(1) f.g. probability density functions X... random variable with pdf of prove E (log (x) >0! We know that log(x) is a concave function, therefore - log(x) is convex. $\mathbb{E}(\log \frac{g(x)}{g(x)}) = \mathbb{E}(-\log \frac{g(x)}{g(x)}) \ge -\log(\mathbb{E}(\frac{g(x)}{g(x)}))$ according to Jensen's inequality. $\mathbb{E}\left(\frac{g(x)}{g(x)}\right) = \int_{-\infty}^{\infty} \frac{g(x)}{g(x)} f(x) dx = \int_{-\infty}^{\infty} \frac{g(x)}{g(x)} dx = 1$ $\mathbb{E}\left(\log\left(\frac{f(x)}{g(x)}\right)\right) = \mathbb{E}\left(\log\left(g(x)\right) - \log\left(g(x)\right)\right) = \mathbb{E}\left(\log\left(f(x)\right)\right) - \mathbb{E}\left(\log\left(g(x)\right)\right)$ $\Rightarrow \mathbb{E}(\log(f(X))) - \mathbb{E}(\log\log(X))) \ge 0$ => E(log(f(X))) > E(log(g(X))) and obviously for f=y other holds equality. Therefore E (log (g(X))) is maximized when g=f.

3)	n=600	p= :	4		600	Coir	· ge	ips,	probo	bility	rof t	lails	is to							
(a)	Binomial																10) ~		
	P(1x-	A. Health Is						1												
								1.164					II (- 7 90	,				
	460 16	001/3)K/A	600-k		439	160	01/3	1k,	1,60	0-K	46	0 / 60	0	, 3 ,	k,1	, 600	0-k		
	= 2 (6 k=0	K 1/4	1 (4)	/		12=0	(k	1(4		4/	*	= C K=4	40	.)	(4)	14)			
	= poin												14 17 1 -							
	≈ 0,67																N. P.			
											11/12									
(6)	Use Non	The state of the state of	THE WORLD			Daniel D		1						1					Tach	
	Bin (n, p	CONTRACT DES				1000														
	P(X = 4	60) -	P(X	≤ 43	39)	= p	nori	n (4	60,	600	34/6	004	4)-8	nor	m (4	39,6	003	1600	31	1
	a 0,67	7263	7	with	hon	f co	nhi	mi hy	con	wech'	on									
	P(X = 1											will	n cou	Lim	ily	CONV	echi	Oh		
															1				1	
															1					
							57													
							57													
							5.0								1					
																		,		
																		,		

1St U5 (5) a) Xn,..., Xh ... i.i.d. Normal with unknown on and known 62 X = in Z X; find lim Vn (X3-c) for an appropriate constant c $\times \sim N(n, \frac{6^2}{n}) \Rightarrow \sqrt{n'(x-n)} \sim N(n-n, n\frac{6^2}{n}) = N(0, 6^2)$ we know this from exercise 4 q(x) = x3 is differentiable with q(x) = 3x2 Using the della method we calculate (nx(Xn-0) -> y => nx(g(Xn)-g(0))->g(0)y) $\sqrt{n}(\overline{X}^3 - \underline{M}^3) \rightarrow 3\underline{M}^2 \times \text{ with } \sqrt{n} N(0, 6^2)$ with results in N(0, 9 M 62) b) y abinom (n, p) logitly) = ln (1-y) Ocy = 1 determine the distribution of logit (x) $Y=n \times n = \mathcal{N}(np, np(1-p))$ $\Rightarrow n = \mathcal{N}(p, \frac{1}{n}p(1-p))$ > h -p~N(0, hp(1-p)) = In(h-p)~N(0, p(1-p)) g(y)=log:fly) if g'ly) existist for y=p then Vn (Xn-p) -> N(0,p(1-p)) -> Vn(logit(Xn)-logit(p)) -> logit(p) N(0,p(1-p)) logit (y) = (ln (1-y)) = (log (y) - log (1-y)) = y + 1 = y(1-y) => Vn (logit(Xn)-ln(1-p)) -> 1 N(0,p(1-p)) = N(0,p(1-p)) => logid(X,)-ln(1-p) -> 1 N(0, p(1-p)) = N(0, np(1-p)) logit (Xn) -> N(0, np(1-p)) + ln (1-p) = N(ln (1-p), np(1-p)) logit (1) ~ N (ln (1-p), np(1-p))