Wireless Communication IC

Homework #2

(Due on 03/28)

Please upload your simulation codes to eeClass system.

Total points: 120 points

1. The properties of **constant amplitude zero auto-correlation** (CAZAC) Zadoff-Chu sequence will be examined. Define

$$S(n,u) = e^{\frac{j\pi u n(n+1)}{N}}$$

for $0 \le n \le N - 1$.

- (a) First, given N = 29, select u_1 so that $gcd(u_1, N) = 1$. Write down your u_1 .
- (b) Please plot the real part and imaginary part of sequence $S(n, u_1)$ for $0 \le n \le N 1$. (10%)
- (c) Now, examine its autocorrelation property

$$\Phi_{S}(k) = \frac{1}{N} \sum_{n=0}^{N-1} S(n, u_1) S^{*}(n - k, u_1)$$

Plot $|\Phi_s(k)|$ for $-N \le k \le N$. (10%)

(d) Now, examine its cross-correlation property

$$\Omega_{S}(m) = \frac{1}{N} \sum_{n=0}^{N-1} S(n, u_1) S^{*}(n - k, u_1 + m)$$

Plot $|\Omega_s(m)|$ for $-N \le m \le N$ and k = 3. (10%)

- (e) From (d), plot $|\Omega_s(m)|$ for $-N \le k \le N$ and m = 3. (10%)
- (f) Assume that the received signal of length N + 6 is given by

$$y(n) = \begin{bmatrix} 0.3S(N-2, u_1) & 0.3S(N-1, u_1) & 0.3S(0, u_1) & 0.3S(1, u_1) \dots \\ \dots & 0.3S(N-1, u_1) & 0.3S(0, u_1) & 0.3S(1, u_1) & 0.3S(2, u_1) \end{bmatrix};$$

The receiver then performs $p(m) = \sum_{n=0}^{N-1} y(n+m)S^*(n,u_1)$ for synchronization. Please show |p(m)| for $1 \le m \le N$ and explain the result. According to the properties in (c) to (e) that you examine, which one is suitable for the explanation. (10%)

2. Given the Barker code list in Table 1, please check the periodic autocorrelation function defined as

$$\Phi_{S}(k) = \frac{1}{N} \sum_{n=0}^{N-1} S(n) S^{*}([n-k]_{N})$$

for N = 7 and 13, where $[\cdot]_N$ is the modulo-N operation. (20%) Table 1 Barker code

N	Barker code											
7	[-1	-1	-1	1	1	-1	1]					
11	[-1	-1	-1	1	1	1	-1	1	1	-1	1]	
13	[-1	-1	-1	-1	-1	1	1	-1	-1	1	-1 1	-1

3. Walsh Hadamard code is also widely used for multiple access because of good cross-correlation. A Walsh Hadamard code matrix \mathbf{W}_N of size $N \times N$ can be defined recursively as in the following.

$$W_1 = \begin{bmatrix} 1 \end{bmatrix} \quad W_{2N} = \begin{bmatrix} W_N & W_N \\ W_N & -W_N \end{bmatrix} \quad .$$

(a) Denote your last digit of student ID as α . Please write a program to generate $\mathbf{W_{32}}$. Print out the $(\alpha + 1)$ th and 24^{th} columns of the matrix $\mathbf{W_{32}}$. (6%)

Check for their cross correlation $\frac{1}{32}\sum_{j=1}^{32} (\mathbf{W}_{32}(j,\alpha+1)\mathbf{W}_{32}(j,24))$. (4%)

- (b) Now, choose $\mathbf{c_1} = \mathbf{W_{32}}(:, \alpha+1)$ and $\mathbf{c_2} = \mathbf{W_{32}}(:,14)$ as two codes for user 1 and user 2. Randomly generate 5 symbols $(d_0 \sim d_4)$ from the set $\{+1,-1\}$. Spread the data by code 1 as $\mathbf{y} = [d_0c_{1,1} \quad d_0c_{2,1} \quad \dots \quad d_0c_{32,1} \quad d_1c_{1,1} \quad \dots \quad d_1c_{32,1} \quad \dots \quad d_4c_{1,1} \quad \dots \quad d_4c_{32,1} \quad 0 \quad 0 \quad 0]$. Use "stem" to plot the signals before spreading and after spreading. (10%)
- (c) Assume in the Rx side, perfect synchronization is not achieved. Then, check the results if the receiver use code 1 for dispreading, which includes multiplying the spreading code again and then summing them, i.e.

$$p(i) = \frac{1}{32} \sum_{j=1}^{32} (y_{32i+j+1}) c_{j,1}$$
, where y_r is the rth element of vector y.

Plot p(i) using index i as the x-axis. (10%)

(d) Assume in the Rx side, perfect synchronization is achieved. Then, check the results if the receiver uses code 2 for dispreading, which includes multiplying the spreading code again and then summing them, i.e.

$$p(i) = \frac{1}{32} \sum_{j=1}^{32} (y_{32i+j}) c_{j,2} = \frac{1}{32} \sum_{j=1}^{32} (d_i c_{j,1}) c_{j,2}$$
, where y_r is the rth

element of vector \mathbf{y} . Plot p(i) using index i as the x-axis. (10%)

(e) Please comment the results in (c) and (d). (10%)