INDIANA UNIVERISTY BLOOMINGTON

PA 3: Reinforcement Learning

I 526 Applied Machine Learning

SHORT REPORT

Submitted by

Nihar Khetan

Masters Candidate in Computer Science School of Informatics and Computing

Indiana University nkhetan@indiana.edu

Ghanshyam Malu

Masters Candidate in Computer
Science
School of Informatics and
Computing
Indiana University
gmalu@indiana.edu

Under the Guidance of:

Professor Sriraam Natarajan

Asst. Professor, School of Informatics and Computing Indiana University

Contents

Usage	2
Value Iteration	3
With Reward -1	
With Reward 0	4
Q Value	4
Observation	4
With Reward -1	5
With Reward 0	6

Usage

@author : Nihar Khetan, Ghanshyam Malu, Xiao Liang
@desc : Grid world for reinforcement learning

1. Report learned values by value iteration

2. Implement Q learning with initial e = 0.9

3. Set reward at each step to be 0. Report results.

@Usage : Execute the python file "RUN_ME.py" to run the Gold Explorer

\$ python RUN ME.py

@Version : Uses Python 2.7

Value Iteration

With Reward -1

```
______
       Welcome to Gold Explorer Using Reinforcement Learning
_______
Choose one of the available options:
   0 - Explore Gold using Reinforcement Learning - Value Iteration
   1 - Explore Gold using Reinforcement Learning - Q Value
Your choice from [0, 1]... 0
Show detailed log (Y/N)?...: n
Set reward for each block preferred option [0 \text{ or } -1]...: -1
   Welcome to Gold Explorer Using Reinforcement Learning - Value Iteration
Iterating.....
***********
           Grid World Reward Matrix
         -1 | -1 | -1 | 10 |
             -50 | -1 | -1 |
         -1 |
         -1 | -1 | -1 | -1 |
       -----
         -1 |
              0 |
                    -1 |
         -1 |
               -1 |
                    -1 |
 ******************
            Grid World Value Matrix
 **********
  36.067672 | 43.870462 | 63.667549 | 76.643424 |
  30.449663 | -5.389848 | 52.690462 | 63.667549 |
  ______
  30.254205 | 37.072329 | 43.610152 | 52.690462 |
   ______
  25.345155 | 0.000000 | 37.072329 | 0.000000 |
  21.034770 | 25.345155 | 30.254205 | 26.228784 |
           Grid World Optimum Policy
  | > | v / > / ^ / < |
     ^ | > / ^ |
  _____
                    > / ^
     >
         >
                 | ##### |
  ______
  | > / ^ | >
               1
                     ^ | <
 ^ : Up v : Down < : Left > : Right / : Or
```

With Reward 0

	*****	****	Grid Worl		ard Matriz		****	
	I	0	1 0	I	0	10	I	
		0	-50		0	I 0		
		0	I 0		0	I 0		
		0	I 0		0	J 0		
		0	I 0		0	J 0		
	******		Grid Wor	rld Vai	lue Matriz	K		
* * * * * *	********** 41.040094	*****	47.991329		66.97049		************ 78.766749	*****
 I	36.035204	 	-1.263498	 3	56.99132	29	66.970499	
 I	36.594731	 	42.793026	 5	48.73650	 02	56.991329	
1	32.131959	 	0.000000)	42.79302	26	0.000000	
	28.213428	 	32.131959)	36.59473	 31	32.935258	
****	******	****			******* imum Polio		******	****
****	******	* * * * * 	*******	· * * * * * · ·	******		**************************************	
		<u>-</u>	· >		> / ^	'-		
	>	 	> 		> / ^			
 		 	#####	 		 	#####	
	> / ^	- 1	>		^	I	<	

Q Value

Observation

The Q Values may change during every subsequent execution of the program due to the randomization done at multiple levels.

- Choosing between Explore / Exploit
- Choosing a random action during Explore
- Environmental properties for couple of actions not being deterministic i.e., (right and up actions)

Nevertheless, the policy obtained remains consistent. Some other observations

- Epsilon is initialized with 0.9 to favor more exploration during the early stages of learning.
- The Goal grid is made special, i.e., once inside the Goal grid, any action taken will lead to the Goal itself.
- A difference/margin of 0.05 from the MAX QValue in a Grid has been considered ONLY while printing the
 Optimum policy and not during the calculations.

With Reward -1

****	****	****	****	****	****	****	****	****
		Grid	World	Rewa	rd Mat	rix		
****	*****	****	*****	****	****	****	****	****
	-1		-1		-1		10	
	-1		- 50		-1	 	-1	
	-1	 	-1	 	-1	 	-1	
	-1		0	l	-1		0	
	-1		-1		-1		-1	

	***	*****	*****			rld Q Va			*****	*****	*****	
		61.97			69.97			78.86	 		99.73	
	61.97	54.77	69.98 	61.97	17.87	78.87 	69.97	69.97	88.75	99.73	99.73	99.
	54.78	61.97	17.88	5.78	20.98	20.97	17.88	78.87	 78.86	69.97	88.75	78.

	54.78	48.30	17.88	5.78	5.78	20.97		78.86		69.97	
	18 3N		54 78 1					 69.97			69 97 1
	40.30	42.47						09.97			
	12 17		12 17 1					 54.78			
<u> </u>		37.22	12.17							0.00	0.00
	27 22		12 17 1					42.47			42.47
- 1	31.22					40.30			40.30		44.4/

48.30

	>		>		>	v	. / < / > /	^
I	^		> / ^		> / ^		^	
	> / ^		>		> / ^		^	
 	^		#####	 	^		######	
 	> / ^		>		^		<	

School of Informatics and Computing

42.47

With Reward 0

****	****	****	*****	****	*****	****	*****	****
					rd Matı		*****	
*****	~ * * * * *	****	*****	****	*****	****		****
ı	U	ı	Ü	ı	Ü	ı	10	ı
	0		-50		0	 	0	
	0		0		0		0	
 	0	ı	0		0	ı	0	
	0		0		0		0	

****	******	******	*****	*****	*****	* * * * * * * * 	*****	******	*****	*****	
61 33	61.33	68 18 1	61 30	68.11	75 83 1	68 10	75.77	84.60	9/1 28	94.09	9/ 09
01.55	55.18	00.10							J4.20	94.30	
EE 10	61.34	16 42 1	E 17	18.13	10 20 1	16 20	75.96	 75.95	60 10	84.55	75 76
33.10	49.72	10.42		5.25	10.29	10.30		73.93	00.19	68.14	
10 72	55.17	55.27 I	10 72	16.42	61 44 1	55 25	68.30	69 25 1	61 27	75.92	60 2
49.73	44.75	33.27	49.72		01.44	33.23		00.25	01.57	68.25	
	49.73	44.75 I	0.00	0.00			61.42		0 00	0.00	0.0
44./3	40.27	44./5	0.00	0.00	0.00	33.25	49.72		0.00	0.00	0.00
	44.75	44.75 I	40 27	44.75	10 72	44 75	55.26		40 71	44.71	11 7
40.28	40.27		40.27			44.75			49./1	44.72	44./.