METODY ITERACYJNE

Na tych laboratoriach skupimy się na rozwiązaniu układu:

$$Ax = b$$

Naszym celem będzie więc napisanie funkcji Solve zastępującej funkcję Gauss. Nie będziemy jednak tego układu rozwiązywać metodą bezpośrednią, taką jak eliminacja Gaussa, ale metodą iteracyjną. Tzn: będziemy konstruować kolejne przybliżenia $x^{(n)}$ dokładnego x, takie że $b-Ax^{(n)}$ będzie coraz bliższe zeru.

 $r = b - Ax^{(n)}$ nazywamy **residual'em**.

Zadanie

Policz residual. Następnie policz i wyświetl jego normę: $||r|| = \sqrt{r^T r}$ (napisz funkcję liczącą normę wektora norm(double *,int)). Ile wynosi ta norma przed i po rozwiązaniu układu metoda eliminacji Gaussa?

Na głupa

1

Pierwszym pomysłem na iteracyjne rozwiązywanie byłoby postawienie:

$$x^{(n+1)} = x^{(n)} + p$$

Gdzie p jest "poprawką" w iteracji. Łatwo sprawdzić, że idealne p byłoby równe:

$$p = A^{-1}r$$

Jednak nie mamy A^{-1} (w tym rzecz). Zamiast niej użyjemy M^{-1} , gdzie M będzie przybliżeniem A. Macierz M^{-1} nazywamy **preconditioner'em**. Na początek zamiast rozwiązywać pełen układ, pominiemy większość jego elementów:

Co daje nam prosty wzór na p:

$$p_i = \frac{1}{A_{ii}} r_i$$

Jest to równoważne z wzięciem za M diagonalnej części A. Ten prosty schemat iteracji, z powyższą poprawką nazywamy **metodą Jacobiego**.

Zadanie

Zaczynając od x=0 powtarzaj tą prostą iterację (np. 1000 razy). W każdej iteracji wyświetlaj normę residualu, a także wywołaj funkcję draw_residual(double) by wykonać wykres zbieżności.

Tak wykonana iteracja się nie zbiega. Wprowadźmy współczynnik, który "przytłumi" wykonywane iteracje:

$$x^{(n+1)} = x^{(n)} + \alpha p$$

Zadanie

Sprawdź zbieżność tego schematu przy różnych α . Sprawdź 0.5, 0.9, 1.1 i 2.

Zadanie

Wydziel z funkcji Solve część odpowiedzialną za mnożenie przez A: Mult(double** A, double*x, double* r) i preconditioner: Precond(double** A, double*x, double* p)

Spróbujmy poprawić nasz schemat biorąc lepszy preconditioner. Zauważmy, że licząc p_2 mamy już obliczone p_1 i możemy go użyć. Tak więc nie musimy pomijać elementów układu "pod diagonalą":

Co daje nam prosty wzór na p:

$$p_i = \frac{1}{A_{ii}} (r_i - \sum_{j=1}^{i-1} A_{ij} p_j)$$

Gdy $\alpha=1$ schemat taki nazywamy Metodą Gaussa-Seidla.

Zadanie

Wypróbuj nowy wzór na p, znów sprawdzając różne α .

Schematy z $\alpha > 1$ nazywamy metodami Successive Over-Relaxation (SOR).

Dobieramy α

Widać wyraźnie, że zbieżność bardzo zależy od α i jasnym jest, że najlepiej byłoby dobierać ten współczynnik w każdej iteracji. Zauważmy że residual po iteracji wynosi:

$$\hat{r} = r - \alpha A p$$

Spróbujmy zminimalizować kwadrat normy tego residualu:

$$\hat{r}^T \hat{r} = (r - \alpha A p)^T (r - \alpha A p) = r^T r - 2\alpha r^T A p + \alpha^2 (A p)^T A p$$

Licząc pochodną po α mamy:

$$-r^T A p + 2\alpha (A p)^T A p = 0$$

Ostatecznie:

$$\alpha = \frac{r^T A p}{(A p)^T A p}$$

Schemat z takim α nazywamy metoda **MINRES**.

Zadanie

Oblicz wektor Ap. Zauważ, że wyrażenie a^Tb to iloczyn skalarny dwóch wektorów $a^Tb = a \cdot b$. Napisz funkcję liczącą iloczyn skalarny skal(double*, double*, int) i oblicz α z powyższego wzoru. Sprawdź zbieżność przy takim α .

Wycinamy nadmiary

Przez q oznaczmy poprawkę z poprzedniej iteracji. Można powiedzieć, że w następnej iteracji nie chcemy "stracić" tego co "zyskaliśmy" w poprzedniej. Dlatego za nową poprawkę weźmiemy $p - \beta q$. Teraz wzór na nowy residual będzie:

$$\hat{r} = r - \alpha A(p - \beta q)$$

Zadanie

Wypisz wzór na $\hat{r}^T\hat{r}$ i zróżniczkuj go po β . Wylicz β przyjmując, że $r^TAq=0$ (to wynika z poprzedniej iteracji).

Zadanie

Zmodyfikuj iterację wg. schematu: - oblicz residual - oblicz $p=M^{-1}r$ - jeżeli to nie pierwsza iteracja: oblicz β i nową poprawkę: $p=p-\beta q$ - oblicz α - wylicz nowe rozwiązanie $x=x+\alpha p$ - zachowaj poprawkę q=p (opłaca się też zachować Ap)

A jeśli A jest symetryczna i dodatnio określona ...

W naszym przypadku możemy wykorzystać fakt, że macierz A jest symetryczna i dodatnio określona. Wtedy zamiast minimalizować r^Tr możemy minimalizować pewien specjalny funkcjonał:

$$\frac{1}{2}x^T A x - b^T x$$

Pytanie: Jakie fizyczne wyjaśnienie mają następujące rzeczy w naszym przypadku: - Czym jest powyższy funkcjonał? - Dłaczego A jest symetryczna? - Dłaczego A jest dodatnio określona?

Zadanie

Podstaw w powyższym wzorze $x=x^{(n)}+\alpha p$, zróżniczkuj i wylicz α . Zauważ, że $\frac{1}{2}x^TAx-b^Tx=\mathrm{const}+\frac{1}{2}(\alpha p)^TA(\alpha p)-r^T(\alpha p)$.

Zadanie

Analogicznie jak poprzednio, podstaw $x=x^{(n)}+\alpha(p-\beta q)$, zróżniczkuj i wylicz $\beta.$ (tym razem $q^Tr=0$)

Zadanie

Zastosuj dokładnie identyczną iterację zamieniając jedynie α i β i zbadaj zbieżność.

Schemat taki nazywamy metodą **gradientu sprzężonego** — Conjugate Gradient Method (\mathbf{CG}).

Uwaga: Aktualnie zbieżność jest bardzo słaba. Wynika to z faktu, że choć A jest symetryczna to preconditioner z metody Gaussa-Seidla M^{-1} już nie jest.

Zadanie

Zbadaj zbieżność z preconditionerem diagonalnym, lub wyrażeniem p=r (brakiem preconditionera).

Uwaga: Metodę Conjugate Gradient można zaimplementować w bardziej "zwartej" formie. Taki schemat można znaleść na wikipedii, bądz w notatkach z wykładu.