

Camada de Rede: Endereçamento e Encaminhamento

Instituto Superior de Engenharia de Lisboa

Departamento de Engenharia de Electrónica e Telecomunicações e de

Computadores

Redes de Computadores

Formato das Classes de Endereços IP

Limites de cada Classe de Endereços IP

Classe	End. Min.	End. Max.	# Redes	# Hosts
Α	1.0.0.0	126.0.0.0	126	16.777.214
В	128.1.0.0	191.255.0.0	16.384	65.534
С	192.0.1.0	223.255.255.0	2.097.151	254
D	224.0.0.0	239.255.255.255		
Е	240.0.0.0	247.255.255.255		

- Endereços reservados para uso em redes privadas
 - Podem ser usados internamente em várias redes privadas
 - Não devem circular na Internet

```
• 10.0.0.0 ... 10.255.255.255 (/8)
```

- 172.16.0.0 ... 172. 31.255.255 (/12)
- 192.168.0.0 ... 192.168.255.255 (/16)
- 169.254.0.0 ... 169.254.255.255 (/16) [autoconfiguração link local]

Endereços unused (não devem ser usados)

```
• 0.0.0.0 ... 0.255.255.255
```

• 128.0.0.0 ... 128.0.255.255

191.255.0.0 ... 191.255.255.255

• 192.0.0.0 ... 192.0.0.255

• 223.255.255.0 ... 223.255.255.255

• 240.0.0.0 ... 255.255.255

Endereços Especiais e Reservados

n	et	tudo 0s	Endereço de uma rede
net		tudo 1s	Broadcast directo para uma rede
	tudo ´	Broadcast limitado (rede local)	
	tudo (Host Local	
tudo 0s host			Host na rede local
127	qualquer	(normalmente 1)	Loopback

Atribuição de endereços IP

- Entidades que controlam a distribuição dos endereços IP
 - Mundial
 - Internet Information Center (INTERNIC) (www.internic.com)
 - Europa
 - RIPE (Réseaux IP Européens) Network Coordination Centre (<u>www.ripe.net</u>)
 - ISP Internet Service Provider

- Entidade que controla a unicidade dos endereços IP
 - Mundial
 - Internet Assigned Number Authority (IANA)

Encaminhamento IP

Características

- Baseado em tabelas de encaminhamento (routing)
- Efectuado pelos routers e pelas máquinas
- Complexidade das tabelas preferencialmente nos routers
 - Máquinas Caminho por omissão (para todos os pacotes)
- Configuração de encaminhamento estática (manual) ou dinâmica (automática - protocolos)
- Máquinas com várias interfaces de rede podem fazer encaminhamento (routers)

Conteúdo das tabelas de routing

Formato das entradas de uma tabela de *routing* IP

<End. IP destino, End.IP próximo router>

- Caminhos para redes
 - Entradas do tipo < End. IP de rede, End. IP próximo router >
- Caminhos específicos para hosts
 - Entradas do tipo < End. IP host, End. IP próximo router >
- Caminhos por defeito
 - End. IP próximo router.

Endereços de rede e encaminhamento

Encaminhamento IP

Entrega de Datagramas

Entrega directa

- Ocorre quando a máquina destino está na mesma rede física (IP) da máquina origem
- O datagrama é enviado numa trama física para a máquina com o DA do datagrama IP.
- Na comunicação entre duas máquinas existe sempre uma entrega directa.

Entrega indirecta

- Ocorre quando a máquina destino não está na rede física (IP) da máquina origem
- O datagrama é enviado numa trama física para um router. No entanto o conteúdo do datagrama não é alterado.
- Na comunicação entre duas máquinas poderão existir 0 ou mais entregas indirectas.

Problemas do endereçamento IP clássico

- Quando foi concebido o espaço de endereçamento IP (32 bits) pensava-se que era impossível de esgotar
 - (Face ao número de máquinas e redes que existiam na altura)
- Rapidamente se percebeu que não era bem assim ...
 - O encaminhamento IP obriga a que cada rede física tenha um endereço IP de rede diferente
 - Com a popularização da Internet o número de máquinas e redes cresceu exponencialmente
 - O esquema de classes de endereços é muito pouco flexível
 - Provoca um grande desperdício de endereços

Problemas do endereçamento IP clássico

- O esquema de classes de endereços provoca um grande desperdício de endereços
- Uma rede com mais de 254 máquinas necessita de usar um endereço de rede de classe B
 - Endereços de rede classe B são os mais requisitados
- Há muitas redes com mais de 254 máquinas mas com muito menos que que 65.500 endereços de máquinas
 - Endereços de rede classe B subaproveitados
- Não há (muitas) redes com 16.777.214 de máquinas
 - Endereços de rede classe A subaproveitados

Máscara de rede (Subnet Mask)

- Define onde se situa a divisão do endereço IP em parte de rede (net) e parte de máquina (host)
 - A máscara tem 1 nos bits que correspondem à parte do endereço que identifica a rede e
 0 nos bits que correspondem à parte do endereço que identifica a máquina

Representação da Máscara de rede

- Notação de pontos (usada nos endereços)
 - Ex.: 193.137.220.0 255.255.255.0
 - Indicação dos bits da máscara em numeração decimal
- Notação CIDR (Classless Inter-Domain Routing)
 - Ex.: 193.137.220.0 / 24
 - Indicação do números de bits a 1 existentes na máscara

Sumarização de Rotas (Route Aggregation)

Subnetting:

Criação de multiplas subnets tornando o prefixo maior

Sumarização:

Sumarização de multiplas subnets tornando o prefixo mais pequeno

CIDR – Classless Inter-Domain Routing

- Definição: "an Address Assignment and Aggregation Strategy"
- Funcionamento
 - Permite englobar endereços IP em gamas (prefixos)
 - Propõe uma estratégia de atribuição de endereços de rede de acordo com a topologia física e geográfica
 - Atribuição por continente, país, ISP, etc

Vantagens

- Permite diminuir as tabelas de encaminhamento dos routers que só precisam de ter uma entrada para cada gama
- Definido nos RFC 1518 e 1519 [Set 1993]
 (torna obsoleto o RFC 1338 Superneting)

Agregação de endereços com CIDR

 Para se poder aproveitar a capacidade de agregação de endereços é necessário que estes sejam atribuídos de forma organizada.

• Ex.: Europa 194.0.0.0 a 195.255.255.255 - 194.0.0.0/7

EUA 198.0.0.0 a 199.255.255.255 - 198.0.0.0/7

- Simplifica as tabelas de encaminhamento:
 - Nos routers na Europa basta uma entrada na tabela para encaminhar para os EUA e vice-versa.
- Problemas
 - Organizações que são multi-homed (ligadas a vários ISPs)
 - Organizações que mudam de ISP mas não de endereçamento

Sumarização e CIDR

Sem Sumarização

Com Sumarização

Máscara aplicada nas tabelas de routing

- Define um conjunto de endereços IP com os bits de maior peso iguais
- A máscara tem 1 nos bits de maior peso que definem o conjunto de endereços e 0 nos bits que podem variar
- As tabelas de routing passam a ter entradas do tipo:
 - < End. IP ; Máscara; Próximo Router >
- Generalização da tabelas de routing IP iniciais
 - Suporta caminhos específicos para máquinas (255.255.255.255 ou /32)
 - Suporta caminhos para super-redes, redes, e sub-redes (/1 a /31)
 - Suporta caminho por omissão (0.0.0.0 ou /0)

Tabelas de routing usando máscaras

- Tipos de entradas de uma tabela de routing
 - Caminhos específicos para máquinas (255.255.255.255 ou /32)
 - Caminhos específicos para super-redes (máscara < classe)
 - Caminhos específicos para redes (máscara = classe)
 - Caminhos específicos para sub-redes (máscara > classe)
 - Caminho por omissão (0.0.0.0 ou /0)
- Ordem de selecção das entradas de uma tabela de routing
 - Das entradas mais específicas (maior números de 1 na máscara) para as mais genéricas (menor números de 1 na máscara)

Tabelas de *routing* usando máscaras

Network Address	Netmask	Gateway Address	Interface	Metric
0.0.0.0	0.0.0.0	192.168.9.254	192.168.9.227	1
127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1	1
192.168.9.227	255.255.255.255	127.0.0.1	127.0.0.1	1
192.168.9.224	255.255.255.224	192.168.9.227	192.168.9.227	1
192.168.9.255	255.255.255.255	192.168.9.227	192.168.9.227	1
224.0.0.0	224.0.0.0	192.168.9.227	192.168.9.227	1
255.255.255.255	255.255.255.255	192.168.9.227	192.168.9.227	1
193.137.220.0	255.255.254.0	192.168.9.253	192.168.9.227	1

- 1. Router por omissão
- 2. Endereço Loopback (Loopback)
- 3. Endereço IP local (Loopback)
- 4. Sub-Rede com 32 endereços classe C (Directa)

- 5. Endereço *Broadcast* de Rede (Directa)
- 6. Endereços *Multicast* (Directa)
- 7. Endereço *Broadcast* limitado (Directa)
- 8. Super-Rede com 2 endereços de rede cl. C

Sumário

- Encaminhamento IP
- Entrega de datagramas directa e indirecta
- Problemas do endereçamento IP clássico
- Máscara de rede/subrede
- Subnetting e superneting
- Sumarização de rotas
- Classless Inter-Domain Routing
- Tabelas de routing
- Utilização de um endereço IP de rede em várias redes físicas/ProxyArp
- Generalização do algoritmo de encaminhamento

Exemplo de Tabela de routing (Win2K)

C:\WIN2K>route print

Active Routes:

Metric	Interface	Gateway	Netmask	Network Destination
1	141.29.155.108	141.29.155.254	0.0.0.0	0.0.0.0
1	127.0.0.1	127.0.0.1	255.0.0.0	127.0.0.0
1	141.29.155.108	141.29.155.108	255.255.255.0	141.29.155.0
1	127.0.0.1	127.0.0.1	255.255.255.255	141.29.155.108
1	141.29.155.108	141.29.155.108	255.255.255.255	141.29.255.255
3	141.29.155.108	141.29.155.245	255.0.0.0	200.0.0.0
1	141.29.155.108	141.29.155.108	224.0.0.0	224.0.0.0
1	141.29.155.108	141.29.155.108	255.255.255.255	255.255.255.255
			141.29.155.254	Default Gateway:

Persistent Routes:

Network Address	Netmask	Gateway Address	Metric
200.0.0.0	255.0.0.0	141.29.155.245	3

Exemplo de Tabela de routing (Vista)

IPv4 Route Table

Active Routes:

Network Destination	n Netmask	Gateway	Interface	Metric
0.0.0.0	0.0.0.0	10.10.65.254	10.10.65.37	33
10.10.64.0	255.255.254.0	On-link	10.10.65.37	281
10.10.65.37	255.255.255.255	On-link	10.10.65.37	281
10.10.65.255	255.255.255.255	On-link	10.10.65.37	281
127.0.0.0	255.0.0.0	On-link	127.0.0.1	306
127.0.0.1	255.255.255.255	On-link	127.0.0.1	306
127.255.255.255	255.255.255.255	On-link	127.0.0.1	306
192.168.116.0	255.255.255.0	On-link	192.168.116.1	276
192.168.116.1	255.255.255.255	On-link	192.168.116.1	276
192.168.116.255	255.255.255.255	On-link	192.168.116.1	276
255.255.255.255	255.255.255.255	On-link	127.0.0.1	306
255.255.255.255	255.255.255.255	On-link	192.168.21.1	276
255.255.255.255	255.255.255.255	On-link	192.168.116.1	276
255.255.255.255	255.255.255.255	On-link	10.10.65.37	281

Exemplo de Tabela de routing (Linux)

lmferreira@ipagw:~ > netstat -rn

Kernel IP routing table

Destination	Gateway	Genmask	Flags	MSS	Window	irtt	Iface
10.1.9.0	180.142.85.85	255.255.255.252	UG	40	0	0	eth0
62.48.131.0	172.25.52.252	255.255.255.224	UG	40	0	0	eth1
62.48.128.0	192.168.10.90	255.255.255.224	UG	40	0	0	eth1
141.29.138.128	0.0.0.0	255.255.255.192	U	40	0	0	eth0
192.168.224.0	172.25.52.251	255.255.255.0	UG	40	0	0	eth1
192.168.20.0	180.142.99.100	255.255.255.0	UG	40	0	0	eth0
192.21.71.0	192.168.10.90	255.255.255.0	UG	40	0	0	eth1
200.1.1.0	0.0.0.0	255.255.255.0	U	40	0	0	eth0
10.66.1.0	180.142.78.74	255.255.255.0	UG	40	0	0	eth0
192.168.1.0	180.142.85.85	255.255.255.0	UG	40	0	0	eth0
172.25.52.0	0.0.0.0	255.255.255.0	U	40	0	0	eth1
192.168.10.0	0.0.0.0	255.255.255.0	U	40	0	0	eth1
195.245.135.0	192.168.10.58	255.255.255.0	UG	40	0	0	eth1
200.2.2.0	180.142.99.101	255.255.255.0	UG	40	0	0	eth0
172.27.0.0	192.168.10.90	255.255.0.0	UG	40	0	0	eth1
172.30.0.0	192.168.10.58	255.255.0.0	UG	40	0	0	eth1
172.28.0.0	192.168.10.90	255.255.0.0	UG	40	0	0	eth1
180.142.0.0	0.0.0.0	255.255.0.0	U	40	0	0	eth0
141.29.0.0	180.142.79.167	255.255.0.0	UG	40	0	0	eth0
172.29.0.0	192.168.10.58	255.255.0.0	UG	40	0	0	eth1

Exemplo de Tabela de routing (Router Juniper ERX)


```
Atenas:tst_qosw_l# sh ip route
Protocol/Route type codes:
    I1- ISIS level 1, I2- ISIS level2,
    I- route type intra, IA- route type inter, E- route type external,
    i- metric type internal, e- metric type external,
    O- OSPF, E1- external type 1, E2- external type2,
    N1- NSSA external type1, N2- NSSA external type2
```

Prefix/Length	Type	Next Hop	Dist/Met	Intf
10.1.1.0/24	Connect	10.1.1.1	0/0	FastEthernet13/0
10.1.9.1/32	Connect	10.1.9.1	0/0	loopback0
10.2.1.0/24	Static	10.7.7.2	1/0	ATM0/2.107070
10.2.9.1/32	12-I-i	10.7.7.2	115/10	ATM0/2.107070
10.7.7.0/30	Connect	10.7.7.1	0/0	ATM0/2.107070
10.9.1.0/30	Connect	10.9.1.2	0/0	ATM0/3.109010
180.142.0.0/16	Static	10.9.1.1	1/0	ATM0/3.109010

Exemplo de Tabela de routing (Router Cisco)


```
GR# sh ip route
Codes:
 C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is 10.106.48.209 to network 0.0.0.0
     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C
        10.106.48.208/30 is directly connected, Serial1/0:0
C
        10.106.48.192/28 is directly connected, FastEthernet0/1
C
     180.142.0.0/16 is directly connected, FastEthernet0/0
     0.0.0.0/0 [1/0] via 10.106.48.209
S*
```


- Descreva as tabelas de routing dos Routers (R1, R2 e R3)
 - Assuma que cada router conhece todas as rede da figura

 A partir da tabela de routing desenhe uma topologia de rede possível

Network Address	Netmask	Gateway Address	Interface
0.0.0.0	0.0.0.0	192.168.9.254	192.168.9.227
128.1.0.0	255.255.0.0	10.1.1.1	10.1.1.9
192.1.1.226	255.255.255.254	10.1.1.2	10.1.1.9
192.168.9.224	255.255.255.224	192.168.9.227	192.168.9.227
195.16.1.224	255.255.255.240	192.168.9.252	192.168.9.227
223.0.0.0	255.0.0.0	12.18.1.1	12.18.9.27
12.18.0.0	255.255.0.0	12.18.9.27	12.18.9.27
193.137.220.0	255.255.254.0	192.168.9.253	192.168.9.227
10.1.1.0	255.255.224.0	10.1.1.9	10.1.1.9

- Descreva as tabelas de routing dos Routers (R1, R2 e R3)
 - Assuma que cada router conhece todas as rede da figura

Distribuição de endereço 192.168.224.0/19 por 4 sub-redes

Exercício: (VLSM)

 Distribuição de um endereço classe C pelas LANs optimizando o número de endereços

Exercício: (VLSM)

 Distribuição do bloco 10.2.128.0/22 pelas LANs optimizando o número de endereços

