Lecture 17 consider X,,..., Xn jib rvs of unknown PMF/PDF but we know it has expectation mu and variance or (both finite). let Tn:= X,+ ...+ Xn , E[Tn] = n N , Van[Tn] = n oz let $\widehat{X}_n := \frac{X_1 + ... + X_n}{n} = \frac{T_n}{n}$, $E[X_n] = M$, $Van[\widehat{X}_n] = Van[\widehat{T}_n] = \frac{1}{n^2} Van[\widehat{T}_n] = \frac{\sigma^2}{n}$ $le^{+} Z_{n} := \underbrace{X_{n} - N}_{\overline{b}} = \underbrace{X_{n} - N}_{\overline{b}} X_{n} - \underbrace{X_{n}}_{\overline{b}} M_{n}, \quad E[Z_{n}] = 0, \quad Van(Z_{n}) := Van(\underbrace{X_{n}}_{\overline{b}} X_{n}) = 0$ $= n \quad \sigma^{2}$ $=\frac{h}{\sqrt{2}}\cdot\frac{\sigma^2}{\sigma^2}=1=SD[Z_u]$ Xn Standardired (t) = \$\frac{1}{2}(t) = \frac{1}{2}(t) = \frac{1}(t) = \frac{1}{2}(t) = \frac{1}{2}(t) = \frac{1}(t) = \frac{1}{2}(t) = \frac{1}{2}(t) = \frac{1}{2}(t) = \frac{1}{2}(t) = \frac (4x(t)) 中(t) = 中(物)= 中(物) $\phi_{\chi}(t) = e^{-it\mu\nu n}$ $\phi_{\chi}(\sqrt[n]{r}t) = e^{-it\mu\nu n}$ $\phi_{\chi}(\sqrt[n]{r}t) = e^{-it\mu\nu n}$ $\phi_{\chi}(\sqrt[n]{r}t) = e^{-it\mu\nu n}$ $\phi_{\chi}(\sqrt[n]{r}t) = e^{-it\mu\nu n}$ = - itnx + x ln (\$\frac{1}{2} \frac{1}{2} $=\frac{t^{2}\left(\ln\left(\frac{\Phi_{x}(\sigma v_{n})}{\sigma v_{n}}\right)-\frac{it_{n}}{\sigma v_{n}}\right)}{t^{2}/\sigma^{2}}=\frac{\Phi_{z}\left(t\right)}{t^{2}}$ We want to examine lime $\phi_{Z_n}(t)$ and if we find its limiting chf, $\phi_{Z_n}(t)$, we can use P8 to show that $Z_n \xrightarrow{\longrightarrow} Z \xrightarrow{\longrightarrow} Z_n \xrightarrow{\longrightarrow} Z$. let u= t . If n > 0 => u > 0 L'Hopitel $t_{x}^{2} = \frac{d_{x}(u)}{d_{x}(u)} - i u$ $= \frac{d_{x}(u)}{d_{x}(u)} + \frac{d_{x}(u)}{d_{x}(u)} - \frac{d_{x}(u)}{d_{x}(u)} + \frac{d_{x}(u)}{d_{x}(u)}$ $= \frac{1}{2} \int_{0}^{2} dx \int_{0}^$ $\frac{1}{2\pi} \left\{ \frac{1}{2\pi} \left[\frac{1}$

L'Hontre
$$\frac{dx}{dx} = \frac{dx}{dx} = \frac{dx}{d$$

It's called the "faussian dist." -> but laplace discovered it and called it the "second law of errors". It's actually the most common ever dist. in the world -> This makes sense! E[2] = i +2(0) = 0 / $4z(t) = \frac{d}{dt} \left[\frac{-t/2}{e^{t/2}} \right] = -te^{-\frac{t^2}{2}}, \quad 4z(t) = -\frac{d}{dt} \left[t - \frac{t/2}{2} \right]$ = - (-te + e) $Van[7] = E[7^2] - E[7] = 0 = i + i + i = 0$ $X = \mu + \sigma = 2 \pi f_X(x) = 7 (\sigma > 0)$ E[X] = M + O E[Z] = M, Van[X] = Van[M + OZ] = 02 \$ (t) (2) ett \$ (ot) = ett - 02 t/2 X, ~ N(py, 0,2) indep of X2~ N(pz, 022), T= X1 + X2~2 \$\(\text{(t)} \frac{\rho_3}{2} \phi_{\text{(t)}} \phi_{\text{(t)}} \phi_{\text{(t)}} = e^{it} \pi_1 - \sigma_1^2 t_2^2 e^{it} \pi_2 - \sigma_2^2 t_2^2 = eit (MI+MZ) - + (0, 2+ 02) => XI + XZNN(MI+MZ) 0, 2+ 02) $\times N(\mu, \sigma^2), \ = e^{\times} \sim f_{\nu}(y) = P$ $g^{-1}(y) = \ln(y), \ \left| \frac{d}{dy} \left(g^{-1}(y) \right) \right| = \frac{1}{|y|}$ fy(y) = fx(ln(y)) 1/41 = 1 - /202 (ln(y)-m)2/4 = - \langle \frac{1}{2\sigma^2 y^2} \lefta^2 \left(\langle \langle \left(\langle \left