1. Aufgabe (18 Punkte). Die Funktion

$$f(x) = \frac{2x+1}{\cos x}$$

soll in der Umgebung der Stelle $x_0 = 0$ durch eine Parabel ersetzt werden. Welchen Näherungswert liefert diese Parabel an der Stelle x = 0, 1?

2. Aufgabe (30 Punkte). Die Funktion

$$f(t) = \begin{cases} -\pi t, & -\pi \le t \le 0 \\ \pi t, & 0 \le t \le \pi \end{cases}$$

sei periodisch auf **R** fortgesetzt. Skizzieren Sie den Graphen von f für $|t| \leq 2\pi$. Bestimmen Sie die Fourierreihe der Funktion f(t).

3. Aufgabe (25 Punkte) Bestimmen Sie die allgemeine Lösung der Differentialgleichung

$$y''(t) + 2y'(t) + y(t) = t + e^{2t}.$$

4. Aufgabe (17 Punkte). Bestimmen Sie die Originalfunktion $f(t) = L^{-1}{F(s)}$ der Bildfunktion

$$F(s) = \frac{2s+3}{(s+1)(s^2+9)}$$

mittels Partialbruchzerlegung und Anwendung der Tabelle der Laplace-Korrespondenzen.

5. Zusatzaufgabe (15 Punkte). Bestimmen Sie die Fourier-Transformierte $F(\omega)$ der Funktion

$$f(t) = te^{-3(t-4)+5}\sigma(t-4)$$

mit Hilfe der Rechenregeln zur Berechnung der Fourier-Transformierten und bereits bekannten (tabellarischen) Fourier-Transformationen.