GROUPES ET ANNEAUX 2 FEUILLE DE TD N°3

PRODUITS SEMI-DIRECTS

Exercice 1. Exprimer le groupe

$$G = \left\{ \begin{pmatrix} a & 0 & d \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \middle| a, b, c, d \in \mathbb{k}, abc = 1 \right\} < GL_3(\mathbb{k})$$

comme un produit semi-direct $G = K \rtimes H$ où $K \cong \mathbb{k}$ et $H \cong \mathbb{k}^{\times} \times \mathbb{k}^{\times}$.

Exercice 2. Soit $\langle _, _ \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ le produit scalaire standard $\langle x, y \rangle = x^{\mathrm{T}}y$, et soit

$$O_n = \{ A \in GL_n(\mathbb{R}) \mid \langle Ax, Ay \rangle = \langle x, y \rangle \}$$

le groupe orthogonal.

- (i) Montrer que det $A = \pm 1$ pour tout $A \in \mathcal{O}_n$.
- (ii) Exprimer le groupe O_n comme un produit semi-direct $O_n = SO_n \times H$ où $SO_n = \{A \in O_n \mid \det A = 1\}$ et $H \cong \mu_2$.
- (iii) Montrer que si n est impair, alors $O_n \cong SO_n \times \mu_2$, tandis que si n est pair, alors $O_n \ncong SO_n \times \mu_2$. Indication: Lorsque n est pair, comparer les centres de O_n et de $SO_n \times \mu_2$.

Exercice 3. Soit p un nombre premier et soit 0 < n < p un entier. Montrer que, si $G = K \rtimes H$ est un groupe qui s'écrit comme produit semi-direct de deux sous-groupes K et H de cardinal |K| = n et |H| = p, alors $G \cong K \times \mu_p$.

Exercice 4. Soit G un groupe et soient $s,t\in G$ deux éléments d'ordre 2. Soit $\Delta=\langle s,t\rangle$ le sous-groupe engendré par s et t, et soit $r=st\in \Delta$.

- (i) Montrer que $srs^{-1}=r^{-1},$ et en déduire que $\langle r\rangle$ est un sous-groupe distingué de $\Delta.$
- (ii) Montrer que $\langle r \rangle \cap \langle s \rangle = \{e\}.$
- (iii) Montrer que $\Delta = \langle r \rangle \rtimes \langle s \rangle$.
- (iv) Montrer que $\Delta \cong \mathcal{D}_{\infty}$ ou $\Delta \cong \mathcal{D}_n$.

Exercice 5. Soit G un groupe et soient K et H des sous-groupes de G satisfaisant $G = K \rtimes H$. Montrer que tout sous-groupe K < L < G vérifie $L = K \rtimes (H \cap L)$.

Théorèmes de Sylow

Exercice 6. Soit G un groupe d'ordre pq, où p et q sont deux nombres premiers tels que p < q et $q \not\equiv 1 \pmod{p}$. Montrer que G possède exactement un p-Sylow et un q-Sylow. En déduire que G est cyclique. Donner un exemple d'un groupe non-abélien d'ordre pq où $q \equiv 1 \pmod{p}$.

Exercice 7. Soient p et q deux nombres premiers tels que $q \equiv 1 \pmod{p}$. Dans la suite, on se servira du fait que $\operatorname{Aut}(\boldsymbol{\mu}_q)$ est cyclique d'ordre q-1, comme montré dans l'Annexe A du cours.

(i) Montrer que $\operatorname{Aut}(\mu_a)$ possède un unique sous-groupe d'ordre p.

- (ii) Utiliser les théorèmes de Sylow pour montrer qu'un groupe G d'ordre pq est isomorphe à un produit $\mu_q \rtimes_{\varphi} \mu_p$ pour un certain $\varphi : \mu_p \to \operatorname{Aut}(\mu_q)$.
- (iii) Montrer que, si G et G' sont deux groupes non-abéliens d'ordre pq, alors $G\cong G'.$
- (iv) Construire un exemple d'un groupe non-abélien \varGamma d'ordre 21. Combien d'éléments d'ordre 3 possède-t-il ?

Exercice 8. Soit p un nombre premier impair et G un groupe d'ordre 2p. Montrer que $G \cong \mathcal{D}_p$ ou $G \cong \mu_{2p}$.

Exercice 9. Un groupe G est *simple* si ses seuls sous-groupes distingués sont $\{e\}$ et G. On présente ici trois techniques pour montrer qu'un groupe n'est pas simple.

- (i) Soit G un groupe simple. Montrer que tout homomorphisme $f: G \to H$ est soit injectif, soit trivial.
- (ii) Soit G un groupe d'ordre 63. Montrer que G n'est pas simple.
- (iii) Soit G un groupe d'ordre 30. Montrer que G n'est pas simple (compter le nombre d'éléments de G d'ordre 2, 3 et 5).
- (iv) Soit G un groupe d'ordre 36. Montrer que G n'est pas simple (faire agir G sur l'ensemble des 3-Sylow de G).

Exercice 10. Soient p et q deux nombres premiers, et a et b deux entiers naturels.

- (i) On suppose $p^a < q$. Soit G un groupe d'ordre $p^a q^b$. Montrer que G n'est pas simple.
- (ii) On suppose $p^a\not\mid q^b!.$ Soit G un groupe d'ordre $p^aq^b.$ Montrer que G n'est pas simple.