Satisfiability with Equivalences in Agreement, Part 1

Krasimir Georgiev

September 1, 2016

▶ The sets A and B intersect strictly if $A \cap B$, $A \setminus B$ and $B \setminus A$ are nonempty.

▶ The sets A and B intersect strictly if $A \cap B$, $A \setminus B$ and $B \setminus A$ are nonempty.

▶ What happens if we avoid these?

► Two equivalence relations *G*, *E* on *A* are *in local agreement* if their classes do not strictly intersect

- ▶ Two equivalence relations *G*, *E* on *A* are *in local agreement* if their classes do not strictly intersect
- ▶ equivalently either $G[a] \subseteq E[a]$ or $E[a] \subseteq G[a]$ for every $a \in A$

- ▶ Two equivalence relations *G*, *E* on *A* are *in local agreement* if their classes do not strictly intersect
- ▶ equivalently either $G[a] \subseteq E[a]$ or $E[a] \subseteq G[a]$ for every $a \in A$
- ▶ (colored) foam hierarchy: balloons in baloons

- ▶ Two equivalence relations *G*, *E* on *A* are *in local agreement* if their classes do not strictly intersect
- ▶ equivalently either $G[a] \subseteq E[a]$ or $E[a] \subseteq G[a]$ for every $a \in A$
- (colored) foam hierarchy: balloons in baloons
- ▶ siam twin matryoshkas

This work

- define and characterize notions of agreement refinement,
 local agreement and global agreement
- find the computational complexity of the satisfiability of the monadic and the two-variable fragment with respect to these notions

Overview

Setups

Equivalence Relations

Reductions

Monadic Logics

Setups

- use unary predicate symbols to "encode" data at elements of structures
- example: a permutation setup "encodes" a permutation at every element of a structure
- ▶ bits \rightarrow binary counters \rightarrow vectors \rightarrow permutations

Bit Setups

The set of *bits* is $\mathbb{B} = \{0,1\}$. A *bit setup* is a predicate signature $B = \langle \textbf{\textit{u}} \rangle$ consisting of a single unary predicate symbol $\textbf{\textit{u}}$.

▶ Given \mathfrak{A} , define the function $[u:data]^{\mathfrak{A}}: A \to \mathbb{B}$ by:

$$[u:data]^{\mathfrak{A}} a = \begin{cases} 1 & \text{if } \mathfrak{A} \vDash u(a) \\ 0 & \text{otherwise.} \end{cases}$$

▶ If $d \in \mathbb{B}$, define the formula [u:eq-d](x) by:

$$[u:eq-d](x) = \begin{cases} u(x) & \text{if } d=1\\ \neg u(x) & \text{otherwise.} \end{cases}$$

▶ Property: $\mathfrak{A} \models [u:eq-d](a)$ iff $[u:data]^{\mathfrak{A}} a = d$.

Bit Setups Formulas

$$egin{align} & [u : ext{eq}](x,y) = u(x) \leftrightarrow u(y) \ & [u : ext{eq}-01](x,y) =
egthinspace{-0.05cm} & u(x) \land u(y) \ & [u : ext{eq}-10](x,y) = u(x) \land
egthinspace{-0.05cm} & u(y). \ & u(y) & u(y). \ & u(y) & u(y) & u(y). \ & u(y) & u(y) & u(y). \ & u(y) & u(y) & u(y) & u(y). \ & u(y) & u(y) & u(y) & u(y) & u(y). \ & u(y) & u(y)$$

- $\mathfrak{A} \models [\mathbf{u}:eq](a,b)$ iff $[\mathbf{u}:data]^{\mathfrak{A}} = [\mathbf{u}:data]^{\mathfrak{A}} b$.
- $ightharpoonup \mathfrak{A} dash [u:data]^{\mathfrak{A}} a = 0 \text{ and } [u:data]^{\mathfrak{A}} b = 1.$
- ▶ $\mathfrak{A} \models [\mathbf{u}: \text{eq-10}](a, b) \text{ iff } [\mathbf{u}: \text{data}]^{\mathfrak{A}} a = 1 \text{ and } [\mathbf{u}: \text{data}]^{\mathfrak{A}} b = 0.$

Counter Setups

The set of *t-bit numbers* is $\mathbb{B}_t = [0, 2^t - 1]$. A *t-bit counter setup* is a predicate signature $C = \langle \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_t \rangle$ consisting of *t* unary predicate symbols.

▶ Given \mathfrak{A} , define the function $[C:data]^{\mathfrak{A}}: A \to \mathbb{B}_t$ that returns a t-bit number for any $a \in A$ by:

$$[\mathrm{C:data}]^{\mathfrak{A}} a = \sum_{1 \leq i \leq t} 2^{i-1} [\boldsymbol{u}_i : \mathrm{data}]^{\mathfrak{A}} a.$$

Counter Setups Formulas

We can define *small formulas* with the following properties:

- ▶ $\mathfrak{A} \models [C:eq-d](a)$ iff $[C:data]^{\mathfrak{A}}a = d$.
- ▶ $\mathfrak{A} \models [C:eq](a,b)$ iff $[C:data]^{\mathfrak{A}}a = [C:data]^{\mathfrak{A}}b$.
- ▶ $\mathfrak{A} \models [C:less](a,b)$ iff $[C:data]^{\mathfrak{A}}a < [C:data]^{\mathfrak{A}}b$.
- $\mathfrak{A} \models [C:succ](a,b) \text{ iff } [C:data]^{\mathfrak{A}}b = 1 + [C:data]^{\mathfrak{A}}a.$
- ▶ $\mathfrak{A} \models [C:betw-d-e](a)$ iff $d \leq [C:data]^{\mathfrak{A}} a \leq e$.

Vector Setups

The set of *n*-dimensional *t*-bit vectors is \mathbb{B}_t^n . An *n*-dimensional *t*-bit vector setup is a predicate signature $V = \langle \boldsymbol{u}_{11}, \boldsymbol{u}_{12}, \dots, \boldsymbol{u}_{nt} \rangle$ of (nt) distinct unary predicate symbols.

- ► The *counter setup* V(p) of V at position $p \in [1, n]$ is $V(p) = \langle \boldsymbol{u}_{p1}, \boldsymbol{u}_{p2}, \dots, \boldsymbol{u}_{pt} \rangle$.
- $[V:data]^{\mathfrak{A}} a = ([V(1):data]^{\mathfrak{A}} a, [V(2):data]^{\mathfrak{A}} a, \dots, [V(n):data]^{\mathfrak{A}} a).$

Vector Setups

We can define small formulas

- ▶ $\mathfrak{A} \models [V(pq):eq](a) \text{ iff } [V(p):data]^{\mathfrak{A}} a = [V(q):data]^{\mathfrak{A}} a.$
- $\mathfrak{A} \models [V(pq):less](a) \text{ iff } [V(p):data]^{\mathfrak{A}} a < [V(q):data]^{\mathfrak{A}} a.$
- $ightharpoonup \mathfrak{A} dash [V(pq):succ](a) ext{ iff } [V(q):data]^{\mathfrak{A}} a = 1 + [V(p):data]^{\mathfrak{A}} a.$
- ▶ antilexicographic ordering, e.g. $(1,1,0) \prec (0,0,1)$: $\mathfrak{A} \models [V:less](a,b)$ iff $[V:data]^{\mathfrak{A}}a \prec [V:data]^{\mathfrak{A}}b$.

Permutation Setups

The set of permutations of [1, n] is \mathbb{S}_n .

Encode an *n*-permutation $\nu \in \mathbb{S}_n$ by the *n*-dimensional *t*-bit vector $(\nu(1), \nu(2), \dots, \nu(n))$, where *t* is the bitsize of *n*.

An *n*-permutation setup $P = \langle \boldsymbol{u}_{11}, \boldsymbol{u}_{12}, \dots, \boldsymbol{u}_{nt} \rangle$ is just an *n*-dimensional *t*-bit vector.

The *small formula* [P:perm] = [P:betw-1-n] \wedge [P:alldiff] asserts that the vector setup encodes exactly the permutations.

Let E_1, E_2, \ldots, E_n be a sequence of equivalence relations on A. The sequence is in

▶ refinement if it forms a chain under inclusion, that is if $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n$

Let E_1, E_2, \ldots, E_n be a sequence of equivalence relations on A. The sequence is in

- ▶ refinement if it forms a chain under inclusion, that is if $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n$
- ▶ global agreement if it can be rearranged into a chain under inclusion, that is if $E_{\nu(1)} \subseteq E_{\nu(2)} \subseteq \cdots \subseteq E_{\nu(n)}$ for some permutation ν of [1, n]

Let E_1, E_2, \ldots, E_n be a sequence of equivalence relations on A. The sequence is in

- ▶ refinement if it forms a chain under inclusion, that is if $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n$
- ▶ global agreement if it can be rearranged into a chain under inclusion, that is if $E_{\nu(1)} \subseteq E_{\nu(2)} \subseteq \cdots \subseteq E_{\nu(n)}$ for some permutation ν of [1, n]
- ▶ local agreement if for every $a \in A$, the sequence of equivalence classes $E_1[a], E_2[a], \ldots, E_n[a]$ can be rearranged into a chain under inclusion, that is if for every $a \in A$ there is some permutation $\nu(a)$ of [1, n] such that $E_{\nu(a)(1)}[a] \subseteq E_{\nu(a)(2)}[a] \subseteq \cdots \subseteq E_{\nu(a)(n)}[a]$

Let E_1, E_2, \ldots, E_n be a sequence of equivalence relations on A. The sequence is in

- ▶ refinement if it forms a chain under inclusion, that is if $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n$
- ▶ global agreement if it can be rearranged into a chain under inclusion, that is if $E_{\nu(1)} \subseteq E_{\nu(2)} \subseteq \cdots \subseteq E_{\nu(n)}$ for some permutation ν of [1, n]
- ▶ local agreement if for every $a \in A$, the sequence of equivalence classes $E_1[a], E_2[a], \ldots, E_n[a]$ can be rearranged into a chain under inclusion, that is if for every $a \in A$ there is some permutation $\nu(a)$ of [1, n] such that $E_{\nu(a)(1)}[a] \subseteq E_{\nu(a)(2)}[a] \subseteq \cdots \subseteq E_{\nu(a)(n)}[a]$
- lacktriangleright refinement \Longrightarrow local agreement

Intuition

Intuitively

▶ global agreement = refinement + a permutation

Intuition

Intuitively

- ▶ global agreement = refinement + a permutation
- ▶ local agreement = refinement + locally agreeing permutations

Example

Example of a sequence E_1, E_2, E_3 in local agreement:

Characterization

Lemma

The sequence E_1 , E_2 of two equivalence relations on A is in local agreement iff $E_1 \cup E_2$ is an equivalence relation on A.

Theorem

The sequence E_1, E_2, \ldots, E_n of equivalence relations on A is in local agreement iff the union of any nonempty subsequence is an equivalence relation on A, that is for any $m \in [1, n]$ and $1 \le i_1 < i_2 < \cdots < i_m \le n$ we have that $E_{i_1} \cup E_{i_2} \cup \cdots \cup E_{i_m}$ is an equivalence relation on A.

Levels

The *level sequence* L_1, L_2, \ldots, L_n of the sequence E_1, E_2, \ldots, E_n of equivalence relations on A in local agreement is defined by:

$$L_m = \bigcap \{ E_{i_1} \cup E_{i_2} \cup \cdots \cup E_{i_m} \mid 1 \leq i_1 < i_2 < \cdots < i_m \leq n \}.$$

Remark

The level sequence is a sequence of equivalence relations on A in refinement.

Example

Permutations

Lemma

Let E_1, E_2, \ldots, E_n be a sequence of equivalence relations on A in local agreement having level sequence L_1, L_2, \ldots, L_n . Suppose that $a \in A$ and that ν is any permutation witnessing the local agreement at a:

$$E_{\nu(1)}[a] \subseteq E_{\nu(2)}[a] \subseteq \cdots \subseteq E_{\nu(n)}[a].$$

Then $L_k[a] = E_{\nu(k)}[a]$ for any $k \in [1, n]$.

$$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$$

lacksquare \mathcal{L} , the ground logic, is the first-order logic with formal equality

$$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$$

- \triangleright \mathcal{L} , the ground logic, is the first-order logic with formal equality
- v, if given, bounds the number of allowed variables

$$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$$

- \triangleright \mathcal{L} , the ground logic, is the first-order logic with formal equality
- v, if given, bounds the number of allowed variables
- e, if given, specifies the number of builtin equivalence symbols

$$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$$

- \triangleright \mathcal{L} , the ground logic, is the first-order logic with formal equality
- ▶ v, if given, bounds the number of allowed variables
- e, if given, specifies the number of builtin equivalence symbols
- ➤ a ∈ {refine, global, local}, if given, specifies the agreement condition between the equivalence symbols

$$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$$

- \triangleright \mathcal{L} , the ground logic, is the first-order logic with formal equality
- ▶ v, if given, bounds the number of allowed variables
- e, if given, specifies the number of builtin equivalence symbols
- ➤ a ∈ {refine, global, local}, if given, specifies the agreement condition between the equivalence symbols
- ▶ if *p* is not given, the signature consists of arbitrary many unary and binary predicate symbols

$$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$$

- \triangleright \mathcal{L} , the ground logic, is the first-order logic with formal equality
- v, if given, bounds the number of allowed variables
- e, if given, specifies the number of builtin equivalence symbols
- ➤ a ∈ {refine, global, local}, if given, specifies the agreement condition between the equivalence symbols
- ▶ if *p* is not given, the signature consists of arbitrary many unary and binary predicate symbols
- if p = 0, the signature consists of only constantly many unary predicate symbols

$$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$$

- \triangleright \mathcal{L} , the ground logic, is the first-order logic with formal equality
- ▶ v, if given, bounds the number of allowed variables
- e, if given, specifies the number of builtin equivalence symbols
- ➤ a ∈ {refine, global, local}, if given, specifies the agreement condition between the equivalence symbols
- ▶ if *p* is not given, the signature consists of arbitrary many unary and binary predicate symbols
- if p = 0, the signature consists of only constantly many unary predicate symbols
- if p = 1, the signature consists of arbitrary many unary predicate symbols

Examples

- $ightharpoonup \mathcal{L}_0 1E$ is the logic of a single equivalence
- $ightharpoonup \mathcal{L}_1$ is the monadic fragment
- $ightharpoonup \mathcal{L}^2 2E_{\text{local}}$ is the two-variable logic featuring unary and binary predicate symbols in addition to two builtin equivalence symbols in local agreement

Reduction Strategy

To reduce (FIN-)SAT- $\mathcal{L}eE_{local}$ to (FIN-)SAT- $\mathcal{L}eE_{refine}$,

- look at the levels
- encode a permutation witnessing the local agreement in a permutation setup
- define formulas that recover the original equivalences from the levels and the permutations
- ▶ not every combination of levels and permutations defines local agreement ⇒ need constraint on permutations

Characteristic Permutations

Consider an $\mathcal{L}eE_{local}$ -signature Σ containing $E = \langle \boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_e \rangle$. Let \mathfrak{A} be a Σ -structure, $E_i = \boldsymbol{e}_i^{\mathfrak{A}}$ and $a \in A$.

The characteristic permutation ν at a is the antilexicographically smallest permutation of [1,e] satisfying:

$$E_{\nu(1)}[a] \subseteq E_{\nu(2)}[a] \subseteq \cdots \subseteq E_{\nu(e)}[a].$$

Collect the characteristic permutations in $[\Sigma: chperm]^{\mathfrak{A}}: A \to \mathbb{S}_e$.

Local Agreement of Permutations

Remark

Let L_1, L_2, \ldots, L_e be the levels of E_i , $a, b \in A$, $\alpha = [\Sigma: \text{chperm}]^{\mathfrak{A}} a$ and $\beta = [\Sigma: \text{chperm}]^{\mathfrak{A}} b$.

If $(a, b) \in L_k$, then $\alpha(k) = \beta(k)$.

That is, if a and b are connected at level k, then their characteristic permutations agree at position k.

► This doesn't hold in general for any set of witnessing permutations

Levels and Permutations

Let $L = \langle I_1, I_2, \dots, I_e \rangle + P$ consist of the builtin equivalence symbols I_i (we intend to interpret them as the levels) together with the permutation setup P (intended to encode the characteristic permutations).

The formula

[L:fixperm] =
$$\forall x \forall y \bigwedge_{1 \le k \le e} (I_k(x, y) \to [P(k):eq](x, y)).$$

encodes the local agreement of permutations.

Recovering

The formulas

$$[\text{L:el-}i](\pmb{x},\pmb{y}) = \bigwedge_{1 \leq k \leq e} ([\text{P}(k)\text{:eq-}i](\pmb{x}) \rightarrow \pmb{I}_k(\pmb{x},\pmb{y}))$$

recover the original equivalences $(i \in [1, e])$.

Remark

Let $\mathfrak A$ be an L-structure satisfying $[P:perm] \wedge [L:fixperm]$ such that the level symbols I_i are interpreted as a sequence of equivalence relations in refinement. Let $L_i = I_i^{\mathfrak A}$ and $E_i = [L:el-i]^{\mathfrak A}$. Then E_i is a sequence of equivalence relations in local agreement and $L_k[a] = E_{\alpha(k)}[a]$ for any $a \in A$ and $\alpha = [P:data]^{\mathfrak A}$.

Translation

Let
$$\Sigma' = \Sigma + L$$
 and $L' = \Sigma' - E$. The translation $\operatorname{ltr} \varphi : \mathcal{L}[\Sigma] \to \mathcal{L}[L']$ is defined by

$$\mathsf{ltr}\,\varphi=\varphi'\wedge [\mathsf{P:perm}]\wedge [\mathsf{L:fixperm}],$$

where φ' is obtained from φ by replacing all occurrences of $e_i(x, y)$ by [L:el-i](x, y).

Remark

 φ is (finitely) satisfiable over $\mathcal{L}eE_{local}$ iff $ltr \varphi$ is (finitely) satisfiable over $\mathcal{L}eE_{refine}$.

- if $\mathfrak{A} \models \varphi$, interpret I_i as the levels and encode $[\Sigma: \operatorname{chperm}]^{\mathfrak{A}}$ in the permutation setup P.
- ▶ if $\mathfrak{A}' \models \operatorname{ltr} \varphi$, interpret e_i as [L:el-i].

Translation

The translation just uses polynomially many new unary predicate symbols (it can "reuse" the builtin equivalences).

Proposition

- ▶ the logic $\mathcal{L}eE_{local}$ has the finite model property iff the logic $\mathcal{L}eE_{refine}$ has the finite model property
- the corresponding satisfiability problems are polynomial-time equivalent
- ▶ also works for \mathcal{L}_1 e $\mathbb{E}_{\mathsf{local}}$ and \mathcal{L}^2 e $\mathbb{E}_{\mathsf{local}}$

Setups Equivalence Relations Reductions Monadic Logics

Monadic Logics

It is known that:

▶ \mathcal{L}_1 has the finite model property [Löwenheim 1915] and its satisfiability problem is NEXPTIME-complete

It is known that:

- \blacktriangleright \mathcal{L}_1 has the finite model property [Löwenheim 1915] and its satisfiability problem is NEXPTIME-complete
- $ightharpoonup \mathcal{L}_0 1\mathrm{E}$ has the finite model property and its satisfiability problem is $\mathrm{PSPACE}\text{-complete}$

It is known that:

- \blacktriangleright \mathcal{L}_1 has the finite model property [Löwenheim 1915] and its satisfiability problem is NEXPTIME-complete
- $ightharpoonup \mathcal{L}_0 1\mathrm{E}$ has the finite model property and its satisfiability problem is $\mathrm{PSPACE}\text{-complete}$
- $ightharpoonup \mathcal{L}_0 2E$ lacks the finite model property and both the satisfiability and finite satisfiability are undecidable [Janiczak 1953]

It is known that:

- \blacktriangleright \mathcal{L}_1 has the finite model property [Löwenheim 1915] and its satisfiability problem is NEXPTIME-complete
- $ightharpoonup \mathcal{L}_0 1E$ has the finite model property and its satisfiability problem is PSPACE-complete
- $ightharpoonup \mathcal{L}_0 2E$ lacks the finite model property and both the satisfiability and finite satisfiability are undecidable [Janiczak 1953]

How about $\mathcal{L}_1 1 \mathrm{E}$?

It is known that:

- $ightharpoonup \mathcal{L}_1$ has the finite model property [Löwenheim 1915] and its satisfiability problem is $\operatorname{NExpTime-complete}$
- \blacktriangleright $\mathcal{L}_01\mathrm{E}$ has the finite model property and its satisfiability problem is $\mathrm{PSPACE}\text{-}\mathsf{complete}$
- $ightharpoonup \mathcal{L}_0 ext{2E}$ lacks the finite model property and both the satisfiability and finite satisfiability are undecidable [Janiczak 1953]

How about $\mathcal{L}_1 1E$? We show that:

- ho $\mathcal{L}_1 1E$ has the finite model property and its satisfiability problem is N2ExpTime-complete
- in general, $\mathcal{L}_1 e \mathrm{E}_{\mathsf{refine}}$ has the finite model property and its satisfiability problem is $\mathrm{N}(e+1)\mathrm{ExpTime}$ -complete

Complexity: Cells

Let $\Sigma = \langle \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_u, \boldsymbol{e} \rangle$ and $\mathfrak A$ be a Σ -structure. A *cell* $C \subseteq A$ is a maximal set of \boldsymbol{e} -equivalent elements satisfying the same \boldsymbol{u} -predicates.

Small Cells

Lemma

Let $r \geq 1$ and suppose that $\mathfrak A$ is a Σ -structure. Then there is a substructure $\mathfrak B \subseteq \mathfrak A$ such that $\mathfrak B \equiv_r \mathfrak A$ and every $\mathfrak B$ -cell has cardinality at most r.

Proof Idea.

For every \mathfrak{A} -cell, if it has less than r elements select them all, otherwise select any r elements. Consider \mathfrak{B} induced by the selected elements. Win the r-round Ehrenfeucht-Fraïssé game as Duplicator: if the challenge is new, choose a new selected element from the same cell. Since the game lasts r rounds, you'll never run out of selected elements.

Few Isomorphic Classes

Lemma

Let $r \geq 1$ and suppose that $\mathfrak A$ is a Σ -structure. Then there is a substructure $\mathfrak B \subseteq \mathfrak A$ such that $\mathfrak B \equiv_r \mathfrak A$ and $\mathfrak B$ -class is isomorphic to at most (r-1) other $\mathfrak B$ -classes.

Combining these and doing the math, we get:

Remark

Let $\mathfrak A$ be a $\Sigma(u,1)$ -structure and let $r\geq 1$. There is some $\mathfrak B\subseteq \mathfrak A$ such that $\mathfrak B\equiv_r \mathfrak A$ and $|B|\leq r^22^u((r+1)^{2^u}-1)$.

This is doubly exponential with respect to the size of φ , hence (FIN-)SAT- \mathcal{L}_11E is in N2EXPTIME.

Hardness: Domino Problem

- ▶ Reduce the N2ExpTime-complete Square Domino Tiling Problem to (FIN-)SAT- \mathcal{L}_1 1E.
- ▶ A domino system is a triple D = (T, H, V), where T = [1, k] is a set of tiles and $H, V \subseteq T \times T$ are the horizontal and vertical matching relations.
- ▶ A *tiling* of the $m \times m$ square for a domino system D with initial condition $c^0 = \langle t_1^0, t_2^0, \dots, t_n^0 \rangle$, where $n \leq m$, is a mapping $t : [1, m] \times [1, m] \to T$ such that:
 - ▶ $(t(i,j), t(i+1,j)) \in H$ for all $i \in [1, m-1], j \in [1, m]$
 - $(t(i,j),t(i,j+1)) \in V$ for all $i \in [1,m], j \in [1,m-1]$
 - ▶ $t(i,1) = t_i^0$ for all $i \in [1, n]$

Domino Problem

Example
$$T = [1,3]$$
, $H = \{(1,3),(2,1),(2,2)\}$, $V = \{(2,2),(3,2),(1,2)\}$

Theorem

There is a domino system D_0 such that the problem of asking if there exists a tiling for D_0 with initial condition c_0 of length n for the $2^{2^n} \times 2^{2^n}$ -square is N2ExpTIME-complete.

Hardness

Main issue: given $\Sigma = \langle \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_u, \boldsymbol{e} \rangle$, how can we define a doubly exponential grid?

Hardness

Main issue: given $\Sigma = \langle \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_u, \boldsymbol{e} \rangle$, how can we define a doubly exponential grid?

- ► Each class can contain exponentially many cells
- ► If we encode bits in cells, the classes encode doubly exponential numbers

Encoding

- we can ensure that every class contains maximally many 2^u cells
- ▶ a cell containing a single element encodes bit 0:

$$\texttt{[}\Sigma\texttt{:}\mathsf{bit-0}\texttt{]}(\pmb{x}) = \forall \pmb{y}\,(\pmb{e}(\pmb{y},\pmb{x}) \land \texttt{[}\Sigma\texttt{:}\mathsf{pos-eq}\texttt{]}(\pmb{y},\pmb{x}) \rightarrow \pmb{y} = \pmb{x})$$

▶ a cell containing more elements encodes bit 1:

$$[\Sigma: bit-1](x) = \exists y (e(y, x) \land [\Sigma: pos-eq](y, x) \land y \neq x)$$

Data

Let $\mathfrak A$ be a Σ -structure and let $E=e^{\mathfrak A}$. The equivalence classes of E are $\mathscr EE$. The number encoded by the bitstring b is $\underline b$. With a bit of work we can define:

- ▶ $[\Sigma: \mathrm{Data}]^{\mathfrak{A}}: \mathscr{E}E \to \mathbb{B}^{2^u}$ that assigns exponential bitstrings (hence doubly exponential numbers) to the classes of \mathfrak{A}
- ▶ $\mathfrak{A} \models [\Sigma: \mathsf{Zero}](a) \text{ iff } [\Sigma: \mathsf{Data}]^{\mathfrak{A}} E[a] = 0$
- ▶ $\mathfrak{A} \models [\Sigma:Succ](a,b) \text{ iff } [\Sigma:Data]^{\mathfrak{A}}E[b] = 1 + [\Sigma:Data]^{\mathfrak{A}}E[a]$
- etc.

Reduction

Given $D_0 = (T, V, H)$, where T = [1, k], and $c^0 = \langle t_1^0, t_1^0, \dots, t_n^0 \rangle$, consider:

$$\begin{split} & \Sigma = \left\langle \boldsymbol{u}_1^H, \boldsymbol{u}_2^H, \dots, \boldsymbol{u}_n^H; \boldsymbol{u}_1^V, \boldsymbol{u}_2^V, \dots, \boldsymbol{u}_n^V; \boldsymbol{u}_1^T, \boldsymbol{u}_2^T, \dots, \boldsymbol{u}_k^T; \boldsymbol{e} \right\rangle \\ & \boldsymbol{u}_1^T, \boldsymbol{u}_2^T, \dots, \boldsymbol{u}_k^T \text{ for tiles} \\ & \Sigma^{HV} = \left\langle \boldsymbol{u}_1^H, \boldsymbol{u}_2^H, \dots, \boldsymbol{u}_n^H; \boldsymbol{u}_1^V, \boldsymbol{u}_2^V, \dots, \boldsymbol{u}_n^V; \boldsymbol{e} \right\rangle \text{ for the full grid} \\ & \Sigma^H = \left\langle \boldsymbol{u}_1^H, \boldsymbol{u}_2^H, \dots, \boldsymbol{u}_n^H; \boldsymbol{e} \right\rangle \text{ for horizontal matching} \\ & \Sigma^V = \left\langle \boldsymbol{u}_1^V, \boldsymbol{u}_2^V, \dots, \boldsymbol{u}_n^V; \boldsymbol{e} \right\rangle \text{ for vertical matching} \end{split}$$

Reduction

small formulas

- ▶ $[\Sigma^{HV}:pos-full] \wedge [\Sigma^{HV}:Full] \wedge [\Sigma^{HV}:Alldiff]$ defines a full doubly exponential grid
- ▶ $\forall x \left(\bigvee_{1 \leq i \leq k} \left(u_i^T(x) \land \bigwedge_{j \in [1,k] \setminus \{i\}} \neg u_j^T(x)\right)\right)$ asserts that every element has a unique type
- ▶ $\forall x \forall y \Big(e(x, y) \rightarrow \bigwedge_{1 \leq i \leq k} (u_i^T(x) \leftrightarrow u_i^T(x)) \Big)$ asserts that the type is the same in each class

Reduction

small formulas

- $\qquad \forall \pmb{x} \Big([\mathrm{D}^H : \mathsf{Eq\text{-}}(j-1)](\pmb{x}) \wedge [\mathrm{D}^V : \mathsf{Zero}](\pmb{x}) \rightarrow \pmb{u}_{t_j^0}^T(\pmb{x}) \Big) \text{ encodes} \\ \text{the inital condition}$
- ▶ $\forall x \forall y ([D^H:Succ](x,y) \land [D^V:Eq](x,y) \rightarrow \bigvee_{(i,j)\in H} u_i^T(x) \land u_j^T(y))$ encodes the horizontal tiling condition

Summary

- ▶ this shows that the satisfiability for $\mathcal{L}_1 1\mathrm{E}$ is N2ExpTIME-complete
- we generalize to show the satisfiability for $\mathcal{L}_1 e \mathrm{E}_{\mathsf{refine}}$ is $\mathrm{N}(e+1)\mathrm{ExpTime}$ -complete