SYSTEMS EXAM

Spring 2022 90 minutes

Check wh	ich problems you are submitting:
	#1 #2 #3
	y pages total? e on the back of any pages.
(print name)	
(signature)	

(NetId)

1. (20pts Total) Critical Section

- a) (4pts) List the **three** (3) standard goals of the **mutual exclusion** problem when there are two processes.
- b) (8pts) Using the code below, state one goal that is **NOT** satisfied and provide an execution sequence that violates the goal.
- c) (8pts) Using the code below, select one goal that **IS** satisfied and give a brief explanation that justifies why the goal is met for all possible execution sequences.

Assume a common variable: lock = false; and assume the existence of an atomic (non-interruptible) test_and_set function that returns the value of its Boolean argument and sets the argument to true.

2. (20pts Total) Paging

Given the page reference string: 0 1 3 5 0 1 2 4 5 3 5 1

a) (10pts) Assume memory has 8 pages and there are 4 page frames. Using the **second chance page replacement (clock) algorithm**, fill in the table below. Show the marker bits as they change and indicate if a page fault will occur.

pages	0	1	3	5	0	1	2	4	5	3	5	1
pages Frame 0												
Frame 1												
Frame 2												
Frame 3												

b) (10pts) Assume memory has **8 pages** and there are **4 page frames**. We have a page reference string of **2,6,5,7** to fill the first 4 frames. Complete the tables below by adding **three more page references** that will result in **LRU** having **fewer** page faults than **FIFO**.

LRU

pages	1	2	4	6	?	?	?
Frame 0	1	1	1	1			
Frame 1		2	2	2			
Frame 2			4	4			
Frame 3				6			

FIFO

pages	1	2	4	6	?	?	?
Frame 0	1	1	1	1			
Frame 1		2	2	2			
Frame 2			4	4			
Frame 3				6			

3. (20 pts Total) Mixed - Short answer

- a) (2pts) Name **two** (2) mechanisms that an applications programmer can use to ensure correct process **synchronization** when manipulating shared data?
- b) (2pts) Name a hardware solution to the critical section problem.
- c) (4pts) Define "short-term scheduler" and "long-term scheduler." Specifically, where do processes go when using each of these?
- d) (4 pts) What is a **context-switch** and **name five (5) elements** of a process context switch.

- e) (4pts) What would be the **implementation** of a **block** and **wait semaphore** and how is the **value** of any semaphore modified?
- f) (4pts) A computer system has a 36-bit virtual address space with a page size of 8K, and 4 bytes per page table entry. How many pages are in the virtual address space? What is the maximum size of addressable physical memory in this system?