルの和・積

R を環, $I, J \subset R$ を左(右) イデアルとする.

(1) I, J の和を次のように定義する:

$$I + J := \{ x + y \mid x \in I, y \in J \}$$

I+J は左(右)イデアルである.

(2) *I*, *J* の**積**を次のように定義する:

$$IJ := \{ x_1y_1 + \dots + x_ny_n \mid n \in \mathbb{N}, \ x_i \in I, \ y_i \in J \}$$

IJ は左(右) イデアルである.

定理 3.7: 剰余環

環 R とその自明でない両側イデアル I を与える. このとき,加法に関する剰余類 a 全体の集合 R/I の上の 2 つの二項演算 $+, \cdot : R/I \times R/I$ を

$$(x+I) + (y+I) := (x+y) + I$$
$$(x+I) \cdot (y+I) := (xy) + I$$

と定義するとこれらは well-defined であり、かつ $(R/I, +, \cdot)$ は環を成す。この環を R の I による 剰余環 (quotient ring) と言う.

R が可換環ならば、その剰余環も可換環になる.

証明 加法に関する well-definedness および可換群であることは、定理 3.2 より即座に従う.

 $[^]a$ もちろん,R が可換環ならば左・右・両側イデアルの定義は互いに同値である.この場合,有限生成なイデアルの記号として (s_1,\dots,s_n) を使うことが多いように思う.

 $[^]a+$ に関して可換群なので、左・右剰余類の区別はない.

well-definedness 乗法に関して示す.

剰余類剰余類 x+I, y+I の勝手な元は x'=x+a, y'=y+b $(a,b\in I)$ とかける. 故に

$$x'y' = (x + a)(y + b) = xy + xb + ay + ab$$

であるが、I が R の両側イデアルであることにより xb, ay, $ab \in I$ が言える.従って $x'y' \in (xy) + I$ であり、乗法の定義は剰余類の代表元の取り方に依らない.

環であること 環の公理を充していることを確認すれば良い.

- (R1) 定理 3.2 より従う. 零元 $0_{R/I} = I$ である.
- (R2) R の結合律より従う.
- (R3) R の分配律より従う.
- (R4) 乗法単位元は $1_{R/I} = 1 + I$ である.

系 3.8: 剰余環への自然な全射準同型

環 R とその両側イデアル I を与える.このとき標準射影(定義??) $\pi\colon R\to R/I,\ x\mapsto x+I$ は R/I を剰余環と見做すと全射準同型写像になる.また, $\operatorname{Ker} \pi=I$ である. π のことを自然な全射準同型と呼ぶ.

<u>証明</u> 加法 + に関しては剰余群の全射準同型の場合と同様. 後は定義 3.19-(2), (3) の成立を確かめれば良い. 剰余環の乗法の定義より, $\forall x, y \in R$ に対して

$$\pi(xy) = (xy) + I = (x+I) \cdot (y+I) = \pi(x) \cdot \pi(y)$$

だから乗法を保存する. 乗法単位元に関しては

$$\pi(1_R) = 1_R + I = 1_{R/I}.$$

従って π は環の準同型である.

定義 3.26: 単項イデアル整域

任意のイデアルが単項イデアルである整域を**単項イデアル整域** (principal ideal domain; PID) と呼ぶ.

3.3.3 準同型定理

定理 3.9: 環の準同型定理 (第一同型定理)

環の準同型写像 $\phi\colon R\to S$ を与える。 $\pi\colon R\to R/\operatorname{Ker}\phi$ を自然な準同型とする。このとき,図 3.1 が 可換図式となるような準同型 $\psi\colon R/\operatorname{Ker}\phi\to S$ がただ一つ存在し, $\psi\colon R/\operatorname{Ker}\phi\to\operatorname{Im}\phi$ は同型写像 になる.

図 3.2: 環の準同型定理

証明 群の準同型定理により、 ψ が加法群の準同型として一意的に存在し、 ${\rm Im}\,\phi$ への加法群の同型となる. よって環の準同型の定義から、後は ψ が積を保つことを示せば良い.

 $I\coloneqq \mathrm{Ker}\,\phi$ とおく. R/I の勝手な 2 つの元は $x+I,\,y+I$ $(x,\,y\in R)$ と書ける. $\phi=\psi\circ\pi$ は環の準同型なので、

$$\psi(x+I)\psi(y+I) = (\psi \circ \pi(x))(\psi \circ \pi(y)) = \phi(x)\phi(y) = \phi(xy) = \psi(xy+I).$$

従って、 ψ は環の準同型.

定理 3.10: 環の準同型定理 (第三同型定理)

R を環, $I \subset J$ を自明でない両側イデアルとするとき、次が成り立つ:

- (1) 環の準同型 ϕ : $R/I \to R/J$ であって, $\phi(x+I) = x+J$ となるものが存在する.
- (2) $(R/I)/(J/I) \cong R/J$

3.3.4 環の直積

定義 3.27: 環の直積

 R_1, \ldots, R_n を環とする. 直積集合 $R := R_1 \times \cdots \times R_n$ の上に加法 $+: R \times R \to R$ と乗法 $\cdot: R \times R \to R$ を次のように定めると、組 $(R, +, \cdot)$ は環になる.この環を R_1, \ldots, R_n の**直積**と呼ぶ:

$$(a_1, \ldots, a_n) + (b_1, \ldots, b_n) := (a_1 + b_1, \ldots, a_n + b_n),$$

 $(a_1, \ldots, a_n) \cdot (b_1, \ldots, b_n) := (a_1b_1, \ldots, a_nb_n)$

3.3.5 中国式剰余定理

定理 3.11: 中国式剰余定理

 $m, n \neq 0$ が互いに素な整数ならば以下が成り立つ:

 $\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$

証明 写像 $\phi: \mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ を

$$\phi(x + mn\mathbb{Z}) := (x + m\mathbb{Z}, x + n\mathbb{Z})$$

と定義する. 明らかに ϕ は環の準同型写像である.

well-definedness

 $\forall y \in x + mn\mathbb{Z}$ は $a \in \mathbb{Z}$ を使って y = x + mna と書ける. 従って $y \in x + m\mathbb{Z}$ かつ $y \in x + n\mathbb{Z}$ で あり、 ϕ の定義は剰余類 $x + mn\mathbb{Z}$ の代表元の取り方によらない.

φ は全単射

 $|\mathbb{Z}/mn\mathbb{Z}| = |\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}| = mn < \infty$ だから、補題??より ϕ が全射であることを示せば十分. $orall (x+m\mathbb{Z},y+n\mathbb{Z})\in \mathbb{Z}/m\mathbb{Z} imes \mathbb{Z}/n\mathbb{Z}$ をとる.仮定より m,n が互いに素なので, \mathbb{Z} が単項イデアル 整域であることから ma + nb = 1 を充たす $a, b \in \mathbb{Z}$ が存在する. 従って z := may + nbx とおくと,

$$z = may + (1 - ma)x = x + ma(y - x) = (1 - nb)y + nbx = y + nb(x - y)$$

が成立する. i.e. $z \in x + m\mathbb{Z}$ かつ $z \in y + n\mathbb{Z}$ であり,

$$(x + m\mathbb{Z}, y + n\mathbb{Z}) = \phi(z + mn\mathbb{Z}) \in \operatorname{Im} \phi$$

が言えた.

系 3.12: 古典的な中国式剰余定理

 $m, n \neq 0$ を互いに素な整数とする. ma + nb = 1 を充たす整数 $a, b \in \mathbb{Z}$ をとる. このとき $\forall x, y \in \mathbb{Z}$ に対して z := may + nbx とおけば、

> $z \equiv x \mod m$, $z \equiv y \mod n$

が成り立つ.

証明 定理 3.11 の証明から即座に従う.

より一般化すると次のようになる:

定理 3.13: 可換環における中国式剰余定理

R を可換環, $I_1, \ldots, I_n \subseteq R$ を両側イデアルとする. イデアルの和に関して

$$i \neq j \implies I_i + I_j = R$$

が充たされている^aとき,以下が成立する:

(1)
$$1 \le \forall i \le n, I_i + \prod_{j \ne i} I_j = R$$

(2) $I_1 \cap \cdots \cap I_n = \prod_{j \ne i}^n I_j$

$$(2) I_1 \cap \cdots \cap I_n = \prod^n I_{\mathfrak{I}}$$

(3)
$$R/(I_1 \cap \cdots \cap I_n) \cong R/I_1 \times \cdots \times R/I_n$$

a このことを、イデアル I_1, \ldots, I_n は互いに素であると言う.

<u>証明</u> (1) i=1 とする. $I_1+(I_2I_3\cdots I_n)$ は R のイデアルだから, $I_1+(I_2I_3\cdots I_n)\supset R$ を示せばよい. 仮定より $2<\forall i< n$ に対して

$$\exists x_i \in I_1, \exists y_i \in I_i, x_i + y_i = 1$$

である. このとき

$$(x_2 + y_2)(x_3 + y_3) \cdots (x_n + y_n) = 1$$

であるが、左辺を展開すると $y_2y_3\cdots y_n\in I_2I_3\cdots I_n$ かつそれ以外の項は I_1 の元である。よって $1\in I_1+(I_2I_3\cdots I_n)$ であるが、イデアルの定義から $a\in R$ \implies $a=a1\in I_1+(I_2I_3\cdots I_n)$ がわかる。

 $n\geq 2$ に関する数学的帰納法により示す. $n=2 \text{ のとき, } I_1I_2\subset I_1\cap I_2 \text{ は明らか. 仮定より } x+y=1 \text{ を充たす } x\in I_1,\,y\in I_2 \text{ が存在する.}$ 従って

$$a \in I_1 \cap I_2 \implies a = ax + ay$$

だが、 $a \in I_2$ かつ R が可換環であることから $ax \in I_1I_2$ であり、 $a \in I_1$ であることから $ay \in I_1I_2$ である. よって $a \in I_1I_2$ が言えた.

n-1 まで成り立っているとすると、帰納法の仮定は

$$I_1 \cap \cdots \cap I_{n-1} = I_1 I_2 \cdots I_{n-1}.$$

(1) より $(I_1 \cdots I_{n-1}) + I_n = R$ なので、n = 2 の場合の証明から

$$I_1 \cap \cdots \cap I_{n-1} \cap I_n = (I_1 \cdots I_{n-1}) \cap I_n = I_1 \cdots I_{n-1} I_n.$$

(3) $n \ge 2$ に関する数学的帰納法により示す. n = 2 のとき、準同型写像 $\phi \colon R \to R/I_1 \times R/I_2$ を

$$\phi(a) \coloneqq ((a+I_1), (a+I_2))$$

で定義する.

$$a \in \operatorname{Ker} \phi \iff \phi(a) = (I_1, I_2) \iff a \in I_1$$
 かつ $a \in I_2$

なので $\operatorname{Ker} \phi = I_1 \cap I_2$ である.

 $\forall c \in R/I_1 \times R/I_2$ は $a,b \in R$ を使って $c=(a+I_1,b+I_2)$ と書ける. ここで仮定より、ある $x \in I_1, y \in I_2$ が存在して x+y=1 を充たすから、 $z \coloneqq ay + bx$ とおくと

$$z = a + (b - a)x \in a + I_1, \quad z = b + (a - b)y \in b + I_2$$

である. i.e. $c=\phi(z)$ であり、 ${\rm Im}\,\phi=R/I_1\times R/I_2$ がわかった. 従って、環準同型定理より

$$R/(I_1 \cap I_2) \cong R/I_1 \times R/I_2$$

が示された.

n-1 まで成り立っているとすると、帰納法の仮定は

$$R/I_1 \cap \cdots \cap I_{n-1} \cong R/I_1 \times \cdots \times R/I_{n-1}.$$

 $J := I_1 I_2 \cdots I_{n-1}$ とおく. (2) より $J = I_1 \cap \cdots \cap I_{n-1}$ である. よって (1) からある $x \in J$, $y \in I_n$ が存在して x + y = 1 を充たすので, n = 2 の場合の証明をそのまま適用することができて,

$$R/(I_1 \cap \dots \cap I_n) = R/(J \cap I_n) \cong R/J \times R/I_n$$
$$= R/(I_1 \cap \dots \cap_{n-1}) \times R/I_n$$
$$\cong R/I_1 \times \dots \times R/I_n.$$

系 3.14:

定理 3.13 の条件が成立しているとき、任意の整数 a_1, \ldots, a_n に対して

$$R/(I_1^{a_1} \cap \cdots \cap I_n^{a_n}) \cong R/I_1^{a_1} \times \cdots \times R/I_n^{a_n}$$

<u>証明</u> イデアル I,J が互いに素であるとき, $x \in I, y \in J$ であって x+y=1 を充たすものを取ることができる.このとき, $\forall a,b \in \mathbb{Z}$ に対して

$$(x+y)^{a+b} = 1$$

であるが、左辺を展開して出現する項は全て I^a に属するか J^b に属するかのどちらかである. i.e. $1 \in I^a + J^b$ であるから、 $I^a + J^b = R$ である.

3.4 加群

公理 3.2: 加群の公理

• R を環とする. E R 加群 (left R-module) とは、可換群 (M, +, 0) と写像

$$\cdot: R \times M \to M, \ (a, x) \mapsto a \cdot x$$

の組 $(M, +, \cdot)$ であって, $\forall x, x_1, x_2 \in M, \forall a, b \in R$ に対して以下を充たすもののことを言う:

(LM1) $a \cdot (b \cdot x) = (ab) \cdot x$

(LM2) $(a+b) \cdot x = a \cdot x + b \cdot x$

(LM3) $a \cdot (x_1 + x_2) = a \cdot x_1 + a \cdot x_2$

(LM4) $1 \cdot x = x$

ただし、 $1 \in R$ は環 R の乗法単位元である.

• R を環とする. 右 R 加群 (left R-module) とは, 可換群 (M, +, 0) と写像

$$\cdot: M \times R \to M, (x, a) \mapsto x \cdot a$$

の組 $(M,+,\cdot)$ であって、 $\forall x,\,x_1,\,x_2\in M,\,\,\forall a,\,b\in R$ に対して以下を充たすもののことを言う:

(RM1) $(x \cdot b) \cdot a = x \cdot (ba)$

(RM2) $x \cdot (a+b) = x \cdot a + x \cdot b$

(RM3) $(x_1 + x_2) \cdot a = x_1 \cdot a + x_2 \cdot a$

(RM4) $x \cdot 1 = x$

• R, S を環とする. (R, S) 両側加群 ((R, S)-bimodule) とは、可換群 (M, +, 0) と写像

$$\cdot_{\mathbf{L}}: R \times M \to M, \ (a, x) \mapsto a \cdot_{\mathbf{L}} x$$

$$\cdot_{\mathbf{R}}: M \times R \to M, \ (x, a) \mapsto x \cdot_{\mathbf{R}} a$$

の組 $(M,+,\cdot_{\mathbf{L}},\cdot_{\mathbf{R}})$ であって, $\forall x\in M, \ \forall a\in R, \ \forall b\in S$ に対して以下を充たすもののことを言う:

(BM1) 左スカラー乗法 \cdot_L に関して M は左 R 加群になる

(BM2) 右スカラー乗法 \cdot_R に関して M は右 S 加群になる

(BM3) $(a \cdot Lx) \cdot Rb = a \cdot L(x \cdot Rb)$

 a この写像・は**スカラー乗法** (scalar multiplication) と呼ばれる.

R が**可換環**の場合,(LM1) と (RM1) が同値になるので,左 R 加群と右 R 加群の概念は同値になる.これを単に R 加群 (R-module) と呼ぶ.

R が体の場合、R 加群のことを R-ベクトル空間と呼ぶ.

以下では,なんの断りもなければ R 加群と言って左 R 加群を意味する.

定義 3.28: 部分加群

R を環, M を R 加群とする. 部分集合 $N\subset M$ が M の演算によって R 加群になるとき, N を M の**部分加群** (submodule) と呼ぶ.

命題 3.17: 部分加群の判定法

N が部分加群であることと次の条件が成り立つことは同値である:

(SM1) N は + に関して M の部分群

(SM2) $a \in R, n \in N \implies an \in N$

定義 3.29: 部分加群の共通部分・和

M を R 加群, N_1 , N_2 をその部分加群とする. このとき,以下の二つの集合は部分加群になる:

(1) $N_1 \cap N_2$

(2) $N_1 + N_2 := \{ x + y \mid x \in N_1, y \in N_2 \}$

3.4.1 加群の生成

定義 3.30: 線形独立

M を R 加群, $S = \{x_1, \ldots, x_n\}$ を M の有限部分集合とする.

(1) S が線形従属であるとは、

$$\exists a_1, \ldots, a_n \in \mathbb{R}^n \text{ s.t. } \exists i \in \{1, \ldots, n\}, \ a_i \neq 0, \ a_1 x_1 + \cdots + a_n x_n = 0$$

が成り立つことを言う.

- (2) S が線形従属でないとき, S は**線形独立** (linearly independent) であると言う. \emptyset は線形独立であると見做す.
- (3) 与えられた *S* に対して

$$a_1x_1 + \cdots + a_nx_n, \quad a_i \in R$$

の形をした R の元を S の<mark>線型結合 (linear combination) と呼ぶ. 0 は空集合の線形結合と見做す.</mark>

定義 3.31: 加群の生成

M を左 R 加群, Λ を任意の添字集合とする.任意の部分集合 $S\coloneqq \left\{x_{\lambda}\right\}_{\lambda\in\Lambda}\subset R$ を与える.

• S の任意の有限部分集合が定義 3.30 の意味で一次独立であるとき, S は一次独立であると言う.

•

$$M = \left\{ \sum_{\lambda \in \Lambda} a_{\lambda} x_{\lambda} \mid a_{\lambda} \in R, \text{ 有限個の添字 } i_{1}, ..., i_{n} \text{ を除いた} \atop \underline{a_{\lambda} = 0} \right\}$$

が成り立つとき, S は M を張る, または生成する (generate) と言い, S のことを M の生成系 (generator) と呼ぶ.

特に $\Lambda = \{1, ..., n\}$ のとき、M は R 上有限生成な加群 (finitely generated) と呼ばれる.

• S が一次独立で、かつ M を生成するとき、S を M の基底 (basis) と言う.

命題 3.18: 部分加群の生成

M を左 R 加群, Λ を任意の添字集合とする. 部分集合 $S\coloneqq \left\{x_{\lambda}\right\}_{\lambda\in\Lambda}\subset R$ を与える. このとき, 集合

はMの部分加群になる.

証明 命題 3.17 の 2 条件を充していることを確認する.

(SM1) 加法単位元 0 は空集合の線型結合と見做すので $0 \in \langle S \rangle$ である.

和,逆元について閉じていること $\langle S \rangle$ の勝手な 2 つの元 u, v は $a_i, b_i \in R, x_i, y_i \in S$ によって

$$u = a_1 x_1 + \dots + a_n x_n, \quad v = b_1 y_1 + \dots + b_n y_n \quad (m, n < \infty)$$

と書ける. よって $u \pm v \in \langle S \rangle$ である.

(SM2) $c \in R$ ならば、 $\forall v = a_1x_1 + \cdots + a_nx_n \in \langle S \rangle$ に対して

$$cv = (ca_1)x_1 + \dots + (ca_n)x_n \in \langle S \rangle$$
.

定義 3.32:

 $\langle S \rangle$ のことを S によって生成された部分加群と呼ぶ. $\langle S \rangle$ のことを $\sum_{x \in S} Ax$ とも書く. $\Lambda = \{1, \ldots, n\}$ のときは $\langle x_1, \ldots, x_n \rangle$,あるいは $Ax_1 + \cdots + Ax_n$ とも書く.

R のイデアルがイデアルとして有限生成であることは,R 加群として有限生成であることと同値である.

3.4.2 加群の準同型

定義 3.33: 加群の準同型

 M_1, M_2 を環 R 上の加群とする.

- 写像 $f: M_1 \to M_2$ が $\forall a \in R \, \forall x \in M_1$ に対して以下の条件を充たすとき,f は R 加群の準同型であると言われる.
 - (1) f は加法 + に関して可換群の準同型である
 - (2) f(ax) = af(x)

R 加群の準同型全体の集合を $\operatorname{Hom}_R(M_1, M_2)$ と書く.

• 写像 $f: M_1 \to M_2$ が R 加群の準同型であり、逆写像が存在してそれも R 加群の準同型であるとき、f を R 加群の同型と呼び、 $M \cong N$ と書く.

R が体または斜体のとき,R 加群の準同型のことを**線型写像**と呼ぶ.

命題 3.19: Hom_R 加群

R を<u>可換群</u>とする. このとき, $\operatorname{Hom}_R(M_1, M_2)$ の上の加法 +, スカラー乗法・を次のように定めると, 組 $(\operatorname{Hom}_R(M_1, M_2), +, \cdot)$ は左 R 加群になる:

- (1) $\forall x \in M_1, (f+g)(x) := f(x) + g(x)$
- (2) $\forall a \in R, \forall x \in M_1, (af)(x) := af(x)$

証明 命題 3.17 の 2 条件を充たしていることを確かめる.

(SM1) + に関して命題 3.3 の 3 条件を確認する.

(SG1) 零写像を 0 とすると、明らかに $0 \in \text{Hom}_R(M_1, M_2)$ である.

(SG2)

$$f, g \in \operatorname{Hom}_{R}(M_{1}, M_{2})$$

$$\Rightarrow \forall a \in R, \forall x, y \in M_{1},$$

$$(f+g)(x+y) = f(x) + g(x) + f(y) + g(y) = (f+g)(x) + (f+g)(y),$$

$$(f+g)(ax) = f(ax) + g(ax) = (a(f+g))(x)$$

$$\Rightarrow f+g \in \operatorname{Hom}_{R}(M_{1}, M_{2})$$

ただし、赤文字の部分でRが+について可換群であることを使った。

(SG3)

$$f \in \operatorname{Hom}_{R}(M_{1}, M_{2})$$

$$\Rightarrow \forall a \in R, \forall x, y \in M_{1},$$

$$(-f)(x+y) = -f(x+y) = (-f)(x) + (-f)(y),$$

$$(-f)(ax) = -f(ax) = (a(-f))(x)$$

$$\Rightarrow -f \in \operatorname{Hom}_{R}(M_{1}, M_{2})$$

(SM2) R が可換環なので

$$r \in R, f \in \operatorname{Hom}_{R}(M_{1}, M_{2})$$

$$\Rightarrow \forall a \in R, \forall x, y \in M_{1},$$

$$(rf)(x+y) = rf(x+y) = (rf)(x) + (rf)(y),$$

$$(rf)(ax) = \operatorname{ra}_{T}f(x) = \operatorname{ar}_{T}f(x) = (a(rf))(x)$$

$$\Rightarrow af \in \operatorname{Hom}_{R}(M_{1}, M_{2})$$

である.

3.4.3 剰余加群

M を R 加群, $N \subset M$ を部分加群とする。 M は + に関して可換群なので N は + に関して正規部分群であり, 剰余群 M/N が定義できる。 さらにスカラー乗法 $\cdot: R \times M/N \to M/N$ を上手く定義すれば M/N がた R 加群になる:

定理 3.15: 剰余加群

左 R 加群 M とその部分加群 N を与える. このとき、加法に関する剰余類 a 全体の集合 M/N の上の 2 つの二項演算 $+: M/N \times M/N \to M/N$ 、 $\cdot: R \times M/N \to M/N$ を

$$(x+N) + (y+N) := (x+y) + N$$
$$a \cdot (x+N) := (ax) + N$$

と定義するとこれらは well-defined であり、かつ $(M/N, +, \cdot)$ は R 加群をなす。この環を M の N による剰余加群 (quotient module) と言う.

a + に関して可換群なので、左・右剰余類の区別はない.

証明 加法に関する well-definedness および可換群であることは、定理 3.2 より即座に従う.

well-definedness 加法に関する well-definedness は定理 3.2 より従う. スカラー乗法に関して示す.

剰余類剰余類 x+N の勝手な元は x'=x+n $(n \in N)$ とかける. 故に $\forall a \in R$ に対して

$$ax' = a(x+n) = ax + an$$

であるが,N が M の部分加群であることにより $an \in N$ が言える.従って $ax' \in (ax) + N$ であり,乗法の定義は剰余類の代表元の取り方に依らない.

R 加群であること $\pm R$ 加群の公理を充していることを確認すれば良い.

(LM1)
$$a \cdot (b \cdot (x+N)) = a \cdot ((bx) + N) = (abx) + N = (ab) \cdot (x+N)$$

(LM2)
$$(a+b) \cdot (x+N) = (ax+bx) + N = a \cdot (x+N) + b \cdot (x+N)$$

(LM3)
$$a \cdot ((x+N) + (y+N)) = (a(x+y)) + N = (ax+ay) + N = a \cdot (x+N) + a \cdot (y+N)$$

(LM4) $1_R \cdot (x+N) = (1_R x) + N = x+N$

系 3.16: 剰余加群への自然な全射準同型

R 加群 M とその部分加群 N を与える.このとき標準射影(定義??) $\pi\colon M\to N/I,\ x\mapsto x+N$ は M/N を剰余加群と見做すと全射準同型写像になる.また, $\operatorname{Ker} \pi=N$ である. π のことを自然な全 射準同型と呼ぶ.

<u>証明</u> 加法 + に関しては剰余群の全射準同型の場合と同様. 後は定義 3.33-(2) の成立を確かめれば良い. 実際,剰余加群のスカラー乗法の定義より $\forall a \in R, \forall x \in M$ に対して

$$\pi(ax) = (ax) + I = a \cdot (x+N) = a \cdot \pi(x)$$

だから良い.

定義 3.34: 核・像・余核

 $f: M \to N$ を R 加群の準同型とする.

- (1) Ker $f := \{ x \in M \mid f(x) = 0 \}$ を f の核 (kernel),
- (2) $\operatorname{Im} f := \{ f(x) \mid x \in M \}$ を f の像 (image),
- (3) Coker $f := N/\operatorname{Im} f$ を余核 (cokernel) と呼ぶ.

命題 3.20:

加群の準同型写像 $f: M \to N$ を与える. Ker f, Im f はそれぞれ M, N の部分 R 加群であり, Coker f は R 加群である.

証明 $\operatorname{Ker} f \subset M$ は部分 R 加群

命題 3.17 の 2 条件を充たしていることを確かめる.加法に関する群準同型の性質から $f(0_M)=0_N$ が 従う.加群の準同型の定義から

$$x, y \in \operatorname{Ker} f \implies f(x+y) = f(x) + f(y) = 0, f(-x) = -f(x) = 0$$

$$\implies x + y, -x \in \operatorname{Ker} f$$

より + に関して部分群であるとわかった(条件 (SM1)),

$$\forall a \in R, \forall x \in \operatorname{Ker} f, f(ax) = af(x) = a0 = 0 \implies ax \in \operatorname{Ker} f$$

より条件 (SM2) も充たす.

$\mathrm{Im} f \subset N$ は部分 R 加群

命題 3.17 の 2 条件を充たしていることを確かめる. まず, $0_N = f(0_M)$ である.

$$f(x), f(y) \in \operatorname{Im} f \implies f(x) + f(y) = f(x+y), -f(x) = f(-x)$$

 $\implies 0, f(x) + f(y), -f(x) \in \operatorname{Im} f$

より + に関して部分群であるとわかる (条件 (SM1)),

$$\forall a \in R, \forall f(x) \in \text{Im } f, \ af(x) = f(ax) \in \text{Im } f$$

より条件 (SM2) も充たす.

$\operatorname{Coker} f$ は R 加群

 $\operatorname{Im} f$ が部分加群とわかったので、定理 3.15 から $\operatorname{Coker} f$ も R 加群である.

3.4.4 準同型定理

群,環の準同型定理(定理 3.17,定理 3.9)と同様に加群の準同型定理も成り立つ.証明はほとんど同じなので省略する.

定理 3.17: 加群の準同型定理 (第一同型定理)

R 加群の準同型写像 $\phi\colon M\to N$ を与える. $\pi\colon M\to M/\operatorname{Ker}\phi$ を自然な全射準同型とする. このとき、図 3.3 が可換図式となるような準同型 $\psi\colon M/\operatorname{Ker}\phi\to N$ がただ一つ存在し、 $\psi\colon M/\operatorname{Ker}\phi\to\operatorname{Im}\phi$ は同型写像になる.

$$M \xrightarrow{\phi} N$$

$$\downarrow^{\pi}$$

$$M/\operatorname{Ker} \phi$$

図 3.3: 加群の準同型定理

定理 3.18: 環の準同型定理 (第二,第三同型定理)

M を R 加群, N_1 , N_2 を部分加群とする.

- (1) $(N_1 + N_2)/N_2 \cong N_1/N_1 \cap N_2$
- (2) $N_1 \subset N_2$ ならば $(M/N_1)/(N_2/N_1) \cong M/N_2$

3.5 直積・直和・自由加群

R を環, Λ を任意の添字集合とする. $\forall \lambda \in \Lambda$ に対応して R 加群 M_λ が与えられているとする. R 加群の族 $\big\{(M_\lambda,\,+,\,\cdot\,)\big\}_{\lambda\in\Lambda}$ の集合としての直積は

$$\prod_{\lambda \in \Lambda} M_{\lambda} = \{ (x_{\lambda})_{\lambda \in \Lambda} \mid \forall \lambda \in \Lambda, \ x_{\lambda} \in M_{\lambda} \}$$

と書かれるのだった.

定義 3.35: 加群の直積・直和

 Λ , $\{(M_{\lambda}, +, \cdot)\}_{\lambda \in \Lambda}$ を上述の通りにとる.

(1) 集合 $\prod_{\lambda \in \Lambda} M_{\lambda}$ の上の加法 + およびスカラー乗法・を次のように定めると,組 $\left(\prod_{\lambda \in \Lambda} M_{\lambda}, +, \cdot\right)$ は左 R 加群になる.これを加群の族 $\left\{(M_{\lambda}, +, \cdot)\right\}_{\lambda \in \Lambda}$ の直積 (direct product) と呼ぶ:

$$+: \prod_{\lambda \in \Lambda} M_{\lambda} \times \prod_{\lambda \in \Lambda} M_{\lambda} \to \prod_{\lambda \in \Lambda} M_{\lambda}, \ \left((x_{\lambda})_{\lambda \in \Lambda}, (y_{\lambda})_{\lambda \in \Lambda} \right) \mapsto (x_{\lambda} + y_{\lambda})_{\lambda \in \Lambda}$$
$$\cdot : R \times \prod_{\lambda \in \Lambda} M_{\lambda} \to \prod_{\lambda \in \Lambda} M_{\lambda}, \ \left(a, (x_{\lambda})_{\lambda \in \Lambda} \right) \mapsto (a \cdot x_{\lambda})_{\lambda \in \Lambda}$$

添字集合 Λ が有限集合 $\{1,\ldots,n\}$ であるときは

$$M_1 \times M_2 \times \cdots \times M_n$$

とも書く.

(2) 加群の直積 $\left(\prod_{\lambda\in\Lambda}M_{\lambda},+,\cdot\right)$ を与えると、次のように定義される部分集合 $\bigoplus_{\lambda\in\Lambda}M_{\lambda}$ は部分 R 加群をなす.これを加群の族 $\left\{(M_{\lambda},+,\cdot)\right\}_{\lambda\in\Lambda}$ の**直和** (direct sum) と呼ぶ:

$$\bigoplus_{\lambda \in \Lambda} M_{\lambda} \coloneqq \left\{ (x_{\lambda})_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} M_{\lambda} \, \middle| \begin{array}{c} \text{有限個の添字 } i_{1}, ..., i_{n} \in \Lambda \text{ を除いた} \\ \text{全ての添字 } \lambda \in \Lambda \text{ について } x_{\lambda} = 0 \end{array} \right\}$$

添字集合 Λ が有限集合 $\{1,\ldots,n\}$ であるときは

$$M_1 \oplus M_2 \oplus \cdots \oplus M_n$$

とも書く.

添字集合 Λ が有限のときは R 加群として $\prod_{\lambda\in\Lambda}M_\lambda\cong\bigoplus_{\lambda\in\Lambda}M_\lambda$ である. Λ が無限集合の時は,包含写像 $\bigoplus_{\lambda\in\Lambda}M_\lambda\hookrightarrow\prod_{\lambda\in\Lambda}M_\lambda$ によって準同型であるが,同型とは限らない.

定義 3.36: 標準射影,標準包含

加群の族 $\left\{(M_{\lambda},\,+,\,\cdot\,)\right\}_{\lambda\in\Lambda}$ を与える.

(1) 各添字 $\mu \in \Lambda$ に対して、次のように定義される写像 π_{μ} : $\prod_{\lambda \in \Lambda} M_{\lambda} \to M_{\mu}$ のことを**標準射影** (canonical projection) と呼ぶ:

$$\pi_{\mu}((x_{\lambda})_{\lambda \in \Lambda}) := x_{\mu}$$

(2) 各添字 $\mu \in \Lambda$ に対して、次のように定義される写像 $\iota_{\mu} \colon M_{\mu} \hookrightarrow \bigoplus_{\lambda \in \Lambda} M_{\lambda}$ のことを**標準包含** (canonical inclusion) と呼ぶ:

$$\iota_{\mu}(x) \coloneqq (y_{\lambda})_{\lambda \in \Lambda}, \quad \text{w/} \quad y_{\lambda} \coloneqq \begin{cases} x, & : \lambda = \mu \\ 0. & : \text{ otherwise} \end{cases}$$

加群の族をいちいち $\left\{(M_{\lambda},\,+,\,\cdot\,)\right\}_{\lambda\in\Lambda}$ と書くと煩雑なので,以降では省略して $\left\{M_{\lambda}\right\}_{\lambda\in\Lambda}$ と書くことにする.

3.5.1 普遍性

核,余核,直積,直和の普遍性による特徴付けを行う.これらは全て左 R 加群の圏 R-Mod における極限,余極限である.

命題 3.21: 核・余核の普遍性

左 R 加群の準同型写像 $f: M \longrightarrow M'$ を与える. また $i: \operatorname{Ker} f \hookrightarrow M, x \mapsto x$ を標準的包含, $p: M' \to \operatorname{Coker} f, x \mapsto x + \operatorname{Coker} f$ を標準的射影とする. このとき以下が成り立つ:

(核の普遍性) 任意の左R加群Nに対して,写像

$$i_* \colon \operatorname{Hom}_R(N, \operatorname{Ker} f) \longrightarrow \big\{ g \in \operatorname{Hom}_R(N, M) \mid f \circ g = 0 \big\},$$

$$h \longmapsto i \circ h$$

は well-defined な全単射である. i.e. $f\circ g=0$ を充たす任意の $g\in \operatorname{Hom}_R(N,M)$ に対して、 ある $h\in \operatorname{Hom}_R(N,\operatorname{Ker} f)$ が一意的に存在して図式 3.4a を可換にする.

(余核の普遍性) 任意の左 R 加群 N に対して, 写像

$$p^*$$
: Hom_R (Coker f, N) \longrightarrow { $g \in \text{Hom}_R(M', N) \mid g \circ f = 0$ }, $h \longmapsto h \circ p$

は well-defined な全単射である. i.e. $g\circ f=0$ を充たす任意の $g\in \operatorname{Hom}_R(M',N)$ に対して、ある $h\in \operatorname{Hom}_R(\operatorname{Coker} f,N)$ が一意的に存在して図式 $3.4\mathbf{b}$ を可換にする.

(a) 核の普遍性

(b) 余核の普遍性

<u>証明</u> (1) well-definedness 核の定義により $f \circ i = 0$ だから、 $\forall h \in \operatorname{Hom}_R(N, \operatorname{Ker} f), f \circ (i_*(h)) = (f \circ i) \circ h = 0.$

全単射であること $\forall g \in \big\{g \in \operatorname{Hom}_R(N,M) \mid f \circ g = 0\big\}$ をとる. このとき $\forall x \in N$ に対して $f\big(g(x)\big) = 0 \iff g(x) \in \operatorname{Ker} f$ なので、写像

$$h: N \longrightarrow \operatorname{Ker} f, \ x \longmapsto g(x)$$

は well-defined かつ $g = i \circ h \in \operatorname{Im} i_*$ が成り立つ. i.e. i_* は全射.

また, $h, h' \in \operatorname{Hom}_{R}(N, \operatorname{Ker} f)$ に対して

$$i_*(h) = i_*(h') \iff i \circ h = i \circ h' \implies \forall x \in N, \ i(h(x)) = i(h'(x))$$

だが、i は単射なので $\forall x \in N$ 、h(x) = h'(x) \iff h = h' が成り立つ. i.e. i_* は単射.

(2) well-definedness 余核の定義により $p\circ f=0$ だから、 $\forall h\in \operatorname{Hom}_R\left(\operatorname{Coker} f,N\right),\ p^*(h)\circ f=h\circ (p\circ f)=0.$

全単射であること $\forall g \in \big\{g \in \operatorname{Hom}_R(M',N) \mid g \circ f = 0\big\}$ をとる. このとき $\forall x' \in x + \operatorname{Coker} f$ はある $g \in M$ を用いて x' = x + f(y) と書けるから

$$g(x') = g(x) + (g \circ f)(y) = g(x) \in N$$

が成り立つ. したがって写像

$$h : \operatorname{Coker} f \longrightarrow N, \ x + \operatorname{Im} f \longmapsto g(x)$$

は well-defined であり、かつ $g=h\circ p\in {\rm Im}\, p^*$ が成り立つ。i.e. p^* は全射。また、 $h,h'\in {\rm Hom}_R$ (Coker f,N) に対して

$$p^*(h) = p^*(h') \implies h \circ p = h' \circ p$$

が成り立つが、p は全射なので h = h' が言える. i.e. p^* は単射.

【例 3.5.1】商加群の普遍性

左 R 加群 M と,その任意の部分加群 $N \subset M$ を与える.包含準同型 $i \colon N \longrightarrow M, x \longmapsto x$ の余核 の普遍性の図式は

のようになる。 すなわち,任意の左 R 加群 N と, $f\circ i=0$ を充たす任意の準同型写像 $f\colon M\longrightarrow N$ に対して,ある $\overline{f}\colon M/N\longrightarrow N$ が一意的に存在して可換図式

が成り立つということである. $f\circ i=0$ は $N\subset \operatorname{Ker} f$ と同値なので、次の命題が示されたことになる:

命題 3.22: 商加群の普遍性

M, L を左 R 加群, $f: M \longrightarrow L$ を準同型とする. 部分加群 $N \subset M$ が

$$N\subset \operatorname{Ker} f$$

を充たすならば、準同型 $\bar{f}: M/N \longrightarrow L$ であって標準的射影

$$p: M \longrightarrow M/N, x \longmapsto x + N$$

に対して図式 3.5 を可換にするようなものが-意に存在する.このような準同型 $\bar{f}\colon M/N\to L$ を $f\colon M\to L$ によって M/N 上に**誘導される準同型** (induced homomorphism) と呼ぶ.

図 3.5: 商加群の普遍性

命題 3.23: 直積・直和の普遍性

任意の添字集合 Λ , および加群の族 $\left\{M_{\lambda}\right\}_{\lambda\in\Lambda}$ を与える.添字 $\mu\in\Lambda$ に対する<mark>標準射影、標準包含</mark>を それぞれ π_{μ} , ι_{μ} と書く.

(1) 任意の左 R 加群 N に対して、写像

は全単射である。i.e. 任意の左 R 加群 N ,および任意の左 R 加群の準同型写像の族 $\left\{f_{\lambda}\colon N\to M_{\lambda}\right\}_{\lambda\in\Lambda}$ に対して, $\forall\lambda\in\Lambda,\ \pi_{\mu}\circ f=f_{\lambda}$ を充たす準同型写像 $f\colon N\to\prod_{\lambda\in\Lambda}M_{\lambda}$ が一意的に存在する(図式 3.6a).

(2) 任意の左 R 加群 N に対して,写像

は全単射である。i.e. 任意の左 R 加群 N ,および任意の左 R 加群の準同型写像の族 $\left\{f_{\lambda}\colon M_{\lambda}\to N\right\}_{\lambda\in\Lambda}$ に対して, $\forall\lambda\in\Lambda,\ f\circ\iota_{\lambda}=f_{\lambda}$ を充たす準同型写像 $f\colon\bigoplus_{\lambda\in\Lambda}M_{\lambda}\to N$ が一意的に存在する(図式 3.6b).

(a) 直積の普遍性

(b) 直和の普遍性

<u>証明</u> (1) 存在 E R 加群の準同型写像の族 $\left\{f_{\lambda}\colon N \to M_{\lambda}\right\}_{\lambda \in \Lambda}$ が与えられたとき,写像 f を

$$f \colon N \to \prod_{\lambda \in \Lambda} M_{\lambda}, \ x \mapsto (f_{\lambda}(x))_{\lambda \in \Lambda}$$

と定義する. このとき $\forall \mu \in \Lambda, \forall x \in N$ に対して

$$(\pi_{\mu} \circ f)(x) = f_{\mu}(x)$$

なので図 3.6a は可換図式になる.

一意性 図 3.6a を可換図式にする別の準同型写像 $g\colon N\to\prod_{\lambda\in\Lambda}M_\lambda$ が存在したとする.このとき $\forall x\in N,\, \forall \lambda\in\Lambda$ に対して

$$\pi_{\lambda}(g(x)) = f_{\lambda}(x) = \pi_{\lambda}(f(x))$$

なので f(x) = g(x) となる. i.e. f は一意である.

$$f \colon \bigoplus_{\lambda \in \Lambda} M_{\lambda} \to N, \ (x_{\lambda})_{\lambda \in \Lambda} \mapsto \sum_{\lambda \in \Lambda} f_{\lambda}(x_{\lambda})$$

と定義する. 右辺は有限和なので意味を持つ.

このとき $\forall \mu \in \Lambda, \forall x \in M_{\mu}$ に対して

$$f\left(\iota_{\mu}(x)\right) = f_{\mu}(x_{\mu}) + \sum_{\lambda \neq \mu} f_{\lambda}(0) = f_{\mu}(x_{\mu})$$

なので図 3.6b は可換図式になる.

一意性 図 3.6b を可換図式にする別の準同型写像 $g\colon\bigoplus_{\lambda\in\Lambda}M_\lambda\to N$ が存在したとする.このとき $\forall (x_\lambda)_{\lambda\in\Lambda}\in\bigoplus_{\lambda\in\Lambda}$ に対して

$$g((x_{\lambda})_{\lambda \in \Lambda}) = g\left(\sum_{\lambda \in \Lambda} \iota_{\lambda}(x_{\lambda})\right) = \sum_{\lambda \in \Lambda} g(\iota_{\lambda}(x_{\lambda})) = \sum_{\lambda \in \Lambda} f_{\lambda}(x_{\lambda}) = f((x_{\lambda})_{\lambda \in \Lambda})$$

なので f = g となる. i.e. f は一意である.

3.5.2 自由加群

 Λ を集合, M を左 R 加群とする. 左 R 加群の族 $\left\{M_{\lambda}\right\}_{\lambda\in\Lambda}$ に対して, $\forall\lambda\in\Lambda,\ M_{\lambda}=M$ が成り立つとき

$$M^{\Lambda} := \prod_{\lambda \in \Lambda} M_{\lambda}, \quad M^{\oplus \Lambda} := \bigoplus_{\lambda \in \Lambda} M_{\lambda}$$

と書く. 得に $\Lambda = \{1, \ldots, n\}$ のとき $M^n, M^{\oplus n}$ と書くが, $M^n \cong M^{\oplus n}$ である.

定義 3.37: 自由加群

• ある集合 Λ に対して,左 R 加群 M が R 上の自由加群 (free module) であるとは,以下を充たすことを言う:

$$M \cong R^{\oplus \Lambda} = \bigoplus_{\lambda \in \Lambda} R$$

R^{⊕Λ} の元を

$$\sum_{\lambda \in \Lambda} a_{\lambda} \lambda$$
 $^{\mathrm{w}/}$ $a_{\lambda} \in R$ は有限個を除いて 0

と書き、 Λ の元の、R を係数とする**形式的な線型結合** (formal linear combination) という.

• 自由加群 $R^{\oplus \Lambda}$ の元のうち,第 $\lambda \in \Lambda$ 成分のみが $1 \in R$ で他が全て $0 \in R$ であるようなもの を $\forall \lambda \in \Lambda$ について集めた族

$$\left\{ \, \iota_{\lambda}(1) \, \right\}_{\lambda \in \Lambda} \subset R^{\oplus \Lambda}$$

は $R^{\oplus \Lambda}$ の基底 (basis) である.

命題 3.24: 基底を持つ R 加群は自由加群

R 加群 M が基底 S を持てば

$$M \cong R^{\oplus S}$$

である.

3.6 ベクトル空間

 \mathbb{K} を体とする. このとき \mathbb{K} 加群のことを体 \mathbb{K} 上のベクトル空間と呼び, \mathbb{K} 加群の準同型写像のことを**線型写像**と呼ぶのだった.

線型写像 $f: V \longrightarrow W$ の核、像、余核は左 R 加群の核、像、余核と全く同様に

$$\operatorname{Ker} f := \left\{ \left. \boldsymbol{v} \in V \mid f(\boldsymbol{v}) = 0 \right. \right\},$$
$$\operatorname{Im} f := \left\{ \left. f(\boldsymbol{v}) \in W \mid \boldsymbol{v} \in V \right. \right\},$$
$$\operatorname{Coker} f := W/\operatorname{Im} f$$

として定義される. Ker f, Im f がそれぞれ V, W の部分ベクトル空間であることは,左 R 加群の場合と全く同じ議論によって示される.

3.6.1 階数・退化次数の定理

V,W を有限次元 \mathbb{K} ベクトル空間とし、線型写像 $T:V\longrightarrow W$ を与える. V,W の基底 $\{\mathbf{e}_1,\ldots,\mathbf{e}_{\dim V}\},\{\mathbf{f}_1,\ldots,\mathbf{f}_{\dim W}\}$ をとり、

$$T(\mathbf{e}_{\mu}) = T^{\nu}{}_{\mu}\mathbf{f}_{\nu}$$

のように左辺を展開したときに得られる行列

$$\begin{bmatrix} T^1_1 & \cdots & T^1_{\dim V} \\ \vdots & \ddots & \vdots \\ T^{\dim W}_1 & \cdots & T^{\dim W}_{\dim V} \end{bmatrix}$$

は基底 $\{{f e}_1,\ldots,{f e}_{\dim V}\},\,\{{f f}_1,\ldots,{f f}_{\dim W}\}$ に関する T の表現表列と呼ばれる. $\forall v=v^{
u}{f e}_{
u}\in V$ に対して

$$T(\boldsymbol{v}) = T(v^{\nu} \mathbf{e}_{\nu}) = v^{\nu} T(\mathbf{e}_{\nu}) = v^{\nu} T^{\mu}{}_{\nu} \mathbf{f}_{\mu}$$

と書けるので、成分表示だけを見ると T はその表現行列を左から掛けることに相当する:

$$\begin{bmatrix} T^1_1 & \cdots & T^1_{\dim V} \\ \vdots & \ddots & \vdots \\ T^{\dim W}_1 & \cdots & T^{\dim W}_{\dim V} \end{bmatrix} \begin{bmatrix} v^1 \\ \vdots \\ v^{\dim V} \end{bmatrix}$$

定義 3.38: 線型写像の階数

 $\operatorname{Im} T$ の次元のことを T の階数 (rank) と呼び、 $\operatorname{rank} T$ と書く.

命題 3.25: 表現行列の標準形

V,W を**有限次元**ベクトル空間とし、任意の線型写像 $T\colon V\longrightarrow W$ を与える. このとき V,W の基底であって、T の表現行列を

$$\begin{bmatrix} I_{\operatorname{rank} T} & 0 \\ 0 & 0 \end{bmatrix}$$

の形にするものが存在する.

<u>証明</u> $\operatorname{Im} T$ の基底 $\{\mathbf{f}_1, \ldots, \mathbf{f}_{\operatorname{rank} T}\}$ および $\operatorname{Ker} T$ の基底 $\{\mathbf{k}_1, \ldots \mathbf{k}_{\dim(\operatorname{Ker} T)}\}$ を勝手にとる. 像の定義から, $1 \leq \forall \mu \leq \operatorname{rank} T$ に対して $\mathbf{e}_{\mu} \in V$ が存在して $\mathbf{f}_{\mu} = T(\mathbf{e}_{\mu})$ を充たす.

まず $\mathbf{e}_1, \ldots, \mathbf{e}_{\operatorname{rank} T}, \mathbf{k}_1, \ldots, \mathbf{k}_{\dim(\operatorname{Ker} T)}$ が V の基底を成すことを示す.

線型独立性

$$\sum_{\mu=1}^{\operatorname{rank} T} a^{\mu} \mathbf{e}_{\mu} + \sum_{\nu=1}^{\operatorname{dim}(\operatorname{Ker} T)} b^{\nu} \mathbf{k}_{\nu} = 0$$

を仮定する. 左辺に T を作用させることで

$$\sum_{\mu=1}^{\operatorname{rank} T} a^{\mu} \mathbf{f}_{\mu} = 0$$

がわかるが、 $\mathbf{f}_1, \ldots, \mathbf{f}_{\mathrm{rank}\,T}$ は $\mathrm{Im}\,T$ の基底なので線型独立であり、 $1 \leq \forall \mu \leq \mathrm{rank}\,T$ に対して $a_\mu = 0$ が言える。故に仮定から

$$\sum_{\nu=1}^{\dim(\operatorname{Ker} T)} b^{\nu} \mathbf{k}_{\nu} = 0$$

であるが、 $\mathbf{k}_1,\ldots,\mathbf{k}_{\dim(\operatorname{Ker} T)}$ は $\operatorname{Ker} T$ の基底なので線型独立であり、 $1\leq \forall \nu\leq \dim(\operatorname{Ker} T)$ に対して $b_{\nu}=0$ が言える. i.e. $\mathbf{e}_1,\ldots,\mathbf{e}_{\operatorname{rank} T},\mathbf{k}_1,\ldots,\mathbf{k}_{\dim(\operatorname{Ker} T)}$ は線型独立である.

 $oldsymbol{V}$ を生成すること $\forall oldsymbol{v} \in V$ を 1 つとる. このとき $T(oldsymbol{v}) \in \operatorname{Im} T$ なので

$$T(\boldsymbol{v}) = \sum_{\mu=1}^{\operatorname{rank} T} v^{\mu} \mathbf{f}_{\mu}$$

と展開できる.ここで $\boldsymbol{w} := \sum_{\mu=1}^{\operatorname{rank} T} v^{\mu} \mathbf{e}_{\mu} \in V$ とおくと, $T(\boldsymbol{v}) = T(\boldsymbol{w})$ が成り立つが,T が線型写像 であることから $T(\boldsymbol{v}-\boldsymbol{w}) = 0 \iff \boldsymbol{v}-\boldsymbol{w} \in \operatorname{Ker} T$ が言えて

$$\boldsymbol{v} - \boldsymbol{w} = \sum_{\nu=1}^{\dim(\operatorname{Ker} T)} w^{\nu} \mathbf{k}_{\nu}$$

と展開できる. 従って

$$oldsymbol{v} = oldsymbol{w} + (oldsymbol{v} - oldsymbol{w}) = \sum_{\mu=1}^{\operatorname{rank} T} v^{\mu} \mathbf{e}_{\mu} + \sum_{
u=1}^{\operatorname{dim}(\operatorname{Ker} T)} w^{
u} \mathbf{k}_{
u}$$

であり、 $\mathbf{e}_1, \ldots, \mathbf{e}_{\operatorname{rank} T}, \mathbf{k}_1, \ldots, \mathbf{k}_{\dim(\operatorname{Ker} T)}$ は V を生成する.

 $\mathbf{f}_1, \ldots, \mathbf{f}_{\operatorname{rank} T}$ と線型独立な $\dim W - \operatorname{rank} T$ 個のベクトル $\tilde{\mathbf{f}}_{\operatorname{rank} T+1}, \ldots, \tilde{\mathbf{f}}_{\dim W}$ をとると,

- V の基底 $\{\mathbf{e}_1, \ldots, \mathbf{e}_{\operatorname{rank} T}, \mathbf{k}_1, \ldots, \mathbf{k}_{\dim(\operatorname{Ker} T)}\}$
- W の基底 $\{\mathbf{f}_1, \ldots, \mathbf{f}_{\operatorname{rank} T}, \tilde{\mathbf{f}}_{\operatorname{rank} T+1}, \ldots, \tilde{\mathbf{f}}_{\dim W}\}$

に関する T の表現行列は

$$\begin{bmatrix} I_{\operatorname{rank} T} & 0 \\ 0 & 0 \end{bmatrix}$$

になる.

系 3.19: 階数・退化次数の定理(有限次元)

V,W を**有限次元**ベクトル空間とし、任意の線型写像 $T:V\longrightarrow W$ を与える. このとき

$$\dim V = \dim(\operatorname{Im} T) + \dim(\operatorname{Ker} T)$$

が成り立つ.

証明 命題 3.25 の証明より従う.

系 3.19 から便利な補題がいくつか従う:

補題 3.2: 有限次元ベクトル空間に関する小定理集

V,W を**有限次元**ベクトル空間とし、任意の線型写像 $T\colon V\longrightarrow W$ を与える. このとき以下が成り立つ:

- (1) $\operatorname{rank} T \leq \dim V$. 特に $\operatorname{rank} T = \dim V \iff T$ は単射
- (2) $\operatorname{rank} T \leq \dim W$. 特に $\operatorname{rank} T = \dim W \iff T$ は全射
- (3) $\dim V = \dim W$ かつ T が単射 \implies T は同型写像
- (4) dim $V = \dim W$ かつ T が全射 \implies T は同型写像

証明 (1) 系 3.19 より

$$\dim V = \operatorname{rank} T + \dim(\operatorname{Ker} T) \ge \operatorname{rank} T$$

が成り立つ. 特に命題 3.9 から T が単射 \iff $\operatorname{Ker} T=0$ \iff $\dim(\operatorname{Ker} T)=0$ \iff $\operatorname{rank} T=\dim V$ が従う.

- (2) $\operatorname{rank} \operatorname{oper}$ $\operatorname{cank} T \leq \dim W$ は明らか、特に次元の等しい有限次元ベクトル空間は同型なので、 T が全射 $\iff \operatorname{Im} T \cong W \iff \dim(\operatorname{Im} T) = \operatorname{rank} T = \dim W$ が言える.
- (3) $\dim V = \dim W$ かつ T が単射とする. T が単射なので (1) より $\operatorname{rank} T = \dim V = \dim W$ が従い, (2) より T は全射でもある.
- (4) $\dim V = \dim W$ かつ T が全射とする. T が全射なので (2) より $\operatorname{rank} T = \dim W = \dim V$ が従い, (1) より T は単射でもある.

3.6.2 分裂補題と射影的加群

実は、 $\lesssim 3.19$ は有限次元でなくとも成り立つ、それどころか、左R 加群の場合の分裂補題に一般化される、

補題 3.3: 分裂補題

左 R 加群の短完全列

$$0 \longrightarrow M_1 \xrightarrow{i_1} M \xrightarrow{p_2} M_2 \longrightarrow 0 \tag{3.6.1}$$

が与えられたとする. このとき, 以下の二つは同値である:

- (1) 左 R 加群の準同型 $i_2\colon M_2\longrightarrow M$ であって $p_2\circ i_2=1_{M_2}$ を充たすものが存在する
- (2) 左 R 加群の準同型 $p_1: M \longrightarrow M_1$ であって $p_1 \circ i_1 = 1_{M_1}$ を充たすものが存在する

証明 (1) ⇒ (2) 写像

$$p'_1: M \longrightarrow M, x \longmapsto x - i_2(p_2(x))$$

を定義すると,

$$p_2(p_1'(x)) = p_2(x) - ((p_2 \circ i_2) \circ p_2)(x) = p_2(x) - p_2(x) = 0$$

が成り立つ. 従って,(3.6.1) が完全列であることを使うと $p_1'(x) \in \operatorname{Ker} p_2 = \operatorname{Im} i_1$ である. さらに i_1 が単射であることから

$$\exists ! y \in M_1, \ p_1'(x) = i_1(y)$$

が成り立つ. ここで写像

$$p_1: M \longrightarrow M_1, x \longmapsto y$$

を定義するとこれは準同型写像であり、 $\forall x \in M_1$ に対して

$$p_1'(i_1(x)) = i_1(x) - (i_2 \circ (p_2 \circ i_1))(x) = i_1(x)$$

が成り立つ*1ことから

$$(p_1 \circ i_1)(x) = x$$

とわかる. i.e. $p_1 \circ i_1 = 1_{M_1}$

(1) \longleftarrow **(2)** (3.6.1) は完全列であるから $M_2 = \operatorname{Ker} 0 = \operatorname{Im} p_2$ である. 従って $\forall x \in M_2 = \operatorname{Im} p_2$ に対して, $x = p_2(y)$ を充たす $y \in M$ が存在する. ここで写像

$$i_2: M_2 \longrightarrow M, \ x \longmapsto y - i_1(p_1(y))$$

は well-defined である. $x=p_2(y')$ を充たす勝手な元 $y'\in M$ をとってきたとき, $p_2(y-y')=0$ より $y-y'\in \operatorname{Ker} p_2=\operatorname{Im} i_1$ だから, i_1 の単射性から

$$\exists! z \in M_1, \quad y - y' = i_1(z)$$

が成り立ち, このとき

$$(y - i_1(p_1(y))) - (y' - i_1(p_1(y'))) = i_1(z) - (i_1 \circ (p_1 \circ i_1))(z) = i_1(z) - i_1(z) = 0$$

とわかるからである. i_2 は準同型写像であり、 $\forall x \in M_2$ に対して

$$(p_2 \circ i_2)(x) = p_2(y) - ((p_2 \circ i_1) \circ p_1)(y) = p_2(y) = x$$

なので $p_2 \circ i_2 = 1_{M_2}$.

系 3.20:

左 R 加群の短完全列

$$0 \longrightarrow M_1 \xrightarrow{i_1} M \xrightarrow{p_2} M_2 \longrightarrow 0$$

が補題3.3の条件を充たすならば

$$M \cong M_1 \oplus M_2$$

^{*1 (3.6.1)} が完全列であるため、 $p_2 \circ i_1 = 0$

証明 補題 3.3 の条件 (1) が満たされているとする.このとき補題 3.3 証明から $\forall x \in M$ に対して

$$i_1(p_1(x)) = p'_1(x) = x - i_2(p_2(x)) \iff i_1(p_1(x)) + i_2(p_2(x)) = x$$

また、完全列の定義から $p_2(i_1(x))=0$ であるから $\forall x\in M_2$ に対して

$$p'_1(i_2(x)) = i_2(x) - ((i_2 \circ p_2) \circ i_2)(x) = 0 = i_1(0)$$

であり、結局 $p_1(i_2(x)) = 0$ とわかる.

ここで準同型写像

$$f: M_1 \oplus M_2 \longrightarrow M, (x, y) \longmapsto i_1(x) + i_2(y),$$

 $g: M \longrightarrow M_1 \oplus M_2, x \longmapsto (p_1(x), p_2(x))$

を定めると

$$(g \circ f)(x, y) = (p_1(i_1(x)) + p_1(i_2(y)), p_2(i_1(x)) + p_2(i_2(x))) = (x, y),$$

$$(f \circ g)(x) = i_1(p_1(x)) + i_2(p_2(x)) = x$$

なので f, g は同型写像.

定義 3.39: 分裂

左 R 加群の短完全列

$$0 \longrightarrow M_1 \xrightarrow{i_1} M \xrightarrow{p_2} M_2 \longrightarrow 0$$

が**分裂** (split) するとは、補題 3.3 の条件を充たすことをいう.

定義 3.40: 射影的加群

左 R 加群 P が**射影的加群** (projective module) であるとは、任意の左 R 加群の**全射準同型** $f\colon M\longrightarrow N$ および任意の準同型写像 $g\colon P\longrightarrow N$ に対し、左 R 加群の準同型写像 $h\colon P\longrightarrow M$ であって $f\circ h=g$ を充たすものが存在することを言う(図式 3.7).

図 3.7: 射影的加群

命題 3.26:

左 R 加群の完全列

$$0 \longrightarrow L \xrightarrow{f} M \xrightarrow{g} N \longrightarrow 0$$

は、N が射影的加群ならば分裂する.

<u>証明</u> 射影的加群の定義において P=N とすることで,左 R 加群の準同型写像 $s\colon N\longrightarrow M$ であって $q\circ s=1_N$ を充たすものが存在する.

命題 3.27: 射影的加群の直和

左 R 加群の族 $\{P_{\lambda}\}_{\lambda \in \Lambda}$ に対して以下の 2 つは同値:

- (1) $\forall \lambda \in \Lambda$ に対して P_{λ} が射影的加群
- (2) $\bigoplus_{\lambda \in \Lambda} P_{\lambda}$ が射影的加群

証明 標準的包含を $\iota_{\lambda} \colon P_{\lambda} \hookrightarrow \bigoplus_{\lambda \in \Lambda} P_{\lambda}$ と書く.

(1) \Longrightarrow (2) 仮定より、 $\forall \lambda \in \lambda$ に対して、任意の全射準同型写像 $f \colon M \longrightarrow N$ および任意の準同型写像 $g \colon \bigoplus_{\lambda \in \Lambda} P_{\lambda} \longrightarrow N$ に対して、準同型写像 $h_{\lambda} \colon P_{\lambda} \longrightarrow M$ であって $f \circ h_{\lambda} = g \circ \iota_{\lambda}$ を充たすものが存在する。従って直和の普遍性より準同型写像

$$h : \bigoplus_{\lambda \in \Lambda} P_{\lambda} \longrightarrow M$$

であって $f \circ h_{\lambda} = h \circ \iota_{\lambda}$ を充たすものが一意的に存在する. このとき

$$(f \circ h) \circ \iota_{\lambda} = f \circ h_{\lambda} = g \circ \iota_{\lambda}$$

であるから、h の一意性から $f \circ h = g$.

(1)←**(2)** $\lambda \in \Lambda$ を一つ固定し、任意の全射準同型写像 $f: M \longrightarrow N$ および任意の準同型写像 $g: P_{\lambda} \longrightarrow M$ を与える. 直和の普遍性より準同型写像

$$h \colon \bigoplus_{\lambda \in \Lambda} P_{\lambda} \longrightarrow N$$

であって $h\circ\iota_\lambda=g$ $(\forall\mu\in\Lambda\setminus\{\lambda\},\ h\circ\iota_\lambda=0)$ を充たすものが一意的に存在する. さらに仮定より, 準同型写像

$$\alpha\colon \bigoplus_{\lambda\in\Lambda} \longrightarrow M$$

であって $f \circ \alpha = h$ を充たすものが存在する. このとき

$$f \circ (\alpha \circ \iota_{\lambda}) = h \circ \iota_{\lambda} = g$$

なので $\beta := h \circ \iota_{\lambda}$ とおけば良い.

系 3.21: 自由加群は射影的加群

環 R 上の自由加群は射影的加群である

証明 R が射影的加群であることを示せば命題 3.27 より従う.

左 R 加群の全射準同型写像と準同型写像 $f\colon M\longrightarrow N,\ g\colon R\longrightarrow N$ を任意に与える。このときある $x\in M$ が存在して f(x)=g(1) となる。この x に対して準同型写像 $h\colon R\longrightarrow M,\ a\longmapsto ax$ を定めると, $\forall a\in R$ に対して

$$f(h(a)) = f(ax) = af(x) = ag(1) = g(a)$$

が成り立つので $f \circ h = g$ となる.

V,W を任意の(有限次元とは限らない) $\mathbb K$ ベクトル空間, $T:V\longrightarrow W$ を任意の線型写像とする.

$$i_1 : \operatorname{Ker} T \longrightarrow V, \ \boldsymbol{v} \longmapsto \boldsymbol{v},$$

 $p_2 : V \longrightarrow \operatorname{Im} T, \ \boldsymbol{v} \longmapsto T(\boldsymbol{v}),$

と定めると、 i_1 は単射、 p_2 は全射で、かつ $p_2 \circ i_1 = 0$ が成り立つ。よって $\mathbf{Vec}_{\mathbb{K}}$ の図式

$$0 \longrightarrow \operatorname{Ker} T \xrightarrow{i_1} V \xrightarrow{p_2} \operatorname{Im} T \longrightarrow 0 \tag{3.6.2}$$

は短完全列だが、 $\operatorname{Im} T$ はベクトル空間なので自由加群であり、系 3.21 より射影的加群でもある。従って命題 3.26 より短完全列 (3.6.2) は分裂し、系 3.20 から

$$V \cong \operatorname{Im} T \oplus \operatorname{Ker} T$$

が言える.

定理 3.22: 階数・退化次数の定理

 $V,\,W$ をベクトル空間とし、任意の線型写像 $T\colon V\longrightarrow W$ を与える. このとき

$$\dim V = \dim(\operatorname{Im} T) + \dim(\operatorname{Ker} T)$$

が成り立つ.