

Report on the Radio Testing

For

SigFox SA

on

SBS T 902 V2.2

Report no. TRA-028228-47-01A

6th October 2016

RF916 6.0

Report Number: TRA-028228-47-01A

Issue: A

REPORT ON THE RADIO TESTING OF A SigFox SA SBS T 902 V2.2 WITH RESPECT TO SPECIFICATION FCC 47CFR 15.247 & IC RSS-247

TEST DATE: 22nd August- 19th September 2016

Written by: S Hodgkinson S Hodgkinson

J Charters

Date: 6th October 2016

J Charters

Department Manger – Radio

Disclaimers:

Approved by:

[1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

RF916 6.0

1 Revision Record

Issue Number	Issue Date	Revision History
A 6th October 2016		Original

RF916 6.0 Page 3 of 67

2 Summary

TEST REPORT NUMBER:	TRA-028228-47-01A
WORKS ORDER NUMBER	TRA-028228-01
PURPOSE OF TEST:	USA: Testing of radio frequency equipment per the relevant authorization procedure of chapter 47 of CFR (code of federal regulations) Part 2, subpart J.
	Canada: Testing of radio apparatus for TAC (technical acceptance certificate) per subsections 4(2) of the Radio communication Act and 21(1) of the Radio communication Regulations.
TEST SPECIFICATION(S):	47CFR15.247 & RSS-247
EQUIPMENT UNDER TEST (EUT):	SBS T 902 V2.2
FCC IDENTIFIER: INDUSTRY CANADA:	2ACK7SBST902v22 12204A-SBST902v22
EUT SERIAL NUMBER:	S00005
MANUFACTURER/AGENT:	SigFox SA
ADDRESS:	425 Rue Jean Rostand Labège 31670
CLIENT CONTACT:	Susana Barreiro
TEST DATE:	22nd August- 19th September 2016
TESTED BY:	S Hodgkinson Element

RF916 6.0 Page 4 of 67

2.1 Test Summary

	Requireme	nt Clause	Applicable		
Test Method and Description	RSS	47CFR15	to this equipment	Result / Note	
Radiated spurious emissions (restricted bands of operation and cabinet radiation)	Gen, 8.10	15.205		Pass	
AC power line conducted emissions	Gen, 8.8	15.207		Pass	
Carrier frequency separation	247, 5.1 (2)	15.247(a)(1)		Pass	
Number of hopping channels	247, 5.1 (3), (4) and (5)	15.247(a)(1) (i), (ii) and (iii)	\boxtimes	Pass	
Average time of occupancy	247, 5.1 (3), (4) and (5)	15.247(a)(1) (i), (ii) and (iii)	\boxtimes	Pass	
Maximum peak conducted output power	247, 5.4 (1), (2) and (3)	15.247 (a)(1), (b)(1) and (b)(2)		Pass	
20dB emission bandwidth	247, 5.1 (1)	15.247(a)(1) (i) and (ii)		Pass	
Out-of-band emissions	247, 5.5	15.247(d)		Pass	

Notes:

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

RF916 6.0 Page 5 of 67

3 Contents

1	Revision Record	3
2	Summary	
_		
	2.1 Test Summary	
3	Contents	
4	Introduction	8
5	Test Specifications	9
·	5.1 Normative References	
	5.2 Deviations from Test Standards	
6	Glossary of Terms	10
7	Equipment Under Test	11
	7.1 EUT Identification	
	7.3 EUT Mode of Operation	11
	7.3.1 Transmission	11
	7.4 EUT Radio Parameters	
	7.4.1 General	
	7.4.2 Antennas	
	7.5 EUT Description	13
8	Modifications	14
9	EUT Test Setup	
Ü		
	9.2 General Set-up Photograph	
G	eneral Technical Parameters	17
	9.3 Normal Conditions	17
	9.4 Varying Test Conditions	
10		
	10.1 Definitions	18
	10.2 Test Parameters	18
	10.3 Test Limit	
	10.4 Test Method	
	10.5 Test Set-up Photograph	20
	10.6 Test Equipment	21
	10.7 Test Results	22
11		
٠,		
	11.1 Definition	
	11.2 Test Parameters	
	11.3 Test Method	30
	11.4 Test Set-up Photograph	
	11.5 Test Equipment	
	11.6 Test Results	
12	2 Carrier frequency separation	33
	12.1 Definition	33
	12.2 Test Parameters	
	12.3 Test Limit	
	12.4 Test Method	
	12.5 Test Equipment	34
	12.6 Test Results	34
13		
10		
	13.1 Definition	
	13.2 Test Parameters	
	13.3 Test Limit	36
	13.4 Test Method	37
	13.5 Test Equipment	
	13.6 Test Results	-
14		
	14.1 Definition	39
	14.2 Test Parameters	
	14.3 Test Limit	
	14.4 Test Method	
	14.5 Test Equipment	40
	14.6 Test Results	40
15		
	15.1 Definition	
		43

15.2	Test Parameters	43
15.3	Test Limit	43
15.4	Test Method	44
15.5	Test Equipment	44
15.6	Test Results	45
16	Occupied Bandwidth	48
16.1	Definition	48
16.2	Test Parameters	48
16.3	Test Limit	48
16.4		
16.5	Test Equipment	49
16.6		
17	Out-of-band and conducted spurious emissions	
17.1	Definition	54
17.2		
17.3		54
17.4	Test Method	55
17.5	Test Equipment	55
17.6		
18	Measurement Uncertainty	64
19	RF Exposure	

Report Number: TRA-028228-47-01A

4 Introduction

This report TRA-028228-47-01A presents the results of the Radio testing on a SigFox SA, SBS T 902 V2.2 to specification 47CFR15 Radio Frequency Devices and RSS-247 Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment.

The testing was carried out for SigFox SA by Element, at the address(es) detailed below.

 \Box Element Hull \boxtimes Element Skelmersdale Unit E I Init 1 South Orbital Trading Park Pendle Place **Hedon Road** Skemersdale West Lancashire Hull HU9 1NJ WN8 9PN UK UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

Throughout this report EUT denotes equipment under test.

FCC Site Listing:

Element is accredited for the above sites under the US-EU MRA, Designation number UK0009.

IC Registration Number(s):

Element Hull 3483A Element North West 3930B-4

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

RF916 6.0 Page 8 of 67

5 Test Specifications

5.1 Normative References

- FCC 47 CFR Ch. I Part 15 Radio Frequency Devices.
- ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- Industry Canada RSS-247, Issue 1, May 2015 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN)
- Industry Canada RSS-Gen, Issue 4, November 2014 General Requirements for Compliance of Radio Apparatus.

5.2 Deviations from Test Standards

There were no deviations from the test standard.

RF916 6.0 Page 9 of 67

6 Glossary of Terms

§ denotes a section reference from the standard, not this document

AC Alternating Current

ANSI American National Standards Institute

BW bandwidth C Celsius

CFR Code of Federal Regulations

CW Continuous Wave

dB decibel

dBm dB relative to 1 milliwatt

DC Direct Current

DSSS Direct Sequence Spread Spectrum
EIRP Equivalent Isotropically Radiated Power

ERP Effective Radiated Power EUT Equipment Under Test

FCC Federal Communications Commission FRSS Frequency Hopping Spread Spectrum

Hz hertz

IC Industry Canada

ITU International Telecommunication Union

LBT Listen Before Talk

m metre max maximum

MIMO Multiple Input and Multiple Output

min minimum

MRA Mutual Recognition Agreement

N/A Not Applicable
PCB Printed Circuit Board
PDF Portable Document Format

Pt-mptPoint-to-multipointPt-ptPoint-to-pointRFRadio FrequencyRHRelative HumidityRMSRoot Mean Square

Rx receiver s second

SVSWR Site Voltage Standing Wave Ratio

Tx transmitter

UKAS United Kingdom Accreditation Service

 $\begin{array}{ll} \textbf{V} & \text{volt} \\ \textbf{W} & \text{watt} \\ \textbf{\Omega} & \text{ohm} \end{array}$

RF916 6.0 Page 10 of 67

7 Equipment Under Test

7.1 EUT Identification

Name: SBS T 902 V2.2Serial Number: S00005

• Model Number: SBS T 902 V2.2

Software Revision: V4.1

• Build Level / Revision Number: V 2.2

7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

support/monitoring equipment used.

Dell Vostro PC
Cat 6 Patch Cable

7.3 EUT Mode of Operation

7.3.1 Transmission

EUT Transmitting a modulated carrier at top, middle or bottom frequency or hopping as required

RF916 6.0 Page 11 of 67

7.4 EUT Radio Parameters

7.4.1 General

Frequency of operation:	902MHz – 928MHz		
Modulation type(s):	600 bps D-BPSK		
Occupied channel bandwidth(s):	175kHz		
Channel spacing:	300kHz		
ITU emission designator(s):	180KB7D		
Declared output power(s):	Max 36 dBm eirp		
Nominal Supply Voltage:	110Vac		
Duty cycle:	Maximum of 2%		

7.4.2 Antennas

Туре:	Procom CXL900-6LW/h	
Frequency range:	890-960MHz	
Gain:	8dBi	
Connector type:	N Type	

RF916 6.0 Page 12 of 67

7.5 EUT Description

The SBS T 902v2.2 is a FHSS device operating in the 902 -928 MHz Band

RF916 6.0 Page 13 of 67

8 Modifications

No modifications were performed during this assessment.

RF916 6.0 Page 14 of 67

9 EUT Test Setup

9.1 Block Diagram

The following diagram shows basic EUT interconnections with cable type and cable lengths identified:

RF916 6.0 Page 15 of 67

9.2 General Set-up Photograph

The following photograph shows basic EUT set-up:

RF916 6.0 Page 16 of 67

General Technical Parameters

9.3 Normal Conditions

The E U T was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was approx. 110 V ac, 60 Hz, from the mains.

9.4 Varying Test Conditions

There are no specific frequency stability requirements for the type of device. The results contained in this report demonstrate that the occupied bandwidth is contained within the authorised band and the manufacturer has declared sufficient frequency stability (refer to section 7.4).

Variation of supply voltage is required to ensure stability of the declared output power. During carrier power testing the following variations were made:

Category	Nominal	Variation	
Mains	110 V ac +/-2 %	85 % and 115 %	
Battery	New battery	N/A	

RF916 6.0 Page 17 of 67

10 Radiated emissions

10.1 Definitions

Spurious emissions

Emissions on a frequency or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

10.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Chamber 3

Test Standard and Clause: ANSI C63.10-2013, Clause 6.5 and 6.6

EUT Channels / Frequencies Measured: Low / Mid / High

EUT Channel Bandwidths: 180kHz

Deviations From Standard: None

Measurement BW:

30 MHz to 1 GHz: 120 kHz
Above 1 GHz: 1 MHz
Up to 1 GHz: quasi-peak

Measurement Detector: Op to 1 GHz. quasi-peak
Above 1 GHz: average and Peak

Environmental Conditions (Normal Environment)

Temperature: 24 °C +15 °C to +35 °C (as declared)

Humidity: 42 % RH 20 % RH to 75 % RH (as declared)

Supply: 110V ac 110 V ac ±10 % (as declared)

10.3 Test Limit

Unwanted emissions that fall within the restricted frequency bands shall comply with the limits specified:

General Field Strength Limits for License-Exempt Transmitters at Frequencies above 30 MHz

Frequency (MHz)	Field Strength (μV/m at 3 m)		
30 to 88	100		
88 to 216	150		
216 to 960	200		
Above 960	500		

RF916 6.0 Page 18 of 67

10.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100 kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in dBµV/m at the regulatory distance, using:

Where.

PR is the power recorded on the receiver / spectrum analyzer in dBµV;

CL is the cable loss in dB;

AF is the test antenna factor in dB/m;

PA is the pre-amplifier gain in dB (where used);

DC is the duty correction factor in dB (where used, e.g. harmonics of pulsed fundamental);

CF is the distance factor in dB (where measurement distance different to limit distance);

This field strength value is then compared with the regulatory limit.

Figure i Test Setup

RF916 6.0 Page 19 of 67

10.5 Test Set-up Photograph

RF916 6.0 Page 20 of 67

10.6 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
ESVS10	R&S	Receiver	L352	14/07/2017
CBL611/A	Chase	Bilog	U191	26/02/2017
3115	EMCO	1-18GHz Horn	L139	25/09/2017
FSU46	R&S	Spectrum Analyser	U281	07/06/2017
SH4141	BSC	High Pass Filter	REF977	25/02/2017
8449B	Agilent	Pre Amp	L572	16/02/2017

RF916 6.0 Page 21 of 67

10.7 Test Results

Ref No.	FREQ. (MHz)	MEAS Rx (dBµV)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	Filter loss (dB)	FIELD ST'GH (dBµV/m)	Margin (dBm)	LIMIT (20dBc)
1.	916.5	70.1	3.8	23	N/A	N/A	96.9	-5.1	102.0 dBμV/m

Ref No.	FREQ. (MHz)	MEAS Rx (dBµV)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	Filter loss (dB)	FIELD ST'GH (dBµV/m)	Margin (dBm)	FIELD ST'GH (μV/m)	LIMIT (μV/m)
2.	4511.0	52.3	4.2	32.1	35.7	1.1	53.97pk	-20.03	499.5	5011.9
3.	4511.0	33.36	4.2	32.1	35.7	1.1	35.03av	-19.00	56.4	500.00

Tx bottom Channel 902.2MHz

RF916 6.0 Page 22 of 67

1GHz - 1.5GHz

1.5GHz - 5GHz

Date: 30.AUG.2016 14:36:43 Date: 30.AUG.2016 15:28:54

5-10GHz

Date: 30.AUG.2016 16:13:15

RF916 6.0 Page 23 of 67

Ref No.	FREQ. (MHz)	MEAS Rx (dBµV)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	Filter loss (dB)	FIELD ST'GH (dBµV/m)	Margin (dBm)	LIMIT (20dBc)
1.	916.5	70.1	3.8	23	N/A	N/A	96.9	-6.3	103.2 dBµV/m

Ref No.	FREQ. (MHz)	MEAS Rx (dBµV)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	Filter loss (dB)	FIELD ST'GH (dBµV/m)	Margin (dBm)	FIELD ST'GH (µV/m)	LIMIT (μV/m)
2.	2744.32	54.06	3.5	29.20	36.1	0.4	51.10pk	-22.9	358.9	5011.9
3.	2744.32	37.50	3.5	29.20	36.1	0.4	34.54av	-19.5	53.3	500.00
4.	4573.95	54.63	4.3	32.20	35.8	1.2	56.58pk	-17.4	674.5	5011.9
5.	4573.95	36.47	4.3	32.20	35.8	1.2	38.42	-15.6	83.4	500.00

Tx mid channel 914.8MHz

RF916 6.0 Page 24 of 67

1GHz-1.5GHz

1.5GHz - 5GHz

Date: 16.SEP.2016 09:53:01 Date: 16.SEP.2016 10:00:22

5GHz -10GHz

Date: 16.SEP.2016 10:03:06

RF916 6.0 Page 25 of 67

Ref No.	FREQ. (MHz)	MEAS Rx (dBµV)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	Filter loss (dB)	FIELD ST'GH (dBμV/m)	Margin (dBm)	LIMIT (20dBc)
1.	916.5	70.1	3.8	23	N/A	N/A	97	-8.4	Pass

Rei No.	-	MEAS Rx (dBμV)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	Filter loss (dB)	FIELD ST'GH (dBµV/m)	Margin (dBm)	FIELD ST'GH (µV/m)	LIMIT (μV/m)
2.	4638.5	59.37	4.5	32.4	35.8	1.3	61.79pk	-12.2	1228.9	5011.9
3.	4638.5	32.48	4.5	32.4	35.8	1.3	34.90av	-19.1	55.6	500.00

Tx top channel 927.7MHz

RF916 6.0 Page 26 of 67

1GHz- 1.5GHz

1.5GHz-5GHz

Date: 30.AUG.2016 14:57:39 Date: 30.AUG.2016 15:40:57

5GHz-10GHz

Date: 30.AUG.2016 16:33:24

RF916 6.0 Page 27 of 67

Lower radiated bandedge

Upper radiated bandedge

RF916 6.0 Page 28 of 67

11 AC power-line conducted emissions

11.1 Definition

Line-to-ground radio-noise voltage that is conducted from all of the EUT current-carrying power input terminals that are directly (or indirectly via separate transformers or power supplies) connected to a public power network.

11.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Transient Lab 2

Test Standard and Clause: ANSI C63.10-2013, Clause 6.2

EUT Channels / Frequencies Measured: Mid
EUT Channel Bandwidths: 180kHz

EUT Modulation: 600 bps D-BPSK

Deviations From Standard: None

Measurement BW: 10kHz

Measurement Detectors: Quasi-Peak and

Average,

Environmental Conditions (Normal Environment)

Temperature: 24 °C +15 °C to +35 °C (as declared)

Humidity: 53 % RH 20 % RH to 75 % RH (as declared)

Supply: 110 V ac 110 V ac ±10 % (as declared)

Test Limit

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in Table 3.

Table 3 - AC Power Line Conducted Emission Limits

Frequency (MHz)	Conducted limit (dBµV)					
(IVITZ)	Quasi-Peak	Average ~				
0.15 to 0.5	66 to 56 [*]	56 to 46 [*]				
0.5 to 5	56	46				
5 to 30	60	50				

^{*}The level decreases linearly with the logarithm of the frequency.

RF916 6.0 Page 29 of 67

^{**}A linear average detector is required.

11.3 Test Method

With the EUT setup in a screened room, as per section 9 of this report and connected as per Figure ii, the power line emissions were measured on a spectrum analyzer / EMI receiver.

AC power line conducted emissions from the EUT are checked first by preview scans with peak and average detectors covering both live and neutral lines. A spectrum analyzer is used to determine if any periodic emissions are present.

Formal measurements using the correct detector(s) and bandwidth are made on frequencies identified from the preview scans. Final measurements were performed with EUT set at its maximum duty in transmit and receive modes.

Figure ii Test Setup

11.4 Test Set-up Photograph

RF916 6.0 Page 30 of 67

11.5 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
ENV216	R&S	Lisn	U396	29/06/2017
ESHS10	R&S	Receiver	U003	25/06/2017

11.6 Test Results

Conducted emissions on Mains 9kHz-30MHz ESHS10 + UH396

RF916 6.0 Page 31 of 67

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.155000	45.8	2000.0	10.000	N	9.6	19.9	65.7	Pass
0.210000	35.8	2000.0	10.000	L1	9.6	27.4	63.2	Pass
0.305000	34.8	2000.0	10.000	L1	9.6	25.3	60.1	Pass
0.380000	35.5	2000.0	10.000	N	9.6	22.8	58.3	Pass
0.460000	30.5	2000.0	10.000	L1	9.6	26.2	56.7	Pass
0.650000	28.9	2000.0	10.000	L1	9.6	27.1	56.0	Pass
0.740000	29.1	2000.0	10.000	N	9.6	26.9	56.0	Pass
1.085000	26.9	2000.0	10.000	N	9.6	29.1	56.0	Pass
1.260000	29.5	2000.0	10.000	N	9.6	26.5	56.0	Pass
1.635000	27.7	2000.0	10.000	N	9.7	28.3	56.0	Pass
2.980000	22.5	2000.0	10.000	L1	9.7	33.5	56.0	Pass
3.930000	21.1	2000.0	10.000	L1	9.7	34.9	56.0	Pass
10.350000	27.6	2000.0	10.000	N	9.6	32.4	60.0	Pass
12.070000	27.5	2000.0	10.000	N	9.6	32.5	60.0	Pass
13.695000	26.7	2000.0	10.000	N	9.7	33.3	60.0	Pass

Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.170000	22.6	2000.0	10.000	L1	9.6	32.3	55.0	Pass
0.210000	14.2	2000.0	10.000	N	9.6	39.0	53.2	Pass
0.300000	23.4	2000.0	10.000	L1	9.6	26.9	50.2	Pass
0.390000	26.0	2000.0	10.000	L1	9.6	22.1	48.1	Pass
0.465000	7.2	2000.0	10.000	N	9.6	39.4	46.6	Pass
0.650000	16.8	2000.0	10.000	L1	9.6	29.2	46.0	Pass
0.740000	16.6	2000.0	10.000	L1	9.6	29.4	46.0	Pass
1.175000	16.9	2000.0	10.000	N	9.6	29.1	46.0	Pass
1.255000	17.0	2000.0	10.000	N	9.6	29.0	46.0	Pass
1.740000	15.3	2000.0	10.000	L1	9.7	30.7	46.0	Pass
2.145000	13.7	2000.0	10.000	L1	9.7	32.3	46.0	Pass
7.965000	18.6	2000.0	10.000	N	9.7	31.4	50.0	Pass
10.350000	21.6	2000.0	10.000	N	9.6	28.4	50.0	Pass
12.035000	21.8	2000.0	10.000	N	9.6	28.2	50.0	Pass
13.720000	21.1	2000.0	10.000	N	9.7	28.9	50.0	Pass

RF916 6.0 Page 32 of 67

12 Carrier frequency separation

12.1 Definition

The carrier frequency separation is the frequency separation between two adjacent hopping frequencies.

12.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio lab

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.2

EUT Channels / Frequencies Measured: All; 2405 to 2480 MHz

EUT 20dB Bandwidth: 175kHz

EUT Test Modulations: Internal pattern generation – hopping enabled

Deviations From Standard:

Measurement BW:

Measurement Detector:

Peak

Environmental Conditions (Normal Environment)

Temperature: 25 °C +15 °C to +35 °C (as declared)

Humidity: 45 % RH 20 % RH to 75 % RH (as declared)

Supply: 110 V ac 230 V ac ±10 % (as declared)

12.3 Test Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the band 2400 to 2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

RF916 6.0 Page 33 of 67

12.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iii, the emissions of the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each nominal bandwidth.

Figure iii Test Setup

12.5 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
FSU50	R&S	Spectrum Analyser	U544	16/03/2017

12.6 Test Results

low hop set, high hop set.									
Data Rate F1 _c (MHz)		F2 _c (MHz)	Channel Separation, F2 _c – F1 _c (kHz)	Result					
600 bps D-BPSK	907.9MHz	908.2MHz	300	PASS					
600 bps D-BPSK	919.6MHz	919.9MHz	300	PASS					

RF916 6.0 Page 34 of 67

Date: 12.SEP.2016 16:47:43

Date: 12.SEP.2016 17:11:26

RF916 6.0 Page 35 of 67

13 Number of hopping frequencies

13.1 Definition

The total number of hopping frequencies (the centre frequencies defined within the hopping sequence of a FHSS equipment) which are randomly sequenced in order to spread the transmission.

13.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio lab

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.3

EUT Channels / Frequencies Measured: All; 2405 – 2480 MHz

EUT 20dB Bandwidth: 180kHz

EUT Test Modulations: Internal pattern generation – hopping enabled

Deviations From Standard:

Measurement BW:

Measurement Detector:

Peak

Environmental Conditions (Normal Environment)

Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity:45 % RH 20 % RH to 75 % RH (as declared)

Supply: 110 V ac 110 V ac ±10 % (as declared)

13.3 Test Limit

- For frequency hopping systems in the band 902 to 928 MHz: if the -20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels;
 If the -20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels;
- Frequency hopping systems operating in the band 2400 to 2483.5 MHz shall use at least 15 hopping channels;
- Frequency hopping systems operating in the band 5725 to 5850 MHz shall use at least 75 hopping channels.

RF916 6.0 Page 36 of 67

13.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iv, the emissions of the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each nominal bandwidth.

Figure iv Test Setup

13.5 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
FSU50	R&S	Spectrum Analyser	U544	16/03/2017

13.6 Test Results

Power setting: High							
Data Rate	Lowest channel, F _{CL} (MHz)	Highest channel, F _{CH} (MHz)	Number of channels observed	Result			
600 bps D-BPSK	902.2	918.1	50	PASS			
600 bps D-BPSK	911.8	927.7	50	PASS			

RF916 6.0 Page 37 of 67

Hop set 1

Date: 12.SEP.2016 17:54:34

Hop set 2

Date: 12.SEP.2016 17:34:13

RF916 6.0 Page 38 of 67

14 Average channel occupancy

14.1 Definition

The channel occupancy is the total of the transmitter 'on' times, during an observation period, on a particular hopping frequency.

14.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio lab

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.4

EUT Channels / Frequencies Measured: Mid
EUT 20dB bandwidth: 175kHz

EUT Number of hopping channels: 50

EUT Test Modulations: Internal pattern generation – hopping enabled

Deviations From Standard:

Measurement BW:

Measurement Detector:

Peak

Environmental Conditions (Normal Environment)

Temperature: 24 °C +15 °C to +35 °C (as declared)

Humidity: 45x % RH 20 % RH to 75 % RH (as declared)

Supply: 110x V ac 110 V ac ±10 % (as declared)

14.3 Test Limit

- For frequency hopping systems in the band 902 to 928 MHz: if the -20 dB bandwidth of the hopping channel is less than 250 kHz, the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20 second period;
 - If the -20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 10 second period;
- Frequency hopping systems operating in the band 2400 to 2483.5 MHz: The average time of occupancy
 on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the
 number of hopping channels employed;
- Frequency hopping systems operating in the band 5725 to 5850 MHz: The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

RF916 6.0 Page 39 of 67

14.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure v, the emissions of the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. A number of hops were observed to confirm consistency of the dwell time / observe the worst case. All modulation schemes, data rates and power settings were used to observe the worst-case configuration.

Figure v Test Setup

14.5 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
FSU50	R&S	Spectrum Analyser	U544	16/03/2017

14.6 Test Results

	Modulation: 600 bps D-BPSK Low hopset/high hop set							
Data Rate	Individual occupancy time (ms)	Observation period (s)	Number of hops observed	Average time of occupancy (s)	Result			
600 bps D-BPSK low hopset	392.628	25	1	392.628	PASS			
600 bps D-BPSK Hi hopset	392.628	25	1	392.628	PASS			

RF916 6.0 Page 40 of 67

Transmitter on time Low hopset

Date: 13.SEP.2016 11:21:42

Transmitter on time Hi hopset

Date: 13.SEP.2016 11:19:40

RF916 6.0 Page 41 of 67

Transmitter on time Low hopset

Date: 13.SEP.2016 11:27:42

Date: 13.SEP.2016 11:29:44

RF916 6.0 Page 42 of 67

15 Maximum peak conducted output power

15.1 Definition

The maximum peak conducted output power is defined as the maximum power level measured with a peak detector using a filter with width and shape of which is sufficient to accept the signal bandwidth.

15.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Lab

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.5

EUT Channels / Frequencies Measured: Low / Mid / High – hopping disabled.

EUT Channel Bandwidths: 175kHz
Deviations From Standard: None
Measurement BW: 1MHz
Spectrum Analyzer Video BW: 3MHz
Measurement Detector: Peak

Voltage Extreme Environment Test Range: Mains Power = 85 % and 115 % of Nominal (FCC only

requirement);

Battery Power = new battery.

Environmental Conditions (Normal Environment)

Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity:45 % RH 20 % RH to 75 % RH (as declared)

15.3 Test Limit

- For frequency hopping systems operating in the band 902 to 928 MHz, the maximum peak conducted output power shall not exceed 1 W, and the e.i.r.p. shall not exceed 4 W, if the hopset uses 50 or more hopping channels;
 - the maximum peak conducted output power shall not exceed 0.25 W, and the e.i.r.p. shall not exceed 1 W, if the hopset uses less than 50 hopping channels.
- For frequency hopping systems operating in the band 2400 to 2483.5 MHz and employing at least
 hopping channels, the maximum peak conducted output power shall not exceed 1 W;
 for all other frequency hopping systems in the band, the maximum peak conducted output power shall not
 exceed 0.125 W. The e.i.r.p. shall not exceed 4 W.
- For frequency hopping systems operating in the band 5725 to 5850 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W.
- Point-to-point systems in the bands 2400-2483.5 MHz and 5725 to 5850 MHz are permitted to have an
 e.i.r.p. higher than 4 W provided that the higher e.i.r.p. is achieved by employing higher gain directional
 antennas and not higher transmitter output powers.

RF916 6.0 Page 43 of 67

15.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure vi, the resolution bandwidth of the spectrum analyser was increased above the EUT occupied bandwidth and the peak emission data noted.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure vi Test Setup

15.5 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
FSU50	R&S	Spectrum Analyser	U544	16/03/2017

RF916 6.0 Page 44 of 67

15.6 Test Results

	600 bps D-BPSK							
Channel Frequency (MHz)	Analyzer Level (dBm)	Cable loss Antenna loss Ref offset used (dB)	Maximum peak conducted output power (W)	Antenna gain (dBi)	E.I.R.P. (W)	Result		
902.2	27.19	36.7	0.523	8.0	3.303	PASS		
914.8	27.56	36.7	0.571	8.0	3.597	PASS		
927.7	27.62	36.7	0.578	8.0	3.647	PASS		

Software values used for the transmitter output power (with noise selected).

902.2MHz = 20

914.8MHz = 21

927.7MHz = 20

As per 15.247(b)(4)and RSS 247 (5.4)(2) the gain of the antenna is greater than 6dBi the conducted output power limit is reduced as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

Antenna gain exceeds 6 dBi by 2 dB therefore conducted output power limit of 1W (30 dBm) is reduced to 0.631W (28 dBm)

RF916 6.0 Page 45 of 67

Transmitter output power 902.2MHz

Date: 12.SEP.2016 16:31:35

Transmitter output power 914.8MHz

Date: 12.SEP.2016 16:32:55

RF916 6.0 Page 46 of 67

Transmitter output power 927.7MHz

Date: 12.SEP.2016 16:34:33

RF916 6.0 Page 47 of 67

16 Occupied Bandwidth

16.1 Definition

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

16.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Lab

Test Standard and Clause: ANSI C63.10-2013, Clause 6.9

EUT Channels / Frequencies Measured: Low / Mid / High – hopping stopped.

EUT Channel Bandwidths: 175.48kHz

EUT Test Modulations: 600 bps D-BPSK

Deviations From Standard: None Measurement BW: 2kHz

(requirement: 1 % to 5 % OBW)

Spectrum Analyzer Video BW: 10kHz

(requirement at least 3x RBW)

Measurement Span: 500kHz

(requirement 2 to 5 times OBW)

Measurement Detector: Peak

Environmental Conditions (Normal Environment)

Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 45 % RH 20 % RH to 75 % RH (as declared)

Supply: 110 V ac 110 V ac ±10 % (as declared)

16.3 Test Limit

- For frequency hopping systems in the band 902 to 928 MHz: The maximum allowed -20 dB bandwidth of the hopping channel is 500 kHz.
- Frequency hopping systems operating in the band 5725 to 5850 MHz: The maximum -20 dB bandwidth of the hopping channel shall be 1 MHz

RF916 6.0 Page 48 of 67

16.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure vii, the bandwidth of the EUT was measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure vii Test Setup

16.5 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
FSU50	R&S	Spectrum Analyser	U544	16/03/2017

16.6 Test Results

600 bps D-BPSK 20dB Bandwidth								
Channel Frequency (MHz)	F _L (MHz)	F _H (MHz)	20dB Bandwidth (kHz)	Result				
902.20	902.112660	902.288141	175.48	PASS				
914.80	914.712660	914.888141	175.48	PASS				
927.70	927.612660	927.788141	175.48	PASS				

600 bps D-BPSK 99% Bandwidth							
Channel Frequency (MHz)	995 Bandwidth (kHz)	Result					
902.20	902.118269	902.282532	164.26	PASS			
914.80	914.718269	914.882532	164.26	PASS			
927.70	927.618266	927.782532	164.26	PASS			

RF916 6.0 Page 49 of 67

20dB Bandwidth

Date: 12.SEP.2016 16:03:45

20dB Bandwidth

Date: 12.SEP.2016 16:07:49

RF916 6.0 Page 50 of 67

20dB Bandwidth

Date: 12.SEP.2016 16:05:52

RF916 6.0 Page 51 of 67

99% Bandwidth

Date: 12.SEP.2016 16:21:54

99% Bandwidth

Date: 12.SEP.2016 16:19:51

RF916 6.0 Page 52 of 67

99% Bandwidth

Date: 12.SEP.2016 16:24:15

RF916 6.0 Page 53 of 67

17 Out-of-band and conducted spurious emissions

17.1 Definition

Out-of-band emission.

Emission on a frequency or frequencies immediately outside the necessary bandwidth that results from the modulation process but excluding spurious emissions.

Spurious emission.

Emission on a frequency or frequencies that are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products, and frequency conversion products, but exclude out-of-band emissions.

17.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio lab

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.8

EUT Channels / Frequencies Measured: Low / Mid / High

EUT Channel Bandwidths: 180kHz

Deviations From Standard: None

Measurement BW: 100 kHz

Spectrum Analyzer Video BW: 300kHz

(requirement at least 3x RBW)

Measurement Detector: Peak

Measurement Range: 30 MHz to 10GHz

Environmental Conditions (Normal Environment)

Temperature: 24 °C +15 °C to +35 °C (as declared)

Humidity: 41 % RH 20 % RH to 75 % RH (as declared)

Supply: 110 V ac 110V ac ±10 % (as declared)

17.3 Test Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in FCC 47CFR15.209(a) / RSS-Gen is not required.

RF916 6.0 Page 54 of 67

17.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure viii, the emissions from the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

Figure viii Test Setup

17.5 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
FSU46	R&S	Spectrum Analyser	U281	07/06/2017

RF916 6.0 Page 55 of 67

17.6 Test Results

902.2MHz						
Channel Frequency (MHz)	Emission Frequency (MHz)	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result	
Low	916.5	-2.41	4.04dBm	6.45	PASS	

902.2MHz 9-150kHz

902.2MHz 150-30MHz

Date: 13.SEP.2016 12:19:41

Date: 13.SEP.2016 12:20:34

902.2MHz 30MHz -1GHz

902.2MHz 1-5GHz

Date: 13.SEP.2016 12:18:32 Date: 13.SEP.2016 12:21:24

RF916 6.0 Page 56 of 67

902.2MHz 5-10GHz

Date: 13.SEP.2016 12:22:44

RF916 6.0 Page 57 of 67

	914.8MHz							
Channel Emission Frequency Frequency (MHz) (MHz)		Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result			
Mid	916.5	-2.03	4.27	6.3	PASS			

914.8MHz 9-150kHz

914.8MHz 150-30MHz

Date: 13.SEP.2016 12:46:18

Date: 13.SEP.2016 12:46:51

914.8MHz 30MHz -1GHz

914.8MHz 1GHz-5GHz

Date: 13.SEP.2016 12:33:38

Date: 13.SEP.2016 12:49:26

RF916 6.0 Page 58 of 67

914.8MHz 5GHz-10GHz

Date: 13.SEP.2016 12:54:15

RF916 6.0 Page 59 of 67

927.7MHz						
Channel Frequency (MHz)	Emission Frequency (MHz)	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result	
High	916.5	-3.8	4.47	-8.27	PASS	
High	1855.4	-12.5	4.47	-16.97	PASS	

Date: 13.SEP.2016 13:01:58

927.7MHz 9-150kHz

% 1 PK MAXH

927.7MHz 150-30MHz

Date: 13.SEP.2016 13:01:21

927.7MHz 30MHz

927.7MHz 30MHz-1GHz

Date: 13.SEP.2016 13:00:44 Date: 13.SEP.2016 13:06:52

RF916 6.0 Page 60 of 67

927.7MHz 5GHz-10GHz

Date: 13.SEP.2016 13:07:39

RF916 6.0 Page 61 of 67

Lower frequency hopset bandedge not hopping

Date: 13.SEP.2016 11:41:04

Lower frequency hopset bandedge hopping

Date: 13.SEP.2016 11:47:41

RF916 6.0 Page 62 of 67

High frequency hopset bandedge not hopping

Date: 13.SEP.2016 12:02:55

High frequency hopset bandedge hopping

Date: 13.SEP.2016 11:59:04

RF916 6.0 Page 63 of 67

18 Measurement Uncertainty

Calculated Measurement Uncertainties

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence:

[1] Radiated spurious emissions

Uncertainty in test result (30 MHz to 1 GHz) = **4.6 dB** Uncertainty in test result (1 GHz to 18 GHz) = **4.7 dB**

[2] AC power line conducted emissions

Uncertainty in test result = 3.4 dB

[3] Occupied bandwidth

Uncertainty in test result = 15.5 %

[4] Conducted carrier power

Uncertainty in test result (Power Meter) = 1.08 dB

[5] Conducted / radiated RF power out-of-band

Uncertainty in test result – up to 8.1 GHz = **3.31 dB** Uncertainty in test result – 8.1 GHz to 15.3 GHz = **4.43 dB** Uncertainty in test result (30 MHz to 1 GHz) = **4.6 dB** Uncertainty in test result (1 GHz to 18 GHz) = **4.7 dB**

[6] Frequency separation

Uncertainty in test result (Spectrum Analyser) = 3.6 kHz

[7] Accumulated channel occupancy time

Uncertainty in test result = 7.98 %

RF916 6.0 Page 64 of 67

19 RF Exposure

RF Exposure MPE Calculation

KDB 447498

Prediction of MPE limit at a given distance

Equation from IEEE C95.1

$$S = \frac{EIRP}{4\pi R^2}$$
 re-arranged $R = \sqrt{\frac{EIRP}{S4\pi}}$

where:

S = power density

R = distance to the centre of radiation of the antenna

EIRP = EUT Maximum power

Note:

The EIRP was calculated by addition of the maximum conducted carrier power plus the antenna gain.

OR

The following formula may be used to convert field strength (FS) in volts/metre to transmitter output power (TP) in watts:

$$TP = (FS \times D)^2 / (30 \times G)$$

where D is the distance in metres between the two antennas and G is the antenna numerical gain referenced to isotropic gain.

Result

Prediction Frequency (MHz)	Maximum Conducted Power (dBm)	Antenna Gain (dBi)	Maximum EIRP (mW)	Minimum Distance (cm)	Power density at distance (mW/cm²)	Power density limit (S) (mW/cm²)
902.2	27.19	8	3303.695	21.0	0.596	0.601
914.8	27.56	8	3597.493	21.8	0.602	0.609
927.7	27.62	8	3647.539	21.7	0.616	0.618

RF916 6.0 Page 65 of 67

RADIO FREQUENCY RADIATION EXPOSURE

RSS-102 issue 5

Exemption Limits for Routine Evaluation

All transmitters are exempt from routine SAR and RF exposure evaluations provided that they comply with the requirements of sections RSS-102 Issue 5 sections 2.5.1 or 2.5.2

If the EUT does not meet the appropriate exemption limit, a complete SAR or RF exposure evaluation shall be performed. However, the power exemption limits in RSS-102 Issue 5 Table 1 can be applied to reduce the number of test configurations (e.g. testing of a tablet edge).

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 4.49/f0.5W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x 10-2 f 0.6834 W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

RF916 6.0 Page 66 of 67

Exemption Limits for Routine Evaluation – RF Exposure Evaluation

$$S = \frac{EIRP}{4\pi R^2}$$
 re-arranged $R = \sqrt{\frac{EIRP}{S4\pi}}$

where:

S = power density R = distance to the centre of radiation of the antenna ERP = EUT Maximum power

RSS-102 i5					
Evaluation Frequency	927.7	MHz			
Section 2.5 Exemption limits	1.4	Watts			
Conduced Power	27.62	dBm			
Antenna Gain	8	dBi			
EIRP	3.647	W			
Evaluation Required					
R =	0.33	Meters			
MPE Level =	2.67	W/m ²			
IC Limit =	2.79	W/m ²			

OR

RSS-102 i5					
Evaluation Frequency		MHz			
Section 2.5 Exemption limits		Watts			
Radiated Carrier Power	dBµV/m				
Measurement Distance		meters			
EIRP		W			
Evaluation Required / Exempt					
R =		Meters			
MPE Level =		W/m ²			
IC Limit =		W/m ²			

EIRP Calculated From Field Strength As Per ANSI C63.10

RF916 6.0 Page 67 of 67