Université Catholique de Louvain

RAPPORT DE PROJET DU TROISIÈME QUADRIMESTRE LFSAB1503

ERRATA :Synthèse de l'ammoniac

Dans le cadre de notre projet Q3, il nous a été demandé d'analyser et de proposer des pistes d'amélioration pour le procédé Haber-Bosch. En effet, la synthèse d'ammoniac rejette énormément de CO_2 , c'est pourquoi nous avons exploré des solutions plus écologiques telles que le biométhane, l'hydrolyse ou encore des algues produisant de l' H_2 .

Auteurs: Groupe 1254
Simon BOIGELOT
Virgile GOYENS
Corentin JOACHIM
Xavier LAMBEIN
Edward NICOL
Léa PAULUS
Abbas SLITI

Cours: FSAB1503 Groupe: 1254 Tuteur:

Vincent Destoop

FSA12BA 14 janvier 2015

Table des matières

1	Bilan de masse	2
	1.1 Bilan de masse du plant	2
	1.1.1 bilan des réactions de synthèse	2
2	Analyse paramétrique	3
3	Mini-Hazop	4
4	Dimensionnement d'une soupape de sécurité	5
	4.1 Contexte	5
	4.2 Questions	5
5	Activité de terrain	6
6	Annexes	7

Bilan de masse

- 1.1 Bilan de masse du plant
- 1.1.1 bilan des réactions de synthèse

Analyse paramétrique

Mini-Hazop

Dimensionnement d'une soupape de sécurité

4.1 Contexte

Il nous a été demandé de prévoir une soupape de sécurité à installer sur le tank de NH_3 à l'état liquide.

4.2 Questions

Question 6

Pour déterminer l'enthalpie de vaporsisation, nous devons considérer la température de décharge. C'est-à-dire $323.15~\rm K$ et non $313.15~\rm K$. L'enthalpie de vaporisation vaut alors $1100~\rm kJ/kg$ et non $1150~\rm kJ/kg$. W vaut alors $8287.2~\rm kg/h$. Ce qui donne avec les mêmes calculs

$$A = 721.27 \text{ mm}^2$$

L'orifice de la soupape vaut donc finalement 721.27 mm^2 .

Question 8

En multipliant notre nouvelle aire par 0.15, nous obtenons 108.26 mm².

Activité de terrain

Annexes