Kryptoandila
Zasada Kerckhoffa - prieciunile nie uszystho
Zasada Kerckhoffa - prieciunile nie uszystho o systemie, ole vie zha bluna Atalai
- re mengen syfrogramam (Eua ma y)
which in telestern rounge (the move wibred x
- 2 listrander (Eux moie is bried is bling)
1) Corar # 5 = 26 Prieswhipenie Way (brite-force)
Andrive upstosci PAQ X Z AACP. Angielshi DIGRAMY TRIGRAM A - 8 ? 2 e - 12.7% the ing and her B - 2 er her D - 2 o - $\frac{4.5\%}{0}$ an in her P - $\frac{10}{0}$
2-1 2) Syfrafinany, prodsterieriony,

2) Sryfy Vipenèrea L= (k1, ..., km) $\begin{pmatrix} k_1 & k_2 \\ k_3 \\ k_2 \end{pmatrix} \begin{pmatrix} k_3 & k_3 \\ k_4 \end{pmatrix} \begin{pmatrix} k_5 & k_5 \\ k_5 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 & k_5 \end{pmatrix} \begin{pmatrix} k_6 & k_5 \\ k_6 &$ I) Test Kasinshiego (Fryderyh Kasinshi) 1863 Unaga. Due blobis teliste jurilepo bodo suebre tel samo, o ile bodo od siebre oddelove o 8 profit, godste 8 jest link podrlelle prier m. (15)1,3,5,15 51 Y2 53 XV XAT $M \mid S_1, S_2, ... S_N$ $M = NLD(S_1, S_{L_1, \ldots}, S_N)$

- Drupid Wura m

II) Indeks horapercy (Hillen Friedman) 1920

$$\times$$
 - shoknow dep walso (A... 2)

 $|_{C}(x)$ - indeks horapercy lack is x sp volume)

 $|_{C}(x) = P(\text{dua loso we need in it } x \text{ sp volume})$
 $|_{C}(x) = P(\text{dua loso we need in it } x \text{ sp volume})$
 $|_{C}(x) = P(\text{dua loso we need in it } x \text{ sp volume})$
 $|_{C}(x) = \frac{f_{0}}{f_{0}} + \frac{f_{0}}{f_{0}} + \frac{f_{0}}{f_{0}} + \frac{f_{0}}{f_{0}} = \frac{f_{0}}{f_{0}} + \frac{f_{0}}{f_{0}} = \frac{f_{0}}{f_{0}} = \frac{f_{0}}{f_{0}} + \frac{f_{0}}{f_{0}} = \frac{f_{0}}{f$

ie losove itere telestr vers to i-to

