#### Минимальная логика. Отрицание, конъюнкция, дизъюнкция

А.Н. Непейвода *2023 г*.

#### Возникновение понятия типа

Изначально возник в трудах Б.Рассела, который заметил, что в наивной теории множеств существует парадокс:

#### Парадокс Рассела

$$\Omega = \{A \mid A \notin A\} \Rightarrow (\Omega \in \Omega \Leftrightarrow \Omega \notin \Omega)$$

Понятие типа ограничивает возможные операции над его сущностями  $\Rightarrow$  исключает парадоксы (неверное поведение программ).



## Определение типа

Система типов — гибко управляемый синтаксический метод доказательства отсутствия в программе определенных видов поведения при помощи классификации выражений языка по разновидностям вычисляемых ими значений. Б.Пирс

В λ-исчислении типы — синтаксические конструкции, приписываемые термам по определенным правилам:

 $M : \sigma$ 



## Свойства типизации

- Статические vs динамические
- Явные vs неявные
- Сильные vs слабые

Сильные статические типы в функциональном языке ограничивают его синтаксические конструкции, но позволяют строить программы, которые уже частично верифицированы с помощью проверки типов.



#### Простые типы λ-исчисления

#### Определение

Множество типов  $\mathbb{T}$  в  $\lambda_{\rightarrow}$  определяется индуктивно.

- Переменные типа ( $\alpha$ ,  $\beta$ ,  $\gamma$  etc) принадлежат  $\mathbb{T}$ .
- Если  $\sigma \in \mathbb{T}$ ,  $\phi \in \mathbb{T}$ , то  $(\sigma \to \phi) \in \mathbb{T}$ .

Стрелка  $\to$  правоассоциативна:  $\sigma_1 \to \sigma_2 \to \dots \sigma_n$  — сокращение для  $\sigma_1 \to (\sigma_2 \to (\dots \sigma_n) \dots))$ . В силу наличия частичных вычислений тип  $\sigma_1 \to \sigma_2 \dots \to \sigma_n$  можно понимать как тип функции с n-1 аргументами типов  $\sigma_1, \dots, \sigma_{n-1}$  и типом результата  $\sigma_n$ ; а можно как тип функции с одним аргументом  $\sigma_1$  и типом результата — функцией с типом  $\sigma_2 \to \dots \to \sigma_n$  (а также все промежуточные варианты).



# Полуформальный алгоритм типизации $\lambda$ -функций

- **©** Если M[x] имеет тип  $\sigma$  в контексте  $x:\tau$ , тогда естественно, что  $\lambda x.M$  имеет тип  $\tau \to \sigma$ ;
- **②** Если  $(M\ N)$  имеет тип  $\sigma$ , а N имеет тип  $\tau$ , тогда естественно, что M имеет тип  $\sigma \to \tau$ .



# Полуформальный алгоритм типизации $\lambda$ -функций

- Если M[x] имеет тип  $\sigma$  в контексте  $x : \tau$ , тогда естественно, что  $\lambda x. M$  имеет тип  $\tau \to \sigma$ ;
- **2** Если (M N) имеет тип  $\sigma$ , а N имеет тип  $\tau$ , тогда естественно, что M имеет тип  $\sigma \to \tau$ .

#### Логическая спецификация

$$\frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x.M : \tau \rightarrow \sigma}$$

$$\frac{\Gamma \vdash M : \tau \to \sigma, \Gamma \vdash N : \tau}{\Gamma \vdash (M \ N) : \sigma}$$



# Проблема типизации $\lambda$ -функций

Рассмотрим терм  $\lambda x.(x \ x)$ . Какой у него тип?



#### Рассмотрим терм $\lambda x.(x x)$ . Какой у него тип?

• Пусть тип аргумента применения (то есть x) — это  $\tau$ , а тип результата применения (то есть  $(x \ x)$ ) — это  $\sigma$ . Тогда  $\tau = \tau \to \sigma$ . Ничего не напоминает?



#### Рассмотрим терм $\lambda x.(x x)$ . Какой у него тип?

• Пусть тип аргумента применения (то есть x) — это  $\tau$ , а тип результата применения (то есть (x x)) — это  $\sigma$ . Тогда  $\tau = \tau \to \sigma$ . Ничего не напоминает?

Уравнение  $\tau = \tau \to \sigma$  — это предложение Карри! Оно не имеет неподвижной точки, отличной от  $\bot$ .



#### Рассмотрим терм $\lambda x.(x x)$ . Какой у него тип?

• Пусть тип аргумента применения (то есть x) — это  $\tau$ , а тип результата применения (то есть (x x)) — это  $\sigma$ . Тогда  $\tau = \tau \to \sigma$ . Ничего не напоминает?

Уравнение  $\tau = \tau \to \sigma$  — это предложение Карри! Оно не имеет неподвижной точки, отличной от  $\bot$ .

Зацикливается не только унификация: см.  $(\lambda x.(x\ x))\ (\lambda x.(x\ x)).$  Иногда успешно вычисляется: напр.  $(\lambda x.(x\ x))\ (\lambda x.(\lambda y.(y\ x))).$ 



#### Рассмотрим терм $\lambda x.(x x)$ . Какой у него тип?

• Пусть тип аргумента применения (то есть x) — это  $\tau$ , а тип результата применения (то есть (x x)) — это  $\sigma$ . Тогда  $\tau = \tau \to \sigma$ . Ничего не напоминает?

Уравнение  $\tau = \tau \to \sigma$  — это предложение Карри! Оно не имеет неподвижной точки, отличной от  $\bot$ .

Зацикливается не только унификация: см.  $(\lambda x.(x\ x))\ (\lambda x.(x\ x))$ . Иногда успешно вычисляется: напр.  $(\lambda x.(x\ x))\ (\lambda x.(\lambda y.(y\ x)))$ .

 $\lambda x.(x \ x)$  — частичная функция и не может быть конечным образом определена на всех полиморфных типах.



## Просто типизированное λ-исчисление

Ограничим множество  $\lambda$ -термов только такими, типы которых всегда выводимы по описанным выше правилам.

$$\frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x. M : \tau \rightarrow \sigma} \quad \frac{\Gamma \vdash M : \tau \rightarrow \sigma, \Gamma \vdash N : \tau}{\Gamma \vdash (M \ N) : \sigma}$$



## Просто типизированное λ-исчисление

Ограничим множество  $\lambda$ -термов только такими, типы которых всегда выводимы по описанным выше правилам.

$$\frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x. M : \tau \rightarrow \sigma} \quad \frac{\Gamma \vdash M : \tau \rightarrow \sigma, \Gamma \vdash N : \tau}{\Gamma \vdash (M \ N) : \sigma}$$

...а теперь забудем про термы и посмотрим только на типы. Что получилось?

$$\frac{\Gamma, \tau \vdash \sigma}{\Gamma \vdash \tau \to \sigma} \qquad \text{(правило введения импликации)}$$
 
$$\frac{\Gamma \vdash \tau \to \sigma, \Gamma \vdash \tau}{\Gamma \vdash \sigma} \qquad \text{(правило удаления импликации aka modus ponens)}$$



# Связь логики и ФВП: соответствие Карри–Ховарда

- Существует взаимно-однозначное соответствие между типами замкнутных термов в просто типизированном λ-исчислении и тавтологиями в минимальной импликативной логике.
- (теорема о нормализации) Все термы просто типизированного λ-исчисления имеют нормальную форму.
- Доказательствам в минимальной логике соответствуют всюду определенные полиморфные функции высшего порядка.



# Естественный вывод в форме Фитча

#### Правила вывода для $\Rightarrow$

Применению и абстракции соответствуют следующие правила вывода (modus ponens и правило дедукции):

$$(\ ): \ \frac{A \quad A \Rightarrow B}{B} \qquad \qquad \lambda . : \ \ \frac{B}{A \Rightarrow B}$$

Каждое применение правила вывода в доказательстве соответствует использованию в терме из  $\lambda_{\to}$  конструкции с именем этого правила вывода.

В контексте соответствия Карри-Ховарда стрелочный тип далее обозначаем и как  $\alpha \to \beta$ , и как  $\alpha \Rightarrow \beta$ .



Покажем, что тип  $((A\Rightarrow ((A\Rightarrow B)\Rightarrow B))\Rightarrow C)\Rightarrow C$  населён? то есть существует терм, имеющий такой тип. Поскольку это — функциональный тип, то внешним конструктором его терма будет абстракция (соответствует правилу дедукции).

$$*(A\Rightarrow ((A\Rightarrow B)\Rightarrow B))\Rightarrow C$$
 (тип терма x)
$$(Тут нужно придумать, как построить терм типа C, имея только x)
$$C$$

$$((A\Rightarrow ((A\Rightarrow B)\Rightarrow B))\Rightarrow C)\Rightarrow C$$
 (тип терма  $\lambda x....$ )$$

Поскольку х — это функциональный терм, принимающий аргументом функцию типа  $\tau = A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$ , нужно попробовать построить терм, имеющий тип  $\tau$ . Для этого опять понадобится абстракция (даже две).



\*
$$(A\Rightarrow ((A\Rightarrow B)\Rightarrow B))\Rightarrow C$$
 (тип терма x)

| \* $A$  (тип терма y)

|  $Tym$  опять не хватает шагов: нужно построить терм типа  $(A\Rightarrow B)\Rightarrow B$ , имея у.

|  $Tak$  как это функция, добавляем ещё абстракцию.

|  $(A\Rightarrow B)\Rightarrow B$ 

|  $A\Rightarrow ((A\Rightarrow B)\Rightarrow B)$  (тип терма  $\lambda y....$ )
|  $C$  (тип терма  $x$   $(\lambda y....)$ )

|  $((A\Rightarrow ((A\Rightarrow B)\Rightarrow B))\Rightarrow C)\Rightarrow C$  (тип терма  $\lambda x.x$   $(\lambda y....)$ )





```
*(A \Rightarrow ((A \Rightarrow B) \Rightarrow B)) \Rightarrow C (тип терма x)

| *A (тип терма y)
| (A \Rightarrow B) \Rightarrow B (тип терма z)
| (A \Rightarrow B) \Rightarrow B (тип терма (A \Rightarrow B) \Rightarrow B (тип терма (A \Rightarrow B) \Rightarrow B (тип терма (A \Rightarrow B) \Rightarrow B) (A \Rightarrow C) \Rightarrow C (тип терма (A \Rightarrow C \Rightarrow C) \Rightarrow C
```

#### Вывести термы следующих типов:

- $A \Rightarrow (B \Rightarrow A)$
- $(A \Rightarrow (B \Rightarrow C)) \Rightarrow (A \Rightarrow B) \Rightarrow (A \Rightarrow C)$

#### Вывести термы следующих типов:

- комбинатор  $\mathbf{K} :: \mathbf{A} \Rightarrow (\mathbf{B} \Rightarrow \mathbf{A})$
- комбинатор S ::

$$(A \Rightarrow (B \Rightarrow C)) \Rightarrow (A \Rightarrow B) \Rightarrow (A \Rightarrow C)$$

#### Комбинаторная логика Карри

- комбинатор  $\mathbf{K} :: \mathbf{A} \Rightarrow (\mathbf{B} \Rightarrow \mathbf{A})$
- комбинатор S ::

$$(A \Rightarrow (B \Rightarrow C)) \Rightarrow (A \Rightarrow B) \Rightarrow (A \Rightarrow C)$$

А теперь перенесёмся на 100 лет назад, во времена Д. Гильберта...

Схемы аксиом для минимальной импликативной логики:

- $\Phi \Rightarrow (\Psi \Rightarrow \Phi)$ , где  $\Phi, \Psi$  любые формулы;
- $(\Phi \Rightarrow (\Psi \Rightarrow \Xi)) \Rightarrow (\Phi \Rightarrow \Psi) \Rightarrow (\Phi \Rightarrow \Xi)$ , где  $\Phi, \Psi, \Xi$  любые формулы.

Правила вывода — подстановка + дедукция:  $\mathfrak{T} \vdash \Phi \Rightarrow \Psi$  влечёт  $\mathfrak{T}$ ;  $\Phi \vdash \Psi$ . Перенос в контекст отсутствует.

#### Выведем $A \Rightarrow A$ в стиле логики 100-летней давности...

lacktriangle Возьмём  $(\Phi\Rightarrow (\Psi\Rightarrow\Xi))\Rightarrow (\Phi\Rightarrow\Psi)\Rightarrow (\Phi\Rightarrow\Xi)$  и положим  $\Xi:=A$  и  $\Phi:=A, \Psi:=A\Rightarrow (B\Rightarrow A).$  Заметим, что  $\Psi$  — теорема (частный случай схемы  $\Phi\Rightarrow (\Psi\Rightarrow\Phi)$ ).

#### Выведем $A \Rightarrow A$ в стиле логики 100-летней давности...

- Возьмём  $(\Phi \Rightarrow (\Psi \Rightarrow \Xi)) \Rightarrow (\Phi \Rightarrow \Psi) \Rightarrow (\Phi \Rightarrow \Xi)$  и положим  $\Xi := A$  и  $\Phi := A, \Psi := A \Rightarrow (B \Rightarrow A)$ . Заметим, что  $\Psi$  теорема (частный случай схемы  $\Phi \Rightarrow (\Psi \Rightarrow \Phi)$ ).
- **②** Получается теорема  $(A \Rightarrow ((A \Rightarrow (B \Rightarrow A)) \Rightarrow A)) \Rightarrow (A \Rightarrow (B \Rightarrow A)) \Rightarrow (A \Rightarrow A)$ .

#### Выведем $A \Rightarrow A$ в стиле логики 100-летней давности...

- Возьмём  $(\Phi \Rightarrow (\Psi \Rightarrow \Xi)) \Rightarrow (\Phi \Rightarrow \Psi) \Rightarrow (\Phi \Rightarrow \Xi)$  и положим  $\Xi := A$  и  $\Phi := A$ ,  $\Psi := A \Rightarrow (B \Rightarrow A)$ . Заметим, что  $\Psi$  теорема (частный случай схемы  $\Phi \Rightarrow (\Psi \Rightarrow \Phi)$ ).
- $igoplus \$ Получается теорема  $(A \Rightarrow ((A \Rightarrow (B \Rightarrow A)) \Rightarrow A)) \Rightarrow (A \Rightarrow (B \Rightarrow A)) \Rightarrow (A \Rightarrow A)$ .
- **3** Теперь возьмём  $\Phi \Rightarrow (\Psi \Rightarrow \Phi)$  и положим  $\Phi := A$ ,  $\Psi := A \Rightarrow (B \Rightarrow A)$ . Получим  $A \Rightarrow ((A \Rightarrow (B \Rightarrow A)) \Rightarrow A)$ .



#### Выведем $A \Rightarrow A$ в стиле логики 100-летней давности...

- Возьмём ( $\Phi \Rightarrow (\Psi \Rightarrow \Xi)$ )  $\Rightarrow (\Phi \Rightarrow \Psi) \Rightarrow (\Phi \Rightarrow \Xi)$  и положим  $\Xi := A$  и  $\Phi := A$ ,  $\Psi := A \Rightarrow (B \Rightarrow A)$ . Заметим, что  $\Psi$  теорема (частный случай схемы  $\Phi \Rightarrow (\Psi \Rightarrow \Phi)$ ).
- $igoplus \$ Получается теорема  $(A \Rightarrow ((A \Rightarrow (B \Rightarrow A)) \Rightarrow A)) \Rightarrow (A \Rightarrow (B \Rightarrow A)) \Rightarrow (A \Rightarrow A)$ .
- lack Tеперь возьмём  $\Phi\Rightarrow (\Psi\Rightarrow\Phi)$  и положим  $\Phi:=A,$   $\Psi:=A\Rightarrow (B\Rightarrow A).$  Получим  $A\Rightarrow ((A\Rightarrow (B\Rightarrow A))\Rightarrow A).$
- $oldsymbol{0}$  Применим дедукцию дважды. Теорема  $A\Rightarrow A$  доказана.



#### Выведем $A \Rightarrow A$ в стиле логики 100-летней давности...

**S**:  $(A \Rightarrow ((A \Rightarrow (B \Rightarrow A)) \Rightarrow A)) \Rightarrow (A \Rightarrow (B \Rightarrow A)) \Rightarrow (A \Rightarrow A)$ 

 $\mathbf{K}: A \Rightarrow ((A \Rightarrow (B \Rightarrow A)) \Rightarrow A)$ 

дедукция:  $(A \Rightarrow (B \Rightarrow A)) \Rightarrow (A \Rightarrow A)$ 

 $\mathbf{K}: A \Rightarrow (B \Rightarrow A)$ 

дедукция:  $A \Rightarrow A$ 



"I'm not logician! I'm human!"
(c) R. Glück



Схемы аксиом S и K + дедукция (применение) полностью описывают минимальную логику  $\Rightarrow$  с помощью  $\lambda$ -функций S (т.е.  $\lambda f$  g x.f x (g x)) и K (т.е.  $\lambda x$  y.x) можно построить любую  $\lambda$ -функцию.



Тип терма  $\lambda x$  у.у x — это  $A \Rightarrow (A \Rightarrow B) \Rightarrow B$ . Как вывести такую теорему в S, K-базисе? (для простоты включаем в него также схему аксиом I:  $\Phi \Rightarrow \Phi$ ).

Механически выпишем построение терма в комбинаторах по шагам и начнём добавлять подстановки.

S: K: S: I: SI: K(SI): S(K(SI)):

S(K(SI))K:



Тип терма  $\lambda x$  у.у x — это  $A \Rightarrow (A \Rightarrow B) \Rightarrow B$ . Как вывести такую теорему в S, K-базисе? (для простоты включаем в него также схему аксиом I:  $\Phi \Rightarrow \Phi$ ).

Механически выпишем построение терма в комбинаторах по шагам и начнём добавлять подстановки.

```
S:
K:
S:
S:
I: A \Rightarrow A
SI:
K(SI):
S(K(SI)):
K:
S(K(SI))K:
```



Тип терма  $\lambda x$  у.у x — это  $A \Rightarrow (A \Rightarrow B) \Rightarrow B$ . Как вывести такую теорему в S, K-базисе? (для простоты включаем в него также схему аксиом I:  $\Phi \Rightarrow \Phi$ ).

Механически выпишем построение терма в комбинаторах по шагам и начнём добавлять подстановки.

```
\begin{array}{c} \mathbf{S}:\\ \mathbf{K}:\\ \mathbf{S}:\\ ((A_1\Rightarrow B)\Rightarrow (A_1\Rightarrow B))\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)\\ \mathbf{I}:\\ \mathbf{A}\Rightarrow \mathbf{A}, \mathbf{A}=\mathbf{A}_1\Rightarrow \mathbf{B}\\ \mathbf{S}\mathbf{I}:\\ \mathbf{K}(\mathbf{S}\mathbf{I}):\\ \mathbf{S}(\mathbf{K}(\mathbf{S}\mathbf{I})):\\ \mathbf{K}:\\ \mathbf{S}(\mathbf{K}(\mathbf{S}\mathbf{I}))\mathbf{K}: \end{array}
```



Тип терма  $\lambda x$  у.у x — это  $A \Rightarrow (A \Rightarrow B) \Rightarrow B$ . Как вывести такую теорему в S, K-базисе? (для простоты включаем в него также схему аксиом I:  $\Phi \Rightarrow \Phi$ ).

Механически выпишем построение терма в комбинаторах по шагам и начнём добавлять подстановки.

```
\begin{array}{c} \mathbf{S}:\\ \mathbf{K}:\\ \mathbf{S}:\\ \mathbf{S}:\\ ((A_1\Rightarrow B)\Rightarrow (A_1\Rightarrow B))\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)\\ \mathbf{I}:\quad A\Rightarrow A, A=A_1\Rightarrow B\\ \mathbf{SI}:\quad ((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)\\ \mathbf{K}(\mathbf{SI}):\\ \mathbf{S}(\mathbf{K}(\mathbf{SI})):\\ \mathbf{K}:\\ \mathbf{S}(\mathbf{K}(\mathbf{SI}))K:\\ \end{array}
```



Тип терма  $\lambda x$  у.у x — это  $A \Rightarrow (A \Rightarrow B) \Rightarrow B$ . Как вывести такую теорему в S, K-базисе? (для простоты включаем в него также схему аксиом I:  $\Phi \Rightarrow \Phi$ ).

```
\begin{array}{lll} S: \\ \textbf{K}: & (((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow (((A_1\Rightarrow B)\Rightarrow A)\Rightarrow B)) \\ & \Rightarrow (C\Rightarrow (((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)) \\ S: & ((A_1\Rightarrow B)\Rightarrow (A_1\Rightarrow B))\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B) \\ I: & A\Rightarrow A, A=A_1\Rightarrow B \\ SI: & ((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B) \\ \textbf{K}(SI): \\ S(\textbf{K}(SI)): \\ S(\textbf{K}(SI)): \\ \textbf{K}: \\ S(\textbf{K}(SI))\textbf{K}: \end{array}
```



Тип терма  $\lambda x$  у.у x — это  $A \Rightarrow (A \Rightarrow B) \Rightarrow B$ . Как вывести такую теорему в S, K-базисе? (для простоты включаем в него также схему аксиом I:  $\Phi \Rightarrow \Phi$ ).

```
\begin{array}{lll} S: \\ K: & (((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow (((A_1\Rightarrow B)\Rightarrow A)\Rightarrow B)) \\ & \Rightarrow (C\Rightarrow (((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)) \\ S: & ((A_1\Rightarrow B)\Rightarrow (A_1\Rightarrow B))\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B) \\ I: & A\Rightarrow A, A=A_1\Rightarrow B \\ SI: & ((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B) \\ K(SI): & C\Rightarrow (((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)) \\ S(K(SI)): & K: \\ S(K(SI))K: \end{array}
```



Тип терма  $\lambda x$  у.у x — это  $A \Rightarrow (A \Rightarrow B) \Rightarrow B$ . Как вывести такую теорему в S, K-базисе? (для простоты включаем в него также схему аксиом I:  $\Phi \Rightarrow \Phi$ ).

```
\begin{array}{lll} \textbf{S}: & (C\Rightarrow (((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)))\\ & \Rightarrow (C\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1))\Rightarrow (C\Rightarrow ((A_1\Rightarrow B)\Rightarrow B))\\ \textbf{K}: & ((((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow (((A_1\Rightarrow B)\Rightarrow A)\Rightarrow B))\\ & \Rightarrow (C\Rightarrow ((((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B))\\ \textbf{S}: & ((A_1\Rightarrow B)\Rightarrow (A_1\Rightarrow B))\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)\\ \textbf{I}: & A\Rightarrow A, A=A_1\Rightarrow B\\ \textbf{SI}: & ((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)\\ \textbf{K}(\textbf{SI}): & C\Rightarrow ((((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B))\\ \textbf{S}(\textbf{K}(\textbf{SI})): & \\ \textbf{K}: \\ \textbf{S}(\textbf{K}(\textbf{SI}))\textbf{K}: \end{array}
```



Тип терма  $\lambda x$  у.у x — это  $A \Rightarrow (A \Rightarrow B) \Rightarrow B$ . Как вывести такую теорему в S, K-базисе? (для простоты включаем в него также схему аксиом I:  $\Phi \Rightarrow \Phi$ ).

```
\begin{array}{lll} S: & (C\Rightarrow (((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)))\\ &\Rightarrow (C\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1))\Rightarrow (C\Rightarrow ((A_1\Rightarrow B)\Rightarrow B))\\ K: & ((((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow (((A_1\Rightarrow B)\Rightarrow A)\Rightarrow B))\\ &\Rightarrow (C\Rightarrow ((((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B))\\ S: & ((A_1\Rightarrow B)\Rightarrow (A_1\Rightarrow B))\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B))\\ I: & A\Rightarrow A, A=A_1\Rightarrow B\\ SI: & ((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)\\ K(SI): & C\Rightarrow (((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B))\\ S(K(SI)): & (C\Rightarrow (((A_1\Rightarrow B)\Rightarrow A_1))\Rightarrow (C\Rightarrow ((A_1\Rightarrow B)\Rightarrow B))\\ K: \\ S(K(SI))K: \end{array}
```



Тип терма  $\lambda x$  у.у x — это  $A \Rightarrow (A \Rightarrow B) \Rightarrow B$ . Как вывести такую теорему в S, K-базисе? (для простоты включаем в него также схему аксиом I:  $\Phi \Rightarrow \Phi$ ).

```
\begin{array}{lll} S: & (C\Rightarrow (((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)))\\ &\Rightarrow (C\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1))\Rightarrow (C\Rightarrow ((A_1\Rightarrow B)\Rightarrow B))\\ K: & ((((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow (((A_1\Rightarrow B)\Rightarrow A)\Rightarrow B))\\ &\Rightarrow (C\Rightarrow ((((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B))\\ S: & ((A_1\Rightarrow B)\Rightarrow (A_1\Rightarrow B))\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B))\\ I: & A\Rightarrow A, A=A_1\Rightarrow B\\ SI: & ((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)\\ K(SI): & C\Rightarrow ((((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B))\\ S(K(SI)): & (C\Rightarrow (((A_1\Rightarrow B)\Rightarrow A_1))\Rightarrow (C\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)), C=A_1\\ & K: & A_1\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1)\\ \hline S(K(SI))K: & \end{array}
```



Тип терма  $\lambda x$  у.у x — это  $A \Rightarrow (A \Rightarrow B) \Rightarrow B$ . Как вывести такую теорему в S, K-базисе? (для простоты включаем в него также схему аксиом I:  $\Phi \Rightarrow \Phi$ ).

```
\begin{array}{lll} \mathbf{S}: & (C\Rightarrow (((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B))) \\ & \Rightarrow (C\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1))\Rightarrow (C\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)) \\ \mathbf{K}: & (((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow (((A_1\Rightarrow B)\Rightarrow A)\Rightarrow B)) \\ & \Rightarrow (C\Rightarrow (((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)) \\ & \Rightarrow (C\Rightarrow (((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)) \\ \mathbf{S}: & ((A_1\Rightarrow B)\Rightarrow (A_1\Rightarrow B))\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B) \\ \mathbf{I}: & A\Rightarrow A, A=A_1\Rightarrow B \\ \mathbf{SI}: & ((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B) \\ \mathbf{K}(\mathbf{SI}): & C\Rightarrow (((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)) \\ \mathbf{S}(\mathbf{K}(\mathbf{SI})): & (C\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1))\Rightarrow (C\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)), C=A_1 \\ & \mathbf{K}: & A_1\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1) \\ & \mathbf{S}(\mathbf{K}(\mathbf{SI}))\mathbf{K}: & A_1\Rightarrow ((A_1\Rightarrow B)\Rightarrow B) \end{array}
```



Тип терма  $\lambda x$  у.у x — это  $A \Rightarrow (A \Rightarrow B) \Rightarrow B$ . Как вывести такую теорему в S, K-базисе? (для простоты включаем в него также схему аксиом I:  $\Phi \Rightarrow \Phi$ ).

```
\begin{array}{lll} \mathbf{S}: & (C\Rightarrow (((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B))) \\ & \Rightarrow (C\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1))\Rightarrow (C\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)) \\ \mathbf{K}: & (((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow (((A_1\Rightarrow B)\Rightarrow A)\Rightarrow B)) \\ & \Rightarrow (C\Rightarrow (((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)) \\ \mathbf{S}: & ((A_1\Rightarrow B)\Rightarrow (A_1\Rightarrow B))\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B) \\ \mathbf{I}: & A\Rightarrow A, A=A_1\Rightarrow B \\ \mathbf{SI}: & ((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B) \\ \mathbf{K}(\mathbf{SI}): & C\Rightarrow (((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)) \\ \mathbf{S}(\mathbf{K}(\mathbf{SI})): & (C\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1))\Rightarrow (C\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)), C=A_1 \\ \mathbf{K}: & A_1\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1) \\ \mathbf{S}(\mathbf{K}(\mathbf{SI}))K: & A_1\Rightarrow ((A_1\Rightarrow B)\Rightarrow B) \end{array}
```

#### Очевидно!



Тип терма  $\lambda x$  у.у x — это  $A \Rightarrow (A \Rightarrow B) \Rightarrow B$ . Как вывести такую теорему в S, K-базисе? (для простоты включаем в него также схему аксиом I:  $\Phi \Rightarrow \Phi$ ).

```
\begin{array}{lll} S: & (C\Rightarrow (((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)))\\ & \Rightarrow (C\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1))\Rightarrow (C\Rightarrow ((A_1\Rightarrow B)\Rightarrow B))\\ K: & ((((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow (((A_1\Rightarrow B)\Rightarrow A)\Rightarrow B))\\ & \Rightarrow (C\Rightarrow ((((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B))\\ S: & ((A_1\Rightarrow B)\Rightarrow (A_1\Rightarrow B))\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B))\\ I: & A\Rightarrow A, A=A_1\Rightarrow B\\ SI: & ((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)\\ K(SI): & C\Rightarrow ((((A_1\Rightarrow B)\Rightarrow A_1)\Rightarrow ((A_1\Rightarrow B)\Rightarrow B))\\ S(K(SI)): & (C\Rightarrow (((A_1\Rightarrow B)\Rightarrow A_1))\Rightarrow (C\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)), C=A_1\\ & K: & A_1\Rightarrow ((A_1\Rightarrow B)\Rightarrow A_1)\\ S(K(SI))K: & A_1\Rightarrow ((A_1\Rightarrow B)\Rightarrow B)\\ \end{array}
```

#### Очевидно!

(это и вправду не требует участия мозга, но из разряда «легче написать (и/или запрограммировать), чем потом читать»)



### Конструктивность

Достаточно ли S и K для вывода всех теорем классической логики, содержащих только импликацию?

Построения конструктивны  $\Rightarrow$  для них есть явно вычислимая конструкция. Вспомним закон исключённого третьего:  $A \lor \neg A$ . Если передать в виде A предикат «программа P завершается», тогда вычислимая конструкция  $A \lor \neg A$  будет решать проблему останова.

Остаётся вопрос, есть ли такие теоремы, содержащие только  $\Rightarrow$ , что их можно доказать только с помощью  $A \lor \neg A$ , не ограничиваясь двумя правилами естественного вывода.

Формула Пирса:  $((A \Rightarrow B) \Rightarrow A) \Rightarrow A$  не населена.



### Относительное отрицание

Скажем, что  $\neg_R \Phi = \Phi \Rightarrow R$ .

Формула Пирса:  $((A \Rightarrow B) \Rightarrow A) \Rightarrow A = (\neg_B A \Rightarrow A) \Rightarrow A$ .  $(\neg_B A \Rightarrow A) \Rightarrow \neg_B \neg_B A$ , и как следствие  $\neg_B \neg_B A \Rightarrow A$  влечёт формулу Пирса.

### Относительное отрицание

Скажем, что  $\neg_R \Phi = \Phi \Rightarrow R$ .

Формула Пирса:  $((A\Rightarrow B)\Rightarrow A)\Rightarrow A=(\lnot_B A\Rightarrow A)\Rightarrow A.$   $(\lnot_B A\Rightarrow A)\Rightarrow \lnot_B \lnot_B A,$  и как следствие  $\lnot_B \lnot_B A\Rightarrow A$  влечёт формулу Пирса.

Парадокс Карри: пусть  $D = \lambda x$ .  $\neg_A(x \ x)$ , тогда  $(D \ D) \Leftrightarrow (\neg_A(D \ D))$  — относительная версия парадокса Рассела.

### Относительное отрицание

Скажем, что  $\neg_R \Phi = \Phi \Rightarrow R$ .

Формула Пирса:  $((A\Rightarrow B)\Rightarrow A)\Rightarrow A=(\lnot_B A\Rightarrow A)\Rightarrow A.$   $(\lnot_B A\Rightarrow A)\Rightarrow \lnot_B \lnot_B A,$  и как следствие  $\lnot_B \lnot_B A\Rightarrow A$  влечёт формулу Пирса.

Парадокс Карри: пусть  $D = \lambda x$ .  $\neg_A(x x)$ , тогда  $(D D) \Leftrightarrow (\neg_A(D D))$  — относительная версия парадокса Рассела.

А теперь посмотрим на двойное относительное отрицание с точки зрения функционального языка...

 $\tau:: M \Rightarrow \lambda k.k \ \tau:: \lnot_R \lnot_R M$ , где R не входит в число переменных M. Двойное отрицание порождает продолжения вычислений.

### Населенность и определения

Некоторые типы имеют единственного обитателя.

#### Примеры типов с одним обитателем

$$\bullet$$
  $\alpha \rightarrow \alpha - I$ 

#### ...но есть и другие

• 
$$\alpha \rightarrow \alpha \rightarrow \alpha$$

• 
$$\alpha \rightarrow \alpha \rightarrow (\alpha \rightarrow \beta) \rightarrow \beta$$

### Населенность и определения

Некоторые типы имеют единственного обитателя.

### **Примеры** типов с одним обитателем

- $\alpha \rightarrow \alpha I$
- $\alpha \rightarrow \beta \rightarrow \alpha K$

#### ...но есть и другие

- $\alpha \to \alpha \to \alpha$  нумералы Чёрча (кроме 0 и 1)
- $\alpha \rightarrow \alpha \rightarrow (\alpha \rightarrow \beta) \rightarrow \beta$



### Нормализуемость

#### Определение

- Терм М сильно нормализуем, если любая последовательность редукций приводит его к нормальной форме.
- Система типов сильно нормализуема, если все ее обитаемые типы сильно нормализуемы.

#### Теорема

Система  $\lambda_{\rightarrow}$  сильно нормализуема.



### Унификация

### **А**лгоритм построения $mgu(E_1, ..., E_k)$

$$\frac{t=x}{x=t} \quad \frac{t=t}{} \quad \frac{f\,t_1\,\ldots\,t_n=f\,s_1\,\ldots\,s_n}{t_1=s_1\,\ldots\,t_n=s_n}$$

$$\frac{x=t}{x=t} \quad \frac{x=t}{x=t} \quad \frac{x=t}{x=t} \quad \frac{r=s}{r[x:=t]}$$

#### Условия завершения унификации

- 1. Существует уравнение  $f_1, f_2 = g_3, \dots, f_n \in f \neq g_n$
- $f t_1 \dots t_n = g s_1 \dots s_m$ , где  $f \neq g$ . 2. Существует уравнение  $x = f t_1 \dots t_n$ , где x входит в некоторое  $t_i$ .
- 3. Все уравнения имеют вид  $x_i = t_i$ , причем  $x_i$  не имеет вхождений в  $t_i$  успех.

неудача



## Алгоритм Хиндли для $\lambda_{\rightarrow}$

Пусть дан терм Т. В изначально пустом контексте  $\Gamma$  параллельно строятся приближение  $\Phi$  типа терма Т и система уравнений Е на переменные типа  $\Phi$ .

#### Правила вывода

$$\frac{\Gamma, \ x : X \vdash P : \Psi, \ E \qquad (X - \text{свежий тип})}{\Gamma \vdash \lambda x.P : \ X \to \Psi, \ E}$$
 
$$\frac{\Gamma \vdash P : \Phi, \ E_1 \quad \Gamma \vdash Q : \Psi, \ E_2}{\Gamma \vdash (P \ Q) : X, \ E_1 \cup E_2 \cup \{\Phi = \Psi \to X\} \quad (X - \text{свежий тип})}$$

Пусть построено  $\vdash$  T :  $\Phi$ , E. Из этого приближения строится  $\vdash$  T :  $\Phi[mgu(E)]$  — окончательный тип терма T.



## Пример на типизацию в $\lambda_{\rightarrow}$

### Вывести тип терма ( $\lambda k.k.(\lambda x y.(\lambda z.z x) y)$ ) ( $\lambda x.x$ )

#### Соглашения об обозначениях:

- 🗆 символ конца ветки подвывода.
- $\Phi = \Psi_1 \to \Psi_2$  уравнение абстракции: при присваивании переменной, связанной  $\lambda$ , типа  $\Psi_1$ , если результат вычислений имеет тип  $\Psi_2$ , то абстракция имеет тип  $\Phi$  (правило 1).
- $\Psi_1 = \Psi_2 \to \Phi$  уравнение аппликации: при присваивании применяемому выражению типа  $\Psi_1$ , а ее аргументу типа  $\Psi_2$ , результат вычислений имеет тип  $\Phi$  (правило 2).

По построению, уравнения абстракции не требуют решения уравнений для вычисления mgu. Их достаточно просто полставить.



L),  $X = F \rightarrow ((F \rightarrow L) \rightarrow L)$ .

Ответ: искомый тип терма есть  $F \to (F \to L) \to L$ .

### Пример вывода типа

```
(\lambda k.k (\lambda x y.(\lambda z.z x) y)) (\lambda x.x) : X, \Phi = \Psi \rightarrow X
     (\lambda k.k (\lambda x y.(\lambda z.z x) y)) : \Phi, \Phi = A \rightarrow B
                                                                          (\lambda x.x): \Psi, \Psi = C \rightarrow C
     k : A \vdash k (\lambda x y.(\lambda z.z x) y)) : B, A = D \rightarrow B
                                                                         x:C\vdash x:C\square
                                                                          \lambda x y.(\lambda z.z x) y:D,D=F\rightarrow G
     k:A \vdash k:A \square
    k: A, x: F \vdash \lambda y.(\lambda z.z \ x) \ y: G, G = H \rightarrow I
     k:A,x:F,y:H\vdash(\lambda z.z\ x)\ y:I,J=H\rightarrow I
     k: A, x: F, y: H \vdash \lambda z.z x: J, J = K \rightarrow L
                                                                         k:A,x:F,y:H\vdash y:H\square
     k: A, x: F, y: H, z: K \vdash z x: L, K = F \rightarrow L
     k:A,x:F,y:H,z:K\vdash z:K\square
                                                                          k:A,x:F,y:H,z:K\vdash x:F\square
Уравнения аппликации: E_1 = \{\Phi = \Psi \to X, A = D \to B, J = H \to I, K = F \to L\}.
Уравнения абстракции:
  E_2 = {\Phi = A \rightarrow B, \Psi = C \rightarrow C, D = F \rightarrow G, G = H \rightarrow I, I = K \rightarrow L}.
Подставляем уравнения абстракции в уравнения аппликации (система E_1E_2).
\{A \rightarrow B = (C \rightarrow C) \rightarrow X, A = (F \rightarrow (H \rightarrow I)) \rightarrow B, K \rightarrow L = H \rightarrow I, K = F \rightarrow L\}
  Строим mgu(E_1E_2) = \{H = F \rightarrow L, I = L, K = F \rightarrow L A = (F \rightarrow ((F \rightarrow L) \rightarrow F))\}
```

 $(F \rightarrow (F \rightarrow L) \rightarrow L))$ ,  $(F \rightarrow L) \rightarrow L)$ ,  $(F \rightarrow L) \rightarrow L)$ ,  $(F \rightarrow L) \rightarrow L)$ 



# Альтернативная унификация. Алгоритм Мартелли–Монтанари

Мультиуравнение — это выражение вида  $\{x_1,\ldots,x_n\}=(t_1,\ldots,t_m)$ , где  $x_i$  — переменные,  $t_j$  — термы в выбранной сигнатуре (семантически означает, что все они равны друг другу).

Общая часть мультиуравнения — максимальное внешнее общее поддерево конструкторов  $t_i$ .

Граница мультиуравнения — множество мультиуравнений, подстановка которых в общую часть порождает термы  $t_i$ .

### У мультиуравнения

$$\begin{aligned} &\{x_1,x_2\} = (f(g(x_3),h(x_4,g(x_5))),f(x_4,h(g(g(x_6)),x_7)))\\ &\text{общая часть} \longrightarrow \text{это } f(x_4,h(x_4,x_7)),\text{ граница} \longrightarrow \text{это}\\ &\{\{x_4\} = (g(x_3),g(g(x_6))),\{x_7\} = g(x_5)\}. \end{aligned}$$



### Описание алгоритма

Компактная форма системы мультиуравнений — такая, что для всех S = T, S' = T',  $S \cap S' = \emptyset$ .

Строим исходную систему  $U: \{x\} = (t_1, t_2), \{x_i\} = \varnothing$ , где x — свежая переменная,  $x_i$  — переменные, входящие в термы  $t_1$  и  $t_2$ .

- Выбираем такое мультиуравнение S = M, что переменные из S не встречаются нигде больше в U. Если такого нет, объявляем о неудаче унификации.
- Строим общую часть С и границу F. Если общей части нет, объявляем о неудаче унификации.
- **3** Делаем шаг редукции: заменяем S = M на  $\{S = C\} \cup F$ , после чего приводим к компактной форме.
- **4** Перемещаем S = C из U в результирующую систему T.

Если в U не остаётся мультиуравнений, то результат T — это искомая подстановка-унификатор  $t_1$  и  $t_2$ .



## Вычисления «от противного»

Проблема термов в типизированном  $\lambda$ -исчислении (и чистого функционального стиля): «что упало, то пропало». Если вычислено (M N), то M и N по отдельности уже потеряны навсегда.



### Вычисления «от противного»

Проблема термов в типизированном  $\lambda$ -исчислении (и чистого функционального стиля): «что упало, то пропало». Если вычислено (M N), то M и N по отдельности уже потеряны навсегда.

Логичный выход — возвраты, если стало ясно, что вычисления зашли в тупик. Аналог в доказательствах — работа с отрицанием.

$$\frac{\Gamma \vdash \tau, \ \Gamma \vdash \neg \tau}{\Gamma \vdash \sigma} \qquad \text{(из лжи следует всё что угодно)}$$
 
$$\frac{\Gamma \vdash \neg \neg \tau}{\Gamma \vdash \tau} \qquad \text{(снятие двойного отрицания)}$$



# Теорема Гливенко

Пусть  $\Phi$  — пропозициональная формула. Тогда  $\vdash \Phi$  в классической логике  $\Leftrightarrow \vdash \neg \neg \Phi$  в конструктивной интуиционистской логике.

Здесь под конструктивной интуиционистской логикой понимаем минимальную логику + «из лжи следует всё что угодно». Потом мы опять вернёмся к минимальной логике, но сначала посмотрим, как всё сложно с извлечением термов из отрицания.



## Теорема Гливенко

Пусть  $\Phi$  — пропозициональная формула. Тогда  $\vdash$   $\Phi$  в классической логике  $\Leftrightarrow$   $\vdash$  ¬ ¬  $\Phi$  в конструктивной интуиционистской логике.



## Теорема Гливенко

Пусть  $\Phi$  — пропозициональная формула. Тогда  $\vdash$   $\Phi$  в классической логике  $\Leftrightarrow$   $\vdash$  ¬ ¬  $\Phi$  в конструктивной интуиционистской логике.

$$\begin{array}{c|c}
*\neg(\neg\neg A \Rightarrow A) \\
 & *A \\
 & *\neg A \\
 & \bot \\
 & \neg A \Rightarrow A \\
 & \bot \\
 & \neg A \\
 & *\neg A \\
 & A \\
 & \bot \\
 & \neg A \Rightarrow A \\
 & \bot \\
 & \neg A \Rightarrow A \\
 & \bot \\
 & \neg A \Rightarrow A \\
 & \bot \\
 & \neg A \Rightarrow A
\end{array}$$

\*¬(((
$$A \Rightarrow B$$
)  $\Rightarrow A$ )  $\Rightarrow A$ )

\*A

| \*( $A \Rightarrow B$ )  $\Rightarrow A$ 
|  $A$ 
| (( $A \Rightarrow B$ )  $\Rightarrow A$ )  $\Rightarrow A$ 
|  $A$ 



«Вычисления зашли в тупик»  $\Rightarrow$  приводят к нежелательному результату. Интерпретация  $\lnot_R \Phi = (\Phi \Rightarrow R)$ .

Рассмотрим предыдущие два вывода с точки зрения извлечения термов из их конструкции.



$$\begin{array}{c|c} *(\neg_R \neg_R A \Rightarrow A) \Rightarrow R & \text{(тип x)} \\ *A & \text{(тип y)} \\ \hline *A & \text{(тип y)} \\ \hline & *\neg_R \neg_R A & \text{(тип z)} \\ \hline & A & \text{(терм y)} \\ \hline & \neg_R \neg_R A \Rightarrow A & \text{(терм λz.y)} \\ \hline & R & \text{(терм x (λz.y))} \\ \hline & A \Rightarrow R & \text{(терм λy.x (λz.y))} \\ \hline & *(A \Rightarrow R) \Rightarrow R & \text{(тип w)} \\ \hline & A & (??!!! \text{ из } A \Rightarrow R \text{ и } (A \Rightarrow R) \Rightarrow R) \\ \hline & \neg_R \neg_R A \Rightarrow A \\ \hline & R \\ \hline \end{array}$$

Проблема с правилом «из лжи следует всё что угодно»: относительное отрицание даёт вывести из противоречия лишь одну формулу R. Вывод требует, чтобы R = A, но это превращает исходную формулу в тривиальность:  $((((A \Rightarrow A) \Rightarrow A) \Rightarrow A) \Rightarrow A) \Rightarrow A$ .



«Вычисления зашли в тупик»  $\Rightarrow$  приводят к нежелательному результату. Интерпретация  $\neg_R \Phi = (\Phi \Rightarrow R)$ .

```
*(((A \Rightarrow B) \Rightarrow A) \Rightarrow A) \Rightarrow R
                                                                         (тип x)
    *A
                                                                        (тип у)
       *(A \Rightarrow B) \Rightarrow A
                                                                      (TИП Z)
       \begin{array}{c|c} A & (\text{терм } y) \\ \hline ((A \Rightarrow B) \Rightarrow A) \Rightarrow A & (\text{терм } \lambda z.y) \end{array} 
                                                     (\text{терм } x (\lambda z.y))
    A \Rightarrow R
                                                (\text{терм }\lambda y.x (\lambda z.y))
    *(A \Rightarrow B) \Rightarrow A
                                                                        (тип u)
        *A (тип w)
         B ??!!!
       \overline{A} \Rightarrow B
     ((A \Rightarrow B) \Rightarrow A) \Rightarrow A
((((A \Rightarrow B) \Rightarrow A) \Rightarrow A) \Rightarrow R) \Rightarrow R
```



```
*(((A \Rightarrow B) \Rightarrow A) \Rightarrow A) \Rightarrow B
                                                                                                       (T \Pi \Pi \chi)
    *A
                                                                                                   (тип у)
        *(A \Rightarrow B) \Rightarrow A
                                                                          (\text{тип } z)
        \frac{ \left[ \begin{array}{cc} A & \text{(терм y)} \\ ((A \Rightarrow B) \Rightarrow A) \Rightarrow A & \text{(терм $\lambda z$.y)} \end{array} \right.
                                                        (\text{терм } \chi (\lambda z.y))
    A \Rightarrow \overline{B}
                                                                           (\text{терм }\lambda y.x (\lambda z.y))
    *(A \Rightarrow B) \Rightarrow A
                                                                                                   (тип u)
         *A
                                                              (тип w)
             B (\text{терм}(\lambda y.x(\lambda z.y))w)
        A \Rightarrow B (Tepm \lambda y.x (\lambda z.y))
                        (\text{терм }\mathfrak{u}\;(\lambda y.x\;(\lambda z.y)))
     (\overline{(A \Rightarrow B) \Rightarrow A) \Rightarrow A} (терм \lambda u.u.(\lambda y.x.(\lambda z.y.)))
                                                    (\text{терм } x (\lambda u.u (\lambda y.x (\lambda z.y))))
((((A \Rightarrow B) \Rightarrow A) \Rightarrow A) \Rightarrow B) \Rightarrow B
                                               (\text{терм} (\lambda x.x (\lambda u.u (\lambda y.x (\lambda z.y))))
```

Здесь тоже сложно с правилом «из лжи следует всё что угодно», но вопрос решается, если положить R=B. Тогда мы получаем минимальный вывод нетривиальной формулы Крипке.



# Навешивание двойного отрицания

Видно, что использование «возвратных» термов (переход от типа  $\Phi$  к типу  $\neg_R \neg_R \Phi$ ) расширяет возможности языка. Возникает вопрос, в каких подформулах лучше это делать?

• Преобразование Колмогорова:

$$\begin{array}{l} \sigma_{\mathsf{K}}(A) = \lnot_{\mathsf{R}} \lnot_{\mathsf{R}} A \\ \sigma_{\mathsf{K}}(\Phi \Rightarrow \Psi) = \lnot_{\mathsf{R}} \lnot_{\mathsf{R}} (\sigma_{\mathsf{K}}(\Phi) \Rightarrow \sigma_{\mathsf{K}}(\Psi)) \end{array}$$

• Вариант более слабого преобразования (в стиле Куроды) — это  $\sigma_W(\Phi) = \neg_R \neg_R \sigma'_W(\Phi)$ , где:  $\sigma'_W(A) = A$   $\sigma'_W(\Phi \Rightarrow \Psi) = \sigma'_W(\Phi) \Rightarrow \neg_R \neg_R \sigma'_W(\Psi)$ 

В примерах для краткости  $(\Phi \Rightarrow R) \Rightarrow R$  переобозначим как  $\Phi'$ .



# Переход по Колмогорову

```
*(A' \Rightarrow ((A' \Rightarrow B')' \Rightarrow B')') \Rightarrow R
                                                                                         (тип k_0)
   *(A \Rightarrow R) \Rightarrow R
                                                                                        (\text{ТИП }\chi)
       *((A' \Rightarrow B')' \Rightarrow B') \Rightarrow R
                                                                                      (тип k<sub>1</sub>)
           *((A' \Rightarrow B') \Rightarrow R) \Rightarrow R
                                                                                    (тип ц)
               *B \Rightarrow R
                                                                                   (TMI k2)
                   *A' \Rightarrow B'
                                                                                 (тип k<sub>3</sub>)
                      *A \Rightarrow R
                                                                                 (\text{тип } k_4)
                           R (\text{терм } x k_4)
                       (A \Rightarrow R) \Rightarrow R (Tepm \lambda k_4.x k_4)
                       (B \Rightarrow R) \Rightarrow R (Tepm k_3 (\lambda k_4 \cdot x k_4))
                                               (\text{терм } (k_3 (\lambda k_4.x k_4)) k_2)
                    (A' \Rightarrow B') \Rightarrow R (терм \lambda k_3 \cdot k_3 \cdot (\lambda k_4 \cdot x \cdot k_4) \cdot k_2)
                                                (терм у (\lambda k_3.k_3 (\lambda k_4.x k_4) k_2))
               (\overline{B} \Rightarrow \overline{R}) \Rightarrow \overline{R} (терм \lambda k_2.y (\lambda k_3.k_3 (\lambda k_4.x k_4) k_2))
            (\overline{A' \Rightarrow B'})' \Rightarrow B' (терм \lambda y k_2.y (\overline{\lambda} k_3.k_3 (\overline{\lambda} k_4.x k_4) k_2))
                                           (\text{терм } k_1 (\lambda_1 k_2, y (\lambda_3 k_3 (\lambda_4 k_4, x k_4) k_2)))
         ((A' \Rightarrow B')' \Rightarrow B') \Rightarrow R) \Rightarrow R \pmod{\lambda k_1.k_1 (\lambda y k_2.y (\lambda k_3.k_3 (\lambda k_4.x k_4) k_2)))}
   A' \Rightarrow ((A' \Rightarrow B')' \Rightarrow B')' (repm \lambda x k_1.k_1 (\lambda y k_2.y (\lambda k_3.k_3 (\lambda k_4.x k_4) k_2)))
                                                              (\text{терм } k_0 (\lambda x k_1. k_1 (\lambda y k_2. y (\lambda k_3. k_3 (\lambda k_4. x k_4) k_2))))
(A' \Rightarrow ((A' \Rightarrow B')' \Rightarrow B')') \Rightarrow R) \Rightarrow R
           Извлечённый терм: \lambda k_0.k_0 (\lambda x k_1.k_1 (\lambda y k_2.y (\lambda k_3.k_3 (\lambda k_4.x k_4) k_2)))
```



# Слабый переход по Куроде

```
*(A \Rightarrow ((A \Rightarrow B') \Rightarrow B')') \Rightarrow R
                                                                                                                        (тип k_0)
    *A
                                                                                                                       (TИП \chi)
        *((A \Rightarrow B') \Rightarrow B') \Rightarrow R
                                                                                                                 (тип k_1)
                                                                            (тип у)
                                                                       (\text{тип } k_2)
            | (B \Rightarrow R) \Rightarrow R (тип у х)
               R (тип у х k<sub>2</sub>)
         \begin{array}{|c|c|} \hline (B \Rightarrow R) \Rightarrow R & (\text{тип } \lambda k_2.y \text{ x } k_2) \\ \hline (A \Rightarrow B') \Rightarrow B' & (\text{тип } \lambda yk_2.y \text{ x } k_2) \\ \hline \end{array} 
                       (тип k_1 (\lambda y k_2. y x k_2))
        \overline{(((A \Rightarrow B') \Rightarrow B') \Rightarrow R)} \Rightarrow R \qquad \text{(Tull } \lambda k_1 . k_1 \ (\lambda k_2 . y \ x \ k_2))
    A \Rightarrow ((A \Rightarrow B') \Rightarrow B')' (Tuil \lambda x k_1 . k_1 (\lambda k_2 . y \times k_2))
                                                                     (тип k_0 (\lambda x k_1.k_1 (\lambda k_2.y x k_2)))
((A \Rightarrow ((A \Rightarrow B') \Rightarrow B')') \Rightarrow R) \Rightarrow R
```

Извлечённый терм:  $\lambda k_0.k_0 (\lambda x k_1.k_1 (\lambda y k_2.y \ x \ k_2)).$ 



# Детали преобразования

- Переменные x и y получают имена так: смотрим на исходный терм  $\lambda xy.y$  x. B нём тип x это просто A, тип y это  $A \Rightarrow B$ . Теперь преобразуем их типы по Колмогорову или Куроде как подформулы. Образы этих типов и породят термы x и y.
- В выводе терма по Куроде есть странный подвывод, в котором выводится  $(B \Rightarrow R) \Rightarrow R$ , и так выводимая без него:

$$\begin{array}{c|cccc} *A \Rightarrow B' & (\text{тип } y) \\ *B \Rightarrow R & (\text{тип } k_2) \\ & (B \Rightarrow R) \Rightarrow R & (\text{тип } y \ x) \\ & R & (\text{тип } y \ x \ k_2) \\ \hline (B \Rightarrow R) \Rightarrow R & (\text{тип } \lambda k_2.y \ x \ k_2) \\ \hline (A \Rightarrow B') \Rightarrow B' & (\text{тип } \lambda y k_2.y \ x \ k_2) \end{array}$$

Однако если выводить формулу без подвывода с допущением  $B \Rightarrow R$  напрямую, то вместо  $A \Rightarrow B'$  можно просто подставить формулу  $A \Rightarrow B$ , и мы получим вывод не требуемой формулы, а более общей:  $(A \Rightarrow ((A \Rightarrow B) \Rightarrow B)')'$ , а мы хотим доказать именно ту формулу, которую получили преобразованием.



# Система передачи продолжений

### Система передачи продолжений в CBN-стиле:

- $\tau_N(const) = \lambda k.k const$
- $\tau_N(x) = \lambda k.x k$
- $\tau_{N}(\lambda x.M) = \lambda k.k (\lambda x.\tau_{N}(M))$
- $\tau_N(M | N) = \lambda k.\tau_N(M) (\lambda f.f \tau_N(N) | k)$



## Система передачи продолжений

#### Система передачи продолжений в СВN-стиле:

- $\tau_N(const) = \lambda k.k const$
- $\tau_N(x) = \lambda k.x k$
- $\tau_N(\lambda x.M) = \lambda k.k (\lambda x.\tau_N(M))$
- $\tau_N(M|N) = \lambda k.\tau_N(M) (\lambda f.f \tau_N(N)|k)$

### Система передачи продолжений в CBV-стиле:

- $\tau_V(const) = \lambda k.k const$
- $\tau_V(x) = \lambda k.k x$
- $\tau_V(\lambda x.M) = \lambda k.k (\lambda x.\tau_V(M))$
- $\tau_V(M | N) = \lambda k. \tau_V(M) (\lambda f. \tau_V(N) (\lambda a.f | a | k))$



# Применение CPS-преобразования

#### Утверждение

Если тип исходного терма M — это  $\Phi$ , то тип терма  $\tau_N(M)$  — это  $\sigma_K(\Phi)$ , тип терма  $\tau_V(M)$  — это  $\sigma_W(\Phi)$ .

Пример формулы Пирса  $((A \Rightarrow B) \Rightarrow A) \Rightarrow A$  показывает, что некоторые термы типизируются только после CPS-преобразования. Это и есть практический смысл теоремы Гливенко.

- $M \to^*$  const при CBV-стратегии  $\Leftrightarrow$   $\tau_V(M)$  id  $\to^*$  const при какой угодно стратегии.
- $M \to^*$  const при CBN-стратегии  $\Leftrightarrow$   $\tau_N(M)$  id  $\to^*$  const при какой угодно стратегии.



# Пара и размеченное объединение

#### Расширенные λ-термы

- Конструкторы пары:  $\langle x, y \rangle$ , fst x, snd x. Аксиомы пары:
  - fst  $\langle x, y \rangle = x$ ;
  - snd  $\langle x, y \rangle = y$ .
- Конструкторы размеченного объединения: Left x, Right x, either  $(\lambda x. \Phi_1, \lambda x. \Phi_2, z)$ . Аксиомы размеченного объединения:
  - either  $(\lambda x. \Phi_1, \lambda x. \Phi_2, (Left n)) = \Phi_1[x := n];$
  - either  $(\lambda x. \Phi_1, \lambda x. \Phi_2, (Right n)) = \Phi_2[x := n];$

 $\delta$ -редукция — редукция с помощью применения аксиом для вводимых в  $\lambda$ -исчисление конструкторов. Расширенная система сохраняет свойство ромба.



# Типизация пар и объединений

• Пара  $\langle x^A, y^B \rangle$  имеет тип A & В. Правила вывода:

$$\langle \ \rangle : \ \frac{A \quad B}{A \ \& \ B} \quad \mathsf{fst} : \ \frac{A \ \& \ B}{A} \quad \mathsf{snd} : \ \frac{A \ \& \ B}{B}$$

• Объединению, порожденному Left  $x^A$ , должен быть назначен тип  $A \vee B$ . Объединение, порождаемое Right  $x^A$ , имеет тип  $B \vee A$ . Правила вывода:

Если нет данных о типе второго элемента объединения, тип



# Естественный вывод в стиле Фитча

применение : 
$$\frac{A \quad A \Rightarrow B}{B}$$

$$\lambda x_i \to : \begin{array}{c} *A \\ \underline{B} \\ A \Rightarrow B \end{array}$$

разбор пары : 
$$\frac{A \& B}{A B}$$

пара: 
$$\frac{A}{A \& B}$$

дилемма : 
$$\begin{array}{c|c} A \lor B \\ \hline *A & *B \\ \hline & C & C \end{array}$$

Left: 
$$\frac{A}{A \vee B}$$
 Right:  $\frac{B}{A \vee B}$ 

Right: 
$$\frac{B}{A \vee A}$$

Каждое применение правила вывода в доказательстве соответствует использованию в терме конструкции с именем этого правила вывода.



## Типизация расширенных термов

- При типизации выражения either  $(\lambda x_1.\Phi_1, \lambda x_2.\Phi_2, \Psi), \Psi$  получает тип  $A \vee B, \lambda x_1.\Phi_1$  тип  $A \Rightarrow C, \lambda x_2.\Phi_2$  тип  $B \Rightarrow C$ . При этом типы для  $\Phi_1$  и  $\Phi_2$  должны совпадать (тип C). Всё выражение получает тип C.
- Если в выражении есть подвыражения вида fst x, snd x, то x имеет тип A & B. Если в выражении есть подвыражения вида Left x, Right x, то эти подвыражения имеют тип  $A \lor B$  (притом что типом x является A или B соответственно).
- Конструкторы типов &,  $\vee$  обрабатываются алгоритмом построения унификатора каждый отдельно: например, сопоставление  $A \to B = C \vee D$  считается неудачным.

### Пример

### Построить тип выражения

 $\lambda$ n.either ( $\lambda z_1$ .(snd n)  $z_1$ ,  $\lambda z_2.z_2$ , (fst n)).

```
Уравнения для типизации пар и объединений выделены зеленым.  
\lambda n. \text{either } (\lambda z_1. (\text{snd } n) \ z_1, \ \lambda z_2. z_2, \ (\text{fst } n)) : X, \ X = A \to B \\ n : A \vdash \text{either } (\lambda z_1. (\text{snd } n) \ z_1, \ \lambda z_2. z_2, \ (\text{fst } n)) : B, \\ C = E \to B, \ D = F \to B, \ G = E \lor F \\ n : A \vdash \lambda z_1. (\text{snd } n) \ z_1 : C, \\ C = H \to I \\ n : A, z_1 : H \vdash (\text{snd } n) \ z_1 : I, \\ L = H \to I \\ n : A, z_1 : H \vdash (\text{snd } n) : L, \\ A = M \& L \\ n : A, z_1 : H \vdash n : M \& L \square n : A, z_1 : H \vdash z_1 : H \sqcup
```

$$E_1 = \{X = A \rightarrow B, C = H \rightarrow I, D = J \rightarrow J\};$$

$$E_{1} = \{X = A \rightarrow B, C = H \rightarrow I, D = J \rightarrow J\},\$$

$$E_{2} = \{C = E \rightarrow B, D = F \rightarrow B, G = E \lor F, A = G \& K, L = H \rightarrow I, A = M \& L\}.\$$

$$E_{2}E_{1} = \{H \rightarrow I = E \rightarrow B, J \rightarrow J = F \rightarrow B, G = E \lor F, A = G \& K, L = H \rightarrow I,\$$

$$A = M \& L\}.\$$

$$mgu(E_{2}E_{1}) = \{B = F = I = J, E = H, G = M = E \rightarrow B, L = E \rightarrow B,\$$

 $A = (E \vee B) \& (E \rightarrow B), \text{ u other: } X = (E \vee B) \& (E \rightarrow B) \rightarrow B.$ 



### Доказательство населенности типа

Пусть  $\Phi$  — тип расширенного  $\lambda_{\rightarrow}$ -исчисления.

- Строится доказательство Ф в IL.
- По доказательству строится терм обитатель Ф.

### Пример

Пусть  $\Phi = (A \Rightarrow B) \& \neg B \Rightarrow \neg A$ . Строим доказательство и заодно сразу терм (справа):  $*(A \Rightarrow B) \& \neg B$  :  $\lambda x$ . \*A :  $\lambda y$ .

$$|A \Rightarrow B \qquad : (fst x) 
|B \qquad : ((fst x) y) 
|\neg B \qquad : (snd x) 
|\bot \qquad : (snd x ((fst x) y))$$

$$\frac{\neg A}{(A \Rightarrow B) \& \neg B \Rightarrow \neg A}$$

Построенный обитатель:  $\lambda x. \lambda y. (\text{snd } x. ((\text{fst } x). y.)).$ 



### Принципы естественного вывода

• Если надо доказать выражение  $A \Rightarrow B$ , строим подвывод:



Внутри этого подвывода всегда можно использовать формулу А как доказанную.

- Если в контексте (в допущении дедукции) есть формула  $(A \Rightarrow B) \Rightarrow C$ , а нужно доказать C, часто (но не всегда!) удобно внутри этого же контекста доказать  $A \Rightarrow B$ , а потом применить полученное доказательство.
- Отрицание тоже импликация, и методы работы с ним точно такие же, но помним, что из  $\bot$  внутри подвывода можно вывести всё что угодно.

# Сложный пример естественного вывода

Пусть надо доказать  $\neg \neg (A \Rightarrow B) \Rightarrow \neg \neg A \Rightarrow \neg \neg B$ . Несколько технических шагов (дедукция):

\*
$$((A \Rightarrow B) \Rightarrow \bot) \Rightarrow \bot$$

\* $(A \Rightarrow \bot) \Rightarrow \bot$ 

\* $(B \Rightarrow \bot) \Rightarrow \bot$ 

\* $(B \Rightarrow \bot) \Rightarrow \bot$ 

\* $(A \Rightarrow \bot) \Rightarrow \bot$ 

Исходя из контекста, чтобы получить в нем  $\bot$ , можно пытаться доказывать либо B, либо  $A \Rightarrow \bot$ , либо  $(A \Rightarrow B) \Rightarrow \bot$ . Но доказать B можно только через ex falso, что означает, что  $\bot$  уже доказано. Остается два варианта (они перестановочны).

#### Продолжение вывода

```
*((A \Rightarrow B) \Rightarrow \bot) \Rightarrow \bot
   *(A \Rightarrow \bot) \Rightarrow \bot
       *B \Rightarrow \bot
           *A
              (Onять нужно доказывать \bot)
           A \Rightarrow \bot
        (B \Rightarrow \bot) \Rightarrow \bot
   ((A \Rightarrow \bot) \Rightarrow \bot) \Rightarrow ((B \Rightarrow \bot) \Rightarrow \bot)
\neg \neg (A \Rightarrow B) \Rightarrow \neg \neg A \Rightarrow \neg \neg B
```

В самом внутреннем подвыводе опять нужно доказать  $\bot$ , и остается только одна формула из контекста, которая может быть использована для этого:  $((A \Rightarrow B) \Rightarrow \bot) \Rightarrow \bot$ . Она позволяет замкнуть таблицу.

#### Завершение вывода

$$*((A \Rightarrow B) \Rightarrow \bot) \Rightarrow \bot$$

$$|*(A \Rightarrow \bot) \Rightarrow \bot$$

$$|*B \Rightarrow \bot$$

$$|*A \Rightarrow B$$

$$|B \downarrow \bot --Bc \land e \land c m e u e k o h m e k c m a B \Rightarrow \bot$$

$$(A \Rightarrow B) \Rightarrow \bot$$

$$(A \Rightarrow B) \Rightarrow \bot$$

$$(A \Rightarrow \bot) \Rightarrow \bot$$

$$(B \Rightarrow \bot) \Rightarrow \bot$$

$$((A \Rightarrow \bot) \Rightarrow \bot) \Rightarrow ((B \Rightarrow \bot) \Rightarrow \bot)$$

$$\neg \neg (A \Rightarrow B) \Rightarrow \neg \neg A \Rightarrow \neg \neg B$$

Равноправный вариант: доказывать во внутреннем подвыводе  $(A \Rightarrow B) \Rightarrow \bot$ , внутри вывода которого доказывать  $A \Rightarrow \bot$ .

#### Извлечение \( \lambda \)-терма

```
*((A \Rightarrow B) \Rightarrow \bot) \Rightarrow \bot
                                                              : x
   *(A \Rightarrow \bot) \Rightarrow \bot
                                                              : y
      *B \Rightarrow \bot
                                                              : z
         *A
                                                              : w
            *A \Rightarrow B
                                                             : v
                                                             : (v w)
                                                             : (z (v w))
             (A \Rightarrow B) \Rightarrow \bot
                                                             : \lambda v.(z (v w))
                                                             : (x (\lambda v.(z (v w))))
         A \Rightarrow \bot
                                                             : \lambda w.x (\lambda v.(z (v w)))
                                                             : (y (\lambda w.x (\lambda v.(z (v w)))))
                                                             : \lambda z.y (\lambda w.x (\lambda v.(z (v w))))
      (B \Rightarrow \bot) \Rightarrow \bot
   ((A \Rightarrow \bot) \Rightarrow \bot) \Rightarrow ((B \Rightarrow \bot) \Rightarrow \bot)
                                                             : \lambda y z.y (\lambda w.x (\lambda v.(z (v w)))))
\neg \neg (A \Rightarrow B) \Rightarrow \neg \neg A \Rightarrow \neg \neg B : \lambda x y z.y (\lambda w.x (\lambda v.(z (v w)))))
```

47 / 50



### Задача проверки ненаселенности типа

### Модели Крипке

На множестве моделей задан частичный порядок  $\preceq$ , формирующий пути вычислений. Выражение  $M_{\mathfrak{t}}\models \Phi$  — «мир (модель)  $M_{\mathfrak{t}}$  вынуждает формулу  $\Phi$ ».

- Если  $M_i \models A$ , то  $M_j \models A$  для всех  $M_j$  таких, что  $M_i \preceq M_j$ .
- $M_i \models A \& B \Leftrightarrow M_i \models A \& M_i \models B$ .
- $M_i \models A \lor B \Leftrightarrow M_i \models A \lor M_i \models B$ .
- $M_i \models A \Rightarrow B \Leftrightarrow \forall M_j (M_i \leq M_j \Rightarrow (M_j \models A \Rightarrow M_j \models B)).$
- $M_i \not\models \bot$ ; ¬ A то же, что  $A \Rightarrow \bot$ .

Для доказательства ненаселенности типа  $\Phi$  достаточно построить такое дерево вычислений, что в некотором  $M_i$  этого дерева неверно, что  $M_i \models \Phi$ .



# Семантика Крипке

- Нижняя полурешётка «возможных миров», населённых «событиями»: пропозициональными переменными.
- Внутри каждого «мира» каждое событие может произойти (пишем  $w \models A$ ), а может не происходить.
- Если событие А случилось в мире w, тогда оно произошло и во всех мирах w', таких что  $w \triangleleft w'$  (w' возможное будущее относительно w).
- Событие «не A», произошедшее в мире w (т.е.  $w \models \neg A$ ), обозначает, что ни в каком наследнике w событие A не произойдёт.
- Высказывание  $w \models A \Rightarrow B$  означает, что в мире w и всех его наследниках если случается A, то обязательно произошло и B.
- $w \models A \& B$  и  $w \models A \lor B$  понимаются классически.



# Принципы построения контрмодели

- Опровержение Ф строится в начале вычислений (мире корне дерева, в котором ни одна переменная не вынуждается).
- $M_i \models \neg \neg A$ , если во всех путях вычислений, выходящих из  $M_i$ , все конечные точки (листы)  $M_j$  вынуждают A. При этом не обязательно  $M_i \models A$ .
- Если у мира  $M_i$  есть ровно два потомка:  $M_j$  и  $M_k$ , причем  $M_j \models A, M_j \not\models B, M_k \models B, M_k \not\models A$ , то  $M_i \not\models A \lor B$ .

### Пример

Контрмодель (1) опровергает формулу  $A \lor \neg A$ : она не выполняется в  $M_0$ . Но ее же опровергает и более простая контрмодель (2), вдобавок она опровергает формулу  $\neg \neg A \Rightarrow A$ :  $M_0' \models \neg \neg A$ , но  $M_0' \not\models A$ .





## Законы моделей Крипке

- Если в листе М верно М ⊨ ¬А тогда и только тогда, когда всюду на пути от корня до узла М формула А либо ложна, либо неизвестна. Кроме того, если М ⊨ ¬А, то для любого М′ — потомка М выполнено М′ ⊨ ¬А.
- "Неизвестность" абсолютно распространяется до корня: если в некотором листе М формула А неизвестна (т.е. не верны ни М ⊨ А, ни М ⊨ ¬А), то во всех узлах на пути от корня до М (включая корень) формула А неизвестна. Обратное неверно.
- Если формула Ф классически верна (имеет тождественно истинную таблицу истинности), она будет верна на всех листах любой модели Крипке. Ее опровержение построение такого корня дерева, в котором Ф неизвестна.



# Парадокс «пьющего» (Drinker paradox)

«В каждой непустой группе найдётся такой человек, что если он пьёт, то все пьют».

Финитный вариант: (A  $\Rightarrow$  A & B)  $\vee$  (B  $\Rightarrow$  A & B) Контрмодель:



Если время линейно и конечно, тогда парадокс пьющего конструктивно доказуем (назначим «пьющим» максимального трезвенника).