ĐẠI HỌC QUỐC GIA TP. HÒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA

BÀI TẬP LỚN MÔN MẠCH ĐIỆN TỬ

Lớp L01 – **Nhóm** 10 – **HK 222**

GVHD: Thầy Đặng Nguyên Châu

Thành viên:

STT	Họ và tên	MSSV
1	Lê Đức Quý	2114597
2	Phạm Dương Quỳnh	2114620
3	Trần Hoàng Sơn	2114673
4	Lê Duy Thức	2112416
5	Nguyễn Quốc Toàn	2115031
6	Phạm Hoàng Minh Trâm	2112477

TP. Hồ Chí Minh, năm 2023

BẢNG PHÂN CÔNG CÔNG VIỆC

Lớp L01- Nhóm 10

MSSV	Họ và tên	Nội dung công việc	Mức độ hoàn thành
		Tính toán và lựa chọn linh	titaiiii
2114597	Lê Đức Quý	kiện	Mức 3
		Cơ sở lý thuyết, tổng hợp báo	
2114620	Phạm Dương Quỳnh	cáo, trình bày word	Mức 3
2114673	Trần Hoàng Sơn	Tính toán	Mức 2
		Mô phỏng hình ảnh mạch,	
2112416	Lê Duy Thức	dạng sóng	Mức 3
		Mô phỏng hình ảnh mạch,	
2115031	Nguyễn Quốc Toàn	dạng sóng	Mức 2
		Tính toán và lựa chọn linh	
		kiện, trình bày tính toán giá	
2112477	Phạm Hoàng Minh Trâm	trị, điều chỉnh báo cáo	Mức 4

Bảng đánh giá chéo mức độ hoàn thành công việc của nhóm 10:

Nhận xét giáo viên:

Chữ ký giáo viên

PHẦN NỘI DUNG

I. Cơ sở lý thuyết

Mạch khuếch đại công suất là mạch thiết kế sao cho cung cấp một lượng công suất lớn cho tải, tức là mạch khuếch đại công suất sẽ tạo ra điện áp cao và dòng điện lớn để lái tải cần tính công suất lớn. Mạch khuếch đại công suất được ứng dụng nhiều trong ngành điện điện tử. Chúng ta chỉ xét mạch công suất trong lĩnh vực âm thanh được gọi là là mạch khuếch đại công suất âm tần.

Mạch khuếch đại công suất âm tần dùng để tạo ra một lượng công suất để cung cấp cho tải (tải thường là loa do chúng đòi hỏi một lượng lớn công suất để biến đổi tín hiệu thành sóng âm thanh). Mạch khuếch đại công suất được sử dụng rỗng rãi trong các máy: radio, máy thu hình, máy nghe băng, máy tăng âm, các hệ thống stereo loa phát thanh,...

Mục tiêu là đưa tối đa nguồn tín hiệu ra mạch khuếch đại. Đây là mạch liên tầng gồm hai khối chính là mạch khuếch đại điên áp và mạch khuếch đại công suất.

Hình 1. Sơ đồ khối

Giữa hai mạch có điểm khác nhau như sau:

- a. Mạch khuếch đại tín hiệu điện áp (mạch khuếch đại tín hiệu nhỏ)
 - Được đặt ở đầu khối mạch
 - Xử lý tín hiệu ngõ vào AC nhỏ (vài micro Vôn, vài mili Vôn)
 - Chọn transistor có hệ số khuếch đại dòng lớn
 - Điện trở dùng trong mạch này có giá trị lớn hơn mạch khuếch đại công suất

- b. Mạch khuếch đại công suất (mạch khuếch đại tín hiệu lớn)
 - Được đặt ở cuối khối mạch
 - Xử lý tín hiệu ngõ vào lớn (vài Vôn)
 - Chọn transistor có hệ số khuếch đại nhỏ, nhưng kích thước lớn hơn, có phần kim loại để tản nhiệt
 - Điện trở trong mạch có giá trị nhỏ hơn mạch khuếch đại điện áp

Tùy theo chế độ làm việc của transistor, người ta thường phân mạch khuếch đại công suất ra thành các loại chính như sau:

- Khuếch đại công suất loại A: Tín hiệu được khuếch đại gần như tuyến tính, nghĩa là tín hiệu ngõ ra thay đổi tuyến tính trong toàn bộ chu kỳ 360 độ của tín hiệu ngõ vào (Transistor hoạt động cả hai bán kỳ của tín hiệu ngõ vào).
- Khuếch đại công suất loại AB: Transistor được phân cực ở gần vùng ngưng. Tín hiệu ngõ ra thay đổi hơn một nửa chu kỳ của tín hiệu vào (Transistor hoạt động hơn một nữa chu kỳ dương hoặc âm của tín hiệu ngõ vào).
- Khuếch đại công suất loại B: Transistor được phân cực tại V_{BE} =0 (vùng ngưng). Chỉ một nữa chu kỳ âm hoặc dương của tín hiệu ngõ vào được khuếch đại.
- Khuếch đại công suất loại C: Transistor được phân cực trong vùng ngưng để chỉ một phần nhỏ hơn nữa chu kỳ của tín hiệu ngõ vào được khuếch đại. Mạch này thường được dùng khuếch đại công suất ở tần số cao với tải cộng hưởng và trong các ứng dụng đặc biệt.

1) Mạch khuếch đại công suất âm tần dạng OTL

Như ta đã biết, mạch công suất lớp B chỉ làm việc trong một bán kỳ của tín hiệu ngõ vào. Để có tín hiệu xoay chiều với hai bán kỳ, ta cần sử dụng hai transistor Q_1 và Q_2 ghép đẩy kéo dùng biến áp.

Nhưng khi sử dụng như vậy, ta gặp vấn đề bị méo xuyên tâm, do transistor bắt đầu hoạt động ở điện áp lớn hơn bằng điện áp V_{BEon} (thường là 0.7V).

Hình 2. Biến dạng méo xuyên tâm (Crossover distortion)

Do hạn chế đó của mạch công suất âm tần dùng biến áp, ta không dùng mạch khuếch đại công suất âm tần lớp B dùng biến áp nữa mà dùng mạch khuếch đại công suất âm tần lớp AB transistor ghép bổ phụ dạng OTL.

 \mathring{O} mạch này méo xuyên tâm có thể khắc phục bằng cách phân cực trước cho mỗi transistor điện áp mối nối V_{BE} và V_{EB} đủ lớn (thường là 0,7V) để khi có tín hiệu xoay chiếu ngõ vào thì transistor sẽ dẫn ngay.

Mạch công suất có dạng OTL tức là có sử dụng tụ C_o (tụ xuất âm) và nguồn DC đơn. Mạch công suất âm tần dạng OTL khắc phục được nhược điểm của mạch khuếch đại công suất âm tần dùng biến áp, tín hiệu ngõ ra không méo xuyên tâm và hiệu suất cao.

Nhược điểm : Mạch dùng tụ xuất âm nên làm suy hao tín hiệu, băng thông bị co hẹp do ảnh hưởng của tụ C_{o}

Hình 3. Mạch khuếch đại công suất âm tần OTL

Hoạt động của 2 transistor phải đối xứng \rightarrow $Q_1 \equiv Q_2$ (chọn theo cặp), $R_1 = R_2$, $R_{e1} = R_{e2}$.

- Các điện trở $R_1,\,R_2,\,$ diode $D1,\,D2:$ tạo phân cực trước cho transistor $Q_1,\,Q_2$
- Các điện trở R_{e1} , R_{e2} : là các điện trở ổn định nhiệt cho Q_1,Q_2
- Tụ điện Co: giúp loại bỏ điện áp DC không mong muốn trong tín hiệu đầu vào và ngăn chặn tình trạng nhiễu điện từ (DC offset) trên đầu ra của mạch khuếch đại. Nếu không có tụ điện trước tải, điện áp DC có thể truyền vào mạch khuếch đại và gây ra độ méo và giảm chất lượng âm thanh trên đầu ra của mạch.
- Bán kì dương của Vi: Q₁ dẫn, Q₂ không dẫn
- Bán kì âm của Vi: Q₁ không dẫn, Q₂ dẫn
- Dòng tải $i_L=i_{T1}-i_{T2}$
- Dòng nguồn : $i_S = i_{T1}$

II. Yêu cầu hệ thống

Thiết kế và thi công một mạch khuếch đại công suất âm tần OTL. (Chú ý: sinh viên được yêu cầu thực hiện thiết kế, mô phỏng, thi công mạch khuếch đại bằng các linh kiện rời, không được dùng các mạch tích hợp như OpAmp hay IC chuyên dùng). Các yêu cầu thiết kế:

- Công suất tải: $P_L \ge 10W$
- Tín hiệu ngõ vào: $v_{sig} = 50...100 mV$
- Tần số hoạt động: trong khoảng tần số âm thanh.
- Điện trở tải: $R_L = 8 \Omega$ (không cần đúng theo bảng J1).
- Hiệu suất của mạch: η ≥ 60%
- Trở kháng ngõ vào: $Z_{in} \ge 40k\Omega$
- THD tại tần số 1KHz: dưới 10%.
- Điện áp DC cung cấp không quá 30V

III. Chọn các linh kiện và tính toán lý thuyết thông số Sơ đồ khối mạch khuếch đại âm thanh:

Hính 4. Sơ đồ khối mạch khuếch đại âm thanh

1. Các thông số và datasheet linh kiện:

• Các thông số tự chọn:

$$V_{\text{sig}} = 100 \text{mV}$$

$$R_L = 8\Omega$$

$$V_{CC} = 28V$$

2. Mạch khuếch đại tín hiệu CS:

- a) Tính toán để chọn các linh kiện:
 - Datasheet của Transistor N-P-N 2B3819 :

MAXIMUM RATINGS: (TA=25°C)	SYMBOL		UNIT
Drain-Gate Voltage	VDG	25	V
Drain-Source Voltage	VDS	25	V
Gate-Source Voltage	V _{GS}	25	V
Continuous Gate Current	IG	10	mA
Power Dissipation	P_{D}	360	mW
Operating and Storage Junction Temperature	T _J , T _{sta}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS: (TA=25°C unless otherwise noted) SYMBOL **TEST CONDITIONS** MAX UNIT V_{GS}=15V IGSS 2.0 nA V_{GS}=15V, T_A=100°C 2.0 μΑ IGSS 2.0 IDSS V_{DS}=15V 20 mA BVGSS $I_G=1.0\mu A$ 25 V VDS=15V, ID=2.0nA 8.0 V V_{GS(OFF)} V_{DS}=15V, I_D=200μA V 0.5 7.5 VGS V_{DS}=15V, V_{GS}=0, f=1.0MHz Yfs 2.0 6.5 mS Yfs V_{DS}=15V, V_{GS}=0, f=100MHz 1.6 mS Yos V_{DS}=15V, V_{GS}=0, f=1.0kHz 50 μS V_{DS}=15V, V_{GS}=0, f=1.0MHz Ciss 8.0 pF V_{DS}=15V, V_{GS}=0, f=1.0MHz 4.0 Crss pF

$$\rightarrow$$
 Sử dụng Transistor 2N3819 có điểm làm việc tĩnh Q1:
$$\begin{cases} I_D = 0.2mA \\ V_{DS} = 15V \end{cases}$$

Với
$$V_T = 1.2V \ va \ k_n = 0.5 \ (\frac{mA}{V^2})$$

• Khảo sát DC:

$$Ta\ c\acute{o}: I_D = \frac{k_n}{2} [V_{GS} - V_T]^2 \leftrightarrow 0.2 = \frac{0.5}{2} [VGS - 1.2]^2$$

$$\to V_{GS} = 2.09\ V$$

$$\to V_{GS} = 0.3\ V\ (lo\ ai)$$

Ta có:
$$28 - 0.2 * (R_D + R_S) = 15 \rightarrow R_D + R_S = 65k\Omega$$

Vì $V_S \ll V_{CC} \rightarrow R_S \ll R_D \rightarrow Ch on R_S = 5k\Omega \rightarrow R_D = 60k\Omega$

• Khảo sát AC:

Vì
$$R_{in} \ge 40k\Omega \, m\grave{a} \, R_{in} = R_G \to Ch \, on \, R_G = 43k\Omega$$

• Chọn số liệu điện trở theo bảng J1, ta có:

$$R1 = 43k\Omega$$

$$R2 = 62k\Omega$$

$$R3 = 10k\Omega$$
 mắc song song với $R3'=10k\Omega$

Mạch được thiết kế để hoạt động trong khoảng tần số âm thanh có dải tần hoạt động từ 20–20kHz.

Đối với tụ C1:
$$f_{LC1} = \frac{1}{2\pi R_G C_1} < 20 \rightarrow C_1 > 0.2 \mu F \rightarrow Chọn tụ C1 = 100 \mu F$$

Đối với tụ C2:
$$f_{LC2} = \frac{1}{2\pi R_{C2}.C_2} < 20 \rightarrow C_2 > 0.3 \mu F \rightarrow Chọn tụ C2 = 100 \mu F$$

b) Tính toán các giá trị thông số:

$$R_{in} = 43k\Omega$$

$$R_{out} = R_D = 60k\Omega$$

$$g_m = k_n (V_{GS} - V_T) = 2(\text{mA/V})$$

$$A_v = -g_m * \frac{R_D}{1 + g_m R_S} \approx -10.9 \left(\frac{V}{V}\right)$$

Đáp ứng tần số cắt thấp:

$$R_{C1} = R_G = 43k\Omega \rightarrow f_{LC1} = \frac{1}{2\pi.41.10^3.10.10^{-6}} = 4Hz$$

$$R_{C2} = R_D / / R_B = 26.55 k\Omega \rightarrow f_{LC2} = \frac{1}{2\pi \cdot 26.55 \cdot 10^3 \cdot 10 \cdot 10^{-6}} = 6 Hz$$

3. Mạch khuếch đại tín hiệu CE:

- a) Tính toán để chọn các linh kiện
 - Datasheet của Transistor BC547:

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Collector - Emitter Breakdown Voltage	BC546	V (BR)CEO	65	-	-	V
(Ic = 1.0 mA, IB = 0)	BC547	83950	45	<u> </u>	(2-)	
	BC548		30	776	- 51	l
Collector - Base Breakdown Voltage	BC546	V (BR)CBO	80	125	(a)	V
(Ic = 100 mAdc)	BC547	11.1	50	9 7 8	4 10 8	l
	BC548		30	-	-	l
Emitter - Base Breakdown Voltage	BC546	V (BR)EBO	6.0	-	-	V
(IE = 10 mA, Ic = 0)	BC547		6.0	2	23	
	BC548		6.0	175	-	
Collector Cutoff Current		I CES				
(Vce = 70 V, Vee = 0)	BC546		-	0.2	15	nA
(Vce = 50 V, Vee = 0)	BC547		12 <u>0</u> 1	0.2	15	10.000000
(Vce = 35 V, Vee = 0)	BC548		(55)	0.2	15	0-0040
(VCE = 30 V, TA = 125°C)	BC546/547/548		() =)	-	4.0	mA
ON CHARACTERISTICS						
DC Current Gain		h FE				143
(Ic = 10 mA, VcE = 5.0 V)	BC547A	9500000		90	-	l
	BC546B/547B/548B		150	150	8 11 11	l
	BC548C		-	270	-	
(Ic = 2.0 mA, VcE = 5.0 V)	BC546		110		450	
(10 2.0 mm, 102 3.0 1)	BC547		110	-	800	l
	BC548		110	120	800	l
	BC547A		110	180	220	l
	BC546B/547B/548B		200	290	450	l
	BC547C/BC548C		420	520	800	
(Ic = 100 mA. Vcz = 5.0 V)	BC547A/548A		_	120		
(1c - 100 mA, VCE - 3.0 V)	BC546B/547B/548B		9 <u>.0</u> 0	180	23	l
	BC548C		_	300	_	l
Collector - Emitter Saturation Voltage		V CE(sat)				V
(Ic=10 mA, IB=0.5 mA)				0.09	0.25	
(Ic = 100 mA, Ib = 5.0 mA)			9 <u>2</u> 9	0.2	0.6	l
(Ic = 10 mA, IB = See Note 1)			-	0.3	0.6	l
Base - Emitter Saturation Voltage		V BE(sat)	-	0.7		V
(Ic = 10 mA, IB = 0.5 mA)						
Base - Emitter On Voltage		V BE(on)				V
(Ic = 2.0 mA, VcE = 5.0 V)			0.55	123	0.7	
(Ic = 10 mA, VcE = 5.0 V)			100	2 . 1 2	0.77	

 \rightarrow Sử dụng Transistor BC547 có điểm làm việc tĩnh Q2: $\begin{cases} I_c = 2mA \\ V_{CE} = 5V \end{cases}$ Ở điểm làm việc tĩnh này hệ số $\beta = 120$.

• Khảo sát DC:

$$(R_C + R_{E1} + R_{E2}) I_C + V_{CE} = V_{CC}$$

 $\rightarrow R_C + R_{E1} + R_{E2} = 11.5 \text{ (K}\Omega)$

Ta có:

$$V_E << V_{CC} \rightarrow Chọn V_E = \frac{1}{10} V_{CC} = 2.8 V$$

$$\rightarrow R_{E1} + R_{E2} = \frac{V_E}{I_C} = 1.4K\Omega$$

$$\rightarrow R_C = 10.1 K\Omega$$

$$r_{\pi} = \beta \frac{V_T}{I_C} = 1.5 K\Omega$$

$$V_C = V_{CC} - I_C$$
. $R_C = 28 - 2.10 = 8 V$

$$\rightarrow V_E = I_C. R_E = 2.8 V$$

Ta có :
$$V_{BE}=0.7V \rightarrow V_B-V_E=~0.7$$

$$\rightarrow V_B = 3.5 V$$

$$M\grave{a} V_B = \frac{R_5}{R_4 + R_5} V_{CC} = 3.5 \rightarrow \frac{R_5}{R_4 + R_5} = \frac{1}{8}$$

 $Ch on R_3 = 60 K\Omega \rightarrow R_4 = 550 K\Omega$

• Khảo sát AC:

Vì
$$Z_{in} = R_5 // R_4 // r_\pi + (\beta + 1) R_{E1} \rightarrow R_{E1} \ge 597\Omega$$

 \rightarrow Chọn $R_{E1} = 600\Omega$
 $\rightarrow R_{E2} = 1400 - 600 = 800\Omega$

Chọn số liệu điện trở theo bảng J1, ta có :

$$R_4 = 549\Omega$$

$$R_5 = 59K\Omega$$

$$R_6 = 10\Omega$$

$$R_7 = 590\Omega$$

$$R_8 = 700K\Omega$$

- Đối với tụ C3:

$$\rightarrow f_{L3} = \frac{1}{2\pi [R_E//[(R_4//R_3)/\beta) + \frac{1}{q_{m1}}]].C_3} < 20 \text{ v\'oi} (R_E = R_{E1} + R_{E2})$$

$$\rightarrow C_3 > 16,7 \mu F$$

$$\rightarrow$$
Chọn $C_3 = 100 \mu F$

b) Tính toán các thông số:

$$Z_{in} = \left(\frac{1}{550} + \frac{1}{60} + \frac{1}{1.5 + 121 * 0.604}\right)^{-1} = 31.36 \text{ } k\Omega$$

$$Z_{out} = R_C = 10k\Omega$$

$$A_{v} = \frac{-R_{C} \cdot \beta}{r_{\pi} + (\beta + 1)R_{E1}} = \frac{-R_{C} \cdot \beta}{r_{\pi} + (\beta + 1)R_{E1}} = \frac{-10 * 120}{1.5 + 121 * 0.6}$$
$$= -16.2 (V/V)$$

Tần số cắt thấp:
 Chọn các tụ C = 100μF

$$f_{L1} = \frac{1}{2\pi \cdot (R_B//r_\pi) \cdot C_6} = 10.8Hz$$

$$f_{L2} = \frac{1}{2\pi \cdot (R_2 + R_6) \cdot C_6} = 17.65mHz$$

$$f_{L3} = \frac{1}{2\pi \cdot ([\frac{R_B}{\beta + 1}//\frac{r_{\pi}}{\beta + 1}]//R_{E2}) \cdot C_6} = 132.63Hz$$

Vậy
$$f_L = 132.63 Hz$$

• Tần số cắt cao:

$$g_m = 0.08$$
 $C\mu = 100pF$
 $C_\pi = 4pF$

Áp dụng định lý Miller ta có:

$$R'_{sig} = R_3 / / R_4 = 87.5 k\Omega$$

$$R'_L = R_C = 10k\Omega$$

$$C_M = (1 + g_m R'_L). C\mu = 8.01.10^{-10} (F)$$

$$C_{eq} = C_M + C_\pi = 8.05.10^{-10} (F)$$

$$f_H = \frac{1}{2\pi. C_{eq}. R_{sig}^{'}} = 18.19 (kHz)$$

4. Mạch khuếch đại Darlington

- a) Tính toán để chọn các linh kiện
 - Datasheet của Transistor TIP41A:

SYMBOL	PARAM	ETER	CONDITIONS	MIN	TYP.	M A X	UNIT
V CEO(SUS)	Collector-emitter	TIP41	: <=30mA; I ₀ =0	40			
		TIP41A		60			
	sustaining voltage	TIP41B		80			V
		TIP41C		100			
V CESM	Collector-emitter satu	ration voltage	Ic=6A; Is=0.6A			1.5	V
V BE	Base-emitter on volta	ge	I <=6A; VCE=4V			2.0	V
	Collector cut-off current	TIP41	v сь=40V; Vьн=0				mA
1 CES		TIP41A	v ch=60V; Veh=0			0.4	
		TIP41B	v сь=80V; V _{нв} =0				
		TIP41C	v ch=100V; Vhb=0				
1 CEO	Collector cut-off current	TIP41/41A	v ci=30V; Ii=0				
		TIP41B/41C	v ch=60V; In=0		0.	0.7	mA
Іево	Emitter cut-off current		V _{EB} =5V; Ic=0			1.0	mА
h FE-1	DC current gain		10=0.3A; Vc==4V	30			
h FE-2	DC current gain		Ic=3A; Vc=4V	15		75	
fı	Transiton frequency		1c=0.5A; VcE=10V	3			MH

Sử dụng Transistor BC547 có điểm làm việc tĩnh Q2: $\begin{cases} I_c = 2mA \\ V_{CE} = 5V \end{cases}$

 $\mathring{\mathrm{O}}$ điểm làm việc tĩnh này hệ số $\beta_2=120$

Sử dụng Transistor TIP41A có điểm làm việc tĩnh Q3: $\begin{cases} I_c = 0.1A \\ V_{CE} = 5V \end{cases}$

 $\mathring{\mathrm{O}}$ điểm làm việc tĩnh này hệ số $\beta_3=50$

$$\rightarrow \beta = \beta_2 * \beta_3 = 120 * 50 = 6000$$

• Khảo sát DC:

$$I_{C2} = I_{B3} = 2mA$$

$$\rightarrow I_{B2} = \frac{I_{C2}}{\beta_2} = 16.67 \ \mu A$$

$$\rightarrow I_{C3} = \beta_2. I_{B_3} = 0.1 \ A$$

$$L \text{\'ay } V_{BE2} = V_{BE3} = 0.7V$$

Theo định luật Kirchoff, ta có:

(I)
$$V_{CC} = V_{CE3} + I_{C3}.R_7$$

 $\rightarrow R_7 = 230 \Omega$

(II)
$$V_{CC} = R_6.I_{B2} + (\beta + 1)R_7 + V_{BE2} + V_{BE3}$$

 $\rightarrow R_6 = 892 \text{ K}\Omega$

• Khảo sát AC:

- $r_{\pi 3} = 12.5\Omega$
- Chọn giá trị điện trở theo bảng J1, ta có:

$$R_6=887K\ \Omega$$

$$R_7 = 226 \Omega$$

- Đối với tụ C4:

$$\to f_{L4} = \frac{1}{2\pi . (Z_{in2} + Z_{out1}).C_4} \le 20$$

$$\rightarrow C_4 \ge 8,87nF$$

$$\rightarrow$$
Chọn $C_4 = 100 \mu F$

b) Tính toán các thông số:

$$R_{in} = R_6 / / \beta R_7 = 11.4 K\Omega$$

$$R_{out} = \frac{r_{\pi 2}}{\beta_2} + r_{\pi 3} = 25\Omega$$

$$A_v = \frac{R_7 \cdot (\beta_3 + 1)(\beta_2 + 1)}{r_{\pi 2} + (\beta_2 + 1) [r_{\pi 3} + (\beta_2 + 1)R_7]} \approx 1$$

5. Mạch khuếch đại công suất

• Datasheet của Transistor TIP42:

ELECTRICAL CHARACTERISTICS (Tamb=25 unless otherwise specified)

Parameter		Symbol	Test condiions	MIN	MAX	UNIT
Collector-base breakdown voltage	TIP42 TIP42A TIP42B TIP42C	V (BR)CHO	Ic= -1mA, Ic=0	-40 -60 -80 -100		v
Collector-emitter breakdown voltage	TIP42 TIP42A TIP42B TIP42C	V (BR)CEO*	Ic= -30mA, In=0	-40 -60 -80 -100		V
Emitter-base breakdown voltage		V (BR)EBO	I _E = -1mA, I _C =0	-5		V
Collector cut-off current	TIP42 TIP42A TIP42B TIP42C	1 СВО	Vc=-40V, I _b =0 Vc=-60V, I _b =0 Vc=-80V, I _b =0 Vc=-100V, I _b =0		-0.4	mA
Collector cut-off current	TIP42/42A TIP42B/42C	1 CBO	V_{CE} = -30V, I_{E} = 0 V_{CE} = -60V, I_{E} = 0		-0.7	mA
Emitter cut-off current		1 EBO	V _{EB} =-5V, I _C =0		-1	mA
DC current gain		h _{FE(1)}	Vc=-4V, Ic=-0.3A	30		
		h FE(2)	Vc=-4 V, Ic=-3A	15	75	
Collector-emitter saturation voltage		V CE(sat)	Ic=-6A, In=-0.6A	2 3	-1.5	V
Base-emitter voltage		V BE	Vc=-4V, Ic=-6A		-2	V
Transition frequency		fr	Vc=-10V,Ic=-0.5	3		MHz

*Pulse test

a) Tính toán để chọn các linh kiện

Sử dụng Transistor TIP41 có điểm làm việc tĩnh Q4, Q6: $\begin{cases} I_c = 0.1A \\ V_{CE} = 5V \end{cases}$

 $\mathring{\text{O}}$ điểm làm việc tĩnh này hệ số $\beta_3 = 50$

Sử dụng Transistor TIP42 có điểm làm việc tĩnh Q5,Q7: $\begin{cases} I_c = 0.1A \\ V_{CE} = 5V \end{cases}$

 \mathring{O} điểm làm việc tĩnh này hệ số $\beta_3 = 50$

Lắp thêm tầng Darlington để mạch công suất có thể chịu được điện áp ngõ vào lớn. Mạch công suất này có thể chịu điện áp ngõ vào cực đại là 7V để sóng ngõ ra không bị méo.

Ở mạch khuếch đại công suất này, ta sử dụng tụ C5 là tụ hóa đóng vai trò như một nguồn áp cho bán kì âm.

Chọn $R9 = R11 = 500\Omega$ để phân cực cho 4 con Transistor.

Hiện tượng méo xuyên tâm: Do mỗi con transistor có thông số $V_{\gamma}=0.6V\neq 0$ nên khi $\left|v_{sig}\right|<0.6\,$ thì Q4, Q5 chưa dẫn nên gây ra hiện tượng méo dạng tín hiệu.

 \Rightarrow Để tránh hiện tượng méo xuyên tâm, ta cần phân cực cho $R_{AB} = 2.4 \text{ V}$

$$\frac{R_{AB}}{R_{AB}+R_9+R_{11}} \cdot 28 = 2.4 \to \frac{R_{AB}}{R_{AB}+R_9+R_{11}} = \frac{3}{35}$$
$$\to R_{AB} = 93.75 \ \Omega$$

• Chọn giá trị điện trở theo bảng J1, ta có:

$$R_9=R_{11}=499\Omega$$

$$R_{AB} = 100 \Omega$$

- Đối với tụ C5 và C6:

Ta có

$$Z_{in3} = R_9 //R_{11} //Z_{v\grave{a}o\;trans}$$

$$m \grave{a} Z_{v \grave{a}o \ trans} = \frac{\beta}{g_{m4}} + (1+\beta). R_L = \frac{120}{4.4} + (1+120). 8 = 975,5\Omega$$

$$\rightarrow Z_{in3} = 325,3\Omega$$

Do đã tìm được ở phần 2.b, ta có $Z_{out2}=25\Omega$

$$\rightarrow f_{L5} = \frac{1}{2\pi \cdot (Z_{in3} + Z_{out2}) \cdot C_5} \le 20$$

$$\rightarrow C_5 \ge 22.7 \mu F$$

$$\rightarrow$$
Chọn $C_5 = C_6 = 100 \mu F$

b) Tính toán các thông số:

Điện áp cực đại trên R_{L} : $V_{RL} = \frac{V_{CC}}{2} = 14(V)$

Công suất nguồn cung cấp:

$$P_{CC} = 2.\frac{V_{CC}}{2}.\frac{I_{CP}}{\pi} = V_{CC}.\frac{V_{RL}}{\pi R_I} = 28.\frac{14}{\pi.8} = 15.6 (W)$$

Công suất tiêu thụ trên tải:

$$P_L = \frac{V_{OP}^2}{2R_I} = \frac{100.10^{-3}*68}{2*8} = 2.9 \ (W)$$

Hiệu suất cực đại của mạch : $\eta = \frac{P_L}{P_{CC}} = \frac{2.9}{15.6} = 20\%$

IV. Kết luận

+ Độ lợi áp toàn mạch: $G_v = A_{v1} * A_{v2} * A_{v3} * \frac{R_{in1}}{R_{in1} + R_{sig}} * \frac{R_{in2}}{R_{in2} + R_{out1}} * \frac{R_{in3}}{R_{in3} + R_{out2}}$ $= -10.9 * -16.2 * 1 * \frac{31.36}{31.36 + 62} * \frac{887}{887 + 0.25} \approx 6.8 \left(\frac{V}{V}\right)$

- + Công suất tải đạt được: $P_L = 2.9(W)$
- + Hiệu suất của mạch là: 20 %
- + Tần số hoạt động:

$$\Rightarrow$$
 Băng thông $BW = f_H - f_L = 18.19 - 0.133 = 18.06$

 \rightarrow *Kết luận:* Với các yêu cầu thiết kế thì nhóm 10 đã đạt với những yêu cầu như là chọn $v_{sig}=100mV$, tần số hoạt động của mạch trong khoảng tần số âm thanh, trở kháng ngõ vào $Z_{in} \geq 40k\Omega$ và điện áp DC cung cấp không quá 30V.

Tuy nhiên nhóm vẫn chưa cải thiện được công suất trên tải : $P_L \ge 10W$ mà công suất trên tải chỉ đạt 2.9W.

Nhóm cũng đã tìm rất nhiều cách để tăng độ khuếch đại áp lên để đạt công suất đúng yêu cầu nhưng vì mạch khuếch đại công suất chỉ có thể chịu tối đa điện áp ngõ vào là 7V, nên

khi tăng độ lợi áp thì làm cho sóng ngõ ra bị méo nên nhóm chưa tìm được cách để khắc phục điều này.

V. Mô phỏng kiếm chứng

1. Mạch khuếch đại công suất âm tần OTL:

- 2. Mạch khuếch đại CS:
- Điện áp ngô vào (màu xanh):

$$v_i = 100mV$$

• Điện áp ngõ ra (màu vàng):

$$v_o=1.15V$$

$$\rightarrow A_v = \frac{v_o}{v_i} = 11.5 \, \left(\frac{v}{v}\right)$$

$$\approx ~A_{v~l\circ thuy\acute{e}t} = 10.8 ~\left(\frac{v}{v}\right)$$

3. Mạch khuếch đại CE:

- Điện áp ngõ vào (màu xanh): $v_o = 100 mV$
- Điện áp ngõ ra (màu vàng): $v_o = 1.62V$

$$\rightarrow A_v = \frac{v_o}{v_i} = 16.2 \, \left(\frac{v}{v}\right)$$

$$= A_{v \mid \acute{y} \ thuy \acute{e}t} = 16.2 \left(\frac{v}{v}\right)$$

4. Công suất qua tải:

Công suất qua tải $P_L = 2.81 \text{W} \approx P_{L \, l \circ thuy \, \acute{e}t} = 2.9 W$

- 5. Đáp ứng tần số:
- Tần số cắt thấp: $f_H \approx 200Hz$

• Tần số cắt cao: $f_H \approx 20kHz$

6. THD của mạch:

Nhìn vào biểu đồ Fourier của áp ngõ ra với tần số sóng ngõ vào $f_{in}=1kHz$ ta thấy các giá trị tập trung vào tần số 1kHz nên có thể nói THD của mạch rất bé.

VI. TÀI LIỆU THAM KHẢO

- [1] Silde bài giảng thầy Đặng Nguyên Châu, thầy Nguyễn Phước Bảo Duy
- [2] Các dạng liên kết của BJT và FET (Mạch điện tử)

http://tamthien.byethost7.com/noi_dung/dien_tu/dtcb/dtcb_nc/ch_6/ch_6.htm

[3] Datasheet của Transistor BC547

 $\underline{https://www.alldatasheet.vn/datasheet-pdf/pdf/172126/ONSEMI/BC547A.html}$

[4] Datasheet của Transistor TIP41

 $\underline{https://www.alldatasheet.vn/datasheet-pdf/pdf/441675/ISC/TIP41.html}$

[5] Datasheet của Transistor TIP42

 $\underline{https://html.alldatasheet.vn/html-pdf/528295/THINKISEMI/TIP42/1202/2/TIP42.html}$

[6] Datasheet của Transistor 2N3819

https://www.mouser.com/datasheet/2/68/2n3819-31474.pdf

[7] Thiết kế mạch khuếch đại âm tần OTL

https://www.academia.edu/29892755/THI%E1%BA%BET_K%E1%BA%BE_M%E1%B
A%A0CH_KHU%E1%BA%BECH_%C4%90%E1%BA%A0I_C%C3%94NG_SU%E1
%BA%A4T %C3%82M T%E1%BA%A6N OTL

[8] Simple OTL Amplifier Circiut

https://320volt.com/en/basit-transistorlu-mono-amplifikator/