Exponential Functions & Derivatives

Before Class

Exponential Functions

Definition 0.1.1 (Exponential Function)

An **exponential function** is a function of the form $_$ _____, where b is a positive constant.

Properties of Exponential Functions

Let $f(x) = b^x$. Then, f(x) has the following properties:

- Domain: _____
- Range: _____
- If ______, then f(x) is increasing
- If ______, then f(x) is decreasing

$$\bullet \lim_{x \to \infty} f(x) = \begin{cases} ---- & \text{if } ---- \\ ---- & \text{if } ---- \end{cases}$$

$$\bullet \lim_{x \to -\infty} f(x) = \begin{cases} ---- & \text{if } ---- \\ ---- & \text{if } ---- \end{cases}$$

Example 0.1.2. For the following functions, find the limits and sketch the graph:

(a)
$$f(x) = 2(1.2^x) + 3$$

(b)
$$g(x) = 3^{-x} - 1$$

Definition 0.1.3 (Euler's Constant (e))

e is defined to be the number for which $\lim_{h\to 0}\frac{e^h-1}{h}=1$

Calculus of Exponentials

Derivative of an Exponential (First Attempt)

If $f(x) = b^x$, then $f'(x) = f'(0)b^x$

Proof

This means we have the following interpretation of $f(x) = e^x$:

Special Meaning of e

 $f(x) = e^x$ is the unique exponential function whose tangent line at the point (0,1) is exactly 1, i.e. f'(0) = 1.

Derivative of e^x

$$\frac{d}{dx}\left[e^x\right] =$$

Antiderivative of e^x

$$\int e^x \, dx =$$

Pre-Class Activities

Example 0.1.4. Write the domain of the function:

(a)
$$f(x) = \frac{1 - e^{x^2}}{1 - e^{4 - x^2}}$$

(b)
$$g(x) = \frac{1+x}{3^{\sin x}}$$

(c)
$$h(t) = \sqrt{4^t - 16}$$

Example 0.1.5. Find the indicated limit:

(a)
$$\lim_{x \to \infty} (1.0001)^x$$

(b)
$$\lim_{x \to \infty} \frac{e^{3x} - e^{-3x}}{e^{3x} + e^{-3x}}$$

(c)
$$\lim_{x \to \infty} (e^{-2x} \sin x)$$

Example 0.1.6. Find the derivative of the function:

(a)
$$f(x) = e^4$$

(b)
$$g(r) = e^r + r^e$$

(c)
$$f(x) = \frac{e^x}{1 + e^x}$$

Example 0.1.7. Find the equation of the tangent line to the curve $y = xe^x$ at the point (1, e).

Question 0.1.8 Use this space to write any questions or concerns you have from the pre-class portion of this section.

In Class

Examples

Example 0.1.9. Compute f'(x), if $f(x) = e^{\tan x}$

Example 0.1.10. Compute f'(x), if $f(x) = \tan(e^x)$

Example 0.1.11. Find y' if $y = e^{-6x} \cos(2x)$

Example 0.1.12. Find the absolute maximum and absolute minimum of $y = xe^{-x}$

Example 0.1.13. Find $\frac{dy}{dx}$, if $e^{x/y} = y - x$

Example 0.1.14. Compute the derivatives:

(a)
$$y = x^2 e^{-1/x}$$

(b)
$$g(x) = e^{x^2 - x}$$

(c)
$$f(t) = \sqrt{1 + te^{-2t}}$$

Example 0.1.15. Find the absolute maximum and absolute minimum of $f(x) = xe^{-x^2/8}$ on [-1,4]

Example 0.1.16. Evaluate the integral:

(a)
$$\int_0^1 (x^e + e^x) dx$$

(b)
$$\int x^3 e^{x^4} dx$$

(c)
$$\int e^x \sqrt{1 + e^x} \, dx$$

Example 0.1.17. Compute $\int_{1}^{2} \frac{e^{1/x}}{x^{2}} dx$

Example 0.1.18. Find f(x) if $f''(x) = 3e^x + 5\sin x$, f(0) = 1, and f'(0) = 2

Example 0.1.19. The *error function*, $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$ is a useful function in probability, statistics, and engineering. Show that $\int_a^b e^{-t^2} dt = \frac{1}{2} \sqrt{\pi} \left[\operatorname{erf}(b) - \operatorname{erf}(a) \right]$.

After Class Activities

Example 0.1.20. Show that the function $y = e^x + e^{-x/2}$ satisfies the differential equation 2y'' - y' - y = 0.

Example 0.1.21. Find an equation of the tangent line to the curve $xe^y + ye^x = 1$ at the point (0,1).

Example 0.1.22. Compute $\frac{d^{1000}}{dx^{1000}} [xe^{-x}]$

11

Example 0.1.23. If $f(x) = 3 + x + e^x$, find $(f^{-1})'(4)$

Example 0.1.24. Evaluate $\lim_{x\to\pi} \frac{e^{\sin x} - 1}{x - \pi}$

Example 0.1.25. Find the volume of the solid obtained by rotating the region bounded by the curves $y = e^x$, y = 0, x = 0, and x = 1 about the x-axis.

Chapter 6.2