

## HEXFET® Power MOSFET







### Application(s)

Load/ System Switch

#### **Features and Benefits**

#### **Features**

| Low $R_{DS(on)}$ ( < 21m $\Omega$ )                          |
|--------------------------------------------------------------|
| Industry-standard SOT-23 Package                             |
| RoHS compliant containing no lead, no bromide and no halogen |

#### **Benefits**

| _             |                            |
|---------------|----------------------------|
|               | Lower conduction losses    |
| results in    | Multi-vendor compatibility |
| $\Rightarrow$ | Environmentally friendly   |

**Absolute Maximum Ratings** 

| Symbol                                 | Parameter                                       | Max.         | Units |
|----------------------------------------|-------------------------------------------------|--------------|-------|
| V <sub>DS</sub>                        | <b>Drain-Source Voltage</b>                     | 20           | V     |
| I <sub>D</sub> @ T <sub>A</sub> = 25°C | Continuous Drain Current, V <sub>GS</sub> @ 10V | 6.3          |       |
| I <sub>D</sub> @ T <sub>A</sub> = 70°C | Continuous Drain Current, V <sub>GS</sub> @ 10V | 5.1          | Α     |
| I <sub>DM</sub>                        | Pulsed Drain Current                            | 32           |       |
| P <sub>D</sub> @T <sub>A</sub> = 25°C  | Maximum Power Dissipation                       | 1.3          | W     |
| P <sub>D</sub> @T <sub>A</sub> = 70°C  | Maximum Power Dissipation                       | 0.80         | VV    |
| Linear Derating Factor                 |                                                 | 0.01         | W/°C  |
| $V_{GS}$                               | Gate-to-Source Voltage                          | ± 12         | V     |
| $T_{J,}T_{STG}$                        | Junction and Storage Temperature Range          | -55 to + 150 | °C    |

### **Thermal Resistance**

| Symbol          | Parameter                     | Тур. | Max. | Units |
|-----------------|-------------------------------|------|------|-------|
| $R_{\theta JA}$ | Junction-to-Ambient ③         |      | 100  | °C/W  |
| $R_{\theta JA}$ | Junction-to-Ambient (t<10s) ⊕ |      | 99   | C/VV  |

#### ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet.

Notes ① through ④ are on page 10 www.irf.com

1

## Electric Characteristics @ $T_J = 25$ °C (unless otherwise specified)

| Symbol                              | Parameter                             | Min. | Тур. | Max. | Units      | Conditions                                        |
|-------------------------------------|---------------------------------------|------|------|------|------------|---------------------------------------------------|
| $V_{(BR)DSS}$                       | Drain-to-Source Breakdown Voltage     | 20   |      |      | ٧          | $V_{GS} = 0V, I_D = 250\mu A$                     |
| $\Delta V_{(BR)DSS}\!/\!\Delta T_J$ | Breakdown Voltage Temp. Coefficient   |      | 7.8  | _    | mV/°C      | Reference to 25°C, I <sub>D</sub> = 1mA           |
| D                                   | Static Drain-to-Source On-Resistance  |      | 16.0 | 21.0 | <b>~</b> 0 | $V_{GS} = 4.5V, I_D = 6.3A$ ②                     |
| R <sub>DS(on)</sub>                 | Static Drain-to-Source Off-Resistance |      | 22.0 | 27.0 | mΩ         | $V_{GS} = 2.5V, I_D = 5.1A$ ②                     |
| V <sub>GS(th)</sub>                 | Gate Threshold Voltage                | 0.5  | 0.9  | 1.1  | V          | $V_{DS} = V_{GS}, I_D = 10\mu A$                  |
| I <sub>DSS</sub>                    | Drain-to-Source Leakage Current       |      |      | 1.0  |            | $V_{DS} = 16V, V_{GS} = 0V$                       |
|                                     | Dialii-to-Source Leakage Current      |      |      | 150  | μA         | $V_{DS} = 16V, V_{GS} = 0V, T_{J} = 125^{\circ}C$ |
| I <sub>GSS</sub>                    | Gate-to-Source Forward Leakage        |      |      | 100  | nA         | V <sub>GS</sub> = 12V                             |
|                                     | Gate-to-Source Reverse Leakage        |      |      | -100 | IIA        | V <sub>GS</sub> = -12V                            |
| R <sub>G</sub>                      | Internal Gate Resistance              |      | 1.7  |      | Ω          |                                                   |
| gfs                                 | Forward Transconductance              | 17   |      |      | S          | $V_{DS} = 10V, I_D = 6.3A$                        |
| $Q_g$                               | Total Gate Charge                     |      | 8.9  |      |            | $I_D = 6.3A$                                      |
| $Q_{gs}$                            | Gate-to-Source Charge                 |      | 0.68 |      | nC         | V <sub>DS</sub> =10V                              |
| $Q_{gd}$                            | Gate-to-Drain ("Miller") Charge       |      | 4.4  |      |            | V <sub>GS</sub> = 4.5V ②                          |
| t <sub>d(on)</sub>                  | Turn-On Delay Time                    |      | 4.9  |      |            | V <sub>DD</sub> =10V <sup>②</sup>                 |
| t <sub>r</sub>                      | Rise Time                             |      | 7.5  |      |            | I <sub>D</sub> = 1.0A                             |
| t <sub>d(off)</sub>                 | Turn-Off Delay Time                   |      | 19   |      | ns         | $R_G = 6.8\Omega$                                 |
| t <sub>f</sub>                      | Fall Time                             |      | 12   |      |            | V <sub>GS</sub> = 4.5V                            |
| C <sub>iss</sub>                    | Input Capacitance                     |      | 700  |      |            | V <sub>GS</sub> = 0V                              |
| C <sub>oss</sub>                    | Output Capacitance                    |      | 140  |      | pF         | V <sub>DS</sub> = 16V                             |
| C <sub>rss</sub>                    | Reverse Transfer Capacitance          |      | 98   |      |            | f = 1.0MHz                                        |

## **Source - Drain Ratings and Characteristics**

| Symbol          | Parameter                 | Min. | Тур.     | Max. | Units | Conditions                                           |
|-----------------|---------------------------|------|----------|------|-------|------------------------------------------------------|
| Is              | Continuous Source Current |      |          | 1.3  |       | MOSFET symbol                                        |
|                 | (Body Diode)              |      |          | 1.0  | Α     | showing the                                          |
| I <sub>SM</sub> | Pulsed Source Current     |      | <u> </u> |      | _ ^   | integral reverse                                     |
|                 | (Body Diode) ①            |      |          |      | 32    | p-n junction diode.                                  |
| V <sub>SD</sub> | Diode Forward Voltage     |      |          | 1.2  | V     | $T_J = 25^{\circ}C$ , $I_S = 6.3A$ , $V_{GS} = 0V$ ② |
| t <sub>rr</sub> | Reverse Recovery Time     |      | 12       | 18   | ns    | $T_J = 25^{\circ}C$ , $V_R = 15V$ , $I_F = 1.3A$     |
| Q <sub>rr</sub> | Reverse Recovery Charge   |      | 5.1      | 7.7  | nC    | di/dt = 100A/μs ②                                    |

# International TOR Rectifier

# IRLML6244TRPbF



Fig 1. Typical Output Characteristics



Fig 2. Typical Output Characteristics



Fig 3. Typical Transfer Characteristics



**Fig 4.** Normalized On-Resistance vs. Temperature



**Fig 5.** Typical Capacitance vs. Drain-to-Source Voltage



**Fig 6.** Typical Gate Charge vs. Gate-to-Source Voltage



**Fig 7.** Typical Source-Drain Diode Forward Voltage



Fig 8. Maximum Safe Operating Area

# International TOR Rectifier

## IRLML6244TRPbF



**Fig 9.** Maximum Drain Current vs. Ambient Temperature



Fig 10a. Switching Time Test Circuit



Fig 10b. Switching Time Waveforms



Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient



**Fig 12.** Typical On-Resistance vs. Gate Voltage



**Fig 13.** Typical On-Resistance vs. Drain Current



Fig 14a. Basic Gate Charge Waveform



Fig 14b. Gate Charge Test Circuit

# International IOR Rectifier

# IRLML6244TRPbF



**Fig 15.** Typical Threshold Voltage vs. Junction Temperature

Fig 16. Typical Power vs. Time

International IOR Rectifier

### Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)









| DIMENSIONS |        |       |        |       |  |
|------------|--------|-------|--------|-------|--|
| SYMBOL     | MILLIM | ETERS | INCHES |       |  |
| STIVIBUL   | MIN    | MAX   | MIN    | MAX   |  |
| Α          | 0.89   | 1.12  | 0.035  | 0.044 |  |
| A1         | 0.01   | 0.10  | 0.0004 | 0.004 |  |
| A2         | 0.88   | 1.02  | 0.035  | 0.040 |  |
| b          | 0.30   | 0.50  | 0.012  | 0.020 |  |
| С          | 0.08   | 0.20  | 0.003  | 0.008 |  |
| D          | 2.80   | 3.04  | 0.110  | 0.120 |  |
| Е          | 2.10   | 2.64  | 0.083  | 0.104 |  |
| E1         | 1.20   | 1.40  | 0.047  | 0.055 |  |
| е          | 0.95   | BSC   | 0.037  | BSC   |  |
| e1         | 1.90   | BSC   | 0.075  | BSC   |  |
| L          | 0.40   | 0.60  | 0.016  | 0.024 |  |
| L1         | 0.54   | REF   | 0.021  | REF   |  |
| L2         | 0.25   | BSC   | 0.010  | BSC   |  |
| 0          | 0      | 8     | 0      | 8     |  |

DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
 DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

3. CONTROLLING DIMENSION: MILLIMETER.

A DATUM PLANE H IS LOCATED AT THE MOLD PARTING LINE.

∠∆DATUM PLANE HIS LOCATED AT THE MICL D PARTINIS LINE.

ADATUM A AND B TO BE DETERMINED AT DATUM PLANE H.

ADMINISIONS D AND BI ARE MEASURED AT DATUM PLANE H. DIMENSIONS DOES
NOT INCLUDE MOLD PROTRUSIONS OR INTERLEAD PLASH MICLD PROTRUSIONS
OR INTERLEAD PLASH SHALL NOT EXCEED 0.25 MI/(10.010 INCH) PER SIDE.

ADMENSION, IS THE LEAD LEASH SHALL SOFT EXCEED 1.25 MI/(10.010 INCH) PER SIDE.

B OUTLINE CONFORMS TO JEDEC OUTLINE TO 226 AB.

### Micro3 (SOT-23/TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001





Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

## Micro3™ (SOT-23) Tape & Reel Information

Dimensions are shown in millimeters (inches)



Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

International

TOR Rectifier

| Orderable part number | Package Type    | Standard Pack |          | Note |
|-----------------------|-----------------|---------------|----------|------|
| -                     |                 | Form          | Quantity |      |
| IRLML6244TRPbF        | Micro3 (SOT-23) | Tape and Reel | 3000     |      |

#### Qualification information<sup>†</sup>

| Qualification level        | Consumer <sup>††</sup>                        |                                            |  |  |
|----------------------------|-----------------------------------------------|--------------------------------------------|--|--|
|                            | (per JEDEC JESD47F <sup>†††</sup> guidelines) |                                            |  |  |
| Majatura Carajtiritud aval | Micro (COT 00)                                | MSL1                                       |  |  |
| Moisture Sensitivity Level | Micro3 (SOT-23)                               | (per IPC/JEDEC J-STD-020D <sup>†††</sup> ) |  |  |
| RoHS compliant             | Yes                                           |                                            |  |  |

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

#### Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width  $\leq$  400 $\mu$ s; duty cycle  $\leq$  2%.
- 3 Surface mounted on 1 in square Cu board.
- Refer to <u>application note #AN-994.</u>

Data and specifications subject to change without notice.



IR WORLD HEADQUARTERS: 101 N. SEpulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/12