Clase Practica 8 : Lógica de Primer Orden

Tomás Felipe Melli

$\mathrm{June}\ 11,\ 2025$

$\acute{\mathbf{I}}\mathbf{ndice}$

Sin	taxis de la LPO	2
1.1	Lenguajes de primer orden	2
1.2	Términos de primer orden	2
1.3	Fórmulas de primer orden	2
1.4	Ejercicios	2
	1.4.1 1	2
	1.4.2 2	2
1.5	Adaptación de Unificación en expresiones de primer orden	3
Dec	ducción natural en LPO	3
Sen	nántica en LPO	3
	1.1 1.2 1.3 1.4 1.5	

1 Sintaxis de la LPO

1.1 Lenguajes de primer orden

En vez de variables proposicionales, ahora tenemos

- Variables por ejemplo : $\mathcal{X} = \{X, Y, Z...\}$
- Conjunto de símbolos de función $\mathcal{F} = \{f, g, h, ...\}$ con aridad ≥ 0 . Las constantes son funciones de aridad 0.
- Conjunto (no vacío) de símbolos de predicado $\mathcal{P} = \{P, Q, R, ...\}$ con aridad ≥ 0

1.2 Términos de primer orden

$$t ::= X \mid f(t_1, ..., t_n)$$

1.3 Fórmulas de primer orden

$$\sigma ::= \mathbf{P}(t_1, ..., t_n) \mid \forall X. \sigma \mid \exists X. \sigma \mid \bot \mid \sigma \Rightarrow \sigma \mid \sigma \land \sigma \mid \sigma \lor \sigma \mid \neg \sigma$$

donde \mathbf{P} es un predicado de aridad n y los cuantificadores ligan variables. Podemos también sustituir ocurrencias libres de variables por un término en una fórmula

$$\sigma\{X := t\}$$

Evitar captura de variables.

1.4 Ejercicios

1.4.1 1

Dados $\mathcal{F} = \{c, f, g\}$ de aridades 0,1 y 2 y $\mathcal{P} = \{P\}$ binario, determinar si son términos, fórmulas o expresiones mal formadas

- \bullet c es término
- $\forall f(P(X,Y)).g(c,Y)$ mal formado, después del para todo debe haber una variables
- $P(f(X), Y) \Rightarrow \exists Y.P(c, Y)$ fórmula
- f(g(c,X)) término
- $\forall Y.(\exists X \ g(X,Y))$ mal formado
- $\forall Y.(\exists X \ P(X,Y))$ fórmula

1.4.2 2

Identificar las variables libres y ligadas de las siguientes fórmulas y realizar la sustitución marcada

1.
$$\sigma = \exists X.P(X,Y) \text{ con } \sigma\{Y := f(Z)\}$$

$$\exists X.P(X,Y)$$

$$\sigma\{Y := f(Z) \exists X.P(X,f(Z))\}$$

2.
$$\sigma = P(f(X), Y) \Rightarrow \forall X. P(g(X, Y), Y) \text{ con } \sigma\{Y := f(X)\}$$

$$P(f(X), Y) \Rightarrow \forall X. P(g(X, Y), Y)$$

$$\sigma^{\{Y := f(X)\}} P(f(X), f(X)) \Rightarrow \forall f(Z). P(g(X, Z), f(Z))$$

Sólo podemos renombrar las variables ligadas.

3.
$$\sigma = \exists X. P(f(X), Y) \land P(X, g(Y, c)) \text{ con } \sigma\{Y := g(X, Z)\}$$
$$\exists X. P(f(X), Y) \land P(X, g(Y, c))$$
$$\overset{Y := g(X, Z)}{\rightarrow} \exists Q. P(f(Q), g(Q, Z)) \land P(X, g(g(X, Z), c))$$

1.5 Adaptación de Unificación en expresiones de primer orden

Dados $\mathcal{F} = \{a, b, f, g\}$ de aridades 0,0,1 y 1 y $\mathcal{P} = \{P, Q\}$ predicados unario y binario, unir las expresiones entre una fila y otrar de forma que unifiquen entre sí : (no se pueden unificar fórmulas con términos)

- $P(a)\stackrel{?}{=}P(X)$ puede ya que $\sigma\{X:=a\}$ $P(a)\stackrel{?}{=}P(b)$ no unifica porque sólo podemos sustituir variables, y $a\neq b$
- g(X) no va con ninguna.
- $f(b) \stackrel{?}{=} f(X)$ se puede con $\sigma\{X := b\}$
- $Q(Y, f(X)) \stackrel{?}{=} Q(f(X), Y)$ se puede con $\sigma\{Y := f(X)\}$

2 Deducción natural en LPO

$$\frac{\frac{\Gamma, P(x) \vdash P(x)}{\Gamma, P(x) \vdash P(x)} \frac{\overline{\Gamma, P(x) \vdash P(x) \Rightarrow Q(Y)}}{\Gamma, P(x) \vdash Q(x)}}{\frac{\Gamma, P(x) \vdash Q(x)}{\Gamma, P(x) \vdash Q(x)}} \xrightarrow{\exists z} \frac{\Gamma, P(x) \vdash Q(x)}{\exists z}$$

$$\frac{\Gamma \vdash \exists x \cdot P(x)}{\Gamma, P(x) \vdash \exists z \cdot Q(z)} \xrightarrow{\exists z} \frac{\Gamma \vdash \exists x \cdot P(x), \forall Y \cdot (P(Y) \Rightarrow Q(Y)) \vdash \exists z \cdot Q(z)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x), \forall Y \cdot (P(Y) \Rightarrow Q(Y))}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x) \vdash Q(x)}{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x)}{\exists z} \xrightarrow{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x)}{\exists z} \xrightarrow{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x)}{\exists z} \xrightarrow{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x)}{\exists z} \xrightarrow{\exists z} \xrightarrow{\exists z} \frac{\exists x \cdot P(x)}{\exists z} \xrightarrow{\exists z}$$

3 Semántica en LPO

Dado un lenguaje de primer orden, llamamos estructura al par $(\mathcal{M}, \mathcal{I})$ tal que:

- \mathcal{M} es un conjunto no vacío llamado **universo**
- I es una función que interpreta(o sea, le da una semántica) a cada símbolo en términos del universo. Es decir,
 - Símbolos de constantes en elemento de $\mathcal M$
 - Símbolos de funciones en funciones de $\mathcal M$
 - Símbolos de predicados en relaciones de ${\cal M}$

Adems tenemos asignaciones que a cada variable le asocian un elemento del universo. Combinándola con \mathcal{I} , se la puede extender a todos los términos de la lógica. Entonces, sea fija la estructura

- Fórmulas verdaderas para alguna asignación : satisfactible
- Fórmulas verdaderas para cualquier asignación : válidas

Lo que se prueba por deducción natural son fórmulas **universalmente válidas**(es decir, valen para cualquier estructura y asignación)