1	14	/r 🗀		
<i>1</i> -1	本	マニ	문	٠

考核对象: 《大学物理 1》(轻化、纺材)

班级	学号	姓名

注意: 1. 重修必须注明(重修)

2. 试卷右侧及背面为草算区

大连工业大学 2018 ~2019 学年 第 二 学期 《大学物理 1》试卷(A) 共 2 页 第 1 页

 农 月	线										
题号		1	11	四	<i>T</i> :	<u> </u>	4	1/	+	阅卷	复核
赵与		1		┚	力.	/	נ		<i>/</i> L	总分	总分
得分											

说明:"阅卷总分"由阅卷人填写;"复核总分"由复核人填写,复核总分不得有改动。

分

一、选择题: (每小题 4 分, 10 道小题, 共 40 分)

1. 质点作曲线运动, \vec{r} 表示位置矢量, \vec{v} 表示速度, \vec{r} 表示平均速度,S 表示路程,它们之间的关系必定 有()

- (1) $d\vec{r}/dt = \overline{\vec{v}}$,
- (2) $\Delta \vec{r} / \Delta t = \vec{v}$,
- (3) $dS/dt = \overline{\vec{v}}$,
- $(4) |\mathbf{d}\vec{r}/\mathbf{d}t| = \mathbf{d}S/\mathbf{d}t.$
- (A) 只有(1)、(2)是对的. (B) 只有(2)、(3)是对的.
- (C) 只有(3)是对的.
- (D) 只有(4)是对的.
- 2. 如图所示t=0时的简谐波的波形图,波沿x轴正方向传播,则图中 所表示的x=2处振动的相位为()

- $(A) \quad 0$
- (D) 无法确定

下两个表面反射的两束光发生干涉. 若薄膜厚度为e,而且 $n_1 < n_2 > n_3$,则两 東光在相遇点的光程差为()

- (A) $2n_2e + \frac{\lambda}{2}$.
- (B) $2n_2e$. (C) $4n_2e + \frac{\lambda}{2}$.
 - (D) $4n_2e$.
- 4. 一振子做简谐振动,振动方程为 $x = A\cos(\omega t + \pi/3)$, 当时间 t=T/6 (T 为周期),振子的加速度为 (

 - (A) $-A\omega^2 \times 1/2$ (B) $A\omega^2 \times 1/2$. (C) $-A\omega^2 \times \sqrt{3}/2$. (D) $A\omega^2 \times \sqrt{3}/2$.

- 5. 在杨氏双缝实验中,若使双缝间距变大,屏上呈现的干涉条纹间距如何变化?若使入射光的波长增大,屏 上的干涉条纹又将如何变化?()
 - (A) 都变宽
- (B) 都变窄
- (C) 变宽, 变窄
- (D) 变窄, 变宽

6. 质量为 20 g 的子弹, 以 200 m/s 的速率沿图示方向射入一原来静止的质量为 980 g 的 摆球中,摆线长度不可伸缩. 子弹射入后开始与摆球一起运动的速率为 ()

- (A) 2 m/s.
- (B) 4 m/s.
- (C) 7 m/s.
- (D) 8 m/s.

7. 一质量为 2kg 的质点在 xOy 平面上运动,其位置矢量为 $\vec{r}=2t\vec{i}+5t^2\vec{j}$,则质点

从t = 0到t = 2s时间内所受合力的冲量为()

- (A) $20\vec{j}$.
- (B) $40\vec{j}$.
- (C) $4\vec{i} + 20\vec{j}$.
- (D) $4\vec{i} + 40\vec{i}$.
- 8. 一水平圆转盘,绕竖直通过圆心且无摩擦的固定转轴转动,转盘的半径 R=2m,质量为 m=1kg,

角速度 $\omega = 5rad/s$,则转盘的角动量L为()

- (A) 5
- (B) 10
- (C) 15
- (D) 20
- 9. 一衍射光栅对某一波长的垂直入射光在屏上可以出现10级的主级大,欲使屏上只出现0级和1级的衍射
 - (A) 将光栅向靠近屏幕的方向移动
- (B) 换一个光栅常数较小的光栅
- (C) 将光栅向远离屏幕的方向移动
- (D) 换一个光栅常数较大的光栅
- 10. 一平面简谐波,其波动方程为 $y = A\cos\frac{2\pi}{\lambda}(ut x)$,式中 A = 0.02m, $\lambda = 4m$, u = 50m/s,则

当t = 0.2s 时,在x = 9m 处质点振动的速度为()

- $(A) \frac{3}{2}\pi$
- (B) $-\frac{1}{2}\pi$
- (C) 0
- (D) $\frac{1}{2}\pi$

			-	
汯	恭	缊	号	
M	4	フルリ	J	٠

考核对象:《大学物理1》(轻化、纺材)

班级	\\\	姓名
L.H. 444	学号	## AZ
17T ZN	7. —	11/4-2
		X 1. 4 1

注意: 1. 重修必须注明(重修)

2. 试卷右侧及背面为草算区

装 订 线

大连工业大学 2018~2019 学年 第二学期

《大学物理 1》试卷(A) 共 2 页 第 2 页

得	
分	

二、填空题: (每空 2 分, 5 个空, 共 10 分)

- 1. 一质点沿直线运动,加速度 $a = 6t 12t^2$,当 t = 2s 时, x = 6m, $v = -10m \cdot s^{-1}$,则质点运动方程为
- 2. 四个质量均为 m 的质点,位于边长为 2a 的正方形的四个顶点上.对通过正方形中心和两个顶点的轴的 转动惯量为 $J = ____$ 。
- 3. 波长 $\lambda = 400nm$ 的单色光垂直入射于光栅常数 $d = 1 \times 10^{-4}$ cm 的光栅上,可能观察到的光谱线的最大级次为。
- 4. 传播速度为 200 m/s,频率为 50~Hz的平面简谐波,在波线上相距为 0.5 m 的两点之间的相位差为 _____
- 5. 一合外力为 $F_y = 20 + 6t$ 作用于一质量为m = 10kg的物体上,当物体所受冲量 $I = 200N \cdot s$ 时,该合外

力作用时间 *t* = _ 得 分

三、简算题: (每小题 5 分, 共 4 道小题, 共 20 分)

- 1. 如图所示的单缝夫琅和费衍射装置示意图中,用波长为 λ 的单色光垂直入射在单缝上,若P点是衍射条纹中的中央明纹旁第三个暗条纹的中心。则由单缝边缘的A、B 两点分别到达P点的衍射光线光程差是多少?
- 2. 一质点的运动方程为 $\vec{r} = 3\cos 2t\vec{i} 5\sin 3t\vec{j} + 4t\vec{k}$, 当t = 2s时,质点的速度和加速度分别为多少?
- 3. 如图所示,一均匀细杆与一等长的小球单摆悬挂在同一点,l=20cm,细杆和小球质量相等为m=0.1kg,初始细杆自然下垂,将单摆拉至一定高度释放,小球与细杆发生弹性碰撞的瞬间,测得小球碰撞前速度为 $v_0=30m/s$,碰撞后小球速度为 $v_1=10m/s$,则细杆的角速度为多少?

4. 有一个质点做简谐振动,若其速度v与时间t的关系曲线如图所示,则振动的初相位为多少?

得分

四、综合计算题: (每小题 10 分, 共 3 道小题, 共 30 分)

1. 如图所示,一定滑轮由质量为m=2kg,半径为r=1m的匀质圆盘构成,圆盘绕通过其中心且垂直盘面的水平光滑固定轴转动,滑轮两端通过一根轻绳分别连接物体 A 和 B。已知物体 A 和 B 的质量分别为 $m_A=1kg$, $m_B=2kg$ 。忽略滑轮与轴之间的摩擦,滑轮与绳之间的摩擦以及物体 A 与地面的摩擦。求两物体运动的加速度。

- 2. 一平面简谐波以速度 u = 2m/s 沿 x 轴正方向传播。已知距离原点 2m 的质点 P 的振动曲线如图所示。试写出:
 - (1) P点的振动表达式;
 - (2) 波动表达式;

- 3. 波长 $\lambda=560nm$ 的单色光垂直入射一平面光栅,测得第三级主极大的衍射角 $\varphi=45^\circ$,且第四级缺级。
- (1) 求光栅常数 d ? (2) 求透光缝的最小宽度 a ? (3) 在第件 (1) (2) 下,求屏幕上可能呈现的全部主极大的级次.

试卷编号:

大连工业大学 2018 ~2019 学年 第二学期《大学物理 1》试卷(A)标准答案

卷面满分: 100

命题教师:

考核对象: 轻化、纺材

共 1 页第 1 页

一、选择题: (每小题 4 分, 10 道小题, 共 40 分)

1.	D	2.	С	3.	A	4.	В	5.	D	6.	A	7.	В	8.	В	9.	В	10.	С
1.	ъ		0	٥.	**	1.		٥.	ъ	٠.	**	• •	В	٥.		0.		10.	0

二、填空题: (每空2分,5个空,共10分)

1	2	3	4	5
$t^3 - t^4 + 10t - 6$	$4ma^2$	2	$\pi/4$	$(5\sqrt{28} - 10)/3 or 5.49 s$

三、简算题:(每小题 5 分,共 4 道小题,共 20 分)

1. 解:根据单缝衍射公式暗纹的光程差:

 $\delta = a \sin \theta = 2k \frac{\lambda}{2}$

3. 解:根据角动量守恒: $lmv_0 = lmv_1 + J\omega$

:第三级暗纹,k=3

细杆的转动惯量 $J = \frac{1}{3}ml^2$

...2分

...2分

 $\therefore \delta = 3\lambda$

则细杆的角速度为 $\omega = 300 rad/s$

4. 解:简谐运动方程 $x = A\cos(\omega t + \varphi)$

...1分

2. 解: 质点的运动方程 $\vec{r} = 3\cos 2t\vec{i} - 5\sin 3t\vec{j} + 4t\vec{k}$,

则速度 $\vec{v} = \frac{d\vec{r}}{dt} = -6\sin 2t\vec{i} - 15\cos 3t\vec{j} + 4\vec{k}$

. . . 2 分

速度方程 $v = -A\omega\sin(\omega t + \varphi) = -v_m\sin(\omega t + \varphi)$

...1分

...1分

加速度 $\vec{a} = \frac{d\vec{v}}{dt} = -12\cos 2t\vec{i} + 45\sin 3t\vec{j}$

 $\dots 2$ 分 | 当 t=0, $v=0=-A\omega\sin\varphi$,

 $\vec{a} = \frac{d\vec{v}}{dt} = -12\cos 4\vec{i} + 45\sin 6\vec{j}$...1分 当 t > 0v > 0,

 $\therefore \varphi = \pi$

...3分

...3分

...3分

四、综合计算题: (每小题 10 分, 共 3 道小题, 共 30 分)

1. 解: 物体受力分析如图所示,

 $T_1 = m_A a$

...1分

 $P_2 - T_2 = m_B g - T_2 = m_B a$

 $rT_{2}^{'}-rT_{1}^{'}=J\beta$

 $a = R\beta$

...1分

$$\therefore a = \frac{m_B g}{m_A + m_B + m/2} = 5m/s^2 \qquad \dots 25$$

3. 解: (1) 光栅方程 $d \sin \varphi = k\lambda$

$$d = \frac{3\lambda}{\sin \varphi} = 2.375 \times 10^{-6} m$$

(2) 根据已知条件: d=4a

最小透光缝宽: $a = \frac{d}{4} = 5.939 \times 10^{-7} m$

...2分

$$\therefore k_m = 4$$

. . . 2分

因为第四级缺级, 所以在屏幕能看到 $k = 0,\pm 1,\pm 2,\pm 3$ 级, 共7条谱线。 ... 2分

2. 解:由图可知 A = 0.5cm,P 点处的振动方程为: $y = A\cos(\omega t + \varphi)$

当t=0s时, y=A/2且v>0,可知其初相位为 $\varphi=-\pi/3$

当t=1s时, y=0 且v<0, 可知 $\omega-\pi/3=\pi/2$,

可得:
$$\omega = 5\pi/6$$
,

则
$$P$$
 点振动方程 $y = 5 \times 10^{-3} \cos(\frac{5\pi}{6}t - \frac{\pi}{3})$ 1 分

(2) 波动表达式:
$$y = 5 \times 10^{-3} \cos\left[\frac{5\pi}{6} (t - \frac{\Delta x}{u}) - \frac{\pi}{3}\right]$$
, ... 1 分

$$x = x - 2 \tag{1.15}$$

$$y = 5 \times 10^{-3} \cos\left[\frac{5\pi}{6}(t - \frac{x - 2}{2}) - \frac{\pi}{3}\right]$$

波动表达式:1分
$$= 5 \times 10^{-3} \cos\left[\frac{5\pi}{6}(t - \frac{x}{2}) + \frac{\pi}{2}\right]$$