Exhibits for Municipality Proliferation

$\mathrm{May}\ 5,\ 2023$

Contents

1	Short Tables, Weighted, Northern County Links	5
2	Short Tables, Unweighted, Northern County Links	7
3	Short Tables, Weighted, Northern City Links	ç
4	Short Tables, Unweighted, Northern City Links	11
5	County-Level Stacked Tables, Unweighted 5.1 Incorporated Area 5.2 Desegregation Plan 5.3 Total Unbuildable 5.4 Naturally Unbuildable	$\frac{15}{17}$
6	County-Level Stacked Tables, 1940 Population Weighted 6.1 Incorporated Area	$\frac{23}{25}$
7	ATE-ML Tables	29
8	School Finance Outcomes 8.1 Unweighted	
9	county-Level Tables, og-sample9.1Unweighted9.21940 Population Weighted	
10	O county-Level Tables, Per Capita, og-sample10.1 Unweighted10.2 1940 Population Weighted	
11	county-Level Tables, full-sample 11.1 Unweighted	
12	County-Level Tables, Per Capita, full-sample12.1 Unweighted	
\mathbf{L}	ist of Figures	
${f L}$	ist of Tables	
	TSLS Estimation Results, y=Number of Independent School Districts, Per Capita (100,000)	(; ;

```
TSLS Estimation Results, y=Number of Independent School Districts . . . . . .
  8
9
  10
  11
  TSLS Estimation Results, y=Number of Local Govts (no school districts), Per Capita (100,000)..................
12
13
  14
  15
  16
  17
  18
  19
  20
                                                         11
  21
  22
  24
  Effects of change in Black Migration on Number of Independent School Districts
25
                                                         14
  Effects of change in Black Migration on Number of Independent School Districts
26
  Effects of change in Black Migration on Number of Independent School Districts
27
                                                         18
28
  Effects of change in Black Migration on Number of Independent School Districts
  Effects of change in Black Migration on Number of Independent School Districts
29
                                                         22
  Effects of change in Black Migration on Number of Independent School Districts
30
                                                         24
  Effects of change in Black Migration on Number of Independent School Districts
31
                                                         26
32
  28
  Push-Factor instrument,
33
  34
                                                         30
  35
36
  31
  37
                                                         32
38
  39
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs .
                                                         33
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
  33
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  37
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs . .
48
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  53
 Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
 Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  y, division FEs, mfg and black mig share, below median area incorporated.
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  y, division FEs, mfg and black mig share, above median area incorporated.
```

```
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
y, division FEs, mfg and black mig share, mean TRI
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
y, division FEs, mfg and black mig share, below median area incorporated.
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
y, division FEs, mfg and black mig share, mean TRI
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs . .
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs .
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
65
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
and black mig share, mean TRI . . . . . . . . . . . . . .
                               Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
y, division FEs, mfg and black mig share, above median area incorporated.
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
y, division FEs, mfg and black mig share, mean TRI
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
```

103	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	
	y and division FEs, below median area incorporated	75
104	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	
	y and division FEs, above median area incorporated	76
105	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	
	y, division FEs, mfg and black mig share	77
106	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	
	y, division FEs, mfg and black mig share, below median area incorporated.	77
107	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	
	y, division FEs, mfg and black mig share, above median area incorporated.	78
108	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	
	y, division FEs, mfg and black mig share, mean TRI	79
109	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	
	y, division FEs, mfg and black mig share, mean TRI, below median area incorporated	79
110	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	
	y, division FEs, mfg and black mig share, mean TRI, above median area incorporated	80

1 Short Tables, Weighted, Northern County Links

Table 1: TSLS Estimation Results, y=Number of Independent School Districts, Per Capita (100,000)

County			CZ			
GM	0.351***	0.463**	0.381***	1.344***	1.488***	1.562***
	(0.110)	(0.217)	(0.130)	(0.320)	(0.371)	(0.385)
Sample Dep Var Mean Observations	Full	Urban	DCourt	Full	Urban	DCourt
	-12.022	-10.927	-11.786	-94.916	-98.161	-99.1059999999999
	1608	582	1200	639	378	369

Standard errors in parentheses

Table 2: TSLS Estimation Results, y=Number of Independent School Districts, Per Capita (100,000)

		County			CZ	
GM	0.696***	0.453**	0.647***	0.943***	0.791***	0.830***
	(0.168)	(0.188)	(0.179)	(0.111)	(0.111)	(0.116)
Sample	Full	Urban	DCourt	Full	Urban	DCourt
Dep Var Mean	-11.105	-5.115	-9.051	-19.012	-14.942	-15.078
Observations	1608	582	1200	639	378	369

Standard errors in parentheses

Table 3: TSLS Estimation Results, y=Number of Municipal Govts, Per Capita (100,000)

		County			CZ	
GM	0.0608* (0.0350)	0.107 (0.0810)	0.0683 (0.0418)	0.0378 (0.0543)	0.0411 (0.0599)	0.0383 (0.0632)
Sample Dep Var Mean Observations	Full 1.458 1608	Urban 1.783 582	DCourt 1.552 1200	Full 4.093 639	Urban 4.464 378	DCourt 4.5 369

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 4: TSLS Estimation Results, y=Number of Municipal Govts, Per Capita (100,000)

		County			CZ	
GM	-0.00258 (0.00385)	$0.000681 \\ (0.00652)$	-0.00331 (0.00438)	-0.000907 (0.00472)	-0.00140 (0.00488)	-0.00240 (0.00511)
Sample Dep Var Mean Observations	Full .271 1608	Urban .223 582	DCourt .261 1200	Full .316 639	Urban .296 378	DCourt .294 369

Table 5: TSLS Estimation Results, y=Number of Local Govts (no school districts), Per Capita (100,000)

County				CZ			
GM	0.0929 (0.0978)	0.153 (0.189)	0.108 (0.114)	-0.0588 (0.364)	0.00326 (0.409)	0.00113 (0.432)	
Sample Dep Var Mean Observations	Full 7.996 1608	Urban 8.9090000000000001 582	DCourt 8.31 1200	Full 34.383 639	Urban 36.812 378	DCourt 37.094 369	

Standard errors in parentheses

Table 6: TSLS Estimation Results, y=Number of Local Govts (no school districts), Per Capita (100,000)

		County			CZ	
GM	-0.127*** (0.0388)	-0.102* (0.0521)	-0.119*** (0.0418)	-0.102*** (0.0266)	-0.0671*** (0.0248)	-0.0691*** (0.0260)
Sample	Full	Urban	DCourt	Full	Urban	DCourt
Dep Var Mean	3.005	1.847	2.638	3.786	3.146	3.134
Observations	1608	582	1200	639	378	369

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

2 Short Tables, Unweighted, Northern County Links

Table 7: TSLS Estimation Results, y=Number of Independent School Districts

		County			CZ	
GM	0.133***	0.153***	0.159***	0.480**	0.602**	0.631**
	(0.0399)	(0.0557)	(0.0397)	(0.230)	(0.281)	(0.289)
Sample	Full	Urban	DCourt	Full	Urban	DCourt
Dep Var Mean	-15.412	-15.498	-15.728	-76.651	-92.627	-94.767
Observations	1608	582	1200	639	378	369

Standard errors in parentheses

Table 8: TSLS Estimation Results, y=Number of Independent School Districts, Per Capita (100,000)

		County			CZ	
GM	0.738***	0.325***	0.667***	1.613***	1.107***	1.159***
	(0.116)	(0.0752)	(0.108)	(0.267)	(0.186)	(0.187)
Sample Dep Var Mean Observations	Full	Urban	DCourt	Full	Urban	DCourt
	-31.35	-13.974	-27.108	-47.45	-34.512	-35.403
	1608	582	1200	639	378	369

Standard errors in parentheses

Table 9: TSLS Estimation Results, y=Number of Municipal Govts

		County			CZ	
GM	0.00732 (0.00558)	0.0135 (0.0111)	0.00790 (0.00594)	0.00961 (0.0220)	0.0151 (0.0248)	0.00782 (0.0257)
Sample Dep Var Mean Observations	Full .376 1608	Urban .675 582	DCourt .454 1200	Full 1.274 639	Urban 1.836 378	DCourt 1.848 369

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

^{*} p¡0.10, ** p¡0.05, *** p¡0.01

Table 10: TSLS Estimation Results, y=Number of Municipal Govts, Per Capita (100,000)

		County			CZ		
GM	-0.00861 (0.00724)	-0.00341 (0.00426)	-0.0109* (0.00558)	0.00825 (0.0114)	-0.000771 (0.00512)	-0.00248 (0.00530)	
Sample Dep Var Mean Observations	Full .523 1608	Urban .353 582	DCourt .48 1200	Full .536 639	Urban .348 378	DCourt .338 369	

Table 11: TSLS Estimation Results, y=Number of Local Govts (no school districts)

		County		CZ		
GM	0.00412 (0.0248)	0.0273 (0.0409)	0.0238 (0.0250)	-0.179 (0.136)	0.0396 (0.139)	0.0344 (0.149)
Sample Dep Var Mean Observations	Full 4.17 1608	Urban 5.596 582	DCourt 4.583 1200	Full 15.264 639	Urban 19.505 378	DCourt 19.696 369

Standard errors in parentheses

Table 12: TSLS Estimation Results, y=Number of Local Govts (no school districts), Per Capita (100,000)

		County		CZ		
GM			-0.114*** (0.0300)	-0.163* (0.0890)	-0.0504 (0.0326)	-0.0515 (0.0347)
Sample Dep Var Mean	Full 6.722	Urban 3.624	DCourt 5.864	Full 7.94	Urban 4.972	DCourt 4.957
Observations	1608	582	1200	639	378	369

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

3 Short Tables, Weighted, Northern City Links

Table 13: TSLS Estimation Results, y=Number of Independent School Districts, Per Capita (100,000)

	Con	CZ				
GM	0.315***	0.316***	0.316***	1.366***	1.389***	1.386***
	(0.0706)	(0.0719)	(0.0712)	(0.413)	(0.423)	(0.420)
Sample Dep Var Mean Observations	Full	Urban	DCourt	Full	Urban	DCourt
	-9.90799999999999	-9.789	-9.846	-99.462	-99.807	-99.694
	714	621	663	438	384	390

Standard errors in parentheses

Table 14: TSLS Estimation Results, y=Number of Independent School Districts, Per Capita (100,000)

		Сог	inty	CZ			
GM	0.617***	0.546***	0.570***	2.384***	2.244***	2.243***	
	(0.0897)	(0.0822)	(0.0849)	(0.346)	(0.337)	(0.336)	
Sample Dep Var Mean Observations	Full	Urban	DCourt	Full	Urban	DCourt	
	-8.766	-7.676	-8.17099999999999	-30.05	-27.98	-28.064	
	714	621	663	438	384	390	

Standard errors in parentheses

Table 15: TSLS Estimation Results, y=Number of Municipal Govts, Per Capita (100,000)

		County			-CZ			
GM	0.0429 (0.0270)	0.0440 (0.0280)	0.0431 (0.0275)	0.0692 (0.0911)	0.0697 (0.0929)	0.0686 (0.0925)		
Sample Dep Var Mean Observations	Full 1.765 714	Urban 1.776 621	DCourt 1.768 663	Full 5.3 438	Urban 5.346 384	DCourt 5.338 390		

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 16: TSLS Estimation Results, y=Number of Municipal Govts, Per Capita (100,000)

		County		CZ		
GM	-0.00165	-0.000285	-0.00144	-0.0166	-0.0165	-0.0163
	(0.00501)	(0.00510)	(0.00510)	(0.0124)	(0.0125)	(0.0124)
Sample Dep Var Mean Observations	Full	Urban	DCourt	Full	Urban	DCourt
	.358	.298	.32	.53	.523	.522
	714	621	663	438	384	390

Table 17: TSLS Estimation Results, y=Number of Local Govts (no school districts), Per Capita (100,000)

	County					CZ			
GM	0.0716 (0.0796)	0.0729 (0.0822)	0.0713 (0.0809)	-0.0220 (0.448)	-0.0203 (0.455)	-0.0229 (0.454)			
Sample Dep Var Mean Observations	Full 8.183999999999999 714	Urban 8.263 621	DCourt 8.2230000000000001 663	Full 37.195 438	Urban 37.484 384	DCourt 37.431 390			

Standard errors in parentheses

Table 18: TSLS Estimation Results, y=Number of Local Govts (no school districts), Per Capita (100,000)

_	County			CZ			
GM	-0.0806***	-0.0779***	-0.0812***	-0.173***	-0.173***	-0.173***	
	(0.0189)	(0.0188)	(0.0193)	(0.0582)	(0.0586)	(0.0583)	
Sample Dep Var Mean Observations	Full	Urban	DCourt	Full	Urban	DCourt	
	2.642	2.453	2.551	5.672	5.474	5.482	
	714	621	663	438	384	390	

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

4 Short Tables, Unweighted, Northern City Links

Table 19: TSLS Estimation Results, y=Number of Independent School Districts, Per Capita (100,000)

	Cor	unty		CZ			
GM	0.130***	0.143***	0.143***	0.481**	0.523**	0.523**	
	(0.0442)	(0.0435)	(0.0426)	(0.220)	(0.227)	(0.225)	
Sample	Full	Urban	DCourt	Full	Urban	DCourt	
Dep Var Mean	-9.77399999999999	-12.313	-16.237	-92.84	-97.6979999999999	-96.633	
Observations	714	621	663	438	384	390	

Standard errors in parentheses

Table 20: TSLS Estimation Results, y=Number of Independent School Districts, Per Capita (100,000)

		County			CZ	
GM	-0.176	-0.300	-0.254	4.633***	4.160***	4.157***
	(1.279)	(1.386)	(1.305)	(0.757)	(0.682)	(0.674)
Sample Dep Var Mean Observations	Full	Urban	DCourt	Full	Urban	DCourt
	-55.725	-52.001	-53.557	-148.734	-132.778	-132.013
	714	621	663	438	384	390

Standard errors in parentheses

Table 21: TSLS Estimation Results, y=Number of Municipal Govts, Per Capita (100,000)

		County			CZ		
GM	0.0101 (0.00755)	0.0118 (0.00820)	0.00937 (0.00779)	0.00108 (0.0169)	-0.000895 (0.0179)	-0.00199 (0.0179)	
Sample Dep Var Mean Observations	Full .208 714	Urban .794 621	DCourt .301 663	Full 1.637 438	Urban 1.826 384	DCourt 1.797 390	

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 22: TSLS Estimation Results, y=Number of Municipal Govts, Per Capita (100,000)

		County			CZ	
GM	0.601	0.658	0.581	-0.0698**	-0.0674**	-0.0676**
	(1.077)	(1.170)	(1.102)	(0.0331)	(0.0323)	(0.0324)
Sample	Full	Urban	DCourt	Full	Urban	DCourt
Dep Var Mean	15.976	17.825	16.913	1.568	1.571	1.546
Observations	714	621	663	438	384	390

Table 23: TSLS Estimation Results, y=Number of Local Govts (no school districts), Per Capita (100,000)

		County			CZ	
GM	0.0457* (0.0240)	0.0479* (0.0256)	0.0401 (0.0247)	0.104 (0.0919)	0.0949 (0.0936)	0.0919 (0.0946)
Sample Dep Var Mean Observations	Full 1.731 714	Urban 4.502 621	DCourt 3.17 663	Full 17.525 438	Urban 19.115 384	DCourt 18.877 390

Standard errors in parentheses

Table 24: TSLS Estimation Results, y=Number of Local Govts (no school districts), Per Capita (100,000)

		County			CZ	
GM	0.791 (1.239)	0.847 (1.340)	0.774 (1.270)	-0.222 (0.175)	-0.287* (0.162)	-0.293* (0.163)
Sample Dep Var Mean Observations	Full 26.021 714	Urban 27.584 621	DCourt 27.037 663	Full 18.452 438	Urban 17.005 384	DCourt 16.904 390

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

- 5 County-Level Stacked Tables, Unweighted
- 5.1 Incorporated Area

Table 25: Effects of change in Black Migration on Number of Independent School Districts

		R	aw		Per Capita (100,000)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Panel A: Dependent Variable GM									
\widehat{GM} (rank)	0.53*** (0.03)	0.35*** (0.04)	0.32*** (0.03)	0.28*** (0.03)	0.53*** (0.03)	0.35*** (0.04)	0.32*** (0.03)	0.28*** (0.03)	
F-Stat	252.66	71.09	152.75	115.77	252.66	71.09	152.75	115.77	
Panel B: Dependent Variable Numb	er of Indep	endent Sch	ool District	s					
GM (rank)	0.13*** (0.04)	0.15** (0.07)	0.14*** (0.04)	0.15*** (0.05)	-0.17 (1.27)	0.22 (1.09)	0.74*** (0.12)	0.65*** (0.13)	
Panel C: Dependent Variable GM									
\widehat{GM} (rank)	0.41*** (0.04)	0.30*** (0.04)	0.09*** (0.03)	0.08*** (0.03)	0.41*** (0.04)	0.30*** (0.04)	0.09*** (0.03)	0.08*** (0.03)	
\hat{GM} X Above Median Land Incorp	0.17*** (0.03)	0.08** (0.03)	0.35*** (0.02)	0.31*** (0.03)	0.17*** (0.03)	0.08** (0.03)	0.35*** (0.02)	0.31*** (0.03)	
F-Stat S.W. F-Stat K.P. F-Stat	164.13 178.61 90.55	40.04 69.47 34.27	242.08 57.81 26.88	167.67 45.79 21.76	164.13 178.61 90.55	40.04 69.47 34.27	242.08 57.81 26.88	167.67 45.79 21.76	
Panel D: Dependent Variable GM X	Above me	dian land I	ncorp						
\widehat{GM} (rank)	-0.22*** (0.03)	-0.27*** (0.03)	-0.25*** (0.02)	-0.25***	-0.22*** (0.03)	-0.27*** (0.03)	-0.25***	0.05***	
				(0.02)	(0.00)	(0.00)	(0.02)	-0.25*** (0.02)	
\widetilde{GM} X Above Median Land Incorp	0.95*** (0.02)	0.91*** (0.02)	0.97*** (0.01)	0.02) 0.93*** (0.02)	0.95*** (0.02)	0.91*** (0.02)	(0.02) $0.97***$ (0.01)		
GM X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat				0.93***	0.95***	0.91***	0.97***	(0.02) 0.93***	
F-Stat S.W. F-Stat	(0.02) 1088.34 475.63 90.55	(0.02) 941.12 493.71 34.27	(0.01) 2214.47 54.55 26.88	0.93*** (0.02) 1461.41 45.58 21.76	0.95*** (0.02) 1088.34 475.63	0.91*** (0.02) 941.12 493.71	0.97*** (0.01) 2214.47 54.55	(0.02) 0.93*** (0.02) 1461.41 45.58	
F-Stat S.W. F-Stat K.P. F-Stat	(0.02) 1088.34 475.63 90.55	(0.02) 941.12 493.71 34.27	(0.01) 2214.47 54.55 26.88	0.93*** (0.02) 1461.41 45.58 21.76	0.95*** (0.02) 1088.34 475.63	0.91*** (0.02) 941.12 493.71	0.97*** (0.01) 2214.47 54.55	(0.02) 0.93*** (0.02) 1461.41 45.58	
F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Numb	(0.02) 1088.34 475.63 90.55 er of Indeper 0.08	(0.02) 941.12 493.71 34.27 endent School	(0.01) 2214.47 54.55 26.88 cool District 0.15**	0.93*** (0.02) 1461.41 45.58 21.76	0.95*** (0.02) 1088.34 475.63 90.55	0.91*** (0.02) 941.12 493.71 34.27	0.97*** (0.01) 2214.47 54.55 26.88	(0.02) 0.93*** (0.02) 1461.41 45.58 21.76	
F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number GM (rank)	(0.02) 1088.34 475.63 90.55 er of Indeperture of the second of the s	(0.02) 941.12 493.71 34.27 endent School 0.11 (0.08) 0.06*	(0.01) 2214.47 54.55 26.88 cool District 0.15** (0.08) -0.01	0.93*** (0.02) 1461.41 45.58 21.76 s 0.15* (0.09) -0.01	0.95*** (0.02) 1088.34 475.63 90.55 0.19 (1.02) -0.40	0.91*** (0.02) 941.12 493.71 34.27 0.48 (0.95) -0.35	0.97*** (0.01) 2214.47 54.55 26.88 0.46** (0.23) 0.23**	(0.02) 0.93*** (0.02) 1461.41 45.58 21.76 0.40 (0.25) 0.20*	

5.2 Dese	gregation Plan
----------	----------------

Table 26: Effects of change in Black Migration on Number of Independent School Districts

		R	aw			Per Capita	a (100,000)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Dependent Variable	GM							
\widehat{GM} (rank)	0.53***	0.35***	0.32***	0.28***	0.53***	0.35***	0.32***	0.28***
	(0.03)	(0.04)	(0.03)	(0.03)	(0.03)	(0.04)	(0.03)	(0.03)
F-Stat	252.66	71.09	152.75	115.77	252.66	71.09	152.75	115.77
Panel B: Dependent Variable	Number of	f Independe	ent School I	Districts				
GM (rank)	0.13***	0.15**	0.14***	0.15***	-0.17	0.22	0.74***	0.65***
	(0.04)	(0.07)	(0.04)	(0.05)	(1.27)	(1.09)	(0.12)	(0.13)
Panel C: Dependent Variable	GM							
\widehat{GM} (rank)	0.44***	0.28***	0.19***	0.17***	0.44***	0.28***	0.19***	0.17***
, ,	(0.04)	(0.05)	(0.03)	(0.03)	(0.04)	(0.05)	(0.03)	(0.03)
\hat{GM} X Desegregation Order	0.16***	0.13***	0.35***	0.31***	0.16***	0.13***	0.35***	0.31***
	(0.03)	(0.03)	(0.02)	(0.02)	(0.03)	(0.03)	(0.02)	(0.02)
F-Stat	162.13	49.03	362.63	254.43	162.13	49.03	362.63	254.43
S.W. F-Stat K.P. F-Stat	188.20 94.74	65.08 32.42	$84.42 \\ 37.63$	67.06 31.60	188.20 94.74	65.08 32.42	$84.42 \\ 37.63$	67.06 31.60
Panel D: Dependent Variable		ove median	land Incor	р				
\hat{GM} (rank)	-0.17***	-0.23***	-0.11***	-0.12***	-0.17***	-0.23***	-0.11***	-0.12***
	(0.03)	(0.04)	(0.01)	(0.02)	(0.03)	(0.04)	(0.01)	(0.02)
\widehat{GM} X Desegregation Order	0.96***	0.95***	1.02***	1.01***	0.96***	0.95***	1.02***	1.01***
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
F-Stat	967.42	934.31	2033.50	1938.76	967.42	934.31	2033.50	1938.76
S.W. F-Stat	985.51	315.39	127.67	108.69	985.51	315.39	127.67	108.69
K.P. F-Stat	94.74	32.42	37.63	31.60	94.74	32.42	37.63	31.60
Panel E: Dependent Variable								
GM (rank)	0.14***	0.17**	0.13**	0.14**	0.48	1.00	0.67***	0.58***
-	(0.05)	(0.07)	(0.05)	(0.06)	(0.91)	(0.85)	(0.17)	(0.18)
GM X Desegregation Order	-0.01 (0.03)	-0.01 (0.03)	$0.00 \\ (0.03)$	$0.00 \\ (0.03)$	-0.88 (0.74)	-0.95 (0.79)	$0.09 \\ (0.08)$	$0.08 \\ (0.08)$
Combined Coeff	0.12***	0.15**	0.14***	0.15***	-0.39	0.05	0.75***	0.66***
Combined SE	(0.04)	(0.07)	(0.04)	(0.04)	(1.41)	(1.19)	(0.11)	(0.12)
Dep var mean	-9.77	-9.77	-15.41	-15.41	-55.73	-55.73	-31.35	-31.35
Sample	Original	Original	Full	Full	Original	Original	Full	Full
Mfg/Black Mig Controls	No	Yes	No	Yes	No	Yes	No	Yes
Observations	714	714	1608	1608	714	714	1608	1608

5.3	Total	Unbuildable
5.3	Total	Unbuildable

Table 27: Effects of change in Black Migration on Number of Independent School Districts

	Raw				Per Capita (100,000)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Panel A: Dependent Variable GM									
\widehat{GM} (rank)	0.53*** (0.03)	0.35*** (0.04)	0.32*** (0.03)	0.28*** (0.03)	0.53*** (0.03)	0.35*** (0.04)	0.32*** (0.03)	0.28*** (0.03)	
F-Stat	252.66	71.09	152.75	115.77	252.66	71.09	152.75	115.77	
Panel B: Dependent Variable Number of I	ndependen	t School Di	stricts						
GM (rank)	0.13*** (0.04)	0.15** (0.07)	0.14*** (0.04)	0.15*** (0.05)	-0.17 (1.27)	0.22 (1.09)	0.74*** (0.12)	0.65*** (0.13)	
Panel C: Dependent Variable GM									
\widehat{GM} (rank)	0.45*** (0.04)	0.29*** (0.05)	0.23*** (0.03)	0.21*** (0.03)	0.45*** (0.04)	0.29*** (0.05)	0.23*** (0.03)	0.21*** (0.03)	
\hat{GM} X Above Median Total Unbuildable	0.13*** (0.03)	0.10*** (0.03)	0.16*** (0.03)	0.12*** (0.03)	0.13*** (0.03)	0.10*** (0.03)	0.16*** (0.03)	0.12*** (0.03)	
F-Stat S.W. F-Stat K.P. F-Stat	167.64 194.98 102.92	45.56 69.16 34.58	100.35 120.72 61.03	74.26 95.67 48.39	167.64 194.98 102.92	45.56 69.16 34.58	100.35 120.72 61.03	74.26 95.67 48.39	
Panel D: Dependent Variable GM X Abov	re median l	and Incorp							
\widehat{GM} (rank)	-0.16*** (0.03)	-0.25*** (0.04)	-0.24*** (0.02)	-0.26*** (0.02)	-0.16*** (0.03)	-0.25*** (0.04)	-0.24*** (0.02)	-0.26***	
\hat{GM} X Above Median Total Unbuildable	0.92***						(0.02)	(0.02)	
2.2 If II. o. o. i. i. o. i. o	(0.02)	0.91*** (0.02)	0.86*** (0.02)	0.85*** (0.02)	0.92*** (0.02)	0.91*** (0.02)	0.86*** (0.02)	(0.02) $0.85***$ (0.02)	
F-Stat S.W. F-Stat K.P. F-Stat							0.86***	0.85***	
F-Stat S.W. F-Stat K.P. F-Stat	(0.02) 1116.37 902.39 102.92	(0.02) 1137.68 362.73 34.58	(0.02) 1030.24 321.20 61.03	(0.02) 928.29 336.21	(0.02) 1116.37 902.39	(0.02) 1137.68 362.73	0.86*** (0.02) 1030.24 321.20	0.85*** (0.02) 928.29 336.21	
F-Stat S.W. F-Stat	(0.02) 1116.37 902.39 102.92	(0.02) 1137.68 362.73 34.58	(0.02) 1030.24 321.20 61.03	(0.02) 928.29 336.21	(0.02) 1116.37 902.39	(0.02) 1137.68 362.73	0.86*** (0.02) 1030.24 321.20	0.85*** (0.02) 928.29 336.21	
F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number of I	(0.02) 1116.37 902.39 102.92 ndependen 0.06	(0.02) 1137.68 362.73 34.58 t School Di 0.09	(0.02) 1030.24 321.20 61.03 stricts 0.07	(0.02) 928.29 336.21 48.39	(0.02) 1116.37 902.39 102.92	(0.02) 1137.68 362.73 34.58	0.86*** (0.02) 1030.24 321.20 61.03	0.85*** (0.02) 928.29 336.21 48.39	
F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number of I GM (rank)	(0.02) 1116.37 902.39 102.92 ndependen 0.06 (0.06) 0.09***	(0.02) 1137.68 362.73 34.58 t School Di 0.09 (0.08) 0.08**	(0.02) 1030.24 321.20 61.03 stricts 0.07 (0.05) 0.08***	(0.02) 928.29 336.21 48.39 0.08 (0.05) 0.08***	(0.02) 1116.37 902.39 102.92 0.69 (0.79) -1.11	(0.02) 1137.68 362.73 34.58 1.02 (0.86) -1.03	0.86*** (0.02) 1030.24 321.20 61.03 0.58*** (0.15) 0.19***	0.85*** (0.02) 928.29 336.21 48.39 0.51*** (0.16) 0.17***	

5.4	Naturally Unbuildable

Table 28: Effects of change in Black Migration on Number of Independent School Districts

		R	aw		Per Capita (100,000)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Panel A: Dependent Variable GM									
\widehat{GM} (rank)	0.53*** (0.03)	0.35*** (0.04)	0.32*** (0.03)	0.28*** (0.03)	0.53*** (0.03)	0.35*** (0.04)	0.32*** (0.03)	0.28*** (0.03)	
F-Stat	252.66	71.09	152.75	115.77	252.66	71.09	152.75	115.77	
Panel B: Dependent Variable Number of Indep	pendent Scl	nool Distric	ets						
GM (rank)	0.13*** (0.04)	0.15** (0.07)	0.14*** (0.04)	0.15*** (0.05)	-0.17 (1.27)	0.22 (1.09)	0.74*** (0.12)	0.65*** (0.13)	
Panel C: Dependent Variable GM									
\widehat{GM} (rank)	0.57*** (0.04)	0.36*** (0.05)	0.34*** (0.03)	0.30*** (0.03)	0.57*** (0.04)	0.36*** (0.05)	0.34*** (0.03)	0.30*** (0.03)	
\hat{GM} X Above Median Naturally Unbuildable	-0.07** (0.04)	-0.02 (0.03)	-0.04 (0.03)	-0.04 (0.03)	-0.07** (0.04)	-0.02 (0.03)	-0.04 (0.03)	-0.04 (0.03)	
F-Stat S.W. F-Stat K.P. F-Stat	128.59 271.47 119.87	35.60 73.38 35.54	76.82 155.99 74.88	58.37 117.12 57.11	128.59 271.47 119.87	35.60 73.38 35.54	76.82 155.99 74.88	58.37 117.12 57.11	
Panel D: Dependent Variable GM X Above m	edian land	Incorp							
\hat{GM} (rank)	-0.15*** (0.02)	-0.23*** (0.04)	-0.24*** (0.02)	-0.26*** (0.02)	-0.15*** (0.02)	-0.23*** (0.04)	-0.24*** (0.02)	-0.26*** (0.02)	
\hat{GM} X Above Median Naturally Unbuildable	0.82*** (0.03)	0.84*** (0.02)	0.77*** (0.02)	0.77*** (0.02)	0.82*** (0.03)	0.84*** (0.02)	0.77*** (0.02)	0.77^{***} (0.02)	
F-Stat S.W. F-Stat K.P. F-Stat	575.96 1850.85 119.87	665.22 2343.40 35.54	717.73 1916.09 74.88	663.60 1418.47 57.11	575.96 1850.85 119.87	665.22 2343.40 35.54	717.73 1916.09 74.88	663.60 1418.47 57.11	
Panel E: Dependent Variable Number of Indep	pendent Scl	nool Distric	ets						
GM (rank)	0.08** (0.04)	0.09 (0.07)	0.10*** (0.04)	0.11** (0.04)	-0.49 (1.46)	-0.22 (1.33)	0.67*** (0.12)	0.59*** (0.13)	
GM X Above Median County Unbuildable	0.11*** (0.03)	0.11*** (0.03)	0.09*** (0.02)	0.09*** (0.02)	0.86 (0.57)	0.81 (0.53)	0.18*** (0.05)	$0.17*** \\ (0.05)$	
Combined Coeff Combined SE Dep var mean Sample Mfg/Black Mig Controls	0.20*** (0.05) -9.77 Original No	0.20*** (0.07) -9.77 Original Yes	0.19*** (0.04) -15.41 Full No	0.20*** (0.05) -15.41 Full Yes	0.37 (0.95) -55.73 Original No	0.59 (0.90) -55.73 Original Yes	0.85*** (0.12) -31.35 Full No	0.76*** (0.13) -31.35 Full Yes	
Observations	714	714	1608	1608	714	714	1608	1608	

- 6 County-Level Stacked Tables, 1940 Population Weighted
- 6.1 Incorporated Area

Table 29: Effects of change in Black Migration on Number of Independent School Districts

		R	aw		Per Capita (100,000)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Panel A: Dependent Variable GM									
\hat{GM} (rank)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)	
F-Stat	96.65	42.26	19.70	51.15	96.65	42.26	19.70	51.15	
Panel B: Dependent Variable Numb	er of Indep	endent Sch	ool District	s					
GM (rank)	0.30*** (0.06)	0.34*** (0.10)	0.35*** (0.10)	0.30*** (0.09)	0.62*** (0.09)	0.63*** (0.12)	0.69*** (0.15)	0.54*** (0.10)	
Panel C: Dependent Variable GM									
\widehat{GM} (rank)	0.38*** (0.09)	0.31*** (0.08)	-0.01 (0.07)	0.05 (0.06)	0.38*** (0.09)	0.31*** (0.08)	-0.01 (0.07)	0.05 (0.06)	
\hat{GM} X Above Median Land Incorp	0.19*** (0.05)	0.13*** (0.04)	0.39*** (0.05)	0.34*** (0.05)	0.19*** (0.05)	0.13*** (0.04)	0.39*** (0.05)	0.34*** (0.05)	
F-Stat S.W. F-Stat K.P. F-Stat	78.97 124.86 44.65	25.62 74.02 22.86	31.92 47.11 8.93	38.80 58.15 25.98	78.97 124.86 44.65	25.62 74.02 22.86	31.92 47.11 8.93	38.80 58.15 25.98	
Panel D: Dependent Variable GM X	Above me	dian land I	ncorp						
	-0.43***								
\widehat{GM} (rank)	(0.09)	-0.49*** (0.08)	-0.55*** (0.07)	-0.49*** (0.06)	-0.43*** (0.09)	-0.49*** (0.08)	-0.55*** (0.07)	-0.49*** (0.06)	
\widehat{GM} X Above Median Land Incorp									
	(0.09) 1.10***	(0.08) $1.04***$	(0.07) $1.07***$	(0.06) 1.02***	(0.09) 1.10***	(0.08) $1.04***$	(0.07) $1.07***$	1.02***	
\hat{GM} X Above Median Land Incorp F-Stat S.W. F-Stat	(0.09) 1.10*** (0.04) 906.09 314.15 44.65	(0.08) 1.04*** (0.03) 659.95 309.64 22.86	(0.07) 1.07*** (0.05) 406.60 71.80 8.93	(0.06) 1.02*** (0.05) 240.69 75.04 25.98	(0.09) 1.10*** (0.04) 906.09 314.15	(0.08) 1.04*** (0.03) 659.95 309.64	(0.07) 1.07*** (0.05) 406.60 71.80	(0.06) 1.02*** (0.05) 240.69 75.04	
GM X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat	(0.09) 1.10*** (0.04) 906.09 314.15 44.65	(0.08) 1.04*** (0.03) 659.95 309.64 22.86	(0.07) 1.07*** (0.05) 406.60 71.80 8.93	(0.06) 1.02*** (0.05) 240.69 75.04 25.98	(0.09) 1.10*** (0.04) 906.09 314.15	(0.08) 1.04*** (0.03) 659.95 309.64	(0.07) 1.07*** (0.05) 406.60 71.80	(0.06) 1.02*** (0.05) 240.69 75.04	
GM X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number GM (rank)	(0.09) 1.10*** (0.04) 906.09 314.15 44.65 er of Indeper 0.03	(0.08) 1.04*** (0.03) 659.95 309.64 22.86 endent School	(0.07) 1.07*** (0.05) 406.60 71.80 8.93 cool District 0.43**	(0.06) 1.02*** (0.05) 240.69 75.04 25.98 8 0.33**	(0.09) 1.10*** (0.04) 906.09 314.15 44.65	(0.08) 1.04*** (0.03) 659.95 309.64 22.86	(0.07) 1.07*** (0.05) 406.60 71.80 8.93	(0.06) 1.02*** (0.05) 240.69 75.04 25.98	
GM X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Numb	(0.09) 1.10*** (0.04) 906.09 314.15 44.65 er of Indeper 0.03 (0.10) 0.21***	(0.08) 1.04*** (0.03) 659.95 309.64 22.86 endent School 0.06 (0.12) 0.22***	(0.07) 1.07*** (0.05) 406.60 71.80 8.93 col District 0.43** (0.18) -0.06	(0.06) 1.02*** (0.05) 240.69 75.04 25.98 8 0.33** (0.15) -0.02	(0.09) 1.10*** (0.04) 906.09 314.15 44.65 0.29** (0.13) 0.24***	(0.08) 1.04*** (0.03) 659.95 309.64 22.86 0.27* (0.15) 0.28***	(0.07) 1.07*** (0.05) 406.60 71.80 8.93 0.37 (0.24) 0.23**	(0.06) 1.02*** (0.05) 240.69 75.04 25.98 0.20 (0.17) 0.25***	

6.2 Desegregation	Plan
-------------------	------

Table 30: Effects of change in Black Migration on Number of Independent School Districts

		R	aw			Per Capita	a (100,000)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Dependent Variable	GM							
\widehat{GM} (rank)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)
F-Stat	96.65	42.26	19.70	51.15	96.65	42.26	19.70	51.15
Panel B: Dependent Variable	Number of	f Independe	ent School I	Districts				
GM (rank)	0.30*** (0.06)	0.34*** (0.10)	0.35*** (0.10)	0.30*** (0.09)	0.62*** (0.09)	0.63*** (0.12)	0.69*** (0.15)	0.54*** (0.10)
Panel C: Dependent Variable	GM							
\widehat{GM} (rank)	0.62*** (0.06)	0.46*** (0.07)	0.30*** (0.11)	0.28*** (0.07)	0.62*** (0.06)	0.46*** (0.07)	0.30*** (0.11)	0.28*** (0.07)
\hat{GM} X Desegregation Order	-0.05 (0.04)	-0.04 (0.03)	0.21*** (0.07)	0.16*** (0.05)	-0.05 (0.04)	-0.04 (0.03)	0.21*** (0.07)	0.16*** (0.05)
F-Stat S.W. F-Stat K.P. F-Stat	54.55 112.30 41.13	22.72 41.28 18.71	104.66 62.36 6.14	50.27 54.09 19.76	54.55 112.30 41.13	22.72 41.28 18.71	104.66 62.36 6.14	50.27 54.09 19.76
Panel D: Dependent Variable	GM X Ab	ove median	land Incor	n				
\hat{GM} (rank)	-0.24*** (0.06)	-0.37*** (0.08)	-0.20*** (0.04)	-0.29*** (0.07)	-0.24*** (0.06)	-0.37*** (0.08)	-0.20*** (0.04)	-0.29*** (0.07)
\hat{GM} X Desegregation Order	0.91*** (0.03)	0.92*** (0.03)	1.00*** (0.02)	1.01*** (0.02)	0.91*** (0.03)	0.92*** (0.03)	1.00*** (0.02)	1.01*** (0.02)
F-Stat S.W. F-Stat K.P. F-Stat	468.68 1032.78 41.13	552.52 665.72 18.71	1041.26 46.69 6.14	1510.11 64.83 19.76	468.68 1032.78 41.13	552.52 665.72 18.71	1041.26 46.69 6.14	1510.11 64.83 19.76
Panel E: Dependent Variable	Number of	f Independe	ent School I	Districts				
GM (rank)	0.28*** (0.06)	0.33*** (0.10)	0.32*** (0.11)	0.25*** (0.09)	0.57*** (0.08)	0.61*** (0.11)	0.63*** (0.19)	0.45*** (0.10)
GM X Desegregation Order	0.11*** (0.03)	0.12*** (0.03)	$0.05 \\ (0.05)$	0.08*** (0.03)	0.20*** (0.04)	0.17*** (0.04)	0.08 (0.08)	0.11*** (0.04)
Combined Coeff Combined SE Dep var mean	0.39*** (0.07) -9.91 Original	0.45*** (0.11) -9.91 Original	0.36*** (0.09) -12.02 Full	0.32*** (0.09) -12.02 Full	0.77*** (0.10) -8.77 Original	0.78*** (0.13) -8.77 Original	0.71*** (0.13) -11.11 Full	0.56*** (0.09) -11.11 Full
Sample Mfg/Black Mig Controls	No	Yes	No	Yes	No	Yes	No	Yes

6.3 Total Unbuildable

Table 31: Effects of change in Black Migration on Number of Independent School Districts

	Raw					Per Capita	a (100,000)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Dependent Variable GM								
\widehat{GM} (rank)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)
F-Stat	96.65	42.26	19.70	51.15	96.65	42.26	19.70	51.15
Panel B: Dependent Variable Number of l	ndependen	t School Di	stricts					
GM (rank)	0.30***	0.34***	0.35***	0.30***	0.62***	0.63***	0.69***	0.54***
	(0.06)	(0.10)	(0.10)	(0.09)	(0.09)	(0.12)	(0.15)	(0.10)
Panel C: Dependent Variable GM								
\widehat{GM} (rank)	0.39*** (0.08)	0.30*** (0.07)	0.12 (0.08)	0.15*** (0.05)	0.39*** (0.08)	0.30*** (0.07)	0.12 (0.08)	0.15*** (0.05)
\hat{GM} X Above Median Total Unbuildable	0.20*** (0.03)	0.14^{***} (0.03)	0.27*** (0.03)	0.23*** (0.03)	0.20*** (0.03)	0.14*** (0.03)	0.27*** (0.03)	0.23*** (0.03)
F-Stat	101.17	27.90	45.78	58.92	101.17	27.90	45.78	58.92
S.W. F-Stat K.P. F-Stat	$167.17 \\ 47.61$	86.78 22.74	76.83 9.15	$87.91 \\ 25.98$	$167.17 \\ 47.61$	86.78 22.74	$76.83 \\ 9.15$	$87.91 \\ 25.98$
Panel D: Dependent Variable GM X Above \hat{GM} (rank)	ve median l -0.37*** (0.08)	and Incorp -0.44*** (0.08)	-0.56*** (0.09)	-0.53*** (0.06)	-0.37*** (0.08)	-0.44*** (0.08)	-0.56*** (0.09)	-0.53*** (0.06)
\hat{GM} X Above Median Total Unbuildable	1.04*** (0.02)	0.99*** (0.02)	1.06*** (0.02)	1.03*** (0.02)	1.04*** (0.02)	0.99*** (0.02)	1.06*** (0.02)	1.03*** (0.02)
F-Stat S.W. F-Stat K.P. F-Stat	1614.42 452.81 47.61	888.58 388.75 22.74	1164.47 220.79 9.15	1169.32 259.88 25.98	1614.42 452.81 47.61	888.58 388.75 22.74	1164.47 220.79 9.15	1169.32 259.88 25.98
Panel E: Dependent Variable Number of I	ndependen	t School Di	stricts					
GM (rank)	0.10 (0.08)	0.14 (0.11)	0.12 (0.12)	0.08 (0.11)	0.06 (0.13)	0.06 (0.15)	0.20 (0.18)	0.09 (0.13)
GM X Above Median Total Unbuildable	0.17^{***} (0.05)	0.17^{***} (0.05)	0.16*** (0.05)	0.18*** (0.05)	0.46*** (0.08)	0.48*** (0.08)	0.36*** (0.06)	0.36*** (0.06)
Combined Coeff	0.27***	0.31***	0.29***	0.26***	0.51***	0.54***	0.56***	0.45***
Combined SE	(0.06)	(0.09)	(0.10)	(0.09)	(0.08)	(0.11)	(0.14)	(0.10)
Dep var mean Sample	-9.91 Original	-9.91 Original	-12.02 Full	-12.02 Full	-8.77 Original	-8.77 Original	-11.11 Full	-11.11 Full
Mfg/Black Mig Controls	No	Yes	No	Yes	No	Yes	No	Yes
Observations	714	714	1608	1608	714	714	1608	1608

6.4	Naturally Unbuildable

Table 32: Effects of change in Black Migration on Number of Independent School Districts

	Raw				Per Capita (100,000)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Dependent Variable GM								
\widehat{GM} (rank)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)
F-Stat	96.65	42.26	19.70	51.15	96.65	42.26	19.70	51.15
Panel B: Dependent Variable Number of Indep	pendent Scl	nool Distric	ts					
GM (rank)	0.30*** (0.06)	0.34*** (0.10)	0.35*** (0.10)	0.30*** (0.09)	0.62*** (0.09)	0.63*** (0.12)	0.69*** (0.15)	0.54*** (0.10)
Panel C: Dependent Variable GM								
\widehat{GM} (rank)	0.64*** (0.06)	0.44*** (0.07)	0.48*** (0.06)	0.44*** (0.05)	0.64*** (0.06)	0.44*** (0.07)	0.48*** (0.06)	0.44*** (0.05)
\hat{GM} X Above Median Naturally Unbuildable	-0.06* (0.03)	-0.01 (0.03)	-0.12* (0.07)	-0.09 (0.06)	-0.06* (0.03)	-0.01 (0.03)	-0.12* (0.07)	-0.09 (0.06)
F-Stat S.W. F-Stat K.P. F-Stat	57.41 150.98 49.73	21.11 50.38 21.47	43.92 83.65 9.22	36.44 70.34 25.25	57.41 150.98 49.73	21.11 50.38 21.47	43.92 83.65 9.22	36.44 70.34 25.25
Panel D: Dependent Variable GM X Above m	edian land	Incorp						
\widehat{GM} (rank)	-0.19*** (0.05)	-0.30*** (0.09)	-0.33*** (0.05)	-0.35*** (0.05)	-0.19*** (0.05)	-0.30*** (0.09)	-0.33*** (0.05)	-0.35*** (0.05)
\hat{GM} X Above Median Naturally Unbuildable	0.93*** (0.03)	0.96*** (0.02)	0.85*** (0.06)	0.88*** (0.05)	0.93*** (0.03)	0.96*** (0.02)	0.85*** (0.06)	0.88*** (0.05)
F-Stat S.W. F-Stat K.P. F-Stat	618.99 2925.98 49.73	823.19 1582.53 21.47	265.52 423.27 9.22	160.63 224.14 25.25	618.99 2925.98 49.73	823.19 1582.53 21.47	265.52 423.27 9.22	160.63 224.14 25.25
Panel E: Dependent Variable Number of Indep	pendent Scl	nool Distric	ts					
GM (rank)	0.19*** (0.05)	0.15* (0.08)	0.22*** (0.07)	0.18*** (0.07)	0.47*** (0.08)	0.35*** (0.10)	0.52*** (0.12)	0.37*** (0.08)
GM X Above Median County Unbuildable	0.15*** (0.04)	0.16*** (0.04)	0.19*** (0.05)	0.18*** (0.04)	0.19*** (0.05)	0.24*** (0.04)	0.24*** (0.07)	0.23*** (0.05)
Combined Coeff Combined SE Dep var mean Sample Mfg/Black Mig Controls	0.34*** (0.07) -9.91 Original No	0.31*** (0.08) -9.91 Original Yes	0.41*** (0.12) -12.02 Full No	0.36*** (0.10) -12.02 Full Yes	0.66*** (0.10) -8.77 Original No	0.58*** (0.11) -8.77 Original Yes	0.76*** (0.18) -11.11 Full No	0.60*** (0.11) -11.11 Full Yes
Observations	714	714	1608	1608	714	714	1608	1608

Table 33: Push-Factor instrument,

	OrthoIV	Projected OrthoIV	DMLIV	DRIV
B(GM)	0.18***	0.15***	0.15***	$\frac{3.83}{3.65}$
SE(GM)	0.05	0.05	0.05	

Table 34: Push-Factor instrument, Per Capita (100,000)

	OrthoIV	Projected OrthoIV	DMLIV	DRIV
$\frac{B(GM)}{SE(GM)}$	0.01	0.7*** 0.15	0.59*** 0.14	2.5** 1.04

8 School Finance Outcomes

8.1 Unweighted

Table 35: Regressing School Finance Data on Number of New School Districts

	Expend	Expenditure Per Student			Local Revenue Per Student		
Number of Local Govts	1.458 (2.304)	1.462 (2.255)	2.121 (2.125)	14.55*** (2.807)	14.94*** (2.822)	15.28*** (2.801)	
R-Squared	.626	.626	.658	.42	.422	.432	
Dep Var Mean	11000	11000	11000	5010.815	5010.815	5010.815	
Mfg/Black Mig Controls	No	Yes	Yes	No	Yes	Yes	
TRI Controls	No	No	Yes	No	No	Yes	
Observations	1608	1608	1608	1608	1608	1608	

Standard errors in parentheses

Standard errors clustered at county level.

Table 36: Regressing School Finance Data on Number of New School Districts, Per Capita (100,000)

	Expen	diture Per S	tudent	Local Revenue Per Student		
Number of Local Govts	-156.8*** (25.65)	-127.8*** (26.50)	-129.8*** (27.03)	-52.64*** (10.64)	-39.37*** (11.04)	-41.04*** (11.58)
R-Squared	.147	.264	.271	.102	.21	.225
Dep Var Mean	24000	24000	24000	10000	10000	10000
Mfg/Black Mig Controls	No	Yes	Yes	No	Yes	Yes
TRI Controls	No	No	Yes	No	No	Yes
Observations	1608	1608	1608	1608	1608	1608

Standard errors in parentheses

Standard errors clustered at county level.

X variable is number of new school districts per county by decade for 1940-50, 1950-60, and 1960-70.

Y variable is county-level average Local Revenue per student from 1994-2018. Controls include base decade number of independent school districts and region and (X variable) decade fixed effects.

^{*} p;0.10, ** p;0.05, *** p;0.01

X variable is number of new school districts per county by decade for 1940-50, 1950-60, and 1960-70.

Y variable is county-level average Local Revenue per student from 1994-2018. Controls include base decade number of independent school districts and region and (X variable) decade fixed effects.

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 37: Regressing School Finance Data on Number of New School Districts

	Expenditure Per Student			Local Revenue Per Student			
Number of Local Govts	8.740 (8.026)	3.630 (4.911)	2.885* (1.572)	19.06*** (4.896)	17.92*** (3.568)	17.21*** (2.565)	
R-Squared	.454	.662	.874	.452	.564999999999999	.679	
Dep Var Mean	14000	14000	14000	6566.868	6566.868	6566.868	
Mfg/Black Mig Controls	No	Yes	Yes	No	Yes	Yes	
TRI Controls	No	No	Yes	No	No	Yes	
Observations	1608	1608	1608	1608	1608	1608	

Standard errors clustered at county level.

Table 38: Regressing School Finance Data on Number of New School Districts, Per Capita (100,000)

	Expendit	Expenditure Per Student			Local Revenue Per Student		
Number of Local Govts	-121.0*** (32.04)	-50.47 (31.53)	-48.89 (35.05)	-44.21*** (11.96)	-11.56 (12.56)	-9.779 (14.75)	
R-Squared Dep Var Mean	.053 17000	.128 17000	.139 17000	.043 7233.094	.133 7233.094	.145 7233.094	
Mfg/Black Mig Controls	No	Yes	Yes	No	Yes	Yes	
TRI Controls	No	No	Yes	No	No	Yes	
Observations	1608	1608	1608	1608	1608	1608	

Standard errors in parentheses

Standard errors clustered at county level.

X variable is number of new school districts per county by decade for 1940-50, 1950-60, and 1960-70.

Y variable is county-level average Local Revenue per student from 1994-2018. Controls include base decade number of independent school districts and region and (X variable) decade fixed effects.

^{*} pj0.10, ** pj0.05, *** pj0.01

X variable is number of new school districts per county by decade for 1940-50, 1950-60, and 1960-70.

Y variable is county-level average Local Revenue per student from 1994-2018. Controls include base decade number of independent school districts and region and (X variable) decade fixed effects.

^{*} pi0.10, ** pi0.05, *** pi0.01

9 county-Level Tables, og-sample

9.1 Unweighted

Table 39: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y.L0	2SLS (4) y_L0
\hat{GM} (rank)	0.534*** (0.0336)		0.0673*** (0.0235)	
GM (rank)		0.0681*** (0.0229)		0.126*** (0.0439)
F-Stat R-squared Dep Var Mean Observations	38.517 50.286 714	.594 -9.77399999999999 714	.594 -9.77399999999999 714	-9.773999999999999 714

Standard errors in parentheses

Table 40: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.480*** (0.0508)		0.0388 (0.0332)	
GM (rank)		0.0563 (0.0374)		0.0808 (0.0681)
F-Stat	18.436			
R-squared		.68200000000000001	.681	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

Standard errors in parentheses

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 41: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.485*** (0.0477)		0.0823** (0.0326)	
GM (rank)		0.0855*** (0.0299)		0.170** (0.0670)
F-Stat	125.285			
R-squared		.511	.511	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 42: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
GM (rank)	0.350***		0.0539**	
,	(0.0415)		(0.0238)	
GM (rank)		0.0564**		0.154**
		(0.0246)		(0.0683)
F-Stat	61.35			
R-squared		.594	.594	
Dep Var Mean	50.286	-9.773999999999999	-9.773999999999999	-9.773999999999999
Observations	714	714	714	714

Table 43: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.322*** (0.0544)		0.0442 (0.0317)	
GM (rank)		$0.0759* \\ (0.0407)$		0.137 (0.0951)
F-Stat	25.797			
R-squared		.68300000000000001	.681	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 44: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.329*** (0.0587)		0.0518 (0.0328)	
GM (rank)		0.0563** (0.0280)		0.157 (0.0991)
F-Stat	32.359			
R-squared		.515	.515	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p
i0.10, ** p
i0.05, *** p
i0.01

Table 45: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.338*** (0.0419)		0.0571** (0.0239)	
GM (rank)		0.0623** (0.0253)		0.169** (0.0712)
F-Stat	54.161			
R-squared		.595	.595	
Dep Var Mean	50.429	-9.77	-9.77	-9.77
Observations	714	714	714	714

Table 46: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.320**** (0.0547)		0.0448 (0.0317)	
GM (rank)		0.0769* (0.0409)		0.140 (0.0954)
F-Stat	23.381			
R-squared		.68300000000000001	.681	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} pj0.10, ** pj0.05, *** pj0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 47: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.315*** (0.0599)		0.0568* (0.0329)	
GM (rank)		0.0657** (0.0287)		0.180* (0.104)
F-Stat	29.289			
R-squared		.518	.517	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

9.2 1940 Population Weighted

Table 48: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.599*** (0.0609)	J == \$	0.182*** (0.0377)	J == 0
GM (rank)		0.174*** (0.0360)		0.304*** (0.0627)
F-Stat	42.579			
R-squared		.406	.412	
Dep Var Mean	50.429	-9.77	-9.77	-9.77
Observations	714	714	714	714

Standard errors in parentheses

Table 49: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\widehat{GM} (rank)	0.541***		0.0367	
, ,	(0.0557)		(0.0439)	
GM (rank)		0.0740		0.0678
, ,		(0.0466)		(0.0799)
F-Stat	25.352			
R-squared		.768	.765	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 50: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	D: / C/	OT C	D 1 1 D	OCT C
	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	y_L0	y_L0	y_L0
\widehat{GM} (rank)	0.533***		0.140***	
,	(0.0781)		(0.0343)	
GM (rank)		0.139***		0.263***
, ,		(0.0435)		(0.0670)
F-Stat	26.221			
R-squared		.38	.386	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 51: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.437*** (0.0672)		0.150*** (0.0458)	
GM (rank)		0.136*** (0.0426)		0.342*** (0.0967)
F-Stat	33.446			
R-squared		.411	.417	
Dep Var Mean	50.429	-9.77	-9.77	-9.77
Observations	714	714	714	714

Table 52: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.339*** (0.0582)		0.0245 (0.0416)	
GM (rank)		0.0817 (0.0539)		0.0722 (0.120)
F-Stat	42.976			
R-squared		.768	.766	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 53: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.405*** (0.0763)		0.125*** (0.0370)	
GM (rank)		0.124** (0.0530)		0.308*** (0.0902)
F-Stat	16.412			
R-squared		.386	.392	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p
i0.10, ** p
i0.05, *** p
i0.01

Table 54: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.358*** (0.0691)		0.156*** (0.0472)	
GM (rank)		0.136*** (0.0393)		0.435*** (0.125)
F-Stat	41.944			
R-squared		.411	.418	
Dep Var Mean	50.429	-9.77	-9.77	-9.77
Observations	714	714	714	714

Table 55: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.322*** (0.0595)		0.0297 (0.0416)	
GM (rank)		$0.0904* \\ (0.0547)$		0.0921 (0.125)
F-Stat	38.756			
R-squared		.769	.766	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 56: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.336*** (0.0797)	y_L0	0.134*** (0.0383)	у.До
GM (rank)		0.127** (0.0507)		0.400*** (0.122)
F-Stat	18.223			
R-squared		.389	.395	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p
i0.10, ** p
i0.05, *** p
i0.01

10 county-Level Tables, Per Capita, og-sample

10.1 Unweighted

Table 57: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.534*** (0.0336)		-0.0921 (0.680)	
GM (rank)		0.0102 (0.753)		-0.172 (1.265)
F-Stat	38.517			_
R-squared		.032	.032	
Dep Var Mean Observations	50.286 714	-55.725 714	-55.725 714	-55.725 714

Standard errors in parentheses

Table 58: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.480*** (0.0508)		0.334** (0.141)	
GM (rank)		0.504*** (0.142)		0.696** (0.285)
F-Stat	18.436			
R-squared		.475	.464	
Dep Var Mean	41.804	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 59: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.485*** (0.0477)		-0.410 (1.336)	
GM (rank)		-0.313 (1.533)		-0.845 (2.721)
F-Stat	125.285			
R-squared		.019	.019	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 60: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.350*** (0.0415)		0.0780 (0.383)	
GM (rank)		0.212 (0.501)		0.223 (1.087)
F-Stat	61.35			
R-squared		.034	.034	
Dep Var Mean	50.286	-55.725	-55.725	-55.725
Observations	714	714	714	714

Table 61: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.322*** (0.0544)		0.305** (0.118)	
GM (rank)		0.554*** (0.153)		0.946** (0.368)
F-Stat	25.797			
R-squared		.491	.48	
Dep Var Mean Observations	$\frac{41.804}{357}$	-55.754 357	$-55.754 \\ 357$	-55.754 357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 62: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.329*** (0.0587)		-0.227 (0.950)	
GM (rank)		-0.135 (1.240)		-0.688 (2.842)
F-Stat	32.359			
R-squared		.021	.021	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 63: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.338*** (0.0419)		$0.0600 \\ (0.406)$	
GM (rank)		0.179 (0.549)		0.178 (1.194)
F-Stat	54.161			
R-squared		.035	.034	
Dep Var Mean	50.429	-55.754	-55.754	-55.754
Observations	714	714	714	714

Table 64: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.320*** (0.0547)		0.301** (0.120)	
GM (rank)		0.550*** (0.154)		0.940** (0.372)
F-Stat	23.381			
R-squared		.491	.48	
Dep Var Mean Observations	$\frac{41.804}{357}$	-55.754 357	$-55.754 \\ 357$	-55.754 357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 65: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.315*** (0.0599)		-0.253 (0.988)	
GM (rank)		-0.192 (1.328)		-0.804 (3.085)
F-Stat	29.289			
R-squared		.022	.022	
Dep Var Mean Observations	59.053 357	-55.754 357	-55.754 357	-55.754 357

^{*} p;0.10, ** p;0.05, *** p;0.01

10.2 1940 Population Weighted

Table 66: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.599*** (0.0609)		0.368*** (0.0576)	
GM (rank)		0.420*** (0.0550)		0.615*** (0.0887)
F-Stat	42.579			
R-squared		.125	.112	
Dep Var Mean	50.429	-55.754	-55.754	-55.754
Observations	714	714	714	714

Standard errors in parentheses

Table 67: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.541*** (0.0557)		0.458*** (0.126)	
GM (rank)		0.520*** (0.111)		0.846*** (0.223)
F-Stat	25.352			
R-squared		.321	.308	
Dep Var Mean	41.804	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 68: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.533*** (0.0781)		0.215*** (0.0454)	
GM (rank)		0.258*** (0.0478)		0.404*** (0.0796)
F-Stat	26.221			
R-squared		.064	.056	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 69: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.437*** (0.0672)		0.274*** (0.0661)	
GM (rank)		0.332*** (0.0561)		0.627*** (0.120)
F-Stat	33.446			
R-squared		.144	.138	
Dep Var Mean	50.429	-55.754	-55.754	-55.754
Observations	714	714	714	714

Table 70: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	$y_L L0$	y_L0	y_L0
\widehat{GM} (rank)	0.339***		0.469***	
	(0.0582)		(0.116)	
GM (rank)		0.536***		1.386***
		(0.130)		(0.383)
F-Stat	42.976			
R-squared		.329	.321	
Dep Var Mean	41.804	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 71: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.405*** (0.0763)		0.154*** (0.0437)	
GM (rank)		0.202*** (0.0440)		0.380*** (0.0916)
F-Stat	16.412			
R-squared		.08	.075	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 72: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.358*** (0.0691)		0.269*** (0.0689)	
GM (rank)		0.328*** (0.0570)		0.752*** (0.162)
F-Stat	41.944			
R-squared		.144	.138	
Dep Var Mean	50.429	-55.754	-55.754	-55.754
Observations	714	714	714	714

Table 73: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) v_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.322*** (0.0595)	y =220	0.471*** (0.117)	, <u></u>
GM (rank)		0.544*** (0.132)		1.461*** (0.411)
F-Stat R-squared	38.756	.329	.321	
Dep Var Mean Observations	$41.804 \\ 357$	-55.754 357	-55.754 357	-55.754 357

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 74: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.336*** (0.0797)		0.147*** (0.0455)	
GM (rank)		0.196*** (0.0446)		0.437*** (0.123)
F-Stat	18.223			
R-squared		.08	.075	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pj0.10, ** pj0.05, *** pj0.01

11 county-Level Tables, full-sample

11.1 Unweighted

Table 75: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.318*** (0.0257)		0.0433*** (0.0125)	
GM (rank)		0.0586*** (0.0136)		0.136*** (0.0397)
F-Stat	34.863			
R-squared		.676	.675	
Dep Var Mean	50.124	-15.412	-15.412	-15.412
Observations	1608	1608	1608	1608

Standard errors in parentheses

Table 76: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.109*** (0.0350)		0.0285* (0.0167)	
GM (rank)		0.0265 (0.0207)		$0.262 \\ (0.173)$
F-Stat	15.824			
R-squared		.724	.724	
Dep Var Mean	40.238	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 77: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.407*** (0.0335)	<i>y</i> === 0	0.0459** (0.0199)	<i>y</i> ====
GM (rank)		0.0654*** (0.0204)		0.113** (0.0486)
F-Stat R-squared	31.109	.631	.629	
Dep Var Mean Observations	60.01 804	-15.412 804	-15.412 804	-15.412 804

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 78: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.282*** (0.0262)		0.0413*** (0.0127)	
GM (rank)		0.0583*** (0.0134)		0.146*** (0.0455)
F-Stat R-squared	39.467	.676	.675	
Dep Var Mean Observations	50.124 1608	-15.412 1608	-15.412 1608	-15.412 1608

Table 79: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.100*** (0.0362)		0.0293* (0.0174)	
GM (rank)		0.0271 (0.0206)		0.292 (0.198)
F-Stat	12.398			
R-squared		.724	.724	
Dep Var Mean Observations	$40.238 \\ 804$	-15.412 804	-15.412 804	-15.412 804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 80: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.352*** (0.0397)		0.0348* (0.0206)	
GM (rank)		0.0599*** (0.0205)		$0.0990* \\ (0.0575)$
F-Stat	36.135			
R-squared		.632	.63	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 81: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.277*** (0.0257)		0.0431*** (0.0127)	
GM (rank)		0.0657*** (0.0139)		0.156*** (0.0463)
F-Stat R-squared	38.702	.678	.676	
Dep Var Mean Observations	50.124 1608	-15.412 1608	-15.412 1608	-15.412 1608

Table 82: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.104*** (0.0357)		0.0280 (0.0173)	
GM (rank)		0.0383* (0.0216)		0.268 (0.183)
F-Stat	13.324			
R-squared		.727	.727	
Dep Var Mean Observations	$40.238 \\ 804$	-15.412 804	-15.412 804	-15.412 804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 83: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.343*** (0.0391)		0.0373* (0.0206)	
GM (rank)		0.0625*** (0.0207)		$0.109* \\ (0.0590)$
F-Stat	32.314			
R-squared		.633	.63	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

11.2 1940 Population Weighted

Table 84: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.397*** (0.0894)		0.138*** (0.0339)	
GM (rank)		0.140*** (0.0337)		0.347*** (0.101)
F-Stat R-squared	41.192	.426	.426	
Dep Var Mean Observations	50.124 1608	-15.412 1608	-15.412 1608	-15.412 1608

Standard errors in parentheses

Table 85: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.139*** (0.0486)		0.0594** (0.0262)	
GM (rank)		$0.0776** \\ (0.0330)$		0.427^* (0.219)
F-Stat	10.483			
R-squared		.715	.714	
Dep Var Mean	40.238	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 86: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.336*** (0.105)		0.129*** (0.0351)	
GM (rank)		0.119*** (0.0356)		0.383*** (0.139)
F-Stat	33.529			
R-squared		.389	.394	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 87: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.377*** (0.0527)		0.115*** (0.0363)	
GM (rank)		0.117*** (0.0299)		0.304*** (0.0912)
F-Stat R-squared	43.48	.434	.431	15 410
Dep Var Mean Observations	50.124 1608	-15.412 1608	-15.412 1608	-15.412 1608

Table 88: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.133*** (0.0488)		0.0605** (0.0272)	
GM (rank)		0.0786** (0.0317)		0.453* (0.236)
F-Stat	10.37			
R-squared		.715	.714	
Dep Var Mean Observations	$40.238 \\ 804$	-15.412 804	-15.412 804	-15.412 804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 89: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2)	Reduced Form (3)	2SLS (4)
\hat{GM} (rank)	0.362*** (0.0706)	y_L0	y_L0 0.0932** (0.0432)	y_L0
GM (rank)		0.0983*** (0.0291)		0.258** (0.113)
F-Stat	24.409			
R-squared		.402	.399	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 90: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.411*** (0.0506)		0.129*** (0.0355)	
GM (rank)		0.120*** (0.0308)		0.313*** (0.0777)
F-Stat	47.508			
R-squared		.436	.436	
Dep Var Mean	50.124	-15.412	-15.412	-15.412
Observations	1608	1608	1608	1608

Table 91: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.135*** (0.0485)		0.0600** (0.0268)	
GM (rank)		0.0916*** (0.0329)		0.445** (0.226)
F-Stat	10.376			
R-squared		.72	.718	
Dep Var Mean Observations	40.238 804	-15.412 804	-15.412 804	-15.412 804

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 92: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.363*** (0.0623)		0.0970** (0.0405)	
GM (rank)		0.0804** (0.0313)		0.267** (0.107)
F-Stat	33.906			
R-squared		.407	.409	
Dep Var Mean Observations	60.01 804	-15.412 804	-15.412 804	-15.412 804

^{*} p;0.10, ** p;0.05, *** p;0.01

12 county-Level Tables, Per Capita, full-sample

12.1 Unweighted

Table 93: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.318*** (0.0257)		0.235*** (0.0365)	
GM (rank)		0.393*** (0.0393)		0.741*** (0.117)
F-Stat	34.863			
R-squared		.449	.427	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Standard errors in parentheses

Table 94: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.109*** (0.0350)		0.120** (0.0535)	
GM (rank)		0.125* (0.0681)		1.101* (0.586)
F-Stat	15.824			
R-squared		.555	.555	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 95: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.407*** (0.0335)		0.172*** (0.0449)	
GM (rank)		0.382*** (0.0497)		0.423*** (0.106)
F-Stat	31.109			
R-squared		.404	.356	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 96: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.282*** (0.0262)		0.184*** (0.0360)	
GM (rank)		0.315*** (0.0373)		0.653*** (0.131)
F-Stat	39.467			
R-squared		.466	.452	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Table 97: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	y_L0	$y_L L0$	$y_L L0$
\widehat{GM} (rank)	0.100***		0.109**	
	(0.0362)		(0.0548)	
GM (rank)		0.114*		1.092*
, ,		(0.0667)		(0.650)
F-Stat	12.398			
R-squared		.56200000000000001	.56200000000000001	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 98: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\widehat{GM} (rank)	0.352*** (0.0397)		0.125*** (0.0445)	
GM (rank)		0.324*** (0.0467)		0.355*** (0.120)
F-Stat	36.135			
R-squared		.416	.384	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 99: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.277*** (0.0257)		0.187*** (0.0361)	
GM (rank)		0.330*** (0.0388)		0.676*** (0.133)
F-Stat	38.702			
R-squared		.467	.452	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Table 100: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	y_L0	y_L0	$y_L L0$
\widehat{GM} (rank)	0.104***		0.107*	
	(0.0357)		(0.0549)	
GM (rank)		0.136*		1.026*
, ,		(0.0696)		(0.605)
F-Stat	13.324			
R-squared		.56399999999999999	.56299999999999999	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 101: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.343*** (0.0391)	y_L0	0.128*** (0.0448)	y_11.0
GM (rank)		0.333*** (0.0469)		0.373*** (0.123)
F-Stat	32.314			
R-squared		.418	.384	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

12.2 1940 Population Weighted

Table 102: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.397*** (0.0894)	, <u> </u>	0.272*** (0.0439)	, <u>120</u>
GM (rank)		0.380*** (0.0578)		0.686*** (0.155)
F-Stat	41.192			
R-squared		.221	.173	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Standard errors in parentheses

Table 103: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.139*** (0.0486)	у шо	0.177*** (0.0596)	y ±10
GM (rank)		0.273*** (0.0699)		1.274** (0.518)
F-Stat	10.483			
R-squared		.524	.518	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 104: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2)	Reduced Form (3)	2SLS (4)
\widehat{GM} (rank)	0.336*** (0.105)	y_L0	y_L0 0.158*** (0.0305)	y_L0
GM (rank)		0.228*** (0.0505)		0.472*** (0.146)
F-Stat	33.529			
R-squared		.179	.142	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 105: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.377*** (0.0527)		0.202*** (0.0448)	
GM (rank)		0.288*** (0.0458)		0.536*** (0.103)
F-Stat	43.48			
R-squared		.26	.232	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Table 106: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y.L0	2SLS (4) y_L0
\hat{GM} (rank)	0.133*** (0.0488)		0.166*** (0.0610)	
GM (rank)		0.236*** (0.0658)		1.243** (0.551)
F-Stat	10.37			
R-squared		.534	.531	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 107: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.362*** (0.0706)		0.0920*** (0.0323)	
GM (rank)		0.175*** (0.0314)		0.254*** (0.0746)
F-Stat	24.409			
R-squared		.224	.192	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 108: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.411*** (0.0506)		0.216*** (0.0440)	
GM (rank)		0.299*** (0.0463)		0.525*** (0.0859)
F-Stat R-squared	47.508	.262	.234	
Dep Var Mean Observations	50.124 1608	-31.35 1608	-31.35 1608	-31.35 1608

Table 109: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.135*** (0.0485)		0.165*** (0.0597)	
GM (rank)		0.269*** (0.0680)		1.222** (0.517)
F-Stat	10.376			
R-squared		.542	.536	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 110: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\widehat{GM} (rank)	0.363*** (0.0623)		0.0956*** (0.0297)	
GM (rank)		0.167*** (0.0339)		0.263*** (0.0709)
F-Stat	33.906			
R-squared		.227	.203	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01