Europäisches Patentamt

European Patent Office

Office eur p'en des br vets

EP 1 088 831 A1 (11)

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 04.04.2001 Bulletin 2001/14

(21) Application number: 99926775.0

(22) Date of filing: 23.06.1999

(51) Int. CI.7: C07K 14/715, C07K 19/00, C12N 15/12, C12N 5/10, C12P 21/02, G01N 33/50, C07K 16/16. C07K 16/28. G01N 33/53, C12Q 1/68

(86) International application number: PCT/JP99/03351

(87) International publication number: WO 99/67290 (29.12.1999 Gazette 1999/52)

(84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

(30) Priority: 24.06.1998 JP 21472098 19.10.1998 JP 29740998

(71) Applicant:

Chugai Research Institute for Molecular Medicine Inc. Niihari-gun, Ibaraki 300-4101 (JP)

(72) Inventors:

· NOMURA, Hitoshi, Chugai Res. Inst. for Molecular Niikari-gun, Ibaraki 300-4101 (JP)

· MAEDA, Masatsugu, Chugai Res. Inst. for Molecular Niikari-gun, Ibaraki 300-4101 (JP)

(74) Representative: **VOSSIUS & PARTNER** Siebertstrasse 4 81675 München (DE)

NOVEL HEMOPOIETIN RECEPTOR PROTEINS (54)

The present invention provides novel hemopoietin receptor proteins (proteins comprising the amino acid sequence of SEQ ID NOs: 1, 3, 5, 7, 19, or 21), proteins comprising a modified amino acid sequence of the amino acid sequence of the above protein in which one or more amino acids have been deleted, added, and/or replaced with another amino acid, genes encoding these proteins, methods of producing the proteins, as well as uses of these proteins and genes.

A9 - 09/825,561

Description

Technical Field

[0001] The present invention relates to novel hemopoietin receptor proteins, the encoding genes, and methods of production and uses thereof.

Background Art

- [0002] A large number of cytokines are known as humoral factors that are involved in the proliferation/differentiation of various cells, or activation of differentiated mature cells, and also cell death. These cytokines have their own specific receptors, which are categorized into several families based on their structural similarities (Hilton D.J., in "Guidebook to Cytokines and Their Receptors" edited by Nicola N.A. (A Sambrook & Tooze Publication at Oxford University Press), 1994, p8-16).
- [0003] Compared to similarities between receptors, primary-structure homology is quite low between cytokines, and a significant amino acid homology cannot be seen even among cytokine members that belong to the same receptor family. This explains the functional specificity of each cytokine, as well as similarities of cellular reactions induced by each cytokine.
 - [0004] Representative examples of the above-mentioned receptor families are the tyrosine kinase receptor family, hemopoietin receptor family, tumor necrosis factor (TNF) receptor family, and transforming growth factor β (TGF β) receptor family. Different signal transduction pathways have been reported to be involved in each of these families. Among these receptor families, many receptors of especially the hemopoietin receptor family are expressed in blood cells and immunocytes, and their ligands, cytokines, are often termed as hemopoietic factors or interleukins. Some of these hemopoietic factors or interleukins exist within blood and are thought to be involved in a systemic humoral regulation of hemopoietic or immune functions.
 - [0005] This contrasts with the belief that cytokines belonging to other families are often involved in only topical regulations. Some of these hemopoietins can be taken as hormone-like factors, and conversely, representative peptide hormones such as the growth hormone, prolactin, or leptin receptors also belong to the hemopoietin receptor family. Because of these hormone-like systemic regulatory features, it is anticipated that hemopoietin administration would be applied in the treatment of various diseases.
 - [0006] Among the large number of cytokines, those that are actually being clinically applied are, erythropoietin, G-CSF, GM-CSF, and IL-2. Combined with IL-11, LIF, and IL-12 that are being considered for clinical trials, and the above-mentioned peptide hormones such as growth hormone and prolactin, it can be envisaged that by searching among the above-mentioned various receptor families for a novel cytokine that binds to hemopoietin receptors, it is possible to find a cytokine that can be clinically applied with a higher efficiency.
 - [0007] As mentioned above, cytokine receptors have structural similarities between the family members. Using these similarities, many investigations are being carried out aiming at finding novel receptors. Regarding the tyrosine kinase receptor especially, many receptors have already been cloned using its highly conserved sequence at the catalytic site (Matthews W. et al., Cell, 1991, 65 (7) p1143-52). Compared to this, hemopoietin receptors do not have a tyrosine kinase-like enzyme activity domain in their cytoplasmic regions, and their signal transductions are known to be mediated through associations with other tyrosine kinase proteins existing freely in the cytoplasm.
 - [0008] Though the binding site on receptors associating with these cytoplasmic tyrosine kinases (JAK kinases) is conserved between family members, the homology is not very high (Murakami M. et al., Proc. Natl. Acad. Sci. USA, 1991, 88, 11349-11353). On one hand, the sequence that characterizes these hemopoietin receptors most well exists in the extracellular region, and especially the five amino acid Trp-Ser-Xaa-Trp-Ser (where Xaa is an arbitrary amino acid) motif is conserved in almost all of the hemopoietin receptors. Therefore, novel receptors are expected to be obtained by searching novel family members using this sequence. In fact, this approach has already identified the IL-11 receptor (Robb, L. et al., J. Biol. Chem., 1996, 271 (23) 13754-13761), leptin receptor (Gainsford T. et al., Proc. Natl. Acad. Sci. USA, 1996, 93 (25) p14564-8) and the IL-13 receptor (Hilton D.J. et al., Proc. Natl. Acad. Sci. USA, 1996, 93 (1) p497-501).

Disclosure of the Invention

[0009] The present invention provides a novel hemopoietin receptor protein, and the encoding DNA. The present invention also provides, a vector into which the DNA has been inserted, a transformant harboring the DNA, and a method of producing a recombinant protein using the transformant. It also provides a method of screening a compound that binds to the protein.

[0010] Until now, the inventors have been trying to search for a novel receptor using an oligonucleotide encoding

the Trp-Ser-Xaa-Trp-Ser motif as a probe by plaque hybridization, RT-PCR method, and so on. However, because of reasons such as the oligonucleotide tggag (t/c) nnntggag (t/c) (where n is an arbitrary nucleotide) that encodes the motif being short having just 15 nucleotides, and the g/c being high, it was extremely difficult to strictly select only those in which the 15 nucleotides have completely hybridized under the usual hybridization conditions.

[0011] Also, a similar sequence is contained within cDNA encoding proteins other than hemopoietin receptors, starting with various collagens that are thought to be widely distributed and also have high expression amounts, which makes the screening by the above-mentioned plaque hybridization and RT-PCR highly inefficient.

[0012] To solve these problems, and to estimate how many different hemopoietic receptor genes actually exist on the human genome, the inventors computer-searched sequences that completely coincided with each probe using all capable oligonucleotide sequences encoding the above-mentioned Trp-Ser-Xaa-Trp-Ser motif as probes.

[0013] Next, among the clones identified by the above search, the nucleotide sequence around the probe sequence of human genome-derived clones (cosmid, BAC, PAC) was converted to the amino acid sequence and compared with the amino acid sequence of known hemopoietin receptors to select human genes thought to encode hemopoietin receptor family members.

[0014] From the above search, two clones thought to be hemopoietin receptor genes were identified. One of these was the known GM-CSFβ receptor gene (derived from the 22q12.3-13.2 region of chromosome no. 22), and the other (BAC clone AC002303 derived from the 16p12 region of chromosome no. 16) was presumed to encode a novel hemopoietin receptor protein, and this human gene was named "NR8."

[0015] Next, the cDNA thought to encode NR8 was found within the human fetal liver cell cDNA library by RT-PCR using a specific primer designed based on the obtained nucleotide sequence. Furthermore, using this cDNA library as the template, the full-length cDNA NR8α encoding a transmembrane receptor comprising 361 amino acids was ultimately obtained by 5'-RACE method and 3'-RACE method.

[0016] In the primary structure of NR8 α , a cysteine residue and a proline rich motif conserved between other family members, were well conserved in the extracellular region, and in the intracellular region, the Box 1 motif thought to be involved in signal transduction was well conserved, and therefore, NR8 α was thought to be a typical hemopoietin receptor.

[0017] Furthermore, the inventors revealed the presence of two genes named NR8 β and NR8 γ as selective splicing products of NR8 α .

[0018] The inventors next attempted the isolation of the mouse gene corresponding to NR8 gene. First, using an oligonucleotide primer designed within human NR8 cDNA sequence and a mouse brain cDNA library as the template, xenogeneic cross PCR cloning was done to isolate the mouse partial nucleotide sequence of the above receptor. Furthermore, based on the obtained partial sequence, an oligonucleotide primer was designed, and using this, the inventors succeeded in isolating the full-length ORF of the mouse homologous gene corresponding to NR8 by the 5'-RACE method and 3'-RACE method. As a result of determining the whole nucleotide sequence of the obtained cDNA clone, alike NR8, the presence of mouse NR8γ encoding a transmembrane receptor protein comprising 538 amino acids, and mouse NR8β encoding a secretory, soluble receptor-like protein comprising 144 amino acids were confirmed by the difference of transcripts derived from the splice variant. When the amino acid sequences encoded by these receptor genes were compared between human and mouse, a high homology of 98.9% was observed for NR8γ, and on the other hand, a homology of 97.2% was seen for NR8β as well. Furthermore, the inventors succeeded in isolating the objective positive clones by plaque screening against a mouse genomic DNA library using the obtained mouse NR8β cDNA fragment as the probe.

[0019] Therefore, the present invention provides:

45

50

55

(1) a protein comprising the amino acid sequence from the 1st amino acid Met to the 361st amino acid Ser of SEQ ID NO: 1, or a protein comprising a modified amino acid sequence of said amino acid sequence in which one or more amino acids have been deleted, added, and/or substituted with another amino acid, and being functionally equivalent to the protein comprising the amino acid sequence from the 1st amino acid Met to the 361st amino acid Ser of SEQ ID NO: 1;

(2) a protein comprising the amino acid sequence from the 1st amino acid Met to the 144th amino acid Leu of SEQ ID NO: 3, or a protein comprising a modified amino acid sequence of said amino acid sequence in which one or more amino acids have been deleted, added, and/or substituted with another amino acid, and being functionally equivalent to the protein comprising the amino acid sequence from the 1st amino acid Met to the 144th amino acid Leu of SEQ ID NO: 3;

(3) a protein comprising the amino acid sequence from the 1st amino acid Met to the 237th amino acid Ser of SEQ ID NO: 5, or a protein comprising a modified amino acid sequence of said amino acid sequence in which one or more amino acids have been deleted, added, and/or substituted with another amino acid, and being functionally equivalent to the protein comprising the amino acid sequence from the 1st amino acid Met to the 237th amino acid Ser of SEQ ID NO: 5;

- (4) a protein comprising the amino acid sequence from the 1st amino acid Met to the 538th amino acid Ser of SEQ ID NO: 7, or a protein comprising a modified amino acid sequence of said amino acid sequence in which one or more amino acids have been deleted, added, and/or substituted with another amino acid, and being functionally equivalent to the protein comprising the amino acid sequence from the 1st amino acid Met to the 538th amino acid Ser of SEQ ID NO: 7:
- (5) a protein comprising the amino acid sequence from the 1st amino acid Met to the 144th amino acid Leu of SEQ ID NO: 19, or a protein comprising a modified amino acid sequence of said amino acid sequence in which one or more amino acids have been deleted, added, and/or substituted with another amino acid, and being functionally equivalent to the protein comprising the amino acid sequence from the 1st amino acid Met to the 144th amino acid Leu of SEQ ID NO: 19;
- (6) a protein comprising the amino acid sequence from the 1st amino acid Met to the 538th amino acid Ser of SEQ ID NO: 21, or a protein comprising a modified amino acid sequence of said amino acid sequence in which one or more amino acids have been deleted, added, and/or substituted with another amino acid, and being functionally equivalent to the protein comprising the amino acid sequence from the 1st amino acid Met to the 583th amino acid Ser of SEQ ID NO: 21;
- (7) a protein encoded by a DNA hybridizing to a DNA comprising the nucleotide sequence of SEQ ID NO: 2, said protein being functionally equivalent to a protein comprising the amino acid sequence from the 1st amino acid Met to the 361st amino acid Ser of SEQ ID NO: 1;
- (8) a protein encoded by a DNA hybridizing to a DNA comprising the nucleotide sequence of SEQ ID NO: 4, said protein being functionally equivalent to a protein comprising the amino acid sequence from the 1st amino acid Met to the 144th amino acid Leu of SEQ ID NO: 3;
- (9) a protein encoded by a DNA hybridizing to a DNA comprising the nucleotide sequence of SEQ ID NO: 6, said protein being functionally equivalent to a protein comprising the amino acid sequence from the 1st amino acid Met to the 237th amino acid Ser of SEQ ID NO: 5;
- (10) a protein encoded by a DNA hybridizing to a DNA comprising the nucleotide sequence of SEQ ID NO: 8, said protein being functionally equivalent to a protein comprising the amino acid sequence from the 1st amino acid Met to the 538th amino acid Ser of SEQ ID NO: 7;
- (11) a protein encoded by a DNA hybridizing to a DNA comprising the nucleotide sequence of SEQ ID NO: 20, said protein being functionally equivalent to a protein comprising the amino acid sequence from the 1st amino acid Met to the 144th amino acid Leu of SEQ ID NO: 19;
- (12) a protein encoded by a DNA hybridizing to a DNA comprising the nucleotide sequence of SEQ ID NO: 22, said protein being functionally equivalent to a protein comprising the amino acid sequence from the 1st amino acid Met to the 538th amino acid Ser of SEQ ID NO: 21;
- (13) a fusion protein comprising the protein of any one of (1) to (12) and another peptide or polypeptide;
- (14) a DNA encoding the protein of any one of (1) to (13);
- (15) a vector comprising the DNA of (14);
- (16) a transformant harboring the DNA of (14) in an expressible manner;
- (17) a method of producing the protein of any one of (1) to (13), comprising the step of culturing the transformant of (16);
- (18) a method of screening a compound that binds to the protein of any one of (1) to (13) comprising the steps of,
 - (a) contacting a test sample with the protein of any one of (1) to (13), and
 - (b) selecting a compound that comprises an activity to bind to the protein of any one of (1) to (13);
- (19) an antibody that specifically binds to the protein of any one of (1) to (12);
- (20) a method of detecting or measuring the protein of any one of (1) to (13) comprising the steps of contacting a test sample presumed to contain said protein with the antibody of (19), and detecting or measuring the formation of the immune complex between the antibody and the protein; and
- (21) a DNA specifically hybridizing to a DNA comprising the nucleotide sequence of any one of SEQ ID NOs: 2, 4, 6, 8, 20, and 22 to 27, and comprising at least 15 nucleotides.

[0020] The present invention relates to the novel hemopoietin receptor "NR8." 5'-RACE and 3'-RACE analyses. NR8 genome sequence analysis, and plaque screening analysis revealed the presence of NR8α, NR8β, and NR8γ. The structures of these NR8 genes are shown in Fig. 13. Among the NR8 genes, NR8β is an alternative splicing product lacking the 5th exon, and can encode two different proteins, a soluble protein in which the CDS ends with a stop codon on the 6th exon that results from a frame shift following direct coupling to the 4th exon, and a membrane-bound protein lacking the signal sequence starting from the ATG upon the 4th exon.

[0021] Since the soluble protein comprises the same sequence as NR8 α up to the 4th exon, it may function as a

10

15

20

25

30

35

40

45

soluble receptor. On the other hand, NR8γ encodes a protein containing a 177 amino acid insertion derived from the NR8 9^{II} intron close to the C terminus of the NR8α as a result of selective splicing.

[0022] Both NR8 α and NR8 γ encode transmembrane-type hemopoietin receptors. Among the sequences conserved between other hemopoietin receptors that are thought to be involved in signal transduction, a motif resembling Box 1 exists in the intracellular domain of NR8 α and NR8 γ adjacent to the cell membrane. Though low in the degree of conservation, a sequence that is similar to Box 2 also exists, and therefore, NR8 is thought to be a type of receptor in which the signal is transduced by a homodimer.

[0023] The amino acid sequences of the NR8 proteins included in the proteins of the present invention are shown in SEQ ID No: 1 (NR8 α), SEQ ID NO: 3 (soluble NR8 β), SEQ ID NO: 5 (membrane-bound NR8 β), and SEQ ID NO: 7 (NR8 γ), and the nucleotide sequences of cDNA encoding these proteins are shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, and SEQ ID NO: 8, respectively.

[0024] Northern blot analysis for the spleen, thymus, peripheral leucocytes, and lung showed two to three bands in the 5kb and 3 to 4kb regions. Similar sized bands were observed for cell lines HL60 and Raji also, but no expression was seen for other tumor cell lines (HeLa, SW480, A549, G361) and leukemia cell lines (K562, MOLT4).

15 [0025] The above results suggest that NR8 is specifically expressed on hemopoietic cell lines, especially on granulocytic lines, and B cell lines.

[0026] The above NR8 protein is expected to be applied in medicine. NR8 is expressed in fetal liver, spleen, thymus, and some leukemic cell lines, suggesting the possibility that it might be a receptor of an unknown hemopoietic factor. Therefore, NR8 protein would be a useful material for obtaining this unknown hemopoietic factor.

[0027] Furthermore, it is possible that NR8 is specifically expressed in limited cell populations within these hemopoietic tissues, and therefore, anti NR8 antibody may be useful as a means of separating these cell populations. Thus separated cell populations can be applied for cell transplant therapy. Anti NR8 antibody is also expected to be applied for the diagnosis and treatment of leukemic diseases represented by leukemia.

[0028] On the other hand, the soluble protein including the extracellular domain of NR8 protein, or NR8β, a splicing variant of NR8, may be applied as a decoy-type receptor that is an inhibitor of the NR8 ligand, and is anticipated to be applied in the treatment of diseases in which NR8 is involved, starting with leukemia.

[0029] The inventors also isolated mouse NR8 cDNA corresponding to the human-derived NR8 cDNA above-mentioned, by using the xenogeneic cross PCR cloning method. The amino acid sequences of the proteins named mouse NR8, which are included in the protein of the present invention are shown in SEQ ID NO: 19 (soluble mouse NR8β) and SEQ ID NO: 21 (mouse NR8γ), and the nucleotide sequences of the cDNA encoding these proteins are shown in SEQ ID NO: 20 and SEQ ID NO: 22, respectively.

[0030] As a result of structural analysis of the obtained mouse cDNA clones, alike human-derived NR8, the presence of mouse NR8γ encoding a transmembrane receptor protein comprising 538 amino acids and mouse NR8β encoding a secretory soluble receptor-like protein comprising 144 amino acids which were confirmed by the difference of transcripts derived the splice variant, was confirmed. When the amino acid sequences encoded by these receptor genes were compared between human and mouse, a high homology of 98.9% was observed for NR8γ, while a homology of 97.2% was seen for NR8β as well.

[0031] Northern blot analysis and RT-PCR analysis showed that although there were deviations in expression levels, mouse NR8 gene expression was seen in all organs analyzed, and seemed to be widely distributed compared to human NR8, for which a strong expression was seen only in immunocompetent and hemopoietic tissues. This also suggests the possibility that molecular functions of mouse NR8 may span a broad range of physiological regulatory mechanisms of the body.

[0032] The present invention also encompasses a protein that is functionally equivalent to the above-mentioned human or mouse NR8 protein. Herein "functionally equivalent" means having an equivalent biological activity to the above-mentioned NR8 proteins. Hemopoietic factor receptor protein activity can be given as an example of a biological activity. Such proteins can be obtained by the method of introducing a mutation to the amino acid sequence of a protein. For example, site-specific mutagenesis using a synthetic oligonucleotide primer, can be used to introduce a desired mutation into the amino acid sequence of a protein (Kramer, W. and Fritz, H.J., Methods in Enzymol., 1987, 154, 350-367). This could also be done by a PCR-mediated site-specific mutagenesis system (GIBCO-BRL). Using these methods, the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 19, or SEQ ID NO: 21 can be modified to obtain a protein functionally equivalent to the NR8 protein,in which one or more amino acids in the amino acid sequence of the protein have been deleted, added, and/or substituted by another amino acid without affecting the biological activity of the protein.

[0033] As a protein functionally equivalent to the NR8 protein of the invention, the following are given: one in which one or two or more, preferably, two to 30, more preferably, two to ten amino acids are deleted in any one of the amino acid sequences of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 19, or SEQ ID NO: 21; one in which one or two or more, preferably, two to 30, more preferably, two to ten amino acids have been added into any one of the amino acid sequences of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, or SEQ ID NO: 7; or one in which

one or two or more, preferably, two to 30, more preferably, two to ten amino acids have been substituted with other amino acids in any one of the amino acid sequences of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, or SEQ ID NO: 7.

[0034] It is already known that a protein comprising a modified amino acid sequence of a certain amino acid sequence in which one or more amino acid residues have been deleted, added, and/or substituted with another amino acid, still maintains its biological activity (Mark, D. F. et al., Proc. Natl. Acad. Sci. USA, 1984, 81, 5662-5666; Zoller, M. J. & Smith, M., Nucleic Acids Research, 1982, 10, 6487-6500; Wang, A. et al., Science, 224, 1431-1433; Dalbadie-McFarland, G. et al., Proc. Natl. Acad. Sci. USA, 1982, 79, 6409-6413).

[0035] For example, a fusion protein can be given as a protein in which one or more amino acid residues have been added to the NR8 protein of the present invention. A fusion protein is made by fusing the NR8 protein of the present invention with another peptide or protein and is encompassed in the present invention. A fusion protein can be prepared by ligating DNA encoding the NR8 protein of the present invention with DNA encoding another peptide or protein so as the frames match, introducing this into an expression vector, and expressing the fusion gene in a host. Methods commonly known can be used for preparing such a fusion gene. There is no restriction as to the other peptide or protein that is fused to the protein of this invention.

[0036] For example, FLAG (Hopp, T.P. et al., Biotechnology, 1988, 6, 1204-1210), 6x His constituting six histidine (His) residues, 10x His, Influenza agglutinin (HA), human c-myc fragment, VSV-GP fragment, p18HIV fragment, T7-tag, HSV-tag, E-tag, SV40T antigen fragment, Ick tag, α-tubulin fragment, B-tag, Protein C fragment, and such well-known peptides can be used. Examples of proteins are, glutathione-S-transferase (GST), Influenza agglutinin (HA), immunoglobulin constant region, β-galactosidase, maltose-binding protein (MBP), etc. Commercially available DNAs encoding these may also be used to prepare fusion proteins.

[0037] The protein of the invention can also be encoded by a DNA that hybridizes under stringent conditions to a DNA comprising any one of the nucleotide sequences of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 20, and SEQ ID NO: 22 to 27. Such a protein also includes a protein functionally equivalent to the above-mentioned NR8 protein. Stringent conditions can be suitably selected by one skilled in the art, and for example, low-stringent conditions can be given. Low-stringent conditions are, for example, 42°C, 2x SSC, and 0.1% SDS, and preferably, 50°C, 2x SSC, and 0.1% SDS. More preferable are highly stringent conditions, for example, 65°C, 2x SSC, and 0.1% SDS. Under these conditions, the higher the temperature is raised, the higher the homology of the obtained DNA will be.

[0038] The present invention also includes a protein that is functionally equivalent to the above NR8 protein, which has also a homology with a protein comprising any one of the amino acid sequences of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 19, or SEQ ID NO: 21. A protein having a homology means, a protein having at least 70%, preferably at least 80%, more preferably at least 90%, even more preferably, at least 95% homology to any one of the amino acid sequences of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, and SEQ ID NO: 7. The homology of a protein can be determined by the algorithm in "Wilbur, W.J. and Lipman, D.J. Proc. Natl. Acad. Sci. USA, 1983, 80, 726-730."

[0039] In the protein of the invention, the amino acid sequence, molecular weight, isoelectric point, the presence or absence of the sugar chain, and its form differ according to the producing cells, host, or purification method described below. However, as long as the obtained, protein comprises a hemopoletic factor receptor protein activity, it is included in the present invention.

40 [0040] For example, if the protein of the present invention is expressed in prokaryotic cells such as E. coli, a methionine residue is added at the N-terminus of the amino acid sequence of the expressed protein. If the protein of the present invention is expressed in eukaryotic cells such as mammalian cells, the N-terminal signal sequence is removed. The protein of the present invention includes these proteins.

[0041] For example, as a result of analyzing the protein of the invention based on the method in "Von Heijne, G., Nucleic Acids Research, 1986, 14, 4683-4690," it was presumed that the signal sequence is from the 1st Met to the 19th Gly in the amino acid sequence of SEQ ID NO: 1. Therefore, the present invention encompasses a protein comprising the sequence from the 20th Cys to 361st Ser in the amino acid sequence of SEQ ID NO: 1.

[0042] To produce the protein of the invention, the obtained DNA is incorporated into an expression vector in a manner that the DNA is expressible under the regulation of an expression regulatory region, for example, an enhancer or promoter. Next, host cells are transformed by this expression vector to express the protein.

[0043] Specifically, the protein can be produced as follows. When mammalian cells are used, DNA comprising a commonly used useful promoter/enhancer, DNA encoding the protein of the invention, and the poly A signal that is functionally bound to the 3' side downstream of the protein-encoding DNA, or a vector containing it, is constructed. For example, as the promoter/enhancer, human cytomegalovirus immediate early promoter/enhancer can be given.

[0044] Also, as other promoters/enhancers that can be used for protein expression, viral promoters/enhancers of retroviruses, polyomaviruses, adenoviruses, simian virus 40 (SV40), and such, and promoters/enhancers derived from mammalian cells, such as that of human elongation factor 1 α (HEF1 α) can be used.

[0045] For example, a protein can be easily expressed by following the method of Mulligan et al. (Nature, 1979, 277,

108) when using the SV40 promoter/enhancer, and the method of Mizushima et al. (Nucleic Acids Res., 1990, 18, 5322) when using the $HEF1\alpha$ promoter/enhancer.

[0046] When using *E. coli*, well-used useful promotors, the signal sequence for polypeptide secretion, and genes to be expressed, may be functionally bound to express the desired gene. For example, lacZ promoter and araB promoter may be used as promotors. When using the lacZ promoter, the method of Ward et al. (Nature, 1098, 341, 544-546; FASEB J., 1992, 6, 2422-2427), and when using the araB promoter, the method of Better et al. (Science, 1988, 240, 1041-1043) may be followed.

[0047] When producing the protein into the periplasm of *E. coli*, the pelB (Lei, S. P. et al., J. Bacteriol., 1987, 169, 4379) signal sequence may be used as a protein secretion signal.

10 [0048] A replication origin derived from SV40, polyomavirus, adenovirus, bovine papilomavirus (BPV), and such may be used. To amplify gene copies in host cell lines, the expression vector may include an aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, E.coli xanthine guanine phosphoribosyl transferase (Ecogpt) gene, dihydrofolate reductase (dhfr) gene, and such as a selective marker.

[0049] The expression vector used to produce the protein of the invention may be any, as long as it's an expression vector that is suitably used for the present invention. Mammalian expression vectors, for example, pEF and pCDM8; insect-derived expression vectors, for example, pBacPAK8; plant-derived expression vectors, for example, pMH1 and pMH2; animal virus-derived expression vectors, for example, pHSV, pMV, and pAdexLcw; retrovirus-derived expression vectors, for example, pV111 and SP-Q01; Bacillus subtilisderived expression vectors, for example, pPL608 and pKTH50; E. coli-derived expression vectors, for example, pQE, pGEMEAPP, and pMALp2 can be given as expression vectors of this invention.

[0050] Not only vectors that produce the protein of the invention in vivo and in vitro, but also those that are used for gene therapy of mammals, for example humans, are also included as vectors of the present invention.

[0051] When introducing the expression vector of the present invention constructed above into a host cell, well-known methods, for example the calcium phosphate method (Virology, 1973, 52, 456-467), electroporation (EMBO J., 1982, 1, 841-845), and such may be used.

[0052] In the present invention, an arbitrary production system may be used to produce the protein. *In vitro* and *in vivo* production systems are known as production systems for producing proteins. Production systems using eukaryotic cells and prokaryotic cells may be used as *in vitro* production systems.

[0053] When using eukaryotic cells, production systems using, for example, animal cells, plant cells, and fungal cells are known. As animal cells used, for example, mammalian cells such as CHO (J. Exp. Med., 1995, 108, 945), COS, myeloma, baby hamster kidney (BHK), HeLa, or Vero, amphibian cells such as *Xenopus* oocytes (Valle, et al., Nature, 1981, 291, 358-340), insect cells such as sf9, sf21, or Tn5, are known. As CHO cells, especially DHFR genedeficient CHO cell, dhfr-CHO (Proc. Natl. Acad. Sci. USA, 1980, 77, 4216-4220), and CHO K-1 (Proc. Natl. Acad. Sci. USA, 1968, 60, 1275) can be suitably used.

[0054] Nicotiana tabacum-derived cells are well known as plant cells, and these can be callus cultured. As fungal cells, yeasts such as the Saccharomyces genus, for example, Saccharomyces cerevisiae, filamentous bacteria such as the Aspergillus genus, for example, Aspergillus niger are known.

[0055] Bacterial cells may be used as prokaryotic production systems. As bacterial cells, *E. coli* and *Bacillus subtilis* are known.

[0056] Proteins can be obtained by transforming these cells with the objective DNA, and culturing the transformed cells *in vitro* according to well-known methods. For example, DMEM, MEM, RPMI1640, and IMDM can be used as culture media. At that instance, fetal calf serum (FCS) and such serum-supplements may be added in the above media, or a serum-free culture medium may be used. The pH is preferably about 6 to 8. Culture is usually done at about 30°C to 40°C, for about 15 to 200 hr, and medium changes, aeration, and stirring are done as necessary.

[0057] On the other hand, production systems using animals and plants may be given as *in vivo* production systems. The objective gene is introduced into the plant or animal, and the protein is produced within the plant or animal, and recovered. "Host" as used in the present invention encompasses such animals and plants as well.

[0058] When using animals, mammalian and insect production systems can be used. As mammals, goats, pigs, sheep, mice, and cattle may be used (Vicki Glaser, SPECTRUM Biotechnology Applications, 1993). Transgenic animals may also be used when using mammals.

[0059] For example, the objective DNA is inserted within a gene encoding a protein produced intrinsically into milk, such as goat β casein, to prepare a fusion gene. The DNA fragment containing the fusion gene is injected into a goat's embryo, and this embryo is implanted in a female goat. The protein is collected from the milk of the transgenic goats produced from the goat that received the embryo, and descendents thereof. To increase the amount of protein-containing milk produced from the transgenic goat, a suitable hormone/hormones may be given to the transgenic goats (Ebert, K.M. et al., Bio/Technology, 1994, 12, 699-702).

[0060] Silk worms may be used as insects. When using the silk worm, it is infected with a baculovirus to which the objective DNA has been inserted, and the desired protein is obtained from the body fluids of the silk worm (Susumu, M.

et al., Nature, 1985, 315, 592-594).

[0061] When using plants, for example, tobacco can be used. In the case of tobacco, the objective DNA is inserted into a plant expression vector, for example pMON 530, and this vector is introduced into a bacterium such as *Agrobacterium tumefaciens*. This bacterium is infected to tobacco, for example *Nicotiana tabacum*, to obtain the desired polypeptide from tobacco leaves (Julian, K.-C. Ma et al., Eur. J. Immunol., 1994, 24, 131-138).

[0062] The thus-obtained protein of the invention is isolated from within and without cells, or from hosts, and can be purified as a substantially pure homogenous protein. The separation and purification of the protein is not limited to any specific method and can be done using ordinary separation and purification methods used to purify proteins. For example, chromatography, filtration, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, recrystalization, and such may be suitably selected, or combined to separate/purify the protein.

[0063] As chromatographies, for example, affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration, reversed-phase chromatography, adsorption chromatography, and such can be exemplified (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996). These chromatographies can be done by liquid chromatography such as HPLC, FPLC, and the like. The present invention encompasses proteins highly purified by using such purification methods.

[0064] Proteins can be arbitrarily modified, or peptides may be partially excised by treating the proteins with appropriate modification enzymes prior to or after the purification. Trypsin, chymotrypsin, lysyl endopeptidase, protein kinase, glucosidase, and such are used as protein modification enzymes.

[0065] The present invention includes a partial peptide comprising the active center of a protein comprising any one of the amino acid sequences of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 19, and SEQ ID NO: 21. A partial peptide of the protein of the present invention is, for example, a partial peptide of the molecules of the protein, which contains one or more regions of the hydrophilic region and hydrophobic region presumed by hydrophobicity plot analysis. These partial peptides may contain the whole hydrophobic region or a part of it. For example, soluble proteins and proteins comprising extracellular regions of the protein of the invention, are also encompassed in the invention.

[0066] The partial peptides of the protein of the invention may be produced by genetic engineering techniques, well-known peptide synthesizing methods, or by excising the protein of the invention by a suitable peptidase. As peptide synthesizing methods, the solid-phase synthesizing method, and the liquid-phase synthesizing method may be used.

[0067] The present invention also relates to a DNA encoding the protein of the invention. A cDNA encoding the protein of the invention may be obtained by, for example, screening a human cDNA library using the probe described herein.

[0068] Using the obtained cDNA or cDNA fragment as a probe, cDNA can also be obtained from other cells, tissues, organs, or species by further screening cDNA libraries. cDNA libraries may be prepared by, for example, the method of Sambrook, J. et al., Molecular Cloning, Cold Spring Harbor Laboratory Press (1989), or commercially available cDNA libraries may be used.

[0069] By determining the nucleotide sequence of the obtained cDNA, the translation region encoded by it can be determined, and the amino acid sequence of the protein of the present invention can be obtained. Furthermore, genomic DNA can be isolated by screening the genomic DNA library using the obtained cDNA as a probe.

[0070] Specifically, this can be done as follows. First, mRNA is isolated from cells, tissues, and organs expressing the protein of the invention. For this mRNA isolation, whole RNA is prepared using well-known methods, for example, guanidine ultracentrifugation method (Chirgwin, J.M. et al., Biochemistry, 1979, 18, 5294-5299), the AGPC method (Chomczynski, P. and Sacchi, N., Anal. Biochem., 1987, 162, 156-159), and such, and purified using the mRNA Purification Kit (Pharmacia), etc. mRNA may be directly prepared using the QuickPrep mRNA Purification Kit (Pharmacia).

[0071] cDNA is synthesized using reverse transcriptase from the obtained mRNA. cDNA can be synthesized using the AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (SEIKAGAKU CORPORATION), etc. Also, cDNA synthesis and amplification may also be done using the probe described herein by following the 5'-RACE method (Frohman, M.A. et al., Proc. Natl. Acad. Sci. U.S.A., 1988, 85, 8998-9002; Belyavsky, A. et al., Nucleic Acids Res., 1989, 17, 2919-2932) using the polymerase chain reaction (PCR) and the 5'-Ampli FINDER RACE KIT (Clontech).

[0072] The objective DNA fragment is prepared from the obtained PCR product and ligated with vector DNA. Thus, a recombination vector is created, introduced into *E.coli*, etc. and colonies are selected to prepare the desired recombination vector. The nucleotide sequence of the objective DNA may be verified by known methods, for example, the dideoxy nucleotide chain termination method.

[0073] In the DNA of the invention, a sequence with a higher expression efficiency can be designed by considering the codon usage frequency of hosts used for the expression (Grantham, R. et al., Nucleic Acids Research, 1981, 9, p43-p74). The DNA of the invention may also be modified using commercially available kits and known methods. For example, digestion by restriction enzymes, insertion of synthetic oligonucleotides and suitable DNA fragments, addition

of linkers, insertion of a start codon (ATG) and/or stop codon (ATT, TGA, or TAG), and such can be given.

[0074] The DNA of the present invention encompasses DNA comprising the nucleotide sequence from the 441st nucleotide C in the nucleotide sequence of SEQ ID NO: 2, DNA comprising the nucleotide sequence from the 441st nucleotide A to the 872nd nucleotide A in the nucleotide sequence of SEQ ID NO: 4, DNA comprising the nucleotide sequence from the 659th nucleotide A to the 1368th nucleotide C in the nucleotide sequence of SEQ ID NO: 6, DNA comprising the nucleotide sequence from the 441st nucleotide A to the 2054th nucleotide C in the nucleotide sequence of SEQ ID NO: 8, DNA comprising the nucleotide sequence from the 439th nucleotide A to the 870th nucleotide A in the nucleotide sequence of SEQ ID NO: 20, and DNA comprising the nucleotide sequence from the 439th nucleotide A to the 2052nd nucleotide C in the nucleotide sequence of SEQ ID NO: 22.

[0075] The DNA of the present invention encompasses DNA that hybridizes under stringent conditions to the DNA comprising any one of the nucleotide sequences of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 20, and SEQ ID NO: 22 to 27, which also includes a DNA encoding a protein functionally equivalent to the NR8 protein.

[0076] Stringent conditions can be suitably selected by one skilled in the art, and for example, low-stringent conditions can be given. Low-stringent conditions are, for example, 42°C, 2x SSC, and 0.1% SDS, and preferably 50°C, 2x SSC, and 0.1% SDS. More preferable are highly stringent conditions, for example, 65°C, 2x SSC, and 0.1% SDS. Under these conditions, the higher the temperature is raised, the higher the homology of the obtained DNA will be. The above DNA is preferably natural DNA such as cDNA and chromosomal DNA.

[0077] As shown in Examples, the mRNA of the gene hybridizing to cDNA encoding the protein of the invention was distributed in various human tissues. Therefore, the above-mentioned natural DNA may be, for example, genomic DNA and cDNA derived from tissues in which the mRNA that hybridizes to the cDNA encoding the protein of the invention is detected in Examples. The DNA encoding the protein of the invention may be cDNA, genomic DNA, or synthetic DNA. The protein of the invention is useful in screening a compound that binds to it. Namely, the protein of the

[0078] The protein of the invention is useful in screening a compound that binds to it. Namely, the protein of the invention is used in the screening method that comprises the steps of contacting a test sample expected to contain a compound that binds to the protein of the invention with the protein of the invention, and selecting the compound that comprises an activity to bind to the protein of the invention.

[0079] As methods for screening a compound that comprises an activity to bind to the protein of the invention, numerous methods usually used by those skilled in the art can be employed. The protein of the invention that is used for the screening of the invention may be a recombinant, natural, or partial peptide. A compound comprising an activity to bind to the protein of the invention may be a protein comprising a binding activity, or it may be a chemically synthesized compound having a binding activity.

[0080] As a test sample that is used in the screening method of the present invention, for example, peptides, purified or crudely purified proteins, non-peptide compounds, synthetic compounds, microbial fermentation products, extracts of marine organisms, plant extracts, cell extracts, animal tissue extracts, and such can be given. These test samples may be novel compounds, or well-known compounds.

[0081] A protein that binds to the protein of the invention can be screened by, for example, using the West-western blotting method (Skolnik, E.Y. et al., Cell, 1991, 65, 83-90). cDNA is isolated from cells, tissues, and organs presumed to express the protein binding to the protein of the invention, this is inserted into phage vectors, for example, λ gt11, ZAPII, and such, to make a cDNA library, expressed on a plate containing a culture medium, the proteins expressed are fixed on a filter, this filter is reacted with the labeled, purified protein of the invention, and plaques expressing the protein bound to the protein of the invention are detected by the labels. As methods to label the protein of the invention, the method that uses the binding ability of avidin and biotin, the method of using an antibody that specifically binds to the protein of the invention or the peptide or polypeptide fused to the protein of the invention, the method of using radioisotopes, or fluorescence, and such can be given.

[0082] A ligand that binds specifically to the protein of the invention can be screened by, preparing a chimeric receptor by ligating the extracellular domain of the protein of the invention with the intracellular domain containing the transmembrane domain of a hemopoietin receptor protein comprising a known signal transduction ability, expressing this chimeric receptor on the cell surface of a suitable cell line, preferably, a cell line that can survive and proliferate under the presence of a suitable growth factor (a growth factor-dependent cell line), and culturing the cell line by adding a material that is expected to contain various growth factors, cytokines, or hemopoietic factors. This method uses the fact that the above-mentioned growth factor-dependent cell line survives and proliferates only when a ligand that specifically binds to the extracellular domain of the protein of the invention exists within the test material. Known hemopoietic receptors are, for example, the thrombopoietin receptor, erythropoietin receptor, G-CSF receptor, gp130, etc. However, the partner of the chimeric receptor used in the screening of the invention is not limited to these known hemopoietic receptors, and any may be used as long as a structure needed for the signal transduction activity is contained in the cytoplasmic domain. Growth factor-dependent cell lines are for example, IL-3-dependent cell lines starting with BaF3 and FDC-P1.

[0083] As a ligand that specifically binds to the protein of the invention, the possibility of not only soluble proteins,

but also cell membrane-binding proteins can be envisaged, though rare. In such cases, screening can be done by labeling the protein containing only the extracellular domain of the protein of the invention, or a fusion protein in which the partial sequence of another soluble protein has been added to this extracellular domain, and measuring the binding with cells expected to express the ligand. As examples of proteins containing only the extracellular domain of the protein of the invention, for example, a soluble receptor protein artificially made by inserting a stop codon to the N terminal side of the transmembrane domain, or NR8β soluble protein may be used. On the other hand, as a fusion protein in which the partial sequence of another soluble protein has been added to the extracellular domain of the protein of the invention, for example, proteins prepared by adding immunoglobulin Fc site, FLAG peptide, etc. to the C terminus of the extracellular domain can be used. These soluble labeled proteins can be used in the detection in the above-described West-western blotting method.

[0084] A protein that binds to the protein of the invention can be screened by using the two-hybrid system (Fields, S. and Sternglanz, R., Trends. Genet., 1994, 10, 286-292).

[0085] In the two-hybrid system, an expression vector containing DNA encoding the fusion protein between the protein of the invention and one subunit of a heterodimeric transcriptional regulatory factor, and an expression vector containing DNA made by ligating DNA encoding the other subunit of the heterodimeric transcriptional regulatory factor and a desired cDNA used as a test sample are introduced into cells and expressed. If the protein encoded by the cDNA binds with the protein of the invention and the transcriptional regulatory factor forms a heterodimer, a reporter gene constructed in the cell beforehand will be expressed. Therefore, a protein binding to the protein of the invention can be selected by detecting or measuring the expression level of the reporter gene.

[0086] Specifically, the DNA encoding the protein of the invention and the gene encoding the DNA binding domain of LexA are ligated so as the frames match to prepare an expression vector. Next, the desired cDNA and the gene encoding GAL4 transcription activation domain are ligated to prepare an expression vector.

[0087] Cells into which the HIS3 gene has been incorporated (the transcription of HIS3 gene is regulated by the promoter having a LexA binding motif) are transformed by the above two-hybrid system expression plasmids, and then incubated on a histidine-free synthetic culture medium. Herein, cells only grow when a protein interaction is present. Thus, the increase in reporter gene expression can be examined by the growth rate of the transformant.

[0088] Other than the HIS3 gene, for example, the luciferase gene, plasminogen activator inhibitor type1 (PAI-1) gene, ADE2 gene, LacZ gene, CDC25H gene, and such can be used as reporter genes.

[0089] The two-hybrid system may be constructed according to the usual methods, or a commercially available kit may be used. As commercially available two-hybrid system kits, the MATCHMARKER Two-Hybrid System, Mammalian MATCHMARKER Two-Hybrid Assay Kit (both by CLONTEC), HybriZAP Two-Hybrid Vector System (Stratagene), and CytoTrap two-hybrid system (Stratagene) can be given.

[0090] A protein binding to the protein of the invention can be screened by affinity chromatography. Namely, the protein of the invention is immobilized onto a carrier of an affinity column, and a test sample presumed to express a protein binding to the protein of the invention is applied to the column. As this test sample, a cell culture supernatant, cell extract, cell lysate, and such may be used. After applying the test sample, the column is washed to obtain the protein binding to the protein of the invention.

[0091] The compound isolated by the screening method of the invention is a candidate drug for promoting or inhibiting the activity of the protein of the invention. The compound obtained by using the screening method of the invention encompasses a compound resulting from modifying the compound having an activity to bind to the protein of the invention by adding, deleting, and/or replacing a part of the structure.

[0092] When using the compound obtained by the screening method of the invention as drugs for humans and other mammals such as, mice, rats, guinea pigs, rabbits, chicken, cats, dogs, sheep, pigs, cattle, monkeys, sacred baboons, and chimpanzees, the drug may be administered using ordinary means.

[0093] For example, according to the need, the drugs can be taken orally as sugar-coated tablets, capsules, elixirs, and microcapsules, or parenterally in the form of injections of sterile solutions or suspensions with water or any other pharmaceutically acceptable liquid. For example, the compounds comprising the activity to bind to the protein of the invention can be mixed with physiologically acceptable carriers, flavoring agents, excipients, vehicles, preservatives, stabilizers, and binders, in a unit dose form required for generally accepted drug implementation. The amount of active ingredients in these preparations makes a suitable dosage within the indicated range acquirable.

[0094] Examples of additives that can be mixed to tablets and capsules are, binders such as gelatin, corn starch, tragacanth gum, and arabic gum; excipients such as crystalline cellulose; swelling agents such as cornstarch, gelatin, and alginic acid; lubricants such as magnesium stearate; sweeteners such as sucrose, lactose, or saccharin; and flavoring agents such as peppermint, Gaultheria adenothrix oil, and cherry. When the unit dosage form is a capsule, a liquid carrier, such as oil, can also be included in the above additives. Sterile compositions for injections can be formulated following usual drug implementations using vehicles such as distilled water used for injections.

[0095] For example, physiological saline and isotonic liquids including glucose or other adjuvants, such as D-sorbitol, D-mannose, D-mannitol, and sodium chloride, can be used as aqueous solutions for injections. These can be used

in conjunction with suitable solubilizers, such as alcohol, specifically ethanol, polyalcohols such as propylene glycol and polyethylene glycol, non-ionic surfactants, such as Polysorbate 80 (TM) and HCO-50.

[0096] Sesame oil or soy-bean oil can be used as a oleaginous liquid and may be used in conjunction with benzyl benzoate or benzyl alcohol as a solubilizer; may be formulated with a buffer such as phosphate buffer and sodium acetate buffer; a pain-killer such as procaine hydrochloride; a stabilizer such as benzyl alcohol and phenol; and an anti-oxidant. The prepared injection is usually filled into a suitable ampule.

[0097] Although the dosage of the compound that has the activity to bind to the protein of the invention varies according to symptoms, the daily dose is generally about 0.1 to about 100 mg, preferably about 1.0 to about 50 mg, and more preferably about 1.0 to about 20 mg, when administered orally to an adult (body weight 60 kg).

[0098] When given parenterally, the dose differs according to the patient, target organ, symptoms, and method of administration, but the daily dose is usually about 0.01 to about 30 mg, preferably about 0.1 to about 20 mg and more preferably about 0.1 to about 10 mg for an adult (body weight 60 kg) when given as an intravenous injection. Also, in the case of other animals too, it is possible to administer an amount converted to 60 kg of body-weight.

[0099] The antibody of the present invention can be obtained as a monoclonal antibody or a polyclonal antibody using well-known methods.

[0100] The antibody that specifically binds to the protein of the invention can be prepared by using the protein of the invention as a sensitizing antigen for immunization according to usual immunizing methods, fusing the obtained immunized cells with known parent cells by ordinary cell fusion methods, and screening for antibody producing cells using the usual screening techniques.

[0101] Specifically, a monoclonal or polyclonal antibody that binds to the proteins of the invention may be prepared as follows.

[0102] For example, the protein of the invention that is used as a sensitizing antigen for obtaining the antibody is not restricted by the animal species from which it is derived, but is preferably a protein derived from mammals, for example, humans, mice, or rats, especially from humans. Proteins of human origin can be obtained by using the nucleotide sequence or amino acid sequence disclosed herein.

[0103] The protein that is used as a sensitizing antigen in the present invention can be a protein that comprises the biological activity of all the proteins described herein. Partial peptides of the proteins may also be used. As partial peptides of the proteins, for example, the amino (N) terminal fragment of the protein, and the carboxy (C) terminal fragment can be given. "Antibody" as used herein means an antibody that specifically reacts with the full-length or fragment of the protein.

[0104] A gene encoding the protein of the invention or a fragment thereof is inserted into a well-known expression vector, and after transforming the host cells described herein, the objective protein or a fragment thereof is obtained from within and without the host cell, or from the host using well-known methods, and this protein can be used as a sensitizing antigen. Also, cells expressing the protein, cell lysates, or chemically synthesized protein of the invention may be used as a sensitizing antigen.

[0105] The mammals that are immunized by the sensitizing antigen are not restricted, but it is preferable to select the animal by considering the adaptability with the parent cells used in cell fusion. Generally, an animal belonging to Rodentia, Lagomorpha, or Primates is used.

[0106] As animals belonging to Rodentia, for example, mice, rats, hamsters, and such are used. As animals belonging to Lagomorpha, for example rabbits, as Primates, for example monkeys, are used. As monkeys, monkeys of the infraorder Catarrhini (Old World Monkeys), for example, cynomolgus monkeys, rhesus monkeys, sacred baboons, chimpanzees, etc., are used.

[0107] To immunize animals with the sensitizing antigen, well-known methods may be used. For example, the sensitizing antigen is generally injected into mammals intraperitoneally or subcutaneously. Specifically, the sensitizing antigen is suitably diluted, suspended in physiological saline or phosphate-buffered saline (PBS), mixed with a suitable amount of a general adjuvant if desired, for example, with Freund's complete adjuvant, emulsified and injected into the mammal. Thereafter, the sensitizing antigen suitably mixed with Freund's incomplete adjuvant is preferably given several times every four to 21 days. A suitable carrier can also be used when immunizing an animal with the sensitizing antigen. After the immunization, the elevation in the serum antibody level is detected by usual methods.

[0108] Polyclonal antibodies against the protein of the invention can be obtained as follows. After verifying that the desired serum antibody level has been reached, blood is withdrawn from the mammal sensitized with the antigen. Serum is isolated from this blood using well-known methods. The serum containing the polyclonal antibody may be used as the polyclonal antibody, or according to needs, the polyclonal antibody-containing fraction may be further isolated from the serum.

[0109] To obtain monoclonal antibodies, after verifying that the desired serum antibody level has been reached in the mammal sensitized with the above-described antigen, immunocytes are taken from the mammal and used for cell fusion. At this instance, immunocytes that are preferably used for cell fusion are splenocytes. As parent cells fused with the above immunocytes, preferable are mammalian myeloma cells, more preferable are, myeloma cells that have

attained the feature of distinguishing fusion cells by agents.

[0110] For the cell fusion between the above immunocytes and myeloma cells, for example, the method of Milstein et al. (Galfre, G. and Milstein, C., Methods Enzymol., 1981, 73, 3-46) is basically well known.

[0111] The hybridoma obtained from cell fusion is selected by culturing in a usual selective culture medium, for example, HAT culture medium (hypoxanthine, aminopterin, thymidine-containing culture medium). The culture in this HAT medium is continued for a period sufficient enough for cells (non-fusion cells)other than the objective hybridoma to perish, usually from a few days to a few weeks. Next, the usual limiting dilution method is carried out, and the hybridoma producing the objective antibody is screened and cloned.

[0112] Other than the above method of obtaining a hybridoma by immunizing an animal other than humans with the antigen, a hybridoma producing the objective human antibodies comprising the activity to bind to proteins can be obtained by the method of sensitizing human lymphocytes, for example, human lymphocytes infected with the EB virus, with proteins, protein-expressing cells, or lysates thereof *in vitro*, fusing the sensitized lymphocytes with myeloma cells derived from human, for example U266, having the capacity of permanent cell division (Unexamined Published Japanese Patent Application (JP-A) No. Sho 63-17688).

[0113] Moreover, human antibody against the protein can be obtained using a hybridoma made by fusing myeloma cells with antibody-producing cells obtained by immunizing a transgenic animal comprising a repertoire of human antibody genes with an antigen such as a protein, protein-expressing cells, or a cell lysate thereof WO92/03918, WO93/2227, WO94/02602, WO94/25585, WO96/33735, and WO96/34096).

[0114] Other than producing antibodies by using hybridoma, antibody-producing immunocytes such as sensitized lymphocytes that are immortalized by oncogenes may also be used.

[0115] Such monoclonal antibodies can also be obtained as recombinant antibodies produced by using the gene engineering technique (for example, Borrebaeck, C.A.K. and Larrick, J.W., THERAPEUTIC MONOCLONAL ANTIBODIES, Published in the United Kingdom by MACMILLAN PUBLISHERS LTD, 1990). Recombinant antibodies are produced by cloning the encoding DNA from immunocytes such as hybridoma or antibody-producing sensitized lymphocytes, incorporating this into a suitable vector, and introducing this vector into a host to produce the antibody. The present invention encompasses such recombinant antibodies as well.

[0116] The antibody of the present invention may be an antibody fragment or a modified-antibody as long as it binds to the protein of the invention. For example, Fab, F(ab')₂, Fv, or single chain Fv in which the H chain Fv and the L chain Fv are suitably linked by a linker (scFv, Huston, J.S. et al., Proc. Natl. Acad. Sci. U.S.A., 1988, 85, 5879-5883) can be given as antibody fragments. Specifically, antibody fragments are produced by treating an antibody with an enzyme, for example, papain, pepsin, etc. or by constructing a gene encoding an antibody fragment, introducing this into an expression vector, and expressing this vector on suitable host cells (for example, Co, M.S. et al., J. Immunol., 1994, 152, 2968-2976; Better, M. and Horwitz, A.H., Methods Enzymol., 1989, 178, 497-515; Lamoyi, E., Methods Enzymol., 1986, 121, 652-663; Rousseaux, J. et al., Methods Enzymol., 1986, 121, 663-669; Bird, R.E. and Walker, B.W., Trends Biotechnol., 1991, 9, 132-137).

[0117] As a modified antibody, an antibody bound to various molecules such as polyethylene glycol (PEG) can be used. The present antibody encompasses such modified antibodies as well. To obtain such a modified antibody, chemical modifications are done to the obtained antibody. These methods are already established in the field.

[0118] The antibody of the invention may be obtained as a chimeric antibody comprising non-human antibody-derived variable region and a human antibody-derived constant region, or as a humanized antibody comprising non-human antibody-derived complementarity determining region (CDR), and human antibody-derived framework region (FR) and a constant region.

[0119] Antibodies thus obtained can be purified till uniform. The separation and purification methods for separating and purifying the antibody used in the present invention may be any method usually used for proteins, and is not in the least limited. Antibody concentration of the above mentioned antibody can be assayed by measuring the absorbance, or by the enzyme-linked immunosorbent assay (ELISA), etc.

[0120] Also, as methods that assay the antigen-binding activity of the antibody of the invention, ELISA, enzyme immunoassay (EIA), radio immunoassay (RIA), or fluorescent antibody method can be given. For example, when using ELISA, the protein of the invention is added to a plate coated with the antibody of the invention, and next, the objective antibody sample, for example, culture supernatants of antibody-producing cells, or purified antibodies are added. Then, secondary antibody recognizing the antibody, which is labeled by alkaline phosphatase and such enzymes, is added, the plate is incubated and washed, and absorbance is measured to evaluate the antigen-binding activity after adding an enzyme substrate such as p-nitrophenyl phosphate. As the protein, a protein fragment, for example, a fragment comprising a C terminus, or a fragment comprising an N terminus may be used. To evaluate the activity of the antibody of the invention, BIAcore (Pharmacia) may be used.

[0121] By using these methods, the antibody of the invention and a sample presumed to contain the protein of the invention are contacted, and the protein of the invention is detected or assayed by detecting or assaying the immune complex of the above-mentioned antibody and protein.

[0122] A method of detecting or assaying the protein of the invention is useful in various experiments using proteins as it can specifically detect or assay the proteins.

[0123] The present invention also encompasses a DNA specifically hybridizing to a DNA comprising a nucleotide sequence of any one of SEQ ID NOs: 2, 4, 6, 8, 20, and 22 to 27 or its complementary DNA, and comprising at least 15 nucleotides. Namely, a probe that can selectively hybridize to the DNA encoding the protein of the invention, or a DNA complementary to the above DNA, a nucleotide or nucleotide derivative, for example, antisense oligonucleotide, ribozyme, and such are included.

[0124] The present invention also encompasses an antisense oligonucleotide that hybridizes to any portion of any one of the nucleotide sequences shown in, for example, SEQ ID NOs: 2, 4, 6, 8, 20, and 22 to 27. This antisense oligonucleotide is preferably one against at least 15 continuous nucleotides in any one of the nucleotide sequences of SEQ ID NOs: 2, 4, 6, 8, 20, and 22 to 27. More preferable is the above-mentioned antisense oligonucleotide against the above-mentioned at least 15 continuous nucleotides containing a translation start codon.

[0125] Derivatives or modified products of antisense oligonucleotides can be used as antisense oligonucleotides. As such modified products, for example, lower alkyl phosphonate modifications such as methyl-phosphonate-type or ethyl-phosphonate-type, phosphorothioate or phosphoroamidate-modified products, etc. may be used.

[0126] The term "antisense oligonucleotide(s)" as used herein means, not only those in which the nucleotides corresponding to those constituting a specified region of a DNA or mRNA are entirely complementary, but also those having a mismatch of one or more nucleotides, as long as the DNA or mRNA and the oligonucleotide can selectively and stably hybridize with the nucleotide sequence of SEQ ID NO: 1.

20 [0127] "Selectively and stably hybridize" means that significant cross hybridization with DNA encoding other proteins does not occur under usual hybridization conditions, preferably under stringent hybridization conditions. Such DNAs are indicated as those having, in the "at least 15 continuous nucleotide" sequence region, a homology of at least 70% or higher, preferably 80% or higher, more preferably 90% or higher, even more preferably 95% or higher nucleotide sequence homology. The algorithm stated herein can be used to determine homology. Such DNA is useful as a probe for detecting or isolating DNA encoding the protein of the invention, or as a primer for amplification as described in Examples below.

[0128] The antisense oligonucleotide derivative of the present invention acts upon cells producing the protein of the invention by binding to the DNA or mRNA encoding the protein to inhibit its transcription or translation, and to promote the degradation of mRNA, and has an effect of suppressing the function of the protein of the invention by suppressing the expression of the protein.

[0129] The antisense oligonucleotide derivative of the present invention can be made into an external preparation such as a liniment and a poultice by mixing with a suitable base material, which is inactive against the derivatives.

[0130] Also, as needed, the derivatives can be formulated into tablets, powders, granules, capsules, liposome capsules, injections, solutions, nose-drops, and freeze-dried agents by adding excipients, isotonic agents, solubilizers, stabilizers, preservatives, pain-killers, etc. These can be prepared using the usual methods.

[0131] The antisense oligonucleotide derivative is given to the patient by directly applying onto the ailing site, by injecting into a blood vessel, etc. so that it will reach the ailing site. An antisense-mounting material can also be used to increase durability and membrane-permeability. Examples are, liposome, poly-L lysine, lipid, cholesterol, lipofectin, or derivatives of these.

[0132] The dosage of the antisense oligonucleotide derivative of the present invention can be adjusted suitably according to the patient's condition and used in desired amounts. For example, a dose range of 0.1 to 100 mg/kg, preferably 0.1 to 50 mg/kg can be administered.

[0133] The antisense oligonucleotide derivative of the present invention is useful in inhibiting the expression of the protein of the invention, and therefore is useful in suppressing the biological activity of the protein of the invention. Also, expression-inhibitors comprising the antisense oligonucleotide derivative of the present invention are useful because of their capability to suppress the biological activity of the protein of the invention.

Brief Description of the Drawings

50 [0134]

55

Figure 1 is a schematic diagram showing the results of BlastX search where the query was 180 nucleotides of 40861-41040 including 40952-40966, the only probe sequence within the AC002303. "#": For only NR8 the number was indicated by the nucleotide number. The underline of the NR8 sequence shows the portion corresponding to the exon. Other underlined sequences show identical amino acids.

Figure 2 is a schematic diagram showing the results of BlastX scanning of 180 nucleotides in both the 5' and 3' directions, where the search centered on the 180 nucleotides of 40861-41040 containing 40952-40966, the only probe sequence within the AC002303.

Figure 3 shows the electrophoresis results of the amplification done by the RT-PCR method for the combinations of SN1/AS1, SN1/AS2, SN2/AS1, and SN2/AS2 primers using human fetal liver and skeletal muscle cDNA as templates.

Figure 4 shows the electrophoretic results of the 5'-RACE method and 3'-RACE method using human fetal liver cDNA as the template.

Figure 5 shows the nucleotide sequence and the amino acid sequence of NR8 α cDNA. The arrows show the positions of primers used for RT-PCR. They are, SN1 (798-827), SN2 (894-923), AS2 (1055-1026), and AS1 (1127-1098) from the 5' side, in their order. For two bases at the 5' end of AS1, AC, which is derived from the genomic sequence, was used in place of CT.

Figure 6 is the continuation of Fig. 5 showing the nucleotide sequence and the amino acid sequence of NR8α cDNA.

Figure 7 shows the nucleotide sequence and the amino acid sequence of NR8 β cDNA. Two possible open reading frames (ORF) are shown.

Figure 8 is the continuation of Fig. 7 showing the nucleotide sequence and the amino acid sequence of NR8β cDNA.

Figure 9 shows the nucleotide sequence and the amino acid sequence of NR8 γ cDNA. The 177 amino acids inserted by selective splicing are underlined.

Figure 10 is the continuation of Fig. 9 showing the nucleotide sequence and the amino acid sequence of NR8γ cDNA. The 177 amino acids inserted by selective splicing are underlined.

20 Figure 11 is the continuation of Fig. 10 showing the nucleotide sequence and the amino acid sequence of NR8γ cDNA.

Figure 12 shows the results of Northern blot analysis of NR8 expression in each organ.

Figure 13 is a schematic diagram showing the structure of the NR8 gene. Other repetitives include, (CA)n, (CAGA)n, (TGGA)n, (TA)n, (TA)n, (GA)n, (GGAA)n, (CATG)n, (GAAA)n, MSTA, AT-rich, MLT1A1, LINE2, FLAM_C, MER63A, and MSTB.

Figure 14 is a schematic diagram showing the structure of expressible proteins constructed in the expression vector.

Figure 15 shows the results of cross PCR, in which the human NR8 primer set was used against a mouse cDNA library. As the size marker, 100 bp DNA Ladder (NEB#323-1L) was used.

Figure 16 shows a comparison between amino acid sequences of human and mouse NR8β. The amino acid sequences where the two coincide are shadowed. Also, cysteine residues conserved in other hemopoietin receptors are displayed in boldface type within the sequence.

Figure 17 shows a comparison between amino acid sequences of human and mouse NR8y. The amino acid sequences where the two coincide are shadowed. Also, cysteine residues conserved in other hemopoietin receptors and the WSXWS-Box are displayed in boldface type within the sequence.

Figure 18 shows the results of NR8 gene expression analysis in each mouse organ using the RT-PCR method. The size marker, 100 bp DNA Ladder (NEB#323-1L), is shown on the either sides of the lane. A 320 bp target gene has been detected in all organs.

Figure 19 shows the results of NR8 gene expression analysis in each mouse organ using the Northern blotting method (left). An approximately 4.2 kb transcript was intensely detected in the testis only. Mouse β-actin was detected in the same blot as a positive control (right).

Best Mode for Carrying Out the Invention

45 [0135] The present invention shall be described in detail below with reference to examples, but is not be construed as being limited thereto.

Example 1: Two step Blast Search

50 [0136] Probe sequences (256 types) comprising the tggag(t/c)nnntggag(t/c) (where n is an arbitrary nucleotide) as the oligonucleotide encoding the Trp-Ser-Xaa-Trp-Ser motif were designed. These sequences enable the detection of almost all known hemopoietin receptors, except for the EPO receptor, TPO receptor, and the mouse IL6 receptor. Using each sequence as the query, the GenBank nr database was searched using the BlastN (Advanced BlastN 2.0.4) program. Default values (Descriptions=100, Alignments=100) were used as parameters for the search, except for making the expectation value 100.

[0137] Since approximately 500 clones that completely matched the probe sequences were obtained as a result of the primary search, among these, a 180-residue nucleotide sequence of human genome-derived clones (cosmid, BAC, and PAC) containing the probe sequence in approximately the center was excised. Next, using this 180-residue nucle-

5

15

25

35

otide sequence as the query, the nr database was searched again using the BlastX (Advanced BlastX 2.0.4) program to search the homology of the amino acid sequence around the probe sequence with known hemopoietin receptors.

[0138] Default values were used as parameters for the search, except for making the expectation value 100. However, when extremely large number of hits were obtained (caused by the Alu sub family that is a high repetitive sequence), it was often difficult to observe hits for known hemopoietic receptors. Therefore, to maximize the sensitivity in such cases, a value of "Expect=1000, Descriptions=500, Alignments=500" was used.

[0139] As a result of the secondary search by BlastX, 28 clones hit one or more known hemopoietin receptors (Table 1 to Table 8).

Table 1

5																						
10	blastx (expect=100)	mILIIR(mposite), IOBH	line1, Leu Zip p40,	metaxin	HP-10, semaphorin F.G	AFP enhancer BP, RAR	CFTC, Ter	trithorax	E2ABP, fibronectin, nidgen	mena, NMDAR	crk, AchR, HER3	KIT, FLT3, PDGFRa	collagen	ADAMTS-1, properdin, etc	APC, bat2, p63	Met tRNA syntase	N-WASP, enigme	NEU, glycoprotein C	CD22-B	glycoprotein	G3P REGULON	Alu, adrenergic receptor
20	Locus	1p34.1-1p36	1p36.2-36.3	1921	1423-24	1924	60	3p21.3	Sp21.3	4p16.3	4p16.3	4p 16.3	10	io		5p 15.2	5p 16.2	5p15.2	6 q31	9	9	œ
25 30		30892 iggaftaatiggage 30678	.40006 tggagctgatggage 139992	39931 iggagcagciggagc 39917	78023 tggagctgctggagc 78037	112905 tggagcacgtggagt 112891	101031 iggagigeciggage 101017	2547 tggagtagatggagt 2533	5255 tggagctgatggagt 5241	7291 tggagtttctggagt 7277	21277 tggagtgootggagt 21291	30266 iggageigeiggage 30252	27290 tggagtlactggagt 27304	48334 tggagcctgtggagt 48320	2418 iggagitgatggage 2404	43679 tggagtgtatggagt 43665	34646 tggagtocatggagt 34632	80443 trraceactrrace 80457	125445 iggagoigoiggagt 125431	3721 tggagtagetggagt 3735	114578 iggagitgeignagt 114564	20244 tggagtgcatggagt 20230
	. Hit site	30892 t	140008	39931 t	78023 t	112905	101031	2547 tg	6255 tg	7291 tg	21277	30266 t	27290 t	48334 t	2418 18	43679	34646	804431	125448	3721 tg	114578	20244
35	Accession No.	ALCHIOTIST.	297987	AF028268	AL009051	297200	U95626	284495	274023	268275	Z54072	Z69837	AC003951	AC004502	L81613	AC002122	AC002380	AC002479	AC004592	AC002393	AC002326	284490
40	Xaa	Asn	***	Ser	Ç	Thr	Ala	Arg	:	Phe	Ala	?	Ž	Į.	***	Vel	Pro	Asn	Cys	Ser	Cya	Ala
45		TGGAGTAATTGGAGC	TGGAGCTGATGGAGC	TOGAGCAGCTGGAGC	TGGAGCTGCTGGAGC	TGGAGCACGTGGAGT	rgaagtgccrggagc	TGGAGTAGATGGAGT	TGGAGCTGATGGAGT	radagmmeradagr	TOGAGTGCCTGGAGT	TGGAGCTGCTGGAGC	ragactractagage	TOGAGCCTGTGGAGT	<i>TOGAGTTGATGGAGC</i>	rggagtgtatggagt	TOGAGTCCATGGAGT	TOGAGCAACTGGAGC	TGGAGCTGCTGGAGT	TOGAGTAGCTGGAGT	rggagttgctggagt	TGGAGTGCATGGAGT
50	Probe	TGGA	TGGA	TOGA	TGGA	TOGA	TOGA	TGGA	TOOA	7007	TOGA	7004	TOGA	T004	TOGA	TGGA	TOO	1007	TGG/	TGG/	TGG	TGG,

16

Table 2

	1 1																						
10	blastx (expect=100)	IgHv, MYD116	myosin HC, cep250,	ring finger, BRCA1	Alu, Ad7c-NTP	ACC synthase	E1A, DUB-2	dynein	HGXPRT	syn fyn, elk, yes, arc	3 tyrosinase	collagen, AT3, C1Qb	ICE	TSH-R, RNABP	Hox 2.4, mIL11Ra(stop")	polyprotein	NCAM	glycoprotein A	GA3PD	Nmyc, FGFR	FVIII, Topolii	telomerase, NFAT	Alu, Notch4
.· 20	Locus		6p21	6p21.3	6p21.8-22.3	6p22.8-24.1	6p24	6q16.1-21	6q21	6q21.22	6q22.1-6q22.83	6q26-q27	7p15	7p15-p21	7p15-p21	7p21-p22	7q11.23-q21.1 NCAM	7421	7921-22	1421-22	7421-7422	7q21-q22	7921-7922
25		tggage 68685	ctggago 85815	ffafe 3672	atggagt 38844	104325 iggagitgciggagt 104311	t rgar t 21839	tiggagt 89811	t gg age 35540	gtggage 79102	atggagt 16576	ttggagc 26786	c iggagt 22082	atgag c 22764	ctggage 86370	ggagt 3144	satgsage 62862	1ctggagt 69514	tggagt 9184	itiggagt 87366	ttggagt 65221	rtegagt 44421	atgrage 9963
30	Hit site	68699 tggagtttctggage 68685	35829 tggageggetggago 35815	3558 igrageficigrage 3572	38368 tgrafigeatgragt 38844	104328 tggagtt	21925 tggagtgtetggagt 21839	69825 iggagitgtiggagi 69811	35554 tggagettetggage 35540	79116 tggagcaggtggagc 79102	16562 tggagctaatggagt 16576	25800 tggagctettggage 26786	22068 iggageteeiggagt 22082	22740 iggagiataiggage 22754	86356 tggagtagetggage 86370	3130 tegagictitegagt 3144	82876 tggagcagatggagc 62862	69500 tggagcaactggagt 69514	9170 tggagtaactggagt 9184	87341 tggagttatiggagt 87365	65235 tggagttgttggagt 6522]	44435 iggagtigtiggagt 44421	9977 tggagtacatggagc 9963
	Accession No.	AC002112	UB9336	U53588	298744	AL009031	AL008729	Z98755	298172	297989	295326	Z98049	AC003090	AC004744	AC004485	AC004141	AC004548	AC002486	AC000064	AC003085	AC000119	AC002458	AC000059
40	Xaa	P	9	Vel	Ala	Cy.	Val	Ç	Phe	Arg	***	Ser	Ser	116	Ser	reg r	Are	Asn	Asn	Ę.	Cys	Š	Tar
45		TOGAGITTCTGGAGC	NGG A G C G G C T G G A G C	regacencregage	NGGAGTGCATGGAGT	TOGAGTTGCTGGAGT	TOGAGTOTCTGGAGT	TOGAGITGITGGAGT	rggagcttctggagc	TGGAGCAGGTGGAGC	TOGAGCTAATGGAGT	TGGAGCTCTTGGAGC	TOGAGCTCCTOGAGT	TOGAGTATATGGAGC	TGGAGTAGCTGGAGC	rogagecetteggage	TGGAGCAGATGGAGC	TOGAGCAACTOGAGT	TOGAGTAACTGGAGT	TGGAGTTATTGGAGT	TGGAGTTGTTGGAGT	rogagmentegaer	TGGAGTACATGGAGC
50	Probe	TOO	TGGA	TGGA	TOGA	TGGA	TOGA	TGGA	TGGA	TGGA	TOGA	TGGA	TOGA	TGGA	TOGA	TGGA	TGGA	TOGA	TOGA	TGGA	TGGA	TGGA	TG0/

Table 3

5					_																		
10	blastx (expect=100)		pol, GHR(another frame)	hemoglobín beta	ryanodine receptor, mTPO	EGF, P-selectin	laminin B1, tubulin	p160	II.3Rb(opposite)	properdin	CD2, HOX-2.6	D.B. V2R	myosin VIIA, OSMIII	hox1.4, gastrinR		vWf, laminin a3	zinc finger		Alu, gp2b, BCGF-12	REPORTED TO THE PROPERTY OF THE PARTY OF THE	reverse transcriptase	Nasopressin R. OSMII	Alu, IFNaR
20	Locus	THE STATE OF THE S	7422	7422-431.1	7431	7431.2	7931.2	7431.3	7431.3	7435 (TeRb)	7438	7q tel	9p22	9934		9434	11		=======================================		11	11p16.5	12424
25		CALIFORNIO SO SEL	52216 tggagtatttggagt 52202	55291 tggagcagctggagt 55277	43273 tggagtgtttggagt 43287	112948 tggagtggctggage 112962	79564 tggagetgatggage 79550	13750 tggagtttttggagt 13736	20166 iggagitgitggagt 20152	158491 tggagcggttggage 158477	4781 tggagcatttggage 4775	174448 iggafitatiggagt 174434	28882 iggagcatatggagt 28896	27845 tggagcaactggagt 27331		16394 tggagcggatggage 16380	16850 tggagtgagtggagt 16836	CALINATION STATEMENT OF COMPANY	31027 tggagtgeetggagt 31041	SELECTION OF THE SOURCE SHAPE	14550 tggagtcottggage 14584	65621 tgarcartgrage 65635	23543 tggagtgcatggagt 23529
30	Hit site		52216 tggagti	55291 tggago	43273 tggagti	112948 tggag	79564 tggage	13750 tggagti	20166 tggagt	158491 tggag	4781 tggagca	174448 tggag	28882 tggagc	27845 tggage	and the street.	16394 tggage	16850 tggagt		81027 tggagt		14550 tggagt	85821 tggago	23543 tggagt
35	Accession No.		AC002384	AC004522	AC002466	AC002543	AC000061	AC000128	AC002498	U86059	AC003109	AF027390	AC3002052	AC001643	17.00 (00/3) to the	AC000398	U78649		U78629	HERBER WA	U73643	APO16416	AC002350
40	Xaa /		ņ	Sar	Vel Vel	Ą		Phe	Cy.	Q Q	ņ	¥	å	Asa		ģ	o G	THE PARTY	Ala		Pro	Am	Ala
45			TOGAGTATTTGGAGT	regageagetegage	NGGAGTGTTTGGAGT	regagtegeregade	rggagctgatogagc	NGGAGITITITIGGAGI	regagitettegagi	rogagogogago	PGGAGCATTTGGAGC	rggagttattggagt	rggagcatatggagt	PGGAGCAACTGGAGT		OGAGCGGATGGAGC	regagteagtegagt	16 CATOLICA OLITICA DE LA COMPANIA	ragadraccragagr	TO COME TO E CONTRACTOR OF THE STATE OF THE	TOGAGTCCCTGGAGC	TGGAGCAACTGGAGC	TOGAGTGCATGGAGT
50	Probe	I TITALS	TTGGA	TGGAG	TGGAG	TGGAG	TGGAG	TGGAG	TGGAG	TOGAG	TGGAC	TGGAG	TGGAG	TGGAG		TOGAG	TGGAG	TIGICAL	TOOAC	TOOM	TOGAC	TOGAC	TOGAC

18

55

Table 4

5											;					**************************************				752		
10	blastx (expect=100)	Alu, HPK	clathrin LC, EPOR(non WS)	VII., lahibin B	14q32.33 (LgD) polycystic kidney	pksF	pol, UNES	ICAM1, MTBP1	Alu		Rho, Notch	NIPI-like, IL2Rr(nonWS)	TPOR, OBR, and many	envelope, androgen R	CYCLIN H, FN	EXTERIOR STATES OF THE PROPERTY OF THE PROPER	TeRa, HLAa	Notch, Pro-rich	phosphatase, ORFB		TeRb	muca, ETI, ILIZRinonWS)
20	Locus	12q24.1	12924	13	14q32.33 (Igi	15928	18	16	16	WHING STREET	16	18p11.2	16p12	16p12.1	16p12-p18.1		16p13.1			ANTION IS IN THE	16p13.3	16p13.3
25		graft 88808	ggage 65907	ggagt 91729	ggage 73607	tggage 16582	ggage 93370	tggagt 102392	iggagt 10648	STATE OF THE	tggagt 81754	igengt 84118	00601 Januari	tggage 82259	age 148	THE GREET OF THE	t ggag t 16144	t ggag t 16388	tggagt 16613	HER ALCOT 1229 BIT	tggage 26045	tggage 28281
	Hit site	88822 tggagtgcatggagt 88808	66893 iggagitaciggage 65907	91715 tggagttgttggagt 91729	73621 tggagcggttggagc 73607	15596 tggagtaggtggage 15582	93356 tggagtttctggage 93370	102406 tggagttcatggagt 102392	10631 tgragtgtatggagt 10648	THE SECRETARISMENT IN THE SECOND	81768 tggagttaatggagt 81754	84127 tggagotgotgengt 84118	10952 lucanteanteaut 40966	82245 tggagcacttggage 82259	162 tggagtoctggage 148	executiva emilia extudita executiva executiva	16180 tggagteactggagt 16144	16374 tggagteactggagt 16388	16599 tggagtcactggagt 16613	aconsistementalismissociesmentees	26031 tggagcacttggagc 26045	28217 tggagocgttggago 28281
35	Accession No.	AC004217	AC002978	AC000403	X97051	AC003024	AC002.192	U91818	AC002289		AC002619	U91326	ACOUSTON	AC002561	AC002299	ERCOUNTER BY	U95737	,		ECOTO LE PRILI	AC004609	AC004496
40	Xaa /	Ala	꿏	Ç,	Gly	Arg	Phe	Ser	Val		***	Š	Cha	Thr	Pro	THE PARTY	His				궕	Arg
45		TOGAGTGCATGGAGT	TTGGAGTTACTGGAGC	TGGAGTTGTTGGAGT	TOGAGCGGTTGGAGC	TGGAGTAGGTGGAGC	TOGAGTITCTGGAGC	TGGAGTTCATGGAGT	TOGACTCTATCCACT	roba 6 colon en	TOGAGTTAATGGAGT	TOGAGCTGCTGGAGT	CAATTGGAGT	TOGAGCACTTGGAGC	TGGAGTCCCTGGAGC	TGOACCTATROGAGE	TOGAGTCACTOGAGT			PICATE OF THE CANONING	TOGAGCACTTGGAGC	TGGAGCCGTTGGAGC
50	Probe	TOGAGT	TYGGAG	TGGAGT	TOGAGO	TGGAGT	TOGAGT	TGGAGT	TOGAGT	TOUTOU	TOGAGI	TOGAGC	TGGAGTOAATG	TOGAGO	TGGAGT	TGOADC	TOGAGT			TOTATO	TOGAGE	TGGAGC

Table 5

45 50	40	35	25 30	20	o 5
Probe	Xaa	Accession No.	Hit site	Locus	blastx (expect=100)
TGGAGCCGCTGGAGC	Arg	AC004232	34550 tggagcegetggage 34564	16p13.3	Iglk, AGPR
TTGGAGTACTTGGAGC	Thr	AJ003147	151180 tggagtactiggage 151168	16p18.3	RanBP2
TGGAGCGTGTGGAGC	Val	X71874	11520 tggagcgtgtggage 11534	16q22.1	collagen a6IV
TOGAGCAAATGGAGT	Lys	AC003663	114346 tggagcaantggagt 114360	17	beta-D-glucosidase
TOGAGTOTOTOGAGO	Leu	AC003957	52898 tggagtetetggage 52884	11	TIE-1, SEX, Rho,
TGGAGCAGATGGAGC	Arg	AC003971	76277 tggagcagatggage 76263	18	LIME-1, Ter
TOGAGTGCATGGAGT	Ala	AD000812	80891 tggagtgcatggagt 30905	19	Alu
能压缩性性性的	題門に		Acoustican inherential consequence	THE STREET OF THE STREET	
TGGAGCTGCTGGAGT	స్త	AC004660	10008 tgragetgetgraft 10022	19	Reps1
TGGAGCCCCTGGAGT	Pro	AC004490	14389 tggagccctggagt 14403	19	mucin, ataxin-2, N-WASP
THEOLOTICACIC	Glin	ACOUSTIE	18315 treatiteatitease 18301	19p12(NR6)	TPOR, PRIR, OBRetc.
ТОВАВСАВАТОВАВС	Arg	AC004004	39010 tggagcagatggagc.33998	18p12	PRIR ILIZR GM.
		bresumal	presumably a pasudogene		CSFRb. IL.11R(+stop.codon)
			39177 tggagcagatggagc 39163		IL3Ra(weak, 22 nonWS)
TOGAGCACCTGGAGT	Thr	AD000685	21015 tgrageacetgragt 21001	19p13.1	GM-CSFRhinonWS+stop)
TGGAGCTGATGGAGC	#	AC002116	37164 tggagctgatggagc 37178	19413.1	Mpc2, Pro rich protein
TGGAGCCAGTGGAGC	Gh	M63796	7622 tggagccagtggagc 7638	19413.3	NFCP, titin, Jagged 2
TOGAGITACTGGAGT	£	AC004505	31711 iggagitaciggagt 31725	20	Gap junction
TGGAGTTGATGGAGC	:		31093 tgrafitgatgrage 31079	20912-18.2	smaphorin F, GHS-R, JAK2
TOGAGTCAATOGAGT	G E	1.35677	579 iggagicaaiggagt 666	21(MX1)	GLI, HAIB, ILTRIADAWSI
TGGAGTGCCTGGAGT	Ala		29892 tggagtgcctggagt 29906	21	IgV, Cyt.Oxidase
TOGAGTGTCTGGAGT	Val	AG000937	105 iggagigiciggagi 91	219	peroxidasin

Table 6

TTGGAGTAATGGAGT Lys TTGGAGTGGAGT Arg TGGAGTGTCTGGAGT Glu TGGAGTGTCTGGAGT Val ###################################	AP000034 AP000039	28803 tegartaasterest 28789	21011.1	No/Co exchanger
	AP000039			THE CA CACHALLES
	A DAMAGA	24900 iggagiaggiggagi 24914	21q11.1	RNA polymerase
	CCOOOLT	21721 tggagtgagtggagt 21707	21911.1	smaphorin F
	AG000038	26164 tggagtgtctggagt 28150	21411.1	Glycoprotein
	WARDOO 387.	NAMES AND DESCRIPTION OF THE STATE OF THE ST		
	AP000045	7204 tggagtgcctggagt 7218	21q11.1	IgV,
	AP000062	93728 tggagcatttggage 93740	21q11.1	If H, TCF-8, CETP
	AP000037	17581 tgsagcetetggage 17567	21q11.1	Alu, BCGF
Ī	AP000015	48480 iggagiggiggagi 48494	21422.2	TPO
	291055	151632 iganiganignat 151618	22	semsphorin H, CD44
TOGAGCTGGTGGAGT Trp	988882	8503 tgragetgftgragt 8489	22	ERF
TGGAGTGGGTGGAGT Gly	295113	69325 iggayiggiygagi 69311	22q11.2-qter	factor H
TGGAGTGCATGGAGT Ala	293784	36348 tggagtgcatggagt 36862	22q11.2-qter	Alu, NF2
TGGAGCCTCTGGAGT Leu	AC002308	130741 iggagecteiggagt 130727	22q11.2	collagen al, Na channel
TGGAGTCCCTGGAGC Pro	AC000086	40705 tggagteetggage 40691	22q11.2	ADH, collagen
TOGAGCATCTOGAGC 110	L77669	21088 tggagcatctggage 21074	22q11Dideory	22q11DiGeorgeclathrin heavy chain 2
S. S. S. LIE, S. S. LIE, S.		NCOOD LEED AND THE REPORTED THE STATE OF THE	SELVE TO SELVE	发展交流:你的程序的国家在开始的支票的国际的时候 ?
TGGAGCAGCTGGAGG Ser	AC000092	9817 tggagcagctggagc 9803	22q11.2	IgHv, PC binding
TOGAGCAACTOGAGC Asn	296116	64481 tggagcaactggage 64495	22q12.1	p150, ILAROWSNWSF"
TOGAGCTAGTGGAGC	AC003071	114780 tggagctagtggagc 114794	22q12,1-qter	FGFRb
TGGAGCCCTTGGAGC Pro	708097	2675 tggagccettggage	22q12-qter	collagen al
TGGAGCTCTTGGAGT Ser	Z79899	40825 tggagetettggagt 40839	22q12-qter	collagen a1,

Table 7

5			OR. etc.		VIP					top							Se.				Ó		
10	blastx (expect=100)	MYF: 5, p53, INK48	GM-CSFRb/H.3R.EPOR. etc	atrophilin-related	Alu, [HESIVI], AD7c-NTP	comp PDase	WNT-8D, Mi-2	reverse transcriptese	Selenoprotein	homeoprotein, OBR(stop)	Terb, Filipira	VPS41 homolog	GAP, mLIFR(stop)	THONAS CONTRACTOR	complement C8, C7		reb GDI alpha, BDGF	RTase, transposon	OT-R, acrosin	PMK1	Xp11.23-Xp11.4rMHC class 1a, HLA-C	myosin H	
15	ple			lat	₹	8	W	2	Q,	Ã	뫋	5	9		8		4	à	ò	2	p11.4r	E	e
20	Locus	22q12-qter	22912.3-13.2	22413	22q18	×	×	×	*	×	×	×	×		×		×	×	Xp11	Xp11	Xp11.23-X	Xp22	Xp22
25		ogt 12561	gagt 85336	ragt 77726	agt 31068	agt 19137	a gt 31816	gagt 114958	gt 7785	gagt 70690	ıgt 5888	gc 4890	grage 239989		gc 9948		gage 112871	gage 144892	gage 31695	age 88717	age 46076	gagt 116346	ragt 89530
30	Hit site	12675 tggagcattggagt 12661	85322 tepantepantepant 85336	77740 tgsagtgagtggagt 77726	31082 tggagtgcatggagt 31068	19151 tggagttgttggagt 19137	31830 tggagtgtetggagt 31816	114972 iggastettiggast 114958	7749 tggagtetetggagt 7785	70704 tggagcaactggagt 70690	5702 iggagcaigiggagt 5888	4904 tggagtteetggage 4890	239975 tggagtggctggage 239989	TROUGHTOMS ALSOSTENIETERFUNDENDEN	9934 tggagtetatggage 9948	ACTOR RESERVATION	112657 tggagctgttggage 112671	144906 tggagctcatggage 144892	31681 tegaetaaateere 31695	88703 tggagtkegtggage 88717	46089 tggageteetggage 46075	116332 tggagttteiggagt 116346	89544 tggagttgetggagt 89530
35	Accession No.	Z81308	ALRONGES 7	U62317	Z980 18	AC002422	273418	Z83843	289706	AC002420	27.72.13	Z83131	AC004388	KOUGHUSK	270050	TATES STATES	L44140	AC004383	Z69732	292545	AL008709	U96409	Accountage
40	Xaa Ao	His	Gla	Gla	Ala	Š	Val	r S	25	Asn	Met	Ser	G G		red Ted		ਹੈ	Ser	Ľý.	Ser	Phe	Phe	င်
45		TOGAGCCATTGGAGT	TGGAGGGAGTGGAGT	Tregagteagteagt	TOGAGTOCATGGAGT	TOOAGTTOTTOOAGT	TOGAGTGTCTGGAGT	PTCTTTGGAGT	TGGAGTCTCTGGAGT	TOGAGCAACTGGAGT	TOGAGCATGTGGAGT	TOGAGTTCCTGGAGC	TOGAGTGGCTGGAGC.	tigos una dencina de comus	TGGAGTCTATGGAGC	TOCALITICIDATE CATACON INCELENCIA DE LA PARTICION DE LA COMPOSITION DEL COMPOSITION DE LA COMPOSITION	TGGAGCTGTTGGAGC	TGGAGCTCATGGAGC	TGGAGTAAATGGAGC	TOGAGTTCGTGGAGC	TGGAGCTTCTGGAGC	TOGAGITTCTGGAGT	TGGAGTTGCTGGAGT
	Probe	TOGAC	TGGAG	TTGGA	TGGAC	TOOAC	TOGAC	TOGAC	TOGAC	TGGA(TGGA(TGGA(TOGA(TOGE	TGGA	TOGAL	TGGA(TGGA	TGGA(TOGA	TOGA	TOGA	TGGA

Tabl

55

5		ब्राह्म त
10	blasts (expect=100) 33 dopamine receptor DNA repair protein, MHC RNA polymerase XTCF-3c GHRHR, Werner Synd. gp41, clk3 gp41, clk3 Alu, hpk EGFR, Smad6	PRLR(opposite) envelope mIL11R(opposite) CFTC, [LEGID] I-809, TeR, IL9R(nanWS) Large tegument protein commonH(oppsit, nanWS) bet2,mucln,
20	Locus Xq21.1-21. Xq23 Xq28 Xq28 Xq28 Xq28 Xq28 Xq28 Xq28 Xq28	PLCb2 mouse DNA MHC class II RG208C03 EDH17B2 Bat2
25	Excession No. Hit site Locus AL021709 11982 tggagtcactggagt 11968 Xq21.1-2 AC000113 119186 tggagtcactgragt 119202 Xq23 AF007262 98212 tggagtcagtgragt 98226 Xq28 AF007262 98212 tggagtcagtgragt 98266 Xq28 AF001889 144466 tggagtcagtgragt 144451 Xq28 AF01889 107409 tggagtcagtgragt 107806 Xq28 AF03876 107409 tggagtcagtgragt 107806 Xq28 AF03876 107409 tggagtcagtggggggggggggggggggggggggggggg	rtgragt 12913 ctgragt 51658 ctgragc 22230 atgragc 14290 ttgragc 24928 tgragc 6373
30	Hit site 11982 tggagtcattggagt 11968 119186 tggagtcgrergagt 11920 98212 tggagtcgrergagt 98226 85792 tggagtcagtggagt 98226 144466 tggagtcagtggagt 14444 107409 tggagttantgragt 1078 197409 tggagttantgragt 1078 196698 tggagttcreggagt 10871	12898 teracturterat 12913 61672 teraccacterat 61658 22244 teraccaterac 22230 14276 teraccaterac 14290 24914 teracctterac 24928 6359 teracctterac 6373
35	Accession No. AL021708 AC000113 AF007262 UB2671 AF011889 AF030876 AF030876 AC002531 AC002531	U26426 U96726 UBUNYA AC002482 U34879 Z15025
40	Xaa Hii Cys Cys Cys Gin Gin Ser	Leu Asn Pro Arg Ser Leu
45	Probe TTGGAGTCACTGGAGT TGGAGCTGGTGGAGT TGGAGCTGGTGGAGT TGGAGCTGCTGGAGT TGGAGCTAATGGAGC TGGAGCTAATGGAGC TGGAGCTAATGGAGC TGGAGCTAATGGAGC TGGAGCTAATGGAGC TGGAGCTAATGGAGC TGGAGCTACTGGAGT TGGAGCAGTTCTGGAGT	TGGAGTTTGTGGAGT TGGAGCACTGGAGC TGGAGCCCTGGAGC TGGAGCTCTTGGAGC TGGAGCTCTTGGAGC
50	Probe TTGGAG TGGAG TGGAG TGGAG TGGAG TGGAG TGGAG TGGAG TGGAG	TGGAG TGGAG TGGAG TGGAG TGGAG

Redundant clones are shadowed. White and underlined letters indicate hits and pseudo-hits, respectively.

Four clones out of these 28 clones (AC002303, AC003112, AL008637, and AC004004) hit several known hemopoietin receptors, however, AC004004 was excluded as it has a stop codon downstream three amino acids of the

Trp-Ser-Xaa-Trp-Ser motif. Among the three remaining clones, AL008637 was thought to be a known receptor, GM-CSF receptor β. AC002303 is the BAC clone CIT987-SKA-670B5 derived from the 16p12 region of human chromosome no. 16 registered by TIGR group on June 19, 1997 and comprises the full-length of 131530 base pairs (Lamerdin, J.E., et al., GenBank Report on AC003112, 1997).

[0141] As shown in Fig. 1, a BlastX search (query: 180 nucleotides of 40861-41040 including tggagtgaatggagt (40952-40966), the only probe sequence within the AC002303) revealed that numerous hemopoietin receptors starting with the TPO receptor and leptin receptor show an evident homology, however, there were no known, database-registered hemopoietin receptors that completely matched the query sequence. Also, a BlastX scanning was done under the above conditions, by excising a sequential 180-residue nucleotide sequence in both the 5' and 3' directions, centering on the 180-residue nucleotide sequence mentioned above, and when this was used as a query, two sequences having a homology to known hemopoietin receptors were found in the regions 39181-39360 and 42301-42480, and were thought to be other exons of the same gene (Fig. 2).

[0142] A Pro-rich motif PAPPF was conserved in the 39181-39360 site, and a Box 1 motif in the 42301-42480 site. The 3' side exon adjacent to the exon containing the Trp-Ser-Xaa-Trp-Ser motif has a transmembrane domain, and this domain has a low homology with other hemopoietin receptors, and was not detected by the BlastX scan. These results suggested the possibility of a novel hemopoietin receptor gene existing in the above-described BAC clone CIT987-SKA-670B5.

Example 2: Search for NR8 expressing tissues using RT-PCR

[0143] Pseudogenes have been reported to exist in several hemopoietin receptors (Kermouni, A. et al., Genomics, 1995, 29 (2) 371-382; Fukunaga, R. and Nagata, S., Eur. J. Biochem., 1994, 220, 881-891). To verify that NR8 is not a pseudogene, and with the objective of identifying NR8 expressing tissues, transcripts of the NR8 gene were searched by RT-PCR method.

In the AC002303 sequence of the above-described BAC clone, several exon regions widely conserved at the amino acid translation level in known cytokine receptors were surmised, and on the sequence of the surmised exon region, the following primers were synthesized. (See Fig. 5 for the location of each primer.)

NR8-SN1; 5'- CCG GCT CCC CCT TTC AAC GTG ACT GTG ACC -3' (SEQ ID NO: 9) NR8-SN2; 5'- GGC AAG CTT CAG TAT GAG CTG CAG TAC AGG -3' (SEQ ID NO: 10) NR8-AS1; 5'- ACC CTC TGA CTG GGT CTG AAA GAT GAC CGG -3' (SEQ ID NO: 11) NR8-AS2; 5'- CAT GGG CCC TGC CCG CAC CTG CAG CTC ATA -3' (SEQ ID NO: 12)

[0145] Using the Human Fetal Multiple Tissue cDNA Panel (Clontech #K1425-1) as the template, RT-PCR was attempted using combinations of the above primers. Advantage cDNA Polymerase Mix (Clontech #8417-1) was used for the PCR, which was conducted under the conditions below using the Perkin Elmer Gene Amp PCR System 2400 Thermalcycler.

[0146] Namely, the PCR conditions were, 94°C for 4 min, 5 cycles of "94°C for 20 sec, 72°C for 3 min," 5 cycles of "94°C for 20 sec,70°C for 3 min," 28 cycles of "94°C for 20 sec, 68°C for 3 min," 72°C for 4 min, and completed at 4°C.

From the primer locations shown in Fig. 5, amplifications of bands sized 330 bp, 258 bp, 234 bp, and 162 bp can be expected from the combinations of SN1/AS1, SN1/AS2, SN2/AS1, and SN2/AS2. When evaluated using human fetal liver, brain, and skeletal muscle cDNA as the template, clear bands having the anticipated sizes were obtained in the fetal liver only with the respective primer combinations (Fig. 3).

[0148] An amplification was not seen at all for fetal brain cDNA, and a band of about 650 bp and a broad band of 400 to 500 bp were observed for fetal skeletal muscle cDNA. However, since the band sizes for skeletal muscle cDNA remained constant even when different combinations of primers were used, it is thought that these bands were non-specific amplifications due to some reason.

[0149] The obtained PCR product was subcloned to pGEM-T Easy vector (Promega #A1360), and the nucleotide sequence was determined. The recombination of PCR products to the pGEM-T Easy vector was done by T4 DNA Ligase (Promega #A1360) reacted at 4°C for 12 hr. The genetic recombinant between the PCR product and pGEM-T Easy vector was obtained by transforming *E.coli* strain DH5 α (Toyobo #DNA-903).

[0150] For the selection of the genetic recombinant, Insert Check Ready (Toyobo #PIK-101) was used. The dRhod-amine Terminator Cycle Sequencing Kit (ABI/Perkin Elmer #4303141) was used for determining the nucleotide sequence, and analysis was done using the ABI PRISM 377 DNA Sequencer. As a result of determining the nucleotide sequences of all inserts of the 10 independent clones of genetic recombinants, all clones were found to comprise a single nucleotide sequence. These obtained sequences were verified to be partial nucleotide sequences of NR8.

20

Example 3: Full-length cDNA cloning by the 5' and 3'-RACE methods

[0151] Using the thus-obtained fetal liver-derived cDNA, 5' and 3'-RACE methods were conducted to obtain full-length cDNA (Fig. 4).

3-1) 5'-RACE method

[0152] 5'-RACE PCR was performed using the above-mentioned NR8-AS1 primer for primary PCR, and NR8-AS2 primer for secondary PCR. Human Fetal Liver Marathon-Ready cDNA Library (Clontech #7403-1) was used as the template and Advantage cDNA Polymerase Mix for the PCR experiment. As a result of PCR under the following conditions using the Perkin Elmer Gene Amp PCR System 2400 Thermalcycler, two types of PCR products were obtained, which have different sizes through selective splicing.

[0153] Primary PCR conditions were 94°C for 4 min, 5 cycles of "94°C for 20 sec, 72°C for 4 min," 5 cycles of "94°C for 20 sec, 70°C for 4 min," 28 cycles of "94°C for 20 sec, 68°C for 4 min," 72°C for 4 min, and completed at 4°C.

[0154] Secondary PCR conditions were 94°C for 4 min, 5 cycles of "94°C for 20 sec, 70°C for 3 min 30 sec," 28 cycles of "94°C for 20 sec, 68°C for 3 min 30 sec," 72°C for 4 min, and completed at 4°C.

[0155] Both types of PCR products obtained were subcloned to pGEM-T Easy vector as mentioned earlier, and the nucleotide sequences of all inserts were determined for the 16 independent clones of genetic transformants. As before, the dRhodamine Terminator Cycle Sequencing Kit was used for determining the nucleotide sequence, and analysis was done using the ABI PRISM 377 DNA Sequencer. As a result, the clones can be divided into two groups, one having 14 clones, and the other having 2 clones, by the length of the base pairs and the differences in sequence (though described later, the differences lie in the products due to selective splicing, and the group of 14 independent clones comprises the sequence corresponding to exon 5 in the genomic sequence, and the remaining group of two independent clones does not have this sequence).

3-2) 3'-RACE method

25

[0156] 3'-RACE PCR was performed using the above-mentioned NR8-SN1 primer for primary PCR, and NR8-SN2 primer for secondary PCR. Human Fetal Liver Marathon-Ready cDNA Library was used as the template similar to 5'-RACE PCR, and Advantage cDNA Polymerase Mix for the PCR experiment. As a result of conducting PCR under the conditions shown in 3-1), a single band PCR product was obtained.

[0157] The obtained PCR product was subcloned to pGEM-T Easy vector as above, and the nucleotide sequences of all inserts of the 12 independent clones of genetic recombinants were determined. As before, the dRhodamine Terminator Cycle Sequencing Kit was used for determining the nucleotide sequence, and the sequences determined were analyzed using the ABI PRISM 377 DNA Sequencer. As a result, all 12 independent clones showed a single nucleotide sequence.

[0158] As a result of analyzing the nucleotide sequence of the fragments (approximately 1.1 kb and 1.2 kb) amplified by 5'-RACE and 3'-RACE, respectively, it was conceived that the approximately 260 bp of each fragment overlap and extend to the 5' side and 3' side, and contain almost the full-length of NR8 mRNA. These were joined to make a full-length cDNA (NR8a) (Fig. 5 and Fig. 6). The plasmid containing the NR8a cDNA (SEQ ID NO: 2) was named pGEM-NR8a, and *E.coli* containing the plasmid has been internationally deposited at the National Institute of Bio-Science and Human-Technology, Agency of Industrial Science and Technology (1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan) under the accession number FERM BP-6543 since October 9, 1998 according to the Budapest Treaty.

[0159] As shown in Fig. 5 and Fig. 6, in the ORF of NR8α cDNA, the Met starting from nucleotide no. 441 is thought to be the start codon due to the presence of an inframe stop codon 39 bp upstream, and completes with two stop codons starting from nucleotide no. 1524. It has the features of, from the N terminus in order, a typical secretion signal sequence, a domain thought to be the ligand binding site containing a Cys residue conserved in other hemopoietic receptor members, a Pro-rich motif, Trp-Ser-Xaa-Trp-Ser motif, a transmembrane domain, a Box 1 motif thought to be involved in signal transduction, and such features of hemopoietin receptors. From the above results, the NR8 gene was thought to encode a novel hemopoietin receptor.

[0160] Analysis of fragments amplified by the RACE method suggested the presence of a splice variant. As a result of nucleotide sequence analysis, this variant was revealed to be lacking approximately 150 bp including the above-described Pro-rich motif of NR8a. Moreover, as a result of comparing AC002303 sequence with NR8a, and carrying out analogy of exons/introns (Table 9), the above-described variant was thought to be deficient of the 5th exon due to selective splicing.

Table 9

5 10										connects to exon 10, Box2-like sequence (PSTLEVYSCH), nontypical exon/intron boundary	AELVESDG), polyA	
20					osylation site	cosylation site				e sequence (PSTLEVYSCH),	sequence (PSTLEVYSCH, P.	
30	Characteristics	inframe stop codon	start codon, signal peptide	conserved Cys residue	conserved Cys residue, N-glycosylation site	Pro-rich motif (PAPPF), N-glycosylation site	gtWSEWSdp motif	transmembrane domain	Box1 (IWAVPSP)	connects to exon 10, Box2-like	double stop codons, Box2-like sequence (PSTLRVYSCH, PAELVESDG), polyA	double stop codons, polyA
40	# in NR8	: 1-424	: 425-489	: 490-592	: 593-792	: 793-947	: 948-1125	: 1126-1225	: 1226-1307	: 1308-1405*	: 1308-2465**	: 1406-1934*
45	Exon # in AC002303	7	26334-26398	30625-30727	33766-33965	39240-39394	40820-40997	41455-41554	42285-42366	44812-44909	44812-45922<	10 45441-45922<
50	Exon	-	7	m	4	40	9	7	0 0	9a	જ	22

NR8 a*: exons 1+2+3+4+5+6+7+8+9a+10

NR8 \(\beta \); exons 1+2+3+4+6+7+8+9a+10

(two alternative reading frames for soluble-type and transmembrane(-signal)-type)

NR8 y**: exons 1+2+3+4+5+6+7+8+9b

This variant (NR8 β) can encode a soluble receptor in the truncated form by the joining of the 6^{th} exon directly to the 4th exon and causing a frame shift. The boundary between the exons and the introns takes a consensus

55

sequence in most cases, but the boundary between the 9th exon (Exon 9a) and the 9th intron is the only boundary that takes a different sequence from the consensus sequence (nag/gtgagt, etc.), being acc/acggag. The plasmid comprising NR8β cDNA (SEQ ID NO: 4) was named pGEM-NR8β, and *E.coli* comprising the plasmid has been internationally deposited at the National Institute of BioScience and Human-Technology, Agency of Industrial Science and Technology (1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan) under the accession number FERM BP-6544 since October 9, 1998 according to the Budapest Treaty.

Example 4: Northern blotting

[0162] In order to analyze the distribution and mode of NR8 gene expression in each human organ and human cancer cell lines, Northern blot analysis was done using the cDNA encoding the full-length NR8 α protein prepared based on all the cDNA fragments obtained in Example 3 as a probe. The probe was prepared using Mega Prime Kit (Amersham, cat#RPN1607) by radiolabeling it with [α - 37 P] dCTP (Amersham, cat#AA0005).

[0163] As Northern blots, Human Multiple Tissue Northern (MTN) Blot (Clontech #7760-1), Human MTN Blot IV (Clontech #7766-1), and Human Cancer Cell Line MTN Blot (Clontech #7757-1) were used. Express Hyb Hybridization Solution (Clontech #8015-2) was used for hybridization.

[0164] Hybridization conditions were: a prehybridization at 68°C for 30 min, followed by hybridization at 68°C for 14 hr. After washing under the following conditions, the blots were exposed to Imaging Plate (FUJI#BAS-III), and the gene expression of NR8 mRNA was detected by the Image Analyzer (FUJIX, BAS-2000 II). Washing conditions were: (1) 1x SSC/0.1% SDS, at room temperature for 5 min; (2) 1x SSC/0.1% SDS, at 50°C 30 min; and (3) 0.1x SSC/0.1% SDS,

at 50°C 30 min.

[0165] Fig. 12 shows the results of Northern blot analysis of NR8 expression in each organ. A total of three different-sized mRNA, one 5kb-sized and two 3 to 4kb sized, were detected in human adult lung, spleen, thymus, skeletal ent-sized mRNA, one 5kb-sized and two 3 to 4kb sized, were detected in human adult lung, spleen, thymus, skeletal ent-sized mRNA, one 5kb-sized and two 3 to 4kb sized, were detected in human adult lung, spleen, thymus, skeletal ent-sized mRNA, one 5kb-sized and two 3 to 4kb sized, were detected in human adult lung, spleen, thymus, skeletal ent-sized mRNA, one 5kb-sized and two 3 to 4kb sized, were detected in human adult lung, spleen, thymus, skeletal ent-sized mRNA, one 5kb-sized and two 3 to 4kb sized, were detected in human adult lung, spleen, thymus, skeletal ent-sized mRNA, one 5kb-sized and two 3 to 4kb sized, were detected in human adult lung, spleen, thymus, skeletal ent-sized mRNA, one 5kb-sized and two 3 to 4kb sized, were detected in human adult lung, spleen, thymus, skeletal ent-sized mRNA, one 5kb-sized and two 3 to 4kb sized, were detected in human adult lung, spleen, thymus, skeletal ent-sized mRNA, one 5kb-sized and two 3 to 4kb sized, were detected in human adult lung, spleen, thymus, skeletal ent-sized mRNA, one 5kb-sized and two 3 to 4kb sized, were detected in human adult lung, spleen, thymus, skeletal ent-sized mRNA, one 5kb-sized and two 3 to 4kb sized, were detected in human adult lung, spleen, thymus, skeletal ent-sized mRNA, one 5kb-sized and two 3 to 4kb sized, were detected in human adult lung, spleen, thymus, skeletal ent-sized mRNA, one 5kb-sized and two 3 to 4kb sized, were detected in human adult lung, spleen, thymus, skeletal ent-sized mRNA, one 5kb-sized mRNA, on

Example 5: Plaque screening

[0166] Northern blot analysis of NR8 gene expression detected at least three types of specific mRNA bands with different sizes in each human organ and in each human cancer cell line for which NR8 gene expression was seen. However, the inventors had succeeded in isolating only two types of selective splicing variants, namely NR8α and NR8β genes, in the above-described Examples. Therefore, the inventors performed plaque screening with the objective of isolating the gene of the third selective splicing variant. Human Lymph Node (Clontech, cat#HL5000a) that showed a strong NR8 gene expression in the above-mentioned Northern analysis results, was used as the cDNA library. The probe used was NR8α cDNA fragment, which was radio-labeled by [α-32P] dCTP (Amersham, cat#A0005) using the Mega Prime Kit (Amersham, cat#RPN1607). Approximately 7.2 x 105 plagues of Human Lymph Node cDNA Library were blotted onto a Hybond N (+) (Amersham, cat#RPN303B) charged nylon membrane to conduct primary screening. Rapid Hybridization Buffer (Amersham, cat#RPN1636) was used for the hybridization. Hybridization conditions were: a prehybridization at 65°C for 1 hr, followed by hybridization at 65°C for 14 hr. After washing under the conditions, (1) 1x SSC/0.1% SDS, at room temperature for 15 min; (2) 1x SSC/0.1% SDS, at 58°C 30 min; and (3) 0.1x SSC/0.1% SDS, at 58°C 30 min, the membrane was exposed to an X-ray film (Kodak, cat#165-1512) to detect NR8 positive plaques. [0167] As a result, positive or pseudo-positive 16 independent clones were obtained. A similar secondary screen-

[0167] As a result, positive or pseudo-positive to independent clones were obtained. A similar secondary screening was done for the 16 clones obtained from the primary screening to successfully isolate plaques of NR8 positive 15 independent clones. The inserts of these 15 clones were amplified by PCR through a pair of primers located in both ends of the λgt10 vector cloning site. Advantage cDNA polymerase Mix (Clontech #8417-1) was used for the PCR reaction conducted using the Perkin Elmer Gene Amp PCR System 2400 Thermalcycler, under the following experiment conditions. Namely, 94°C for 4 min, 5 cycles of "94°C for 20 sec, 70°C for 4 min," 30 cycles of "94°C for 20 sec, 68°C for 4 min, and completed at 4°C.

[0168] Similar to above, the obtained PCR products were subcloned to pGEM-T Easy vector, and the nucleotide sequence of the inserts were determined using the BigDye Terminator Cycle Sequencing SF Ready Reaction Kit (ABI/Perkin Elmer#4303150), and analyzed by the ABI PRISM 377 DNA Sequencer. As a result, among the 15 clones obtained, at least two clones showed an insertion of 177 amino acids flanking the NR8α C terminus, and since this portion derives from the 9th intron of the NR8 gene and is removed by splicing in NR8α, this 3rd selective splicing variant was named NR8γ. The plasmid containing the NR8γ cDNA (SEQ ID NO: 8) was named pGEM-NR8γ, and *E.coli* containing the plasmid has been internationally deposited at the National Institute of BioScience and Human-Technology, Agency of Industrial Science and Technology (1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan) under the accession number FERM BP-6545 since October 9, 1998 according to the Budapest Treaty.

[0169] Among the 15 clones obtained here, four clones other than the two mentioned above were further selected, and their nucleotide sequences were analyzed. As a result, among the six clones selected, two clones had the NR8β nucleotide sequence, and all the remaining four clones had the NR8γ nucleotide sequence. Therefore, the six clones for which the nucleotide sequence was analyzed did not contain the NR8α sequence. The NR8γ cDNA clones for which the nucleotide sequences were determined included those having 3'-UTR (3UTR-2) in which a poly-A tail is added to the site elongated 483 bp from the 3'-UTR of NR8α obtained by the 3'-RACE method (3UTR-1), and those having 3'-UTR (3UTR-3) in which a poly-A tail is added to the site elongated 2397 bp from the 3'-UTR of NR8α. On the other hand, the two clones of NR8β for which the nucleotide sequence was decided above, both contained the nucleotide sequence of 3UTR-3. In Table 10 below, the 3' end non-translation region sequences contained in the cDNA clones thus far obtained are summarized. Also, the nucleotide sequences of 3UTR-1, 3UTR-2, and 3UTR-3 following the translation stop codon of NR8γ cDNA sequence are shown in SEQ ID NO: 23, SEQ ID NO: 24, and SEQ ID NO: 25, respectively.

[0170] Moreover, the nucleotide sequences of 3UTR-B1 and 3UTR-B3 following the translation stop codon of NR8 β cDNA sequence are shown in SEQ ID NO: 26 and SEQ ID NO: 27, respectively.

Table 10

NR8 cDNA clone 3'-UTR sequence

NR8α 3UTR-1

NR8β 3UTR-B1, 3UTR-B3

NR8γ 3UTR-1, 3UTR-2, 3UTR-3

[0171] The nucleotide sequences thus obtained revealed that the gene transcripts of NR8 can encode various different sizes not only due to the differences in selective splicing, but also due to the length of the 3' end non-translation region sequence. This may adequately explain the presence of various-sized transcripts detected by Northern blot analysis.

30 Example 6: Ligand screening

15

20

35

40

45

50

6-1) Construction of NR8 chimeric receptor

A screening system was constructed for searching a ligand that can specifically bind to NR8, namely, a novel hemopoietin. First, the cDNA sequence encoding the extracellular region of NR8α (the amino acid sequence of SEQ ID NO: 1; from the 1st Met to the 228th Glu) was amplified by PCR, and this DNA fragment was bound to DNA fragments encoding the transmembrane region and the intracellular region of a known hemopoietin receptor to prepare a fusion sequence encoding a chimeric receptor. As described above, there were several candidates for the partner, the known hemopoietin receptor, and among them, the human TPO receptor (Human MPL-P) was selected. Namely, after amplifying the DNA sequence encoding the intracellular region that includes the transmembrane region of the human TPO receptor by PCR, this sequence was bound to the cDNA sequence encoding the extracellular region of NR8α in frame, and inserted into a plasmid vector expressible in mammalian cells. The expression vector constructed was named pEF-NR8/TPO-R. A schematic diagram of the structure of the constructed NR8/TPO-R chimeric receptor is shown in Fig. 14, and the nucleotide sequence of the chimeric receptor and the expressible amino acid sequence encoded by it are shown in SEQ ID NOs: 13 and 14, respectively. Together with an expression vector pSV2bsr (Kaken Pharmaceutical Co., Ltd.) containing Blastcidin S resistant gene, the NR8/TPO-R chimeric receptor-expressing vector was introduced into the growth factor-dependent cell line Ba/F3, and forcedly expressed. Gene-introduced cells were selected by culturing with 8 µg/ml of Blastcidin S hydrochloride (Kaken Pharmaceutical Co., Ltd.) and IL-3. By transferring the obtained chimeric receptor-introduced cells to an IL-3-free medium, adding a material expected to contain a target ligand, and culturing, it is possible to conduct a screening that uses the fact that survival/proliferation will be possible only when a ligand that specifically binds to NR8 is present.

6-2) Preparation of NR8/IgG1-Fc soluble fusion protein

[0173] NR8/lgG1-Fc soluble fusion protein was prepared to be used for searching cell membrane-bound ligands, or the detection of soluble ligands through BlAcore (Pharmacia) and West-western blotting. A fusion sequence encoding the soluble fusion protein was prepared by binding a DNA fragment encoding the extracellular region of NR8α (amino acid sequence; from the 1st Met to the 228th Glu) prepared in 5-1) with the DNA fragment encoding the Fc

region of human immunoglobulin IgG1 in frame. A schematic diagram of the structure of the soluble fusion protein encoding the NR8/IgG1-Fc is shown in Fig. 14, and the nucleotide sequence and the expressible amino acid sequence encoded by it in SEQ ID NOs: 15 and 16, respectively. This fusion gene fragment was inserted into a plasmid vector expressible in mammalian cells, and the constructed expression vector was named pEF-NR8/IgG1-Fc. If this pEF-NR8/IgG1-Fc is forcedly expressed in mammalian cells, and after selecting stable gene-introduced cells, the recombinant protein secreted into the culture supernatant can be purified by Immunoprecipitation using anti-human IgG1-Fc antibody, or by affinity columns, etc.

6-3) Construction of an expression system of NR8\$ and purification of recombinant NR8\$ protein

[0174] The recombinant NR8β protein was prepared to be used for searching cell membrane-bound ligands, or the detection of soluble ligands using BlAcore (Pharmacia) or West-western-blotting. Using the amino acid coding sequence of NR8β cDNA, the stop codon was replaced by point mutation to a nucleotide sequence encoding an arbitrary amino acid residue, and then, was bound to the nucleotide sequence encoding the FLAG peptide in frame. This bound fragment was inserted into a plasmid vector expressible within mammalian cells, and the constructed expression vector was named pEF-BOS/NR8β FLAG. Fig. 14 shows a schematic diagram of the structure of the insert NR8β FLAG within the constructed expression vector. Moreover, the nucleotide sequence of NR8β FLAG and the expressible amino acid sequence encoded by it are shown in SEQ ID NOs: 17 and 18, respectively. If this pEF-BOS/NR8β FLAG is forcedly expressed in mammalian cells, and after selecting stable gene-introduced cells, the recombinant protein secreted into the culture supernatant can be immunoprecipitated using anti-FLAG peptide antibody, or may be purified by affinity columns, etc.

Example 7: Isolation of mouse NR8 (mNR8) gene

10

at 4°C.

7-1) The mouse homologous gene using human NR8 primers

[0175] Xenogeneic cross PCR cloning was isolated using the oligonucleotide primers, NR8-SN1 and NR8-SN2 (SEQ ID NOs: 9 and 10) at the sense side (downstream direction) and NR8-AS1 and NR8-AS2 (SEQ ID NOs: 11 and 12) at the antisense side (upstream direction), which were used for isolating full-length cDNA of human NR8. By combining the above-mentioned human NR8 primers, four types of primer sets can be constructed. Namely, using the combinations of "NR8-SN1 vs. NR8-AS1," "NR8-SN1 vs. NR8-AS2," "NR8-SN2 vs. NR8-AS1," and "NR8-SN2 vs. NR8-AS2," and a mouse brain cDNA library (Clontech #7450-1) and a mouse testis cDNA library (Clontech #7455-1) as templates, amplification of cross PCR products was expected. Advantage cDNA Polymerase Mix (Clontech #8417-1) was used for the PCR that was conducted under the conditions below using the Perkin Elmer Gene Amp PCR System 2400 Thermalcycler to amplify partial nucleotide sequence that could encode a mouse homologous gene of this receptor.

[0176] Namely, the cross PCR conditions were 94°C for 4 min, 5 cycles of "94°C for 20 sec, 72°C for 1 min," 5 cycles of "94°C for 20 sec, 70°C for 1 min," 28 cycles of "94°C for 20 sec, 68°C for 1 min," 72°C for 4 min, and completed

[0177] As a result, as shown in Fig. 15, an amplification of the cross PCR product was seen when any primer set was used. Also, a much clearer amplification product can be obtained when mouse brain cDNA was used as the template than when mouse testis cDNA was used.

7-2) Determination of the partial nucleotide sequence of the mouse homologous gene corresponding to NR8

45 [0178] Among the amplification products obtained in 7-1), mouse brain cDNA-derived product was subcloned to pGEM-T Easy vector (Promega #A1360), and the nucleotide sequence was determined. Namely, the PCR product was recombined into pGEM-T Easy vector by using T4 DNA ligase (Promega #A1360) at 4°C for 12 hr, and the resulting product was transfected into *E.coli* strain DH5α (Toyobo #DNA-903) to obtain the genetic recombinants of the PCR product and pGEM-T Easy vector. For the selection of genetic recombinant, Insert Check Ready Blue (Toyobo #PIK-201) was used. The nucleotide sequence was determined by using the BigDye Terminator Cycle Sequencing Ready Reaction Kit (ABI/Perkin Elmer #4303154), and sequence analysis was done by the ABI PRISM 377 DNA Sequencer. As a result of determining the nucleotide sequence of all inserts of eight independent clones of genetic recombinants, nucleotide sequences derived from the same transcript were obtained, and they were verified to be partial nucleotide sequences of mNR8. The obtained partial nucleotide sequence is shown in SEQ ID NO: 28.

7-3) Design of oligonucleotide primers specific to the mouse NR8 gene

[0179] Based on the partial nucleotide sequence of mNR8 obtained in 7-2), oligonucleotide primers specific to the

mouse NR8 were designed. As shown in the sequence given below, mNR8-SN3 was synthesized in the sense side (downstream direction), and, mNR8-AS3 was synthesized in the antisense side (upstream direction). ABI's 394 DNA/RNA Synthesizer was used for primer synthesis, which was done under 5'-end trityl residue addition conditions. After that, the complete length of the synthesized product was purified by using an OPC column (ABI #400771). These primers contributed towards the 5'-RACE method and the 3'-RACE method described later on.

mNR8-SN3; 5'- TCC AGG CGC TCA GAT TAC GAA GAC CCT GCC -3' (SEQ ID NO: 29) mNR8-AS3; 5'- ACT CCA GGT CCC CTG GTA GGA GGA GCC AGG -3' (SEQ ID NO: 30)

7-4) Cloning of cDNA corresponding to N terminus by the 5'-RACE method

[0180] To isolate full-length cDNA of mNR8, 5'-RACE PCR was performed using the NR8-AS2 primer (SEQ ID NO: 12) for the primary PCR, and the above-mentioned mNR8-AS3 primer (SEQ ID NO: 30) for secondary PCR. Mouse Brain Marathon-Ready cDNA Library (Clontech #7450-1) was used as the template, and Advantage cDNA Polymerase Mix for PCR experiment. As a result of conducting PCR under the following conditions using the Perkin Elmer Gene Amp PCR System 2400 Thermalcycler, PCR products of two different sizes were obtained.

[0181] Primary PCR conditions were 94°C for 4 min, 5 cycles of "94°C for 20 sec, 72°C for 100 sec," 5 cycles of "94°C for 20 sec,70°C for 100 sec," 28 cycles of "94°C for 20 sec,68°C for 100 sec," 72°C for 3 min, and completed at 4°C.

[0182] Secondary PCR conditions were 94°C for 4 min, 5 cycles of "94°C for 20 sec, 70°C for 100 sec," 25 cycles of "94°C for 20 sec, 68°C for 100 sec," 72°C for 3 min, and completed at 4°C.

Both types of PCR products obtained were subcloned to pGEM-T Easy vector as described above, and the nucleotide sequences were determined. Namely, the PCR products were recombined into the pGEM-T Easy vector with T4 DNA ligase at 4°C for 12 hr, and the resulting product was transfected into *E.coli* strain DH5α to obtain the genetic recombinant between the PCR product and pGEM-T Easy vector. Also, as mentioned earlier, Insert Check Ready Blue was used for the selection of the genetic recombinant. For the determination of the nucleotide sequence, the BigDye Terminator Cycle Sequencing Ready Reaction Kit was used, and the nucleotide sequence was analyzed by the ABI PRISM 377 DNA Sequencer. The result of determining the nucleotide sequences of all inserts of eight independent clones of genetic recombinants suggests that they could be divided into two groups of four clones each by the base pair length and differences in the sequence. This difference of the products was caused by selective splicing, and both of the obtained sequences were verified to contain the sequence of full-length mNR8 cDNA clone corresponding to the N terminal sequence. The cDNA clone comprising the long ORF containing the exon encoding the Pro-rich region was named mNR8γ, and the cDNA clone encoding the short ORF that does not have the Pro-rich region was named mNR8β, respectively.

7-5) Cloning of cDNA corresponding to C terminus using the 3'-RACE method

[0184] To isolate full-length cDNA of mNR8, 3'-RACE PCR was performed using the NR8-SN1 primer (SEQ ID NO: 9) for the primary PCR, and the mNR8-SN3 primer (SEQ ID NO: 29) for secondary PCR. Mouse Brain Marathon-Ready cDNA Library was used as the template, and Advantage cDNA Polymerase Mix for PCR experiment. As a result of conducting PCR under the above-mentioned conditions using the Perkin Elmer Gene Amp PCR System 2400 Thermalcycler, a PCR product of a single size was obtained. The PCR product obtained was subcloned to pGEM-T Easy vector as before according to 7-2), and the nucleotide sequence was determined. As a result of determining the nucleotide sequences of all inserts of four independent clones of genetic recombinants, it was found to contain the sequence of full-length mNR8 cDNA corresponding to the C terminal sequence. By combining the resulting nucleotide sequence determined through this 3'-RACE PCR, and the nucleotide sequence of 5'-RACE PCR products determined in 7-4), the complete nucleotide sequences of the full-length of mNR8γ and mNR8β cDNA were finally determined. The determined mNR8γ cDNA nucleotide sequence encoded by it are shown in SEQ ID NOs: 22 and 21, respectively. The determined mNR8β cDNA nucleotide sequence and the amino acid sequence encoded by it are shown in SEQ ID NOs: 20 and 19, respectively.

[0185] When the human and mouse NR8 amino acid sequences were compared, a high homology of 98.9% was seen for NR8 γ , and the homology was 97.2% even for NR8 β . This result strongly suggests the possibility that the same receptor gene has a vital functional responsibility that exceeds species. Fig. 16 shows a comparison between human and mouse NR8 β amino acid sequences. Fig. 17 shows a comparison between human and mouse NR8 γ amino acid sequences.

[0186] Both the full-length cDNAs of mNR8γ and mNR8β finally isolated were able to encode the transmembrane receptor protein comprising 538 amino acids, and the soluble receptor-like protein comprising 144 amino acids, respectively, through a selective splicing similar to human NR8. The structure below shows the characteristics of mNR8γ. First,

35

it is presumed that from amino acid no. 1 Met to amino acid no. 19 Gly is a typical secretion signal sequence. Here, since an inframe stop codon exists in the minus 13 position from the 1st Met, this Met residue is presumed to be the translation start codon. Next, from the 25th Cys to the 35th Cys residue is a typical ligand binding site sequence, and the 65th and 109th Cys residues also show the repetitive Cys residue structure conserved in other hemopoietin receptors as well. Next, the Pro-rich region is conserved by the Pro residues repeating at the 120th, 122nd and 123rd positions. From the 214th Trp to 218th Ser residue is a typical WSXWS-Box (WS motif). Following these structural characteristics in the extracellular region, a typical transmembrane domain is seen in the 23 amino acids from the 233rd Gly to the 255th Leu. In the intracellular region that follows, the 271st and 273rd Pro residues are Box-1 consensus sequence (PXP motif) conserved in other hemopoietin receptor members, and these are thought to be deeply involved in signal transduction. Thus, mNR8γ adequately satisfies the characteristics of hemopoietin receptor members.

[0187] On the other hand, for mNR8 β , among the structural characteristics for the above-mentioned extracellular region, the exon sequence encoding the Pro-rich region has been skipped by selective splicing, and directly joins the next exon encoding the WS motif. However, the WSXWS-Box sequence has been excluded from the reading frame by frame shift, and after coding up to 144thLeu, the translation frame completed the next stop codon. Thus, a soluble hemopoietin receptor-like protein that does not have a transmembrane domain is encoded.

Example 8: Expression analysis of mouse NR8 gene

20

8-1) Analysis of mouse NR8 gene expression by the RT-PCR method

[0188] To analyze the distribution and mode of NR8 gene expression in each mouse organ, the mRNA was detected by RT-PCR analysis. As primers for this RT-PCR analysis, NR8-SN1 primer (SEQ ID NO: 9) was used as the sense side (downstream direction) primer, and NR8-AS1 primer was used as the antisense side (upstream direction) primer. Mouse Multiple Tissue cDNA Panel (Clontech #K1423-1) was used as the template. Advantage cDNA Polymerase Mix (Clontech #8417-1) and the Perkin Elmer Gene Amp PCR System 2400 Thermalcycler were used for PCR. The target genes were amplified by the PCR reaction under the cycle condition given below.

[0189] PCR conditions were 94°C for 4 min, 5 cycles of "94°C for 20 sec, 72°C for 1 min," 5 cycles of "94°C for 20 sec, 70°C for 1 min," 24 cycles of "94°C for 20 sec, 68°C for 1 min," 72°C for 3 min, and completed at 4°C.

[0190] The results of RT-PCR are shown in Fig. 18. The NR8 gene was strongly detected in the testis and day 17 embryo, and a constitutive gene expression was seen in all mouse organs and in all mouse tissue-derived mRNA analyzed. By detecting the expression of the house keeping gene G3PDH under the above-mentioned PCR conditions using the mouse G3PDH primer for all the templates used in the analysis, it has been verified beforehand that the number of copies of template mRNA has been normalized (standardized) between samples. The detected RT-PCR product size herein was 320 bp, and this coincides with the size calculated by the determined nucleotide sequence. Therefore, it was thought to be the product of the mouse NR8 specific PCR amplification reaction. To further verify this, the PCR product amplified in the day 17 embryo was subcloned to pGEM-T Easy vector according to 7-2), and the nucleotide sequence was analyzed. The result verified that the PCR product could be a partial nucleotide sequence of mouse NR8, and the possibility that it might be the product of a non-specific PCR amplification was denied.

8-2) Analysis of mouse NR8 gene expression by Northern blotting

[0191] In order to analyze NR8 gene expression in each mouse organ, and with the objective of identifying the NR8 transcription size, gene expression analysis by the Northern blotting method was conducted. Mouse Multiple Tissue Northern Blot (Clontech #7762-1) was used as the blot. Among the 5'-RACE products obtained in 7-4), the mNR8 β cDNA fragment was used as the probe. The probe was radiolabeled with [α - 32 P] dCTP (Amersham, cat#AA0005) using Mega Prime Kit (Amersham, cat#RPN1607). Express Hyb Hybridization Solution (Clontech #8015-2) was used for hybridization. After a prehybridization at 68°C for 30 min, the heat-denatured labeled probe was added, and hybridization was conducted at 68°C for 16 hr. After washing under the following conditions, the blot was exposed to Imaging Plate (FUJI #BAS-III), and a mouse NR8 specific signal was detected by the Image Analyzer (FUJIX, BAS-2000 II).

[0192] Washing conditions were: (1) 1x SSC/0.1% SDS, at room temperature for 5 min; (2) 1x SSC/0.1% SDS, at 50°C 30 min; and (3) 0.5x SSC/0.1% SDS, at 50°C 30 min.

[0193] As a result, as shown in Fig. 19, a strong expression was seen in the mouse testis only, and no gene expression of the same gene was detected in other organs. Here, there is a difference between the results of RT-PCR analysis and Northern blot analysis. Since the detection sensitivity of the Northern method is much lower than RT-PCR, it is thought that mRNA with low expression levels could not be detected. However, results of both analyses coincide in the point that a strong gene expression was detected in the testis. Also, the size of the detected transcript was about 4.2 kb. [0194] Although there was a deviation of the expression levels in each mouse organ analyzed by the Northern method and RT-PCR, the gene expression was widely distributed, being detectable in all the organs analyzed especially

when using RT-PCR. This result contrasts with the human NR8 gene in which the expression was strong only in immunocompetent tissues, hemopoietic tissues, and specific leukemic cell lines, and the significance of this expression is extremely interesting. This means namely the possibilities that in mouse, the NR8 molecule not only is involved in systemic hemopoietic functions, or in immunological responses, and hemopoiesis, but also may be involved in various physiological regulatory mechanisms of the body. Namely, its ligand may be able to function as a hormone-like factor.

Example 9: Isolation of the NR8 mouse genomic gene by plaque screening

[0195] The present inventors analyzed the genomic structure of mouse NR8 gene and performed plaque hybridization against the mouse genomic DNA library. 129SVJ strain Genomic DNA (Stratagene #946313) constructed in Lambda FIX II was used as the library. This genomic library of approximately 5.0 x 10^5 plagues was developed and blotted to a Hybond N(+)(Amersham #RPN303B) charged nylon membrane to perform primary screening. NR8 β cDNA fragment of 5'-RACE products obtained in 7-4) was used as the probe. The probe was radiolabeled with [α - 32 P] dCTP prepared as above-mentioned in 8-2) using the Mega Prime Kit. Express Hyb Hybridization Solution was used for hybridization, and after a prehybridization at 65°C for 30 min, a heat-denatured labeled probe was added, and hybridization was done at 65°C for 16 hr. After washing under the following conditions, the membrane was exposed to an X-ray film (Kodak, cat#165-1512) to detect mouse NR8 positive plaques.

[0196] Washing conditions were: (1) 1x SSC/0.1% SDS, at room temperature for 5 min; (2) 1x SSC/0.1% SDS, at 58°C 30 min; and (3) 0.5x SSC/0.1% SDS, at 58°C 30 min.

[0197] As a result, positive, or pseudo-positive 16 independent clones were obtained. When a secondary screening was similarly conducted against these 16 clones obtained by the primary screening, the inventors succeeded in isolating NR8 positive, nine independent plaque clones.

Industrial Applicability

25

45

50

55

[0198] The present invention provides a novel hemopoietin receptor protein "NR8," and the encoding DNA. The present invention also provides, a vector into which the DNA has been inserted, a transformant harboring the DNA, and a method of producing a recombinant protein using the transformant. It also provides a method of screening a compound or a natural ligand that binds to the protein. The NR8 protein of the invention is thought to be related to hemopoiesis, and therefore, is useful in analyzing hemopoietic functions. The protein would also be applied in the diagnosis and treatment of hemopoiesis-associated diseases.

[0199] Since the expression of mouse NR8 gene was widely distributed in mouse organs, mouse NR8 protein would be involved in various physiological regulatory mechanisms of the body, including the above-mentioned hemopoiesis. Furthermore, by using mouse NR8 protein, it is possible to isolate first the mouse NR8 ligand, and next, the human homologue of the NR8 ligand using the conserved structure of the mouse NR8 ligand. Specifically, after determining the nucleotide sequence of mouse NR8 ligand cDNA, an oligonucleotide primer is designed on this sequence, and using this to conduct cross PCR using the human-derived cDNA library as the template, human NR8 ligand cDNA can be obtained. Alternatively, human NR8 ligand cDNA can be obtained by conducting cross hybridization against human-derived cDNA library using mouse NR8 ligand cDNA as the probe. It is also possible to analyze biological function of the NR8 receptor protein by creating a mouse NR8 gene-deficient mouse using the mouse NR8 gene.

SEQUENCE LISTING

5	<110> CHUGAI RESEARCH INSTITUTE FOR MOLECULAR MEDICINE, INC.
	<120> NOVEL HEMOPOIETIN RECEPTOR PROTEINS
10	<130> C2-004PCT
	<150> JP 10-214720
	<151> 1998-6-24
15	<160> 30
	<170> PatentIn version 2.0
20	
	<210> 1
	211> 361
25	<212> PRT
	<213> Homo sapiens
	<400> 1
30	Met Pro Arg Gly Trp Ala Ala Pro Leu Leu Leu
	1 5 10
	Leu Leu Leu Gln Gly Gly Trp Gly Cys Pro Asp Leu Val Cys Tyr Thr
35	15 20 25
	And the first of the first to t
	Asp Tyr Leu Gln Thr Val IIe Cys IIe Leu Glu Met Trp Asn Leu His 30 35 40
40	Pro Ser Thr Leu Thr Leu Thr Trp Gln Asp Gln Tyr Glu Glu Leu Lys
	45 50 55.
	Asp Glu Ala Thr Ser Cys Ser Leu His Arg Ser Ala His Asn Ala Thr
45	60 65 70 75
	,
	His Ala Thr Tyr Thr Cys His Met Asp Val Phe His Phe Met Ala Asp
50	80 85 90
	Asp Ile Phe Ser Val Asn Ile Thr Asp Gln Ser Gly Asn Tyr Ser Gln
	· · · · · · · · · · · · · · · · · · ·

				95				•	100					105		
5 .	Glu	Cys	Gly 110	Ser	Phe	Leu	Leu	Ala 115	Glu	Ser	Ile	Lys	Pro 120	Ala	Pro	Pro
10	Phe	Asn 125	Val	Thr	Val	Thr	Phe 130	Ser	Gly	Gln	Tyr	Asn 135	Ile	Ser	Trp	Arg
15	Ser 140	Asp	Туг	Glu.	Asp	Pro 145	Ala	Phe	Tyr	Met	Leu 150	Lys	Gly	Lys	Leu	Gln 155
	Туг	Glu	Leu	Gln	Tyr 160	Årg	Asn	Arg	Gly	Asp 165	Pro	Trp	Ala	Val	Ser 170	Pro
20	Arg	Arg	_	Leu 175	lle	Ser	Val	Asp	Ser 180	Arg	Ser	Val	Ser	Leu 185	Leu	Pro
25	Leu	Glu	Phe 190	Arg	Lys	Asp	Ser	Ser 195	Туг	Glu	Leu	G1n	Val 200	Arg	Ala	Gly
30	Pro	Met 205	Pro	Gly	Ser	Ser	Tyr 210	Gln	Gly	Thr	Trp	Ser 215	Glu	Trp	Ser	Asp
	Pro 220	Val	Ile	Phe	Gln	Thr 225	Gln	Ser	Glu	Glu	Leu 230	Lys	Glu	Gly	Trp	Asn 235
35	Pro	His	Leu	Leu	Leu 240	Leu	Leu	Leu	Leu	Val 245	Ile	Val —	Phe	He	Pro 250	Ala
10	Phe	Trp	Ser	Leu 255	Lys	Thr	His	Pro	Leu 260	Trp	Arg	Leu	Trp	Lys 265	Lys	Ile
15	Trp		Val 270	Pro	Ser	Pro		Arg 275	Phe	Phe	Met	Pro-	Leu 280	Tyr	Lys	Gly
	-	Ser 285	Gly	Asp	Phe		Lys 290	Trp	Val	Gly	Ala	Pro 295	Phe	Thr	Gly	Ser
60	Ser 300	Leu	Glu	Leu	Gly	Pro 305	Trp	Ser	Pro	Glu	Val 310	Pro	Ser	Thr	Leu	Glu 315

_	Val Tyr Ser Cys his Pro Pro Ser Ser Pro Val Giu Cys Asp Phe Thr 320 325 330	
5	Ser Pro Gly Asp Glu Gly Pro Pro Arg Ser Tyr Leu Arg Gln Trp Val 335 340 345	
10	Val lle Pro Pro Pro Leu Ser Ser Pro Gly Pro Gln Ala Ser 350 355 360	
15	<210> 2 <211> 1884 <212> DNA <213> Homo sapiens	
20	<220> <221> CDS <222> (441)(1523)	
25	<400> 2 ggcagccagc ggcctcagac agacccactg gcgtctctct gctgagtgac cgtaagctcg	60
30	gcgtctggcc ctctgcctgc ctctccctga gtgtggctga cagccacgca gctgtgtctg	120
	tetgtetgeg geeegtgeat ecetgetgeg geegeetggt acetteettg eegtetettt	180
35	cetetgtetg etgetetgtg ggacacetge etggaggece agetgeeegt cateagagtg	240
	acaggictta tgacagccig attggtgact cgggctgggt gtggattete accccaggce	300
40	tetgeetget tteteagace eteatetgte acceecacge tgaacceage tgecaccece	360
	agaagcccat cagactgccc ccagcacacg gaatggattt ctgagaaaga agccgaaaca	420
45	gaaggeeegt gggagteage atg eeg egt gge tgg gee gee eec ttg ete etg Met Pro Arg Gly Trp Ala Ala Pro Leu Leu 1 5 10	473
50	ctg ctg ctc cag gga ggc tgg ggc tgc ccc gac ctc gtc tgc tac acc Leu Leu Leu Gln Gly Gly Trp Gly Cys Pro Asp Leu Val Cys Tyr Thr 15 20 25	521

5	_		ctc Leu 30	Gln	_	-			Ile		_	_		Asn			569
10		_	acg Thr					Trp						_	_	_	617
15	_		gcc Ala			_					-	_			_		665
20		_	acc Thr			_		_	_	-				_	_	_	713
25	-		ttc Phe	-	_							-					761
30	_	_	ggc Gly 110	_			_		-	-		_	_	_			809
35			gtg Val							-	Tyr					_	857
40		_	tac Tyr	-	_					_	-	_	-				905
45		_	ctg Leu	-									-	Val			953
50	agg Arg	_	Lys	_				Asp					Ser				1001

36

5		_									gag Glu							1049
10	9		_								acc Thr			_		-	_	1097
12		_	_			_					gag Glu							1145
20				_	_						gtc Val 245		-				-	1193
25				_	_	_					tgg Trp					-		1241
30			-	_		-		Glu			ttc Phe		Pro	_				1289
3:		_	_		_						ggt Gly	Ala						1337
41		_	_		_						gag Glu					_	_	1385
4.	,				Cys						cct Pro 325							1433
5		_		Gly					Pro		agc Ser			Arg				1481
	Į	gtc	att	cct	ccg	cca	ctt	tcg	agc	cct	gga	ccc	cag .	gcc	agc	taa		1526

	Val	Il€	9 Pro 350		o Pr	o Le	u Se	r Se 35	_	o Gl	y Pr	o Gl	n Al 36		r				
5	tga	ggct	gac	tgg	atgt	cca	gagc	tggc	ca g	gcca	ctgg	g cc	ctga	gcca	gag	асаад	ggt	158	6
10	cac	ctgg	gct	gtga	atgt	gaa	gaca	cctg	ca g	cctt	tggt	c to	ctgg	atgg	gcc	tttga	agc	164	3
, ,	ctg	atgt	tta	cag	tgtc	tgt ;	gtgtø	gtgtø	gc a	tatg	tgtg	t gt	gtgc	atat	gca	tgtgt	tgt	1700	3
15	gtg	tgtg	tgt	gtc1	tage	gtg	cgcae	gtggo	ca te	stcc	acgt	g tgi	tgtg	attg	cac	gtgco	etg	1766	;
	tgg	gcct	ggg	ataa	tgc	ca	tggta	actco	a te	cati	tcaco	tge	cct	gtgc	atg	tetgg	ac	1826	j
20	tca	cgga	gct	caco	cate	stg (cacaa	gtgt	g ca	cagi	taaac	gte	sttts	gtgg	tca	acaga	ı	1884	t
25	<210 <211 <212 <213	l> 1: 2> Pl	r T	sapi	ens						-								
3 <i>0</i>	<400)> 3				Met 1		Arg	Gly	Trp 5		Ala	Pro	Leu	Leu 10	Leu			
35	Leu	Leu	Leu	Gln 15	Gly	Gly	Trp	Gly	Cys 20		Asp	Leu	Val	Cys 25	-	Thr			
	Asp	Tyr	Leu 30	Gln	Thr	Val	Ile	Cys 35	Ile	Leu	Glu	Met	Trp 40	Asn	Leu	His			
40	Pro	Ser 45	Thr	Leu	Thr	Leu	Thr 50	Trp	Gln	Asp	Gln	Tyr 55		Glu	Leu	Lys			
45	Asp (Glu	Ala	Thr	Ser	Cys 65	Ser	Leu	His	Arg	Ser 70	Ala	His	Asn	Ala	Thr 75			
50	His A	Ala '	Thr	, Tyr	Thr 80	Cys	His	Met	Asp	Val 85	Phe	His	Phe	Met	Ala 90	Asp			
	Asp 1	lle i	Phe	Ser	Val	Asn	Ile	Thr	Аsp	Gln	Ser	Gly	Asn	Tyr	Ser	Gln			

38

	95 100 105	
5	Glu Cys Gly Ser Phe Leu Leu Ala Glu Ser Lys Ser Glu Glu Lys Ala 110 115 120	
10	Asp Leu Ser Gly Leu Lys Lys Cys Leu Pro Pro Pro Pro Gly Val Pro 125 130 135	
	Gln Arg Leu Glu Leu 140	
15		
20	<210> 4 <211> 1729 <212> DNA <213> Homo sapiens	
25	<220> <221> CDS <222> (441)(872)	
30	<400> 4 ggcagccagc ggcctcagac agacccactg gcgtctctct gctgagtgac cgtaagctcg	60
	gegtetggee etetgeetge etetecetga gtgtggetga cagecaegea getgtgtetg	120
35	tetgtetgeg gecegtgeat ecetgetgeg geegeetggt acetteettg ecgtetettt	180
	cctctgtctg ctgctctgtg ggacacctgc ctggaggccc agctgcccgt catcagagtg	240
40	acaggictia igacagccig atiggigact cgggctgggt giggatictc accccaggcc	300
	tetgeetget tteteagace etcatetgte acceccacge tgaacceage tgecaccecc	360
45	agaagcccat cagactgccc ccagcacacg gaatggattt ctgagaaaga agccgaaaca	420
50	gaaggcccgt gggagtcagc atg ccg cgt ggc tgg gcc gcc ccc ttg ctc ctg Met Pro Arg Gly Trp Ala Ala Pro Leu Leu 1 5 10	473
	ctg ctg ctc cag gga ggc tgg ggc tgc ccc gac ctc gtc tgc tac acc	521
55		

	Lev	ı Leu	Leu	Gln 15		Gly	Trp	Gly	Cys 20		Asp	Leu	Val	Cys 25	_	Thr	
5																	
	_			_		_						_				cac	569
	Asp	Tyr			Thr	Val	He			Leu	Glu	Met	-	Asn	Leu	His	
			30					35					40				
10				. 4		- 4.4		4				4.4	,				0.45
		-	_								-		_		_	aag	617
	Pro	Ser	inr	Leu	. ınr	ren	1nr 50	irp	ain	ASP	GIN	-	GIU	GLU	Leu	Lys	
15		45					อบ					55					
,,,	CAC	GAG	ccc	ACC	T CC	TCC	ACC	СТС	CAC	AGG	ፐሮር	CCC.	CAC	ААТ	ርያርር	ACC	665
		Glu															000
	60		,,,,,,	4111	D 01	65	501	204	1110		70		5	71.511	11144	75	
20	-															,,,	
	CAT	GCC	ACC	TAC	ACC	TGC	CAC	ATG	GAT	GTA	TTC	CAC	TTC	ATG	GCC	GAC	713
	His	Ala	Thr	Tyr	Thr	Cys	His	Met	Asp	Val	Phe	His	Phe	Met	Ala	Asp	
					80					85					90		
25																	
		ATT															761
	Asp	lle	Phe		Val	Asn	He	Thr		Gln	Ser	Gly	Asn	-	Ser	Gln	
30				95					100					105			
30	040	at Com	000	400	กลบท	OFF	ame	COT	0.40	100		maa				0.05	000
		TGT															809
	GIU	Cys	110	oer.	rne	Leu		115	ulu	Del.	r y S		120	GIU	ГÄЗ	AIA	
35			110					110					120				
	gat	ctc	apt.	øøn -	ctc	aag	ลลฮ	t.et.	ctc	cct	cct	ccc	cct	øøa.	øtt	CCØ	857
		Leu													_	_	00.
	,	125					130					135		5			
40																	
	caa	aga	ctc	gag	cta	tgag	ctgc	ag g	tgcg	ggca	g gg	ccca	tgcc	tgg	ctcc	tcc	912
		Arg	_		_								_				
45	140																
40																	
	tacc	aggg	ga c	ctgg	agtg	a at	ggag	tgac	ccg	gtca	tct	ttca	gacc	ca g	tcag	aggag	972
				7			_										
50	ttaa	agga	ag g	ctgg	aacc	c te	acct	gctg	ctt	ctcc	tcc	tgct	tgtc	at a	gtct	tcatt	1032
	4	ι.			4			L		.							4000
	cctg	cctt	ct g	gagc	ctga	a ga	cca.	rcca	ttg	ıgga	ggc	tatg	gaag	aa g	atat	gggcc	1092

40

	gtccccagcc ctgagcggtt cttcatgccc ctgtacaagg gctgcagcgg agacttcaag	1152
5	aaatgggtgg gtgcaccctt cactggctcc agcctggagc tgggaccctg gagcccagag	1212
	gtgccctcca ccctggaggt gtacagctgc cacccaccca gcagccctgt ggagtgtgac	1272
10	ttcaccagec ceggggaega aggaececec eggagetace teegecagtg ggtggteatt	1332
	cctccgccac tttcgagccc tggaccccag gccagctaat gaggctgact ggatgtccag	1392
15	agetggccag gccactgggc cetgagccag agacaaggte acetgggetg tgatgtgaag	1452
	acacctgcag cetttggtct cetggatggg cetttgagce tgatgtttac agtgtctgtg	1512
20	tgtgtgtgca tatgtgtgtg tgtgcatatg catgtgtgtg tgtgtgtgt tcttaggtgc	1572
	gcagtggcat gtccacgtgt gtgtgattgc acgtgcctgt gggcctggga taatgcccat	1632
25	ggtactccat gcattcacct gccctgtgca tgtctggact cacggagete acceatgtge	1692
	acaagtgtgc acagtaaacg tgtttgtggt caacaga	1729
30		
35	<210> 5 <211> 237 <212> PRT <213> Homo sapiens	
	<400> 5	
40	Met Pro Arg Met Pro Pro Thr Pro Ala Thr Trp Met Tyr Ser Thr Ser 1 10 15	
45	Trp Pro Thr Thr Phe Ser Val Ser Thr Ser Gln Thr Ser Leu Ala Thr 20 25 30	
	Thr Pro Arg Ser Val Ala Ala Phe Ser Trp Leu Arg Ala Ser Pro Arg 35, 40 45	
50	Arg Lys Leu Ile Ser Val Asp Ser Arg Ser Val Ser Leu Leu Pro Leu 50 55 60	

41

DNCD001D--FD 400003484

	Glu Pl 65	ie Arg	Lys	Asp	Ser 70		Tyr	Glu	Leu	Gln 75	Val	Arg	Ala	Gly	Pro 80
5	Met P	ro Gly	Ser	Ser 85		Gln	Gly	Thr	Trp 90		Glu	Trp	Ser	Asp 95	Pro
10	Val. I	le Phe	Gln 100	Thr	Gln	Ser	Glu	Glu 105		Lys	Glu	Gly	Trp 110	Asn	Pro
15	His Le	u Leu 115		Leu	Leu	Leu	Leu 120	Val	Ile	Val	Phe	11e 125	Pro	Ala	Phe
	Trp Se		Lys	Thr	His	Pro 135	Leu	Trp	Arg	Leu	Trp 140	Lys	Lys	Ile	Trp
20	Ala Va 145	l Pro	Ser	Pro	Glu 150	Arg	Phe	Phe	Met	Pro 155	Leu	Tyr	Lys	Gly	Cys 160
25	Ser Gl	y Asp	Phe	Lys 165	Lys	Trp	Val	Gly	Ala 170	Pro	Phe	Thr	Gly	Ser 175	Ser
30	Leu Gl	u Leu	Gly 180	Pro	Trp	Ser	Pro	Glu 185	Val	Pro	Ser	Thr	Leu 190	Glu	Val
05	Tyr Se	r Cys 195	His	Pro	Pro	Ser	Ser 200	Pro	Val	Glu	Cys	Asp 205	Phe	Thr	Ser
35	Pro Gl 21		Glu	Gly		Pro 215	Arg	Ser	Tyr		<u>A</u> rg 220	Gln	Trp	Val	Val
40	Ile Pr 225	o Pro	Pro	Leu	Ser 230	Ser	Pro	Gly	Pro	Gln 235	Ala -	Ser			
45	<210> <211> <212> <213>	1729 Dna	apie	ens											
50	<220> <221>		•												

<222> (659)..(1368)

5	<400> 6	
5	ggcagccagc ggcctcagac agacccactg gcgtctctct gctgagtgac cgtaagctcg	60
10	gcgtctggcc ctctgcctgc ctctccctga gtgtggctga cagccacgca gctgtgtctg	120
10	tetgtetgeg gecegtgeat ecetgetgeg geegeetggt acetteettg eegtetettt	180
15	cetetgtetg etgetetgtg ggacacetge etggaggeec agetgeeegt cateagagtg	240
15	acaggtetta tgacageetg attggtgact egggetgggt gtggattete acceeaggee	300
20	tetgeetget ttetcagace etcatetgte acceccacge tgaacceage tgecaccece	360
20	agaagcccat cagactgccc ccagcacacg gaatggattt ctgagaaaga agccgaaaca	420
25	gaaggeeegt gggagteage atgeeggtg getgggeege eccettgete etgetgetge	480
	tccagggagg ctggggctgc cccgacctcg tctgctacac cgattacctc cagacggtca	540
<i>30</i>	tetgeatect ggaaatgtgg aacetecace ceageaeget caccettace tggcaagace	600
	agtatgaaga getgaaggac gaggecacet cetgeageet ceacaggteg geccacaa	658
35	atg cca cgc atg cca cct aca cct gcc aca tgg atg tat tcc act tca Met Pro Arg Met Pro Pro Thr Pro Ala Thr Trp Met Tyr Ser Thr Ser 1 5 10 15	705
40	tgg ccg acg aca ttt tca gtg tca aca tca cag acc agt ctg gca act Trp Pro Thr Thr Phe Ser Val Ser Thr Ser Gln Thr Ser Leu Ala Thr 20 25 30	753
45	act ccc agg agt gtg gca gct ttc tcc tgg ctg aga gca agt ccg agg Thr Pro Arg Ser Val Ala Ala Phe Ser Trp Leu Arg Ala Ser Pro Arg 35 40 45	801
50	aga aag ctg atc tca gtg gac tca aga agt gtc tcc ctc ctc ccc ctg Arg Lys Leu Ile Ser Val Asp Ser Arg Ser Val Ser Leu Leu Pro Leu 50 55 60	849

43

RNSDOOID- - ED 108883141 I

5		Phe					Ser					ı Val				ecc Pro 80	897
10											Ser	gaa Glu		-	-		945
15	_			_	-	-					_	gaa Glu					993
20		-		Leu								ttc Phe			_		1041
25		_	_	_								tgg Trp 140	_	_			1089
30	_	_		_						_		ctg Leu		_		_	1137
35												ttc Phe					1185
40			_			_	_	Pro	-			tcc Ser		_			1233
45							Ser					tgt . Cys					1281
50	Pro			7		Pro 1					Leu	cgc Arg 220	-		-		1329
	att	cct	ccg	cca	ctt	tcg	agc	cct	gga	ccc	cag	gcc	agc	taat	gagg	ct	1378

44

	Ile Pro Pro Pro Leu Ser Ser Pro Gly Pro Gln Ala Ser 225 230 235	
5	gactggatgt ccagagctgg ccaggccact gggccctgag ccagagacaa ggtcacctgg	1438
10	getgtgatgt gaagacacet geageetttg gteteetgga tgggeetttg ageetgatgt	1498
10	ttacagtgtc tgtgtgtgt tgcatatgtg tgtgtgtgca tatgcatgtg tgtgtgtgt	1558
15	tgtgtcttag gtgcgcagtg gcatgtccac gtgtgtgtga ttgcacgtgc ctgtgggcct	1618
	gggataatgc ccatggtact ccatgcattc acctgccctg tgcatgtctg gactcacgga	1678
20	gctcacccat gtgcacaagt gtgcacagta aacgtgtttg tggtcaacaga	1729
	<210> 7	
25	<211> 538 <212> PRT <213> Homo sapiens	
	<400> 7 Met Pro Arg Gly Trp Ala Ala Pro Leu Leu Leu	
30	1 5 10	
35	Leu Leu Cln Gly Gly Trp Gly Cys Pro Asp Leu Val Cys Tyr Thr 15 20 25	
	Asp Tyr Leu Gln Thr Val Ile Cys Ile Leu Glu Met Trp Asn Leu His 30 35 40	
40	Pro Ser Thr Leu Thr Leu Thr Trp Gln Asp Gln Tyr Glu Glu Leu Lys 45 50 55.	
45	Asp Glu Ala Thr Ser Cys Ser Leu His Arg Ser Ala His Asn Ala Thr 60 65 70 75	
50	His Ala Thr Tyr Thr Cys His Met Asp Val Phe His Phe Met Ala Asp 80 85 90	

·				95	5 .				100)				105	;	
5	Glı	ı Cys	Gly 110		Phe	e Leu	Leu	115		ı Ser	Ile	Lys	Pro 120		Pro	Pro
10		Asn 125	Val	Thr	· Val	Thr	Phe 130		Gly	Gln	Туг	Asn 135		Ser	Trp	Arg
15	Ser 140		Tyr	Glu	, Asp	Pro 145	Ala	Phe	Tyr	Met	Leu 150		Gly	Lys	Leu	Glr 155
	Tyr	Glu	Leu	Gln	Tyr 160		Asn	Arg	Gly	Asp 165	Pro	Trp	Ala	Val	Ser 170	Pro
20	Arg	Arg	Lys	Leu 175		Ser	Val	Asp	Ser 180		Ser	Val	Ser	Leu 185	Leu	Pro
25	Leu	Glu	Phe 190	Arg	Lys	Asp	Ser	Ser 195	Tyr	Glu	Leu	Gln	Val 200	Arg	Ala	Gly
30	Pro	Met 205	Pro	Gly	Ser	Ser	Tyr 210	Gln	Gly	Thr	Trp	Ser 215	Glu	Trp	Ser	Asp
	Pro 220	Val	Ile	Phe	Gln	Thr 225	Gln	Ser	Glu	Glu	Leu 230	Lys	Glu	Gly	Trp	Asn 235
35	Pro	His	Leu	Leu	Leu 240	Leu	Leu	Leu	Leu	Val 245	Ile 	Val —	Phe	Ile	Pro 250	Ala
40				255					260					265		
45	Trp		Val 270	Pro	Ser	Pro		Arg 275	Phe	Phe	Met		Leu 280	Tyr	Lys	Gly
50		Ser 285	Gly	Asp 7	Phe		Lys 290	Trp	Val	Gly		Pro 295	Phe	Thr	Gly	Ser
	Ser 300	Leu	Glu	Leu		Pro 305	Trp	Ser :	Pro		Val 310	Pro	Ser	Thr		Glu 315

	Val	Tyr	Ser	Cys	His 320	Pro	Pro	Arg	Ser	Pro 325	Ala	Lys	Arg	Leu	Gln 330	
5	Thr	Glu	Leu	Gln 335	Glu	Pro	Ala	Glu	Leu 340	Val	Glu	Ser	Asp	Gly 345	Val	Pro
10	Ļys	Pro	Ser 350	Phe	Trp	Pro	Thr	Ala 355	Gln	Asn	Ser	Gly	Gly 360	Ser	Ala	Tyr
15	Ser	Glu 365	Glu	Arg	Asp	Arg	Pro 370	Tyr	Gly	Leu	Val	Ser 375	Ile	Asp	Thr	Val
	Thr 380	Val	Leu	Asp	Ala	Glu 385	Gly	Pro	Cys	Thr	Trp 390	Pro	Cys	Ser	Cys	Glu 395
20	Asp	Asp	Gly	Tyr	Pro 400	Ala	Leu	Asp	Leu	Asp 405	Ala	Gly	Leu	Glu	Pro 410	Ser
25	Pro	Gly	Leu	Glu 415	Asp	Pro	Leu	Leu	Asp 420	Ala	Gly	Thr	Thr	Val 425	Leu	Ser
30	Cys	Gly	Cys 430	Val	Ser	Ala	Gly	Ser 435	Pro	Gly	Leu	Gly	Gly 440	Pro	Leu	Gly
	Ser	Leu 445	Leu	Asp	Arg	Leu	Lys 450	Pro	Pro	Leu	Ala	Asp 455	Gly	Glu	Asp	Trp
35	Ala 460	Gly	Gly	Leu	Pro	Trp 465	Gly	Gly	Arg	Ser	Pro 470	<u>G</u> ly	Gly	Val	Ser	Glu 475
40	Ser	Glu	Ala	Gly	Ser 480	Pro	Leu	Ala	Gly	Leu 485	Asp	Met	Asp -	Thr	Phe 490	Asp
4 5	Ser	Gly	Phe	Val 495	Gly	Ser	Asp	Cys	Ser 500	Ser	Pro	Val	Glu	Cys 505	Asp	Phe
	Thr	Ser	Pro 510	Ģly	Asp	Glu	Gly	Pro 515	Pro	Arg	Ser	Tyr	Leu 520	Arg	Gln	Trp
50	Val	Val 525	He	Pro	Pro	Pro	Leu 530	Ser	Ser	Pro	Gly	Pro 535	Gln	Ala	Ser	

5	<210> 8 <211> 2415 <212> DNA <213> Homo sapiens	
10	<220> <221> CDS <222> (441)(2054)	
15	<400> 8 ggcagccage ggcctcagac agacccactg gcgtctctct gctgagtgac cgtaagctcg	60
	gcgtctggcc etctgcctgc ctctccctga gtgtggctga cagccacgca gctgtgtctg	120
20	tetgtetgeg geoegtgeat ecetgetgeg geogeetggt acetteettg ecgtetettt	180
	cetetgtetg etgetetgtg ggacacetge etggaggece agetgeeegt cateagagtg	240
25	acaggtetta tgacageetg attggtgaet egggetgggt gtggattete acceeaggee	300
	tetgeetget tteteagace etcatetgte acceecacge tgaacceage tgecaccece	360
30	agaagcccat cagactgccc ccagcacacg gaatggattt ctgagaaaga agccgaaaca	420
35	gaaggeeegt gggagteage atg eeg egt gge tgg gee gee eee ttg ete etg Met Pro Arg Gly Trp Ala Ala Pro Leu Leu 1 5 10	473
40	ctg ctg ctc cag gga ggc tgg ggc tgc ccc gac ctc gtc tgc tac acc Leu Leu Cln Gly Gly Trp Gly Cys Pro Asp Leu Val Cys Tyr Thr 15 20 .25	521
45	gat tac ctc cag acg gtc atc tgc atc ctg gaa atg tgg aac ctc cac Asp Tyr Leu Gln Thr Val Ile Cys Ile Leu Glu Met Trp Asn Leu His 30, 35	569
50	ccc agc acg ctc acc ctt acc tgg caa gac cag tat gaa gag ctg aag Pro Ser Thr Leu Thr Leu Thr Trp Gln Asp Gln Tyr Glu Glu Leu Lys 45 50 55	617

5	gac Asp 60	gag Glu	gcc Ala	acc Thr	tcc Ser	tgc Cys 65	agc Ser	ctc Leu	cac His	agg Arg	tcg Ser 70	gcc Ala	cac His	aat Asn	gcc Ala	acg Thr 75	665
10			acc Thr														713
15	gac Asp	att Ile	ttc Phe	agt Ser 95	gtc Val	aac Asn	atc Ile	aca Thr	gac Asp 100	cag Gln	tct Ser	ggc Gly	aac Asn	tac Tyr 105	tcc Ser	cag Gln	761
20	gag Glu	tgt Cys	ggc Gly 110	agc Ser	ttt Phe	ctc Leu	ctg Leu	gct Ala 115	gag Glu	agc Ser	atc Ile	aag Lys	ccg Pro 120	gct Ala	ccc Pro	cct Pro	809
25	ttc Phe	aac Asn 125	gtg Val	act Thr	gtg Val	acc Thr	ttc Phe 130	tca Ser	gga Gly	cag Gln	tat Tyr	aat Asn 135	atc Ile	tcc Ser	tgg Trp	cgc Arg	857
<i>30</i>	tca Ser 140	gat Asp	tac Tyr	gaa Glu	gac Asp	cct Pro 145	gcc Ala	ttc Phe	tac Tyr	atg Met	ctg Leu 150	aag Lys	ggc Gly	aag Lys	ctt Leu	cag Gln 155	905
35	tat Tyr	gag Glu	ctg Leu	cag Gln	tac Tyr 160	agg Arg	aac Asn	cgg Arg	gga Gly	gac Asp 165	ccc Pro	tgg Trp —	gct Ala	gtg Val	agt Ser 170	ccg Pro	953
40	agg Arg	aga Arg	aag Lys	ctg Leu 175	atc Ile	tca Ser	gtg Val	gac Asp	tca Ser 180	aga Arg	agt Ser	gtc Val	tcc Ser	ctc Leu 185	ctc Leu	ccc Pro	1001
45			ttc Phe 190														1049
50	ccc Pro	atg Met 205	cct Pro	ggc Gly	tcc Ser	tcc Ser	tac Tyr 210	cag Gln	ggg Gly	acc Thr	tgg Trp	agt Ser 215	gaa Glu	tgg Trp	agt Ser	gac Asp	1097

49

55

י יייייייי פבי קופפפפיי

5		Val					Gln					ı Lys				aac Asn 235	1145
10											Ile	_				gcc	1193
15				ctg Leu 255	Lys									_	Lys	ata Ile	1241
20			-	ccc Pro									_		_		1289
25				gac Asp													1337
30				ctg Leu													1385
35				tgc Cys					Ser	-		_		_	_		1433
40				caa Gln 335				Glu					Asp				1481
45		Pro		ttc Phe			Thr .					Gly					1529
50	agt Ser			.*		Arg					Val						1577
	act	gtg	cta	gat	gca	gag (ggg (cca 1	tgc :	acc 1	tgg	ccc	tgc	agc	tgt .	gag	1625

50

	Thr 380		Leu	Asp	Ala	Glu 385		Pro	Cys	Thr	Trp 390		Cys	Ser	Cys	Glu 395	
5				A			_4_		. 4	4	4		. 4				1070
		gac Asp															1673
	иsр	wsh	uly	ı yı	400		Ten	voħ	Den	405		. uly	ren	ulu	410	ser.	
10		1			,,,,									•	110		
	cca	ggc	cta	gag	gac	cca	ctc	ttg	gat	gca	ggg	acc	aca	gtc	ctg	tcc	1721
	Pro	Gly	Leu	Glu	Asp	Pro	Leu	Leu	Asp	Ala	Gly	Thr	Thr	Val	Leu	Ser	
				415					420					425			
15									. 4								1500
	_	ggc	-	_		_	-					-			_		1769
	Cys	Gly	430	V2.1	961.	AIG	GIY	435	rro	ara	Leu	GIŞ	440	rro	Leu	uty	•
20			100					100					110				
	agc	ctc	ctg	gac	aga	cta	aag	cca	ccc	ctt	gca	gat	ggg	gag	gac	tgg	1817
	Ser	Leu	Leu	Asp	Arg	Leu	Lys	Pro	Pro	Leu	Ala	Asp	Gly	Glu	Asp	Trp	
		445					450					455					
25										4	4				4 .		1005
	_	ggg Gly		-										-			1865
	460	ath	u13	Leu	110	465	uly	uış	nı g	DCI.	470	uly	dly	141	261	475	
30	100										1.0					7.0	
•	agt	gag	gcg	ggc	tca	ccc	ctg	gcc	ggc	ctg	gat	atg	gac	acg	ttt	gac	1913
	Ser	Glu	Ala	Gly	Ser	Pro	Leu	Ala	Gly	Leu	Asp	Met	Asp	Thr	Phe	Asp	
35					480					485					490		
30	4					4.4		4								44.	1001
		ggc Gly									•						1961
	561	at?		495	O1)	UCI	пор		500	DCI	110	101		505	пор	1 HC	
40																	
	acc	agc	ccc	ggg	gac	gaa	gga	ccc	ccc	cgg	agc	tac	ctc	cgc	cag	tgg	2009
	Thr	Ser	Pro	Gly	Asp	Glu	Gly	Pro	Pro	Arg	Ser	Tyr.	Leu	Arg	Gln	Trp	
45			510					515					520				
		4	.44				-4-	4		-	 .					4	9057
		gtc Val			_								_	-	_	Laa	2057
		va 1 525	116	İ.I.O	110		ւеս 530	061	DCI.	110	_	535	AIII	nia	DCI.		
50		JUU					J 0 0					500					
	tgag	gctg	ac t	ggat	gtcc	a ga	gctg.	gcca	ggc	cact	ggg	ccct	gagc	ca g	agac	aaggt	2117
				-	_	-		-		-		-	- -	-	_		

51

	cacciggget gigalgigaa gacaccigca geelliggte teetggatgg geelligage	2177
5	ctgatgttta cagtgtctgt gtgtgtgtgc atatgtgtgt gtgtgcatat gcatgtgtgt	2237
	gtgtgtgtgt gtcttaggtg cgcagtggca tgtccacgtg tgtgtgattg cacgtgcctg	2297
10	tgggcctggg ataatgccca tggtactcca tgcattcacc tgccctgtgc atgtctggac	2357
	teacggaget cacceatgtg cacaagtgtg cacagtaaac gtgtttgtgg teaacaga	2415
15		
	<210> 9	
	<211> 30	
	<212> DNA	
20	<213> Artificial Sequence	
	<220>	
	<223> Artificially Synthesized Primer Sequence	
25	.4000	
	<400> 9	••
	ccggctcccc ctttcaacgt gactgtgacc	30
30		
	<210> 10	
	<211> 30	
	<212> DNA	
35	<213> Artificial Sequence	
	<220>	
	<223> Artificially Synthesized Primer Sequence	
40	<400> 10	
	ggcaagcttc agtatgagct gcagtacagg .	30
45	2010× 11	
	<210> 11	
	<211> 30	
	<212> DNA	
50	<213> Artificial Sequence	
	<220>	

	<223> Artificially Synthesized Primer Sequence	
5	<400> 11 accctctgac tgggtctgaa agatgaccgg	30
10	<210> 12 <211> 30 <212> DNA <213> Artificial Sequence	
15	<220> <223> Artificially Synthesized Primer Sequence	
20	<400> 12 catgggeeet geeggacet geageteata	30
25	<210> 13 <211> 1128 <212> DNA <213> Homo sapiens	·
30	<220> <221> CDS <222> (1)(1125)	
35 40	<400> 13 atg ccg cgt ggc tgg gcc gcc ccc ttg ctc ctg ctg	48
45	ggc tgg ggc tgc ccc gac ctc gtc tgc tac acc gat tac ctc cag acg Gly Trp Gly Cys Pro Asp Leu Val Cys Tyr Thr Asp Tyr Leu Gln Thr 20 25 30	96
50	gtc atc tgc atc ctg gaa atg tgg aac ctc cac ccc agc acg ctc acc Val Ile Cys Île Leu Glu Met Trp Asn Leu His Pro Ser Thr Leu Thr 35 40 45	144
	ctt acc tgg caa gac cag tat gaa gag ctg aag gac gag gcc acc tcc	192

בייביטטטטיי יבם יעינטטטטיעי ו

	Leu	Thr 50		Glr	a Asp	Glr	1 Tyr 55		ı Glu	ı Let	ı Lys	Asp 60		ı Ala	. Thr	Ser	
5																	
	tgc	ago	cto	cac	agg	tcg	gcc	cac	aat	gcc	acg	cat	gcc	acc	tac	acc	240
	-		Leu	His	Arg			His	Asn	Ala	1 Thr		Ala	Thr	Tyr	Thr	
	65					70)				75					80	
0		\ _															
											gac				_	_	288
	Cys	His	Met	Asp			His	Phe	Met		. Asp	Asp	Ile	Phe		Val	
					85					90)				95		
15																	
											cag						336
	Asn	He	Thr			Ser	Gly	Asn		Ser	Gln	Glu	Cys		Ser	Phe	
				100					105					110			
20	4							_									004
			_								cct						384
	Leu	Leu		Glu	Ser	116	Lys		Ala	Pro	Pro	Phe		Val	Thr	Val	
			115					120					125				
25		44.	4			4.4	aa+	at a	+	+		4	+	4			420
											cgc						432
	IRE	130	ser	GIA	GIII	ıyı.	135	116	Sel.	ИЪ	Arg		ASP	ıyı	GIU	ASP	
		190					100					140					
30	cct	or o o	tt.	tac	ato	ctø	220	gge	920	ctt	cag	tat	g a g	cta	C2 07	tan	480
											Gln						700
	145	VIT	1 116	131	FIC C	150	Д 3	U13	щз	DCu	155	131	uıu	LEQ	UIH	160	
	140										100					100	
35	agg	aac	CEE	gga.	gac	ccc	tee	gct.	et.e	agt.	ccg	age	яря	aag	cte	at.c	528
								_			Pro		_				020
			0		165					170		0	0	_, _	175		
															•••		
10	tca	gtg	gac	tca	aga	agt	gtc	tcc	ctc	ctc	ccc	ctg	gag	ttc	cgc	aaa	576
											Pro						
			-	180	_				185					190	_		
15																	
13	gac	tcg	agc	tat	gag	ctg	cag	gtg	cgg	gca	ggg	ccc	atg	cct	ggc	tcc	624
	Asp	Ser	Ser	Tyr	Glu	Leu	Gln	Val	Arg	Ala	Gly	Pro	Met	Pro	Gly	Ser	
			195	7				200					205				
50																	
	tcc	tac	cag	ggg	acc	tgg	agt	gaa	tgg	agt	gac	ccg	gtc	atc	ttt	cag	672
											Asp						
		-		•		-			-		-						

		210			215			220			
5					tgg Trp						720
10			Leu		gtc Val						768
15				Tyr	aga Arg						816
20					cta Leu						864
25	ctg Leu										912
30					ctc Leu						960
35	ccc Pro										1008
40					ccc Pro					-	1056
45		Gly	Cys		acc Thr						1104
50	Leu				cct Pro 375	tga					1128

55

5	<21 <21	10> 1 11> 3 12> P 13> H	75 RT	sapi	ens											
10				Gly	Trp.		Ala	Pro	Leu	Leu 10		Leu	Leu	Leu	Gln 15	
15	Gly	Trp	Gly	Cys 20		Asp	Leu	Val	Cys 25		Thr	Asp	Tyr	Leu 30	Gln	Thr
20	Val	Ile	Cys 35	Ile	Leu	Glu	Met	Trp 40	Asn	Leu	His	Pro	Ser 45	Thr	Leu	Thr
	Leu	Thr 50	Trp	Gln	Asp	Gln	Tyr 55	Glu	Glu	Leu	Lys	Asp 60	Glu	Ala	Thr	Ser
25	Cys 65	Ser	Leu	His	Arg	Ser 70	Ala	His	Asn	Ala	Thr 75	His	Ala	Thr	Tyr	Thr 80
30	Cys	His	Met	Asp	Val 85	Phe	His	Phe	Met	Ala 90	Asp	Asp	Ile	Phe	Ser 95	Val
35	Asn	Ile	Thr	Asp 100	Gln	Ser	Gly	Asn	Tyr 105	Ser	Gln	Glu —	Cys	Gly 110	Ser	Phe
40	Leu	Leu	Ala 115	Glu	Ser	Ile	Lys	Pro 120	Ala	Pro	Pro	Phe	Asn 125	Val	Thr	Val
45	Thr	Phe 130	Ser	Gly	Gln	Tyr	Asn 135	Ile	Ser	Trp	Arg	Ser - 140	Asp	Tyr	Glu	Asp
45	Pro 145	Ala		Tyr		Leu 150	Lys	Gly	Lys		Gln 155	Туг	Glu	Leu	Gln	Tyr 160
50	Arg	Asn	Arg		Asp 165	Pro	Trp	Ala		Ser 170	Pro	Arg	Arg	Lys	Leu 175	Ile

56

	Ser	Val	Asp	Ser 180	Arg	Ser	Val	Ser	Leu 185	Leu	Pro	Leu	Glu	Phe 190	Arg	Lys
5	Asp	Ser	Ser 195	Tyr	Glu	Leu	Gln	Val 200	Arg	Ala	Gly	Pro	Met 205	Pro	Gly	Ser
10	Ser	Tyr 210	Gln	Gly	Thr	Trp	Ser 215	Glu	Trp	Ser	Asp	Pro 220	Val	lle	Phe	Gln
15	Thr 225	Gln	Ser	Glu	Thr	Ala 230	Trp	Ile	Ser	Leu	Val 235	Thr	Ala	Leu	His	Leu 240
	Val	Leu	Gly	Leu	Ser 245	Ala	Val	Leu	Gly	Leu 250	Leu	Leu	Leu	Arg	Trp 255	Gln
	Phe	Pro	Ala	His 260	Tyr	Arg	Ārģ	Leu	Arg 265	His	Ala	Leu	Trp	Pro 270	Ser	Leu
25	Pro	Asp	Leu 275	His	Arg	Val	Leu	Gly 280	Gln	Tyr	Leu	Arg	Asp 285	Thr	Ala	Ala
30	Leu	Ser 290	Pro	Pro	Lys	Ala	Thr 295	Val	Ser	Asp	Thr	Cys 300	Glu	Glu	Val	Glu
	Pro 305	Ser	Leu	Leu	Glu	11e 310	Leu	Pro	Lys	Ser	Ser 315	Glu	Arg	Thr	Pro	Leu 320
35	Pro	Leu	Cys	Ser	Ser 325	GIn	Ala	Gln		Asp 330	Туг	Arg	Arg	Leu	Gln 335	Pro
40	Ser	Cys	Leu	Gly 340	Thr	Met	Pro	Leu	Ser 345	Val	Cys	Pro	Pro	Met 350	Ala	Glu
45	Ser	Gly	Ser 355	Cys	Cys	Thr	Thr	His 360	Ile	Ala	Asn		Ser 365	Tyr	Leu	Pro
	Leu	Ser 370	Tyr	Ţrp	Gln		Pro 375									
50														•		
	<210	> 15	·													

	<21	1> 1	1383														
	<21	2> 1	INA														
5	<21	3> H	Ото	sapi	ens												
	<22	0>															
	<22	1> 0	DS														
10	<22	2>\(1)	(138	0)												
	<40	0> 1	5														
	atg	ccg	cgt	ggc	tgg	gcc	gcc	ccc	ttg	ctc	ctg	ctg	ctg	ctc	cag	gga	48
15	Met 1		Arg	Gly	Trp 5	Ala	Ala	Pro	Leu	Leu 10		Leu	Leu	Leu	Gln 15	Gly	
	or or o	+ 0101	aar	tac	ccc	gac.	ctc	øtc	tor	tar	200	orat	tac	ctc	^9	200	96
20			_	_			Leu					_			_	_	00
				20				-	25					30			
	gtc	atc	tgc	atc	ctg	gaa	atg	tgg	aac	ctc	cac	ccc	agc	acg	ctc	acc	144
25	Val	He	_	lle	Leu	Glu	Met	Trp 40	Asn	Leu	His	Pro		Thr	Leu	Thr	
			35					40					45				
00					-		tat										192
30	Leu	Thr 50	Trp	Gln	Asp	Gin	Tyr 55	GIU	Glu	Leu	Lys	Asp 60	Glu	Ala	Thr	Ser	
35	_	_					gcc Ala						_				240
	65	GCI	LCu	1113	W P	70	21.14	111.0	11011	7110	75		AIG	****	1,71	80	
	tec	cac	ate	øat.	gta	t.t.c	cac	t.t.c	ate	ecc.	gac	par	at.t.	tte	agt.	gtc	288
40	_		_	_	_		His		_	_	-	_			_	_	200
					85					90			_		95		
45	aac	atc	aca	gac	cag	tct	ggc	aac	tac	tcc	cag	gag	tgt	ggc	agc	ttt	336
40	Asn	lle	Thr	Asp 100	Gln	Ser	Gly	Asn	Tyr 105	Ser	Gln	Glu	Cys	Gly 110	Ser	Phe	
				100				,	100					110			
50	ctc	-	_	_													384
	Leu	Leu	A1a 115	GIU	ser	(16	цуS	Pro 120	A19	rro	rro	rne	Asn 125	val	ınr	vai	

58

5		ttc Phe 130															432
10		gcc Ala															480
15		aac Asn															528
20		gtg Val															576
25		tcg Ser															624
30		tac Tyr 210	_														672
35		cag Gln															720
40		tgc Cys															768
45		cca Pro															816
50		tgc Cys															864
•	aac	tgg	tac	gtg	gac	ggc	gtg	gag	gtg	cat	aat	gcc	aag	aca	aag	ccg	912

	Asn	Trp 290	-	Val	Asp	Gly	Val 295	Val	His	Asn	Ala 300	-	Thr	Lys	Pro	
10		Glu									gtc Val	-				960
	_	_									tac Tyr	_		-	_	1008
15				_							acc Thr				_	1056
20			_		_	-					ctg Leu				cgg Arg	1104
25	_		_								tgc Cys 380		_			1152
30	ttc Phe 385			_	-					_				Gln		1200
35	gag Glu									-			Asp			1248
40	ttc Phe									-	-	Arg				1296
45	ggg Gly	Asn					Ser				Ala					1344
50	tac Tyr	-		_								tga				1383

60

	450	455	460	
5	<210> 16 <211> 460 <212> PRT			
10	<213> Homo sapie	ens		
15	<400> 16 Met Pro Arg Gly 1	Trp Ala Ala Pro Leu 5	Leu Leu Leu Leu 10	Gln Gly 15
	Gly Trp Gly Cys 20	Pro Asp Leu Val Cys 25	Tyr Thr Asp Tyr Leu 30	Gln Thr
20	Val Ile Cys Ile 35	Leu Glu Met Trp Asn 40	Leu His Pro Ser Thr 45	Leu Thr
25	Leu Thr Trp Gln 50	Asp Gln Tyr Glu Glu 55	Leu Lys Asp Glu Ala 60	Thr Ser
30	Cys Ser Leu His 65	Arg Ser Ala His Asn 70	Ala Thr His Ala Thr 75	Tyr Thr 80
	Cys His Met Asp	Val Phe His Phe Met 85	Ala Asp Asp Ile Phe 90	Ser Val 95
35	Asn Ile Thr Asp 100	Gln Ser Gly Asn Tyr 105	Ser Gln <u>Gl</u> u Cys Gly 110	Ser Phe
40	Leu Leu Ala Glu 115	Ser Ile Lys Pro Ala 120	Pro Pro Phe Asn Val	Thr Val
45	Thr Phe Ser Gly 130	Gln Tyr Asn Ile Ser 135	Trp Arg Ser Asp Tyr 140	Glu Asp
	Pro Ala Phe Tyr 145	Met Leu Lys Gly Lys 150	Leu Gln Tyr Glu Leu 155	Gln Tyr 160
50	Arg Asn Arg Gly	Asp Pro Trp Ala Val 165	Ser Pro Arg Arg Lys 170	Leu IIe 175

	Ser	· Va]	Asp	Ser 180		Ser	· Val	Ser	Leu 185		Pro	Leu	Glu	Phe 190		Lys
5	Asp	Ser	Ser 195		Glu	Leu	Gln	Val 200		Ala	Gly	Pro	Met 205	Pro	Gly	Ser
10	Ser	Tyr 210		Gly	Thr	Trp	Ser 215		Trp	Ser	Asp	Pro 220		Ile	Phe	Gln
15	Thr 225		Ser	Glu	Glu	Pro 230	Lys	Ser	Cys	Asp	Lys 235	Thr	His	Thr	Cys	Pro 240
20	Pro	Cys	Pro	Ala	Pro 245	Glu	Leu	Leu	Gly	Gly 250	Pro	Ser	Val	Phe	Leu 255	Phe
	Pro	Pro	Lys	Pro 260	Lys	Asp	Thr	Leu	Met 265	Ile	Ser	Arg	Thr	Pro 270	Glu	Val
25	Thr	Cys	Val 275	Val	Val	Asp	Val	Ser 280	His	Glu	Asp	Pro	Glu 285	Val	Lys	Phe
<i>30</i>	Asn	Trp 290	Tyr	Val	Asp	Gly	Val 295	Glu	Val	His	Asn	Ala 300	Lys	Thr	Lys	Pro
35	Arg 305	Glu	Glu	Gln	Tyr	Asn 310	Ser	Thr	Туг	Arg	Val 315	Val	Ser	Val	Leu	Thr 320
	Val	Leu	His		Asp 325	Trp	Leu	Asn	Gly	Lys 330	Glu	Tyr	Lys	Cys	Lys 3 35	Val
40	Ser	Asn	Lys	Ala 340	Leu	Pro	Ala	Pro	11e 345	Glu	Lys	Thr		Ser 350	Lys	Ala
45	Lys	Gly	G1n 355	Pro	Arg	Glu		Gln 360	Val	Tyr	Thr		Pro 365	Pro	Ser	Arg
50		Glu 370	Leu	Thr	Lys	Asn	Gln 375	Val	Ser	Leu	Thr	Cys 380	Leu	Val	Lys	Gly
	Phe	Tyr	Pro	Ser .	Asp	Ile	Ala	Val	Glu	Trp	Glu	Ser.	Asn (Gly	Gln	Pro

	385	390		395	400
5	Glu Asn Asn T	yr Lys Thr Th 405	nr Pro Pro Val 1 410	Leu Asp Ser Asp Gl; 41	
10		yr Ser Lys Le 20	eu Thr Val Asp 1 425	Lys Ser Arg Trp Gla 430	n Gln
	Gly Asn Val P 435	he Ser Cys Se	er Val Met His (440	Glu Ala Leu His Ası 445	n His
15	Tyr Thr Gln L 450	ys Ser Leu Se 45	er Leu Ser Pro (55	Gly Lys 460	
20	<210> 17 <211> 477 <212> DNA <213> Homo sa	piens		·	
<i>30</i>	<220> <221> CDS <222> (1)(4	74)			
35	<400> 17 atg ccg cgt g Met Pro Arg G 1	gc tgg gcc gc ly Trp Ala Al 5	cc ccc ttg ctc o la Pro Leu Leu l 10	ctg ctg ctg ctc ca Leu Leu Leu Leu Gl	a Gly
40	Gly Trp Gly C			acc gat tac ctc ca Thr Asp Tyr Leu Gl 30	
45	gtc atc tgc a Val Ile Cys I 35	tc ctg gaa at le Leu Glu Me	et Trp Asn Leu I 40	cac ccc agc acg ct His Pro Ser Thr Le 45	c acc 144 u Thr
50	ctt acc tgg c Leu Thr Trp G 50	ln Asp Gln Ty	at gaa gag ctg a yr Glu Glu Leu 1 55	aag gac gag gcc ac Lys Asp Glu Ala Th 60	c tcc 192 r Ser

5							· Ala					His			tac Tyr		240
10															agt Ser 95	gtc	288
	aac Asn	atc	Thr		cag					tcc					agc		336
15	ctc Leu	Leu .	gct :	gag					gag					agt			384
20	aag a	aag 1	tgt (cct				Gln	aga				432
25	agg g Arg A	geg (Asp		aag			Asp	Asp			_	taa		477
30	<210>					190					155				٠		
35	<211> <212> <213>	PRT		pier	ıs						. •		,				
40	<400> Met P		rg G	ly 1	irp <i>l</i> 5	Ala	Ala	Pro 1	Leu	Leu l 10	Leu]	Leu 1	Leu 1	Leu	Gln (15	Gly	
45	Gly T			20					25					30			
50	Val I Leu Ti	;	35					40					4 5				
	JU4 11		. _~ u	-4 /1	.~ _F 0				4			op 0	ira y	.14		,ci	

	50			55		60		
5	Cys Ser 65	Leu His	Arg Ser 70	Ala His	Asn Ala	Thr His A	la Thr	Tyr Thr 80
10	Cys His	Met Asp	Val Phe 85	His Phe	Met Ala 90	Asp Asp I	le Phe	Ser Val 95
	Asn Ile	Thr Asp 100	Gln Ser	Gly Asn	Tyr Ser 105	Gln Glu C	ys Gly 110	Ser Phe
15		Ala Glu 115	Ser Lys	Ser Glu 120	Glu Lys	Ala Asp L 1	eu Ser 25	Gly Leu
20	Lys Lys 130	Cys Leu	Pro Pro	Pro Pro 135	Gly Val	Pro Gln A 140	rg Leu	Glu Leu
25	Arg Ala 145	Arg Gln	Asp Tyr 150		Asp Asp	Asp Lys T 155	hr Arg	
30	<210> 19 <211> 14 <212> PR <213> Mu	14 IT	lus					
35	<400> 19 Met Pro 1		Trp Ala	Ala Ser	Leu Leu 10	Leu <u>Le</u> u L	eu Leu	Gln Gly 15
40	Gly Trp	Gly Cys 20	Pro Asp	Leu Val	Cys Tyr 25	Thr Asp 1	yr Leu 30	Gln Thr
45	Val Ile	Cys Ile 35	Leu Glu	Met Trp 40		His Pro S	Ser Thr 45	Leu Thr
	Leu Thr 50	Trp Gln	Asp Gln	Tyr Glu 55	Glu Leu	Lys Asp 60	lu Ala	Thr Ser
50	Cys Ser 65	Leu His	Arg Ser		Asn Ala	Thr His A	lla Thr	Tyr Thr 80

	Ser His Met Asp Val Phe His Phe Met Ala Asp Asp Ile Phe Ser Val 85 90 95
5	Asn Ile Thr Asp Gln Ser Gly Asn Tyr Phe Gln Glu Cys Gly Ser Phe 100 105 110
10	Leu Arg Ala Glu Ser Lys Ser Glu Glu Lys Ala Asp Leu Ser Gly Leu 115 120 125
15	Lys Lys Cys Leu Pro Pro Pro Pro Gly Val Pro Gln Arg Leu Glu Leu 130 135 140
20	<210> 20 <211> 1960 <212> DNA <213> Mus musculus
25	<400> 20 cagccagegg ceteagacag acceaetgge gtetetetge tgagtgaceg taagetegge 60
30 .	gtctggccct ctgcctgcct ctccctgagt gtggctgaca gccacgcagc tgtgtctgtc 120 tgtctgcggc ccgtgcatcc ctgctgcggc cgcctggtac cttccttgcc gtctctttcc 180
35	tetgtetget getetgtgg acacetgeet ggaggeecag etgeecgtea teagagtgae 240 aggtettatg acageetgat tggtgaeteg ggetgggtgt ggatteteae eccaggeete 300
40	tgcctgcttt ctcagaccct catcggtcac ccccacgctg aacccagctg ccaccccag 360 aagcccatca gactgccccc agcacacgga atggatttct gagaaagaag ccgaaacaga 420
45	aggcccgtgg gagtcagc atg ccg cgt ggc tgg gcc gcc tcc ttg ctc ctg 471 Met Pro Arg Gly Trp Ala Ala Ser Leu Leu Leu 1 5 10
50	ctg ctg ctc cag gga ggc tgg ggc tgc ccc gac etc gtc tgc tac acc Leu Leu Cln Gly Gly Trp Gly Cys Pro Asp Leu Val Cys Tyr Thr 15 20 25

5	_	tac Tyr							Ile					Asn			567
10		agc Ser 45	_												_	_	615
15	_	gag Glu	_														663
20		gcc Ala				_			-	_				_	_	-	711
25	_	att Ile		-	_				-							_	759
30		tgt Cys		-													807
35	_	ctc Leu 125	-								Pro						855
40		aga Arg			_	tgag	ctgo	ag g	tgcg	ggca	g gg	ccca	tgcc	tgg	ctcc	tcc	910
45	tacc	aggg	ga c	ctgg	agtg	a at	ggag	tgac	ccg	gtca	tct	ttca	gacc	ca g	tcag	aggag	970
	ttaa	agga	ag g	ctgg	aacc	c tc	acct	gctg	ctt	ctcc	tcc	tgct	tgtc	at a	gtct	tcatt	1030
50	cctg	cctt	ct g	gagc	ctga	a ga	ccca	tcca	ttg	tgga	ggc	tatg	gaag	aa g	atat	gggcc	1090
	gtcc	ccag	cc c	tgag	cggt	t ct	tcat	gccc	ctg	taca	agg ;	gctg	cagc	gg a	gact	tcaag	1150

aaatgggtgg	gtgcaccctt	cactggctcc	agcctggagc	tgggaccctg	gagcccagag	1210
gtgccctcca	ccctggaggt	gtacagctgc	cacccaccac	ggagcccggc	caagaggctg	1270
cagctcacgg	agctacaaga	accagcagag	ctggtggagt	ctgacggtgt	gcccaagccc	1330
agcttctggc	cgacagecca	gaactcgggg	ggctcagctt	acagtgagga	gagggatcgg	1390
ccatacggcc	tggtgtccat	tgacacagtg	actgtgctag	atgcagaggg	gccatgcacc	1450
tggccctgca	gctgtgagga	tgacggctac	ccagccctgg	acctggatgc	tggcctggag	1510
cccagcccag	gcctagagga	cccactcttg	gatgcaggga	ccacagtcct	gtcctgtggc	1570
tgtgtctcag	ctggcagccc	tgggctagga	gggcccctgg	gaageeteet	ggacagacta	1630
aagccacccc	ttgcagatgg	ggaggactgg	gctgggggac	tgccctgggg	tggccggtca	1690
cctggagggg	tctcagagag	tgaggcgggc	tcacccctgg	ccggcctgga	tatggacacg	1750
tttgacagtg	gctttgtgtg	ctctgactgc	agcagccctg	tggagtgtga	cttcaccagc	1810
cccggggacg	aaggaccccc	ccggagctac	ctccgccagt	gggtggtcat	tcctccgcca	1870
ctttcgagcc	ctggacccca	ggccagctaa	tgaggctgac	tggatgtcca	gagctggcca	1930
ggccactggg	ccctgagcca	gaaaaaaaaaa				1960

<210> 21 <211> 538

<212> PRT

<213> Mus musculus

<400> 21

Met Pro Arg Gly Trp Ala Ala Ser Leu Leu Leu Leu Leu Leu Gln Gly
1 5 10 15

Gly Trp Gly Cys Pro Asp Leu Val Cys Tyr Thr Asp Tyr Leu Gln Thr 20 25 30

55

5

10

15

20

25

30

	Val Ile	Cys 1	lle Let	ı Glu	Met	Trp 40	Asn	Leu	His	Pro	Ser 45	Thr	Leu	Thr
5	Leu Thi		Gln Ası	Gln	Туг 55	Glu	Glu	Leu	Lys	Asp 60	Glu	Ala	Thr	Ser
10	Cys Sei 65	· Leu F	lis Are	Ser 70	Ala	His	Asn	Ala	Thr 75	His	Ala	Thr	Tyr	Thr 80
15	Ser His	Met A	Asp Val		His	Phe	Met	Ala 90	Asp	Asp	He	Phe	Ser 95	Val
	Asn Ile		Asp Gli 100	ser	Gly	Asn	Tyr 105	Phe	Gln	Glu	Cys	Gly 110	Ser	Phe
20	Leu Arg	Ala 6 115	31u Sei	· Ile	Lys	Pro 120	Ala	Pro	Pro	Phe	Asn 125	Val	Thr	Val
25	Thr Phe		Gly Glr	Туг	Asn 135	He	Ser	Arg	Arg	Ser 140	Asp	Tyr	Glu	Asp
30	Pro Ala 145	. Phe 1	Tyr Met	Leu 150	Lys	Gly	Lys	Leu	Gln 155	Tyr	Glu	Leu	Gln	Tyr 160
	Arg Ası	Arg (Gly Ası 169		Trp	Ala	Val	Ser 170	Pro	Arg	Arg	Lys	Leu 175	Ile
35	Ser Va		Ser Arg 180	; Ser	Val	Ser	Leu 185	Leu	Pro _.	<u>Le</u> u	Glu	Phe 190	Arg	Lys
40	Asp Sei	Ser 1	fyr Glu	Leu	Gln	Val 200	Arg	Ala	Gly	Pro	Met 205	Pro	Gly	Ser
45	Ser Tyr 210		Gly Thi	Trp	Ser 215	Glu	Trp	Ser	Asp	Pro 220	Val	Ile	Phe	Gln
	Thr Gla 225	Ser (Ģlu Glı	Leu 230	Lys	Glu	Gly	Trp	Asn 235	Pro	His	Leu	Leu	Leu 240
50	Leu Lei	ı Leu 1	Leu Val 245		Val	Phe	Ile	Pro 250	Ala	Phe	Trp	Ser	Leu 255	Lys

	Thr	His	Pro	Leu 260		Arg	Leu	Trp	Lys 265		lle	Trp	Ala	Val 270		Ser
5	Pro	Glu	Arg 275	Phe	Phe	Met	Pro	Leu 280	Tyr	Lys	Gly	Cys	Ser 285	Gly	Asp	Phe
10	Lys	Lys 290	Trp	Val	Gly	Ala	Pro 295	Phe	Thr	Gly	Ser	Ser 300	Leu	Glu	Leu	Gly
15	Pro 305	Trp	Ser	Pro	Glu	Val 310	Pro	Ser	Thr	Leu	Glu 315	Val	Туг	Ser	Cys	His 320
20	Pro	Pro	Arg	Ser	Pro 325	Ala	Lys	Arg	Leu	Gln 330	Leu	Thr	Glu	Leu	Gln 335	Glu
	Pro	Ala	Glu	Leu 340	Val	Glu	Ser	Asp	Gly 345	Val	Pro	Lys	Pro	Ser 350	Phe	Тгр
25	Pro	Thr	Ala 355	Gln	Asn	Ser	Gly	Gly 360	Ser	Ala	Tyr	Ser	Glu 365	Glu	Arg	Asp
30	Arg	Pro 370	Tyr	Gly	Leu	Val	Ser 375	He	Asp	Thr	Val	Thr 380	Val	Leu	Asp	Ala
35	G1u 385	Gly	Pro	Cys	Thr	Trp 390	Pro	Cys	Ser	Cys	Glu 395	Asp	Asp	Gly	Tyr	Pro 400
	Ala	Leu	Asp		Asp 405	Ala	Gly	Leu	Glu	Pro 410	Ser	Pro	Gly	Leu	Glu 415	Asp
40	Pro	Leu		Asp 420	Ala	Gly	Thr	Thr	Val 425	Leu	Ser	Cys	Gly	Cys 430	Val	Ser
45	Ala	Gly	Ser 435	Pro	Gly	Leu		Gly 440	Pro	Leu	Gly	Ser	Leu 445	Leu	Asp	Arg
50		Lys 450	Pro	Pro	Leu		Asp 455	Gly	Glu	Asp		Ala 460	Gly	Gly	Leu	Pro
	Trp	Gly	Gly	Arg	Ser	Pro	Gly	Gly	Val	Ser	Glu	Ser	Glu	Ala	Gly	Ser

	465	470	475	480
5	Pro Leu Ala Gly Leu 485	Asp Met Asp Thr Phe 490	Asp Ser Gly Phe Val 495	Cys
. 10	Ser Asp Cys Ser Ser 500	Pro Val Glu Cys Asp 505	Phe Thr Ser Pro Gly 510	Asp
	Glu Gly Pro Pro Arg 515	Ser Tyr Leu Arg Gln 520	Trp Val Val Ile Pro 525	Pro
15	Pro Leu Ser Ser Pro 530	Gly Pro Gln Ala Ser 535		
20	<210> 22 <211> 2115 <212> DNA			·
25	<213> Mus musculus			
	<400> 22 cagccagcgg cctcagaca	g acceactgge gtetete	tgc tgagtgaccg taagc	tegge 60
30	gtctggccct ctgcctgcc	t ctccctgagt gtggctg	aca gecaegeage tgtgt	ctgtc 120
35	tgtctgcggc ccgtgcatc	c ctgctgcggc cgcctgg	tac cttccttgcc gtctc	tttcc 180
3	tetgtetget getetgtgg		. —	
40	aggtettatg acageetga tgcetgettt etcagacce			
	aagcccatca gactgcccc	-		-
45	aggecegtgg gagteage		gcc gcc tcc ttg ctc	ctg 471
	ctg ctg ctc cag gga g Leu Leu Leu Gln Gly			

			15	i				20)			25	5		
5			Glo					Ile				Asn		cac His	567
10							Trp				-		ctg Leu	aag Lys	615
15						Ser							gcc Ala	acg Thr 75	663
20					Ser							_	gcc Ala 90	-	711
25						_							ttc Phe		759
30	gag Glu	_	_							_	_	-	ccc Pro		807
35	ttc Phe													_	855
40	tca Ser 140														903
45	tat Tyr	Leu	Gln					Gly			-	Val			951
50	agg Arg	Lys					Asp				Ser :				999
55															

5	_	gag Glu		Arg				Tyr					Arg			1047
10		atg Met 205					Gln							_	_	1095
15	_	gtc Val			_						_	_	_			1143
20 ·		cac His	_	_					-						_	1191
25		tgg Trp														1239
30		gcc Ala	_		_					_		_		_	-	1287
35	-	agc Ser 285	_							Ala						1335
40	_	ctg Leu			Gly									-		1383
45	-	tac Tyr											Leu			1431
50		gag Glu	Leu		_		Glu					Asp				1479

5															gct Ala		1527
10	agt Ser	gag Glu 365	gag Glu	agg Arg	gat Asp	cgg Arg	cca Pro 370	tac Tyr	ggc Gly	ctg Leu	gtg Val	tcc Ser 375	att Ile	gac Asp	aca Thr	gtg Val	1575
. 15	act Thr 380	gtg Val	cta Leu	gat Asp	gca Ala	gag Glu 385	ggg Gly	cca Pro	tgc Cys	acc Thr	tgg Trp 390	ccc Pro	tg c Cys	agc Ser	tgt Cys	gag Glu 395	1623
20															ccc Pro 410		1671
25	cca Pro	ggc Gly	cta Leu	gag Glu 415	gac Asp	cca Pro	ctc Leu	ttg Leu	gat Asp 420	gca Ala	ggg Gly	acc Thr	aca Thr	gtc Val 425	ctg Leu	tcc Ser	1719
30	tgt Cys	ggc Gly	tgt Cys 430	gtc Val	tca Ser	gct Ala	ggc Gly	agc Ser 435	cct Pro	ggg Gly	cta Leu	gga Gly	ggg Gly 440	ccc Pro	ctg Leu	gga Gly	1767
<i>35</i>	agc Ser	ctc Leu 445	ctg Leu	gac Asp	aga Arg	cta Leu	aag Lys 450	cca Pro	ccc Pro	ctt Leu	gca Ala	gat Asp 455	ggg Gly	gag Glu	gac Asp	tgg Trp	1815
40 ·	gct Ala 460	ggg Gly	gga Gly	ctg Leu	ccc Pro	tgg Trp 465	ggt Gly	ggc Gly	cgg Arg	tca Ser	cct Pro 470	gga Gly	ggg Gly	gtc Val	tca Ser	gag Glu 475	1863
45	agt Ser	gag Glu	gcg Ala	ggc Gly	tca Ser 480	ccc Pro	ctg Leu	gcc Ala	ggc Gly	ctg Leu 485	gat Asp	atg Met	.gac Asp	acg Thr	ttt Phe 490	gac Asp	1911
50	agt Ser	ggc Gly	ttt Phe	gtg Val 495	tgc Cys	tct Ser	gac Asp	tgc Cys	agc Ser 500	agc Ser	cct Pro	gtg Val	gag Glu	tgt Cys 505	gac Asp	ttc Phe	1959
	acc	agc	ccc	ggg	gac	gaa	gga	ccc	ccc	cgg	agc	tac	ctc	cgc	cag	tgg	2007

74

	Thr Ser Pro Gly Asp Glu Gly Pro Pro Arg Ser Tyr Leu Arg Gln Trp 510 515 520	
5	gtg gtc att cct ccg cca ctt tcg agc cct gga ccc cag gcc agc Val Val Ile Pro Pro Pro Leu Ser Ser Pro Gly Pro Gln Ala Ser 525 530 535	2
10	taatgagget gactggatgt ccagagetgg ccaggecact gggeeetgag ccagaaaaaa 211	.2
	aaa 211	5
15		
	<210> 23 <211> 411	
20	<212> DNA <213> Homo sapiens	
25	<220> <221> 3' UTR <222> (1)(411)	
30	<400> 23 taatgagget gactggatgt ccagagetgg ccaggecact gggeeetgag ccagagacaa 60	
	ggtcacctgg gctgtgatgt gaagacacct gcagcctttg gtctcctgga tgggcctttg 120	j
35	ageotgatgt ttacagtgte tgtgtgtgtg tgcatatgtg tgtgtgtgca tatgcatgtg 180)
	tgtgtgtgtg tgtgtcttag gtgcgcagtg gcatgtccac gtgtgtgtga ttgcacgtgc 240)
40	ctgtgggcct gggataatgc ccatggtact ccatgcattc acctgccctg tgcatgtctg 300)
	gactcacgga gctcacccat gtgcacaagt gtgcacagta aacgtgtttg tggtcaacag 360)
4 5	авазавазава азазазазаза азазазазаза азазазаз	
50	<210> 24 <211> 877 <212> DNA <213> Homo sapiens	

<220>
<221> 3' UTR
<222> (1)..(877)

<400> 24

10

15

20

25

30

35

40

45

50

taatgagget gactggatgt ccagagetgg ccaggecact gggecetgag ccagagacaa 60 ggtcacctgg gctgtgatgt gaagacacct gcagcctttg gtctcctgga tgggcctttg 120 agcctgatgt ttacagtgtc tgtgtgtgtg tgtgcatatg tgtgtgtgtg catatgcatg 180 tgtgtgtgtg tgtgtgtctt aggtgcgcag tggcatgtcc acgtgtgtgt gtgattgcac 240 gtgcctgtgg gcctgggata atgcccatgg tactccatgc attcacctgc cctgtgcatg 300 tetggactca eggagetcae ecatgtgeae aagtgtgeae agtaaacgtg tttgtggtea 360 acagatgaca acagcegtee tecetectag ggtettgtgt tgeaagttgg tecacagcat 420 ctccggggct ttgtgggatc agggcattgc ctgtgactga ggcggagccc agccctccag 480 cgtctgcctc caggagetgc aagaagtcca tattgttcct tatcacctgc caacaggaag 540 cgaaagggga tggagtgagc ccatggtgac ctcgggaatg gcaatttttt gggcggcccc 600 tggacgaagg tetgaateec gactetgata cettetgget gtgetacetg agceaagteg 660 ceteceetet etgggetaga gttteettat eeagacagtg gggaaggeat gacacacetg 720 ggggaaattg gcgatgtcac ccgtgtacgg tacgcagccc agagcagacc ctcaataaac 780 gtcagcttcc ttccttctgc ggccagagcc gaggcgggcg ggggtgagaa catcaatcgt 840 садсдасала алалалала алалалала алалала 877

<210> 25

<211> 2791

<212> DNA

<213> Homo sapiens

<220> <221> 3' UTR <222> (1)..(2791)

<400> 25

10

5

15

20

25

30

35

40

45

50

__

taatgagget gactggatgt ccagagetgg ccaggecact gggeectgag ccagagacaa 60 ggtcacctgg gctgtgatgt gaagacacct gcagcctttg gtctcctgga tgggcctttg 120 agcctgatgt ttacagtgtc tgtgtgtgtg tgtgcatatg tgtgtgtgtg catatgcatg 180 tgtgtgtgtg tgtgtgtctt aggtgcgcag tggcatgtcc acgtgtgtgt gtgattgcac 240 gtgcctgtgg gcctgggata atgcccatgg tactccatgc attcacctgc cctgtgcatg 300 tetggactea eggageteac ceatgtgeac aagtgtgeac agtaaacgtg tttgtggtea 360 acagatgaca acagcegtee tecetectag ggtettgtgt tgeaagttgg tecacageat 420 ctccggggct ttgtgggatc agggcattgc ctgtgactga ggcggagccc agccctccag 480 cgtctgcctc caggagctgc aagaagtcca tattgttcct tatcacctgc caacaggaag 540 cgaaaggga tggagtgage ccatggtgae ctcgggaatg gcaatttttt gggcggcccc 600 tggacgaagg tetgaateee gaetetgata cettetgget gtgetacetg agceaagteg 660 cctccctct ctgggctaga gtttccttat ccagacagtg gggaaggcat gacacacctg 720 ggggaaattg gcgatgtcac ccgtgtacgg tacgcagccc agagcagacc ctcaataaac 780 gtcagcttcc ttccttctgc ggccagagcc gaggcgggcg ggggtgagaa catcaatcgt 840 cagcgacage etgggcacce geggggeegt eccgeetgea gagggeeact egggggggtt 900 tccaggctta aaatcagtcc gtttcgtctc ttggaaacag ctccccacca accaagattt 960 ctttttctaa cttctgctac taagttttta aaaattccct ttatgcaccc aagagatatt 1020 tattaaacac caattacgta geaggecatg geteatggga eccaecece gtggeactea 1080

tggagggg	c tgcaggttg	g aactatgca	g tgtgctccgg	ccacacatco	tgctgggccc	1140
cctaccctg	c cccaattca	a teetgecaat	t aaatcctgtc	ttatttgttc	atcctggaga	1200
attgaaggg	a ggtcaagtt	g tttgtcaate	g atttgtcaga	gaacctgttg	aaatgtgaat	1260
taagaaget	a agaaaatati	t tcttagcaac	attttcttt	tctttttt	ttttttcttt	1320
tgagacaga	g teteactete	gtcgcccagg	ctggaatgca	gtggtgcgat	ctcggctctc	1380
tgcaacctc	t gtctcccggg	ttcaagcgat	ttcctgcgtc	agccccagag	tagctggaat	1440
tacaggcac	a caccaccacg	cctggctaat	ttttgtattt	ttagtagagc	tggggccacc	1500
ctggcccgg	c cccgtcttcc	tccccaaagg	tcagactgca	ggctgcaggg	ctgtgctgga	1560
ggagccagc	t ctageteace	catgettttg	caacagggtc	gggttggaag	tcagcacagg	1620
tcagtcctg	c ggaaggttcc	ttcgtgactc	atctgtgaag	tggggtggtt	gggagaggta	1680
gctgagagaa	a tgcatgagag	tecteggtge	ctggcaggag	gctggaaggt	tctagaacac	1740
tgatggttat	t aagagtggga	ctgtgagcct	gggatcgggg	ggtgtgagac	ttggatggga	1800
gcacaagagi	t ggaaacacag	cttctgcacg	gagcaggcgc	agccctcaac	accccgtgca	1860
cctgcaccct	agggactett	gggtccagat	gtgctgtggt	tttcacacct	tcttgggggc	1920
aacaggttco	aggagccacc	tgtgggtgcc	acctgagcca	caggetecea	ggaaagcagc	1980
acagetetee	tgcacccaga	gcttgctggg	tggcggaggg	gaacacagat	ggttggggaa	2040
ggcctgaggc	cagattgggg	gactctggac	tggggcagat	gaggeteete	agaatcccac	2100
ctttgaaggg	aactcagctt	ataaacacag	aggagcaaag	ttggagggcc	gggcgtagtg	2160
gctcacacct	gtgatctcag	cactttggga	ggccaaggaa	ggtggatcac	ttgaggccag	2220
gagttcgaga	ccagcctggg	caacatagca	aggccccatc	tctacaaaaa	ttattatttt	2280

25

30

35

40

45

50

5

10

15

20

<210> 26

<211> 907

<212> DNA

<213> Homo sapiens

<220>

<221> 3' UTR

<222> (1)..(907)

<400> 26

tgagetgeag gtgegggeag ggeeceatgee tggeteetee taccagggga cetggagtga 60 atggagtgae eeggteatet tteagaecea gteagaggag ttaaaggaag getggaacee 120 teacetgetg etteteetee tgettgteat agtetteatt eetgeettet ggageetgaa 180 gaeceateea ttgtggagge tatggaagaa gatatgggee gteeceagee etgageggt 240 etteatgeee etgtacaagg getgeagegg agaetteaag aaatgggtgg gtgeaecett 300 eaetggetee ageetggage tgggaecetg gageecagag gtgeeeteea eeetggaggt 360

<210> 27

<211> 3818

<212> DNA

<213> Homo sapiens

<220>

5

10

15

20

25

30

35

40

45

50

<221> 3'UTR

<222> (1)..(3818)

<400> 27

tgagetgeag gtgegggeag ggeceatgee tggeteetee taccagggga cetggagtga 60 atggagtgae eeggteatet tteagaceea gteagaggag ttaaaggaag getggaacee 120 teacetgetg etteteetee tgettgteat agtetteatt eetgeettet ggageetgaa 180 gaeceateea ttgtggagge tatggaagaa gatatgggee gteeceagee etgageggt 240 etteatgeee etgtacaagg getgeagegg agaetteaag aaatgggtgg gtgeaceett 300

cactgg	ctcc	agcctggage	c tgggaccet	g gagcccagae	g gtgccctcca	cectggaggt	t 360
gtacag	ctgc	cacccacca	ggagcccgg	caagaggcts	g cagctcacgg	agctacaaga	a 420
accago	agag	ctggtggagt	t ctgacggtgt	t gcccaagcc	e agcttctggc	cgacagecea	480
gaactc	gggg	ggctcagcti	acagtgagga	ı gagggatcgg	ccatacggcc	tggtgtccat	540
tgacaca	agtg	actgtgctag	atgcagaggg	gccatgcacc	tggccctgca	gctgtgagga	600
tgacgg	ctac	ccagccctgg	acctggatgo	tggcctggag	cccageccag	gcctagagga	6 60
cccacto	cttg	gatgcaggga	ccacagtect	gtcctgtggc	tgtgtctcag	ctggcagccc	720
tgggcta	agga	gggcccctgg	gaagcctcct	ggacagacta	aagccacccc	ttgcagatgg	780
ggagga	tgg	gctgggggac	tgccctgggg	tggccggtca	cctggagggg	tctcagagag	840
tgaggcg	ggc	tcacccctgg	ccggcctgga	tatggacacg	tttgacagtg	gctttgtggg	900
ctctgad	tgc	agcagccctg	tggagtgtga	cttcaccagc	cccggggacg	aaggaccccc	960
ccggago	tac	ctccgccagt	gggtggtcat	tecteegeca	ctttcgagcc	ctggacccca	1020
ggccago	taa	tgaggctgac	tggatgtcca	gagctggcca	ggccactggg	ccctgagcca	1080
gagacaa	ggt	cacctgggct	gtgatgtgaa	gacacctgca	gcctttggtc	tcctggatgg	1140
gcctttg	agc	ctgatgttta	cagtgtctgt	gtgtgtgtgt	gcatatgtgt	gtgtgtgcat	1200
atgcatg	tgt	gtgtgtgtgt	gtgtcttagg	tgcgcagtgg	catgtccacg	tgtgtgtgtg	1260
attgcac	gtg	cctgtgggcc	tgggataatg	cccatggtac	tecatgeatt	cacctgccct	1320
gtgcatg	tct	ggactcacgg	agctcaccca	tgtgcacaag	tgtgcacagt	aaacgtgttt	1380
gtggtca	aca	gatgacaaca	gccgtcctcc	ctcctagggt	cttgtgttgc	aagttggtcc	1440
acagcat	ctc	cggggctttg	tgggatcagg	gcattgcctg	tgactgaggc	ggagcccagc	1500
ctccag	cgt	ctgcctccag	gagctgcaag	aagtccatat	tgttccttat	cacctgccaa	1560

caggaagcga	a aaggggatgg	agtgagccca	tggtgaccto	gggaatggca	atttttggg	1620
cggcccctgg	g acgaaggtct	gaatcccgac	tctgatacct	tctggctgtg	ctacctgage	1680
caagtcgcct	cccctctctg	ggctagagtt	teettateea	gacagtgggg	aaggcatgac	1740
acacctgggg	gaaattggcg	atgtcacccg	tgtacggtac	gcagcccaga	gcagaccctc	1800
aataaacgtc	agcttccttc	cttctgcggc	cagageegag	gcgggcgggg	gtgagaacat	1860
caatcgtcag	cgacagcctg	ggcacccgcg	gggccgtccc	gcctgcagag	ggccactcgg	1920
gggggtttcc	aggettaaaa	teagteegtt	tegtetettg	gaaacagete	cccaccaacc	1980
aagatttett	tttctaactt	ctgctactaa	gtttttaaaa	attecetita	tgcacccaag	2040
agatatttat	taaacaccaa	ttacgtagca	ggccatggct	catgggaccc	accccccgtg	2100
gcactcatgg	agggggctgc	aggttggaac	tatgcagtgt	gctccggcca	cacatcctgc	2160
tgggccccct	accetgeece	aattcaatcc	tgccaataaa	tcctgtctta	tttgttcatc	2220
ctggagaatt	gaaggaggt	caagttgttt	gtcaatgatt	tgtcagagaa	cctgttgaaa	2280
tgtgaattaa	gaagctaaga	aaatatttet	tagcaacatt	ttctttttct	tttttttt	2340
tttcttttga	gacagagtct	cactctcgtc	gcccaggctg	gaatgcagtg	gtgcgatctc	2400
ggetetetge	aacctctgtc	tecegggtte	aagcgatttc	ctgcgtcagc	cccagagtag	2460
ctggaattac	aggcacacac	caccacgcct	ggctaatttt	tgtattttta	gtagagetgg	2520
ggccaccctg	gcccggcccc	gtcttcctcc	ccaaaggtca	gactgcaggc	tgcagggctg	2580
tgctggagga	gccagctcta	gctcacccat	gcttttgcaa	cagggtcggg	ttggaagtca	2640
gcacaggtca	gtcctgcgga	aggttccttc	gtgactcatc	tgtgaagtgg	ggtggttggg	2700
agaggtagct	gagagaatgc	atgagagtcc	teggtgeetg	gcaggaggct	ggaaggttct	2760

5

5

agaacactga tggttataag agtgggactg tgagcctggg atcggggggt gtgagacttg 2820 gatgggagca caagagtgga aacacagctt ctgcacggag caggcgcagc cctcaacacc 2880 ccgtgcacct gcaccctagg gactcttggg tccagatgtg ctgtggtttt cacaccttct 2940 tgggggcaac aggttccagg agccacctgt gggtgccacc tgagccacag gctcccagga 3000 aagcagcaca geteteetge acceagaget tgetgggtgg eggaggggaa cacagatggt 3060 tggggaaggc ctgaggccag attgggggac tctggactgg ggcagatgag gctcctcaga 3120 atcccacctt tgaagggaac tcagcttata aacacagagg agcaaagttg gagggccggg 3180 cgtagtggct cacacctgtg atctcagcac tttgggaggc caaggaaggt ggatcacttg 3240 aggocaggag ttogagacca gootgggcaa catagoaagg coccatotot acaaaaatta 3300 ttatttttta aaaaaattag ccaggtgtgg tggtgcttgc ctatagtccc agctactcgg 3360 gaggetaagg tgggaggate getggageee aggaatttga ggetgeagtg agetgtgatt 3420 acaccettge actocageet gggtcacaga teaagaccet gtctettaaa aataaaagtt 3480 ggagacaaga gctggctcac ctgaaaggag ggattagtag gtaggagggt ggatggagga 3540 tggatggatg tgtgggtgga taggaagatg gtattaagtt ggtgcaaaag tctttgatat 3600 tactcttaat ggctttaata aaaagcttga aggaagaatg attggttgga tagacagaga 3660 taaatgcata ctggaaacaa agataaagat aaaacacaag ttataccagg ccagcaactc 3720 tattttgttc actgccttta gtcccagcct ggcacatagt aggcactcaa taaagcctga 3780 3818 tttgtagcaa aaaaaaaaaa aaaaaaaaa aaaaaaaa

<210> 28

<211> 330

<212> DNA

<213> Mus musculus

55

ב ו האונטטטטט לבם ייטטטטטאאין ו

5

10

15

20

25

30

35

40

45

	<220> <223> primer sequence(1-30,301-330)	
5	mouse cDNA sequence(31-300)	
	<400> 28	
10	ccggctcccc ctttcaacgt gactgtgacc ttctcaggac agtataatat ctccaggcgc	60
	teagattacg aagaceetge ettetacatg etgaagggea agetteagta tgagetgeag	120
15	tacaggaacc ggggagaccc ctgggctgtg agtccgagga gaaagctgat ctcagtggac	180
	tcaagaagtg tctccctcct cccctggag ttccgcaaag actcgagcta tgagctgcag	240
20	gtgcgggcag ggcccatgcc tggctcctcc taccagggga cctggagtga atggagtgac	300
	ccggtcatct ttcagaccca gtcagagggt	330
25	<210> 29	
	<211> 30 <212> DNA	
	<213> Artificial Sequence	
30		
	<220>	
	<223> Artificially Synthesized Primer Sequence	
35	<400> 29	
	tccaggcgct cagattacga agaccctgcc	30
40	<210> 30	
	<211> 30	
	<212> DNA	
4 5	<213> Artificial Sequence	
	<220>	
	<223> Artificially Synthesized Primer Sequence	
50	<400> 30	
	ACTCCAGGTC CCCTGGTAGG AGGAGCCAGG	30

Claims

5

20

25

30

35

45

- 1. A protein comprising the amino acid sequence from the 1st amino acid Met to the 361st amino acid Ser of SEQ ID NO: 1, or a protein comprising a modified amino acid sequence of said amino acid sequence in which one or more amino acids have been deleted, added and/or substituted with another amino acid, and being functionally equivalent to the protein comprising the amino acid sequence from the 1st amino acid Met to the 361st amino acid Ser of SEQ ID NO: 1.
- 2. A protein comprising the amino acid sequence from the 1st amino acid Met to the 144th amino acid Leu of SEQ ID NO: 3, or a protein comprising a modified amino acid sequence of said amino acid sequence in which one or more amino acids have been deleted, added and/or substituted with another amino acid, and being functionally equivalent to the protein comprising the amino acid sequence from the 1st amino acid Met to the 144th amino acid Leu of SEQ ID NO: 3.
- 3. A protein comprising the amino acid sequence from the 1st amino acid Met to the 237th amino acid Ser of SEQ ID NO: 5, or a protein comprising a modified amino acid sequence of said amino acid sequence in which one or more amino acids have been deleted, added and/or substituted with another amino acid, and being functionally equivalent to the protein comprising the amino acid sequence from the 1st amino acid Met to the 237th amino acid Ser of SEQ ID NO: 5.
 - 4. A protein comprising the amino acid sequence from the 1st amino acid Met to the 538th amino acid Ser of SEQ ID NO: 7, or a protein comprising a modified amino acid sequence of said amino acid sequence in which one or more amino acids have been deleted, added and/or substituted with another amino acid, and being functionally equivalent to the protein comprising the amino acid sequence from the 1st amino acid Met to the 538th amino acid Ser of SEQ ID NO: 7.
 - 5. A protein comprising the amino acid sequence from the 1st amino acid Met to the 144th amino acid Leu of SEQ ID NO: 19, or a protein comprising a modified amino acid sequence of said amino acid sequence in which one or more amino acids have been deleted, added and/or substituted with another amino acid, and being functionally equivalent to the protein comprising the amino acid sequence from the 1st amino acid Met to the 144th amino acid Leu of SEQ ID NO: 19.
 - 6. A protein comprising the amino acid sequence from the 1st amino acid Met to the 538th amino acid Ser of SEQ ID NO: 21, or a protein comprising a modified amino acid sequence of said amino acid sequence in which one or more amino acids have been deleted, added and/or substituted with another amino acid, and being functionally equivalent to the protein comprising the amino acid sequence from the 1st amino acid Met to the 538th amino acid Ser of SEQ ID NO: 21.
- A protein encoded by a DNA hybridizing to a DNA comprising the nucleotide sequence of SEQ ID NO: 2, said protein being functionally equivalent to a protein comprising the amino acid sequence from the 1st amino acid Met to the 361st amino acid Ser of SEQ ID NO: 1.
 - 8. A protein encoded by a DNA hybridizing to a DNA comprising the nucleotide sequence of SEQ ID NO: 4, said protein being functionally equivalent to a protein comprising the amino acid sequence from the 1st amino acid Met to the 144th amino acid Leu of SEQ ID NO: 3.
 - A protein encoded by a DNA hybridizing to a DNA comprising the nucleotide sequence of SEQ ID NO: 6, which is functionally equivalent to a protein comprising the amino acid sequence from the 1st amino acid Met to the 237th amino acid Ser of SEQ ID NO: 5.
 - 10. A protein encoded by a DNA hybridizing to a DNA comprising the nucleotide sequence of SEQ ID NO: 8, said protein being functionally equivalent to a protein comprising the amino acid sequence from the 1st amino acid Met to the 538th amino acid Ser of SEQ ID NO: 7.
- 11. A protein encoded by a DNA hybridizing to a DNA comprising the nucleotide sequence of SEQ ID NO: 20, said protein being functionally equivalent to a protein comprising the amino acid sequence from the 1st amino acid Met to the 144th amino acid Leu of SEQ ID NO: 19.

- 12. A protein encoded by a DNA hybridizing to a DNA comprising the nucleotide sequence of SEQ ID NO: 22, said protein being functionally equivalent to a protein comprising the amino acid sequence from the 1st amino acid Met to the 538th amino acid Ser of SEQ ID NO: 21.
- 5 13. A fusion protein comprising the protein of any one of claims 1 to 12 and another peptide or polypeptide.
 - 14. A DNA encoding the protein of any one of claims 1 to 13.
 - 15. A vector comprising the DNA of claim 14.

10

15

20

25

30

35

40

45

50

55

- 16. A transformant harboring the DNA of claim 14 in an expressible manner.
- 17. A method of producing the protein of any one of claims 1 to 13, comprising the step of culturing the transformant of claim 16.
- 18. A method of screening a compound that binds to the protein of any one of claims 1 to 13 comprising the steps of:
 - (a) contacting a test sample with the protein of any one of claims 1 to 13; and
 - (b) selecting a compound that comprises an activity to bind to the protein of any one of claims 1 to 13.
- 19. An antibody that specifically binds to the protein of any one of claims 1 to 12.
- 20. A method of detecting or measuring the protein of any one of claims 1 to 13 comprising the steps of contacting a test sample presumed to contain said protein with the antibody of claim 19, and detecting or measuring the formation of the immune complex between the antibody and the protein.
- 21. A DNA specifically hybridizing to a DNA comprising a nucleotide sequence of any one of SEQ ID NOs: 2, 4, 6, 8, 20, and 22 to 27 comprising at least 15 nucleotides, and comprising at least 15 nucleotides.

NR8*	40862	<u>SLLPLEFRKDSSYELQVRAGPMPGSSYQGTWSEWSDPVIFQTQSEGRCEAGMDTPLL</u>	41032
hŢPOR	442	LELRPRSRYRLQLRAR-LNGPTYQGPWSSWSDPTRVETATE	481
HOBR	292	SLLVDSI LPG <u>SSYEVQVR</u> GKRLDGPGIWSDWSTPRVFTIG	331
hIL2Rb	201	<u>DTQYEFQVRVKPLQGEFTTWSPWSQPLAFRTK</u>	232
hIL7R	189	TLLORKLOPAAMYEIKVRSIPDHYFKGFWSEWSPSYYFRIPEINNSSGEMDPILL	243
hGM-CSFRb	196	T <u>LGPEHLMPSSTY</u> VAR <u>VR</u> TRLA <u>PGS</u> RLSGRPSK <u>WS</u> PE <u>V</u> CWDSQ	238
	419	TGYNGIWSEWSEARSWDIES	438
mIL3Rb	200	N <u>L</u> EPKL <u>F</u> LPNSIYAAR <u>VR</u> TRLSA <u>GSS</u> LS <u>G</u> RPSR <u>WS</u> PE <u>V</u> HWDS <u>Q</u>	242
	404	QLEPDISYCARVRVKPI-SDYDGIWSEWSNEYTWTI	438
hIL5Ra	305	SKYDVQVRAAVSSMCREAGLWSEWSQPI	329
hIL9R	241	YTGOWSEWSOPVCFQ	255
hepor	211	RGRTRYTFAVRAR-MAEPSFGGFWSAWSEPVSLLTPSD	247
hIL2Rr	209	SLPSVDGQKRYTFRVRSRFNPLCGSAQHWSEWSHPI	244
hIL12R	197	LCPLEMNVAGEFQLRRRQLGSQGSSWSKWSSPV	229
hIL12Rb	282	LDLKPFTEYEFQISSKLHLYKGSWSDWSESLRAQIPEE	319

Figure 2

[Query: 39181-39360]

NR8	39233	HQVKPAPPFN—VTVTFSGQYNISWRS-DYEDP——AFYMLKGKLQY 39355
hIL6Ra	214	LQPDPPANI-TVTAVAR-NPRWLSVTWQDPHSWNSSFYRLRFELRY 257
hgp130	218	YK <u>VKPNPPHN</u> L-SVINSEELSSILKLTWT-NPSIKSV-IILKYNIQY 261
rOBRb	234	VKPDPPLGLRMEVTDDGNLKISWDS-QTKAP 263

[Query: 42301-42480]

NR8	42307	VPSPERFFMPLYKGCSGDFK	42366
mIL9R	305	IPSPEAFFHPLYSVYHGDFQ	324
hIL9R	305	VPSPAMFFQPLYSVHNGNFQ	324

Figure 3

Figure 4

10	20	30	40	50	60	70	80
GGCAGCCAGCGGC	CTCAGACAGAC	CCACTGGCG	ICTCTCTGCT	Gagtgaccgt	AAGCTCGGCGT	CTGGCCCTCT	CCTGC
90	100	110	120	130	140	150	160
CTCTCCCTGAGTG	TGGCTGACAGO	CACGCAGCTO	Etgtctgtct	GTCTGCGGCC	CGTGCATCCCT	GCTGCGGCCG	CCTGGT
170	180	190	200	210	220	230	240
ACCTTCCTTGCCGT	CTCTTTCCTC	TGTCTGCTGC	CTCTGTGGGA	CACCTGCCTGC	Baggcccagct	GCCCGTCATO	Agagtg
250	260	270	280	290	300	310	320
ACAGGTCTTATGAC	CAGCCTGATTO	GTGACTCGG	SCTGGGTGTG	SATTCTCACCO	CCAGGCCTCTG	CCTGCTTTCT	CAGACC
330	340	350	360	370	380	390	400
CTCATCTGTCACCO	CCACGCTGAA	CCCAGCTGCC	CACCCCAGA	AGCCCATCAGA	ACTGCCCCAG	Cacacggaat	GGATTT
410 CTGAGAAAGAAGCO	420 Gaaacagaag	430 GCCCGTGGGA		450 CGCGTGGCTG			
490 TCCAGGGAGGCTGG Q G G W	-		520 CTACACCGAT	530 TACCTCCAGA	540 CGGTCATCTG	550 CATCCTGGAA	560 Atgtgg
570 AACCTCCACCCCAG N L H P S	580 CACGCTCACC	590 CTTACCTGGC	600 AAGACCAGTA	610 TGAAGAGCTG	620 AAGGACGAGG	630 CCACCTCCTG	640
650 CCACAGGTCGGCCC H R S A H	660 ACAATGCCAC	670 GCATGCCACC	680 Tacacctgcc	690 ACATGGATGT	700 ATTCCACTTC	710 ATGGCCGACG	720 ACATTT
730 TCAGTGTCAACATC	740 ACAGACCAGT	750 CTGGCAACTA	760 . CTCCCAGGAG	770	780 TTCTCCTGGC	790 TGAGAGCATC	800
810	820	830	840	.850	860	870	880
GCTCCCCCTTTCAA	CGTGACTGTG	ACCTTCTCAG	Gacagtataa	TATCTCCTGG	CGCTCAGATTA	ACGAAGACCC	
890 CTACATGCTGAAGG Y M L K G	900 SCAAGCTTCAG	910 STATGAGCTG	920 CAGTACAGGA	930 ACCGGGGAGA	940 CCCCTGGGCT(950 STGAGTCCGA	960
970 AGCTGATCTCAGTG	980 Gactcaagaac	990 STGTCTCCCT(1000	1010 - GAGTTCCGCA	1020 AAGACTCGAG	1030	1040 CAGGTG
1050 CGGGCAGGGCCCATC	1060	1070	1080	1090	1100	1110	1120
	CCTGGCTCCT	CCTACCAGG	GACCTGGAG	TGAATGGAGTI	GACCCGGTCAT	ICTTTCAGAC	CCAGTC

1180 1190 AGAGGAGTTAAAGGAAGGCTGGAACCCTCACCTGCTTCTCCTCCTGCTTGTCATAGTCTTCATTCCTGCCTTCTGGA E E L K E G W N P H L L L L L L V I V F I P A F W S GCCTGAAGACCCATCCATTGTGGAGGCTATGGAAGAAGATATGGGCCGTCCCCAGCCCTGAGCGGTTCTTCATGCCCCTG LKTHPLWRLWKKIWAVPSPERFFMPL YKGCSGDFKKWVGAPFTGSSLELGPWS PEVPSTLEVYSCHPPSSPVECDFTSPG DEGPPRSYLROWVVIPPPLSSPGPQA-AGCTAATGAGGCTGACTGGATGTCCAGAGCTGGCCAGGCCACTGGGCCCTGAGCCAGAGACAAGGTCACCTGGGCTGTGA TGCCTGTGGGCCTGGGATAATGCCCATGGTACTCCATGCATTCACCTGCCCTGTGCATGTCTGGACTCACGGAGCTCACC

AAAAAAAAAAAA

						•	
10	20	30	40	50	60	70	80
GGCAGCCAGCGGCC	TCAGACAGA	CCCACTGGCG	TCTCTCTGCT	GAGTGACCGTA	VAGCTCGGCGT	CTGGCCCTCT	GCCTGC
* <u>'</u>			•				
90	100	110	120	130	140	150	160
CTCTCCCTGAGTGT	GGCTGACAG	CCACGCAGCT	GTGTCTGTCT	GTCTGCGGCCC	ETECATCCCT	GCTGCGGCCG	CCTGGT
		455					
170	180	190	200	210	220	230	240
ACCTTCCTTGCCGT	CICITIOCIC	i Gi Ci GCi G	CICIGIGGGA	CACCIGCCIGG	iagecucage i	GCCCGTCATC	AGAGTG
250	260	270	280	290	300	310	320
ACAGGTCTTATGAC							
ACADOTOTIATO	, according		401 Q32 1 Q (Q)	21110101000		0010011101	CHUNCO
330	340	350	360	370	380	390	400
CTCATCTGTCACCC	CCACGCTGAA	CCCAGCTGC	CACCCCCAGA	AGCCCATCAGA	CTGCCCCCAG	CACACGGAAT	
						•	
410	420	430	440	450	460	470	480
CTGAGAAAGAAGCC	GAAACAGAAG	GCCCGTGGG	NGTCAGCATG	CGCGTGGCTG	ĞGCCGCCCCC	TTGCTCCTGC	TGCTGC
			M F	RGW	AAP	rrr	LL
400	500	610	500	520	E40	650	500
490 TCCAGGGAGGCTGG	500 correcces	510	520	530 Tacctccaca	540 CCCTCATCTC	550	560
	G C P D			YLOT			N M
			. , ,		, , ,	* F E	, w
570	580	590	600	610	620	630	640
AACCTCCACCCCAG	CACGCTCACC	CTTACCTGG	CAAGACCAGTA	TGAAGAGCTG	AAGGACGAGG	CCACCTCCTG	CAGCCT
NLHPS	TLT	LTWC	DQY	EEL	KDEA	T S C	SL
							•
650	660	670	680	690	700	710	720
CCACAGGTCGGCCC							
HRSAH	NAT		YTCH	⊢M D.V T⊶W M Y		M A D D W P T '	IF TF
730	740	750	760	770	780	790	800
TCAGTGTCAACATCA							
	r D Q S			C G S F	LLA		SE
SVSTS	QTS	LATT	PRS	VAAI	FSWL	RAS	PR
810	820	830	840	850	860	870	880
GAGAAAGCTGATCTC	AGTGGACTC	AAGAAGTGTC	TCCCTCCTCC	CCCTGGAGTT	CCGCAAAGAC	TCGAGCTATG	AGCTGC
E K A D L	SGLI	KKCL	PPP	PGVI	PQRL	E L #	
RKLIS	V D S		SLLP			SSYE	L O
890	900	910	920	930	940	950	960
AGGTGCGGGCAGGGC	CCATGCCTG	SCTCCTCCTA	CCAGGGGACC'	TGGAGTGAAT	GAGTGACCC	GGTCATCTTT	CAGACC
VRAGP	MPG	SSY	0 G T	4 S F W	SDP	VIF	T C

Figure 8

CAGTCAGAGGAGTTAAAGGAAGGCTGGAACCCTCACCTGCTGCTTCTCCTCCTGCTTGTCATAGTCTTCATTCCTGCCTT O S E E L K E G W N P H L L L L L L V I V F I P A F CTGGAGCCTGAAGACCCATCCATTGTGGAGGCTATGGAAGAAGATATGGGCCGTCCCCAGCCCTGAGCGGTTCTTCATGC W S L K T H P L W R L W K K I W A V P S P E R F F M P LYKGCSGDFKKWVGAPFTGSSLELGP WSPEVPSTLEVYSCHPPSSPVECDFTS P G D E G P P R S Y L R Q W V V I P P P L S S P G P Q AGGCCAGCTAATGAGGCTGACTGGATGTCCAGAGCTGGCCAGGCCACTGGGCCCTGAGCCAGAGACAAGGTCACCTGGGC A S * *

1610 1620 1630 1640 1650 1660 1670 1680 GCACGTGCCTGTGGGCTGGGGATAATGCCCATGGTACTCCATGCATTCACCTGCCCTGTGCATGTCTGGACTCACGGAGC

1770 1780 AAAAAAAAAAAAAAA

10 GGCAGCCAĢCGGCCT	20 Cagacagaco	30 Cactggcgtct	40 ICTCTGCTGA	50 GTGACCGTAA	60 GCTCGGCGTC	70 TGGCCCTCTGCC	80 TGC
90 CTCTCCCTGAGTGTG	100 GCTGACAGCC	110 ACGCAGCTGT(120 STCTGTCTGT	130 CTGCGGCCCG	140 TGCATCCCTGC		160 GGT
170 ACCTTCCTTGCCGTC	180 FCTTTCCTCTC	190 Statgatgato	200 TGTGGGACAI	210 CCTGCCTGGA	220 GGCCCAGCTGC		240 GTG
250 ACAGGTCTTATGACAG	260 SCCTGATTGGT	270 Igactogggct	280 'GGGTGTGGA'	290 ITCTCACCCC	300 Aggcctctgco		320 ACC
330 CTCATCTGTCACCCCC	340 CACGCTGAACO	350 CCAGCTGCCAC	360 CCCCAGAAGO	370 CCCATCAGAC	380 IGCCCCCAGCA		400 TTT
410 CTGAGAAAGAAGCCGA	420 AACAGAAGGO	430 CCGTGGGAGT					
490 TCCAGCGAGGCTGGGG Q G G W G 570			520 Acaccgatta	530 ACCTCCAGACO	540 GTCATCTGCA	550 S ATCCTGGAAATG LEMI	560
AACCTCCACCCCAGCA N L H P S T 650	CGCTCACCCT L T L 660	TACCTGGCAA T W Q 670	GACCAGTATE D Q Y E 680	SAAGAGCTGA/ E E L K 690	AGGACGAGGCO D E A 700	CACCTCCTGCAGG T S C S 710	CCT L 720
CCACAGGTCGGCCCAC H R S A H 730 TCAGTGTCAACATCAC	N A T H 740	750	Т С Н 760	M D V F 770	780	A D D I 790 8	F 800
S V N I T 810 GCTCCCCCTTTCAACG	D Q \$ 820	G N Y S 830	Q E C 840	G S F 850	860	870 E	9 3 80
	T V T 900	F S G (Q Y N I 920	S W R 930	S D Y 940	E D P A 950 9	F 960
Y H L K G 970 AGCTGATCTCAGTGGA	K L Q Y 980	E L Q 990	Y R N 1000	R G D P 1010 -	W A V	S P R R 1030 10	K)40
LISVD	S R S 1	V S L L 1070 1	P L E	F R K 1090	D S S Y 1100	E L Q V	/ 120
RAGPHP	GSS	YQGI	I W S E	W S D	PVI	FOTO	S

1130	1140	1150	1160	1170	1180	1190	1200
AGAGGAGTTAAAGC	•						
		PHLL					
							· · · · · · · · · · · · · · · · · · ·
1210	1220	1230	1240	1250	1260	1270	1280
GCCTGAAGACCCAT						GITCTTCAT	GCCCCTG
LKTH	PLWR	LWK	KIM	AVPS	SPER	FFM	PL
1290	1300	1310	· 1320	1330	1340	1350	1360
TACAAGGGCTGCAG	CGGAGACTTC	AAGAAATGGG	TEGETECACO	CTTCACTGG	TCCAGCCTGG	AGCTGGGAC	CCTGGAG
YKGCS	GDF	K K W V	GAP	FTG	SSLE	LGP	W S
1370	1380	1390	1400	1410	1420	1430	1440
CCCAGAGGTGCCCT							
PEVPS					AKR		
1450		1470	1480	1490	1500		
* * **	1460					1510	1520
TACAAGAACCAGCA							
QEPA	ELVE	SUG	VPK	PSF	PIA	QNS	<u> 6 </u>
					. =		:
1530	1540	1550	1560	1570	1580	1590	1600
TCAGCTTACAGTGA							AGGGGCC
SAYSE	ERDI	R P Y G	LVS	IDT	<u>v T v L</u>	DAE	GP
1610	1620	1630	1640	1650	1660	1670	1680
ATGCACCTGGCCCT	GCAGCTGTGAG	GATGACGGC	TACCCAGCCC	TGGACCTGGA	TGCTGGCCTG	GAGCCCAGC	CCAGGCC
· · · · -							P G L
CTWPC							PGL
CTWPC	SCE	D D G	Y P A L	DLD	AGLI	E P S	P G L
C T W P C	S C E	D D G	Y P A L	D L D	A G L I	E P S 1750	1760
C T W P C 1690 TAGAGGACCCACTC	S C E 1700 TTGGATGCAGO	D D G 1710 EGACCACAGTO	Y P A L 1720 CCTGTCCTGT	D L D 1730 GGCTGTGTCT	A G L I	1750 CCCTGGGCT	1760 AGGAGGG
C T W P C	S C E 1700 TTGGATGCAGO	D D G 1710 EGACCACAGTO	Y P A L 1720 CCTGTCCTGT	D L D 1730 GGCTGTGTCT	A G L I	1750 CCCTGGGCT	1760 AGGAGGG
C T W P C 1690 TAGAGGACCCACTC E D P L	1700 TTGGATGCAGC L D A G	D D G 1710 GACCACAGTO T T V	1720 CCTGTCCTGT L S C	D L D 1730 GCTGTGTCT G C V S	1740 CAGCTGGCAGG	1750 CCCTGGGCT P G L	1760 AGGAGGG G G
C T W P C 1690 TAGAGGACCCACTC E D P L 1770	1700 TTGGATGCAGC L D A G	D D G 1710 EGACCACAGTO T T V 1790	1720 CCTGTCCTGT L S C	D L D 1730 GGCTGTGTCT G C V S	1740 CAGCTGGCAGG A G S	1750 CCCTGGGCT P G L	1760 AGGAGGG G G 1840
TAGAGGACCCACTC E D P L 1770 CCCCTGGGAAGCCT	1700 TTGGATGCAGC L D A G 1780 CCTGGACAGAC	D D G 1710 GGACCACAGTO T T V 1790 TAAAGCCAC	1720 CCTGTCCTGT L S C 1800 CCCTTGCAGA	D L D 1730 GGCTGTGTCT G C V S 1810 TGGGGAGGAC	1740 CAGCTGGCAGG A G S 1820 TGGGCTGGGGG	1750 CCCTGGGCT P G L 1830 GACTGCCCT	1760 AGGAGGG G G 1840 GGGGTGG
TAGAGGACCCACTC E D P L 1770 CCCCTGGGAAGCCT	1700 TTGGATGCAGC L D A G 1780 CCTGGACAGAC	D D G 1710 GGACCACAGTO T T V 1790 TAAAGCCAC	1720 CCTGTCCTGT L S C 1800 CCCTTGCAGA	D L D 1730 GGCTGTGTCT G C V S 1810 TGGGGAGGAC	1740 CAGCTGGCAGG A G S	1750 CCCTGGGCT P G L 1830 GACTGCCCT	1760 AGGAGGG G G 1840
TAGAGGACCCACTC E D P L 1770 CCCCTGGGAAGCCTC P L G S L	1700 1TGGATGCAGC L D A G 1780 CCTGGACAGAC L D R L	D D G 1710 EGACCACAGTO T T V 1790 CTAAAGCCACC	1720 CCTGTCCTGT L S C 1800 CCCTTGCAGA L A D	D L D 1730 GECTGTGTCT G C V S 1810 TGGGGAGGAC G E D	1740 CAGCTGGCAGG A G S 1820 TGGGCTGGGGG W A G G	1750 CCCTGGGCT P G L 1830 GACTGCCCT L P W	1760 AGGAGGG G G 1840 GGGGTGG G G
TAGAGGACCCACTC E D P L 1770 CCCCTGGGAAGCCTC P L G S L 1850	1700 TTGGATGCAGC L D A G 1780 CCTGGACAGAC L D R L	D D G 1710 EGACCACAGTO T T V 1790 ETAAAGCCACC	1720 CCTGTCCTGT L S C 1800 CCCTTGCAGA L A D	D L D 1730 GGCTGTGTCT G C V S 1810 TGGGGAGGAC G E D	1740 CAGCTGGCAGG A G S 1820 TGGGCTGGGGGW A G G	1750 CCCTGGGCT P G L 1830 GACTGCCCT L P W	1760 AGGAGGG G G 1840 GGGGTGG G G
TAGAGGACCCACTC E D P L 1770 CCCCTGGGAAGCCTC P L G S L 1850 CCGGTCACCTGGAG	1700 TTGGATGCAGC L D A G 1780 CCTGGACAGAC L D R L 1860 GGGTCTCAGAG	D D G 1710 GGACCACAGTO T T V 1790 CTAAAGCCACC K P P 1870 GAGTGAGGCGC	1720 CCTGTCCTGT L S C 1800 CCCTTGCAGA L A D 1880 GCCTCACCCC	D L D 1730 GGCTGTGTCT G C V S 1810 TGGGGAGGAC G E D 1890 TGGCCGGCCT	1740 CAGCTGGCAGG A G S 1820 TGGGCTGGGGG W A G G 1900 GGATATGGACA	1750 CCCTGGGCT P G L 1830 GACTGCCCT L P W 1910 ACGTTTGAC	1760 AGGAGGG G G 1840 GGGGTGG G G AGTGGCT
TAGAGGACCCACTC E D P L 1770 CCCCTGGGAAGCCTC P L G S L 1850	1700 TTGGATGCAGC L D A G 1780 CCTGGACAGAC L D R L 1860 GGGTCTCAGAG	D D G 1710 EGACCACAGTO T T V 1790 ETAAAGCCACC	1720 CCTGTCCTGT L S C 1800 CCCTTGCAGA L A D 1880 GCCTCACCCC	D L D 1730 GGCTGTGTCT G C V S 1810 TGGGGAGGAC G E D 1890 TGGCCGGCCT	1740 CAGCTGGCAGG A G S 1820 TGGGCTGGGGGW A G G	1750 CCCTGGGCT P G L 1830 GACTGCCCT L P W 1910 ACGTTTGAC	1760 AGGAGGG G G 1840 GGGGTGG G G
TAGAGGACCCACTC E D P L 1770 CCCCTGGGAAGCCTC P L G S L 1850 CCGGTCACCTGGAG	1700 TTGGATGCAGG L D A G 1780 CCTGGACAGAG L D R L 1860 GGGTCTCAGAG	1710 GGACCACAGTO T T V 1790 CTAAAGCCACC K P P 1870 GAGTGAGGCGC S E A C	1720 CCTGICCTGT L S C 1800 CCCTTGCAGA L A D 1880 SECTCACCCC S S P L	D L D 1730 GGCTGTGTCT G C V S 1810 TGGGGAGGAC G E D 1890 TGGCCGGCCT A G L	1740 CAGCTGGCAGG A G S 1820 TGGGCTGGGGGW A G G 1900 GGATATGGACA	1750 CCCTGGGCT P G L 1830 GACTGCCCT L P W 1910 ACGTTTGAC	1760 AGGAGGG G G 1840 GGGGTGG G G 1920 AGTGGCT S G F
TAGAGGACCCACTC E D P L 1770 CCCCTGGGAAGCCTC P L G S L 1850 CCGGTCACCTGGAG	1700 TTGGATGCAGG L D A G 1780 CCTGGACAGAG L D R L 1860 GGGTCTCAGAG	1710 GGACCACAGTO T T V 1790 CTAAAGCCACC K P P 1870 GAGTGAGGCGC S E A C	1720 CCTGICCTGT L S C 1800 CCCTTGCAGA L A D 1880 SECTCACCCC S S P L	D L D 1730 GGCTGTGTCT G C V S 1810 TGGGGAGGAC G E D 1890 TGGCCGGCCT A G L	1740 CAGCTGGCAGG A G S 1820 TGGGCTGGGGG W A G G 1900 GGATATGGACA	1750 CCCTGGGCT P G L 1830 GACTGCCCT L P W 1910 ACGTTTGAC	1760 AGGAGGG G G 1840 GGGGTGG G G 1920 AGTGGCT S G F
C T W P C 1690 TAGAGGACCCACTC E D P L 1770 CCCCTGGGAAGCCTC P L G S L 1850 CCGGTCACCTGGAG R S P G G	1700 TTGGATGCAGC L D A G 1780 CCTGGACAGAC L D R L 1860 GGGTCTCAGAG V S E	D D G 1710 GACCACAGTO T T V 1790 CTAAAGCCACC K P P 1870 GAGTGAGGCGC S E A C	1720 CCTGTCCTGT L S C 1800 CCCTTGCAGA L A D 1880 CCCTCACCCC S S P L	D L D 1730 GGCTGTGTCT G C V S 1810 TGGGGAGGAC G E D 1890 TGGCCGGCCT A G L	1740 CAGCTGGCAGG A G S 1820 TGGGCTGGGGG W A G G 1900 GGATATGGACA 1980	1750 CCCTGGGCT PGL 1830 GACTGCCCT LPW 1910 ACGTTTGAC FFD	1760 AGGAGGG G G 1840 GGGGTGG G G 1920 AGTGGCT S G F
T W P C 1690 TAGAGGACCCACTC E D P L 1770 CCCCTGGGAAGCCTC P L G S L 1850 CCGGTCACCTGGAG R S P G G	1700 TTGGATGCAGC L D A G 1780 CCTGGACAGAC L D R L 1860 GGGTCTCAGAG V S E 1940 TGCAGCAGCCC	1710 GGACCACAGTO T T V 1790 CTAAAGCCACC K P P 1870 GAGTGAGGCGC S E A C 1950 CTGTGGAGTGT	1720 CCTGTCCTGT L S C 1800 CCCTTGCAGA L A D 1880 CCCTCACCCC S P L 1960 TGACTTCACC	D L D 1730 GGCTGTGTCT G C V S 1810 TGGGGAGGAC G E D 1890 TGGCCGGCCT A G L 1970 AGCCCCGGGG	1740 CAGCTGGCAGC A G S 1820 TEGGCTGGGGC W A G G 1900 GGATATGGAC D M D T	1750 CCCTGGGCT P G L 1830 GACTGCCCT L P W 1910 ACGTTTGAC F D 1990 CCCCCGGAG	1760 AGGAGGG G G 1840 GGGGTGG G G 1920 AGTGGCT S G F 2000 CTACCTC
THE PC 1690 TAGAGGACCCACTC EDPL 1770 CCCCTGGGAAGCCTC PLGSL 1850 CCGGTCACCTGGAGG RSPGG 1930 TTGTGGGCTCTGAC	1700 TTGGATGCAGC L D A G 1780 CCTGGACAGAC L D R L 1860 GGGTCTCAGAG V S E 1940 TGCAGCAGCCC	1710 GGACCACAGTO T T V 1790 CTAAAGCCACC K P P 1870 GAGTGAGGCGC S E A C 1950 CTGTGGAGTGT	1720 CCTGTCCTGT L S C 1800 CCCTTGCAGA L A D 1880 CCCTCACCCC S P L 1960 TGACTTCACC	D L D 1730 GGCTGTGTCT G C V S 1810 TGGGGAGGAC G E D 1890 TGGCCGGCCT A G L 1970 AGCCCCGGGG	1740 CAGCTGGCAGC A G S 1820 TEGGCTGGGGC W A G G 1900 GGATATGGAC D M D T	1750 CCCTGGGCT P G L 1830 GACTGCCCT L P W 1910 ACGTTTGAC F D 1990 CCCCCGGAG	1760 AGGAGGG G G 1840 GGGGTGG G G 1920 AGTGGCT S G F 2000 CTACCTC
TAGAGGACCCACTC EDPL 1770 CCCCTGGGAAGCCTC PLGSL 1850 CCGGTCACCTGGAGG RSPGG 1930 TTGTGGGCTCTGAC VGSDC	1700 TTGGATGCAGC L D A G 1780 CCTGGACAGAC L D R L 1860 GGGTCTCAGAG V S E 1940 TGCAGCAGCACCC C S S P	D D G 1710 GGACCACAGTO T T V 1790 CTAAAGCCACC K P P 1870 GAGTGAGGCGC S E A C 1950 CTGTGGAGTGT V E C	1720 CCTGICCTGT L S C 1800 CCCTTGCAGA L A D 1880 SGCTCACCCC S P L 1960 IGACTTCACC	TO L D 1730 GGCTGTGTCT G C V S 1810 TGGGGAGGAC G E D 1890 TGGCCGGCCT A G L 1970 AGCCCCGGGG S P G D	1740 CAGCTGGCAGG A G S 1820 TGGGCTGGGGG W A G G 1900 GGATATGGACA D M D T 1980 ACGAAGGACCG E G P	1750 CCCTGGGCT P G L 1830 GACTGCCCT L P W 1910 ACGTTTGAC I F D 1990 CCCCCGGAG P R S	1760 AGGAGGG G G 1840 GGGGTGG G G 1920 AGTGGCT S G F 2000 CTACCTC Y L
TAGAGGACCCACTC E D P L 1770 CCCCTGGGAAGCCTC P L G S L 1850 CCGGTCACCTGGAG R S P G G 1930 TTGTGGGCTCTGAC V G S D C	1700 TTGGATGCAGC L D A G 1780 CCTGGACAGAC L D R L 1860 GGGTCTCAGAG V S E 1940 TGCAGCAGCACCC C S S P	1710 GGACCACAGTO T T V 1790 CTAAAGCCACC K P P 1870 GAGTGAGGCGC S E A C 1950 CTGTGGAGTGT V E C	1720 CCTGTCCTGT L S C 1800 CCCTTGCAGA L A D 1880 EGCTCACCCC S S P L 1960 IGACTTCACC D F T	D L D 1730 GGCTGTGTCT G C V S 1810 TGGGGAGGAC G E D 1890 TGGCCGGCCT A G L 1970 AGCCCCGGGG S P G D	1740 CAGCTGGCAGG A G S 1820 TGGGCTGGGGG W A G G 1900 GGATATGGACA D M D 1980 ACGAAGGACCG E G P	1750 CCCTGGGCT P G L 1830 GACTGCCCT L P W 1910 ACGTTTGAC F D 1990 CCCCCGGAG P R S	1760 AGGAGGG G G 1840 GGGGTGG G G 1920 AGTGGCT S G F 2000 CTACCTC Y L 2080
TAGAGGACCCACTC EDPL 1770 CCCCTGGGAAGCCTC PLGSL 1850 CCGGTCACCTGGAGG RSPGG 1930 TTGTGGGCTCTGAC VGSDC	1700 176GATGCAGC L D A G 1780 CCTGGACAGAC L D R L 1860 GGGTCTCAGAG V S E 1940 TGCAGCAGCCC C S S P 2020 CATTCCTCCGC	1710 GGACCACAGTO T T V 1790 CTAAAGCCACC K P P 1870 GAGTGAGGCGC S E A C 1950 CTGTGGAGTGT V E C 2030 CACTTTCGAG	1720 CCTGTCCTGT L S C 1800 CCCTTGCAGA L A D 1880 GCCTCACCCC S P L 1960 TGACTTCACC D F T 2040 CCCCTGGACCC	D L D 1730 GGCTGTGTCT G C V S 1810 TGGGGAGGAC G E D 1890 TGGCCGGCCT A G L 1970 AGCCCCGGGG S P G D 2050 CCAGGCCAGC	1740 CAGCTGGCAGC A G S 1820 TGGGCTGGGGG W A G G 1900 GGATATGGACA D M D T 1980 ACGAAGGACCC E G P 2060 TAATGAGGCTC	1750 CCCTGGGCT P G L 1830 GACTGCCCT L P W 1910 ACGTTTGAC F D 1990 CCCCCGGAG P R S	1760 AGGAGGG G G 1840 GGGGTGG G G 1920 AGTGGCT S G F 2000 CTACCTC Y L 2080

2090	2100	2110	2120	2130	2140	2150	2160
CTGGCCAGGCCAC	TEGECCCTGA	GCCAGAGACA	AGGTCACCTG	GGCTGTGATG	TGAAGACACC	TGCAGCCTTTT	EGTCTCC
2170	2180	2190	2200	2210	2220	<i>223</i> 0	2240
TGGATGGGCCTTT	GAGCCTGATG	TTTACAGTGT	CTGTETGTGT	GTGCATATGT	GTGTGTGTGC	ATATGCATGT	GTGTGTG
2250	2260	2270	2280	2290	2300	2310	2320
TGTGTGTGTCTT	LEGTECECAGT	GGCATGTCCA	CGTGTGTGTG	ATTGCACGTG	CCTGTGGGCC	TGGGATAATG	CCCATGG
2330	2340	2350	2360	2370	2380	2390	2400
TACTCCATGCAT	CACCTGCCCT			AGCTCACCCA	TGTGCACAAG	TGTGCACAGT	AAACGTG
0410	2420	2430	2440	2450	2460	2470	2480
2410	Z4ZU AGAAAAAAAA			AAAAAAAA		AA	

Figure 12

Figure 13

pEF-NR8/TPO-R

pEF-NR8/ IgG-Fc

pEF-BOS/NR8b FLAG

Mouse Brain cDNA

Mouse Testis cDNA

[NR8-SN2 / NR8-AS2] [NR8-SN2/NR8-AS1] [NR8-SN1 / NR8-AS2] [NR8-SN1 / NR8-AS1] 100 bp Ladder 100 bp Ladder [NR8-SN2 / NR8-AS2] [NR8-SN2/NR8-AS1] [NR8-SN1 / NR8-AS2] [NR8-SN1 / NR8-AS1]

100 bp Ladder

hnr8beta	MPROWARPLL	LILLOGGWGC	RDINCLIDAR	OWNERS WERE	40
nnrøbeta	MPRGWAASLE	Listing Gentles	PDDVCYTDY8	erylezermy	40
MR8BETA	NEED STEAT	NOPOSEEKO	EATSCSURES	ABNATHATAT	80
MRSBETA	NTMPSCTATA	NODOVERSORD	eauscs, pas	AUNATUATYT	80
NR8BETA	CHMOVYHEMA	DIAISESPANIEUO	OSGNYSOPEG	SECLAESESE	120
onrsbeta	SHMINTHYMA	DDEPSVNERD	DSGNYF0ECT	Speraeskse	120
MR8BETA	EKANU5GUK	CAPPEPEUPO	RIVE		144
NR8BETA	eradiselkk	CLEEPPRIVEO	HIEL.		144

hnr8g	Mergwaapli	LLLLOGGWGC	POLUCYTOXL	OTVICITEM	40
mNRSG	mergwarsej	LEULOGGWGC	Portextoni	DIVICILEMN	40
	transacioni antendenti intendi		****	290000000000000000000000000000000000000	
hnrsg	MI HESTLEIA	***************************************	**************************************	AHVATBATYT	80
mNRBG	MENDERGRANN	MODENTAL	EATSCSLERS	AUMATHATEXII	80
hNR8G	CHMDVEHEMA	DDIESUNIND	OSENYSORCE	Seplaeserd	120
mNR8G	SHMIDVE НЕМА	DEFESVOITED	OSSNIPOBC G	Spuräbserd	120
hnr8g	<u> Alebenyanyare</u>	SCOYNTSWRS	DYEDPAFYME	KGKEOYELOY	160
mNRSG	APPENVEVER	SCOVNISRRS	DYEDPAEXIL	KGKEOYPEOY	160
		San Art San Ar			100
hnr8g	RNRGDPWAVS	PHRKLISVDS	RSVSLLPLEE	RKDSSYELOV	200
mNR8G	RNRGDEWAYS	PREKLISVOS	RSVSLUPLEE	REDSSYBLOV	200
hnr8g	ragpupgsgy	OCHRENADE	virocosebl	KEGWWHLLL	240
mNR8G	HACPUPESSY	OCTHSENS DP	VERCEROSEPTS	KEGWARHELL	240
hnreg	DATE VIOLET	AND SOUTHOU	WHIMPEL WAY	PSPERFEMPL	280
mMR8G	LILLVIYELP	AFWSTATHEL	WALDERTORY	PSPERPEMPL	280
hMR8G	YKGESGDEKK	NVGAPETGSS	MELGENSPEV	ESTREWASCH	320
mBIR8G	YRGCSGDEKK	WVGAPFEGSS	EXECUSERY	PSTERVYSCH	320
	***************************************		AVAILABLE TO THE STATE OF THE S	**************************************	
hnr8g	PERSPARRIO	ETELOFPAST	YESDGVERPS	FWPTAQNSGG	360
mNR8G	Persparalo	ETELOPRAET	VESDGYPRES	PWPTAONSGG	360
hnr8g	SAVSEKRURD	MGLIVE CORVE	VLDAEGPCIW	PCSCEDDGYE	400
mNR8G	SAYSPERDRP	YGINSIDIVI	VLDAEGPCTW	PCSCEDUGYP	400
LNR8 G	ALDIDAGLED	SECTEDATED	AGTIVISEGE	VSAGSPOTICG	440
mNR8G	AEDLDAGLEP	SPECEUPERIO	ACPIVESCOE	VSAGSPGLGG	440
hmr8g	PEGSLIDREK	PPLANGEDWA	GGLPWGGRSP	GGVSESEAGS	480
mNR8G	PEGSLEDBEK	PPLADGEDWA	414144444444444444444444444444444444444	GGVSESEAGS	480
	**************************************	The state of the s	oran erro do e rrodo de fi c	CONTRACTOR AND	-00
hnr8g			SPVECDETSP		
minreg	PEAGLDMDTP	DSGRACEDCE	SPVECDETSP	GDEGREPRSYL	520
hnir8G	ROWWYIPEPL	SSDCDARS	•		538
nnreg mnreg	ROMVVIPPPL				538
S CARRE	DAMAX TEEETH	ACCOUNT OF THE PARTY OF			200

Figure 18

100 bp Ladder

E17-day

E15-day

E11-day

E7-day

Testis

Kidney

Skeletal muscle

Liver

Lung

Spleen

Brain

Heart

100 bp Ladder

Figure 19

Testis

Kidney

Skeletal muscle

Liver

Lung

Spleen

Brain

Heart

Mouse Beta-actin (2.0kb and 1.8kb)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP99/03351

	A CLASSIFICATION OF SUBJECT MATTER Int.C1 C07K14/715, C07K19/00, C12N15/12, C12N5/10, C12P21/02,						
11110	G01N33/50, C07K16/16/28, G01N33/53, C12Q1/68						
According to International Patent Classification (IPC) or to both national classification and IPC							
	OS SEARCHED						
	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁶ C07K14/715, C07K19/00, C12N15/12, C12N5/10, C12P21/02, G01N33/50, C07K16/16/28, G01N33/53, C12Q1/68						
Documenta	tion searched other than minimum documentation to t	he extent that such documents are include	d in the fields searched				
	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) GenBank/EMBL/DDBJ/GeneSeq, SwissProt/PIR/GeneSeq						
C. DOCU	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.				
A	J. Biol. Chem. 271[23] (1996 "Structural Analysis of the G		1-21				
	Interleukin-11 Receptor α-Cha p.13754-13761	in and a Related Locus"	·				
A	Proc. Natl. Acad. Sci. USA 93 (1996) Gainsford T. et al., "Leptin can induce proliferation, differentiation, and functional activation of hemapoietic cells" p.14564-14568						
A	Proc. Natl. Acad. Sci. USA 2 et al., "Cloning and Charact subunit of the interleukin 13 a component of the interleuk p.497-501	erization of a binding sreceptor that is also	1-21				
Furthe	or documents are listed in the continuation of Box C.	See patent family annex.					
** Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance: "E" earlier document but published on or after the international filing date considered to be of particular relevance: "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "A" later document published after the international filing date date and not in conflict with the application but cited to use the principle or theory underlying the invention of considered novel or cansot be considered novel or cansot be considered to involve an invention of considered to involve an inventive step when the document considered to involve an inventive step when the document with one or more other such document, such or being obvious to a person skilled in the art document member of the same patent family Date of the actual completion of the international search							
Date of the actual completion of the international search report 24 September, 1999 (24. 09. 99) 5 October, 1999 (05. 10. 99)							
	Name and mailing address of the ISA/ Japanese Patent Office Authorized officer						
Escrimile No	acsimile No.						

Form PCT/ISA/210 (second sheet) (July 1992)