Fair Allocation

Fair Division

<u>Fair Division</u> considers the problem of splitting up goods among two or more people such that everyone gets a 'fair' share according to their own taste. An illustrative example considers an inhomogeneous cake, which is to be divided among two people: the first cuts it in two pieces and the second chooses a piece. Both receive a piece that is at least half in their valuation. The problem has been studied in economics, social sciences, and mathematics.

Fair Allocation

Here we consider the $\underline{\it Fair Allocation}$ of a set of m indivisible items among n parties (e.g., furniture pieces after a divorce, an inheritance following a death, or cities and territories after an armistice). Our goal is to compute a fair division securely, such that every party inputs a sealed bid that must stay secret, using a simple allocation scheme. In general, defining a criterion that makes an allocation fair can be difficult and computing such an allocation is a complex optimization problem.

More precisely, denote the items by $\mathcal{I}=1,2,\ldots,m$. Every party P_1,P_2,\ldots,P_n inputs a list $V_i=(v_{i1},\ldots,v_{im})$ containing its valuation, where $\sum_{j=1}^m v_{ij}=B$ and v_{ij} denotes the preference of P_i for item j. The number B is fixed. An allocation (A_1,\ldots,A_n) consists of n sets with $A_i\subseteq\mathcal{I}$ and gives items worth $\sum_{j\in A_i}v_{ij}$ to Pi. A maximal allocation achieves the highest total worth, summed over all parties.

Exercise

Implement an algorithm for finding the maximal allocation using MPyC that keeps all valuations secret. It should use exhaustive search, enumerate all allocations, and return some maximal allocation.