Master Theorem

$$T(n) = aT(\frac{n}{b}) + f(n), \qquad f(n) = \Theta(n^k log^p n), \ where \ a \ge 1 \ and \ b > 1$$

Case 1: if $log_ba>k$ • then, $\Theta(n^{\log_b a})$

Case 1: if a<1, then

T(n) = 2T(n/2) + O(n)

 $T(n) = O(n^k)$

Case 2: if $log_b a = k$

Case 3: if $log_b a < k$

- if p > -1, then $\Theta(n^k log^{p+1}n)$ • if p = -1, then $\Theta(n^k log log n)$
- if $p \geq 0$, then $\Theta(n^k log^p n)$
- if p<-1, then $\Theta(n^k)$
- if p < 0, then $\Theta(n^k)$

Case 3: if a > 1, then

 $O(3^n)$

 $T(n) = O(n^k a^{\frac{n}{b}})$

Master Theorem for subtract and conquer

$$T(n) = aT(n-b) + f(n),$$
 $n > 1$ for $a > 0$ $b > 0$, $f(n) = O(n^k), k \ge 0$

Case 2: if a=1, then

 $T(n) = O(n^{k+1})$

$I(n) = O(n^{-})$	I(n) = O(n)	=O(n-1) $I(n)=O(n-n)$	
Recurrence relation	big-Oh	Recurrence relation	big-Oh
T(n) = T(n/2) + O(1)	O(logn)	T(n) = 2T(n-1) - 1	O(1)
T(n) = T(n/2) + O(n)	O(n)	$T(n) = T(\sqrt{n}) + O(1)$	O(loglogn)
$T(n) = T(n/2) + O(n^2)$	$O(n^2)$	$T(n) = 2T(\sqrt{n}) + O(1)$	O(logn)
T(n) = T(n-1) + O(1)	O(n)	$T(n) = T(\sqrt{n}) + O(n)$	$\approx O(n)$
T(n) = 2T(n/2) + O(1)	O(n)	$T(n) = 2T(\sqrt{n}) + O(n)$	O(n)
T(n) = T(n-1) + O(n)	$O(n^2)$	T(n) = 2T(n-1) + 1	$O(2^n)$

T(n) = 3T(n-1)

Sorting Algorithms - Best | Average | Worst | Stability

O(nlogn)

Bubble: $\Omega(N)|\Theta(N^2)|O(N^2)|Stable \to \text{At the end of iteration } j$, the biggest j items are correctly sorted in the right most j position of array.

Selection: $\Omega(N^2)|\Theta(N^2)|O(N^2)|Not\ Stable \to \text{At the end of iteration } j$: the smallest j items are correctly sorted in the first \mathbf{j} positions of the array. Always traverse entire array, always N^2 .

Insertion: $\Omega(N)|\Theta(N^2)|O(N^2)|Stable \rightarrow \text{At the end of } j$ iteration: the first j items in the array are in sorted order. (NOT necessarily the smallest). Best/Worst: Already sorted vs Reverse Sorted

Quick: $\Omega(N \ log N) |\Theta(N \ log N)| O(N^2) |Stable \rightarrow \text{At the end of every loop iteration:}$ for all $i \ge high$, A[i] > pivot, for all 1 < j < low, A[i] < pivot. Worst: Pivot smallest/biggest item.

Merge: $\Omega(N \log N) |\Theta(N \log N)| O(N \log N) |Stable \rightarrow \text{At the end of j iteration, each half of}$ the array that is split is already sorted. Stable if merge() is stable.

Heap: $\Omega(N \log N) |\Theta(N \log N)| O(N \log N)$

Binary Search: $\Omega(1)|\Theta(log N)|O(log N) \rightarrow \text{At the end of iteration } j$, the active search region between begin and end is size at most $\frac{n}{2^j}$, and the item (if it exists) is in that region.

```
static int genBinarySearch(int[] arr, int key, int k) {
 int low = 0; int high = arr.length - 1;
  while(low <= high) {
   int pivot = low + (high - low) / k;
                                                    //two halves split with fraction k
    if (arr[pivot] == key) return pivot;
                                                    //corner case: found target
    else if (arr[pivot] > key) { high = pivot - 1; } //decrease high (search LHS)
                                                   //increase low (search RHS)
    else { low = pivot + 1; }
  } return -1 //not found anywhere:
} //realise that when k=2, this reduces to our vanila binary search
```

Data Structures

1. Binary Trees - Unbalanced, in-order, dynamic, traversable

Time complexity of all BST Operations = O(h), where h is the height of BST.

Invariant: all in left sub-tree < key < all in right sub-tree.

Best Case: BST is balanced, height of BST is O(log n), hence complexity is O(log n).

Worst Case: BST is skewered, height of BST becomes n, time complexity is O(n).

2. Tries - Unbalanced, string-based

Best Case/Worst Case: For all operations of Insertion/Deletion/Searching O(N) except if the word is 1 letter long, in which case search time is O(1) (best case for searching).

3. (a,b) trees - Degree [a,b], balanced, uniform height Invariants: After every operation, every leaf has same depth. Every node has degree in the range [a,b]. Nodes satisfy tree-order property.

Node	Min Keys	Max Keys	Min Child	Max
Root	1	b-1	2	b
Internal	a-1	b-1	a	b
Leaf	a-1	b-1	0	0

• An (a, b)-tree with n nodes has $O(log_a n)$ height, binary search for a key at every node takes $O(log_2b)$ time.

• Total cost = $O(log_2b * log_an)$

- (Cost of searching *a* node * Height) $= O(loa_n) * (loa_nb const) = O(loan)$ 4. AVL Trees - Like binary trees, but height-balanced. Height-balanced tree has at most height
- h < 2log(n), \therefore at least $n > 2^{\frac{h}{2}}$ nodes. at most $2^{h+1} 1$ nodes.

Invariants: After every operation, every node is height-balanced.

Best Case: O(logn), for insertion/deletion/searching.

Insertions take at most 2 rotations to balance as insertions DO NOT reduce heights. Deletion can take more than 2 rotations to balance. Rebalancing does not "undo" the change in height since rebalances usually reduces height as well.

Worst Case: should tree be unbalanced from leaf-to-root upon deletions, it would take lognrotations still, hence worst time complexity would be O(log n).

Updating AVL Trees:

- a. Rotations: Rotations only affect current rotating node and parents of rotating node, thus we update from root-to-currNode path.
- b. Inserting: Depend on how the variable affected is initialized, update while inserting/after.
 - If balanced, update variables from root-to-leaf path (if needed).
- If not balanced, update first and conduct necessary rotations.
- c. Deleting: Three cases
 - → Node is just a leaf → just delete and update parents.
 - → 1 child → just delete and update from root to deleted node's variable, connect parent of deleted node to child of deleted node.
 - → 2 children → Find successor (maximum of left-subtree of deleted node), delete node, replace with successor and update varibales. Have to update the parents of deleted nodes and the left sub-tree of deleted node (since a node is taken from there
- 5. Interval Trees Search(key) $\Rightarrow O(logn)$

If value is in root, return. If value > max(left sub-tree) recurse right. else left (can't go right).

Orthogonal Range Searching: Binary trees; leaves store points internal nodes →left subtree max

G.P
$$S_n = \frac{a(1-r^n)}{1-r}$$

A.P $S_n = \frac{n}{2}[2a + (n-1)d] \ OR \ S_n = \frac{n}{2}[a+l]$

rebalancing

[case 1] B is balanced: right-rotate

$$h(L) = h(M), \qquad h(R) = h(M) - 1$$
 Right Rotation
$$\begin{pmatrix} h(R) & h(M) & h(M) \\ h(M) & h(M) & h(M)$$

[case 2] B is left-heavy: right-rotate

[case 3] B is right-heavy: left-rotate(v.left), right-rotate(v)

weights

max max(m1,m2,m3,b,r)

2 3 n	$\approx n(logn)$
$= n(1 + \frac{1}{2} + \dots + \frac{1}{n})$	O(nlogn)
$1+2+3+4+\ldots+n=rac{n(n+1)}{2}$	$= O(n^2)$
$n + \frac{n}{2} + \dots + 1$ = $n + n(\frac{1}{2}) + n(\frac{1}{2})^2 + \dots + n(\frac{1}{2})^n$	$\approx O(n)$
$1+c+c^2+\ldots+c^n$ if $ c <1$ = $O(1)$ OR if $ c >1$ = $O(c^n)$	
$1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$	$O(n^3)$

7. Hash Tables

Let m be the table size and let n be the number of items; let cost(h) be cost of hash function. $load(hash\ table)$, $\alpha = \frac{n}{m}$ \rightarrow average/expected number of items per bucket.

- Simple Uniform Hashing Assumption: every key has an equal probablity of being mapped to every bucket, keys are mapped indenpendently.
- Uniform Hashing Assumption: every key is equally likely to be mapped to every permutation, independent of every other key, NOT fulfilled by linear probing.
- Properties of a good hash function: able to enumerate all possible buckets $h:U\to$ $\{1...m\}$ for every bucket j, $\exists i$ such that h(key, i) = j && SUHA

Rules of hashCode() function: (rules for equals method → equivalence relation).

- 1. Always returns the same value if the object has not changed. 2. If two objects are equal, then they return the same hashCode.
- 3. MUST redefine .equals() to be consistent with hashCode().

Chaining

$$\begin{array}{l} \text{insert(key, value)} \to O(1 + cost(h)) \Rightarrow O(1), \\ \text{for n items, expected max cost} = O(logn) \to O(\frac{logn}{log(logn)}) \end{array}$$

$$\begin{array}{l} \operatorname{search}(\operatorname{key}) \to \operatorname{Worst} \operatorname{case} : O(n + cost(h)) \Rightarrow O(n), \\ \operatorname{expected} \operatorname{case}, O(\frac{n}{m} + cost(h)) \Rightarrow O(1) \text{ (Searching through a linked list)}. \\ \end{array}$$

Open addressing - linear probing

redefined hash function: $h(k, i) = h(k, 1) + i \mod m$

delete(key): use a tombstone value - DON'T set to null

Performance

if the table is $\frac{1}{4}$ full, there will be clusters of size $\Theta(logn)$ expected cost of an operation, $E[\#probes] \leq \frac{1}{1-\alpha}$, (assume $\alpha < 1$ and uniform hashing), degrades badly as $\alpha \to 1$

advantages

- saves space (use empty slots vs linked list)
- better cache performance (table is one place in memory)
- · rarely allocate memory (no new list-node allocation)

disadvantages

- more sensitive to choice of hash function (clustering)
- more sensitive to load (as $\alpha \rightarrow 1$, performance degrades)

8. Table size

- If (n == m), then m = 2m. If $(n < \frac{m}{4})$ then $m = \frac{m}{2}$.
- Everytime double a table of size m, at least $\frac{m}{2}$ new items were added (pay for doubling).
- Everything shrink a table of size m, at least $\frac{m}{4}$ items were deleted (pay for shrinking).
- Let m_1 be size of old hash table, m_2 be size of new hash table: n be number of elements. growing the table: $O(m_1 + m_2 + n) \approx O(n)$

table growth	resize	insert n items
increment by 1	O(n)	$O(n^2)$
double	O(n)	O(n), average $O(1)$
square	$O(n^2)$	O(n)

- 9. Amortized Analysis an operation has amortized cost T(n) if for every integer k, the cost of koperations is $\leq kT(n)$.
 - binary counter ADT: increment $\Rightarrow O(1)$
 - hash table resizing: O(k) for k insertions, search operation: expected O(1) (not amortized)

$$1 < logn < \sqrt{n} < n < nlogn < n^2 < n^3 < 2^n < 2^{2n} \ log_a n < n^a < a^n < n! < n^n$$

10. Graphs

- diameter: max. shortest path in the graph even cycles are bipartite (every other node 1 grp).
 - degree (graph): maximum degree of a

Searching

BFS \Rightarrow O(V+E), parent edges form a tree & shortest path from S, use queue.

- \circ O(V) every vertex is added exactly once to a frontier
- $\circ \ O(E)$ every neighbourList is enumerated once

DFS $\Rightarrow O(V+E)$, with adjacency matrix: O(V) per node \Rightarrow total $O(V^2)$, use stack

- \circ O(V) DFSvisit is called exactly once per node
- $\circ O(E)$ DFSvisit enumerates each neighbour
- Topological Ordering Sequential total ordering of nodes + Edges only point foward.
 - Post-Order DFS \Rightarrow O(V+E), prepend each node from a post-order traversal.
 - Khan's Algorithm $\Rightarrow O(ElogV)$, add nodes without incoming edges to topological order.

• degree (node): number of adjacent edges

• graph is dense if $|E| = \Theta(V^2)$, if dense

(cycle)

O(V)

 $O(V^2)$

(clique)

 $O(V^2)$

 $O(V^2)$

use for

use a Adjacency matrix instead.

space

O(V+E)

 $O(V^2)$

- remove min-degree node from priority queue $\Rightarrow O(V log V)$
- decreaseKey() (in degree) of the child node $\Rightarrow O(ElogV)$

Shortest Paths

- Bellman Ford $\Rightarrow O(VE)$, |V| iterations of relaxing, terminate when entire sequence of |E| operations have no effect. Use to detect negative weight cycles, if same weight use BFS.
- ∘ Dijkstra's \Rightarrow $O((E+V)logV) = O(E logV) \rightarrow NO$ Negative weight edges.

Dijkstra grows set by adding neighbouring node that is the closest to source (min-estimate

Use a PQ to track the min-estimate to node, relax outgoing edges, add incoming to PQ.

|V| times of insert() / deleteMin() $\rightarrow O(logV)$ each, (only inserted/removed once)

|E| times of relax() / decreaseKey() $\rightarrow O(logE)$ each.

Fibonacci heap $\Rightarrow O(E + V log V)$, Array $\Rightarrow O(V^2)$

- DAG Shortest Path \Rightarrow O(V+E), Sort by topological order, then relax in this order Longest path: negate the edges/modify relax function
- Trees $\Rightarrow O(V)$, relax each edge in BFS/DFS order.
- · Union-Find, Union connect 2 objects, Find check if objects are connected.

	Find	Union
<pre>quick-find int[] componentId flat trees (connected if part of same componentId)</pre>	$O(1)$ - check if objects have the same $\begin{array}{c} \text{componentId} \end{array}$	$O(n)$ - enumerate all items in array to update $\begin{tabular}{c} id \end{tabular}$
quick-union int[] parent deeper trees (connected if same parent)	O(n) - check for same root	O(n) - add as a subtree of the root
weighted union <pre>int[] parent, int[] size</pre> (make shorter tree child of larger tree)	O(logn) - check for same root	$O(logn)$ - add as ${f smaller}$ subtree of roo
path compression (set parent of each traversed node to the root)	O(logn)	O(logn)
weighted union + path compression, for m union/find operations on n objects: $O(n+m\alpha(m,n))$,flat trees	$O(\alpha(m,n))$	$O(\alpha(m,n))$

Optimal sub-structure - optimal solution constructed from solutions to smaller sub-problems

Property 2: If you cut an MST, the two subtrees are both MSTs.

max weight edge is \underline{not} in the MST. Property 3: Cycle property, For

edge is in the MST. Property 4: Cut property, For every

Prim's Algorithm $\Rightarrow O(ElogV)$, grows set by adding node connected

S[i] = LIS(A[1...i]), $\Rightarrow O(n^2)$, find LIS up to each point in A[1...i] = O(n), ran n times

DAG Solution $\Rightarrow O(n^3)$, find topological order (O(V+E)

Longest Increasing sub-sequence

connects k graphs $\mid O(kV^2)$ for

Prize collecting $\Rightarrow O(kE) \rightarrow {
m super}$ source

All pairs shortest path \Rightarrow O(V*ElogV), dijkstra ran onto all nodes once (V

Diameter of a graph: $O(V^2logV)$, SSSP all nodes of a graph, $(V\ {
m times})$

Floyd Warshall $\Rightarrow O(V^3)$

• add the minimum edge across the cut in the MST Vertex cover \Rightarrow O(V) or $O(V^2)$, set of nodes where every edge is adjacent to extstyle 2 1 node

PQ to store nodes (priority: lowest incoming edge weight)

 $\Rightarrow O(logV)$ each, hence total O(V*logV)

each edge: one $_{\rm decreaseKey()} \Rightarrow O(ElogV)$

 $\Rightarrow O(ElogV)$, sort edges, add smallest edges that do not form a cycle. $\mathrm{sorting} \Rightarrow O(ElogE) = O(ElogV)$ Kruskal's Algorithm

each edge: $extit{find()} / extit{union()} \Rightarrow O(logV)$ using union-find DFS

using nodes from set ${\cal P}$

 $S[v, w, P_8] = min(S[v, w, P_7], S[v, 8, P_7] + S[8, w, P_7])$