МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В.Ломоносова

Факультет вычислительной математики и кибернетики

Компьютерный практикум по курсу «ВВЕДЕНИЕ В ЧИСЛЕННЫЕ МЕТОДЫ» ЗАДАНИЕ № 1

отчёт

о выполненном задании студента 205 учебной группы факультета ВМК МГУ Феофилактова Андрея Дмитриевича

Содержание

1.	Цель работы	2
2.	Постановка задачи	2
3.	Цели и задачи практической работы	2
4.	Описание алгоритма решения	3
5.	Описание программы	5
6.	Тесты	6
	6.1. Небольшие тесты	6
	6.1.1. Тест 1	6
	6.1.2. Тест 2	6
	6.1.3. Тест 3	7
	6.2. Объёмные тесты	8
7	Выволы	10

1. Цель работы

Изучить классический метод Гаусса решения системы линейных алгебраических уравнений.

2. Постановка задачи

Дана система уравнений Ax = f порядка $n \times n$ с невырожденной матрицей A. Написать программу, решающую систему линейных алгебраических уравнений заданного пользователем размера (n — параметр программы) методом Гаусса и методом Гаусса с выбором главного элемента.

Предусмотреть возможность задания элементов матрицы системы и её правой части как во входном файле данных, так и путём задания специальных формул.

3. Цели и задачи практической работы

- 1) Научиться решать заданную СЛАУ методом Гаусса и методом Гаусса с выбором главного элемента;
- 2) Вычислить определитель матрицы det(A);
- 3) Вычислить обратную матрицу A^{-1} ;
- 4) Исследовать вопрос вычислительной устойчивости метода Гаусса (для матриц высоких порядков);
- 5) Правильность решения СЛАУ подтвердить системой тестов.

4. Описание алгоритма решения

Для решения поставленных задач будет использоваться метод Гаусса — один из классических методов решения системы линейных алгебраических уравнений. Метод подразумевает решение системы Ax = f путём приведения A — матрицы системы к ступенчатому виду (прямой ход) и выражения значений переменных (обратный ход).

Итак, пусть A – матрица порядка $n \times n$, f – вектор-столбец свободных членов системы порядка n.

Прямой ход состоит в послдовательном повторении трёх шагов для всех $i=1\dots n$:

- Из строчек A с i по n выберем такую, что $A_{ii} \neq 0$ (в случае классичесского метода Гаусса) и такую, что $A_{ii} = \max_{j=i...n} A_{ji}$ (в случае метода Гаусса с выбором главного элемента по столбцу) и поменяем её местами с i-той. В случае, если после этого $A_{ii} = 0$, отметим, что матрица является вырожденной (значит, либо система несовместна, либо многообразие решений невырожденно) и перейдём к i = i + 1.
- Поделим теперь все элементы i-той строчки A (а так же i-тую строчку правой части) на A_{ii} .
- Теперь из каждой j-той $(j = i + 1 \dots n)$ строчки A и правой части вычтем i-тую, домноженную на A_{ji} . Теперь каждый элемент i-того столбца, стоящий ниже i-того равен нулю.

После выполнения прямого хода матрица приведена к верхне-ступенчатому виду. Причём если r – номер последней ненулевой строчки в матрице A, r=rank(A). Теперь если найдётся $f_j\neq 0$ $(j=r+1\dots n)$, то система несовместна. В ином случае многообразие решений имеет размерность, равную n-r. В частности, если r=n, решение единственно. В дальнейшем будем считать, что мы работаем именно с невырожденными матрицами, то есть решение единственно и матрица имеет верхнетреугольный вид.

Обратный ход включает повторение единственного шага для всех $i=r\dots 1$:

• Из каждой j-той строчки (j < i) вычитаем i-тую, домноженную на A_{ji} , не забыв проделать то же с правой частью.

После завершения обратного хода невырожденная матрица A станет единичной.

Заметим, что от правой части уравнения требуется только поддерживать т.н. "элементарные преобразования":

- 1) обмена двух рядов;
- 2) умножения ряда на число;
- 3) прибавления к одному ряду другого, домноженного на число.

В случае, если матрица невырожденная, а правая часть является вектором, как было описано выше, в результате работы алгоритма в правой части окажется искомый корень уравнения. Если же в качестве правой части использовать единичную матрицу, то в результате работы алгоритма справа получим матрицу A^{-1} .

Осталось научиться вычислять определитель матрицы. Для этого нужно отметить, что определитель меняется при проведении первых двух из перечисленных преобразований — меняет знак при обмене двух рядов и, при умножении ряда на число a, делится на a.

5. Описание программы

Программа написана на C++11. Краткое содержание реализации (подробнее – см. код):

- Чисто виртуальный класс BaseElementGenerator, предоставляющий интерфейс для задания системы уравнений;
- Kласc ElementGenerator, реализующий заданные в условии формулы для получения очередного элемента матрицы и вектора;
- Класс EquationsSystem, описывающий систему уравнений. В качестве параметра конструктора принимает имя файла, содержащего систему или объект типа BaseElementGenerator. Имеет методы Solve(), Determinant() и Inverse(), осуществляющие решение системы, нахождение определителя матрицы коэффициентов и обращение матрицы коэффициентов. Поддерживает неявный параметр, определяющий, использовать или нет модификацию метода Гаусса.
- Чисто виртуальный класс BaseRightEquationsSystemPart, предоставляющий интерфес для задания правой части уравнения Ax = f (В частности с помощью него реализован подсчёт числа операций);
- Классы Matrix и Vector, представляющие из себя рализации квадратной матрицы и вектора соответственно. Оба класса отнаследованы от BaseRightEquationsSystemPart, а также представляют стандартный набор операций для этих алгебраических объектов (перегружены операторы *, * =, +, + =, -, - =)
- Также реализованы вспомогательные функции Equal(double, double) и Zero(double), проверяющие числа на равенства и на равенство нулю, соответственно и класс OperationsCounter, который позволяет посчитать количество операций при выполнении наивно реализованного алгоритма.

6. Тесты

Проверка проводилась с помощью приложенного скрпита на python3.4, с использованием библиотеки numpy

6.1. Небольшие тесты

6.1.1. Тест 1

$$\begin{cases} 2x_1 + 5x_2 + 4x_3 + x_4 = 20, \\ x_1 + 3x_2 + 2x_3 + x_4 = 11, \\ 2x_1 + 10x_2 + 9x_3 + 7x_4 = 40, \\ 3x_1 + 8x_2 + 9x_3 + 2x_4 = 37. \end{cases}$$

Результат: Рассчитано программой:

$$\begin{pmatrix} 1 \\ 2 \\ 2 \\ -0 \end{pmatrix}$$

Рассчитано при помощи пакета numpy:

$$\begin{pmatrix} 1.0\\ 2.0\\ 2.0\\ -3.7 \times 10^{-15} \end{pmatrix}$$

6.1.2. Тест 2

$$\begin{cases} 6x_1 + 4x_2 + 5x_3 + 2x_4 = 1, \\ 3x_1 + 2x_2 + 4x_3 + x_4 = 3, \\ 3x_1 + 2x_2 - 2x_3 + x_4 = -7, \\ 9x_1 + 6x_2 + x_3 + 3x_4 = 2. \end{cases}$$

Результаты: Матрица является вырожденной.

6.1.3. Тест 3

$$\begin{cases} 2x_1 + x_2 + x_3 = 2, \\ x_1 + 3x_2 + x_3 + x_4 = 5, \\ x_1 + x_2 + 5x_3 = -7, \\ 2x_1 + 3x_2 - 3x_3 - 10x_4 = 14. \end{cases}$$

Результат: Рассчитано программой:

$$\begin{pmatrix} 1 \\ 2 \\ -2 \\ -0 \end{pmatrix}$$

Рассчитано при помощи пакета numpy:

$$\begin{pmatrix} 1.0 \\ 2.0 \\ -2.0 \\ -0.0 \end{pmatrix}$$

6.2. Объёмные тесты

Тестирование проводилось для матриц порядка n=100, заданных формулой

$$A_{ij} = \begin{cases} q_M^{i+j} + 0.1 \cdot (j-i), i \neq j, \\ (q_M - 1)^{i+j}, i = j. \end{cases}$$

где $q_M=1.001-2*M*10^{-3},\ i,j=1,\dots n.\ M$ было принято равным 6 (по условию). Элементы вектора свободных коэффициентов задавались формулой:

$$x \cdot \exp \frac{x}{i} \cdot \cos \frac{x}{i}$$

Программа выполнялась для значений X из промежутка с 0 до 15 с шагом 0.5. Для проверки решений использовался приложенный скрипт check.py, в котором считалась евклидова норма вектора невязки. При увеличении x это значение растёт как для обычного метода Гаусса, так и для его усовершенствованного варианта. Причём выбор главного элемента даёт выигрыш до нескольких порядков (см. таблицу).

x	Без модификации	С модификацией	Разность
0.0	0	0	0
0.5	6.8153e-11	4.70669e-14	-6.81059e-11
1.0	2.48026e-10	1.48061e-13	-2.47878e-10
1.5	3.1454e-10	1.16844e-13	-3.14423e-10
2.0	2.92344e-10	2.49085e-13	-2.92095e-10
2.5	1.79998e-09	1.05803e-12	-1.79892e-09
3.0	5.69084e-09	3.3937e-12	-5.68745e-09
3.5	1.05627e-08	6.3643e-12	-1.05563e-08
4.0	1.60849e-08	4.44234e-12	-1.60804e-08
4.5	1.0672e-08	2.01469e-12	-1.067e-08
5.0	1.74529e-08	1.17426e-11	-1.74412e-08
5.5	8.85728e-08	4.26294e-11	-8.85301e-08
6.0	2.33569e-07	3.68016e-11	-2.33532e-07
6.5	4.15609e-07	1.26384e-10	-4.15483e-07
7.0	5.02028e-07	1.90374e-10	-5.01838e-07
7.5	4.25878e-07	1.48411e-10	-4.25729e-07
8.0	3.85135e-07	1.35395e-10	-3.84999e-07
8.5	2.64374e-06	1.35466e-09	-2.64239e-06
9.0	6.69058e-06	2.61472e-09	-6.68797e-06
9.5	1.28617e-05	3.03868e-09	-1.28587e-05
10.0	1.861e-05	2.94096e-09	-1.86071e-05
10.5	1.85298e-05	1.42146e-08	-1.85156e-05
11.0	4.33969e-07	2.79863e-10	-4.3369e-07
11.5	5.94858e-05	5.69602e-08	-5.94288e-05
12.0	0.000164127	7.69133e-08	-0.00016405
12.5	0.000334385	1.47586e-07	-0.000334238
13.0	0.000495664	3.49012e-07	-0.000495315
13.5	0.000619153	2.65897e-07	-0.000618887
14.0	0.000248584	8.04283e-08	-0.000248504
14.5	0.000958917	6.01043 e-07	-0.000958316
15.0	0.00407568	1.69442e-06	-0.00407399

7. Выводы

Приведённые результаты тестов показывают, что уже при n=100 нетрудно найти систему уравнений с n переменными, для которой простой метод Гаусса будет давать заметную (относительно исходных данных) ошибку. Таким образом, метод вычислительно устойчивым не является.

Приведённая модификация метода Гаусса — метод Гаусса с выбором главного элемента показывает лучшую на несколько порядков точность, но видно, что если увеличить n, и этой точности станет недостаточно.

Для решения этой проблемы можно выбирать максимальный элемент не из столбца, а из всей необработанной подматрицы. Это позволит увеличить точность, но добавит асимптотической сложности и так не оптимальному алгоритму, поэтому подобное решение будет зависеть уже от конкретных целей в соблюдении баланса "время выполнения - точность".