

(19)

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: **09059292 A**

(43) Date of publication of application: **04.03.97**

(51) Int. Cl

C07H 19/06

(21) Application number: **07240927**

(71) Applicant: **YAMASA SHOYU CO LTD**

(22) Date of filing: **25.08.95**

(72) Inventor: **MORI TAKEYA**

(54) **PRODUCTION OF 4-AMINOPYRIMIDINE NUCLEOSIDE**

of the base part.

COPYRIGHT: (C)1997,JPO

(57) Abstract:

PROBLEM TO BE SOLVED: To easily obtain the subject compound under mild condition by protecting the hydroxyl group of the sugar part of a 4-hydroxypyrimidine nucleoside with $(\text{CH}_3)_3\text{Si}$ group, reacting with phosphorus oxychloride, etc., and reacting with ammonia water without separating the intermediate.

SOLUTION: The objective 4-aminopyrimidine nucleoside of formula II (e.g. cytidine) is easily produced under mild reaction condition by dissolving a 4-hydroxypyridine nucleoside expressed by formula I (R_1 is H, a lower alkyl or a halogen; R_2 to R_5 are each H or OH) (e.g. uridine) in a solvent such as pyridine, adding trimethylsilyl chloride to the solution, stirring for 1hr at room temperature to protect the hydroxyl group of the sugar part with trimethylsilyl group, adding phosphorus oxychloride or 4-chlorophenyl phosphorodichloridate, reacting for 4hr at room temperature, adding 25% ammonia water to the reaction product without isolating the obtained intermediate and reacting for 2hr at 50°C to effect the removal of the trimethylsilyl group and the amination of the 4-position

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-59292

(43)公開日 平成9年(1997)3月4日

(51)Int.Cl.⁶
C 0 7 H 19/06

識別記号

府内整理番号

F I
C 0 7 H 19/06

技術表示箇所

審査請求 未請求 請求項の数1 FD (全3頁)

(21)出願番号 特願平7-240927

(22)出願日 平成7年(1995)8月25日

(71)出願人 000006770

ヤマサ醤油株式会社

千葉県銚子市新生町2丁目10番地の1

(72)発明者 盛 健也

千葉県銚子市末広町1-12

(54)【発明の名称】 4-アミノピリミジンヌクレオシドの製造法

(57)【要約】

【課題】 4-アミノピリミジンヌクレオシドの簡便な製造法の提供を目的とする。

【解決手段】 式[I]で表される4-アミノピリミジンヌクレオシドの製造法であって、式[II]で表される4-ヒドロキシピリミジンヌクレオシドの糖部水酸基をトリメチルシリル基で保護した後、オキシ塩化リンまたは4-クロロフェニルホスホロジクロリデートと反応させ、得られた中間体を単離することなくアンモニア水と反応させてトリメチルシリル基の除去と塩基部4位のアミノ化を行い式[I]で表される4-アミノピリミジンヌクレオシドを得ることを特徴とする4-アミノピリミジンヌクレオシドの製造法に関する。

【化1】

【化2】

(式中、R₁は水素原子、低級アルキル基、ハロゲン原子を示し、R₂、R₃、R₄およびR₅は、同一であっても異なっていてもよく、水素原子または水酸基を示す。)

1

【特許請求の範囲】

【請求項1】 式 [I]

【化1】

[I]

(式中、R₁は水素原子、低級アルキル基、ハロゲン原子を示し、R₂、R₃、R₄およびR₅は、同一であっても異なっていてもよく、水素原子または水酸基を示す。)で表される4-アミノピリミジンヌクレオシドの製造法であって、式 [II]

【化2】

[II]

(式中、R₁、R₂、R₃、R₄およびR₅は前記と同意義。)で表される4-ヒドロキシピリミジンヌクレオシドの糖部水酸基をトリメチルシリル基で保護した後、オキシ塩化リンまたは4-クロロフェニルホスホジクロリデートと反応させ、得られた中間体を単離することなくアンモニア水と反応させてトリメチルシリル基の除去と塩基部4位のアミノ化を行い上記式 [I] で表される4-アミノピリミジンヌクレオシドを得ることを特徴とする4-アミノピリミジンヌクレオシドの製造法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、4-アミノピリミジンヌクレオシドのワンポットによる簡便な製造法に関するものである。

【0002】

【従来の技術】従来、4-アミノピリミジンヌクレオシドの代表的な製造法としては、4-ヒドロキシピリミジンヌクレオシドの糖部水酸基を適当な保護基で保護した後、塩基部4位に1-, 2-, 4-トリアゾール基または3-ニトロ-1-, 2-, 4-トリアゾール基に導入した後、アンモニア水で処理する方法 (J.Chem.Soc., Perkin Trans

2

51, 1982, p.1171-1176, J.Org.Chem., 1982, 47, p.3623-3628)、シリル基で水酸基を保護した後、塩基部4位にベンジルアミノ基を導入し、最後にベンジル基を脱離する方法 (日本葉学会第113年会講演要旨集、1993、p. 132) などが報告されている。

【0003】

【発明が解決しようとする課題】しかしながら、上記従来法はいずれも多くの工程を経て初めて目的とする4-アミノピリミジンヌクレオシドを取得するという方法であり、必ずしも簡単な方法とは言えなかった。したがって、本発明は、4-アミノピリミジンヌクレオシドの簡便な製造法の提供を目的とするものである。

【0004】

【課題を解決するための手段】本発明者らは、上述の目的を達成するために鋭意研究を重ねた結果、4-ヒドロキシピリミジンヌクレオシドから簡便な方法で4-アミノピリミジンヌクレオシドを合成できることを見いだし、本発明を完成させた。すなわち、本発明は、式 [I]

【0005】

【化3】

[I]

30

【0006】(式中、R₁は水素原子、低級アルキル基、ハロゲン原子を示し、R₂、R₃、R₄およびR₅は、同一であっても異なっていてもよく、水素原子または水酸基を示す。)で表される4-アミノピリミジンヌクレオシドの製造法であって、式 [II]

【0007】

【化4】

[II]

40

【0008】(式中、R₁、R₂、R₃、R₄およびR₅は前記と同意義。)で表される4-ヒドロキシピリミジン

50

ヌクレオシドの糖部水酸基をトリメチルシリル基で保護した後、オキシ塩化リンまたは4-クロロフェニルホスホロジクロリデートと反応させ、得られた中間体を単離することなくアンモニア水と反応させてトリメチルシリル基の除去と塩基部4位のアミノ化を行い上記式〔I〕で表される4-アミノピリミジンヌクレオシドを得ることを特徴とする4-アミノピリミジンヌクレオシドの製造法に関するものである。

【0009】

【発明の実施の形態】本発明方法における原料化合物は式〔I〕で表される4-ヒドロキシピリミジンヌクレオシドである。式中、R₁で表される低級アルキル基としては、メチル、エチル、プロピル、イソプロピルなどの炭素数1～5程度のアルキル基を、ハロゲン原子としてはフッ素、ヨウ素、臭素または塩素をそれぞれ例示することができる。このような原料化合物は公知化合物であり、市販品か、常法にしたがって調製したものと本発明方法に使用すればよい。

【0010】本発明方法は、まず原料化合物の水酸基をトリメチルシリル基で保護した後、続けてオキシ塩化リンまたは4-クロロフェニルホスホロジクロリデートと反応させる。トリメチルシリル基の導入は常法に従って行えばよい。たとえば、ピリジンまたはジメチルアミノピリジンの単独溶媒中、もしくはピリジンまたはジメチルアミノピリジンとジメチルホルムアミド、アセトニトリル、塩化メチレンなどとの混合溶媒中、原料化合物1モルに対してトリメチルシリルクロリドを1～10モル用い、室温で0.5～2時間程度攪拌反応させることにより実施できる。

【0011】トリメチルシリル化した原料化合物とオキシ塩化リンまたは4-クロロフェニルホスホロジクロリデートとの反応は、原料化合物1モルに対して1～5モルのオキシ塩化リンまたは4-クロロフェニルホスホロジクロリデートを使用し、0～50°Cで1～10時間程度攪拌反応させることにより実施することができる。

【0012】このようにして得られた中間体単離することなく、引き続きアンモニア水と反応させ、トリメチルシリル基を除去後またはトリメチルシリル基の除去と一緒に塩基部4位をアミノ化する。すなわち、反応液に原料化合物1モルに対して10～100モル相当のアンモニア水を添加し、0°C～70°Cで1～10時間程度攪拌することにより実施できる。

【0013】このようにして得られた目的化合物〔I〕は、ヌクレオシドの通常の単離精製法（たとえば、イオン交換カラムクロマトグラフィー、吸着カラムクロマトグラフィーなどの各種クロマトグラフィー法、再結晶法など）を適宜組み合せて単離精製することができる。

【0014】

【発明の効果】本発明方法は、従来の方法と比べて操作が簡便で、反応条件も穏和で、しかもワンポットで目的とする4-アミノピリミジンヌクレオシドを製造することができ、4-アミノピリミジンヌクレオシドの製造方法として極めて実用的な優れた方法である。

【0015】

【実施例】以下、本発明を実施例をあげて具体的に説明するが、本発明はこれらによって何等限定されるものではない。

実施例1：シチジン（式〔I〕、R₁ = R₂ = R₄ = H、R₃ = R₅ = OH）の合成ウリジン2.44gのピリジン50mL溶液にTMSクロリド5.1mLを加え室温で1時間攪拌した後、オキシ塩化リン2mLを加え、更に4時間室温で攪拌した。この反応液に冷水5mLを0°Cで加え30分攪拌した後、20mLの25%アンモニア水を加え、50°Cで2時間攪拌した。この反応液を減圧濃縮した後、イオン交換樹脂（PK216）で精製し、水-エタノールから結晶化させて目的化合物2.04g（83.9%）を得た。

【0016】実施例2：5-メチルシチジン（式〔I〕、R₁ = CH₃、R₂ = R₄ = H、R₃ = R₅ = OH）の合成

5-メチルウリジン25.8gのピリジン500mL溶液、TMSクロリド51mL、オキシ塩化リン20mL、冷水50mL、25%アンモニア水200mLを用い、実施例1と同様に処理して目的化合物19.04g（74.0%）を得た。

【0017】実施例3：5-プロモシチジン（式〔I〕、R₁ = Br、R₂ = R₄ = H、R₃ = R₅ = OH）の合成

5-プロモウリジン32.3gのピリジン500mL溶液、TMSクロリド51mL、オキシ塩化リン20mL、冷水50mL、25%アンモニア水200mLを用い、実施例1と同様に処理して目的化合物を合成できる。