4 領域理論

ラムダ計算の体系がもつ構造と同種の数学的構造を,ラムダ計算の世界以外に見出すことはできるのか?

 \downarrow

1969 年に D. Scott によって肯定的に解かれる.

- プログラムの扱うデータの集合を領域(domain)と呼ぶ.
- 領域はどのように抽象化して定義したらよいか?

4.1 データの近似と極限

計算機の中で、無限の長さのデータを表現することはできないが、次のように扱うことができる.

1. 円の面積(数値計算): $\pi=3.14...$ は表現できないが、円周率の少数点以下第 n 桁目の数値を求めるプログラムを作成することはできる.

例: 半径 r と有効桁数 n を入力として面積を求めるプログラム P として, r=1 のとき,

$$P(1,1) = 3$$
, $P(1,2) = 3.1$, $P(1,3) = 3.14$, ...

すなわち,正確な面積は,

$$P(r,1) \le P(r,2) \le P(r,e) \le ...$$

における近似の極限.

2. 階乗のプログラム (プログラム構造):

$$fact(x) = if x = 0 then 1 else x * fact(x - 1)$$

の再帰呼出しを展開すると、無限の長さのプログラムが得られる.

$$\label{eq:fact_initial} \begin{split} \text{fact}_{\infty}(x) &= \textbf{if} \ x = 0 \ \textbf{then} \ 1 \\ &= \textbf{else} \ x * (\textbf{if} \ x - 1 = 0 \ \textbf{then} \ 1 \\ &= \textbf{else} \ (x - 1) * (\textbf{if} \ x - 2 = 0 \ \textbf{then} \ 1 \\ &= \textbf{else} \ x * (\dots \end{split}$$

ここで、値が未定義であることを意味する undef を用いると、展開を途中で止めたプログラム $fact_1$, $fact_2$, $fact_3$, ... を考えることができる.

$$\begin{split} & \mathrm{fact}_1(x) = \mathrm{if} \ x = 0 \ \mathrm{then} \ 1 \ \mathrm{else} \ \mathrm{undef} \\ & \mathrm{fact}_2(x) = \mathrm{if} \ x = 0 \ \mathrm{then} \ 1 \\ & & \mathrm{else} \ x * (\mathrm{if} \ x - 1 = 0 \ \mathrm{then} \ 1 \ \mathrm{else} \ \mathrm{undef}) \\ & \mathrm{fact}_3(x) = \mathrm{if} \ x - 0 \ \mathrm{then} \ 1 \\ & & \mathrm{else} \ n * (\mathrm{if} \ x - 1 = 0 \ \mathrm{then} \ 1 \\ & & \mathrm{else} \ (x - 1) * (\mathrm{if} \ x - 2 = 0 \ \mathrm{then} \ 1 \ \mathrm{else} \ \mathrm{undef})) \end{split}$$

すなわち、 $fact_n$ は、次の部分関数を表している.

$$\mathrm{fact}_n(x) = \left\{ \begin{array}{ll} x! & (0 \leq x < n) \\ \mathbf{undef} & (n \leq x) \end{array} \right.$$

 fact_n は、 fact_∞ の近似であり、 fact_{n+1} は、 fact_n よりよい近似になっている。 fact_∞ は、 fact_n の極限。

● 計算機は、有限の対象しか扱えないが、有限の表現の極限を含めることによって、無限の対象を扱うことができる.

 $\downarrow \downarrow$

このような近似の概念をもつデータ領域の数学的構造は?

4.1.1 プログラムのデータ領域

定義 4.1. 集合 D 上の二項関係 □ で、次の性質を満たすものを、D 上の**半順序** (partial order) と呼ぶ。

- 1. a ⊑ a (反射律)
- $2. a \sqsubseteq b$ かつ $b \sqsubseteq a$ ならば a = b (反対称律)
- $3. a \square b$ かつ $b \square c$ ならば $a \square c$ (推移律)

半順序が定義されている集合を、**半順序集合** (paritally ordered set) と呼ぶ.

- 近似の概念は、半順序で表す.
 - 1. $a \sqsubseteq b$: a は b の近似. b は a より精度が高い (情報が多い).
 - 2. 最小限: まったく情報を含まない. どんな要素よりも精度が低い(情報が少ない)近似の要素

定義 4.2. 半順序集合 D 上の最小元 (lest element あるいは bottom) とは、次の条件を満たす元 $\bot \in D$ のことである.

$$\forall a \in D.\bot \sqsubseteq a$$

注 : すべての半順序集合が最小元をもつとは限らない。しかし、半順序集合 D が、最小元をもてば、1つである。この最小元は、 \perp_D あるいは単に、 \perp と書く。

半順序集合 D 上の最大元 (greatest element あるいは top) とは、次の条件満たす元 $T \in D$ のことである.

$$\forall a \in D.a \sqsubseteq \top$$

次に近似の極限の概念を導入する.

定義 4.3. D を半順序集合、X を D の部分集合とすると、元 $d \in D$ について、

$$\forall x \in X.x \sqsubseteq d$$

のとき、d は X の上界($upper\ bound$)と呼び、 $X \sqsubseteq d$ と書く、また、d が X の上界のうち最小の元であるとき、d を X の上限(supremum)あるいは最小上界($least\ upper\ bound$)と呼ぶ、すなわち、X の上限は、次の 2 つの条件を満たす元 $d \in D$ である.

$$X \sqsubseteq d$$

 $\forall a \in D.X \sqsubseteq a \text{ α if } d \sqsubseteq a$

上界,上限の対の概念として,下界,下限を定義する。元 $d \in D$ について,

$$\forall x \in X.d \sqsubseteq x$$

のとき、d は X の下界($lower\ bound$)と呼び、 $d \sqsubseteq X$ と書く、また、d が X の下界のうち最大の元であるとき、d を X の下限(infimum) あるいは最大下界($greatest\ lower\ bound$)と呼ぶ。

• 半順序集合 D の部分集合 X は、常に上限をもつとは限らないが、存在すれば唯一である。その元を $\sqcup X$ で表す。同様に、X に下限が存在すれば唯一であり、 $\sqcap X$ で表す。また、有限個の元に対して、次のような記法も用いる。

$$a \sqcup b = \sqcup \{a, b\} \ a \sqcap b = \sqcap \{a, b\}$$

- 上限が近似の極限を表している例:
 - 1. 実数全体 \mathbf{R} は、 \leq に関して半順序。 \mathbf{R} の部分集合 P を、

$$P = \{3, 3.1, 3.14, 3.141, 3.1415, ...\}$$

と定義すると、 Pの上限が存在して、

 $\Box P = 3.1415... = \pi$

である.

2. 階乗を求めるプログラムについて、自然数全体の集合 N から N への部分関数の間に、

 $f \sqsubseteq g \Leftrightarrow \forall x \in \mathbf{N}. f(x)$ が定義されていれば g(x) も定義され f(x) = g(x)

のように半順序を定義すると,

$$P = \{ \text{fact}_1, \text{fact}_2, \text{fact}_3, \ldots \}$$

の上限は、 $fact_{\infty}$ である.

注 : 半順序集合 D のすべての部分集合 X が常に上限をもつとは限らない.

定義 4.4. 半順序集合 D のすべての部分集合 $X \subseteq D$ について上限 $\sqcup X \in D$ が存在するとき,D を完備束(complete lattice)と呼ぶ。

- $X = \emptyset$ のとき、 $\sqcup X$ は、D の最小元.
- X = D のとき、 $\sqcup X$ は、最大元.

 $\downarrow \downarrow$

● 完備東は、常に、最小限と最大元をもつ。

4.1.2 CPO

プログラムで扱うデータ領域として、完備束の条件"すべての部分集合が上限をもつ"は厳しすぎる.

定義 4.5. $(\omega$ 鎖)

半順序集合 D の元の列

 $a_0 \sqsubseteq a_1 \sqsubseteq a_2 \sqsubseteq \dots$

を ω 鎖(ω -chain)と呼ぶ。列 $< a_0, a_1, a_2, ...>$ は自然数の集合と 1 対 1 に対応し、 $i \le j$ ならば $a_i \sqsubseteq a_j$.

• 円の面積を求めるプログラム $P(r,1) \leq P(r,2) \leq \dots$ や,再帰呼出しの無限展開 $fact_1, fact_2, \dots$ は,線形に並んだ値の極限を考えた. \Rightarrow すべての ω 鎖が上限をもつ半順序集合をデータ領域と考えてもよい.

ここでは、**さらに条件を緩めたもの**を採用する.

定義 4.6. (有向集合)

半順序集合 D の空でない部分集合 X で,

 $\forall a \in X \forall b \in X \exists c \in X. a \sqsubseteq c \text{ in } b \sqsubseteq c$

が成り立つとき、X は**有向集合**(directed set)と呼ぶ。

ullet 全体として、一定の方向を向いている列 (w 鎖のように一列に並んでいる必要はない). ω 鎖は有向集合の一例.

例 : 有向集合は,頂点●と辺によって表現されることが多い(ハッセ図式,Hasse diagram).

定義 4.7. (cpo)

次の2つの条件を満たす半順序集合 D を**完備半順序集合** (complete partially ordered set, cpo) と呼ぶ.

- 1. D は最小元をもつ.
- 2. D の任意の有向部分集合 X について、X の上限 $\sqcup X \in D$ が存在する.

プログラムが扱うデータ領域は cpo である.

例 1 : 任意の集合 S に対して,S の部分集合全体の集合 $\mathcal{P}(S) = \{A|A \subseteq S\}$ は,集合の包含関係 \subseteq に関して cpo となる.

例 2 : 集合 S から T への部分関数全体を $[S \to T]$ と表す。部分関数間の半順序を

$$f \sqsubseteq g \Leftrightarrow \forall x \in S.f(x)$$
 が定義されていれば $g(x)$ も定義され $f(x) = g(x)$

と定義すると、 $[S \rightarrow T]$ は cpo.

例3 : f を S から T への部分関数として, 直積

$$S \times T = \{ \langle a, b \rangle | a \in S$$
 かつ $b \in T \}$

の部分集合

$$\{\langle x, f(x) \rangle | x \in S$$
かつ $f(x)$ が定義されている $\}$

を f の**グラフ**と呼ぶ。部分関数 f とそのグラフを同一視すると, $f\subseteq g$ と $f\sqsubseteq g$ は同じ。このとき,最小元は,空集合 $\emptyset\in S\times T$ であり, $[S\to T]$ の有向部分集合 F の上限は, $\cup F$.

例4 :集合 S に要素 \bot を加えた集合 S_{\bot} は,

$$a \sqsubset b \Leftrightarrow a = \bot$$
 あるいは $a = b$

と定義した半順序について cpo. この cpo は、平坦 cpo (flat cpo) と呼ぶ.

平坦 cpo1 : \bot を未定義として, $f \in [S \to T]$ は次の全関数 $\hat{f} : S \to T_\bot$ で表せる.

平坦 cpo2 : \mathbf{N}_{\perp} , \mathbf{B}_{\perp} ($B = \{true, false\}$)

例5 :実数 $a,b \in \mathbf{R}$ について,

$$[a, b] = \{x \in \mathbf{R} | a \le x \le b\}$$

の閉区間を定義する。閉区間に R 自身を加えた集合

$$I_{\mathbf{R}} = \{ [a, b] | a \le b \} \cup \{ \mathbf{R} \}$$

は、包含関係 \subseteq に対して cpo.

● *I*_R の部分集合 *I*_B* を

$$I_{\mathbf{R}}^* = \{[a,b] | a \leq b \$$
で $a \geq b \$ は有理数 $\}$

と定義すると、任意の $[a,b] \in I_{\mathbf{R}}$ について、

$$[a,b] = \sqcup \{ [c,d] \in I_{\mathbf{R}}^* | [c,d] \sqsubseteq [a,b] \}$$

が成り立つ. $I_{\mathbf{R}}$ の各要素は、 $I_{\mathbf{R}}^*$ のある集合の上限.

a = b とおくと,

$$[a, a] = \sqcup \{ [c, d] \in I_{\mathbf{R}}^* | c \le a \le d \}$$

各実数は、有理数の区間の集合の上限.

- cpo の条件を弱めて、"すべての ω 鎖が上限をもつ"とした場合 \Rightarrow 2 つの違いは、濃度の問題、
- **命題 4.1.** 半順序 D について次の 2つの条件は同値.
 - 1. 任意の可算な有向集合 $X \subset D$ について、X は上限をもつ。
 - 2. 任意の ω 鎖は上限をもつ.

証明:

- $(1) \Rightarrow (2)$: w 鎖は可算な有向集合.
- $(2) \Rightarrow (1)$: X の元の w 鎖 $A = a_0, a_1, a_2, ..., a_n, ...$ を n に関する帰納法で定義する。 $a_0 = x_0$ として, a_n が定義されるとする と,X は有向集合なので, a_n と x_{n+1} の上界 $x \in X$ ($a_n \sqsubseteq x$ かつ $x_{n+1} \sqsubseteq x$)が存在する。 そのうちの 1 つを a_{n+1} と定義すると,A は ω 鎖。 (2) から A の上限が存在すると過程すると,任意 $x_n \in X$ について $x_n \sqsubseteq a_n$ なので, $\sqcup A$ は X の上界。 また, $A \subseteq X$ なので, $\sqcup A$ は X の上界のうち最小.
 - 上限の計算に役立つ命題 ↓
- **命題 4.2.** D を半順序集合, X を D の部分集合, $d \in D$ とすると, 次の 2 つの条件は同値
 - 1. $d = \sqcup X$ (X の上限が存在し、d に等しい).
 - 2. $\forall a \in D.d \sqsubseteq a \Leftrightarrow X \sqsubseteq a$

証明:

- $(1)\Rightarrow(2)$: $d=\sqcup X$ とすると、 $X\sqsubseteq a$ ならば $d\sqsubseteq a$. また、d は X の上界なので、 $d\sqsubseteq a$ ならば $X\sqsubseteq a$.
- $(2)\Rightarrow (1)$: (2) で、a=d とおくと $X \sqsubseteq d$ (d は X の上界). また、 $X \sqsubseteq a$ ならば $d \sqsubseteq a$ なので、d は、X の最小上界.