

运筹学

第二讲 单纯形算法

魏韡

2025年3月5日

单纯形法之父——丹齐格

George Bernard Dantzig (1914-2005)

主要学术贡献

- > 学生时代解决了两个统计学中的开放问题
- > 发明了单纯形算法
- > 大规模线性规划的Dantzig-Wolfe分解算法
- > 随机规划

出版专著

➤ Linear Programming and Extensions, 1963.

学术荣誉

- ➢ 冯诺依曼理论奖 (INFORMS) 首位获奖人, 1975
- ▶ 国家自然科学奖章, 1975

以丹齐格名字命名的奖励

➤ 丹齐格奖 (SIAM)

主要内容

1. 线性规划的代数视角

2. 基本单纯形算法

3. 线性规划对偶理论(续)

1.1 标准型转换

一般形式 $\min \sum_{i=1}^{n} c_i x_i$ s.t. $\sum_{i=1}^{n} a_{ii} x_{i} \leq b_{i}, i \in I_{1}$ $\sum_{i=1}^{n} a_{ij} x_i \ge b_i, i \in I_2$ $\sum_{i=1}^{n} a_{ii} x_{i} = b_{i}, i \in I_{3}$ $\min \ c^{\mathrm{\scriptscriptstyle T}} x$ s.t. $Ax = \begin{bmatrix} \geq \\ \leq \\ b \end{bmatrix}$

标准形式

$$\begin{aligned} & \min & \sum_{j=1}^n c_j x_j \\ & \text{s.t.} & \sum_{j=1}^n a_{ij} x_j = b_i, i = 1:m \\ & x_j \geq 0, j = 1:n \end{aligned}$$

$$min c^{T}x$$
s.t. $Ax = b$

$$x \ge 0$$

1.1 标准型转换

一般形式

$$\max x_{1} + x_{2}$$
s.t. $\frac{2}{3}x_{1} + x_{2} \le 18$

$$2x_{1} + x_{2} \ge 8$$

$$0 \le x_{1} \le 12$$

$$0 \le x_{2} \le 16$$

标准型的矩阵表示 min $c^{T}x$ s.t. Ax = b, $x \ge 0$

标准形式

min
$$-x_1 - x_2$$

s.t. $2x_1/3 + x_2 + x_3 = 18$
 $2x_1 + x_2 - x_4 = 8$
 $x_1 + x_5 = 12$
 $x_2 + x_6 = 16$
 $x_1 \sim x_6 \ge 0$

$$\min \left(-1, -1, 0, 0, 0, 0, 0\right) \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} \text{ s.t. } \begin{bmatrix} \frac{2}{3} & 1 & 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 18 \\ 8 \\ 12 \\ 16 \end{bmatrix}, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} \ge 0$$

1.2 基本解

定义

标准型的约束 $Ax = b, x \ge 0$, 其中 $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$, rank(A) = m.

• πx^* 是一个基本解,若其中 $\pi - m$ 个元素是 0,其余 π 个元素 满足所有等式约束

等价

• 称 x^* 是一个基本可行解,若它是一个基本解且 $x^* \ge 0$.

min
$$c^{\mathrm{T}}y$$

s.t. $Ay \ge b$ $(A \in \mathbf{R}^{m \times n})$
 $y \ge 0$ $(y \in \mathbf{R}^n)$

上述线性规划的最优解一定

可以在某个 极点 取到

$$egin{aligned} y_2 &= 0 \quad y_2 : n - n_e \ A' y &= b' \quad A' : n_e imes n \ n$$
 个变量, n 个等式

min
$$c^{\mathrm{T}}y$$
 min $\overline{c}^{\mathrm{T}}x$
s.t. $Ay \ge b$ $(A \in \mathbf{R}^{m \times n})$ s.t. $\overline{A}x = b$ $\overline{A} = [A, I] \in \mathbf{R}^{m \times (n+m)}$
 $y \ge 0$ $(y \in \mathbf{R}^n)$ $x \ge 0$ $x = [y; s] \in \mathbf{R}^{n+m}$

基本可行解

$$\begin{split} s_2 &= 0: n_e \\ y_2 &= 0: n - n_e \\ Ay + s &= b \quad A: m \times n \end{split}$$

n+m个变量, n+m个等式

1.2 基本解

min
$$c^{T}x$$

s.t. $Ax = b$ $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^{m}$
 $x \ge 0$ $x \in \mathbf{R}^{n}$ $(m < n)$

标准型的枚举解法:

- ▶ 选出 n-m 个变量固定为 0, 解方程 $Ax^*=b$, 检验是否 $x^*\geq 0$.
- \rightarrow 求解 C_n^m 个方程得到所有基本解,其中必定包含最优解

例: 找出以下标准型线性规划的所有基本解

$$\min \left(-1, -1, 0, 0, 0, 0, 0\right) \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} \text{ s.t. } \begin{bmatrix} \frac{2}{3} & 1 & 1 & 0 & 0 & 0 \\ \frac{2}{3} & 1 & 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 18 \\ 8 \\ 12 \\ 16 \end{bmatrix}, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} \ge 0$$

1.2 基本解

编号	基本解 索引	基本	本解非	零元素	值	目标值	x_1	x_2
1	1,2,3,4	12	16	-6	32	Infea.		
2	1,2,3,5	-4	16	14/3	16	Infea.		
3	1,2,3,6	12	-16	26	32	Infea.		
4	1,2,4,5	3	16	14	9	-19	3	16
5	1,2,4,6	12	10	26	6	-22	12	10
6	1,2,5,6	-7.5	23	39/2	-7	Infea.		
7	1,3,4,5		奇	异	-	/		
8	1,3,4,6	12	10	16	16	-12	12	0
9	1,3,5,6	4	46/3	8	16	-4	4	0
10	1,4,5,6	27	46	-15	16	Infea.		
11	2,3,4,5	16	2	8	12	-16	0	16
12	2,3,4,6		奇	异		/		
13	2,3,5,6	8	10	12	8	-8	0	8
14	2,4,5,6	18	10	12	-2	Infea.		
15	3,4,5,6	18	-8	12	16	Infea.		

主要内容

1. 线性规划的代数视角

2. 基本单纯形算法

3. 线性规划对偶理论(续)

2.1 最优性条件

基矩阵
$$Ax = b$$
 $A = \begin{bmatrix} B & N \end{bmatrix}$ $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}$ 基变量 $c^T = \begin{bmatrix} c_B^T & c_N^T \end{bmatrix}$ $B(1), \dots, B(m)$: 基变量索引 $B = \begin{bmatrix} A_{B(1)} \dots A_{B(m)} \end{bmatrix}$ $R(1), \dots, R(n-m)$: 非基变量索引 $N = \begin{bmatrix} A_{R(1)} \dots A_{R(n-m)} \end{bmatrix}$

定义

称向量 $d \in \mathbb{R}^n$ 是可行解 x 处的一个可行方向,若存在足够小的正数 $\theta > 0$,使得 $x + \theta d$ 仍是可行解

以基本可行解 x 为起点,仅将非基变量 x_j 增加 θ , 方向 $d_{i \in R} = \begin{cases} 1, & i = j \\ 0, & \text{other} \end{cases}$

$$Ax = b$$

 $A(x + \theta d) = b$

$$Ad = 0 \implies \sum_{i=1}^{m} A_{B(i)} d_{B(i)} + A_{j} = Bd_{B} + A_{j} = 0$$
第 j 个基本方向: $d_{B} = -B_{10/40}^{-1} A_{10/40}$

2.1 最优性条件

$$Ax = b \qquad Bx_B + Nx_N = b \qquad x_B = B^{-1}b - B^{-1}Nx_N$$

$$A = \begin{bmatrix} B & N \end{bmatrix} \qquad x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} \qquad c^{T} = \begin{bmatrix} c_B^{T} & c_N^{T} \end{bmatrix}$$

$$f = c^{\mathsf{T}} x = c_B^{\mathsf{T}} x_B + c_N^{\mathsf{T}} x_N = c_B^{\mathsf{T}} B^{-1} b + (c_N^{\mathsf{T}} - c_B^{\mathsf{T}} B^{-1} N) x_N$$

 $c_B^{\mathrm{T}}B^{-1}b$: 常数

 c_N^{T} : 改变非基变量的单位增量成本

 $c_B^{\mathsf{T}}B^{-1}N$: 基变量随非基变量变化引入的成本

非基变量
$$x_j$$
 的归约成本: $\overline{c}_j = c_j^{\mathrm{T}} - c_B^{\mathrm{T}} B^{-1} A_j, j = 1:n$

 $\bar{c}_i \geq 0, \forall j \in R \Rightarrow x$ 是最优解

矩阵 A 的第 i 列

2.1 最优性条件

定理1

基变量的规约成本为 0

$$B = \begin{bmatrix} A_{B(1)} \cdots A_{B(m)} \end{bmatrix} \implies B^{-1}A = \begin{bmatrix} I & B^{-1}N \end{bmatrix} \implies B^{-1}A_{B(i)} = e_i$$

$$\overline{c}_{B(i)} = c_{B(i)} - c_B^{\mathsf{T}} B^{-1} A_{B(i)} = c_{B(i)} - c_B^{\mathsf{T}} e_i = c_{B(i)} - c_{B(i)} = 0$$

定理 2

给定基本可行解 x 及其对应的基矩阵 B. 向量 $\bar{c} \in \mathbb{R}^n$ 是对应的 (基变量和非基变量的)规约成本

- (a) 若 $\bar{c} \geq 0$, 则 x 是最优解
- (b) 若 x 是非退化的最优解,则 $\bar{c} \geq 0$.

$$\overline{c}^{\mathrm{T}} = [\overline{c}_{R}^{\mathrm{T}} \quad \overline{c}_{N}^{\mathrm{T}}] = [0^{\mathrm{T}} \quad \overline{c}_{N}^{\mathrm{T}}]$$

2.1 最优性条件

2.2 主元法 (Pivoting 枢轴操作)

$$f = c^{\mathsf{T}} x = c_B^{\mathsf{T}} x_B + c_N^{\mathsf{T}} x_N$$

$$= c_B^{\mathsf{T}} B^{-1} b - \sum_{j \in R} \left(c_B^{\mathsf{T}} B^{-1} A_j - c_j \right) x_j$$

$$= f_0 - \sum_{j \in R} \left(\boxed{z_j - c_j} x_j \right)$$
對别数 = 一规约成本

- □ 根据**定理2**, 若 $z_i c_i \le 0$, $\forall j \in R$, 则 x 是最优解;
- □ 若 $\exists j \in R: z_i c_i > 0$, 则目标函数可以进一步减小

如何选择非基变量减小目标函数?

◆ 判别数
$$z_j - c_j > 0$$

◆
$$(z_j - c_j)x_j$$
 越大越好

◆ 判别数
$$z_j - c_j > 0$$

◆ $(z_j - c_j)x_j$ 越大越好

↑ x_j : 如何确定 x_j ?

2.2 主元法

2.2 主元法

定理 3

基变量更新后:

$$x = (x_{B_1}, \dots, x_{B_{r-1}}, 0, x_{B_{r+1}}, \dots, x_{B_m}, 0, \dots, x_k, \dots, 0)$$

(a)
$$\bar{B}$$
 矩阵可逆

$$\overline{B} = \begin{bmatrix} A_{B(1)} & A_{B(r-1)} & A_k & A_{B(r+1)} & A_{B(m)} \end{bmatrix}$$

(b) x 是对应于基矩阵 \bar{B} 的基本可行解

证明 (a):

$$B = [A_{B(1)} \cdots A_{B(m)}]$$

是一个基矩阵(可逆)

$$y_k = B^{-1}A_k$$

$$A_k = By_k$$

$$A_{B(1)}$$
, … , $A_{B(m)}$ 线性无关

$$=\sum_{i=1}^{m}y_{ik}A_{B(i)}$$

$$y_{rk} \neq 0$$

向量组 $A_{B(1)}, \dots, A_{B(r-1)}, A_k, A_{B(r+1)}, \dots, A_{B(m)}$ 线性无关

2.2 主元法

单纯形法(主元法)的矩阵形式

第1步: 找到一个初始基本可行解, 计算归约成本 \bar{c}_N

第2步: 若 $\bar{c}_N \geq 0$, 该基本可行解是最优解,结束。否则

第3步: 找到进基变量和离基变量

第4步: 更新 B 和 \bar{c}_N , 至第2步

第1步:
$$B = \begin{bmatrix} A_1 & A_2 & A_3 \end{bmatrix}, N = \begin{bmatrix} A_4 & A_5 & A_6 \end{bmatrix}, x_{1:3} = B^{-1}b > 0$$

第2步:
$$\overline{c}_{4:6}^{\mathrm{T}} = c_{4:6}^{\mathrm{T}} - c_{B}^{\mathrm{T}} B^{-1} N = \begin{bmatrix} -2 & -1 & 3 \end{bmatrix}$$

第3步: 进基变量是
$$x_4$$
, (假设)离基变量是 x_1
— 第4步: $B = \begin{bmatrix} A_2 & A_3 & A_4 \end{bmatrix}$, $N = \begin{bmatrix} A_1 & A_5 & A_6 \end{bmatrix}$, $x_{2:4} = B^{-1}b > 0$

对于大规模问题最耗时的计算是哪一步? 如何降低计算量?

2.3 单纯形法的表格形式

$$\min f = c^{\mathsf{T}} x$$
s.t. $Ax = b, \ x \ge 0$

$$x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}, \quad c^{\mathsf{T}} = (c_B^{\mathsf{T}}, c_N^{\mathsf{T}}), \quad A = (B, N)$$

 $\min f$

s.t.
$$f - c_B^T x_B - c_N^T x_N = 0$$

 $c_B^T \times x_B + B^{-1} N x_N = B^{-1} b$
 $x_B \ge 0, \quad x_N \ge 0$

 $\min f$

s.t.
$$f - c_B^T x_B - c_N^T x_N = 0$$

 $c_B^T \times x_B + B^{-1} N x_N = B^{-1} b$
 $x_B \ge 0, \quad x_N \ge 0$
s.t. $x_B + B^{-1} N x_N = B^{-1} b$
 $f + 0 \cdot x_B + (c_B^T B^{-1} N - c_N^T) x_N = c_B^T B^{-1} b$
 $x_B \ge 0, \quad x_N \ge 0$

	Z	x_B	x_N	常数项
x_B	0	I_m	$B^{-1}N$	$B^{-1}b$
f	1	0	$c_B^{\mathrm{T}} B^{-1} N - c_N^{\mathrm{T}}$	$c_B^{\mathrm{T}}B^{-1}b$

2.3 单纯形法的表格形式

 x_{B_r}

 x_{B_m}

$$B^{-1}N = (B^{-1}A_{N_1}, \dots, B^{-1}A_{N_{n-m}}) = (y_{N_1}, \dots, y_{N_{n-m}}), B^{-1}b = (\overline{b_1}, \dots, \overline{b_m})^{\mathrm{T}} \ge 0$$

$$c_B^{\mathsf{T}} B^{-1} N - c_N^{\mathsf{T}} = \left(c_B^{\mathsf{T}} B^{-1} A_{N_1} - c_{N_1}, \cdots, c_B^{\mathsf{T}} B^{-1} A_{N_{n-m}} - c_{N_{n-m}} \right) = \left(p_{N_1}, \cdots, p_{N_{n-m}} \right)$$

_	x_{B_1}	•••	x_{B_r}	•••	x_{B_m}	•••	x_j	•••	x_k	•••	
	1	•••	0	•••	0	•••	y_{1j}	•••	y_{1k}	•••	$ar{b}_1$
	:		•		•		•		•		<u>:</u>
	0	•••	1	• • •	0	•••	y_{rj}	•••	y_{rk}	•••	b_r
	0	•••	0	•••	1	•••	: Ут ј	•••	: Ymk	•••	$ar{ar{b}}_m$
	0	• • •	0	• • •	0	•••	p_{i}	• • •	p_k	•••	$ar{c}_B^{ m T} ar{b}$

假设 $x = (\bar{b} \quad 0)^{\mathrm{T}} \ge 0$ 是一个基本可行解

- □ 若判別数 $p_i \le 0, \forall j \in R$, 则 x 是最优解;
- □ 若 $\exists j \in R: z_i c_i > 0$,则在表上执行**主元法**

2.3 单纯形法的表格形式

主元的选取规则

□ 进基列
$$k: p_k = \max_{j \in R} = \left\{ p_j \right\} > 0$$

国 選基列
$$\frac{\overline{b}_r}{y_{rk}} = \min \left\{ \frac{\overline{b}_i}{y_{ik}} \middle| y_{ik} > 0 \right\}$$

2.3 单纯形法的表格形式

更新单纯形表

定理 4

单纯形表更新后判别数行在新基变量下仍然成立

2.3 单纯形法的表格形式

单纯形法的收敛性

$$\Leftrightarrow z_k - c_k = \max_j \{z_j - c_j\}.$$

- □ 若 $z_k c_k \le 0$, 则当前基本可行解是最优解
- □ 若 $z_k c_k > 0$ 但向量 $y_k \le 0$, 则即使 $x_k \to \infty$ 也不会导致 $x_B < 0$,且目标函数可以小于任意给定的数,因此可以断言线性规划问题无界
- □ 若 $z_k c_k > 0$ 且 $y_k \le 0$, 则必然可以执行主元法使目标函数下降

定理 5

对于非退化的可行线性规划问题,单纯形法在有限步内收敛: 或找到最优解或发现问题无界

2.4 表格单纯形法实例

min
$$-x_1 - x_2$$

s.t. $2x_1/3 + x_2 + x_3 = 18$
 $2x_1 + x_2 - x_4 = 8$
 $x_1 + x_5 = 12$
 $x_2 + x_6 = 16$
 $x_1 \sim x_6 \ge 0$

$$x_2 = x_4 = 0$$

$$\begin{bmatrix} x_1 \\ x_3 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 4 \\ 46/3 \\ 8 \\ 16 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_3 \\ x_5 \\ x \end{bmatrix} = \begin{bmatrix} 4 \\ 46/3 \\ 8 \\ 16 \end{bmatrix} \qquad B^{-1}N = \begin{bmatrix} 1/2 & -1/2 \\ 2/3 & 1/3 \\ -1/2 & 1/2 \\ 1 & 0 \end{bmatrix}$$

 $(p_2, p_4) = (0.5, 0.5)$

	x_1	x_2	x_3	\mathcal{X}_{4}	x_5	x_6		_
	1	(1/2)	0	-1/2	0	0	4	
	0	2/3	1	1/3		0	46/3	$x_4 = 46$ $x_4 = 16$
	0	-1/2	0	(1/2)	1	0	8	\leftarrow $x_4 = 16$
	0	1	0	0	0	1	16	
\vdash								· ·
		1/2		1/2			-4	$\Delta f = -8$

2.4 表格单纯形法实例

	x_1	x_2	x_3	x_4	x_5	x_6	
x_1	1	1/2	0	-1/2	0	0	4
x_3	0	2/3	1	1/3	0	0	46/3
x_5	0	-1/2	0	(1/2)	1	0	8
x_6	0	1	0	0	0	1	16
		1/2		1/2			-4

 x_2 x_3 x_4

1					
x_1	1		0	0	
$x_2 = 10 \times x_3$	0	(1)	1	0	_
$\overset{ ext{-}}{\chi}_4$	0	-1	0	1	
$x_2 = 16 \times x_6$	0	1	0	0	

 x_1

1	0	0	0	1	0	12
0	(1)	1	0	-2/3	0	10
0	$\overline{-1}$	0	1	2	0	16
0	1	0	0	0	1	16
	1		0	-1		-12
	A					

 χ_5

 x_6

2.4 表格单纯形法实例

	χ_1	x_2	χ_3	χ_4	χ_5	<i>x</i> ₆	
x_1	1	0	0	0	1	0	12
x_3	0	(1)	1	0	-2/3	0	10
x_4	0	-1	0	1	2	0	16
x_6	0	1	0	0	0	1	16
		1		0	-1		-12

x_1	x_2	x_3	x_4	x_5	x_6
		_		_	_

x_1	1	0	0	0	1	0	12
x_2	0	1	1	0	-2/3	0	10
x_4	0	0	1	1	4/3	0	26
x_6	0	0	- 1	0	2/3	1	6
		0	-1	0	-1/3		-22

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 12 \\ 10 \end{bmatrix}$$
$$f = -22$$

2.4 表格单纯形法实例

主要内容

1. 线性规划的代数视角

2. 基本单纯形算法

3. 线性规划对偶理论(续)

3. 线性规划对偶理论(续)

3.1 强对偶的证明

原始问题

$$\min c^{\mathsf{T}} x$$
s.t. $Ax = b$

$$x \ge 0$$

$$A \in \mathbb{R}^{m \times n}$$
$$\operatorname{rank}(A) = m$$

对偶问题

$$\max b^{\mathsf{T}} y$$
s.t. $A^{\mathsf{T}} y \le c$

$$y \text{ free}$$

强对偶定理

若原始线性规划有最优解,对偶线性规划也有最优解, 且二者最优值相等

证明:求解原始问题。在最优解处有

$$x_B = B^{-1}b \ge 0$$

$$\diamondsuit y^{\mathsf{T}} \triangleq c_B^{\mathsf{T}} B^{-1}$$

 $y^{\mathsf{T}}b = c_B^{\mathsf{T}}B^{-1}b = c^{\mathsf{T}}x$

弱对偶 -

目标值达到最优

3. 线性规划对偶理论(续)

3.2 线性规划的最优性条件

原始问题

$$\min c^{\mathsf{T}} x$$

s.t. $Ax \ge b$

$$A \in \mathbb{R}^{m \times n}$$
$$\operatorname{rank}(A) = m$$

对偶问题

$$\max b^{T} y$$
s.t. $A^{T} y = c$

$$y \ge 0$$

▶ 原始-对偶条件

$$Ax \ge b$$

$$A^{\mathsf{T}} y = c, y \ge 0$$

$$c^{\mathsf{T}} x = b^{\mathsf{T}} y$$

原始可行 对偶可行 强对偶

➤ Karush-Kuhn-Tucker (KKT) 条件

$$Ax \ge b$$

$$A^{\mathsf{T}}y = c, y \ge 0$$

$$y^{\mathsf{T}}(Ax - b) = 0$$

原始可行 对偶可行 互补松弛

3. 线性规划对偶理论(续)

3.3 对偶变量与影子价格

原始线性规划

强对偶

对偶线性规划

$$\min c^{\mathsf{T}} x$$
s.t. $Ax \ge b$ $b \leftarrow b + \Delta b$

$$\max(b^{T}y) \to (b + \Delta b)^{T}y$$
s.t. $A^{T}y = c$

$$y \ge 0$$

在可行解 x^* 处,将不等式约束 $a_i^T x \ge b_i$ 称为

- 起作用约束,若 $a_j^T x^* = b_j$
- 非起作用约束,若 $a_j^T x^* > b_j$

定理 (互补松弛)

若 x^* 和 y^* 分别是原始和对偶最优解,则对于原始问题的约束条件 j=1:m 及其对偶变量, $a_j^T x^* > b_j$ 和 $y_j^* > 0$ 不能同时成立。

假设 Δb_i 足够小以至于原始问题的最优基(索引)不变

- 若约束 j 不起作用,则最优值 z^* 不变 $(y_i^* = 0)$
- 若约束 j 起作用,则 $\Delta z^* = \sum_i \Delta b_i y_i^* (y_i^*)$ 为资源 b_i 的影子价格)

例1: 用单纯形法求解如下线性规划

$$\max 3x_1 + x_2 + 3x_3$$
s.t. $2x_1 + x_2 + x_3 \le 2$

$$x_1 + 2x_2 + 3x_3 \le 5$$

$$2x_1 + 2x_2 + x_3 \le 6$$

$$x_1, x_2, x_3 \ge 0$$

先将一般形式化为标准形式:

min
$$-3x_1 - x_2 - 3x_3$$

s.t. $2x_1 + x_2 + x_3 + x_4 = 2$
 $x_1 + 2x_2 + 3x_3 + x_5 = 5$
 $2x_1 + 2x_2 + x_3 + x_6 = 6$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

$$B = \begin{bmatrix} A_4 & A_5 & A_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad x_B = \begin{bmatrix} x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix} \quad x_N = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$f = -3x_1 - x_2 - 3x_3$$
: $c_B^T = (0 \ 0 \ 0), c_N^T = (-3 \ -1 \ -3)$ $f = 0$

$$(p_1, p_2, p_3) = c_B^{\mathrm{T}} B^{-1} N - c_N^{\mathrm{T}} = -c_N^{\mathrm{T}} = (-3 -1 -3)$$

	x_1	x_{2}	x_3	x_4	x_{5}	x_6	
$x_{_4}$	2	1	1	1 0 0	0	0	2
$egin{array}{c} x_4^{} \ x_5^{} \ x_6^{} \end{array}$	1	2	3	0	1	0	5
x_6	2	2	1	0	0	1	6
	3	1	3	0	0	0	0

选 x_1 进基, A_1 为主列 $\min \left\{ \frac{2}{2} \quad \frac{5}{1} \quad \frac{6}{2} \right\} = 1$ 最小值对应离基变量 x_4

例题

新单纯形表对应的基矩阵:

$$[A_1 \ A_5 \ A_6] = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

在表上做初等行变换:

$$R_1 \leftarrow \frac{R_1}{2}$$
 $R_2 \leftarrow R_2 - \frac{R_1}{2}$ $R_3 \leftarrow R_3 - R_1$ $R_0 \leftarrow R_0 - \frac{3R_1}{2}$

更新单纯形表

	x_{1}	x_{2}	x_3	$x^{}_4$	x_{5}	x_{6}	
$x_{_{1}}$	1	1/2	1/2	1/2	0	0	1
x_{5}	0	3/2	5/2	-1/2	1	0	4
x_{6}	0	1	0	-1	0	1	4
	0	-1/2	3/2	-3/2	0	0	-3

选 x_3 进基, A_3 为主列

$$\min\left\{\frac{1}{1/2} \quad \frac{4}{5/2}\right\} = \frac{8}{5}$$

最小值对应离基变量x5

例题

	x_{1}	x_{2}	x_3	$x_{_4}$	x_{5}	x_{6}	
$x_{_{1}}$	1	1/2	1/2	1/2	0	0	1
$egin{array}{c} x_1 \ x_5 \ x_6 \end{array}$	0	$\frac{7}{3}/2$	5/2	-1/2	1	0	4
x_6	0	1	0 O	-1	0	1	4
	0	-1/2	3/2	-3/2	0	0	-3

新单纯形表对应的基矩阵:

$$\begin{bmatrix} A_1 & A_3 & A_6 \end{bmatrix} = \begin{bmatrix} 1 & 1/2 & 0 \\ 0 & 5/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

在表上做初等行变换:

$$R_2 \leftarrow 2R_2/5$$
 $R_1 \leftarrow R_1 - R_2/5$ $R_0 \leftarrow R_0 - 3R_2/5$

更新单纯形表

	$x_{_{1}}$			$x_{_4}$			
$x_{_{1}}$	1	1/5	0	3/5 -1/5 -1	-1/5	0	1/5
x_{3}	0	3/5	1	-1/5	2/5	0	8/5
x_{6}	0	1	0	_1 _1	, O	1	$\begin{vmatrix} \\ 4 \end{vmatrix}$
	0	-7/5	0	-6/5	-3/5	0	-27/5

最优解为

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1/5 \\ 0 \\ 8/5 \end{bmatrix} f_{\text{max}} = \frac{27}{5}$$

例 2: 在标准型线性规划中

$$\min c^{\mathsf{T}} x$$
s.t. $Ax = b$

$$x \ge 0$$

矩阵 A 行满秩。在最优解处,基变量都是正数,即 $x_B^* > 0$ 。

证明: 对偶线性规划有唯一解。

证明:

对偶问题为 $\max \{b^{\mathsf{T}}y : A^{\mathsf{T}}y \le c\}$

假设对偶问题的最优解为 y^* , 需满足对偶问题约束条件 $A^Ty^* \leq c$.

对偶最优解处的起作用约束由原问题最优解决定,满足互补松弛条件

$$([c_B^{\mathrm{T}}, c_N^{\mathrm{T}}] - y^{*\mathrm{T}}[B, N]) {x_B \choose 0} = (c_B^{\mathrm{T}} - y^{*\mathrm{T}}B)x_B = 0$$

由于 $x_B^* > 0$,故 $B^T y^* = c_B$ 。又因为 A 行满秩,基矩阵可逆,故对偶问题的唯一最优解为 $y^* = (B^T)^{-1} c_B$

例 3: 考察以下两个线性规划

$$v_1^p = \max \sum_{j=1}^n c_j x_j$$
P1 s.t. $\sum_{j=1}^n a_{ij} x_j \le b_i, i = 1:m$
 $x_j \ge 0, j = 1:n$

$$v_{2}^{p} = \max \sum_{j=1}^{n} c_{j} x_{j}$$
P2 s.t. $\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i} + k_{i}, i = 1 : m$
 $x_{j} \ge 0, j = 1 : n$

其中右端项扰动 k_1, \dots, k_m 是给定常数。P1 的对偶最优解为 (y_1^*, \dots, y_m^*) .

证明: $v_2^p \leq v_1^p + \sum_{i=1}^m k_i y_i$

证明: 分别写出P1和P2的对偶问题D1和D2,由强对偶有 $v_1^p = v_1^d$, $v_2^p = v_2^d$

$$v_{1}^{d} = \min \sum_{i=1}^{m} b_{i} y_{i} = \sum_{i=1}^{m} b_{i} y_{i}^{*}$$
D1 s.t.
$$\sum_{i=1}^{m} a_{ij} y_{i} \ge c_{j}, j = 1:n$$

$$y_{i} \ge 0, i = 1:m$$

D1 和 D2 约束相同,故D1的最优解 y^* 是 D2 的可行解,因此:

$$v_2^d = \sum_{i=1}^m (b_i + k_i) y_i^{**} \le \sum_{i=1}^m (b_i + k_i) y_i^* = v_1^d + \sum_{i=1}^m b_i y_i^*$$

例题

例 4: 某线性规划极小化 $-2x_1 + 4x_2$, 约束为 \leq 型不等式, x_3 和 x_4 是转化为标准型时引入的松弛变量。右表是迭代至某一步的单纯形表。求未知数 $a\sim g$ 的值和最优解。

$x_{\!\scriptscriptstyle B}$	x_{1}	x_{2}	x_3	$x_{_4}$	
$x_{B(1)}$	c	0	1	1/5	4
$x_{B(2)}$	d	e	0	$\dot{2}$	a
	b	-1	f	g	-8
	U		J	9	

解: 由单纯形表可知, x_3 是基变量, 故f = 0, B(1) = 3, 当前目标值z = -8 由 $-\bar{c}_2 = -1$ 知 x_2 是非基变量, 故 $x_2 = 0$, $-2x_1 + 4x_2 = -8 \Rightarrow x_1 = 4$ x_4 是非基变量 x_1 是基变量, 故 $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_4 = 0$, $x_5 = 0$, $x_5 = 0$, $x_6 = 0$

$x_{_B}$	x_1	x_{2}	x_3	$x_{_4}$	
x_3	0	0	1	1/5	$\boxed{4}$
x_1	1	e	0	2	4
	0	-1	0	\overline{g}	-8

例 4: 续

初始表
$$\frac{B}{-c_{\scriptscriptstyle R}^{\rm T}} \frac{N}{-c_{\scriptscriptstyle N}^{\rm T}} \frac{1}{0} \frac{b}{0}$$

当前表
$$\frac{I \quad B^{-1}N \quad B^{-1} \quad B^{-1}b}{0 \quad c_B^{\mathsf{T}}B^{-1}N - c_N^{\mathsf{T}} \quad c_B^{\mathsf{T}}B^{-1} \quad c_B^{\mathsf{T}}B^{-1}b} \quad B^{-1} = \begin{bmatrix} 1 & 1/5 \\ 0 & 2 \end{bmatrix}, \quad c_B = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$$

$$\begin{pmatrix} 0 & g \end{pmatrix} = c_B^{\mathsf{T}} B^{-1} = \begin{bmatrix} 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1/5 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -4 \end{bmatrix} \longrightarrow g = -4 \quad$$
已达最优解

$$\begin{vmatrix} 1 & 1/5 \\ 0 & 2 \end{vmatrix} = \begin{bmatrix} 0 & -4 \end{bmatrix}$$

$$g = -\epsilon$$

$$c_B^{\mathrm{T}} B^{-1} A_2 - c_2 = -1$$

$$c_2 = 4$$

$$[0 \quad -4]A_2 = 3$$

$$a_{22} = -3/4$$

$$\begin{bmatrix} 0 \\ e \end{bmatrix} = B^{-1}A_2 = \begin{bmatrix} 1 & 1/5 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} a_{12} \\ -3/4 \end{bmatrix}$$

$$e = 0 \cdot a_{12} - 2 \times \frac{3}{4} = -\frac{3}{2}$$

例 5: 只有一个等式约束的标准型线性规划

$$\min \sum_{i=1}^{n} c_i x_i$$
s.t.
$$\sum_{i=1}^{n} a_i x_i = b \quad (b \ge 0)$$

$$x_i \ge 0, i = 1 : n$$

如何判断该问题是否可行? 若可行提出一种简单的求解方法。

- 若 b=0,则 x=0即为一个可行解
- 若 b > 0,则当且仅当 $\exists a_i > 0$ 时问题有可行解:

$$x_i = b/a_i$$
, $x_j = 0$, $j \neq i$ 即为一个可行解

由于 m=1, 任何基本可行解最多只有一个非零元素

- 若 b > 0, 令 $k = \operatorname{argmin}\left\{\frac{c_i b}{a_i} \middle| a_i > 0\right\}$, 最优解为 $(0, \dots, b/a_k, \dots, 0)$
- 若 b = 0, 由于 x = 0 是可行解,最优值必定非正若能找到一个可行解 x > 0 满足 $a^Tx = 0$ 以及 $c^Tx < 0$, 则对任意 $\gamma > 0$, $\gamma x > 0$, $a^T\gamma x = 0$, 故 γx 可行且 $c^T\gamma x < 0$. 这种情况下,问题无界。否则若 $\exists \lambda$: $c = \lambda a$, 则最优值为0

基本要求

- 会将一般形式的线性规划转化为标准型
- 理解主元选取规则,不要求相关证明
- 会用单纯形表求解非退化的线性规划问题
- 会从单纯形表中解读相关信息