Deep Residual Networks (ResNet)

- Deep Residual Learning for Image Recognition
- Identity Mappings in Deep Residual Networks

Background of Resnet's appearance

```
arXiv
https://arxiv.org > cs
```

[1512.03385] Deep Residual Learning for Image Recognition

K He 저술 · 2015 · 181713회 인용 — We present a residual learning framework to ease the

Table of Contents

- Background of ResNet's Appearance
- ResNet's Advantage
- ResNet's Architecture
- ResNet Variations
 - Deeper Bottleneck Architecture
 - Pre-Activation ResNet
 - ResNeXt

Before ResNet

Problems with deep layers

1. Vanishing gradient problem

2. Degradation problem

Vanishing/Exploding Gradient Problem

Degradation Problem

Degradation Problem

What is Residual Learning?

Plain net

Residual net

ResNet's Advantage 1) # of parameters doesn't increase

ResNet's Advantage 2) Solve Vanishing Gradient Problem

$$\frac{\partial H}{\partial x} = \frac{\partial F}{\partial x} + 1$$

Residual net

ResNet's Advantage 3) High Accuracy in Deep structure

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

GoogleNet, 22 layers
(ILSVRC 2014)

ResNet's Advantage 3) High Accuracy in Deep structure

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

ResNet, 152 layers (ILSVRC 2015)

ResNet's Advantage 3) High Accuracy in Deep structure

ResNet at ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

ResNet's object detection result on COCO

ResNet Architecture

ResNet Architecture

- How to align dimensions of input and output

1. Zero padding

2. linear projection W_s 사용: $y = F(x, \{W_i\}) + W_s x$

Deeper Bottleneck Architecture

Residual net

Deeper Bottleneck

$$\mathbf{y}_{l} = h(\mathbf{x}_{l}) + \mathcal{F}(\mathbf{x}_{l}, \mathcal{W}_{l}),$$

$$\mathbf{x}_{l+1} = f(\mathbf{y}_{l}).$$
(1)

x: residual unit input

y: residual unit output

1: number of each layer

W: weight

F: residual function F(x)

f: activation function

H: identity function

x: residual unit input

y: residual unit output

1: number of each layer

W: weight

F: residual function

f: activation function

H: identity function

$$\mathbf{y}_l = h(\mathbf{x}_l) + \mathcal{F}(\mathbf{x}_l, \mathcal{W}_l), \tag{1}$$

$$\mathbf{x}_{l+1} = f(\mathbf{y}_l). \tag{2}$$

$$x_{l+1} = f(h(x_l) + F(x_l))$$

- shortcut mapping: h = identity
- after-add mapping: f = ReLU
- What if f = identity?

- shortcut mapping: h = identity
- *f* = ReLU
- What if f = identity?

$$\mathbf{x}_{l+1} = f(\mathbf{y}_l). \tag{2}$$

Change activation function f to identity mapping!

$$\mathbf{x}_{l+1} = \mathbf{y}_l$$

$$\mathbf{x}_{l+1} = \mathbf{y}_l$$
 $\mathbf{y}_l = h(\mathbf{x}_l) + \mathcal{F}(\mathbf{x}_l, \mathcal{W}_l)$ (1)

$$\mathbf{x}_{l+1} = \mathbf{x}_l + \mathcal{F}(\mathbf{x}_l, \mathcal{W}_l) \tag{3}$$

$$x_{l+1} = x_l + F(x_l)$$

$$x_{l+2} = x_{l+1} + F(x_{l+1})$$

$$x_{l+1} = x_l + F(x_l)$$

$$x_{l+2} = x_{l+1} + F(x_{l+1})$$

 $x_{l+2} = x_{l} + F(x_{l}) + F(x_{l+1})$

$$\mathbf{x}_L = \mathbf{x}_l + \sum_{i=l}^{L-1} \mathcal{F}(\mathbf{x}_i, \mathcal{W}_i) \tag{4}$$

 When Feed forwarding, ResNet can be expressed as the sum of Residual Function F

Forward Propagation

$$\mathbf{x}_{L} = \mathbf{x}_{l} + \sum_{i=l}^{L-1} \mathcal{F}(\mathbf{x}_{i}, \mathcal{W}_{i})$$

- Any x_l is directly forward propagation to any x_L , plus residual.
- Any x_L is an additive outcome.
 - in contrast to multiplicative: $x_L = \prod_{i=1}^{L-1} W_i x_i$

Back Propagation

$$\mathbf{x}_{L} = \mathbf{x}_{l} + \sum_{i=l}^{L-1} \mathcal{F}(\mathbf{x}_{i}, \mathcal{W}_{i})$$

$$\frac{\partial \mathcal{E}}{\partial \mathbf{x}_{l}} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}} \frac{\partial \mathbf{x}_{L}}{\partial \mathbf{x}_{l}} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}} \left(1 + \frac{\partial}{\partial \mathbf{x}_{l}} \sum_{i=l}^{L-1} \mathcal{F}(\mathbf{x}_{i}, \mathcal{W}_{i}) \right)$$

 ∂E

 ∂x_1

Back Propagation

$$\frac{\partial \mathcal{E}}{\partial \mathbf{x}_{l}} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}} \frac{\partial \mathbf{x}_{L}}{\partial \mathbf{x}_{l}} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}} \left(1 + \frac{\partial}{\partial \mathbf{x}_{l}} \sum_{i=l}^{L-1} \mathcal{F}(\mathbf{x}_{i}, \mathcal{W}_{i}) \right)$$

- Any $\frac{\partial E}{\partial x_1}$ is directly back propagation to any
 - $\frac{\partial E}{\partial x_1}$ plus residual.
- Any $\frac{\partial E}{\partial x_1}$ is additive; unlikely to vanish
 - in contrast to multiplicative: $\frac{\partial E}{\partial x_l} = \prod_{i=1}^{L-1} W_i \frac{\partial E}{\partial x_L}$

 ∂E

 ∂x_1

 ∂E

 $\overline{\partial x_{\mathrm{L}}}$

(a) original

error : 6.61%

(b) BN after addition

error : 8.17%

(c) ReLU before addition

error : 7.84%

(d) ReLU-only pre-activation

error : 6.71%

(e) full pre-activation

error : 6.37%

Batch Normalization (BN)

- Normalizing input
- BN: normalizing each layer, for each mini-batch
- Batch: Number of data when the model updates parameters once
- Greatly accelerate training
- Improve regularization

(a) original

error : 6.61%

(b) BN after addition

error : 8.17%

(c) ReLU before addition

error : 7.84%

(a) original

error : 6.61%

(b) BN after addition

error : 8.17%

(c) ReLU before addition

error : 7.84%

(d) ReLU-only pre-activation

error : 6.71%

(e) full pre-activation

error : 6.37%

ResNeXt

<u>Aggregated Residual Transformations for Deep Neural ...</u>

S Xie 저술 · 2016 · 10561회 인용 — We present a simple, highly modularized network

ResNeXt

Deeper Bottleneck

ResNeXt

ResNeXt – Grouped Convolution

ResNeXt – Cardinality, Width

Figure 7. Test error *vs.* model size on CIFAR-10. The results are computed with 10 runs, shown with standard error bars. The labels show the settings of the templates.

- Cardinality: the number of groups to divide the total number of channels
- Width: the number of channels in one group
- Cardinality > Width > Depth

ResNeXt – Cardinality, Width

	setting	top-1 err (%)	top-5 err (%)
1× complexity references:			
ResNet-101	1 × 64d	22.0	6.0
ResNeXt-101	$32 \times 4d$	21.2	5.6
2× complexity models follow:			
ResNet-200 [15]	1 × 64d	21.7	5.8
ResNet-101, wider	$1 \times 100 d$	21.3	5.7
ResNeXt-101	2 × 64d	20.7	5.5
ResNeXt-101	64 × 4d	20.4	5.3

Table 4. Comparisons on ImageNet-1K when the number of FLOPs is increased to 2× of ResNet-101's. The error rate is evaluated on the single crop of 224×224 pixels. The highlighted factors are the factors that increase complexity.

감사합니다