Weekly Challenge 13: Decidability

CS 212 Nature of Computation Habib University

Fall 2023

1. Bit flip

Given $\Sigma = \{0, 1\}$, consider the function, f, defined over a character, a, and extended to a string, $u = u_1 u_2 u_3 \dots u_n$, as follows.

$$f(a) = \begin{cases} 0 & a = 1 \\ 1 & a = 0 \end{cases}$$

$$f(u) = f(u_1)f(u_2)f(u_3)\dots f(u_n)$$

Assuming the results in Chapter 4, prove or disprove that the following language is decidable.

$$S = \{ \langle M \rangle \mid M \text{ is a DFA}, u \in L(M) \implies f(u) \in L(M) \}.$$

Solution: The language S is decidable as we can construct a Turing Machine, M_S , that decides S as follows:

On input $\langle M \rangle$

- 1. Construct a DFA M' using M. Let $M=(Q,\Sigma,\delta,q_o,F)$. Then $M'=(Q,\Sigma,\delta',q_o,F)$ where we make a transition function by flipping the alphabets in the transition: $\delta(q,a)=p\implies \delta'(q,f(a))=p$.
- 2. Run $\langle M, M' \rangle$ on EQ_{DFA}
- 3. If EQ_{DFA} accepts, then accept. If it rejects, then reject.

If M is a DFA which satisfies the condition described in S, then flipping the transition function will not change the language it accepts. Therefore, M' will accept the string that M accepts. So, if their languages are the same, then we know $M \in S$ else it rejects.