Classical Planning in a Deep Latent Space

(WIP project idea)

1 Classical Planning

Scalable, Highly-optimized solver for complex combinatorial problems

Guided by domain-independent heuristics

Requires an explicit encoding of the real world, written by human

2 Reinforcement Learning

Policy function $\pi(s)$: $S \to A$ — returns action a for state s

Optimal Policy $\pi^*(s)$

Goal: Find the best approximation of π^*

3 Reinforcement Learning in Latent Space

4 Deep Reinforcement Learning

5 Comparison

Classical Planning
Scalable, Highly-
optimized solver
for complex combi-
natorial problems
Guided by domain-
independent
heuristics
Requires an ex-
plicit encoding of
the real world, writ-
ten by human

Deep
Reinforcement
Learning
Works on the im-
plicit encoding of
the real world
Reasoning is lim-
ited to the 1-step fu-
ture of the current
state
guided by instance-
specific learned
knowledge (specific
object, situation,
goal)

Deep Reinforcement Learning Works on the implicit encoding of the real world Reasoning is limited to the **1-step fu-** #+END_{ROW}ture of the current state guided by instancespecific learned knowledge (specific object, situation. goal)

FLUID