Computational Content of the Axiom of Choice in Evidenced Frames

Vladimir Ivanov

July 8, 2023

1 The Computational System

The additional codes are makeaxiom, axiom_n for $n \in \mathbb{N}$ and c_f for $f : \mathbb{N} \to C$. The additional reduction relations are

 $\mathsf{makeaxiom} \cdot \overline{k} \downarrow \mathsf{axiom}_k$

$$c_f \cdot \overline{n} \downarrow f(n)$$

The additional termination rules are

makeaxiom
$$\cdot \overline{k} \downarrow$$

$$c_f \cdot \overline{n} \downarrow$$

2 The Evidenced Frame

We take the separator S_{\top} . We interpret non determinism angelically.

For all $n \in \mathbb{N}$, let nat_n be the predicate realized only by \overline{n} . We define universal quantification over naturals:

$$\forall n.\phi_n$$

as $\prod \{ \mathsf{nat}_n \to \phi_n | n \in \mathbb{N} \}$

We define \perp as the predicate realized by all $\mathsf{axiom}_k, k \in \mathbb{N}$.

We allow arbitrary expressions, and not just pairs of codes, on the left of $\downarrow \downarrow$.

3 Pragmatics

We write $\lambda x_0 \dots x_k . e[x_0] \dots [x_k]$ for $c_{\lambda^k.e}$. Not that not all lambda terms can be easily encoded, for example, we can't encode $\lambda x.x(\lambda y.xy)$ and should work around by encoding it as $\lambda x.x((\lambda x', y.x'y)x)$. We leave such conversions implicit. We do not always write the \cdot .

We write $\exists x \in X. \phi_x$ for $\coprod \{\phi_x \mid x \in X\}$ and omit the $\in X$ when X is clear from context.

4 Preliminaries

Fact 1. There exist codes intro \exists , intro \forall , elim \exists , elim $\forall \in \mathcal{S}_{\top}$ such that for all family of proposition $(\phi_n)_{n\in\mathbb{N}}$, all set X, and all family of propositions $(\psi_x)_{x\in X}$

- 1. If for all $n, c \cdot \overline{n} \downarrow \phi_n$, then $c \xrightarrow{\mathsf{intro}_{\forall}} \forall n.\phi_n$.
- 2. If $c \models \forall n.\phi_n$, then for all n, $\text{elim}_{\forall} \cdot c \cdot n \models \phi_n$.
- 3. For all x, $\psi_x \xrightarrow{\mathsf{intro}_\exists} \exists x.\phi_x$.
- 4. If $\prod \{\phi_x \mid x \in X\}$ has a realizer, then there exists $x \in X$ such that $\prod \{\phi_x \mid x \in X\} \xrightarrow{\mathsf{elim}_\exists} \psi_x$

Proof. Take

$$\begin{split} \mathsf{intro}_\forall := \lambda c. \lambda(e_{\mathsf{snd}}; c) \\ \mathsf{elim}_\forall := \lambda c, n.c \ n \ n \\ \\ \mathsf{intro}_\exists := \lambda c. \lambda(<|c, <|e_{\mathsf{id}}, e_\top| >; e_{\mathsf{eval}}| >; e_{\mathsf{eval}}) \\ \\ \mathsf{elim}_\exists := <|\lambda(e_{\mathsf{fst}}; e_\top; \lambda(e_{\mathsf{fst}; e_{\mathsf{id}}})), |>; e_{\mathsf{eval}} \end{split}$$

Definition 1 (Behaves Like). We say that code c'_f behaves like code c_f if $\forall c_a, c_r.c_f \cdot c_a \downarrow c_r \Rightarrow c'_f \cdot c_a \downarrow c_r$. If we have an equivalence instead of an implication, we say that they are extensionally equal.

Lemma 1. If $c \cdot \overline{n} \downarrow \downarrow \perp$ for all k and $e \downarrow \downarrow \perp$, then $e[\text{makeaxiom} := c] \downarrow \downarrow \perp$.

Proof. Structural induction over the proof of $e \downarrow \operatorname{axiom}_k$.

Lemma 2. If c and c' are extensionally equal, so are e[x := c] and e[x := c'] for all expression e with a hole x.

Proof. Structural induction over the proof of $e[x := c] \downarrow c_r$.

5 The Proof

Let

$$\begin{split} KCC' := (\forall n. \nabla \exists i. \neg R(n,i)) \Rightarrow \nabla \exists f. \forall n. \neg R(n,f(n)) \\ \text{fix}_f := (\lambda x. f(xx))(\lambda x. f(xx)) \\ \text{fix} := \lambda f. \text{ fix}_f \end{split}$$

 $\Phi_{H,P,\phi,L} := P(\mathsf{intro}_\exists(\mathsf{intro}_\forall(\lambda n.\,\mathsf{assoc}\,L\,\,n\,\,(\lambda ...(\lambda m.Hm(\lambda q.\phi\,\,((m,q):L)))n))))$

$$\Phi_{H,P} := \mathsf{fix}_{\lambda \phi L.\Phi_{H,P,\phi,L}}$$
$$H \models \forall n. \nabla \exists i. \neg R(n,i)$$

$$P \models \neg \exists f. \forall n. \neg R(n, f(n))$$

It suffices to prove the following lemma, the rest of the proof is stricly identical to the original paper.

Definition 2 (Cache). A cache is a church encoded list L of church encoded pairs of the form $(\overline{n}, q), n \in \mathbb{N}, q \in C$ such that

- For all $(\overline{n}, q) \in L$ there exists i such that $q \models R(n, i)$.
- The first elements of pairs in L are pairwise distinct.

Lemma 3. Let L be a chache such that $\Phi_{P,H} \cdot L \not \downarrow \bot$. Then there exist n and q such that (n,q):L is a cache and $\Phi_{P,H} \cdot ((n,q):L) \not \downarrow \bot$.

Proof. Define $f_0(n)$ to be i such that $q \models \neg R(n,i)$ if $(n,i) \in L$ for some i, and take $f_0(n)$ to be arbitrary if $n \notin I$.

Claim 1. We have

$$P(\mathsf{intro}_\exists(\mathsf{intro}_\forall(\lambda n.\,\mathsf{assoc}\,L\,\,n\,\,(\lambda_{-}.\,\mathsf{makeaxiom}\,n))))\ \downarrow\downarrow\ \bot$$

Let $n \in \mathbb{N}$. Since $\mathsf{axiom}_n \models \bot$, λ . makeaxiom $\overline{n} \models \neg R(n,i)$ for all i. Thus,

assoc
$$L \overline{n} (\lambda_{-}. \operatorname{makeaxiom} \overline{n}) \models \neg R(n, f(n))$$

, by the previous discussion if n is not in L and by the definition of a cache if n is in L. This holds for all n, so

$$\operatorname{intro}_{\forall}(\lambda n. \operatorname{assoc} L \ n \ (\lambda_{-}. \operatorname{makeaxiom} n)) \models \forall n. \neg R(n, f_0(n))$$

. Therefore,

$$\mathsf{intro}_\exists(\mathsf{intro}_\forall(\lambda n. \mathsf{assoc} \ L \ n \ (\lambda_-. \mathsf{makeaxiom} \ n))) \models \exists f. \forall n. \neg R(n, f(n))$$

. This concludes since $P \models \neg \exists f. \forall n. \neg R(n, f(n)).$

Claim 2. $\Phi_{H,P,\Phi_{H,P},L} \not \downarrow \downarrow \perp$, that is (unfolding Φ),

$$P(\mathsf{intro}_{\exists}(\mathsf{intro}_{\forall}(\lambda n. \mathsf{assoc} \ L \ n \ (\lambda ... (\lambda m.H \ m \ (\lambda q. \Phi_{H.P.} \ ((m,q):L))n))))) \not \downarrow \bot$$

Proof. Suppose for the sake of contradiction $\Phi_{H,P,\Phi_{H,P},L} \downarrow \bot$, that is, $\Phi_{H,P,\Phi_{H,P},L} \downarrow$ axiom_k for some k. So $(\lambda \phi L'.\Phi_{H,P,\phi L'}) \cdot \Phi_{H,P} \cdot L \downarrow$ axiom_k, and since $\Phi_{H,P} = \text{fix}_{\lambda \phi L'.\Phi_{H,P,\phi,L'}}$, we have $\Phi_{H,P} \cdot L \downarrow$ axiom_k, which was supposed to not hold. \square

Claim 3. There exists $k_{new} \in \mathbb{N}$ such that

$$\operatorname{elim}_\forall H \ \overline{k_{new}} \ (\lambda q. \Phi_{H,P}((\overline{k_{new}},q):L)) \not \! \! \perp \! \! \! \! \! \perp$$

Proof. Suppose that $\operatorname{elim}_{\forall} H \ \overline{k} \ (\lambda q.\Phi_{H,P}((\overline{k},q):L)) \downarrow \operatorname{axiom}_{l}$ for some l for all k. It now suffices to find a contradiction. We have $c \cdot \overline{k} \downarrow \operatorname{axiom}_{l}$ for some l for all k, where $c := \lambda m.\operatorname{elim}_{\forall} H \ m \ (\lambda q.\Phi_{H,P}((m,q):L))$. Thus, c behaves like makeaxiom, so by applying lemma 1 to claim 1 contradicts claim 2.

Now, let k be as in claim 3.

Claim 4. There exists a $q \in C$ such that $q \models \neg R(k, i)$ for some i.

Proof. Suppose, for the sake of contradiction, that there is no such q. Since $H \models \forall k. \nabla \exists i. \neg R(n, i)$, it follows from claim 3 that $\lambda q. \Phi_{H,P}((k,q):L)$ does not realize $\neg \exists i. \neg R(k,i)$. Thus, there exists at least one realizer of $\exists i. \neg R(k,i)$ (since otherwise any code would realize its negation). Now, $\exists i \neg R(k,i) \xrightarrow{\mathsf{elim}_{\exists}} \neg R(k,i)$ for some i, which concludes that there exists a realizer of $\neg R(k,i)$ for some i.

Claim 5. k is not in L.

Proof. For all n, assoc L \overline{n} (λm . if mem m L then ($\lambda x.x$) else makeaxiom m) realizes $\neg R(n, f_0(n))$, by the definition of a cache if n is in L and since it the else branch is taken ortherwise. Thus,

 $P(\mathsf{intro}_\exists(\mathsf{intro}_\forall(\lambda n.\,\mathsf{assoc}\,L\,n\,(\lambda m.\,\mathsf{if}\,\mathsf{mem}\,m\,L\,\mathsf{then}\,(\lambda x.x)\,\mathsf{else}\,\mathsf{makeaxiom}\,n))))\downarrow\mathsf{axiom}$

since it realizes \perp . Then, since for all n, assoc L n makeaxiom $\models \perp$, we have

$$P(\mathsf{intro}_\exists(\mathsf{intro}_\forall(\lambda n.\,\mathsf{assoc}\,L\,\,n\,\,(\lambda m.\,\mathsf{makeaxiom}))))\downarrow\mathsf{axiom}$$

Then, by lemma 1 and lemma 2,

if
$$(\operatorname{mem} \overline{k} \ L)$$
 then $(\lambda x.x)$ else makeaxiom $\overline{k} \ \downarrow \downarrow \ \bot$

Thus, k is not in L since $\lambda x.x \not\models \bot$.

We are finished by taking $n = k_{new}$ from claim 3 and q from claim 4.