ELETROMAGNETISMO

MEFT

Pré- Conjunto de problemas

(prática em Matemática)

1) Lei de Coulomb

A força elétrica que uma carga de prova q sente, quando se coloca no vácuo sob influência de outra carga Q à distância r, é dada por

$$\vec{F} = k_e \frac{qQ}{r^2} \vec{e}_r$$

em que \vec{e}_r é o versor da direção de Q para q, a constante elétrica é $k_e = 9 \times 10^9$ NC⁻²m² = $\frac{1}{4\pi\epsilon_0}$ e a constante dielétrica no vácuo tem o valor $\epsilon_0 = 8.854 \times 10^{-12}$ F/m.

- a) Para uma carga Q = 10 C colocada no ponto do espaço $\vec{r} = 5\vec{e}_x$, determine a força sentida por uma carga de prova q = +3 C em função das suas coordenadas (x,y,z).
- b) Para o sistema de 3 cargas iguais a Q colocadas nos vértices de um triângulo equilátero,
 - i) mostre qualitativamente (para q positivo) que o centro geométrico é um ponto de equilíbrio instável;
 - ii) calcule a força sentida por uma carga de prova q no eixo perpendicular [eixo z] ao plano do triângulo passando no seu centro geométrico; faça uma figura da intensidade do campo em função da coordenada z [Wolfram Alpha].
 - iii) faça uma figura [Wolfram Alpha] da intensidade (e sentido) da força elétrica sentida por uma carga de prova q ao longo de um eixo passando por uma das cargas e pelo centro geométrico do triângulo.

2) Operadores Gradiente, Divergência, Rotacional

- a) Dada a função $f(x, y, z) = 6x + 4y^2z + 3yz^3$, calcule o gradiente de f (**grad** f ou ∇f) no ponto $\vec{r} = 3\vec{e}_x + 6\vec{e}_z$.
- b) Dado o vetor $\vec{E} = 4x\vec{e}_x + 4y\vec{e}_y + 4z\vec{e}_z$ calcule a sua divergência e o seu rotacional no ponto $\vec{r} = 3\vec{e}_x + 6\vec{e}_z$.
- c) Dado o vetor $\vec{G} = x^2 y \vec{e}_x + z^3 \vec{e}_y + xy \vec{e}_z$ calcule a sua divergência e o seu rotacional no ponto $\vec{r} = 3\vec{e}_x + 6\vec{e}_z$.

3) Interpretação gráfica da Divergência e do Rotacional

Dos campos vetoriais representados pelas linhas de força nas seguintes figuras, analise qualitativamente e determine se as respetivas divergências são nulas, positivas ou negativas, e se os rotacionais são ou não nulos em todos os pontos do espaço.

Nas figuras, as dependências com R representam simetrias cilíndricas, e as dependências com r representam simetrias esféricas.

4) Força Elétrica

Se uma em cada milhão de moléculas de água no corpo humano perdesse um eletrão (permanentemente, não para o meio), ficando as pessoas com um ligeiro excesso de carga positiva, calcule a força de repulsão entre duas pessoas a um metro de distância (massa das pessoas aproximadamente igual a 75 Kg e contendo 70% de água).

Calcule a força gravítica e a força elétrica que atrai o eletrão ao protão no átomo de hidrogénio sabendo que o raio da órbita é aproximadamente igual a 5,292 x 10^{-11} m (0,05292 nm), $m_e = 9,1$ x 10^{-31} Kg, $m_p = 1,67$ x 10^{-27} Kg, $G_N = 6,673$ x 10^{-11} m 3 Kg $^{-1}$ s $^{-2}$, $k_e = 9$ x 10^9 NC $^{-2}$ m 2 , e que carga do eletrão e do protão são simétricas e de módulo e = 1.6 x 10^{-19} C.

Calcule a força gravítica de atração e a força elétrica de repulsão entre dois protões no núcleo de hélio, sabendo que a distância média entre eles é de aproximadamente $1 \text{ fm} = 10^{-15} \text{ m}$, e usando os dados do problema anterior (mas existe o núcleo de Hélio, certo?!).