

Linear Regression

回归诊断

交互效应

变量选择

回归预测

数据说明

变量类型		变量名	详细说明	取值范围	备注
因变量		单位面积房价	单位:万元/平方米	1.83~14.98	
自变量	内部因素	房屋面积	单位:平方米	30.06~299.00	
		卧室数	单位: 个	1~5	
		厅数	单位: 个	0~3	
		所属楼层	定性变量 共3个水平	低楼层、中楼层、高楼层	相对楼层
	区位因素	所属城区	定性变量 共6个水平	朝阳区、东城区、丰台区、 海淀区、石景山区、西城区	
		是否邻近地铁	定性变量 共2个水平	1代表邻近地铁 0代表不邻近地铁	82.89% 邻近地铁
		是否学区房	定性变量 共2个水平	1代表学区房 0代表非学区房	30.22% 是学区房

北京二手房单位房价 (N=16210)

- ·均值: 6.12万元/平方米
- ・中位数: 5.74万元/平方米
- ・最小值: 1.40万元/平方米
 - 丰台区东山坡三里的一间两居室
 - 总面积100.83平米
- ・最大值: 14.99万元/平方米
 - ,西城区金融街的一套三室一厅
 - 总面积77.40平米

探秘北京金融街天价学区房:一平米要40万(图)

2016年01月14日 13:19 来源: 环球时报

倪浩】

[打印本稿] [字号 大 中 小] [手机看新闻]

探秘北京金融街天价学区房:一平米要40万(图)

1. 单位房价跟面积、学区房相关吗? 有多相关?

2. 在控制了其他因素之后(例如地理位置),这种相关性还明显吗?

3. 在宇宙中心买个40平米的学区房,大约多少钱?

简单线性回归

简单线性回归

参数估计

最小二乘估计

residual sum of squares (RSS):

RSS =
$$(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$
.
min $\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2},$
 $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$

单位房价 v.s. 面积

标准误

- 估计均值 $\hat{\mu} = \frac{\sum_i y_i}{n}$
- 标准误(Standard Error of $\hat{\mu}$):

$$Var(\hat{\mu}) = SE(\hat{\mu})^2 = \frac{\sigma^2}{n}$$
 • 与 σ^2 有关 • 与 n 有关

• 回归系数的标准误:

$$SE(\widehat{\beta_0})^2 = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_i (x_i - \bar{x})^2} \right), SE(\widehat{\beta_1})^2 = \frac{\sigma^2}{\sum_i (x_i - \bar{x})^2}$$

置信区间

- n足够大时: $\frac{\widehat{\beta_j} \beta_j}{SE(\widehat{\beta_j})} \sim N(0,1)$
- 置信水平为 $1-\alpha$ 的置信区间:

$$\widehat{\beta}_j \pm z_{\alpha/2} SE(\widehat{\beta}_j)$$

•
$$P(\widehat{\theta_L} \le \theta \le \widehat{\theta_U}) = 1 - \alpha$$

回归系数的假设检验

回归系数的假设检验

$$H_0$$
: $\beta_1 = 0$ H_1 : $\beta_1 \neq 0$ 检验统计量: $t = \frac{\widehat{\beta_1} - 0}{SE(\widehat{\beta_1})}$

• 在零假设下,t服从自由度是(n-2)的t分布。在显著性水平 α 的前提下,如果 $|t| > t_{\alpha/2}$ (n-2)则拒绝 H_0

p-value =
$$P(t_{n-2} > |t|)$$

• p值是原假设可被拒绝的最小显著性水平。如果p-value $\leq \alpha$ 则在显著性水平 α 下拒绝 H_0

评估回归模型准确性

Residual Standard Error (RSE):

$$RSE = \sqrt{\frac{1}{n-2}RSS} = \sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}.$$
 平均偏离程度

$$R^2 = rac{ ext{TSS} - ext{RSS}}{ ext{TSS}} = 1 - rac{ ext{RSS}}{ ext{TSS}}$$
 ∈ $egin{bmatrix} ext{0,1} \\ ext{ ohthered} \end{matrix}$ 的比例

其中:
$$TSS = \sum (y_i - \bar{y})^2$$
, $RSS = \sum (y_i - \hat{y}_i)^2$


```
> summary(lm(price ~ AREA, data = dat0))
call:
lm(formula = price ~ AREA, data = dat0)
Residuals:
           10 Median
   Min
                       3Q
                                 Max
-4.3251 -1.8348 -0.3338 1.5153 9.1663
Coofficients
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.4589537 0.0403832 159.942 <2e-16 ***
           -0.0037470 0.0003969 -9.441 <2e-16 ***
AREA
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '1
Residual standard error: 2.223 on 16208 degrees of freedom
Multiple R-squared: 0.005469, Adjusted R-squared: 0.005408
F-statistic: 89.13 on 1 and 16208 DF, p-value: < 2.2e-16
```

 $\beta_0 \beta_1$ 参数估计


```
> summary(lm(price ~ AREA, data = dat0))
call:
lm(formula = price ~ AREA, data = dat0)
Residuals:
                       3Q
            10 Median
   Min
                                  Max
-4.3251 -1.8348 -0.3338 1.5153 9.1663
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.4589537 0.0403832 159.942
                                         <2e-16 ***
AREA
           -0.0037470 0.0003969
                                -9.441
                                          <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 2.223 on 16208 degrees of freedom
Multiple R-squared: 0.005469, Adjusted R-squared: 0.005408
F-statistic: 89.13 on 1 and 16208 DF, p-value: < 2.2e-16
```

 $eta_0 eta_1$ 参数估计t统计量


```
> summary(lm(price ~ AREA, data = dat0))
call:
lm(formula = price ~ AREA, data = dat0)
Residuals:
                        3Q
            10 Median
   Min
                                  Max
-4.3251 -1.8348 -0.3338 1.5153 9.1663
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.4589537 0.0403832 159.942
                                          <2e-16 ***
           -0.0037470 0.0003969 -9.441
                                          <2e-16 ***
AREA
Signif. codes: 0 '*** 0.001 '** 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.223 on 16208 degrees of freedom
Multiple R-squared: 0.005469, Adjusted R-squared: 0.005408
F-statistic: 89.13 on 1 and 16208 DF, p-value: < 2.2e-16
```

```
eta_0 eta_1参数估计t统计量p	extbf{-value}
```



```
> summary(lm(price ~ AREA, data = dat0))
call:
lm(formula = price ~ AREA, data = dat0)
Residuals:
                        3Q
            10 Median
   Min
                                  Max
-4.3251 -1.8348 -0.3338 1.5153 9.1663
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.4589537 0.0403832 159.942 <2e-16 ***
           -0.0037470 0.0003969 -9.441 <2e-16 ***
AREA
Signif. codes: 0 '*** 0.001 '** 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2 223 on 16208 degrees of freedom
Multiple R-squared: 0.005469, Adjusted R-squared: 0.005408
F-statistic: 89.13 on 1 and 10208 DF, p-value: < 2.2e-16
```

```
\beta_0 \beta_1参数估计
    t统计量
     p-value
```


自变量离散: 0-1自变量

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

$$X = 1$$
 表示是学区房;

$$X = 0$$
 表示非学区房

 $\bigcap \beta_1$ 如何解读?

自变量离散: 0-1自变量

自变量离散: 0-1自变量

```
> summary(lm(price~school, data=dat0))
call:
lm(formula = price ~ school, data = dat0)
Residuals:
   Min 1Q Median 3Q
                                 Max
-5.5957 -1.3670 -0.3366 1.1542 9.6545
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.33262 0.01776 300.32 <2e-16 ***
school 2.58199 0.03225 80.05 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.887 on 16208 degrees of freedom
Multiple R-squared: 0.2834, Adjusted R-squared: 0.2833
F-statistic: 6408 on 1 and 16208 DF, p-value: < 2.2e-16
```


自变量离散:多水平 (例如:多城区)

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

X = 海淀区、朝阳区、东城区

自变量离散:多水平(例如:多城区)

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

解决方案:

$$X_1 = 1$$
 (海淀区); = 0 (非海淀区)

$$X_2 = 1$$
 (朝阳区); = 0 (非朝阳区)

问题:

- (1) 是否需要X₃?
- (2) 如果有p个水平,需要几个0-1变量?

自变量离散:多水平 (例如:多城区)

自变量离散:多水平(例如:多城区)

```
> summary(lm(price~CATE, data=dat0))
call:
lm(formula = price ~ CATE, data = dat0)
Residuals:
   Min
            1Q Median
                           30
                                 Max
-6.3757 -0.9465 -0.1071 0.8932 7.7370
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.02869
                      0.03489 115.474 < 2e-16 ***
CATE丰台
           0.22140
                     0.04496 4.924 8.54e-07 ***
          1.25137 0.04522 27.674 < 2e-16 ***
CATE朝阳
CATE东城
          3.15967 0.04548 69.469 < 2e-16 ***
CATE海淀
          2.84707 0.04505 63.205 < 2e-16 ***
CATE西城
           4.53879
                     0.04560 99.545 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.539 on 16204 degrees of freedom
Multiple R-squared: 0.5233, Adjusted R-squared: 0.5232
F-statistic: 3558 on 5 and 16204 DF, p-value: < 2.2e-16
```


自变量离散:多水平 (例如:多城区)

```
dat0$CATE = factor(dat0$CATE,
                  > summary(lm(price~CATE, data=dat0))
call:
lm(formula = price ~ CATE, data = dat0)
Residuals:
           10 Median
   Min
                         3Q
                               Max
-6.3757 -0.9465 -0.1071 0.8932 7.7370
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.87576 0.02849 241.311 < 2e-16 ***
CATE石景山 -2.84707
                   0.04505 - 63.205 < 2e-16
CATE丰台 -2.62567 0.04020 -65.315 < 2e-16 ***
CATE朝阳 -1.59570 0.04049 -39.411 < 2e-16
CATE东城 0.31260 0.04079 7.665 1.9e-14 ***
CATE西城
          1.69172 0.04091 41.352 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1.539 on 16204 degrees of freedom
Multiple R-squared: 0.5233, Adjusted R-squared: 0.5232
F-statistic: 3558 on 5 and 16204 DF, p-value: < 2.2e-16
```

将海淀区换 为基础?

多元线性回归

多元线性回归

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \varepsilon$$

多元线性回归

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

= $\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_p x_{ip})^2$.

$$\hat{\beta} = (X'X)^{-1}(XY)$$

评估:是否存在线性关系?

$$H_0$$
: $\beta_1 = \beta_2 = \cdots = \beta_p = 0$
 H_1 : 至少有一个 $\beta_i \neq 0$

在零假设下,F统计量:
$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)}$$

服从自由度是 (p, n-p-1) 的 F 分布。

扩展:是否存在线性关系?

$$H_0$$
: $\beta_{p-q+1} = \beta_{p-q+2} = \dots = \beta_p = 0$

在零假设下·F统计量
$$F = \frac{(\mathrm{RSS}_0 - \mathrm{RSS})/q}{\mathrm{RSS}/(n-p-1)}.$$

←如果 q=1 呢?

服从自由度是 (q, n - p - 1) 的 F 分布。 \bigcirc

多元回归中的R²

$$R^2 = \frac{\text{TSS} - \text{RSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}}$$

- 当加入新变量时,RSS单调下降。因此,更多的自变量会得到更大的R²
- The more, the better?

No No No! 容易造成过拟合!

多元回归中的R²

训练集测试集

Adjusted R²

$$R_a^2 = 1 - \frac{RSS/(n-p-1)}{TSS/(n-1)} = 1 - \frac{(n-1)}{(n-p-1)} \frac{RSS}{TSS}$$

通过自由度调整,对加入更多变量进行"惩罚"。

扩展:是否存在线性关系?

```
> summary(lm(price~ school + AREA, data = dat0))
call:
lm(formula = price ~ school + AREA, data = dat0)
Residuals:
   Min
           1Q Median 3Q
                                 Max
-5.6618 -1.3745 -0.3286 1.1538 9.6872
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.5881160 0.0359067 155.629 < 2e-16
school 2.5722336 0.0322103 79.858 < 2e-16
           -0.0027526 0.0003364 -8.181 3.02e-16
AREA
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.883 on 16207 degrees of freedom
Multiple R-squared: 0.2863, Adjusted R-squared: 0.2862
F-statistic: 3251 on 2 and 16207 DF, p-value: < 2.2e-16
```

与单变量回归 系数是否相同?

扩展:是否存在线性关系?

```
> summary(lm(price~ school + AREA + CATE. data = dat0))
Call:
lm(formula = price ~ school + AREA + CATE, data = dat0)
Residuals:
   Min
            10 Median
                           30
                                 Max
-5.7442 -0.9176 -0.1425 0.8249 8.2456
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.4208740 0.0393383 163.222 < 2e-16 ***
school
         1.2458616 0.0280696 44.385 < 2e-16 ***
AREA
           -0.0014385 0.0002644 -5.440 5.41e-08 ***
CATE石景山 -2.2882854 0.0446501 -51.249 < 2e-16 ***
CATE丰台 -2.0762116 0.0399083 -52.025 < 2e-16
CATE朝阳
          -1.2476593 0.0390133 -31.980 < 2e-16
CATE东城
          0.3263657 0.0384931
                                 8.479 < 2e-16 ***
CATE西城
           1.5643723 0.0388286 40.289 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1.452 on 16202 degrees of freedom
Multiple R-squared: 0.576, Adjusted R-squared: 0.5758
F-statistic: 3144 on 7 and 16202 DF, p-value: < 2.2e-16
```

与单变量回归 系数是否相同?

其他因素: 地铁?

其他因素:房屋内设计?

其他因素: 楼层?

多元线性回归模型 (因变量:单位面积房价)

变量	回归系数	p值	备注
截距项	3.315	<.0001	
城区-丰台	0.131	0.001	
城区-朝阳	0.875	<.0001	
城区-东城	2.443	<.0001	基准组:石景山区
城区-海淀	2.191	<.0001	
城区-西城	3.705	<.0001	
学区房	1.183	<.0001	
地铁房	0.672	0.001	
楼层-中层	0.152	<.0001	基准组: 高层
楼层-低层	0.198	<.0001	
有客厅	0.163	<.0001	
卧室数	0.111	<.0001	
房间面积	-0.002	<.0001	
F检验	p值<.0001	调整的R2	0.5901

线性回归模型: 结果解读

控制其他因素不变时

- 城区: 石景山区单位面积房价最低,西城区单位面积房价最高,比石景山区每平 米平均高出**3.705**万元
- 学区房比非学区房单位面积房价平均高出1.18万元
- 地铁房比非地铁房单位面积房价平均高出6720元
- 高层房屋单位面积房价最低,其次是中层,低层房屋单位面积房价最高
- **有客厅**的房子单位面积房价更高
- 卧室数每增加一间,单位面积房价平均增加1110元
- 房屋面积的增加会带来单位面积房价的降低

回归诊断

回归诊断: R语言实现


```
### 线性回归模型
Im1=Im(price~CATE+school+subway+style+floor+bedrooms+AREA, data=dat0)
summary(Im1) #回归结果展示

par(mfrow=c(2,2)) #画2*2的图
plot(Im1,which=c(1:4)) #模型诊断图
```


回归诊断

回归诊断

补充: 其他常见示例

Problem: 非线性!

Solution:

加入非线性项:

e.g., X^2 , $\log(X)$, \sqrt{X} 等

补充: 其他常见示例

Problem: 异方差!

Solution:

对因变量进行变换:

e.g., log(Y), \sqrt{Y} 等

回归诊断

示例: 强影响点

强影响点会对回归曲线造成较大影响 (对回归方程斜率&R²造成较大影响)

共线性

- > library(car)
- > vif(lm1)

CATE丰台	CATE朝阳	CATE东城
2.09	2.21	2.31
CATE海淀	CATE西城	school
2.29	2.32	1.30
subway	style有厅 f	loormiddle
1.08	1.05	1.32
floorlow	bedrooms	AREA
1.32	2.13	2.18

Problem:

回归时,F检验显著,但是单

个系数不显著

方差膨胀因子:

$$VIF = (1 - R_i^2)^{-1}$$

一般认为VIF > 10,则存在多重共线性

对数线性回归: Log(Y)

变量	回归系数(×10 ⁻¹)	p 值	备注	
截距项	12.360	< 0.001		
城区-丰台	0.441	< 0.001		
城区-朝阳	2.057	< 0.001		
城区-东城	4.577	< 0.001	基准组: 石景山组	
城区-海淀	4.320	< 0.001		
城区-西城	6.270	< 0.001		
学区房	1.719	< 0.001		
地铁房	1.282	< 0.001		
楼层-中层	0.152	< 0.001	其准组 克巴	
楼层-底层	0.198	< 0.001	基准组: 高层	
有客厅	0.275	0.001		
卧室数	0.140	< 0.001		
房间面积	-0.003	< 0.001		
F 检验	p值<0.0001	调整的 R ²	0.6079	

对数线性回归: Log(Y)

异方差得 到改善!

对数线性模型: 结果解读

• 与线性模型不同,对数线性模型的系数估计解读为"增长率"

$$\beta_j = \frac{d \log(y)}{d x_i} = \frac{dy/y}{dx}$$

- 控制其他因素不变时
 - 城区: 石景山区单位面积房价最低, 西城区单位面积房价最高, 比石景山区平均贵62.70%
 - 学区房比非学区房单位面积房价平均贵17.19%
 - 地铁房比非地铁房单位面积房价平均贵12.82%
 - 高层房屋单位面积房价最低, 其次是中层, 低层房屋单位面积房价最高
 - 有客厅的房子单位面积房价更高,平均贵2.75%
 - 卧室数每增加一间,单位面积房价平均增加1.41%
 - 房屋面积的增加会带来单位面积房价的降低

交互效应

交互效应

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon.$$

交互效应: 学区房×面积

$$\beta_0 + \beta_1 \times$$
面积 + $\beta_2 \times$ 学区 + $\beta_3 \times$ (面积·学区) + ε

$$Y = \begin{cases} \beta_0 + \beta_1 \times \overline{m} + \varepsilon & \text{if } | \beta_0 + \beta_2 + (\beta_1 + \beta_3) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_2 + (\beta_1 + \beta_3) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_2 + (\beta_1 + \beta_3) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_2 + (\beta_1 + \beta_3) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_2 + (\beta_1 + \beta_3) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_2 + (\beta_1 + \beta_3) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_2 + (\beta_1 + \beta_3) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_2 + (\beta_1 + \beta_3) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_2 + (\beta_1 + \beta_3) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_2 + (\beta_1 + \beta_3) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_2 + (\beta_1 + \beta_3) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_2 + (\beta_1 + \beta_3) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_2 + (\beta_1 + \beta_3) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_2 + (\beta_1 + \beta_3) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_2 + (\beta_1 + \beta_3) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_2 + (\beta_1 + \beta_3) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_2 + (\beta_1 + \beta_3) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_2 + (\beta_1 + \beta_3) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_1 + \beta_2 + (\beta_1 + \beta_3) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_1 + \delta_1 + \delta_2 + (\beta_1 + \beta_1 + \beta_2) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_1 + \delta_2 + (\beta_1 + \beta_1 + \beta_2) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_1 + \delta_2 + (\beta_1 + \beta_1 + \beta_2) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_1 + \delta_2 + (\beta_1 + \beta_1 + \beta_2) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_1 + \delta_2 + (\beta_1 + \beta_1 + \beta_2) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_1 + \delta_1 + \delta_2 + (\beta_1 + \beta_1 + \beta_2) \times \overline{m} + \varepsilon & \text{if } | \beta_0 | \beta_0 + \beta_1 + \delta_1 + \delta_2 + (\beta_1 + \beta_1 + \beta_2) \times \overline{m} + \varepsilon & \text{if } | \beta_0 + \beta_1 + \delta_2 + (\beta_1 + \beta_1 + \beta_2) \times \overline{m} + \varepsilon & \text{if } | \beta_0 + \beta_1 + \delta_2 + (\beta_1 + \beta_1 + \beta_2) \times \overline{m} + \varepsilon & \text{if } | \beta_0 + \beta_1 + \delta_2 + (\beta_1 + \beta_1 + \beta_2) \times \overline{m} + \varepsilon & \text{if } | \beta_0 + \beta_1 + \delta_2 + (\beta_1 + \beta_2) \times \overline{m} + \varepsilon & \text{if } | \beta_0 + \beta_1 + \delta_2 + (\beta_1 + \beta_2) \times \overline{m} + \varepsilon & \text{if } | \beta_0 + \beta_1 + \delta_2 + (\beta_1 + \beta_2) \times \overline{m} + \varepsilon & \text{if } | \beta_0 + \beta_1 + \delta_2 + (\beta_1 + \beta_2) \times \overline{m} + \varepsilon & \text{if } | \beta_0 + \beta_1 + \delta_2 + (\beta_1 + \beta_2) \times \overline{m} + \varepsilon & \text{if } | \beta_0 + \beta_1 + \delta_2 + (\beta_1 + \beta_2) \times \overline{m} + \varepsilon & \text{if } | \beta_0 + \beta_1 + \delta_2 + (\beta_1 + \beta_2) \times \overline{m} + \varepsilon & \text{if } | \beta_1 + \beta_2 + ($$

交互效应: 学区房×面积

Multiple R-squared: 0.2835, Adjusted R-squared: 0.2834 F-statistic: 2138 on 3 and 16206 DF, p-value: < 2.2e-16

```
> summary(lm(log(price)~school+AREA+school*AREA,data=dat0))
call:
lm(formula = log(price) ~ school + AREA + school * AREA, data = dat0)
Residuals:
    Min
            10 Median 30
                                      Max
-1.22690 -0.21873 -0.01225 0.21458 1.09244
                                                                 如何解释?
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.6015432 0.0068784 232.84 < 2e-16 ***
school
            0.5548057 0.0118299 46.90 < 2e-16 ***
         0.0001936 0.0000672 2.88 0.00398 **
ARFA
school:AREA -0.0015622 0.0001171 -13.34 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3081 on 16206 degrees of freedom
```


交互效应: 学区房×面积

交互效应: 城区×学区房

对数线性交互效应模型

变量	回归系数(×10 ⁻¹)	p值	备注	
截距项	12.410	<0.001	7-	
城区-丰台	0.429	<0.001		
城区-朝阳	2.184	<0.001		
城区-东城	4.467	<0.001	基准组: 石景山组	
城区-海淀	4.121	< 0.001		
城区-西城	6.177	< 0.001		
学区房	-1.800	< 0.001		
地铁房	1.257	< 0.001		
楼层-中层	0.263	< 0.001	甘准和 宣目	
楼层-底层	0.343	< 0.001	基准组: 高层	
有客厅	0.270	0.001		
卧室数	0.140	< 0.001		
房间面积	-0.003	< 0.001		
丰台×学区	2.948	< 0.001		
朝阳×学区	2.780	< 0.001	基准组:	
东城×学区	3.706	< 0.001	五景山×学区	
海淀×学区	3.876	< 0.001	4 泉山へ子凸	
西城×学区	3.638	< 0.001		
F检验	p 值<0.0001	调整的 R ²	0.6108	

交互模型: 结果解读

- 整体而言(不考虑学区交互项),西城区与海淀区的单位面积房价之比?
 - 对数线性模型: e^{0.627-0.432} = e^{0.195} = 1.215

• 学区房房价哪家强?

- 学区房: 西城区与海淀区的单位面积房价之比
 - 交互模型: $e^{0.617+0.363-0.412-0.387} = e^{0.181} = 1.198$
- 非学区房: 西城区与海淀区的单位面积房价之比
 - 交互模型: $e^{0.617-0.412} = e^{0.205} = 1.228$

交互效应: 城区×学区房

原因:

- 1. 石景山区学区资源相对较差
- 2. 石景山区学区房入样比例较

低,可能存在偏差

城区	样本量	学区房占比(%)
石景山	1947	0.92
丰台	2947	3.18
朝阳	2864	20.84
东城	2783	45.81
海淀	2919	47.48
西城	2750	56.10

超多水平变量

```
> head(dat0)
 CATE bedrooms halls
                      AREA floor subway school price
                                                         LONG
                                                                           NAME DISTRICT style
                                                                  LAT
                                                                     10AM新坐标
                                                                                  方庄
1 朝阳
                  0 46.06 middle
                                            0 4.8850 116.4597 39.92835
                                                                                       无厅
                                                                                  方庄
2 朝阳
                    59.09 middle
                                                                     10AM新坐标
                                                                                       有厅
                                            0 4.6540 116.4597 39.92835
                                                                       10号名邸
                                                                                紫竹桥
3 海淀
                            high
                                            1 7.1662 116.3036 39.95481
                                                                                       有厅
                 2 278.95
4 海淀
                                                                       10号名邸
                                                                                紫竹桥
                                                                                       有厅
                            high
                 2 207.00
                                            1 5.7972 116.3036 39.95481
5 丰台
            2
                                                                       17号旁门
                                                                                       有厅
                                                                                蒲黄榆
                    53.32
                             low
                                            1 7.1268 116.4188 39.94381
                                                                       17号旁门
6 丰台
                    58.00
                             low
                                            1 7.0690 116.4188 39.94381
                                                                                蒲黄榆
                                                                                       有厅
> tab_dist = table(dat0$DISTRICT)
> length(tab_dist)
                                                      173个水平= 172个0-1变量!
[1] 173
> sort(tab_dist, decreasing = T)[1:10]
       马甸
             望京 苹果园 广渠门 广安门 崇文门 东直门
  鲁谷
                                               清河 六铺炕
                                                288
   918
         418
                409
                      400
                             366
                                   333
                                          322
                                                       283
                                                             255
> quantile(tab_dist)
     25%
          50% 75% 100%
              112 918
      29
           68
```


超多水平变量

1. 保留出现较多的 区域, code成新变量

```
dist_high = names(tab_dist[tab_dist>=100])
dat0$DISTRICT1 =
ind = is.element(dat0$DISTRICT, dist_high)
dat0$DISTRICT1[ind] = as.character(dat0$DISTRICT[ind])
dat0$DISTRICT1 = factor(dat0$DISTRICT1)
lm5 = lm(log(price)~CATE*school+subway+style+floor+bedrooms+AREA+DISTRICT1 , data=dat0)
summary(1m5)
```

共72个变量:

Multiple R-squared: 0.6992

Adjusted R-squared: 0.6979

变量选择

给定一个准则: AIC BIC p-value Adjusted R²

线性回归变量选择:

- 向前选择 (forward selection):每次添加一个预测变量到模型中, 直到添加变量不会使模型有所改进为止。
- 向后选择 (backward selection):从模型包含所有预测变量开始, 一次删除一个变量直到会降低模型质量为止。
- 逐步回归 (stepwise selection):变量每次进入一个,但是每一步中,变量都会被重新评价,对模型没有贡献的变量将会被删除

变量选择

R function:

step(object, scope, scale = 0,

direction = c("both", "backward",

"forward"), trace = 1, keep = NULL,

steps = 1000, k = 2)

共64个变量:

Multiple R-squared: 0.6991

Adjusted R-squared: 0.698

两个重要的参数:

direction: 变量选择方向

k:可以转换AIC&BIC准则

十大"寸土寸金"区域

用词云表示

R包:

wordcloud2

获取外部数据

越繁华的地段 房价越高,是 这样的吗?

获取外部数据

北京市内餐厅 分布密度图:

朝阳区、

东城区

回归分析结果

Multiple R-squared: 0.7157

Adjusted R-squared:

0.7144

```
DISTRICT1苏州桥
                 8.570e-02 1.730e-02
                                        4.955 7.30e-07 ***
DISTRICT1太平桥
                 8.361e-02
                            1.983e-02
                                        4.217 2.49e-05
DISTRICT1 陶然亭
                 1.574e-01
                            1.494e-02
                                       10.533
                                               < 2e-16
DISTRICT1天宁寺
                 -1.485e-01
                            1.979e-02
                                       -7.507 6.39e-14
DISTRICT1望京
                  1.278e-01 1.079e-02
                                       11.843
                                               < 2e-16
DISTRICT1西罗园
                -2.949e-01
                            1.424e-02 -20.701
                                               < 2e-16
DISTRICT1西三旗
                -1.886e-01
                            1.636e-02 -11.526
                                               < 2e-16 ***
DISTRICT1西直门
                                       -3.923 8.80e-05 ***
                -6.708e-02
                            1.710e-02
DISTRICT1亚运村
                 3.258e-02
                            1.993e-02
                                        1.635 0.102076
DISTRICT1杨庄
                 -8.339e-04 2.087e-02
                                       -0.040 0.968121
DISTRICT1永定门
                 -1.971e-01
                            2.028e-02
                                       -9.717
                                              < 2e-16 ***
DISTRICT1右安门内
                -2.466e-02
                            1.993e-02
                                       -1.237 0.216116
DISTRICT1玉泉路
                            2.075e-02
                 7.688e-03
                                        0.371 0.710956
DISTRICT1玉泉营
                 6.573e-02
                            1.411e-02
                                        4.658 3.22e-06
DISTRICT1月坛
                  1.502e-01
                            1.660e-02
                                        9.048 < 2e-16
DISTRICT1赵公口
                -2.800e-02
                            1.936e-02
                                       -1.446 0.148193
DISTRICT1知春路
                 3.395e-02
                            2.053e-02
                                        1.653 0.098261 .
DISTRICT1紫竹桥
                 -2.561e-02 1.648e-02
                                       -1.554 0.120267
restN
                   2.399e-03
                             7.839e-05
                                        30.606 < 2e-16 ***
CATE事台:school
                  2.036e-01
                             5.140e-02
                                         3.961 7.50e-05
CATE朝阳:school
                  2.062e-01
                            4.794e-02
                                        4.300 1.72e-05
CATE东城:school
                  2.544e-01
                            4.793e-02
                                         5.308 1.12e-07
CATE海淀:school
                  2.600e-01
                            4.780e-02
                                         5.440 5.42e-08
CATE西城:school
                  1.850e-01
                            4.789e-02
                                         3.864 0.000112 ***
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 0.1945 on 16137 degrees of freedom
Multiple R-squared: 0.7157,
                               Adjusted R-squared: 0.7144
F-statistic: 564.2 on 72 and 16137 DF, p-value: < 2.2e-16
```


回归预测

预测

训练集测试集

5折交叉验证

Approach 1: 使用DAAG中的cv.lm() 函数

```
> library(DAAG)
> system.time({cvlm4 = cv.lm(data = dat0, lm4, m=5, printit = F, seed = 1234)})
用户系统流逝
0.72 0.77 1.48
Warning message:
In cv.lm(data = dat0, lm4, m = 5, printit = F, seed = 1234):

As there is >1 explanatory variable, cross-validation predicted values for a fold are not a linear function of corresponding overall predicted values. Lines that are shown for the different folds are approximate

> attr(cvlm4, "ms")
[1] 0.0516
```

缺点: 计算慢,参数较复杂,许多不必要输出

Approach 2: 使用bootstrap中的crossval() 函数

```
library(bootstrap)
# define functions
theta.fit = function(x,y)\{1sfit(x,y)\}
theta.predict = function(fit,x){cbind(1,x)%*%fit$coef}
system.time({
# matrix of predictors
mat01 = model.matrix(~ CATE+ floor+style, data = dat0)[,-1]
X = cbind(mat01, dat0[,c(2:4,6:7)])
# vector of predicted values
v = as.matrix(log(dat0$price))
set.seed(1234)
pred_cv = crossval(X,y, theta.fit, theta.predict, ngroup=5)
sqrt(mean((pred_cv$cv.fit-log(dat$price))^2))
```

```
用户 系统 流逝
0.08 0.02 0.09
> sqrt(mean((pred_cv$cv.fit-log(dat$price))^2))
[1] 0.226
> |
```

优点:速度快!

缺点:要预处理成矩阵,差评!

Approach 3: 自己动手,丰衣足食! (示例:如何动手写一个函数)

```
pred.cv<-function(dat, k)</pre>
                                                     > system.time({pred_cv = pred.cv(dat = dat0, k = 5)})
                                                     用户 系统 流逝
  ind = sample(1:k, nrow(dat), replace = T)
                                                    0.24 0.06 0.30
  pred_cv = rep(0, nrow(dat))
                                                     > pred_cv$rmse
 for (i in 1:k)
                                                     [1] 0.227
    ii = which(ind==i)
    obj = lm(log(price)~CATE*school+subway+style+floor+bedrooms+AREA,
             data = dat[-ii,])
    pred_cv[ii] = predict(obj, dat0[ii,])
  rmse = sqrt(mean((pred_cv-log(dat$price))^2))
  return(list(pred_cv = pred_cv, rmse = rmse))
set.seed(1234)
system.time(\{pred_cv = pred.cv(dat = dat0, k = 5)\})
pred_cv$rmse
```


重复k次,做评估

THANKS!