- 2. Now we must figure out which number of terms to use in a final prediction. We need to tune this parameter. Use 10-fold cross-validation to train models and compute MSPE for values of nterms from among 1, 2, 3, 4, and 5, maintaining max.terms=5. Be sure to train each version of the model on each fold so that the comparison across the tuning parameters is easy.
- (a) **Report the matrix of MSPEs from CV.** (There should be 10 rows and 5 columns)

```
51 ### Split data
52 n = nrow(data)
53 p. train = 0.75
54 n.train = round(n * p.train)
55 n.valid = n - n.train
56 sets = c(rep(1, times = n.train), rep(2, times = n.valid))
57 sets.rand = shuffle(sets) # Our helper function
58
59 data.train = data[sets.rand == 1,]
60 data.valid = data[sets.rand == 2,]
61 Y.valid = data.valid$0zone
62
63 - ###########
64 ### PPR ###
65 - ##########
66
67 ### To fit PPR, we need to do another round of CV. This time, do 5-fold
68 K.ppr = 10
69 n.train = nrow(data.train)
70 folds.ppr = get.folds(n.train, K.ppr)
71
72
   ### Container to store MSPEs for each number of terms on each sub-fold
73 MSPEs.ppr = array(0, dim = c(K.ppr, max.terms))
74
75 - for(j in 1:K.ppr){
76
     ### Split the training data.
77
      ### Be careful! We are constructing an internal validation set by
78
     ### splitting the training set from outer CV.
79
     train.ppr = data.train[folds.ppr != j,]
80
     valid.ppr = data.train[folds.ppr == j,]
81
     Y.valid.ppr = valid.ppr$Ozone
82
83
     ### We need to fit several different PPR models, one for each number
84
     ### of terms. This means another for loop (make sure you use a different
85
      ### index variable for each loop).
86 -
     for(1 in 1:max.terms){
87
       ### Fit model
88
       fit.ppr = ppr(Ozone ~ ., data = train.ppr,
89
                      max.terms = max.terms, nterms = 1, sm.method = "gcvspline")
90
91
       ### Get predictions and MSPE
92
       pred.ppr = predict(fit.ppr, valid.ppr)
93
       MSPE.ppr = get.MSPE(Y.valid.ppr, pred.ppr) # Our helper function
```

```
94
95
        ### Store MSPE. Make sure the indices match for MSPEs.ppr
96
       MSPEs.ppr[j, 1] = MSPE.ppr
97 -
98 - }
99
100 MSPEs.ppr
101
102 boxplot(MSPEs.ppr, main = paste0("PPR MSPEs over ", K, " folds"))
103
104 ### Calculate RMSPEs
105 - all.RMSPEs = apply(MSPEs.ppr, 1, function(W){
      best = min(W)
106
107
      return(W / best)
108 - })
109 all.RMSPEs = t(all.RMSPEs)
110
111 ### Make a boxplot of RMSPEs
112 boxplot(all.RMSPEs, main = paste0("CV RMSPEs over ", K, " folds"))
> MSPEs.ppr
              [,1]
                         [,2]
                                    [,3]
                                               [,4]
                                                          [,5]
 [1,]
        623.89131
                    643.5699
                               638.2097
                                          638.2097
                                                     638.2097
                                          362.3022
                               343.8283
 [2,]
        162.91871
                    359.1421
                                                     298.6712
 [3,]
        218.78516
                    222.4944
                               222.4895
                                          222.4895
                                                     222.4895
 [4,]
        408.20916
                    285.3450
                              275.2477
                                          262.0491
                                                     261.8709
 [5,]
        545.62349
                    905.5683 836.2775
                                          839.1623 835.9885
 [6,]
        84.95486
                    147.8934
                               179.0570
                                          175.6638
                                                     185.1357
 [7,]
        569.83354
                    703.7716
                               638.0148
                                          550.1438
                                                     504.3436
                                          197.0021
 [8,]
        223.67817
                    371.6668
                               386.1637
                                                     210.8126
 [9,] 1063.69841 1915.3978 1908.7334 1312.0695 1298.9598
                               362.4160
                                          347.5703
                                                      347.5084
[10,]
        331.16617
                    380.0875
```

- i. Comment on any consistent patterns you see in the comparison among numbers of terms. Specifically, are there one or more values that seem much better than others?
 - → Generally it looks like when nterms is 3, it has the smallest MSPE
- (b) Create and show the side-by-side boxplots of these 10 MSPEs for each number of terms (5 boxes)

PPR MSPEs over 10 folds

(c) Repeat using relative MSPE

CV RMSPEs over 10 folds

(d) Based on what you have seen, **how many terms would you use?** If there is no clear winner, then choose the least complicated model than is among the top models.

I would use 1, because it's clearly better than other number of terms.