

# Programación Declarativa

# Ingeniería Informática Especialidad de Computación Cuarto curso. Primer cuatrimestre



# Escuela Politécnica Superior de Córdoba Universidad de Córdoba

Curso académico: 2023 - 2024

#### Práctica número 6.- Introducción al lenguaje Prolog

# • Observaciones:

- Se deben presentar en un mismo fichero los ejercicios indicados con (\*).
- Cada predicado debe tener un comentario de cabecera como el siguiente

```
factorial(N,R)
Predicado que comprueba si R es el factorial de N
Argumentos
+ N:
- Significado: número natural
- Tipo: entrada
+ R:
- Significado: número
- Tipo: entrada y salida
Variables locales
+ N1:
- Significado: número
+ R1:
- Significado: número
```

#### 1. Amantes

- Escribe un fichero denominado "amantes.pl" que contenga los siguientes hechos
  - o ama(juan,ana).
  - o ama(ana, miguel).
  - o ama(luis,isabel)
  - o ama(miguel,ana).
  - o ama(laura, juan).
  - o ama(isabel,luis).

donde el predicado ama(X, Y) indica que X ama aY.

- Escribe en **prolog** las siguientes preguntas
  - ¿A quién ama "Juan"?
  - ¿Quién ama a "Ana"?

- o ¿Quién ama a alguien?
- ¿Quién es amado por alguien?
- ¿Quiénes se aman mutuamente?
- ¿Quién ama sin ser correspondido?
- Añade al fichero amantes.pl una regla que permita describir a los "amantes", es decir, aquellas personas que se aman mutuamente.

#### 2. Familia

- Escribe un fichero denominado "familia.pl" que contenga los siguientes hechos:
  - hombre(antonio).
  - o hombre(juan).
  - o hombre(luis).
  - o hombre(rodrigo).
  - hombre(ricardo).
  - o mujer(isabel).
  - o mujer(ana).
  - o mujer(marta).
  - o mujer(carmen).
  - o mujer(laura).
  - o mujer(alicia).
- Define hechos en los que se afirmen los siguientes enunciados:
  - o Antonio y Ana son matrimonio
  - Juan y Carmen son matrimonio.
  - Luis e Isabel son matrimonio
  - o Rodrigo y Laura son matrimonio.
  - o Juan, Rodrigo y Marta son hijos de Antonio y Ana.
  - Carmen es hija de Luis e Isabel.
  - Esteban es hijo de Juan y Carmen.
  - Alicia es hija de Rodrigo y Laura.
- Define una regla que indique que el predicado "matrimonio" es reflexivo, es decir, si X e Y forma un matrimonio entonces Y y X también lo forman.
- Define reglas para obtener:
  - o los nietos de una persona
  - o los abuelos de una persona
  - o los hermanos de una persona
  - o los tíos de una persona
  - o las tías de una persona
  - o los primos de una persona
  - o las primas de una persona
  - o los suegros de una persona

# 3. (\*) Disposición de imágenes<sup>1</sup>



- Describe con hechos la disposición de las imágenes<sup>2</sup> en la figura.
  - Usa los predicados
    - *izquierdaDe*(imagen1, imagen2)
    - encimadeDe(imagen1, imagen2)
- Define nuevos predicados derechaDe y debajoDe a partir de los predicados izquierdaDe y encimadeDe.

### 4. (\*) Predicados y estructuras

- Escribe los siguientes hechos que utilizan la <u>estructura</u> nombre y el predicado lector:
  - o lector(nombre("Ana", "Garrido", "Aguirre"), mujer, 31).
  - o lector(nombre("Marta", "Cantero", "Lasa"), mujer, 20).
  - lector(nombre("Rodrigo", "Luna", "Soto"),hombre,30).
  - o lector(nombre("Marta", "Siles", "Parra"), mujer, 30).
  - o Etc.
- Escribe como comentarios de Prolog las siguientes preguntas:
  - o ;Hav lectores?
  - ¿Quiénes son lectores?
  - ¿Qué lectores son mujeres? y ¿hombres?
  - ¿Hay lectores con el mismo nombre?
- Escribe una regla para contar los lectores que edad predeterminada.
  - Nota: utiliza el predicado bagof y un predicado auxiliar para contar los elementos de una lista.

#### 5. (\*) Operaciones aritméticas.

- Escribe predicados que permitan calcular las siguientes operaciones aritméticas:
  - Suma de los números comprendidos entre dos dados.
     ? suma(1, 3, R).
     R = 6

3

<sup>&</sup>lt;sup>1</sup> Ejercicio adaptado del libro de Sterling E. y Shapiro E. "The Art of Prolog". Mit Press. 1994. Página 34.

<sup>&</sup>lt;sup>2</sup> Imágenes de uso libre tomadas de pixabay.

 Media aritmética de los números comprendidos entre dos dados.

```
? mediaAritmética(1, 3, R).
R = 2
```

# 6. (\*) Operaciones con listas

- Codifica el predicado **doblar\_lista**(L,R) que permita duplicar cada elemento de la lista L.
  - Por ejemplo?- doblar\_lista([],R).R = [].
    - ?- doblar\_lista([a,b,c],R). R = [a, a, b, b, c, c].
- Codifica el predicado **eliminaRepetidos**(L,R) que elimine todos los elementos repetidos de una lista simple.
  - Por ejemplo
     eliminarRepetidos ([a,a,b,a,c,d,c,e,e,b],R).
     R = [a,b,c,d,e].
- Codifica un predicado denominado, **invertir**, para invertir todos los elementos de una lista que puede contener **sublistas**:
  - Por ejemplo
    ?- invertir([1,2,3,4,5],R).
    R = [5, 4, 3, 2, 1].
    - ?- invertir([1,[2,3],[4,5]],R). R = [[5, 4], [3, 2], 1].
  - Observación: codifica los siguientes predicados auxiliares
    - es\_lista(X): comprueba si X es una lista
    - concatenar(L1,L2,L): L es el resultado de concatenar L1 y L2.

# 7. (\*) Soluciones múltiples

- Utiliza el predicado localidad(Nombre, Provincia, Habitantes) para definir hechos asociados a las siguientes localidades
  - Localidades de la provincia de Córdoba
    - Aguilar de la frontera: 13.500 habitantes
    - Espiel: 2.400 habitantes
    - Montoro: 9.200 habitantes
  - Localidades de la provincia de Sevilla
    - Brenes: 12.700 habitantes
    - Lora del río:18.700 habitantes
    - Marchena: 19.400 habitantes
- Define el predicado contarLocalidadesProvincia(Provincia,N)
  para contar las localidades de una provincia
  - o Por ejemplo
    - ?- contarLocalidadesProvincia ("Sevilla",N) N = 3.

- Define el predicado **sumarHabitantesProvincia(Provincia,N)** para sume los habitantes de las localidades de una provincia
  - Por ejemplo
     sumarHabitantesProvincia("Sevilla",N)
     N = 3.
- Observación:
  - Utiliza el predicado bagof, setof o findall.
  - Define dos predicados auxiliares para contar o sumar los elementos de una lista.

# 8. (\*) Método de ordenación Mergesort

- Codifica un predicado, denominado separar, que reciba como parámetro una lista de números y los reparta en dos listas, dependiendo de que ocupen un "lugar o posición" par o impar.
  - Ejemplos
     separar([]) → [[],[]]
     separar([2]) → [[2],[]]
     separar([3,2]) → [[3],[2]]
     separar([1,2,3]) → [[1,3],[2]]
     separar([4,1,2,3]) → [[4,2],[1,3]]
- Codifica un predicado, denominada unir, que reciba como parámetros dos listas ordenadas de números y devuelva otra lista con los números ordenados:
  - Ejemplos
     unir([],[]) → []
     unir([1],[]) → [1]
     unir([],[1]) → [1]
     unir([1],[2]) → [2]
     unir([1,3],[2]) → [1,2,3]
     unir([1,3],[2,4,5]) → [1,2,3,4,5]
- Codifica un predicado que permita ordenar una lista de números utilizando el método *mergesort*.

  - Pasos
    - Lista original: 5 4 1 3 2
    - División
      - ✓ Primera: 512;43;
        ✓ Segunda: 52;1;;4;3;;
        ✓ Tercera: 5;2;;1;;4;3;;
    - Fusión:
      - ✓ Primera: 25;1;;34;
        ✓ Segunda: 125;34;
        ✓ Tercera: 12345
  - Observación
    - Utiliza los predicados auxiliares separar y unir de los ejercicios anteriores.

# 9. (\*) Donantes de sangre

- Declara los hechos relativos a una base de datos de donantes que contiene la siguiente información:
  - donante(persona(juan,campos,ruiz),a,positivo).
  - donante(persona(ana,lara,silva),ab,negativo).
  - o donante(persona(luis,luna,pachecho),ab,negativo).
  - o Nota: *persona* es una <u>estructura</u>.
- Escribe los hechos y las reglas que permitan comprobar si una persona puede donar sangre a otra teniendo en cuenta el grupo sanguíneo y el factor RH.
  - o 0 -: donante universal.
  - o 0 +: donante universal de los grupos positivos.
  - A -: puede donar a los grupos A y AB positivos y negativos.
  - A +: puede donar a los grupos A y AB positivos.
  - B -: puede donar a los grupos B y AB positivos y negativos.
  - o B +: puede donar a los grupos B y AB positivos
  - o AB -: puede donar a los grupos AB positivos y negativos
  - AB +: solamente puede donar a sí mismo.
- Define reglas para el predicado contar\_por\_grupo\_y\_factor que permita contar todos los donantes de un grupo sanguíneo y factor rh específicos.
  - Por ejemplo:
    - ?- contar\_por\_grupo\_y\_factor (ab,negativo,N). N = 2
  - Nota: utilizar el predicado bagof y un predicado auxiliar para contar los elementos de una lista.
- Escribe una regla que permita hacer las siguientes acciones consecutivas
  - 1. Pedir por pantalla un grupo sanguíneo y un factor rh,
  - 2. Pedir por pantalla el nombre de un fichero,
  - 3. Y escribir en dicho fichero los nombres de todos los donantes que tengan el grupo sanguíneo y el factor rh indicados.
- 10. (\*) Un **árbol binario ordenado** es representado por una lista de la forma: [raíz, hijo izquierdo, hijo derecho] donde raíz es un átomo e hijo izquierdo e hijo derecho son árboles binarios.
  - Define predicados para:
    - Escribir los elementos del árbol en orden prefijo, sufijo e infijo.
    - Determinar la profundidad del árbol.
    - o Comprobar si un elemento está en el árbol.
    - o Determinar el número de nodos del árbol.
    - Determinar el número de hojas del árbol.
      - Un nodo es una hoja si sus hijos izquierdo y derecho son árboles vacíos.

• ¿Cómo se pueden redirigir las salidas de los predicados anteriores hacia un fichero de escritura?

# 11. (\*) Números primos

- Define el predicado **crear\_primos(N, L)** para crear una lista compuesta por los números primos menores o iguales que el número N.
- Por ejemplo:

?- crear\_primos(10, L). L = [2,3,5,7]

• Nota: utiliza el predicado **primo(N)** explicado en el tema 9.

# 12. (\*) Ficheros y números primos

• Escribe un programa que lea los números contenidos en un fichero y que escriba los números **primos** en otro fichero.