Proiectarea algoritmilor

Paradigma programării dinamice Lucrare de laborator nr. 11 0000 000

Cuprins

Problema drumurilor minime între oricare două vârfuri Descriere Modelul matematic Algoritmul Floyd-Warshall Sarcini de lucru și barem de notare Bibliografie

Problema drumurilor minime între oricare două vârfuri

- Se consideră un digraf ponderat $D = (\langle V, A \rangle, \ell)$.
- Problema constă în a determina, pentru oricare două vârfuri i,j, un drum de lungime minimă de la vârful i la vârful j (dacă există).
- Metoda utilizată este programarea dinamică.

Problema drumurilor minime - modelul matematic

- Extindem funcția ℓ la $\ell: V \times V \to \mathcal{R}$, prin asignarea $\ell_{ij} = \infty$ pentru acele perechi de vârfuri distincte cu $\langle i,j \rangle \notin E$ și $\ell_{ii} = 0$ pentru orice $i = 0, \dots, n-1$.
- Definim starea problemei ca fiind subproblema corespunzătoare determinării drumurilor de lungime minimă cu vârfuri intermediare din mulțimea $X \subseteq V$, DM2VD(X) (Drum Minim între oricare două Vârfuri ale unui Digraf).
- Evident, DM2VD(V) este chiar problema inițială.
- Notăm cu ℓ^X_{ij} lungimea drumului minim de la i la j construit cu vârfuri intermediare din X. Dacă $X=\emptyset$, atunci $\ell^\emptyset_{ij}=\ell_{ij}$.
- Considerăm decizia optimă care transformă starea $\mathrm{DM2VD}(X \cup \{k\})$ în $\mathrm{DM2VD}(X)$.
- Presupunem că (G,ℓ) este un digraf ponderat fără circuite negative.
- Fie ρ un drum optim de la i la j ce conține vârfuri intermediare din mulțimea $X \cup \{k\}$.
- Avem $\operatorname{lung}(\rho) = \ell_{ij}^{X \cup \{k\}}$, unde $\operatorname{lung}(\rho)$ este lungimea drumului ρ .
- Dacă vârful k nu aparține lui ρ, atunci politica obținerii lui ρ corespunde stării DM2VD(X) și, aplicând principiul de optim, obținem:

$$\ell_{ij}^{X} = \operatorname{lung}(\rho) = \ell_{ij}^{X \cup \{k\}}$$

Problema drumurilor minime - modelul matematic (continuare)

- În cazul în care k aparține drumului ρ , notăm cu ρ_1 subdrumul lui ρ de la i la k și cu ρ_2 subdrumul de la k la j.
- Aceste două subdrumuri au vârfuri intermediare numai din X.
- Conform principiului de optim, politica optimă corespunzătoare stării DM2VD(X) este subpolitică a politicii optime corespunzătoare stării $DM2VD(X \cup \{k\})$.
- Rezultă că ρ_1 și ρ_2 sunt optime în DM2VD(X).
- De aici rezultă:

$$\ell_{ii}^{X \cup \{k\}} = \operatorname{lung}(\rho) = \operatorname{lung}(\rho_1) + \operatorname{lung}(\rho_2) = \ell_{ik}^X + \ell_{kj}^X$$

ullet Acum, ecuația funcțională analitică pentru valorile optime ℓ^X_{ij} are următoarea formă:

$$\ell_{ij}^{X \cup \{k\}} = \min\{\ell_{ij}^X, \ell_{ik}^X + \ell_{kj}^X\}$$

0 0000 0000

Problema drumurilor minime - modelul matematic (continuare)

• Corolar: Dacă $\langle D,\ell \rangle$ nu are circuite de lungime negativă, atunci au loc următoarele relații:

$$\begin{split} \ell_{kk}^{X \cup \{k\}} &= 0 \\ \ell_{ik}^{X \cup \{k\}} &= \ell_{ik}^{X} \\ \ell_{kj}^{X \cup \{k\}} &= \ell_{kj}^{X} \end{split}$$

pentru orice $i, j, k \in V$.

Calculul valorilor optime rezultă din rezolvarea subproblemelor

$$DM2VD(\emptyset), DM2VD(\{0\}), DM2VD(\{0,1\}), ..., DM2VD(\{0,1,...,n-1\}) =$$

$$DM2VD(V)$$

- Convenim să notăm ℓ_{ii}^k în loc de $\ell_{ii}^{\{0,\dots,k\}}$.
- Pe baza corolarului rezultă că valorile optime pot fi memorate într-un același tablou.
- Maniera de determinare a acestora este asemănătoare cu cea utilizată la determinarea matricei drumurilor de către algoritmul Floyd-Warshall.

Problema drumurilor minime - modelul matematic (continuare)

- Pe baza ecuațiilor anterioare, proprietatea de substructură optimă se caracterizează prin proprietatea următoare:
 - Un drum optim de la i la j include drumurile optime de la i la k şi de la k la j, pentru
 orice vârf intermediar k al său.
- Astfel, drumurile minime din DM2VD(X∪{k}) pot fi determinate utilizând drumurile minime din DM2VD(X).

Problema drumurilor minime - modelul matematic (continuare)

- În continuare considerăvem numai cazurile $X=\{0,1,\ldots,k-1\}$ și $X\cup\{k\}=\{0,1,\ldots,k-1,k\}$
- Determinarea drumurilor optime poate fi efectuată cu ajutorul unor matrice $P^k = (P^k_{ij})$, care au semnificația următoare: P^k_{ij} este penultimul vârf din drumul optim de la i la j.
- Inițial, avem $P_{ij}^{init}=i$, dacă $\langle i,j
 angle \in E$ și $P_{ij}^{init}=-1$, în celelalte cazuri.
- Decizia k determină matricele $\ell^k = (\ell^k_{ij})$ și $P^k = (P^k_{ij})$.
 - Dacă $\ell_{ik}^{k-1} + \ell_{kj}^{k-1} < \ell_{ij}^{k-1}$, atunci drumul optim de la i la j este format din concatenarea drumului optim de la i la k cu drumul optim de la k la j și penultimul vârf din drumul de la k la j: $P_{ij}^k = P_{kj}^{k-1}$.
 - În caz contrar, avem $P_{ij}^k = P_{ii}^{k-1}$.
- Cu ajutorul matricei P_{ij}^{n-1} pot fi determinate drumurile optime: ultimul vârf pe drumul de la i la j este $j_t=j$, penultimul vârf este $j_{t-1}=P_{ij_t}^{n-1}$, antipenultimul este $j_{t-2}=P_{ij_{t-1}}^{n-1}$ ş.a.m.d.
- În acest mod, toate drumurile pot fi memorate utilizând numai $O(n^2)$ spațiu.

Algoritmul Floyd-Warshall - pseudocod

$$\begin{array}{l} \text{procedure Floyd-Warshall}(\textbf{G}, \ \ell, \ \textbf{P}) \\ \text{for } i \leftarrow 0 \text{ to } \text{n-1 do} \\ \text{for } j \leftarrow 0 \text{ to } \text{n-1 do} \\ \\ \ell_{ij}^{init} = \begin{cases} 0 & \text{if } = j \\ \ell_{ij} & \text{if } | j > \epsilon \\ 0 & \text{altfel} \end{cases} \\ \\ P_{ij}^{init} = \begin{cases} i & \text{if } \neq j, \langle i,j \rangle \in A \\ \infty & \text{altfel} \end{cases} \\ P_{ij}^{init} = \begin{cases} i & \text{if } \neq j, \langle i,j \rangle \in A \\ -1 & \text{altfel} \end{cases} \\ P_{ij}^{init} = \begin{cases} i & \text{if } \neq j, \langle i,j \rangle \in A \\ -1 & \text{altfel} \end{cases} \\ P_{ij}^{init} = \begin{cases} i & \text{if } \neq j, \langle i,j \rangle \in A \\ -1 & \text{altfel} \end{cases} \\ P_{ij}^{init} = p & \text{init } \ell_{ij}^{init} + \ell_{ij}^{init} \} \\ P_{ij}^{init} = \begin{pmatrix} P_{ij}^{init} & \ell_{ij}^{init} + \ell_{ij}^{init} \\ P_{ij}^{init} & \ell_{ij}^{in} + \ell_{ij}^{init} + \ell_{ij}^{init} \end{pmatrix} \\ P_{ij}^{in} = P_{ij}^{init} = P_{ij}^{init} + P_{ij}^{init} + P_{ij}^{init} + P_{ij}^{init} \end{pmatrix} \\ P_{ij}^{in} = \begin{cases} P_{ij}^{in} & \ell_{ij}^{in} + \ell_{ij}^{in} + \ell_{ij}^{init} + \ell_{ij}^{$$

Algoritmul Floyd-Warshall - implementare (descriere)

- Presupunem că digraful G = (V, A) este reprezentat prin matricea de ponderilor (lungimilor) arcelor, pe care convenim să o notăm aici cu G.L (este ușor de văzut că matricea ponderilor include și reprezentarea lui A).
- Datorită corolarului (1), matricele ℓ^k și ℓ^{k-1} pot fi memorate de același tablou bidimensional G.L.
- Simbolul ∞ este reprezentat de o constantă plusInf cu valoare foarte mare.
- Dacă digraful are circuite negative, atunci acest lucru poate fi depistat:
 - Dacă la un moment dat se obține G.L[i,i] < 0, pentru un i oarecare, atunci există un circuit de lungime negativă care trece prin i.
- Funcția Floyd-Warshall întoarce valoarea true dacă digraful ponderat reprezentat de matricea G.L nu are circuite negative:
 - G.L conține la ieșire ponderile (lungimile) drumurilor minime între oricare două vârfuri;
 - G.P contine la iesire reprezentarea drumurilor minime.

Problema drumurilor minime între oricare două vârfuri

Algoritmul Floyd-Warshall - implementare (pseudocod)

```
procedure Floyd-Warshall(G, P)
   for i \leftarrow 0 to n-1 do
         for j \leftarrow 0 to n-1 do
              if ((i \neq j) \text{ and } (L[i,j] \neq plusInf))
                  then P[i,j] \leftarrow i
                  else P[i,j] \leftarrow -1
   for k \leftarrow 0 to n-1 do
         for i \leftarrow 0 to n-1 do
              for j \leftarrow 1 to n do
                   if ((L[i,k] = PlusInf) or (L[k,j] = PlusInf))
                       then temp \leftarrow plusInf
                       else temp \leftarrow L[i,k]+L[k,j]
                   if (temp < L[i,j])
                       then L[i,j] \leftarrow temp
                              P[i,j] \leftarrow P[k,j]
                   if ((i = j) \text{ and } (L[i,j] < 0))
                       then throw '(di)graful are circuite negative'
```

Algoritmul Floyd-Warshall - evaluare

Se verifică ușor că execuția algoritmului Floyd-Warshall necesită $O(n^3)$ timp și utilizează $O(n^2)$ spațiu.

Sarcini de lucru și barem de notare

Sarcini de lucru:

- 1. Scrieți o funcție C/C++ care implementează un algoritmul Floyd-Warshall.
- 2. Dat fiind un graf G = (V, E), scrieți un program care să afișeze drumurile minime între oricare două vârfuri

Barem de notare:

- 1. Implementarea algoritmului Floyd-Warshall: 7p
- 2. Afișarea drumurilor minime între oricare două vârfuri: 2p
- 3. Baza: 1p

Bibliografie

Lucanu, D. și Craus, M., Proiectarea algoritmilor, Editura Polirom, 2008.