שם: איל שטיין

February 28, 2024

לוגיקה | תרגול 6

שם: איל שטיין

February 28, 2024

נושא השיעור: נאותות, עקביות ושלמות של מערכת הוכחה.

בתרגול הקודם אמרנו שכשאנחנו מייצרים מערכת הוכחה נרצה שהיא תהיה נאותה, כלומר שכל מה שאפשר להוכיח גם ינבע לוגית מההוכחות.

תרגיל 1 - התרגיל הכי קשה בתרגול הזה

שעיף 1. הוכיחו/הפריכו: מערכת ההוכחה החדשה נאותה במובן הצר

- $.Ded_{N}\left(\emptyset
 ight)\subseteq Con\left(\emptyset
 ight)$ כלומר שואלים אותנו האם
 - : נחפש דברים לא הגיוניים במערכת ההוכחה
- או שנחפש איבר שהוא לא טאוטולוגיה, או שנבנה סדרת יצירה שמובילה לסתירה.
- נשים לב כי בבסיס יש לנו A שהיא טאוטולוגיה. אם בבסיס היה איבר שהוא לא טאוטולוגיה היינו יכולים לסיים כי זו לא הייתה מערכת נאותה.
 - נסתכל על כללי ההיסק שלנו:
 - . נשים לב ש-MP1 תמיד יוצר ביטוי (ביון –
 - . יכול היות טאוטולוגיה אבל β לא חייב היכול להיות היכול כי יכול כי היות לא היות היכול חייב להיות היכול היות היכול להיות היכול כי היכול להיות היכול להיכול להיכו
 - . מצאנו בעיה
 - MP2- אנחנו צריכים לבדוק האם קיימים בקבוצה פסוקים אנחנו צריכים לבדוק אנחנו אנחנו אנחנו אנחנו שיימים -

- $\cdot \lor$ נשים לב שאין לנו דרך להגיע לפסוק שהקשר המרכזי בו הוא –
- MP2 אז זה כאילו אין לנו את איבר שיכול להיכנס לפונקציה או זה האין אף איבר שיכול *
 - * כלומר המערכת שלנו נאותה במובן הצר.
 - . באינדוקציית במובן באינדוקציית במובן באר במובן הצר, כלומר נראה $Ded_{N}\left(\emptyset
 ight)\subseteq Con\left(\emptyset
 ight)$ באינדוקציית מבנה.
 - MP2 הבעיה היא שאנחנו נצטרך להשתמש בפונקציה –
- . אם הארטולוגיות שהקשר המרכזי שלהם הוא לא א $\gamma \in WFF$ בלך עבדיר תכונה שהתשר שבה יש את כל הטאוטולוגיות
 - $T\subseteq Con\left(\emptyset\right)$ מכיוון ש-T מכילה רק טאוטולוגיות, מתקיים *
 - . הגדרתה לפי ב-T לפי הגדרתה על איברים לב כי לא ניתן להפעיל את MP2 את להפעיל *
 - :באינדוקציית מבנה באינדוקציית מבנה צריך להוכיח $Ded_{N}\left(\emptyset
 ight)\subseteq T$

* בסיס:

- . ניקח $\varphi \in A$ כלומר איבר באקסיומות.
- הוא פסוק פסוק שהערך של הוכחה הוא מתקיים לכל ערכי α, β האפשריים בעזרת בניית טבלת בניית טבלת אמת לכל ערכי β בעזרת בניית טבלת אמת לכל ערכי .1
 - . \lor לאחר מכן, נשים לב כי הקשר המרכזי הוא \leftrightarrow כלומר שונה מ-
 - $.arphi\in T$ לכן מתקיים כי \cdot

: סגור *

- $\delta, \gamma \in T$ ניקח י
- $\varphi = MP1\left(\gamma,\delta\right)$ ניקח ·
 - : כעת מתקיים

$$\varphi = \neg \neg ((\neg \delta) \lor \gamma)$$

- . נבנה טבלת אמת ונשים לב כי φ אכן טאוטולוגיה.
- . נשים לב כי הקשר המרכזי הוא \neg ולא \lor , כנדרש
 - $.arphi\in T$ כלומר .
- ניקח האינדוקציה במקרה הזה) כי לפי הנחת האינדוקציה שואירה ω במקרה הזה) כי לפי הנחת האינדוקציה היקח ניקח (כלומר הפונקציה ω במ ω במקרה הזה) כי לפי הנחת האינדוקציה . ω
 - $\omega \in T$ ולכן ·
 - $.Ded_{N}\left(\emptyset
 ight)\subseteq T\subseteq Con\left(\emptyset
 ight)$ הראנו באינדוקציית מבנה שמתקיים •

:2 תרגיל 1, סעיף

הוכיחו/הפריכו: מערכת ההוכחה החדשה נאותה במובן הרחב.

פיתרון:

- $Ded_{N}\left(\Sigma\right) \subseteq Con\left(\Sigma\right)$ מתקיים מחקיים לכל קבוצת פסוקים י
- ים נאותה: אפער או לא מערכת הוכחה נאותה: MP^2 בהמשך לסעיף הקודם, נוסיף הנחה שבעזרתה יהיה אפשר להשתמש ב-

$$\Sigma = \{ \neg p_0, \neg p_0 \lor p_1 \}$$
 ניקח –

- $: p_1$ -נראה סדרת הוכחה ל-
- . שייך להנחות $\neg p_0$.1
- . שייך להנחות $\neg p_0 \lor p_1$.2
- $MP2(\neg p_0, \neg p_0 \lor p_1) = p_1$.3
- $z_0
 ot \not = p_1$ וגם וגם $z_0 \models \Sigma$ מתקיים מתקיים *
 - $.\Sigma \not\models p_1$ לכן \cdot
- $\Sigma \vdash_N p_1$ סתירה כך שמתקיים סדרת יצירה כי הראנו סדרת יצירה כי סתירה כי הראנו

נושא שני - עקביות:

- עקביות דומה לפושע בחקירה: אם אפשר להסיק דבר והיפוכו מתוך הסיפור שלו אז הוא לא עקבי.
 - . כדי להראות שקבוצה Σ היא עקבית, ניקח פסוק ונראה שהוא לא נובע לוגית מהקבוצה.

:2 תרגיל

- נחפש פסוק שלא נובע לוגית ממנה, לדוגמה פסוק סתירה.
 - $lpha = \lnot (p_0
 ightarrow p_0)$ ניקח
 - $z_0 \models \Sigma$ מתקיים *
- . מתקיים $z_0
 ot=\alpha$ (כי זו סתירה ולכן אף השמה לא מספקת אותה).
 - . Σ ולכן α .
 - $\Sigma \not\vdash \alpha$ ממשפט הנאותות מתקיים *
- $\Sigma \not\vdash \alpha$ שעבורו lpha פסוק כי קיים פיים מתקיים כי מתקיים מתקיים לפי –

מסקנה 1. התרגיל שעשינו האו דוגמה לכך שאם קבוצה Σ יהא ספיקה אז קיימת השמה שמספקת אותה ולכן ניקח סתירה של אחד הפסוקים ונקבל שההשמה לא מספקת את הסתירה הזו. ולכן כל קבוצה Σ ספיקה היא גם עקבית.

הערה: הכיוון השני גם נכון, כלומר עקביות גם גורר ספיקות.

נושא שלישי - שלמות.

פיתרון תרגיל 3 - הוכיחו/הפריכו: המערכת החדשה שלמה.

- בתרגיל הראשון רצינו לראות האם ניתן לכתוב סדרת הוכחה לסתירות.
 - עכשיו אנחנו רוצים לבדוק שכל מה שנכון גם ניתן להוכחה.
- lphaנשים לב כי בצירוף של A_1 ו-MP, אפשר לקבל מיידית סדרת הוכחה ל-
- כלומר המערכת הזו מוכיחה כל פסוק, בפרט גם את כל הפסוקים שנובעים לוגית מ- Σ
- Σ יניקח פסוק (במקרה הזה אפילו לא צריך שהוא ינבע לוגית מ- Σ) ונראה שהמערכת מוכיחה אותו:
 - $.\Sigma$ תהא –

- $.\Sigma \models \alpha$ כך ש סוק –
- : lpha- נראה סדרת הוכחה ל-
- $\alpha \to (\alpha \to \alpha)$ מתקיים $\alpha \in WFF$ עבור עבור שבבסים A_1 הקיים .1
 - .lpha : מתקיים MP2 מתקיים .2
 - $.\Sigma$ לכל קבוצת $\Sigma \vdash_N \alpha$ לכל –