Pengenalan
Analisis Deret Waktu
(Time Series Analysis)

MA 2081 Statistika Dasar 29 November 2012 Utriweni Mukhaiyar

Ilustrasi

• Berikut adalah data rata-rata curah hujan bulanan yang diamati dari Stasiun Padaherang pada tahun 2001 – 2004.

Sumber: Modul 3 Praktikum Mekanika Medium Kontinu "Medan Gravitasi"

T	ahun	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Agust	Sep	Okt	Nop	Des
	2001	278.59	279.78	355.29	241.34	115.9	176.9	55.32	29.08	43.82	313.68	508.49	267.82
2	2002	299.78	245.88	266.64	185.27	122.22	133.1	76.78	32.4	26.09	169.05	461.62	415.73
2	2003	425.21	370.8	300.23	157.43	184.96	69.93	23.28	14.39	17.86	275.23	433.23	456.02
4	2004	547.8	308.2	388	93	297	128	47	5	87	105	389	371.6

• Apabila nilai curah hujan saat ini dianggap dipengaruhi oleh rata-rata curah hujan kemarin dst, maka data rata-rata curah hujan di atas dapat dikategorikan sebagai suatu deret waktu (*time series*).

@ UM

Plot Data

berdasarkan waktu

Rata-rata curah hujan bulanan 2001 - 2004 di Stasiun Padaherang

Proses Stokastik

- Proses stokastik adalah barisan peubah acak $\{Y_t, t \in T\}$
- Setiap proses stokastik memuat $\underline{\text{ruang keadaan}}\ S$ dan $\underline{\text{indeks parameter}}T$
 - S: semua nilai yang mungkin dari Y_t S dan T dapat bernilai diskrit atau kontinu
- <u>Contoh</u> proses stokastik:
 - a. Cuaca harian kota Bandung
 - b. Banyaknya trombosit/hari pasien demam berdarah sejak ia terinfeksi
 - c. Laju pertumbuhan populasi orang utan (% per tahun)
 - d. Waktu antara mekarnya bunga bangkai yang ke-*n* dengan bunga bangkai yang ke *n*+1
- Misal y_t nilai dari Y_t maka barisan nilai $\{y_t, t \in T\}$ disebut realisasi dari $\{Y_t, t \in T\}$

Time Series

- Jika T: waktu, maka $\{Y_t, t \in T\}$ disebut <u>time series</u>
- Realisasinya disebut <u>data TS</u>
- Studi berkaitan dengan TS disebut <u>analisis TS</u>
- Permasalahan dalam analisis TS:
 "Bagaimana menentukan model Y_t sehingga model tersebut dapat digunakan untuk forecasting (prakiraan di waktu mendatang)??"
- Secara umum, model TS dapat ditulis $Y_t = f(.) + e_t \qquad (1)$ <u>Asumsi galat</u>: $e_t \sim N(0, \sigma^2)$ dan tidak berkorelasi
- Jika *f* linier dalam parameter-parameternya maka persamaan (1) disebut model linier TS
- Koleksi semua model linier TS dinamakan model $\underline{ARIMA}(p,d,q)$ (Box-Jenkins, 1976)

Contoh *Time Series*

Tingkat Pengangguran di AS

Produksi Tembakau di AS

Data Penjualan lynx pelts di Canada

Manfaat dan Tujuan TS

- Memodelkan data TS sehingga dapat dilihat perilaku data lebih lanjut
- Melakukan prediksi ke depan atau prakiraan jangka pendek (short-time forecasting)

Beberapa Konsep Dasar dalam TS **Kestasioneran**

- TS $\{Y_t, t \in T\}$ stasioner jika untuk setiap t,
 - 1. $E[Y_t] = \mu$ (konstan)
 - 2. $\text{kov}(Y_t, Y_{t-k}) = \gamma_k \text{ (tidak tergantung } t \text{)}$
- Secara <u>visual</u>, data TS $\{Y_t, t \in T\}$ stasioner jika data TS berfluktuasi di sekitar rataannya dengan variansi konstan

Beberapa Konsep Dasar dalam TS ACF, fungsi autokorelasi

• ACF (fungsi autokorelasi) : fungsi antara lag $k \operatorname{dan} \rho_k \operatorname{dengan}, \ \rho_k = \operatorname{corr}(Y_t, Y_{t-k}).$

ACF sampel: $r_k = \frac{\sum_{t=k+1}^{n} (Y_t - \overline{Y})(Y_{t-k} - \overline{Y})}{\sum_{t=k+1}^{n} (Y_t - \overline{Y})^2}$

 $r_k = 0$ (secara <u>signifikan</u>) jika

$$-1,96\frac{1}{\sqrt{n}} < r_k < 1,96\frac{1}{\sqrt{n}}$$

Beberapa Konsep Dasar dalam TS PACF, fungsi parsial autokorelasi

- PACF (fs. autokorelasi parsial) : fungsi antara lag k dengan ϕ_{kk} di mana $\phi_{kk} = corr(Y_t, Y_{t-k})$ setelah pengaruh $Y_1, Y_2, ..., Y_{k-1}$ ditiadakan.
- PACF dapat didefinisikan juga sebagai koefiesien suku terakhir dari regresi Y_t dengan Y_1 , Y_2 , ..., Y_k

Artinya, jika $Y_t = \mu + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_k Y_{t-k}$ maka PACF sampel untuk lag k = taksiran dari ϕ_k .

atau
$$\hat{\phi}_{kk} = \hat{\phi}_k$$

 $\hat{\phi}_{kk} = 0$ (secara signifikan) jika $-1,96\frac{1}{\sqrt{n}} < \hat{\phi}_{kk} < 1,96\frac{1}{\sqrt{n}}$

Contoh ACF dan PACF dengan SPSS

Dari menu SPSS, pilih

Graphs

Time Series

Autocorrelations...

pilih variabel yang akan
dihitung ACF dan PACF-nya

OK

Model-model *Time Series*

Untuk TS Stasioner

1. <u>Autoregresi (AR)</u>: "regresi terhadap TS yg lalu & galat sekarang"

AR(1):
$$Y_t = \mu + \phi_1 Y_{t-1} + e_t$$
, di mana $1 < \phi_1 < 1$

$$\begin{split} \text{AR(2):} \ Y_t &= \mu + \phi_1 Y_{t\text{-}1} + \phi_2 Y_{t\text{-}2} + e_t \,, \\ \text{di mana } 1 &< \phi_2 < 1, \ \phi_2 + \phi_1 < 1, \ \phi_2 - \phi_1 < 1 \end{split}$$

AR(p):
$$Y_t = \mu + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + e_t$$

2. Moving Average (MA): "regresi terhadap galat yang lalu dan galat sekarang"

MA(1):
$$Y_t = \mu + e_t - \theta_1 e_{t-1}$$
, di mana $1 < \theta_1 < 1$

MA(2):
$$Y_t = \mu + e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2}$$

di mana $1 < \phi_2 < 1, \ \phi_2 + \phi_1 < 1, \ \phi_2 - \phi_1 < 1$

MA(q):
$$Y_t = \mu + e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2} - \dots - \theta_q e_{t-q}$$

Model-model *Time Series*Untuk TS Stasioner

3. Autoregresi-Moving Average (ARMA)

"regresi terhadap TS yang lalu dan semua galat"

ARMA(1,1):
$$Y_t = \mu + \phi_1 Y_{t-1} + e_t - \theta_1 e_{t-1}$$

ARMA(p,q):

$$Z_{t} = \mu + (\phi_{1} Y_{t-1} + \dots + \phi_{p} Y_{t-p}) + (e_{t} - \theta_{1} e_{t-1} - \dots - \theta_{q} e_{t-q})$$

Catatan: AR(p) = ARMA(p,0), MA(q) = ARMA(0,q)

Model-model *Time Series*Untuk TS tidak Stasioner

- Misal TS $\{Y_t\}$ tidak stasioner. Buat TS baru yg stasioner, sebut $\{Z_t\}$ dengan cara diferensi, yaitu $Z_t = Y_t - Y_{t-1}$, untuk setiap t.
- Maka "ARMA(p,q) untuk $\{Z_t\}$ disebut ARIMA (p,1,q) untuk $\{Z_t\}$ "
- Jika diferensi dilakukan d kali, ditulis ARIMA(p,d,q)
- Catatan: ARMA(p,q) = ARIMA(p,0,q)

Metode Box Jenkins

Tahap awal:

Pemeriksaan kestasioneran:

- Plot TS
- Jika stasioner, lanjutkan ke "tiga tahap iteratif". Jika tidak lakukan transformasi atau diferensi

Tiga tahap iteratif:

- 1. Identifikasi
- 2. Penaksiran parameter
- 3. Uji diagnostik (pemeriksaan asumsi sisa)

Jika pada uji diagnostik, ada asumsi yang dilanggar ulangi lagi 3 tahap iteratif

Identifikasi

Model	ACF	PACF
AR(p)	Menurun secara eksponensial atau membentuk gelombang sinus teredam	Cut off setelah lag p
MA(q)	$Cut\ off\ ext{setelah}\ ext{lag}\ q$	Menurun secara eksponensial atau membentuk gelombang sinus teredam

 Mengidentifikasi orde (p,q) model ARMA melalui kriteria Akaike (AIC)

$$AIC \approx n \log + 2m$$
, $m = \# parameter$

• Hitung nilai AIC untuk setiap (p,q). Orde yang dipilih adalah (p,q) dengan nilai AIC yang paling kecil

Penaksiran Parameter

- Metode: Kuadrat terkecil (untuk model AR)
 - Maksimum likelihood
 - Melard (digunakan SPSS)
- Contoh penaksiran parameter melalui SPSS
 Dari menu, pilih Analyze → Forecasting → Create Models ...
 Pilih nama TS sebagai Dependent variable
 Masukkan orde model ARIMA

Uji Diagnosis

Ingat asumsi galat: $e_t \sim N\left(0, \sigma^2\right)$ dan tidak berkorelasi Pengujian asumsi:

Cara 1:

- Plot sisaan berfluktuasi di sekitar $0 \Rightarrow E[e_t] = 0$ nilai sisaan di sekitar $\pm 1.96 \hat{\sigma}^2 \Rightarrow Var(e_t) = \sigma^2$
- plot ACF serta plot PACF-nya $r_k \, \mathrm{dan} \, \hat{\phi}_{kk} \, \, \underset{\mathrm{signifikan}}{\mathrm{signifikan}} \, 0 \Rightarrow \mathrm{sisaan} \, \text{``tidak berkorelasi''}$

Cara 2: Uji Ljung-Box

• Uji " H_0 : korelasi antar sisaan = 0" dengan statistik Ljung-Box

$$Q^* = n(n+2) \sum_{k=1}^{h} \frac{r_k^2}{n-k}$$

• Jika $Q^* > \chi^2_{\alpha,\nu}$ dengan $\nu = h - m$ dan m = # parameter, maka H_0 ditolak

Contoh

 Hasil produksi bulanan perkebunan teh di lokasi PAL tahun 1992-2009 (T = 216)

2009

300000
250000
150000
100000
50000
0
0
50000

bulan ke-

Produksi teh "PAL" 1992-

Contoh Sari Numerik Data

Data perkebunan	teh PAL	Data perkebunan teh PAL (diff 1 kal				
Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis	133793.6 2488.531 136781 #N/A 36573.79 1.34E+09 0.222436	Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis	455.7023 2407.674 -1515 -15033 35303.43 1.25E+09 1.855309			
Skewness	-0.07241	Skewness	0.701741			
Range	218458	Range	216395			
Minimum	36305	Minimum	-81536			
Maximum	254763	Maximum	134859			
Sum	28899412	Sum	97976			
Count	216	Count	215			

ARIMA Model Parameters

					Est	timate	SE	t	Sig.
PAL-Model_1	PAL	No Transformation	Const	ant	1341	13,420	4518,793	29,679	,000
			AR	Lag 1		,535	,059	9,127	,000

Model Statistics

		Model Fit st				Ljung-Box Q(18)			
Model	Number of Predictors	Stationary R- squared	MAPE	Normalized BIC	Statistics	DF	Sig.	Number of Outliers	
PAL-Model_1	0	,281	21,160	20,738	35,952	17	,005	0	

Diperoleh AR(1): $Y_t = 134113,420+0,535Y_{t-1}+e_t$

ARIMA Model Parameters

						Estimate	SE	t	Sig.
PAL-Model_1	PAL	No Transformation	Const	tant		-19,205	279,639	-,069	,945
			AR	Lag 1	II	,434	,079	5,477	,000
			Differe	ence	M	1			
			MA	Lag 1		,934	,039	23,750	,000

Model Statistics

		Mod	del Fit statist	ics	Lju	ing-Box Q(1)	B)	
Model	Number of Predictors	Stationary R- squared	MAPE	Normalized BIC	Statistics	DF	Sig.	Number of Outliers
PAL-Model_1	0	,224	21,063	20,774	30,238	16	,017	0

Diperoleh ARIMA(1,1,1) : $Z_t = -19,205 + 0,434Z_{t-1} - 0,934e_{t-1} + e_t$

Contoh Kesimpulan

- Berdasarkan hasil Ljung-Box, dimana pada model AR(1) H_0 ditolak (sisaan berkorelasi) untuk semua $1\% \le \alpha \le 10\%$, sedangkan ARIMA(1,1,1) tidak ditolak untuk $\alpha < 1,7\%$.
- Oleh karena itu model ARIMA(1,1,1) bisa dianggap lebih cocok (dengan sisaan yang tidak berkorelasi) sehingga dapat digunakan untuk melakukan *short-time forecast* dengan menggunakan persamaan :

$$Z_{t} = -19,205 + 0,434Z_{t-1} - 0,934e_{t-1} + e_{t}$$

$$\widehat{Y}_{t+1} - Y_{t} = -19,205 + 0,434(Y_{t} - Y_{t-1}) - 0,934e_{t-1}$$

$$\widehat{Y}_{t+1} = -19,205 + 1,434Y_{t} - 0,434Y_{t-1} - 0,934e_{t-1}$$

Referensi

- Box, G. E. P. dan Jenkins, G. M. (1976): *Time Series Analysis: Forecasting & Control*, Holden-Day Inc., San Fransisco
- Cryer, J. D. dan Chan, K. S. (2008): *Time Series*Analysis with Applications in R, Springer, New York.