TD Programmation Système

Série 5 : Accès concurrent

Exercice 1: Exécutions atomiques

On suppose que sur Unix on peut définir des variables x et y partagées par deux processus (x=0, y=0). Les deux processus exécutent les codes suivants :

Processus P1

Processus P2

```
x = x + 1; x = x * 2; y = y + 1; y = y * 2; printf("x=%d, y=%d\n", x, y); printf("x=%d, y=%d\n", x, y);
```

- **a-** Ces processus s'exécutent sur un système UNIX dont la politique d'ordonnancement est du type *round robin*. Quelles peuvent être les couples de valeurs affichées par chacun des deux processus ?
- **b-** En utilisant un sémaphore, modifier le code pour assurer que les *printf* affichent toujours des valeurs identiques pour x et y.

Exercice 2: Synchronisation (barrière)

Ecrire les procédures d'accès à un objet de type barrière dont le fonctionnement est le suivant :

- 1. la barrière est fermée à son initialisation,
- 2. elle s'ouvre lorsque N processus sont bloqués sur elle.

Définition de la barrière :

Question 1:

Complétez le code de la procédure d'initialisation :

```
void InitBarrière (Barrière *B; int Maximum)
{
    Init (B→Sema1, ...);
    Init (B→Sema2, ...);
    B→Count = ...;
    B→Maximum = ...;
}
```

Question 2:

Complétez le code de la procédure d'attente donné ci-dessous :

```
void Wait (Barrière *B)
{
    Boolean Do_Wait = True ;
    int I ;

    ...;
    B→Count++ ;
    if (B→Count == B→Maximum ) {
        for (I=0 ; I < (B→Maximum-1) ; I++ ) ...;
        B→Count = 0;
        Do_Wait = ...;
    }
    ...;
    if (Do_Wait) ...;
}</pre>
```

Exercice 3: Ordonnancement

Programmer un rendez-vous entre 3 processus cycliques P_1 , P_2 et P_3 en utilisant les opérations sur les *sémaphores*. P_3 ne peut exécuter sa $2^{\text{ème}}$ partie que si P_1 et P_2 se sont complètement exécutés. P_2 ne peut exécuter sa $1^{\text{ère}}$ partie que lorsque P_1 s'est entièrement exécuté.

$\begin{array}{c} \textit{Processus} \; \textit{P}_1 \\ \hline \textit{D\'ebut} \\ \hline \end{array}$	Processus P ₂ Début	Processus P ₃ Début
Tantque vrai faire	Tantque vrai faire	Tantque vrai faire
Fintantque Fin	// partie 1 // partie_2 Fintantque Fin	// partie 1 // partie 2 Fintantque Fin