T=0.00314

1-0.2
$$e^{-400x}$$
 { $0 \le x < \frac{T}{2}$ }

0.1747 e^{-400x} { $\frac{T}{2} \le x < T$ }

1-0.5275 e^{-400x} { $T \le x < \frac{3T}{2}$ }

0.7884 e^{-400x} { $\frac{3T}{2} \le x < 2T$ }

1-1.6775 e^{-400x} { $2T \le x < \frac{5T}{2}$ }

2.9429 e^{-400x} { $2T \le x < \frac{5T}{2}$ }

Рисунок 1 - графики выходного напряжения для 6 коммутаций при вычислении классическим методом.

Рисунок 2 - график выходного напряжения при вычислении методом интеграла Дюамеля и преобразований Лапласа. При всех трех вариантах вычисления получается одинаковая формула, описанная выражением на рисунке.

Вывод

В рамках работы проведен расчет выходного напряжения четырехполюсника при переходных процессах следующими методами: классический метод, метод интеграла Дюамеля с импульсной характеристикой, метод интеграла Дюамеля с переходной характеристикой, метод преобразований Лапласа. Получены графики выходного напряжения в зависимости от способа вычисления, проведено сравнение методов между собой и полученных напряжений между собой и с напряжением из домашнего задания 2.