ALGEBRA Chapter 2

2th Session II

LEYES DE EXPONENTES
PARA LA RADICACIÓN

HELICO MOTIVATING

Reto Matemático

¿Puedes descifrar el nombre encriptado? Del primer número que obtengas, debes escribir la letra inicial. Del segundo, escribir la segunda letra y así sucesivamente.

RPTA: DINO

HELICO THEORY

CHAPTHER 2

Session II

RADICACIÓN EN R

1. DEFINICIÓN:

$$\sqrt[n]{a} = r \iff r^n = a$$

Donde: n =Indice

a = Radicando

r = Raiz

 $n \in \mathbb{Z}; n \geq 2$

Cuando n es par, a debe ser positivo.

Ejemplos:
$$\sqrt[3]{64} = 4 \iff 4^3 = 64$$

$$\sqrt[3]{-27} = -3 \iff (-3)^3 = -27$$

2. EXPONENTE FRACCIONARIO: Si las raíces existen en \mathbb{R}

$$\frac{m}{a^{\frac{m}{n}}} = (\sqrt[n]{a})^m \quad ; m, n \in \mathbb{Z}^+; n \neq 0$$

Ejemplo:

$$\checkmark 16^{\frac{3}{4}} = (\sqrt[4]{16})^3 = (2)^3 = 8$$

3. PROPIEDADES DE LA RADICACIÓN

a) Raíz de una multiplicación

$$\sqrt[n]{xy} = \sqrt[n]{x} \cdot \sqrt[n]{y}$$

$$\sqrt[n]{xy} = \sqrt[n]{x} \cdot \sqrt[n]{y}$$
 $\sqrt[3]{27 \times 125} = \sqrt[3]{27} \cdot \sqrt[3]{125} = 3.5 = 15$

b) Raíz de una división

$$\sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}$$

$$, y \neq 0; n \neq 0$$

$$\sqrt[n]{\frac{x}{y}} = \sqrt[n]{x}$$

$$\sqrt[n]{\frac{x}{y^6}} = \sqrt[n]{x}$$

$$\sqrt[n]{\frac{x^4}{y^6}} = \sqrt[n]{x^4}$$

$$\sqrt[n]{\frac{x^4}{y^6}} = \sqrt[n]{x^4}$$

$$\sqrt[n]{\frac{x^4}{y^6}} = \sqrt[n]{x^4}$$

$$\sqrt[n]{\frac{x^4}{y^6}} = \sqrt[n]{x^4}$$

HELICO | THEORY

c) Raíz de Raíz

$$\sqrt[m]{\sqrt[n]{\sqrt[p]{x}}} = \sqrt[m \times n \times p} \sqrt{x}$$

$$\sqrt[3]{2}\sqrt[5]{x^{30}} = \sqrt[3 \times 2 \times 5 \times 2]{x^{30}} = \sqrt[60]{x^{30}}$$

$$= x^{\frac{30}{60}} = x^{\frac{1}{2}} = \sqrt{x}$$

d) Propiedades auxiliares

$$\sqrt[m]{x^a} \sqrt[n]{x^b} \sqrt[p]{x^c} = \sqrt[m \times n \times p} \sqrt{x^{(a \times n + b)p + c}}$$

$$\sqrt{\sqrt[3]{a^2 \sqrt[5]{a^7}}} = \sqrt[3 \times \sqrt[5]{a^2 \times 5 + 7} = \sqrt[15]{a^{17}}$$

$$\sqrt[m]{x^a \div \sqrt[n]{x^b \div \sqrt[p]{x^c}}} = \sqrt[m \times n \times p]{x^{(a \times n - b)p - c}}$$

$$\sqrt[3]{a^2 \div \sqrt[5]{a^7}} = {}^{3 \times 5} \sqrt{a^{2 \times 5 - 7}} = {}^{15} \sqrt{a^3} = {}^{5} \sqrt{a}$$

CHAPTHER 2

Session II

1. Reduzca

$$E = (-8)^{\frac{4}{3}} + (-27)^{\frac{1}{3}} - (27)^{\frac{1}{3}}$$

RESOLUCIÓN

Recordemos:
$$a^{\frac{m}{n}} = (\sqrt[n]{a})^m; m, n \in \mathbb{Z}^+; n \neq 0$$
 Si la raíz existe en R.

$$E = (-8)^{\frac{4}{3}} + (-27)^{\frac{1}{3}} - (27)^{\frac{1}{3}}$$

$$E = (\sqrt[3]{-8})^4 + (\sqrt[3]{-27})^1 - (\sqrt[3]{27})^1$$

$$E = (-2)^4 + (-3)^1 - (3)^1$$

$$E = 16 - 3 - 3$$

Rpta.:

2. Hallar el valor de:

$$E = \left(\frac{1}{9}\right)^{2^{-1}} + \left(\frac{1}{81}\right)^{4^{-1}} + \left(\frac{1}{4}\right)^{2^{-1}}$$

RESOLUCIÓN

$$E = \left(\frac{1}{9}\right)^{\frac{1}{2}} + \left(\frac{1}{81}\right)^{\frac{1}{4}} + \left(\frac{1}{4}\right)^{\frac{1}{2}}$$

$$E = \sqrt{\frac{1}{9}} + \sqrt[4]{\frac{1}{81}} + \sqrt{\frac{1}{4}}$$

$$E = \frac{1}{3} + \frac{1}{3} + \frac{1}{2} = \frac{7}{6}$$

Recordemos

$$b^{-n} = \frac{1}{b^n}$$
; $b \neq 0$

$$\left[a^{\frac{m}{n}} = (\sqrt[n]{a})^m; m, n \in \mathbb{Z}^+; n \neq 0\right]$$

Rpta.: $\frac{7}{6}$

3. Luego de simplificar

$$T = \sqrt[4]{6} \sqrt{x^{33}} \cdot \sqrt[16]{x^5}; x \neq 0 \text{ se obtiene.}$$

Recordemos

$$\sqrt[m]{\sqrt[n]{\sqrt[p]{x}}} = \sqrt[m \times n \times p} \sqrt{x}$$

RESOLUCIÓN

$$T = \sqrt[4]{\frac{3}{6}} \sqrt[2]{x^{33}} \sqrt[16]{x^5} = \sqrt[4 \times 6 \times 2]{x^{33}} \sqrt[3]{16} = x^{\frac{23}{48}} \sqrt[3]{16}$$

$$\rightarrow \chi \frac{11}{16}$$
, $\chi \frac{5}{16} = \chi \frac{16}{16}$

Rpta.: x

4. Calcule el valor de

$$T = 6^{8^{3^{-1}}} + 3^{81^{4^{-1}}}$$

RESOLUCIÓN

$$T = 6^{83^{-1}} + 3^{814^{-1}}$$

$$T = 6^{8^{\frac{1}{3}}} + 3^{81^{\frac{1}{4}}}$$

$$T = 6^{3\sqrt{8}} + 3^{4\sqrt{81}}$$

$$T = 6^2 + 3^3$$

Recordemos

$$\begin{bmatrix} b^{-n} & = \frac{1}{b^n} \end{bmatrix}$$
; $b \neq 0$

$$\boxed{a^{\frac{m}{n}} = (\sqrt[n]{a})^m; m, n \in \mathbb{Z}^+; n \neq 0}$$

Rpta.: 63

5. Efectúe
$$S = \sqrt[3]{x^2} \cdot \sqrt{x^5} \cdot \sqrt[3]{x^9}; x \neq 0$$

RESOLUCIÓN

$$S = \sqrt[3]{x^2 \cdot \sqrt[3]{x^5}} \cdot \sqrt[2]{\sqrt[3]{x^9}} = \sqrt[3 \times 2]{x^2 \times 2 + 5} \cdot \sqrt[6]{x^9}$$

$$\to \sqrt[6]{x^9} \cdot \sqrt[6]{x^9} = \sqrt[6]{x^9} \cdot x^9 = \sqrt[6]{x^{18}} = x^{\frac{18}{6}}$$

Rpta.: x^3

6. Un padre de familia de Saco Oliveros le dice a su hijo: "Si tú resuelves

$$S = \sqrt[\sqrt{7}]{\sqrt{2}} \sqrt[\sqrt{2}]{2^{28}}$$

de premio recibirás en soles lo mismo que el resultado obtenido" ¿Cuánto recibirá de premio?

Recordemos

$$\sqrt[m]{\sqrt[n]{\sqrt[p]{x}}} = \sqrt[m \times n \times p} \sqrt{x}$$

RESOLUCIÓN

$$S = \sqrt[\sqrt{7}]{\sqrt[\times]{\sqrt{2}}} \sqrt[\times]{\sqrt{2}} = \sqrt[\sqrt{7}]{\sqrt{2}} \sqrt{2^{28}} = \sqrt[14]{2^{28}} = 2^{\frac{28}{14}} = 2^2$$

Rpta.: Recibirá s/4 soles

7. Luego de reducir T, encontraras el costo del pasaje

$$T = \sqrt[3]{4\sqrt[4]{8\sqrt{2}}} \cdot \sqrt[6]{\sqrt[4]{2}}; x \neq 0 \quad \text{¿Cuánto es el pasaje?}$$

RESOLUCIÓN

$$T = \int_{0}^{3} 2^{2} \int_{0}^{4} 2^{3} \sqrt[3]{2} \int_{0}^{4} \sqrt{2}$$

$$T = \sqrt[3\times4\times2]{2(2\times4+3)\times2+1} \cdot \sqrt[24]{2} = \sqrt[24]{2^{23}} \cdot \sqrt[24]{2}$$

$$T = \sqrt[24]{2^{23} \cdot 2} = \sqrt[24]{2^{24}} = 2$$

Rpta.: 2 soles