NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF STATISTICS AND DATA SCIENCE

ST2334 PROBABILITY AND STATISTICS SEMESTER I, AY 2025/2026

Midterm Test (Sample Paper B)

- This assessment contains 15 questions.
- The total marks is 30; each question is worth 2 marks.
- Please answer ALL questions.
- Calculators of any kind are allowed.
- Solutions to this paper will be published by the Friday of the Recess/Reading Week. Try working on it till then.

1. MULTIPLE CHOICE: CHOOSE ONE ANSWER ONLY

 $A \cup (B \cap C)$ is the same as

(a) $(A \cup B) \cap (A \cup C)$

(c) $A \cup B' \cup C'$

(b) $(A \cup B) \cap C$

(d) $(A \cap B) \cup (A \cap C)$

2. MULTIPLE CHOICE: CHOOSE ONE ANSWER ONLY

How many different committees of 5 can be formed from 6 men and 4 women on which exactly 3 men and 2 women serve?

Pick the option closest to the answer.

(a) 6

(c) 60

(b) 20

(d) 120

3. FILL IN THE BLANK

Consider the digits 0,1,2,3,4,5, and 6. If each digit can be used at most once, how many **odd** 3-digit numbers, which are **equal to or greater than** 301, can be formed?

ANSWER: ______. (Give your answer in numerical form.)

4. MULTIPLE CHOICE: CHOOSE ONE ANSWER ONLY

Consider the following statements about Peter whom you have not met before.

(A) He is not married.

- (C) He is married.
- (B) He is not married and smokes.
- (D) He is married and does not smoke.

You are to assign probabilities to these statements. Which answer below is consistent with the Laws of Probability?

(a)
$$P(A) = 0.45$$
, $P(B) = 0.50$, $P(C) = 0.55$, $P(D) = 0.40$

(b)
$$P(A) = 0.45$$
, $P(B) = 0.10$, $P(C) = 0.60$, $P(D) = 0.30$

(c)
$$P(A) = 0.45$$
, $P(B) = 0.20$, $P(C) = 0.55$, $P(D) = 0.50$

(d)
$$P(A) = 0.45$$
, $P(B) = 0.40$, $P(C) = 0.55$, $P(D) = 0.60$

5. MULTIPLE CHOICE: CHOOSE ONE ANSWER ONLY

In an oral exam, a student needs to answer a question correctly to pass. The question will be randomly drawn from a box containing 6 hard and 4 easy questions. If an easy question is drawn, with 80% chance, the student can answer it correctly; otherwise, with 20% chance, the student can answer it correctly. If the student passed the exam, what is the probability that an easy question was drawn?

Pick the option closest to the answer.

(a) 2/3

(c) 8/11

(b) 4/5

(d) 7/12

6. TRUE/FALSE

Let A and B be mutually exclusive events. If P(A) = 0.1, P(B) = 0.01, then A and B are not independent.

- TRUE
- FALSE

7. TRUE/FALSE

Let f(x) be the probability function of a discrete random variable X. Then, for any real numbers $x_1 < x_2 < \ldots < x_{1000}$ we must have

$$f(x_1) + f(x_2) + \ldots + f(x_{1000}) \le 1.$$

- TRUE
- FALSE

8. MULTIPLE CHOICE: CHOOSE ONE ANSWER ONLY

Let *X* be a random variable with density function

$$f(x) = \begin{cases} k\sqrt{x}, & 0 \le x \le 1; \\ ke^{\frac{1-x}{2}}, & x > 1; \\ 0 & \text{otherwise.} \end{cases}$$

What is the value of the constant k?

Pick the option closest to the answer.

9. FILL IN THE BLANK

Let *X* be a random variable, whose cumulative distribution function is given by

$$F(x) = \begin{cases} 0, & x < 0; \\ 0.2, & 0 \le x < 2; \\ 0.6, & 2 \le x < 3; \\ 0.7, & 3 \le x < 5; \\ 1, & x \ge 5. \end{cases}$$

Compute E(X).

ANSWER: ______. (Round your answer to 3 decimal points, if necessary.)

10. FILL IN THE BLANK

Suppose X has a probability mass function given by the following table.

Х	0	1	4	9
f(x)	0.3	0.5	0.1	0.1

Compute $E(\sqrt{X})$.

ANSWER: _______ (Round your answer to 3 decimal points, if necessary.)

11. FILL IN THE BLANK

Let *X* be a random variable. E(X) = 4; E[X(X - 1)] = 20. Compute V(X).

(Round your answer to 2 decimal places, if necessary.)

12. MULTIPLE CHOICE: CHOOSE ONE ANSWER ONLY

Which of the following is **possibly** the cumulative distribution function of a random variable *X*?

(a)
$$F(x) = \begin{cases} 0 & x < -2 \\ 0.3 & -2 \le x < -1 \\ 0.5 & -1 \le x < 3 \\ 0.6 & 3 \le x < 4 \\ 1 & x \ge 4 \end{cases}$$
 (c)
$$F(x) = \begin{cases} 0 & x \le -2 \\ 0.3 & -2 < x \le -1 \\ 0.4 & -1 < x \le 3 \\ 0.6 & 3 < x \le 4 \\ 1 & x > 4 \end{cases}$$
 (d) None of the given options
$$0.3 & -2 \le x < -1 \\ 0.6 & -1 \le x < 2 \\ 0.5 & 2 \le x < 4 \\ 1 & x > 4 \end{cases}$$

(c)
$$F(x) = \begin{cases} 0 & x \le -2 \\ 0.3 & -2 < x \le -1 \\ 0.4 & -1 < x \le 3 \\ 0.6 & 3 < x \le 4 \\ 1 & x > 4 \end{cases}$$

(b)
$$F(x) = \begin{cases} 0 & x < -2 \\ 0.3 & -2 \le x < -1 \\ 0.6 & -1 \le x < 2 \\ 0.5 & 2 \le x < 4 \\ 1 & x > 4 \end{cases}$$

13. FILL IN THE BLANK

A service station has both self-service and full-service islands. On each island, there is a single regular unleaded pump with two hoses. Let X denote the number of hoses being used on the self-service island at a particular time, and let Y denote the number of hoses on the full-service island in use at that time. The joint probability mass function of X and Y is given in the table below.

x	у			
	0	1	2	
0	0.10	0.04	0.02	
1	0.08	0.20	0.06	
2	0.06	0.14	0.30	

Compute E(X|Y=1).

ANSWER: ______. (Round your answer to 3 decimal points, if necessary.)

14. TRUE/FALSE

Let f(x,y) be the joint probability function of a discrete random vector (X,Y). If $f_X(1) = 0$, then f(1,y) = 0 for any real number y.

- TRUE
- FALSE

15. FILL IN THE BLANK

The joint probability function of (X, Y) is given by

$$f(x,y) = \begin{cases} \frac{1}{8}(x+y), & 0 \le x \le 2; 0 \le y \le 2; \\ 0, & \text{elsewhere.} \end{cases}$$

Compute $P(Y \ge 1 | X \ge 1)$.

ANSWER: _____. (Round your answer to 3 decimal points, if necessary.)

END OF PAPER