

PHYSICS Chapter 6

ESTÁTICA III

@ SACO OLIVEROS

MOTIVATING STRATEGY

Al jalar la llave hacia la derecha, ¿qué ocurre con la tuerca?

Para responder a la pregunta, debemos de conocer el MOMENTO DE UNA FUERZA

HELICOTEORIA MOMENTO DE UNA FUERZA

El momento de una fuerza, es la cantidad física de naturaleza vectorial, que caracteriza el efecto de giro que experimenta un cuerpo respecto a un punto, debido a una fuerza.

Su módulo se obtiene con:

$$M_o^F = \pm F d$$
 Unidad: Nm

Es (+), cuando el giro respecto a "o" es antihorario

Es (-), cuando el giro respecto a "o" es horario

HELICOTEORIA MOMENTO DE UNA FUERZA

Veamos ahora las siguientes situaciones:

En que sentido gira la barra debido a la fuerza con la cual el joven jala la cuerda respecto al punto "A".

Gira en sentido antihorario respecto a "A"

En que sentido gira la barra debido a la fuerza respecto al punto "O".

Gira en sentido horario respecto a "O"

FUERZA

Determine el momento de F respecto a "O", siendo la barra de masa despreciable.

Debido a la fuerza, la barra gira respecto a "O" en sentido antihorario.

El modulo del momento de dicha fuerza se calcula con:

$$M_0^F = \pm F d$$

$$M_o^F = +(15 \text{ N})(0.4\text{m})$$

$$\therefore M_o^F = +6 \text{ Nm}$$

EJEMPLO MOMENTO DE UNA FUERZA

Determine el momento de F respecto a "O", siendo la barra de masa despreciable.

Debido a la fuerza, la barra gira respecto a "O" en sentido horario.

$$M_o^F = \pm F d$$

$$M_o^F = -(10 \text{ N})(0.8\text{m})$$

$$M_o^F = -8Nm$$

El modulo del momento de dicha fuerza se calcula con:

Determine el momento resultante respecto a "O", siendo la barra de masa despreciable.

$$M_o^{R_{esul}} = M_o^{F_1} + M_o^{F_2}$$

Determinando el momento de cada fuerza:

$$M_o^{F_1} = -(20 \text{ N})(0.8 \text{ m})$$
 $M_o^{F_1} = -16 \text{ Nm}$
 $M_o^{F_2} = +(15 \text{ N})(0.6 \text{ m})$
 $M_o^{F_2} = +9 \text{ Nm}$

El momento resultante

$$M_o^{R_{esul}} = (-16 \text{ Nm}) + (+9 \text{ Nm})$$
$$\therefore M_o^{R_{esul}} = -7 \text{ Nm}$$

SEGUNDA CONDICIÓN DE EQUILIBRIO

Un cuerpo en equilibrio mecánico, se encuentra en equilibrio de rotación, si el momento resultante respecto a un punto sea nulo.

$$\overrightarrow{M}_{0}^{Resul} = \overrightarrow{0}$$

$$\sum M_O^F = \sum M_O^F$$

HELICO

PRACTICE

Usando:

$$\sum M_O^F \bigcirc = \sum M_O^F \bigcirc$$

$$M_O^F = M_O^{20 N} + M_O^{Fg}$$

F.a = (20N)(2a) + (30N)(a)

Resolviendo:

Si la barra mostrada es de 3 kg, determine el módulo de la fuerza F. Si el sistema está en equilibrio. (g=10 m/s₂)

Si la masa de la barra homogénea es de 6 kg, determine el módulo de la tensión de la cuerda

Usando

$$\sum M_O^F \dot{} = \sum M_O^F ($$

$$M_O^T + M_O^T = M_O^{Fg}$$

Si la barra y el bloque son de 10 kg y homogéneos, determine el módulo de la tensión en la cuerda (1).

Usando

$$M_O^T = M_O^{100 N} + M_O^{F_g}$$

$$T.4L = 100 N.3L + 100 N.2L$$

HELICO PRACTICE

Si la barra es de masa despreciable, determine la tensión de la cuerda horizontal. (g=10 m/s₂)

Usando

$$\sum M_O^F \stackrel{\cdot}{\bigcirc} = \sum M_O^F \stackrel{\cdot}{\bigcirc}$$

$$M_O^T = M_O^{60 \text{ N}}$$

T.1,5m=60N. 4m

Resolviendo:

∴ T=160N

Determine la masa del bloque P para que el sistema permanezca en equilibrio. (Q=60 N; la barra doblada es ingrávida).

Usando

$$\sum M_O^F \bigcirc = \sum M_O^F \bigcirc$$

$$M_O^T = M_O^{60 N}$$

60N.4m = m.g.3m

20N. $4 = m.10m/s^2$.

Resolviendo:

6.-La barra y el bloque son de 16 kg y homogéneos. Determine el módulo de la tensión en la cuerda (1).

Usando:

$$\sum M_O^F = \sum M_O^F$$

$$M_0^T = +M_0^{160N} + M_0^{160 N}$$

T.4L=160N.3L+160N.2,5L

4T=480N+400N

Resolviendo:

∴ T=220N

PRACTICE

Una barra homogénea de 80 N de peso se encuentra en equilibrio. Calcule la tensión en la cuerda BC.

Usando

$$\sum M_O^F = \sum M_O^F$$

$$M_O^T = M_O^{80 \text{ N}}$$

T.5a=80N.4a

Resolviendo:

HELICO

PRACTICE

8.-El joven Juan se da cuenta que para poder mover la roca que se muestra es necesario ejercer una fuerza de 80 N en el punto A. Si el joven jala en el punto B, determine el módulo de la fuerza que debe ejercer el joven Juan.

$$M_{O}^{F} = M_{O}^{80 N}$$

Resolviendo:

