FUNCIONES COMPUESTAS

Composición de funciones escalares: repaso

Repasemos la definición de composición de funciones para funciones escalares de una variable.

Sea $f:Dom\ f\subset R\to R$, y sea $g:Dom\ g\subset R\to R$. Si se verifica que $Im\ f\subset Dom\ g$ puede definirse la función compuesta:

$$g \circ f : Dom \ f \subset R \rightarrow R / (g \circ f)(x) = g(f(x))$$

Si no se cumple la condición de que el conjunto $\operatorname{Im} f$ esté incluido en $\operatorname{Dom} g$, puede restringirse la función f (restringiendo su dominio), de modo tal que la composición sea posible.

Esta definición se puede generalizar para funciones de varias variables.

Definición:

Sea $\overline{f}:Dom\ f\subset R^n\to R^m$, y sea $\overline{g}:Dom\ g\subset R^m\to R^p$. Si se verifica que ${\rm Im}\ f\subset Dom\ g$ puede definirse la función compuesta:

$$\overline{g} \circ \overline{f} : Dom \ f \subset \mathbb{R}^n \to \mathbb{R}^p / (\overline{g} \circ \overline{f})(X) = \overline{g}(\overline{f}(X))$$

Si no se cumple la condición de que el conjunto $\operatorname{Im} f$ esté incluido en $\operatorname{Dom} g$, puede restringirse la función \overline{f} (restringiendo su dominio), de modo tal que la composición sea posible (siempre que los espacios vectoriales del conjunto de llegada de \overline{f} y del conjunto de partida de \overline{g} tengan la misma dimensión).

Derivada de la función compuesta (regla de la cadena matricial)

<u>Repaso:</u> para derivar una función compuesta de AMI se utiliza la denominada "regla de la cadena", que repasamos a continuación:

Sea $f:Dom\ f\subset R\to R$, y sea $g:Dom\ g\subset R\to R$, de modo que puede definirse la función compuesta $g\circ f:Dom\ f\subset R\to R/(g\circ f)(x)=g(f(x))$. Sea x_0 punto interior de $Dom\ f$, y sea $y_0=f(x_0)$ punto interior de $Dom\ g$. Si se verifica que la función f es derivable en x_0 y la función g es derivable en $y_0=f(x_0)$, entonces:

$$(g \circ f)'(x_0) = g'(f(x_0)).f'(x_0)$$

Este teorema se puede generalizar para funciones de varias variables.

Sea $\overline{f}: Dom\ f \subset R^n \to R^m$, y sea $\overline{g}: Dom\ g \subset R^m \to R^p$, de modo que puede definirse la función compuesta $\overline{g} \circ \overline{f}: Dom\ f \subset R^n \to R^p \ / \ (\overline{g} \circ \overline{f})(X) = \overline{g}(\overline{f}(X))$. Sea X_0 punto interior de $Dom\ f$, y sea $Y_0 = \overline{f}(X_0)$ punto interior de $Dom\ g$. Si se verifica que la función \overline{f} es diferenciable en X_0 (o podemos decir $\overline{f} \in C^1 X_0$), y la función \overline{g} es diferenciable en $Y_0 = \overline{f}(X_0)$ (o podemos decir $\overline{g} \in C^1$ en $Y_0 = \overline{f}(X_0)$), entonces:

$$D(\overline{g} \circ \overline{f})(X_0) = D\overline{g}(\overline{f}(X_0)).D\overline{f}(X_0)$$

En este caso, la matriz jacobiana de la función compuesta se obtiene multiplicando las matrices jacobianas de las funciones \overline{g} y \overline{f} .

Teorema (la composición de funciones diferenciables es diferenciable)

Sea $\overline{f}: Dom \ f \subset R^n \to R^m$, y sea $\overline{g}: Dom \ g \subset R^m \to R^p$, de modo que puede definirse la función compuesta $\overline{g} \circ \overline{f}: Dom \ f \subset R^n \to R^p \ / (\overline{g} \circ \overline{f})(X) = \overline{g}(\overline{f}(X))$. Sea X_0 punto interior de $Dom \ f$, y sea $Y_0 = \overline{f}(X_0)$ punto interior de $Dom \ g$.

Si se verifica que la función \overline{f} es diferenciable en X_0 (o podemos decir $\overline{f} \in C^1$ X_0), y la función \overline{g} es diferenciable en $Y_0 = \overline{f}(X_0)$ (o podemos decir $\overline{g} \in C^1$ en $Y_0 = \overline{f}(X_0)$), entonces la función compuesta $(\overline{g} \circ \overline{f})$ es diferenciable en X_0 .

Resolvemos algunos ejercicios del TP6

1)b) Dadas las funciones f y g, analice en cada caso si quedan definidas $f \circ g$ y $g \circ f$. Además, para cada función generada mediante la composición, determine su dominio natural y obtenga su matriz jacobiana en algún punto interior del mismo

$$f(x,y) = x\sqrt{y} \quad \overline{g}(u) = (u, 2-u)$$

$$TP(6)$$

$$1) (b) \quad \{(x,y) = x\sqrt{y} \quad \overline{g}(u) = (u, 2-u)$$

$$1 \circ \overline{g} \quad \{and \quad hollon \quad fim \overline{g} : x = u \quad y = 2-x$$

$$1 m \overline{g} = \{(x,y) \in R^2 / y = 2-x\}$$

$$1 m \overline{g} = \{(x,y) \in R^2 / y \neq 0\}$$

$$1 \operatorname{Podemodo} \text{ nestringin}: \quad \overline{g}^*(u) = (u, 2-u) \quad \text{de modo que } 2-u \neq 0 = 0 \text{ mez}$$

$$\overline{g}^*(u) = (u, 2-u) \quad \text{de modo que } 2-u \neq 0 = 0 \text{ mez}$$

$$\overline{g}^*(u) = (u, 2-u) \quad \text{de modo que } 2-u \neq 0 = 0 \text{ mez}$$

$$\overline{g}^*(u) = (x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$1 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$2 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$1 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$2 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$2 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$2 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$3 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$2 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$3 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$3 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$4 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$1 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$1 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$1 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$1 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$1 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$1 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$1 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$2 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$2 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$2 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y \neq 0 = 0 \text{ mez}$$

$$2 \operatorname{Theorem } x = \{(x,y) \in R^2 / y = 2-x \quad \text{for } y$$

Recordemos que: $f(x, y) = x\sqrt{y}$ $\overline{g}(u) = (u, 2-u)$

Recordenos que. $f(x, y) - x \sqrt{y}$ $g(u) - (u, z - u)$	
	0 12
30 fl Jm f = R Jm fc bour g Dom g = R Jm fc bour g	
Dom & = R	
Le composicion	es posible
308: Domf c R2 → R2/(30f)(x,y) = 3(f)	(x'A)
{(x,y) e R2/420}	卷 - 4
1.7001	
Motriz jacobrieno de gol	
D(\(\frac{1}{2}\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\(\delta_2\)\(\delta_1\)\(\delta_2\)\	-
$= \overline{g}'(((x_0,y_0)))^{T} \cdot \nabla ((x_0,y_0))$	7 -
	V
$D(\overline{5} \circ \xi) = (\overline{\xi})^{T} \cdot \nabla \xi = (1) (1\overline{\xi}) \times (1\overline{\xi})^{T} = (1)^{T} (1\overline{\xi})^{T} \times (1\overline{\xi})^{T} \times (1\overline{\xi})^{T} = (1)^{T} (1\overline{\xi})^{T} \times (1\overline{\xi})^{$	7 3
-/ 19 × 2 19	0
2/9	180
- \\ - \\ \/ 2 \lfg \]	
1210	

Gráfico de red orientada

En algunos casos puede resultar más sencillo utilizar una red orientada como regla práctica de derivación. La red orientada describe la relación entre las variables de la función compuesta. Veamos un ejemplo de su utilización en la obtención de la derivada del ejercicio $f \circ g^*$ del ejercicio 1)b).

Recordemos que: $f(x, y) = x\sqrt{y}$ $\overline{g}(u) = (u, 2-u)$

Ejercicio 3) Si
$$z = 2uv - 2\sqrt{v - u}$$
 con
$$\begin{cases} u = x - y^2 \\ v = x + 2xy - 1 \end{cases}$$
 resulta $z = h(x, y)$

- a) Reconozca las funciones f y g que generan h como $h = f \circ g$
- b) Calcule la derivada direccional de h en (2,1) en la dirección que va hacia (5,5)
- c) Sea η_0 la recta normal a la gráfica de h en (2 , 1 , $z_0)$; exprese η_0 como intersección de dos superficies.
- d) Analice si la recta η_0 mencionada en c) tiene algún punto en común con el eje z.

3)		
	$= (x-y^2) \times +2x$ $= (x-y^2) \times +2x$ $= (x-y^2) \times +2x$ $= (x-y^2) \times +2x$	
Nocesita ne =0 y² +2my.	0 N-U30 =	=0 ×42 kg -1 - k + g 2 20
b) r= (s	$\frac{2^{2}}{4^{2}} + \frac{2}{4} + \frac{3}{5} = \frac{3}{5} + \frac{4}{5}$	4)
' \rangle h (2,1) =	V((0)) (21)=	= 7(1) g(21) =
1+23	$\frac{2\sqrt{v+u}}{2\sqrt{(24)}} = \frac{1}{2}$	$\frac{2}{2\sqrt{4-11}} \left(\frac{2-1}{2}, \frac{2+4-1}{4-1} \right)$ $\frac{1}{\sqrt{5-1}} \left(\frac{2}{\sqrt{4}} \right)$
130 -2	$\begin{vmatrix} 2 \\ 2 \end{vmatrix} = \begin{pmatrix} 21 \\ 2 \end{vmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ $\begin{vmatrix} 3 \\ 2 \end{vmatrix} = \begin{pmatrix} 15 \\ -15 \end{pmatrix}$	$\begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} \frac{2}{2} & +\frac{9}{2} & -\frac{42}{2} + \frac{1}{2} \end{pmatrix}$
$+ 12/2) = \frac{1}{2}$	2) Th (2,1). V =	$= \left(15, -15\right)\left(\frac{3}{5}, \frac{4}{5}\right) =$
= 5.3	- 4.18 = 7-12	(= + 5

Recordemos que: $z = 2uv - 2\sqrt{v - u}$ con $\begin{cases} u = x - y^2 \\ v = x + 2xv - 1 \end{cases}$ resulta z = h(x, y)3) b) trebejonde con red orientede V = 2+2.2.1-1=5hx = zu.ux + zr. vx $h = \frac{2N + 2}{2N - u} \cdot 1 + \frac{2u - 2}{2N - u} \cdot (1 + 2y)$ $h_{x}(z,1) = \left(2.5 + \frac{1}{\sqrt{5-1}}\right).1 + \left(2.1 - \frac{1}{\sqrt{5-1}}\right)(1+2.1)$ h (2,1)= 15 hly=3/4. mly+3/2. mly $h'_{y} = \left(2x + \frac{1}{\sqrt{x-u}}\right) \cdot \left(-2y\right) + \left(2u - \frac{1}{\sqrt{x-u}}\right) \cdot 2x$ $h_{\gamma}(z,1) = (2.5 + \frac{1}{2})(-2.1) + (2.1 - \frac{1}{2}).2.2$ $h_{3}(2,1) = -15$ 7h(2,1)=(15,-15) C) Paro hollor la recta Mormal languion del plans tote, augo vector duéc tor es el vector director de la recta 1/2

3-30= hx (2,1) (x-2)+hy (2,1) (y-1)

 $30 = h(2,1) = (10)(2,1) = 2.1.5 - 2.\sqrt{5-1} = 6$

4) Dada $w = u^3 - xv^2$ con $u = x\sqrt{y-x}$ \wedge $v = 2x + y^2$ resulta w = f(x, y). Aplicando la regla de derivación de funciones compuestas (sin realizar la composición), calcule $f'_x(0,1)$

