Lec lo Stera Vision Retine = 1000m2 Contain millions of Photoreceptors 1) rods -> grayscole 2) Gnes -> RGB large proportion of our brain power is dedicated to Process Signals from eye how do we see the world? O Film in Pront of object > No Reasonable imag @Add barrier to Block most of rays > Reduce bluring -> (y) => bravier Contain hole => 40 -> experture Pinhole Camera model Dapture Penci'l of rays ⇒all rays path through Single OPoint Called Center of Projection of Contents
3 Image Permed on Image plane listed Olen light get through (increase exposure) apertures > 2 Dilhaction ellect add lens in aperature D ⇒ lens locus light on the Bilm © (Rays passing through Center are (not deviated) (3) All rays Parallel to Optical axis) Converge focal Point

Scanned with CamScanner

Thin lans equation distanto V_ any point Satisfy this equation distance between Center ⇒ is (in Pocus) others and object This Lovemble used to estimate the distance to object (Depth from Locus) dependence of the apparent size of objects on their distance from observer is known as (Prespective Strong dept cues -> we Can percère 3D Scene by view its 2D represebble When view 3D Scenes Ly it may be mislead by perception *Camera doesn't measure distances but angle (bearing sensor) Image plane is usually represented in (front) So that imag preserves the same (For viewle) orientation (Not Plipped)

ALADIB

Perspective equations $\frac{x}{f} = \frac{x_c}{z_c} \Rightarrow \left(x = \frac{f \times c}{z_c}\right)$ from Camera Prame to pixel Coordination I local imp plane (X14) pixel Gordinate (U1V)

D pixel Goordinate of Camera optical Center (40,100)

D S Cole Pactor of pixels size in ky, ku U= 40 + leu PSC \\ V= V0 + KU PYC (homogenous Coordinates) => linear mapping from 2d -> 3d From Camera France to world extrinsic Mahix)

Radial distortion 12 (N-10)2 (N-10) Vadial distertion Parameter amera Collibiration (Stero Camera Collibiration) > measure all unknown parameters to lonn Camera model (intrinsic, extirsulc) pixel Coordinates) Intimésic you jour Impossible to Capture 3d structure from a single O observe Scine from 2 dilbert points

Solve the intersection of vays and releven 30 Now do we measure distante with Camera?

(1) From (Stevo vision) 6 C 2 Cameras with known relative position, orientation 2) Structure from mation Single moving Camera, both 30 Structure and Camera motion Can be estimated up to a scale

ALADIB

Stero Vision - "Simplest Cose"
Ideal Cose -> Both Cameras are Identical, aligned at horizontal axis
Boseline => distance between optical Center of 2 Cara
Jisparity >> dilhence in image loction of projection of 3D, point in 2 image planes
Jisparity >> dilhence in image loction of projection of 3D point in 2 image planes Joseph = D Beseline Jisparity Jisparity
Depth is invessely proportional to disparity ED X 1 - > Foreground have brigger disparity then Background object
Disparity is X Stero Bese line 6
Small Basline -> more un Catain our estimate path b increase -> obje I may apper in one Canera
Drojections la 3D point onto left, right Stero images are Called Correspondance poin

light Glov , large disparity

So Lore ground lighter than Backgrowd

lighter lage dispenity Disparity map > hold disparity value of each prixel Stero Vision (general Cose) Object Close to Gueva The Drelative Pase between 2 General rotation, translation using Olivation Decal lagth, image Center, radial distortion nexteds Epipolar Geometry The Crresspondence problem make Image Seach (10) with tolerance Epipolar plane = defined by 3D point P + optical Center Epipolar rectification Determine transformation of each imp plane
So that Dairs Conjugate epipolar lines
belome Colliner, III) to one of imp
axis 30 Re Construction -> tringulation trigngulate Græspondent to get

Stero Vision Summary) Stevo Camera Cellibration -> Compute Camera relative pose) Epipolar rectification -> alignimage, epipolar lines Seach Corresspondaces output: triangulation, disparity map