Decision Tree

Dataset:

Class-Labeled Training Tuples from the AllElectronics Customer Database

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle.aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Entropy of Dataset Class:

Entropy ([9+, 5-]) = - $(9/14*log_2 9/14 + 5/14*log_2 5/14) = 0.94$

Information Gain for (age):

S = [+9, -5] $S_{youth} = [+2, -3]$ $S_{middle_aged} = [+4, -0]$ $S_{senior} = [+3, -2]$ Entropy = 0.94

Entropy youth = $-(2/5*log_2 2/5 + 3/5*log_2 3/5) = 0.97$ Entropy middle_aged = $-(4/4*log_2 4/4 + 0/4*log_2 0/4) = 0$ Entropy senior = $-(3/5*log_2 3/5 + 2/5*log_2 2/5) = 0.97$

Information Gain (age) = 0.94 - (5/14*0.97 + 4/14*0 + 5/14*0.97) = 0.24

Information Gain for (income):

$$S = [+9, -5]$$

 $S_{high} = [+2, -2]$
 $S_{medium} = [+4, -2]$
 $S_{low} = [+3, -1]$
Entropy = 0.94

Entropy high =
$$-(2/4*log_2(2/4) + 2/4*log_2(2/4)) = 1$$

Entropy medium = $-(4/6*log_2(4/6) + 2/6*log_2(2/6)) = 0.92$
Entropy low = $-(3/4*log_2(3/4) + 1/4*log_2(1/4)) = 0.81$

Information Gain (Income) = 0.94 - (4/14*1 + 6/14*0.92 + 4/14*0.81) = 0.02

Information Gain for (student):

$$S = [+9, -5]$$

 $S_{no} = [+3, -4]$
 $S_{yes} = [+6, -1]$
Entropy = 0.94

Entropy no =
$$-(3/7*log_2(3/7) + 4/7*log_2(4/7)) = 0.98$$

Entropy yes = $-(6/7*log_2(6/7) + 1/7*log_2(1/7)) = 0.59$

Information Gain (student) = 0.94 - (7/14*0.98 + 7/14*0.59) = 0.15

Information Gain for (credit_rating):

$$S = [+9, -5]$$

 $S_{fair} = [+6, -2]$
 $S_{excellent} = [+3, -3]$
Entropy = 0.94

Entropy fair =
$$-(6/8*log_2(6/8) + 2/8*log_2(2/8)) = 0.81$$

Entropy excellent = $-(3/6*log_2(3/6) + 3/6*log_2(3/6)) = 1$

Information Gain (credit rating) = 0.94 - (8/14*0.81 + 6/14*1) = 0.04

Information Gain for four attributes are as follow:

```
Gain (S, age) = 0.24

Gain (S, student) = 0.15

Gain (S, credit_rating) = 0.04

Gain (S, income) = 0.02
```


$$S_{youth}$$
 = [+2, -3]
Entropy youth = -(2/5 * log₂ (2/5) + (3/5) * log₂ (3/5)) = 0.97

Information Gain (Youth) with respect to Income attribute:

Income = high, medium, low Income $_{high}$ = [+0, -2] Income $_{medium}$ = [+1, -1] Income $_{low}$ = [+1, -0]

Entropy Income $_{high}$ = $-(0/2*log_2(0/2) + 2/2*log_2(2/2)) = 0$ Entropy Income $_{medium}$ = $-(1/2*log_2(1/2) + 1/2*log_2(1/2)) = 1$ Entropy Income $_{low}$ = $-(1/1*log_2(1/1) + 0/1*log_2(0/1)) = 0$

Information Gain (S youth, Income) = 0.97 - (2/5*0 + 2/5*1 + 1/5*0) = 0.57

Information Gain (Youth) with respect to Student attribute:

Student = yes, no

Student $_{no}$ = [+0, -3] Student $_{yes}$ = [+2, -0]

Entropy student _{no} = $-(0/3*log_2(0/3) + 3/3*log_2(3/3)) = 0$ Entropy student _{yes} = $-(2/2*log_2(2/2) + 0/2*log_2(0/2)) = 0$

Information Gain (S youth, student) = 0.97 - (3/5*0 + 2/5*0) = 0.97

Information Gain (Youth) with respect to credit_rating attribute:

credit_rating = fair, excellent

credit_rating $_{fair}$ = [+1, -2] credit_rating $_{excellent}$ = [+1, -1]

Entropy credit_rating fair = $-(1/3*log_2(1/3) + (2/3*log_2(2/3)) = 0.91$ Entropy credit_rating_excellent = $-(1/2*log_2(1/2) + (1/2*log_2(1/2)) = 1$

Information Gain (S youth, credit_rating) = 0.97 - (3/5*0.91 + 2/5*1) = 0.02

Finally we get:

Gain (S youth, student) = 0.97Gain (S youth, Income) = 0.57Gain (S youth, credit_rating) = 0.02

So highest information is gain by student attribute relative to age (youth), so left node will be of student attribute.

$$S_{senior}$$
 = [+3, -2]
Entropy S_{senior} = -(3/5*log₂(3/5) + 2/5*log₂(2/5)) = 0.97

Information Gain (Senior) with respect to Income attribute:

Income = high, medium, low Income high = [+0, -0] Income medium = [+2, -1] Income low = [+1, -1]

Entropy Income $_{high}$ = $-(0/0*log_2(0/0) + 0/0*log_2(0/0)) = 0$ Entropy Income $_{medium}$ = $-(2/3*log_2(2/3) + 1/3*log_2(1/3)) = 0.91$ Entropy Income $_{low}$ = $-(1/2*log_2(1/2) + 1/2*log_2(1/2)) = 1$

Information Gain (S senior, income) = 0.97 - (0/5*0 + 3/5*0.91 + 2/5*1) = 0.02

Information Gain (Senior) with respect to student attribute:

 $\begin{array}{ll} \text{student} &= \text{no, yes} \\ \text{student}_{\text{no}} &= [+1, -1] \\ \text{student}_{\text{yes}} &= [+2, -1] \end{array}$

Entropy student no = $-(1/2*log_2 (1/2) + (1/2*log_2 (1/2)) = 1$ Entropy student yes = $-(2/3*log_2 (2/3) + (1/3*log_2 (1/3)) = 0.91$

Information Gain (S senior, student) = 0.97 - (2/5*1 + 3/5*0.91) = 0.02

Information Gain (Senior) with respect to credit_rating attribute:

credit_rating = fair, excellent

credit_rating $_{fair}$ = [+3, -0] credit_rating $_{excellent}$ = [+0, -2]

Entropy credit_rating $_{fair}$ = -(3/3*log₂ (3/3) + (0/3*log₂ (0/3)) = 0 Entropy credit_rating $_{excellent}$ = -(0/2*log₂ (0/2) + (2/2*log₂ (2/2)) = 0

Information Gain (S senior, credit_rating) = 0.97 - (3/5*0 + 2/5*0) = 0.97

Finally we get:

 $\begin{aligned} & \text{Gain (S}_{\text{senior}}, \text{ student)} &= 0.02 \\ & \text{Gain (S}_{\text{senior}}, \text{ Income)} &= 0.02 \\ & \text{Gain (S}_{\text{senior}}, \text{ credit_rating)} &= 0.97 \end{aligned}$

So highest information is gain by credit_rating attribute relative to age (senior), so right node will be of credit_rating attribute.

So Decision Tree is constructed. When age = middle_edge, customer buy computer, when age = youth and student = yes then customer buy computer. When age = senior and credit_rating = fair then customer buy computer