Nom:	Prénom:	Groupe:		
ECOLE POLYTEC	HNIQUE UNIVERSITAIRE DE NICE SOPF	HA-ANTIPOLIS		
Université Nice Sophia Antipolis	Cycle Initial Polytech Première Année Année scolaire 2015/2016	Note		
École d'ingénieurs	Epreuve N°2 Electronique Numérique	/ 15		

Durée: 45 mn

Vendredi 8 Avril 2016

- Cours et documents NON autorisés.
- □ Calculatrice NON autorisée.
- Vous répondrez directement sur cette feuille.
- □ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- □ Vous êtes prié :
 - d'indiquer votre nom, prénom et groupe.
 - d'éteindre TOTALEMENT votre téléphone portable.

CORRECTION

TOUTE FRAUDE ou TENTATIVE DE FRAUDE SERA SANCTIONNEE

L'étudiant ayant triché ET l'étudiant ayant aidé (le cas échéant) seront traduits devant la commission disciplinaire de l'université.

On donne : $2^{-4} = 0,0625$ $2^{7} = 128 \quad 2^{6} = 64 \quad 2^{5} = 32 \quad 2^{4} = 16 \quad 2^{3} = 8 \quad 2^{2} = 4 \quad 2^{1} = 2 \quad 2^{0} = 1 \quad 2^{-1} = 0,5 \quad 2^{-2} = 0,25 \quad 2^{-3} = 0,125$

Rappels de l'algèbre de Boole :

Commutativité : A.B = B.A A + B = B + A

Associativité : A.(B.C) = (A.B).C A + (B+C) = (A+B)+CDistributivité : A.(B+C) = A.B+A.C A + (B.C) = (A+B).(A+C)

Complémentarité : $A.\overline{A} = 0$ $A + \overline{A} = 1$ Idempotence : A.A = A A + A = AIdentités remarquables : A + 1 = 1 A.1 = A

 $A + 0 = A \qquad \qquad A.0 = 0$

Th. de De Morgan : $\overline{A+B} = \overline{A}.\overline{B}$ $\overline{A.B} = \overline{A} + \overline{B}$

EXERCICE I : Conversion de nombres signés (4 pts)

Soit les nombres signés suivants : +3310 et -3310

1pt

1. Ecrivez-les en binaire, sur 8 bits, en valeur absolue signée (pas de justif. demandée):

```
+33_{10} = 0010\ 0001\ _{ABS}
-33_{10} = 1010\ 0001\ _{ABS}
```

1pt

2. Ecrivez-les en binaire, sur 8 bits, en complément à 1 (pas de justif. demandée) :

```
+33_{10} = 0010\ 0001\ _{C1}
-33_{10} = 1101\ 1110\ _{C1}
```

1pt

3. Ecrivez-les en binaire, sur 8 bits, en complément à 2 (pas de justif. demandée):

```
+33_{10} = 0010\ 0001\ _{C2}
-33_{10} = 1101\ 1111\ _{C2}
```

1pt

4. Ecrivez-les en binaire, sur 8 bits, en excédent 127 (brefs calculs intermédiaires demandés) :

```
+33_{10} + 127_{10} = 160_{10} \rightarrow en binaire \rightarrow 1010 0000<sub>ex127</sub> -33_{10} + 127_{10} = 94_{10} \rightarrow en binaire \rightarrow 0101 1110<sub>ex127</sub>
```

EXERCICE II: Ecriture d'un nombre dans la norme IEEE 754 (2,5 pts)

1. Soit le nombre décimal suivant : +26,4375₁₀ Ecrivez-le dans la norme IEEE 754 (calculs intermédiaires demandées)

```
1pt +26_{10} = 11010_2 (0,25pt)

0,4375_{10} = 0,0111_2 (0,25pt)

Donc 26,4375_{10} = 11010,0111_2

On met sous la forme : 1,10100111 × 2<sup>4</sup> (0,25pt)

On code l'exposant en excédent 127 : 4+127=131 \rightarrow 4_{10} = 1000 \ 0011_{ex127} (0,25pt)
```

0,5pt

0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0,25pt

Ecrivez-le en hexa: 41D3 8000

0,5pt

2. Soit le nombre décimal suivant : $-26,4375_{10}$

Dites ce qui change par rapport au nombre précédent et écrivez-le dans la norme IEEE 754.

Le bit de signe (MSB) passe à « 1 »

0,25pt

Ecrivez-le en hexa: C1D3 8000

EXERCICE III : Arithmétique (3,5 pts)

3pts

Faites les opérations suivantes (les détails sont demandés : retenues, emprunts).

$\begin{array}{c} 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \\ + \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \\ \hline & 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \\ \end{array}$	$\begin{array}{c} 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1$
$ \begin{array}{c} 1 & 0 & 1 & 1 \\ & \times & 1 & 1 & 0 & 1 \\ & & 1 & 0 & 1 & 1 \\ & + & 0 & 0 & 0 & 0 \\ & + & 1 & 0 & 1 & 1 \\ & + 1 & 0 & 1 & 1 \end{array} $ $ \begin{array}{c} 1 & 0 & 1 & 1 \\ & + & 1 & 0 & 1 & 1 \\ & + & 1 & 0 & 1 & 1 \end{array} $	$\begin{array}{ c c c c c c c }\hline 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$

0,5pt Faites l'opération suivante en base 3

 $\begin{array}{c}
1 \ 2 \ 2_{3} \\
+ \ 0 \ 1 \ 2_{3} \\
\hline
2 \ 1 \ 1_{3}
\end{array}$

EXERCICE IV: Fonction logique (5 pts).

On veut gérer le segment S_1 et le segment S_2 (LED) de l'afficheur 7 segments ci-dessus de façon à écrire les chiffres décimaux (comme présenté ci-dessus).

Donc, si on veut afficher le nombre décimal 0_{10} , le segment S_1 et le segment S_2 seront allumés ; si on souhaite afficher 4_{10} le segment S_2 sera allumé mais pas S_1 . Etc.

Les entrées A, B et C représentent les nombres à afficher de 0 à 7.

déc.	Α	В	C	S ₁	S ₂
0	0	0	0	1	1
1	0	0	1	0	1
2	0	1	0	1	0
3	0	1	1	1	1
4	1	0	0	0	1
5	1	0	1	1	1
6	1	1	0	0	1
7	1	1	1	1	1

1. Codage de la fonction S₁

 $Un \ll 1$ » logique indique que le segment S_1 est allumé. Remplissez la table de vérité ci-contre pour la colonne S_1 .

0,5pt

A partir de la table de vérité, écrivez la fonction logique de S_1 sous la première forme canonique.

$$S_1 = \bar{A}.\bar{B}.\bar{C} + \bar{A}.B.\bar{C} + \bar{A}.B.C + A.\bar{B}.C + A.B.C$$

1pt

Simplifiez-la au maximum à l'aide des propriétés de l'algèbre de Boole.

$$\begin{split} S_1 &= \bar{A}.\bar{C}.(\bar{B}+B) + \bar{A}.B.(\bar{C}+C) + A.C.(\bar{B}+B) \\ S_1 &= \bar{A}.\bar{C} + \bar{A}.B + A.C \\ \text{ou autre simplification possible, donnant:} \\ S_1 &= \bar{A}.\bar{C} + B.C + A.C \end{split}$$

1pt

2. Codage de la fonction S₂

Un « 1 » logique indique que le segment S_2 est allumé. Remplissez la table de vérité ci-dessus pour la colonne S_2 .

0,5pt

1pt

A partir de la table de vérité, écrivez la fonction logique de S_2 sous la deuxième forme canonique (toute autre méthode pour arriver au résultat ne donnera aucun point).

$$S_2 = A + \overline{B} + C$$
 1pt

Expliquez comment on écrit la deuxième forme canonique.

On fait le « produit » (ET logique) de la « somme » (OU logique) des combinaisons des variables complémentées pour lesquelles la fonction vaut « 0 ».