

ROS机械臂入门教程

主讲人 小五

【ROS机械臂入门教程】 第11讲基于Moveit实现6-DOF视觉抓取

小五 日期 2023/2/18

目录

- 「」 视觉抓取
- 「2」 系统框架设计
- 「3」 抓取实验
- 「4」 实战

1 视觉抓取

■ 平面抓取

- ➤ Cornell数据集: 1035张RGBD, 8019个标签
- ➤ Jacquard数据集: 54K张RGBD, 110万个标签
- ➤ 经典平面抓取算法: GGCNN[1]、GRCNN[2]、 Swin-Transformer[3]

■ 六自由度抓取

GraspNet-1Billion数据集

1 视觉抓取文献综述

■ 基于GraspNet-1Billion的抓取算法综述

论文	特点	备注
2020CVPR[4]	创建GraspNet-1Billion数据集;最远点采样; Baseline(PointNet++,VoxelNet)	开山鼻祖;已复 现
2021ICRA[7]	7自由度抓取解耦为两个子任务:网络预测(ResNet50) ->(U,V,R,P,Y),检测碰撞->(Z,W)	基于RGB;已复 现
2022ICRA[5]	提出基于Transformer的网络;加入了 multi-scale geometry encoding和co-attention up-sampling	未复现
2021ICCV[6]	基于点云; 着重关注 where grasp :提出了基于局部 几何特性的采样策略;改进网络(ResUNet14)	AP最高;已复现

■ 性能比较

论文	AP (Seen Unseen Novel)	真实实验效果
2020CVPR[4]	27.56, 26.11, 10.55	效果较好,90%成功率
2021ICRA[7]	27.98, 27.23, 12.25	泛化性较差,效果一般
2022ICRA[5]	39.81, 29.32, 13.83	1
2021ICCV[6]	67.12, 54.81, 24.31	效果最好, 成功率95%

2 系统框架设计

■ 运动规划

▶ 作用:到达算法指定位置和姿态

路径规划:从当前位置到期望位置规划一条无碰撞轨迹

■ 手眼标定

▶ 作用: 获得机器人坐标系和相机 坐标系的关系

➤ 效果:目前可达到误差在±5mm

2 系统框架设计

■ 框架设计

3 抓取实验

■ graspness[6]单物体抓取实验

抓取物品清单:

共11个物体: 1.苹果 2.香蕉 3.手电筒 4.棒球 5.鞋刷 6.羽毛球盒 7.收音机 8.羽绒服清洁剂 9.小白鞋清洁剂 10.U盘 11.遥控器

物体	抓取次数	成功	备注	
羽毛球盒	1	1	完美	
手电筒	1	1	完美	
小白鞋清洁剂	1	1	完美	
棒球	1	1	完美	
苹果	1	1	完美	
收音机	1	1	完美	
香蕉	1	1	完美	
鞋刷	/	/	毛刷朝上,检测不到抓取姿态,无法进行抓取	
羽绒服清洁剂	1	1	完美	
U盘	1	1	完美	
遥控器	1	1	平躺着检测不到;竖着可以	

3 抓取实验

■ graspness[6]复杂场景连续抓取实验

场景	物体个数	抓取次数	成功次数	抓取成功率
随机场景1	9	9	9	100%
随机场景2	9	9	9	100%

随机场景1

随机场景2

抓取实验部分过程

- ▶ <mark>结论</mark>:与其他算法相比,graspness[6]抓取姿态<mark>预测结果更准确</mark>;对大多数小物体和与背景颜色相同的物体也能检测出抓取姿态,**鲁棒性更强**。
- ▶ 存在的问题:
- 过于"平坦"且高度较低的物体,很难检测到抓取姿态
- 抓取过程中,可能产生对其他物体的碰撞

4 实战

课程资料获取

▶ 回复"002"即可获得本次课程的资料!

➤ 本次课程系列内容(共11讲)全部点赞投币后,私信up,单独分享本次课程所有PPT

《ROS机械臂进阶课程》

正在筹备中...

敬请期待!

参考文献

- [1] Morrison D, Corke P, Leitner J. Closing the loop for robotic grasping: A real-time, generative grasp synthesis approach[J]. arXiv preprint arXiv:1804.05172, 2018.
- [2] Kumra S, Joshi S, Sahin F. Antipodal robotic grasping using generative residual convolutional neural network[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 9626-9633.
- [3] Wang S, Zhou Z, Kan Z. When Transformer Meets Robotic Grasping: Exploits Context for Efficient Grasp Detection[J]. arXiv preprint arXiv:2202.11911, 2022.
- [4] Fang H S, Wang C, Gou M, et al. Graspnet-1billion: A large-scale benchmark for general object grasping[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 11444-11453.
- [5] Liu Z, Chen Z, Xie S, et al. TransGrasp: A Multi-Scale Hierarchical Point Transformer for 7-DoF Grasp Detection[C]//2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022: 1533-1539.
- [6] Wang C, Fang H S, Gou M, et al. Graspness discovery in clutters for fast and accurate grasp detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 15964-15973.
- [7] Gou M, Fang H S, Zhu Z, et al. Rgb matters: Learning 7-dof grasp poses on monocular rgbd images[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021: 13459-13466.