Characteristic functions

Danny Nygård Hansen

22nd December 2021

1 • Convolutions

Define a function $s_n \colon \mathbb{R}^{nd} \to \mathbb{R}^d$ by

$$s_n(x_1,\ldots,x_n)=x_1+\cdots+x_n.$$

This is Borel-measurable, so the following definition makes sense:

DEFINITION 1.1: Convolution of measures

Let μ_1, \ldots, μ_n be finite measures on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. The image measure

$$\mu_1 * \cdots * \mu_n = (\mu_1 \otimes \cdots \otimes \mu_n) \circ s_n^{-1}$$

on $\mathcal{B}(\mathbb{R}^d)$ is called the *convolution* of the measures μ_1,\ldots,μ_n .

It is easy to show that the convolution product is associative, so it is enough to study the convolution of two measures.

If μ has density $f \in \mathcal{L}(\lambda)^+$