

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Facultad de Ingeniería

Ingeniería en Ciencias de la Computación

INVESTIGACIÓN DE OPERACIONES 1 M2 - 3.9 Actividad: Detalles del cálculo del algoritmo Simplex

Trabajo de: ADRIAN ALEJANDRO GONZÁLEZ DOMÍNGUEZ [359834]

Asesora: OLANDA PRIETO ORDAZ

Considere el siguiente modelo PL

$$MaxZ = 2x_1 + x_2 - 3x_3 + 5x_4$$

$$x_1 + 2x_2 + 2x_3 + 4x_4 \le 40$$

$$2x_1 - x_2 + x_3 + 2x_4 \le 8$$

$$4x_1 - 2x_2 + x_3 - x_4 \le 10$$

$$x_1,x_2,x_3,x_4\geq 0$$

Obtenga la solución óptima de acuerdo al algoritmo Simplex, tome como referencia el ejemplo de la lectura.

Definición de ecuaciones

$$Z - 2x_1 - x_2 + 3x_3 - 5x_4 + 0s_1 + 0s_2 + 0s_3 = 0$$

$$x_1 + 2x_2 + 2x_3 + 4x_4 + s_1 = 40$$

$$2x_1 - x_2 + x_3 + 2x_4 + s_2 = 8$$

$$4x_1 - 2x_2 + x_3 - x_4 + s_3 = 10$$

m = numero de ecuaciones

n = numero de variables

Para calcular la cantidad de puntos de esquina

$$C_m^n = \frac{n!}{m(n-m)!}$$

$$m = 3, n = 7$$

$$C_m^n = \frac{7!}{3(7-3)!} = 70$$

Identificar variables básicas (V_B) y variables no básicas (V_{NB})

Para el punto A sabemos que $(x_1,x_2,x_3,x_4)=(0,0,0,0)$, indicando que estás son nuestras V_{NB} y s_1,s_2,s_3 son nuestras V_B

V_B	Z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	Solución
Z	1	-2	-1	3	-5	0	0	0	0

V_B	Z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	Solución
s_1	0	1	2	2	4	1	0	0	40
s_2	0	2	-1	1	2	0	1	0	8
s_3	0	4	-2	1	-1	0	0	1	10

Primera iteración

Seleccionar variable de entrada (V_E)

¿Qué variable de mi función Z afecta más a mi modelo?

El modelo busca maximizar, para obtener la ecuación de Z, pasamos la función al lado izquierdo, por esto la variable que afecta más es la más negativa.

$$V_E = x_4$$

Variables básicas	Columna V_E	Columna Solución	Relación mínima	Válida
s_1	4	40	$\frac{40}{4} = 10$	Sí
s_2	2	8	$\frac{8}{2}=4$	Sí
s_3	-1	10	$\frac{10}{-1} = -10$	No

 s_2 es nuestra variable pivote (V_P)

Actualizar la fila de la variable pivote (V_P)

Consideraremos que M es nuestra matriz de las variables básicas.

Todos los valores en la fila V_P , es decir, todos los valores M_{V_P} , j los dividiremos entre el valor ubicado en la intersección de la fila V_P y la columna V_E :

$$M_{V_P}, j = rac{M_{V_P, j}}{M_{V_P, V_E}}$$

En este caso el valor de M_{V_P,V_E} es 2.

Sustituímos V_P por V_E en la columna V_B . Es decir s_2 por s_4 , esto indica que nuestra fila pivote s_4 ahora se llamá s_4

V_B	Z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	Solución
x_4	0	$\frac{2}{2}=1$	$\frac{-1}{2}$	$\frac{1}{2}$	$\frac{2}{2}=1$	0	$\frac{1}{2}$	0	$\frac{8}{2}=4$
V_B	Z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	Solución
Z	1	-2	-1	3	-5	0	0	0	0

V_B	Z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	Solución
s_1	0	1	2	2	4	1	0	0	40
x_4	0	1	$\frac{-1}{2}$	$\frac{1}{2}$	1	0	$\frac{1}{2}$	0	4
s_3	0	4	-2	1	-1	0	0	1	10

Actualizar las demás filas respecto a la fila pivote

Para todas las filas M_i :

$$M_i = M_i - M_{i,V_E} \cdot M_{V_P}$$

Actualizar Z

V_B	Z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	Solución
Z	1	-2	-1	3	-5	0	0	0	0
x_4	0	1	$\frac{-1}{2}$	$\frac{1}{2}$	1	0	$\frac{1}{2}$	0	4
$-5x_4$	0	-5	$\frac{5}{2}$	$\frac{-5}{2}$	-5	0	$\frac{-5}{2}$	0	-20
$Z=Z-(-5x_4)$	1	3	$\frac{-7}{2}$	$\frac{11}{2}$	0	0	$\frac{5}{2}$	0	20

Actualizar s_1

V_B	Z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	Solución
s_1	0	1	2	2	4	1	0	0	40
x_4	0	1	$\frac{-1}{2}$	$\frac{1}{2}$	1	0	$\frac{1}{2}$	0	4
$4x_4$	0	4	-2	2	4	0	2	0	16
$s_1=s_1-4x_4$	0	-3	4	0	0	1	-2	0	24

Actualizar s_3

V_B	Z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	Solución
s_3	0	4	-2	1	-1	0	0	1	10
x_4	0	1	$\frac{-1}{2}$	$\frac{1}{2}$	1	0	$\frac{1}{2}$	0	4
$-1x_4$	0	-1	$\frac{1}{2}$	$\frac{-1}{2}$	-1	0	$\frac{-1}{2}$	0	-4
$s_3 = s_3 - (-1x_4)$	0	5	$\frac{-5}{2}$	$\frac{3}{2}$	0	0	$\frac{1}{2}$	1	14

Actualizar tabla con las filas actualizadas

V_B	Z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	Solución
Z	1	3	$\frac{-7}{2}$	11/2	0	0	$\frac{5}{2}$	0	20
s_1	0	-3	4	0	0	1	-2	0	24
x_4	0	1	$\frac{-1}{2}$	$\frac{1}{2}$	1	0	$\frac{1}{2}$	0	4
s_3	0	5	$\frac{-5}{2}$	$\frac{3}{2}$	0	0	$\frac{1}{2}$	1	14

Esté PE es B.

Segunda iteración

Seleccionar variable de entrada (V_E)

$$V_E=x_2$$

Variables básicas	Columna V_E	Columna Solución	Relación mínima	Válida
s_1	4	24	$\frac{24}{4} = 6$	Sí
x_4	$\frac{-1}{2}$	4	$\frac{4}{\frac{-1}{2}} = -8$	No
s_3	$\frac{-5}{2}$	14	$\frac{14}{\frac{-5}{2}} = \frac{-28}{5}$	No

 s_1 es nuestra variable pivote (V_P)

Actualizar la fila de la variable pivote (V_P)

$$M_{V_P,V_E}=4$$
.

$$M_{V_P}, j = rac{M_{V_P,j}}{M_{V_P,V_E}}$$

$$s_1 o x_2$$

V_B	Z	x_1	x_2	x_3	x_4	s_1	s_2		s_3	Solu	ción
x_2	0	$\frac{-3}{4}$	$\frac{-4}{-4} = 1$	1 0	0	$\frac{1}{4}$	$\frac{-2}{4}$ =	$=\frac{-1}{2}$	0	$\frac{24}{4} =$	= 6
V_B	Z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	Solu	ción	
Z	1	3	$\frac{-7}{2}$	$\frac{11}{2}$	0	0	$\frac{5}{2}$	0	20		
x_2	0	$\frac{-3}{4}$	1	0	0	$\frac{1}{4}$	$\frac{-1}{2}$	0	6		
x_4	0	1	$\frac{-1}{2}$	$\frac{1}{2}$	1	0	$\frac{1}{2}$	0	4		
s_3	0	5	$\frac{-5}{2}$	$\frac{3}{2}$	0	0	$\frac{1}{2}$	1	14		

Actualizar las demás filas respecto a la fila pivote

Para todas las filas M_i :

$$M_i = M_i - M_{i,V_E} \cdot M_{V_P}$$

Actualizar Z

V_B	Z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	Solución
Z	1	3	$\frac{-7}{2}$	$\frac{11}{2}$	0	0	$\frac{5}{2}$	0	20
x_2	0	$\frac{-3}{4}$	1	0	0	$\frac{1}{4}$	$\frac{-1}{2}$	0	6
$rac{-7}{2}x_2$	0	<u>21</u> 8	$\frac{-7}{2}$	0	0	$\frac{-7}{8}$	$\frac{7}{4}$	0	-21
$Z=Z-(rac{-7}{2}x_2)$	1	$\frac{3}{8}$	0	11/2	0	7/8	$\frac{3}{4}$	0	41

Actualizar x_4

V_B	Z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	Solución
x_4	0	1	$\frac{-1}{2}$	$\frac{1}{2}$	1	0	$\frac{1}{2}$	0	4
x_2	0	$\frac{-3}{4}$	1	0	0	$\frac{1}{4}$	$\frac{-1}{2}$	0	6
$rac{-1}{2}x_2$	0	$\frac{3}{8}$	$\frac{-1}{2}$	0	0	$\frac{-1}{8}$	$\frac{1}{4}$	0	-3
$x_4=x_4-(rac{-1}{2}x_2)$	0	<u>5</u> 8	0	$\frac{1}{2}$	1	1/8	$\frac{1}{4}$	0	7

Actualizar s_3

V_B	Z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	Solución
s_3	0	5	$\frac{-5}{2}$	$\frac{3}{2}$	0	0	$\frac{1}{2}$	1	14
x_2	0	$\frac{-3}{4}$	1	0	0	$\frac{1}{4}$	$\frac{-1}{2}$	0	6
$rac{-5}{2}x_2$	0	<u>15</u> 8	$\frac{-5}{2}$	0	0	$\frac{-5}{8}$	$\frac{5}{4}$	0	-15
$s_3=s_3-(rac{-5}{2}x_2)$	0	$\frac{25}{8}$	0	$\frac{3}{2}$	0	$\frac{5}{8}$	$\frac{-3}{4}$	1	29

Actualizar tabla con las filas actualizadas

V_B	Z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	Solución
Z	1	$\frac{3}{8}$	0	$\frac{11}{2}$	0	7/8	$\frac{3}{4}$	0	41
x_2	0	$\frac{-3}{4}$	1	0	0	$\frac{1}{4}$	$\frac{-1}{2}$	0	6
x_4	0	<u>5</u> 8	0	$\frac{1}{2}$	1	1/8	$\frac{1}{4}$	0	7
s_3	0	$\frac{25}{8}$	0	$\frac{3}{2}$	0	$\frac{5}{8}$	$\frac{-3}{4}$	1	29

Tercera iteración

Seleccionar variable de entrada (V_E)

Como la función ${\it Z}$ ya no tiene variables negativas, significa que estás ya no tendrán impacto en nuestro modelo, por lo cual encontramos nuestro el punto óptimo.

Este PE es C, y Z en el punto C vale 41, el máximo valor posible para Z dadas las restricciones..