ADVANCED PLACEMENT CHEMISTRY EQUATIONS AND CONSTANTS

ATOMIC STRUCTURE

$$E = hv c = \lambda v$$

$$\lambda = \frac{h}{mv} p = mv$$

$$E_n = \frac{-2.178 \times 10^{-18}}{n^2} \text{ joule}$$

EQUILIBRIUM

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$

$$K_{b} = \frac{[OH^{-}][HB^{+}]}{[B]}$$

$$K_{w} = [OH^{-}][H^{+}] = 1.0 \times 10^{-14} @ 25^{\circ}C$$

$$= K_{a} \times K_{b}$$

$$pH = -\log [H^{+}], pOH = -\log [OH^{-}]$$

$$14 = pH + pOH$$

$$pH = pK_{a} + \log \frac{[A^{-}]}{[HA]}$$

$$pOH = pK_{b} + \log \frac{[HB^{+}]}{[B]}$$

$$pK_{a} = -\log K_{a}, pK_{b} = -\log K_{b}$$

$$K_{p} = K_{c}(RT)^{\Delta n},$$

where Δn = moles product gas - moles reactant gas

THERMOCHEMISTRY/KINETICS

THERMOCHEMISTRY/RINETICS
$$\Delta S^{\circ} = \sum S^{\circ} \text{ products } -\sum S^{\circ} \text{ reactants}$$

$$\Delta H^{\circ} = \sum \Delta H_{f}^{\circ} \text{ products } -\sum \Delta H_{f}^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \sum \Delta G_{f}^{\circ} \text{ products } -\sum \Delta G_{f}^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$= -RT \text{ ln } K = -2.303 \text{ RT log } K$$

$$= -n \mathcal{F} E^{\circ}$$

$$\Delta G = \Delta G^{\circ} + RT \text{ ln } Q = \Delta G^{\circ} + 2.303 \text{ RT log } Q$$

$$q = mc\Delta T$$

$$C_{p} = \frac{\Delta H}{\Delta T}$$

$$\ln[A]_{t} - \ln[A]_{0} = -kt$$

$$\frac{1}{[A]_{t}} - \frac{1}{[A]_{0}} = kt$$

$$\ln k = \frac{-E_{a}}{R} \left(\frac{1}{T}\right) + \ln A$$

$$E = \text{energy}$$
 $v = \text{velocity}$
 $v = \text{frequency}$ $n = \text{principal quantum number}$
 $\lambda = \text{wavelength}$ $m = \text{mass}$
 $p = \text{momentum}$
Speed of light, $c = 3.0 \times 10^8 \text{ m s}^{-1}$
Planck's constant, $h = 6.63 \times 10^{-34} \text{ J s}$
Boltzmann's constant, $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$
Avogadro's number $= 6.022 \times 10^{23} \text{ mol}^{-1}$
Electron charge, $e = -1.602 \times 10^{-19} \text{ coulomb}$

Equilibrium Constants

1 electron volt per atom = 96.5 kJ mol^{-1}

K_a	(weak acid)
K_b	(weak base)
K_{w}	(water)
K_p	(gas pressure)
v	(m. alam a am a amtmatic

$$K_c$$
 (molar concentrations)

$$S^{\circ}$$
 = standard entropy
 H° = standard enthalpy
 G° = standard free energy
 E° = standard reduction potential
 T = temperature
 n = moles

$$C_p$$
 = molar heat capacity at constant pressure

$$E_a$$
 = activation energy
 k = rate constant
 A = frequency factor

Faraday's constant,
$$\mathcal{F} = 96,500$$
 coulombs per mole of electrons

Gas constant,
$$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$$

= 0.0821 L atm mol⁻¹ K⁻¹
= 8.31 volt coulomb mol⁻¹ K⁻¹