Calibration du modèle CEV par le schéma de Dupire

KAJI Joshua - HOSSEIN KHAN Remi

November 30, 2018

3.1

$$\frac{\partial V}{\partial T}(T,K) = \frac{1}{2}\sigma^{2}(T,K)\frac{\partial^{2}V}{\partial K^{2}}(T,K) - rK\frac{\partial V}{\partial K}(T,K)
\frac{Z_{i}^{n-1}-V_{i}^{n}}{\Delta T} = \frac{1}{2}\sigma^{2}(T,K)\frac{K_{i}^{2}}{(\Delta K)^{2}}(V_{i+1}^{n} - 2V_{i}^{n} + V_{i-1}^{n} - r\frac{K_{i}}{2\Delta K}(V_{i+1}^{n} - V_{i-1}^{n}) \text{ avec}
\frac{K_{i}^{2}}{(\Delta K)^{2}} = i^{2} \text{ et } r\frac{K_{i}}{2\Delta K} = \frac{i}{2}$$

$$V_{i}^{i+1} = A_{i}V_{i+1}^{n} + B_{i}V_{i}^{n} + C_{i}V_{i+1}^{n}$$

3.2

$$V_1^{n+1} = A_1 V_0^n + B_1 V_1^n + C_1 V_2^n \text{ avec } V_0^n = X_0 \ \forall n \in \mathbb{N}$$

On connait la vecteur initial du schéma de Dupire :

$$\begin{bmatrix} V_1^0 \\ V_2^0 \\ \vdots \\ V_I^0 \end{bmatrix} - \begin{bmatrix} (X_0 - K_1)_+ \\ (X_0 - K_2)_+ \\ \vdots \\ (X_0 - K_I)_+ \end{bmatrix}$$

Dans le modèle Constant Elasticity of Variance (CEV) on à $\sigma=\beta_1 K^{-\beta_2}$

Ce sigma dépend uniquement du strike K, il nous suffit donc de résoudre l'équation de diffusion de Dupire pour calculer le prix d'une option (par la suite, une option call européenne).

L'idée :

Le schéma de Dupire donne une approximation dicrète des solutions de cette équation

$$\begin{bmatrix} Call_{Dup}(T_0, K_1) & \dots & Call_{Dup}(T_{N-1}, K_1) & Call_{Dup}(T_N, K_1) \\ Call_{Dup}(T_0, K_2) & \dots & Call_{Dup}(T_{N-1}, K_2) & Call_{Dup}(T_N, K_2) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ Call_{Dup}(T_0, K_I) & \dots & Call_{Dup}(T_{N-1}, K_I) & Call_{Dup}(T_N, K_I) \end{bmatrix} = \begin{bmatrix} V_1^0 & \dots & V^{N-1} & V_1^N \\ V_2^0 & \dots & V_2^{N-1} & V_2^N \\ \vdots & \vdots & \vdots & \vdots \\ V_I^0 & \dots & V_I^{N-1} & V_I^N \end{bmatrix}$$

3.3 Dans un premier temps, on détermine le schéma de Dupire avec $\sigma = 15\%$

On calcule l'erreur de cette approximation :

$$\begin{bmatrix} Erreur(K_1) \\ Erreur(K_2) \\ \vdots \\ ErreurK(I) \end{bmatrix} = \begin{bmatrix} V_1^N \\ V_2^N \\ \vdots \\ V_I^N \end{bmatrix} - \begin{bmatrix} Call_{B\&S}(T^N, K_1, \sigma = 15\%) \\ Call_{B\&S}(T^N, K_2, \sigma = 15\%) \\ \vdots \\ Call_{B\&S}(T^N, K_I, \sigma = 15\%) \end{bmatrix}$$

On vérifie que les erreurs de cette approximation sont faibles ...

(...graphique...)

On refait le schema de Dupire qui dépend cette fois de β_1 et β_2 ...

On détermine les erreurs de cette approximation ...

$$\begin{bmatrix} Erreur(K_1) \\ Erreur(K_2) \\ \vdots \\ ErreurK(I) \end{bmatrix} = \begin{bmatrix} V_1^N \\ V_2^N \\ \vdots \\ V_I^N \end{bmatrix} - \begin{bmatrix} Call_{B\&S}(T^N, K_1, \sigma = \beta_1 K_1^{-\beta_2}) \\ Call_{B\&S}(T^N, K_2, \sigma = \beta_1 K_2^{-\beta_2}) \\ \vdots \\ Call_{B\&S}(T^N, K_I, \sigma = \beta_1 K_I^{-\beta_2}) \end{bmatrix}$$

On vérifie que les erreurs de cette approximation sont faibles...

(...graphique2...)

Calibration On aimerait calculer l'erreur quadratique commise par le schéma de Dupire pour un échantillon de $(T_m, K_m, Call_{obs}(T_m, K_m))_{m=1,...,M}$

solution 1 : calculer un schéma pour chaque paire $(T_m, K_m)_{m=1,\dots,M}$ solution 2 : Calculer un seul schéma qui contient tout les paires de (T,K) de l'échantillon

Le temps de calcule serait trop long si l'on opté pour la solution 1 (en particulier lorsque l'échantillon est grand) ...

On construit donc un seul schéma englobant tout les paires $(T_m, K_m)_{m=1,...,M}$, et on calcule l'erreur quadratique par rapport au calls observés $Call_{obs}(T_m, K_m)_{m=1,...M}$

c'est à dire :

$$(\beta_{1}, \beta_{2}) \mapsto \left\| \begin{bmatrix} Call_{dup}(T_{1}, K_{1}, \beta_{1}, \beta_{2}) \\ Call_{dup}(T_{2}, K_{2}, \beta_{1}, \beta_{2}) \\ \vdots \\ Call_{dup}(T_{M}, K_{M}, \beta_{1}, \beta_{2}) \end{bmatrix} - \begin{bmatrix} Call_{obs}(T_{1}, K_{1}) \\ Call_{obs}(T_{2}, K_{2}) \\ \vdots \\ Call_{obs}(T_{M}, K_{M}) \end{bmatrix} \right\|_{L^{2}}$$

Prenons une liste de $(T_m, K_m, Call_{B\&S}(T_m, K_m, \sigma = \beta_1 K_1^{-\beta_2}))_{m=1,\dots,M}$ et calculons l'erreur quadratique pour différentes valeurs β_1 et β_2 .

(..... graphique3-Surfaces d'erreurs)

On voit bien que plus on s'éloigne de β_1 et β_2 , plus l'erreur est grande. Et en effet, en comparant les différentes erreurs, on trouve que l'erreur est bien minimal en $\beta_1=15$ et $\beta_2=1$

3.3 On utilise une fonction d'optimisation provenant d'une librairie de python "optimize.minimize" avec la contrainte $\beta_1>0$ et $\beta_2>0$ pour un un échantillon :

$$(T_m, K_m, Call_{Dup}(T_m, K_m, \beta_1, \beta_2))_{m=1,\dots,M}$$

(... Video de l'optimisation en temps réel ...)

qui nous renvoie bien $\beta_1 = 15$ et $\beta_2 = 1$ (un peu près)