Proposition 5.1 (Correspondence Theorem for Rings). If I is a proper ideal in a commutative ring R, then there is an inclusion-preserving bijection φ from the set of all ideals J in R containing I to the set of all ideals in R/I, given by

$$\varphi \colon J \mapsto J/I = \{a + I \colon a \in J\}.$$

Proof. If we forget its multiplication, the commutative ring R is merely an additive abelian group and its ideal I is a (normal) subgroup. The Correspondence Theorem for Groups, Theorem 1.82, now applies to the natural map $\pi: R \to R/I$, and it gives an inclusion-preserving bijection

 $\Phi: \{ \text{all subgroups of } R \text{ containing } I \} \to \{ \text{all subgroups of } R/I \},$ where $\Phi(J) = \pi(J) = J/I.$

If J is an ideal, then $\Phi(J)$ is also an ideal, for if $r \in R$ and $a \in J$, then $ra \in J$, and

$$(r+I)(a+I) = ra + I \in J/I.$$

Let φ be the restriction of Φ to the set of intermediate ideals; φ is an injection because Φ is an injection. To see that φ is surjective, let J^* be an ideal in R/I. Now $\pi^{-1}(J^*)$ is an intermediate ideal in R, for it contains $I = \pi^{-1}((0))$, and $\varphi(\pi^{-1}(J^*)) = \pi(\pi^{-1}(J^*)) = J^*.$

Figure 5.1. Correspondence Theorem.

Usually, the Correspondence Theorem for Rings is invoked, tacitly, by saying that every ideal in the quotient ring R/I has the form J/I for some unique ideal J with $I \subseteq J \subseteq R$.

Example 5.2. Let I = (m) be a nonzero ideal in \mathbb{Z} . If J is an ideal in \mathbb{Z} containing I, then J = (a) for some $a \in \mathbb{Z}$ (because \mathbb{Z} is a PID). Since $(m) \subseteq (a)$ if and only if $a \mid m$, the Correspondence Theorem for Rings shows that every ideal in the ring $\mathbb{Z}/I = \mathbb{I}_m$ has the form J/I = ([a]) for some divisor a of m.

Definition. An ideal I in a commutative ring R is called a **prime ideal** if it is a proper ideal, that is, $I \neq R$, and $ab \in I$ implies that $a \in I$ or $b \in I$.

Example 5.3.

(i) The ideal (0) is a prime ideal in a ring R if and only if R is a domain.

¹If X and Y are sets, $f: X \to Y$ is a function, and S is a subset of Y, then $ff^{-1}(S) \subseteq S$; if f is surjective, then $ff^{-1}(S) = S$.