Домашняя работа по дискретной математике №2 Вариант 61

Работу выполнил: Пчелкин Илья, Р3106

61

O I												
V/V	e1	e2	е3	e4	e5	e6	e7	e8	е9	e10	e11	e12
e1	0	1		5					4			
e2	1	0		1			5	4	1	5		
e3			0					1	3			2
e4	5	1		0	2	3		3			5	3
e5				2	0		2	4				
e6				3		0					2	1
e7		5			2		0	5				4
e8		4	1	3	4		5	0		1		5
e9	4	1	3						0			3
e10		5						1		0		3
e11				5		2					0	4
e12			2	3		1	4	5	3	3	4	0

V/V	e1	e2	е3	e4	e5	е6	e7	e8	е9	e10	e11	e12
e1	0	1		5					4			
e2	1	0		1			5	4	1	5		
е3			0					1	3			2
e4	5	1		0	2	3		3			5	3
e5				2	0		2	4				
e6				3		0					2	1
e7		5			2		0	5				4
e8		4	1	3	4		5	0		1		5
e9	4	1	3						0			3
e10		5						1		0		3
e11		_		5	_	2		_	_		0	4
e12			2	3		1	4	5	3	3	4	0

Найти кратчайшие пути от начальной вершины e_1 ко всем остальным вершинам Воспользуемся алгоритмом Дейкстры

1.
$$I(e_1) = 0^+$$
; $I(e_i) = ∞$, для всех $i ≠ 1$, $p = e_1$

Результаты итерации запишем в таблицу

	1
e ₁	0+
e ₂	8
ез	8
e ₄	8
e ₅	8
e ₆	8
e ₇	8
e ₈	8
e 9	8
e ₁₀	8
e ₁₁	8
e ₁₂	8

2. $\Gamma e_1 = \{e_2, e_4, e_9\}$ - все пометки временные, уточним их:

$$I(e_2) = min[\infty, 0^++1] = 1;$$

$$I(e_4) = min[\infty, 0^++5] = 5;$$

$$I(e_9) = min[\infty, 0^+ + 4] = 4;$$

3.
$$l(e_i^+) = min[l(e_i)] = l(e_2) = 1;$$

4. Вершина e_2 получает постоянную пометку $I(e_2) = 1^+$, $p = e_2$

	1	2
e ₁	0+	8
e ₂	8	1+
e ₃	8	8

e ₄ ∞ 5	
e ₅ ∞ ∘	0
e ₆ ∞ ∘	0
e ₇ ∞ ∝	0
e ₈ ∞ ∘	0
e ₉ ∞ ∠	1
e ₁₀ ∞ ∘	0
e ₁₁ ∞ ∘	0
e ₁₂ ∞ ∘	0

$$\Gamma e_2 = \{e_1, e_4, e_7, e_8, e_9, e_{10}\}$$

Временные пометки имеют вершины e_4 , e_7 , e_8 , e_9 , e_{10} – уточняем их:

$$I(e_4) = min[5, 1^++1] = 2;$$

$$I(e_7) = min[\infty, 1^++5] = 6;$$

$$I(e_8) = min[\infty, 1^++4] = 5;$$

$$I(e_9) = min[5,1^++1] = 2;$$

$$I(e_{10}) = min[5,1^++5] = 6.$$

6.
$$I(e_i^+) = min[I(e_i)] = I(e_4) = 2;$$

7. Вершина e_4 получает постоянную пометку $I(e_4) = 2^+$, $p = e_4$

	1	2	3
e ₁	0+		
e ₂	8	1+	
e ₃	8	8	8
e ₄	8	5	2+
e ₅	8	8	8
e ₆	8	8	8
e ₇	8	8	6
e ₈	8	8	5

e ₉	8	4	2
e ₁₀	8	8	6
e ₁₁	8	8	8
e ₁₂	8	8	8

$$\Gamma e_4 = \{ e_1, e_2, e_5, e_6, e_8, e_{11}, e_{12} \}$$

Временные пометки имеют вершины e_5 , e_6 , e_8 , e_{11} , e_{12} - уточняем их:

$$I(e_5) = min[\infty, 2^++2] = 4;$$

$$I(e_6) = min[\infty, 2^++3] = 5;$$

$$I(e_8) = min[5, 2^+ + 3] = 5;$$

$$I(e_{11}) = min[\infty, 2^+ + 5] = 7;$$

$$I(e_{12}) = min[\infty, 2^+ + 3] = 5;$$

9.
$$I(e_i^+) = min[I(e_i)] = I(e_9) = 2$$

10. Вершина e_9 получает постоянную пометку $I(e_9) = 2^+$, $p = e_9$

	1	2	3	4
e ₁	0+			
e ₂	8	1+		
ез	8	8	8	8
e ₄	8	5	2+	
e ₅	8	8	8	4
e ₆	8	8	8	5
e ₇	8	8	6	6
e ₈	8	8	5	5
e 9	8	4	2	2+
e ₁₀	8	8	6	6
e ₁₁	8	8	8	7
e ₁₂	8	8	8	5

11. Не все вершины имеют постоянные пометки,

$$\Gamma e_9 = \{e_1, e_2, e_3, e_{12}\}$$

Временные пометки имеют вершины е₃, е₁₂ - уточняем их:

$$I(e_3) = min[\infty, 2^++3] = 5;$$

$$I(e_{12}) = min[5, 2^++3] = 5.$$

12.
$$I(e_i^+) = min[I(e_i)] = I(e_5) = 4$$

13. Вершина e_5 получает постоянную отметку $I(e_5) = 4^+$, $p = e_5$

	1	2	3	4	5
e ₁	O ⁺				
e ₂	8	1+			
e ₃	8	8	8	8	5
e ₄	8	5	2+		
e ₅	8	8	8	4	4+
e ₆	8	8	8	5	5
e ₇	8	8	6	6	6
e ₈	8	8	5	5	5
e ₉	8	4	2	2+	
e ₁₀	8	8	6	6	6
e ₁₁	8	8	∞	7	7
e ₁₂	8	8	∞	5	5

14. Не все вершины имеют постоянные пометки,

$$\Gamma e_5 = \{e_4, e_7, e_8\}$$

Временные пометки имеют вершины e_7 , e_8 – уточняем их:

$$I(e_7) = min[6, 4^++2] = 6;$$

$$I(e_8) = min[5, 4^++4] = 5;$$

15.
$$I(e_i^+) = min[I(e_i)] = I(e_3) = 5$$

16. Вершина e_3 получает постоянную отметку $I(e_3) = 5^+$, $p = e_3$

1	2	3	4	5	6

e ₁	0+					
e ₂	8	1+				
e ₃	8	∞	∞	∞	5	5 ⁺
e ₄	8	5	2+			
e ₅	8	8	8	4	4+	
e ₆	8	8	8	5	5	5
e ₇	8	8	6	6	6	6
e ₈	8	8	5	5	5	5
e ₉	8	4	2	2+		
e ₁₀	8	8	6	6	6	6
e ₁₁	8	∞	∞	7	7	7
e ₁₂	8	∞	8	5	5	5

$$\Gamma e_3 = \{e_8, e_9, e_{12}\}$$

Временные пометки имеют вершины e_8 , $e_{12}-$ уточняем их:

$$I(e_8) = min[5, 5^++1] = 5;$$

$$I(e_{12}) = min[5, 5^++2] = 5;$$

18.
$$I(e_i^+) = min[I(e_i)] = I(e_6) = 5$$

19. Вершина e_6 получает постоянную отметку $I(e_6) = 5^+$, $p = e_6$

	1	2	3	4	5	6	7
e ₁	0+						
e ₂	8	1+					
e ₃	8	8	8	8	5	5⁺	
e ₄	8	5	2+				
e ₅	~	8	8	4	4+		
e ₆	8	8	8	5	5	5	5⁺
e ₇	∞	8	6	6	6	6	6
e ₈	8	8	5	5	5	5	5

e ₉	∞	4	2	2+			
e ₁₀	8	8	6	6	6	6	6
e ₁₁	8	8	8	7	7	7	7
e ₁₂	8	8	8	5	5	5	5

$$\Gamma e_6 = \{e_4, e_{11}, e_{12}\}$$

Временные пометки имеют вершины e_{11} , e_{12} – уточняем их:

$$I(e_{11}) = min[7, 5^++2] = 7;$$

$$I(e_{12}) = min[5, 5^++1] = 6.$$

21.
$$I(e_i^+) = min[I(e_i)] = I(e_8) = 5$$

22. Вершина e_8 получает постоянную отметку $I(e_8) = 5^+$, $p = e_8$

	1	2	3	4	5	6	7	8
e ₁	O ⁺							
e ₂	8	1+						
e ₃	8	∞	∞	∞	5	5 ⁺		
e ₄	8	5	2+					
e ₅	8	∞	∞	4	4+			
e ₆	8	∞	∞	5	5	5	5 ⁺	
e ₇	8	∞	6	6	6	6	6	6
e ₈	8	∞	5	5	5	5	5	5⁺
e ₉	8	4	2	2+				
e ₁₀	8	∞	6	6	6	6	6	6
e ₁₁	8	∞	∞	7	7	7	7	7
e ₁₂	8	~	~	5	5	5	5	5

23. Не все вершины имеют постоянные пометки,

$$\Gamma e_8 = \{e_2, e_3, e_4, e_5, e_7, e_{10}, e_{12}\}$$

Временные пометки имеют вершины e_7, e_{10}, e_{12} – уточняем их:

$$I(e_7) = min[6, 5^++5] = 6;$$

$$I(e_{10}) = min[6, 5^++1] = 6;$$

$$I(e_{12}) = min[5, 5^++5] = 5.$$

24.
$$I(e_i^+) = min[I(e_i)] = I(e_{12}) = 5$$

25. Вершина e_{12} получает постоянную отметку $I(e_{12}) = 5^+$, $p = e_{12}$

	1	2	3	4	5	6	7	8	9
e ₁	0+								
e ₂	8	1+							
e ₃	8	∞	∞	8	5	5⁺			
e ₄	8	5	2+						
e ₅	8	8	~	4	4 ⁺				
e ₆	8	8	8	5	5	5	5 ⁺		
e ₇	8	8	6	6	6	6	6	6	6
e ₈	8	8	5	5	5	5	5	5⁺	
e ₉	8	4	2	2+					
e ₁₀	8	8	6	6	6	6	6	6	6
e ₁₁	8	8	8	7	7	7	7	7	7
e ₁₂	∞	∞	∞	5	5	5	5	5	5⁺

26. Не все вершины имеют постоянные пометки,

$$\Gamma e_{12} = \{e_3, e_4, e_6, e_7, e_8, e_9, e_{10}, e_{11}\}$$

Временные пометки имеет вершина e_7 , e_{10} , e_{11} - уточняем $e\ddot{e}$:

$$I(e_7) = min[6, 5^++4] = 6;$$

$$I(e_{10}) = min[6, 5^++3] = 6;$$

$$I(e_{11}) = min[7, 5^++4] = 7.$$

27.
$$I(e_i^+) = min[I(e_i)] = I(e_7) = 6$$

28. Вершина e_7 получает постоянную отметку $I(e_7) = 6^+$, $p = e_7$

	1	2	3	4	5	6	7	8	9	10
e ₁	0+									
e ₂	8	1+								

e ₃	∞	8	∞	∞	5	5 ⁺				
e ₄	8	5	2+							
e ₅	8	8	∞	4	4+					
e ₆	8	8	~	5	5	5	5⁺			
e ₇	8	8	6	6	6	6	6	6	6	6⁺
e ₈	8	8	5	5	5	5	5	5 ⁺		
e ₉	8	4	2	2+						
e ₁₀	8	8	6	6	6	6	6	6	6	6
e ₁₁	8	8	∞	7	7	7	7	7	7	7
e ₁₂	8	8	8	5	5	5	5	5	5 ⁺	

$$\Gamma e_7 = \{e_2, e_5, e_8, e_{12}\}$$

Все смежные вершины имеют постоянные отметки, уточнение не требуется.

30.
$$I(e_i^+) = min[I(e_i)] = I(e_{10}) = 8$$

31. Вершина e_{10} получает постоянную отметку $I(e_{10}) = 6^+$, $p = e_{10}$

	1	2	3	4	5	6	7	8	9	10	11
e ₁	O ⁺										
e ₂	8	1+									
e ₃	8	8	8	∞	5	5 ⁺					
e ₄	8	5	2+								
e ₅	8	8	8	4	4 ⁺						
e ₆	8	8	8	5	5	5	5 ⁺				
e ₇	8	8	6	6	6	6	6	6	6	6⁺	
e ₈	8	8	5	5	5	5	5	5 ⁺			
e ₉	8	4	2	2+							
e ₁₀	8	8	6	6	6	6	6	6	6	6	6⁺
e ₁₁	8	8	8	7	7	7	7	7	7	7	7
e ₁₂	8	8	8	5	5	5	5	5	5⁺		

$$\Gamma e_{10} = \{e_2, e_8, e_{12}\}$$

Все смежные вершины имеют постоянные отметки, уточнение не требуется.

33.
$$I(e_i^+) = min[I(e_i)] = I(e_{11}) = 7$$

34. Вершина e_{11} получает постоянную отметку $I(e_{11})$ = 7^+ , p = e_{11}

	1	2	3	4	5	6	7	8	9	10	11	12
e ₁	O ⁺											
e ₂	8	1+										
e ₃	8	8	∞	8	5	5 ⁺						
e ₄	8	5	2+									
e ₅	8	8	∞	4	4+							
e ₆	8	8	∞	5	5	5	5 ⁺					
e ₇	8	8	6	6	6	6	6	6	6	6⁺		
e ₈	8	8	5	5	5	5	5	5⁺				
e ₉	8	4	2	2+								
e ₁₀	8	8	6	6	6	6	6	6	6	6	6⁺	
e ₁₁	8	8	∞	7	7	7	7	7	7	7	7	7+
e ₁₂	8	8	~	5	5	5	5	5	5⁺			

Все метки постоянные, конец.

Минимальные пути к вершинам равны их постоянным меткам.