MATH 131B: Homework #6

Professor Dave Penneys Assignment: 59, 60, 61, 62

Eric Chuu UID: 604406828

May 24, 2016

Problem 59

Consider the metric space $C([0,1],\mathbb{R})$, where [0,1] and \mathbb{R} have the absolute value metric. Show that $\{f \in C([0,1],\mathbb{R}) : \|f\|_{\infty} \leq 1\}$ is not compact.

Solution

Let $B = \{f \in C([0,1],\mathbb{R}) : \|f\|_{\infty} \leq 1\}$. We will show that B is not sequentially compact, hence not compact.

Let $f_n: [0,1] \to \mathbb{R}$ be a continuous function such that $f_n(x) = x^n$. It is clear that $f_n \in C([0,1],\mathbb{R})$ for all $n \in \mathbb{N}$. Since $0 \le x \le 1$, then $x^n \le 1$ for all $n \in \mathbb{N}$, so $||f_n||_{\infty} \le 1$, and we see that $f_n \in B = \{f \in C([0,1],\mathbb{R}) : ||f||_{\infty} \le 1\}$. We've shown in class that $f_n(x)$ converges pointwise to to the function

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1\\ 1 & \text{if } x = 1 \end{cases}$$

Suppose for contradiction that B is compact. Then every sequence in B has a subsequence that converges uniformly in B. In particular, for a subsequence there exists a subsequence (f_{n_k}) of (f_n) that converges uniformly, and hence pointwise, in B. Since $f_n \to f$ pointwise, it follows that every subsequence of (f_n) converges to f pointwise. However, f as defined above, is not a continuous function, i.e., $f \notin B$. This means that there does not exist a subsequence of (f_n) that converges pointwise in B. Consequently, there does not exist a subsequence of (f_n) that converges uniformly in B. We conclude that $B = \{f \in C([0,1],\mathbb{R}) : ||f||_{\infty} \leq 1\}$ is not sequentially compact, and hence not compact.

Problem 60

Let $C^1([0,1],\mathbb{R})$ be the subset of $C([0,1],\mathbb{R})$ consisting of all differentiable functions with continuous derivatives on [0,1].

(a) For $f \in C([0,1],\mathbb{R})$, define $Tf:[0,1] \to \mathbb{R}$ by $Tf(x) = \int_0^x f(t)dt$. Show that $Tf \in C([0,1],\mathbb{R})$. Then show that $Tf \in C^1([0,1],\mathbb{R})$.

Solution

Note that since f is continuous on [0,1], a compact subset of \mathbb{R} , then by the extreme value theorem, f attains its minimum and maximum on [0,1]. Therefore, there exists $M \geq 0$ such that $|f(x)| \leq M$ for all $x \in [0,1]$. Let $\epsilon > 0$. Let $x,y \in [0,1]$ such that y < x. Pick $\delta = \frac{\epsilon}{M+1}$ Then $|x-y| < \delta$ implies

$$|Tf(x) - Tf(y)| = \left| \int_0^x f(t)dt - \int_0^y f(t)dt \right| = \left| \int_y^x f(t)dt \right| \le \int_y^x |f(t)|dt$$

Since $|f(x)| \leq M$ for all $x \in [0,1]$, then we can write

$$\left| \int_{y}^{x} f(t)dt \right| \leq \int_{y}^{x} |f(t)|dt \leq \int_{y}^{x} Mdt = M|x-y| < M\delta = M \cdot \frac{\epsilon}{M+1} < \epsilon.$$

Thus, Tf is continuous, so $Tf \in C([0,1], \mathbb{R})$.

Next, we show that $Tf \in C^1([0,1],\mathbb{R})$. It suffices to show that Tf is differentiable, so $Tf \in C^1([0,1],\mathbb{R})$, with continuous derivatives on [0,1]. Since f is continuous on [0,1] and $Tf(x) = \int_0^x f(t)dt$, then by the fundamental theorem of calculus, it follows that (Tf)'(x) = f(x). Therefore, Tf is differentiable, with continuous derivatives on [0,1], as $f \in C([0,1],\mathbb{R})$.

(b) Show that $Y = \{Tf : f \in C^1([0,1],\mathbb{R}) \text{ and } ||f||_{\infty} \leq M\}$ is equicontinuous. Deduce that every sequence in Y has a convergent subsequence whose limit is in \overline{Y} .

Solution

Let $\epsilon > 0$. Pick $\delta = \frac{\epsilon}{M+1}$. Let $x, y \in [0,1]$ such that y < x and $Tf \in Y$. Then $|x-y| < \delta$ implies

$$|Tf(x) - Tf(y)| = \left| \int_0^x f(t)dt - \int_0^y f(t)dt \right| = \left| \int_y^x f(t)dt \right| \le \int_y^x |f(t)|dt$$

Since $||f||_{\infty} \leq M$, then

$$\int_{y}^{x} |f(t)|dt \le \int_{y}^{x} Mdt = M|x - y| < M\delta = M \cdot \frac{\epsilon}{M + 1} < \epsilon.$$

Thus, we conclude that Y is equicontinuous.

In order to deduce the claim that every sequence in Y has a convergent subsequence in \overline{Y} , we first show that \overline{Y} is equicontinuous. Let $Tf \in \overline{Y}$. Since \overline{Y} is closed, then there exists (Tf_n) such that $Tf_n \to Tf$. Given $\epsilon > 0$, let $x, y \in [0, 1]$. Then there exists N such that for all n > N, $|Tf_n(x) - Tf(x)| < \epsilon/3$. Note that since f is continuous on a compact set, f is uniformly continuous, so for all n > N, we also have that $|Tf_n(y) - Tf(y)| < \epsilon/3$. By equicontinuity of Y, there exists $\delta > 0$ such that $|x - y| < \delta$ implies $|f_n(x), f_n(y)| < \epsilon/3$. Then, using the triangle inequality, we have for all n > N and $|x - y| < \delta$,

$$|f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| < \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon,$$

so we've shown that \overline{Y} is equicontinuous. Since we already know that \overline{Y} is closed and bounded, we apply Arzela-Ascoli Theorem, and conclude that \overline{Y} is compact, so every sequence in Y has a convergent subsequence in \overline{Y} .

(c) Show that $F = \{f \in C^1([0,1],\mathbb{R}) : \|f'\|_{\infty} \leq M\}$ is equicontinuous. Deduce that every sequence in

$$Z = \{ f \in C^1([0,1], \mathbb{R}) : ||f||_{\infty} + ||f'||_{\infty} \le M \}$$

has a convergent subsequence whose limit is in \overline{Z} .

Solution

Let $\epsilon > 0$. Then pick $\delta := \frac{\epsilon}{M+1}$. Then let $x,y \in [0,1]$, such that $x \neq y$ and y < x, and $f \in F$. Since f is continuous on [0,1] and differentiable on (0,1), then by the mean value theorem, there exists $c \in (y,x)$, such that $f'(c) = \frac{f(x) - f(y)}{x - y} \implies f'(c)(x - y) = f(x) - f(y)$. Since $||f'||_{\infty} \leq M$, then $|f(x) - f(y)| \leq M|x - y|$. Then $|x - y| < \delta$ implies

$$|f(x) - f(y)| \le M|x - y| < M\delta = M \cdot \frac{\epsilon}{M+1} < \epsilon.$$

Thus, F is equicontinuous.

Z bounded by construction, Z is equicontinuous. Then by the Arzela-Ascoli Theorem, since Z is equicontinuous and bounded, then its closure, \overline{Z} , is compact, so every sequence in Z has a convergent subsequence in \overline{Z} .

Problem 61

Define $f_n: [1,2] \to \mathbb{R}$ by $f_n(x) = \frac{x}{(1+x)^n}$.

(a) Directly prove that $\sum_{n=0}^{\infty} f_n$ converges pointwise.

Solution

Let $x \in [1, 2]$. Then

$$\sum_{n=0}^{\infty} f_n(x) = \sum_{n=0}^{\infty} \frac{x}{(1+x)^{n+1}} = \sum_{n=0}^{\infty} \frac{1}{(1+x)^n} \cdot \frac{x}{1+x} = \frac{x}{1+x} \cdot \sum_{n=0}^{\infty} \frac{1}{(1+x)^n}.$$

Since $x \in [1,2], \left|\frac{1}{1+x}\right| < 1$, so $\sum_{n} \frac{1}{(1+x)^n}$ is a convergent geometric series, so we can further evaluate the equality above:

$$\frac{x}{1+x} \cdot \sum_{n=0}^{\infty} \frac{1}{(1+x)^n} = \frac{x}{1+x} \cdot \frac{1}{1-\frac{1}{1+x}} = \frac{x}{1+x} \cdot \frac{1+x}{x} = 1,$$

and we conclude that $\sum_{n=0}^{\infty} f_n$ converges pointwise.

(b) Show that $||f_n||_{\infty} \leq \frac{2}{3} \left(\frac{1}{2}\right)^n$ for all $n \geq 0$.

Solution

It suffices to show that $|f_n(x)| \leq \frac{2}{3} \left(\frac{1}{2}\right)^n$ for all $n \geq 0$, for $x \in [1,2]$. Since $f_n(x) = \frac{x}{(1+x)^{n+1}} = \frac{1}{(1+x)^n} \cdot \frac{x}{1+x}$,

$$\frac{x}{1+x} \le \frac{2}{3} \tag{1}$$

for $x \in [1, 2]$, so we need only show that $\frac{1}{(1+x)^n} \leq \left(\frac{1}{2}\right)^n$ for all $n \geq 0$.

Base Case: n = 0. Then LHS = $\frac{1}{(1+x)^0} = 1 \le 1 = \left(\frac{1}{2}\right)^0 = \text{RHS}$, so the base case holds.

Inductive Step: Suppose the inequality holds for n = k. We then show it is true for n = k + 1.

LHS =
$$\frac{1}{(1+x)^{k+1}} = \frac{1}{(1+x)^k} \cdot \frac{1}{1+x}$$

By the inductive hypothesis, we can further evaluate:

$$\frac{1}{(1+x)^k} \cdot \frac{1}{1+x} \leq \left(\frac{1}{2}\right)^k \cdot \frac{1}{1+x} \leq \left(\frac{1}{2}\right) \cdot \left(\frac{1}{2}\right)^k = \left(\frac{1}{2}\right)^{k+1},$$

so the inequality holds for n = k+1 as well, and we have shown by induction that for $x \in [1,2]$, $\frac{1}{(1+x)^n} \le \left(\frac{1}{2}\right)^n$ holds for all $n \ge 0$. Combining this with the inequality (1) above, we see that

$$\frac{1}{(1+x)^n} \cdot \frac{x}{1+x} \le \left(\frac{1}{2}\right)^n \frac{2}{3}$$

for all $n \geq 0$. Thus, $||f_n||_{\infty} \leq \frac{2}{3} \left(\frac{1}{2}\right)^n$ for all $n \geq 0$

(c) Show that $\sum_{n} f_n$ is uniformly convergent on [1, 2].

Solution

By part (b), we see that $||f_n||_{\infty} \leq \frac{2}{3} \left(\frac{1}{2}\right)^n$ for all $n \geq 0$. Thus, $f_n \in L^{\infty}([1,2],\mathbb{R})$. Moreover,

$$\sum_{n=0}^{\infty} \|f_n\|_{\infty} \le \sum_{n=0}^{\infty} \frac{2}{3} \left(\frac{1}{2}\right)^n = \frac{2}{3} \cdot \frac{1}{1 - 1/2} = \frac{2}{3} \cdot 2 = \frac{4}{3} < \infty.$$

Thus, $\sum_{n=0}^{\infty} \|f_n\|_{\infty} < \infty$, and by the Weierstrass M-test, $\sum_n f_n$ is converges uniformly on [1,2].

Problem 62

Suppose $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ has a radius of convergence R > 0, and suppose 0 < r < R.

(1) Prove that the partial sums converge uniformly to f on $[x_0 - r, x_0 + r]$.

Solution

Let 0 < r < R. We want to show that $\sum_n a_n (x - x_0)^n$ converges uniformly on $[x_0 - r, x_0 + r]$. Let $x \in [x_0 - r, x_0 + r]$. Then $|x - x_0| \le r$. This then implies that $|a_n (x - x_0)^n| \le |a_n| r^n \Longrightarrow \sum_n |a_n (x - x_0)^n| \le \sum_n |a_n| r^n$. note that $\sum_n |a_n| r^n$ converges because $r \in (x_0 - R, x_0 + R)$. Since this convergence is absolute, we can use the Weierstrass M-test and conclude that the partial sums $\sum_n a_n (x - x_0)^n$ converge uniformly to f on $[x_0 - r, x_0 + r]$.

(2) Prove that f is differentiable on $(x_0 - R, x_0 + R)$ with derivative $f'(x) = \sum_{n \ge 1} na_n(x - x_0)^{n-1}$.

Solution

By defining $g(x) = f(x + x_0) = \sum_{n=0}^{\infty} a_n x^n$, we assume without loss of generality that $x_0 = 0$ so that the power series is centered about $x_0 = 0$. Then it suffices to show that g is differentiable on $(x_0 - R, x_0 + R)$ and that $g'(x) = \sum_{n\geq 1}^{\infty} n a_n x^{n-1}$. Let $x \in (-R, R)$. Then |x| < R. Then we can find $x_0 \in \mathbb{R}$ such that |x| < x < R, and $r := \frac{|x|}{x_0} < 1$. Consider the term:

$$|na_{n}x^{n-1}| = |na_{n} \cdot x^{n-1} \cdot \frac{x_{0}^{n}}{x_{0}^{n}}|$$

$$= |na_{n}x_{0}^{n} \cdot \frac{x^{n-1}}{x_{0}^{n-1}x_{0}}|$$

$$= |\frac{na_{n}}{x_{0}} \cdot x_{0}^{n} \cdot \frac{x^{n-1}}{x_{0}^{n-1}}|$$

$$= |\frac{a_{n}x_{0}^{n}}{x_{0}}nr^{n-1}|$$

Note that since $\sum_{n} a_n x_0^n$ converges because $x_0 \in (-R, R)$, then $\lim_{n\to\infty} a_n x_0^n \to 0$, so there exists M > 0 such that $|a_n \cdot x_0^n| \leq M$. Then we can continue evaluating the above equality,

$$\left| \frac{a_n x_0^n}{x_0} n r^{n-1} \right| \le \left| \frac{M}{x_0} n r^{n-1} \right|$$

and by the ratio test, we see that

$$\lim_{n \to \infty} \left| \frac{\frac{M}{x_0} (n+1)r^n}{\frac{M}{x_0} n r^{n-1}} \right| = \lim_{n \to \infty} \left(\frac{n+1}{n} \right) r = r < 1,$$

so $\sum_n \left| \frac{M}{x_0} n r^{n-1} \right|$ converges. This means that $\sum_n \frac{M}{|x_0|} n r^{n-1}$ converges absolutely, so by the Weierstrass M-test, we conclude that $\sum_n n a_n x^{n-1}$ converges uniformly on (-R,R), the same radius of convergence as $\sum_{n=0}^{\infty} a_n x^n$. Using what we've shown in this problem in conjunction with the corollary shown in class, we can conclude that $(\sum_n f_n)' = \sum_n f'_n$, so $g'(x) = \sum_{n\geq 1}^{\infty} n a x^{n-1}$. It follows that the original function f is differentiable on $(x_0 - R, x_0 + R)$ with derivative $f'(x) = \sum_{n\geq 1} n a_n (x - x_0)^{n-1}$

(3) Calculate a_n in terms of n, f, x_0 .

Solution

We use the result from (b) to find a formula for $f^{(n)}(x)$. We know that

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
$$f'(x) = \sum_{n>1} n a_n (x - x_0)^{n-1}$$

We can continue to take the derivative of f to find that the k-th derivative of f is

$$f^{(k)}(x) = \sum_{n \ge k} \frac{n!}{(n-k)!} a_n (x - x_0)^{n-k}$$

If we then evaluate this at x_0 , we see that

$$f^{(k)}(x_0) = \sum_{n \ge k} \frac{n!}{(n-k)!} a_n(0)^{n-k} = \frac{k!}{0!} a_n \cdot 0^0 + 0 + 0 + \dots = k! \cdot a_n$$

Then, we have $a_n = \frac{f^{(n)}(x_0)}{n!}$.