ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Московский институт электроники и математики Им. А.Н.Тихонова НИУ ВШЭ

Департамент компьютерной инженерии

Практическая работа №5
«Разработка конвейерного умножителя в среде Altera Quartus II»
Вариант №13

Выполнил:

Студент группы БИВ174

Солодянкин Андрей Александрович

Проверил:

Романова Ирина Ивановна

Содержание

1	Цел	LPI	3			
2	Зада	ание	ие			
3	Часть 1. «Знакомство со средой проектирования Quartus II. Создание проекта»					
	3.1	Созда	ние проекта	3		
	3.2 Разработка конвейерного умножителя					
		3.2.1	Создание умножителя 8x8 с помощью утилиты Mega Wizard®Plu	ug-		
			in Manager	5		
		3.2.2	Создание 32x16 RAM с помощью утилиты Mega Wizard®Plug-			
			in Manager	7		
		3.2.3	Создание HEX файл с помощью редактора Memory Editor	9		
		3.2.4	Добавление блоков в проект и создание связей	10		
4	Часть 2. «Моделирование проекта в среде Quartus II»					
5	Часть 3. «Компиляция проекта в среде Quartus II. Анализ результатов					
	компиляции»					
	5.1 Компиляция проекта					
	5.2 RTL представление проекта					
	5.3	Редакт	тор chip planner	12		
6	Доп задание		13			
7	Вывод					
Cl	пис	ок ис	ПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	15		

1 Цель работы

Моделирование работы дешифратора, изучение карт Карно.

2 Задание

- 1. Выполнить действия, описанный в практической работе 5 Часть 1, 2, 3;
- 2. Оформить отчет, который должен включать: титульный лист, введение и постановку задачи, тему работы, описание всех этапов выполнения проекта, скриншоты (рисунки с подрисуночными подписями) ключевых моментов, выводы;
- 3. Изменить схему устройства добавив собственный блок памяти. Объяснить работу устройства;
- 4. Изменить схему устройства добавив арифметический блок. Объяснить работу устройства.

3 Часть 1. «Знакомство со средой проектирования Quartu II. Создание проекта»

3.1 Создание проекта

Для начала необходимо открыть Quartus, открываем его.

Далее заходим в меню File и выбираем New Project Wizard. В открывшемся окне жмем Next, в следующем выбираем директорию для проекта и вводим имя проекта, жмем 2 раза Next.

В следующем окне выбираем все как на рис. 1 и жмем далее 2 раза.

Рис. 1: Создание нового проекта

На последнем шаге должны получится значения как на рис. 2.

When you click Finish, the project will be created with the following settings:					
Decided for storm					
Project directory:					
D:/repos/hse_SoC_labs/II/Lab5/					
Project name:	try1				
Top-level design entity:	try1				
Number of files added:	0				
Number of user libraries added:	0				
Device assignments:					
Family name:	Cyclone II				
Device:	EP2C5F256C6				
EDA tools:					
Design entry/synthesis:	<none></none>				
Simulation:	<none></none>				
Timing analysis:	<none></none>				
Operating conditions:					
Core voltage:	1.2V				
Junction temperature range:	0-85 °C				

Рис. 2

3.2 Разработка конвейерного умножителя

3.2.1 Создание умножителя 8x8 с помощью утилиты Mega Wizard®Plug-in Managei

Для создания необходимо в меню выбрать Tools > Mega Wizard Plug-in Manager, в открывшемся окне выбираем опцию Create a new custom megafunction variation. Далее в папке Arithmetics выбираем LPM_MULT (рис. 3). Семейство микросхем выбираем Cyclone II.

Рис. 3: Создание мегафункции

Поля dataa и datab на рис. 4 оставляем по 8 бит. Жмем next 2 раза.

Рис. 4: Создание мегафункци

Далее в первом окне выбираем yes и вводим число 2 (рис. 5), нажимаем next 2 раза.

Рис. 5: Создание мегафункци

На текущем окне (рис. 6) выбираем все в соответствии с рисунком и жмем на finish. После этого мегафункция готова.

Рис. 6: Создание мегафункци

3.2.2 Создание 32х16 RAM с помощью утилиты Mega Wizard®Plug-in Manager

Для создания необходимо в меню выбрать Tools > Mega Wizard Plug-in Manager, в открывшемся окне выбираем опцию Create a new custom megafunction variation. Далее в папке Memory Compiler выбираем RAM: 2-PORT (рис. 7). Семейство микросхем выбираем Cyclone II.

Рис. 7: Создание мегафункци RAM

На следующей странице ничего не нажимаем, жмем только на next.

На странице Widths/Blk Туре необходимо установить разрядность входного порта data a 16 bit (рис. 8). После этого жмем Next 2 раза.

Рис. 8: Создание мегафункци RAM

Ha странице Regs/Clkens/Aclrs отключем опцию Read output port(s) 'q' (рис. 9). Больше ничего не трогаем, жмем Next 2 раза.

Рис. 9: Создание мегафункци RAM

На странице Mem Init выбираем yes и указываем имя файла ram.hex (рис. 10). После этого жмем Next.

Рис. 10: Создание мегафункци RAM

Последние шаги совпадают с шагами для создания умножителя.

3.2.3 Создание HEX файл с помощью редактора Memory Editor

Вменю File выбираем команду New, в открывшемся окне выбираем Other Files и выбираем Hexadecimal (Intel-Format) File. В открытом окне вводим 32 и 16.

Рис. 11: Создание НЕХ файла

Получаем следующий файл рис. ??

Рис. 12: НЕХ файл

Заполняем файл при помощи функции Custom Fill Cells.

3.2.4 Добавление блоков в проект и создание связей

Создаем схему и подтягиваем туда созданные ранее мегафункции (рис. 13).

Рис. 13: Итоговая схема

4 Часть 2. «Моделирование проекта в среде Quartus II»

Создадим модуляцию проекта при помощи University Program VWF. Добавим пины: clk, wren, data, datab, rdaddres, wraddres, q.

Рис. 14: Результат модуляции проекта

5 Часть 3. «Компиляция проекта в среде Quartus II. Анализ результатов компиляции»

5.1 Компиляция проекта

Скомпилируем проект, результат компиляции представлен на рис. 15.

Flow Status	In progress - Thu May 07 21:05:39 2020
Quartus Prime Version	17.1.0 Build 590 10/25/2017 SJ Lite Edition
Revision Name	try2
Top-level Entity Name	pipe
Family	Cyclone V
Device	5CGXFC9D6F27C7
Timing Models	Final
Logic utilization (in ALMs)	N/A
Total registers	48
Total pins	44
Total virtual pins	0
Total block memory bits	512
Total DSP Blocks	1
Total HSSI RX PCSs	0
Total HSSI PMA RX Deserializers	0
Total HSSI TX PCSs	0
Total HSSI PMA TX Serializers	0

Рис. 15: Результаты компиляции проекта

5.2 RTL представление проекта

На рис. 16 RTL представление проекта.

Рис. 16: RTL представление

Внутренности гат (рис. 17), внутри он состоит из 16 однобитных регистров.

Рис. 17: Внутренности гат

5.3 Редактор chip planner

Нажмем правой кнопкой на элемент однобитного элемента ram, далее Locate Node -> Locate in Chip planner. Результат представлен на рис. 18.

Рис. 18: Отображение связей элемента

6 Доп задание

Изменим схему, вместо первого числа поставим счетчик, а вместо двухпортовой памяти поставим однопортовую (рис. 19).

Рис. 19: Блок схема доп задания

Результаты компиляции проекта (рис. 20)

Flow Status	Successful - Thu May 07 23:02:28 2020
Quartus Prime Version	17.1.0 Build 590 10/25/2017 SJ Lite Edition
Revision Name	try2
Top-level Entity Name	dop
Family	Cyclone V
Device	5CGXFC9D6F27C7
Timing Models	Final
Logic utilization (in ALMs)	5 / 113,560 (< 1 %)
Total registers	8
Total pins	32 / 378 (8 %)
Total virtual pins	0
Total block memory bits	1,024 / 12,492,800 (< 1 %)
Total DSP Blocks	1 / 342 (< 1 %)
Total HSSI RX PCSs	0/9(0%)
Total HSSI PMA RX Deserializers	0/9(0%)
Total HSSI TX PCSs	0/9(0%)
Total HSSI PMA TX Serializers	0/9(0%)
Total PLLs	0 / 17 (0%)
Total DLLs	0 / 4 (0 %)

Рис. 20: Результат компиляции доп задания

Временная диаграмма доп задания (рис. 21).

Рис. 21: WVF диаграмма

RTL представление доп задания (рис. 22).

Рис. 22: RTL представление

Связи на Chip Planner (рис. 23).

Рис. 23: Отображение связей элемента

7 Вывод

В ходе проделанной работы было создано 2 проекта арифметических устройств с памятью.

Были созданы мегафункции умножителя, счетчика одно- и дву- портовые элементы памяти при помощи Mega Wizard Plug-in Manager.

Схема была протестированы при помощи WaveForm, были рассмотрены схемы, полученные при помощи Chip planner.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Vijayakumar P., Vijayalakshmi V., Zayaraz G. Comparative study of hyperelliptic curve cryptosystem over prime field and its survey //International Journal of Hybrid Information Technology. − 2014. − T. 7. − №. 1. − C. 137-146.
- 2. Антонов А., Филиппов А., Золотухо Р. Средства системной отладки САПР Quartus II //Компоненты и технологии. -2008. -№. 89.