МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИРЭА – РОССИЙСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Математический анализ, 3 семестр. Контрольные задания.

Учебно-методическое пособие

УДК 517.52 ББК 22.161 М 31

Авторы: Н.В.Белецкая, М.И.Джиоева, В.В.Кирюшин,

А.В.Митин, Д.А.Хрычев, А.Л.Шелепин

Редактор: Ю.И.Худак

Контрольные задания содержат типовой расчет по разделам математического анализа, вошедшим в программу III-го семестра дневного отделения: теории рядов и уравнениям математической физики. Типовой расчет выполняется студентами в письменном виде и сдается преподавателю до начала зачетной сессии. Приведенные в пособии вопросы к зачету или экзамену могут быть уточнены и дополнены лектором.

Математический анализ, 3 семестр. Контрольные задания.

Учебно-методическое пособие

Рецензенты: доц., докт. физ.-мат. наук А.О.Смирнов,

Санкт-Петербургский государственный университет

аэрокосмического приборостроения,

доц., докт. физ.-мат. наук А.В.Шатина, МИРЭА

Минимальные системные требования:

Поддерживаемые ОС: Windows 2000 и выше

Память: ОЗУ 128 Мб Жесткий диск: 20 Мб

Устройства ввода: клавиатура, мышь

Дополнительные программные средства: программа Adobe Reader

© Н.В.Белецкая, М.И.Джиоева, В.В.Кирюшин, А.В.Митин, Д.А.Хрычев, А.Л.Шелепин, 2016

© МИРЭА, 2016

Оглавление

Контрольные задания
Задача 1 2
Задача 2
Задача 3
Задача 4
Задача 5
Задача 6
Задача 7
Задача 8
Задача 9
Задача 10
Теоретические вопросы к экзамену

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

III семестр

Контрольные задания по теме: "РЯДЫ"

ЗАДАЧА 1(а,б). Исследовать на сходимость числовые ряды.

$N_{ar{0}}$	a)	6)
1.	$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[5]{n}} \arcsin \frac{\pi}{2n}$	$\sum_{n=1}^{\infty} \frac{(3n)!}{(n!)^3 4^{3n}}$
2.	$\sum_{n=1}^{\infty} (-1)^n n \left(e^{\operatorname{tg} 1/n} - 1 \right)$	$\sum_{n=1}^{\infty} \left(\frac{\sqrt{n}+2}{\sqrt{n}+3}\right)^{n^{3/2}}$
3.	$\sum_{n=1}^{\infty} \frac{5+3 \cdot (-1)^n}{2^{n+3}}$	$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)(\ln \ln n)^2}$
4.	$\sum_{n=1}^{\infty} \frac{(-1)^n n}{(n^2+1)\sqrt{n+2}} \operatorname{tg} \frac{1}{\sqrt{n}}$	$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$
5.	$\sum_{n=1}^{\infty} (-1)^n (n^2 + 2) \ln \frac{n^2 + 1}{n^2}$	$\sum_{n=1}^{\infty} 2^n \left(\frac{n}{n+1}\right)^{n^2}$
6.	$\sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{n} \operatorname{tg} \frac{1}{\sqrt{n}}$	$\sum_{n=1}^{\infty} \frac{1}{(n+2)\sqrt{\ln(n+2)}}$
7.	$\sum_{n=1}^{\infty} (-1)^n \arcsin \frac{n}{2^n}$	$\sum_{n=1}^{\infty} \frac{(2n-1)!!}{3^n n!}$
8.	$\sum_{n=1}^{\infty} \frac{(-1)^n \arctan \sqrt{n+2}}{n\sqrt[3]{n^2+3}}$	$\sum_{n=1}^{\infty} 3^{n+1} \left(\frac{n+2}{n+3} \right)^{n^2}$
9.	$\sum_{n=1}^{\infty} (-1)^n n \operatorname{tg} \frac{n+2}{n^2+2}$	$\sum_{n=1}^{\infty} \frac{1}{(n+1)\ln^2(n+1)}$
10.	$\sum_{n=1}^{\infty} (-1)^n \sqrt[5]{\frac{3n^2 + 4}{n^2 + 5n + 1}}$	$\sum_{n=1}^{\infty} \frac{2 \cdot 5 \cdot 8 \cdots (3n-1)}{1 \cdot 6 \cdot 11 \cdots (5n-4)}$
11.	$\sum_{n=1}^{\infty} \frac{\cos n \sin(1/n)}{\sqrt[4]{n}}$	$\sum_{n=1}^{\infty} 3^{-n} \left(\frac{n+1}{n} \right)^{n^2}$

Nº	a)	б)
12.	$\sum_{n=1}^{\infty} \left(\frac{n^2 - 1}{n^2 + 1} \right)^n$	$\sum_{n=1}^{\infty} e^{-\sqrt{n}}$
13.	$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[n]{n^2 + 2}}$	$\sum_{n=1}^{\infty} \frac{1 \cdot 5 \cdots (4n-3)}{1 \cdot 6 \cdots (5n-4)}$
14.	$\sum_{n=1}^{\infty} (-1)^n \operatorname{tg}\left(\frac{n+1}{3n+2}\right)^n$	$\sum_{n=1}^{\infty} \left(\frac{n^2 + 5}{n^2 + 6} \right)^{n^2}$
15.	$\sum_{n=1}^{\infty} (-1)^n 3^n \sin \frac{\pi}{7^n}$	$\sum_{n=1}^{\infty} \frac{\ln(n+2)}{n+2}$
16.	$\sum_{n=1}^{\infty} \frac{\cos(\pi/4n)}{\sqrt[5]{2n^5 - 1}}$	$\sum_{n=1}^{\infty} \frac{4 \cdot 7 \cdot 10 \cdots (3n+4)}{2 \cdot 6 \cdot 10 \cdots (4n+2)}$
17.	$\sum_{n=1}^{\infty} \frac{(-1)^n}{3^n + n}$	$\sum_{n=1}^{\infty} \left(\frac{n-1}{n+1} \right)^{n^2+4n+5}$
18.	$\sum_{n=1}^{\infty} (-1)^n n^2 (1 - e^{\sin\frac{1}{n^2}})$	$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln^3 n + 1}}$
19.	$\sum_{n=1}^{\infty} \frac{\sin 3^n}{3^n}$	$\sum_{n=1}^{\infty} \frac{3 \cdot 6 \cdots (3n)}{(n+1)!} \arcsin \frac{1}{2^n}$
20.	$\sum_{n=1}^{\infty} \left(e^{\frac{1}{n}} - 1\right) \sin \frac{1}{\sqrt{n+1}}$	$\sum_{n=1}^{\infty} \left(\frac{2n-1}{2n+1}\right)^{n(n-1)}$
21.	$\sum_{n=1}^{\infty} \left(1 - \cos \frac{1}{\sqrt{n}} \right)^3$	$\sum_{n=2}^{\infty} \frac{1}{n \ln n \sqrt{\ln \ln n}}$
22.	$\sum_{n=1}^{\infty} \left(1 - \cos\frac{1}{\sqrt{n}}\right)^3$ $\sum_{n=1}^{\infty} \frac{(-1)^n \left(1 + \frac{1}{n}\right)^n}{2^n}$	$\sum_{n=1}^{\infty} \frac{(2n)!!}{n!} \arctan \frac{1}{3^n}$
23.	$\sum_{n=1}^{\infty} \arcsin \frac{(\sqrt{n}+1)^3}{n^3+3n+2}$	$\sum_{n=1}^{\infty} \left(\frac{3n+1}{3n+2} \right)^{n^2/2}$
24.	$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \operatorname{arctg} \frac{1}{2n+3}$	$\sum_{n=2}^{\infty} \frac{1}{\ln(n^n) \ln^3 n}$

$N_{\overline{0}}$	a)	6)
25.	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt[n]{n^2 + 1}}$	$\sum_{n=1}^{\infty} \frac{5^{2n} (n!)^3}{(3n)!}$
26.	$\sum_{n=1}^{\infty} (e^{\frac{n}{n^2+1}} - 1)^{3/2}$	$\sum_{n=1}^{\infty} \left(\frac{n^2 - 1}{n^2 + 1} \right)^{n^2 + 5}$
27.	$\sum_{n=1}^{\infty} \frac{n^3 + 3n^2 + 5}{n\sqrt[5]{n^16 + n^4 + 1}}$	$\sum_{n=1}^{\infty} \frac{\arctan\sqrt{n+1}}{(n+1)\ln^2(n+1)}$
28.	$\sum_{n=1}^{\infty} (-1)^n n^2 \arctan \frac{1}{n^2 + 2}$	$\sum_{n=1}^{\infty} \frac{n!7^n}{n^n}$
29.	$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt[3]{n+1}}{n(\sqrt{n}+2)}$	$\sum_{n=1}^{\infty} \left(\frac{n+1}{n} \right)^{n-n^2}$
30.	$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt[3]{n+1}}{n(\sqrt{n}+2)}$ $\sum_{n=1}^{\infty} (e^{\frac{\sqrt[3]{n}+2}{n^2+3}} - 1)$	$\sum_{n=1}^{\infty} \frac{\cos(\frac{\pi n}{4})}{(n+3)\sqrt{\ln^3(n+3)}}$

ЗАДАЧА 2. Исследовать знакочередующийся ряд

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

на абсолютную и условную сходимость.

$N_{ar{0}}$	a_n	$N_{\overline{0}}$	a_n	$N_{ar{0}}$	a_n
1	$\frac{\sin(1/4^n)}{n}$	11	$\sin^2\frac{1}{\sqrt{n}}$	21	$\frac{2 + \ln n}{\sqrt{n}}$
2	$\frac{\cos^2(n^2)}{n^3}$	12	$\frac{1+n}{n^2+2}$	22	$\frac{(1+2n)^2}{(2n-1)^3}$
3	$\frac{n}{3^n}$	13	$tg\frac{\pi}{4\sqrt{n}}$	23	$\frac{2n+1}{n^2+n}$
4	$\sin \frac{\pi}{2n}$	14	$\frac{\cos(1/n)}{n^4}$	24	$\frac{\ln n}{n}$

$N_{\overline{0}}$	a_n	$\mathcal{N}^{\underline{o}}$	a_n	$N_{\overline{0}}$	a_n
5	$\frac{n^n}{(2n+1)^n}$	15	$\frac{n+1}{2n^2-1}$	25	$\sqrt{\frac{n^2+1}{n^4+1}}$
6	$\sin\frac{\pi}{3\sqrt{n}}$	16	$\frac{2n-1}{4^n}$	26	$\frac{n}{6n-5}$
7	$\sqrt{n+1} - \sqrt{n}$	17	$\frac{1}{2n - \sqrt{n}}$	27	$tg \frac{1}{3n-1}$
8	$\frac{1}{\ln(n+1)}$	18	$\sqrt{\frac{2+n^2}{3+n^3}}$	28	$\frac{n}{(2n-1)!}$
9	$\frac{1}{2n+\sqrt{n}}$	19	$\frac{1}{n\sqrt{n+1}}$	29	$ \ln \frac{n+1}{n} $
10	$\frac{(2n+1)}{n(2n-1)}$	20	$\frac{1}{\sqrt[3]{n} + \sqrt{n}}$	30	$\frac{1}{(2n-1)\sqrt{n}}$

ЗАДАЧА 3. Найти интервал сходимости степенного ряда. Исследовать поведение ряда на концах интервала сходимости.

1.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{(-2)^n} \operatorname{arctg} \frac{1}{n^2} (x-1)^n \quad 2. \quad \sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt[3]{n^2 + 2n + 3}} (x-5)^n$$

3.
$$\sum_{n=2}^{\infty} \frac{1}{2^n \ln n} (x+1)^n$$
 4.
$$\sum_{n=1}^{\infty} \frac{n}{(-3)^n} \operatorname{tg} \frac{1}{n} (x+2)^n$$

5.
$$\sum_{n=2}^{\infty} \left(\frac{2}{3}\right)^n \sin\frac{\pi}{n} (x+1)^n$$
 6.
$$\sum_{n=0}^{\infty} \frac{1}{2^{n+1}\sqrt{n^2+4n+1}} (x+4)^n$$

7.
$$\sum_{n=2}^{\infty} \frac{1}{3^{n/2} n \ln n} (x-1)^n$$
 8. $\sum_{n=1}^{\infty} \frac{n}{3^n} \operatorname{arctg} \frac{1}{n} (x-1)^n$

9.
$$\sum_{n=0}^{\infty} \frac{2n+3}{n^2 \sqrt[3]{n}+1} (x+7)^n \qquad 10. \sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{(-2)^n} \sin \frac{1}{n^2} (x-2)^n$$

11.
$$\sum_{n=0}^{\infty} \frac{(n\sqrt{n}+1)}{(2n\sqrt{n}+3)2^n} x^n$$
12.
$$\sum_{n=0}^{\infty} \left(\frac{2}{5}\right)^n \frac{n+3}{n^3+2n^2+1} (x-6)^n$$
13.
$$\sum_{n=1}^{\infty} \frac{2^n}{3^n\sqrt{n}} \operatorname{tg} \frac{1}{n} (x+2)^n$$
14.
$$\sum_{n=2}^{\infty} \left(-\frac{1}{2}\right)^n \frac{1}{n\sqrt{\ln n}} (x+1)^n$$
15.
$$\sum_{n=1}^{\infty} \frac{1}{3^n} \frac{1}{3^n \sqrt{n^2+2}} (x+5)^n$$
16.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin \frac{1}{\sqrt{n}} (x-4)^n$$
17.
$$\sum_{n=1}^{\infty} \frac{1}{3^n} \ln \frac{n+1}{n} (x-3)^n$$
18.
$$\sum_{n=1}^{\infty} \frac{2^n (n^2+3n)}{n^3 \sqrt[3]{n+1}} x^n$$
19.
$$\sum_{n=2}^{\infty} \frac{1}{2^n n \ln^2 n} (x-3)^n$$
20.
$$\sum_{n=1}^{\infty} \frac{1}{(-2)^n \sqrt[3]{n(n+1)(n+2)}} x^n$$
21.
$$\sum_{n=1}^{\infty} \frac{n}{(-3)^n} \sin \frac{1}{n} (x+1)^n$$
22.
$$\sum_{n=2}^{\infty} \frac{\ln n}{n^2 3^n} x^n$$
23.
$$\sum_{n=1}^{\infty} \frac{2^n 2^n + 1}{3^n (3n^4+5)} (x+6)^n$$
24.
$$\sum_{n=1}^{\infty} \frac{1}{(-2)^n \sqrt{n(n+2)}} (x-1)^n$$
25.
$$\sum_{n=1}^{\infty} \frac{n}{(-2)^n} \arcsin \frac{1}{n} (x-2)^n$$
26.
$$\sum_{n=1}^{\infty} \frac{1}{n} \operatorname{tg} \frac{\pi}{\sqrt{n}} (x-2)^n$$
27.
$$\sum_{n=1}^{\infty} \left(\frac{n-1}{2n}\right)^{3^n} (x-1)^n$$
28.
$$\sum_{n=1}^{\infty} \ln \frac{3^n+1}{3^n} (x-8)^n$$
29.
$$\sum_{n=1}^{\infty} \frac{2^n (x-3)^n}{\sin \frac{1}{n}}$$
30.
$$\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt[3]{n}) (x-5)^n$$

ЗАДАЧА 4(a,б). Разложить функцию f(x) в ряд Тейлора по степеням $(x-x_0)$. Указать область сходимости полученного ряда. Найти $f^{(k)}(x_0)$, если k=100+ №варианта.

$N_{ar{0}}$	$a) \\ f(x)$	x_0	f(x)	x_0
1.	xe^x	1	$\frac{1}{(x+2)(x+3)}$	1
2.	xe^{x-3}	2	$\frac{x}{x^2 - 3x + 2}$	0

	a)		б)	
$N_{\overline{0}}$	f(x)	x_0	f(x)	x_0
3.	$x \sin x$	-1	$\frac{1}{\sqrt{x^2 - 12x + 40}}$	6
4.	$(1-x)e^{3x}$	-3	$\ln(1+x-2x^2)$	0
5.	$\sin(x+2)$	-1	$\ln(x^2 + 5x + 6)$	0
6.	$\int\limits_{0}^{x}e^{-t^{2}}dt$	0	$\frac{1}{(x-2)(x-3)}$	4
7.	$\cos(x+2)$	-1	$\frac{1}{x^2 - 5x + 6}$	0
8.	xe^{x+2}	1	$\frac{2x}{(x+3)(x+1)}$	0
9.	$\sin^2 3x$	-6	$\ln(2-3x+x^2)$	0
10.	$\int_{0}^{x} \frac{\sin t}{t} dt$	0	$\frac{x}{2 - 3x + x^2}$	0
11.	$\operatorname{ch} x$	-2	$\frac{x+1}{x^2-x}$	-1
12.	$\sin 3x \sin 5x$	0	$\frac{1}{\sqrt{x^2 - 10x + 29}}$	5
13.	$x\cos 2x$	-2	$\ln(-9 + 9x - 2x^2)$	2
14.	$\int_{0}^{x} \frac{\arctan t}{t} dt$	0	$\frac{2x}{(x-3)(x-4)}$	1
15.	$\cos(x+2)$	-1	$\frac{x^2}{x^2 + x}$	-3
16.	$\sin 2x \cos 3x$	0	$\frac{x}{(x-2)^2}$	3
17.	3^{2x}	-2	$\frac{5x+4}{(x+2)(x+4)}$	3

	a)		б)	
$N_{\overline{0}}$	f(x)	x_0	f(x)	$ x_0 $
18.	$\sin x \cos^2 x$	0	$\frac{x^2}{2+3x+x^2}$	1
19.	$\sin(2x+1)$	2	$\frac{1}{(x-2)(x+3)}$	5
20.	$\int\limits_0^x t^2 \sin t dt$	0	$\ln(2+3x+x^2)$	1
21.	$\cos(x - \frac{\pi}{4})$	1	$\frac{x^3}{(x+2)(x+3)}$	2
22.	$\sin^3 x$	0	$\frac{x-3}{x^2+3x-10}$	-1
23.	e^{3x-1}	3	$\ln(x^2 + 5x + 6)$	3
24.	$\int_{0}^{x} \frac{1 - \operatorname{ch} t}{t} dt$	0	$\frac{x+2}{x^3-x}$	2
25.	$x\cos^2 x$	2	$\frac{1-3x}{(x+4)(x+6)}$	2
26.	$\frac{1}{x^2}$	1	$\frac{1}{\sqrt{x^2 - 6x + 18}}$	3
27.	$\cos x \cos 3x$	0	$ \ln \frac{2+x^2}{1-x} $	0
28.	$\frac{1}{(x+2)^2}$	-1	$ \ln \frac{3+x^2}{\sqrt{1-2x^2}} $	0
29.	$ arctg \frac{1-x}{1+x} $	0	$\frac{x^2}{(x+1)(x+2)}$	1
30.	$\int_{0}^{x} \frac{dt}{\sqrt{1+t^4}}$	0	$\frac{x^2}{(x-2)(x+3)}$	-2

ЗАДАЧА 5. Используя признак Вейерштрасса, доказать равномерную сходимость функционального ряда на указанном промежутке.

1.
$$\sum_{n=1}^{\infty} (-1)^n \left(1 - \frac{1}{n}\right) \cdot \frac{1}{x^n} \left[-3, -2\right]$$
 2. $\sum_{n=1}^{\infty} \frac{n^2}{(x + 1/n)^n}$ [2, 3]

3.
$$\sum_{n=2}^{\infty} \frac{n + (-1)^n}{n(n-1)} \cdot \sin \frac{x}{\sqrt{n}} \qquad [-2, 2] \qquad 4. \quad \sum_{n=2}^{\infty} \ln \left(1 + \frac{x^n}{n^3} \right)$$
 [0, 1]

5.
$$\sum_{n=1}^{\infty} e^{-(1-x\sqrt{n})^2}$$
 [1,2] 6. $\sum_{n=1}^{\infty} \frac{n^n}{n!} \cdot \sin \frac{\pi x^n}{2^n}$ [0, $\frac{1}{2}$]

7.
$$\sum_{n=1}^{\infty} \frac{n^2 x}{2^n + x^n + 1}$$
 [0,5] 8.
$$\sum_{n=1}^{\infty} \frac{\sqrt{x+1} \cos(nx)}{\sqrt[3]{n^5 + 1}}$$
 [0,2]

9.
$$\sum_{n=1}^{\infty} x^{n!}$$

$$\left[-\frac{1}{2}, \frac{1}{2} \right]$$
 10.
$$\sum_{n=1}^{\infty} \frac{(n!)^2 (x-3)^{n^2}}{2^{n^2}}$$
 [2,3]

11.
$$\sum_{n=1}^{\infty} \frac{x^n}{1+x^{2n}}$$
 [-3,-2] 12.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \operatorname{tg}^n x}{n(n+1)} \left[-\frac{\pi}{6}, \frac{\pi}{6} \right]$$

13.
$$\sum_{n=1}^{\infty} \left(x + \frac{(-1)^{n+1}}{n} \right) x^{n-1} \quad \left[\frac{1}{2}, \frac{1}{2} \right] \qquad 14. \quad \sum_{n=1}^{\infty} \frac{3^{n^2}}{x^{n^2}}$$
 [4, 5]

15.
$$\sum_{n=1}^{\infty} \frac{(-1)^n + 1/n}{(x-1)^{2n}} \qquad [-2, -1] \qquad 16. \quad \sum_{n=1}^{\infty} \left(\frac{1}{x} + \frac{x}{n}\right)^n \qquad [3, 5]$$

17.
$$\sum_{n=1}^{\infty} \frac{(x+1)\sin^2(nx)}{n\sqrt{n+1}} \qquad [-3,0] \quad 18. \quad \sum_{n=1}^{\infty} \frac{n^{n+1}}{(x-4)^{n^2}} \qquad [1,2]$$

19.
$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{x+1}{n \ln^2 (n+1)} \right)$$
 [0,3] 20. $\sum_{n=2}^{\infty} \sin^n \frac{x \ln n}{x-n}$ [0,1]

21.
$$\sum_{n=1}^{\infty} \frac{2 + (-1)^n}{x^{2n}} \qquad \left[\frac{3}{2}, 3\right] \qquad 22. \quad \sum_{n=1}^{\infty} \frac{(\pi - x)\cos^2(nx)}{\sqrt[4]{n^7 + 1}} \quad [0, \pi]$$

23.
$$\sum_{n=1}^{\infty} \frac{n^2}{\ln^n (x-1)}$$
 [4,5] 24. $\sum_{n=1}^{\infty} n^2 \sqrt{x+1} e^{-n/x} \left[\frac{1}{2}, 2\right]$

25.
$$\sum_{n=1}^{\infty} \frac{n^3(\sqrt{2} + \sin(nx))^n}{3^n} + \infty$$
 26. $\sum_{n=1}^{\infty} \frac{nx}{1 + n^7x^2} (-\infty, +\infty)$

27.
$$\sum_{n=1}^{\infty} \frac{x^n}{n\sqrt{n+x}}$$
 [0,1] 28. $\sum_{n=1}^{\infty} x^n e^{-nx}$ [0,+\infty)

29.
$$\sum_{n=1}^{\infty} \frac{n^2}{x} e^{-\frac{n^2}{x}}$$
 (0,9] 30.
$$\sum_{n=1}^{\infty} \ln(1 + \frac{x^2}{n \ln^2 n})[-2,2]$$

ЗАДАЧА 6.

- а) Разложить функцию y=f(x), заданную на полупериоде (0,l), в ряд Фурье по косинусам. Построить графики второй, третьей, десятой частичных сумм. Написать равенство Парсеваля для полученного ряда. Сумму какого числового ряда можно отыскать с помощью полученного равенства ?
- б) Разложить функцию y = f(x), заданную на полупериоде (0, l), в ряд Фурье по синусам. Построить графики второй, третьей, десятой частичных сумм. Указать тип сходимости полученного ряда.
- в) Разложить функцию y = f(x) в ряд Фурье, продолжая ее на полупериод (-l,0) функцией, равной 0. Построить графики второй, четвертой, десятой частичных сумм. Указать тип сходимости полученного ряда.

1.
$$y = 2x - 1$$
 $(0,1)$ 2. $y = 3x - 2$ $(0,4)$

3.
$$y = e^{2x}$$
 (0,1) 4. $y = 4 - 2x$ (0,4)

5.
$$y = 2x^2 + 1$$
 $(0, \pi)$ 6. $y = \sin(x/2)$ $(0, \pi)$

7.
$$y = 3x - 3$$
 $(0,2)$ 8. $y = 2 - 4x$ $(0,1)$

9.
$$y = \cos(x/2)$$
 $(0, \pi)$ 10. $y = 1 - x^2$ $(0, \pi)$

11.
$$y = 2x - 3$$
 $(0,3)$ 12. $y = e^x$ $(0,1)$

13.
$$y = 6 - 4x$$
 $(0,3)$ 14. $y = x - 2$ $(0,4)$

15.
$$y = 3\sin(x/3)$$
 $(0,\pi)$ 16. $y = x - 2$ $(0,2)$

17.
$$y = 1 - x$$
 $(0, 2)$ 18. $y = \cos(x/3)$ $(0, \pi)$

19.
$$y = 2x + 1/2$$
 (0,3) 20. $y = 2 - x$ (0,2)

21.
$$y = 5 - 4x$$
 $(0,3)$ 22. $y = e^{x/2}$ $(0,2)$

23.
$$y = 5x - 3$$
 $(0,5)$ 24. $y = x^2 + 1$ $(0,\pi)$

25.
$$y = ch(2x/3)$$
 (0,3) 26. $y = 2x^2 + 3$ (0, π)

27.
$$y = 1 - x$$
 $(0,1)$ 28. $y = 3 - x$ $(0,3)$

29.
$$y = \operatorname{sh} x$$
 $(0,2)$ 30. $y = e^{-x}$ $(0,1)$

ЗАДАЧА 7. Методом Фурье найти решение уравнения колебаний струны

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$$

длины l=2, закрепленной на концах: u(0,t)=u(2,t)=0 и удовлетворяющей следующим начальным условиям:

$$u(x,0) = f(x), \qquad \frac{\partial u(x,0)}{\partial t} = \varphi(x).$$

$$\begin{array}{lll}
\mathbb{N}_{2} & f(x) & \varphi(x) \\
1. & \begin{cases}
x, & 0 \leqslant x \leqslant 1 \\
2 - x, & 1 \leqslant x \leqslant 2
\end{cases} & 0 \\
2. & 0 & 2x - x^{2}, & 0 \leqslant x \leqslant 2
\end{cases} \\
3. & \begin{cases}
-2x, & 0 \leqslant x \leqslant 1 \\
2(x - 2), & 1 \leqslant x \leqslant 2
\end{cases} & 0 \\
4. & 0 & x^{2} - 2x, & 0 \leqslant x \leqslant 2
\end{cases}$$

$$\begin{cases} x/3, & 0 \leqslant x \leqslant 1 \\ (2-x)/3, & 1 \leqslant x \leqslant 2 \end{cases}$$

$$\begin{cases} 0 & 4x - 2x^2, & 0 \leqslant x \leqslant 2 \end{cases}$$

$$\begin{cases} -x, & 0 \leqslant x \leqslant 1 \\ x - 2, & 1 \leqslant x \leqslant 2 \end{cases}$$

$$\begin{cases} 2x, & 0 \leqslant x \leqslant 1 \\ 2(2-x), & 1 \leqslant x \leqslant 2 \end{cases}$$

$$\begin{cases} 2x, & 0 \leqslant x \leqslant 1 \\ 2(2-x), & 1 \leqslant x \leqslant 2 \end{cases}$$

$$\begin{cases} 10. & 0 & 8x - 4x^2, & 0 \leqslant x \leqslant 2 \end{cases}$$

$$\begin{cases} 12. & 0 & \begin{cases} -3x, & 0 \leqslant x \leqslant 1 \\ 3(x-2), & 1 \leqslant x \leqslant 2 \end{cases}$$

$$\begin{cases} 12. & 0 & \begin{cases} -3x, & 0 \leqslant x \leqslant 1 \\ 3(x-2), & 1 \leqslant x \leqslant 2 \end{cases}$$

$$\begin{cases} 12. & 0 & \begin{cases} x/5, & 0 \leqslant x \leqslant 1 \\ (2-x)/5, & 1 \leqslant x \leqslant 2 \end{cases}$$

$$\begin{cases} 13. & 0 \leqslant x \leqslant 1 \end{cases}$$

$$\begin{cases} 14. & 0 & \begin{cases} -2x/3, & 0 \leqslant x \leqslant 1 \\ 2(x-2)/3, & 1 \leqslant x \leqslant 2 \end{cases}$$

$$\begin{cases} 14. & 0 & \begin{cases} -2x/3, & 0 \leqslant x \leqslant 1 \\ 2(x-2)/3, & 1 \leqslant x \leqslant 2 \end{cases}$$

$$\begin{cases} 14. & 0 & \begin{cases} -2x/3, & 0 \leqslant x \leqslant 1 \\ 2(x-2)/3, & 1 \leqslant x \leqslant 2 \end{cases}$$

$$\begin{cases} 14. & 0 & \begin{cases} -2x/3, & 0 \leqslant x \leqslant 1 \\ 2(x-2)/3, & 1 \leqslant x \leqslant 2 \end{cases}$$

$$\begin{cases} 14. & 0 & \begin{cases} -2x/3, & 0 \leqslant x \leqslant 1 \\ 2(x-2)/3, & 1 \leqslant x \leqslant 2 \end{cases}$$

$$\begin{cases} 14. & 0 & \begin{cases} -2x/3, & 0 \leqslant x \leqslant 1 \\ 2(x-2)/3, & 1 \leqslant x \leqslant 2 \end{cases}$$

$$\begin{cases} 14. & 0 & \begin{cases} -2x/3, & 0 \leqslant x \leqslant 1 \\ 2(x-2)/3, & 1 \leqslant x \leqslant 2 \end{cases}$$

$$\begin{cases} 14. & 0 & \begin{cases} -x/2, & 0 \leqslant x \leqslant 1 \\ 3(x-2)/2, & 1 \leqslant x \leqslant 2 \end{cases}$$

$$\begin{cases} 14. & 0 & \begin{cases} -x/2, & 0 \leqslant x \leqslant 1 \\ 3(x-2)/2, & 1 \leqslant x \leqslant 2 \end{cases}$$

$$21. \qquad \begin{cases} x/3, & 0 \leqslant x \leqslant 1 \\ (2-x)/3, & 1 \leqslant x \leqslant 2 \end{cases}$$

$$22. \qquad 0 \qquad 4x - 2x^2, & 0 \leqslant x \leqslant 2$$

$$23. \qquad \begin{cases} -x, & 0 \leqslant x \leqslant 1 \\ x - 2, & 1 \leqslant x \leqslant 2 \end{cases}$$

$$24. \qquad 0 \qquad x^2/4 - x/2, & 0 \leqslant x \leqslant 2$$

$$25. \qquad \begin{cases} 2x, & 0 \leqslant x \leqslant 1 \\ 2(2-x), & 1 \leqslant x \leqslant 2 \end{cases}$$

$$26. \qquad 0 \qquad \begin{cases} -x/2, & 0 \leqslant x \leqslant 1 \\ (2-x)/2, & 1 \leqslant x \leqslant 2 \end{cases}$$

$$27. \qquad 2x - x^2, & 0 \leqslant x \leqslant 2 \qquad 0$$

$$28. \qquad 0 \qquad x^2/2 - x, & 0 \leqslant x \leqslant 2$$

$$29. \qquad \begin{cases} x, & 0 \leqslant x \leqslant 1 \\ 2 - x, & 1 \leqslant x \leqslant 2 \end{cases}$$

$$29. \qquad \begin{cases} x, & 0 \leqslant x \leqslant 1 \\ 2 - x, & 1 \leqslant x \leqslant 2 \end{cases}$$

$$30. \qquad 0 \qquad \begin{cases} -x/3, & 0 \leqslant x \leqslant 1 \\ (x - 2)/3, & 1 \leqslant x \leqslant 2 \end{cases}$$

ЗАДАЧА 8. Найти приближенное решение задачи Коши

$$a(x)y'' + b(x)y' + c(x)y = f(x); \quad y(0) = 0; \quad y'(0) = 0.$$

Решение задачи Коши ищется в виде степенного ряда $\sum_{k=0}^{\infty} C_k x^k$, коэффициенты которого вычисляются последовательно. Ограничиваясь суммой $\sum_{k=0}^{N} C_k x^k$, содержащей N+1 член ряда, получаем приближенное решение. Оценка погрешности этого решения в работе облегчается тем, что получающиеся степенные ряды – знакочередующиеся. Требуется, чтобы эта погрешность не превосходила 0,001 при $x \in [0,x_0]$.

1, 16.
$$y'' + xy' + 2y = x$$
 $x_0 = 0, 5$
2, 17. $y'' + x^2y' + 2xy = 1$ $x_0 = 0, 5$
3, 18. $y'' + x^2y' + 3xy = 3x$ $x_0 = 0, 5$
4, 19. $y'' + x^2y' + xy = 6x^2$ $x_0 = 0, 75$
5, 20. $y'' + x^2y' + 2xy = x^3$ $x_0 = 1$
6, 21. $y'' + x^2y' + 5xy = x$ $x_0 = 0, 75$
8, 23. $y'' + x^3y' + 3x^2y = 1$ $x_0 = 0, 5$
9, 24. $y'' + x^3y' + 3x^2y = 3x$ $x_0 = 0, 75$
10, 25. $y'' + x^3y' + 4x^2y = 1$ $x_0 = 0, 5$
11, 26. $y'' + x^3y' + 4x^2y = 2x$ $x_0 = 0, 75$
12, 27. $y'' + x^3y' + 2x^2y = 4x^2$ $x_0 = 0, 75$
13, 28. $y'' + x^3y' + 2x^2y = x$ $x_0 = 0, 5$
14, 29. $y'' + x^2y' + 2xy = x^2$ $x_0 = 0, 75$
15, 30. $y'' + xy' + y + x = 0$ $x_0 = 0, 75$

ЗАДАЧА 9. Приближенно вычислить определенный интеграл

$$\int_{a}^{b} f(x) \, dx.$$

Для вычисления интеграла функцию f(x) разлагают на отрезке интегрирования в степенной ряд, который интегрируют почленно. Ограничившись несколькими первыми слагаемыми полученного таким образом числового ряда, имеем приближенное значение интеграла. В работе погрешность приближения не должна превышать 0,0001, и оценка этой погрешности упрощается по тем же причинам, что и в задаче 8.

1.
$$\int_{0}^{0.1} \frac{\ln(1+x)}{x} dx$$
2.
$$\int_{0}^{0.1} \frac{\sin x}{x} dx$$
3.
$$\int_{0}^{0.1} \frac{1-e^{-x}}{x} dx$$
4.
$$\int_{0.1}^{0.2} \frac{e^{-x}}{x^3} dx$$
5.
$$\int_{0}^{0.5} \frac{\arctan x}{x} dx$$
6.
$$\int_{0}^{0.8} x^{10} \sin x dx$$
7.
$$\int_{0}^{0.5} \frac{dx}{1+x^4}$$
8.
$$\int_{0}^{0.5} \frac{dx}{4+x^3}$$
9.
$$\int_{0}^{0.5} \sqrt[3]{1+x^3} dx$$
10.
$$\int_{0}^{1} e^{-x^2} dx$$
11.
$$\int_{0}^{1} \cos \sqrt{x} dx$$
12.
$$\int_{0}^{0.25} \ln(1+\sqrt{x}) dx$$
13.
$$\int_{0}^{1/3} \frac{1}{\sqrt{1+x^4}} dx$$
14.
$$\int_{0}^{0.3} \frac{\sin x}{\sqrt{x}} dx$$
15.
$$\int_{0}^{1/2} \frac{dx}{\sqrt{1+x^3}}$$
16.
$$\int_{0}^{0.8} \ln(1+x^2) dx$$
17.
$$\int_{0}^{0.6} \frac{dx}{1+x\sqrt{x}}$$
18.
$$\int_{0}^{1} x^8 \cos x dx$$
19.
$$\int_{0.2}^{0.3} \frac{e^{-x}}{x^4} dx$$
20.
$$\int_{0}^{0.5} e^{-2\sqrt{x}} dx$$
21.
$$\int_{0}^{0.25} \frac{1-e^{-2x}}{\sqrt{x}} dx$$
22.
$$\int_{0}^{4} \frac{dx}{1+x^3}$$
23.
$$\int_{0}^{0.2} \frac{\sin \sqrt{x}}{x} dx$$
24.
$$\int_{0}^{0.4} \frac{\arctan x}{\sqrt{x}} dx$$
25.
$$\int_{0}^{0.4} \frac{\sin x\sqrt{x}}{x} dx$$
26.
$$\int_{0}^{0.2} \frac{\ln(1+x^2)}{x} dx$$
27.
$$\int_{0}^{0.3} \cos x\sqrt{x} dx$$

ЗАДАЧА 10*. (по усмотрению преподавателя)

а) Найти преобразование Фурье (спектральную плотность S(u)) следующих функций (сигналов).

28. $\int_{0}^{0.2} \frac{e^x - 1}{\sqrt{x}} dx$ 29. $\int_{0}^{0.25} \arctan \sqrt{x} dx$ 30. $\int_{0}^{1/3} \frac{dx}{\sqrt{1 + x^4}}$

б) Продолжить периодически функцию (сигнал) с интервала [0,T] (или [-T/2,T/2], см. рисунок) на всю числовую прямую, разложить в ряд Фурье. Построить графики второй и третьей частичных сумм.

ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ К ЭКЗАМЕНУ

- 1. Числовой ряд, его сходимость. Примеры сходящихся и расходящихся рядов: геометрическая прогрессия, гармонический ряд и другие.
 - 2. Необходимый признак сходимости числового ряда.
 - 3. Критерий сходимости рядов с положительными членами.
 - 4. Признак сравнения положительных рядов, его предельная форма.
- 5. Признаки Даламбера и Коши сходимости рядов с положительными членами.
- 6. Интегральный признак Коши сходимости рядов с положительными членами. Сходимость рядов вида $\sum \frac{1}{n^{\alpha}}$.
 - 7. Признак сходимости знакочередующегося ряда, оценка остатка.
- 8. Сходимость ряда из абсолютных величин членов знакопеременного ряда как достаточное условие сходимости самого ряда. Абсолютная и условная сходимость.
- 9. Свойства абсолютно сходящихся рядов: перестановка членов, перемножение рядов. Перестановка членов неабсолютно сходящегося ряда.
- 10. Функциональный ряд, его область сходимости. Равномерная сходимость. Примеры.
- 11. Равномерная сходимость функционального ряда. Признак Вейерштрасса.
 - 12. Непрерывность суммы функционального ряда.
 - 13. Теорема о почленном интегрировании функциональных рядов.
- 14. Теорема о почленном дифференцировании функциональных рядов.
- 15. Степенной ряд. Теорема Абеля. Радиус сходимости степенного ряда. Поведение ряда на концах интервала сходимости.
- 16. Равномерная сходимость степенного ряда. Непрерывность суммы степенного ряда.
- 17. Теоремы о почленном интегрировании и дифференцировании степенных рядов. Бесконечная гладкость суммы степенного ряда.
- 18. Необходимое условие разложимости функции в степенной ряд. Единственность разложения. Ряды Тейлора и Маклорена.
 - 19. Критерий разложимости функции в степенной ряд.
 - 20. Достаточное условие разложимости функции в степенной ряд.
- 21. Применение степенных рядов к решению дифференциальных уравнений, к приближенным вычислениям, к раскрытию неопределенностей.
- 22. Ряды Тейлора для основных элементарных функций: e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^{\alpha}$.
- 23. Ортогональные и ортонормированные системы функций. Норма функции. Примеры ортогональных систем.
 - 24. Ряд Фурье по ортогональной системе. Коэффициенты ряда Фурье.

- 25. Приближение функции в среднем. Сходимость в среднем ряда Фурье.
- 26. Экстремальное свойство коэффициентов Фурье. Его геометрическая интерпретация.
- 27. Неравенство Бесселя и равенство Парсеваля. Полнота и замкнутость ортогональной системы функций.
- 28. Интеграл Фурье в вещественной и комплексной форме. Преобразование Фурье.
 - 29. Постановка краевых задач для уравнения колебаний струны.
- 30. Решение задачи Коши для уравнения свободных колебаний бесконечной струны методом Даламбера. Его физический смысл.
 - 31. Постановка краевых задач для уравнения теплопроводности.
- 32. Уравнение Лапласа. Гармонические функции и их свойства. Постановка краевых задач для уравнения Лапласа.

Вопросы к экзамену могут быть уточнены и дополнены лектором.