AP2Q4 - Camada de enlace

Vinicius Gasparini

REC - BCC - UDESC - 2020

3G

A implantação do **3G** teve seu inicio em 2000 no Reino Unido, Japão e Coréia do Sul. Principalmente caracterizada pela oferta de internet sem fio, tinha também como objetivo padronizar a nível mundial a comunicação em aparelhos móveis, viabilizando menores custos operacionais.

Optou-se pelo método CDMA (ou CDMA-2000) de acesso a canais, mais especificamente pelo padrão W-CDMA (*Wide-Band Code-Division Multiple Access*). Essa decisão técnica se deu pelo fato da multiplexação dos canais ocorrer por meio de um codificação, diferente das alternativas por tempo ou frequência. O W-CDMA possibilitou alcançar uma taxas de transmissão de até 2 Mbps, largura de banda 5 Mbps e frequência de banda na faixa dos 1.8 - 2.1GHz.

Conforme [1], os 348Kbps para conexões em movimento e até 2Mbps para conexões estáticas permitiu que aparelhos móveis realizassem transferências de arquivos via internet, transformando todo o mercado de telefonia e comunicações. [2] destaca ainda avanços na segurança das redes pela adição de novas técnicas de autenticação, aumento no tamanho das chaves - de 64 para 128 bits e a criação de algoritmos de cifragem e integridade.

Falando um pouco mais sobre a camada de transmissão, o 3G faz uso misto dos sistemas UMTS e CDMA-2000. A diferença entre esses sistemas é que o CDMA-2000 opera de modo síncrono, enquanto o UMTS utiliza uma operação de rede assíncrona.

4G/LTE

Com avanço da qualidade das mídias geradas, surgiu a necessidade de se expandir a qualidade da internet móvel. Foi então no Japão em 2007 que se deu inicio a implantação da rede 4G. Além de permitir comunicação bilateral de voz, vídeo e dados, os usuários agora conseguiriam atingir taxas de transmissão na ordem de megabits.

Uma alteração importante com o 4G foi uso do IP, possibilitando acesso irrestrito a serviços como transferência de volume grande de dados, fotos e vídeos em qualquer local, e ainda poder realizar chamadas de alta qualidade via VoIP.

Como cita [2], o 4G/LTE faz uso do protocolo de acesso OFDMA que nos provê taxa de transferência na casa dos 100MBps até 1Gbps, flexibilidade de banda entre

450MHz e 2.7GHz, garantindo menos interferências e ainda a possibilidade de usar duas faixas distintas para envio/recebimento. Alcance de até 100km de raio mesmo que com dados reduzidos, baixíssima latência média - abaixo dos 10ms e largura de banda de até 20Mbps.

5G

Com surgimento em 2019 mas ainda sem grande popularização, o 5G vem com a promessa de popularizar a *Internet of Things* (IoT). Sendo um mix das mais diversas tecnologias já adotadas pelos outros protocolos, o 5G aposto no uso do IPv6 e diversas outras estratégias de roteamento, como o MC-CDMA, UWB e LMDS. [2]. Com taxas de transferência chegando a 1Tbps, ao operar sob frequências entre 450MHz e 5.8GHz tenta resolver seu grandes problema que é o alcance. Promete latência de até 2ms [3]

Comparativo

	Vantagens	Desvantagens
3G	GPS, video-chamadas, transferência de arquivos Conectividade em ambientes fechados Velocidade na casa dos MBps	Antiga, em desuso Lenta
4G	TV, jogos e VoIP Conectividade não é afetada pelo movimento Velocidade na casa dos GBps Conexão simultânea a mais de uma frequência	Podem ocorrer algumas interferências com outros tipos de redes
5G	Maior aproveitamento da faixa espectral de banda Velocidade na casa dos TBps Latência baixíssima (2ms)	Baixo alcance de transmissão Alto custo de implantação

Tabela 1: Vantagens e Desvantagens do diferentes tipos de redes

	Vazão teórica	Latência	Jitter	Faixa de banda	Objetivo principal
3G	$\sim 7.2 \text{Mb/s}$	$\sim 25 \mathrm{ms}$	$\sim 5 \mathrm{ms}$	1.8 - 2.1GHz	Troca de mensagem e video-chamadas
4G	$\sim 1 \mathrm{Gb/s}$	~10ms	~1ms	450MHz - 2.7GHz	Multiplas conexões a diferentes faixas (por diferentes propósitos)
5G	$\sim 10 \mathrm{Tb/s}$	$\sim 2 \mathrm{ms}$	$\sim 0.1 \mathrm{ms}$	450MHz - 5.8GHz	Baixa latência e alta largura de banda

Tabela 2: Comparativo das tecnologias

Valores para **jitter** em redes 5G extraídos da bibliografia [3]

Referências

- [1] J. R. R. Mendes, "5g: a quinta geração," Universidade Tecnológica Federal do Paraná, 2014.
- [2] L. d. C. S. Silva, "Do 1g ao 5g: Evolução das redes de telefonia móvel," Universidade Federal do Recôncavo da Bahia, 2016.
- [3] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, "What will 5g be?," *IEEE Journal on Selected Areas in Communications*, vol. 32, no. 6, pp. 1065–1082, 2014.