

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

January 2015

FAN6605 mWSaver[™] PWM Controller

Features

- mWSaver[™] Technology Provides Industry's Best-in-Class Standby Power
 - <100 mW at 25-mW Load for LCDM Adaptor
 - Internal High-Voltage JFET Startup
 - Low Operating Current: Under 2 mA
 - Adaptively Decrease PWM Frequency with Cycle Skipping to 23 kHz at Light-Load Condition for Better Efficiency
 - Feedback Impedance Switching During Minimum Load or No Load
- Proprietary Asynchronous Frequency Hopping Technique that Reduces EMI
- Fixed PWM Frequency: 65 kHz
- Internal Leading-Edge Blanking
- Built-in Synchronized Slope Compensation
- Auto-Restart Protection: Feedback Open-Loop Protection (OLP), V_{DD} Over-Voltage Protection (OVP), Over-Temperature Protection (OTP), and Line Over-Voltage Protection
- Soft Gate Drive with Clamped Output Voltage: 18 V
- V_{DD} Under-Voltage Lockout (UVLO)
- Programmable Constant Power Limit (Full AC Input Range)
- Internal OTP Sensor with Hysteresis
- Build-in 5-ms Soft-Start Function
- Input Voltage Sensing (V_{IN} Pin) for Brown-In/Out Protection with Hysteresis and Line Over-Voltage Protection

Applications

General-purpose switched-mode power supplies and flyback power converters, including:

- LCD Monitor Power Supply
- Open-Frame SMPS

Description

This highly integrated PWM controller provides several features to enhance the performance of flyback converters.

To minimize standby power consumption, a proprietary adaptive green-mode function reduces switching frequency at light-load condition. To avoid acousticnoise problems, the minimum PWM frequency is set above 23 kHz. This green-mode function enables the power supply to meet international power conservation requirements, such as Energy Star. With the internal high-voltage startup circuitry, the power loss caused by bleeding resistors is also eliminated. To further reduce power consumption, FAN6605 uses the BiCMOS process, which allows an operating current of only 2 mA. The standby power consumption can be under 100 mW for most of LCD monitor power supply designs.

FAN6605 integrates a frequency-hopping function that reduces EMI emission of a power supply with minimum line filters. The built-in synchronized slope compensation achieves a stable peak-current-mode control and improves noise immunity. The proprietary line compensation ensures constant output power limit over a wide AC input voltage range from 90 $V_{\rm AC}$ to 264 $V_{\rm AC}$.

FAN6605 provides many protection functions. The internal feedback open-loop protection circuit protects the power supply from open-feedback-loop condition or output-short condition. It also has line under-voltage protection (brownout protection) and over-voltage protection using an input voltage sensing pin (V_{IN}) .

FAN6605 is available in a 7-pin SOP package.

ENERGY STAR® is a registered trademark of the U.S. Department of Energy and the U.S. Environmental Protection Agency.

Ordering Information

Part Number	Operating Temperature Range	Package	PWM Frequency	Packing Method
FAN6605MX	-40 to +105°C	7-Lead, Small Outline Integrated Circuit (SOIC), Depopulated JEDEC MS-112, .150 Inch Body	65 kHz	Reel & Tape

Application Diagram

Figure 1. Typical Application

Internal Block Diagram

Figure 2. Internal Block Diagram

Marking Information

Figure 3. Top Mark

Z: Plant Code

X: 1-Digit Year Code

Y: 1-Digit Week Code

TT: 2-Digit Die Run Code

T: Package Type (M: SOP)

M: Manufacture Flow Code

Pin Configuration

Pin Definitions

Pin#	Name	Description
1	VIN	Line-voltage detection. The line-voltage detection is used for brownout protection with hysteresis. Constant output power limit over universal AC input range is also achieved using this VIN pin. It is suggested to add a low-pass filter to filter out line ripple on the bulk capacitor. Pulling VIN HIGH also triggers auto-restart protection.
2	FB	The signal from the external compensation circuit is fed into this pin. The PWM duty cycle is determined in response to the signal on this pin and the current-sense signal on the SENSE pin.
3	SENSE	Current sense. The sensed voltage is used for peak-current-mode control and cycle-by-cycle current limiting.
4	GND	Ground
5	GATE	The totem-pole output driver. Soft-driving waveform is implemented for improved EMI.
6	VDD	Power supply. The internal protection circuit disables PWM output as long as V_{DD} exceeds the OVP trigger point.
7	HV	For startup, this pin is connected to the line input or bulk capacitor in series with resistors.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit	
V_{VDD}	DC Supply Voltage ^(1, 2)			30	V	
V _{FB}	FB Pin Input Voltage		-0.3	6.0	V	
V _{SENSE}	SENSE Pin Input Voltage		-0.3	6.0	V	
V_{VIN}	VIN Pin Input Voltage		-0.3	6.0	V	
V_{HV}	HV Pin Input Voltage			700	V	
P _D	Power Dissipation (T _A <50°C)			400	mW	
Θ_{JA}	Thermal Resistance (Junction-to-Air)			153	°C/W	
T_J	Operating Junction Temperature		-40	+125	°C	
T _{STG}	Storage Temperature Range		-55	+150	°C	
TL	Lead Temperature (Wave Soldering	or IR, 10 Seconds)		+260	°C	
ESD	Human Body Model, JEDEC: JESD22-A114	All Pins Except HV Pin		5.5	kV	
EOD	Charged Device Model, JEDEC: JESD22-C101	All Pins Except HV Pin		2.0	- KV	

Notes:

- 1. All voltage values, except differential voltages, are given with respect to the network ground terminal.
- 2. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.
- 3. ESD with HV pin: CDM=2000 V and HBM=3500 V.

 V_{DD} =11~24 V and T_A =-40~105°C unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
V _{DD} Secti	V _{DD} Section						
V _{OP}	Continuously Operating Voltage	Full Load			22	V	
V _{DD-ON}	Start Threshold Voltage		15	16	17	V	
V _{DD-OFF}	Protection Mode		9	10	11	V	
UVLO	Normal Mode		6.8	7.8	8.8	V	
I _{DD-ST}	Startup Current	V _{DD-ON} – 0.16 V			30	μA	
I _{DD-OP}	Operating Supply Current	V _{DD} =15 V, GATE Open			2	mA	
I _{DD-OLP}	Internal Sink Current	V _{DD-OLP} +0.1 V	30	60	90	μA	
V _{DD-OLP}	Threshold Voltage on V _{DD} for HV JFET Turn-On		6.5	7.5	8.0	V	
$V_{DD\text{-}OVP}$	V _{DD} Over-Voltage Protection		25	26	27	V	
t _{D-VDDOVP}	V _{DD} Over-Voltage Protection Debounce Time		75	125	200	μs	
HV Section						11	
I _{HV}	Supply Current Drawn from HV Pin	V_{DC} =120 V, V_{DD} =10 μ F, V_{DD} =0 V	2.0	3.5	5.0	mA	
I _{HV-LC}	Leakage Current after Startup	HV=700 V, V _{DD} =V _{DD} - OFF+1 V		1	20	μΑ	

Figure 5. V_{DD} Behavior

Continued on the following page...

 V_{DD} =11~24 V and T_A =-40~105°C unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Oscillato	r Section			•	1	
_	Francisco de Normal Mada	Center Frequency	62	65 68	68	kHz
f _{OSC}	Frequency in Normal Mode	Hopping Range	±4.5	±5.2	±5.2 ±5.9	
f _{OSC-G}	Green-Mode Frequency		20	23	26	kHz
t _{HOP}	Hopping Period		10	12	14	ms
t _{SKIP-N}	Pulse-Skipping Period ⁽⁴⁾	V _{FB-SKIP} <v<sub>FB<v<sub>FB-N</v<sub></v<sub>	180	200	220	ms
t _{SKIP-G}	Pulse-Skipping Period ⁽⁴⁾	V _{FB-G} <v<sub>FB<v<sub>FB-SKIP</v<sub></v<sub>	90			ms
f_{DV}	Frequency Variation vs. V _{DD} Deviation	V _{DD} =11 V to 22 V			5	%
f _{DT}	Frequency Variation vs. Temperature Deviation	T _A =T _J =-40 to 105°C			5	%
V _{IN} Section	on					
V _{IN-OFF}	PWM Turn-Off (Brownout) Threshold Voltage		0.66	0.70	0.74	V
V _{IN-ON}	PWM Turn-On (Brown-in) Threshold Voltage		V _{IN-OFF} + 0.17	V _{IN-OFF} + 0.20	V _{IN-OFF} + 0.23	V
V _{IN-Protect}	Threshold Voltage of V _{IN} Over- Voltage Protection	V.	5.1	5.3	5.5	V
t _{VIN-Protect}	Debounce Time of V _{IN} Over- Voltage Protection		60	100	140	μs
Current-	Sense Section					
V _{LIMIT} at V _{IN} =1 V	Threshold Voltage for Current Limit	V _{IN} =1 V	0.80	0.83	0.86	V
V _{LIMIT} at V _{IN} =3 V	Threshold Voltage for Current Limit	V _{IN} =3 V	0.67	0.70	0.73	V
t _{PD}	Delay to Output			100	200	ns
t _{LEB}	Leading-Edge Blanking Time	Steady State	240	290	340	ns
t _{SS}	Period During Soft-Start Time	Startup Time	4.0	5.5	7.0	ms

Figure 6. V_{IN} vs. V_{SENSE}

Continued on the following page...

V_{DD}=11~24 V and T_A=-40~105°C unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
Feedback	Feedback Input Section							
A _V	Internal FB Voltage Attenuation		1/4.5	1/4.0	1/3.5	V/V		
Z_{FB}	Input Impedance	V _{FB} =4 V	10	15	19	kΩ		
V _{FB-OPEN}	The Maximum Clamp of FB Voltage	FB Pin Open	5.1	5.3	5.5	V		
V_{FB-OLP}	FB Open-Loop Protection Triggering Level	T _A =25°C	4.4	4.6	4.8	V		
t _{D-OLP}	Delay Time of FB Pin Open-loop Protection		45.0	62.5	70.0	ms		
V_{FB-N}	Green-Mode Entry FB Voltage		2.8	3.0	3.2	V		
V_{FB-G}	Green-Mode Ending FB Voltage			V _{FB-N} - 0.6		V		
V _{FB-SKIP}	FB Threshold Voltage for Changing Pulse-Skipping Period ⁽⁴⁾		2.5	2.7	2.9	V		
V _{FB-ZDCR}	FB Threshold Voltage for Zero-Duty Recovery		1.6	1.8	2.0	V		
V_{FB-ZDC}	FB Threshold Voltage for Zero-Duty		1.4	1.6	1.8	V		
V _{FB-ZDCR} - V _{FB-ZDC}	ZDC Hysteresis		0.12	0.15	0.19	V		

Figure 7. Cycle Skipping vs. V_{FB}

Continued on the following page...

 V_{DD} =11~24 V and T_A =-40~105°C unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
GATE Se	ection					
DCY _{MAX}	Maximum Duty Cycle		60	75	90	%
V _{GATE-L}	Gate Low Voltage	V _{DD} =15 V, I _O =50 mA			1.5	V
V _{GATE-H}	Gate High Voltage	V _{DD} =12 V, I _O =50 mA	8			V
t _r	Gate Rising Time	V _{DD} =15 V, C _L =1 nF		100		ns
t _f	Gate Falling Time	V _{DD} =15 V, C _L =1 nF	- 1/	30		ns
I _{GATE} -	Gate Source Current	V _{DD} =15 V, GATE=6 V		700		mA
V _{GATE} -	Gate Output Clamping Voltage	V _{DD} =22 V		\.	18	V
Over-Ten	nperature Protection Section (OT	P)				
T _{OTP}	Protection Junction Temperature ^(5,7)			125		°C
T _{Restart}	Restart Junction Temperature ^(6,7)			T _{OTP} -25		°C

Notes:

- 5.
- Guarantee by design.
 When OTP is activated, the PWM switching is shut down.
 When junction temperature is lower than this level, IC resumes PWM switching.
- These parameters are guaranteed by design.

Typical Performance Characteristics

Figure 8. Startup Current (I_{DD-ST}) vs. Temperature

Figure 10.Start Threshold Voltage (V_{DD-ON}) vs. Temperature

Figure 12. Supply Current Drawn from HV Pin (I_{HV}) vs. Temperature

Figure 14. Frequency in Normal Mode (fosc) vs. Temperature

Figure 9. Operation Supply Current (I_{DD-OP}) vs. Temperature

Figure 11. Minimum Operating Voltage (V_{DD-OFF}) vs. Temperature

Figure 13.HV Pin Leakage Current After Startup (I_{HV-LC}) vs. Temperature

Figure 15. Maximum Duty Cycle (DCY_{MAX}) vs. Temperature

Typical Performance Characteristics

Figure 16.FB Open-Loop Trigger Level (V_{FB-OLP}) vs. Temperature

Figure 17. Delay Time of FB Pin Open-Loop Protection $(t_{D\text{-}OLP})$ vs. Temperature

Figure 18.PWM Turn-Off Threshold Voltage (V_{IN-OFF} & V_{IN-ON}) vs. Temperature

Figure 19.V_{DD} Over-Voltage Protection (V_{DD-OVP}) vs. Temperature

Figure 20. VIN vs. VLIMIT

Functional Description

Startup Current

For startup, the HV pin is connected to the line input or bulk capacitor in series with diodes and/or resistors. If HV pin is connected to the line input, a 1-kV/ 1-A diode and a 100 k Ω resistor are recommended. If HV pin is connected to the bulk capacitor, only the resistor is required. Startup current drawn from pin HV (typically 3.5 mA) charges the hold-up capacitor through the diode and resistor. When the V_{DD} capacitor level reaches V_{DD-ON}, the startup current switches off. At this moment, only the VDD capacitor supplies the FAN6605 to maintain V_{DD} before the auxiliary winding of the main transformer to provide the operating current.

Operating Current

Operating current is below 2 mA. The low operating current enables better efficiency and reduces the requirement of V_{DD} hold-up capacitance.

Green-Mode Operation

The proprietary green-mode function provides an off-time modulation to reduce the switching frequency in light-load and no-load conditions. The on time is limited for better abnormal or brownout protection. V_{FB} , which is derived from the voltage feedback loop, is taken as the reference. Once V_{FB} is lower than the threshold voltage, switching frequency is continuously decreased with cycle skipping to the minimum green-mode frequency of around 23 kHz.

Current Sensing / PWM Current Limiting

Peak-current-mode control is utilized to regulate output voltage and provide pulse-by-pulse current limiting. The switching current is detected by the current-sensing resistor of SENSE pin. The PWM duty cycle is determined by this current sense signal and V_{FB} , the feedback voltage. When the voltage on the SENSE pin reaches around $V_{COMP}=(V_{FB}-0.6)/4$, the PWM switching turns off immediately.

Leading-Edge Blanking (LEB)

Each time the power MOSFET is switched on, a turn-on spike occurs on the sense resistor. To avoid premature termination of the switching pulse, a leading-edge blanking time is built in. During this blanking period, the current-limit comparator is disabled and cannot switch off the gate driver.

Under-Voltage Lockout (UVLO)

The turn-on and turn-off thresholds are fixed internally at 16 V and 7.8 V in normal mode. During startup, the hold-up capacitor must be charged to 16 V through the startup resistor to enable the IC. The hold-up capacitor continues to supply V_{DD} before the energy can be delivered from auxiliary winding of the main transformer. V_{DD} must not drop below 7.8 V during startup. This UVLO hysteresis window ensures that the hold-up capacitor is adequate to supply V_{DD} during startup.

Gate Output / Soft Driving

The BiCMOS output stage is a fast totem-pole gate driver. Cross conduction has been avoided to minimize heat dissipation, increase efficiency, and enhance reliability. The output driver is clamped by an internal 18 V Zener diode to protect power MOSFET transistors against undesirable gate over-voltage. A soft-driving circuit is implemented to minimize EMI.

Soft-Start

For many applications, it is necessary to minimize the inrush current at startup. The built-in 5.5 ms soft-start circuit significantly reduces the startup current spike and output voltage overshoot.

Slope Compensation

The sensed voltage across the current-sense resistor is used for peak-current-mode control and pulse-by-pulse current limiting. Built-in slope compensation improves stability and prevents sub-harmonic oscillation. FAN6605 inserts a synchronized positive-going ramp at every switching cycle as slope compensation.

Constant Output Power Limit

For constant output power limit over universal input-voltage range, the peak-current threshold is adjusted by the voltage of the VIN pin. Since the VIN pin is connected to the rectified AC input line voltage through the resistive divider, a higher line voltage generates a higher $V_{\rm IN}$ voltage. The threshold voltage decreases as $V_{\rm IN}$ increases, making the maximum output power at high-line input voltage equal to that at low-line input. The value of R-C network should not be so large that it affects the power limit (shown in Figure 21). R and C should be less than 100 Ω and 470 pF, respectively.

Figure 21. Current-Sense R-C Filter

V_{DD} Over-Voltage Protection

 V_{DD} over-voltage protection prevents damage due to abnormal conditions. Once the V_{DD} voltage is over the over-voltage protection voltage ($V_{DD\text{-}OVP}$), and lasts for $t_{D\text{-}VDDOVP}$, the PWM pulses are disabled. When the V_{DD} voltage drops below the UVLO, the internal startup circuit turns on, and V_{DD} is charged to $V_{DD\text{-}ON}$ to restart IC.

Feedback Impedance Switching

FAN6605 actively varies FB-pin impedance (Z_{FB}) to reduce no-load power consumption. This technique can further reduce operating current of the controller when FB-pin voltage drops below V_{FB-ZDC} .

Brownout Protection

Since the VIN pin is connected through a resistive divider to the rectified AC input line voltage, it can also be used for brownout protection. If V_{IN} is less than 0.7 V, the PWM output is shut off. When V_{IN} reaches over 0.9 V, the PWM output is turned on again. The hysteresis window for ON/OFF is around 0.2 V. The brownout voltage setting is determined by the potential divider formed with R_{Upper} and R_{Lower} . Equations to calculate the resistors are shown below:

$$V_{IN} = \frac{R_{Lower}}{R_{Lower} + R_{Upper}} \times V_{AC} \sqrt{2}, (unit = V)$$
 (1)

Thermal Overload Protection

Thermal overload protection limits total power dissipation. When the junction temperature exceeds T_J = +140°C, the thermal sensor signals the shutdown logic

and turns off most of the internal circuitry. The thermal sensor turns internal circuitry on again after the IC's junction temperature drops by 25°C. Thermal overload protection is designed to protect the FAN6605 in the event of a fault condition. For continual operation, the controller should not exceed the absolute maximum junction temperature of $T_{\rm J} = +140$ °C.

Limited Power Control

The FB voltage is saturated HIGH when the power supply output voltage drops below its nominal value and shunt regulator (KA431) does not draw current through the opto-coupler. This occurs when the output feedback loop is open or output is short circuited. If the FB voltage is higher than a built-in threshold for longer than $t_{D\text{-}OLP}$, PWM output is turned off. As PWM output is turned off, V_{DD} begins decreasing since no more energy is delivered from the auxiliary winding.

As the protection is triggered, VDD enters into UVLO mode. This protection feature continues as long as the over loading condition persists. This prevents the power supply from overheating due to overloading conditions.

Noise Immunity

Noise on the current sense or control signal may cause significant pulse-width jitter, particularly in continuous-conduction mode. Slope compensation helps alleviate this problem. Good placement and layout practices should be followed. Avoiding long PCB traces and component leads, locating compensation and filter components near the FAN6605, and increasing the gate resistor from GATE pin to MOSFET improve performance.

Figure 22. 44 W Flyback 12 V/2 A, 5 V/4 A Application Circuit

Bill of Materials

Designator	Part Type	Designator	Part Type
BD1	BD 4 A/600 V	Q1	MOS 9 A/600 V
C1	YC 2200 pF/Y1	R1	R 1.5 MΩ 1/4 W
C2	YC 2200 pF/Y1	R2	R 1.5 MΩ 1/4 W
C3	XC 0.33 μF/300 V	R3	R 10 MΩ 1/4 W
C4	NC	R4, R5, R6, R7	R 47 Ω 1/4 W
C5	YC 2200 pF/Y1	R8, R17, R25, R27	NC
C6	CC 2200 pF/100 V	R9	R 50 KΩ 1/4 W
C7	CC 1000 pF/100 V	R10	R 50 KΩ 1/4 W
C8	EC 1000 µF/25 V	R11	R 0 Ω 1/8 W
C9	EC 470 μF/25 V	R12	R 47 Ω 1/8 W
C10	CC 100 pF/50 V	R13	R 100 KΩ 1/8 W
C11	EC 100 μF/400 V	R14	R 0 Ω 1/4 W
C12	C 1 µF/50 V	R15	R 10 KΩ 1/8 W
C13	EC 1000 μF/10 V	R16	R 1 Ω 1/8 W
C14	EC 470 μF/10 V	R18	R 0 Ω 1/8 W
C15	CC 100 pF/50 V	R19	R 100 Ω 1/8 W
C16	C 1 nF/50 V	R20	R 1 KΩ 1/8 W
C17	C 470 pF/50 V	R21	R 4.7 KΩ 1/8 W
C18	EC 47 μF/50 V	R22	R 7.5 KΩ 1/8 W
C19	C 0.01 µF/50 V	R23	R 120 KΩ 1/8 W
C20	C 0.1 µF/50 V	R24	R 15 KΩ 1/8 W
D1	FYP1010	R26	R 10 KΩ 1/8 W
D2	1N4148	R28	R 0.43 Ω 2 W
D3	FR107	TX1	800 μH(ERL-28)
D4	FR103	U1	IC FAN6605
D5	FYP1010	U2	IC PC817
ZD1	P6KE150A	U3	IC TL431
F1	FUSE 4A/250 V		1
M1	VZ 9G		
L1	13 mH		
L2	Inductor (2 µH)		
L3	Inductor (2 µH)		/ / / N

LAND PATTERN RECOMMENDATION

NOTES:

- A) THIS PACKAGE DOES NOT FULLY CONFORMS TO JEDEC MS-012, VARIATION AA, ISSUE C.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS.
- D) DRAWING FILENAME: M07Arev4.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative