Prediction of Forest Cover Type in Roosevelt National Forest Colorado, US

Lori Newhouse February 2021

Outline

- project description
- data overview and exploration
- initial model investigation (sklearn and trees)
- model development process
- modeling results
- model tuning and finalization
- model deployment and serving (work in progress)

Project Description

- •classification problem in environmental science
- dataset is for Roosevelt National Forest, Colorado, USA
- http://archive.ics.uci.edu/ml/datasets/Covertype
- •Blackard, Jock A., Dean, Denis J., Anderson, Charles W. (1998). Covertype Data Set: University of California--Irvine Machine Learning Repository.

Cover Type (Target Values)

- •7 values for cover type
- significant class imbalance
- •85% of observations in 2 largest classes
- •5 smallest classes present at 0.5 to 6% each

	count	fraction
cover_name		
lodgepole_pine	283301	0.487599
spruce_fir	211840	0.364605
ponderosa_pine	35754	0.061537
krummholz	20510	0.035300
douglas_fir	17367	0.029891
aspen	9493	0.016339
cottonwood_willow	2747	0.004728

Features

12 features

- 10 numerical
- 1st categorical feature (non-ordinal): 4 categories
- 2nd categorical feature (non-ordinal): 40 categories

original data

- csv file
- 581,012 observations
- clean, no missing values
- both categorical features only given as 1-hot encoded columns
- additional information provided on meaning of each encoded value
- pre-processing reversed 1-hot encoding to make columns with category value

Data Exploration: Numerical Features (Box)

- different magnitudes
- not normally distributed

Data Exploration: Numerical Features (Correlation)

- 0.2

- -0.2

- -0.4

- -0.6

no strong correlations

Data Exploration: Categorical Feature Wilderness Area

4 wilderness areas within Roosevelt National Forest

Data Exploration: Categorical Feature Soil Type

- each category represents a US Forestry Service Ecological Landtype Unit (ELU)
- •ELU code contains a digit for climatic zone and a digit for geologic zone

Data Exploration: Soil Type Clusters

- each zone value on horizontal axis IS IN dataset
- bar may be too small to see

- •soil type, climatic zone, and geologic zone descriptive information is included with dataset
- pre-process soil type for 3 clustering techniques
 - climatic zone (7 values)
 - geologic zone (4 values)
 - unique combinations of climatic and geologic (11 values)

Data Exploration: Feature Distribution by Target

- distribution of elevation and soil index varies by target class
- distribution of HD_hydrology does not

Initial Model Investigation

- •fit model, no cross-validation, default hyper-parameter values
- data pre-processing
 - ✓ min-max scaling of numerical values
 - ✓ one-hot encoding of soil type (40 values)
 - ✓ one-hot encoding of wilderness area

•sklearn models

- ✓ logistic regression
- ✓ SVM
- √ gaussian naive bayes
- ✓ multinomial naive bayes
- √ complement naive bayes

Initial Model Investigation (cont)

•tree models

- √ decision tree
- √ random forest
- √ gradient boosting (GB)
- **✓ XGBoost**
- ✓ Light GBM
- ✓ CatBoost

model metrics

- ✓ accuracy
- √ average and weighted average of class precision, recall, f1-score

metrics by class

√ accuracy, precision, recall, f1-score

Initial Model Investigation: sklearn Results

- •SVM ran for 2.5 hr but did not complete
 - ✓ others finished in < 10 min; did not try to resolve.
 </p>
- decision Gaussian NB: very large confusion among several classes
- model comparison
 - ✓ similar performance on train and test data
 - √ gaussian NB has worse performance
 - ✓ multinomial and complement NB: almost identical performance
 - √ logistic regression has slightly better performance than NB
 - ✓ weighted averages of precision, recall, f1 larger than macro averages due to decreased emphasis
 on poor performing small classes

Initial Model Investigation: sklearn Results (cont)

performance by class

- ✓ similar performance on train and test data
- ✓ all models have difficulty with 3 smallest classes
- ✓ complement NB has no predictions for 2 small classes
- √ gaussian NB has high recall for 3 smallest classes but poor precision for them

Initial Model Investigation: Tree Results

model comparison

- ✓ GB, XGBoost, LightGBM, CatBoost almost identical performance
- √ they are better than decision tree and random forest

performance by class

- √ random forest does not predict any instances of 4 smallest classes
- ✓ decision tree performance on 4 smallest classes poorer than on 3 largest classes

•GB, XGBoost, LightGBM, CatBoost on 4 smallest classes

- ✓ generally better precision than recall
- ✓ XGBoost slightly better precision and recall than others; CatBoost generally performs worse

LightGBM, CatBoost (use categorical features directly)

- √ very similar performance
- ✓ LightGBM slightly better for precision, CatBoost slightly better for recall

Model Development Process

use pycaret

- √ feature pre-processing
- √ fit and compare several models (default hyper-parameters)
- √ hyper-parameter tuning of a few selected models
- √ finalize model and save to pickle file

work with subset of data on local machine

- √ develop and debug Jupyter notebooks
- √ techniques for encoding high cardinality feature (soil type)
- ✓ oversampling of target minority classes
- √ how to access train and test datasets
- ✓ make predictions
- ✓ prepare result dataframes used for plotting
- √ prepare plots (from pickled result dataframes)

Model Development Process (cont)

- work with full dataset on Paperspace (cloud provider)
 - ✓ initial investigations with free machine (8 vCPU, 30 GB memory, 6 hr time limit)
 - √ tuning with paid machine (12 vCPU, 30 GB memory, no time limit)
- model metrics from 3-fold cross-validation
 - ✓ accuracy
 - ✓ average and weighted average of precision, recall, f1-score
- metrics by class (predict training data with fitted model)
 - √ accuracy, precision, recall, f1-score

Data Pre-Processing

- •soil index: non-ordinal, high cardinality (40 values)
 - ✓ manual clustering using domain knowledge
 - ✓ 3 clustering techniques (climatic zone, geologic zone, both zones)
- min-max scaling of numerical features
- over sampling of minority classes using imblearn

Model Development: Soil Type

- non-ordinal, high categorical feature (40 values)
- investigated these techniques for handling
 - ✓ one-hot encoding
 - √ frequency encoding
 - √ climatic zone clustering (7 values)
 - ✓ geologic zone clustering (4 values)
 - √ climatic + geologic zone clustering (11 combinations present)
- investigate these models (default hyper-parameters)
 - ✓ logistic regression
 - √ decision tree
 - ✓ XGBoost
 - ✓ LightGBM (uses categorical features directly, not one-hot encoded)
 - ✓ CatBoost (uses categorical features directly, not one-hot encoded)

Model Development: Soil Type Results

•for each model

✓ accuracy, weighted metrics, and average metrics slightly better for one-hot and frequency encoding

decision tree

- ✓ significantly better accuracy than other models
- √ other metrics (except average precision) also better
- •logistic regression significantly worse than other models
- •3 remaining models have similar performance
 - ✓ ordering best to worse: CatBoost, XGBoost, LightGBM
- •for models that do not directly use categorical features
 - ✓ one-hot takes 20-40% more CPU time to train than frequency

Model Development: Soil Type Results (cont)

metrics by class (predict entire training set)

- ✓ generally, 3 clustering techniques perform better for each model
- ✓ exception is logistic regression, which has significantly poorer performance than other models
- ✓ little difference in performance among clustering techniques

Model Metrics: Screening Plots

- metrics investigated
 - ✓ accuracy
 - ✓ average and weighted average of precision, recall, f1
 - ✓ 2 metrics shown; conclusions apply to all metrics
- one-hot and frequency encoding have slightly better performance for all models
- over-sampling of 5 smallest classes has only slight impact on performance

Class Metrics: Screening Plots

- •lodgepole_pine: majority class
- douglas_fir: 3rd smallest class
- conclusions same for all classes

class: douglas_fir (fraction=0.029)

•3 cluster techniques

- ✓ similar performance for all models
- ✓ significantly better than one-hot and frequency

•over-sample factor = 3

✓ geologic cluster significantly better than frequency

Model Development: Class Imbalance

- used pycaret functionality for including imbalanced_learn
 - ✓ over-sample and clean
- •5 smallest classes over-sampled to increase total count of each by factor of 3 in train data
- based on 3-fold CV results: use decision tree, XGBoost, CatBoost
- round 1: based on 3-fold CV results
 - ✓ use frequency encoding of soil type
- round 2: based on performance metrics by class
 - √ use geologic zone encoding (fewest clusters, 4 verses 7 or 11)
- round 3: over-sample by factor of 1.5
 - ✓ geologic zone encoding

Model Development: Class Imbalance Results

- •over-sample with factor = 3: model metrics
 - ✓ little difference between with and without over-sampling
- over-sample with factor = 3: metrics for 5 smallest classes
 - ✓ with over-sampling, precision slightly lower and recall slightly higher
- •over-sample with factor = 1.5: metrics for 5 smallest classes
 - ✓ only slight differences with and without over-sampling
 - √ differences smaller than factor = 3
 - ✓ no clear pattern to differences

Class Metrics: Over-Sampling

over-sample 5 smallest classes

- √ precision reduced
- √ recall increased

Model Tuning: Parameters

- geologic clustering for soil type
- •over-sample factor = 3
- •3-fold cross-validation, 15 iterations

Decision Tree

parameter grid

best model

```
{'actual_estimator_min_samples_split': 6,
'actual_estimator_min_samples_leaf': 4,
'actual_estimator_max_features': 1.0,
'actual_estimator_max_depth': 20,
'actual_estimator_criterion': 'entropy'}
```

CatBoost

parameter grid 1

best model 1

√ significantly worse than best decision tree

```
{'actual_estimator__random_strength': 0.0,
  'actual_estimator__n_estimators': 300,
  'actual_estimator__l2_leaf_reg': 0.1,
  'actual_estimator__depth': 8}
```

parameter grid 2, same as above except

```
tune grid cb['n estimators'] = [200, 300, 400, 500]
```

best model 2

```
{'actual_estimator__random_strength': 0.2,
  'actual_estimator__n_estimators': 400,
  'actual_estimator__l2_leaf_reg': 1,
  'actual_estimator__depth': 10}
```

Model Tuning: Metrics

•f1 macro

✓ average f1-score for all 7 classes, each class weight = 1

•f1 custom

✓ average f1-score, 5 smallest classes weight = 3, 2 largest weight = 1

Model Tuning: Overall Results

performance metrics for tuned models

- optimization metric has no impact on results
- decision tree significantly better than CatBoost
- weighted metrics larger than macro metrics due to decreased emphasis on poorer performing small classes

Model Tuning: Results by Class

Finalize Model

finalized decision tree model

finalized decision tree model classes ordered by increasing fraction

- decision tree selected for finalization
- •fit using all data

Model Deployment

work is in progress