

Single Switch MOSFET Power Module

 $V_{DSS} = 100V$ $R_{DSon} = 1.5 m\Omega$ typ @ Tj = 25°C $I_D = 860 A^*$ @ Tc = 25°C

Application

- Welding converters
- Switched Mode Power Supplies
- Uninterruptible Power Supplies
- Motor control

Features

- Power MOS V® FREDFETs
 - Low R_{DSon}
 - Low input and Miller capacitance
 - Low gate charge
 - Avalanche energy rated
 - Fast intrinsic diode
 - Very rugged
- Kelvin source for easy drive
- Very low stray inductance
 - Symmetrical design
 - M5 power connectors
- High level of integration
- AlN substrate for improved thermal performance

Benefits

- Outstanding performance at high frequency operation
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Low profile
- RoHS Compliant

Absolute maximum ratings

Symbol	Parameter		Max ratings	Unit
$V_{ m DSS}$	Drain - Source Breakdown Voltage		100	V
ī	Continuous Drain Current	$T_c = 25^{\circ}C$	860 *	
I_{D}	Continuous Diani Current	$T_c = 80$ °C	640 *	A
I_{DM}	Pulsed Drain current		2200	
V_{GS}	Gate - Source Voltage		±30	V
R _{DSon}	Drain - Source ON Resistance		1.6	mΩ
P_{D}	Maximum Power Dissipation $T_c = 25^{\circ}C$		2500	W
I_{AR}	Avalanche current (repetitive and non repetitive)		100	A
E _{AR}	Repetitive Avalanche Energy		50	mJ
E_{AS}	Single Pulse Avalanche Energy		3000	1110

^{*} Specification of MOSFET device but output current must be limited to 500A to not exceed a delta of temperature greater than 100°C for the connectors.

CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed. See application note APT0502 on www.microsemi.com

All ratings @ $T_j = 25$ °C unless otherwise specified

Electrical Characteristics

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit	
I_{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0V, V_{DS} = 100V$	$T_j = 25^{\circ}C$			500	^	
		$V_{GS} = 0V, V_{DS} = 80V$	$T_j = 125$ °C			2000	μΑ	
R _{DS(on)}	Drain – Source on Resistance	$V_{GS} = 10V, I_D = 275A$			1.5	1.6	mΩ	
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 12 \text{mA}$		2		4	V	
I_{GSS}	Gate – Source Leakage Current	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$				±450	nA	

Dynamic Characteristics

•	Characteristic	Test Conditions	Min	Typ	Max	Unit
C_{iss}	Input Capacitance	$V_{GS} = 0V$		60		
C_{oss}	Output Capacitance	$V_{DS} = 25 V$		23		nF
C_{rss}	Reverse Transfer Capacitance	f = 1 MHz		8.8		
Q_{g}	Total gate Charge	$V_{GS} = 10V$		2100		
Q_{gs}	Gate – Source Charge	$V_{\text{Bus}} = 50V$		360		nC
Q_{gd}	Gate – Drain Charge	$I_D=550A$		1080		
$T_{d(on)}$	Turn-on Delay Time	Inductive switching		185		
$T_{\rm r}$	Rise Time	$V_{GS} = 15V$		270		nc
$T_{d(off)}$	Turn-off Delay Time	$V_{\text{Bus}} = 66V$ $I_{\text{D}} = 550A$		600		ns
$T_{\rm f}$	Fall Time	$R_G = 1\Omega$		175		
Eon	Turn-on Switching Energy	Inductive switching @ 25°C		3.3		mJ
E_{off}	Turn-off Switching Energy	$V_{GS} = 15V, V_{Bus} = 66V$ $I_D = 550A, R_G = 1\Omega$		3.6		1115
Eon	Turn-on Switching Energy	Inductive switching @ 125°C		3.65		mI
E _{off}	Turn-off Switching Energy	$V_{GS} = 15 \text{ V}, V_{Bus} = 66 \text{ V}$ $I_D = 550 \text{ A}, R_G = 1 \Omega$		3.85		mJ

Source - Drain diode ratings and characteristics

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
I_S	Continuous Source current		$Tc = 25^{\circ}C$			860*	Α
	(Body diode)		$Tc = 80^{\circ}C$			640*	Λ
V_{SD}	Diode Forward Voltage	$V_{GS} = 0V, I_S = -550A$				1.3	V
dv/dt	Peak Diode Recovery ①					5	V/ns
t _{rr}	Reverse Recovery Time		$T_j = 25$ °C			190	ns
	The verse receivery Time	$I_S = -550A$ $V_R = 66V$	$T_j = 125$ °C			370	115
Q _{rr}	Reverse Recovery Charge	$A: /At = 600 \text{ A} / \text{Hz}$ $T = 25^{\circ} \text{ C}$		2.4		μC	
			$T_j = 125$ °C		10.2		۲٥

• dv/dt numbers reflect the limitations of the circuit rather than the device itself.

Thermal and package characteristics

Symbol	Characteristic		Min	Тур	Max	Unit	
R_{thJC}	Junction to Case Thermal Resistance					0.05	°C/W
V_{ISOL}	RMS Isolation Voltage, any terminal to case t =1 min, I Isol<1mA, 50/60Hz			2500			V
$T_{\rm J}$	Operating junction temperature range		-40		150		
T_{STG}	Storage Temperature Range			-40		125	°C
T_{C}	Operating Case Temperature			-40		100	
Torque	Mounting torque	To heatsink	M6	3		5	N.m
Torque		For terminals	M5	2		3.5	14.111
Wt	Package Weight					280	g

SP6 Package outline (dimensions in mm)

See application note APT0601 - Mounting Instructions for SP6 Power Modules on www.microsemi.com

Typical Performance Curve

Microsemi reserves the right to change, without notice, the specifications and information contained herein

Microsemi's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.