

Manual de Instruções

ATECH FIND-IT ATECH

Controle do Documento

Histórico de revisões

Data	Autor	Versão	Resumo da atividade
<16/11/2022>	<raissa Sabino></raissa 	<3.1>	<informações das<br="" gerais="">seções 1 e 2 ></informações>
<17/11/2022>	<raissa Sabino></raissa 	<3.2>	<complemento de<br="">informações das seções 1 e 2 ></complemento>
<18/11/2022>	<raissa Sabino></raissa 	<3.2>	<pre><informações 1="" 2="" complementares="" e="" nas="" seções=""></informações></pre>
<20/11/2022>	≺Thainá Lima>	<3.3>	< Arquitetura da solução atualizada >
<21/11/2022>	≺Thainá Lima>	<3.4>	< Guia de montagem do RFID>
<22/11/2022>	<thainá lima<="" td=""><td><3.5></td><td>< Montagem dos leds, display e botão ></td></thainá>	<3.5>	< Montagem dos leds, display e botão >

Índice

1. Introdução	3
1.1. Solução	3
1.2. Arquitetura da Solução	3
2. Componentes e Recursos	4
2.1. Componentes de hardware	4
2.2. Componentes externos	4
2.3. Requisitos de conectividade	4
3. Guia de Montagem	5
4. Guia de Instalação	6
5. Guia de Configuração	7
6. Guia de Operação	8
7. Troubleshooting	9
8. Créditos	10

1. Introdução

1.1. Solução

O objetivo da solução é a localização de pessoas em ambientes termossensíveis.

Inicialmente, a partir dos materiais disponibilizados pelo cliente e o workshop com a equipe, foram dadas opções de ativos para escolha do time. Nota-se, como sugestões do cliente, o fluxo de objetos entre as salas da instalação, objetos estáticos dentro de galpões/salas e pessoas que trabalham em ambientes termossensíveis.

A proposta de solução que indica a localização de trabalhadores em possíveis ambientes termossensíveis, pode identificar fatores de ganho para a empresa, como a agilidade no controle de salas e departamentos, além da melhor gestão de funcionários nesses espaços, gerando vantagem competitiva.

Os benefícios trazidos pela solução incluem o monitoramento da jornada de trabalho em ambientes com restrição de temperatura,

garantindo a manutenção da segurança dos funcionários nos diversos espaços da empresa.

De acordo com o cliente, uma solução que tenha uma boa durabilidade de energia, localização precisa (com o desvio de até 5 metros), além da estruturação adequada e armazenamento da última localização do ativo, afim de facilitar a visualização das informações para o analista desses dados, seriam os fatores essenciais de avaliação e funcionalidade para a empresa.

1.2. Arquitetura da Solução

Os Beacons (Figura 1) possuem comunicação entre si para o cálculo de distância entre os 3 dispositivos e a Tag principal.

A Tag (Figura 2) obtém comunicação com os Beacons e o Servidor Node.JS.

O RFID (Figura 3) é acoplado a Tag para que o usuário possa acessá-la(ter o credenciamento) a partir do seu cartão de funcionário.

O roteador (Figura 4) envia informações da rede, a partir da Tag para o Servidor Web.

O Node.JS (Figura 5) condiz com a dinamicidade da interface web, combinada à ações transpostas pelo hardware.

Os leds vermelho, amarelo e verde(Figuras 6, 7 e 8) são utilizados para dar feedback ao usuário conforme o estado do sistema.

No protótipo, o display LCD (Figura 9) é aplicado no feedback visual e verbal para o usuário.

Para a aplicação, nesse momento, o push button (Figura 10) é empregado para sinalizar o momento em que o usuário sai do ambiente e pausa o temporizador.

Por fim, destaca-se a interface web (Figura 11) que se relaciona com aspectos do hardware.

Figura 1: Beacons são microcontroladores de máxima performance ESP32-S3.

Figura 2: Tag corresponde ao microcontrolador que estará acoplado ao usuário.

Figura 3: O RFID utiliza ondas eletromagnéticas para identificar objetos alimentados pela energia de ondas eletromagnéticas.

Figura 4: O cartão RFID utilizado é alimentado por energia eletromagnética e, a partir do cadastro de funcionário, é possível identificá-lo em contato com o módulo RFID.

Figura 5: O roteador mantém os dispositivos conectados à rede.

Figura 6: Node JS comporta-se como um ambiente de código aberto que permite páginas web dinâmicas.

Figura 7: O led vermelho é um emissor de luminosidade no espectro vermelho.

Figura 8: O led amarelo é um emissor de luminosidade no espectro amarelo.

Figura 9: O led verde é um emissor de luminosidade no espectro verde.

Figura 10: O LCD (Liquid Crystal Display) é um dispositivo de visualização imagética.

Figura 11: Interruptor que conduz eletricidade quando pressionado.

Figura 12: Software que se relaciona com a posição e tempo da Tag dentro do ambiente, além de informações adicionais.

Primordialmente, a Tag estará disponível para que o funcionário Atech recolha, juntamente com EPIs (Equipamentos de Proteção Individual) normalmente utilizadas em ambientes com temperaturas críticas e de risco para a saúde humana.

Para que o trabalhador que está utilizando a Tag seja reconhecido, é necessário aproximar o cartão RFID (cartão único de cada trabalhador). É importante ressaltar que enquanto o acesso não é realizado, o led vermelho se mantém aceso, a fim de ressaltar para o utilizador que o credenciamento ainda não foi feito. A partir dos passos iniciais para acesso, o led amarelo será ativado, para que o usuário entenda que o acesso ao servidor está sendo realizado.

Quando o Node. Js é conectado, o led verde passa para a ativação e sinaliza-se o credenciamento por mensagens visuais no display. Visto que, a ideia principal consiste na localização do usuário, assim que o funcionário entra no espaço monitorado pelos beacons, a conexão entre beacons e tag é realizada. Por fim, a contagem de tempo é iniciada.

Feedback para o usuário que ainda não realizou o acesso para coleta da Tag. Cartão de acesso (único). Feedback para o acesso ao servidor. Reconhecimento de Credenciais e comunicação ao servidor. Peedback de acesso e credenciamento feito de coleta da Tag. Ativamento "manual" do temporizador, que reflete na confirmarção da pessoa no ambiente. Processos do RFID. que terá conexão com o servidor para confirmação de dados.

Figura 13: Arquitetura da solução.

2. Componentes e Recursos

2.1. Componentes de hardware

1- Beacons

Marca/ modelo: ESP 32-S3 NodeMCU - IoT com WiFi; Função: Calcula a distância entre Beacons e Taq.

2-Tag

Marca/Modelo: ESP32S3 NodeMCU, IoT com WiFi;

Função: Componente que realiza o cálculo de trilateração e envia

informações para o Node JS.

3- Display

Marca/Modelo: LCD (Liquid Crystal Display) 16x2;

Função: É um dos principais meios de feedback para as ações do

usuário na Tag.

4-Botão

Marca/modelo: Push button arduino 6x6x5mm;

Função: Elemento de clique/pressão para executar o comando

indicado.

5- Led Vermelho

Marca/modelo: Led difuso vermelho 5mm;

Função: O led vermelho é colocado como uma das formas de

feedback no hardware.

6 - Led Amarelo

Marca/modelo: Led difuso amarelo 5mm;

Função: O led amarelo é colocado como uma das formas de

feedback no hardware.

7- Led Verde

Marca/modelo: Led difuso verde 5mm

Função: O led verde é colocado como uma das formas de feedback

no hardware.

8 - Roteador

Marca/modelo: Será escolhido pela Atech (-)

Função: Manter a Tag conectada à internet.

9-RFID

Marca/modelo: RFID mfrc522

Função: Forma de identificar o usuário da Tag, a partir da

aproximação do cartão de funcionário.

10-Cartão RFID

Marca/modelo: Cartão Rfid Programável Mifare 13,56Mhz;

Função: Identificador único do funcionário Atech.

11- Protoboard

Marca/modelo: Protoboard de 830 pontos;

Função: Placa de prototipagem, facilitando a montagem e

dispensando o uso da solda.

12- Jumper

Marca/modelo: Jumper Premium 40p x 20cm - (Macho / Macho;

Macho / Fêmea; Fêmea / Fêmea);

Função: Conectar as pinagens adequadas entre os dispositivos e o

Esp 32-S3.

13-Resistores

Marca/modelo: Resistor 120 Ohm 5% 1/4w:

Função: Limita o fluxo de corrente elétrica e evita que os

dispositivos queimem.

14- Power bank

Marca/modelo: Carregador Portátil Power Bank Pineng 10000 Mah

V8 e Iphone;

Função: Manter a alimentação de energia para a Tag.

2.2. Componentes externos

14-Node.Js

Marca/modelo: Node JS (servidor web);

Função: Enviar mensagem entre o Tag e a Interface web.

15-Interface WEB

Marca/modelo: Interface desenvolvida pelo grupo e entregue no

final do projeto (formato HTML e CSS);

Função: Interface de contato direto com o usuário que terá acesso

às localizações, facilitando a usabilidade.

16- Computador

Marca/modelo: Computador utilizado pela Atech;

Função: Compilar o código de gravação e acessar a plataforma web.

17- Arduino IDE

Marca/modelo: Versão 1.8.19;

Função: Editar códigos e enviar para o esp32.

2.3. Requisitos de conectividade

Para a conectividade entre front-end e back-end foi utilizado o Node.js que configura-se como um ambiente de servidor de código aberto, além disso, permite a conectividade entre a plataforma e o hardware.

A fim de realizar a construção do sistema embarcado, foi utilizada a livraria Arduini WebSocket Client ESP32. Os comandos indicados para a execução, mostram assim que a conectividade com a rede WIFI é realizada, o WebSocket é acessado e a relação com o Servidor é feita.

3. Guia de Montagem

MONTAGEM DO RFID

Para a montagem da Tag, primordialmente, utiliza-se a protoboard, jumpers macho-fêmea, Esp 32-S3 e o RFID. A Tag será desbloqueada pelo cartão do usuário, dando início ao processo de credenciamento da mesma, que será localizada.

Com o Esp 32-S3 encaixado na protoboard, inicia-se a conexão com o RFID:

• Pino **SDA** ligado na porta 21 do Esp 32-S3:

SDA: Para conectar o SDA, você deve encaixar o lado fêmea do jumper no pino correspondente ao SDA, o lado macho deve ser encaixado no furo correspondente a porta 21 do Esp 32-S3.

Figura 16: RFID (SDA 21).

• Pino **SCK** ligado na porta 14 do Esp 32-S3:

Figura 14: Montagem do RFID na Protoboard.

Figura 15: RFID.

O RFID possui 8 pinos que estão ligados pelo jumper a uma porta correspondente no Esp 32-S3.

SCK: Para conectar o SCK, você deve encaixar o lado fêmea do jumper no pino correspondente ao SCK, o lado macho deve ser encaixado no furo correspondente a porta 21 do Esp 32-S3.

Figura 17:RFID (SCK 14).

• Pino MOSI ligado na porta 12 do Esp 32-S3:

MOSI: Para conectar o MOSI, você deve encaixar o lado fêmea do jumper no pino correspondente ao SDA, o lado macho deve ser encaixado no furo correspondente a porta 12 do Esp 32-S3.

Figura 18: RFID (MOSI 12).

• Pino **MISO** ligado na porta 11 do Esp 32-S3:

MISO: Para conectar o MISO, você deve encaixar o lado fêmea do jumper no pino correspondente ao MISO, o lado macho deve ser encaixado no furo correspondente a porta 11 do Esp 32-S3.

Figura 19: RFID (MISO 11).

Pino NC - Não conectado

• Pino **GND** ligado na porta GND do Esp 32-S3:

GND: Para conectar o GND, você deve encaixar o lado fêmea do jumper no pino correspondente ao GND do RFID, o lado macho deve ser encaixado no furo correspondente a porta GND do Esp 32-S3.

Figura 20: RFID (GND).

• Pino **RST** ligado na porta 13 do Esp 32-S3:

RST: Para conectar o RST, você deve encaixar o lado fêmea do jumper no pino correspondente ao RST, o lado macho deve ser encaixado no furo correspondente a porta 13 do esp32.

Figura 21: RFID (RST 13).

• Pino **3.3** – ligado ao pino 3.3 V do Esp 32-S3:

3V3: Para conectar o 3V3, você deve encaixar o lado fêmea do jumper no pino correspondente ao 3V3 do RFID, o lado macho deve ser encaixado no furo correspondente a porta 3V3 do Esp 32-S3.

Figura 22: RFID (3.3V).

MONTAGEM DOS LEDS, DISPLAY E BOTÃO

Para a arquitetura da solução que darão o feedback das ações do usuário, serão utilizados leds (vermelho, verde e amarelo, resistores, botão e display.

Inicia-se, então, com a disposição dos elementos na protoboard conforme o espaço disponível, visto que, o RFID já foi instalado.

Informação especial para o led

Cada led é formado por dois ganchos. O gancho menor ou levemente torcido, representa o lado negativo, portanto, é necessário conectar os resistores na pinagem horizontal referente ao mesmo.

Figura 23: Bloco correspondente ao retorno para o usuário.

A pinagem negativa (conectada ao resistor) é relativa ao pino
 18. Já o Gancho positivo é conectado em direção ao GND.
 Ambos utilizam jumpers macho-macho.

Figura 24: Feedback (Gancho positivo GND, Gancho negativo 18).

A pinagem negativa (conectada ao resistor) é relativa ao pino
 17. Já o Gancho positivo é conectado em direção ao GND.
 Ambos utilizam jumpers macho-macho.

Figura 25: Feedback (Gancho positivo GND, Gancho negativo 17).

A pinagem negativa (conectada ao resistor) é relativa ao pino
 8. Já o Gancho positivo é conectado em direção ao GND.
 Ambos utilizam jumpers macho-macho.

Figura 26: Feedback (Gancho positivo GND, Gancho negativo 18).

• No botão, conecta-se a o pino superior em 3.3V. Já o pino superior localiza-se no **37** do Esp 32-S3. Novamente, utilizam-se os jumpers macho-macho.

- Figura 27: Feedback (Pino superior 3.3V, Pino inferior 37).
- Destaca-se que todas as imagens são meramente ilustrativas. É importante que as pinagens sejam seguidas referente ao microcontrolador que está sendo utilizado.

Informação especial para o display

O display LCD utilizado no protótipo possui apenas 4 pinagens. Portanto, serão considerados apenas os primeiros 4 pinos da imagem.

Figura 28: Feedback (Display).

 O primeiro pino corresponde ao GND, que pode ser ligado no espaço GND disponível na placa. Visto que o I2C, conectado ao display é reduzido a 4 ganchos, é possível a aplicação de jumpers macho-fêmea.

Figura 29: Feedback (GND GND).

 O segundo pino relaciona-se com o VCC. Conecta-se, então, na porta de 5V, para que a total luminosidade do display seja aproveitada.

Figura 30: Feedback (VCC 5V).

• O terceiro pino, SDA, conecta-se na entrada 9. Ressalta-se a utilização de jumpers macho-fêmea.

Figura 31: Feedback (SDA 9).

• Por fim, finaliza-se com a pinagem SCL que é conectada ao **pino 10.** Mantém-se a utilização de jumpers macho-fêmea.

Figura 32: Feedback (SCL10).

4. Guia de Instalação

(sprint 4)

Descreva passo-a-passo como instalar os dispositivos loT no espaço físico adequado, conectando-os à rede, de acordo com o que foi levantado com seu parceiro de negócios.

Não deixe de especificar propriedades, limites e alcances dos dispositivos em relação ao espaço destinado.

Especifique também como instalar softwares nos dispositivos.

Utilize fotografias, prints de tela e/ou desenhos técnicos para ilustrar o processo de instalação.

5. Guia de Configuração

(sprint 4)

Descreva passo-a-passo como configurar os dispositivos IoT utilizando os equipamentos devidos (ex. smartphone/computador acessando o servidor embarcado ou a página na nuvem).

Utilize fotografias, prints de tela e/ou desenhos técnicos para ilustrar o processo de configuração.

6. Guia de Operação

(sprint 5)

Descreva os fluxos de operação entre interface e dispositivos IoT. Indique o funcionamento das telas, como fazer leituras dos dados dos sensores, como disparar ações através dos atuadores, como reconhecer estados do sistema.

Indique também informações relacionadas à imprecisão das eventuais localizações, e como o usuário deve contornar tais situações.

Utilize fotografias, prints de tela e/ou desenhos técnicos para ilustrar os processos de operação.

7. Troubleshooting

(sprint 5)

Liste as situações de falha mais comuns da sua solução (tais como falta de conectividade, falta de bateria, componente inoperante etc.) e indique ações para solução desses problemas.

#	Problema	Possível solução
1		
2		
3		
4		
5		

8. Créditos

(sprint 5)

Seção livre para você atribuir créditos à sua equipe e respectivas responsabilidades