Ax=D: An Old
Problem
Through a
New Lens

Karthik P. N.

An unknown vector $x \in \mathbb{R}^n$

An unknown vector $x \in \mathbb{R}^n$

x is known to belong to a set L of the form

$$L = \{ w \in \mathbb{R}^n : Aw = b \}$$

$$A = \begin{bmatrix} \cdots & a_1^T \cdots \\ \cdots & a_2^T \cdots \\ \vdots \\ \cdots & a_k^T \cdots \end{bmatrix}_{k \times n} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix}_{k \times 1}$$

An unknown vector $x \in \mathbb{R}^n$

x is known to belong to a set L of the form

$$L = \{ w \in \mathbb{R}^n : Aw = b \}$$

$$A = \begin{bmatrix} \cdots & a_1^T \cdots \\ \cdots & a_2^T \cdots \\ \vdots \\ \cdots & a_k^T \cdots \end{bmatrix}_{k \times n} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix}_{k \times 1}$$

Goal: Recover x based on the constraints in L

An unknown vector $x \in \mathbb{R}^n$

x is known to belong to a set L of the form

Goal: Recover *x* based on the constraints in *L*

An unknown vector $x \in \mathbb{R}^n$

x is known to belong to a set L of the form

$$L = \{ w \in \mathbb{R}^n : Aw = b \}$$

$$A = \begin{bmatrix} \cdots & a_1^T \cdots \\ \cdots & a_2^T \cdots \\ \vdots \\ \cdots & a_k^T \cdots \end{bmatrix}_{k \times n} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix}_{k \times 1}$$

Goal: Recover x based on the constraints in L

 $x = \arg\min_{w \in L} F(w)$

- Define a cost function
- Choose an element that minimises the value of the cost function

$$x = \arg\min_{w \in L} F(w)$$

- Define a cost function
- Choose an element that minimises the value of the cost function

$$x = \arg\min_{w \in L} F(w)$$

Examples: least squares, maximum entropy (max-ent)

Why Least Squares and Maximum Entropy? Why not xyz?

Why Least Squares and Maximum Entropy? Why not xyz?

• Why are least squares and max-ent rules widely accepted? What makes them so appealing?

Why Least Squares and Maximum Entropy? Why not xyz?

• Why are least squares and max-ent rules widely accepted? What makes them so appealing?

Least squares / maximum entropy rule

Rule xyz

Why Least Squares and Maximum Entropy? Why not xyz?

- Why are least squares and max-ent rules widely accepted? What makes them so appealing?
- Is there a way to classify rules as "naturally appealing" or "good"?

Least squares / maximum entropy rule

Rule xyz

The Annals of Statistics 1991, Vol. 19, No. 4, 2032–2066

WHY LEAST SQUARES AND MAXIMUM ENTROPY? AN AXIOMATIC APPROACH TO INFERENCE FOR LINEAR INVERSE PROBLEMS¹

By Imre Csiszár

Mathematical Institute of the Hungarian Academy of Sciences

The Annals of Statistics 1991, Vol. 19, No. 4, 2032–2066

WHY LEAST SQUARES AND MAXIMUM ENTROPY? AN AXIOMATIC APPROACH TO INFERENCE FOR LINEAR INVERSE PROBLEMS¹

By Imre Csiszár

Mathematical Institute of the Hungarian Academy of Sciences

 Csiszár provides a method for classifying rules as good by defining a set of naturally appealing axioms

The Annals of Statistics 1991, Vol. 19, No. 4, 2032-2066

WHY LEAST SQUARES AND MAXIMUM ENTROPY? AN AXIOMATIC APPROACH TO INFERENCE FOR LINEAR INVERSE PROBLEMS¹

By Imre Csiszár

Mathematical Institute of the Hungarian Academy of Sciences

- Csiszár provides a method for classifying rules as good by defining a set of naturally appealing axioms
- Those rules that satisfy one or more axioms are classified as good

The Annals of Statistics 1991, Vol. 19, No. 4, 2032-2066

WHY LEAST SQUARES AND MAXIMUM ENTROPY? AN AXIOMATIC APPROACH TO INFERENCE FOR LINEAR INVERSE PROBLEMS¹

By Imre Csiszár

Mathematical Institute of the Hungarian Academy of Sciences

- Csiszár provides a method for classifying rules as good by defining a set of naturally appealing axioms
- Those rules that satisfy one or more axioms are classified as good
- Csiszár demonstrates that <u>least</u>
 squares and max-ent methods
 arise naturally as a result of
 satisfying some axioms

The Annals of Statistics 1991, Vol. 19, No. 4, 2032-2066

WHY LEAST SQUARES AND MAXIMUM ENTROPY? AN AXIOMATIC APPROACH TO INFERENCE FOR LINEAR INVERSE PROBLEMS¹

By Imre Csiszár

Mathematical Institute of the Hungarian Academy of Sciences

One Problem, Two Approaches

One Problem, Two Approaches

 $x = \arg\min_{w \in L} F(w)$

The Annals of Statistics 1991, Vol. 19, No. 4, 2032-2066

WHY LEAST SQUARES AND MAXIMUM ENTROPY? AN AXIOMATIC APPROACH TO INFERENCE FOR LINEAR INVERSE PROBLEMS¹

By Imre Csiszár

Mathematical Institute of the Hungarian Academy of Sciences

One Problem, Two Approaches

 $x = \arg\min_{w \in L} F(w)$

The Annals of Statistics 1991, Vol. 19, No. 4, 2032-2066

WHY LEAST SQUARES AND MAXIMUM ENTROPY? AN AXIOMATIC APPROACH TO INFERENCE FOR LINEAR INVERSE PROBLEMS¹

By Imre Csiszár

Mathematical Institute of the Hungarian Academy of Sciences

An attempt is made to determine the logically consistent rules for selecting a vector from any feasible set defined by linear constraints, when either all n-vectors or those with positive components or the probability vectors are permissible. Some basic postulates are satisfied if and only if the selection rule is to minimize a certain function which, if a "prior guess" is available, is a measure of distance from the prior guess. Two further natural postulates restrict the permissible distances to the author's f-divergences and Bregman's divergences, respectively. As corollaries, axiomatic characterizations of the methods of least squares and minimum discrimination information are arrived at. Alternatively, the latter are also characterized by a postulate of composition consistency. As a special case, a derivation of the method of maximum entropy from a small set of natural axioms is obtained.

Is there a connection between the two approaches?

· Old patient v/s new doctor

- Old patient v/s new doctor
- Some axioms that are natural in many applications

- · Old patient v/s new doctor
- Some axioms that are natural in many applications
- Conservative fields and an interesting open question

Thank You

Our Objective

To obtain an axiomatic characterisation for a class of rules larger than that considered by Csiszár

