Clase práctica de Cálculo Avanzado - 24/4

Ejercicio 1. Sean A y B conjuntos de cardinal m y n respectivamente. Probar que $\#A^B = \mathfrak{m}^n$

Solución. Primero supongamos que n=0, es decir $B=\emptyset$. En ese caso $\#A^\emptyset=1$ y vale lo buscado. Ahora supongamos que m=0, es decir $A=\emptyset$. Entonces $\#\emptyset^B=0$ si $B\neq\emptyset$, y $\#\emptyset^\emptyset=1$ como queríamos.

Por último, supongamos que n, m > 0. Sean $\alpha:A\to I_m$ y $\beta:I_n\to B$ biyecciones. Entonces la función $\varphi:A^B\to I_m^{I_n}$ definida por

$$\varphi(f) = \alpha \circ f \circ \beta$$

es una biyección. Luego podemos suponer que $A = I_m$ y $B = I_n$.

Sea m > 0 y sea

$$S = \{n \in \mathbb{N} \cup \{0\} \mid \#I_{m}^{I_{n}} = m^{n}\}.$$

Ya sabemos que $0 \in S$. Dado $n \in S$, queremos ver que $n+1 \in S$. Definimos $\rho: I_m^{I_{m+1}} \to I_m^{I_n}$ por $\rho(f) = f|_{I_n}$. Es decir, restringir la función f a I_n .

Dada $g \in I_{\mathfrak{m}}^{I_{\mathfrak{m}}}$ y $k \in I_{\mathfrak{m}}$, definimos $g_k \in I_{\mathfrak{m}}^{I_{\mathfrak{m}+1}}$ por

$$g_k(x) = \begin{cases} g(x) & \text{si } x \in I_n \\ k & \text{si } x = n+1 \end{cases}.$$

Luego $\rho^{-1}(g)=\{g_1,...,g_m\}.$ Es decir que la preimagen tiene m elementos. Además es claro que

$$\bigcup_{g\in I_{\mathfrak{m}}^{I_{\mathfrak{m}}}}\rho^{-1}(g)=I_{\mathfrak{m}}^{I_{\mathfrak{m}+1}}.$$

Por lo tanto $\#I_m^{I_{m+1}}=\mathfrak{m}^{n+1}$, y $n+1\in S$ como queríamos.

Ejercicio 2. Hallar el cardinal del conjunto de todos los subconjuntos contables de \mathbb{R} .

Solución. Sea X el conjunto en cuestión. Es claro que $\#X \geq 2^{\aleph_0}$, veamos que es igual-. Podemos expresarlo como la unión de subconjuntos X_n , $1 \leq n \leq \infty$, donde X_n es el conjunto de subconjuntos de tamaño n si $n < \infty$, y X_∞ es el conjunto de subconjuntos numerables de \mathbb{R} .

Dado $n<\infty$, X_n está en biyección con los puntos de \mathbb{R}^n $(x_1,...,x_n)$ con $x_1<...< x_n$. Luego $\#X_0=0$ y $\#X_n\leq \#\mathbb{R}^n=2^{\aleph_0}$ $\forall 1\leq n<\infty$. Por lo tanto

$$\# \bigcup_{0 \leq n < \infty} X_n \leq \aleph_0 2^{\aleph_0} \leq 2^{\aleph_0} 2^{\aleph_0} = 2^{\aleph_0 \aleph_0} = 2^{\aleph_0}.$$

Ahora veamos cuál es el cardinal de X_{∞} . Similarmente al caso finito, es fácil ver que X_{∞} se mete de manera inyectiva en $\mathbb{R}^{\mathbb{N}}$. Es decir que

$$\#X_{\infty} \leq \#\mathbb{R}^{\mathbb{N}} = (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0 \aleph_0} = 2^{\aleph_0}.$$

Por lo tanto # $X \le \# \bigcup_{0 \le n < \infty} X_n + \# X_\infty \le 2^{\aleph_0} + 2^{\aleph_0} = 2^{\aleph_0}$. Luego concluimos que $\# X = 2^{\aleph_0}$.