#### 04 - Iteration Control Structures

Ex. No. : 4.1 Date:

Register No.:230701318 Name: SIVA SANTHOSH.R

.

#### Factors of a number

Determine the factors of a number (i.e., all positive integer values that evenly divide into a number).

#### For example:

| Inpu | Result           |  |
|------|------------------|--|
|      |                  |  |
| 20   |                  |  |
|      | 1 2 4 5 10<br>20 |  |

# Program:

```
k=int(input()) l=[]
for i in range(1,k+1):
    if(k%i==0):
        l.append(i) for
j in l:
    print(j,end=' ')
```

|   | Input | Expected      | Got           |   |
|---|-------|---------------|---------------|---|
| ~ | 20    | 1 2 4 5 10 20 | 1 2 4 5 10 20 | ~ |
| ~ | 5     | 1 5           | 1 5           | ~ |
| ~ | 13    | 1 13          | 1 13          | ~ |

Passed all tests! ✓

Correct

| Ex. No.    | :    | Date: |
|------------|------|-------|
| Register 1 | No.: | Name  |
|            | 4.2  |       |

Non Repeated Digit Count

Write a program to find the count of non-repeated digits in a given number N. The number will be passed to the program as an input of type int.

Assumption: The input number will be a positive integer number  $\geq 1$  and  $\leq 25000$ . Some examples are as below.

If the given number is 292, the program should return 1 because there is only 1 nonrepeated digit '9' in this number

If the given number is 1015, the program should return 2 because there are 2 nonrepeated digits in this number, '0', and '5'.

If the given number is 108, the program should return 3 because there are 3 nonrepeated digits in this number, '1', '0', and '8'.

If the given number is 22, the function should return 0 because there are NO nonrepeated digits in this number.

#### For example:

| Input | Resul<br>t |
|-------|------------|
| 292   | 1          |
| 1015  | 2          |
| 108   | 3          |
| 22    | 0          |

### Program:

n=int(input()) l=[] k=[] while n>0: a=n%10 n=n//10 l.append(a) for i
in range(len(l)): if
l.count(l[i])==1:
 k.append(l[i]) print(len(k))

# Output:

|   | Input | Expected | Got |   |
|---|-------|----------|-----|---|
| ~ | 292   | 1        | 1   | ~ |
| ~ | 1015  | 2        | 2   | ~ |
| ~ | 108   | 3        | 3   | ~ |
| ~ | 22    | 0        | 0   | ~ |

Passed all tests! ✓

Correct

Ex. No. Date: Register No.: Name: 4.3

#### **Prime Checking**

Write a program that finds whether the given number N is Prime or not. If the number is prime, the program should return 2 else it must return 1.

Assumption:  $2 \le N \le 5000$ , where N is the given number.

Example 1: if the given number N is 7, the method must return 2

Example2: if the given number N is 10, the method must return 1

#### For example:

| Input | Result |
|-------|--------|
| 7     | 2      |
| 10    | 1      |

# Program:

```
a=int(input()) for
i in range(2,a):
if(a\%2==0):
flag=0
elif(a%i!=0):
     flag=1
else:
     flag=0
if(flag==1):
print("2")
elif(flag==0):
print("1")
```

|        | Input     | Expected       | Got    |   |
|--------|-----------|----------------|--------|---|
| ~      | 7         | 2              | 2      | ~ |
| ~      | 10        | 1              | 1      | ~ |
| Passe  | ed all te | sts! 🗸         |        |   |
| Correc |           | ubmission: 1.0 | 0/1.00 |   |

Ex. No. : Date:

Register No.: Name:

.

#### Next Perfect Square

Given a number N, find the next perfect square greater than N.

Input Format:

Integer input from stdin.

Output Format:

Perfect square greater than N.

Example Input:

10

Output:

16

## Program:

```
a=int(input()) c=[]
for i in range(0,a):
  b=i**2
if(b>a):
  c.append(b) print(c[0])
```

|   | Input | Expected | Got |   |
|---|-------|----------|-----|---|
| ~ | 10    | 16       | 16  | ~ |

Passed all tests! ✓

#### Correct

| Ex. No.    | :   | Date: |
|------------|-----|-------|
| Register N | o.: | Name: |
|            | 4.5 |       |

Nth Fibonacci

Write a program to return the nth number in the fibonacci series. The value of N will be passed to the program as input.

NOTE: Fibonacci series looks like -

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . and so on.

i.e. Fibonacci series starts with 0 and 1, and continues generating the next number as the sum of the previous two numbers.

- first Fibonacci number is 0,
- second Fibonacci number is 1,
- third Fibonacci number is 1,
- fourth Fibonacci number is 2,
- fifth Fibonacci number is 3,
- sixth Fibonacci number is 5,
- · seventh Fibonacci number is 8, and so on.

```
For example:
```

Input:

7

Output

8

#### Program:

```
a=[0,1] for i in
```

range(0,100):



| Ex. No. :     |     | Date: |
|---------------|-----|-------|
| Register No.: |     | Name: |
|               | 4.6 |       |

Disarium Number

A Number is said to be Disarium number when the sum of its digit raised to the power of their respective positions becomes equal to the number itself. Write a program to print number is Disarium or not.

Input Format:
Single Integer Input from stdin.
Output Format:
Yes or No.
Example Input:
175
Output:
Yes
Explanation 1^1 +
7^2 +5^3 = 175
Example Input:
123
Output:
No

175 Yes

ult

For example:

Inp Res ut

123 No

import math

## Program:

```
n=int(input()) a=len(str(n))
sum=0 x=n while(x!=0):
r=x%10
sum=int(sum+math.pow(r,a))
a-=1
x=x//10
if(sum==n):
print("Yes")
else:
    print("No")
```

## Output:



4.7

### **Sum of Series**

Write a program to find the sum of the series  $1 + 11 + 111 + 1111 + \dots + n$  terms (n will be given as input from the user and sum will be the output)

Ex. No. :

Date:

Register No.:

Name:

Sample Test Cases

Test Case 1

Input

4

Output

1234

Explanation:

as input is 4, have to take 4 terms.

1 + 11 + 111 + 1111

Test Case 2

Input

6

Output

123456

#### For example:

| Input | Result |
|-------|--------|
| 3     | 123    |

## Program:

n=int(input())

b=1 sum=0

for i in range(1,n+1):

sum+=b

b=(b\*10)+1

print(sum)

|       | Input     | Expected | Got    |   |
|-------|-----------|----------|--------|---|
| ~     | 4         | 1234     | 1234   | ~ |
| ~     | 6         | 123456   | 123456 | ~ |
|       | ed all te |          | 123430 |   |
| SSE   | ed all te | SIS! V   |        |   |
| orrec | t         |          |        |   |

4.8

#### **Unique Digit Count**

Write a program to find the count of unique digits in a given number N. The number will be passed to the program as an input of type int.

Assumption: The input number will be a positive integer number  $\geq 1$  and  $\leq 25000$ . For e.g.

If the given number is 292, the program should return 2 because there are only 2 unique digits '2' and '9' in this number

If the given number is 1015, the program should return 3 because there are 3 unique digits in this number, '1', '0', and '5'.

#### For example:

| Input | Result |  |  |  |
|-------|--------|--|--|--|
| 292   | 2      |  |  |  |
| 1015  | 3      |  |  |  |

## Program:

Ex. No. : Date:

Register No.: Name:

a=int(input())

b=[] while

a>0:

c=a%10

a=a//10

b.append(c)

b=list(set(b))

print(len(b))

# Output:



#### Product of single digit

Given a positive integer N, check whether it can be represented as a product of single digit numbers.

Input Format:

Single Integer input.

Output Format:

Output displays Yes if condition satisfies else prints No.

Example Input:

14

Output:

Yes

Example Input:

13

Output:

No

### Program:

```
a=int(input())
flag=0 for i in
range(10):    for j in
range(10):
if(i*j==a):
flag=1         break
if(flag==1):
print("Yes") else:
    print("No")
```

| Ex. No. | : | Date: |
|---------|---|-------|
|         |   |       |

Register No.: Name:

|                     | Input | Expected       | Got     |   |  |  |
|---------------------|-------|----------------|---------|---|--|--|
| ~                   | 14    | Yes            | Yes     | ~ |  |  |
| ~                   | 13    | No             | No      | ~ |  |  |
| Passed all tests! 🗸 |       |                |         |   |  |  |
| orrec<br>arks f     |       | ubmission: 1.0 | 00/1.00 |   |  |  |

#### Perfect Square After adding One

Given an integer N, check whether N the given number can be made a perfect square after adding 1 to it.

Input Format:

Single integer input.

Output Format:

Yes or No.

Example Input:

24

Output:

Yes

Example Input:

26

Output:

No

#### For example:

| Input | Resul<br>t |  |
|-------|------------|--|
| 24    | Yes        |  |

### Program:

import math

n=int(input()) a=n+1

sr=int(math.sqrt(a))

| Ex. No. :          | Date: |
|--------------------|-------|
| Register No.:      | Name: |
| if(sr*sr==a):      |       |
| print("Yes") else: |       |

# Output:

print("No")