MASARYKOVA UNIVERZITA Přírodovědecká fakulta Ústav matematiky a statistiky

Diplomová práce

BRNO 2025

Tomáš Petit

M A S A R Y K O V A U N I V E R Z I T A

PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY

Topological data analysis

Diplomová práce

Tomáš Petit

Vedoucí práce: prof. RNDr. Jan Slovák, DrSc. Brno 2025

Bibliografický záznam

Autor: Bc. Tomáš Petit

Přírodovědecká fakulta, Masarykova univerzita

Ústav matematiky a statistiky

Název práce: Topological data analysis

Studijní program: Matematika

Studijní obor: Matematika

Vedoucí práce: prof. RNDr. Jan Slovák, DrSc.

Akademický rok: 2024/2025

Počet stran: ?? + ??

Klíčová slova: Topologie; Algebraická Topologie; Homologie; Persis-

tentní Homologie; Topologická analýza dat; TDA; Topo-

logické Metody

Bibliographic Entry

Author: Bc. Tomáš Petit

Faculty of Science, Masaryk University Department of mathematics and statistics

Title of Thesis: Topological data analysis

Degree Programme: Mathematics

Field of Study: Mathematics

Supervisor: prof. RNDr. Jan Slovák, DrSc.

Academic Year: 2024/2025

Number of Pages: ?? + ??

Keywords: Topology; Algebraic Topology; Homology; Persistent

Homology; Topological data analysis; TDA; Topologi-

cal Methods

Abstrakt

 ${\bf V}$ této bakalářské/diplomové/rigorózní práci se věnujeme ...

Abstract

In this thesis we study ...

MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA

KOTLÁŘSKÁ 2, 611 37 BRNO

IČ: 00216224 DIČ: CZ00216224

ZADÁNÍ DIPLOMOVÉ PRÁCE

Akademický rok: 2024/2025

Ústav:	Přírodovědecká fakulta
Student:	Bc. Tomáš Petit
Program:	Matematika
Specializace:	Matematika

Ředitel ústavu PřF MU Vám ve smyslu Studijního a zkušebního řádu MU určuje diplomovou práci s názvem:

Název práce:	Topological data analysis
Název práce anglicky:	Topological data analysis
Jazyk závěrečné práce:	angličtina

Oficiální zadání:

Goal: The goal is to understand the concepts and tools of Topological Data Analysis, and to be ready to use them in practical tasks. Aim: Depending on the results of the initial period, the student will either focus on theoretical understanding and original research in Mathematics and Statistics, or the focus will be on smart use of advanced tools in solving practical problems, including the implementation issues. One of the resources for real data requiring sophisticated analysis will come form the project Machine Learning in Nanomaterial Biocompatibility Assessment (MUNI/G/1125/2022).

Literatura: RAÚL RABADÁN, ANDREW J. BLUMBERG, Topological Data Analysis for Genomics and Evolution, Cambridge University Press, 2020, DOI: 10.1017/9781316671665

Vedoucí práce:	prof. RNDr. Jan Slovák, DrSc.
Datum zadání práce:	20. 9. 2023
V Brně dne:	25. 7. 2024

Zadání bylo schváleno prostřednictvím IS MU.

Bc. Tomáš Petit, 16. 10. 2023 prof. RNDr. Jan Slovák, DrSc., 17. 10. 2023 RNDr. Jan Vondra, Ph.D., 18. 10. 2023

Poděkování

TodeRovalli	
Na tomto místě bych chtěl(-a) poděkovat	
Prohlášení	
Prohlašuji, že jsem svoji bakalářskou/diplomovou pr pod vedením vedoucího práce s využitím informačních citovány.	
Prohlašuji, že jsem svoji rigorózní práci vypracoval(informačních zdrojů, které jsou v práci citovány.	-a) samostatně s využitím
Brno xx. měsíce 20xx .	Tomáš Petit

Contents

List of used notation	XV
Introduction	1
Kapitola 1. Why Topology?	3
Kapitola 2. Persistence	7
Summary	9
Appendix A	11
Bibliography and sources	13

List of used notation

Pro snažší orientaci v textu zde čtenáři předkládáme přehled základního značení, které se v celé práci vyskytuje.

- C množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- \mathbb{C} množina všech komplexních čísel
- R množina všech reálných čísel
- \mathbb{Z} množina všech celých čísel
- N množina všech přirozených čísel
- C množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- ${\mathbb C}$ množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- C množina všech komplexních čísel
- R množina všech reálných čísel
- \mathbb{Z} množina všech celých čísel

Introduction

To add later.

Chapter 1

Why Topology?

Data has shape. This is hardly a new or revolutionary idea in the realm of data analysis and statistics. It is an assumption that we make all the time, even if we do not say it out loud. Whenever one tries to construct a linear regression model, we all have the mental image of a straight line in our minds, which should roughly approximate the data. This is then generalized via hyperplanes in higher dimensions.

Another example would be periodic time series or signals – we all expect to see a "loop" of some sort, given a long enough time interval between the measurements, see for example 1.1. It isn't much of a stretch to imagine that we could use this loop to try and approximate the period of the time series (something that we will actually do in the following chapters after introducing the necessary mechanisms).

Figure 1.1: Example plot of seasonal temperature changes in Seattle throughout the years.

Clustering algorithms - be it k-means, hierarchical clustering and so on - all work with the shape and geometry of our data explicitly by partitioning the avail-

able search space into the distinct clusters, once a measure of distance (which doesn't need to be a metric, per say) is chosen. The list could go on but I believe the point was already made. Historically and traditionally, an appropriate analytic model was derived and constructed for each of the above-mentioned methods with a rich theoretical background to justify the results.

While this approach works for most simple cases the average data analyst will encounter on an Excel spreadsheet, thanks to the advancements made in computing power and software engineering, we're collecting massive amounts of complicated, high-dimensional data living faster than we did before, especially in the fields of biology and medical sciences.

Figure 1.2: Time-scaled phylogenetic tree of H3 influenza viruses inferred by BEAST using molecular clock model.

A good example of that would be phylogenetic and evolutionary trees, like the one in 1.2. We might be interested to know whether any mutation occurred, where did they happen and how far were they transmitted down the tree. We might look for re-combinations of the genomic material or both horizontal and vertical transfer of it. All those questions pertain to the shape of the phylogenetic tree and its branching. ¹

The situation only get more complex with each passing day and batch of collected data. One *could* try and develop analytical models for each case, provide the rigorous theory and obtain the conclusions that they seek. But a far more reasonable and general method would be to instead study the shape itself and approximate the datasets by selecting the shape that describes it the "best". This is where topology comes into play, as this gives us the tools and theory to do exactly

¹Data downloaded from the following link, visited on the 01.08.2024

Chapter 1.	Why Topology?	

that, with the help of algebraic topology.

Chapter 2

Persistence

$$\int f(x) \, \mathrm{d}x \qquad \qquad \text{(rovnice)}$$

odkaz na rovnici s tagem (rovnice) – pokud nechcete vzorci přidělit číslo, ale nějaký vlastní symbol, používejte hvězdičkovaná prostředí, tj. např. equation*

$$\iint f(x) \, \mathrm{d}x \tag{2.1}$$

odkaz na druhy vzorec (2.1)

Summary

Summary of the work.

Appendix A

Bibliography and sources

- [1] S. J. Monaquel a K. M. Schmidt, *On M-functions and operator theory for non-self-adjoint discrete Hamiltonian systems*, v Special Issue: 65th birthday of Prof. Desmond Evans, J.Comput. Appl. Math. **208** (2007), č. 1, 82–101.
- [2] M. Murata, Positive solutions and large time behaviors of Schrödinger semigroups, Simon's problem, J. Funct. Anal. **56** (1984), č. 3, 300–310.
- [3] J. Qi a S. Chen, *Strong limit-point classification of singular Hamiltonian expressions*, Proc. Amer. Math. Soc. **132** (2004), č. 6, 1667–1674 (elektronicky).
- [4] Z. Pospíšil, *An inverse problem for matrix trigonometric and hyperbolic functions on measure chains*, v Colloquium on Differential and Difference Equations CDDE 2002 (Brno, 2002), Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. **13**, str. 205–211, Masarykova univerzita, Brno, 2003.
- [5] R. Šimon Hilscher a P. Zemánek, *Friedrichs extension of operators defined by linear Hamiltonian systems on unbounded interval*, v Equadiff 12, Proceedings of the Conference on Differential Equations and their Applications (Brno, 2009), J. Diblík, O. Došlý, P. Drábek a E. Feistauer, editoři, Math. Bohem. **135** (2010), č. 2, 209–222.
- [6] W. T. Reid, Sturmian Theory for Ordinary Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1980. ISBN 0-387-90542-1.
- [7] W. T. Reid, Sturmian Theory for Ordinary Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1980. ISBN 0-387-90542-1.
- [8] W. T. Reid, *Sturmian Theory for Ordinary Differential Equations*, Applied Mathematical Sciences, Springer-Verlag, New York, 1980. ISBN 0-387-90542-1.
- [9] W. T. Reid, Sturmian Theory for Ordinary Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1980. ISBN 0-387-90542-1.
- [10] W. T. Reid, Sturmian Theory for Ordinary Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1980. ISBN 0-387-90542-1.
- [11] W. T. Reid, Sturmian Theory for Ordinary Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1980. ISBN 0-387-90542-1.

- [12] W. T. Reid, *Sturmian Theory for Ordinary Differential Equations*, Applied Mathematical Sciences, Springer-Verlag, New York, 1980. ISBN 0-387-90542-1.
- [13] W. T. Reid, *Sturmian Theory for Ordinary Differential Equations*, Applied Mathematical Sciences, Springer-Verlag, New York, 1980. ISBN 0-387-90542-1.
- [14] W. T. Reid, *Sturmian Theory for Ordinary Differential Equations*, Applied Mathematical Sciences, Springer-Verlag, New York, 1980. ISBN 0-387-90542-1.