Sistemas de Banco de Dados Projeto, implementação e gerenciamento

Capítulo 3

Modelo de banco de dados relacional

Objetivos

Neste capítulo, você aprenderá:

- Que o modelo de banco de dados relacional oferece uma visão lógica dos dados
- Sobre o componente básico do modelo relacional: as relações
- Que as relações são estruturas lógicas compostas de linhas (Tuplas) e colunas (atributos)
- Que as relações são implementadas como tabelas em um SGBD relacional

Objetivos (cont.)

- Sobre operadores relacionais de bancos de dados, o dicionário de dados e o catálogo do sistema
- Como a redundância de dados é tratada no modelo relacional
- Por que a indexação é importante

Uma Perspectiva Lógica dos Dados

- Modelo relacional
 - Permite que você visualize os dados de modo lógico em vez de físico
- Tabela
 - Independência estrutural e de dados
 - Se assemelha à de arquivos do ponto de vista conceitual
- O modelo relacional é muito mais fácil de compreender do que os modelos hierárquicos e em rede

Tabelas e suas Características

- A perspectiva lógica do banco de dados relacional é facilitada pela criação de relacionamentos de dados com base em uma estrutura lógica conhecida como relação
 - Pensar na relação como uma tabela
- Tabela: estrutura bidimensional composta de linhas e colunas
 - Representação permanente de uma relação lógica
- Uma tabela pode conter um grupo de ocorrências de entidades relacionadas

TABELA 3.1 Características das tabelas relacionais

1	A tabela é vista como uma estrutura bidimensional composta de linhas e colunas.						
2	Cada linha (Tupla) representa uma única ocorrência de entidade no interior do conjunto de entidades.						
3	Cada coluna de tabela representa um atributo e possui um nome diferente.						
4	Cada intersecção entre linha e coluna representa um único valor.						
5	Todos os valores em uma coluna devem se adequar a um mesmo formato.						
6	Cada coluna possui uma faixa específica de valores conhecida como domínio de atributos.						
7	A ordem das linhas e das colunas é insignificante para o SGBD.						
8	Cada tabela deve apresentar um atributo ou uma combinação de atributos que identifique exclusivamente cada linha.						

Valores dos atributos da tabela ALUNO

Nome do banco de dados: Ch03 TinyCollege

Nome da tabela: ALUNO

STU_NUM	STU_LNAME	STU_FNAME	STU_INIT	STU_DOB	STU_HRS	STU_CLASS
321452	Bowser	William	С	12-Feb-1975	42	So
324257	Smithson	Anne	K	15-Nov-1981	81	Jr
324258	Brewer	Juliette		23-Aug-1969	36	So
324269	Oblonski	Walter	Н	16-Sep-1976	66	Jr
324273	Smith	John	D	30-Dec-1958	102	Sr
324274	Katinga	Raphael	P	21-0ct-1979	114	Sr
324291	Robertson	Gerald	T	08-Apr-1973	120	Sr
324299	Smith	John	В	30-Nov-1986	15	Fr

TABELA DO ALUNO, Continução

STU_GPA	STU_TRANSFER	DEPT_CODE	STU_PHONE	PROF_NUM
2.84	No	BIOL	2134	205
3.27	Yes	CIS	2256	222
2.26	Yes	ACCT	2256	228
3.09	No	CIS	2114	222
2.11	Yes	ENGL	2231	199
3.15	No	ACCT	2267	228
3.87	No	EDU	2267	311
2.92	No	ACCT	2315	230

STU CLASS = Classificação do aluno

STU GPA = Média das notas

STU HRS = Créditos-hora obtidos

STU INI = Letra inicial do nome do meio do aluno

STU DOB = Data de nascimento do aluno STU PHONE = Extensão de quatro dígitos do telefone do campus STU_TRANSFER = Aluno que foi transferido de outra instituição

DEPT CODE = Código do departamento

PROF NUM = Número do professor que é o orientador do aluno

Chaves

- Cada linha de uma tabela seja identificável de modo exclusivo
- Uma chave consiste em um ou mais atributos que determinam outros atributos
- O papel da chave baseia-se em um conceito conhecido como determinação
 - Conhecer o valor do atributo A possibilita verificar o valor de B
- Dependência funcional:
 - O atributo B e funcionalmente dependente do atributo A se cada valor da coluna A determina um e somente um valor da coluna B

TABELA 3.2 Classificação de alunos

HORAS-AULA CONCLUÍDAS	CLASSIFICAÇÃO
Menos de 30	Calouro
30–59	Segundo anista
60–89	Terceiro anista
90 ou mais	Quarto anista

Chave composta

Uma chave com vários atributos

Atributo de chave

Qualquer atributo que faça parte de uma chave

Superchave

 Qualquer chave que identifique cada linha exclusivamente

Chave candidata

Uma superchave sem atributos desnecessários

Valor nulo:

- Um espaço sem nenhuma entrada de dados
- Nunca podem fazer parte de uma chave primária e devem ser evitados
- Podem representar:
 - Um valor de atributo desconhecido
 - Um valor de atributo conhecido, mas ausente
 - Uma condição "não aplicável"

Valor nulo:

- Podem criar problemas quando se utilizam funções como COUNT, AVERAGE e SUM
- Podem originar problemas lógicos ao se ligarem tabelas relacionais

- Redundância controlada:
 - Faz com que o banco de dados relacional funcione
 - As tabelas no banco de dados compartilham atributos comuns que permitem sua ligação
 - Ocorrências múltiplas de valores não não são redundantes, pois são necessárias para que o relacionamento funcione
 - A redundância de dados ocorre apenas quando há duplicação desnecessária de valores de atributos

Exemplo de um banco de dados relacional simples

Nome da tabela: PRODUTO Chave primária: PROD_CODE Chave estrangeira: VEND CODE Nome do banco de dados: Ch03_SaleCo

PROD_CODE	PROD_DESCRIPT	PROD_PRICE	PROD_ON_HAND	VEND_CODE
001278-AB	Claw hammer	12.95	23	232
123-21UUY	Houselite chain savv, 16-in. bar	189.99	4	235
QER-34256	Sledge hammer, 16-lb. head	18.63	6	231
SRE-657UG	Rat-tail file	2.99	15	232
ZZX/3245Q	Steel tape, 12-ft. length	6.79	8	235

ligação

Nome da tabela: FORNECEDOR Chave primária: VEND_CODE Chave estrangeira: nenhuma

VEND_CODE	VEND_CONTACT	VEND_AREACODE	VEND_PHONE
230	Shelly K. Smithson	608	555-1234
231	James Johnson	615	123-4536
232	Annelise Crystall	608	224-2134
233	Candice Wallace	904	342-6567
234	Arthur Jones	615	123-3324
235	Henry Ortozo	615	899-3425

- Chave estrangeira (FK do inglês Foreign Key)
 - É um atributo cujos valores correspondem aos da chave primária na tabela relacionada

Integridade referencial

 Quando a chave estrangeira contém um valor, esse valor se refere a uma Tupla (linha) válida existente em outra relação

Chave secundária

 Uma chave utilizada estritamente para fins de recuperação de dados

TABELA 3.3 Chaves de bancos de dados relacionais

TIPO DE CHAVE	DEFINIÇÃO
Superchave	Atributo (ou combinação de atributos) que identifica exclusivamente cada linha de uma tabela.
Chave candidata	Superchave mínima (irredutível). Superchave que não contém um subconjunto de atributos que seja, por si mesma, uma superchave.
Chave primária	Chave candidata selecionada para identificar exclusivamente todos os outros valores de atributos em uma determinada linha. Não pode conter entradas nulas.
Chave secundária	Atributo (ou combinação de atributos) utilizado estritamente para fins de recuperação de dados.
Chave estrangeira	Atributo (ou combinação de atributos) em uma tabela cujos valores devem coincidir com a chave primária de outra tabela ou devem ser nulos.

TABELA 3.4 Regras de integridade

INTEGRIDADE DE ENTIDADES	DESCRIÇÃO		
Exigência	Todas as entradas de chave primária são únicas e nenhuma parte dessa chave pode ser nula.		
Finalidade	Cada linha terá uma identidade exclusiva, e valores de chave estrangeira podem referenciar de modo adequado os valores de chave primária.		
Exemplo	Nenhuma fatura pode ter número duplicado nem ser nula. Em resumo, todas as faturas são identificadas de modo exclusivo por seu número.		
INTEGRIDADE REFERENCIAL	DESCRIÇÃO		
Exigência	Uma chave estrangeira pode ter uma entrada nula, contanto que não faça parte da chave primária de suas tabelas, ou uma entrada que coincida com o valor de chave primária de uma tabela que esteja relacionada (todo valor não nulo de chave estrangeira <i>deve</i> referenciar um valor de chave primária <i>existente</i>).		
Finalidade	É possível que um atributo NÃO tenha um valor correspondente, mas é impossível que tenha uma entrada inválida. A aplicação da regra de integridade referencial torna impossível a exclusão de uma linha em uma tabela cuja chave primária tenha valores obrigatórios de chave estrangeira em outra tabela.		
Exemplo	Um cliente pode ainda não ter recebido a atribuição de um representante de vendas (número), mas é impossível que tenha um representante de vendas inválido (número).		

Ilustração das regras de integridade

Nome da tabela: CLIENTE Chave primária: CUS_CODE Chave estrangeira: AGENT_CODE

CUS_CODE	CUS_LNAME	CUS_FNAME	CUS_INITIAL	CUS_AREACODE	CUS_PHONE	CUS_INSURE_TYPE	CUS_INSURE_AMT	CUS_RENEW_DATE	AGENT_CODE
10010	Ramas	Alfred	А	615	844-2573	T1	100.00	05-Apr-2008	502
10011	Dunne	Leona	K	713	894-1238	T1	250.00	16-Jun-2008	501
10012	Smith	Kathy	W	615	894-2285	S2	150.00	29-Jan-2009	502
10013	Olowski	Paul	F	615	894-2180	S1	300.00	14-Oct-2008	502
10014	Orlando	Myron		615	222-1672	T1	100.00	28-Dec-2008	501
10015	O'Brian	Amy	В	713	442-3381	T2	850.00	22-Sep-2008	503
10016	Brown	James	G	615	297-1228	S1	120.00	25-Mar-2009	502
10017	√Villiams	George		615	290-2556	S1	250.00	17-Jul-2008	503
10018	Farriss	Anne	G	713	382-7185	T2	100.00	03-Dec-2008	501
10019	Smith	Olette	K	615	297-3809	S2	500.00	14-Mar-2009	503

Nome da tabela: CORRETOR Chave primária: AGENT_CODE Chave estrangeira: nenhuma

AGENT_CODE	AGENT_AREACODE	AGENT_PHONE	AGENT_LNAME	AGENT_YTD_SLS
501	713	228-1249	Alby	132735.75
502	615	882-1244	Hahn	138967.35
503	615	123-5589	Okon	127093.45

Regras de Integridade

- Muitos SGBDRs aplicam as regras de integridade automaticamente
- É muito mais seguro certificar-se de que seu projeto de aplicações seja adequado às regras de integridade referencial e de entidades
- Projetistas utilizam códigos especiais (flags) para indicar a ausência de valor

TABELA 3.5 Valor variável simulado utilizado como flag

AGENT_CODE	AGENT_AREACODE	AGENT_PHONE	AGENT_LNAME	AGENT_YTD_SALES
-99	000	000-0000	Nenhum	\$0.00

Operadores do Conjunto Relacional

Álgebra relacional

- Define teoricamente a manipulação do conteúdo de tabelas utilizando oito operadores relacionais
- Utilização de operadores de álgebra relacional em tabelas existentes (relações) produz novas relações
 - UNION
 - INTERSECT
 - DIFFERENCE
 - PRODUCT
 - SELECT
 - PROJECT
 - JOIN

UNION

P_CODE	P_DESCRIPT	PRICE
123456	Flashlight	5.26
123457	Lamp	25.15
123458	Box Fan	10.99
213345	9v battery	1.92
254467	100VV bulb	1.47
311452	Powerdrill	34.99

UNION

P_CODE	P_DESCRIPT	PRICE
345678	Microwave	160.00
345679	Dishwasher	500.00

P_CODE	P_DESCRIPT	PRICE		
123456	Flashlight	5.26		
123457	Lamp	25.15		
123458	Box Fan	10.99		
213345	9v battery	1.92		
254467	100W bulb	1.47		
311452	Powerdrill	34.99		
345678	Microwave	160		
345679	Dishwasher	500		

PRODUCT

P_CODE	P_DESCRIPT	PRICE
123456	Flashlight	5.26
123457	Lamp	25.15
123458	Box Fan	10.99
213345	9v battery	1.92
254467	100VV bulb	1.47
311452	Powerdrill	34.99

resulta em

P_CODE	P_DESCRIPT	PRICE	STORE	AISLE	SHELF
123456	Flashlight	5.26	23	W	5
123456	Flashlight	5.26	24	K	9
123456	Flashlight	5.26	25	Z	6
123457	Lamp	25.15	23	W	5
123457	Lamp	25.15	24	K	9
123457	Lamp	25.15	25	Z	6
123458	Box Fan	10.99	23	W	5
123458	Box Fan	10.99	24	K	9
123458	Box Fan	10.99	25	Z	6
213345	9v battery	1.92	23	W	5
213345	9v battery	1.92	24	K	9
213345	9v battery	1.92	25	Z	6
311452	Powerdrill	34.99	23	W	5
311452	Powerdrill	34.99	24	K	9
311452	Powerdrill	34.99	25	Z	6
254467	100VV bulb	1.47	23	W	5
254467	100VV bulb	1.47	24	K	9
254467	100VV bulb	1.47	25	Z	6

Duas tabelas a serem utilizadas nas ilustrações sobre junção

Nome da tabela: CLIENTE

CUS_CODE	CUS_LNAME	CUS_ZIP	AGENT_CODE		
1132445	vValker	32145	231		
1217782	Adares	32145	125		
1312243	Rakowski	34129	167		
1321242	Rodriguez	37134	125		
1542311	Smithson	37134	421		
1657399	Vanloo	32145	231		

Nome da tabela: CORRETOR

AGENT_CODE	AGENT_PHONE			
125 6152439887				
167 6153426778				
231	6152431124			
333	9041234445			

Operadores do Conjunto Relacional (cont.)

Junção natural

 Liga tabelas selecionando apenas as linhas com valores comuns em seu(s) atributo(s) comum(ns)

Junção por igualdade (equijoin)

 Liga tabelas com base em uma condição de igualdade que compara colunas especificadas de cada tabela

Junção teta (theta join)

Qualquer outro operador de comparação for utilizado

Junção externa (outer join)

 Os pares com correspondência são mantidos e os valores em correspondência na outra tabela são deixados nulos

Junção externa à esquerda

CUS_CODE	CUS_LNAME	CUS_ZIP	AGENT_CODE	AGENT_PHONE
1217782	Adares	32145	125	6152439887
1321242	Rodriguez	37134	125	6152439887
1312243	Rakowski	34129	167	6153426778
1132445	Walker	32145	231	6152431124
1657399	Vanloo	32145	231	6152431124
1542311	Smithson	37134	421	

Junção externa à direita

CUS_CODE	CUS_LNAME	CUS_ZIP	AGENT_CODE	AGENT_PHONE
1217782	Adares	32145	125	6152439887
1321242	Rodriguez	37134	125	6152439887
1312243	Rakowski	34129	167	6153426778
1132445	Walker	32145	231	6152431124
1657399	Vanloo	32145	231	6152431124
			333	9041234445

Dicionário de Dados e Catálogo de Sistemas

Dicionário de dados

- Fornece uma descrição detalhada de todas as tabelas encontradas no banco de dados criado pelo usuário/projetista
- Contém todos os nomes e características de atributos de cada tabela no sistema
- Contém metadados dados sobre dados

Catálogo do sistema

- Contém metadados
- Dicionário detalhado de dados do sistema que descreve todos os objetos do banco

TABELA 3.6 Exemplo de dicionário de dados

NOME DA TABELA	NOME DO ATRIBUTO	CONTEÚDO	TIPO	FORMATO	FAIXA	NECESSÁRIO	PK OU FK	TABELA REFERENCIADA POR FK
CLIENTE	CUS_CODE	Código da conta do cliente	CHAR(5)	99999	10000-99999	S	PK	
	CUS_LNAME	Sobrenome do cliente	VARCHAR(20)	Xxxxxxxx		S		
	CUS_FNAME	Nome do cliente	VARCHAR(20)	Xxxxxxxx		S		
	CUS_INITIAL	Inicial do cliente	CHAR(1)	Х				
	CUS_RENEW_DATE	Data de renovação do seguro do cliente	DATA	dd-mmm-aaaa				
	AGENT_CODE	Código do corretor	CHAR(3)	999			FK	AGENT_CODE
CORRETOR	AGENT_CODE	Código do corretor	CHAR(3)	999		S	PK	
	AGENT_AREACODE	Código de área do corretor	CHAR(3)	999		S		
	AGENT_PHONE	Número de telefone do corretor	CHAR(8)	999-9999		S		
	AGENT_LNAME	Sobrenome do corretor	VARCHAR(20)	Xxxxxxxx		S		
	AGENT_YTD_SLS	Vendas acumuladas no ano do corretor	NUMBER(9,2)	9.999.999,99		S		

FK	= Chave estrangeira
PK	= Chave primária
CHAR	= Dados com quantidade fixa de caracteres (1.255 caracteres)
VARCHAR	= Dados com quantidade variável de caracteres (1-2.000 caracteres)
NUMBER	= Dados numéricos como (NUMBER(9,2)) são utilizados para especificar o números com duas casas decimais e até nove dígitos, incluindo-se as casas
	decimais. Alguns SGBDRs permitem a utilização de tipo de dados MONEY (dinheiro) ou CURRENCY (moeda).

Nota: Códigos de áreas de telefone são sempre compostos de dígitos 0-9. Como esses códigos não são utilizados aritmeticamente, podem ser armazenados de modo mais eficiente como dados de caracteres. Além disso, nos Estados Unidos, são sempre compostos de três dígitos. Portanto, o tipo de código de área é definido como CHAR(3). Por outro lado, os nomes não se adaptam a um tamanho padrão. Portanto, os primeiros nomes dos clientes são definidos como VARCHAR(20), indicando, assim, que até 20 caracteres podem ser utilizados para armazená-los. Os dados de caracteres são exibidos como justificados à esquerda.

Relacionamentos dentro do Banco de Dados Relacional

- O relacionamento 1:M
 - É o ideal da modelagem relacional
 - Deve ser a norma em qualquer projeto relacional
- O relacionamento 1:1
 - Deve ser raro em qualquer projeto de banco de dados relacional

Relacionamentos dentro do Banco de Dados Relacional (cont.)

- Os relacionamentos M:N
 - Não podem ser implantados dessa forma no modelo relacional
 - Pode ser alterado para dois relacionamentos
 1:M.

Relacionamento 1:M

- É a norma do banco de dados relacional
- É encontrado em qualquer ambiente de bancos de dados

FIGURA 3.19

Relacionamento 1:M implementado entre PINTOR e PINTURA

Nome da tabela: PINTOR

Chave primária: PAINTER_NUM

Chave estrangeira: nenhuma

Nome do banco de dados: Ch03_Museum

PAINTER_NUM	PAINTER_LNAME	PAINTER_FNAME	PAINTER_INITIAL
123	Ross	Georgette	P
126	Itero	Julio	G

Nome da tabela: PINTURA

Chave primária: PAINTING_NUM Chave estrangeira: PAINTER_NUM

PAINTING_NUM	PAINTING_TITLE	PAINTER_NUM
1338	Dawn Thunder	123
1339	Vanilla Roses To Nowhere	123
1340	Tired Flounders	126
1341	Hasty Exit	123
1342	Plastic Paradise	126

Relacionamento 1:1

- Uma entidade pode ser relacionada a apenas uma outra entidade e vice-versa
- Às vezes significa que os componentes de entidades não foram definidos adequadamente
- Pode indicar que duas entidades pertencem, na verdade, à mesma tabela
- Algumas condições certamente exigem sua utilização

Relacionamento M:N

- Podem ser implementados criando-se uma nova entidade no relacionamento 1:M das entidades originais
- Podem ser facilmente evitados, criando-se uma entidade composta
 - Inclui pelo menos as chaves primárias das tabelas que estão sendo ligadas

FIGURA 3.26

Conversão de um relacionamento M:N em dois relacionamentos 1:M

Nome da tabela: ALUNO Chave primária: STU_NUM Chave estrangeira: nenhuma

STU_NUM	STU_LNAME	
321452	Bowser	
324257	Smithson	

Nome da tabela: MATRÍCULA

Chave primária: CLASS_CODE + STU_NUM Chave estrangeira: CLASS_CODE, STU_NUM

CLASS_CODE	STU_NUM	ENROLL_GRADE
10014	321452	С
10014	324257	В
10018	321452	A
10018	324257	В
10021	321452	С
10021	324257	С

Nome da tabela: TURMA Chave primária: CLASS_CODE Chave estrangeira: CRS_CODE

CLASS_CODE	CRS_CODE	CLASS_SECTION	CLASS_TIME	CLASS_ROOM	PROF_NUM
10014	ACCT-211	3	TTh 2:30-3:45 p.m.	BUS252	342
10018	CIS-220	2	MVVF 9:00-9:50 a.m.	KLR211	114
10021	QM-261	1	MVVF 8:00-8:50 a.m.	KLR200	114

Nova Abordagem à Redundância de Dados

- Redundância de dados leva a anomalias
 - Essas anomalias podem acabar com a eficiência do banco de dados
- Chaves estrangeiras
 - Possibilita o controle das redundâncias, utilizando atributos comuns compartilhados por tabelas
 - É fundamental para o controle de redundância
- Às vezes a redundância de dados é necessária

Índices

 Disposição ordenada utilizada para acessar logicamente as linhas de uma tabela

Chave de índice

- Ponto de referência do índice
- Cada chave aponta para a localização dos dados identificados por ela

Índice único

- É um índice em que a chave de índice pode ter apenas um valor (linha) de ponteiro associado
- Cada índice está associado a apenas uma tabela

FIGURA 3.32

Componentes de um índice

Índice da Tabela de Pinturas Tabela de Pinturas PAINTING_NUM PAINTING_TITLE PAINTER_NUM 123 1, 2, 4 1338 Dawn Thunder 123 1339 Vanilla Roses To Nowhere 123 1340 Tired Flounders 126 126 3,5 123 1341 Hasty Exit 1342 Plastic Paradise 126 **PAINTER NUM** (chave de índice) Ponteiros para as linhas da tabela PINTURA

Regras de Codd para Bancos de Dados Relacionais

- Em 1985, Dr. E. F. Codd publicou uma lista de 12 regras que definem um sistema de banco de dados relacional
 - O motivo para que Dr. Codd publicasse essa lista era sua preocupação de que muitos fornecedores comercializassem seus produtos como relacionais, embora não atendessem aos padrões mínimos
- Mesmo os fornecedores dominantes de bancos de dados não dão suporte completo a todas as 12 regras

Resumo

- As tabelas são os blocos básicos de construção dos bancos de dados relacionais
- As chaves são centrais para a utilização de tabelas relacionais
- As chaves definem as dependências funcionais
 - Superchave
 - Chave candidata
 - Chave primária
 - Chave secundária
 - Chave estrangeira

Resumo (cont.)

- Cada linha deve ter uma chave primária que identifica de modo exclusivo todos os atributos
- O modelo relacional dá suporte a funções de álgebra relacional:
 - SELECT, PROJECT, JOIN, INTERSECT,
 UNION, DIFFERENCE, PRODUCT e DIVIDE
- Um bom projeto começa pela identificação das entidades adequadas, de seus atributos e dos relacionamentos entre as entidades
 - 1:1, 1:M, M:N