MA 3110: Logic and Proof (Spring 2009) Exam 2 (take-home portion)

NAME:					
-------	--	--	--	--	--

Instructions: Prove any *three* of the following theorems. If you turn in more than three proofs, I will only grade the first three that I see. I expect your proofs to be *well-written*, *neat*, *and organized*. You should write in *complete sentences*. Do not turn in rough drafts. What you turn in should be the "polished" version of potentially several drafts.

This portion of Exam 2 is worth 30 points, where each proof is worth 10 points.

The simple rules for this portion of the exam are:

- 1. You may freely use any theorems that we have discussed in class, but you should make it clear where you are using a previous result and which result you are using.
- 2. You are NOT allowed to copy someone else's work.
- 3. You are NOT allowed to let someone else copy your work.
- 4. You are allowed to discuss the problems with each other and critique each other's work.

This half of Exam 2 is due at the beginning of class on **Monday**, **April 6** (no exceptions). You should turn in this cover page and the three proofs that you have decided to submit.

Good luck and have fun!

Theorem 1: For every prime number p and for every natural number n, GCD(p, n) = 1 iff p does not divide n.*

^{*}If a and b are natural numbers, then GCD(a,b) is the greatest common divisor of a and b. That is, GCD(a,b) = d iff d divides a and d divides b and d is greater than or equal to all other divisors common to a and b.

Theorem 2: Let x and y be real numbers. If x is rational and y is irrational, then x + y is irrational.

Theorem 3: Let A,B,C be sets. If $(A\cap C)^c\subseteq B$, then $A\subseteq (A-B^c)\cup C$.

[†]Hint: I'm sure there are many ways to do this one, but *probably* at some point in your proof, you should consider 2 cases: (1) $x \in C$; (2) $x \notin C$.

Definition: If $x \in \mathbb{R}$ and $A \subseteq \mathbb{R}$ with $A \neq \emptyset$, then we define the *translation* of A by x to be the set

$$A + x = \{a + x : a \in A\}.$$

Theorem 4: Let A and B be subsets of \mathbb{R} . If $A \neq \emptyset$ and if for all $x \in \mathbb{R}$, $(A + x) \cap B = \emptyset$, then $B = \emptyset$.

Theorem 5: Let A,B,C,D be sets. If $A\cup B\subseteq C\cup D$ and $A\cap D=\emptyset$, then $A\subseteq C$.