Transmission Control Protocol (TCP) – Overview

Kameswari Chebrolu

Background

- TCP most widely used transport layer protocol
- Entire Internet Protocol suite is often called TCP/IP suite
- Most carefully tuned protocol
 - Many Request For Comment (RFC): 675, 793,
 1122, 1323, 2018, 2581, 5681 etc

TCP Model

• Connection oriented byte-stream protocol

TCP Services

Sliding window

- Multiplexing/Demultiplexing
- Reliable point-to-point data transfer
- Full-duplex
- Flow control sender overwhelming receive
- · Congestion control sende "

network

Recap: Sliding Window Protocol

Sliding Window: Connection Management

- Link: Dedicated physical link connects same two hosts
- Transport: Connects processes running on any two hosts in the Internet
- Needs explicit connection establishment before data exchange and tear down after done

Sliding Window: RTT

- Link: Fixed (almost) RTT
- Transport: Varies from connection to connection and can be highly variable within connection
- > Time out mechanism has to be adaptive

Sliding Window: Reordering

- Link: No reordering
- Transport: Packets can take different paths and suffer arbitrary delays
- Protocol needs to be robust against old packets suddenly showing up

Sliding Window: Flow Control

- Link: End points can be engineered to support the link
- Transport: Any kind of computer can be connected to the Internet
- Need mechanisms to ensure one side doesn't overwhelm other side's resources (e.g. buffer space)

Sliding Window: Congestion Control

- Link: Not possible to unknowingly congest the link
- TCP: No idea what links will be traversed, network capacity can dynamically vary due to competing traffic
- Need mechanisms to alter sending rate in response to network congestion

Break

TCP Header Format

0	4	10 1						6 31			
	Source 1	Port			Destination Port						
	Sequence Number										
		gment									
Hdr Len	0	U	A	P	R	S	F	Advertised Window			
	Checks	um	•	•	Urgent Pointer						
	Options (Variable)										
Data											

Sequence Number and Acknowledgment

- Each byte has a sequence number feet Data
- Sequence number field contains the sequence number of the first byte in the segment
- Acknowledgment field carry information about flow in the other direction
 - Carries sequence number of next byte a host is expecting
 - Unless specified, ack is cummulative

Example \leftarrow ⁸

Sey 7 ACK 1

817

120

957

TCP Header Format

	Source F	ort	•					Destination Port
				Sec	que	nce	Numb	er
				A	ckno	owl	edgme	nt
Hdr Len	0	U	A	P	R	S	F	Advertised Window
	Checksı	um	•	•	•			Urgent Pointer
				Op	tior	ns (Variab	ole)
						Da	ıta	

Flags

- UAPRSF
- U: Urgent flag indicates segment contains urgent data (not used)
 - UrgentPointer (bytes) indicates where in the segment non-urgent data begins
- A: Ack bit is set if the acknowledgment field is valid

Flags

- UAPRSF
- P: Push flag indicates receiver should pass data to higher layers immediately (not used)
- R: Reset, used to abort connection
- S/F: Syn and Fin flags are used during connection establishment and termination

TCP Header Format

) 4		10					1	5 31
	Source	Port			Destination Port			
				Sec	que	nce	Nu	mber
				A	ckn	owl	ledg	ment - Flow Contr
Hdr Len	0	U	A	P	R	S	F	Advertised Window
	Check	sum	•	•	Urgent Pointer			
				Op	tio	ns (Vai	iable)
						Da	ata	

Checksum

- Similar to UDP
- Compulsory in IPv4 and IPv6
- Calculated over TCP header, data and pseudoheader
 - Pseudoheader: source, destination, protocol of IP header and TCP segment total length (calculated)

Options

MTU A MSS1 B

Adv. wind

min ()

- · Can negotiate maximum segment size
- Can perform window scaling
- Permits use of selective-acks
 - Both to indicate the device supports selective acknowledgments and carry the actual ack information
- Permits use of alternate checksum

Summary

- TCP: a very popular, finely tuned protocol
- Provides quite a few features at the transport layer
- Heart of TCP is the sliding window protocol
- Examined TCP header
- Ahead: TCP connection management