HW3

April 1, 2019

1 Homework 3

Collaborators: * Olivier Cloux (236079) * Zoé Baraschi (219665)

2 Simulate

```
In [2]: from helpers import compute
In [3]: df = compute(80)
In [4]: plt.figure(figsize=(15,10))
        plt.plot(df['Start'], range(len(df)), label="Arrived")
        plt.step(df['T22'], range(len(df)), label="Served")
        plt.title("Number of requests arrived and served")
        plt.legend()
        plt.show()
```



```
In [5]: plt.figure(figsize=(15,10))
        plt.step(df['Start'][100:150], range(50), label="Arrived")
        plt.step(df['T22'][100:150], range(50), label="Served")
        plt.title("Number of requests arrived and served (zoomed)")
        plt.legend()
        plt.show()
```


2.0.1 average response time (event average)

2.0.2 Average number of jobs served per second

As we see, the number of jobs served per second is in both cases close to 80, as the server can keep up with the requests rate, of 80 requests/seconds. So the queue being most of the time almose empty, the rate is obviously close to 80.

3 2

For which values of is the system stationary? The graphs show a stationary regime for lambda in the range (25, 150).

The system is stationary when the mean arrival time between 2 arrivals in the queue does not recede the sum of the mean of the log normal (1.5, 0.6) and the uniform distribution (0.6, 1).

As seen below, this is around 6.166 ms.

```
In [13]: m = np.exp(1.5+(0.6**2)/2) + 0.8

print("Sum of mean of log-normal(1.5, 0.6) and normal(0.6, 1) = ", m, "ms")

Sum of mean of log-normal(1.5, 0.6) and normal(0.6, 1) = 6.165555971121974 ms
```

After looping through the values, we see that the max lambda for which there is a stationary regime is 162, after that the queue is saturated and the walk to infinity begins.

```
In [14]: print("lambda = 162: ",1000/162, "requests/s, lambda = 163:" , 1000/163, "requests/s"
lambda = 162: 6.172839506172839 requests/s, lambda = 163: 6.134969325153374 requests/s
```

What happens on the plots when the system is not stationary? The system becomes unstable once the input rate is larger than the service capacity.

The buffer occupancy grows unbounded and the mean queue length increases. There is a walk to infinity.

4 3 Remove Transients

4.1 With transient present

```
4.1.1 \lambda = 60
```

In [17]: plot_type_i_in_queue(interesting_times60, type1_in_queue_60, type2_in_queue_60)

CI for median

```
In [18]: from helpers import ci_median
In [19]: l,h = ci_median(len(interesting_times60))
         a = np.sort(type1_in_queue_60)
         b = np.sort(type2_in_queue_60)
         print("The CI for median with lambda=60 are, \
         at 95% confidence, between\n\
         \ttype1: {} and {}\n\ttype2: {} and {}\".format(a[1], a[h], b[1], b[h]))
The CI for median with lambda=60 are, at 95% confidence, between
        type1: 1 and 1
        type2: 0 and 1
CI for mean
```

```
In [20]: from helpers import ci_mean_large_n
```

```
In [21]: ci_means_type1 = ci_mean_large_n(type1_in_queue_60)
         ci_means_type2 = ci_mean_large_n(type2_in_queue_60)
         print("The CI for median with lambda=60 are, at 95% confidence,\
         between\nttype1: {:.3f} and {:.3f}\n
        \ttype2: {:.3f} and {:.3f}".format(ci_means_type1[0], ci_means_type1[1],
                                            ci_means_type2[0], ci_means_type2[1]))
```

The CI for median with lambda=60 are, at 95% confidence, between type1: 0.565 and 0.868 type2: 0.563 and 0.871

4.2 $\lambda = 160$

CI for median

In [22]: df160 = compute(160, iterations=30) interesting times 160, type1 in queue 160, type2 in queue 160 = get type i in queue (df plot_type_i_in_queue(interesting_times160, type1_in_queue_160, type2_in_queue_160)


```
In [23]: 1,h = ci_median(len(interesting_times60))
         type1_160_sorted = np.sort(type1_in_queue_160)
         type2_160_sorted = np.sort(type2_in_queue_160)
         print("The CI for median with lambda=60 are, at 95% confidence,\
         between\n\ttype1: {} and {}\
         \n\ttype2: {} and {}".format(type1_160_sorted[1], type1_160_sorted[h],
                                      type2_160_sorted[l], type2_160_sorted[h]))
The CI for median with lambda=60 are, at 95% confidence, between
        type1: 95 and 96
        type2: 95 and 96
CI for mean
In [24]: ci_means_type1 = ci_mean_large_n(type1_in_queue_160)
         ci_means_type2 = ci_mean_large_n(type2_in_queue_160)
         print("The CI for mean with lambda=160 are, at 95% confidence,\
         between\nttype1: {:.3f} and {:.3f}\n\
         \ttype2: {:.3f} and {:.3f}".format(ci_means_type1[0], ci_means_type1[1],
                                            ci means type2[0], ci means type2[1]))
The CI for mean with lambda=160 are, at 95% confidence, between
```

4.3 With the transient removed

type1: -143.253 and 339.018 type2: -141.591 and 337.356

For $\lambda=60$, the analysis is the same as before, as there seems to be no transient. Indeed, the buffer is most of the time empty or nearly empty, steadily accross time. Thus we do not repeat the calculation.

For $\lambda = 160$, we use as transient period the time until the buffer size reaches the mean of both objects (that is 97.884). Everything before this threshold is reached is considered transient period

```
In [25]: # Computing moment the threshold is first crossed
    buffer_size = np.array(type1_in_queue_160 + type2_in_queue_160)
    threshold = np.mean(buffer_size)
    threshold_crossing = np.argwhere(buffer_size > threshold)[0,0]
```

CI for median

```
In [26]: #computing median on reduced array
    med_l_ind, med_h_ind = ci_median(len(interesting_times160[threshold_crossing:]))
    #lower and higher for type 1
    med_l_type1 = type1_160_sorted[threshold_crossing+med_l_ind]
```

CI for mean

5 4 Little's Law

Little's Law: $\lambda \overline{R} = \overline{N}$, where λ is the number of customer's arriving per second, \overline{R} is the average time a customer spends in the system and \overline{N} is the average number of customers observed in the system.

So apparently, Little's law doesn't verify here. This strongly suggests a mistake earlier, but unfortunately we are unable to spot it.

6 5 Parameter Estimation And Confidence Interval

A new request arriving in the system is of type 1 with probability $1 - \epsilon$ and of type 2 with probability ϵ and we want to assume that ϵ is zero or almost zero.

First experiment: 10 random requests, all of type 1.

The confidence interval for p when we observe z=0 successes is $[0, p_0(n)]$, with $p_0(n) = 1 - (\frac{1-\gamma}{2})^{\frac{1}{n}}$.

```
For \gamma = 0.95 and n = 10, we have: p_0(10) = 1 - (\frac{1 - 0.95}{2})^{\frac{1}{10}} = 0.308
```

Confidence interval for ϵ : [0, 0.308]

Confidence interval for the stability region of the system:

Second experiment: In order to assure that $\epsilon < 1\%$ with a 95% confidence, assuming that a sample is always a type 1 request, we want $p_0(n) < 0.01$.

```
1 - \left(\frac{1 - 0.95}{2}\right)^{\frac{1}{n}} < 0.01
(0.025)^{\frac{1}{n}} > 0.99
\log 0.025^{\frac{1}{n}} > \log 0.99
\frac{\log 0.025}{\frac{n}{n}} > \log 0.99
\frac{-3.68888}{n} > -0.0100503
$ n > 367.04$
```

We need to pick 368 samples in order to assure $\epsilon < 1\%$ with 95% confidence.

0.30849710781876083 367.0404161497511