# Optimization Theory and Algorithms

Instructor: Prof. LIAO, Guocheng (廖国成)

Email: liaogch6@mail.sysu.edu.cn

School of Software Engineering Sun Yat-sen University

## Outline

- Linear programming
- Quadratic programming
- Quadratically constrained quadratic programming
- Second-order cone programming

# Linear Programming (LP)

- Affine objective and constraint functions
- minimize an affine function over a polyhedron



• Solution: (i)  $-\infty$ ; (ii) at a vertex

## Linear Programming: standard form

- The only inequalities are  $x \ge 0$
- Converting general form to standard form: s.t.  $Gx \le h$

min 
$$c^T x$$
  
s.t.  $Gx \le h$   
 $Ax = b$ 

min  $c^T x$   
s.t.  $Ax = b$   
 $x \ge 0$ 

> Introducing slack variables s for the inequalities:

min 
$$c^T x$$
  
s.t.  $Gx \le h$   
 $Ax = b$   
min  $c^T x$   
s.t.  $Gx + s = h$   
 $Ax = b$   
 $s \ge 0$ 

 $\triangleright$  Decompose the variable x as the difference of two non-negative variables

$$x = x^{+} - x^{-}$$
min  $c^{T}x$ 
s.t.  $Gx + s = h$ 

$$Ax = b$$

$$s \ge 0$$

$$x = x^{+} - x^{-}$$
min  $c^{T}x^{+} - c^{T}x^{-}$ 
s.t.  $Gx^{+} - Gx^{-} + s = h$ 

$$Ax^{+} - Ax^{-} = b$$

$$s \ge 0, x^{+} \ge 0, x^{-} \ge 0$$

**Diet problem**: To find the cheapest combination of foods that satisfies some nutritional requirements.

min 
$$c^T x$$
  
s.t.  $Ax \ge b$   
 $x \ge 0$ 

- $x_j$ : units of food j;  $c_j$ : per-unit price of food j
- A<sub>ij</sub>: content of nutrient i in per unit of food j
- $b_i$ : minimum required intake of nutrient i

Transportation: Ship commodities from given sources to destinations at minimum cost

$$\min_{x} \qquad \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
subject to 
$$\sum_{j=1}^{n} x_{ij} \leq s_{i}, i = 1, \dots, m$$

$$\sum_{i=1}^{m} x_{ij} \geq d_{j}, j = 1, \dots, n, x \geq 0$$

- $x_{ij}$ : units shipped from i to j
- $c_{ij}$ : per-unit shipping cost from i to j
- $s_i$ : supply at source i, i = 1, ..., m
- $d_i$ : demand at destination j, j = 1, ..., n

## **Piecewise-linear minimization**

$$\min \max_{i=1,\dots,m} a_i^T x + b_i$$

Equivalent LP:

### **Absolute value minimization**

$$\min |c^T x + d|$$
  
s.t.  $Ax = b$ 

Equivalent LP:

min 
$$t$$
  
s.t.  $c^T x + d \le t$   
 $-c^T x - d \le t$   
 $Ax = b$ 

### $L_{\infty}$ -norm minimization

$$\min ||x||_{\infty}$$
subject to  $Gx \le h$ 

$$Ax = b$$

$$||x||_{\infty} \triangleq \max_{i} |x_{i}|$$

Equivalent LP:

$$\min_{\substack{t \in \mathbb{R}, x \in \mathbb{R}^n \\ \text{subject to}}} t$$

$$\text{subject to} \quad Gx \leq h$$

$$Ax = b$$

$$x \leq t \mathbf{1}$$

$$-t \mathbf{1} \leq x$$

## $L_1$ -norm minimization

min 
$$||x||_1$$
  
subject to  $Gx \le h$   
 $Ax = b$ 

$$||x||_1 \triangleq \sum_i |x_i|$$

Equivalent LP:

$$\min_{t \in \mathbb{R}^n, x \in \mathbb{R}^n} \quad \mathbf{1}^T t$$
subject to  $Gx \le h$ 

$$Ax = b$$

$$x \le t$$

$$-t \le x$$

# Quadratic Programming (QP)

min 
$$\frac{1}{2}x^TPx + q^Tx + r$$
  
s.t.  $Gx \le h$   
 $Ax = b$ 

- $P \in \mathbb{S}^n_+$ , so the objective is convex function
- Minimize a convex quadratic function over a polyhedron



## **Least-squares and regression**

$$\min_{x} ||Ax - b||_{2}^{2} = x^{T}A^{T}Ax - 2b^{T}Ax + b^{T}b$$
 subject to  $l_{i} \leq x_{i} \leq u_{i}, i = 1, ..., n$ 

## **Linear programming with random cost**

#### Deterministic

# $\min c^T x$ subject to $Gx \le h$ Ax = b

#### Non-deterministic

min 
$$\mathbf{E}[c^Tx] + \gamma \mathbf{var}[c^Tx] = \bar{c}^Tx + \gamma x^T \Sigma x$$
  
subject to  $Gx \le h$   
 $Ax = b$ 

- c is random vector with mean  $\bar{c}$  and covariance  $\Sigma$
- $c^T x$  is random variable with mean  $\bar{c}^T x$  and variance  $x^T \Sigma x$

## Portfolio optimization

minimize 
$$x^T \Sigma x$$
  
subject to  $R^T x \ge r_{min}$   
 $\mathbf{1}^T x = B$   
 $x \ge 0$ 

- Price changes of all invested assets has mean  $R \in \mathbb{R}^n$  and covariance  $\Sigma \in \mathbb{R}^{n \times n}$
- $r_{min}$ : minimum return.
- $\mathbf{1} \in \mathbb{R}^n$ : every component is 1;
- *B*: budget.

# Quadratically constrained quadratic programming (QCQP)

minimize 
$$(1/2)x^TP_0x + q_0^Tx + r_0$$
 subject to 
$$(1/2)x^TP_ix + q_i^Tx + r_i \leq 0, \quad i=1,\ldots,m$$
 
$$Ax = b$$

- $P \in \mathbb{S}^n_+$ , so the objective and constraint functions are convex
- Minimize a convex quadratic function over a intersection of m ellipsoids and an affine set

# QCQP: example

## **Portfolio optimization**

```
minimize x^T \Sigma_0 x

subject to x^T \Sigma_i x \leq d_i, i = 1, ..., m

R^T x \geq r_{min}

\mathbf{1}^T x = B

x \geq 0
```

• There are a few estimation of the covariance of the price changes,  $\Sigma_i$ , i=0,...,m

# Second-order cone programming (SOCP)

minimize 
$$f^T x$$
  
subject to  $||A_i x + b_i||_2 \le c_i^T x + d_i$ ,  $i = 1, ..., m$   
 $Fx = g$ ,

- $A_i \in \mathbb{R}^{n_i \times n}$
- Inequalities are second-order cone constraints

$$(A_i x + b_i, c_i^T x + d_i) \in \text{second-order cone in } \mathbb{R}^{n_i + 1}$$

• If  $A_i = 0$ , reduces to an LP; if  $c_i = 0$ , reduces to a QCQP.

 $\{(x,t)| \|x\|_2 \le t\}$  is second-order cone, also called ice cream cone.



# SOCP: examples

## **Robust linear programming**

minimize 
$$c^T x$$
  
subject to  $a_i^T x \leq b_i, \quad i = 1, \dots, m,$ 

•  $a_i$  is inaccurate, but are known in ellipsoids:  $a_i \in \mathcal{E}_i = \{\overline{a}_i + P_i u \mid \|u\|_2 \le 1\}$   $\overline{a}_i \in \mathbb{R}^n, P_i \in \mathbb{R}^{n \times n}$ 



minimize 
$$c^T x$$
  
subject to  $a_i^T x \leq b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$ 

## **Equivalent SOCP:**

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & \bar{a}_i^T x + \|P_i^T x\|_2 \leq b_i, \quad i=1,\dots,m \end{array}$$

$$\sup_{||u||_2 \le 1} \bar{a}_i^T x + (P_i u)^T x = \sup_{||u||_2 \le 1} \bar{a}_i^T x + u^T (P_i^T x) = \bar{a}_i^T x + ||P_i^T x||_2$$

# **SOCP:** examples

## **Robust linear programming**

minimize 
$$c^T x$$
  
subject to  $a_i^T x \leq b_i, \quad i = 1, \dots, m,$ 

- $a_i$  is Gaussian with mean  $\overline{a}_i$ , and covariance  $\Sigma_i$
- $a_i^T x$  is Gaussian with mean  $\bar{a}_i^T x$ , and variance  $x^T \Sigma_i x = \left\| \Sigma_i^{1/2} x \right\|_2$



minimize 
$$c^T x$$
  
subject to  $\mathbf{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m,$ 

## **Equivalent SOCP:**

minimize 
$$c^T x$$
 subject to  $\bar{a}_i^T x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2} x\|_2 \leq b_i, \quad i=1,\ldots,m$  
$$\Phi(x) = (1/\sqrt{2\pi}) \int_{-\infty}^x e^{-t^2/2} \, dt \text{ is CDF of } \mathcal{N}(0,1)$$

$$\Pr(a_i^T x \le b_i) = \Pr\left(\frac{a_i^T x - \bar{a}_i^T x}{\left\|\Sigma_i^{1/2} x\right\|_2} \le \frac{b_i - \bar{a}_i^T x}{\left\|\Sigma_i^{1/2} x\right\|_2}\right) \ge \eta \Longleftrightarrow \frac{b_i - \bar{a}_i^T x}{\left\|\Sigma_i^{1/2} x\right\|_2} \ge \Phi^{-1}(\eta)$$