BAT - Bolt Analysis Tool

User Manual

Author: Michael Sams

Issue: 0.1

Date: January 3, 2021

Contents

1	Introduction	2
2	Joint Geometry	3
3	References	4

Symbols and Abbreviations

Symbols

$lpha_A$	tightening factor
$lpha_b$	coeff. of lin. thermal expansion of the bolt
$lpha_c$	coeff. of lin. thermal expansion of the clamped part (plate)
δ_b	elastic compliance of the bolt
δ_c	elastic compliance of the clamped part (plate)
λ	under-head bearing angle of bolt
μ_{th}	coeff. of friction in bolt thread
·	coeff. of friction under bolt head
μ_{uh} $ u$	bolt utilization factor
φ	helix angle / slope of bolt thread
Φ	load factor of concentric joint
¥	(also: force ratio or relative compliance factor)
Φ_n	load factor for concentric clamping and concentric
Ψn	force load introduction via the clamped parts
0	friction angle in bolt thread
$ ho \ \sigma_n$	normal stress in the bolt
σ_n	von-Mises stress in the bolt
$ au_v$	shear stress in the bolt
1	Shear Stress in the bolt
A_1	nominal cross section of threaded bolt
A_3	minimal thread cross section
A_p	pitch cross section of threaded bolt
A_s	stress cross section of threaded bolt
d	nominal threaded bolt diameter
d_2	pitch diameter of threaded bolt
d_3	minimal diameter of threaded bolt
d_h	minimal contact diameter under bolt head
d_s	stress diameter of threaded bolt
F_A	external, axial bolt load
F_M	preload after tightening / assembly preload
F_{PA}	additional axial plate load
F_Q	external, shear bolt load

 F_{SA} additional axial bolt load

 F_V service preload incl. embedding and thermal influence

 f_Z plastic deformation due to embeddding

 F_Z preload loss due to embedding

 l_K joint clamped length

 M_p prevailing torque of bolt locking device

n load introduction factor p pitch of bolt thread

Abbreviations

BAT Bolt Analysis Tool
TBJ through-bolt joint
TTJ tapped thread joint

List of Figures

1.1	Joint diagram for the working state of a concentrically loaded bolted	
	joint with $n = 1$ [3]	2

List of Tables

List of Algorithms

1 Introduction

This document will include the BAT (Bolt Analysis Tool) User Manual [1] [2] [3].

$$p(\boldsymbol{\Theta}|\boldsymbol{y}) = \frac{p(\boldsymbol{y}|\boldsymbol{\Theta}) \ p(\boldsymbol{\Theta})}{p(\boldsymbol{y})},$$
 (1.1)

Figure 1.1: Joint diagram for the working state of a concentrically loaded bolted joint with n = 1 [3]

2 Joint Geometry

text

3 References

- [1] Guidelines for threaded fasteners. ESA Guideline ESA PSS-03-208 Issue 1, Structures and Mechanism Division ESTEC, December 1989.
- [2] Space engineering threaded fasteners handbook. ECSS Handbook ECSS-E-HB-32-23A, ECSS European Cooperation for Space Standardization, 16 April 2010.
- [3] Systematic calculation of highly stressed bolted joints joints with one cylindrical bolt. VDI Guideline VDI2230 Part 1, VDI Verein Deutscher Ingenieure, November 2015.