Ćwiczenia 10

Prawa algebry zbiorów

Definicja. Dla dowolnych zbiorów A, B określamy ich sumę $A \cup B$, iloczyn $A \cap B$ i różnicę $A \backslash B$ w następujący sposób:

```
A \cup B = \{x : x \in A \lor x \in B\}, A \cap B = \{x : x \in A \land x \in B\}, A \backslash B = \{x : x \in A \land x \notin B\}. Czytamy A \cup B: A plus B, A \cap B: A razy B, A \backslash B: A minus B. Iloczyn A \cap B nazywamy też przekrojem (cześcią wspólną) zbiorów A i B. (D\cup) x \in A \cup B \Leftrightarrow x \in A \lor x \in B (D\cap) x \in A \cap B \Leftrightarrow x \in A \land x \notin B (D\setminus) x \in A \backslash B \Leftrightarrow x \in A \land x \notin B
```

Wyprowadzanie praw za pomocą (EXT)

Wyprowadzamy prawo L = P, wykazując równoważność:

$$x \in L \Leftrightarrow x \in P$$

 ${\bf Zadanie}\ {\bf 1}.\ {\bf Za}$ pomocą (Ext), wyprowadzić następujace prawa algebry zbiorów.

```
(a) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
(b) (A \setminus B) \setminus C = A \setminus (B \cup C)
```

(c)
$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$$

Rozwiązania

(a)

Wykazujemy: $x \in A \cap (B \cup C) \Leftrightarrow x \in (A \cap B) \cup (A \cap C)$. $x \in A \cap (B \cup C) \Leftrightarrow x \in A \wedge x \in B \cup C$

$$x \in A \land (x \in B \lor x \in C) \Leftrightarrow (x \in A \land x \in B) \lor (x \in A \land x \in C) \Leftrightarrow x \in A \cap B \lor x \in A \cap C \Leftrightarrow x \in (A \cap B) \cup (A \cap C).$$

(b)

$$x \in (A \backslash B) \backslash C \Leftrightarrow x \in A \backslash B \land \neg (x \in C) \Leftrightarrow x \in A \land \neg (x \in B) \land \neg (x \in C) \Leftrightarrow x \in A \land \neg (x \in B \lor x \in C) \Leftrightarrow x \in A \land \neg (x \in B \cup C) \Leftrightarrow x \in A \land (B \cup C)$$

```
 \begin{array}{l} \textbf{(c)} \\ x \in A \backslash (B \backslash C) \Leftrightarrow x \in A \land \neg (x \in B \backslash C) \Leftrightarrow \\ x \in A \land \neg (x \in B \land \neg (x \in C)) \Leftrightarrow x \in A \land (\neg (x \in B) \lor x \in C) \Leftrightarrow \\ (x \in A \land \neg (x \in B)) \lor (x \in A \land x \in C) \Leftrightarrow x \in A \backslash B \lor x \in A \cap C \Leftrightarrow \\ x \in (A \backslash B) \cup (A \cap C) \end{array}
```

Diagramy Venna

Diagramy Venna obrazują działania na zbiorach i równościowe prawa algebry zbiorów.

Dla zbioru $A\subset U$ (uniwersum) określamy zbiór: $A'=U\backslash A=\{x\in U:x\notin A\}$ zwany dopełnieniem zbioru A (do uniwersum U).

Zadanie 2. Narysować diagramy Venna obrazujące następujące prawa:

- (a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- (b) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- (c) $(A \backslash B) \cup (B \backslash A) = (A \cup B) \backslash (A \cap B)$

Zadanie 3. Wyprowadzić (za pomocą Ext) prawa z Zadania 2.

Zadanie 4. Narysować diagramy Venna dla praw z Zadania 1.

Ćwiczenia 11

Dla zbioru $A \subset U$ (uniwersum) określamy zbiór:

$$A' = U \backslash A = \{ x \in U : x \notin A \}$$

zwany dopelnieniem zbioru A (do uniwersum U).

 $R\'{o}\'{z}nica$ symetryczna zbiorów A i B:

$$A \div B = \{x : (x \in A \land x \notin B) \lor (x \notin A \land x \in B)\}$$
$$x \in A \div B \Leftrightarrow (x \in A \land x \notin B) \lor (x \notin A \land x \in B)$$

Zadanie 1. Wyprowadzić następujące prawa:

- (a) $(A \cup B)' = A' \cap B'$
- (b) $(A \cap B)' = A' \cup B'$
- (c) $(A \backslash B) \cap C' = A \cap (B \cup C)'$
- (d) $A \div B = (A \cup B) \setminus (A \cap B)$
- (e) $A \cap (B \div C) = (A \cap B) \div (A \cap C)$

Zadanie 2. Wykazać, że dla wszystkich zbiorów A,B,C zachodzą następujące implikacje:

- (a) $A \subseteq B \Rightarrow A \cap C \subseteq B \cap C$
- (b) $A \subseteq B \Rightarrow C \backslash B \subseteq C \backslash A$
- (c) $A \subseteq B \land C \subseteq D \Rightarrow A \cap C \subseteq B \cap D$
- (d) $A \subseteq B \land C \subseteq D \Rightarrow A \backslash D \subseteq B \backslash C$

Działania nieskończone

Indeksowana rodzina zbiorów: $\{A_i\}_{i\in I}$. Poszczególne zbiory tej rodziny są oznaczone indeksami.

I to ustalony zbiór indeksów.

Inne oznaczenie: $\{A_i : i \in I\}$

Określamy działania sumy i iloczynu indeksowanej rodziny zbiorów $\{A_i\}_{i\in I}$

$$\bigcup_{i \in I} A_i = \{x : \exists_{i \in I} (x \in A_i)\}$$

$$\bigcap_{i \in I} A_i = \{x : \forall_{i \in I} (x \in A_i)\}$$

Słownie: Suma rodziny $\{A_i\}_{i\in I}$ jest zbioren tych wszystkich elementów, które należą do przynajmniej jednego zbioru A_i .

Iloczyn rodziny $\{A_i\}_{i\in I}$ jest zbioren tych wszystkich elementów, które należą do każdego zbioru A_i .

Mamy:

$$\bigcup_{i \in I} A_i = \bigcup \{A_i\}_{i \in I}, \quad \bigcup_{i \in \{1,2\}} A_i = A_1 \cup A_2$$
$$\bigcap_{i \in I} A_i = \bigcap \{A_i\}_{i \in I}, \quad \bigcap_{i \in \{1,2\}} A_i = A_1 \cap A_2$$

Uwaga. Dla $I = \emptyset$, $\forall_{i \in I} (x \in A_i)$ jest prawdą dla dowolnego obiektu x, więc $\bigcap_{i\in\emptyset} A_i$ nie istnieje (jako zbiór). Zatem powyższą definicję iloczynu przyjmujemy tylko dla $I \neq \emptyset$. Dla sumy to ograniczenie nie jest potrzebne. Mamy $\bigcup_{i\in\emptyset}A_i=\emptyset.$

 $\widetilde{\mathbf{U}}$ waga. Gdy wszystkie zbiory A_i są podzbiorami ustalonego uniwersum U, czesto przyjmuje się inna definicje iloczynu:

$$\bigcap_{i \in I} A_i = \{ x \in U : \forall_{i \in I} (x \in A_i) \}$$

Zgodnie z tą defincją $\bigcap_{i\in\emptyset}A_i=U$, czyli iloczyn pustej rodziny zbiorów jest określony. Dalej przyjmujemy poprzednią definicję (bez U).

Zadanie 3. Dane są nieskończone ciągi zbiorów:

(a)
$$\{x: -1 < x < 1\}, \{x: -\frac{1}{2} < x < \frac{1}{2}\}, \{x: -\frac{1}{3} < x < \frac{1}{3}\}, \dots$$

(b) $\{x: 0 \le x \le 1\}, \{x: 0 \le x \le 1\frac{1}{2}\}, \{x: 0 \le x \le 1\frac{2}{3}\}, \dots$

(b)
$$\{x: 0 \le x \le 1\}, \{x: 0 \le x \le 1\frac{1}{2}\}, \{x: 0 \le x \le 1\frac{2}{3}\}, \dots$$

Wyznaczyć sumę i iloczyn tych zbiorów.

Prawa dla działań nieskończonych

Bezpośrednio z definicji działań nieskończonych wynikają równoważności:

$$x \in \bigcup_{i \in I} A_i \Leftrightarrow \exists_{i \in I} (x \in A_i)$$

$$x \in \bigcap_{i \in I} A_i \Leftrightarrow \forall_{i \in I} (x \in A_i)$$

Te równoważności stosujemy przy wyprowadzaniu praw dla działań nieskończonych za pomocą (Ext).

Zadanie 4. Za pomocą (Ext) wyprowadzić następujące prawa.

(a)
$$\bigcup (A_i \cup B_i) = \bigcup A_i \cup \bigcup B_i$$

(a)
$$\bigcup_{i \in I} (A_i \cup B_i) = \bigcup_{i \in I} A_i \cup \bigcup_{i \in I} B_i$$
(b)
$$\bigcap_{i \in I} (A_i \cap B_i) = \bigcap_{i \in I} A_i \cap \bigcap_{i \in I} B_i$$
(c)
$$(\bigcup_{i \in I} A_i)' = \bigcap_{i \in I} A'_i$$
(d)
$$(\bigcap_{i \in I} A_i)' = \bigcup_{i \in I} A'_i$$

(c)
$$(\bigcup_{i} A_i)' = \bigcap_{i} A_i'$$

$$(d) \left(\bigcap_{i \in I} A_i\right)' = \bigcup_{i \in I} A_i'$$

Ćwiczenia 12

Relacje binarne

Iloczyn kartezjański

$$A \times B = \{ \langle x, y \rangle : x \in A \land y \in B \}$$
$$(D \times) \langle x, y \rangle \in A \times B \Leftrightarrow x \in A \land y \in B$$

Zadanie 1. Za pomocą (Ext) wyprowadzić prawa iloczynu kartezjańskiego:

- (a) $(A_1 \cup A_2) \times B = (A_1 \times B) \cup (A_2 \times B)$
- (b) $(A_1 \backslash A_2) \times B = (A_1 \times B) \backslash (A_2 \times B)$
- (c) $A \times (\bigcup_{i \in I} B_i) = \bigcup_{i \in I} (A \times B_i)$

Relacja odwrotna i złożenie relacji

$$R^{-1}=\{\langle x,y\rangle:\langle y,x\rangle\in R\}$$
 (relacja odwrotna do $R)$ $S\circ R=\{\langle x,y\rangle:\exists_z(\langle x,z\rangle\in R\wedge\langle z,y\rangle\in S)\}$ (złożenie relacji R i $S)$

Zadanie 2. Wyznaczyć relacje:
$$R^{-1}$$
, S^{-1} , $S \circ R$, $R \circ S$ dla $R = \{\langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 1 \rangle\}$, $S = \{\langle 2, 1 \rangle, \langle 3, 2 \rangle, \langle 3, 1 \rangle\}$.

Zadanie 3. Niech R i S będą relacjami określonymi na zbiorze $X = \{1, 2, 3, 4, 5, 6\}$ następująco:

$$xRy \Leftrightarrow x|y$$

$$xSy \Leftrightarrow y = x^2$$

dla $x, y \in X$.

Wyznaczyć $R \cup S, R \cap S, R \setminus S, S \setminus R, R^{-1}, S^{-1}, R \circ S, S \circ R$.

Zadanie 4. Za pomocą (Ext) wyprowadzić prawa algebry relacji:

- (a) $(S_1 \cup S_2) \circ R = (S_1 \circ R) \cup (S_2 \circ R)$ (b) $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$
- (c) $(T \circ S) \circ R = T \circ (S \circ R)$

Relację $R \subset A^2$ nazywamy

- zwrotną na zbiorze A, jeżeli $\forall_{x \in A} (\langle x, x \rangle \in R)$
- przeciwzwrotną na zbiorze A, jeżeli $\forall_{x \in A} (\langle x, x \rangle \notin R)$
- symetrycznq, jeżeli $\forall_{x,y}(\langle x,y\rangle \in R \Rightarrow \langle y,x\rangle \in R)$
- przeciwsymetrycznq, jeżeli $\forall_{x,y}(\langle x,y\rangle \in R \Rightarrow \langle y,x\rangle \notin R)$
- antysymetryczną, jeżeli $\forall_{x,y} (\langle x,y \rangle \in R \land \langle y,x \rangle \in R \Rightarrow x = y)$
- przechodnią, jeżeli $\forall_{x,y,z} (\langle x,y \rangle \in R \land \langle y,z \rangle \in R \Rightarrow \langle x,y \rangle \in R)$
- spójną na zbiorze A, jeżeli $\forall_{x,y,\in A}(\langle x,y\rangle\in R\vee\langle y,x\rangle\in R)$
- słabospójną na zbiorze A, jeżeli $\forall_{x,y,\in A} (\langle x,y\rangle \in R \lor x = y \lor \langle y,x\rangle \in R)$

Dla relacji binarnych często piszemy xRx zamiast: $\langle x,y\rangle \in R$.

Zadanie 4. Określić rodzaje podanych relacji:

- (a) Relacja \perp prostopadłości prostych w zbiorze P wszystkich prostych na płaszczyźnie.
- (b) Relacja R określona na zbiorze wszystkich figur geometrycznych na płaszczyźnie następująco: $R = \{\langle x, y \rangle$: pole figury x jest równe polu figury y.
- (c) $R = \{\langle x, y \rangle \in \mathbb{R} \times \mathbb{R} : x \le |y|\}.$
- (d) $R = \{\langle x, y \rangle \in \mathbb{R} \times \mathbb{R} : |x| \le |y|\}.$

Ćwiczenia 13

Relacje równoważności

Definicja. Relację $R \subset A^2$ nazywamy relacją równoważności na zbiorze A, jeżeli relacja R jest zwrotna (na zbiorze A), symetryczna i przechodnia.

zwrotna na $A: \forall_{x \in A}(xRx)$ symetryczna: $\forall_{x,y}(xRy \Rightarrow yRx)$ przechodnia: $\forall_{x,y,z}(xRy \land yRz \Rightarrow xRz)$

Definicja. Niech R będzie relacją równoważności na zbiorze A.

Dla elementu $x \in A$ określamy zbiór:

 $[x]_R = \{y : xRy\}$ (równoważnie: $[x]_R = \{y \in A : xRy\}$

Zbiór $[x]_R$ nazywamy klasą abstrakcji relacji równoważności R wyznaczoną przez element x, zwany reprezentantem tej klasy.

Przykłady.

- (1) Niech $R = I_A$. Dla $x \in A$ $[x]_R = \{x\}$.
- (2) Niech $R \subset \mathbb{R} \times \mathbb{R}$ będzie określona następująco: $xRy \Leftrightarrow |x| = |y|$ dla $x,y \in \mathbb{R}$.

Wtedy
$$[0]_R = \{0\}$$
 oraz dla $x \neq 0$ $[x]_R = \{x, -x\}.$

(3) Niech R będzie relacją równoważności na zbiorze wszystkich ludzi określoną tak: xRy wtw, gdy x i y są tej samej płci.

Wtedy dla dowolnej kobiety x, $[x]_R$ jest zbiorem wszystkich kobiet, a dla dowolnego mężczyzny x, $[x]_R$ jest zbiorem wszystkich mężczyzn.

Zadanie 1. Dany jest zbiór $X = \{a, b, c, d\}$ i relacja $R \subset X \times X$. Sprawdzić, czy jest to relacja równoważności, a jeśli tak, to wyznaczyć klasy abstrakcji tej relacji.

- (a) $R = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle d, d \rangle, \langle a, b \rangle, \langle b, a \rangle\}$
- (b) $R = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle d, d \rangle, \langle a, c \rangle, \langle a, d \rangle, \langle c, a \rangle, \langle c, d \rangle, \langle d, a \rangle, \langle d, c \rangle\}$
- (c) $R = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle d, d \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle c, d \rangle, \langle d, c \rangle\}$

Zadanie 2. Zbadać, czy podane relacje są relacjami równoważności:

- (a) relacja podzielności na zbiorze liczb naturalnych bez zera,
- (b) relacja na zbiorze liczb naturalnych większych od 1 określona następująco:

$$mRn \Leftrightarrow nwd(m,n) > 1$$

Zadanie 3. Wyznaczyć relacje równoważności:

- (a) na zbiorze 2-elementowym,
- (b) na zbiorze 3-elementowym,
- (c) na zbiorze 4-elementowym.

Ćwiczenia 14

Funkcje

 ${\bf Definicja}.\ Funkcją$ nazywamy relację binarną R, spełniającą warunek prawostronnej jednoznaczności:

Zgodnie z tym warunkiem, dla każdego obiektu x istnieje najwyżej jeden obiekt y taki, że $< x, y > \in R$.

Definicja. Niech f będzie funkcją. Dla $x \in D(f)$ jedyny element y taki, że $\langle x, y \rangle \in f$ nazywamy wartością funkcji <math>f dla argumentu x i oznaczamy f(x).

$$(Df(x))\forall_{x \in D(f)}\forall_y (f(x) = y \Leftrightarrow < x, y > \in f)$$

Zbiór D(f) jest dziedziną funkcji f.

Mamy: $D^*(f) = \{f(x) : x \in D(f)\}$. Zbiór $D^*(f)$, czyli przeciwdziedzinę funkcji f, nazywamy też zbiorem wartości funkcji f.

Definicja. Niech f będzie funkcją. Mówimy, że funkcja f odwzorowuje zbiór X w zbiór Y, jeżeli D(f)=X i $D^*(f)\subset Y$. Piszemy $f:X\mapsto Y$.

Definicja. Niech f będzie funkcją. Mówimy, że funkcja f odwzorowuje zbiór X na zbiór Y, jeżeli D(f) = X i $D^*(f) = Y$. Piszemy $f: X \stackrel{na}{\mapsto} Y$.

Definicja. Funkcję f nazywamy r'oznowarto'sciow <math>q (albo: wzajemnie jednoznaczną, jedno-jednoznaczną), jeżeli spełnia warunek:

$$\forall x_1, x_2 \in D(f)(f(x_1) = f(x_2) \Rightarrow x_1 = x_2).$$

Równoważnie: $\forall_{x_1,x_2 \in D(f)} (x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)).$

Piszemy $f: X \stackrel{1-1}{\mapsto} Y$, jeżeli funkcja $f: X \mapsto Y$ jest różnowartościowa.

Definicja. Odwzorowaniem nazywamy trójkę < f, X, Y > taką, że f jest funkcją, X, Y są zbiorami i $f: X \mapsto Y$.

Definicja. Odwzorowanie $f: X \mapsto Y$ nazywamy:

iniekcjq, jeżeli $f: X \stackrel{1-1}{\mapsto} Y$,

suriekcjq, jeżeli $f: X \stackrel{na}{\mapsto} Y$,

bijekcją, jeżeli jest iniekcją i suriekcją.

Zadanie 1. Czy następujące relacje są funkcjami? Odpowiedź uzasadnić.

a)
$$R = \{ <0,0>, <1,0>, <1,1> \}$$

b)
$$R = \{ <0, 0>, <1, 0>, <2, 1> \}$$

c)
$$R = \{ \langle x, y \rangle \in \mathbb{R} \times \mathbb{R} : x + y = 0 \}$$

d)
$$R = \{ \langle x, y \rangle \in \mathbb{R} \times \mathbb{R} : x \cdot y = 0 \}$$

- e) $R=\{< x,y>\in X\times Y: y$ jest rokiem urodzenia osoby $x\}, Y=\mathbb{N}, X$ -zbiór wszystkich ludzi.
- f) $R = \{ \langle x, y \rangle \in \mathbb{N} \times \mathbb{N} : x|y \}$

Definicja. Niech $f: X \mapsto Y$. Dla dowolnego $A \subset X$ określamy zbiór:

$$f[A] = \{f(x) : x \in A\} = \{y : \exists_x (x \in A \land y = f(x))\},$$

zwany obrazem zbioru A danym przez funkcję f.

Dla dowolnego $B \subset Y$ określamy zbiór:

$$f^{-1}[B] = \{x \in X : f(x) \in B\},$$

zwany przeciwobrazem zbioru B danym przez funkcję f.

Zadanie 2. Dana jest funkcja $f:\mathbb{R}\to\mathbb{R}$ i zbiór $A\subset\mathbb{R}$. Wyznaczyć obraz zbioru A w przekształceniu f.

a)
$$f(x) = 5x - 3$$
, $A = \{2, 3, 4\}$

b)
$$f(x) = 2x + 1$$
 $A = (-2, 1)$

c)
$$f(x) = |x|$$
 $A = < -3, 0$

d)
$$f(x) = \begin{cases} x - 2 & \text{dla } x < 1 \\ x + 4 & \text{dla } x \ge 1 \end{cases}$$
 $A = <0, 5 >$

Zadanie 3. Dana jest funkcja $f:\mathbb{R}\to\mathbb{R}$ i zbiór $B\subset\mathbb{R}$. Wyznaczyć przeciwobraz zbioru B w przekształceniu f.

a)
$$f(x) = 2x - 1$$
 $B = \{1, 3, 5\}$

b)
$$f(x) = 2 - 3x$$
 $B = < 5, \infty$)

c)
$$f(x) = 5$$
 $B = < 4,7$)

d)
$$f(x) = 5$$
 $B = < 1, 5$)

e)
$$f(x) = \begin{cases} x - 2 & \text{dla } x < 1 \\ x + 4 & \text{dla } x \ge 1 \end{cases}$$
 $B = <0, 6 >$

Zadanie 4. Wyprowadzić prawa dla obrazów i przeciwobrazów funkcji. Zakładamy, że $f:X\mapsto Y.$

a)
$$f[A_1 \cup A_2] = f[A_1] \cup f[A_2]$$
 dla $A_1, A_2 \subset X$

b)
$$f[\bigcup_{i\in I} A_i] = \bigcup_{i\in I} f[A_i] dla A_i \subset X \text{ przy } i\in I$$

c)
$$f^{-1}[B_1 \cap B_2] = f^{-1}[B_1] \cap f^{-1}[B_2]$$
, jeżeli $B_1, B_2 \subset Y$

d)
$$f^{-1}[B_1 \cup B_2] = f^{-1}[B_1] \cup f^{-1}[B_2]$$
, jeżeli $B_1, B_2 \subset Y$

e)
$$f^{-1}[\bigcap_{i\in I} B_i] = \bigcap_{i\in I} f^{-1}[B_i]$$
 przy $B_i \subset Y$ przy $i\in I, I\neq\emptyset$

Ćwiczenia 15

Relacje porządkujące

Definicja. Relację $R \subset A^2$ nazywamy relacją porządkującą na zbiorze A, jeżeli jest zwrotna (na A), antysymetryczna i przechodnia. Wtedy parę (A, R) nazywamy zbiorem uporządkowanym.

Definicja. Relację $R \subset A^2$ nazywamy relacją liniowo porządkującą na zbiorze A, jeżeli jest porządkująca i spójna (na A). Wtedy parę (A, R) nazywamy zbiorem liniowo uporządkowanym.

Przykłady

- 1. Relacja I_A jest relacja porządkującą. Jest to najmniejsza (w sensie za wierania) relacja porządkująca na zbiorze A, tzn. relacja I_A jest zawarta w każdej relacji porządkującej na A.
- 2. Relacja inkluzji na $\mathcal{P}(A)$, tj
, $\{< X, Y> \in \mathcal{P}(A)^2 : X \subset Y\}$, jest relacją porzadkującą.
- 3. Relacja podzielności na zbiorze $\mathbb N$ określona wzorem: $m|n \Leftrightarrow \exists_{k \in \mathbb N} (k \cdot m = n) \text{ dla } m, n \in \mathbb N$ jest relacją porządkującą.
- 4. Relacja \leq na zbiorze $\mathbb N$ jest relacją liniowo porządkującą. Podobnie \leq na $\mathbb Z,\mathbb Q,\mathbb R.$

Definicja. Niech (A,R) będzie zbiorem uporządkowanym. Zbiór $X\subset A$ nazywamy ℓ ańcuchem w (A,R), jeżeli $(X,R\cap X^2)$ jest zbiorem liniowo uporządkowanym.

Zauważmy, że zbiór $X\subset A$ jest łańcuchem w (A,R) wtedy i tylko wtedy, gdy $\forall_{x,y\in X}(xRy\vee yRx).$

Przykłady

1. Rozważmy zbiór $\mathcal{P}(\{a,b\})$ uporządkowany przez ograniczenie inkluzji do tego zbioru. Ta relacja nie jest liniowym porządkiem, ponieważ ani $\{a\} \subset \{b\}$, ani $\{b\} \subset \{a\}$ nie zachodzi. Zbiory:

$$\{\emptyset, \{a\}, \{a, b\}\}\$$
 i $\{\emptyset, \{b\}, \{a, b\}\}$
są łańcuchami w $\mathcal{P}(\{a, b\})$.

2. Rozważmy zbiór $\{1,2,3,4\}$ z relacją podzielności ograniczoną do tego zbioru. Zbiory $\{1,2,4\},\{1,3\},\{1,4\}$ są łańcuchami.

Diagramy Hassego skończonych zbiorów uporządkowanych

Niech \leq będzie porządkiem na A. Ostry porządek < wyznaczony przez \leq określamy tak:

$$x < y \Leftrightarrow x \le y \land x \ne y$$

Niech (A, \leq) będzie zbiorem uporządkowanym. Element $y \in A$ nazywamy następnikiem elementu $x \in A$, jeżeli x < y, lecz nie istnieje $z \in A$ takie, że x < z i z < y.

W diagramie Hassego przedstawiamy elementy zbioru jako wierzchołki i prowadzimy krawędzie od każdego wierzchołka do wszystkich następników tego wierzchołka, umieszczonych wyżej.

Mamy: $x \leq y$ wtedy i tylko wtedy, gdy w diagramie istnieje droga, idąca w górę, od x do y (dowolnej długości $n \geq 0$).

Droga jest to trasa, która nie przechodzi dwukrotnie przez żaden wierzchołek. Długość drogi: liczba krawędzi, przez które przechodzi ta droga.

Zadanie 1. Przedstawić diagram Hassego dla zbioru $A = \{0, 1, 2, 3, 4, 5, 6\}$:

- 1. z relacją podzielności ograniczoną do tego zbioru (jest to relacja częściowo porządkująca),
- 2. z naturalnym porządkiem \leq ograniczonym do tego zbioru (jest to relacja liniowo porządkująca).

Zadanie 2. Przedstawić diagram Hassego:

- 1. dla relacji \leq_P na \mathbb{N}^2 ograniczonej do $\{0,1\}^2$
- 2. dla relacji \leq_P na \mathbb{N}^2 ograniczonej do $\{0,1,2\}^2$

$$\langle x_1, y_1 \rangle \leq_P \langle x_2, y_2 \rangle \Leftrightarrow x_1 \leq x_2 \land y_1 \leq y_2$$

Definicja Niech (A, \leq) będzie zbiorem uporządkowanym. Niech $X \subset A$. Element $a \in A$ nazywamy:

- elementem najmniejszym w zbiorze X, jeżeli $a \in X$ i $\forall_{x \in X} (a \le x)$,
- elementem największym w zbiorze X, jeżeli $a \in X$ i $\forall_{x \in X} (x \leq a)$,
- elementem minimalnym w zbiorze X, jeżeli $a \in X$ i $\neg \exists_{x \in X} (x < a)$,
- elementem maksymalnym w zbiorze X, jeżeli $a \in X$ i $\neg \exists_{x \in X} (a < x)$,
- ograniczeniem dolnym zbioru X, jeżeli $\forall_{x \in X} (a \leq x)$,
- ograniczeniem górnym zbioru X, jeżeli $\forall_{x \in X} (x \leq a)$,

- $kresem\ dolnym\ zbioru\ X$, jeżeliajest największym ograniczeniem dolnym zbioru X,
- $kresem\ górnym\ zbioru\ X$, jeżelia jest najmniejszym ograniczeniem górnym zbioru X.

Zadanie 3. Niech X będzie zbiorem wszystkich podzbiorów zbioru liczb rzeczywistych i niech będzie dana relacja $R = \{ < A, B >: A \subseteq B \}$. Uzasadnić, że relacja R jest relacją częściowego porządku w zbiorze X. Wyznaczyć elementy: minimalny, maksymalny, największy, najmniejszy.

Zadanie 4. Narysować diagram Hassego dla $(\mathcal{P}(\{a,b,c\}),\subset)$. Niech X będzie rodziną wszystkich niepustych podzbiorów zbioru $\{a,b,c\}$. Oczywiście $X\subset\mathcal{P}(\{a,b,c\})$. Wyznaczyć elementy: minimalny, maksymalny, największy, najmniejszy.

Zadanie 5. Dany jest zbiór X i relacja podzielności w tym zbiorze. Narysować diagram Hassego tej relacji i wyznaczyć elementy: minimalny, maksymalny, największy, najmniejszy.

- a) $X = \{3, 5, 6, 10, 12\}$
- b) $X = \{1, 2, 3, 4, 6, 8, 9\}$
- c) $X = \{2, 3, 5, 6\}$
- d) $X = \{2, 3, 4, 9, 36\}$