

# Informe ejecutivo de proyecto final: Análisis de sentimiento en reseñas de películas con BiLSTM

Autores: Daniel Brand Taborda, Jhonier Raúl Jiménez

Curso: Deep Learning 2025

Fecha: 29 de junio de 2025

#### 1. Resumen

Este informe detalla el desarrollo y evaluación de un modelo de Deep Learning para la tarea de análisis de sentimiento. El objetivo fue clasificar reseñas de películas del dataset IMDB como positivas o negativas. Se implementó un pipeline completo, incluyendo un análisis exploratorio de datos, un preprocesamiento de texto exhaustivo y la construcción de un modelo basado en una Red Neuronal Recurrente Bidireccional (BiLSTM). El modelo final alcanzó una **exactitud (accuracy) del 86.6%** en el conjunto de datos de prueba, demostrando un rendimiento robusto y balanceado para ambas clases de sentimiento.

#### **Dataset:**

• Fuente: Kaggle

Enlace:

https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-review

<u>S</u>

• **Descripción:** Contiene 50,000 reseñas de películas etiquetadas como positivas o negativas.

## 2. Descripción de la estructura de los Notebooks

El trabajo fue organizado de manera modular en cuatro notebooks de Jupyter, siguiendo un flujo lógico desde los datos hasta el modelo final:

- 01 exploración de datos.ipynb: Carga inicial del dataset, análisis exploratorio para entender la distribución de los datos, la longitud de las reseñas y visualización de ejemplos.
- 02 preprocesado.ipynb: Contiene todo el proceso de limpieza y transformación del texto, incluyendo la eliminación de ruido, la tokenización y la lematización. Genera los archivos de datos limpios (train\_processed.csv y test\_processed.csv).
- 03 arquitectura de linea de base.ipynb: Define la arquitectura del modelo BiLSTM base, establece los hiperparámetros de tokenización y padding, y prepara los datos para el entrenamiento.
- 04 entrenamiento y evaluacion.ipynb: Entrena el modelo definido, visualiza las curvas de aprendizaje, evalúa el rendimiento sobre el conjunto de prueba y genera las métricas finales y la matriz de confusión.

# 3. Descripción de la solución

La solución implementada se compone de dos fases principales: el preprocesamiento de los datos de texto y la arquitectura del modelo de clasificación.

## 3.1. Preprocesado de datos

Se aplicó una cadena de transformaciones rigurosa para preparar las reseñas para el modelo:

- 1. **Limpieza:** Se eliminaron etiquetas HTML, caracteres no alfanuméricos y se convirtió todo el texto a minúsculas.
- Eliminación de stopwords: Se descartaron palabras comunes sin carga semántica (ej. "the", "a") del idioma inglés.

- 3. **Lematización:** Se utilizó WordNetLemmatizer para reducir cada palabra a su forma léxica base.
- 4. Tokenización y padding: El texto limpio se convirtió en secuencias de enteros utilizando el Tokenizer de Keras, con un vocabulario máximo de 3000 palabras. Todas las secuencias se estandarizaron a una longitud de 200 tokens.

## 3.2. Arquitectura del modelo

Se diseñó una Red Neuronal Recurrente Bidireccional (BiLSTM) con la siguiente arquitectura:

- 1. Capa de embedding: Mapea los tokens de entrada a vectores densos de 100 dimensiones, aprendiendo la representación semántica de cada palabra.
- 2. **Capa BiLSTM:** El núcleo del modelo, con 64 unidades. Procesa las secuencias en ambas direcciones para capturar el contexto completo de cada palabra.
- 3. **Capas densas:** Una capa oculta con 24 neuronas (activación ReLU) y una capa de salida con 1 neurona (activación sigmoide) para la clasificación binaria.
- 4. **Función de pérdida y optimizador:** Se utilizó binary\_crossentropy como función de pérdida y adam como optimizador.

## 4. Descripción de las iteraciones

El desarrollo siguió un proceso metodológico enfocado en construir un pipeline robusto. La principal iteración fue el refinamiento progresivo a través de las siguientes fases:

- 1. **Análisis de datos:** Se estableció una base de entendimiento del problema.
- 2. **Preprocesamiento:** Se eligió la lematización sobre técnicas más simples como el stemming para obtener una mejor normalización del texto.
- 3. **Diseño del modelo base:** Se optó por una arquitectura BiLSTM, reconocida por su efectividad en tareas de PLN secuencial.
- 4. **Entrenamiento y evaluación:** La fase final se centró en entrenar este modelo y analizar sus resultados para establecer un rendimiento de referencia sólido.

## 5. Resultados

El modelo fue entrenado durante 5 épocas con un tamaño de lote de 64.

# 5.1. Curvas de aprendizaje



**Análisis:** Las curvas muestran un buen ajuste. La exactitud de entrenamiento y validación aumentan de forma paralela, mientras que las pérdidas disminuyen, indicando que el modelo está generalizando bien a los datos no vistos durante el entrenamiento sin signos de sobreajuste significativo.

# 5.2. Métricas de Desempeño en Test

El modelo fue evaluado en 12,500 reseñas nunca antes vistas, obteniendo los siguientes resultados:

# • Accuracy General: 86.6%

| Clase    | Precisión | Recall | F1-Score |
|----------|-----------|--------|----------|
| Negativa | 0.85      | 0.89   | 0.87     |
| Positiva | 0.88      | 0.84   | 0.86     |

## • 5.3. Matriz de Confusión



**Análisis:** La matriz de confusión confirma el buen rendimiento del modelo. Se observa una alta cantidad de predicciones correctas en la diagonal principal. El modelo tiene una ligera tendencia a ser mejor reconociendo reseñas negativas, como lo indica su mayor Recall (0.89).

# 6. Conclusiones y Trabajo Futuro

El modelo BiLSTM desarrollado es capaz de clasificar el sentimiento de reseñas de películas con una alta precisión (86.6%), demostrando la efectividad de las redes recurrentes para tareas de procesamiento de lenguaje natural.

## 7. Herramientas utilizadas

- Lenguaje: Python 3
- Librerías principales: Pandas, NLTK, Scikit-learn, TensorFlow/Keras, Matplotlib, Seaborn.
- Entorno de desarrollo: Jupyter Notebooks / Google Colab.