Disentangling Content and Pose with an Adversarial Loss

CVPR2018 GAN Tutorial

Emily Denton
Department of Computer Science
New York University

박사과정 김성빈 <u>chengbinjin@inha.edu</u>, 지도교수 김학일 교수 <u>hikim@inha.ac.kr</u> 인하대학교 컴퓨터비전 연구실 2018.07.31

Content

- Part I: Disentangling content and pose with an adversarial loss
 - E. Denton, et al., Unsupervised Learning of Disentangled Representations from Video, NIPS2017
 - > pp.1~49
 - > 2 reference papers
- Part II: Survey of adversarial losses in feature space
 - > pp. 50~59
 - > 13 reference papers

Unsupervised Learning of Disentangled Representations from Video

NIPS2017

Unsupervised Learning of Disentangled Representations from Video

NIPS2017

Disentangled Representation Net (DrNet)

 Disentangling auto-encoder that factorizes image sequences into temporally constant (content) and temporally varying (pose) components

Time varying information: Pose of body

Time invariant information: Lighting, background, identity, clothing

Assumption: Simple background

DrNet: Two Separate Encoders

- $|h_c|$ = 128 (MNIST, NORB, SUNCG, KTH)
- $|h_p| = 5$ (MNIST, KTH), 10 (NORB, SUNCG)

DrNet: Training

- Reconstruction loss drives training
- Similarity loss makes content vectors invariant across time
- Adversarial loss enforces pose vectors to only contain info that changes across time

I. Reconstruction Loss

$$L_{reconstruction}\left(E_{c}, E_{p}, D\right) = \left\|D\left(E_{c}\left(x^{t}\right), E_{p}\left(x^{t+k}\right)\right) - x^{t+k}\right\|_{2}^{2} \tag{1}$$

- E_c : content encoder
- E_p : pose encoder
- D: decoder

- x^t: input frame of index t
- x^{t+k} : input frame of index t+k
- k: random frame offset $k \in [0, K]$

II. Similarity Loss [1/2]

Similarity loss makes content vectors invariant across time

Time invariant information:

Lighting, background, identity, clothing

Content vectors should be invariant across time

II. Similarity Loss [2/2]

• 12 similarity loss on temporally nearby content vectors

$$L_{similarity}\left(E_{c}\right) = \left\|E_{c}\left(x^{t}\right) - E_{c}\left(x^{t+k}\right)\right\|_{2}^{2} \tag{2}$$

- E_c : content encoder
- x^t : input frame of index t
- x^{t+k} : input frame of index t+k
- k: random frame offset $k \in [0, K]$

III. Adversarial Loss [1/3]

 Adversarial loss enforces pose vectors to only contain info that changes across time

III. Adversarial Loss [2/3]

Adversarial loss enforces pose vectors to only contain info that changes

- C: scene discriminator
- \mathcal{X}_{i}^{t} : frame t of the input video clip i \mathcal{X}_{i}^{t+k} : frame t+k of the input video clip j
- E_p : pose encoder
- x_i^{t+k} : frame t+k of the input video clip i k: random frame offset $k \in [0,K]_{12}$

III. Adversarial Loss [3/3]

Train pose encoder to produce pose vectors that make the discriminator
 maximally uncertain about the content of the video

$$-L_{adversarial}\left(E_{p}\right) = \frac{1}{2}\log\left(C\left(E_{p}\left(x_{i}^{t}\right), E_{p}\left(x_{i}^{t+k}\right)\right)\right) + \frac{1}{2}\log\left(1 - C\left(E_{p}\left(x_{i}^{t}\right), E_{p}\left(x_{i}^{t+k}\right)\right)\right) \tag{4}$$

- C: scene discriminator
- x_i^t : frame t of the input video clip i k: random frame offset $k \in [0, K]$
- x_i^{t+k} : frame t+k of the input video clip i
- E_p : pose encoder

Overall Training Objective [1/3]

$$L = \frac{L_{reconstruction}\left(E_c, E_p, D\right)}{L_{similarity}\left(E_c\right) + \beta\left(L_{adversarial}\left(E_p\right) + L_{adversarial}\left(C\right)\right)}$$
(5)

- $\alpha=1$ for all datasets
- β =0.1 for MNIST, NORB and SUNCG and β =0.0001 for KTH experiments

Overall Training Objective [2/3]

$$L = L_{reconstruction}\left(E_c, E_p, D\right) + \frac{\alpha L_{similarity}\left(E_c\right)}{\alpha L_{similarity}\left(E_c\right)} + \beta \left(L_{adversarial}\left(E_p\right) + L_{adversarial}\left(C\right)\right) \tag{5}$$

- α=1 for all datasets
- β =0.1 for MNIST, NORB and SUNCG and β =0.0001 for KTH experiments

Overall Training Objective [3/3]

$$L = L_{reconstruction}\left(E_c, E_p, D\right) + \alpha L_{similarity}\left(E_c\right) + \beta \left(L_{adversarial}\left(E_p\right) + L_{adversarial}\left(C\right)\right)$$
 (5)

- $\alpha=1$ for all datasets
- β =0.1 for MNIST, NORB and SUNCG and β =0.0001 for KTH experiments

Image Synthesis by Analogy [1/4]

Image Synthesis by Analogy [2/4]

Image Synthesis by Analogy [3/4]

• Interpolation in pose space

Image Synthesis by Analogy [4/4]

Video Prediction [1/2]

- Instead modeling how the entire scene changes, only need to predict the temporally varying component
- Prediction done entirely in latent pose space

Video Prediction [2/2]

Train LSTM to predict future pose vectors

Don't have to worry about content vectors they are fixed across time by design 22

Test Time: Generating A Video Sequence

Feed predicted pose vectors back into model

$$\tilde{h}_{p}^{t+1} = LSTM\left(E_{p}\left(x^{t}\right), h_{c}^{t}\right) \quad \tilde{x}^{t+1} = D\left(\tilde{h}_{p}^{t+1}, h_{c}^{t}\right)
\tilde{h}_{p}^{t+2} = LSTM\left(\tilde{h}_{p}^{t+1}, h_{c}^{t}\right) \quad \tilde{x}^{t+2} = D\left(\tilde{h}_{p}^{t+2}, h_{c}^{t}\right)$$
(6)

Moving MNIST: Generating Forever...

Inp		Generated frames												
1	3	5	6	9	12	15	18	21	24		50	100	200	500
8	·	8	6	6	6	60	60	6	0		6	8	06	06
93	3	3	39	39	39	3	93	3	3		9	93	3	3
6	6	6	P	9	0,	9	10	10	10	•••	10	d	6	b
12.	62	62	62	2	26	7 6	26	3	62		26	2	26	(2
97	37	97	79	79	79	97	97	97	79		3	9	9	9
56	52	5	5	65	5	54	56	56	5		45	5	56	5
2	2	2	3	3	20	3	۵	2	2		25	2	2	2

KTH Video Generation

KTH Nearest Neighbors

Further Examples

Thank you for your attention!