SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA School of Electronics & Communication Engineering B. Tech.7th Semester ECE Major Examination (Odd) 2023-24

	Entry No: Total Number of Pages:[02]	
Date:	18 th December 2023 Total Number of Questions: [12]	
т:	CourseTitle: Optical Fiber Communication Course Code: ECL4170	
	e Allowed: 3 Hours Max Marks: [50] ructions / NOTE	
i.	Attempt All Questions.	
ii.	Support your answer with neat freehand sketches/diagrams, wherever appropriate	
iii.	Assume an appropriate data / information, wherever necessary / missing.	•
	Section A Q1. All questions i Mark each, Q2. 1 Marks each	
Q1.	1)Optical fiber works on the phenomenon of	
	ii)The refractive index of the core is uniform throughout and undergoes an abrupt	co
	change at the cladding boundary which is known as	
	mode fiber have more dispersion when distance of transmission	
		C O2
	may be regarded as the modulation of light through thermal	
,	vibrations within the fiber.	
	When there is no optical power incident on the photodetector a small reverse	
	current still flows from the device terminals called	
	vi) The two main sources of noise in photodiodes without internal gain are	CO3
	and	•
Q2.	i) A graded index optical fiber has a parabolic refractive index profile. If the fiber	202
	has numerical aperture =0.22. Calculate the total number of guided modes at a	
	wavelength of 1310 nm.	
	ii)The ratio of the stimulated emission rate to the spontaneous emission rate for an	~
	incandescent lamp operating at a temperature of 1000 K It	СОВ
	may be assumed that the average operating wavelength is 0.5 μ m. And h = 6.626 x	
	10^{-34} , $k = 1.31 \times 10^{-23}$	
	iii) A ruby laser contains a crystal of length 4 cm with a refractive index of 1.78.	.)
		co 3
	The peak emission wavelength from the device is 0.55 µm. Determine the number	
	of longitudinal modes and their frequency separation.	
	iv) Which feature of an eye-diagram assists in the measurement of additive noise in	
•	the signal?	
	a. Eye opening (height, peak to peak)b. Eye overshoot/ undershoot	CO4
	Eye widthd. None of the above	

Section B - All questions carry 4 Marks Each

How are Critical-Angle, Numerical-Aperture, Acceptance-Angle CO1 Q3. important factors in typical Optical fiber? Describe the various Elements of an Optical Fiber Transmission Link. CO1 Q4. Q5. Compare Meritsand Demerits of Fiber Optics over conventional copper wire systems. CO₂ Q6. Discuss working of Avalanche photo diode as potential component in optical fiber communication. CO3 How are LASERs different then LED while taking into consideration Q7. optical fiber communication? **CO3** There are several losses that are possible in optical communication. List CO2 them and explain any two. Q9. Compare SBS and SRS in communication system. CO2 Q10 While designing a basic optical communication system on Optisystem software what are the various points that need to be taken care by cos designer? Explain the process. Write Short notes on following topics: Q11 a) WDM b) EDFA **CO4** Q12 Describe Prospects for Optical Fiber Communication in growing economy of India. **CO5**

After successful completion of this course students will be able to achieve this Course Outcomes

COI	To learn the basic concept of optical fiber
-----	---

CO2 To acquire knowledge about various losses in optical fiber

CO3 To understand basic design concept of optical sources and detectors

CO4 To learn and analyze the design concept of optical fiber networks

CO5 Able to learn design parameters of Optical Fiber Communication System

СО	Questions Mapping	Total Marks	Total Number of Students (to be appeared in Exam)
COl	1 i) ,ii) 3, 4	10	85
CO2	1 iii), iv) 2 i) 5,8,9	15	85
CO3	1 v), vi), 2 ii), iii) 6,7	12	85
CO4	2 iv) 11	5	85
CO5	10,12	8	85

Q²

SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA School of Electronics & Communication Engineering B. Tech.7th Semester ECEMinor-I(Odd) 2023-24

Ent	ry No:					Total Numbe	r of Pages:[01]	4	
Date:	27 th Sep	tember 2023				Total N	lumber of Quest	ions: [05]	
		CourseTitle: C	ptical Fi	ber Com	nmun	icationCourse	Code: ECL4170		
		:1 HourMax							
		TE :Attempt All							
							herever appropri	ete.	
ii.	Assumie ai	n appropriate d	ata / info	rmation,	wher	ever necessary	/ / missing.		
			-23		3				
				on – A (1					
Q1.	a) The ret	ractive indices	of core a	and clad	ding o	of an optical f	iber are 1.40		
	and 1.14	respectively. T	he value	of nume	erical	aperture is	218.0	[1*4]	
	b) Ir	ie mode fibers		is th	ne mo	st beneficial i	ndex profile	=Marks	
		MFD						4	CO1,
				a measu	ne oi	ngnt intensity	in a single		C02,
		ber cross section							CO1,
	d) -90 d	Bm =		Power in		,	and an inches		
		Section - P. I	16 Marks	· \ (Ancu	or in	points 4 to 5	\i\		001,
							1		
					_		ie to negligence rupted. What is	Marks 4	CO2
Q2.		e of an enginee	_				Topted. What is		
Q3.							x profile. If the	Marks 4	CO1
		s numerical ap					mber of guided		
Q4.		at a wavelengt sorameter rela				2.5从m	active index of	Marks	CO1
								2,2	
		d? How this pa	irameter	is utilize	ea in c	aeciaing mouc	25 OT	2,2	
	propag	ation?							
Q5.		ine the cutoff						Marks 4	CO2
		peration when							
	percer		ely, with	the relat	tive in	idex differents	(a them 8 0.25		
Aft	er succes	sful completio	n of this	course	stude	nts will be ab	ole to achieve thi	s	
Cor	irse Oute	romes							
	o ie	arn the basic o	oncept	of optica	al tibe	er.			
CO	7 10 80	quire knowle	dge aboi	n vario	us los	ses in optical	fiber		

To understand basic design concept of optical sources and detectors

Able to learn design parameters of Optical Fiber Communication System

To learn and we lyze the design concept of optical fiber networks

CO3

(1)4

CU5

SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA School of Electronics & Communication Engineering B. Tech.7th Semester ECEMinor-II(Odd) 2023-24

		,
Date:	7 November 2023	Total Number of Pages:[01] Total Number of Questions: [05] per CommunicationCourse Code: ECL4170
Instru	ctions / NOTE :Attempt All Questions	Max Marks: [20]
ı.	Support your answer with neat freehand sk	and a late of the
ii.	Assume an appropriate date () (etches/diagrams, wherever appropriate.

Assume an appropriate data / information, wherever necessary / missing.

	Section – A (1*4 Marks)		
Q1.	a) When the mean optical power launched into an 8 km length of fiber is 120 µW, the mean optical power at the fiber output is 3µW. The overall signal attenuation or loss in decibels through the fiber assuming there are no connectors or splices is b) The scattering created by such inhomogeneities is mainly in the forward direction and is called scattering. c)Stimulated Raman scattering (SRS) is similar to SBS except that a high-frequency phonon rather than an phonon is generated in the scattering process.	[1*4] #Marks 4	CO2, CO2, CO2, CO3,
	Section – B (16 Marks) (Answer in points 4 to 5 maximum)		
Q2.	active region of a double-heterojunction LED are 60 ns and 100 ns respectively. Determine the total carrier recombination lifetime and the power internally generated within the device when the peak emission wavelength is 0.87 µm at a drive current of 40 mA.	4	CO3
Q3. Q4.	Compare Rayleigh and Mie Scattering in optical communication. A multimode graded index 55 cm at 1 feet and 1	4	CO2
	A multimode graded index fiber exhibits total pulse broadening of 0.1 µs over a distance of 15 km. Estimate: (a) the maximum possible bandwidth on the link assuming no intersymbol interference; (b) the pulse dispersion per unit length; (c) the bandwidth-length product for the fiber.	4	CO2
-	Discuss the equation that allows estimation of the rms impulse response of a multimode step index fiber.	4	CO

After successful completion of this course students will be able to achieve this

Course Outcomes

- To learn the basic concept of optical fiber
- To acquire knowledge about various losses in optical fiber CO₂
- To understand basic design concept of optical sources and detectors CO₃
- CO₄ To learn and analyze the design concept of optical fiber networks CO₅

Able to learn design paragreters of Optical Fiber Communication System Questions Mapping CO Total Marks Total Number of Students (to be appelized in Exam) COL

SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA School of Electronics & Communication Engineering B. Tech.7th Semester ECEMinor-II(Odd) 2023-24

Entry No:	Total Number of Pages:[01]
Date: 7 th November 2023 CourseTitle: C	Total Number of Questions: [05] Optical Fiber CommunicationCourse Code: ECL4170
Time Allowed:1 Hour Instructions / NOTE :Attempt All Question	Max Marks: [20]
i. Support your answer with peat for	

- i. Support your answer with neat freehand sketches/diagrams, wherever appropriate.
- ii. Assume an appropriate data / information, wherever necessary / missing.

	Section – A (1*4 Marks)		
Q1	the mean optical power at the fiber output is 3µW. The overall signal attenuation or loss in decibels through the fiber assuming there are no connectors or splices is b) The scattering created by such inhomogeneities is mainly in the forward direction and is called scattering. c)Stimulated Raman scattering (SRS) is similar to SBS except that a high-frequency phonon rather than an phonon is generated in the scattering process. d) The external quantum efficiency may be defined as the ratio of the emitted from the device to the internally generated.	[1*4] =Marks 4	CO2 CO2 CO3
	Section – B (16 Marks) (Answer in points 4 to 5 maximum)		
Q2	The radiative and nonradiative recombination lifetimes of the minority carriers in the active region of a double-heterojunction LED are 60 ns and 100 ns respectively. Determine the total carrier recombination lifetime and the power internally generated within the device when the peak emission wavelength is 0.87 µm at a drive current of 40 mA.	4	CO3
Q3.	Compare Rayleigh and Mie Scattering in optical communication.	4	CO2
Q4.	A multimode graded index fiber exhibits total pulse broadening of 0.1 µs over a distance of 15 km. Estimate: (a) the maximum possible bandwidth on the link assuming no intersymbol interference; (b) the pulse dispersion per unit length; (c) the bandwidth–length product for the fiber.	4	CO2
25.	Discuss the equation that allows estimation of the rms impulse response of a multimode step index fiber.	4	CO2

After successful completion of this course students will be able to achieve this

Course Outcomes

CO1 To learn the basic concept of optical fiber

CO2 To acquire knowledge about various losses in optical fiber

CO3 To understand basic design concept of optical sources and detectors

CO4 To learn and analyze the design concept of optical fiber networks
CO5 Able to learn design parameters of Optical Fiber Communication System

CO	Questions Mapping	Total Marks	Total Number of Students (to be appeared in Exam)
COI		A consideration of the first of the second o	87
CO2	1 a), b) ,3,4,5		87
CO3 CO4 CO5	1 e), d) 2		

SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA School of Electronics & Communication Engineering B. Tech. 7th Semester ECE Minor-I (Odd) 2023-24

	Date: 27 th September 2023 Total Number of	Pages: 10°	11
and the second	Course Title: Optical Fiber Community Total Number of Que	estions:	[05]
Tim	e Allowed: 1 Hour	1170	[03]
Instr	uctions / NOTE :Attempt All Questions. Max Marks: [20]		
i.	Support your answer with neat freehand sketches ()		
ii.	Assume an appropriate data / information, wherever necessary / missing.	riate.	
	, missing.		
	Section – A (1*4 Marks)		
21.	a) The refractive indices of core and cladding of an optical fiber are 1.40		
	and 1.14 respectively. The value of numerical aperture is	[1*4]	
	b) In single mode fibers is the most beneficial index profile.	=Marks	
	c) is a measure of light intensity in a single	4	CO1,
	mode fiber cross section.		C02,
	d) -90 dBm = Power in		CO1,
			CO1,
	Section – B (16 Marks) (Answer in points 4 to 5 maximum)		
	There was a construction activity going near the road. Due to negligence	Marks 4	CO2
Q2.	the optical fiber was damaged and the network was interrupted. What is		
Q3.	the role of an engineer to restore the optical network? A graded index optical fiber has a parabolic refractive index profile. If the	Marks 4	CO1
	fiber has numerical aperture =0.22. Calculate the total number of guided		
	modes at a wavelength of 1310 nm. $C_1 = 25 \mu m$		22.7
Q4.	Which parameter relates wavelength, core radius and refractive index of	Marks	CO1
	material? How this parameter is utilized in deciding modes of	2,2	
	propagation?		
25.	Determine the cutoff wavelength for a Step Index fiber to exhibit Single	Marks 4	CO2
ء قديل	mode operation when the core refractive index and radius are 1.46 um		
	and 4.5 um respectively, with the relative index difference being 0.25		
	percent.		
After	successful completion of this course students will be able to achieve this		
Cour	ese Outcomes		
	to their concept of antical fiber		
CO1	To learn the basic concept of optical fiber To acquire knowledge about various losses in optical fiber		
CO2 CO3	and basis design concept of oblical sources and descent		
CO4	To learn and analyze the design concept of Optical Fiber Communication System	em	
	A ble to learn design Darameters of Option		

SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA School of Electronics & Communication Engineering B. Tech. ECE Major Examination (Odd) 2022-23

Entry l	No:	Total Number of Pages: [01]
-	28th September 2022	Total Number of Questions: [06]
	Course Title: Optoelect	ronic Devices ECE 4171
	Time Allowed: 1 Hour 30 Minutes	Max Marks: [20]

Instructions / NOTE

- i. Attempt All Questions.
- ii. Support your answer with neat freehand sketches/diagrams, wherever appropriate.
- iii. Assume an appropriate data / information, wherever necessary / missing.

Q2. Discuss the concept of intrinsic and extrinsic semiconductor with band diagrams. Q3. How direct band gap semiconductors are different from indirect bandgap semiconductors? Q4. Discuss Schematic band diagram, density of states, Fermi-Dirac distribution, and the Q4. Discuss Schematic band diagram, density of states, Fermi-Dirac distribution, and the		Section - A		
ii) . The distance d between two adjacent planes labeled (hkl) is given in terms of the lattice constant, a, as	Q1.	,	[1*5]	
ii) . The distance d between two adjacent planes labeled (hkl) is given in terms of the lattice constant, a, as			=Marks	
excitation of a valence band electron to the conduction band, they are called an		 ii) . The distance d between two adjacent planes labeled (hkl) is given in terms of the lattice constant, a, as iii) In many compound semiconductors, atoms are arranged in a basic diamond structure, but are differenton alternating sites. This is called a - 		01
a. The effective momentum of an electron. b. The effective band gap of the semiconductor. c. The effective mobility of the semiconductor. d. The effective mass of an conduction. electron near the minimum the Section - B O2. Discuss the concept of intrinsic and extrinsic semiconductor with band diagrams. Marks 3 O3. How direct band gap semiconductors are different from indirect bandgap semiconductors? Marks 3 O4. Discuss Schematic band diagram, density of states, Fermi-Dirac distribution, and the Marks 3 O5.		excitation of a valence band electron to the conduction band, they are		
a. The effective momentum of an electron. b. The effective band gap of the semiconductor. c. The effective mobility of the semiconductor. d. The effective mass of an conduction. electron near the minimum the Section - B O2. Discuss the concept of intrinsic and extrinsic semiconductor with band diagrams. Marks 3 O3. How direct band gap semiconductors are different from indirect bandgap semiconductors? Marks 3 O4. Discuss Schematic band diagram, density of states, Fermi-Dirac distribution, and the O4. Discuss Schematic band diagram, density of states, Fermi-Dirac distribution, and the				
Section - B Q2. Discuss the concept of intrinsic and extrinsic semiconductor with band diagrams. Marks 3 CO Q3. How direct band gap semiconductors are different from indirect bandgap semiconductors? Marks 3 CO Q4. Discuss Schematic band diagram, density of states, Fermi-Dirac distribution, and the Q4. Discuss Schematic band diagram, density of states, Fermi-Dirac distribution, and the		a. The effective momentum of an electron. b. The effective band gap of the semiconductor.		
O2. Discuss the concept of intrinsic and extrinsic semiconductor with band diagrams. Marks 3 CO O3. How direct band gap semiconductors are different from indirect bandgap semiconductors? Marks 3 CO O4. Discuss Schematic band diagram, density of states, Fermi-Dirac distribution, and the O4. Discuss Schematic band diagram, density of states, Fermi-Dirac distribution, and the		te strop pear the minimum the		
Q2. Discuss the concept of intrinsic and extrinsic semiconductor with band diagrams. Q3. How direct band gap semiconductors are different from indirect bandgap semiconductors? Q4. Discuss Schematic band diagram, density of states, Fermi-Dirac distribution, and the Q4. Discuss Schematic band diagram, density of states, Fermi-Dirac distribution, and the		Section		
Q3. How direct band gap semiconductors are different from indirect bandgap semiconductors? Marks 3 CC Q4. Discuss Schematic band diagram, density of states, Fermi-Dirac distribution, and the Q4. Discuss Schematic band diagram, density of states, Fermi-Dirac distribution, and the		the respect of intrinsic and extrinsic semiconductor with band diagrams.	Marks 3	CO1
Q4. Discuss Schematic band diagram, density of states, Fermi-Dirac distribution, and the		times band gap semiconductors are different from indirect bandgap semiconductors?	Marks 3	CO1
- concentrations	Q3	How direct band ger	Marks 3	CO1
carrier concerns and (c) pervice semiconductors at incriniar equations	Q4	t store at thermal equilibrium		
for (a) intrinsic, (b) n-type, and (c) p-type summer for (a) intrinsic, (b) n-type, and (c) p-type summer for (a) intrinsic, (b) n-type, and (c) p-type summer for (a) intrinsic, (b) n-type, and (c) p-type summer for (a) intrinsic, (b) n-type, and (c) p-type summer for (a) intrinsic, (b) n-type, and (c) p-type summer for (a) intrinsic, (b) n-type, and (c) p-type summer for (a) intrinsic, (b) n-type, and (c) p-type summer for (a) intrinsic, (b) n-type, and (c) p-type summer for (a) intrinsic, (b) n-type, and (c) p-type summer for (a) intrinsic, (b) n-type, and (c) p-type summer for (a) intrinsic, (b) n-type, and (c) p-type summer for (a) intrinsic, (b) n-type, and (c) p-type summer for (a) intrinsic, (b) n-type summer for (a) intrinsic, (b) n-		carrier concentrations for (a) intrinsic, (b) n-type, and (c) p-type semiconductors at thermal equilibrium How the variation of direct and indirect conduction bands in AlGaAs as a function of	Marks 3	CO1
Os How the variation of direct and	Q	How the variation of direct and the	Marks	CO1

- CO1 Explain key concepts in quantum and statistical mechanics relevant to physican. electrical and optoelectronic properties of materials and their applications to optoelectronic devices and photonic integrated circuits that emit, modulate, switch, and detect photons
- CO2 Describe fundamental and applied aspects of optoelectronic device physics and its applications to the design and operation of laser diodes, light-emitting diodes, and
- CO3 Analyze optoelectronic device characteristics in detail using concepts from quantum
- CO4 Describe techniques to improve the operation of optoelectronic devices and device characteristics that have to be optimized for new applications by employing their understanding of optoelectronic device physics

understa	nding of optoelectrome as	•	Total Number of Students
CO	Questions Mapping	Total Marks	(to be appeared in Exam)
C01	1	20	45

SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA

to Physical

physics

CO4

Entry No:

chc	10 100	Elect	romes	& Communica	ition E	ugineerii	1
R	Tech	. ECE	Major	Examination	(Ddd)	2022-23	

Total Number of Pages: [01]

	Course Title: Optoelectronic Devices ECE 4171	Marks	. [50]
	Allowed: 3 Hours Maximum Maxim	IVIAIKS	, (30)
ii.	Attempt All Questions. Support your answer with neat freehand sketches/diagram appropriate. Assume an appropriate data / information, wherever necessary / missing.	ns, wh	ierever
	Section – A (Question 1 (1 Marks each) Question 2 (2 Marks each) (15 Marks)		
Q1.	ii) The solar cell converts into	ption.	
	iii) The bandgap of Silicon is while that of Germanium is		CO1,
	iv) The optical switch is used for v)Photodetector is used for		CO2
0.3			CO3,
Q2.	i) One example each for Direct and Indirect semiconductor? ii) Photoluminescence is and iii) solar Cells can be classified as and iv) Einstein relationship is used to find v) Optical storage device examples are Section – B (Marks 5 each) (35 Marks)		CO4
	Optical modulators and switches can be of great utility in present era of high	5	CO4
Q3.	speed data transfer. Explain.		CO3
Q4.	Laser is a great invention for humanity. Explain about laser action and application?	5	
Q5.	How optical absorption experiment can be used for the determination of bandgap of materials?	5	CO2
Q6.	How alloy composition variation leads to change in properties of materials?	5	CO1
Q7.	Crystal lattices and semiconductor properties are related. Explain.	5	CO1
Q8.	What are heterojunctions? How they have revolutionized the field of semiconductors?	5	CO3
Q9.	Discuss principle and operation of solar cell.	5	CO 4
modu CO2	Explain key concepts in quantum and statistical mechanics relevant to physical, electrical and erties of materials and their applications to optoelectronic devices and photonic integrated circulate, switch, and detect photons Describe fundamental and applied aspects of optoelectronic device physics and its applications to ation of laser diodes, light-emitting diodes, and photodetectors Analyze optoelectronic device characteristics in detail using concepts from quantum mechanics:	uits tha the desi	t emit. ign and

co	Questions Mapping	Total Marks	Total Number of Students (to be appeared in Exam)
COL	1,6,7	15	38
CO2	1,5	8	38
CO3	2,4,8	14	38
CO4	она и применя по чет постави на настоя по настоя на настоя по настоя на применя по по настоя на проду на проду В 19	Britaning C. de an existe interpretation and the control of the co	38

optimized for new applications by employing their understanding of optoelectronic device physics

Describe techniques to improve the operation of optoelectronic devices and do ice characteristics that have to be