

Inhalt

- Asymmetrische Kryptosysteme
 - □ RSA
 - □ Sicherheit von RSA
- Schlüssellängen und Schlüsselsicherheit
- Hybride Kryptosysteme
- Elektronische Signatur
- Quantencomputer und quantensichere Kryptographie

Wiederholung: Kryptosystem

Asymmetrische Verfahren

- Jeder Partner besitzt Schlüsselpaar aus
 - persönlichem, geheim zu haltenden Schlüssel (private key) (wird NIE übertragen)
 - und öffentlich bekannt zu gebenden Schlüssel (public key) (kann über unsichere und öffentliche Kanäle übertragen werden)
- Protokoll:
- Alice und Bob erzeugen sich Schlüsselpaare: $(k_e^A, k_d^A) \ (k_e^B, k_d^B)$
 - Öffentliche Schlüssel (k_e^A, k_e^B) werden geeignet öffentlich gemacht
 - Alice will m an Bob senden; dazu benutzt sie Bobs öffentlichen Schlüssel

$$c = e(m, k_e^B)$$

Bob entschlüsselt die Nachricht mit seinem privaten Schlüssel:

$$m = d(c, k_d^b) = d(e(m, k_e^b), k_d^b)$$

Beispiele: RSA, DSA, ElGamal, ...

Asymmetrische Kryptosysteme

Zielsetzung

- Effizienz / Performanz:
 - □ Schlüsselpaare sollen "einfach" zu erzeugen sein.
 - □ Ver- und Entschlüsselung soll "schnell" ablaufen.
- Veröffentlichung von ke darf keine Risiken mit sich bringen
- Privater Schlüssel kd darf nicht "einfach" aus ke ableitbar sein
 - \Box D.h. Funktion f mit f(k_d) = k_e soll nicht umkehrbar sein ("Einwegfunktion")
- Einsatz zur Verschlüsselung:
 - □ Alice schickt Nachricht m mit Bobs Public Key verschlüsselt an Bob
 - Bob entschlüsselt den empfangenen Chiffretext mit seinem privaten Schlüssel
- Einsatz zur elektronischen Signatur:
 - □ Alice verschlüsselt ein Dokument mit ihrem privaten Schlüssel
 - Bob entschlüsselt das Dokument mit Alices öffentlichem Schlüssel

- Benannt nach den Erfindern: Rivest, Shamir, Adleman (1978)
- Sicherheit basiert auf dem Faktorisierungsproblem:
 - Geg. zwei große Primzahlen p und q (z.B. 200 Dezimalstellen):
 - □ n=pq ist auch für große Zahlen einfach zu berechnen,
 - aber für gegebenes n ist dessen Primfaktorzerlegung sehr aufwendig
- Erfüllt alle Anforderungen an asymmetrisches Kryptosystem
- 1983 (nur) in USA patentiert (im Jahr 2000 ausgelaufen)
- Große Verbreitung, verwendet in:
 - □ TLS (Transport Layer Security)
 - □ PEM (Privacy Enhanced Mail)
 - □ PGP (Pretty Good Privacy)
 - □ GnuPG (GNU Privacy Guard)
 - □ SSH
 - **u**

Überblick über den Ablauf

- Erzeugung eines Schlüsselpaars
- Verschlüsselung
- Entschlüsselung

Irz

Erzeugung eines Schlüsselpaars

- Randomisierte Wahl von zwei ähnlich großen, unterschiedlichen Primzahlen, p und q
- n = pq ist sog. RSA-Modul
- Euler'sche Phi-Funktion gibt an, wie viele positive ganze Zahlen zu n teilerfremd sind: $\Phi(n) = (p-1)(q-1)$
- Wähle teilerfremde Zahl e mit $1 < e < \Phi(n)$ d.h. der größte gemeinsame Nenner von e und $\Phi(n)$ = 1
 - □ Für e wird häufig 65537 gewählt: Je kleiner e ist, desto effizienter ist die Verschlüsselung, aber bei sehr kleinen e sind Angriffe bekannt.
 - Der öffentliche Schlüssel besteht aus dem RSA-Modul n und dem Verschlüsselungsexponenten e.
- Bestimme Zahl d als multiplikativ Inverse von e bezüglich $\Phi(n)$

$$d = e^{-1} \bmod \Phi(n)$$

- □ Berechnung z.B. über den erweiterten Euklidischen Algorithmus
- □ n und d bilden den privaten Schlüssel; d muss geheim gehalten werden

Irz

Ver- und Entschlüsselung

- Alice kommuniziert ihren öffentlichen Schlüssel (n,e) geeignet an Bob (Ziel hier: Authentizität von Alice, nicht Vertraulichkeit!)
- Bob möchte Nachricht M verschlüsselt an Alice übertragen:
 - $\ \square$ Nachricht M wird als Integer-Zahl m aufgefasst, mit 0 < m < n d.h. Nachricht m muss kleiner sein als das RSA-Modul n
 - \Box Bob berechnet Ciphertext $c=m^e\pmod{\mathfrak{n}}$
 - Bob schickt c an Alice
- Alice möchte Ciphertext c entschlüsseln
 - \Box Alice berechnet hierzu $m=c^d\pmod{\mathfrak{n}}$
 - Aus Integer-Zahl m kann Nachricht M rekonstruiert werden.

Nomenklatur für kryptologische Verfahren

Für Verschlüsselungsverfahren wird künftig die folgende Notation verwendet:

Ар	Öffentlicher (public) Schlüssel von A
As	Geheimer (secret) Schlüssel von A
Ap{m}	Verschlüsselung der Nachricht m mit dem öffentlichen Schlüssel von A
As{m} oder A{m}	Von A erstellte digitale Signatur von m
S[m]	Verschlüsselung von m mit dem symmetrischen Schlüssel S

IT-Sicherheit | WS 23/24 | © Helmut Reiser