What Is Claimed Is:

1	1. A method for measuring alignment between a first semiconductor
2	die and a second semiconductor die, comprising:
3	applying a pattern of voltage signals to a two-dimensional array of
4	conductive transmitter elements that form a transmitter array on the first
5	semiconductor die;
6	wherein the transmitter array on the first semiconductor die is located over
7	a corresponding two-dimensional array of conductive receiver elements that form
8	a receiver array on the second semiconductor die;
9	wherein a voltage signal applied to a transmitter element induces a voltage
10	signal in one or more receiver elements;
11	amplifying voltage signals induced in receiver elements in the receiver
12	array; and
13	analyzing the amplified signals to determine an alignment between the
14	first semiconductor die and the second semiconductor die.
1	2. The method of claim 1, wherein transmitter elements have a
2	different spacing than receiver elements, whereby a two-dimensional vernier
3	alignment structure is created when the transmitter array is located over the
4	receiver array.
1	3. The method of claim 1,
2	wherein the transmitter array is organized as a two-dimensional $n \times m$ grid
3	including nm conductive elements; and
4	wherein the receiver array includes at least three conductive elements
5	which are not collinear.

1	4. The method of claim 1,
2	wherein the receiver array is organized as a two-dimensional $n \times m$ grid
3	including nm conductive elements; and
4	wherein the transmitter array includes at least three conductive elements
5	which are not collinear.
1	5. The method of claim 1, wherein determining the alignment
2	involves determining six degrees of alignment, including:
3	an x alignment parallel to plane of the receiver array;
4	a y alignment parallel to plane of the receiver array and normal to the x
5	axis;
6	a z alignment normal to the plane of the receiver array;
7	an angular alignment, θ , about the z axis;
8	an angular alignment, Ψ , about the y axis; and
9	an angular alignment, Φ , about the x axis.
1	6. The method of claim 5, wherein determining the alignment
2	involves analyzing coupling capacitances between individual receiver elements
3	and individual transmitter elements to determine the x alignment, the y alignment
4	and the angular alignment, θ .
1	7. The method of claim 6, wherein analyzing the coupling
2	capacitances involves determining a nearest neighbor mapping between receiver
3	elements and transmitter elements.

1

1 8. The method of claim 5, wherein determining the alignment 2 involves using a mapping function generated by a three-dimensional capacitance 3 field solver simulation to determine the z alignment, the angular alignment, Ψ , and 4 the angular alignment, Φ . The method of claim 5, wherein determining the z alignment, the 9. 1 2 angular alignment, Ψ , and the angular alignment, Φ , involves summing 3 capacitances between individual receiver elements in the receiver array and all 4 transmitter elements in the transmitter array, thereby effectively considering the 5 transmitter array to be one large plate. 1 10. The method of claim 5, wherein determining the z alignment, the 2 angular alignment, Ψ , and the angular alignment, Φ , involves summing 3 capacitances between individual transmitter elements in the transmitter array and 4 all receiver elements in the receiver array, thereby effectively considering the 5 receiver array to be one large plate. 11. The method of claim 1, further comprising electrically varying the 1 2 pitch of the transmitter array by grouping together adjacent transmitter elements. 12. The method of claim 1, further comprising electrically varying the 1 2 pitch of the receiver array by grouping together adjacent receiver elements. 13. The method of claim 1, wherein transmitter elements and receiver 1 2 elements are:

3

4

square;

rectangular;

3	nexagonai;
6	triangular;
7	oval; or
8	round.
1	14. The method of claim 1,
2	wherein transmitter elements are located in a metal layer of the first
3	semiconductor die and are not covered by higher layers of metal; and
4	wherein receiver elements are located in a metal layer of the second
5	semiconductor die and are not covered by higher layers of metal.
1	15. An apparatus that measures alignment between a first
2	semiconductor die and a second semiconductor die, comprising:
3	a two-dimensional array of conductive transmitter elements that form a
4	transmitter array on the first semiconductor die;
5	a two-dimensional array of conductive receiver elements that form a
6	receiver array on the second semiconductor die;
7	a driving mechanism configured to apply a pattern of voltage signals to the
8	transmitter array;
9	wherein a voltage signal applied to a transmitter element induces a voltage
10	signal in one or more receiver elements when the transmitter array is located over
11	the receiver array;
12	an amplification mechanism configured to amplify voltage signals induced
13	in receiver elements in the receiver array; and
14	an analysis mechanism configured to analyze the amplified signals to
15	determine an alignment between the first semiconductor die and the second
16	semiconductor die.

1	16. The apparatus of claim 15, wherein transmitter elements have a
2	different spacing than receiver elements, whereby a two-dimensional vernier
3	alignment structure is created when the transmitter array is located over the
4	receiver array.
1	17. The apparatus of claim 15,
2	wherein the transmitter array is organized as a two-dimensional $n \times m$ grid
3	including nm conductive elements; and
4	wherein the receiver array includes at least three conductive elements
5	which are not collinear.
1	18. The apparatus of claim 15,
2	wherein the receiver array is organized as a two-dimensional $n \times m$ grid
3	including nm conductive elements; and
4	wherein the transmitter array includes at least three conductive elements
5	which are not collinear.
1	19. The apparatus of claim 15, wherein the driving mechanism and the
2	analysis mechanism are configured to determine six degrees of alignment,
3	including:
4	an x alignment parallel to plane of the receiver array;
5	a y alignment parallel to plane of the receiver array and normal to the x
6	axis;
7	a z alignment normal to the plane of the receiver array;
8	an angular alignment, θ , about the z axis;
9	an angular alignment, Ψ , about the y axis; and

- 1 an angular alignment, Φ , about the x axis.
- 1 20. The apparatus of claim 19, wherein the analysis mechanism is
- 2 configured to determine coupling capacitances between individual receiver
- 3 elements and individual transmitter elements to determine the x alignment, the y
- 4 alignment and the angular alignment, θ .
- 1 21. The apparatus of claim 20, wherein the analysis mechanism is
- 2 configured to determine a nearest neighbor mapping between receiver elements
- 3 and transmitter elements.
- 1 22. The apparatus of claim 19, wherein the analysis mechanism is
- 2 configured to use a mapping function generated by a three-dimensional
- 3 capacitance field solver simulation to determine the z alignment, the angular
- 4 alignment, Ψ , and the angular alignment, Φ .
- 1 23. The apparatus of claim 19, wherein the apparatus is configured to
- determine the z alignment, the angular alignment, Ψ , and the angular alignment,
- Φ , by summing capacitances between individual receiver elements in the receiver
- 4 array and all transmitter elements in the transmitter array, thereby effectively
- 5 considering the transmitter array to be one large plate.
- 1 24. The apparatus of claim 19, wherein the apparatus is configured to
- determine the z alignment, the angular alignment, Ψ , and the angular alignment,
- Φ , by summing capacitances between individual transmitter elements in the
- 4 transmitter array and all receiver elements in the receiver array, thereby effectively
- 5 considering the receiver array to be one large plate.

1	25. The apparatus of claim 15, wherein the apparatus is configured to
2	electrically vary the pitch of the transmitter array by grouping together adjacent
3	transmitter elements.
1	26. The apparatus of claim 15, wherein the apparatus is configured to
2	electrically vary the pitch of the receiver array by grouping together adjacent
3	receiver elements.
1	27. The apparatus of claim 15, wherein transmitter elements and
2	receiver elements are:
3	square;
4	rectangular;
5	hexagonal;
6	triangular;
7	oval; or
8	round.
1	28. The apparatus of claim 15,
2	wherein transmitter elements are located in a metal layer of the first
3	semiconductor die and are not covered by higher layers of metal; and
4	wherein receiver elements are located in a metal layer of the second
5	semiconductor die and are not covered by higher layers of metal.