3. Let U be an open subset of \mathbb{R}^n . Show that the exterior derivative $d: \Omega^*(U) \to \Omega^*(U)$ satisfies the cocycle condition; that is, $d^2 = 0$.

Let
$$\omega = f dx^{\pm} \in \Omega^{*}(u)$$
. Then

$$\int_{0}^{2} \omega = \partial \left(\partial \omega \right)$$

$$= \partial \left(\sum_{i} \frac{\partial f}{\partial x_{i}} \partial x_{i} \wedge \partial x_{i}^{T} \right)$$

$$= \sum_{i} \frac{\partial^{2} f}{\partial x_{i} x_{i}} \partial x_{i}^{T} \wedge \partial x_{i}^{T} \wedge \partial x_{i}^{T}$$

In this sum, if i= , then $dx^i n dx^i = 0$ so the term is 0.

If not, there is a corresponding $dx^i n dx^j$ to each $dx^j n dx^i$, if the alternating property of the wedge product causes these terms to annihilate. Thus the entire sum is 0, as desired.