What is Volt-Var Optimization?

 Volt-Var Optimization (VVO) optimally manages system voltage (V) and reactive power flow (Q) to achieve efficient distribution grid operation

OTLC = On-Load Tap Changer

CB = Capacitor Bank

VR = Voltage Regulator

Questions

- What should be OLTC setting? Why?
- Where should VR be placed and how is it operated? Why?
- When should CB be ON? Why? 3.
- What happens after we change these settings?
 - * Concern: Varying Load (Magnitude & Types)
 - * Size and Location of CB are very important.

OLTC

Conservative Voltage Reduction

Conservative Voltage Reduction (CVR) =
 operating all Volt-Var components
 at *lower* feeder voltage within limit

Features:

* Lower system demand also means less profit

- 1. Lower system demand and losses at 0.7% 1.0% per 1% voltage reduction (e.g. with minimal reactive power losses)
- 2. Peak Load Reduction
- 3. Control volt-var components
- 4. Improved feeder voltage protection
- 5. Tackle voltage issues with increasing DG
- Lower Emission

VVO: Required Components

VVO: Required Components

LTC: cost-effective for circuits with 3 or more feeders
 able to regulate voltage with high load
 unable to regulate for unbalance, single failure affects loads connected

VR: choice between single phase VR and three phase VR → OK for unbalance load can be maintained without the impact of transformer fault is difficult to detect (under differential zone)
3 phase VR more expensive than LTC

3. Cap bank: provide voltage support and power factor correction \rightarrow effective to reduce losses

can be controlled by local controllers or SCADA create **additional operations** to LTC multiple smaller banks are preferred can be controlled based on V, I, Q/PF, time, temperature cap bank has the right to operate first before regulators

4. Smart Inverters: controlled by fixed PF, V/P, V/Q (mostly for PV)

hunting and system instability may occur with consumption of var to lower V

Others: STATCOM, SVC, BESS, Dispatchable Loads

cascaded VR can be used

VVO: Required Components

- 1. Filter out strange data itself
- Make sure all operation in range
- Decide hierarchical control (who should have say in emergency)

Substation

VVO: Actual Control Flowchart

VVO: DERMS + Aggregator

VVO: Supervisory Control OR Stand-alone?

Stand-Alone Control

- Low implementation cost
- No need communication
- No need learning/ coordination
- Not 'optimal' solution to turn ON

Supervisory Control

- High installation cost
- Requires two-way communication
- Learning/ Coordination can be simple
- Improved Efficiency and Possible Optimization

^{*} How much we should do?

VVO: Capacitor Placement & Control

Consideration: 1. Where to put? 2. How much to put? 3. How to control?

Distributed Capacitors Controller

- 1. Independent Phase Switch \rightarrow Balance the system
- Zero-crossing switching → Avoid current spike
 (Zero-voltage switch ON, Zero-current switch OFF)
- 3. Monitor Power Quality and Detect Fault
- 4. Shunt cap to absorb harmonics, increase capacity
- Possible telecom interference

Integrated Distribution Management System

- Improved efficiency, grid performance, demand management, visibility and data for decisions
- 2. 2/3 losses in distribution → minimize loss (esp. for valley and peak condition)
- 3. Virtual Power Plant & Demand Response Applications

VVO: Foreign Initiatives and Results

Table 1:	Foreign	Initiatives	and	Results

Snohomish	Investment: \$5 million			
County PUD	(26% Communication; 44% Capacitor; 10% VR; 20% DMS)			
	Energy Saving = $53,856MWh/yr$, Reduced Losses = $11,226MWh/yr$			
	Typical Feeder: 1.61% energy saving (198MWh/yr)			
	* Smart Grid Investment Grant: \$1.5 millions			
	Equipment needed: Line Drop Compensator, Voltage Regulator,			
	Capacitors, System Metering, Reconductoring,			
	Advanced Modelling Tools, Communication Network			
	Sensors			
	Benefits: Reduced Load and Line Losses; Improved Reliability;			
	Substation Automation; Reduced Maintenance Costs			
Northwest				
Energy	2.5% voltage reduction → 2.07% energy saving			
Efficient	without impact on consumer power quality			
Alliance	without impact on companier power quanty			
Oklahoma Gas	42 Feeders with 2.06% (>2% as target)/ 8MW peak load reduction			
& Electric	Goals: Expand to 300 Feeders with 74MW reduction			

Conservative Voltage Reduction factor (CVRf)

$$CVRf = \frac{\Delta P}{\Delta V}$$

amount of power reduction per 1% voltage reduction (0.7% - 1%)

Table 2: CVRf on Paper			
Utility/Paper	CVRf		
Dominion Virginia Power	0.92%		
Northwest Energy Efficient Alliance	0.78%		
Snohomish County PUD	0.62%		
Hydro Quebec.	0.55%		
PECO	0.50%		

^{*} Don't Implement CVR/VVO at

Data centre → More Losses

Observations: CVRf is **season** & **load-dependent**.

Losses – Voltage Characteristics

* Run Power Flow Simulation to compare VVO On and OFF difference → benefit

VVO: Formulation

$$P_{optimal} = f(V, I, OLTC, CB, VR, P_{DG}, Q_{DG}, P_L, Q_L)$$

Voltage Constraint: $V_{MIN} \le V \le V_{MAX}$ (by law)

Current Constraint: $I_{MIN} \leq I \leq I_{MAX}$ (thermal constraint)

Apparent Power Constraint: $S_{MIN} \leq S \leq S_{MAX}$ (transformer saturation)

Power Factor Constraint: $PF_{MIN} \leq PF \leq PF_{MAX}$ (by law)

Objective Function:
$$J = \sum_{i=1}^{24} \mu_{\Delta V_{2i}} + \sum_{i=1}^{24} \mu_{pf_i} + \mu_{N_{tap}} + \mu_{N_C}$$

Make sure voltage and Minimize no. of

PF are close to set point tap change/CB ON Off

- Load forecasting and Power Flow analysis are needed to find optimal schedule.
- **2. Real time coordination** with master controller is needed.
- 3. System Reliability is improved as Volt-Var components react to events in grid.

VVO: Necessity in Load Modelling

Load Modeling provides information on **potential in CVR** and **influences of voltage to load**. (But it is time-dependent)

- Three types of load modelling: Curve Fitting (e.g. ZIP load), Physical Components (e.g. Lighting, Air Conditioning in Residential/Industrial), AI-based (Recurrent NN)

Motors:

Both high/ low voltage takes more current, and leads to overheat.

Curve fitting is **easy to do**, but it is changing in time. Physical components are more preferred as it is **behavioral based**, but it requires **client information**. Al-based shows **best result**, but it takes large **computation effort**.

%saving = 2 x %voltage reduction x % Z load

VVO: CVRf to load type and Thermal Cycle

^{*} Average CVRf ~ 0.7% – 1%

Thermal Cycle in Air Conditioning

- 1. More on feedback control
 - → lower V = need a longer time to cool down the room= same energy overall
- 2. More complex calculation

- (a) Thermal storage
- (b) Varying outdoor and indoor situation

VVO = Data Driven Decision

Load is *fluctuating* in nature.

How close sensors should be put in feeder?

Data is detected as fluctuating.

Possibility: 1. It is really fluctuating (99%)?

2. It is a wrong data (1%)?

Decision based on wrong data is dangerous!

Method 1: Resampling

* Data should **sample more frequent** at time load fluctuates much/ load at peak demand

Method 2: Modelling to check/replace data

* e.g. EPRI Green Circuit: $kW = K_1 (KW_{avg}) + K_2 (V)$

Everything in blind are estimated with model

which is basically **ZIP load**: $P(V) = K_P + K_I(V) + K_Z(V^2)$

* It helps smoothening out data. Applying delay to decision also works.

VVO: Technical Challenges

- Distribution State Estimation: Load information, DG and Power Flow are essential to VVO decision.
- Computational Burden: Optimization Problem and Load Forecasting are difficult and time consuming to solve.
- Complex Network Analysis: Unbalanced system, meshed system with DG, Hierarchical control are in application.
- Practical Consideration: Parallel transformer control, voltage collapse ride-through, load variation – what to do?
- Data Analytics: AMI receives intensive amount of data with computation where to store and what should be the sampling time?
- Reported Problems: Transformer Saturation (with only AMI)

VVO: Increasing DG Penetration

^{*} Data at feeder start and end, VR, load and DG are needed.

SWOT Analysis for VVO

Strength:

- Large network = high potential for energy and losses reduction
- With prior knowledge to operate cap bank/ LTC/ VR

Opportunity:

- Increasing AMI
- Increasing DG connected
- Initiatives in Demand Response/ Loss Reduction
- Less demand
 - = delayed replacement/
 additional components

Weakness:

- no subsidies to construct the infrastructure → costs
- takes time to understand the mechanism
 reliability?

Threat:

- More new control & components= More uncertainty
- Data Leakage / Data Integrity
 power system control is safe?
- Voltage is lowered than expected (Violate the rule)

Decision Making for Voltage Optimization?

Energy Consumption & Cost
Load Profiles & Equipment Utilization
Voltage Oversupply/Tolerance
Load Type & Potential Cost Saving
* Any Alternatives?

Site Service/Product Supplier Warranty & Regulations

Understand

Evaluate

Assess Feasibility

Procure

Implement

Business Drivers
Network Plan Strategies
Energy Management
Potential Risks on Power Quality
Known issues on Infrastructure
Enough Information on Equipment?

Total Cost of Ownership (TCO)
Technical Consideration
Operation & Maintenance
Alternatives to each components
Risk Management
Pre-Implementation Assessment

Pre/Post Installation Roles/ Responsibility?

- 1. What is the cost benefit?
- 2. How much to do/aim at?