CE 3305 – Fluid Mechanics –	SPRING 2024	Name:
-----------------------------	-------------	-------

CE 3305 – Fluid Mechanics Exam 4

Purpose

Demonstrate ability to apply fluid mechanics and **problem solving principles** covering topics such as: Conservation of mass, continunity, conservation of linear momentum, and conservation of energy (modified bernoulli).

Instructions

- 1. Put your name on each sheet.
- 2. Use additional sheets as needed, if you add sheets put your name and the problem number on the added sheet.
- 3. Use the **problem solving protocol** in the class notes for the fully worked problems (Problems 7-9).
- 4. Label and/or underline answers, be sure to include units.

Allowed Resources

- 1. Your notes
- 2. Your textbook
- 3. The mighty Internet with following proviso
- 4. You may not communicate with other people during the exam

1. Find the difference in pressure between the water and oil in Figure 1 if $H=25~\mathrm{cm}$.

Figure 1:

- A) 42.3 kPa
- B) 37.2 kPa
- C) 34.8 kPa
- D) 30.6 kPa

- 2. The pressure drop across a valve, through which $0.04\ m^3/s$ of water flows, is measured to be 100 kPa. Estimate the loss coefficient if the nominal diameter of the valve is 8 cm.
 - A) 0.32
 - B) 0.79
 - C) 3.2
 - D) 8.7

3. Find the expression for the force P needed to hold the gate of width w in the position shown.

Figure 2:

- A) $\frac{5}{18} \gamma w H^2$
- B) $\frac{1}{6}\gamma wH^2$
- C) $\frac{2}{9}\gamma wH^2$
- D) $\frac{1}{2}\gamma wH^2$

- 4. The pressure drop over 15 m of 2-cm-diameter galvanized iron pipe is measured to be 60 kPa. If the pipe is horizontal, estimate the flow rate of water. ($\nu=10^{-6}m^2/s$)
 - A) 6.82 L/s
 - B) 2.18 L/s
 - C) 0.682 L/s
 - D) 0.218 L/s

5. Water flows through a converging fitting shown and discharges to the atmosphere as a free jet. Flow is incompressible, friction negligible.

Figure 3:

The gage pressure at the inlet is

- A) 10.2 kPa
- B) 10.8 kPa
- C) 11.3 kPa
- D) 12.7 kPa

- 6. A model of a dam is constructed so the scale of prototype to model is 15:1. The similarity scaling is based on Froude numbers. At a certain point on the spillway of the model, the velocity is measured as 5 meters per second. At the corresponding point on the spillway of the actual (prototype) dam, the velocity is about
 - A) $6.7 \frac{m}{s}$
 - B) $7.5 \frac{m}{s}$
 - C) $15 \frac{m}{s}$
 - D) 19 $\frac{m}{s}$

7. The canal shown below is to be widened so that the water flow discharge can be tripled (i.e., flow discharge after widening is three times the initial flow discharge).

Figure 4: Cross section of trapezoidal channel

Determine:

(a) The additional width, L, required if all other parameters (i.e., flow depth, bottom slope, surface material, side slope) are to remain the same

8. The figure below is a schematic of water flowing under a sluice gate in a horizontal channel 5 feet wide.

Figure 5: Supercritical flow under a sluice gate

Determine:

- (a) Discharge through the sluice gate
- (b) Power dissipated in the jump
- (c) The alternate depth (depth of flow after the jump)

9. Figure 6 is a gravity-flow pipe network with water supplied from a fixed-grade reservoir (pool elevation 100 meters) connected to node N2. All pipes are ductile iron.

Figure 6: Gravity flow pipe network

The pipe dimensions and node demands are shown in the tables below.

Pipe ID	Length(m)	Diameter(mm)	Friction factor f
1	1,220	254	0.028
2	1,829	254	0.028
3	1,829	305	0.028
4	1,982	610	0.028
5	2,134	254	0.028
6	915	457	0.028
7	1,524	254	0.028
8	91	305	0.028
Node ID	Elevation(m)	Demand(liters/sec)	
N1	51.8	0.0	
N2	54.9	0.0	
N3	50.3	0.0	
N4	47.3	0.0	
N5	45.7	181.3	
N6	44.2	0.0	

Determine:

- (a) The flow rate (and direction of flow) for each pipe in the network, for the case where the total head at the supply reservoir is 100 meters.
- (b) The resultant pressure in SI units at each node.
- (c) The Darcy-Weisbach friction factor for each ductile iron pipe of the network.
- (d) The head loss from Node 2 to Node 6.
- (e) The node with the lowest pressure.