```
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
from scipy import stats
```

```
nrgvsecon=pd.read_csv("africanrgvsgdrp.csv",index_col=[0])
nrgvsecon.shape
```

(52, 12)

Electricity Generation Sources in each country

```
nrgvsecon.head(10)
```

	country	population	real gdp per capita \$	installed capacity kW	fossil fuels	nuclear	solar	wind	hydroelectricity	tide and wave	geothermal	bic
0	nigeria	225082083.0	4900.0	11691000.0	78.1	0.0	0.2	0.0	21.7	0.0	0.0	
1	egypt	107770524.0	12000.0	59826000.0	88.7	0.0	1.0	2.5	7.7	0.0	0.0	
2	south- africa	57516665.0	11500.0	62728000.0	87.9	5.2	1.6	2.6	2.5	0.0	0.0	
3	algeria	44178884.0	10700.0	21694000.0	98.9	0.0	0.9	0.0	0.1	0.0	0.0	
4	morocco	36738229.0	6900.0	14187000.0	81.6	0.0	1.1	13.0	4.4	0.0	0.0	
5	angola	34795287.0	6200.0	7344000.0	28.4	0.0	0.1	0.0	70.1	0.0	0.0	
6	kenya	55864655.0	4200.0	3304000.0	8.3	0.0	1.0	10.7	32.6	0.0	46.2	
7	ethiopia	113656596.0	2300.0	4856000.0	0.0	0.0	0.1	3.8	95.8	0.0	0.0	
8	tanzania	63852892.0	2600.0	1623000.0	65.0	0.0	1.3	0.0	32.8	0.0	0.0	
9	ghana	33107275.0	5300.0	5312000.0	63.8	0.0	0.3	0.0	35.9	0.0	0.0	

```
import matplotlib as mpl

mpl.rcParams['axes.spines.top'] = False

mpl.rcParams['axes.spines.right'] = False
```

nrgvsecon.iloc[0]

country	nigeria
population	225082083.0
real gdp per capita \$	4900.0
installed capacity kW	11691000.0
fossil fuels	78.1
nuclear	0.0
solar	0.2
wind	0.0
hydroelectricity	21.7
tide and wave	0.0

```
geothermal 0.0 biomass and waste 0.1
```

Name: 0, dtype: object

```
x=nrgvsecon.iloc[0].index[4:]
y=nrgvsecon.iloc[0].values[4:]
orderedy=nrgvsecon.iloc[0].value_counts().index
fig=plt.bar(x,y)
plt.xticks(rotation=90)
plt.ylim(0,100)
plt.show()
```


We can see the comparisons of each electricity generation source in a country (in this case, Nigeria).

Now, a better way to visualize this would be the bar charts in some order.e.g. the highest sources to the lowest.

```
# argsort returns an array of indices in order ascending order
order=np.argsort(nrgvsecon.iloc[0].values[4:])
```

```
# barh will plot a horizontal bar instead of a vertical one
x=nrgvsecon.iloc[0].index[4:][order]
y=nrgvsecon.iloc[0].values[4:][order]
orderedy=nrgvsecon.iloc[0].value_counts().index
fig=plt.barh(x,y)
plt.xticks(rotation=90)
plt.xlim(0,100)
plt.title(nrgvsecon['country'][0].upper())
```


Another interesting and more clear way to do things would be to have the percent appear at the end of each bar.

We can use plt.text to do this

```
x=nrgvsecon.iloc[0].index[4:][order]
y=nrgvsecon.iloc[0].values[4:][order]
orderedy=nrgvsecon.iloc[0].value_counts().index
fig=plt.barh(x,y)
plt.xticks(rotation=90)
plt.xlim(0,100)
plt.xlabel("% from each source")
plt.title(nrgvsecon['country'][0].upper())
for i in range(len(y)):
    if y[i]!=0:
        plt.text(y[i]+1, i,f"{y[i]}%")
```



```
# test
# nrgvsecon[nrgvsecon['country'].str.contains('kenya')].iloc[0][2:].index
```

The information on this bar chart is really clear.

We can see what the percentage contribution from each electricity generation source is!

Let's create a function to get this information from any country.

plotpercountry(nrgvsecon.country.values[2:5])

nrgvsecon.head(10)

	country	population	real gdp per capita \$	installed capacity kW	fossil fuels	nuclear	solar	wind	hydroelectricity	tide and wave	geothermal	bic
0	nigeria	225082083.0	4900.0	11691000.0	78.1	0.0	0.2	0.0	21.7	0.0	0.0	_
1	egypt	107770524.0	12000.0	59826000.0	88.7	0.0	1.0	2.5	7.7	0.0	0.0	
2	south- africa	57516665.0	11500.0	62728000.0	87.9	5.2	1.6	2.6	2.5	0.0	0.0	
3	algeria	44178884.0	10700.0	21694000.0	98.9	0.0	0.9	0.0	0.1	0.0	0.0	
4	morocco	36738229.0	6900.0	14187000.0	81.6	0.0	1.1	13.0	4.4	0.0	0.0	
5	angola	34795287.0	6200.0	7344000.0	28.4	0.0	0.1	0.0	70.1	0.0	0.0	
6	kenya	55864655.0	4200.0	3304000.0	8.3	0.0	1.0	10.7	32.6	0.0	46.2	
7	ethiopia	113656596.0	2300.0	4856000.0	0.0	0.0	0.1	3.8	95.8	0.0	0.0	
8	tanzania	63852892.0	2600.0	1623000.0	65.0	0.0	1.3	0.0	32.8	0.0	0.0	
9	ghana	33107275.0	5300.0	5312000.0	63.8	0.0	0.3	0.0	35.9	0.0	0.0	

Comparing energy sources

nrgvsecon.sum(numeric_only=True)

population 1.394572e+09 real gdp per capita \$ 2.809000e+05 installed capacity kW 2.433790e+08 fossil fuels 3.099700e+03 nuclear 5.200000e+00 solar 7.930000e+01 wind 6.640000e+01 hydroelectricity 1.825700e+03 tide and wave 0.000000e+00 geothermal 4.620000e+01 biomass and waste 7.870000e+01 dtype: float64

```
totalcapacity=nrgvsecon['installed capacity kW'].sum()
```

```
(np.sum(nrgvsecon['installed capacity kW']*nrgvsecon['fossil fuels']/100))/(nrgvsecon['
```

0.7685277612283722

```
sources=['fossil fuels','biomass and waste','wind','solar','nuclear','hydroelectricity'
```

```
def sumcapacity(sources):
    capacities=[]
    for source in sources:
        capacities.append((np.sum(nrgvsecon['installed capacity kW']*nrgvsecon[source]/100)
    return capacities
```

```
capas=(sumcapacity(sources))
```



```
mpl.rcParams['axes.spines.top'] = True
mpl.rcParams['axes.spines.right'] = True
plt.barh(sources,(np.array(capas)*100))
plt.xlim(0,100)
for i in range(len(capas)):
    if capas[i]!=0:
        plt.text(capas[i]*100+1, i,f"{(capas[i]*100):.2f}%")
plt.show()
```


gdp

```
nrgvsecon.head()
```

	country	population	real gdp per capita \$	installed capacity kW	fossil fuels	nuclear	solar	wind	hydroelectricity	tide and wave	geothermal	bic
0	nigeria	225082083.0	4900.0	11691000.0	78.1	0.0	0.2	0.0	21.7	0.0	0.0	
1	egypt	107770524.0	12000.0	59826000.0	88.7	0.0	1.0	2.5	7.7	0.0	0.0	
2	south- africa	57516665.0	11500.0	62728000.0	87.9	5.2	1.6	2.6	2.5	0.0	0.0	
3	algeria	44178884.0	10700.0	21694000.0	98.9	0.0	0.9	0.0	0.1	0.0	0.0	
4	morocco	36738229.0	6900.0	14187000.0	81.6	0.0	1.1	13.0	4.4	0.0	0.0	

```
np.log10(nrgvsecon['real gdp per capita $'].describe())
```

```
1.716003
count
         3.732548
mean
         3.720144
std
         2.845098
min
25%
         3.322219
50%
         3.518514
75%
         3.804480
max
         4.387390
Name: real gdp per capita $, dtype: float64
```

```
bins=10**np.arange(2.7,4.4+0.1,0.1)
ticks=[1000,3000,10000,30000]
```

```
labels=[f'{v}' for v in ticks]
plt.hist(data = nrgvsecon, x='real gdp per capita $',bins=bins)
plt.xscale('log');
plt.xticks(ticks,labels);
```



```
sns.displot(nrgvsecon['real gdp per capita $']);
```



```
nrgvsecon.sort_values('installed capacity kW')
```

```
stats.spearmanr(nrgvsecon['installed \ capacity \ kW'], nrgvsecon['real \ gdp \ per \ capita \ \$'])
```

SpearmanrResult(correlation=0.42678686304592384, pvalue=0.0016038790372016702)

```
x=nrgvsecon['installed capacity kW']
y=nrgvsecon['real gdp per capita $']
plt.xlabel('energy capacity')
```

```
plt.ylabel('real gdp')
plt.scatter(x,y)
```

<matplotlib.collections.PathCollection at 0x2bc01de83a0>


```
installed=nrgvsecon['installed capacity kW']
```

```
gdp=nrgvsecon['real gdp per capita $']
```

```
instmean=np.mean(nrgvsecon['installed capacity kW'])
instmean
```

4680365.384615385

```
gdpmean=np.mean(nrgvsecon['real gdp per capita $'])
```

```
abovemean=([item for item in installed if item>instmean])
```

Taking population to account

```
prod=nrgvsecon['installed capacity kW']/nrgvsecon['population']
```

```
gdp=nrgvsecon['real gdp per capita $']
```

```
plt.scatter(prod,gdp)
```

<matplotlib.collections.PathCollection at 0x2bc01e2b7f0>

prodind=np.argsort(prod)

plt.scatter(prod[prodind][:49],gdp[prodind][:49])

<matplotlib.collections.PathCollection at 0x2bc01e85f00>

gdp[prodind][:49]

from scipy import stats

stats.spearmanr(prod,gdp)

SpearmanrResult(correlation=0.9038651435156675, pvalue=4.521208510127803e-20)

stats.pearsonr(prod,gdp)

PearsonRResult(statistic=0.7709646191018527, pvalue=2.293666649612281e-11)

import jovian

jovian.commit(filename="exploreafnrgvsecon.ipynb")

[jovian] Updating notebook "andrewkamaukim/exploreafnrgvsecon" on https://jovian.ai/

[jovian] Committed successfully! https://jovian.ai/andrewkamaukim/exploreafnrgvsecon

'https://jovian.ai/andrewkamaukim/exploreafnrgvsecon'