Advanced Data Analysis

DATA 71200

Class 3

Schedule

8-Jun

2-Jun	Inspecting Data
6-Jun	Representing Data
7-Jun	Async: DataCamp

9-Jun Async: DataCamp

Evaluation Methods

Terminology Review

labeled training set

- "a training set that contains the desired solution (a.k.a. a label) for each instance."

regularization

- "constraining a model to make it simpler and reduce the risk of overfitting"

hyperparameter

- "amount of regularization to apply during learning"

Terminology Review

Training set

data used to train the model

Testing set

 hold out data used to estimate the generalization error on new data

Validation set

used to compare models

Cross-validation

 iteratively holding out a subset of the data and testing on the rest (typically 80/20)

More Terminology

Class

"One of a set of enumerated target values for a label."

Classification

 "A type of machine learning model for distinguishing among two or more discrete classes."

More Terminology

Samples

Individual items

Label

- "In supervised learning, the "answer" or "result" portion of an example"

Feature

- "An input variable used in making predictions."

Machine Learning Pipeline

- "However simple or complex the Machine Learning problem at hand may be, it will always contain the following steps:
 - Data loading, preparation and splitting into the train and test partitions
 - Model selection and training ("fitting")
 - Model performance assessment"

Frame the Problem

- "what exactly is the business (research) objective"
 - "how does the company (researcher) expect to use and benefit from this model?"
 - will determine
 - "how you frame the problem"
 - "what algorithms you will select"
 - "what performance measure you will use to evaluate your model"
 - "how much effort you should spend tweaking it"

Pipeline

- "sequence of data processing components is called a data pipeline"
 - "components typically run asynchronously" and "is fairly self-contained"
 - each component
 - "pulls in a large amount of data"
 - "processes it"
 - "spits out the result in another data store"
 - a later "component in the pipeline pulls this data and spits out its own output"

Inspecting Data to Gain Insights

- Data size and type
- Summary statistics
- Histograms
- Visualizing Geographic Data

```
housing.info()
In [6]:
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 20640 entries, 0 to 20639
        Data columns (total 10 columns):
                              20640 non-null float64
        longitude
        latitude
                              20640 non-null float64
        housing median age
                              20640 non-null float64
        total rooms
                              20640 non-null float64
        total bedrooms
                              20433 non-null float64
        population
                              20640 non-null float64
        households
                              20640 non-null float64
        median income
                          20640 non-null float64
        median house value 20640 non-null float64
        ocean proximity
                              20640 non-null object
        dtypes: float64(9), object(1)
        memory usage: 1.6+ MB
```

Figure 2-6. Housing info

		longitude	latitude	housing_median_age	total_rooms	total_bedro
C	ount	20640.000000	20640.000000	20640.000000	20640.000000	20433.0000
m	ean	-119.569704	35.631861	28.639486	2635.763081	537.870553
st	d	2.003532	2.135952	12.585558	2181.615252	421.385070
m	in	-124.350000	32.540000	1.000000	2.000000	1.000000
25	5%	-121.800000	33.930000	18.000000	1447.750000	296.000000
50)%	-118.490000	34.260000	29.000000	2127.000000	435.000000
75	5%	-118.010000	37.710000	37.000000	3148.000000	647.000000
max	-114.310000	41.950000	52.000000	39320.000000	6445.00000	

Figure 2-7. Summary of each numerical attribute

%matplotlib inline # only in a Jupyter notebook
import matplotlib.pyplot as plt
housing.hist(bins=50, figsize=(20,15))
plt.show()

Figure 2-8. A histogram for each numerical attribute

```
%matplotlib inline # only in a Jupyter notebook
import matplotlib.pyplot as plt
housing.hist(bins=50, figsize=(20,15))
plt.show()
```

First, the median income attribute does not look like it is expressed in US dollars (USD). After checking with the team that collected the data, you are told that the data has been scaled and capped at 15 (actually 15.0001) for higher median incomes, and at 0.5 (actually 0.4999) for lower median incomes. Working with preprocessed attributes is common in Machine Learning, and it is not necessarily a problem, but you should try to understand how the data was computed.

Figure 2-8. A histogram for each numerical attribute

```
%matplotlib inline # only in a Jupyter notebook
import matplotlib.pyplot as plt
housing.hist(bins=50, figsize=(20,15))
plt.show()
```


The housing median age and the median house value were also capped. The latter may be a serious problem since it is your target attribute (your labels). Your Machine Learning algorithms may learn that prices never go beyond that limit. You need to check with your client team (the team that will use your system's output) to see if this is a problem or not. If they tell you that they need precise predictions even beyond \$500,000, then you have mainly two options:

- a. Collect proper labels for the districts whose labels were capped.
- b. Remove those districts from the training set (and also from the test set, since your system should not be evaluated poorly if it predicts values beyond \$500,000).

Finally, many histograms are *tail heavy*: they extend much farther to the right of the median than to the left. This may make it a bit harder for some Machine Learning algorithms to detect patterns. We will try transforming these attributes later on to have more bell-shaped distributions.

Figure 2-8. A histogram for each numerical attribute

housing.plot(kind="scatter", x="longitude", y="latitude")

Figure 2-11. A geographical scatterplot of the data

housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.1)

Figure 2-12. A better visualization highlighting high-density areas

Setting alpha to 0.1 emphasizes high density areas

Figure 2-13. California housing prices

Look for Correlations

```
corr_matrix = housing.corr()
```

```
>>> corr_matrix["median_house_value"].sort_values(ascending=False)
median_house_value 1.000000
median_income
                      0.687170
total_rooms
                      0.135231
housing_median_age
                      0.114220
households
                      0.064702
total_bedrooms
                      0.047865
population
                     -0.026699
longitude
                     -0.047279
latitude
                     -0.142826
Name: median_house_value, dtype: float64
```


Figure 2-14. Standard correlation coefficient of various datasets (source: Wikipedia; public domain image)

Figure 2-15. Scatter matrix

Figure 2-15. Scatter matrix

In-Class Activity

- Replicate some of the plots from the California
 Housing Dataset with the Boston Housing Dataset included with scikit learn
 - import pandas as pd
 from sklearn.datasets import load_boston
 boston = load_boston()
 boston pd = pd.DataFrame(boston.data)
- Be sure to add median value to the main dataframe
 - boston_pd.columns = boston.feature_names
 - boston_pd['MEDV'] = boston.target
- Generate a histogram for all of the data columns
- Generate a scatter matrix for the attributes "MEDV", "LSTAT", "RM", "AGE"

Reading for Monday

➤ Ch 4: "Representing Data/Engineering Features" in Guido, Sarah and Andreas C. Muller. (2016). *Introduction to Machine Learning with Python*, O'Reilly Media, Inc. 213–55

Project 1

- Due June 13
- Keep exploring potential datasets
 - kaggle.com
 - archive.ics.uci.edu/ml/datasets.php
 - libguides.nypl.org/eresources
 - opendata.cityofnewyork.us/data/
- The data set will need to be labeled as you are going to use it for both supervised and unsupervised learning tasks

DataCamp for next week

- Introduction to Python (If Needed)
- Al Fundamentals
 - Introduction to Al
- Data Manipulation with pandas
 - Transforming Data
 - Aggregating Data
 - Slicing and Indexing
 - Creating and Visualizing DataFrames (Optional)
- Writing Efficient Code with pandas (Optional)