Yiliang Wang

Homework 1 Problem 1

Problem 1 (10 points):

Let I = (M, W) be an instance of the stable matching problem. Suppose that the preference lists of all $m \in M$ are identical, so without loss of generality, m_i has the preference list $[w_1, w_2, \ldots, w_n]$. Show that there is a unique solution to this instance.

Answer:

Given the identical preference list of m to w, the stable matching result is only decided by M. Every m will propose follows the same order, say $P = [w_1, w_2, \ldots, w_n]$, then w_1 will receive all proposal and be able to choose the 'top ranked' m_{w_1} in its preference list. And w_2 will receive all proposal except m_{w_1} since any mother than m_{w_1} will be rejected in their first round proposal with w_1 even if they are matched tentatively with w_1 . And this ensures that for every $w \in W$, they faces a definitive proposals from the subset of m (if $w = w_n$, the proposal it will receive from $M - m_{w_1} - m_{w_2} \ldots - m_{w_{n-1}}$). And the since w and m have same size, there will always the last standing m to propose w_n . Therefore there is a unique solution to this instance.

In a formal expression:

```
preference list of all m: P = [w_1, w_2, \dots, w_n].
```

Base case:

 w_1 receives $m \in M$ proposal, and final match with m_{w_1} , which m_{w_1} on top of P_{w_1}

Step 2:

 w_2 receives $m \in M - m_{w_1}$ proposal, and final match with m_{w_2} , which m_{w_2} on top of $P_{w_2} \cap M - m_{w_1}$

Step i:

 w_i receives $m \in M - m_{w_1} - m_{w_2} \dots - m_{w_{i-1}}$ proposal, and final match with w_i , which m_{w_i} on top of $P_{w_i} \cap M - m_{w_1} - m_{w_2} \dots - m_{w_{i-1}}$

.

Step n:

 $\forall w_n \in M \ w_i \text{ receives } m \in M - m_{w_1} - m_{w_2} \dots - m_{w_{n-1}}, \text{ which is } |M - m_{w_1} - m_{w_2} \dots - m_{w_{n-1}}| = w_i = 1$ proposal, and final match with w_n , which m_{w_n} on top of $P_{w_n} \cap M - m_{w_1} - m_{w_2} \dots - m_{w_{n-1}}$ Since |M| = |W| = n, and $\forall w_n \in M, \ w_n$ pair with only one $m, |M - m_{w_1} - m_{w_2} \dots - m_{w_{n-1}}| = 1$, and since w_n must match one and m_{w_n} must on P_{w_n} , the only last two would finalized the matching.