國立臺灣大學 110 學年度碩士班招生考試試題

題號: 398 數學 節次:

題號:398

共 2 頁之第 1 頁

Please draw a following table on the first page of the answer sheets and fill in the answers accordingly.

1	3	6	(a) (b)	
2		7		
3		8		
4		9		
5		10)	

- 1. (10%) A graph is bipartite if and only if it has no cycle of ______ length. A bipartite graph can be colored with colors.
- 2. (10%) If $a_n = 3 a_{n/2} + 1$ for $n \ge 2$ and $a_1 = 1$. Then $\log_2 a_n \approx \underline{\hspace{1cm}} \times \log_2 n$.
- 3. (10%) There are _____ ways a binomial random walk, starting at the origin, returns to the origin the first time after exactly 2n steps.
- 4. (10%) With $0 \le m, n, A = ______$ and $B = ______$ in $\sum_{k=m}^{n} {k \choose m} = {A \choose B}$.
- 5. (10%) Let (G, \circ) be a finite group with subgroup H. Prove that |H| divides |G|.
- 6. (a) (5%) Suppose U and V are distinct six-dimensional subspaces of a vector space W and dimW=8. Find $\dim(U \cap V)$.
 - (b) (5%) Let V be a vector space of all symmetric 2×2 matrices.

Define a linear transformation $T: V \to P_2(\mathbf{R})$ by

$$T\left(\begin{bmatrix} a & b \\ b & c \end{bmatrix}\right) = (a-b) + (b-c)x + (c-a)x^2.$$

Find rank(T).

- 7. (10%) Suppose $m(t) = t^r + a_{r-1}t^{r-1} + \dots + a_1t + a_0$ is the minimal polynomial of a nonsingular $n \times n$ matrix A. Find A^{-1} .
- 8. (10%) Solve for t if $det \begin{pmatrix} 3-t & 2 & 0 & 0 & 0 \\ 1 & 4-t & 0 & 0 & 0 \\ 0 & 0 & 3-t & 1 & 0 \\ 0 & 0 & 1 & 3-t & 0 \end{pmatrix} = 0.$

For problems 9 and 10, your answer will be considered correct only if all the true statements are selected.

- 9. (10%) Which of the following statements are true?
 - (a) Let A and B be $n \times n$ matrices. Assume that A is invertible and $B^3 = 0$. If AB=BA, then A+B is also
 - (b) Let S be the set of all sequences in \mathbb{R}^{∞} which have exactly N non-zero elements where N is a known constant. S is a subspace of \mathbb{R}^{∞} .
 - (c) Any square matrix A can be represented as a sum of a symmetric matrix and a skew-symmetric matrix.
 - (d) If A and B are similar, they have the same eigenvectors.
 - (e) If $A, B \in \mathbb{R}^{m \times n}$, rank $(A B) \leq \operatorname{rank}(A) \operatorname{rank}(B)$.

題號: 398

國立臺灣大學 110 學年度碩士班招生考試試題

科目: 數學 節次: 4

題號:398

共 2 頁之第 2 頁

10. (10%) Which of the following statements are true?

- (a) Let $D: V \to V$ be defined by $D(f) = \frac{df}{dt}$, where V is the space of functions with basis $\{\sin t, \cos t\}$. The eigenvalues of D are ± 1 .
- (b) F is linear if $F: \mathbb{R}^3 \to \mathbb{R}^2$ is defined by F(x, y, z) = (x + 1, y + z).
- (c) Assume that $A \in M_{n \times n}(F)$ has two distinct eigenvalues, λ_1 and λ_2 . If $\dim(E_{\lambda_1}) = n 1$, A is diagonalizable.
- (d) Let A, B and C be three $n \times n$ matrices such that for $k = 1, 2, \dots, n$

$$c_{ik} = a_{ik} + b_{ik}$$
, for some i ;

$$a_{jk} = b_{jk} = c_{jk}$$
, for $j \neq i$.

Then we have detC = detA + detB.

(e) Let T be a diagonalizable linear operator on a finite-dimensional vector space, and let m be any positive integer. T and T^m are simultaneously diagonalizable.