טורינ

. תהי $\left\{a_n^{}\right\}_{n=0}^{\infty}$ סדרת מספרים

 $\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + \dots$ יטור הוא הסכום האינסופי

 $S_n = \sum_{k=0}^n a_k = a_0 + a_1 + \ldots + a_n$ סדרת סכומים חלקיים היא הסכום הסופי

טור מתכנס אם קיים גבול סופי $\lim_{n \to \infty} S_n = S$ לסדרת הסכומים אם קיים, ואז סכום

. אם הגבול של S_n לא קיים או אינסופי זהו טור מתבדר. $S=\sum_{n=0}^{\infty}a_n$ הטור הוא

 $\displaystyle \lim_{n o \infty} a_n = 0$ מתכנס, אז מתקיים $\displaystyle \sum_{n=0}^{\infty} a_n$ אם הטור: אם הטור הכרחי להתכנסות טורים: מכונות נוספות של טורים:

א. הורדת/הוספת מספר סופי של אברים אינה משפיעה על התכנסות/התבדרות הטור.

. ב. אם $\sum_{n=0}^{\infty} ca_n$ מתכנסים או מתבדרים ביחד. ב. אם $\sum_{n=0}^{\infty} a_n$ הטורים הטורים ביחד.

 $\sum_{n=0}^{\infty}(a_n\pm b_n)=\sum_{n=0}^{\infty}a_n\pm\sum_{n=0}^{\infty}b_n$. אם 2 טורים מתכנסים אז גם סכומם מתכנסי

טורים חיוביים

- . $a_n,b_n\geq 0$ המבחנים להלן מניחים שהטורים הם אי שליליים \star
- . עבור סדרה חיובית, סדרת הסכומים החלקים S_n היא מונוטונית עולה. \star

 $a_n \leq b_n$ שני טורים חיוביים, המקיימים $\sum_{n=0}^\infty b_n$ -ו $\sum_{n=0}^\infty a_n$ יהיו: יהיו יהיו יהיו המחומת מסוים

- . אם הטור $\displaystyle\sum_{n=0}^{\infty}a_n$ מתכנס, אז גם הטור מתכנס מתכנס $\displaystyle\sum_{n=0}^{\infty}b_n$
- . אם הטור $\sum_{n=0}^{\infty}b_n$ מתבדר, אז גם הטור מתבדר, אם הטור $\sum_{n=0}^{\infty}a_n$

 $\lim_{n \to \infty} \frac{a_n}{b_n} = k$ מבחוַ השוואה שני: נסמן

- . אם מתכנסים או מתבדרים הא $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ אז הטורים , $0 < k < \infty$ אם א
- . אם השוואה השוואה האוואה ראשון ת ל ח האוואה השוואה האוואה האוואה ת ל הש $a_{\scriptscriptstyle n} \leq b_{\scriptscriptstyle n}$, k=0
- . אם במבחן השוואה האשור ת ל השתמש המבחן השוואה ת ל השתמש הא האוואה האשוו ה א ל הש $b_n \leq a_n$.

 $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$ מבחן דלמבאר: נסמן

- . אם L < 1 אז הטור מתכנס
- אם L>1 אז הטור מתבדר.
 - אם L=1 אם \cdot

, $\lim_{n\to\infty} \sqrt[n]{a_n} = L$ נסמן (נסמן: מבחן קושי:

- . אם L < 1 אז הטור מתכנס.
- . אם L>1 אז הטור מתבדר
 - . אם L=1 , לא ניתן לדעת

- פר ש , $\left[k,\infty
ight)$ פונקציה חיובית יורדת בקטע פר $\left[k,\infty
ight)$, כך ש

. אז הטור $\sum_{n=k}^{\infty} a_n$ והאינטגרל $\sum_{n=k}^{\infty} a_n$ מתכנסים או מתבדרים ביחד. $a_n = f(n)$

טורים כלליים

.00טור $\displaystyle\sum_{n=0}^{\infty} |a_n|$ נקרא $\displaystyle\frac{$ מתכנס בהחלט, אם הטור אם בקרא $\displaystyle\sum_{n=0}^{\infty} a_n$ טור

טור $\sum_{n=0}^{\infty} |a_n|$ נקרא $\frac{\mathbf{a} \mathbf{n} \mathsf{cco}}{\mathbf{a} \mathsf{n}}$, אם הוא מתכנס, אבל הטור אם נקרא $\sum_{n=0}^{\infty} a_n$

משפט: טור מתכנס בהחלט הינו טור מתכנס.

 $\sum_{n=0}^{\infty} (-1)^n a_n \quad , a_n > 0 \; :$ טור מחליף סימן הוא טור שאיבריו מחליפים סימן לסירוגין

:משפט לייבניץ: תהי $\left\{a_n
ight\}_{n=0}^\infty$ חדרה חיובית יורדת לאפס, אז

- .02 מתכנס. $\sum_{n=0}^{\infty} (-1)^n a_n$ מתכנס. .1
- . $\left|S-S_{n}\right|=\left|r_{n}\right|< a_{n+1}$ מקיימת: $r_{n}=\sum_{k=n+1}^{\infty}\left(-1\right)^{k}a_{k}$.2

 $c \ll (\ln n)^b \ll n^p \ll a^n \ll n! \ll n^n$ בדרי גודל:

a>1 , b,c,p>0 כאשר הקבועים מקיימים

 $n! \approx \frac{n^n \sqrt{2\pi n}}{e^n}$ ווסחת סטירלינג:

טורי חזקות

 a_n סביב. $\sum_{n=0}^{\infty}a_nig(x-x_0ig)^n$ הינו טור מהצורה הינו טור מהצורה מהצורה וויים.

. עבורו: מספר לכל טור קיים מספר מנקרא אונקרא החכנסות הטור, עבורו: לכל עבור אור אור מספר לכל מור קיים מספר מחום החכנסות:

- .(בהחלט) טור החזקות מתכנס (בהחלט) $\left|x-x_{0}
 ight| < R$ כאשר
 - . כאשר $|x-x_0|>R$ טור החזקות מתבדר
- בקצוות $x_0\pm R$ בודקים ישירות על ידי הצבה בטור.

משפט <u>Cauchy – Hadamard:</u>: את רדיוס ההתכנסות של טור חזקות ניתן למצוא לפי כל אחת מהנוסחאות הבאות:

$$\frac{1}{R} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a} \right| \qquad \frac{1}{R} = \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}$$

. הוא הגבול העליון של הסדרה $\overline{\lim_{n o \infty}} \sqrt[n]{|a_n|}$

משפט: בתחום ההתכנסות של טור חזקות ניתן לבצע אינטגרציה איבר-איבר, גזירה איבר-איבר ולעבור לגבול בנקודה מסוימת איבר-איבר, כלומר:

$$\int_{a}^{b} f(x)dx = \sum_{n=0}^{\infty} a_{n} \int_{a}^{b} (x - x_{0})^{n} dx$$

$$\frac{df(x)}{dx} = \sum_{n=1}^{\infty} a_{n} \frac{d(x - x_{0})^{n}}{dx} = \sum_{n=1}^{\infty} n a_{n} (x - x_{0})^{n-1}$$

$$\lim_{x \to c} f(x) = \sum_{n=0}^{\infty} a_{n} \lim_{x \to c} (x - x_{0})^{n} = \sum_{n=0}^{\infty} a_{n} (c - x_{0})^{n}$$

, $f\left(x
ight)$ מתכנס בקטע מסוים לפונקציה $\sum_{n=0}^{\infty}a_{n}\left(x-x_{0}
ight)^{n}$ מתכנס באם טור חזקות

. $a_n = \frac{f^{(n)}(x_0)}{n!}$: מלומר מתקיים: $a_n = \frac{f^{(n)}(x_0)}{n!}$ בסביבה של

<u>טורי טיילור יסודיים</u>

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots \qquad x \in (-1,1)$$

$$e^{x}$$
 = $\sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$ $x \in \mathbb{R}$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \qquad x \in \mathbb{R}$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots \qquad x \in \mathbb{R}$$

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots \qquad x \in (-1,1]$$

$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots \qquad x \in [-1,1]$$

פונקציות במספר משתנים

 (x_0,y_0) בנקודה f(x,y) בנקודה L הינו גבול של פונקציה בנקודה Lורושמים $\delta>0$, $\delta>0$ קיים $\varepsilon>0$, $\lim_{(x,y)\to(x_0,y_0)}f(x,y)=L$ ורושמים

.
$$\left|f\left(x,y\right)\!-\!L\right|\!<\!\varepsilon$$
 מתקיים , $0\!<\!\left\|\!\left(x,y\right)\!-\!\left(x_{\!\scriptscriptstyle 0},y_{\!\scriptscriptstyle 0}\right)\!\right\|\!<\!\delta$

בעיפות (x_0,y_0) בקראת רציפה בנקודה f(x,y) אם f(x,y) אם

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

נגזרות חלקיות מוגדרות ע"י הגבולות:

$$\begin{split} \frac{\partial f}{\partial x}(x_0, y_0) &= f_x(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} \\ \frac{\partial f}{\partial y}(x_0, y_0) &= f_y(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h} \end{split}$$

של פונקציה החלקיות הוא וקטור (x_0,y_0) בנקודה בנקודה f(x,y) של פונקציה של $\overrightarrow{grad}(f) = \overrightarrow{\nabla} f = (f_x, f_y)$: (x_0, y_0) בנקודה f(x, y)

אם f(x,y), אם נוקציה פונקציה נקראת f(x,y) נקראת f(x,y) אם דיפרנציאביליות: $f(x_0 + \Delta x, y_0 + \Delta y) =$

$$=f(x_0,y_0)+A\cdot\Delta x+B\cdot\Delta y+r(\Delta x,\Delta y)\cdot\sqrt{\Delta x^2+\Delta y^2}$$

$$\lim_{(\Delta x,\Delta y) o (0,0)}r(\Delta x,\Delta y)=0$$
 כאשר

משפט: אם פונקציה זו היא דיפרנציאבילית דיפרנציאביל $f\left(x,y\right)$ אם פונקציה אם משפט: אם דיפרנציאבילית אם דיפרנציאבילית בנקודה או היא רציפה והנגזרות החלקיות שלה קיימות. נגזרות אלו הן הקבועים מההגדרה, ז"א:

$$A = f_x(x_0, y_0)$$
 $B = f_y(x_0, y_0)$

משפט: אם עבור פונקציה $f\left(x,y
ight)$ הנגזרות החלקיות קיימות ורציפות בסביבת . נקודה, אז $f\left(x,y
ight)$ דיפרנציאבילית בנקודה

דיפרנציאבילית בנקודה (x_0,y_0) , אז החלק דיפרנציאבילית פונקציה f(x,y), אז החלק הליניארי של שינוי הפונקציה נקרא דיפרנציאל, כלומר

$$df(x_0, y_0) = f_x(x_0, y_0) \cdot \Delta x + f_y(x_0, y_0) \cdot \Delta y$$

 $\|\vec{s}\|=1$, $\vec{s}=(a,b)$ בכיוון בנקדת $f\left(x,y\right)$ בנקודה בנקודה לנגזרת כיוונית של פונקציה בנקדה ביקודה ביקודה ביקודה של פונקציה ביקודה ביקודה ביקודה ביקודה של פונקציה ביקודה ב

(כלומר
$$\vec{s}$$
 וקטור יחידה) מוגדרת על ידי הגבול:
$$\frac{\partial f}{\partial \vec{s}}(x_0,y_0)=\lim_{h\to 0}\frac{f(x_0+ah,y_0+bh)-f(x_0,y_0)}{h}$$

אז $\|\vec{s}\| = 1$ ו, (x_0, y_0) אז דיפרנציאבילית בנקודה f(x, y) אז אם פונקציה משפט:

$$\frac{\partial f}{\partial \vec{s}}(x_0, y_0) = \vec{\nabla} f \cdot \vec{s}$$

 (x_0,y_0) בנקודה f(x,y) בנקודה של פונקציה דיפרנציאבילית בנקודה הכיוונית של $\vec{s} = \nabla f(x_0, y_0)$ היא מקסימלית בכיוון הגרדיאנט, ז"א בכיוון

מאונך (x_0,y_0) בנקודה f(x,y) מאונך ביפרנציאבילית של פונקציה של פונקציה אונך . לקו גובה של f בנקודה זו

ותהינה $\left(x_0,y_0
ight)$ דיפרנציאבילית בסביבה של $f\left(x,y
ight)$ ותהינה $\left(u_{0},v_{0}
ight)$ של בסביבה דיפרנציאביליות פונקציות y=y(u,v) , x=x(u,v)אז הפונקציה . $x_0 = x(u_0, v_0), \quad y_0 = y(u_0, v_0)$ המורכבת ומתקיים: (u_0, v_0) של בסביבה דיפרנציאבילית דיפרנציאבילית f(x(u, v), y(u, v))

$$f_u = f_x \cdot x_u + f_y \cdot y_u$$
 $f_v = f_x \cdot x_v + f_y \cdot y_v$

נגזרות מסדר גבוה הן נגזרות חלקיות של נגזרות חלקיות, למשל

$$f_{xx} = (f_x)_x$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right)$$

משפט: אם לפחות אחת מהנגזרות המעורבות מסדר גבוה $\,f_{\scriptscriptstyle yx}\,$ או $\,f_{\scriptscriptstyle xy}\,$ קיימת ורציפה . $f_{xy} = f_{yx}$ בנקודה, אז גם הנגזרת המעורבת השנייה קיימת ורציפה ומתקיים

. תוצאה דומה נכונה עבור נגזרות מעורבות מסדר גבוה יותר.

ויהיו , (x_0,y_0) שיים בסביבה עמים דיפרנציאבילית f(x,y) דיפרנציאבילית f(x,y)אז מתקיים , $x=x_0+\Delta x$, $y=y_0+\Delta y$

$$f(x,y) = \sum_{n=0}^{n} \frac{d^{n} f(x_{0}, y_{0})}{n!} + R_{n}(x_{0}, y_{0})$$

$$d^{n} f = d \left(d^{n-1} f \right) = \left(\frac{\partial}{\partial x} \Delta x + \frac{\partial}{\partial y} \Delta y \right)^{n} f(x, y)$$
$$R_{n}(x_{0}, y_{0}) = d^{n+1} f(c, d)$$

. y – בין y_0 לבין d – וx לבין x_0 לבין c עבור

נורמל ומישור משיק למשטח • משמעות דיפרנציאביליות – קיום מישור משיק

 \vec{n} , על משטח כלשהו עם נורמל P_0 $\vec{n} \perp (\underline{x} - P_0)$ נקודה \underline{x} על המישור המשיק תקיים

משטח נתון בצורה מפורשת z=f(x,y), משטח נתון בצורה מפורשת .1 בנקודה , $n=(-f_x,-f_y,1)$ הנורמל למשטח הוא המישור . $P_0(x_0,y_0)$ המשיק למשטח בנקודה זו:

$$-f_x(P_0)\cdot(x-x_0)-f_y(P_0)\cdot(y-y_0)+z-f(x_0,y_0)=0$$

בנקודה F כאשר F ביפרנציאבילית בנקודה סתומה סתומה F(x,y,z)=0. ומשוואת , $\vec{n} = \vec{\nabla} F = (F_x, F_y, F_z)$ ומשוואת . $P_0(x_0, y_0, z_0)$ המישור המשיק למשטח בנקודה זו:

$$F_x(P_0) \cdot (x - x_0) + F_y(P_0) \cdot (y - y_0) + F_z(P_0) \cdot (z - z_0) = 0$$

קיצון של פונקציות במספר משתנים

כך שלכל (x_0,y_0) אם קיימת סביבה של (x_0,y_0) כך שלכל (x_0,y_0) כך שלכל . $f(x,y) \ge f(x_0,y_0)$ בסביבה זו מתקיים (x,y)

קס (x_0,y_0) אם קיימת סביבה של (x_0,y_0) של לוע (x_0,y_0) כך . $f(x, y) \le f(x_0, y_0)$ שלכל (x, y) בסביבה זו מתקיים

 $\overrightarrow{\nabla} f(x_0, y_0) = (0, 0)$ אם $\overrightarrow{\nabla} f(x_0, y_0)$ אם (x_0, y_0) אם (x_0, y_0) אם לא קיים או אז היא , f(x,y) אז פונקציה (x_0,y_0) אז היא :Fermat משפט

<u>סיווג נקודות קיצון מקומי:</u>

נקודה קריטית.

תהי (x_0,y_0) נקודה חשודה לקיצון. נגדיר

$$\Delta(x_0, y_0) = \begin{vmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{xy}(x_0, y_0) & f_{yy}(x_0, y_0) \end{vmatrix}$$

- :אם (x_0,y_0) אז אז ($\Delta(x_0,y_0)>0$) אם $\Delta(x_0,y_0)>0$
- אם מינימום מקומי. $f_{xx}(x_0,y_0)>0$ אם
- . אם $f_{xx}(x_0, y_0) < 0$ אם זוהי נקודת מקסימום מקומי
- . (אין קיצון) נקודת אוכף (x_0, y_0) אז $\Delta(x_0, y_0) < 0$ אם $\Delta(x_0, y_0) < 0$

 $(x,y) \in D$ אם לכל , D בתחום f של (x_0,y_0) של לכל $f(x,y) \ge f(x_0,y_0)$ מתקיים

 $(x,y)\in D$ אם לכל , D בתחום f של (x_0,y_0) של לכל $f(x,y) \le f(x_0,y_0)$ מתקיים

תחום D חסום וסגור. הוא תחום D

ערך D מקבלת ערך בתחום קומפקטי פונקציה רציפה (**Weierstrass** שפט : $\,$. $D\,$ מינימלי וערך מקסימלי בתוך $\,$, או על השפה של

תחת אילוץ f(x,y) מקומי של (x_0,y_0) נקודת קיצון מקומי של (x_0,y_0) מחת אילוץ אם היא נקודת קיצון של f בקבוצת כל הנקודות המקיימות את תנאי , g(x,y)=0

g(x,y)=0 תחת אילוץ f(x,y) שיטת כופלי לגרנג': למציאת קיצון של . $F(x,y,\lambda) = f(x,y) - \lambda \cdot g(x,y)$ מגדירים פונקציית לגרנג':

הנקודות החשודות לקיצון תחת אילוץ הינן נקודות קריטיות של F , ז"א נקודות בהן אחת הנגזרות החלקיות לא קיימת, או שמתקיים:

$$\vec{\nabla}F = 0 \quad \Leftrightarrow \quad \begin{cases} F_x = 0 \\ F_y = 0 \\ F_{\lambda} = 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} f_x = \lambda g_x \\ f_y = \lambda g_y \\ g = 0 \end{cases}$$

• ניתן להרחיב את שיטת לגרנג' לפונקציות עם יותר משתנים ולבעיות קיצון עם יותר $F(x,y,\lambda_1,\lambda_2)=f(x,y)-\lambda_1\cdot g_1(x,y)-\lambda_2\cdot g_2(x,y)$ אילוצים, למשל

אינטגרל כפול ואינטגרל משולש

הוא D פונקציה רציפה למקוטעין בתחום מישורי f(x,y) אינטגרל כפול || f(x, y) dA

משפט פוביני: ניתן לחשב את האינטגרל באמצעות אינטגרלים חוזרים:

הוא G פונקציה רציפה למקוטעין פונקציה f(x,y,z) של $. \iiint f(x, y, z) dV$

ניתן לחשב את האינטגרל באמצעות אינטגרלים חוזרים, למשל:

$$G: \begin{cases} a \le x \le b \\ g(x) \le y \le h(x) \\ m(x, y) \le z \le k(x, y) \end{cases}$$

$$\iiint\limits_{G} f(x, y, z)dV = \int\limits_{a}^{b} \int\limits_{g(x)}^{h(x)} \int\limits_{m(x, y)}^{k(x, y)} f(x, y, z)dzdydx$$

יישומים של אינטגרל כפול ומשולש

 $:\!D$ שטח של תחום מישורי

 $:\!G$ של גוף מרחבי

 $Area(D) = \iint dA$

 $Volume(G) = \iiint dV$

 $:G = \{(x,y,z) | (x,y) \in D, g(x,y) \le z \le f(x,y) \}$ בפרט עבור תחום

$$Volume(G) = \iint_{\mathbb{R}} (f(x, y) - g(x, y)) dA$$

 $m(D) = \int_{\mathbb{R}} \rho(x,y) dA : \rho(x,y)$ בעלת צפיפות D בעלת מישורית

 $mig(Gig) = \iiint
ho(x,y,z) dV \ :
ho(x,y,z)$ בעל צפיפות בעל בפיפות של גוף מרחבי בעל בפיפות

$$z_{cm} = \dfrac{\iint\limits_{G} x \cdot
ho dV}{m(G)}$$
 $y_{cm} = \dfrac{\iint\limits_{G} y \cdot
ho dV}{m(G)}$ $z_{cm} = \dfrac{\iint\limits_{G} z \cdot
ho dV}{m(G)}$

<u>החלפת משתנים באינטגרל כפול</u>

החום התחום החולפת משתנים היא העתקה $(x,y) \rightarrow (u,v)$ המעתיקה את

$$J=rac{D(x,y)}{D(u,v)}=egin{array}{cc} x_u & x_v \ y_u & y_v \ \end{pmatrix}$$
 ולה מוגדר היעקוביאן , $D_{xy}\mapsto D_{uv}$

 $(u,v) \rightarrow (x,y)$ אם בהחלפת משתנים $J \neq 0$, אז קימת העתקה הופכית משתנים משפט:

$$J^{-1}=rac{1}{J}$$
 מקיים $J^{-1}=rac{D(u,v)}{D(x,y)}=egin{array}{cc} u_x & u_y \ v_x & v_y \ \end{pmatrix}$ שהיעקוביאן שלה

$$\iint_{D_{xy}} f(x, y) dx dy = \begin{bmatrix} \left\{ x = x(u, v) \\ y = y(u, v) \right\}, & u, v \in D_{uv} \end{bmatrix}, \quad J = \frac{D(x, y)}{D(u, v)}$$

$$= \iint_{D_{uv}} f(x(u, v), y(u, v)) |J| du dv$$

$$\begin{cases} x = ra\cos\theta \\ y = rb\sin\theta \end{cases}, \quad J = abr \quad , \quad 0 \le r \le 1 \\ \quad 0 \le \theta \le 2\pi \end{cases}$$

<u>החלפת משתנים באינטגרל מש</u>ולש

החום את העתיקה (x,y,z) o (u,v,w) המעתיקה את התחום אז ההעתקה $J \neq 0$ אם ה $J = \dfrac{D(x,y,z)}{D(u,v,w)}$ ולה מוגדר היעקוביאן ולה $G_{xyz} \mapsto G_{uvw}$

$$J = \begin{vmatrix} x_u & x_v & x_w \\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{vmatrix} , \quad J^{-1} = \begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix} , \quad J^{-1} = \frac{1}{J}$$

$$\iiint_{G_{xyz}} f(x, y, z) dV_{xyz} = \begin{cases} x = x(u, v, w) & u, v, w \in G_{uvw} \\ y = y(u, v, w), \\ z = z(u, v, w) & J = \frac{D(x, y, z)}{D(u, v, w)} \end{cases}$$

$$= \iiint_{G_{uvw}} f(x(u, v, w), y(u, v, w), z(u, v, w)) |J| dV_{uvw}$$

$x = r \cos \theta$ $y = r \sin \theta$, J = r

. \mathcal{Z} - המרחק מציר - r. x זוית ההיטל עם הכיוון החיובי של ציר - heta

. xy מרחק ממישור - z

$$x^2 + y^2 = r^2$$
 מתקיים

$\int x = r \cos \theta \sin \varphi$ $\begin{cases} y = r \sin \theta \sin \varphi , J = r^2 \sin \varphi \end{cases}$ $z = r \cos \varphi$

. המרחק מהראשית - r

. x זוית ההיטל עם הכיוון החיובי של ציר - heta. z זווית עם הכיוון החיובי של ציר - arphi

 $x^2 + y^2 + z^2 = r^2$ מתקיים

אינטגרל קווי

הנתונה $ec{r}:[a,b]
ightarrow C$ העתקה של עקומה חלקה במרחב במרחב של עקומה הלקה

$$C: \vec{r}(t) = (x(t), y(t), z(t)) \quad , \quad t \in [a, b]$$

 $A=\vec{r}(b)$, ונקודת הסיום היא א בפרמטריזציה נקודת ההתחלה היא $A=\vec{r}(a)$ בפרמטריזציה נקודת ההתחלה היא

אינטגרל קווי מסוג I

תהי f(x,y,z) פונקציה מוגדרת לאורך

$$\int_{C} f(x, y, z) dt = \int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{x'(t)^{2} + y'(t)^{2} + z'(t)^{2}} dt$$

. נוסחה דומה תקפה עבור עקומה מישורית.

<u>יישומים של אינטגרל קווי מסוג I</u>

 $length(C) = \int_{C} dl$: C אורך של עקומה

$$m(C) = \int\limits_{C} \rho(x,y,z) dl$$
 : $\rho(x,y,z)$ בעלת צפיפות C בעלת ידעקומה : $\rho(x,y,z)$

אינטגרל קווי מסוג II

המוגדר המוגדר $\overrightarrow{F}(x,y,z) = \left(P(x,y,z),Q(x,y,z),R(x,y,z)
ight)$ יהי לאורך $d\vec{r} = (dx, dy, dz)$, ונסמן , C

$$\int_{C} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{C} Pdx + Qdy + Rdz =$$

$$= \int_{a}^{b} \overrightarrow{F} (x(t), y(t), z(t)) \cdot (x'(t), y'(t), z'(t)) dt =$$

$$= \int_{a}^{b} (P \cdot x' + Q \cdot y' + R \cdot z') dt$$

- נוסחה דומה תקפה עבור עקומה מישורית. $\int\limits_{A\to B}\overrightarrow{F}\cdot d\overrightarrow{r}=-\int\limits_{B\to A}\overrightarrow{F}\cdot d\overrightarrow{r}\ \ \star$

יישומים של אינטגרל קווי מסוג II

עבודה של שדה כוחות \overrightarrow{F} במעבר חלקיק לאורך מסלול , C , או שטף שדה \overrightarrow{F} דרך $1.\sqrt{ec{F}\cdot dec{r}}$ עקומה C מחושבת ע"י

<u>מסלול בכיוון חיובי</u> הוא מסלול סגור שבמעבר לאורכו התחום החסום נמצא משמאלו. משפט Green: יהי F = (P,Q) שדה מישורי בעל רכיבים גזירים ברציפות בתחום: בעל שפה חלקה למקוטעין C מכוונת בכיוון החיובי, אז D

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_D (Q_x - P_y) dx dy$$

- . שפה $\, C \,$ יכולה להיות מורכבת ממספר מסילות זרות.
- $Area(D) = \frac{1}{2} \oint -y dx + x dy$ עבור תחום כנ"ל מתקיים: *

בתחום $\overrightarrow{F}=(P,Q,R)$ בתחום D בתחום בתחום $\overrightarrow{F}=(P,Q)$ מרחבי), הוא שדה שקימת לו $\frac{\mathbf{p}}{\mathbf{p}}$ פונקציית פוטנציאל \mathbf{p} דיפרנציאבילית ב- \mathbf{p} , כך . $\nabla \varphi = F$ שמתקיים

הטענות D שדה בעל רכיבים דיפרנציאביליים בתחום שהילויות: עבור \overrightarrow{F}

- .שדה משמר \overrightarrow{F} (1)
- (כלומר $\nabla \varphi = \overrightarrow{F} \varphi$, כך ש $\overline{V} = \overline{V}$ (כלומר $\overline{V} = \overline{V}$. במרחב) $\varphi_x=P, \quad \varphi_y=Q, \quad \varphi_z=R$ במרחב) במישור, או $\varphi_x=P, \quad \varphi_y=Q$
 - $.\oint \overrightarrow{F}\cdot d\overrightarrow{r}=0$ מתקיים D בתוך בתוך (3)
- לא תלוי במסלול $\int F\cdot d\vec{r}$ לא תלוי במסלול ,D בתוך A,B לכל שתי נקודות . $\int\limits_{A o B} \overrightarrow{F} \cdot d\overrightarrow{r} = \varphi(B) - \varphi(A)$ המחבר בין A ל - B בתוך B בתוך המחבר בין

 $rot \overrightarrow{F} = \overrightarrow{0}$ אם בנוסף D במישור, או $Q_x = P_y$ אם בנוסף הינו תחום פשוט קשר, אז

$$.\ rot \overrightarrow{F} = \overrightarrow{
abla} imes \overrightarrow{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$
במרחב, כאשר הרוטור

אינטגרל משטחי

:במרחב על ידי הנתונה על משטח חלק $ec{\sigma}$ במרחב היא העתקה של משטח חלק של במרחב היא העתקה $\sigma: \vec{r}(u,v) = (x(u,v), y(u,v), z(u,v)) , u,v \in D_{uv}$

$$\vec{n} = \vec{r}_u \times \vec{r}_v = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x_u & y_u & z_u \\ x_v & y_v & z_v \end{vmatrix}$$

אינטגרל משטחי מסוג I

, σ על פני משטח פשוט f(x,y,z) של ו אינטגרל המשטחי מסוג ו $\iint f(x, y, z) dS$

- : ולכן: $\| \vec{n} \| = \| \vec{r}_{\!_{n}} imes \vec{r}_{\!_{n}} \|$ אם למשטח יש פרמטריזציה σ אם למשטח יש פרמטריזציה \star $\iint_{\sigma} f(x, y, z) dS = \iint_{D_{uv}} f(x(u, v), y(u, v), z(u, v)) \|\vec{r}_{u} \times \vec{r}_{v}\| du dv$
- אם המשטח נתון בצורה מפורשת $\| \vec{n} \| = \sqrt{z_x^2 + z_y^2 + 1}$ זאל , z = z(x,y) ולכן $\iint_{\sigma} f(x, y, z) dS = \iint_{D_{\infty}} f(x, y, z(x, y)) \sqrt{z_x^2 + z_y^2 + 1} dx dy$

 $Area(\sigma) = \iint dS$

 σ נוסטוו פנים: ho(x,y,z) בעל צפיפות σ בעל צפיפות $m(\sigma) = \iint \rho(x, y, z) dS$

וו אינטגרל משטחי מסוג

 σ על פני משטח דו צדדי $\overrightarrow{F}=\left(P,Q,R
ight)$ של שדה וו של אונטגרל המשטחי מסוג $-\iint (\overrightarrow{F}\cdot\hat{n})dS$ בעל נורמל יחידה בכיוון נתון $\|ec{n}\|$, הוא

- :ולכן $ec{n}=ec{r}_{\!\scriptscriptstyle u}\! imes\!ec{r}_{\!\scriptscriptstyle v}$ אם למשטח יש פרמטריזציה σ אם למשטח יש פרמטריזציה $\iint_{\mathcal{L}} \left(\overrightarrow{F} \cdot \hat{n} \right) dS = \iint_{\mathcal{D}} \left(P(u, v), Q(u, v), R(u, v) \right) \cdot \left(\overrightarrow{r}_{u} \times \overrightarrow{r}_{v} \right) du dv$
- אם המשטח נתון בצורה מפורשת $\vec{n} = \left(-z_x, -z_y, 1\right)$ אז , z = z(x,y) ולכן: $\iint_{-} (\overrightarrow{F} \cdot \hat{n}) dS = \iint_{D} (-P \cdot z_{x} - Q \cdot z_{y} + R) dx dy$
 - . $\iint (\overrightarrow{F} \cdot \hat{n}) dS = 0$ אם \widehat{n} ו \overrightarrow{F} מיצבים על פני σ , אז \widehat{n} ו
 - אם נחליף את הכיוון של \hat{n} , אז האינטגרל יחליף את סימנו.

יישומים של אינטגרל משטחי מסוג II

 $\Phi_{\sigma}(\overrightarrow{F}) = \iint (\overrightarrow{F} \cdot \hat{n}) dS$ $:\!\sigma$ של שדה וקטורי \overrightarrow{F} דרך משטח

יוהי , σ ויהי בתחום בתחום קומפקטי פשוט קשר בעל שפה חלקה למקוטעין, דיפרנציאביליים בתחום קומפקטי אז . σ נורמל יחידה חיצוני לשפה \hat{n}

$$\bigoplus_{\sigma} (\overrightarrow{F} \cdot \hat{n}) dS = \iiint_{G} div \overrightarrow{F} dV$$

. כאשר $div \vec{F} = \vec{\nabla} \cdot \vec{F} = P_x + Q_y + R_z$ כאשר כאשר

שדה מרחבי בעל רכיבים דיפרנציאביליים על $\overrightarrow{F} = (P,Q,R)$ יהי :**Stokes משפט** פני משטח דו צדדי σ בעל שפה γ , כך שכיוון הנורמל \hat{n} למשטח בחר לפי כלל יד ימין ביחס לכיוון γ . אז

$$\oint_{\widetilde{F}} \overrightarrow{F} \cdot d\vec{r} = \iint_{\widetilde{G}} \left(rot \overrightarrow{F} \cdot \hat{n} \right) dS$$

זהויות טריגונומטריות

 $\sin(2\alpha) = 2\sin\alpha\cos\alpha$

 $\cos(2\alpha) = 2\cos^2\alpha - 1$

 $cos(2\alpha) = 1 - 2sin^2 \alpha$

 $cos(2\alpha) = cos^2 \alpha - sin^2 \alpha$

<u>שיטות אינטגרציה</u>

$$\int u \cdot v' dx = uv - \int u' \cdot v dx$$

<u>אינטגרציה בחלקים:</u>

$$\int f(x(t))x'(t)dt = \int f(x)dx$$
 אז $x = x(t)$ אם החלפת משתנים: אם

 $\int \sin^n x \cos^m x dx$ בחישוב בחישוב

- $t = \cos x$ אם n אי זוגי נציב
- $t = \sin x$ אם m אי זוגי נציב $^{\circ}$
- אם שניהם זוגיים ניתן להוריד חזקה ע"י זווית כפולה.

$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$

 $\sin^2 \alpha + \cos^2 \alpha = 1$

 $1 + \tan^2 \alpha = 1/\cos^2 \alpha$

 $1 + \cot^2 \alpha = 1/\sin^2 \alpha$

 $cos(\alpha \pm \beta) = cos \alpha cos \beta \mp sin \alpha sin \beta$

גבולות מוכרים

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$$

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\begin{cases} f(x) \le g(x) \le h(x) \\ \lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \end{cases} \Rightarrow \lim_{x \to a} g(x) = L$$

 $\lim_{x \to a} \frac{f(x)}{g(x)} = L$ אז $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L$ אם $\lim_{x \to a} \frac{1}{g'(x)} = L$ במצב ב $\lim_{x \to a} \frac{1}{g(x)} = \lim_{x \to a} \frac{1}{g(x)} = \lim_{x \to a} \frac{1}{g'(x)} =$

$$\left(x^{n}\right)'=nx^{n-1}$$

$$\left(e^{x}\right)'=e^{x}$$

$$(\ln x)' = \frac{1}{x}$$
$$(\log_a x)' = \frac{1}{x \ln a}$$

$$\left(a^{x}\right)'=a^{x}\ln a$$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$

$$\left(\arccos x\right)' = \frac{-1}{\sqrt{1-x^2}}$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$

$$\left(\arctan x\right)' = \frac{1}{1+x^2}$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)$$

$$\int \frac{dx}{x} = \ln|x| + C$$

$$\int \frac{dx}{x} = \ln\left|x\right| + C$$

$$\int e^x dx = e^x + C$$

$$\int e^x dx = e^x + C \qquad \qquad \int a^x dx = \frac{a^x}{\ln a} + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \frac{dx}{\cos^2 x} = \tan x + C$$

$$\int \frac{dx}{\sin^2 x} = -\cot x + C$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C$$

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$$

$$\int \sqrt{x^2 \pm a^2} dx = \frac{x}{2} \sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln\left(x + \sqrt{x^2 \pm a^2}\right) + C$$

 $2\pi r$ מעגל ברדיוס r - שטח πr^2 , היקף

.
$$4\pi r^2$$
 שטח פנים , $\frac{4\pi r^3}{3}$ כדור ברדיוס - r

.
$$\pi r \left(\sqrt{r^2 + h^2} + r \right)$$
 שטח פנים , $\frac{\pi r^2 h}{3}$ נפח וגובה r וגובה ועובה r