Security

Security Problem

- Some systems are inviting targets to thieves.
 - Systems containing payroll and other financial data
- OS and hardware have defences.
 - But the users must conform to the intended use.
- A system is secure if resources are used and accessed as intended under all circumstances.
- Security violations can be intentional or accidental
 - Most default protection mechanisms protect us from accidental attacks.

Keywords

- Intruder and cracker
 - For those attempting to breach security
 - The word hacker is used in a wrong way.
 - If the hacker is malicious, we call it a cracker
- A **threat** is the potential for security violation
 - Such as the discovery of a vulnerability
- An attack is the attempt to break the security.

Types

- Masquerading
 - One participant pretens to be someone else.
 - By masquerading, they breach authentication.
 - The correctness of identification
 - Thus, they can gain access to what they would not normally access to.

Types

- Replay attack
 - Consists of malicious or fraudalent repeat of a valid data transmission.
 - Sometimes the replay is the entire attack
 - Try to repeat a money transfer
 - Usually done with message modification, to escalate privileges.

Types

- MITM (Man in the middle attack)
 - Attacker sits in the data flow of a communication, masquerades as the sender to the receiver and vice versa.
 - In a network comm, it is possible that a session hijacking occurs to make a mitm attack.
 - An active comm. session is intercepted.

- We must take security measures at 4 levels.
- Physical
 - Site or sites containing the computer systems must be physically secured.
 - Machine rooms and terminals, they must be secured.
 - e.g. Never leave your computer unattended. If you must, Win-L.

- Human
 - Authorization must be done carefully so only appropriate users can have access.
 - However, authorized users can also be tricked.
 - via social engineering
 - Phishing
 - A legitimate-looking email or webpage misleads a user to enter its confidential information.
 - We still see it a lot.
 - Dumpster diving
 - General term for attempting to gather information about someone
 - By looking at trash, finding old papers containing password, etc.
 - Mitnick did these.
 - Book recommendation: Ghost in the wires

- Operating System
 - List of possible breaches is almost endless.
 - o A runaway process can make an accidental DoS attack.
 - A stack overflow could allow an unauthorized process to run etc.

- Network
 - o Data circulates over internet, wireless comm, dial up lines, etc.
 - Interception of these data is dangerous
 - DDoS
 - Botnets

- Trojan Horse
 - A code segment that misuses its environment is called a trojan horse.
 - It presents itself as a harmless program. It does not replicate itself, but stays on the system.
 - It can monitor actions, let remote control, download malware, disrupt data.

- Spyware
 - A variation of trojan horse.
 - Sometimes accompanies a program that the user chose to install.
 - Usually comes with freeware or shareware programs.
 - Downloads ads to display, create pop-up browser windows, capture information and return it to central site.

- Spyware is a *micro* example of a **macro** problem.
- Usually, a user of an OS does not need to install network daemons.
- Such are downloaded by two mistakes.
 - First, user runs with more privileges than needed (being an admin)
 - Second, OS may allow by default more privileges to user than it needs.

- Trap Door
 - Designer of a program or system might leave a hole in the software that only he/she is capable of using.
 - Office Space
 - A software rounds up numbers and send the half-cent to their accounts.
 - A clever trap door can be included in a compiler.
 - It generates standard object code as well as a trap door, regardless of the source.
 - So, you cannot see this in the source code, because it is in the compiler code.
 - E.g. You can make your own CPython interpreter and add a trap door in it.

- Logic Bomb
 - A program which only runs when certain conditions are met.
 - e.g. A programmer might create a program which checks whether he was employed or not; if not the program will work.

- Stack & Buffer Overflow
 - Here, the attacker is exploits a bug in the program.
 - Usually a case of poor programming
 - Attacker sends more data then the program expects.

- Overflow an input field, command line argument, or input buffer until it writes to stack.
- Overwrite the current return address on stack with the addr. of exploit code.
- Write a simple set of code for the next space in the stack that includes the commands that the atacker wishes to execute
 - Spawn a shell
- Result is usually a root shell or privileged command execution

- e.g. if a web page form expects are user name to be entered into a field
 - o attacker can send the username
 - extra chars to overflow the buffer
 - a new return address to load onto the stack
 - the code they want to run
- when the buffer-reading subroutine returns from execution, the return address will be the exploit code and it will be run.

```
#include <stdio.h>
#define BUFFER_SIZE 256
int main(int argc, char *argv[])
{
    char buffer[BUFFER_SIZE];
    if(argc < 2) return *1;</pre>
    else {
        strcpy(buffer,argv[1]);
        return 0;
```

- Creates a char array of size BUFFER_SIZE and copies the contents of the parameters given in as command line args.
- As long the size is smaller than BUFFER SIZE, program works properly
- What happens when argv is larger than it?

- At that point, strcpy() function will begin copying from argv[1] until it encounters a null terminator or until the program crushes.
- Thus, this program suffers from a potential buffer-overflow problem.
 - The copied data overflows the buffer array.
- A solution to this would be to check for the bounds by using strncpy(buffer, argv[1], sizeof(buffer)-1) instead of the written code.

Layout of a typical stack frame

- When a function is invoked, variables defined locally to the function, the parameters passed to the function and the *address* to which control returns once the function exists are stored in a **stack frame**.
- A cracker could execute a buffer-overflow attack.
- Goal is to replace the return address in the stack so it now points to where the attacker wants it.
- We can control the overflow and change the return address to show the address of the payload.

Viruses

- A fragment of code embedded in a legitimate program.
- Self-replicating and designed to infect other programs.
- They can modify files and destroy them.
- Generally a problem for Windows because other OS protects executables from being written.
- Virus dropper
 - A program which inserts the virus into the system.
 - Usually a trojan.
- There are many types of viruses; file, boot, source code, encrypted etc.
 - Adds itself to files, boot sector, source codes, can also be encrypted.

System and Networks Threats

- Attack surface
 - Set of ways in which an attacker can try to break into system.
- Worm
 - A process using the spawn mechanism to duplicate itself.
 - Spawns copies of itself, uses up system resources and possibly locking up all other processes.
- Since worms can reproduce themselves, they can shut down the entire network.

Worms

- Robert Morris
 - Unleashed a worm program which was connected to the Internet.
 - Quickly spread and brought down the infected machines.
 - It was designed for rapid reproduction and distribution, but some features of UNIX networking environment provided the means to propagate in the system.

- Worm was made up of two programs:
 - A main program
 - A grappling hook
 - Also called a bootstrap or vector
- 11.c consisted of 99 lines of C code.
 - Connects to the machine where it originated and uploaded a copy of the main worm onto the *hooked* system.
 - Main program proceeded to search for other machines to which the infected system could connect easily.

Port scanning

- Not an attack but means for cracker to detect a system's vulnerabilities.
- You check for which ports are listening.
 - For example sendmail uses 25.
 - o If you see 25 is open, that means sendmail is using it.
 - Maybe they are using an old version with a bug and they did not patch it.
- nmap (wireshark)
 - Open-source program for network exploration
 - When pointed at a target, it will determine what services are running
 - alongside with names and version.

Denial of Service

- Not aimed at gaining information or stealing resources
- Aim is to disrupt legitimate use of system or facility.
- Generally network based.
 - Either fills the CPU
 - Or fills the network so that you cannot work anymore
- DDoS
 - Distributed denial of service
- Launched from multiple sites at once, toward a common target.
 - Usually by using zombies.
 - Computers being controlled from outside.

Cryptography

Encryption

- Encryption algorithms enables the sender of messages to encrypt their messages (M) with a key (K).
- When M is encrypted with K, it becomes C (Ciphertext)

Decryption

- C becomes M when decrypted with K or other key.
- In *symmetric* cryptography, key *K* is the same for both encryption and decryption.
- In asymmetric cryptography, key is a pair.

Symmetric Encryption

- Same key is used to encrypt and decrypt.
- Therefore the key *k* must be a secret.
- We share our keys via key exchange methods.
 - Such as Diffie-Hellman.
- There are standards put in place by NIST.
 - DES: Data Encryption Standard
 - 64 bit key length, not enough. Later, they created *Triple DES*, where DES is repeated three times.
 - AES: Advanced Encryption Standard
 - 128, 192, 256 bit key lengths.
 - Works on 128-bit blocks.

Symmetric Encryption

- Stream Cipher and Block Cipher
- Stream cipher
 - Designed to encrypt and decrypt a stream of bites.
 - RC4 is the most common.
 - Used in MS Office, WEP, SSL etc.
 - The input is a keystream.
- Block cipher
 - Encrypts and decrypts a block.
 - AES is the standard.

Asymmetric Encryption

- Keys for encryption and decryption are different.
- Also known as public-key encryption
- When a key is generated, it is a pair.
 - Public key and private key
- Public key is known and private key is private.
- RSA is the most known.
- When someone wants to send you a message, they encrypt that message with your public key.
 - It is known to public.
- However, the only way to open that message is by using the private key.
 - Remember, they were a pair.
- So, since you are the only one with the private key, you can decrypt and read the message.

User authentication

- User must prove that he/she is the one that he/she claims to be.
- Based on one or more of the following three things:
 - The user's possession of something
 - Key card, etc
 - User's knowledge of something
 - Password
 - Attribute of a user
 - Fingerprint, retina, signature, etc

Passwords

- Most common form of authentication.
- Vulnerabilities
 - Can be guessed
 - Accidentally exposed
 - Shoulder surfing
 - Sniffed
 - Crackers fake websites or programs

Securing passwords

- If we store passwords as plaintext, they are vulnerable.
 - People can read them.
 - Even if not stolen, they are open.
- We use hash functions.
 - Cryptographic hash functions
 - They have no inverse.
 - Instead of storing plaintext, we store them.
- However, there is another problem

- The hash of two same password p will have the same hash.
- When the database is stolen, this can be read and will help the attacker to break them.
- So, we need to make sure even the thing we store in db is different for the same password.

Salting

- We concetanate a random string to the password, take the hash and store it.
- For every user we will have a different salt
 - Therefore even if their passwords are the same they will have a different hash.
- There are more advanced ways to store them, but this is the general idea.

One time passwords (OTP)

- Generally used alongside text passwords.
- After the text password is entered the user is asked a different OTP.
 - This is generally sent via SMS or email.
 - Good, because now even if your password is stolen, it is not enough.
 - 2FA
 - Multi-factor authentication
- There are several types of OTP.
 - Most common is SMS.
 - You have 60 seconds to enter the password.

- Let's imagine you entered the correct password at 1700.
- In the server, there is an algorithm which creates an OTP for a given time stamp.
- They calculate 60 of them for every second.
 - Maybe for every subsecond.
- Then, you receive an OTP.
 - If that OTP is in that range of 60 passcodes, access is granted.
 - If not, it means it is expired.