1 Trigonometrie

$$\begin{split} \sin(0) &= 0, \ \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}, \ \sin(\frac{\pi}{2}) = 1, \ \sin(\pi) = 0, \ \sin(\frac{3\pi}{4}) = \frac{\sqrt{2}}{2} \\ \cos(0) &= 1, \ \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}, \ \cos(\frac{\pi}{2}) = 0, \ \cos(\pi) = -1, \ \cos(\frac{3\pi}{4}) = -\frac{\sqrt{2}}{2} \\ \tan(x) &= \frac{\sin(x)}{\cos(x)} \\ \sin(2x) &= 2\sin(x)\cos(x) \\ \sin(2x) &= 2\sin(x)\cos(x) \\ \sin(\alpha + \beta) &= \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \\ \cos(\alpha + \beta) &= \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta) \\ \cos^2(x) &= \frac{1 + \cos(2x)}{2} \\ \sin^2(x) + \cos^2(x) &= 1 \end{split}$$

2 Mengen

2.1 Definitionen

Obere/Untere Schranke: $\exists b \in \mathbb{R} \ \forall a \in A: \ a \leq b, \ \exists c \in \mathbb{R} \ \forall a \in A: \ a \geq c$

Supremum: kleinste obere Schranke sup A grösste untere Schranke inf A

Maximum/Minimum: $\sup A \in A$, $\inf A \in A$

2.2 Identitten

$$A+B:=\{a+b|a\in A,b\in B\}$$

$$\sup(A+B)=\sup A+\sup B,\ \inf(A+B)=\inf A+\inf B$$

$$\sup(A\cup B)=\max\{\sup A,\sup B\},\ \inf(A\cup B)=\min\{\inf A,\inf B\}$$

3 Komplexe Zahlen

3.1 Polarform

3.2 Identitäten

$$\overline{z} = x - iy$$

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$

$$(a,b) \cdot (c,d) = (ac - bd, ad + bc)$$

$$i = \sqrt{-1}$$

$$i^2 = -1$$

$$|z|^2 = z\overline{z}$$

$$|zw|^2 = (zw) \cdot \overline{(zw)} = |z|^2 |w|^2$$

4 Grenzwert

4.1 Dominanz

Für
$$x \to +\infty$$
: ... $< \log(\log(x)) < \log(x) < x^{\alpha} < \alpha^{x} < x! < x^{x}$
Für $x \to 0$: ... $< \log(\log(x)) < \log(x) < (\frac{1}{x})^{\alpha}$

4.2 Tipps

$$\lim_{x \to a} \frac{\sin \odot}{\odot} = 1 \text{ mit } \odot \xrightarrow{x \to a} 0$$

$$\lim_{x \to a} (1 + \frac{1}{\odot})^{\odot} = e \text{ mit } \odot \xrightarrow{x \to a} \infty$$

$$\lim_{x \to a} (1 + \odot)^{\frac{1}{\odot}} = e \text{ mit } \odot \xrightarrow{x \to a} 0$$

4.3 Wurzeltrick

$$\lim_{x \to \infty} \sqrt{\alpha} + \beta = \lim_{x \to \infty} (\sqrt{\alpha} + \beta) \frac{\sqrt{\alpha} - \beta}{\sqrt{\alpha} - \beta}$$

4.4 $e^{\log(x)}$ -Trick

Anforderung: Term der Form $f(x)^{g(x)}$ mit Grenzwert "0", " ∞^0 " oder "1 ∞ " für $x \to 0$

Grundsatz:
$$\lim_{x\to a} f(x)^{g(x)} = \lim_{x\to a} e^{g(x)\cdot\log(f(x))}$$

4.5 Satz von Bernoulli-de l'Hôpital

Anforderung: Term der Form $\frac{f(x)}{g(x)}$ mit Grenzwert entweder " $\frac{0}{0}$ " oder " $\frac{\infty}{\infty}$ " mit $g'(x) \neq 0$. Falls die Grenzwerte $0 \neq \infty$ verschieden sind, kann man umformen: $\frac{f(x)}{\frac{1}{g(x)}}$.

Grundsatz:
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g(x)}$$

Zwei Polizisten zu benutzen mit sin, cos, tan oder -1^n ... sonst induktion: $a_{n+1} \ge a_n \Rightarrow a_{n+2} \ge a_{n+1}$ oder direct. Mit eine recursive folge, um Grenzwert zu finden, setzen a_n mit a und a finden. Oder direct mit $a_{n+1} - a_n \ge 0$.

2

5 Reihen

Konvergenzkriterien 5.1

	Eignung	Bemerkung	
Limes des allgemeinen		zeigt nur Divergenz	
Glieds			
Majoranten- und Mino-		ersten Glieder spielen keine	
rantenkriterium		Rolle	
Quotientenkriterium	a_n mit Faktoren wie $n!$,	gleiche Folgerung wie	
	a^n , oder Polynome	Wurzelkriterium	
Wurzelkriterium	$a_n = (b_n)^n$	gleiche Folgerung wie Quo-	
		tientenkriterium	
Leibnitz-Kriterium	alternierende Reihe		
Absolute Konvergenz	sin, cos		

Limes des allgemeinen Glieds

Bemerkung: Mit dieser Methode lsst sich nur die Divergenz beweisen, nicht jedoch die Konvergenz.

- 1. $\sum_{n} a_n$ gegeben
- 2. Grenzwert $\lim_{n\to\infty} a_n$ berechnen
 - falls Grenzwert $\neq 0 \Rightarrow$ divergent
 - falls Grenzwert = $0 \Rightarrow$ keine Aussage

Majoranten- und Minorantenkriterium

Es seien $a_n, b_n > 0$ mit $a_n \ge b_n \ \forall n$ ab einem gewissen n_0 . Dann gilt:

$$\sum_{n} a_{n} \text{ konvergent} \Rightarrow \sum_{n} b_{n} \text{ konvergent} \quad \text{(Majorantenkriterium)}$$

$$\sum_{n} b_{n} \text{ divergent} \Rightarrow \sum_{n} a_{n} \text{ divergent} \quad \text{(Minorantenkriterium)}$$

Vergleichskriterium

- 1. $\sum_{n} a_n$ und $\sum_{n} b_n$ gegeben mit $a_n, b_n > 0$
- 2. Grenzwert $\lim_{n\to\infty} \frac{a_n}{b_n}$ berechnen
 - falls Grenzwert = 0:
 - $-\sum_n a_n$ divergent $\Rightarrow \sum_n b_n$ divergent $-\sum_n b_n$ konvergent $\Rightarrow \sum_n a_n$ konvergent
 - falls Grenzwert = ∞ :
 - $\sum_n a_n$ konvergent $\Rightarrow \sum_n b_n$ konvergent $\sum_n b_n$ divergent $\Rightarrow \sum_n a_n$ divergent

Quotientenkriterium

- 1. $\sum_{n} a_n$ mit $a_n \neq 0$ gegeben
- 2. Grenzwert $\lim_{n \mapsto \infty} |\frac{a_{n+1}}{a_n}|$ berechnen
 - falls Grenzwert $> 1 \Rightarrow$ divergent
 - falls Grenzwert $< 1 \Rightarrow$ konvergent
 - falls Grenzwert = $1 \Rightarrow$ keine Aussage

Wurzelkriterium

- 1. $\sum_{n} a_n \text{ mit } a_n \neq 0 \text{ gegeben}$
- 2. Grenzwert $\lim_{n\to\infty} \sqrt[n]{|a_n|}$ berechnen
 - falls Grenzwert $> 1 \Rightarrow$ divergent
 - falls Grenzwert $< 1 \Rightarrow$ konvergent
 - falls Grenzwert = $1 \Rightarrow$ keine Aussage

Leibniz-Kriterium

- 1. $\sum_{n} (-1)^n a_n$ gegeben
- 2. konvergent, falls:
 - (a) $a_n \ge 0$
 - (b) $\lim_{n\to\infty} a_n = 0$
 - (c) a_n monoton fallend

Absolute Konvergenz

- 1. $\sum_{n} (-1)^n a_n$ gegeben
- 2. **konvergent**, falls $\sum_{n} |a_n|$ konvergent

5.2 Geometrische Reihe

$$S_N = \sum_{k=0}^{n} a * r^k \tag{1}$$

$$S_N = \frac{a - a * r^{n+1}}{1 - r} \tag{2}$$

falls 0 < |r| < 1 dann

$$\sum_{k=0}^{\infty} a * r^k = \frac{a}{1-r} \tag{3}$$

4

5.3 Potenzreihen

Potenzreihen haben der Form $\sum_{0}^{\infty} a_n x^n$.

Der konvergenz radius

$$\rho = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \tag{4}$$

$$\rho = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}} \tag{5}$$

wenn $|x| < \rho$ dann konvergiert die Reihe. In diesem gebiet darf man die Reihe ableiten und Integrieren.

5.3.1 Tips

$$\cos(x) = \sum_{0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \tag{6}$$

$$sin(x) = \sum_{0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
 (7)

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \tag{8}$$

6 Stetigkeit

Kriterien fur stetigkeit:

- 1. f ist auf Ω definiert
- 2. $\lim_{x\to a} f(x) = f(a)$ und existiert (ist nicht gleich ∞ und gleich von beide seite von a).

Weierstrass-kriterium fur alle $\epsilon > 0$ gibt es ein $\delta(\epsilon, a) > 0$ sodass fur alle $|x - a| < \delta$ gilt:

$$|f(x) - f(a)| < \epsilon \tag{9}$$

6.1 Gleichmassigstetigkeit

fur alle $\epsilon > 0$ gibt es ein $\delta(\epsilon) > 0$ sodass fur alle $|x - y| < \delta$ gilt:

$$|f(x) - f(y)| < \epsilon \tag{10}$$

 δ hangt nur von ϵ ab nicht wie weierstrass-kriterium. Falls f ist stetig und kompakt, dann ist er gleichmassig stetig.

6.2 Lipschitz-stetigkeit

Muss ein $L\epsilon\mathbb{R}$ sodass:

$$|f(x) - f(y)| < L|f(x) - f(y)|, \forall x, y \in \Omega$$
(11)

Eine funktion ist lipschitz stetig wenn sein erste ableitung ist auf Ω beschrankt.

6.3 Punktweise Konvergenz

 $f_n(x)$ konvergiert Punktweise falls:

$$\forall x \epsilon \Omega, \lim_{n \to \infty} f_n(x) = f(x) \tag{12}$$

6.4 Gleichmassig konvergenz

 $f_n(x)$ konvergiert gleichmassig falls:

$$\lim_{n \to \infty} \sup |f_n(x) - f(x)| = 0 \tag{13}$$

Beide diese Funktionen mussen stetig sein. Diese bedigung ist starker als Punktweise konvergenz.

7 Differenzialrechnung

Eine stetige Funktion ist differenzierbar, falls der Grenzwert $f'(x_0)$ existiert:

$$f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

7.1 Umkehrsatz

$$(f^{-1})'(y) = \frac{1}{f'(x)}$$

7.2 Mittelwertsatz

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

7.3 Taylorpolynom

Das Taylorpolynom m-ter Ordnung von f(x) an der Stelle x = a

$$P_m^a(x) := f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2 + \dots + \frac{1}{m!}f^{(m)}(a)(x - a)^m$$

mit dem Fehlerterm $R_m^a(x)$, wobei ξ zwischen a und b liegt:

$$R_m^a(x) = \frac{f^{(m+1)}(\xi)}{(m+1)!}(x+a)^{m+1}$$
, wobei $f(x) = P_m^a(x) + R_m^a(x)$

7.4 Hauptsatz von calculus

$$f(x) = \int_{t}^{m(x)} g(t)dt \tag{14}$$

$$f'(x) = g(m(x)) * \frac{d}{dx}m(x)$$
(15)

wo m(x) hat der Form ax^b und $l \in \mathbb{R}$

8 Integration

8.1 Elementare Integrale

f(x)	F(x)
x^{α}	$\frac{x^{\alpha+1}}{\alpha+1} + C$
$\frac{1}{x}$	$\log(x) + C$
$\frac{1}{x^2}$	$\frac{1}{x} + C$
$\sin(x)$	$-\cos(x) + C$
$\cos(x)$	$\sin(x) + C$

8.2 Regeln

Direkter Integral
$$\int f(g(x))g'(x) \ dx = F(g(x))$$

Partielle Integration $\int f' \cdot g \ dx = f \cdot g - \int f \cdot g' \ dx$
mit Polynomen $\int \frac{p(x)}{q(x)} \ dx \Rightarrow \text{Partialbruchzerlegung}$
Substitution $\int_a^b f(\varphi(t))\varphi'(t) \ dt = \int_{\varphi(a)}^{\varphi(b)} f(x) \ dx \text{ mit } x = \varphi(t)$

8.3 Tipps

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\log|\cos(x)|$$
$$\int \frac{1}{x - \alpha} = \log(x - \alpha)$$

9 Differentialgleichungen

9.1 Grundbegriffe

Ordnung: höchste vorkommende Ableitung

linear: alle y-abhängigen Terme kommen linear vor (keine Terme wie zum Beispiel

 y^2 , $(y'')^3$, $\sin(y)$, $e^{y'}$)

homogen: Gleichung ohne Störfunktionen

Störfunktion: Term, der rein von der Funktionsvariablen x abhängt

9.2 Methoden

	Problem	Anforderungen
Trennung der Variablen	$y' = \frac{dy}{dx} = h(x) \cdot g(y)$	1. Ordnung
Variation der Konstanten	$y' = \frac{dy}{dx} = h(x)y + b(x)$	1. Ordnung
		inhomogen
Euler-Ansatz	$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = 0$	n. Ordnung
		linear
		homogen
Direkter Ansatz	$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = b(x)$	n. Ordnung
		linear
		inhomogen

9.2.1 Trennung der Variable

$$y' + x \tan y = 0, \ y(0) = \frac{\pi}{2}$$
 umformen
$$\frac{dy}{dx} = -x \tan y$$

konstante Lösungen $y(x) \equiv 0$ erfüllt jedoch $y(0) \equiv \frac{\pi}{2}$ nicht

Trennung
$$\frac{dy}{\tan y} = -xdx$$

integrieren
$$\int \frac{\cos y}{\sin y} dy = -\int x dx \Rightarrow \log|\sin y| = -\frac{x^2}{2} + C$$
$$\Rightarrow |\sin y| = e^C e^{\frac{-x^2}{2}} \Rightarrow \sin y = \pm e^C e^{\frac{-x^2}{2}} = Ce^{\frac{-x^2}{2}}$$

Anfangsbedingung gebrauchen $\sin(y(0)) = \sin(\frac{\pi}{2}) = 1 \Rightarrow C = 1$

Lösung
$$y(x) = \arcsin(e^{\frac{-x^2}{2}})$$

9.2.2 Variation der Konstanten

Grundsatz: $y(x) = y_{\text{homo}}(x) + y_p(x)$

$$y' - y = 1, \ y(0) = 0$$

homogener Ansatz y' = y

konstante Lösungen $y(x) \equiv 0$

Trennung
$$\frac{dy}{y} = dx \Rightarrow \int \frac{dy}{y} = \int dx \Rightarrow \log|y| = x$$

homogene Lösung
$$y_{\text{homo}}(x) = Ae^x, \ A = e^C \in \mathbb{R}$$

partikulärer Ansatz
$$y_p(x) = A(x)e^x$$

einsetzen
$$A'e^x + Ae^x - Ae^x = 1 \Rightarrow A' = e^{-x} \Rightarrow A(x) = \int e^{-x} dx = -e^{-x}$$

partikuläre Lösung $y_p(x) = -1$

Lösung
$$y(x) = Ae^x - 1$$
 mit Anfangsbedingung $A = 1$
 $\Rightarrow y(x) = e^x - 1$

9.2.3 Euler-Ansatz

$$y'' - 2y' - 8y = 0, \ y(1) = 1, y'(1) = 0$$

Euler-Ansatz
$$y(x) = e^{\lambda x}$$

einsetzen
$$\lambda^2 e^{\lambda x} - 2\lambda e^{\lambda x} - 8e^{\lambda x} = 0$$

charakt. Polynom
$$\lambda^2 - 2\lambda - 8 = (\lambda - 4)(\lambda + 2) = 0$$

Nullstellen 4, -2

allgemeine Lösung
$$y(x) = Ae^{4x} + Be^{-2x}$$

Anfangsbedingung gebrauchen $y(1) = Ae^4 + Be^{-2} = 1$, $y'(1) = 4Ae^4 - 2Be^{-2} = 0$

$$\Rightarrow A = \frac{1}{3}e^{-4}, B = \frac{2}{3}e^{2}$$

Lösung
$$y(x) = \frac{1}{3}e^{4x-4} + \frac{2}{3}e^{2-2x}$$

Bemerkung: Zu einer m-fachen Nullstelle λ gehören die m linear unabhängigen Lösungen $e^{\lambda x}$, $x \cdot e^{\lambda x}$, ..., $x^{m-1} \cdot e^{\lambda x}$. Zur m-fachen Nullstelle $\lambda = 0$ gehören die Lösungen $1, x, \ldots, x^{m-1}$.

9.2.4 Direkter Ansatz

Grundsatz: $y(x) = y_{\text{homo}}(x) + y_p(x)$

Inhomogener Term $b(x)$	Ansatz für $y_p(x)$	zu bestimmen
Polynom	$Ax^2 + Bx + C$	A, B, C
ce^{kx}	Ae^{kx}	A
$c\sin(kx)$ oder $c\cos(kx)$	$A\sin(kx) + B\cos(kx)$	A, B

$$y'' - y' + \frac{1}{4}y = \cos(x)$$
 homogener
$$y'' + y' + \frac{1}{4}y = 0$$
 Euler-Ansatz anwenden
$$\lambda^2 + \lambda + \frac{1}{4} = (\lambda + \frac{1}{2})^2 = 0$$
 homogene Lösung
$$\Rightarrow y_{\text{homo}}(x) = Ae^{-\frac{x}{2}} + Bx \cdot e^{-\frac{x}{2}}$$
 Ansatz wählen
$$y_p(x) = a\cos(x) + b\sin(x)$$

$$\Rightarrow y_p'(x) = -a\sin(x) + b\cos(x), \ y_p''(x) = -a\cos(x) - b\sin(x)$$
 Einsetzen
$$(-a + b + \frac{a}{4})\cos(x) + (-b - a + \frac{1}{4}b)\sin(x) = \cos(x)$$
 Koeffizientenvergleich
$$-\frac{3}{4}a + b = 1, \ -a - \frac{3}{4}b = 0$$
 partikuläre Lösung
$$y_p(x) = -\frac{12}{25}\cos(x) + \frac{16}{25}\sin(x)$$
 Lösung
$$y(x) = Ae^{-\frac{x}{2}} + Bx \cdot e^{-\frac{x}{2}} - \frac{12}{25}\cos(x) + \frac{16}{25}\sin(x)$$

9.3 Komplexe zahlen

Falls der charakteristische Polynom ist komplex und hat der form $a + i\sqrt{b}$, dann hat die homogene Losung die form:

$$y(x) = e^{ax}(c_1 \cos(\sqrt{b}x) + C_2 \sin(\sqrt{b}x))$$
(16)

Wo a ist die komplexe losung von charakteristische polynom.

10 Wegintegral

10.1 Standard Methode

Grundsatz:
$$\int_{\gamma} \vec{v} \cdot d\vec{s} := \int_{a}^{b} \vec{v}(\vec{\gamma}(t)) \cdot \dot{\vec{\gamma}}(t) \ dt$$

$$\vec{v} = \begin{pmatrix} y \\ 0 \end{pmatrix}, \ \gamma : [0, 2\pi] \mapsto \mathbb{R}^2, \ t \mapsto \begin{pmatrix} t - \sin(t) \\ 1 - \cos(t) \end{pmatrix}$$
 parametrisieren hier bereits gegeben
$$\gamma \text{ ableiten } \dot{\gamma} = \begin{pmatrix} 1 - \cos(t) \\ \sin(t) \end{pmatrix}$$
 in Formel einsetzen
$$\int_{\gamma} \vec{v} \cdot d\vec{s} = \int_{0}^{2\pi} \begin{pmatrix} 1 - \cos(t) \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 - \cos(t) \\ \sin(t) \end{pmatrix} dt$$

$$= \int_{0}^{2\pi} (1 - \cos(t))^2 \ dt = \int_{0}^{2\pi} (1 - 2\cos(t) + \cos^2(t)) \ dt$$
 Lösung
$$2\pi - 0 + \pi = 3\pi$$

10.2 In Potenzialfeldern

Anforderung: Das Vektorfeld \vec{v} ist **konservativ**. Es existiert ein Potenzial.

Grundsatz:
$$\int_{\gamma} \vec{v} \cdot d\vec{s} = \Phi(\text{Ende}) - \Phi(\text{Anfang})$$

$$\vec{v} = \begin{pmatrix} e^{xy}(1+xy) \\ e^{xy}x^2 \end{pmatrix}, \text{ Kreisbogen von } (1,0) \text{ nach } (-1,0)$$
 gleichsetzen:
$$\vec{v} = \begin{pmatrix} e^{xy}(1+xy) \\ e^{xy}x^2 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix} = \nabla \Phi$$

$$\frac{\partial \Phi}{\partial y} = e^{xy}x^2 \Rightarrow \Phi = \int e^{xy}x^2 \ dy = xe^{xy} + C(x)$$
 ableiten:
$$\frac{\partial \Phi}{\partial x} = e^{xy} + xye^{xy} + C' \stackrel{!}{=} e^{xy} + xye^{xy}$$

$$\Rightarrow C' = 0 \Rightarrow C = \text{const.}$$
 Potenzial:
$$\Phi = xe^{xy} + \text{const.}$$
 Lösung:
$$\int_{\gamma} \vec{v} \cdot d\vec{s} = \Phi(-1,0) - \Phi(1,0) = -1 + C - 1 - C = 2$$

10.3 Satz von Green

Anforderung: Der Rand muss im positiven mathematischen Sinn umlaufen werden (d.h. im Gegenuhrzeigersinn)

$$\begin{aligned} \textbf{Grundsatz:} \quad & \int_{\gamma=\partial C} \vec{v} \cdot d\vec{s} = \int_{C} (\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y}) \ dxdy \\ \vec{v} &= \binom{x+y}{y}, \ \text{Kreisbogen mit Radius 1 um } (0,0) \\ \text{Rotation berechnen:} \quad & rot(\vec{v}) = \frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} = 0 - 1 = -1 \\ \text{Normalbereich:} \quad & E &= \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \leq 1\} \\ \text{in Formel einsetzen:} \quad & \int_{\gamma} \vec{v} \cdot d\vec{s} = \int_{E} -1 \ dxdy = -\mu(E) = -\pi \end{aligned}$$

Flächenintegral 11

Normalbereich 11.1

Grundsatz:
$$\Omega = \{(x,y) \in \mathbb{R}^2 | a \le x \le b, f(x) \le y \le g(x) \}$$

$$\int_{\mathbb{R}^n} F dy = \int_{\mathbb{R}^n}^b dx \int_{\mathbb{R}^n}^{g(x)} dy F(x,y)$$

$$\int_{\Omega} F \ d\mu = \int_{a}^{b} dx \int_{f(x)}^{g(x)} dy \ F(x, y)$$

$$\int_{\Omega} xy \ d\mu, \ \Omega = \{(x,y) \in \mathbb{R}^2 | y \ge x^2, x \ge y^2\}$$

als Normalbereich schreiben: $\Omega = \{(x,y) \in \mathbb{R}^2 | 0 \le x \le 1, x^2 \le y \le \sqrt{x} \}$

in Formel einsetzen:
$$\int_{\Omega} xy \ d\mu = \int_0^1 dx \int_{x^2}^{\sqrt{x}} dy xy = \int_0^1 dx \ x \Big[\frac{y^2}{2}\Big]_{x^2}^{\sqrt{x}}$$
$$= \int_0^1 \Big(\frac{x^2}{2} - \frac{x^5}{2}\Big) dx = \frac{1}{12}$$

11.2 Satz von Green

Grundsatz:
$$\mu(C) = \int_{\gamma = \partial C} \vec{v} \cdot d\vec{s}$$
, falls $rot(\vec{v}) = 1$

Flächeninhalt der Ellipse E, berandet durch $x = a\cos(\theta), y = b\sin(\theta)$

Rand parametrisieren:
$$\gamma: [0, 2\pi] \mapsto \mathbb{R}^2, \ \theta \mapsto \begin{pmatrix} a\cos(\theta) \\ b\sin(\theta) \end{pmatrix}$$

Vektorfeld auswählen:
$$\vec{v}_1 = \begin{pmatrix} 0 \\ x \end{pmatrix}$$
 oder $\vec{v}_2 = \begin{pmatrix} -y \\ 0 \end{pmatrix}$

Wegintegral ausrechnen $\mu(E) = \pi ab$

12 Kurvendiskussion

12.1 Extrema/Minima

Kritischer Punkt: $p_0 \in \Omega$ für welchen $df(p_0)$ nicht den maximalen Rang besitzt, also falls $Rang(df(p_0)) < \min n, m.$