即特許出願公告

⑩特 許 公 報(B2)

昭63-20775

@Int_Ci_4

識別記号

庁内整理番号

2000公告 昭和63年(1988)4月30日

C 03 C

6674-4G 6674-4G

発明の数 1 (全2頁)

光学カラス ❷発明の名称

> ②特 願 昭58-227030

多公 第 昭50-122749

20出 部 昭58(1983)12月2日 @昭60(1985)7月1日

小 林 隆 治 四発 明 者 @発 明 者 広 田 慎 -- 郎

東京都東久留米市滝山6-1-6-403 東京都八王子市めじろ台1-2-401

徹郎 砂発 明 者 泉谷

東京都日野市程久保685-58

创出 願 人 ホーヤ株式会社 東京都新宿区中落合2丁目7番5号

砂代 理 人 弁理士 朝倉 正幸

審 査 官 吉 田

1

動特許請求の範囲

1 モル%でP2O634~45, B2O20~4, Al2O20 ~ 5 , Li₂O4 ~ 20 , BaO28 ~ 45 , SrO0 ~ 8 , ZnO0~7, P2Os+B2Os+Al2Os≦45の組成を有 する光学ガラス。

発明の詳細な説明

本発明は屈折率ndが1.60以上でアツベ数vdが60 以上である比較的低軟化点の中屈折低分散ガラス に関するものであって、その目的とするところは プレスレンズを得るのに好適なガラス組成を提供 10 することにある。

米国特許第3833347号明細書、同第3900328号明 細書、同第4168961号明細書、特別昭56-59641号 公報、欧州特許第19342号明細書及び特開昭56― レス成形後、研制ないし研磨を必要としないブレ スレンズの研究が盛んに行なわれている。プレス レンズを得るには、金型の酸化による肌荒れ防止 等の点で、ガラス自体は軟化点が低い方が低い温

SKガラスを含むndがI.60以上で、vdが60以上 の中屈折低分散ガラスは、市場性が非常に高く、 プレスレンズ化されることが大いに望まれるガラ スであるが、このものは高分散のフリントガラス プレスレンズ化するうえで難点がある。前掲の特 開昭56-59641号公報、欧州特許第19342号明細書 並びに特開昭56-149343号公報等には、ブレス成 形するのみで研削、研磨を必要とすることなくレ ンズを得ることができる低軟化点ガラス組成が教 示されているものの、これらには上記の光学恒数 を満足するガラスが見当らず、また化学的耐久性 の点で不十分なものもある。一般にガラスは軟化 点の低下に連れて科学的耐久性が悪化する傾向が あり、ガラスとしての安定性も劣化する場合が多 W.

本発明者等は化学的耐久性に優れ、しかもガラ スとして十分な安定性を有する比較的低軟化点の 中屈折低分散ガラスを開発する目的で、ガラス組 成を種々検討した結果、低分散でかつ比較的低軟 化点のガラスを得るためにガラス形成酸化物とし 149343号公報等に見られる如く、近年に於てはプ 25 てP₂O₂を用い、屈折率を高くするためにガラス 形成酸化物の量を少なくして多量のBaOを修飾 酸化物として導入し、Li₂Oの配合で軟化点をさ らに低下させ、Al₂O₈を少量添加することにより 化学的耐久性を向上させ、その他の成分の添加に 度でプレス成形できるので有利であると言える。 20 よつてガラスとしての安定性をより一層増大させ れば、所期の目的に適うガラスが得られることを 見い出して本発明を完成した。

すなわち、本発明に係る光学ガラスは、モル% $^{\circ}$ P₂O₆34 \sim 45, B₂O₃0 \sim 4, Al₂O₁0 \sim 5, やSF系光学ガラスに比べて軟化点が高いため、25 BaO28~45, SrO0~8, ZnO0~7, Li₂O4~20, P₂O₅+B₂O₅+Al₂O₅≤45の組成を有することで 特徴づけられる。

本発明に於て、PaOsはガラス形成剤であって、 この成分の使用は低分散ガラスを取得するうえ で、またそのガラスの軟化点を低下させるうえで 有利である。しかし、その量が34%未満であると ガラスとして不安定になり、45%を越えると屈折 5 悪化させないので、本発明では4~20%の範囲で 率が低下する。B₂O₂は少量配合することでガラ スとしての安定性を向上させることができるが、 4%を越えて添加した場合はかえつてガラスの安 定性を悪化させる。Al₂O₂の少量添加はガラスの 科学的耐久性を大いに向上させ、ガラスとしての 10 をよく高くするための任意成分として、Y₂O*。 安定性向上にも効果があるが、この成分はガラス の軟化点を高めるものであるため、添加量は5% 未満を可とする。

修飾酸化物のうち、BaOは多量に導入するこ とができ、このものは屈折率を高くするための必 15 金型を用いてブレス成形に供すれば、比較的低い 須成分である。しかし、その量が28%未満では屈 折率を所望通り高くすることができず、45%より 多いとガラスとしての安定性は損われるので、28 ~45%の範囲に制限される。SrO及びZnOを添加 して多成分とすることはガラスの安定化に寄与す 20 る。この場合、BaOをSrOに置換すると屈折率を 余り低下させずにガラスの安定化を図ることがで き、BaOをZnOに置換すると軟化点を低下させ つつガラスの安定化を図ることができる。しかし ながら、置換量が多くなりすぎるとかえつて不安*

*定になるため、SrOは8%以下、ZnOは7%以下 に限定される。アルカリ成分は軟化点の低下に効 果を発揮するが、化学的耐久性を悪化させる成分 でもある。しかし、LigOは科学的耐久性を余り 添加される。4%未満では軟化点を十分に低くす ることがきず、20%を越えると科学的耐久性が悪 化する。尚、本発明ではLi₂Oの一部をNa₂O及 び/又はK₂Oで置換することができる外、屈折率

をそれぞれ2%以下の量で添加することができ న. 本発明のガラスは、光学鏡面に磨いたある種の 成形温度でプレスレンズを得ることができるばか りでなく、ガラスとして十分安定であるのでプレ

ス成形時に失透を起すことがなく、また成形後の

La₂O₃, Gd₂O₈, Yb₂O₈, Nb₂O₈, WO₄, PbO等

洗浄工程でヤケを発生する必配もない。 進んで本発明の実施例(Na 1~9)をモル%表 示のガラス組成で示し、併せてそれらの光学恒 数、化学的耐久性(Dw)及びガラス転移点 (Tg) を示す。但し、化学的耐久性は日本光学硝 子工業会規格の耐水重量減(粉末法;100℃1時

				and the state of t					
	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No, 8	No. 9
P2 O5	38,0	40.5	41.0	40.5	41.0	34,0	43, 0	41,0	40.5
AlzO ₈	5,0	1,5	2.0	1.5	2,0	2.0	1.5	2.0	1.5
B ₂ O ₃	2,0	1.0	-	1,0	- ,	4.0	1.0	-	1,0
Li ₂ 0	16,0	12, 0	14.0	4,0	14.0	15.0	15.0	16.0	8.0
ZnO	3,0	5.0	5,0	6.5	5.0	7.0	3, 5	3.0	6.0
BaO	33,0	36, 0	32,0	41.4	32,0	36, 0	32,0	32,0	38,2
Sr0	3.0	4.0	4.0	5, 1	4,0	2,0	4,0	_	4.8
₩02			2.0	-	2,0			Rev	-
nd	1,60019	1,60099	1,60116	1,60866	1,61158	1.60037	1,60269	1.60052	1.60433
νđ	65,3	63, 90	61,28	63, 27	60, 26	64, 07	64, 21	64, 11	63, 61
Dw(wt%)	0.01	0.02	0.02	0.02			0,02	0,03	0,02
Tg (°C)	443	420	412	464	426	432	410	403	435

間)で表示した。

実施例に示すガラスはH。PO4、AI(OH)。, H₂BO₈, BaCO₂, Ba(NO₂)₂, Sr(NO₃)₂, ZnO₃ LizCOa等を原料としてこれらを混合し、白金る つばにて約1200℃で溶融、脱泡を行ない、1100℃

で攪拌して脈理をなくし、830℃で予熱された金 型に鋳込み、これを徐冷することにより得られた ものであつて、いずれも均質なガラスであつた。