

FACULTY OF INFORMATION TECHNOLOGY

Machine Learning (Học Máy) Lab 7

Semester 2, 2023/2024

Content

- What is a parameter?
- What is a hyperparameter?
- Tuning hyperparameters
 - GridSearchCV object
 - Steps in a grid search
 - GridSearchCV usage
- Movie reviews sentiment
 - Dataset
 - Vectorization
 - Building classification models

8.1 Parameters

What are parameters?

- Components of the model learned during the modeling process.
- You do not set these manually (you can't in fact!)
- The algorithm will discover these for you

Parameters in Logistic Regression

A simple logistic regression model:

```
log_reg_clf = LogisticRegression()
log_reg_clf.fit(X_train, y_train)
print(log_reg_clf.coef_)
```



```
array([[-2.88651273e-06, -8.23168511e-03, 7.50857018e-04, 3.94375060e-04, 3.79423562e-04, 4.34612046e-04, 4.37561467e-04, 4.12107102e-04, -6.41089138e-06, -4.39364494e-06, cont...]])
```

Parameters in Random forest

- What about tree-based algorithms?
- Random forest has no coefficients, but node decisions (what feature and what value to split on).

```
# A simple random forest estimator
rf_clf = RandomForestClassifier(max_depth=2)
rf_clf.fit(X_train, y_train)
# Pull out one tree from the forest
chosen_tree = rf_clf.estimators_[7]
```

Where to find parameters?

- ▶ To find parameters we need:
 - To know a bit about the algorithm
 - Consult the Scikit Learn documentation
- Parameters will be found under the 'Attributes' section, not the 'Parameters' section.

Where to find parameters?

 Parameters will be found under the 'Attributes' section, not the 'Parameters' section.

Parameters:

n_estimators: int, default=100

The number of trees in the forest.

Changed in version 0.22: The default value of n_estimators changed from 10 to 100 in 0.22.

criterion: {"gini", "entropy", "log_loss"}, default="gini"

The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "log_loss" and "entropy" both for the Shannon information gain, see Mathematical formulation. Note: This parameter is tree-specific.

max_depth : int, default=None

The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.

min_samples_split : int or float, default=2

The minimum number of samples required to split an internal node:

- If int, then consider min_samples_split as the minimum number.
- If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split.

Where to find parameters?

 Parameters will be found under the 'Attributes' section, not the 'Parameters' section.

Attributes:

estimator_: DecisionTreeClassifier

The child estimator template used to create the collection of fitted sub-estimators.

New in version 1.2: base_estimator_ was renamed to estimator_.

base_estimator_: DecisionTreeClassifier

Estimator used to grow the ensemble.

estimators_: list of DecisionTreeClassifier

The collection of fitted sub-estimators.

classes_: ndarray of shape (n_classes,) or a list of such arrays

The classes labels (single output problem), or a list of arrays of class labels (multi-output problem).

n_classes_: int or list

The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem).

8.2 Hyper-parameters

What are hyperparameters?

- Something you set before the modeling process (like knobs on an old radio)
- You also 'tune' your hyperparameters!
- The algorithm does not learn these

How to find hyperparameters that matter?

- Some resources for learning this:
 - Academic papers
 - Blogs and tutorials from trusted sources
 - The Scikit Learn module documentation
 - Experience

Hyperparameter Importance

- Some hyperparameters are more important than others.
- Some will not help model performance (For the random forest classifier: n_jobs, random_state, verbose)
- Not all hyperparameters make sense to 'train'

Random Forest: Important Hyperparameters

Some important hyperparameters:

- n_estimators (high value)
- max_features (try different values)
- max_depth & min_sample_leaf (important for overfitting)
- criterion (maybe)

Hyperparameter Values

Some hyperparameters are more important than others to begin tuning.

But which values to try for hyperparameters?

Specific to each algorithm & hyperparameter

Some best practice guidelines & tips do exist

Conflicting Hyperparameter Choices

- Be aware of conflicting hyperparameter choices.
 - LogisticRegression() conflicting parameter options of solver & penalty that conflict
 - The 'newton-cg', 'sag' and 'lbfgs' solvers support only L2 penalties.

Silly Hyperparameter Values

Be aware of setting 'silly' values for different algorithms:

- Random forest with low number of trees
 - Would you consider it a 'forest' with only 2 trees?
- 1 Neighbor in KNN algorithm
 - Averaging the 'votes' of one person doesn't sound very robust!
- Increasing a hyperparameter by a very small amount

Spending time documenting sensible values for hyperparameters is a valuable activity

Manual Hyperparameter Choice

In the previous labs, we built models as:

```
knn_5 = KNeighborsClassifier(n_neighbors=5)
knn_10 = KNeighborsClassifier(n_neighbors=10)
knn_20 = KNeighborsClassifier(n_neighbors=20)
```

This is quite inefficient. Can we do better?

Automating Hyperparameter Tuning

Try a for loop to iterate through options:

```
neighbors_list = [3,5,10,20,50,75]

for test_number in neighbors_list:
    model = KNeighborsClassifier(n_neighbors=test_number)
    predictions = model.fit(X_train, y_train).predict(X_test)
    accuracy = accuracy_score(y_test, predictions)
    accuracy_list.append(accuracy)
```

Automating Hyperparameter Tuning

We can store the results in a DataFrame to view:

```
results_df = pd.DataFrame({'neighbors':neighbors_list, 'accuracy':accuracy_list})
print(results_df)
```

Neighbors	3	5	10	20	50	75
Accuracy	0.71	0.7125	0.765	0.7825	0.7825	0.7825

8.3 Tunning Hyperparameters

GridSearchCV Object

Introducing a GridSearchCV object:

```
sklearn.model_selection.GridSearchCV(
    estimator,
    param_grid, scoring=None, fit_params=None,
    n_jobs=None, iid='warn', refit=True, cv='warn',
    verbose=0, pre_dispatch='2*n_jobs',
    error_score='raise-deprecating',
    return_train_score='warn')
```

Steps in a Grid Search

- An algorithm to tune the hyperparameters.
 (Sometimes called an 'estimator')
- Defing which hyperparameters we will tune
- Define a range of values for each hyperparameter
- Setting a cross-validation scheme; and
- Define a score function so we can decide which square on our grid was 'the best'.
- Include extra useful information or functions

The important inputs are:

Estimator:

- Essentially our algorithm
- Algorithm can be kNN, Decision Tree, SVM, ...

Remember:

Only one estimator per GridSearchCV object

The important inputs are:

- param_grid:
 - Setting which hyperparameters and values to test
 - The keys in your param_grid dictionary must be valid hyperparameters.

The important inputs are:

- CV:
 - Choice of how to undertake cross-validation
 - Using an integer undertakes k-fold cross validation where 5 or 10 is usually standard

The important inputs are:

- scoring:
 - Which score to use to choose the best grid square (model)
 - Use your own or Scikit Learn's metrics module
- We can check all the built in scoring functions this way:

from sklearn import metrics
sorted(metrics.SCORERS.keys())

The important inputs are:

- refit:
 - Fits the best hyperparameters to the training data
 - Allows the GridSearchCV object to be used as an estimator (for prediction)
 - A very handy option!

The important inputs are:

- n_jobs:
 - Assists with parallel execution
 - Allows multiple models to be created at the same time, rather than one after the other
- Some handy code:

```
import os
print(os.cpu_count())
```

Careful using all your cores for modelling if you want to do other work!

The important inputs are:

- return_train_score:
 - Logs statistics about the training runs that were undertaken
 - Useful for analyzing bias-variance trade-off but adds computational expense.
 - Does not assist in picking the best model, only for analysis purposes

Building a GridSearchCV object

Building our own GridSearchCV Object:

```
# Create the grid
param_grid = {'max_depth': [2, 4, 6, 8], 'min_samples_leaf': [1, 2, 4, 6]}
#Get a base classifier with some set parameters.
rf_class = RandomForestClassifier(criterion='entropy', max_features='auto')
```

Building a GridSearchCV object

Putting the pieces together:

```
grid_rf_class = GridSearchCV(
    estimator = rf_class,
    param_grid = parameter_grid,
    scoring='accuracy',
    n_jobs=4,
    cv = 10,
    refit=True,
    return_train_score=True)
```

Using a GridSearchCV Object

Since we set refit to True we can directly use the object:

```
#Fit the object to our data
grid_rf_class.fit(X_train, y_train)

# Make predictions
grid_rf_class.predict(X_test)
```

Analyzing the output

Three different groups for the GridSearchCV properties

```
A results log
cv_results_
The best results
best_index_, best_params_ & best_index_
'Extra information'
scorer_, n_splits_ & refit_time_
```

Accessing object properties

Properties are accessed using the dot notation.

For example:

grid_search_object.property

Where property is the actual property we want to retrieve

The '.cv_results_' property

Read the property into a DataFrame to print and analyze

```
cv_results_df = pd.DataFrame(grid_rf_class.cv_results_)
print(cv_results_df.shape)
(12, 23)
```

The 12 rows for the 12 squares in our grid or 12 models we ran

The best grid square

Information on the best grid square is neatly summarized in the following three properties:

 best_params_, the dictionary of parameters that gave the best score.

best_score_, the actual best score.

 best_index , the row in our cv_results_.rank_test_score that was the best.

The `best_estimator_` property

type(grid_rf_class.best_estimator_)

warm_start=False)

The best_estimator_ property is an estimator built using the best parameters from the grid search

Extra information

- Some extra information is available in the following properties:
- scorer_
 - What scorer function was used on the held-out data.
- n_splits_
 - How many cross-validation splits.
- refit_time_
 - The number of seconds used for refitting the best model on the whole dataset

Grid Search Pros & Cons

Advantages:

- You don't have to write thousands of lines of code
- Finds the best model within the grid
- Easy to explain

Disadvantages:

- Computationally expensive! Remember how quickly we made 6,000+ models?
- It is 'uninformed'. The results of one model don't help create the next model.

8.4 Movie reviews sentiment

The movie reviews dataset

- The dataset consists of 2000 user-created movie reviews archived on the IMDb (Internet Movie Database)
- The reviews are equally partitioned into a positive set and a negative set (1000+1000).
- Each review consists of a plain text file (.txt) and a class label representing the overall user opinion.
- The class attribute has only two values: pos (positive) or neg (negative).

Importing libraries

Necessary libraries for sentiment movie reviews dataset:

```
import nltk, random
nltk.download('movie_reviews')#download movie reviews dataset
from nltk.corpus import movie_reviews
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import cross_val_score
from collections import Counter
from sklearn.model_selection import train_test_split
```

Getting movie reviews information

- Movie reviews information:
 - Fileids
 - Categories
 - Words

```
• • •
```

```
print(len(movie_reviews.fileids()))
print(movie_reviews.categories())
print(movie_reviews.words()[:100])
print(movie_reviews.fileids()[:10])
```

```
2000
['neg', 'pos']
['plot', ':', 'two', 'teen', 'couples', 'go', 'to', ...]
['neg/cv000_29416.txt', 'neg/cv001_19502.txt', 'neg/cv002_17424.txt',
```

Create dataset from movie reviews

Load words and categories into the document:

```
print('Number of Reviews/Documents: {}'.format(len(documents)))
print('Corpus Size (words): {}'.format(np.sum([len(d) for (d,l) in documents])))
print('Sample Text of Doc 1:')
print('-'*30)
print(' '.join(documents[0][0][:50])) # first 50 words of the first document
```

```
Number of Reviews/Documents: 2000
Corpus Size (words): 1583820
Sample Text of Doc 1:
------
most movies seem to release a third movie just so it can be called a trilogy .
```

Train-Test Split

Split the document into train test split:

```
[ ] train, test = train_test_split(documents, test_size = 0.33, random_state=42)
[ ] ## Sentiment Distrubtion for Train and Test
    print(Counter([label for (words, label) in train]))
    print(Counter([label for (words, label) in test]))

Counter({'neg': 674, 'pos': 666})
Counter({'pos': 334, 'neg': 326})
```

Determine X_train, X_test, ...

- Split our training data into X_train and y_train as the features (X) and labels (y) in training.
- Likewise, we split our testing data into X_test and y_test as the features (X) and labels (y) in testing.

```
[ ] X_train = [' '.join(words) for (words, label) in train]
X_test = [' '.join(words) for (words, label) in test]
y_train = [label for (words, label) in train]
y_test = [label for (words, label) in test]
```

Text Vectorization

In feature-based machine learning, we need to vectorize texts into feature sets (i.e., feature engineering on texts).

```
[ ] from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

tfidf_vec = TfidfVectorizer(min_df = 10, token_pattern = r'[a-zA-Z]+')

X_train_bow = tfidf_vec.fit_transform(X_train) # fit train

X_test_bow = tfidf_vec.transform(X_test) # transform test
```

Model Selection

- Apply classification algorithms to sentiment movie reviews
 - SVM, Decision Tree, Naive Bayes, Logistic Regression

shutterstock.com · 2042284517

FACULTY OF INFORMATION TECHNOLOGY

