

Universidad 🥻 Nacional Autónoma de México

FACULTAD DE CIENCIAS

Tarea 03

Alumno:

Ramírez López Alvaro. 316276355

Profesor: Jesús Villagómez Chávez Ayudantes: Gabriela Peña Franco Martha Rubí Gutiérrez González

11 de noviembre de 2024

1. ¿Cuáles de las siguientes relaciones son funciones? En caso de ser función, calcula su dominio y su imagen:

a)
$$\{(n,m) \in \mathbb{Z} \times \mathbb{Z} : n, m \ge 0 \land 5n = m\}.$$

b)
$$\{(n,m) \in \mathbb{Z} \times \mathbb{Z} : n,m > 0 \land 5m = n\}.$$

c)
$$\{(n,m) \in \mathbb{Z} \times \mathbb{Z} : n, m \ge 0 \land m \le n\}.$$

$$d) \{(n,m) \in \mathbb{Z} \times \mathbb{Z} : n \ge 0 \land m = 3\}.$$

$$e) \{(n,m) \in \mathbb{Z} \times \mathbb{Z} : m = n^2\}.$$

$$f) \{(n,m) \in \mathbb{Z} \times \mathbb{Z} : m^2 = n^2\}.$$

$$g) \{(n,m) \in \mathbb{Z} \times \mathbb{Z} : 4n + 2m = 6\}.$$

Solución:

a) $\{(n,m) \in \mathbb{Z} \times \mathbb{Z} \mid n,m \geq 0 \text{ y } 5n = m\}$

Análisis: Para cada $n \geq 0$, existe un único $m \geq 0$ dado por m = 5n.

Conclusión: Es una función.

■ Dominio: $\{n \in \mathbb{Z} \mid n \ge 0\}$

■ Imagen: $\{m \in \mathbb{Z} \mid m = 5n, \ n \ge 0\} = \{0, 5, 10, 15, \dots\}$

b) $\{(n,m) \in \mathbb{Z} \times \mathbb{Z} \mid n,m \geq 0 \text{ y } 5m = n\}$

Análisis: Solo los $n \ge 0$ múltiplos de 5 tienen un $m \ge 0$ correspondiente dado por $m = \frac{n}{5}$.

Conclusión: Es una función, pero su dominio está restringido.

■ Dominio: $\{n \in \mathbb{Z} \mid n \geq 0 \text{ y } n \text{ es múltiplo de 5}\}$

■ Imagen: $\{m \in \mathbb{Z} \mid m \geq 0\}$

c) $\{(n,m) \in \mathbb{Z} \times \mathbb{Z} \mid n,m \geq 0 \text{ y } m \leq n\}$

Análisis: Para cada $n \ge 0$, existen múltiples valores de m que satisfacen $m \le n$.

Conclusión: No es una función (no hay unicidad de m para cada n).

 $d) \{(n,m) \in \mathbb{Z} \times \mathbb{Z} \mid n \geq 0 \text{ y } m = 3\}$

Análisis: Para cada $n \ge 0$, m es siempre 3.

Conclusión: Es una función.

■ Dominio: $\{n \in \mathbb{Z} \mid n \ge 0\}$

■ Imagen: {3}

 $e) \{(n,m) \in \mathbb{Z} \times \mathbb{Z} \mid m = n^2\}$

Análisis: Para cada $n \in \mathbb{Z}$, existe un único m dado por $m = n^2$.

Conclusión: Es una función.

lacksquare Dominio: \mathbb{Z}

■ Imagen: $\{m \in \mathbb{Z} \mid m \geq 0 \text{ y } m \text{ es un cuadrado perfecto}\}$

 $f) \{(n,m) \in \mathbb{Z} \times \mathbb{Z} \mid m^2 = n^2\}$

Análisis: Para cada n, hay dos posibles valores de m: m = n y m = -n.

Conclusión: No es una función (no hay unicidad de m para cada n).

 $g) \{(n,m) \in \mathbb{Z} \times \mathbb{Z} \mid 4n + 2m = 6\}$

Análisis: Despejando m, obtenemos m = 3 - 2n. Para cada $n \in \mathbb{Z}$, existe un único m.

Conclusión: Es una función.

- Dominio: \mathbb{Z}
- Imagen: $\{m \in \mathbb{Z} \mid m = 3 2n, n \in \mathbb{Z}\}$, es decir, todos los números enteros impares.
- 2. Determina la inyectividad, suprayectividad y biyectividad de las siguientes funciones:
 - a) $f: \mathbb{N} \to \mathbb{N}, f(n) = 2n$.
 - b) $f: \mathbb{N} \to \mathbb{N}, f(n) = n + 7.$
 - c) $f: \mathbb{Z} \to \mathbb{Z}, f(n) = n + 7.$
 - d) $f: A \to A/R, f(a) = [a]_R$, donde A es un conjunto y R una relación de equivalencia sobre A.

Solución:

- a) $f: \mathbb{N} \to \mathbb{N}$, f(n) = 2n
 - Inyectividad:Una función es inyectiva si $f(n_1) = f(n_2)$ implica $n_1 = n_2$. Supongamos que $f(n_1) = f(n_2)$:

$$2n_1 = 2n_2 \implies n_1 = n_2$$

Por lo tanto, f es inyectiva.

- Suprayectividad: Una función es suprayectiva si para todo $y \in \mathbb{N}$, existe $n \in \mathbb{N}$ tal que f(n) = y. El codominio es \mathbb{N} , pero la imagen de f es el conjunto de los números naturales pares $\{0, 2, 4, 6, \dots\}$. Hay números naturales impares que no son imagen de ningún elemento de \mathbb{N} bajo f. Por lo tanto, f no es suprayectiva.
- \blacksquare Biyectividad: Como f es inyectiva pero no suprayectiva, f no es biyectiva.
- b) $f: \mathbb{N} \to \mathbb{N}$, f(n) = n + 7
 - Inyectividad:

Supongamos que $f(n_1) = f(n_2)$:

$$n_1 + 7 = n_2 + 7 \implies n_1 = n_2$$

Por lo tanto, f es inyectiva.

■ Suprayectividad:

La imagen de f es $\{n+7 \mid n \in \mathbb{N}\}$. El menor valor es f(0) = 7 (si consideramos $\mathbb{N} = \{0, 1, 2, \dots\}$). Los números naturales menores que 7 no son imagen de ningún $n \in \mathbb{N}$.

Por lo tanto, f no es suprayectiva.

- \blacksquare Biyectividad: Como f es inyectiva pero no suprayectiva, f no es biyectiva.
- c) $f: \mathbb{Z} \to \mathbb{Z}$, f(n) = n + 7
 - Inyectividad:

Si $f(n_1) = f(n_2)$:

$$n_1 + 7 = n_2 + 7 \implies n_1 = n_2$$

Por lo tanto, f es inyectiva.

Suprayectividad:

Para cualquier $y \in \mathbb{Z}$, podemos encontrar $n = y - 7 \in \mathbb{Z}$ tal que:

$$f(n) = (y - 7) + 7 = y$$

Por lo tanto, f es suprayectiva.

- \blacksquare Biyectividad: Como f es inyectiva y suprayectiva, f es biyectiva.
- d) $f: A \to A/R$, $f(a) = [a]_R$

Donde A es un conjunto y R es una relación de equivalencia sobre A.

• Inyectividad:

La función f asigna a cada elemento $a \in A$ su clase de equivalencia $[a]_R$. Si $f(a_1) = f(a_2)$, entonces:

$$[a_1]_R = [a_2]_R \implies a_1 \sim a_2$$

Esto significa que a_1 y a_2 son equivalentes bajo R, pero no necesariamente iguales. Por lo tanto, f no es inyectiva a menos que R sea la relación de igualdad.

Suprayectividad:

Cada clase de equivalencia $[a]_R \in A/R$ tiene al menos un representante en A. Por definición, para cualquier $[a]_R \in A/R$, existe $a \in A$ tal que $f(a) = [a]_R$. Por lo tanto, f es suprayectiva.

■ Biyectividad: Como f es suprayectiva pero no inyectiva, f no es biyectiva.

3. Sea $f: A \to B$ una función. Demuestra que:

- a) f es inyectiva si y sólo si $f^{-1}[f[X]] = X$, para todo $X \subseteq A$.
- b) f es inyectiva si y sólo si $f[X \cap Y] = f[X] \cap f[Y]$, para $X, Y \subseteq A$.
- c) f es suprayectiva si y sólo si $f[f^{-1}[Y]] = Y$, para todo $Y \subseteq B$.
- d) f es biyectiva si y sólo si $f[X^c] = (f[X])^c$, para todo $X \subseteq A$.

Solución:

a) f es inyectiva si y sólo si $f^{-1}[f[X]] = X$ para todo $X \subseteq A$.**

Demostración:

 (\Rightarrow) Si f es inyectiva, entonces $f^{-1}[f[X]] = X$ para todo $X \subseteq A$.

Sea $X \subseteq A$. Queremos demostrar que $f^{-1}[f[X]] = X$.

Primero, probamos que $X\subseteq f^{-1}[f[X]]$:

Esto es siempre cierto, independientemente de sif es inyectiva o no.

Sea $x \in X$. Entonces, $f(x) \in f[X]$.

Por definición de preimagen:

$$x \in f^{-1}[f[X]]$$
 porque $f(x) \in f[X]$.

Por lo tanto, $x \in f^{-1}[f[X]]$, y así $X \subseteq f^{-1}[f[X]]$.

Ahora, probamos que $f^{-1}[f[X]] \subseteq X$:

Supongamos que $y \in f^{-1}[f[X]]$. Entonces, $f(y) \in f[X]$.

Esto significa que existe $x \in X$ tal que f(y) = f(x).

Como f es inyectiva y f(y) = f(x), entonces y = x.

Pero $x \in X$, por lo que $y \in X$.

Por lo tanto, $f^{-1}[f[X]] \subseteq X$.

Conclusión:

Combinando ambos resultados, obtenemos $f^{-1}[f[X]] = X$.

 (\Leftarrow) Si $f^{-1}[f[X]] = X$ para todo $X \subseteq A$, entonces f es inyectiva.

Supongamos que f no es inyectiva. Entonces, existen $a_1, a_2 \in A$ con $a_1 \neq a_2$ tales que $f(a_1) = f(a_2)$.

Sea $X = \{a_1\}.$

Entonces, $f[X] = \{f(a_1)\}.$

Ahora, calculemos $f^{-1}[f[X]]$:

$$f^{-1}[f[X]] = f^{-1}[\{f(a_1)\}] = \{x \in A \mid f(x) = f(a_1)\}.$$

Pero sabemos que tanto a_1 como a_2 están en $f^{-1}[f[X]]$ porque $f(a_1) = f(a_2)$.

Por lo tanto:

$$f^{-1}[f[X]] \supseteq \{a_1, a_2\}.$$

Pero $X = \{a_1\}$, entonces $f^{-1}[f[X]] \neq X$.

Esto contradice la suposición de que $f^{-1}[f[X]] = X$ para todo $X \subseteq A$.

Conclusión:

Por contraposición, si $f^{-1}[f[X]] = X$ para todo $X \subseteq A$, entonces f es inyectiva.

b) f es inyectiva si y sólo si $f[X \cap Y] = f[X] \cap f[Y]$ para todo $X, Y \subseteq A$.

 (\Rightarrow) Si f es inyectiva, entonces $f[X \cap Y] = f[X] \cap f[Y]$.

Prueba:

Primero, probamos que $f[X \cap Y] \subseteq f[X] \cap f[Y]$:

Sea $y \in f[X \cap Y]$. Entonces, existe $x \in X \cap Y$ tal que y = f(x).

Como $x \in X$ y $x \in Y$, entonces $y \in f[X]$ y $y \in f[Y]$.

Por lo tanto, $y \in f[X] \cap f[Y]$.

Ahora, probamos que $f[X] \cap f[Y] \subseteq f[X \cap Y]$:

Sea $y \in f[X] \cap f[Y]$. Entonces, existe $x_1 \in X$ tal que $y = f(x_1)$ y existe $x_2 \in Y$ tal que $y = f(x_2)$.

Como f es inyectiva y $f(x_1) = f(x_2)$, entonces $x_1 = x_2$.

Por lo tanto, $x_1 \in X \cap Y$, y así $y = f(x_1) \in f[X \cap Y]$.

Conclusión:

Por ambos resultados, $f[X \cap Y] = f[X] \cap f[Y]$.

 (\Leftarrow) Si $f[X \cap Y] = f[X] \cap f[Y]$ para todo $X, Y \subseteq A$, entonces f es inyectiva.

Prueba:

Supongamos que f no es inyectiva. Entonces, existen $a_1, a_2 \in A$ con $a_1 \neq a_2$ tales que $f(a_1) = f(a_2)$.

Sea $X = \{a_1\}$ y $Y = \{a_2\}$.

Entonces:

 $X \cap Y = \emptyset$, por lo que $f[X \cap Y] = f[\emptyset] = \emptyset$.

$$f[X] = \{f(a_1)\}.$$

$$f[Y] = \{ f(a_2) \}.$$

Como $f(a_1) = f(a_2)$, entonces $f[X] = f[Y] = \{f(a_1)\}.$

Por lo tanto, $f[X] \cap f[Y] = \{f(a_1)\}.$

Pero entonces:

$$f[X \cap Y] = \emptyset \neq \{f(a_1)\} = f[X] \cap f[Y].$$

Esto contradice la suposición de que $f[X \cap Y] = f[X] \cap f[Y]$.

Conclusión:

Por contraposición, si $f[X \cap Y] = f[X] \cap f[Y]$ para todo $X, Y \subseteq A$, entonces f es inyectiva.

c) f es suprayectiva si y sólo si $f[f^{-1}[Y]] = Y$ para todo $Y \subseteq B$.

Demostración:

(\Rightarrow) Si f es suprayectiva, entonces $f[f^{-1}[Y]] = Y$ para todo $Y \subseteq B$.

Prueba:

Sea $Y \subseteq B$.

Primero, probamos que $f[f^{-1}[Y]] \subseteq Y$:

Sea $y \in f[f^{-1}[Y]]$. Entonces, existe $x \in f^{-1}[Y]$ tal que y = f(x).

Por definición de $f^{-1}[Y]$, tenemos $f(x) \in Y$.

Entonces, $y = f(x) \in Y$.

Por lo tanto, $f[f^{-1}[Y]] \subseteq Y$.

Ahora, probamos que $Y \subseteq f[f^{-1}[Y]]$:

Sea $y \in Y$.

Como f es suprayectiva, existe $x \in A$ tal que f(x) = y.

Por lo tanto, $x \in f^{-1}[Y]$ porque $f(x) = y \in Y$.

Entonces, $y = f(x) \in f[f^{-1}[Y]].$

Por lo tanto, $Y \subseteq f[f^{-1}[Y]]$.

Conclusión:

Combinando ambos resultados, $f[f^{-1}[Y]] = Y$.

 (\Leftarrow) Si $f[f^{-1}[Y]] = Y$ para todo $Y \subseteq B$, entonces f es suprayectiva.

Prueba:

Supongamos que f no es suprayectiva. Entonces, existe $b_0 \in B$ tal que no existe $a \in A$ con $f(a) = b_0$.

Sea $Y = \{b_0\}.$

Entonces, $f^{-1}[Y] = \emptyset$ porque no hay ningún $a \in A$ tal que $f(a) = b_0$.

Por lo tanto:

$$f[f^{-1}[Y]] = f[\emptyset] = \emptyset \neq Y = \{b_0\}.$$

Esto contradice la suposición de que $f[f^{-1}[Y]] = Y$ para todo $Y \subseteq B$.

Conclusión:

Por contraposición, si $f[f^{-1}[Y]] = Y$ para todo $Y \subseteq B$, entonces f es suprayectiva.

d) f es biyectiva si y sólo si $f[X^c] = (f[X])^c$ para todo $X \subseteq A$.

Demostración:

Primero, recordemos que:

 $X^c = A \setminus X$, el complemento de X en A.

 $(f[X])^c = B \setminus f[X]$, el complemento de f[X] en B.

 (\Rightarrow) Si f es biyectiva, entonces $f[X^c] = (f[X])^c$ para todo $X \subseteq A$.

Prueba:

Sea $X \subseteq A$.

Primero, probamos que $f[X^c] \subseteq (f[X])^c$:

Sea $y \in f[X^c]$. Entonces, existe $x \in X^c$ tal que y = f(x).

Si $y \in f[X]$, entonces existiría $x' \in X$ tal que y = f(x').

Pero como f es inyectiva (por ser biyectiva), x = x', lo cual es imposible porque $x \in X^c$ y $x' \in X$.

Por lo tanto, $y \notin f[X]$, y así $y \in (f[X])^c$.

Ahora, probamos que $(f[X])^c \subseteq f[X^c]$:

Sea $y \in (f[X])^c$. Entonces, $y \notin f[X]$.

Como f es sobreyectiva, existe $x \in A$ tal que f(x) = y.

Si $x \in X$, entonces $y = f(x) \in f[X]$, contradicción.

Por lo tanto, $x \in X^c$, y así $y = f(x) \in f[X^c]$.

Conclusión:

Por ambos resultados, $f[X^c] = (f[X])^c$.

 (\Leftarrow) Si $f[X^c] = (f[X])^c$ para todo $X \subseteq A$, entonces f es biyectiva.

Prueba de inyectividad:

Supongamos que f no es inyectiva. Entonces, existen $a_1, a_2 \in A$ con $a_1 \neq a_2$ y $f(a_1) = f(a_2) = y_0$.

Sea $X = \{a_1\}.$

Entonces:

$$X^c = A \setminus \{a_1\}.$$

$$f[X] = \{f(a_1)\} = \{y_0\}.$$

 $f[X^c]$ contiene al menos $f(a_2) = y_0$ porque $a_2 \in X^c$.

Por lo tanto, $y_0 \in f[X^c]$.

Pero entonces:

$$y_0 \in f[X^c] \implies y_0 \in (f[X])^c$$
 (por la suposición).

Sin embargo, $y_0 \in f[X]$, por lo que $y_0 \notin (f[X])^c$.

Esto es una contradicción.

Prueba de sobreyectividad:

Supongamos que f no es sobreyectiva. Entonces, existe $y_1 \in B$ tal que no existe $a \in A$ con $f(a) = y_1$.

Sea X = A.

Entonces:

$$X^c = \emptyset$$
.

 $f[X] = f[A] \subseteq B$ (porque f no es sobreyectiva).

$$f[X^c] = f[\emptyset] = \emptyset.$$

 $(f[X])^c = B \setminus f[A]$, que contiene al menos y_1 .

Por lo tanto, $y_1 \in (f[X])^c$.

Pero $f[X^c] = \emptyset$, entonces $(f[X])^c \neq f[X^c]$, contradiciendo la suposición.

Conclusión:

Por contradicción, f debe ser inyectiva y sobreyectiva, es decir, biyectiva.

- 4. Responde las siguientes preguntas:
 - a) ¿Existe $g: \mathbb{N} \to \mathbb{N}$ función tal que $g \neq \mathrm{Id}_{\mathbb{N}}$ y $g \circ g = g$?
 - b) ¿Existe $g: \mathbb{N} \to \mathbb{N}$ función biyectiva tal que $g \neq \mathrm{Id}_{\mathbb{N}}$ y $g \circ g = g$?
 - c) ¿Existe $g: \mathbb{N} \to \mathbb{N}$ función biyectiva tal que $g \neq \mathrm{Id}_{\mathbb{N}}$ y $g \circ g = \mathrm{Id}_{\mathbb{N}}$?

Solución:

a) Existe $g: \mathbb{N} \to \mathbb{N}$ tal que $g \neq \mathrm{Id}_{\mathbb{N}}$ y $g \circ g = g$?

Respuesta: Sí, existe tal función.

Explicación:

Una función que satisface $g \circ g = g$ se denomina idempotente. Queremos encontrar una función idempotente que no sea la identidad.

Ejemplo de función:

Definamos $g: \mathbb{N} \to \mathbb{N}$ como:

$$g(n) = \begin{cases} 0, & \text{si } n \text{ es impar} \\ n, & \text{si } n \text{ es par} \end{cases}$$

Verificación:

 $g \neq \mathrm{Id}_{\mathbb{N}}$: Porque g(n) cambia los números impares a 0, por lo que no es la función identidad.

Idempotencia $(g \circ g = g)$:

Para todo $n \in \mathbb{N}$:

Si n es par:

$$q(q(n)) = q(n) = n$$

Si n es impar:

$$g(g(n)) = g(0) = g(0) = 0 = g(n)$$

En ambos casos, g(g(n)) = g(n), por lo que $g \circ g = g$.

Conclusión: Existe al menos una función g que cumple las condiciones dadas.

b) ¿Existe $g: \mathbb{N} \to \mathbb{N}$ biyectiva tal que $g \neq \mathrm{Id}_{\mathbb{N}}$ y $g \circ g = g$?

Respuesta: No, no existe tal función.

Explicación:

Supongamos que existe una función biyectiva $g: \mathbb{N} \to \mathbb{N}$ tal que $g \circ g = g$ y $g \neq \mathrm{Id}_{\mathbb{N}}$.

Demostración por contradicción:

g es biyectiva, por lo que tiene una función inversa g^{-1} .

Dado que $g \circ g = g$, podemos aplicar g^{-1} a ambos lados:

$$g^{-1} \circ g \circ g = g^{-1} \circ g$$

Simplificando:

$$g \circ g^{-1} \circ g = \mathrm{Id}_{\mathbb{N}} \circ g = g$$

Pero dado que $g^{-1} \circ g = \mathrm{Id}_{\mathbb{N}}$, tenemos:

$$\mathrm{Id}_{\mathbb{N}} \circ g = g$$

Esto implica que g=g, lo cual es siempre cierto. Sin embargo, no hemos llegado a una contradicción aún.

Consideremos que g es idempotente y biyectiva. La única función biyectiva idempotente es la identidad. Esto se debe a que si g es idempotente $(g \circ g = g)$ y biyectiva, entonces para todo $n \in \mathbb{N}$:

$$g(n) = g(g(n))$$

Como g es inyectiva, esto implica que:

$$n = g(n)$$

Por lo tanto, g es la identidad, lo cual contradice $g \neq \mathrm{Id}_{\mathbb{N}}$.

Conclusión: No existe una función biyectiva g distinta de la identidad que sea idempotente.

c) ¿Existe $g: \mathbb{N} \to \mathbb{N}$ biyectiva tal que $g \neq \mathrm{Id}_{\mathbb{N}}$ y $g \circ g = \mathrm{Id}_{\mathbb{N}}$?

Respuesta: Sí, existe tal función.

Explicación:

Una función que satisface $g \circ g = \mathrm{Id}_{\mathbb{N}}$ se denomina involutiva. Queremos encontrar una función biyectiva involutiva que no sea la identidad.

Ejemplo de función:

Definamos $q: \mathbb{N} \to \mathbb{N}$ como sigue:

$$g(n) = \begin{cases} n+1, & \text{si } n \text{ es par} \\ n-1, & \text{si } n \text{ es impar} \end{cases}$$

Verificación:

g es biyectiva:

Inyectividad: Supongamos que $g(n_1) = g(n_2)$. Entonces:

Si ambos n_1 y n_2 son pares:

$$n_1 + 1 = n_2 + 1 \implies n_1 = n_2$$

Si ambos son impares:

$$n_1 - 1 = n_2 - 1 \implies n_1 = n_2$$

Si uno es par y otro impar, sus imágenes serán distintas, pues uno será n+1 y otro n-1.

Sobreyectividad: Para cualquier $m \in \mathbb{N}$:

Si m es par, entonces m = g(m-1) (porque m-1 es impar).

Si m es impar, entonces m = g(m+1) (porque m+1 es par).

 $g \neq \mathrm{Id}_{\mathbb{N}}$:

Porque, por ejemplo, $g(0) = 1 \neq 0$.

Involutividad $(g \circ g = \mathrm{Id}_{\mathbb{N}})$:

Para todo $n \in \mathbb{N}$:

 \blacksquare Si n es par:

$$g(n) = n + 1$$
 (impar).

$$g(g(n)) = g(n+1).$$

Como n + 1 es impar, entonces:

$$g(n+1) = (n+1) - 1 = n$$

 \blacksquare Si n es impar:

$$g(n) = n - 1$$
 (par).

$$g(g(n)) = g(n-1).$$

Como n-1 es par, entonces:

$$g(n-1) = (n-1) + 1 = n$$

En ambos casos, g(g(n)) = n, por lo que $g \circ g = \mathrm{Id}_{\mathbb{N}}$.

Conclusión: Existe una función biyectiva g distinta de la identidad que es involutiva.

- 5. (Extra) Sea $f:A\to B$ una función. Definimos la asignación $F:B\to A$ con regla de correspondencia $F(Y)=f^{-1}[Y]$. Demuestra que:
 - a) F es función.
 - b) Si f es inyectiva, entonces F es suprayectiva.
 - c) Si f es suprayectiva, entonces F es inyectiva.
 - d) Si F es suprayectiva, entonces f es inyectiva.
 - e) Si F es inyectiva, entonces F es suprayectiva.

Solución:

Sea $f:A\to B$ una función. Definimos la asignación $F:\mathcal{P}(B)\to\mathcal{P}(A)$ con regla de correspondencia $F(Y)=f^{-1}[Y]$, donde $\mathcal{P}(B)$ es el conjunto de las partes de B.

a) F es función.

Demostración:

Para demostrar que F es una función de $\mathcal{P}(B)$ en $\mathcal{P}(A)$, debemos mostrar que para cada $Y \subseteq B$, existe un único $F(Y) \subseteq A$.

Por la definición de F, para cada $Y \subseteq B$, se asigna el conjunto $F(Y) = f^{-1}[Y]$, que es el conjunto de todos los elementos en A cuya imagen por f pertenece a Y:

$$f^{-1}[Y] = \{ a \in A \mid f(a) \in Y \}.$$

Este conjunto está bien definido para cada $Y \subseteq B$. Por lo tanto, F es una función de $\mathcal{P}(B)$ en $\mathcal{P}(A)$.

b) 2. Si f es inyectiva, entonces F es sobreyectiva.

Demostración:

Supongamos que f es inyectiva. Queremos demostrar que F es sobreyectiva, es decir, que para todo $X \subseteq A$, existe $Y \subseteq B$ tal que F(Y) = X.

Sea $X \subseteq A$. Definamos Y = f[X], es decir:

$$Y = \{ f(a) \mid a \in X \}.$$

Ahora, calculemos F(Y):

$$F(Y) = f^{-1}[Y] = \{ a \in A \mid f(a) \in Y \}.$$

Pero como Y = f[X], entonces $f(a) \in Y$ si y solo si $f(a) \in f[X]$. Dado que f es inyectiva, $f(a) \in f[X]$ si y solo si $a \in X$.

Por lo tanto:

$$F(Y) = \{ a \in A \mid a \in X \} = X.$$

Así, para todo $X \subseteq A$, existe $Y = f[X] \subseteq B$ tal que F(Y) = X.

Conclusión: F es sobreyectiva.

c) Si f es suprayectiva, entonces F es inyectiva.

Demostración:

Supongamos que f es suprayectiva. Queremos demostrar que F es inyectiva, es decir, que si $F(Y_1) = F(Y_2)$ entonces $Y_1 = Y_2$.

Sea $Y_1, Y_2 \subseteq B$ tales que $F(Y_1) = F(Y_2)$. Entonces:

$$f^{-1}[Y_1] = f^{-1}[Y_2].$$

Queremos demostrar que $Y_1 = Y_2$.

Dado que f es suprayectiva, para todo $y \in B$ existe $a \in A$ tal que f(a) = y.

Ahora, tomemos $y \in Y_1$. Como f es suprayectiva, existe $a \in A$ tal que f(a) = y. Entonces, $a \in f^{-1}[Y_1]$.

Pero $f^{-1}[Y_1] = f^{-1}[Y_2]$, por lo que $a \in f^{-1}[Y_2]$, lo que implica que $f(a) \in Y_2$. Por lo tanto, $y \in Y_2$.

De manera similar, si $y \in Y_2$, entonces $y \in Y_1$.

Por lo tanto, $Y_1 = Y_2$.

Conclusión: F es inyectiva.

d) Si F es sobreyectiva, entonces f es inyectiva.

Demostración:

Supongamos que F es sobreyectiva y que f no es inyectiva. Buscaremos una contradicción.

Como f no es inyectiva, existen $a_1, a_2 \in A$ con $a_1 \neq a_2$ tales que $f(a_1) = f(a_2) = b$.

Consideremos el conjunto $X = \{a_1\} \subseteq A$. Como F es sobreyectiva, existe $Y \subseteq B$ tal que F(Y) = X.

Entonces, $F(Y) = f^{-1}[Y] = \{a \in A \mid f(a) \in Y\} = \{a_1\}.$

Pero sabemos que $f(a_1) = b$, por lo que $a_1 \in f^{-1}[Y]$ implica que $b = f(a_1) \in Y$.

Del mismo modo, como $f(a_2) = b$ y $b \in Y$, entonces $a_2 \in f^{-1}[Y]$.

Esto significa que $a_2 \in F(Y) = \{a_1\}$, lo cual es una contradicción, ya que $a_2 \neq a_1$.

Conclusión: Nuestra suposición de que f no es inyectiva conduce a una contradicción. Por lo tanto, si F es sobreyectiva, entonces f es inyectiva.

e) Si F es inyectiva, entonces F es sobreyectiva.

Demostración:

Supongamos que F es inyectiva. Queremos demostrar que F es sobreyectiva, es decir, que para todo $X \subseteq A$, existe $Y \subseteq B$ tal que F(Y) = X.

Sin embargo, en general, la inyectividad de F no implica que F sea sobreyectiva. Veamos un contraejemplo.

Contraejemplo:

Consideremos los conjuntos $A = \{1\}$ y $B = \{a, b\}$. Definamos $f : A \to B$ como f(1) = a.

La función f es inyectiva (ya que A tiene un solo elemento), pero no es suprayectiva (ya que $b \notin f(A)$).

Ahora, definamos $F: \mathcal{P}(B) \to \mathcal{P}(A)$:

$$F(\emptyset) = f^{-1}[\emptyset] = \emptyset.$$

$$F(\{a\})=f^{-1}[\{a\}]=\{1\}.$$

$$F(\{b\}) = f^{-1}[\{b\}] = \emptyset.$$

$$F(\{a,b\}) = f^{-1}[\{a,b\}] = \{1\}.$$

Observamos que $F(\{a\}) = F(\{a,b\}) = \{1\}$. Sin embargo, $\{a\} \neq \{a,b\}$, lo que indica que F no es inyectiva, contradiciendo nuestra suposición.

Pero este contraejemplo muestra que la inyectividad de F no garantiza su sobreyectividad. De hecho, en este ejemplo, F no es sobreyectiva (ya que no alcanza ciertos subconjuntos de $\mathcal{P}(A)$).

Conclusión:

La inyectividad de F no implica que F sea sobreyectiva. Por lo tanto, el enunciado es falso en general.