BOSTON UNIVERSITY COLLEGE OF ENGINEERING

Dissertation

OPTICAL MIMO COMMUNICATION SYSTEMS UNDER ILLUMINATION CONSTRAINTS

by

PANKIL M. BUTALA

B.E., University of Mumbai, 2006 M.S., University of California, Los Angeles, 2007

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

2015

Approved by

First Reader

Thomas D.C. Little, Ph.D.

Professor of Electrical and Computer Engineering

Professor of Systems Engineering

Second Reader

Jeffrey Carruthers, Ph.D.

Associate Professor of Electrical and Computer Engineering

Third Reader

Bobak Nazer, Ph.D.

Assistant Professor of Electrical and Computer Engineering Assistant Professor of Systems Engineering

Fourth Reader

Valencia Joyner Koomson, Ph.D.

Associate Professor of Electrical and Computer Engineering Tufts University " Δv - v for velocity, Δ for change. In space, this is the measure of change in velocity required to get from one place to another, thus a measure of the energy required to do it. Everything is moving already but to get something from the moving surface of the Earth into orbit around it requires a minimum Δv of 10 km/s. To leave Earth's orbit and fly to Mars requires a minimum Δv of 3.6 km/s and to orbit Mars and land on it requires a Δv of about 1 km/s. The hardest part is leaving Earth behind, for that is by far the deepest gravity well involved."

Kim Stanley Robinson Red Mars (2.2.99) Acknowledgments

Dad, Mom and Anuja – This work is as much your accomplishment as mine because

of your numerous sacrifices, unconditional love and support.

Prof. Little – You have been a wonderful mentor throughout my doctoral studies.

Your advice, guidance and support has been invaluable towards completion of this

dissertation.

Hany, Mike, Jimmy and Yuting – Your constructive criticism and support has made

me a better researcher.

Prof. Carruthers, Prof. Nazer and Prof. Koomson – Your review and feedback has

enriched this dissertation.

This work was supported primarily by the Engineering Research Centers Program

of the National Science Foundation under NSF Cooperative Agreement No. EEC-

0812056.

Thank you,

Pankil

 \mathbf{V}

OPTICAL MIMO COMMUNICATION SYSTEMS UNDER

ILLUMINATION CONSTRAINTS

PANKIL M. BUTALA

Boston University, College of Engineering, 2015

Major Professor: Thomas D.C. Little, Ph.D.

Professor of Electrical and Computer Engineering

Professor of Systems Engineering

ABSTRACT

Technology for wireless information access has enabled innovation of 'smart' portable consumer devices. These have been widely adopted and have become an integral part of our daily lives. They need ubiquitous connectivity to the internet to provide value added services, maximize their functionality and create a smarter world to live in. Cisco's visual networking index currently predicts wireless data consumption to increase by 61% per year. This will put additional stress on the already stressed wireless access network infrastructure creating a phenomenon called 'spectrum crunch'.

At the same time, the solid state devices industry has made remarkable advances in energy efficient light-emitting-diodes (LED). The lighting industry is rapidly adopting LEDs to provide illumination in indoor spaces. Lighting fixtures are positioned to support human activities and thus are well located to act as wireless access points. The visible spectrum (380 nm – 780 nm) is yet unregulated and untapped for wireless access. This provides unique opportunity to upgrade existing lighting infrastructure and create a dense grid of small cells by using this additional 'optical' wireless bandwidth. Under the above model, lighting fixtures will service dual missions of

illumination and access points for optical wireless communication (OWC).

This dissertation investigates multiple-input multiple-output (MIMO) optical wireless broadcast system under unique constraints imposed by the optical channel and illumination requirements. Sample indexed spatial orthogonal frequency division multiplexing (SIS-OFDM) and metameric modulation (MM) are proposed to achieve higher spectral efficiency by exploiting dimensions of space and color respectively in addition to time and frequency. SIS-OFDM can provide significant additional spectral efficiency of up to $(N_{\rm sc}/2$ - 1) \times k bits/symbol where $N_{\rm sc}$ is total number of subcarriers and k is number of bits per underlying spatial modulation symbol. MM always generates the true requested illumination color and has the potential to provide better color rendering by incorporating multiple LEDs. A normalization framework is then developed to analyze performance of optical MIMO imaging systems. Performance improvements of up to 45 dB for optical systems have been achieved by decorrelating spatially separate links by incorporating an imaging receiver. The dissertation also studies the impact of visual perception on performance color shift keying as specified in IEEE 802.15.7 standard. It shows that non-linearity for a practical system can have a performance penalty of up to 15 dB when compared to the simplified linear system abstraction as proposed in the standard. Luminous-signal-to-noise ratio, a novel metric is introduced to compare performance of optical modulation techniques operating at same illumination intensity. The dissertation then introduces singular value decomposition based OWC system architecture to incorporate illumination constraints independent of communication constraints in a MIMO system. It then studies design paradigm for a multi-colored wavelength division multiplexed indoor OWC system.

Contents

List of Tables

List of Figures

List of Abbreviations

APD AWGN CCT CIE CMOS CP CSI CSK DCO DMT E/O FOV FWHM GCS ICI IID IM/DD	Asymmetrically Clipped Optical Avalanche Photo Diode Additive White Gaussian Noise Correlated Color Temperature Commission Internationale de l'Eclairage Complementary Metal Oxide Semiconductor Carrier Prefix Channel State Information Color Shift Keying DC biased Optical Discrete Multi-Tone Electrical to Optical Field Of View Full Width at Half Maximum Global Coordinate System Inter Channel Interference Independent and Identically Distributed Intensity Modulation / Direct Detection Infra—Red
T 0 0	 Light Emitting Diode Line Of Sight
LSNR .	 Luminous Signal to Noise Ratio
_	 Medium Access Control
_	 Multiple Input Multiple Output
	 Metameric Modulation
	 Multiple Subcarrier Modulation
	 Non Line Of Sight
	 Non-Return to Zero
- /	 Optical to Electrical
· ·	 Orthogonal Frequency Division Multiplexing
	 On-Off Keying
	 Pulse Amplitude Modulation
PCS .	 Primary Color Space

PD	 Photo Diode
PHY	 Physical layer
PIN	 P-I-N Junction
PPM	 Pulse Position Modulation
PWM	 Pulse Width Modulation
QAM	 Quadrature Amplitude Modulation
RCS	 Receiver Coordinate System
RF	 Radio Frequency
RZ	 Return to Zero
RGB	 Red, Green and Blue
SD	 Standard Deviation
SISO	 Single Input Single Output
SIS	 Sample Indexed Spatial
SM	 Spatial Modulation
SMP	 Spatial Multiplexing
SNR	 Signal to Noise Ratio
SPD	 Spectral Power Distribution
SSK	 Spatial Shift Keying
SVD	 Singular Value Decomposition
TIA	 Trans-Impedance Amplifier
UCS	 Universal Color Space
UV	 Ultra-Violet
VCS	 Visual Color Space
VLC	 Visible Light Communication
VNI	 Visual Networking Index
VPPM	 Variable Pulse Position Modulation
WDM	 Wavelength Division Multiplexing