Homework 8.4

due 11:59pm Monday 11 December, by Gradescope as usual

The matrix exponential. For a square matrix A, the matrix exponential function e^{At} is defined as

$$e^{\mathbf{A}t} = \mathbf{I} + \mathbf{A}t + \mathbf{A}^2 \frac{t^2}{2} + \dots + \mathbf{A}^k \frac{t^k}{k!} + \dots = \sum_{k=0}^{\infty} \mathbf{A}^k \frac{t^k}{k!}$$

Notice that if t = 0 then the matrix exponential is just the identity matrix:

$$e^{\mathbf{A} 0} = \mathbf{I}$$

The formula for $e^{\mathbf{A}t}$ includes the ordinary (scalar) exponential as a special case: if $\mathbf{A}=(a)$ is a 1×1 matrix with entry a then $e^{\mathbf{A}t}=e^{at}=1+at+(at)^2/2+(at)^3/3!+\dots$

One can only compute $e^{\mathbf{A}t}$ by hand in easy cases. First of all you need to be able to compute powers of \mathbf{A} ; you have to know how to do matrix-matrix multiplication. Then one "easy case" is when \mathbf{A} is a diagonal matrix. Another is when \mathbf{A} is a nonzero matrix for which there is a power \mathbf{A}^k which is the zero matrix, because then the infinite series becomes a finite sum.

The key fact about the matrix exponential, which makes it useful for differential equations, is the usual derivative rule for exponentials:

$$\frac{d}{dt}e^{\mathbf{A}t} = \mathbf{A}e^{\mathbf{A}t}$$

The matrix exponential allows us to solve any 1st-order, linear, constant-coefficient system of differential equations with ease. For homogeneous systems

$$\mathbf{X}' = \mathbf{A}\mathbf{X}$$

the general solution is

$$\mathbf{X}(t) = e^{\mathbf{A}t}\mathbf{C}$$

Here X(t) is a column vector of the solution components and C is a column vector of constants:

$$\mathbf{X}(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}, \qquad \mathbf{C} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

Notice that $\mathbf{X}(0) = \mathbf{C}$ in the general solution formula (because $e^{\mathbf{A}0} = \mathbf{I}$). If \mathbf{X}_0 is a vector then the solution of the initial value problem

$$\mathbf{X}' = \mathbf{A}\mathbf{X}, \qquad \mathbf{X}(0) = \mathbf{X}_0$$

is

$$\mathbf{X}(t) = e^{\mathbf{A}t} \mathbf{X}_0$$

In other words, C is the vector of initial values.

As usual, a computer can do the job! In Matlab or Octave, $e^{\mathbf{A}t} = \exp(\mathbb{A} \star \mathbb{I})$. (*The command* $\exp(\mathbb{A})$) gives the wrong answer here. It exponentiates entrywise.) So, if you have entered a square matrix \mathbb{A} and a vector \mathbb{C} , then the solution X(t) at a particular time \mathbb{I} is

$$>> X = expm(A * t) * C$$

Graded for Correctness

In Exercises 1 and 2 use the definition to compute $e^{\mathbf{A}t}$ by hand, and simplify.

Exercise 1.
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 5 & 1 & 0 \end{pmatrix}$$

Exercise 2.
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Exercises 3 and 4 require technology, presumably Matlab. Compute the matrix $e^{\mathbf{A}t}$ and the (particular) vector $\mathbf{X}(t) = e^{\mathbf{A}t}\mathbf{C}$.

Exercise 3.
$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, t = 1$$

Exercise 4.
$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 6 & 1 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, t = 0.5$$

Exercises 5 and 6 relate the above calculations to familiar stuff. Use the **auxiliary equation method** (§4.3) to solve the initial value problem by hand. You will get the same numbers as in Exercises 3 and 4. Explain this by **writing the differential equation as a 1st-order system** and **stating explicitly** what y(t) corresponds to in Exercises 3 and 4.

Exercise 5. Solve the initial value problem and compute y(t) at t = 0.5:

$$y'' - y' - 6y = 0,$$
 $y(0) = 1, y'(0) = 0$

Exercise 6. Solve the initial value problem and compute y(t) at t=1:

$$y'' + y = 0,$$
 $y(0) = 0, y'(0) = 2$

Graded for Completeness

Use the definition to compute $e^{\mathbf{A}t}$ by hand, and simplify.

Exercise 7.
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & -2 \end{pmatrix}$$

Use technology to compute the matrix $e^{\mathbf{A}t}$ and the vector $\mathbf{X}(t) = e^{\mathbf{A}t}\mathbf{C}$.

Exercise 8.
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 0 & -1 \\ -2 & -3 & -4 \end{pmatrix}$$
, $\mathbf{C} = \begin{pmatrix} -1 \\ 9 \\ 1 \end{pmatrix}$, $t = \pi$