1 Results

To solve and simulate the model, I follow the calibration scheme captured in the table below.

Description	Parameter	Value	Source
Time discount factor	β	0.99	Den Haan, Judd, and Juillard (2010)
CRRA	ho	1	Den Haan, Judd, and Juillard (2010)
Capital share	α	0.36	Den Haan, Judd, and Juillard (2010)
Depreciation rate	δ	0.025	Den Haan, Judd, and Juillard (2010)
Time worked per employee	ℓ	1/.09	Den Haan, Judd, and Juillard (2010)
Capital/output ratio	$\frac{K}{V}$	10.26	Den Haan, Judd, and Juillard (2010)
Effective interest rate	$r - \delta$	0.01	Den Haan, Judd, and Juillard (2010)
Wage rate	W	2.37	Den Haan, Judd, and Juillard (2010)
Unempl. insurance payment	μ	0.15	Den Haan, Judd, and Juillard (2010)
Probability of death	D	0.00625	Yields 40-year working life
Variance of $\log \theta_{t,i}$	σ_{θ}^2	$0.010 \ge 4$	Carroll (1992),
			Carroll, Slacalek, and Tokuoka
			(2015)
Variance of $\log \psi_{t,i}$	σ_{ψ}^2	$0.010 \times 4/11$	Carroll (1992),
	,		Debacker, Heim, Panousi,
			Ramnath, and Vidangos
			(2013),
			Carroll, Slacalek, and Tokuoka
			(2015)
Unemployment rate	Ω	0.07	Mean in Den Haan, Judd, and Juillard (2010)

Table 1 Parameter values (quarterly frequency) for the perpetual youth (infinite horizon) model.

1.1 The model without heterogeneity

The solution of the model with no heterogeneity in returns (referred to as the R-point model) is the one which finds the value for the rate of return R which minimizes the distance between the simulated and empirical wealth shares at the 20th, 40th, 60th, and 80th percentiles of the corresponding wealth distribution. The estimation procedure finds this optimal value to be R = 1.0153.

1.2 Incorporating heterogeneous returns

Recent studies by Fagereng, Guiso, Malacrino, and Pistaferri (2020) and Bach, Calvet, and Sodini (2018) have not only estimated the rate of return on asset holdings but have also uncovered significant heterogeneity across households. Given this motivation, the revised model assumes the existence of multiple types of agents, each earning a distinct rate of return on their assets.

Specifically, I assume that different types of households have a time preference factor drawn uniformly from the interval $(\grave{R} - \nabla, \grave{R} + \nabla)$, where ∇ represents the level of dispersion. Afterward, the model is simulated to estimate the values of both \grave{R} and ∇ so that the model matches the inequality in the wealth distribution. To achieve this, the following minimization problem is solved:

$$\{\grave{\mathsf{R}}, \nabla\} = \arg\min_{\mathsf{R}, \nabla} \left(\sum_{i=20,40,60,80} (w_i(\mathsf{R}, \nabla) - \omega_i)^2 \right)^{\frac{1}{2}}$$

subject to the constraint that the aggregate capital-to-output ratio in this model matches that of the perfect foresight setting:

$$\frac{K}{Y} = \frac{K_{PF}}{Y_{PF}}.$$

Note that w_i and ω_i give the porportion of total aggregate net worth held by the top i percent in the model and in the data, respectively.

The estimation procedure finds this optimal values of R = 1.0106 and $\nabla = 0.0112$. The performance of the estimation of both the R-point and R-dist models, measured by their ability to match the 2004 SCF wealth data, is compared in figure 1.

References

BACH, LAURENT, LAURENT E. CALVET, AND PAOLO SODINI (2018): "Rich Pickings? Risk, Return, and Skill in Household Wealth," *American Economic Review*, 110(9), 2703–47.

Carroll, Christopher D (1992): "The Buffer-Stock Theory of Saving: Some Macroeconomic Evidence," *Brookings Pap. Econ. Act.*, 1992(2), 61–156.

CARROLL, CHRISTOPHER D, JIRI SLACALEK, AND KIICHI TOKUOKA (2015): "Bufferstock saving in a Krusell–Smith world," *Econ. Lett.*, 132, 97–100.

Debacker, Jason, Bradley Heim, Vasia Panousi, Shanthi Ramnath, and Ivan Vidangos (2013): "Rising Inequality: Transitory or Persistent? New Evidence from a Panel of U.S. Tax Returns," *Brookings Pap. Econ. Act.*, pp. 67–122.

DEN HAAN, WOUTER J, KENNETH L JUDD, AND MICHEL JUILLARD (2010): "Computational suite of models with heterogeneous agents: Incomplete markets and aggregate uncertainty," *J. Econ. Dyn. Control*, 34(1), 1–3.

FAGERENG, ANDREAS, LUIGI GUISO, DAVIDE MALACRINO, AND LUIGI PISTAFERRI (2020): "Heterogeneity and Persistence in Returns to Wealth," *Econometrica*, 88(1), 115–170.

Figure 1