二进制 (Binary)

可能很多人都听说过, 计算机它只认识 0 和 1。有没有人觉得这不太好理解呢, 为什么呢?

所有的视频也好,音频也好,图片也好。包括你现在看到的小毛毛熊的视频,小毛毛熊发出的声音。我在你电脑或者手机里也是以 0 和 1 的形式呈现的,只不过你的计算机把这些 0 和 1 做了好几层的抽象,你不需要关心我在你的电脑里是0000111 还是111001,计算机会自动将这些01转换成小毛毛熊的画面和声音。

你说,啊?毛毛熊到底是0还是1?啪,想什么呢,不是你想的那种0和1。

0和1是一种进制,叫二进制,只使用两个数字: 0和1。

一、为什么计算机使用二进制

做个点名小游戏

假设大家都是线下来听毛毛熊的课。我现在呢,要点名啊,但是我忘了带纸和笔。我 只能用 5 根手指头来点名,并且

• 1、2、3、4、5,通常情况下点名发现就能点 5个同学。 有些同学说哪有,我可以 68。那也就再点名2个同学而已啦,有的同学说这个是7,但是它和 8一样。那所以我们能表示多少个同学呢

• 采用二进制点名,最多能点32个同学!

为什么计算机采用二进制呢?

其实很直观: 计算机内部是电路吧,电路是不是有两种状态,要么有电,要么没电。 计算机内部的基础硬件——晶体管,可以很容易地以开(1)和关(0)的状态来表示 和处理这两个数字。这比处理十进制系统(0到9的数字)要简单得多。

二进制和十进制的转换

1011010

$$1 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

=64+16+8+2
=90

二、比特(Bit)和字节(Byte)

比特(Bit)

比特是 二进制数字 (Binary Digit) 的缩写,它是信息的最小单位。一个比特可以是 0 或 1。

比特是衡量信息的基本单位。在计算机中,每个操作和数据存储都是通过大量比特来完成的。

字节 (Byte)

一个字节由8个比特组成。(人类制定的规则)

聪明的小伙伴问了为什么是 8 个比特?其实一开始并不是 8 个 bit 组成一个字节,后续说明。

不知道大家是否很熟悉这个字节,我们可以看到各种文件的大小,B、KB、MB、GB、TB,经常下小电影的朋友估计对这些转换都非常了解~

1Byte (字节) =8Bit (比特)

1 KB = 1024 B (字节)

1 MB = 1024 KB

1 GB = 1024 MB

1TB = 1024GB

三、字符编码

既然计算机内部是010101, 我发一串 1111000 给你, 你肯定看不懂是吧, 别人会说你有病病。但是 0 和 1 怎样变成我们看到的文字呢?

对应关系?映射!太聪明了!

ASCII (American Standard Code for Information Interchange)

ASCII 是计算机系统中最早采用的字符编码之一(又是人类制定的规则!)

ASCII control characters				ASCII printable characters						Extended ASCII characters							
00	NULL	(Nivillabassatas)		32		64		96		128	_	160	á	192	L	224	Ó
01	SOH	(Null character)		33	space	65	@ A	97	_	129	Ç	161		193	ī	225	ß
02	STX	(Start of Header)		34		66	В	98	a	130	é	162	í	194		226	Ô
02	ETX	(Start of Text)		35		67	C	99	b	131	_	163	ú	194	T	227	ò
03	EOT	(End of Text)		36	# \$	68	D	100	C	132	â	164	ñ	196	H	228	ő
05	ENQ	(End of Trans.)	1000	37	\$ %	69	E	100	d	133	_	165	Ñ	190	7	229	ő
06		(Enquiry)		38		70	F	101	e		à		N	197	+	230	
	ACK	(Acknowledgement)			&				f	134	å	166			ã Ã		μ
07	BEL	(Bell)	1000	39	,	71	G	103	g	135	ç	167		199	L	231	þ
08	BS	(Backspace)		40	(72	H	104	h	136	ê	168	ડ	200		232	Þ
09	HT	(Horizontal Tab)		41)	73	_!_	105		137	ë	169	®	201	1	233	Ú
10	LF	(Line feed)		42		74	J	106	j	138	è	170	7	202		234	Ů.
11	VT	(Vertical Tab)		43	+	75	K	107	k	139	Ï	171	1/2	203	T	235	Ù
12	FF	(Form feed)		44	,	76	L	108	- 1	140	Î	172	1/4	204		236	ý
13	CR	(Carriage return)		45	-	77	М	109	m	141	j	173	i	205	=	237	Ý
14	SO	(Shift Out)	1000	46		78	N	110	n	142	Ä	174	«	206	#	238	
15	SI	(Shift In)		47	I	79	0	111	0	143	Ą	175	»	207	п	239	•
16	DLE	(Data link escape)		48	0	80	P	112	р	144	É	176		208	ð	240	■
17	DC1	(Device control 1)	100	49	1	81	Q	113	q	145	æ	177		209	Đ	241	±
18	DC2	(Device control 2)		50	2	82	R	114	r	146	Æ	178		210	Ê	242	=
19	DC3	(Device control 3)		51	3	83	S	115	S	147	ô	179		211	Ë	243	37/4
20	DC4	(Device control 4)		52	4	84	Т	116	t	148	Ö	180	+	212	È	244	¶
21	NAK	(Negative acknowl.)		53	5	85	U	117	u	149	ò	181	Á	213	1	245	§
22	SYN	(Synchronous idle)		54	6	86	V	118	٧	150	û	182	Å	214	ĺ	246	÷
23	ETB	(End of trans. block)		55	7	87	W	119	w	151	ù	183	À	215	Î	247	
24	CAN	(Cancel)		56	8	88	X	120	X	152	ÿ	184	©	216	ï	248	•
25	EM	(End of medium)		57	9	89	Υ	121	у	153	Ö	185	4	217		249	
26	SUB	(Substitute)		58	:	90	Z	122	z	154	Ü	186		218	Г	250	
27	ESC	(Escape)		59	;	91	[123	{	155	Ø	187		219		251	1
28	FS	(File separator)		60	<	92	Ň	124	Ĺ	156	£	188]	220		252	3
29	GS	(Group separator)		61	=	93	1	125	}	157	Ø	189	¢	221	T	253	2
30	RS	(Record separator)		62	>	94	Ā	126	~	158	×	190	¥	222	i	254	•
31	US	(Unit separator)		63	?	95				159	f	191	7	223		255	nbsp
127	DEL	(Delete)					_				-						

- 1. 控制字符: ASCII的前32个字符(从0到31)是控制字符,用于控制文本的流和数据的处理。例如,字符10代表换行(LF),字符13代表回车(CR)。
- 2. 可打印字符: 从字符32到126的字符是可打印字符。这包括英文字母(大写和小写)、数字(0-9)、标点符号以及一些特殊符号。
- 3. 扩展ASCII: 在标准的128个ASCII字符之外,有一个被称为"扩展ASCII"的部分,它包含了额外的128个字符(从128到255)。这部分包含了一些额外的符号、特殊字符和非英文字符。

所以为什么一个字节要定义为 8bit,和第一套编码是 8 个 bit 有关系捏! 8 个比特能够 提供足够的组合($2^8=256$ 种)。

其实一开始有 6 个字节 7 个 Bit 为一个字节的,最后大家还是统一用 8bit 代表一个字节。

Unicode

人类很快就发现 ASCII 码不够用了,它只有 8 位,只能表示最多 256 个符号,全世界这么多非英语母语国家表示强烈谴责!于是就有了 Unicode (万国码)

utf-8 是其中一种实现方式,也是大家现在最常见的编码啦!它能表示全世界的所有符号,甚至包括 emoji!

举例: 打开记事本,看看右下角是什么编码捏! 然后输入一下一些字符!

让 GPT 写一份代码将其在内存的01表示读出来!!!

因为渲染标准不同,虽然是同一个符号编码,同一串0和1

- 0 和 1: 在计算机中,一切数据都以二进制形式存在,字符也是。
- 编码抽象:二进制代码通过某种编码系统(如 ASCII、Unicode)被转换成特定的符号。例如 ASCII 中 1111000 的字符为 x
- 视觉抽象,指的是根据不同平台或软件对字符进行视觉设计的过程

四、RGB

现在文字符号可以呈现了,但是图片怎么呈现呢?

不知道大家有没有水滴撒到手机屏幕上,其实水滴就是个放大镜,仔细观察就会发现:

RGB: 红绿蓝三原色,可以通过不同比例叠加出任意颜色

一个字节表示有多少红色,一个字节表示有多少绿色,一个字节表示有多少蓝色。

举例: 微信截图工具、各种软件的取色器、vscode 颜色值

总共能表示 1670万 种颜色!

24-bit Color

10001100 00010101 00010101 **Red**140

21

21

 $2^8 \times 2^8 \times 2^8 = 2^{24}$ total combinations \Rightarrow over 16.7 million

为什么 png 格式就要比 jpg 格式大呢?

因为它需要额外的空间来存储透明度!

RGBA 是一种色彩空间的模型,由 RGB 色彩空间和 Alpha 通道组成。

那视频是怎样保存的捏?

一个一个像素就组成了图片。视频其实就是图片的组合。

你的眼睛短时间处理不过来就以为是动态图!我们通常说的帧率越高,越丝滑!

视频就是图片的集合、图片就是颜色的集合,颜色是 bit 的排列,bit 就是电脑中的晶体管不停的开合关。

所以你们发现了没,通过不断地抽象,其实你们正在观看的毛毛熊视频,在计算机底层其实就是由 0 和 1 组成的!