Exercise Sheet: Week 5. Answers

(1) Let *Even* be the decision problem $(\mathbb{N}, \{n : n \text{ is even}\})$ and Odd be $(\mathbb{N}, \{n : n \text{ is odd}\})$. Give m-reductions between the two problems.

Use $n \mapsto n+1$. You **cannot** just flip the answer, because that can't be done with m-reductions.

(2) We remarked that (computable) predicates are (computable) functions. A function $f: \mathbb{N} \to \mathbb{N}$ is also a predicate: its *characteristic predicate* $\chi_f(x, y)$ is true iff y = f(x). Show that f is computable iff χ_f is computable.

Assume f is computable. Then to compute $\chi_f(x,y)$, just see if f(x) = y. Conversely, assume χ_f is computable. To compute f(x), compute $\chi_f(x,y)$ for $y = 0, \ldots$ until it returns true, which it will because f is a function.

(3) Suppose that Q_1 and Q_2 are semidecidable queries over the same domain D. Show that $Q_1 \cup Q_2$ and $Q_1 \cap Q_2$ are semidecidable.

Trivial

(4) Suppose that L is a decidable language over some alphabet Σ . Show that the language L^* is decidable.

Just check all possible decompositions of the input string.

(5) Following on from question 2: Given a computable predicate $\psi(x, y)$, is it decidable whether ψ is the characteristic predicate of some function f?

No. We need to check that ψ is functional, in that each x maps to exactly one y. Because we have no bounds, it is only semi-decidable to check that ψ maps a given x to some y (compute each $\psi(x,y)$ in turn until it says true), and doing it for all x is Π_2^0 ; and it's only co-semi-decidable that ψ maps a given x to at most one y (compute as before, returning false when you see the second 'true') (and so still Π_1^0 to do this for all x).

To actually prove undecidability, we can reduce H to this problem, thus. Let M be a machine. Define the predicate ψ as follows:

$$\psi(x,y) = \begin{cases} 1 & \text{if } M \text{ halts after exactly } y \text{ steps} \\ 0 & \text{otherwise} \end{cases}$$

This is clearly a computable predicate, and is the characteristic predicate of the partial function

$$f(x) = execution time of M or \bot$$

which is a function iff M has a finite execution time, i.e. halts. More slickly and more powerfully, we can prove Π_2^0 -hardness directly by reduction from UH. Define $\psi': \mathbb{N}^2 \to \{0,1\}$ by

 $\psi'(x,y)=1 \quad \text{iff M halts in exactly y steps on input x}$ $\psi' \text{ is the graph of a total function iff M halts on every input.}$