

Les équations de Maxwell

«This velocity is so nearly that of light, that it seems we have strong reason to conclude that light itself.» JAMES CLERK MAXWELL (1831-1879)

PLAN DU CHAPITRE

LAN DO CHAIT	. 1012		
I	La	conservation de la charge	3
	I.1	Une première approche 1D	3
	I.2	Généralisation à 3D - conséquences	4
		a - Equation locale 3D de conservation de la charge	4
		b - Cas du régime permanent/ARQS - loi des noeuds	5
II	Les	équations de Maxwell	6
	II.1	L'équation de Maxwell Ampère - courants de déplacement	6
		a - Quelque-chose manque à l'appel!!!	6
		b - Signification physique des courants de déplacement : exemple de la décharge	
		d'un condensateur	7
	II.2	Equation de Maxwell-Faraday : traduction locale de l'induction	9
		a - Rappel de MPSI sur l'induction - définition de la force électromotrice (f.e.m.)	9
		b - Passage à l'échelle locale : l'équation locale de Maxwell-Faraday	10
	II.3	Bilan des équations locales de Maxwell- premières propriétés	11
	II.4	Traductions intégrales des équations de Maxwell	12
	II.5	Substitution à la traversée des interfaces chargées et/ou de courant : les relations de	
		passage	12
III	L'a _l	oproximation des régimes quasi-stationnaires - conséquences	13
	III.1	ARQS magnétique dans le vide	13
		a - Définition et critère de validité	13
		b - Définition plus "pratique" du cadre de l'ARQS	14
		c - Bilan des équations locales de l'ARQS magnétique	15
		d - Exemple : champ électrique induit dans un solénoïde infini en ARQS (ma-	
		$\operatorname{gn\acute{e}tique})$	16
	III.2	ARQS électrique dans le vide	17
		a - Définition et critère de validité	17

		b - Bilan des équations locales de l'ARQS électrique	18
		c - Exemple : champ magnétique induit dans un condensateur plan en ARQS (électrique)	19
IV		équations de propagation des champs dans le vide : premier contact et ques premières conclusions!	20
	IV.1	Etablissement - Nécessité du couplage des équations	20
	IV.2	Retour sur l'ARQS	22

Cas a) : Aimant qui s'éloigne de la spire : $\overrightarrow{B} \downarrow$ Cas b) : Aimant qui se rapproche de la spire : $\overrightarrow{B} \uparrow$

Fig. 6

