Corrigé proposé par :

M. Afekir - École Royale de l'Air

CPGE Marrakech

cpgeafek@yahoo.fr

Microscopie

Première partie OEil1

1.1. Champ latéral et champ en profondeur

1.1.1.

$$\tan\left(\frac{\Phi_F}{2}\right) = \frac{\alpha_F}{2d} \qquad \Rightarrow \qquad \Phi_F = 2d\tan\left(\frac{\alpha_F}{2}\right)$$

Application numérique : $\Phi_F =$

1.1.2.

$$\mathcal{P} = \frac{1}{f_i} \qquad ; \qquad p = \overline{A_oO} = -\overline{OA_o}, \;\; ; \qquad \text{et} \;\; ; \qquad p = \overline{OA}$$

Pour que $\overline{A_oB_o}$ soit vu nettement, il faut que A (image de A_o) coı̈ncide avec F (\in (\mathcal{E})); soit : $\overline{OA}=d$

La relation de conjugaison avec origine au centre appliquée à (\mathcal{L}) :

$$\frac{1}{f_i} = \frac{1}{\overline{OA_0}} - \frac{1}{\overline{OA}} = \frac{1}{d} + \frac{1}{p}$$

$$\mathcal{P}(p) = \frac{1}{d} + \frac{1}{p}$$

1.1.3. Punctum proximum

$$\mathcal{P}_{max} = \mathcal{P}\left(P_p\right) \; ; \; P_p = -\overline{OP_p}$$

soit :
$$\mathcal{P}_{min} = \frac{1}{d} + \frac{1}{P_p}$$

Application numérique : $\mathcal{P}_{max} = 62, 8 \delta$

1.1.4. Punctum remotum

$$\mathcal{P}_{min} = \mathcal{P}\left(P_r\right) \; ; \; P_p = -\overline{OP_p} \sim \infty$$

soit :
$$\mathcal{P}_{min} = \frac{1}{d}$$

Application numérique : $\mathcal{P}_{min} = 58, 8 \,\delta$

1.1.5. Amplitude maximale d'accommodation A

$$A = \mathcal{P}_{max} - \mathcal{P}_{min} = \frac{1}{P_p}$$

Application numérique : $A = 4 \delta$

1.2. Défaut de l'oeil et correction

1.2.1. Myopie

$$d_m = 17,5 \, mm$$

1.2.1.1. Position de l'image d'un objet très éloigné

$$\mathcal{P}_{min} = \frac{1}{d}$$
 \Rightarrow $d = \frac{1}{\mathcal{P}_{min}} = 17 \, mm \, < \, d_m \, = \, 17,5 \, mm$

L'oeil myope n'est, donc, pas capable de former l'image de tel objet sur la rétine (l'image se forme avant la rétine).

1.2.1.2.

$$\mathcal{P} = \frac{1}{d} + \frac{1}{p} \quad ; \quad \text{on pose} : \begin{aligned} |\overline{OP_p}| &= p_p \\ |\overline{OP_r}| &= p_r \end{aligned}$$

$$\mathcal{P}'_{max} = \frac{1}{p_p} + \frac{1}{p} = \mathcal{P}_{max} \quad \text{et} \quad \mathcal{P}'_{min} = \frac{1}{p_r} + \frac{1}{p} = \mathcal{P}_{min}$$
Soient:
$$p_p = \frac{d_m}{d_m \mathcal{P}_{max} - 1} \quad \text{et} \quad p_r = \frac{d_m}{d_m \mathcal{P}_{min} - 1}$$

 $\underline{\text{Applications num\'eriques}}: \quad p_p \, = \, 17,7\,cm \quad \text{ et } \quad p_r \, = \, 60,3\,cm$

1.2.1.3.

Absence d'anomalie si et seulement si :
$$\mathcal{P}_{min}^{tot} = \frac{1}{d_m}$$

$$\mathcal{P}^{tot} = \mathcal{P} + \mathcal{P}^m$$
 avec $\mathcal{P}^m = \frac{1}{f_m}$ le signe de f_m détermine le type de lentille

$$\mathcal{P}_{min}^{tot} = \mathcal{P}_{min} + \mathcal{P}_{min}^{m} = \frac{1}{d_m}$$
 ou $\mathcal{P}_{min}^{m} = \frac{1}{d_m} - \mathcal{P}_{min}$

Application numérique : $P^m=-1,68\,\delta<0$ et $f_m=\overline{OF_{im}}=-59,5\,cm<0$ Il s'agit, donc, d'une lentille divergente.

1.2.2. Hypermétrope

$$d_h = 16, 5 \, mm$$

1.2.2.1. $d_h > 17\,mm$: L'image se forme au dela de la rétine, d'où possibilité d'accommodation.

La puissance :
$$\mathcal{P}_n = \frac{1}{d_h} = 606,06\,\delta$$

1.2.2.2. D'après la question 1.2.1.2. :

$$p_p = rac{d_h}{d_h \mathcal{P}_{max} - 1}$$
 et $p_r = rac{d_h}{d_h \mathcal{P}_{min} - 1}$

1.2.2.3.

$$\mathcal{P}_{min}^{tot} = \mathcal{P}_{min} + \mathcal{P}_{min}^{h} = \mathcal{P}_{n} = \mathcal{P}_{min} + \frac{1}{f_h} \implies f_h = \frac{1}{\mathcal{P}_n - \mathcal{P}_{min}}$$

 $\underline{\text{Application num\'erique}}: \quad f_h = \overline{OF}_{ih} = +59, 5\,cm \quad \text{il s'agit, donc, d'une lentille convergente} \; .$

1.2.3. Presbytie

$$\mathcal{P}_{max}^{ ext{presbytie}} = 1,14 \,\delta$$

vision sans accommodation : $\mathcal{P}_{max} = \frac{1}{d} + \frac{1}{p_p}$

$$\text{ou}: \quad \mathcal{P}_{max}^{\text{presbytie}} = \frac{1}{d_{min}^{\text{presbytie}}} + \frac{1}{p_p} \quad \Rightarrow \quad \quad d_{min}^{\text{presbytie}} = \frac{p_p}{p_p \mathcal{P}_{max}^{\text{presbytie}} - 1} = 85,94\,cm$$

1.3. Limite de résolution angulaire de l'oeil

1.3.1.

Application numérique : $\alpha_l = 3 \times 10^{-4} \, rad$

1.3.2. Soit : $p_o = \overline{OA_o}$ la position de l'objet.

$$\mathcal{P}_{max} = \frac{1}{p_o} + \frac{1}{d}$$
 \Rightarrow $p_o = \frac{d}{d\mathcal{P}_{max} - 1} = -25, 14 \, cm$

Deuxième partie Microscope composé

2.1. Mise au point

- **2.1.1**. Conditions de gauss L'approximation de gauss consiste à ce que les rayons incidents, arrivant sur un instrument optique, soient :(rayon paraxiaux!)
 - o faiblement inclinés par rapport à l'axe optique de l'instrument.
 - o peu inclinés sur l'axe optique
- **2.1.2**. L'objectif du microscope ne fonctionne pas dans les conditions de gauss, car les rayons sont loin d'être faiblement inclinés sur l'axe optique ($\alpha_m = 70^o$).
 - **2.1.3**. Grandissement transversal G_{t1}

 \circ Considérons les triangles : $(\widehat{F_{i1}A_1B_1})$ et $(\widehat{F_{i1}H_{i1}J})$

$$\frac{\overline{A_1B_1}}{\overline{A_1F_{i1}}} = \frac{\overline{H_{i1}J}}{\overline{H_{i1}F_{i1}}} = \frac{\overline{A_oB_o}}{\overline{H_{i1}F_{i1}}} \quad \Rightarrow \quad \overline{G_{t1}} = \frac{\overline{A_1B_1}}{\overline{A_oB_o}} = \frac{\overline{A_1F_{i1}}}{\overline{H_{i1}F_{i1}}} = \frac{\overline{A_1F_{i1}}}{\overline{f_{i1}}}$$

 \circ Considérons les triangles : $(\widehat{F_{o1}A_oB_o})$ et $(\widehat{F_{o1}H_{o1}I})$

$$\frac{\overline{A_oB_o}}{\overline{A_oF_{o1}}} = \frac{\overline{H_{o1}K}}{\overline{H_{o1}F_{o1}}} = \frac{\overline{A_1B_1}}{\overline{H_{o1}F_{o1}}} \Rightarrow \overline{G_{t1}} = \frac{\overline{A_1B_1}}{\overline{A_oB_o}} = \frac{\overline{H_{o1}F_{o1}}}{\overline{A_oF_{o1}}} = \frac{f_{o1}}{\overline{A_oF_{o1}}}$$

En utilisant les deux expressions du grandissement G_{t1} , on retrouve la relation de conjugaison avec origine aux foyers pour deux points conjugués par l'objectif (Relation de Newton); soit :

$$G_{t1} = \frac{\overline{A_1 F_{i1}}}{f_{i1}} = \frac{f_{o1}}{\overline{A_o F_{o1}}} \qquad \Rightarrow \qquad \overline{F_{o1} A_o \overline{F_{i1} A_1}} = f_{o1} f_{i1}$$

2.1.4. Pour une observation sans accommodation, l'image définitive doit se trouver à l'infini. Pour que cette condition soit réalisée il faut, donc, que l'image intermédiaire A_1B_1 se trouve dans le plan focale objet de l'oculaire.

2.1.5.

2.1.6. Position de l'objet A_oB_o

La relation de Newton appliquée aux conjugués A_o et $A_1 \equiv F_{o2}$ par l'objectif (Cf. la relation (4) en **2.1.3**), donne :

$$\overline{F_{o1}A_o}\,\overline{F_{i1}F_{o2}} \ = \ f_{o1}\,f_{i1} \qquad \text{avec}: \qquad \overline{F_{i1}F_{o2}} \ = \ \Delta \\ f_{o1} \ = \ -N\,f_{i1} \qquad \Rightarrow \qquad \overline{F_{o1}A_o} \ = \ \frac{f_{o1}\,f_{i1}}{\Delta}$$

$$\text{soit:} \qquad \overline{F_{o1}A_o} \ = \ -\frac{f_{i1}^2}{\Delta}N$$

2.1.7. Grandissement transversal G_{t1} : D'aprè s la question 2.1.3. :

$$G_{t1}=-rac{f_{o1}}{\overline{F_{o1}A_o}}=rac{\overline{A_1F_{o1}}}{f_{i1}}=Nrac{f_{i1}}{\overline{F_{o1}A_o}}$$
 soit : $G_{t1}=-rac{\Delta}{f_{i1}}$

2.1.8. Application numérique: $\overline{F_{o1}A_o} = -0.12 \, mm$ et $G_{t1} = -50$

2.2. Cercle oculaire

2.2.1.

2.2.2. Expression du rayon R

$$R = |\overline{F_{i1}F}|$$
 tel que : $\tan \alpha_{1m} = \frac{\overline{F_{i1}F}}{\Lambda} \sim \alpha_{1m}$

L'objectif du microscope est rigoureusement stigmatique : tout rayon issu de A_o émerge en passant par A_1 . Ces rayons sont, donc, délimités par le cercle de rayon R centré sur F_{i1} .

la condition d'aplanétisme pour l'objectif :
$$N\overline{A_oB_o}\sin\alpha_m = \overline{A_1B_1}\alpha_{1m} = \overline{A_1B_1}\frac{\overline{F_{i1}F}}{\Delta}$$

$$\implies \overline{F_{i1}F} = N\Delta \frac{\overline{A_o B_o}}{\overline{A_1 B_1}} = \Omega_n \frac{\Delta}{G_{t1}} = -\Omega_n f_{i1} \qquad (\Omega_n = N \sin \alpha_m)$$
soit:
$$R = |\overline{F_{i1}F}| = \Omega_n f_{i1}$$

2.2.3.

$$\tan \alpha_{1m} = \frac{\overline{O_2 K}}{\overline{F_{o2} O_2}} = \frac{\overline{O_2 K}}{f_{i2}} \sim \alpha_{1m} \quad \text{et} \quad |\alpha_{1m}| = \frac{R}{\Delta} \quad \Rightarrow \quad \rho = |\overline{O_2 K}| = f_{i2} \frac{R}{\Delta}$$

$$\text{Soit}: \quad \rho = \Omega_n \frac{f_{i1} f_{i2}}{\Delta}$$

2.2.4.

2.2.4.1.

 \circ C est l'image de F_{i1} à travers l'oculaire. La relation de conjugaison de Newton entre C et F_{i1} par l'oculaire :

$$\overline{F_{o2}F_{i1}}\,\overline{F_{i2}C} = f_{o2}f_{i2} = -f_{i2}^2 \quad \text{avec} \quad \overline{F_{o2}F_{i1}} = \Delta$$
Soit:
$$\overline{F_{i2}C} = \frac{f_{i2}^2}{\Delta}$$

- $\circ~$ Le disque oculaire centré sur C est l'image du disque centré sur F_{i1} à travers l'oculaire.
- o ρ_c est, donc, l'image de R à travers l'oculaire. La relation de grandissement entre ρ_c et R par l'oculaire :

$$|G_{t2}| = \left| \frac{\overline{F_{i1}F}}{\overline{CK'}} \right| = \frac{\rho_c}{R} \implies \rho_c = R|G_{t2}|$$

$$G_{t2} = \frac{\overline{F_{i2}C}}{f_{i2}}$$
, voir 2.1.3.

Soit:
$$\rho_c = R \frac{\overline{F_{i2}C}}{f_{i2}} = R \frac{f_{i2}}{\Delta} = \Omega_n \frac{f_{i1}f_{i2}}{\Delta} = \rho$$

Pour recevoir le maximum de lumière, on doit placer l'oeil au point ${\cal C}$: centre du disque oculaire.

2.2.4.2. Application numérique : $\rho_c = 0,569 \, mm$ et $\overline{F_{i2}C} = 2 \, mm$

2.3. Grossissement G

 $G \ = \ \frac{\theta'}{\theta} \qquad \text{avec} \ : \qquad \frac{\theta'}{\theta} \ : \ \text{L'angle sous lequel l'objet est vu à travers le microscope} \\ \theta \ : \ \text{L'angle sous lequel l'objet est vu à l'œil nu}$

2.3.1.

$$\theta' \sim \frac{\overline{A_1 B_1}}{\overline{F_{i2} O_2}} = \frac{\overline{A_1 B_1}}{f_{i2}}$$
 et $\theta \sim \frac{\overline{A_0 B_0}}{\delta}$

Soit:
$$G = \frac{\theta'}{\theta} = G_{t1} \frac{\delta}{f_{i2}} = -\frac{\delta \Delta}{f_{i2} f_{i1}}$$

Application numérique : G = -625

2.3.2. Rayon du cercle oculaire ρ_c

$$\begin{array}{cccc} \rho_c &=& \Omega_n \frac{f_{i1} f_{i2}}{\Delta} \\ & \text{et} & \Rightarrow & \\ G &=& -\frac{\delta \Delta}{f_{i2} f_{i1}} \end{array} \Rightarrow \qquad \begin{array}{ccccc} \rho_c &=& -\Omega_n \frac{\delta}{G} \end{array}$$

2.3.3. ρ_o : rayon de la pupille de l'oeil.

$$\rho_o = -\Omega_n \frac{\delta}{G_e} \qquad \Rightarrow \qquad \qquad \rho_c = -\Omega_n \frac{\delta}{G} \qquad \qquad G_e = -\Omega_n \frac{\delta}{\rho_o}$$

Application numérique : $G_e = -142$

2.3.4. Pur recevoir le maximum de lumière, on doit placer l'oeil au centre du cercle oculaire (Cf. 2.2.4.1.) : le rayon utile ρ_u est, par conséquent, égal à ρ_c ; soit :

$$\rho_u = -\Omega_n \frac{\delta}{G} = -N \sin \alpha_m \frac{\delta}{G}$$

2.4. Pouvoir de résolution

2.4.1. Influence de la diffraction

2.4.1.1. Phénomène de diffraction :

La diffraction est le phénomène observé lorsqu'on s'écarte de l'approximation de l'optique géométrique. C'est à dire lorsque un faisceau lumineux (de longueur d'onde λ) est masqué par des diaphragmes (pupilles) dont les dimensions voisins de λ (ondes lumineuses matériellement limitées).

2.4.1.2. Intensité lumineuse $I_d(\theta)$

$$I_{d}\left(heta
ight) =a_{d}^{2}\left(heta
ight) =4I_{o}\left(rac{J_{1}\left(2\pi arrho
ight) }{2\pi arrho}
ight) ^{2} \quad ext{tels que}: \quad arrho=rac{R heta}{\lambda} \quad ext{et}: \quad I_{o}=a_{o}^{2}$$

2.4.1.3. Figure de diffraction :

2.4.1.4. Rayon angulaire:

$$\varrho=rac{R heta}{\lambda} \qquad \Rightarrow \qquad arrho_1=rac{R heta_d}{\lambda} \, \simeq \, 0,61 \quad ext{(tache centrale)}$$

soit :
$$\theta_d \, \simeq \, 0,61 \, \frac{\lambda}{R} \, \simeq \, 0,61 \, \frac{\lambda}{f_{i1} \Omega_n}$$

2.4.1.5. Critère de Rayleigh:

Soient:

- $\circ \quad d : {\it distance des centres des taches de diffraction.}$
- \circ r_d : rayon d'une tache de diffraction.
- $\circ \quad S_d :$ plus petite distance de deux points séparables.
- o S_d est le conjugué de r_d par l'objectif.

Les deux point objets A_o et B_o sont séparables si : $r_d \sim d$

D'une part, on a :

$$\tan \theta_d \sim \theta_d = \frac{r_d}{\Delta} = 0,61 \frac{\lambda}{f_{i1}\Omega_n} \quad \Rightarrow \quad r_d = 0,61 \frac{\Delta \lambda}{f_{i1}\Omega_n}$$

D'autre part, on a d'après 2.1.7. :

$$|G_{t1}| = \frac{r_d}{S_d} = \frac{\Delta}{f_{i1}}$$

Soit:

$$S_d = \frac{r_d}{\Delta} f_{i1} = 0.61 \frac{\lambda}{\Omega_n}$$

$$S_d = 0.61 \frac{\lambda}{N \sin \alpha_m} = S_d(\lambda, N, \alpha_m)$$

Améliorer le pouvoir séparateur, c'est agir sur les trois paramètres dont elle dépend S_d . Pour diminuer S_d , il suffit :

- d'augmenter α_m (à λ et N donnés).
- de diminuer λ (à α_m et N, donnés)..
- d'augmenter N (à λ et α_m , donnés).

2.4.2. Influence pouvoir séparateur de l'oeil

$$\alpha_l = 3 \times 10^{-4}$$

2.4.2.1.

2.4.2.2. Distance minimale S_s : D'après 2.3.1.;

le grossissement
$$G=rac{lpha_l}{lpha_o}$$
 tel que : $lpha_o=rac{S_s}{\delta}$

soit:
$$S_s = \frac{\alpha_l}{G} \delta$$

2.4.3. Discussion

2.4.3.1. Valeur minimale G_d de G

le grossissement minimal
$$G_d=rac{lpha_l}{lpha_o}$$
 tel que : $lpha_o=rac{S_d}{\delta}$

soit:
$$G_d = \frac{\alpha_l}{S_d} \delta = \frac{\alpha_l \Omega_n}{0.61 \lambda} \delta$$

2.4.3.2. application numérique : $S_d = 0,21\,\mu m$ et $S_s = 0,12\,\mu m$

 $S_s < S_d \implies \text{La diffraction limite le pouvoir de résolution du microscope étudié!}$

Troisième partie Microscope électronique

3.1. Principe

3.1.1. Vitesse v_o des électrons accélérés

des forces subies par chaque é lectron : $\overrightarrow{P} = m_e \overrightarrow{g}$ telles que : $|\overrightarrow{P}| << |\overrightarrow{f_e}|$

$$\overrightarrow{f_e} = -e \overrightarrow{E} = +e \overrightarrow{grad} V$$

Théorème de l'énergie cinétique appliqué à l'électron :

$$\Delta_K^A E_c = W(\overrightarrow{f_e}) \text{ avec}: \begin{cases} \Delta_K^A E_c = \frac{1}{2} m_e \left(v_A^2 - v_K^2\right) \approx \frac{1}{2} m_e v_o^2 \\ W(\overrightarrow{f_e}) = \int_{(K)}^{(A)} \overrightarrow{f_e}.\overrightarrow{dz} = +e \int_{(K)}^{(A)} \overrightarrow{grad} V.\overrightarrow{dz} = +e \int_{(K)}^{(A)} dV = e \left(V_K - V_A\right) = e V_c \end{cases}$$

soit:
$$\frac{1}{2}m_ev_o^e = +eV_c$$
 ou $v_o = \sqrt{\frac{2eV_c}{m_e}}$

3.1.2. Longueur d'onde associée à l'électron

$$\lambda_e = \frac{h}{m_e v_o} = \frac{h}{\sqrt{2m_e V_c}}$$

- $\textbf{3.1.3}. \quad \text{Application numérique}: \quad v_o \,=\, 5,77\times 10^7\,m.s^{-1} \quad et \quad \ \lambda_e \,=\, 1,2\times 10^{-10}\,m.s^{-1}$
- 3.1.4. Les limites en longueur d'onde du spectre de la lumière visible sont telles que :

$$0,4\,\mu m \leq \lambda_{visible} \leq 0,8\,\mu m$$

On remarque que la longueur d'onde associée à l'électron $\lambda_e < \lambda_{visible}$: le pouvoir de résolution du microscope électronique est, donc, meilleur à celui du microscope optique!

3.2. Lentille électrostatique

Champ électrostatique dans la lentille

3.2.1.1. En un point M de coordonnées cylindriques (r, θ, z) , le champ électrostatique s'écrit:

$$\overrightarrow{E} = \overrightarrow{E}(r, \theta, z)$$

Invariance de \overline{E} La source du champ est invariante par rotation autour de l'axe Oz : \overrightarrow{E} est, donc, indépendant de θ .

$$\overrightarrow{E} = \overrightarrow{E}(r,z)$$

• Symétrie de \overrightarrow{E} Tout plan contenant l'axe Oz et la point M (soit $(\overrightarrow{u}_r, \overrightarrow{u}_z)$) est un plan de symétrie pour la source du champ : \overrightarrow{E} appartient, donc, à ce plan.

$$\overrightarrow{E} \ = \ \left(\overrightarrow{\mathcal{U}}_r.\overrightarrow{E}\left(r,z\right)\right)\overrightarrow{\mathcal{U}}_r \ + \ \left(\overrightarrow{\mathcal{U}}_z.\overrightarrow{E}\left(r,z\right)\right)\overrightarrow{\mathcal{U}}_z$$

On pose:

$$F(r,z) = \overrightarrow{u}_r \cdot \overrightarrow{E}(r,z)$$

 $G(r,z) = \overrightarrow{u}_z \cdot \overrightarrow{E}(r,z)$

$$F(r,z) = \overrightarrow{u}_r \cdot \overrightarrow{E}(r,z) G(r,z) = \overrightarrow{u}_z \cdot \overrightarrow{E}(r,z) \Rightarrow \qquad \overrightarrow{E}(r,z) = F(r,z) \overrightarrow{u}_r + G(r,z) \overrightarrow{u}_z$$

3.2.1.2. Le plan z=0 (soit $\Pi_o\equiv(xOy)$) est, aussi, un plan de symétrie pour la source du champ électrostatique : en tout point N de ce plan, le champ électostatique appartient, donc, à l'intersection de Π_o et le plan $(\overrightarrow{u}_r, \overrightarrow{u}_z)$ définit en 3.2.1.1., et contenant N. L'intersection entre ces deux plans est \overrightarrow{u}_r , soit :

$$\overrightarrow{u}_z . \overrightarrow{E} (r, z = 0) = G(r, z = 0) = 0$$

3.2.1.3. Équations locales vérifiées par \overrightarrow{E} (Équations de maxwell en régime électrosatique)

$$\operatorname{div} \overrightarrow{E} = 0 \qquad et \qquad \overrightarrow{\operatorname{rot}} \overrightarrow{E} = \overrightarrow{0}$$

3.2.1.4. Équations aux dérivées partielles

$$\overrightarrow{rot} \overrightarrow{E} \left(r,z \right) \ = \ \overrightarrow{\nabla} \wedge \overrightarrow{E} \left(r,z \right) \ = \ \left(\frac{\partial F \left(r,z \right)}{\partial z} \ - \ \frac{\partial G \left(r,z \right)}{\partial r} \right) \overrightarrow{u}_{\theta}$$

$$\operatorname{div} \overrightarrow{E} \left(r,z \right) \ = \ \overrightarrow{\nabla} . \overrightarrow{E} \left(r,z \right) \ = \ \left(\frac{1}{r} \frac{\partial \left(rF \left(r,z \right) \right)}{\partial r} \ + \ \frac{\partial \left(G \left(r,z \right) \right)}{\partial z} \right) \ = \ \frac{1}{r} \left(\frac{\partial \left(rF \left(r,z \right) \right)}{\partial r} \ + \ \frac{\partial \left(rG \left(r,z \right) \right)}{\partial z} \right)$$

D'après les équations locales établie en 3.2.1.3., on en déduit les équations suivantes :

$$\begin{cases}
\frac{\partial F(r,z)}{\partial z} - \frac{\partial G(r,z)}{\partial r} = 0 \\
\frac{\partial (rF(r,z))}{\partial r} + \frac{\partial (rG(r,z))}{\partial z} = 0
\end{cases}$$
(8)

3.2.1.5. La source du champ électrostatique impose :

$$F(r,z) = \beta r = \frac{2U_o}{R}r$$

D'après la question précédente : $\frac{\partial \left(rF\left(r,z\right)\right)}{\partial r} \ = \ - \ \frac{\partial \left(rG\left(r,z\right)\right)}{\partial z} \ = \ - \ \frac{4U_o}{R}r$

$$\Rightarrow \qquad G(r,z) = -\frac{4U_o r}{R} z + \frac{1}{r} f(r)$$

Or la fonction G(r, z) = 0 dans le plan z = 0 d'où : f(r) = 0

$$\Longrightarrow$$
 $G(r,z) = -\frac{4U_o r}{R} z = \beta' z \text{ avec } \beta' = -2\beta$

3.2.1.6. Potentiel électrostatique Φ

$$\overrightarrow{E}(r,z) = F(r,z)\overrightarrow{u}_r + G(r,z)\overrightarrow{u}_z = \beta r\overrightarrow{u}_r - 2\beta z\overrightarrow{u}_z$$

 $\text{Le potentiel }\Phi\text{ est tel que}:\overrightarrow{E}\left(r,z\right)=-\overrightarrow{grad}\Phi\text{ ou }\overrightarrow{E}\left(r,z\right).\overrightarrow{dr}=-d\Phi$

$$\overrightarrow{dr} = dr \overrightarrow{u}_r + r d\theta \overrightarrow{u}_\theta + dz \overrightarrow{u}_z \quad \Rightarrow \quad \overrightarrow{E}(r,z) . \overrightarrow{dr} = \beta r dr \quad - \ 2\beta z dz = d \left(\beta \frac{r^2}{2} - \beta z^2 + C\right)$$

soit :
$$\Phi\left(r,z\right) \,=\, -\beta\frac{r^2}{2} + \beta z^2 + C \quad ; \ C: \ {\rm constante} \ {\rm d'int\'egration}$$

ou :
$$\Phi\left(r,z\right) = 2 rac{U_o}{R^2} \left(-rac{r^2}{2} + z^2
ight) + C \;\; ; \; C : \; {
m constante \; d'intégration}$$

3.2.1.7. Surface équipotentielle

Le potentiel de la surface passant par l'origine est : $\Phi_o = \Phi\left(0,0\right) = C$. Donc l'équation de cette surface équipotentielle est telle que :

$$-\frac{r^2}{2} + z^2 = 0 \quad \Rightarrow \quad \boxed{r = z\sqrt{2}}$$

3.2.2. Mouvement de l'électron dans la lentille

3.2.2.1. Théorème du moment cinétique :

$$\overrightarrow{\sigma} = \overrightarrow{r} \wedge \overrightarrow{p}$$

$$r = r\overrightarrow{u}_r + z\overrightarrow{u}_z \quad \text{et} \quad \overrightarrow{p} = m_e \left(\frac{dr}{dt} \overrightarrow{u}_r + r \frac{d\theta}{dt} \overrightarrow{u}_\theta + \frac{dz}{dt} \overrightarrow{u}_z \right)$$

$$\left(r \right) \quad \left(\frac{dr}{dt} \right) \quad \left(-zr \frac{d\theta}{dt} \right)$$

$$\overrightarrow{\sigma} = m_e \begin{pmatrix} r \\ 0 \\ z \end{pmatrix} \wedge \begin{pmatrix} \frac{dr}{dt} \\ r\frac{d\theta}{dt} \\ \frac{dz}{dt} \end{pmatrix} = \begin{pmatrix} -zr\frac{d\theta}{dt} \\ z\frac{dr}{dt} - r\frac{dz}{dt} \\ r^2\frac{d\theta}{dt} \end{pmatrix}_{(\overrightarrow{u}_r, \overrightarrow{u}_\theta, \overrightarrow{u}_z)}$$

Le théorème du moment cinétique appliqué à l'électron dans le repère d'étude :

$$\frac{d\overrightarrow{\sigma}}{dt} = \overrightarrow{\mathcal{M}}\left(\overrightarrow{f_e}\right) = \overrightarrow{r} \wedge \overrightarrow{f_e} = (zF\left(r,z\right) - rG\left(r,z\right)) \overrightarrow{u}_{\theta}$$

$$\overrightarrow{u}_z.\frac{d\overrightarrow{\sigma}}{dt} = \frac{d\left(\overrightarrow{u}_z\overrightarrow{\sigma}\right)}{dt} = 0 \qquad \Rightarrow \qquad \overrightarrow{u}_z\overrightarrow{\sigma} = \text{constante} = r^2\frac{d\theta}{dt}$$
 soit:
$$r^2\frac{d\theta}{dt} = r_o^2\left(\frac{d\theta}{dt}\right)_o = 0 \qquad \Rightarrow \qquad \frac{d\theta}{dt} = 0 \quad \text{ou} \quad \theta = \text{constante}$$

3.2.2.2. Théorème de la résultante cinétique

$$\overrightarrow{f_e} = -e \overrightarrow{E}(r, z) = +e \overrightarrow{grad} \Phi(r, z) = -e (r\beta \overrightarrow{u}_r - 2\beta) \overrightarrow{u}_z$$

La composante :

$$f_{ez} = \overrightarrow{f_e} . \overrightarrow{u}_z = 2e\beta \overrightarrow{u}_z$$

Pour que le mouvement de l'électron soit confiné au voisinage de l'axe $\ Oz$, il faut que :

$$\beta > 0$$
 soit $U_o > 0$

Le théorème de la résultante cinétique appliqué à l'électron dans le repère d'étude :

$$\overrightarrow{f_e} = m_e \overrightarrow{d}$$
 avec $\overrightarrow{d} = \frac{d^2r}{dt^2} \overrightarrow{u}_r + \frac{d^2z}{dt^2} \overrightarrow{u}_z$ car $\frac{d\theta}{dt} = 0$

Par projection, de l'équation vectorielle ainsi obtenue, suivant \overrightarrow{u}_r et \overrightarrow{u}_z ; on obtient deux équations différentielles :

$$\begin{cases} \frac{d^2r}{dt^2} + \frac{e\beta}{m_e}r = 0\\ \frac{d^2z}{dt^2} - \frac{2e\beta}{m_e}z = 0 \end{cases} \quad \text{soit}: \qquad \begin{cases} \frac{d^2r}{dt^2} + \omega^2r = 0\\ \frac{d^2z}{dt^2} - 2\omega^2z = 0 \end{cases} \quad \text{avec}: \quad \omega = \sqrt{\frac{e\beta}{m_e}} = \sqrt{\frac{2eU_o}{m_eR^2}}$$

3.2.2.3. Expression de z(t)

L'équation différentielle en
$$z(t)$$
 :
$$\frac{d^2z}{dt^2} - 2\omega^2z = 0$$

Solution
$$z(t) = A \cosh\left(\omega\sqrt{2}t\right) + B \sinh\left(\omega\sqrt{2}t\right)$$

A et B : constantes d'intégration ; \sinh et \cosh sont le sinus et le cosinus hyperbolique respectifs tels que

$$\begin{cases} \cosh x = \frac{1}{2} \left(\exp(x) + \exp(-x) \right) \\ \cosh x = \frac{1}{2} \left(\exp(x) - \exp(-x) \right) \end{cases}$$

Conditions initiales
$$: z(t=0) = -\ell \ \ \text{et} \ \ \left(\frac{dz}{dt}\right)_{t=0} = 0 \qquad \Rightarrow \qquad A = -\ell \ \ \ et \ \ B = \frac{v_o}{\omega\sqrt{2}}$$

soit:
$$z(t) = -\ell \cosh\left(\omega\sqrt{2}t\right) + \frac{v_o}{\omega\sqrt{2}}\sinh\left(\omega\sqrt{2}t\right)$$

3.2.2.4. On suppose satisfaite la condition $\ \omega \ell << v_o$

$$z(t) \sim \frac{v_o}{\omega\sqrt{2}}\sinh\left(\omega\sqrt{2}t\right)$$

$$\text{or } |z| \leq \ell \quad \Rightarrow \quad \sinh\left(\omega\sqrt{2}t\right) \leq \frac{\ell\omega}{v_o\sqrt{2}} <<1 \quad \Rightarrow \quad \omega\sqrt{2}t \ <<\ 1 \quad \Rightarrow \quad \sinh\left(\omega\sqrt{2}t\right) \, \sim \, \omega\sqrt{2}t$$

Complément mathématique : la fonction \sinh est strictement croissante dans \mathbb{R} !!

D'où :
$$z(t) \ \sim \ v_o t \qquad \text{ou} : \qquad \frac{dz}{dt} = v_o$$

La durée t_1 est telle que : $z(t_1) = 2\ell$

soit:
$$t_1 = 2\frac{\ell}{v_o}$$

3.2.2.5. Expression de r(t):

L'équation différentielle en
$$r(t)$$
 : $\frac{d^2r}{dt^2} + \omega^2r = 0$

Solution
$$r(t) = A_o \cos(\omega t) + B_o \sin(\omega t)$$

 A_o et B_o : constantes d'intégration

Conditions initiales
$$: r(t = 0) = r_o$$
 et $\left(\frac{dr}{dt}\right)_{t=0} = 0$ \Rightarrow $A_o = r_o$ et $B_o = 0$

soit:
$$r(t) = r_o \cos(\omega t)$$

Par hypothèse, la coordonné r_o de I_o (Cf.3.2.2.) est telle que $r_o << R$: par conséquent la trajectoire de l'électron reste au voisinage de l'axe Oz. Cette conséquence a pour correspondance en optique l'approximation de gauss dont on s'intéresse aux rayons paraxiaux!

3.2.2.6. Composantes de \overrightarrow{v}_I On rappelle l'expression du vecteur vitesse, en coordonnées cylindriques, de l'électron dans le repère d'étude :

$$\overrightarrow{v} = \frac{dr}{dt}\overrightarrow{u}_r + r\frac{d\theta}{dt}\overrightarrow{u}_\theta + \frac{dz}{dt}\overrightarrow{u}_z = \frac{dr}{dt}\overrightarrow{u}_r + \frac{dz}{dt}\overrightarrow{u}_z \qquad (\theta = \text{constante})$$

Compte tenu des résultats obtenus en 3.2.2.4. et 3.2.2.5., le vecteur vitesse pourra s'écrire sous la forme :

$$\overrightarrow{v} = -r_o \omega \sin(\omega t) \overrightarrow{u}_r + v_o \overrightarrow{u}_z$$

En
$$I$$
, $t = t_1 = 2\frac{l}{v_o}$ \Longrightarrow $\overrightarrow{v}_I = \overrightarrow{v}(t_1) = -r_o \omega \sin\left(\frac{2\ell\omega}{v_o}\right) \overrightarrow{u}_r + v_o \overrightarrow{u}_z$

La condition $\ \ell\omega << v_o$ étant encore satisfaite, d'où : $\overrightarrow{v}_I = -r_o\omega\left(\frac{2\ell\omega}{v_o}\right)\overrightarrow{u}_r + v_o\overrightarrow{u}_z$

soit :
$$\overrightarrow{v}_{I} \begin{pmatrix} -\frac{2\ell r_{o}}{v_{o}} \omega^{2} \\ 0 \\ v_{o} \end{pmatrix}_{\left(\overrightarrow{u}_{r}, \overrightarrow{u}_{\theta}, \overrightarrow{u}_{z}\right)}$$

3.2.2.7. Principe d'inertie:

En dehors de la région (R):

- \circ le champ électrostatique \overrightarrow{E} est nul, par conséquent $\overrightarrow{f_e} = -e \overrightarrow{E}$ est également nulle.
- \circ le poids \overrightarrow{P} de l'électron est toujours négligeable .
- o la résultante des forces auquelles es soumis l'électrons dans le référentiel d'étude est, donc, *nulle*.

D'où le système (électron de masse m_e) est isolé. D'après le principe d'inertie ($v_o \neq 0$), le mouvement de l'électron est rectiligne uniforme.

 $\underline{\acute{E}nonc\acute{e}}$: Dans un repère galiléen, tout système isolé, est : soit au repos , soit animé d'un mouvement rectiligne uniforme.

3.2.2.8. Intersection de la trajectoire de l'électron avec l'axe Oz dans le région $z > \ell$

$$\overrightarrow{v}_I = -r_o \omega \left(\frac{2\ell \omega}{v_o} \right) \overrightarrow{u}_r + v_o \overrightarrow{u}_z$$

Équation de la trajectoire de l'électron dans la région $z>\ell$:

$$\overrightarrow{v}_{I} = \frac{dr}{dt}\overrightarrow{u}_{r} + \frac{dz}{dt}\overrightarrow{u}_{z} \Rightarrow \begin{cases} \frac{dr}{dt} = -\frac{2\ell r_{o}}{v_{o}}\omega^{2} \\ \text{et} \\ \frac{dz}{dt} = v_{o} \end{cases} \Rightarrow \begin{cases} r(t) = -\frac{2\ell r_{o}}{v_{o}}\omega^{2}t + r_{o} \\ \text{et} \\ z(t) = v_{o}t + \ell \end{cases}$$

soit: $r(z) = -\frac{2\ell r_o}{v_o^2} \omega^2 (z - \ell) + r_o$

La trajectoire est, donc dans le plan (r,z), une droite de pente n'egative. Le point d'intersection $F^{'}$ de coordonnée $z_{F^{'}}$ est tel que : $r\left(z_{F^{'}}\right)=0$.

$$\mathrm{soit}: \qquad \qquad z_{F^{'}}-\ell=\frac{v_o^2}{2\ell\omega^2}\mathrm{ou}: \qquad \qquad z_{F^{'}}=\ell+\frac{v_o^2}{2\ell\omega^2}\ =\ \ell+\frac{m_eR^2}{4\ell eU_o}v_o^2$$

 $z_{F^{'}}$ est indépendant de la coordonnée r_o : par conséquent $F^{'}$ est indépendant de I_o . La puissance de la lentille électrostatique :

$$\mathcal{P}_e = rac{1}{z_{F'}} > 0 \qquad \Rightarrow \qquad ext{lentille convergente}$$

Le point $F^{'}$ semble être le conjugué d'un objet à l'infini : d'où la nomination du foyer donnée à $F^{'}$; la distance focale est $z_{F^{'}}=\overline{OF^{'}}$

$$z_{F'} = \ell + \frac{R^2 V_c}{2\ell U_o}$$

La distances focale dépend de quatre paramètres : R , ℓ , V_c , et U_o Application numérique : $z_{F'} = 0,5\,m$