Econometrics 710 Final Exam, Spring 2017

Write complete answers. Be specific about estimators and covariance matrix estimators.

1. Consider the model

$$y_i = x_i'\beta + e_i$$

$$E(e_i|z_i) = 0$$

with y_i scalar and x_i and z_i each a k vector. You have a random sample $(y_i, x_i, z_i : i = 1, ..., n)$.

- (a) Write the IV estimator $\widehat{\beta}$ for β
- (b) Suppose that x_i is exogeneous in the sense that $E(e_i|z_i,x_i)=0$. Is $\widehat{\beta}$ unbiased for β ?
- (c) Continuing to assume that x_i is exogeneous, find the variance matrix for $\widehat{\beta}$, var $(\widehat{\beta}|X,Z)$.

2. Consider the model

$$y_i = x_i'\beta + e_i$$

$$x_i = \Gamma' z_i + u_i$$

$$E(z_i e_i) = 0$$

$$E(z_i u_i') = 0$$

with y_i scalar and x_i and z_i each a k vector. You have a random sample $(y_i, x_i, z_i : i = 1, ..., n)$. Take the control function equation

$$e_i = u_i'\gamma + \varepsilon_i$$

$$E(u_i\varepsilon_i) = 0$$

and assume for simplicity that u_i is observed. Inserting into the structural equation we find

$$y_i = x_i'\beta + u_i'\gamma + \varepsilon_i \tag{1}$$

The control function estimator $(\widehat{\beta}, \widehat{\gamma})$ is OLS estimation of (1).

- (a) Show that $E(x_i\varepsilon_i) = 0$ (algebraically)
- (b) Derive the asymptotic distribution of $(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\gamma}})$.

3. Take the model

$$y_i = x_i'\beta + e_i$$
$$E(z_i e_i) = 0$$

 y_i scalar, x_i a k vector and z_i an ℓ vector, $\ell \geq k$. Assume iid observations. Consider the statistic

$$J_n(\beta) = n\overline{m}_n(\beta)'W\overline{m}_n(\beta)$$
$$\overline{m}_n(\beta) = \frac{1}{n}\sum_{i=1}^n z_i (y_i - x_i'\beta)$$

for some weight matrix W > 0.

(a) Take the hypothesis

$$H_0: \beta = \beta_0$$

Derive the asymptotic distribution of $J_n(\beta_0)$ under H_0 as $n \to \infty$.

- (b) What choice for W yields a known asymptotic distribution in part a? (Be specific about degrees of freedom.)
- (c) Write down an appropriate estimator \widehat{W} for W which takes advantage of H_0 . (You do not need to demonstrate consistency or unbiasedness.)
- (d) Describe an asymptotic test of H_0 against $H_1: \beta \neq \beta_0$ based on this statistic.
- (e) Use the result in part (d) to construct a confidence region for β . What can you say about the form of this region? For example, does the confidence region take the form of an ellipse, similar to conventional confidence regions?
- (f) Describe a bootstrap test of H_0 against $H_1: \beta \neq \beta_0$ based on the statistic $J_n(\beta_0)$. Hint: The key is to find an appropriate bootstrap estimate of the distribution of $J_n(\beta_0)$.