Problem 2.2:

Theorem: Let Z be an $n \times r$ null-space matrix for the matrix A. If Y is any invertible $r \times r$ matrix, $\hat{Z} = ZY$ is also a null-space matrix for A.

Proof: Given that Z is an $n \times r$ null-space matrix for matrix A, we know that AZ = 0, we also know that Y is an invertible matrix. We need to show that $A\hat{Z} = 0$ or AZY = 0 for $\hat{Z} = ZY$ to be a null-space matrix for A. Consider the following:

$$A\hat{Z} = A(ZY)$$

$$A(ZY) = (AZ)Y$$

$$A(ZY) = 0Y$$

$$AZY = 0 \text{ or } A\hat{Z} = 0$$

Thus proving $\hat{Z} = ZY$ is also a null-space matrix for A.