Homework Assignment 2

Matthieu Boyer

19 novembre 2023

Table des matières

1	Exercise 1				
	1.1	Question 1	1		
	1.2	Question 2	1		
	1.3	Question 3	1		
	1.4	Question 4	1		
	1.5	Question 5	2		
	1.6	Question 6	2		

1 Exercise 1

1.1 Question 1

For i, j in $|1, n|^2$, we have $AB_{i,j} = A_{i*}B_{*j} = \sum_{k=1}^n A_{i,k}B_{k,j}$, thus AB is computed by computed, for all i, j the product $A_{i,k}B_{k,j}$ and thus uses at most $\sum_{k=1}^n a_k b_k$ multiplications.

1.2 Question 2

The number of multiplications and additions is two times the number of multiplications. We just need to get a majoration of the number of multiplications. Yet, since $a_k \leq n$ for all k, $\sum_{k=1}^n a_k b_k \leq n \sum_{k=1}^n b_k = mn$. Then the number of multiplications and additions required is $\mathcal{O}(mn)$.

1.3 Question 3

Multiplying a matrix in $\mathcal{M}_{ap,bp}$ by a matrix $\mathcal{M}_{bp,cp}$ can, by seeing the matrices as block matrices, be seen as multiplying two matrices in \mathcal{M}_p the number of times we need to compute the product of matrix in $\mathcal{M}_{a,b}$ by a matrix in $\mathcal{M}_{b,c}$:

$$\begin{pmatrix} \alpha_{1,1} & \dots & \alpha_{1,bp} \\ \vdots & & \vdots \\ \alpha_{ap,1} & \dots & \alpha_{ap,bp} \end{pmatrix} = \begin{pmatrix} A_{1,1} & \dots & A_{1,b} \\ \vdots & & \vdots \\ A_{a,1} & \dots & A_{a,b} \end{pmatrix} \text{ where } A_{i,j} = \begin{pmatrix} \alpha_{ip+1,jp+1} & \dots & \alpha_{ip+1,j(p+1)} \\ \vdots & & \vdots \\ \alpha_{i(p+1),jp+1} & \dots & \alpha_{i(p+1),j(p+1)} \end{pmatrix} \in \mathcal{M}_p$$

Thus, we can multiply a matrix in $\mathcal{M}_{ap,bp}$ by a matrix $\mathcal{M}_{bp,cp}$ in M(a,b,c)M(p,p,p) multiplications. Thus:

$$M(ap, bp, cp) \leq M(a, b, c)M(p, p, p)$$

1.4 Question 4

— If $0 \le r \le \alpha : w(1, r, 1)$ is the smallest number k such that $M(n, n^r, n) = \mathcal{O}(n^{k+o(1)})$. But, again by seeing A an $n \times n^{\alpha}$ matrix as a $n \times n^r$ matrix next to a $n, n^{\alpha} - n^r$ matrix and same for B, we get $M(1, r, 1) \le M(1, \alpha, 1)$ and thus $w(1, r, 1) \le w(1, \alpha, 1) = 2$.

— If $\alpha \leq r \leq 1$: by seeing a $n \times n^r$ matrix A as a $n^{\frac{1-r}{1-\alpha}} \times n^{\frac{(1-r)\alpha}{1-\alpha}}$ bloc matrix with blocks of size $n^{\frac{r-\alpha}{1-\alpha}} \times n^{\frac{r-\alpha}{1-\alpha}}$ and applying the reasoning from 3. we get that:

$$\begin{split} M(n,n^r,n) &= M\left(n^{\frac{1-r}{1-\alpha}} \cdot n^{\frac{r-\alpha}{1-\alpha}}, n^{\frac{(1-r)\alpha}{1-\alpha}} \right. \\ &\qquad \times n^{\frac{r-\alpha}{1-\alpha}}, n^{\frac{1-r}{1-\alpha}} \cdot n^{\frac{r-\alpha}{1-\alpha}}\right) \\ &\leq M\left(n^{\frac{1-r}{1-\alpha}}, n^{\frac{(1-r)\alpha}{1-\alpha}}, n^{\frac{1-r}{1-\alpha}}\right) \\ &\qquad \times M\left(n^{\frac{r-\alpha}{1-\alpha}}, n^{\frac{r-\alpha}{1-\alpha}}, n^{\frac{r-\alpha}{1-\alpha}}\right) \\ &= \mathcal{O}\left(\left(n^{\frac{1-r}{1-\alpha}}\right)^{w(1,\alpha,1)} \left(n^{\frac{r-\alpha}{1-\alpha}}\right)^{\omega}\right) \\ &= \mathcal{O}\left(n^{\frac{2*(1-r)+(r-\alpha)\omega}{1-\alpha}}\right) \end{split}$$

The first big O equality comes from a substitution in $M(n, n^{\alpha}, n) = \mathcal{O}(n^{w(1,\alpha,1)})$ of n by $n^{\frac{1-r}{1-\alpha}}$. We obtain :

$$w(1,r,1) \le \frac{2 \times (1-r) + (r-\alpha)\omega}{1-\alpha}$$

$$= \frac{2 \times (1-\alpha) + 2 \times (\alpha-r) + (r-\alpha)\omega}{1-\alpha}$$

$$= 2 + \frac{\omega \times (\alpha-r) - 2 \times (\alpha-r)}{1-\alpha}$$

$$= 2 + \beta(r-\alpha)$$

1.5 Question 5

Let $1 \le l \le n$, a_k, b_k such that $a_k b_k$ is decreasing. If l = 1, the result is trivial. Consider for $i \in [1, l-1]$ the quantity $a_i b_j + a_j b_i$, we get :

— If $a_i > a_j : a_i b_j + a_j b_i > a_j b_j$

— Else : $a_ib_j + a_jb_i > a_ib_i > a_jb_j$ by hypothesis.

Then we get:

$$\sum_{j=i+1}^{n} a_i b_j + a_j b_i > \sum_{k=l}^{n} a_k b_k$$

since the a_k and b_k are positive. By summing :

$$\sum_{i=1}^{l-1} \sum_{j=i+1}^{n} a_i b_j + a_j b_i > l \sum_{k=l}^{n} a_k b_k$$

But:

$$m_1 m_2 = \sum_{i=1}^n a_i \sum_{j=1}^n b_j = \sum_{i=1}^n \sum_{j=i+1}^n a_i b_i > \sum_{i=1}^{l-1} \sum_{j=i+1}^n a_i b_j$$

Thus:

$$\sum_{k=l}^{n} a_k b_k < \frac{m_1 m_2}{l}$$

1.6 Question 6

We will first prove correctness by induction : Initialization : If $m^2 \le n^2$, it is clear.

Heredity: Since π is bijective, $I \sqcup J = [\![1,n]\!]$, we get that no two columns in A_{*I} and A_{*J} have an element in the same spot. Then, if $i,j\in [\![1,n]\!]$, we get:

$$[AB]_{i,j} = \sum_{k \in \llbracket 1,n \rrbracket} a_{i,k} b_{k,j} = \sum_{k \in I} a_{i,k} b_{k,j} + \sum_{k \in J} a_{i,k} b_{k,j} = \left[A_{*I} B_{I*} \right]_{i,j} + \left[A_{*J} B_{J*} \right]_{i,j}$$

Hence, the algorithm is correct.

Then, for the complexity we get that :

- If $m \leq n$, the algorithm runs in $\mathcal{O}(mn)$.
- Else, its complexity is the sum of three steps:
 - Calculating $A_{*I}B_{I*}$ takes $M(n,l,n)=n^{w(1,r,1)+o(1)}$ multiplications for $r=\frac{\ln l}{\ln n}<1$.
 - From question 5), calculating $A_{*J}B_{J*}$ takes at most $\frac{m^2}{l}$ multiplications.
 - Summing the results takes $\mathcal{O}(n^2)$ operations.

We obtain a time complexity in the worst case in $\mathcal{O}(n^{w(1,r,1)+o(1)} + \frac{m^2}{l} + n^2)$