Laboratorio Avanzato - a.a. 2010/2011

Misura della temperatura di Debye

Matteo Abis Marco Grison Michele Gintoli 6 giugno 2011

1 Obiettivi

Obiettivo dell'esperienza è la misura della temperatura di Debye di un conduttore metallico.

2 Apparato sperimentale

Il campione, un filo di rame, si trova all'interno di una camera da vuoto, che permette di ottenere un ambiente con pressione dell'ordine di 10^{-9} bar. La camera è collegata ad un compressore a elio, che permette di raggiungere temperature attorno ai $10 \, \text{K}$. All'interno della camera, in un ambiente schermato, sono presenti:

- il campione di rame $R_{\rm D}$;
- un termometro a resistenza $R_{\rm T}$;
- due riscaldatori, uno principale $R_{\rm H}$ e uno ausiliario $R_{\rm A}$.

Tutti questi elementi sono collegati a un'elettronica di supporto (vedi figura 9):

- il termometro è collegato ai riscaldatori tramite un termoregolatore, in modo da mantenere il campione ad una temperatura prossima al valore desiderato;
- il campione è collegato ad un ponte di misura, che permette la determinazione della resistenza.

2.1 Ponte di Wheatstone per il termometro

Le misure di temperatura si effettuano tramite un ponte di Wheatstone (vedi schema in figura 10).

In ingresso viene immessa una tensione alternata, $V_{\rm in}=5.67\pm0.11\,{\rm V}$ con frequenza $\nu_{\rm in}=30\,{\rm Hz}$. In questo modo si eliminano gli effetti dovuti alla differenza di temperatura tra l'interno e l'esterno della camera, che si manifestano mediante la formazione di correnti continue.

Le resistenze del ponte R_1 e R_2 sono state scelte uguali, con un valore tale da limitare la dissipazione di energia sul termometro per effetto Joule ad una potenza $W = I^2 R_{\rm T}$ sempre inferiore a 10^{-4} W.

Il valore massimo assunto da $R_{\rm T}$ è circa $100\,\Omega$ a temperatura ambiente, per cui l'intensità massima di corrente risulta $I=1\,\rm mA$. Essendo $R_{\rm T}=R_{\rm NT}\ll R$ si trova subito dalla legge di Ohm

$$R = V_{\text{max}}/I_{\text{max}} = 5.6 \,\text{k}\Omega,$$

per cui sono state utilizzate le seguenti resistenze:

$$R_1 = 5.52 \pm 0.04 \,\mathrm{k}\Omega$$

 $R_2 = 5.52 \pm 0.04 \,\mathrm{k}\Omega$

Si noti come i fili collegati a R_t devono avere la stessa resistenza, r_T , in modo da non influenzare le misure del ponte. I valori utilizzati sono

$$r_{Tb} = 0.67 \pm 0.04 \Omega$$

 $r_{Tr} = 0.69 \pm 0.04 \Omega$
 $r_{Tq} = 0.65 \pm 0.04 \Omega$

Il potenziometro $R_{\rm NT}$ — che raggiunge al massimo $100\,\Omega$ — viene regolato in modo da azzerare la tensione in uscita, dando così una stima di $R_{\rm T}$. Per verificare il funzionamento del ponte è stata utilizzata come $R_{\rm T}$ una resistenza nota di prova¹

$$R_{\rm T} = 55.6 \pm 0.4 \,\Omega$$

$$R_{\rm NT} = 5.56 = 55.48 \pm 0.16 \,\Omega$$

chiaramente compatibile con la misura diretta di $R_{\rm T}$.

2.2 Termoregolatore

Il ponte del termometro fornisce in uscita una segnale ΔV proporzionale alla differenza tra $R_{\rm T}$ ed $R_{\rm NT}$. Fissare $R_{\rm NT}$ è come portare un secondo termometro ad una temperatura $T_{\rm N}$, quindi è legittimo interpretare ΔV come una misura di $|T-T_{\rm N}|$.

Il termoregolatore riceve in entrata ΔV , un rivelatore a sensibilità di fase ne ricava il segno e in base a queste due informazioni fa passare più o meno corrente sul riscaldatore, provocando il riscaldamento o raffreddamento del campione fino alla temperatura $T = T_{\rm N}$, raggiunta la quale ΔV si annulla.

2.3 Ponte di Wheatstone per il campione

E stato usato un ponte di Wheatstone anche per la misura della resistenza del campione R_D (vedi figura 11).

La frequenza in ingresso è di circa 500 Hz.

$$R_1 = 5.52 \pm 0.04 \,\mathrm{k}\Omega$$

 $R_2 = 5.52 \pm 0.04 \,\mathrm{k}\Omega$

Per simulare l'effetto del campione, è stata utilizzata una resistenza $R_{\rm D}=79.85\pm0.46\,\Omega$.

Come per il ponte del termometro, i fili collegati a $R_{\rm D}$ devono avere la stessa resistenza, $r_{\rm D}$. I valori misurati sono

¹Il potenziometro possiede due regolazioni, una coarse da 0 a 10 e una fine in centesimi. I due valori vengono riportati separati da un punto. Per la calibrazione si veda il paragrafo 3.1.

$$r_{Db} = 0.68 \pm 0.04 \Omega$$

$$r_{Dr} = 0.69 \pm 0.04 \Omega$$

$$r_{Dg} = 0.66 \pm 0.04 \Omega$$

2.4 Amplificatore selettivo

Per selezionare le frequenze viene usato un circuito RC passa-alto — adibito al taglio del rumore a basse frequenze — collegato con un amplificatore ad un circuito RLC, impostato per avere una frequenza di risonanza di circa 500 Hz.

Le componenti del circuito RC impostate sono:

$$R' = 4.54 \pm 0.21 \,\mathrm{k}\Omega$$

 $C' = 1.0 \pm 0.1 \,\mathrm{\mu F}$

per una frequenza di taglio $\nu' = 1/2\pi R'C' \simeq 35\,\mathrm{Hz}$. Le componenti del circuito RLC sono invece:

$$r=3.5\,\Omega$$
 $L=0.43\,\mathrm{H}$ $C=222\,\mathrm{nF}$

per una frequenza di risonanza $\nu=1/2\pi\sqrt{LC}\simeq515\,\mathrm{Hz}.$ L'amplificazione del segnale dipende dal fattore

$$G = \left(\frac{R_0}{r} + 1\right)$$

Abbiamo quindi scelto R_0 in modo da ottenere $G \simeq 1000.$

$$R_0 = 2.5 \pm 0.2 \,\mathrm{k}\Omega$$

3 Calibrazione dell'apparato

3.1 Potenziometri

Per ottenere una relazione tra il valore letto sul potenziometro e la resistenza effettiva $R_{\rm N(D/T)}$ sono state misurate alcune resistenze note.

Con un'interpolazione lineare R=aP+b si ricavano quindi i parametri della calibrazione:

$$R_{
m NT}$$
 $R_{
m ND}$ $a=10.17\pm0.02\,\Omega$ $a=10.10\pm0.02\,\Omega$ $b=-0.42\pm0.10\,\Omega$ $b=-0.20\pm0.10\,\Omega$

$R_{ m NT}$			$R_{ m ND}$		
$R[\Omega]$	potenziometro		$R[\Omega]$	potenziometro	
9.85 ± 0.12	1.09 ± 0.01	_	9.84 ± 0.12	0.98 ± 0.01	
21.85 ± 0.12	2.42 ± 0.01		21.86 ± 0.12	2.27 ± 0.01	
33.01 ± 0.12	3.62 ± 0.01		32.98 ± 0.12	3.26 ± 0.01	
46.43 ± 0.13	4.84 ± 0.01		38.59 ± 0.12	3.81 ± 0.01	
55.43 ± 0.13	5.62 ± 0.01		55.85 ± 0.13	5.52 ± 0.01	
67.28 ± 0.14	6.94 ± 0.01		67.35 ± 0.14	6.66 ± 0.01	
79.53 ± 0.15	8.06 ± 0.01		79.64 ± 0.15	7.89 ± 0.01	

Tabella 1: Misure per la calibrazione dei potenziometri. Le resistenze sono state misurate con multimetro GDM mentre il valore "potenziometro" è riferito alla manopola di regolazione dello stesso.

Figura 1: Punti di calibrazione e rette interpolanti per i due potenziometri. Le barre di errore sono più piccole delle dimensioni dei punti.

3.2 Amplificatore selettivo

L'amplificatore selettivo aumenta l'ampiezza del segnale solo per frequenze molto vicine alla frequenza di risonanza. È quindi necessario ricavare la curva di risonanza

dell'apparato, mostrata in figura 2. I punti — riportati in tabella 2 — sono stati interpolati con la funzione

$$A(\nu) = \frac{a}{\sqrt{1 + b(\nu^2 - \nu_0^2)^2}}$$

Il valore del parametro ν_0 restituisce la frequenza del picco di risonanza.

$$\nu_0 = 564 \pm 7 \, \text{Hz}$$

Figura 2: Curva di risonanza per l'amplificatore selettivo, interpolante le misure di ampiezza del segnale amplificato in funzione della frequenza del generatore. La barre di errore sono presenti ma poco visibili.

3.3 Termometro di controllo

Per monitorare la temperatura della camera da vuoto si è inserita al suo interno una resistenza di controllo 2 $R_{\rm C}$. Sono stati portati i capi all'esterno, collegandoli al multimetro. Accendendo la pompa a vuoto e successivamente il compressore sono state fatte misure di temperatura al variare del tempo, sia con il termometro di controllo sia con il termometro del campione $R_{\rm T}$. Utilizzando la tabella di conversione da resistenza a temperatura fornita con lo strumento è stata realizzata la curva di raffreddamento per i due termometri, riportata in figura 4 e 5. Infine, con il riscaldatore ausiliario, alimentato con una potenza di 25 W, abbiamo riportato il campione a una temperatura di circa 220 K.

$$R_{cc} = 0.9 \pm 0.2\,\Omega$$

è stato da qui in avanti sottratto in ogni misura.

²Il valore restituito dal termometro di controllo in cortocircuito

Figura 3: Pressione in funzione del tempo nella camera a vuoto.

Figura 4: Temperatura del campione in funzione del tempo.

Figura 5: Temperatura del termometro di controllo in funzione del tempo.

3.4 Inserimento del campione

Conclusi il montaggio e la calibrazione dell'elettronica, è stato inserito il filo di rame, ovvero la resistenza $R_{\rm D}$. Si è scelta una lunghezza di 11 m, in modo da avere una

resistenza a temperatura ambiente attorno ai 90 Ω . Per ottenere tale valore si è partiti dalla relazione tra resistenza R e resistività ρ

$$\rho = R \frac{S}{L} \tag{1}$$

dove S è la sezione del filo ed L la lunghezza. Per il filo utilizzato si ha

$$\begin{split} \rho(293\,{\rm K}) &= 1.69 \cdot 10^{-8}\,\Omega{\rm m} \\ d &= 50\,\mu{\rm m} \end{split}$$

Si è quindi effettuato un test dell'apparato a temperatura ambiente. Il valore misurato col multimetro è

$$R_{\rm D} = \frac{\rho l}{A} = 84.8 \pm 0.5 \,\Omega$$

da correggere, sottraendo la resistenza dei fili di collegamento $R_{\rm fili}=1.40\,\Omega,$ e quella di cortocircuito:

$$R_{\rm D}^{\rm corretto} = 83.2 \pm 0.5 \,\Omega$$

La misura del potenziometro —convertita in resistenza— restituisce invece

$$R_{\rm ND} = 82.8 \pm 0.2 \,\Omega,$$

compatibile entro gli errori con il valore precedente.

4 Misura della temperatura di Debye

Sono state prese misure di resistenza in funzione della temperatura (tabella 4 e figura 6) per ottenere una stima della temperatura di Debye del rame attraverso la formula semi-empirica di Bloch-Grüneisen

$$\rho(T) = A \left(\frac{T}{\theta_d}\right)^5 \int_0^{\frac{\theta_d}{T}} \frac{x^5 e^x}{(e^x - 1)^2} dx \tag{2}$$

dove θ_d è la temperatura di Debye e A è una costante che dipende dal metallo.

Figura 6: Resistenza del filo di rame in funzione della temperatura.

4.1 Metodo del χ^2 per l'analisi dati

Per confrontare l'andamento teorico con i dati sperimentali è stata usata la funzione χ^2 , trovando i valori di A e θ_d che la minimizzano. La funzione è definita come

$$\chi^{2}(A, \theta_{d}) = \sum_{i} \frac{[R^{s}(T_{i}) - R^{t}(T_{i}, A, \theta_{d})]^{2}}{\sigma_{i}^{2}}$$
(3)

dove gli R^s sono i valori misurati alle diverse temperature con errore σ , mentre gli R^t sono quelli calcolati a partire dalla (2) alle stesse temperature, in funzione di A e θ_d .

Per passare dalla resistenza del filo alla resistività del rame si usa la relazione (1). Se costante, il rapporto $D \equiv S/L$ può essere inglobato in A, ma la presenza di variazioni dovute alle contrazioni termiche rendono necessaria una stima dell'entità dell'effetto. Essendo ρ prodotto di R(T) e D(T), è sufficiente un confronto tra l'errore statistico relativo sulle misure e la variazione relativa dovuta alla dilatazione termica. Quest'ultima dipende linearmente dalla temperatura per un solido³, secondo la legge

$$\frac{D}{D_0} = 1 + \alpha(T - T_0) \longrightarrow \frac{\Delta_D}{D_0} = \alpha(T - T_0) \tag{4}$$

³In realtà a temperatura molto basse la lunghezza è quasi indipendente dalla temperatura, ma questo rende l'effetto a maggior ragione trascurabile. Inoltre la legge è un'approssimazione al primo ordine, in quanto D è rapporto di un'area (che scala come $1 + 2\alpha\Delta T$) e di una lunghezza (che scala come $1 + \alpha\Delta T$). Sviluppando in serie, al primo ordine si ha proprio la (4).

dove la costante di dilatazione termica $\alpha = 17 \cdot 10^{-6} \,\mathrm{K}^{-1}$ per il rame, mentre $T_0 = 293 \,\mathrm{K}$. In tabella 4 sono riportati l'errore percentuale sulle resistenze e la variazione percentuale di D. Si vede come l'effetto di dilatazione termica sia sempre minore dell'errore percentuale sulle misure, e per questo in prima analisi è stato trascurato.

Il valore \bar{A} che minimizza la 3 può essere trovato analiticamente, da

$$\frac{\partial \chi^2}{\partial A}(\bar{A}) = 0.$$

Definendo $R_0^{\rm t}$ in modo che $R^{\rm t}(T,A,\theta_d)=AR_0^{\rm t}(T,\theta_d)$, si isola la dipendenza da A. Riscrivendo la formula per il χ^2 usando $R_0^{\rm t}$ risulta:

$$\bar{A}(\theta_d) = \frac{S_1}{S_2}, \quad \text{con} \quad S_1 = \sum_i \frac{R_0^{t}(T_i)}{\sigma_i^2}, \quad S_2 = \sum_i \frac{R^{s}(T_i)R_0^{t}(T_i)}{\sigma_i^2}$$

A questo punto abbiamo trovato la dipendenza $A(\theta_d)$, che va sostituita in 3. Il valore di θ_d che minimizza χ^2 non può essere trovato analiticamente. Assegnando diversi valori a θ_d è possibile calcolare $\chi^2(\theta_d)$ e disegnare la funzione per punti. Una volta selezionato un intervallo in cui si trova il minimo si infittiscono i punti, determinando infine l'ascissa esatta con un fit parabolico nella zona più prossima al minimo. Più nel dettaglio, la valutazione grossolana è stata fatta con passo 1 K nell'intervallo [300 K, 400 K] — in cui è noto trovarsi il valore atteso di θ_d — mentre quella fine con passo 0.1 K nell'intervallo [338 K, 348 K].

L'errore da attribuire al valore di minimo si calcola tenendo conto che la distribuzione del χ^2 è gaussiana, e pertanto ha una deviazione standard $\sigma=2N$, con N numero di misure. Partendo dal valore minimo e salendo di σ in ordinata (cfr. figura 7) si trovano i due punti di intersezione con la curva θ_{d1} e θ_{d2} , la cui semidistanza sarà l'errore da attribuire a θ_d :

$$\sigma_{\theta_d} = \frac{\theta_{d1} - \theta_{d2}}{2}$$

Figura 7: Valori della funzione χ^2 per diverse temperature θ_d .

4.2 Risultati

L'analisi precedente fornisce una stima della temperatura di Debye

$$\theta_d = 341.7 \pm 2.5\,\mathrm{K}$$

da confrontarsi con un valore di riferimento in letteratura, come⁴

$$\theta_d^{
m Kittel} = 343 \, {
m K}$$

Per verificare la bontà dell'approssimazione fatta sulla dilatazione termica è stata rieseguita l'analisi, correggendo i valori misurati. Più precisamente, dal momento che la resistività è stata sovrastimata a temperature minori di quella dell'ambiente, sono stati diminuiti i valori di resistenza di una percentuale pari a quella riportata in tabella 4. Questa analisi porta allo stesso valore della temperatura di Debye, quindi l'approssimazione è effettivamente buona.

Per controllare l'andamento dei dati alle diverse temperature, le misure sono state suddivise in 3 gruppi, rispettivamente a basse, medie e alte temperature. L'analisi condotta, analoga alla precedente, si può apprezzare in figura 8 e restituisce i seguenti valori di minimo:

Intervallo [K]	$ heta_d$
30-80	$315.4 \pm 12.2 \mathrm{K}$
80 – 170	$340.6 \pm 4.0 \mathrm{K}$
170-270	$362.6 \pm 8.6 \mathrm{K}$

Figura 8: Metodo del χ^2 per determinare θ_d a partire dai dati provenienti da diversi intervalli di temperature.

⁴Kittel, Introduction to Solid State Physics 7th ed., Wiley, pag. 126.

5 Appendice

5.1 Calcolo errori

Per resistenza interna si intende quella ottenuta cortocircuitando le punte metalliche usate per le misure. Tale valore è stato sottratto in ogni misura diretta di resistenza.

- Multimetro GDM Errori:

$$egin{array}{lll} 20\,\Omega & : & 1\,\% \, + 2\,\mathrm{dgt} \\ 200\,\Omega & : & 0.2\,\% \, + 2\,\mathrm{dgt} \\ 2K\Omega &
ightarrow 2\,\mathrm{M}\Omega : & 0.2\,\% \, + 2\,\mathrm{dgt} \end{array}$$

Resistenza interna:

$$R_{\rm int} = 0.2 \,\Omega$$

 MULTIMETRO WAVETEK Errori:

$$200\,\Omega \rightarrow 2\,\mathrm{M}\Omega:1\,\%\,+\,4\,\mathrm{dgt}$$

Resistenza interna:

$$R_{\mathrm{int}} = 0.15\,\Omega$$

- Oscilloscopio

Errore sulle tensioni: 2%.

5.2 Tabelle

$\nu \ [\mathrm{Hz}]$	A[V]
398 ± 1	0.038 ± 0.001
418 ± 1	0.043 ± 0.001
447 ± 1	0.053 ± 0.001
480 ± 1	0.071 ± 0.001
501 ± 1	0.097 ± 0.002
516 ± 1	0.118 ± 0.002
526 ± 1	0.152 ± 0.003
532 ± 1	0.177 ± 0.004
543 ± 1	0.264 ± 0.005
550 ± 1	0.425 ± 0.009
564 ± 1	1.415 ± 0.028
557 ± 1	0.810 ± 0.016
569 ± 1	0.910 ± 0.018
574 ± 1	0.592 ± 0.012
578 ± 1	0.442 ± 0.009
585 ± 1	0.299 ± 0.006
603 ± 1	0.162 ± 0.003
624 ± 1	0.116 ± 0.002
655 ± 1	0.076 ± 0.002

Tabella 2: Valori di ampiezza del segnale e frequenza del generatore con cui si è costruita la curva di risonanza.

$t [\min]$	$P[10^{-6} \text{bar}]$	$T\left[\mathrm{K}\right]$	$T_c\left[\mathrm{K}\right]$
20	440.0	164.0 ± 0.4	128.0 ± 0.8
25	370.0	141.0 ± 0.3	95.6 ± 0.6
30	320.0	122.0 ± 0.3	66.9 ± 0.6
35	23.0	99.1 ± 0.3	37.0 ± 0.9
40	16.0	81.1 ± 0.3	32.9 ± 1.0
45	8.1	68.8 ± 0.3	32.0 ± 1.1
50	6.1	58.0 ± 0.3	31.5 ± 1.1
55	4.2	53.4 ± 0.3	31.0 ± 1.2
65	2.5	48.0 ± 0.3	30.5 ± 1.2
75	1.9	46.3 ± 0.3	31.0 ± 1.2
85	1.8	45.2 ± 0.3	30.5 ± 1.2
95	1.7	44.6 ± 0.3	30.0 ± 1.2
115	1.5	43.4 ± 0.3	30.0 ± 1.2

Tabella 3: Misure di pressione e temperatura in funzione del tempo. La temperatura T è quella ottenuta dal potenziometro $R_{\rm NT}$, mentre T_c è quella del termometro di controllo R_c .

$T\left[\mathrm{K}\right]$	$R\left[\Omega\right]$	σ_R/R [%]	Δ_D/D [%]
32.4 ± 0.5	0.59 ± 0.10	17.64	0.44
32.9 ± 0.5	0.59 ± 0.10	17.64	0.44
34.2 ± 0.4	0.79 ± 0.10	13.11	0.44
35.4 ± 0.4	0.89 ± 0.10	11.62	0.44
37.3 ± 0.4	1.10 ± 0.10	9.47	0.43
39.5 ± 0.4	1.20 ± 0.10	8.67	0.43
41.5 ± 0.3	1.40 ± 0.10	7.42	0.43
44.0 ± 0.3	1.61 ± 0.10	6.48	0.42
46.6 ± 0.3	1.91 ± 0.10	5.45	0.42
48.6 ± 0.3	2.01 ± 0.10	5.17	0.42
52.1 ± 0.3	2.42 ± 0.10	4.30	0.41
57.5 ± 0.3	3.64 ± 0.10	2.87	0.40
60.0 ± 0.3	4.25 ± 0.10	2.46	0.40
62.4 ± 0.3	4.86 ± 0.10	2.15	0.39
67.6 ± 0.3	6.29 ± 0.10	1.67	0.38
71.4 ± 0.3	7.30 ± 0.11	1.44	0.38
75.6 ± 0.3	8.42 ± 0.11	1.26	0.37
79.1 ± 0.3	9.13 ± 0.11	1.16	0.36
85.3 ± 0.3		0.93	0.35
	12.49 ± 0.11	0.86	0.35
	13.41 ± 0.11	0.81	0.34
	14.63 ± 0.11	0.74	0.34
	16.46 ± 0.11	0.67	0.33
	19.51 ± 0.11	0.58	0.31
	21.54 ± 0.11	0.53	0.30
	22.86 ± 0.12	0.50	0.30
	25.41 ± 0.12	0.46	0.28
	27.44 ± 0.12	0.44	0.27
	29.07 ± 0.12	0.42	0.27
	32.02 ± 0.12	0.39	0.25
	34.66 ± 0.13	0.37	0.24
160.0 ± 0.4		0.35	0.23
	40.26 ± 0.14	0.34	0.21
	41.07 ± 0.14	0.33	0.20
	42.50 ± 0.14	0.33	0.20
	43.72 ± 0.14	0.32	0.19
194.0 ± 0.4	47.99 ± 0.15	0.31	0.17
204.0 ± 0.5	51.45 ± 0.15	0.30	0.15
216.0 ± 0.5	55.31 ± 0.16	0.29	0.13
223.0 ± 0.5	57.65 ± 0.16	0.28	0.12
234.0 ± 0.5	61.41 ± 0.17	0.27	0.10
245.0 ± 0.5	65.08 ± 0.17	0.27	0.08
265.0 ± 0.6	71.99 ± 0.19	0.26	0.05

Tabella 4: Resistenza del filo di rame in funzione della temperatura della camera. Le misure, fatte con i potenziometri, sono state convertite in resistenze $R_{\rm D}$ ed $R_{\rm T}$, e quest'ultima poi in temperatura.

Apparato sperimentale

 ${\bf Figura~9:}~{\bf Descrizione~schematica~dell'apparato~sperimentale.}$

5.3 Grafici

 ${\bf Figura~10:}$ Ponte di Wheatstone per la misura della temperatura.

Figura 11: Ponte di Wheatstone per la misura della resistenza $R_{\rm D}$.

 ${\bf Figura~12:}~{\bf Rappresentazione~schematica~dell'amplificatore~selettivo.}$