19. Isometrien

Aufgabe: Studiere alle linearen Abbildungen, die **Abstände** von Punkten nicht ändern. Z.B. Drehungen um einen Punkt im \mathbb{R}^2 .

19.1. Charakterisierung und orthogonale Gruppe

Definition: Seien V_1, V_2 K-VRme mit Sesquilinearformen s_1, s_2 .

(a) Ein Morphismus von K-VRmen mit Sesquilinearform ist $\Phi \in \text{Hom}(V_1, V_2)$ mit:

$$\forall x, y \in V_1 : s_2(\Phi(x), \Phi(y)) = s_1(x, y)$$

Schreibe: $\Phi: (V_1, s_1) \to (V_2, s_2)$.

- (b) Ist Φ zusätzlich bijektiv, so heißt Φ eine (lineare) Isometrie.
- (c) Eine Isometrie $\Phi: (V, s) \to (V, s)$ heißt **Automorphismus** von s. Die Gruppe $\operatorname{Aut}(s) \leq \operatorname{Aut}(V)$ heißt die **Automorphismengruppe** von s.

Beispiel: In der Relativitätstheorie wichtig ist die Lorenzgruppe Aut(s) zu

$$s: \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R}, (x,y) \mapsto x^T \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & 0 \\ 0 & \cdots & 0 & -c \end{pmatrix} y$$

für c :=Lichtgeschwindigkeit.

Definition: Im Folgenden sei s stets SKP.

Fall $\mathbb{K} = \mathbb{R}$:

O(V,s) := Aut(s) heißt orthogonale Gruppe. Die Elemente der Gruppe heißen orthogonale Abb. bzgl. s.

Fall $\mathbb{K} = \mathbb{C}$:

 $U(V,s) := \operatorname{Aut}(s)$ heißt **unitäre Gruppe**. Die Elemente der Gruppe heißen **unitäre Abb. bzgl. s**.

Bemerkung: Eine wichtige Isometrie ist: abstrakter $VRm \cong Standardraum$

Satz 21:

Sei V VRm mit SKP s, dim(V) = n und ONB B. Dann ist die Koordinatendarstellung:

$$D_B: (V,s) \to (\mathbb{K}^n, \langle \cdot, \cdot \rangle)$$

eine Isometrie.

Beweis: Sei $B = \{b_1, \dots, b_n\}, x, y \in V \text{ mit } x = \sum_{i=1}^n \alpha_i b_i, y = \sum_{i=1}^n \beta_i b_i.$ Dann gilt:

$$s(x,y) = \sum_{i,j} \alpha_i \overline{b_j} \cdot s(b_i, b_j)$$

$$= \sum_{i=1}^n \alpha_i \overline{b_i}$$

$$= \langle \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}, \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} \rangle$$

$$= \langle D_B(x), D_B(y) \rangle$$

Bemerkung: (1) Sei $\Phi: V_1 \to V_2$ Morphismus von SKP-Räumen, dann ist Φ längentreu.

$$\iff ||x||_1 = ||\Phi(x)||_2$$

Winkeltreue für $K = \mathbb{R}$ bedeutet:

$$\frac{\langle x,y\rangle_1}{\|x\|_1\|y\|_1} = \frac{\langle \Phi(x),\Phi(y)\rangle_2}{\|\Phi(x)\|_2\|\Phi(y)\|_2}$$

(2) $\Phi:(V,s)\to (V,s)$ Endomorphismus von SKP-Räumen und dim $(V)<\infty\implies \Phi$ ist Isomorphismus und Automorphismus, also orthogonal und unitär.

Satz 22 (Isometriekriterium):

Sei V VRm mit SKP $s = \langle \cdot, \cdot \rangle$ und sei $\Phi \in \operatorname{Aut}(V)$.

Folgende Aussagen sind äquivalent:

- (1) Φ ist Isometrie (d.h. $\Phi \in \text{Aut}(s)$).
- (2) $\Phi \in \operatorname{End}^a(V)$ und $\Phi^* = \Phi^{-1}$.
- (3) $\forall x \in V : ||x|| = ||\Phi(x)||$
- (4) $\forall y \in V : (\|y\| = 1) \implies (\|\Phi(y)\| = 1)$ (Einheitssphärenabbildung).

Beweis: Die Äquivalenz ergibt sich aus folgendem Ringschluss:

 $(1) \Longrightarrow (2)$ Es gilt $\forall x, y \in V, z := \Phi(y)$:

 Φ Isometrie

$$\iff \forall x,y \in V : \langle \Phi(x), \Phi(y) \rangle = \langle x,y \rangle$$

$$\stackrel{\Phi^{-1} \text{ ex.}}{\iff} \forall x,z \in V : \langle \Phi(x),z \rangle = \langle x,\Phi^{-1}(z) \rangle$$

Nach Definition der Adjungierten folgt daraus $\Phi^{-1} = \Phi^*$.

 $(2) \Longrightarrow (3)$ Es gilt für alle $x \in V$:

$$\|\Phi(x)\|^2 = \langle \Phi(x), \Phi(x) \rangle \stackrel{(2)}{=} \langle x, \Phi^*\Phi(x) \rangle = \langle x, x \rangle$$

- $(3) \Longleftrightarrow (4) \checkmark$
- $(3) \Longrightarrow (1)$ Es gilt für alle $x, y, \in V, \alpha \in K$:

$$\begin{split} \langle \alpha x + y, \alpha x + y \rangle &= \langle \Phi(\alpha x + y), \Phi(\alpha x + y) \rangle \\ \iff \langle \alpha x, y \rangle + \langle y, \alpha x \rangle &= \langle \Phi(\alpha x), \Phi(y) \rangle + \langle \Phi(y), \Phi(\alpha x) \rangle \\ \iff \alpha \langle x, y \rangle + \overline{\alpha} \overline{\langle x, y \rangle} &= \alpha \langle \Phi(x), \Phi(y) \rangle + \overline{\alpha} \overline{\langle \Phi(x), \Phi(y) \rangle} \end{split}$$

Fall $K = \mathbb{R}$:

Mit $\alpha := \frac{1}{2} : \langle x, y \rangle = \langle \Phi(x), \Phi(y) \rangle$

Fall $K = \mathbb{C}$:

 $\begin{array}{l} \text{Mit } \alpha := \frac{1}{2} : \operatorname{Re}\langle x, y \rangle = \operatorname{Re}\langle \Phi(x), \Phi(y) \rangle \\ \text{Mit } \alpha := \frac{i}{2} : \operatorname{Im}\langle x, y \rangle = \operatorname{Im}\langle \Phi(x), \Phi(y) \rangle \end{array}$

Korollar:

Sei $\dim(V) = n < \infty$, B ONB von V und $\Phi \in \text{End}(V)$. Folgende Aussagen sind äquivalent:

- (1) Φ ist Isometrie.
- (2) Es gilt für alle $x \in V : \|\Phi(x)\| = \|x\|$
- (3) $\Phi(B)$ ist ONB.
- (4) Es gilt $D_{BB}(\Phi)^{-1} = D_{BB}(\Phi^*)$, d.h. $D_{BB}(\Phi)$ ist unitär bzw. orthogonal.
- (5) Die Spalten (bzw. Zeilen) von $D_{BB}(\Phi)$ bilden eine ONB von \mathbb{K}^n bzgl. dem Standard-SKP.
- (6) Es existiert eine ONB C von V mit $D_{BC}(\Phi) = I_n$.

Beweis: Jede der Aussagen impliziert $\Phi \in \operatorname{Aut}(V)$. Sei $B := \{b_1, \dots, b_n\}$.

- $(1) \iff (2) \iff (4)$ Klar nach Isometriekriterium.
 - $(4) \iff (5)$ Es gilt:

$$D_{BB}(\Phi)^{-1} = D_{BB}(\Phi^*)$$

 $\Rightarrow D_{BB}(\Phi) \cdot D_{BB}(\Phi^*) = I_n$
 $\iff \{\text{Zeilen von } \Phi\} \text{ sind ONB bezgl. Standardform}$
 $\Rightarrow D_{BB}(\Phi^*) \cdot D_{BB}(\Phi) = I_n$
 $\iff \{\text{Spalten von } \Phi\} \text{ sind ONB bezgl. Standardform}$

 $(3) \Longrightarrow (2)$ Da für alle $b_i, b_j \in B$ gilt:

$$\langle \Phi(b_i), \Phi(b_j) \rangle = \delta_{ij} = \langle b_i, b_j \rangle$$

Folgt für alle $x = \sum_{i=1}^{n} \alpha_i b_i \in V$:

$$\langle \Phi(x), \Phi(x) \rangle = \sum_{i,j} \alpha_i \overline{\alpha_j} \langle \Phi(b_i), \Phi(b_j) \rangle$$
$$= \sum_{i,j} \alpha_i \overline{\alpha_j} \langle b_i, b_j \rangle$$
$$= \langle x, x \rangle$$

Also ist $\|\Phi(x)\| = \|x\|$ und Φ längenerhaltend.

 $(1) \Longrightarrow (3)$ Da Φ Isometrie ist, gilt:

$$\implies \langle \Phi(b_i), \Phi(b_j) \rangle = \langle b_i, b_j \rangle = \delta_{ij}$$

D.h. $\Phi(B)$ ist ONB.

 $(3) \Longrightarrow (6)$ Sei $C := \Phi(B)$. Dann gilt:

$$D_{BC}(\Phi) = I_n$$

 $(6) \Longrightarrow (4)$ Es existiert eine ONB $C = \{c_1, \ldots, c_n\}$, sodass gilt:

$$D_{BC}(\Phi) = I_n$$

Daraus folgt: $D_{BB}(\Phi) = D_{BC}(\Phi) \cdot M_{CB} = M_{CB} =: (\gamma_{ij})$ Also gilt für alle $b_j \in B$:

$$b_j = \sum_k \gamma_{kj} \cdot c_k$$

Daraus folgt:

$$\delta_{ij} = \langle b_j, b_i \rangle$$

$$= \langle \sum_k \gamma_{kj} \cdot c_k, \sum_l \gamma_{li} \cdot c_l \rangle$$

$$= \sum_{k,l} \gamma_{kj} \cdot \overline{\gamma_{li}} \cdot \langle c_k, c_l \rangle$$

$$= \sum_k \gamma_{kj} \cdot \overline{\gamma_{ki}}$$

$$= \sum_k \overline{\gamma_{ki}} \cdot \gamma_{kj} - (\overline{M}_{CB}^T \cdot M_{CB})_{ij}$$

Es gilt also
$$M_{CB}^* = M_{CB}^{-1}$$
.

19.2. Normalformen für Isometrien und normale Endomorphismen

Sei V VRm mit SKP $\langle \cdot, \cdot \rangle$, dim $(V) = n < \infty$.

19.2.1. Fall $\mathbb{K}=\mathbb{C}$

Lemma:

Ein Endomorphismus Φ ist genau dann unitär, wenn er normal ist und alle Eigenwerte Betrag 1 haben.

Beweis: Da Φ unitär ist, also $\Phi^* = \Phi^{-1}$ gilt, ist Φ normal. Nach Spektralsatz existiert dann eine ONB $B = \{b_1, \ldots, b_n\}$ aus Eigenvektoren von Φ . Also gilt:

$$\Phi(b_i) = \lambda_i b_i \text{ mit } \lambda_i \in \mathbb{C}$$

Mit dem Korollar folgt:

 Φ unitär

$$\iff \Phi(B) \text{ ONB}$$

$$\iff \delta_{ij} = \langle \Phi(b_i), \Phi(b_j) \rangle = \langle \lambda_i b_i, \lambda_j b_j \rangle = |\lambda_i|^2 \cdot \delta_{ij}$$

$$\iff |\lambda_i|^2 = 1$$

$$\iff |\lambda_i| = 1$$

Folgerung: $D_{BB}(\Phi) = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ mit $|\lambda_i| = 1$ heißt Normalform der unitären Abb. Φ und ist bis auf die Reihenfolge der Eigenwerte eindeutig bestimmt.

Korollar

Ist $A \in \mathbb{C}^{n \times n}$ normal, so existieren $M \in U_n$ und $\lambda_i \in \mathbb{C}$, sodass gilt:

$$M^{-1} \cdot A \cdot M = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

D.h. jedes normale A erlangt durch **unitären Basiswechsel** Normalform. Falls A unitär ist, so existiert $\Phi_i \in \mathbb{R}$, sodass gilt:

$$\lambda_j = e^{i\Phi_j} = \cos\Phi_j + i\sin\Phi_j$$

Beweis: Sei $V = \mathbb{C}^n$ mit dem Standardskalarprodukt, $\varphi = \Lambda_A : x \mapsto Ax$

Aus dem Basiswechsel zwischen einer Orthonormalbasis S (der Standardbasis) und einer Orthonormalbasis B aus Eigenvektoren von ϕ folgt: $M := M_{SB}$ ist unitär.

Das heißt:

$$M^{-1}D_{SS}(\Lambda_A)M = M^{-1}AM = D_{BB}(\Lambda_A) = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

19.2.2. Fall $\mathbb{K} = \mathbb{R}$

Sei $\Psi \in \text{End}(V)$ normal; das char. Polynom $f = f_{\Psi} \in \mathbb{R}[X]$.

Beachte: Falls $\lambda \in \mathbb{C}$ Nullstelle ist, so ist auch $\bar{\lambda}$ eine Nullstelle.

$$0 = f(\lambda) = \sum_{i=0}^{n} a_i \lambda_i$$
$$0 = \sum_{i=0}^{n} \bar{a}_i \bar{\lambda}^i = \sum_{i=0}^{n} a_i \bar{\lambda}^i \quad \text{da } a_i \in \mathbb{R}$$

Das heißt: Nullstellen $\lambda \in \mathbb{C} \setminus \mathbb{R}$ treten stets als Paare $(\lambda, \bar{\lambda})$ auf.

Via Isometrie:

$$D_{BB}: V \xrightarrow{\sim} \mathbb{R}^n$$

$$\Psi \downarrow \qquad \downarrow \Lambda_A \quad \text{mit } A \in \mathbb{R}^{n \times n} \text{ normal}$$

$$V \xrightarrow{\sim} \mathbb{R}^n$$

Betrachte zunächst: $\phi := \Lambda_A \in \operatorname{End}(\mathbb{C}^n)$

Lemma:

Ist $A \in \mathbb{R}^{n \times n}$ beliebig und $\phi = \Lambda_A \in \text{End}(\mathbb{C}^n)$, so gilt:

- (1) für $\lambda \in \operatorname{Spec}(\phi) \cap \mathbb{R}$ hat $E_{\lambda}(\phi) \subseteq \mathbb{C}^n$ eine Basis in $\mathbb{R}^n \subseteq \mathbb{C}^n$
- (2) für $\lambda \in \operatorname{Spec}(\phi) \setminus \mathbb{R}$ ist $\mathbb{R}^n \cap E_{\lambda}(\phi) = 0$ und $E_{\lambda}(\phi) = E_{\bar{\lambda}}(\phi)$

Für normale A gilt: $E_{\lambda}(\phi) \perp E_{\lambda}(\phi)$

Beweis: (1) Vorbemerkung: Die lineare Unabhängigkeit von $x_1, \ldots, x_r \in \mathbb{R}^n$ bleibt in \mathbb{C}^n erhalten.

Für $\lambda \in \mathbb{R}$ gilt daher:

$$\operatorname{rg}_{\mathbb{R}}(A - \lambda I) = \operatorname{rg}_{\mathbb{C}}(A - \lambda I) \implies \dim_{\mathbb{R}} \operatorname{Kern}(A - \lambda I) = \dim_{\mathbb{C}} \operatorname{Kern}(A - \lambda I)$$

Also ist jede \mathbb{R} -Basis von $\operatorname{Kern}_{\mathbb{R}}(A-\lambda I)$ eine \mathbb{C} -Basis von $\operatorname{Kern}_{\mathbb{C}}(A-\lambda I)=E_{\lambda}(\phi)$

(2) Sei $\lambda \in \operatorname{Spec}(\phi) \setminus \mathbb{R}$.

Aus
$$A \cdot b = \lambda \cdot b$$
 folgt $b \notin \mathbb{R}^n$ oder $b = 0$, denn:
falls $b \in \mathbb{R}^n$ folgt $Ab \in \mathbb{R}^n \implies \lambda b \in \mathbb{R}^n \stackrel{\lambda \notin \mathbb{R}}{\Longrightarrow} b = 0$

Ferner folgt:

$$\bar{\lambda} \cdot \bar{b} = \bar{A} \cdot \bar{b} = A \cdot \bar{b}$$

d.h.
$$b \in E_{\bar{\lambda}}(\phi) \implies "\subseteq" \implies "="$$

Ist A normal, dann folgt mit dem Spektralsatz: $\lambda \neq \bar{\lambda}$, d.h. $E_{\lambda} \perp E_{\bar{\lambda}}$

Korollar:

Sei $A \in \mathbb{R}^{n \times n}$ normal, $\phi := \Lambda_A \in \text{End}(\mathbb{C}^n)$. Ferner sei $Spec(\phi) = \{\lambda_1, \dots, \lambda_r, \lambda_{r+1}, \bar{\lambda}_{r+1}, \dots, \lambda_{r+s}, \bar{\lambda}_{r+s}\}$ mit $\lambda_j \in \mathbb{R} (j = 1, \dots, r), \lambda_{r+k} \in \mathbb{C} \setminus \mathbb{R} (k = 1, \dots, s), n = r + 2s \text{ (evtl. sind gleiche dabei)}$

• Dann existiert eine Orthonormalbasis

$$B = \{b_1, \dots, b_r, b_{r+1}, \bar{b}_{r+1}, \dots, b_{r+s}, \bar{b}_{r+s}\}\$$

aus Eigenvektoren von ϕ , wobei $b_j \in \mathbb{R}^n$ für $j = 1, \dots, r$. Es ist $b_{r+k} \in \mathbb{C}^n \setminus \mathbb{R}^n$ $(k = 1, \dots, s)$ und $Ab_j = \lambda_j b_j$, $A\bar{b}_j = \bar{\lambda}_j \bar{b}_j$

• Mit

$$U_j := \begin{cases} \mathbb{C} \cdot b_j & j = 1, \dots, r \\ \mathbb{C} \cdot b_j \oplus \mathbb{C} \cdot \bar{b}_j & j = r + 1, \dots, r + s \end{cases}$$

geht die direkte Zerlegung:

$$\mathbb{C}^n = \bigoplus_{j=1}^{r+s} U_j$$

in ϕ -invariante Teilräume, die paarweise orthogonal sind (d.h. $U_j \perp U_k$ für $j \neq k$).

Beweis: Lemma (1): Für $\lambda \in \operatorname{Spec}(\phi) \cap \mathbb{R} : E_{\lambda}(\phi)$ hat die Basis $B_{\lambda} \subseteq \mathbb{R}^n$.

Orthonormalisierungsalgorithmus: $B_{\lambda} \rightsquigarrow \text{ONB} \subseteq \mathbb{R}^n$.

Für Eigenwerte $\lambda \in \mathbb{C} \setminus \mathbb{R}$ existiert nach Spektralsatz gleichfalls eine Orthonormalbasis B_{λ} von $E_{\lambda}(\phi)$.

Lemma (2): $\bar{B}_{\lambda} := B_{\bar{\lambda}}$ ist ONB von $E_{\bar{\lambda}}(\phi)$. Beachte: Für das Standardskalarprodukt gilt: $\overline{\langle x,y\rangle} = \langle \bar{x},\bar{y}\rangle$.

Also: Zu $b_i \in B_{\lambda}$ gehört $\bar{b}_i \in B_{\bar{\lambda}}$.

Es ist klar, daß $U_j = \langle b_j, \bar{b}_j \rangle$ ϕ -invariant und $U_j \perp U_k$ ist, da alle b paarweise orthogonal sind.

Problem: Wie lässt sich die Zerlegung im Korollar auf die reelle Situation übertragen?

■

Satz 23:

Sei V ein \mathbb{R} -Vektorraum mit Skalarprodukt, dim $V=n<\infty,\,\Psi\in\mathrm{End}(V)$ normal. Dann gilt:

(1)

$$f_{\Psi}(X) = \prod_{j=1}^{r} (X - \lambda_j) \prod_{k=1}^{s} (X - \lambda_{r+k}) (X - \bar{\lambda}_{r+k})$$

mit $\lambda_1, \ldots, \lambda_r \in \mathbb{R}$ (OBdA sei $\lambda_1 \leq \ldots \lambda_n$), $\lambda_{r+k} \in \mathbb{C} \setminus \mathbb{R}$.

Beachte: Für $\lambda \in \mathbb{C} \setminus \mathbb{R}$ gilt: $(X - \lambda)(X - \bar{\lambda}) = X^2 - 2\gamma \cos(\phi)X + \gamma^2$ mit $\gamma := |\lambda| > 0$ und $\phi \in (0, \pi)$.

(2) Es existiert eine ONB $C = \{c_1, \ldots, c_r, c_{r+1}, c'_{r+1}, \ldots, c_{r+s}, c'_{r+s}\}$ von V so, daß $D_{CC}(\Psi)$ **Drehkästchennormalform** hat, d.h.

$$D_{CC}(\Psi) = \operatorname{diag}(\lambda_1, \dots, \lambda_r, \gamma_1 D_{\phi_1}, \dots, \gamma_s D_{\phi_s})$$

(eindeutig bestimmt durch Ψ), wobei

$$\gamma D_{\phi} = \gamma \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$

(3) Ψ ist orthogonal genau dann, wenn alle reellen $\lambda_j = \pm 1$ und alle $\gamma_k = 1$ sind.

Beweis: $(1) \checkmark$

(2) Nehme aus Korollar $c_j = b_j \in \mathbb{R}^n \ (j = 1, ..., r)$ und für $U = \mathbb{C}b \oplus \mathbb{C}\bar{b}$ finden wir eine ONB $\subseteq \mathbb{R}^n$ wie folgt: Behauptung: $C := \{\sqrt(2)\Re(b), -\sqrt(2)\operatorname{Im}(b)\}$ ist ONB von U

denn: $M_{BC} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix}$ ist unitär, also $M_{CB} = M_{BC}^{-1} = M_{BC}^*$.

Damit folgt:

$$D_{CC}(\Psi|_{U}) = M_{CB} \cdot D_{BB}(\Psi|_{U}) \cdot M_{BC}$$

$$= \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -\imath & i \end{pmatrix} \begin{pmatrix} \lambda & 1 & i \\ \bar{\lambda} & \bar{\lambda} \end{pmatrix} \begin{pmatrix} 1 & i \\ 1 & -\imath \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} \lambda + \bar{\lambda} & \imath(\lambda - \bar{\lambda}) \\ -\imath(\lambda - \bar{\lambda}) & \lambda + \bar{\lambda} \end{pmatrix}$$

$$= \gamma \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$

(3)
$$D_{CC}(\Psi) = A$$
 orthogonal $\Leftrightarrow A^*A = I \Leftrightarrow \text{alle Eigenwerte } |\lambda| = 1.$

Definition:

(a) $\Phi \in \text{End}(V)$ orthogonal heißt **Drehung um den Winkel** ϕ , falls eine ONB $B = \{b_1, \ldots, b_n\}$ existiert, so daß $D_{BB}(\Phi) = \text{diag}(D_{phi}, 1, \ldots, 1)$.

 $U = \mathbb{R} \cdot b_1 + \mathbb{R} \cdot b_2$ heißt **Drehebene von** ϕ und $U^{\perp} = \langle b_3, \dots, b_n \rangle$ **verallgemeinerte Drehachse**.

(b) $\Psi \in \text{End}(V)$ orthogonal heißt **Spiegelung** an einer **Hyperebene** H, falls eine ONB $B = \{b_1, \ldots, b_n\}$ existiert, so daß $D_{BB}(\Psi) = \text{diag}(-1, 1, \ldots, 1)$ und $H := \langle b_4, \ldots, b_n \rangle$.

Bemerkung: Falls $\Phi \neq \operatorname{id}$ Drehung ist, folgt $D_{\phi} \neq \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ und $U^{\perp} = \operatorname{Kern}(\phi - \operatorname{id}_{V})$.

Insbesondere sind U und U^{\perp} durch Φ eindeutig bestimmt (unabhängig von der Basis).

Satz 24:

Sei V ein \mathbb{R} -Vektorraum mit Skalarprodukt s und dim $V=n<\infty$. Dann ist die Gruppe O(V,s) erzeugt durch Drehungen und Spiegelungen. Genauer: $\forall \Psi \in O(V,s) \exists \operatorname{Zerlegung} n=r+2r'$, so daß Ψ Produkt von höchstens r Spiegelungen und r' Drehungen ist.

Beweis:

$$D_{BB}(\Psi) = \operatorname{diag}(\lambda_1, \dots, \lambda_r, D_{\phi_1}, \dots, D_{\phi_r})$$

$$= \prod_{j=1}^r \operatorname{diag}(1, \dots, 1, \lambda_j, 1, \dots, 1) \prod_{k=1}^{r'} \operatorname{diag}(1, \dots, 1, D_{\phi_k}, 1, \dots, 1)$$