

Microprocessors I Final Project

RANA SEIF

Design Steps

Old Design Analysis

Identified old components and sensors from provided slides.

Drew Block
Diagram for Old
Design.

Component Research

Researched
sensors already
being used for
Market
Availability,
Cost and Specs.

Sensor Replacement Research

Identified
Sensors that
need to be
replaced and
looked for
alternatives
with similar
features.

Edited Design

Created updated version of block diagram.

Created
schematic on
KiCAD based on
new block
diagram.

PCB Layout and Routing

Completed PCB Layout and Routing on kiCAD.

Final Calculations

Calculated Cost,
Weight and
Power
Consumption
based on Final
Design created.

Old Design

Old Component Details

Part Description	Manufacturer	Component Number in Old Design	Cost per Unit	Weight per Unit
Humidity Sensor	SparkFun	SEN-09569	\$4.79	2.5
OpenLog Board	SparkFun	DEV-13955	\$17.50	2.5
Temperature Sensor	Analog Devices Inc.	TMP36	\$1.65	0.208
Pressure Sensor	Honeywell	SSCDANV015PAAA5	\$48.67	1
Accelerometer (IC: ADXL335)	SparkFun (IC by Analog Devices Inc.)	SEN-09269	\$16.95	1.45

Humidity Sensor's IC (HIH-4030) has been discontinued by Honeywell.

*This table only includes sensors and ICs. Refer to BOM excel sheet for more details on wires, pin headers, resistors and diodes.

Alternatives for Humidity Sensor

OLD

Parameter	Minimum	Maximum	Unit
Interchangeability (first order curve)	-	_	_
0% RH to 59% RH	-5	5	% RH
60% RH to 100% RH	-8	8	% RH
Accuracy (best fit straight line)	-3.5	+3.5	% RH

NEW Alternatives

HIH-4010-002

DHT11

TABLE 1. PERFORMANCE SPECIFICATIONS (At 5 Vdc supply and 25 °C [77 °F] unless otherwise noted.)				
Parameter	Minimum	Typical	Maximum	Unit
Interchangeability (first order curve)	_	_	_	_
0% RH to 59% RH	-5	_	5	% RH
60% RH to 100% RH	-8	_	8	% RH
Accuracy (best fit straight line)	-3.5	_	+3.5	% RH

Price:\$26-70

Range of humidity measurement Humidity deviation

20-90%RH

±5%RH

Price:\$4.20

0-100%RH

±2%RH

DHT22

Price:\$8.90

New Design Block Diagram

New Design Schematic

PCB Layout and Routing

FRONT

Some of the first of the first

BACK

Final Cost and Weight

OLD DESIGN		NEW DESIGN		LIMIT	
COST	\$140	COST	\$130	COST	\$145
Weight	105g	Weight	87g	Weight	200g

⁺ Full detailed calculation for new design cost and weight are in BOM excel sheet submitted in Docs.

Final Calculation (Power Consumption)

Power Consumption =
$$\sum_{n=0}^{K} i_n(V_n)^*$$

$$P_{Total} = 6(P_{Resistor}) + 6(P_{Diodes}) + P_{Humidity} + P_{OpenLog} + P_{Temp} + P_{Pressure} + P_{Accel}$$

$$P_{Total} = 6(0.25W) + 6(0.04W) + 0.3mA(5V) + 6mA(5V) + 50\mu A(5V) + 2.7mA(5V) + 350\mu A(3.3V)$$

$$= 1.79 W \text{ (when all sensors are working at max power consumption)}$$

The power consumption of the wires and headers is ignored.

*If operating power consumption is given in datasheet, it was used as is instead of VI

Resources

Slides and Code from Old Design (including PCB)

https://www.colorado.edu/center/spacegrant/statewideprograms/remote-kits-learning-modules/high-altitude-balloonpayload-remote-skill-module-0

- Component Datasheets (Submitted with PCB files)
- Digital Footprints, symbols and CAD models from snapeda.com and componentsearchengine.com