

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS ~ 1963 - A

.

.

٠

CETA 82-4

Hand-Held Calculator Algorithms for Coastal Engineering (Second Series)

by Todd L. Walton, Jr.

COASTAL ENGINEERING TECHNICAL AID NO. 82-4
NOVEMBER 1982

Approved for public release; distribution unlimited.

U.S. ARMY, CORPS OF ENGINEERS
COASTAL ENGINEERING
RESEARCH CENTER

Kingman Building Fort Belvoir, Va. 22060

03 01 31

118

THE FILE COPY

Reprint or republication of any of this material shall give appropriate credit to the U.S. Army Coastal Engineering Research Center.

Limited free distribution within the United States of single copies of this publication has been made by this Center. Additional copies are available from:

National Technical Information Service ATTN: Operations Division 5285 Port Royal Road Springfield, Virginia 22161

Contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

HEAT

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	. 3. RECIPIENT'S CATALOG NUMBER
CETA 82-4 AD-A/23 90	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
HAND-HELD CALCULATOR ALGORITHMS FOR	Coastal Engineering Technical Aid
COASTAL ENGINEERING (Second Series)	6. PERFORMING ORG. REPORT NUMBER
	P. FERFORMING CO., I.E. S
7. AUTHOR(s)	B. CONTRACT OR GRANT NUMBER(#)
Todd L. Walton, Jr.	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Department of the Army Coastal Engineering Research Center (CFREN-EV)	C31181
Kingman Building, Fort Belvoir, Virginia 22060	(31101
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Department of the Army	November 1982
Coastal Engineering Research Center	13. NUMBER OF PAGES
Kingman Building, Fort Belvoir, Virginia 22060	41
14. MONITORING AGENCY NAME & ADDRESS(11 different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	15a, DECLASSIFICATION DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	<u> </u>
to distribution storement, terminating	
1.5	a
Approved for public release; distribution unlimit	;ed;
Dock 20 II different for	2
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different fro.	m Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number))
	generation
Coastal engineering Wave	transformations
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
This report provides algorithms for a number of	calculator programs useful
in performing coastal engineering calculations, pri	imarily in the area of wave
transformations and wave generation. Six programs	are included for use with
HP41CV hand-held calculators which employ the Rever These programs can be used to compute linear wave p	ise Polish Notation (Arm).
ties, breaking wave height and direction, shallow-w	water wave forecasts, depth-
limited breaking wave height, and wave transmission	n past a vertical barrier.
Timited of canang mare marginer, and	7

PREFACE

This report provides coastal engineers a second series of algorithms for a number of hand-held calculator programs for coastal engineering, primarily in the area of wave transformations and wave generation. These algorithms were developed under the U.S. Army Coastal Engineering Research Center's (CERC) Littoral Data Collection Methods and Their Engineering Application work unit, Shore Protection and Restoration Program, Coastal Engineering Area of Civil Works Research and Development.

The report was prepared by Dr. Todd L. Walton, Jr., Hydraulic Engineer, under the general supervision of Dr. J.R. Weggel, Chief, Evaluation Branch, and Mr. N. Parker, Chief, Engineering Development Division.

The author acknowledges the assistance of J. Dean in preparing the manuscript. The review by Dr. J.R. Weggel is appreciated.

Technical Director of CERC was Dr. Robert W. Whalin, P.E., upon publication of this report.

Comments on this publication are invited.

Approved for publication in accordance with Public Law 166, 79th Congress, approved 31 July 1945, as supplemented by Public Law 172, 88th Congress, approved 7 November 1963.

TED E. BISHOP

Colonel, Corps of Engineers Commander and Director

INDEROFEE &

A

CONTENTS

	Pa CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI)	ge 5
I	INTRODUCTION	7
II	PROGRAMS	7
	1. 100R41CV Linear Wave Theory Wavelength (RPN Logic)	9
	2. 101R41CV Calculation of Wave Parameters from Linear	
	Theory (RPN Logic)	12
	3. 102R41CV Wave Approximation to Breaking Wave Height	_
	and Breaking Wave Angle (RPN Logic)	18
	4. 103R41CV Shallow-Water Wave Forecasting Equations	
	(RPN Logic)	24
	5. 104R41CV Depth-Limited Design Breaking Wave Height at	
	Structure (RPN Logic)	29
	6. 105R41CV Wave Transmission - Fuchs' Equation (RPN Logic) .	
APPENDIX	BLANK PROGRAM FORMS	37

CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT U.S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	by	To obtain
inches	25•4	millimeters
	2.54	centimeters
square inches	6.452	square centimeters
cubic inches	16.39	cubic centimeters
feet	30.48	centimeters
	0.3048	meters
square feet	0.0929	square meters
cubic feet	0.0283	cubic meters
yards	0.9144	meters
square yards	0.836	square meters
cubic yards	0.7646	cubic meters
miles	1.6093	kilometers
square miles	259.0	hectares
knots	1.852	kilometers per hour
acres	0.4047	hectares
foot-pounds	1.3558	newton meters
millibars	1.0197×10^{-3}	kilograms per square centimeter
ounces	28.35	grams
pounds	453.6	grams
P*************************************	0.4536	kilograms
ton, long	1.0160	metric tons
ton, short	0.9072	metric tons
degrees (angle)	0.01745	radians
Fahrenheit degrees	5/9	Celsius degrees or Kelvins ¹

¹To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use formula: C = (5/9) (F -32).

To obtain Kelvin (K) readings, use formula: K = (5/9) (F -32) + 273.15.

HAND-HELD CALCULATOR ALGORITHMS FOR COASTAL ENGINEERING (Second Series)

by
Todd L. Walton, Jr.

I. INTRODUCTION

The advent of the hand-held programable calculator has led to the development of numerous programs in various fields of engineering and science. Coastal engineering is no exception. This report provides algorithms for a number of calculator programs useful in performing coastal engineering calculations, primarily in the area of wave transformations and wave generation.

There are basically two types of hand-held programable calculators: those that use algebraic logic, such as Texas Instruments, Algebraic Operating System (AOS) notation, and those that use Reverse Polish Notation (RPN), such as Hewlett-Packard. The six programs presented herein are versions of RPN logic suitable for use on HP41CV programable calculators with or without accessory printer. Each program is documented, the assumptions are briefly described, and references to more detailed presentations of the theory are given. This same set of algorithms was programed for the TI-59 (AOS logic) and HP67 (RPN logic) calculators in an earlier report with the same title (Walton, Birkemeier, and Weggel, 1982) 1.

Each of the RPN programs incorporates HP41 compatible print routines which print and label all input and output parameters. The user only has to enter the input parameters and the results are automatically computed and printed. Since the printing routines increase program length by as much as 25 percent, use of a magnetic card for permanent program storage is recommended. All print steps are marked with asterisks and need not be entered if printing is not desired.

II. PROGRAMS

Six programs (100, 101, 102, 103, 104, and 105) are presented in this report. Program 100, a simple program that computes linear wave theory wavelength for a given depth, is designed to be used as the basis for any program that requires wavelength; in fact, it has been incorporated into programs 101, 102, and 105.

Program 101 is another basic program which computes not only wavelength but also a number of other linear wave theory parameters. This program forms the basis for program 102 and can be adapted to other programs as well.

¹WALTON, T.L., BIRKEMEIER, W.A., and WEGGEL, J.R., "Hand-Held Calculator Algorithms for Coastal Engineering," CETA 82-1, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., Jan. 1982.

Program 102 computes linear wave parameters and breaking wave height and direction based on nearshore or deepwater wave information. Program 103 can be used to forecast wave height and period in shallow water. Program 104 and 105 address wave conditions at structures—program 104 predicts the depth-limited design breaking wave height at a structure; 105 uses Fuchs' equation to predict wave transmission over a thin barrier.

Each program allows either English or metric input and output. Program listings are annotated, making it possible to follow the logic of the algorithm and to make modifications if desired.

There are undoubtedly many calculator programs not included here that have been developed on coastal engineering subjects. Practicing engineers who would like to disseminate such programs (in either AOS or RPN) to other users are encouraged to submit them to the Coastal Engineering Research Center (CERC). If the response is great enough, additional reports presenting the programs will be prepared. Comments, programs, or suggestions for programs should be sent to:

Commander and Director
US Army Coastal Engineering Research Center
ATTN: Evaluation Branch
Kingman Building
Fort Belvoir, VA 22060

These programs and future programs will generally correspond to the following numbering scheme:

Miscellaneous	0-99
Waves and currents	100-299
Inlets	300-499
Beaches	500-699
Geology	700-899
Structures	900-1099

In general, the documentation of programs submitted should be in a format paralleling that of the programs presented in this report. A blank set of forms which can be reproduced is included in the Appendix.

Program Description

Program Title Name Address City	100R-41CV Linear Wave Theory T.L. Walton, Jr. Coastal Engineering Research Kingman Building Fort Belvoir.		Date 1/82 Zip Code 22060
This alg	iption, Equations, Variables, etc. gorithm takes deepwater wavele ven site iterates to obtain wa hm uses English or metric syst	velength by linear wa	
	REFEREN	ICE	
Shore 1	Y, CORPS OF ENGINEERS, COASTAL Protection Manual, 3d ed., Vol 113-1, U.S. Government Printin	. I, Eq. (2-4), Stock	No. 008-
Operating Limits	s and Warnings		

100R-41CV LINEAR THEORY WAVELENGTH (RPN LOGIC)								
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY				
1	LOAD PROGRAM (WAVEL)		[XEO] "WAVEL"	EORM?				
	TO CALCULATE L IN ENGLISH	UNITS:						
2	PRESS GTO "E"		GTO"E"					
3	PRESS RIS		[RIS]	PERIOD?				
4	ENTER PERIOD T, PRESS RIS	T(Sec)	[RIS]	DEPTH ?				
5	ENTER DEPTH D, PRESS RIS	a(ft)	[RIS]	L/ft)				
	TO CALCULATE L IN METRIC	UN ITS:						
2a	PRESS GTO "M"		GTO "M"					
3a	PRESS RIS		[RIS]	PERIOD?				
4 a	ENTER PERIOD T. PRESS RK	T(sec)	[RIS]	DEPTH ?				
<i>5</i> a	ENTER DEPTH D, PRESS RIS	d(meters	[RIS]	L(meters)				
	Example I and Ia							
	T= 10SEC , d= 10ft (3.05m)							
	ENGLISH AND METRIC PRINTOUT	S						
	ENGLISH PERIOD=							
	18.0000 *** - DEPTH=							
	10.0000 *** LENGTH=							
	175.7738 ***							
	METPIC							
	PEP!OD= 10.0000 ***							
	BEPTH= 3.0500 ***							
	LENGTH= 53.6863 *** note: "=	[ALPHA]						

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP		KEY CODE	COMMENTS
	NET ENINT	NET CODE	COMMERTIC	, 	7 EtX		
	I A I BL - HOURS -				8 +		204
	I+LBL -MAYEL-		}		9 /		$tanh \frac{2\pi d}{Loid}$ $L' = L_0 tanh \left(\frac{2\pi d}{L_{old}}\right)$
	2 *E OR # ?*		}		0 RCL 01		Lold (and
	PROMPT				1 *		$L' = L_a + anh \left(\frac{2\pi c}{c}\right)$
	I+LBL E				2 RCL 83		Lol
	32.2		g(English) → Rob		3 +		
	5 STG 06		g(engilon) 100		4 2		Ī
	7 -ENGLISH-		l		5 /		ì
	3 PRQ				6 STO 02		L'+ Loid >
	9 GTO 01				7 PCL 03		L'+ Lold Zz
)+(8L -M-		ŀ	ı	8 -		•
	I "METRIC"				9 ABS		i
	PRA				9 1		E (error and
	9.81		g(metric) → Rob		X>Y?		ift or vr
	STO 96		g(ch.ic) y tog		2 GTO 05		',' ''
	5+LBL 0:	1			3 RCL 02		İ
	-PERIOD="				GTO "ITERAT"	. '	1
	PFA				S+LBL 05		t
	PERIOD?				RCL 02		L in display
	PROMPT		ĺ		*LENGTH=*		2111 0137149
	PRX		T-> Ron		PRA		i
	STO 07		1-00		PRX		
	! X12 ! RCL 86				STOP		1
	FUL 575		l i		.END.		
	2			—— <u> </u>		r	
	. /						
	PI	1					
-	- F1 						
	STO 01	i	La -> Ros				
	-DEPTH=-	1	C4 - 1-01				
	PRA	ı					
	DEPTH?"						
	PROMPT	i					
# 34			ı				
	ENTER+		i .				
	2						
37		- 1					
-	PI						
39		1	·				
	STO 05	(znd → Ros				
	RCL 91	1	£11.00				
	+LBL -ITERAT-	1					
_	STO 93	- (Laid → Ros				
	1/X	į	C216 . 1105				
	PCL 95		1			———	
46		1	ł				
	STO 94		i				
	EfX	ļ	ł				
49	PCL 94	j	J				
50	CHS	ł					
51	E†X		ŀ				
52	-	- 1	ł				
	PCL 04	i	i				
	ETX	\ \ \ \ \ \	ł				
55	PCL 94	í	ŀ				
	CHS						

* THESE STEPS MUST BE DELETED IF NO PRINTER IS AVAILABLE

Program Description

101R-41CV Calculation of Wave Parameters from Linear Theory Program Title (RPN Logic) T.L. Walton, Jr. Name 1/82 Coastal Engineering Research Center

Address

Kingman Building City Zip Code 22060 Fort Belvoir, Virginia

Program Description, Equations, Variables, etc.

This program calculates the product of the wave number and depth, kd, the ratio of group wave speed to wave celerity, n = 0.5 (1+2kd/sinh 2kd), the group wave speed, Cg, the shoaling coefficient, Ks, the refraction coefficient, Kr, horizontal orbital velocity, u, and vertical orbital velocity, w.

Program input includes wave period, T, deepwater wave angle, α_{O} , deepwater wave height, H_0 , wave phase angle, θ , depth of water, d, at which results are desired, and depth from surface, z, at which velocities are calculated. This program assumes straight and parallel offshore bottom contours for assumption of Snell's law of refraction. Algorithm uses English or metric system of units.

REFERENCE

U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, Siore Protection Manual, 3d ed., Vol. I, Ch. 2, Stock No. 008-022-00113-1, U.S. Government Printing Office, Washington, D.C., 1977.

Operating Limits and Warnings

If printer is not used, R/S must be inserted where output values are desired (i.e., where printer output steps are deleted).

	101R-41CV CALCULATION OF WAVE PARAMETERS	FROM LINEAL	R THEORY (RPN LOGIC) SIZE: 02 /
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
[]	LOAD PROGRAM (LINEAR)		[XEQ] "LINEAR"	EORM?
	TO COMPUTE IN ENGLISH UNIT	5:		
2	PRESS GTO "E"		6TO"E"	
3	PRESS RIS		[RIS]	PERIOD?
4	ENTER . PERIOD T. PRESS RIS	T(sec)	[RIS]	DEPTH?
5	ENTER DEPTH D. PRESS RIS	d (ft.)	[RIS]	AO?
6	ENTER WAVE ANGLE do,			
	PRESS R/S	doldeg)	[RIS]	HO?
7	ENTER WAVE HEIGHT HO, PRESS P	S. Holfe.	[R/S]	2?
8	ENTER DEPTH BELOW SURFACE, 2.			
	PRESS RIS	z (ft.)	[RIS]	PHASE?
9	ENTER WAVE PHASE ANGLE O.			
		O(deg).	[RIS]	
10	READ kd (wave number = depth)			kd
//	READ n (ratio of group wave speed to	wave cer	erity)	<u>n</u>
12	READ Cg (group wave speed)			cg (ft/sec)
13	READ Ks (shooling coeffice nt)			Ks
14	READ Kr (refraction coefficient			Kr
15	READ H (wave height)			H (ft.)
16	READ U (horizontal orbital ve			u (f+/sec)
17	READ W (vertical orbital veloc	ty)		W(ft/sec)
	note: " = [ALPHA]			

				SIZE:
TEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
	TO COMPUTE IN METRIC	UNITS:		
Za_	PRESS GTO "M"		GTO"M"	
	STEPS 3a-17a ARE THE	SAME AS	<u>-</u>	
	STEPS 3-17 EXCEPT			
	IMPUT HO. Z IN METER	S		<u> </u>
	output H (meters)	_		
	Cg, U, W IN MET	ERS SEC		ļ
				
_	EXAMPLES and la:			
	T=8 Sec, d= 50ft (15.244m			
	Ho=18ft(5.4878m), Z=-15ft(-45732m)	, 0=60°	 -
_	PRINTOUTS:			ļ
	= PERIOD=	METRIC Period=		
\dashv	8.0000 *** DEPTH=	8.900 Depth=	9 *** <u></u>	
	59,9889 *** - AG= 	15.2440 90=		
\dashv	HC=	36,989 HD=		
-	Z= -15.0000 ***	5.4876 Z= -4.5732		
\dashv	PHGSE= 58.0886 ***	PHRSE= 60.000		
\dashv	Vp= 1.1631 ***	KP= 1,1606		
\dashv	N= - 6,7294 *** CC=	N= 0.7302	***	
	24.6248 ***	CG= 7.5367	***	
-	- 0,9124 ***	KS= 0.9103 <i>KR=</i>	***	
	9,9748 *** —————————————————————————————————	9.9752 H=	es s	
	16.0095 ***	4.3716 U=	***	
\dashv	2,9437 ***	6.9608 N=	***	
+	7,4258 ***	1.6465	***	

		_	rogram Di			
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP KEY ENTRY	KEY CODE	COMMENTS
				56 STO 15		0-> R15
91	*LBL "LINEAR"			57+LBL -MAIN-		1
92	-E OR M ?-			58 XE9 99		(
	PROMPT			59 2		1
	+LBL E			60 *		1
	32.2	1		61 870 11		ATC/L → RII
	STO 14		g(English)→Rm	62 XEQ 01		1 /-
	-ENGLISH-		Diang, and the	67 1/X		1
₩ 98				64 RCL 11		1
-				65 *		1
	GTO 83			66 1		1
	+LBL *H-			67 +		1
	-METRIC*					1
* 12				68 2		4
	9.81		g(Metric)→RM	69 /		1000
_	STO 14		gineries - MA	₩ 70 "H="		n→ R _x
15	+LBL 03	- 1		₹71 PR9		1
16	-PERIOD?			₩ 72 PRX		ا ا
17	PROMPT			73 STO 11		n→R _{II}
¥ 18	"PEPIOD="			74 RCL 84		1
¥ 19	PRA	1		75 *		1
₩ 20	PRX	i		76 PCL 02		1
21	STO 02		T-> Roz	77 /		1 _
	-BEPTH?-	1		₩ 78 -CG=-		$C_g \rightarrow R_X$
	PROMPT	Í		₹ 79 PRA		{ ³
	BEPTH=	ľ		# 80 PRX		!
₹ 25		ł		81 1/X		ł
₹ 26				82 RCL 02		1
	PI	j		83 *		1
	•	1		1		1
38		ł		84 RCL 14		1
29		J		85 *]
36		1	4 - 8	86 4]
	STO 01	Į.	211rd → Roi	87 / .		Ī
32	"A0?"	- 1		88 PI	1	1
	PPOMPT	- 1		89 /	•	1
	-A0=-	ĺ		98 SQRT		
* 35	PRR			学 91 "KS="	•	Ks = Tookg -> R
₹ 36	PRX			₹ 92 PPA	•	
37	SIN			₩ 93 PRX		
38	STO 88	Į,	sin a. → Roo	94 STO 11	•	Ks -> RII
	-H0?-	ł	3	95 RCL 00		
	PROMPT	4		96 RCL 01		
47 41				97 *		
42		- 1		98 RCL 93		
43		i		. 99 /		K.d.sind.
•	STO 08	}	Ho-> Roa		1	1.0
] .	TO NOB	188 PCL 89	1	sind
-	-7?-	3		101 /	1	211.10
	PROMPT	1		102 Xf2	1	l
47	-	1		193 1	1	
₩ 48		1		184 -	ď	•
# 49 1		i		105 CHS		cosid
50 1	STO 12	- 1	? → R:2	196 1/X	- 1	-
51 '	PHASE?			197 1	- 1	
52 9	PROMPT	- 1		108 ENTERT	4	
¥ 53	PHASE=	1	:	189 RCL 88	ļ	
#54 F		ł		110 X12	4	
•	RX	3	1	111 -	i	

*DELETE THESE LINES IF A PRINTER IS NOT AVAILABLE . 1018-41CV-4
ALSO SEE 'OPERATING LIMITS AND WARNINGS' ON PAGE 1018-41CV-1.

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
112				¥ 168	*#=*		W→Rx
	SORT		}	₩169			1
	SORT		V _ D	¥2176			{
	S STO 10		$K_{r} \rightarrow R_{10}$ $K_{r} \rightarrow R_{x}$	171	RTH		ممند فيريم
#117	-KR=-		K Ru		+F8F 88		"kd" subroutine
学 118			M-21/X		RCL 82		lines 172-218
	RCL 98				Xf2		}
	RCL 18				RCL 14		
121				176			j
122	RCL 11			178	_		j
123			=	179			}
水 124			H → R _X	188]
₩ 125				181	STG 93		40 → R03
¥ 126				182	LBL -ITERAT-		
127	RCL 14				STO 11		Loid -> Ris
	PCL 02				1/X		ł
139					PCL 91		ł
131				186			217d -> RIS
132					STO 13 XEQ 02		
133	RCL 94				STO 06		Cosh (Ris) -> Ra
134	/				RCL 13		COST KISO
	PCL 86				XEQ 01		1
136		j	UAT 1		STO 85		Sinh (Ris) -> Ros
	STO 68]	1 1 (OSh/2/10) > Ros		RCL 86]
138	PCL 01		$\frac{\text{H gT 1}}{2 \text{ L cosh}(\frac{2\pi C}{L})} \rightarrow R_{\text{cosh}}$	194	/		1
140		1			RCL 03		İ
141				196			ļ
142	-	•		198	PCL 11		ł
143	PCL 12			199			ł
144	•	ŧ		298			ł
145		1			STO 04		L'-> Roa
146		i			RCL 11		1
147		1		203	-		
148	PCL 84]		284			1
159		1		285			I
	STO 85	}	211(2+d) D _	206			
	XE0 02	j	$2\pi(2+d) \rightarrow R_{05}$		GTO 25		
	RCL 98	į.	•		RCL 04 GTO -!TERAT-		
154		ł			LBL 25		
	PCL 15	}			RCL 8!		
156		1			RCL 84	•	
157		1		213			
¥ 158 ¥ 159 :		(U→R _X	214	STO 09		Kd → Roa
〒159 日 〒160 日		1		₩ 215			_ ,
	RCL 05	}		216			$kd \rightarrow R_X$
	XEQ 91	1		# 217			
	RCL 09	1		218		}	-1
164		- }			.BL 01 570 07]	subroutine
165 1	PCL 15	ł		221		4	sinh () lines
166		- 1			RCL 97		219-228
167 1	,	4		223		- 4	

* DELETE THESE LINES IF A PRINTER IS NOT AVAILABLE. 101R-41CV-5
ALSO SEE 'OPERATING LIMITS AND WARNINGS' ON PAGE 101R-41CV-1.

		r togram Bishing								
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS			
224	EtX	T			1					
225			Į	└	 	<u> </u>	4			
226	2		1		 	 	4			
227	1		1		 	 	-			
	PTH		- house cosh()	├			-{			
	•LBL 02		subroutine cosh() lines 229-238		 	 	-i			
	STO 07		lines 229-200			 	∄			
	EtX PCL 97		5		<u> </u>	·	1			
	CHS		Ì							
234	EtX		i	<u></u>	<u> </u>]			
235			1		 					
236				<u> </u>	 		1			
237			4		 		4			
	-END-				 	 	}			
239	.END.	!			 		1			
		•				 	1			
} ,							1			
							1			
]			
		Ļ]			
-										
										
 		 			 		}			
							{			
1						~	{			
							1			
		<u></u>	[
		<u> </u>								
			ŀ							
 			ŀ							
			į.							
		1	ţ							
			[
			[
\vdash			ļ							
\vdash		⊢	ļ							
 			}							
 +-			}							
 			<u></u>							
			ŀ							
			Ť							
			Ţ			1				
\vdash			[
 			}-							
			}	-						
 			ł-							

*DELETE THESE LINES IF A PRINTER IS NOT AVAILABLE. 101R-41CV-6
ALSO SEE 'OPERATING LIMITS AND WARNINGS' ON PAGE 101R-41CV-1.

Program Description

102R-41CV Linear Wave Approximation to Breaking Wave Height and
Program Title Breaking Wave Angle (RPN Logic)

Name T.L. Walton, Jr.

Address Coastal Engineering Research Center
Kingman Building State Virginia Zip Code 22060

Program Description, Equations, Variables, etc.

This program calculates breaking wave height, H_b , and breaking wave angle, α_b , using linear wave theory approximations combined with the shallow-water breaking assumption. Input parameters are wave height, H, wave period, T, wave angle, α , and the water depth, d, where the preceding three variables are measured. An additional input parameter is nearshore beach slope, m. The ratio of the breaking wave height to the water depth at breaking is predicted using the equation

 $\kappa = H_b/d_b = 1.16 \left(\frac{m}{\sqrt{H_0^2/L_0}}\right)^{0.22}$

from Singamsetti and Wind (1980), where d_b is the water depth at breaking, $\rm H_o^{\prime}$ the deepwater wave height, and $\rm L_O$ the deepwater wavelength. This solution requires the assumption of straight and parallel offshore bottom contours for the application of Snell's law of refraction. Input wave parameters H, T, and α can be in any depth of water, d. Algorithm uses English or metric system of units. The development of the equation is derived on the attached solution sheet.

REFERENCES

SINGAMSETTI, S.R., and WIND, H.G., "Characteristics of Shoaling and Breaking Periodic Waves Normally Incident to Plane Beaches of Constant Slope," Report No. M1371, Toegepast Onberzoek Waterstaat, July 1980.

U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, Shore Protection Manual, 3d ed., Vol. I, Ch. 2, Stock No. 008-022-00113-1, U.S. Government Printing Office, Washington, D.C., 1977.

Operating Limits and Warnings

SOLUTION SHEET FOR PROGRAM 102R-41CV

Development of the equation:

From conservations of energy

$$\frac{\gamma H^2}{8} C_g \cos \alpha = \frac{\gamma^H i^2}{8} C_{gi} \cos \alpha_i \qquad (1)$$

where the subscript i indicates incident wave parameters.

If left-hand side of above equation represents conditions at breaking then

$$C_g = C = C_b \approx \sqrt{gd_b} = \sqrt{gH_b/\kappa}$$
 (2)

where

$$\kappa = \frac{H_b}{d_b} \tag{3}$$

Now assume

$$\kappa = 1.16 \left(\frac{m}{\sqrt{H_0^*/L_0}} \right)^{0.22} \tag{4}$$

where $\mbox{ H}_0^{\mbox{\tiny 1}}$ is unrefracted deepwater wave height.

Using (1), (2), (3), and (4) it can be found

$$H_b = \left\{ \left(\frac{\kappa}{g} \right)^{1/2} H_i^2 C_{gi} \cos \alpha_i \right\}^{2/5}$$
 (5)

From Snell's law of refraction

$$\frac{\sin \alpha_b}{C_b} = \frac{\sin \alpha_i}{C_i} \tag{6}$$

therefore,

$$\sin \alpha_b = \left(\frac{\sin \alpha_i}{C_i}\right) \left(\left(\frac{g}{\kappa} H_b\right)^{1/2}\right)$$
 (7)

	102R-41CV LINEAR APPROXIMAT WAVE HEIGHT AND BREAKING WA			SIZE: 021
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	LOAD PROGRAM (ANGLE B)		[XEQ] "ANGLEB	EORM?
	TO CALCULATE Hb, ab IN ENGLISH U	VITS:		
2	PRESS GTO "E"		GT0 "E"	
3	PRESS RIS		[RIS]	SLOPE?
4	ENTER SLOPE m, PRESS RIS	m	[RIS]	DEPTH?
5	ENTER DEPTH D, PRESS RIS	d (ft.)	[R/S]	ANGLE?
6	ENTER ANGLE &, PRESS RIS	x(deg.)	[RIS]	H?
7	ENTER WAVE HEIGHT, H. PRESS PI	1		PERIOD?
8	ENTER WAVE PERIOD T. PRESSRIS	TISEC)	[RIS]	
9	READ Kd	Ĺ		kd
10	PRESS RIS, READ n		[R/S]	n
//	PRESS RIS, READ Cg		[RIS]	Cg (ft/sec)
12	PRESS RIS, READ KS		[R/S]	K _s
13	PRESS RIS, READ Ho'= HoKr		[RIS]	H'((c)
14	PRESS RIS, READ Ho		[RIS]	Hb (ft.)
15	PRESS RIS, READ &		[RIS]	d, (deg.)
	TO CALCULATE Ho, & IN METRIC	UNITS:		
	FOLLOW THE SAME INSTRUCTION		BOVE EXCEPT	
	PRESS GTO "M" AT STEP 20			
	IMPUT D and H IN METERS			
	Cg, Ho', Hb ARE OUTPUT IN		M KESPECTI	IELY.
	note: " = [alpha]			

				SIZE:
TEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
	EXAMPLE:			
	Imput m= 0.10, d= 50ft (15.24m	,)		
\Box	a = 30°, H= 18ft (5.4878)	n)		
\neg	T= BSeC.			
	ENGLISH PRINTOUT: METR	C PRIM	TOUT:	
	ENGLISH MET	, bic	-	
	\$L0PE= \$L00	8.1986	***	
	DEPTH= DEP	15,2439	***	
	- ANGLE= ANGLE= ANGLE	.E= 30.0009	***	
	18.8666 *** - PFRIOR= PER	5.4879	***	7
	- PERIOD= PERI 8.6000 *** - KD=	8. 009 0	***	
1	1.163! *** N= N=	1.1688	***	
	9,7294 *** CG= CG=	0.7392	***	1
	24.6248 *** KS= KS=	7.5367	***	
	9,9124 *** HOKP= 4076	8.9187	***	
	19.7284 *** H8=	6.0296	***	
\top	16.9887 *** AB=	5.1855	***	<u> </u>
	28.7859 ***	29.7486	***	
寸				
7			·	1
7				
十				1
十				
十				1
_				
+				1
十				

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
91	+LBL -ANGLER-		{		' /		
92	*E OR # 2*		1		STO 03		Lo → Ros
93	PROMPT		1	1	+LBL -ITERAT-		ا
64	I+LBL E		ŧ	1	STO 11		Loid -> RII
95	5 32.2		1		1/X		
	STO 14		-/s-alish)- Ru		RCL 12		ł
	FHGLISH.		g(English)→ R14		*		2771 - P.
	PRA				STO 13		2170 → R ₁₃
	610 el		ŧ		XEQ 82 510 86		cosh (R13) → Ros
	H-TBL -M-		1		' RCL 13		COSH (413) -3 406
	I "METRIC"		Í		XEQ 03		i .
	2 PPQ				STO 85		sinh (R13) -> Ros
	3 9.81		g(Metric)→R14		RCL 06		3.777 (, 52
	4 STO 14		guren os sam		/		
	5•LBL 01 5 •SLOPE=•				RCL 03		1
	7 PRA		ĺ		*		
	3 *SLOPE"]	7	RCL 11		
	P PROMPT		}	r	+		!
	PRX		ł	76	2		į.
	1 STO 15		m -> Ris	[77	1		
	2 -BEPTH=*			[78	STO 84		
	3 PRA		J	[79	RCL 11		1
	-DEPTH?			[88	-		{
	5 PROMPT			[8!	ABS		
	5 PRX		ł	[82	1		1
	7 STO 01		d → Roi	[83	XXY?		1
	3 P]		, ,	[84	GTO 13		
29) ±				RCL 64		ĺ
3€	3 2				GTO -ITERAT-		ļ
31	. *		l . <u> </u>	L .	◆LBL 13		
32	2 STO 12		27rd → Riz		RCL 12		1
# 33	3 -angle="				RCL 04		1
	ι ρ έ δ			90			1 m = 12 m
	5 "AMGLE?"				STO 09		kd → Roa
	PROMPT				-KD=-		→ display
	7 PRX		i	₩93 ₩94			}
	3 STO 00				STOP		t
) -H=-			1 %			ĺ
	PPA			97	_		j.
	-W				STO 11		2kd → Rii
	PROMPT				XEQ 93		1200 - 111
_	PRX		و برا		1/X]
	5 -PERIOD=*		H→ Ros	1	RCL 11		ſ
	2 bb0			102)
	7 -PEP10D?*			163			1
	PROMPT			194			}
	PRX			105			i
	9 STO 02		T → ROZ	196			1 _
	7 010 62 7 10			107	STO 01		n→ Roi
	RCL 14			₩ 198	-H=-		-> display
	*			₩189	PPR		1
	1 2			★118	PPX		1
	5 7				STOP		ĺ
	12		i	1 112	PCE A4		1

* DELETE THESE STEPS IF A PRINTER IS NOT AVAILABLE. 102R-41CV-5

			rogram i		•		
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
113				- 本16	9 "HB="		Ho in display
114	RCL 02		ŀ		e Pra		,
115			1		1 PRX		
	STO 94		Cg → Rog → display		2 STOP		l
	.CC=.) → aispiay		3 RCL 96		Ì
₩ 118			,		4 1/X		1
第119			İ		5 *		
	STOP				6 SORT		
	1/X				7 RCL 00 8 SIN		ł
123	PCL 92				0 21M 9 ≠		1
	RCL 14		1		9 RCL 84		1
125				r	1 /		
126			4		2 RCL 81		
127			1		3 *		ł
128			}		4 ASIN		1
129			[5 -AB=-		db in display
	SORT		i _		6 PRR		
131	STO 11		Ks→ Rii		7 PRX		ľ
1 32	-KS=-		-> display	18	8 STOP		1
第133	PRA]		9 RTH		
是 134	PRX			19	0+LBL 03		sinh () subroutin
	STOP		}		1 STO 97		}
	RCL 08				2 EtX		
	RCL 11		Ho' in display		3 RCL 07		}
138			Ho III DISPING		4 CHS		
	40KR=				5 EtX		İ
# 149					6 -		}
#14!	STOP			L	7 2		
	RCL 93				R ∕ ∋ rth		
143					9+LBL 82		cosh () subrouting
	SORT				STO 97		
	PCL 15				2 E+X		
147					3 RCL 97		
	1/X				CHS		}
	.22				E+X		
150	Y#X			29	5 +		
151	1.16			28	7 2		}
152				29	3 /		
153	RCL 14			29) .END.		ĺ
154			ŀ	}			
	STO 86			₁			
	PCL 88		{	<u> </u>			
	X†2						
	RCL 04			 			
159]
	RCL 00						
162	008						
	Yex						
	PCL 06		}				
	.2						
	Y+X		ſ				
168]	 			
			<u> </u>				L

* DELETE THESE STEPS IF A PRINTER IS NOT AVAILABLE. 102R-41CV-6

Program Description

103R-41C Shallow-Water Wave Forecasting Equations (RPN Logic) **Program Title**

T.L. Walton, Jr.

Date 1/82

Name

Coastal Engineering Research Center

Address

City

Kingman Building

Fort Belvoir,

State Virginia

Zip Code

22060

Program Description, Equations, Variables, etc.

This algorithm computes the wave height, H, wave period, T, and minimum dura tion, t, from input values of the water depth, d, fetch length, F, and adjusted windspeed, UA, using equations (1), (2), and (3) of CETN-I-6. Equations (1) and (2) are for constant water depth and unlimited wind duration and have been revised from equations (3-25) and (3-26) of the Shore Protection Manual. Wave height and period in this algorithm are significant wave height and period. Algorithm uses English or metric system of units.

REFERENCES

- U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, Shore Protection Manual, 3d ed., Vols. I, II, and III, Stock No. 008-022-00113-1, U.S. Government Printing Office, Vashington, D.C., 1977, 1,262 pp.
- U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, "Method for Determining Adjusted Windspeed, UA, for Wave Forecasting," CETN-I-5, Fort Belvoir, Va., 1981.
- U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, "Revised Method for Wave Forecasting in Shallow Water," CETN-I-6, Fort Belvoir, Va., 1981.
- U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, "Revised Method for Wave Forecasting in Deep Water," CETN-I-7, Fort Belvoir, Va.,

Operating Limits and Warnings

If a printer is not used, R/S must be inserted where output values are desired (i.e., where printer output steps are deleted).

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	LOAD PROGRAM (FOCAST)		[XEQ] FOCAST	EORM?
	TO CALCULATE IN ENGLISH UNITS:			
2	PRESS GTO "E"		GTO "E"	<u> </u>
3	PRESS RIS.		[RIS]	UA?
4	ENTER UA, PRESS RIS	UA (mph)	[RIS]	FETCH?
5	ENTER FETCH F, PRESS RIS	F(miles)	[R/5]	DEPTH?
6	ENTER DEPTH D. PRESS RIS	d (ft)	[RIS]	
7	READ H (wave height)			H(ft.)
θ	READ T (wave period)			T(sec)
9	READ TIME IN HOURS (minimum	duration	n)	t(hours)
	TO CALCULATE IN METRIC UNIT	2:		
za	PRESS GTO "M"		·	
3a	9a same as sieps 3-9 above e	KCEPT		
	IMPUT UM (kilometers/hr) and			
	F (kilometers) and			
	d (meters)			
	оитрит H (meters)			
	note: "= [ALPHA]			103R-41CV-2

				SIZE:
TEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
]	EXAMPLES I and la			
	I. ENGLISH UNITS, USING			
	Un= 40mph, F=300miles			
	d= zoft.			
	A.METRIC UNITS, USING			
	UA = 64.416 km/hr, F= 483.12km			
	d=6.1m			
\Box	PRINTOUTS		·	
	ENGLISH UNITS: METR	K UNITS	5:	
	ENGLISH UG= 40.0000 *** FETCH= 300.0000 *** DEPTH= 20.0000 *** H= 4.531: \$\frac{1}{2}\tau_{\text{*}}\tau	64.4169 H= 483.1290 H= 6.1889 I 1.3889 I	*** *** *** *** *** ***	
\bot				
_				
_				
_				
\dashv				
\dashv				
1		}		

				_	_		
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
91	Leur Focaste			57	7 RCL 95		
-	2 *E OF # 2*		t .		3 *		i
	3 PROMET		1		STO 01		0F/2 → Ro.
			1				9F/UA2 -> ROI
	I+LBL E				RCL 88		1
	32.2		g(English)→Roa		.75		1
96	5 STO 89		19(Engilari) - Noq] 62	YtX		1
97	7 1.47		المنتسمين مايضياما	63	.53		4
98	3 970 <i>0</i> 7		English Conversion Ron English Conversion Rol	64	: *		1
99	5289		1 → Ro7	65	XE9 83		0.75
	STO #1		English Conversion		370 84		+nnh (.53(90)
	-ENGLISH-		→Roi		RCL 01		tanh[.53(90)
	PR9		i		SORT] → R ₀₄
-	GTO 01		ľ				1~
			1		.00565		1
	+LBL -H-						1
	-METPIC-				RCL 94		1
	PRA			72	. /		tanh [: 00565 (9 F)
17	9.81			73	XE0 03		tanh
18	STO @9		g(Metric) -> Rog	74	RCL 94		j "84 (47).
19	.2778			75	*		Ī
29	STO 97		metric conversion	76	. 283		1
	1999		→ Ron		*		1
	STO 01		metric conversion		RCL 08		1
			D:				i
	+LBL 91 -*UQ^•		→ Roi		/		1
					•H=•		ł
	PROMPT			* 81			ĺ
	•1)Q=•			** 82			J
文 27				83	RCL 00		
* 28	PPX			24	.375		}
29	STQ 63		UA -> Ros	85	YfX		
39	-FETCH?•		.,	86	.833		1
31	PROMPT		ľ	87	*		·
# 32	-FETCH=-		j.		XEQ 93		و.هر
₩ 33			t the state of the		STO 84		122/9 <u>4</u>
₹34		1			PCL 01		tanh[0.833(\frac{9d}{V_h^1})
	STO 85		F -> Ros				→ Roa
		- {	77005		.337		2 PO-4
	-BEPTH?-				YtX		
	PROMPT	1			.9379		
	-DEPTH=-	}	[94			
₩39		į	Į.	95	RCL 94		
爱49		ł	ľ	96	1	1	Co ===0/0F @333
41	STO 06		d → Rob	97	XE0 03	1	$tanh\left[\frac{0.0379}{Rog}\left(\frac{gF}{U_{h}^{2}}\right)^{0.333}\right]$
42	RCL 93	ŀ	}	98	RCL 84		- Roy (UA') -
43	PCL 97	(ŀ	39			- •
44		4			7,54		
	STO 07	į	converted Un -> Ron	101		i	
	BCT 83	ł	· · · · · · · · · · · · · · · · · · ·		PCL 08	i i	
	RCL 97	- 1	t	193			
		1	ĺ				
	X+2	ſ	ľ		RCL 07	1	
49		1	01.2 - P	195		i	
	STO 69	1	3/UA - 7 NOB }	4 196		,	
	RCL 06	1	· · · · · · · · · · · · · · · · · · ·	* 107	PRA	1	
52	*	1	$9/v_{A}^{2} \rightarrow R_{08}$ $9^{d}/v_{A}^{2} \rightarrow R_{00}$	* 198	PPX		
57	STO 88	1	901, 2 -> P 1	199	RCL 09	- 1	
	PCL 88	ď	J /UA - 100	119		ł	
	PCL e:	- 1	í		RCL 07		
56		4	1	:12		į	
			T. C. C. C. C. C. C. C. C. C. C. C. C. C.				

* DELETE IF PRINTER IS NOT AVAILABLE
ALSO SEE 'operating Limits and Warnings' on p. 103R-9KV-1

TEP	KRY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
	2.333						1
	YfX	•			f	·	1
	537			}	}	·	}
116	RCL 87	•		-			t
118		1					1
	RCL 89						3
120	17]
	3600			-			}
122	: / : ^?!NE=*			}			ł
¥124				-			l
* 125	PRX			-			1
	RTN	1					{
	◆LBL 93]					
	STO BZ	- 1					Į
	EtX RCL 82						
	CHS	- 1		}			
	Etx			[
133	→	}		 			
	RCF 05	- 1		 			
	EtX	1					
	RCL 82 CHS	}					
	EtX	- 1					
139		- 4		h			
149	/	₹		 			
141	.EHB.	ŧ		h			
		1		-			
				 			
					1		
\Box							
							
~				 			
				h			
$\neg +$		·····		-		~	
_							
				J			
	~			}			
	~			 			
-				1			
							
-1							
-				J.			
-+				}			
-+-				h			
\Box							
1 "				1			

* DELETE IF PRINTER IS NOT AVAILABLE.
ALSO SEE 'Operating Limits and Warnings' ON P. 103R-41CV-1.

Program Description

104R-41CV Depth-Limited Design Breaking Wave Height at Structure Program Title (RPN Logic) Name T.L. Walton, Jr. Date 1/82 Coastal Engineering Research Center Address Kingman Building **Zip Code** 22060 State City Fort Belvoir, Virginia Program Description, Equations, Variables, etc. This algorithm computes the depth-limited breaking wave height at a structure for design purposes. It can be used in lieu of Figure 7-4 of the Shore Protection Manual. The equation for the curves in Figure 7-4 is not given in the SPM but can be found by simultaneous solution of SPM equations (2-91), (2-92), (2-93), (7-3), and (7-4). Input is wave period, T, and water depth at the structure toe, ds. The development of the equation is derived on the attached solution sheet. Algorithm uses English or metric system of units. REFERENCE U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, Shore Protection Manual, 3d ed., Vols. I and II, Chs, 2 and 7, Stock No. 908-022-00113-1, U.S. Government Frinting Office, Washington, D.C., 1977. **Operating Limits and Warnings**

SOLUTION SHEET FOR PROGRAM 104R-41CV

The following equations are given in the Shore Protection Manual:

$$\frac{d_b}{H_b} = \frac{1}{b - (aH_b/gT^2)}$$
 (2-91)

$$a = 43.75(1 - e^{-19m})$$
 (2-92)

$$b = \frac{1.56}{(1 + e^{-19.5m})}$$
 (2-93)

$$x_p = \tau_p H_b = (4.0 - 9.25 \text{ m}) H_b$$
 (7-3)

$$H_{b} = \frac{d_{s}}{\beta - m\tau_{p}} \tag{7-4}$$

Equation (7-4) can be rewritten in dimensionless form as:

$$\hat{H}_b = \frac{\hat{d}_s}{\left[(b - a\hat{H}_b)^{-1} - m\tau_p \right]}$$

where

$$\hat{H}_b = H_b/gT^2$$
 and $\hat{d}_s = d_s/gT^2$

The above equation can then be solved via the quadratic formula for $\hat{\mathbb{H}}_b$ in terms of \hat{d}_s , $\tau_p,$ m, a, and b where the positive root provides useful results.

$$\hat{H}_{b} = \left\{ (m\tau_{p}b - a\hat{d}_{s} - 1) + \left[(m\tau_{p}b - a\hat{d}_{s} - 1)^{2} + 4am\tau_{p} b\hat{d}_{s} \right]^{1/2} \right\}. (2am\tau_{p})^{-1}$$

This is the equation used in the program for design breaking wave height.

	10'4R-41CV DEPTH-LIMITED I			
	WAVE HEIGHT AT STRUCTURE			SIZE: 021
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	LOAD PROGRAM (HB)		[XEQ] "HB"	EORM?
	TO CALCULATE HE IN ENGLISH UNITS	:		
2	PRESS GTO "E"		GTO "E"	
3	PRESS RIS		[RIS]	SLOPE?
4	ENTER SLOPE M. PRESS RIS	m	[RIS]	DEPTH?
5	ENTER DEPTH D, PRESS RIS	d(ft)	[RIS]	PERIOD?
6	ENTER PERIOD T. PRESS RIS	T(sec)	[RIS]	
7	READ HE IN FEET			Hb (ft)
	TO CALCULATE HE IN METRIC UNI	rs:		
Za	PRESS GTO "M"		GTO "M"	
3a	PRESS RIS		[RIS]	SLOPE?
4a	ENTER SLOPE M. PRESS RIS	m	[RIS]	DEPTH?
5a	ENTER DEPTH D. PRESS RIS	d (meter	s) [R/S]	PERIOD?
60	ENTER PERIOD T. PRESS RIS	T(sec)	[RIS]	
7a	READ HO IN METERS			Hb(meters)
	Tuesday I and Ia			
	Example I and Ia m= 0.10, d= 10ft (3.05m), T= 10	SOC		
	ENGLISH PRINTOUT: METRIC P	RINTOUT		
-	STORE= 20013H 4E1010			
	DEFTHE DEFTHE	.1006 ***	***************************************	
	pEpiOD= PEpiOD=	2500 ***		<u> </u>
	-9= H8=	499 <u>9</u>		
	17,4818 *** 5.	4631 ***		47
1		L	note: " = [Al	LVA

			1081 cent mis				
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
	1+LBL *NB* 2 *E OR #1 ?*		}	57 58	-		1
	PROMPT		{		1.56		}
	I+LBL E		ł	66			
	32.2		1	61	1/X		1
	STO 08		g(English) → Ros		STO 94		i
₩ 97	"ENGLISH"		1 3		RCL 00		f
₹ 88	PRA		ļ		ENTERT		Í
	9 GTO 91		ļ		9.25		
	+LBL ·#-			66 67			!
	"METRIC"		ļ	68			ŧ
	? PRA 3 9.81		_		CHS		}
	570 9 8		g(Metric) → Ros		RCL 88		}
	i+LBL 81		1	71	*		}
	SLOPE=		Í		STO 05		mJp=m(4-9.25)
	PRA				PCL 94		mJp=m(4-9.25) → R ₀₅
18	-SLOPE?"			74			1
	PROMPT			75			!
	PRY		m > Roo	76 77	PCL 01		ļ
	570 00		ססי ביות		RCL 03		ł
	DEPTH=			79			
₩ 23	-DEPTHO-			98			^ .
	PROMPT				STO 96		mJob-ads-1
₩ 26					Xt2	1	mJpb-ads-1 →Ran
	STO 97		$d_s \rightarrow Ron$	83		,	
₩ 29	-PERIOB="]		RCL 03		
# 29	PRR			85			
	-bEbiOBo-			86	RCL 84		
	DOUNE Y			-	RCL 05		
# 32			9	89			
	510 09 V43		T-> ROA		PCL 01		1
	PCL 08	i		91			
36				92	+		
	1 /X	1	i i		SQRT		
	RCL 87	- 1	ì		RCL 96		
39	•	1	l .	95			
	STO 01]	ds → Roi	96		j	
	RCL 06	1	4T ²	97	RCL 03		
	19	1	, °	99		1	
43	* Chs		·		RCL 05	į	
	E+X	- ∤	' }	191			
-	CHS	- 1	ļ .		RCL 01		
47		+	}	103	/		
48		ł	\		RCL 07		
	43.75	- 1	•	195		i	w - display
56		- 1	43.75 (1-e-19m) + RO3	₹196			Hb in display
	STD 97	1	43.75 (1°E /7K03	表197		1	
	PCL 00	1	i	₹198 199		1	
	:9,5	1	1		.END.	1	
54		- 1		110]	
	CHS E*x	- 4	ł				
- 2	<u> </u>				<u>-</u>		

THESE STEPS MUST BE DELETED IF NO PRINTER IS AVAILABLE 1018-41CV-4

Program Description

Program Title

105R-41CV Wave Transmission - Fuchs' Equation (RPN Logic)

T.L. Walton, Jr.

Coastal Engineering Research Center

Kingman Building
Fort Belvoir,

State
Virginia

2060

Program Description, Equations, Variables, etc.

This algorithm computes wavelength, L, in water depth, d, given the wave period, T. The program then computes wave transmission over a thin vertical barrier in water depth, d, using Fuchs' equation:

$$\frac{H_t}{H_i} = \sqrt{1 - \frac{\frac{4\pi h}{L} + \sinh \frac{4\pi h}{L}}{\frac{4\pi d}{L} + \sinh \frac{4\pi d}{L}}}$$

where H_t is the transmitted wave height, H_i the incident wave height, and h the height of barrier. Note that this equation cannot be used when wave transmission is by overtopping of a structure. Algorithm uses English or metric system of units.

REFERENCE

U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, Shore Protection Manual, 3d ed., Vol. II, Ch. 7, Stock No. 008-022-00113-1, U.S. Government Printing Office, Washington, D.C., 1977, p. 7-62.

Operating Limits and Warnings

	105R-41CV WAVE TRANSMISSION -	FUCHS' EQUA	ATION (RPN logic)	SIZE: 021
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	LOAD PROGRAM (FUCH)		[XEQ] "FUCH"	
	TO CALCULATE IN ENGLISH UNITS			
2	PRESS GTO "E"		GT0"E"	
3	PRESS RIS	L	[R/s]	DEPTH?
4	ENTER DEPTH D. PRESS RIS	d (ft.)	[RIS]	SIL HT?
5	ENTER SILL HEIGHT H, PRESS	RIS h(ft)	[RIS]	PERIOD?
6	ENTER PERIOD T, PRESS R/S	T(sec)	[R/s]	
7	READ Kt = HT/HE (TRANSMISSION	<u> </u>		Ke
	COEFFICIENT)			
	TO CALCULATE IN METRIC UNITS	<u>. </u>		
Za	PRESS GTO "M"		GTO "M"	
	STEPS 3a-7a ARE THE SAME	AS STE	PS 3-7 ABO	VE EXCE
	IMPUT d. h. IN METERS			•
	OUTPUT L (PRINTER ONLY) ME	TERS		·
	Example I and Ia:			
	Values used: d=15ft (4.573)	2m), h	= 10ft (3.0488	m), T=10
	PRINTOUTS:			
	ENGLISH METRIC			
	DEPTH= 15,0000 ***	4.5732		
	SIL HT= SIL HT=			
	PERIOD= PERIOD=			
	213.0230 ***			
	KT= 9.5977 ***			
	note: " = [ALPHA]	0.37(* 1		

TEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
				1	E+X	T	
	I+LBL -FUCH-		1		RCL 84		}
	2 °E OP # ?*		1		CHS		1
	3 PROMPT		i	1	ETX		\$
	4+LBL E		ł		* /		
	5 32.3 6 STO 06		g(English)→ Row		RCL 81		tanh (Zird)
	7 "ENGLISH"		3(Englists - W		*		Loid
	B PRA		1	•	RCL 03		1
	GTO 01		f		. +		į.
	9+LBL *#*	•	ĺ	67	2		ł
\# 11	L "METRIC"	•	1	68	. /		1., -
	2 PRA	•	ĺ		STO 62		L'→ Roz
	3 9.81	•	(cantair) Ray		PCL 93		1
	STO 06	•	g(Metric) -> Rob		-		1
	SOLBL 01				ABS]
	-BEPTH?-				1		}
	PROMPT DEPTH=				X>Y? GTO 13]
	, м ег:n= , рер	ļ			PCL 82		}
* 20					GTO "ITERAT"		
	2				+LBL 13		1
22	*				RCL 82		1
23	PI	+			*[=*		1
24	. *		_	₩81	PRQ		ł
	STO 00		277d→ R00	# 82	PRX		}
	"SIL HT?"				1/X		{
	PROMPT	1			PCL 88		l
	"SIL HT="	•			*	•	1
₩29 ₩36		1			2		1
	STO 98	1	h→ Ros	37	STO 06		And I -> P.
	PERIODO-	1	11-3 148		XEQ 03		אטוודן ייס
	PROMPT	1			RCL 96		1
	-PEPIOD=-	1	'	91			411d/L → Rob Rob + Sinh (Rob) → Ro.
₩35]			STO 87		Rac + Sinh (Rob) - Ro.
₩36	PRX.]		93	4		1.00
	Xf2]		94	ENTERT		
	RCL 86		'		PI		
39		- 4	ļ	. 96			
40	-	- 4			RCL 08		
41 42		4	4	98	RCL 02		
43		- 4		. 100			
	STO 01	- 4	L→ Roi		STO 89		40th D
	LBL "ITERAT"	- 1	L _{o→} Ros L _{old} → Ros		XEQ 03		19th → Roa
	STO 03		Lad -> Ros		RCL 89		1 ~
47	1/X	- 1		194			
48	PCL 88	-	}	105	RCL 87		•
49		1	277d P-4	196			
	STO 94	1	217d → Roa	197			
	EfX	1	· · ·	198			
	PCL 94	1	!	109			He/HL = Ke in displa
	CHS	3	į		SORT		LAHE - LE LI GISBIE
74 55	EtX]	{	学111			
	PCL P4		1	学112 学113			
76	706 5 9	1		3 -113	FEA		1

#THESE LINES MUST BE DELETED IF A PRINTER IS NOT AVAILABLE,

STEP KEY ENTRY KEY CODE COMMENTS STEP KEY ENTRY KEY CODE COMMENTS 114 PTM 115 PTM 115 PTM 117 PTM 118 PTM, 85 119 PTM 122 2 123 / 124 .EHB.								
115-UEL 83 116-STD 85 117-ETX 118-REL 95 119-CHS 120-ETX 121- 122- 123-/ 124-END,	STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
116 STO 95 117 ETX 118 RCL 95 119 CNS 120 ETX 121 - 122 2 123 / 124 .END.	114	PTH	•]				
117 EYX 118 PCL 65 119 CMS 120 EYX 121	115	♦LBL 03		4	 	<u> </u>		J
118 RCL e5 119 CMS 120 ETX 121 - 122 2 123 / 124 .EMD.	116	STO 95		1		<u> </u>	 	J
119 CMS 128 EYX 121 - 122 2 123 / 124 .END.				1	Ĺ	<u> </u>		
128 EYX 121 - 122 2 123 / 124 .END.	118	RCL 85		1	<u> </u>]
121 - 122 2 123 / 124 .ERD.]	<u> </u>		Ĺ	3
122 2 123 7 124 . END.				1	L]
123 / 124 .END.	121	-		}	<u> </u>]
124 .EMP.	122	2		j	<u> </u>			3
	123	/		Į				3
	124	.EMB,			<u> </u>	<u> </u>	Ĺ	3
				1]
				<u></u>				3
]]
				_]
			<u> </u>	1]
	[1]
				1				
				1]
]				
			!		L]
			↓	ł	ļ]
			<u> </u>	1	L			
			 	1	<u> </u>			}
]
			 		اــــا]
				ł	<u> </u>			
					<u> </u>			}
	}		 	Į	<u> </u>			}
			ļ		<u> </u>			}
				1	J	<u> </u>		1
					<u> </u>			
			<u> </u>		<u> </u>			
				ł	1			
					}			
								
					 			
					├			
					├ ──			
					 	~		1
					- -			
					<u> </u>			
					 			
								
					-	~		
					 			
	_			1	<u></u>			
				!	-			
	3				 			
					 			
					-		 -(
					├ ──			
					<u> </u>			
								
					<u> </u>			

*THESE LINES MUST BE DELETED IF A PRINTER IS NOT AVAILABLE.

APPENDIX

BLANK PROGRAM FORMS

Program Description

		
Program Title		
Name		Date
Address		
City	State	Zip Code
		
Program Description, Equations, Variables, etc.		
		
Operating Limits and Warnings		

Program Title

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
ļ				
h · ·				
ł				
}· · · ·				ļ
ļ				
				f
<u> </u>				
L				
				ļ
			i ii i	
<u> </u>				
		·		
 				
			<u> </u>	
		\	L	
[
l				
				L
]				
 				1
 -				

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001		ļ					J
		ļ <u>.</u>	-			I	4
		 	4	060	 	ļ	4
		 	-	<u> </u>	 	 	-{
			†		 	 	┥
		l	1		 		1
]				1
]]
010			-[↓
		ļ. —.	-{	 -	 	 	4
			1	 	 	 	-{
			7	070	 	 	1
]		1		1
]]
}			4	L	ļ]
		<u> </u>	1	-		ļ	4
020			1	 	 	ļ	4
			1	 	 	ł	1
			1		 		1
							1
			}	080]
]
			ļ	<u> </u>			
+			1	-			
	t		1	}			i
30				——			1
I							†
]
\longrightarrow \downarrow				-			
				090	l		
							
				<u> </u>			
							1
40							
					-		
				 			
+				100			
+							
50				 _	ļ		
 +				 -			
							
	1						
f				110			
+				 			
	<u></u>						

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
				170			
		·		ļ			
				}		ļ	
<u> </u>				}	ļ ————		
120							i i
-							1
 					-		1
├ ──					 		1
				180			i
]
				<u> </u>			
				<u> </u>	ļ		į.
					 		,
130				<u> </u>	ļ		
ļi					ļ	· · · · · · · · · · · · · · · · · · ·	
 	<u> </u>	L		}	 	 	
 				190		-	
				<u> </u>		· ·	j
							1
							!
]
					<u> </u>		
140				Ĺ			
				<u> </u>			Į
		·		 			
				200			
				ļ 			
							1
							,
150			•				
					L		
				<u> </u>			
 	··			210			
				<u> </u>			
							
							-
160							
				 			İ
	·			}			
				220			}
							
							
	1						

Hand-held calculator algorithms for coastal engineering (second series) / by Todd L. Walton, Jr.--Fort Belvoir, Va. : U.S. Army, Corps of Engineers, Coastal Engineering Research Center; Springfield, Va. : available from NTIS, 1982.

[41] p. : 27 cm.--(Coastal engineering technical aid ; no. 82-4)

"Novembe, 1982." Cover tit'e.

This report provides algorithms for a number of calculator programs useful in performing coastal engineering calculations, primarily in the area of wave transformations and wave generation. Six programs are included for use with HP4ICV hand-held calculators which employ the Reverse Polish Notation (RPN). These programs can be used to compute linear wave parameters, orbital velocities, breaking wave height and direction, shallow-water wave forecasts, depth-limited breaking wave height, and wave transmission past a vertical barrier. I. Calculator algorithms. 2. Coastal engineering. 3. Mave generation. 4. Wave transformation. 1. Title. II. Series.

no. 82-4

Hand-held calculator algorithms for coastal engineering (second series) / by Todd L. Walton, Jr.--Fort Belvoir, Va. : U.S. Army, Gorps of Engineers, Coastal Engineering Research Center ; Spring-

field, Va. : available from NTIS, 1982. [41] p. : 27 cm.--(Cosstal engineering technical aid ; no. 82-4) Cover title.

November 1982."

This report provides algorithms for a number of calculator programs compute linear wave parameters, orbital velocities, breaking wave height and direction, shallow-water wave forecasts, depth-limited breaking wave height, and wave transmission past a vertical barrier. 1. Calculator algorithms. 2. Coastal engineering. 3. Wave generation. 4. Wave transformation. I. Title. II. Series. useful in performing coastal engineering calculations, primarily in the area of wave transformations and wave generation. Six programs are included for use with HP41CV hand-held calculators which employ the Reverse Polish Notation (RPN). These programs can be used to

no. 82-4 .U581ta

series) / by Todd L. Walton, Jr.--Fort Belvofr, Va. : U.S. Army, Corps of Engineers, Coastal Engineering Research Center ; Springfield, Va. : available from NTIS, 1982. Hand-held calculator algorithms for coastal engineering (second

[41] p. : 27 cm.--(Coastal engineering technical aid ; no. 82-4)

"November 1982." Cover title,

This report provides algorithms for a number of calculator programs useful in performing coastal engineering calculations, primarily in the area of wave transformations and wave generation. Six programs are included for use with HP41CV hand-held calculators which employ compute linear wave parameters, orbital velocities, breaking wave height and direction, shallow-water wave forecasts, depth-limited breaking wave height, and wave transmission past a vertical barrier. the Reverse Polish Notation (RPN). These programs can be used to

1. Calculator algorithms. 2. Coastal engineering. 3. Wave generation. 4. Wave transformation. I. Title. II. Series.

no. 82-4

field, Va. : available from NTIS, 1982. [41] p. : 27 cm.--(Coastal engineering technical aid ; no. 82-4) Hand-held calculator algorithms for coastal engineering (second series) / by Todd L. Walton, Jr.--Fort Belvoir, Va. : U.S. Army, Corps of Engineers, Coastal Engineering Research Center ; Spring-

Cover title.

"November 1982."

This report provides algorithms for a number of calculator programs compute linear wav. parameters, orbital velocities, breaking wave heafit and direction, shallow-water wave forecasts, depth-limited breaking wave height, and wave transmission past a vertical barrier. I. Calculator algoritims. 2. Coastal engineering. 3. Wave generation. 4. Wave transformation. 1. Title. II. Series. useful in performing coastal engineering calculations, primarily in the area of wave transformations and wave generation. Six programs are included for use with HP4:ICV hand-held calculators which employ the Reverse Polish Notation (RPN). These programs can be used to

no. 82-4

DATE