প্রধান সূচিপত্র

অধ্যায়	অধ্যায়ের নাম	পৃষ্ঠা নং
অধ্যায় - ০১	পরমাণুর গঠন	ર - ૪
অধ্যায় – ০২	প্রতীক, যোজ্যতা এবং সংকেত	à − 2 8
অধ্যায় – ০৩	গ্যাস	১ ৫ – ২২
অধ্যায় – ০৪	রাসায়নিক বন্ধন	২৩ – ২৭
অধ্যায় – ০৫	অস্লু, ক্ষার এবং লবণ	২৮ – ৩১
অধ্যায় – ০৬	আয়নিক ভারসাম্য	৩২ – ৩৭
অধ্যায় – ০৭	রাসায়নিক বিক্রিয়া	9b – 89
অধ্যায় – ০৮	জারণ এবং বিজারণ	88 – 89
অধ্যায় – ০৯	পানি	8৮ – ৫২
অধ্যায় – ১০	তড়িৎ রসায়ন	৫৩ – ৫৬
অধ্যায় – ১১	জৈব রসায়নের প্রাথমিক ধারণা	৫৭ – ৬২
অধ্যায় – ১২	অ্যালিফেটিক হাইড্রোকার্বন	৬৩ – ৬৪
অধ্যায় – ১৩	অ্যালকোহল	৬৫ - ৬৯
অধ্যায় – ১৪	অ্যারোমেটিক যৌগ	१० – १७
অধ্যায় – ১৫	বৃত্তিমূলক রসায়ন	98 - 96

পরমাণুর গঠন

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (Contants)		
বিষয়	পৃষ্ঠ নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
❖ সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশ্লাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষণ (Board Question Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন । নিচে 'Board Question Analysis' অংশে এই অধ্যায় থেকে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	1	٤	-
২০২৩	N	٤	2
২০২২	8	>	2

"কিছুই হারিয়ে যায় না, কিছুই তৈরি হয় না, সবকিছুই রূপান্তরিত হয়"

অ্যান্টোইন ল্যাভয়েসিয়ার

////

অতি সংক্ষিপ্ত প্রশ্নোতরঃ

- ১. K ও Cu এর ইলেকট্রন বিন্যাস দেখাও। [বাকাশিবো: '০৮, '১১৪, '১৯, '২০, '২২৪, '২৩৪] উত্তরঃ K (19) এর ইলেকট্রন বিন্যাস = $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$ $4s^1$ । Cu (29) এর ইলেকট্রন বিন্যাস = $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$ $4s^1$ $3d^{10}$ ।
- ২. আইসোটোপ কাকে বলে? উদাহরণ দাও। [বাকাশিবো: '০১,'০৪,'০৫৪,'০৫,'০৬৪,'১৫,'১৭,'২১, '২২৪] অথবা, আইসোটোপ বলতে কী বোঝায়?
 উত্তরঃ যে সব পরমাণুর প্রোটন সংখ্যা সমান কিন্তু ভরসংখ্যা ভিন্ন হয়, সেসব পরমাণুকে পরস্পরের আইসোটোপ বলে। যেমন- হাইড্রোজেন এর ৩টি আইসোটোপ আছে। প্রোটিয়াম (1/4), ডিউটেরিয়াম (1/4), ট্রিটিয়াম (1/4)।
- ত. অরবিট ও অরবিটাল বলতে কী বোঝায়?
 তিরঃ অরবিটঃ পরমাণুতে নিউক্লিয়াসের চতুর্দিকে ইলেকট্রন আবর্তনের জন্য নির্দিষ্ট শক্তির যে কক্ষপথ রয়েছে তাদেরকেই অরবিট বলে।
 ত্রেরবিটালঃ পরমাণতে নিউক্লিয়াসের চতুর্দিকে ইলেকট্রন আবর্তনের স্বাধিক সম্ভাব্য অঞ্চলকে অরবিটাল বলে।
- 8. ক্লোরিনের ও Cr এর ইলেকট্রন বিন্যাস দেখাও। [বাকাশিবো: '০১, '০৩, '০৪, '১২, '১৭৪, '২২] অথবা, ₁₇Cl পরমাণুর ইলেকট্রন বিন্যাস দেখাও। [বাকাশিবো: '০৯৪, '১১, '১৫] অথবা, কোয়ান্টাম সংখ্যার সাহায্যে Cl পরমাণুতে ইলেকট্রন বিন্যাস দেখাও। বাকাশিবো: '০৪, '০৯] উত্তরঃ Cl(17) এর ইলেকট্রন বিন্যাস = $1s^2 2s^2 2p^6 3s^2 3p^5$ ।

 Cr(24) এর ইলেকট্রন বিন্যাস = $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$ ।
- ৫. আইসোবার কাকে বলে? উদাহরণ দাও। [বাকাশিবো: '০৬, '০৬৪, '০৫, '০২, '১৬, '১৯, '২১] অথবা, উদাহরণসহ আইসোবারের সংজ্ঞা দাও। [বাকাশিবো: '০৭৪, '১২৪] উত্তরঃ যেসব পরমাণুর ভর সংখ্যা অর্থাৎ নিউক্লিয়াসের প্রোটন ও নিউট্রনের মোট সংখ্যা সমান হয়ে কিন্তু প্রোটন সংখ্যা ভিন্ন হয়, তাদেরকে আইসোবার বলে। কপার $^{64}_{29}Cu$ এবং জিংক $^{64}_{30}Zn$ পরস্পরের আইসোবার।
- **৬. আইসোটন কাকে বলে?** তিত্তরঃ যেসব পরমাণুর নিউট্রন সংখ্যা সমান থাকে কিন্তু প্রোটন সংখ্যা ও ভর সংখ্যা ভিন্ন হয়, তাদেরকে পরস্পরের আইসোটন বলে।

- **৭. পলির বর্জন নীতি কী?** [বাকাশিবো: '০৪R, '০২, '০৯R, '১০R, '১৫, '১৬, '১৮, '২৩] উত্তরঃ পলির বর্জন নীতি হলো-"একই পরমাণুতে যেকোনো দুটি ইলেকট্রনের চারটি কোয়ান্টাম সংখ্যার মান কখনো একই হতে পারে না।"
- **৮. কপার ও আর্গনের ইলেকট্রন বিন্যাস দেখাও**। *[বাকাশিবো: '০৬, '১৬]* **উত্তরঃ** Cu(29) এর ইলেকট্রন বিন্যাস = $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$ $4s^1$ $3d^{10}$ । Ar(18) এর ইলেকট্রন বিন্যাস = $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$ ।
- **৯. পরমাণুর স্থায়ী মূল কণিকা কয়টি ও কী কী?** [বাকাপিবো: '০৬, '১১৪, '১৬] **উত্তরঃ** পরমাণুর স্থায়ী মূল কণিকা ৩টি। যথা- ১। ইলেকট্রন, ২। প্রোটন, ৩। নিউট্রন।
- ১০. পরমাণুর অস্থায়ী কণিকাগুলোর নাম লেখ।

 অথবা, পরমাণুর অস্থায়ী কণিকা কী কী?

 অথবা, পরমাণুর প্রাথমিক কণিকাগুলোর নাম লেখ।
 উত্তরঃ পরমাণুর অস্থায়ী কণিকা যথাক্রমে ১। পাইওন, ২। মিউওন, ৩। নিউট্রিনো, ৪। অ্যান্টিনিউট্রিনো, ৫। পজিট্রন, ৬। মেসন প্রভৃতি।
- ১১. ক্রোমিয়ামের ও সিলিকন পরমাণুর ইলেকেট্রন বিন্যাস দেখাও। [বাকাশিবো: '০৭৪, '১০৪, '১৩] উত্তরঃ Cr(24) এর ইলেকেট্রন বিন্যাস $=1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^1\ 3d^5$ । Si(14) এর ইলেকেট্রন বিন্যাস $=1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^2$ ।

সংক্ষিপ্ত প্রশ্নোত্তরঃ

১. পলির বর্জন নীতি বর্ণনা কর।

ত্তিরঃ কোয়ান্টাম সংখ্যা অনুসারে পরমাণুর ভিতরে ইলেকট্রনের বন্টন সম্পর্কে বিজ্ঞানী ডব্লিউ, পলি (W. Pauli) ১৯২৫ খ্রিষ্টাব্দে যে বিখ্যাত নীতি প্রদান কনে তাই 'পলির বর্জন নীতি' নামে পরিচিত। নীতিটি হলো, "ূএকই পরমাণুতে যে কোনো দুটি ইলেকট্রনের চারটি কোয়ান্টাম সংখ্যার মান কখনো একই হতে পারে না।"

২. অরবিট ও অরবিটাল এর মাঝের পার্থক্য দেখাও। [বাকাশিবো: '০৩, '১২R, '১৬, '২১,'২৩, ২৪] উত্তরঃ অরবিট ও অরবিটাল এর মাঝের পার্থক্যগুলো নিম্নে দেওয়া হলো –

-11-4		·
পার্থক্যসূচক ধর্ম	অরবিট	অরবিটাল
১. সংজ্ঞা	পরমাণুতে নিউক্লিয়াসের চতুর্দিকে যেসব	পরমাণুতে নিউক্লিয়াসের চতুর্দিকে
	র্নিদিষ্ট শক্তি বিশিষ্ট প্রধান কক্ষপথে	ইলেকট্রন আবর্তনের সর্বাধিক সম্ভাব্য
	ইলেকট্রন আবর্তন করে তাদের অরবিট	অঞ্চলকে অরবিটাল বলে।
	বলে।	
২. উৎস	বোর পরমাণু মডেল ।	তরঙ্গ বা কোয়ান্টাম বলবিদ্যা।
৩. প্রকাশ	অরিবটসমূহকে প্রধান কোয়ান্টাম সংখ্যা n	সহকারী কোয়ান্টাম $l=0,1,2,3$ হলে
	দারা প্রকাশ করা হয় ; যেখানে, n= 1, 2,	অরবিটালসমূহকে s, p, d, f দ্বারা প্রকাশ
	3, 4, = K, L, M, N, শেল।	করা হয়।
৪. আকার বা	ইলেকট্রনের অরটিসমূহ বৃত্তাকার। যেমন-	বিভিন্ন অরবিটালের আকৃতি বিভিন্ন।
আকৃতি		যেমন s অরবিটাল গোলাকার, p অরবিটাল
	()← অরবিট	ডাম্বেলাকার।
		Z Y X S – অরবিটাল P_X – অরবিটাল
৫. শক্তি	বিভিন্ন অরবিটে ইলেকট্রনের শক্তি	একই উপস্তরের অরবিটালসমূহের শক্তি
	বিভিন্ন। যেমন – শক্তির ক্রমানুসারে	সমান। যেমন- P উপস্তরে P_x , P_y ও P_z
	1 <2 <3 <4 <5	অরবিটালত্রয়ের শক্তি একই
৬. কোয়ান্টাম	অরবিটগুলো প্রধান কোয়ান্টাম সংখ্যা, n	অরবিটালগুলো প্রধান কোয়ান্টাম সংখ্যা, n
সংখ্যা	এর সাথে সম্পর্কিত।	এবং সহকারী কোয়ান্টাম সংখ্যা, <i>l</i> এর
		সাথে সম্পর্কিত।
৭. ইলেকট্ৰন	প্রতি অরবিটে সর্বোচ্চ $2n^2$ সংখ্যক	প্রতি অরবিটালে সর্বোচ্চ দুটি বিপরীত
সংখ্যা	ইলেকট্রন থাকতে পারে।	স্পিনযুক্ত ইলেকট্রন থাকতে পারে।
৮. শক্তিস্তর	অরবিট প্রধান শক্তিস্তর নির্দেশক।	অরবিটাল প্রধান শক্তিস্তরের উপস্তর নির্দেশক।

রচনামূলক প্রশোত্রঃ

কোয়ান্টাম সংখ্যা কী? সংক্ষেপে কোয়ান্টাম সখ্যাগুলোর বর্ণনা দাও।

বাকাশিবো: '০৯R, '১১, '১৩, '১৪, '১৫T, '১৭, '১৯, '২২, '২৩R, '২৩]
অথবা, কোয়ান্টাম সংখ্যার শ্রেণিবিভগা বর্ণনা কর।

অথবা, কোয়ান্টাম সংখ্যা কী? সংক্ষেপে বর্ণনা দাও।

[বাকাশিবো: '১১, '১৪]
অথবা, কোয়ান্টাম সংখ্যা কাকে বলে? কোয়ান্টাম সংখ্যা কত প্রকার ও কী কী? আলোচনা
কর।

উত্তরঃ যে সংখ্যার দ্বারা পরমাণুর কক্ষপথে ইলেকট্রনের আকার আকৃতি ঘূর্ণনের দিক বা স্পিন সংখ্যা চুম্বকীয় মান ইত্যাদি প্রকাশ করা হয় তাকে কোয়ান্টাম সংখ্যা বলা হয়। কোয়ান্টাম সংখ্যা মূলত ৪ প্রকার। যথাঃ

- ১। প্রধান কোয়ান্টাম সংখ্যা।
- ২। সহকারী কোয়ান্টাম সংখ্যা।
- ৩। চুম্বকীয় কোয়ান্টাম সংখ্যা।
- ৪। ঘূর্ণন কোয়ান্টাম সংখ্যা।

নিম্নে এগুলোর বর্ণনা দেওয়া হলোঃ

- ১। প্রধান কোয়ান্টাম সংখ্যাঃ যে কোয়ান্টাম সংখ্যা দ্বারা পরমাণুতে ইলেকট্রনের আকার আকৃতি প্রকাশ করা হয় এবং নিউক্লিয়াস হতে ইলেকট্রনের দূরত্ব প্রকাশ করা হয় তাকে প্রধান কোয়ান্টাম সংখ্যা বলে।একে n দ্বারা প্রকাশ করা হয়। n এর মান 1, 2, 3, 4 ইত্যাদি হতে পারে। প্রত্যেক কক্ষপথে $2n^2$ সূত্র অনুযায়ী ইলেকট্রন থাকবে। যেমন- প্রথম কক্ষপথে $2\times 1^2=2$ টি, দ্বিতীয় কক্ষপথে $2\times 2^2=8$ টি, তৃতীয় কক্ষপথে $2\times 3^2=18$ টি ।
- ২। সহকারী কোয়ান্টাম সংখ্যাঃ সহকারী কোয়ান্টাম সংখ্যাকে l দ্বারা প্রকাশ করা হয়। l এর মান 0 হতে (n-1) পর্যন্ত। n এর মান 1 হলে l এর মান 0 হবে। n এর মান 2 হলে l এর মান 0, 1 আবার n এর মান 3 হলে l এর মান 0, 1, 2 হবে। l এর মান 0 হলে একে s দ্বারা প্রকাশ করা হয়।

৩। চ্মুকীয় কোয়ান্টাম সংখ্যাঃ ম্যাগনেটিক/ চমুকীয় কোয়ান্টাম সংখ্যা m দ্বারা প্রকাশ করা হয়। m এর মান -l হতে +l পর্যন্ত । l এর মান 0 হলে m এর মান 0। l এর মান 2 হলে m এর মান 0 0 । 00 । 01 এর মান 02 হলে 01 আর মান 03 হলে 03 হলে 04 আর মান 04 আর মান 05 আর মান 06 আর মান 07 আর মান 08 আর মান 09 আর মান 09 আর মান 01 আর মান 01 আর মান 01 আর মান 02 হলে 03 আর মান 04 আর মান 05 আর মান 05 আর মান 06 আর মান 07 আর মান 08 আর মান 09 আর মান 09 আর মান 09 আর মান 01 আর মান 01 আর মান 01 আর মান 02 হলে 03 আর মান 05 আর মান 05 আর মান 07 আর মান 08 আর মান 09 আর মান 01 আর মান 02 হলে 01 আর মান 01 আর মান

8। যূর্ণন বা স্পিন কোয়ান্টাম সংখ্যাঃ যে কোয়ান্টাম সংখ্যা দ্বারা ইলেকট্রনের ঘূর্ণনের দিক প্রকাশ করা হয় তাকে ঘূর্ণন বা স্পিন কোয়ান্টাম সংখ্যা বলে। স্পিন কোয়ান্টাম সংখ্যাকে s দ্বারা প্রকাশ করা হয়। s এর মান $+\frac{1}{2}$ বা $-\frac{1}{2}$ হবে।

২. পরমাণুর মূল কণিকা কী? পরমাণুর মূল কণিকা কয়টি ও কী কী? তিনটি স্থায়ী মূল কণিকার বর্ণনা দাও। [বাকাশিবো: '১৪, '১৬, '১৮, '১৯,'২২, '২২R]

অথবা, মৌলিক কণিকা কী? বর্ণনা দাও।

[বাকাশিবো: '১১,]

অথবা, পরমাণুর মূল কণিকা কী? তিনটি স্থায়ী মূল কণিকার বৈশিষ্ট উল্লেখ করো।

[বাকাশিবো: 'o&R, '১১,]

উত্তরঃ মূল কণিকা- মূল উপাদানরূপে যেসব অতি সূক্ষ্ম কণিকা দ্বারা পরমাণু গঠিত, তাদেরকে পরমাণুর মূল কণিকা বলা হয়। মূল কণিকা আবার তিন প্রকার। যথাঃ ১। স্থায়ী মূল কণিকা, ২। অস্থায়ী মূল কণিকা, ৩। কম্পোজিট কণিকা।

১। ইলেকট্রনঃ

- i. ইলেকট্রন 1897 খ্রিষ্টাব্দে আবিষ্কৃত হয়।
- ii. একটি ইলেকট্রনের ভর হচ্ছে $9.1085 imes 10^{-28}~g$ ।
- iii. ইলেকট্রন ঋণাত্মক চার্জযুক্ত (-) ।
- iv. ইলেকট্রনকে e দ্বারা প্রকাশ করা হয়।
- $_{
 m V}$. ইলেকট্রনে ঋণাত্মক চার্জের পরিমাণ $=-1.6022 imes10^{-19}$ কুলম্ব (c)।

২। প্রোটনঃ

- i. প্রোটন 1911 খ্রিষ্টাব্দে আবিষ্কৃত হয়।
- ii. প্রোটন পরমাণুর নিউক্লিয়াসে অবস্থান করে।
- iii. প্রোটনের ভর সংখ্যা $1.673 imes 10^{-24} \ g$ ।
- iv. প্রোটন ধনাত্মক চার্জবিশিষ্ট একটি স্থায়ী কণিকা।
- v. প্রোটন একক ধনাত্মক (+1) বিদ্যুৎধর্মী কণা।
- vi. প্রোটনকে p দারা প্রকাশ করা হয়।

3। নিউট্রনঃ

- i. নিউট্রন 1932 খ্রিষ্টাব্দে আবিষ্কৃত হয়।
- ii. নিউট্রনের ভর হলো $1.675 imes 10^{-24} \, g$ ।
- iii. নিউট্রনের কোন বৈদ্যুতিক চার্জ নেই অর্থাৎ নিউট্রন এটি তড়িৎ নিরপেক্ষ।
- iv. নিউট্রনকে n দ্বারা প্রকাশ করা হয়।

প্রতীক, যোজ্যতা এবং সংকেত

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (Contants)		
বিষয়	পৃষ্ঠ নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
❖ সংক্ষিপ্ত প্রশ্নাবলি		
 রচনামূলক প্রশ্লাবলি 		

বোর্ড প্রশ্নাবলির বিশ্লেষণ (Board Question Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Question Analysis' অংশে এই অধ্যায় থেকে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	-	-	-
২০২৩	>	>	-
২০২২	2	2	-

"শিক্ষা আসলে তথ্য শেখা নয়, বরং এটা চিন্তা করার জন্য মনের প্রশিক্ষণ।"

আলবার্ট আইনস্টাইন

🦥 ল্যাটিন নাম সমূহঃ

বাংলা নাম	ইংরেজি নাম	ল্যাটিন নাম	প্রতীক
তামা (কপার)	Copper	Cuprum	Cu
সোডিয়াম	Sodium	Natrium	Na
লৌহ (আয়রণ)	Iron	Ferrum	Fe
সীসা (লেড)	Lead	Plumbum	Pb
পারদ (মারকারি)	Mercury	Hydrargyrum	Нg
পটাশিয়াম	Potassium	Kalium	K
অ্যান্টিমনি	Antimony	Stibium	Sb
সোনা (গোল্ড)	Gold	Aurum	Au
রূপা (সিলভার)	Silver	Argentum	Ag
টিন	Tin	Stannum	Sn
টাংস্টেন	Tungsten	Walframium	W

🦥 যৌগের গাঠনিক সংকেতঃ

মৌল বা যৌগের নাম	গাঠনিক সংকেত
হাইড্রোজেন পারঅক্সাইড (H_2O_2)	H - O = O - H
নাইট্রাস এসিড (HNO ₂)	H - O - N = O
আমোনিয়া (NH ₃)	H - N - H I H
সোডিয়াম বাই কার্বনেট ($NaHCO_3$)	0=C O—Na 0=C O—H

মৌল বা যৌগের নাম	গাঠনিক সংকেত
ক্যালসিয়াম কার্বোনেট (CaCO3)	Ca = 0 $C=0$
সোডিয়াম কার্বোনেট (Na_2CO_3)	0-Na 0-Na
অ্যালুমেনিয়াম হাইড্রোক্সাইড $Al(OH)_3$	$ \begin{array}{c c} O - H \\ O - H \\ O - H \end{array} $
কার্বনিক এসিড (H_2CO_3)	0 = C = C = 0
নাইট্রিক এসিড (HNO_3)	0 N—0—Н
সালফিউরিক এসিড (H_2SO_4)	H = 0 $S = 0$ $H = 0$

অতি সংক্ষিপ্ত প্রশ্নোতরঃ

- \$. SO_2 যৌগে সালফারের সুপ্ত যোজনী বের কর। [allowardentarrow align=1] উত্তরঃ SO_2- এ 'S' এর সুপ্ত যোজনী = সালফার 'S' এর সর্বোচ্চ যোজনী $6-SO_2$ এ 'S' এর সক্রিয় যোজনী 4. সুতরাং, SO_2- এ 'S' এর সুপ্ত যোজনী =6-4=2 .
- **২. সোনা ও রূপার প্রতীক লেখ**। **উত্তরঃ** সোনার প্রতীক = Au রূপার প্রতীক = Ag .

[বাকাশিবো: '২২]

সালফিউরিক এসিড ও নাইট্রিক এসিডের আণবিক সংকেত লেখ।

[বাকাশিবো: '২১]

লফিউরিক এসিড আণবিক সংকেত হলো - H_2SO_4 এবং নাইট্রিক এসিডের আণবিক সংকেত হলো - HNO_3

8. সাবানের সাধারণ সংকেত লেখ।

[বাকাশিবো: '১৯]

উত্তরঃ সাবানের সাধারণ সংকেত হলো : 3R-COOK

েবেরিয়াম ও বেরিলিয়ামের প্রতীক লেখ।

বোকাশিবো: 'o১R, '১৮]

উত্তরঃ বেরিয়াম এর প্রতীক = Ba বেরিলিয়াম এর প্রতীক = Be .

সংক্ষিপ্ত প্রশ্নোত্রঃ

১. যোজ্যতার ইলেকট্রন মতবাদ কী?

[বাকাশিবো: '০১R, '০৪, '০৫, '০৭R, '১১, '১২, '১৪, '১৬, '১৭R,'১৯, '২০, '২২, '২০R] উত্তরঃ রাসায়নিক বিক্রিয়ায় যৌগ গঠনের সময় কোনো মৌলের একটি পরমাণু অপর মৌলের একটি পরমাণু হতে যে কয়টি ইলেকট্রন গ্রহণ অথবা এতে প্রদান করে ইলেকট্রনের সে সংখ্যাকে ঐ মৌলটির যোজনী বলে।

যেমনঃ সোডিয়াম ও ক্লোরিন পরমাণুর মধ্যে রাসায়নিক যৌগ গঠনের সময় সোডিয়াম পরমাণু

1 টি ইলেকট্রন ক্লোরিন পরমাণুকে দানে করে। তাই সোডিয়ামের যোজনী 1 । ক্লোরিন গ্রহণ

করে বিধায় তার যোজনী 1 ।

২. $FeCl_2$, $FeCl_3$ যৌগে "Fe" – এর সুপ্তযোজনী নির্ণয় করো।

[বাকাশিবো: '২১]

উত্তরঃ আমরা জানি, সুপ্তযোজনী = সর্বোচ্চ যোজনী – সক্রিয়যোজনী

$$FeCl_2 - 4 Fe = 3 - 2 = 1$$

$$FeCl_3 - 4 Fe = 3 - 3 = 0$$

৩. রাসায়নিক সমীকরণ কাকে বলে? $m{H}_2 + m{C}m{l}_2 = 2m{H}m{C}m{l}$ সমীকরণের তাৎপর্য বর্ণনা কর।

[বাকাশিবো: '০৫, '০৭, '১২, '১৫]

উত্তরঃ রাসায়নিক পরিবর্তনের মূলে রয়েছে বিক্রিয়া যা রাসায়নিক বিক্রিয়া। আর রাসায়নিক বিক্রিয়ার প্রকাশই রাসায়নিক সমীকরণ। কোনো রাসায়নিক বিক্রিয়ায় যা ঘটে তা যথাযথভাবে প্রতীক, সংকেত ও যোজনীর মাধ্যমে যে সমীকরণে প্রকাশিত হয় তাই রাসায়নিক সমীকরণ।

$H_2 + Cl_2 = 2HCl$ সমীকরণের তাৎপর্য-

(ক) গুণগত তাৎপর্য :

- i. হাইড্রোজেন ক্লোরিনের সাথে বিক্রিয়া করে হাইড্রোজেন ক্লোরাইড উৎপন্ন করে।
- ii. এটি একটি গ্যাসীয় বিক্রিয়া।

(খ) পরিমাণগত তাৎপর্য :

- i. এক অণু হাইড্রোজেন এক অণু ক্লোরিনের সাথে রাসায়নিক বিক্রিয়া করে দুই অণু হাইড্রোজেন ক্লোরাইড উৎপন্ন করে।
- ii. দুই ভাগ ওজনের হাইড্রোজেন, 35.5×2 ভাগ ওজনের ক্লোরিনের সাথে বিক্রিয়া করে (3×36.5) ভাগ ওজনের হাইড্রোজেন ক্লোরাইড উৎপন্ন হয়।
- iii. সমতা চিহ্নের রাম পাশের পরমাণ সয়খ্যা (2 + 2 = 4) এবং ডান পাশের পরমাণু সংখ্যা [2(1 + 1) = 4] সমান।

8. স্থুল সংকেত ও আণবিক সংকেতের মধ্যে পার্থক্য কী?

[বাকাশিবো: '৯৪, '৯৫, '০২, '০৪R, '০৬, '১১, '১২R, '১৩]

উত্তরঃ নিচে স্থল সংকে ও আণবিক সংকেতের মধ্যে পার্থক্য দেওয়া হলোঃ

পার্থকের বিষয়	স্থূল সংকেত	আণবিক সংকেত
১) সংজ্ঞা	স্থূল সংকেত যৌগের অণুতে বিদ্যমান	আণবিক সংকেত যৌগের অণুতে
	বিভিন্ন মৌলের পরমাণুর সংখ্যার অনুপাত	বিদ্যমান পরমাণুসমূহের প্রকৃত সংখ্যা
	প্রকাশ করে; প্রকৃত সংখ্যা প্রকাশ করে	প্রকাশ করে। যেমনঃ বেনজিনের
	না। যেমনঃ বেনজিনের স্থূল সংকেত হতে	আণবিক $C_6 H_6$ । সুতরাং বেনজিনের
	জানা যায় যে, এর অণুতে কার্বন ও	একটি অনুতে ছয়টি কার্বন ও ছয়টি
	হাইড্রোজেন পরমাপণুর সংখ্যার অনুপাত	হাইড্রোজেন পরমাণু বিদ্যমান।
	1 : 1 । পরমাণুসমূহের সত্যিকার সংখ্যা	
	জানা যায় না।	
২) সংযুতি	যৌগের স্থূল সংকেত নির্ণয় করতে এর	যৌগের আণবিক সংকেত নির্ণয় করতে
	সংযুতি জানা প্রয়োজন। আণবিক ভর	এর সংযুতির সাথে সাথে আণবিক ভর
	জানার প্রয়োজন নেই।	

		জানতে হবে।
৩) আণবিক	যৌগের স্থূল সংকেত কোন কোন ক্ষেত্রে	যৌগের আণবিক সংকেত হয় এর স্থূল
সংকেত	আণবিক সংকেত সমান হয়।	সংকেতের সমান অথবা কোন সরল
		গুণিতকের সমান।
৪) স্থূল সংকেত	স্থূল সংকেত শুধু যৌগের হতে পারে।	আণবিক সংকেত যৌগ বা মৌল, উভয়
		ধরনের পদার্থের হয়।
৫) সংখ্যা	একই স্থূল সংকেত একাধিক যৌগের	সমাণু ব্যতীত েএকটি আণবিক সংকেত
	হতে পারে। যেমনঃ আসিটিলিন ও	একটি মাত্র যৌগের হয়ে থাকে। যেমনঃ
	বেনজিন উভয়ের স্থূল সংকেত CH ।	\mathcal{C}_6H_6 শুধুমাত্র বেনজিনের আণবিক
		সংকেত।
৬) শতকরা হার	যৌগের অণুস্থিত মৌলের শতকরা হার	মৌলের শতকরা হার, এদর পারমানবিক
	হতে এদর পারমানবিক ভরের সাহায্যে	ভর এবং সংশ্লিষ্ট যৌগের ভর হতে
	স্থূল সংকেত নির্ণয় করা যায়।	যৌগের আণবিক সংকেত নির্ণয় করা
		यांग्र ।

গ্যাস

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (Contants)		
বিষয়	পৃষ্ঠ নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশাবলি		
❖ সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশ্লাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষণ (Board Question Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Question Analysis' অংশে এই অধ্যায় থেকে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	1	-	-
২০২৩	٤	٤	2
२०२२	N	-	2

"সফল মানুষ হওয়ার চেষ্টা করবেন না, বরং মূল্যবান মানুষ হয়ে উঠুন।"

আলবার্ট আইনস্টাইন

独 প্রয়োজনীয় সূত্রাবলীঃ

$$\triangleright PV = nRT$$

$$P_1V_1 = P_2V_2$$

$$> \frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$\triangleright \frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

সমাধানকৃত সমস্যাবলি

উদাহরণ-০১: স্থির তাপমাত্রায় 240 ml N₂ gas কে প্রমাণ চাপ থেকে 780 mm পারদ চাপে নেওয়া হলে এর আয়তন কত হবে?

সমাধান:

বয়েলের সূত্রানুসারে,

$$P_1V_1=V_2$$

বা,
$$V_2 = \frac{P_1 V_1}{P_2}$$

$$= \frac{760 \times 240}{780} mL$$

$$= 233.58 mL$$

এখানে,

প্রাথমিক আয়তন, $V_1=240~\mathrm{mL}$

প্রাথমিক চাপ, $P_1 = 760 \ mm(Hg)$

পরিবর্তিত চাপ, $P_2 = 780 \ mm(Hg)$

পরিবর্তিত আয়তন, $V_2=?$

 \therefore N_2 গ্যাসের পরিবর্তিত আয়তন হবে, $233.58\,mL$. (উত্তর)

উদাহরণ-০২: একটি গ্যাসের তাপমাত্রা 17°C হতে বাড়ানো হলো, ফলে গ্যাসের চাপ অপরিবর্তিত রইল কিন্তু আয়তন দ্বিগুণ হয়ে গেল। তাপমাত্রা কত বৃদ্ধি পেল? [বাকাশিবো: '২২] সমাধান:

চার্লসের সূত্রমতে,
$$\frac{V_1}{T_1}=\frac{V_2}{T_2}$$
বা, $T_2=\frac{V_2T_1}{V_1}=\frac{2V\times290}{V}=580K$

∴পরিবর্তিত তাপমাত্রা = (580 - 273)°C = 307°C

∴নিম্নে তাপমাত্রা বৃদ্ধি = (370 - 17) °C = 290°C(উত্তর)

এখানে, প্রাথমিক আয়তন, $V_1=\ V$ [আয়তন ধরে]

প্রাথমিক তাপমাত্রা, $T_1 = 17^{\circ}\text{C} = (17 + 273)$

K = 290 K

পরিবর্তিত আয়তন, $V_2 = 2V$

পরিবর্তিত তাপমাত্রা, $T_2 = ?$

উদাহরণ-০৩: 25°C তাপমাত্রায় ও 770 mm চাপে 500 cc ক্লোরিন গ্যাসের মধ্যে কতটি অণু থাকে? বোকাশিবো: '১১T, '১২R, '১৩,'২২]

সমাধান:

ধরি, প্রমাণ উষ্ণতা ও চাপে 🗸 সিসি আয়তন দখল করে।

$$P_2$$
= 760 mm

$$V_1 = 500 \text{ cc}$$

$$V_2 = ?$$

$$T_1 = 25$$
°C = (25+273)K = 298 L T_1 = 273 K

$$T_1$$
= 273 K

আমরা জানি,

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

বা,
$$V_2 = \frac{P_1 V_1 T_2}{P_2 T_1} = \frac{770 \times 500 \times 273}{760 \times 298} = 464.08 \text{ cc}$$

N.T.P তে 22.4 লিটার বা 22400 cc ক্লোরিন গ্যাসের অণুর সংখ্যা $=6.023 imes 10^{23}$

সুতরাং, 464.08 cc
$$Cl_2$$
 গ্যাসের অণুর সংখ্যা = $\frac{6.023 \times 10^{23} \times 464.08}{22400}$

উদাহরণ-08: 27°C তাপমাত্রায় ও 760 mm (Hg) চাপে 500 mm কোন গ্যাসের ভর 0.90 গ্রাম। গ্যাসটির আণবিক ভর বের কর। বাকাশিবো: '০৭1

সমাধান: ধরি, প্রমাণ উষ্ণতা ও চাপে গ্যাসটির আয়তন হবে = V mm

আমরা জানি,

$$\frac{P_0 V_0}{T_0} = \frac{PV}{T}$$

$$\therefore V = \frac{P_0 V_0 \times T}{P T_0} = \frac{760 \times 500 \times 273}{760 \times 300}$$

অ্যাভোগেড্রোর প্রকল্প অনুযায়ী:

এখানে,
$$P_0$$
= 760 মিমি (মারকারি)

$$T_0$$
= (273+27) = 300° K

$$T = 273$$

$$V = ?$$

প্রমাণ উষ্ণতা ও চাপে যে কোন গ্যাসের 1 গ্রাম অণুর আয়তন = 22.4 লি

∴ প্রমাণ অবস্থায় 455 মিলি গ্যাসের ভর 0.90 গ্রাম

∴ 22400 " "
$$\frac{0.90 \times 22400}{455}$$

সুতরাং, গ্যাসটির এক গ্রাম অণু = 44.3 গ্রাম অর্থাৎ, এর আণবিক ভর = 44.3 (**উত্তর**)

উদাহরণ-08: 27°C তাপমাত্রায় ও 760 mm (Hg) চাপে 500 mm কোন গ্যাসের ভর 0.90 গ্রাম। গ্যাসটির আণবিক ভর বের কর।

সমাধান:

দেওয়া আছে,

গ্যাসের চাপ ,
$$P_1 = 780 \text{ mm (Hg)}$$

গ্যাসের তাপমাত্রা,
$$T_1 = (27 + 273) \text{ K}$$

গ্যাসের আয়তন,
$$V_1 = 1 L$$

২য় ক্ষেত্রে,

গ্যাসের চাপ ,
$$P_2 = 760 \text{ mm}$$
 (পারদ)

গ্যাসের তাপমাত্রা,
$$T_2 = 273 \text{ K}$$

গ্যাসের আয়তন,
$$V_2 = ?$$

আমরা জানি, বয়েল ও চার্লসের সূত্রানুসারে,

- ∴ প্রমাণ অবস্থায় গ্যাসটির আয়তন = 0.9339 লিটার
- ∴ প্রমাণ অবস্থায় গ্যাসটির 0.9339 লিটার এর ভর = 0.034 গ্রাম অ্যাভোগেড্রোর প্রকল্প অনুযায়ী:

প্রমাণ অবস্থায় যে কোন গ্যাসের 1 মোল এর আয়তন = 22.4 লি

এখন, গ্যাসটির 0.9339 লিটার এর ভর = 0.034 গ্রাম

∴গ্যাসটির 22.4 লিটার এর ভর =
$$\frac{0.034 \times 22.4}{0.9339}$$
 গ্রাম = 0.82 গ্রাম

∴ গ্যাসটির 1 মোল = 0.82 গ্রাম

সুতরাং, গ্যাসটির আণবিক ভর = 0.82 (উত্তর)

অতি সংক্ষিপ্ত প্রশ্নোতরঃ

১. অ্যাভোগেড্রো সংখ্যার মান কত?

[বাকাশিবো: '২৩R]

উত্তরঃ অ্যাভোগেড্রো সংখ্যার মান = 6.023×10^{23} ।

২. পরমশূণ্য তাপমাত্রা কাকে বলে? এর মান কত?

[বাকাশিবো: '২২]

উত্তরঃ কল্পনাযোগ্য সর্বনিম্ন যে তাপমাত্রায় সকল গ্যাসের আয়তন তত্ত্বীয়ভাবে শ্যন্য হয়ে যায় তাকে পরমশৃন্য তাপমাত্রা বলে। এর মান - 273°C ।

৩. আদর্শ গ্যাস কী?

[বাকাশিবো: '২২R]

উত্তরঃ যে সকল গ্যাস বয়েল এবং চার্লসের সূত্র যুগ্মভাবে মেনে চলে তাদেরকে আদর্শ গ্যাস বলে।

8. প্রমাণ তাপমাত্রা বলতে কী বোঝায়?

[বাকাশিবো: '২১]

উত্তরঃ প্রমাণ তাপমাত্রা বলতে যে তাপমাত্রায় প্রমাণ চাপে অর্থাৎ 760 mm পারদ চাপে বরফ গলে পানিতে পরিণত হয় বা পানি জমে বরফে পরিণত হয় সে তাপমাত্রাকে প্রমাণ তাপমাত্রা বলে।

৫. প্রমাণ চাপ বলতে কী বোঝায়?

[বাকাশিবো: '২১]

উত্তরঃ প্রমাণ চাপ হলো সমুদ্রপৃষ্ঠে 45° অক্ষাংশে 273.15 K তাপমাত্রায় উলম্বভাবে অবস্থিত 760 mm উচ্চতাবিশিষ্ট শুষ্ক ও বিশুদ্ধ পারদস্তম্ভ যে চাপ দেয় তাকে প্রমাণ চাপ বলে।

সংক্ষিপ্ত প্রশ্নোতরঃ

১. চার্লসের সূত্রানুসারে দেখাও যে, -273°C তাপমাত্রায় সকল গ্যাসের আয়তন শূণ্য হয়।

[বাকাশিবো: '২৩R]

উত্তরঃ চার্লসের সূত্রানুসারে আমরা পাই –

$$V_t = V_0 + \frac{V_0}{273} \cdot t$$
(1)

এ সমীকরণে $\frac{V_0}{273}$ মানকে গ্যাসের তাপ প্রসারাংক (Co-efficient of thermal expansion) বলে এবং একে lpha দ্বারা প্রকাশ করা হয়।

উপরের সমীকরণে তাপমাত্রা (t) এর মান -273°C বসালে আয়তন শূন্য পাওয়া যায়। যেমন- $V_{-273}=V_0+rac{V_0}{273}$. (-273) $=V_0-V_0$ =0

সূতরাং, দেখা যায় যে, উষ্ণতায় সকল গ্যাসের আয়তন শূণ্য হয়।

২. গ্যাস ও বাষ্পের পার্থক্য লিখ।

[বাকাশিবো: '২১]

উত্তরঃ গ্যাস ও বাষ্পের মধ্যে পার্থক্য নিম্নে দেওয়া হলোঃ

বাষ্প	গ্যাস	
i. বাষ্প বলতে আমরা কোনো পদার্থের	i. গ্যাস কক্ষ তাপমাত্রায় গ্যাস।	
গ্যাসীয় অবস্থাকে বুঝি, যা কক্ষ তাপমাত্রায়		
তরল বা কঠিন।		
ii. বাষ্পকে চাপ প্রয়োগ করলে তরলে	ii. গ্যাসকে চাপ প্রয়োগ করে, তাপ কমিয়ে	
পরিণত হয়।	তরলে পরিণত করা হয়।	
iii. বাষ্পের অণুসমূহের আন্তঃআণবিক আকর্ষণ	iii. অণুসমূহে আন্তঃআণবিক আকর্ষণ বল	
বল গ্যাস অপেক্ষা বেশি।	কম।	
iv. এটি কম সংকোচনশীল ও প্রসারণশীল।	iv. এটি বেশি সংকোচনশীল ও প্রসারণশীল।	
$_{ m V}$. উদাহরণঃ জ্বলীয় বাষ্প (H_2O)	v . মিথেন (CH_4) , হাইড্রোজেন (H_2) ,	
	নাইট্রোজেন (N_2)	

৩. প্রমাণ তাপমাত্রা ও প্রমাণ চাপ বলতে কী বোঝায়?

উত্তরঃ তাপমাত্রা ও চাপের পরিবর্তনের ফলে বিভিন্ন গ্যাসের আয়তন ভিন্ন ভাবে পরিবর্তিত হয়। এর ফলে গ্যাসসমূহের আয়তনের তুলনা করা কষ্টকর হয়। এজন্য বিভিন্ন গ্যাসের আয়তনের তুলনা করার সুবিধার্থে তাপমাত্রা ও চাপের একটি নির্দিষ্ট মানকে প্রমাণ বা standard হিসেবে বিবেচলা করা হয়। তাপমাত্রা ও চাপের এ মানগুলোকে প্রমাণ তাপমাত্রা ও চাপ বা Standard Temperture and Pressure (STP) অথবা আদর্শ তাপমাত্রা ও চাপ বা Normal Temperture and Pressure (NTP) বলে।

রচনামূলক প্রশ্নোত্রঃ

১. প্রমাণ কর যে, PV =nRT.

[বাকাশিবো: '২১, '২২R, '২৩]

উত্তরঃ

বয়েলের সূত্রঃ স্থির তাপমাত্রায়, নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন ঐ গ্যাসের উপর প্রযুক্ত চাপের ব্যস্তানুপাতিক।

চার্লসের সূত্রঃ স্থির চাপে, নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন তার কেলভিন তাপমাত্রা বা পরম তাপমাত্রার সমানুপাতিক।

অ্যাভোগেড্রো এর সূত্রঃ স্থির তাপমাত্রায় ও চাপে সমআয়তনের সকল গ্যাসে সমসংখ্যক অণু থাকে।

মনে করি, T কেলভিন তাপমাত্রা ও P চাপে n মোল পরিমাণ কোনো গ্যাসের আয়তন V হয়। তাহলে,

- i. বয়েলের সূত্র অনুসারে, $\propto \frac{1}{P}$, যখন n ও T স্থির থাকে(i)
- ii. চার্লসের সূত্র অনুসারে, $V \propto T$, যখন n ও T স্থির থাকে(ii)
- iii. অ্যাভোগেড্রো এর সূত্র অনুসারে, $V \propto n$, যখন $T \otimes P$ স্থির থাকে (iii)

যখন উক্ত গ্যাসের n, V, T, P সব কয়টি একই সাথে পরিবর্তিত হয়, তখন বীজগণিতের সূত্রানুসারে, (i), (ii) ও (iii) নং সমীকরণ থেকে আমরা লিখতে পারি,

$$V=rac{1}{P} imes T imes n$$
বা, $V=K imes rac{n\,T}{P}$ এখানে K একটি আনুপাতিক ধ্রুবক।

বা, PV = nKT

এখানে K হলো আনুমানিক ধ্রুবক। অ্যাভোগেড্রো প্রকল্প তথা সূত্রমতে, আমরা জানি যে, একই তাপমাত্রায় ও চাপে এক মোল পরিমাণ সব গ্যাসের আয়তন অর্থাৎ, মোলার আয়তন সমান হয়। তখন সব গ্যাসের বেলায় ঐ আনুপাতিক ধ্রুবক K এর মানও সমান এর স্থলে R শব্দটি বসিয়ে n মোল গ্যাসের জন্য পাই,

PV = nRT.

এক মোল গ্যাসের বেলায়, n = 1; তখন এক মোল গ্যাসের জন্য পাই,

$$PV_n = RT$$

এখানে, V_∞ হলো গ্যাসের মোলার আয়তন।

সর্বজনীন গ্যাস ধ্রুবক বা মোলার গ্যাস ধ্রুবকঃ আমরা জানি যে, যদি বিভিন্ন গ্যাসের চাপ P, তাপমাত্রা T, স্থির থাকে, তখন এক মোল বিভিন্ন গ্যাসের আয়তন বা মোলার আয়তন V সমান হবে। সুতরাং, সমীকরণ PV =nRT হতে বুঝা যায় যে, R- এর মান এক মোল সকল গ্যাসের জন্য সমান। এ কারণে এক সর্বজনীন গ্যাস ধ্রুবক (Universal Gas Constant) বা সংক্ষেপে গ্যাস ধ্রুবক বা মোলার গ্যাস ধ্রুবক বলা হয়।

আদর্শ গ্যাসের সমীকরণঃ গ্যাস-সূত্রসমূহের সমস্বয়ে প্রতিষ্ঠিত PV =nRT সমীকরণটি তাত্ত্বিকভাবে সব গ্যাসের জন্য প্রযোজ্য হলেও বাস্তবক্ষেত্রে কিছুটা বিচ্যুতি দেখা যায়। যে সব গ্যাস সকল তাপমাত্রার চাপে বয়েলের ও চার্লসের সূত্র মেনে চলে, তাদেরকে আদর্শ গ্যাস বলা হয়। আদর্শ গ্যাস উপরি-উক্ত সমীকরণকেও মেনে চলবে। সুতরাং, এ সমীকরণকে আদর্শ গ্যাসের অবস্থার সমীকরণ বলা হয়।

রাসায়নিক বন্ধন

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (Contants)		
বিষয়	পৃষ্ঠ নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশ্লাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষণ (Board Question Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন । নিচে 'Board Question Analysis' অংশে এই অধ্যায় থেকে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	-	>	-
২০২৩	-	>	2
২০২২	2	-	2

"স্কুলে যা শেখানো হয় তা ভুলে যাওয়ার পরে, যা অবশিষ্ট থাকে তা হল শিক্ষা।"

আলবার্ট আইনস্টাইন

অতি সংক্ষিপ্ত প্রশ্নোতরঃ

- ১. সিগমা (σ) বন্ধন কাকে বলে? [বাকাশিবো: '০৩, '০৫, '০৬, '০৭ '১১, '১৫Τ, '১৬, '১৭৪, '২২] উত্তরঃ একই অক্ষে অবস্থিত দুটি একই বা ভিন্ন ধরনের অরটবটাল মুখোমুখি অধিক্রমেণের ফলে যে বন্ধন গঠিত হয় তাকে সিগমা (σ) বলে।
- ২. সমযোজী বন্ধন কাকে বলে?

 তিত্তরঃ দুটি পরমাণুর রাসায়নিক সংযোগের সময় যদি উভয় পরমাণু সমানভাবে শেয়ার করে যদি নিদ্রিয় গ্যাসের ইলেকট্রন সরবরাহ করে এক বা একাধিক ইলেকট্রন জোড় গঠন কেএবং ইলেকট্রন জোড় উভয় পরমাণ সমানভাবে শেয়ার করে যদি নিদ্রিয় গ্যাসের ইলেকট্রন বিন্যাস লাভ করে যে রাসায়নিক বন্ধন গঠিত হয় তাকে সমযোজী বন্ধন বলে।
- 8. রাসায়নিক বন্ধন কাকে বলে? [বাকাশিবো: '০৪৫, '০৮৫, '১৩] উত্তরঃ যে শক্তির বলে অণুতে পরমাণুসমূহ যুক্ত তাকে রাসায়নিক বন্ধন বলে।

সংক্ষিপ্ত প্রশ্নোতরঃ

১. সিগমা বন্ধন ও পাই বন্ধন বলতে কী বোঝায়?

উত্তরঃ সিগমা বন্ধনঃ অণু গঠনে দুটি পরমাণুর একই অক্ষে অবস্থিত দুটি অরবিটালের প্রান্তিকভাবে বা সামনাসামনি বা মুখোমুখি অধিক্রমণ দ্বারা যে বন্ধন সৃষ্টি হয় তাকে সিগমা (σ) বন্ধন বলে। s অরবিটালের আকৃতি বর্তুলাকার এবং p অরবিটালের আকৃতি ডাম্বেল আকৃতির।

যেমনঃ দুটি হাইড্রোজেন পরমাণ বর্তুলাকাল দুটি $1_{
m S}$ অরবিটাল মুখোমুখি অধিক্রমণ করে দুটি হাইড্রোজেন পরমাণুর মধ্যে সিগমা বন্ধন গঠিত হয়।

অনুরূপে দুটি ফ্লোরিন পরমাণুর ডাম্বেল আকৃতির দুটি $2P_z$ অরবিটাল পরমাণুর মুখোমুখি অধিক্রমণ করে দুটি ফ্লোরিন পরমানুর মধ্যে সিগমা বন্ধন গঠিত হয়।

$$F(9)=1s^22s^22p_x^23p_y^13p_z^1$$

পাই (π) বন্ধনঃ অণু গঠনের সময় দুটি পরমাণুর একই অক্ষে অবস্থিত দুটি অরবিটাল পাশাপাশি অধিক্রমণ করলে যে বন্ধন গঠিত হয় তাকে পাই (π) বন্ধন বলে।

যেমন: অক্সিজেন অণুতে দুটি অক্সিজেন পরমাণুর মধ্যে একটি সিগমা (σ) বন্ধন ও একটি পাই (π) বন্ধন বিদ্যমান। অক্সিজেন পরমাণুর ইলেকট্রন বিন্যাসে

$$0 (8) = 1s^2 2s^2 2p_x^2 2p_y^1 2p_z^1$$

দেখা যায় অক্সিজেন পরমাণুর প্রত্যেকের $2P_y$ ও $2P_z$ অরবিটাল অর্ধপূর্ণ অবস্থায় আচছ। তারা একটি করে অরবিটাল মুখোমুখি অধিক্রমণ করে একটি সিগমা (σ) বন্ধন এবং একটি অরবিটাল

পাশাপাশি অধিক্রমণ করে একটি পাই (π) বন্ধন গঠন করে।

রচনামূলক প্রশোতরঃ

আয়নিক যৌগের বৈশিষ্ট্য লেখ।

[বাকাশিবো: '২২R, ২৩R]

উত্তরঃ <u>আয়নিক বন্ধনঃ</u> ইলেকট্রন আদান-প্রদানের মাধ্যমে অথবা ধাতু ও অধাতুর মাধ্যমে যে বন্ধন গঠিত হয় তাকে আয়নিক বন্ধন বলে। উদাহরণ- NaCl একটি আয়নিক বন্ধন।

$$\begin{array}{ccc}
Na - e & \rightarrow & Na^{+} \\
C + e & \rightarrow & Cl^{-} \\
\hline
Na^{+} + Cl^{-} = NaCl
\end{array}$$

x এখানে Na একটি ইলেকট্রন ত্যাগ করে Na^+ আয়নে পরিণত হয় । Cl একটি ইলেকট্রন গ্রহণ করে Cl^- আয়নে পরিণত হয় । অর্থাৎ সোডিয়াম এবং ক্লোরিনের মাধ্যমেস আদান প্রদানের মাধ্যমে Nacl আয়নে গঠিত হয়। আবার, সোডিয়াম একটি ধাতু এবং ক্লোরিন একটি অধাতু তাই এরা আয়নিক বন্ধন গঠিত হয়। Na তার সর্বশেষ একটি ইলেকট্রন ত্যাগ করে স্থিতিশীলতা অর্জন করে এবং সেই একটি ইলেকট্রন গ্রঞন করে অস্টক পূর্ণ করে।

অধ্যায় ০৫

অমু, ক্ষার এবং লবণ

🔲 এই অধ্যায়ের প্রধান সূচিপত্র (Contants)		
বিষয়	পৃষ্ঠ নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
❖ সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষণ (Board Question Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন । নিচে 'Board Question Analysis' অংশে এই অধ্যায় থেকে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	٤	-	-
২০২৩	N	٤	-
২০২২	N	ą.	-

"যে ব্যক্তি কখনো ভুল করেনি সে কখনো নতুন কিছু করার চেষ্টা করেনি।"

আলবাট আইনস্টাইন

অতি সংক্ষিপ্ত প্রশ্নোত্রঃ

১. দুটি দ্বি-ক্ষারকীয় অ্যাসিডের নমা ও সংকেত লেখ। উত্তরঃ সালফিউরিক এসিড H_2SO_4 , কার্বনিক এসিড H_2CO_3 ।

[বাকাশিবো: '`২৩R]

২. HNO_3 , H_3PO_4 , ও H_3BO_3 এর ক্ষারকতা কত? উত্তরঃ এক, তিন ও তিন।

[বাকাশিবো: ০৬, ২২]

- ৩. CaOএর অস্প্রত্ব বা অ্যাসিডতা কত বের কর। [বাকাশিবো: ০৪R, ১১, ১৫, ১৫R, ২১, ২২R]উত্তরঃ CaO এর অস্প্রত্ব দুই। কারণ এক অণু CaO দুই অণু HCl কে প্রশমিত করে। $CaO+2HCl \rightarrow CaCl_2+H_2O$
- 8. রাজ অম বলতে কী বোঝায়? [বাকাশিবো: ১২R, ১৮] উত্তরঃ 1 ঃ 3 অনুপাতের নাইট্রিক এসিড ও হাইড্রোক্লোরিক এসিডের মিশ্রণকে রাজ অম বলা হয়।
- ৫. "ZnO এর অস্প্রত্ব কত এবং কেন? [বাকাশিবো: ০৩, ০৩, ০৬৪, ৯, ১২৪, ১৩, ১৫, ২৪] উত্তরঃ ZnO এর অস্প্রত্ব দুই। কারণ এক অণু জিংক অক্সাইড (ZnO) দুই অণু HCl কে প্রশমিত করতে পারে। অতএব ZnO একটি দ্বি এসিডির ক্ষারক।

$$ZnO + 2HC \rightarrow ZnCl_2 + H_2O$$

৬. ZnO এর অম্লত্ব নিরূপণ কর।

[বাকাশিবো: ০৬, ১৬, ২৩]

উত্তরঃ $ZnO + 2HC \rightarrow ZnCl_2 + H_2O$ উক্ত সমীকরণ হতে বুঝা যায় যে, ZnO এর অম্লত্ব দুই। কারণ এক অণু জিংক অক্সাইড (ZnO) দুই অণু HCl কে প্রশমিত করতে পারে। অর্থাৎ জিংক অক্সাইড (ZnO) – এর অম্লত্ব দুই।

৭. Al_2O_3 এর অম্লত্ব কত এবং কেন? [বাকাশিবো: ০৩R, ০৩, ০৬, ১২, ১২R, ১৪, ১৫]উত্তরঃ Al_2O_3 এর অম্লত্ব 6 কারণ এক অণু Al_2O_3 ; 6 অণু HCl কে প্রশমিত করতে পারে। $Al_2O_3+6HCl o 2AlCl_2+3H_2O$

- ৮. একটি এসিড লবণ ও একটি দ্বি-লবণের নাম ও সংকেত লিখ। $[\pi]$ কাশিরো: ০৮, ১০, ১৫] উত্তরঃ এসিড লবণের নাম সোডিয়াম বাই কার্বনেট $NaHCO_3$ দ্বি-লবণের নাম- পটাশ এলাম $[K_2SO_4.Al_2(SO_4)_3.24\ H_2O]$
- ৯. 2টি জটিল লবণের নাম ও সংকেত লেখ। $[\pi]$ কাশিরো: ০৫R, ০৭ ১৩] উত্তরঃ পটাশিয়াম ফেরোসায়ানাইড $K_4[Fe(CN)_6]$, পটাশিয়াম ফেরিসায়ানাইড $K_3[Fe(CN)_6]$ ।

সংক্ষিপ্ত প্রশ্নোতরঃ

১. ব্যাখ্যা কর- " সমস্ত ক্ষারই ক্ষারক কিন্তু সমস্ত ক্ষারক ক্ষার নয়।"

[नाकाभिरना: ०৬, ०१R, ১२R, ১৩R, ৫, ১৬, ১৭, २०, २२, २७R]

অথবা, দেখাও যে, "সকল ক্ষারই ক্ষারক, কিন্তু সমস্ত ক্ষারক ক্ষার নয়।" এই কথার তাৎপর্য আলোচনা কর।

উত্তরঃ সাধারণত ধাতু বাধাতুর ন্যায় ক্রিয়াশীল মূলকের আক্সাইড ও হাইড্রোক্সাইডকে ক্ষারক বলে। যেমনঃ CaO, NaOH ইত্যাদি। কিন্তু পানিতে দ্রবণীয় ক্ষারককেই কেবল ক্ষার বলা হয়। যেমনঃ NaOH, KOH ইত্যাদি। যেহেতু, সকল ক্ষারকপানিতে দ্রবণীয় নয়। যেমনঃ CaO, ZnO, Al_2O_3 , $Ba(OH)_2$, $Cu(OH)_2$ প্রভৃতি ধাতুর অক্সাইড ও হাইড্রোক্সাইড পানিতে দ্রবণীয় হয় না। তাই সংজ্ঞানুসারে এগুলো ক্ষারক কিন্তু ক্ষার নয় । কাজেই ক্ষারক হলেই তা ক্ষার নাও হতে পারে।

আবার, ক্ষার পানিতে দ্রবণীয় ধাতব হাইড্রোক্সাইড হওয়ায় এরা ক্ষারক হবেই। যেমনঃ NaOH, KOH প্রভৃতি ধাতব হাইড্রোক্সাইড পানিতে দ্রবণীয় তাই এর ক্ষার। কিন্তু NaOH ও KOH ধাতব হাইড্রোক্সাইড তাই এর ক্ষারকও বটে। সুতরাং, ক্ষার হলেই তারা ক্ষারকও হবে। অতএব, সকল ক্ষারই ক্ষারক কিন্তু সকল ক্ষারক ক্ষার নয়।

২. দ্বি-লবণ ও জটিল লবণের মধ্যে ৩টি পার্থক্য লেখ।

[বাকাশিবো: ০৬, ১৪, ২৩]

অথবা, যুগা লবণ বা দি লবণ ও জটিল লবণের মধ্যে পার্থক্য লেখ।

[বাকাশিবো: ০৩, ০৬, ০৬R]

উত্তরঃ যুগ্ম লবণ ও জটিল লবণের মধ্যে পার্থক্য নিম্নে দেওয়া হলোঃ

দ্বি-লবণ বা যুগ্ম লবণ	জটিল লবণ
 উৎস অনুসারে যুগ্ম লবণ উৎপাদনের জন্য দুটি পূর্ণ লবণের মিশ্রণ ব্যবহৃত 	 জটিল লবণ উৎপাদনের জন্য দুটি পূর্ণ লবণের দ্রবণের মিশ্রণ ক্যবহৃত হয়।
হয়। ২. উৎপাদক লবণের মিশ্রণ সম-আণবিক অনুপাতে মিশ্রিত করা হয়।	২. নির্দিষ্ট আণবিক অনুপাতে মিশ্রিত করা হয়।
 ত. উৎপাদক ণবণ হতে যুগা লবণের কেলাস গঠনের পার্থক্য থাকে। 	 রাসায়নিক বিক্রিয়ায় নতুন জটিল আয়নের সৃষ্টি হয়।
৪. দ্রবণে যুগা লবণের আয়ন ও উ'পাদক লবণের আয়নের মধ্যে সংখ্যায় ও প্রকৃতিতে কোন পার্থক্য নেই।	 উৎপাদক লবণের আয়নের সংখ্যা ও প্রকৃতি জটিল আয়ন হতে ভিন্ন হয়।
 ৫. এর অম্লীয় মূলক ও উৎপাদক লবণের অম্লীয়মূলক একই এবং মাতৃ এসিড একই। 	 ৫. জটিল লবণের অম্লীয়মূলক উৎপাদক লবণের অম্লীয়মূলক হতে ভিন্ন এবং মাতৃ এসিডও ভিন্ন।

অধ্যায় ০৬

আয়নিক ভারসাম্য

🛄 এই অধ্যায়ের প্রধান সূচিপত্র (Contants)		
বিষয়	পৃষ্ঠ নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশ্লাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষণ (Board Question Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন । নিচে 'Board Question Analysis' অংশে এই অধ্যায় থেকে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	-	-	2
২০২৩	-	-	2
২০২২	-	-	-

''স্কুলে যা শেখানো হয় তা ভুলে যাওয়ার পরে, যা অবশিষ্ট থাকে তা হল শিক্ষা।''

আলবার্ট আইনস্টাইন

অতি সংক্ষিপ্ত প্রশ্নোত্রঃ

১. PH কাকে বলে? বিশুদ্ধ পানির PH কত?

[বাকাশিবো: ০৪, ০৮, ১৩]

উত্তরঃ কোনো দ্রবণের হাইড্রাজেন আয়ন ঘনত্বের ঋণাত্মক লগারিদম মানকে ঐ দ্রবণের PH বলা হয়। অতএব, $pH = -\log[H^+]$ । বিশুদ্ধ পানির pH = 7

২. নরমালিটি কী?

[বাকাশিবো: ০৬, ১১]

উত্তরঃ নির্দিষ্ট তাপমাত্রায় কোনো দ্রবণের প্রতি লিটার আয়তনে সংশ্লিষ্ট দ্রবের এক গ্রাম-তুল্য ভর দ্রবীভূত থাকলে দ্রবণটিকে ঐ দ্রবের নরমাল দ্রবণ (Normal Solution) বলা হয়। আবার, নির্দিষ্ট তাপমাত্রায় কোনো দ্রবণের প্রতি লিটার আয়তনে দ্রবীভূত দ্রব্যের গ্রাম-তুল্য ভরের সংখ্যাকে ঐ দ্রবণের নরমালিটি বা নরমাল ঘনমাত্রা বলা হয়। নরমাল দ্রবণের ঘণমাত্রা বা নরমালিটিকে N দ্বারা প্রকাশ করা হয়।

৩. নির্দেশক বলতে কী বুঝায়?

[বাকাশিবো: ০৬, ১১, ১৩, ১৪]

উত্তরঃ যে সকল পদার্থ নিজেদের বর্ণ পরিবর্তনের মাধ্যমে আয়তনিক বিশ্লেষণে রাসায়নিক ক্রিয়ার সমাপ্তি বিন্দু নির্দেশ করে এবং বর্ণ পরিবর্তন দ্বারা দ্রবণের এসিডীয় বা ক্ষারীয় অথবা কখনো বা নিরপেক্ষ প্রকৃতি নির্দেশ করতে পারে, সেই পদার্থগুলোকে নির্দেশক বলা হয়। যেমনঃ মিথাইল অরেঞ্জ, মিথাইল রেড ইত্যাদি।

8. মানুষের রক্তের PH কত?

[বাকাশিবো: ১৩]

উত্তরঃ স্বাভাবিক অবস্থায় মানুষের রক্তের pH এর মান 7.4 হ

সংক্ষিপ্ত প্রশ্নোতরঃ

১. PH কী?

[বাকাশিবো: ০৫, ০৮, ০৬, ১১, ১৩, ১৪]

উত্তরঃ pH = কোনো দ্রবণের হাইড্রোজেন আয়নের গাঢ়ত্বের ঋণাত্মক লগারিদমকে ঐ দ্রবণের pH বলে।

বীজগণিতীয় প্রকাশ রীতি অনুযায়ী,

$$pH = -\log_{10}[H^+]$$
(i)

বা,
$$pH = -\log_{10} \frac{1}{[H^+]}$$
.....(ii)

২. PH এর সীমা কী?

বোকাশিবো: ০৬, ১১, ১৩, ১৪/

উত্তরঃ সকল জলীয় দ্রবণেই H⁺ ও OH⁻ একত্রে অবস্থান করে। এডিস দ্রবণে [H⁺] সংখ্যা খুব বেশি থাকে এবং ক্ষারীয় দ্রবণে [H⁺] অত্যন্ত কম থাকে।

25°সে. তাপমাত্রায় জলীয় দ্রবণে $[{
m H}^+] imes [{
m OH}^-] = {
m K}_{
m w} = 10^{-14}$ পানির ক্ষেত্রে $[{
m H}^+] > [{
m OH}^-] = 10^{-7}$

∴ বিশুদ্ধ পানির pH = 7

যে-কোনো এসিড দ্রবণের pH = 0 - 7

যে-কোনো ক্ষারীয় দ্রবণের pH = 7 - 14

রচনামূলক প্রশ্নোত্রঃ

১. PH বলতে কী বুঝায়? কৃষিক্ষেত্রে ও শিল্পক্ষেত্রে PH এর শুরুত্ব ও ব্যবহার সম্পর্কে আলোচনা কর।

[বাকাশিবো: ১১, ১৩, ১৬]

উত্তরঃ pH =প্রাণিবিজ্ঞান, প্রাণরসায়ন ও চিকিৎসাবিজ্ঞানের বিভিন্ন রাসায়নিক পরীক্ষায় বিভিন্ন ঘনমাত্রার এসিড ও ক্ষার দ্রবণ ব্যবহার করা হয়। এসব দ্রবনের ঘনমাত্রা সাধারণত 10^{-1} থেকে 10^{-14} mol/L (বা g ion/l) পর্যন্ত হতে পারে। আবার, যে- কোনো জলীয় দ্রবণেই H^+ ও OH^- আয়ন একই সাথে উপস্থিত থাকে $(H_2O \rightleftharpoons H^+ + OH^-)$ । এসিড দ্রবণে H^+ আয়নের ঘনমাত্রা বেশি $(10^{-1}$ থেকে 10^{-14} mol/L)। অর্থাৎ ঘন এসিড দ্রবণে কম পরিমাণে OH^- আয়ন এবং ঘন ক্ষার দ্রবণে কম পরিমাণে H^+ আয়ন উপস্থিত থাকে। আবার, পানির আয়নিক গুণফল, $K_w = [H^+] \times [OH^-] = 1 \times 10^{-14}$ mol 2 /L 2 ধরা হয়। অর্থাৎ, $[H^+] = [OH^-] = 10^{-7}$ mol/L (বিশুদ্ধ পানি বআ প্রশম দ্রবণের ঘনমাত্রা)। কিন্তু 1990 ঘনমাত্রা এরূপ 10 এর ঋণাত্রক ঘাত হিসেবে প্রকাশভঙ্গি কিছুটা জটিল। এ অসুবিধা দূরূকরণার্থে খ্রিষ্টাব্দে ড্যানিশ প্রাণরসায়নবিদ (Biochemist), SPL Sorensen এসিড ও ক্ষারের জলীয় দ্রবণে H^+ আয়ন ও OH^- আয়নের ঘনমাত্রা প্রকাশের জন্য pH ক্ষেল নামক একটি নতুন পদ্ধতি উদ্ভাবন করেন। pH প্রতীকটি হাইড্রোজেন আয়নের প্রাবল্য (Puissance of Hydrogen) প্রকাশ করেছে। pH এর সংজ্ঞা নিমুরূপঃ

কোনো দ্রবণের হাইড্রোজেন আয়নের গাঢ়ত্বের ঋণাত্মক লগারিদমকে ঐ দ্রবণের pH বলে। বীজগণিতীয় প্রকাশ রীতি অনুযায়ী,

$$pH = -\log_{10}[H^+]$$
 (i)

বা,
$$pH = -\log_{10} \frac{1}{[H^+]}$$
.....(ii)

যেমন– কোনো দ্রবণের H^+ আয়নের ঘনমাত্রা 10^{-6} হলে,

$$pH = -\log_{10}[10^{-6}]$$

বা,
$$pH = 6\log_{10}^{10}$$

$$\therefore pH = 6$$

আবার, সমীকরণ (1)হতে পাই,

$$-pH = \log_{10}[H^+]$$

$$\therefore [H^+] = 10^{pH}$$

সমীকরণ (3) তে বুঝা যায় য়ে, কোনো দ্রবণে হাইড্রোজেন আয়নের মোলার ঘনমাত্রা দশ ভাগে হ্রাস পেলে pH এক একক বৃদ্ধি পায়। সুতরাং, যে দ্রবণের pH = 4 তার H^+ আয়নের মোলার যে দ্রবণের pH = 5 তা অপেক্ষা দশ বেশি অর্থাৎ, কোনো দ্রবণের হাইড্রোজেন আয়নের ঘনমাত্রা যত কমতে থাকে, এর pH তত বাড়তে থাকে ।

➡ কৃষিবিজ্ঞানের pH এর ভূমিকাঃ মাটির pH-এর মান এটি নির্দিষ্ট সীমার মধ্যে থাকলে তখন
গাছপালা মাটি থেকে খাদ্য গ্রহণ করতে পারে। মাটির pH-এর মান 3-এর কম হলে, অর্থাৎ
অম্লীয় হলে গাছপালার মৃত্যু হয়। আরাব মাটির pH-এর মান 10-এর বেশি হলে মাটির
উর্বরাশক্তি মোটেই থাকে না। ফলে উৎপাদন দারুণভাবে ব্যাহত হয়।

তবে তীব্র অদ্লীয় মাটির pH বাড়ানোর জন্য চুন ও ক্যালসিয়াম, ম্যাগনেশিয়াম প্রভৃতি বিভিন্ন সার ব্যবহার করা হয়। অন্যদিকে তীব্র ক্ষারকীয় মাটির pH কমানোর জন্য বিভিন্ন নাইট্রেট সার, যেমন— KNO_3 , $NaNO_3$, NH_4 , NO_3 এবং ফসফেট সার যেমন— টিএসপি ও সুপার ফসফেট ইত্যাদি ব্যবহার করা হয়। আর এভাবেই খাদ্যশস্যের উৎপাদন কাঞ্জিত পর্যায়ে রাখার চেষ্টা করা হয়।

➡ বিভিন্ন শিল্প প্রক্রিয়ায় pH এর ভূমিকাঃ বিভিন্ন ঔষধ উৎপাদনে ফার্মেন্টেশন প্রক্রিয়ায়, বেকারিতে লজেস কলেমের কালি, কসমেটিক্ষ, সাবান শ্যাম্পু, চামড়া, কাগজ প্রস্তুতিতে এবং খাদ্য প্রক্রিয়াজাতকরণ, ডাইং, ওয়াশিং শিল্পে pH —এর নির্দিষ্ট মান রক্ষা অতীব গুরুত্বপূর্ণ। এছাড়াও রাসায়নিক বিশ্লেষণ ও মাত্রিক বিশ্লেষণে, pH —এর মান নিয়ন্ত্রণ খুবই জরুরি।

২. বাফার দ্রবণ কী? বাফার দ্রবণের ক্রিয়াকৌশল বর্ণনা কর।। [বাকাশিবো: ১২, ১৪, ১৬, ২৩, ২৪] উত্তরঃ pH −এর পরিমাণ ও তুলনা এবং অন্যান্য অনেক কাজের জন্য এমন দ্রবণের প্রয়োজন, যার pH −এর মান স্থির থাকে। জানা মাত্রার এসিড বা ক্ষার দ্রবণ প্রস্তুত করে রেখে দিলে দেখা যায় যে, বাতাসের CO₂ কিংবা পাত্রের অবিশুদ্ধ বা কাট পাত্রের সিলিকেট দ্রবীভূত হয়ে এবৃপ দ্রবণে সামান্য pH −এর মানের পারিবর্তন হয়। অপরদিকে, সাধারণ কোনো দ্রবণে সামান্য পরিমাণে এসিড কিংবা ক্ষার মিশালে তার H⁺ ঘনমাত্রা তথা pH −এর যথেষ্ট পরিবর্তিত হয়। সুতরাং এমন দ্রবণ থাকা দরকার, যার pH সামান্য পরিমাণ এসিড বা ক্ষার বা পানি যোগ করলে পরিবর্তন হয় না এবং যার এমন একটি সংরক্ষিত সুপ্ত ক্ষমতা থাকা প্রয়োজন, যা বহিরাগত সামান্য ক্ষার বা এসিডকে সঙ্গে সঙ্গে প্রশমিত করে দেয়। এ জাতীয় দ্রবণ pH আয়নের ঘনমাত্রার পরিবর্তন প্রতিরোধকারী হিসেবে কাজ জরে থাকে। এদেরকে বাফার দ্রবণ pH বলে।

সুতরাং, "যে দ্রবণে সামান্য পরিমাণ এসিড বা ক্ষার যোগ করার পরেও বা কররী দ্রবণের pH –এর মান অপরিবর্তিত থাকে অর্থাৎ যে দ্রবণের তার pH স্থির রাখার ক্ষমতা আছেম তাকে বাফার দ্রবণ বলে।" pH পরিবর্তনের এরূপ প্রতিরোধ করার ক্ষমতাকে দ্রবণের বাফার ক্ষমতা (Buffer Action) বলে।

সামান্য পরিমাণ এসিড বা ক্ষার যুক্ত করলে কোনো দ্রবণে এর pH পরিবর্তনে বাধা দেওয়ার ধর্মকে এর বাফার ক্রিয়া (Buffer Capacity)বলে। বাফঅর দ্রবণগুলো সাধারণত, (ক) মৃদু এসিড ও এর কোনো লবণ (যথা– $CH_3COOH + CH_3COONa$) বা (খ) মৃদু ক্ষার ও তার (যথা– $NH_4OH + NH_4Cl$) মিশ্রণ দ্বারা প্রস্তুত করা হয়।

অশ্লীয় বাফার দ্রবণের কলাকৌশলঃ অশ্লীয় বাফার দ্রবণের কলাকৌশল আলোচনার জন্য CH_3COOH ও CH_3COONa দারা প্রস্তুত বাফার দ্রবণটি গ্রহণ করা যাক। এ দ্রবণে নিম্ন বিয়োজন বিদ্যমান থাকে –

$$CH_3COOH \rightleftharpoons CH_3COO^- + H^+$$

$$CH_3COONa \rightleftharpoons CH_3COO^- + Na^+$$

 $CH_3COOH + CH_3COONa$ দ্রবণের ক্ষেত্রে সাম্যাবস্থায় দ্রবণে H^+, CH_3COO^-, Na^+ উপস্থিত থাকে। এক্ষেত্রে বাফার দ্রবণ H^+ , বা এসিড যোগ করা হলে CH_3COOH উৎপন্ন হয়।

২য় পর্ব

 CH_3COOH অ্যাসিটিক অ্যাসিড মৃতু তড়িৎ বিশ্লেষ্য হওয়ায় অতি অল্প পরিমাণ অ্যাসিড যোগে H^+ আয়নের ঘনমাত্রা পরিবর্তন হয় না অর্থাৎ pH অপরিবর্তিত থাকে।

 $H^+ + CH_3COO^- \to CH_3OOH$ [সামান্য পরিমাণ অ্যাসিড যোগ করার পর] আবার, বাফার দ্রবণটিতে ক্ষারক বা OH^- যোগ করা হলে তা দ্রবণে উপস্থিত H^+ এর সাথে বিক্রিয়া করে H_2O উৎপন্ন করে। ফলে দ্রবণের pH পরিবর্তন হয় না।

 $OH^- + H^+ \to H_2O$ [সামান্য পরিমাণ ক্ষারক যোগ করার পর] মৃদু তড়িৎ বিশ্লেষ্য H_2O বিয়োজিত হয়ে দ্রবণে pH – এর কোনো পরিবর্তন করে না।

ক্ষারীয় বাফার দ্রবণের কলাকৌশলঃ ক্ষারীয় বাফার দ্রবণের কলাকৌশল আলোচনার জন্য $NH_4OH \ {\it G} \ NH_4Cl$ দ্বারা প্রস্তুত বাফার দ্রবণিট গ্রহণ করা যাক। এ দ্রবণে নিমু বিয়োজন বিদ্যমান থাকে –

$$NH_4OH \rightleftharpoons NH_4^+ + OH^-$$

$$NH_4Cl \rightleftharpoons NH_4^+ + Cl^-$$

 NH_4OH+NH_4Cl ক্ষারীয় বাফার দ্রবণের সাম্যাবস্থায় NH_4^+ , OH^- , Cl^- আয়ন উপস্থিত। এখন এই দ্রবণে H^+ যোগ করলে তা এর সাথে বিক্রিয়া করে প্রশমিত হয়ে যায়। অর্থাৎ,

 $H^+ + OH^- \to H_2O$ [সামান্য পরিমাণ অ্যাসিড যোগ করার পর] আবার, ক্ষারক বা OH^- দ্রবণে যোগ করলে তা NH_4^+ এর সাথে যুক্ত হয়ে NH_4OH উৎপন্ন করে। উৎপন্ন NH_4OH মৃদু ক্ষার হওয়ায় অ-আয়নিত অবস্থায় বা মৃদু তড়িৎ বিশ্লেষ্য রূপে থাকে এবং দ্রবণের এর কোনো পরিবর্তন pH হয় না।

 $OH^- + NH_4^+ \rightarrow NH_4OH$ [সামান্য পরিমাণ ক্ষারক যোগ করার পর]

অধ্যায় ০৭

রাসায়সিন বিক্রিয়া

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (Contants)		
বিষয়	পৃষ্ঠ নং	
❖ সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
❖ সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশ্লাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষণ (Board Question Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন । নিচে 'Board Question Analysis' অংশে এই অধ্যায় থেকে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	-	N N	2
২০২৩	-	9	-
২০২২	-	9	-

"স্কুলে যা শেখানো হয় তা ভুলে যাওয়ার পরে, যা অবশিষ্ট থাকে তা হল শিক্ষা।"

আলবার্ট আইনস্টাইন

অতি সংক্ষিপ্ত প্রশ্নোতরঃ

- ১. প্রশমন বিক্রিয়া কী?
 ত্বিকাশিরো: ১৩, ২১]
 উত্তরঃ তুল্য পরিমাণ অ্যাসিড ও তুল্য পরিমাণ ক্ষারক বা অ্যালক্যালি পরস্পর পরস্পরকে
 সম্পূর্ণরূপে বিনম্ভ করে যে বিক্রিয়ায় লবণ ও পানি উৎপন্ন করে, তাকে প্রশমন বিক্রিয়া বলে।
- ২. অটো প্রভাবক কাকে বলে?
 তিরুরঃ কোনো কোনো রাসায়নিক বিক্রিয়ায় উৎপন্ন পদার্থসমূহের একটি নিজেই ঐ বিক্রিয়ায় প্রভাবকরূপে কাজ করে, তখন ঐ উৎপন্ন পদার্থটিকে ঐ বিক্রিয়ায় অটো প্রভাবক বলে।
- ৩. প্রভাবক বিষ কী?
 উত্তরঃ যে-সব পদার্থ কোনো রাসায়নিক বিক্রিয়ায় প্রভাবকের ক্ষমতা ধীরে ধীরে মন্থর করে এবং শেষে সম্পূর্ণ নষ্ট করে দেয়, ঐ সকল পদার্থকে প্রভাবক বিষ বলে।
 যেমনঃ স্পর্শক পদ্ধতিতে সালফিউরিক অ্যাসিড (H2SO4) উৎপাদনে আর্সেনিক অক্সাইড (As2O3) প্রভাবক প্লাটিনাম (Pt) এর গতি মন্থর করে।

$$2SO_2 + O_2 \xrightarrow{Pt \text{ (প্রভাবক)}} 2SO_3$$

8. প্রভাবক ও প্রভাবন কী?

উত্তরঃ প্রভাবক- যে সমস্ত পদার্থ রাসায়নিক বিক্রিয়ায় অংশগ্রহণ না করে কেবলমাত্র উপস্থিতির মাধ্যমে রাসায়নিক বিক্রিয়ার গতি বৃদ্ধি বাহ্রাস করে, তাদেরকে প্রভাবক বলে।
প্রভাবন- প্রভাবকের কার্যকে প্রভাবন বলে।

সংক্ষিপ্ত প্রশ্নোত্রঃ

১. অটো প্রভাবক বলতে কী বোঝায়? উদাহরণ দাও $[\pi]$ কাশিবো: ০৬, ১১, ১০, ১৪, ২২, ২০, ২৪] উত্তরঃ যে-সব রাসায়নিক বিক্রিয়ায় উৎপন্ন পদার্থসমূহের একটি নিজেই ঐ বিক্রিয়ায় প্রভাবকরূপে কাজ করে, তখন ঐ উৎপন্ন পদার্থটিকে ঐ বিক্রিয়ায় অটো প্রভাবক বলে। যেমন- লঘু সালফিউরিক অ্যাসিড (H_2) মিশ্রিত অক্সালিক অ্যাসিডের $[(COOH)_2]$ জলীয় দ্রবণে গোলাপি বর্ণের পটাশিয়াম পারম্যাঙ্গানেট $(KMnO_4)$ দ্রবণ যোগ করলে এটির বর্ণ ধীরে ধীরে বিবর্ণ হয়। কিন্তু বিক্রিয়ায় সামান্য ম্যাঙ্গানিজ সালফেট $(MnSO_4)$ উৎপন্ন হওয়া মাত্রই গোলাপি বর্ণ দ্রুত বিদূরিত হয়। এক্ষেত্রে একটি অটো প্রভাবক। $5 (COOH)_2 + 2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 10CO_2 + 8H_2O_4$

২. প্রতিস্থাপন ও প্রশমন বিক্রিয়ার সংজ্ঞাসহ বর্ণনা দাও। [বাকাশিবো: ০৬, ১১, ১৩, ১৪, ২২, ২৩] উত্তরঃ প্রতিস্থাপন ও বিচ্যুতিঃ যে রাসায়নিক বিক্রিয়ায় কোনো মৌল কোনো যৌগ হতে তা অপেক্ষা কম সক্রিয় কোনো মৌলকে সমান পরিমাণে স্থানচ্যুত করে নিজেই ঐ স্থান দখল করে এবং নতুন যৌগ তৈরি করে, সে বিক্রিয়াকে প্রতিস্থাপন বলে। যেমন- মৃদু সূর্যালোকে ক্লোরিন মিথেন হতে হাইড্রোজেনকে বিচ্যুত করে এর স্থানে প্রতিস্থাপিত

$$CH_4 + Cl_2 \xrightarrow[\text{(মৃদু স্থালোক)}]{} CH_3Cl + HCl$$

হ য়ে নতুন যৌগ মিথাইল ক্লোরাইড উৎপন্ন করে।

(মিথেন) (ক্লোরিন)

((মিথাইল ক্লোরাইড)

(হাইড্রোজেন ক্লোরাইড)

প্রশমন বা নিরপেক্ষণ বিক্রিয়াঃ তুল্য পরিমাণ অ্যাসিড ও তুল্য পরিমাণ ক্ষারক বা অ্যালক্যালি পরস্পর পরস্পরকে সম্পূর্ণরূপে বিনষ্ট করে যে বিক্রিয়ায় লবণ ও পানি উৎপন্ন করে, তাকে প্রশমন বিক্রিয়া বলে। যেমন-

দুই অণু সোডিয়াম হাইড্রোক্সাইডের সাথে এক অণু সালফিউরিক অ্যাসিড বিক্রিয়া করে দ্রবণে কেবলমাত্র সোডিয়াম সালফেট ও পানি উৎপন্ন হয়ে থাকে।

$$2NaOH + H_2SO_4 = Na_2SO_4 + 2H_2O$$

৩. পিলমারকরণ বা বাহুযোজন বিক্রিয়া কাকে বলে? উদাহরণসহ লেখ। [বাকাশিবো: ১৪, ২২, ২৩] উত্তরঃ যে প্রক্রিয়ায় একই যৌগের একাধিক অণু পরস্পর যুক্ত হয়ে অন্য একটি পদার্থের বৃহদাকার অণু গঠন করে, উৎপন্ন পদার্থের শতকরা সংযুক্তি মূল পদার্থের শতকরা সংযুক্তির অনুরূপ থাকে এবং শুধু উৎপন্ন পদার্থের আণবিক ওজন মূল পদার্থের আণবিক ওজনের সরল গুণিতক হয়, তাকে পলিমারকরণ বা বহুযোজন বলে। যেমন—

400°C – এ উত্তপ্ত কোয়ার্টজ নলের মধ্য দিয়ে অ্যাসিটাইলিন গ্রাস প্রবাহিত করলে পরিমারকরণের ফলে বেনজিন গঠিত হয়।

$$3CH \equiv CH$$
 $\frac{\Delta}{400^{\circ}\text{C}}$ C_6H_6 (বেনজিন)

8. শিল্পক্ষেত্রে প্রভাবকের ৪টি ব্যবহার লেখ। উত্তরঃ শিল্পক্ষেত্রে প্রভাবকের ব্যবহার নিমুরূপ – [বাকাশিবো: ১১, ১৩, ১৪, ২০, ২১, ২৪]

- ক) গ্যাসোলিন উৎপাদনঃ পেট্রোলিয়ামকে তাপ বিয়োজন করে গ্যাসোলিন জ্বালানি প্রস্তুতিতে অ্যালুমিনিয়াম সিলিকেট ($Al_2O_3: SiO_2=1:4$) প্রভাবকরূপে ব্যবহৃত হয়।
- খ) উদ্ভিদ তৈল হতে কৃত্রিম ঘি উৎপাদনেঃ দুর্গন্ধযুক্ত অসম্পৃক্ততৈল ও চর্বিকে হাইড্রোজেনেশন বিক্রিয়ার দ্বারা কৃত্রিম ঘি উৎপাদনে নিকেল চুর্ণ প্রভাবকরূপে ব্যবহৃত হয়, যেমন– ডালডা, বনস্পতি প্রভৃতিতে।
- গ) পানি সরবরাহের পাইপ সংরক্ষণঃ বাণিজ্যিক ভিত্তিতে পানি সরবরাহের পাইপ ও বয়লারের লোহার ক্ষয়রোধের জন্য পানি সরবরাহে সোডিয়াম ডাইক্রোমেটকে ঋণাত্মক প্রভাবক হিসেবে ব্যবহার করা হয়।
- ষ) হেবার পদ্ধতিতে অ্যামোনিয়া উৎপাদনঃ নাইট্রোজেন ও হাইড্রোজেন হতে অ্যামোনিয়া উৎপাদনে প্রভাবকরূপে আয়রন (Fe) এবং প্রভাবক সহায়ক হিসেবে মলিবডেনাম (Mo) ধাতু ব্যবহার করা হয়।

$$N_2 + 3H_2 \xrightarrow{Fe} 2NH_3$$

৫. আইসোমারিক বা সমাণুকরণ বিক্রিয়া কাকে বলে? উদাহরণ লেখ।

উত্তরঃ যে রাসায়নিক প্রক্রিয়ায় কোনো যৌগিক পদার্থের বাহ্যিক অবস্থা, যেমন – তাপমাত্রা পরিবর্তনের ফলে এর অণুতে অবস্থিত পরমাণুসমূহ পুনর্বিন্যস্ত হয়ে সম্পূর্ণ ভিন্ন নতুন অণুবিশিষ্ট একটিই মাত্র যৌগ উৎপন্ন করে এবং রাসায়নিক পরিবর্তনের পূর্বের ও পরের উভয় যৌগে, মৌল ও এদের পরমাণু সংখ্যা অপরিবর্তিত থকে, সেই বিক্রিয়াকে পারমানবিকপুনর্বিন্যাস বা সমানুকরণ বিক্রিয়া বা আইসোমরিক বিক্রিয়া বলে। যেমন – অ্যামোনিয়া থায়োসায়ানেট (NH_4CNS) – কে 170° C তাপমাত্রায় উত্তপ্ত করলে এর অণুস্থিত পরমাণুগলোর পুনর্বিন্যাস ঘটে এবং থায়ো ইউরিয়া $CS(NH_2)_2$ উৎপন্ন হয়।

রচনামূলক প্রশোত্রঃ

\$. প্রভাবক কী? প্রভাবকের শ্রেণিবিভাগ বর্ণনা কর।

উত্তরঃ প্রভাবক— যে সমস্ত পদার্থ রাসায়নিক বিক্রিয়ায় অংশগ্রহণ না করে কেবলমাত্র উপস্থিতির মাধ্যমে রাসায়নিক বিক্রিয়ার গতি বৃদ্ধি বা হ্রাস করে, তাদেরকে প্রভাবক বলে এবং নির্ধারিত প্রভাবকের উপস্থিতিতে কোনো বিক্রিয়ার গতির হ্রাস বা বৃদ্ধির ঘটনাকে প্রভাবন বলে।

যেমন — সালফার ডাই-অক্সাইড (SO_2) ও অক্সিজেন (O_2) দ্বারা সালফার ট্রাই-অক্সাইড (SO_3) উৎপাদনে প্লাটিনাম গুড়া প্রভাবকরূপে কাজ করে 450° C তাপমাত্রায় বিক্রিয়ার গতি বৃদ্ধি পায়।

$$2SO_2 + O_2 \xrightarrow{Fe} 2SO_3$$

বিক্রিয়ার গতি প্রকৃতি অনুসারে প্রভাবক (তথা প্রভাবন) চার প্রকার, যথা -

- i. ধনাত্মক প্রভাবক (Positive Catalyst)
- ii. ঋণাত্মক প্রভাবক (Negative Catalyst)
- iii. অটো প্রভাবক (Auto Catalyst)
- iv. আবিষ্ট প্রভাবক (Induced Catalyst)
- ক) ধনাত্মক প্রভাবক (Positive Catalyst) ঃ যে সব পদার্থ রাসায়নিক বিক্রিয়ায় উপস্থিত থেকে বিক্রিয়ার গতিকে ত্বরান্বিত বা বৃদ্ধি করে তাকে ধনাত্মক প্রভাবক এবং ধনাত্মক প্রভাবকের কাজকে ধনাত্মক প্রভাবন বলে । যেমন–
 - i. 450° C তাপমাত্রায় স্পর্শ প্রণালিতে H_2SO_4 এর শিল্পোৎপাদনে ব্যবহৃত সালফার ডাই-অক্সাইড (SO_2) ও অক্সিজেন বিক্রিয়ায় সালফার ট্রাই-অক্সাইড (SO_3) উৎপন্ন করা হয়। এই বিক্রিয়ারয় প্লাটিনাম (Pt)ধনাত্মক প্রভাবকরূপে ব্যবহৃত হয়।

$$2SO_2 + O_2 \xrightarrow{Pt} 2SO_3$$

ii. হেবার প্রণালিতে নাইট্রোজেন ও হাইড্রোজেন গ্যাস হতে অ্যামোনিয়ার শিল্পোৎপাদন ধনাত্মক প্রভাবকরূপে সূক্ষ্ম লৌহচুর্ন ব্যবহৃত হয়।

$$N_2 + 3H_2 \xrightarrow{Fe} 2NH_3$$

খ) ঋণাত্মক প্রভাবক (Negative Catalyst) ঃ যে-সকল পদার্থ রাসায়নিক বিক্রিয়ায় উপস্থিত থেকে বিক্রিয়ার গতিকে হ্রাস বা মন্থর করে, তাকে ঋণাত্মক প্রভাবক বলে এবং ঋণাত্মক প্রভাবকের কাজকে ঋণাত্মক প্রভাবন বলে। যেমন –

হাইড্রোজেন পারক্সাইড (H_2O_2) সহজেই বিয়োজিত হয়ে অক্সিজেন ও পানি উৎপন্ন করে কিন্তু দ্রবণে কজয়েক ফোটা ফসফরিক অ্যাসিড (H_3PO_4) যোগ করলে তখন হাইড্রোজেন পারক্সাইডের বিয়োজন হাসপ্রাপ্ত হয়।

- i. $2H_2O_2 = 2H_2O + O_2$ (স্বাভাবিক বিয়োজন)
- ii. $2H_2O_2 \xrightarrow{H_3PO_4} 2H_2O + O_2$ (মন্থর বিয়োজন)
- গ) অটো প্রভাবক (Auto Catalyst)

উত্তরঃ যে-সব রাসায়নিক বিক্রিয়ায় উৎপন্ন পদার্থসমূহের একটি নিজেই ঐ বিক্রিয়ায় প্রভাবকরূপে কাজ করে, তখন ঐ উৎপন্ন পদার্থটিকে ঐ বিক্রিয়ায় অটো প্রভাবক বলে।

যেমন- লঘু সালফিউরিক অ্যাসিড (H_2) মিশ্রিত অক্সালিক অ্যাসিডের $[(COOH)_2]$ জলীয় দ্রবণে গোলাপি বর্ণের পটাশিয়াম পারম্যাঙ্গানেট $(KMnO_4)$ দ্রবণ যোগ করলে এটির বর্ণ ধীরে ধীরে বিবর্ণ হয়। কিন্তু বিক্রিয়ায় সামান্য ম্যাঙ্গানিজ সালফেট $(MnSO_4)$ উৎপন্ন হওয়া মাত্রই গোলাপি বর্ণ দ্রুত বিদূরিত হয়। এক্ষেত্রে একটি অটো প্রভাবক।

 $5~(COOH)_2 + 2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 10CO_2 + 8H_2O$ এই অটো প্রভাবনে প্রকৃতপক্ষে $MnSO_4$ – এর ম্যাঙ্গানিজ আয়ন Mn^+ +অটো প্রভাবকের কাজ করে।

ঘ) আবিষ্ট প্রভাবক (Induced Catalyst) ঃ এটি বিক্রিয়ার প্রভাবে অপর কোনো বিক্রিয়া সংঘটিত হলে, যা প্রভাবে এরূপ প্রভাবন ঘটে, তাকে আবিষ্ট প্রভাবন বলে । যেমন –

সোডিয়াম সালফাইট (Na_2SO_3) – এর দ্রবণ ও সোডিয়াম আর্সেনাইট (Na_3AsO_3) — এর দ্রবণে পৃথক পৃথকভাবে অক্সিজেন চালনা করলে সোডিয়াম আর্সেনাইট জারিত হয় না। কিন্তু অনুরূপ, অবস্থায় সোডিয়াম সালফাইট (Na_2SO_3) জারিত হয়ে সোডিয়াম সালফেটে (Na_2SO_4) পরিণত হয়। অথচ সোডিয়াম সালফাইট ও সোডিয়াম আর্সেনাইটের শ্রি দ্রবণে অক্সিজেন গ্যাস চালনা করলে উভয়ই একই সঙ্গে জারিত হয়। এক্ষেত্রে সোডিয়াম সালফাইটের প্রভাবে সোডিয়াম আর্সরাইট জারিত হয়ে সোডিয়াম আর্সেনেট (Na_3AsO_3) উৎপন্ন হয়। তাই সোডিয়াম সালইফাইটকে এই মিশ্র বিক্রিয়ার আবিষ্ট প্রভাক বলে এবং এই ঘটনাটিকে আবিষ্ট প্রভাবন বলে। যেমন –

পৃথকভাবে ঃ (i)
$$2Na_2SO_3 + O_2 \longrightarrow 2Na_2SO_4$$
 (ii) $Na_3AsO_3 + O_2 \longrightarrow$ কোনো বিক্রিয়া হয় না।

মিশ্রিতভাবে
$$\varepsilon$$
 (iii) $[Na_2SO_3 + Na_3AsO_3] + O_2 \longrightarrow Na_2SO_4 + Na_3AsO_4$

জারণ ও বিজারণ

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (Contants)		
বিষয়	পৃষ্ঠ নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশ্লাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষণ (Board Question Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন । নিচে 'Board Question Analysis' অংশে এই অধ্যায় থেকে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	1	٤	-
২০২৩	٤	٤	-
২০২২	>	>	-

"স্কুলে যা শেখানো হয় তা ভুলে যাওয়ার পরে, যা অবশিষ্ট থাকে তা হল শিক্ষা।"

আলবার্ট আইনস্টাইন

অতি সংক্ষিপ্ত প্রশ্নোতরঃ

১. জারণ-বিজারণ কী?

[বাকাশিবো: ১৪]

উত্তরঃ যে রাসায়নিক বিক্রিয়ায় কোনো পরমাণ বা মূলক বা আয়নের মধ্যে ইলেকট্রন আদান-প্রদানের মাধ্যমে জারণ ও বিজারণ প্রক্রিয়া একই সাথে সম্পন্ন হয়, তাকে জারণ-বিজারণ বিক্রিয়া বা রিডক্স বিক্রিয়া বলা হয়।

২. রিডক্স বিক্রিয়া কী?

[বাকাশিবো: ০৬, ১১, ১৩, ১৬, ১৭]

উত্তরঃ রাসায়নিক বিক্রিয়ার সময় কোনো পরমাণু বা মূলক বা আয়ন যে ইলেকট্রন ত্যাগ বা কর্জন করে, অন্য পরমাণু বা মূলক বা আয়ন সে ইলেকট্রন গ্রহন করে। অর্থাৎ জারণ প্রক্রিয়ায় যে ইলেকট্রন বর্জিত হয়, বিজারণ প্রক্রিয়ায় সে ইলেকট্রন গৃহীত হয়। সুতরাং যে রাসায়নিক বিক্রিয়ায় কোনো পরমাণু বা মূলক বা আয়নের মধ্যে ইলেকট্রন আদান-প্রদানের মাধ্যমে জারণ ও বিজারণ প্রক্রিয়া একই সাথে সম্পন্ন হয়, তাকে জারণ-বিজারণ বিক্রিয়া বা রিডক্স বিক্রিয়া বলে।

৩. $k_2 Cr_2 O_7$ যৌগ কেন্দ্রিক মৌলিক জারণ মান বের কর। [বাকাশিবো: ০৬, ১১, ১৩, ১৪, ২২, ২৩] উত্তরঃ $k_2 Cr_2 O_7$ যৌগের জারণ সংখ্যা নির্ণয় করা হলোঃ

মনে করি, Cr – এর জারণ সংখ্যা = x এখানে, K – এর জারণ সংখ্যা = +1

0 – এর জারণ সংখ্যা = - 2

 $k_2 C r_2 O_7$ – এর জারণ সংখ্যা = 0

$$\therefore$$
 (+1) × 2 + (×) × 2 + (-2) × 7 = 0
বা, 2 + 2x - 14 = 0

বা,
$$2x = 14 - 2$$

$$\forall i, ZX = 14 - 12$$

বা,
$$x = \frac{12}{2}$$

$$\therefore x = 6$$

সুতরাং, $k_2Cr_2O_7$ যৌগে Cr – এর জারণ সংখ্যা = +6

 $8.\ KMnO_4$ হতে Mn এর জারণ সংখ্যা নির্ণয় কর।

[বাকাশিবো: ০৬, ১১, ১৩, ১৪]

উত্তরঃ $KMnO_{\!\scriptscriptstyle A}$ হতে Mn এর জারণ সংখ্যা নির্ণয় করা হলোঃ

মনে করি, Mn – এর জারণ সংখ্যা = x

এখানে, K – এর জারণ সংখ্যা = +1

O – এর জারণ সংখ্যা = - 2

 $KMnO_4$ – এর জারণ সংখ্যা =0

$$\therefore (+1) + x + (-2) \times 4 = 0$$

বা,
$$1 + x - 8 = 0$$

বা,
$$x = 8 - 1$$

$$\therefore x = 7$$

সুতরাং, $k_2Cr_2O_7$ যৌগে Cr – এর জারণ সংখ্যা = +7

সংক্ষিপ্ত প্রশোতরঃ

১. রিডক্স বিকিয়া কী? জারণ-বিজারণ যুগপৎ ক্রিয়া বর্ণনা কর। বাকাশিবো: ১১, ১৩, ১৪, ২২, ২৩, ২৪] উত্তরঃ সাধারণত সকল ক্ষেত্রেই জারণ ও বিজারণ একই সঙ্গে ঘটে। অন্য কথায়, যখনই কোনো জারণ ক্রিয়া ঘটে তখনই কোনো না কোনো বিজারণও তার সাথে ঘটে এবং বিপরীতক্রমে যখনই কোনো বিজারণ ঘটে, তখনই কোনো না কোনো জারণ ক্রিয়াও অবশ্যই ঘটে তাকে। জারণ-বিজারণ বিক্রিয়াকে একত্রে রিডক্স বলে।

ইলেকট্রনীয় মতবাদ অনুসারে, যে রাসায়নিক বিক্রিয়ায় কোনো পরমাণু, মূলক বা আয়ন ইলেকট্রন ত্যাগ বা বর্জন করে, তাকে জারণ বলে। আপরদিকে ও যে রাসায়নিক বিক্রিয়ায় কোনো পরমাণু, মূলক বা আয়ন ইলেকট্রন গ্রহণ করে, তাকে বিজারণ বলে। আবার, যে পরমাণু, মূলক বা আয়ন ইলেকট্রন ত্যাগ বা বর্জন করে, তাকে বিজারক এং যে পরমানু মূলক বা আয়ন ইলেকট্রন ত্যাগ বা বর্জন করে, তাকে বিজারক এং যে পরমানু মূলক বা আয়ন ইলেকট্রন ত্যাগ না করলে ইলেকট্রন গ্রহণ ঘটবে না। একইভাবে, ইলেকট্রন গ্রহণের ব্যবস্তা না থাকলে ইলেকট্রন গ্রহণ করে। সুতরাং, ইলেকট্রন ত্রঅগ হলো জারণ এবং হইলেকট্রন গ্রহণ হলো বিজারণ, তাই জারণ ও বিজারণ ক্রিয়া একই সাথে ঘটে। অর্থাৎ জারণ ও বিজারণ হলো ইলেকট্রন আদান-প্রদানকারী কোনো রাসায়নিক বিক্রিয়ার দুটি অংশ।

উদাহরণ ঃ সোডিয়াম (Na) ও ক্লোরিন (Cl_2) – এর মধ্যে জারণ-বিজারণ বিক্রিয়ায় সোডিয়াম ক্লোরাইড (NaCl) উৎপন্ন হয়। একে নিম্নরূপে দেখানো যায়–

$$Cl_2 o 2Cl \; (ক্লোরিন পরমাণুর সৃষ্টি) \ 2Na - 2e^- o 2Na^+ (জারণ) \ 2Cl + 2e^- o 2Cl^- \; (বিজারণ) \$$
মোট বিক্রিয়াঃ $2Na + Cl_2 o 2Na^+ + 2Cl^- o 2NaCl \; (জারণ-বিজারণ)$

এখানে, সোডিয়াম ইলেকট্রন ত্রঅগ বা বর্জন করে সোডিয়াম আয়ন (Na⁺)— এ পরিণত হয়েছে, অর্থাৎ জারিত হয়েছে। সুতরাং সোডিয়াম (Na) এর জারণ ঘটেছে। অপরদিকে, ক্লোরিন উক্ত ইলেকট্রন গ্রহণ করে ক্লোরাইড আয়ন (Cl⁻) এ পরিণত হয়েছে, অর্থাৎ বিজারিত হয়েছে। সুতরাং, ক্লোরিন (Cl) এর বিজারণ ঘটেছে। সুতরাং, জারণ ও বিজারণ একই সাথে ঘটে। জারণ ও বিজারণে যুগপৎ প্রক্রিয়াটিকে নিমুরূপে দেখানো হলো ঃ

২. জারণ-বিজারণের আধুনিক মতবাদ উদাহরণসহ ব্যাখ্যা কর। [বাকাশিবো: ০৬, ১১, ১৩, ১৪] উত্তরঃ ইলেকট্রনীয় ধারণায় জারণ ও বিজারণ ঃ

জারণ ঃ ইলেকট্রনীয় ধারণায় জারণের সংজ্ঞা প্রকরণে সাধারণভাবে বলা যায় যে, যে বিক্রিয়ায় কোনো পরমাণু বা আয়ন হতে এক বা একধিক ইলেকট্রন াপপসাণের ফলে তার ধনাত্মক আধান বৃদ্ধি পায় বা ঋণাত্মক আধান হাস পায়, তাকে জারণ বলে। যেমন –

$$Na \rightarrow Na^+ + e^-$$

 $Fe \rightarrow Fe^{2+} + 2e^-$

উল্লেখিত সমীকরণের ন্যায় যে-সমস্ত বিক্রিয়ায় ইলেকট্রন্ে উৎপত্তি ঘটে, তাদের জারণ অর্ধ-বিক্রিয়া বলে ।

বিজারণ ঃ ইলেকট্রনীয় তত্ত্বানুসারে, বিজারণকে সাধারণভাবে বলা যায় যে, যে বিক্রিয়ায় কোনো পরমাণু বা আয়ন ইলেকট্রন গ্রহণ করে ফলে তার ঋণাত্মক আধান বৃদ্ধি পায় বা ধনাত্মক আধান হ্রাস পায়, তাকে বিজারণ বলে। যেমন –

$$Cl_2$$
 + $2e^- \rightarrow 2Cl^-$
 Fe^{3+} + $e^- \rightarrow Fe^{2+}$

এসব সমীকরণের ন্যায় যে-সমস্ত বিক্রিয়ায় ইলেকট্রন গৃহীত হয়, তাদের বিজারণ অর্ধ-বিক্রিয়া বলে ।

পানি

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (Contants)		
বিষয়	পৃষ্ঠ নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
❖ সংক্ষিপ্ত প্রশাবলি		
রচনামূলক প্রশ্লাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষণ (Board Question Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন । নিচে 'Board Question Analysis' অংশে এই অধ্যায় থেকে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	٤	-	2
২০২৩	>	-	2
২০২২	ð.	-	-

"স্কুলে যা শেখানো হয় তা ভুলে যাওয়ার পরে, যা অবশিষ্ট থাকে তা হল শিক্ষা।"

আলবার্ট আইনস্টাইন

অতি সংক্ষিপ্ত প্রশ্নোতরঃ

১. পানির স্থায়ী খরতার কারণ কী?

[বাকাশিবো: ১১, ২২]

উত্তর ঃ প্রাকৃতিক পানিতে ক্যালসিয়াম , ম্যাগনেশিয়াম, অ্যালুমিনিয়াম ও ফেরাস আয়নের বাইকার্বনেট, সালফেট ও ক্লোরাইড জাতীয় লবণ দ্রবীভূত অবস্থায় থাকলে পানি খর হয়।

- ২. পামুটিট কী?
 ত্রিকাশিরো: ০৬, ১১, ১৩, ১৪, ২২, ২৩, ২৪]
 উত্তর ঃ পারমুটিট হলো অদ্রবণীয় ও আর্দ্র সোডিয়াম অ্যালুমিনিয়াম অর্থো-সিলিকেট
 (NaAlSiO₄. 3H₂O)।
- ৩. পারমুটিট ব্যবহৃত কৃত্রিম জিওলাইটের রাসায়নিক সংকেত লেখ। [বাকাশিবো: ০৬, ১১, ১৩, ১৪] উত্তর ঃ NaAlSiO4. 3H2O (সোডিয়াম অ্যালুমিনিয়াম অর্থো-সিলিকেট)।

সংক্ষিপ্ত প্রশ্নোতরঃ

খর পানির ব্যবহারের সুবিধা লেখ।

[বাকাশিবো: ১৭, ১৮]

- উত্তর ঃ খর পানি ব্যবহারের সুবিধা নিম্নরূপ
 - i. শক্ত হাড় ও দাঁত গঠনের জন্য ক্যালসিয়াম লবণ বিশেষ উপকারী বলে শিশুর দেহ গঠনে খর পানি বিশষ উপযোগী।
- ii. খর পানিতে যে-সব ধাতব দ্রবীভূত অবস্থায় থাকে তা স্বাস্থ্যের পক্ষে উপকারী বলে খাবার পানি হিসেবে সামান্য খর পানির ব্যবহার বাঞ্ছনীয়।
- iii. মৃদু পানিতে খর পানির তুলনায় অধিক পরিমাণ সিসা দ্রবীভূত অবস্থায় থাকে। তাই খাবার পানি সামান্য খর হলে সীসক নির্মিত নলের মধ্য দিয়ে সরবরাহ করলে পানিতে সীসক বিষক্রিয়ার ভয় কম থাকে।
- ২. খর পানি ও মৃদু পানির পার্থক্য লেখ।

[বাকাশিবো: ১১, ১৩, ১৪]

উত্তর ঃ খর পানি ও মৃদু পানির মধ্যে কয়েকটি পার্থক্য নিম্নের ছকে দেখানো হলো –

খর পানি	মৃদু পানি
১। অল্প সাবানে সহজেই ফেনা হয় না।	১। অল্প সাবানে সহজেই ফেনা হয়।
২। এই পানিতে Ca, Mg, Fe ইত্যাদির	২। এই পানিতে Ca, Mg, Fe ইত্যাদির
হাইড্রোজেন কার্বনেট, ক্লোরাইড বা	হাইড্রোজেন কার্বনেট, ক্লোরাইড বা
সালফেট লবণ দ্ৰবীভূত থাকে।	সালফেট লবণ দ্রবীভূত থাকে না।

ত। এই পানি বয়লার বা কেতলিতে ফুটালে তলানি পড়ে এবং বয়লার বা কেতলির ক্ষতি হয়।	৩। তলানি পড়ে না।
৪। ফুটন্ত পানির রঙের পরিবর্তন হতে পারে।	8। ফুটন্ত পানির রঙের পরিবর্তন হতে পারে না।
৫। ধৌত কাজে সাবানের অপচয় হয়।	৫। ধৌত কাজে সাবানের অপচয় হয় না।

রচনামূলক প্রশ্নোতরঃ

১. পানির স্থায়ী খরতা কাকে বলে? এটি দূরিকরণের পারমুটিট প্রণালি বর্ণনা কর।

বোকাশিবো: ০৬, ১১, ১৭, ১৪, ২৩, ২৪/

উত্তর ঃ ক্যালসিয়াম, ম্যাগনেশিয়াম ও অ্যালুমিনিয়াম প্রভৃতির ক্লোরাইড বা সালফেট পানিতে দ্রবীভূত থাকলে পানির যে খরতার সৃষ্টি হয়, তাকে স্থায়ী খরতা বলে। স্থায়ী খরতা সহজ পদ্ধতি (যেমন– পানির স্কুটন) দ্বারা দূরীভূত করা যায় না।

$$C_{17}H_{35}COONa + M^{2+} \rightarrow (C_{17}H_{35}COO)_2M = [M = Ca, Mg ইত্যাদি]$$

পানির খরতা দূরীকরণের পারমুটিট প্রণালীর বর্ণনা নিম্নরূপ ঃ

পানিতে সাধারণত ক্যালসিয়াম, ম্যাগনেশিয়াম, আয়রন, অ্যালুমিনিয়াম প্রভৃতির দ্রবণীয় লবণ দ্রীভূত থাকার কারণে পানির খরতার সৃষ্টি হয়। কাজেই এ সকল ধাতুর দ্রবণীয় লবণকে রাসায়নিকভাবে এদের অদ্রবণীয় লবণে পরিণত করে পানি হতে সিয়ে ফেললেই খরতা দূরীভূত হয়ে পানি মৃদু হয়ে যায়। পানির খরতা দূরীকরণকে পারিন মৃদুকরণ (Softening of water) বলে। পানির খরতা দূরীকরণের জন্য এখানে পারমুটিট প্রণালি (Permutit Process) বর্ণনা করা হয়েছে।

➡ পারমুটিট প্রণালি (Permutit Process) ঃ পারমুটিট প্রণালিতে পারিন স্থায়ী ও অস্থায়ী উভয়
প্রকার খরতা দূর করা যায়। তাই প্রণালিটি বর্তমানে বেশ প্রচলিত। বিজ্ঞানী গ্যান পারমুটিট
প্রণালি প্রথওেম আবিষ্কার করেন বলে একে গ্যানের প্রালিও বলা হয়। ল্যাটিন শব্দ Permutit
অর্থ Exchange বা বিনিময়। এই প্রণালিতে বিনিময় ঘটে বলে এর লুপ নামকরণ করা
হয়েছে। এ প্রণালিতে খর পারিকে মৃদুকরণে পারমুটিট নামক রাসায়নিক পদার্থ ব্যবহার করা
হয়।

পারমুটিট হলো অদ্রবণীয় ও আর্দ্র সোডিয়াম অ্যালুমিনিয়াম অর্থো-সিলিকেট (NaAlSiO₄. 3H₂O)। এই পারমুটিট প্রকৃতিতে জিওলাইট নামক খনিজ হিসাবে পাওয়া যায়। পারমুটিট ক্ষারীয় অংশ অর্থাৎ সোডিয়াম অংশ এবং খর পানিতে দ্রবীভূত লবণের ক্ষারীয় অংশের মধ্যে সহজেই বিনিময় ঘটে।

মূলনীতি 3 খর পানিকে পারমুটিটের মধ্য দিয়ে যখন চালনা করা হয় তখন পানিতে দ্রবীভূত লবণের ক্ষারীয় অংশ Ca, Mg, Fe প্রভূতির সঙ্গে পারমুটিটের ক্ষারীয় অংশ সোডিয়ামের মধ্যে বিনিময় ঘটে। ফলে খর পানির দ্রবীভূত লবণগুলো সোডিয়াম পারমুটিটের সঙ্গে বিক্রিয়া করে Ca, Mg, Fe পারমুটিটে পরিণত হয় এবং পারমুটিট স্তরে থেকে যায়। পানিতে কেবল সোডিয়াম লবণ দ্রবীভূত থাকে । এভাবে খর পানি মৃদু হয়।

2Na-পারমুটিট + Ca-লবণ = Ca- পারমুটিট \downarrow + Na- লবণ = Ca - Vla + Na- equation বা, [2NaAlSiO $_4$. 3H $_2$ O + CaCl $_2$ = Ca(AlSiO $_4$. 3H $_2$ O) $_2$ + 2NaCl $_3$

বর্ণনা ঃ লৌহ বা ইট নির্মিত খাড়া সিলিভারের মাঝখানে পারমুটিট স্তর, এর উপরে মিহি আলির প্রাথমিক ফিল্টার স্তর ও পারমুটিটের নিচে নুড়ি-পাথরের স্তর বসানো এগকে। উপর হতে কর পানিকে সিলিভারের ভিতর দিয়ে নিচের দিকে চালনা করা হয়। খর পানি পারমুটিট স্তর ভেদ করে আসার সময় পারমুটিটের ক্ষারীয় মূলক ও খর পানির লবনে ক্ষারীয় মূলকের মধ্যে বিনিময় ঘটে; ফলে খর পানি, মৃদু পানিতে পরিণত হয়। উৎপন্ন মৃদু পানি সিলিভারের নিম্পেনে অবস্থিত গ্রাহক পাত্রে জমা হয়। দীর্ঘক্ষণ ব্যবহারের ফলে সোডিয়াম পারমুটিট সম্পূর্ণভাবে Ca বা Mg পারমুটিটে পরিণত হয়ে অকেজো হয়ে পড়ে।

পারমুটিটের পুনঃসক্রিয়করণ ঃ খর পানি পারমুটিটের স্তরের মধ্য দিয়ে চালনা করার পর উপর হতে খর পানির প্রবা বন্ধ করার পর নিচের দিক হতে খর পানির প্রবাহ 4/5 মিনিটকালে চালনা করে স্তরগুলোকে পরিষ্কার করা হয়। অতঃপর 10% NaCl দ্রবণ উপরের ট্যাংক ধীরে চালনা করে অকেজো পারমুটিটকে পুনরায় কার্যক্ষম করা হয়।

Ca – পারমুটিট + 2NaCl = 2Na – পারমুটিট + $CaCl_2$

চিত্রঃ পারমুটিট প্রণালি

7///

তড়িৎ রসায়ন

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (Contants)		
বিষয়	পৃষ্ঠ নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
❖ সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশ্লাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষণ (Board Question Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন । নিচে 'Board Question Analysis' অংশে এই অধ্যায় থেকে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	1	-	-
২০২৩	-	-	-
২০২২	-	-	-

"স্কুলে যা শেখানো হয় তা ভুলে যাওয়ার পরে, যা অবশিষ্ট থাকে তা হল শিক্ষা।"

আলবাট আইনস্টাইন

অতি সংক্ষিপ্ত প্রশ্নোতরঃ

১. তড়িৎ বিশ্লেষ্য কী?

উত্তরঃ যে-সব যৌগ বিগলিত বা দ্রবীভূত অবস্থায় ধনাত্মক ও ঋণাত্মক আয়ন দ্বারা তড়িৎ পরিবহন করে এবং সেই সাথে রাসায়নিক পরিবর্তন ঘটে, তাদেরকে তড়িৎ বিশ্লেষ্য বলা হয়।

২. ইলেকট্রোপ্লেটিং কী?

উত্তরঃ তড়িৎ বিশ্লেষণ প্রক্রিয়ায় কোনো ধাতুর উপর অপর কোনো ধাতুর পাতলা আবরণ দেওয়ার প্রক্রিয়াকে তড়িৎ প্রলেপন বা ইলেকট্রোপ্লেটিং বলে।

৩. গ্যালভানাইজিং কী?

উত্তর ঃ লোহার তৈরি কোনো দ্রব্যাদি কিংবা যন্ত্রাংশকে গলিত দস্তার সাথে ডুবিয়ে দ্রব্যাদি কিংবা যন্ত্রাংশের উপর দস্তার প্রলেপন দেওয়াকে গ্যালভানাইজিং বলে।

সংক্ষিপ্ত প্রশ্নোতরঃ

তড়িৎ বিশ্লেষ্যের বৈশিষ্টগুলো লেখ।

উত্তর ঃ তড়িৎ বিশ্লেষ্যের বৈশিষ্টগুলো হলোঃ

- i. তড়িৎ বিশ্লেষ্য পরিবাহীর ক্ষেত্রে সঞ্চরণশীল ধনাত্মক ও ঋণাত্মক আয়নসমূহ তড়িৎ পরিবহন করে।
- ii. তড়িৎ পরিবহনকালে কোষের অ্যানোডে জারণ ও ক্যাথোডে বিজারণ ঘটে। যেমন– গলিত NaCl দ্বারা তড়িৎ । পরিবহনকালে নিম্নুরূপে পরিবর্তন ঘটে–

গলিত NaCl –এর বিয়োজন : NaCl $(l) o ext{Na}^+(l) + ext{Cl}^-(l)$

অ্যানোডে জারণ : $2Cl^{-}(l) \rightarrow Cl_{2}(g) + 2e^{-}$

ক্যাথোডে বিজারণ : $2Na^+ + 2e^- \rightarrow 2Na(s)$

- iii. উত্তপ্ত অবস্থায় তড়িৎ বিশ্লেষ্য পরিবাহীতে তড়িৎ পরিবহন বৃদ্ধি পায়।
- iv. এসব পরিবাহীর ক্ষেত্রে ফ্যারাডের সূত্র প্রযোজ্য।

রচনামূলক প্রশোতরঃ

১. তড়িৎ প্রলেপন কী? তড়িৎ প্রলেপন প্রক্রিয়া বর্ণনা কর।
উত্তর ঃ তড়িৎ বিশ্লেষণ প্রক্রিয়ায় কোনো ধাতুর উপর অপর কোনো ধাতুর পাতলা আবরণ
দেওয়ার প্রক্রিয়াকে তড়িৎ প্রলেপন বা ইলেকট্রোপ্লেটিং বলে।

প্রক্রিয়ার বর্ণনাঃ যে ধাতুর প্রলেপন দিতে হয় তার লবণের দ্রবণে ধাতুটির তৈটির একটি দন্ডকে নিমজ্জিত করে ব্যাটারির ধনাত্মক প্রান্তের সাথে সংযোগ দেয়া হয়। এটি অ্যানোড হিসেবে কাজ করে। আবার যে বস্তুর উপর প্রলেপন দিতে হয় তাকে উক্ত দ্রবণে নিমজ্জিত করে ব্যাটারির ঋনাত্মক প্রান্তের সাথে সংযোগ দেয়া হয়। এটি ক্যাথোড হিসেবে কাজ করে। বিদ্যুৎপ্রবাহ মুক্ত হলে দ্রবণে উপস্থিত তড়িৎ বিশ্লেষ্য পদার্থ অর্থাৎ লবণ বিয়োজিত হয়ে ক্যাটায়ন (ধনাত্মক আয়ন) এবং অ্যানায়ন (ঋণাত্মক আয়ন) এ পরিত হয়। ফলে দ্রবণে উপস্থিত লবণের ক্যাটায়ন ক্যাথোড কর্তৃক আকৃষ্ট হয় ও ইলেকট্রন গ্রহণ করে ক্যাথোডে জমা হয়।

উদাহরণ ঃ নিকেল সালফেট (NiSO₄) দ্রবণে নিকেল (Ni) দন্ডকে অ্যানোড এবং লোহার চামচকে ক্যাথোড হিসেবে ব্যবহার করা হয়। বিদ্যুৎপ্রবাহ চালনা করলে ক্যাথোডরূপী লোহার চামচের উপর নিকেল ধাতুর প্রলেপ পড়ে। ফলে অ্যানোডে ও ক্যাথোডে নিমুরূপ বিক্রিয়া ঘটে–

 $NiSO_4$ এর বিয়োজন : $NiSO_4(aq) \rightleftharpoons Ni^{2+}(aq) + SO_4^{2-}(aq)$ অ্যানোডে বিক্রিয়া (জারণ) : $Ni(s) \rightarrow Ni^{2+} + 2e^-$ ক্যাথোডে বিক্রিয়া (বিজারণ) : $Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$ [প্রলেপ]

অধ্যায় ১১

জৈব রসায়নের প্রাথমিক ধারণা

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (Contants)		
বিষয়	পৃষ্ঠ নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশাবলি		
রচনামূলক প্রশাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষণ (Board Question Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন । নিচে 'Board Question Analysis' অংশে এই অধ্যায় থেকে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	٤	-	-
২০২৩	٤	-	-
২০২২	>	-	-

স্কুলে যা শেখানো হয় তা ভুলে যাওয়ার পরে, যা অবশিষ্ট থাকে তা হল শিক্ষা।"

আলবার্ট আইনস্টাইন

অতি সংক্ষিপ্ত প্রশ্নোত্তরঃ

১. বিউটের এর আণবিক সংকেত ও গাঠনিক সংকেত লেখ। [বাকাশিবো: ১১, ১৩, ১৪, ২২, ২৩]উত্তর ঃ বিউটেন এর আণবিক সংকেত ও গাঠনিক সংকেত : C_4H_{10}

২. জৈব যৌগের সংজ্ঞা দাও।

উত্তর ঃ কার্বন ও হাইড্রোজেনের সমন্বয়ে গঠিত যৌগসমূহ হলো হাইড্রোকার্বন। এই হাইড্রোকার্বন ও হাইড্রোকার্বনের জাতকসমূহকে জৈব যৌগ বলে। হাইড্রোকার্বনের সাথে বা N, O, S, P হ্যালোজেন যুক্ত হয়ে হাইড্রোকার্বনের জাতকসমূহ উৎপন্ন করে।

৩. ক্যাটিনেশন কী? [বাকাশিবো: ১৬, ২৪]

উত্তর ঃ কোনো মৌলের পরমাণুর নিজেদের মধ্যে যুক্ত হয়ে বিভিন্ন আকার ও আকৃতির দীর্ঘ শিকল গঠন করার ধর্মকে ক্যাটিনেশন বলে। কার্বন পরমাণুসমূহের ক্যাটিনেশন ধর্ম বিদ্যমান থাকয় কার্বনের যৌগসমূহ প্রকৃতিতে অধিক হয়।

$$-\frac{1}{C} - \frac{1}{C} - \frac{1}{C} - \frac{1}{C} - \frac{1}{C} = C < C$$

8. বেনজিনের স্থুল সংকেত, আণবিক সংকেত ও গাঠনিক সংকেত লেখ। [বাকাশিবো: ১১, ১৩, ১৪]

উত্তর ঃ বেনজিনের স্থূল সংকেত : CH

বেনজিনের আণবিক সংকেত: C_6H_6

৫. অ্যাসিটিলিনেট গাঠনিক সংকেত লেখ।

[বাকাশিবো: ১৪]

উত্তর ঃ অ্যাসিটিলিনেট গাঠনিক সংকেত : H — C \equiv C — H

৬. সম্পৃক্ত জৈব যৌগ কাকে বলে? উদাহরণ দাও।

[বাকাশিবো: ০৫, ০৭, ১২]

উত্তর ঃ যে-সব জৈব যৌগের অণুতে কার্বন পরমাণুগুলো পরস্পর একক বন্ধনে আবদ্ধ হয় ও কার্বনের অবশিষ্ট বন্ধনগুলো হাইড্রোজেন দ্বারা পূর্ণ হয়, তাদেরকে সম্পৃক্ত হাইড্রোকার্বন বলে। যেমন ঃ মিথেন (CH_4) , মিথেন (C_2H_6) ইত্যাদি।

৭. অসম্পৃক্ত জৈব যৌগ কাকে বলে? উদাহরণ দাও।

[বাকাশিবো: ০১, ০৫ ০৮]

উত্তর থ যে-সব হাইড্রোকার্বন কক্ষপথে একটি কার্বন-কার্বন দ্বি-বন্ধন বা ত্রি-বন্ধন থাকে, তাদেরকে অসম্পৃক্ত হাইড্রোকার্বন বলে। অসম্পৃক্ত হাইড্রোকার্বনগুলো বেশ সক্রিয়। কার্বন-কার্বন দ্বি-বন্ধন হাইড্রোকার্বনগুলোকে অ্যালকিন বা অলিফিন এবং কার্বন-কার্বন ত্রি-বন্ধনযুক্ত হাইড্রোকার্বনগুলোকে অ্যালকাইন বা অ্যাসিটাইলিন বলা হয়।

$$H > C = C < H$$

ইথিলিন

সংক্ষিপ্ত প্রশোতরঃ

১. কার্যকারী মূলক কাকে বলে? উদাহরণ দাও।

[বাকাশিবো: ১৬, ১৭, ২১]

উত্তর ঃ কার্যকারী মূলক ঃ যে-সব পরমাণু বা মূলক কোনো জৈব যৌগের সাথে যুক্ত থেকে উক্ত যৌগের ধর্ম ও বিক্রিয়া নির্ধারণ করে, সে-সব পরমাণু বা মূলককে উক্ত যৌগের কার্যকরী মূলক বলে। যেমন ঃ মিথাইল অ্যালকোহল $(CH_3 - OH)_2$, ইথাইল অ্যালকোহল $(CH_3 - CH_2 - OH)_3$ । এই উভয় অ্যালকোহলের ধর্ম মূলত -OH মূলকের উপর নির্ভরশীল। তাই,

- i. হাইড্রোকার্বন (কার্যকারী মূলক $-\stackrel{|}{C}-\stackrel{|}{C}-\stackrel{|}{C}=C$, $-C\equiv C-$)
- ii. অ্যালকোহল (কার্যকারী মূলক OH)

- iii. অ্যালডিহাইড (কার্যকারী মূলক CHO)
- iv. কিটোন (কার্যকারী মূলক CO)
- v. কার্বক্সিলিক অ্যাসিড (কার্যকারী মূলক COOH)

২. সমগোত্রী শ্রেণী কাকে বলে? উদাহরণ দাও।

[বাকাশিবো: ১৬]

উত্তর ঃ সমগোত্রী শ্রেণি : একই মৌলিক পদার্থের সমন্বয়ে গঠিত সমধর্মী জৈব যৌগসমূহকে তাদের আণবিক ভরের ক্রম অনুসারে সাজালে যে সারি পাওয়া যায় তাতে যদি পর পর দুটি যৌগের আণবিক সংকেতের মধ্যে $-CH_2$ — মূলকের পার্থক্য থাকে এবং যৌগগুলোকে একটি সাধারণ সংকেত দ্বারা প্রকাশ করা যায় তাহলে ঐ সারিকে ঐ যৌগসমূহের সমগোত্রীয় শ্রেণি বলা হয়।

উদাহরণ ঃ অ্যালকেনের সাধারণ সংকেত C_nH_{2n+2} এবং n=1,2,3 ইত্যাদি বসিয়ে পাই–

n=1, CH₄ মিথেন

n=2, H_3C-CH_3 ইথেন

 $n=3, H_3C-CH_2-CH_3$ প্রোপেন

n=4, $H_3C-CH_2-CH_2-CH_3$ বিউটেন

এখানে পর পর প্রতিটি যৌগের মধ্যে আণবিক সংকেত $-CH_2$ পার্থক্য মূলক। তাই অ্যালকেন একটি সমগোত্রীয় শ্রেণি। অনুরূপভাবে, অ্যালকোহল, অ্যালডিহাইড, ফ্যাটি অ্যাসিড এরা সবাই সমগোত্রীয় শ্রেণি।

৩. অ্যালকেনের প্রথম চারটি যৌগের গাঠনিক সংকেত লেখ। [বাকাশিবো: ০৬, ১১, ১৩, ১৪] উত্তর ঃ অ্যালকেনের প্রথম চারটি যৌগের গাঠনিক সংকেত নিম্নে দেওয়া হলোঃ

আণবিক সংকেত	গাঠনিক সংকেত	
মিথেন(<i>CH</i> ₄)	H H— C — H H	

ইথেন (H ₃ C — CH ₃)	H H 	
প্রোপেন ($H_3C-CH_2-CH_3$)	Н Н Н Н—С—С—Н Н Н Н	
বিউটেন $(H_3C-CH_2-CH_2-CH_3)$	H H H H 	

রচনামূলক প্রশ্নোতরঃ

- ১. গঠন কাঠামো অনুসারে জৈব যৌগিক শ্রেণিবিভাগ আলোচনা কর। [বাকাশিবো: ১৭, ১৮, ২২, ২৩] উত্তর ঃ কার্বনের গঠন কাঠামোর উপর ভিত্তি করে জৈব যৌগসমূহকে প্রধানত দুই শ্রেণিতে বিভক্ত করা যায়। যেমন–
 - ১) অ্যালিফেটিক বা মুক্ত শিকল যৌগ (Aliphatic or open chain compounds)
 - ২) চক্রাকার বা বদ্ধ শিকল যৌগ (Cyclic or closed chain compounds)
 - ১) **অ্যালিফেটিক বা মুক্ত শিকল যৌগ** (Aliphatic or open chain compounds) ঃ যে-সব জৈব যৌগের কার্বন শিকলের দুই প্রান্ত পরস্পর যুক্ত হয় না, তাদেরকে মুক্ত শিকল বা অ্যালিফেটিক বলে। যেমনঃ

$$H_3C-CH_2-CH_3$$
 $H_3C-CH_2-CH_2-CH_3$ (বেটনে)

আইসো (ISO) বিউটেন

- 🖠 অ্যালিফেটিক যৌগসমূহ কার্বন শিকলের বন্ধন প্রকৃতি অনুযায়ী আবার দুই প্রকার হয়ে থাকে। যেমন –
 - i. সম্পৃক্ত জৈব যৌগ (Saturated organic compound)
 - ii. অসম্পুক্ত জৈব যৌগ (Unsaturated organic compound)
 - i. সম্পৃক্ত জৈব যৌগ (Saturated organic compound) ঃ যে-সব জৈব যৌগের কার্বন শিকলের কার্বন পরমাণুগুলো কেবল একক বন্ধন দ্বারা যুক্ত থাকে, তাদেরকে সম্পৃক্ত জৈব যৌগ বলে। যেমন ইথেন, ইথানল, প্রোপেন ইত্যাদি।

ii. অসম্পৃক্ত জৈব যৌগ (Unsaturated organic compound) ঃ যে-সব জৈব যৌগের কার্বন শিকলে অন্তত দুটি কার্বন পরমাণু সমযোজ্যতার ভিত্তিতে দ্বিবন্ধন বা ত্রি-বন্ধন দ্বারা পরস্পর যুক্ত থাকে, তাদেরকে অসম্পৃক্ত জৈব যৌগ বলে। যেমন – ইথিলিন, অ্যাসিটিলিন, প্রোপিন ইত্যাদি।

$$H \subset C = C \subset H$$
 $($ ইথিন $)$
 $H \subset C \subseteq C \subset H$
 $($ আ্যাসিটিলিন $)$

২) চক্রাকার বা বদ্ধ শিকল যৌগ ঃ যে-সব জৈব যৌগের অণুতে কার্বন শিকলের দুই প্রান্তের কার্বন নিজেদের মধ্যে সরাসরি যুক্ত হয়ে অথবা অপর ভিন্ন পরমাণুর (যেমন – N, O, S ইত্যাদি) মাধ্যমে যুক্ত হয়ে কার্বন চক্র গঠন করে, সে-সব যৌগকে বদ্ধ শিকল জৈব বলে। যেমন – সাইক্লোপ্রোপেন, বেনজিন, ইথিলিন অক্সাইড, থায়োফিন ইত্যাদি।

অধ্যায় ১২

ज्यानियाँ विक रारे प्राकार्वन

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (Contants)		
বিষয়	পৃষ্ঠ নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশ্লাবলি		
রচনামূলক প্রশাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষণ (Board Question Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন । নিচে 'Board Question Analysis' অংশে এই অধ্যায় থেকে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	1	-	-
২০২৩	N	-	-
২০২২	ર	-	-

স্কুলে যা শেখানো হয় তা ভুলে যাওয়ার পরে, যা অবশিষ্ট থাকে তা হল শিক্ষা।"

আলবার্ট আইনস্টাইন

অতি সংক্ষিপ্ত প্রশ্নোতরঃ

১. হাইড্রোকার্বন কী?

[বাকাশিবো: ২১]

উত্তর ঃ হাইড্রোজেন ও কার্বন দ্বারা গঠিত দ্বিযোজী মৌলসমূহকে হাইড্রোকার্বন বলে।

- ২. অ্যালকেন কী?
 তিরঃ যে-সকল হাইড্রোকার্বন শিকলে কেবল একক সিগমা বন্ধনযুক্ত মুক্তশিকল বিদ্যমান, তাদেরকে অ্যালকেন বলে।
- ৩. অ্যালকাইন কী?

উত্তরঃ যে-সব অসম্পৃক্ত হাইড্রোকার্বনের কার্বন শিকলে একটি সিগমা বন্ধন ও দুইটি পাই বন্ধন সংবলিত একটি ত্রি–বন্ধন বিদ্যমান তাদেরকে অ্যালকাইন বলে।

8. ইউপ্যাক কী? [বাকাশিবো: ২২, ২৩]

উত্তরঃ জৈব যৌগের নামকরণের আন্তর্জাতিক পদ্ধতিকে ইউপ্যাক (IUPAC) বলা হয়।
IUPAC এর পূর্ণরূপ হলো International Union of Pure and Applied Chemistry
(আন্তর্জাতিক ফলিত রসায়ন সংস্থা)।

১৮৯২ খ্রিষ্টাব্দে জেনেভা শহরে আন্তর্জাতিক খ্যাতিসম্পন্ন রসায়নবিদদের এক সম্মেলনে এই নিয়ম রচিত হয়। তাই পূর্বে একে জেনেভা পদ্ধতি বলা হতো।

সংক্ষিপ্ত প্রশ্নোতরঃ

১. অ্যালকেনকে প্যারাফিন বলা হয় কেন?

উত্তরঃ প্যারাফিন অর্থ আসক্তিহীন। অ্যালকেনকে প্যারাফিন বলা হয় কারণ অ্যালকেনে বিদ্যমান প্রতিটি কার্বন-হাইড্রোজেন কার্বন-কার্বন (C-C) একক বন্ধন ও কার্বন-হাইড্রোজেন (C-H) একক বন্ধন অর্থাৎ সিগমা বন্ধন ভাঙতে অনেক বেশি শক্তির প্রয়োজন হয় বলে অ্যালকেনসমূহ কোনো বিক্রিয়া দেয় না।

অর্থাৎ, অ্যাসিড, ক্ষারের সাথে কোনো বিক্রিয়া করে না। এ কারণে অ্যালকেনকে প্যারাফিন বলা হয়।

অধ্যায় **১**৩

অ্যালকোহল

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (Contants)		
বিষয়	পৃষ্ঠ নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
❖ সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশ্লাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষণ (Board Question Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Question Analysis' অংশে এই অধ্যায় থেকে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	1	-	-
২০২৩	8	-	2
২০২২	9	-	2

"স্কুলে যা শেখানো হয় তা ভুলে যাওয়ার পরে, যা অবশিষ্ট থাকে তা হল শিক্ষা।"

আলবার্ট আইনস্টাইন

অতি সংক্ষিপ্ত প্রশ্নোত্রঃ

১. প্রাইমারি অ্যালকোহল কী?

[বাকাশিবো: ২৩]

উত্তর ঃ যে-সব মনোহাইড্রিক অ্যালকোহলে একযোগী $-CH_2OH$ মূলক থাকে অর্থাৎ -OH মূলকযুক্ত কার্বন পরমাণুতে H দুটি পরমাণু থাকে এবং একটি অ্যালকাইল মূলক থাকে, তাদেরকে প্রাইমারি বা $1^{\circ}C$ অ্যালকোহল বলে।

- **২. এনজাইম কী?**ত্তির ঃ জৈবিক বিক্রিয়ায় প্রভাবক বা অনুঘটকরূপে ক্রিয়াশীল টারসিয়অরি প্রোটিনকে এনজাইম বলে।
- ৩. ফারমেন্টেশন বা গাজন কী?
 উত্তর ঃ জটিল অণুবিশিষ্ট জৈব যৌগ যেমন— কার্বোহাইড্রেটকে এনজাইম নামক জটিল পদার্থর প্রভাবে বিযোজিত বা আর্দ্রবিশ্লেষণ করে অপেক্ষাকৃত সরল, ক্ষুদ্র অণুবিশিষ্ট পদার্থে পরিণত করার প্রক্রিয়াকে ফারমেন্টেশন বা চোলাইকরণ বা গাঁজন বলে।
- 8. অ্যালকোহল কী?

 উত্তর ঃ অ্যালফেটিক হাইড্রোকার্বনের অনুস্থিত সম্পৃক্ত C- পরমাণুর সাথে যুক্ত H -পরমাণু থেকে কেবল একটি H-পরমাণুকে একটি হাইড্রক্সি (—OH) মূলক দ্বারা প্রতিস্থাপিত করলে যে-সব হাইড্রক্সি যৌগ উৎপন্ন হয়, তাদেরকে অ্যালকোহল বলে।
- **৫. গ্রিগনার্ড বিকারক কী?**ত্তির ঃ শুদ্ধ ইথারীয় দ্রবণে হ্যালোজেনো অ্যালকেনের (R-x) সাথে ম্যাগনেশিয়াম (Mg) যোগ করলে অ্যালকাইল ম্যাগনেশিয়াম হ্যালাইড উৎপন্ন হয়, এক গ্রিগানার্ড বিকারক বলে।

$$CH_3 - X + Mg \xrightarrow{\mathfrak{G}} CH_3 - Mg - X$$

সংক্ষিপ্ত প্রশোত্রঃ

- ১. অ্যালকোহলের উদাহরণসূহ বর্ণনা কর।
 - উত্তর ঃ অ্যালফেটিক হাইড্রোকার্বনের অনুস্থিত সম্পৃক্ত C- পরমাণুর সাথে যুক্ত H -পরমাণু থেকে কেবল একটি H-পরমাণুকে একটি হাইড্রক্সি (-OH) মূলক দ্বারা প্রতিস্থাপিত করলে যে-

সব হাইড্রব্সি যৌগ উৎপন্ন হয়, তাদেরকে অ্যালকোহল বলে। সংক্ষেপে অ্যালকোহল হলো মুক্ত শিকল হাইড্রোকার্বনের স্থায়ী হাইড্রোক্সি জাতক। যেমন –

$${
m CH_3-OH}$$
 ${
m CH_3-CH_2-OH}$ মিথাইল অ্যালকোহল বা মিথানল ইথাইল অ্যালকোহল বা ইথানল

$$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{OH}$$
ইথাইল অ্যালকোহল বা ইথান

চিত্রঃ অ্যালকোহল অণুস্থিত সম্পুক্ত কার্বন ও কার্যকরী মূলক

রচনামূলক প্রশোতরঃ

১. অ্যালকোহলের শ্রেণিবিন্যাস দেখাও।

[বাকাশিবো: ২২, ২৩]

উত্তর ঃ অণুস্থিত – OH মূলকের সংখ্যানুসারে শ্রোণিবিভাগঃ

অণুস্থিত – OH মূলকের সংখ্যানুসারে অ্যালকোহলকে নিম্নোক্ত দুটি শ্রেণিতে ভাগ করা হয়। যথা ঃ-

- 🕽 । মনোহাইড্রিক অ্যালকোহল ও
- ২। পলিহাইড্রিক অ্যালকোহল।
- ১। মনোহাইড্রিক অ্যালকোহল ঃ একটি মাত্র OH –মূলকযুক্ত অ্যালকোহলসমূহকে মনোহাইড্রিক অ্যালকোহলসমূহকে মনোহাইড্রিক অ্যালকোহল বলে (mono = এক)। যেমন – মিথাইল অ্যালকোহল ও ইথাইল অ্যালকোহল।

$$CH_3 - OH$$

 $CH_3 - CH_2 - OH$

মিথাইল অ্যালকোহল

ইথাইল অ্যালকোহল

- 🖥 ম**নোহাইড্রিক অ্যালকোহলের শ্রেণিবিভাগ** ঃ কার্বন শিকলে 🗕 OH মূলকের অবস্থান অনুসারে এদেরকে নিম্নোক্ত তিন শ্রেণিতে বিভক্ত করা যায়। যেমন –
 - i. প্রাইমারি বা 1° অ্যালকোহল
 - ii. সেকেন্ডারি বা 2° অ্যালকোহল
 - iii. টারসিয়ারি বা 3° অ্যালকোহল
 - i. প্রাইমারি বা 1° অ্যালকোহল ঃ এসব মনোহাইড্রিক অ্যালকোহলে একযোজী —CH₂OH মূলক থাকে। অর্থাৎ -OH মূলকযুক্ত কার্বন পরমাণুতে দুটি H পরমাণু থাকে এবং একটি অ্যালকাইল মূলক থাকতে হবে। যেমন -

$$R-CH_2-OH$$
 $H-CH_2-OH$ CH_3-CH_2-OH

$$CH_3 - CH_2 - OH$$

প্রাইমারি বা 1° অ্যালকোহল মিথানল

ইথানল

সেকেন্ডারি বা 2° অ্যালকোহল ঃ এসব মনোহাইড্রিক অ্যালকে⊢ CHOHযোজী ١. মূলক থাকে। অর্থাৎ -0H মূলকযুক্ত কার্বন পরমাণুতে একটি মাত্র H পরমাণু এবং দুটি অ্যালকোহল মূলক যুক্ত থাকে। যেমন-

টারসিয়ারি বা 3° অ্যালকোহল ঃ এসব মনোহাইড্রিক অ্যালবে \dot{c} — OH \dot{a} যোজী ২. মূলক

থাকে। অর্থাৎ -0H মূলকযুক্ত কার্বন পরমাণুতে কোনো H পরমাণু থাকে না; কিন্তু তিনটি অ্যালকাইল মূলক যুক্ত থাকে। যেমন -

$$\begin{array}{c} R \\ I \\ R - C - OH \\ I \\ R \end{array}$$

টারসিয়ারি বা 3° অ্যালকোহল 2-মিথানল প্রোপানল- 2 2-মিথানল বিউটানল-2

২। পলিহাইড্রিক অ্যালকোহল ঃ

কার্বন শিকলের ভিন্ন ভিন্ন কার্বনের একের অধিক -0H মূলকযুক্ত অ্যালকোহলকে পলিহাইড্রিক অ্যালকোহল বলে। পলিহাইড্রিক অ্যালকোহলসমূহের মধ্যে দুটি -OH মূলকযুক্ত অ্যালকোহলকে ডাইঅল, তিনটি -OH মূলকযুক্ত অ্যালকোহলকে ট্রাইঅল এবং চারটি -OHমূলক থাকলে টেট্রাঅল বলা হয়। এছাড়া বিশেষ নামযুক্ত অ্যালকোহল আছে। যেমন –

$$HO-CH_2-CH_2-OH$$

$$HO-CH_2-CH_2-CH_2-OH$$

ইথেন-1, 2-ডাইঅল

প্রোপেন-1. 3-ডাইঅল

$$\begin{array}{ccccc} CH_2 & - & CH & - & CH_2 \\ I & I & I \\ OH & OH & OH \end{array}$$

গ্লিসারল বা প্রোপেন-1, 2, 3-ডাইঅল

গ্লিসারল, হেক্সেন-1, 3, 4, 6 -টেট্রাঅল, সরবিটল (Moisturizing cream) প্রস্তুতিতে ব্যবহৃত হয়। এরা -0H মূলকের মাধ্যমে হাইড্রোজেন বন্ধন দ্বারা পানি অণুকে বায়ু থেকে আবদ্ধ করে রাখে।

অধ্যায় ১৪

অ্যারোমেটিক যৌগ

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (Contants)		
বিষয়	পৃষ্ঠ নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশ্নাবলি		
❖ রচনামূলক প্রশ্লাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষণ (Board Question Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন । নিচে 'Board Question Analysis' অংশে এই অধ্যায় থেকে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	1	-	-
২০২৩	1	٤	-
२०२२	1	٤	-

'স্কুলে যা শেখানো হয় তা ভুলে যাওয়ার পরে, যা অবশিষ্ট থাকে তা হল শিক্ষা।"

আলবার্ট আইনস্টাইন

অতি সংক্ষিপ্ত প্রশ্নোত্তরঃ

১. অ্যারোমেটিসিটি কী?

[বাকাশিবো: ২১]

উত্তরঃ অ্যারোমেটিসিটি বা অ্যারোমেটিক যৌগের ধর্ম বলতে য়ড়ভুজাকার চাক্রিক ও সমতলীয় যৌগে হাকেল নিয়মভিত্তিক সঞ্চরণশীল (4n+2) সংখ্যক $\pi(পাই)$ ইলেকট্রনের উপস্থিতিকে বুঝায়।

২. ফিউরানের গাঠনিক সংকেত লেখ?

উত্তর ঃ ফিউরানের গাঠনিক সংকেত:

সংক্ষিপ্ত প্রশ্নোতরঃ

১. অ্যারোমেটিক যৌগের বৈশিষ্ট্য উল্লেখ কর।

উত্তরঃ অ্যারোমেটিক যৌগের বৈশিষ্ট্য নিমুরূপ ঃ-

[বাকাশিবো: ২২, ২৩]

- i. বিশেষ ধরণের অসম্পৃক্ততা ঃ অ্যারোমেটিক যৌগের অণু যেমন, বেনজিন অসম্পৃক্ত যৌগ হওয়া সত্ত্বেও এরা অসম্পৃক্ত ইথিলিনের মতো সব যুত বিক্রিয়া দেয় না। যেমন—হাইড্রোজনে, হ্যালোজেন ও ওজোনোর সাথ যুত যৌগ গঠন করলেও বেনজিন ইথিলিনের মতো হ্যালোজেন অ্যাসিড HCl, HBr ─এর সাথে যুত যৌগ গঠন করে না। তাই বেনজিন বা অ্যারোমেটিক যৌরগর অসম্পৃক্ততা বিশেষ প্রকারের; ইথিলিন বা অ্যাসিটিলিনের মতো নয়।
- ii. প্রতিস্থাপন বিক্রিয়া ঃ অ্যারোমেটিক যৌগ যেমন বেনজিন প্রধানত হ্যালোজেনেশন, নাইট্রেশন, সালফোনেশন, ফ্রিডেল ক্র্যাফট বিক্রিয়া প্রভৃতি ইলেকট্রনগ্রাহী বা ইলেকট্রোফিলিক প্রতিস্থাপন বিক্রিয়া ঘটে। এগুলো অ্যারোমেটিক যৌগের প্রধান বৈশিষ্ট্য।
- iii. বিশেষ স্থায়ীত্ব ঃ অ্যারোমেটিক যৌগ যেমন, বেনজিন অণুতে দ্বিন্ধন থাকা সত্ত্বেও এটা ইথিলিন অপেক্ষা অধিকতর স্থায়ী যৌগ। যেমন – সাধারণ তাপমাত্রায় ইথিলিন জলীয়

KMnO₄ দ্রবণ দ্বারা জারিত হয়ে ইথিলিন গ্লাইকল উৎপন্ন করে, কিন্তু বেনজিন ক্ষারীয় KMnO₄ দ্বারা জারিত হয় না।

iv. অণুরপনঃ অ্যারোমেটিক বেনজিন বলয়ের ছয়টি π ইলেকট্রন সঞ্চরণশীল থাকায় কার্বনকার্বন বন্ধন দূরত্ব 0.139nm হয়, যা এককও দ্বিন্ধনের (0.154nm ও 0.134nm) মাঝামাঝি। ফলে বেনজিন বলয়ের সাথে সরাসরিভাবে সংযুক্ত মূলকের বিক্রিয়া অ্যালিফেটিক কার্বন শিকলের সাথে সংযুক্ত একই মূলকের বিক্রিয়ার মধ্যে সম্পূর্ণ ভিন্ন ধর্ম দেখা যায়। যেমন— অ্যারোমেটিক হাইড্রক্সি যৌগ ফেনল (C_6H_5OH) হলো অম্লধর্মী, কিন্তু অ্যালিফেটিক হাইড্রক্সি যৌগ অ্যালকোহল যেমন— মিথাইল অ্যালকোহল (CH_3OH) হলো নিরপেক্ষ।

রচনামূলক প্রশ্নোত্রঃ

১ হাকেল নিয়ম কী? এর বৈশিষ্ট্যগুলো লেখ।

উত্তর ঃ রসায়নবিদ এরিখ হাকেল (Eric Huckel, 1931) বদ্ধশিকল জৈব যৌগের মধ্যে অ্যারোমেটিক যৌগের বিশেষ ধর্ম বা অ্যারোমেটিসিটি প্রকাশের জন্য প্রয়োজনীয় শর্তরূপে সঞ্চরণশীল π ইলেকট্রন সহযোগে আণবিক অরবিটাল গঠন তত্ত্ব উপস্থাপন করেন; একে হাকেল তত্ত্ব বলে। এ তত্ত্বে এক বা একাধিক কার্বোসাইক্লিক গঠনযুক্ত যৌগ, হেটারোসাইক্লিক যৌগ ও সাইক্লিক আয়নের অ্যারোমেটিসিটি ব্যাখ্যা করা সম্ভব। হাকেল প্রস্তাবিত অ্যারোমেটিসিটি প্রকাশের প্রয়োজনীয় শর্তগুলোকে হাকেল নিয়ম বলে। হাকেল নিয়মগুলো নিমুরূপ ঃ

- ১) জৈব যৌগটির গঠন চেপ্টা সমতলীয় চাক্রিক হতে হবে। চক্র বা বলয় গঠনকারী পরমাণুর সংখ্যা 5 অথবা 6টি বা তার অধিক বা (4n + 2) এর সমান হতে হবে। ঐ বয়ল সিস্টেমে সব অরবিটাল দ্বারা বন্ধন গঠন পূর্ণ থাকে।
- ২) বলয় বা চক্র গঠনকালী প্রতিটি পরমাণুতে p অরবিটাল থাকতে হবে। এসব p অরবিটাল মূল বলয়ের তলের উপর ও নিচের দিকে, পাশাপাশি অধিক্রমণ দ্বারা সঞ্চরণশীল অবস্থায় চক্রাকারে আণবিক অরবিটাল গঠন করবে। এ আণবিক অরবিটালের সঞ্চরণশীল π ইলেকট্রন সংখ্যা অবশ্যই (4n+2) দ্বারা নির্ধারিত হবে। এখানে দ্বারা সুষম পঞ্চজুজ অথবা ষড়ভুজ বলয় বা চক্রের সংখ্যা বুঝানো হয়। n=0,1,2,3 ইত্যাদি পূর্ণ সংখ্যআ হবে। যেমন—

- i. n=0 হলে, সঞ্চরণশীল π ইলেকট্রন সংখ্যা $(4n+2)=(4\times 0+2)=2$ টি হয়। এক্ষেত্রে ত্রিভুজাকার সাইক্লোপ্রোপিনাইল ক্যাটায়নকে বুঝায়। এটি পঞ্চভুজের কম হওয়ায় n=0 হয়েছে।
- ii. n=1 হলে, সঞ্চরণশীল π ইলেকট্রন সংখ্যা $(4n+2)=(4\times 1+2)=6$ টি হয়। তখন ষড়ভুজাকার বেনজিন অথবা পঞ্চভুজাকার বা ষড়ভুজাকরা হেটারোসাইক্লিক যৌগ ফিউরান, থায়াফিন ও পিরিডিন ইত্যাদি হয়।
- iii. n=2 হলে ন্যাপথালিন, n=3 হলে অ্যান্থাসিন ইত্যাদি হয়।

এই হাকেল সংখ্যক π ইলেকট্রন বলয়াকার জৈব অণুতে থাকলে বলয়টি সুস্থিতি লাভ করে এবং বৈশিষ্টপূর্ণ প্রতিস্থাপন বিক্রিয়া দেয়। এরূপ কিছু যৌগের গাঠনিক সংকেত নিম্নে দেয়া হলো –

সাইক্লো প্রোপিনাইল ক্যাটায়ন, n = 0(4n + 2) = 2

বেনজিন n = 1 (4n + 2) = 6

পিরিডিনn=1

(4n + 2) = 6

ফিউরান n = 1 (4n + 2) = 6

ন্যাপথালিন n = 2 (4n + 2) = 10

অ্যানথ্রাসিন n=3 (4n+2)=14

বৃত্তিমূলক রসায়ন

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (Contants)		
বিষয়	পৃষ্ঠ নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশাবলি		
রচনামূলক প্রশ্লাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষণ (Board Question Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Question Analysis' অংশে এই অধ্যায় থেকে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	٤	-	-
২০২৩	٤	-	-
२०२२	9	-	-

'স্কুলে যা শেখানো হয় তা ভুলে যাওয়ার পরে, যা অবশিষ্ট থাকে তা হল শিক্ষা।"

আইনস্টাইন

অতি সংক্ষিপ্ত প্রশ্নোতরঃ

১. খাদ্য নিরাপত্তা কাকে বলে?

[বাকাশিবো: ২২, ২৪]

উত্তর ঃ বছরের সব সময় সব নাগরিকের সুস্থও কর্মক্ষম জীবনধারণের জন্য পরিমাণে পর্যাপ্ত, স্বাস্থ্যবিধিগত, নিরাপদ ও সঠিক পুষ্টিমানের খাদ্য যোগান বা সরবরাহের নিশ্চয়তার ব্যবস্থা করাকে খাদ্য নিরাপতা বলে।

২. ভিনেগার কী?

[বাকাশিবো: ২২, ২৩]

উত্তর ঃ অ্যাসিটিক অ্যাসিডের (CH_3COOH) ৬-১০% জলীয় দ্রবণকে ভিনেগার বলে।

৩. নাইট্রোজেনযুক্ত প্রধাণ সার কী?

উত্তর ঃ নাইট্রোজেনযুক্ত প্রধান সার হলো ইউরিয়া (NH₂ – CO – NH₂)।

8. ক্যানিং কাকে বলে?

[বাকাশিবো: ২২]

উত্তরঃ যে পদ্ধতিতে বায়ুনিরুদ্ধভাবে সদ্য তৈরি গরম খাদ্যবস্তুকে টিনের মধ্যে রেখে সংরক্ষণ করা হয়, ফলে জীবাণু জন্মাতে পারে না, তাকে ক্যানিং বা কৌটাজাতকরণ বলে।

সংক্ষিপ্ত প্রশ্নোতরঃ

১. ফুড প্রিজারভেটিভস কী?

[বাকাশিবো: ২১]

উত্তর ঃ খাদ্য সংরক্ষক বা ফুড প্রিজারভেটিভসঃ যে সব রাসায়নিক পদার্থ অল্প পরিমাণে খাদ্যবস্তুর সাথে মিশিয়ে খাদ্যবস্তুকে ফাংগাস ও ব্যাকটেরিয়ার আক্রমণ অথবা খাদ্যবস্তুর এনজাইমের প্রভাবে পচন রোধ করা যায়, সেসব পদার্থকে ফুড প্রিজারভেটিভস বা খাদ্য সংরক্ষক বলা হয়।

খাদ্য সংরক্ষক বা ফুড প্রিজারভেটিভস মূলত দু'শ্রেণিতে ভাগ করা হয় –

- ১। প্রাকৃতিক ফুড প্রিজারভেটিভস (Natural food preservatives) ও
- ২। কৃত্রিম বা রাসায়নিক ফুড প্রিজারভেটিভস (Artificial or chemical food preservatives)