

Journey to Spaceport

Charlie Nitschelm

Prospective SpaceX Employee, Build Engineer

My Background

Just visiting!

- Senior mechanical engineering major and physics minor at the University of New Hampshire
- Founded UNH SEDS and the current President and Lead Engineer
- Member at Large at SEDS USA

Job Experiences

Summer 2018
Inconel Behavior at NIST

2018-2019 School Year

Effect of tool coatings at

TURBOCAM International

Summer 2019
Rutherford engine production
at Rocket Lab USA

The 3-Year Plan

Year 1 – Sophomore Year

Organization Statistics

Committed Members: 11

Majors: 3

Senior Projects: 4

Funding: \$2,250

My Role
President, Lead engineer

SEDS Rocketry Competition, May 2018, Maine

Year 1 – Rocket Building

Year 1 – Simulating

$$\sum_{n=1}^{\infty} F = \frac{d\vec{p}}{dt} = \text{Mass} * \vec{a}(t, v, h)$$

Hot Fires of COTS engines to obtain thrust data

	Reported Max Thrust	Measured Max Thrust	Reported Total Impulse	Measured Total Impulse
Booster Engine: H399	545.8 N	549.6 N	282.2 N-s	277.1 N-s
Sustainer Engine: I204	356.8 N	329.7 N	347.7 N-s	322.7 N-s

 $\vec{a}(t,v,h) = \frac{Thrust(t) - Weight(t) - Drag(t,v,h)}{Mass(t)}$

Where $Drag(t, v, h) = Drag_{SF} + Drag_{PD} + Drag_{BD}$

Year 1 – Launching

- Built nine experimental rockets with six being multi-stage
- Reduced flight failures from 4 out of the first 5 to 1 out of the last 4.

Rocket 6/9 7% Error	Flight Data	OpenRocket Model	MATLAB Model
Sustainer Apogee	1071.1 m	1020.6 m	1154.1 m
Booster Apogee	290.0 m	238.6 m	276.3 m

Year 1 – Optimizing and Repeat

• Uses our in-house simulations in a nonlinear solver to converge on a set of rocket dimensions

• Refined simulations to match experimental data from \pm 35% on 1st rocket to \pm 5% on the last

Year 2 – Junior Year

Organization Statistics

Committed Members: 20 (+9)

Majors: **5 (+2)**

Senior Projects: 9 (+5)

Funding: \$5,500 (+\$3,250)

My Role

President, Lead Engineer

Spacevision 2018, November 2018, San Diego

Year 2 – Hybrid Engine

Year 2 – Engine Design

From past hybrid papers: ~400 psi and 700 K

Oxidizer Selection and Flow Regulation

- Needs to be self pressurizing
- Needs to be safe to handle
- Can be refilled within a day
- Nitrous Oxide meets these requirements

- Suitable for ground testing
- Ability to throttle
- 1000 psi rated valve/tubing
- Cheap 150 dollars

Injector and Impinging Plate

- Interface with COTS piping from flow regulator
- Quick testing of different impinging geometries
- Transitions the liquid oxidizer to a gas

Year 2 – Engine Design

From past hybrid papers: ~400 psi and 700 K

Combustion Chamber

- Withstand internal operating conditions
- Hold a volume of fuel (HTPB) to support the defined mixture ratio (~6)
- Seals with the nozzle and injector flanges

- Accelerate the hot gases within the combustion chamber using converging/diverging design
- Withstand a corrosive, high temperature environment

Designed these components in Solidworks, no experience with NX but understand differences (tree, solid bodies, no convert entities)

UNH SEDS

Year 2 – Manufacture

Combustion chamber chucked on the lathe machined by a machinist at TURBOCAM and myself

Machining and assembly of impinging plate

Assembly of the flow regulator

Molding the rubber into the combustion chamber

Runaway fully assembled with the aluminum chamber, injector and graphite nozzle

UNH SEDS

Year 2 – Test

Rapid impinging plate designs tested for impingement and desired flow rate

Obtain thrust and temperature data during the hot-fire test

Electric spark and igniter assembly

Hot-fire test 1 – Ignition

UNH SEDS

Year 3 – Senior Year

SPACEPORT AMERICA CUP

- Rocket competition hosted in New Mexico from June 16th to June 20th
- UNH SEDS will be competing in the 10,000foot experimental hybrid engine category

Organization Statistics

Committed Members: 42 (+31)

Majors: **7** (+4)

Senior Projects: 14 (+10)

Funding: \$9,000 and counting (+\$6,750 so far)

My Role

President, Lead Engineer, Propulsion Lead

Year 3 – Rocket Vehicle

Year 3 – Engine Optimization

Hot-Fire Test 2 – August 2019

- .15 seconds in, nozzle brittle failure from tension
- Simulations underestimated pressure and designed to FOS 1.25 \rightarrow bad decision

Stainless 304 selected for new nozzle

- Provides a FOS of 3
- Common material for temperature and corrosive resistance

Hot-Fire Test 3 scheduled for October 10th by 5:00 pm EST

- Cleaner electronic start sequence
- Stainless nozzle

Machined by a new sponsor

SPT25-20-1000A

- 0-1000 psi
- 12V DC operating voltage
- Corrosion and heat resistant (SS sensor)

Future Engine Development

- Obtain pressure data from hot fires
- Pressure testing via hydrostat
- Flow simulations to optimize nozzle and impinging plates
- Reduce mass with dynamic sims

UNH SEDS

Year 3 – Project Management

F	G		Н		I
Companies	Responsible		Status		Notes
Advanced Machine Technology	Thomas Pham	¥	Contacted	÷	
Apex Plastics	Thomas Pham	¥	Contacted	÷	
Aviation Technology Inc	Lucas Simmonds	¥	Contacted	÷	contacted kboyer@aviationtec.com
Boston Welding & Design, INC.	Thomas Pham	¥	Contacted	÷	
Cannon Mountain	Silas Johnson	¥	Needs Action		
Choice Metals	Lucas Simmonds	¥	Needs Action		
Cirtronics	Grace Johnston	¥	Needs Action		
Cohen Steel	Thomas Pham	¥	Contacted	÷	
ControlAir, inc.	Thomas Pham	¥	Contacted	÷	
Dynomite Dynamometer	Grace Johnston	¥	Needs Action		
Fibre Glast Developments Corporation	Thomas Collins	¥	Rejected		No direct sponsorship, advice and some discount
G&A Machine	Thomas Pham	¥	Contacted	÷	
General Dynamics Electric Boat	Lucas Simmonds	¥	Talking	¥	Contact for EB in CT
Geokon	Grace Johnston	¥	Needs Action		
GT Advanced Technologies	Carly Benik	¥	Contacted	÷	
Hitchiner	Silas Johnson	¥	Accepted!	÷	
Incite Innovation	Lucas Simmonds	¥	Contacted	÷	Contacted through LinkedIn
Kimball Physics	Megan Johnson	¥	Contacted	÷	
KMC Systems, inc.	Ben Letourneau	¥	Contacted	÷	
L3 Warrior Systems	Zach Raboin	¥	Talking	÷	Doesn't look good for sponsorship :/
Lewis and Saunders	Megan Johnson	¥	Contacted	¥	

\$5,000 – BBQ for all \$9,000 - Chicken Suit day of conference

\$15,000 - Dye Hair any color (2 weeks)

\$25,000 - Tattoo on the behind

\$30,000 - Dye and Tattoo

Takeaways and Moving Forward

Engineering

- Building techniques, flight simulations \rightarrow use for throttle control
- Lead the development of New Hampshire's first hybrid engine
- Directing the entire hybrid rocket project for Spaceport
- Didn't push the importance of FEA/CFD

Organization and Project Management

- Built a family of future aerospace engineers
- Grew as a leader, understanding people have different imperatives to life
- The importance of transparency to leadership
- Now the most interdisciplinary engineering organization
- Didn't realize the importance of showing the success of the organization to the school/community

Moving Forward

- Continue to iterate Runaway to be the propulsion module in the hybrid rocket
- Manage all engineering leads
 - Frame, Avionics, Operations
- Compete in Spaceport America Cup
- Ensure successful knowledge transfer to underclassmen with defined future leaders

SPACEVISION2019 EXPLORATION: A HUMAN IMPERATIVE

NOVEMBER 7-9, 2019 TEMPE AZ

Presenting at a national space conference

