# Entrega de ejercicios Tema 3

Blanca Cano Camarero

8 de noviembre de 2022

### Indice de contenidos

```
Ejercicio 7
```

```
library(purrr)
 library(ggplot2)
 library(tidyverse)
-- Attaching packages ----- tidyverse 1.3.2 --
v tibble 3.1.8
              v dplyr
                         1.0.10
v tidyr
      1.2.0
                v stringr 1.4.1
v readr
        2.1.2
                v forcats 0.5.2
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
              masks stats::lag()
  set.seed(5)
```

### Ejercicio 7

```
muestra <- c(1, 2, 3.5, 4, 7, 7.3, 8.6, 12.4, 13.8, 18.1)
varianza <- var(muestra)</pre>
```

**Apartado 1**. Usa bootstrap para determinar el error típico de este estimador de  $\sigma^2$ .

**Solución** Generaremos nuevas muestras a partir de las que ya tenemos, calcularemos sus varianzas y finalemente el error típico de éstas.

```
size <- length(muestra)
number_of_samples <- 1000

# Paso 1: Remuestro de los datos
remuestreo <- matrix(
    sample(muestra, size*number_of_samples, replace=TRUE),
    nrow = number_of_samples
)
# Paso 2: Cálculo de la varianza de cada remuestreo
varianzas_remuestreo <- apply(remuestreo, 1, var)

# Paso 3: Cálculo del error típico
et <- sd(varianzas_remuestreo)

cat('El error típico de remuestreo es ', et)</pre>
```

El error típico de remuestreo es 10.34001

**Apartado 2** Compara el resultado con el error típico que darías si, por ejemplo, supieras que los datos proceden de una distribución normal. **Solución** Bajo hipótesis de normalidad podría aplicarse el lema de Fisher, que dice así:

Sean  $X_1, X_2, \dots, X_n$  variables aleatorias independientes e identicamente distribuidas de una normal  $\mathcal{N}(\mu, \sigma^2)$ . Entonces:

1.  $\bar{X}$  y  $S^2$  son independientes.

2.

$$\frac{(n-1)}{\sigma^2}S^2 \sim \chi^2_{n-1}$$

3. 
$$\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$
.

Puesto que nuestro objetivo es encontrar un estimador de la  $Var(S^2)$  tomando la varianza de ambos miembros (2)

**Apartado 3** Calcula un intervalo de confianza para  $\sigma^2$  usando el método bootstrap híbrido. Fija  $1 - \alpha = 0.95$ .

#### Solución

Para explicar la idea que subyace en el diseño del algoritmo de boostrap híbrido, comenzaremos con las siguientes

Se define la proporción como

$$\tilde{H}_n(x) = \frac{1}{B} \sum_b^B I_{T^{*(b)} \le x}.$$

Sea

$$H_n(x) = P_F\left(\sqrt{n}\left(\bar{X} - \mu\right) \le x\right)$$

que por no ser conocido aproximaremos como

$$\hat{H}_n(x) = P_F\left(\sqrt{n}\left(\bar{X^*} - \bar{X}\right) \le x\right)$$

$$1-\alpha = P\left\{H_n^{-1}\left(\frac{\alpha}{2}\right) \leq \sqrt{n}\left(\hat{\theta} - \theta\right) \leq H_n^{-1}\left(1 - \frac{\alpha}{2}\right)\right\}$$

dando lugar al intervalo de confianza

$$\left[\hat{\theta}-\sqrt{n}H_n^{-1}\left(1-\frac{\alpha}{2}\right),\hat{\theta}-\sqrt{n}H_n^{-1}\left(\frac{\alpha}{2}\right)\right]$$

Puesto que  $H_n$  no es conocido los sustituiremos por el estimador de bootstrap  $\hat{H}_n$  y es el llamado método híbrido.

De esta manera resulta:

```
# --- Funciones auxiliares ---
# Construción de la inversa de H(H, muestra_ordenada, B^{-1})
H_inv <- function (alpha, muestra_ordenada, B_inv, acumulado = 0, index = 0) {
  if(acumulado < alpha){</pre>
    return (H_inv(alpha, muestra_ordenada, B_inv, acumulado + B_inv, index+1))
  }
  else{
    return(muestra_ordenada[index])
  }
# En lugar de emplear esta función utilizaremos la función `quantile`
# \hat \theta: Estimador de la varianza
# Parámetros
a = 0.05 \# alpha
B = length(muestra) # tamaño del reemuestro
numero_remuestreos = 100
repeticiones_experimento = 100
```

```
## variable auxiliares
  B inv = 1/B
  acierto <- NULL
  intervalo <- NULL
  for(i in 1:repeticiones_experimento){
    muestras_boostrap <- matrix(</pre>
      sample(muestra, B*numero_remuestreos, rep=TRUE),
      nrow = numero_remuestreos
    )
    varianzas_bootstrap = apply(muestras_boostrap, 1, var)
    muestras_normalizadas <- sqrt(B)*(varianzas_bootstrap - varianza)</pre>
    ic min <-varianza - quantile(muestras normalizadas, 1-a/2)/sqrt(B)
    ic_max <-varianza - quantile(muestras_normalizadas, a/2)/sqrt(B)</pre>
    intervalo <- rbind(intervalo, c(ic_min, ic_max))</pre>
  }
  df <- data.frame(</pre>
    ic_min <-intervalo[, 1],</pre>
    ic_max <- intervalo[, 2],</pre>
    ind = 1:numero_remuestreos
  )
  df
    ic_min....intervalo...1. ic_max....intervalo...2. ind
1
                   12.427733
                                               53.08718
                                                          1
2
                                                          2
                   12.731058
                                               52.02833
3
                    15.055500
                                               52.13480
4
                   14.210158
                                               52.02075 4
5
                   15.184111
                                               52.19874 5
6
                   16.588208
                                               52.40801 6
7
                   16.526733
                                               51.38136 7
8
                   18.568656
                                               54.24099 8
9
                   14.188297
                                               53.63517 9
10
                   15.334375
                                               51.05644 10
```

| 11 | 16.345042 | 50.07880 | 11 |
|----|-----------|----------|----|
| 12 | 12.002458 | 53.72508 | 12 |
| 13 | 14.324019 | 51.81609 | 13 |
| 14 | 15.485444 | 52.90046 | 14 |
| 15 | 8.594097  | 50.06843 | 15 |
| 16 | 14.231442 | 53.78672 | 16 |
| 17 | 10.059903 | 50.00227 | 17 |
| 18 | 12.688089 | 54.68146 | 18 |
| 19 | 14.479486 | 52.54397 | 19 |
| 20 | 14.322256 | 53.39010 | 20 |
| 21 | 15.549133 | 52.49265 | 21 |
| 22 | 9.125656  | 50.58728 | 22 |
| 23 | 14.547767 | 54.52394 | 23 |
| 24 | 9.147911  | 49.19143 | 24 |
| 25 | 10.315167 | 50.99920 | 25 |
| 26 | 12.569147 | 53.49012 | 26 |
| 27 | 8.905744  | 51.97293 | 27 |
| 28 | 14.733778 | 51.80416 | 28 |
| 29 | 15.564736 | 53.03680 | 29 |
| 30 | 12.883089 | 55.22549 | 30 |
| 31 | 19.432569 | 51.29322 | 31 |
| 32 | 15.588189 | 50.51143 | 32 |
| 33 | 12.270597 | 51.90271 | 33 |
| 34 | 14.478325 | 53.37726 | 34 |
| 35 | 12.906036 | 49.82532 | 35 |
| 36 | 17.350056 | 49.66899 | 36 |
| 37 | 18.794722 | 53.99940 | 37 |
| 38 | 11.565200 | 54.73307 | 38 |
| 39 | 13.466367 | 52.58790 | 39 |
| 40 | 8.692258  | 49.42760 | 40 |
| 41 | 15.291308 | 53.04028 | 41 |
| 42 | 11.587956 | 51.22836 | 42 |
| 43 | 9.486389  | 52.02636 | 43 |
| 44 | 17.419786 | 51.19337 | 44 |
| 45 | 14.464633 | 55.86329 | 45 |
| 46 | 13.633556 | 51.68294 | 46 |
| 47 | 10.095408 | 49.67898 | 47 |
| 48 | 17.692678 | 52.86159 | 48 |
| 49 | 15.293244 | 54.09589 | 49 |
| 50 | 14.254658 | 52.94582 | 50 |
| 51 | 13.505597 | 49.26109 | 51 |
| 52 | 13.201222 | 53.73847 | 52 |
| 53 | 10.814967 | 53.78312 | 53 |
|    |           |          |    |

| 54 | 11.419511 | 52.87139 | 54 |
|----|-----------|----------|----|
| 55 | 10.448622 | 50.85506 | 55 |
| 56 | 14.455700 | 52.45361 | 56 |
| 57 | 13.012367 | 55.22641 | 57 |
| 58 | 14.815492 | 52.84524 | 58 |
| 59 | 17.155689 | 53.18893 | 59 |
| 60 | 13.218019 | 55.08066 | 60 |
| 61 | 16.713344 | 55.45980 | 61 |
| 62 | 9.848703  | 49.41549 | 62 |
| 63 | 13.484311 | 49.11637 | 63 |
| 64 | 19.154719 | 53.25938 | 64 |
| 65 | 12.826647 | 53.18517 | 65 |
| 66 | 10.222797 | 54.55500 | 66 |
| 67 | 4.343622  | 49.05241 | 67 |
| 68 | 11.824847 | 51.96812 | 68 |
| 69 | 13.767397 | 56.03463 | 69 |
| 70 | 12.250667 | 52.74901 | 70 |
| 71 | 8.238489  | 52.10568 | 71 |
| 72 | 16.060711 | 49.66685 | 72 |
| 73 | 11.077125 | 50.69639 | 73 |
| 74 | 16.847825 | 49.87041 | 74 |
| 75 | 14.082867 | 53.23271 | 75 |
| 76 | 10.401819 | 53.49212 | 76 |
| 77 | 11.920078 | 53.04233 | 77 |
| 78 | 13.107558 | 51.46367 | 78 |
| 79 | 11.511469 | 53.21249 | 79 |
| 80 | 15.025333 | 51.55306 | 80 |
| 81 | 10.803444 | 52.82646 | 81 |
| 82 | 12.165425 | 51.73244 | 82 |
| 83 | 5.973953  | 52.11164 | 83 |
| 84 | 13.869297 | 49.84673 | 84 |
| 85 | 14.474978 | 52.28304 | 85 |
| 86 | 15.571392 | 54.16359 | 86 |
| 87 | 15.639944 | 55.51732 | 87 |
| 88 | 13.707067 | 52.53504 | 88 |
| 89 | 17.297556 | 51.71985 | 89 |
| 90 | 11.922411 | 52.48233 | 90 |
| 91 | 16.136569 | 53.34643 | 91 |
| 92 | 12.552611 | 55.11189 | 92 |
| 93 | 14.746078 | 54.54900 | 93 |
| 94 | 19.369775 | 50.81307 | 94 |
| 95 | 14.343489 | 49.87388 | 95 |
| 96 | 14.294622 | 51.04764 | 96 |
|    |           |          |    |

```
    97
    12.047653
    50.45321
    97

    98
    16.420833
    54.79243
    98

    99
    10.403108
    52.74234
    99

    100
    16.959500
    53.89461
    100
```

```
ggplot(df) +
  geom_linerange(aes(xmin = ic_min, xmax = ic_max, y = ind)) +
  geom_vline(aes(xintercept = varianza), linetype = 2) +
  theme_bw() +
  labs( y= 'Muestras', x = 'Intervalos (nivel de confianza 0.95))',
      title = 'IC (método bootstrap híbrido)'
)
```

## IC (método bootstrap híbrido)

