MTH-684 Logic Assignment (2): Propositional Logic

Mostafa Hassanein 2 October 2024

2-3

To prove an implication we assume the antecedent and show that the consequent holds.

a.

Proof.

Let $T_3 = T_1 \cup T_2$.

Suppose all WFFs in T_3 are true, then all WFFs in T_1 , and T_2 are also true.

From $T_1 \models \phi$, we conclude that ϕ is true.

From $T_2 \models \psi$, we conclude that ψ is true.

Putting it all together, we get: $T_3 \models \phi \land \psi$.

b.

Proof.

Let $T_4 = T_1 \cup T_2 \cup T_3$.

Suppose all WFFs in T_4 are true, then all WFFs in T_1 , T_2 , and T_3 are true.

From $T_1 \models \phi$, we conclude that $\phi \lor \psi$ is true. We have 3 cases:

1. $\phi = \top$ and $\psi = \bot$:

In this case, all WFFs in $T_2 \cup \{\phi\}$ are true.

From $T_2 \cup \{\phi\} \models \zeta$, we conclude that ζ is true.

2. $\phi = \bot$ and $\psi = \top$:

In this case, all WFFs in $T_3 \cup \{\psi\}$ are true.

From $T_3 \cup \{\psi\} \models \zeta$, we conclude that ζ is true.

3. $\phi = \top$ and $\psi = \top$:

Using either case 1 or 2, it is clear that ζ is true.

Therefore, we conclude that $T_4 = T_1 \cup T_2 \cup T_3 \models \zeta$.

c.

Proof.

We want to show that $T_1 \models (\phi \implies \psi)$ is true, so we assume T_1 and attempt to show that $\phi \implies \psi$ holds.

Next, to show that $\phi \implies \psi$, we assume ϕ and attempt to show that ψ holds.

Putting our assumptions together: T_1 and ϕ are true. Therefore, all WFFs in $T_1 \cup \{\phi\}$ are true.

From $T_1 \cup \{\phi\} \models \psi$, we conclude that ψ is true.

Therefore, $T_1 \models (\phi \implies \psi)$ as desired.

 $\mathbf{d}.$

Proof. (By Contradiction)

Suppose $T_1 \cup T_2$ is true.

For the sake of contradiction, suppose that ϕ is true.

From $T_1 \cup \{\phi\} \models \psi$, we conclude that ψ is true. From $T_2 \cup \{\phi\} \models \neg \psi$, we conclude that $\neg \psi$ is true.

But then we have: $\psi \wedge \neg \psi$ is true. This is a contradiction.

Therefore, we must conclude that: $T_1 \cup T_2 \models \neg \phi$.

3