## D. Simple Subset

time limit per test: 1 second memory limit per test: 256 megabytes

input: standard input output: standard output

A tuple of positive integers  $\{x_1, x_2, ..., x_k\}$  is called simple if for all pairs of positive integers (i, j)  $(1 \le i \le j \le k)$ ,  $x_i + x_j$  is a prime.

You are given an array a with n positive integers  $a_1, a_2, ..., a_n$  (not necessary distinct). You want to find a simple subset of the array a with the maximum size.

A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself.

Let's define a subset of the array a as a tuple that can be obtained from a by removing some (possibly all) elements of it.

## Input

The first line contains integer n ( $1 \le n \le 1000$ ) — the number of integers in the array a.

The second line contains n integers  $a_i$  ( $1 \le a_i \le 10^6$ ) — the elements of the array a.

## **Output**

On the first line print integer m — the maximum possible size of simple subset of a.

On the second line print m integers  $b_l$  — the elements of the simple subset of the array a with the maximum size.

If there is more than one solution you can print any of them. You can print the elements of the subset in any order.

## **Examples**

```
input
2
2 3
output
2
3 2
```

```
input
2
2 2
output
1
2
```

```
input
3
2 1 1

output
3
1 1 2
```

```
input
```

2 83 14 output 2 14 83