NAME	ADVANTAGES	DISADVANTAGES	
CLASSIFICATION			
Decision Tree	 Inexpensive to construct. Extremely fast at classifying unknown records. Easy to interpret for small-sized trees. Accuracy is comparable to other classification techniques for many simple data sets. 	- May not be able to capture complex, non-linear dependencies between attributes.	
Nearest Neighbor Classifier	 Easy to implement. Incremental addition of training data trivial. 	 k-NN classifiers are lazy learners, which do not build models explicitly. This can be relatively more expensive than eager learners (such as decision tree) when classifying a test/unknown record. Unlike decision trees that attempt to find a global model that fits the entire input space, nearest neighbor classifiers make the prediction based on local information, which can be more susceptible to noise. 	
Naïve Bayes Classifier	 Robust to isolated noise points. Missing values can be handled by ignoring the instances during probability estimate calculations. Robust to irrelevant attributes. 	 Independence assumption may not hold for some attributes. Other techniques such as Bayesian Belief Networks (BBN). 	
Ensemble Classifier – Bagging	Decreases variance, improves stability (tolerance to noise).Can be parallelized.	 Reduces accuracy for stable classifiers because sample size reduced by 36%! 	
Ensemble Classifier – Boosting	 Because the weights of previously misclassified records are increased during training, may produce a more robust model. 	– Cannot be parallelized easily.	

NAME	ADVANTAGES	DISADVANTAGES		
CLUSTERING				
K-Means Clustering	– Most clusterings converge in the first few iterations.	 Different initial centroids may result in very different clusterings. Issues when clusters are of different sizes, densities and non-globular shapes. Cannot cluster data with outliers well. One possible solution is to create > k clusters and then merge, as necessary. 		
Hierarchical Clustering	 Does not assume any particular number of clusters since the dendrogram can be cut at any level to get the desired number of clusters. May correspond to meaningful taxonomies. O(N²) space and O(N³) or O(N lg N) time in many cases. Very computationally expensive. Once a decision is made to combine two clusters, it cannot be undone. No objective function is directly minimized. MIN or Single Link can handle non-elliptical shapes but is sensitive to noise & outliers. MAX or Complete Linkage is less susceptible to noise & outliers but tends to break large clusters and is biased towards globular clusters. Group Average has the same disadvantages, but to a lesser degree. Ward's Method (based on increase in squared error) also has the same advantages and disadvantages as MAX / Group Average. 			
DBSCAN	 Resistant to noise. Can handle clusters of different shapes & sizes. 	 Does not handle high-dimensional data well. Does not handle clusters of varying densities well. Epsilon & MinPoints need to be determined empirically. 		
CURE	 Shrinking representative points towards the center helps avoid problems with noise & outliers. CURE can handle clusters of arbitrary shapes & sizes. 	- Cannot handle clusters of differing densities.		

NAME	ADVANTAGES	DISADVANTAGES
Graph-Based Clustering	 Sparsification drastically reduces the amount of data that needs to be processed. Hence, the time needed is reduced and the problem size can be increased. Sparsification also reduces the impact of noise & outliers since they are disconnected from the other points, which are only connected to their nearest neighbors. 	
Chameleon (Graph-Based Algorithm)	 Existing merging schemes (MIN/MAX/AVG) are static in nature. Chameleon uses a dynamic model that adapts to the characteristics of the data to find the natural clusters. Allows clusters that vary in shape, density, form, size & orientation. 	
Jarvis-Patrick Clustering (SNN Algorithm)	 Advantages of sparsification. Can be combined with DBSCAN after the SNN graph is constructed. 	 Clustering may be too brittle. The value of the threshold can affect the clustering and must be determined empirically. Does not cluster all the points. Complexity is high. O(N²).