计算机组成

流水线处理器 形式建模综合方法

高小鹏

北京航空航天大学计算机学院

挑战

- □ 流水线设计目标: 给定<mark>任意指令集</mark>,确保基于该指令集的任意程序均能全速运行
 - 功能:能发现所有可能导致冒险的指令组合性能:尽力转发~~凡能转发的,绝不暂停!
 - 用暂停来规避转发, 背离了流水线设计初衷
- □ 挑战:通过枚举构造冲突的方法,难以证明穷尽所有的可能
 - ◆ 箴言:测试只能发现错误,不能证明没有错误!
- □ 方法: 针对任意指令集,正确、高效的构造全速转发流水线

NOTE

方法适用于单发射标准流水线,不 不适用乱序执行等先进流水线

流水线方法的概述

□ 基本思路: 因为是全速流水线, 所以转发是暂停的前提

	数据通路	控制
转发	构造无转发的基础流水线	与单周期控制器相同
	增加转发电路	
	根据RTL和流水线架构,构造	造每条指令的T _{use} 和T _{new}
暂停	构造暂停/转发 <mark>策略矩阵</mark> (覆盖性分析)
	根据策略矩阵生成 <mark>暂停</mark> 控制	· 表达式
	根据策略矩阵生成 <mark>转发</mark> 控制	· 川表达式

3

提纲

- □ 数据通路构造方法
 - 基础流水线规划
 - 建模指令RTL
 - ◆ RTL制导的独立数据通路
 - 综合无转发数据通路
 - 综合转发电路
 - 构造功能MUX控制表达式
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- □ 转发机制构造方法
- □ 控制冒险处理机制

流水线寄存器命名

NOTE

望文生义:内容

- □ 指导思想: 使用无二义性的名字; 直观易懂
 - 例如rt就存在二义性
 - 可能代表第2个源寄存器编号,也可能是写寄存器编号

名字	宽度	描述	对应的指令域	命名考虑
A1	5位	第1个源寄存器编号	当前只有rs	与RF设计一致
A2	5位	第2个源寄存器编号	当前只有rt	A3需要由rd/rt/+31转
А3	5位	目的寄存器编号	rd或rt或+31	换得到(后续介绍)
V1	32位	RF的第1个寄存器输出值		Value 的关ウ贝
V2	32位	RF的第2个寄存器输出值		Value的首字母
E32	32位	EXT的32位扩展结果		扩展的英文缩写
AO	32位	ALU计算结果		沿用多周期命名
DR	32位	DM输出值		冶用 多同 期 叩石
PC4	32位	下一条指令地址		
			6	北京航空航天大学计算机学院 School of Computer Science and Engineering, Belliang University

3

			指令
流水线数据通路描述表		PC.	相学
加小级数16世頃1世代		IM	
		DD4	
□ 1、描述表的架构:与流水线执行路径尽量保持一致	人 D级	IR PC4	
□ 2、RF:将读出与写入分离,更易于理解5阶段	RF	A1 A2	
	EXT	-	
□ 3、流水寄存器有2个用途	NPC	PC4 126	
4、仅有刚立作的信息。上参加市华的供家切中学	СМІ	D1	
┃ ・ 1)保存刚产生的信息:与前级功能部件密切相关		D2 V1	
• 例如: E级的A3		V2	
71741 - 277417.10		A1	
◆ 2)级间传递信息:简单的前后级衔接	E级	A2 A3	
		EXT	
• 例如:M级和W级的A3 ███		PC4	
 。 古2.3寸短 上具次心史左照的次位头系且国立/	ALL	A B	
🕒 4、由3.2可知,大量流水寄存器的连接关系是固定的	สับ , 💳	V2	
 因此问题焦点是解决信息的最初来源		A2	
	M級		
│ ◆ 例如A3:E级初值来自IR,M级/W级则为简单传递		A3 PC4	
	DM	Α	
◆ 例如AO:M级初值来自ALU,W级则为简单传递	DIVI	WD	
		A3 PC4	
	W级	AO	
		DR	
と A A A A A A A A A A A A A A A A A A A	空航: RF	A3 WD	
School of College	acc. Jennin	I WD	

- □ 数据通路构造方法
 - 基础流水线规划
 - 建模指令RTL
 - RTL制导的独立数据通路
 - 综合无转发数据通路
 - 综合转发电路
 - ◆ 构造功能MUX控制表达式
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- □ 转发机制构造方法
- □ 控制冒险处理机制

建模lw的RTL: 计算 $R[rt] \leftarrow MEM[R[rs] + sign ext(i16)]$ □ Cycle -3: 基地址加偏移, 结果写入AO ◆ 基地址来源于rs寄存器,即V1;偏移来源于扩展单元,即E32 ◆ 因为需要V1, 就必须同时建立A1 • V1/A1结对的理由: 需要判断是否存在其他指令在A1(即rs)上相关 (ALU) PC IM RF DM RF ◆ A3仍然需要从E级向W级传递 ADD4 EXT NPC CMP A3 А3 步骤 控制信号 RTL 回写 RF[A3@W] ←DR@W RFWr:1 DR@W -DM[AO@M] ٧1 访存 M98A→ W98A Α1 DR AO@M ←ALU(V1@E,E32@E) 计算 ALUOp: ADD A3@M ←A3@E E32 D级 E级 M级 W级

- □ 数据通路构造方法
 - 基础流水线规划
 - 建模指令RTL
 - ◆ RTL制导的独立数据通路
 - 综合无转发数据通路
 - 综合转发电路
 - ◆ 构造功能MUX控制表达式
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- □ 转发机制构造方法
- □ 控制冒险处理机制

- □ 数据通路构造方法
 - 基础流水线规划
 - 建模指令RTL
 - ◆ RTL制导的独立数据通路
 - 综合无转发数据通路
 - 综合转发电路
 - ◆ 构造功能MUX控制表达式
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- □ 转发机制构造方法
- □ 控制冒险处理机制

				lw	sw	add	sub	ori	bea		jal	ir
			C	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4 NPC	NPC	NPC	RF.RD1
		i i		PC	PC	PC	PC	PC	PC PC	PC	PC	PC
			D4	PC.	PC.	PC.	PC.	PC.	PC.	PC.	PC.	
	每条指令		IR	IM	IM	IM	IM	IM	IM	IM	IM	IM
_		D级	PC4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	
	对应的数		A1	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D			IR[rs]@D
		RF	A2		IR[rt]@D	IR[rt]@D	IR[rt]@D		IR[rt]@D			
	据通路	EXT		IR[i16]@D	IR[i16]@D			IR[i16]@D				
	1/H X 12 12 H		PC4						PC4@D	PC4@D	PC4@D	
		NPC	126						IR[i16]@D	IR[i26]@D	IR[i26]@D	
		CMP	D1						RF.RD1			
		CIVIP	D2						RF.RD2			
			V1	RF.RD1	RF.RD1	RF.RD1	RF.RD1	RF.RD1				
			V2		RF.RD2	RF.RD2	RF.RD2					
			A1	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D				
		E级	A2		IR[rt]@D	IR[rt]@D	IR[rt]@D					
			A3	IR[rt]@D		IR[rd]@D	IR[rd]@D	IR[rt]@D			31	
			E32	EXT	EXT							
			PC4								PC4@D	
		ALU	Α	V1@E	V1@E	V1@E	V1@E	V1@E				
		7120	В	E32@E	E32@E	V2@E	V2@E	E32@E				
			V2		V2@E							
			A2		RD2@E							
		M级	AO	ALU	ALU	ALU	ALU	ALU				
			A3	A3@E		A3@E	A3@E	A3@E				
			PC4								PC4@E	
		DM	Α	AO@M	AO@M	AO@M	AO@M	AO@M				
			WD		RD2@M							
			A3	A3@M		A3@M	A3@M	A3@M				
		w级	PC4								PC4@M	
			AO	AO@M		AO@M	AO@M	AO@M				
			DR	DM		12011	12011	1201/:				
		RF	A3	A3@W		A3@W	A3@W	A3@W			2010111	
			WD	DR@W		AO@W	AO@W	AO@W			PC4@W	

		lw	SW	add	sub	ori	beq	j	jal	jr	MUX	0	1	2
Р	С	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4 NPC	NPC	NPC	RF.RD1	MPC	ADD4	NPC	RF.RD1
11	V	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC			
AD	D4	PC	PC	PC	PC	PC	PC	PC	PC		PC			
D级	IR	IM	IM	IM	IM	IM	IM	IM	IM	IM	IM			
DSX	PC4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4		ADD4			
RF	A1	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D			IR[rs]@D	IR[rs]@D			
KF	A2		IR[rt]@D	IR[rt]@D	IR[rt]@D		IR[rt]@D				IR[rt]@D			
EXT		IR[i16]@D	IR[i16]@D			IR[i16]@D					IR[i16]@D			
NPC	PC4						PC4@D	PC4@D	PC4@D		PC4@D			
MPC	126						IR[i16]@D	IR[i26]@D	IR[i26]@D		IR[i26]@D			
CNAD	D1						RF.RD1				RF.RD1			
CMP	Π2						RF RD2				RF.RD2			
											RF.RD1			
		.	1 317		17 1						RF.RD2			
Ш	5	开后	李川	加井	猫 人						IR[rs]@D			
1	┛,	/ I I		ペノー	1111	1-77		J ,			IR[rt]@D			
II	[人」	一十	東ケム	ゟエ	杜上 4	ン米ケー	居通	中女			MA3E	IR[rt]@D	IR[rd]@D	
J	12	以兀	, 笙口	ソフし	Ŧマ ク	乙女乂1	万咫	ഥ。			EXT			
١.											PC4@D			
Ŀ	=	曲 生	田田	么	丰甘	1日 迷灯 :	据通	2245	<u> </u>	屰 □	V1@E			
1	٦.	十/4	12411	ン	117	门及人	冲匹	1111111111111111111111111111111111111	$\mathcal{N} \square \mathcal{I}$	/ J _	MALUB	V2@E	E32@E	
2	+ •	一人	. #III II	7							V2@E			
Ž,	厶.	兀王	相同	IJ							A2@E			
											ALU			
		. بى									A3@E			
	PC4					_			PC4@E		PC4@E			
	Α	AO@M	AO@M	AO@M	AO@M	AO@M					AO@M			
DM	WD		RD2@M								V2@M			
	A3	A3@M	Ç	A3@M	A3@M	A3@M					A3@M			
	PC4			- Ç					PC4@M		PC4@M			
W级	AO	AO@M		AO@M	AO@M	AO@M					AO@M			
	DR	DM				.50.77					DM			
	A3	A3@W		A3@W	A3@W	A3@W					A3@W			
RF	WD	DR@W		AO@W	AO@W	AO@W			PC4@W		MRFWD	AO@W	DR@W	PC4@V
	****	D1160 44		7064	7060	ACW W			1 5760 11		IVIII VVD	ACW W	D11.60 W	, c+@ (

- □ 方法的流程概述
- □ 数据通路构造方法
 - 基础流水线规划
 - 建模指令RTL
 - ◆ RTL制导的独立数据通路
 - 综合无转发数据通路
 - 构造功能MUX控制表达式
 - 综合转发电路
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- □ 转发机制构造方法
- □ 控制冒险处理机制

北京航空航天大学计算机学院

转发的设计思路

- 如果beq比较电路前移至D级,则D级还必须考虑rs和rt的暂停与 转发!
 - ◆ 暂停: 例如, E级是cal类指令或load类指令, 等等
 - ◆ 转发: M、W肯定需要转发。但E级是否存在转发的必要性?!

支持转发的完整数据通路

□ 遍历数据通路的功能部件,找到所有与RF.RD1和RF.RD2相关的需求者

◆ 注意: V1--RF.RD1及V2--RF.RD2 的关联关系

□ 示例: PC和ALU.B

◆ PC: 输入2来自RF读出的第1个源操作数

◆ ALU.B: 输入0来自V2, 即RF读出的第2个源操作数

		lw	sw	add	sub	ori	beq	j	jal	jr	MUX	0	1	2	
PC	2	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4 NPC	NPC	NPC	RF.RD1	MPC	ADD4	NPC	RF.R	D1
ALU	В	E32@E	E32@E	V2@E	V2@E	E32@E					MALUB	V2@E	E32@E		
	MFALUBE MEPCE														

该如何具体设计转发MUX呢?

支持转发的完整数据通路

- 转发设计的基本思路:需求者以后的所有可能存储新数据的流水 寄存器,均需要向需求者转发数据
- □ 示例: MALUB的输入0(来自V2@E), 需要替换为MFALUBE
 - ◆ 分析:ALU的后级为M和W。M存储ALU的计算结果,W存储ALU的计算结果或DM的读出数据
 - ◆ 结论: M和W均需要向MFALUBE转发
 - M转发: AO; W转发: AO、DR

		lw	sw	add	sub	ori	beq	j	jal	jr	MUX	0	1	2
PC		ADD4	ADD4	ADD4	ADD4	ADD4	ADD4 NPC	NPC	NPC	RF.RD1	MPC	ADD4	NPC	RF.RD1
ALU	В	E32@E	E32@E	V2@E	V2@E	E32@E					MALUB	V2@E	E32@E	
						_						1		
NC			de tar		<i>-</i> \			0	1	2	3			
MU 计		的端口 旦最好				MFAL	.UBE	V2@E	DR@W	AO@V	V AO@M			
		越高,				优势	级	低	ı	† 	l l	100	3777	算机学院 Beihang University

Т			lw	SW	add	sub	ori	beg	i	jal	jr	MUX	0	1	2
Н	PC	,	ADD4	ADD4	ADD4	ADD4	ADD4	ADD41NPC	NPC	NPC	RF.RD1	MPC	ADD4	NPC	RF.RD1
\vdash	IN	-	PC	PC	PC	PC	PC	PC PC	PC	PC	PC	PC	ADD4	141 C	MIMDI
	ADE	_	PC	PC	PC	PC	PC	PC	PC	PC		PC			
	Т	IR	IM	IM	IM	IM	IM	IM	IM	IM	IM	IM			
D≰	及片	NPC	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4		ADD4			
г	T	A1	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D			IR[rs]@D	IR[rs]@D			
R		A2	1.70		IR[rt]@D		1.70	IR[rt]@D			1 170	IR[rt]@D			
EX	т		IR[i16]@D	IR[i16]@D			IR[i16]@D					IR[i16]@D			
NF		PC4	, ,-	, ,-			, ,-	PC4@D	PC4@D	PC4@D		PC4@D			
INF	"	126						IR[i16]@D	IR[i26]@D	IR[i26]@D		IR[i26]@D			
CIV		D1						RF.RD1				RF.RD1			
CIV	ויי	D2						RF.RD2				RF.RD2			
	T	V1	RF.RD1	RF.RD1	RF.RD1	RF.RD1	RF.RD1								
	Γ	V2		RF.RD2	RF.RD2	RF.RD2									
		Α1	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D					IR[rs]@D			
Eέ	及[A2		IR[rt]@D	IR[rt]@D	IR[rt]@D						IR[rt]@D			
		A3	IR[rt]@D		IR[rd]@D	IR[rd]@D	IR[rt]@D			31		MA3E	IR[rt]@D	IR[rd]@D	
		E32	EXT	EXT								EXT			
		PC4								PC4@D		PC4@D			
AL	ı.L	Α	V1@E	V1@E	V1@E	V1@E	V1@E					V1@E			
		В	E32@E	E32@E	V2@E	V2@E	E32@E					MALUB	V2@E	E32@E	
	-	V2		V2@E								V2@E			
	-	A2		RD2@E								A2@E			
Má		AO	ALU	ALU	ALU	ALU	ALU					ALU			
		A3	A3@E		A3@E	A3@E	A3@E					A3@E			
		PC4								PC4@E		PC4@E			
lor	лŀ	Α	AO@M	AO@M	AO@M	AO@M	AO@M					AO@M			
Ĺ.,		WD		RD2@M								V2@M			
	- 1-	A3	A3@M		A3@M	A3@M	A3@M					A3@M			
w	215 -	PC4								PC4@M		PC4@M			
	1	AO	AO@M		AO@M	AO@M	AO@M					AO@M			
	-	DR	DM									DM			
R	-	A3	A3@W		A3@W	A3@W	A3@W					A3@W		_	
	_['	WD	DR@W		AO@W	AO@W	AO@W			PC4@W		MRFWD	AO@W	DR@W	PC4@W

		lw	SW	add	sub	ori	beg	i	jal	ir	MUX	0	1	2
Р	С	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4 NPC	NPC	NPC	RF.RD1	MPC	ADD4	NPC	MFPCF
II.	И	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC			
AD	D4	PC	PC	PC	PC	PC	PC	PC	PC		PC			
D级	IR	IM	IM	IM	IM	IM	IM	IM	IM	IM	IM			
D級	NPC	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4		ADD4			
RF	A1	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D			IR[rs]@D	IR[rs]@D			
KF	A2		IR[rt]@D	IR[rt]@D	IR[rt]@D		IR[rt]@D				IR[rt]@D			
EXT		IR[i16]@D	IR[i16]@D			IR[i16]@D					IR[i16]@D			
NPC	PC4						PC4@D	PC4@D	PC4@D		PC4@D			
INPC	126						IR[i16]@D	IR[i26]@D	IR[i26]@D		IR[i26]@D			
СМР	D1						RF.RD1				MFCMP1D			
CIVIP	D2						RF.RD2				MFCMP2D			
	V1	RF.RD1	RF.RD1	RF.RD1	RF.RD1	RF.RD1								
	V2		RF.RD2	RF.RD2	RF.RD2									
	A1	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D					IR[rs]@D			
E级	A2		IR[rt]@D	IR[rt]@D	IR[rt]@D						IR[rt]@D			
	A3	IR[rt]@D		IR[rd]@D	IR[rd]@D	IR[rt]@D			31		MA3E	IR[rt]@D	IR[rd]@D	
	E32	EXT	EXT								EXT			
	PC4								PC4@D		PC4@D			
ALU	Α	V1@E	V1@E	V1@E	V1@E	V1@E					V1@E			
ALO	В	E32@E	E32@E	V2@E	V2@E	E32@E					MALUB	MFALUBE	E32@E	
	V2		V2@E								MFV2M			
	A2		RD2@E								A2@E			
M级	AO	ALU	ALU	ALU	ALU	ALU					ALU			
	A3	A3@E		A3@E	A3@E	A3@E					A3@E			
	PC4								PC4@E		PC4@E			
ВΜ	Α	AO@M	AO@M	AO@M	AO@M	AO@M					AO@M			
DIVI	WD		RD2@M								MFWDM			
	A3	A3@M		A3@M	A3@M	A3@M					A3@M			
w级	PC4								PC4@M		PC4@M			
VV S/X	AO	AO@M		AO@M	AO@M	AO@M					AO@M			
	DR	DM									DM			
RF	A3	A3@W		A3@W	A3@W	A3@W					A3@W			
INF	WD	DR@W		AO@W	AO@W	AO@W			PC4@W		MRFWD	AO@W	DR@W	PC4@W

- □ 数据通路构造方法
 - 基础流水线规划
 - 建模指令RTL
 - ◆ RTL制导的独立数据通路
 - 综合无转发数据通路
 - 综合转发电路
 - 构造功能MUX控制表达式
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- □ 转发机制构造方法
- □ 控制冒险处理机制

构造功能MUX控制信号表达式

- □ 数据通路中包含2类MUX: 功能MUX、转发MUX
 - ◆ 功能MUX: 与指令执行的功能(即操作语义)相关
 - 转发MUX:与指令执行的性能相关

		lw	sw	add	sub	ori	beq	j	jal	jr	MUX	0	1	2
СМР	D1						RF.RD1				MFCMP1D			
CIVIP	D2						RF.RD2				MFCMP2D			
E级	А3	IR[rt]@D		IR[rd]@D	IR[rd]@D	IR[rt]@D			31		MA3E	IR[rt]@D	IR[rd]@D	
ALU	В	E32@E	E32@E	V2@E	V2@E	E32@E					MALUB	MFALUBE	E32@E	
M级	V2		V2@E								MFV2M			
DM	WD		RD2@M								MFWDM			

- □ 目前先构造<mark>功能MUX</mark>控制信号表达式
 - ◆ 在暂停与转发控制部分讲解转发MUX控制信号表达式

构造功能MUX控制信号表达式

□ 示例:构造PC的功能MUX的控制信号PCSel表达式

ALUBSel = (lw+sw+ori) ? `ALUB_E32 : `ALUB_RT

- □ 数据通路表:决定了MUX控制信号的取值
 - ◆ 注意1: 表格和表达式的颜色对应关系
 - 注意2: 转发MUX与寄存器值之间的关系
 - 示例: MFALUBE就是与RF.RD2相关的转发MUX
 - `define ALUB_E32 1'b1 `define ALUB_RT 1'b0

NOTE 通过宏提高代码可读 性、可维护性

- □ 数据通路构造方法
 - 基础流水线规划
 - 建模指令RTL
 - ◆ RTL制导的独立数据通路
 - 综合无转发数据通路
 - 综合转发电路
 - ◆ 构造功能MUX控制表达式
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- □ 转发机制构造方法
- □ 控制冒险处理机制

北京航空航天大学计算机学院 School of Computer Science and Engineering, Beihang University

33

流水线的执行特点及数据冒险对策的基本构思1/4

- □ 目前的流水线的基本特点是:按序发射,按序完成
 - 一旦当前指令阻塞,后续指令就被阻塞
- 这意味着,对于需要暂停的指令来说,无论在哪级暂停,其后续 指令都不能执行
- 既然如此,那么对于数据相关的暂停和转发,就可以分成两个独立环节
 - 在D级检测

流水线的执行特点及数据冒险对策的基本构思2/4

- □ 在D级就暂停住指令可能是不合理的
- □ 下面的例子,由于sub被冻结在D直至冒险解除,因此beq指令在 cycle4才进入D

		PC+4			RF(读)	Al	LU	D	М			
地址	指令	CLK	PC	IM	[)	E		N	/	W	/	RF
0 lw	\$t0, 0(\$t1)		0	lw	١١	N							
U ±w	700, 0 (701)	j 1	4	sub	写t0	3							
/ guh	\$t3, \$t0, \$t2		4	sub	Sι	ıb	lv	V					
4 500	, 403, 400, 402	1 2	8	and	读t0	1	写t0	2					
8 beq	,		8	beq	Sι	ıb	no	n	١١	N			
o beq		£ Ĺ	8	beq	读t0	1	110	Ρ	写t0	1			
12 XXX			8	beq	be		su	-	no	n	lv	/	
12 11111	•	1 4	12	XXX	读t0	1	读t0	0	110	γþ	新t0	0	
16													
10													
					35								算机学院 Beihang University

流水线的执行特点及数据冒险对策的基本构思3/4

- □ 如果允许sub前进直至必须暂停,那么beq在cycle3就进入了D
- □ 由于beq是在D级执行的,因此sub进入E级处于执行时,D级的beq也能同时执行
- □ 对于5级流水线来说,只有b和j在D级执行,因此是受益指令

				PC+4			RF(读)	Al	LU	D	M		
地址	: 指	令	CLK	PC	IM	C)	E		N	1	V	V	RF
0	lw \$t0,	0(\$t1)		0	lw	Ιν	v							
U	IW SCO,	0 (901)	j 1	4	sub	写t0	3							
1	e11h \$+3	\$t0, \$t2		4	sub	su	ıb	١٧	٧					
4	Sub Pts,	700, 702	1 2	8	beq	读t0	1	写t0	2					
0	beq			8	beq	be	eq.	<u>.</u>	h	١٧	V			
0	ped		3 1	12	xxx			SU	sub		1			
12	xxx			12	XXX	XX	Χ	SU	ıb		'n	lv	W	
12	AAA		1 4	16	ууу			读t0	0	nc	γÞ	新t0	0	
16	ууу													
10	YYY													
						36								算机学院 Beihang Universit

流水线的执行特点及数据冒险对策的基本构思4/4

- □ 如果采用该方案,则就必须再增加标记:
 - 标记每个流水段是否执行结束
 - 当然,对于5级流水线来说,这个标记可以只在D级就可以了。
 - 虽然E和M都是执行(分别对应ALU和DM),但M级只有转发了
- 当指令是b/j时,标志置位,意味着可以再继续执行,否则就必须 阻塞了
- □ 该方案将使得流水线的控制更加复杂
- □ 我认为由于受益指令非常有限,而且方法学重点在于解决100%的覆盖性,因此仍然保持原设计: D级阻塞需要暂停的指令

37

数据冒险:需求与供给能否匹配?

- 需求者: 使用或传递寄存器值的功能部件和流水线寄存器
 - ◆ 例1: add/sub/or的需求在E级的ALU
 - ◆ 例2: j指令不需要读取任何寄存器,因此j指令没有需求
- □ 供给者:保存有reg新结果的流水线寄存器
 - ◆ 例1: 所有运算类指令的供给者是M级和W级
 - ◆ 例2: load类指令的供给者是W级
- □ 数据冒险可以转化为:需求与供给的匹配
 - ◆ 暂停:结果产生的时间晚于指令到达需求者时(前)的时间
 - ◆ 转发:结果产生的时间早于/等于指令到达需求者时(前)的时间
- □ Q: 如果有多个供给者, M级、W级哪个值是最新值?

41

需求者的最晚时间模型

- □ *T*_{use}(time-to-use): 指令进入D级后, 其后的某个功能部件再经过 多少cycle就必须要使用寄存器值
- □ 特点1: Tuse是静态值, 读取操作数的时间上限
 - ◆ 例如,R型计算类指令的Tuse为1 (rs/rt均在E级使用)
- □ 特点2: 同一条指令可以有2个不同的Tuse
 - ◆ 例1, store型指令的Tuse分别为1(rs在E级使用)和2(rt在M级使用)
 - ◆ 例2: 假设存在一条指令要读取3个寄存器,那么就可能有3个不同的Tuse
 - 【注】要支持读取3个寄存器,则必须修改RF的设计。MIPS并无这种需求。
- □ Beq指令:由于寄存器比较功能被前移至D级,因此Tuse=0
 - ◆ 如果beg不前移,则Tuse必然不为0

供给者的最早时间模型

- □ *T_{new}*(time-to-new): 位于E级及其后各级的指令,再经过多少周期 能够产生要写入寄存器的结果
- □ 特点1: 动态值, 随着指令的流动, 该值在不断减小, 直至0
- □ 特点2: 一条指令可以有多个不同的Tnew
- □ 例如, R型计算类指令的Tnew为1或0
 - ◆ 1: 指令位于E级, ALU正在计算
 - ◆ 0: 指令位于M级或W级,结果已经存储在相应级
- □ 例如, load型计算类指令的T_{new}为2, 1, 0
 - ◆ 2: 指令位于E级, 尚未读取存储器
 - ◆ 1: 指令位于M级,正在读取存储器
 - ◆ 0: 指令位于W级,结果已经存储在W级

43

- □ 数据通路构造方法
 - 基础流水线规划
 - ◆ 建模指令RTL
 - ◆ RTL制导的独立数据通路
 - 综合无转发数据通路
 - 综合转发电路
 - ◆ 构造功能MUX控制表达式
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- □ 转发机制构造方法
- □ 控制冒险处理机制

北京航空航天大学计算机学院 School of Computer Science and Engineering, Beihang University

45

构造指令集的Tuse

- □ 思路:结合流水线架构,逐条指令构造Tuse及Tnew
- □ Tuse注意事项
 - 1) 只关注每条指令的操作语义
 - ◆ 2)指令可能有2个不同的T_{use},如sw
 - ◆ 3) 指令集或流水线架构的变化,均可能导致Tuse 变化
 - 例如:流水线从5级变为6级且第5级为访存,则sw的rt将会延后1级被使用,故rt的Tuse会变为{0,1,2,3}

	T _t	ise
	rs	rt
add	1	1
sub	1	1
andi	1	
ori	1	
lw	1	
sw	1	2
beq	0	0
jr	0	
	{0,1}	{0,1,2}

构造指令集的Tnew

- □ 思路:结合流水线架构,逐条指令构造Tuse 及Tnew
- □ Tnew注意事项:
 - ◆ 一旦减为0,则不再继续减少!
 - 0: 有效结果已经产生了
 - 非0: 有效结果尚未产生

指令	功能		T_{new}	ew		
担立	部件	E	М	W		
add	ALU	1	0	0		
sub	ALU	1	0	0		
andi	ALU	1	0	0		
ori	ALU	1	0	0		
lw	DM	2	1	0		
sw						
beq						
jal	PC	0	0	0		

为了便于分析,用产生结果的功能部件来 代表指令

◆ 例如, ALU可以代表所有的计算类指令

E M						W			
	ALU	DM	PC	ALU	DM	PC	ALU	DM	РС
	1	2	0	0	1	0	0	0	0

产生结果的功能部件

北京航空航天大学计算机学院 School of Computer Science and Engineering, Beihang Universit

大学计算机学院

根据Tuse和Tnew构造策略矩阵

- □ 结合指令Tuse/Tnew, 分别构造rs/rt寄存器的策略矩阵
 - ◆ T_{new} > T_{use}: 只能暂停
 - 结果产生的时间太晚,不可能通过转发实现,必须暂停
 - T_{new} ≤ T_{use}: 通过转发可以解决冲突

rs策略矩阵

_		Ε			М			W	
T Inew	ALU	DM	PC	ALU	DM	PC	ALU	DM	PC
l _{use}	1	2	0	0	1	0	0	0	0
0	S	S	F	F	S	F	F	F	F
1	F	S	F	F	F	F	F	F	F

rt策略矩阵

	\ _		Ε			M			W			
	T \Inew	ALU	DM	PC	ALU	DM	PC	ALU	DM	PC		
	use \	1	2	0	0	1	0	0	0	0		
	0	S	S	F	F	S	F	F	F	F		
Ī	1	F	S	F	F	F	F	F	F	F		
ĺ	2	F	F	F	F	F	F	F	F	F	E	
٠					40		0		School of Con	nputer Scien	ce:	

如何用变量表示T _{use} 与T _{new} ?								
T _{use} :		指令	T,	ıse				
◆ 对于rs和rt,可以分别各用一组	日译码	李昌 5	5取債	相对	应	3H 4	rs	rt
_	17 7 r .	又主	74710	LIHA		add	1	1
T _{new} :						sub	1	1
每条指令有多个,因此需要在	E/M/	W都要	有相	关信	急	andi	1	
需要一种相对简洁的表示方法						ori	1	
* 需安一种怕对间沿的农小万么						lw	1	
	指令	功能		T _{new}		sw	1	2
	711 4	部件	E	М	W	beq	0	0
	add	ALU	1	0	0	jr	0	
	sub	ALU	1	0	0		{0,1}	{0,1,2}
	andi	ALU	1	0	0			
	ori	ALU	1	0	0			
	lw	DM	2	1	0			
	sw							
	beq							
	jal	PC	0	0	0	75 6 6	-	算机学院 Beihang University

用变量表示Tusa

- □ 用变量来表示策略矩阵的Tuse
 - rs有2个取值,因此对应2个变量
 - ◆ rt有3个取值,因此对应3个变量

Tuse_RS0 = beq + jr
Tuse_RS1 = add + sub + andi + ... + sw

Tuse_RT0 = ...
Tuse_RT1 = ...
Tuse RT2 = sw

	Tuse					
	rs	rt				
add	1	1				
sub	1	1				
andi	1					
ori	1					
lw	1					
SW	1	2				
beq	0	0				
jr	0					
	{0,1}	{0,1,2}				

构造暂停条件表达式

□ 将rs和rt的暂停"或"起来,就形成了总的暂停条件

- □ 数据通路构造方法
 - 基础流水线规划
 - 建模指令RTL
 - ◆ RTL制导的独立数据通路
 - 综合无转发数据通路
 - 综合转发电路
 - ◆ 构造功能MUX控制表达式
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- □ 转发机制构造方法
- □ 控制冒险处理机制

北京航空航天大学计算机学院 School of Computer Science and Englineering, Beihang University

转发控制的基本分析方法1/4

57

- □ 转发的核心:控制转发MUX选择最新的数据
- □ 【案例分析】ALU的B输入转发MUX转发M级数据的条件:
 - ◆ 1) <u>读寄存器编号</u>与<u>写寄存器编号</u>相同: A2_E == A3_M
 - 2) M级存储了有效结果

29

转发控制的基本分析方法2/4

1和2:

E级指令在E级执行正确性与是否

读rt寄存器无关;由此可知转发

不影响E级指令的正确性。

- □ 分析: E级指令存在如下3种可能
 - ◆ 1) 无效的rt域:如i
 - ◆ 2) 有效的rt域: 写rt, 如ori/lw
 - ◆ 3) 有效的rt域:读rt,如add/sub
 - ◆ 1和2, 转发了也不会导致错误; 3, 转发为必须
- □ 结论: 故无需进一步增加条件

转发控制的基本分析方法3/4

- 优先级问题:当流水线中2条以上指令都写同一个寄存器,意味着2级以上流水寄存器均包含新值,则转发MUX选择哪级流水寄存器的新值呢?
- A:新值距离D越近,则意味着新值越"新鲜"。因此距离D越近, 转发的优先级越高;反之则越低。
- □ 【示例MFRTE 】E级转发优先级最高;W级次之;RF的输出最低

- □ 数据通路构造方法
 - 基础流水线规划
 - 建模指令RTL
 - ◆ RTL制导的独立数据通路
 - 综合无转发数据通路
 - ◆ 构造功能MUX控制表达式
 - 综合转发电路
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- □ 转发机制构造方法
- □ 控制冒险处理机制

控制冒险处理机制

□ 分歧点1: 是否实现延迟槽

◆ 如果实现,需要注意ial及ialr指令应保存PC+8(需要在D级再部署一个PC+4)

□ 分歧点2: 比较功能是否前移至ID阶段

□ 课程要求: 实现延迟槽, 并且比较前移至ID阶段

延迟槽前移	是	否
是	硬件无需处理	B类:有条件清除IF/ID J类:无条件清除IF/ID
否	编译调度指令	B类:有条件清除IF/ID、ID/EX J类:无条件清除IF/ID、ID/EX、EX/MEM

Q: JAL、JALR的回写寄存器怎么处理呢?

A: 视同普通的回写

63

总结

- □ 流水线设计的复杂性在于对冲突的覆盖性分析
 - 覆盖性分析使得设计与测试均具备了完整的正向设计的理论基础
 - 缺乏覆盖性分析,就不能断言是否处理了所有冲突
 - ◆ 避免了频繁的、无谓的试错;提高开发效率,确保开发正确性
- □ 教科书的不足
 - 没有覆盖性分析,难以满足大规模指令集的流水线设计与测试需求
 - ◆ 没有覆盖性分析,必然遗漏部分数据相关
 - 如lw~sw指令的rt,必须暂停。但事实上可以通过增加转发MUX实现不停顿
 - 如cal~sw指令,未给出此类指令序列,也就没有给出处理机制了
 - ◆ RF内部的数据转发语焉不详
 - 内部转发: 当读和写同一个寄存器时, 读出的数据应该为要写入的数据

策略矩阵制导构造暂停案例

- □ 当建立策略矩阵后,可以反向构造暂停和转发案例
 - ◆ 示例: rs策略矩阵制导的rs相关暂停用例

rs策略 矩阵

	\ _ E				M			W		
	T \Inew	ALU	DM	PC	ALU	DM	PC	ALU	DM	PC
í	use	1	2	0	0	1	0	0	0	0
	0	S1	S2	F	F	S3	F	F	F	F
	1	F	S4	F	F	F	F	F	F	F

NOTE load类、store类、运算类、b类均包含多条指令。 因此,从指令角度,造成暂停的指令组合

数量巨大。

rs相关 暂停 用例

S1	运算类 \$1 , \$x, \$y b类 \$1 , \$x, im	运算类 \$1, \$x, \$y jr \$1	
S2	load类 \$1 , x(\$y) b类 \$1 , \$x, im	load类 \$1, x(\$y) jr \$1	
	load类 \$1 , x(\$y) XXXXX b类 \$1 , \$x, im	load类 \$1, x(\$y) XXXXX jr \$1	
S4	load类 \$1, x(\$y) 运算类 \$x, \$1 , \$y		load类 \$1, x(\$y) store类 \$x, x(\$1)

策略矩阵制导构造转发案例

□ 示例: rt策略矩阵制导的可以转发的rt相关用例

rt策略 矩阵

	_	E			М			W		
	T	ALU	DM	PC	ALU	DM	PC	ALU	DM	PC
ı.	I _{use} \	1	2	0	0	1	0	0	0	0
格 E	0	S	S	F	F	S	F	F3	F3	F3
-	1	F	S	F	F	F	F	F3	F3	F3
	2	F	F1	F	F	F2	F	F3	F3	F3

NOTE 相对于暂停,转发类 相关数据更为惊人。 覆盖性分析方法带来 很多重要启示,进一 步深化流水线认识。

rt相关 转发 用例

F1	load类 \$1 , \$x, \$y store类 \$1 , x(\$y)	启示:W级应该有向M级的 转发通路
F2	load类 \$1, x(\$y) xxxxx store类 \$1, x(\$y)	启示:同步信息的流水线寄 存器也是需求点
F3	运算类 \$1, \$x, \$y XXXXX XXXXX store类 \$1, x(\$y)	启示: RF需要支撑内部转发 (2017新方法也可以采用外 部显式转发)
		~~

与技术相关的注意事项

- □ 延迟槽:如果实现延迟槽,则对于如jal/b类等,为了使得PC+8能 传递至W级,就必须在某个流水段再增加 "PC+4"的功能
 - ◆ 1)可以单独用一个adder实现
 - 2) 也可以在NPC中实现
- 目前的转发旁路综合方法以及转发控制,所有的转发均是"显式" 实现的
 - ◆ 换言之, RF可以不具有内部转发功能
- 特别提醒: PPT中的各建模表格、流水线通路等,可用于设计工作的参考基础,但不能被简单的认为就是设计本身。
 - 图: 多为示意性; 表格: 部分表格甚至被故意去除了部分内容
 - 好的学习方法:按照方法,自行推演出全部的设计过程

67

与技术相关的注意事项

- □ T_{new}/T_{use}表格与表达式的关系
 - 控制器中并没有一张表格;控制器中只有表达式(或者说是电路)
 - ◆ 为使得流水线能正确处理<mark>所有数据冒险</mark>,设计师需要一种能<mark>覆盖</mark>所有数据 冒险的分析方法
 - 表格:是一种服务于覆盖性分析的形式建模方法,用于帮助设计师100% 正确的构造表达式
 - 兼顾抽象与直观表达: 建模速度快: 能确保100%覆盖率
 - ◆ 从表格到表达式: 就是从设计到实现

与认识相关的注意事项

- □ 流水线开发复杂度远高于单周期和多周期,其主要原因在于并行 性导致的思考点总量及关联度急剧攀升
 - 指令集的任何变化均会产生大量连锁反应
 - ◆ 类比:如果单周期、多周期是树,那么流水线就是图
- □ 除了流水线方法,确保流水线开发效率与正确性的重要因素之一: 严谨的设计过程
 - 设计过程必须是显式的,而非隐式的
 - 显式的设计过程: 各个设计环节必须有存证(文字、图、表、伪代码等)
- □ 只有详尽的显式设计过程. 才能确保:
 - 正确并高效的完成设计调整与工程实现
 - 回溯整个设计过程以快速定位错误(这条甚为重要)

69

忠告

- 不要急于编码!
- □ 设计越细致、越充分越好!
- 所有的设计规划都会有回报的(是加速型回报)!
- 不要急于编码!
- □ 设计越细致、越充分越好!
- 所有的设计规划都会有回报的(是加速型回报)!
- 不要急于编码!
- □ 设计越细致、越充分越好!
- 所有的设计规划都会有回报的(是加速型回报)!

70