Teoretická informatika (TIN) – 2017/2018 Úkol 1

(max. zisk 5 bodů – 10 bodů níže odpovídá 1 bodu v hodnocení předmětu)

1. Nechť $M_1=(Q_1,\Sigma_1,\delta_1,\Gamma_1,q_1,Z_1,F_1)$ je zásobníkový automat a $M_2=(Q_2,\Sigma_2,\delta_2,q_2,F_2)$ je nedeterministický konečný automat.

Navrhněte a formálně popište algoritmus, který má na vstupu automaty M_1 a M_2 , a jehož výstupem bude zásobníkový automat M_3 takový, že $L(M_3) = \{w \mid w \in L(M_1) \land \exists w' \in L(M_2) : |w| = |w'|\}.$

10 bodů

- 2. Uvažujme binární operaci nad jazyky \circ definovanou následovně: $L_1 \circ L_2 = \overline{L_1} \cap \overline{L_2}$. S využitím uzávěrových vlastností dokažte, nebo vyvraťte, následující vztahy:
 - (a) $L_1, L_2 \in \mathcal{L}_3 \Rightarrow L_1 \circ L_2 \in \mathcal{L}_3$
 - (b) $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2^D \Rightarrow L_1 \circ L_2 \in \mathcal{L}_2^D$
 - (c) $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2 \Rightarrow L_1 \circ L_2 \in \mathcal{L}_2$

 \mathcal{L}_2^D značí třídu deterministických bezkontextových jazyků.

8 bodů

- 3. Nechť $\Sigma=\{a,b,c\}$. Uvažujme jazyk L nad abecedou $\Sigma\cup\{1,2\}$ definovaný následovně: $L=\{w_11w_2\mid w_1,w_2\in\Sigma^*,\#_a(w_1)=\#_c(w_2)\}\cup\{w_12w_2\mid w_1,w_2\in\Sigma^*,\#_b(w_1)=\#_c(w_2)\}$ Sestrojte deterministický zásobníkový automat M_L takový, že $L(M_L)=L$.
- 4. Dokažte, že jazyk L z předchozího příkladu není regulární.

8 bodů

5. Uvažujme jazyk L_k definovaný následovně: $L_k = \{w_1 \# w_2 \mid w_1, w_2 \in \{0, 1, 2\}^*, \#_0(w_1) < \#_2(w_2) < \#_1(w_1)\}$. Dokažte, že L_k není bezkontextový.

8 bodů

6. Popište hlavní ideu důkazu, že pro každý regulární jazyk existuje jednoznačná gramatika (definice jednoznačné gramatiky—viz slidy 2, strana 11).