Root locus, Bode- and Nyquist plots, relative stability

Kjartan Halvorsen, September 2019

Draw a root locus for PI-control of the reservoir

Frequency response primer: The product of two complex numbers

- At time k=2, the discrete-time complex exponential signal $u(k)=\mathrm{e}^{i\frac{\pi}{12}k}$ has the value $u(2)=\mathrm{e}^{i\frac{\pi}{6}}$.
- A pulse-transfer function H(z) is a mapping from the complex plane to the complex plane, that is $H: \mathbb{C} \to \mathbb{C}$. Consider a specific pulse-transfer function H(z) that when evaluated at $z = e^{i\frac{\pi}{12}}$ has the value $H(e^{i\frac{\pi}{12}}) = 2e^{-i\frac{\pi}{3}}$.

Determine the magnitude, the argument and the imaginary part of the product $H(e^{i\frac{\pi}{12}})u(2)$. Then mark the first few values of the sequence $H(e^{i\frac{\pi}{12}})u(k)$.

Bode plot and Nyquist plots

Sketch the Nyquist plot corresponding to the Bode plot! Then mark the phase margin and amplitude margins!

