Proofs!

Types of Proofs	
Direct	• •
A+B+(+ + x + Y => 2 proves A>	l l
Spatial intuition:	
	if point P is inside
	rectangle A, then point
ep A B c	must be in rectangly
	•
Constructive proof by e	cample"
can be useful if proving a	"there exists" start
2 disproving a	i "for all" stunt
	nown as a comple
exambles:	~ Connetted of
4 seeing one alien is enough to prove ex	_

Is dispose all integers are even by giving one odd integer

Contradiction want to prove X Assume not X conclusion s based on the assumption not X Conclusion 2 (SNCLUSION) Main idea: - if assumption not X, then Conc. 1 - also if assumption not x, then Conc. 2 - if Conc. 1 and Cone 2 cannot both be

Extra Contraposition $A \Rightarrow B \text{ is equivalent to } B \Rightarrow A$

- therefore, X

true, we cannot possibly have not X

1. Comparison (direct proofs)

START END

F(X(Y)Z) express & indemod g(a,b,r)

I don't see x

2. Show that all integers are possitive.

X>D

(a)

WHAT WE KNOW A FRMAN

To a solution of
$$A\vec{x} = \vec{0}$$

Go FROM To

[In az $\vec{a}_3 = \vec{a}_1 = \vec{0}$

WHAT WE NEED TO SHOW

A $\vec{q}_1 + d_2 \vec{a}_2 + ... + d_n \vec{a}_n = \vec{0}$

A there exists a set of \vec{a}_1 's

[Inver dependence of $\vec{a}_1 = \vec{0}_1 = \vec$

github.com/dinganthony/teaching

Problem #4: Invertibility + Row Operations

$$M = \begin{bmatrix} \overline{m_1}^T \\ \overline{m_2}^T \\ \overline{m_3}^T \end{bmatrix}$$

(a) AM
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{7} & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{array}{c} \text{dividing second} \\ \text{cow by 5} \end{array}$$

$$\begin{bmatrix}
a_{1} & 0 & 0 \\
0 & a_{2} & 0
\end{bmatrix}
\begin{bmatrix}
m_{11} & m_{12} & m_{13} \\
m_{24} & m_{21} & m_{23} \\
m_{34} & m_{32} & m_{33}
\end{bmatrix}
=
\begin{bmatrix}
a_{11} & m_{12} & m_{13} \\
a_{12} & m_{21} & m_{22} \\
a_{13} & m_{21} & m_{22}
\end{bmatrix}$$

$$\begin{bmatrix}
a_{11} & m_{12} & m_{13} \\
a_{13} & m_{22} & m_{23}
\end{bmatrix}
=
\begin{bmatrix}
a_{11} & m_{12} & m_{23} \\
a_{13} & m_{21} & m_{22}
\end{bmatrix}$$

(b)
$$B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} n_1^2 & 7 \\ n_2^2 & 7 \end{bmatrix} = \begin{bmatrix} n_3^2 & 7 \\ m_2^2 & 7 \end{bmatrix}$$

$$Surapping | qnd 3$$

e)
$$A\vec{x} = \vec{y}$$
 $\vec{x} \rightarrow A$ \Rightarrow

$$0 = CBA$$

$$= \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 1 \\ 0 & \frac{1}{6} & 3 \end{bmatrix}$$

ヹヹ゙ヿ゙

A'AZ =X

if span(A) = # (olumns, A is importible span(A) < # columns, A is importible

PNG baslest compression JRG lossy compression

