CheatSheet di Ricerca Operativa e Pianificazione delle Risorse

Fabio Ferrario

@fefabo

2022/2023

Indice

1			nazione Lineare							3
	1.1	Il met	odo del Simplesso			 •	 •	•		S
2			zione Non Lineare							5
	2.1	Algori	itmo del Gradiente							
	2.2	Algori	itmo di Newton							6
3	Ott	imizza	zione Non Lineare Vin	icolata	a					7
	3.1	Funzio	one Lagrangiana							7
	3.2	Condi	zioni KKT							7
		3.2.1	Differenziare tra Max e l	Min .						8
		3.2.2	Risolvere il Sistema							8

Capitolo 1

Programmazione Lineare

1.1 Il metodo del Simplesso

La forma Tabellare

V. BASE	Eq	Z	x_1	x_2		x_n	T. Noto
Z	R_0	1	c_1	c_2		c_n	0
x_1	R_1	0	a_{11}	a_{12}		a_{1n}	b_1
÷	:	•	:	<i>a</i> ₁₂ ∶	٠	÷	:
x_m	R_n			a_{m2}			b_m

Forma Aumentata Per portare il problema in forma aumentata:

	Minoreuguale	<u> </u>	=	+ Slack			
Vincoli	Maggioreuguale	e >	=	- Surplus			
	Uguale	=	Invariato				
Variabili non positive	$x_i \le 0$	$0 x_i = -x_i' \operatorname{con} x_i' \ge 0$					
variabili iloli positive	Ogni apparizione di x_i viene sostituita con $-x_i'$						
Funzione Obiettivo	$Z = \Sigma x$	\rightarrow	Z	$-\Sigma x_i = 0$			

	1.	O	
Loct	α	Ottimalità	
1000		Obbillianta	

Tipo di Problema	Massimo	Minimo		
Soluzione Ottima sse	Coefficienti riga (0) ≥ 0	Coefficienti riga (0) ≤ 0		
Variabile Entrante (Colonna Pivot)	Coefficiente riga (0) più Piccolo (Più Negativo)	Coefficiente riga (0) più Grande (Più Positivo)		
Variabile Uscente (Riga Pivot)	Test del Rapporto Minimo			
Numero Pivot	Intersezione Riga/Colonna Pivot			

Nuova Soluzione di Base

Nuov	a Riga	a Pivot
Variabile Entrante	\rightarrow	Variabile di Base della nuova riga pivot.
Coefficienti e Termine Noto	\rightarrow	Divisi per Numero Pivot.

- 1. Determino la Nuova soluzione di Base tramite l'eliminazione Gaussiana:
 - Altre Righe: Per calcolare le altre righe prima definisco:
 - $-P_i$ come l'i-esimo coefficiente della nuova riga pivot (ovvero la riga pivot appena calcolata)
 - $-\ X_p$ come il coefficiente della colonna pivot nella riga in esame.

Allora il coefficiente i-esimo x_i della riga in esame X diventa:

- $-x_i := x_i |X_p| \cdot P_i$ Se X_p é Positivo.
- $-x_i := x_i + |X_p| \cdot P_i$ Se X_p é Negativo.
- Rieseguo il test di ottimalitá, e se non ho trovato una soluzione ottima ricalcolo un nuovo Tableau.

Capitolo 2

Ottimizzazione Non Lineare

2.1 Algoritmo del Gradiente

Data una funzione a piú variabili f(X) e un punto x^0 , ogni passo del metodo del gradiente si effettua in questo modo:

- 1. Calcolo $\nabla f(x^k)$, con la direzione di crescita $d^k = \pm \nabla f(x^k)$ (+ max e min)
- 2. Calcolo $x^{k+1} = x^k \pm \alpha^k \cdot d^k$
- 3. In cui α^k é il max di $f(x^k \pm \alpha^k \cdot d^k)$. ovvero Valuto f nel nuovo punto e massimizzo la funzione risultante $g(\alpha)$, generalmente in modo analitico $(g'(\alpha) = 0)$.
- 4. Sostituisco α trovato in x^{k+1} .
- 5. Valuto i criteri di arresto (Con epsilon o con un numero predefinito di iterazioni, e nel caso ripeto)

Per verificare che il punto trovato sia un punto di ottimo, semplicemente controllo che $\nabla f(x^*) = 0$.

2.2 Algoritmo di Newton

Data una funzione a piú variabili f(X) e un punto x^0 , una iterazione del metodo di Newton si effettua in questo modo:

- 1. Calcolo $\nabla f(x^k)$ e $H(x^k)$.
- 2. Calcolo il vettore spostamento, ponendo: $H_f(x^0)V = -\nabla f(x^0)$ e risolvendo il sistema di equazioni.
- 3. trovo $x^{k+1} = x^k + V$, in cui V é il vettore spostamento.

Capitolo 3

Ottimizzazione Non Lineare Vincolata

3.1 Funzione Lagrangiana

In un problema di ottimizzazione vincolata definito come:

opt
$$f(x_1,...,x_n)$$
, $g_m(x_1,...,x_n) = 0$ Vincoli di Uguaglianza, $h_l(x_1,...,x_n) \leq 0$ Vincoli di Disguaglianza,

Generiamo la Lagrangiana cosí definita:

$$L(V) = f(X) \pm \sum_{i=0}^{m} \lambda_i \cdot g_i(X) \pm \sum_{j=0}^{l} \mu_j \cdot h_j(X)$$

in cui \pm diventa + per i problemi di MIN e – per i problemi di MAX, Abbiamo che λ sono i moltiplicatori lagrangiani associati ai vincoli di Uguaglianza, e μ quelli associati ai vincoli di Disuguaglianza.

con $V=\{x_1,...,x_n,\lambda_1,...,\lambda_m,\mu_1,...,\mu_l\}$, ovvero tutte le variabili e $X=\{x_1,...,x_n\}$, ovvero tutte le variabili originiali.

3.2 Condizioni KKT

Tabella Bisogna quindi generare un sistema che avrá n + m + l incognite utilizzando le KKT, riportate qui in modo semplificato:

Stazionarietá Problemi di MIN (-)				
$\nabla f = -\sum \lambda_i \cdot \nabla g_i - \sum \mu_j \cdot \nabla h_j$				
Stazionarietá Problemi di MAX (+)				
$\nabla f = +\sum \lambda_i \cdot \nabla g_i + \sum \mu_j \cdot \nabla h_j$				
Ammissibilitá Vincoli Uguaglianza	$\forall \qquad g_i = 0$			
Ammissibilitá Vincoli Disuguaglianza	$\forall \qquad h_j \le 0$			
Condizione di Complementarietá	$\forall \qquad \qquad \mu_j \cdot h_j = 0$			
Non Negativitá di μ	$\forall \qquad \qquad \mu_j \geq 0$			

Dove con \forall si intende chiaramente tutti quelli presenti.

3.2.1 Differenziare tra Max e Min

Quando si usano le KKT bisogna differenziare tra problemi di Max e Problemi di Min. Ogni problema ha le seguenti possibili combinazioni:

0 L					
Problema di Massimo	$\mu_i \ge 0$	$\nabla f = +\sum \lambda_i \cdot \nabla g_i + \sum \mu_j \cdot \nabla h_j$			
1 Toblema di Massimo	$\mu_i \leq 0$	$\nabla f = -\sum \lambda_i \cdot \nabla g_i - \sum \mu_j \cdot \nabla h_j$			
Problema di Minimo	$\mu_i \ge 0$	$\mathbf{v}_{J} = \sum_{i} \lambda_{i} \cdot \mathbf{v}_{g_{i}} = \sum_{i} \mu_{j} \cdot \mathbf{v}_{i} n_{j}$			
Troblema di Williamo	$\mu_i \leq 0$	$\nabla f = +\sum \lambda_i \cdot \nabla g_i + \sum \mu_j \cdot \nabla h_j$			

é utile sapere che se scegliessimo di avere la funzione obiettivo **Sempre come** somma di elementi negativi, sia per i problemi di massimo che di minimo, allora potremmo, in base ai valori di μ , sapere in un solo calcolo se il punto é candidato a massimo o minimo.

3.2.2 Risolvere il Sistema

Per risolvere il sistema, o lo si risolve con il metodo classico, oppure tramite questo metodo: Con la condizione di **Complementarietá** sappiamo che:

$$\mu_j \cdot h_j = 0 \implies \mu_j = 0 \lor h_j = 0$$

Quindi, con l variabili mu_j abbiamo 2^l combinazioni di sistemi, in cui $mu_j=0 \lor \mu_j \neq 0$. Cosí possiamo risolvere le 2^l combinazioni per trovare tutti i punti candidati.