(B)

- 1. 已知两非零不垂直的向量(a,b), (a,b)表示向量 a 和向量 b 之间的夹角,
- (1) 求证 $\tan(a, b) = \frac{|a \times b|}{a \cdot b};$
- (2)求证 $(a \times b)^2 \le a^2 b^2$,且求等号成立的充要条件。
- 2. 已知向量 a,b,c 满足条件 a+b+c=0, 证明 $a\times b=b\times c=c\times a$.
- 3. 设C是点A和点B连线以外的一点,证明三点A,B,C为共线的充分必要条件是

$$\overrightarrow{OC} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OB}$$
,

其中 $\lambda + \mu = 1$.

总习题 1

- 1. 填空题.
- (1) 在 y 轴上与点 A(1,-3,7), B(5,7,-5) 等距离的点的坐标是_____
- (2)设向量的方向余弦满足 $\cos\alpha = \cos\beta = 0$,则该向量与坐标轴的关系是
- (3) $\mathcal{U}_{a} = i + 2j + k, b = -i \frac{1}{2}j + \frac{1}{2}k, \mathbb{N}_{1} \cos(a, 2b) = \underline{\qquad}$
- (4) 设a,b,c 为单位向量,且满足a+b+c=0,则 $a\cdot b+b\cdot c+c\cdot a=$
- (5) 已知 $(a \times b) \cdot c = 2$,则 $[(a+b) \times (b+c)] \cdot (c+a) =$
- (6) 设数 λ_1 , λ_2 , λ_3 不全为 0, 使 $\lambda_1 a + \lambda_2 b + \lambda_3 c = 0$, 则 a, b, c 三个向量是的.
- (7) 设 a=(2,-1,-2), b=(1,1,z), 若要使(a,b)最小,则 z 应为_____.
- (8) 设 u=2a+b, $v=\lambda a+b$, 其中 |a|=1, |b|=2, 且 $a\perp b$, 若以 u, v 为邻边的平行四边形的面积为 6, 则 $\lambda=$ _____.
 - 2. 选择题(只有一个答案是正确的).
 - (1)设a,b均为非零向量,则下列结论中正确的是().
 - $(A) a \times b = 0$ 是 a = b 垂直的充要条件
 - (B) $a \cdot b = 0$ 是 a + b 平行的充要条件
 - (C) a 与 b 的对应分量成比例是 a 与 b 平行的充要条件
 - (D) 若 $a = \lambda b (\lambda)$ 为实数),则 $a \cdot b = 0$
 - (2) 非零向量 a 与 b 垂直,则().
 - (A) |a+b| = |a| + |b|
- (B) $|a+b| \leq |a-b|$

(D) $|a+b| \geqslant |a-b|$ (C) |a+b| = |a-b|(3) 设 a,b 为非零向量, 若等式 $\frac{a}{|a|} = \frac{b}{|b|}$ 成立, 则向量 a,b(). (B) 相互平行 (A) 相互垂直 (D) |a| = |b|(C) a = b(4) 设a=i+5j-2k, b=2i+j+4k, 且已知 $\lambda a+\mu b$ 与 z 轴垂直, 则必有 (B) $\lambda = -\mu$ $(A) \lambda = \mu$ (D) $\lambda = 3\mu$ (C) $\lambda = 2u$ (5) 如果向量a与b 共线,b与c 共线,则a与c(). (B) 一定共线 (A) a = c(D) 既可能共线,也可能不共线 (C) 一定不共线 (6) 如果向量 a,b,c共面,b,c,d 共面,则 a,b,c,d(). (B) 一定共面 (A) 一定不共面 (D) 是否共面取决于 b,c (C) 是否共面取决于 a, d (7) 已知 $\mathbf{a} = (2, -3, 1), \mathbf{b} = (1, -2, 3), \mathbf{c} = (1, -2, -7),$ 若向量 A 满足: $A \perp$ $a,A \perp b,A \cdot c = 10$,则 A 的坐标为(). (A) (0,3,2) (B) (11,7,1) (D) (-7, -5, -1)(C) (4,3,1) (8) 设非零向量 a = b 互相正交, λ 为任意的非零实数, 则 $|a+\lambda b|$ 与 |a| 的大 小关系是(). (B) $|a+\lambda b| \geqslant |a|$ (A) $|a+\lambda b| \leq |a|$ (D) 不能比较 (C) 大小不定 3. 已知向量a=(2,2,1),b=(8,-4,1),求(1)a在b上的投影;(2)与a同方 向的单位向量;(3)b的方向余弦。 4. 已知两点 $M_1(4,\sqrt{2},1), M_2(3,0,2),$ 计算向量 M_1M_2 的模、方向余弦和方向 5. 在 xOy 平面上求向量 β , 使其垂直于 $\alpha = 5i - 3j + 4k$, 且与 α 有相同的长 6.已知向量 a 与三个坐标轴成相等的锐角,求 a 的方向余弦, 若 a = 2,求 7. 求同时垂直于 a=2i-j-k, b=i+2j-k 的单位向量. 8. 已知平行四边形的两对角线向量为 c=m+2n 及 d=3m-4n, 而 |m|=1, |n|=2,向量m和向量n的夹角 $(m,n)=\frac{\pi}{6}$,求此平行四边形面积.

-	第1章 向量代数
	9. 已知向量 $a=(1,0,0)$, $b=(0,1,-2)$, $c=(2,-2,1)$, 求一单位向量 e , e 上 c , 且使向量 a , b , e 共面.
	$10.$ 设 a 是非零向量,已知 b 在与 a 平行且正向与 a 一致的数轴上投影为 p 求极限: $\lim_{x\to 0} \frac{ a+xb - a }{x}$.
	11. 已知不在一个平面上的四点: $A(0,0,0)$ 、 $B(2,-3,1)$ 、 $C(1,-1,3)$ 、 $D(1-2,0)$. 求四面体 $ABCD$ 的体积.
	12. 设 $a \perp b$,将 b 绕 a 右旋 θ 角得到向量 c ,试用 a 、 b 及 θ 表示向量 c .