LEIC - Computação Gráfica e Interfaces LEEC - Sistemas Gráficos

2001/2002, Prova Final, 1a Chamada

20 de Junho de 2002

1. Na figura junta, a fonte de luz desloca-se da posição P_{L0} para a posição P_{L1} . Em simultâneo e à mesma velocidade, o observador desloca-se da posição P_{V0} para a posição P_{V1} . As características da superfície horizontal são: $K_a=K_d=0.5$; Ks=0.0; n=1.

Duração: 2H 30M

- a)- Diga, justificando, qual é a posição da fonte de luz
 (e a correspondente posição do observador), que corresponde ao maior valor da iluminação observada no ponto *P*, de acordo com o modelo de iluminação de Phong.
- **b)-** Na situação inicial, qual é, dos pontos A, P ou B, o que apresenta maior iluminação ao observador?
- 2. Diga como poderia utilizar o algoritmo de Atherton e Weiler para realizar a projecção de sombras produzidas por duas fontes de luz diferentes.
- 3. Sejam duas cores representadas, no modelo HSV, por $C_1=(h_1, 0.5, 0.8)$ e $C_2=(h_2, 0.8, 0.5)$, com h_1 e h_2 desconhecidos. Comente a possibilidade de cada uma delas corresponder aproximadamente a cada um dos três pontos P_1 , P_2 e P_3 marcados no diagrama CIE junto.
- **4.** Sejam, num sistema de modelação sólida baseada em CSG, dois sólidos B_1 e B_2 , correspondentes a instanciações de um cubo de aresta unitária e centrado na origem, acompanhadas da aplicação, respectivamente, das transformações geométricas:

 $M_1=S(4, 10, 10)$

 $M_2=T(4, 2, 0).S(8, 4, 8)$ Nota: S e T são respectivamente, escalamento e translação.

- a)- Esboce o sólido resultante da árvore $A = B_1 \cup B_2$ no referencial xyz.
- **b)-** Verifique a validade do sólido obtido, à luz da fórmula de *Euler* Generalizada.
- 5. Seja um polígono definido pela sucessão de vértices {(1, 1), (6, 2), (6, 6)} a ser preenchido pelo algoritmo da lista de pontos de fronteira ordenados.
 - a)- Apresente o resultado dos dois passos iniciais do algoritmo, quando aplicado ao polígono em questão.
 - **b)-** Explique como se efectua o preenchimento do polígono, com base nos resultados da alínea anterior.
- **6.** Comente a afirmação "Num sistema gráfico 2D, a operação de *Clipping* complementa a transformação de visualização janela/viewport, cortando os objectos a visualizar pelos limites do viewport".

LEIC - Computação Gráfica e Interfaces LEEC - Sistemas Gráficos

2001/2002, Prova Final, 2ª Chamada

13 de Julho de 2002

Duração: 2H 30M

1. Comente a afirmação "O algoritmo *Z-buffer* é tão adequado ao cálculo de projecção de sombras como o de *Atherton* e *Weiler*".

2. A figura junta apresenta a geometria correspondente ao cálculo de iluminação, no ponto P, produzida pela fonte de luz L (de acordo com o modelo de iluminação de Phong). Para cada uma das componentes de iluminação, Ambiente, Difusa e Especular, ordene, justificando, os pontos de observação V_I a V_4 , por ordem decrescente de iluminação no ponto P.

3. Sejam os dois polígonos representados na figura junta, paralelos entre si. Diga, justificando com a respectiva definição, qual dos dois factores de forma é maior, F_{12} (leia-se de 1 para 2) ou F_{21} .

4. Pretende-se realizar a seguinte sequência de transformações geométricas 3D:

- 1. "Espelho" no plano y=k;
- 2. Ampliação de S vezes, na dimensão y.
- 3. Rotação de $|\mathbf{a}|$ no sentido dos ponteiros do relógio, para quem observa de y=Y para y=0.
- a)- Determine a matriz de transformação equivalente.
- b)- Será possível obter o mesmo resultado, com as mesmas operações por outra ordem?
- **5.** A estrutura de dados junta representa uma malha poligonal.
 - a)- I: Quais as faces que partilham o vértice V_3 ?

II: Quais as faces vizinhas de F_2 ?

b)- Verifique se, em termos de modelação sólida, aquela malha poligonal pode ou não corresponder à fronteira de um poliedro válido.

	NVert=9				
	x	y	z		
1	0	0	0		
2	1	0	0		
3	1	0	1		
4	0	0	1		
5	0	1	0		
6	1	1	0		
7	1	1	1		
8	0	1	1		
9	1	0	0		

MIZout_0

NEdges=12						
	V1	<i>V2</i>	F1	F2		
1	1	2	1	5		
2	2	3	2	5		
3	3	4	3	5		
4	4	1	4	5		
5	5	6	-	1		
6	6	7	-	2		
7	7	8	-	3		
8	8	5	-	4		
9	1	5	4	1		
10	2	6	1	2		
11	3	7	2	3		
12	4	8	3	4		
12	4	8	3	4		

	NFaces=5							
	<i>E1</i>	<i>E2</i>	E 3	E4				
1	5	10	1	9				
2	6	10	2	11				
3	7	11	3	12				
4	12	4	9	8				
5	2	1	4	3				

6. Seja um polígono fechado, definido pela sucessão de vértices seguinte, a ser preenchido pelo algoritmo da Lista de Arestas Activas.

$$\{(5, 1), (2, 4), (4, 6), (9, 6), (11, 4), (8, 1), (8, 4), (6, 2), (5, 3)\}$$

- a)- Mostre qual é o conteúdo da tabela de arestas inicial.
- b)- Mostre qual é o estado da lista de arestas activas AEL nas linhas de varrimento 2, 3 e
 4, logo após a inserção das novas arestas respectivas.

LEIC - Computação Gráfica e Interfaces LEEC - Sistemas Gráficos

2001/2002, Prova Final de Recurso

23 de Julho de 2002 Duração: 2H 30M

- 1. Comente a afirmação "Os algoritmos de visibilidade do tipo Lista de Prioridade têm a vantagem, sobre o algoritmo *Z-Buffer*, de não visitarem cada pixel mais do que uma vez".
- **2.** Das três situações *a*, *b* e *c* que se apresentam esquematicamente na figura junta, resultam as imagens (não respectivamente) *i*, *ii* e *iii* (pelo modelo de iluminação de Phong). O plano que está a ser filmado desloca-se na vertical; as posições da câmara e da fonte de luz são coincidentes e fixas no espaço.

- a)- Estabeleça as correspondências entre as situações $a, b \in c$, e as imagens i, ii, iii.
- **b)-** Será possível homogeneizar a iluminação do plano no caso *i* (resultando a imagem mais semelhante a *iii*) por aumento do brilho da fonte de luz?
- **3.** Comente a afirmação "A técnica *item buffers* permite acelerar o algoritm9o *Ray-Tracing*, mas somente no primeiro nível das árvores de raios a processar".
- 4. O método de Gouraud para Smooth Shading sofre do problema de "dependência da orientação" dos polígonos. Descreva esse problema, usando como exemplo os pontos P1 e P2 nas duas situações apresentadas na figura (o polígono sofreu uma rotação de 90°). Considere que os números

representados junto aos cantos representam os respectivos valores de iluminação.

- 5. Um parafuso encontra-se, no espaço 3D, de tal forma que o seu eixo coincide com a recta *x*=40, *z*=20. A rosca do parafuso é direita e faz o parafuso avançar 2 unidades por volta.
- 20 40 x
- a)- Calcule a matriz de transformação geométrica 3D que traduz o movimento do parafuso quando este roda de 10º no sentido indicado na figura
- b)- Diga se seriam suficientes os dados fornecidos se, além dos movimentos enunciados, o parafuso fosse também alvo de um escalamento S(1, 1.2, 1).
- **6.** Determine as posições dos quatro pontos de controlo de uma curva de Bézier equivalente à elipse da figura junta:

- a)- Analiticamente.
- b)- Usando métodos baseados no algoritmo de Casteljou.