Simulating the field due to prisms

Define a 3D prism

Our model is a rectangular prism. Parameters to define this prism are given below:

- \bullet dx: length in Easting (x) direction (meter)
- dz: length in Depth (z) direction (meter) below the receiver dy: length in Northing (y) direction (meter)
 - depth: top boundary of the prism (meter)
- pinc: inclination of the prism (reference is a unit northing vector; degree)
- pdec: declination of the prism (reference is a unit northing vector; degree)

You can also change the height of the survey grid above the ground

rx_h: height of the grid (meter)

Green dots show a plane where we measure data

Magnetic applet

Based on the prism that you made above, below Magnetic applet computes magnetic field at receiver locations, and provide both 2D map (left) and profile line (right).

For the prism, you can after:

- sus: susceptibility of the prism
- Parameters for the earth field are:

Interactive and live ...

click here

- Edec: declination of the earth field (degree) Einc: inclination of the earth field (degree)
 - Bigrf: intensity of the earth field (nT)

For data, you can view:

Computing G Computing G

Learning from the applet

- Locating the prism at the pole and equator
- □ Plotting Bx, By, Bz fields (sign convention)
- Map data
- Profile
- Profile over a magnetic dipole.
- Effects of depth of burial (half width)
- Data sampling

(with applet) Survey Acquisition

Must sample data sufficiently often to capture the anomaly.

Want 3-5 points in a halfwidth

Width of the signal increases with depth of burial. Ground surveys generally choose line spacing and station spacing to be equal.

Magnetic Survey

Magnetic Sensors to acquire data

In-class magnetic surveying: Detection

- Magnetic material underneath the table tops.
- NO PEEKING!!!!
- Use magnetic compass on smartphones (download apps if not already done)
- Carry out a survey to detect the magnetic bodies.
- Flag them with tape.

If the magnet was a UXO

- Magnet:
- diameter: 6mm;
- OXO •
- 20cm in diameter...
- If our table: ~ 1m X 3m

how large would a survey area equivalent to the table be?

- Length scale ratio ~1:33
- Survey area ~ 10m x 30m

If the magnet was a UXO

If the magnet was a UXO

Team Exercise: Searching for \$1B Cu deposit

vol 5.65e-8 m^{^3} Magnet: diameter: 6mm; height=2mm

For table size: ~ 1m X 3m

Price: \$310 USD/lb; \$684 /kg

\$1 billion. I need: ??? Kg

Density of copper 8960 kg/m^{^3}

Need ??? m^3 of copper

Assume 0.3% Cu by volume: ??? m^3

Scale length of deposit: 1 ~ ????

Survey area: ?? km x ?? km

ide 35

Student exercise

Magnet: diameter: 6mm; height=2mm vol 5.65e-8 m^{^3}

Table: 1m x 3m

Find a copper resource worth \$1B

Price: \$3.10 USD/lb; \$6.84 /kg (Note decimal)

\$1 billion 1,461,305 kg

Density of copper 8960 kg/m³

Need 163 m^A3 of copper

Assume 0.3% Cu by volume: 54,330 m^A3 (cube: 38 m on side)

Scale length: $(\frac{V_c}{V_m})^{\frac{1}{3}}\simeq 10000$

Survey area: 10 km x 30 km

If the magnet was a billion dollar copper deposit

Readings

GPG Magnetics

Lab #2 (see course website)

The composite field

Composite field:

$$\mathbf{B} = \mathbf{B}_0 + \mathbf{B}_A$$

B is a vector:

$$B = \{B_x, B_y, B_z\}$$

Total field:

$$|\mathbf{B}| = |\mathbf{B}_0 + \mathbf{B}_A|$$

The Anomalous field

Measured field
$$B = B_0 + B_A$$

Link to GPG

- The *total* field *anomaly*: $\Delta \mathbf{B} = |\mathbf{B}| |\mathbf{B}_0|$
- If $|\mathbf{B}_A| << |\mathbf{B}_0|$ then
- That is, total field anomaly AB is the projection of the anomalous field onto the direction of the inducing field.

$$\Delta \vec{B} \simeq \vec{B}_A \cdot \hat{B}_0$$

Why is the total field anomaly: $\triangle \vec{B} \simeq \vec{B}_A \cdot \hat{B}_0$

Vector Diagram

Data Processing

-Removing time variations of the Earth's field (necessity for a base station)

Removing a regional trend

Magnetics - Earth's field

