

DIVERSITY OF APPLICATIONS REQUIRES ARCHITECTURAL FLEXIBILITY

DIVERSITY OF APPLICATIONS REQUIRES ARCHITECTURAL FLEXIBILITY

NVIDIA QUANTUM INFINIBAND INFRASTRUCTURE

In-Network Computing Accelerated Network for Supercomputing

Metrox Long-haul

Skyway Gateway

UFM Cyber-Al

ConnectX Adapter

BlueField DPU

Quantum Switch

Linkx

NVIDIA QUANTUM-2 400G NDR InfiniBand Cloud-Native Supercomputing

Performance Isolation

Congestion Control

SHARP Gen 3 In-Network Computing

Precision Timing

NVIDIA QUANTUM-2

400G NDR InfiniBand Cloud-Native Supercomputing

QUANTUM-2 SWITCH

Optimized Multi-Tenant In-Network Computing

64-Ports of 400 Gbps or 128-Ports of 200 Gbps

3X Higher Switching Throughput

6.5X Higher Scalability > 1M Nodes with DF+

32X More Al Acceleration Engines

Sampling Now

NVIDIA NDR 400G INFINIBAND SYSTEMS

In-Network Computing Accelerates Cloud-Native Supercomputing at Any Scale

64 NDR Ports

IN-NETWORK COMPUTING ACCELERATED SUPERCOMPUTING

Software-Defined, Hardware-Accelerated, InfiniBand Network

Most Advanced Networking

End-to-End	High Throughput	Extremely Low Latency	High Message Rate
	RDMA	GPUDirect RDMA	GPUDirect Storage
	Adaptive Routing	Congestion Control	Smart Topologies

In-Network Computing

Adapter/DPU	All-to-All	MPI Tag Matching	Data Reductions (SHARP)	tch
	Programmable Datapath Accelerator	Data processing units (Arm cores)	Self Healing Network	Swi
End-to-End	Data security / tenant isolation			End-to-End

QUANTUM INFINIBAND ADAPTIVE ROUTING

mpiGraph: Static Routing versus Adaptive Routing

MULTI-TENANT SUPERCOMPUTING CLOUD — THE CHALLENGE

Molecular Dynamics (LAMMPS) Example

HPC ON SUPERCOMPUTING

Molecular Dynamics (LAMMPS)

HPC ON THE CLOUD

Molecular Dynamics (LAMMPS)

CLOUD NATIVE SUPERCOMPUTING PLATFORM

Performance Isolations via Telemetry Based Congestion Control

HPC ON CLOUD-NATIVE SUPERCOMPUTING

Molecular Dynamics (LAMMPS)

Proactive / Reactive

Telemetry Data
Time Sensors
Traffic Planners

PERFORMANCE ISOLATION - MICROSOFT AZURE

Quantum InfiniBand Congestion Control

IN-NETWORK COMPUTING ACCELERATED SUPERCOMPUTING

Software-Defined, Hardware-Accelerated, InfiniBand Network

In-Network Computing Acceleration Engines

New generations Introduce and Enhance Acceleration Technologies

NDR InfiniBand Includes SHARP v3 and All-to-all Engines

	Faster Data Communications	Higher Application Performance
Small Data Reduction SHARP v2	7x Faster All-Reduce	~15% higher Performance OpenFOAM, DL-POLY-4, Relion
Large Data Reduction SHARP v2	2.5x Faster All-Reduce	15% Faster Deep Learning Recommend. 17% Faster Natural Language Processing
MPI Tag Matching	1.8x Faster MPI Iscatterv 100% Overlapping	Up to 40% Higher Performance LAMMPS, Nekbone, 3D Stencil
All-to-All (Introduced with NDR 400G)	4x Higher Throughput	Coming Soon with NVIDIA NDR InfiniBand!

CLOUD-NATIVE SUPERCOMPUTING

Bare-metal Secured Infrastructure

Higher Application Performance

From the Edge to the Main Data Center

CLOUD-NATIVE SUPERCOMPUTING INFRASTRUCTURE

MULTI-TENANT ISOLATION

Zero-Trust Architecture

Secured Network Infrastructure and Configuration

Storage Virtualization

Tenant Service Level Agreement (SLA)

32K Concurrent Isolated Users on Single Subnet

Secure Partitioning with Bare-Metal Performance

HIGHER APPLICATION PERFORMANCE

DPU-Accelerated HPC Communications

Collective Offloads

Active Messages

Smart MPI Progression

Data Compression

User-defined Algorithms

NON-BLOCKING MPI PERFORMANCE

HIGHER APPLICATION PERFORMANCE

100% Communication - Computation Overlap

Overlap of Communication and Computation with Nonblocking Alltoall

Courtesy of: Ohio State University MVAPICH Team and X-ScaleSolutions

32 servers, Dual Socket Intel® Xeon® 16-core CPUs E5-2697A V4 @ 2.60 GHz (32 processes per node), NVIDIA BlueField-2 HDR100 DPUs and ConnectX-6 HDR100 adapters, NVIDIA HDR Quantum Switch QM7800 40-Port 200Gb/s HDR InfiniBand, 256GB DDR4 2400MHz RDIMMs memory and 1TB 7.2K RPM SATA 2.5" hard drive per node.

HIGHER APPLICATION PERFORMANCE

Higher App Performance, MPI Collectives Offload

Courtesy of: Ohio State University MVAPICH Team and X-ScaleSolutions

32 servers, Dual Socket Intel® Xeon® 16-core CPUs E5-2697A V4 @ 2.60 GHz (32 processes per node), NVIDIA BlueField-2 HDR100 DPUs and ConnectX-6 HDR100 adapters, NVIDIA HDR Quantum Switch QM7800 40-Port 200Gb/s HDR InfiniBand, 256GB DDR4 2400MHz RDIMMs memory and 1TB 7.2K RPM SATA 2.5" hard drive per node.

EXPANDING SUPERCOMPUTING UNIVERSE LONG-HAUL INFINIBAND

NVIDIA QUANTUM INFINIBAND TECHNOLOGY ROADMAP

In-Network Computing Accelerated Network for Exascale Supercomputing

Quantum-4 (GDR 1600G)

Quantum-3 (XDR 800G)

Quantum-2 (NDR 400G)

Quantum-1 (HDR 200G)

