This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

6

(11) Publication number:

Generated Document.

PATENT ABSTRACTS OF JAPAN

(21) Application number: 60257986

(51) Intl. Cl.: **G03G** 5/06

(22) Application date: 18.11.85

(30) Priority:

(43) Date of application

publication:

28.05.87

(84) Designated contracting

states:

(71) Applicant: FUJI PHOTO FILM CO

(72) Inventor: HORIE SEIJI

MAKINO NAONORI WATARAI OSAMU SATO HIDEO

(74) Representative:

(54)

ELECTROPHOTOGRAPHIC SENSITIVE BODY

(57) Abstract:

PURPOSE: To obtain an electrophotographic sensitive body containing an electrostatic charge transfer material good in transmittance of light for generating charge, and having high sensitivity, low residual potential, and stability against oxidation, light and heat by forming on a conductive substrate a photosensitive layer containing at least one of specified bishydrazone compounds and bisstilbene compounds.

CONSTITUTION: The

photosensitive layer formed on the conductive substrate contains at least one of specified bishydrazone compounds and bisstilbene compounds represented by general formula I in which A is an atomic group represented by general formula

IIWV; each of R1WR3 and R5WR11 is alkyl, aralkyl, or aryl; R4 is H, halogen (H1), alkyl, alkoxy, aryl, or aryloxy; R12 is H, H1, nitro, cyano, alkyl, aralkyl, or aryl; Y is O, S, Se, imino, or methylene; Z is an atomic group necessary to form a benzene or naphthalene ring; Ar is an aromatic or heterocyclic group; i=1W7; k=0 or 1; and X is a specified cyclic atomic group.

COPYRIGHT: (C)1987,JPO&Japio

$$A=C+C=C)_{k}$$

$$\downarrow C=C+C=A$$

$$\downarrow C=A$$

$$\downarrow$$

$$\frac{R^{7}}{R^{8}}N-N= \qquad (1) \qquad \qquad \frac{R^{9}}{R^{10}}C=N-N= \qquad (1)$$

$$Z = N - N = \{V\}, \quad Ar - C = \{V\}$$

$$R^{12}$$

⑲ 日本国特許庁(JP)

⑩特許出願公開

[®] 公 開 特 許 公 報 (A) 昭62 − 116943

Solnt Cl.4

識別記号

庁内整理番号

❷公開 昭和62年(1987)5月28日

G 03 G 5/06

7381-2H

審査請求 未請求 発明の数 1 (全17頁)

図発明の名称 電子写真感光体

②特 願 昭60-257986

20出 頭 昭60(1985)11月18日

79発 明 者 堀 江 誠 治 南足柄市中沼210番地 富士写真フィルム株式会社内 仰発 明 者 牧野 直憲 南足柄市中沼210番地 富士写真フィルム株式会社内 ⑫発 明者 脩 南足柄市中沼210番地 富士写真フィルム株式会社内 砂発 明 者 佐藤 英夫 南足柄市中沼210番地 富士写真フィルム株式会社内 ⑪出 願 人 富士写真フィルム株式 南足柄市中沼210番地

明細書

1. 発明の名称 電子写真感光体

会社

2. 特許請求の範囲

導電性支持体上に、下記一般式(1)で要わされるピスヒドラゾン化合物またはピススチルベン 化合物のうち少なくとも一種を含有する感光層を 設けたことを特徴とする電子写真感光体。

$$A = C + C = C)_{k}$$

$$R^{1} \quad R^{2} \quad R^{3}$$

$$(R^{4})_{i}$$

$$(R^{4})_{i}$$

$$(C = C)_{k}$$

$$R^{5} \quad R^{6} \quad R^{1}$$

式中、Aは、下記一般式(II) \sim (V)で表わされる原子団である。

$$R^{8}$$
 $N-N=$ (1) R^{9} $C=N-N=$ (11)

(但し、一般式(II)~(V)において、 R^7 、 R^8 、 R^9 、 R^{10} および R^{11} は、アルキル基、アラルキル基、アリール基または、これらの世換体を表わす。

 R^7 、 R^8 、 R^9 、 R^{10} および R^{11} は互いに同じても異なつていてもよく、 R^7 、 R^8 は互いに結合して、複素環を形成してもよい。

R¹²は水素原子、ハロゲン原子、ニトロ基、シアノ基、アルキル基、アラルキル基、アリール基またはこれらの世換体を扱わす。また R¹²は A r と互いに結合して芳香族環基を形成してもよい。

Yは、酸素原子、硫黄原子、セレン原子、無量 換または置換基を有するイミノ基、無置換または 置換基を有するメチレン基を表わす。

2は、ペンセン、ナフタレン環を形成するに必

要な原子群を表わす。

Arは憧換もしくは無置換の、芳香族炭素環基 または憧換もしくは無置換の芳香族複素環基を表 わす。)

 R^{1} 、 R^{2} 、 R^{3} 、 R^{5} および R^{6} は、水素原子、アルキル基、アラルキル基、アリール基またはこれらの世換体を扱わす。

 R^{1} 、 R^{2} 、 R^{3} 、 R^{5} および R^{6} は、互いに同じでも異なつていてもよい。

R 4 は水素原子、ハロゲン原子、アルキル基、 アラルギル基、アルコキシ基、アリール基、アリ ールオキシ基またはこれらの置換体を装わす。

iはノ~7の整数を表わす。

kは0または1を表わす。

$$+CH_{2}+\underbrace{R^{13}}_{R^{14}}(CH_{2}+\underline{R^{14}})$$

として無定形セレンとポリーNービニルカルバゾールの組合せが良く知られている。(1)と(2)を別々の物質で行なり方法は感光体に用いる材料の選択範囲を拡げ、それに伴い感光体の感度、受容電位等の電子写真特性が向上し、また感光体強膜作製上好都合な物質を広い範囲から選び得るという長所を有している。

このような感光体に要求される基本的な特性としては、(1)暗所で適当な電位に帯電できること、(2)暗所において電荷の逸散が少ないこと、(3)光照射によつて速やかに電荷を逸散せしめうることなどがあげられる。従来用いられているを同時にさまえながあるとの長所を持つていると同時にさまずな欠点を有していることは事実である。例えば、現在広く用いられているセレンは前記(1)~(3)の条件は十分に満足するが、製造する条件がむずかしく、製造コストが高くなり、可撓性がなく、ベルト状に加工することがむずかしく、熱や後域的なため取扱いに注意を要するなどの欠点もある。硫化カドミウムや酸化亜鉛は、結合

(但し、 R^{13} 、 R^{14} は水衆原子、ハロゲン原子、 アルキル基、アラルキル基、アルコキシ基、アリ ール基、アリールオキシ基またはこれらの世換体 を扱わし、 R^{13} 、 R^{14} は互いに結合して、総合多 環芳香族環を形成してもよい。

8、nは0または1~6の整数、mは0または 1~3の整数を扱わす。)

3. 発明の詳細な説明

「強業上の利用分野」

本発明は電子写真感光体に関し、さらに詳しくは新規な電荷輸送性物質を含む層を有する電子写真感光体及び新規な光導電性物質を含む層を有する。 電子写真感光体に関する。

「従来の技術」

電子写真感光体の光導電過程は

- (1) 露光により電荷を発生する過程
- (2) 電荷を輸送する過程

から成る。

(1)と(2)を同一物質で行う例としてセレン感光板が挙げられる。一方(1)と(2)を別々の物質で行う例

としての樹脂に分散させて感光体として用いられているが、平滑性、硬度、引張り強度、耐摩擦性などの機械的な欠点があるためにそのままでは反復して使用することができない。

近年、これら無機物質の欠点を排除するためにいるいろの有機物質を用いた電子写真用感光体が提案され、実用に供されているものもある。例えば、ポリートービニルカルバゾールとよ、4 4 7 7 では、米国特許3,484,237)、ポリートレニトロフルオレンーターオンとからなるの代本の(特公昭48-25658号公報)などであれたもの(特公昭48-25658号公報)などであれたもの(特公昭47-10785号公報)などであれた。

また、さらに光により電荷を発生する物質(電 荷発生物質と呼ぶ)と、この発生した電荷を輸送 することのできる物質(電荷輸送物質と呼ぶ)と を組合せた高感度の電子写真感光体が投案されて いる。例えば米国特許第3,791,826号明 細書には電荷発生層上に電荷輸送層を設けた感光・ 体が、米国特許第3,573,906号明細書中 には逆に電荷輸送冶上に電荷発生層を設けた感光 体が、さらにまた米国特許第3,764,3/5 号明細書には電荷発生物質を電荷輸送物質中に分 散せしめた感光層を持つ感光体がそれぞれ記載さ れている。そしてこのようなタイプの感光体にお いては、多くの有用な電荷発生物質が現在まで提 楽されているが、真に有用な電荷輸送物質につい てはあまり提案されていないというのが現状であ る。優れた電荷輸送物質とは、電荷発生物質から 電荷を発生させるような波長の光を電荷発生物質 にまで充分透過させること、帯電せしめたとき、 充分に電位を保持しりること、さらに電荷発生物 質により発生された電荷を速やかに輸送する能力 を有するものである。

本発明者らは、鋭意研究を行なつた結果、後配 する一般式(|) で扱わされるビスヒドラゾン化 合物およびビススチルベン化合物が、電子写真感 光体の電荷輸送物質として有効に働くことを見出

本発明のさらに他の目的は皮膜強度が大で均一 性にすぐれ、かつ疲労劣化が少ない安定した電荷 輸送層を提供することである。

「問題点を解決するための手段」

本発明は、下配一般式(1)で表わされるビス ヒドラゾン化合物またはビスステルペン化合物の うち少なくとも一種を含有する感光層を有すると とを特徴とする電子写真感光体に関するものであ る。

$$A=C - C = C^{1}k$$

$$\downarrow N-X-N$$

$$\downarrow C = C + C - A$$

$$\downarrow i$$

$$\downarrow R^{1} R^{2} R^{3}$$

$$\downarrow R^{5} R^{6} R^{1}$$

$$\downarrow R^{5} R^{6} R^{1}$$

式中、Aは、下記一般式(II)~(V)で衷わされる原子団である。

して本発明に到達した。

「発明が解決しよりとする問題点」

本発明の目的は電荷を発生する波長の光に対し て透過性のよい電荷輸送物質を含む電子写真感光 層を有する電子写真感光体を提供するととである。

本発明の他の目的は高感度で残留電位が少ない 電子写真感光層を有する電子写真感光体を提供するととである。

本発明のさらに他の目的はコロナ帝電により発生したオゾンによる酸化や光、熱に対して安定で、電位の暗滅衰が少なく、繰返し使用による残留電位の増大や変動が少なく、また感度の変動が少ない安定した電子写真感光層を有する電子写真感光体を提供することである。

本発明のさらに他の目的は毒性をもたないかまたは毒性が少ない原料化合物を用いて合成することができ、かつ毒性をもたないかまたは毒性が少ない電荷輸送物質を含む電子写真感光層を有する取扱いおよび廃棄処分が安全な電子写真感光体を提供することである。

$$R^{7}$$
 $N-N=$ (I), R^{9}
 $C=N-N=$ (II)

$$Z = N - N = (N)$$
, $Ar - C = (V)$

$$R^{11}$$

(但し、一般式(II)~(V)にかいて、 R^7 、 R^8 、 R^9 、 R^{10} かよび R^{11} は、アルキル基、アラルキル基、アリール基または、これらの健操体を扱わす。

 R^7 、 R^8 、 R^9 、 R^{10} および R^{11} は互いに向 じでも異なつていてもよく、 R^7 、 R^8 は互いに 結合して、複素環を形成してもよい。

R¹²は水素原子、ハロゲン原子、ニトロ基、シ アノ基、アルキル基、アラルキル基、アリール基 またはこれらの世換体を<mark>要わす。また R¹²は A r</mark> と互いに結合して芳香族環基を形成してもよい。

Yは、酸素原子、硫黄原子、セレン原子、無償 換または置換基を有するイミノ基、無償換または 世換基を有するメチレン基を扱わす。

Zは、ベンゼン、ナフタレン環を形成するに必要な原子群を畏わす。 Zは世換基を有していてもよい。

Arは世換もしくは無世換の、芳香族炭素環基 または世換もしくは無量換の芳香族複素環基を裂 わす。)

 R^{-1} 、 R^{-2} 、 R^{-3} 、 R^{-5} および R^{-6} は水気原子、アルキル基、アラルキル基、アリール基またはとれらの世換体を安わす。

 R^{-1} 、 R^{-2} 、 R^{-3} 、 R^{-5} および R^{-6} は互いに同じても異なつていてもよい。

R 4 は水素原子、ハロゲン原子、アルキル基、 アラルキル基、アルコキシ基、アリール基、アリ ールオキシ基またはこれらの世換体を表わす。

iはノ~7の整数を表わす。

k は 0 または / を表わす。

X は - ĊH - ĊH - または下記一般式 (VI) で表わされる原子団である。

ープチル基がある。置換基を有するアルキル基で ある場合、世換基の具体例として、ハロゲン原子 として塩素、臭素、弗素、アルコキシ基としてメ トキシ基、エトキシ基、プロポキシ基、ブトキシ 基、ペンチルオキシ基、アリールオキシ基として フエノキシ基、oートリルオキシ基、mートリル オキシ基、p-トリルオキシ基、1-ナフチルオ キシ蓋、ユーナフチルオキシ蓋、ジアルキルアミ ノ基としてジメチルアミノ基、ジエチルアミノ基、 ジプロピルアミノ基、N-メチル-N-エチルア ミノ基、N-エチルーN-プロピルアミノ基、N ーメチルーNープロピルTミノ基、ジアリールア ミノ基としてジフエニルアミノ基、アルキルチオ 蓋として、メテルチオ基、エチルチオ基、プロピ ルチオ基、N含有ヘテロシクリル基としてピペリ ジノ基、 / -ピペラジニル基、モルホリノ基、 / ーピロリジル基がある。これらの位換基のいずれ かが前述のアルキル基の任意の炭素原子に少なく ともく個結合したアルキル基が懺換基を有するア ルキル葢の例である。

$$+CH_2+CH_2+CH_2+n \qquad (VI)$$

(但し、 R^{13} 、 R^{14} は水素原子、ハロゲン原子、 アルキル基、アラルキル基、アルコキシ基、アリ ール基、アリールオキシ基またはこれらの世換体 を表わし、 R^{13} 、 R^{14} は互いに結合して、縮合多 堺芳香族環を形成してもよい。

と、nは0または/~6の整数、mは0または /~3の整数を扱わす。)

更に本発明の化合物について詳細に説明する。 R⁷、R⁸、R⁸、R¹⁰ および R¹¹ が炭素原子 数!ないし!2の直鎖状または分岐状の無量換ア ルキル蓋である場合、その具体例にはメチル基、 エチル基、プロピル基、ブチル基、ペンチル基、 ヘキシル基、オクテル基、ノニル基、ドデシル基、 イソプロピル基、イソブチル基、イソペンチル基、 4ーメチルペンチル基、secーブチル基、tert

R⁷、R⁸、R⁹、R¹⁰ および R¹¹ が炭素原子数 7 ないし 2 0 の直鎖状または分岐状の無道換アラルキル基である場合、その具体例にはベンジル基、フエネチル基、ノーナフチルメチル基、ベンスとドリル基がある。 置換基を有するアシルキル基の置換基と同じ基があり、これらの置換基のいずれかが前述のアラルキル基の任意の炭素原子に少なくとも / 個結合したアラルキル基が 置換基を有するアシルキルあの例であるが 置換基を有するアラルキルあの例であるが 関換基を有するアラルキルあの例であるが 関換基を有するアラルキルあの例である

R⁷、R⁸、R⁹、R¹⁰ および R¹¹ が単環式または 関数 2 ないし 4 の縮合 8 環式 芳香族 炭化水 案の 水 条原子を / 個除いた / 価基の無 置換 アリール 基である場合、その具体例にはフェニル 基、 / ーナフチル 基、 ユーナフチル 基、 アントリル 基、 ピレニル 基、 アセナフテニル 基、 フルオレニル 基がある。 置換 基を 有する アリール 基である 場合、 置換 基の具体 例として前 述の 置換 基で 有する アルキル

基の世換基と同じ基とそのほかにアルギル基として、メテル基、エチル基、プロピル基、ブチル基、インプロピル基、インプチル基、イソプチル基、イソペンチル基があり、これらの世換基のいずれかが前述のアリール基の炭素原子に少なくとも/個 超合したアリール基が世換基を有するアリール基の例である。

 R^7 と R^8 で複繁環を形成する時の複素環の具体例としては、カルバゾール環である。

る。

 R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^{13} シよび R^{14} が無置換または置換基を有するアシルギル 本ル基、無置換または置換基を有するアシルギル 基、無置換または置換基を有するアリール基の具 体例は前記の R^7 の場合と同じである。

R 4 , R 13 , および R 14 がハロゲン原子、アルコキシ基、アリールオキシ基の場合、具体例としては、ハロゲン原子として塩素、臭素、弗素、アルコキシ基としてメトキシ基、エトキシ基、プロポキシ基、プトキシ基、ペンチルオキシ基、アリールオキシ基としてフェノキシ基、ロートリルオキシ基、mートリルオキシ基、アートリルオキシ基、/ーナフチルオキシ基をあげることができる。

R 4 の数は、 / ~ 2 の整数であり、互いに同じ でも異なつていてもよい。

Xの具体例としては、メチレン基、エチレン基、 プロピレン基、プチレン基、ペンチレン基、へキ シレン基、ラウリレン基、 p ーキシリレン基、 2 .

R 12 が無置換または置換基を有するアルギル 基、無置換または置換基を有するアラルギル基、 無置換または置換基を有するアリール基の具体例 は前配の R 7 の場合と同じである。

R ¹² がハロゲン原子の場合、具体例としては 塩素原子、臭素原子、弗素原子をあげることがで きる。

またR 12 がAr と互いに結合して芳香族環基を 形成する場合、具体例としてターフルオレニリデ ン基をあげることができる。

Arが無置換の芳香族炭素環基の場合、具体例としてはフェニル基、ナフチル基、アントリル基、ピレニル基、アセナフテニル基、フルオレニル基等をあげることができる。Arが無置換の芳香族複素環基の場合、具体例としてピリジル基、チェニル基、カルバソリル基等をあげることができる。

A r が置換基を有する、芳香族炭素環基または 芳香族複素環基の場合、置換器の具体例としては、 前述の R ⁷ が置換基を有するアリール基である場 合の置換基の具体例と同じ基をあげることができ

るが置換基を有する場合、その置換基の具体例としては、前述のR⁷が置換基を有するアリール 基である場合の置換基と同じ基をあげることがで きる。

R⁷, R⁸のりちで好ましい基は、一方がフェニル基で、他方がメチル基、エチル基、ペンジル 基、フェニル基、またはナフチル基である。

R⁹, R¹⁰のりちで好ましい茜は、フェニル 基、ジメチルアミノフェニル基、ジエチルアミノ フェニル基である。

R ¹¹ としては、メチル基、エチル基、ペンジル基が好ましい。

R 12 としては、水素原子が好ましい。

Yとしては、硫毋原子が好ましい。

るとしては、ベンゼン環を形成するに必要な原子群が好ましい。

Arとしては、置換されたフェニル基が好まし

く、置換基としては、炭素数 / ~ « の アルキル基、 炭素数 / ~ « の アルコキシ基が好ましい。

R¹の好ましい例としては、水素原子、メチル 基、エチル基、フェニル基、ペンジル基、pー (ジメチルアミノ)フェニル基、p-(ジェチル アミノ)フェニル基があり、特にR¹としては水 素原子が好ましい。

 R^2 , R^3 , R^5 , R^6 としては水素原子が好ましい。

R 4 の好ましい例としては水素原子、メチル基、 エチル基、メトキシ基、エトキシ基、弗素原子、 塩素原子、臭素原子がある。

**Xの好ましい例としてはエチレン基、プチレン 基、ペンチレン基、ヘキシレン基、 p ーキシリレ ン基である。

一般式(I)で表わされるピスヒドラゾン化合物、およびピススチルベン化合物の具体例を以下に示す。

$$C_{2}H_{5}$$

$$C_{3}H_{5}$$

$$C_{4}H_{5}$$

$$C_{4}H_{5}$$

$$C_{5}H_{5}$$

$$C_{5}H_{5}$$

$$C_{7}H_{5}$$

$$C_{7}H_{5}$$

$$C_{7}H_{7}$$

$$C_{$$

$$N-N=CH-N-(CH_2)_3-N-CH=N-N$$

(CH₃)₂N
$$C=N-N=CH$$
 $N-(CH2)4-N$ $CH=N-N=C$ $N(CH3)2$

$$(CH_3)_2N$$
 $N-N=CH$
 $N-(CH_2)_3-N$
 $CH=N-N$

(CH₃)₂N
$$=$$
 C=N-N=CH $=$ N-(CH₂)₄-N $=$ CH=N-N=C $=$ N(CH₃)₂ $=$ CH₃ $=$

(/2)

$$\begin{array}{c|c} H_3C & CH_3 \\ \hline \\ C=N-N=CH \\ \hline \\ CH_3 \\ \end{array}$$

(/3)

$$\begin{array}{c} \text{CH}_3\text{O} \\ \text{C}\\ \text{CH}_3 \end{array}$$

(/4)

$$\begin{array}{c|c} S \\ C = N - N = CH - \\ \hline \\ CH_3 \end{array}$$

(/5)

$$\begin{array}{c} S \\ C = N - N = CH - CH = CH - CH = CH - CH = N - N = C \\ C \\ 2H_5 \end{array}$$

(16)

(17)

(18)

$$CH_3$$
— $CH=CH$ — CH_2) \bullet $-N$ — $CH=CH$ — CH_3

$$N-N=CH N-CH_2 CH_2-N CH=N-N$$

(20)

$$\begin{array}{c} \text{CH}_3 \\ \text{C}_{\text{N}} \\ \text{CH}_3 \end{array} \\ \begin{array}{c} \text{C}_{\text{H}_3} \\ \text{C}_{\text{H}_3} \end{array}$$

前記一般式〔Ⅰ〕で表わされるビスヒドラゾン化合物は、一般式〔Ⅵ〕~〔Ⅳ〕で表わされる。ヒドラジン又はその鉱酸塩と、一般式〔Ⅺ〕で表わされるビスカルボニル化合物とを必要に応じて縮合剤として少量の酸(氷酢酸または無機酸)を添加し、常法により溶媒中で反応させるととにより得る事ができる。溶媒としては、メタノール、エタノール等のアルコール類、テトラヒドロフラン、酢酸などを単独もしくは混合して用いる事ができる。

$$\begin{array}{c}
R^7 \\
N-NH_2
\end{array}$$
(Vi)

$$\begin{array}{c}
R^9 \\
R^{10}
\end{array}
C=N-NH_2$$
(VI)

$$Z = N-NH_2 \qquad (K)$$

(77)

$$0 = C - (C = C)_{k}$$

$$R^{4}$$

$$N - X - N$$

$$(C = C)_{k} - C = 0$$

$$R^{5} R^{6} R^{1}$$

(式中、R¹~R¹¹, X, Y, Z, kは、前述の一般式(|)のR¹~R¹¹, X, Y, Z, kと同じ意味を染わす。)

また、一般式〔1〕で表わされるビススチルペン化合物は、一般式〔X〕で表わされる化合物と、前述の一般式〔X〕で表わされるビスカルボニル化合物とを、DMF等の有機溶媒中で適当な塩基(例えば、水酸化ナトリウム、ナトリウムメトキンド、カリウムー t ー ブトキド等)の存在下、反応させることにより容易に得ることができる。

(式中、Arは前述の一般式[I]のArと同

aを設けたものである。

第3図の感光体は導電性支持体/の上に電荷発生物質3を主体とする電荷発生層3と、ピスヒドラゾン化合物またはピススチルペン化合物を含む 電荷輸送層4からなる感光層23を設けたものである。

第《図の感光体は導電性支持体/の上にビスヒドラゾン化合物またはビススチルペン化合物を含む電荷輸送層《と、さらにその上に電荷発生物質3を主体とする電荷発生層3からなる感光層2《を設けたものである。

第3図、第4図の感光体において、電荷発生物質3とピスピドラゾン化合物またはピスステルペン化合物を含む電荷発生層5の場合には、電荷輸送層4は、本発明のピスピドラゾン化合物またはピスステルペン化合物以外の電荷輸送物質を含有してもよい。

第/図の感光体において、ビスヒドラゾン化合物またはビススチルペン化合物は光導電性物質として作用し、光波袞に必要な電荷担体の生成およ

一般式〔X〕で表わされる化合物は、USョ, 8 4 4 , 2 / s に開示されている方法に従つて合 成する事ができる。

本発明の感光体は以上のようなピスヒドラゾン 化合物またはピススチルベン化合物を含有するも のであるが、これらの化合物の応用の仕方によつ て、第 / 図~第 « 図に示したようにして用いるこ とができる。

第/図の感光体は導電性支持体/の上にビスヒドラゾン化合物またはビスステルベン化合物、増感染料かよび結合剤(樹脂)よりなる感光暦2/を設けたものである。第2図の感光体は導電性支持体/の上に電荷発生物質3を、ビスヒドラゾン化合物またはビススチルベン化合物と結合剤からなる電荷輸送媒体4の中に分散せしめた感光層2

び輸送はピスヒドラゾン化合物またはピススチルベン化合物を介して行なわれる。しかしながらピスヒドラゾン化合物またはピススチルベン化合物は光の可視領域においてはほとんど吸収を有していないので、可視光で面像を形成する目的のためには可視領域に吸収を有する増感染料を添加して増感する必要がある。

は可視領域にほとんど吸収がなく、一般に可視領域の光線を吸収し、電荷を発生する電荷発生物質と組合わせた場合、特に有効に電荷輸送物質として働くのがその特長である。

第3図の感光体では電荷輸送層 "を透過した光 が、電荷発生層 5 に到達し、その領域で電荷の発 生が起こり、一方、電荷輸送層は電荷の注入を受 け、その移動を行うもので、光波表に必要な電荷 の発生は、電荷発生物質で行なわれ、また電荷の 輸送は、電荷輸送媒体(主として本発明のという がラゾン化合物またはビススチルベン化合物が働 犬体の場合と同様である。ここでも、ビスヒドラ ソン化合物またはビススチルベン化合物は電荷輸 送物質として働く。

第《図の感光体では光により電荷発生層』において、電荷発生が起り、一方、電荷輸送層《は電荷の注入を受けその輸送を行うものである。光波 変に必要な電荷発生、電荷輸送の機構は第2図、 第3図に示した感光体の場合と同様である。こと

第《図の感光体はビスヒドラゾン化合物または ビススチルベン化合物および結合剤を含む溶液を 通常の手段で導電性の支持体上に塗布、乾燥した 後、第3図の感光体と同様を手段で電荷発生層を 設けることにより得られる。

感光層の厚さは第1図かよび第2図のものでは
1~50μm、好きしくは3~20μmである。
また第3図、第4図のものでは、電荷発生層の厚
さは、5μm以下、好きしくは4μm以野をしていました。
では30μmである。また第1図の感光体にピススチルではまり、の重量がではます。
な増していません。な光層に対して10~3。また、研領域に感光性を対してである。また第2回の感光体にピスステルではまる。第2回の感光体に対して、感光層に対してのより、第2回の感光体にかいて、感光層中のピスヒドランである。第2回の感光体にかいて、感光層中のようである。第2回の感光体にかいて、感光層中の割合は10~95重量が、好きしくは30~90重量がであり、またはピススチルペン化合物の割合は10~95重量が、好きしくは30~90重量がであり、またはピススチルペン化合物の割合は10~95重量が、好きしくは30~90重量がである。

でもピスヒドラゾン化合物またはピススチルペン 化合物は電荷輸送物質として働く。

第ノ図の感光体を作製するには、結合剤を溶か した辞液にピスヒドラゾン化合物、ピススチルベ ン化合物を溶解し、さらに必要に応じて、増感染 料を加えた帝を、導電性支持体上に強布、乾燥す る。第1図の感光体を作成するにはピスヒドラゾ ン化合物、ピススチルペン化合物と結合剤を溶解 した溶液に電荷発生物質の微粒子を分散せしめ、 とれを導電性支持体上に強布、乾燥する。また第 3 図の感光体は、導電性支持体上に、電荷発生物 質を真空蒸着するか、あるいは、電荷発生物質の 微粒子を、必要に応じて結合剤を溶解した適当な 群雄中に分散して得た分散液を強布、乾燥し、さ らに必要があれば、例えばパフ研磨などの方法に よつて表面仕上げをするか、膜厚を調整した後、 その上にヒスヒドラソン化合物またはヒススチル ベン化合物および結合剤を含む溶液を塗布、乾燥 して得られる。塗布は通常の手段、例えばドクタ ープレード、ワイヤーパーなどを用いて行り。

た電荷発生物質の割合はS0重量多以下、好まし くは20重量も以下である。第3回、第4回の感 光体における電荷輸送中のビスヒドラゾン化食物 またはピススチルペン化合物の割合は、第→図の 感光暦の場合と同様に10~95重量多、好まし くは30~90重量もである。また電荷発生層中 の電荷発生物質はピスヒドラゾン化合物またはピ ススチルペン化合物を同時に添加しない場合は! 0~90重量が、好ましくは20~20重量がの 割合で、ビスヒドラソン化合物またはビススチル ペン化合物を同時に添加する場合は、電荷発生剤 を0.01~90度量%、好ましくは0.0s~ 20世景まとピスヒドラゾン化合物またはピスス チルペン化合物を0.01~20重量を、好まし くは0、0ょ~よ0重量系の割合で用いる。なお、 第1~4図のいずれの感光体の作製においても、 結合剤とともに可塑剤を用いることができる。

本発明の感光体において、導電性支持体として は、アルミニウムなどの金属板または金属箱、ア ルミニウムなどの金属を蒸着したプラスチックフ イルム、あるいは、導電処理を施した紙などが用いられる。結合剤としては、ポリアミド、ポリウレタン、ポリエステル、エポキシ樹脂、ポリケトン、ポリカルボネートなどの縮合樹脂や、ポリビニルケトン、ポリスチレン、ポリーNービニルカルバゾール、ポリアクリルアミドのようなビニル重合体などが用いられるが、絶縁性でかつ接着性のある樹脂はすべて使用できる。

可塑剤としてはハロゲン化パラフイン、ポリ塩 化ピフエニル、ジメチルナフタリン、ジブチルフ タレートなどが用いられる。

第 / 図の感光体に用いられる増感染料としては、 ブリリアントグリーン、ビクトリアブルーB、メ チルパイオレント、クリスタルパイオレント、ア シッドパイオレントるBのようなトリアリルメタ ン染料、ローダミンB、ローダミンるG、ローダ ミンGエキストラ、エオシンS、エリトロシン、 ローズベンガル、フルオレセインのようなキサン テン染料、メチレンブルーのようなチアジン染料、 C. I. Basic. Violet 2 (C. I. 48020)

昭 5 9 - 4 2 3 5 2 号に記載されているようなスチリルスチルペン骨格を有するアン顔料、特開昭 5 8 - 1 2 3 5 4 / 号又は特開昭 5 8 - 2 / 2 5 6 号に記載されている様なナフタレン骨格を有するアン顔料、特開昭 5 8 - 2 / 2 5 5 6 号に記載されている様なトリスアン顔料、特開昭 5 9 - 2 2 3 4 3 3 号に記載されている様な、チオフェン骨格を有するアン顔料等である。

- (5) ペリレン酸無水物およびペリレン酸イミドなどのペリレン系顔料
- (6) インジゴイド染料
- (7) キナクリドン顔料
- (8) アントラキノン類、ピレンキノン類、アント アントロン類およびフラバントロン類などの多 環キノン類
- (9) ビスペンメイミダゾール顔料
- (10) シアニン色素
- (11) スクエアリックメチン染料
- (12) インダンスロン系顔料

のようなアストラゾン染料、シアニンのようなシアニン染料、2、4ージフエニルー 4 ー (N, N ージメチルアミノフエニル)チアピリリウムペルクロレート、ベンゾピリリウム塩 (特公昭 4 ー 2 s 4 s 8 号記載)などのピリリウム染料などが挙げられる。

第2図、第3図および第4図に示した感光体に 用いられる電荷発生物質は、例えば次のものがある。

- (1) セレンおよびセレン合金
- (2) CdS, CdSe, CdSSe, ZnO および ZnS などの無機光導電体
- (3) 金属フタロシアニンおよび無金属フタロシア ニンなどのフタロシアニン顔料
- (4) アソ頗料

例えば、特開昭 s 3 - 9 s 0 3 3 号に記載され ているようなカルパソール骨格を有するアン顔 料、特開昭 s 3 - 1 3 2 s 4 2 号に記載されて いるようなトリフエニルアミン骨格を有するア ン顔料、特開昭 s 3 - 1 3 3 4 4 4 5 号又は特開

- (13) キサンテン染料
- (4) 例えばポリーNービニルカルバゾールなどの電子供与性物質と例えばトリニトロフルオレノンなどの電子受容性物質から成る電荷移動錯体
- (5) ピリリウム塩染料とポリカーボネート樹脂から形成される共晶鑚体および
- (16) アモルフアスシリコン等である。

電荷発生物質としては、アン顔料を使用すると とが特に好ましい。

以上のようにして得られる感光体には、導電性支持体と感光層の間に、必要に応じて接着層またはパリャ層を設けることができる。これらの層に用いられる材料としては、前記結合剤に用いられる材料としては、前記結合剤に用いられるの子取合体のほか、ゼラチン、カゼイン、ポリニールアルコール、エチルセルロース、カルボキシーメチルセルロース、特開昭よターよると、特開昭よターメメタリアンス、特開昭は、メープタジエン系ポリマーラテックスなどであり、これらの層の厚さは、ノμm以下が好ましい。

以上本発明の電子写真用感光体について詳細に 説明したが、本発明の電子写真感光体は一般に感 度が高く耐久性が優れているというような特徴を 有している。

本発明の電子写真感光体は電子写真複写機かレーザー、プラウン管を光源とするプリンターの感 光体などの分野に広く応用することができる。

次に、この二量体型ホルミルカルパゾール(i)
2.2gと塩酸/,/ージフエニルヒドラジン2.
2g、酢酸ナトリウム/.0gを、somℓの
DMF溶媒中で90°C、3時間加熱攪拌した。

反応終了後、28の水中にあけ、得られた沈殿物3.88をアセトンに溶解し、MeOH中に再沈殿し、精製した。

との様にして得られた化合物具体例(1)の触点は / s 0 °C であつた。

二量体型ホルミルカルパゾール (ii) もしくは (iii) をそれぞれ用いて、同様の操作により、化 合物具体例(2)、もしくは(3)が、それぞれ得られた。 その融点は、それぞれ 2 2 5 °C、もしくは / 5 0 °Cであつた。

他の化合物は、同様の操作により容易に得る事ができる。

奥施例/

厚さ約300μmの砂目立てアルミニウム板上 にセレンを厚さ0. μmに真空蒸着して、電荷 発生層を形成せしめた。この上に前述の一般式

「寒施例」

次に本発明を実施例により具体的に説明するが とれにより本発明が実施例に限定されるものでは ない。なお実施例中「部」とあるのは「重量部」 を示す。

合成例

USョ,8 4 4 4 , 2 / 3 に関示されている方法 に従つて、下記の二量体型ホルミルカルパゾール (|) ~ (||) を合成した。

化合物	x	m.p[°C]
(1)	(CH ₂) ₃	2 4 2
(ii)	(CH ₂) ₄	282
(iii)	(CH ₂) ₅	209

(1)の化合物の具体例(1)で表わされるピスヒドランン化合物 / の部と、ピスフェノールAのポリカーポネート(帝人翎製、パンライトKー/3・00) / の部をジクロロメタン / 3 の部に溶解した溶液を、ワイヤーラウンドロッドを用いて途布した後、乾燥し厚さ約 / 2 μ m の電荷輸送層を形成させた。この様にして 2 層からなる感光層を有する電子写真用感光体が得られた。

との感光体について、静電復写紙試験装置(川口電機製作所製、SP- 428型)を用いてーま、KVのコロナ放電により、負に帯電させ、次いで2854°Kのタングステンランプによつてその表面が照度2・0ルックスになるようにして光を照射し、その表面電位が初期表面電位の半分に放設するのに要する時間を求め、半波露光量(E50: dux·sec)を得た。

その結果は $E_{50}=8$ 、 $%\ell$ ux・sec であつた。 帯電V 窓光を3000回線返した後の E_{50} は、 8.9ℓ ux・sec であり感度の変動は極めて小さい。

実施例 2~6

実施例/のビスヒドラゾン化合物(1)の代わりに、それぞれ前述の一般式(1)で表わされる化合物の具体例(2)、(3)、(1)、(4)、(1)で表わされるビスヒドラゾン化合物またはビススチルペン化合物を用いた他は実施例/と同様にして2層構成の感光体を作成し、実施例/と同様にして負帯電による半波鄭光量(E50)を測定し、第/装に示す値を得た。

第 / 表

実施例	用いた本発明の化合物	Eso(&ux · sec)	
2	(2)	7 . 6	
3	(3)	8.5	
w .	av	8.8	
	0.40	9.4	
6	an	8.3	

突施例っ

β型鋼フタロシアニンは部をジクロロメタン 6 6 0部に添加し、超音波分散した後、この分散液

次に、前述の一般式(I)で表わされる化合物の具体例(2)で表わされるビスヒドラゾン化合物 / の部とビスフェノールAのポリカーポネート (パンライトKー/300)/の部とをジクロロメタン/20部に溶解した溶液をワイヤーラウンドロッドを用いて塗布、乾燥し厚さ約/4μmの電荷輸送層を形成させた。

この様にして得られた 2 層からなる感光体について実施例/と同様にして、半波螺光量 (E_{50}) を測定した所s . 6 ℓ ux·sec であつた。

にピスフェノールAのポリカーボネート(パンライトKー/300) μ0 部と前述の一般式(1) で表わされる化合物の具体例(i) で表わされるピスピドラゾン化合物 μ0 部とを添加し溶解せしめ塗布液を調製した。との塗布液をワイヤーラウンドロッドを用いて導電性透明支持体(/00μmのポリエテレンテレフタレート支持体上に、酸化インジウムの蒸着膜を有する。表面抵抗/03Ω。)上に塗布、乾燥して厚さ約/0μmの感光体を得た。

この感光体を+s K V のコロナ放電により、正 に帯電した後、半波露光量(E_{50})を測定した所 $E_{50}=s$. s ℓ ux·sec であつた。

実施例と

下記構造式のトリスアン飼料 2 部とポリエステル樹脂(東洋紡績構製、パイロン 2 0 0) 4 部とをテトラヒドロフランク部に添加し、ポールミルで、 / 2 時間分散した後、この分散液をワイヤーラウンドロッドを用いて導電性支持体 (/ 0 0 μmのポリエチレンテレフタレート支持体上にア

-360-

スナゾ化合物

実施例タ~ノク

実施例をのビスヒドラソン化合物(2)の代わりに、 それぞれ前述の一般式(I)で装わされる化合物 の具体例(4)、(7)、(9)、(0)、(2)、(4)、(6)、(8)、(2)で 表わされる化合物を用いた他は実施例をと同様に して2層構成の感光体を作成した。実施例/と同様にして負帯電による半減露光量(E50)を測定 し、第2表に示す値を得た。

第 2 發

実施例	用いた本発明の化合物	E ₅₀ (&ux·sec)
9	(4)	4.6
10	(7)	4.9
//	(9)	4.5
12	0.0	4.7
13	02)	5.3
14	0.0	6.7
/ 5	0.0	3.3
16	0.89	4.5
17	20)	4.9

実施例!9

実施例まで用いたトリスアソ顔料 * 部と前述の一般式(1)で表わされる化合物の具体例(2)で表わされるピスヒドラゾン化合物 * 0 部とペンジルメタアクリレートとメタアクリル酸のコポリマー(〔ヵ〕30°Cメチルエチルケトン=0・12、メタアクリル酸含量32・9 * *) / 0 0 部、とをジクロロメタン 6 4 0 部に添加し、超音波分散させた。この分散液を砂目立てした厚さ 0・2 * mm のアルミニウム板上に塗布、乾燥し乾燥 厚 4 mm の電子写真感光層を有する電子写真感光性印刷版材料を調製した。

この試料を暗所でコロナ放電(+6 K V)する ことにより、感光層の表面電位を+600 V に帯 電させた後、色温度 2834 ° K のタングステン 光を試料面に照度 2.0 ルンクスで露光した所、 半波露光量(E_{50})は 1.08 ux·secであつ た。

つぎに、との試料を暗所で表面電位を約+40 o V に帯電させた後、ポジ面像の透過原稿と密着

奥施例 / 8

前述の一般式(1)で表わされる化合物の具体例(2)のピスヒドラゾン化合物を部、ピスフエノールAのポリカーボネート(パンライトKー/3のの)/の部と、下記構造式のアストラゾン色素の・/ a 部とをジクロロメタン//の部に添加し溶解せしめ盗布液を調製した。

との盗布液をワイヤーラウンドロッドを用いて 導電性透明支持体 (/ O O μ m O ポリエテレンテ レフタレート支持体上に、酸化インジウムの蒸着 膜を有する。接面抵抗 / O ³ Ω。)上に盗布、乾 像して厚さ約 / O μ m O 感光体を得た。

との感光体を+s K V のコロナ放電により、正 に帯電した後、半波露光量(E_{50})を測定した所、 $E_{50}=20$. 28ux·sec であつた。

(アストラゾン色素)

$$\begin{array}{c} \text{H}_3\text{C} \quad \text{CH}_3 \\ \text{ CH=CH-CH-C} \quad \text{N} \\ \text{C}_2\text{H}_5 \\ \text{CH}_3 \\ \text{C}_4\text{O}_4 \\ \text{C}_7\text{O}_4 \\ \text{$$

させて画像露光した。これをIsoper H (エツソスタンダード社製、石油系溶剤) / & 中に微粒子状に分散されたポリメチルメタアクリレート (トナー) sg及び大豆油レシチンの・の/gを添加することによつて作製したトナーを含む液体現像液中に浸漬し、鮮明なポジのトナー画像を得ることができた。

更に100°Cで30秒間加熱してトナー画像を定着した。この印刷版材料をメタ珪酸ナトリウム水和物20gをクリセリン140m&、エチレングリコールss0m&、およびエタノール1s0m& に容解した液に約1分間浸漬し、水流で軽くブラツシングしながら洗うことにより、トナーの付着してない部分の電子写真感光層を除去し、刷版を得た。

また液体現像液の代わりに、得られた静電潜像を、ゼロックスョsのの用トナー(富士ゼロックス粥製)を用いて磁気プラシ現像した後sの°Cで3の秒間加熱、定着した。次にアルカリ溶液でトナーが付着してない部分の感光層を除去すると

とによつても、刷版が得られた。

このようにして作製した刷版をハマダスター 6 00C D オフセット印刷機を用いて印刷した所、 地汚れのない非常に鮮明な印刷物をょ万枚印刷す ることができた。

寒旅例20

具体例(2)で表わされるビスヒドラゾン化合物 3 部とポリエステル樹脂(商品名パイロン 200、東洋紡績(開製) 5 部をテトラヒドロフラン 4 4 部 に 密かした液と共に、下記構造のジスアゾ類科 5 8 を添加しポールミルで、 20時間分散した後、ワイヤーラウンドロッドを用いて、 導電性支持体(フェμ m のポリエチレンテレフタレートフイルムの表面にアルミニウムの蒸着膜を設けたもの。 表面電気抵抗 103 Q)上に塗布、乾燥して、厚さ0.6μmの電荷発生層を作製した。

次に電荷発生層の上に下記構造の電荷輸送物質 であるヒドラゾン化合物 2. 4 部と (ヒドラゾン化合物)

ピスフェノールAのポリカーポネート 4 部とをジクロロメタン / 3 . 3 部 / , 2 ー ジクロロエタン 2 6 . 6 部に容解した溶液をワイヤーラウンドロッドを用いて塗布乾燥し、厚さ / / μmの電荷輸送層を形成させて 2 層からなる電子写真感光層を有する電子写真感光体を作成した。 (試料Aとする)

一方比較のために、試料Aに対応して電荷発生 層にピスヒドラゾン化合物(2)を添加しない比較試料Bを作成した。

この電子写真感光体について、 静電復写紙試験 装置(川口電機㈱製SP- 4 2 8 型)を用いて + 3 K V のコロナ放電により-800 V に帯電さ CH₃ CH₃ CH CH CH CH CH CH CH CH CH₃ CH CH CH CH₃ CH₃ CH CH₃ CH₃ CH CH CH CH₃ CH

ツレン版本)

せ、ついで色温度2854°Kのタングステンランプによつてその表面が2ルックスになる様にして光を照射し、その表面電位が初期表面電位の半分に減衰するのに要する時間を求め E 50 を測定した。

結果は次のとおりであつた。

試 科 A $E_{50} = 2.0$ ℓ ux·sec

比較試料B E50=3.4 lux·sec

さらに、この帯電と露光の工程を200回繰り返して最初の初期電位 (V) と200回繰り返した後の帯電 (V) を測定した。

}	初期電位	200回繰り返し
	(V)	後の電位 〔V〕
試料A	540	\$3/
比較試料 B	5//	150

上記の結果から電荷発生層にピススチルペン化 合物を添加した試料Aは、比較試料Bに比して感 度的に優れ、また繰り返し後の帯電電位の低下が 比較試料Bに比して著しく改善されている事がわ かつた。

実施例21~26

実施例23の電荷発生層に添加したビスヒドラ ソン化合物(2)のかわりに、それぞれ化合物(1)、(3)、 (8)、(3)、(19、(2))を用いた他は、実施例20と同様 にして、電子写真感光体を作成した。

- 6 K V のコロナ放電により帯電させ、 E so を測定した。

さらにこの帯電と露光の工程を 200回くり返 した時の帯電電位の変動を測定した。

結果を以下に示す。

	_	带電電位	
実施例	.E 50	初期電位(V)	200回後の 電位 (V)
2 /	2.4	609	603
22	2.0	708	689
23	2.6	592	581
2 4	1.9	720	695
25	2.5	648	622
26	2.2	614	596

実施例20~26の結果から電荷発生層にビスヒドラソン化合物またはビススチルペン化合物を 添加した試料は、比較試料Bに比して感度的に優れ、また繰り返し後の帯電電位の低下が比較試料 Bに比して著しく改善されている事がわかつた。

※ 図面の簡単な説明

第/図~第《図は本発明にかかわる電子写真用 感光体の厚さ方向に拡大した断面図である。図中 の数字は下記を示す。

/ ··· 導電性支持体、 2 / , 2 2 , 2 3 , 2 4 ··· 感光層、 3 ··· 電荷発生物質、 4 ··· 電荷輸送層、 5 ··· 電荷発生層

特許出願人 富士写真フイルム株式会社

第一図

