

AICUP 2023 秋季賽巡迴課程

隱私保護與醫學數據標準化競賽

解碼臨床病例、讓數據說故事

線上課程影片

- 戴鴻傑教授團隊
- •國立高雄科技大學 電機工程系
- 亞洲大學生物資訊與醫學工程學系
 - 澳洲 SREDH 協會

冒資訊正規化子任務

□ Education:

國立高雄科技大學電機工程系-碩士 2020 - 2022

國立高雄科技大學電機工程系-學士 2016 - 2020

□ Experience :

華碩電腦股份有限公司-智慧機器人_BU Aug 2022 - Now

技術工程師-智悠科技股份有限公司「AI.FREE Team 」 Feb 2021 – Oct 2021

實習生-信邦電子股份有限公司 July 2019 - Aug 2019

□ AICUP Competition:

AICUP 2020 醫病訊息決策與對話語料分析競賽 秋季賽:醫病資料去識別化 前標 (21/469) Dec 2020

AICUP 2020 台灣高經濟作物 - 愛文芒果影像辨識正式賽 完賽 Sep 2020

AICUP 2019 人工智慧論文機器閱讀競賽之論文標註 前標 (33/531) Dec 2019

李佑謙 (Ovien Lee)

競賽介紹

Competition introduction

專有名詞辨識

Medical Report

De-identified PHIs

Barack Obama Person the 44th President of the United States Title , was born in Honolulu, Hawaii Location . He graduated from Columbia University Org and Harvard Law School Org . In 2009 Date , Obama was elected as the first African American Ethnicity President of the United States Location . During his presidency, Obama implemented the Affordable Care Act Law and strengthened diplomatic relations with Cuba Location . He served

two terms in office before being succeeded by President Donald Trump Title in 2017 Date

GDPR規定電子病歷需經過

去識別化才可二次使用

去識別化欄位由HIPAA訂定

De-identification Medical Report

一般資料保護規則 (GDPR) 健康保險可攜與責任法 (HIPAA) 受保護的健康資訊 (PHI)

Task1-受保護健康訊息項目

PHI類別	類型定義	範例
姓名	病患名、醫師名、人名	John Doe, Dr. Max, Mr. Smith
職業	無	lawyer, teacher
地點	診間號、部門、醫院、組織、街、 城市、州、國家、區號、其他	peri-operative unit-pow, macquarie ward-rhw,12 abc street
年龄	無	23, 98
日期	日期、時間、週期、頻率	24/12/1987, September 26th
聯絡方式	手機號碼、傳真、電子郵件信箱、 網址、網際網路協定位址	+61-421123456 \ abc@gmail.com \ 194.223.1.1
識別符	社群安全碼、醫療紀錄號碼、健康 計畫號碼、帳戶、證照號碼、車牌 裝置號碼、生物識別碼、識別碼	Mrn : 9174338 Id number : 12rl500257
其它	無	

PHI 類別	類型定義	競賽提供的資料集中的類型名稱
	病患名	PATIENT
姓名	醫師名	DOCTOR
	使用者名稱	USERNAME
職業	無	PROFESSION
	診間號	ROOM
	部門	DEPARTMENT
	醫院	HOSPITAL
	組織	ORGANIZATION
ᅪᆔᄦᅡ	街	STREET
地點	城市	CITY
	州	STATE
	國家	COUNTRY
	區號	ZIP
	其他	LOCATION-OTHER
年齡	無	AGE
	日期	DATE
日期	時間	TIME
山州	週期	DURATION
	頻率	SET
	手機號碼	PHONE
	傳真	FAX
聯絡方式	電子郵件信箱	EMAIL
	網址	URL
	網際網路協定位址	IPADDR
	社群安全碼	SSN
	醫療紀錄號碼	MEDICALRECORD
	健康計畫號碼	HEALTHPLAN
	帳戶	ACCOUNT
識別符	證照號碼	LICENSE
	車牌	VECHICLE
	裝置號碼	DEVICE
	生物識別碼	BIOID
	識別碼	IDNUM
其它	無	OTHER

一份 Medical Report 會有多個 Annotation Tag

Medical Report xxx.txt

Episode No: **14K068256G**

9425477.STG

RODWELL, ROBERT WILLIAM

Lab No: **14H02780**

"STOCKDALE" 653 MONAGHAN RD

MANILDRA NSW 2865

Specimen: Tissue D.O.B: **27/07/1950**

Sex: M

....

Medical Report Annotation Info			Info		
•	檔案名稱	PHI類別	起始位置	結束位置	隱私資訊內容
Ī	xxx.txt	IDNUM	13	23	14K068256G
	xxx.txt	MEDICALREC ORD	24	35	9425477.STG
	xxx.txt	PATIENT	37	60	RODWELL, ROBERT WILLIAM
	xxx.txt	IDNUM	71	79	14H02780
	xxx.txt	STREET	80	107	"STOCKDALE" 653 MONAGHAN RD
	xxx.txt	CITY	108	116	MANILDRA
	xxx.txt	STATE	118	121	NSW
	xxx.txt	ZIP	123	127	2865

Task1-評分方式

每一個病患隱私資訊 (Protected Health Information, 簡稱 PHI) 包含如下三個屬性:

- •PHI 在文本中的 (1) 起始位置和 (2) 結束位置以及
- •PHI的 (3) 類別資訊

基於上述三個屬性,本子任務中定義:

- •True Positive (簡稱 TP):參賽團隊系統所辨識的 PHI 在文本中的起始與結束位置及其預測的類別完全符合人工標注的 PHI 對應的三個屬性;
- •False Positive (簡稱 FP): 系統辨識的 PHI 的任何一種屬性(起始、結尾或類別)不符合任何人工標注的 PHI 結果;
- •False Negative(簡稱 FN):人工標注的 PHI 找不到完全匹配的系統辨識結果。 基於上述定義,本子競賽採用 Precision、Recall 和 F1-Measure 來評估,並以 Macro-F1-Measure 做為本子任務的排名指標。

子類別	範例(需要標註的文字以粗體標 記)	正規化格式
DATE	D.O.B: 16/01/1941 (JL/ta 20/11/13)	1941-01-16 2013-11-20
TIME	Collected: 02/09/2014 at 11:42 A/Prof E Salisbury at 9:30am on 18/3/14. Dr N Lambie at 9:16am on the 18th of September 2013	2014-09-02T11:42 2014-03-18T09:30 2013-09-18T09:16
DURATION	whilst 20weeks pregnant in 2013 Lung cancer resected two weeks ago.	P20W P2W
SET	tested twice with positive controls;	R2

D.O.B: 09/08/2957

Sex: F

Collected: 14/02/3014 at 11:42

Location: 3 ARRIETTA CLOSE-POW

DR AADLAND ABRAHAM

CLINICAL:

Lymphoma. Duodenal uptake on PET scan.

Result required for multidisciplinary meeting

on Friday.

		Medic	cal Report A	nnotation Info	
檔案名 稱	PHI類別	起始位 置	結束位 置	隱私資訊內容	時間正規化資訊
xxx.txt	DATE	8	18	09/08/2957	2957-08-09
xxx.txt	TIME	38	57	14/02/3014 at 11:42	3014-02-14T11:42
xxx.txt	DATE	208	214	Friday	3014-02-18

ChatGPT Zero Shot Learning

這裡有一份醫學病例報告

Episode No: 09F016547J

091016.NMT

SIZAR, HOWARD Lab No: 09F01654

Runford

RENMARK TAS 5084

Specimen: Tissue D.O.B: 24/8/1993

Sex: M

Collected: 28/08/2013 at 08:26

Location: St Vincent-BATLOW/ADELONG MULTI PURPOSE SERVICE

DR JAXON AL-KARSTEN
Distribution: FILE-COPY

請幫我把可能跟病人有關的隱私資訊挑出來

根據提供的醫學病例報告,以下是可能與病人有關的隱私資訊,我已經將其挑出:

患者姓名: SIZAR, HOWARD
 出生日期 (D.O.B): 24/8/1993

3. 性別: M(男性)

4. 住址: Runford, RENMARK, TAS 5084

5. Episode No: 09F016547J

6. Lab No: 09F01654

7. 送檢日期 (Collected): 28/08/2013 at 08:26

8. 收檢地點 (Location): St Vincent-BATLOW/ADELONG MULTI PURPOSE SERVICE

9. 主治醫生: DR JAXON AL-KARSTEN

10. Distribution: FILE-COPY

這些資訊屬於私人醫療資訊,應當受到保護,並避免在未經授權的情況下進行公開或分享。 請確保遵守相關的隱私法律和政策,以保護患者的隱私。

資料處理

Medical Report

Episode No: 09F016547J[IDNum]

 $091016.NMT [\mathsf{MedicalReport}]$

SIZAR, HOWARD[PATIENT]

Lab No: 09F01654[IDNum]

Runford[Street]

RENMARK[City] TAS[State] 5084[ZIP]

Specimen: Tissue

D.O.B: 24/8/1993[Date]

Sex: M

Collected: 28/08/2013 at 08:26[Time]

一組標註有 5 個欄位,如果有時間正規 化則有 6 個欄位,每個資訊使用 tab(\t) 分開,換行後為下一組標註資訊

資料處理 Cont'd

資料處理 Code

用字典來存取每個檔案的 annotation 資訊

Annotation File

<u>10</u> <u>IDNUM</u> <u>14</u>

24

09F016547J


```
def process annotation file(lines):
    entity dict = {}
   for line in lines:
        items = line.strip('\n').split('\t')
        if len(items) == 5:
            item dict = {
                'phi' : items[1],
                'st idx' : int(items[2]),
                'ed_idx' : int(items[3]),
                'entity' : items[4],
        elif len(items) == 6:
            item dict = {
                'phi' : items[1],
                'st idx' : int(items[2]),
                'ed_idx' : int(items[3]),
                'entity' : items[4],
                'normalize time' : items[5],
        if items[0] not in entity dict:
            entity dict[items[0]] = [item dict]
        else:
            entity dict[items[0]].append(item dict)
    return entity dict
```


₹資料處理 Code Cont'd

根據每個檔名來存取檔案全部的 PHI 資訊

```
def process annotation file(lines):
    entity dict = {}
   for line in lines:
        items = line.strip('\n').split('\t')
        if len(items) == 5:
            item dict = {
                'phi' : items[1],
                'st idx' : int(items[2]),
                'ed_idx' : int(items[3]),
                'entity' : items[4],
        elif len(items) == 6:
            item dict = {
                'phi' : items[1],
                'st idx' : int(items[2]),
                'ed_idx' : int(items[3]),
                'entity' : items[4],
                'normalize time' : items[5],
        if items[0] not in entity dict:
            entity dict[items[0]] = [item dict]
        else:
            entity_dict[items[0]].append(item_dict)
    return entity dict
```


temp seq = ""

return seq pairs

資料處理 Code Cont'd

```
def process medical report(txt name, medical report folder, annos dict, special tokens dict):
   file name = txt name + '.txt'
   sents = read file(os.path.join(medical_report_folder, file_name))
                                                                   讀取病理報告
   article = "".join(sents)
   bounary, item idx, temp seq, seq pairs = 0, 0, "", []
   for w_idx, word in enumerate(article): | 逐個字元迭代
       <u>if w_idx == annos_dict[txt_name][item_idx]['st_idx']:</u>] 如果字元的位置與 annotation 的 PHI 起始位置相同
           phi_key = annos_dict[txt_name][item idx]['phi']
           phi value = annos dict[txt name][item idx]['entity']
                                                                                                         取出字典裡對應的資訊
           if 'normalize time' in annos dict[txt name][item idx]:
                                                                                                         concat 成新的字串
               temp seq += f"{phi key}:{phi value}=>{annos dict[txt name][item idx]['normalize time']}\n"
           else:
               temp seg += f"{phi key}:{phi value}\n"
           if item idx == len(annos dict[txt name]) - 1:
                                                        防呆
                                                                                                  10 IDNUM 14 24 09F016547J
               continue
           item idx += 1
       if word == '\n':
                                                                                                       IDNUM:09F016547J\n
           new line idx = w idx + 1
           if temp sea == "":
               temp seq = "PHI:Null"
                                                                                            10 DATE 122 131 24/8/1993 1993-08-24
           seq pair = special_tokens_dict['bos_token'] +
           article[bounary:new line idx] + special tokens dict['sep token'] + temp seq +
                                                                                                                仈
           special tokens dict['eos token']
           bounary = new line idx
                                                                                                  DATE: 24/8/1993=>1993-08-24\n
           seq pairs.append(seq pair)
```


資料處理 Code Cont'd

```
def process medical report(txt name, medical report folder, annos dict, special tokens dict):
   file name = txt name + '.txt'
   sents = read file(os.path.join(medical_report_folder, file_name))
   article = "".join(sents)
   bounary, item idx, temp seq, seq pairs = 0, 0, "", []
   for w idx, word in enumerate(article):
       if w idx == annos dict[txt name][item idx]['st idx']:
           phi key = annos dict[txt name][item idx]['phi']
           phi value = annos dict[txt name][item idx]['entity']
           if 'normalize time' in annos dict[txt name][item idx]:
               temp seq += f"{phi key}:{phi value}=>{annos dict[txt name][item_idx]['normalize_time']}\n"
           else:
               temp seq += f"{phi key}:{phi value}\n"
           if item idx == len(annos dict[txt name]) - 1:
               continue
           item idx += 1
       |if word == '\n':|以\n作為斷句符號
           new line idx = w idx + 1
                                   |記錄下個句子開始的位置
           if temp seq == "":
                                   |如果該句子都沒有 PHI 資訊再裡面則為 Null
               temp seq = "PHI:Null"
           sed pair = special tokens dict['bos token'] +
           |article[bounary:new line idx] + special tokens dict['sep token'] + temp seq + 開頭符號+句子+分割符號+PHI資訊+結束符號
           special tokens dict['eos token']
           bounary = new_line_idx
           seq pairs.append(seq pair)
           temp seq = ""
   return seq pairs
                                                                                                                         19
```


資料處理 Code Cont'd

<|endoftext|>Episode No: 09F016547J

####

IDNUM:09F016547J

<|END|>

<|endoftext|>RENMARK TAS 5084

####

CITY:RENMARK

STATE:TAS ZIP:5084

<|END|>

<|endoftext|>Collected: 28/08/2013 at 08:26

####

TIME:28/08/2013 at 08:26=>2013-08-28T08:26

<|END|>

Episode No: 09F016547J

•••

RENMARK TAS 5084

Specimen: Tissue

•••

Collected: 28/08/2013 at 08:26

批次資料轉換

Text

<|endoftext|>Episode No: 09F016547J #### IDNUM:09F016547J <|END|>

斷詞

轉換成機器看得懂的語言

GPU處理資料效率好

- 並行處理能力
- 高內存頻寬
- 向量化操作
- CUDA和類似的平行計算框架
- 大規模且高效的矩陣操作

要先把資料處理成批次資料

轉換成 torch 格式的 data 方便 Dataloader 呼叫

轉換為批次的 torch data

TorchDataset

```
class GPTDataset(Dataset)
   def __init__(self,seq paris, tokenizer , special tokens dict , pad idx):
       self.seq paris = seq paris
                                                 初始化、自訂義變數
       self.tokenizer = tokenizer
       self.special tokens dict = special tokens dict
       self.pad idx = pad idx
       self.mode = mode
   def len (self):
                                  檢視全部資料長度
       return len(self.seq paris)
   def getitem__(self, index):
                                   呼叫特定索引的資料
       return self.seq paris[index]
   def collate batch(self , datasets):
       tokens_list , labels_list , attention_mask_list = [] , [] , []
       for dataset in datasets:
           encoded seq = tokenizer(dataset)
           indexed tks = encoded seq["input ids"]
```

attention mask = encoded seq["attention mask"]

tokens_list.append(torch.tensor(indexed_tks))
labels list.append(torch.tensor(indexed tks))

attention mask list.append(torch.tensor(attention mask))

return self.pad sequence(tokens list , labels list , attention mask list)

繼承 TorchDataset 的函式

處理批次資料的函式

TorchDataset Cont'd

一組批次資料

```
def collate batch(self , datasets):
   tokens list , labels list , attention mask list = [] , [] , []
   for dataset in datasets:
        encoded_seq = tokenizer(dataset)
                                                轉換字串
        indexed tks = encoded seq["input ids"]
        attention mask = encoded_seq["attention mask"]
                                                         模型著重注意的資訊
        tokens list.append(torch.tensor(indexed tks))
        labels list.append(torch.tensor(indexed tks))
        attention_mask_list.append(torch.tensor(attention_mask))
   return self.pad sequence(tokens list , labels list , attention mask list)
  <|endoftext|>Episode No: 09F016547J
                                                             [0, 22098, 22151, 1621, 27, 50276,
                                                             2693, 39, 520, 2082, 2504, 43, 187,
  ####
                                                             50279, 1838, 20872, 27, 2693, 39,
                                                             520, 2082, 2504, 43, 187, 50277
  IDNUM:09F016547J
  <|END|>
                                                                         Token id
```

Text

TorchDataset Code

TorchDataset Code

Batch_size = 5

[1, 5, 3, 5, 8, 2, 7]

[2, 6, 7]

[4, 2, 9, 2]

[5, 3, 1, 7, 8]

[2, 6, 4, 9]


```
[1, 5, 3, 5, 8, 2, 7]
[2, 6, 7, 0, 0, 0, 0]
[4, 2, 9, 2, 0, 0, 0]
[5, 3, 1, 7, 8, 0, 0]
[2, 6, 4, 9, 0, 0, 0]
```


Padding Token
Padding attention mask

[1, 5, 3, 5, 8, 2, 7]

Padding Token

[2, 6, 7, 0, 0, 0, 0] [4, 2, 9, 2, 0, 0, 0] [5, 3, 1, 7, 8, 0, 0] [2, 6, 4, 9, 0, 0, 0]

模型訓練

TorchDataset & Model

```
BATCH SIZE = 16
                               語言模型與GPT很相似
plm = "EleutherAI/pythia-70m"
                               參數較少的版本
tokenizer = AutoTokenizer.from pretrained(plm)
tokenizer.add_special_tokens(special tokens dict)
PAD IDX = tokenizer.convert tokens to ids(tokenizer.pad token)
tr dataset = GPTDataset(train seq pairs,
                       tokenizer.
                       special tokens dict,
                       PAD IDX)
bucket train dataloader = DataLoader(tr dataset,
                                                             Dataloader 迭代時呼叫的函式
                                   batch size=BATCH SIZE,
                                   collate fn=tr dataset.collate_batch)
model = AutoModelForCausalLM.from_pretrained(plm)
                                                 模型宣告
model.resize token embeddings(len(tokenizer))
```


Causal Language Model

Taipei is the Capital

找出並計算最有可能的字

GPT 系列生成式模型的訓練方式

Causal Language Model Cont'd

Taipei is the <blank>.

CLM 會學著去預測下一個 token

Input 與 label 是一樣的序列

EleutherAl/pythia-70m

current Pythia suffix	old suffix	total params	non-embedding params
70M	19M	70,426,624	18,915,328
160M	125M	162,322,944	85,056,000
410M	350M	405,334,016	302,311,424
1B	800M	1,011,781,632	805,736,448
1.4B	1.3B	1,414,647,808	1,208,602,624
2.8B	2.7B	2,775,208,960	2,517,652,480
6.9B	6.7B	6,857,302,016	6,444,163,072
12B	13B	11,846,072,320	11,327,027,200
GPT2		1.5B	
GPT3		1750B	

不同參數量大小

HyperParameters

優化器 & 優化器的參數調整

```
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.weight']
optimizer grouped parameters = [
   {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight decay rate': 0.01},
    {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight decay rate': 0.01}
optimizer = AdamW(
    optimizer grouped parameters,
    1r = 3e - 5
epochs = 20
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
```

迭代次數 & GPU 設定

Model Training

```
for in trange(epochs, desc="Epoch"):
   model.train()
   for step, (seqs, labels, masks) in enumerate(bucket_train_dataloader):
       seqs = seqs.to(device)
                                  要進模型的資料丟進 GPU
       labels = labels.to(device)
       masks = masks.to(device)
       model.zero grad()
                                                  模型向前傳播
       outputs = model(seqs, labels=labels, attention_mask=masks)
       logits = outputs.logits
       loss = outputs.loss
       loss = loss.mean()
       total_loss += loss.item()
       loss.backward() 向後傳播計算 Loss
       optimizer.step()
       更新梯度
```


生成 Token 數量限制

```
def sample_text(model, tokenizer, text, n words=100):
   model.eval()
   text = tokenizer.encode(text)
    inputs, past key values = torch.tensor([text]).to(device), None
   with torch.no_grad():
        for _ in range(n_words):
            out = model(inputs, past key values=past key values)
            logits = out.logits
            past key values = out.past key values
            log_probs = F.softmax(logits[:, -1], dim=-1)
            inputs = torch.multinomial(log probs, 1)
            text.append(inputs.item())
            if tokenizer.decode(inputs.item()) == eos:
                break
```

return tokenizer.decode(text)

文字接龍的形式

生成 Token 數量限制

```
def sample_text(model, tokenizer, text, n words=100):
   model.eval()
   text = tokenizer.encode(text)
    inputs, past key values = torch.tensor([text]).to(device), None
   with torch.no_grad():
        for _ in range(n_words):
            out = model(inputs, past key values=past key values)
            logits = out.logits
            past key values = out.past key values
            log_probs = F.softmax(logits[:, -1], dim=-1)
            inputs = torch.multinomial(log probs, 1)
            text.append(inputs.item())
            if tokenizer.decode(inputs.item()) == eos:
                break
```

return tokenizer.decode(text)

文字接龍的形式

隱私保護與醫學數據標準化競賽: 2. 解碼臨床病例、讓數據說故事

- 病患隱私資訊擷取子任務
- 時間資訊正規化子任務

上傳檔案注意事項

上傳檔案注意事項

```
838 ZIP 101 105 3144
           131 140 27/5/2036 2036-05-27
838 DATE
838 DEPARTMENT 191 208 DICKINSON 3 NORTH
838 HOSPITAL
               209 227 PETER JAMES CENTRE
838 DATE 325 332 18/9/63 2063-09-18
838 DATE
           1913
                   1920
                          12.9.63 2063-09-12
838 DATE 3518
                          18/9/63 2063-09-18
                  3525
838 DATE
                  3699 24.9.63 2063-09-24
           3692
```

非時間資訊要有 5 個欄位: 檔案名稱\t隱私欄位\t起始位置\t結束位置\t隱私資訊

時間資訊要有 6 個欄位:檔案名稱\t隱私欄位\t起始位置\t結束位置\t隱私資訊\t時間正規化欄位

隱私保護與醫學數據標準化競賽:

- · + + · + +
- 病患隱私資訊擷取子任務
- 時間資訊正規化子任務

結論與未來方向

- 調整 HyperParameters
 ex.epochs, learning rate, optimizer......
- 訓練時加入 scheduler
- pythia 模型參數量提高 (note. GPU Memory)
- 使用 GPT2、GPTJ (note. 搭配 adapter)

total params	old suffix	current Pythia suffix
70,426,624	19M	70M
162,322,944	125M	160M
405,334,016	350M	410M
1,011,781,632	800M	1B
1,414,647,808	1.3B	1.4B
2,775,208,960	2.7B	2.8B
6,857,302,016	6.7B	6.9B
11,846,072,320	13B	12B
1.5B		GPT2
1750B		GPT3

• LoRA: Low-Rank Adaptation of Large Language Models

Enhance Tips Cont'd

Medical Report

Episode No: 09F016547J[IDNum]

 $091016.NMT [{\sf MedicalReport}]$

SIZAR, HOWARD[PATIENT]

Lab No: 09F01654[IDNum]

....

<|endoftext|>Episode No:
09F016547J\n\n####\n\nIDNUM:09F016547J\n<|END|>

<|endoftext|>091016.NMT\n\n####\n\nMEDICALRECOR
D:091016.NMT\n<|END|>

<|endoftext|>\n\n###\n\nPHI:Null<|END|>

<|endoftext|>Episode No: 09F016547J

091016.NMT

####

IDNUM:09F016547J

MEDICALRECORD:091016.NMT< | END | >

將原本單靠\n換行 現在讓更多行變成一個句子 讓模型更好學習上下文

※注意句子長度

Enhance Tips Cont'd

程式相關連結

END