ECS 171: Introduction to Machine Learning

Lecture 14

Reinforcement Learning

Instructor: Ilias Tagkopoulos

iliast@ucdavis.edu

Step 1. Get enough data! Dataset Step 2. Do all of the data samples have labels? No $x_{nm} | y_n$ SUPERVISED LEARNING **UNSUPERVISED LEARNING** Step 3: The task is to predict a continuous variable, assign a Step 3: The task is to cluster data together, find new sample to a class, or perform an optimal action? latent factors or complete missing data? Clustering Perform Assign to optimal actions K-means Predict a class Hierarchical continuous clustering variable SOM REINFORCEMENT Bayesian REGRESSION **CLASSIFICATION LEARNING** (*) **Dimensionality Reduction** Classification (Naïve Bayes) State Agent PCA • Linear Discriminant ICA **Analysis** Action \ Reward Artificial Neural **Missing Data** Networks Collaborative **Environment Decision Trees** filtering Support Vector Market Basket Machines **Markov Decision Process** analysis Linear, polynomial, logistic, ... (MDP), POMDP, Q-learning,

What is Reinforcement Learning

observation

- Define states (s), actions (a), observations (o), rewards (r)
- States can be observed (e.g. MDP) or Latent/Hidden (e.g. POMDP)
- The task is to maximize the cumulative reward

Examples of reinforcement learning (RI)

- Games (e.g., G. Tesauro, D. Silver)
- Operations research and scheduling (e.g., W. Powell, P. Tadepalli)
- Recently: robotics (e.g., P. Abbeel, J. Peters, P. Stone, M. Riedmiller)

What is the objective in Reinforcement Learning?

Make optimal decisions a* by maximizing an expected utility

$$a^* \in \arg\max_{a} \mathbb{E}[r(a)] = \arg\max_{a} \sum_{j=1}^{m} r(s_j, a) p(s_j)$$

a: decision

s : information about environment/state

- Bayesian sequential decision theory (statistics)
- Optimal control theory (engineering)
- Reinforcement learning (computer science, psychology)

One example of optimal policy

Example: Winning the Lottery

Actions	Outcomes
a ₁ : play	s_1 : Win the lottery
a_2 : don't play	s_2 : Don't win the lottery

Optimal action

$$a^* = \arg\max_{a_i} \sum_{j=1}^2 r_{ij} p(s_j | a_i)$$

$$p(s_1|a_1) = 10^{-7}$$
 $r_{11} = 500,000 \text{ USD}$
 $p(s_2|a_1) = 1 - 10^{-7}$ $r_{12} = -1 \text{ USD}$
 $p(s_1|a_2) = 0$ $r_{21} = 0 \text{ USD}$
 $p(s_2|a_2) = 1$ $r_{22} = 0 \text{ USD}$

A RI Method: Markov Decision Process (MDP)

Markov Decision Process: Definition

- S: State space (finite)
- A: Action space (finite)
- \mathcal{P} : Transition probability $p(s_{k+1}|s_k, a_k)$
- ► r: Reward function
- $\gamma \in [0,1)$: Discount factor
- π : Policy
 - Deterministic: $a = \pi(s)$
 - Stochastic: $a \sim p_{\pi}(a|s)$ alternative notation: $p_{\pi}(a|s) = \pi(a|s)$

Objective

Find a policy π^* that maximizes the expected long-term reward

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{k+1} \middle| s_0 = s, \pi\right], \qquad r_{k+1} = r_{k+1}(s_k, a_k, s_{k+1})\right]$$

How to solve a MDP

Value Functions

State Value Function: How good is it to be in a particular state s?
 Well, this depends on the current policy:

$$V^{\pi}(s) = \mathbb{E}[R|s_0 = s] = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{k+1} | s_0 = s, \pi\right]$$
$$= \mathbb{E}[r_1 + \gamma V^{\pi}(s_1) | s_0 = s, \pi] \qquad \text{Self-consistency}$$

 What you want is to find and the policy that maximize the cumulative reward, calculated by the value of each state in the trajectory

$$\pi^*(s) = \arg\max_{a} \mathbb{E}[r(s, a, s') + \gamma V^*(s')]$$

This leads to the Bellman equations

One for state value

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$= \max_{a} \mathbb{E} \left[\sum_{k=0}^{\infty} \gamma^{k} r_{k+1} | s_{0} = s, a_{0} = a, \pi^{*} \right]$$

$$= \max_{a} \mathbb{E} \left[r_{1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{k+2} | s_{0} = s, a_{0} = a, \pi^{*} \right]$$

$$= \max_{a} \mathbb{E} \left[r_{1} + \gamma V^{*}(s_{1}) | s_{0} = s, a_{0} = a, \pi^{*} \right]$$

Another for state-action value

$$Q^*(s, a) = \mathbb{E}[r_1 + \gamma \max_{a'} Q^*(s_1, a') | s_0 = s, a_0 = a]$$
$$= \mathbb{E}[r_1 + \gamma V^*(s_1) | s_0 = s, a_0 = a]$$

This leads to the Bellman equations

One for state value

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$= \max_{a} \mathbb{E} \left[\sum_{k=0}^{\infty} \gamma^{k} r_{k+1} | s_{0} = s, a_{0} = a, \pi^{*} \right]$$

$$= \max_{a} \mathbb{E} \left[r_{1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{k+2} | s_{0} = s, a_{0} = a, \pi^{*} \right]$$

$$= \max_{a} \mathbb{E} \left[r_{1} + \gamma V^{*}(s_{1}) | s_{0} = s, a_{0} = a, \pi^{*} \right]$$

Another for state-action value

$$Q^*(s, a) = \mathbb{E}[r_1 + \gamma \max_{a'} Q^*(s_1, a') | s_0 = s, a_0 = a]$$
$$= \mathbb{E}[r_1 + \gamma V^*(s_1) | s_0 = s, a_0 = a]$$

Solving them (Dynamic Programming, Monte Carlo) will find the optimal policy

Example: Modeling Sepsis with Partially Observable MDP

Example: State-action-observation-reward space

Training and Testing

Gultepe E., Green J., Nguyen H., Adams J., Albertson T., **Tagkopoulos I.** (2014) From vital signs to clinical outcomes for patients with sepsis: A machine learning basis for a clinical decision support system. *Journal of American Medical Informatics Association* (*JAMIA*), 21(2):315-25, doi:10.1136/amiajnl-2013-1815

Optimal Policy

Predicting Mortality with SVMs

Medical Informatics: Mining the Electronic Health Records

Data-derived treatment led to better outcomes

(47% vs. 36%)

Another example: agricultural informatics

1498 crop fields in CA San Joaquin valley, 1997 to 2008 Optimal pest management (*Lygus Hesperus*)

Only ~82% of the farmers use the data-predicted optimal management

	5-11Jun	12-18Jun	19-25Jun	26Jun-2Jul	3-9Jul	10-16Jul	17-23Jul
Low	0.97	0.98	0.95	0.97	0.99	0.99	1.00
${\rm Medium}$	0.08	0.89	0.89	0.96	0.98	0.97	0.97
High	0.18	0.67	0.74	0.83	0.88	0.90	0.87

Cost from sub-optimal pest management per acre (yield-related cost only)

cotton.

	5-11Jun	12-18Jun	19-25Jun	26Jun-2Jul	3-9Jul	10-16Jul	17-23Jul
Low	\$14.50	\$17.51	\$20.81	\$19.79	\$4.04	\$54.70	\$35.50
${\bf Medium}$	\$45.59	\$2.79	\$18.75	\$18.55	\$22.46	\$17.95	\$45.61
High	\$33.81	\$2.64	\$20.06	\$12.96	\$23.89	\$19.99	\$42.99

End of Lecture 14