CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
ITT332	SOFT COMPUTING	PEC	2	1	0	3

Preamble: The objective of the course is to introduce the basic concepts of soft computing techniques such as Artificial Neural Networks, Fuzzy Logic, Genetic Algorithm and Hybrid Systems.

Prerequisite: Nil

Course Outcomes: After the completion of the course, the student will be able to

CO No.	Course Outcome (CO)	Bloom's Category Level		
CO 1	Explain various soft computing techniques and their roles in building intelligent machines	Level 2: Understand		
CO 2	Discuss Artificial Neural Network Architectures and different Learning Methods	Level 2: Understand		
CO 3	Apply fuzzy logic and reasoning to handle uncertainty and solve engineering problems	Level 3: Apply		
CO 4	Apply genetic algorithm to solve optimization problems	Level 3: Apply		
CO 5	Explain the concepts of hybrid systems	Level 2: Understand		

Mapping of course outcomes with program outcomes

POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
COs	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	2	1	-	-	-	-	-	- 0	-	-	-	2
CO 2	3	3	-	1	201	41	//-	-	-	-	-	2
CO 3	3	3	3	3	-	-	-	-	-	-	-	2
CO 4	3	3	3	3	-	-	-	-	-	-	-	2
CO 5	2	1	-	1	-	-	-	-	-	-	-	2

3/2/1: high/medium/low

Assessment Pattern

Bloom's Category	Continuous	Assessment	End Semester Examination			
	Te	sts	Marks			
	Test1	Test1				
	(Marks)	(Marks)				
Remember	20	10	30			
Understand	20	20	40			
Apply	10	20	30			
Analyse	TATES	1/0/	TOAT			
Evaluate	TINE		III. Al			
Create	LITY /T	DOL	FX7			

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks
Continuous Assessment Test (2 numbers) : 25 marks
Assignment/Quiz/Course project : 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Describe various soft computing techniques.
- 2. List applications of Neural Networks.
- 3. Soft computing techniques give best solution to complex problems. Justify.

Course Outcome 2 (CO2):

1. What is unsupervised learning and how is it different from reinforced learning.

- 2. How does learning takes place in supervised learning.
- 3. Draw the architecture of back propagation algorithm.

Course Outcome 3(CO3):

- 1. With suitable example, explain how membership assignment is performed using intuition.
- 2. Design computer software to perform image processing to locate objects within a scene. The two fuzzy sets representing a plane and a train image are

Plane:
$$\left\{ \begin{array}{c} \frac{0.2}{train} + \frac{0.5}{bike} + \frac{0.3}{boat} + \frac{0.8}{plane} + \frac{0.1}{house} \right\}$$
Train:
$$\left\{ \begin{array}{c} \frac{1}{train} + \frac{0.2}{bike} + \frac{0.4}{boat} + \frac{0.5}{plane} + \frac{0.2}{house} \right\}$$
Find the following

(a) Plane \square Train

(b) Plain \square Train

(c) \overline{Plane}

(d) \overline{Train}

(e) Plane \square Train

(f) $\overline{Plane} \cup \overline{Train}$

(g) $\overline{Plane} \cap \overline{Train}$

(h) $\overline{Plane} \cup \overline{Plane}$

(i) Plain \square \overline{Train}

Course Outcome 4 (CO4):

- 1. Determine the maximum of a function $f(x)=x^2$ using genetic algorithm.
- 2. With a neat flowchart, explain the operation of a simple genetic algorithm.

Course Outcome 5 (CO5):

- 1. Describe Neuro Genetic hybrid systems.
- 2. Mention the characteristics and properties of Neuro-Fuzzy hybrid systems

Model Question paper

Course Code: ITT 332 Course Name: Soft Computing

Max.Marks:100 Duration: 3 Hour

Part A

Answer all questions. Each question carries 3 marks.

- 1. Discuss the back propagation process in a neural network.
- 2. How is fuzzy relation converted into a crisp relation using lamda-cut process?
- 3. Differentiate convex and nonconvex fuzzy set
- 4. What is ANFIS?
- 5. Differentiate hard computing and soft computing
- 6. What is the significance of weight in an Artificial Neural Network?
- 7. Define Fuzzy Equivalence Relation.
- 8. Compare Tuning and learning problems
- 9. What are the advantages and limitations of Genetic Algorithm?
- 10. List various encoding techniques used in genetic algorithm.

Part B

Answer all questions. Each question carries 14 marks. (5 * 14 = 70 Marks)

- 11. (a) State the basic components of soft computing (6 marks)
 - (b) What are the different applications of Soft Computing? (8 marks)

OR

- 12. (a) What are the characteristics of hard computing and soft computing? (6 marks)
 - (b) Describe various soft computing techniques (8 marks)
- 13. (a) Explain Exclusive OR problem. How it is solved with two layer perceptrons

(8 marks)

(b) Calculate the output y of a three-input neuron with bias. The input feature vector is (x1, x2,x3)=(0.3,0.5,0.6) and weight values are [w1,w2,w3,b]=[0.1,0.3,-0.2,0.35]. Use (i) binary sigmoidal and (ii) bipolar sigmoidal activation functions (6 marks)

14.	(a) (i) Cons four output		eed forv	vard net	twork w	ith five	input n	odes, tl	hree hidd	len nodes and
	(ii) Constru output node					-				des and two yer. (8 marks)
	(b) Compar	e Super	vised an	d Unsu	pervise	d Learn	ing Met	thods.		(6 marks)
15.	(a) Using the shapes(i) isosceles and $45^{\circ},55^{\circ},80^{\circ}$	osceles	triangle,	(ii) equ	ilateral	triangle	e,(iii) rig	ght angl	le triangl	
	(b) What ar	e the dit	fferent f	eatures	of mem	bership	function	ns?		(4 marks)
					OR					
16.	(a) Explain	differen	nt Defuz	zificatio	on meth	ods				(8 marks)
	(b) Describ Relations	e Max-r	nin com	positio	n and M	lax-pro	duct cor	npositio	on of Cla	assical
										(6 marks)
17.	(a) Define t	he follo	wing Ag	ggregati	ion o <mark>f</mark> F	uzzy Ri	ules			
	(i) Conjunc	ctive sys	stem of 1	ules (ii) Dis <mark>ju</mark> r	ective s	ystem o	f rules		(6 marks)
	(b) Explain	four mo	odes of I	Fuzzy A	pproxii	nate Re	easoning	g		(8 marks)
					OR					
18.	(a) Compar	e Mamo	lani Fuz	zy Inter	face Sy	stem ar	nd Taka	gi-Suge	eno Fuzz	y Model
										(8 marks)
	(b) What is decomposit		•							
19.	(a) Briefly	explain	the selec	ction op	eration	in gene	etic algo	rithm.		(5 marks)
	(b) Compar	e and co	ontrast c	ooperat	ive Neu	ıro- fuz	zy syste	ms and	hybrid l	Neuro-fuzzy
	systems.				OD					(9 marks)
20	(a) E1-i	T D-	int Con	~~~~~	OR In a Ca	4:1	l'41		414 4	
∠U.	parents are			ssover.	m a Ge	mene al	igorithm	ı, suppo	ose mat t	wo potential
	1	1	0	0	1	1	0	1	1	1
	0	0	1	1	1	0	1	0	0	1

Assuming the numbering goes from left to right and that \Box_1 =4 and \Box_2 =8, show result of two point crossover

(6 marks)

(b) Describe Neuro Genetic Hybrid Systems

(8 marks)

Syllabus

Module 1: Introduction to Soft Computing (5 Hours)

Evolution of Computing-From Conventional Artificial Intelligence to Computational Intelligence, Characteristics of Hard Computing and Soft Computing, Soft Computing Constituents, Applications of Soft Computing

Module 2: Artificial Neural Networks (7 Hours)

Biological Neuron, Artificial Neural Network Architectures: Single-Layer Feed Forward Network, Multi-Layer Feed Forward Network and Recurrent Network, Learning Methods: Supervised, Unsupervised and Reinforced Learning

Module 3: Fuzzy Logic (8 Hours)

Fuzzy Sets, Operations on Fuzzy Sets, Fuzzy Relations, Operations on Fuzzy Relations, Fuzzy Membership Functions, Fuzzification, Methods of Membership Value Assignments, Defuzzification Methods

Module 4: Fuzzy System (6 Hours)

Fuzzy Rules: Formation, Decomposition and Aggregation, Fuzzy Reasoning, Fuzzy Inference System: Mamdani Fuzzy System and Sugeno Fuzzy System

Module 5: Genetic Algorithm and Hybrid Systems (9 Hours)

Genetic Algorithm: Basic Version of Genetic Algorithm, Encoding Methods, Operators in Genetic Algorithm: Selection, Crossover and Mutation

Hybrid Systems: Basic Concept, Neuro-Fuzzy Hybrid System, Neuro-Genetic Hybrid System and Fuzzy-Genetic Hybrid System

Text Books

- 1. S.N.Sivanandam, S.N.Deepa, Principles of Soft Computing, Wiley India Pvt. Ltd., 2nd Edition, 2011.
- 2. S.Rajasekaran, G.A.Vijayalakshmi Pai, Neural Networks, Fuzzy Logic and Genetic Algorithm, Synthesis and Applications, PHI Learning Pvt. Ltd., 2017.

Reference Books

- 1. James A. Freeman and David M. Skapura, —Neural Networks Algorithms, Applications, and Programming Techniques, Addison Wesley, 2003.
- 2. Jacek M. Zurada, Introduction to Artificial Neural Systems, PWS Publishers, 1992.
- 3. George J. Klir and Bo Yuan, —Fuzzy Sets and Fuzzy Logic-Theory and Applications, Prentice Hall, 1996.
- 4. Mitchell Melanie, An Introduction to Genetic Algorithm, Prentice Hall, 1998.
- 5. David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, 1997.
- 6. Jyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, —Neuro-Fuzzy and Soft Computing, Prentice-Hall of India, 2002.

Course Contents and Lecture Schedule

No	Topic	No. of
		Lectures
1	Introduction to Soft Computing	5 Hours
1.1	Evolution of Computing-From Conventional Artificial Intelligence to	2 Hours
	Computational Intelligence	
1.2	Characteristics of Hard Computing and Soft Computing,	1 Hour
1.3	Soft Computing Constituents	1 Hour
1.4	Applications of Soft Computing	1 Hour
2	Artificial Neural Networks	7 Hours
2.1	Biological Neuron and Artificial Neural Network Concepts	1 Hour
2.2	Single-Layer and Multi-Layer Feed Forward Networks	2 Hours
2.3	Recurrent Network	1 Hour
2.4	Supervised Learning	1 Hour
2.5	Unsupervised Learning	1 Hour
2.6	Reinforced Learning	1 Hour
3	Fuzzy Logic	8 Hours
3.1	Fuzzy Sets and Operations on Fuzzy Sets	2 Hours
3.2	Fuzzy Relations and Operations on Fuzzy Relations	2 Hours
3.3	Fuzzy Membership Functions	2 Hours
3.4	Fuzzification and Methods of Membership Value Assignments	1 Hour
3.5	Defuzzification Methods	1 Hour
4	Fuzzy System	6 Hours
4.1	Fuzzy Rules: Formation, Decomposition and Aggregation	2 Hours
4.2	Fuzzy Reasoning	2 Hours
4.3	Fuzzy Inference System: Mamdani and Sugeno Fuzzy Systems	2 Hours
5	Genetic Algorithm and Hybrid Systems	9 Hours
5.1	Basic Version of Genetic Algorithm	1 Hour

INFORMATION TECHNOLOGY

5.2	Encoding Methods	1 Hour
5.3	Operators in Genetic Algorithm: Selection, Crossover and Mutation	3 Hours
5.4	Basic Concept of Hybrid Systems	1 Hour
5.5	Neuro-Fuzzy Hybrid System	1 Hour
5.6	Neuro-Genetic Hybrid System	1 Hour
5.7	Fuzzy-Genetic Hybrid System	1 Hour

