

Database Systems (CSF 212)

BITS Pilani Hyderabad Campus Prof.R.Gururaj CS&IS Dept.

Relational Database Design (Ch. 14 &15 of T1)

Content

- ☐ Introduction to Schema Refinement
- □ Functional Dependencies
- ☐ Inference Rules
- □ Normalization
- Normal Forms
- □ Lossless join decomposition
- □ Dependency preserving decomposition

Introduction to Database Design

A good database design practice is essential to develop good relational schemas at logical level.

Objectives of good Database design:

- □Clarity in understanding the database and
- ☐ To formulate good/efficient queries

This is achieved by schema refinement.

Relational Schema design guidelines

Informal guidelines used as measures to determine the quality of relational schemas. □Design a schema so that it is easy to explain the semantics. □ Design schemas so that no insertion, deletion and update anomalies are present. (anomalies) ☐ Avoid placing attributes into base relations whose values may frequently be NULL. (wastage of storage) □ Design relations in such a way that they can be joined on keys and no spurious tuples are formed. Avoid relations that contain matching attributes that are not PK, FK pairs. (spurious tuples)

Functional Dependencies

Functional Dependency is a constraint between two sets of attributes from the database.

Function Dependency X→Y

X functionally determines Y in a relation schema R if and only if whenever two tuples of r(R) agree on their X values they must necessarily agree on their Y values, but $Y \to X$ is not true (need not be)

Ex: $ssn \rightarrow ename$; {ssn, pnumber} $\rightarrow Hours$

Note: FDs cannot be inferred. They should be defined by someone who knows the semantics of the database very well.

Diagrammatic Notation

Inference Rules for FDs

```
Rule 1 (1R₁): (Reflexing)

If Y⊇ X then X → Y otherwise non trivial

Rule 2 (1R₂) (Augumentation)

X \to Y; then XZ \to YZ

Rule 3 (1R₃) (Transitive)

X \to Y; Y \to Z; Then X \to Z;

Rule 4 (IR₄) (Decomposition or projective rule)

X \to YZ then X \to Y; & X \to Z;

Rule 5 (IR₅) (union rule)

X \to A; X \to B; then X \to AB

Rule 6 (IR₆) (Pseudo transitive)
```

We can find the closure F⁺ of F, by repeated application of rules IR-1 to IR-3. These rules are called as *Armstrong's Inference rules*.

 $X \rightarrow Y$; $WY \rightarrow Z$;

then $WX \rightarrow Z$;

Normalization & Normal forms

Normalization process is first proposed by Raymond Boyce and Edgar Codd in 1972.

Normalization of data – is the process of analyzing relation schemas based on their FDs and PKs/Keys to minimize the redundancy

1. First Normal Form (INF)

It states that the domain of any attribute must include only atomic (single / simple/ individual) values. In the example given below, under the column *Dloc* each row has more than on values.

Ex.: Dept

DId	Dname	Dloc
10	Engg	HYD CHENNAI
20	Mark	HYD MUMBAI

2. Second Normal Form (2NF)

It is based on full functional dependency.

 $\{X \rightarrow A\}$ is fully functional if we remove any attribute from X then that FD does not hold anymore.

Condition for 2NF: All non-key attributes are fully functionally dependent on key (or) no non-key attribute should be dependent on part of key(partial dependency).

Here, {ename} is a non key attribute and determined by {eid} which is part of the key. Hence we say that ename not fully functionally dependent on key.

The relation shown is not in 2NF. Now we can decompose this in to three relations as shown below.

3. Third Normal form (3NF)

It is based on transitive dependency.

According to this, a relation should not have a non key attribute functionally determined by another non key attribute. i.e., there should be no transitive dependency.

Not in 3NF, because *Dname* is transitively dependent on *eid*.

Now we can decompose the above into 2 relations.

Condition for 3NF

For each FD, $X \rightarrow A$ in database

- i) X must be a superkey or
- ii) A is key attribute

BCNF (Boyce Codd Normal Form)

It is a stricter form of 3NF

Condition

For each FD $X \rightarrow A$

X must be a super key

Ex Problem (Normalization)

Find the highest NF satisfied and bring to BCNF

- (i) R1(A,B, C, D) { AB \rightarrow D; AB \rightarrow C; C \rightarrow B; B \rightarrow D }
- (ii) R2(A,B, C, D) { AB \rightarrow C; AB \rightarrow D; C \rightarrow D }

Decomposition and Desirable properties

As we have seen, decomposition (of a bigger relation R into smaller ones), is a major step in the process of normalization.

But during this activity of decomposition, we need to make sure that the decomposition is *lossless* and *dependency preserving*

Loss-less join Decomposition

Let C represent a set of constraints on the database. A decomposition $\{R_1, R_2, R_3, \dots, R_4\}$ of a relation schema R is a lossless join decomposition for R if all relation instances r on R that are legal under C.

$$r = \prod_{R_1}(r)$$
 * $\prod_{R_2}(r)$= r
$$\prod_{R_1}(r) = \text{projection of } r \text{ on } R_1$$

$$r - \text{ relation instance in } R$$

$$F = \text{FDs on } R$$

$$(\text{or) } \{R\} \to \{R_1, R_2\}$$

R(eid,name,sal, city, dno,dname,dloc)

eid	name	sal	city	dno	dname	dloc
102	Kiran	50000	HYD	10	HR	DEL
104	Mohan	38000	DEL	20	ACCT	CHEN
105	John	45000	HYD	20	ACCT	CHEN

R1(eid,name,sal, city, dno)

 $\Pi_{R1}(r)$

eid	name	sal	city	dno
102	Kiran	50000	HYD	10
104	Mohan	38000	DEL	20
105	John	45000	HYD	20

R2(dno,dname,dloc)

 $\Pi_{R2}(r)$

dno	dname	dloc
10	HR	DEL
20	ACCT	CHEN
20	ACCT	CHEN

$$\Pi_{R1}(r) * \Pi_{R2}(r) = r \text{ Hence lossless}$$

R(eid,name,sal, city, dno,dname,dloc)

eid	name	sal	city	dno	dname	dloc
102	Kiran	50000	HYD	10	HR	DEL
104	Mohan	38000	DEL	20	ACCT	CHEN
105	John	45000	HYD	20	ACCT	CHEN

R1(eid,name,sal, city)

 $\Pi_{R1}(r)$

eid	name	sal	city
102	Kiran	50000	HYD
104	Mohan	38000	DEL
105	John	45000	HYD

R2(dno,dname,dloc,city)

 $\Pi_{R2}(r)$

city	dno	dname	dloc
HYD	10	HR	DEL
DEL	20	ACCT	CHEN
HYD	20	ACCT	CHEN

$$\Pi_{R1}$$
 (r) * Π_{R2} (r) \neq r Hence Lossy

Test for Lossless join property

(a) R={SSN, ENAME, PNUMBER, PNAME, PLOCATION, HOURS}
R1=EMP_LOCS={ENAME, PLOCATION}
R2=EMP_PROJ1={SSN, PNUMBER, HOURS, PNAME, PLOCATION}

 $D=\{R_1, R_2\}$

 $F = \{SSN \rightarrow ENAME; PNUMBER \rightarrow \{PNAME, PLOCATION\}; \{SSN, PNUMBER\} \rightarrow HOURS\}$

	SSN	ENAME	PNUMBER	PNAME	PLOCATION	HOURS	
R ₁	b 11	a ₂	b 13	b 14	a ₅	^b 16	
R ₂	a 1	b ₂₂	a ₃	a ₄	^a 5	^a 6	

(no changes to matrix after applying functional dependencies)

(b)

(c) $R=\{SSN, ENAME, PNUMBER, PNAME, PLOCATION, HOURS\}$

 $D=\{R_1, R_2, R_3\}$

 $R_1 = EMP = \{SSN, ENAME\}$

R₂=PROJ={PNUMBER, PNAME, PLOCATION}

R₃=WORKS_ON={SSN, PNUMBER, HOURS}

 $F = \{SSN \rightarrow \{ENAME; PNUMBER \rightarrow \{PNAME, PLOCATION\}; \{SSN, PNUMBER\} \rightarrow HOURS\}\}$

	SSN	ENAME	PNUMBER	PNAME	PLOCATION	HOURS
R ₁	a ₁	a 2	^b 13	b 14	^b 15	^b 16
R ₂	b 21	b ₂₂	a 3	a 4	^a 5	^b 26
R ₃	a 1	^b 32	а 3	^b 34	^b 35	^a 6

(original matrix S at start of algorithm)

	SSN	ENAME	PNUMBER	PNAME	PLOCATION	HOURS	
R ₁	a ₁	a 2	^b 13	b 14	^b 15	^b 16	
R ₂	b 21	b ₂₂	a 3	a 4	a ₅	^b 26	
R ₃	a 1	b 32 2	а 3	b 34 4	b ₃₅ a ₅	^a 6	

(matrix S after applying the first two functional dependencies - last row is all "a" symbols, so we stop)

Ex Problem (Decomposition)

Suppose that we decompose the relation R=(A,B,C,D,E) into three relations- R1(A,C,E), R2(B,D) and R3(A,B,E). Find whether this decomposition is lossless, if the following set F of functional dependencies holds.

 $F=\{A \rightarrow CE; B \rightarrow D;\}$

Note: Detailed working is required with final answer.

Dependency Preserving Decomposition

Given a set of dependencies F on R, the projection of F on R_i denoted by

(where R_i is a subset of R); is the set of FDs X \rightarrow Y in F⁺ such that the attributes in X \cup Y are contained in R_i .

$$\left(\Pi_{R_1}(F) \cup \Pi_{R_2}(F) \cup, \Pi_{R_m}(F)\right)^+ = F^+$$

Then it is dependency preserving decomposition.

$$\Pi_{R_1}(f)$$
 - is projection of F on R_1 .

Ex Problem (Decomposition)

Suppose that we decompose the relation R=(A,B,C,D) into three relations-

R1(A, C, D), and **R2(A, B)**. Find whether this decomposition is lossless and Dependency preserving, if the following set **F** of functional dependencies holds.

 $F=\{A\rightarrow B; B\rightarrow C; C\rightarrow D; A\rightarrow D\}$

Note: Detailed working is required with final answer.

Exercise

If a relation R(A,B,C,D,E) with functional dependencies $F=\{AB \rightarrow CD; D \rightarrow E\}$ is decomposed into R1(A,B,E), R2(A,B,D), and R3(C,D,E), check if the decomposition is-

- (i) *dependency preserving* or not.
- (ii) Lossless or not.

[Note: Give complete working with all steps].

Summary

- ✓ Introduction to Database Design
- ✓ Functional Dependencies and Inference Rules
- √ Concepts in Normalization
- ✓ Normal Forms (1NF,2NF,3 NF and BCNF)
- ✓ Desirable properties of Decomposition (requirements)
- ✓ Lossless join decomposition and tests
- ✓ Dependency preserving decomposition and tests