12.2: Polar Coordinates

Defining Polar Coordinates When using polar coordinates, the origin of the coordinate system is called the **pole**, and the positive x-axis is called the **polar axis**. The polar coordinates for a point P are of the form (r, θ) .

The radial coordinate r describes the signed (directed) distance from the origin to P. The angular coordinate θ describes an angle whose initial side is the positive x-axis and whose terminal side lies on the ray passing through the origin and P.

Example (LC 33.4). Graph the following polar coordinates

$$A)\left(\frac{3}{2}, \frac{\pi}{2}\right)$$

$$B)\left(1,\frac{5\pi}{3}\right)$$

$$C)\left(\frac{3}{2}, \frac{7\pi}{4}\right)$$

$$B)\left(1, \frac{5\pi}{3}\right) \qquad C)\left(\frac{3}{2}, \frac{7\pi}{4}\right) \qquad D)\left(-1, \frac{-\pi}{3}\right)$$

Procedure: Converting Coordinates

A point with polar coordinates (r, θ) has Cartesian coordinates (x, y), where

$$x = r \cos \theta$$

and

$$y = r \sin \theta$$
.

A point with Cartesian coordinates (x, y) has polar coordinates (r, θ) , where

$$r^2 = x^2 + y^2$$
 and $\tan \theta = \frac{y}{x}$.

$$\tan \theta = \frac{y}{x}.$$

Example (LC 33.5). Consider the Cartesian coordinate $(4\sqrt{3}, -4)$. Rewrite this point in polar coordinates. *Note*: There are infinitely many polar representations

Example (LC 33.6). Rewrite y = 3 in terms of polar coordinates.

Example (LC 33.7). Graph r = 4 and $\theta = \frac{2\pi}{3}$

Summary: Circles in Polar Coordinates

The equation r = a describes a circle of radius |a| centered at (0,0).

The equation $r = 2a\cos\theta + 2b\sin\theta$ describes a circle of radius $\sqrt{a^2 + b^2}$ centered at (a, b).

Example. Rewrite the following in either polar coordinates or Cartesian coordinates

$$r = 5\cos(\theta) + 12\sin(\theta)$$

$$x = \frac{3}{y}$$

$$r\cos(\theta) = \sin(2\theta)$$

$$y = x^2$$

Procedure: Cartesian-to-Polar Method for Graphing $r=f(\theta)$

- 1. Graph $r = f(\theta)$ as if r and θ were Caresian coordinates with θ on the horizontal axis and r on the vertical axis. Be sure to choose an interval for θ on which the entire polar curve is produced.
- 2. Use the Cartesian graph that you created in Step 1 as a guide to sketch the points (r, θ) on the final *polar* curve.

Summary: Symmetry in Polar Equations

Symmetry about the x**-axis** occurs if the point (r, θ) is on the graph whenever $(r, -\theta)$ is on the graph.

Symmetry about the y-axis occurs if the point (r, θ) is on the graph whenever $r, \pi - \theta) = (-r, -\theta)$ is on the graph.

Symmetry about the origin occurs if the point (r, θ) is on the graph whenever $(-r, \theta) = (r, \theta + \pi)$ is on the graph.

Example (LC 33.8-33.9). Consider the polar curve $r = 2\sin(\theta) - 1$

Complete the table below

$$\frac{\theta}{r=2\sin(\theta)-1} \begin{vmatrix} 0 & \pi/6 & \pi/4 & \pi/2 & \pi & 3\pi/2 \end{vmatrix}$$

Graph the polar curve $r = 2\sin(\theta) - 1$

