Data Modeling Techniques

Introduction

The data warehouse was designed to support both analytics and operational use cases. By creating a well-designed model that supports both the dimensional tables and transactional tables. For a time tracking and resource allocation system, the data model has been developed to accommodate both analytical (OLAP) and operational (OLTP) use cases.

Dimensional Model (Analytical Purposes)

Design Choices

- 1. Star Schema Implementation
- Two fact tables: fact_time_tracking and fact_allocation
- Five-dimension tables: dim_client, dim_project, dim_employee, dim_role, and dim_date
- Optimized for complex analytical queries and reporting

Fact Tables

This contains the incremental tables that will continue to grow on a steady basis. Optimized for analytical queries.

- fact time tracking: Stores actual time entries from ClickUp
- fact_allocation: Stores resource allocation/planning data from Float

Dimension Tables

This is information about the fact table containing necessary information used in the modeling process.

- dim_client: Client information
- dim_project: Project details with client relationships
- **dim employee**: Employee information
- dim_role: Role definitions
- dim date: Date dimension for time-based analysis

ETL Metadata

These are standard data used in keeping records and changes.

Entity Relationship Diagram

Entity-relationship (ER) modeling is a visual approach to data modeling used to represent the structure of a database. It is used to identify the "things" (entities) in a system and how they relate to each other.

Full ER Diagram & Modeling(Analytics & Operational Purpose)

One-to-Many Relationships:

- A client can have multiple projects (1:M)
- A project can have multiple time tracking entries (1:M)
- A project can have multiple allocations (1:M)
- An employee can have multiple time tracking entries (1:M)
- An employee can have multiple allocations (1:M)
- A role can be used in multiple allocations (1:M)
- A date can be referenced by multiple time tracking entries (1:M)
- A date can be the start or end date for multiple allocations (1:M)

Fact Table Relationships:

fact_time_tracking connects to:

- dim_employee
- dim_project
- dim_date

fact allocation connects to:

- dim_employee
- dim_project
- dim_role
- dim_date (twice, for start and end dates)

Independent Tables:

etl_metadata is independent and used for ETL process tracking

Analytical Benefit

- Performance Optimization: Denormalized dimension tables reduce JOIN complexity.
- Business Intelligence Capabilities: Easy aggregation of hours by various dimensions.
- Reporting Flexibility: Multiple grain levels (daily, monthly, quarterly)

Entity-Relationship Model (Operational Purposes)

Design Choices

Normalized Structure

- Clear entity relationships with referential integrity
- Primary and foreign key constraints
- Audit fields (*created_date*, *modified_date*)

Operational Benefits

Data Integrity

- Foreign key constraints ensure referential integrity
- SERIAL primary keys prevent duplicate entries
- NOT NULL constraints where appropriate
- UNIQUE constraints on critical fields

Transaction Processing

- Efficient CRUD operations
- Minimal data redundancy

Operational Features

- Real-time time tracking entry
- Resource allocation management

Conclusion

This hybrid design effectively balances analytical and operational needs by ensuring data integrity, enabling efficient reporting, supporting real-time and historical analysis, and allowing for future scalability and modifications.