Reg. No										
---------	--	--	--	--	--	--	--	--	--	--

B.Tech DEGREE EXAMINATION, NOVEMBER 2023

Seventh Semester

18MEE451J - MICROELECTRONICS THERMAL MANAGEMENT

(For the candidates admitted during the academic year 2020 - 2021 & 2021 - 2022)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

ii. Part - B and Part - C should be answered in answer booklet.

	e: 3 Hours		Max. N	Aarke	100
THIIL	J Hours		IVIAA. IV	Tai Ks.	. 100
	$PART - A (20 \times 1 = Answer all Que$		Mark	s BL	CO
1.	following steps, with the trends more than (A) 1990—Ultra-large-scale integration (ULSI)		i	1	1
2.		a medium is proportional to the product of	1	1	1
3.	are heat transfer equations, in by forced convection (A) Single-phase forced convection (liquid) (C) Two-phase forced convection	nitially, heat transfer in a liquid takes place (B) Onset of sub cooled nucleate boiling (D) Critical heat flux	1	1	1
4.	proportional to the roughness and inversel	ntact resistance at the interface is directly y proportional to the asperity slope (B) Mechanical properties of solids (D) Apparent contact pressure	1	1	1
5.	MCM-C: Ceramic substrate (alumina) with (A) Moderate cost (C) Very inexpensive	h thick film has (B) Most expensive (D) Low cost	1	1	2
6.	The important thermal design consideration (A) Die material (C) High-thermal conductivity materials	ons in a chip package are as spreading in. (B) Cracks (D) Good match in coefficient of thermal expansion between materials	1	1	2
7.	The coefficient of thermal expansion (CT) quite different in (A) Thermal expansion matching (C) Mechanical rigidity	E) of the chip, substrate, and board may be(B) Thermal management(D) Dimensional stability	1	1	2
8.	Thermal conductivity of basic PCB materi (A) 0.25 W/(m·°C)		1	1	2

9.	For an array of equal-height modules, the I can be represented as	Nusselt number for fully developed flow	1	1	3
	(A) Heat transfer correlations(C) Heat transfer enhancement	(B) Pressure drop correlations(D) Fans and air-handling systems			
10.	receive air at their axis periphery in a direction normal to the rotation (A) Centrifugal fans (C) Propeller fans	s of rotation and exhaust air at their on axis. (B) Axial fans (D) Tube axial fans	1	1	3
11.	The ratio of heat transfer by convection to the heat transfer by conduction within a fluid (When the fluid is considered stationary) is called as (A) Nusselt number (B) Rayleigh number (C) Prandtl number (D) Grashof number				3
12.	is used to transfer thermal energy (A) Heat exchanger (C) Heat sink	gy from one fluid to another. (B) Cold plate (D) Heat pipe	1	1	3
13.	the colder fluid can never reach the exit tem	ne direction and the final temperature of perature of the hot fluid. (B) Counter flow heat exchanger (D) Spiral flow heat exchanger	1	1	4
14.	A self-contained closed system that tracondensation through wicks is termed as (A) Heat exchanger (C) Heat sink	(B) Cold plate (D) Heat pipe	1	1	4
15.	For a circular disk, the characteristic length (A) The length of the side of the square	"L" for a square plate is taken as (B) The arithmetic mean of the lengths of two sides	1	1	4
	(C) 0.9 × disk diameter	(D) The surface area to P the perimeter			
16.	common flow arrangement in compact heat		1	1	4
	(A) Parallel-flow heat exchanger(C) Cross-flow heat exchanger	(B) Counter flow heat exchanger(D) Spiral flow heat exchanger			
17.	increases heat input to the the rate of evaporation without any signification. (A) High heat transfer capacity. (C) Functional independence of evaporator and condenser.	(B) Precise isothermal control	1	1	5
18.	Since there are no moving parts, the heat plong-life operation. (A) Remote applications (C) Small size and lightweight	(B) High reliability (D) Big size and lightweight	1	_ 1	5
19.	Large and smooth wall channels reduce the liquid returns from the evaporator to the cor (A) Pumping power (C) Radial thermal path		1	1	5
20.	A high latent heat and are do amount of heat with the minimum mass flow (A) Latent heat (C) Surface tension	esirable in order to transfer the maximum v rate. (B) Thermal conductivity (D) Viscosity	1	1	5

24NF7-18MEE45

	PART - B (5 × 4 = 20 Marks) Answer any 5 Questions	Mark	s BL	со
21.	Explain cooling methods used in the industrial electronics.	4	2	1
22.	Discuss about board-cooling methods.	4	3	2
23.	Differentiate heat exchangers and cold plates.	4	3	3
24.	Explain operating temperatures of electronic systems.	4	3	4 ·
25.	Explain the practical design procedure of electronic cooling systems.	4	3	5
26.	Explain cooling methods used in the industry for electronics.	4	3.	4
27.	Explain condensation in electronic cooling.	4	3	5
	PART - C ($5 \times 12 = 60$ Marks) Answer all Questions	Mark	s BL	CO
28.	(a) Explain the high heat flux flow boiling of refrigerants and water for electronic cooling. (OR)	12	3	1
	(b) Explain pool boiling enhancement of three-dimensional complex structures.			
29.	(a) Explain die attachment, wire bonding, and encapsulation process in LED packaging. (OR)	12	3	2
	(b) Explain thermal aspects of printed circuit board embedded power semiconductors.			
30.	components.	12	3	3
	(OR)			
	(b) Discuss experimental investigation of flat porous heat pipe for cooling TV box electronic chips.			
31.	thermal ground plane.	12	3	4
	(OR) (b) Explain applications and developments of ultra-thin micro heat pipes for electronic cooling.			
32.	thermoelectric materials.	. 12	3	5
	(b) Explain the visualization of a flat confined loop heat pipe for electronic devices cooling.			

* * * * *