Bio-Signal Analysis for Smoking Prediction

INFO7390 Fall 2023

SHRUTI TAMBE - 002762916

Outline

- Dataset: https://www.kaggle.com/datasets/kukuroo3/body-signal-of-smoking
- Goal: The goal is to determine the presence or absence of smoking (smoker/non-smoker) through bio-signals.
- Result: After thorough analysis, Random Forest Classifier exhibited the capability to predict smoking status based on bio-analysis with an accuracy rate of 84%

Tools used

- Python
- Google Colab
- · Libraries: Scikit-Learn, matplotlib, seaborn, Pandas, NumPy
- Grid Search and Hyperparameter Tuning
- Data Visualization(EDA)
- Machine learning: Random forest classifier, Logistic Regression, SVM

Dataset: 55k rows, 26 features

- Biometric features age, gender, weight, height, hemoglobin levels etc.
- Understand the relationship between biometric features and smoking status (smoker/non-smoker)

	ID go	ender	age	height(cm)	weight(kg)	waist(cm)	eyesight(left)	eyesight(right)	hearing(left)	hearing(right)	•••	hemoglobin	Urine protein	serum creatinine	AST	ALT	Gtp (oral
0	0	F	40	155	60	81.3	1.2	1.0	1.0	1.0		12.9	1.0	0.7	18.0	19.0	27.0	Υ
1	1	F	40	160	60	81.0	0.8	0.6	1.0	1.0		12.7	1.0	0.6	22.0	19.0	18.0	Υ
2	2	М	55	170	60	80.0	0.8	0.8	1.0	1.0		15.8	1.0	1.0	21.0	16.0	22.0	Υ
3	3	М	40	165	70	88.0	1.5	1.5	1.0	1.0		14.7	1.0	1.0	19.0	26.0	18.0	Υ
4	4	F	40	155	60	86.0	1.0	1.0	1.0	1.0		12.5	1.0	0.6	16.0	14.0	22.0	Υ

Methodology: Data Pre-processing

```
Dropping 'id','oral' column and target column 'smoking'. oral has only one value, so it is not relevant.
[4] df = smoke.drop(columns=['ID', 'oral', 'smoking'], axis=1)
    df.head()
                                                                                                                                              Urine
       gender age height(cm) weight(kg) waist(cm) eyesight(left) eyesight(right) hearing(left) hearing(right) systolic ... HDL LDL hemoglobin
                                                                                                                                            protein creatinine
           F 40
                                             81.3
                                                            1.2
                                                                           1.0
                                                                                                              114.0 ... 73.0 126.0
                                                                                                                                        12.9
                                                                                                                                                 1.0
                                                                                                                                                           0.7 18.0 19.0
                                                                                                      1.0 119.0 ... 42.0 127.0
                                                                                                                                                1.0
                                            81.0
                                                                                                                                        12.7
                                                                                                                                                           0.6 22.0 19.0
                                   60 80.0
                                                                           0.8
                                                            8.0
                                                                                        1.0
                                                                                                              138.0 ... 55.0 151.0
                                                                                                                                        15.8
                                                                                                                                                      1.0 21.0 16.0
                                            88.0
                                                            1.5
                                                                           1.5
                                                                                        1.0
                                                                                                      1.0
                                                                                                              100.0 ... 45.0 226.0
                                                                                                                                        14.7
                                                                                                                                                1.0
                                                                                                                                                           1.0 19.0 26.0
           F 40
                        155
                                    60
                                            86.0
                                                            1.0
                                                                           1.0
                                                                                        1.0
                                                                                                      1.0
                                                                                                              120.0 ... 62.0 107.0
                                                                                                                                        12.5
                                                                                                                                                1.0
                                                                                                                                                           0.6 16.0 14.0
    5 rows x 24 columns
```

Methodology:

Exploratory Data Analysis

- Smokers exhibit significantly elevated hemoglobin levels
- Smoking is more prevalent among younger individuals
- The male population has a higher representation among smokers compared to females

Methodology: Feature Engineering

- Encoding categorical features
- Creating new features
- Feature Importance Analysis
- Scaling the dataset

```
Creating new features to reduce the number of columns and combining features that are very highly correlated to each other.

of df_encoded['average_eyesight'] = (df_encoded['eyesight_left'] + df_encoded['eyesight_right']) / 2

Loading...

of df_encoded['average_hearing'] = (df_encoded['hearing_left'] + df_encoded['hearing_right']) / 2

[16] df_encoded['dental_health'] = df_encoded['dental_caries'] + df_encoded['tartar_N'] + df_encoded['tartar_Y']

[17] df_encoded['cholesterol_ldl_mean'] = (df_encoded['cholesterol'] + df_encoded['ldl']) / 2

[18] df_encoded['mean_blood_pressure'] = (df_encoded['relaxation'] + df_encoded['systolic']) / 2

[19] df_new = df_encoded.drop(columns=['eyesight_left', 'eyesight_right', 'hearing_left', 'hearing_right', 'dental_caries', 'tartar_N', 'tartar_Y', 'cholesterol's tartar_N', 'tartar_Y', 'cholesterol's tartar_N', 'tartar_N', 'tartar_Y', 'cholesterol's tartar_N', 'tartar_N', 'tartar_N', 'tartar_Y', 'cholesterol's tartar_N', 'tartar_N', 'tartar_
```


Methodology: Model Selection and Development

- 1. Baseline Models- Logistic Regression, SVM, Random Forest Classifier
- 2. Fit the model with Grid Search and Cross Validation Techniques
- 3. RFC gave the highest accuracy rate of 83%
- 4. Hyperparameter tuned Random Forest to increase the accuracy
- 5. Achieved 84% accuracy over the baseline model

Results

RFC gave superior accuracy over the base-models, 84%

Logistic Regree Accuracy: 0.75	5	l:					
	precision	recall	f1-score	support			
0 1	0.80 0.66	0.79 0.68	0.80 0.67	6861 4155			
accuracy macro avg weighted avg	0.73 0.75	0.73 0.75	0.75 0.73 0.75	11016 11016 11016			
SVM Model: Accuracy: 0.76		11	£1				
	precision	recatt	f1-score	support			
0 1	0.82 0.68	0.79 0.72	0.81 0.70	6861 4155			
accuracy macro avg weighted avg	0.75 0.77	0.75 0.76	0.76 0.75 0.76	11016 11016 11016			
Random Forest Model: Accuracy: 0.83							
	precision	recall	f1-score	support			
0 1	0.87 0.77	0.86 0.79	0.87 0.78	6861 4155			
accuracy macro avg weighted avg	0.82 0.83	0.82 0.83	0.83 0.82 0.83	11016 11016 11016			

```
Random Forest Classifier (Hyperparameter Tuned):
Best Hyperparameters: {'max_depth': 30, 'n_estimators': 200}
Accuracy: 0.84
              precision
                           recall f1-score support
                             0.86
                                       0.87
                                                 6861
                   0.88
                   0.77
                             0.80
                                       0.79
                                                4155
                                       0.84
                                                11016
    accuracy
                   0.83
                             0.83
                                       0.83
                                                11016
   macro avg
                                                11016
weighted avg
                   0.84
                             0.84
                                       0.84
```

Conclusion

- Achieved 84% accuracy to predict whether a person is a smoker or non-smoker based on bi-signals
- Future work: track changes in smoking behaviors and health indicators over time