Cvičení č. 3 Fotony – energie a hybnost

1. Střední vlnová délka záření žárovky s kovovým vláknem je $\lambda_{\rm stř}=1200$ nm. Za předpokladu 100 % účinnosti stanovte kolik fotonů za jednu sekundu vysílá žárovka o elektrickém příkonu 200W .

2. LC- fotoelektrický jev: Cesium je ozářeno světlem vlnové délky $\lambda = 486$ nm a bylo zjištěno brzdné napětí $U_b = -0.658$ V. Stanovte, jaké bude brzdné napětí pro světlo vlnové délky $\lambda = 400$ nm. (viz simulační aplet)

3. Při dopadu kvanta záření o vlnové délce $\lambda = 342$ nm na povrch lithia se uvolňuje fotoelektron, který se pohybuje v magnetickém poli o intenzitě H = 15 A m⁻¹ po kruhové dráze o poloměru r = 1,2 cm. **Určete výstupní práci elektronu z litia.** (viz simulační aplet)

V pokusu s Comptonovým rozptylem bylo zjištěno, ñe rozptýlené kvantum záření se odchýlilo o úhel $\alpha=60^{\circ}$ vzhledem k původnímu směru, zatímco elektron(Comptonova vlnová délka $\lambda_0=h/(mc)=2.426.\ 10^{-12}\ m$) opsal kružnici o poloměru $r=15\ mm$ v magnetickém poli o intenzitě $H=200\ Am^{-1}$. **Najděte vlnovou délku dopadajícího fotonu.**