A1. [punti 5] La rete elettrica di figura definisce un sistema dinamico orientato da u (tensione all'ingresso) ad y (tensione all'uscita).

Di questo sistema si determini:

- 1. la funzione di trasferimento;
- 2. l'equazione differenziale;
- 3. gli zeri, i poli, i modi ed il guadagno statico.

A2. [punti 5] Due carrelli di massa m collegati come mostrato in figura costituiscono un sistema dinamico Σ orientato da f (forza applicata al carrello di sinistra) ad x_1 (posizione del carrello di sinistra). In condizione di riposo delle molle sia $x_1 = 0$ e $x_2 = 0$

- 1. Determinare l'equazione differenziale che descrive il comportamento di Σ .
- 2. Determinare la funzione di trasferimento G(s) di Σ .
- 3. Determinare il guadagno statico e gli zeri di Σ .

B1. [punti 5]

Dimostrare le seguenti relazioni relative alle proprietà della trasformata di Laplace:

1.
$$L[Df(t)] = sF(s) - f(0+);$$

2.
$$L[t^n] = \frac{n!}{s^{n+1}}$$
.

B2. [punti 5]

Sia dato un generico sistema dinamico orientato da u (ingresso) ad y (uscita) e descritto

dall'equazione differenziale
$$\sum_{i=0}^{n} a_i D^i y(t) = \sum_{i=0}^{m} b_i D^i u(t)$$
.

Note le condizioni iniziali al tempo 0 – come $y_-, Dy_-, ..., D^{n-1}y_-$ e $u_-, Du_-, ..., D^{m-1}u_-$ e l'azione forzante $u(t), t \ge 0$, determinare la trasformata di Laplace della risposta $y(t), t \ge 0$.

Nota: riportare i ragionamenti ed i passaggi che permettono l'individuazione dell'espressione Y(s) cercata.

B3. [punti 6] Dato un sistema con funzione di trasferimento $G(s) = \frac{8}{(s+1)(s+2)}$ determinare

la risposta forzata y(t), $t \in [0,+\infty)$ al segnale di ingresso definito in figura:

C1. [punti 6] Determinare la risposta $g_s(t)$ al gradino unitario di un sistema con funzione di trasferimento $G(s) = \frac{1}{(s+2)\left[(s+1)^2+1\right]}$. Determinare inoltre la risposta g(t) all'impulso unitario di tale sistema.

C2. [punti 4] Dato il sistema retroazionato di figura con $L(s) = \frac{16}{s(s+5)}$, determinare:

- 1. la funzione di trasferimento e l'equazione differenziale del sistema orientato da r ad y.
- 2. il tempo di assestamento T_a , la sovraelongazione S ed il tempo di salita T_s della risposta y(t) al comando in ingresso r(t) = 1(t) (gradino unitario).

