HW4_Part2_Henry_Romero

March 10, 2025

```
[32]: import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      import seaborn as sns
      from sklearn.model_selection import train_test_split, cross_val_score
      from sklearn.preprocessing import MinMaxScaler
      from sklearn import linear model
      from sklearn.metrics import mean_squared_error, r2_score, u
       →explained_variance_score
      # Load dataset
      file_path = "~/Downloads/advertising.csv" # Update to the avertising data set_
       ⇔with 3 variables affecting sales
      df = pd.read_csv(file_path)
      # Display dataset information
      print("Dataset Info:\n", df.info())
      print("\nDataset Description:\n", df.describe())
      print("\nData Types:\n", df.dtypes)
      # Preprocessing Section and handle missing values
      print("\nChecking for missing values:\n", df.isnull().sum())
      df.dropna(inplace=True) # Removing rows with missing values (Not needed here)
      # Correlation Matrix
      corr_matrix = df.corr()
      print("\nCorrelation Matrix:\n", corr_matrix)
      # Generate Correlation Heatmap
      plt.figure(figsize=(6,4))
      sns.heatmap(corr matrix, annot=True, cmap="coolwarm") #Small for a small__
       ⇔dataset with 2 variables
      plt.title("Correlation Matrix Heatmap")
      plt.show()
```

```
# Normalize Data with the minmax scaler
scaler = MinMaxScaler()
df_scaled = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)
# Split Data
X = df_scaled.iloc[:, :-1] # Independent variables (TV, Radio, Newspaper)
→Everything except the last column
y = df_scaled.iloc[:, -1]
                         # Dependent variable (Sales) Only last column
print("Mulivalue Variables:",X)
print("Dependent variable:",y.name)
print(y)
# Conduct and Train Linear Regression Model
model = linear_model.LinearRegression()
→random_state=42) # 20 percent in training here
model.fit(X_train, y_train)
# Make Predictions
y_pred = model.predict(X_test)
print("Prediction:", y_pred)
# Evaluate Model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
explained_var = explained_variance_score(y_test, y_pred)
cross_val = cross_val_score(model, X, y, cv=5).mean()
print("Mean Squared Error:", mse)
print("R^2 Score:", r2)
print("Explained Variance Score:", explained_var)
print("Cross-Validation Score:", cross_val)
# Plotting graphs
## scatter plot for Predicting Values
plt.figure(figsize=(6,4))
plt.scatter(y_test, y_pred, color='blue', alpha=0.5)
plt.plot([0, 1], [0, 1], linestyle='dashed', color='red') # Ideal line
plt.xlabel("Actual Values")
plt.ylabel("Predicted Values")
plt.title("Linear Regression: Actual vs. Predicted")
plt.show()
## Bar Chart to illustrate the importance a variable is to sales by \Box
 ⇔coefficenient value
```

```
### Just like the heatmap, TV is what is the most effective in advertising
plt.figure(figsize=(6,4))
coefficients = pd.DataFrame(model.coef_, X.columns, columns=['Coefficient'])
coefficients.plot(kind='bar', legend=False)
plt.title("Feature Importance (Linear Regression Coefficients)")
plt.xlabel("Features")
plt.ylabel("Coefficient Value")
plt.grid(axis="y")
plt.show()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	TV	200 non-null	float64
1	Radio	200 non-null	float64
2	Newspaper	200 non-null	float64
3	Sales	200 non-null	float64

dtypes: float64(4) memory usage: 6.4 KB

Dataset Info:

None

Dataset Description:

	TV	Radio	Newspaper	Sales
count	200.000000	200.000000	200.000000	200.000000
mean	147.042500	23.264000	30.554000	15.130500
std	85.854236	14.846809	21.778621	5.283892
min	0.700000	0.000000	0.300000	1.600000
25%	74.375000	9.975000	12.750000	11.000000
50%	149.750000	22.900000	25.750000	16.000000
75%	218.825000	36.525000	45.100000	19.050000
max	296.400000	49.600000	114.000000	27.000000

Data Types:

TV float64
Radio float64
Newspaper float64
Sales float64

dtype: object

Checking for missing values:

TV 0
Radio 0
Newspaper 0
Sales 0
dtype: int64

Correlation Matrix:

	TV	Radio	Newspaper	Sales
TV	1.000000	0.054809	0.056648	0.901208
Radio	0.054809	1.000000	0.354104	0.349631
Newspaper	0.056648	0.354104	1.000000	0.157960
Sales	0.901208	0.349631	0.157960	1.000000

Mulivalue Variables:			TV
0	0.775786	0.762097	0.605981
1	0.148123	0.792339	0.394019
2	0.055800	0.925403	0.606860
3	0.509976	0.832661	0.511873
4	0.609063	0.217742	0.510994
		•••	•••
195	0.126818	0.074597	0.118734
196	0.316199	0.098790	0.068602
197	0.596212	0.187500	0.053650
198	0.956713	0.846774	0.579595
199	0.782550	0.173387	0.073879

[200 rows x 3 columns]
Dependent variable: Sales

0 0.807087 1 0.346457

Radio Newspaper

```
2
       0.409449
3
       0.586614
4
       0.641732
195
       0.236220
196
       0.488189
197
       0.519685
198
       0.940945
199
       0.661417
```

Name: Sales, Length: 200, dtype: float64

Prediction: [0.6076682 0.74054096 0.87102318 0.30207816 0.79065822 0.43186621

0.76697616 0.27914766 0.61563042 0.59317223 0.28834508 0.27093443 0.65383907 0.25462627 0.43486259 0.52486725 0.25701362 0.64168369 0.37042545 0.74324126 0.75615427 0.43302492 0.36634578 0.81844676 0.30779374 0.2490184 0.75744429 0.48091376 0.36105548 0.2490876 0.56533361 0.35570506 0.75602048 0.34780873 0.78655414 0.77100964

 $\hbox{\tt 0.41449676 0.83502097 0.43346172 0.1915123]}$

Mean Squared Error: 0.0045070322249846405

R^2 Score: 0.9059011844150826

Explained Variance Score: 0.9110403201701543 Cross-Validation Score: 0.8953723525274103

<Figure size 600x400 with 0 Axes>

