Optimální proložení bodů kružnicí

Lukáš Forst, forstluk November 28, 2018

1 Teoretické úkoly

1. První úkol

1) Mějme několik bodů a_1, \ldots, a_m v obecné konfiguraci. Je funkce f všude diferencovatelná?

Funkce f není diferencovatelná na celém \Re . Například není diferencovatelná, když souřadnice středu kružnice je stejná se souřadnicí jednoho z bodů.

2) Má jedno nebo více lokálních minim?

Více, například při zadání jednoho bodu jich má nekonečně mnoho.

2. Druhý úkol

1) Diskutujte, jaký algoritmus je vhodný na minimalizaci funkce f(x) a proč.

LM metoda je ve výsledku lepší a to hlavně díky tomu, že zamítá špatné, respektive horší iterace. Pokud máme počáteční odhad dobrý, tak pak může být lepší GN metoda a to hlavně kvůli tomu, že bude rychleji konvergovat.

2) Je možné, aby Gaussův-Newtonův algoritmus na naší úloze divergoval?

Ano. Například špatně zvolená počáteční kružnice způsobí divergenci tohoto algoritmu.

3. Třetí úkol

1) Může se zdát, že algoritmy na nelineární nejmenší čtverce bez omezení nejde použít, protože máme omezení $r \ge 0$ Vadí to?

Nevadí, protože bereme orientovanou vzdálenost od kružnice a tedy se nestane, že by r muselo být záporné pro nejmenší vzdálenost.

2) Co se stane, budeme-li toto omezení ignorovat?

Ve své implementaci nikde toto omezení nemám a přesto funguje tak, jak má, předpokládám tedy, že ho ignorovat můžeme a to z důvodu popsaného v další otázce.

3) Můžou algoritmy konvergovat k řešení se záporným r?

Nemůžou, protože v tu chvíli se bude vzdálenost (tedy implementovaná funkce dist) od kružnice vždy zvětšovat a tedy algoritmus nebude konvergovat. Proto nikdy nepoužije záporné r.

4. Najděte nějakou množinu $m \geq 3$ bodů a_1, a_2, \ldots, a_m a takovou dvojici počátečních parametrů kružnice $x_0^{(1)}$ a $x_0^{(2)}$, aby algoritmus inicializovaný těmito parametry skončil v různých lokálních minimech.

Bohužel mě zradila školní VPN a tím pádem i Matlab, který je vázaný na školní síť, ale popíši alespoň slovy:

Množinu bodů a_1, a_2, \ldots, a_m zvolím tak, aby body ležely na jedné přímce rovnoběžné s osou y - tedy mají stejnou souřadnici x - tedy například body [0, 0.2], [0, 0.25], [0, 0.3]. Následně zvolím body $x_0^{(1)}$ a $x_0^{(2)}$ - [-1, 0.25] a [1, 0.25]. Algoritmus by měl nyní fittovat kružnici jak do prvního (pro bod [1, 0.25]) tak do druhého kvadrantu (v opačném případě).