T320 - Introdução ao Aprendizado de Máquina II: *Classificação (Parte V)*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Recapitulando

- Anteriormente, vimos como lidar com problemas de classificação que envolvem mais de duas classes, também chamados de problemas de classificação multi-classes através das abordagens:
 - Um-Contra-Resto
 - Um-Contra-Um
 - Regressão Softmax
- Nesta aula, veremos as *métricas* mais utilizadas para medir o *desempenho de classificadores*.

- As métricas para avalição do desempenho de classificadores que estudaremos são:
 - Taxa de erro e acurácia
 - Matriz de confusão
 - O Várias métricas podem ser extraídas da matriz.
 - Pontuação-F (*F-score*)
 - Curva Característica Operacional do Receptor (do inglês, Receiver Operating Characteristic - ROC)

Taxa de erro e acurácia

- A taxa de erro, é a métrica mais direta para se avaliar o desempenho de um classificador.
- Ela corresponde à *porcentagem de exemplos classificados incorretamente* considerando o conjunto de dados disponíveis para *validação*.
- A *taxa de erro* é dada por

$$p_e(\hat{y}(\textbf{\textit{x}})) = \frac{1}{N} \sum_{i=0}^{N-1} \left(1 - \delta(y(i), \hat{y}(\textbf{\textit{x}}(i)))\right),$$
 onde $\delta(i,j) = \begin{cases} 0, \text{se } i \neq j \\ 1, \text{se } i = j \end{cases}$ é o **delta de Kronecker**, $y(i)$ é o valor esperado e $\hat{y}(\textbf{\textit{x}}(i))$ é a saída do classificador. Observe que $p_e(\hat{y}(\textbf{\textit{x}})) \in [0,1]$.

• O complemento da **taxa de erro** é conhecido como **acurácia**, e é definido por $acc(\hat{y}(x)) = 1 - p_e(\hat{y}(x))$.

Matriz de Confusão

- O nome, *matriz de confusão*, deriva do fato de que ela torna fácil verificar se o classificador está se *confundindo* (ou seja, *rotulando incorretamente* os exemplos).
- A $\it matriz de \it confusão$ contabiliza o número de classificações corretas e incorretas para cada uma das $\it Q$ classes existentes.

• A matriz de confusão, $C \in \mathbb{R}^{Q \times Q}$, é definida como pertencentes à classe 1. Quantidade de exemplos realmente pertencentes à classe 1. $C = \begin{bmatrix} C_{11} & C_{12} & C_{2Q} \\ \vdots & \ddots & \vdots \\ C_{Q1} & C_{Q2} & \cdots & C_{QQ} \end{bmatrix}$ • Exemplos classificados como pertencentes à classe 1. • C_{11} indica quantos exemplos da classe 1. • C_{12} indica quantos exemplos da classe 2 foram atribuídos à classe 1.

- A diagonal de C fornece o número de classificações corretas.
- A q-ésima **linha** indica o total de exemplos que foram classificados como pertencentes a q-ésima classe.
- A q-ésima **coluna** indica o total de exemplos realmente pertencentes à q-ésima classe.
- A informação apresentada na matriz permite verificar quais classes o classificador tem maior dificuldade em classificar.

Matriz de Confusão

Exemplo para Q=2.

Classes	+ C ₂	Verdadeiro Positivo (TP)	Falso Positivo (FP)	
Estimadas	-	Falso	Verdadeiro	
	C_1	Negativo (FN)	Negativo (TN)	
		+	-	
		\mathcal{C}_2	C_1	
		Classes Verdadeiras		

- *Verdadeiro Positivo* (TP): número de exemplos da classe positiva, \mathcal{C}_2 , classificados corretamente.
- *Verdadeiro Negativo* (TN): número de exemplos da classe negativa, \mathcal{C}_1 , classificados corretamente.
- *Falso Positivo* (FP): número de exemplos classificados como positivos, mas que, na verdade, pertencem à classe negativa.
- *Falso Negativo* (FN): número de exemplos atribuídos à classe negativa, mas que, na verdade, pertencem à classe positiva.
- > IMPORTANTE: Algumas definições que vamos precisar a seguir:
 - N_+ define o número de exemplos pertencentes à classe positiva = TP + FN (coluna de C_2).
 - N_{-} define o número de exemplos pertencentes à classe negativa = FP + TN (coluna de C_{1}).
 - N define o número total de exemplos = TP + FN + FP + TN.

Matriz de Confusão

Nós podemos calcular diversas métricas de desempenho a partir das informações contidas na *matriz de confusão*:

• *Taxa de falso negativo*: é a proporção de exemplos da classe positiva classificados incorretamente.

Taxa de falso negativo =
$$p_e^+(\hat{y}(x)) = \frac{FN}{TP+FN} = \frac{FN}{N_+}$$
.

 Taxa de falso positivo: é a proporção de exemplos da classe negativa classificados incorretamente.

Taxa de falso positivo =
$$p_e^-(\hat{y}(x)) = \frac{FP}{TN+FP} = \frac{FP}{N_-}$$
.

Taxa de erro:

$$p_e(\hat{y}(x)) = \frac{\text{FP} + \text{FN}}{\text{N}}.$$

• Acurácia:

$$acc(\hat{y}(x)) = \frac{TP+TN}{N}.$$

- A acurácia é, geralmente, nossa primeira escolha para mensurar a qualidade de um classificador.
- Entretanto, para problemas desbalanceados (i.e., uma classe possui muito mais exemplos do que outra) ela pode nos enganar e levar a concluir que um classificador é muito bom.
- Analisando a equação abaixo, o que aconteceria se TP fosse muito maior do que TN, FN e FP?

$$\lim_{TP\to\infty} \left\{ \operatorname{acc}(\hat{y}(\boldsymbol{x})) \right\} = \lim_{TP\to\infty} \left(\frac{TP + TN}{TP + TN + FN + FP} \right) = \frac{TP}{TP} = 1.$$

• Portanto, quando temos classes desbalanceadas, precisamos analisar outras métricas.

Matriz de Confusão

 Precisão: é a proporção de exemplos da classe positiva corretamente classificados (TP) em relação a todos os exemplos atribuídos à classe positiva (TP+FP).

$$\operatorname{precisão}(\hat{y}(x)) = \frac{\operatorname{TP}}{\operatorname{TP} + \operatorname{FP}}.$$

 $\begin{bmatrix} TP & FP \\ FN & TN \end{bmatrix}$

 Sensibilidade (ou recall): também conhecida como taxa de verdadeiros positivos. É a proporção de exemplos da classe positiva corretamente classificados.

$$\operatorname{recall}(\hat{y}(\boldsymbol{x})) = \frac{\operatorname{TP}}{\operatorname{TP} + \operatorname{FN}} = 1 - p_e^+(\hat{y}(\boldsymbol{x})).$$

• Especificidade: também conhecida como taxa de verdadeiros negativos. É a proporção de exemplos da classe negativa corretamente classificados.

especificidade
$$(\hat{y}(x)) = \frac{TN}{TN + FP} = 1 - p_e^-(\hat{y}(x)).$$
 $\begin{bmatrix} TP & FP \\ FN & TN \end{bmatrix}$

Observações importantes quanto à matriz de confusão

- É possível estender as métricas obtidas com a *matriz de confusão* para o cenário multi-classes (i.e., Q > 2):
 - Para isto, basta selecionar, uma vez, cada classe C_q , q=1,...,Q como sendo a classe positiva, enquanto todas as demais classes formam a classe negativa. Assim, obtém-se os valores das métricas para cada uma das Q classes.
- Veja o exemplo abaixo para Q=3, ou seja, \mathcal{C}_1 , \mathcal{C}_2 e \mathcal{C}_3 .

Classe C_1 é a positiva.

Classe C_2 é a positiva.

Classe C_3 é a positiva.

	+ (C ₁)	Verdadeiro Positivo (TP)	Falso Positivo (FP)	Falso Positivo (FP)
Classes Estimadas	- (C ₂)	Falso Negativo (FN)	Verdadeiro Negativo (TN)	Verdadeiro Negativo (TN)
	- (C ₃)	Falso Negativo (FN)	Verdadeiro Negativo (TN)	Verdadeiro Negativo (TN)
		+ (C ₁)	- (C ₂)	- (C ₃)
		Classes Verdadeiras		

Classes Estimadas	- (<i>C</i> ₁)	Verdadeiro Negativo (TN)	Falso Negativo (FN)	Verdadeiro Negativo (TN)
	+ (C ₂)	Falso Positivo (FP)	Verdadeiro Positivo (TP)	Falso Positivo (FP)
	- (C ₃)	Verdadeiro Negativo (TN)	Falso Negativo (FN)	Verdadeiro Negativo (TN)
		- (C ₁)	+ (C ₂)	- (C ₃)
		Classes Verdadeiras		

Classes Estimadas	- (<i>C</i> ₁)	Verdadeiro Negativo (TN)	Verdadeiro Negativo (TN)	Falso Negativo (FN)
	- (C ₂)	Verdadeiro Negativo (TN)	Verdadeiro Negativo (TN)	Falso Negativo (FN)
	+ (C ₃)	Falso Positivo (FP)	Falso Positivo (FP)	Verdadeiro Positivo (TP)
		- (C ₁)	- (C ₂)	+ (C ₃)
		Classes Verdadeiras		

Observações importantes quanto à matriz de confusão

• *Precisão* diz o quão exato é o modelo em relação a *todos os exemplos classificados como positivos*, ou seja, quantos deles são realmente positivos.

$$\frac{\text{True Positive}}{\text{True Positive} + \text{False Positive}}$$

- A *precisão* é uma boa medida para determinar a qualidade do classificador quando os custos de *falsos positivos* são altos.
 - Por exemplo, na classificação de spams (verdadeiro positivo), um falso positivo significa que um ham (verdadeiro negativo) foi classificado como spam. O usuário de email pode perder emails importantes se a precisão for baixa.
- **Recall** calcula quantos exemplos realmente positivos o classificador captura em relação a todos exemplos positivos.

$$\mathbf{Recall} = \frac{\mathbf{True\ Positive}}{\mathbf{True\ Positive} + \mathbf{False\ Negative}}$$

- O *recall* é uma boa medida para determinar a qualidade de um classificador quando houver um alto custo associado a *falsos negativos*.
 - Por exemplo, na classificação de doenças, se um paciente doente (verdadeiro positivo) for classificado como não doente (falso negativo). O custo associado ao falso negativo será extremamente alto se a doença for contagiosa.

- Uma *precisão* = 1 significa que todo exemplo classificado como pertencente à classe *positiva*, realmente pertence à ela, ou seja, o número de *falsos positivos* é igual a 0.
 - Entretanto, essa métrica não dá informações a respeito de quantos exemplos desta classe foram classificados de forma incorreta, ou seja, quantidade de falsos negativos.
- Por outro lado, um *recall* = 1 indica que todos os exemplos da classe positiva foram classificados como sendo pertencentes a ela, ou seja, o número de *falsos negativos* é igual a 0.
 - Porém, essa métrica não traz informações a respeito de quantos exemplos da classe negativa foram classificados como sendo pertencentes à classe positiva, ou seja, a quantidade de falsos positivos.
- Portanto, para analisarmos melhor o desempenho de um classificador, precisamos usar uma métrica que combine as duas.

Pontuação-F

- As métricas de *precisão* e *recall* são analisadas conjuntamente através de uma métrica que combina ambas métricas, chamada de *pontuação-F* (ou *F-score*).
- Ela realiza uma $\emph{m\'edia harm\^onica ponderada}$ dada pela equaçao \emph{F}_m abaixo:

$$F_m = \frac{(m+1) \times \operatorname{recall}(\hat{y}(x)) \times \operatorname{precisão}(\hat{y}(x))}{\operatorname{recall}(\hat{y}(x)) + m \times \operatorname{precisão}(\hat{y}(x))},$$

onde m é o *fator de ponderação*.

• Quando m=1, a mesma importância é dada para a **precisão** e para o **recall**:

$$F_{1} = 2 \frac{\operatorname{recall}(\hat{y}(\boldsymbol{x})) \times \operatorname{precisão}(\hat{y}(\boldsymbol{x}))}{\operatorname{recall}(\hat{y}(\boldsymbol{x})) + \operatorname{precisão}(\hat{y}(\boldsymbol{x}))} = \frac{\operatorname{TP}}{\operatorname{TP} + \frac{\operatorname{FN} + \operatorname{FP}}{2}}.$$

• Valores de F_1 próximos de 1 indicam que o *classificador* obteve bons resultados tanto de *precisão* quanto de *recall*.

Curva Característica de Operação do Receptor (Curva ROC)

- Gráfico que mostra a performance de um classificador binário conforme seu limiar de discriminação, T, é variado.
- A curva é criada plotando-se o recall em função da taxa de falsos positivos para vários valores de limiar de discriminação, T.
- Quanto mais à esquerda e para cima estiver a curva ROC de um classificador, melhor será o seu desempenho.
- A linha em vermelho, está associada a um classificador puramente aleatório. Um bom classificador fica o mais longe possível dessa linha (em direção ao canto superior esquerdo).
- Um *classificador perfeito* para T=0.5 apresenta um **ponto** no canto superior esquerdo da curva ROC, representando 100% de *recall* (ou seja, sem falsos negativos) e 100% de *especificidade* (ou seja, sem falsos positivos).

Curva Característica de Operação do Receptor

• A forma usual de se comparar *classificadores* consiste em criar uma *curva ROC* para cada um deles.

• Em geral, *classificadores* apresentam em sua saída uma probabilidade para cada exemplo de entrada.

• Normalmente, estas probabilidades são, então, discretizadas para que se tenha a decisão final: por exemplo, se o valor de $h_a(x(i))$ ultrapassa um determinado *limiar*, T, ele é mapeado no valor 1 (classe positiva, C_2); caso contrário, ele é mapeado no valor 0 (classe negativa, C_1).

 Sendo assim, ao plotarmos a taxa de verdadeiro positivo (ou recall) versus a taxa de falso positivo para diferentes valores de limiar, T, obtemos a curva ROC associada a um classificador.

Curva Característica de Operação do Receptor

- Por exemplo, considere as curvas ROC na figura ao lado. Para decidir qual o melhor classificador, podemos tomar como base a área sob a curva (ASC) ROC.
- **ASC** é outra métrica da qualidade de um classificador. É um número entre 0 e 1. Quanto maior a **ASC**, melhor será o classificador.
- Neste exemplo, o classificador A tem melhor desempenho, pois tem área sob a curva ROC maior do que a do classificador B.

Vantagens da curva ROC

- Possibilita a análise de diferentes métricas de desempenho independente do *limiar de quantização* escolhido.
- Auxilia o estudo de diferentes limiares para lidar com problemas de desbalanceamento nos dados (i.e., nos quais as classes possuem tamanhos discrepantes).

Desvantagens

- Apropriada para problemas de *classificação binária*.
- No caso *multi-classes*, devemos utilizar as estratégias *um-contra-o-resto* ou *um-contra-um* e plotar várias *curvas ROC*.

Exemplo: classification metrics.ipynb

Tarefas

- Quiz: "T320 Quiz Classificação (Parte V)" que se encontra no MS Teams.
- Exercício Prático: Laboratório #5.
 - Pode ser baixado do MS Teams ou do GitHub.
 - Pode ser respondido através do link acima (na nuvem) ou localmente.
 - Instruções para resolução e entrega dos laboratórios.
 - Atividades podem ser feitas em grupo, mas as entregas devem ser individuais.

Obrigado!

Actual Values

