

Ranking long tail queries TS Spring 2020

Learning to rank long tail queries

7 teams · 10 hours ago

_

Data

Notebooks Discussion

Leaderboard

Rules Te

Team

М

My Submissions

Late Submission

Overview

Overview

Description

Evaluation

Long tail queries ranking

После получения запроса от пользователя, поисковая система отбирает некоторое число страницкандидатов. Для того чтобы показать пользователю страницу результата поиска, страницыкандидаты упорядочиваются по убыванию их релевантности и показываются только наиболее релевантные.

Вам необходимо реализовать алгоритм машинного обучения ранжированию и с его помощью выбрать 5 наиболее релевантных документов, отсортировать их по убыванию релевантности.

Pipeline

- 1. Загрузка данных
- 2. Предобработка данных
 - а. Текст запросов
 - b. Текст документов
 - с. Кликовые данные
- 3. Извлечение факторов
 - а. Семантические факторы
 - b. Синтаксические факторы
 - с. Кликовые факторы
- 4. Обучение ранжирующей модели
- 5. Предсказание

Загрузка данных

Кликовые данные лежали в hadoop

- Данные о содержании документа скачал на облако mail.ru а затем на кластер и в hadoop
- Данные запросов скачал локально на ноутбук

Предобработка запросов

- 1. Преобразование в нижний регистр
- 2. **Spellcheck** исправление опечаток. Использовался Yandex Speller^[1] с помощью REST API.
- 3. **Lemmatization** приведение слова к его начальной форме. Использовался Yandex Stemmer^[2] с помощью Python библиотеки pymystem3.
- 4. **Tokenizer** разделение предложений на отдельные части (3-граммы, 4-граммы, слова, пары слов). Использовался CountVecorizer из библиотеки sklearn^[3].
 - [1] Yandex Speller https://yandex.ru/dev/speller/
 - [2] Yandex Stemmer https://yandex.ru/dev/mystem/
 - [3] Sklearn https://scikit-learn.org/

Генерация похожих запросов

- 1. Выделение множества слов используемых в запросах.
- 2. Поиск синонимов для слов с помощью Yandex Dictionary^[4] REST API и с помощью метода ближайших соседей в пространсве эмбеддингов. Использовался предобученный FastText^[5].
- 3. Подсчёт "похожетси" синонимов как косинусного расстояния в пространсве эмбеддингов FastText.
- 4. Генерация 10 похожих запросов. Вероятность каждого синонима пропорциональна "похожести" на исходное слово. Вероятность итогового запроса равна произведению вероятностей составляющих его слов
 - [4] Yandex Dicionary https://tech.yandex.com/dictionary/
 - [5] FastText https://fasttext.cc/

Преобразование документов

- 1. **Выделение заголовков**. Если заголовок отсутствует берутся первые 300 слов. Использовался Hadoop Map-Reduce.
- 2. Преобразование в нижний регистр.
- 3. Lemmatization приведение слова к его начальной форме. Использовался Yandex Stemmer с помощью Python библиотеки pymystem3.
- 4. **Tokenizer** разделение предложений на отдельные части (3-граммы, 4-граммы, слова, пары слов). Использовался Count Vectorizer из библиотеки sklearn.

Семантические факторы

- 1. Преобразование текстов запросов и заголовков в ембеддинги:
 - a. **FastText** (Original^[6], DeepPavlov^[7] on wikipedia, DeepPavlov on Twitter)
 - b. ELMo (DeepPavlov on Wikipedia, DeepPavlov on Twitter, DeepPavlov on WMT News)
 - c. **BERT** (DeepPavlov RuBERT, DeepPavlov Conversational RuBERT, Sentence RuBERT)
 - d. **USE** (Google V3^[8], Google V3 Large)
- 2. Подсчёт косинусной близости
- [6] Faceboot pre-trained FastText https://fasttext.cc/docs/en/crawl-vectors.html
- [7] DeepPavlov pre-trained models http://docs.deeppavlov.ai/en/master/features/pretrained_vectors.html
- [8] Google pre-trained TensorFlow USE https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3

Синтаксические факторы

1. **TF-IDF, BM-25** на 3-граммах, 4-граммах, словах, парах слов. Использовалась библиотека Gensim^[9]

Кликовые факторы

Использовалась модель из конкурса про статистики пользовательское поведение

Imp(d) - число показов документа d по всем выдачам, в которых он встречался.

Click(d) – число кликов на документ d по всем выдачам, в которых он встречался

CTR(d) - CTR d по всем выдачам

DocAvgTime(d) - среднее время просмотра документа d.

DocAvgAction(d) - среднее количество активных действий пользователя на документе d

QCTR(q,d) - CTR d по в выдачах по запросу q

FirstCtr(q,d) - CTR, когда d кликается первым в выдаче по запросу q

LastCtr(q,d) - CTR, когда d кликается последним в выдаче по запросу q.

OnlyCTR(q,d) – CTR, когда кликается только d, по всем выдачам по q.

%DocClicks(q,d) - доля кликов по документу d в выдачах по запросу q

AvgDocClickTime(q,d) – среднее время до клика на d после показа выдачи по запросу q.

AvgViewTime(q,d) - среднее время просмотра документа d по запросу q.

AvgDocPos(q,d) - средняя позиция d в выдачах по запросу q

AvgDocClickPos(q,d) - средний номер клика d в выдачах по запросу q.

AvgDocClickInvPos(q,d) - средний номер клика d с конца в выдачах по запросу q.

AvgNumBefore(q,d) — среднее число документов, стоящих в выдаче по запросу q перед d, которые были кликнуты перед d.

AvgNumPast(q,d) – среднее число документов, стоящих в выдаче по запросу q перед d, которые были кликнуть

LastProb(q,d) - вероятность быть последним документом, кликнутым по запросу

UpProb(q,d) - вероятность клика на документ, находящийся в выдаче по q на позі

DownProb(q,d) - вероятность клика на документы, находящиеся в выдаче по q ни

DoubleProb(q,d) – вероятность того, что по d кликнули два раза подряд

PastBackProb(q,d) – вероятность того, что к документу вернулись после клика ссылок.

BeforeProb(q,d) — вероятность того, что после клика на d, пользователь кликал выше него.

Для статистики рассматривалось 5 признаков:

- Данная статистика для запроса
- Данная статистика для url
- Данная статистика для host
- Данная статистика для пары запрос url (10% итог. заполн.)
- Данная статистика для пары запрос host (13% итог. заполн.)

Регион запроса в работе не учитывался

Итого около 50 признаков для каждой пары запрос-документ

Обработка данных и построение обучающего датасета в две map-reduce джобы

Решение проблемы матчинга запросов

К исходным запросам были добавлены исправленные с помощью spellcheck запросы и до 10 их синонимов к ним с соответствующим весом.

Обучение ранжирующей модели

Использовался Microsoft LightGBM^[10] Параметры:

- boosting_type: DART
- learning_rate: 0.04
- n boost round: 600
- num_leaves: 31 (default)
- min_data_in_leaf: 20 (default)

[10] Microsoft LightGBM https://github.com/microsoft/LightGBM

Итоговый PipeLine (есть на github)

Результаты

#	△pub	Team Name	Notebook	Team Members	Score @	Entries	Last
1		Rinat Kurbanov		6	0.79016	30	11h
2	_	Valentine Shilov		7	0.78966	61	11h
3	-	Podoprikhin Maxim		A	0.78195	23	20h
4	- 1	Сергей Кононов			0.77738	25	15h
5	▼ 1	Pitanov Yelisey			0.77228	36	18h
6	_	SVasilyev		9	0.77003	14	16h
7	_	Dmitri V. Malov		A	0.72717	6	10h
9		Baseline			0.69329		

Пробовал, но не получилось

Сглаживание по запросам. Для похожих (косинусное расстояние в пространстве эмбеддингов) запросов были посчитатыны соответсвующие фичи, а затем усреднены по ним предсказания LightGBM.

т.е. Query_1 -> Doc_1, .., Doc_10. Пусть cosin_sim(emb(Query_1), emb(Query_2)) = 0.9 .Тогда посчитаем факторы для (Query_2, Doc_j) j=1,10

Затем считаем f_{ij} = LightGBM(Query_i, Doc_j) i={1,2} j=1,10

и ранжируем : $f_{1j} + 0.9 * f_{2j} j=1,10$

Word2vec

Результат: Не получил прироста качества

SEO метрики

- OpenPageRank плохое качество
- Alexa Index, Yandex Index, Google Index, очень долго (для 10⁵ хостов), хотят деньги

Хотел, но не успел

TF-IDF на Map-Reduce. Решил, что приоритетней сделать другие фичи

Новые знания

Нейронные сети быстрее обучаются и прогоняются на GPU.

На ноутбуке недостаточно ресурсов. Использовал Google Colab (очень удобно, есть интеграция с Google Drive; 12GB RAM; GPU; TPU; нужно постоянное соединение; Лимит на вычислительные ресурсы), Kaggle