

Analysis of first-order spectrum

Information from ¹H NMR

- Chemical Shift δ
- Coupling (peak shape/numbers and J)
- Height of the integral curve

1. Spectrum Identification

例2: C-OCH₂-CH₂-CH₂-CH₃ 7. 0 6. 5 6. 0 5.5 5.0 4. 5 4. 0 3. 5 3. 0 2. 5 2. 0 1.5 0.5

2. ¹H NMR spectrum analysis

- Unsaturation degree f.
- Height of the integral curve, for H numbers.
- Chemical Shifts (δ), H numbers and coupling splitting peaks shape/numbers, for structural determination.
- Possible structures.
- Identify the most probable structure.

E.g. 1. $C_5H_{12}O$

1, unsaturation:

$$U=1+5+1/2(0-12)=0$$

- 2. three singlets, height of the integral curve 1: 2: 9
- 3. 4.1ppm H can be exchange by deuterium water, -OH
- 4. 0.9ppm H, three methyls
- 5. 3.2ppm H, one methylene

未知物结构

例2、某化合物 $C_6H_{10}O_3$,其谱图如下,求结构

解答:

- 1、计算不饱和度: U=2 分子中可能含有: C=C或C=O
- 2、化学位移没有大于5ppm的,故没有C=C
- 3、4.1ppm和1.2ppm互相偶合,4重峰,且 与电负性较大原子相连,
 - -CH₃-CH₂-O-
- 4、3.5ppm为亚甲基,连着C=O
- 5、2.2ppm为甲基,也和C=O相连

未知物结构

例3、未知物 $C_4H_6O_2$,谱图如下,其中 12.5ppm的峰经重水交换后消失,求结构

积分高度: 1: 1: 1: 3

解答:

- 1、计算不饱和度: U=2
- 2、12ppm处单峰,被重水交换,为-COOH
- 3、1.9ppm(4重峰,3H),为CH₃-CH=CH-和烯基上质子有邻位和烯丙基偶合
- 4、7.10~5.85ppm范围中有两组峰,分别为烯基上的两个质子
 - 5.85为与羧基相连的烯氢:=CH-COOH
 - 7.10为与甲基相连的烯氢: -CH3-CH=

$$H_3C$$
 COOH H_1 H_2

A B

理论计算:
$$\delta_{eta \leq} = 5.25 + Z_{\Box} + Z_{\Box} + Z_{\Box}$$

A:
$$\delta H_1 = 7.11 ppm$$

δ H₂=6.0ppm

B: δ H₁=6.41ppm

δ H₂=5.94ppm

A结果比较接近、而B结果相 差较大,所以未知物是A

$$H_3C$$
 H_2
 H_1
 $COOH$

例4、某化合物 $C_7H_{16}O_3$, ¹H NMR谱如下,推测其结构:

解答:

- 1、U=0,说明是饱和化合物
- 2、积分曲线三组峰强度=1:6:9
- 3、 δ 1.2为连有亚甲基的甲基,被邻接的亚甲基裂分为三重 峰
- 4、 δ 3.6为与氧相连的亚甲基,移向低场
- 5、所以结构中有 (CH₃CH₂0-)₃
- 6、尚缺CH, 所以 δ 5.2的单峰为连接氧的 -CH

E.g. 5: C₁₀H₁₂O

例6、化合物H₁₁H₂₀O₄,红外光谱指明是个酯 类化合物,¹H NMR如下,推测其结构

解答:

- 1、U=2
- 2、积分曲线指出四组峰强度比为2: 2: 3: 3 加和=10,说明分子中有对称结构
- 3、从谱图上可寻到两个结构:

- 4、因为分子要对称,所以上述结构有两个
- 5、缺一个碳原子,因此必有共用碳原子,只能是两个乙基共有

$$\begin{array}{c} O \\ C-O-CH_2CH_3 \\ H_3CH_2C-C-C+CH_2CH_3 \\ C-O-CH_2CH_3 \\ \end{array}$$

Practise 1. C₁₄H₂₂O

Practise 2: Two isomers bearing a same formula $C_9H_{12}O$

Practise 3: C₅H₇O₂N

What should we pay attention to ...

- Discriminate with peaks from solvent, impurity...
- Active Hydrogen Signal
- If it is not first-order spectrum

Active H signal:

- ✓ Active H intend to form hydrogen bonds and their signals on NMR are not fixed and range in a certain region;
- ✓ Active H intend to undergo exchange reactions. For groups like –COOH, -OH, -NH etc., only one average signal can be observed on the NMR spectrum and no coupling splitting can be detected, which is due to the fast exchange.
- ✓ If DMSO is used as solvent, due to it strong interaction with the active H which lowers the exchange rate, the active H signal as well as the coupling splitting can be observed on the NMR spectrum.

CH₃CH₂OH

D₆-DMSO

How to determine the active H signal:

- Temperature/Concentration: the position of active
 H will change.
- Exchange with Deuterium water: the peak of active H will disappear.

4.3.4 高级谱图简介

- 高级谱图的特点:
 - -耦合裂分峰数目不符合n+1规律;
 - 裂分峰组中各峰的相对强度关系不符合(a+b)ⁿ 展开式的系数;
 - $-化学位移值<math>\delta$ 和耦合常数J 一般需要通过计算才能得到。
- 高级谱图的研究方法:

将相互耦合的核组划分成不同的自旋 体系,分别研究它们的谱图特点和规 律。

自旋体系的分类和命名

- 相互耦合的核组成的体系称为自旋体系
- 体系内部的核相互耦合,而不与体系外的任何核耦合;

、根据体系中自旋核的个数分二旋体系、三旋 本系等类型。

自旋体系命名规则:

- 化学位移相同的核构成一个核组,以一个英文字母表示,δ值不同的核组用不同的英文字母表示,δ值相差大的核组选择字母表中相距远的字母,例如AX、AMX等,δ值相近的核组用邻近的字母,如AB、ABC等
- 核组内磁等价核的数目用数字标注在英文字母的右下角。
- 核组内磁不等价的核 , 则加 '以示区别。

(1) 二旋体系

- · 是高级谱图中最简单的一种。
- 共有4条谱线,每 个核有相邻的两 条谱线。随 $\Delta \nu/J$ 变小,内侧的谱 线增强,外侧的 谱线减弱,呈规 律性变化。

(2) 三旋体系

- · 类型较多,如有AX₂、AB₂、AMX、ABX 等。仅以AX₂和AB₂为例简单介绍。
- AX₂体系为一级谱图,共有5条谱线,其中 A核有3条,X核有2条。

- AB₂体系最多可有9条谱线,其中A核4条,B核4条,第9条是综合谱线(强度弱)。
- 随着 △ⅥJ 比值的不同这些谱线的分布和相对 强度差别很大。

AB₂体系实例

高频仪器的使用

- 高级谱图相当复杂,解析很困难。
- 使用高频仪器可简化谱图,使高级谱图 变成一级谱图。
 - -判断一级谱图的依据是 $\Delta \nu J > 6$;
 - -耦合常数/是分子固有的属性,与谱仪的频率无关;
 - $-\Delta
 u = \Delta \delta imes
 u_{
 m WB}$,随着谱仪频率增加而 π 增大。

例如1,2,3-三羟基苯

$$\delta_{A}=6.59$$
, $\delta_{B}=6.23$, $\Delta\delta_{AB}=0.36$, $J\approx8$ Hz.

仪器频率

 $\Delta \nu_{AB}$

 $\Delta \nu_{AB}/J$

100 MHz

36 Hz

4.5

高级谱图

300 MHz

108 Hz

13.5

一级谱图

4.3.5 核磁共振的特殊实验技术

对于较复杂化合物,核磁共振氢谱中谱峰常常重叠,自旋耦合使重叠现象更为严重,造成谱峰辨认和解析的困难。

一些核磁共振的特殊实验技术可以 简化谱图,并辅助谱图解析。双共振 (double resonance)是其中重要的 一种。

什么是双共振?

·双共振:用 $B_1(\nu_1)$ 使所检测的核共振的同时还用第二个射频场 $B_2(\nu_2)$,满足样品中另一种核(干扰核)的共振条件。即在同一外磁场 B_0 中,样品的两种核会同时发生核磁共振。

双共振的分类

- 根据发生双共振的核种类型分:
 - 同核双共振 如¹H和¹H同时发生共振 ,
 表示为¹H {¹H } ; (干扰核写在大括号中)
 - 异核双共振 如¹³C和¹H 同时发生共振 ,
 表示为¹³C {¹H }。
- 最常用的双共振
 - 自旋去偶
 - 核Overhauser效应

自旋去偶

以AX体系为例说明原理和作用。

- 在A被心的照射发生共振的同时,以强功率的心照射X;
- X发生共振并被饱和,即X核在高低两个能级间快速跃迁,所产生的局部磁场△B平均为零,这就去掉了X核对A核的耦合作用;
- 普图显示结果是A核由多重峰变成单峰,X 核因饱和而使吸收峰消失。

・作用

- 简化谱图;
- 通过峰形变化找出 相互耦合的峰组;
- 有利于确定多重峰 的化学位移值。

核Overhauser效应(NOE)

 当H_A和H_B的空间位置很近时 , 用双 共振法照射H_B , 且使干扰场 B₂的强度 正好使H_B谱线饱和 , 这时H_A的共振 信号就会增加。这种现象称为核的 Overhauser效应 (nuclear Overhauser effect , NOE)。

- 产生NOE的原因是达到饱和的H_B通过横向 弛豫将能量转移给H_A,使H_A吸收的能量增 多,共振信号增大。
- 两核间的空间距离相近(<0.3nm)是发生 NOE效应的充分条件,而与其相隔的化学 键数目无关。
- ・NOE可用于确定分子空间结构,是立体化学 研究的重要手段。

例:

$$H_3C$$
 $C = C$ H H_3C 3 2 $COOH$ 1

氢谱中 δ = 1.42 和 1.97处各有一组二重峰。

用双共振法确定它们各自与哪个甲基对应。

- 当 B_2 (ν_2) 照射 δ = 1.97时,烯氢从七重峰 (δ = 5.66) 变成四重峰,信号强度不变;
- 当 B_2 (ν_2) 照射 δ = 1.42时,烯氢也从七重峰 变成四重峰,但信号强度增强了17%。

一说明 δ = 1.42的CH $_3$ 与烯氢空间位置靠近,则在双键的同一侧。