

ADVANCES IN DATA SCIENCE/ARCHITECTURE

Assignment 3 REPORT

Submitted By:

MEGHA SINGH

SNEHA MALSHETTI

INFO 7390 Assignment 3

Deploying your Data science models

Submit an executive report (in MS Word) with your detailed analysis, explanation and interpretation of your analysis

Objectives

Now that you have completed the midterm, you have 3 models for regression and 3 models for classification.

The goal of this assignment is to deploy your models into production using a machine learning as a service platform. We have chosen Azure ML for this. • Deploy the 3 models for regression and 3 models for classification using Azure ML and create 6 REST APIs.

You can use inbuilt algorithms or use your own Python/R code in blocks.

You could also choose to train models you built for the midterm outside and just use Azure ML to deploy the trained algorithms.

You could also choose to do the entire training from scratch using Azure ML

Build a Web app using any programming language and illustrate how to use these REST Apis

- Deploy the web app on a cloud environment
- We should be able to invoke one of the six REST APIs deployed using Azure ML through your web app deployed on a cloud environment using a browser.
- Provide test cases so that we can replicate the test cases.
- Provide adequate documentation and source code so that we can replicate your setup

1. OVERVIEW

AZURE Machine learning Cloud platform

We will deploy our 6 machine learning models using the Microsoft Azure ML cloud, which provide us the inbuild modules for deployment of models as well.

Deploy the 3 models for regression and 3 models for classification using Azure ML and create 6 REST APIs.

For this we have used the train data set by using R for both regression model and classification models

For Prediction Model Trained data we have 13 columns with year and quarter.

For the classification model Trained data columns 20 with year and quarter.

2. Objective Flow of Project

First, on selecting the columns and create the predictive model for Interest rate. And Classification model for delinquency using Azure ML studio.

Once the model prediction analysis is complete deploy a REST API for same and using the Api key and post url deploy a web app using azure cloud.

3. Data Set

For training the data set

Created the summary dataset file and split it into training and testing data for predictive and evaluation models.

4. Prediction Models

• Linear Regression

OUTPUT:

▲ Error Histogram

LinearRegressionFinal > Evaluate Model > Evaluation results

Metrics

Mean Absolute Error	0.481797
Root Mean Squared Error	0.594223
Relative Absolute Error	0.920381
Relative Squared Error	0.81692
Coefficient of	0.18308
Determination	0.10300

WEB AAP for Linear Regression

http://linearregression.azurewebsites.net/

Result: predictive Interest Rate

• Random Forest Prediction Model

Output and Evaluation for Random Forest

?andomForestRegression > Evaluate Model > Evaluation results

Web APP:

Predictive Interest rate with Random forest Model

Result

Label	Value
output1	
Scored Label Mean	5.92031734041685
Scored Label Standard Deviation	0.65968789243666

Neural Network

Error Histogram

NeuralNetworkRegression > Evaluate Model > Evaluation results

Metrics

Mean Absolute Error	0.483591
Root Mean Squared Error	0.59449
Relative Absolute Error	0.921858
Relative Squared Error	0.81277
Coefficient of	0.18723
Determination	

Web APP for Neural Network:

http://neuralprediction.azurewebsites.net

Predictive Interest Rate using Neural Network

Result

Label	Value
output1	
Scored Labels	5.51749038696289

5. Classification Models:

1. Logistic Regression


```
R Script
 1 # Map 1-based optional input ports to variables
 2 dataset1 <- maml.mapInputPort(1) # class: data.frame</pre>
 3 # dataset2 <- maml.mapInputPort(2) # class: data.frame</pre>
 5 # Contents of optional Zip port are in ./src/
 6 # source("src/yourfile.R");
 7 # load("src/yourData.rdata");
 8 year <- 1999
 9 quarter <- 1
10 # Sample operation
11 # data.set = rbind(dataset1, dataset2);
12 dataset1 <- dataset1[dataset1$Year == year, ]</pre>
13 dataset1 <- dataset1[dataset1$Quarter == quarter, ]</pre>
14 # You'll see this output in the R Device port.
15 # It'll have your stdout, stderr and PNG graphics device(s).
16 plot(dataset1);
18 # Select data.frame to be sent to the output Dataset port
19 maml.mapOutputPort("dataset1");
```

ROC Curve For logistic Regression

Experiment on Logistic Regression > Evaluate Model > Evaluation results

Output confusion matrix

Experiment on Logistic Regression > Evaluate Model

True Positive	False Negative	Accuracy	Precision
6627	3373	0.709	0.730
False Positive 2452	True Negative 7548	Recall 0.663	F1 Score 0.695
Positive Label 1	Negative Label		

Web APP for Logistic Regression

WEB APP: http://logregress.azurewebsites.net

· ····

Label	Value
output1	
Scored Labels	1
Scored Probabilities	1

2. Random Forest

Training experiment

Predictive experiment

Experiment on Random Forest [Predictive Exp.]

Output Evaluation and Results

rows columns
1372612 21

urance	MiscellaneousExpenses	ActualLossCalculation	ModificationCost	Year	Quarter	Scored Labels	Scored Probabilities	
	1	1			Ш	1.1	l _{trut} l	
	0	0	0	1999	1	0	0	
	0	0	0	1999	1	0	0	
	0	0	0	1999	1	0	0	
	0	0	0	1999	1	0	0	
	0	0	0	1999	1	0	0	
	0	0	0	1999	1	0	0	
	0	0	0	1999	1	0	0	11-
	0	0	0	1999	1	0	0	
	0	0	0	1999	1	0	0	
	0	0	0	1999	1	0	0	

ROC Curve

Experiment on Random Forest > Evaluate Model > Evaluation result

Lift

Experiment on Random Forest > Evaluate Model > Evaluation results

ROC PRECISION/RECALL LIFT

Confusion Matrix for random forest

True Positive 288843	False Negative 52155	Accuracy 0.879	Precision 0.903
False Positive 31081	True Negative 314227	Recall 0.847	F1 Score 0.874
Positive Label	Negative Label		

1 0

Web APP for Random Forest

WEB APP: http://randomclassification.azurewebsites.net/

Output:

3. Neural Network

OUTPUT RESULTS and Evaluation:

Experiment on Neural Networks - Copy [Predictive... > Score Model > Scored dataset

rows column 1372612 21

urance	MiscellaneousExpenses	ActualLossCalculation	ModificationCost	Year	Quarter	Scored Labels	Scored Probabilities
	1	1	1		Ш	ιĪ	aillia
	0	0	0	1999	1	0	0.073586
	0	0	0	1999	1	0	0.078579
	0	0	0	1999	1	0	0.081775
	0	0	0	1999	1	0	0.084018
	0	0	0	1999	1	0	0.085774
	0	0	0	1999	1	0	0.087278

ROC curve

Lift

Experiment on Neural Networks - Copy ightharpoonup Evaluate Model ightharpoonup Evaluation ι

Experiment on Neural Networks - Copy > Evaluate Model > Evaluatio

Confusion Matrix

True Positive 52822	False Negative 15328	Accuracy 0.701	Precision 0.673
False Positive 25645	True Negative 43466	Recall 0.775	F1 Score 0.721

Positive Label Negative Label

1 0

Web APP for Neural Network

WEB APP: http://neuralclassification.azurewebsites.net/

Submit

Result

Label	Value
output1	
Scored Labels	1
Scored Probabilities	0.999943196773529

Work Contribution:

