Topics in Random Matrix Theory? * A dynamical approach to random matrix theory by L. Erdős and H.-T. Yau. * Topics in random matrix theory by Terence Tao Random matrix theory aims to study "properties of large random matrices," such as: the operator norm, eigenvalue / eigenvector distributions, condition number, the singular probability characteristic polynomials polynomials.... Many of these properties reduce to studying the asymptotic behaviors of the "eigenvalues and eigenvectors" as the matrix dimension tends to oo. the key concept of RMT is the "writter universality phenomenon": the "asymptotic eigenvalue & eigenvector statistics" are independent of the law of The grand principle L matrix elements, but only depend on the symmetry class (i.e., symmetric / hermitian).

(Same spirit as LLN and CLT.) We will illustrate this principle with there three standard examples. Winger ensemble Wigner's pioneering work in 1955 marks the birth of RMT.

He proposed to use a real symmetric/complex Hermitian random matrix with independent entries to model the Hathir Hamiltonian of large nuclei.

This simple-minded model surprisingly produce the correct gap statistics between energy levels of large nuclei, indicating the "nniversality principle" behind the model. Wigner matices: $H=(hij)_{1\leq i,j\leq N}$ is an NXN self-adjoint matrix with matrix elements having mean 0, variance 1 and independent up to symmetry: hij = hji . Gaussian orthogonal ensemble (GOE): The entries hij, $1 \le i \le j \le N$, are Gaussian random variables, and $1 \le hij = 1 + \delta ij$. Gaussian unitary ensemble (GUE): The upper-triangular entries are i.i.d. N(0,1) a random variables with [Ehij = 0, iElhijl = 1, IEhij = 0 (15i < j < N) The diagonal entries are N(0,1) random variables.

The GOE | GUE is orthogonal transformations.

H'	
hol: Let H be a GOE, and O be an orthogonal matrix. Then, OTHO =	н
ef: We only need to check that IE Hij Hij' = $(\frac{1-\delta_{ij}+\delta_{ik}+\delta_{ii}+\delta_{jj}}{\delta_{ii}'\delta_{jj}'}+\delta_{ij}'\delta_{ji'})$	Oj : N;
IE Σ Ηκε Οκί Οε; Ηκ'ε' Οκ'ί' Οε';' κ',ε'	
= Σ 20κί 0κj 0κi 0κj + Σ (δκκ δεε' + δκε δεκ) 0κί θεί θεί θεί θεί σεί σεί σεί σεί σεί σεί σεί σεί σεί σ	
= 2 k Oki Okj Oki' Okj + \sum kfl (Oki Oki' Olij Olij' + Oki Okj' Olij Olij')	
= $\sum_{k,k} (O_{ki} O_{ki'} O_{kj'} O_{kj'} O_{kj'} O_{kj'} O_{kj'} O_{ki'}) = \delta_{ii'} \delta_{jj'} + \delta_{ij'} \delta_{ji'}$	
Wigner proved an "LLN" for the empirical spectral density (ESD) of $\frac{1}{N}H_N$ $\frac{1}{N} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{N} \sum_{i=1$	es of HN.
WHILHWAS -> Where uscass has density	
$\int_{SC}(x) = \frac{1}{2\pi} \sqrt{4-x^2}, -2 \le x \le 2.$	
-2 2 interval PMK: The above result implies that for any small constant E>0, I SIR with 13	71 - 6
$\frac{1}{N}\#\{i: \frac{1}{N}\lambda_i \in I\} = \int_{I} d\mu_{i} H_{N}(x) \rightarrow \int_{N \to +\infty} \int_{I} s_{i}(x) dx$	
101: Poes the SC law holds in a stronger sense, i.e., 25 12 12 (2014)	大大大大大大
for $\frac{1}{N} << \alpha_N << 1$, $\frac{1}{\alpha_N} \int d \frac{M_1}{N} H_N(x) \xrightarrow{N \to +\infty} \int_{SC} (E) ?$ $[E-\alpha_N, E+\alpha_N] \qquad \qquad \bigwedge$	
('Local' Semicircle (aw)	
In the bulk, around Exxxxx what is the typical gap between $\frac{\lambda i}{\sqrt{N}}$ & $\frac{\lambda i+1}{\sqrt{N}}$	for
$\sum_{i=1}^{N} \frac{\lambda_{i+1}}{\sum_{i=1}^{N} P_{sc}(x) dx} = \frac{1}{N} \Rightarrow \frac{\lambda_{i+1}}{\sqrt{N}} - \frac{\lambda_{i}}{\sqrt{N}} \sim \frac{1}{N}$	
	(F)

Q2:	Does TN(zi+1-zi) has a limiting distribution in the bulk? Does this
	Does $\sqrt{N(\lambda_{i+1}-\lambda_i)}$ has a limiting distribution in the bulk? Does this distribution depends on the distribution of hij? (Does bulk universality holds?)
	λ.
	Near the edge: $\int_{-\infty}^{\infty} \int_{Sc}(x) dx = \pm \frac{1}{N} \Rightarrow \int_{-\infty}^{\infty} \sqrt{1+x} dx \sim \frac{1}{N}$
	$\Rightarrow \left(\frac{\lambda_{1}}{\sqrt{N}} + 2\right)^{3/2} \sim \frac{1}{N} \Rightarrow N^{1/6} \left(\lambda_{1} + 2\sqrt{N}\right) \sim 1$
_	
Q3:1	Does N'16 (2, + 25N) has a limiting distribution? Is this distribution universal?
	Every eigenvector of H (GOE) is uniformly distributed on the unit sphere S(N-1). Think about why?)
	(Think about why?)
	Rook. A uniformly distributed unit vector can be denorated as will where
	$\frac{Rmk}{g}$: A uniformly distributed unit vector can be generated as $\frac{g}{11g11}$, where $\frac{g}{g} = (g_1,, g_N)$ is a Gaussian vector with i.i.d. $N(0,1)$ entries.
	g=(g1,, gw) is a Gaussian vector with 1.1.1. Nio,1) entries.
Q4:	What is the asymptotic behavior of \$ the eigenvectors of a (non-invariant) Wigner matrix?
1	Wienen moteix?
	We expect that an eigenvector tix is "asyptotically uniform" on S(N-1). But defining this concept is already very non-trivial.
	this concept is almost your non-trivial
	and there is already very more trivial.
	2 Comple embrers marketes
	The solver of th
	A = (Xij) 15 i SM, 15 j SN, The entries of X are xilled independent
	random variables of mean 0, variance 1.
	2. Sample covariance matrices $X = (X_i^i) \mid x \mid $
	it reduces to studying the eigendecomposition of XX* and XXX rectangular diagonal
	(2) let $\vec{x} = \begin{pmatrix} x_1 \\ 1 \end{pmatrix} \in IRM$ be a random vector with independent entrice of war a random 1
	Det $\vec{x} = \begin{pmatrix} x_1 \\ y_2 \end{pmatrix} \in IR^M$ be a random vector with independent entries of mean 0, variance 1
	The covariance matrix of \vec{x} is given by $iE(\vec{x}\vec{x}^*)=I_{MXM}$. Suppose we draw N i.i.d. copies of $\vec{x}:\vec{x}_1,\dots,\vec{x}_N$, then we form the sample covariance matrix
	Suppose we draw N iid copies of in it it. Then we four the member
	covariance matrix
	0-14 7 7:2* - 1 + + + - 1
	covariance matrix $Q_{N} = \frac{1}{N} \frac{1}{N} \sum_{i=1}^{N} \vec{x}_{i} \vec{x}_{i}^{*} = \frac{1}{N} \underline{X} \underline{X}^{*}, \underline{X} = (\vec{x}_{i}, \dots, \vec{x}_{N})$
	Rmk: By LLN, if M is fixed, lotting N->00 we have: QN converges a.s. to the true covariance Im. This is called the "law-dimensional" setting.
	3

The limit of also compenses to that is its dimiter	
Rmk: The "high-dimension" Setting considers $C_N = \frac{M}{N} \rightarrow C \in \{0, +\infty\}$, where N are of the same order. Then LLN fails, and the behavior of Q_N is different from that in the low-d setting. This is related to the so-called "curse of dimensionality" in statistics.	l and leng
When the entries of X are i.i.d. Gaussian, then Q_N is called the Wishert ensemble $Q_N \sim W_M(I,N)$, degrees of freedom X in the Wishert case for data contariance dimension X in the Wishert case for X in the Wishert case X in	of Y are
[Q1:] Does the ESD of QN also converge? What is the limit? (We will see that the limit is called the Marchenko-Pastur law.)	
Q2: Bulk universality? Rdge universality?	
Q4:] Eigenvectors?	
3. non-Hermitian random matrices $X = (x_{ij})_{1 \le i,j \in N}$, the entries of X are i.i.d., mean 0 , various we want to study the asymptotic behavior of the eigenvalues & eigenvectors	of X.
Note that: almost surely, & has N different eigenvalues. For general &, 1P18 White Hermitian matrices, the eigenvalues of a non-Hermitian can be complex.	is sigular).
marke remission marines, the eigennance of a run-remission will be complex.	1

μ- (dxdy) → 1 1 {3 ∈ C: 131 ≤ 13 dxdy

weakly

0

People find that the ESD of X satisfies a circular law:

The bulk universality & edge universality are still open. The study of eigenvectors is even harder. 4. Invariant ensembles For GOE, MHN = CN TT e-hii/4 TT e-hij/2 dHN

15i5N 15i6jEN hij/2

= CN e- I hii/4 - I EicjEN hij/2 dHN = CN e - tr(HN)/14 dHN. For GUE, MHN = CN e - tr(HN)/2 dHN. Under the conjugation by any unitary matrix u, HN -> UHNU-1, we have that tr(HN) is invariant. In general, we can define a density function on the set of random matrices as IP(HN) of HN = \frac{1}{ZN} \exp(-\text{Tr V(HN)}) dHN, where dH= \text{TT} dHij is the Lebesgue measure, V is a "potential function" that grows mildy at 00 (to guarantee integrability ZN is the normalization factor (partition function). Note: Tr V(UHNUT) = Tr[U*V(HN)UT] = TrV(HN), i.e. orthogonal /unitary conjugation leaves the distribution IP(HN)dHN invariant. So we call it "invariant" Invariant ensembles are very different from Wigner ensembles: Gaussian ensembles are the only invariant Wigner ensembles. As discussed before, the eigenvectors of invariant ensembles are uniformly distributed on

[Q1:] What is the prob. density function for all the N eigenvalues only?

102: Bulk universality? Edge universality?

5. Deformed random matrices Deformed Wigner aeir H(a):= JNHN + auu*, HN: Wigner matrix, and, u is an arbitrary unit vector. WLOG, let a>0. A BBP transition as a crosseg 1: * If a<1, semicircle law still holds.

* If a>1, we have semicircle law + an outlier:

X 0+1

Normal as $N \to +\infty$.

Spiked covariance

 $Q_N = \frac{1}{N} \sum_{i=1}^{N} Y Y^* \sum_{i=1}^{N} , \qquad I = I + a_{i} u^*, \quad a>0, \quad u: \text{ unit } v \in Ctor.$ A Similar BBP transition occurs at $a = \int_{N}^{M}$.

Tection 1 Why is the correct saling for Wigner?

Let HN be a Wigner matrices. We have $(E(Z, \lambda_i^2) = IE Tr(H^2) = IE Z Hij Hji = N^2$

 \Rightarrow $N = (I = X_1) = N$, i.e. the averaged size of X_1 is of order N. So the eigenvalues of $\frac{1}{5N}HN$ are of order 1.

Next, we aim to show the following bound on the operator norm of HN: there exists a |HNI|: $= \sup_{X \in \mathbb{C}^n: |X|=1} |HNX|$, $|\cdot|$ means the L^2 -norm.

Thm 1.1: Suppose the upper-triangular entries of HN are independent, have mean *zero, and uniformly bounded by 1 (i.e., Ihijl < 1 a.s.). Then, there exists absolute constants c, C > 0 such that

(In words, 11HN11=0(JN) with very high probability.)

Lemma 1.2: Suppose Mn is a random matrix whose entries are independent, have mean zero, and uniformly bounded by 1. Then, there exist absolute constants C, C>0 such that $IP(IIMNII>AJ\overline{N}) \leq Cexp(-cAN)$ for $A \geq C$.

Pf of Thm 1.1: We write $H_N = U_N + L_N$, U_N consists of the upper-triangular entries, L_N consists of strict lower-triangular entries. By Lemma 1.2, $IP(IIU_NII > ASIN) \leq C\exp(-cAN)$, $IP(IIL_NII > ASIN) \leq C\exp(-cAN)$ for $A \geq C$. Then for $A \geq 2C$, $IP(IIH_NII > ASIN) \leq IP(IIU_NII > AN/2) + IP(IIL_NII > AN/2)$

< 2Cexp(-cAN/2).

The proof of Lemma 1.2 uses some "standard" concentration inequalities & E-net argument.

```
Thm 1.3 (Hoeffding's inequality) let X_1, \dots, X_N be independent bounded random variables with X_i \in [a_i, b_i] a.s. Let S_N := X_1 + \dots + X_N. Then \forall \lambda > 0,
                                                                                                                   1P(1SN1≥λ6) ≤ Cexp(-cλ2), 62: = = 1 1bi-ail2.
 Lem 1.4 (Hoeffding's lemma) For ZE[a,b], IEex[Z-IEZ) exp ( 22(b-a)2)
                              PMK: The RHS can be improved to exp ( 1216-A) )
Pf of Lem 1.4: Let Z' be an independent copy of Z. Then
                                                     IEZ exp(λ(Z-IEZ)) = IEZ exp(λ(Z-EZ'(Z'))) ≤ IEZ IEZ' exp(λ(Z-Z'))
                                                                                                                                                                                                                                                                                              Jensen's ineq.
   Since Z-Z' is symmetric about 0, for a random sign s, IP(s=1)=IP(s=-1)=\frac{1}{2},
     s (Z-Z') = Z-Z'. So
                                                  IEZIEZ' exp (λ(Z-Z')) = IEZ,Z' IES exp(λS(Z-Z')) = IEZ,Z'[=e^{λ(Z-Z')} + 1e^{-λ(Z-Z')}]
                                                   = IE exp( \frac{2^2}{2}(Z-Z')^2) \ \exp(\frac{2^2}{2}(b-a)^2).
               ( cosh(x) < exp(x))
Pf of Thm 1.3: \forall t>0, (E \exp(tS_N) = \prod_{i=1}^{N} (E \exp(tX_i)) \le \prod_{i=1}^{N} \exp(\frac{x}{2}(b_i - a_i)^2) = \exp(\frac{x^2}{2}6^2).
       So |P(S_N > \lambda 6)| \le \exp(-t\lambda 6) \exp(\frac{t^2}{2}6^2) = \exp(\frac{t^2}{2}6^2 - t\lambda 6^2)

\frac{1}{2} \frac
        Taking t= 216 gives IP(SN > 26) < exp(-12/2). Can get a similar bound for
                                                                                                                                                                                                                                                                                             IP (SN < -26).
  Lem 15 under the setting of Lemma 1.2, for any fixed unit vector x E 10 1RN,
                                                        IP( IMXI > AJN) < Cexp(-CAN) for A > C.
    Pf: Let M_N = \begin{pmatrix} -X_1 - \\ -X_2 - \end{pmatrix}, X_i are the now vectors of M_N.
                                      Then, M_N x = \begin{pmatrix} X_1 \cdot x \\ X_2 \cdot x \end{pmatrix}. For each X_i \cdot x = \sum_{j=1}^N X_{ij} x_j, applying Hoeffding,
                                    P(|X_i \cdot x| \ge \lambda^6) \le Cexp(-c\lambda^2), where 6^2 = \sum_{i=1}^N 4x_i^2 = 4
                          TO any c'cc, (Eexp(c'|X:x|2) \c' for a constant c'>0
              [Use the tail-probability formula, I = \int_0^{+\infty} IP(X \ge t) f(t) dt, I =
```

[0,+∞), & f(0)=0.

```
Thus, IE exp(c'|Mx12) = IT exp(c'|X:x12) \(\int(c')^{\dagger}\)
          => IP ( |M \times 1 \ge AJN) \le \exp(-c'A^2N)(c')^N \le Cexp(-cAN) for A large enough.
  How to extend Lem 1.5 to a bound on
                              (MIKS/XM/MY) > (VICA & 11MMIL) 91
                            = 1P ( 10 U ~ ( 1mm x 1 > A JU)).
  Of course, we cannot take a union bound over a uncountable set. The idea is
  to "discretize" SN.
  Def (E-net) As maximal E-net of the sphere SN denotes a set of points in SN
       that are reparated from each other by a distance of at least E, and which is
       maximal with respect to set inclusion
   By let I be such an maximal E-net. By maximality, any point to XESN, there exists
      as point y & I such that 12-41 < &
 Lemma 1.6 (Volume packing) let 0<6<1, and I be a maximal E-net. Then III5 (3/E) EN
 Pf: Consider the collection of balls of radius E/2 centered around each point in I.
     Then these balls are disjoint. On the other hand, they are also contained in the
    ball of radius 3/2 centered at the origin. The volume of the larger ball is
    (3/8) N times the volume of each small ball.
Proof of Lemma 1.2: Let I be on a \frac{1}{2}-net of SN. Then III \le 6N.
            Taking a union bound, we get # (max (Mx)) = I
                       IP ( max | Mx | > AJN ) \leq \subseteq \text{IP ( | Mx | > AJN ) \leq Cexp (-CAN) \cdot 6 \leq Cexp (-\frac{c}{2}AN) \\
\times \text{XEE}
                                                                      for large enough A>0.
   Next, we show that |P(||M|| > \lambda) \le |P(|max ||Mx| > \lambda/2) (*) for any \lambda > 0.
    To show (*), let xESN be such that
    Then we can find y \in \Sigma so that |x-y| < \frac{1}{2}. Then |M(x-y)| < \frac{1}{2}||M||.

By triangle ineq., \frac{|M||+|x||+||M||}{2} |M|| = \frac{1}{2}||M||
   Combining (x) and (t) completes the proof.
```

Rmk: The above proofs can be extended to Wigner matrices with sub-gaussian entries. A vandom variable x is said to be sub-gaussian if there exists absolute constants 500, so that 1P(|X|>t) < 20 exp(-ct2) & t>0 * Gaussian r.v.s are sub-goussian * If a random variable is bounded by a const, then it is subgaussian. The sub-gaussian norm of X, 11 XIII, is defined as ||X||42: = inf {t>0: (E exp(X2/t2) <23. Then we have the general Hoeffding's inequality Thm 1.7 Let X., ..., XN be independent, mean-zero, sub-gaussian v.v.s. Then, 4 tzo, $IP\{ | \sum_{i=1}^{N} X_i| \ge t \} \le 2exp(\frac{-ct^2}{\sum_{i=1}^{N} I|X_i|h_{i}^2})$ In accordance with the semicircle law, we should have that & constant &>0, Rmk: IP (11 Hall > (2+E) Ja) with high probability. one slick way to prove this result is the important "moment method in RMT": for any $k \in 2/N$, note $tr(XX H_N^k) = \sum_{i=1}^{n} \lambda_i^k \ge \max_i |\lambda_i|^k = ||MH_N||^k$ IE 114N11 => IP (114N11 > (2+E) 5N) = [(2+E) 5N] - RE tr (HN) The moment method aims to control IE trilk. One can show that IE tr (H/k) = [2+ q(1)] * N\(\frac{1}{2}+1\) (*) for k as large as Clog N. 1P(11HN11 = (2+8) 5N) = (1- =) N << 1 for k = Clog N if C is large enough. For details, see Tao, Section 2.3.4. We will give a proof using a different method. In fact, we will show a much stronger result: $||HN|| \le 2 + N^{-\frac{2}{3} + \epsilon}$ w.h.p. for any const. $\epsilon > 0$. But, we will use the moment method to prove the first important RMT result, i.e., the Wigner semicircle law. It requires to calculate IE tr(HN) for # large but finite 1eEIN. Rook: Rook: Moment method together with a truncation argument gives the operator norm bound for Wigner matrices whose entries have finite fourth moment.

Section 2 Wigner Semicircle Law } For the rest of this course, we rescale HN to JNHN, so that the eigenvalues of Hu are typically of order 1 For Thm 2.1 (Semicircle law) Let H be a Wigner matrix whose entries have finite moments up to any order, i.e., theIN, I Ckro so that Max IE IN hijik & Ck. Then, the ESD MHN converges in distribution to use almost surely 1 Moment method We will prove a weaker convergence in expectation of µn under a stronger sub-gaussian assumption on the entries of the Y GECIRI, IE J GIX) dyHNIX) -> J GIX) # dysc(X). Define a sequence of measures (EXXX (A): = IE \ 1(x \in A) d\(\mu_N \)(x) The tightness of flows follows from the operator norm bounds. To show the convergence, it suffices to show the convergence of moments, i.e., $\forall k \in IN$, (x) IE $\int x^k d\mu_{NN}(x) \rightarrow \int x^k d\mu_{SC}(x)$. [This follows from an application of Taylor.] $\underline{Rm}K$: To show convergence in prob. of μ_{HN} , we need to show concentration of measure, i.e., μ_{HN} concentrates around $\underline{E}\mu_{HN}$. For that purpose, we need to show that $var[\int x^k d\mu_N(x)] \rightarrow 0$, $\forall k \in N$. To show convergence almost sure convergence, we need to control $P(\int x^k d\mu_N(x) - iE \int x^k d\mu_N(x)) > E$ and use Borel-Cantelli. While these can be done, we refrain from doing that and will prove the semicircle law using another "possethy more powerful" method — the Stieltjes transform method. By definition, $\int x^k d\mu_{HN}(x) = \int x^k \int_{i=1}^{\infty} \delta_{\lambda i}(x) dx = \int_{i=1}^{\infty} \lambda_i^k = \int_{i=1}^{\infty} Tr(H_N^k).$

To show (x), we need to show that IE Tr(HN) > \int xkdusc(x) for any fixed k.

THE Tr (HK) = THE I hisis hisis ... hisis ... For the expectation to be non-zero, every hay must be paired with anothe hyx = hay .

Let's starts with k=4 case: \(\frac{1}{N}\) IE vertices We have the following cases to have non-zero expectation (up to cyclic permutation of (i) i= iz + iz + i4 Typical order (+× N3 × /2 = 1) (ii) i=i3 + i2=i4 (\(\frac{1}{N} \times N^2 \times \frac{1}{N^2} = \frac{1}{N} \) (iii) $i_1 = i_2 = i_3 + i_4$ ($\frac{1}{N} \times N^2 \times \frac{1}{N^2} = \frac{1}{N}$) (iv) i=12=13=14 (1×N× 1/2=1/2) Case (i) is dominating, and there are two such graphs: in = is tiz ti4 With the fact that IE hij = \(\frac{1}{N} \), we get IE 1/Tr(Hな) = 2×1/×N2×1/2+0(1) = 2+0(1) Let's turn to k=6. There one four types of graphs to deal with: (i) There are 3 distinct edges, each occuring twice, and hence 4 distinct vertices. (1× N+x 1/3=1) (ii) 2 distinct edges, one occuring twice & one occuring four times, and hence 3 distinct vertice (1×N3×1/3=1) (iii) 2 distinct edges, each occuring three times, and hence 3 distinct vertices. (iv) Only one distinct edge, occurring 6 times. (TXNX \frac{1}{N3} = \frac{1}{N3}) How many graphs in case (i)? There are "5" non-crossing planar graphs with 6 edges. Hence, IE / Tr(Hh) = 5x/x Nx/3 + 01/2) = 5 + 0(/2)

In general, we consider $\overline{h}^{1E}_{i,i,j}$ in $h_{i,i,j}$ $h_{i,i,j}$ $h_{i,i,j}$ $h_{i,i,j}$. The sequence (i_1,i_2,\cdots,i_K,i_1) can be regarded as a cycle with at most to vertices and over all possible labellings of ije {1, ..., ng. Since each subject distinct edge is traversed by two times, there are at most k/2 distinct edges and (年+1) vertices traversed by the cycle. For the cycles with at most $\frac{1}{N}$ distinct vertices, their order is $O(\frac{1}{N} \times N^{\frac{7}{2}} \times \frac{1}{N^{\frac{1}{N}}}) = O(\frac{1}{N})$ So we only need to consider cycles which traverce exactly (\$\frac{1}{2}+1) vertices and has I distinct edges. We call such cycles non-crossing cycles of length k. We need to count the number of non-crossing cycles.

Rmk: If k is odd, then H each cycle has at most $\frac{k+1}{2}$ distinct vertices. Hence its order is $O(\frac{1}{N} \times N^{\frac{k+1}{2}} \times \frac{1}{N^{k/2}}) = O(\frac{1}{N})$. Hence, $IE \frac{1}{N}Tr(H_N^k) \rightarrow 0$ for any odd k

Lemma 2.2 There is a one-to-one correspondence between non-crossing cycles of length to and rooted trees of 1/2 edges and (\$\frac{1}{2}+1) edges.

The cycle lies in the corresponding tree and traverses each edge in the tree

non-crossing planar graph

With lemma 22, we can get the following corollary:

Exercise: Let i,..., ip be a cycle of length k. Arrange the integers 1,2,..., k around a circle. Whenever 15a < b < k s.t. ia=ib with no c text between a, b for which la=ic=ib, draw a dashed line between a & b. 8 Then the cycle is non-crossing if \$ and only if the number of dashed lines is exactly 1/2-1 and the dashed lines do not cross each other.

Pf of Lemma 2.2: Given an unlabelled noted tree, starting from the not, traverse the tree from left to right gives a non-crossing cycle. For example:

-> (i1, i2, i3, i4, i3, i5, i3, i2, i6, i7, i6, i8, i9, i8, i10, i8, i6, i, i, i)

We now show that we can construct a unique tree from a non-crossing cycle: (i, iz, ..., ix) We traverse this cycle from it is is, then from is to is, and so on. At a step, say, from ij to ijt, we either use an edge that we have not seen before, or else we step are using an edge for the second time. We call an edge of former type an "innovative (I)" edge, steps and are edger of the latter type an "returning (R)" edges the Then there are 1/2 (I) edges, and k/2 (R) edges. It is obvious that only the (I) edge step can bring us to new vertices we steps have not seen before. On the other hand, since we have to visit $(\frac{k}{2}+1)$ vertices starting from is, each (1) step must take us to a new vertex.

Then, traversing the cycle (ii, ii, ..., ik, ii), we construct a graph as follows. Let ii be the noot. For each (1) step, we add a new vertex and a new edge. For example: (11, 12, 13, 12, 14, 15, 14, 16, 14, 12, 11) ->

This clearly gives a noted tree. Fact: The number of unlabelled rooted trees with \$+1 vertices is the tatalan and Catalan number CH2. Catalan number $C_n := \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{n! (n+1)!}$ One version of poof of the Fact: We further construct a 1-1 correspondance between the rooted trees and random walks on the positive half line. Thans Traversing a nooted tree, if we travese a (I) step, then walk to the right; otherwise, walk to the left by one step. For example: It gives a RW from 0 to 0 and stays to the right of o From the graph of a random walk, say f, on [0, k]. Define a quotient graph under the equivalence relation: $(a, f(a)) \sim (b, f(b))$ if $f(a) = f(b) = \min_{t \in [a,b]} f(t)$ How many different I random walks from 0 to 0 and stoys positive? # { Raisden 1k-step welks simple walks from 0 to 0 y - # { k-step simple walks from 0 to 0 } Use reflection principle $= \# \left\{ k - \text{Step simple walks from 0 to } -2 \right\} = {k \choose k + 1}$ For example: $\binom{K}{k l_2} - \binom{K}{k l_2 + 1} = C_{k l_2}$

(12

It remains to show that: $\int x^{k} d\mu_{sc}(x) = C_{k/2} \cdot 1(k \text{ is even})$ This is trivial for k = odd. For k even, $I_{k} = \int_{-1}^{2} x^{k} \frac{\sqrt{4-x^{2}}}{2\pi} dx = \int_{0}^{\pi} (2\cos\theta)^{k} \frac{2\sin\theta}{2\pi} .2\sin\theta d\theta = \frac{1}{2\pi} \int_{0}^{\pi} (\cos\theta)^{k} \sin^{2}\theta d\theta$ = $\frac{2^{k+1}}{\pi} \int_0^{\pi} (\cos \theta)^{k-1} \sin^2 \theta \, d\sin \theta = -\frac{2^{k+1}}{\pi} \int_0^{\pi} \sin \theta \cdot [2\sin \theta \cdot (\cos \theta)^k - (k-1)\sin^{\theta 3}\theta \, (\cos \theta)^{k-2}] d\theta$ = -2 Ik + = [(k-1) Sin20 (1- cos20) (cos 0) k-2 do = -(k+1) Ik + 4(k+1) $\frac{2^{k-1}}{\pi} \int_{0}^{\pi} \sin^{2}\theta \left(\cos\theta\right)^{k-2} d\theta = -(k+1) I_{k} + 4(k-1) I_{k-1}$. $\Rightarrow I_{k} = \frac{4(k-1)}{k+1} I_{k-1}$ On the other hand, it is simple to check: $C_{K/2} = \frac{4(k-1)}{k+2} C_{(k-2)/2}$ Sometimes, it is very challenging to recover a measure from its moments. We now use a different method to "derive" the semicircle law directly. 1 The Stieltjes transform method The Stieltjes transform of a measure on the real line IR is defined as Su(3) := 5 \frac{1}{x-3} du(x), for 3 not in the support of \mu. For the ESD μ_{HN} , we have $S_{\mu_{HN}}(3) := \frac{1}{N} \int_{\mathbb{R}} \frac{1}{x-3} \sum_{i=1}^{N} \delta_{\lambda_i} (dx) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_i - 3} = \frac{1}{N} \text{Tr} (H_N - 3)^{-1}$ Def: (Green's function/resolvent) For & EC, G13) = (H-2)-1 is called the Green's function (or resolvent) of H. Moreover, we denote its normalized trace by m(2) = SN(2) = + Tr G(2). RMK: The Stieltjes transform m12) can be regarded as a generating function of the moments: This is a point of view that will be taken by free probability Brop 2.3 (Properties of Surs) Let u be a probability measure supported on the real line (8) Suld) = Sul7).

Let H be a symmetric / complex Hermitian matrix, we have

(i)
$$G(a)^* = G(\overline{a})$$
.

Tupper-half complex plane

Really interesting things happen near the real axis, i.e., $|Im I| \rightarrow 0$. For $I = E + i\eta_s \in C_+$, we can calculate the imaginary part of Su(I):

(*) Im
$$S_{\mu}(\lambda) = \int \frac{\eta}{(x-E)^2 + \eta^2} d\mu(x) > 0$$

= $\pi(\mu * P_{\eta})(E)$, $P_{\eta}(x) = \frac{1}{\pi} \frac{\eta}{x^2 + \eta^2} = \frac{1}{\eta} \left[\frac{1}{\pi} \frac{1}{1 + (x/\eta)^2} \right]$.

າ -----

Poisson kernel

As $\eta \to 0$, P_{η} forms a family of approximations to the identity (δ function) on the following sense: $\int_{-\infty}^{+\infty} P_{\eta}(x) = 1 \; ; \quad \lim_{\eta \to 0} \int_{|x| \ge \delta} P_{\eta}(x) = 0 \; \forall \; \delta > 0 \; .$

Then, we have $\mu * P_{\eta}$ converges weakly to μ . Together with (*), it gives $\frac{1}{11} \operatorname{Im} S_{\mu}(\cdot + i b_{\eta}) \stackrel{1>0}{\longrightarrow} \mu(\cdot)$.

KEY: A probability measure is can be recovered from the limiting behavior of Im Sur down to the real axis.

Lemma 2.5 Let un be a sequence of random probability measures on IR, and let u be a deterministic probability measure. Suppose fund is tight. Then un converges almost surely (in probability) if and only if Sun 12) converges almost surely (in probability) to Su(2) for every $2 \in C_{\bullet \bullet} (-\infty, 0)$.

Thus, to prove the semicircle law, we only need to show that $\forall x \in \mathbb{C}_+$, $S_{M_1}(x) \equiv m_N(x)$ converges almost surely (in probability) to $S_{M_2}(x) \equiv m_S(x)$:

$$M_{SC}(2) = \int_{-2}^{2} \frac{1}{x-4x^2} \sqrt{4-x^2} dx = \frac{-k+\sqrt{3^2-4}}{2}$$

where we take the branch that $\sqrt{3} \in \mathbb{C}_+$ for $3 \in \mathbb{C}_+$. Note $\lim_{3 \in \mathbb{C}_+, |3| \to +\infty} 3 \le \mu(3) = -1$, and $\lim_{\eta \downarrow 0} m_{SC}(\chi + i\eta) = \frac{\sqrt{4-\chi^2}}{2\pi} \mathbb{1}_{\chi \in [-2, 2]}$, i.e. the semicircle density.

Lemma 2.6 (Schur complement) Let A, B, C,D be nxn, nxm, mxn, mxm matrices.

If D is invertible, the inverse of the block matrix $\begin{pmatrix} A & B \end{pmatrix}$ is given by $\begin{pmatrix} (A-BD^{-1}C)^{-1} & \epsilon BD^{0}(AD) - (A-BD^{-1}C)^{-1}BD^{-1} \\ -D^{-1}C(A-BD^{-1}C)^{-1} & D^{-1} + D^{-1}C(A-BD^{-1}C)^{-1}BD^{-1} \end{pmatrix} \text{ if } A-BD^{-1}C \text{ is invertible.}$ (5)

A heuristic derivation of the semicircle law:

Definition (Resolvent minors) () For any 1 \(\in \in \mathbb{N}\), let H (ii) be the (N-1) \(\times (N-1) \times (N-1) \ti

Then, we define the resolvent minors $G^{(i)} = (H^{(i)} - Z)^{-1}$.

To simplify notations, we will adopt the covention $G_{ab}^{(i')} = 0$ and $H_{ab}^{(i')} = 0$ if a = i or b = i.

3) We can define $G^{(i'j)}$, $G^{(i'j'k')}$ etc. in a similar way. The superscript in parenthesis (·) always means "temoving the corresponding row and column of H''.

Def: (Partial expectation) For $1 \le i \le N$, we define partial expectation (E_i) with respect to the i-th now and column of H as $(E_i) = (E(X|H^{(i)})$. We say a random variable X is independent of a set $S \subseteq \{1, \dots, N\}$ if $(E_i) = X$ for all $i \in S$.

A key remark: G'i) is independent of i (i.e., the i-th row/column) of H.

Gii = hii - d - I hikhie GKi

First, we observe that his is of typical order $N^{-1/2}$. Second, we observe that $G^{(i)}$ is independent of hix entries. The partial expectation of $\sum_{k,k} h_{ik} h_{ik} G^{(i)}_{kk}$ is given by $\sum_{k} \sum_{k} h_{ik} h_{ik} G^{(i)}_{kk} = \frac{1}{N} \sum_{k} G^{(i)}_{kk} = : m_{N}^{(i)}(2)$.

We expect that there is a concentration phenomenon where $\sum_{k,l}$ his hie Give concentrates around its partial expectation $m_N^{(i)}(3) \leftarrow (Will justify it later.)$ Turthermore, heuristically, $m_N^{(i)}(3)$ is very close to $m_N(3)$ for large N. So, we ought to have that $G_{ii} \approx \frac{1}{-3-m_N(3)}$.

Taking average over $i: m_N = \frac{1}{N} \sum_i G_i : \approx \frac{1}{-2 - m_N(2)} \Rightarrow m_N^2 + 3 m_N + 1 \approx 0$. Solving the equation and requiring that $2m m_N \ge 0$, we get that $m_N(3) \approx \frac{-3 + \sqrt{3^2 - 4}}{2} = m_{SC}(3)$.

This is the self-consistent equation for min.