Isabelle

By tkloht

May 3, 2016

Contents

$1 \mathbf{E}\mathbf{x}$	ample theory file for getting acquainted with Isabelle
1.1	Terms
1.2	Types
1.3	Constants
1.4	Terms and Formulas
	1.4.1 Example formula 1
	1.4.2 Example formula 2
	1.4.3 Example formula 3
1.5	Proofs
	1.5.1 Proofs with handy keywords
	1.5.2 Proofs with labels
	1.5.3 Using the proofs
1.6	Exercise 1c: logical expressions natural language3
2 Ex	ercise 2
2.1	a)
2.2	b)
2.3	c)
2.4	d)
2.5	e)
3 A	Hilbert Proof Calculus for Propositional Logic (PL)
3.1	Logical Connectives for PL
	3.1.1 Primitive Connectives
	3.1.2 Further Defined Connectives
3.2	Hilbert Axioms for PL
	3.2.1 Axiom Schemes
	3.2.2 Inference Rules
3.3	A Proof

1 Example theory file for getting acquainted with Isabelle

1.1 Terms

We can write logical formulae and terms in the usual notation. Connectives such as \neg, \lor, \land etc. can be typed using the backslash \ followed by the name of the sign. I.e. \not for \neg . Note that during typing \not at some point there will be a pop-up menu offering you certain auto completion suggestions that you can accept by pressing the tab key.

1.2 Types

All terms (and also constant symbols, variables etc.) are associated a type. The type *bool* is the type of all Boolean-values objects (e.g. truth values). New types can be inserted at will.

 $\mathbf{typedecl}\ i$ — Create a new type i for the type of individuals

1.3 Constants

New constants can be defined using the *consts* keyword. You need to specify the type of the constant explicitly.

1.4 Terms and Formulas

In higher-order logic (HOL), terms are all well-formed expressions that can be expressed within the logic. A term has a unique type, such as in f A where the term f A has type i. Terms of type bool are called "formulas".

1.4.1 Example formula 1

If it's raining the street will get wet

```
\begin{array}{l} \textbf{consts} \ \ raining :: bool -- \text{ constant symbol for raining} \\ \textbf{consts} \ \ wet :: i \Rightarrow bool -- \text{ predicate symbol for wet} \\ \textbf{consts} \ \ street :: i -- \text{ constant symbol for the street} \\ \end{array}
```

prop $raining \longrightarrow wet(street)$ — raining implies street-is-wet

1.4.2 Example formula 2

```
consts good :: i \Rightarrow bool — predicate symbol for being good
```

```
prop good(A) — A is good
```

A is a free variable of the above term, hence it is not closed

1.4.3 Example formula 3

```
prop \forall A. good(A) — everything is good
```

A is a a bound variable of the above term, which is universally qualified.

1.5 Proofs

We will learn how to formalize proofs in Isabelle throughout this course.

1.5.1 Proofs with handy keywords

```
theorem MyFirstTheorem:
   assumes A
   shows B \longrightarrow A

proof -
{
   assume B
   from assms have A by - Iterate the fact that A holds by assumptions using the - sign
}
then have B \longrightarrow A by (rule\ impI)
thus ?thesis.

qed
```

1.5.2 Proofs with labels

```
theorem MyFirstTheorem2:
assumes 1: A
shows B \longrightarrow A
proof -
{
assume B
from 1 have A by -
} note 2 = this
from 2 have B \longrightarrow A by (rule \ impI)
thus ?thesis.
qed
```

1.5.3 Using the proofs

We can now derive simple facts of the above theorem.

```
corollary ThatFollowsDirectly: assumes A shows P(A) \longrightarrow A using assms by (rule\ MyFirstTheorem[\mathbf{where}\ B = P(A)]) theorem excludedMiddle: shows A \lor \neg A
```

```
proof -
 {
   assume 1: \neg(A \lor \neg A)
    assume 2: \neg A
    from 2 have 3: A \vee \neg A by (rule\ disjI2)
    from 1 have 4: \neg(A \vee \neg A) by -
     from 4 3 have False by (rule notE)
   from this have 5: A by (rule ccontr)
   from 5 have 6: A \vee \neg A by (rule disjI1)
   from 1 6 have False by (rule notE)
 from this have A \vee \neg A by (rule ccontr)
 thus ?thesis.
qed
```

1.6 Exercise 1c: logical expressions natural language3

```
\mathbf{prop} \exists ship. \ huge(ship) \land \ blue(ship)
\mathbf{prop} \neg sun\text{-}shining \longrightarrow sad
prop (israining(x) \land \neg israining(x)) \lor (\neg israining(x) \land israining(x))
\mathbf{prop} \ going(she) \longrightarrow going(me) \land \neg going(she) \longrightarrow \neg going(me)
prop \forall x. loves-chocholate(x) \lor loves-icecream(x)
prop \exists x. loves-icecream(x) \land loves-chocolate(x)
prop \forall x. \exists y. play-together(x, y)
prop \forall x. isMean(x) \longrightarrow (\forall x. \forall y. \neg play-together(x, y))
prop \forall p. \ isAnnoying(p) \land ofDog(p) \longrightarrow ofCat(p)
```

2 Exercise 2

2.1 a)

```
theorem A:
 assumes 1: A \wedge B \longrightarrow C
 assumes 2: B \longrightarrow A
 assumes 3: B
 shows C
proof -
 from 2 3 have 4: A by (rule mp)
 from 4 3 have 5: A \wedge B by (rule conjI)
 from 1 5 have 6: C by (rule mp)
 thus ?thesis.
qed
2.2
       b)
```

theorem B: assumes 1: A

```
shows B \longrightarrow A
proof -
  {
   assume B
   from 1 have A by -
  } note 2 = this
 from 2 have 3: B \longrightarrow A by (rule impI)
  thus ?thesis.
\mathbf{qed}
2.3
       c)
theorem C:
 assumes 1: A \longrightarrow (B \longrightarrow C)
 shows B \longrightarrow (A \longrightarrow C)
proof -
  {
   assume 2: B
    assume 3: A
    from 1 3 have 4: B \longrightarrow C by (rule \ mp)
    from 4\ 2 have 5: C by (rule\ mp)
   from this have A \longrightarrow C by (rule \ impI)
 from this have B \longrightarrow (A \longrightarrow C) by (rule impI)
  thus ?thesis.
qed
2.4
       d)
theorem D:
 assumes 1: \neg A
 shows A \longrightarrow B
proof -
  {
   assume 2: A
    assume \beta: \neg B
    from 1 have 4: \neg A by -
    from 2 have 5: A by -
    from 4 5 have False by (rule notE)
   from this have \neg \neg B by (rule notI)
   from this have B by (rule\ not not D)
  from this have A \longrightarrow B by (rule impI)
  thus ?thesis.
qed
```

```
2.5 e)
theorem E:
 shows A \vee \neg A
proof -
   assume 1: \neg(A \lor \neg A)
    assume 2: A
    from 2 have 3: A \vee \neg A by (rule disj11)
    from 1 3 have False by (rule notE)
   from this have 4: \neg A by (rule \ not I)
     assume 5: \neg A
     from this have A \vee \neg A by (rule disj12)
     from 1 this have False by (rule notE)
   from this have 6: \neg \neg A by (rule \ not I)
   from 6 have A by (rule notnotD)
   from 4 this have False by (rule notE)
 from this have 7: \neg \neg (A \lor \neg A) by (rule\ not I)
 from this have A \vee \neg A by (rule notnotD)
 thus ?thesis.
qed
```

3 A Hilbert Proof Calculus for Propositional Logic (PL)

3.1 Logical Connectives for PL

3.1.1 Primitive Connectives

```
consts impl :: bool \Rightarrow bool (infixr \rightarrow 49) consts not :: bool \Rightarrow bool (\neg)
```

In philosophy, we often assume that the only two logical connectives are the implication $op \to and$ the negation \neg . This is handy, since it simplifies proofs to only consider these two cases.

3.1.2 Further Defined Connectives

We can of course add further connectives that are to be understood as abbreviations that are defined in terms of the primitive connectives above.

```
abbreviation disj :: bool \Rightarrow bool \ (infixr \lor 50) where A \lor B \equiv \neg A \to B
```

```
abbreviation conj :: bool \Rightarrow bool (infixr \land 51) where A \land B \equiv \neg(A \rightarrow \neg B)
```

3.2 Hilbert Axioms for PL

3.2.1 Axiom Schemes

axiomatization where

A2:
$$A \rightarrow (B \rightarrow A)$$
 and
A3: $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$ and
A4: $(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$

3.2.2 Inference Rules

axiomatization where

 $ModusPonens: (A \rightarrow B) \Longrightarrow A \Longrightarrow B$

lemma True nitpick [satisfy, user-axioms, expect = genuine] oops

3.3 A Proof

thm
$$A3$$
[where $A = A$ and $B = (B \rightarrow A)$ and $C = A$] thm $A3[of A (B \rightarrow A) A]$

We show that A1 is redundant

```
{\bf theorem}\ A1 Redundant:
```

shows $A \to A$

proof -

have 1:
$$(A \to ((B \to A) \to A)) \to ((A \to (B \to A)) \to (A \to A))$$
 by (rule $A3$ [where $B = (B \to A)$ and $C = A$])

have $2: A \to ((B \to A) \to A)$ by (rule A2[where $B = B \to A])$

from 1 2 have 3: $(A \to (B \to A)) \to (A \to A)$ by (rule ModusPonens)

have $4: (A \rightarrow (B \rightarrow A))$ by (rule A2)

from 3 4 have 5: $A \rightarrow A$ by (rule ModusPonens)

thus ?thesis.

qed

theorem

shows $A \to A$

by $(metis\ (full-types)\ A2\ ModusPonens)$ — Sledgehammer even finds a proof without using A3

4 Exercise 3

theorem exercise3:

assumes 1: $A \rightarrow B$

```
assumes 2: B \to C shows A \to C proof — have 3: ((B \to C) \to A \to (B \to C)) by (rule\ A2[\text{where}\ A = B \to C\ \text{and}\ B = A]) from 3\ 2 have 4: A \to (B \to C) by (rule\ ModusPonens) have 5: (A \to (B \to C)) \to ((A \to B) \to (A \to C)) by (rule\ A3) from 5\ 4 have 6: ((A \to B) \to (A \to C)) by (rule\ ModusPonens) from 6\ 1 have A \to C by (rule\ ModusPonens) thus ?thesis.
```