

ColumbiaX: CSMM.101x Artificial Intelligence (AI)

Help

Using UCS, indicate the order in which the nodes are visited. Where an arbitrary choice has to be made, visit from left to right.

- A, B, C, D, F, E, G
- ✓ A, C, G, B, F, E, D
- A, B, G, D, C, F, E

Submit

You have used 1 of 1 attempt

Correct (4/4 points)

Heuristics (A)

4/4 points (graded)

Let h_1 and h_2 be two admissible heuristics. Which of the following heuristics are admissible? (Select all that apply)

- $extbf{ extit{W}} \ \ h(n) = w.\, h_1(n) + (1-w).\, h_2(n)$ with $0 \leq w \leq 1$

Submit

You have used 1 of 1 attempt

✓ Correct (4/4 points)

Consider the following search tree.

Minimax (A)
4/4 points (graded) Using minimax, which of the three possible moves should MAX take at the root node?
● A1
● A2
● A3 ✓
Submit You have used 1 of 1 attempt
✓ Correct (4/4 points)
Minimax (A) 4/4 points (graded) Using minimax, what is the value of MAX at the root?
6
19
● -2
Submit You have used 1 of 1 attempt
✓ Correct (4/4 points)
Minimax with alpha-beta pruning (A) 4/4 points (graded) Using minimax with alpha-beta pruning, what branches are pruned? Check all that apply:
■ A1
■ A2
■ A3
■ A11
■ A12

■ A13
■ A21
□ A22
□ A31
□ A32
□ A33
Submit You have used 1 of 1 attempt
✓ Correct (4/4 points)
Association Rules (A) 4/4 points (graded) Select all that apply:
■ The search space of frequent itemsets is a lattice of size 2^(number of transactions).
✓ Deriving association rules relies on frequent itemsets.
Finding frequent itemsets requires scanning the dataset.
☑ The search space of frequent itemsets is a lattice of size 2 [^] (number of items).
In association rules, if an itemset is frequent, then all its supersets are frequent.
Submit You have used 1 of 1 attempt
✓ Correct (4/4 points)
Machine learning (A) 4/4 points (graded) If the performance of a classification model on the test set is poor, you can just re-calibrate your model parameters to achieve a better model.
• true
● false ✔

★ Incorrect (0/4 points)

Machine learning (A)

4/4 points (graded)

Using KNN with simple majority voting, for what minimal value of k will the point "?" be positive in the following labeled dataset?

	\sim
()	~
	J

5

9

Submit

You have used 1 of 1 attempt

✓ Correct (4/4 points)

Unisex names can be cute but sometimes confusing. Examples include Charlie, Tyler, Gabriel, Jesse, etc. We assume we have enough kids in a dataset to be able to predict the gender based on the kids physical features. The label is Gender.

Kid_id	Name	Tall	Hair	Gender
1	Tyler	no	short	boy
2	Salma	yes	long	girl
3	Tyler	no	long	girl
4	Leila	no	long	girl
5	Tyler	yes	short	boy
6	Leila	no	long	girl
7	Salma	yes	short	girl
8	Tyler	yes	long	boy

Decision trees (A)

0/4 points (graded)

Derive "the first level ONLY of a decision tree" based on the method seen in class, using the Gini index (instead of entropy to ease calculations) and information gain. Use the features: Name, Tall, Hair, and the label Gender. Which feature is picked first? Recall:

$$Gini=1-p_\oplus^2-p_\ominus^2$$

Final Exam Final Exam CSMM.101x Courseware edX $Gain(S,A) = Gini(S) - \sum_{v \in ext{Values}(extbf{A})} rac{ S_v }{ S } Gini(S_v)$
• Tall
Hair
Name
Submit You have used 1 of 1 attempt
★ Incorrect (0/4 points)
Decision trees (A) 4/4 points (graded) Suppose we forgot to eliminate a feature "kid_id" and derived a decision tree. What would be the gain of this feature at the root?
● 0.46 ✔
0.15
◎ 0.72
Submit You have used 1 of 1 attempt
✓ Correct (4/4 points)
Propositional Logic (PL) (A) 4/4 points (graded) Modus ponens/tollens?
Linda can work as a lifeguard
Modus ponens ✓
Modus Tollens

4/4 points (graded) Let $m{p}$ be a proposition in propositional logic. $m{p}$ What is the $ egm{p}$ (negation of $m{p}$)?	: Maria likes math and Maria does not like physics.
✓ Maria does not like math or Maria likes p	physics
Maria does not like math and Maria likes	s physics
Maria likes math or Maria likes physics	
Maria does not like math and Maria doe	s not like physics
Submit You have used 1 of 1 attempt	
✓ Correct (4/4 points)	
CNF (A) 4/4 points (graded) The CNF of $m{p} ee (eg m{p} \wedge m{q} \wedge m{r})$ is:	
$ ot \!$	
$ \ \ (p\vee q)\wedge (\neg p\vee r)$	
$ \ \ \square \ \ (p \vee q) \vee (p \vee r)$	
Submit You have used 1 of 1 attempt	
✓ Correct (4/4 points)	
Propositional logic (A) $(p o q) o (q o$ Consider the above proposition in proposition	•
tautology	
■ fallacy	
Submit You have used 1 of 1 attempt	
✓ Correct (4/4 points)	

Propositional Logic: Inference (A)

4/4 points (graded)

Use a truth table to decide whether the inference below is valid.

$$rac{pee q \quad
eg pee r}{qee r}$$

valid

not valid

Submit

You have used 1 of 1 attempt

✓ Correct (4/4 points)

PL: resolution (A)

4.0/4.0 points (graded)

Given the following KB:

$$KB = \{p \lor \neg q, q \lor \neg r, q \lor r\}$$

Using resolution for propositional logic or truth table, does $KB \models p$?

Yes

No

Submit

You have used 1 of 1 attempt

CSPs (A)

4/4 points (graded)

In checking arc consistency of X o Y, if the domain of X becomes empty, then the CSP is not arc-consistent.

● true

false

Submit You have used 1 of 1 attempt

✓ Correct (4/4 points)

© All Rights Reserved

© 2012-2017 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

