Lecturer: Alessandro Giacchetto

Exercise 1. Prove that the only holomorphic form on \mathbb{P}^1 is the trivial one (identically zero). Prove that the only holomorphic form on a torus \mathbb{C}/Λ is the one induced by scalar multiples of dz.

Consider the meromorphic function $f: \mathbb{P}^1 \to \mathbb{P}^1$, $[z:w] \mapsto [z:w]$. Let $\omega = df$. By writing in the two charts of the domain \mathbb{P}^1 , show that $\operatorname{div}(\omega) = -2[\infty]$. Deduce that it degree is -2.

Exercise 2 (Riemann–Hurwitz formula on divisors). Let $f: X \to Y$ be a holomorphic map between compact Riemann surfaces. Let K_X and K_Y be any canonical divisor on X and Y respectively, and define the ramification divisor as

$$R_f := \sum_{x \in \mathsf{Ram}_f} \left(\mu_x(f) - 1 \right) [x] \in \mathrm{Div}(X) \,.$$

Prove that

$$K_X \sim f^* K_Y + R_f$$

and deduce the Riemann-Hurwitz formula by taking degrees.

Exercise 3 (Holomorphic forms on projective curves). Let $X = Z(F) \subset \mathbb{P}^2$ be a smooth projective plane curve defined by a homogeneous polynomial F(x,y,z) of degree $d \geq 3$. Let f(u,v) = F(u,v,1) define the associated affine curve.

- Prove that du and dv define meromorphic forms on X.
- Show that $f_u du = -f_v dv$ as meromorphic forms on X (here $f_u = \frac{\partial f}{\partial u}$ and $f_v = \frac{\partial f}{\partial v}$).
- Show that for any polynomial p(u, v) of degree $\leq d 3$, the form

$$\omega_p = p(u, v) \frac{du}{f_v}$$

is holomoprhic. How many polynomials of degree $\leq d-3$ in two variables there are? How does it relate to the genus of X?

Exercise 4 (Complete linear systems and projective embeddings Ω). *Given a divisor D on a compact Riemann surface X, define the map*

$$\varphi_D \colon X \longrightarrow \mathbb{P}^n$$
, $x \longmapsto [f_0(x) : f_1(x) : \cdots : f_n(x)]$,

where f_0, \ldots, f_n form a basis of $\mathcal{L}(D)$. A basic question is: when is φ_D and embedding?

- We say that the complete linear system |D| is free iff $\ell(D) \ell(D [x_0]) = 1$ for every x_0 in the support of D. Fix a point $x \in X$. Show that if |D| is free, then there exists a basis f_0, f_1, \ldots, f_n for $\mathcal{L}(D)$ such that $\operatorname{ord}_x(f_0) = -n_x$ and $\operatorname{ord}_x(f_i) > -n_x$ for $i \geq 1$.
- Let |D| be free. Show that $\varphi_D(x) = \varphi_D(y)$ iff $\mathcal{L}(D [x] [y]) = \mathcal{L}(D [x]) = \mathcal{L}(D [y])$. Conclude that φ_D is injective iff $\ell(D - [x] - [y]) = \ell(D) - 2$ for all distinct $x, y \in X$.
- Conclude that, for |D| be free, φ_D is an embedding iff $\ell(D-[x]-[y])=\ell(D)-2$ for all $x,y\in X$ (including coinciding points). In this case, |D| is called very ample.