

## MM54HC154/MM74HC154 4-to-16 Line Decoder

#### **General Description**

This decoder utilizes advanced silicon-gate CMOS technology, and is well suited to memory address decoding or data routing applications. It possesses high noise immunity, and low power consumption of CMOS with speeds similar to low power Schottky TTL circuits.

The MM54HC154/MM74HC154 have 4 binary select inputs (A, B, C, and D). If the device is enabled these inputs determine which one of the 16 normally high outputs will go low. Two active low enables  $(\overline{\text{G1}} \text{ and } \overline{\text{G2}})$  are provided to ease cascading of decoders with little or no external logic.

Each output can drive 10 low power Schottky TTL equivalent loads, and is functionally and pin equivalent to the 54LS154/74LS154. All inputs are protected from damage due to static discharge by diodes to  $V_{CC}$  and ground.

#### **Features**

- Typical propagation delay: 21 ns
- Power supply quiescent current: 80 µA (74HC)
- Wide power supply voltage range: 2-6V
- $\blacksquare$  Low input current: 1  $\mu$ A maximum

## **Connection Diagram**



TL/F/5122-1

Order Number MM54HC154 or MM74HC154

#### **Truth Table**

|    | Low |   |   |   |   |         |
|----|-----|---|---|---|---|---------|
| G1 | G2  | D | С | В | Α | Output* |
| L  | L   | L | L | L | L | 0       |
| L  | L   | L | L | L | Н | 1       |
| L  | L   | L | L | Н | L | 2       |
| L  | L   | L | L | Н | Н | 3       |
| L  | L   | L | Н | L | L | 4       |
| L  | L   | L | Н | L | Н | 5       |
| L  | L   | L | Н | Н | L | 6       |
| L  | L   | L | Н | Н | Н | 7       |
| L  | L   | Н | L | L | L | 8       |
| L  | L   | Н | L | L | Н | 9       |
| L  | L   | Н | L | Н | L | 10      |
| L  | L   | Н | L | Н | Н | 11      |
| L  | L   | Н | Н | L | L | 12      |
| L  | L   | Н | Н | L | Н | 13      |
| L  | L   | Н | Н | Н | L | 14      |
| L  | L   | Н | Н | Н | Н | 15      |
| L  | Н   | Х | X | X | Χ | _       |
| Н  | L   | Х | X | Χ | Χ | _       |
| Н  | Н   | X | Х | Х | Х | _       |

\*All others high

## Absolute Maximum Ratings (Notes 1 & 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| •                                                             | •                                |
|---------------------------------------------------------------|----------------------------------|
| Supply Voltage (V <sub>CC</sub> )                             | -0.5  to  +7.0 V                 |
| DC Input Voltage (V <sub>IN</sub> )                           | $-1.5$ to $V_{CC} + 1.5V$        |
| DC Output Voltage (V <sub>OUT</sub> )                         | $-0.5$ to $V_{\rm CC}$ + $0.5$ V |
| Clamp Diode Current (I <sub>IK</sub> , I <sub>OK</sub> )      | $\pm$ 20 mA                      |
| DC Output Current, per pin (I <sub>OUT</sub> )                | $\pm$ 25 mA                      |
| DC V <sub>CC</sub> or GND Current, per pin (I <sub>CC</sub> ) | $\pm$ 50 mA                      |
| Storage Temperature Range (T <sub>STG</sub> )                 | -65°C to $+150$ °C               |
|                                                               |                                  |

Power Dissipation (PD)

600 mW (Note 3) S.O. Package only 500 mW 260°C Lead Temp. (T<sub>L</sub>) (Soldering 10 seconds)

## **Operating Conditions**

| Supply Voltage (V <sub>CC</sub> )              | Min<br>2 | <b>Max</b><br>6 | Units<br>V |
|------------------------------------------------|----------|-----------------|------------|
| DC Input or Output Voltage $(V_{IN}, V_{OUT})$ | 0        | V <sub>CC</sub> | V          |
| Operating Temp. Range (T <sub>A</sub> )        |          |                 |            |
| MM74HC                                         | -40      | +85             | °C         |
| MM54HC                                         | -55      | +125            | °C         |
| Input Rise or Fall Times                       |          |                 |            |
| $(t_r, t_f) V_{CC} = 2.0V$                     |          | 1000            | ns         |
| $V_{CC} = 4.5V$                                |          | 500             | ns         |
| $V_{CC} = 6.0V$                                |          | 400             | ns         |

## **DC Electrical Characteristics** (Note 4)

| Symbol          | Parameter                               | Conditions                                                                                         | v <sub>cc</sub>      | V <sub>CC</sub> T <sub>A</sub> =25°C |                    | 74HC 54HC<br>T <sub>A</sub> = -40 to 85°C T <sub>A</sub> = -55 to 125°C |                    | Units       |  |
|-----------------|-----------------------------------------|----------------------------------------------------------------------------------------------------|----------------------|--------------------------------------|--------------------|-------------------------------------------------------------------------|--------------------|-------------|--|
|                 |                                         |                                                                                                    |                      | Тур                                  | Guaranteed Limits  |                                                                         |                    |             |  |
| V <sub>IH</sub> | Minimum High<br>Level Input<br>Voltage  |                                                                                                    | 2.0V<br>4.5V<br>6.0V |                                      | 1.5<br>3.15<br>4.2 | 1.5<br>3.15<br>4.2                                                      | 1.5<br>3.15<br>4.2 | V<br>V<br>V |  |
| V <sub>IL</sub> | Maximum Low<br>Level Input<br>Voltage** |                                                                                                    | 2.0V<br>4.5V<br>6.0V |                                      | 0.5<br>1.35<br>1.8 | 0.5<br>1.35<br>1.8                                                      | 0.5<br>1.35<br>1.8 | V<br>V<br>V |  |
| V <sub>OH</sub> | Minimum High<br>Level Output<br>Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT}  \le 20 \mu A$                                      | 2.0V<br>4.5V<br>6.0V | 2.0<br>4.5<br>6.0                    | 1.9<br>4.4<br>5.9  | 1.9<br>4.4<br>5.9                                                       | 1.9<br>4.4<br>5.9  | V<br>V<br>V |  |
|                 |                                         | $V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT}  \le 4.0 \text{ mA}$ $ I_{OUT}  \le 5.2 \text{ mA}$ | 4.5V<br>6.0V         | 4.2<br>5.7                           | 3.98<br>5.48       | 3.84<br>5.34                                                            | 3.7<br>5.2         | V           |  |
| V <sub>OL</sub> | Maximum Low<br>Level Output<br>Voltage  | $V_{IN} = V_{IH} \text{ or } V_{IL}$<br>$ I_{OUT}  \le 20 \mu A$                                   | 2.0V<br>4.5V<br>6.0V | 0<br>0<br>0                          | 0.1<br>0.1<br>0.1  | 0.1<br>0.1<br>0.1                                                       | 0.1<br>0.1<br>0.1  | V<br>V<br>V |  |
|                 |                                         | $V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT}  \le 4.0 \text{ mA}$ $ I_{OUT}  \le 5.2 \text{ mA}$ | 4.5V<br>6.0V         | 0.2<br>0.2                           | 0.26<br>0.26       | 0.33<br>0.33                                                            | 0.4<br>0.4         | V<br>V      |  |
| I <sub>IN</sub> | Maximum<br>Input Current                | V <sub>IN</sub> =V <sub>CC</sub> or GND                                                            | 6.0V                 |                                      | ±0.1               | ±1.0                                                                    | ±1.0               | μΑ          |  |
| Icc             | Maximum<br>Quiescent<br>Supply Current  | $V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$                                                       | 6.0V                 |                                      | 8.0                | 80                                                                      | 160                | μΑ          |  |

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V  $\pm$ 10% the worst case output voltages (V<sub>OH</sub>, and V<sub>OL</sub>) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V<sub>IH</sub> and V<sub>IL</sub> occur at V<sub>CC</sub>=5.5V and 4.5V respectively. (The V<sub>IH</sub> value at 5.5V is 3.85V.) The worst case leakage current (I<sub>IN</sub>, I<sub>CC</sub>, and I<sub>OZ</sub>) occur for CMOS at the higher voltage and so the 6.0V values should be used.

<sup>\*\*</sup>V<sub>IL</sub> limits are currently tested at 20% of V<sub>CC</sub>. The above V<sub>IL</sub> specification (30% of V<sub>CC</sub>) will be implemented no later than Q1, CY'89.

# AC Electrical Characteristics $v_{CC}\!=\!5\text{V}, T_{A}\!=\!25^{\circ}\text{C}, C_{L}\!=\!15\,\text{pF}, t_{f}\!=\!t_{f}\!=\!6\,\text{ns}$

| Symbol                              | Parameter                                       | Conditions | Тур | Guaranteed Limit | Units |
|-------------------------------------|-------------------------------------------------|------------|-----|------------------|-------|
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay, G1, G2 or A, B, C, D |            | 21  | 32               | ns    |

## $\textbf{AC Electrical Characteristics} \ \ V_{CC} = 2.0 \ V \ \text{to 6.0V, C}_L = 50 \ \text{pF, t}_r = t_f = 6 \ \text{ns (unless otherwise specified)}$

| Symbol                              | Parameter                                               | Conditions | v <sub>cc</sub>      | T <sub>A</sub> =25°C |                   | 74HC<br>T <sub>A</sub> = -40 to 85°C | 54HC<br>T <sub>A</sub> = -55 to 125°C | Units          |  |
|-------------------------------------|---------------------------------------------------------|------------|----------------------|----------------------|-------------------|--------------------------------------|---------------------------------------|----------------|--|
|                                     |                                                         |            |                      | Тур                  | Guaranteed Limits |                                      |                                       |                |  |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation<br>Delay, G1 or G2<br>or A, B, C, D |            | 2.0V<br>4.5V<br>6.0V | 63<br>24<br>20       | 160<br>36<br>30   | 190<br>42<br>35                      | 220<br>46<br>39                       | ns<br>ns<br>ns |  |
| t <sub>TLH</sub> , t <sub>THL</sub> | Maximum Output<br>Rise and Fall Time                    |            | 2.0V<br>4.5V<br>6.0V | 25<br>7<br>6         | 75<br>15<br>13    | 95<br>19<br>16                       | 110<br>22<br>19                       | ns<br>ns<br>ns |  |
| C <sub>PD</sub>                     | Power Dissipation<br>Capacitance (Note 5)               |            |                      | 90                   |                   |                                      |                                       | pF             |  |
| C <sub>IN</sub>                     | Maximum Input<br>Capacitance                            |            |                      | 5                    | 10                | 10                                   | 10                                    | pF             |  |

 $\textbf{Note 5: } C_{PD} \text{ determines the no load dynamic power consumption, } P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text$ 





## Physical Dimensions inches (millimeters)



#### Order Number MM54HC154J or MM74HC154J See NS Package J24F



#### Order Number MM74HC154N See NS Package N24C

#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.



**National Semiconductor** 

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

**National Semiconductor** Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** 

Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408