Analýza signálů ve frekvenční oblasti

Fourierova transformace

Základní idea transformace

Typy Fourierových transformací

Operation in the Time Domain	Result in the Frequency Domain	Transform
Aperiodic, continuous $x(t)$	Aperiodic, continuous $X(f)$	FT
Periodic extension of $x(t) \Rightarrow x_p(t)$	Sampling of $X(f) \Rightarrow X[k]$	FS
Period = T	Sampling interval = $1/T = f_0$	
Sampling of $x_p(t) \Rightarrow x_p[n]$	Periodic extension of $X[k] \Rightarrow X_{DFS}[k]$	DFS
Sampling interval = t_s	Period = $S = 1/t_s$	
Sampling of $x(t) \Rightarrow x[n]$	Periodic extension of $X(f) \Rightarrow X(F)$	DTFT
Sampling interval $= 1$	Period = 1	
Periodic extension of $x[n] \Rightarrow x_p[n]$	Sampling of $X(F) \Rightarrow X_{DFT}[k]$	DFT
Period = N	Sampling interval = $1/N$	

Discrete Time Fourier Transform

Symetrie DTFT spektra reálného signálu

Table 5.1 Some Useful DTFT Pairs

Table 5.1 Some Useful DTFT Pairs					
Note: In all cases, we assume $ \alpha < 1$.					
Entry	Signal $x[n]$	The F -Form: $X(F)$	The Ω -Form: $X(\Omega)$		
1	$\delta[n]$	1	1		
2	$\alpha^n u[n], \alpha < 1 $	$\frac{1}{1 - \alpha e^{-j2\pi F}}$	$\frac{1}{1 - \alpha e^{-j\Omega}}$		
3	$n\alpha^n u[n], \alpha < 1 $	$\frac{\alpha e^{-j2\pi F}}{(1 - \alpha e^{-j2\pi F})^2}$	$\frac{\alpha e^{-j\Omega}}{(1 - \alpha e^{-j\Omega})^2}$		
4	$(n+1)\alpha^n u[n], \alpha < 1 $	$\frac{1}{(1 - \alpha e^{-j2\pi F})^2}$	$\frac{1}{(1 - \alpha e^{-j\Omega})^2}$		
5	$\alpha^{ n }, \alpha < 1$	$\frac{1 - \alpha^2}{1 - 2\alpha \cos(2\pi F) + \alpha^2}$	$\frac{1 - \alpha^2}{1 - 2\alpha \cos \Omega + \alpha^2}$		
6	1	$\delta(F)$	$2\pi\delta(\Omega)$		
7	$\cos(2n\pi F_0) = \cos(n\Omega_0)$	$0.5[\delta(F+F_0)+\delta(F-F_0)]$	$\pi[\delta(\Omega + \Omega_0) + \delta(\Omega - \Omega_0)]$		
8	$\sin(2n\pi F_0) = \sin(n\Omega_0)$	$j0.5[\delta(F+F_0)-\delta(F-F_0)]$	$j\pi[\delta(\Omega+\Omega_0)-\delta(\Omega-\Omega_0)]$		
9	$2F_C \operatorname{sinc}(2nF_C) = \frac{\sin(n\Omega_C)}{n\pi}$	$\operatorname{rect}\left(\frac{F}{2F_C}\right)$	$\operatorname{rect}\left(\frac{\Omega}{2\Omega_C}\right)$		
10	u[n]	$0.5\delta(F) + \frac{1}{1 - e^{-j2\pi F}}$	$\pi\delta(\Omega) + \frac{1}{1 - e^{-j\Omega}}$		

Table 5.2 Properties of the DTFT

Property	DT Signal	Result (F-Form)	Result (Ω -Form)
Folding	x[-n]	$X(-F) = X^*(F)$	$X(-\Omega) = X^*(\Omega)$
Time shift	x[n-m]	$e^{-j2\pi mF}X(F)$	$e^{-j\Omega m}X(\Omega)$
Frequency shift	$e^{j2\pi nF_0}x[n]$	$X(F-F_0)$	$X(\Omega-\Omega_0)$
Half-period shift	$(-1)^n x[n]$	X(F - 0.5)	$X(\Omega-\pi)$
Modulation	$\cos(2\pi n F_0) x[n]$	$0.5[X(F + F_0) + X(F - F_0)]$	$0.5[(\Omega + \Omega_0) + X(\Omega - \Omega_0)]$
Convolution	$x[n] \star y[n]$	X(F)Y(F)	$X(\Omega)Y(\Omega)$
Product	x[n]y[n]	$X(F) \circledast Y(F)$	$\frac{1}{2\pi}[X(\Omega) \times Y(\Omega)]$
Times-n	nx[n]	$\frac{j}{2\pi} \frac{dX(F)}{dF}$	$j\frac{dX(\Omega)}{d\Omega}$
Parseval's relation	$\sum_{k=-\infty}^{\infty} x^2[k] = \int_1 X(F) ^2 dF = \frac{1}{2\pi} \int_{2\pi} X(\Omega) ^2 d\Omega$		
Central ordinates	$x[0] = \int_1 X(F) dF = \frac{1}{2\pi} \int_{2\pi} X(\Omega) d\Omega \qquad X(0) = \sum_{n = -\infty}^{\infty} x[n]$		
	$V(E) = V(0) = \sum_{n=0}^{\infty} (-1)^n \pi[n]$		

Diskrétní Fourierova transformace

N-bodová DFT signálu s N vzorky:

$$X_{DFT}[k] = \sum_{n=0}^{N-1} x(n)e^{-j2\pi nk/N} \qquad k = 0, 1, \dots, N-1$$

$$X_{DFT}[k] = \sum_{n=0}^{N-1} x(n) \left[\cos(2\pi nk / N) - j\sin(2\pi nk / N) \right]$$

zpětná transformace IDFT:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_{DFT}[k] e^{j2\pi nk/N} \qquad n = 0, 1, \dots, N-1$$

Jelikož $e^{j2\pi nk/N}$ je periodická, je periodická i DFT a IDFT \Rightarrow počítáme vzorky pouze přes jednu periodu.

Polární tvar DFT

$$X_{mag} = |X_{mag}| = \sqrt{X_{real}(k)^2 + X_{imag}(k)^2}$$

$$X_{\Phi} = \tan^{-1} \left[\frac{X_{imag}(k)}{X_{real}(k)} \right]$$

$$X_{PS}(k) = X_{mag}(k)^{2} = X_{real}(k)^{2} + X_{imag}(k)^{2}$$

- Při použití polární reprezentace DFT pozor na následující možné problémy :
 - správnou konverzi fáze sw většinou vrací fázový úhel v radiánech a to v rozsahu <-π/2, π/2 >
 - při výpočtu fáze pozor na nulovou reálnou část (přetečení) (fáze je v tomto případě ±90°
 - pozor na správnou konverzi úhlu z intervalu $<-\pi/2$, $\pi/2 > na interval <math><0$, $\pi >$
 - fáze u velmi nízkých amplitud, které se ztrácí v šumů může chaoticky kmitat okolo nulové hodnoty

 fázová charakteristika se opakuje s periodou 2π – to způsobuje v některých případech nespojitost ve fázové charakteristice

 Amplitudová frekvenční charakteristika je vždy kladná – problémy mohou nastat pokud imaginární část transformovaného signálu je celá nulová -> může docházet ke prudké změně ve fázové charakteristice mezi –π a π Př.: Výpočet DFT z definice: $x[n]=\{1,2,1,0\}$

$$k = 0: X_{DFT}[0] = \sum_{n=0}^{3} x[n]e^{0} = 1 + 2 + 1 + 0 = 4$$

$$k = 1: X_{DFT}[1] = \sum_{n=0}^{3} x[n]e^{-j\frac{n\pi}{2}} = 1 + 2e^{-j\frac{\pi}{2}} + 1e^{-j\pi} + 0 = -2j$$

$$k = 2: X_{DFT}[2] = \sum_{n=0}^{3} x[n]e^{-jn\pi} = 1 + 2e^{-j\pi} + 1e^{-j2\pi} + 0 = 0$$

$$k = 3: X_{DFT}[3] = \sum_{n=0}^{3} x[n]e^{-j\frac{3n\pi}{2}} = 1 + 2e^{-j\frac{3\pi}{2}} + 1e^{-j3\pi} + 0 = 2j$$

$$X_{DFT}[k]={4,-2j,0,2j}$$

Copyright © 2007 by Academic Press. All rights reserved.

Vlastnosti DFT

Property	Signal	DFT	Remarks	
Shift	$x[n-n_0]$	$X_{\mathrm{DFT}}[k]e^{-j2\pi kn_0/N}$	No change in magnitude	
Shift	x[n-0.5N]	$(-1)^k X_{\mathrm{DFT}}[k]$	Half-period shift for even N	
Modulation	$x[n]e^{j2\pi nk_0/N}$	$X_{ m DFT}[k-k_0]$		
Modulation	$(-1)^n x[n]$	$X_{ m DFT}[k-0.5N]$	Half-period shift for even N	
Folding	x[-n]	$X_{ m DFT}[-k]$	This is circular folding.	
Product	x[n]y[n]	$\frac{1}{N}X_{\mathrm{DFT}}[k] \oplus Y_{\mathrm{DFT}}[k]$	The convolution is periodic.	
Convolution	$x[n] \times y[n]$	$X_{\mathrm{DFT}}[k]Y_{\mathrm{DFT}}[k]$	The convolution is periodic.	
Correlation	$x[n] \overset{.}{\otimes} \overset{.}{\otimes} y[n]$	$X_{\mathrm{DFT}}[k]Y_{\mathrm{DFT}}^{*}[k]$	The correlation is periodic.	
Central ordinates	$x[0] = \frac{1}{N} \sum_{k=0}^{N-1} X_{\text{DFT}}[k] \qquad X_{\text{DFT}}[0] = \sum_{n=0}^{N-1} x[n]$			
Central ordinates	$x[\frac{N}{2}] = \frac{1}{N} \sum_{k=1}^{N-1} (-1)^k X_{\text{DFT}}[k] \ (N \text{ even}) \qquad X_{\text{DFT}}[\frac{N}{2}] = \sum_{k=1}^{N-1} (-1)^n x[n] \ (N \text{ even})$			
Parseval's relation	$\sum_{n=0}^{N-1} x[n] ^2 = \frac{1}{N} \sum_{k=0}^{N-1} X_{\text{DFT}}[k] ^2$			

Symetrie DFT:

DFT reálného signálu vykazuje komplexně sdruženou symetrii okolo počátku tj.:

$$X_{DFT}[-k]=X_{DFT}^*[k]$$

Protože je DFT periodické X_{DFT}[-k]=X_{DFT} [N-k]

Conjugate symmetry $X[k] = X^*[N-k]$ N = 7

Conjugate symmetry $X[k] = X^*[N-k]$

Výpočet hodnot pro k=0 a k=N/2 (pro sudé N)

$$X_{DFT}[0] = \sum_{n=0}^{N-1} x[n] \qquad X_{DFT}[\frac{N}{2}] = \sum_{n=0}^{N-1} (-1)^n x[n]$$
$$x[0] = \frac{1}{N} \sum_{k=0}^{N-1} X_{DFT}[k] \qquad x[\frac{N}{2}] = \frac{1}{N} \sum_{k=0}^{N-1} (-1)^k X_{DFT}[k]$$

Vlastnosti DFT

- 1. Linearita $k_1x_1(n) + k_2x_2(n) \leftrightarrow k_1X_1(n) + k_2X_2(n)$
- 2. Periodičnost funkce x(n) a X(n) jsou periodické s periodou P=N
- 3. Kruhový časový posun:

$$x[n-n_0] \leftrightarrow e^{-j(\frac{2\pi}{N})kn_0} \cdot X[k], \quad n_0 - cel\acute{e}$$

- ⇒ posun v čase způsobí změnu ve fázi
- 4. Kruhový frekvenční posun

$$X[k-k_0] \longleftrightarrow e^{-j(\frac{2\pi}{N})kn_0} \cdot x[n], \quad k_0 - cel\acute{e}$$

4. Periodická konvoluce v časové oblasti

$$x_1[n] * x_2[n] \leftrightarrow X_1[k] \cdot X_2[k]$$

Periodickou konvoluci dvou sekvencí délky N určíme jako součin N-bodových transformací.

5. Periodická korelace

$$x_1[n] * *x_2[n] \leftrightarrow X_1[k] \cdot X_2^*[k]$$

6. Obraz obrácené posloupnosti

$$x[-n] \leftrightarrow X[-k]$$

7. Vlastnosti spektra reálné posloupnosti

$$X[k] = X^*[-k] = X^*[N-k]$$

$$Re[X(k)] = Re[X(N-k)]$$

$$Im[X(k)] = -Im[X(N-k)]$$

$$|X(k)| = |X(N-k)|$$

$$\phi(k) = -\phi(N-k)$$

5. Periodická konvoluce ve frekvenční oblasti

$$x_1[n] \cdot x_2[n] \longleftrightarrow \frac{1}{N} X_1[k] * X_2[k]$$

- 8. Vlastnosti spektra reálné a sudé posloupnosti
 - je-li x[n] reálná a sudá je i X[k] reálná sudá
- 9. Vlastnosti spektra reálné a liché posloupnosti
 - je-li x[n] reálná a lichá, pak je X[k] imaginární, lichá
- 10. Alternativní vzorec pro výpočet IDFT

$$x(n) = \frac{1}{N} \left[\sum_{k=0}^{N-1} X^*(k) e^{-j\frac{2\pi}{N}kn} \right]^*$$

K výpočtu inverzní transformace je možné použít algoritmů pro výpočet DFT:

- nejprve obrátíme znaménka hodnot imaginární části X(k),
- vypočteme DFT
- obrátíme znaménka imaginárních částí vypočtených hodnot
- výsledek vydělíme N

Vlastnosti fázové charakteristiky

Velikost DFT vzorků

 Je-li x(n) reálný vstupní signál složený ze sinusovek s odpovídající amplitudou A₀ a celočíselným počtem cyklů přes N vzorků, je velikost DFT vzorku odpovídající sinusovky M_r daná vztahem

$$M_r = A_0 \frac{N}{2}$$

Pro komplexní vstupní signál s velikostí A₀ (tj. A₀e^{j2πft}) je výstupní velikost DFT vzorků

$$M_r = A_0 N$$

Rozlišení DFT

Copyright © 2007 by Academic Press. All rights reserved.

Amplitudové, fázové, výkonové spektrum

Copyright @ 2007 by Academic Press. All rights reserved.

Replikace signálu a nulová interpolace spektra

Existuje vztah mezi replikací v jedné oblasti a nulovou interpolací v druhé oblasti:

Je-li x[n] M-krát replikován, je DFT(x[n]) interpolován (nulová interpolace) a násoben M:

M-násobná interpolace:

$$x^{\uparrow}[n/M] \leftrightarrow \{X_{DFT}k], X_{DFT}k], \dots, X_{DFT}k]\}$$

$$M-krát$$

DFT dvojice

Impulz:
$$\{1,0,0,...,0\} \leftrightarrow \{1,1,1,...,1\}$$
 konstanta

Konstanta:
$$\{1, 1, 1, ..., 1\} \leftrightarrow \{N, 0, 0, ..., 0, 0\}$$
 impulz

Exponenciála:
$$\alpha^n \qquad \leftrightarrow \qquad \frac{1-\alpha^n}{1-\alpha e^{-j\frac{2\pi k}{N}}}$$

Sinusoida:
$$\cos\left(2\pi n\frac{k_0}{N}\right)$$
 \longleftrightarrow $0.5N\delta[k-k_0]+0.5N\delta[k-(N-k_0)]$ \Downarrow

N-bodová sinusoida s periodou N a F0=k/N má pouze dva nenulové vzorky

Inverzní DFT

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_{DFT}[k] e^{j2\pi nk/N} \qquad n = 0, 1, \dots, N-1$$

DFT a IDFT mají podobný vztah, až na znaménko u exponenciály a normalizační faktor 1/N.

Je-li DFT symetrická (komplexně sdružená symetrie) \Rightarrow x[n] může být vyjádřena jako součet sinusoid, protože dvojici Aej $^{\Theta}$ v k $_{0}$ a v N-k $_{0}$ odpovídá sinusoida

$$\frac{2A}{N}\cos\left(2\pi n\frac{k_0}{N} + \Theta\right)$$

 $X_{DFT}[0]$ odpovídá dc složce $X_{DFT}[0]/N$ a DFT vzorek $X_{DFT}[N/2]$ (pro sudé N) odpovídá frekvenci F= 0.5 a odpovídá signálu Kcos(n π), kde K=(1/N) $X_{DFT}[N/2]$

Př.: $X_{DFT}[k] = \{4, -2j, 0, 2j\}$

$$\begin{split} n &= 0: \ x[0] = 0.25 \cdot \sum_{k=0}^{3} X_{DFT}[k] e^{0} = 0.25 \cdot (1 + 2 + 1 + 0) = 1 \\ n &= 1: \ x[1] = 0.25 \cdot \sum_{k=0}^{3} X_{DFT}[k] e^{j\frac{k\pi}{2}} = 0.25 \cdot (4 - 2je^{j\frac{\pi}{2}} + 0 + 2je^{j\frac{3\pi}{2}}) = 2 \\ n &= 2: \ x[2] = 0.25 \cdot \sum_{k=0}^{3} X_{DFT}[k] e^{jk\pi} = 0.25 \cdot (4 - 2je^{j\pi} + 0 + 2je^{j3\pi}) = 1 \\ n &= 3: \ x[3] = 0.25 \cdot \sum_{k=0}^{3} X_{DFT}[k] e^{j\frac{3k\pi}{2}} = 0.25 \cdot (4 - 2je^{j\frac{3\pi}{2}} + 0 + 2je^{j\frac{3\pi}{2}}) = 0 \end{split}$$

 $IDFT \rightarrow x[n] = \{1,2,1,0\}$

Alternativní vzorec pro výpočet IDFT

$$x(n) = \frac{1}{N} \left[\sum_{k=0}^{N-1} X^*(k) e^{-j\frac{2\pi}{N}kn} \right]^*$$

K výpočtu inverzní transformace je možné použít algoritmů pro výpočet DFT:

- nejprve obrátíme znaménka hodnot imaginární části X(k),
- vypočteme DFT
- obrátíme znaménka imaginárních částí vypočtených hodnot
- výsledek vydělíme N

DFT- volba frekvenční osy

DFT samples may be plotted against the index or against frequency

$$0 \quad 1 \quad 2 \quad 3 \quad N-1 \quad k \text{ (Index)}$$

$$\frac{1}{0} = \frac{1}{f_0} = \frac{1}{3f_0} = \frac{1}{3f_0} = \frac{1}{f_0} = \frac{1}{3f_0} = \frac{1}{3f_$$

$$0 \frac{1}{N} \frac{1}{2N} \frac{1}{3N} \frac{1}{N} = f/S$$
 Digital frequency $F = f/S$

Two more options are:
$$\omega = 2\pi f$$
 (analog radian frequency) $\Omega = 2\pi F$ (digital radian frequency)

Prosakování ve spektru (Spectrum leakage)

- Prosakování se vyskytuje tehdy, pokud u vzorkovaného analogového signálu počítáme DFT z N vzorků a v těchto vzorcích není obsažen celočíselný počet period sinusoid obsažených ve vstupním signálu.
- Při prosakování se v DFT vyskytnou spektrální čáry i jinde než v ±f₀ (f₀ je frekvence vstupního signálu
- Prosakování je možné eliminovat, ale nelze jej odstranit úplně.

 K vysvětlení prosakování ve spektru se používá Fourierův obraz reálné kosinové funkce

$$\begin{split} x_r(n) &= \cos(2\pi n K / N), \\ X_r(m) &= e^{j[n(k-m)-\pi(k-m)/N]} \cdot \frac{1}{2} \frac{\sin[\pi(k-m)]}{\sin[\pi(k-m)/N]} + \\ &+ e^{j[n(k+m)-\pi(k-m)/N]} \cdot \frac{1}{2} \frac{\sin[\pi(k+m)]}{\sin[\pi(k+m)/N]} \end{split}$$

K omezení vlivu prosakování ve spektru se před provedením DFT násobí vstupní signál tzv. vyhlazovacím oknem.

$$X_{w}(m) = \sum_{n=0}^{N=1} w(n) \cdot x(n) e^{-j2\pi n m/N}$$

Maticový zápis DFT a IDFT

$$W_{N} = e^{\frac{-j2\pi}{N}}$$

$$X_{DFT}[k] = \sum_{n=0}^{N-1} x[n]W_N^{nk}$$

$$k = 0,1,...,N-1$$

Označíme
$$W_N = e^{\frac{-j2\pi}{N}}$$
 $X_{DFT}[k] = \sum_{n=0}^{N-1} x[n]W_N^{nk}$ $k = 0,1,...,N-1$
$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_{DFT}[k][W_N^{nk}]^* \qquad n = 0,1,...,N-1$$

$$n = 0,1,...,N-1$$

Nx1 matice

NxN matice

$$\begin{bmatrix} X[0] \\ X[1] \\ X[2] \\ \vdots \\ X[N-1] \end{bmatrix} = \begin{bmatrix} W_N^0 & W_N^0 & W_N^0 & W_N^0 & W_N^0 \\ W_N^0 & W_N^1 & W_N^2 & \cdots & W_N^{N-1} \\ W_N^0 & W_N^2 & W_N^4 & \cdots & W_N^{2(N-1)} \\ W_N^0 & \vdots & \vdots & \ddots & \vdots \\ W_N^0 & W_N^{N-1} & W_N^{2(N-1)} & \cdots & W_N^{(N-1)(N-1)} \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ \vdots \\ x[N-1] \end{bmatrix}$$

Maticový zápis IDFT

$$X = W_N^{-1}X \implies X = \frac{1}{N} [W_N^*]^T X$$

IDFT matice
$$W_N^{-1} = \frac{1}{N} [W_N^*]^T$$

Spektrální vyhlazení časovými okny

- výběr N vzorků vzorkovaného signálu = násobení vzorkovaného signálu pravoúhlým oknem
- kromě pravoúhlého okna lze použít i jiné typy oken
- každé okno má určitou frekvenční charakteristiku a podle toho je vhodné pro zpracování určitého typu signálu

Základní charakteristiky oken

Amplitudová charakteristika

$$20\log\frac{P}{0.5P} = 6dB \Longrightarrow W_6$$

$$20\log \frac{P}{0.707P} = 3dB \Rightarrow W_3$$

Další charakteristiky oken:

koherentní zesílení (coherent gain)

$$CG = \frac{1}{N} \sum_{k=0}^{N-1} \left| w[k] \right|$$

ENBW (equivalent noise bandwith)

$$ENBW = \frac{N\sum_{k=0}^{N-1} |w[k]|^2}{\left|\sum_{k=0}^{N-1} w[k]\right|}$$

SL (scallop loss)

$$SL = 20\log \frac{\left|\sum_{k=0}^{N-1} w[k]e^{\frac{-j\pi k}{N}}\right|}{\sum_{k=0}^{N-1} w[k]}$$

Používaná DFT okna a jejich charakteristiky

Entry	Window	Expression for $w[n]$	$W_M = \frac{K}{N}$	Normalized Peak Sidelobe
1	Boxcar	1	2/ <i>N</i>	$0.2172 \approx -13.3 \text{ dB}$
2	Bartlett	$1 - \frac{2 k }{N}$	4/N	$0.0472 \approx -26.5 \text{ dB}$
3	von Hann	$0.5 + 0.5 \cos\left(\frac{2\pi k}{N}\right)$	4/N	$0.0267 \approx -31.5 \mathrm{dB}$
4	Hamming	$0.54 + 0.46 \cos\left(\frac{2\pi k}{N}\right)$	4/N	$0.0073 \approx -42.7 \text{ dB}$
5	Blackman	$0.42 + 0.5\cos\left(\frac{2\pi k}{N}\right) + 0.08\cos\left(\frac{4\pi k}{N}\right)$	6/N	$0.0012 \approx -58.1 \text{ dB}$
6	Kaiser	$\frac{I_0(\pi\beta\sqrt{1-(2k/N)^2})}{I_0(\pi\beta)}$	$\frac{2\sqrt{1+\beta^2}}{N}$	$\frac{0.22\pi\beta}{\sinh(\pi\beta)} \approx -45.7 \text{ dB (for } \beta = 2)$

NOTES: k = 0.5N - n, where n = 0, 1, ..., N - 1. W_M is the main-lobe width.

For the Kaiser window, $I_0(.)$ is the modified Bessel function of order zero.

For the Kaiser window, the parameter β controls the peak sidelobe level.

The von Hann window is also known as the Hanning window.

Používaná DFT okna a jejich charakteristiky

- Zvětšování délky okna (u všech oken) klesá šířka hlavního laloku, velikost postranních laloků se téměř nemění
- Ideální případ amplitudové charakteristiky (pro okno dané délky) úzký (a co nejvyšší) hlavní lalok a nízké postranní laloky -> protichůdné požadavky - většinou s klesající šířkou hlavního laloku roste amplituda postranních laloků
- Dynamické rozlišení schopnost odlišit velké změny v amplitudě signálu.
- Frekvenční rozlišení okna schopnost od sebe odlišit sinusovky s
 podobnou amplitudou a blízkou frekvencí.

Platí: při použití vyhlazovacích oken od sebe nelze odlišit dvě sinusovky s frekvencemi nižšími než je šířka hlavního laloku okna.

$$\Delta F = \frac{\Delta f}{S} = W_M = \frac{k}{N}$$

ke zmenšení ΔF musíme zmenšit $W_M \to zvětšit N (ale ne přidáním nul <math>!!!) \to v$ íce vzorků signálu

Příklad: $x(t)=A_1\cos(2\pi f_0 t)+A_2\cos(2\pi (f_0 + \Delta f)t)$

 $A_1 = A_2 = 1 f_0 = 30Hz$ S=128Hz

Máme N vzorků, doplnit počet nulami na N_{FFT}

Jaké je nejmenší ∆f pro: pravoúhlé okno

von Hannovo okno

pro následující N a N_{FFT}: a) N=256, N_{FFT}=2048

c)
$$N=256$$
, $N_{FFT}=4096$

⇒ nelze zvětšit rozlišení přidáním nul, ale pouze zvětšením délky signálu

$A_2 = 0.05$ (26dB pod A_1 tj. 20log(1/0.05))

Odhad spektra

- Výkonová spektrální hustota (PSD power spectral density) R_{xx}(f) analogového výkonového nebo náhodného signálu x(t) je Fourierova transformace autokorelační funkce r_{xx}(t).
- $R_{xx}(f)$ je reálná nezáporná sudá funkce s hodnotou $R_{xx}(0)$ rovnou průměrnému výkonu signálu x(t).
- PSD se používá k odhadu spektra vzorkovaného signálu konečné délky

Dva způsoby odhadu spektra:

- neparametrický odhad o signálu nic nevíme a odhadujeme spektrum
- parametrický odhad odhad spektra modelujeme jako koeficienty filtru buzeného šumem

Neparametrické odhady:

 Periodogram – periodogram P[k] je založena na DFT (FFT) N-vzorkované řady x[n] a je definován jako:

$$P[k] = \frac{1}{N} |X_{DFT}[k]|^2$$

- dobrý odhad pro deterministické, pásmově omezené, výkonové signály, vzorkované vyšší frekvencí než Nyquistova
- Špatné pro signály poškozené šumem

Welchova metoda

- je založená na průměrování překrývajících se periodogramových odhadů
- Princip:
 - signál je rozdělen na k překrývajících se M vzorkovaných úseků (s překrytím D vzorků, D=50-75%). Každý úsek je násoben M vzorkovým oknem w(n) kvůli omezení prosakování.
 - PSD každého úseku je odhadnuto periodogramem
 - k periodogramů je zprůměrováno M-bodový průměrný periodogram
- Metoda je vhodná pro detekci frekvencí, které jsou blízko sebe (dobré frekvenční rozlišení)

Bartlettova metoda

 Jako Welchova metoda, ale segmenty se nepřekrývají a nejsou násobeny oknem

Blackman-Tukey metoda:

- metoda určuje PSD z autokorelace násobené oknem
- Princip:
 - N vzorkový signál x[n] je doplněn nulami na 2N vzorků výsledkem je signál y[n]
 - určí se periodická autokorelace y[n] nalezením $Y_{FFT}[k]$ a určením IFFT součinu $Y_{FFT}[k]$ $Y_{FFT}[k]$ * a dostaneme 2N bodový autokorelační odhad $r_{xx}[n]$.
 - autokorelační odhad r_{xx}[n] je násoben M-bodovým oknem (kvůli vyhlazení spektra a redukci vlivu špatného autokorelačního odhadu signálu konečné délky)
 - určíme FFT M-bodové autokorelace násobené oknem a dostaneme vyhlazený periodogram
 - menší M (užší okno) lepší vyhlazení, ale může dojít k maskování některých špiček (peaků) nebo k překrytí ostrých detailů. Obvykle se používá M v rozsahu M=0.1N až M=0.5N
 - jako okno pro vyhlazení se nejčastěji používá Bartlettovo okno.
- metoda je vhodná pro detekci dobře oddělených peaků s rozdílnou velikostí (dobré dynamické rozlišení)

Rychlá Fourierova transformace FFT

Algoritmus využívá symetrie a periodicity exponenciály $W_N=e^{-j2\pi n/N}$

1	$e^{-j2\pi n/N} = e^{-j2\pi(n+N)/N}$	$W_N^{n+N} = W_N^n$
2	$e^{-j2\pi(n+\frac{N}{2})/N} = e^{-j2\pi n/N}$	$W_N^{n+\frac{N}{2}} = -W_N^n$
3	$e^{-j2\pi k} = e^{-j2\pi Nk/N} = 1$	$W_N^{Nk} = 1$
4	$e^{-j2(\frac{2\pi}{N})} = e^{-j2\pi\frac{N}{2}}$	$W_N^2 = W_{N/2}$

Základní výsledky využité ve FFT výpočtech:

1-bodová transformace : DFT jediného čísla A je číslo A

2-bodová transformace : DFT 2-bodové řady

$$X_{DFT}[0]=x[0] + x[1]$$

$$X_{DFT}[1]=x[0] - x[1]$$

 Radix 2-FFT transformace využívá toho, že N-bodová DFT může být zapsána jako součet dvou N/2 bodových transformací vytvořených ze sudých a lichých vzorků.

$$\begin{split} X_{DFT}[k] &= \sum_{n=0}^{N-1} x[n] W_N^{nk} = \sum_{n=0}^{\frac{N}{2}-1} x[2n] W_N^{2nk} + \sum_{n=0}^{\frac{N}{2}-1} x[2n+1] W_N^{(2n+1)k} = \\ &= \sum_{n=0}^{\frac{N}{2}-1} x[2n] W_N^{2nk} + W_N^k \sum_{n=0}^{\frac{N}{2}-1} x[2n+1] W_N^{2nk} = \\ &= \sum_{n=0}^{\frac{N}{2}-1} x[2n] W_N^{nk} + W_N^k \sum_{n=0}^{\frac{N}{2}-1} x[2n+1] W_N^{nk} \end{split}$$

Označíme X^e[k] – sudé vzorky (sudý index) a X^o[k] - liché vzorky (lichý index), pak

$$X_{DFT}[k] = X^{e}[k] + W_{N}^{k} X^{o}[k]$$
 $k = 0,1,2,\dots,N-1$

Na základě periodicity lze odvodit:

tzv. Danielson-Lanzos lemma

Entry	Characteristic	Decimation in Frequency	Decimation in Time
1	Number of samples	$N=2^m$	$N=2^m$
2	Input sequence	Natural order	Bit-reversed order
3	DFT result	Bit-reversed order	Natural order
4	Computations	In place	In place
5	Number of stages	$m = \log_2 N$	$m = \log_2 N$
6	Multiplications	$\frac{N}{2}\log_2 N$ (complex)	$\frac{N}{2}\log_2 N(\text{complex})$
7	Additions	$N \log_2 N$ (complex)	$N \log_2 N$ (complex)
		Structure of the ith Stage	
8	Number of butterflies	<u>N</u> 2	<u>N</u> 2
9	Butterfly input	A (top) and B (bottom)	A (top) and B (bottom)
10	Butterfly output	$(A+B)$ and $(A-B)W_N^t$	$(A + BW_N^t)$ and $(A - BW_N^t)$
11	Twiddle factors t	$2^{i-1}Q, Q=0,1,\ldots,P-1$	$2^{m-i}Q, Q=0,1,\ldots,P-1$
12	Values of P	$P=2^{m-i}$	$P=2^{i-1}$

Výpočet FFT – decimace ve frekvenci DIF

Výpočet FFT – decimace v čase DIT

Výpočet FFT - porovnání

Feature	N-Point DFT	N-Point FFT $0.5N$ butterflies/stage, m stages Total butterflies = $0.5mN$	
Algorithm	Solution of N equations in N unknowns		
Multiplications	N per equation	1 per butterfly	
Additions	N-1 per equation	2 per butterfly	
Total multiplications	N^2	$0.5mN = 0.5N \log_2 N$	
Total additions	N(N-1)	$mN = N \log_2 N$	