

Comboios de Portugal

Bases de Dados

2018-2019

17 de março de 2019

Eduardo Ferreira Campos, <u>up201604920@fe.up.pt</u>
Miguel Rodrigues Gomes, <u>up201605908@fe.up.pt</u>

Contextualização do tema

De modo a flexibilizar o sistema de controlo da circulação de comboios, a CP pretende começar a armazenar diversas informações.

Por todo o Portugal, os comboios circulam em <u>linhas</u> definidas. Estas linhas têm um nome e uma cor identificativa, bem como o conjunto de paragens que pertencem àquela linha.

Uma <u>paragem</u> é caracterizada pelo seu nome, a sua localização e também as linhas às quais pertence, visto que uma dada paragem pode pertencer a mais que uma linha.

De forma a simplificar, considera-se para o contexto deste trabalho que os comboios circulam apenas numa linha. Os comboios têm um número de identificação e uma lotação máxima. Está também indicado a que linha pertencem, bem como as viagens que realizam e a sua tripulação, constituída por um maquinista e diversos revisores.

Uma <u>viagem</u> consiste na data em que se realiza bem como a sua hora de início e de fim e a lotação da viagem, isto é, o número de passageiros que circularam naquela viagem. Guarda-se também os passageiros que circulam no comboio.

Uma dada <u>pessoa</u> é caracterizada pelo seu nome, telefone, número de identificação fiscal, género e morada. As pessoas podem ser <u>passageiros</u>, dos quais também se guarda o número do bilhete, ou funcionários. Dos <u>funcionários</u> armazenase a data de início de trabalho na CP, o seu salário e o seu cargo, podendo este ser "maquinista" ou "revisor".

Este tema foi baseado num tema proposto para o trabalho realizado na unidade curricular de Algoritmos e Estruturas de Dados do ano letivo de 2018/2019 (tema 3 da lista de temas propostos), tendo sofrido as alterações necessárias de modo a não ficar demasiadamente semelhante e se enquadrar nos objetivos da unidade curricular de Bases de Dados e do projeto em questão.

Modelo conceptual

De seguida apresenta-se o diagrama de classes UML atualizado, para a base de dados:

Esquema Relacional

Segue o esquema relacional retirado do UML:

Person(PersonID, name, address, phone_number, nif, gender)

Passenger(PassengerID->Person, ticket_number)

Employee(EmployeeID -> Person, hiring date, wage)

TrainDriver(TrainDriverID -> Employee, position)

Conductor(ConductorID -> Employee, position)

Trip(TripID, current capacity, beginning hour, ending hour, trip date, TrainID->Train)

Train(TrainID, capacity, lineID->Line, trainDriverID->TrainDriver)

Line(LineID, name, color)

Stop(StopID, location)

Inspects(inspectorID -> Conductor, TrainID -> Train)

Belongs(<u>LineID-</u>>Line, <u>StopID-</u>>Stop)

Travels(<u>PassengerID</u> -> Passenger, <u>TripID</u> -> Trip)

Dependências funcionais e Formas Normais

Segue a tabela indicando as Dependências Funcionais e chave primária de cada relação:

Número da relação	Nome da relação	Chave primária	Dependências Funcionais (FD)
#01	Person	PersonID	PersonID-> name, address, phone_number, nif, gender
#02	Passenger	PassengerID	PassengerID->ticket_number
#03	Employee	EmployeeID	EmployeeID->hiring_date, wage
#04	TrainDriver	TrainDriverID	TrainDriverID->position
#05	Conductor	ConductorID	ConductorID->position
#06	Trip	TripID	TripID->current_capacity, beginning_hour, ending_hour, trip_date, TrainID
#07	Train	TrainID	TrainID-> capacity, LineID, TrainDriverID
#08	Line	LineID	LineID-> name, color
#09	Stop	StopID	StopID-> location
#10	Inspects	{InspectorID, TrainID}	
#11	Belongs	{LineID, TrainID}	
#12	Travels	{PassengerID, TripID}	

De modo a construir uma base de dados imune às diversas anomalias, i.e. inserção, remoção ou modificação, é necessário proceder à normalização de todas as suas relações. As formas normais mais comuns usadas para este fim são a Terceira Forma Normal (3FN) e a Forma Normal de Boyce-Codd (FNBC).

Consultando a tabela suprajacente, em especial a coluna das dependências funcionais, nota-se que todos os atributos são simples e indivisíveis, cumprindo assim a

definição de atributo atômico, logo pode-se dizer que as relações estão na Primeira Forma Normal. Similarmente não se encontram instâncias de dependências parciais, pelo que a Segunda Forma Normal também é seguida. É importante fazer este esclarecimento pois o primeiro requisito para que relações estejam na Terceira Forma Normal, como pretendido, é que cumpra a Segunda e Primeira Formas Normais.

Portanto, para que uma dada relação esteja na Terceira Forma Normal, para além de cumprir os requisitos das formas precedentes, deve garantir que todos os atributos não-chave são totalmente dependentes de atributos-chave, mantendo independência entre si, algo que, novamente por análise das Dependências Funcionais listadas, é cumprido.

Por último, a FNBC existe como uma restrição da Terceira Forma Normal, pelo que esta deve ser cumprida de modo a que a relação possa ser normalizada em FNBC. As relações encontram-se na FNBC pois todos os atributos dependem funcionalmente e exclusivamente da chave-primária, o que se revela como sendo apenas uma extensão dos requisitos da Terceira Forma Normal.

Restrições à base de dados

Tabela 'person':

- Restrição chave-primária: personID (deve ser único e não-nulo);
- Restrição Not Null (os seguintes parâmetros não podem ser nulos):
 - o name;
 - address;
 - phone_number;
 - o nif;
 - gender;
- Restrição Unique (os seguintes parâmetros são únicos na tabela):
 - o name;
 - o nif;
- Restrição Check (os seguintes parâmetros têm que cumprir uma dada condição):
 - o gender: deve ser igual a 'M' ou a 'F';

Tabela 'passenger':

- Restrição chave-primária: passengerID (deve ser único e não-nulo);
- Restrição chave-estrangeira: passengerID é uma referência a person<personID>;
- Restrição Not Null: ticket_number: não deve ser nulo;
- Restrição Unique: ticket number: não se deve repetir na tabela;
- Restrição Check: ticket_number: deve ser superior a zero;

Tabela 'employee':

- Restrição chave-primária: employeeID (deve ser único e não-nulo);
- Restrição chave-estrangeira: employeeID é uma referência a person<personID>;
- Restrição Not Null (os seguintes parâmetros não podem ser nulos):
 - hiring_date;
 - wage;
- Restrição Check: wage deve ser superior a zero;

Tabela 'trainDriver':

- Restrição chave-primária: trainDriverID (deve ser único e não-nulo);
- Restrição chave-estrangeira: trainDriverID é uma referência a employee<employeeD>;
- Restrição Not Null: position não deve ser nula;
- Restrição Check: position deve ter valor igual a 'Train Driver';

Tabela 'conductor':

- Restrição chave-primária: conductorID (deve ser único e não-nulo);
- Restrição chave-estrangeira: conductorID é uma referência a employee<employeeD>;
- Restrição Not Null: position não deve ser nula;
- Restrição Check: position deve ter valor igual a 'Conductor';

Tabela 'line':

- Restrição chave-primária: lineID (deve ser único e não-nulo);
- Restrição Not Null (os seguintes parâmetros não podem ser nulos):
 - o name;
 - o color;
- Restrição Unique: name não se deve repetir na tabela;

Tabela 'train':

- Restrição chave-primária: trainID (deve ser único e não-nulo);
- Restrição chave-estrangeira:
 - lineID é uma referencia para line<lineID>;
 - trainDriverID é uma referência para trainDriver<trainDriverID>;
- Restrição Not Null: capacity não deve ser nula;
- Restrição Check: capacity deve ter valor superior a zero;

Tabela 'trip':

- Restrição chave-primária: tripID (deve ser único e não-nulo);
- Restrição chave-estrangeira:
 - trainID é uma referência para train<trainID>;
- Restrição Not Null (os seguintes parâmetros não podem ser nulos):
 - current_capacity;
 - beginning hour;
 - ending_hour;

- trip date;
- Restrição Check: current capacity deve ter valor superior a zero;

Tabela 'stop':

- Restrição chave-primária: stopID (deve ser único e não-nulo);
- Restrição Not Null: location não deve ser nula;
- Restrição Unique: location não se deve repetir na tabela;

Tabela 'inspects':

- Restrição chave-primária: {inspectorID, trainID} (devem ser únicos e não-nulos);
- Restrição chave-estrangeira:
 - o inspectorID é uma referencia para conductor<conductorID>;
 - o trainID é uma referência para train<trainID>;

Tabela 'belongs';

- Restrição chave-primária: {lineID, stopID} (devem ser únicos e não-nulos);
- Restrição chave-estrangeira:
 - o lineID é uma referencia para line<lineID>;
 - stopID é uma referência para stop<stopID>;

Tabela 'travels':

- Restrição chave-primária: {tripID, passengerID} (devem ser únicos e não-nulos);
- Restrição chave-estrangeira:
 - o tripID é uma referencia para trip<tripID>;
 - o passengerID é uma referência para passenger<passengerID>;