

Deep Reinforcement Learning and Explainable AI (XAI) IEIE (June 26th, 2019)

Prof. Joongheon KimKorea University, Seoul, Korea
https://joongheon.github.io/

Outline

Explainable AI (XAI)

David Gunning (DARPA),
IJCAI 2016 Workshop Presentation

Reinforcement Learning Review

Imitation Learning

Concluding Remarks

- We are entering a new age of AI applications
- Machine learning is the core technology
- Machine learning models are opaque, nonintuitive, and difficult for people to understand

DoD and non-DoD Applications

Transportation

Security

Medicine

Finance

Legal

Military

- Why did you do that?
- Why not something else?
- When do you succeed?
- When do you fail?
- · When can I trust you?
- How do I correct an error?

XAI Concept

XAI: Performance vs. Explainability

Why Do You Think It Will Be Successful

Outline

Explainable AI (XAI)

Reinforcement Learning Review

Imitation Learning and Automotive Applications

Concluding Remarks

Introduction

- Q-Learning
- Deep Q- Network (DQN)

Introduction to RL

- Brief History and Successes
 - Minsky's PhD thesis (1954): Stochastic Neural-Analog Reinforcement Computer
 - Analogies with animal learning and psychology
 - Job-shop scheduling for NASA space missions (Zhang and Dietterich, 1997)
 - Robotic soccer (Stone and Veloso, 1998) part of the world-champion approach
- When RL can be used?
 - Find the (approximated) optimal action sequence for expected reward maximization (not for single optimal solution)
 - Define <u>actions</u> and <u>rewards</u>. These are all we need to do.

Introduction to RL

Outline

Explainable AI (XAI)

Reinforcement Learning Review

Imitation Learning and Automotive Applications

Concluding Remarks

- Introduction
- Q-Learning
- Deep Q- Network (DQN)

- Q-Function
 - State-action value function

Q(s1, LEFT): 0.0

Q(s1, RIGHT): 0.5

Q(s1, UP): 0.0

Q(s1, DOWN): 0.3

 $\mathsf{RIGHT} \leftarrow \arg\max_{a \in A} Q(s_1, a)$

Maximum

Q (state, action)

Optimal Policy π and Max Q

- Max Q = $\max_{a'} Q(s, a')$
- $\pi^*(s) = arg \max_a Q(s, a)$

Q(s1, LEFT): 0.0 Q(s1, RIGHT): 0.5 \longrightarrow Maximum Q(s1, UP): 0.0 Q(s1, DOWN): 0.3 RIGHT $\leftarrow arg$

RIGHT $\leftarrow arg \max_{a \in A} Q(s_1, a)$

- My condition
 - I am now in state s
 - When I do action a, I will go to s'.
 - When I do action a, I will get reward r
 - Q in s', it means Q(s', a') exists.
- How can we express Q(s, a) using Q(s', a')?

$$Q(s,a) = r + \max_{a'} Q(s',a')$$


```
Recurrence (e.g., factorial)

F(x){

    if (x != 1){ x * F(x-1) }
    if (x == 1){ F(x) = 1 }
    }
}
```

```
3! = F(3) = 3 * F(2)
= 3 * 2 * F(1)
= 3 * 2 * 1 = 6
```

16 states and 4 actions (U, D, L, R)

- Initial Status
 - All 64 Q values are 0,
 - Reward are all zero except $r_{s_{15},L} = 1$
- For (1), from s_0 to s_1
 - $Q(s_0, a_R) = r + \max_a Q(s_1, a) = 0 + \max\{0,0,0,0\} = 0$
- For (2), from s_{14} to s_{15} (goal)
 - $Q(s_{14}, a_R) = r + \max_{a} Q(s_{15}, a) = 1 + \max\{0,0,0,0\} = 1$
- For (3), from s_{13} to s_{14}
 - $Q(s_{13}, a_R) = r + \max_{a} Q(s_{14}, a) = 0 + \max\{0, 0, 1, 0\} = 1$

• 16 states and 4 actions (U, D, L, R)

• 16 states and 4 actions (U, D, L, R)

Outline

Explainable AI (XAI)

Reinforcement Learning Review

Imitation Learning

Concluding Remarks

- Introduction
- Q-Learning
- Deep Q- Network (DQN)

Interpolation vs. Linear Regression

Interpolation vs. Linear Regression

Interpolation with Polynomials

$$y = a_2 x^2 + a_1 x^1 + a_0$$

where three points are given.

 \rightarrow Unique coefficients (a_0, a_1, a_2) can be calculated.

Is this related to **Neural Network Training?**

Interpolation and Neural Network Training

$$Y = a(a(a(X \cdot W_1 + b_1) \cdot W_2 + b_2) \cdot W_0 + b_0)$$

where training data/labels (X: data, Y: labels) are given.

- \rightarrow Find $W_1, b_1, W_2, b_2, W_o, b_o$
- → This is the mathematical meaning of neural network training.
- **→ Function Approximation**
- → The most well-known function approximation with neural network:
 Deep Reinforcement Learning

Deep Q-Network

- Large-Scale Q-Values
 - It is inefficient to make the Q-table for each state-action pair.
 - → ANN is used to approximate the Q-function.

Outline

Explainable AI (XAI)

Reinforcement Learning Review

Imitation Learning

Concluding Remarks

Introduction

- ICML 2018 Tutorial
 - https://sites.google.com/view/icml2018-imitation-learning/

Imitation Learning Tutorial ICML 2018

Introduction to Imitation Learning

Gameplay

Pro-Gamer

Trained Agent

The goal of Imitation Learning is to train a policy to mimic the expert's demonstrations

Introduction to Imitation Learning

Problems of RL

1. Reward Shaping

2. Safe Learning

3. Exploration process

Imitation Learning handles with these problems through the demonstration of the experts.

Introduction to Imitation Learning

• Starcraft2

States: s = minimap, screen

Action: a = **select**, **drag**

Training set: $D = \{\tau := (s, a)\}$ from expert

Goal: learn $\pi_{\theta}(s) \rightarrow a$

States: S Action: a Policy: π_{θ}

- Policy maps states to actions : $\pi_{\theta}(s) \rightarrow a$
- Distributions over actions : $\pi_{\theta}(s) \rightarrow P(a)$

State Dynamics: P(s'|s,a)

- Typically not known to policy
- Essentially the simulator/environment

Rollout: sequentially execute $\pi_{\theta}(s_0)$ on initial state

• Produce trajectories au

 $P(\tau|\pi)$: distribution of trajectories induced by a policy

 $P(s|\pi)$: distribution of states induced by a policy

Imitation Learning Applications: PPF/RFTN Injection Control in Medicine

PPF/RFTN Injection Control in Medicine

States: s = **BIS**, **BP**, ...

Action: a = PPF, RFTN, ...

Training set: $D = \{\tau := (s, a)\}$ from expert

Goal: learn $\pi_{\theta}(s) \rightarrow a$

Autonomous Driving with Imitation Learning

Autonomous Driving Control

States: s = **sensors**

Action: a = steering wheel, brake, ...

Training set: $D = \{\tau := (s, a)\}$ from expert

Goal: learn $\pi_{\theta}(s) \rightarrow a$

Autonomous Driving with Imitation Learning

Outline

Explainable AI (XAI)

Reinforcement Learning Review

Imitation Learning

Concluding Remarks

Concluding Remarks

- Explainable AI (XAI)
- Reinforcement Learning: Q-Learning, DQN
- Imitation Learning: Reinforcement Learning, Imitation Learning
- Special Thanks to MyungJae Shin (CAU)
- More questions?
 - <u>Joongheon@korea.ac.kr</u>
- More details?
 - https://joongheon.github.io/

