Find all the local maxima, local minima, and saddle points of the function

$$f(x, y) = x^2 + xy + y^2 + 3x - 3y + 4$$

Solution

$$f_x = 2x + y + 3 = 0$$
 $f_y = x + 2y - 3 = 0$

$$\begin{cases} 2x + y = -3 \\ x + 2y = 3 \end{cases} \rightarrow x = -3 \quad y = 3$$

Therefore, the critical point is (-3, 3)

$$f_{xx} = 2$$
 $f_{yy} = 2$ $f_{xy} = 1$

$$f_{xx}f_{yy} - f_{xy}^2 = (2)(2) - 1^2 = 3 > 0$$
 and $f_{xx} = 2 > 0$

The function f has a **local minimum** at (-3, 3) and the value is

$$f(-3, 3) = (-3)^{2} + (-3)(3) + 3^{2} + 3(-3) - 3(3) + 4$$
$$= -5$$

Exercise

Find all the local maxima, local minima, and saddle points of the function

$$f(x, y) = x^2 - xy + y^2 + 2x + 2y - 4$$

Solution

$$f_x = 2x - y + 2 = 0$$
 $f_y = -x + 2y + 2 = 0$

$$\begin{cases} 2x - y = -2 \\ x - 2y = 2 \end{cases} \quad \Delta = \begin{vmatrix} 2 & -1 \\ 1 & -2 \end{vmatrix} = -3 \quad \Delta_x = \begin{vmatrix} -2 & -1 \\ 2 & -2 \end{vmatrix} = 6$$

$$x = \frac{6}{-3} = -2$$
 $y = -4 + 2 = -2$

Therefore, the critical point is (-2, -2)

$$f_{xx} = 2$$
 $f_{yy} = 2$ $f_{xy} = -1$

At
$$(-2, -2)$$
: $f_{xx} = 2$ $f_{yy} = 2$ $f_{xy} = -1$

$$f_{xx}f_{yy} - f_{xy}^2 = (2)(2) - 1 = 3 > 0$$
 and $f_{xx} = 2 > 0$

The function f has a **local minimum** at (-2, -2) and the value is

$$f(-2, -2) = 4 - 4 + 4 - 4 - 4 - 4$$

= -8

Exercise

Find all the local maxima, local minima, and saddle points of the function

$$f(x,y) = x^3 + y^3 - 3xy + 15$$

Solution

$$f_{x} = 3x^{2} - 3y = 0 \qquad f_{y} = 3y^{2} - 3x = 0$$

$$\begin{cases} x^{2} = y \\ y^{2} = x \end{cases} \qquad (x^{2})^{2} = x \qquad \rightarrow x^{4} = x$$

$$x(x^{3} - 1) = 0 \qquad \rightarrow x = 0, 1$$

$$\begin{cases} x = 0 \quad y = 0 \\ x = 1 \quad y = 1 \end{cases}$$

Therefore, the critical point is (0, 0) & (1, 1)

$$f_{xx} = 6x$$
 $f_{yy} = 6y$ $f_{xy} = -3$

At (0, 0)

$$f_{xx} = 0$$
 $f_{yy} = 0$ $f_{xy} = -3$

$$f_{xx}f_{yy} - f_{xy}^2 = 0 - 9 = -9 < 0$$

The function f has a *saddle point* at (0, 0) and the value is f(0, 0) = 15

At (1, 1)

$$f_{xx} = 6 \quad f_{yy} = 6 \quad f_{xy} = -3$$

$$f_{xx}f_{yy} - f_{xy}^2 = 36 - 9 = 27 > 0$$
 and $f_{xx} = 6 > 0$

The function f has a **local minimum** at (1, 1) and the value is f(1, 1) = 14

Find all the local maxima, local minima, and saddle points of the function

$$f(x,y) = x^4 - 8x^2 + 3y^2 - 6y$$

Solution

$$f_{x} = 4x^{3} - 16x = 0 f_{y} = 6y - 6 = 0$$

$$\begin{cases} 4x(x^{2} - 4) = 0 & \to x = 0, \pm 2 \\ y = 1 \end{cases}$$

Therefore, the critical point is (0, 1) & $(\pm 2, 1)$

$$f_{xx} = 12x^2 - 16$$
 $f_{yy} = 6$ $f_{xy} = 0$

At (0, 1)

$$f_{xx} = -16$$
 $f_{yy} = 6$ $f_{xy} = 0$

$$f_{xx}f_{yy} - f_{xy}^2 = -96 < 0$$

The function f has a *saddle point* at (0, 1) and the value is $\underline{f(0, 1)} = -3$

At (2, 1)

$$f_{xx} = 32$$
 $f_{yy} = 6$ $f_{xy} = 0$

$$f_{xx}f_{yy} - f_{xy}^2 = 192 > 0$$
 and $f_{xx} = 32 > 0$

The function f has a **local minimum** at (2, 1) and the value is f(2, 1) = -19

At (-2, 1)

$$f_{xx} = 32$$
 $f_{yy} = 6$ $f_{xy} = 0$

$$f_{xx}f_{yy} - f_{xy}^2 = 192 > 0$$
 and $f_{xx} = 32 > 0$

The function f has a **local minimum** at (-2, 1) and the value is f(-2, 1) = -19

Exercise

Find all the local maxima, local minima, and saddle points of the function

$$f(x, y) = 2xy - 5x^2 - 2y^2 + 4x + 4y - 4$$

$$f_x = 2y - 10x + 4 = 0$$
 $f_y = 2x - 4y + 4 = 0$

$$\begin{cases} -5x + y = -2 \\ x - 2y = -2 \end{cases} \rightarrow x = \frac{2}{3} \quad y = \frac{4}{3}$$

Therefore, the critical point is $\left(\frac{2}{3}, \frac{4}{3}\right)$

$$f_{xx} \left| \frac{2}{3}, \frac{4}{3} \right| = -10 \quad f_{yy} \left| \frac{2}{3}, \frac{4}{3} \right| = -4 \quad f_{xy} \left| \frac{2}{3}, \frac{4}{3} \right| = 2$$

$$f_{xx} f_{yy} - f_{xy}^2 = (-10)(-4) - 2^2 = 36 > 0 \quad and \quad f_{xx} = -10 < 0$$

The function f has a local maximum at $\left(\frac{2}{3}, \frac{4}{3}\right)$ and the value is

$$f\left(\frac{2}{3}, \frac{4}{3}\right) = 2\left(\frac{2}{3}\right)\left(\frac{4}{3}\right) - 5\left(\frac{2}{3}\right)^2 - 2\left(\frac{4}{3}\right)^2 + 4\left(\frac{2}{3}\right) + 4\left(\frac{4}{3}\right) - 4$$
$$= 0 \mid$$

Exercise

Find all the local maxima, local minima, and saddle points of the function $f(x, y) = x^2 - 4xy + y^2 + 6y + 2$

Solution

$$f_x = 2x - 4y = 0$$
 $f_y = -4x + 2y + 6 = 0$

$$\begin{cases} x - 2y = 0 \\ -2x + y = -3 \end{cases} \rightarrow x = 2 \quad y = 1$$

Therefore, the critical point is (2, 1)

$$f_{xx}|_{(2,1)} = 2$$
, $f_{yy}|_{(2,1)} = 2$, $f_{xy}|_{(2,1)} = -4$
 $f_{xx}f_{yy} - f_{xy}^2 = (2)(2) - (-4)^2 = -12 < 0 \implies Saddle point$

Exercise

Find all the local maxima, local minima, and saddle points of the function $f(x, y) = 2x^2 + 3xy + 4y^2 - 5x + 2y$

$$f_x = 4x + 3y - 5 = 0$$
 $f_y = 3x + 8y + 2 = 0$

$$\begin{cases} 4x + 3y = 5 \\ 3x + 8y = -2 \end{cases} \rightarrow x = 2 \quad y = -1$$

Therefore, the critical point is (2, -1)

$$f_{xx} |_{(2,-1)} = 4$$
, $f_{yy} |_{(2,-1)} = 8$, $f_{xy} |_{(2,-1)} = 3$
 $f_{xx} f_{yy} - f_{xy}^2 = (4)(8) - 3^2 = 23 > 0$ and $f_{xx} = 4 > 0$

The function f has a local minimum at (2, -1) and the value is

$$f(2, -1) = 2(2)^{2} + 3(2)(-1) + 4(-1)^{2} - 5(2) + 2(-1)$$

$$= -6$$

Exercise

Find all the local maxima, local minima, and saddle points of the function

$$f(x,y) = x^2 - y^2 - 2x + 4y + 6$$

Solution

$$f_x = 2x - 2 = 0$$
 $f_y = -2y + 4 = 0$

$$\begin{cases} 2x = 2 \\ 2y = 4 \end{cases} \rightarrow x = 1 \quad y = 2$$

Therefore, the critical point is (1, 2)

$$f_{xx} |_{(1,2)} = 2$$
, $f_{yy} |_{(1,2)} = -2$, $f_{xy} |_{(1,2)} = 0$
 $f_{xx} f_{yy} - f_{xy}^2 = (2)(-2) - 0^2 = -4 < 0 \rightarrow Saddle Point$

Exercise

Find all the local maxima, local minima, and saddle points of the function

$$f(x,y) = \sqrt{56x^2 - 8y^2 - 16x - 31} + 1 - 8x$$

$$f_x = \frac{1}{2} \frac{112x - 16}{\sqrt{56x^2 - 8y^2 - 16x - 31}} - 8 = 0$$
 $f_y = \frac{1}{2} \frac{-16y}{\sqrt{56x^2 - 8y^2 - 16x - 31}} = 0$

$$\begin{cases} 56x - 8 = 8\sqrt{56x^2 - 8y^2 - 16x - 31} \\ -8y = 0 \end{cases} \rightarrow \begin{cases} x = \frac{16}{7} \\ y = 0 \end{cases}$$

Therefore, the critical point is $\left(\frac{16}{7}, 0\right)$

$$f_{xx} \left| \frac{16}{7}, 0 \right| = \frac{56\sqrt{56x^2 - 8y^2 - 16x - 31} - (56x - 8)(56x - 8)\left(56x^2 - 8y^2 - 16x - 31\right)^{-1/2}}{56x^2 - 8y^2 - 16x - 31}$$

$$= \frac{-\frac{8}{15}}{56x^2 - 8y^2 - 16x - 31}$$

$$f_{yy} \left| \frac{16}{7}, 0 \right| = \frac{-8\sqrt{56x^2 - 8y^2 - 16x - 31} - (-8y)\left(56x^2 - 8y^2 - 16x - 31\right)^{-1/2}(-8y)}{56x^2 - 8y^2 - 16x - 31}$$

$$= \frac{-\frac{8}{15}}{56x^2 - 8y^2 - 16x - 31}$$

$$= \frac{-\frac{8}{15}}{56x^2 - 8y^2 - 16x - 31}$$

$$f_{xy} \left| \left(\frac{16}{7}, 0 \right) \right| = 0$$

$$f_{xx}f_{yy} - f_{xy}^2 = \left(-\frac{8}{15}\right)\left(-\frac{8}{15}\right) - 0 = \frac{34}{225} > 0$$
 and $f_{xx} = -\frac{8}{15} < 0$

The function f has a local maximum at $(\frac{16}{7}, 0)$ and the value is

$$f\left(\frac{16}{7}, 0\right) = \sqrt{56\left(\frac{16}{7}\right)^2 - 8(0)^2 - 16\left(\frac{16}{7}\right) - 31} + 1 - 8\left(\frac{16}{7}\right)$$
$$= -\frac{16}{7}$$

Exercise

Find all the local maxima, local minima, and saddle points of the function $f(x,y) = 1 - \sqrt[3]{x^2 + y^2}$

$$f_x = -\frac{1}{3}2x(x^2 + y^2)^{-2/3}$$
$$= \frac{-2x}{3(x^2 + y^2)^{2/3}} = 0$$
$$f_y = -\frac{1}{3}2y(x^2 + y^2)^{-2/3}$$

$$= \frac{-2y}{3(x^2 + y^2)^{2/3}} = 0$$

There are no solutions to the system $f_x(x,y) = 0$ and $f_y(x,y) = 0$, however, this occurs when x = 0 y = 0. The critical point is (0, 0)

We cannot use the second derivative test, but this is the only possible local maximum, local minimum, or saddle point. f(x, y) has a local maximum of f(0,0) = 1 since

$$f(x,y) = 1 - \sqrt[3]{x^2 + y^2} \le 1 \quad \forall (x,y) - \{(0,0)\}$$

Exercise

Find all the local maxima, local minima, and saddle points of the function

$$f(x,y) = x^3 + y^3 + 3x^2 - 3y^2 - 8$$

Solution

$$f_x = 3x^2 + 6x = 0$$
 $f_y = 3y^2 - 6y = 0$

$$\begin{cases} 3x(x+2) = 0 \\ 3y(y-2) = 0 \end{cases} \rightarrow \begin{cases} x = 0, -2 \\ y = 0, 2 \end{cases}$$

Therefore, the critical point is (0,0), (0,2), (-2,0), and (-2,2)

$$f_{xx} = 6x + 6$$
, $f_{yy} = 6y - 6$, $f_{xy} = 0$

For
$$(0,0)$$
 $f_{xx}|_{(0,0)} = 6$, $f_{yy}|_{(0,0)} = -6$, $f_{xy}|_{(0,0)} = 0$

$$f_{xx}f_{yy} - f_{xy}^2 = (6)(-6) - 0^2 = -36 < 0 \implies Saddle Point$$

For
$$(0,2)$$
 $f_{xx}|_{(0,2)} = 6$, $f_{yy}|_{(0,2)} = 6$, $f_{xy}|_{(0,2)} = 0$

$$f_{xx}f_{yy} - f_{xy}^2 = (6)(6) - 0^2 = 36 > 0$$
 and $f_{xx} > 0$

The function f has a local minimum at (0,2) and the value is f(0,2) = -12

For
$$(-2,0)$$
 $f_{xx}|_{(-2,0)} = -6$, $f_{yy}|_{(-2,0)} = -6$, $f_{xy}|_{(-2,0)} = 0$

$$f_{xx}f_{yy} - f_{xy}^2 = (-6)(-6) - 0^2 = 36 > 0$$
 and $f_{xx} < 0$

The function f has a local maximum at $\left(-2,0\right)$ and the value is $f\left(-2,0\right) = -4$

For
$$(-2,2)$$
 $f_{xx}|_{(-2,2)} = 6$, $f_{yy}|_{(-2,2)} = 6$, $f_{xy}|_{(-2,2)} = 0$
 $f_{xx}f_{yy} - f_{xy}^2 = (-6)(6) - 0^2 = -36 < 0 \implies Saddle Point$

Find all the local maxima, local minima, and saddle points of the function $f(x, y) = 4xy - x^4 - y^4$

Solution

$$f_{x} = 4y - 4x^{3} = 0 f_{y} = 4x - 4y^{3} = 0$$

$$\begin{cases} y - x^{3} = 0 \\ x - y^{3} = 0 \end{cases} \Rightarrow x = y \to x - x^{3} = 0 \to x \left(1 - x^{2}\right) = 0 \to x = 0, \pm 1$$

Therefore, the critical point is (0,0), (1,1), and (-1,-1)

$$f_{xx} = -12x^2$$
, $f_{yy} = -12y^2$, $f_{xy} = 4$

For
$$(0,0)$$
 $f_{xx}|_{(0,0)} = 0$, $f_{yy}|_{(0,0)} = 0$, $f_{xy}|_{(0,0)} = 4$
 $f_{xx}f_{yy} - f_{xy}^2 = 0 - 4^2 = -16 < 0 \implies Saddle Point$

For
$$(1,1)$$
 $f_{xx} |_{(1,1)} = -12$, $f_{yy} |_{(1,1)} = -12$, $f_{xy} |_{(1,1)} = 4$
 $f_{xx} f_{yy} - f_{xy}^2 = (-12)(-12) - 4^2 = 128 > 0$ and $f_{xx} < 0$

The function has a local maximum at (1,1) and the value is f(1,1) = 2

For
$$(-1,-1)$$
 $f_{xx} \Big|_{(-1,-1)} = -12$, $f_{yy} \Big|_{(-1,-1)} = -12$, $f_{xy} \Big|_{(-1,-1)} = 0$
 $f_{xx} f_{yy} - f_{xy}^2 = (-12)(-12) - 4^2 = 128 > 0$ and $f_{xx} < 0$ f

The function f has a local maximum at (-1,-1) and the value is f(-1,-1) = 2

Exercise

Find all the local maxima, local minima, and saddle points of the function $f(x,y) = \frac{1}{x^2 + y^2 - 1}$

$$f_x = \frac{-2x}{\left(x^2 + y^2 - 1\right)^2} = 0$$
 $f_y = \frac{-2y}{\left(x^2 + y^2 - 1\right)^2} = 0$

$$\Rightarrow x = y = 0$$
 Therefore, the critical point is $(0,0)$

$$\begin{split} f_{xx} &= \frac{-2\left(x^2 + y^2 - 1\right)^2 - (-2x)(4x)\left(x^2 + y^2 - 1\right)}{\left(x^2 + y^2 - 1\right)^4} \\ &= \frac{-2x^2 - 2y^2 + 2 + 8x^2}{\left(x^2 + y^2 - 1\right)^3} \\ &= \frac{6x^2 - 2y^2 + 2}{\left(x^2 + y^2 - 1\right)^3} \\ f_{yy} &= \frac{-2\left(x^2 + y^2 - 1\right)^2 - (-2y)(4y)\left(x^2 + y^2 - 1\right)}{\left(x^2 + y^2 - 1\right)^4} \\ &= \frac{-2x^2 - 2y^2 + 2 + 8y^2}{\left(x^2 + y^2 - 1\right)^3} \\ &= \frac{-2x^2 + 6y^2 + 2}{\left(x^2 + y^2 - 1\right)^3} \\ f_{xy} &= \frac{-2x(4y)\left(x^2 + y^2 - 1\right)}{\left(x^2 + y^2 - 1\right)^4} \\ &= \frac{-8xy}{\left(x^2 + y^2 - 1\right)^3} \\ f_{xx} \left| (0,0) = -2, \quad f_{yy} \left| (0,0) = -2, \quad f_{xy} \left| (0,0) = 0 \right| \\ f_{xx} f_{yy} - f_{yy}^2 = (-2)(-2) - 0^2 = 4 > 0 \quad and \quad f_{xx} < 0 \end{split}$$

The function f has a local maximum at (0,0) and the value is f(0,0) = -1

Exercise

Find all the local maxima, local minima, and saddle points of the function $f(x, y) = \frac{1}{x} + xy + \frac{1}{y}$ Solution

$$f_x = -\frac{1}{x^2} + y = 0 \qquad f_y = x - \frac{1}{y^2} = 0$$

$$\Rightarrow \begin{cases} y = \frac{1}{x^2} & (x \neq 0) \\ x = \frac{1}{y^2} & (y \neq 0) \end{cases} \qquad x = x^4 \quad \Rightarrow x = 1 = y$$

Therefore, the critical point is (1,1)

$$f_{xx} \left| \frac{1}{1} \right| = \left(\frac{2}{x^3} \right) \left| \frac{1}{1} \right| = 2, \quad f_{yy} \left| \frac{2}{1} \right| = 2, \quad f_{xy} \left| \frac{2}{1} \right| = 2, \quad f_{xy} \left| \frac{2}{1} \right| = 1$$

$$f_{xx} f_{yy} - f_{xy}^2 = (2)(2) - 1^2 = 3 > 0 \quad and \quad f_{xx} > 0$$

The function f has a local minimum at (1,1) and the value is f(1,1) = 3

Exercise

Find all the local maxima, local minima, and saddle points of the function $f(x, y) = y \sin x$

Solution

$$f_{x} = y \cos x = 0 \qquad f_{y} = \sin x = 0$$

$$\Rightarrow \begin{cases} y \cos x = 0 \\ \sin x = 0 \end{cases} \quad x = n\pi \quad y = 0 \quad \text{Therefore, the critical point is } (n\pi, 0)$$

$$f_{xx} \Big|_{(n\pi, 0)} = -y \sin x \Big|_{(n\pi, 0)} = 0$$

$$f_{yy} \Big|_{(n\pi, 0)} = 0$$

$$f_{xy} \Big|_{(n\pi, 0)} = \cos x \Big|_{(n\pi, 0)} = \pm 1$$
If n is even:
$$f_{xx} f_{yy} - f_{xy}^{2} = 0 - 1^{2} = -1 < 0 \quad \Rightarrow \quad \text{Saddle Point}$$
If n is odd:
$$f_{xx} f_{yy} - f_{xy}^{2} = 0 - (-1)^{2} = -1 < 0 \quad \Rightarrow \quad \text{Saddle Point}$$

Exercise

Find all the local maxima, local minima, and saddle points of the function $f(x, y) = e^{2x} \cos y$

$$f_x = 2e^{2x}\cos y = 0$$
 $f_y = -e^{2x}\sin y = 0$

Since $e^{2x} \neq 0 \quad \forall x$, the functions $\cos y$ and $\sin y$ cannot equal to zero for the same y.

 \therefore No critical points \Rightarrow no extrema and no saddle points.

Exercise

Find all the local maxima, local minima, and saddle points of the function $f(x,y) = e^y - ye^x$

Solution

$$f_{x} = -ye^{x} = 0 \qquad f_{y} = e^{y} - e^{x} = 0$$

$$\Rightarrow \begin{cases} -ye^{x} = 0 \\ e^{y} - e^{x} = 0 \end{cases} \quad y = 0 \quad e^{x} = e^{y} = 1 = e^{0} \Rightarrow x = 0$$

 \therefore The critical point is (0,0)

$$f_{xx} |_{(0,0)} = -ye^{x} |_{(0,0)} = 0$$

$$f_{yy} |_{(0,0)} = e^{y} = 1$$

$$f_{xy} |_{(0,0)} = -e^{x} |_{(0,0)} = -1$$

$$f_{xx} f_{yy} - f_{xy}^{2} = 0(1) - (-1)^{2} = -1 < 0 \implies Saddle Point$$

Exercise

Find all the local maxima, local minima, and saddle points of the function $f(x, y) = e^{-y}(x^2 + y^2)$

Solution

$$\begin{split} f_x &= 2xe^{-y} = 0 \\ f_y &= -e^{-y} \left(x^2 + y^2 \right) + 2ye^{-y} = e^{-y} \left(2y - x^2 - y^2 \right) = 0 \\ &\to \begin{cases} 2xe^{-y} = 0 & \to \boxed{x = 0} \\ e^{-y} \left(2y - x^2 - y^2 \right) = 0 \end{cases} & 2y - x^2 - y^2 = 0 \to y(2 - y = 0) \quad \boxed{y = 0, 2} \end{split}$$

 \therefore The critical point is (0,0) and (0,2)

$$f_{xx} = 2e^{-y}$$

$$f_{yy} = -e^{-y} (2y - x^2 - y^2) + e^{-y} (2 - 2y) = e^{-y} (2 - 4y + x^2 + y^2)$$

$$f_{xy} = -2xye^{-y}$$

For
$$(0,0)$$
 $f_{xx}|_{(0,0)} = 2$, $f_{yy}|_{(0,0)} = 2$, $f_{xy}|_{(0,0)} = 0$

$$f_{xx}f_{yy} - f_{xy}^2 = (2)(2) - 0^2 = 4 > 0$$
 and $f_{xx} > 0$

The function f has a local minimum at (0,0) and the value is f(0,0) = 0

For
$$(0,2)$$
 $f_{xx}|_{(0,2)} = \frac{2}{e^2}$, $f_{yy}|_{(0,2)} = -\frac{2}{e^2}$, $f_{xy}|_{(0,2)} = 0$
 $f_{xx}f_{yy} - f_{xy}^2 = \frac{2}{2^2} \left(-\frac{2}{2^2}\right) - 0^2 = -\frac{4}{2^4} < 0 \implies Saddle Point$

Exercise

Find all the local maxima, minima, and saddle points of the function $f(x, y) = 2 \ln x + \ln y - 4x - y$ **Solution**

 \therefore The critical point is $\left(\frac{1}{2}, 1\right)$

$$f_{xx} \left| \left(\frac{1}{2}, 1 \right) \right| = \left(-\frac{2}{x^2} \right) \left| \left(\frac{1}{2}, 1 \right) \right| = -8$$

$$f_{yy} \left| \left(\frac{1}{2}, 1 \right) \right| = \left(-\frac{1}{y^2} \right) \left| \left(\frac{1}{2}, 1 \right) \right| = -1$$

$$f_{xy} \left| \frac{1}{2,1} \right| = 0$$

$$f_{xx}f_{yy} - f_{xy}^2 = (-8)(-1) - 0^2 = 8 > 0$$
 and $f_{xx} < 0$

The function f has a local maximum at $\left(\frac{1}{2}, 1\right)$ and the value is $f\left(\frac{1}{2}, 1\right) = -3 - 2\ln 2$

Find all the local maxima, minima, and saddle points of the function $f(x,y) = \ln(x+y) + x^2 - y$

Solution

$$f_{x} = \frac{1}{x+y} + 2x = 0$$

$$f_{y} = \frac{1}{x+y} - 1 = 0$$

$$\Rightarrow \begin{cases} \frac{1}{x+y} = -2x & \to -2x(x+y) = 1 \\ \frac{1}{x+y} = 1 & \to 1 = x+y \end{cases}$$

$$\Rightarrow -2x(1) = 1 \to x = -\frac{1}{2} \quad y = \frac{3}{2}$$

$$\therefore \text{ The critical point is } \left(-\frac{1}{2}, \frac{3}{2}\right)$$

$$f_{xx} = -\frac{1}{(x+y)^{2}} + 2, \quad f_{yy} = -\frac{1}{(x+y)^{2}}, \quad f_{xy} = -\frac{1}{(x+y)^{2}}$$

$$f_{xx} \left| \left(-\frac{1}{2}, \frac{3}{2}\right) = 1 \right|$$

$$f_{yy} \left| \left(-\frac{1}{2}, \frac{3}{2}\right) = -1$$

$$f_{xy} f_{yy} - f_{xy}^{2} = (1)(-1) - (-1)^{2} = -2 < 0 \quad and \quad Saddle Point$$

Exercise

Find all the local maxima, minima, and saddle points of the function $f(x, y) = 1 + x^2 + y^2$

Solution

$$f_{x} = 2x = 0 \rightarrow \underline{x = 0}$$

$$f_{y} = 2y = 0 \rightarrow \underline{y = 0}$$

 \therefore The critical point is (0, 0)

$$f_{xx} = 2$$
, $f_{yy} = 2$, $f_{xy} = 0$
 $f_{xx} f_{yy} - f_{xy}^2 \Big|_{(0,0)} = 4 > 0$ and $f_{xx} > 0$

The function f has a local minimum at (0, 0) and the value is f(0, 0) = 1

Find all the local maxima, minima, and saddle points of the function $f(x, y) = x^2 - 6x + y^2 + 8y$

Solution

$$f_x = 2x - 6 = 0 \rightarrow \underline{x = 3}$$

$$f_y = 2y + 8 = 0 \rightarrow \underline{y = -4}$$

 \therefore The critical point is (3, -4)

$$f_{xx} = 2$$
, $f_{yy} = 2$, $f_{xy} = 0$

$$f_{xx} f_{yy} - f_{xy}^2 \Big|_{(3,-4)} = 4 > 0 \quad and \quad f_{xx} > 0$$

The function f has a local minimum at (3, -4) and the value is

$$f(3, -4) = 9 - 18 + 16 - 32 = -25$$

Exercise

Find all the local maxima, minima, and saddle points of the function $f(x, y) = (3x-2)^2 + (y-4)^2$

Solution

$$f_x = 6(3x - 2) = 0 \rightarrow x = \frac{2}{3}$$

$$f_y = 2(y-4) = 0 \rightarrow \underline{y=4}$$

 \therefore The critical point is $\left(\frac{2}{3}, 4\right)$

$$f_{xx} = 18$$
, $f_{yy} = 2$, $f_{xy} = 0$

$$f_{xx}f_{yy} - f_{xy}^2 \left| \frac{2}{3}, 4 \right| = 36 > 0 \quad and \quad f_{xx} > 0$$

The function f has a local minimum at $\left(\frac{2}{3}, 4\right)$ and the value is $f\left(\frac{2}{3}, 4\right) = 0$

Exercise

Find all the local maxima, minima, and saddle points of the function $f(x, y) = 3x^2 - 4y^2$

$$f_x = 6x = 0 \rightarrow \underline{x = 0}$$

$$f_{y} = -8y = 0 \rightarrow y = 0$$

 \therefore The critical point is (0, 0)

$$f_{xx} = 6$$
, $f_{yy} = -8$, $f_{xy} = 0$

$$f_{xx}f_{yy} - f_{xy}^2\Big|_{(0, 0)} = -48 < 0$$
 and Saddle point

Exercise

Find all the local maxima, minima, and saddle points of the function $f(x, y) = x^4 + y^4 - 16xy$

Solution

$$f_x = 4x^3 - 16y = 0$$

$$f_{y} = 4y^{3} - 16x = 0$$

$$\begin{cases} x^3 = 4y \\ y^3 = 4x \rightarrow x = \frac{y^3}{4} \end{cases} \rightarrow \left(\frac{y^3}{4}\right)^3 = 4y$$

$$y^9 = 4^4 y$$

$$y(y^8 - 2^8) = 0 \rightarrow y = 0, \pm 2$$

 \therefore The critical point is (0, 0), (-2, -2), (2, 2)

$$f_{xx} = 12x^2 > 0$$
, $f_{yy} = 12y^2$, $f_{xy} = -16$

$$f_{xx}f_{yy} - f_{xy}^2 = 144x^2y^2 - 256$$

(0, 0)

$$f_{xx}f_{yy} - f_{xy}^2 = -256 < 0$$
 and Saddle point

(-2, -2)

$$f_{xx}f_{yy} - f_{xy}^2 = 2,048 > 0$$
 and $f_{xx} > 0$

The function f has a local minimum at $\left(-2, -2\right)$ and the value is $f\left(-2, -2\right) = -32$

@ (2, 2)

$$f_{xx}f_{yy} - f_{xy}^2 = 2,048 > 0$$
 and $f_{xx} > 0$

The function f has a local minimum at (2, 2) and the value is $\underline{f(2, 2)} = -32$

Find all the local maxima, minima, and saddle points of the function $f(x, y) = \frac{1}{3}x^3 - \frac{1}{3}y^3 + 3xy$

Solution

$$f_{x} = x^{2} + 3y = 0$$

$$f_{y} = -y^{2} + 3x = 0$$

$$\begin{cases} x^{2} = -3y \\ y^{2} = 3x \rightarrow x = \frac{y^{2}}{3} \end{cases} \rightarrow \left(\frac{y^{2}}{3}\right)^{2} = -3y$$

$$y^{4} = -3^{3}y$$

$$y\left(y^{3} + 3^{3}\right) = 0 \rightarrow y = 0, -3$$

 \therefore The critical point is (0, 0), (3, -3)

$$f_{xx} = 2x$$
, $f_{yy} = -2y$, $f_{xy} = 3$

$$f_{xx}f_{yy} - f_{xy}^2 = -4xy - 9$$

$$f_{xx}f_{yy} - f_{xy}^2 = -9 < 0$$
 and Saddle point

$$@(3, -3)$$

$$f_{xx}f_{yy} - f_{xy}^2 = 36 - 9 = 27 > 0$$
 and $f_{xx} = 6 > 0$

The function f has a local minimum at (3, -3) and the value is

$$f(3, -3) = 9 + 9 - 27 = -9$$

Exercise

Find all the local maxima, minima, and saddle points of the function $f(x, y) = x^4 - 2x^2 + y^2 - 4y + 5$

Solution

$$f_x = 4x^3 - 4x = 4x(x^2 - 1) = 0 \rightarrow x = 0, \pm 1$$

 $f_y = 2y - 4 = 0 \rightarrow y = 2$

 \therefore The critical point is (0, 2), (-1, 2), (1, 2)

$$f_{xx} = 12x^2 - 4$$
, $f_{yy} = 2$, $f_{xy} = 0$

$$f_{xx}f_{yy} - f_{xy}^2 = 24x^2 - 8$$

@(0, 2)

$$f_{xx}f_{yy} - f_{xy}^2 = -8 < 0$$
 and Saddle point

(-1, 2)

$$f_{xx}f_{yy} - f_{xy}^2 = 16 > 0$$
 and $f_{xx} = 8 > 0$

The function f has a local minimum at (-1, 2) and the value is

$$f(-1, 2) = 1 - 2 + 4 - 8 + 5 = 0$$

@ (1, 2)

$$f_{xx}f_{yy} - f_{xy}^2 = 16 > 0$$
 and $f_{xx} = 8 > 0$

The function f has a local minimum at (1, 2) and the value is

$$f(1, 2) = 1 - 2 + 4 - 8 + 5 = 0$$

Exercise

Find all the local maxima, minima, and saddle points of the function $f(x, y) = x^2 + xy - 2x - y + 1$

Solution

$$f_{x} = 2x + y - 2 = 0$$

$$f_{v} = x - 1 = 0 \rightarrow \underline{x = 1}$$

$$y = 2 - 2x = 0$$

 \therefore The critical point is (1, 0)

$$f_{xx} = 2$$
, $f_{yy} = 0$, $f_{xy} = 1$

$$f_{xx}f_{yy} - f_{xy}^2 = -1 < 0$$
 and Saddle point

Exercise

Find all the local maxima, minima, and saddle points of the function $f(x, y) = x^2 + 6x + y^2 + 8$

$$f_{x} = 2x + 6 = 0 \rightarrow \underline{x = -3}$$

$$f_{y} = 2y = 0 \rightarrow y = 0$$

 \therefore The critical point is (-3, 0)

$$f_{xx} = 2 > 0$$
, $f_{yy} = 2$, $f_{xy} = 0$

$$f_{xx}f_{yy} - f_{xy}^2 \Big|_{(-3, 0)} = 4 > 0$$
 and $f_{xx} > 0$

The function f has a local minimum at (-3, 0) and the value is

$$f(-3, 0) = 9 - 18 + 8 = -1$$

Exercise

Find all the local maxima, minima, and saddle points of the function $f(x, y) = e^{x^2y^2 - 2xy^2 + y^2}$

Solution

$$f_{x} = (2xy^{2} - 2y^{2})e^{x^{2}y^{2} - 2xy^{2} + y^{2}} = 0 \rightarrow 2(x-1)y^{2} = 0$$

$$f_{y} = (2x^{2}y - 4xy + 2y)e^{x^{2}y^{2} - 2xy^{2} + y^{2}} = 0 \rightarrow 2y(x^{2} - 2x + 1) = 0$$

$$\begin{cases} 2(x-1)y^{2} = 0 & \to y = 0, x = 1 \\ 2y(x^{2} - 2x + 1) = 0 & \to y = 0, x = 1 \end{cases}$$

 \therefore The critical point is (1, 0), (x, 0), (1, y)

$$f_{xx} = (2y^{2} + 2xy^{2} - 2y^{2})e^{x^{2}y^{2} - 2xy^{2} + y^{2}}$$

$$= 2xy^{2}e^{x^{2}y^{2} - 2xy^{2} + y^{2}} |_{(1,0)}$$

$$= 0$$

$$f_{yy} = (2x^{2} - 4x + 2 + 2x^{2}y - 4xy + 2y)e^{x^{2}y^{2} - 2xy^{2} + y^{2}} |_{(1,0)}$$

$$= 0$$

$$f_{xy} = (4xy - 4y + 2x^{2}y - 4xy + 2y)e^{x^{2}y^{2} - 2xy^{2} + y^{2}}$$

$$= (2x^{2}y - 2y)e^{x^{2}y^{2} - 2xy^{2} + y^{2}} |_{(1,0)}$$

$$= 0$$

$$f_{xx}f_{yy} - f_{xy}^2\Big|_{(1, \ 0)} = 0$$

Inconclusive. No extreme values.

Exercise

Identify the critical points of the functions. Then determine whether each critical point corresponds to a local maximum, local minimum, or saddle point. State when your analysis is inconclusive.

$$f(x, y) = x^4 + y^4 - 16xy$$

Solution

$$f_{x} = 4x^{3} - 16y = 0 \quad (1)$$

$$f_{y} = 4y^{3} - 16x = 0 \quad (2)$$

$$\begin{cases}
(1) \to x^{3} = 4y \\
(2) \to y^{3} = 4x
\end{cases}$$

$$\begin{cases}
\frac{y^{3}}{4} = 4y \\
y^{9} = 4^{4}y \\
y(y^{8} - 2^{8}) = 0 \to y = 0, \pm 2
\end{cases}$$

$$C.P: (0, 0), (2, 2), (-2, -2)$$

$$f_{xx} = 12x^{2} \qquad f_{yy} = 12y^{2} \qquad f_{xy} = -16$$

$$f_{xx}f_{yy} - f_{xy}^{2} = 144x^{2}y^{2} - 256$$

$$@ (0, 0)$$

$$f_{xx}f_{yy} - f_{xy}^{2} = -256 < 0$$

$$(0, 0) \text{ is a saddle point.}$$

$$@ \pm (2, 2)$$

$$f_{xx}f_{yy} - f_{xy}^{2} = 144(4)(4) - 256 = 2,048 > 0$$

f has a **local Min** @ (2, 2) & (-2, -2)

Identify the critical points of the functions. Then determine whether each critical point corresponds to a local maximum, local minimum, or saddle point. State when your analysis is inconclusive.

$$f(x, y) = \frac{1}{3}x^3 - \frac{1}{3}y^3 + 2xy$$

Solution

$$f_{x} = x^{2} + 2y = 0 \quad (1)$$

$$f_{y} = -y^{2} + 2x = 0 \quad (2)$$

$$(1) \rightarrow y = -\frac{1}{2}x^{2}$$

$$(2) \rightarrow -\left(-\frac{1}{2}x^{2}\right)^{2} + 2x = 0$$

$$-\frac{1}{4}x^{4} + 2x = 0$$

$$-\frac{1}{4}x\left(x^{3} - 8\right) = 0 \qquad \rightarrow \begin{cases} x = 0 & \rightarrow y = 0 \\ x = 2 & \rightarrow y = -2 \end{cases}$$

$$C.P: (0, 0) & & (2, -2)$$

$$f_{xx} = 2x \qquad f_{yy} = -2y \qquad f_{xy} = 2 > 0$$

$$f_{xx} f_{yy} - f_{xy}^{2} = -4xy - 4$$

$$@ (0, 0)$$

$$f_{xx} f_{yy} - f_{xy}^{2} = -4 < 0$$

$$(0, 0) \text{ is a saddle point.}$$

$$@ (2, -2)$$

$$f_{xx} f_{yy} - f_{xy}^{2} = 16 - 4 = 12 > 0$$

Exercise

Identify the critical points of the functions. Then determine whether each critical point corresponds to a local maximum, local minimum, or saddle point. State when your analysis is inconclusive.

$$f(x, y) = xy(2+x)(y-3)$$

f has a *local Min* @ (2, -2)

$$f(x, y) = 2xy^2 - 6xy + x^2y^2 - 3x^2y$$

$$f_x = 2y^2 - 6y + 2xy^2 - 6xy = 0$$
$$= 2y(y-3) + 2xy(y-3)$$

$$= 2y(y-3)(x+1) = 0 (1)$$

$$\rightarrow y = 0, y = 3, x = -1$$

$$f_{y} = 4xy - 6x + 2x^{2}y - 3x^{2}$$
$$= 2x(2y - 3) + x^{2}(2y - 3)$$

$$=x(2y-3)(x+2)=0$$
 (2)

$$\rightarrow x = 0, x = -2, y = \frac{2}{3}$$

$$y = 0$$
 (2) \to $x(-3)(x+2) = 0 \Rightarrow x = 0, -2$

$$y = 3$$
 (2) \to $x(3)(x+2) = 0 \Rightarrow x = 0, -2$

$$x = -1$$
 (2) \rightarrow -(2y-3) = 0 \Rightarrow y = $\frac{3}{2}$

C.P:
$$(0, 0), (-2, 0), (0, 3), (-2, 3), & (1, $\frac{3}{2})$$$

$$f_{rr} = 2y^2 - 6y$$

$$f_{xy} = 4y - 6 + 4xy - 6x$$

$$f_{yy} = 4x + 2x^2$$

$$f_{xx}f_{yy} - f_{xy}^2 = (2y^2 - 6y)(4x + 2x^2) - (4y - 6 + 4xy - 6x)^2$$

$$f_{xx}f_{yy} - f_{xy}^2 = -36 < 0$$

(0, 0) is a saddle point.

@
$$(-2, 0)$$

$$f_{xx}f_{yy} - f_{xy}^2 = -36 < 0$$

(-2, 0) is a *saddle point*.

$$f_{xx}f_{yy} - f_{xy}^2 = -36 < 0$$

(0, 3) is a saddle point.

@
$$(-2, 3)$$

 $f_{xx} f_{yy} - f_{xy}^2 = -64 < 0$
 $(-2, 3)$ is a *saddle point*.

@
$$\left(-1, \frac{3}{2}\right)$$

$$f_{xx} f_{yy} - f_{xy}^2 = 9 > 0 \qquad f_{xx} = -\frac{9}{2} < 0$$

Function has a *local max* @ $\left(-1, \frac{3}{2}\right)$

Exercise

Identify the critical points of the functions. Then determine whether each critical point corresponds to a local maximum, local minimum, or saddle point. State when your analysis is inconclusive.

$$f(x, y) = 10 - x^3 - y^3 - 3x^2 + 3y^2$$

$$f_{xx}f_{yy} - f_{xy}^2 = -36 < 0$$

(0, 0) is a *saddle point*.

(0, 2)

$$f_{xx}f_{yy} - f_{xy}^2 = 36 > 0$$
 $f_{xx} = -6 < 0$

Function has a *local min* @ (0, 2)

(-2, 0)

$$f_{xx}f_{yy} - f_{xy}^2 = 36 > 0$$
 $f_{xx} = 6 > 0$

Function has a *local max* @ (-2, 0)

(-2, 2)

$$f_{xx}f_{yy} - f_{xy}^2 = -36 < 0$$

(-2, 2) is a *saddle point*.

Exercise

Find the absolute maximum and minimum values of the function on the specified region *R*.

$$f(x, y) = \frac{1}{3}x^3 - \frac{1}{3}y^3 + 2xy$$
 on the rectangle $R = \{(x, y): 0 \le x \le 3, -1 \le y \le 1\}$

Solution

$$f_{x} = x^{2} + 2y = 0 \rightarrow y = -\frac{1}{2}x^{2}$$

$$f_{y} = -y^{2} + 2x = 0$$

$$-\frac{1}{4}x^{4} + 2x = 0$$

$$-\frac{1}{4}x(x^{3} - 8) = 0 \rightarrow \underline{x} = 0, \ x = 2$$

$$\Rightarrow \begin{cases} x = 0 & y = 0 \\ x = 2, \ y = -2, \end{cases}$$

C.P: (0, 0) & (2, -2) neither in the interior of *R*.

$$=\frac{1-4\sqrt{2}}{3}$$

$$\rightarrow y = 1$$

$$g(x) = f(x, 1) = \frac{1}{3}x^3 + 2x - \frac{1}{3}$$

$$f_x = x^2 + 2 \neq 0$$

$$-1 \le y \le 1 \rightarrow x = 0$$

$$h(y) = f(0, y) = -\frac{1}{3}y^3$$

$$f_{y} = y^{2} = 0 \rightarrow \underline{y} = 0$$

$$\rightarrow x = 3$$

$$h(y) = f(3, y) = -\frac{1}{3}y^3 + 6y + 9$$

$$f_y = -y^2 + 6 = 0 \rightarrow \underline{y} = \sqrt{6}$$

$$h(\sqrt{6}) = f(3, \sqrt{6}) = 4\sqrt{6} + 9$$

Absolute minimum: $f(\sqrt{2}, 1) = \frac{1 - 4\sqrt{2}}{3}$

Absolute maximum: $f(3, \sqrt{6}) = 4\sqrt{6} + 9$

Exercise

Find the absolute maximum and minimum values of the function on the specified region *R*.

$$f(x, y) = x^4 + y^4 - 4xy + 1$$
 on the square $R = \{(x, y): -2 \le x \le 2, -2 \le y \le 2\}$

$$f_x = 4x^3 - 4y = 0 \rightarrow y = x^3$$

 $f_y = 4y^3 - 4x = 0$

$$x^9 - x = 0 \quad \rightarrow \quad \underline{x = 0, \pm 1}$$

$$x = 0 \rightarrow y = 0$$

$$x = -1 \rightarrow y = -1$$

$$x = 1 \rightarrow y = 1$$

$$C.P: (0, 0), (1, 1) & (-1, -1)$$

	f(x, y)
(0, 0)	1
(-1, -1)	1+1-4+1=-1
(1, 1)	1+1-4+1=-1
(2, 2)	16+16-16+1=17
(-2, 2)	16 + 16 + 16 + 1 = 49
(2, -2)	16+16+16+1=49
(-2, -2)	16+16-16+1=17

Absolute minimum: f(1, 1) = f(-1, -1) = -1

Absolute maximum: f(-2, 2) = f(2, -2) = 49

Exercise

Find the absolute maximum and minimum values of the function on the specified region R.

$$f(x, y) = x^2y - y^3$$
 on the triangle $R = \{(x, y): 0 \le x \le 2, 0 \le y \le 2 - x\}$

Solution

$$f_x = 2xy = 0$$
 (0, 0)
 $f_y = x^2 - 3y^2 = 0$ (2)

C.P: None inside the triangle

$$y = 2 - x$$

$$f(x, y) = x^{2} (2 - x) - (2 - x)^{3}$$

$$= (2 - x) (x^{2} - 4 + 4x - x^{2})$$

$$= (2 - x) (4x - 4)$$

$$= 12x - 8 - 4x^{2}$$

$$g' = 12 - 8x = 0 \quad \rightarrow \quad x = \frac{3}{2}$$

$$x = \frac{3}{2} \rightarrow y = 2 - \frac{3}{2} = \frac{1}{2}$$

Absolute minimum: f(0, 2) = -8

Absolute maximum: $f\left(\frac{3}{2}, \frac{1}{2}\right) = 1$

	f(x, y)
(0, 0)	0
(2, 0)	0
(0, 2)	-8
$\left(\frac{3}{2}, \frac{1}{2}\right)$	$\frac{9}{8} - \frac{1}{8} = 1$

Find the absolute maximum and minimum values of the function on the specified region *R*.

f(x, y) = xy on the semicircular disk $R = \{(x, y): -1 \le x \le 1, 0 \le y \le \sqrt{1 - x^2}\}$

Solution

$$f_x = y = 0$$

$$f_{v} = x = 0$$

C.P.: (0, 0)

$$y = \sqrt{1 - x^2} \rightarrow y^2 + x^2 = 1$$

$$\begin{cases} x = \cos t \\ y = \sin t \end{cases}$$

$$f(x, y) = g(t) = \cos t \sin t$$

$$=\frac{1}{2}\sin 2t$$

$$g' = \cos 2t = 0 \quad \to \quad 2t = \frac{\pi}{2}, \quad \frac{3\pi}{2}$$

$$t = \frac{\pi}{4}, \ \frac{3\pi}{4}$$

$$g\left(\frac{\pi}{4}\right) = \frac{1}{2}$$

$$g\left(\frac{3\pi}{4}\right) = -\frac{1}{2}$$

Absolute minimum: $f\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = -\frac{1}{2}$

Absolute maximum: $f\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = \frac{1}{2}$

Exercise

Find the absolute maximum and minimum values of the function on the specified region R.

$$f(x, y) = x^2 + y^2 - 2y + 1; \quad R = \{(x, y): x^2 + y^2 \le 4\}$$

$$f_x = 2x = 0 \rightarrow \underline{x = 0}$$

$$f_y = 2y - 2 = 0 \rightarrow \underline{y = 1}$$

$$y^2 + x^2 = 4$$

$$\begin{cases} x = 2\cos t \\ y = 2\sin t \end{cases}$$

$$f(x, y) = g(t) = 4\cos^2 t + 4\sin^2 t - 4\sin t + 1$$

= 5 - 4\sin t

$$g' = -4\cos t = 0 \quad \to \quad t = \frac{\pi}{2}, \quad \frac{3\pi}{2}$$

$$g\left(\frac{\pi}{2}\right) = 1 = f\left(0, 2\right)$$

$$g\left(\frac{3\pi}{2}\right) = 9 = f\left(0, -2\right)$$

$$f(0, 1) = 0$$

Absolute minimum: f(0, 1) = 0

Absolute maximum: f(0, -2) = 9

Exercise

Find the absolute maximum and minimum values of the function on the specified region *R*.

$$f(x, y) = 2x^2 + y^2; \quad R = \{(x, y): x^2 + y^2 \le 16\}$$

Solution

$$f_x = 4x = 0 \rightarrow \underline{x} = 0$$

$$f_y = 2y = 0 \rightarrow y = 0$$

C.P.: (0, 0)

$$y^2 + x^2 = 16 \qquad \begin{cases} x = 4\cos t \\ y = 4\sin t \end{cases}$$

$$f(x, y) = g(t) = 32\cos^2 t + 16\sin^2 t$$

= $16\cos^2 t + 16$

$$g' = -32\sin t \cos t$$
$$= -16\sin 2t = 0$$

$$2t = n\pi \quad \to \quad t = 0, \ \frac{\pi}{2}, \ \pi, \ \frac{3\pi}{2}$$

Absolute minimum: f(0, 0) = 0

Absolute maximum: $f(\pm 4, 0) = 32$

t	(x, y)	f(x,y)
	(0, 0)	0
0	(4, 0)	32
$\frac{\pi}{2}$	(0, 4)	16
π	(-4, 0)	32
$\frac{3\pi}{2}$	(0, -4)	16

Find the absolute maximum and minimum values of the function on the specified region *R*.

$$f(x, y) = 4 + 2x^2 + y^2; \quad R = \{(x, y): -1 \le x \le 1, -1 \le y \le 1\}$$

Solution

$$f_x = 4x = 0 \rightarrow \underline{x = 0}$$

$$f_y = 2y = 0 \rightarrow y = 0$$

C.P.: (0, 0)

	f(x, y)	
(0, 0)	4	
$(\pm 1, \pm 1)$	4+2+1=7	

Absolute minimum: f(0, 0) = 4

Absolute maximum: $f(\pm 1, \pm 1) = 7$

Exercise

Find the absolute maximum and minimum values of the function on the specified region *R*.

$$f(x, y) = 6 - x^2 - 4y^2$$
; $R = \{(x, y): -2 \le x \le 2, -1 \le y \le 1\}$

Solution

$$f_x = -2x = 0 \rightarrow \underline{x = 0}$$

$$f_y = -8y = 0 \rightarrow y = 0$$

C.P.: (0, 0)

	f(x, y)	
(0, 0)	6	
$(\pm 2, \pm 1)$	6 - 4 - 4 = -2	

Absolute minimum: $f(\pm 2, \pm 1) = -2$

Absolute maximum: f(0, 0) = 6

Find the absolute maximum and minimum values of the function on the specified region R.

$$f(x, y) = 2x^2 - 4x + 3y^2 + 2;$$
 $R = \{(x, y): (x-1)^2 + y^2 \le 1\}$

Solution

$$f_x = 4x = 0 \rightarrow \underline{x = 0}$$
 $f_y = 2y = 0 \rightarrow \underline{y = 0}$

$$(x-1)^2 + y^2 = 1$$

$$\begin{cases} x-1 = \cos t \to x = 1 + \cos t \\ y = \sin t \end{cases}$$

$$f(x, y) = g(t) = 2(1 + \cos t)^{2} - 4 - 4\cos t + 3\sin^{2} t + 2$$
$$= 2\cos^{2} t + 3\sin^{2} t$$
$$= 2 + \sin^{2} t$$

$$g' = 2\sin t \cos t$$
$$= \sin 2t = 0$$

$$2t = n\pi \quad \to \quad t = 0, \ \frac{\pi}{2}, \ \pi, \ \frac{3\pi}{2}$$

t	(x, y)	f(x,y)
	(0, 0)	2
0	(2, 0)	2
$\frac{\pi}{2}$	(1, 1)	3
π	(0, 0)	2
$\frac{3\pi}{2}$	(1, -1)	3

Absolute minimum: f(0, 0) = f(2, 0) = 2

Absolute maximum: $f(1, \pm 1) = 3$

Exercise

Find the absolute maximum and minimum values of the function on the specified region *R*.

$$f(x, y) = -2x^2 + 4x - 3y^2 - 6y - 1; \quad R = \{(x, y): (x-1)^2 + (y+1)^2 \le 1\}$$

$$f_x = -4x + 4 = 0 \rightarrow \underline{x=1}$$

$$f_y = -6y - 6 = 0 \quad \rightarrow \quad \underline{y = -1}$$

$$C.P.: (1, -1)$$

$$(x-1)^2 + (y+1)^2 = 1$$

$$\begin{cases} x-1 = \cos t \to x = 1 + \cos t \\ y+1 = \sin t \to y = \sin t - 1 \end{cases}$$

$$f(x, y) = g(t) = -2(1 + \cos t)^{2} + 4 + 4\cos t - 3(\sin t - 1)^{2} - 6\sin t + 6 - 1$$
$$= 4 - 2\cos^{2} t - 3\sin^{2} t$$
$$= 1 + \cos^{2} t$$

$$g' = -2\sin t \cos t$$
$$= -\sin 2t = 0$$

$$2t = n\pi$$
 \rightarrow $t = 0$, $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$

t	(x, y)	f(x,y)
	(1, -1)	-2+4-3+6-1=4
0	(2, -1)	-8+8-3+6-1=2
$\frac{\pi}{2}$	(1, 0)	1
π	(0, -1)	2
$\frac{3\pi}{2}$	(1, -2)	1

Absolute *minimum*: f(1, 0) = f(1, -2) = 1

Absolute *maximum*: f(1, -1) = 4

Exercise

Find the absolute maximum and minimum values of the function on the specified region *R*.

$$f(x, y) = \sqrt{x^2 + y^2 - 2x + 2}; \quad R = \{(x, y): x^2 + y^2 \le 4, y \ge 0\}$$

$$g(x, y) = x^2 + y^2 - 2x + 2$$

$$g_x = 2x - 2 = 0 \rightarrow \underline{x = 1}$$

$$g_y = 2y = 0 \rightarrow y = 0$$

$$y^2 + x^2 = 4 \qquad \begin{cases} x = 2\cos t \\ y = 2\sin t \end{cases}$$

$$g(x, y) = h(t) = 4 - 4\cos t + 2$$
$$= 6 - \cos t$$

$$g' = \sin t = 0$$

$$t = 0, \pi$$

t	(x, y)	f(x,y)
	(1, 0)	1
0	(2, 0)	$\sqrt{2}$
π	(-2, 0)	$\sqrt{10}$

Absolute *minimum*: f(1, 0) =

Absolute *maximum*: $f(-2, 0) = \sqrt{10}$

Exercise

Find the absolute maximum and minimum values of the function on the specified region R.

 $f(x, y) = \frac{-x^2 + 2y^2}{2 + 2x^2y^2}$; R is the closed region bounded by the lines y = x, y = 2x, and y = 2

Solution

$$f_x = \frac{2(-2 - 4y^4)x}{(2 + 2x^2y^2)^2}$$
$$= -\frac{(2y^4 + 1)x}{(1 + x^2y^2)^2} = 0 \quad \Rightarrow \quad \underline{x = 0}$$

$$f_{y} = \frac{2(4+2x^{4})y}{(2+2x^{2}y^{2})^{2}}$$
$$= \frac{(2+x^{4})y}{(1+x^{2}y^{2})^{2}} = 0 \rightarrow \underline{y} = 0$$

C.P.: (0, 0)

@
$$y = x$$
 $f(x, y) = \frac{x^2}{2 + 2x^4} = 0$

$$f' = \frac{4x - 4x^{5}}{(2 + 2x^{4})^{2}}$$

$$= \frac{4x(1 - x^{4})}{(2 + 2x^{4})^{2}} = 0 \quad \Rightarrow \quad x = 0, \pm 1$$

$$y = x = 0 \quad \Rightarrow \quad f(0, 0) = 0$$

$$y = x = \pm 1 \quad \Rightarrow \quad f(1, 1) = \frac{1}{4}$$

$$(2x) \quad y = 2x \quad f(x, y) = \frac{7x^{2}}{2 + 8x^{4}}$$

$$f' = \frac{28x - 112x^{5}}{(2 + 8x^{4})^{2}}$$

$$= \frac{28x(1 - 8x^{4})}{(2 + 8x^{4})^{2}} = 0 \quad \Rightarrow \quad x = 0, \ \pm \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

$$y = 2x = \sqrt{2} \quad \Rightarrow \quad f\left(\frac{\sqrt{2}}{2}, \sqrt{2}\right) = \frac{7}{8}$$

$$(2x) \quad y = 2x = \sqrt{2} \quad \Rightarrow \quad f\left(\frac{\sqrt{2}}{2}, \sqrt{2}\right) = \frac{7}{8}$$

$$(3x) \quad y = 2x = 2x = 1 \quad \Rightarrow \quad f(2x) = \frac{4}{34} = \frac{2}{17}$$

$$y = 2x = 2 \Rightarrow x = 1 \quad \Rightarrow \quad f(1, 2) = \frac{7}{10}$$
Absolute minimum: $f(0, 0) = 0$

Absolute *minimum*: f(0, 0) = 0

Absolute *maximum*: $f\left(\frac{\sqrt{2}}{2}, \sqrt{2}\right) = \frac{7}{8}$

Exercise

Find the absolute maximum and minimum values of the function on the specified region R.

$$f(x, y) = \sqrt{x^2 + y^2}$$
; R is the closed region bounded by the ellipse $\frac{x^2}{4} + y^2 = 1$

$$f_x = \frac{x}{\sqrt{x^2 + y^2}} = 0 \quad \to \quad x = 0$$

$$f_y = \frac{y}{\sqrt{x^2 + y^2}} = 0 \quad \to \quad y = 0$$

C.P.: (0, 0)

$$\frac{x^2}{4} + y^2 = 1 \qquad \begin{cases} x = 2\cos t \\ y = \sin t \end{cases}$$

$$f(x, y) = g(t) = \sqrt{4\cos^2 t + \sin^2 t}$$
$$= \sqrt{3\cos^2 t + 1}$$

$$g' = \frac{-3\cos t \sin t}{\sqrt{3\cos^2 t + 1}}$$
$$= -\frac{3}{2} \frac{\sin 2t}{\sqrt{3\cos^2 t + 1}} = 0$$

$$2t = n\pi$$
 \rightarrow $t = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$

t	(x, y)	f(x,y)
	(0, 0)	0
0	(2, 0)	2
$\frac{\pi}{2}$	(0, 1)	1
π	(-2, 0)	2
$\frac{3\pi}{2}$	(0, -1)	1

Absolute *minimum*: f(0, 0) = 0

Absolute *maximum*: f(-2, 0) = f(2, 0) = 2

Exercise

Find the absolute maximum and minimum values of the function on the specified region R.

$$f(x, y) = x^2 + y^2 - 4; \quad R = \{(x, y): x^2 + y^2 < 4\}$$

$$f_x = 2x = 0 \rightarrow x = 0$$

$$f_y = 2y = 0 \quad \to \quad y = 0$$

$$f\left(\mathbf{0},\mathbf{0}\right) = -4$$

$$f(0,0) = -4$$

$$y^{2} + x^{2} = 4$$

$$\begin{cases} x = 2\cos t \\ y = 2\sin t \end{cases}$$

$$f(x, y) = g(t) = 4\cos^2 t + 4\sin^2 t - 4$$
$$= 0 No extreme points.$$

$$f(x, y) \ge -4$$

Absolute *minimum*: f(0, 0) = -4

Exercise

Find the absolute maximum and minimum values of the function on the specified region R.

$$f(x, y) = x + 3y; \quad R = \{(x, y): |x| < 1, |y| < 2\}$$

Solution

$$f_{r} = 1 \neq 0$$

$$f_{y} = 3 \neq 0$$

C.P.: None

$$-1 < x < 1$$
 $-2 < y < 2$

(x, y)	f(x,y)
$\left(-1, -2\right)$	-7
(1, -2)	-5
(1, 2)	7
(-1, 2)	5

The range of the function f(x, y) on R is the interval (-7, 7).

 $\therefore f(x, y)$ has **neither** an absolute minimum or maximum on R.

Exercise

Find the absolute maximum and minimum values of the function on the specified region *R*.

$$f(x, y) = 2e^{-x-y}; R = \{(x, y): x \ge 0, y \ge 0\}$$

$$f_x = -2e^{-x-y} \neq 0$$

$$f_{y} = -2e^{-x-y} \neq 0$$

C.P.: None

$$R = \{(x, y): x \ge 0, y \ge 0\}$$

$$f(0, 0) = 2$$

$$(x, y) \to \infty \implies f(x, y) \to 0$$

Absolute *minimum*: *None*

Absolute *maximum*: f(0, 0) = 2

Exercise

Find the absolute maxima and minima of the function $f(x,y) = 2x^2 - 4x + y^2 - 4y + 1$ on the closed triangular plate bounded by the lines x = 0, y = 2, y = 2x in the first quadrant.

Solution

$$f_x = 4x - 4 = 0$$
 $f_y = 2y - 4 = 0$

$$x = 1$$
 $y = 2$

The critical point is (1, 2) and the value is f(1, 2) = -5

i. On the segment *OA*. The function $f(0, y) = y^2 - 4y + 1$

This function is defined on the closed interval $0 \le y \le 2$.

$$f'(0, y) = 2y - 4 = 0 \rightarrow y = 2$$

$$\begin{cases} y = 0 & \rightarrow f(0, 0) = \underline{1} \\ y = 2 & \rightarrow f(0, 2) = \underline{-3} \end{cases}$$

ii. On the segment *OB*

$$f(x, 2x) = 2x^2 - 4x + (2x)^2 - 4(2x) + 1 = 6x^2 - 12x + 1 \qquad 0 \le x \le 1$$
$$f'(x, 2x) = 12x - 12 = 0 \quad \Rightarrow \quad x = 1$$

$$\begin{cases} x = 0 & \to f(0, 0) = 1 \\ x = 1 & \to f(1, 2) = \underline{-5} \end{cases}$$
 \therefore \text{(1, 2) is not interior point of } OB

iii. On the segment AB

$$f(x, 2) = 2x^{2} - 4x + (2)^{2} - 4(2) + 1 = 2x^{2} - 4x - 3 \qquad 0 \le x \le 1$$
$$f'(x, 2) = 4x - 4 = 0 \quad \to \quad x = 1$$

$$\begin{cases} x = 0 & \rightarrow f(0, 2) = \underline{-3} \\ x = 1 & \rightarrow f(1, 2) = \underline{-5} \end{cases}$$

 \Rightarrow (1, 2) is not interior point of triangular region.

Therefore; the absolute *maximum* is 1 at (0, 0) and the absolute *minimum* is -5 at (1, 2)

Exercise

Find the absolute maxima and minima of the function $D(x, y) = x^2 - xy + y^2 + 1$ on the closed triangular plate bounded by the lines x = 0, y = 4, y = x in the first quadrant.

Solution

$$D_x = 2x - y = 0$$
, $D_y = -x + 2y = 0$, $\Rightarrow x = y = 0$

The critical point is (0, 0) and the value is D(0, 0) = 1

i. On the segment *OA*.

$$D(0, y) = y^{2} + 1, \quad 0 \le y \le 4$$

$$D'(0, y) = 2y = 0 \quad \to \quad y = 0$$

$$\begin{cases} y = 0 & \to D(0, 0) = 1 \\ y = 4 & \to D(0, 4) = 17 \end{cases}$$

ii. On the segment *OB*

$$D(x, x) = x^{2} + 1 \qquad 0 \le x \le 4$$

$$D'(x, x) = 2x = 0 \quad \to \quad x = 0$$

$$x = 0 \quad \to D(0, 0) = \underline{1}$$

iii. On the segment AB

$$D(x,4) = x^{2} - 4x + 17 \qquad 0 \le x \le 4$$

$$D'(x,2) = 2x - 4 = 0 \quad \to \quad x = 2$$

$$\begin{cases} x = 2 & \to D(2, 4) = 13 \\ x = 4 & \to D(4, 4) = \underline{17} \end{cases}$$

 \Rightarrow (0,0) is not interior point of triangular region.

Therefore; the absolute *maximum* is 11 at (0,4) and (4,4) and the absolute *minimum* is 1 at (0,0)

Find the absolute maxima and minima of the function $T(x, y) = x^2 + xy + y^2 - 6x + 2$ on the triangular plate $0 \le x \le 5$, $-3 \le y \le 0$.

Solution

$$T_x = 2x + y - 6 = 0, \quad T_y = x + 2y = 0$$

$$\begin{cases} 2x + y = 6 \\ x + 2y = 0 \end{cases} \rightarrow \boxed{x = 4, y = -2}$$

The critical point is (4,-2) and the value is T(4,-2) = -10

i. On the segment *OA*.

$$T(0, y) = y^{2} + 2, \quad -3 \le y \le 0$$

 $T'(0, y) = 2y = 0 \quad \rightarrow \quad y = 0$

$$\begin{cases} y = 0 & \rightarrow T(0, 0) = 2 \\ y = -3 & \rightarrow T(0, -3) = 11 \end{cases}$$

ii. On the segment AB

$$T(x,-3) = x^2 - 9x + 11 \qquad 0 \le x \le 5$$

$$T'(x,-3) = 2x - 9 = 0 \quad \to \quad x = \frac{9}{2}$$

$$\begin{cases} x = \frac{9}{2} & \to T\left(\frac{9}{2}, -3\right) = -\frac{37}{4} \\ x = 0 & \to T\left(0, -3\right) = \underline{11} \end{cases}$$

iii. On the segment BC

$$T(5,y) = y^{2} + 5y - 3 -3 \le y \le 0$$

$$T'(5,y) = 2y + 5 = 0 \to y = -\frac{5}{2}$$

$$\begin{cases} y = 0 & \to T(5,0) = -3 \\ y = -\frac{5}{2} & \to T\left(5, -\frac{5}{2}\right) = -\frac{37}{4} \\ y = -3 & \to T(5, -3) = -9 \end{cases}$$

iv. On the segment CO

$$T(x,0) = x^2 - 6x + 2$$
 $0 \le x \le 5$
 $T'(x,0) = 2x - 6 = 0 \rightarrow x = 3$
 $(3,0) \rightarrow T(3,0) = -7$

Therefore; the absolute *maximum* is 11 at (0,-3) and the absolute *minimum* is -10 at (4,-2)

Find the absolute maxima and minima of the function $f(x, y) = (4x - x^2)\cos y$ on the triangular plate $1 \le x \le 3$, $-\frac{\pi}{4} \le y \le \frac{\pi}{4}$.

Solution

$$f_{x} = (4-2x)\cos y = 0, \quad f_{y} = (x^{2}-4x)\sin y = 0$$

$$\begin{cases} (4-2x)\cos y = 0 & \to x = 2, \ y = \frac{(n+1)\pi}{2} \\ x(x-4)\sin y = 0 & \to x = 0, 4, \ y = n\pi \end{cases}$$

$$\boxed{x = 2, \ y = 0} \quad because \quad 1 \le x \le 3, \quad -\frac{\pi}{4} \le y \le \frac{\pi}{4}$$

The critical point is (2,0) and the value is f(2,0) = 4

Values of all 4 corner points:

$$A\left(1, -\frac{\pi}{4}\right) \rightarrow f\left(1, -\frac{\pi}{4}\right) = \frac{3\sqrt{2}}{2}$$

$$B\left(1, \frac{\pi}{4}\right) \rightarrow f\left(1, \frac{\pi}{4}\right) = \frac{3\sqrt{2}}{2}$$

$$C\left(3, \frac{\pi}{4}\right) \rightarrow f\left(3, \frac{\pi}{4}\right) = \frac{3\sqrt{2}}{2}$$

$$A\left(3, -\frac{\pi}{4}\right) \rightarrow f\left(3, -\frac{\pi}{4}\right) = \frac{3\sqrt{2}}{2}$$

i. On the segment AB

$$f(1,y) = 3\cos y \qquad -\frac{\pi}{4} \le y \le \frac{\pi}{4}$$
$$f'(1,y) = -3\sin y = 0 \quad \to \quad y = 0$$
$$x = 1 \quad \to f(1,0) = 3$$

ii. On the segment BC

$$f\left(x, \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \left(4x - x^2\right) \qquad 1 \le x \le 3$$

$$f'\left(x, \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \left(4 - 2x\right) = 0 \quad \Rightarrow \quad x = 2$$

$$x = 2 \quad \to f\left(2, \frac{\pi}{4}\right) = 2\sqrt{2}$$

iii. On the segment CD

$$f(3, y) = 3\cos y \qquad -\frac{\pi}{4} \le y \le \frac{\pi}{4}$$
$$f'(3, y) = -3\sin y = 0 \quad \to \quad y = 0$$

iv. On the segment DA

$$f\left(x, -\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \left(4x - x^2\right) \qquad 1 \le x \le 3$$
$$f'\left(x, -\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \left(4 - 2x\right) = 0 \quad \Rightarrow \quad x = 2$$

Therefore; the absolute *maximum* is 4 at (2,0) and the absolute *minimum* is $\frac{3\sqrt{2}}{2}$ at $\left(1,-\frac{\pi}{4}\right)$, $\left(1,\frac{\pi}{4}\right)$, $\left(3,-\frac{\pi}{4}\right)$, and $\left(3,\frac{\pi}{4}\right)$

Exercise

Find the point on the graph of $z = x^2 + y^2 + 10$ nearest the plane x + 2y - z = 0

Solution

The point on $z = x^2 + y^2 + 10$ where the tangent plane is parallel to the plane x + 2y - z = 0. Let $w = z - x^2 - y^2 - 10 \rightarrow \nabla w = -2x\mathbf{i} - 2y\mathbf{j} + \mathbf{k}$ is normal to $z = x^2 + y^2 + 10$ at (x, y).

The vector ∇w is parallel to $\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ which is normal to the plane if $x = \frac{1}{2}$ and y = 1

$$(-2x=-1 \text{ and } -2y=-2), z = \left(\frac{1}{2}\right)^2 + 1^2 + 10 = \frac{45}{4}$$

Thus, the point $\left(\frac{1}{2}, 1, \frac{45}{4}\right)$ is the point on the surface $z = x^2 + y^2 + 10$ nearest the plane x + 2y - z = 0

Exercise

Find the minimum distance from the point (2, -1, 1) to the plane x + y - z = 2

$$d(x,y,z) = \sqrt{(x-2)^2 + (y+1)^2 + (z-1)^2}$$

$$x + y - z = 2 \implies z = x + y - 2$$
Let: $D(x,y,z) = (x-2)^2 + (y+1)^2 + (z-1)^2$

$$D(x,y) = (x-2)^2 + (y+1)^2 + (x+y-2-1)^2$$

$$= (x-2)^2 + (y+1)^2 + (x+y-3)^2$$

$$D_x = 2(x-2) + 2(x+y-3)$$

$$= 4x + 2y - 10 = 0$$

$$D_y = 2(y+1) + 2(x+y-3)$$

$$= 2x + 4y - 4 = 0$$

$$\begin{cases} 4x + 2y = 10 \\ 2x + 4y = 4 \end{cases} \Rightarrow \boxed{x = \frac{8}{3}, \ y = -\frac{1}{3}}$$

 \therefore The critical point is $\left(\frac{8}{3}, -\frac{1}{3}\right)$.

$$\underline{z} = \frac{8}{3} - \frac{1}{3} - 2 = \frac{1}{\underline{3}}$$

$$D_{xx}\left|\frac{8}{3}, -\frac{1}{3}\right| = 4, \quad D_{yy}\left|\frac{8}{3}, -\frac{1}{3}\right| = 4, \quad D_{xy}\left|\frac{8}{3}, -\frac{1}{3}\right| = 2$$

$$D_{xx}D_{yy} - D_{xy}^2 = (4)(4) - 2^2 = 12 > 0$$
 and $D_{xx} > 0$

Therefore, the local *minimum* of the distance is

$$d\left(\frac{8}{3}, -\frac{1}{3}, \frac{1}{3}\right) = \sqrt{\left(\frac{8}{3} - 2\right)^2 + \left(-\frac{1}{3} + 1\right)^2 + \left(\frac{1}{3} - 1\right)^2}$$
$$= \frac{2}{\sqrt{3}}$$

Exercise

Find the maximum value of s = xy + yz + xz where x + y + z = 6

$$x + y + z = 6 \implies z = 6 - x - y$$

$$s(x, y, z) = xy + yz + xz$$

$$s(x, y) = xy + y(6 - x - y) + x(6 - x - y)$$

$$= xy + 6y - xy - y^2 + 6x - x^2 - xy$$

$$= -x^2 - y^2 + 6y + 6x - xy$$

$$s_x = -2x + 6 - y = 0 \qquad s_y = -2y + 6 - x = 0$$

$$\begin{cases} 2x + y = 6 \\ x + 2y = 6 \end{cases} \implies \boxed{x = 2, y = 2}$$

$$\therefore \text{ The critical point is } (2, 2).$$

$$|\underline{z} = 6 - 2 - 2 = \underline{2}|$$

$$s_{xx} |_{(2,2)} = -2, \quad s_{yy} |_{(2,2)} = -2, \quad s_{xy} |_{(2,2)} = -1$$

$$s_{xx}s_{yy} - s_{xy}^2 = (-2)(-2) - (-1)^2 = 3 > 0$$
 and $s_{xx} < 0$

Therefore, the local maximum of the distance is

$$s(2, 2, 2) = (2)(2) + (2)(2) + (2)(2)$$

= 12 |

Exercise

Among all triangles with a perimeter of 9 *units*, find the dimensions of the triangle with the maximum area. It may be easiest to use Heron's formula, which states that the area of a triangle with side length a, b, and c is $A = \sqrt{s(s-a)(s-b)(s-c)}$, where 2s is the perimeter of the triangle.

Solution

The semi-perimeter is:
$$s = \frac{a+b+c}{2}$$

 $c = 2s - a - b$
 $A^2 = s(s-a)(s-b)(s-2s+a+b)$
 $= s(s-a)(s-b)(a+b-s)$
 $f(a, b) = s(s-a)(s-b)(a+b-s)$
 $f_a = s(s-b)(-a-b+s)+s(s-a)(s-b)$
 $= s(s-b)(2s-2a-b) = 0$
 $f_a = s(s-a)(-a-b+s)+s(s-a)(s-b)$
 $= s(s-a)(-a-b+s+s-b)$
 $= s(s-a)(2s-a-2b) = 0$
 $\begin{cases} (s-b)(2s-2a-b) = 0 & \to b = s \quad 2a+b=2s \\ (s-a)(2s-a-2b) = 0 & \to a = s \quad a+2b=2s \end{cases}$
 $\begin{cases} 2a+b=2s & \Delta = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 3 \quad \Delta_a = \begin{vmatrix} 2s & 1 \\ 2s & 2 \end{vmatrix} = 2s \quad \Delta_b = \begin{vmatrix} 2 & 2s \\ 1 & 2s \end{vmatrix} = 2s$
 $\to a=b=\frac{2}{3}s$
 $c=2s-2\frac{2}{3}s$
 $c=2s-2\frac{2}{3}s$

The maximum area is obtained when all three sides are equal with each side length is 3 *units* (since the perimeter is 9 *units*).

Let *P* be a plane tangent to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ at a point in the first octane. Let *T* be the tetrahedron in the first octant bounded by *P* and the coordinate planes x = 0, y = 0, and z = 0. Find the minimum volume *T*. (the volume of a tetrahedron in one-third the area of the base times the height.) *Solution*

Let $Q(x_0, y_0, z_0)$ be a point on the ellipsoid.

The tangent plane P at the point Q has an equation:

$$\frac{x_0}{a^2}x + \frac{y_0}{b^2}y + \frac{z_0}{c^2}z = 1$$

The intersection points of the plane with the axes are:

$$\left(\frac{a^2}{x_0}, 0, 0\right), \left(0, \frac{b^2}{y_0}, 0\right), \text{ and } \left(0, 0, \frac{c^2}{z_0}\right)$$

 \therefore The tetrahedron T has base area

$$A = \frac{a^2b^2}{2x_0 y_0}$$

Height:
$$h = \frac{c^2}{z_0}$$

$$V = \frac{1}{3} \frac{a^2 b^2 c^2}{2x_0 y_0 z_0}$$
$$= \frac{1}{6} \frac{a^2 b^2 c^2}{x_0 y_0 z_0}$$

$$\frac{x_0}{a^2}x + \frac{y_0}{b^2}y + \frac{z_0}{c^2}z = 1 \rightarrow \frac{1}{a^2}x_0^2 + \frac{1}{b^2}y_0^2 + \frac{1}{c^2}z_0^2 = 1$$

$$z_0^2 = c^2 \left(1 - \frac{1}{a^2} x_0^2 - \frac{1}{b^2} y_0^2 \right)$$

$$V = \frac{1}{6} \frac{a^2b^2c^2}{\left(x_0 y_0 c\right) \sqrt{\frac{a^2b^2 - b^2x_0^2 - a^2y_0^2}{a^2b^2}}}$$

$$= \frac{a^3b^3c}{6} \frac{1}{x_0 y_0 \sqrt{a^2b^2 - b^2x_0^2 - a^2y_0^2}}$$

$$= \frac{a^3b^3c}{6} \left(a^2b^2x_0^2y_0^2 - b^2x_0^4y_0^2 - a^2x_0^2y_0^4 \right)^{-1/2}$$

$$\begin{split} V_{x_0} &= -\frac{a^3b^3c}{12} \frac{2a^2b^2x_0y_0^2 - 4b^2x_0^3y_0^2 - 2a^2x_0y_0^4}{\left(a^2b^2x_0^2y_0^2 - b^2x_0^4y_0^2 - a^2x_0^2y_0^4\right)^{3/2}} = 0 \\ V_{y_0} &= -\frac{a^3b^3c}{12} \frac{2a^2b^2x_0^2y_0 - 2b^2x_0^4y_0 - 4a^2x_0^2y_0^3}{\left(a^2b^2x_0^2y_0^2 - b^2x_0^4y_0^2 - a^2x_0^2y_0^4\right)^{3/2}} = 0 \\ & \begin{cases} 2x_0y_0^2\left(a^2b^2 - 2b^2x_0^2 - a^2y_0^2\right) = 0 \\ 2x_0^2y_0\left(a^2b^2 - b^2x_0^2 - 2a^2y_0^2\right) = 0 \end{cases} \\ & \begin{cases} 2b^2x_0^2 + a^2y_0^2 = a^2b^2 \\ b^2x_0^2 + 2a^2y_0^2 = a^2b^2 \end{cases} \\ & \Delta = \begin{vmatrix} 2b^2 & a^2\\ b^2 & 2a^2 \end{vmatrix} = 3a^2b^2 & \Delta_x = \begin{vmatrix} a^2b^2 & a^2\\ a^2b^2 & 2a^2 \end{vmatrix} = a^4b^2 & \Delta_y = \begin{vmatrix} 2b^2 & a^2b^2\\ b^2 & a^2b^2 \end{vmatrix} = a^2b^4 \end{cases} \\ & x_0^2 = \frac{a^4b^2}{3a^2b^2} = \frac{a^2}{3}, \quad y_0^2 = \frac{a^2b^4}{3a^2b^2} = \frac{b^2}{3} \end{cases} \\ & z_0^2 = c^2\left(1 - \frac{1}{3} - \frac{a^2}{3}\right) \\ & = c^2\left(1 - \frac{1}{3} - \frac{1}{3}\right) \\ & = \frac{1}{3}c^2 \end{cases} \\ & X_0 = \frac{a}{\sqrt{3}}, \quad y_0 = \frac{b}{\sqrt{3}}, \quad z_0 = \frac{c}{\sqrt{3}} \right] \\ & V = \frac{1}{6} \frac{a^2b^2c^2}{\frac{a^2}{b^2}} \frac{b}{\sqrt{3}} \\ & = \frac{\sqrt{3}}{3}abc \, \right] \end{split}$$

Given three distinct noncollinear points A, B, and C in the plane, find the point P in the plane such the sum of the distances |AP| + |BP| + |CP| is a minimum. Here is how to procees with three points, assuming that the triangle formed by the three points has no angle greater than $\left(120^\circ = \frac{2\pi}{3}\right)$

- a) Assume the coordinates of the three given points are $A(x_1, y_1)$, $B(x_2, y_2)$, and $C(x_3, y_3)$. Let $d_1(x, y)$ be the distance between $A(x_1, y_1)$ and a variable point P(x, y). Compute the gradient of d_1 and show that it is a unit vector pointing along the line between the two points.
- b) Define d_2 and d_3 in a similar way and show that ∇d_2 and ∇d_3 are also unit vectors in the direction of line between the two points.
- c) The goal is to minimize $f(x, y) = d_1 + d_2 + d_3$. Show that the condition $f_x = f_y = 0$ implies that $\nabla d_1 + \nabla d_2 + \nabla d_3 = 0$.
- d) Explain why part (c) implies that the optimal point P has the property the three line segments AP, BP, and CP all intersect symmetrically in angles of $\frac{2\pi}{3}$.
- e) What is the optimal solution if one of the angles in the triangle is greater than $\frac{2\pi}{3}$ (draw a picture)?
- f) Estimate the Steiner point for the three points (0, 0), (0, 1), (2, 0)

Solution

a)
$$d_{1}(x, y) = \sqrt{(x - x_{1})^{2} + (y - y_{1})^{2}}$$

$$\nabla d_{1}(x, y) = \frac{x - x_{1}}{\sqrt{(x - x_{1})^{2} + (y - y_{1})^{2}}} \hat{i} + \frac{y - y_{1}}{\sqrt{(x - x_{1})^{2} + (y - y_{1})^{2}}} \hat{j}$$

$$= \frac{x - x_{1}}{d_{1}(x, y)} \hat{i} + \frac{y - y_{1}}{d_{1}(x, y)} \hat{j}$$

$$|\nabla d_{1}(x, y)| = \frac{1}{d_{1}(x, y)} \sqrt{(x - x_{1})^{2} + (y - y_{1})^{2}}$$

$$= \frac{d_{1}(x, y)}{d_{1}(x, y)}$$

$$= \frac{1}{d_{1}(x, y)}$$

 \div The gradient of d_1 is a unit vector

b)
$$d_2(x, y) = \sqrt{(x - x_2)^2 + (y - y_2)^2}$$

$$\nabla d_{2}(x, y) = \frac{x - x_{2}}{d_{2}(x, y)} \hat{i} + \frac{y - y_{2}}{d_{2}(x, y)} \hat{j}$$

$$|\nabla d_{2}(x, y)| = \frac{1}{d_{2}(x, y)} \sqrt{(x - x_{2})^{2} + (y - y_{2})^{2}}$$

$$= \frac{d_{2}(x, y)}{d_{2}(x, y)}$$

$$= 1$$

 $\therefore \nabla d_2$ is a unit vector

$$d_{3}(x, y) = \sqrt{(x - x_{3})^{2} + (y - y_{3})^{2}}$$

$$\nabla d_{3}(x, y) = \frac{x - x_{3}}{d_{3}(x, y)} \hat{i} + \frac{y - y_{3}}{d_{3}(x, y)} \hat{j}$$

$$|\nabla d_{3}(x, y)| = \frac{1}{d_{3}(x, y)} \sqrt{(x - x_{3})^{2} + (y - y_{3})^{2}}$$

$$= \frac{d_{3}(x, y)}{d_{3}(x, y)}$$

$$= 1$$

 $\therefore \nabla d_3$ is a unit vector

c)
$$f(x, y) = d_1 + d_2 + d_3$$

$$\nabla f = \nabla d_1 + \nabla d_2 + \nabla d_3$$
Given that
$$f_x = f_y = 0$$

$$\nabla f = f_x \hat{i} + f_y \hat{j} = 0$$

$$= \nabla d_1 + \nabla d_2 + \nabla d_3$$

$$\nabla d_1 + \nabla d_2 + \nabla d_3 = 0$$

- d) Since $\nabla d_1 + \nabla d_2 + \nabla d_3 = 0$ that implies all the 3 *unit* vectors add to 0. Therefore, all three divide the unit circle into 3 equal sectors, they must make angles of $\pm \frac{2\pi}{3}$.
- e) The optimal point is the vertex at the large angle.

f) Three points
$$(0, 0)$$
, $(0, 1)$, $(2, 0)$

$$f_x = f_y = 0$$

$$f(x, y) = d_1 + d_2 + d_3$$

$$= \sqrt{(x - x_1)^2 + (y - y_1)^2} + \sqrt{(x - x_2)^2 + (y - y_2)^2} + \sqrt{(x - x_3)^2 + (y - y_3)^2}$$

$$= \sqrt{x^2 + y^2} + \sqrt{x^2 + (y - 1)^2} + \sqrt{(x - 2)^2 + y^2}$$

$$f_x = \frac{x}{\sqrt{x^2 + y^2}} + \frac{x}{\sqrt{x^2 + (y - 1)^2}} + \frac{x - 2}{\sqrt{(x - 2)^2 + y^2}} = 0$$

$$f_y = \frac{y}{\sqrt{x^2 + y^2}} + \frac{y - 1}{\sqrt{x^2 + (y - 1)^2}} + \frac{y}{\sqrt{(x - 2)^2 + y^2}} = 0$$

Using maple:

$$solve for \left\{ \frac{x}{\sqrt{x^2 + y^2}} + \frac{x}{\sqrt{x^2 + (y - 1)^2}} + \frac{x - 2}{\sqrt{(x - 2)^2 + y^2}} = 0,$$

$$\frac{y}{\sqrt{x^2 + y^2}} + \frac{y - 1}{\sqrt{x^2 + (y - 1)^2}} + \frac{y}{\sqrt{(x - 2)^2 + y^2}} = 0 \right\}$$

$$x = \frac{1}{13} + \frac{4\sqrt{3}}{39} \approx 0.25456931$$

$$y = \frac{8}{13} - \frac{7\sqrt{3}}{39} \approx 0.30450371$$

Exercise

Show that the following two functions have two local maxima but no other extreme points (thus no saddle or basin between the mountains).

$$f(x, y) = -(x^2 - 1)^2 - (x^2 - e^y)^2$$

$$f_{x} = -4x(x^{2} - 1) - 4x(x^{2} - e^{y})$$

$$= -4x^{3} + 4x - 4x^{3} + 4xe^{y}$$

$$= -8x^{3} + 4x(1 + e^{y}) = 0$$

$$f_{y} = 2e^{y}(x^{2} - e^{y}) = 0$$

$$\begin{cases} -4x(2x^{2}-1-e^{y}) = 0 & \rightarrow x = 0, \ e^{y} = 2x^{2}-1 \ (1) \\ 2e^{y}(x^{2}-e^{y}) = 0 & e^{y} = x^{2} \ (2) \end{cases}$$

$$(1) \rightarrow e^{y} = 2x^{2}-1|_{x=0} = \checkmark$$

$$from (2) \rightarrow (1) \colon x^{2} = 2x^{2}-1$$

$$x^{2} = 1 \rightarrow \underline{x = \pm 1}$$

$$e^{y} = x^{2}|_{x=\pm 1} = 1 \rightarrow \underline{y = 0}$$

$$\therefore C.P.: \ (\pm 1, 0)$$

$$f_{xx} = -24x^{2}+4(1+e^{y})$$

$$f_{yy} = 2x^{2}e^{y}-4e^{2y}$$

$$f_{xy} = 4xe^{y}$$

$$f_{xx}f_{yy}-f_{xy}^{2} = (-24x^{2}+4+4e^{y})(2x^{2}e^{y}-4e^{2y})-16x^{2}e^{2y}$$

$$(-1, 0)$$

$$f_{xx}f_{yy}-f_{xy}^{2} = (-24+4+4)(2-4)-16=16>0$$

$$f_{xx} = -24+8=-16<0$$

$$f_{xx}f_{yy}-f_{xy}^{2} = (-24+4+4)(2-4)-16=16>0$$

$$f_{xx}f_{yy}-f_{xy}^{2} = (-24+4+4)(2-4)-16=16>0$$

$$f_{xx} = -24+8=-16<0$$

Show that the following two functions have two local maxima but no other extreme points (thus no saddle or basin between the mountains).

$$f(x, y) = 4x^2e^y - 2x^4 - e^{4y}$$

$$f_x = 8xe^y - 8x^3 = 0$$

$$f_{y} = 4x^{2}e^{y} - 4e^{4y} = 0$$

$$\begin{cases} 8x(e^{y} - x^{2}) = 0 & \to x = 0, \ e^{y} = x^{2} \ (1) \\ 4e^{y}(x^{2} - e^{3y}) = 0 & e^{3y} = x^{2} \ (2) \end{cases}$$

$$(1) \to e^{y} = x^{2} \Big|_{x=0} = X$$

$$from (2) \to (1): e^{3y} = e^{y} \Rightarrow 3y = y$$

$$y = 0 \to e^{y} = x^{2} = 1 \quad \underline{x = \pm 1}$$

 $\therefore \mathbf{C.P.}: \quad (\pm 1, \ 0)$

$$f_{xx} = 8e^y - 24x^2$$

$$f_{yy} = 4x^2e^y - 16e^{4y}$$

$$f_{xy} = 8xe^y$$

$$f_{xx}f_{yy} - f_{xy}^2 = (8e^y - 24x^2)(4x^2e^y - 16e^{4y}) - 64x^2e^{2y}$$

(-1, 0)

$$f_{xx}f_{yy} - f_{xy}^2 = (8-24)(4-16)-64 = 128 > 0$$

$$f_{rr} = 8 - 24 = -16 < 0$$

f has a **local Max** @ (-1, 0)

@ (1, 0)

$$f_{xx}f_{yy} - f_{xy}^2 = (8-24)(4-16)-64 = 128 > 0$$

$$f_{rr} = 8 - 24 = -16 < 0$$

f has a *local Max* @ (1, 0)