where

$$\hat{\boldsymbol{A}} = \begin{bmatrix} \boldsymbol{\Sigma}^{-1/2}(\boldsymbol{\theta}) \boldsymbol{A} \\ \boldsymbol{Q}^{1/2}(\boldsymbol{\theta}) \end{bmatrix}, \quad \hat{\boldsymbol{y}} = \begin{bmatrix} \boldsymbol{\Sigma}^{-1/2}(\boldsymbol{\theta}) \boldsymbol{y} \\ \boldsymbol{Q}^{1/2}(\boldsymbol{\theta}) \boldsymbol{\mu} \end{bmatrix} \quad [17].$$
 (2.27)

A sample x_i can be computed by minimising the following equation with respect to \hat{x} :

$$x_i = \arg\min_{\hat{x}} ||\hat{A}\hat{x} - (\hat{y} + b)||^2, \quad b \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$$
 (2.28)

where we add a randomised perturbation b. Similar to Section 2.4, this expression can be rewritten as

$$\left(\mathbf{A}^{T} \mathbf{\Sigma}^{-1}(\boldsymbol{\theta}) \mathbf{A} + \mathbf{Q}(\boldsymbol{\theta})\right) \mathbf{x}_{i} = \mathbf{A}^{T} \mathbf{\Sigma}^{-1}(\boldsymbol{\theta}) \mathbf{y} + \mathbf{Q}(\boldsymbol{\theta}) \boldsymbol{\mu} + \mathbf{v}_{1} + \mathbf{v}_{2}, \tag{2.29}$$

where the term $-\hat{A}^T b$ is decomposed as $v_1 + v_2$, with $v_1 \sim \mathcal{N}(\mathbf{0}, A^T \Sigma^{-1}(\theta) A)$ and $v_2 \sim \mathcal{N}(\mathbf{0}, Q(\theta))$, representing independent Gaussian random variables [6, 16].

If the Markov chain over the marginal posterior $\pi(\boldsymbol{\theta}|\boldsymbol{y})$ is ergodic, and the conditional samples $\boldsymbol{x}^{(k)} \sim \pi(\boldsymbol{x}|\boldsymbol{\theta}^{(k)},\boldsymbol{y})$ are drawn independently, then the resulting joint chain $\{(\boldsymbol{x},\boldsymbol{\theta})^{(1)},\ldots,(\boldsymbol{x},\boldsymbol{\theta})^{(N)}\} \sim \pi(\boldsymbol{x},\boldsymbol{\theta}|\boldsymbol{y})$ is also ergodic [18].

2.5.3 t-walk sampler as black box

If the parameters \boldsymbol{x} are functionally dependent on the hyper-parameters $\boldsymbol{\theta}$, i.e., $\boldsymbol{x} = \boldsymbol{x}(\boldsymbol{\theta})$, we can sample directly from the marginal posterior $\pi(\boldsymbol{\theta}|\boldsymbol{y})$ using the t-walk algorithm by Christen and Fox [19]. The t-walk is employed as a black-box sampler, requiring only the specification of the number of samples, burn-in period, support region, and the sampling distribution. Convergence to the target distribution is guaranteed by construction of the algorithm.

2.6 Numerical Approximation Methods - Tensor Train

First, we provide a short overview of probability spaces and their associated measures, as a foundation for deriving marginal probability distribution, and then we give a brief introduction to the tensor train format. The motivation to use the tensor train format is that we can approximate a d-dimensional grid with far fewer data points compared to the total number of grid points.

Assume that the triple $(\Omega, \mathcal{F}, \mathbb{P})$ defines a probability space, where Ω denotes the complete sample space, \mathcal{F} is a σ -algebra consisting of a collection of countable subsets $\{A_n\}_{n\in\mathbb{N}}$ with $A_n\subseteq\Omega$, and \mathbb{P} is a probability measure defined on \mathcal{F} . The formal conditions for \mathbb{P} to be a probability measure, and for \mathcal{F} to be a σ -algebra over Ω , are given in Appendix C. We denote

$$\mathbb{P}(A) = \int_{A} d\mathbb{P} \tag{2.30}$$

as the probability of an event $A \in \mathcal{F}$. By applying the Radon-Nikodym theorem [20], we can change variables

$$\mathbb{P}(A) = \int_{A} \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}x} \, \mathrm{d}x = \int_{A} \pi(x) \, \mathrm{d}x, \tag{2.31}$$

where dx is a reference measure on the same probability space, commonly referred to as the Lebesgue measure. The Radon-Nikodym derivative $\frac{d\mathbb{P}}{dx}$ of \mathbb{P} with respect to x, and is often interpreted as the probability density function (PDF) $\pi(x)$. Thus, we say that \mathbb{P} has a density $\pi(x)$ with respect to x [21, Chapter 10].

Now, let $X: \Omega \longrightarrow \mathbb{R}^d$ be a d-dimensional random variable mapping from the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ to the measurable space $(\mathbb{R}^d, \mathcal{X})$, where \mathcal{X} is a collection of subsets in \mathbb{R}^d . Then the associated PDF $\pi(x)$, is a joint density of X, induced by the probability measure on Ω [20, 22]. As by Cui et al. [23], we can define the parameter space as the Cartesian product $\mathcal{X} = \mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \times \mathcal{X}_d$ with $x_k \in \mathcal{X}_k \subseteq \mathbb{R}$ and $x = (x_1, \ldots, x_k, \ldots, x_d)$. The marginal density function for the k-th component is then given by

$$f_{X_k}(x_k) = \int_{\mathcal{X}_1} \cdots \int_{\mathcal{X}_d} \lambda(x) \,\pi(x) \,\mathrm{d}x_1 \cdots \,\mathrm{d}x_{k-1} \,\mathrm{d}x_{k+1} \cdots \,\mathrm{d}x_d, \tag{2.32}$$

where we integrate over all dimensions except the k-th. Here, we introduce a weight function $\lambda(x)$ [24], which can be useful for quadrature rules??. Cui et al. [23] refer to $\lambda(x)$ as a "product-form Lebesgue-measurable weighting function" and define it as

$$\lambda(\mathcal{X}) = \prod_{i=1}^d \lambda_i(\mathcal{X}_i), \text{ where } \lambda_i(\mathcal{X}_i) = \int_{\mathcal{X}_i} \lambda_i(x_i) \, \mathrm{d}x_i.$$

Using the tensor train (TT) format, we can efficiently approximate a d-dimensional function $\pi(x)$ and compute marginal probability distributions at low computational cost. To do so, we first define a d-dimensional discrete univariate grid over the parameter space \mathcal{X} , with n grid points in each dimension. In the tensor train format we can represent the function over this d-dimensional grid as a product train of 2D matrices (rank-2 tensor) and 3D matrices (rank-3 tensors), which we call TT-cores, see Fig. 2.4. More specifically each core $\pi_k \in \mathbb{R}^{r_{k-1} \times n \times r_k}$ has ranks r_{k-1} and r_k , for $k = 1, \ldots, d$, connecting it with its neighbouring cores, as illustrated in Figure 2.4. For the first and last cores, the outer ranks are set to $r_0 = r_d = 1$. This enables us to write the value $\pi(x)$, for a fixed point $x = (x_1, \ldots, x_d)$ on the grid, as a sequence of matrix multiplications

$$\pi_1(x_1)\pi_2(x_2)\cdots\pi_d(x_d)=\pi(x)\in\mathbb{R},$$

where each core $\pi_k(x_k)$, becomes a matrix of size $r_{k-1} \times r_k$. Clearly this shows that we only need dnr^2 evaluation points instead of n^d grid points to approximate the whole parameter space. Consequently, with a tensor train approximation, the marginal target function

Figure 2.4: Here, we visualise the tensor train cores as two- and three-dimensional matrices. Each core has a length n, corresponding to the number of grid points in one dimension, and the cores are connected through ranks r_k . More specifically, a core π_k has dimensions $r_{k-1} \times n \times r_k$, with outer ranks $r_0 = r_d = 1$. Using the TT-format enables us to represent a d-dimensional grid with only dnr^2 evaluation points instead of n^d grid points. Figure (a) is adapted from [25].

$$f_{X_k}(x_k) = \frac{1}{z} \left| \left(\int_{\mathbb{R}} \lambda_1(x_1) \pi_1(x_1) \, \mathrm{d}x_1 \right) \cdots \left(\int_{\mathbb{R}} \lambda_{k-1}(x_{k-1}) \pi_{k-1}(x_{k-1}) \, \mathrm{d}x_{k-1} \right) \right.$$

$$\left. \lambda_k(x_k) \pi_k(x_k) \right.$$

$$\left. \left(\int_{\mathbb{R}} \lambda_{k+1}(x_{k+1}) \pi_{k+1}(x_{k+1}) \, \mathrm{d}x_{k+1} \right) \cdots \left(\int_{\mathbb{R}} \lambda_d(x_d) \pi_d(x_d) \, \mathrm{d}x_d \right) \right|$$

$$(2.33)$$

is computed by integrating over all TT cores except π_k , as in [26], including a normalisation constant z [23].

In practice, tensor train approximations may suffer from numerical instability, particularly because it is not advantageous to approximate the target function $\pi(x)$ in for example, the logarithmic space. To address this, we follow the notation and procedure of Cui et al. [23] and instead approximate the square root of the probability density

$$\sqrt{\pi(x)} \approx g(x) = \mathbf{G}_1(x_1), \dots, \mathbf{G}_k(x_k), \dots, \mathbf{G}_d(x_d). \tag{2.34}$$

Here, each TT-core is given by

$$G_k^{(\alpha_{k-1},\alpha_k)}(x_k) = \sum_{i=1}^{n_k} \phi_k^{(i)}(x_k) \mathbf{A}_k[\alpha_{k-1}, i, \alpha_k], \quad k = 1, \dots, d,$$
 (2.35)

where $A_k \in \mathbb{R}^{r_{k-1} \times n_k \times r_k}$ is the k-th coefficient tensor and $\{\phi_k^{(i)}(x_k)\}_{i=1}^{n_k}$ are the basis functions corresponding to the k-th coordinate. The approximated density is written as:

$$\pi(x) \approx \gamma' + g^2(x),\tag{2.36}$$

where γ' is a small positive constant added to ensure positivity and is chosen such that

$$\gamma' \le \frac{1}{\lambda(\mathcal{X})} \|g - \sqrt{\pi}\|_2^2. \tag{2.37}$$

This leads to the normalised target function

$$f_X(x) = \frac{1}{z}\lambda(x)\pi(x) = \frac{1}{z}\left(\lambda(x)\gamma' + \lambda(x)g^2(x)\right),\tag{2.38}$$

where z is the normalisation constant. Given the tensor train approximation of $\sqrt{\pi}$, the marginal function $f_{X_k}(x_k)$ can be expressed as

$$f_{X_{k}}(x_{k}) = \frac{1}{z} \left(\gamma' \prod_{i=1}^{k-1} \lambda_{i}(\mathcal{X}_{i}) \prod_{i=k+1}^{d} \lambda_{i}(\mathcal{X}_{i}) + \left(\int_{\mathbb{R}} \lambda_{1}(x_{1}) \mathbf{G}_{1}^{2}(x_{1}) dx_{1} \right) \cdots \left(\int_{\mathbb{R}} \lambda_{k-1}(x_{k-1}) \mathbf{G}_{k-1}^{2}(x_{k-1}) dx_{k-1} \right) \right)$$

$$\lambda_{k}(x_{k}) \mathbf{G}_{k}^{2}(x_{k})$$

$$\left(\int_{\mathbb{R}} \lambda_{k+1}(x_{k+1}) \mathbf{G}_{k+1}^{2}(x_{k+1}) dx_{k+1} \right) \cdots \left(\int_{\mathbb{R}} \lambda_{d}(x_{d}) \mathbf{G}_{d}^{2}(x_{d}) dx_{d} \right) .$$

$$(2.39)$$

To compute these marginals efficiently, one can use a procedure similar to left and right orthogonalisation of TT-cores [27]. For this, we define the mass matrix $\mathbf{M}_k \in \mathbb{R}^{n_k \times n_k}$ as

$$\mathbf{M}_{k}[i,j] = \int_{\mathcal{X}_{k}} \phi_{k}^{(i)}(x_{k}) \phi_{k}^{(j)}(x_{k}) \lambda(x_{k}) \, \mathrm{d}x_{k}, \quad i,j = 1, \dots, n_{k},$$
 (2.40)

where $\{\phi_k^{(i)}(x_k)\}_{i=1}^{n_k}$ denotes the set of basis functions for the k-th coordinate.

2.6.1 Marginal Functions

We compute the marginal functions using two procedures, referred to as backward marginalisation [23] and forward marginalisation. The backward marginalisation provides us with the coefficient matrices \mathbf{B}_k , while the forward marginalisation gives the coefficient matrices $\mathbf{B}_{\text{pre},n}$. These matrices enable the efficient evaluation of marginal functions, similar to [23]. The proposition used to compute \mathbf{B}_k , stated in Proposition 1, is adapted directly from [23].

Proposition 1 (Backward Marginalisation): Starting with the last coordinate k = d, we set $\mathbf{B}_d = \mathbf{A}_d$. The following procedure can be used to obtain the coefficient tensor $\mathbf{B}_{k-1} \in \mathbb{R}^{r_{k-2} \times n_{k-1} \times r_{k-1}}$, which we need for defining the marginal function $f_{X_k}(x_k)$:

1. Use the Cholesky decomposition of the mass matrix, $\boldsymbol{L}_k \boldsymbol{L}_k^{\top} = \boldsymbol{M}_k \in \mathbb{R}^{n_k \times n_k}$, to construct a tensor $\boldsymbol{C}_k \in \mathbb{R}^{r_{k-1} \times n_k \times r_k}$:

$$C_k[\alpha_{k-1}, \tau, l_k] = \sum_{i=1}^{n_k} B_k[\alpha_{k-1}, i, l_k] L_k[i, \tau].$$
 (2.41)

2. Unfold C_k along the first coordinate and compute the thin QR decomposition, so that $C_k^{(R)} \in \mathbb{R}^{r_{k-1} \times (n_k r_k)}$:

$$\boldsymbol{Q}_k \boldsymbol{R}_k = \left(\boldsymbol{C}_k^{(R)}\right)^{\top}. \tag{2.42}$$

3. Compute the new coefficient tensor:

$$\boldsymbol{B}_{k-1}[\alpha_{k-2}, i, l_{k-1}] = \sum_{\alpha_{k-1}=1}^{r_{k-1}} \boldsymbol{A}_{k-1}[\alpha_{k-2}, i, \alpha_{k-1}] \boldsymbol{R}_{k}[l_{k-1}, \alpha_{k-1}].$$
 (2.43)

Proposition 2 (Forward Marginalisation): Starting with the first coordinate k = 1, we set $\mathbf{B}_{\text{pre},1} = \mathbf{A}_1$. The following procedure can be used to obtain the coefficient tensor $\mathbf{B}_{\text{pre},k+1} \in \mathbb{R}^{r_k \times n_{k+1} \times r_{k+1}}$ for defining the marginal function $f_{X_k}(x_k)$:

1. Use the Cholesky decomposition of the mass matrix, $\boldsymbol{L}_k \boldsymbol{L}_k^{\top} = \boldsymbol{M}_k \in \mathbb{R}^{n_k \times n_k}$, to construct a tensor $\boldsymbol{C}_k \in \mathbb{R}^{r_{k-1} \times n_k \times r_k}$:

$$C_{\text{pre},k}[\alpha_{k-1},\tau,l_k] = \sum_{i=1}^{n_k} \mathbf{L}_k[i,\tau] \mathbf{B}_{\text{pre},k}[\alpha_{k-1},i,l_k].$$
 (2.44)

2. Unfold $C_{pre,k}$ along the first coordinate and compute the thin QR decomposition, so that $C_{pre,k}^{(R)} \in \mathbb{R}^{(r_{k-1}n_k) \times r_k}$:

$$Q_{pre,k}R_{\operatorname{pre},k} = (C_{\operatorname{pre},k}^{(R)}). \tag{2.45}$$

3. Compute the new coefficient tensor $B_{\text{pre},k+1} \in \mathbb{R}^{r_{k-1} \times n_k \times r_k}$:

$$\boldsymbol{B}_{\text{pre},k+1}[l_{k+1},i,\alpha_{k+1}] = \sum_{\alpha_k=1}^{r_k} \boldsymbol{R}_{\text{pre},k}[l_{k+1},\alpha_k] \boldsymbol{A}_{k+1}[\alpha_k,i,\alpha_{k+1}].$$
 (2.46)

After computing the coefficient tensors $\boldsymbol{B}_{\text{pre},k+1}$ as in Prop. 2 and \boldsymbol{B}_{k+1} from Prop. 1, the marginal PDF of k-th dimension can be expressed as

$$f_{X_k}(x_k) = \frac{1}{z} \left(\gamma' \prod_{i=1}^{k-1} \lambda_i(X_i) \prod_{i=k+1}^d \lambda_i(X_i) + \sum_{l_{k-1}=1}^{r_{k-1}} \sum_{l_k=1}^{r_k} \left(\sum_{i=1}^n \phi_k^{(i)}(x_k) \boldsymbol{D}_k[l_{k-1}, i, l_k] \right)^2 \right) \lambda_k(x_k),$$
(2.47)

where $D_k \in \mathbb{R}^{r_{k-1} \times n \times r_k}$ and $R_{\text{pre},k-1} \in \mathbb{R}^{r_{k-1} \times r_{k-1}}$ and $B_k \in \mathbb{R}^{r_{k-1} \times n \times r_k}$

$$\mathbf{D}_{k}[l_{k-1}, i, l_{k}] = \sum_{\alpha_{k-1}=1}^{r_{k-1}} \mathbf{R}_{\text{pre}, k-1}[l_{k-1}, \alpha_{k-1}] \mathbf{B}_{k}[\alpha_{k-1}, i, l_{k}].$$
 (2.48)

For the first dimension, $f_{X_1}(x_1)$ can be expressed as

$$f_{X_1}(x_1) = \frac{1}{z} \left(\gamma' \prod_{i=2}^d \lambda_i(\mathcal{X}_i) + \sum_{l_1=1}^{r_1} \left(\sum_{i=1}^n \phi_1^{(i)}(x_1) \boldsymbol{D}_1[i, l_1] \right)^2 \right) \lambda_1(x_1), \tag{2.49}$$

where $D_1[i, l_1] = B_1[\alpha_0, i, l_1]$ and $\alpha_0 = 1$, and similarly in the last dimension

$$f_{X_d}(x_d) = \frac{1}{z} \left(\gamma' \prod_{i=1}^{d-1} \lambda_i(\mathcal{X}_i) + \sum_{l_{n-1}=1}^{r_{d-1}} \left(\sum_{i=1}^n \phi_1^{(i)}(x_1) \boldsymbol{D}_d[l_{n-1}, i] \right)^2 \right) \lambda_d(x_d), \tag{2.50}$$

where $D_d[l_{n-1}, i] = B_{\text{pre},d}[l_{n-1}, i, \alpha_{n+1}]$ and $\alpha_{d+1} = 1$.

64 References

[19] J. Andrés Christen and Colin Fox. "A general purpose sampling algorithm for continuous distributions (the t-walk)". In: *Bayesian Analysis* 5.2 (2010), pp. 263–281.

- [20] M. Capiński and P.E. Kopp. Measure, Integral and Probability. Springer Undergraduate Mathematics Series. London: Springer-Verlag London, 2004.
- [21] M. Simonnet. Measures and Probabilities. New York: Springer-Verlag, 1996.
- [22] Vesa Kaarnioja. Inverse Problems. Eighth lecture. https://vesak90.userpage.fu-berlin.de/ip23/week8.pdf. [Online; accessed 10/04/25]. 2023.
- [23] Tiangang Cui and Sergey Dolgov. "Deep composition of tensor-trains using squared inverse rosenblatt transports". In: Foundations of Computational Mathematics 22.6 (2022), pp. 1863–1922.
- [24] Philip J Davis and Philip Rabinowitz. *Methods of numerical integration*. San Diego, CA: Academic Press, Inc., 1984.
- [25] Colin Fox et al. "Grid methods for Bayes-optimal continuous-discrete filtering and utilizing a functional tensor train representation". In: *Inverse Problems in Science and Engineering* 29.8 (2021), pp. 1199–1217.
- [26] Sergey Dolgov et al. "Approximation and sampling of multivariate probability distributions in the tensor train decomposition". In: *Statistics and Computing* 30 (2020), pp. 603–625.
- [27] Ivan V Oseledets. "Tensor-train decomposition". In: SIAM Journal on Scientific Computing 33.5 (2011), pp. 2295–2317.
- [28] Australian National Concurrent Design Facility. CubeSat Microwave Radiometer Mission to Support Global Ozone Layer Monitoring. Concept Study Summary Report. unpublished, internal report. Canberra BC: UNSW Canberra Space, 2023.
- [29] Schwartz M. et al. MLS/Aura Level 2 Ozone (O3) Mixing Ratio V005. https://disc.gsfc.nasa.gov/datasets/ML203_005/summary?keywords=mls%20o3. [Online; accessed 25/04/24]. 2020.
- [30] Marie Šimečková et al. "Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database". In: *Journal of Quantitative Spectroscopy and Radiative Transfer* 98.1 (2006), pp. 130–155.
- [31] J. Andrés Christen and Colin Fox. *The t-walk software*. https://www.cimat.mx/~jac/twalk/. [Online; accessed 25/11/24].
- [32] Colin Fox. "Sampling and modelling of LARGE Gaussian processes". 9th World Meeting of International Society for Bayesian Analysis, 21st to 25th July 2008. Hamilton Island, Queensland, Australia. 2008. URL: urllinktotalkabstractifany.
- [33] U.S. Standard Atmosphere, 1976. Washington, D.C.: United States. National Oceanic and Atmospheric Administration, United States Committee on Extension to the Standard Atmosphere, 1976.
- [34] Johnathan M Bardsley et al. "Randomize-then-optimize for sampling and uncertainty quantification in electrical impedance tomography". In: SIAM/ASA Journal on Uncertainty Quantification 3.1 (2015), pp. 1136–1158.
- [35] Josef Dick, Frances Y. Kuo, and Ian H. Sloan. "High-dimensional integration: The quasi-Monte Carlo way". In: *Acta Numerica* 22 (2013), 133–288.
- [36] Ulli Wolff. *UWerr.m Version6*. https://www.physik.hu-berlin.de/de/com/ALPHAsoft. [Online; accessed 5/11/23]. 2004.
- [37] Greg Lawler. Notes on probability.

 https://www.math.uchicago.edu/~lawler/probnotes.pdf. [Online; accessed 10/04/25].
 2016.