

Jumping Beans

Javaria Ghafoor, Ammar Ali Hakeem, Mehreen Shabbir, Sabah Ud Din Ahmad, Arsal Ahmed Khan, Zohran Ali Team Pakistan

October 1, 2020

Problem statement

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Standardized Experiments

Apparatus and Parameters Varied Diameter and Length

Dimensions for Extreme Times

Improvements

Appendix

Theoretical Model
Numerical Solutions
Initial
Time

A simple toy called a "jumping bean" can be constructed by putting a metal ball inside of a pill capsule. Placed on an inclined surface at a certain inclination, the jumping bean will tumble down in a rather surprising way, seemingly standing up-right, flipping end to end, instead of rolling. Investigate its motion. Find the dimensions of the fastest and slowest beans for a given inclination.

Our Interpretation

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Standardized Experiments

Apparatus and Parameters Varied Diameter and Length

Dimensions for Extreme Times

Improvements

Appendix

Theoretical Model
Numerical Solutions
Initial
Time

- Why the capsule topples instead of rolling?
- Explain the dynamics of the tumbling motion.
- For a given inclination, what are the dimensions for the fastest and slowest beans as observed experimentally?

Theoretical Model

Reference Formulas

Problem Statement

Theoretical Model

Reference Formulas

System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Simulation Results

Standardized Experiments

Apparatus and Parameters Diameter and Length

Dimensions for Extreme

Improvements

Appendix

Theoretical Model

Our Interpretation

Reye's hypothesis: Rayleigh's dissipation equation¹

$$\textit{G} = \textit{N} \left[\int_{\textit{S}_{1}} \frac{\textit{dA}}{\textit{v}^{\textit{r}}(\textit{x})} \right]^{-1} \int_{\textit{S}_{1}} \left[\frac{\textit{dA}}{\textit{v}^{\textit{r}}(\textit{x})} \int^{\textit{v}^{\textit{r}}(\textit{x})} \mu \textit{dv} \right], \textit{F} = -\nabla_{\textit{v}} \textit{G}$$

Modified Lagrangian: L' and Energy E':

$$L' = L + \int Gdt, \ E' = E - \int Gdt$$
$$\frac{d}{dt} \frac{\partial L'}{\partial \dot{a}_i} = \frac{\partial L'}{\partial a_i}$$

here G: dissipation function, v: velocity of object,

 v^r : velocity of object relative to surface, dA: area element on object,

μ: coefficient of dissipation (μ has been assumed to be independent of speed)

qi: generalized coordinate

¹E. Minguzzi. "Rayleigh's dissipation function at work". In:

Theoretical Model

Problem Statement

Our Interpretation

Theoretical

Model Beference Formulas

System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor Simulation Results

Standardized Experiments

Apparatus and Parameters Varied Diameter and Length

Dimensions for Extreme Times

Improvements

Appendix Theoretical Model Numerical Colution Initial Time

Why Topple instead of Roll:

- The capsule can roll downward, with the ball inside rolling downward as well.
- A slight shift of the ball from the center of the capsule will cause the tilted end of the capsule to come forward, and this would yield a topple, continuing it again and again.

The tumbling of the ball down an incline can be divided into two sub-systems.

- System 1
- System 2

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1

System 2

Numerical

Solutions Initialization of $\dot{\theta}_2$ and $\dot{\theta}_3$

Initialization of θ_2 and θ_3 and θ_4 and θ_4 and θ_5 and θ_6 and θ_7 and θ_8 a

Standardized Experiments

Apparatus and Parameters Varied Diameter and Length

Dimensions for Extreme Times

Improvements

Appendix

Theoretical Model
Numerical Solution
Initial
Time

$G_1 = \mu_1 mgR\dot{ heta}_1\coslpha$

Equation of motion:

$$\ddot{ heta_1} = rac{-mgR\left[\mu_1\coslpha - \sinlpha
ight]}{mR^2 + I_{ball}}$$

The total energy after subtracting the dissipated energy:

$$E_1' = E_1 - \mu_1 \operatorname{mg} R\theta_1 \cos \alpha$$
,

 \it{m}, \it{M} : mass of ball, capsule, $\it{I}_{\it{ball}}$: moment of inertia of ball,

L: total length of capsule,

R: radius of ball = of capsule

Figure: System 1

here.

 H_{\circ} : height of fall of capsule

 α : angle of inclination

 θ_1 : position coordinate of ball.

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1

System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor Simulation Results

Standardized Experiments

Apparatus and Parameters Varied Diameter and Length

Dimensions for Extreme Times

Improvements

Appendix

Theoretical Model
Numerical Solutions
Initial
Time

. . .

$$G_2 = \mu_2(m+M)gR\dot{\theta}_2\cos\alpha$$

$$\ddot{\theta_2} = P + Q\cos(\alpha + \theta_2)$$

$$Q = \frac{-Mg\left[\frac{1}{2}[L-2R]\right)\right]}{I_{sys} + (m+M)R^2}$$

Figure: System 2

$$P = rac{(m+M)gR\sinlpha - \mu_2(m+M)gR\coslpha}{I_{ extsf{sys}} + (m+M)R^2}$$

here, θ_2 : position coordinate of the rolling ball, toppling capsule I_{SVS} : moment of inertia of system 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions Initialization of $\dot{\theta}_2$ and $\dot{\theta}_3$

Fudge Factor Simulation Results

Standardized Experiments

Apparatus and Parameters Varied Diameter and Length

Improvements

Appendix

Theoretical Model
Numerical Solutions
Initial
Time

The obtained equations of motions $\ddot{\theta}_1$ and $\ddot{\theta}_2$ are solved numerically using **Euler method** to get the time taken to topple down a certain incline.

<u>Initialization of θ_2 :</u> The collision of the ball with the lower end of capsule is assumed to be totally elastic. This assumption restricts $\dot{\theta}_2$ to be such that at $\theta_2 = 0$ (the moment of transition from system 1 to 2), $E_2 = E'_1$.

$$\dot{\theta_2}^2 = \frac{\left[E_1' - (m+M)g\left[H_1 - R\sin\alpha\right] - Mg\left[\frac{1}{2}(L-2R)\sin\alpha\right]}{\left[\frac{1}{2}I_{sys} + \frac{1}{2}(m+M)R^2\right]}$$

Initialization of $\dot{\theta}_1$: In transition from system 2 to 1, $\dot{\theta}_1$ (of current system 1) = $\dot{\theta}_1$ (of previous system 1) Applying this assumption, the simulated t vs α plot is an asymptotic curve to the experimental data.

Fudge Factor

Our Interpretation

Theoretical Model

Reference Formula System 1 System 2

Numerical Solutions

Solutions
Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$

Fudge Factor

Simulation Results

Standardized Experiments

Apparatus and Parameters Varied

Diameter and Length Dimensions for Extreme Times

Improvements

Appendix

Fudge Factor:

- As the angle α increases the experimental curve converges to the theoretical curve.
- We introduce $f(\alpha) = 1/\sin \alpha$, a data fitting factor, in the dissipation equation.

The simulation now fits with the experimental results.

Simulation Results

1.5000

0.5000

11.2300

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Simulation Results

Standardized Experiments

Apparatus and Parameters Varied Diameter and Length

Dimensions for Extreme Times

Improvements

Appendix

Theoretical Model
Numerical Solution

Time

18.65550581 20.17957354 21.72083001 23.26781606 24.83199084 26.41908393 28.02909534 29.66775463 31.32933224

Apparatus and Parameters Varied

Problem Statement

Our Interpretation

Theoretical Model Reference Formulas

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor Simulation Results

Standardized Experiments

Apparatus and Parameters Varied

Diameter and Length Dimensions for Extreme Times

Improvements

Appendix

Theoretical Model
Numerical Solution
Initial
Time

Apparatus:

- Aluminium Foil
- Ball bearings of different radii
- Wooden Plank
- Two Stands

Parameters Varied:

- Diameter (4.8mm 9.5mm)
- Length (17mm 32.5mm)
- Inclination (5° 31°)

Diameter and Length

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_3$ Fudge Factor Simulation Results

Standardized Experiments

Apparatus and Parameters

Diameter and Length

Dimensions for Extreme

Improvements

Appendix Theoretical Model

Figure: Constant length with variable diameter

Figure: Constant diameter for variable length.

Non-linear trends of parameters

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Standardized Experiments

Apparatus and Parameters Varied Diameter and Length

Dimensions for Extreme

Improvements

Appendix

Theoretical Model
Numerical Solutions
Initial
Time

The variable parameters of the experiment are not mutually exclusive, and thus cannot be kept constant while changing a related quantity. e.g mass changes with length and diameter etc.

Extreme times at different inclinations

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Simulation Results Standardized Experiments

Apparatus and Parameters Varied

Diameter and Length

Dimensions for Extreme

Times

Improvements

Appendix

Theoretical Model
Numerical Colutions
Initiali
Time

		Time Taken to Topple Down Incline (sec)								
Angle	9 deg	11 deg	13 deg	15 deg	17 deg	19 deg	slowest			
SN1	3.954	2.921	2.333	1.888	1.499	1.355	fastest			
SN2	4.054	3.188	2.462	2.01	1.533	1.299				
SN3	-	3.654	2.732	2.032	1.71	- 9	Snipping Too			
M1	3.245	2.392	2.039	1.633	1.293	1				
M2	3.892	3.219	2.772	2.119	1.906	1.372				
L1	2.406	1.933	1.81	-	1.217	1.033				
L2	2.879	2.599	2.212	1.193	1.525	1.193				
L3	-	-	2.466	2.092	1.715	1.299				

Dimensions of Different Sets

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor Simulation Results

Standardized Experiments

Apparatus and Parameters Varied

Diameter and Length

Dimensions for Extreme

Improvements

Appendix

Times

Theoretical Model
Numerical Solutions
Initiali
Time

SN1		
Parameters	Values	Uncertainities
Length of Capsule / mm	16	0.05
Diameter of Capsule / mm	6	0.05
Diameter of Ball / mm	4.8	0.05
Mass of Cap + Ball / g	484	1
Mass of Ball/g	0.45	0.01
Mass of cap / mg	34	1

SN2		
Parameters	Values	Uncertainities
Length of Capsule/mm	18	0.05
Diameter of Capsule/mm	6.1	0.05
Diameter of Ball/mm	4.8	0.05
Mass of Cap + Ball/mg	486	1
Mass of Ball/g	0.45	0.01
Mass of cap / mg	36	1

SN3		
Parameters	Values	Uncertainities
Length of Capsule/mm	19.45	0.05
Diameter of Capsule/mm	6.1	0.05
Diameter of Ball/mm	4.8	0.05
Mass of Cap + Ball/mg	487	1
Mass of Ball/g	0.45	0.01

Mass of cap / mg

M1		
Parameters	Values	Uncertainities
Length of Capsule/mm	22	0.05
Diameter of Capsule/mm	8	0.05
Diameter of Ball/mm	6.4	0.05
Mass of Cap + Ball/mg	1138	1
Mass of Ball/g	1.05	0.01
Mass of can / mg	88	1

Team Pakistan	Jumping Beans

M2		
Parameters	Values	Uncertainities
Length of Capsule/mm	24	0.05
Diameter of Capsule/mm	8.25	0.05
Diameter of Ball/mm	6.4	0.05
Mass of Cap + Ball/mg	1149	1
Mass of Ball/g	1.05	0.01
Mass of cap / mg	99	1

L1		
Parameters	Values	Uncertainities
Length of Capsule/mm	19	0.05
Diameter of Capsule/mm	10.7	0.05
Diameter of Ball/mm	9.55	0.05
Mass of Cap + Ball/mg	3783	1
Mass of Ball/g	3.53	0.01
Mass of cap / mg	253	1

L2		
Parameters	Values	Uncertainities
Length of Capsule/mm	25	0.05
Diameter of Capsule/mm	10.7	0.05
Diameter of Ball/mm	9.55	0.05
Mass of Cap + Ball/mg	3827	1
Mass of Ball/g	3.53	0.01
Mass of cap / mg	297	1

L3		
Parameters	Values	Uncertainities
Length of Capsule/mm	32.55	0.05
Diameter of Capsule/mm	10.7	0.05
Diameter of Ball/mm	9.55	0.05
Mass of Cap + Ball/mg	3892	1
Mass of Ball/g	3.53	0.01
Mass of cap / mg	342	1

October 1, 2020 18/40

Numerical optimization

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Standardized Experiments

Apparatus and Parameters Varied

Diameter and Length

Dimensions for Extreme
Times

Improvements

Appendix

Theoretical Model
Numerical Solutions
Initial
Time

We can fix certain parameters in the simulation code and run it for a certain varying parameter, giving us a general trend for that parameter.

Numerical optimization

N-D optimization

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Standardized Experiments

Apparatus and Parameters Varied Diameter and Length

Improvements

Appendix

Times

Theoretical Model Numerical Solutions Initial Time

- We can follow the same approach as mentioned before, and optimize each variable parameter separately.
- We can combine the results to give us a complete optimization involving all parameters in N-dimensions.
- This way we can get the dimensions corresponding to extreme times.

Improvements

Improvements

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Standardized Experiments

Apparatus and Parameters Varied Diameter and Length

Improvements

Appendix

Theoretical Model
Numerical Solutions
Initial
Time

- A better fudge factor can be thought of by analysing the fraction of energy transferred in every fall of the capsule using high speed cameras.
- The consistency of aluminum could be improved as the surface structure of the aluminum capsule deformed over the course of the experiments due to repeated trials.

THANK YOU

Appendix

Reference Formulas

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Standardized Experiments

Apparatus and Parameters

Varied Diameter and Length

Dimensions for Extreme Times

Improvements

Appendix

Reye's hypothesis:

$$G = N \left[\int_{s_1} \frac{dA}{v^r(x)} \right]^{-1} \int_{s_1} \left[\frac{dA}{v^r(x)} \int^{v^r(x)} \mu dv \right]$$

which is the Rayleigh's dissipation equation such that dissipation force $F = -\nabla_{\nu} G$,

here

G: dissipation function

v: velocity of object,

 v^r : velocity of object relative to surface,

dA: area element on object,

 μ : coefficient of dissipation.

 μ has been assumed to be independent of speed

$$G_1 = \mu_1 mgR\dot{\theta}_1 \cos \alpha, \ G_2 = \mu_2 (m + M)gR\dot{\theta}_2 \cos \alpha$$

Reference Formulas

Problem Statement

Our Interpretation

Theoretical

Model
Reference Formulas
System 1
System 2

Numerical Solutions

Solutions Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Simulation Results Standardized Experiments

Apparatus and Parameters Varied

Diameter and Length Dimensions for Extreme Times

Improvements

Appendix

Theoretical Model
Numerical Stations
Initial
Time

Euler-Lagrange equations:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_{j}}+\frac{\partial G}{\partial \dot{q}_{j}}=\frac{\partial L}{\partial q_{j}}$$

Lagrangian:

$$L = T - U$$
, $E = T + U$

here.

T = Kinetic Energy, U = Potential Energy, E = Total Energy q_i = generalized coordinate, $\dot{q}_i = \frac{dq_i}{dt}$ = generalized velocity

Modified Lagrangian: L' and Energy E':

$$L' = L + \int Gdt, \ E' = E - \int Gdt$$

such that:

$$\frac{d}{dt}\frac{\partial L'}{\partial \dot{\mathbf{q}}_i} = \frac{\partial L'}{\partial \mathbf{q}_i}$$

Theoretical Model

Problem Statement

Our Interpretation
Theoretical

Model Reference Formulas

Reference Formul System 1 System 2

Numerical Solutions Initialization of $\dot{\theta}_2$ and $\dot{\theta}_3$

Initialization of θ_2 and θ Fudge Factor Simulation Results

Standardized Experiments

Apparatus and Parameters Varied Diameter and Length Dimensions for Extreme Times

Improvements

Appendix

Theoretical Model
Numerical Solutions
Initial
Time

The tumbling of the ball down an incline can be divided into two sub-systems.

- **System 1** is when the ball rolls from one end of the static capsule to the other end with a velocity $\dot{\theta}_1$.
- As soon as the ball collides with the capsule, assuming perfectly elastic collision and taking into account the energy loss due to the presence of friction between the ball and the capsule, there is seen a transition from system 1 to 2.
- **System 2**: The ball capsule system now moves with a velocity $\dot{\theta}_2$ and the capsule topples with the centre of toppling coincident with the centre of rolling of the ball.
- As soon as the capsule falls down, assuming that the capsule-ball system collision with the surface of incline is significantly inelastic, the capsule rests static and system 1 is re-achieved.

Problem Statement

Our Interpretation

Theoretical

Model
Reference Formulas
System 1
System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Simulation Results Standardized Experiments

Apparatus and Parameters Varied Diameter and Length

Diameter and Length

Dimensions for Extreme

Times

Improvements

Appendix

$G_1 = \mu_1 mgR\dot{\theta}_1 \cos \alpha$

$$T_{1} = rac{1}{2}I_{ball}\dot{ heta}_{1}^{2} + rac{1}{2}mR^{2}\dot{ heta_{1}}^{2}$$
 $I_{ball} = rac{2}{5}mR^{2}$

$$U_1 = mg[H_0 - R\sin\alpha]$$

$$-mgR\theta_1\sin\alpha$$

$$+Mg\left[H_0-\frac{L}{2}\sin\alpha\right]$$

m, *M*: mass of ball, capsule, *I*_{ball}: moment of inertia of ball,

L: total length of capsule,

R: radius of ball = of capsule

Figure: System 1

here,

 H_{\circ} : height of fall of capsule

 α : angle of inclination

 θ_1 : position coordinate of ball.

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Standardized Experiments

Apparatus and Parameters Varied

Diameter and Length Dimensions for Extreme Times

Improvements

Appendix

Theoretical Model
Numerical Solutions
Initial
Time

Using the Euler-Lagrange Equations, we get the equation of motion as follows:

$$\ddot{\theta_1} = \frac{-mgR\left[\mu_1\cos\alpha - \sin\alpha\right]}{mR^2 + I_{ball}}$$

The total energy after subtracting the dissipated energy (i.e. the modified energy) is:

$$E_1' = E_1 - \mu_1 \operatorname{mg} R\theta_1 \cos \alpha,$$

Problem Statement

Our Interpretatio

Theoretical

Model
Reference Formulas
System 1
System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Simulation Results Standardized Experiments

Apparatus and Parameters Varied

Diameter and Length
Dimensions for Extreme

Improvements

Appendix

$G_2 = \mu_2(m+M)gR\dot{\theta}_2\cos\alpha$

$$T_2 = \frac{1}{2}I_{sys}\dot{\theta}_2^2 + \frac{1}{2}(m+M)R^2\dot{\theta}_2^2$$

$$I_{\mathit{sys}} = I_{\mathit{ball}} + I_{\mathit{cap}}$$

$$I_{cap} = I_{lss} + I_{cyl} + I_{rss}$$

 I_{sys} : moment of inertia of system 2, I_{cap} : moment of inertia of the capsule.

 I_{lss} , I_{rss} : moment of inertia of the left, right semi sphere of the capsule.

I_{cyl}: moment of inertia of the cylindrical body of capsule (all about the centre of toppling)

Figure: System 2

here.

 $\theta_2 :$ position coordinate of the rolling ball, toppling capsule

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor Simulation Results

Standardized Experiments

Apparatus and Parameters

Diameter and Length Dimensions for Extreme

Improvements

Appendix Theoretical Model

$$I_{cyl} = \frac{1}{4}M_{cyl}R^2 + \frac{1}{3}M_{cyl}(L - 2R)^2, M_{cyl} = 2\pi R(L - 2R)\sigma_{cap}$$

$$=\frac{1}{4}N_{cyl}$$

$$I_{rss}=rac{1}{3}M_{rss}R^2,\ M_{rss}=2\pi R^2\sigma_{cap}$$

$$I_{lss} = \frac{1}{12} M_{lss} R^2 + M_{lss} (\frac{R}{2} + (L - 2R)^2, M_{lss} = 2\pi R^2 \sigma_{cap})$$

$$ss(\frac{n}{2}+(L-2R))$$

$$U_2 = mg \left[H_0 - R \sin \alpha - (L - 2R) \sin \alpha \right] - mgR\theta_2 \sin \alpha$$

$$\alpha = mg \mid H_0 - H \sin \alpha - (L - 2H)$$

$$+Mg\left[H_0-\frac{L}{2}\sin\alpha\right]+(m+M)gh-MgR\theta_2\sin\alpha$$

here.

 M_{lss} , M_{rss} : mass of the left, right semi sphere of the capsule,

 M_{cvl} : mass of the cylindrical body of capsule

 σ_{cap} : surface mass density of capsule

$$h = (d - b)\sin(\alpha + \theta_2)$$
: rising height of COM of capsule

Problem Statement

Our Interpretation

Theoretical

Model
Reference Formulas
System 1
System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Standardized Experiments

Apparatus and Parameters Varied Diameter and Length

Improvements

Appendix Theoretical Model

Numerical Solution Initialiant Time

Distance to the center of mass of the system:

$$d = \left[\frac{mR + \frac{ML}{2}}{m + M} - R\right]$$

$$=\frac{M\left[\frac{1}{2}[L-2R]\right]}{m+M}$$

Through geometry: (law of sines)

$$b = \frac{d \sin \alpha}{\sin(\alpha + \theta_2)}$$

$$\Rightarrow h = d(\sin(\alpha + \theta_2) - \sin \alpha)$$

Figure: Vertical change in height of COM of system

Problem Statement

Our Interpretation

Theoretical Model Reference Formulas

Reference Formula System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Standardized Experiments

Apparatus and Parameters Varied

Diameter and Length Dimensions for Extreme Times

Improvements

Appendix

$\Rightarrow U_2 = (m+M)g[H_0 - (L-2R)\sin\alpha - R\sin\alpha]$

$$-(m+M)gR\theta_2\sin\alpha+Mg\left[\frac{1}{2}[L-2R]\sin(\alpha+\theta_2)\right]$$

Therefore from the Euler-Lagrange Equations, the equation of motion is as follows:

$$\begin{split} \ddot{\theta_2} &= P + Q\cos(\alpha + \theta_2) \\ P &= \frac{(m+M)gR\sin\alpha - \mu_2(m+M)gR\cos\alpha}{I_{sys} + (m+M)R^2} \\ Q &= \frac{-Mg\left[\frac{1}{2}[L-2R]\right)\right]}{I_{sys} + (m+M)R^2} \end{split}$$

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Standardized Experiments

Apparatus and Parameters Varied Diameter and Length

Dimensions for Extreme Times

Improvements

Appendix

We assume totally elastic collision between the ball and the capsule in the transition from system 1 to 2, considering the energy lost due to friction between the ball and the capsule, $E_2 = T_2 + U_2$ must be set numerically equal to E'_1 at $\theta_2 = 0$ which gives:

$$\dot{\theta_2}^2 = \frac{\left[E_1' - (m+M)g\left[H_1 - R\sin\alpha\right] - Mg\left[\frac{1}{2}(L-2R)\sin\alpha\right]}{\left[\frac{1}{2}I_{sys} + \frac{1}{2}(m+M)R^2\right]}$$

Initialization of $\dot{\theta}_2$

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Standardized Experiments

Apparatus and Parameters Varied Diameter and Length

Diameter and Length
Dimensions for Extreme
Times

Improvements

Appendix

The obtained equations of motions $\hat{\theta}_1$ and $\hat{\theta}_2$ are solved numerically using **Euler method** to get the time taken to topple down a certain incline.

The first assumption we made is as follows:

Initialization of $\dot{\theta}_2$: The collision of the ball with the lower end of capsule is assumed to be totally elastic. This assumption restricts $\dot{\theta}_2$ to be such that at $\theta_2 = 0$ (the moment of transition from system 1 to 2), $E_2 = E_1'$.

Initialization of $\dot{\theta}_1$

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Standardized Experiments

Apparatus and Parameters Varied Diameter and Length Dimensions for Extreme

Improvements

Appendix

Initialization of $\dot{\theta}_1$: Note that

- \blacksquare $T_{1cap} = 0$ (at all times t)
- T_{1ball} (at moment of transition from system 1 to 2) = $T_{2cap} + T_{2ball}$ (T_{2cap} and T_{2ball} are time dependent)
- T_{2cap} (at moment of transition from system 2 to 1') = 0
- Thus, T_{2ball} (at moment of transition from system 2 to 1') = $T_{1/ball}$
- And hence, T_{1ball} (at moment of transition from system 1 to 2) = $T_{1'ball}$
- This implies $\dot{\theta}_{1'initial} = \dot{\theta}_{1final}$

Applying this assumption, the simulated t vs α plot is an asymptotic curve to the experimental data.

Time vs Angle Graph

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_3$ Fudge Factor Simulation Results

Standardized Experiments

Apparatus and Parameters Varied Diameter and Length Dimensions for Extreme

Improvements

152 mass of ball (mg)	454.1													
153 diameter of ball bearing (mm)	4.8													
154							CAPSULE	5						
155 mass of capsule (mg)	62.4													
56 length of capsule (mm)	12.6													
57														
158 Angle (degrees)	11.2300	12.7082	14.1750	15.6589	17.1543	18.6555	20.1796	21.7208	23.2678	24.832	26.4191	28.0291	29.6677	31.329
159 Capsule 5 Trial1 (sec)	1.9080	2.0970	1.4650	1.6640	1.2650	0.9320	0.8260	1.0320	0.8980	0.8320	0.8430	0.7990	0.8330	0.799
60 Capsule 5 Trial2 (sec)	2.3970	1.8970	1.8640	1.5980	1.5980	1.1650	1.1990	0.9320	0.9650	0.9320	0.8650	0.8990	0.7990	0.765
61 Capsule 5 Trial3 (sec)	3.4620	1.7310	2.4300	1.3650	1.2990	1.2980	1.1320	1.0660	1.0140	0.9320	0.8990	0.8990	0.8320	0.799
162 Capsule 5 Simulation, meu1,2 = 0 (sec)	1.1470	1.0790	1.0226	0.9739	0.9316	0.8945	0.8613	0.8315	0.8048	0.7805	0.7582	0.7378	0.7188	0.701
163 meu1 = 0.032, meu2 = 0.34, meu(alpha) = meu1	1.2534	1.1656	1.0948	1.0352	0.9844	0.9405	0.9017	0.8673	0.8367	0.8091	0.784	0.7611	0.74	0.720
64 meu1 = 0.032, meu2 = 0.34, meu(alpha) = meu1/sin(alpha)	2.7673	1.8147	1.4750	1.2930	1.1607	1.0684	0.9975	0.9406	0.8940	0.8544	0.8203	0.7903	0.7637	0.739
165 theta1_dot = 0, meu1,2 = 0.032, 0.34	13.3947	12.4603	11.7063	11.0710	10.5284	10.0600	9.6461	9.2787	8.9522	8.6578	8.3899	8.1451	7.9197	7.712
166 Angle (radians)	0.1960	0.2218	0.2474	0.2733	0.2004	0.3256	0.3522	0.3791	0.4061	0.4334	0.4611	0.4892	0.5178	0.5460

Team Pakistan Jumping Beans October 1, 2020 37/40

Fudge Factor

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor
Simulation Results

Standardized Experiments

Apparatus and Parameters Varied

Diameter and Length Dimensions for Extreme Times

Improvements

Appendix

Fudge Factor: From the graph it is evident from the relative time differences between the experimental times and the simulated times that the fraction of energy left in the system is dependent on the angle of inclination; as the angle α increases the experimental curve converges to the theoretical curve,

Thus we introduced an α dependent data fitting factor in the dissipation equation: $f(\alpha) = 1/\sin \alpha$.

The simulation now gives a best fit to our experimental results.

Algorithm

Problem Statement

Our Interpretatio

Theoretical

Model
Reference Formulas
System 1
System 2

Numerical Solutions

Initialization of $\dot{\theta}_2$ and $\dot{\theta}_1$ Fudge Factor

Standardized Experiments

Apparatus and Parameters Varied

Diameter and Length Dimensions for Extreme Times

Improvements

Appendix


```
Data: :
m, M, L, R, H_0, \alpha, \mu_1, \mu_2
initialization of I_{ball}, I_{sys}
pos_{ref} = length \ of incline surface, \ dt = 0.000001
while True do
     if pos_{ball} - pos_{ref} > = L - 2R then
          initialize E'_1
          initialize 02
          while 0 \le \theta_2 \le \pi do
               d\theta_2 = \theta_2
               \theta_2 + = \dot{\theta}_2 * dt
               d\theta_2 = \theta_2 - d\theta_2
               \dot{\theta}_2 + = \ddot{\theta}_2 * dt
               t+=dt
                pos_{ball} += R * d\theta_2
               if pos_{ball} > length of board then
                     break;
```

 $\theta_1 = 0$

Algorithm

Problem Statement

Our Interpretation

Theoretical Model

Reference Formulas System 1 System 2

Numerical Solutions

Initialization of $\dot{\theta}_a$ and $\dot{\theta}_b$ Fudge Factor

Simulation Results Standardized Experiments

Apparatus and Parameters

Diameter and Length Dimensions for Extreme

Improvements

Appendix

Theoretical Model


```
if completely inelastic collision assumed then
```

completely inelastic collision assumed the
$$\dot{\theta}_1 = 0$$

if significantly inelastic collision assumed then

 $\dot{\theta}_1$ is such that a significant fraction of energy gets dissipated and a certain fraction of energy left in the system decides what value $\dot{\theta}_1$ will take

$$H = H - (L - 2R)sin(\alpha) - \pi Rsin(\alpha)$$

$$pos_{ref} = pos_{ball}$$

break

 $\theta_1 = 0$

if posball > length of board then

$$\perp$$
 break
 $d\theta_1 = \theta_1$

$$\theta_1 + = \dot{\theta}_1 * dt$$

$$d\theta_1 = \theta_1 - d\theta_1$$

$$\dot{\theta}_1 + = \ddot{\theta_1} * dt$$

$$t + = dt$$

$$pos_{ball} + = R * d\theta_2$$

Result: time taken to topple down incline: t