Ngoc Ha

HW 3 - ST 557

Problem 1

```
In [14]: scores <- read.csv("TestScores.csv")
head(scores)</pre>
```

SocSciHist	Verbal	Science
468	41	26
428	39	26
514	53	21
547	67	33
614	61	27
501	67	29

```
In [15]: X1 <- scores$SocSciHist
    X2 <- scores$Verbal
    X3 <- scores$Science</pre>
```

(1a) $H_0: \mu = [500, 50, 30]^T; H_A: \mu \neq [500, 50, 30]^T; \alpha = 0.05$

```
In [17]: t2 <- n*t(muVec-muNull)%*%covarInv%*%(muVec-muNull)
    t2stat <- (n-3)/((n-1)*3)*t2
    Fcrit <- df(0.05, df1 = 3, df2 = n-3)</pre>
```

```
In [18]: cat("Reject Null hypothesis:", t2stat>Fcrit)
```

Reject Null hypothesis: TRUE

 $[500, 50, 30]^T$ lies outside of the 95% Confidence Interval, so there's a reason to believe that the population of students in 2011 is scoring differently from previous years.

(1b) Lengths and directions

```
In [19]: eiDec <- eigen(covar)</pre>
         eiDec
         eigen() decomposition
         $values
         [1] 5878.79165
                          63.83510
                                     14.59806
         $vectors
                    [,1]
                                  [,2]
                                               [,3]
         [1,] 0.99390539 0.103731534 -0.037307396
         [2,] 0.10344339 -0.994589227 -0.009577815
         [3,] 0.03809906 -0.005660238 0.999257936
In [20]: | eiVec1 <- eiDec$vectors[,1]</pre>
         eiVec2 <- eiDec$vectors[,2]
         eiVec3 <- eiDec$vectors[,3]
In [21]: scale1 <- sqrt(eiDec$values[1]*3*(n-3)/(n*(n-3))*df(0.05, df1=3, df2=n-3))
         scale2 <- sqrt(eiDec$values[2]*3*(n-3)/(n*(n-3))*df(0.05, df1=3, df2=n-3))
         scale3 <- sqrt(eiDec$values[3]*3*(n-3)/(n*(n-3))*df(0.05, df1=3, df2=n-3))
In [22]: cbind(c(scale1,scale2,scale3),eiDec$vec)
          9.3660059 0.99390539
                            0.103731534 -0.037307396
          0.9759783 0.10344339
                             -0.994589227
                                        -0.009577815
          0.999257936
```

(1c)

```
In [10]:
           options(repr.plot.width=9, repr.plot.height=3)
           par(mfrow=c(1,3))
           qqnorm(X1, main = 'Q-Q plot for X1', ylab = 'Sample Quantiles')
           qqline(X1, lwd = 2)
           qqnorm(X2, main = 'Q-Q plot for X2', ylab = 'Sample Quantiles')
           qqline(X2, lwd = 2)
           qqnorm(X3, main = 'Q-Q plot for X3', ylab = 'Sample Quantiles')
           qqline(X3, lwd = 2)
                        Q-Q plot for X1
                                                        Q-Q plot for X2
                                                                                        Q-Q plot for X3
                                              2
                                                                              R
            Sample Quantiles
                                           Sample Quantiles
                                              8
                                                                           Sample Quantiles
              8
                                                                              33
                                              S
              99
                                              4
                                                                              8
                                              8
```

X1 and X3 appear to be normally distributed. For X2, there's some deviation from normal in the upper tail.

Theoretical Quantiles

```
In [11]: options(repr.plot.width=9, repr.plot.height=3)
    par(mfrow=c(1,3))
    plot(X1,X2)
    plot(X1,X3)
    plot(X2,X3)
```

Theoretical Quantiles

Theoretical Quantiles

Problem 2

```
In [12]: lumber <- read.csv('LumberData.csv')
head(lumber)</pre>
```

Stiffness	Bending
1232	4175
1115	6652
2205	7612
1897	10914
1932	10850
1612	7627

```
In [13]: X1 <- lumber$Stiffness
X2 <- lumber$Bending
n = 30
p = 2</pre>
```

(2a)

```
In [14]: mu1 <- mean(X1)
    mu2 <- mean(X2)
    muVec <- c(mu1,mu2)
    print(muVec)</pre>
```

[1] 1860.500 8354.133

```
In [15]: covar <- var(lumber)
    eiDec <- eigen(covar)
    eiVec1 <- eiDec$vectors[,1]
    eiVec2 <- eiDec$vectors[,2]
    eiVal1 <- eiDec$values[1]
    eiVal2 <- eiDec$values[2]
    covar
    eiDec</pre>
```

```
StiffnessBendingStiffness124054.7361620.4Bending361620.43486333.2eigen() decomposition$values[1] 3524786.4585601.38$vectors[,1] [,2][1,] 0.1057399-0.9943938[2,] 0.99439380.1057399
```

```
In [16]: Tstat <- n*t(muVec)%*%(solve(covar))%*%(muVec)
Tstat</pre>
```

943.0262

```
In [28]:
         options(repr.plot.width=5, repr.plot.height=5)
          muTest.1 \leftarrow seq(round(min(X1), -2), round(max(X1), -2), 10)
          muTest.2 \leftarrow seq(round(min(X2),-2), round(max(X2),-2), 10)
          Tstats <- matrix(0, nrow=length(muTest.1), ncol=length(muTest.2))</pre>
          for(i in 1:length(muTest.1)){
                  for(j in 1:length(muTest.2)){
                          muTest <- c(muTest.1[i], muTest.2[j])</pre>
                          Tstats[i,j] <- n*t(muVec - muTest) %*% solve(covar) %*% (muVec
          muTest)
          }
          par(mar=c(4,4,1,1))
          # Plot the data, and superimpose the confidence ellipsoids
          # using the contour() function.
          plot(lumber, xlab="X1", ylab="X2")
          points(mu1, mu2, pch=16, col=2)
          points(2000, 10000, pch=10, col=3)
          contour(muTest.1, muTest.2, Tstats, levels=(n-1)*p/(n-p)*qf(0.95, p, n-p), dra
          wlabels=T, add=T, labels=95)
          # Add a line from the sample mean indicating the direction
          # and half-length of the major axis of the confidence region.
          lines(rbind(muVec, muVec + sqrt(eiVal1*(n-1)*p/(n-p)*qf(0.95, p, n-p)/n)*eiVec
          1))
```


(2b)
$$\mu_0 = [2000, 10000]^T$$

 μ_0 lies outside of the 95% confidence ellipsoid, so it's not a plausible mean vector for this dataset.

Problem 3

```
In [34]: bone <- read.csv('BoneMineral.csv')
alpha = 0.05; p = 6; n = dim(bone)[1]
head(bone)</pre>
```

dRadius	nRadius	dHumerus	nHumerus	dUlna	nUlna
1.103	1.052	2.139	2.238	0.873	0.872
0.842	0.859	1.873	1.741	0.590	0.744
0.925	0.873	1.887	1.809	0.767	0.713
0.857	0.744	1.739	1.547	0.706	0.674
0.795	0.809	1.734	1.715	0.549	0.654
0.787	0.779	1.509	1.474	0.782	0.571

(3a) 95% Bonferroni intervals

```
In [36]: # Compute the sample mean vector and sample covariance matrix

sampMean <- apply(bone, 2, mean)
sampVars <- apply(bone, 2, var)
sampCov <- cov(bone)

# Set desired significance Level alpha
alpha <- 0.05

# Compute Bonferroni corrected significance level as alpha/p
alphaStar <- alpha/p

# Compute the upper and lower confidence limits for all variables
# simultaneously, using R's vector operations

upperBon <- sampMean + sqrt(sampVars/n)*qt(alphaStar/2, df=n-1, lower.tail=F)
lowerBon <- sampMean - sqrt(sampVars/n)*qt(alphaStar/2, df=n-1, lower.tail=F)
cbind(lowerBon, upperBon)</pre>
```

```
        dRadius
        0.7782338
        0.9093662

        nRadius
        0.7568766
        0.8797634

        dHumerus
        1.6296774
        1.9556826

        nHumerus
        1.5832656
        1.8864144

        dUlna
        0.6425529
        0.7662471

        nUlna
        0.6346406
        0.7530394
```

(3b) 95% T^2 intervals

	IowerHot	upperHot
dRadius	0.7420179	0.9455821
nRadius	0.7229380	0.9137020
dHumerus	1.5396419	2.0457181
nHumerus	1.4995425	1.9701375
dUlna	0.6083914	0.8004086
nUlna	0.6019414	0.7857386

Hotelling's T^2 simultaneous intervals are wider than Bonferroni's simultaneous intervals.

Problem 4

```
In [1]: flour <- read.csv('FlourBags.csv')
head(flour)</pre>
```

Scale1	Scale2	Scale3
10.63	10.13	10.23
9.89	9.87	9.73
10.30	10.03	9.67
10.16	10.54	10.76
9.75	9.90	10.10
10.03	10.45	10.17

(4a)
$$H_0: \mu = [10,10,10]^T; H_A: \mu
eq [10,10,10]^T; lpha = 0.05.$$
 Hotelling's T^2

Reject Null hypothesis: TRUE

(4b) $H_0: \mu = [10, 10, 10]^T; H_A: \mu \neq [10, 10, 10]^T; lpha = 0.05$. Bonferroni

```
In [6]: # Compute the sample mean vector and sample covariance matrix
    sampVars <- apply(flour, 2, var)

# Compute Bonferroni corrected significance Level as alpha/p
    alphaStar <- alpha/p

# Compute the upper and Lower confidence limits for all variables
    # simultaneously, using R's vector operations

upperBon <- muVec + sqrt(sampVars/n)*qt(alphaStar/2, df=n-1, lower.tail=F)
    lowerBon <- muVec - sqrt(sampVars/n)*qt(alphaStar/2, df=n-1, lower.tail=F)
    cbind(lowerBon, upperBon)</pre>
```

	IowerBon	upperBon
Scale1	9.459005	10.00099
Scale2	9.844532	10.19547
Scale3	9.622842	10.10316

Each measurement lies inside the corresponding 95% confidence interval. Bonferroni's test **fails to reject** the Null.

(4c)

Hotelling's T^2 simultaneous confidence intervals would contain $[10,10,10]^T$, because they are more conservative than Bonferroni's simultaneous confidence intervals.

(4d)

Problem 5

(5a)

 $\sum = \mathbf{I_p} \implies$ elements of $ar{X}$ are **independent**, because the pairwise covariances are all equal to zero.

(5b)

For each individual test: $P(fails\ to\ reject\ H_0) = 1 - lpha^*$

$$\implies P_{\mu_0}(RejectH_0:\mu=\mu_0)=1-(1-lpha^*)^p$$

Reject Null: TRUE

(5c)

$$1-(1-lpha^*)^p=lpha\implieslpha^*=1-\sqrt[p]{1-lpha}$$

(5d)

```
In [14]: alpha = 0.05
```

```
n = 10; p = 4
   In [19]: n <- 10; p <- 4
             alphaStar < 1 - (1-alpha)^(1/p)
             alphaStarBon <- alpha/p</pre>
   In [20]: cat("Bonferroni longer:", alphaStarBon < alphaStar)</pre>
             Bonferroni longer: TRUE
n = 10; p = 8
   In [21]: | n <- 10; p <- 8
             alphaStar <- 1 - (1-alpha)^(1/p)
             alphaStarBon <- alpha/p</pre>
   In [22]: cat("Bonferroni longer:", alphaStarBon < alphaStar)</pre>
             Bonferroni longer: TRUE
n = 20; p = 4
   In [23]: n <- 20; p <- 4
             alphaStar <- 1 - (1-alpha)^(1/p)
             alphaStarBon <- alpha/p</pre>
   In [24]: cat("Bonferroni longer:", alphaStarBon < alphaStar)</pre>
             Bonferroni longer: TRUE
n = 20; p = 8
   In [25]: n <- 20; p <- 8
             alphaStar <- 1 - (1-alpha)^(1/p)
             alphaStarBon <- alpha/p</pre>
   In [26]: cat("Bonferroni longer:", alphaStarBon < alphaStar)</pre>
             Bonferroni longer: TRUE
```

In []: