

UNIVERSITÀ DEGLI STUDI DELLA BASILICATA

Corso di Sistemi Operativi

Esercitazione Gestione della memoria

Docente:

Domenico Daniele

Bloisi

Domenico Daniele Bloisi

- Ricercatore RTD B Dipartimento di Matematica, Informatica sensors @GPS La Engine control ed Economia Università degli studi della Basilicata http://web.unibas.it/bloisi
- SPQR Robot Soccer Team Dipartimento di Informatica, Automatica e Gestionale Università degli studi di Roma "La Sapienza" http://spqr.diag.uniroma1.it

Informazioni sul corso

- Home page del corso: <u>http://web.unibas.it/bloisi/corsi/sistemi-operativi.html</u>
- Docente: Domenico Daniele Bloisi
- Periodo: I semestre ottobre 2021 febbraio 2022
 - Lunedì dalle 15:00 alle 17:00 (Aula A18)
 - Martedì dalle 12:30 alle 14:00 (Aula 1)

Ricevimento

- Durante il periodo delle lezioni:
 Martedì dalle 10:00 alle 11:30 → Edificio 3D, Il piano, stanza 15
 Si invitano gli studenti a controllare regolarmente la <u>bacheca degli</u>
 avvisi per eventuali variazioni
- Al di fuori del periodo delle lezioni: da concordare con il docente tramite email

Per prenotare un appuntamento inviare una email a domenico.bloisi@unibas.it

Credits

Alcuni esercizi derivano dai contenuti del corso

```
"Sistemi Operativi" del Prof. Giorgio Grisetti <a href="https://sites.google.com/diag.uniroma1.it/sistemi-operativi-1819">https://sites.google.com/diag.uniroma1.it/sistemi-operativi-1819</a>
```

Domanda 1

Con riferimento agli algoritmi di sostituzione delle pagine

- enumerare i 4 principali algoritmi usati per tale scopo, ordinandoli in base al loro page-fault rate (dal più alto al più basso)
- evidenziare gli algoritmi che soffrono dell'anomalia di Belady

Risposta Domanda 1

I quattro principali algoritmi di sostituzione delle pagine sono:

- 1. FIFO
- 2. Optimal page replacement (OPT)
- 3. Least recently used (LRU)
- 4. Second chance

L'algoritmo OPT garantisce il minimo tasso di page fault, seguito da LRU (che è una approssimazione di OPT). Second chance (FIFO modificato) produce un numero maggiore di page fault rispetto a LRU, ma inferiore rispetto a FIFO.

Risposta Domanda 1

Gli algoritmi FIFO e second chance soffrono dell'anomalia di Belady, mentre OPT e LRU non sono soggetti all'anomalia di Belady.

Riassumendo:

ordine in base al page-fault rate	algoritmo	presenza dell'anomalia di Belady
1°	FIFO	SI
2°	second chance	SI
3°	LRU	NO
4°	OPT	NO

Sia data la seguente successione di riferimenti alle pagine di memoria:

Si assuma

- di avere a disposizione 3 frame, da gestire con politica optimal page replacement (OPT)
- che T_{ma} e T_{pf} siano rispettivamente i tempi di accesso in memoria e di gestione di un page fault
- 1. Qual è il tempo di accesso effettivo in memoria per la situazione descritta?
- 2. Qual è la probabilità di avere un page fault?

Algoritmo di sostituzione OPT

algoritmo ottimale di sostituzione delle pagine (OPTimal page replacement) \rightarrow sostituire la pagina che non verrà usata per il periodo di tempo più lungo.

Effective Access Time

```
tempo di

accesso = \#_page_hit \times T_{ma} + \#_page_fault \times T_{pf}

effettivo (T_{FAT})
```


L'evoluzione dello stato di occupazione dei frame per la successione di riferimenti è riportata sotto (in verde sono evidenziati i page hit, in rosso i page fault).

Il tempo effettivo di accesso (Effective Access Time) sarà

$$T_{EAT} = 6 \times T_{ma} + 9 \times T_{pf}$$

La probabilità di page fault sarà del 60%, ottenuta come $p_{of} = 9 / 15 = 0.6$

Considerando la stessa situazione descritta nell'esercizio 1, calcolare di quanto aumentano le prestazioni incrementando il numero di frame a 4.

L'evoluzione dello stato di occupazione dei frame per la successione di riferimenti è riportata sotto (in verde sono evidenziati i page hit, in rosso i page fault).

Il tempo effettivo di accesso (Effective Access Time) sarà

$$T_{EAT} = 7 \times T_{ma} + 8 \times T_{pf}$$

La probabilità di page fault sarà del 53%, ottenuta come $p_{pf} = 8 / 15 = 0.53$

Rispetto alla disponibilità di 3 frame, avendo a disposizione 4 frame la probabilità di page fault passa da 0.60 a 0.53, ottenendo, quindi, un miglioramento delle prestazioni pari al 7%

Sia data la seguente successione di riferimenti alle pagine di memoria:

Si assuma

- di avere a disposizione 2 frame, da gestire con politica Least Recently Used (LRU)
- che T_{ma} e T_{pf} siano rispettivamente i tempi di accesso in memoria e di gestione di un page fault
- 1. Qual è il tempo di accesso effettivo in memoria per la situazione descritta?
- 2. Qual è la probabilità di avere un page fault?

Algoritmo di sostituzione LRU

La sostituzione Least Recently Used (LRU) associa a ogni pagina l'istante in cui è stata usata per l'ultima volta. Quando occorre sostituire una pagina, l'algoritmo LRU sceglie quella che non è stata usata per il periodo di tempo più lungo.

L'evoluzione dello stato di occupazione dei frame per la successione di riferimenti è riportata sotto (in verde sono evidenziati i page hit, in rosso i page fault).

Il tempo effettivo di accesso (Effective Access Time) sarà $T_{EAT} = 5 \times T_{ma} + 9 \times T_{pf}$

La probabilità di page fault sarà del 64%, ottenuta come $p_{of} = 9 / 14 = 0.64$

Considerando la stessa situazione descritta nell'esercizio 3, calcolare di quanto aumentano le prestazioni incrementando il numero di frame a 4.

L'evoluzione dello stato di occupazione dei frame per la successione di riferimenti è riportata sotto (in verde sono evidenziati i page hit, in rosso i page fault).

Il tempo effettivo di accesso (Effective Access Time) sarà

$$T_{EAT} = 8 \times T_{ma} + 6 \times T_{pf}$$

La probabilità di page fault sarà del 42%, ottenuta come $p_{pof} = 6 / 14 = 0.42$

Rispetto alla disponibilità di 2 frame, avendo a disposizione 4 frame la probabilità di page fault passa da 0.64 a 0.42, ottenendo, quindi, un miglioramento delle prestazioni pari al 22%

Sia data la seguente successione di riferimenti alle pagine di memoria:

Si assuma

- di avere a disposizione 3 frame, da gestire con politica FIFO
- che T_{ma} e T_{pf} siano rispettivamente i tempi di accesso in memoria e di gestione del page fault
- 1. Qual è il tempo di accesso effettivo in memoria per la situazione descritta?
- 2. Qual è la probabilità di avere un page fault?

Sia data la seguente successione di riferimenti alle pagine di memoria:

Si assuma

- di avere a disposizione 4 frame, da gestire con politica FIFO
- che T_{ma} e T_{pf} siano rispettivamente i tempi di accesso in memoria e di gestione del page fault
- 1. Qual è il tempo di accesso effettivo in memoria per la situazione descritta?
- 2. Qual è la probabilità di avere un page fault?

UNIVERSITÀ DEGLI STUDI DELLA BASILICATA

SOFTWARE

Corso di Sistemi Operativi

Esercitazione Gestione della memoria

Docente:

Domenico Daniele Bloisi

HARDWARE

