Effective Homology of the Pushout of Simplicial Sets

Jónathan Heras

Departamento de Matemáticas y Computación Universidad de La Rioja Spain

XII Encuentro de Álgebra Computacional y Aplicaciones EACA 2010, Santiago de Compostela

Kenzo:

- Kenzo:
 - Symbolic Computation system devoted to Algebraic Topology

- Kenzo:
 - Symbolic Computation system devoted to Algebraic Topology
 - Compute homology groups of spaces of not finite type: loop spaces, classifying spaces, . . .

- Kenzo:
 - Symbolic Computation system devoted to Algebraic Topology
 - Compute homology groups of spaces of not finite type: loop spaces, classifying spaces, . . .

General goal

Increase the functionality of Kenzo

- Kenzo:
 - Symbolic Computation system devoted to Algebraic Topology
 - Compute homology groups of spaces of not finite type: loop spaces, classifying spaces, . . .

General goal

Increase the functionality of Kenzo

• Pushout:

- Kenzo:
 - Symbolic Computation system devoted to Algebraic Topology
 - Compute homology groups of spaces of not finite type: loop spaces, classifying spaces, . . .

General goal

Increase the functionality of Kenzo

- Pushout:
 - Usual construction in Topology

- Kenzo:
 - Symbolic Computation system devoted to Algebraic Topology
 - Compute homology groups of spaces of not finite type: loop spaces, classifying spaces, . . .

General goal

Increase the functionality of Kenzo

- Pushout:
 - Usual construction in Topology
 - Particular cases: wedges, joins, ...

- Kenzo:
 - Symbolic Computation system devoted to Algebraic Topology
 - Compute homology groups of spaces of not finite type: loop spaces, classifying spaces, . . .

General goal

Increase the functionality of Kenzo

- Pushout:
 - Usual construction in Topology
 - Particular cases: wedges, joins, ...

Concrete goal

New Kenzo module for constructing the Pushout of simplicial sets

Table of Contents

- Previous concepts
 - Effective Homology
 - Pushout
- 2 Effective Homology of the Pushout
- 3 Examples
- 4 Conclusions and Further Work

Table of Contents

- Previous concepts
 - Effective Homology
 - Pushout
- 2 Effective Homology of the Pushout
- 3 Examples
- Conclusions and Further Work

• Finite nature objects:

- Finite nature objects:
 - Adjacency matrix is an integer matrix

- Finite nature objects:
 - Adjacency matrix is an integer matrix
 - Homology groups: Smith Normal Form

- Finite nature objects:
 - Adjacency matrix is an integer matrix
 - Homology groups: Smith Normal Form
- Non finite nature objects:

- Finite nature objects:
 - Adjacency matrix is an integer matrix
 - Homology groups: Smith Normal Form
- Non finite nature objects:
 - Traditional methods can not be applied

- Finite nature objects:
 - Adjacency matrix is an integer matrix
 - Homology groups: Smith Normal Form
- Non finite nature objects:
 - Traditional methods can not be applied
 - Effective Homology:

- Finite nature objects:
 - Adjacency matrix is an integer matrix
 - Homology groups: Smith Normal Form
- Non finite nature objects:
 - Traditional methods can not be applied
 - Effective Homology:
 - Sergeraert's ideas

- Finite nature objects:
 - Adjacency matrix is an integer matrix
 - Homology groups: Smith Normal Form
- Non finite nature objects:
 - Traditional methods can not be applied
 - Effective Homology:
 - Sergeraert's ideas
 - Provides real algorithms to compute homology groups

- Finite nature objects:
 - Adjacency matrix is an integer matrix
 - Homology groups: Smith Normal Form
- Non finite nature objects:
 - Traditional methods can not be applied
 - Effective Homology:
 - Sergeraert's ideas
 - Provides real algorithms to compute homology groups
 - Implemented in the Kenzo system using Higher-order functional programming

- Finite nature objects:
 - Adjacency matrix is an integer matrix
 - Homology groups: Smith Normal Form
- Non finite nature objects:
 - Traditional methods can not be applied
 - Effective Homology:
 - Sergeraert's ideas
 - Provides real algorithms to compute homology groups
 - Implemented in the Kenzo system using Higher-order functional programming

- Finite nature objects: Effective Objects
 - Adjacency matrix is an integer matrix
 - Homology groups: Smith Normal Form
- Non finite nature objects: Locally Effective Objects
 - Traditional methods can not be applied
 - Effective Homology:
 - Sergeraert's ideas
 - Provides real algorithms to compute homology groups
 - Implemented in the Kenzo system using Higher-order functional programming

• Effective Objects:

- Effective Objects:
 - Explicit list of generators

- Effective Objects:
 - Explicit list of generators
 - Local properties: determine if an elements belongs to a set

- Effective Objects:
 - Explicit list of generators
 - Local properties: determine if an elements belongs to a set
 - Global properties: determine if a set is empty

- Effective Objects:
 - Explicit list of generators
 - Local properties: determine if an elements belongs to a set
 - Global properties: determine if a set is empty
 - Example: set definition by extension

- Effective Objects:
 - Explicit list of generators
 - Local properties: determine if an elements belongs to a set
 - Global properties: determine if a set is empty
 - Example: set definition by extension
- Locally Effective Objects:

- Effective Objects:
 - Explicit list of generators
 - Local properties: determine if an elements belongs to a set
 - Global properties: determine if a set is empty
 - Example: set definition by extension
- Locally Effective Objects:
 - Non available explicit list of generators

Effective Objects:

- Explicit list of generators
- Local properties: determine if an elements belongs to a set
- Global properties: determine if a set is empty
- Example: set definition by extension
- Locally Effective Objects:
 - Non available explicit list of generators
 - Infinite numbers of generators
 - Characteristic function

Effective Objects:

- Explicit list of generators
- Local properties: determine if an elements belongs to a set
- Global properties: determine if a set is empty
- Example: set definition by extension
- Locally Effective Objects:
 - Non available explicit list of generators
 - Infinite numbers of generators
 - Characteristic function
 - Local information is available

Effective Objects:

- Explicit list of generators
- Local properties: determine if an elements belongs to a set
- Global properties: determine if a set is empty
- Example: set definition by extension
- Locally Effective Objects:
 - Non available explicit list of generators
 - Infinite numbers of generators
 - Characteristic function
 - Local information is available
 - Example: set definition by intension

Effective vs Locally Effective Chain Complexes

Definition

An effective chain complex is a free chain complex of \mathbb{Z} -modules, $C_* = (C_n, d_n)_{n \in \mathbb{N}}$, where each group C_n is finitely generated and

- an algorithm returns a Z-base in each grade n
- an algorithm provides the differentials d_n

Definition

A locally effective chain complex is a free chain complex of \mathbb{Z} -modules, $C_* = (C_n, d_n)_{n \in \mathbb{N}}$, where each group C_n is formed by a infinite number of generators

Effective vs Locally Effective Chain Complexes

Definition

An effective chain complex is a free chain complex of \mathbb{Z} -modules, $C_* = (C_n, d_n)_{n \in \mathbb{N}}$, where each group C_n is finitely generated and

- an algorithm returns a Z-base in each grade n
- \bullet an algorithm provides the differentials d_n
- differentials $d_n: C_n \to C_{n-1}$ can be expressed as integer matrices
- possible to compute $Ker d_n y Im d_{n+1}$

Definition

A locally effective chain complex is a free chain complex of \mathbb{Z} -modules, $C_* = (C_n, d_n)_{n \in \mathbb{N}}$, where each group C_n is formed by a infinite number of generators

• impossible to compute $Ker d_n \vee Im d_{n+1}$

Effective vs Locally Effective Chain Complexes

Definition

An effective chain complex is a free chain complex of \mathbb{Z} -modules, $C_* = (C_n, d_n)_{n \in \mathbb{N}}$, where each group C_n is finitely generated and

- an algorithm returns a Z-base in each grade n
- \bullet an algorithm provides the differentials d_n
- differentials $d_n: C_n \to C_{n-1}$ can be expressed as integer matrices
- possible to compute Ker d_n y Im d_{n+1}
- possible to compute the homology groups

Definition

A locally effective chain complex is a free chain complex of \mathbb{Z} -modules, $C_* = (C_n, d_n)_{n \in \mathbb{N}}$, where each group C_n is formed by a infinite number of generators

- impossible to compute $Ker d_n \vee Im d_{n+1}$
- possible to perform local computations, differential of a generator

Definition

A reduction ρ between two chain complexes C_* y D_* (denoted by $\rho: C_* \Rightarrow D_*$) is a triple $\rho = (f, g, h)$

satisfying the following relations:

- 1) $fg = \operatorname{Id}_{D_*}$;
- 2) $d_C h + h d_C = \operatorname{Id}_{C_*} g f$;
- 3) fh = 0; hg = 0; hh = 0.

Definition

A reduction ρ between two chain complexes C_* y D_* (denoted by $\rho: C_* \Rightarrow D_*$) is a triple $\rho = (f, g, h)$

satisfying the following relations:

- 1) $fg = \operatorname{Id}_{D_*}$;
- 2) $d_C h + h d_C = \operatorname{Id}_{C_*} g f$;
- 3) fh = 0; hg = 0; hh = 0.

Theorem

If $C_* \Rightarrow D_*$, then $C_* \cong D_* \oplus A_*$, with A_* acyclic, which implies that $H_n(C_*) \cong H_n(D_*)$ for all n.

Definition

A (strong chain) equivalence ε between C_* and D_* , ε : $C_* \Leftrightarrow D_*$, is a triple $\varepsilon = (B_*, \rho, \rho')$ where B_* is a chain complex, ρ : $B_* \Rightarrow C_*$ and ρ' : $B_* \Rightarrow_{\rho} P_*$.

Definition

A (strong chain) equivalence ε between C_* and D_* , ε : $C_* \Leftrightarrow D_*$, is a triple $\varepsilon = (B_*, \rho, \rho')$ where B_* is a chain complex, ρ : $B_* \Rightarrow C_*$ and ρ' : $B_* \Rightarrow_{\rho} P_*$.

Definition

An object with effective homology is a quadruple $(X, C_*(X), HC_*, \varepsilon)$ where:

- X is a locally effective object
- C_{*}(X) is a (locally effective) chain complex canonically associated with X, which allows the study of the homological nature of X
- HC_{*} is an effective chain complex
- ε is a equivalence ε : $C_*(X) \Leftrightarrow HC_*$

Definition

A (strong chain) equivalence ε between C_* and D_* , ε : $C_* \Leftrightarrow D_*$, is a triple $\varepsilon = (B_*, \rho, \rho')$ where B_* is a chain complex, ρ : $B_* \Rightarrow C_*$ and ρ' : $B_* \Rightarrow_{\rho} P_*$.

Definition

An object with effective homology is a quadruple $(X, C_*(X), HC_*, \varepsilon)$ where:

- X is a locally effective object
- C_{*}(X) is a (locally effective) chain complex canonically associated with X, which allows the study of the homological nature of X
- HC_{*} is an effective chain complex
- ε is a equivalence ε : $C_*(X) \Leftrightarrow HC_*$

Theorem

Let an object with effective homology $(X,C_*(X),HC_*,\epsilon)$ then $H_n(X)\cong H_n(HC_*)$ for all n.

Definition

Let f, g morphisms, the pushout of f, g

$$\begin{array}{c}
X \xrightarrow{f} Y \\
\downarrow g \\
\chi \\
Z
\end{array}$$

Definition

Let f, g morphisms, the pushout of f, g

is an object P for which the diagram:

commutes

Definition

Let f, g morphisms, the pushout of f, g

is an object P for which the diagram:

- commutes
- respects the universal property

Standard Construction

 $P_{(f,g)} \cong (Y \coprod (X \times I) \coprod Z) / \sim where:$

- I is the unit interval
- for every $x \in X$, \sim :
 - $(x,0) \sim f(x) \in Y$
 - $(x,1) \sim g(x) \in Z$

Table of Contents

- 1 Previous concepts
- 2 Effective Homology of the Pushout
- 3 Examples
- 4 Conclusions and Further Work

Given $f: X \to Y$ and $g: X \to Z$ simplicial morphisms where X, Y and Z are simplicial sets:

Given $f: X \to Y$ and $g: X \to Z$ simplicial morphisms where X, Y and Z are simplicial sets:

Given $f: X \to Y$ and $g: X \to Z$ simplicial morphisms where X, Y and Z are simplicial sets:

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow g & & \downarrow f' \\
Z & \xrightarrow{g'} & P(f,g)
\end{array}$$

Theorem (Algorithm: Standard Construction, Implementation: J. Heras)

Input: two simplicial morphisms $f: X \to Y$ and $g: X \to Z$ where X, Y and Z are simplicial sets.

Output: the pushout $P_{(f,g)}$.

Given $f: X \to Y$ and $g: X \to Z$ simplicial morphisms where X, Y and Z are simplicial sets with effective homology:

$$(X, C_*(X), HX_*, \varepsilon_X) \xrightarrow{f} (Y, C_*(Y), HY_*, \varepsilon_Y)$$

$$\downarrow^g \qquad \qquad \downarrow$$

$$(Z, C_*(Z), HZ_*, \varepsilon_Z) \longrightarrow (P_{(f,g)}, C_*(P_{(f,g)}), -, -)$$

Given $f: X \to Y$ and $g: X \to Z$ simplicial morphisms where X, Y and Z are simplicial sets with effective homology:

$$(X, C_{*}(X), HX_{*}, \varepsilon_{X}) \xrightarrow{f} (Y, C_{*}(Y), HY_{*}, \varepsilon_{Y})$$

$$\downarrow^{g} \qquad \qquad \downarrow^{g}$$

$$(Z, C_{*}(Z), HZ_{*}, \varepsilon_{Z}) \longrightarrow (P_{(f,g)}, C_{*}(P_{(f,g)}), HP_{*}, \varepsilon_{P})$$

Given $f: X \to Y$ and $g: X \to Z$ simplicial morphisms where X, Y and Z are simplicial sets with effective homology:

$$(X, C_*(X), HX_*, \varepsilon_X) \xrightarrow{f} (Y, C_*(Y), HY_*, \varepsilon_Y)$$

$$\downarrow^g \qquad \qquad \downarrow$$

$$(Z, C_*(Z), HZ_*, \varepsilon_Z) \longrightarrow (P_{(f,g)}, C_*(P_{(f,g)}), HP_*, \varepsilon_P)$$

Theorem (Algorithm: F. Sergeraert, Implementation: <u>J. Heras)</u>

Input: two simplicial morphisms $f: X \to Y$ and $g: X \to Z$ where X, Y and Z are simplicial sets with effective homology.

Output: the effective homology version of $P_{(f,g)}$, that is, an equivalence $C_*(P_{(f,g)}) \Leftrightarrow HP_*$, where HP_* is an effective chain complex.

Theorem

Input:

 $C_*(B)$ a chain complex;

$$(C_*(A), HA_*, \varepsilon_A);$$

$$(C_*(C), HC_*, \varepsilon_C);$$

$$0 \stackrel{0}{\longleftarrow} C_*(A)_* \stackrel{\sigma}{\stackrel{\sigma}{\rightleftharpoons}} C_*(B) \stackrel{\rho}{\stackrel{\rho}{\rightleftharpoons}} C_*(C) \stackrel{0}{\longleftarrow} 0$$

Output: $(C_*(B), HB_*, \varepsilon_B)$

$$0 \longleftarrow M \Longrightarrow CP_{(f,g)} \Longrightarrow CY \oplus CZ \longleftarrow 0$$

where $M = X \times I \setminus ((X \times \{0\}) \cup (X \times \{1\}))$

$$0 \longleftarrow M \Longrightarrow CP_{(f,g)} \Longrightarrow CY \oplus CZ \longleftarrow 0$$

where
$$M = X \times I \setminus ((X \times \{0\}) \cup (X \times \{1\}))$$

$\mathsf{Theorem}$

Input: two simplicial sets X and Y with effective homology Output: an equivalence $C_*(X \oplus Y) \Leftarrow DD_* \Rightarrow HD_*$, where HD_* is effective.

$$0 \longleftarrow M \Longrightarrow CP_{(f,g)} \Longrightarrow CY \oplus CZ \longleftarrow 0$$

where

$$M = X \times I \setminus ((X \times \{0\}) \cup (X \times \{1\}))$$

Consider the short exact sequence:

$$0 \longleftarrow M \Longrightarrow C(X \times I) \Longrightarrow C(X \times \{0\}) \oplus C(X \times \{1\}) \longleftarrow 0$$

$$0 \longleftarrow M \Longrightarrow C(X \times I) \Longrightarrow C(X \times \{0\}) \oplus C(X \times \{1\}) \longleftarrow 0$$
where $M = X \times I \setminus ((X \times \{0\}) \cup (X \times \{1\}))$

$\mathsf{Theorem}$

Input:

 $C_*(A)$ a chain complex;

$$(C_*(B), HB_*, \varepsilon_B);$$

$$(C_*(C), HC_*, \varepsilon_C);$$

$$0 \stackrel{0}{\longleftarrow} C_*(A)_* \stackrel{\sigma}{\underset{i}{\longleftarrow}} C_*(B) \stackrel{\rho}{\underset{i}{\longleftarrow}} C_*(C) \stackrel{0}{\longleftarrow} 0$$

Output: $(C_*(A), HA_*, \varepsilon_A)$

$$0 \longleftarrow M \Longrightarrow C(X \times I) \Longrightarrow C(X \times \{0\}) \oplus C(X \times \{1\}) \longleftarrow 0$$
where $M = X \times I \setminus ((X \times \{0\}) \cup (X \times \{1\}))$

Theorem (Eilenberg-Zilber Theorem)

Input: two simplicial sets X and Y with effective homology Output: an equivalence $C_*(X \times Y) \Leftarrow DC_* \Rightarrow C_*(X) \otimes C_*(Y)$, where $C_*(X) \otimes C_*(Y)$ are effective.

$$0 \longleftarrow M \Longrightarrow C(X \times I) \Longrightarrow C(X \times \{0\}) \oplus C(X \times \{1\}) \longleftarrow 0$$
where $M = X \times I \setminus ((X \times \{0\}) \cup (X \times \{1\}))$

$\mathsf{Theorem}$

Input: two simplicial sets X and Y with effective homology Output: an equivalence $C_*(X \oplus Y) \Leftarrow DD_* \Rightarrow HD_*$, where HD_* is effective.

$$0 \longleftarrow M \Longrightarrow C(X \times I) \Longrightarrow C(X \times \{0\}) \oplus C(X \times \{1\}) \longleftarrow 0$$
where $M = X \times I \setminus ((X \times \{0\}) \cup (X \times \{1\}))$

Theorem

Input:

 $C_*(A)$ a chain complex:

$$(C_*(B), HB_*, \varepsilon_B);$$

$$(C_*(C), HC_*, \varepsilon_C);$$

$$0 \stackrel{0}{\longleftarrow} C_*(A)_* \stackrel{\sigma}{\stackrel{\sigma}{\longleftarrow}} C_*(B) \stackrel{\rho}{\stackrel{\rho}{\longleftarrow}} C_*(C) \stackrel{0}{\longleftarrow} 0$$

Output: $(C_*(A), HA_*, \varepsilon_A)$

$$0 \longleftrightarrow M \Longrightarrow CP_{(f,g)} \Longrightarrow CY \oplus CZ \longleftrightarrow 0$$

where
$$M = X \times I \setminus ((X \times \{0\}) \cup (X \times \{1\}))$$

Theorem

Input:

 $C_*(B)$ a chain complex;

$$(C_*(A), HA_*, \varepsilon_{\Delta})$$
;

$$(C_*(C), HC_*, \varepsilon_C);$$

$$0 \stackrel{0}{\longleftarrow} C_*(A)_* \stackrel{\sigma}{\underset{i}{\longleftarrow}} C_*(B) \stackrel{\rho}{\underset{i}{\longleftarrow}} C_*(C) \longleftarrow 0$$

Output: $(C_*(B), HB_*, \varepsilon_B)$

Table of Contents

- 1 Previous concepts
- 2 Effective Homology of the Pushout
- 3 Examples
- 4 Conclusions and Further Work

Examples

 New module allows the computation of homology groups of spaces

Examples

- New module allows the computation of homology groups of spaces
- Demo

Table of Contents

- 1 Previous concepts
- 2 Effective Homology of the Pushout
- 3 Examples
- Conclusions and Further Work

Conclusions

Conclusions:

 New Kenzo module (1600 lines) allows the computation of homology groups of spaces defined as the pushout of simplicial sets

Conclusions

- Conclusions:
 - New Kenzo module (1600 lines) allows the computation of homology groups of spaces defined as the pushout of simplicial sets
- Further Work:
 - Implementation of new constructions

Effective Homology of the Pushout of Simplicial Sets

Jónathan Heras

Departamento de Matemáticas y Computación Universidad de La Rioja Spain

XII Encuentro de Álgebra Computacional y Aplicaciones EACA 2010, Santiago de Compostela

