浙江大学实验报告

专业: 电子信息工程

姓名: 四静怡

学号: 3220104119 日期: 2024.3.28

地点: 紫金港东三 406

课程名称: 微机原理与应用实验 指导老师: 胡斯登

实验名称: 单片机指令系统 BCD 控制

Lab4 数码管显示

3220104119 冯静怡

一、实验目的

- 1. 熟悉 Wave 硬件仿真的基本方法。
- 2. 掌握数码管动态显示方法。
- 3. 掌握汉字点阵的显示方法, 以及点阵的提取方法。

二、八位数码管动态显示

(1) 实验原理

八位数码管由两个8位引脚控制:

- 第一个八位引脚 (P0): 控制单个数码的数字, 即 的显示数字
- 第二个八位引脚(P2):控制八位数码管中哪一个灯点亮。 通过 P2 确定点亮位,P0 确定显示数字,并通过视觉暂留和 Led 内小电容导致的延时,使得八位数码管能够一起点亮。

在基础点亮八位数码管的同时,尝试数码管数据向左循环跑动,将其分解为如下几个状态,进行循环,则能够得到跑马灯版数码管显示效果:

- 输入 8 位数据、分别编号为 0. 1. 2. 3. 4. 5. 6. 7 号数据;
- 编写代码,第0位数码管显示第0位数据,第1位数码管显示第1位数据,以此类推,顺序显示8位数据;此时跑马灯能够同时展示8位数据;
- 上述状态保持一定时间 (重复上述循环多次);
- 进入下一状态:第0位数码管显示第1位数据,第1位数码管显示第2位数据:第7位数码管显示第0位数据;该状态使得视觉上数字左移
- 重复上述过程

(2) 代码

01	ORG 0030H		27	MOV R2,A	;保存亮灯的数字	
02	SJMP START		28	INC R1		
03	ORG 0080H		29		;单独一个数字亮灯	
04				的时间	114	
05	START:		30	CJNE R1,#28H,CHANGED ;若 R1 增加		
06				到 28 H,则师		
07	MOV DPTR,#TABI TABLE 位置	LE ;DPTR 指针指到	31	MOV R1,#20H R1为20H	;重新设置	
08	MOV P2.#0FFH	;设定 P2 为关机状态	32	CHANGED:		
09		设定 P0 为关机状态	33	DJNZ R6,LOOP3	3 ;L00P3 循	
10		设定 R7 为数据存储	33	环		
		起始位置指针		DJNZ R5, LOOF	P1 ;L00P1 循	
11	KENH IZ EL JIL VI		51	环	, 2001 I _{1/H}	
12	L00P2:		35	* 1		
13	MOV A,R7		36	INC R7	;数字排列	
14	•	;将 R7 的值赋给 R1	50		1 ,则数字排列左移	
15	-	;选择最高位为 0,	37			
10		即只有最高位亮	38			
16	光 小约1,叶八有取同世元		39			
	MOV R5,#020H ;设定 R5 为 LOOP1		40			
17	循环次数,即一个数字排列亮灯的		40	SUMP LOUPZ		
	次数,R5,R6 是双重循环,一个		42	DEL AVA		
4.0	数字排列的亮灯次数为 R5×R6		43			
18	LOOP1:		44	MOV R3,#40H		
19	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		45	D1:		
	数,也就是说一个数字排列亮灯的		46	MOV R4,#10H		
	次数		47	DJNZ R4,\$		
20	LOOP3:		48	DJNZ R3,D1		
21	MOV A,@R1	;先设置亮灯的数字	49	RET		
22			50			
	应的数字		51	TABLE:		
23	-	;亮灯数字	52	DB 28H,7EH,0A2H,62H,74H,61H,21		
24	-	;将要点亮的赋给 A		Н,7АН,20Н,	60H	
25	RL A	;A 左移,代表现在	53			
	设置亮灯的数字		54	END		
26	MOV P2,A	;亮灯				

(3) 实验结果

上图为跑动过程中的一个截图。

三、16×16 汉字显示

(1) 实验原理

显示数字的 Led 点阵为 16*16,通过三个引脚(一个 pin4,两个 pin8)能够控制小灯的点亮,具体控制方法如下:

- Pin4 有 4 位,所以可以代表 0~15 的所有数字,从而代表点亮的具体列
- 两个 pin8 引脚控制这一列上具体点亮的小灯
- Pin4 代表的数据从 0~15 循环,两个 pin8 分别输出该列的显示结果,从而使得视觉上 16*16 个小 Led 有同时点亮的效果

(2) 实验过程

通过字模网站得到输出字的编码(下左图),编写代码输出结果(下右图);

(3) 代码


```
18 MOV P2,A ;点亮数码管上半部分
19 MOV A, R5
20 ADD A, ACC
21 INC A ;下半部分的数码管点
    亮数据存储在 2*R5+1 的字节中
22 MOVC A, @A+DPTR
23 MOV P3,A ;点亮数码管下半部分
24
25 CALL DELAY1;保持一段时间的点亮
26
27 INC R5
28 CJNE R5,#10H,LOOP1 ;循环点亮
  SJMP LOOP2 ;若 R5=10H,
29
  则重新置 0,重新点亮
30
31
32 SJMP START
34 DELAY1:
```

35 MOV R3,#10H H, OFFH, OFFH, OFFH, OFFH, D1: OFFH, OFFH, OFFH, OFFH 36 MOV R4,#20H 44 TABLE2:;输出静字 37 38 DJNZ R4,\$ 45 DB 02H,00H,22H,00H,2AH,0FFH,2A 39 DJNZ R3,D1 H,0A8H,0FEH,0A8H,2AH,0A9H,2 40 RET AH, 0FFH, 12H, 80H, 24H, 92H, 0E4 41 H,91H,2FH,0FEH,34H,90H,24H, TABLE:;设置输出方块内容 42 90H, 0FH, 0F8H, 04H, 80H, 00H, 00 43 DB OFFH, OFFH, OFFH, OFFH, OF FH, OFFH, OFFH, OFFH, OFFH 46 47 END ,0FFH,0FFH,0FFH,0FFH,0 FFH, 0FFH, 0FFH, 0FFH, 0FF

(4) 实验中出现的问题

选用不同的引脚组合方式,输出结果会受到很大的影响,具体记录实验中出现的问题如下:

1. 采用 pin4: P1; pin8: P2,P3 输出结果正常。

2. 采用 pin4: P1; pin8: P0,P2

若将 P0 输出全置为高电平,则会影响 P2 的输出,P2 所控制的灯无法点亮; 反之,若 P2 全输出高电平时,P0 无法全部点亮。

使用万用表测量发现,未点亮和点亮之间的引脚只相差 0.5V 左右,说明 LED 灯对电压很敏感,同时 P0、P2 之间相互影响。

3. 采用 pin4: P1; pin8: P0,P3

P3 对 P0 有控制作用, 当 P3 为 FFH 时, P0 只能为 20H, 并且并非上述电压不够高的原因, 而是芯片本身会使 P0 的值保持 20H。

原因分析:

猜测:由于 P0 口内部没有上拉电阻,导致与 P2 脚共用为 I/O 时出现灯不亮的情况(2中的错误);同时,由于 P3 口的第二功能,导致 P0 口无法使用,出现 3 中的错误。

总之, 使用 P1、P2、P3 能够较好地完成实验。