Cadmium

From Wikipedia, the free encyclopedia

Cadmium is a chemical element with symbol **Cd** and atomic number 48. This soft, bluish-white metal is chemically similar to the two other stable metals in group 12, zinc and mercury. Like zinc, it demonstrates oxidation state +2 in most of its compounds, and like mercury, it has a lower melting point than other transition metals. Cadmium and its congeners are not always considered transition metals, in that they do not have partly filled *d* or *f* electron shells in the elemental or common oxidation states. The average concentration of cadmium in Earth's crust is between 0.1 and 0.5 parts per million (ppm). It was discovered in 1817 simultaneously by Stromeyer and Hermann, both in Germany, as an impurity in zinc carbonate.

Cadmium occurs as a minor component in most zinc ores and is a byproduct of zinc production. Cadmium was used for a long time as a corrosion-resistant plating on steel, and cadmium compounds are used as red, orange and yellow pigments, to colour glass, and to stabilize plastic. Cadmium use is generally decreasing because it is toxic (it is specifically listed in the European Restriction of Hazardous Substances^[3]) and nickel-cadmium batteries have been replaced with nickel-metal hydride and lithium-ion batteries. One of its few new uses is cadmium telluride solar panels.

Although cadmium has no known biological function in higher organisms, a cadmium-dependent carbonic anhydrase has been found in marine diatoms.

Characteristics

Physical properties

Cadmium is a soft, malleable, ductile, bluish-white divalent metal. It is similar in many respects to zinc but forms complex compounds.^[4] Unlike most other metals, cadmium is resistant to corrosion and is used as a protective plate on other metals. As a bulk metal, cadmium is insoluble in water and is not flammable; however, in its powdered form it may burn and release toxic fumes.^[5]

Cadmium, 48Cd

General properties

Name, symbol cadmium, Cd

Appearance silvery bluish-gray

metallic

Cadmium in the periodic table

Atomic number (Z) 48

Group, block group 12, d-block

Period period 5

Element category

| transition metal,

alternatively considered a post-transition metal

Standard atomic weight (\pm) (A_r)

 $112.414(4)^{[1]}$

Electron configuration

[Kr] 4d¹⁰ 5s²

per shell 2, 8, 18, 18, 2

Physical properties

Phase solid

Melting point 594.22 K (321.07 °C,

609.93 °F)

Chemical properties

Although cadmium usually has an oxidation state of +2, it also exists in the +1 state. Cadmium and its congeners are not always considered transition metals, in that they do not have partly filled d or f electron shells in the elemental or common oxidation states.^[6] Cadmium burns in air to form brown amorphous cadmium oxide (CdO); the crystalline form of this compound is a dark red which changes color when heated, similar to zinc oxide. Hydrochloric acid, sulfuric acid, and nitric acid dissolve cadmium by forming cadmium chloride (CdCl₂), cadmium sulfate (CdSO₄), or cadmium nitrate (Cd(NO₃)₂). The oxidation state +1 can be produced by dissolving cadmium in a mixture of cadmium chloride and aluminium chloride, forming the Cd_2^{2+} cation, which is similar to the Hg_2^{2+} cation in mercury(I) chloride.^[4]

$$Cd + CdCl_2 + 2 AlCl_3 \rightarrow Cd_2(AlCl_4)_2$$

The structures of many cadmium complexes with nucleobases, amino acids, and vitamins have been determined.^[7]

Isotopes

The cadmium-113 total cross section clearly showing the cadmium cut-off

Naturally occurring cadmium is composed of 8 isotopes. Two of them are radioactive, and three are expected to decay but have not done so under laboratory conditions. The two natural radioactive isotopes are $^{113}\mathrm{Cd}$ (beta decay, half-life is 7.7 \times 10^{15} years) and $^{116}\mathrm{Cd}$ (two-neutrino double beta decay, half-life is 2.9 \times 10^{19} years). The other three are $^{106}\mathrm{Cd}$, $^{108}\mathrm{Cd}$ (both double electron capture), and $^{114}\mathrm{Cd}$ (double beta decay); only lower limits on these half-lives have been determined. At least three isotopes – $^{110}\mathrm{Cd}$, $^{111}\mathrm{Cd}$, and $^{112}\mathrm{Cd}$ – are stable. Among the isotopes that do not occur

Boiling point 1040 K (767 °C, 1413 °F)

Density near r.t. 8.65 g/cm³

when liquid, at m.p. 7.996 g/cm³

Heat of fusion 6.21 kJ/mol
Heat of 99.87 kJ/mol

vaporization

Molar heat 26.020 J/(mol·K)

capacity

Vapor pressure

P (Pa)	1	10	100	1 k	10 k	100 k
at T (K)	530	583	654	745	867	1040

Atomic properties

Oxidation states 2, 1, -2 (a mildly basic

oxide)

Electronegativity Pauling scale: 1.69

lonization 1st: 867.8 kJ/mol energies 2nd: 1631.4 kJ/mol 3rd: 3616 kJ/mol

Atomic radius empirical: 151 pm

Covalent radius 144±9 pm
Van der Waals 158 pm

radius

Miscellanea

Crystal structure hexagonal close-packed

(hcp)

Speed of sound 2310 m/s (at 20 °C)

thin rod

Thermal 30.8 μ m/(m·K) (at 25 °C)

expansion

Thermal $96.6 \text{ W/(m\cdot K)}$

conductivity

naturally, the most long-lived are 109 Cd with a half-life of 462.6 days, and 115 Cd with a half-life of 53.46 hours. All of the remaining radioactive isotopes have half-lives of less than 2.5 hours, and the majority have half-lives of less than 5 minutes. Cadmium has 8 known meta states, with the most stable being 113m Cd ($t_{1/2}=14.1$ years), 115m Cd ($t_{1/2}=44.6$ days), and 117m Cd ($t_{1/2}=3.36$ hours). $^{[8]}$

The known isotopes of cadmium range in atomic mass from 94.950 u (95 Cd) to 131.946 u (132 Cd). For isotopes lighter than 112 u, the primary decay mode is electron capture and the dominant decay product is element 47 (silver). Heavier isotopes decay mostly through beta emission producing element 49 (indium). [8]

One isotope of cadmium, ¹¹³Cd, absorbs neutrons with high selectivity: With very high probability, neutrons with energy below the *cadmium cut-off* will be absorbed; those higher than the *cut-off will be transmitted*. The cadmium cut-off is about 0.5 eV, and neutrons below that level are deemed slow neutrons, distinct from intermediate and fast neutrons.^[9]

Cadmium is created via the long s-process in low-medium mass stars with masses of 0.6 to 10 solar masses, taking thousands of years. In that process, a silver atom captures a neutron and then undergoes beta decay.^[10]

External links

Wikipedia: Cadium (https://en.wikipedia.org/wiki/Cadmium)

Electrical resistivity	72.7 nΩ·m (at 22 °C)
Magnetic ordering	diamagnetic ^[2]
Young's modulus	50 GPa
Shear modulus	19 GPa
Bulk modulus	42 GPa
Poisson ratio	0.30
Mohs hardness	2.0
Brinell hardness	203-220 MPa
CAS Number	7440-43-9
н	istory
Discovery and first isolation Named by	Karl Samuel Leberecht Hermann and Friedrich Stromeyer (1817) Friedrich Stromeyer (1817)

Most stable isotopes of cadmium

iso	NA	half-life	DM	DE	DP	
				(MeV)		
¹⁰⁶ Cd	1.25%	is stable with 58 neutrons				
¹⁰⁷ Cd	syn	6.5 h	ε	1.417	¹⁰⁷ Ag	
¹⁰⁸ Cd	0.89%	is stable with 60 neutrons				
¹⁰⁹ Cd	syn	462.6 d	ε	0.214	¹⁰⁹ Ag	
¹¹⁰ Cd	12.47%	is stable with 62 neutrons				
¹¹¹ Cd	12.80%	is stable with 63 neutrons				
¹¹² Cd	24.11%	is stable with 64 neutrons				
¹¹³ Cd	12.23%	7.7×10 ¹⁵ y	β-	0.316	¹¹³ In	
113ma ı	113mCd syn	14.1 y	β-	0.580	¹¹³ In	
113Cd			IT	0.264	¹¹³ Cd	
¹¹⁴ Cd	28.75%	is stable with 66 neutrons				
¹¹⁵ Cd	syn	53.46 h	β-	1.446	¹¹⁵ In	
¹¹⁶ Cd	7.51%	3.1×10 ¹⁹ y	β-β-	2.809	¹¹⁶ Sn	