

CST	OPERATING	Category	L	Т	P	Credit	Year of Introduction
206	SYSTEMS	PCC	3	1	0	4	2019

Preamble: Study of operating system is an essential to understand the overall working of computer system, tradeoffs between performance and functionality and the division of jobs between hardware and software. This course introduces the concepts of memory management, device management, process management, file management and security & protection mechanisms available in an operating system. The course helps the learner to understand the fundamentals about any operating system design so that they can extend the features of operating system to detect and solve many problems occurring in operating system and to manage the computer resources appropriately.

Prerequisite: Topics covered in the courses are Data Structures (CST 201) and Programming in C (EST 102)

Course Outcomes: After the completion of the course the student will be able to

CO1	Explain the relevance, structure and functions of Operating Systems in computing devices. (Cognitive knowledge: Understand)
CO2	Illustrate the concepts of process management and process scheduling mechanisms employed in Operating Systems. (Cognitive knowledge: Understand)
CO3	Explain process synchronization in Operating Systems and illustrate process synchronization mechanisms using Mutex Locks, Semaphores and Monitors (Cognitive knowledge: Understand)
CO4	Explain any one method for detection, prevention, avoidance and recovery for managing deadlocks in Operating Systems. (Cognitive knowledge: Understand)
CO5	Explain the memory management algorithms in Operating Systems. (Cognitive knowledge: Understand)
CO6	Explain the security aspects and algorithms for file and storage management in Operating Systems. (Cognitive knowledge: Understand)

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Ø	Ø	Ø							Ø		Ø
CO2	Ø	Ø	Ø	Ø						Ø		Ø
CO3	Ø	Ø	Ø	Ø						Ø		Ø
CO4	Ø	Ø	Ø	Ø						Ø		Ø
CO5	Ø	Ø	Ø	Ø						Ø		Ø
CO6	Ø	Ø	Ø	Ø						Ø		Ø

	Abstract POs defined by National Board of Accreditation					
PO#	Broad PO	PO#	Broad PO			
PO1	Engineering Knowledge	PO7	Environment and Sustainability			
PO2	Problem Analysis	PO8	Ethics			
PO3	Design/Development of solutions	PO9	Individual and team work			
PO4	Conduct investigations of complex problems	PO10	Communication			
PO5	Modern tool usage	PO11	Project Management and Finance			
PO6	The Engineer and Society	PO12	Life long learning			

Assessment Pattern

Bloom's Category	Test 1 (Marks in percentage)	Test 2 (Marks in percentage)	End Semester Examination (Marks in percentage)
Remember	30	30	30
Understand	30	30	30
Apply	40	40	40
Analyse			
Evaluate			
Create			

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration
150	50	100	3

Continuous Internal Evaluation Pattern:

Attendance : 10 marks
Continuous Assessment Test : 25 marks
Continuous Assessment Assignment : 15 marks

Internal Examination Pattern:

Each of the two internal examinations has to be conducted out of 50 marks. First series test shall be preferably conducted after completing the first half of the syllabus and the second series test shall be preferably conducted after completing remaining part of the syllabus. There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions each from the completed modules and 1 question from the partly completed module), having 3 marks for each question adding up to 15 marks for part A. Students should answer all questions from Part A. Part B contains 7 questions (preferably, 3 questions each from the completed modules and 1 question from the partly completed module), each with 7 marks. Out of the 7 questions, a student should answer any 5.

End Semester Examination Pattern:

There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which a student should answer any one. Each question can have maximum 2 sub-divisions and carries 14 marks.

Syllabus

Module I

Introduction: Operating system overview – Operations, Functions, Service – System calls, Types – Operating System structure - Simple structure, Layered approach, Microkernel, Modules – System boot process.

Module II

Processes - Process states, Process control block, threads, scheduling, Operations on processes - process creation and termination – Inter-process communication - shared memory systems, Message passing systems.

Process Scheduling – Basic concepts- Scheduling criteria -scheduling algorithms- First come First Served, Shortest Job Firs, Priority scheduling, Round robin scheduling

Module III

Process synchronization- Race conditions – Critical section problem – Peterson's solution, Synchronization hardware, Mutex Locks, Semaphores, Monitors – Synchronization problems - Producer Consumer, Dining Philosophers and Readers-Writers.

Deadlocks: Necessary conditions, Resource allocation graphs, Deadlock prevention, Deadlock avoidance – Banker's algorithms, Deadlock detection, Recovery from deadlock.

Module IV

Memory Management: Concept of address spaces, Swapping, Contiguous memory allocation, fixed and variable partitions, Segmentation, Paging. Virtual memory, Demand paging, Page replacement algorithms.

Module V

File System: File concept - Attributes, Operations, types, structure – Access methods, Protection. File-system implementation, Directory implementation. Allocation methods.

Storage Management: Magnetic disks, Solid-state disks, Disk Structure, Disk scheduling, Disk formatting.

Text Book

Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, 'Operating System Concepts' 9th Edition, Wiley India 2015.

Reference Books:

- 1. Andrew S Tanenbaum, "Modern Operating Systems", 4th Edition, Prentice Hall, 2015.
- 2. William Stallings, "Operating systems", 6th Edition, Pearson, Global Edition, 2015.
- 3. Garry Nutt, Nabendu Chaki, Sarmistha Neogy, "Operating Systems", 3rd Edition, Pearson Education.
- 4. D.M.Dhamdhere, "Operating Systems", 2nd Edition, Tata McGraw Hill, 2011.
- 5. Sibsankar Haldar, Alex A Aravind, "Operating Systems", Pearson Education.

Sample Course Level Assessment Questions

Course Outcome1 (CO1): What is the main advantage of the micro kernel approach to system design? How do user program and system program interact in a microkernel architecture?

Course Outcome 2 (CO2): Define process. With the help of a neat diagram explain different states of process.

Course Outcome 3 (CO3): What do you mean by binary semaphore and counting semaphore? With C, explain implementation of wait () and signal().

Course Outcome 4 (CO4): Describe resource allocation graph for the following. a) with a deadlock b) with a cycle but no deadlock.

Course Outcome 5 (CO5): Consider the following page reference string 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6. Find out the number of page faults if there are 4 page frames, using the following page replacement algorithms. i) LRU ii) FIFO iii) Optimal

Course Outcome 6 (CO6): Explain the different file allocation methods with advantages and disadvantages.

	Model Question Paper	
QP CODE:		PAGES:
Reg No: Name:		
· · · · · · · · · · · · · · · · · · ·	Estd.	

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR

Course Code: CST 206

Course name: OPERATING SYSTEMS

Max Marks: 100 Duration: 3 Hours

PART-A

(Answer All Questions. Each question carries 3 marks)

- 1. How does hardware find the Operating System kernel after system switch-on?
- 2. What is the purpose of system call in operating system?
- 3. Why is context switching considered as an overhead to the system?

- 4. How is inter process communication implement using shared memory? 5. Describe resource allocation graph for the following. a) with a deadlock b) with a cycle but no deadlock. 6. What is critical section? What requirement should be satisfied by a solution to the critical section problem? 7. Consider the reference string 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6. How many page faults occur while using FCFS for the following cases. a) frame=2 b)frame=3 8. Differentiate between internal and external fragmentations. 9. Compare sequential access and direct access methods of storage devices. 10. Define the terms (i) Disk bandwidth (ii) Seek time. PART-B(Answer any one question from each module) 11. a) Explain the following structures of operating system (i) Monolithic systems (ii) Layered Systems (iii) Micro Kernel (iv) Modular approach. (12)b) Under what circumstances would a user be better of using a time sharing system than a PC or a single user workstation? **(2)** 201 OR 12. a) What is the main advantage of the micro kernel approach to system design? How do user program and system program interact in a microkernel architecture? **(8)** b) Describe the differences between symmetric and asymmetric multiprocessing? What are the advantages and disadvantages of multiprocessor systems? **(6)**
- 13. a) Define process. With the help of a neat diagram explain different states of process. **(8)**
 - b) Explain how a new process can be created in Unix using fork system call. **(6)**

OR

14 a) Find the average waiting time and average turnaround time for the processes given in the table below using:- i) SRT scheduling algorithm ii) Priority scheduling algorithm **(9)**

Process	Arrival Time (ms)	CPU Burst Time (ms)	Priority
P1	0	5	3
P2	2	4	1
P3	3	1	2
P4	5	2	4

- b) What is a Process Control Block? Explain the fields used in a Process Control Block. (5)
- 15. Consider a system with five processes P₀ through P₄ and three resources of type A, B, C. Resource type A has 10 instances, B has 5 instances and C has 7 instances. Suppose at time t₀ following snapshot of the system has been taken:

Process	Allocation	UL Max M	Available
	A B CUNIV	ER ATB C	A B C
P ₀	0 1 0	7 5 3	3 3 2
P ₁	2 0 0	3 2 2	
P ₂	3 0 2	9 0 2	
Pз	2 1 1	2 2 2	
P ₄	0 0 2	4 3 3	

- i) What will be the content of the Need matrix? Is the system in a safe state? If Yes, then what is the safe sequence? (8)
- iii)What will happen if process P₁ requests one additional instance of resource type A and two instances of resource type C? (6)

OR

- 16. a) State dining philosopher's problem and give a solution using semaphores. (7)
 - b) What do you mean by binary semaphore and counting semaphore? With C struct, explain implementation of wait () and signal() (7)

- 17. a) Consider the following page reference string 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6. Find out the number of page faults if there are 4 page frames, using the following page replacement algorithms i) LRU ii) FIFO iii) Optimal (9)
 - b) Explain the steps involved in handling a page fault. (5)

OR

- 18. a) With a diagram, explain how paging is done with TLB. (5)
 - b) Memory partitions of sizes 100 kb, 500 kb, 200 kb, 300 kb, 600 kb are available, how would best ,worst and first fit algorithms place processes of size 212 kb, 417 kb, 112 kb, 426 kb in order. Rank the algorithms in terms of how efficiently they uses memory. (9)
- 19. a) Suppose that a disk drive has 5000 cylinders, numbered 0 to 4999. the drive currently services a request at cylinder 143, and the previous request was at cylinder 125. the queue of pending request in FIFO order is 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130. Starting from the current position, what is the total distance (in cylinders) that the disk arm moves to satisfy all pending requests for each of the following algorithms
 - i) FCFS ii) SSFT iii) SCAN iv) LOOK v) C-SCAN (10)
 - b) What is the use of access matrix in protection mechanism? (4)

OR

- 20. a) Explain the different file allocation operations with advantages and disadvantages. (8)
 - b) Explain the following i) file types ii) file operation iii) file attributes (6)

Teaching Plan

	Module 1 - Introduction	5 Hours
1.1	Introduction to Operating System	1
1.2	Operating System operations, functions, service	1
1.3	System calls, Types	1
1.4	Operating System Structure: Simple, Layered, Microkernel, Modules	1
1.5	System Boot Process	1
	Module 2 – Processes and Process Scheduling	9 Hours
2.1	Processes, Process states	1
2.2	Process Control Block, Threads	1

For More Study Materials: https://www.keralanotes.com/

2.3	Scheduling	1
2.4	Operations on processes: process creation and termination	1
2.5	Inter-process communication: Shared memory systems, Message Passing	1
2.6	Process Scheduling – Basic concepts, Scheduling Criteria	1
2.7	Scheduling algorithms - Basics	1
2.8	First come First Served, Shortest Job First	1
2.9	Priority scheduling, Round Robin Scheduling	1
	Module 3 - Process synchronization and Dead locks	13 Hours
3.1	Process synchronization, Race conditions	1
3.2	Critical Section problem, Peterson's solution	1
3.3	Synchronization hardware, Mutex Locks	1
3.4	Semaphores	1
3.5	Monitors	1
3.6	Synchronization problem examples (Lecture 1)	1
3.7	Synchronization problem examples (Lecture 2)	1
3.8	Deadlocks: Necessary conditions, Resource Allocation Graphs	1
3.9	Deadlock prevention	1
3.10	Deadlock avoidance Estd.	1
3.11	Banker's algorithm	1
3.12	Deadlock detection 2014	1
3.13	Deadlock recovery	1
	Module 4 - Memory Management	9 Hours
4.1	Memory Management: Concept of Address spaces	1
4.2	Swapping	1
4.3	Contiguous memory allocation, fixed and variable partitions	1
4.4	Segmentation.	1
4.5	Paging (Lecture 1)	1
4.6	Paging (Lecture 2)	1
4.7	Virtual memory, Demand Paging	1

		~(/ <i>></i>
4.8	Page replacement algorithms (Lecture 1)	1
4.9	Page replacement algorithms (Lecture 2)	1
	Module 5 - File and Disk management	9 Hours
5.1	File concept, Attributes, Operations, types, structure	1
5.2	Access methods	1
5.3	Protection	1
5.4	File-System implementation	1
5.5	Directory implementation	1
5.6	Allocation methods	1
5.7	Magnetic disks, Solid-state disks, Disk structure	1
5.8	Disk scheduling API ABDUL KALAM	1
5.9	Disk formatting	1

