

尚硅谷大数据技术之 Flume

官网: www.atguigu.com

日期	修订版本	修改章节	修改描述	作者
2017-09-11	1.0		内部稿	尽际
2017-09-29	1.1	増加 job 示例	内部稿	尽际
2017-12-28	1.2	增加 flume 监	内部稿	尽际
		控手段		

ShangGuigu Technologies Co., Ltd.

尚硅谷技术有限公司

一、Flume 简介

- 1) Flume 提供一个分布式的,可靠的,对大数据量的日志进行高效收集、聚集、移动的服务, Flume 只能在 Unix 环境下运行。
- 2) Flume 基于流式架构,容错性强,也很灵活简单。
- 3) Flume、Kafka 用来实时进行数据收集,Spark、Storm 用来实时处理数据,impala 用来实时查询。

二、Flume 角色

2.1 Source

用于采集数据, Source 是产生数据流的地方,同时 Source 会将产生的数据流传输到 Channel,这个有点类似于 Java IO 部分的 Channel。

2.2 Channel

用于桥接 Sources 和 Sinks, 类似于一个队列。

2.3 **Sink**

从 Channel 收集数据,将数据写到目标源(可以是下一个 Source,也可以是 HDFS 或者 HBase)。

2.4、Event

传输单元, Flume 数据传输的基本单元, 以事件的形式将数据从源头送至目的地。

三、Flume 传输过程

source 监控某个文件或数据流,数据源产生新的数据,拿到该数据后,将数据封装在一个 Event 中,并 put 到 channel 后 commit 提交,channel 队列先进先出,sink 去 channel 队列中 拉取数据,然后写入到 HDFS 中。

四、Flume 部署及使用

4.1、文件配置

flume-env.sh 涉及修改项:

export JAVA_HOME=/home/admin/modules/jdk1.8.0_121

4.2、案例

4.2.1、案例一: 监控端口数据

目标: Flume 监控一端 Console,另一端 Console 发送消息,使被监控端实时显示。 **分步实现:**

1) 安装 telnet 工具

\$ sudo rpm -ivh xinetd-2.3.14-40.el6.x86_64.rpm

\$ sudo rpm -ivh telnet-0.17-48.el6.x86_64.rpm

\$ sudo rpm -ivh telnet-server-0.17-48.el6.x86_64.rpm

2) 创建 Flume Agent 配置文件 flume-telnet.conf

Name the components on this agent

a1.sources = r1

a1.sinks = k1

a1.channels = c1

Describe/configure the source

a1.sources.r1.type = netcat

a1.sources.r1.bind = localhost

a1.sources.r1.port = 44444

Describe the sink
a1.sinks.k1.type = logger

Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

3) 判断 44444 端口是否被占用

\$ netstat -tunlp | grep 44444

4) 先开启 flume 先听端口

\$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/flume-telnet.conf

-Dflume.root.logger==INFO,console

5) 使用 telnet 工具向本机的 44444 端口发送内容

\$ telnet localhost 44444

4.2.2、案例二: 实时读取本地文件到 HDFS

目标:实时监控 hive 日志,并上传到 HDFS 中

分步实现:

1) 拷贝 Hadoop 相关 jar 到 Flume 的 lib 目录下(要学会根据自己的目录和版本查找 jar 包)

\$ cp share/hadoop/common/lib/hadoop-auth-2.5.0-cdh5.3.6.jar ./lib/

\$ cp share/hadoop/common/lib/commons-configuration-1.6.jar ./lib/

\$ cp share/hadoop/mapreduce1/lib/hadoop-hdfs-2.5.0-cdh5.3.6.jar ./lib/

\$ cp share/hadoop/common/hadoop-common-2.5.0-cdh5.3.6.jar ./lib/

\$ cp ./share/hadoop/hdfs/lib/htrace-core-3.1.0-incubating.jar ./lib/

\$ cp ./share/hadoop/hdfs/lib/commons-io-2.4.jar ./lib/

尖叫提示: 标红的 jar 为 1.99 版本 flume 必须引用的 jar

2) 创建 flume-hdfs.conf 文件

```
# Name the components on this agent
a2.sources = r2
a2.sinks = k2
a2.channels = c2
# Describe/configure the source
a2.sources.r2.type = exec
a2.sources.r2.command = tail -F /home/admin/modules/apache-hive-1.2.2-bin/hive.log
a2.sources.r2.shell = /bin/bash -c
# Describe the sink
a2.sinks.k2.type = hdfs
a2.sinks.k2.hdfs.path = hdfs://linux01:8020/flume/% Y% m% d/% H
#上传文件的前缀
a2.sinks.k2.hdfs.filePrefix = logs-
#是否按照时间滚动文件夹
a2.sinks.k2.hdfs.round = true
#多少时间单位创建一个新的文件夹
a2.sinks.k2.hdfs.roundValue = 1
#重新定义时间单位
a2.sinks.k2.hdfs.roundUnit = hour
#是否使用本地时间戳
a 2. sinks. k 2. hdfs. use Local Time Stamp = true \\
#积攒多少个 Event 才 flush 到 HDFS 一次
```



```
a2.sinks.k2.hdfs.batchSize = 1000
#设置文件类型,可支持压缩
a2.sinks.k2.hdfs.fileType = DataStream
#多久生成一个新的文件
a2.sinks.k2.hdfs.rollInterval = 600
#设置每个文件的滚动大小
a2.sinks.k2.hdfs.rollSize = 134217700
#文件的滚动与 Event 数量无关
a2.sinks.k2.hdfs.rollCount = 0
#最小冗余数
a2.sinks.k2.hdfs.minBlockReplicas = 1
# Use a channel which buffers events in memory
a2.channels.c2.type = memory
a2.channels.c2.capacity = 1000
a 2. channels. c 2. transaction Capacity = 100\\
# Bind the source and sink to the channel
a2.sources.r2.channels = c2
a2.sinks.k2.channel = c2
```

3) 执行监控配置

\$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/flume-hdfs.conf

4.2.3、案例三: 实时读取目录文件到 HDFS

目标: 使用 flume 监听整个目录的文件

分步实现:

1) 创建配置文件 flume-dir.conf


```
a3.sources = r3
a3.sinks = k3
a3.channels = c3
# Describe/configure the source
a3.sources.r3.type = spooldir
a3.sources.r3.spoolDir = /home/admin/modules/apache-flume-1.7.0-bin/upload
a3.sources.r3.fileSuffix = .COMPLETED
a3.sources.r3.fileHeader = true
#忽略所有以.tmp 结尾的文件,不上传
a3.sources.r3.ignorePattern = ([^]*\.tmp)
# Describe the sink
a3.sinks.k3.type = hdfs
a3.sinks.k3.hdfs.path = hdfs://linux01:8020/flume/upload/%Y%m%d/%H
#上传文件的前缀
a3.sinks.k3.hdfs.filePrefix = upload-
#是否按照时间滚动文件夹
a3.sinks.k3.hdfs.round = true
#多少时间单位创建一个新的文件夹
a3.sinks.k3.hdfs.roundValue = 1
#重新定义时间单位
a3.sinks.k3.hdfs.roundUnit = hour
#是否使用本地时间戳
a3.sinks.k3.hdfs.useLocalTimeStamp = true
#积攒多少个 Event 才 flush 到 HDFS 一次
a3.sinks.k3.hdfs.batchSize = 100
#设置文件类型,可支持压缩
```


a3.sinks.k3.hdfs.fileType = DataStream

#多久生成一个新的文件

a3.sinks.k3.hdfs.rollInterval = 600

#设置每个文件的滚动大小大概是 128M

a3.sinks.k3.hdfs.rollSize = 134217700

#文件的滚动与 Event 数量无关

a3.sinks.k3.hdfs.rollCount = 0

#最小冗余数

a3.sinks.k3.hdfs.minBlockReplicas = 1

Use a channel which buffers events in memory

a3.channels.c3.type = memory

a3.channels.c3.capacity = 1000

a 3. channels. c 3. transaction Capacity = 100

Bind the source and sink to the channel

a3.sources.r3.channels = c3

a3.sinks.k3.channel = c3

2) 执行测试: 执行如下脚本后,请向 upload 文件夹中添加文件试试

\$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/flume-dir.conf

尖叫提示: 在使用 Spooling Directory Source 时

- 1) 不要在监控目录中创建并持续修改文件
- 2) 上传完成的文件会以.COMPLETED 结尾
- 3) 被监控文件夹每 600 毫秒扫描一次文件变动

4.2.4、案例四: Flume 与 Flume 之间数据传递: 单 Flume 多 Channel、Sink,

目标:使用 flume-1 监控文件变动,flume-1 将变动内容传递给 flume-2,flume-2 负责存储到 HDFS。同时 flume-1 将变动内容传递给 flume-3,flume-3 负责输出到。 local filesystem。

分步实现:

1) 创建 flume-1.conf, 用于监控 hive.log 文件的变动,同时产生两个 channel 和两个 sink 分别输送给 flume-2 和 flume3:

```
# Name the components on this agent
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
# 将数据流复制给多个 channel
a1.sources.r1.selector.type = replicating

# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /home/admin/modules/apache-hive-1.2.2-bin/hive.log
```



```
a1.sources.r1.shell = /bin/bash -c
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = linux01
a1.sinks.k1.port = 4141
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = linux01
a1.sinks.k2.port = 4142
# Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1 c2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c2
```

2) 创建 flume-2.conf,用于接收 flume-1 的 event,同时产生 1 个 channel 和 1 个 sink,将数据输送给 hdfs:


```
# Name the components on this agent
a2.sources = r1
a2.sinks = k1
a2.channels = c1
# Describe/configure the source
a2.sources.r1.type = avro
a2.sources.r1.bind = linux01
a2.sources.r1.port = 4141
# Describe the sink
a2.sinks.k1.type = hdfs
a2.sinks.k1.hdfs.path = hdfs://linux01:8020/flume2/\%Y\%m\%d/\%H
#上传文件的前缀
a2.sinks.k1.hdfs.filePrefix = flume2-
#是否按照时间滚动文件夹
a2.sinks.k1.hdfs.round = true
#多少时间单位创建一个新的文件夹
a2.sinks.k1.hdfs.roundValue = 1
#重新定义时间单位
a2.sinks.k1.hdfs.roundUnit = hour
#是否使用本地时间戳
a2.sinks.k1.hdfs.useLocalTimeStamp = true
#积攒多少个 Event 才 flush 到 HDFS 一次
a2.sinks.k1.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a2.sinks.k1.hdfs.fileType = DataStream
#多久生成一个新的文件
```



```
a2.sinks.k1.hdfs.rollInterval = 600
#设置每个文件的滚动大小大概是 128M
a2.sinks.k1.hdfs.rollSize = 134217700
#文件的滚动与 Event 数量无关
a2.sinks.k1.hdfs.rollCount = 0
#最小冗余数
a2.sinks.k1.hdfs.minBlockReplicas = 1

# Describe the channel
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1
```

3) 创建 flume-3.conf, 用于接收 flume-1 的 event, 同时产生 1 个 channel 和 1 个 sink, 将数据输送给本地目录:

```
# Name the components on this agent

a3.sources = r1

a3.sinks = k1

a3.channels = c1

# Describe/configure the source

a3.sources.r1.type = avro
```



```
a3.sources.r1.bind = linux01
a3.sources.r1.port = 4142

# Describe the sink
a3.sinks.k1.type = file_roll
a3.sinks.k1.sink.directory = /home/admin/Desktop/flume3

# Describe the channel
a3.channels.c1.type = memory
a3.channels.c1.capacity = 1000
a3.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a3.sources.r1.channels = c1
a3.sinks.k1.channel = c1
```

尖叫提示:输出的本地目录必须是已经存在的目录,如果该目录不存在,并不会创建新的目录。

4) 执行测试:分别开启对应 flume-job (依次启动 flume-3, flume-2, flume-1),同时产生文件变动并观察结果:

\$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group-job1/flume-3.conf
\$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group-job1/flume-2.conf
\$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group-job1/flume-1.conf

4.2.5、案例五: Flume 与 Flume 之间数据传递,多 Flume 汇总数据 到单 Flume

目标: flume-1 监控文件 hive.log,flume-2 监控某一个端口的数据流,flume-1 与 flume-2 将数据发送给 flume-3,flume3 将最终数据写入到 HDFS。

分步实现:

1) 创建 flume-1.conf, 用于监控 hive.log 文件, 同时 sink 数据到 flume-3:

```
# Name the components on this agent

a1.sources = r1

a1.sinks = k1

a1.channels = c1

# Describe/configure the source

a1.sources.r1.type = exec

a1.sources.r1.command = tail -F /home/admin/modules/apache-hive-1.2.2-bin/hive.log

a1.sources.r1.shell = /bin/bash -c
```



```
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = linux01
a1.sinks.k1.port = 4141

# Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
```

2) 创建 flume-2.conf, 用于监控端口 44444 数据流, 同时 sink 数据到 flume-3:

```
# Name the components on this agent
a2.sources = r1
a2.sinks = k1
a2.channels = c1

# Describe/configure the source
a2.sources.r1.type = netcat
a2.sources.r1.bind = linux01
a2.sources.r1.port = 44444

# Describe the sink
a2.sinks.k1.type = avro
```



```
a2.sinks.k1.hostname = linux01
a2.sinks.k1.port = 4141

# Use a channel which buffers events in memory
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1
```

3) 创建 flume-3.conf,用于接收 flume-1 与 flume-2 发送过来的数据流,最终合并后 sink 到 HDFS:

```
# Name the components on this agent
a3.sources = r1
a3.sinks = k1
a3.channels = c1

# Describe/configure the source
a3.sources.r1.type = avro
a3.sources.r1.bind = linux01
a3.sources.r1.port = 4141

# Describe the sink
a3.sinks.k1.type = hdfs
a3.sinks.k1.type = hdfs
```


- #上传文件的前缀
- a3.sinks.k1.hdfs.filePrefix = flume3-
- #是否按照时间滚动文件夹
- a3.sinks.k1.hdfs.round = true
- #多少时间单位创建一个新的文件夹
- a3.sinks.k1.hdfs.roundValue = 1
- #重新定义时间单位
- a3.sinks.k1.hdfs.roundUnit = hour
- #是否使用本地时间戳
- a3.sinks.k1.hdfs.useLocalTimeStamp = true
- #积攒多少个 Event 才 flush 到 HDFS 一次
- a3.sinks.k1.hdfs.batchSize = 100
- #设置文件类型,可支持压缩
- a3.sinks.k1.hdfs.fileType = DataStream
- #多久生成一个新的文件
- a3.sinks.k1.hdfs.rollInterval = 600
- #设置每个文件的滚动大小大概是 128M
- a3.sinks.k1.hdfs.rollSize = 134217700
- #文件的滚动与 Event 数量无关
- a3.sinks.k1.hdfs.rollCount = 0
- #最小冗余数
- a 3. sinks. k 1. hdfs. minBlock Replicas = 1
- # Describe the channel
- a3.channels.c1.type = memory
- a3.channels.c1.capacity = 1000
- a3.channels.c1.transactionCapacity = 100

Bind the source and sink to the channel

a3.sources.r1.channels = c1

a3.sinks.k1.channel = c1

4) 执行测试:分别开启对应 flume-job (依次启动 flume-3, flume-2, flume-1),同时产生文件变动并观察结果:

\$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group-job2/flume-3.conf

 $\$ bin/flume-ng agent --conf conf/ --name a 2 --conf-file job/group-job2/flume-2.conf

\$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group-job2/flume-1.conf

尖叫提示:测试时记得启动 hive 产生一些日志,同时使用 telnet 向 44444 端口发送内容,如:

\$ bin/hive

\$ telnet linux01 44444

五、Flume 监控之 Ganglia

5.1 Ganglia 的安装与部署

1) 安装 httpd 服务与 php

yum -y install httpd php

2) 安装其他依赖

yum -y install rrdtool perl-rrdtool rrdtool-devel

yum -y install apr-devel

3) 安装 ganglia

rpm -Uvh http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm

yum -y install ganglia-gmetad

yum -y install ganglia-web

yum install -y ganglia-gmond

4) 修改配置文件

文件 ganglia.conf:


```
# vi /etc/httpd/conf.d/ganglia.conf
修改为:

# 
# Ganglia monitoring system php web frontend

# 

Alias /ganglia /usr/share/ganglia

<Location /ganglia>
Order deny,allow
Deny from all
Allow from all
# Allow from 127.0.0.1

# Allow from ::1

# Allow from .example.com
</Location>
```

文件 gmetad.conf:

```
# vi /etc/ganglia/gmetad.conf
修改为:
data_source "linux" 192.168.216.20
```

文件 gmond.conf:

```
# vi /etc/ganglia/gmond.conf

修改为:
cluster {
    name = "linux"
    owner = "unspecified"
    latlong = "unspecified"
```



```
url = "unspecified"
udp_send_channel {
  #bind_hostname = yes # Highly recommended, soon to be default.
                            # This option tells gmond to use a source address
                            # that resolves to the machine's hostname. Without
                            # this, the metrics may appear to come from any
                            # interface and the DNS names associated with
                            # those IPs will be used to create the RRDs.
  \# mcast_join = 239.2.11.71
  host = 192.168.216.20
  port = 8649
  ttl = 1
udp_recv_channel {
  \# mcast_join = 239.2.11.71
  port = 8649
  bind = 192.168.216.20
  retry_bind = true
  # Size of the UDP buffer. If you are handling lots of metrics you really
  # should bump it up to e.g. 10MB or even higher.
  # buffer = 10485760
```

文件 config:

```
# vi /etc/selinux/config
```

修改为:

This file controls the state of SELinux on the system.

SELINUX= can take one of these three values:

- # enforcing SELinux security policy is enforced.
- # permissive SELinux prints warnings instead of enforcing.
- # disabled No SELinux policy is loaded.

SELINUX=disabled

SELINUXTYPE= can take one of these two values:

- # targeted Targeted processes are protected,
- # mls Multi Level Security protection.

SELINUXTYPE=targeted

尖叫提示: selinux 本次生效关闭必须重启,如果此时不想重启,可以临时生效之:

\$ sudo setenforce 0

5) 启动 ganglia

\$ sudo service httpd start

\$ sudo service gmetad start

\$ sudo service gmond start

6) 打开网页浏览 ganglia 页面

http://192.168.216.20/ganglia

尖叫提示: 如果完成以上操作依然出现权限不足错误,请修改/var/lib/ganglia 目录的权限:

\$ sudo chmod -R 777 /var/lib/ganglia

5.2 操作 Flume 测试监控

1) 修改 flume-env.sh 配置:

JAVA_OPTS="-Dflume.monitoring.type=ganglia

- -Dflume.monitoring.hosts=192.168.216.20:8649
- -Xms100m
- -Xmx200m"

2) 启动 flume 任务

\$ bin/flume-ng agent \

--conf conf/\
--name a1 \
--conf-file job/group-job0/flume-telnet.conf \
-Dflume.root.logger==INFO,console \
-Dflume.monitoring.type=ganglia \

3) 发送数据观察 ganglia 监测图

-Dflume.monitoring.hosts=192.168.216.20:8649

\$ telnet localhost 44444

样式如图:

flume (9

图例说明:

字段(图表名称)	字段含义	
EventPutAttemptCount	source 尝试写入 channel 的事件总数量	
EventPutSuccessCount	成功写入 channel 且提交的事件总数量	
EventTakeAttemptCount	sink 尝试从 channel 拉取事件的总数量。这不	
	意味着每次事件都被返回,因为 sink 拉取的	
	时候 channel 可能没有任何数据。	
EventTakeSuccessCount	sink 成功读取的事件的总数量	
StartTime	channel 启动的时间(毫秒)	
StopTime	channel 停止的时间(毫秒)	
ChannelSize	目前 channel 中事件的总数量	
ChannelFillPercentage	channel 占用百分比	
ChannelCapacity	channel 的容量	

六、练习

目标:

- 1) flume-1 监控 hive.log 日志,flume-1 的数据传送给 flume-2,flume-2 将数据追加到本地文件,同时将数据传输到 flume-3。
- 2) flume-4 监控本地另一个自己创建的文件 any.txt, 并将数据传送给 flume-3。
- 3) flume-3 将汇总数据写入到 HDFS。

请先画出结构图,再开始编写任务脚本。