AMENDMENTS TO THE CLAIMS

3

- 1-24. (Cancelled).
- 25. (New) A polycation bioconjugate, comprising:

one or more carrier molecules having free α -amino groups, and one or more enhancer or connecting molecules, wherein the polycation bioconjugate has the general formula (I)

$$H[HN-CH_2-(CH_2)_m-CH-CO]_rOH$$
 (I)
$$[(i)Mx] * [(k)Mx] - NH$$

wherein

"r" is a mean value between 20 and 400 that designates the number of diaminomonocarbonic acyl group monomers;

"m" =
$$0, 1, 2, 3, \ldots$$
;

[(k)Mx] designates enhancer molecules and/or connecting molecules linked by covalent (=k) bonds to a carrier molecule;

[(i)Mx] designates enhancer molecules linked by ionic (=i) bonds to a carrier molecule, wherein the Mx functional groups may be the same or different, and the enhancer molecules can be linked directly and/or indirectly, through a connecting molecule, to the carrier molecule, and wherein when both [(k)Mx] and [(i)Mx] occur within the same polycation bioconjugate [(i)Mx] * [(k)Mx] is symbolized by [(k/i)Mx];

the carrier molecules are of the same configuration (either D- or L-), and the individual monomers are not linked together by their amino groups in the α -positions, and are linked together by amino groups in other positions according to the value of m, wherein the carrier molecules have a general formula (I/a):

wherein $[(k)Mx] = [(-)Cx_j]p_2$ and at least one carrier molecule is linked with one or more connecting molecules $[(-)Cx_j]$ of anionic character, wherein the Cx_j molecules may be the same

or different, and are selected from the group consisting of dicarbonic acids, tricarbonic acids, carbohydrates, amino acids, and peptide chain elongators;

wherein

"(-)Cx" in "[(-)C x_j] p_2 " designates (-)Cx connecting molecules of anionic character of different ("x") kind linked to at least one carrier molecule of general formula (I/a) by covalent bonds;

"j" indicates whether the (-)Cx connecting molecules are identical (j=1) or different according to the number "j" (j = 2, 3, ...); and

" p_2 " indicates a degree of saturation in % of a carrier molecule of general formula (I/a) by [(-)C x_j] connecting molecules of exclusively anionic character, p_2 having a value which is > 0 and <100.

- 26. (New) The polycation bioconjugate of claim 25, wherein at least one carrier molecule is linked by an ionic bond with an enhancer molecule of cationic character.
- 27. (New) A polycation bioconjugate, comprising:

one or more carrier molecules having free α-amino groups, and one or more enhancer or connecting molecules, wherein the polycation bioconjugate has the general formula (I)

$$H[HN-CH_2-(CH_2)_m-CH-CO]_rOH$$
 (I)
$$[(i)Mx] * [(k)Mx] - NH$$

wherein

"r" is a mean value between 20 and 400 that designates the number of diaminomonocarbonic acyl group monomers;

"m" =
$$0, 1, 2, 3, \ldots$$
;

[(k)Mx] designates enhancer molecules and/or connecting molecules linked by covalent (=k) bonds to a carrier molecule;

[(i)Mx] designates enhancer molecules linked by ionic (=i) bonds to a carrier molecule, wherein the Mx functional groups may be the same or different, and the enhancer molecules can be linked directly and/or indirectly, through a connecting molecule, to the carrier molecule, and wherein when both [(k)Mx] and [(i)Mx] occur within the same polycation bioconjugate [(i)Mx] * [(k)Mx] is symbolized by [(k/i)Mx];

the carrier molecules are of the same configuration (either D- or L-), and the individual monomers are not linked together by their amino groups in the α-positions, and are linked together by amino groups in other positions according to the value of m, wherein the carrier molecules have a general formula (I/a):

$$H[HN-CH_2-(CH_2)_m-CH-CO]_rOH \qquad \qquad (I/a)$$

$$NH_2 \qquad \qquad (free \ \alpha-amino \ group);$$
 wherein $[(k)Mx]=$
$$[Ex_i]_{p1} \ and/or$$

$$[(-)Cx_j]_{p2} \ and/or$$

$$[Cx_{ck}-Ex_{ck}]_{p3}$$

and at least one carrier molecule is linked with at least two of $[Ex_i]_{p1}$, $[(-)Cx_j]_{p2}$ and $[Cx_{ck}-Ex_{ck}]_{p3}$, such that [(k)Mx] =

$$\begin{split} &[Ex_i]_{p1} + [(-)Cx_j]_{p2} \text{ or} \\ &[Ex_i]_{p1} + [Cx_{ck} - Ex_{ck}]_{p3} \text{ or} \\ &[Cx_{ck} - Ex_{ck}]_{p3} + [(-)Cx_j]_{p2} \text{ or} \\ &[Ex_i]_{p1} + [Cx_{ck} - Ex_{ck}]_{p3} + [(-)Cx_j]_{p2}, \end{split}$$

wherein

"Ex" in "[Ex_i]_{p1}" designates the Ex enhancer molecules of different ("x") kind linked to at least one carrier molecule of general formula (I/a) by covalent bonds;

"i" indicates whether the Ex enhancer molecules are identical ones (i=1) or different according to the number "i" (i = 2, 3, \dots);

"p₁" indicates a degree of saturation in % of a carrier molecule of general formula (I/a) by [Ex_i] enhancer molecules;

"(-)Cx" in "[(-)Cx_j]p₂" designates (-)Cx connecting molecules of anionic character of different ("x") kind linked to at least one carrier molecule of general formula (I/a) by covalent bonds;

"j" indicates whether the (-)Cx connecting molecules are identical (j=1) or different according to the number "j" (j = 2, 3, ...);

"p₂" indicates a degree of saturation in % of a carrier molecule of general formula (I/a) by [(-)Cx_i] connecting molecules of exclusively anionic character;

"Cx-Ex" in " $[Cx_{ck}-Ex_{ck}]_{p3}$ " designates the Ex enhancer molecules of different ("x") kind linked to at least one carrier molecule of general formula (I/a) by covalent bonds indirectly through Cx connecting molecules of different ("x") kind linked to at least one carrier molecule of general formula (I/a);

"ck" indicates whether the Cx connecting molecules are identical (ck = 1) or of different kind (ck = 2, 3, ...);

"ek" indicates whether the Ex enhancer molecules are identical (ek = 1) or of different kind (ek = $2, 3, \ldots$);

"p₃" indicates a degree of saturation in % of a carrier molecule of general formula (I/a) by [Ex_{ck}] enhancer molecules linked indirectly to Cx_{ck} connecting molecules;

" p_1 " + " p_2 " + " p_3 " is > 0 and \leq 100, and at least two of " p_1 ," " p_2 " and " p_3 " are greater than 0; and

the Ex molecules in $[Ex_i]$ and the (-)Cx molecules in $[(-)Cx_j]$ are the same or different than the Ex and Cx molecules in $[Cx_{ck}-Ex_{ck}]$.

28. (New) A polycation bioconjugate, comprising:

one or more carrier molecules having free α -amino groups, and one or more enhancer or connecting molecules, wherein the polycation bioconjugate has the general formula (I)

$$H[HN-CH_2-(CH_2)_m-CH-CO]_rOH$$
 (I) [(i)Mx] * [(k)Mx] - NH

wherein

"r" is a mean value between 20 and 400 that designates the number of diaminomonocarbonic acyl group monomers;

"m" =
$$0, 1, 2, 3, \ldots$$
;

[(k)Mx] designates enhancer molecules and/or connecting molecules linked by covalent (=k) bonds to a carrier molecule;

[(i)Mx] designates enhancer molecules linked by ionic (=i) bonds to a carrier molecule, wherein the Mx functional groups may be the same or different, and the enhancer molecules can be linked directly and/or indirectly, through a connecting molecule, to the carrier molecule, and wherein when both [(k)Mx] and [(i)Mx] occur within the same polycation bioconjugate [(i)Mx] * [(k)Mx] is symbolized by [(k/i)Mx];

Docket No.: 027841.0101-US00

Application No.: 10/018,806

7

the carrier molecules are of the same configuration (either D- or L-), and the individual monomers are not linked together by their amino groups in the α -positions, and are linked together by amino groups in other positions according to the value of m, wherein the carrier molecules have a general formula (I/a):

$$H[HN-CH_2-(CH_2)_m-CH-CO]_rOH$$
 (I/a)
 NH_2 (free α -amino group);

wherein $[(i)Mx] = [(-)Ax_s]_t$ and at least one carrier molecule is linked with one or more enhancer molecules $[(-)Ax_s]$ of anionic character, wherein the Ax_s molecules may be the same or different,

wherein

"Ax" in "[(-)Ax_s]_t" designates the (-)Ax enhancer molecules of anionic character of same or different ("x") kind linked to at least one carrier molecule of general formula (I/a) by ionic bonds;

"s" indicates whether the Ax enhancer molecules are identical (s=1) or of different kind ($s=2,3,\ldots$); and

"t" indicates a degree of saturation in % of a carrier molecule of general formula (I/a) by [(-)Ax_s] enhancer molecules, t having a value which is > 0 and ≤ 100 .

29. (New) The polycation bioconjugate of claim 25, wherein $[(k/i)Mx] = [(-)Cx_j]_{p2}$ * $[(+)Kx_u]_z$,

wherein

"(+)Kx" in "[(+)Kx_u]_z" designates the (+)Kx enhancer molecules of cationic character of same or different ("x") kind linked to at least one carrier molecule of general formula (I/a) by ionic bonds indirectly through the [(-)Cx_j]_{p2} connecting molecules of anionic character;

"u" indicates whether the (+)Kx enhancer molecules are identical (u = 1) or of different kind (u = $2, 3, \ldots$); and

"z" indicates a degree of saturation in % of a carrier molecule of general formula (I/a) by $[(+)Kx_u]$ enhancer molecules, z having a value which is > 0 and \leq 100.

30. (New) The polycation bioconjugate of claim 29, wherein $[(k/i)Mx] = \{[(-)Cx_j]_{p2} * [(+)Kx_u]_z\} * [(-)Ax_s]_t$,

wherein

"Ax" in "[(-)Ax_s]_t" designates the (-)Ax enhancer molecules of anionic character of same or different ("x") kind linked to at least one carrier molecule of general formula (I/a) by ionic bonds;

"s" indicates whether the Ax enhancer molecules are identical (s = 1) or of different kind (s = $2, 3, \ldots$); and

"t" indicates a degree of saturation in % of a carrier molecule of general formula (I/a) by [(-)Ax_s] enhancer molecules, t having a value which is > 0 and ≤ 100 .

31. (New) The polycation bioconjugate of claim 27, wherein [(k/i)Mx] =

$$[Ex_i]_{p1} * [(-)Ax_s]_t$$
 or

$$[Cx_{ck}-Ex_{ck}]_{p3} * [(-)Ax_s]_t$$
 or

$$[Ex_i]_{p1} + [Cx_{ck}-Ex_{ck}]_{p3} * [(-)Ax_s]_t,$$

wherein

"Ax" in "[(-)Ax_s]_t" designates the (-)Ax enhancer molecules of anionic character of same or different ("x") kind linked to at least one carrier molecule of general formula (I/a) by ionic bonds;

"s" indicates whether the Ax enhancer molecules are identical (s = 1) or of different kind (s = 2, 3, \dots);

"t" indicates a degree of saturation in % of a carrier molecule of general formula (I/a) by [(-)Ax_s] enhancer molecules; and

" p_1 " + " p_3 " + "t" is > 0 and \leq 100, and at least one of " p_1 " and " p_3 " is greater than 0, and t is greater than zero.

32. (New) The polycation bioconjugate of claim 27, wherein [(k/i)Mx] =

$$[Ex_i]_{p1} + \{[(\text{--})Cx_j]_{p2} * [(\text{+-})Kx_u]_z\} \text{ or }$$

$$[Cx_{ck}-Ex_{ck}]_{p3} + \{[(-)Cx_j]_{p2} * [(+)Kx_u]_z\}$$
 or

$$[Ex_i]_{p1} + [Cx_{ck}-Ex_{ck}]_{p3} + \{[(-)Cx_i]_{p2} * [(+)Kx_u]_z\},$$

wherein

"(+)Kx" in "[(+)Kx_u]_z" designates the (+)Kx enhancer molecules of cationic character of same or different ("x") kind linked to at least one carrier molecule of general formula (I/a) by ionic bonds indirectly through the $[(-)Cx_j]_{p2}$ connecting molecules of anionic character;

"u" indicates whether the (+)Kx enhancer molecules are identical (u = 1) or of different kind (u = 2, 3, ...);

"z" indicates a degree of saturation in % of a carrier molecule of general formula (I/a) by $[(+)Kx_u]$ enhancer molecules; and

" p_1 " + " p_3 " + "z" is > 0 and \leq 100, and at least one of " p_1 " and " p_3 " is greater than 0, and z is greater than zero.

33. (New) The polycation bioconjugate of claim 32, wherein $[(k/i)Mx] = [Ex_i]_{p1} + \{[(-)Cx_i]_{p2} * [(+)Kx_u]_z * [(-)Ax_s]_t\}$ or

$$[Cx_{ck}\text{-}Ex_{ck}]_{p3}$$
 + $\{[(\text{-})Cx_j]_{p2}$ * $[(\text{+})Kx_u]_z$ * $[(\text{-})Ax_s]_t\}$ or

 $[Ex_i]_{p1} + [Cx_{ck}-Ex_{ck}]_{p3} + \{[(-)Cx_j]_{p2} * [(+)Kx_u]_z * [(-)Ax_s]_t\},$

wherein

"Ax" in "[(-)Ax_s]_t" designates the (-)Ax enhancer molecules of anionic character of same or different ("x") kind linked to at least one carrier molecule of general formula (I/a) by ionic bonds;

"s" indicates whether the Ax enhancer molecules are identical (s = 1) or of different kind (s = 2, 3, ...);

"t" indicates a degree of saturation in % of a carrier molecule of general formula (I/a) by $[(-)Ax_s]$ enhancer molecules; and

" p_1 " + " p_3 " + "t" + "z" is > 0 and \leq 100, and at least one of " p_1 " and " p_3 " is greater than 0, and t and z are each greater than zero.

34. (New) A polycation bioconjugate, comprising:

one or more carrier molecules having free α -amino groups, and one or more enhancer or connecting molecules, wherein the polycation bioconjugate has the general formula (I)

$$H[HN-CH_2-(CH_2)_m-CH-CO]_rOH$$
 (I)
[(i)Mx] * [(k)Mx] - NH

Application No.: 10/018,806 10 Docket No.: 027841.0101-US00

wherein

"r" is a mean value between 20 and 400 that designates the number of diaminomonocarbonic acyl group monomers;

"m" =
$$0, 1, 2, 3, \ldots$$
;

[(k)Mx] designates enhancer molecules and/or connecting molecules linked by covalent (=k) bonds to a carrier molecule;

[(i)Mx] designates enhancer molecules linked by ionic (=i) bonds to a carrier molecule, wherein the Mx functional groups may be the same or different, and the enhancer molecules can be linked directly and/or indirectly, through a connecting molecule, to the carrier molecule, and wherein when both [(k)Mx] and [(i)Mx] occur within the same polycation bioconjugate [(i)Mx] * [(k)Mx] is symbolized by [(k/i)Mx];

and a nucleic acid linked by an ionic bond to at least one carrier molecule.

- 35. (New) The polycation bioconjugate of claim 25, wherein the bioconjugate comprises at least one enhancer molecule selected from the group consisting of an antiproliferative compound, an antimicrobial compound, an antiviral compound, a nucleic acid, a paramagnetic metal ion, a complex containing a paramagnetic metal ion, an immunomodulant compound, an antibody and fragments and derivatives thereof, a peptide and fragments and derivatives thereof, a protein and fragments and derivatives thereof, and a hormone and fragments and derivatives thereof.
- 36. (New) The polycation bioconjugate of claim 27, wherein the bioconjugate comprises at least one enhancer molecule selected from the group consisting of an antiproliferative compound, an antimicrobial compound, an antiviral compound, a nucleic acid, a paramagnetic metal ion, a complex containing a paramagnetic metal ion, an immunomodulant compound, an antibody and fragments and derivatives thereof, a peptide and fragments and derivatives thereof, a protein and fragments and derivatives thereof, and a hormone and fragments and derivatives thereof.
- 37. (New) The polycation bioconjugate of claim 28, wherein the bioconjugate comprises at least one enhancer molecule selected from the group consisting of an antiproliferative compound, an antimicrobial compound, an antiviral compound, a nucleic acid, a paramagnetic

Application No.: 10/018,806 11 Docket No.: 027841.0101-US00

metal ion, a complex containing a paramagnetic metal ion, an immunomodulant compound, an antibody and fragments and derivatives thereof, a peptide and fragments and derivatives thereof, a protein and fragments and derivatives thereof, and a hormone and fragments and derivatives thereof.

- 38. (New) The polycation bioconjugate of claim 35, wherein the enhancer molecule is a monoclonal antibody having an affinity to a surface antigen of a tumor cell.
- 39. (New) The polycation bioconjugate of claim 35, wherein the enhancer molecule is a compound having an affinity to a receptor, wherein the receptor is present in a greater ratio on a surface of a tumor cell than on a surface of a non-tumor cell.
- 40. (New) The polycation bioconjugate of claim 36, wherein the enhancer molecule is a monoclonal antibody having an affinity to a surface antigen of a tumor cell.
- 41. (New) The polycation bioconjugate of claim 36, wherein the enhancer molecule is a compound having an affinity to a receptor, wherein the receptor is present in a greater ratio on a surface of a tumor cell than on a surface of a non-tumor cell.
- 42. (New) The polycation bioconjugate of claim 37, wherein the enhancer molecule is a monoclonal antibody having an affinity to a surface antigen of a tumor cell.
- 43. (New) The polycation bioconjugate of claim 37, wherein the enhancer molecule is a compound having an affinity to a receptor, wherein the receptor is present in a greater ratio on a surface of a tumor cell than on a surface of a non-tumor cell.
- 44. (New) The polycation bioconjugate of claim 28, wherein Ax is a nucleic acid.