

UNIVERSITATEA TEHNICĂ DIN CLUJ- NAPOCA FACULTATEA DE ELECTRONICĂ, TELECOMUNICAȚII ȘI TEHNOLOGIA INFORMAȚIEI

Nume student : Rares Marinescu

Prof. coord:

drd. Eduard Vladu

drd. Mădălina Farcaș

conf.dr.ing Marius Neag

1. Tematica proiectului :

Să se realizaze circuitul format din următoarele etaje :

1.1 Sursă de tensiune diferențială :

1.2 Etajul 1 : AI cu 2 Amplificatoare operaționale, neinversor, intrare V

• Amplficare maximă: 7.81 x 10⁻²

• Amplificare minimă : 2.77 x 10⁻²

• Câștig liniar : 9

1.3 Etajul 2: Trece bandă cu 1 Amplificator Operațional V-V Rauch

• Câștig linear în banda de trecere : 1

• $R_{intrare} : 1k\Omega$

• Banda: 3kHz

• Factorul de calitate : 0.707

1.4 Etaj 3 : PGA cu RG în paralel

Câștig minim : 5 dBCâștig maxim : 14 dB

Rezoluție : 3 dBNumăr de pași : 4

1.5 Etaj 4: Redresor

• Câștig linear : 2 cu OP27

2. Dimensionarea etajelor:

Etaj 1:

Pentru a dimensiona primul etaj ne folosim de expresia câștigului care este :

$$A_d = \frac{v_0}{v_a - v_B} = 1 + \frac{R_4}{R_3} (1 + \frac{R2 + R3}{RG})$$

În baza formulei precezate anterior, dimensionăm elementele circuitului astfel:

Pentru A_d =9 alegem R_3 =5k si R_g =5k.

Din calcul reiese ca R₄=10k si R₂=5K

În urma unei analize parametrice, reiese faptul că R_1 =20k.

Etaj 2:

Pentru dimensionare aflăm W_0 care poate fi determinat din formula F_0 =Bw*Q=2121Hz.

Valorile aferente pentru C1 și C2 sunt alese dupa convenție ca fiind 1nF și dupa din ecuațiile:

$$R1 = \frac{1}{2W0QC}$$

$$R2 = \frac{2Q}{W0C}$$

$$R2 = \frac{2Q}{W0C}$$

Aflam R1, R2. Astfel:

$$C_1 = C_2 = 1 \text{ nF}$$

$$R_1 = R_{in} = 53.1 \text{ k}$$

$$R_2 = 106k$$

Etaj 3:

Cum treptele de castig sunt 5 8 11 14 in db, convertite in liniar vor fi:

- 1.78
- 2.51
- 3.55
- 5.01

Astfel, pentru fiecare treapta formula castigului va fi $1 + \frac{Rf}{Rg_n}$. Alegand Rf=10k vom avea valorile:

Etaj 4:

Cum castigul este egal cu 2 si conditia de redresor este data de relatia

$$\frac{R2}{R1R3} = \frac{2}{R4}$$

Alegem R=5k iar din figura de mai sus reiese ca

R1=5K

R2=5k

R3 = 2.5k

R4=5k

R5=10k

3. Caracterizarea etajelor

Etaj 1:

Castig: 9

BW: 919.33834KHz

Total Harmonic Distortion: 0.063862%

SR: 0.104466V/Us

Etaj 2:

THD: Total Harmonic Distortion: 0.064331%

BW: 3khz

F0:2121hz

Castig in banda de trecere:1

Etaj 3:

Bw castig max=Bw castig min=1Mhz

castig max: Total Harmonic Distortion: 0.064457%

castig min: Total Harmonic Distortion: 0.065409%

Etaj 4

Castig=2

4. Verificarea si caracterizarea interfetei analogice

Etaj 1:

Tranisent:

AC:

OP:

_	1	
	Operating Point	
V(n001):	0	voltage
V(n004):	0	voltage
V(vcc):	15	voltage
V(n002):	0	voltage
V(vpp):	-15	voltage
V(n003):	0	voltage
V(n005):	0	voltage
V(out):	0	voltage
I(R2):	0	device_current
I(R3):	0	device_current
I(R4):	0	device_current
I (Rg):	0	device_current
I(R1):	0	device_current
I (Vb):	0	device_current
I(Va):	0	device_current
I(V1):	-0.00593506	device_current
I(V2):	0.00593506	device_current
Ix(u1:1):	0	subckt_current
Ix(u1:2):	0	subckt_current
Ix(u1:3):	0.00296753	subckt_current
Ix(u1:4):	-0.00296753	
Ix(u1:5):	0	subckt_current
Ix(u2:1):	0	subckt_current
Ix(u2:2):	0	subckt_current
Ix(u2:3):	0.00296753	subckt_current
Ix(u2:4):	-0.00296753	_
Ix(u2:5):	0	subckt_current

Etaj 2:

Transient:

AC:

DCOP:

--- Operating Point ---

V(n002):	0	voltage
V(n001):	0	voltage
V(out):	0	voltage
V(n003):	0	voltage
V(vcc):	22	voltage
V(vpp):	-22	voltage
I(C2):	0	device_current
I(C1):	0	device_current
I(R1):	0	device current
I(R2):	0	device_current
I(V1):	0	device_current
I(V2):	-0.00331753	device_current
I(V3):	0.00331753	device current
Ix(u1:1):	0	subckt_current
Ix(u1:2):	0	subckt_current
Ix(u1:3):	0.00331753	subckt current
	0.00004550	

-0.00331753

subckt_current
subckt_current

Etaj 3:

Ix(u1:4):

Ix(u1:5):

AC:

Gain min:

Gain max:

DC:

* D:\florica\proiect 2025\rares\etaj3.asc --- Operating Point ---V(n002): 0.0999998 V(n006): 0.1 V(vdd): 22 V(n004): 0.499235 V(vss): -22

15

-15

Π

Π

0

Π

Π

0.0999741

0.0999865

0.0999919

0.000485736

3.99236e-06

2.00348e-10

2.00373e-10

2.00384e-10

3.99174e-06

-0.00331969

-1.67022e-11 -3.5994e-07

3.60541e-07

-2.5e-23

1.67022e-11

1.66311e-11

0.00331969

-0.0033157

-3.99236e-06

2.00148e-10

-1.99948e-13

-9.99741e-30

8.99601e-08

2.00173e-10

-9.016e-08

-1.99973e-13

-9.99865e-30

8.99601e-08

2.00184e-10

-9.016e-08

-1.99984e-13

-9.99919e-30

8.99601e-08

3.99174e-06

-3.99174e-06

-9.00605e-08

9.00596e-08

2.5e-23

-2.5e-23

-9.016e-08

0.0033157

V(vdd15):

V(n001):

V(in1):

V(n003):

V(in2):

V(n005):

V(in3):

V(n007):

V(in4):

I(Rf):

I(Rg1):

I (Rg2):

I (Rg3): I (Rg4):

I(V1): I(V2):

I(V3):

I(V4):

I(V5): I(V6):

I(V7):

I(V8):

I(V9):

Ix(u1:1): Ix(u1:2):

Ix (u1:3):

Ix(u1:4):

Ix (u1:5):

Ix (u2:1):

Ix(u2:2): Ix(u2:3):

Ix (u2:4):

Ix(u2:5):

Ix (u2:6):

Ix (u3:1):

Ix(u3:2): Ix (u3:3):

Ix (u3:4):

Ix(u3:5):

Ix(u3:6):

Ix(u4:1):

Ix(u4:2): Ix (u4:3):

Ix(u4:4): Ix(u4:5):

Ix (u4:6):

Ix (u5:1):

Ix(u5:2):

Ix(u5:3):

Ix(u5:4): Ix(u5:5):

Ix(u5:6):

V(vss15):

voltage

device current

device current

device_current

device_current

device_current

device current

device current device current

device current

device current

device current

device current

device current

device current

subckt current

subckt_current

subckt_current

subckt current

subckt current subckt current

subckt current

subckt current

subckt current

subckt current

subckt current

subckt current

subckt_current

subckt_current

subckt_current

subckt current subckt_current

subckt current

subckt current

subckt current

subckt current

subckt current subckt_current

subckt current

subckt current

subckt_current

subckt current

subckt current

subckt_current

Etaj 4:

Ac:

Trans:

Proiect Complet:

TRANSIENT:

AC:

