Co-clustering deep latent block model

Theo Millot

April to Septembre 2025

1 Variable

Notation	Description	Dimension
π	Prior line cluster probability	$[0,1]^{L}$
au	Prior columns cluster probability	$[0, 1]^{Q}$
r	Cluster memberships of rows	$[\![0,1]\!]^L$
c	Cluster memberships of columns	$[0,1]^{Q}$
X	Rows latent matrix	\mathbb{R}^{M*D}
Y	Columns latent matrix	\mathbb{R}^{P*D}
A	Observed adjacency matrix	$[0,1]^{M*P}$
μ_l	Rows cluster mean	$[0,1]^{M*P}$ \mathbb{R}^{L*D}
σ_l^2	Rows cluster variance	\mathbb{R}^L
	Columns cluster mean	\mathbb{R}^{Q*D}
$m_q s_q^2$	Columns cluster variance	\mathbb{R}^Q
$\alpha; \beta$	Parameters of the decoding neural network	\mathbb{R}
L	Number of rows cluster	\mathbb{N}
Q	Number of columns cluster	\mathbb{N}
D	Dimension of latent space	\mathbb{N}
M	Number of rows	\mathbb{N}
P	Number of columns	\mathbb{N}
i	Index of rows	$\llbracket 0,M rbracket$
j	Index of columns	$[\![0,P]\!]$
1	Index of rows cluster	$\llbracket 0, L rbracket$
q	Index of columns cluster	$\llbracket 0,Q rbracket$
θ	Parameters set	
ϕ	Parameters of the encoding neural network for rows	\mathbb{R}^{nM}
ψ	Parameters of the encoding neural network for columns	\mathbb{R}^{nP}
γ	Variational probability of cluster membership for rows	$[0,1]^{M*L}$
δ	Variational probability of cluster membership for columns	$[0,1]^{P*Q}$

Generative model $\mathbf{2}$

As we are using LPM, we assume that each node has an unknown position in a latent space. The probability of a link between two points depends on their position in the latent space. First, π (resp. τ) is the probability vector of each row (resp. columns) cluster such as : $\sum_{l=1}^{L} \pi_l = 1$ and $\sum_{q=1}^{Q} \tau_q = 1$

From these we can assign each node to its cluster :

$$r_i \sim \mathcal{M}(1; \pi)$$
 and $c_j \sim \mathcal{M}(1; \tau)$

Then, we can generate the latent position conditionally to the assigned cluster independently for

$$X_i|(r_{i,l}=1) \sim \mathcal{N}(\mu_l; \sigma_l^2 I_D)$$
 and $Y_i|(c_{i,q}=1) \sim \mathcal{N}(m_q; s_q^2 I_D)$

The probability is modeled through a Bernoulli random variable conditionally to the latent position :

$$A_{i,j}|X_i,Y_j \sim \mathcal{B}(f_\alpha(X_i,Y_j))$$

with f_{α} is the parameters of the decoding neural network such as $f_{\alpha}(X_i, Y_j) = \sigma(\alpha + ||X_i - Y_j||^2)$ where σ is the logistic sigmoid function.

Inference 3

VAE inference

We denote by $\theta = \{\pi, \tau, \mu_k, \sigma_k, m_q, s_q, \alpha, \phi, \psi\}$ the set of parameters to optimize.

We first want to maximize the integrated log-likelihood:
$$\log(P(A \mid \theta)) = \log \int_{\mathcal{X}} \int_{\mathcal{Y}} \sum_{r} \sum_{c} P(A, X, Y, r, c \mid \theta) dY dX$$

Unfortunately, this is untractable, and we have to do with variational inference to approximate it.

$$\log(P(A \mid \theta)) = \mathcal{L}(q(X, Y, r, c); \theta) + D_{KL}(q(X, Y, r, c) \mid\mid P(X, Y, r, c \mid A, \theta))$$

where D_{KL} denotes the Kullback-Leibler divergence between the true distribution (P(X, Y, r, c | $A, \theta)$, which is commonly unknown, and the variational distribution (q(X, Y, r, c)).

In order to be fully-tractable, we assume to fully factorize $\mathbf{q}(X,Y,r,c)$ (mean-field assumption).

$$q(X,Y,r,c) = q(X)q(Y)q(r)q(c) = \prod_{i=1}^{M} q(X_i)q(r_i) \prod_{j=1}^{P} q(Y_j)q(c_j)$$

Moreover, we assume:

$$q(X_i) = \mathcal{N}(X_i; \tilde{\mu}_{\phi}(\bar{A})_i; \tilde{\sigma}_{\phi}^2(\bar{A})_i)$$

$$q(Y_j) = \mathcal{N}(Y_j; \tilde{m}_{\psi}(\bar{A})_j; \tilde{s}_{\psi}^2(\bar{A})_j)$$

 $q(Y_j) = \mathcal{N}(Y_j; \tilde{m}_{\psi}(\bar{A})_j; \tilde{s}^2_{\psi}(\bar{A})_j)$ where $\tilde{\mu}_{\phi}(.)$ (resp. \tilde{m}_{ψ}) is the function that calculates the mean of the normalized adjacency matrix \bar{A} for the latent rows (resp. columns). $\bar{A} = D_1^{-\frac{1}{2}} A D_2^{-\frac{1}{2}}$ where D_1 (resp. D_2) is a diagonal rows (resp. columns) degree matrix of A. The calculations of $\tilde{\mu}_{\phi}(.)$ and $\tilde{\sigma}_{\phi}(.)$ are obtained using two graph neural

$$\begin{split} \tilde{\mu}_{\phi}(\bar{A}) &= GNN_{\tilde{\mu}}(\bar{A}) = \bar{A}ReLU(\bar{A}^T\phi_{\mu}^{(1)})\phi_{\mu}^{(2)} \\ \tilde{\sigma}_{\phi}(\bar{A}) &= GNN_{\tilde{\sigma}}(\bar{A}) = f_{act}(\bar{A}ReLU(\bar{A}^T\phi_{\sigma}^{(1)})\phi_{\sigma}^{(2)}) \end{split}$$

Here $f_{act}(x) = max(-3, x)$

Note that the two GNN can share the first layer ie $\phi_{\mu}^{(1)}=\phi_{\sigma}^{(1)}$

On the same principle, the calculations of $\tilde{m}_{\psi}(.)$ and $\tilde{s}_{\psi}(.)$ are obtained using two graph neural networks such as

$$\tilde{m}_{\psi}(\bar{A}) = GNN_{\tilde{m}}(\bar{A}) = \bar{A}^T ReLU(\bar{A}\psi_m^{(1)})\psi_m^{(2)}$$

$$\tilde{s}_{\psi}(\bar{A}) = GNN_{\tilde{s}}(\bar{A}) = f_{act}(\bar{A}^T ReLU(\bar{A}\psi_s^{(1)})\psi_s^{(2)})$$

Note that the two GNN can share the first layer ie $\psi_m^{(1)} = \psi_s^{(1)}$

As we are in variational clustering probabilities, we also have

$$q(r_i) = \prod_{i=1}^{M} \mathcal{M}(r_i; 1, \gamma_i)$$
 and $q(c_j) = \prod_{i=1}^{P} \mathcal{M}(c_j; 1, \delta_i)$

 $q(r_i) = \prod_{i=1}^{M} \mathcal{M}(r_i; 1, \gamma_i)$ and $q(c_j) = \prod_{j=1}^{P} \mathcal{M}(c_j; 1, \delta_i)$ where γ_i (resp. δ_j) the variational probability for each row (resp. column) cluster for the i-th individuals (resp. j-th).

3.2 **ELBO**

As the Kullback-Leibler divergence is not computable to maximize the variational log-likelihood, we focus on the first term of the sum. We know that the Kullback-Leibler divergence will be a positive term; in other words, the first term can be seen as a lower bound. We now focus on maximizing the evidence lower bound (ELBO).

$$\begin{split} \mathcal{L}(q(X,Y,r,c);\theta) &= \int\limits_{\mathcal{X}} \int\limits_{\mathcal{Y}} \sum\limits_{r} \sum\limits_{c} q(X,Y,r,c) log(\frac{P(A,X,Y,r,c|\theta)}{q(X,Y,r,c)}) \, dY \, dX \\ &= \int\limits_{\mathcal{X}} \int\limits_{\mathcal{Y}} \sum\limits_{r} \sum\limits_{c} q(X,Y,r,c) log(\frac{P(A|X,Y,\alpha)P(X|r,\mu_k,\sigma_k)P(Y|c,m_q,s_q)P(r|\pi)P(c|\tau)}{q(X,Y,r,c)}) \, dY \, dX \\ &= \mathbb{E}[log(P(A|X,Y,\alpha))] + \mathbb{E}[log(\frac{P(X|r,\mu_k,\sigma_k)}{q(X)})] + \mathbb{E}[log(\frac{P(Y|c,m_q,s_q)}{q(Y)})] \\ &+ \mathbb{E}[log(\frac{P(r|\pi)}{q(r)})] + \mathbb{E}[log(\frac{P(c|\tau)}{q(c)})] \\ &= \mathbb{E}\left[\sum\limits_{i=1}^{M} \sum\limits_{j=1}^{P} A_{ij}log(\eta_{ij}) + (1-A_{ij})log(1-\eta_{ij})\right] \\ &- \sum\limits_{i=1}^{M} \sum\limits_{l=1}^{L} \gamma_{ik}D_{KL}(\mathcal{N}(X_i; \tilde{\mu}_{\phi}(\bar{A})_i; \tilde{\sigma}_{\phi}^2(\bar{A})_iI_d)||\mathcal{N}(X_i; \mu_l; \sigma_l^2I_D)) \\ &- \sum\limits_{j=1}^{P} \sum\limits_{q=1}^{Q} \delta_{jq}D_{KL}(\mathcal{N}(Y_j; \tilde{m}_{\psi}(\bar{A})_j; \tilde{s}_{\psi}^2(\bar{A})_jI_D)||\mathcal{N}(Y_j; m_q; s_q^2I_D)) \\ &+ \sum\limits_{i=1}^{M} \sum\limits_{l=1}^{L} \gamma_{il}log(\frac{\pi_l}{\gamma_{il}}) \\ &+ \sum\limits_{j=1}^{P} \sum\limits_{q=1}^{Q} \delta_{jq}log(\frac{\tau_q}{\delta_{jq}}) \end{split}$$

where $\eta_{ij} = f_{\alpha}(X_i, Y_j)$.

The first term of the ELBO, the reconstruction term, can be estimated by drawing Monte Carlo samples from the posterior distribution.

For the following, we write $D_{KL}(\mathcal{N}(X_i; \tilde{\mu}_{\phi}(\bar{A})_i; \tilde{\sigma}^2_{\phi}(\bar{A})_i I_d || \mathcal{N}(X_i; \mu_l; \sigma^2_l I_d))$ as D^{il}_{KL} and $D_{KL}(\mathcal{N}(Y_j; \tilde{m}_{\psi}(\bar{A})_j; \tilde{s}^2_{\psi}(\bar{A})_j I_d) ||$ $\mathcal{N}(Y_i; m_q; s_q^2 I_d))$ as D_{KL}^{jq} .

Note that
$$D_{KL}^{il} = \frac{1}{2} \left(log(\frac{\sigma_l^2}{\tilde{\sigma}_{\phi}^2(\bar{A})_i})^D - D + D * \frac{\tilde{\sigma}_{\phi}^2(\bar{A})_i}{\sigma_l^2} + \frac{1}{\sigma_l^2} ||\mu_l - \tilde{\mu}_{\phi}(\bar{A})_i||^2 \right)$$

And $D_{KL}^{jq} = \frac{1}{2} \left(log(\frac{s_q^2}{\tilde{s}_{\psi}^2(\bar{A})_j})^D - D + D * \frac{\tilde{s}_{\psi}^2(\bar{A})_j}{s_q^2} + \frac{1}{s_q^2} ||m_q - \tilde{m}_{\psi}(\bar{A})_j||^2 \right)$

Each of the previous formulas denotes the Kullback-Leibler divergence between the variational distribution and the prior distribution for the rows and columns.

3.3 Parameters Optimization

3.3.1 Explicit Optimization

With the parameters ϕ , ψ and α fixed, we can explicitly optimize the ELBO with respect to the parameters $\gamma; \delta; \pi; \tau; \mu_l; \sigma_l; m_q; s_q$ and obtain the following updates parameters :

$$\begin{split} \hat{\gamma}_{il} &= \frac{\pi_{l}e^{-D_{KL}^{il}}}{\sum\limits_{k=1}^{L} \pi_{k}e^{-D_{KL}^{ik}}} \\ \hat{\delta}_{jq} &= \frac{\tau_{q}e^{-D_{KL}^{jq}}}{\sum\limits_{n=1}^{Q} \tau_{n}e^{-D_{KL}^{jn}}} \\ \hat{\pi}_{l} &= \frac{\sum\limits_{i=1}^{M} \gamma_{il}}{M} \\ \hat{\tau}_{q} &= \frac{\sum\limits_{j=1}^{P} \delta_{jq}}{P} \\ \hat{\mu}_{l} &= \frac{\sum\limits_{i=1}^{M} \gamma_{il} \tilde{\mu}_{\phi}(\bar{A})_{i}}{\sum\limits_{i=1}^{M} \gamma_{il}} \\ \hat{m}_{q} &= \frac{\sum\limits_{j=1}^{P} \delta_{jq} \tilde{m}_{\psi}(\bar{A})_{j}}{\sum\limits_{j=1}^{P} \delta_{jq}} \\ \hat{\sigma}_{l}^{2} &= \frac{\sum\limits_{i=1}^{M} \gamma_{il}(D\tilde{\sigma}_{\phi}^{2}(\bar{A})_{i} + ||\mu_{l} - \tilde{\mu}_{\phi}(\bar{A})_{i}||^{2})}{D\sum\limits_{j=1}^{M} \gamma_{il}} \\ \hat{s}_{q}^{2} &= \frac{\sum\limits_{j=1}^{P} \delta_{jq}(D\tilde{s}_{\psi}^{2}(\bar{A})_{j} + ||m_{q} - \tilde{m}_{\psi}(\bar{A})_{j}||^{2})}{D\sum\limits_{j=1}^{P} \delta_{jq}} \end{split}$$

3.3.2 Implicit Optimization

The encoders parameters ϕ, ψ as well as the decoder parameters α will be optimized by performing a stochastic gradient descent on the model.

3.3.3 Algorithm

First, we are doing a pre-training phase in order to get an initialization of the parameters. We are training without the parameters relative to the clusters $(\pi, \tau, \mu_k, \sigma_k, m_q, s_q)$ and we estimate them at the end with a k-means run. Then, we calculate through the encoders $\tilde{\mu}_{\phi}(\bar{A})_i$, $\tilde{\sigma}_{\phi}^2(\bar{A})_i$, $\tilde{m}_{\psi}(\bar{A})_j$ and $\tilde{s}_{\psi}^2(\bar{A})_j$. Next, we update the γ and δ parameters to update the π , τ , μ_l , σ_l , m_q ; s_q parameters. When this is done, we reconstruct A' and calculate the loss. Finally, we update ϕ , ψ and α according to the stochastic gradient descent on the loss.

```
Algorithm 1: Co-clustering estimation

Input: Adjacency matrix A

Output: Reconstructed adjacency matrix A', rows cluster probability matrix \gamma and columns cluster probability matrix \delta

pretrain_model = pretrain(A, pre_epoch);

while ELBO increases do

 \tilde{\mu}_{\phi}(\bar{A}), \tilde{\sigma}_{\phi}^{2}(\bar{A}), \tilde{m}_{\psi}(\bar{A}), \tilde{s}_{\psi}^{2}(\bar{A}) = \text{GNN}(\bar{A}); 
X, Y = \mathcal{N}(\tilde{\mu}_{\phi}(\bar{A}), \tilde{\sigma}_{\phi}^{2}(\bar{A})), \mathcal{N}(\tilde{m}_{\psi}(\bar{A}), \tilde{s}_{\psi}^{2}(\bar{A})); 
A' = \text{LPMdecoder}(X, Y); 
\text{update } \gamma \text{ and } \text{delta}; 
\text{update } \tau; \tau; \mu_{l}; \sigma_{l}; m_{q}; s_{q}; 
\text{calculate the ELBO}; 
\text{update } \phi ; \psi \text{ and } \alpha \text{ with gradient descent}; 
\text{end}
```

3.4 Model Architecture

Figure 1: Deep architecture of the model