ТАБЛИЦЫ ДЛЯ РАБОТЫ С ПОЛИНОМАМИ

Запись в таблице (строка) состоит из ключа и значения. В общем случае можно создать структуру:

```
template <typename TKey, typename TValue>
struct TTableRecord {
  TKey key;
  TValue value;
};
```

Для нашей постановки: TTableRecord<std::string, Polinom>.

Список таблиц к реализации:

F	
Неупорядоченная	Массив с запасом динамической памяти. Есть фактический размер
таблица на массиве	памяти и реальный размер таблицы (сколько ячеек массива
	заполнено).
	template <typename tkey,="" tvalue="" typename=""></typename>
	<pre>class TUnorderedTable {</pre>
	TTableRecord <typename tkey,="" tvalue="" typename="">*</typename>
	data;
	size_t size;
	size_t count;
	<pre>public: TUnorderedTable(): size(100), count(0) { /* */};</pre>
	/* */
	};
Неупорядоченная	В отличие от таблицы на массиве, не нужно реализовывать
таблица на списке	выделение и перевыделение памяти. Данные хранятся в
таолица на ениеке	динамически расширяемом списке.
	template <typename tkey,="" tvalue="" typename=""></typename>
	class TUnorderedTable {
	TList <ttablerecord<typename td="" tkey,="" typename<=""></ttablerecord<typename>
	TValue>> data;
	<pre>public:</pre>
	<pre>TUnorderedTable() = default;</pre>
	/* */
	};
Упорядоченная	Массив с запасом динамической памяти. Есть фактический размер
таблица на массиве	памяти и реальный размер таблицы (сколько ячеек массива
	заполнено).
	Порядок следования элементов в таблице определяется
	упорядоченностью ключей.
Таблица на авл-	Мы изучали на занятиях бинарные деревья (дерево поиска и
дереве	дерево арифметического выражения). Они могли превращаться в
	вырожденные из-за добавления всех элементов в одну длинную
	ветвь.
	Решение проблемы -реализация сбалансированного дерева.
	Дерево называется идеально сбалансированным, если для каждой
	его вершины количество вершин в левом и правом поддеревьях
	отличается не более, чем на единицу.
	, ,

	Неупорядоченн	1 Briza	ать поиск	Еспи ужа	e ectь — 1	вылать и	скпючен	ие		
	ая таблица на		Вызвать поиск. Если уже есть – выдать исключение. Если ключ не занят, добавить в конец таблицы новую							
	массиве				•					
	Массивс		запись. Если таблица переполнена – увеличить её реальный размер (перевыделить память).							
	TT									
	Неупорядоченн	1. Вызвать поиск. Если уже есть – выдать иск								
	ая таблица на		2. Если ключ не занят, добавить в конец таблицы нов					вук	вую	
	списке		апись (метод вставки в конец списка).							
	Упорядоченная	_	ерить, есть				ким клю	ЧОМ	ĺ.	
	таблица на		уже есть –							
	массиве	2. Если	ключ не за	нят, то д	обавить	по найде	енной в і	трог	<i>(ecce</i>	
		поиска таблицы новый элемент:								
		 если таблица переполнена – увеличить её реальный 								
		размер (перевыделить память),								
		- вставить новый элемент на найденную ранее позицию,								
			сохранить элемент, который был в этом месте,							
		_	- произвести перепаковку.							
		Пример: вставляем {name3,}								
		{name1,} {pol3, {pol5, {pol6, }				{qqq1,				
	0		}	}	}	}				
			1	2	3	4	5	6	7	
		{name1,	{pol3,	{pol5,	{pol6,	{qqq1,				
		}	}	}	}	}				
вставка		0	1	2	3	4	5	6	7	
Tal		{name1, {pol3, {pol5, {pol6,				{qqq1,				
BC		}	}	}	}	}				

	0	1	2	3	4	5	6	7
	{name1,	{name3,	{pol5,	{pol6,	{qqq1,			
	}	}	}	}	}			
	0	1	2	3	4	5	6	7
	Save: {pol3,}							
	{name1,	{name3,	{pol5,	{pol5,	{pol6,	{qqq1,		
	}	}	}	}	}	}		
	0	1	2	3	4	5	6	7
	{name1,	{name3,	{pol3,	{pol5,	{pol6,	{qqq1,		
	}	}	}	}	}	}		
	0	1	2	3	4	5	6	7
Таблица на авл-	1. Осуществить классический поиск в бинарном дереве							
лереве	поиска	а с запоми	нанием і	тройлен	μορο πντι	И.		

дереве

- поиска с запоминанием пройденного пути.
- 2. Если элемент найден, то исключение. Иначе добавить новый элемент на найденную позицию. Пройти обратно по полученному пути, пересчитывая баланс вершины.

При обнаружении +2 или -2 – перебалансировать дерево. ОДНОКРАТНЫЕ ПОДЪЁМЫ

Случай 1. Значение -2. Баланс левого потомка отрицательный.

Случай 2. Значение +2. Баланс правого потомка положительный.

Хеш-таблица с открытым перемешивание м

Вставляем элемент

key = "pol"; k = 'p'+'o'+'l'; // = 112+111+108=331

h(k) = 11 - адрес ячейки для вставки.

key = "ned"; k = 'n'+'e'+'d'; // = 110+101+100=311

h(k) = 11 - пример коллизии при вставке, позиция уже занята. Решение: повторное перемешивание с шагом перемешивания,

удовлетворяющим $1 \le h < M$, HOД(h, M) = 1:

$$hh(k) = (h(k) + h) \mod M$$

Значение шага перемешивания может быть любым, но обязательно взаимно простым с величиной, определяющей размер таблицы, чтобы обеспечить просмотр всех ее позиций. $hh(k) = (11+3) \mod 20 = 14$

0				
11	"pol"			
12				
13				
14	"ned"			
19				

Если таблица еще не переполнена:

- 1. Вычислить значение функции хеширования для заданного ключа.
- 2. Проверить, статус найденной позиции для вставки:
 - если позиция **занята** и **ключ совпадает** с ее значением, выбросить исключение (дублирование), выход;
 - если позиция **свободна**, вставить элемент по указанной позиции, изменить статус на занята, выход;
 - если позиция **удалена**, вставить элемент по найденной позиции, изменить статус на занята, выход;
- 3. Вызвать повторное перемешивание hh(k). Вернуться к шагу 2.

	Vон тобинно оо	Рторой опособ розращания колинации мотол напонак				
	Хеш-таблица со	Второй способ разрешения коллизий: метод цепочек.				
	списками	В методе цепочек хеш-таблица представляет собой массив и				
	(метод цепочек)	списков. В каждом списке находятся записи с одинаковым				
		значением хеш-функции.				
		Переполнение таблицы в данном варианте невозможно.				
		1. Вычислить значение функции хеширования для				
		заданного ключа.				
		2. Пройти по расположенному по данному адресу списку:				
		- если найден такой же ключ, выбросить исключение				
		(дублирование);				
		- иначе вставить в конец списка.				
	Неупорядоченн	1. Вызвать поиск.				
	ая таблица на	2. При нахождении заданного ключа:				
	массиве	<i>1 способ:</i> сместить все данные вверх, уменьшить				
		реальный размер таблицы;				
		2 способ: поставить на место удаляемой строки				
		последнюю строку таблицы, уменьшить реальный размер				
		таблицы.				
	Неупорядоченн	1. Вызвать поиск.				
	ая таблица на	2. При нахождении заданного ключа вызвать метод				
	списке	удаления элемента из списка по указанной позиции.				
	Упорядоченная	1. Вызвать поиск.				
	таблица на	2. При нахождении заданного ключа сместить все данные				
	массиве	вверх, уменьшить реальный размер таблицы. Можно				
	Maccine	вызвать перепаковку, если она реализована подходящим				
		образом.				
	Таблица на авл-	1. Вызвать поиск.				
	дереве	2. При нахождении заданного ключа, если это лист –				
	Q-I	удалить, иначе найти самую близкую по значению,				
		переместить её на место удаляемой вершины, удалить в				
		старом месте.				
		3. Пересчитать баланс от удаленной вершины до корня.				
		Отбалансировать при необходимости.				
	Хеш-таблица с	Каждой ячейке добавляем статус (значения: свободна, удалена				
	открытым	занята).				
	перемешивание	1. Вызвать поиск.				
	М	2. Если найдена, установить статус удалена.				
	Хеш-таблица со	1. Вычислить значение функции хеширования для				
<u>e</u>	списками	заданного ключа.				
удаление	(метод цепочек)	2. Пройти по расположенному по данному адресу списку:				
эле	(метод цепочек)	- если ключ найден, удалить элемент из списка;				
ХД		- сели ключ наиден, удалить элемент из списка, - иначе выбросить исключение.				
	Неупорядоченн	1. Идем по массиву, сравнивая ключи.				
	ая таблица на	 Идем по массиву, сравнивая ключи. При нахождении заданного ключа вернуть указатель на 				
	массиве	2. При нахождении заданного ключа вернуть указатель на найденные данные.				
	MIGGIE	панденные данные.				
	Неупорядоченн	1. Идем по списку, сравнивая ключи.				
	ая таблица на	2. При нахождении заданного ключа вернуть указатель на				
	списке	найденные данные.				
¥	Упорядоченная					
ПОИСК	таблица на	Реализовать бинарный поиск по ключу.				
		,				
2	массиве					

Таблица на авл-	Поиск в бинарном дереве поиска.		
дереве			
Хеш-таблица с	1.	Вычислить значение функции хеширования для	
открытым		заданного ключа.	
перемешивание	2.	Проверить, статус найденной позиции для вставки:	
M		- если позиция свободна, такого элемента нет, выход;	
		- если позиция удалена или занята и ключ не совпадает со	
		значением, дальше;	
		- иначе – найден ответ, выход.	
	3.	Вызвать повторное перемешивание hh(k). Вернуться к	
		шагу 2.	
Хеш-таблица со	1.	Вычислить значение функции хеширования для	
списками		заданного ключа.	
(метод цепочек)	2.	Пройти по расположенному по данному адресу списку:	
		- если ключ найден – вернуть по указателю или ссылке	
		найденный элемент;	
		- иначе элемента нет.	