Метод внутренней точки. Самосогласованные барьеры

Методы оптимизации

Александр Безносиков

Московский физико-технический институт

16 ноября 2023

• Рассмотрим следующую задачу с ограничениями:

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $g_i(x) \leq 0, i = 1, \dots m.$

• Рассмотрим следующую задачу с ограничениями:

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $g_i(x) \leq 0, i = 1, \dots m.$

• Задача со штрафом:

$$\min_{\mathbf{x}\in\mathbb{R}^d}\left[f_{\rho}(\mathbf{x})=f(\mathbf{x})+\rho\cdot\frac{1}{2}\sum_{j=1}^n(g_j^+)^2(\mathbf{x})\right],$$

где
$$y^+ = \max\{y, 0\}$$
.

• Рассмотрим следующую задачу с ограничениями:

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $g_i(x) \leq 0, i = 1, \dots m.$

• Задача со штрафом:

$$\min_{\mathbf{x}\in\mathbb{R}^d}\left[f_{\rho}(\mathbf{x})=f(\mathbf{x})+\rho\cdot\frac{1}{2}\sum_{j=1}^n(g_j^+)^2(\mathbf{x})\right],$$

где
$$y^+ = \max\{y, 0\}$$
.

• Итоговое решение штрафной задачи может не удовлетворять ограничениям. Вопрос: как ввести штраф так, чтобы мы гарантированно было в пределах множества $G = \{x \in \mathbb{R}^d \mid g_i(x) \leq 0 \text{ для } i = 1, \dots m\}$?

• Топорный вариант:

$$\min_{x \in \mathbb{R}^d} \left[f_{\rho}(x) = f(x) + \mathbb{I}_{G}(x) \right],$$

где $\mathbb{I}_G(x)$ – индикаторная функция множества G:

$$\mathbb{I}_{G}(x) = \begin{cases} 0, & x \in G \\ +\infty, & x \notin G \end{cases}$$

• Топорный вариант:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left[f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \mathbb{I}_{G}(\mathbf{x}) \right],$$

где $\mathbb{I}_G(x)$ – индикаторная функция множества G:

$$\mathbb{I}_G(x) = \begin{cases} 0, & x \in G \\ +\infty, & x \notin G \end{cases}$$

• Формально все хорошо, все эквивалентно исходной задаче, **вопрос:** какие есть проблемы?

• Топорный вариант:

$$\min_{x \in \mathbb{R}^d} \left[f_{\rho}(x) = f(x) + \mathbb{I}_{G}(x) \right],$$

где $\mathbb{I}_G(x)$ – индикаторная функция множества G:

$$\mathbb{I}_G(x) = \begin{cases} 0, & x \in G \\ +\infty, & x \notin G \end{cases}$$

Формально все хорошо, все эквивалентно исходной задаче,
 вопрос: какие есть проблемы? Задача не стала легче с
 вычислительной точки зрения, индикатор недифференцируем.

• Топорный вариант:

$$\min_{x \in \mathbb{R}^d} \left[f_{\rho}(x) = f(x) + \mathbb{I}_{G}(x) \right],$$

где $\mathbb{I}_G(x)$ – индикаторная функция множества G:

$$\mathbb{I}_G(x) = \begin{cases} 0, & x \in G \\ +\infty, & x \notin G \end{cases}$$

- Формально все хорошо, все эквивалентно исходной задаче,
 вопрос: какие есть проблемы? Задача не стала легче с
 вычислительной точки зрения, индикатор недифференцируем.
- <u>Идея:</u> воспроизвести поведение индикатора более плавно и непрерывно.

• Топорный вариант – выставим вот такой "барьер":

$$\min_{x \in \mathbb{R}^d} \left[f_{\rho}(x) = f(x) + \frac{1}{\rho} \cdot \mathbb{I}_G(x) \right],$$

где $\mathbb{I}_G(x)$ – индикаторная функция множества G:

$$\mathbb{I}_G(x) = \begin{cases} 0, & x \in G \\ +\infty, & x \notin G \end{cases}$$

• Топорный вариант – выставим вот такой "барьер":

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left[f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \frac{1}{\rho} \cdot \mathbb{I}_{G}(\mathbf{x}) \right],$$

где $\mathbb{I}_G(x)$ – индикаторная функция множества G:

$$\mathbb{I}_G(x) = \begin{cases} 0, & x \in G \\ +\infty, & x \notin G \end{cases}$$

• Формально все хорошо, все эквивалентно исходной задаче, **вопрос**: какие есть проблемы?

• Топорный вариант – выставим вот такой "барьер":

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left[f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \frac{1}{\rho} \cdot \mathbb{I}_{G}(\mathbf{x}) \right],$$

где $\mathbb{I}_G(x)$ – индикаторная функция множества G:

$$\mathbb{I}_G(x) = \begin{cases} 0, & x \in G \\ +\infty, & x \notin G \end{cases}$$

• Формально все хорошо, все эквивалентно исходной задаче, вопрос: какие есть проблемы? Задача не стала легче с вычислительной точки зрения, индикатор ненепрерывен и недифференцируем.

• Топорный вариант – выставим вот такой "барьер":

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left[f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \frac{1}{\rho} \cdot \mathbb{I}_{G}(\mathbf{x}) \right],$$

где $\mathbb{I}_G(x)$ – индикаторная функция множества G:

$$\mathbb{I}_{G}(x) = \begin{cases} 0, & x \in G \\ +\infty, & x \notin G \end{cases}$$

- Формально все хорошо, все эквивалентно исходной задаче, вопрос: какие есть проблемы? Задача не стала легче с вычислительной точки зрения, индикатор ненепрерывен и недифференцируем.
- <u>Идея:</u> воспроизвести поведение индикатора более плавно и непрерывно.

• Дополнительно предположим, что: 1) int G — непустое множество, 2) для любой точки $x \in G$ существует последовательность $\{x_i\} \in \text{int } G$ такая, что $x_i \to x$, 3) G — ограниченное множество, 4) для любого $x \in \text{int } G$ и для любого $i = 1, \ldots m$ следует, что $g_i(x) < 0$, 5) f непрерывно дифференцируема на G.

- Дополнительно предположим, что: 1) int G непустое множество, 2) для любой точки $x \in G$ существует последовательность $\{x_i\} \in \text{int } G$ такая, что $x_i \to x$, 3) G ограниченное множество, 4) для любого $x \in \text{int } G$ и для любого $i = 1, \ldots m$ следует, что $g_i(x) < 0$, 5) f непрерывно дифференцируема на G.
- Введем функция F: 1) непрерывно дифференцируемую на $\inf G$ и 2) для любой последовательности $\{x_i\} \in \inf G$ такой, что $x_i \to x \in \partial G$ (граница множества G), выполнено $F(x_i) \to +\infty$.

- Дополнительно предположим, что: 1) int G непустое множество, 2) для любой точки $x \in G$ существует последовательность $\{x_i\} \in \text{int } G$ такая, что $x_i \to x$, 3) G ограниченное множество, 4) для любого $x \in \text{int } G$ и для любого $i = 1, \ldots m$ следует, что $g_i(x) < 0$, 5) f непрерывно дифференцируема на G.
- Введем функция F: 1) непрерывно дифференцируемую на intG и 2) для любой последовательности $\{x_i\} \in \text{int} G$ такой, что $x_i \to x \in \partial G$ (граница множества G), выполнено $F(x_i) \to +\infty$.
- Примеры:
 - Барьер Кэррола:

$$F(x) = -\sum_{i=1}^{m} \frac{1}{g_i(x)},$$

• Логарифмический барьер:

$$F(x) = -\sum_{i=1}^m \ln(-g_i(x)).$$

• Физика более менее уже вырисовывается: F это непрерывный дифференцируемый «индикатор», который при приближении к ∂G улетает на бесконечность. Осталось только разобраться с тем, что честный индикатор на $\inf G$ равен 0. Вопрос: идеи?

- Физика более менее уже вырисовывается: F это непрерывный дифференцируемый «индикатор», который при приближении к ∂G улетает на бесконечность. Осталось только разобраться с тем, что честный индикатор на $\inf G$ равен 0. Вопрос: идеи?
- Введем параметр $\rho > 0$ и рассмотрим и модифицируем значение F следующим образом: $\frac{1}{\rho}F(x)$

- Физика более менее уже вырисовывается: F это непрерывный дифференцируемый «индикатор», который при приближении к ∂G улетает на бесконечность. Осталось только разобраться с тем, что честный индикатор на $\inf G$ равен 0. Вопрос: идеи?
- Введем параметр $\rho > 0$ и рассмотрим и модифицируем значение F следующим образом: $\frac{1}{\rho}F(x)$
- ullet При $ho o +\infty$, следует, что $rac{1}{
 ho} F(x) o 0$ на $\mathrm{int} G$.

- Физика более менее уже вырисовывается: F это непрерывный дифференцируемый «индикатор», который при приближении к ∂G улетает на бесконечность. Осталось только разобраться с тем, что честный индикатор на $\inf G$ равен 0. Вопрос: идеи?
- Введем параметр $\rho > 0$ и рассмотрим и модифицируем значение F следующим образом: $\frac{1}{\rho}F(x)$
- ullet При $ho o +\infty$, следует, что $rac{1}{
 ho}F(x) o 0$ на $\mathrm{int} G$.
- Итого рассмотрим следующую задачу:

$$\min_{x \in \mathbb{R}^d} \left[F_{
ho}(x) = f(x) + rac{1}{
ho} F(x)
ight].$$

• F_{ρ} – непрерывно дифференцируемая на int G. Следует из того, что F непрерывно дифференцируемая на int G.

- F_{ρ} непрерывно дифференцируемая на int G. Следует из того, что F непрерывно дифференцируемая на int G.
- $\{x_i\} \in \text{int}\, G$ такой, что $x_i \to x \in \partial G$ (граница множества G), выполнено $F_\rho(x_i) \to +\infty$. Следует из непрерывности f и определения F.

- F_{ρ} непрерывно дифференцируемая на int G. Следует из того, что F непрерывно дифференцируемая на int G.
- $\{x_i\} \in \text{int}\, G$ такой, что $x_i \to x \in \partial G$ (граница множества G), выполнено $F_{\rho}(x_i) \to +\infty$. Следует из непрерывности f и определения F.
- Формально задача $\min_{x \in \mathbb{R}^d} F_{\rho}(x)$ это задача с ограничениями. **Вопрос**: почему?

- F_{ρ} непрерывно дифференцируемая на int G. Следует из того, что F непрерывно дифференцируемая на int G.
- $\{x_i\} \in \text{int}\, G$ такой, что $x_i \to x \in \partial G$ (граница множества G), выполнено $F_\rho(x_i) \to +\infty$. Следует из непрерывности f и определения F.
- Формально задача $\min_{x \in \mathbb{R}^d} F_{\rho}(x)$ это задача с ограничениями. **Вопрос:** почему? F_{ρ} определена только на $\inf G$.

- F_{ρ} непрерывно дифференцируемая на int G. Следует из того, что F непрерывно дифференцируемая на int G.
- $\{x_i\} \in \text{int}\, G$ такой, что $x_i \to x \in \partial G$ (граница множества G), выполнено $F_\rho(x_i) \to +\infty$. Следует из непрерывности f и определения F.
- Формально задача $\min_{x \in \mathbb{R}^d} F_\rho(x)$ это задача с ограничениями. Вопрос: почему? F_ρ определена только на $\inf G$. Но это не проблема: пусть мы стартуем из $x^0 \in \inf G$ и можем гарантировать, что метод минимизации $F_\rho(x)$ выдает точки x^k такие, что $F_\rho(x^k) \leq F_\rho(x^0)$. А мы знаем, что $F_\rho \to \infty$ при приближении к ∂G , а значит в какой-то момент, приближаясь к границе, F_ρ будет больше $F_\rho(x^0)$. Получаем, что x^k остается в $\inf G$. Это означает, что задача с ограничениями превращается в безусловную, потому что ограничения «не чувствуются».

Свойства барьерной задачи

Чуть более формально последнее утверждение с предыдущего слайда.

Свойство барьерной задачи

Для любого $\rho > 0$ функция $F_{\rho}(x)$ принимает минимум на $\inf G$. А множества вида

$$U = \{x \in \operatorname{int} G \mid F_{\rho}(x) \leq a\}$$

являются компактами для любого а

• Чтобы показать замкнутость U, рассмотрим последовательность $\{x_i\} \in U$, сходящуюся к x. Вопрос: что нужно доказать? $\chi \in U$

$$\{x_i\} \in U$$
, сходящуюся к $\{x_i\} \in U$, сходящуюся к $\{x_i\} \in X$ $\{x_i\} \in X$

• Чтобы показать замкнутость U, рассмотрим последовательность $\{x_i\} \in U$, сходящуюся к x. Вопрос: что нужно доказать? $x \in U$.

• Чтобы показать замкнутость U, рассмотрим последовательность $\{x_i\} \in U$, сходящуюся к x. Вопрос: что нужно доказать? $x \in U$. Возможно две опции: $x \in \text{int} G$ или ∂G ? Если $x \in \partial G$, то $F_{\rho}(x_i) \to F_{\rho}(x) = \infty$, что невозможно, так как $F_{\rho}(x_i) \leq a$. Значит $x \in \text{int} G$.

$$x \in \partial G$$
 $x_i \in \mathcal{B} = om \partial G$
 $F(x_i) > G$

• Чтобы показать замкнутость U, рассмотрим последовательность $\{x_i\} \in U$, сходящуюся к x. Вопрос: что нужно доказать? $x \in U$. Возможно две опции: $x \in \text{int} G$ или ∂G ? Если $x \in \partial G$, то $F_{\rho}(x_i) \to F_{\rho}(x) = \infty$, что невозможно, так как $F_{\rho}(x_i) \leq a$. Значит $x \in \text{int} G$. Но на int G функция F_{ρ} непрерывна, откуда следует необходимое, ножно только перейти к пределу в $F_{\rho}(x_i) \leq a$.

- Чтобы показать замкнутость U, рассмотрим последовательность $\{x_i\} \in U$, сходящуюся к x. **Boпpoc**: что нужно доказать? $x \in U$. Возможно две опции: $x \in \text{int} G$ или ∂G ? Если $x \in \partial G$, то $F_{\rho}(x_i) \to F_{\rho}(x) = \infty$, что невозможно, так как $F_{\rho}(x_i) \leq a$. Значит $x \in \text{int} G$. Но на int G функция F_{ρ} непрерывна, откуда следует необходимое, ножно только перейти к пределу в $F_{\rho}(x_i) \leq a$.
- ullet Ограниченность U следует из ограниченности G.

For growing many
$$f(x) = G(x)$$
 int $G(x) = G(x)$

- Чтобы показать замкнутость U, рассмотрим последовательность $\{x_i\} \in U$, сходящуюся к x. **Boпpoc**: что нужно доказать? $x \in U$. Возможно две опции: $x \in \text{int} G$ или ∂G ? Если $x \in \partial G$, то $F_{\rho}(x_i) \to F_{\rho}(x) = \infty$, что невозможно, так как $F_{\rho}(x_i) \leq a$. Значит $x \in \text{int} G$. Но на int G функция F_{ρ} непрерывна, откуда следует необходимое, ножно только перейти к пределу в $F_{\rho}(x_i) \leq a$.
- ullet Ограниченность U следует из ограниченности G.
- F_{ρ} непрерывно на компакте U, тогда принимает минимальное значение на нем (теорема Вейштрасса). Но по определению U этот минимум на U будет минимум и на $\inf G$.

Свойства решений барьерной задачи

Свойство решений штрафной задачи

Дополнительно к тому, что уже предположено добавим, что $\overline{\inf G} = G$ (замыкание $\inf G$). Тогда для любого e>0 существует $\rho(e)>0$ такое, что множество решений барьерной задачи X_{ρ}^* для любых $\rho \geq \rho(e)$ содержится в

$$X_e^* = \{ x \in G \mid \exists x^* \in X^* : \|x - x^*\|_2 \le e \},$$

где X^* — множество решение исходной задачи оптимизации с ограничениями вида неравенств.

Свойства решений барьерной задачи

Свойство решений штрафной задачи

Дополнительно к тому, что уже предположено добавим, что $\overline{\inf G} = G$ (замыкание $\operatorname{int} G$). Тогда для любого e>0 существует $\rho(e)>0$ такое, что множество решений барьерной задачи X_{ρ}^* для любых $\rho \geq \rho(e)$ содержится в

$$X_e^* = \{ x \in G \mid \exists x^* \in X^* : \|x - x^*\|_2 \le e \},$$

где X^* – множество решение исходной задачи оптимизации с ограничениями вида неравенств.

- X^* непустое, так как G замкнутое и ограниченное, а f непрерывна на этом компакте.
- То, что (X_{ρ}^*) непустое, доказали в первом свойстве.

• От противного: пусть существует некоторое e>0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$ не лежащие в X_e^* .

- От противного: пусть существует некоторое e>0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$ не лежащие в X_e^* .
- Так как G ограничено, то $X^*(\rho_i)$ ограничено. По теореме Больцана-Вейрштрасса из ограниченной последовательности можно выделить сходящуюся подпоследовательность: $\tilde{x}_i^* \to \tilde{x}^*$. Посмотрим, что мы можем сказать про \tilde{x}^* .

- От противного: пусть существует некоторое e>0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$ не лежащие в X_e^* .
- Так как G ограничено, то $X^*(\rho_i)$ ограничено. По теореме Больцана-Вейрштрасса из ограниченной последовательности можно выделить сходящуюся подпоследовательность: $\tilde{x}_i^* \to \tilde{x}^*$. Посмотрим, что мы можем сказать про \tilde{x}^* .
- Отметим, что предел \tilde{x}^* лежит в G. Вопрос: почему?

- От противного: пусть существует некоторое e>0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$ не лежащие в X_e^* .
- Так как G ограничено, то $X^*(\rho_i)$ ограничено. По теореме Больцана-Вейрштрасса из ограниченной последовательности можно выделить сходящуюся подпоследовательность: $\tilde{x}_i^* \to \tilde{x}^*$. Посмотрим, что мы можем сказать про \tilde{x}^* .
- ullet Отметим, что предел $ilde{x}^*$ лежит в G. Вопрос: почему? $ilde{x}^*_i \in \operatorname{int} G$, G есть замыкание $\operatorname{int} G$.

- От противного: пусть существует некоторое e > 0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$ не лежащие в X_e^* .
- Так как G ограничено, то $X^*(\rho_i)$ ограничено. По теореме Больцана-Вейрштрасса из ограниченной последовательности можно выделить сходящуюся подпоследовательность: $ilde{x}_i^* o ilde{x}^*$. Посмотрим, что мы можем сказать про \tilde{x}^* .
- ullet Отметим, что предел $ilde{x}^*$ лежит в G. Вопрос: почему? $ilde{x}^*_i \in \operatorname{int} G$, G есть замыкание int G.
- Также (\tilde{x}^*) не должен лежать в X^* . Вопрос: почему?

Также
$$\tilde{x}^*$$
 не должен лежать в X^* . Вопро $\tilde{x}^* \in G \setminus X^*$ $f(\tilde{x}^*) > f(\tilde{x}^*) + f(\tilde{x}^*) = f(\tilde{x}^*) + f(\tilde{x}^*)$

- От противного: пусть существует некоторое e>0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$ не лежащие в X_e^* .
- Так как G ограничено, то $X^*(\rho_i)$ ограничено. По теореме Больцана-Вейрштрасса из ограниченной последовательности можно выделить сходящуюся подпоследовательность: $\tilde{x}_i^* \to \tilde{x}^*$. Посмотрим, что мы можем сказать про \tilde{x}^* .
- ullet Отметим, что предел $ilde{x}^*$ лежит в G. Вопрос: почему? $ilde{x}^*_i \in \operatorname{int} G$, G есть замыкание $\operatorname{int} G$.
- Также \tilde{x}^* не должен лежать в X^* . Вопрос: почему? Иначе, начиная с некоторого номера i, \tilde{x}^* начнут попадать в X_e^* .

- От противного: пусть существует некоторое e>0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$ не лежащие в X_e^* .
- Так как G ограничено, то $X^*(\rho_i)$ ограничено. По теореме Больцана-Вейрштрасса из ограниченной последовательности можно выделить сходящуюся подпоследовательность: $\tilde{x}_i^* \to \tilde{x}^*$. Посмотрим, что мы можем сказать про \tilde{x}^* .
- ullet Отметим, что предел $ilde{\chi}^*$ лежит в G. Вопрос: почему? $ilde{\chi}^*_i \in \operatorname{int} G$, G есть замыкание $\operatorname{int} \overline{G}$.
- Также \tilde{x}^* не должен лежать в X^* . Вопрос: почему? Иначе, начиная с некоторого номера $i, \, \tilde{x}^*$ начнут попадать в X_e^* .
- Так как \tilde{x}^* вне X^* , то существует $\delta>0$ такое, что

$$f(\tilde{x}^*) > f(x^*) + \delta,$$

где $x^* \in X^* \subseteq G$.

ullet С другой стороны: так как G есть замыкание $\mathrm{int}\,G$, а f непрерывна на G, то можно найти такую точку $\tilde{x}\in\mathrm{int}\,G$, что

$$f(\tilde{x}) \leq f(x^*) + \frac{\delta}{2}.$$

$$f(\tilde{x}) \leq f(x^*) + \frac{\delta}{2}.$$

$$f(\tilde{x}) \leq f(x^*) + \frac{\delta}{2}.$$

$$f(\tilde{x}) \leq f(\tilde{x}) + \frac{\delta}{2}.$$

$$f(\tilde{x}) = f(\tilde{x}) + \frac{\delta}{2}.$$

$$f$$

• С другой стороны: так как G есть замыкание $\inf G$, а f непрерывна на G, то можно найти такую точку $\tilde{x} \in \inf G$, что

$$f(\tilde{x}) \leq f(x^*) + \frac{\delta}{2}.$$

• Тогда

$$f(\tilde{x}_i^*) + \frac{1}{\rho_i}F(\tilde{x}_i^*) = F_{\rho_i}(x_i) = \min_{x \in \text{int } G} F_{\rho_i}(x_i) \leq F_{\rho_i}(\tilde{x}) = f(\tilde{x}) + \frac{1}{\rho_i}F(\tilde{x})$$

• С другой стороны: так как G есть замыкание $\inf G$, а f непрерывна на G, то можно найти такую точку $\tilde{x} \in \inf G$, что

$$f(\tilde{x}) \leq f(x^*) + \frac{\delta}{2}.$$

• Тогда

$$f(\tilde{x}_i^*) + \frac{1}{\rho_i}F(\tilde{x}_i^*) = F_{\rho_i}(x_i) = \min_{x \in \text{int } G} F_{\rho_i}(x_i) \leq F_{\rho_i}(\tilde{x}) = f(\tilde{x}) + \frac{1}{\rho_i}F(\tilde{x})$$

• Мы уже показывали, что F_{ρ} принимает свое минимальное значение (а значит ограничено снизу) на $\inf G$. Аналогично, можно показать, что $F(x) \geq F^* > -\infty$ на $\inf G$. Поэтому

$$f(\tilde{x}_i^*) \leq f(\tilde{x}) + \frac{1}{\rho_i}F(\tilde{x}) - \frac{1}{\rho_i}F^*.$$

• С предыдущего слайда:

$$f(\tilde{x}_i^*) \leq f(\tilde{x}) + \frac{1}{\rho_i}F(\tilde{x}) - \frac{1}{\rho_i}F^*.$$

• С предыдущего слайда:

$$f(\tilde{x}_i^*) \leq f(\tilde{x}) + \frac{1}{\rho_i}F(\tilde{x}) - \frac{1}{\rho_i}F^*.$$

ullet Функция f непрерывна на G. Переходим к пределу в неравенстве:

$$f(\tilde{x}^*) \leq f(\tilde{x}).$$

• С предыдущего слайда:

$$f(\tilde{x}_i^*) \leq f(\tilde{x}) + \frac{1}{\rho_i}F(\tilde{x}) - \frac{1}{\rho_i}F^*.$$

ullet Функция f непрерывна на G. Переходим к пределу в неравенстве:

$$f(\tilde{x}^*) \leq f(\tilde{x}).$$

Ho

$$f(x^*) + \delta < f(\tilde{x}^*) \le f(\tilde{x}) \le f(x^*) + \frac{\delta}{2}$$
.

Противоречие.

Итог по барьерам на данный момент

- По факту условная задача превращена в безусловную.
- Увеличение ρ помогает лучше аппроксимировать поведение честной индикаторной функции, а значит приближает нас к исходной задаче.
- Решение всегда удовлетворяет ограничениям.
- Более того, так как в процессе оптимизации мы не выходим за G, то можно сказать, что мы всегда «внутри», поэтому метод решающий задачу с барьером называется метод внутренней точки.
- В общем случае все. Как и для штрафов выбираем, какое-то ρ пытаемся решить задачу с барьером. Далее можно попробовать увеличить ρ .

Итог по барьерам на данный момент

- По факту условная задача превращена в безусловную.
- Увеличение ρ помогает лучше аппроксимировать поведение честной индикаторной функции, а значит приближает нас к исходной задаче.
- Решение всегда удовлетворяет ограничениям.
- Более того, так как в процессе оптимизации мы не выходим за G, то можно сказать, что мы всегда «внутри», поэтому метод решающий задачу с барьером называется метод внутренней точки.
- В общем случае все. Как и для штрафов выбираем, какое-то ρ пытаемся решить задачу с барьером. Далее можно попробовать увеличить ρ .
- Далее рассмотрим фундаментальные азы теории вокруг барьеров, которая сильно продвинула вперед наука в этой области.

Самосогласованная функция

Самосогласованная функция

Выпуклая трижды непрерывно дифференцируемая на int G функция называется самосогласованной, если выполнены следующие условия

- $\left|\frac{d^3}{dt^3}F(x+th)\right| \leq 2[h^T\nabla^2F(x)h]^{3/2}$ для любых $x \in \operatorname{int} G$ и $h \in \mathbb{R}^d$;
- Для любой последовательности $\{x_i\} \in \text{int} G$ такой, что $x_i \to x \in \partial G$, выполнено «барьерное» свойство: $F(x_i) \to +\infty$.

Самосогласованная функция: примеры

• Квадратичная функция с симметричной положительно полуопределенной матрицей:

$$f(x) = \frac{1}{2}x^T A x + b^T x + c,$$

является самосогласованной на \mathbb{R}^d .

• Отрицательный логарифм:

$$f(x) = -\ln(x),$$

является самосогласованным на \mathbb{R}_+ .

• Отрицательный логарифм квадратичной функции $g(x) = \frac{1}{2}x^{T}Ax + b^{T}x + c$

$$f(x) = -\ln(-g(x))$$

является самосогласованным на $G=\{x\in\mathbb{R}^d\mid g(x)<0\}$.

Самосогласованная функция: операции сохраняющие

ullet Сумма двух самосогласованных функций (F_1 на int G_1 и F_2 на int G_2):

$$F(x) = \alpha_1 F_1(x) + \alpha_2 F_2(x),$$

где $\alpha_1, \alpha_2 \geq 1$, также является самосогласованной.

• Аффинное преобразование аргумента сохраняет самосогласованность: если F(x) самосогласована на int G, тогда

$$\tilde{F}(x) = F(Ax + b)$$

самосоглаована на $\inf \tilde{G} = \{x \mid Ax + b \in \operatorname{int} G\}.$

Самосогласованный барьер

Самосогласованный барьер

Функция F является ν -самосогласованным барьером (ν всегда ≥ 1) на множестве $\mathrm{int} G$, если

- $\mathbf{v} \in \mathrm{int} G$ и $h \in \mathbb{R}^d$.
- Пример логарифмический барьер от лилейных ограничений:

$$F(x) = -\sum_{i=1}^{m} -\ln(b_i - a_i^T x),$$

где $\{b_i - a_i^T x\}$ удовлетворяют условию Слейтера, является m-самосогласованным барьером на

$$G = \{x \in \mathbb{R}^d \mid a_i^T x \le b_i, i = 1, ..., m\}$$

Задача

• То с чего начинали:

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $g_i(x) \le 0, i = 1, \dots m$

Только пусть теперь все функции f и g_i выпуклые на G.

Задача

• То с чего начинали:

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $g_i(x) \leq 0, i = 1, \dots m.$

Только пусть теперь все функции f и g_i выпуклые на G.

• Переформулируем в форме эпиграфа:

$$\min_{(x,t)\in\mathbb{R}^{d+1}} (t) 1^{\mathsf{T}} (1 \cdot \mathsf{f})$$

$$\text{s.t. } g_i(x) \leq 0, \ i = 1, \dots m$$

$$f(x) - t \leq 0.$$

Задача остается выпуклой (эпиграф выпуклый тогда и только тогда, когда функция выпукла). Добавилась линейность целевой функции.

Задача

• Поэтому будем рассматривать задачу вида:

$$\min_{x \in \mathbb{R}^d} \underbrace{c^T x},$$
s.t. $g_i(x) \leq 0, i = 1, \dots m,$

с выпуклыми функциями g_i .

Общий случай метода

Сначала посмотрим на общую схему, которая подойдет для любой задачи.

Алгоритм 1 Метод внутренней точки (общий случай)

Вход: стартовая точка $x^0\in \mathrm{int} G$, стартовое значение параметра $ho_{-1}>0$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Увеличить $\rho_k > \rho_{k-1}$
- 3: С помощью некоторого метода решить численно задачу безусловной оптимизации с целевой функцией F_{ρ_k} и стартовой точкой x_k . Гарантировать, что выход метода x_{k+1} будет близок к реальному решению $x^*(\rho_k)$.
- 4: end for
- Выход: x^K

Линейная целевая функция и самосогласованный барьер

- Теперь перейдем к частному случаю линейной целевой функции и ν -самосогласованный барьеров.
- Чем меньше ν тем лучше барьер и как увидим далее быстрее сходится метод.

Линейная целевая функция и самосогласованный барьер

- Теперь перейдем к частному случаю линейной целевой функции и ν -самосогласованный барьеров.
- Чем меньше ν тем лучше барьер и как увидим далее быстрее сходится метод.

Линейная целевая функция и самосогласованный барьер

Введем дополнительные объекты:

$$\bullet (\Phi_{\rho}(x)) = \rho F_{\rho}(x) = \rho c^{T} x + F(x)$$

•
$$\lambda(\Phi_{\rho}, x) = \sqrt{[\nabla \Phi_{\rho}(x)]^T [\nabla^2 \Phi_{\rho}(x)]^{-1} \nabla \Phi_{\rho}(x)}$$

Алгоритм 2 Метод внутренней точки (частный случай)

Вход: параметры $e_1,e_2\in(0;1)$, стартовое значение параметра $\rho_{-1}>0$, стартовая точка $x^0\in \mathrm{int} G$ такая, что $\lambda(\Phi_{\rho_{-1}})x^0\leq e_1$, количество итераций K

1: **for**
$$k = 0, 1, ..., K - 1$$
 do

2: Увеличить
$$\rho_k = \left(1 - \frac{e_2}{\sqrt{v}}\right) \rho_{k-1}$$

3: Сделать шаг демпфированного метода Ньютона:

$$x^{k+1} = x^k - \frac{1}{1 + \lambda(\Phi_{\rho_k}, x^k)} [\nabla^2 \Phi_{\rho_k}(x^k)]^{-1} \nabla \Phi_{\rho_k}(x^k)$$

(возможно, понадобится больше одного шага метода Ньютона, но при правильном соотношении e_1 и e_2 достаточно ровно одного)

4: end for

Выход: x^K

Введем дополнительные объекты:

• С помощью хитрого критерия (ньютоновского декремента): $\lambda(\Phi_{\rho}, x)$ мы измеряем «близость» x к $x^*(\rho)$.

Введем дополнительные объекты:

- С помощью хитрого критерия (ньютоновского декремента): $\lambda(\Phi_{\rho}, x)$ мы измеряем «близость» x к $x^*(\rho)$.
- для положительно определенной матрицы $\nabla^2 \Phi_{\rho}(x)$ декремент представляет собой некоторую модификацию критерия вида $\|\nabla \Phi_{\rho}(x)\|_2$, но по норме, индуцированной матрицей.

Введем дополнительные объекты:

- С помощью хитрого критерия (ньютоновского декремента): $\lambda(\Phi_{\rho}, x)$ мы измеряем «близость» x к $x^*(\rho)$.
- для положительно определенной матрицы $\nabla^2 \Phi_{\rho}(x)$ декремент представляет собой некоторую модификацию критерия вида $\|\nabla \Phi_{\rho}(x)\|_2$, но по норме, индуцированной матрицей.
- Мы задаем x^0 так, что он сразу близок к $x^*(\rho)$. Это можно сделать, например, запустив демпфированного метода Ньютона на большое число итераций.

Введем дополнительные объекты:

- С помощью хитрого критерия (ньютоновского декремента): $\lambda(\Phi_{\rho}, x)$ мы измеряем «близость» x к $x^*(\rho)$.
- для положительно определенной матрицы $\nabla^2 \Phi_{\rho}(x)$ декремент представляет собой некоторую модификацию критерия вида $\|\nabla \Phi_{\rho}(x)\|_2$, но по норме, индуцированной матрицей.
- Мы задаем x^0 так, что он сразу близок к $x^*(\rho)$. Это можно сделать, например, запустив демпфированного метода Ньютона на большое число итераций.
- Далее мы увеличиваем ρ . И оказывается, что теперь достаточно только одного шага Ньютона, чтобы снова гарантированно быть близко к $x^*(\rho)$, а точнее $\lambda(\Phi_{\rho_k}, x^{k+1}) \leq e_1$. А дальше зацикливаем. Осталось только показать, что и правда $\lambda(\Phi_{\rho_k}, x^{k+1}) \leq e_1$.

Еще одно обозначение: $H(x) = \nabla^2 \Phi_{\rho}(x) = \nabla^2 F(x)$, и уже знакомая нам норма, индуцированная положительно определенной матрицей: $\|x\|_{\Delta}^2 = x^T A x$.

Сразу из определения самосогласованного барьера следует, что H(x) положительно полуопределена, но можно показать и, что положительно определена.

Еще одно обозначение: $H(x) = \nabla^2 \Phi_{\rho}(x) = \nabla^2 F(x)$, и уже знакомая нам норма, индуцированная положительно определенной матрицей: $||x||_A^2 = \sqrt[K]{4}$

Сразу из определения самосогласованного барьера следует, что H(x) положительно полуопределена, но можно показать и, что положительно определена.

• В новых обозначениях:

Еще одно обозначение: $H(x) = \nabla^2 \Phi_{\rho}(x) = \nabla^2 F(x)$, и уже знакомая нам норма, индуцированная положительно определенной матрицей: $||x||_A^2 = x^T A x.$

Сразу из определения самосогласованного барьера следует, что H(x)положительно полуопределена, но можно показать и, что

положительно определена.

оложительно определена.
• В новых обозначениях:
$$\lambda(\Phi_{\rho},x) = \|\nabla \Phi_{\rho}(x)\|_{H^{-1}(x)} = \|\rho c + \nabla F(x)\|_{H^{-1}(x)}$$

• Попробуем оценить $\lambda(\Phi_{\rho_k}, x^k)$ через $\lambda(\Phi_{\rho_{k-1}}, x^k)$, т.е. насколько ухудшает ситуацию увеличение ρ (здесь используем просто неравенство треугольника):

$$\lambda(\Phi_{\rho_{k}}, x^{k}) = \frac{\|\rho_{k}c + \nabla F(x^{k})\|_{H^{-1}(x^{k})}}{\|\rho_{k-1}c + \nabla F(x^{k})\|_{H^{-1}(x^{k})}} \leq \frac{\|\rho_{k-1}c + \nabla F(x^{k})\|_{H^{-1}(x^{k})}}{\|\rho_{k-1}c + \nabla F(x^{k})\|_{H^{-1}(x^{k})}} + \frac{\|(\rho_{k} - \rho_{k-1})c\|_{H^{-1}(x^{k})}}{\|\rho_{k-1}c + \nabla F(x^{k})\|_{H^{-1}(x^{k})}}$$

$$|\int_{\Lambda} \nabla F(x)| \leq \int_{\Lambda} \int_{\Lambda} \nabla^2 F(x) h$$

$$|\nabla F(x)| \leq \int_{\Lambda} \int_{\Lambda} \nabla F(x) h$$
Продолжаем с предыдущего слайда (просто подставляем ρ_k через

$$\lambda(\Phi_{\rho_{k}}, x^{k}) \leq \|\rho_{k-1}c + \nabla F(x^{k})\|_{H^{-1}(x^{k})} + \|(\rho_{k} - \rho_{k-1})c\|_{H^{-1}(x^{k})}$$

$$= \lambda(\Phi_{\rho_{k-1}}, x^{k}) + \frac{\rho_{k} - \rho_{k-1}}{\rho_{k-1}} \|\rho_{k-1}c\|_{H^{-1}(x^{k})}$$

$$\leq e_{1} + \frac{e_{2}}{\sqrt{\nu}} \|\rho_{k-1}c\|_{H^{-1}(x^{k})} \leq e_{1} + \frac{e_{2}}{\sqrt{\nu}} \|\rho_{k-1}c\|_{H^{-1}(x^{k})} \leq e_{1} + \frac{e_{2}}{\sqrt{\nu}} \|\rho_{k-1}c\|_{H^{-1}(x^{k})}$$

• Нужно оценить $\|\rho_{k-1}c\|_{H^{-1}(x^k)}$.

$$||g_{k-1}C||_{H^{-1}(x^{k})}^{2}-||v||_{H^{1}}\leq ||g_{k-1}C+\nabla F(x^{k})||_{H^{-1}(x^{k})}\leq e_{1}$$

$$||g_{k-1}C||_{H^{1}}\leq e_{1}+||\nabla F(x)||_{H^{-1}}\leq f_{2}$$

• Нужно оценить $\|\rho_{k-1}c\|_{H^{-1}(x^k)}$: $\lambda(\Phi_{\rho_{k-1}},x^k)=\|\rho_{k-1}c+\nabla F(x^k)\|_{H^{-1}(x^k)}\leq e_1$

• Нужно оценить $\|\rho_{k-1}c\|_{H^{-1}(x^k)}$:

$$\lambda(\Phi_{\rho_{k-1}}, x^k) = \|\rho_{k-1}c + \nabla F(x^k)\|_{H^{-1}(x^k)} \le e_1$$

• Неравенство треугольника:

$$\|\rho_{k-1}c\|_{H^{-1}(x^k)} \le e_1 + \|\nabla F(x^k)\|_{H^{-1}(x^k)}$$

• Нужно оценить $\|\rho_{k-1}c\|_{H^{-1}(x^k)}$:

$$\lambda(\Phi_{\rho_{k-1}}, x^k) = \|\rho_{k-1}c + \nabla F(x^k)\|_{H^{-1}(x^k)} \le e_1$$

• Неравенство треугольника:

$$\|\rho_{k-1}c\|_{H^{-1}(x^k)} \le e_1 + \|\nabla F(x^k)\|_{H^{-1}(x^k)}$$

• Из определения самосогласованный барьера для любого h: $|h^T \nabla F(x)| \leq \sqrt{\nu} \sqrt{h^T \nabla^2 H(x) h}$.

• Нужно оценить $\|\rho_{k-1}c\|_{H^{-1}(x^k)}$:

$$\lambda(\Phi_{\rho_{k-1}}, x^k) = \|\rho_{k-1}c + \nabla F(x^k)\|_{H^{-1}(x^k)} \le e_1$$

• Неравенство треугольника:

$$\|\rho_{k-1}c\|_{H^{-1}(x^k)} \le e_1 + \|\nabla F(x^k)\|_{H^{-1}(x^k)}$$

• Из определения самосогласованный барьера для любого h: $|h^T \nabla F(x)| \leq \sqrt{\nu} \sqrt{h^T \nabla^2 H(x) h}$. В том числе для $h = H^{-1} \nabla F(x)$:

$$[\nabla F(x)]^T H^{-T}(x) \nabla F(x) \le \sqrt{\nu} \sqrt{[\nabla F(x)]^T H^{-T}(x)} F(x)$$

• Нужно оценить $\|\rho_{k-1}c\|_{H^{-1}(x^k)}$:

$$\lambda(\Phi_{\rho_{k-1}}, x^k) = \|\rho_{k-1}c + \nabla F(x^k)\|_{H^{-1}(x^k)} \le e_1$$

• Неравенство треугольника:

$$\|\rho_{k-1}c\|_{H^{-1}(x^k)} \le e_1 + \|\nabla F(x^k)\|_{H^{-1}(x^k)}$$

• Из определения самосогласованный барьера для любого h:

$$|h^{T}\nabla F(x)| \leq \sqrt{\nu}\sqrt{h^{T}\nabla^{2}H(x)h}$$
. В том числе для $h = H^{-1}\nabla F(x)$: $[\nabla F(x)]^{T}H^{-T}(x)\nabla F(x) \leq \sqrt{\nu}\sqrt{[\nabla F(x)]^{T}H^{-T}(x)F(x)}$

В силу симметричности H(x) получаем

$$\|\nabla F(x)\|_{H^{-1}(x)} \le \sqrt{\nu}$$

• Нужно оценить $\|\rho_{k-1}c\|_{H^{-1}(x^k)}$:

$$\lambda(\Phi_{\rho_{k-1}}, x^k) = \|\rho_{k-1}c + \nabla F(x^k)\|_{H^{-1}(x^k)} \le e_1$$

• Неравенство треугольника:

$$\|\rho_{k-1}c\|_{H^{-1}(x^k)} \le e_1 + \|\nabla F(x^k)\|_{H^{-1}(x^k)}$$

• Из определения самосогласованный барьера для любого h:

$$|h^{T}\nabla F(x)| \leq \sqrt{\nu}\sqrt{h^{T}\nabla^{2}H(x)h}$$
. В том числе для $h = H^{-1}\nabla F(x)$: $[\nabla F(x)]^{T}H^{-T}(x)\nabla F(x) \leq \sqrt{\nu}\sqrt{[\nabla F(x)]^{T}H^{-T}(x)F(x)}$

В силу симметричности H(x) получаем

$$\|\nabla F(x)\|_{H^{-1}(x)} \le \sqrt{\nu}$$

• Итого:

$$\|\rho_{k-1}c\|_{H^{-1}(x^k)} \le e_1 + \sqrt{\nu}$$

• Объединяйем результаты:

$$\lambda(\Phi_{\rho_k},x^k)\leq e_1+\frac{e_2}{\sqrt{\nu}}(e_1+\sqrt{\nu}).$$

• Объединяйем результаты:

$$(\Delta(\Phi_{\rho_k}, x^k)) \leq e_1 + \frac{e_2}{\sqrt{\nu}}(e_1 + \sqrt{\nu}).$$

• Функция Φ_{ρ_k} является самосогласованной, как сумма двух самосогласованных (линейной и самосогласованного барьера). Один демпфированного метод Ньютона дает:

$$\lambda(\Phi_{\rho_k}, x^{k+1}) \leq \frac{2\lambda^2(\Phi_{\rho_k}, x^k)}{1 - \lambda(\Phi_{\rho_k}, x^k)} \leq \ell_1$$

• Объединяйем результаты:

$$\lambda(\Phi_{\rho_k}, x^k) \leq e_1 + \frac{e_2}{\sqrt{\nu}}(e_1 + \sqrt{\nu}).$$

• Функция Φ_{ρ_k} является самосогласованной, как сумма двух самосогласованных (линейной и самосогласованного барьера). Один демпфированного метод Ньютона дает:

$$\lambda(\Phi_{\rho_k}, x^{k+1}) \leq \frac{2\lambda^2(\Phi_{\rho_k}, x^k)}{1 - \lambda(\Phi_{\rho_k}, x^k)}.$$

В частности, если $e_1=0,05$ и $e_2=0,08$, то

$$\lambda(\Phi_{\rho_k},x^{k+1})\leq 0,05=e_1.$$

Что и требовалось.

- Мы всегда близко к текущему $x^*(\rho)$.
- Уже знаем, что увеличение ρ влечет за собой приближение к исходной задаче.
- Осталось понять, как быстро приближаемся к решению исходной задачи с увеличением ρ .

• Разберем упрощенный случай: пусть мы не просто близки к решению, пусть $\underline{x} = x^*(\rho)$, также остановимся на случае логарифмических барьеров с линейными функциями в качестве ограничений:

$$F(x) = -\sum_{i=1}^{\infty} \ln(b_i - a_i^T x).$$

$$x = x^{\infty}(s)$$

$$y = (x) = 0$$

$$y = x^{\infty}(s)$$

$$y = x^{\infty}(s)$$

• Разберем упрощенный случай: пусть мы не просто близки к решению, пусть $\widehat{x} = x^*(\rho)$, также остановимся на случае логарифмических барьеров с линейными функциями в качестве ограничений:

$$F(x) = -\sum_{i=1}^{m} \ln(b_i - a_i^T x).$$

• Так как $x = x^*(\rho)$, то по условию оптимальности:

$$\nabla \Phi_{\rho}(x) = \rho c + \sum_{i=1}^{m} \frac{a_{i}}{b_{i} - a_{i}^{T} x} = 0. \quad \left\langle \begin{array}{c} X - X^{*} \\ X - X^{*} \end{array} \right\rangle$$

$$S \subset X - S \subset X^{*} = \sum_{i=1}^{m} \frac{a_{i}}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x} = \sum_{i=1}^{m} \frac{b_{i} - a_{i}^{T} x}{b_{i} - a_{i}^{T} x}$$

• Разберем упрощенный случай: пусть мы не просто близки к решению, пусть $x = x^*(\rho)$, также остановимся на случае логарифмических барьеров с линейными функциями в качестве ограничений:

$$F(x) = -\sum_{i=1}^{m} \ln(b_i - a_i^T x).$$

• Так как $x = x^*(\rho)$, то по условию оптимальности:

$$\nabla \Phi_{\rho}(x) = \rho c + \sum_{i=1}^{m} \frac{a_i}{b_i - a_i^T x} = 0.$$

• Возьмем скалярное произведение с $(x - x^*)$:

$$\rho c^{T}(x-x^{*}) = \sum_{i=1}^{m} \frac{a_{i}^{T}(x^{*}-x)}{b_{i}-a_{i}^{T}x} = \sum_{i=1}^{m} \frac{b_{i}-a_{i}^{T}x}{b_{i}-a_{i}^{T}x} = m$$

• В итоге (пользуясь, что для нашего барьера $\nu = m$):

$$f(x) - f(x^*) = c^T(x - x^*) = \frac{m}{\rho} = \frac{\nu}{\rho}$$

• В итоге (пользуясь, что для нашего барьера $\nu = m$):

$$f(x) - f(x^*) = c^T(x - x^*) = \frac{m}{\rho} = \frac{\nu}{\rho}$$

- Так как ρ увеличивается линейно, то и к решению мы приближаемся линейно.
- В общем случае справедлива следующая теорема.

Сходимость

Сходимость метода внутренней точки

Пусть с помощью метода внутренней точки решается задача оптимизации с линейной целевой функцией и выпуклыми ограничениями вида неравенств, при этом используются ν -самосогласованные барьеры. Тогда чтобы достичь ε решения $(f(x) - f(x^*)\varepsilon)$, необходимо

$$K = \mathcal{O}\left(\sqrt{\nu}\log\frac{\nu}{\varepsilon\rho_0}\right)$$
 итераций метода.

$$\left(1+\frac{0.08}{10}\right)^{k}\sim \varepsilon$$

Итого

- Метод внутренней точки хорошая альтернатива методу барьеров, которая дополнительно гарантирует соблюдение ограничений.
- Для выпуклых задач метод внутренней точки обладает
 фундаментальной теорией и сильными гарантиями сходимости.