LTI Systems Summary

© Minkyun Noh January 18, 2021

1 Signals and Systems

Signals

Functions of time, e.g., v(t), i(t).

Systems

- "Constraints" among signals, e.g., circuit diagram.
- "Mapping" from input signals to output signals, e.g., block diagram.

Figure 1: System viewed as an operator that maps x(t) to y(t).

2 System Properties

Memoryless

A system is memoryless, or static, if the output at a certain time only depends on the input at the same time, e.g., $y(t) = x(t)^2$, y(t) = ax(t).

Linear

A system is linear if the response to a linear combination of inputs is the same linear combination of the individual responses, i.e., superposition holds.

Figure 2: Linear system.

Time-invariant

A system is time-invariant if the response to a time-shifted input is the same response shifted by the same time.

Figure 3: Time-invariant system.

Causal

A system is causal if the output at a certain time does not depend on the future input. That is, the output at time $t = t_o$ only depends on the input during $t \le t_o$. A linear and time-invariant (LTI) system is causal if and only if the impulse response is

$$h(t) = 0 \quad \text{for} \quad t < 0.$$

Bounded-input Bounded-output (BIBO) Stable

A system is BIBO stable if the response to a bounded input is always bounded.

3 Linear Time-invariant (LTI) System

Delta Function

Delta function $\delta(t)$ has the following properties.

Infinite amplitude: $\delta(0) \to \infty$ Unity area: $\int_{-\infty}^{\infty} \delta(t) \, \mathrm{d}x = 1$ Sampling: $x(t)\delta(t-\tau) = x(\tau)\delta(t-\tau)$

An arbitrary signal x(t) can be expressed as a superposition of delta functions.

$$x(t) = x(t) \underbrace{\int_{-\infty}^{\infty} \delta(t - \tau) d\tau}_{1}$$
$$= \int_{-\infty}^{\infty} x(t) \delta(t - \tau) d\tau$$
$$= \int_{-\infty}^{\infty} x(\tau) \delta(t - \tau) d\tau$$

Impulse Response

LTI system can be characterized by its impulse response h(t).

Figure 4: Impulse response.

- Causal system: h(t) = 0 for t < 0
- BIBO stable system: $\int_{-\infty}^{\infty} |h(t)| dt < \infty$
- ullet Finite impulse response (FIR) system: duration of h(t) is finite
- Infinite impulse response (IIR) system: duration of h(t) is infinite

Convolution

The response y(t) to an arbitrary input x(t) can be obtained via convolution integral.

$$x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau) d\tau \implies$$
$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$$

Convolution operator (*) is commutative.

$$\int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau = \int_{-\infty}^{\infty} h(\tau)x(t-\tau) d\tau \implies h(t) * x(t) = x(t) * h(t)$$

The dummy variable τ is referred to as a *lag variable*.

Graphical Interpretation for Convolution

Given an input signal x(t) and an impulse response h(t)

- 1) Draw $x(\tau)$ and $h(\tau)$ on the τ -domain.
- 2) Flip $x(\tau)$ about the origin to draw $x(-\tau)$.
- 3) Shift $x(-\tau)$ by t along the τ -axis to draw $x(-(\tau t)) = x(t \tau)$.
- 4) Sweep $x(t-\tau)$ over $h(\tau)$ and carry out the integral.

Step Response

The step response s(t), i.e., the response to the unit step function u(t), is equivalent to the integral of the impulse response h(t)

$$s(t) = \int_{-\infty}^{\infty} h(\tau)u(\tau - t) d\tau = \int_{-\infty}^{t} h(\tau) d\tau.$$

Auto-correlation and Cross-correlation*

(Deterministic) auto-correlation and cross-correlation, often used in signal processing, are related to convolution integral as follows.

$$R_{xx}(\tau) \equiv \int_{-\infty}^{\infty} x(t)x(t-\tau) dt = x(\tau) * x(-\tau)$$

$$R_{xy}(\tau) \equiv \int_{-\infty}^{\infty} x(t)y(t-\tau) dt = x(\tau) * y(-\tau)$$

Note that $x(-\tau)$ is the time-reversed copy of $x(\tau)$.

4 Transfer Function

Eigenvalue and Eigenfunction

- Complex exponential $e^{s_o t}$ is the eigenfunction of LTI systems.
- Drawn in a 3D space consisting of real- imaginary- and time-axes, a complex exponential looks like a spiral along the time axis.
- The response of an LTI system to the input $e^{s_o t}$ is the same complex exponential scaled by a complex number $H(s_o)$. In other words, the complex exponential 'picks up' or 'samples' the gain at the particular frequency s_o .
- This scaling factor H(s) viewed as a function of complex frequency $s \in \mathbb{C}$ is referred to as the transfer function.

$$e^{s_0 t} \longrightarrow h(\cdot) \longrightarrow H(s_0)e^{s_0 t}$$

Figure 5: LTI system response to a complex exponential.

Relation to the Laplace Transform

for
$$x(t) = e^{st}$$
 \rightarrow $y(t) = \int_{-\infty}^{\infty} h(\tau)e^{s(t-\tau)} d\tau$
$$= e^{st} \underbrace{\int_{-\infty}^{\infty} h(\tau)e^{-s\tau} d\tau}_{H(s)}$$

Transfer function H(s) can be derived from the Laplace transform of h(t), i.e.,

$$H(s) = \int_{-\infty}^{\infty} h(t)e^{-st} dt$$

when the integral converges.

If the system is causal,

$$\int_{-\infty}^{\infty} h(t)e^{-st} dt = \int_{0^{-}}^{\infty} h(t)e^{-st} dt.$$

Laplace Transform Properties

- Laplace transform converts *convolution* to *multiplication*. This allows us to handle a cascade of LTI systems as a product of transfer functions.
- Laplace transform converts differential equations to algebraic equations. This allows us to use a rational transfer function (e.g., a(s)/b(s)) to describe a system.

Figure 6: Laplace transform converts convolution to multiplication.

Rational Transfer Function

A rational transfer function H(s) has polynomials for both the numerator and denominator. A counterexample is

$$H(s) = \frac{1}{s+1}e^{-sT}.$$

When a transfer function is non-rational, as above, it cannot be fully characterized with the poles and zeros.

A rational transfer function is *proper* when the order of the denominator is equal to or larger than the order of the numerator. For example,

$$H(s) = \frac{s^2 + 1}{s^2 + s + 1}.$$

The frequency response of a proper transfer function is bounded at high frequency. In the above example, $H(s) \to 1$ as $s \to \infty$.

A rational transfer function is *strictly proper* when the order of the denominator is larger than the order of the numerator. For example,

$$H(s) = \frac{s+1}{s^2 + s + 1}$$

The frequency response of a strictly proper transfer function approaches zero at high frequencies. In the above example, $H(s) \to \frac{1}{s} \to 0$ as $s \to \infty$. This is a common characteristic of physical systems.

Region of Convergence (ROC)*

The set of values $s \in \mathbb{C}$ for which the integral $\int_{-\infty}^{\infty} h(t)e^{-st} dt$ converges.

Inverse Laplace transform*

$$h(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} H(s)e^{st} ds$$

Here, the integral should be carried along a line that is in parallel with the $j\omega$ axis inside the ROC. In this course, we never carry out the inverse Laplace transform formula. Instead, we use partial fraction expansion and mapping methods to find the corresponding time-domain signal x(t).

5 Frequency Response

Eigenvalue and Eigenfunction

- Complex sinusoid $e^{j\omega_o t}$ is an eigenfunction of LTI systems.
- It is a special case of complex exponential with $s_o = j\omega_o$.
- The response of an LTI system to $e^{j\omega_o t}$ is the same complex sinusoid scaled by a complex number $H(j\omega_o)$. In other words, the complex exponential 'picks up' or 'samples' the gain at the particular frequency ω_o .
- This scaling factor $H(j\omega)$ viewed as a function of frequency $\omega \in \mathbb{R}$ is referred to as frequency response.

Figure 7: LTI system response to a complex sinusoid.

Relation to the Fourier Transform

Let us find the response to a complex sinusoid via convolution integral:

for
$$x(t) = e^{j\omega t}$$
 \rightarrow $y(t) = \int_{-\infty}^{\infty} h(\tau)e^{j\omega(t-\tau)} d\tau$
$$= e^{j\omega t} \underbrace{\int_{-\infty}^{\infty} h(\tau)e^{-j\omega\tau} d\tau}_{H(j\omega)}$$

It shows that frequency response $H(j\omega)$ can be derived from the Fourier transform of h(t)

$$H(j\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega t} dt,$$

when the integral converges. The integral converges if $\int_{-\infty}^{\infty} |h(t)| < \infty$.

The inverse Fourier transform is defined as follows.

$$h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(j\omega) e^{j\omega t} d\omega$$

Note the duality between the Fourier transform and the inverse Fourier transform.

Gain and Phase

Frequency response $H(j\omega)$ in a polar form is

$$H(j\omega) = |H(j\omega)|e^{j\angle H(j\omega)}$$

- $M \equiv |H(j\omega)|$ is the gain.
- $\phi \equiv \angle H(j\omega)$ is the *phase*.

In terms of the gain and magnitude, the response of H(s) to an input complex sinusoid is

Figure 8: LTI system response to a complex sinusoid $e^{j\omega_o t}$.

The response of H(s) to an input real sinusoid can be derived by taking real parts of the input and output – Euler's formula $e^{j\omega_o t} = \cos(\omega_o t) + j\sin(\omega_o t)$.

$$\cos(\omega_o t)$$
 $h(\cdot)$ $M\cos(\omega_o t + \phi)$

Figure 9: LTI system response to a real sinusoid $\cos(\omega_o t)$.

Bode's Gain-phase Relation for Minimum Phase Systems

- For a given gain curve, there exist multiple systems that differ in phase curves.
- Among those, the one that has the smallest phase lag is called *minimum phase system*.
- For minimum phase systems, there exists a unique relation between the gain curve and phase curve (i.e., $\phi \approx n \times 90^{\circ}$, where n is the slope of the Bode gain curve).
- For non-minimum phase systems, you need to be careful in drawing the Bode plot.

Spectrum and Frequency Response

$$h(\cdot) \xrightarrow{h*x(t)} \xrightarrow{\mathcal{F}} X(j\omega) \xrightarrow{H(j\omega)X(j\omega)}$$

Figure 10: Fourier transform converts convolution to multiplication.

- $X(j\omega)$ is referred to as the spectrum of the signal.
- $H(j\omega)$ is referred to as the frequency response of the system.

Fourier Transform Properties

- Converts *convolution* in time domain to *multiplication* in frequency domain. This allows us to handle a cascade of LTI systems as a product of frequency responses.
- Converts *multiplication* in time domain to *convolution* in frequency domain. This allows us to visualize signal processing techniques, such as modulation and sampling, in frequency domain.

6 Why Frequency-domain Approaches?

It simplifies the math

- Convolution \rightarrow Multiplication
- ullet Differential equation o Algebraic equation

There exist nice graphical representations

- Pole-zero map for H(s) (only for rational H(s))
- Bode plot for $H(j\omega)$ (for a wider class of systems)

There exist nice design tools based on the graphical representations

- Root locus with pole-zero map (difficult when a system has too many poles and zeros)
- Loop shaping with Bode plot (for a wider class of systems)
- We can measure $H(j\omega)$ and use it for loop shaping design (even for unstable systems).

References

[1] A. V. Oppenheim and A. S. Willsky, *Signals & Systems*, 2nd ed. Upper Saddle River, NJ: Prentice Hall, Aug. 1996.

Table 1: Fourier Transform – Selected Properties [1, p.328]

Property	Signal	Fourier Transform	
	x(t)	$X(j\omega)$	
	y(t)	$Y(j\omega)$	
Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$	
Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$	
Time shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$	
Frequency shifting	$e^{j\omega_0 t}x(t)$	$X(j(\omega-\omega_0))$	
Convolution	$\int_{-\infty}^{\infty} x(\tau)y(t-\tau) d\tau$	$X(j\omega)Y(j\omega)$	
Multiplication	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\theta) Y(j(\omega - \theta)) d\theta$	
Differentiation in time	$\frac{\mathrm{d}}{\mathrm{d}t}x(t)$	$j\omega X(j\omega)$	
Differentiation in frequency	tx(t)	$j_{\frac{\mathrm{d}}{\mathrm{d}\omega}}X(j\omega)$	
Parseval's theorem	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) ^2 d\omega$		

Table 2: Laplace Transform – Selected Properties [1, p.691]

		· • • •	, <u> </u>
Property	Signal	Laplace Transform	ROC
	x(t)	X(s)	R
	$x_1(t)$	$X_1(s)$	R_1
	$x_2(t)$	$X_2(s)$	R_2
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	At least $R_1 \cap R_2$
Time shifting	$x(t-t_0)$	$e^{-st_0}X(s)$	R
Frequency shifting	$e^{s_0t}x(t)$	$X(s-s_0)$	Shifted version of R
Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	Scaled version of R
Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$
Differentiation in time	$\frac{\mathrm{d}}{\mathrm{d}t}x(t)$	sX(s)	At least R
Differentiation in frequency	-tx(t)	$\frac{\mathrm{d}}{\mathrm{d}s}X(s)$	R
Integration in time	$\int_{-\infty}^{t} x(\tau) \mathrm{d}\tau$	$\frac{1}{s}X(s)$	At least $R \cap \{\Re\{s\}\}$
Initial-value theorem	If $x(t)$ is causal and does not have singularities at $t=0$ $x(0^+) = \lim_{s \to \infty} sX(s)$		
Final-value theorem	If $x(t)$ is causal and has finite limit as $t \to \infty$ $\lim_{t \to \infty} x(t) = \lim_{s \to \infty} sX(s)$		