Correction de la feuille d'exercices nº 6 Calculs dans $\mathbb{Z}/n\mathbb{Z}$

Exercice 1:

- 1. Construire les tables d'addition et de multiplication dans $\mathbb{Z}/5\mathbb{Z}$ et $\mathbb{Z}/6\mathbb{Z}$.
- 2. Pour chaque élément de ces 2 ensembles, citer l'opposé et l'inverse s'il existe. Citer les diviseurs de zéro.

Solution:

Dressons la table d'addition dans $\mathbb{Z}/_{5\mathbb{Z}} = \{\dot{0},\dot{1},\ldots,\dot{4}\}$:

+	Ò	i	$\dot{2}$	ż	$\dot{4}$
Ó	Ò	i	$\dot{2}$	3	$\dot{4}$
i	İ	$\dot{2}$	3	$\dot{4}$	Ò
$\dot{2}$	$\dot{2}$	3	$\dot{4}$	Ó	i
3	3	$\dot{4}$	Ò	i	$\dot{2}$
$\dot{4}$	$\dot{4}$	Ó	i	$\dot{2}$	3

On a:

$$-\dot{0} = \dot{0}$$

 $-\dot{1} = \dot{4}$
 $-\dot{2} = \dot{3}$
 $-\dot{3} = \dot{2}$
 $-\dot{4} = \dot{1}$

Dressons la table de multiplication dans $\mathbb{Z}/_{5\mathbb{Z}}=\left\{\dot{0},\dot{1},\ldots,\dot{4}\right\}$:

X	Ò	i	$\dot{2}$	3	4
Ó	Ò	Ó	Ò	Ó	Ò
i	Ò	İ	$\dot{2}$	3	$\dot{4}$
$\dot{2}$	Ò	$\dot{2}$	$\dot{4}$	i	$\dot{3}$
3	Ò	3	i	$\dot{4}$	$\dot{2}$
$\dot{4}$	Ò	$\dot{4}$	$\dot{3}$	$\dot{2}$	i

Les éléments inversibles sont $\dot{1}$, $\dot{2}$, $\dot{3}$ et $\dot{4}$. De plus $\dot{1}^{-1}=\dot{1}$, $\dot{2}^{-1}=\dot{3}$, $\dot{3}^{-1}=\dot{2}$ et $\dot{4}^{-1}=\dot{4}$ d'après la table ci-contre. Seule la classe $\dot{0}$ est un diviseur de zéro car $\dot{0}\times\dot{1}=\dot{0}$ (par exemple).

Remarque : 5 est premier donc, d'après le corollaire 2.6 du cours, toute classe non nulle de $\mathbb{Z}/5\mathbb{Z}$ est inversible, ce que nous avons trouvé d'après la table de multiplication. Mais ce corollaire ne nous donne pas les inverses des classes inversibles.

Dressons la table d'addition dans $\mathbb{Z}/_{6\mathbb{Z}}=\left\{\dot{0},\dot{1},\ldots,\dot{5}\right\}$:

On a:

$$-\dot{0} = \dot{0}$$

 $-\dot{1} = \dot{5}$
 $-\dot{2} = \dot{4}$
 $-\dot{3} = \dot{3}$
 $-\dot{4} = \dot{2}$
 $-\dot{5} = \dot{1}$

Dressons la table de multiplication dans $\mathbb{Z}/6\mathbb{Z} = \{\dot{0}, \dot{1}, \dots, \dot{5}\}$:

×	Ò	i	$\dot{2}$	3	$\dot{4}$	5
Ò	Ò	Ò	Ò	Ò	Ò	Ò
i	Ò	i	$\dot{2}$	3	$\dot{4}$	5
$\dot{2}$	Ò	Ż	$\dot{4}$	Ò	$\dot{2}$	4
3	Ò	3	Ò	3	Ò	3
$\dot{4}$	Ò	$\dot{4}$	$\dot{2}$	Ò	$\dot{4}$	$\dot{2}$
5	Ò	5	$\dot{4}$	3	$\dot{2}$	i

Les éléments inversibles sont İ et 5.

De plus $\dot{1}^{-1}=\dot{1}$ et $\dot{5}^{-1}=\dot{5}$ d'après la table cicontre.

Les classes $\dot{0}, \dot{2}, \dot{3}$ et $\dot{4}$ sont les diviseurs de zéro car $\dot{0} \times \dot{1} = \dot{0}, \dot{2} \times \dot{3} = \dot{0}$, et $\dot{4} \times \dot{3} = \dot{0}$.

Remarque : D'après le théorème 2.5 du cours, $\dot{a} \in \mathbb{Z}/_{6\mathbb{Z}}$ est inversible si et seulement si a et 6 sont premiers entre eux, c'est-à-dire si et seulement si PGCD(a,6) = 1.

On retrouve que les classes inversibles sont $\dot{1}$ et $\dot{5}$, puisque PGCD(1,6)=1 et PGCD(5,6)=1. Tandis que PGCD(2,6)=2, PGCD(3,6)=3 et PGCD(4,6)=2.

Exercice 2:

1. Résoudre dans $\mathbb{Z}/7\mathbb{Z}$: $\dot{x}^2 + \dot{x} + \dot{1} = \dot{0}$.

\dot{x}	Ò	i	$\dot{2}$	3	$\dot{4}$	5	6	Alors $S = \{\dot{2}, \dot{4}\}$
$\dot{x}^2 + \dot{x} + \dot{1}$	İ	$\dot{3}$	Ò	6	Ò	3	i	Alors $\mathcal{O} = \{2, 4\}.$

2. Résoudre dans $\mathbb{Z}/6\mathbb{Z}$: $\dot{x}^2 + \dot{x} + \dot{1} = \dot{0}$.

\dot{x}	Ò	i	<u> </u>	3	$\dot{4}$	5	Alore S - A
$\dot{x}^2 + \dot{x} + \dot{1}$	İ	3	i	i	3	İ	Alors $\mathcal{S} = \emptyset$.

3. Résoudre dans $\mathbb{Z}/7\mathbb{Z}$: $\begin{cases} \dot{x} + \dot{y} = \dot{3} \\ \dot{x} - \dot{y} = \dot{5} \end{cases}$

$$\left\{ \begin{array}{lll} \dot{x}+\dot{y}&=&\dot{3}&L_1\\ \dot{x}-\dot{y}&=&\dot{5}&L_2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{lll} \dot{x}+\dot{y}&=&\dot{3}&L_1\\ \dot{2}\dot{x}&=&\dot{1}&L_2\leftarrow L_2+L_1 \end{array} \right.$$

Dans $\mathbb{Z}/7\mathbb{Z}$, $\dot{2}$ est inversible et $\dot{2}^{-1} = \dot{4}$ donc $\dot{2}\dot{x} = \dot{1} \Leftrightarrow \dot{x} = \dot{1} \times \dot{2}^{-1} = \dot{1} \times \dot{4} = \dot{4}$. Alors $\dot{y} = \dot{3} - \dot{4} = \dot{6}$. Ainsi $\mathcal{S} = \{(\dot{4}, \dot{6})\}$.

Exercice 3: Déterminer les entiers relatifs n tels que $n^2 - 3n + 6 \equiv 0 \pmod{5}$. (Travailler dans $\mathbb{Z}/5\mathbb{Z}$)

$$\begin{array}{l} n^2 - 3n + 6 \equiv 0 \ (mod \ 5) \Leftrightarrow \dot{n}^2 + \dot{2}\dot{n} + \dot{1} = \dot{0} \ \mathrm{dans} \ \mathbb{Z}/5\mathbb{Z} \\ \Leftrightarrow (\dot{n} + \dot{1})^2 = \dot{0} \ \mathrm{dans} \ \mathbb{Z}/5\mathbb{Z}. \end{array}$$

Alors $S = \{4 + 5k, k \in \mathbb{Z}\}.$

Exercice 4: Résoudre dans $\mathbb{Z}/7\mathbb{Z}$: $\begin{cases} \dot{3}\dot{x} + \dot{2}\dot{y} &= \dot{1} \\ \dot{5}\dot{x} + \dot{4}\dot{y} &= \dot{3} \end{cases}$

Solution : On échelonne le système par la méthode du pivot comme en algèbre linéaire :

L'équivalence entre les deux systèmes est rendue possible par le fait que $\dot{3}$ (coefficient de L_2) est inversible dans $\mathbb{Z}/7\mathbb{Z}$. Le système étant échelonné, on résout la seconde équation pour déterminer \dot{y} . Puisque $\operatorname{pgcd}(2,7)=1$, l'élément $\dot{2}$ est inversible dans $\mathbb{Z}/7\mathbb{Z}$; un bref calcul des valeurs successives de $\dot{2}\dot{z}$ pour $\dot{z}=\dot{0},\dot{1},\ldots$ donne $\dot{2}^{-1}=\dot{4}$ (en effet $\dot{2}\times\dot{4}=\dot{8}=\dot{1}$ dans $\mathbb{Z}/7\mathbb{Z}$), ainsi

$$\dot{2}\dot{y} = \dot{4}$$
 \iff $\dot{y} = \dot{2}^{-1} \times \dot{4} = \dot{4} \times \dot{4} = \dot{16} = \dot{2}.$

En remplaçant \dot{y} par $\dot{2}$ dans L_1 , on obtient $\dot{3}\dot{x}=\dot{1}-\dot{2}\dot{y}=-\dot{3}=\dot{4}$. Mais $\dot{3}$ est inversible dans $\mathbb{Z}/7\mathbb{Z}$ et $\dot{3}^{-1}=\dot{5}$ (en effet $\dot{3}\times\dot{5}=\dot{15}=\dot{1}$), par conséquent

$$\dot{3}\dot{x} = \dot{4}$$
 \iff $\dot{x} = \dot{3}^{-1} \times \dot{4} = \dot{5} \times \dot{4} = \dot{20} = \dot{6}.$

En conclusion, l'ensemble des solutions du système est

$$\mathcal{S} = \{ (\dot{6}, \dot{2}) \}.$$

Exercice 5: Résoudre dans $\mathbb{Z}/n\mathbb{Z}$ les congruences suivantes :

- 1. $3x \equiv 7 \mod 16$
- 2. $4x \equiv 9 \mod 13$

Solution:

1. $3x \equiv 7 \mod 16 \iff \dot{3}\dot{x} = \dot{7} \operatorname{dans} \mathbb{Z}/_{16\mathbb{Z}}$.

 $16 = 2^4$ donc PGCD(16,3) = 1. $\dot{3}$ est inversible donc $\dot{3}\dot{x} = \dot{7} \iff \dot{x} = \dot{3}^{-1}\dot{7}$.

Cherchons l'inverse de 3, qui appartient aussi à $(\mathbb{Z}/_{16\mathbb{Z}})^*$. 16 étant une puissance de 2 seules les classes représentées par un entier impair sont inversibles.

1			L.					
$\dot{x} \in (\mathbb{Z}/_{16\mathbb{Z}})^*$	i	3	5	7	9	11	13	15
$\dot{3}\dot{x}$	3	9	15	5	11	i		

Alors
$$\dot{3}^{-1} = \dot{1}\dot{1}$$
 et $\dot{x} = \dot{3}^{-1} \times \dot{7} \iff \dot{x} = \dot{7} \times \dot{1}\dot{1} = \dot{7}\dot{7} = \dot{1}\dot{3} \iff \exists k \in \mathbb{Z} \text{ tel que } x = 13 + 16k$

Alors l'ensemble des solutions de la congruence $3x \equiv 7 \mod 16$ est $S = \{13 + 16k/k \in \mathbb{Z}\}.$

2. $4x \equiv 9 \mod 13 \iff \dot{4}\dot{x} = \dot{9} \operatorname{dans} \mathbb{Z}/_{13\mathbb{Z}}$.

13 est premier danc toutes les classes non nulles sont inversibles.

 $\dot{4}$ est inversible donc $\dot{4}\dot{x} = \dot{9} \iff \dot{x} = \dot{4}^{-1}\dot{9}$.

Cherchons l'inverse de $\dot{4}$, qui appartient aussi à $(\mathbb{Z}/_{13\mathbb{Z}})^*$.

								\ \	1027			
$\dot{x} \in (\mathbb{Z}/_{13\mathbb{Z}})^*$	İ	$\dot{2}$	3	$\dot{4}$	5	6	7	8	9	10	11	12
$\dot{4}\dot{x}$	$\dot{4}$	8	12	$\dot{3}$	7	11	$\dot{2}$	6	10	i		

Alors
$$\dot{4}^{-1} = \dot{10}$$
 et $\dot{x} = \dot{4}^{-1} \times \dot{9} \iff \dot{x} = \dot{10} \times \dot{9} = \dot{90} = \dot{12} \iff \exists k \in \mathbb{Z} \text{ tel que } x = 12 + 13k$

Alors l'ensemble des solutions de la congruence $4x \equiv 9 \mod 13$ est $S = \{12 + 13k/k \in \mathbb{Z}\}.$