ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ»

Дисциплина:

«Математический анализ»

ЛАБОРАТОРНАЯ РАБОТА №2

Определенный интеграл Римана

(Вариант №13)

Выполнил:

Студент группы N3145

Ложкин Владислав

Санкт-Петербург

2023г.

Цель работы: понять определение интеграла Римана и смежные понятия (суммы Дарбу, критерии интегрируемости).

Задание: для данной функции на данном отрезке для равномерных разбиений построить суммы Дарбу, доказать интегрируемость и получить значение интеграла. Проверить численно.

Ход работы:

Часть 1. Аналитический метод

13)
$$f(x) = x^2 + x - 1$$
, [1,4]

1) Верхняя и нижняя суммы Дарбу для равномерного разбиения:

$$S_{\tau}(f) = \sum_{i=1}^{n} (\inf f_i \cdot \Delta x_i)$$

2) Критерий Римана:

$$\lim_{n\to\infty} \left(S_{\tau}(f) - s_{\tau}(f) \right) = 0$$

3) Пределы сумм Дарбу:

Так как функция интегрируема на данном отрезке, то предел верхней и нижней сумм Дарбу будут равны интегралу.

4) Результат с помощью формулы Ньютона-Лейбница:

Часть 2. Численный метод

Код программы:

Код для консольного взаимодействия:

```
import matplotlib.pyplot as plt
   xn.append(i)
   yn.append(ne.evaluate(inputFunc.replace("x", "(" + str(i) + ")")))
  points = xn.copy()[:-1]
  points = xn.copy()[1:]
```

```
points.append(random.uniform(xn[i], xn[i + 1]))
    points_value.append(ne.evaluate(inputFunc.replace("x", "(" + str(i) + ")")))
plt.show()
```

Пример работы программы (с графическим интерфейсом):

(сверху слева – правое оснащение, сверху справа – среднее, снизу слева – левое, снизу справа - случайное)

Таблица результатов для разных разбиений п:

n	left	right	medium	random
1	3	57	23,25	44,42586
2	13,125	40,125	24,9375	30,40186
4	19,03125	32,53125	25,35938	25,22388
8	22,19531	28,94531	25,46484	25,64007
16	23,83008	27,20508	25,49121	25,71999
32	24,66064	26,34814	25,4978	25,52425
64	25,07922	25,92297	25,49945	25,53826
128	25,28934	25,71121	25,49986	25,48943
256	25,3946	25,60554	25,49997	25,49773
512	25,44728	25,55275	25,49999	25,50296
1024	25,47364	25,52637	25,5	25,4995
2048	25,45901	25,48535	25,47218	25,47222
4096	25,4795	25,49268	25,48609	25,48611
8192	25,4967	25,50329	25,49999	25,50002
16384	25,49488	25,49818	25,49653	25,49654
32768	25,49915	25,5008	25,49998	25,49998
65536	25,49876	25,49958	25,49917	25,49917

Отсюда видно, что при любом выборе оснащения при большом значении размещений результат интегральной суммы стремится к 25.5, что совпадает с аналитической частью

(git репозиторий со всеми программами (для построения таблицы значений, консольный ввод, графический): https://github.com/Vladislav909090/-IntegralSum.git, google drive с файлом .exe графической версии программы (всё безопасно ♥ , честно):

 $https://drive.google.com/file/d/117spSW154CV9QcfV1miD-5UjsXImslp_/view?usp=share_link\)$

Вывод:

Значения интеграла заданной функции и в аналитической части, и в программной получаются равными 25.5, это означает, что программа составлена верно.