LC04 – Chimie durable

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

1. L'économie d'énergie

Synthèse d'un ester de lavande :

$$C_{10}H_{18}O_{(aq)} + C_2H_4O_{2(aq)} = C_{12}H_{20}O_{2(aq)} + H_2O_{(l)}$$

Energie utile pour la synthèse :

- Avec chauffage à reflux : P = 100 W pendant 30 minutes $\rightarrow E = 50 Wh$
- Au micro-onde P = 100 W pendant 3 minutes $\rightarrow E = 5 Wh$

2. L'économie d'atomes

En rouge : les produits non valorisés

En vert : les produits valorisés

2. L'économie d'atomes

Réactifs	Masse molaire (g/mol)			
$C_{10}H_{14}$	134			
$C_4H_6O_3$	102			
$C_4H_7ClO_2$	122,5			
C_2H_5ONa	68			
H_3O^+	19			
NH_3O	33			
H_4O_2	36			
Total :				
$C_{20}H_{42}NO_{10}ClNa$	514,5			

<u>Ibuprofène</u>:

- Masse molaire = $206 g. mol^{-1}$

$$UA = \frac{206}{514,5} = 40\%$$

2. L'économie d'atomes

2. L'économie d'atomes

Réactifs	Masse molaire (g/mol)		
$C_{10}H_{14}$	134		
$C_4H_6O_3$	102		
H_2	2		
CO	28		
Total :			
$C_{15}H_{22}O_4$	266		

<u>Ibuprofène</u>:

- Masse molaire = $206 g. mol^{-1}$

$$UA = \frac{206}{266} = 77,4\%$$

3. La catalyse

Dismutation du peroxyde d'hydrogène :

$$2H_2O_2(aq) = 2H_2O(l) + O_2(g)$$

4. Le solvant

Solvant	Formule	Dangerosité	Température de fusion
Eau	о—н		100°C
Acétone	> 0		56°C
Heptane	\\\\\		98,4°C
Toluène			110,6°C
Dichlorométhane	Cl^Cl		39,6°C

I. Concevoir une chimie plus respectueuse de

l'environnement

Merci pour votre attention!

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

II. La chimie au service du développement durable

2. Techniques d'analyse

