线性代数 作业 9

2025年3月20日

题 1. 假设 l 是二维平面上过原点的直线,且 l 与横轴的夹角为 θ . 记 T 为以 l 为对称轴的反射. 求线性变换 T 在标准基下的矩阵. 假设另一条二维平面上过原点的直线 l' 与横轴的夹角为 α ,记 T' 为以 l' 为对称轴的反射. 利用线性变化与矩阵乘法的关系,证明 $T \circ T'$ 是绕原点旋转的线性变换.

题 2. 设 T_i 是 $\mathbb{R}^3 = \{(x_1, x_2, x_3)^T \mid x_i \in \mathbb{R}\}$ 上的线性变换, 定义为绕 x_i 轴 旋转角度 π . 请写下这三个变换在标准基下的矩阵并证明 $T_1 \circ T_2$ 仍然是某个旋转变换.

题 3. 证明复数在通常的加法和实数的乘法下做成 $\mathbb R$ 线性空间,且有基 $B:1,\sqrt{-1}$. 对某一固定的复数 $u+v\sqrt{-1}$. 定义 $T:\mathbb C\to\mathbb C$ 为 $T(z)=u\cdot z$. 证明 T 是 $\mathbb C$ 上的 $\mathbb R$ 线性变换并写出 T 在基 B 下的矩阵.

题 4. 找到一个 \mathbb{R}^2 上的线性变换将曲线 C

$$\{(x,y)^T \mid x^2 + 4xy + 10y^2 = 1\}$$

映射为半径为 1 的圆,找到一个旋转变换将这个圆映射为长轴在 x 轴上的椭圆.

题 5. 对于 \mathbb{R}^2 上的线性变换 T, 请找出 $\operatorname{tr}(T^3)$ 和 $\operatorname{tr}(T^2), \operatorname{tr}(T)$ 之间的关系.