Shreyas Sunil Gaikwad

EDUCATION

University of Texas at Austin

Austin, Texas

Ph.D. in Computational Science, Engineering, and Mathematics, GPA: 4.0/4.0 M.S. in Computational Science, Engineering, and Mathematics, GPA: 4.0/4.0

2020-2025 2019-2021

Indian Institute of Technology (IIT) Bombay

Mumbai, India

B. Tech with Honors in Mechanical Engineering (Minor in Computer Science). GPA: 9.32/10.0

2015-2019

EXPERIENCE

• Graduate Research Assistant, UT Austin

2020-Present

- Developed a Bayesian inversion framework for the ice sheet model SICOPOLIS by leveraging open-source **Automatic Differentiation** tools to perform back-propagation in a Fortran-based numerical model. [I][3]
- Developing a novel feature importance method for Artificial Neural Networks using XAI method Layerwise
 Relevance Propagation using Keras to validate insights from deep learning against oceanic mechanisms. [1]
- Developing deep learning emulators using **Keras** to efficiently simulate seaice dynamics in ocean models.

• Visiting Scholar, Argonne National Laboratory

Summer 2022

- Interfaced **Automatic Differentiation** and **MPI**-based parallelism for a mountain glacier simulation in Julia.
- Developed **first-ever open-source** Bayesian inversion framework for ocean circulation model MITgcm, establishing an **alternative to proprietary software that costs** ~\$14,000 per year per individual [II][2]

RESEARCH PROJECTS

• Machine Learning Applications in Geophysics

Spring 2021

- Developed CNNs in **Keras** for earthquake detection using data from stations, with **96% validation accuracy**.
- Developed U-Nets in Keras for seismic faults detection through image segmentation, with 97% test accuracy.
- Leveraged Autoencoders in **Keras** to aid clustering through dimensional reduction into the latent space.
- Built pipeline to pick mudrocks from real wireline logs using ML algorithms, with 87% test accuracy.

• Physics-Informed Machine Learning

Spring 202.

- Trained a Deep Neural Network in PyTorch to emulate a partial differential equation (PDE) based glacier model by leveraging higher-order derivatives of the PyTorch computational graph.
- Enriched the framework using an expanded computational graph to infer unknown PDE parameters.

• Laplacian 2D Finite Difference (FD) Solver Application

Fall 2020

Features: OOP (C++), Solver (gauss, jacobi, PETSc), tests (bats, Travis CI, docker), 98% code coverage (lcov),
 0% memory errors (valgrind), build (autotools), HPC env (SLURM), parser & logger (GRVY).

OPEN-SOURCE CONTRIBUTIONS

- I SICOPOLIS-AD v2, open-source data assimilation framework for the ice sheet model SICOPOLIS.
- II MITgcm-AD, open-source data assimilation framework for the general ocean circulation model MITgcm.
- III ARGOVIS, OOP-style Python tools for community use in interactive plotting and binning of Argo data.

TECHNICAL SKILLS

Languages	Python (Keras, PyTorch), Julia, C/C++, Fortran-77/90, MATLAB
HPC toolkit	OpenMP, MPI, CUDA, SLURM, git, docker, shell scripts, CI, autotools, valgrind, lcov, GRVY

HONORS AND AWARDS

- President and Vice President, Austin Chapter of Society of Industrial & Applied Mathematics (SIAM). 2021-2023
- Recipient of Peter O'Donnell Graduate fellowship worth \$24,000.

2019

• Ranked 509/1,500,000 (99.97 percentile) in nationwide university entrance exams, India.

2015

SELECT COURSEWORK

Data Science	Machine Learning, ML applications in Geophysics, Engineering Data Mining
Algorithms	Differential Equations, Linear Algebra, HPC, Functional Analysis, Data Structures & Algorithms
Modeling	Uncertainty Quantification in Modeling, Mathematical Modeling, Quantum & Statistical Mechanics

INVITED TALKS

• SS Gaikwad et. al "Computational Science to enable Digital Twins of the Oceans", 6th SIAM Texas-Louisiana Sectional Meeting (SIAM TX-LA) 2023.

JOURNAL ARTICLES

- 1. **SS Gaikwad** et. al "Pairing Neural Networks with Adjoints for Flexible Investigation and Robust Attribution of Ocean Variability." *In preparation for submission to Geophysical Research Letters* (2024).
- 2. **SS Gaikwad** et. al "MITgcm-AD v2: tangent linear and adjoint modeling framework for the oceans and atmosphere enabled by the Automatic Differentiation tool Tapenade." *Preprint on arXiv, submitted to JLESC-FGCS (2024)*.
- 3. **SS Gaikwad** et. al "SICOPOLIS-AD v2: tangent linear and adjoint modeling framework for ice sheet modeling enabled by Automatic Differentiation tool Tapenade." *Journal of Open Source Software 8, no. 83 (2023): 4679.*