Laborator 1

Deadline: saptamana 4

Se considera o imagine reprezentata printr-o matrice de pixeli, F, de dimensiune (NxM).

Se cere transformarea ei aplicand o filtrare cu o fereastra definita de multimea de indici W cu coeficientii w_{kl} (reprezentati prin matricea W[k,l], unde $0 \le k \le n$, $0 \le l \le m$; si $n \le N$, $m \le M$).

Transformarea unui pixel:

$$v(m,n) = \sum_{(k,l)\in W} w_{kl} f(m-k,n-l)$$

De exemplu:

$$W = \left(\begin{array}{ccc} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{array}\right)$$

Exemplificare -> https://de.wikipedia.org/wiki/Datei:2D_Convolution_Animation.gif

Se cere asigurarea urmatoarei postconditii:

Postconditie: Matricea rezultat V contine imaginea filtrata a imaginii initiale F (V<>F)

- A) Program secvential
- B) Program paralel: folositi **p** threaduri pentru calcul.

Obiectiv: Impartire cat mai echilibrata si eficienta a calculul pe threaduri!

Pentru impartirea sarcinilor de calcul (taskuri) se foloseste descompunere geometrica care poate fi

(puteti alege o varianta sau sa incercati mai multe si sa o identificati pe cea mai buna):

- Pe orizontala (mai multe linii alocate unui thread)
- Pe verticala (mai multe coloane alocate unui thread)
- Bloc submatrici alocate unui thread
- bazat pe o functie de distributie prin care unui index al unui thread i se distribuie o submultime de indecsi din matrice.

Alocarea se poate face prin distributie liniara (indici alaturati la acelasi thread) sau distributie ciclica(cu pas egal cu p).

Datele de intrare se citesc dintr-un fisier de intrare "date.txt".

(Fisierul trebuie creat anterior prin adaugare de numere generate aleator.)

Implementare:

- a) Java
- b) C++ (cel putin C++11)
 - i. matricile sunt alocate static
 - ii. matricile sunt alocate dinamic

Folosire directa a threadurilor => nu se permite folosirea executorilor.

Testare: masurati timpul de executie pentru

- 1) N=M=10 si n=m=3; p=4;
- 2) N=M=1000 si n=m=5; p=2,4,8,16
- 3) N=10 M=10000 si n=m=5; p=2,4,8,16
- 4) N=10000 M=10 si n=m=5; p=2,4,8,16

ObservatII:

- Fiecare test trebuie repetat de 5 ori si pentru evaluarea timpul de executie se considera media aritmetica a celor 5 rulari.
- Pentru fiecare varianta a cazului de testare 1) folositi acelasi fisier "date.txt";
- similar pentru cazurile 2), 3) si 4)

Analiza

Comparati performanta pentru fiecare caz – secvential versus paralel si variantele paralele intre ele.

Comparati timpii obtinuti cu implementarea Java versus implementarea C++.

Comparati cele doua variante pentru implementarea C++.

Rezultatele acestei trebuie sa fie reflectate in documentatie intr-un tabel.