Lecture 11. Laws and induction

Functional Programming 2018/19

Doaitse Swierstra, Jurriaan Hage, Alejandro Serrano

Goals

- Reason about Haskell programs
 - Equational reasoning
 - ► Induction on data types

Chapter 16 (up to 16.6) from Hutton's book

Laws

Mathematical laws

- Mathematical functions do not depend on hidden, changeable values
 - ightharpoonup 2+3=5, both in $4\times (2+3)$ and in $(2+3)^2$
- This allows us to more easily prove properties that operators and functions might have
 - These properties are called laws

Examples of laws for integers

x + y = y + x
$x \times y = y \times x$
x + (y+z) = (x+y) + z
$x \times (y+z) = x \times y + x \times z$
x + 0 = x = 0 + x
$x \times 1 = x = 1 \times x$

Putting laws to good use

- ► Mathematical laws can help improve **performance**
 - That two expressions always have the same value does not mean that computing their value takes the same amount of time or memory
 - Replace a more expensive version with one that is cheaper to compute
- We can also prove properties to show that they correctly implement what we intended

In short, performance and correctness

Equational reasoning by example

```
(a + b)^2
= -- definition of square
(a + b) \times (a + b)
= -- distributivity
((a + b) \times a) + ((a + b) \times b)
= -- commutativity of ×
(a \times (a + b)) + (b \times (a + b))
= -- distributivity, twice
= (a \times a + a \times b) + (b \times a + b \times b)
= -- associativity of +
a \times a + (a \times b + b \times a) + b \times b
= -- commutativity of x
a \times a + (a \times b + a \times b) + b \times b
= -- definition of square and (2 \times)
a^{2} + 2 \times a \times b + b^{2}
```

Each theory has its laws

- ▶ We have seen laws that deal with arithmetic operators
- During courses in logic you have seen similar laws for logic operators

commutativity of \wedge	$x \wedge y = y \wedge x$
associativity of \wedge	$x \wedge (y \wedge z) = (x \wedge y) \wedge z$
distributitivy of ∧ over	$x \land (y \lor z) = (x \land y) \lor (x \land z)$
∨ De Morgan's law	$\neg(x \land y) = \neg x \lor \neg y$
Howard's law	$(x \land y) \to z = x \to (y \to z)$

A small proof in logic

```
¬((a \/ b) \/ c) → ¬d

= -- De Morgan's law

(¬(a \/ b) /\ ¬c) → ¬d

= -- De Morgan's law

((¬a /\ ¬b) /\ ¬c) → ¬d

= -- Howard's law

(¬a /\ ¬b) → (¬c → ¬d)

= -- Howard's law

¬a → (¬b → (¬c → ¬d))
```

- Proofs feel mechanical
 - ► You apply the "rules" implicit in the laws
 - ightharpoonup Possibly even without understanding what \wedge and \vee do
- Always provide a hint why each equivalence holds!

Back to Haskell

- ► Haskell is referentially transparent
 - Calling a function twice with the same parameter is guaranteed to give the same result
- This allows us to prove equivalences as above
 - And use these to improve performance
- Any definition can be viewed in two ways double x = x + x
 - 1. The *definition* of a function
 - 2. A property that can be used when reasoning
 - ▶ Replace double x by x + x and viceversa, for any x

A first example

For all compatible functions f and g, and lists xs

$$(map f . map g) xs = map (f . g) xs$$

This is not a definition, but a property/law

► The law can be shown to hold for the usual definitions of map and (.)

The right-hand side is more performant that the left-hand side, in general

Two traversals are combined into one

A few important laws

1. Function composition is associative

$$f \cdot (g \cdot h) = (f \cdot g) \cdot h$$

2. map f distributes over (++)

$$map f (xs ++ ys) = map f xs ++ map f ys$$

- Valides executing a large map on different cores
- There is a generalization to lists of lists

3. map distributes over composition

$$map (f . g) = map f . map g$$

A few (more) important laws

4. If op is associative and e is the unit of op, then for finite lists xs

```
foldr op e xs = foldl op e xs
```

5. Under the same conditions, foldr on a singleton list is the identity

$$foldr op e [x] = x$$

These rules apply to very general functions

The compiler uses these laws heavily to optimize

Relation to imperative languages

The law map $(f \cdot g) = map f \cdot map g$ is similar to the merging of subsequent loops

```
foreach (var elt in list) { stats1 }
foreach (var elt in list) { stats2 }
=
foreach (var elt in list) { stats1 ; stats2 }
```

But due to side-effects in these languages, you have to be **really** careful when to apply them

▶ What could prevent us from merging the loops?

Why prove the laws?

- A proof guarantees that your optimization is justified
 - Otherwise you may accidentally change the behavior
- Proving is one additional way of increasing your confidence in the optimization that you perform
 - Others are testing, intuition, explanations...
- ► Of course, proofs can be wrong too
 - ▶ Proofs *can* be mechanically checked

Proving is like programming

- 1. Theorem = functionality of specification
- 2. Proof = implementation
- 3. Lemmas = library functions, local definitions
- 4. Proof strategies = paradigms, design patterns
 - **Equational reasoning**, i.e., by a chain of equalities
 - Proof by induction
 - Proof by contradiction: assuming the opposite, show that leads to contradiction
 - lacktriangle Breaking down equalities: x=y iff $x\leq y$ and $y\leq x$
 - Combinatorial proofs

Like programming, proving takes practice

Equational reasoning

foldr over a singleton list

If e is the unit element of f, then foldr f e [x] = x

```
foldr f e [x]
= -- rewrite list notation
foldr f e (x : [])
= -- definition of foldr, case cons
f x (foldr f e [])
= -- definition of foldr, case empty
f x e
= -- e is neutral for f
x
```

Function composition is associative

```
For all functions f, g and h, f . (g . h) = (f . g) . h

Proof: consider any x
```

```
(f . (g . h)) x
= -- definition of (.)
f ((g . h) x)
= -- definition of (.)
f (g (h x))
= -- definition of (.)
(f . g) (h x)
= -- definition of (.)
((f . g) . h) x
```

Proving functions equal

- We prove functions f and g equal by proving that for all input x, f x = g x
 - They give the same results for the same inputs
 - Provided that they don't have side effects!
- They need not be the same function, as long as they behave in the same way
 - We call this extensional equality
- It is essential to make no assumptions about x
 - ightharpoonup Otherwise, the proof does not work *for all* x

Two column style proofs

Reasoning from two ends is typically easier

- Rewrite the expression until you reach the same point
- Equalities can be read "backwards"

For all functions f, g and h, f . (g . h) = (f . g) . h Proof: consider any x

map after (:)

For all type compatible values x and functions f, map f . (x :) = (f x :) . map f

map after (:)

```
For all type compatible values x and functions f,
map f . (x :) = (f x :) . map f
Proof: consider any list xs
(map f . (x :)) xs
                               ((f x :) . map f) xs
= \{ - defn \ of \ (.) \ - \} 
                              = \{ - defn \ of \ (.) \ - \} 
map f ((x :) xs)
                             (f x :) (map f xs)
= \{- section notation -\} = \{- section notation -\}
                              f x : map f xs
map f (x : xs)
= \{-defn. of map -\}
f x : map f xs
```


not is an involution

The functions not . not and id are equal

Proof: consider any Boolean value x

 \triangleright Case x = False

```
(not . not) False id False
not (not False) False
= \{- defn of not -\}
not True
= \{- defn of not -\}
False
```

 $= \{- defn of (.) -\} = \{- defn. of id -\}$

 \triangleright Case x = True

```
(not . not) True
= \{-as\ above\ -\}
True
```

id True $= \{-defn. of id -\}$ True

Universiteit Utrecht

Faculty of Science Information and Computing Sciences

Case distinction

- ► To prove a property *for all* x, sometimes we need to distinguish the possible shapes that x may take
 - ▶ We need to be exhaustive to cover all cases
- For example,
 - A Boolean may be either True or False
 - A Maybe a value could be Nothing or Just x for some x
 - Given a data type of the form

you need to consider three different cases

Booleans and (&&) form a monoid

1. True is a neutral element: for any Boolean x,

(&&) is associative: for any Booleans x, y, and z,
 x && (y && z) = (x && y) && z

Maybe a forms a monoid

Consider the following operation:

1. Nothing is a neutral element: for any x :: Maybe a,

2. (<|>) is associative

Induction on data types

The case for lists

Every (finite) list is built by finitely many (:)'es appplied to a final []

```
x : (y : (z : ... (w : [])))
```

- Don't bother about (finite) for now
- ▶ What if ...?
 - ightharpoonup we prove a property P for []
 - ightharpoonup given any list xs, we can prove P holds for any list x:xs
- ► The (structural) induction principle for (finite) lists says that the result holds for all finite lists

The case for numbers and trees

 Every finite natural number can be seen as applying the successor function finitely many times to 0

```
4 = Succ (Succ (Succ (Succ Zero)))
```

- ► What if...?
 - ightharpoonup we prove a property P for 0
 - ightharpoonup given a number n, we can prove P for succ n = n + 1
- Every (finite) binary tree is built by finitely many Nodes ultimately applied to Leaf
 - ▶ What if...?
 - ightharpoonup we prove a property P for Leaf
 - given any two trees 1 and r and a value x, we can prove P for Node 1 x r

Structural induction

A strategy for proving properties of strucured data

- 1. State the law
 - a. If we speak about functions, introduce input variables
- 2. Enumerate the cases for one of the variables
 - Usually, one per constructor in the data type
- 3. Prove the base cases by equational reasoning
- 4. Prove the recursive cases
 - a. State the induction hypotheses (IH)
 - b. Use equational reasoning, applying IH when needed

Curry-Howard correspondence

The similarity with the recipe for recursion is **not** accidental

- We can use it to prove properties about programs within the code
 - Languages with theorem proving like Agda, Idris, or Coq
 - ▶ Plug-ins for Haskell such as LiquidHaskell
- Victor will tell you more about this on 25 October

Structural induction for lists

- 1. State the law
 - a. If we speak about functions, introduce input variables
 - b. If needed, choose a variable to perform induction on
- 2. Prove the case [] by equational reasoning
- 3. State the induction hypothesis for xs
- 4. Prove the case x:xs, assuming that the IH holds

map f distributes over (++)

```
For all lists xs and vs
map f(xs ++ ys) = map f xs ++ map f ys
```

Proof: by induction on xs

```
map f [] ++ map f ys
[] ++ map f ys
= \{- defn of (++) -\}
map f ys
```

map f distributes over (++)

map distributes over composition

For all compatible functions f and g,

$$map (f . g) = map f . map g$$

Proof: by extensionality, we need to prove that for all xs

$$map (f . g) xs = (map f . map g) xs$$

map distributes over composition

For all compatible functions f and g, map (f . g) = map f . map g

Proof: by extensionality, we need to prove that for all xs map (f . g) xs = (map f . map g) xsWe proceed by induction on xs

map distributes over composition

```
Case xs = z:zs
     ► IH: map (f . g) zs = (map f . map g) zs
map (f.g) (z:zs)
                         (map f . map g) (z:zs)
= {- defn. of map -}
                         = \{- defn. of (.) -\}
(f.g) z : map (f.g) zs
                        map f (map g (z:zs))
= \{ - defn \ of \ (.) \ - \} 
                   = \{- defn. of map -\}
f(gz): map(f.g)zs
                         map f (g z : map g zs)
                         = \{-defn. of map -\}
                         f(gz): map f(map g zs)
                         = \{ -IH - \}
                         f(gz): map(f.g)zs
```

The functions reverse . reverse and id are equal

Proof: by extensionality we need to prove that for all xs

(reverse . reverse) xs

= reverse reverse xs = id xs

The functions reverse . reverse and id are equal Proof: by extensionality we need to prove that for all xs (reverse . reverse) xs = reverse reverse xs = id xs We proceed by induction on xs

Lemmas

To keep going we defer some parts as lemmas

- ► Similar to local definitions in code
- Lemmas have to be proven separately

In our case, we need the following lemmas

```
-- Distributivity of (++) over reverse
reverse (xs ++ ys) = reverse ys ++ reverse xs
-- Reverse on singleton lists
reverse [x] = [x]
```

Finding the right lemmas involves lots of practice


```
reverse (reverse (z:zs))
= {- defn. of reverse -}
reverse (reverse zs ++ [z])
= {- distributivity -}
reverse [z] ++ reverse (reverse zs)
= {- reverse on singleton -}
[z] ++ reverse (reverse zs)
= \{ -IH - \}
\begin{bmatrix} z \end{bmatrix} ++ zs
                                   id (z : zs)
                                   = {- defn of id -}
= \{- defn of (++) -\}
7. : 7.S
                                   7. : 7.S
```

We still need to prove the lemmas separately


```
Lemma: reverse (xs++ys) = reverse ys ++ reverse xs
Proof: by induction on xs ...
Lemma: reverse [x] = [x]
Proof:
reverse [x]
= {- list notation -}
reverse (x : [])
= {- defn. of reverse -}
reverse [] ++ [x]
= {- defn. of reverse -}
\lceil \rceil ++ \lceil x \rceil
= \{- defn. of (++) -\}
```


[x]

Mathematical induction

- lacktriangle To prove that a statement P holds for all $n\in\mathbb{N}$
 - Prove that it holds for 0
 - lacktriangle Prove that it holds for n+1 assuming that it holds for n
- This strategy is equivalent to structural induction on data Nat = Zero | Succ Nat This encoding is called Peano numbers

Note: there are stronger forms of induction for natural numbers, but we restrict ourselves to the simpler one

Arithmetic using Peano numbers

Addition and multiplication are defined by recursion

```
add :: Nat -> Nat -> Nat
add Zero m = m
        O + m = m
add (Succ n) m = Succ (n + m)
-- (n + 1) + m = (n + m) + 1
mult :: Nat -> Nat -> Nat
mult Zero m = Zero
        0 \times m = 0
mult (Succ n) m = add (mult n m) m
-- (n + 1) \times m = (n \times m) + m
```

0 is right identity for addition

For all natural n, add n Zero = nProof: by induction on n

```
► Case n = Zero
add Zero Zero
= {- defn. of add -}
Zero
```

Some functions over binary trees

```
data Tree a = Leaf | Node (Tree a) a (Tree a)
size t counts the number of nodes
size Leaf = 0
size (Node l _ r) = 1 + size l + size r
mirror t obtains the "rotated" image of a tree
mirror Leaf = Leaf
mirror (Node l x r) = Node (mirror r) x (mirror l)
```

mirror preserves the size

For all trees t, size (mirror t) = size t

mirror preserves the size

```
For all trees t, size (mirror t) = size t

Proof: by induction on t
```

```
► Case t = Leaf
    size (mirror Leaf)
    = {- defn. of mirror -}
    size Leaf
```


mirror preserves the size

```
\triangleright Case t = Node 1 x r
    We get one induction hypothesis per recursive position
    ► IH1: size (mirror 1) = size 1
    ► IH2: size (mirror r) = size r
  size (mirror (Node 1 x r))
  = {- defn. of mirror -}
  size (Node (mirror r) x (mirror 1))
  = \{- defn. of size -\}
  1 + size (mirror r) + size (mirror l)
  = \{- IH1 and IH2 -\}
  1 + size r + size 1
  = {- commutativity of addition -}
  1 + size 1 + size r
  = \{- defn. of size -\}
  size (Node 1 x r)
```


0 is an absorbing element for product

For all natural n, mult n Zero = Zero

Some advice

- Proving takes practice, just like programming
 - So practice
 - Both the book and the lecture notes contain many more examples of inductive proofs
- Inductive proofs are definitely part of the final exam
 - Could be about lists, natural numbers, trees, or some other recursively defined data type