ECE 1508: Applied Deep Learning

Chapter 4: Convolutional Neural Networks

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Winter 2025

Computer Vision

Computer vision has been a fundamental problem in machine learning

The aim is to design a machine that can recognize patterns in visual contents

Long study on biological vision systems has been conducted

- Hubel and Wiesel studied visual cortex in late 1950s
- Inspired by that study Fukushima introduced Neocognitron in 1979
 - It was a convolutional NN for unsupervised learning
- Yann LeCun proposed LeNet for supervised learning in 1989

Convolutional NNs: CNNs

Let's make an agreement: though we all know CNN News Channel we also say

Convolutional $NN \equiv CNN$

CNN

CNN is an FNN which in addition to standard fully-connected layers uses convolutional and pooling layers for feature extraction

- + But, what is a convolutional layer? What is a pooling layer? What do you mean by feature extraction?
- Well! We get there soon! But first let's see what the main motivation is

We intend to train an NN that classifies MNIST dataset with one difference to our earlier classification problem: we assume that MNIST images are now included in a larger white background

- + Can't we simply use standard fully-connected FNN?
- Sure! We can

Say the photos with background are 3 times larger in height and width

- Images are now $84 \times 84 \equiv$ we have 7056 pixels
- We should have input layer with 7056 pixels and train the NN with MNIST

To do the training, we should first convert our MNIST images into new larger-size images

We do this by zero-padding: all images after conversion lie on top left corner

Do you think after training, NN classifies "3" in lower right corner correctly? No!

- Why does this happen?
- Our NN is trained to only look at top left corner, it will miss information anywhere else including in lower right corner
- + Can we do anything about it?
- Yes! We learned it in the last chapter: Data Augmentation

We shift MNIST images in the large background left and right, up and down and add all those shifts with same label to the dataset

Motivational Example: Recognition with Augmented Data

We should get too many of them!

Using a Trained FNN

- + But it sounds like too much work and computation!
- Yes! It is! and frankly speaking it is not worth it!

Many scientist noted that our brain doesn't work like that

once we learn "3" we can recognize it anywhere in our vision!

We may initially note that

- ① Our brain doesn't process the visual field as the whole
- 2 It searches for patterns in smaller fields within our vision
 - ↓ It constructs a pattern for "3" through training
 - □ After training, it scans any visual field to see if it finds that pattern

Let's try realizing it with a NN!

Using a Trained FNN

Let's assume we have trained the following FNN on MNIST

- It gets a 784-pixel image as input
- It passes it through three fully-connected layers
- It returns the class of the image
 - If it doesn't find a class it returns ∅

Scanning via MNIST Trained FNN

We can mimic what our brain does

we scan the larger image with background

Scanning via MNIST Trained FNN

We go through windows for size 28×28

- 1 At each window, we give it 784 pixels to the FNN to classify
 - If we find a class: we save the class and return True
 - If we don't find a class: we return False
- 2 We compute OR of outputs for all windows
 - If True: we return the saved class.
 - If False: we return

 ∅

CNNs: Scanning via Shared Weights

The above example is a simple CNN

- ullet This CNN extracts features from the image using a 28 imes 28 filter
 - the filter's weights are those given by the first layer of trained FNN
 - \downarrow the features are affine values calculated in first layer of trained FNN
- The scanning procedure has a specific name: convolution
 - it goes through the image by sliding over it via a smaller window
 - it determines an affine transform of smaller subsets of pixels
- We can look at it as a giant FNN with shared weights
 - ⇒ each pixel is connected to the next layer via affine transform

 - → not every feature depends on every pixels
 - the first layer is not fully-connected: it's locally-connected

Let's make our understanding deeper by making our first CNN!

Recognizing X

In Assignment 1, we trained a perceptron with 9 inputs

it gets a 3×3 image and says whether it is "X" or not

Assume we have weights and bias: we want to recognize "X" in a larger image

Recognizing X

We follow our scanning idea to recognize 3×3 "X" in a 10×10 image: we put the weights on a 3×3 filter and slide it over the image

We slide the filter with stride 1 and save the outputs of perceptron on a map

Recognizing X

It's enough to have only a single 1 to recognize "X"

0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

We therefore return the OR of all entries in the above map

Recognizing X: Convolution

We really don't need to determine the activation after each scan: we could only save the affine transforms in the map

Convolution with Stride 1

image

w_1	w_{2}	$w_{3\hspace{1em}3}$	$w_{3\hspace{1em}3}$	$w_{3\hspace{1em}3}$	$w_{3\hspace{1em}3}$	$w_{3\hspace{1em}3}$	$w_{ m 3}$	$w_{f 3}$	w_3
w_4	w_{3}	$w_{\mathtt{B}}$	$w_{\mathtt{B}}$	$w_{f 8}$	w_{8}	w_{8}	$w_{\mathtt{B}}$	w_{B}	w_{B}
w_{4}	$w_{f g}$	$w_{f i}$	w_{g}	w_{g}	w_{g}	w_{g}	w_{g}	$w_{m{ heta}}$	$w_{ heta}$
w_7	w_{8}	$w_{\$}$	$w_{ m g}$	$w_{\$}$	$w_{\$}$	$w_{\$}$	$w_{\$}$	w_{8}	w_9

filter

$$w_1 | w_2 | w_3 \\ w_4 | w_5 | w_6 \\ w_7 | w_8 | w_9$$

feature map

z_1	1,1	$z_{2,1}$	$z_{3,1}$	$z_{4,1}$	$z_{5,1}$	$z_{6,1}$	$z_{7,1}$	$z_{8,1}$
z_1	1,2	$z_{2,2}$	$z_{3,2}$	$z_{4,2}$	$z_{5,2}$	$z_{6,2}$	$z_{7,2}$	$z_{8,2}$
z_1	1,3	$z_{2,3}$	$z_{3,3}$	$z_{4,3}$	$z_{5,3}$	$z_{6,3}$	$z_{7,3}$	$z_{8,3}$
z_1	1,4	$z_{2,4}$	z _{3,4}	$z_{4,4}$	$z_{5,4}$	$z_{6,4}$	$z_{7,4}$	z _{8,4}
z_1	1,5	$z_{2,5}$	$z_{3,5}$	$z_{4,5}$	$z_{5,5}$	$z_{6,5}$	$z_{7,5}$	$z_{8,5}$
z_1	1,6	$z_{2,6}$	$z_{3,6}$	$z_{4,6}$	$z_{5,6}$	$z_{6,6}$	$z_{7,6}$	$z_{8,6}$
z_1	1,7	$z_{2,7}$	$z_{3,7}$	$z_{4,7}$	$z_{5,7}$	$z_{6,7}$	$z_{7,7}$	$z_{8,7}$
z_1	1,8	$z_{2,8}$	$z_{3,8}$	$z_{4,8}$	$z_{5,8}$	$z_{6,8}$	$z_{7,8}$	$z_{8,8}$

The above operation is convolution and we show it as below

feature map = Conv (image | filter, stride = 1)

Convolution with Stride 2

image

w_1	w_2	w_{3}	w_2	$w_{3\hspace{1em}3}$	w_2	$w_{3\hspace{1em}3}$	w_2	w_3	
w_4	$\overline{w_5}$	w_{6}	w_5	w_{6}	w_5	w_{6}	w_5	w_6	
$w_{\mathtt{T}}$	$w_{\mathtt{8}}$	$w_{\mathtt{g}}$	$w_{f 8}$	$w_{f g}$	$w_{f 2}$	$w_{f g}$	w_{8}	w_{9}	
w_4	w_5	w_{6}	w_5	w_{6}	w_5	w_{6}	w_5	w_6	
w_7	w_8	$w_{\mathfrak{F}}$	w_8	$w_{f g}$	w_8	$w_{\mathfrak{F}}$	w_8	w_9	

filter

$$egin{array}{c|c} w_1 & w_2 & w_3 \\ w_4 & w_5 & w_6 \\ w_7 & w_8 & w_9 \\ \hline \end{array}$$

feature map

	$z_{2,1}$		
	$z_{2,2}$		
	$z_{2,3}$		
$z_{1,4}$	$z_{2,4}$	$z_{3,4}$	$z_{4,4}$

We could also play with the stride \equiv the step-size by which we move filter

feature map = Conv (image | filter, stride = 2)

Convolution with Stride S

Let's formulate the convolution for a general filter: assume $\mathbf{W} \in \mathbb{R}^{F \times F}$ be a filter, we also call it kernel. Let $\mathbf{X} \in \mathbb{R}^{N \times N}$ be pixel matrix of the image. We want to find the output feature map, i.e.,

$$\mathbf{Z} = \operatorname{Conv}\left(\mathbf{X}|\mathbf{W}, \operatorname{stride} = S\right)$$

It's enough to find the corresponding sub-matrix for each entry of ${f Z}$

$$\mathbf{Z}[i,j] = \operatorname{sum}(\mathbf{W} \odot \mathbf{X}_{i,j})$$

where $\mathbf{X}_{i,j}$ is the corresponding $F \times F$ sub-matrix, i.e.,

$$\mathbf{X}_{i,j} = \mathbf{X} [1 + (i-1)S : \mathbf{F} + (i-1)S, 1 + (j-1)S : \mathbf{F} + (j-1)S]$$

Recognizing X: Pooling

The next operation we did is called pooling

pooling filter

This is however not conventional to have a pooling filter of different size

Pooling: Max Pooling with Stride 1

The convention is to use the same filter size as used in convolution layer

We can now give the feature map after pooling to a fully-connected FNN: this is a feature vector of reduced size!

We can repeat convolution and pooling over and over

CNN: Simple Architecture

Our simple CNN looks like this

This is a general architecture for CNNs, but of course we go deeper!

- We have more convolutional and pooling layers
- We do high-dimensional convolutions and more advanced poolings

CNN: Realistic Architectures

For instance the famous VGG-16 architecture looks like below

CNN: Connections to Biological Vision

Though it's artificially developed as a computation model: it is related to the initial model developed for description of biological vision

