Lecture 5. Model training

MLP review

Multi-class classification

Car

Motorcycle

Truck

$$h_{\Theta}(x) \in \mathbb{R}^4$$

Want
$$h_{\Theta}(x) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, etc. when pedestrian when car when motorcycle

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Classification peformance metrics

 $Accuracy = \frac{Number\ of\ Correct\ Predictions}{Total\ Number\ of\ Predictions}$

Cancer classification example

Train logistic regression model $h_{\theta}(x)$. (y = 1 if cancer, y = 0 otherwise)

Find that you got 1% error on test set. (99% correct diagnoses / accuracy = 0.99)

But only 0.50% of patients have cancer.

The confusion matrix

		Predicted condition	
	Total population = P + N	Predicted Positive (PP)	Predicted Negative (PN)
Actual condition	Positive (P) [a]	True positive (TP), hit ^[b]	False negative (FN), miss, underestimation
	Negative (N) ^[d]	False positive (FP), false alarm, overestimation	True negative (TN), correct rejection ^[e]

Precision/Recall

y=1 in presence of rare class that we want to detect

Precision

(Of all patients where we predicted y=1, what fraction actually has cancer?)

Recall

(Of all patients that actually have cancer, what fraction did we correctly detect as having cancer?)

Trading off precision and recall

Logistic regression: $0 \le h_{\theta}(x) \le 1$

Predict 1 if $h_{\theta}(x) \geq 0.5$

Predict 0 if $h_{\theta}(x) < 0.5$

Suppose we want to predict y = 1 (cancer) only if very confident.

Suppose we want to avoid missing too many cases of cancer (avoid false negatives).

recall =

true positives

no. of predicted positive

true positives

no. of actual positive

More generally: Predict 1 if $h_{\theta}(x) \geq$ threshold.

F₁ Score (F score)

How to compare precision/recall numbers?

	Precision(P)	Recall (R)
Algorithm 1	0.5	0.4
Algorithm 2	0.7	0.1
Algorithm 3	0.02	1.0

Average:
$$\frac{P+R}{2}$$

$$\mathsf{F_1}$$
 Score: $2\frac{PR}{P+R}$

Receiver-operating characteristic curve (ROC)

		Predicted condition	
	Total population = P + N	Predicted Positive (PP)	Predicted Negative (PN)
Actual condition	Positive (P)	True positive (TP), hit ^[b]	False negative (FN), miss, underestimation
Actual	Negative (N) ^[d]	False positive (FP), false alarm, overestimation	True negative (TN), correct rejection ^[e]

Regularization

The problem of overfitting

Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $(J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0)$, but fail to generalize to new examples (predict prices on new examples).

Example: Logistic regression

Addressing overfitting:

```
x_1 = \text{size of house}
x_2 = \text{no. of bedrooms}
x_3 = \text{no. of floors}
x_4 = age of house
x_5 = average income in neighborhood
x_6 = \text{kitchen size}
x_{100}
```

Addressing overfitting:

Options:

- 1. Reduce number of features.
 - Manually select which features to keep.
 - Model selection algorithm (later in course).
- 2. Regularization.
 - Keep all the features, but reduce magnitude/values of parameters θ_i .
 - Works well when we have a lot of features, each of which contributes a bit to predicting y.

Regularization

Cost function

Intuition

 $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$

Suppose we penalize and make θ_3 , θ_4 really small.

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Regularization.

Small values for parameters $\theta_0, \theta_1, \dots, \theta_n$

- "Simpler" hypothesis
- Less prone to overfitting

Housing:

- Features: $x_1, x_2, \ldots, x_{100}$
- Parameters: $\theta_0, \theta_1, \theta_2, \dots, \theta_{100}$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Regularization.

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$\min_{\theta} J(\theta)$$

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda=10^{10}$)?

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to a very small value?

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

L2 Regularization (Ridge)

$$ext{Loss} = ext{Original Loss} + \lambda \sum_{i=1}^n w_i^2$$

L1 Regularization (Lasso)

$$ext{Loss} = ext{Original Loss} + \lambda \sum_{i=1}^n |w_i|$$

Elastic Net

$$ext{Loss} = ext{Original Loss} + \lambda_1 \sum_{i=1}^n |w_i| + \lambda_2 \sum_{i=1}^n w_i^2$$

LO Regularization (LO Norm)

$$ext{Loss} = ext{Original Loss} + \lambda \sum_{i=1}^n I(w_i
eq 0)$$

Pick the best regularization parameter with cross validation

Penalty Strength	CV Score
0.2	0.49
0.3	0.56
0.4	0.59
0.5	0.56
0.6	0.54
0.7	0.50

Total Cross Validation Score = 0.497

Neural Networks: Learning

Backpropagation algorithm

Gradient computation

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log h_{\theta}(x^{(i)})_k + (1 - y_k^{(i)}) \log(1 - h_{\theta}(x^{(i)})_k) \right]$$

$$+ \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_j^{(l)})^2$$

$$\min_{\Theta} J(\Theta)$$

Need code to compute:

- $J(\Theta)$ $\frac{\partial}{\partial \Theta_{i,i}^{(l)}} J(\Theta)$

Forward Propagation

Back Propagation (backprop)

Additional reading: Murphy 13.3

Neural Networks: Learning

Putting it together

Training a neural network

Pick a network architecture (connectivity pattern between neurons)

No. of input units: Dimension of features $x^{(i)}$

No. output units: Number of classes

Reasonable default: 1 hidden layer, or if >1 hidden layer, have same no. of hidden units in every layer (usually the more the better)

Training a neural network

- 1. Randomly initialize weights
- 2. Implement forward propagation to get $h_{\Theta}(x^{(i)})$ for any $x^{(i)}$
- 3. Implement code to compute cost function $J(\Theta)$
- 4. Implement backprop to compute partial derivatives $\frac{\partial}{\partial \Theta_{jk}^{(l)}} J(\Theta)$

for
$$i = 1:m$$

Perform forward propagation and backpropagation using example

Training a neural network

5. Use gradient descent or advanced optimization method with backpropagation to try to minimize $J(\Theta)$ as a function of parameters Θ

