	Permulan Combina		M M M	7
 2. 	Total number of four digit odd numbers that can be formed using 0, 1, 2, 3, 5, 7 (using repetition allowed) are [2002] (a) 216 (b) 375 (c) 400 (d) 720 Number greater than 1000 but less than 4000 is formed using the digits 0, 1, 2, 3, 4 (repetition allowed). Their number is [2002]	8.9.	(c) 360 The number of ways of distriballs in 3 distinct boxes so	with vowels in [2004] (b) 240 (d) 120 (b) 240 (d) 120
 4. 	(a) 125 (b) 105 (c) 375 (d) 625 Five digit number divisible by 3 is formed using 0, 1, 2, 3, 4, 6 and 7 without repetition. Total number of such numbers are [2002] (a) 312 (b) 3125 (c) 120 (d) 216 The sum of integers from 1 to 100 that are	10.	() 23	(b) 21 (d) 5 CHIN are arranged words are written
5.	divisible by 2 or 5 is [2002] (a) 3000 (b) 3050 (c) 3600 (d) 3250 If ${}^{n}C_{r}$ denotes the number of combination of n things taken r at a time, then the expression	11.	(c) 603 At an election, a voter may voof candidates, not greater that elected. There are 10 candidates elected, if a voter votes	n the number to be ates and 4 are of be for at least one
6.	${}^{n}C_{r+1} + {}^{n}C_{r-1} + 2 \times {}^{n}C_{r}$ equals [2003] (a) ${}^{n+1}C_{r+1}$ (b) ${}^{n+2}C_{r}$ (c) ${}^{n+2}C_{r+1}$ (d) ${}^{n+1}C_{r}$. A student is to answer 10 out of 13 questions in an examination such that he must choose at least 4 from the first five questions. The number of choices available to him is [2003]	12.		[2006] (b) 6210 (d) 1110 is to be partitioned al size.

(a) 346

(b) 140

(c) 196

(d) 280

The number of ways in which 6 men and 5 women can dine at a round table if no two women are [2003] to sit together is given by

(a) $6! \times 5!$

(b) 6×5

(c) 30

(d) 5×4

ways to partition S is [2007]

м-2	24		Mathematics
13.14.	How many different words can be formed by jumbling the letters in the word MISSISSIPPI in which no two S are adjacent? [2008] (a) $8.^6C_4.^7C_4$ (b) $6.7.^8C_4$ (c) $6.8.^7C_4$. (d) $7.^6C_4.^8C_4$ From 6 different novels and 3 different	18.	(c) Statement-1 is true, Statement-2 is false (d) Statement-1 is false, Statement-2 is true There are 10 points in a plane, out of these 6 ar collinear. If <i>N</i> is the number of triangles forme by joining these points. Then: [2011RS]
	dictionaries,4 novels and 1 dictionary are to be selected and arranged in a row on a shelf so that the dictionary is always in the middle. Then the number of such arrangement is: [2009] (a) at least 500 but less than 750 (b) at least 750 but less than 1000 (c) at least 1000 (d) less than 500	19.	(a) $N \le 100$ (b) $100 < N \le 140$ (c) $140 < N \le 190$ (d) $N > 190$ If $X = \{4^n - 3n - 1 : n \in N\}$ and $Y = \{9(n-1) : n \in N\}$, where N is the set of
15.	There are two urns. Urn A has 3 distinct red balls and urn B has 9 distinct blue balls. From each urn two balls are taken out at random and then transferred to the other. The number of ways in which this can be done is [2010] (a) 36 (b) 66 (c) 108 (d) 3	20.	natural numbers, then $X \cup Y$ is equal to: [2014] (a) X (b) Y (c) N (d) $Y - X$ (c) S (d) G Let A and B be two sets containing four and two elements respectively. Then the number G
16.	Statement-1: The number of ways of distributing 10 identical balls in 4 distinct boxes such that no box is empty is 9C_3 . Statement-2: The number of ways of choosing any 3 places from 9 different places is 9C_3 . [2011] (a) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for	21.	subsets of the set $A \times B$, each having at least three elements is: [2013, 2015] (a) 275 (b) 510 (c) 219 (d) 256 The number of integers greater than 6,000 that can be formed, using the digits 3, 5, 6, 7 and 8 without repetition, is: [2015] (a) 120 (b) 72
17.	Statement-1. (b) Statement-1 is true, Statement-2 is false. (c) Statement-1 is false, Statement-2 is true. (d) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. Statement-1: For each natural number n, (n+1) ⁷ -1	22.	(c) 216 (d) 192 If all the words (with or without meaning) havin five letters, formed using the letters of the wor SMALL and arranged as in a dictionary; then th position of the word SMALL is: [2016] (a) 52 nd (b) 58 th (c) 46 th (d) 59 th
	 is divisible by 7. Statement - 2: For each natural number n, n⁷ - n is divisible by 7. [2011 RS] (a) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. (b) Statement-1 is true, Statement-2 is true; Statement-2 is NOT a correct explanation for Statement-1 	23.	

Permutations and Combinations

		7	
м	-	Z	3

	Answer Key											
1	2	з	4	5	6	7	8	9	10	11	12	13
(d)	(c)	(d)	(b)	(c)	(c)	(a)	(c)	(b)	(a)	(c)	(a)	(d)
14	15	16	17	18	19	20	21	22	23			
(c)	(c)	(a)	(a)	(a)	(b)	(c)	(d)	(b)	(b)			

SOLUTIONS

- 1. **(d)** Required number of numbers $= 5 \times 6 \times 6 \times 4 = 36 \times 20 = 720$.
- 2. (c) Required number of numbers $= 3 \times 5 \times 5 \times 5 = 375$
- 3. (d) We know that a number is divisible by 3 only when the sum of the digits is divisible by 3. The given digits are 0, 1, 2, 3, 4, 5. Here the possible number of combinations of 5 digits out of 6 are ${}^5C_4 = 5$, which are as follows—

$$1+2+3+4+5=15=3\times 5$$

$$0+2+3+4+5=14$$
 (not divisible by 3)

$$0+1+3+4+5=13$$
 (not divisible by 3)

$$0+1+2+4+5=12=3\times 4$$

$$0+1+2+3+5=11$$
 (not divisible by 3)

$$0+1+2+3+4=10$$
 (not divisible by 3)

Thus the number should contain the digits 1, 2, 3, 4, 5 or the digits 0, 1, 2, 4, 5.

Taking 1, 2, 3, 4, 5, the 5 digit numbers are = 5! = 120

Taking 0, 1, 2, 4, 5, the 5 digit numbers are = 5! - 4! = 96

 \therefore Total number of numbers = 120 + 96= 216

- 4. **(b)** Required sum = (2+4+6+...+100) + (5+10+15+...+100) (10+20+...+100) = 2550+1050-530=3050.
- 5. (c) ${}^{n}C_{r+1} + {}^{n}C_{r-1} + 2 {}^{n}C_{r}$ $= {}^{n}C_{r-1} + {}^{n}C_{r} + {}^{n}C_{r} + {}^{n}C_{r+1}$ $= {}^{n+1}C_{r} + {}^{n+1}C_{r+1} = {}^{n+2}C_{r+1}$
- **6. (c)** As for given question two cases are possible.

Selecting 4 out of first five question and6 out of remaining question

$$= {}^{5}C_{4} \times {}^{8}C_{6} = 140$$
 choices.

(ii) Selecting 5 out of first five question and 5 out of remaining 8 questions $= {}^{5}C_{5} \times {}^{8}C_{5} = 56$ choices.

Therefore, total number of choices =140+56=196.

7. (a) No. of ways in which 6 men can be arranged at a round table = (6 - 1)! = 5!

Now women can be arranged in ${}^{6}P_{5}$

$$= 6!$$
 Ways.

Total Number of ways = $6! \times 5!$

8. (c) Total number of arrangements of letters in the word GARDEN = 6! = 720 there are two vowels A and E, in half of the arrangements A preceeds E and other half A follows E.

So, vowels in alphabetical order in

$$\frac{1}{2} \times 720 = 360$$

9. (b) We know that the number of ways of distributing n identical items among *r* persons, when each one of them receives

at least one item is ${}^{n-1}C_{r-1}$

: The required number of ways

$$={}^{8-1}C_{3-1}={}^{7}C_{2}=\frac{7!}{2!5!}=\frac{7\times 6}{2\times 1}=21$$

10. (a) Alphabetical order is

A, C, H, I, N, S

No. of words starting with A-5!

No. of words starting with C-5!

м-26 Mathematics

No. of words starting with H-5! No. of words starting with I-5! No. of words starting with N-5! SACHIN-1

: sachin appears at serial no 601

11. (c)
$${}^{10}C_1 + {}^{10}C_2 + {}^{10}C_3 + {}^{10}C_4$$

= $10 + 45 + 120 + 210 = 385$

12. (a) Set S = {1,2,3,......12}

$$A \cup B \cup C = S$$
, $A \cap B = B \cap C = A \cap C = \phi$
 \therefore The number of ways to partition
 $= {}^{12}C_4 \times {}^8C_4 \times {}^4C_4$
 $= \frac{12!}{4!8!} \times \frac{8!}{4!4!} \times \frac{4!}{4!0!} = \frac{12!}{(4!)^3}$

13. (d) First let us arrange M, I, I, I, I, P, P

Which can be done in $\frac{7!}{4!2!}$ ways $\sqrt{M}\sqrt{I}\sqrt{I}\sqrt{I}\sqrt{I}\sqrt{P}\sqrt{P}$

Now 4 S can be kept at any of the ticked places in ${}^{8}C_{4}$ ways so that no two S are adjacent.

Total required ways

$$= \frac{7!}{4!2!} {}^{8}C_{4} = \frac{7!}{4!2!} {}^{8}C_{4} = 7 \times {}^{6}C_{4} \times {}^{8}C_{4}$$

14. (c) 4 novels, out of 6 novels and 1 dictionary out of 3 can be selected in ${}^6C_4 \times {}^3C_1$ ways

Then 4 novels with one dictionary in the middle can be arranged in 4! ways.

:. Total ways of arrangement

$$= {}^{6}C_{4} \times {}^{3}C_{1} \times 4! = 1080$$

15. (c) Total number of ways = ${}^3C_2 \times {}^9C_2$

$$=3 \times \frac{9 \times 8}{2} = 3 \times 36 = 108$$

16. (a) The number of ways of distributing 10 identical balls in 4 distinct boxes such that no box empty is same as the number of ways of selecting (r-1) places out of (n-1) different places, that is ${}^{n-1}C_{r-1}$. Hence require number of ways

$$={}^{10-1}C_{4-1}={}^{9}C_{3}$$

17. (a) Statement 2:

 $P(n): n^7 - n$ is divisible by 7 Put n=1, 1-1=0 is divisible by 7, which is true Let $n=k, P(k): k^7 - k$ is divisible by 7, true Put n=k+1

 $P(k+1): (k+1)^7 - (k+1) \text{ is div. by 7}$ $P(k+1): k^7 + {}^7C_1k^6 + {}^7C_2k^2 + \dots + {}^7C_6k + 1 - k - 1, \text{ is div. by 7}.$ $P(k+1): (k^7 - k) + ({}^7C_1k^6 + {}^7C_2k^5 + \dots + {}^7C_6k) \text{ is div. by 7}.$

Since 7 is coprime with 1, 2, 3, 4, 5, 6.

So ${}^{7}C_{1}$, ${}^{7}C_{2}$,..... ${}^{7}C_{6}$ are all divisible by 7 $\therefore P(k+1)$ is divisible by 7

Hence P(n): $n^7 - n$ is divisible by 7

Statement 1: $n^7 - n$ is divisible by 7 $\Rightarrow (n+1)^7 - (n+1)$ is divisible by 7

$$\Rightarrow (n+1)^7 - n^7 - 1 + (n^7 - n)$$

is divisible by 7

$$\Rightarrow$$
 $(n+1)^7 - n^7 - 1$ is divisible by 7

Hence both Statements 1 and 2 are correct and Statement 2 is the correct explanation of Statement -1.

18. (a) Number of required triangles = ${}^{10}C_3 - {}^{6}C_3$ = $\frac{10 \times 9 \times 8}{6} - \frac{6 \times 5 \times 4}{6} = 120 - 20 = 100$

19. **(b)**
$$4^{n} - 3n - 1 = (1+3)^{n} - 3n - 1$$

 $= [{}^{n}C_{0} + {}^{n}C_{1} \cdot 3 + {}^{n}C_{2} \cdot 3^{2} + \dots + {}^{n}C_{n} 3^{n}] - 3n - 1$
 $= 9 [{}^{n}C_{2} + {}^{n}C_{3} \cdot 3 + \dots + {}^{n}C_{n} \cdot 3^{n-2}]$
 $\therefore 4^{n} - 3n - 1$ is a multiple of 9 for all n .
 $\therefore X = \{x : x \text{ is a multiple of 9}\}$
Also, $Y = \{9 (n-1) : n \in \mathbb{N}\}$
 $= \{\text{All multiples of 9}\}$
 $\text{Clearly } X \subset Y : \therefore X \cup Y = Y$

20. (c) Given
$$n(A) = 2, n(B) = 4, n(A \times B) = 8$$

Permutations and Combinations

Required number of subsets =

$${}^{8}C_{3} + {}^{8}C_{4} + \dots + {}^{8}C_{8} = 2^{8} - {}^{8}C_{0} - {}^{8}C_{1} - {}^{8}C_{2}$$

= 256 - 1 - 8 - 28 = 219

21. (d) Four digits number can be arranged in $3 \times 4!$ ways.

Five digits number can be arranged in 5! ways.

Number of integers = $3 \times 4! + 5! = 192$.

22. (b) ALLMS

No. of words starting with

A:
$$\underline{A}_{---} = \frac{4!}{2!} = 12$$

M:
$$\underline{M}_{---} = \frac{4!}{2!} = 12$$

$$S : \underline{S} \underline{A}_{---} = \frac{3!}{2!} = 3$$

:
$$\underline{S} \underline{L} - 3! = 6$$

----м-27

 $SMALL \rightarrow 58^{th}$ word

23. (b)

Possible cases for X are

- (1) 3 ladies, 0 man
- (2) 2 ladies, 1 man
- (3) 1 lady, 2 men
- (4) 0 ladies, 3 men

Possible cases for Y are

- (1) 0 ladies, 3 men
- (2) 1 lady, 2 men
- (3) 2 ladies, 1 man
- (4) 3 ladies, 0 man

No. of ways =
$${}^{4}C_{3} \cdot {}^{4}C_{3} + ({}^{4}C_{2} \cdot {}^{3}C_{1})^{2} + ({}^{4}C_{1} \cdot {}^{3}C_{2})^{2} + ({}^{3}C_{3})^{2} = 16 + 324 + 144 + 1 = 485$$