项目1: 科技园车床智能问答

项目背景:

校内实验室与科技园合作,构建一个基于车床操作手册的智能问答系统,结合LLM,langchain和prompt,优化知识库和检索过程,快速解决新员工对车床基础操作疑问,减少企业教学成本。

产品概述:

• **工业用途**:解决新员工对车床的基本认知,巩固培训知识,在操作过程中如遇基础问题或对某操作不确定时可通过**LLM**问答辅助解决,同时缓解老员工(培训师傅)教学工作量,专注于疑难问题。

• 使用范围:针对手工车床CA6140主轴控制,螺纹加工,尾座控制等操作问题,后续可改进添加其他车床版本。

• 用户画像:

角色	痛点	需求
新员工	操作不熟练,不敢请教影响效率	实时交互
骨干员工	重复答疑,缺乏标准化教学	标准化答疑
企业管理者	培训成本高,结果难量化	数据表格输出

需求分析:

• 数据调研:

1.新员工操作效率低下,70%不敢频繁询问师傅导致时间成本高;操作失误耗材量大;车床维修成本高。

2.骨干员工普遍反映问题多重复性高,浪费时间精力导致加班不满。

• 竞品分析:

1.纸质查阅:效率低下,易沾染污泥识别不清,难以理解。

2.传统FAQ: 回答不智能, 答非所问, 成本较高。

3.LLM问答: 自然语言交互+场景化引导,易迭代维护。

功能模块:

1.知识库构建

核心模块	业务价值	微调方法
PDF滑窗法	确保操作步骤连续性	窗口长度(window_size)等
元数据管理	读取车床手册原文	标记分片来源(页码/章节)

2.检索增强

核心模块	业务价值	微调方法
多路召回	增加车床术语库	BM25稀疏,M3E稠密

核心模块	业务价值	微调方法
混合检索	确定召回优先级,确保车床安全操作	Faiss向量库;根据query类型调整权重
重排序	提升操作步骤类答案权重	BGE-Reranker模型

3.问答生成

核心模块	业务价值	模型选择
query优化	处理口语化问答	qwen-7B,后续可在llama-factory框架微调
多模态模型	答案输出图文支持	Llama3-V-2_5(开源)或RAG改造
保底机制	规避危险操作	AC自动机结合DeBERTa-V3设置警告词

4.推理优化

采用vLLM模型框架,利用pageAttention和CUDA技术高效利用GPU资源,减少企业服务器资源成本,同时依靠 continuous batching技术处理高并发场景,同时处理多个问题,提高回答速率。

5.交互界面

数据流与闭环模块:

新员工每次提问都将给答案评分,定期检查知识库可信度,不断补充RAG知识库内容服务后续车床版本添加。

非功能需求:

类型	具体条目	指标
性能	响应时间,离线缓存能力,	首字延迟≤2s,支持TOP100条离线缓存问答
安全性	警告词设置,数据储存权限分级	高危操作100%拦截,员工无法进行数据导出
兼容性	适配低安卓版本	应用在车床显示屏或老旧平板
工业环境适配	语音去噪与油污触碰	交互界面简洁,文字增大,可在车床噪音下完成 语音输入
数据与后续 迭代	问答日志实时更新,定期导出表格,预留 语音接口	量化培训成本,后续车床版本迭代,预留新服务 接口

面试可能问到的问题

1.介绍一下这个项目

该项目构建了一个智能车床问答系统,目前针对CA6140型号搭建知识库,通过结合LLM,langchain与vLLM框架,回答员工操作问题。项目完整实现了RAG分片处理,混合检索,多路召回等操作,实现高效精准问答。

2.做这个项目遇到哪些坑,如何解决的

有的,主要遇到两个问题,第一个问题就是员工输入query口语化,例如"光杠转不动咋整",通过prompt对query做改写,优化输出完整内容: "丝杠转动故障如何解决?"同时可以对术语缩写整理一个【缩写,中文全称】映射表,对输入做改写。这些优化显著提升了口语化,省略半截句召回效果。第二个问题是多员工并发测试吐字慢性能差。优化手段是可以采用vLLM框架来加速,合理调用GPU资源,采用多卡分布部署,更适配工厂弱网环境。

3.这些架构部署都是你提出的吗? 你主要工作是做什么

这些架构主方向是实验室导师确定的,但部分技术选型和模型部署是由我提出的,例如我提出采用混合检索RAG,同时在稠密检索部分我测试了m3e的三种版本,最后选用了m3e-large,因为工厂主要确保高精度,以免造成设备损坏。同时在chat模型上我测试了deepseek-r1,qwen2,GPT-4o等,最后选择qwen2-7b(开源)作为备选生成引擎。同时我负责了2000条高质量测试集的构建,用户画像及需求分析,还有基本的交互界面设计。

4.测试集是怎么构建的,讲一下过程

首先我从操作手册里将问题分类,按照类别构建约600条问题并给每个问题都分类,但其中问题描述都非常术语话,导致检索匹配度不高,我通过商用通义千问来生成答案,人工对比答案质量,再将chatgpt-4o将600条问答泛化,规定将每一个问题输出为三个问题,要求口语化,东北方言化,输出为问答json格式,由此验证模型召回稳定性。最后进行人工筛选,保留2k条作为最终测试集。

5.**测试出的效果是怎么评估的**(m3e, chat模型,测试集生成)

作为生成类问题,我在评估方面主要考虑两个元素,一是答案关键信息,例如车床转轴操作模式,尾座顶尖松动,将 答案关键信息作为关键词进行匹配和判断。第二个从语义上不能偏离标准答案太远,根据文本相似度来判断,整体采 用两部分加权组合。

6.提示词工程体现在你项目中哪些部分

prompt主要体现在三部分,第一部分主要在测试集构建以及知识库检索,通过prompt我们将测试集打造为结合口语化,方言化,术语化。增强问答系统输入侧检索匹配。第二部分体现在系统输出侧,强制结构化输出,即步骤,安全标记,来源。例如对"主轴拆卸"问题,自动追加警告和手册章节。第三部分是知识库迭代,通过badcase分析动态更新提示词,同时根据回答满意度调整问答权重,定期更新。