Cuarta serie de ejercicios de Álgebra Moderna

Akiyuki Shinbou

Mayo 2018

1. Encuentre el orden de las siguientes permutaciones.
a. (14) b. (147) c. (14762) d. $(a_1a_2a_k)$
Solución:
a. 2
b. 3
c. 5
d. k
8. ¿Cual es el orden maximo de cualquier elemento en A_{10} ?
Solución: Podemos escribir cada elemento de A_{10} como un producto de ciclos disjuntos, y el orden del elemento es el producto de esos ciclos. Encontramos que el orden mayor que podemos obtener multiplicando estos ciclos y seguir teniendo una permutación par es un par de permutaciones de ordenes 7 y 3, con orden 21, por ejemplo $(1234567)(8910)$

15. Sea α y β en S_n . Demuestra que $\alpha\beta$ es par si y solo si α y β son ambos

pares o ambo impares.

Solución:

Podemos expresar α como un producto de n 2-ciclos, y β un producto de m 2-ciclos. Así, $\alpha\beta$ es un producto de m+n 2-ciclos, y m+n solo es par si m y n son ambos pares o impares.

22. Sea α y β en S_n . Demuestra que $\alpha^{-1}\beta^{-1}\alpha\beta$ es una permutación par.

Solución:

Podemos expresar α como un producto de n 2-ciclos, y β un producto de m 2-ciclos. Así,

 $alpha^{-1}\beta^{-1}alpha\beta$ es un producto dem + n + m + n = 2(m+n), un numero par.

29. Encuentra tres elementos σ en S_9 con la propiedad de que $\sigma^3 = (157)(283)(469)$

Solución:

Observamos que al elevar el 9-ciclo $(a_1a_2a_3a_4a_5a_6a_7a_8a_9)$ al cubo obtenemos $(a_1a_4a_7)(a_2a_5a_8)(a_3a_6a_9)$. Observando que (157)(283)(469) = (157)(469)(283) = (283)(157)(469), llegamos a los 9 ciclos (124586739), (142568793) y (214856379).

36. En S_4 , encuentra un subgrupo ciclico de orden 4 y un subgrupo no ciclico de orden 4.

Solución:

(1234) es un ciclo de orden cuatro, $\langle (1234) \rangle$ es un subgrupo ciclico de orden 4. Un subgrupo no ciclico seria un conjunto con solo permutaciones disjuntas, por ejemplo $\{(1), (12), (34), (12)(34)\}$.

43. Demuestra que A_5 tiene 24 elementos de orden 5, 20 elementos de orden 3 y 15 elementos de orden 2.

Solución:

Podemos descomponer todos los elementos de A_5 en 5-ciclos, 3-ciclos, o un producto de 2-ciclos disjuntos. Para los elementos de orden 5, hay 5!/5 = 24 ciclos de la forma (abcde). Hay (5*4*3)/3 = 20 elementos de la forma (abc). Para el caso de los elementos de orden 2, encontramos los elementos de la forma (ab)(cd), que son (5*4*3*2)/8 = 15, donde dividimos entre 8 porque existen 8 formas de escribir el mismo par de 2-ciclos.

50. Utiliza el esquema de verificación de digitos de Verhoeff basado en D_5 para agregar un digito de verificación a 45723.

Solución:

 $\sigma(4) * \sigma^2(5) * \sigma^3(7) * \sigma^4(2) * \sigma^4(3) = 2 * 9 * 5 * 5 * 3 = 5$. Necesitamos agregar el digito 5 para que la suma se vuelva 0.

57. ¿Por qué el hecho de que ordenes de los elementos de A_4 sean 1, 2 y 3

implica que $|Z(A_4)| = 1$?