MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.301 Solid State Circuits

Fall 2013 Problem Set 1 Issued: Sept 5, 2013 Due: Sept 12, 2013

Problem 1: Basic Techniques

(a) For the following circuit, sketch the pole-zero plot, Bode plot, and unit step response for $\frac{V_2}{V_1}(s)$ and $\frac{V_3}{V_1}(s)$.

(b) Find the transfer functions $\frac{V_2}{V_1}(s)$ and $\frac{V_3}{V_1}(s)$ for the following circuit. What is the impedance looking into node V_3 ? What effect does the amplifier have on the capacitor?

(c) Find the Thevenin resistances R_{BC} and R_{BE} for the following circuits.

Problem 2: Transistor parameter hunting

Consider the following circuit, where $V_{be} = 0.6V$, $\beta = 200$, and $V_A = 80$. Find I_S for the large signal model and find g_m , r_π , and r_o for the hybrid-pi small-signal model. Draw the small-signal equivalent circuit.

Problem 3: Biasing

Consider the following circuit, where for

Q1: $I_S=10^{-15}A,\ V_A=\infty,\ V_{CE_{sat}}=0.2V,\ \beta=200,$ M1: $V_T=0.6V,\ \mu_nC_{ox}\frac{W}{L}=200\frac{\mu A}{V^2},\ \lambda=0\ V_{cc}=5V, R_L=30k, C_B$ is large.

- (a) Determine the DC value of V1 such that $I_{C1} = 60\mu A$.
- (b) Find the DC output voltage at the collector of Q1.
- (c) Determine the range of R_B that keeps M1 in saturation and Q1 in the FAR.