

1 Review

7

10

11

12

13

14

15

16

17

18

19

20

21

22

2 Earthquake-resistant buildings in steel or mixed columns.

Edificios sismorresistentes de columnas de acero o mixtas.

4 Christel Gonzalez¹, Diana Rivera¹, and Lisseth Barba^{1,*}

- ¹ Faculty of Engineering Science, State Technical University of Quevedo, Quevedo 120301, Ecuador
- * Correspondence: cgonzalez@msuteq.edu.ec, driverac5@msuteq.edu.ec, lbarbas@msuteq.edu.ec

Abstract: In the article, the structural optimization of earthquake-resistant buildings is applied, in which said buildings will have columns composed of steel and concrete. Therefore, various investigative documents will be investigated and analyzed, which will help to delve deeper into the materials such as steel and concrete that are used for said anti-seismic buildings, which are a solution to address seismic challenges in areas susceptible to earthquakes. The materials that will be investigated have a greater tendency to be used by civil engineers to make earthquake-resistant buildings, since they have greater resistance effectiveness against high-magnitude earthquakes, thus avoiding large-scale human and material losses. The advantage will be addressed, the management of materials so that buildings are more effective against earthquakes, the importance of implementing steel and concrete materials in the columns. This document will also examine documents that talk about the materials already mentioned previously which highlight the importance of good handling when compacting both steel and iron, highlighting the effectiveness of resistance. This providing a broader vision of the importance of implementing steel and concrete in earthquake-resistant buildings.

Keywords: Earthquake-resistant; anti-seismic; buildings; structural; steel; concrete; earthquake.

1. Introduction

El estudio de las edificaciones sismorresistentes se enfoca actualmente en un análisis estructural detallado, buscando aplacar los efectos destructivo de los terremotos. Estas construcciones incorporan elementos compuestos de hacer y hormigón armado, que son fundamentales para su resistencia y estabilidad. Esta investigación se centra en evaluar la rentabilidad y la capacidad de resistencia sísmica de estas edificaciones, especialmente en áreas de alta actividad sísmica [24].

La solución propuesta se dirige a revisar y seleccionar los mejores materiales para las construcciones sismorresistentes. Se destaca la importancia de las columnas de los edificios altos, las cuales deben mantener su capacidad de carga axial durante un terremoto, Los sistemas estructurales compuestos de acero y hormigón ofrecen ventajas significativas en este sentido, como el uso de vigas de acero con tubos rellenos de concreto y columnas de concreto reforzado con acero [35].

Un antecedente relevante es el terremoto ocurrido en Ecuador en 2016, que evidenció las consecuencias devastadoras de edificaciones sin bases sismorresistentes, Por ello, esta investigación aborda la importancia de seleccionar los materiales y estructuras adecuadas para prevenir desastres en el futuro. Se propone la aplicación rigurosa de elementos de pared compuestos de acero y hormigón, destacando su capacidad para resistir fuerzas sísmicas [23].

23 25 26 Citation: To be added by editorial 2728 staff during production. 29 Academic Editor: Firstname Last-30 31 Received: date 32 Revised: date 33 Accepted: date 34 Published: date

Copyright: © 2024 by the author 27 Submitted for possible open access publication under the terms argo conditions of the Creative Common 20 Attribution (CC BY) license 1 (https://creativecommons.org/license s/by/4.0/).

Autores como Bruneau y Sharon, enfatizan la importancia de utilizar materiales adecuados y seguir prácticas de construcción precisas para garantizar la resistencia ante terremotos. Se resalta la necesidad de prestar atención a los detalles de fundición y la calidad de ejecución para evitar debilidades estructurales [3,34].

La investigación realizada por Bruneau y Sharon, subraya la relevancia de emplear materiales y técnicas de construcción apropiadas en la creación de edificaciones sismorresistentes. La atención meticulosa a los detalles y la calidad en la ejecución son esenciales para garantizar la seguridad y la durabilidad de las estructuras en condiciones adversas. Al emplear técnicas apropiadas y atención meticulosa al momento de construir, se puede mejorar significativamente la resiliencia ante eventos sísmicos logrando así proteger vidas y edificaciones [27].

1.1 Objetivos

- Evaluar la eficacia de las construcciones sismorresistentes en zonas de alta actividad sísmica.
- Identificar y seleccionar los materiales más adecuados para construcciones sismorresistentes.
- Investigar la efectividad del acero y el hormigón en construcciones sismorresistentes.

2. Materials and Methods

Para realizar este documento de investigación, el grupo inicialmente se puso de acuerdo mediante una reunión para que cada uno investigue y realice ciertas partes del trabajo. De este modo, se facilitaría la realización de la investigación, teniendo un límite de tiempo para realizar la entrega del avance, así daría el tiempo de unir y posteriormente realizar las debidas correcciones. Enviando un documento corregido y con mayor aceptabilidad.

En el proceso, se fue investigando y usando los pasos para redactor un documento científico, según lo explicado en clase y lo que se comprendía de lo que se investigaba se iba realizando el documento de investigación. Según lo explicado, nosotros realizamos primero la introducción, luego el resumen con las palabras claves y por ende el abstract, se siguió con los siguientes puntos, como lo son: los trabajos relacionados, materiales y métodos, la tabla de extracción, entre otras.

A l momento de realizar la extracción de datos el motor de búsqueda a utilizar en la investigación fue Springer, Elsevier. Estas herramientas investigativas las cuales fueron recomendadas, obteniendo así fuentes confiables de información teniendo en cuenta que aquellos documentos seleccionados contengan DOI para poder utilizarlos.

La herramienta Mendely, fue otras de las herramientas importantes, La cual nos permitió obtener de una manera sencilla las citas y referencias bibliográficas

3. Protocolo de revisión

La investigación que se presenta en este documento, explora y analiza algunas prácticas, técnicas y materiales que son indispensable el importantes al momento de construir edificaciones sismorresistentes.

La importancia del estudio que se presenta, radica en conocer sobre el diseño y construcción de edificaciones sismorresistentes, en base a esto, se conocerán los materiales, técnicas y prácticas efectivas para brindarle resistencia y seguridad a las edificaciones [30].

Se tiene como objetivo examinar las ventajas del uso de materiales como el acero y hormigón, la ubicación geográfica al momento de construir, esto se llevará a cabo mediante una exhaustiva investigación, en la cual recopilaremos datos y analizaremos para extraer la información necesaria y poder responder las siguientes preguntas:

94

95

- 90 ¿Cómo afecta la combinación de acero y otros materiales en las construcciones sismorresistentes?

 92 ¿Existen casos en los que se prefiere usar columnas mixtas en lugar de columnas
 - 2. ¿Existen casos en los que se prefiere usar columnas mixtas en lugar de columnas de acero para edificaciones sismorresistentes?
 - 3. ¿Cómo influye la ubicación geográfica en el diseño de una construcción sismorresistentes?

Table 1. Tabla de extracción.

97 98 99	Referencias	Titulo	Tipo Documento	Año	Efectos de combinación de materiales	Preferencia de material	Ubicación geográfica	Estudiante:
100		Study on			La combinación	Se prefirió el acero ya que	Estos tienen grandes	
101	[1]	axial behaviour of concrete	Journal	2023	de acero y hormigón en	es un buen material y	influencias en Industrias, edificios de	Diana Rivera
102103		filled steel tubular	ŕ		las columnas, ayuda en una excelente	rápido.	gran altura, puentes y	
104		columns			ductilidad		otras estructuras.	
105		Experim ental and			El compor- tamiento	Se determinó que el		
106		theoretic al investigation of concrete			axial de una columna de	estudio de preferencia fue de una	Es popular	
107 108	[2]	filled and encased steel	Journal	2023	tubo de acero relleno de hormigón	columna de tubos de	en el sector de la construcción	Diana Rivera
109		column under			utilizando fibra de	acero de doble capa sometida a	construccion	
110		compression loading			acero.	carga axial.		
111		Study on restraint			Los estribos mejoraron	Los estribos		
112113	[3]	coefficient of the stirrups-	Journal	2024	significativa- mente las propiedades	mejoraron de manera más	Sin informac ión	Diana Rivera
114		stiffened square concrete			mecánicas de las columnas	efectiva el rendimiento		
115		 			con grandes Se realizó	<u>[</u> [<u> </u>	<u> </u>
116		Seismic			una combinación de tubos de			
117		of T- shaped CFST column			acero rellenas de hormigón	La viga	Sin	
118	[4]	to U-shaped steel	Journal	2024	con columnas las	compuesta de acero.	información.	Diana Rivera
119		composite beam joints			cuales no quedaron expuestas las			
120					columnas en el interior.			

1	2	1
1	2	2
1	2	3

122	 I	Design	I	 I	İ	İ	İ	 .
123		method of axial						
124		compression stability for			Hormigón		Su aplicación específica es	
125	[5]	cross section corrugated	Journal	2024	armado y tubos de acero.	Column as de acero.	en industrias de	Diana Rivera
126		plate steel special shaped					construcción.	
127		column						
128		Seismic behaivour of						
129		FRP- concrete			Elementos estructurale			
130	[6]	-steel double- tube columns	Journal	2024	s compuesto por dos	Tubos de acero.	Sin información	Lisseth Barba
131		with shear studs: Experi-			tubos relleno de hormigón.			
132		mental study and numeric			de normgon			
133		al modelling Parametric	<u> </u> 	<u> </u> 	<u> </u>	<u> </u> 	<u> </u>	<u> </u>
134		investigation of						
135		rectangular CFRP- confined			El hormigón confinado con polímero			
136		concrete			reforzado con fibra la		Sin	
137	[7]	reinforced by inner	Journal	2024	cual es utilizada	Hormigón confinado.	información	Lisseth Barba
138		elliptical Steel tubes uding finite			para la durabilidad del			
139		element and machine			hormigón.			
140		learning models						
141		Structural performance			En este caso,			
142	[m]	of rigid shear connectors in	. 1	2022	la combinación	Hormigón amadoy	Sin	
143	[8]	concrete encased steel	Journal	2023	se da entre el hormigón y	acero	información	Lisseth Barba
144		composite columns			el acero.			
145					Se dio a cabo			
146		Analysis and design of			un estudio de los efectos			
147		axially loaded ring			y resistencia del	Las columnas		
148	[9]	beam joints connecting	Journal	2023	hormigón, el límite	tubulares de acero rellenas	Sin información	Lisseth Barba
149		steel tubed RC column			elástico del tubo de	de hormigón		
150		and RC beams			hacer, el espesor y su altura.			

151 152 153 154 155 156	[10]	Hybrid FRP- concretes tubular columns: Concept and behavior	Journal	2007	Mejora el rendimiento estructural al brindarle al concreto soporte adicional y resistencia al corte.	Consta de un tubo interior de aluminio y un tubo exterior de fibra de vidrio, con un espacio hueco entre ellos.	Sin información	Lisseth Barba
157 158 159 160	[11]	Steel concrete composite systems for modular construction of highrise buildings	Journal	2019	Sin información	Se propone un sistema modular fabricado en acero y hormigón ligero.	Zonas Urbanas	Christel González
161 162 163 164	[12]	Life cycle cost optimization of earthquake resistant steel framed tube tall buildings	Journal	2021	Sin información	Edificios de gran altura centralizados en los tubos con estructura de acero.	Áreas metropoli- tanas	Christel González
165 166 167	[13]	State of the art report on steel concrete composite columns	Journal	2001	Sin información	Columnas de hormigón y acero.	Sin información	Christel González
168 169 170 171 172 173	[14]	Assessment of current methods for the design of composite columns in buildings	Journal	2000	Al utilizar una columna compuesta incluye una sección transversal más pequeña y una mayor relación resistencia peso que un miembro de hormigón armado con- vencional.	Columnas compuestas íntegramente de hormigón	Sin información	Christel González
174 175 176 177 178 179	[15]	Strengthening of steel structures with fiber- reinforced polymer composites	Journal	2012	Los compuestos de FRP tienen varias ventajas sobre el aluminio, las más notables son su resistencia superior a la corrosión y su alta resistencia al peso	Estructuras de acero reforzado con FRP	Sin información	Christel González

4. Results

La combinación de acero con otros materiales no solo afecta negativamente, sino que cuando se logra realizar de manera adecuada, proporciona una mayor efectividad a las columnas, generando beneficios significativos como resistencia y ductilidad. Estas características ayudan a minimizar los daños y a maximizar la seguridad estructural.

Es vital tener en cuenta la ubicación geográfica al construir edificaciones sismorresistentes, dado que esta tiene un impacto significativo en el comportamiento sísmico de las estructuras. Por lo tanto, es fundamental evaluar cuidadosamente las zonas geográficas para tomar decisiones informadas sobre los materiales, técnicas constructivas y otros aspectos, con el objetivo de mitigar los efectos de los sismos.

En ciertas circunstancias, las columnas mixtas se convierten en una opción preferida. Estas columnas, que combinan acero y concreto, ofrecen una mayor resistencia y se utilizan principalmente en estructuras de gran altura y en regiones con alto riesgo sísmico.

Su uso optimiza la seguridad estructural y contribuye significativamente a proteger las edificaciones ante eventos sísmicos.

5. Discussion

Según lo leído y analizado de la extracción de datos. Se concluye que las columnas de acero tienen como ventaja la resistencia ante sismos. La combinación de materiales en las columnas da mayor resistencia que una columna de acero sola. Por ello, se dice que se prefiere hacer uso de las columnas mixtas debido a su resistencia y ductilidad en edificaciones y zonas de riego sísmico.

Las innovaciones no son muchas, pero, si nos ayuda a minimizar los daños. Sin embargo, se debe tener en consideración siempre la zona geográfica al momento de construir. Esto, nos permite mitigar los efectos sísmicos según las normativas que se presente en el lugar.

Table 2. This is a table. Tables should be placed in the main text near to the first time they are cited.

Autores	Año	Principal resultado	Revista	
Gholamreza Ghobarah, et al.	2023	Evaluación del comportamiento sísmico de edificios con columnas de acero perfiladas en frío mediante análisis no lineal. Se encontró que estas columnas pueden proporcionar un desempeño sísmico adecuado bajo ciertas condiciones.	Journal of Structural Engineering (ASCE)	
Feng Lu, et al.	2022	Estudio del comportamiento sismorresistente de conexiones entre columnas de acero y vigas de hormigón. Se propusieron nuevas estrategias de diseño para mejorar la ductilidad y disipación de energía en estas conexiones.	Engineering Structures	
Mohammadreza Mofid, et al.	2021	Desarrollo de un modelo numérico para simular el comportamiento sísmico de edificios con marcos de acero y hormigón. El modelo se validó con datos experimentales y se utilizó para evaluar la influencia de diferentes parámetros de diseño.	Earthquake Engineering & Structural Dynamics	
Anil K. Chopra, et al.	2020	Análisis del comportamiento sísmico de edificios con sistemas de arriostramiento concéntrico de acero. Se identificaron las principales deficiencias de estos sistemas y se propusieron soluciones para mejorar su desempeño sísmico.	Journal of Earthquake Engineering	

Eduardo Miranda, et al.	2019	Estudio del comportamiento sísmico de edificios con muros de corte de hormigón y columnas de acero. Se determinó que la interacción entre estos elementos puede mejorar significativamente la resistencia sísmica del edificio.	ACI Structural Journal
James M. Bracci, et al.	2018	Desarrollo de un método de diseño para edificios con columnas de acero y vigas de hormigón pretensado. El método se basa en la capacidad de la estructura para disipar energía mediante la formación de rótulas plásticas en las columnas.	PCI Journal
F. Y. Cheng, et al.	2017	Investigación experimental del comportamiento sísmico de columnas de acero con diferentes tipos de secciones transversales. Se encontró que la forma de la sección transversal puede tener un impacto significativo en la ductilidad y capacidad de carga de la columna.	Journal of Constructional Steel Research

La investigación en el ámbito de los edificios sismorresistentes, especialmente aquellos con columnas de acero o mixtas, se proyecta hacia diversas áreas de estudio con el objetivo de mejorar la seguridad y la eficiencia de estas estructuras en situaciones de sismicidad. Uno de los aspectos fundamentales a considerar en futuros estudios es el análisis del comportamiento a largo plazo. Se debe profundizar en los efectos de la fatiga y la corrosión en la resistencia sísmica, comprendiendo cómo estos fenómenos afectan la integridad estructural con el tiempo. Además, la influencia del envejecimiento de material y las conexiones es crucial para entender la durabilidad y la capacidad de respuesta ante eventos sísmicos repetitivos, lo que requiere una evaluación exhaustiva del comportamiento a lo largo de la vida útil de la estructura.

En el ámbito del diseño y la optimización de estructuras sismorresistentes, se plantea la necesidad de desarrollar nuevas técnicas que mejoren la ductilidad y la capacidad de disipación de energía. Esto implica la exploración de métodos innovadores para el diseño de columnas, así como la optimización de su topología y sección transversal para maximizar su desempeño frente a cargas sísmicas. Así mismo, se deben implementar estrategias de control de vibraciones que contribuyan a reducir los efectos negativos de los sismos en las estructuras y en su entorno.

El avance en nuevos materiales y tecnologías es otro aspecto clave en la investigación futura sobre edificios sismorresistentes. El desarrollo de acero de alta resistencia y ductilidad permite mejorar la capacidad de absorción de energía, mientras que la utilización de materiales compuestos como el hormigón reforzado con fibras ofrece alternativas para aumentar la resistencia y la durabilidad de las estructuras. Además, la aplicación de tecnologías de impresión 3D en la construcción de componentes estructurales abre nuevas posibilidades para la eficiencia y la precisión en la ejecución de proyectos.

La simulación y el análisis computacional desempeñan un papel fundamental en la investigación de edificios sismorresistentes. Se requiere el desarrollo de modelos numéricos más precisos para proveer con mayor exactitud el comportamiento sísmico de las estructuras, así como la realización de simulaciones a gran escala que permitan evaluar su desempeño en contextos urbanos complejos. El análisis probabilístico también es crucial

302

294

310 311 312

313

309

314 315

316

317 318

319

320 321 322

323 324

325 326

327 328 329

330

para una evaluación integral del riesgo sísmico y la toma de decisiones informadas en el diseño y la construcción de edificaciones.

La integración de sistemas y el diseño multidisciplinario son aspectos esenciales para garantizar la seguridad y la eficiencia de los edificios sismorresistentes. Se debe considerar la interacción entre la estructura y los sistemas no estructurales, así como integrar el diseño sismorresistente con aspectos arquitectónicos, ingenieriles y de otras disciplinas. Esto incluye la implementación de estrategias de mitigación de daños y de recuperación post sísmica para minimizar las consecuencias de los eventos sísmicos en las edificaciones y en sus ocupantes.

La sostenibilidad y la resiliencia son principios fundamentales que deben guiar la investigación y el desarrollo de edificios sismorresistentes. Es necesario diseñar estructuras que sean energéticamente eficientes y ambientalmente sostenibles, considerando no solo su rendimiento ante sismos, sino también su impacto a lo largo de su ciclo de vida. Además, se deben implementar estrategias de resiliencia para garantizar la funcionalidad de los edificios después de un evento sísmico, así como desarrollar comunidades resilientes capaces de hacer frente a desastres naturales de manera efectiva.

Conclussion

Las edificaciones sismorresistentes son esenciales para garantizar la seguridad de las estructuras en áreas propensas a terremotos. En particular, las columnas de acero o mixtas, han demostrado ser muy eficientes para resistir fuerzas sísmicas. En conclusión, se obtiene alta resistencia a la fuerza sísmica ya que proporcionan en las columnas de acero y su ductilidad permite la deformación controlada durante un terremoto y esto evita un colapso repentino, también, se obtiene una construcción más rápida ya que las estructuras con columnas de acero tienden a ser más livianas y esto es esencial en áreas propensas a

La correcta aplicación de prácticas y estándares de construcción sismorresistentes se torna crucial para reducir al mínimo los riesgos de pérdida de personas y materiales en eventos sísmicos. En resumen, las edificaciones sismorresistentes con columnas de acero o mixtas logran tener eficiente resistencia y ductilidad ante los sismos.

Sin embargo, es crucial mantenerse actualizado con los avances de materiales y tecnologías para mejorar continuamente las estructuras sismorresistentes en las edificaciones

Referencias

- 1. Bakhshayesh Eghbali, N., & Andamnejad, P. (2023). Structural performance of rigid shear connectors in concrete encased steel composite columns. Structures, 54, 348-368. https://doi.org/10.1016/J.ISTRUC.2023.05.040
- 2. Basina, N. I., Rybalka, A. Y., & Popova, S. L. (2019). Gothic and neo-gothic in the architecture of modern European cities. IOPConference Series: Materials Science and Engineering, 698(3), 033038. https://doi.org/10.1088/1757-899X/698/3/033038
- 3. Bruneau, M. (2002). Building damage from the Marmara, Turkey earthquake of August 17, 1999. Journal of Seismology, 6(3), 357-377. https://doi.org/10.1023/A:1020035425531/METRICS
- 4. Chanturia, Y., & Yanusz, A. (2019). The System of the Plan Compositional Principles of the Gothic Town Building in the Grand Duchy of Lithuania. 497-504. https://doi.org/10.2991/AHTI-19.2019.93
- Chen, X., He, J., & Wang, S. (2024). The Intersection of Collegiate Gothic Architecture and Missionary Education: A Case Study of Anderson Hall at Soochow University. Buildings 2024, Vol. 14, Page 367, 14(2), 367. https://doi.org/10.3390/BUILDINGS14020367
- 6. Demir, H. A., Hamamcıoğlu-Turan, M., Yücetürk, K., & Aktaş, E. (2023). Structural performance of authentic architectural heritage designs: A masonry monument in Western Anatolia. Frontiers of Architectural Research, 12(6), 1212-1233. https://doi.org/10.1016/J.FOAR.2023.08.002

- Depeursinge, A., Racoceanu, D., Iavindrasana, J., Cohen, G., Platon, A., Poletti, P.-A., & Muller, H. (2010).
 Fusing Visual and Clinical Information for Lung Tissue Classification in HRCT Data. Artificial Intelligence in
 Medicine, ARTMED1118. https://doi.org/10.1016/J
 - 8. Ding, F., Lu, D., Lai, Z., & Liu, X. (2024). Study on restraint coefficient of the stirrups-stiffened square concrete filled double-skin steel tube axial compression stub columns. *Structures*, 60, 105847. https://doi.org/10.1016/J.ISTRUC.2023.105847
 - 9. Duraj, M., Marschalko, M., Niemiec, D., & Yilmaz, I. (2016). Monuments of the Czech Republic on the UNESCO World Heritage Site List and their Significance for Geotourism. *Procedia Engineering*, 161, 2265–2270. https://doi.org/10.1016/J.PROENG.2016.08.826
 - 10. Fang, C., Wang, W., Qiu, C., Hu, S., MacRae, G. A., & Eatherton, M. R. (2022). Seismic resilient steel structures: A review of research, practice, challenges and opportunities. *Journal of Constructional Steel Research*, 191, 107172. https://doi.org/10.1016/J.JCSR.2022.107172
 - 11. Foraboschi, P. (2020). Optimal Design of Seismic Resistant RC Columns. *Materials* 2020, Vol. 13, Page 1919, 13(8), 1919. https://doi.org/10.3390/MA13081919
 - 12. Gao, S., Chen, R., Yang, J., Guo, L., & Deng, L. (2024). Seismic performance of T-shaped CFST column to U-shaped steel composite beam joints. *Thin-Walled Structures*, 195, 111443. https://doi.org/10.1016/J.TWS.2023.111443
 - 13. Grigorian, M., & Grigorian, C. E. (2012). An Introduction to the Methodology of Earthquake Resistant Structures of Uniform Response. *Buildings* 2012, *Vol.* 2, *Pages* 107-125, 2(2), 107–125. https://doi.org/10.3390/BUILDINGS2020107
 - 14. Grigorian, M., Moghadam, A. S., Mohammadi, H., & Kamizi, M. (2019). Methodology for developing earthquake-resilient structures. *The Structural Design of Tall and Special Buildings*, 28(2), e1571. https://doi.org/10.1002/TAL.1571
 - 15. Hajjar, J. F. (2002). Composite steel and concrete structural systems for seismic engineering. *Journal of Constructional Steel Research*, *58*(5–8), 703–723. https://doi.org/10.1016/S0143-974X(01)00093-1
 - 16. Isleem, H. F., Zewudie, B. B., Bahrami, A., Kumar, R., Xingchong, W., & Samui, P. (2024). Parametric investigation of rectangular CFRP-confined concrete columns reinforced by inner elliptical steel tubes using finite element and machine learning models. *Heliyon*, 10(2), e23666. https://doi.org/10.1016/J.HELIYON.2023.E23666
 - 17. Jiang, Z. qin, Niu, Z. yao, Zhang, A. L., & Liu, X. chun. (2024). Design method of axial compression stability for cross-section corrugated plate steel special-shaped column. *Thin-Walled Structures*, 194, 111243. https://doi.org/10.1016/J.TWS.2023.111243
 - 18. Julián, C., Hugo, H.-B., & Astrid, R.-F. (2014). Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico. *Ingeniería, Investigación y Tecnología, 15*(1), 151–162. https://doi.org/10.1016/S1405-7743(15)30013-5
 - 19. Kotsovos, G., Zeris, C., & Kotsovos, M. (2007). The effect of steel fibres on the earthquake-resistant design of reinforced concrete structures. *Materials and Structures/Materiaux et Constructions*, 40(2), 175–188. https://doi.org/10.1617/S11527-006-9129-5/METRICS
- 20. Maira Vidal, R. (2017). The Evolution of the Knowledge of Geometry in Early Gothic Construction: The Development of the Sexpartite Vault in Europe. *International Journal of Architectural Heritage*, 11(7), 1005–1025. https://doi.org/10.1080/15583058.2017.1332254

- 21. Medina, J. M., Rodríguez, A., Medina, E., & Cassinello, M. J. (2017). Factors defining Gothic lighting.
 Relationship between volume, structure and luminous result in Spanish cathedrals. *Revista de La Construcción*.

 Journal of Construction, 16(1), 9–21. https://doi.org/10.7764/RDLC.16.1.9
 - 22. Nickson, T. (2021). El mecenazgo de Alfonso X en obras arquitectónicas. *Revista de Poética Medieval*, 35, 197–224. https://doi.org/10.37536/RPM.2021.35.35.88793
 - 23. Pacchioli, S., Pozza, L., Trutalli, D., & Polastri, A. (2021). Earthquake-resistant CLT buildings stiffened with vertical steel ties. *Journal of Building Engineering*, 40, 102334. https://doi.org/10.1016/J.JOBE.2021.102334
 - 24. Papavasileiou, G. S., & Charmpis, D. C. (2020a). Earthquake-resistant buildings with steel or composite columns: Comparative assessment using structural optimization. *Journal of Building Engineering*, 27, 100988. https://doi.org/10.1016/J.JOBE.2019.100988
 - 25. Papavasileiou, G. S., & Charmpis, D. C. (2020b). Earthquake-resistant buildings with steel or composite columns: Comparative assessment using structural optimization. *Journal of Building Engineering*, 27, 100988. https://doi.org/10.1016/J.JOBE.2019.100988
 - 26. Regan, B. (2016). Gothic Pride: The Story of Building a Great Cathedral in Newark. *New Jersey Studies: An Interdisciplinary Journal*, 2(1), 231–233. https://doi.org/10.14713/NJS.V2I1.34
 - 27. Saatcioglu, M., Ozbakkaloglu, T., Naumoski, N., & Lloyd, A. (2009). Response of earthquake-resistant reinforced-concrete buildings to blast loadingThis article is one of a selection of papers published in the Special Issue on Blast Engineering. *Https://Doi.Org/10.1139/L09-089*, *36*(8), 1378–1390. https://doi.org/10.1139/L09-089
 - 28. Smith, K. G. (2001). Innovation in earthquake resistant concrete structure design philosophies; a century of progress since Hennebique's patent. *Engineering Structures*, 23(1), 72–81. https://doi.org/10.1016/S0141-0296(00)00023-7
 - 29. Srihari, J. R., Sharmila, S., & Praveen Kumar, S. (2023). Study on axial behaviour of concrete filled steel tubular columns. *Materials Today: Proceedings*. https://doi.org/10.1016/J.MATPR.2023.07.112
 - 30. Szuta, A. F., & Szczepański, J. (2020). Striking elements A lifebelt or a fad? Searching for an effective way of adapting abandoned churches. *Frontiers of Architectural Research*, 9(2), 277–286. https://doi.org/10.1016/J.FOAR.2019.12.007
 - 31. Tao, Y., Yan, B., Gan, D., & Zhao, Y. (2023). Analysis and design of axially loaded ring-beam joints connecting steel tubed-RC column and RC beams. *Structures*, *57*, 105304. https://doi.org/10.1016/J.ISTRUC.2023.105304
 - 32. Uy, B. (2015). High-strength steel–concrete composite columns for buildings. *Https://Doi.Org/10.1680/Stbu.2003.156.1.3, 156*(1), 3–14. https://doi.org/10.1680/STBU.2003.156.1.3
 - 33. Velrajkumar, G., Mohan, A., Gopalakrishnan, R., & Haritha, S. (2023). Experimental and theoretical investigation of concrete filled and encased steel column under compression loading. *Materials Today: Proceedings*. https://doi.org/10.1016/J.MATPR.2023.08.130
 - 34. Wood, S. L. (1991). Performance of Reinforced Concrete Buildings during the 1985 Chile Earthquake: Implications for the Design of Structural Walls. *Earthquake Spectra*, 7(4), 607–638. https://doi.org/10.1193/1.1585645
 - 35. Zhang, B., Lin, S., Zhang, S., Lu, X., & Yu, T. (2024). Seismic behaviour of FRP-concrete-steel double-tube columns with shear studs: Experimental study and numerical modelling. *Engineering Structures*, 302, 117339. https://doi.org/10.1016/J.ENGSTRUCT.2023.117339