

超低待机功耗交直流转换芯片

<u>概述</u>

PN8135H内部集成了脉宽调制控制器和功率MOSFET,专用于高性能、外围元器件精简的交直流转换开关电源。该芯片提供了极为全面和性能优异的智能化保护功能,包括周期式过流保护(外部可调)、过载保护、软启动功能。通过Hi-mode、Eco-mode、Burst-mode的三种脉冲功率调节模式混合技术和特殊器件低功耗结构技术实现了超低的待机功耗以及全电压范围下的最佳效率。良好的EMI表现由频率调制技术和SoftDriver技术充分保证。该芯片还内置智能高压启动模块,非常适用于DVB和智能电表应用。

特征

- 内置800V高雪崩能力的功率MOSFET
- Hi-mode (60kHz PWM)
- Eco-mode (动态PFM)
- Burst-mode (25kHz间歇工作模式)
- 改善EMI的频率调制技术
- 空载待机功耗 < 50 mW @230VAC
- 软启动技术
- 内置高压启动电路
- 内置线电压补偿和斜坡补偿
- 最大开放式输出功率10W@ 85~265VAC
- 优异全面的保护功能
 - ◆ 过温保护(OTP)
 - ◆ 过载保护(OLP)
 - ◆ 外部电阻可调式周期过流保护(OCP)
 - ◆ 过压保护(OVP)
 - ◆ CS短路保护

应用领域

- 机顶盒电源
- 待机电源
- 智能电表

封装/订购信息

订购代码	封装
PN8135HNSC-T1	DIP-7
PN8135HSEC-R1	SOP-8

典型电路

<u>管脚定义</u>

表 1. 管脚定义

空 田	管脚标号		管脚功能描述
管脚名	SOP-8	DIP-7	
GND	1	1	地
VDD	2	2	工作电压输入引脚
CS	3	3	电流检测引脚
COMP	4	4	反馈引脚
NC	-	5	空脚
SW	5, 6, 7, 8	6, 7	高压MOSFET引脚,跟变压器初级相连

典型功率

表 2. 典型功率

封装	输入电压范围	开放式 ⁽¹⁾
DIP-7	85~265 V _{AC}	10W
SOP-8	85~265 V _{AC}	6W

备注:

1.最大功率在开放式 75℃ 环境下测试。

极限工作范围

VDD 工作电压范围	0.3~32V
SW 脚工作电压范围	0.3~800V
CS,COMP 脚工作电压范围	0.3~5.5V
结工作温度范围	40~150°C
存储温度范围	55~150°C
管脚焊接温度 (10秒)	260℃
封装热阻Rθ _{JC} (DIP-7)	40°C/W
封装热阻Rθ _{JC} (SOP-8)	80°C/W
ESD 能力 ⁽¹⁾ (HBM, JEDEC JS-001-2014)	±4kV
最大漏极脉冲电流(T _{pulse} =100us)	2A
备注: 1. 产品委托第三方严格按照芯片级ESD标准(JEDEC JS-001-2014)中的测试方式和流程进行	测试。

电气特性 (如无其它说明 T_A=25°C, V_{DD}=15 V)

符号	参数	测试条件	最小值	典型值	最大值	单位
功率部分				•		
V _{BVDSS}	功率管耐压	$I_{sw} = 250 \text{uA}, T_J = 25^{\circ}\text{C}$	800			V
I_{OFF}	关态漏电流	$V_{\text{SW}} = 550 \text{ V}, V_{\text{COMP}} = \text{GND}$			100	uA
R _{DS(on)}	功率管导通电阻	I_{SW} =0.4A, V_{COMP} = 3V, T_{J} = 25°C		10		Ω
工作电压部分				1		
V _{SW_START}	启动电压	$V_{COMP} = GND, V_{DD} = 11.8 \text{ V}$	65		110	V
		$V_{SW} = 110 \text{ V}, V_{COMP} = GND,$				
		$V_{\rm DD} = 11.8 \text{ V}$		-1.5		mA
$I_{\mathrm{DD_CH}}$	启动管充电电流	$V_{SW} = 105 \text{ V}$, $V_{COMP} = GND$,		0.6		
		$V_{\rm DD} = 5 \text{ V}$ after fault.		-0.6		mA
V_{DD}	工作电压范围	After turn-on	9		24	V
37	以 工作用拍击压	$V_{CS} = 0V$, $V_{COMP} = 3V$,	2.4		20	V
$ m V_{DD~ovp}$	V _{DD} 工作保护电压	Ramp up V_{DD} until gate is off	24		29	
V _{DD clamp}	V _{DD} 箝位电压	$I_{DD} = 20 \text{mA}$	27	30	32	V
V _{DD on}	欠压锁存退出	$V_{COMP} = GND$	12	13	14	V
$V_{ m DDoff}$	欠压锁存进入	$V_{COMP} = GND$	7.5	8	8.5	V
V _{DDRESATART}		$V_{COMP} = GND$	5		6.5	V
工作电流部分			•			
I_{DD0}	静态工作模式电流	$V_{COMP} = GND$			1.2	mA
I_{DD1}	正常工作模式电流	$V_{COMP} = 3V$			2.5	mA
I _{DD_FAULT}	保护状态工作电流			500	550	uA
$I_{ m DD_OFF}$	欠压状态工作电流	$V_{DD} = 6 \text{ V}$		400	500	uA
COMP 部分			- 1	•		
V _{COMP open}	开环电压		4	4.5		V
V _{COMP_OLP}	过载保护阈值			3.7		V
V _{COMP_ECO}	Eco工作模式阈值	Voltage falling when frequency decrease		2		V
$V_{\mathrm{COMP_bm}}$	Burst模式阈值	Voltage falling		1.2		V
V _{COMP_bm_hys}	Burst模式滞回阈值	Voltage rising		1.3		V
I_{COMP}	COMP短路电流	$V_{COMP} = GND$		-200		uA
Td_olp				64		ms
Avcs				3.3		V/V
电流检测部分	•				•	
T_{SS}	软启动时间			8.5		ms
T _{ON_MIN}	最小导通时间			500		ns
Td	关断延迟时间			150		ns
T _{LEB}	前沿消隐时间			350		ns
V_{th_OC}	限流保护阈值		0.43	0.45	0.47	V
Vocp_clamping	限流箝位电压			0.55		V

符号	参数	测试条件	最小值	典型值	最大值	单位
震荡器部分						
Fosc	开关频率	$V_{COMP} = 3V$	54	60	66	kHz
FD	频率抖动范围			±5		kHz
FM	调制频率			250		Hz
D_{MAX}	最大占空比		70		85	%
F_{Burst}	间歇模式工作频率		21.5	25		kHz
过温保护部分	•					
TSD	过温保护温度		135	150		°C
THYST	过温保护滞回温度			30		°C

典型应用

Rev.A.1901

典型参数曲线

(c) $V_{DD \text{ on}}$ vs T_j

(e) V_{th_OC} vs T_j

(b) B_{VDSS} vs T_j

(d) $V_{DD \text{ off}} \text{ vs } T_j$

(f) F_{OSC} vs T_j

Rev.A.1901

功能描述

1. 启动

在启动阶段,内部高压启动管提供1.5mA电流对外部 V_{DD} 电容进行充电。当 V_{DD} 电压达到13V,芯片开始工作;高压启动管停止对 V_{DD} 电容充电。启动过程结束后,变压器辅助绕组对 V_{DD} 电容提供能量。如果异常情况发生,芯片会进入保护状态并重新启动,此时充电电流变为0.6mA。

2. 软启动

启动阶段,漏极的最大峰值电流限制逐步的提高;可以大大减小器件的应力,防止变压器饱和。软启动时间典型值为8.5ms。

3. 输出驱动

PN8135H采用优化的图腾柱结构,通过合理的输出驱动能力以及死区时间,得到较好的EMI特性和较低损耗。

4. 振荡器

PN8135H的振荡频率固定在60kHz,无需外围电路进行设置。它特有的频率抖动技术,可改善EMI特性。

5. 反馈控制

PN8135H是电流模式控制芯片,通过反馈脚电压跟内部锯齿波相比较从而控制占空比。

6. 过载保护

负载电流超过预设定值时,系统会进入过载保护;在异常情况下,可对系统进行保护。当 V_{COMP} 电压超过 3.7V,经过固定64ms的延迟时间,开关模式停止。

7. 间歇工作模式

PN8135H进入间隙工作模式以减小待机功耗。当负载减轻,反馈电压减小;当COMP脚电压小于 V_{COMP_bm} (典型1.2V),芯片进入间歇工作模式,功率管关断。当COMP脚超过 V_{COMP_bm} 100mV,开关管可再次导通。这种频率控制可消除轻载条件下的音频噪声。

8. 可调过流保护

PN8135H含有逐周期过流保护。开关电流可通过电流检测电阻检测,并可通过设定PN8135H第3脚(CS脚)与GND之间的Rcs电阻进行过流保护点的调节,如图1。

图 1. I_{dlim} vs R_{lim}

9. 降频工作模式

PN8135H提供降频工作模式,通过检测COMP脚电压,在轻载和空载条件下降低开关频率以提高轻载效率。 当COMP脚电压小于VCOMP Eco(典型2V),芯片进入降频工作模式,开关频率随负载降低而降低,直至最 小频率21.5kHz。

10. 线电压补偿

PN8135H提供过流线性补偿,在全电压范围内实现恒定输出功率限制。

11. 斜坡补偿

PN8135H提供斜坡补偿,将电压锯齿信号叠加在采样电流信号上,用于改善系统闭环稳定性。

12. 过温保护

功率MOSFET和控制芯片集成在一起,使得控制电路更易于检测MOSFET的温度。当温度超过150℃,芯 片进入过温保护状态。

<u>封装尺寸</u>(DIP-7)

表 3. DIP-7 封装尺寸

尺寸 符号	最小(mm)	中间值 (mm)	最大(mm)	尺寸 符号	最小(mm)	中间值 (mm)	最大(mm)
A	3.60	3.80	4.00	c1	0.24	0.25	0.26
A1	0.51	-	-	D	9.05	9.25	9.45
A2	3.00	3.30	3.40	E1	6.15	6.35	6.55
A3	1.55	1.60	1.65	e	2.54BSC		
b	0.44	-	0.53	eA	7.62BSC		
bl	0.43	0.46	0.48	eB	7.62	-	9.30
B1		1.52BSC		eC	0	-	0.84
с	0.25	-	0.31	L	3.00	-	-

图 2. 外形示意图

表层丝印	封装	
PN8135H	DIR 7	
YWWXXXXX	DIP-7	

备注: Y: 年份代码; WW: 周代码; XXXXX: 内部代码。

<u>封装尺寸</u> (SOP-8)

表 4. SOP-8 封装尺寸

尺寸 符号	最小(mm)	正常(mm)	最大(mm)	尺寸 符号	最小(mm)	正常(mm)	最大(mm)
A	1.35	1.55	1.75	L	0.45	0.60	0.80
A1	0.10	0.15	0.25	L1	1.04REF		
A2	1.25	1.40	1.65	L2		0.25BSC	
A3	0.50	0.60	0.70	R	0.07	_	
b	0.38	_	0.51	R1	0.07	_	_
bl	0.37	0.42	0.47	h	0.30	0.40	0.50
С	0.17	_	0.25	θ	0°	_	8°
c1	0.17	0.20	0.23	θ1	15°	17°	19°
D	4.80	4.90	5.00	θ2	11°	13°	15°
Е	5.80	6.00	6.20	θ3	15°	17°	19°
E1	3.80	3.90	4.00	θ4	11°	13°	15°
e	e 1.270 (BSC)						

图 3. 外形示意图

表层丝印	封装
PN8135H	COD 0
YWWXXXXX	SOP-8

备注: Y: 年份代码; WW: 周代码; XXXXX: 内部代码

重要声明

无锡芯朋微电子股份有限公司保留更改规格的权利, 恕不另行通知。无锡芯朋微电子股份有限公司对任何将其产品用于特殊目的的行为不承担任何责任, 无锡芯朋微电子股份有限公司没有为用于特定目的产品提供使用和应用支持的义务。无锡芯朋微电子股份有限公司不会转让其专利许可以及任何其他的相关许可权利。