1. Сведение задачи об устойчивости произвольного решения к задаче об устойчивости нулевого решения

$$\frac{d}{dt}\vec{y} = \vec{f}(t, \vec{y}) \tag{1}$$

 $\vec{y}^*(t)$ - решение, которое мы хотим исследовать на устойчивость.

Предположим, что $\vec{y}^*(t)$ определенно от t_0 до $+\infty$.

Пусть $\vec{y}(t)$ - другое решение системы (1). Замена $\vec{z}(t) = \vec{y}(t) - \vec{y}^*(t)$

$$\frac{d}{dt}\vec{z}(t) = \frac{d}{dt}\vec{y}(t) - \frac{d}{dt}\vec{y}^*(t) = \vec{f}(t, \vec{y}(t)) - \vec{f}(t, \vec{y}^*(t)) = \vec{f}(t, \vec{y}^*(t) + \vec{z}(t)) - \vec{f}(t, \vec{y}^*(t))$$

$$\frac{d}{dt}\vec{z}(t) = \vec{f}(t, \vec{y}^*(t) + \vec{z}(t)) - \vec{f}(t, \vec{y}^*(t))$$
(2)

 $\bar{z}^*(t) = 0$ - решение системы (2).

Теорема 1. Решение $\vec{y}^*(t)$ системы (1) устойчиво по Ляпунову/асимптотически устойчиво/неустойчиво \Leftrightarrow нулевое решение $\vec{z}^*(t) = 0$ системы (2) устойчиво по Ляпунову/асимптотически устойчиво/неустойчиво.

Доказательство.

По определению $\vec{z}^*(t) = 0$ устойчиво по Ляпунову, если:

- 1) $\vec{z}^*(t) = 0$ определено от t_0 до $+\infty$
- 2) $\exists \Delta > 0 \ \forall \vec{z}(t_0) : \|\vec{z}(t_0) \vec{z}^*(t_0)\| < \Delta \Rightarrow \vec{z}(t)$ тоже определено от t_0 до ∞ , где $\vec{z}^*(t_0) = 0$, а $\vec{z}(t_0) = \vec{y}(t_0) \vec{y}^*(t_0)$.
- 3) $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall \vec{z}(t_0) : \|\vec{z}(t_0) \vec{z}^*(t_0)\| < \delta \Rightarrow \|\vec{z}(t) \vec{z}^*(t)\| < \varepsilon \; \forall t \geq t_0, \; \text{где}$ $\vec{z}^*(t_0) = 0, \; \text{a} \; \vec{z}(t_0) = \vec{y}(t_0) \vec{y}^*(t_0) \; \text{и} \; \text{где} \; \vec{z}^*(t) = 0, \; \text{a} \; \vec{z}(t) = \vec{y}(t) \vec{y}^*(t)$

$$\frac{d}{dt}\vec{y}(t)=A(t)\vec{y}+\vec{g}(t)=\vec{f}(t,\vec{y})$$
, где $A(t)=(a_{ij}(t)),\ \vec{g}(t)=\begin{pmatrix}g_1\\\vdots\\g_n\end{pmatrix},\ a_{ij}(t),g_j(t)\in C(\mathbb{R})$

Так как система линейна, то любое решение определенно на \mathbb{R} .

⇒ пункты 1) и 2) в определении устойчивости выполнены автоматически.

Замена $\vec{z}(t) = \vec{y}(t) - \vec{y}^*(t)$, где $\vec{y}(t)$ - другое решение (3).

$$\frac{d}{dt}\vec{z} = \vec{f}(t, \vec{y}^* + \vec{z}) - \vec{f}(t, \vec{y}^*) = A(t)\vec{z}$$
(4)

, где $\vec{z}^*(t) = 0$ - решение (4).

Теорема 2. Решение $\vec{y}^*(t)$ линейной неоднородной системы (3) устойчиво по Ляпунову/асимптотически устойчиво/неустойчиво \Leftrightarrow нулевое решение $\vec{z}^*(t) = 0$ линейной неоднородной системы (4) устойчиво по Ляпунову/асимптотически устойчиво/неустойчиво.

Следствие 1. На устойчивость решения линейной неоднородной системы (3) не влияет $\vec{q}(t)$, а влияет только A(t).

Следствие 2. Все решения линейной системы (3) либо одновременно устойчивы, либо одновременно неустойчивы.

2. Устойчивость линейных системах

$$\frac{d}{dt}\vec{y} = A(t)\vec{y} \tag{1}$$

, где $A(t) = (a_{ij}(t)), \ a_{ij}(t) \in C(\mathbb{R})$

 $\vec{y}^*(t) = 0$ - решение, которое мы исследуем на устойчивость.

Теорема 3. Нулевое решение $\vec{y}^*(t) = 0$ системы (1) устойчиво по Ляпунову \Leftrightarrow все решения системы (1) ограничены вправо, то есть \forall решения $\vec{y}(t) \exists M > 0 \|\vec{y}(t)\| <$ $M \ \forall t \geq t_0$

Доказательство.

 (\Rightarrow) :

По определению: $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall \vec{y_0} < \delta \Rightarrow \|\vec{y}(t)\| < \varepsilon \; \forall t \geq t_0$ Пусть $\vec{y}(t) \neq 0$ - решение системы (1). Возьмем $\vec{v}(t) = \underbrace{\frac{\delta}{2 \, \|\vec{y}(t_0)\|}}_{} \vec{y}(t)$ - тоже реше-

ние.

$$\|\vec{v}(t_0)\| = \left\| \frac{\delta}{2 \|\vec{y}(t_0)\|} \vec{y}(t) \right\| = \frac{\delta}{2 \|\vec{y}(t_0)\|} \|\vec{y}(t_0)\| = \frac{\delta}{2} < \delta$$

Из определения: $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall \vec{v}(t) : ||\vec{v}(t_0)|| < \delta \Rightarrow ||\vec{v}(t)|| < \varepsilon \; \forall t \geq t_0$

$$\left\| \frac{\delta}{2 \|\vec{y}(t_0)\|} \vec{y}(t) \right\| < \varepsilon \Rightarrow \|\vec{y}(t)\| < \varepsilon \frac{2 \|\vec{y}(t_0)\|}{\delta} = M$$

 (\Leftarrow) :

Пусть \forall решения $\vec{y}(t) \exists M > 0 : ||\vec{y}(t)|| \leq M \ \forall t \geq t_0$

Все решения системы (1): $\vec{y}(t) = F(t)\vec{c} = c_1\vec{\varphi}_1(t) + ... + c_n\vec{\varphi}_n(t)$.

Возьмем F(t) - ФМР (фундаментальная матрица решений) такую, что $F(t_0) = E$

$$\begin{cases} \frac{d}{dt}\vec{y} = A(t)\vec{y} \\ \vec{y}(t_0) = \vec{y}_0 \end{cases} \Rightarrow \vec{y}(t) = F(t)\vec{c} = F(t)\vec{y}_0 = y_{01}\vec{\varphi}_1(t) + \dots + y_{0n}\vec{\varphi}_n(t)$$

, где
$$\vec{y}_0 = \begin{pmatrix} y_{01} \\ \vdots \\ y_{0n} \end{pmatrix}$$
 , $F(t) = (\vec{\varphi}_1(t)|...|\vec{\varphi}_n(t))$

Так как $\vec{\varphi}_1(t),...,\vec{\varphi}_n(t)$ - решения, то $\exists M_1,...,M_n: \|\vec{\varphi}_1(t)\| \leq M_1,...,\|\vec{\varphi}_n(t)\| \leq$ $M_n \ \forall r \geq t_0$

Для решения задачи Коши:

$$\|\vec{y}(t)\| = \|y_{01}\vec{\varphi}_1(t) + \dots + y_{0n}\vec{\varphi}_n(t)\| \le |y_{01}| \|\vec{\varphi}_1(t)\| + \dots + |y_{0n}| \|\vec{\varphi}_n(t)\| \le |y_{01}| M_1 + \dots + |y_{0n}| M_n \le |y_{01}| \|\vec{\varphi}_n(t)\| \le |y_{01}| \|\vec{\varphi}_n(t)\|$$

$$\leq \underbrace{\max\{M_1,\ldots,M_n\}}_{=\tilde{M}}(|y_{01}|+\ldots+|y_{0n}|)=\tilde{M}\|\vec{y_0}\|_1$$

Возьмем норму $\|\vec{y}_0\|_1 = (|y_{01}| + ... + |y_{0n}|)$

Если
$$\|\vec{y}_0\|_1 < \delta \Rightarrow \|\vec{y}(t)\| \leq \tilde{M} \|\vec{y}_0\|_1 < \tilde{M}\delta \stackrel{(*)}{=} \varepsilon$$
, (*) : возьмем $\delta = \frac{\varepsilon}{\tilde{M}}$ $\Rightarrow \vec{y}^*(t) = 0$ устойчиво по Ляпунову.

#

Теорема 4. Нулевое решение $\vec{y}^*(t) = 0$ системы (1) асимптотически устойчиво \Leftrightarrow \forall решения $\vec{y}(t)$ выполняется $\|\vec{y}(t)\| \xrightarrow{t \to +\infty} 0$.

Доказательство.

 (\Rightarrow) :

Из определения асимптотической устойчивости: $\exists \rho > 0 \ \forall \vec{y_0} : \|\vec{y_0}\| < \rho \Leftrightarrow \|\vec{y}(t)\| \xrightarrow{t \to +\infty} 0$

Пусть $\vec{y}(t) \neq 0$ - решение системы (1). Возьмем $\vec{v}(t) = \frac{\rho}{2 \, \|\vec{y}(t_0)\|} \vec{y}(t)$ - тоже решение.

$$\|\vec{v}(t)\| = \left\| \frac{\rho}{2 \|\vec{y}(t_0)\|} \vec{y}(t) \right\| = \frac{\rho}{2 \|\vec{y}(t_0)\|} \|\vec{y}(t_0)\| = \frac{\rho}{2} < \rho$$

 \Rightarrow по определению асимптотической устойчивости: $\lim_{t\to\infty}\|\vec{v}(t)\|\,0$

$$\lim_{t \to +\infty} \left\| \frac{\rho}{2 \|\vec{y}(t_0)\|} \vec{y}(t) \right\| = 0 \Rightarrow \lim_{t \to +\infty} \|\vec{y}(t)\| = 0$$

(⇐):

Пусть \forall решения $\vec{y}(t)$ выполняется $\|\vec{y}(t)\| \xrightarrow{t \to +\infty} 0$

Хотим доказать:

1) $\vec{y}^*(t)$ устойчиво по Ляпунову. По Теореме 1. достаточно доказать, что все решения ограничены вправо.

По определению предела: $\|\vec{y}(t)\| \xrightarrow{t \to +\infty} 0$

$$\forall \sigma > 0 \ \exists T \ \forall t \geq T : \|\vec{y}(t)\| < \sigma$$

 $\vec{y}(t)$ - непрерывна, $[t_0, T]$ - компакт $\Rightarrow \|\vec{y}(t)\| \le c \ \forall t \in [t_0, T]$ $\Rightarrow \|\vec{y}(t)\| \le \max\{\sigma, c\}, t \ge t_0 \Rightarrow$ по Теореме 1. $\vec{y}^*(t) = 0$ устойчиво по Ляпунову.

2) Надо проверить:
$$\exists \rho > 0 \ \forall \vec{y_0} : \|\vec{y_0}\| < \rho \Rightarrow \lim_{t \to +\infty} \|\vec{y}(t)\| = 0$$

4

Дано:

Надо доказать:

Возьмем $\rho=1,$ тогда 2) пункт выполняется.

 $\vec{y}^*(t) = 0$ асимптотически устойчиво.

$$\frac{d}{dt}\vec{y} = Ay\tag{2}$$

, где $A(t)=(a_{ij}),\ a_{ij}\in C(\mathbb{R})$ Все решения $\vec{y}(t)=e^{tA}\vec{c}=Te^{tY}\vec{b}.$