UNIAVAN - Centro Universitário Avantis Curso: Engenharia Elétrica

Disciplina: Princípios de Comunicação e Protocolos de Redes

Camadas de Protocolos e seu modelos de serviço

Prof. Luiz Fernando M. Arruda, Me. Eng.

Sumário

Arquitetura de camadas

Encapsulamento

Arquitetura de camadas

Vamos pensar em camadas?

Arquitetura de camadas

Vamos pensar em camadas?

Passagem (comprar)

Passagem (reclamar)

Bagagem (despachar)

Bagagem (recuperar)

Portões (embarcar)

Portões (desembarcar)

Decolagem

Aterrissagem

Roteamento da aeronave

Roteamento da aeronave

Roteamento da aeronave

Arquitetura de camadas

	Passagem aérea (comprar)						Passagem (reclamar)	Passagem
	Bagagem (despachar)						Bagagem (recuperar)	Bagagem
	Portões (embarcar)						Portões (desembarcar)	Portão
	Decolagem						Aterrissagem	Decolagem/Aterrissagem
	Roteamento de aeronave		Roteamento de aeronave		Roteamento de aeronave		Roteamento de aeronave	Roteamento de aeronave
Α	eroporto de origen	Centrais intermediárias			Aeroporto de destino			

Abordagem top-down

Aplicação
Transporte
Rede
Enlace
Físico

 a. Pilha de protocolos da Internet de cinco camadas

	Aplicação							
	Apresentação							
	Sessão							
	Transporte							
	Rede							
	Enlace							
	Físico							

b. Modelo de referência
 ISO de sete camadas

Camada de Aplicação

A camada de aplicação é a camada superior nos modelos OSI e TCP/IP. responsável por fornecer interfaces e protocolos que permitem a interação de softwares de aplicação, como navegadores web, clientes de e-mail e aplicativos de redes sociais, com a rede de comunicação. Protocolos importantes incluem HTTP, SMTP, FTP e DNS. Esta camada facilita o acesso dos usuários a servicos de rede, traduzindo acões em comandos compreensíveis pela rede. Também lida com autenticação, autorização e criptografia, assegurando a segurança e privacidade das comunicações. Em essência, a camada de aplicação é crucial para a interação entre usuários e a infraestrutura de rede, viabilizando diversos servicos e funcionalidades digitais. Um protocolo de camada de aplicação é distribuído por diversos sistemas finais, e a aplicação em um sistema final utiliza o protocolo para trocar pacotes de informação com a aplicação em outro sistema final. Nesta disciplina, chamaremos de mensagem, esse pacote de informação na camada de aplicação.

Camada de Transporte

A camada de transporte é uma camada crucial nos modelos OSI e TCP/IP, responsável por assegurar a transferência confiável de dados entre sistemas finais. Ela gerencia a segmentação dos dados, o controle de fluxo e a correção de erros, garantindo que os pacotes sejam entregues de forma ordenada e sem perdas. Os principais protocolos dessa camada são o TCP (Transmission Control Protocol), que oferece uma conexão orientada com verificação de erros e confirmação de entrega, e o UDP (User Datagram Protocol), que é mais simples e rápido, mas não garante a entrega. A camada de transporte também realiza a multiplexação, permitindo que múltiplas aplicações utilizem a rede simultaneamente sem interferência. Em suma, a camada de transporte é vital para a comunicação eficaz e eficiente entre aplicações distribuídas, proporcionando uma base confiável para a troca de dados na rede. Nesta disciplina chamaremos de segmento um pacote da camade de transporte.

Camada de rede

A camada de rede da Internet é responsável por mover pacotes, conhecidos como datagramas, de um hospedeiro para outro. O protocolo de camada de transporte da Internet (TCP ou UDP) em um hospedeiro de origem entrega um segmento da camada de transporte e um endereço de destino à camada de rede, da mesma forma que você entrega uma carta com um endereço ao serviço postal. A camada de rede então fornece o serviço de entrega do segmento à camada de transporte no hospedeiro de destino.

Essa camada inclui o conhecido protocolo IP, que especifica os campos no datagrama e determina como os sistemas finais e os roteadores manipulam esses campos. Existe apenas um protocolo IP, e todos os componentes da Internet que possuem uma camada de rede devem implementá-lo.

Camada de enlace

A camada de rede roteia um datagrama através de uma série de roteadores, desde a origem até o destino. Para mover um pacote de um nó (hospedeiro ou roteador) ao próximo nó na rota, a camada de rede depende dos serviços da camada de enlace. Especificamente, em cada nó, a camada de rede passa o datagrama para a camada de enlace, que o entrega ao próximo nó ao longo da rota. Nesse nó, o datagrama é passado da camada de enlace de volta para a camada de rede.

Os serviços prestados pela camada de enlace dependem do protocolo específico utilizado no enlace. Exemplos de protocolos de camada de enlace incluem Ethernet, Wi-Fi e o protocolo DOCSIS usado em redes de acesso por cabo. Os pacotes de camada de enlace são denominados quadros.

Camada física

Enquanto a tarefa da camada de enlace é movimentar quadros inteiros de um elemento da rede até um elemento adjacente, a da camada física é movimentar os bits individuais que estão dentro do quadro de um nó para o seguinte. Os protocolos nessa camada de novo dependem do enlace e, além disso, do próprio meio de transmissão do enlace (por exemplo, fios de cobre trançado ou fibra ótica monomodal). Por exemplo, a Ethernet tem muitos protocolos de camada física: um para par de fios de cobre trançado, outro para cabo coaxial, mais um para fibra e assim por diante. Em cada caso, o bit atravessa o enlace de um modo diferente.

Modelo OSI

As sete camadas do modelo de referência OSI são: de aplicação, de apresentação, de sessão, de transporte, de rede, de enlace e camada física. A funcionalidade de cinco dessas camadas é a mesma que seus correspondentes da Internet. Assim, há apenas duas camadas adicionais presentes no modelo de referência OSI — a de apresentação e a de sessão;

O papel da camada de apresentação é prover serviços que permitam que as aplicações de comunicação interpretem o significado dos dados trocados. Entre esses serviços estão a compressão e a codificação de dados.

A camada de sessão provê a delimitação e sincronização da troca de dados, incluindo os meios de construir um esquema de pontos de verificação e de recuperação.

Encapsulamento

Encapsulamento

Uma mensagem da camada de aplicação na máquina emissora, é passada para a camada de transporte, que por sua vez, pega a mensagem e anexa informações adicionais, chamadas informações de cabeçalho de camada de transporte, H_t , que serão usadas pela camada de transporte do lado receptor, formando o segmento da camada de transporte. A camada de transporte então passa o segmento à camada de rede, que adiciona informações de cabeçalho de camada de rede, H_n , como endereços de sistemas finais de origem e de destino, criando um datagrama de camada de rede. A enlace cria o quadro de camada de enlace. Assim, cada camada tem dois campos, o campo de cabecalho e um campo de carga útil.

Exemplo

1. Camada de Aplicação:

Mensagem da camada de acplicação = "Olá mundo!"

2. Camada de Transporte:

Cabeçalho TCP/UDP: Inclui portas de origem e destino, número de sequência, número de confirmação (para TCP), comprimento do cabecalho, checksum, etc.

Dados: "Olá, Mundo!"

3. Camada de Rede:

Cabeçalho IP: Inclui endereços IP de origem e destino, versão do protocolo, comprimento do cabeçalho, TTL (Time to Live), protocolo (TCP ou UDP), checksum, etc.

Dados: Segmento TCP/UDP contendo "Olá, Mundo!"

4. Camada de Enlace:

Cabeçalho Ethernet: Inclui endereços MAC de origem e destino, tipo de protocolo (IPv4, IPv6, etc.), etc.

Dados: Datagrama IP contendo o segmento TCP/UDP e a mensagem "Olá, Mundo!" Trailer Ethernet: Inclui a verificação de redundância cíclica (CRC) para detecção de

Exemplo

Mensagem: "Olá, Mundo!" Cabecalho TCP: - Porta origem: 12345 Porta de destino: Número de sequência: 1 -Número de confirmação: 0 -Comprimento do cabeçalho: Checksum: 20 bvtes 0×1234

Cabecalho IP: - Endereco IP de origem: 192.168.1.2 - Endereço IP de destino: 93.184.216.34 Versão: IPv4 - Comprimento do cabeçalho: 20 bytes - TTL: 64 - Protocolo: TCP (6) -Checksum: 0x5678

Cabecalho Ethernet: -Endereco MAC de origem: 00:1A:2B:3C:4D:5E -Endereco MAC de destino: 00:1A:2B:3C:4D:5F - Tipo de protocolo: IPv4 (0x0800) Dados: Cabecalho IP + Cabecalho TCP + Dados ("Olá, Mundo!") Trailer Ethernet: - CRC:

 $0 \times 9 ABC$

Exemplo prático

Próxima Aula Camadas de rede

Obrigado!!!

Referencial Bibliográfico I

KUROSE, James; ROSS, Keith. Redes de computadores e a Internet: uma abordagem top-down. São Paulo: Person, 2013.

MAIA, Luiz Paulo. Arquitetura de redes de computadores .. [S.l.]: Grupo Gen-LTC, 2000.

TANENBAUM, Andrew; WETHERALL, David J. Redes de Computadores. 3a. Edicao. Editora Campus, Ltda, 2011.