# FOR USE THEREIN PROCESS FOR POLYMERISING AZIRIDINE COMPOUNDS AND INITIATORS

**Publication date:** Patent number: 1975-10-30 DE2515593

Serial No.: 10/009,603

Inventor:

JOCHUM PETER DR; ZAHLER WOLF-DIETER DR SCHMITT WERNER DR; PURRMANN ROBERT DR;

Applicant: **ESPE PHARM PRAEP** 

Classification:

 international: C08G73/02; C08G73/00; (IPC1-7): C08G73/02

european: C08G73/02A9

Priority number(s): CH19740005449 19740419 Application number: DE19752515593 19750410

FR2268038 (A1) CH606190 (A5) DD117472 (A)

GB1509245 (A) JP50145500 (A) Also published as:

Report a data error here

Abstract not available for DE2515593

Abstract of corresponding document: GB1509245

cycloaliphatic or heterocyclic ring, B is an electron attracting radical and A is a non-nucleophilic anion. substituted with chloro, nitro or alkoxy, and the alkyl radical of R<3> or R<4> together with B can form a substituted with an ester and/or ether group, R<3> and R<4> are H, C1\_18alkyl and/or aryl optionally formula where R<1> is C1-18 alkyl, R<2> is C1-18 alkyl or C1-18 phenylalkyl, the alkyls being optionally 1974] 15659/75 Heading C3R Aziridine compounds are polymerized using as initiator a compound of 1509245 Polyamines ESPE FABRIK PHARMAZEUTISCHER PRAPARATE GmbH 16 April 1975 [19 April

Data supplied from the esp@cenet database - Worldwide

BEST AVAILABLE COPY





(21) Aktenzeichen: 2 Anmeldetag: Offenlegungstag:

10. 4.75 30. 10. 75 1. 7.82

(5) Veröffentlichungstag:

**PATENTAMT** 

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(3) Unionsprioritāt: (2) (3) (3)

19.04.74 CH 5449-74

(7) Patentinhaber:

ESPE Fabrik pharmazeutischer Präparate GmbH, 8031 Seefeld, DE

(7) Erfinder:

Schmitt, Werner, Dr.; Purrmann, Robert, Dr., 8130 Starnberg, DE; Jochum, Peter, Dr.; Zahler, Wolf-Dieter. Dr., 8031 Hechendorf, DE

5 Entgegenhaltungen:

DE-PS 9 14 325 8 81 659 DE-PS СН 4 84 977

Gould, Edwin S.: »Mechanismus und Struktur in der organischen Chemie«, Weinheim/Bergstr. 1962, S. 307;

Starter für die Polymerisation mono- oder polyfunktioneller Aziridinverbindungen

### Patentanspruch:

Verwendung von substituierten Sulfoniumsalzen der allgemeinen Formel

worin

ein Alkylrest mit 1 – 18 C-Atomen,

ein Alkylrest mit 1-18 C-Atomen oder Phenylalkylrest mit 7-18 C-Atomen, wobei gegebenenfalls in den Alkylketten eine Estergruppe und/oder Äthergruppe enthalten sein 20 kann, and

R³ und R⁴ jeweils ein Wasserstoffatom, ein Alkylrest mit 1-18 C-Atomen und/oder ein gegebenenfalls chlor-, nitro- oder alkoxysubstituierter zusammen oder auch R3 oder R4 zusammen mit B einen cycloaliphatischen oder heterocyclischen Ring bilden können und wobei

einen elektronenanziehenden Rest aus der Gruppe Carbonyl, Sulfonyl, Nitril, Carbonester, 30 Chlornhenyl, Nitrophenyl, Benzoyl oder gegebenentalls substituiertes Carbonamid und

ein nicht-nukleophiles Anion darstellt,

polyfunktioneller Aziridinverbindungen.

Aziridine, die in der Literatur auch als Äthyleniminverbindung bezeichnet werden, können durch Katalysatoren, die eine Polymerisation einleiten und somit starten, zu hochmolekularen Polyiminverbindungen umgewandelt werden. Durch diese Starter wird der Aminostickstoff des Aziridinringes kationisiert und zur Polymerisation unter Bildung der entsprechenden Polyimine führt, wie dies in der Zeitschrift »Farbe und Lacke«, 1961, S. 71, näher beschrieben ist. Bei Verwendung von solchen monomeren Verbindungen, die zwei oder mehr Aziridingruppen aufweisen, erhält man dann 55 vernetzte, feste Kunststoffe.

Die Kationisierung des Aminostickstoffes kann z. B. durch anorganische oder organische Säuren sowie durch Lewis-Säuren, aber auch durch Säureester oder durch andere Alkylierungsmittel erfolgen, weshalb diese 60 Substanzen als Polymerisationsstarter bzw. Härtungsmittel für die verschiedensten Aziridinverbindungen verwendet wurden.

In der deutschen Patentschrift 8 88 170 sind als Starter für die Aziridinpolymerisation neutrale Schwe- 65 felsäure- oder Sulfonsäureester offenbart, während in der schweizerischen Patentschrift 4 84 977 für diese Zwecke außer einer großen Anzahl dieser Schwefelsäu-

re- oder Sulfonsäureester auch Friedel-Craft's-Katalysatoren aufgeführt sind, die dort bei der Herstellung gehärteter Formgebilde, Überzüge oder Klebschichten aus aromatischen Diäthyleniminverbindungen als Starter und Härtungsmittel verwendet werden.

Die freien anorganischen Säuren haben sich in der Praxis nicht durchsetzen können, wel die Polymerisation durch sie zu schnell einsetzt, so daß keine Zeit für eine gleichmäßige Vermischung des Starters r.:it der zu polymerisierenden Monomerverbindung verbleibt. Die schwachen organischen Säuren, insbesondere solche mit langen organischen Resten, wirken dagegen zu langsam und führen selten zu einer völligen Aushärtung und Vernetzung, weshalb die Alkyl- oder Arylsulfonsäureester bisher in der Praxis am meisten als Starter benutzt wurden.

Diese Esterverbindungen haben jedoch den Nachteil, daß sie bereits durch Spuren von Wasser hydrolytisch gespalten werden, wodurch dann die Säure frei wird, welche eine zu schnelle Polymerisation und Härtung der Aziridinverbindungen verursacht. Infolgedessen treten manchmal bei Verwendung dieser Starter vorzeitige, überraschende Härtungseffekte auf, wenn das Startermaterial bei der Lagerung nicht völlig luftdicht und Arylrest ist, wobei die Alkylreste R3 und R4 25 trocken aufbewahrt wurde. Die Schwefelsäureester können darüber hinaus aber auch noch Nachteile wegen ihrer toxischen oder allergischen Wirkung aufweisen, so daß ihre Handhabung besondere Vorsicht erfordert. Dies gilt besonders dann, wenn sie z. B. als Polymerisationsstarter und Härter für vernetzbare organische bifunktionelle Aziridinverbindungen bei der Herstellung von Zahnabdruckmassen oder zahnärztlichen Modellen Verwendung finden sollen.

Die in der deutschen Patentschrift 9 14 325 offenbarals Starter für die Polyme isation mono- oder 35 ten sogenannten Oniumsalze, wie Oxonium-, Ammonium- oder Sulfoniumsalze, die auch zur Härtung herangezogen werden können, zeigen zwar keine derartigen physiologischen Wirkungen, jedoch sind die Oxoniumsalze noch hydrolyseanfälliger als die obenge-40 nannten Ester und auch bei Raumtemperatur bekanntlich nur kurze Zeit haltbar. Die als brauchbar bezeichneten Ammoniumverbindungen sind Salze von Aminen mit starken Säuren, bei denen die Einstellung der Topfzeit problematisch ist. Die Sulfoniumsalze 45 schließlich sind so träge Starter, daß sie bei Raumtemperatur praktisch noch nicht wirken und auch bei höherer Temperatur relativ langsam die Polymerisation der Aziridine einleiten. Es besteht daher nach wie vor ein Bedürfnis, die Härtung von Aziridinverbindungen zu dadurch eine Kationen-Kettenreaktion eingeleitet, die 50 verbessern, insbesondere dann, wenn sie in der Medizin oder Zahnmedizin Verwendung finden. Die Aufgabe der Erfindung besteht daher in der Bereitstellung eines physiologisch völlig unbedenklichen, dabei aber einerseits nicht zu schnell bzw. aber andererseits nicht zu langsam wirkenden Starters für die Polymerisation der Aziridinmassen.

Es wurde nun überraschenderweise festgestellt, daß bestimmte substituierte Alkylsulfoniumsalze, die in dem zum Schwefelatom β-ständigen C-Atom der Alkylgruppe mindestens 1 Wasserstoffatom und einen elektronenanziehenden Rest aufweisen, besonders brauchbare Starter und Härtungsmittel für die verschiedensten Aziridinverbindungen darstellen. Die durch diese neuartigen Starter eingeleitete Polymerisation tritt bei Zimmertemperatur oder sogar bei noch tieferen Temperaturen nach der für die Vermischung und Verarbeitung der zu polymerisierenden Monomerverbindung erforderlichen Zeitspanne schnell und vollstän-

4

dig ein. Diese Alkylsulfoniumsalze entsprechen der allgemeinen Formel

worin R¹ ein. Alkylrest mit 1-18 C-Atomen, R² ein 10 Alkylrest mit 1-18 C-Atomen oder ein Phenylalkylrest mit 7-18 C-Atomen, wobei gegebenenfalls in den Alkylketten eine Estergruppe und/oder Äthergruppe enthalten sein kann, und R³ und R⁴ jeweils ein Wasserstoffatom, ein Alkylrest mit 1-18 C-Atomen und/oder ein gegebenenfalls chlor-, nitro- oder alkoxysubstituierter Arylrest ist, wobei die Alkylreste R³ und R⁴ zusammen oder auch R³ oder R⁴ zusammen mit B einen cycloaliphatischen oder heterocyclischen Ring bilden können, und wobei B einen elektronenanziehenden Rest aus der Gruppe Carbonyl, Sulfonyl, Nitril, Carbonester, Chlorphenyl, Nitrophenyl, Benzoyl oder gegebenenfalls substituiertes Carbonamid und A<sup>©</sup> ein nicht nukleophiles Anion darstellt.

Unter dem Begriff »elektronenanziehender Rest« 25 ken. wird vom Fachmann eine solche Atomgruppe verstanden, die eine anziehende Wirkung auf die Elektronen der mit ihr verbundenen bzw. benachbarten Atome innerhalb des Moleküls ausübt; vgl. auch E. S. Gould, «Mechanismus und Struktur in der organischen Chemie«, Verlag Chemie 1962, S. 248 f. Hinsichtlich des Begriffes »nukleophiles Anion« kann auf das gleiche Lehrbuch, Seite 307 f., verwiesen werden sowie auf C. G. Swain et al., J. Am. Chem. Soc., 75, S. 141 (1953), und A. B. Ash et al., J. Org. Chem., 34, S. 4071 (1969).

Die neuartigen Starter können zur Härtung auch solcher Aziridinmassen verwendet werden, bei denen die zu polymerisierenden Aziridingruppen nur in relativ hoher Verdünnung vorhanden sind. Gerade für den Einsatz hochmolekularer bifunktioneller Aziridinverbindungen in der zahnärztlichen Praxis bei der Abdrucknahme oder der Herstellung provisorischer Zahnersatzteile in situ, d. h. in der Mundhöhle, sind sie von besonderem Vorteil, da nach einer kurzen Inkubationszeit, in der die Vermischung des Starters mit der Aziridinverbindung vollständig und gleichmäßig vorgenommen werden kann, dann auch bei Zimmertemperatur die Polymerisation und Härtung einsetzt, wobei dann schnell ein vollständig ausgehärtetes Produkt erhalten wird.

Die erfindungsgemäß zu verwendenden Sulfoniumsalze zeigen einerseits keine nachteiligen Wirkungen auf die Schleimhäute und andererseits wird die durch sie eingeleitete Polymerisation vollständig zu Ende geführt, so daß nicht etwa Restanteile des Monomers eine 55 Irritation oder Schädigung der Schleimhäute bewirken können.

Bei den erfindungsgemäß als Polymerisationsstarter verwendeten Sulfoniumsalzen ist am C-Atom in β-Stellung zum Schwefelatom neben mindestens einem 60 Wasserstoffatom ein elektronenanziehender Rest B vorhanden. Hierdurch wird wahrscheinlich dieses Wasserstoffatom so aktiviert, daß es in Gegenwart der Aziridingruppe als Proton abgspalten wird und das Stickstoffatom kationisiert, worauf dann die Kettenreaktion, welche zur Härtung der Aziridinverbindung führt, einsetzen kann. Da die Sulfoniumsalze keine Alkylierungsmittel darstellen, kann somit ihre Wirksam-

keit nicht mit einer Alkylierung des Stickstoffatoms der Aziridingruppe erklärt werden. Als elektronenanziehende Reste sind hier Carbonyl-, Sulfonyl-, Nitril-, Carbonester-, Chlorphenyl-, Nitrophenyl-, Benzoyloder gegebenenfalls substituierte Carbonamid-Gruppen geeignet Ein unsubstituierter Phenylrest hat die Eigenschaft der elektronenanziehenden Wirkung nur in relativ geringem Ausmaß. Durch eine Substitution mit einem Chloratom oder insbesondere einer Nitrogruppe wird diese Eigenschaft aber verstärkt, so daß sich auch derartig substituierte Phenylreste als elektronenanziehende Substituenten am  $\beta$ -C-Atom der Sulfoniumsalze eignen. Der Nitrilrest aktiviert besonders stark, so daß die mit einer Nitrilgruppe aktivierten Verbindungen eine relativ schnelle Härtung bewirken. Die üblichen Sulfoniumsalze, die also am β-C-Atom eines Alkylsubstituenten keinen derartigen elektronenanziehenden Rest aufweisen, wie z. B. das bekannte Diäthyldodecylsulfonium-Bortetrafluorid, haben praktisch keine Wirkung als Härtungsmittel bei höher molekularen Aziridinen. Dem Stand der Technik konnte so-est keine Anregung entnommen werden, daß solche in bestimmter Weise substituierten Sulfoniumsalze die Polymerisation von Aziridinverbindungen besonders gut und sicher bewir-

Dem Rest B in β-Stellung zum Sulfonium-Schwefelatom kommt somit eine entscheidende Bedeutung für Aktivierungswirkung der neuartigen die Polymerisationsstarter zu. Dieser elektronenanziehende Substituent oder Rest kann, wie einige in den nachfolgenden Beispielen verwendeten Verbindungen erkennen lassen, auch Bestandteil eines Ringes sein im Zusammenwirken mit einem der Reste R³ oder R⁴ der Formel (I). So ist in den Beispielen gemäß 24, 32 und 34 35 der Tabellen 1 und 2 jeweils ein Sulfoniumsalz verwendet worden, bei dem die elektronenanziehende SO2-Gruppe Bestandteil eines heterocyclischen Ringes ist, den diese Gruppe zusammen mit dem Rest R3 der allgemeinen Formel I bildet.

Bevorzugte Gruppen für den Substituenten B sind die Nitril- und die Ester-Gruppe. Sie zeigen eine intensive eiektronenanziehende Wirkung, ohne daß aber dadurch die Härtungsgeschwindigkeit zu stark erhöht wird, was, wie oben schon dargelegt, unerwünscht ist. Bei dem Rest R¹ der Formel (I) sind Alkylreste mit 1 oder 2 C-Atomen bevorzugt, während bei dem Rest R² die Kettenlänge der Alkylgruppe vorzugsweise 6–18 C-Atome betragen kann, wobei gegebenenfalls eine Estergruppe in diesem Rest vorhanden sein kann. Beispiele für einen solchen Rest sind der Isooctylacetat-Rest oder der Äthyllaurat-Rest, wie dies in den Beispielen 34 und 35 gezeigt ist.

Bevorzugte nicht nukleophile Anionen sind das Fluoroborat-, Sulfonat-, Nitrat-, Perchlorat-Ion sowie auch das Methosulfat- oder Fluorsulfat-Ion.

In den folgenden Beispielen wird die Ersindung unter Verwendung verschieden substituierter Alkylsulfoniumsalze und unterschiedlicher Aziridinverbindungen näher erläutert.

### Beispiel 1

In 1.0 g 2-Äthylenimino-äthanol (II) wurden 0.1 g β-(S-sec-Butyl-S-äthyl-sulfonium)-propionsäure-(2-äthyl-hexyl)-ester-bortetrafluorid (n: 1,4498) gelöst. Nach Zugabe des Polymerisationsstarters setzte die Polymerisation sogleich ein, was durch Ansteigen der Temperatur in wenigen Sekunden auf ca. 100°C erkennbar war. Nach einigen Minuten war das Polyimin

als ein fast farbloses zähes Öl entstanden, das zum Imprägnieren von Papier geeignet ist, um diesem eine erhöhte Naßfestigkeit zu verleihen.

### Beispiel 2

In 1,0 g der in Beispiel 1 verwendeten Äthyleniminoverbindung II wurden 0,02 g (S-Lauryl-S-äthyl-sulfonium)-β-phenylpropionsäure-äthyl-ester-bortetrafluorid (n:1,4860) gelöst. Unter Temperaturansteig auf ca. 80°C setzte die Polymerisation schnell ein, wobei in wenigen Minuten ein farbloses Öl entstanden war, das in gleicher Weise wie das gemäß Beispiel 1 erhaltene Polymerisat verwendet werden kann.

### Beispiel 3

1.0 g der Äthyleniminverbindung II wurden mit 0.02 g β-(S-Octyl-S-äthyl-sulfonium)-butyronitril-bortetrafluorid (III) (n : 1.4499) versetzt. Unter Temperaturanstieg auf ca. 75°C entstand in kurzer Zeit das Polyimin als ein farbloses (Ω). Verwendete man dagegen 0.1 g des su Starters III. so entstand in heftiger Reaktion unter starker Erwärmung das Polyimin als farblose Paste.

### Beispiel 4

1.0 g N-Butyl-äthylenimin wurden mit 0.1 g des 23 Starters III gemischt. Die Temperatur stieg auf ca. 100°C an. Nach wenigen Minuten war die Polymerisation beendet und das Polyimin als ein farbloses OI entstanden.

### Beispiel 5

1.0 g Äthylenimino-bernsteinsäure-dimethylester wurden mit 0.1 g Starter III versetzt. In heftiger Reaktion setzte die Polymerisation sogleich nach Zugabe des Starters ein, und das Polyimin entstand in Germeiner hellgelben gummiartigen Masse.

### Beispiel 6

Nach Vermischen von 1.0 g Äthylenimino-essigsäuremethylester mit 0.1 g des Starters III erhält man in 46 heftiger Reaktion praktisch momentan das Polyimin als eine zähe hellbraune Masse.

## Beispiel 7

Zu 1,0 g 2,2-Bis-(p-β-hydroxyäthoxy-phenyl)-propanbis-α-äthylenimino-propionat (IV) wurden 0,02 g des Starters III eingerührt. Die Gelierung und Härtung begann schnell, so daß schon nach etwa 1 Minute als vernetztes Polyimin ein sehr hartes Produkt entstanden war.

In der folgenden Tabelle 1 sind die Beispiele 8-24 zusammengefaßt. Sie wurden in gleicher Weise wie in Beispiel 7 beschrieben mit dem dort verwendeten bifunktionellen Aziridinderivat IV unter Verwendung verschiedener Sulfoniumsalze der Formel V

$$R^{1} - S^{+} - R^{\prime}$$
 (V)

als Starter für die Polymerisation durchgeführt, wobei hier der Rest R<sup>e</sup> für die Gruppe

der Formel (1) steht. In der drittletzten Spalte ist der Brechungsindex (n) bzw. der Schmelzpunkt des jeweils verwendeten Sulfoniumsalzes aufgeführt. In den beiden letzten Spalten von Tabelle 1 ist für die einzelnen Beispiele angegeben, in wieviel Minuten nach Zusatz des Sulfoniumsalzes die Gelierung einsetzte bzw. die Polymerisation und Erhärtung im wesentlichen beendet war.

Die meisten der in den Beispielen genannten Sulfoniumsalze sind bei Raumtemperatur Öle und konnten als solche unmittelbar in die Aziridinderivate eingemischt werden. Die bei Raumtemperatur festen Sulfoniumsalze, deren Schmelzpunkte in der drittletzten Spalte von Tabelle 1 angegeben sind, wurden im Verhältnis 1:2 mit Sulfolan oder Propylenglykol-carbonat-1.2 versetzt und gelöst und dann diese Lösung dem zu härtenden Aziridin zugemischt.

Tabelle 1

| Beispiel<br>Nr. | Sulfonium-<br>salz (V)<br>(Gew/s) | R                             | R:                                | R <sup>*</sup>                                                       |
|-----------------|-----------------------------------|-------------------------------|-----------------------------------|----------------------------------------------------------------------|
| <u> </u>        | 2.4                               | C <sub>2</sub> H <sub>4</sub> | C <sub>12</sub> H <sub>25</sub>   | -CH <sub>2</sub> -CH <sub>2</sub> -COOC <sub>8</sub> H <sub>17</sub> |
| 9               | 5                                 | CH;                           | C <sub>12</sub> H <sub>25</sub>   | desgl.                                                               |
| 10              | 2                                 | C₁H;                          | sec-C <sub>4</sub> H <sub>9</sub> | desgl.                                                               |
| 11              | 5                                 | CH <sub>3</sub>               | C12H25                            | -CH2-CH2-COOC2H5                                                     |
| 12              | 8                                 | CH;                           | C <sub>12</sub> H <sub>25</sub>   | desg!.                                                               |
| 13              | 2                                 | $C_2H_5$                      | sec-C₄H₄                          | desgl.                                                               |
| 1.4             | 1.4                               | C₂H₅                          | C <sub>2</sub> H <sub>25</sub>    | $-CH_{2}-CH_{2}-COO-C_{2}H_{4}-O-C_{2}H_{5}$                         |
| 15              | 4                                 | CH;                           | C₄H₀                              | $-CH_2-CH_2-COOC_2H_5$                                               |
| 16              | 1.7                               | C <sub>2</sub> H <sub>5</sub> | $C_{12}H_{25}$                    | $-CH_2-CH_2-COOCH_3$                                                 |
|                 |                                   |                               |                                   | Сн,                                                                  |
| 17              | 1.7                               | C:H:                          | C12H26                            | — cн-сн-соосн-                                                       |

| 1. |   |    | lset |     |   |   |
|----|---|----|------|-----|---|---|
| 1  | • | 7, | 1701 | / U | " | Ľ |

| Beispiel<br>Nr. | Sulfonium-<br>salz (V)<br>(Gew.55) | R                             | R                   | R.                                                                     |
|-----------------|------------------------------------|-------------------------------|---------------------|------------------------------------------------------------------------|
|                 |                                    |                               |                     | CH,                                                                    |
| 18              | 3                                  | $C_2H_5$                      | $C_6H_{13}$         | -CH2-CH-CN                                                             |
| 10              | 6                                  | $C_2H_4$                      | C,H1-               | desgl.                                                                 |
| 20              | 3                                  | $C_2H_3$                      | $C_6H_4CH_2CH_2$    | desgl.                                                                 |
| 21              | 5                                  | $C_2H_3$                      | $2-C_2H_4C_6H_{12}$ | desgl.                                                                 |
| 22              | 4                                  | $C_2H_3$                      | $C_{12}H_{25}$      | -CH2-CH2-CO-N(C2H0),                                                   |
| 2.3             | 2                                  | C <sub>2</sub> H <sub>4</sub> | C12H25              | CH <sub>2</sub> CH <sub>2</sub> CO C <sub>6</sub> H <sub>5</sub>       |
| 24              | 1.5                                | СуН                           | $C_{12}H_{23}$      | CH <sub>2</sub> —CH <sub>2</sub> SO <sub>2</sub> —CH — CH <sub>2</sub> |

### Fortsetzung

| Beispiel | A                          | $n_{p}^{2}$ bzw. F | Gelierung | Erhärtung |
|----------|----------------------------|--------------------|-----------|-----------|
| Nr.      |                            |                    | (min)     | (min)     |
| 8        | BF <sub>4</sub>            | 1.4522             | 2.5       | 5         |
| 9        | Methosulfat                | 1.4702             | 5         | 20        |
| 10       | BF <sub>4</sub>            | 1,4498             | 2,5       | 3.5       |
| 11       | Methosulfat                | 28°C               | 3,5       | 5         |
| 12       | 2.5-Dichlor-benzolsulfonat | 1,5190             | 3         | 6         |
| 13       | BF₄                        | 1.4440             | 2         | 3,5       |
| 14       | BF4                        | 1,4495             | 2,5       | 4         |
| 15       | 2,5-Dichlor-benzolsulfonat | 1.5355             | 3,5       | 5         |
| 16       | BF <sub>4</sub>            | 1.4492             | 2.5       | 4         |
| 17       | BF.                        | 1,4524             | 2.5       | 3,5       |
| 18       | BF <sub>4</sub>            | 1,4492             | 5.5       | 8         |
| 19       | BF <sub>4</sub>            | 1.4491             | 4         | 6         |
| 20       | BF.                        | 42°C               | 3.5       | 4,5       |
| 21       | BF₄                        | 1,4523             | 3         | 5,5       |
| 22       | BF <sub>4</sub>            | 1.4621             | 2         | 10        |
| 23       | BF <sub>4</sub>            | 1,4881             | 0.5       | 1         |
| 24       | BF.                        | 75°C               | 1.3       | 2         |

### Beispiel 25

1,0 g eines Polyāthers mit Aziridinoendgruppen (VI), der ein durchschnittliches Molgewicht von ca. 6500 65 besitzt und dessen Herstellung in der deutschen Patentschrift 17 45 810 beschrieben ist, werden mit 0,1 g  $\beta$ -(S-Lauryl-S-āthyl-sulfonium)-propionsäure-(2-āthyl-

hexyl)-ester-fluoborat (n:: 1,4522) gemischt. Nach ca. 6 Minuten tritt Gelierung ein, und nach ca. 45 Minuten ist eine gummielastische feste Masse entstanden. In der folgenden Tabelle sind die Beispiele 26-35

In der folgenden Tabelle sind die Beispiele 26-35 zusammengefaßt, die alle mit dem in Beispiel 25 genannten Aziridinderivat (VI) und unter Verwendung der angegebenen Sulfoniumsalze der Formel (V) als

Starter durchgeführt worden waren. Auch in der Tabelle 2 sind in der drittletzten Spalte der Brechungsindex (n) bzw. der Schmelzpunkt des jeweils verwendeten Sulfoniumsalzes aufgeführt. In den beiden letzten

Spalten ist angegeben, in wieviel Minuten nach dem Vermischen die Gelierung eintrat bzw. nach welcher Zeit die Polymerisation beendet und eine staubtrockene feste gummielastische Masse entstanden war.

Tabelle 2

| Beispiel<br>Nr. | Sulfonium-<br>salz (V)<br>(Gew%) | R <sup>1</sup>                | R:                                          | R'                                                                                                     |
|-----------------|----------------------------------|-------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 26              | 20                               | C₃H,                          | C <sub>12</sub> H <sub>26</sub>             | -CH <sub>2</sub> -CH <sub>2</sub> -COO C <sub>2</sub> H <sub>4</sub> -O -C <sub>2</sub> H <sub>5</sub> |
|                 |                                  |                               |                                             | CH <sub>3</sub>                                                                                        |
| 27              | 2                                | $C_2H_4$                      | $C_{12}H_{24}$                              | -CIICII,CN                                                                                             |
| 28              | 7                                | C <sub>2</sub> H <sub>4</sub> | C <sub>3</sub> H <sub>1</sub> .             | $-CH_2-CH_2-CN$                                                                                        |
| 29              | 5                                | C <sub>2</sub> H <sub>5</sub> | C 12H25                                     | $-CH_2-CH_2-CN$                                                                                        |
|                 |                                  |                               |                                             | C <sub>A</sub> H,                                                                                      |
| 30              | 3                                | $C_2H_6$                      | C <sub>12</sub> H <sub>25</sub>             | $-CH-CH_2-CO-N(C_2H_3),$                                                                               |
| 31              | 2.5                              | C <sub>2</sub> H <sub>5</sub> | C <sub>12</sub> H <sub>25</sub>             | $-CH_2-CH_2-CO-C_6H_6$                                                                                 |
| 32              | 20                               | C₁H₅                          | C <sub>12</sub> H <sub>25</sub>             | $ \begin{array}{c c} CH_2-CH_2 \\ & SO_2 \\ -CH-CH_2 \end{array} $                                     |
| 33              | 7                                | C <sub>2</sub> H <sub>5</sub> | $C_{12}H_{23}$                              | m-NO <sub>2</sub> —C <sub>6</sub> H <sub>4</sub> -CH—CH <sub>2</sub> —COOC <sub>2</sub> H <sub>5</sub> |
| 34              | 3                                | C <sub>2</sub> H <sub>5</sub> | $2 \cdot C_2 H_5 - C_6 H_{12} - OOC - CH_2$ | $CH_2-CH_2$ $SO_2$ $-CH-CH_2$                                                                          |
| 35              | 6                                | C <sub>2</sub> H <sub>3</sub> | $C_{11}H_{22}COOC_2H_4$                     | CH <sub>3</sub><br> <br>CHCH <sub>2</sub> CN                                                           |

| Beispiel<br>Nr. | A <sup>©</sup>  | η <sub>ρ</sub> " bzw. F | Gelierung<br>(min) | Gummielastisch<br>nach (min) |
|-----------------|-----------------|-------------------------|--------------------|------------------------------|
| 26              | BF <sub>4</sub> | 1,4495                  | 5                  | 40                           |
| 27              | BF <sub>4</sub> | 1.4565                  | 2                  | 8                            |
| 28              | BF <sub>4</sub> | 1,4487                  | 2,5                | 8                            |
| 29              | BF <sub>4</sub> | 63°C                    | 2,3                | 8,5                          |
| 30              | BF <sub>4</sub> | 35°C                    | 0.5                | 2                            |
| 31              | BF.             | 1.4881                  | 2                  | 10                           |
| 32              | BF <sub>4</sub> | 75°C                    | 5                  | 12                           |
| 33              | BF <sub>4</sub> | 1,4948                  | 2                  | 4                            |
| 34              | BF <sub>4</sub> | 49°C                    | 1,5                | 6                            |
| 35              | BF,             | 1.4647                  | 1.5                | 4.5                          |

The state of the s

### Beispiei 36

Ein zur Herstellung von Zahnersatzteilen braucsibares Äthyleniminpräparat wurde solgendermaßen hergestellt:

100 g der Äthyleniminverbindung (IV) wurden mit 35 g Nylonpulver (<60 μ), das als Füllstoff dient, verknetet und durch Zugabe von etwas Cadmiumsulfid-Pigment zahnähnlich eingefärbt.

Zur Herstellung einer semipermanenten Brücke 10 werden 7 g dieser Paste mit 0,3 g des in Beispiel 19 genannten Sulfoniumsalzes gemischt und in einen Alginatabdruck eingebracht, der vor der Präparation der Pfeilerzähne gewonnen worden war und in dem in üblicher Weise eine Verbindungsrille zwischen den 15 Abdrücken der Pfeilerzähne eingeschnitten war. Unmittelbar anschließend setzte man den Abdruck in den Mund des Patienten zurück. Nach Beginn der Erhärtung wurde der Abdruck samt dem erhärtenden Formkörper dem Mund entnommen und etwa 10 Minuten lang 20 aushärten g lassen. Anschließend wurde das Provisorium in üblicher Weise durch Entfernen des Überschusses und Polieren fertiggestellt.

### Beispiel 37

Zur Herstellung einer Abdruckmasse für zahnärztliche Zwecke wurden 800 g der in Beispiel 25 genannten bifunktionellen Äthyleniminverbindung (Vi) mit 150 g feinem Kieselgur verknetet. 30 g der Paste wurde mit 2% des in Beispiel 31 genannten Sulfoniumsalzes vermischt und sogleich mit Hilfe eines geeignete: Löffels in den Mund des Patienten eingebracht. Nach ca. 10 Minuten kann man den Abdruck entnehmen und erhält so eine dimensionsstabile jedoch kautschukelastische Abformung der abzubildenden Mundpartie.

Wie überraschend die Wirkung der erfindungsgemäß verwendeten Sulfoniumsalze ist, zeigen die folgenden Vergleichsversuche, bei denen auch ein übliches Sulfoniumsalz als Polymerisationsstarter für Aziridinderivate verwendet wurde.

Verwendet wurden die in den Beispielen 8-24 (Tabelle 1) bzw. 26-32 (Tabelle 2) eingesetzten bifunktionellen Aziridinderivate IV bzw. VI sowie die folgenden Sulfoniumsalze:

Stand der Technik:

 $BF_i$  (Starter VII)  $Fp_i = 48.5^\circ$ ;

erfindungsgemäß:

$$C_{12}H_{25} - S^{\oplus} - CH_2 - CH_2 - COOCH_3$$
 BF<sub>4</sub> (Starter VIII) Öl ( $n_p^{\text{W}}$ : 1,4492)

 $C_{12}H_{25} - S^{\oplus} - CH_2 - CH_2 - CN$  BF<sub>4</sub> (Starter IX) Fp. = 63°

Wie aus den Formeln zu ersehen, besitzen die hier als Starter verwendeten drei Sulfoniumsalze weitgehend identische Konstitution: Die beiden erfindungsgemäßen 50 Substanzen (VIII und IX) unterscheiden sich von dem konventionellen Sulfoniumsalz (VII) ausschließlich dadurch, daß an dem zum S-Atom β-ständigen C-Atom zusätzlich eine Ester- bzw. Nitrilgruppe als elektronenanziehender Rest vorhanden ist.

Die Sulfoniumsalze wurden bei diesen Versuchen den Aziridinderivaten jeweils in einer Menge von 5 Gew.-% zugegeben, wobei sie zunächst in der doppelten Menge Sulfolan gelöst und in Form der Lösung zugemischt wurden.

Es wurden folgende Ergebnisse erhalten:

Beim Versuch A geniäß Stand der Technik war unter Verwendung der Aziridinverbindung IV und des Starters VII nach 1 Stunde bei Raumtemperatur keine Veränderung zu erkennen; auch nach weiteren 2 65 Stunden bei 50° war keine Änderung der Mischung erkennbar.

In gleicher Weise konnte beim Versuch B, der mit den

Substanzen VI+VII durchgeführt wurde, nach einer Stunde bei Raumtemperatur und nach weiteren 2 Stunden bei 50° keine Veränderung festgestellt werden.

Bei dem erfindungsgemäß durchgeführten Versuch C unter Verwendung der Substanzen IV + VIII war eine völlige Erhärtung unter Wärmeentwicklung nach 3 Minuten bei Raumtemperatur eingetreten.

Auch beim Versuch D, der unter Verwendung der Substanzen VI+IX vorgenommen wurde, war die Vernetzung zu einer gummiartigen Masse innerhalb 8 Minuten bei Raumtemperatur beendet.

Damit ist erwiesen, daß die bekannten Sulfoniumsalze
als Starter für die Polymerisation von Aziridinderivaten
ungeeignet sind. Sogar bei 50°C sind sie völlig
unwirksam. Die erfindungsgemäß substituierten Alkylsulfoniumsalze lösen dagegen schon bei Raumtemperatur eine schnelle Polymerisation aus, die innerhalb
weniger Minuten im wesentlichen beendet ist

Diese Ergebnisse sind nochmals in der nachfolgenden Tabelle 3 gegenübergestellt.

Tabelle 3
Einfluß der Substitution von Sulfoniumsalzen und Sulfonsäureestern durch elektronegative Gruppen bei ihrer Verwendung als Starter aziridingruppenhaltiger Substanzen.

| Starter                                      | Lösungsmittel                | Aziridin-<br>Verbindung | Starter-<br>Menge | Gelierzeit | Temperatur           | Bemerkung                                               |
|----------------------------------------------|------------------------------|-------------------------|-------------------|------------|----------------------|---------------------------------------------------------|
| VII (Stand der Technik)                      | 1 : 2 Sulfolan               | IV                      | 5%                | >3 h       | 1 h RT,<br>>2 h 50 C | Verleichs-<br>versuch A                                 |
| VIII (erfindungsgemäß)                       | 1 : 2 Sulfolan               | IV                      | 5%                | 3 min      | RT                   | Vergleichs-<br>versuch C                                |
| Benzolsulfonsäure-<br>methylester            | _                            | IV                      | 0,5%              | 8 min      | 23 C                 |                                                         |
| 2,5-Dichlorbenzolsulfon-<br>säuremethylester | l : l<br>Dibenzyl-<br>toluol | IV                      | 0,5%              | 1 min      | 23 C                 |                                                         |
| 4-Nitrobenzolsulfonsäure-<br>methylester     | l : l<br>Sulfolan            | IV                      | 0,5%              | -          |                      | Starter-<br>unlöslich in<br>der Aziridin-<br>verbindung |
| VII (Stand der Technik)                      | 1 : 2<br>Sulfolan            | VI                      | 5%                | >3 h       | 1 h RT,<br>>2 h 50°C | Vergleichs-<br>versuch B                                |
| lX (erfindungsgemäß)                         | 1 : 2<br>Sulfolan            | VI                      | 5%                | 8 min      | RT                   | Vergleichs-<br>versuch D                                |
| Benzolsulfonsäure-<br>methylester            | _                            | VI                      | 4%                | 6 min      | 23 °C                |                                                         |
| 2,5-Dichlorbenzolsulfon-<br>säuremethylester | l : l<br>Dibenzyl-<br>toluol | VI                      | 4%                | 1 min      | 23 °C                |                                                         |
| 4-Nitrobenzolsulfonsäure-<br>methylester     | 1 : 1<br>Sulfolan            | VI                      | 4%                | 1 min      | 23 °C                |                                                         |

### Versuchsbericht

In der folgenden Tabelle 4 sind die Beispiele 38-51 zusammengefaßt. Jedes dieser Beispiele wurde auf 40 gleiche Weise wie in Beispiel 7 der Anmeldeunterlagen durchgeführt, wobei als bifunktionelles Aziridinderivat

2,2-Bis-(p-β-hydroxy-ethoxy-phenyl)-propan-bis-αethylenimino-butyrat verwendet wurde. Zum Einsatz
kamen verschiedene Sulfoniumsalze der allgemeinen 45 der Formel I steht. In der drittletzten Spalte ist der
Formel V

Brechungsindex (n<sub>s</sub><sup>\*\*</sup>) des jeweils verwendeten Sulfoni-

$$R^{1} - S^{\oplus} - R^{5}$$

$$A^{\oplus}$$

Als Polymerisationsinitiatoren, wobei der Rest  $R^5$  für die Gruppe

45 der Formel I steht. In der drittletzten Spalte ist der Brechungsindex (ng) des jeweils verwendeten Sulfoniumsalzes aufgeführt. In den beiden letzten Spalten von Tabelle 4 ist für die einzelnen Beispiele angegeben, in wieviel Minuten nach Zusatz des Sulfoniumsalzes die 50 Gelierung einsetzte bzw. die Polymerisation und Erhärtung im wesentlichen beendet war.

Tabelle 4

| Beispiel<br>Nr. | Sulfoniumsalz (V)<br>(Gew%) | R¹                            | R²                              | R <sup>5</sup>                   |
|-----------------|-----------------------------|-------------------------------|---------------------------------|----------------------------------|
| 38              | 4                           | C <sub>2</sub> H <sub>5</sub> | C <sub>12</sub> H <sub>25</sub> | $-CH_{2}-CH_{2}-COO-C_{1}H_{17}$ |
| 39              | 4                           | C <sub>2</sub> H <sub>5</sub> | C12H25                          | desgl.                           |
| 40              | 4                           | C2H,                          | C 12H25                         | desgl.                           |
| 41              | 10                          | C <sub>2</sub> H <sub>5</sub> | C12H25                          | desgl.                           |
| 42              | 4                           | C <sub>2</sub> H <sub>5</sub> | C12H25                          | desgi.                           |
| 43              | 10                          | C <sub>2</sub> H <sub>5</sub> | C12H25                          | desgl.                           |

| Beispiel<br>Nr. | Sulfoniumsalz (V)<br>(Gew%)                        | R¹                             | R <sup>2</sup>                  | R <sup>4</sup>     |                                     |
|-----------------|----------------------------------------------------|--------------------------------|---------------------------------|--------------------|-------------------------------------|
| 44              | 4                                                  | C <sub>2</sub> H <sub>5</sub>  | C <sub>12</sub> H <sub>25</sub> | — СН, — СН, —      | COO — C <sub>8</sub> H <sub>1</sub> |
| 45              | 10                                                 | C <sub>2</sub> H <sub>5</sub>  | $C_{12}H_{25}$                  | desgl.             |                                     |
| 46              | 4                                                  | $C_2H_5$                       | $C_{12}H_{25}$                  | desgl.             |                                     |
| 47              | 4                                                  | $C_2H_5$                       | $C_{12}H_{25}$                  | desgl.             |                                     |
| 49              | 4                                                  | C <sub>2</sub> H <sub>5</sub>  | $C_{12}H_{25}$                  | desgl.             |                                     |
| 50              | 10                                                 | $C_2H_5$                       | $C_{12}H_{25}$                  | desgl.             |                                     |
| 51              | 10                                                 | C <sub>2</sub> H <sub>5</sub>  | C <sub>12</sub> H <sub>25</sub> | desgl.             |                                     |
| 52              | 5                                                  | C <sub>2</sub> H <sub>5</sub>  | $C_{12}H_{25}$                  | desgl.             |                                     |
| (Fortsetzu      | ng)                                                |                                |                                 |                    |                                     |
| Beispiel<br>Nr. | A <sup>©</sup>                                     |                                | rΩ                              | Gelierung<br>(min) | Erhärtung<br>(min)                  |
| 38              | CI-O                                               | -SO <sub>3</sub>               | 1,4982                          | 2,5                | 4.8                                 |
| 39              | O so,                                              |                                | 1,4930                          | 2,8                | 9                                   |
| 40              | $C_{12}H_{25}O-SO$                                 | 2                              | 1,4645                          | 2.7                | 3,8                                 |
| 41              | , CII3—O                                           | >— SO₃                         | 1,4950                          | 2,2                | 5                                   |
| 42              | C <sub>2</sub> H <sub>3</sub> OSO <sub>3</sub>     |                                | 1,4642                          | 2,5                | 3,5                                 |
| 43              | CH <sub>3</sub> SO <sub>3</sub>                    |                                | 1,4752                          | 2                  | 6                                   |
| 44              | 2-C <sub>2</sub> H <sub>5</sub> — C <sub>6</sub> H | <sub>12</sub> OSO <sub>3</sub> | 1,4705                          | 2,5                | 4                                   |
| 45              | CH2OH—CH                                           | l <sub>2</sub> SO <sub>3</sub> | 1,4708                          | 1,5                | 3                                   |
| 46              | SbF <sub>6</sub>                                   |                                | 1,4510                          | 2.2                | 3                                   |
| 47              | AsF <sub>6</sub><br>CH <sub>3</sub>                |                                | 1,4525                          | 1.6                | 2.5                                 |
| 49              | N C3H4-                                            | -SO,                           | 1,4760                          | 2.7                | 8                                   |
| 50              | CH,CO—NI                                           | 1(O)so                         | 1.4765                          | 1.3                | 4                                   |
| 51              | CH <sub>3</sub> CO<br>N-C                          | SO <sub>3</sub>                | 1,4880                          | 2.8                | 5.5                                 |
| 52              | CH <sub>1</sub> CO<br>N-C                          | 50,                            | 1,4915                          | 1.5                | 4                                   |

In der Tabelle 5 wurden die Beispiele 52-61 zusammengefaßt, die alle mit dem in Beispiel 25 der Anmeldeunterlagen genannten Aziridinderivat (VI) unter Verwendung der angegebenen Sulfoniumsalze der Formel V als Starter durchgeführt wurden. Auch in der Tabelle 5 sind in der drittletzten Spalte der Brechungsindex (n\(\frac{1}{2}\)) bzw. der Schmelzpunkt des jeweils verwendeten Sulfoniumsalzes aufgeführt. In den beiden letzten Spalten ist angegeben, in wieviel Minuten nach dem Vermischen die Gelierung eintrat bzw. nach welcher vat eingemischt.

feste, gummielastische Masse entstanden war.

Die meisten der in den Beispielen erwähnten Sulfoniumsalze sind bei Raumtemperatur flüssig, und es war möglich sie direkt in das Aziridinderivat einzumischen. Die bei Raumtemperatur festen Sulfoniumsalze (deren Schmelzpunkte in der vorletzten Zeile in der Tabelle 5 aufgeführt sind) wurden im Gewichtsverhältnis 1:2 mit Sulfolan oder Propylenglykol-Carbonat-1,2 gelöst, und diese Lösung wurde dann in das Aziridinderivat eingemischt.

Tabelle 5

| labelle 5       |                                  |                               |                                                      |                                                                                                   |
|-----------------|----------------------------------|-------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Beispiel<br>Nr. | Sulfonium-<br>salz (V)<br>(Gew%) | R¹                            | R <sup>2</sup>                                       | R <sup>4</sup>                                                                                    |
| 52              | 12                               | C <sub>2</sub> H <sub>5</sub> | C <sub>12</sub> H <sub>25</sub> —COO—CH <sub>2</sub> | -CH,-CH,-COO-C,II,                                                                                |
| 53              | 12                               | C₂H₅                          | desgl.                                               | CH <sub>3</sub> .  -CH - CH <sub>2</sub> - COO - C <sub>3</sub> H <sub>1</sub> .  CH <sub>3</sub> |
| 54              | 10                               | C₂H₅                          | $C_{n}H_{\mathbf{S}}$                                | CH,<br>CH—CH₁—CN                                                                                  |
| 55              | 6                                | $C_2H_5$                      | $C_{12}H_{25}$                                       | desgl.                                                                                            |
| 56              | 10                               | C <sub>2</sub> H <sub>5</sub> | $C_{12}H_{25}$                                       | desgl.                                                                                            |
| 57              | 10                               | C <sub>2</sub> H <sub>3</sub> | C <sub>12</sub> H <sub>25</sub>                      | desgl.                                                                                            |
| 58              | 10                               | C <sub>2</sub> H <sub>5</sub> | C <sub>12</sub> H <sub>25</sub>                      | desgl.                                                                                            |
| 59              | 6                                | $C_2H_5$                      | C <sub>12</sub> H <sub>25</sub>                      | desgl.                                                                                            |
| 60              | 6                                | C <sub>2</sub> H <sub>5</sub> | C <sub>12</sub> H <sub>25</sub>                      | desgl.                                                                                            |
| 61              | 12                               | C3H4                          | C <sub>13</sub> H <sub>2</sub> ,                     | $CH_3$<br>J<br>$-CH - CH_2 - COO - C_{18}H_{35}$<br>(-oleyl)                                      |

### (Fortsetzung)

| Beispiel<br>Nr. | A                                                       | m, bzw. Fp. | Gelierung<br>(min) | Gummielastisch<br>nach (mm) |
|-----------------|---------------------------------------------------------|-------------|--------------------|-----------------------------|
| 52              | $2-C_2H_1-C_2H_2-O-SO_3$                                | 1,4608      | 3.2                | 15                          |
| 53              | desgl.                                                  | 1,4604      | 1.3                | 4.5                         |
| 54              | $C_{12}H_{2^{1+\epsilon}}\cdot S_{-}+C_{3}H_{6}=SO_{3}$ | 1,4762      | 2.8                | 15                          |
| 55              | $C_0H_2$ , $\cdots$ $C_{D_p}$ $\cdots$ $SO_1$           | 1,4978      | 3                  | 15                          |
| 56              | CrdbsOSO                                                | 1,4760      | ,3                 | 7                           |

7 .03 /

25 15 593

19

20

| Portsetzung     |                                                |                         |                    |                              |  |  |  |
|-----------------|------------------------------------------------|-------------------------|--------------------|------------------------------|--|--|--|
| Beispiel<br>Nr. | A <sup>c</sup>                                 | $\eta_0^m$ bzw. $F_0$ . | Gelierung<br>(min) | Gummielastisch<br>nach (min) |  |  |  |
| 57              | C <sub>2</sub> H <sub>5</sub> OSO <sub>3</sub> | 1,4790                  | 3,2                | 7                            |  |  |  |
| 58              | $2-C_2H_5-C_6H_{12}-OSO_3$                     | 1,4760                  | 3,5                | 11                           |  |  |  |
| 59              | AsF <sub>6</sub>                               | wachsartig              | 0,7                | 2,5                          |  |  |  |
| 60              | SbF <sub>b</sub>                               | wachsartig              | 1                  | 3                            |  |  |  |
| 61              | SbF <sub>6</sub>                               | wachsartig              | 6,5                | 20                           |  |  |  |
|                 |                                                |                         |                    |                              |  |  |  |

Hierzu I Blatt Zeichnungen

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

| Defects in the images include but are not limited to the items checked: |
|-------------------------------------------------------------------------|
| ☐ BLACK BORDERS                                                         |
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES                                 |
| ☐ FADED TEXT OR DRAWING                                                 |
| ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING                                  |
| ☐ SKEWED/SLANTED IMAGES                                                 |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                                  |
| ☐ GRAY SCALE DOCUMENTS                                                  |
| LINES OR MARKS ON ORIGINAL DOCUMENT                                     |
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY                   |

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.