

Università di L'Aquila

Claudio Arbib

Ricerca Operativa

Basi in IR^n

Sommario

- 1. Combinazione lineare, affine, conica e convessa
- 2. <u>Dipendenza e indipendenza lineare e affine</u>
- 3. <u>Basi per un insieme di vettori di IRⁿ</u>
 - <u>Teorema di rappresentazione</u>
 - Teorema di sostituzione (Steinitz)
- 4. Matroide vettoriale

1. Combinazione lineare

Definizione

Un vettore $\mathbf{x} \in IR^n$ si dice *combinazione lineare* dei vettori $\mathbf{a}_1, ..., \mathbf{a}_m \in IR^n$ con coefficienti $\lambda_1, ..., \lambda_m \in IR$ se

$$\mathbf{x} = \lambda_1 \mathbf{a}_1 + \ldots + \lambda_m \mathbf{a}_m$$

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \lambda_1 \begin{bmatrix} 0 \\ 3 \end{bmatrix} + \lambda_2 \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

con
$$\lambda_1 = -2/3$$
, $\lambda_2 = 1$

Combinazione affine

Definizione

Un vettore $\mathbf{x} \in IR^n$ si dice *combinazione affine* dei vettori $\mathbf{a}_1, ..., \mathbf{a}_m \in IR^n$ con coefficienti $\lambda_1, ..., \lambda_m \in IR$ se

$$\mathbf{x} = \lambda_1 \mathbf{a}_1 + \ldots + \lambda_m \mathbf{a}_m$$

e

$$\lambda_1 + \dots + \lambda_m = 1$$

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \lambda_1 \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \lambda_2 \begin{bmatrix} \frac{1}{2} \\ 2 \end{bmatrix}$$

con
$$\lambda_1 = -1$$
, $\lambda_2 = 2$

Combinazione conica

Definizione

Un vettore $\mathbf{x} \in IR^n$ si dice *combinazione conica* dei vettori $\mathbf{a}_1, ..., \mathbf{a}_m \in IR^n$ con coefficienti $\lambda_1, ..., \lambda_m \in IR$ se

$$\mathbf{x} = \lambda_1 \mathbf{a}_1 + \dots + \lambda_m \mathbf{a}_m$$

e

$$\lambda_1, ..., \lambda_m \ge 0$$

$$\begin{bmatrix} 1 \\ 3 \end{bmatrix} = \lambda_1 \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \lambda_2 \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

con
$$\lambda_1 = 1$$
, $\lambda_2 = \frac{1}{2}$

Combinazione convessa

Definizione

Un vettore $\mathbf{x} \in \mathbb{IR}^n$ si dice *combinazione convessa* dei vettori $\mathbf{a}_1, ..., \mathbf{a}_m \in \mathbb{IR}^n$ con coefficienti

$$\lambda_1, ..., \lambda_m \in IR$$
 se

$$\mathbf{x} = \lambda_1 \mathbf{a}_1 + \ldots + \lambda_m \mathbf{a}_m$$

e

$$\lambda_1 + \dots + \lambda_m = 1$$

$$\lambda_1, ..., \lambda_m \ge 0$$

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \lambda_1 \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \lambda_2 \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

con
$$\lambda_1 = \frac{1}{2}$$
, $\lambda_2 = \frac{1}{2}$

Involucri

Definizione

L'involucro affine (conico, convesso) di un insieme $S \subseteq \mathbb{R}^n$ è l'insieme di tutti e soli i vettori $\mathbf{x} \in \mathbb{R}^n$ ottenibili come combinazione affine (conica, convessa) dei vettori di S.

2. Dipendenza e indipendenza

Definizione

Un insieme $A = \{\mathbf{a}_1, ..., \mathbf{a}_m\} \subseteq \mathbb{IR}^n$ è *linearmente* dipendente se esistono m scalari $\lambda_1, ..., \lambda_m$ non tutti nulli tali che $\lambda_1 \mathbf{a}_1 + ... + \lambda_m \mathbf{a}_m = \mathbf{0}$.

Esempio

$$A = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$$
 è linearmente indipendente

$$B = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix} \right\}$$
è linearmente dipendente
$$(\lambda_1 = \lambda_2 = 2/3, \lambda_3 = -1)$$

La *dipendenza affine* è definita in modo analogo aggiungendo la clausola $\lambda_1 + ... + \lambda_m = 0$.

Dipendenza e indipendenza

Definizione

Un insieme $A = \{\mathbf{a}_1, ..., \mathbf{a}_m\} \subseteq \mathbb{IR}^n$ è affinemente dipendente se esistono m scalari $\lambda_1, ..., \lambda_m$ non tutti nulli tali che $\lambda_1 + ... + \lambda_m = 0$ e $\lambda_1 \mathbf{a}_1 + ... + \lambda_m \mathbf{a}_m = \mathbf{0}$.

Esempio

$$C = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \end{bmatrix} \right\}$$
è affinemente dipendente
$$(\lambda_1 = \lambda_3 = -1, \lambda_2 = 2,)$$

$$B = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix} \right\}$$
 è affinemente indipendente

La *dipendenza affine* è definita in modo analogo aggiungendo la clausola $\lambda_1 + ... + \lambda_m = 0$.

Dipendenza e indipendenza

Osservazione Sia $A = \{a_1, ..., a_m\}$ linearmente indipendente. Allora un qualunque $X \subset A$ è a sua volta indipendente: infatti se X fosse dipendente sarebbe possibile ottenere il vettore $\mathbf{0}$ combinandone gli elementi con coefficienti λ_i non tutti nulli. Aggiungendo a tale combinazione i vettori di A - X moltiplicati per 0 si otterrebbe $\mathbf{0}$ da una combinazione lineare a coefficienti non tutti nulli degli elementi di A, contraddicendone l'indipendenza. Ne segue che

1) $A = \emptyset$ è linearmente indipendente

Viceversa, se un qualunque $X \subseteq A$ è linearmente dipendente, allora anche A è linearmente dipendente. In particolare,

2) $A = \{0\}$ è linearmente dipendente

in quanto il vettore nullo può essere ottenuto combinandone gli elementi (in effetti, l'unico elemento) con coefficienti diversi da 0.

3. Basi

<u>Definizione</u>

Sia $S \subseteq \mathbb{R}^n$. Un insieme $B = \{\mathbf{b}_1, ..., \mathbf{b}_m\} \subseteq \mathbb{R}^n$ si dice *base* per S se

- B è linearmente indipendente
- $B \cup \{\mathbf{x}\}$ è lin. dipendente per ogni $\mathbf{x} \in S B$ (in altre parole, esistono coefficienti reali non tutti nulli $\lambda_0, \lambda_1, ..., \lambda_m$ tali che $\lambda_0 \mathbf{x} + \lambda_1 \mathbf{b}_1 + ... + \lambda_m \mathbf{b}_m = \mathbf{0}$).

Osserviamo che $\mathbf{x} \neq \mathbf{0}$ implica $\lambda_0 \neq 0$, altrimenti B non sarebbe indipendente. Quindi si può scrivere

$$\mathbf{x} = -\lambda_1 \mathbf{b}_1 / \lambda_0 - \dots - \lambda_m \mathbf{b}_m / \lambda_0$$
(rappresentazione di **x** in *B*)

Basi

Teorema 1 La rappresentazione di $\mathbf{x} \in S$ tramite una sua base B è unica.

<u>Dimostrazione</u>: supponiamo

$$\mathbf{x} = \alpha_1 \mathbf{b}_1 + \dots + \alpha_m \mathbf{b}_m$$

$$\mathbf{x} = \gamma_1 \mathbf{b}_1 + \dots + \gamma_m \mathbf{b}_m$$

Allora

$$\mathbf{0} = (\alpha_1 - \gamma_1)\mathbf{b}_1 + \dots + (\alpha_m - \gamma_m)\mathbf{b}_m$$

e se $\exists i: \alpha_i - \gamma_i \neq 0$, allora *B* è linearmente dipendente (cd.).

Basi

Teorema 2 Sia $\mathbf{x} \in S - B$, con B base per $S \in \mathbf{x} \neq \mathbf{0}$.

Supponiamo
$$\mathbf{x} = \alpha_1 \mathbf{b}_1 + \dots + \alpha_m \mathbf{b}_m \operatorname{con} \alpha_1 \neq 0$$
.

Allora $B' = \{\mathbf{x}, \mathbf{b}_2, \dots, \mathbf{b}_m\}$ è una base per S .

<u>Dimostrazione</u>: anzitutto *B*' è indipendente. Se non lo fosse:

$$\mathbf{0} = \mu_1 \mathbf{x} + \mu_2 \mathbf{b}_2 + \dots + \mu_m \mathbf{b}_m$$

con $\mu_1 \neq 0$ (se $\mu_1 = 0$, B sarebbe dipendente).

Ma allora

$$\mathbf{x} = -\mu_2 \mathbf{b}_2 / \mu_1 - \dots - \mu_m \mathbf{b}_m / \mu_1$$

$$\mathbf{x} = \mathbf{\alpha}_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + \dots + \alpha_m \mathbf{b}_m$$
contraddizione

Inoltre B' è massimale in S, perché $\mathbf{y} = \lambda_1 \mathbf{b}_1 + \ldots + \lambda_m \mathbf{b}_m \ \forall \mathbf{y} \in S$ e sostituendo $\mathbf{b}_1 = \mathbf{x}/\alpha_1 - \alpha_2 \mathbf{b}_2/\alpha_1 - \ldots - \alpha_m \mathbf{b}_m/\alpha_1$ si ottiene una rappresentazione di \mathbf{y} in B'.

4. Matroide vettoriale

insieme delle parti

Teorema 3 Sia U un insieme finito di vettori di \mathbb{R}^n , e \mathfrak{I} la famiglia di tutti i sottoinsiemi X di U linearmente indipendenti. Allora (U, \mathfrak{I}) è un matroide.

<u>Dimostrazione</u>: anzitutto \Im è evidentemente subclusiva, in quanto ogni sotto insieme di un insieme indipendente è indipendente.

Mostriamo che vale la proprietà di scambio:

$$\forall A, B \in \mathfrak{I}: |B| > |A|, \quad \exists \mathbf{x} \in B - A: A \cup \{\mathbf{x}\} \in \mathfrak{I}$$

cioè l'insieme linearmente indipendente più piccolo può essere accresciuto con un elemento preso dal più grande mantenendosi linearmente indipendente.

Matroide vettoriale

Teorema 3 Sia U un insieme finito di vettori di \mathbb{R}^n , e \mathfrak{I} la famiglia di tutti i sottoinsiemi X di U linearmente indipendenti. Allora (U, \mathfrak{I}) è un matroide.

Segue dimostrazione: Siano

$$A = \{\mathbf{a}_1, ..., \mathbf{a}_m\}$$
 $B = \{\mathbf{b}_0, \mathbf{b}_1, ..., \mathbf{b}_m\}$

Se non vale la proprietà di scambio, allora $A \cup \{\mathbf{b}_i\}$ è dipendente $\forall i$: $\mathbf{b}_i \notin A$, cioè A è una base per B.

Supponiamo $\mathbf{b}_m \notin A$: sia allora $\mathbf{b}_m = \lambda_1 \mathbf{a}_1 + \ldots + \lambda_m \mathbf{a}_m$ e senza perdere in generalità supponiamo $\lambda_m \neq 0$. Allora applicando il Teorema 2 si può sostituire \mathbf{b}_m ad \mathbf{a}_m , e

$$A_m = \{\mathbf{a}_1, ..., \mathbf{a}_{m-1}, \mathbf{b}_m\}$$
 è ancora una base per B .

Se invece $\mathbf{b}_m \in A$, la sostituzione restituisce $A_m = A$ che per ipotesi è ancora una base per B.

Matroide vettoriale

Teorema 3 Sia U un insieme finito di vettori di \mathbb{R}^n , e \mathbb{S} la famiglia di tutti i sottoinsiemi X di U linearmente indipendenti. Allora (U, \mathbb{S}) è un matroide.

<u>Segue dimostrazione</u>: Procedendo in tal modo, se $\mathbf{b}_{m-1} \notin A$ possiamo scrivere

$$\mathbf{b}_{m-1} = \mu_1 \mathbf{a}_1 + \ldots + \mu_{m-1} \mathbf{a}_{m-1} + \mu_m \mathbf{b}_m$$

osservando che $\mu_{m-1} \neq 0$ (altrimenti *B* sarebbe dipendente).

Quindi
$$A_{m-1} = \{\mathbf{a}_1, ..., \mathbf{a}_{m-2}, \mathbf{b}_{m-1}, \mathbf{b}_m\}$$

 $A_{m-2} = \{\mathbf{a}_1, ..., \mathbf{a}_{m-3}, \mathbf{b}_{m-2}, \mathbf{b}_{m-1}, \mathbf{b}_m\} ...$
 $A_1 = \{\mathbf{b}_1, ..., \mathbf{b}_{m-3}, \mathbf{b}_{m-2}, \mathbf{b}_{m-1}, \mathbf{b}_m\} = B - \{\mathbf{b}_0\}$

sono basi per B. Ma allora A_1 consente di rappresentare \mathbf{b}_0 in funzione di $\mathbf{b}_1, \ldots, \mathbf{b}_m$, contraddicendo l'indipendenza di B.