Python for Scientists

Ramon Crehuet & Fermín Huarte ramon.crehuet@iqac.csic.es fermin.huarte@ub.edu

Facultat de Química, June 2019

Us

- Researcher at the CSIC
- Computational biochemistry & biophysics
- Started with Fortran.
 Learnt some Perl, R,
 Mathematica
- But now mainly use Python
- Analysis of simulation
- Implementing new methods

- Ass. Professor at UB
- Computational Dynamics
- Started with Fortran. Learnt some PHP, Mathematica
- Use Fortran to generate results, Python to analyze and plot
- Analysis of simulations

- Research Unit / Platform Director
- Experimental Research Unit / Platform technician
- Experimental Researcher
- Computational Researcher
- Experimental researcher currently focussed on physical modelling with Matlab
- Lab engineer

Previous experience with programming

- Yes, advanced level
- Yes, intermediate level
- Yes, beginner level
- No, hardly ever programmed before

• Previous experience with programming

Expectations

Overview

- Why Python
- Language basics
- Working with files
- Working with arrays: Numpy
- Data visualization: matplotlib
- Structured data: Pandas
- Functions and modules
- Scientific modules. Scipy
- Classes and objects (bare minimum!)
- Other scientific modules: sckikit-learn, biopython...
- Profiling and optimization and beyond Python

Language popularity

http://pypl.github.io/PYPL.html

Language popularity

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Python for science

- A high level language gives more time to more complex problems
 - At the expense of hiding important details
- Example:
 - A reaction mechanism
 - Optimisation of an energy function
 - Steepest descent, conjugate gradients, quasi-Newton
 - Implementation of BFGS quasi-Newton
 - Memory issues, diagonalization, matrix inversion...
 - Calculation of numerical gradients or hessians:
 - machine precision, central differences, etc.

http://fperez.org/py4science/why_python.html

Python for science

Compiled languages
Fast

Difficult non-interactive

Matlab, Mathematica, Octave

Slow

Rich libraries

Nice development environment Restricted base language

Expensive (some)

Python

Rich libraries (less than matlab)
Other libraries

uner librane

Free

Active community Harder than Matlab

Matlab, Mathematica?

- Scientific computing:
 - ipython + scipy + matplotlib
- Free
- Open source
- Extensible

- Bioinformatics
 - Biopython
- Molecular Dynamics
 - MMTK
- Efficiency
 - Numba, Cython,
 Fortran, C
- Server control
- XML parser

Python for data science

Python for data science

- Which is better for data analysis: R or Python?
 http://www.quora.com/Which-is-better-for-data-analysis-R-or-Python
- SAS vs. R (vs. Python) which tool should I learn? http://www.analyticsvidhya.com/blog/2014/03/sas-vs-vs-python-tool-learn/
- Python Vs R Machine learning http://datascience.stackexchange.com/questions/326/python-vs-r-machine-learning
- How to Choose Between Learning Python or R First http://blog.udacity.com/2015/01/python-vs-r-learn-first.html
- Python, Machine Learning, and Language Wars http://sebastianraschka.com/blog/2015/why-python.html

Low level vs. high level

- Python is a high level language
- You can focus on:
 - Low level issues
 - Higher complexity of problems

- Low level issues
 - Variable types
 - Machine precision
- But also
 - Extend
 - Mantain
 - Document code

Python vs. Fortran/C

Different time distribution to get a task done

Python for science

 The homogenization of scientific computing, or why Python is steadily eating other languages' lunch

http://www.talyarkoni.org/blog/2013/11/18/the-homogenization-of-scientific-computing-or-why-python-is-steadily-eating-other-languages-lunch/

 10 Reasons Python Rocks for Research (And a Few Reasons it Doesn't)

http://www.stat.washington.edu/~hoytak/blog/whypython.html

Interactive shells

- python
- IDLE
- JupyterLab (previously called ipython)
 - console
 - notebook
- spyder
- eric
- PIDA
- Sage

Python distributions

- Anaconda
 - https://www.continuum.io/downloads
- Enthought Canopy
 - https://www.enthought.com/products/canopy/

Which python version?

- Language is fast evolving
- 2 versions now coexist: 3.x and 2.x
- These versions are not completely compatible
- 3.x is better and continued
- 2.x has some software still not ported
- Both can safely coexisit
 - Packages and shells are for a specific version
- 2to3 -w hello.py

Short jupyter-lab tutorial

beyond python

TAB autocomplete:

- functions
- methods
- files
- •

reload command

cursor keys get history (for console only):

- even previous sessions!
- text + keys: previous match

?: intro to ipython

%quickref

Without ipython:

python3 -u script.py enters interactive mode

Magic functions

```
%timeit x=10: time the 'x=10' statement with high precision.
\%\%timeit x=2**100
                : time 'x*100' with a setup of 'x=2**100'; setup code is not
x*100
                   counted. This is an example of a cell magic.
%history
%load_ext
%run
%pdb: Control the automatic calling of the pdb interactive debugger.
%timeit
%pwd
%cd
%%bash
          http://ipython.org/ipython-doc/dev/interactive/tutorial.html
```

Running scripts

```
%run script.py
import script.py
are not the same!
%run script.py is like python3 script.py
Imports are only "imported" once in a session (see later %autoreload magic function)
```

ipython notebook

- Nice presentation
- Allows parallel execution
- Combines text and code
- Executable or exportable to:
 - html
 - LaTeX
 - python
- Start with: jupyter lab
- Examples:

https://github.com/jrjohansson/scientific-python-lectures

Files

Files

- Files can be text or binary
- Files can be opened for read, write or append
 - 'r', 'w', 'a+'
- with open('name') as filein:
 - Allows automatic file closure
 - Explanation of the with statement: http://effbot.org/zone/python-with-statement.htm

Reading / Writing Files

```
file_in=open('indata.txt','r')
file_out=open('outdata.txt','w')
for line in file_in:
    # Take some information (split() method is very useful!)
    x = float(line.split()[0])
    # Apply a given function (fact)
    fx = fact(x)
    # Write the result in an output file with a defined format
    file_out.write('{:010.3f}\n'.format(fx))
```

But for loading numerical data **Numpy** is more efficient. And **pandas** even more.

File parsing

• The basic: for line in filein: do something Common things: if 'optimized' in line: do something line = line.split() if line.upper().startswith('GEOM'): ... energy = float(line[2])

skipping lines

Lines can be skipped by calling next() to a file:
 for line in filein:
 if 'Optimized' in line:
 next(filein); next(filein) #skip two lines
 do something...

Formatting

• There are several function:

```
'12'.rjust(5), '12'.zfill(5)
```

• But format is more general:

```
print('{0:2d} {1:3d}'.format(x, x*x))
print("{:10.3f} {:10.3f} ".format(x,y,z))
```

• List of unkown length (use argument unpacking):

```
vals = np.linspace(0,1,11)
print((len(vals)*"{:10.2e} ").format(*vals))
```

Useful modules

• Similar to 1s:

```
import glob
files = glob.glob(pattern)
```

Working with shell-like commands:

```
import os
os.rename(src, dst)
os.mkdir(path)
os.chown(path, uid, gid)
os.getenv(key)
os.walk(directory)
```

http://docs.python.org/3/library/os.html

Useful modules

- Reading Excel files http://www.python-excel.org/:
 - import xlrd
 - Pandas uses this library
- Working with image files
 - http://scikit-image.org/
 - http://pillow.readthedocs.io/en/latest/

Numpy

Why Numpy / Scipy?

- Python (alone) is not efficient for numerical calculations
- Python (alone) is not practical for array manipulation
- Numpy provides the data types and methods for arrays
- Scipy provides more elaborate numerical methods
 - Optimization
 - Fast Fourier Transform
 - Linear algebra, etc

```
import numpy as np
import scipy.optimization
import scipy.stats as stats
```

numpy arrays

```
• without numpy:
```

```
> a=[[1,2],[3,4]]
> b=[[10,20], [30,40]]
> a+b
[[1, 2], [3, 4], [10, 20], [30,40]]
```

with numpy:

```
> a=np.array(a)
> b=np.array(b)
> a+b
array([[11, 22],[33, 44]])
```

```
    Array creation
```

```
a=np.array([1,2,3,4]).reshape([2,2]
a=np.array([[1,2], [3,4]])
a=np.zeros([2,2], dtype=int)
a[0,0]=1.
a=np.ones((4,4))
a=np.arange(10)
a=np.diag([1,2,3,4])
a=np.tile(a, (10,2))
a=np.identity(3)
a=np.linspace(-5,5, 20)
```

Ufuncs

```
Unary:
a.min()
a.sum()
a.cumsum()
a.mean()
np.argmin(a)
np.exp(-a)
np.cov(a)
a.tolist()
Binary:
a + b
np.dot(a, b)
```

```
• Applying to parts of an array:
```

```
> a=np.array([[1,2], [3,4]])
> a.min(axis=0)
array([1, 2])
a.sum(axis=1)
array([3, 7])
```

 Python functions are less efficient than numpy functions:

```
a.sum() better than sum(a)
np.min(a) better than min(a)
```

many implemented as methods and functions

```
• Slicing:
```

```
> a[2:5]
```

```
> b[:, ::5]
```

```
> a[1:4, ...]
```

- Fancy indexing:
 - Boolean arrays (masks):

```
> a = np.arange(10,15)
> indices = (a**2 > 115) & (a < 14)
> a[indices]
array([11, 12, 13])
```

- With lists:

```
> a = np.arange(10,15)
> y=a[[4,4,1]]
> y
array([14, 14, 11])
> a[[4,4,1]] = [-2, -4, 5]
> a
array([10, 5, 12, 13, -4])
```

```
>>> a[0,3:5]
array([3,4])
>>> a[4:,4:]
array([[44, 45],
       [54, 5511)
>>> a[:,2]
array([2,12,22,32,42,52])
>>> a[2::2,::2]
array([[20,22,24]
       [40,42,44]])
```


From: https://scipy-lectures.github.io/intro/numpy/array_object.html

From: https://scipy-lectures.github.io/intro/numpy/array_object.html

Slices return views

```
> a = np.arange(5)
> y=a[2:5]
> y *= -1
> a
array([ 0,  1, -2, -3, -4])
> y.flags.owndata
False
```

- np.wherenp.where((a>=2)&(a<4), a**2, -1)Array([-1, -1, 4, 9, -1])
 - np.choosePowerful, but complex!
 - np.nonzero

Boolean arrays return copies

```
> a = np.arange(5)
> y = a[a>1]
> y *= -1
> a
array([0, 1, 2, 3, 4])
> y.flags.owndata
True
```

Fancy indexing returns copies:

```
> a = np.arange(5)
> y=a[[2,3,4]]
> y *= -1
> a
array([0, 1, 2, 3, 4])
> y.flags.owndata
True
```

Broadcasting

```
> a = 4.
> b = np.array([1,2,3])
> c = np.array([[1,2,3], [4,5,6]])
> b+a, c+a
(array([5., 6., 7.]), array([[5., 6., 7.]),
       [ 8., 9., 10.]]))
> b+c
array([[2, 4, 6],
      [5, 7, 9]])
> c.dot(b)
> b.dot(c)
ValueError: objects are not aligned
> b[1:]*c
ValueError: operands could not be broadcast together with shapes (2) (2,3)
> b[1:]*c.T
```

Use matrix if you want more algebra-like behaviour

Broadcasting

Change the shape to allow for broadcasting:

Broadcasting

Broadcasting rules:

When operating on two arrays, NumPy compares their shapes element-wise. It starts with the trailing dimensions, and works its way forward. Two dimensions are compatible when

- 1) they are equal, or
- 2) one of them is 1
- More examples and longer explanation here:
 - https://docs.scipy.org/doc/numpy-1.13.0/user/basics.broadcasting.html

np.einsum

- Complex but powerful function to avoid the use of loops
 - Dot product, outer product, and others can be written as einsum

```
> c = np.array([[1,2,3], [4,5,6]])
> np.allclose(c.dot(c.T), np.einsum('ij, kj->ik',c,c))
True
```

- See numpy documentation and the following blog entry:
 - http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.einsum.html
 - http://ajcr.net/Basic-guide-to-einsum/

array functions and methods

Array reduction and logical operations:

```
> a=np.arange(5)
> np.all(a>3)
False
> np.any(a>3)
True
> a > 3
array([False, False, False, False,
    True], dtype=bool)
> (a > 3) & (a < 5)
array([False, False, False, False,
    True], dtype=bool)</pre>
```

- Some details of memory use:
- > a.flags

C_CONTIGUOUS : True
F CONTIGUOUS : True

OWNDATA: True

WRITEABLE: True

ALIGNED: True

UPDATEIFCOPY : False

Loading and saving data

- Pickle is the usual way to save and restore data in Python
- We often have data file in text format:

```
#Dist Energy
1.0 34.
1.2 38.
2.4 42.
f=np.loadtxt("energies.dat")
f=np.genfromtxt("energies.dat")
> f
```

array([[1. , 34.], [1.2, 38.], [2.4, 42.]])

```
    Save single arrays with:
```

```
> np.save('result_y', y)
```

Save in text mode with:

```
> np.savetxt('result_y', y)
```

and multiple arrays with (saves a dictionary):

```
> np.savez('results', x, y)
```

Recover them with load:

```
> y=np.load('results_y.npy')
> npz=np.load('results.npz')
```

Acess R from python

- Use the rpy2 module.
- From the documentation:

Other tutorials

- Take a look at these tutorials:
 - http://wiki.scipy.org/Tentative_NumPy_Tutorial
 - From: http://jrjohansson.github.io/
 - Lecture-2-Numpy.ipynb
 - Lecture-3-Scipy.ipynb

Extensions

- When your data is too large to fit in memory:
 - PyTables https://www.pytables.org/
- or to compute in a single machine:
 - DASK https://dask.pydata.org/en/latest/
- Multidimensional Pandas dataframes:
 - Xarray https://xarray.pydata.org/en/stable/

matplotlib

- A module for plotting 2D and 3D data
- Combines well with numpy
- Starts with

```
import matplotlib.pyplot as plt
%matplotlib inline
```

import pylab or similar is deprecated.

Simplest plots:

```
> plt.plot([1,2,3], [1,4,9])
> plt.plot(x, sin(x), '--') #where x is a numpy array
> plt.figure() # creates new figure
> plt.clf() # Clears current figure
> plt.matshow(m) # m is a 2D array
> plt.imshow(m) # m is a 2D array. Same as matshow.
> d = np.loadtxt('data.txt')
> plt.plot(d[:,0], d[:,1], 's') #just slightly longer than gnuplot
```

Binding Energy (kJ/mol)

Effect of inhibitor on binding

Treated
Control

E45A

Totally reproducible figures

```
N = 5
treated = (20, 35, 30, 35, 27)
                                                        Wild
                                                             T13G
                                                                  A12G
control = (52, 38, 39, 47, 34)
ind = np.arange(N) # the x locations for the groups
width = 0.35 # the width of the bars
fig, ax = plt.subplots()
rects1 = ax.bar(ind, treated, width, label='Treated')
rects2 = ax.bar(ind+width, control, width, label = 'Control')
# add some
ax.set ylabel('Binding Energy (kJ/mol)')
ax.set title('Effect of inhibitor on binding')
ax.set xticks(ind+width)
ax.set_xticklabels( ('Wild\nType', 'T13G', 'A12G', 'E45A', 'E45S') )
ax.legend()
```

Plotting matrices

```
m=np.diag(2*np.ones(10))+np.diag(-1*np.ones(9),1)+np.diag(-1*np.ones(9), -1)
plt.imshow(m)  # plt.matshow(m) is very similar
```


Matplotlib styles

- Since version 1.5 several default styles.
- Try the following code

```
x= np.linspace(0, np.pi, 100)
for s in plt.style.available:
    with plt.style.context(s):
        plt.figure()
        plt.title(s)
        plt.plot(x,np.sin(x)*np.cos(x**2), label='A')
        plt.plot(x,np.sin(x)*np.cos(x**2)*np.cos(x), label='B')
        plt.plot(x,np.sin(x)-np.cos(x)*np.sin(x), label='C')
        plt.legend(loc='best')
```

Plotting lots of points:hexbin

plt.hexbin(x, y, cmap=pylab.cm.Blues)

Jet is not a good colormap

http://cresspahl.blogspot.com.es/2012/03/expanded-control-of-octaves-colormap.html https://jakevdp.github.io/blog/2014/10/16/how-bad-is-your-colormap/

- Do Lecture-4-Matplotlib.ipynb from http://jrjohansson.github.io/
 - Other interesting material there...
- Check matplotlib gallery
 - http://matplotlib.org/gallery.html
- Quick reference of symbols and colours:
 - http://www.loria.fr/~rougier/teaching/matplotlib/#quick-references(part of a larger tutorial)
- Some more tricks and examples:
 - http://wiki.scipy.org/Cookbook/Matplotlib

Extensions

- Altair
 - Declarative Visualization
 - https://altair-viz.github.io/
- Seaborn
 - Data visualization
 - Nice color palettes from http://colorbrewer2.org/
 - https://stanford.edu/~mwaskom/software/seaborn/
- Bokeh:
 - http://bokeh.pydata.org/en/latest/
- Plotly:
 - https://plot.ly/
- http://pbpython.com/visualization-tools-1.html

Functions and modules

Functions

defined by def and a colon:

```
def add(x,y):
    return x+y
```

Remember indentation!

Automatic (and recommended) documentation:

```
def add(x,y):
    """ Returns the
    sum of 2 numbers"""
    return x+y
```

Functions can be seen as both Fortran procedures and functions but...

Arguments are passed by reference

there is access to global variables:

```
> def x_val(): print(x)
> x=60
> x_val()
60
```

Functions II

```
Function variables are local:
                                       to assign variables, use return
                                       def x_val():
> def x_val():
                                       ... x=40
   x=40
                                       ... print(x)
... print(x)
> x = 60
                                       ... return x
                                       > x = xval()
> x_val()
                                       40
40
                                       > X
> X
60
                                       40
```

Functions III

Mutable objects are passed by reference:

```
> def square_0(lst):
... lst[0]*=lst[0]
> a=[3,2,1]
> square_0(a)
> a
[9,2,1]
```

Copy variables that need to be preserved:

```
> a_copy=a[:]
```

- > square_0(a)
- > import copy
- > a_copy=copy.deepcopy(a)

Functions IV

Functions can have default arguments:

```
> def submit(job, priority=10,
    nprocs=1):
```

- ... pass
- > submit('job1.sh')

Function arguments do not have explicit types.

```
> add('Python ', 'summerschool')
Python summerschool
```

Functions can be recursive

```
def fact(n):
    if n == 1:
        return 1
    else:
        return n * fact(n-1)
```

Argument unpacking

Starred arguments are tuples that collect positional arguments :

```
> def prod(*args): ...
> prod(2,3,4)
> x = (4, 5, 6)
> prod(*x)
In prod, args=(2,3,4)
```

Keword arguments can be passed as a dictionary:

```
> options = dict(paper='A4', color =
   True)
print_setup(options)
```

Unpacking can be a convenient way to print a list:

```
> vals = [1,2,3,4,5]
> print((4*'{:03d} ').format(*vals))
001 002 003 004
```

https://docs.python.org/3/tutorial/controlf low.html#unpacking-argument-lists

Lists or iterators?

- Lists are iterable objects
- Iterators generate objects on-the-fly
- Iterators can be created with a generator function
 - Uses **yield** satement
- Relevant for efficiency

```
def rang_llista(n):
    result = []
    i = 0
    while i<n:
        result.append(i)
         i += 1
    return result
def rang_gen(n):
    i = 0
    while i<n:
        yield i
        i += 1
```

Modules

- Modules allow packing libraries or extensions
- There are built-in and external modules
- When imported modules are executed
- Modules can be written in C or Fortran!
- > import math
- > m = math
- > import math as m
- > from math import cos, sin
- > from math import * #dangerous. All into the same namespace

Modules

- Python checks if a module is already loaded.
 - The interpreter does not reload a module already imported
 - This can cause unexpected behaviour interactively
- Ipython has a more versatile module loading

```
%load_ext autoreload
autoreload 2 #Will reload a module if it changes
```

Some useful modules

- sys System-specific parameters and functions
- os Miscellaneous operating system interfaces
- os.path Common pathname manipulations
- glob Unix style pathname pattern expansion
- re regular expressions
- copy Shallow and deep copy operations
- argparse Parser for command-line options, arguments and sub-commands
- subprocess Subprocess management
- inspect Inspect live objects

Some useful modules

```
if len(sys.argv!=3):
    print('Error: Use two arguments.')
    sys.exit()

method = sys.argv[1]
filelist = glob.glob('/home/ramon/*')
for fileName in filelist:
    if os.path.isfile(fileName): print(fileName)
```

Modules: too many...

```
>>> import math
>>> import cmath
>>> import numpy.lib.scimath as scimath
>>> math.sqrt(4)
2.0
>>> math.sqrt(-4)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: math domain error
>>> cmath.sqrt(4)
(2+0j)
>>> cmath.sqrt(-4)
2j
>>> scimath.sqrt(4)
2.0
>>> scimath.sqrt(-4)
2j
```

Working with your modules

- Import reads from local directory and from the directories in sys.path (import sys first)
- Put your modules in a directory and add it to the environtment variable \$PYTHONPATH.
- Python will add the directories in \$PYTHONPATH to sys.path
- Document your modules and the functions therein.
- Use if __name__=='__main__': to execute code only if Python is running the module, and not if it is imported.
 - http://stackoverflow.com/questions/419163/what-does-if-name
 -main-do

Installing external Modules

- Use conda distribution. Then \$ conda install module
- Many come as part of the linux distributions (usually older versions that those in conda or PyPI)
 - ipython, numpy, biopython...
- For modules in the PyPI repository(most of them) https://pypi.python.org/pypi
 - (sudo) pip3 install module
- Manual installation (dependencies have to be also manually installed):
 - \$ python setup.py build
 - \$ (sudo) python setup.py install

Updating external Modules

- With conda \$ conda update module
- For modules in the PyPI repository(most of them) https://pypi.python.org/pypi
 - pip3 install -U module
- pip can also be used in the conda installation.
- Remeber that modules are installed for a given version of python. If you have python 2.x and 3.x you need to check for which version you are installing. For example using pip3 or

\$ which pip

Scipy

Linear algebra

- Support for LAPACK, BLAS and ATLAS
 - Can make Scipy compilation more involved
- > A=matrix(random.rand(5,5))
- > A.I
- > linalg.det(A)
- > linalg.eigvals(A)
- > linalg.eig(A)
- > linalg.svd(A)
- > linalg.cholesky(A)

- Solving linear systems:
 - $-A_x=b$

```
b=matrix(random.rand(5)).reshape((5,1)
)
```

- > linalg.solve(A,b)
- LAPACK, BLAS wrappers
- > from scipy.lib import lapack
- > from scipy.lib import blas

blas.fblas.sdot?

Optimization

- There are different optimization methods:
 - > import scipy.optimize as so
- Some only need the function value:
 - > fmin, fmin_powell
- Some need the gradient or the hessian:
 - > fmin_cg, fmin_bfgs, fmin_ncg
- Some look for global minima:
 - > anneal
- Remember:
 - > scipy.info('optimize')
- Pedagogical documentation:
- http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
- http://docs.scipy.org/doc/scipy/reference/optimize.html

f2py

- Many things are fast with Numpy
- Iterative algorithms over array values are slow
- You can import Fortran functions and subroutines with f2py
- You could also call external fortran programs with
 - > subprocess.call(cam>,
 shell=True)
 - but data exchange has to be through files (slower)

- f2py finds your fortran compiler.
 Works with gfortran, ifort,...
- f2py creates a module you can import in python
- As simple as:
- \$ f2py -c <file> -m <module>
 - Tip: first compile it to check it works

f2py II

```
module funcs
implicit none
contains
function f1(x,y)
  real,intent(in):: x,y
 real:: f1
 f1=x+y**2
end function f1
function f2(x,y)
  real,intent(in):: x,y
  real, dimension(3):: f2
  f2(1)=x+y**2
  f2(2)=\sin(x*y)
  f2(3)=2*x-y
end function f2
end module
```

```
$ f2py -c test.f90 -m test
• go to ipython:
> import test
> test.funcs.f1(1,2)
5.0
> test.funcs.f2(1,2)
array([ 5., 0.90929741, 0.],
dtype=float32)
```

f2py III

Using ipython magicfunctions:

sudo pip3 install -U fortran-magic

Useful for performing long array operations

In [7]: f1(1.0, 2.1415)

Out[7]: 9.26574066397734e-05

Big data, big memory

- Numpy arrays are meant to live in memory
- If that is not possible:
 - Use op= operations (they use half the memory):
 - p *=alpha is better than p = p*alpha
 - Use scipy.sparse matrices
 - http://docs.scipy.org/doc/scipy/reference/sparse.html
 - Use PyTable to store (compressed) matrices on disk
 - http://www.pytables.org/
 - Modify your algorithm to work with submatrices

Sympy: Symbolic math

- Symbolic algebra
- Analytic solution of equations
- Integration, derivation
- Polynomials
- Limits

```
Alternate forms:  \frac{(\cos(x + y)) \cdot \exp(\operatorname{and}(\operatorname{trig=True}))}{-\sin(x)\sin(y) + \cos(x)\cos(y)}   \frac{\operatorname{trigsimp}(\cos(x + y))}{\cos(x + y)}   \frac{\cos(x + y)}{\cos(x + y) \cdot \operatorname{rewrite}(\csc, \sin, \sec, \cos, \cot, \tan)}   \frac{-\tan^2\left(\frac{x}{2} + \frac{y}{2}\right) + 1}{\tan^2\left(\frac{x}{2} + \frac{y}{2}\right) + 1}   \frac{(\cos(x + y)) \cdot \operatorname{rewrite}(\sin, \exp, \cos, \exp, \tan, \exp)}{\frac{1}{2}e^{i(-x - y)} + \frac{1}{2}e^{i(x + y)}}
```

```
>>> integ = Integral(\sin(x**2), x)

>>> integ

\begin{cases} \begin{pmatrix} 2 \\ \sin(x) \end{pmatrix} dx \\ >>> integ.doit() \\ 3 \cdot \sqrt{2} \cdot \sqrt{\pi} \cdot \text{fresnels} \left( \frac{\sqrt{2} \cdot x}{\sqrt{\pi}} \right) \cdot \Gamma(3/4) \\ \hline 8 \cdot \Gamma(7/4) \end{cases}
```

Add-ons

Add ons: Biopython

Biopython

```
from Bio.PDB import *
p=PDBParser(PERMISSIVE=1)
s=p.get_structure('10JR', filename)
```

Print out the coordinates of all CA atoms with B factor > 50:

```
for model in s.get_list():
    for chain in model.get_list():
        for residue in chain.get_list():
        if residue.has_id("CA"):
            ca=residue["CA"]
            if ca.get_bfactor()>50.0:
                 print ca.get_coord()
```

http://biopython.org

Add ons: Machine learning and statistics

- Basic statistics in scipy.stats
 - Tutorial: http://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
 - Reference: http://docs.scipy.org/doc/scipy/reference/stats.html
- Machine learning with sklearn
 - http://scikit-learn.org/stable/
 - Choosing the method: http://scikit-learn.org/stable/tutorial/machine_learning_map/
- More algorithms (and a textbook) with AstroML
 - http://www.astroml.org/

Add ons: itertools

```
> import itertools
> perms = itertools.permutations('ABC', 3)
> list(perms)
[('A', 'B', 'C'),
('A', 'C', 'B'),
('B', 'A', 'C'),
('B', 'C', 'A'),
('C', 'A', 'B'),
('C', 'B', 'A')]
> list(itertools.combinations('ABC',2))
[('A', 'B'), ('A', 'C'), ('B', 'C')]
```

Add ons: active papers

ActivePapers is a framework for doing and publishing reproducible research. An ActivePaper is a file that contains code (Python modules and scripts) and data (HDF5 datasets), plus the dependency information between all these pieces. You can change a script and re-run all the computations that depend on it, for example. Once your project is finished, you can publish the ActivePaper as supplementary material to your standard paper.

http://khinsen.wordpress.com/2013/09/27/activepapers-for-python/

Optimization and debugging

Optimization

- "Premature optimization is the root of all evil"
 Knuth
- %timeit a=np.random.random(100000)

```
• a=np.random.random(100000)
    n_dim=3
    %%timeit
    x=np.zeros(shape=(100000,n_dim),order='F')
    for j in range(0,n_dim):
        x[:,j]=a*j
```

Evaluated in a separate environment

Exceptions and errors

Although the language is interpreted there are some syntax errors that prevent execution:

```
def safe_divide_1(x, y)
```

```
File"/home/ramon/python/prova.py",
  line 1
```

Λ

def safe_divide_1(x, y)

SyntaxError: invalid syntax

Exceptions leave a trace easy to follow.

Easy debugging with

%pdb

%debug

pdb: python debugger

```
In [1]: pdb
Automatic pdb calling has been turned ON
In [4]: run foo.py
NameError: name 'b' is not defined
> /home/ramon/python/foo.py(2)<module>()
      1 a = 3
----> 2 print(b)
ipdb> ?
```

pdb: python debugger

```
In [9]: run foo.py
NameError
                                           Traceback (most recent call last)
/home/ramon/python/foo.py in <module>()
      1 a = 3
----> 2 print(b)
NameError: name 'b' is not defined
In [10]: %debug
> /home/ramon/python/foo.py(2)<module>()
      1 a = 3
----> 2 print(b)
ipdb>
```

Numba

- Numba compiles in a virtual machine.
- Developped by Continuum analytics, so easiest install from conda.
- \$ conda install numba

Cython

- An extension to python that generates C code that can be compiled
- Available in most linux distributions
- Fortran programmers can use f2py, available in scipy.
- See also:
- https://jakevdp.github.io/blog/2013/06/15/numba-vs-c ython-take-2/

Other alternatives

- Use Julia
 - A different language
 - Close in syntax to Python
- Theano: "define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently"
 - https://theano.readthedocs.org/en/latest/
- Parakeet: a runtime compiler for scientific computing in Python
 - http://www.parakeetpython.com/http://www.parakeetpython.com/
- Just-in-time compilers for number crunching in Python
 - http://www.phi-node.com/2013/01/just-in-time-compilers-for-number.html
- See also the notebooks here:
 - http://nbviewer.jupyter.org/github/rasbt/One-Python-benchmark-per-day/t ree/master/ipython_nbs/

Resources

Resources

On-line Official documentation (contains Tutorial in PDF or HTML):

http://www.python.org/doc

General introductory books (also in paper):

http://diveintopython.org/ (This one is simpler!)

http://www.greenteapress.com/thinkpython/thinkpython.html

Comparison of codes in different languages:

http://rosetacode.org

http://www.codecodex.com

Python package index: where to find modules

http://pypi.python.org/pypi

Resources

- Interactive tutorial
 - http://pythonmonk.com/
- A Crash Course in Python for Scientists (with applications in Quantum chemistry)
 - http://nbviewer.ipython.org/5920182
 - Written in an ipython notebook
- Python Scientific Lecture notes
 - http://scipy-lectures.github.io/
- Python flow with Pythontutor
 - http://www.pythontutor.com

- Parsing Quantum chemistry output files
 - cclib: http://cclib.github.io/
 - ORBKIT: http://orbkit.github.io/
- QM calculation with
- pyQuante: http://pyquante.sourceforge.net/
- NWChem: http://www.nwchem-sw.org/index.php/Python
- Python Library for Automating Molecular Simulation (ADF Suite)
 - https://www.scm.com/doc/plams/index.html
- An open-source "Methodology Discovery" Library
 - http://www.acsu.buffalo.edu/~alexeyak/libra/capabilities.html

- Trajectory analysis:
 - MDtraj : http://mdtraj.org
 - MDAnalysis: http://www.mdanalysis.org/
 - Pytraj: https://github.com/Amber-MD/pytraj
- Setup and analyze simulations with HTMD
 - https://www.htmd.org//
- PyEMMA. Markov StateModels. http://emma-project.org/latest/
- PyContact: Rapid, Customizable, and Visual Analysis of Noncovalent Interactions in MD Simulations

- Drawing energy diagrams:
 - PyEnergyDiagrams
 https://github.com/giacomomarchioro/PyEnergyDiagrams
 - CatPlot https://github.com/PytLab/catplot
- https://github.com/lmmentel/awesome-python-chemistry
- Material from UAB "Computational solutions for chemobiotechnology": https://github.com/insilichem/

- QM/MM with pDynamo: http://www.pdynamo.org
- MM with MMTK: http://dirac.cnrs-orleans.fr/MMTK/
- Molecular visualization:
 - VMD: http://www.ks.uiuc.edu/Research/vmd/
 - pymol: http://www.pymol.org/
 - Nglview, chemical structures in juptyer: https://github.com/arose/nglview
- Protein structure with pyRosetta: http://pyrosetta.org/
- Bioinformatics with BioPython: http://biopython.org/

Resources: Books

- Rossant, C, Learning Ipython for Interactive Computing and Data Visualization.
 - Basic level. Covers several subjects, including matplotlib and parallelism. Recipes book.
- Vanderplas, J. Python Data Science Handbook.
 - Online: https://jakevdp.github.io/PythonDataScienceHandbook/
- Stewart, J.M., Python for Scientists
 - Basic level. Unfortunately in Python 2. Covers a lot on differential equations.
- DeCaria A. J. Python Programming and Visualization for Scientists
 - DeCaria teaches Python programming and visualization for meteorology and ocean sciences majors.
- Packt Publishing. Wide variety, lots on GIS and Python.
- https://wiki.python.org/moin/AdvancedBooks

Resources: Video Tutorials

- Check: https://www.youtube.com/user/EnthoughtMedia
- Check: http://www.pyvideo.org/
- Check Scipy Conference and Euroscipy:
 - http://conference.scipy.org/proceedings/scipy2015/

Resources: MOOCs

- General Python programming:
 - https://www.coursera.org/course/programming1
 - https://www.coursera.org/course/programming2
- Advanced scientific programming with Fortran, Python, OMP, OpenMPI...
 - https://www.coursera.org/course/scicomp

Resources: Teaching

- On teaching programming with Python 3 http://www.comp.leeds.ac.uk/nde/papers/teach py3.html
- Online Syntax Highlighting http://tohtml.com/python/
- Style Guide for Python Code:
- www.python.org/dev/peps/pep-0008/

K. Hinsen views

- "NumPy has introduced incompatible changes with almost every new version over the last years"
- "Given the importance of NumPy in the scientific Python ecosystem, I consider its lack of stability alarming".
- "What makes me hesitate to recommend not using Python is that there is no better alternative".
- https://khinsen.wordpress.com/2014/09/12/the-st ate-of-numpy/

Jake VanderPlas

- Great blog about python with applications in
 - Science
 - Statistics
 - Cycling...
 - All entries are jupyter notebooks.
 - https://jakevdp.github.io/
 - See also his book and library on machine learning:
 - http://www.astroml.org/
 - http://press.princeton.edu/titles/10159.html