

SEQUENCE LISTING

<110> SHEN, BEN
LIU, WEN
CHRISTENSON, STEVEN D.
STANDAGE, SCOTT

<120> GENE CLUSTER FOR PRODUCTION OF THE ENEDIYNE ANTITUMOR
ANTIBIOTIC C-1027

<130> 407T-896010US

<140> 09/478,188
<141> 2000-01-05

<150> 60/115,434
<151> 1999-01-06

<160> 119

<170> PatentIn Ver. 3.3

<210> 1
<211> 42000
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
C-1027 gene cluster sequence

<220>
<223> orf; relative position 658-11

<220>
<223> orf; relative position 1478-930

<220>
<223> orf; relative position 2713-1649

<220>
<223> orf; relative position 3238-2851

<220>
<223> orf; relative position 4971-3442

<220>
<223> orf; relative position 5982-7478

<220>
<223> orf; relative position 9900-7573

<220>
<223> orf; relative position 11349-9982

<220>
<223> orf; relative position 28590-29588

```
<220>
<223> orf; relative position 29632-31197

<220>
<223> orf; relative position 31280-32590

<220>
<223> orf; relative position 32809-34392

<220>
<223> orf; relative position 35274-34458

<220>
<223> orf; relative position 17924-16653

<220>
<223> orf; relative position 16653-15919

<220>
<223> orf; relative position 15922-14690

<220>
<223> orf; relative position 14643-14212

<220>
<223> orf; relative position 13012-14079

<220>
<223> orf; relative position 12835-11351

<220>
<223> orf; relative position 25564-24986

<220>
<223> orf; relative position 24702-23566

<220>
<223> orf; relative position 22878-21424

<220>
<223> orf; relative position 21407-19926

<220>
<223> orf; relative position 19929-19267

<220>
<223> orf; relative position 19191-18031

<220>
<223> orf; relative position 35938-35516

<220>
<223> orf; relative position 27214-28593

<220>
<223> orf; relative position 25815-27170
```

<220>
 <223> orf; relative position 23546-22875

 <220>
 <223> orf; relative position 35274-34458

 <220>
 <223> orf; relative position 37559-38938

 <220>
 <223> orf; relative position 40986-39367

 <400> 1
 gtcgactcta gaggatcccg ggtgcggagt aggggttacg gacgaaggag gggtgcccg 60
 cgacgcctgc ggcgaagggc gttccttga gttcggaggcc ggtggcgagg acgacgttgt 120
 ccgcgtcgag gatctgcgtg tcggggagcg gcccaggcg cagcccctcg gtcaggtacg 180
 gggtgaggcc cctgacggtc acctcgaagc acgcgtcgta ggaccggcg tcgagcgct 240
 ccccgtccgc ttccacaagg acgacgccgg gacaggactc ccgtgcggcc tcgaccagtc 300
 gggcgtcgag gtagtcctgg aagatgcggc ggggggcggg gccctgttcg gtgaacttcc 360
 acgaagccca gcgcggggc cagtcgcgcc ggtcgccctc ctgggtggcc cagttgatga 420
 agtcgagcac gtccctcgcc aacaccgaca tcctgcggc ctggatattg aagacgttgt 480
 cccaggggtt gccgtacgg tgataggcga cggccggccga gcggtaggcg gcgccgcgc 540
 ccaggaggac gacttccagc ggtcttcgt cgaaatgaag caggcgtatc gcggtcgccg 600
 tgcctgccag gcccgcctt acgaccagca ccctgggcg cgcaccgtc atgcccata 660
 agcctccccc gctgactcag ggcggcgcgt cgccgcgtcc cgtcgggttc ctcgctgact 720
 ggaagttccc tgacctggcg tcaactccac tgatccgtaa gggatcgcg ggagtggata 780
 cgggtcaggt cgtgcacgt cgtggcacca gacagatcac cacgtcgata ggcactcg 840
 agccgcgccc ggggctcgac ggggggggc accggcaggg gcgccgcgt gatcagccgg 900
 agcctgtccg ggggctgtcg tgcggggcgt cagctgtca tgtcgggaac gccaggagac 960
 tcgatctcgg tgccggcgta gtggttgaag tagttggtgt agaggttac ggcacgtgg 1020
 acgaagacct cggcgagctc ggtgtccgtc catccctgtg ccacggccgc gttccacgag 1080
 gcgtcagacg cctcgcccac ttccggcgat atccctgtg ccacctggac cagtgcttcg 1140
 agttcacgt cgtccggcg cgtcccccg cgaatcgcca cggtccctc cagcgtgaaa 1200
 cccgcgaccc tcggccgacac cgtgtgcgca gcctggcgt acgcgcacgc gtcgaccgcg 1260
 cccacggcga gggcgatcgc ctcgcgtgtg cgggcgtcga acgttccatg ttcggcgacg 1320
 gctccggta tcgcccgtg tggttccagg accacggggg aatggccat tccccctgg 1380
 atgtttagca ctcgccccaa ccgttccgtc agtcggcgca ggtatctcc gccggctgcg 1440
 ggtgcgggtg cgtgggtgtg gacgggaaatc cgggcgtatgg gaatgcctc ctcgttagt 1500
 atgggagttc ctcgtccctc cagtctgcac aagcacctcc cccgggtgacg tgcggccgg 1560
 gcccctccgc cccttctagg cagggtcgccc ggtgggtgcgg ccccaggagc tcacctcgcc 1620
 gcaccaccgg gagcccccgg gggcgaggtc agaggccgag cacctctcg gccaggccgg 1680
 tgccccgaac acgggcctcg atcttgcga aggccaggc gcgtgtggtg gaggtgtcg 1740
 cggcgaacgg ggagaagccg cagtcgtcgc agttcccgat ttgctcgacg gggatgtac 1800
 gggcgccgag caggatgcgg tcgcgtaccc gtcgggggtt ctcgaccact gggtcgatcg 1860
 ggtcggtcac cccgaggaag acgcggccgg cagggggcag gtggtcacgg acgatgctca 1920
 ggaccgcctc ggggtccgtc tcgcccggca gttcgagata gaagttggcc gccttgagct 1980
 ggaagagctt gggcagcagt tcggcgtagt cgtatgtcgag gctgtcggtg gagtcctgt 2040
 cggccgcggg gcaggtgtgt acgcccgtc gggcggttc ctcggcgctg aagcgccca 2100
 ggacttcgtt gttgagggcg atgaagtctg cggaggacgc gccgcgtggg tcgagcttga 2160
 gggacagccg cccctcggtg aagtcgagct ggaccacgtg tgcccccg tccaggcagc 2220
 ctcggatgtc ggcttcggcc tcgtcgccga ggtcgccgtc gaaactctcg cgggggttagc 2280
 cctcgatggg agtggcgffff tagaggaggc tgagggcgga gggtgcgatg accgcctgt 2340
 tcagggggcg gtccgtgacg tgccgtcggt cgcgcagata ggtttcgcc cgcacgtgt 2400
 agcggaaaggc cccttgggtg atgctggga gctgcccgggt gtgcccgtct ggcgaagggg 2460
 tgacagcgcc gtccggcgag agggtgcga gggccgtcagc ggggttaggt ggcgaagctcg 2520
 gcttggactg ttccaccgtcc acgaggacgg ggcgtccgac tcgttccagt cgtgtcagg 2580

tgtccgcgac ggcctgttcc tgctgttgg ccaggtccgt ggcgtccagg gttccctggg 2640
 catgcgcggc aaggcgctgc aggagtgtcg cgagacgcgg aaggctgccg atcggctcag 2700
 tggcgatggt catggccgaa gagtagggaa gaggctgggt ttcgaaccac cgcaaagctt 2760
 tgattgccgc ttttcaggg gaagttgatg cgaagtcgccc gagcggcggaa acgtgctgat 2820
 gtatgggggg cgggaggagc ctgcggggtt ctaggagccg gtcgcggcca cggtgaggaa 2880
 ggtgcccagc tgggagcggg gggcttttc gccgacgcgg ttgggctcgta tggtgccggg 2940
 gtcgacggcc tctccgggg caccttgcgg gtagacgcct tcggggtcg agtcccggtc 3000
 atgggggagc aggaagaaga cccggcgcgg gtacagaccg ctgtccgggt cgcgtccggc 3060
 gtcggccccg agttcgatgt agccgatcat gcccgcgtcg cgggcgttagc gcggcttgg 3120
 cttgcgcggg ggggtcttgt ccagggctg gcccgcgtcg tcgagtcctt cgggatcttc 3180
 gagccacacg acttcgctt cgtgaacgag atcgctgtcg gtcagtagcg agctcatggc 3240
 ggcgacctt cttcgctcg cgtgcaccgg gtgggaagc ggtgcctcg tgatgtgtt 3300
 tcgtctgcgg cggtggccgg cagtggcg gaccgcgg ggtgcctggg ctcggccaaa 3360
 gcacggccag gtacgtcctg gggcacacat atcgtagatg ggtcccgctt cccgcaggca 3420
 gtgcctccgg tcggaggacg ttcatcgctc ggctgcccaga gcgagggttg ggtagaactt 3480
 cccggcgttg gatttgcata tgtcggcagg tgaggcgagg cccacttcctt ggcggaccgg 3540
 ggtggcgaag gcacggccgg tccggggcg gatgcctca ctgtgtgcgc accaggtgt 3600
 taggacgtg tagagaaggc cctgttcgac gcttagctcg ctgttctcg ggtcgtggag 3660
 gcagcactcg gcgaggaagc ggccgatgtg gtccctcggtt ttgcgtatg cgctgggtgc 3720
 gatgcggacc cggcggggc cggcgagtgt gtgcgggtt gcgaggtagc ggcggggcccc 3780
 ttcggtgagc cagtgcaggc tccggggcc ctcgtcctgg acgagttcgac cagccaggtt 3840
 gtcgatcttgc cgttcgtcg ggcgcgttgc ttcaaggccg aggaggccgatgcggcc 3900
 gaaggcgaag cggccgtgg agacctcggg ggggtgggccc cccagcagcc acagcttgc 3960
 cgtgggtgtg aaggagaaat agtctcgccg catgcggcg gcttgcgttgc tgcaccggc 4020
 ggtcagcagg cggacgcgcg cctcgtaaa gcccgttgc ggcgttgcgttgc tgcaccac 4080
 gatgaggccg cggccgtggaa gttcggtgag ctccgtggag tggcggagatgcgcac 4140
 gtccatgagg aaaccggcggc gggctcgctc ggcgttagtgc ccgagaatctt ggcgcgttgc 4200
 gtcgaggaga acggatttgc cttcttcc ctggccgttgc agaaaggca gcacctgcgc 4260
 cccgacgtca cgggtgttgc agtagccgag aaggagggttgc aggaagtcga tcatctcccg 4320
 cccttcggcg tcactcgccg aggtgttcc gaggaaacgg tgccagcggg ggggtgggat 4380
 gtccctgggg gaggcgtgg tggcgggaa gtggaaatgc cgggtgggtt cggcgttgc 4440
 catacggccg ttgcggaggt cgaccactcc gtcagggttgc cacaggcgatgcggcc 4500
 gtcgagggtg tcgggatcgaa gggagaggc gggagaggcc tttgcctggg tgaggagcgc 4560
 cttcataccg gtcgtcgaca ggggtcgccg tttgtgggttgc tgcgttccc ggtcggtgaa 4620
 cagcccgccg ggatcgctc cgggcacatc tcccgccatc tctccggcag cccacaggcc 4680
 agcttctcg cttccggccc gttccaccg gtagccgtcc caggagtacc agcccaggcc 4740
 ctccacgtgc cggaaacttgcg caccgttagag acggacgaag agcttgcgt tgcccggtc 4800
 ggtcaggctg gcccggatct cggccgcctc ccaggcggtc gcccgcacgg gggcgttgc 4860
 agcggccctgg acaggggagga gcccgttgc gggcgggttgc tttcgaggcc cccatctg 4920
 ctgagcggcg gcaatcgctg caaagcgagg gcccgttgc ctgctgtca tggacgttcc 4980
 tcgagatggc gcccgtggc ggtcccccgt gcccggacgg catgaatgtat cttccgggt 5040
 cggacagatg gcccaggccg gcccgttgc ggggggacaa cggccgtt cggacggagg 5100
 cccggccgacg gggggaaagca gggccggca accgggtggc gggccggcgatgcggcc 5160
 acgagcggcc cggtaaaaaaa ggaagggttc gttctccgt gggccggcactt gttgtggtcc 5220
 tcgtccgtca gttcgcttgc ggtttcagcc tccgtacccc caataaggcg aaagctgt 5280
 gtcagatc tttcgtaaa ctcggccggg gactgaaggactgttttgc gaaatggatgt 5340
 taggggggttgc tgggtgggg accgcgcctc gactcccccgg cggacggatgcgttgc 5400
 ggtcccttgg tccctccccc gatgcggc gggacccaa gggggccgttgc gggccggccgg 5460
 tcggtgaggg gcccgtgg gggactgatg ggtctgtatg gagcgtataag agggctgt 5520
 gggggccggaga gagttcggtt ccctcggtt gttccctggt catcaccgc ggtcagagg 5580
 gttttgagggttgc gttaaaaagg gactgaaggactcaactt cccattatgt gttgtggatgt 5640
 agaaagcagt atgacgatcgat cggcccttac atacgcgcgc gtcacatgtg agcttataat 5700
 gccggaaatggt gttcccttca gttcccttgc gttgggtcgatccctctgc actgcgttgc 5760
 ccgtcgccgc tccgcgcagg gaccgaagag ggaccaagtc cctgcgcggg gcccggcgc 5820
 gtaatcgatc agtccccccttcc ccccccgttcc ccacagcgatgc tgcgtcgatcc cctgtggaggc 5880
 cggaggggttgc cttcgatggcc gttctgtggc cctctggcc tccctcgttgc 5940
 catttacccc atggggccgc tggggccgtt cggagggttgc tggagggttgc tgcggggaa 6000

gtggcggatt ggcgcattggca ggagatgccc cgacagcggc cgggaatcga ccatgtcccc 6060
cgacccttat ccagcgtccg ctgatcctca gaggcagac ttgcaggct ccagaagcga 6120
agaacgccc gttccccggag cagccgcagg aagagcggat cgtctggac gtatggctgg 6180
cgaactaccc gtcccccac tatgacgggc gtgacttct cgctccgctg cgcgagcggg 6240
cggcggagtt cgagcgcgc caccggat accgggtcga catcaacggc cacgacttct 6300
ggaccatccc cgagaagggtg ggcgcgcaca cgcggaggg caggcctccg cacaatgcgg 6360
gctactacgc caccgacagc cagttggcgc gggacgcgcg cagggccgac gggaaagcggg 6420
tcttcacctc ggtggaggcc gcgttgccg gccggacgga gatactggga caccggctgg 6480
tggtgagga cctcgacccc gtggtgcgc actcctactc gttcgggggc gagttgggtgt 6540
cgctccgct cacggtcacc accatgtct gctacgc当地 ctcctccctc ctcgcgcgc 6600
ccggtgttcc ggagttgccc cgtacctggg atgaggtcga agcagcctgc caggcggctgg 6660
ccagcgtcga cggggggccc ggtcacggaa tcacctggc caacgcgc当地 tgggtttcc 6720
agcaggccgt cgcccttcag aacgggtgc tgaccgatca ggacaacggc cgctccggct 6780
ccgccacgac ggtggacgtc acatcgacg agatgctgaa ctgggtccgc tgggtggacgc 6840
acctccatga ggcggccat taccttaca cggggggggc ctgcgactgg ggcggggcgt 6900
tcgaggctt cgtccagcag aaggtcgcat tcaccttc当地 ctcgtccaag gccgc当地 6960
aactcatcca gggcggtgca caggccggtt tcgaggtcgc ggtgttcccg ttgcccagga 7020
acgcaaggc cccggtagcg ggccagccc tctcgggaga ctccctgtgg ctggccgc当地 7080
gactcgacga gaccacgc当地 gacgggctgc tcgctctcac ccagtacctg atcagccgg 7140
ccaacccgc当地 ggactggcac cgacccaacg gtttgc当地 ggtgaccggc gcccgggg 7200
aactgctgga agcgacaggc tggttcgacc gccggccgc当地 gcaacgggtg gccggggagc 7260
agttgaaggc gtccgaccgg tcacccggc当地 cgctcggc当地 gctgctcgcc gacttcgc当地 7320
ccgtcaacga ggtcatcacc gcagcgtatgg acgatgtct ggcgactgg gcccggcc 7380
cgaaggcctt cgccgaagcc ggcgtggccg cccagcaact gctcgatgccc tacaacgc当地 7440
ggaaccgctc cgatccggg accccctccg cctgtctgaga tccgttaccg gggcacaggg 7500
gcgc当地 cccgc当地 cctttccc ggccggccac tggccggggg acatgctctc cccggccccc 7560
caggacgtag ggtcaacccc cctgc当地 cttt cagggtggccg cgcaagatact caccggctc当地 7620
ggaggaatcc gggcgagca ggtccctc当地 tggccgggtt aagacgatct cggccccc当地 7680
ccgtccccccg tcgggacccca ggtcgatgat ccagtc当地 tgctgc当地 catcgaggtt 7740
gtgctcgatg accacgc当地 gttcccgcc ctgc当地 cggccagga gttcagcag 7800
ggtgtcaacg tccgacatgt gcagccggg gttgggctcg tccaggacat agaccgtgcc 7860
cgtcgctgc agctggtc当地 caagttgat cctgc当地 ctttgc当地 tcaccggcc当地 7920
aagcggctgg cccaggctga ggtaccaag accgacgtcg acgagagcgc gcatgttccgg 7980
cagcaggcc local ttctcggtga agaactcgac ggcctcgcc gccggcagct ccaggacgtc 8040
cgcgatcgac ttcccgccgaa gctgggctc caggacctcg ggcttgaagc ggc当地 8100
acagacaccg cagtgc当地 tcacccgatc catgaaggcc agctcggtga tcatgacccc 8160
gcggccctgg cactcctc当地 acgacccctt ggagttgaag ctgaacagcg aggagaccgg 8220
gc当地 ggctcc ttcccgcaaca gttgc当地 cgggtccatc aggccgaggt cggggccccc 8280
tgtggagcgc gacgaggccg cgtcgccgaa ctgggtcgacca aagaccgc当地 cgggtcgcc 8340
ctccatgaat gccccggaga tcaggctgtt cttggccggaa cccggccaccc cggtcaccgc 8400
ggtcagcaca cc当地 gggccacggc gacctgctt aggttgc当地 gatccgc当地 8460
ctccacggc当地 agctccccccg tggggggccg gacccctcc ttcacgc当地 ccccccggcc 8520
cagagcctcc cc当地 ggccggg tcttc当地 cccgacgttc gc当地 8580
gatctcgccc cc当地 gtgc当地 cc当地 cccccc当地 accgacatcg acgatgtggt cggcgatctc 8640
gatcacatcg gggcgtgtgt cgacgaccag cacgggttcc cc当地 tgc当地 8700
cagcaggctg ttgagccgc ccacgtcgcc cgggtgc当地 cc当地 8760
gatgtacgtg agccccggcc gaccactgac gaggtggccg accatctca cccgctgccc 8820
ctc当地 cccccc gagaggctgg cc当地 gggccgtt gtccagggtc aggtagccgaa gccc当地 8880
cacgatccgc tccaggccg tgc当地 cggccg tttcgccgaga gggccagccg cccgctccgt 8940
gacgccc当地 agcacccctcc tgaggctgc当地 gacccctccatc ctc当地 8960
cttgc当地 ctgg acgtccgat cggc当地 cggccg ggc当地 tggccgac cggacttc当地 9000
acagactccg tc当地 gtgc当地 aacgttc当地 gacccctcc ttc当地 9120
gaggtcgccg ttgaggttga gccgctc当地 cc当地 gggccggcc aaccctctgt agttcgctg 9180
gaactcggtg ctcttggctc当地 tc当地 cccctcc gtc当地 cggccgccc 9240
cagctccctc当地 cc当地 gtgc当地 tact cggc当地 acgtccgaa cggacttc当地 9300
ccagatctc当地 cagtc当地 cggccggcc taccacctt gtactcgccgaaaaggaccg cccgctc当地 9360
cagggacttc当地 gagcggtccaa gcatcttgc当地 caggctgc当地 gcgatgtctc ggccgagacc 9420

gtcgcagtcc gggcacatgc cctgggggtc gttgaacgag aacgcggaga cgccgagcga 9480
 ggacggccc tcgtcctcg tcgtgccaa ccgtgcgaac agggcccgga tcatcggtcg 9540
 tacgtccgtc atggtccccca ccgtggaccg ggcgttgcgc cccacgggct tctggtcgac 9600
 gatcaccggg gtggtaggt tctcgatcgc ctccggctga ggacgttcgt acttcggaag 9660
 ctggttgcgg atgtaccagc tgaagggtgga gttcagctgt cgctggcct ccacggccac 9720
 cgtgtcgaag acgatcgacg acttgcggc acccgagacc cccgtgaaga cctgtatctg 9780
 gttgcgggaa atcgtcaggg agacatctt gaggttgcgg atccgcgcgc cccgtatgcg 9840
 gatgccgtct cccggggccgg atgttttcc cgcgcggcg gtgggtcgg tgacgctcac 9900
 agagtttcc tcctggcttc cgtacatgtat ttaccgtgtc agccggcaa accggcggaa 9960
 cggtaaccac ctagcttgc ctcaggaggt gtccgggtc ttctccccc gtgtactt 10020
 gggggccggc cccggacca gggccggctc cgtgttccac cccggccagcc gatcccccc 10080
 ctccgtctcg tcctcctcga gaacgatccg gctgctcgcc cagcgcagga tcggcggcgc 10140
 cgtcaccggag gtgtatgaggg cgaccagcac gatgtatcgtg aaggtcacgg tgcgtactac 10200
 gccgatacgc aggccgacca gggcgatcac cacctcgatc attccacgcg agttcatccc 10260
 cgctccgagc gccagccct cgtagccgct catcccgcca ctacggcgg cgacgtacgc 10320
 accggcgaac ttggcggaaag tggccaccaa cagcaccggc aggcccgta gcagcaccga 10380
 cggctccgcg agtgcgtca ggtccatgcg aagccccaca ctgcccagga acaccggc 10440
 gaacacggcc atgaccagcg tgcgcagcgg ggcgagccgt accggggcga tgcgtctc 10500
 cagggtcgcg cccggccacga acgccccaa caacgcctcc atccggccg cccgggtc 10560
 cgccccgtac aggacgacca cggccacgac gacgggtacg gccgatacgg ggaccggc 10620
 gtcacccgtc cgggacagcc gcctgcccgt cgggccc accgcacacgc cccggcgc 10680
 gaagacggtc gtccaggcca tcgtggtcg gaccacggc ccccccggcc ccccaactcgc 10740
 cagcggcgtc accagagcgca gcagcagcca gcccaccgcg tcgtcgaaca cccgtcgcc 10800
 gatgagcgc tggccgacgt tgcgtgcgt cagattcagg tgcgtgcgcg tcttggcgt 10860
 caccgggagg gccgtgacac acatcgac cccgaggaac agcgcgaaga ccccccgc 10920
 tccggagttcc gcgagcagcg aggccggcac caggtagccg gtggcgatgc ccagcccc 10980
 aggaatcaga agacccgcca ggctgacccg ggcggccaga ccccccgcgt tgcgcaggat 11040
 ccgggggtcg aactgggcac ctgcgtatggc caccagcaga aggacgcga actggcagaa 11100
 cgcgtcgcgc aggtgcgcct gcgcgcgtc ctcggaaac agcctgcgg aaagtcccg 11160
 cgagatctgc cccagcaggc tcggcccgag cagtacccgc gccgtcagct ccccccacc 11220
 cggcggcaga ccgcgtccggg tccccagccg tcccagaccc taggcacagg cgagcaggag 11280
 gccgacctgg agcaggaaga ccgtcagcgg ctcccccgc accgcgcacg tggctgcg 11340
 cacagccacg tcaggaccgc gcaccggaa cccagcccg cccgtccgtc gacgcggc 11400
 gaccccccgt cctcaccggcgt cgctcgcc cccgcctatc ccccaagaaga gcccgtgc 11460
 gcagtgcggc gctctgtcc atgaggcggc ccaccaccc tcccgacgc ggcgcgtgc 11520
 gcccgtcgcc gtcgcccgcg gcgggtgcg tcatgcggc catctcgatc gacgcctcg 11580
 agaaccgcgt cctggcccg gccgtgtcg cgaactcgatc ggaggagacc cccgcgtatc 11640
 gttcgacgaa ggactgcagg tcggagtcg cgggttgcg gatcttcgg gcctgccc 11700
 aataggagtc ctccgaatgg tgcatgtcgt agaagccgac caggaactcg tagaagcgc 11760
 cgtactccag ccggtagccg gcctcgaact cctcgaaacgc gctggctcg tcgaccgacc 11820
 cgtccaggca ggagttgagc gagcgcgcgt ccagcagtc gctgttagtg gcgaggtgca 11880
 ccccgaggaa gaacaccggg tcgacgaagc acgcgcac cccgaccagg gccatgccc 11940
 ggcgcgcgaa cttcgtgttgc ctgtacgacc agtcctgcg gacccggacg tcggcgttag 12000
 ggcgcgcgtt caccgggtg gcctcgaga gcttctccgc gatcagcggg caggccgcga 12060
 tgaacgactc catcgccccc tcggggtcgc cctgcaccag gctcggcgcg tcccggttca 12120
 ccactgcgc gacactcgatc agctcggag acagggtat gtaccagaac caccgtgt 12180
 cgaagggtca ggtgaagatg ttcccgaggat tcggcttcgg aagccgcctt cccgcgttga 12240
 agtagccgaa caggccagg ttgcggaaaga agggcgagta ctcgcgcgtt ggcgcgcact 12300
 tcttgtacag cccaccgggtt tgccggagg cgtccacgc gaaacgggag cccacctcg 12360
 gctcgccccc ctccggatcgc cggtagcgc cccgcgcac cccgcgtcc tcggcgttgc 12420
 gcacgtcgag gacatcgatc ttctccgc cctcgacacc gtcgcgtcg gcgttgcga 12480
 gcaggatctg gtcaacttc atgcgtcgatc cctggatcgc gtacccgc gccccccggc 12540
 tccggcgcga gacggcgaag tcgaacgtcc acgggtcggg gttggcaccc cacttgaac 12600
 tcccgccgtt ctgtatcgatc aaggctgcct tcttcgtatc gtcggagaca cccggaggat 12660
 gtgcgtatcc gtggacgggtt gaggggagga gcgactcacc gatctggtag cccgggaaagg 12720
 tctcccttc cagctggagt acgcgtatggc cccgcttgcg gaccagcgtg gagacggatc 12780
 agccgcgcgg acctccgcgc accacgtatc cgtcgtactg cgctgacacgc tccacggact 12840

ctccattctcg cacatcgggc gtctcatatt cccaggaatc ctctggccc cccaggtgct 12900
 gccgcacatctt cggtatttcg aagtctgtggg cattctgcga gaagcatgaa ccgcgtggcc 12960
 cggtctacag tggcgtggaa tttcagtgat tgcgctgaag ggcggcacac gatgaaggca 13020
 cttgtactgt cgggtggttc ggggaccgc ctgcgcccga tcagttacgc catgccgaag 13080
 cagctcggtc cgatcgccgg gaagccagtc cttgaatatg ttctggataa tatccggaac 13140
 ctcgatatac aagaggtcgc cattgtcgtc ggtgacttggg ctcaggaaat tattgaggca 13200
 atgggtgacg gcagccgtt cggctcgcc ctcacccata tacgccagga gcaacctctg 13260
 ggcacatcgcc actgcgtgaa actggcccga gacttcctcg acgaggacga cttcgtccctc 13320
 taccttagggc acatcatgt ggacggagac ctgtccgcg aggccgggca cttcctccac 13380
 acccgccccg cccgcggat cgtctcgcc caggtgccc acccccccggc cttcgggggt 13440
 atcgagctgg acggcgaagg gcgtgtctg cgcttggctg agaaaacccc tgaaccgcgc 13500
 agcgacctcg cggcggtcgg cgtgtacttc ttaccgcgg acgtgcaccc cgccgtcgcac 13560
 gcgatttagcc cgagccgacg gggcgagctg gaaatcaccg acgcccattca gtggctgctg 13620
 gagcaggggcc tgcccggtcg ggcggccgc tacacggact acttggaaagga caccggccgg 13680
 gtcgaggagc tcgtggagtg caaccggcgg atgctcgcc gtcgtggcgt ccaggtgtcg 13740
 ggcgagggtgg accccggagag cgaacttggt ggtgcgggtgg tcgtcgagga gggcgcccg 13800
 gtgacgcgtt cgggggtcg gggaccacgc gtatcgccg cgggcacggcgt cgtcgaggac 13860
 agccagatcg gaccgtacgc ctccatcgcc cggcgctgca ccgtgcgggc gtcccggctc 13920
 tccgactcca tcgtccttga cgacgcctcg atcctcgccg tgagcggact gcacggctcg 13980
 ctgatcgaa gggcgccgc gatcgccccc ggggcccggg gcgaggcccg gcacccggctg 14040
 gtcgtcgccg accacatcgca gatcgagatc gcggcctgac gcacccaccg gaggcaccggg 14100
 gggaggctcg gcagggcgt caggccgtaa gaaggcgtgc cggggcggga cggaccggcc 14160
 cccgcagccc acaggtcccc ggtccgcgg tatggggac tcgagggttcg atcagccgaa 14220
 ggtcagagcc acgtggccga ggtcagaccc ggagttggcgc ggcggcaggt tacaggcggc 14280
 cgtggcgcag tcgacgtcg cggccggcgt gccttcgggc gtggagcccg tgtacgactt 14340
 ggcacacgac aagctgaacg acgcgcgtcc ggacgcgtcc gtggtaagg acgtcgccgt 14400
 cggccgggtt cacgcgtctt ggccaccgac cggagcgcac tggcgatgt attaggtctc 14460
 gccggccggcg gcaccgcgtg ccgacaccgac cacgctctgt ccgtcaactca gaccggaggc 14520
 gggactgacg gagaaggccg ggcggccgaa ggcacccggac tgtcggccgg cggccaggcc 14580
 gatggatcg acggccacga cggccgttcc ggaagcgttcc cgggacatgt gacgtaacga 14640
 catgcgtagg ctccgattcg aggaggggt tgatcaactcc atgaaaggat cacctcgccg 14700
 gacggccccc tgcatctccc tctgtgtctc cgtggatttc cggcacggca ctccgtcga 14760
 cggccgcccc cagaatgcgg cagacccccc gcaccccttc cggcccccacc gccgtaccgg 14820
 tgggcagcga cagacccccc tcggtgagcg cttccaccc cgggagcggta cggccggcgt 14880
 ggcgcgcgag gtccgaccgg tagggctcgc agctgtggca gccggggctg aagttaggcgc 14940
 gggccaggac gtttgtccgt tgagcaccg cttggagttc gtcgggtgc agcccgccgc 15000
 ggacggcgtc cacccgtatc acgacgtact ggacgttca cagctcggtc ggatcctcg 15060
 ggcggacccg gacgcggggc agtccgtcg ggtactgtc gtacagacgg tagttgcgcc 15120
 ggttgcgtcg ggtgaagtga tcggcgact ccaggaggat gaggccatg gccgcgtga 15180
 tctcggtcat ccgcgcgacc gttccgtcc cgggtatctc atgcgcggcg ttgagccct 15240
 ggtggcgtcat ggcccggacg cggtcggcca gggcgtcgcc gtcgggtgacg atcggcccg 15300
 cctcgaagct gttcacgaac ttctcgccct ggaagctgaa gatctccgcc gtgcgcgaagc 15360
 cggccgtcg cttcgaccgg taggtgcagc cgaaggcgtg ggcggcatcg aagagcagg 15420
 gcagccgtg ctccggccgc agcttgcgtca gctcggtcgat ccggccgggt ctgcccgaaga 15480
 cgtgcacgtc cagatggcg cgggtacgcg ggcgtatgag ccgtccacg tgcgtccacgt 15540
 cccgggttcc ggtctctcg tccagttcgc agaagacagg caccgcaccg atccagtcca 15600
 gtgcgtgggc ggtggcgacc caggtgaagg agggcacgt cacctcggtcc ccaggaccga 15660
 tggccaggcc cttcgccggc acctggatgc cgggtgtggc gttcgatcgt ggcacgcagt 15720
 gcctgacccgt ggtcgtcgcc gccacacggg cctcgaaactc ccggaccagg gggccgtcat 15780
 tggtaacca caggcgtcc agcgtccgtt cgtatccgtt catcaaacgg tcggccggagc 15840
 ccacgttccg gctcccacg tgcagcggtt cgtatccgtt gggcgtgggt agggagtcga 15900
 gacgcacccg gccgcggctc atgcgcgtcg caccgcgtcg aagagccgg ggctgttggg 15960
 cccggccgtcg gccagccgga agccggcgtcg gacccgcacc gagagccca ccgattcgaa 16020
 ggcgtcggtg tactgctcg cgggtgaagag gctggaggtc aggacccgtt agaactctt 16080
 gaagccggag gcgtccgcga cccggaaaccg gacccgtccaga cgtactgt cggccctggc 16140
 cacggagtgc gtcgtccgcg tgcgtatccgtt gacccgtccctc tgggtgcagat ggcgcggccgac 16200
 atgcccgtcg aggaagttct cggggaaata ccagggttcg ggcacgcaggat cttcccccgg 16260

gttcaggtgg tggccatgg ccgacaccgc ggcctttagc tcggtagacgg accccatctc 16320
 gccgagcgcg ttgcccattgc aggtgatcgc gtcgaagggt cgccccaggt cgaacgaacg 16380
 catgtcaccgc gcgtgcagcg ggacgcccgg aagccggccc gccgcctgct ccagcatcgc 16440
 gggcgctac tcgaggccct ccacatggcc gaagagcgtg gcgagcgtct ccagatggc 16500
 tccgggtccg caggcgtac ccaggagcga cacggcgtcg gggcggcgg cgaggatcag 16560
 ctcggtgaccc cgccggccct ccaggtcgaa gtccttgcg cggctcgaa acacgaggc 16620
 gtagaacttc gcgtgctcg ggccgtactc catcagacga gtccttcgc agactggcg 16680
 gagatgattc tggctccgg gatggaaacg atgaacttcc ctcccgccctc caggaagcgg 16740
 cgctccttgc ggacgaccc tcggtgttag ttccaggcga ggaggaggtt gtatccggc 16800
 tcggtgccag cgacccctc cggaggaagg accggatgc gttccccgg cagcagttt 16860
 ccgtgcttgc ggctgggtgt gtcggcgtc acggtatgt cctgatccgt cagaccgcag 16920
 gccatcagca actgggtccc ctggacggt gtcggtagc cggccacgcg gtggccgtcc 16980
 gcgccagac cgcaacgag cgtacggatc gtcgggtca cgcgcgtcac cgcgtcggc 17040
 aacgcccgtt agggggcattc cgtcagcagt ccgcgtccct cctccaggcc gaggcgcgc 17100
 ggcaccgagg gctccggac ccgtgcggcc gactcgccg cggcgtacgc cgcgtacgaa 17160
 ccgcccgtca cggcgtaccc ctccacgtcg atgatccgcgaa ggccgtgcgc gccgaagagg 17220
 tggcgcagtgc tggtcaggaa gaagtacgac aggtgctcg ggtatgtatgt gtcgaactgg 17280
 ttctcgtcga gcaggttcag caggtaacgc acctcgatga ccaggacgc gtcgtcgtc 17340
 agcaactgcgt cgacccgtc caggatgcgg tgacgtcgatc cgtatgtgcgc gaagcactgg 17400
 cggccgatga cggcccttggc ctcggcttc tcaaggcga tgccggccgc gggctccggg 17460
 ccgaagaagt cgggtccgt gggatcccc cgggcgttgg cgatctcgcc gagggtggcc 17520
 gccgggtcga cccggccac ccgcgtccct cccgcggaa acatcgccg ctgggtgcgc 17580
 acgttgcgtc ccagctccac gaccaggatcg cggaggcga ggcttgcggc gcggtgcgc 17640
 agcccgacga tggcgcattt gtgtcgccg atctggtcgg agtcggagga gacgtagacg 17700
 tagtgcttgc acagtgtccc ggggtcgacg acatggcgaa gctgtatcg cccgcacgc 17760
 cggcacacga tgacgtcgag cgggaagacg tcctgcgcct catcgccgtc ggcggatcg 17820
 acgaaccctt tggccagccg cagcgagccg aaggagatca ctcggtcca gtcgtccgca 17880
 ccgcatacacc ggcacgtctc gtccggctc catttcgtca gcatgaagtc tcctgacggc 17940
 gaatgccgac gcatcgccgc cgtcggccg gggacggtca atctagggtt cccgcgcacg 18000
 ggcgtccac ttcttatgtg ccctacttgt tcagcgccg ggacgggtga acgcccgtac 18060
 gtcctcgatg aggactgcg gtcgtccat ggccgcgaag tgccgcgc ggtcgaaactc 18120
 ggtccaccgc gtcagggtcg gcaggatgcc ctcggcgaac gaccggatcg gccgggtggc 18180
 gtcgtccggg aacaccgcga cgccgacggg ggccgtcgcg ggccaggggcc cgccccagg 18240
 gcgccgcaag tccgcattgc cgcgagccg ctcgtatgc aactgagcgc tggaaaccggc 18300
 cgtcgccgtc agccagtaga tcacgtcg ggtgagcgc cggccggg agatggcctc 18360
 ctccacgttc ttggccggc tccactctg gaacttgcg agaatccagg cgagctggcc 18420
 gaccggggag tcggtgaggc cgtagggcag ggtctgcggg cgggtggcct ggatgcgc 18480
 ccagccgtatc cccgggtcg cgaactcccc gctgtcgcc agcttgccta ggtcgctc 18540
 gtccaggcgc cccgtggcct cccggggcgtc ctggggccggg aaggtcacca gcatgttc 18600
 gtggacccgc gccacgtctc cccgggtcgcc cagccccagc tccagcgaga cgacccttc 18660
 ccagtcggcc cccgtggcga cgtaacgcgtc gtacccgcggg cggttcatca gtcggccca 18720
 ggcgcgtcgt atccgcgcga cgtcccgaccc cggctcgccg gtcggccgg agaagccgt 18780
 gcccggcatg gaggggacga cgcgtggaa ggcgtccgc ggtcgccgc cgtcgccgc 18840
 cgggtcgctc agccggccga tgacgtcgag gaactcgccg accgagcccg gccagccgt 18900
 ggtgaggatc agccggatcg cgtcccgctc cggcgtacgc acgtgaagga agtgcacgtc 18960
 ggcgcgtcg atcgtggta cgaactgggg gaacgcgttc agctggccct cccggcaccg 19020
 ccagtcgtatc cccgtggcgc gtcgggtcgat gagtccttgc agttaggaca gccgcactcc 19080
 gcggtccat cccgtggcgc gtcgggtcgat gtcgtccgc tccggccggg 19140
 taaggtcgatc gaatgtcgat ctcgtatgc aagggtacgc cagtgaatcc 19200
 accctcgatc ttgtgggagc gggcgccgc gaggccggcc ccccgatgtg atccggggac 19260
 cgtgtctcgat cccgtggcgc cggccgtcg cgtcgccgtc cgtcgccgaga aggaccgcac 19320
 ggaggacagg aagttgcggatc tcacgtcgat gtcgtttcg gtcggaaagc tctccggatg 19380
 gaactggacg gactccaccc cgcgtacgc gtcggccgtt cccatcacgt accccgtc 19440
 cgtggagcgc cccgtggatcg cggggacgg cggaccgtg ccctccggca cgtacgtga 19500
 gtggtagccg gtcgcgaaga accccgcggg cagcccggtg aacactccgc gcccgtcgt 19560
 cgtgatccgg ctctgtttcc cgtgcgtatc atgcggccgc gggacgggtgg cggccggcgt 19620
 ggcgcggccg acggcctgtatc gccccagaca gaccccgaccc ggcggccgc 19680

ggcctggacg atctcgacgt gcccggaggt gtcggggtgg ccggggcccg gccccagcag 19740
 gaccgcgtcc ggccgcatca gccccatctc gtccgggtc atgagatgcg accgcaccat 19800
 gacgggctcc gcgccggcgg acatcagata ctggcgcagg atgtcgacga agctgtcgaa 19860
 cgcgtcgacc accaggaccc gcggggcctc ggtgcctgcg ccggatccgt cgggagacca 19920
 caagctcaca gcaactcctc tccggtgacc gcccagttag tggcgtctat cttggccagc 19980
 gtctcggtcc actccgcccc cggttcggaa tcggcgcacga ttccggccga ggcccgggtg 20040
 cggtagacgc cctcgtggt gaaaagggtc cgatgcaca gcgcgagggtt ggtgtacccg 20100
 cccacgtcga ggaggccgag cgccccggcg tacaggccgc ggcggctgcg ttcgacggac 20160
 tcgatgatct ccatggcgcg gatcttcggc gcgcggctca tggtggccgc ggggaacagg 20220
 gcggcgatgg tgtcgaaaggc atcgggtgtcc acccgcccc ggccgacgac cgtggagacc 20280
 aggtgcagca cgtgggagta gcccctcacg tccagctggt cgggtacgac gagcgtgttc 20340
 ggccgggca tccgtccgtat gtcgttgcgg cagaggtcca ccagcatggt gtgctcggcg 20400
 atctccttgg gatccgaccc cagccggact cccgcggcga tgccggcgtc cgccggac 20460
 cgccggcaccgc tgcccgcat cggccgcattc gtgacctcgc cgtcctcgat gcgtacgaac 20520
 agctcggggc tggcgccgtat cagacggtgc cgtcgtatgc ccgcagata catgtacggg 20580
 gagggcggtcc gcccgcgcag ggcgttggtag acgtccgcgg ggtcggccgt cgagcggatg 20640
 gagagctcgt gaccgatctg cacctggtag atgtcgccga cggcgatgtg cttcagacac 20700
 cgctcgacgt cgttcgcaaa cacttcgggg gcgtctgtgt cggtgaccgc ggaggcgggg 20760
 aagccgtctg cggacggatc gggccaggcc tgctccacgt cggcgaggag cccggtgacg 20820
 gtctccggcg cgaggccggg ccagtacggg gactcgttggc gcagcgttcc gcatcgccg 20880
 gtggcgagat cggtgaccac gctggcccg tgcaaggacca tgcgtacgtc cggcaggcca 20940
 ggccgggttct cgatgaggtg gggcaggatc tcatgttagc gggccgtgtc gtacccgaag 21000
 aaccggagga acccgaaagcg gaagccggac gggaccctt cggcgtcgaa catgtccgc 21060
 atggccgcga gcagcggcca caacccgcgc gggtaacgc gccgcagccc ctggggccg 21120
 tcctccagga gccgcggccgc cgcgtccagg agcaggcccc gcaggccggg tacggccctcg 21180
 acgcgcacca cccggcggt gaccgagagc gagagcagcg cggcgaagcc gacgaactgg 21240
 tgcctcggtt cgcggccgg gccggccgcg gactccagga gtagacaccc gtcggggccg 21300
 aagtgtcgtt ccagcgcgcg gtagggccgc aggccgcggc tctccttcac atcgaggcgt 21360
 cgtgtccgca cccgcacccgg gggcagacc acgcactgtt cggtcacccctt gggccctcc 21420
 ggatcacgtg gtatggcgat ggcgtgtgc cacctgacgg gccgtcgtca cccggccgtc 21480
 gggggccggag cggttgcga gacgcgcgcg ggccttccag ctgacgaagg agccgggtgt 21540
 ggtcacgggg tcgaggtcgg tgcgttgcac gatggccggc tgccgtccgg tccgctccct 21600
 gagccggccg ggcacggcct cggcgatgcc ctgccgttcc ccctcgccgc cggccagcag 21660
 gtccatgcgc acggtgacgg cgtcgctgcc gtcgttgc cggtcgtatga cgacctggta 21720
 gccgaggccg ccggccgaccc cgtcgaggat cggccgcctcc agtcggccgg gtcggagggt 21780
 cacgtcgccc agggggatgc ggtccgcgc cggccgcgtt acctggatcc gggccccc 21840
 cagcggttcc ccggggcccg ccgggaggat gggaccagg tcccccgtgc gtagcggat 21900
 cagtggttt atggcgatcc ccagcatggt gaggacgatg tgccttctc ccgtgtcgcc 21960
 gaccacggcg ccgggttccg gttcgacgag ttccgtcaag tagttgggt gggcgagggt 22020
 gagcgctccg gtgtccgtcc cggtgtggat gcacagggtt tcctgggagc cgtagagcgt 22080
 gggccgcacg acggcttgcg gccagagggt cggccacgtt tcggcgaact gcccgggtca 22140
 gatctcaccc agcgtgagga agacgttccac gggaaaggccg gccaggctgt agccgtatgt 22200
 cagggccgc ttggcaaggc tcaggcacag cggccggac cagacgacga cctcgaccctc 22260
 cagctcctcg atcagccgca ggccttacg gaatcccacc ctggggact cggccagat 22320
 cttgacgtga caggccccca gtcggctgc caccgcgtt aacacgtccc cgaacgcgt 22380
 cagctccgac ggccccatca ggcggccgc gggcatccgc ccccccggacc tgcgttccag 22440
 catgcggcgc cagactccc ggacggcgat gttcggtgtc gcgatgtcc ttcgcggcg 22500
 tgggcacggg gtggccggcc cggtgttccc ggtggctcg tagtagatgc gtgttcgt 22560
 cagcgggggcc gacaggacgt cgtgcacatc cggccgcagg tcgtccttgg tggtaagg 22620
 caggtccgccc aggttcggcg gggtgacggc ctgcgttgc acgcgttccca gatggccggc 22680
 gtagaacggc gagcgccggg tgacgttgcg cgtacggcc gtcaggctt cggccctccca 22740
 ggcgtcgccg tggcgccgg tgagttcgcc gggtagaaac ggtcgctca cctggccgt 22800
 ggcggaccag aactcgctgt ccgcgttccgg gtcaggccgc cgggtcccgcc cgggaccgg 22860
 cggccggccg tctctcacgg ctgtgcctgg agttcggtga ggcgcggacc gaccgcgtcg 22920
 ttgacctcgat tggaggccag cacgtccgaa cggccgggtga gccgacgggt ttcgtcgagc 22980
 agttcgatca tgcgttgcat cctctcgacc aggcgcgaga cgttgttgc gcccttctcg 23040
 tccttgagcg cgtcgccccc gttcgacgtcg tgaccgtcg ccggaaagcc gtcggccacc 23100

aggtatcatcc gggtttagcag ggcattgacg gtcagctgag cccataacctc gccggcgctg 23160
 tagcggcggt cgaccgagat gatcccccgac accttggtc tcagggccg gtcgaagcgc 23220
 agataaccga ctccggcacg ctcgatgaag gtctgcata ggcctggccgt gccgaatccg 23280
 tgcacggcg cccgcaagat gatcccgatc gccgcgacca tcttcgcac gacctcgccc 23340
 acccccgtcg ccagggtgca ggccacccgc ctgtcggtgc agtccccgca gggcccgac 23400
 cgctccatcc tgatcgagcg cagggtcgacg gcctcgaaat cgacggcg gttctctgt 23460
 acgcgtggcg cgtgccgcg tacgtcggtc gtgttggccgt cacgttccga accgttgatc 23520
 gcgaggatct tgagttgtc gctcagcagg ggcctccctt gtgagtcagg tgcgctcggc 23580
 ggtcggtcg ggggaactgt ctggccgcg ctgggtccgg agccgcaggg cccgctcggc 23640
 gggggcggga ggaagaccgc cccgcggcg gccgcacgc tcgcccacc ggtgagggg 23700
 cttctcgacg agatagaagc tgatggtcg cagcacaacg ctgatcgaga tcgtgaagag 23760
 gaacagtcc cagaacccca tgcaccccg gaattccggc gttggcacgg gagacttggc 23820
 gaagatgtc cgcgttccgt gccagagggtt gatcacaatc tcgtgccaga ggtagacgccc 23880
 gagggagatc tggccgagga agaggatcggtt cttgtcggtg aagagcgcgt cccgagaaccg 23940
 ggactcggcg ccggggaccgc tcatcggtc caggagcaggc agggtgaagg aggtcaggat 24000
 gaagtggtcg acgagctcct gggccaggcg cgcgttgcg cccatgcccgg ggtatgcccgt 24060
 gggcttgggt gcgttagagga ggtacagcg gatgagcg gaccacgaga tcagcggcg 24120
 ccggatcactc aaacggtaga agccccgggtt ccctggcgatc gcctggcgatc acgcggatc 24180
 gatggccagt gccatgccccg cggcgaagca gccggcgtag tagggccggc agtaccactg 24240
 catcgtcgcg ccgggtggagg ggagggttggt gtacgtgacc cagccatggc ccatgacttc 24300
 cagcgcggcc acggcgacgaa ggaggcgccg tgccttctgc ccgggaggtgc tgccgcccc 24360
 cgcgagccgg tggccgatcc aggcgatcag cggcaggcg aggtagaaacg tgaactcggc 24420
 ggggaccggtc caggtgggtc cgatggcgatc catcggtcg ccctggcgatc gatagaagtg 24480
 catgagcaggc acggggccgca ggacgtcgatc gacgctgtcg atctcgaaacc agttgttagcc 24540
 ggggattgcg aagacgagca acaggtagta ggcggcagg atgcgcagg cccggcggtt 24600
 gaggaaccgt ccgggtggcg gccgcttcgt cccactgtat gtagacgcggg ctagggcggtt 24660
 gtacagcatc attccggaca gacgcaagaa gggggaaaggc ataccccccgg accgtcccg 24720
 aggacgcccc agaacggttt gcccggctca ccgacgaaacg tgcccactcc ggcctggaaag 24780
 gcgacgtgtt agacgaccac acccagcgccg aggacacccgc gcagtcctc gaaacttcgg 24840
 attcgcttc ttttgcgccc acctgcgtcg cgaaggacgt ccccatggatc acagtcctc 24900
 ttcccttggc acttgcgtcg tgcattcccg aaatagtcgg gtcgtcgagg tgcgtggcc 24960
 atctccaatc gtgtgttcc ggtgtcgagg acgacttgtt tcggccgtgg tgggaaaggca 25020
 gcccaccccg ccggcccgcc tcggccagac cggggggccga ggagtcccg tccgagaggg 25080
 tcggagtgat ctccggcgcc caggcgatgc ccacctccgg atccagcgaa ttcaagccat 25140
 gttcggaggcc ggggtcgtag gccggcgaggc acaggtagac gatcaccggc tcgtcgctca 25200
 gctgtgaggaa tccgaagccc agcccccgccg agacgtacag cgcggcgatc ttctcctcg 25260
 cgagctcac ggtccggccag ccggcgaagg tggcgaccg caccggatc tcgaccacgg 25320
 cggcgaacac gctggcgccg aggacgtga agtacttggc ctggccgggt acgcccccg 25380
 cgaagtggat gcccccgccg accccgtggg aggagatcgcc gcagttcgcc tgccgcagg 25440
 cgaaggagtg gcctacgggt cggcggaagg gctcgccctg gaaccactcg cggaaacgagg 25500
 cccgttcgtc acggaaagacc tgcttcctc ccgtccacgc tcccggatc cccatcggt 25560
 tcatcgctgg ccccttcgtc cgacttctc cgacgactcg cgggaggcgcc cggagggggt 25620
 cggccggccggtt gttggaaacgc cgcgtctcg atgcggcgcc accggggccca ggggggtcg 25680
 gacgacgtcc gccccaccc acgacaccgg gagatgcagg tcgggtacgg ggcacgtgac 25740
 gatgcaacagg tccgaggccc gttggcccg acgacggccc acagagccat cggagcaacg 25800
 gaggcggacc gcaaatggacc aacggccccc gtgaccggc ggtgttcctc ggcgcagg 25860
 tggcggggct gctggcccgcc cgcgtctcgat ccggagacgtaa caaggaaatg ctgggtatcg 25920
 accgggaccg gttggccggc acggagcagg gccgcgggtt cccgcacggc cgccacgccc 25980
 atgcgtgtc ggcgaaggaa cagcagatcc tcaacgaact ctggccggc ctcgacaccg 26040
 aactcaccc ggcggaaatc cccgggggg acatcgccgg gaaacgtcggtt ggtacttca 26100
 acggccggccg gctccagccc ttgcacaccg ggtgtatcg cgtctggcg acgaggcccg 26160
 agctggagtc ccacgtgcgc gcacgggtcg cccgcgtgc acaggtaag atcatggacg 26220
 ggtgcgtgtat ccggggccctg accggcctcgcc cggaccggcag cccgttcacc ggtgtcgagg 26280
 tggtgcacga gtcgggtacg gacacccga cgcgcctggc ggccgacccgc gtcgtcgacg 26340
 tcacggggccg cggctcgccg actccgcctt ggctggagga gttcgatc gggccggcc 26400
 cggaggaccg cttaaagatc gatctggcgatc acaccacgcg ccacttcaag ctcaagggaa 26460
 acccctacgg cacggacatc tcgatcaacc cgtggcattc ggcgcacccgc cccgcggcc 26520

cgttcttccc ccggctcgcg gacggcagct cccagcttc cctcaccgga atcctcgccg 26580
 accacccgcc caccgacgac gagggcttcc tggcgttgcg caagtgcgtt gccgcgcgg 26640
 agatctaccg ggcgcgtccgc gatgccgaac ctctcgacga accggtcacc ttccgcgttc 26700
 cggcgagcgt cggccgcgt tacgagaggc tgccgcgtt ccccggcggg ttccctgtca 26760
 tggcgacgg cgtgtcagc ttcaaccccg tctacggcca gggcatgacg gtcgcgcggc 26820
 tggaggccgt ggcgcgtccg gaccacttcg gcgcacgcccc ggaccccgc gcccgcgtc 26880
 tcttcggcg tatctccacg gtcatcgacg ttccgtggga catcgccgcg ggagcggatc 26940
 tgaacttccc cggggtgtag ggcgcgcga ccatgaaggt gaagatggcc aacgcctaca 27000
 tggcccgccct gcacgcagcg gcagccgtcg acggcgccgt gaccggggcg ttctccggg 27060
 tggccggcgt ggtggacccc cgcgcggccc tgatgcgcg cttccgcgcg ctgcgggtca 27120
 tgcgcaactc ctccggcgaag cgcgcgtcc ctccggcgcg cgcgtatga cgcgcgcggc 27180
 cgtccggggc ggctggccgg gccaggagcc gacatgcggg tgatgatcac ggtgttcccg 27240
 gcgcggcgc acttcctgcg gctggtgccc tatgcctggg ccctgcagag cgccggccac 27300
 gaggtatgtc tcgtggcgcc cccggctat cccaccgggg tggccgaccc cgacttccac 27360
 gaggccgtca cgcgcggccg cctgaagtgcg gtgacctgcg ggcagccgc gccgcgtggc 27420
 gtccacgacc gcgcacgaccc cggctacgcg gcatgcggg tgatgatcac ggtgttcccg 27480
 cgctacgtgg cggccctcg gatcagcgag aaggagcgc ccacctggg cgttcttac 27540
 cacttcacct tgctggcgat cgcgcactac catccgcgcg gccgcggca ggacgtggac 27600
 caggtgatcg agttcgccc gatctggcag cccgatctgg tgctgtggg cgcctggttc 27660
 ccctcgccgc cgatcgccgc gcgggtcagc ggcgcgcgc acgcgcgggt gtcgttagcc 27720
 cccgactaca cggctgggt caccgagcgg ttcgcgcgcg cggcccccgc ggccggggcc 27780
 gacctcctgg ccgagacgt gcggccgcgt gccgagcggt acggcgtgaa ggtcgacgac 27840
 gatcttcgc tcggacagt gacggtcaat cgcgtccgg cgcgcgtatgaa cccgcgcacc 27900
 cggctcacga acgttccggt ggcgtacgt ccctacaccg gtgcgcgtcgt catgcgcgcg 27960
 tggctgtacg cgcggccgtc gcggccgcgg gtggcgctgt cgctcgaggt gtccgcgcgg 28020
 gcgttccta agggtgactg gggcgtaacc gccaaactgc tggaagcggt cgcggagctg 28080
 gacatcgagg tgatcgccac gctcaacgac aaccaactgg cggagagcgg gccgcgtccg 28140
 gacaacgtcc acaccctcg a tacgtaccg ctcgaccagt tgctgcac ctcgcgcgc 28200
 gtcatccacc acggatcgac gggcaccc tcgcgcgcg ggcgcgcgc gctgcgcgc 28260
 gtggctcgac acaccgacga gcccctctg ctctcgccgc aggacaccccc cgacggcatc 28320
 gcgtggact tcacctgcca gaagcagctc accgcgcacgc tcaccccg cgtggtcacc 28380
 gactacgggg cgggggtgcg cgtcgaccac cagaagcgt cgcgcgcgc gatccgttag 28440
 caactacgca gggtgctcac cgaacccctc ttccgcgagg ggcgtcgacg gatccggaa 28500
 gaccgaaatt cgcgcgcgc cccggtcgaa ctcgtatcgc tcctggtaga actgacgaaag 28560
 cgtcatcgcc gtgacaagga ggcggaccga tgaggatgct ggtgacgggc ggagcgggtt 28620
 tcatcggtc gcagttcgtg cggccacac tgacggcga gctgcgggt tccgaggacg 28680
 cccgggtgac ggtcctggac aagctgacgt actccggcaa tccggcaac ctcacctccg 28740
 tcgcggccca tccgcgtac accttcgtcc agggcgacac cgtcgaccgc cgcgtcgctg 28800
 acggaggtgt cgcggccac gacgtcatcg tccacttcgc ggcggagtcg cacgtggacc 28860
 gctcgatcga caccgcacc cggttcgta cgcacccgt gctcgccgacc cagacgctgc 28920
 tggaagcgcc tctccggcac ggggtcgcc ggttcgtgca cgtgtcgacc gacgaggct 28980
 acgggtcgat cgcctccgcg tcatggaccg aggacaccccc gctcgccccc aacgtcccc 29040
 acgcggcgtc gaaggcgggt tcggaccgtc tggcgtcgc ctggcaccgc acccgggggcc 29100
 tggacgtcgt cgtaccccg tgcaccaaca actacggtcc tctaccgtac cccgagaagg 29160
 tgatcccgct ttcgtcacc aacatcccg acggcttgcg ggtgcgcgtc tacggggacg 29220
 gcgcgcaccgc cggggactgg ctgcacgtgt cgcacccgt cggggccatc cagatggtca 29280
 tgaactccgg cggggccggg gaggtctacc acatcgccgg cggcaccgaa ctctccaaacg 29340
 aggaactcacc cggcctgttgc ttcacggcgt gccgcaccga ctggccttcg gtggaccggg 29400
 tggccgaccgc gcaggggcac gaccgcgcgt actcgctcgat catcacgaag atccggcagg 29460
 aactgggtca cgagccctcg gtcgccttcg aggacggct ggcgcgcacg gtgaagtgg 29520
 accacgagaa cgcgttcgttgc tggcaggccgc tgaaggaagc ggcgcgcgc ctggacgcgc 29580
 tcggctgacg gcacccgcgc ctaggaacac cccagggaaag gagccaccc cgtgacagaca 29640
 gtcaaggagc cgcacgtcccg cgcaggacgg cggggactgg tcgtctcgat cgtccctcc 29700
 ttgcccacga tgctgttgc gctggacatc aacgtcctca tgctggcctt gccgcagttg 29760
 agcgaggatc tcggcgcgag cgcacgcac cagctgtgga tcaccgacat ctacggatcc 29820
 gcgatcgccgc gcttcgttgc gaccatggc accctcgccgc accggatcgg cgcgcgcagg 29880
 ctccctgcgcg gggcgccgcg cgttcgtccg gtcgtgtccg tcgtgcgcgc gttctccgac 29940

agcgccggcga tgctcgctgt cagccgcgcc gtgctcgccg tcgccccggc cacggtgatg 30000
 ccctcgacgc tcgcgctcat cagcaacatg ttcgaggacc ccaaggagcg gggcacccgc 30060
 atcgccatgt gggcgagcgc catgatggcc ggagtgcgcc tcggggccgc cgtcggcggc 30120
 ctggtcctcg cccggttctg gtggggatcg gtgttcctca tcgcccgttcc ggtatgctg 30180
 ctggtggtgg tcaccggccc cgtgctgctc accgagtccc gcgaccggaa cgccggacgg 30240
 ctggacctgc tgagcgccgg gctctccctc gcgaccgtgc tgccggatcg ctacggactg 30300
 aaggagctgg cccggaccgg gtgggaccgg ctcgcccggc gcgcggatgg ctcggcgtg 30360
 atctcgccg cgctgttctg ccagcgccag cggcggttgg ccgaccggat gtcggaccc 30420
 ggcctttcg ccgaccggcgc cctgcggccg ggtctgacgg tcagtcgtt caacgcgcgc 30480
 atcatggcg ggaccggact gatggtcgcc ctgtacccgc agacgatgc cggtcactcc 30540
 ccgttggccg cccggctgtg gctgtgtatc cccgcctgcg tgctcgctg gggcgtaac 30600
 ctgtcgaacc tgctggccca gcggatgccc cttcccgcc tgctgttgg gggactgtg 30660
 atcgccggcg tcggacagct cctgtatcacc caggtggaca ccgaggacac cgccttcctc 30720
 atcgccggca ccaccctgtat ctacttcggc gcctcaccgg tgggccgat caccacgggc 30780
 gcatcatgg gagccgcgc cccggagaag gcgggtgcgc cctcgctgc gtccgcacc 30840
 ggcggcgagt tcggagtggc gctcggcattc gcggggcttgg ggagtcttgg caccgtcg 30900
 tacagcgccg gggtcgaggt gccggacgcg gccggggcccg ccgacgcgcg cgcgcgc 30960
 gagagcatcg cccgcgcct gcacacggcc ggtcagctgg caccgggcgc cgccgacgc 31020
 ctgctggact cccgcgcgcg ggccttacc accggcgtgc agtccgtcg cgccgtctg 31080
 gccgtgttcc ccctggcgct cggcgttcc atcgaccc ggctgcggga catttcgcg 31140
 atggaccacg ggcacggcga ggaaccggcc gagaacgcg ctcaaccggc cacatgagcg 31200
 cacttcggga gatgcaacgg cccgcgtcg ggtatgagga tcacccctcg gggtcaccc 31260
 gcacggcaac ggaggcgtag tggagttactg gaacagcgcg gcggagacca tgccccgcca 31320
 ggaactcgaa cagtggaaat ggcgcaggct ccaggccgcg atggaccacg ccagaaggct 31380
 ttccgccttc tggggaaac gactcccgaa gaacatcacc tccatggcg actacgcggc 31440
 gcgggtgcct ctcctgcga aggccgaccc cctcgccgcg gaagccgcgt ctccccccta 31500
 cggcacctgg ccctcgctgg atccggcgct cggagtgccg catcaccaga ccagcggcac 31560
 cagcgtaac ccccccattcc ggacgttcga caccgaacgc gactgggcgt ggtgcgttgg 31620
 cacgttctgc acggcgctcc acagcatggg cgtgcgcggc caccacaagg gtctggtggc 31680
 gttcggctac gggctgttcc ccggtttctg gggcatgcac tacggcctcg agcgcattgg 31740
 cggcacggtc atcccgccg gcccgcgtcg ctcccgctcc cgggtacggc tgctggtca 31800
 ctaccagatc gaggtgtcg gcctcacacc gagctatgcg atgcggctga tcgagacggc 31860
 ccgcgagatg ggcacatcgacc tcgcccgcga ggctaacgtc cagatcatcc tgccggggc 31920
 ggagccgcgc tccgcgttca ccacccgcac catcgaggag gccttcggcg cccgggttcc 31980
 caacgcgcgc ggcaccactg agttcgaaaa ggtgttcatg ttcgagtgca cccgcgggc 32040
 cgaggcgtgc cacatcatcg aaccctcgat catcgaggag gtgctcgacc cggtgacgg 32100
 acagcccgctc ggctacggcg aggagggcgt ccgagtcacc accgggcgtg accgtgagg 32160
 gatgcagtc ttccggact ggaccggagat cgtcgtggc aagcggccccc acaccgagtg 32220
 cggctgcggc cggacgtggg acttctacga cggcggcattc ttccggcgcc tggacgacat 32280
 ggcgaagata cgcggggctcg cgatcacccc ggtgtatgtc gaggatgtgc tgccggcgt 32340
 cgacgagggtg aacgagttcc actcgccat cccgaccgtc cgcggactcg atacgatcca 32400
 cgtcaaggatc gaggcgggag acatctcggt tgaggcggcc gagagcctgt cccgcgc 32460
 caccgaggag ttcaagcgat agataggcat acggcccgat gtggagctga ccccgccgg 32520
 cagcctcccc cgatcgaaat ggaaggccgc acgacttcat gacgagcgcg aactcgcccc 32580
 tcaggcctga gcagggtggg cagctccctgg tgacttaccg gagcctggc ctgctggagc 32640
 agagctgcgc ggtcccgcc gtcgtcccg cggtcaggcc cggccgtgcg gaactccgt 32700
 tcgcccctggc cggccaggggc gtggagttcg agtactaccg ggggcacgcg gacgcctcg 32760
 tggcctgaac ccaccccccgg tccgcgggt cagacgaaag ggagaccggt gccccacgg 32820
 gcagagcgccg aagcgagccc ggccgaggag agcgcggcgc cccggccgt gaccggcgg 32880
 gagtatctgg agagcctgcg ggacgcgcgg gaggtgtacc tcgacggcag cgcgtcaag 32940
 gacgtcaccg cgcaccccgat gttccacaac cccgcggccat tgacggcccg gctgtacg 33000
 agcctgcacg accccggccca gaaagcggtc ctgacggcgc ccaccgtgc cggtgacgt 33060
 ttccacccacc gcttcttccat cgcacccgcg acggtcgacg acctggtcaa ggaccagg 33120
 gccatcgcat cctggcgccg caagagctac ggctggatgg ggcgcagccc cgactacaag 33180
 gcgtcgatcc tcggcaccgt gggggccaaat gcccacttct acgagccctt cgccggacaa 33240
 gcccggcgct ggtaccggaa gtcgcaggag aaggtgttactt gtcggaaatca tgccttcctt 33300
 caccggccggc tcgaccgtcc gctgcccgcg gacgaggatgg ggcgcgttccatccacgtc 33360

gagcgggaga ccgacgcggg cctgggtgg agcggggcca aggtcgatcg gaccggatcg 33420
 gccctcaccc acgccccgtt catctcgac tggggacttc ccatcaagga cccgaagttc 33480
 gcccctgggg ccaccgtgcc gatggacgac gacggccctca aggtgatctg ccgtccctcc 33540
 tactccgaa acgccccgac cacggcagc cggtcgaca acccgctgtc ctcacggctg 33600
 gacgagaacg acgccccatctt cgtaactcgac caggtgtga tcccctggga gaacgtgttc 33660
 gtctacggca acctgggcaa ggtacatctc ctcgccccgac agtccggat gatcgaaacgc 33720
 gccaccttcc acgggtgcac cccgctcgcc gtgaagctgg agttcatcgc cgggctgctg 33780
 gccaaggcgc tggacatcac cggggcgaag gacttcccgac gtgtgcagac cccgctcgga 33840
 gaagtccctgg cctggcgcaa cctcttctgg tcactgtcg acgcggcggc ccccaacccc 33900
 gtcccctggg agaacggcac gctcctgccc aaccctcagg cgggtatggc ctaccgctgg 33960
 ttcatgcaga tcggctaccc gcgggtcctg gagatcgatcc aacaggacgt ggccagcggc 34020
 ctcatgtacg tcaactcctc cacggaggac ttccgcaacc cccgagaccgg cccctacttg 34080
 gagaagtacc tccggggcag cgacggcgcg ggcgcgcgtcg agcgtgtcaa ggtgatgaag 34140
 ctgctgtggg acgcgggtggg atccgacttc ggcggccggc acgaactcta cgagcggaaac 34200
 tactccgggaa accacgagaa caccggatc gagttgtcgac tggtgcagac ggcgagcggc 34260
 aaactggact cgtacatggg cttcgccccag gcatgtcgatgg acgagtagcga cctggacggc 34320
 tggaccgcgc cccgacctggg gtcgtttcac gcatgtcgatcc cccgcctcccg cgaccttctc 34380
 ggaggggctgt agtccccggg cgggtgtactg cggccccccga tccggggggcc gcagttacacc 34440
 gtcggggcggg ctgggtgtca gccgcgcagg aatccgatga gctcggggggc gagttcttg 34500
 ggcgcgcattgg cgacggcacc gtgggtgagc cccgttcaggg tgccgtggct cgcgtcgaaaa 34560
 aggactccggg tgagttcctt cgcggcaccgc tgaaaaccgt cggggcttcc ggaaccggc 34620
 agcaccagggg tcggggccgg cgcgcgcgcac cacggctcgac cggggagcgg cttgcccctgc 34680
 tgggtgtcgcc ccatcaccgc gatgtcgatgg ggaagcgtgt tggccagacc cttgagggttg 34740
 gaccagacac cgggcattcg ggcgcattggc cccgaccatga aggaggacat gcccctgtgcc 34800
 ttgaccatga aggcccttgc cgcgtcgctg cgtcggtccct cccgcagaag gctgtcgatc 34860
 tgaccgcggg agccggcggg cggggcgaag cccgtccggg tgacggagaa cggcggctcg 34920
 tagaccgcgg gcttggtcac cttcaggccg gggcggcggg cccgcaggcgc gggcaccgcg 34980
 ccggaagagc tgccgaacac ggaggccgaa cccgcgcacct ggtcgatcg cgcgcgcgtat 35040
 tcctcgatct cgcgcgtcgac cgcgtacgc cggccgcgc cgcgtggccgc gcccggcccg 35100
 cggcgttagt tgacgaccgt gaaatgtcgac ggcggagac cggcgcgtt cttggcgtcg 35160
 gagcggcgtgg ccaaggcggg gggcaccagg ataccgcgg cccctcgcc cgcacttgcg 35220
 aaggcgatcg tggtggccgc gggcgatacc gtcgttgatt ccaccttggc tgctttctca 35280
 cgggttgaag acatagcttc cctcagatca cattgtgggg cgtgtcgccg acagttggaga 35340
 cccgcgtccg gaggaaaagt aatcggtcct gccagaattt ggggttccgg agggcaccggc 35400
 gaccgctgca cgacggcggc cccgcgcacctt cccgacattt tcgtggccctc agatgtgttt 35460
 cgcacatttc gggatgtcgatca gtgatccgtg aggtgagaaaa gggacgggtgg tccggcgttgt 35520
 cgttgcgcgc cggcgtgttc tggttaagcgg ccagacgcca ctgcccgtcc tggtcgacgg 35580
 ccagccagga gggccggcgcg ggcgcgtcgcc cgcgtcgctc ggtctccccc ggggcgagga 35640
 tgccgcctc ggtatgtacg agggcgatgc cgtcgccggc caggcgcgcg tcgtatgggc 35700
 tgccgatgtacg acgggtgccc ttgtacgggc cccgcgaaggc ggcgcgcattt tggtgcggg 35760
 tgggtctcgcc gcccctgcgg aagaggccgg gggatgtat cgtcccgtcc tcggcgaaga 35820
 cgtcggcggaa cccgtccggc tcgtggtcgg cccaggcggc cacgtcgac gggcggcagag 35880
 cggctaccgc tggcaggccg ggcgcgtggc cggagggttgt cggatcggtg ctggcgtat 35940
 cgcgggtcccc gtcgggttgtt tggcggttcc ggcacggccc gcagccctgc cccggcccg 36000
 cgcgtggcagg cggccccgtc atcaggccatc tccgtcgatcc cgcgcgcgc cagtcacttc 36060
 acggccagaa caagtgcgcg attcttggaaag aagctgaggc cccgcgcaccgg gtgcgcacgt 36120
 ctgcgggtgc acggatgttc cacacgttta cgcacggagg ctcgtatgcggc gctgtcaatg 36180
 gatcggtgca gtcaggccag tcgcaccgc gtcgggtcgat ggcgcacgggtg gtgggcaact 36240
 tcgtggagtc gttcgactgg ctcgcctacg ggcttccgc tcctcttcc gccgcgttgt 36300
 tcttccctc gtccaaaccgg ttcacccccc tgctcggcgc gttcgggtc ttcggcaccgg 36360
 gcatgtctttt cccgcgcgtc ggcgggggtcc tgctggggccg cccgcgcgc cggcgcggcc 36420
 ggcgcgcgc cctgtatgtcg ggcgtcgac tggatggccg cggctcgacc ctgatcgccg 36480
 tcgtccccac ctacgagcac atcggatcc tcgcggccgt gcttctgtcg ctcgcgcgc 36540
 tcgcggccagg agtctcctcg ggcggggat ggcacggcgc ggcgcacccatc ctgatggaga 36600
 tcgcggccggaa gaaccgcggc tgcctctaca gcaacccctt ctcggcgtac accatggccg 36660
 gccccttcgt cgcacatcgatc ctcggcgcgg gccgcgcgt gtcgggtggc accgcgcacga 36720
 tggaggcgtcg gggcgatcc tccgtcgccg cgtctcgccg gtgcgtatcctgc 36780

tgttcctgcg ccgtcggctc accgagaccc aggtcttccg cggggagggtg cggccccccc 36840
cccggcgccg ctcactggc cagctatcg gagccaccg cccccaggtg ctgctggccg 36900
tgatgcttgt ggcggactg ggcgtatcg gcggAACGT gtgcaccgcg gtcccgccg 36960
tggccaccg tctgatggc tcgcagacga tttctgggt ggtggctgt gtgaccggct 37020
cggtcatct gctgcaggta cccataggc tgctgccga cgggtggaa cgggcagg 37080
tcctgatctg ctccagcgtc gtctccgcg ctgtggctc gtacccctac ctcaccgtcc 37140
aggactcctt cgcgagcctg gcgttacgt acagcacccg agtgatctc ctccggctg 37200
tcaccatggt gctgccgaag atgctctcca gaatcttccc tccgcagata cgcggcctgg 37260
gcattcggtc gccgcacgac tcgaccaccg cactcctcg cggggcgccc ccactgctgg 37320
ccgcctactc cgacgagcga ggcgcctcg gctggatcat cgcgcctcg atggccgcgg 37380
tcctgctcgc ctggccggcc accctgtgg agcgcacggc gttccgcgc cggacggccc 37440
cggaagcga gccgggtccc gaatccgcg tcgcccgcg cgtcggtga cgtccgcac 37500
ttctgcatcc cgtcggcac cgagcgcgg cgaccttccc gactgagagg ttgacatcat 37560
gacgacgtcc gacaccaccg accggatcca ggacggcgtg cgcgcgtct cttccacca 37620
ggagttctg tgcattttcg acagcggaa cgacggcgcg gacgtgggc cgttccggcc 37680
catgtaccac atcgtcggag cctggcgct gaccggcggy atcgcacgagg agaccctgcg 37740
cgaggcgctg ggtgacgtcg tcgtgcgcg cggggccctg cgcacatcgc tggccgcga 37800
aggtgtgcacg caccggccgg agatctgcg tgcgggccc gccgcgtgg aggtccgtga 37860
tctccggcgc acgtcgcgactt cggagcgggt gcccgcgg gggactgcg tcaacgaggt 37920
ggagtcgacc ggtctgagcg tgcggagct gcccctgct cggggcgctc tcggacgcct 37980
cgaccagaag gacgcgggtc tggccatcg cggccaccac accggccggg acgcctggc 38040
catgcacgtc atgcggccgc acctgtctaa cctgtacgcg gccaggcgcg ggaaccgg 38100
tcccccgctc cccgagccgg cccagcatgc cgagttcgcc cgctgggagc gcgaggcggc 38160
cgaggcaccg cgggtcgccg tctcgaagga attctggcgc aaggcgcctcc agggcgcgcg 38220
gatcatcggt ctggagacgg acataccgcg ctcggcgggg ctgccaagg gcaccgcgt 38280
gcagcgcttc gccgtacgcg gggaaactggc cgacgcgtg gtggagttct cacggccgc 38340
caagtgcctc ccgttcatga ccatgttcgc cgcttaccag gtgctgctc accgcaggac 38400
gggcgagctg gacatcaccg tggccgaccc tccggggggg cgcaacaact cgcggttcga 38460
ggacaccgtc gttccctca tcaacttcc gccgctgcgt accgacccctc cggatgcgc 38520
atcctccgc gaggtcggtc tgcgcacccg caccacctgc ggagaggcgt tcaccacga 38580
gctcccttc tcccggctga tcccggaggt gcccggagct atggcgtcgg cggcctccga 38640
caaccaccag attcgcgtct tccaggccgt gcacgcgcgg gcgtccgagg gggccgagca 38700
ggccggggac ctgacgtact cgaagatctg ggagcggcag ctgtcgcagg cggagggcgc 38760
cgacatcccc gacgggggtc tgtggtcgtat ccacatcgac ccctcggtt ccatggccgg 38820
cagcctcggt tacaacacca accgcttcaa ggacgagacg atggccgcct tccggccga 38880
ctacctcgac gtgctcgaga acgcgggtgc cccggccggac gcccccttca cttccgtaga 38940
cagttccggc ggcggcgaac cccggccgaag aaaggaaagc cagtgccac cgttccgac 39000
acagcggccg gtcctccct ggaggagaag gtcacccggc tctggacggg tttctcgcc 39060
acgtccgggt aggaaggcgc gacgttcatc gagctcgag ggcagtcgtt ctcggccgt 39120
cgcatcgcca cgcttatcca ggaggagctc gacatctggg tgcacatcg cgtcccttcc 39180
gacgaccgg atctgcctac cttcatcgcc gcggtcggtc ggacggccga cggccggggc 39240
ggcgaggcgt ccggaaacgca gtgagactcg cccggcgccc tctcccgcc ggcggccgtt 39300
tcacatggct gaggcggtt acccggtacc gggtaaccg ctcagccat gtgaaaccgg 39360
gcctggtcag cgagcttggc tggccgttcc cccggcgatc gcccggagga actcgccgc 39420
ggacagcgcg tcggcgacca gtcgtatgtc gtcggccatg taccggcga cggccagcgt 39480
cggaaccaggc cgccgcaccc cttcgatcg ggcctcgcc gccggcgtca agccgtcgaa 39540
ccggccggag atgtcgaccc cttggcgccg ggccaggtac tccaccgcga ggtatctgtt 39600
gttggtcac aggacccggc gggcgttgcg ggccgagatc aggcccatgc tcaccacgtc 39660
ctgggttgtcg ccgttggacg ggacgtctg ggtgtggcc gggccgatcg tccggttctc 39720
ggccaccaggc gcggtggccg ggtactggc gccggcgaat cgcgtgtca gccccgggtc 39780
cccgagacg aggaactccg ggaggccgta gtcgaggtgc cgggtttagga cccgggtttag 39840
ctgcccgtcg gccaggacgc cgagctgggt gaggcgcgtat gtcacgaat ccacgcgaa 39900
cgcgatcgcc tgaccgtggc agttcgcccc gtggaaagatc tccttgcctt cgaagaagag 39960
cggttgtgtcg ttggccgagt tgagctcgat ggcgcagctt tgccgcgcgt ggtacaaggt 40020
gtcgccgcacc gccccgacga cttggggat gggccgcagc gaggtaggc tctgcaggt 40080
gatctccgag cgctggacgt cttggccggc tccttgcgtt ttctggagtt ctcggccgag 40140
qtcggcqgtqc tcgaccgtca gtccgtgcg cgcacatcagg gcccgcgtt tggccggcggt 40200

gtcgatctgg ccctcgtgcg ggccggctat gtcgtgcccc tccgcgagga aggggctgg 40260
cgatccgcgt accgcctcgatc tgagcagagc cgtcacgatc tcggcctgct gggcctgctc 40320
cagggcccgatc ccgcacgatc gggagcccgatc accggcgtatc ccggacgtgc cggtatcg 40380
tgcgaggccc tccttgcggatc gcagttcgatc cggtcgatc ccccgctcgatc ccagcacctg 40440
ggcggtctcc accggccgtc cgtcgcgcag gacgttagccc tctccatgcg gggtgctcg 40500
gacgtgggag aggggagcca ggtcgccgatc cggcccgatc gacgttagatc cgggtatggc 40560
cggggatcgatc ccctcgatc ggtactgcgc gaggcgatcgatc aggtatcgatc ggcgcaccgc 40620
ggagtggccc ttggcgaggg tgttcagccg ggcggcgacg atgcggccgc cctcgatc 40680
ggcgaacagc ggaccgactc ccgcgcgtg gctacggacg agattggatc gcaatcgac 40740
ttccatcgatc ttgtcgaccc gcatgtatc catctcgatc tacccggatc tcaccccgta 40800
gatggggatcgatc ttctgttcggatc cgatcccttc gaagatctcc cggctcttc gggccttcgc 40860
gatggattcgatc gccggatcgatc cgaccgtcgatc ggcggccgc ggcacgcggc gtacggcttc 40920
gacggtcaggatc gtctcgccgt cgacggaaac cgggacgtatc tcggatcgatc ttgagtc 40980
tgccatcaactatccatggtag cggccgaggatc cgggtgtacgatc caggtcaggatc ggtgggttcg 41040
tgaggcgccgatc ctcagcggtatc gagccgggatc cgggtccaccc tcccccggc gttgcgcggc 41100
aggcgtgaag tcaggcggtatc gaagacggcgatc ggcagtcgcgatc gggggccgaa ctggccgcgc 41160
agatggaaac gccaggcccgatc gatgtcccgatc cgcacgtatc cccggccctc tccttgtggc 41220
accacgtatc cggcgaggatc ggtcaccaggatc ccctggccgtatc tgacgtgggg gaggaccgcg 41280
caactccatcgatc ccgagggtcgatc acggatcgatc ggcggccgtatc tctcggtatc ttccaagcg 41340
ttcccgatc gcttgcaccc gaaatcgatc cggcccccggatc attccaggatc tcggatcgatc 41400
cgatcccgatc ccagatcccc ggtccggatc caccggatc cgtccggggc gaggccggcg 41460
agggggcgatc acagcgatcgatc gtggatcgatc ccgcgcgtatc cggcgagata accccggcgatc 41520
acgtacggggatc acggatcgatc cagttcgatc gtacgtccggatc cggggatcgatc cgggtcgatc 41580
gcgtccacgatc cgagttcgatc gcccggggatc agcgggtatc cgcacgtatc cggggcccgatc 41640
accggcccgatc tgatctcgatc ccaggtcgatc ggcacgtatc cgggtggggatc gtagaggttg 41700
atcaggcggtatc tccggggatc ggccgcgcgcgatc agtccgtatc cgcgtatc gggcagcgcc 41760
tcgcccatacgatc ggagcaggatc gcccagggtatc cccggccgtatc cgcggggatc ggaggcggtatc 41820
atcactccatcgatc ggaggtcccgatc ggcgaagctatc ggcacggatc ggagatcgatc gatccgtatc 41880
tggacgagatc acggcaccatcgatc cttgtcgatc ttccatcgatc cgcgtatc caccggacac 41940
agcgtcccgatc cggccacgatc cgtcgcgcgatc acctcgatc ggcggccgtatc gtgctccggatc 42000

<210> 2
<211> 21185
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
C-1027 gene cluster sequence

<220>
<223> orf; relative position 42611-41052

<220>
<223> orf; relative position 38983-39264

<220>
<223> orf; relative position 43945-46023

<220>
<223> orf; relative position 46167-47171

<220>
<223> orf; relative position 47227-48485

<220>

<223> orf; relative position 48610-49714

<220>
<223> orf; relative position 50350-51390

<220>
<223> orf; relative position 51420-52341

<220>
<223> orf; relative position 52341-54074

<220>
<223> orf; relative position 54230-55379

<220>
<223> orf; relative position 56027-56881

<220>
<223> orf; relative position 56928-57730

<220>
<223> orf; relative position 57834-58304

<220>
<223> orf; relative position 58440-60091

<220>
<223> orf; relative position 60092-60622

<220>
<223> orf; relative position 60940-62020

<220>
<223> orf; relative position 62045-62899

<220>
<223> orf; relative position 62788-63164

<400> 2
agcgccgggt cgtgctccgg ggagaccac tgccgcaccc ggcgcggccgg ccccatcgcg 60
aaccgttcgc ccatccagcc cgcgaaactgg cccagcgcgg catgcgactg ggcgatcccc 120
ttggccgccc cggtcgaacc cgaggtaaac gccacgttagg ccaggcttcg caggccggc 180
ccgcgcgg tcgtcgcgtc cggccggcg gcgggtcgag ggccgagcac agaggaggcg 240
tccagcaggg tggcccccgg ttacccggcg taccagagcg ccagcggatc ctcctgcgga 300
tcgcccgtcga ggaccaggca cggccggcgca agatcgctga gcatcgaccg gtgtcggtcg 360
ccgcgcgcgt ccggagcgaa ccacgcagg tgccgcggccg cctccaggac tcccagcagc 420
accgcgatcc ggcggcgcc cggctgcata cgacccgcca cggccgagcc gtgcggccgcg 480
ccggccgcgg tgagggccga ggccgacgcgg gccgcgtccg cggtcagttc ggcgggtcagt 540
tcggcgtagc ttgtcgccgt gccgcgaac gagacggcgaa caccgtcgat ttcccggtgg 600
cggccggaccg aggctgcac cggccgcgtc atgtccccgc cggacgccc gccgggtccgaa 660
gcgcgcaggc cgtggtcccg gtggcggtcg tgcgtccagcg gcagagcgcc cacgggtgtg 720
tccggatccg tggcgccgc ggtcaggagg acggccagct gatccagcat cccgcggggcc 780
gaagcgggct cgaacagagc ttgcgtgtac tccaggttagc cggtgaccga gggcgccgtg 840
tcctgcagca ccagggtcag gtcggccgcg gcagtgcgt tgcgtccgtc cagccgcctc 900
acctcgccgc ctgttatccg caggccggc cgcgtccgt ggcacaaac ggcgtccggc 960
ccctcgatcc ggcacggccc gggggccgg gccggcggtcg tgcgtccgtc ctcggaaatccg 1020
gcgggtggccg gcgtccgtc gtcgtccgt ggcacgggc tcggaaatccg 1080

gccagcacca cggccgcggc ggtgaccctt tccgcttcgg cgagccgggc cgtacggaag 1140
 ccgagggtccg gactccagcc gaaggcgacg gtgctccccg cgtgcgaggg caggtgcggg 1200
 cggttccggc cggcggcggc gacctgtccg gaggcggtcg ccgaagactc ctcgctccc 1260
 ggcgcggggc gcgtttgcgg cgcggcgca gtgggaggcc ggccgcccgt ggtacggc 1320
 aggtacgcgt tcgacaacgc ggccggcagg ggcccggacg gcccgtccca ggctccggag 1380
 tgcgaggcca ccaggagaag caggtgcgcg cgtgggcctc tgcgggcgtat gtggagccgt 1440
 gcgccgcgt caccctcgcc gaagggacgg gccgcccagc gagcgcagag ttccctctcc 1500
 ccgcactcct cgtcggact cggccgtcc acggcgccc cgtctccggc ggccgcccgc 1560
 caggccgtcc gcagggcctc caggtcaggt ccgcccgtca cgtggtaggc cgctacggg 1620
 tgcaaacaccg cagatccgga ggccggcgaa ggccccccgt ccggctcggt cacagtacg 1680
 tcattcgcca cgacgcccattt cttggggcgg cggcgcacag gacgcttctc ttgagtgcg 1740
 gagctcccgta tacggcgccg aagcgttcgg tcaaaccctt ttcgaccaac tgcgcaatct 1800
 ggaagttgac gtcttccagg tggagttggg aacgatggag gcccccccg gccgcgtcgg 1860
 aacggccgtg cagtgcggcc ctctccaaca ctcccgccca tcgccaatac cgagacgtgc 1920
 ccgaaggagc ccccccgtca agcctgggtc aagcgcacca gtggtgtgccc cggtgacaga 1980
 cgtggaaagt ggctggcttccgtt ggccgcctgg ctcatcatcg cgatggcgct gggcccgctg 2040
 gcggggaaagc tcggcgcgt ccaggactcc agcgcacccg cttccctcc ggcgcgtcgg 2100
 gagtccgcga agctgaacaa ggaactggag aagttcccgcc cgcacgagct gatgccggc 2160
 gtggtggtct acagcgcga cggctcgctg cccgcgcagg ggcgggcca ggcggagaag 2220
 gacatagccg ccttccagga gctggccgccc gagggcgaga aggtcgaagc gcccctggag 2280
 tcggaggacg gccaggcgct catggtcgtc gttccgctga tcagcgcacgc cgacatcg 2340
 gccacgacga agaagggtccg cgtgtcgccg gacgcacccg ccccccggg cgtcgccatc 2400
 gaggtgggcg ggcccgccgg gtcgacgacc gacgcgcggc ggcgcgtcgg gtcgcgtc 2460
 tccatgtca tgatggtcac cggccttggcgt gtcgcacatcc tgcgtgtat cacctaccgc 2520
 tccccatcc tgggtgtctt gcccctgtc tccgtcggt tcgcctccgt gctgaccccg 2580
 gtcggcacct acatgtcgcc caagtacgca gggctgccc tcgacccgca gagctccggc 2640
 gtcctgtatgg tcctcggtt cgggtgtcgcc accgactacg ccctgtgtat catcgccgc 2700
 taccgtgagg aactgcgcgcg cgagcaggac cggcacgtgg ccatgaagac cgcgttgcga 2760
 cggtcgccgc cggccatcc ggcctcgcc ggcacccatcg ccatcgccct cgtctcgctg 2820
 gtccctcgcc acgtcaactc ctcccgtcc atgggcctgg tcggcgcgtat cggcgtggc 2880
 tgccctccgc tcggcatggt cagatccgt cccgcgtcc tggtcatccct gggccgtgg 2940
 gtgttctggc ccttcgttcc ccgctggacg cggagtcgg cgcggccccc cgaggcaccg 3000
 gctcccaca gccgtggga ggcacatcgcc tccgtcacgg cgcggccggc ggcgcgcgc 3060
 tgggtgtctt cctggccgc gacggggctt ctcgcctca gttccctcggt ctcgcacatg 3120
 ggactcaccc agagcgaact gctccagacg aagcccgagt ccgtcgccgc ccaggagccg 3180
 atctccgcgc actaccgtc cggctccctc gaccccgcca ccgtcgccgc acccagcgcg 3240
 gacgtggccg aggtccgcgc ggccgcgcgg gggaccgcacg gagtggcttc cgtccaggac 3300
 ggccccacca ctcccgcacgg agagctgacc atgctgtccg tgggtgtaaa ggacgttccc 3360
 gacagcagcg gggccaagga caccatcgat gcactgcggg acaacacgga tgctctcg 3420
 ggggttacga cggcccgagc cctggacacc cagcgcgcct cggtcgtga cctctgggtc 3480
 accgtccccg cggtcctgtc ggtggtcctg ctgcgtccgt tctggctgtc ggcgtcggtc 3540
 accggacccgc tgatcatgtc cggcaccgtg gtcgtgtcgat tcttcgcggc cctggggccg 3600
 tccaacctgc tcttcgtat cgtgtatggg caccgcggc tcgactggc ggtgccgtt 3660
 ctcgggttcg tgcgtatggg cgcctcgatc atcgactaca acatccctt catgcacccg 3720
 gtgaaggagg aggtcgctt cgcacggccat gccaaggccgc tgctcaccgg ctcgcaccc 3780
 accggggccgc tcatcaccatg tgccggcgat gtcgtgtcgat tcttcgcggc cctggggccg 3840
 acactgcgcgc tggcccgtat ggcggccatg ggtgtcggt tcggccgtgg cattctcg 3900
 gacaccctcc tcgtccggac gattctctg cggccctgg cgcctcgatct gggggccccc 3960
 ttctgggtggc cggcgcgcgt gtcgaagacg tccggggac cggcccccgt cgcgcggac 4020
 cgcacgtccc agcccggtgg ctgagacccg tccgcacgg acccgtacgg cggccggccg 4080
 gttccccccg gccgtacgac tgagcaaccc agaagatggg cgcggccgcg ccaggcgatc 4140
 cgtatgggtgc ccacccggccg caggccgtat tccggaaagg aagcgcgcgtg ttgggcgtat 4200
 aggacggcaa ggcggccgag ctgtggtcga tggcgaaccc gggtaacccg atggccgtgc 4260
 gcgtcgccgc gaccctgcgc atcgccgacc acatcacggc cggagcgcac accgcccggc 4320
 aaatcgccga agccggccgc gtcgcacggg aatccctcgat ccggctgtc cgctaccc 4380
 cctgtccgggg cctgtccgtat cgtgcacggc tcggccgtat cgcgtacccg cccctggggc 4440
 ggcgcgtgtc cgaggaccac cccgcggccg tccggccgtat gttcgacatg gagggagccg 4500

ggccccggcgaa gctgtcggttc gtcgacccgtc tgacacagcgat acggaccgggg aaggccgcct 4560
 tccccctcgcg ctacggccgc cccttctggg aggacactggc ggaggacccc cgccgcgcgg 4620
 agtccttcaa ccggctgctc ggccaggacg tcgccactcg cgccccggcc gtggtgccgg 4680
 gcttcgactg ggcgagcacc ggtcatgtca tcgacctcgg aggcggcgac ggctccctgc 4740
 tgaccgcaact gctgaccggcc tgcgtcgac tgcgcggcac ggtcctggac ctgcccgaag 4800
 cggtgcagcg tgccaaggag tcgttcggcg tgccggact ggacgaccgg gcgaacgcgg 4860
 tcgcggcgac cttttcgac gcccctccccg ccggcgcggg cgccctacgtc ctgtccctgg 4920
 tcctgcacga ctgggacgac gaggcgtccg tcgcgtatccct gcggcgcgtgc gccgaggcg 4980
 cggggcagac gggatcggtt ttcgtcatcg agtcgaccgg ctggcgaaaa gacgccccgc 5040
 acacaggatggat ggacactgcgc atgctgtgca tctacggagc caaggagcgc cgcgtggagg 5100
 agttcgagga actcgccggc cggggccggc tccgggtcgt cgccgtccac cccgcggggcc 5160
 ctcccgcatcatccagatg tccgcgttct gaccggccgg agcccccggc catcgccgcg 5220
 cgggcccacgg cagacaagga gagagcgtat ggccggcctg gtcatgtcgc cgggtggaggc 5280
 gctcgacgcg ctgggcacgg tgcaaggggcg tcaggacccc tatcccttct acgaggcgat 5340
 ccgcgcgcac gggcaggcg ccccccacgaa gcccggccgc ttctgggtgg tcggccacga 5400
 cgcgtgcac cgggcgtgc gggaaaccggc cctgcgcgtc caggacgcca ggagctacga 5460
 cgtcgcttc ccctcggtgc ggtcgcaactc ctcggccgg gggttcacca gctccatgtc 5520
 ctacagcaac ccgcggatc acggccgggtt ggcgcagggt tgtagcttcg cgttcacccc 5580
 gcccaagggtg cgcggatgc acgggggtat cgaggacatg accgaccggc ttctcgaccg 5640
 gatggcccg ctcggctccg gcggtcccc ggtcgacctc atagccgagt tcggccccc 5700
 gctgcccgtc gcggtgatca gcgagatgat cggcttccg gcgaaaggacc aggtgtgggt 5760
 ccgcgcacatg gcctcccggg tcgcccgtgc gacggacggg ttcaccgacc ccggcgcgc 5820
 cacggggggcc gacgcccaca tggacgagat gagcgcctac ttctgggaccg 5880
 tcgcgcgcgc accccggccg acgacctggt caccctgtc gccgaggccc acgacggcgc 5940
 ccccgccgcg ctggaccacg acgaactgat gggcaccatg atggtgctgc tcacagccgg 6000
 gttcgagacc acgagcttc tgatcgccca cggggcgatg atcgccctcg aacaacgggc 6060
 gcacgcggcc cggctgcggg cccgaacccga ttctggccac ggctacgtcg aggagatct 6120
 caggttcgag ccggccgtcc acgtcaccag ccgggtggct gccgaggacc tcgacctgtc 6180
 gggcctgtcc gtaccggcg gctccaagct ggtcctgatc ctggccgcgc cgaatcgca 6240
 tcccggccgc taccccgagc ccggccgtt cgaccccgac cgctacgcgc cccggccggg 6300
 cggggccggag gccaccagac cgctgagctt ccggcgcggg ggcacttct gcctcgccgc 6360
 tccgctggcg cggctggaa cccggatcgc gctggccgcgt ctgctgcgc gcttcccgga 6420
 cctggccgtg tccgagccccc ccgtctaccg cgaccgctgg gtcgtccgcg gcctcgaaac 6480
 ctttcccggt accctcggtt cctgagccccc cggccggccgg aacacgtgac cgccccggcc 6540
 ggcgggtgcg cgcctctca gacgtacagg gtgttggcc cctgaccaca cagcacccgg 6600
 ccgtacagct ccaggttggt gctcggttc atgcaggtgc agcgtgatgc tctggcattc 6660
 gctgcacgcg ctggatcggtt acgtcggtt agatcgagga cccgcgcgc gcctggcg 6720
 ggatgtccac cgactccttgc cccagtcgc acgcccggcc cagcaggccg cggcacagaca 6780
 cccgctctc cagcgtccag gcctcgcccg aagccccctt ggagtcgacg aggtcgccca 6840
 gccgatgggc gtggAACCGT gcctcgccgg ccagcagggt cgcctcgccg agctcgagg 6900
 gggtgatcggtt cggcggccccc tgctcctcgat actcggtgtt ggtatcttgc gggccggggca 6960
 gcctcccgccg gaagacgtcc tgagcggccg cggccagtc ggtcatggt cgcaccgacg 7020
 aggccgaggc cacggccagc atcgccgcgg ggaacatcggt tgatccggc ttgagttcg 7080
 aggctgtactg ctgtcgagc accgcggccca gggaaaggac ggcgtccctgg ggaacgaaga 7140
 cgtccgcggc gatgggtctg acgttcccg agccccggag ccccgagggt tgccagtcgt 7200
 cgacgatctg cagctggctg gtcggcacca gggccatcac gggctgcattc cccgcgtccg 7260
 gggtcgggtt gacggcgatc agaacctggc agtgcgttgc ccaggcaccg ctgtatgaagc 7320
 cccacttgcg gttcactacg acaccggcgtt cgcggccggc cgcctcgccg cccggactga 7380
 gggtgccgga gacccggaca tccggccggg agaacacctc gtcctgcacg tggtcgggg 7440
 agaggccgcg catccaggtt ggtatccacc acaccggaggc cgtccaggcg gccgatccgt 7500
 cggccgcgcg cagctcgccg gccacgttca ccagggtcg ggcgtccgc tcgaagccgc 7560
 cgtaacgggc cggcgcgcgc atgcggaaaga tccgggttc ggccatcgcc tcgaccgact 7620
 cctcggtcag cccggccgtt tcctcggtcc agggcgcgtg ggactggagc agccggctca 7680
 gcttcgaggc ccgttccacc agttcggtac gggcgccgt agacgtctgg tccactcgat 7740
 cctccagggaa tcatgagacg ccctgtccgc ggtatgcggg agcaggcgatc tgccgcgc 7800
 ggtcaggacg gcgtcgccct gctcccgat ggttaccggat gttccgcggat cgtcgatct 7860
 ccttgcattgc cggtcaccta ccccgatgccc gatcgccgtt gtcgcacagc gcatccccac 7920

agaagtccac gaacggtccg ggaagccaga atgtgcttct cggccggagt cacggccggc 7980
 gccggcgccc gtcgcggc acgcccggacc acgcccggac cggtcatgga ggcagccat 8040
 gagtgacaac gacagtccgt cccgggtgcc ggcgcgggt gcacccgcca cccgcgaaacc 8100
 gtcggccggc acggcctcg gcccgcggt ggcttcgccc gcccctaca cccgcggcgcac 8160
 cggccaggaa gccccggaccg cgctggtccg catgctgatg gaacagatgg tgctcggtcc 8220
 cggcgccggc ggtcccgaga cccgcgcggc cggccggcg cggccggaccg gctccggcca 8280
 cggcccgccg ccgcagaccg gaccggacgc gccggcgaa ccccccggca cgtggggccg 8340
 gaacctcgac gacgggaagg taggaggacg atgaggccgc tcgttcgccc agtgctgccc 8400
 ggttccctgc ggcaggttag gtacgtggac gtggctcggc cgcgcggcgc ggcctccctg 8460
 gtggcgccgg tgtaccggg gaccgaggag cagttcgccg tgctcgccccc cccctggcc 8520
 ctccactcgc ccgcgcggc gtcgcggcc ggcacgtggc tcatgctgcg ggagacactg 8580
 ctggtcgacg ggcgggttag cccggcggtg aaggagacgg tcgcccaccga ggtctccctg 8640
 gccaacgact gtccgtactg cgccagggtc catcaggccg tactcgccgact gtcctccg 8700
 gacggcgcc aggccggct cctgcgggtg gtccgggagg caggccgacg gcccggcgcc 8760
 ggtgcgggtg gccgcggccg gccgcggccg tttagccggc aacaggcacc ggaactgtgc 8820
 ggcgtcgtag tcacgttcca ctacatcaac cgcatggtct cccttcctt cgcacgactcc 8880
 cccatgcga cccggacgccc gacaccgtt cgcggccca tcattggac caccgcactg 8940
 gccatgcgtc ccgtcgccccc ggggctgctg acaccggccg catcgctcgg cctgctgcct 9000
 ccggctcccc tgccggccgg actggagtgg gccgaggggca acccttcgt ggcggaggcc 9060
 ctggggcggtg ccgtcgccgc tggaccgg ggcgcgact ggggtggccga accgggtccgg 9120
 gagcggctgc gcacacgtct ggacacctgg gacggatcg cggccggccct cggccggggg 9180
 tggctcgacg aggccgtgtc cggcctgccc ccccaggacg tgcccgccg acggctggcc 9240
 ctgctgacgg cttcgcccc ctaccagggtg ctcccgacg acgtcgagga gttcagacgg 9300
 cgtcgccca ccgaccggca actcgctcgact ctcacgttct acggccgcgt gaccacggcc 9360
 gtccgtgtcg gtcgcacgct cgtcgccccc gacgcgcggc ggcggggatg aacggccccc 9420
 caacggctcg ggaaggctgt ctcacggccg gaggcgtacg ccggtgaggt gtcggactc 9480
 ctcccagagg cggccggccgg ccctgggtc gacggctgtcc ccgcgggggc gcacgagccc 9540
 gggtgcggcc cgggtctcg tcacgcccgg gggccgtag aactcgcccc cgcgcgcgc 9600
 gggatcggtg gccgcggca gaccaggcag catcccgcc gccgcggccgt gcaggaacaa 9660
 cggggcgagc ggggagccga gcctgcgcac gggcgcggga aagtcccgcc ccagaccgg 9720
 cgcggtcagc cccggatggag cggcgagcga gggcagttcc gcgcggact cgcgcgtct 9780
 gtatggagt tccagcgca acatgagggtt ggcagcttg gactggttgt aggcccgta 9840
 cccgctgttag cggcggtcg cgtgaagggtc gctgaagtcg atgcgcggccca gccgggtgcag 9900
 atagctgctg atcgtcacga cccgcgcgc cggcgcggcc cgcaggctgt ccaggagcag 9960
 gccggtgagg gcaagtgcc ccagggtgtt cgtggcgaac tggagttcg gaccgtccgg 10020
 ggtgcggcc cgggtcggtcc acatcagcc cgcgttggc accagcagggt gatgcgcgg 10080
 gaagcggtcg cgcagttccct cggcgccggc acgcaccgc gcgagacggg aaagatccag 10140
 cccgtctgacc gtcagttcgcc cgcacggcac cccgctttgg atgcggccg cccgcggcgcac 10200
 cccgcggtcc gatcgccca cggccagcac cacgtggccg cctgtggccgg ctagctccctg 10260
 cgcgcggatgtc agtccgatgc cggagctggc accgggtacc accgcgggtgg ttccggtaacg 10320
 gtccgggaca tcggcgccgc tccagcgcc cccgcgttctc atcggtcg cctcccgccg 10380
 gatgcgtcag cccgcctggg ccatcgccgc cccgttagccg ttggcgcacga tctgcggggc 10440
 ggagtgcgtg tagtactcg cgtccctcg cagctccgtg gcgagaccgc tgacgtaccg 10500
 gttgaacatg cagaacgcgg cggcgatcag aacgggtgtc tgccagacgg tgctcgcc 10560
 tccctcgccc cgcgcggagg cgcacccccc tgccggagacc gggcgcgcgg cgcgcggcgcac 10620
 ctcggcgccg acggccagca ggcgcgcgt cctgcgtcg atggcgcgg tggcggggtc 10680
 ggcgaggacg gcctcgacga gtcgcggcc tcccgccgc gtcgcggccg cgaaggccccc 10740
 gtggggaggcg ggcgcagaact cgggtggagtt gagatgcgc gacgtacgc cgcgcggatc 10800
 gcgttgcggcc ggttcccgcc aggcggcgc cccgcaggc ggcgcggcc gatgcgcgg 10860
 cgggtcgccg gtggcggtgtt ggtgagccat cagaccactg atgcgggggaa ggtcggtgtc 10920
 gagtgctatg tggggcacgg ctcttcgtt cgggtggacg agggccggac ggcggccggat 10980
 cagggccatt cgacttcgtc gtcggccggc ggcgcaggatgc gggtaaggcc cattccacg 11040
 tcttcccttc ccgttgcgggat gtcggccggag gccgtggta agagggtgac ggtccgaaac 11100
 gtgccgaaga ggagggacacg tcggcaacg tgaagtgcgg tacccatgcg agtccttagc 11160
 gagggcgccg tgaccgcgg acggtgatgc ctcgtatgc caggaagcta gcaaatcgaa 11220
 ctgaggggtgg caacgatatg ccagacttt gcaacttgcc tgcgtatcg ccggactgtc 11280
 ggcgcgttgtt aaagacggaa cggcgagatc cccgcgcggc gtcgcagacg agcagggtct 11340

gtcacccag cgtcgggacg gccagcatgt cgcgtaccgg gagcgtgacg cccagctcg 11400
 gggttgcattc gcggaccaggc cgggtatga gcaggagtc gcccgcgtgg gcaagaat 11460
 cagcaccc tcgggggtcc gggaaagccga gcaggatcacc ccagccgcgc accagtacct 11520
 ggcggatgtc gccgggtgt acgaccgtgc gccggagcc ccgacgtgcc gagcgcagcc 11580
 gcgaggcatg caccagcgcc acctggtcgc cgagggtgcgc ccgcacagc tcgcgcagcg 11640
 acaccgtgac gccgaacctc tcgggtatcc tgccgaccag ccgcgtgatc agcagcgtgt 11700
 ccccgccgcg cgcaagaaa tccgaatgtc cggtgaggtc ggagcggccg aggagctcg 11760
 tccacgcgcc gaccatgaac tccccacgt caccgagccg gtgctgtcg ccgtcggggc 11820
 ccttcggcgc gccggatccc gcggaacggt tccggccgga gacggcagag cggtaactgg 11880
 tcactttcgc cacccagg ggcatgtgtc ggctgcattc gcttcccgc acggtaacggg 11940
 agcacatgtt gcatggcaat acctttccaa gtcgggtggca acccttcctt ccatccaccc 12000
 actgcagttg ggcgagatgt gtaggcattc gaggtccgca gtttgccaa gccgcgcgcg 12060
 accggcatac tcttgcac aacttggatg agtagcgtgg caggccacgg ggaccgggccc 12120
 gggccaggaa ctttcgtctt ccatcttattc gctggggcgt gcacgtgtt gacgagccat 12180
 ctttcgccgc tcgcctgagg cagctgagga ccgagcgggg tctttccag gccgcgcctcg 12240
 cgggggacgg catgtctacg ggctatctt cgcgccttggc gtcgggcgc cggcagccct 12300
 ccgatcgccgc cgtcgcac ctggccggac aactcggcat cagccgcgtg gagttcgaag 12360
 ggtcccgccg cacccgcgtc gcccagatcc tctcccttc cacttccctg gatccgcacg 12420
 agaccatgtg gcttcgcgc gaggcggtac gttccgcgc tggccaggat ccgtatgtcc 12480
 gctggcaggc ccttgcgtc ctgggacagt ggaagcgcgc gcacggcgc tcggccggcg 12540
 agcacggcta ctttcagcgt ctgggtacgc tgagtgagga gatcggcctg gccgagttgc 12600
 ggcgcacgggc ctttgcacccag ttccggggcgt cgctgcgggt actggcgcag atcgttccgg 12660
 cggtgaggc tgccgcgc gcccacccgc tcgcgttggc ccatgcgcgt tccagccagg 12720
 acaggccgcg ttgcgtgtc gttctgggtt cggtgaggc cgaggccggc cggatgcccc 12780
 acgcccggcg ccacgcgcac gaactgaccg tcctggtag gggacggtcc gacactctgt 12840
 gggccggaggc gtttgtggacg gcccgggtcgt tgaagggtgcg gcagggcgc ttcgcgcgg 12900
 ccgaggttctt tttccaggag gcttcgcacg gtttcgcacag ccgggagaac ctgacgatct 12960
 ggctgcggct ggcacatcgcc atggccaaac tccacctgc gaaacttccccc 13020
 acgcccgcga gctctgcattc gaggccggg aggccgcct tcccttgc cgcacatccg 13080
 ctctggaaaca gtcctcgcc gctctgcgg cgcgcctcgcc tttccatgag ggcaggttcg 13140
 ccgatgcggc cgcgttgcgt gaggagctcg gcaggaccga gctccggctg ccctatcaga 13200
 gcccggatccg cctggaggcgc ctgggtatc agctgcgcatt cctgagcggg gaggaggagg 13260
 aaggccctggc cggccctccag ctccctggccg aggaggcgc gagaactcc aacatcaacc 13320
 tcgcccggc gatctggcgg ctgcgcggg aatgcctgtat gcccggcgc gggaaaggccc 13380
 gcccggccac cggccgtcga cggccgcgcg gttcgcgagg tccaccgcgc cggcgtggcc 13440
 accggccgtcg gcgtgaggcg cggccgtgtc cggcccccga cggccgtcg cccttgggtt 13500
 tgcacatgtt ggcacatgtt taccccttac acactcaatt gttccaaaa ttgtcgaacc 13560
 gaatggcaat tgcttgcctt tgctgaagag gcgtgtgtat atgcaagtca agtagcctcc 13620
 tccgatctcg ggcggccata tggaaacat cgagttgagc ggcgtatggc ttgcgtcagt 13680
 ctggccgttctt ggcaggcaca ctgatgtcga tggggatggc aagattttgc cgaaaaccga 13740
 tacatctctg tccgtcccg acagcctcg ccccccgggt gacactgctc cggcatggct 13800
 ccggtttctc gtgcgcgcgc cgcggaccg caccgtccgg aacgaggcgc cgggtgtgcgt 13860
 ccgctgtatgg gcacagcggc ctggccgcga cgcggatccc accgagaaga atgcccggg 13920
 ccagccgtga accacgcacat gtcccagcgt gccttgcgtt aggccggcgc cgggggctg 13980
 cggccggctgg cggccgcacgc cgggtgcggc agcgcgtcg cgcgcctc ctggcattt 14040
 agggacatgt tctcccccgc cggccgcgcg tacgtgtcg cctcgaccg cgcgggggtc 14100
 ttgcgaggcagg ctgtccggcgt ggcgtccgg gggtaaccggg tgagcgcgg gttcgtcggc 14160
 cccgatcagg gaccgcaccg cggccctccac cgggagcaccg tggtcgaaga gacactgagg 14220
 ctgctcgatc aggagccggc ccctgaccgg atcggtgtgg acgtctcccg gatcggcctc 14280
 gcccactcg cgcagactgc cctgcgcac accggccggc tggctgcgc tgccggcgc 14340
 cgcgggagcg aggtcgtctt gctcatggag gggtaaccggg acatcgacac cgtgtcgccc 14400
 gtccatgcacg ccctgggtaa ccgttacgac aacgtggggta tcacccttca ggcgcaccc 14460
 caccgcacccg tggacgcacgc catggccgtc gcccgtccctg gccgcaccgt gcccgtggc 14520
 atgggctctt cggccgagcc tgccggacc gctctgtccc ggggccccgc tctggaggac 14580
 cggtacccctg acctcgccga gcttctcggt gaccgtggcg tccggcttag tctggccact 14640
 cgggaccccg aggtcctggc cggggcgcag gacgcgtggc tgctcgaacg cgtccaggac 14700
 atcgagatgc tctacggtgcg cggcccccgcg ctgctgcgc gccaccggc ggcggccgc 14760

ccctgtcgca tccacgcggc ctacggatg aactggtggc ttcccctgct gcggaggctg 14820
 gccgacaacc cggcgatggt gctcaacgcc ctggccgaca tcggccggaa cggggagccc 14880
 gtcgcccacc aggcgtactg acccgccccg gcccgcgatc cgcggggcac cggccccggg 14940
 gcgccggta cgtccccgtc gccgcgaact gcccgggcct gcgcctctcg cccgcccggc 15000
 cccggtaggc ctggcgatg tccagccact tctccgcctc ctgaccagac gcggtcaggg 15060
 cgaggtcgtc gcggtggcg cgcgggtga ccagcaggca gaagtctgtc gcgggaccgc 15120
 tgaccgtctc ggtggcgtcc tcggggccga cctgtccagac ctcgcccagag gggggcgtga 15180
 gctcgaagcg gaacggcgcg gccggccggg tcagaccgtg ggactctgtc cccaagtcgc 15240
 gtgtcagcca ggcgaagtcg acgatgttgc gaagccgtc ggtggcgtg cgcggacac 15300
 ccagggcgtc ggcacgtcc tggccgtgg cgaacacccatc catgatccc ggcgagccca 15360
 gaacgaccgg cggcagcggg ttgaccagcc acggaaccac ctggccggcg gggaccgcgg 15420
 cgagcgccctc gaccgaggcc cgcggcatgc cccggaagcg ggtgagcagt tcctgcggcg 15480
 ggaagccctt gaactgtgc agagccgt tgaccgctc gtcgaagttg cctgcgcgg 15540
 cggccgtgac ggccttgaac tcctccggc cgcggccgc ggtcctggcc aggttgaaga 15600
 cgaaggtgag gtggcgatc tggcgtgtc cgttccagcc gggccggcgc gtcggagtgt 15660
 tccaggcttc gtcgtcgatc ttctcgacca gctgcgcccag ctcctcgatc tcggtgccca 15720
 ggtgctttag gacgtcgatc agcgaattca tctcgtaatt ctttcaactgg ggggtttccg 15780
 ggctgggacg gatgtcccgcc cgggtggcc ggcggccggc ggaagccgc tcgcggagcg 15840
 tcggcgacag tcgcttaggcg ggcgtcccg ctaggagcc ggcgggtcg gaatagggcg 15900
 cgagcgccctc ggcaggggct tcgggtatca ggtcgccac ggtcgccgtg ttggggccgc 15960
 gcatgcaggc gatgcgtgg cgtcccccgcc acccagggt ctcgcgcgc tcgtcgccca 16020
 gcttcatgtta gtcgaagggtg aactccagct ggtctgcgc cagctccgag agcctcatcc 16080
 ggatcgacag ttcgtcgaa gcggtgatct cgcgaagaa ctcgcgttcc accttgagg 16140
 tgaagagctt gaggtccccc tggacctcgg ctagcaccga aggcccctc tccttgagaa 16200
 agagttcccg gcaacgcccc tgccaaacgaa ggtagttgac gtagtagacg ttgcccacga 16260
 ggttcgtctc ctcgaagccg acgggtgtggc gtagctcgaa gtagtcagga tcgtcgccg 16320
 tcataaggctt gtggcccttcg tcgtcgccgc cgttcgtcgc accgagttgc gtgaagcaac 16380
 tcactggtcg cgttgcgtc cgggtcggt ggcggccgt ccggccggag agtgcggcg 16440
 gggtccggc cggcggggg tcaaggccgc gccgacggca gcaggggaag aaccctctcg 16500
 cggccgcctc tggagccgtc gggggccgt gcccgttagg tgacggagat accccggctc 16560
 tgcgcggcgc gcacgatccc cggcatcgcc cttcgccgca ggcggccgt gtcgtcgcc 16620
 ggattgaccg tcagcgcgc gggaaaccgac gatccgtcg tgacgaagat cccgggtgg 16680
 tcgcggagct cgttgcgtc gtccaggccg gatgtgtggg ggtctgcgc catccggcag 16740
 gaggagagcg ggtggacggg gtaggcgcg acgaggtcg tggtccagg catgacctg 16800
 gccaggccgt cttctccag gatctcttg acctcgccgt cggatgcggc ccaggcgccc 16860
 agggtgtct tcgtcggtc gtagcgcagg ttgccccggc ctagcatctg ctgggagatg 16920
 cggtggccgt taccgggtgc gggaggggg cgaagacgc cttcgttgc gtcctcgatc 16980
 atcgtgaaga tcgtgagcca ggaggtccac tgcttcagga tctccttctt ctccttgccg 17040
 aaccaggagg ggcggcgtggc gccggccacc tggcgagga tcgtgccag gcccggcg 17100
 aagttagagct gttccaggga gtagcggag tactcgccca acgagccgtc cagcctgtcc 17160
 cagctcgcca cggggggccc cttggccgatc tggtggccg ctaggcgcg cccgtcgccc 17220
 cggtccaggg cgaacagctc ggcgccttgc cttcggtcga tgatggcggt gttgagccgc 17280
 tcgcgttgc cggagaagta gctccgcacc gtcgtggca tggtggccag gtgggcctcg 17340
 ctgcgttgc ggtacaccgg ggtcgccccc gcgcggccgc ccatcaccac gatcttcgccc 17400
 tcgtacgc cgttgcggcc ctggaggccg tagtcgtcg cgtgcacgc gttgttagtgc 17460
 acccggtagg agccgtcgcc ggtgcgcgag aggtgtggaa cctcgccag cggccggatg 17520
 cgcggcccat gggcgatggc ggcggccagg tagttgacca gcaaggactg cttggccctcg 17580
 aagcggcagc cggccatcat ccagttgcag ttacgcact tggtgttgc gatggcgacg 17640
 gcgagggggt tggcggtgcg gcccggtgg ttgcacgcgc cggcccacag tccgcggcg 17700
 tagtcacgt cgttccagtc tgccgggtc acggagaggg actcctcgac acggtcgtac 17760
 caggggttcca ggggttgcg gtcacccgc tccggccaca tccggcgatc tatggacc 17820
 tgccggtgcg agacgaagcg cggggccggc ggcacgcgc cgaagtagac gacgtcgcc 17880
 cgcggccacac agtccccggc gaggatgtc atgcgtccc cgcggatgaa gtcgaacgcc 17940
 ctcgtgtacg aggagccgag ttgttagtgc tgctcgact cttgtctc cagccacggc 18000
 cgcgttcca ggacgggtgac gtcggccccc cccgcccgc ggtggtaggc ggcgtatggca 18060
 cgcggcaatc cgctgcccgt gacgaggacg tccgtgcgcgt cggccgtggt gtcgtcgcc 18120
 ggctccgggt ggacgtgggtc tcgggtggc ggcggccgaa ctcaccccg tagctgtat 18180

ccttgaagcg ccacaggccg tcggcgtccg gcatgctcg gccccatggcc tccagtcgg 18240
 gatggccgtc ctccatcgcc tggccgtgt tgagggtgcg ggccgaatcg aaggccatgt 18300
 tgcagaagag ggacagcagc acccagaact cttctcggt gtggcctggt gtcgtcagcc 18360
 gctggatcatcg cgccggccgg tccggtagt cgagcgcac gaagggcggg accgtcgggt 18420
 cgggagccag gcccgcgtcc gcccgttagg ccagcgcgtg ctcgttacc accgcgcacca 18480
 ggtcgtccag accctcggt atgcccgtcg catcccattg caggagctcc agggctccc 18540
 cctggacggc gccaccggc gtggacaccc cccgcgtggc cccgtcgtcc gcgaagcgt 18600
 tctggccggg cacgatcggt tccgcgttagg cctccagggt catggccggg atatgcggg 18660
 cccggccccc tcgtctattg tcgtcgcgc actcgctctc cattctcgca gtccggagtg 18720
 ggatgcctt gggcgaggag aaagcttagt tcgttcgacc ggttcaagca actagccaaa 18780
 gtcgaggcga ctttgaacc gactccacgg agttggcgg aagcggcgg tggattacac 18840
 ggcggggcga gcggtcaact agtctggccg cacggatgtc ttcatcacct gcacgtggaa 18900
 aagcttctgc acgggcaccc catgtggaa tgagccctgg tctcatgtct tggggaaac 18960
 gtgaaaagtg actctgccc acgcgcgtg gagcgtacac gcccgtcgt acggatcgat 19020
 gaactcattc cccgcgttcc cccgcgcgtg aacggaatcg atcgatccc tgcgcgcgc 19080
 ctcgcgaccg tgtacgcgtc cctgcgcgtg gtccgtgtc accgcggcgc catgcgggtc 19140
 gtcgacggca tgcaccgcgt cggcgcggcc cccctgaagg ggctggacac ggtcgagggtc 19200
 accttcttcg agggcgcga ggagcagggt ttccgtgtt cccgcgcgc gaacatcacc 19260
 aacggcctgc cggttcgtt ggccgaccgc aagaccgcgc cggccgcata tctggccccc 19320
 caccggaccc tgcgtcgcc cggcgtcgcc gcacacgtcg gcctcgacgc caagaccgtg 19380
 gccccgggtac ggacgtttc agccgcgggt tctccgtgc tgaacatgcg caccggggcg 19440
 gacggccgcg tccaccgtt ggaccgcacc gccgaacgcg tgcacgcgc cccgcgtctg 19500
 acccaggacc cgggactccc gttgcgtcc gtcgtcgagc agacggggct gtcgtgggc 19560
 acggcccaacg acgtccgcgc tcggctgtc cggggcgagg acccggtccc gcagaaccgg 19620
 cagagcgcga tgctggagcc gggactcgcc cccgcagaaga aggccgcgcg caagccccc 19680
 gtcggcccg cccgcgtcc ggtcccgaa gtgccgcgg cccgcgcgg caggccgcgg 19740
 gtgtcaccgc ggtcccgaa cccgcgtggag gcgcgtcgca agctctcaa cggccctcc 19800
 ctgcgcact cccgaccaggc gcgcgaactc atgcgtggc tgcacaaccg ttccgtcgtc 19860
 gacgaggcgt ggcgcggcg cccgcgtcc gttccggccc actgcgtcg ctcgtatggc 19920
 gagctggcgc agcactgtcc ggacgcctgg caccgggtcg cccgaggagat gttcggcgc 19980
 cggcacagcg cccgcgcgc cccgcgtccga ctccgcacga ctcagccaac tccgcgttga 20040
 cggcctactt cgacaggagg ttacgggtac cacgaacacc atcgaggacg cggccgcgc 20100
 ggtcgtcgag tacatgcacg tcaacctggg tcagaacctc acgatcgatg acatggcgc 20160
 cacggcgatg ttcaagtcgttccatcc cccgcgtcc cccgcgtcc cccgcgtcc 20220
 tccccggcgt ttccgtccg cttacggat tcaggaggcc aagagacttc tcgtgcacac 20280
 tgcactcagt gtggccgata tcagcgtca ggtcggtac acgactgtcg gtactttcag 20340
 ttctcgcttc aaggcctgtg tggggcttc cccgcgcgc tatcgact tcggcgggggt 20400
 gcagccgggt tttccctccg cccgcggccgc tccactccc accgcgcaca atccctccgt 20460
 ggcggccgcg attactccg ccccggtga caggcccgaa aggatctcg tggccctgtt 20520
 ccccgccagg atgcgcagg gccgcgcgcg cccgcgtggacc gtcgtggaga gtcggccggc 20580
 cttcgagctc cgggacgtgc cccgcgtcc cccgcgtcc cccgcgtcc cccgcgtcc 20640
 cggacaccgg cccgaccaggc tcgactccga accgcgtttt cccgcgcaca gccggaccgt 20700
 cgtgggtcaca cccgggtccc tgctccggcc ggcgcgcgc cccgcgtcc cccgcgtcc 20760
 cctcgatcca cccgcgtcc cccgcgtcc tggccactt cccgcgtcc cccgcgtcc 20820
 ctcaccgtca tcgttagccc tccgcgcata cccgcgtcc cccgcgtcc cccgcgtcc 20880
 cgggtccgg cgacggta cccgcgtcc cccgcgtcc cccgcgtcc cccgcgtcc 20940
 gcctccatca tcccgagggtt gtcgtggacc cccgcgtcc cccgcgtcc cccgcgtcc 21000
 tacgcgtacc gccgcgggtc gccgcgtcc cccgcgtcc cccgcgtcc cccgcgtcc 21060
 tcgggggtctt cccacagccc cccgcgtcc cccgcgtcc cccgcgtcc cccgcgtcc 21120
 gatccggcgg acaccgtgtt gccgcgcacc acatcggtt gtcgtggccac cccgcgtcc 21180
 atccc

<210> 3
 <211> 15
 <212> DNA
 <213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 3
atgggcatga cgggt 15

<210> 4
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 4
ctagaggatc ccggg 15

<210> 5
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 5
atgccgcgga ttccc 15

<210> 6
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 6
tcagctgtcg atgtc 15

<210> 7
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 7
atgaccatcg ccact 15

<210> 8

<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 8
tcagaggccg agcac 15

<210> 9
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 9
atgagctcgc tactg 15

<210> 10
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 10
ctaggagccg gtcgc 15

<210> 11
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 11
atgagcagca gcgcc 15

<210> 12
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 12
tcattcgtcg gctgc 15

<210> 13
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 13
tgaggggctc tgccg 15

<210> 14
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 14
tcagacggcg gaggg 15

<210> 15
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 15
gtgagcgtca ccgac 15

<210> 16
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 16
tcaacccgcc ctgcg 15

<210> 17
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 17
atgaggatgc tggtg 15

<210> 18
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 18
gtggctgtgc tcgca 15

<210> 19
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 19
atgaggatgc tggtg 15

<210> 20
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 20
tcagccgacg gcgtc 15

<210> 21
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 21
gtgacagcag tcaag 15

<210> 22
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 22
tcatgtggcc ggttg 15

<210> 23
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 23
tgggagtaact ggaac 15

<210> 24
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 24
tcaggcctga ggggc 15

<210> 25
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 25
gtgccccacg gtgca 15

<210> 26
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 26
ctacagccct ccgag 15

<210> 27

<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 27
atgtcttcaa cccgt 15

<210> 28
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 28
tcagccgcgc aggaa 15

<210> 29
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 29
atgctggaga aatgc 15

<210> 30
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 30
tcagacgagc tcctt 15

<210> 31
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 31
atggagtacg gcccc 15

<210> 32
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 32
tcatgccgtg cgcac 15

<210> 33
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 33
atgagcggcg gcccc 15

<210> 34
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 34
tcacctcgcc ggacg 15

<210> 35
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 35
atgtcgttac gtcac 15

<210> 36
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 36
tcagccgaag gtcag 15

<210> 37
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 37
atgaaggcac ttgtta 15

<210> 38
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 38
tcaggccgcg atctc 15

<210> 39
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 39
gtggacgtgt cagcg 15

<210> 40
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 40
tcaggaccgc gcacc 15

<210> 41
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 41
atgaagccga tcggg 15

<210> 42
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 42
tcaggacgac ttgtt 15

<210> 43
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 43
atgccttccc ccttc 15

<210> 44
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 44
tcaggtgcgc tcggc 15

<210> 45
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 45
gtgagagacg gccgg 15

<210> 46

<211> 15		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer		
<400> 46		
tcacgtggtg atggc		15
<210> 47		
<211> 15		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer		
<400> 47		
atgaccgacc agtgc		15
<210> 48		
<211> 15		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer		
<400> 48		
tcacagcaac tcctc		15
<210> 49		
<211> 15		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer		
<400> 49		
gtgagcttgt ggtct		15
<210> 50		
<211> 15		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer		
<400> 50		
tcaggccggt tcggc		15

<210> 51
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 51
gtgcgtccct tccgt 15

<210> 52
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 52
tcagcggagc ggacg 15

<210> 53
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 53
atgccagcac cgact 15

<210> 54
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 54
tcagtcgttg ccgcg 15

<210> 55
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 55	
atgccagcac cgact	15
<210> 56	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer	
<400> 56	
tcagtcgttg ccgcg	15
<210> 57	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer	
<400> 57	
atgaccaagg acgcc	15
<210> 58	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer	
<400> 58	
tcatacggcg gcgcc	15
<210> 59	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer	
<400> 59	
gtgagcgcac aactc	15
<210> 60	
<211> 15	
<212> DNA	
<213> Artificial Sequence	

<220>
<223> Description of Artificial Sequence: primer

<400> 60
tcacggctgt gcctg 15

<210> 61
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 61
atgtcttcaa cccgt 15

<210> 62
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 62
tcagccgcgc aggaa 15

<210> 63
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 63
atgacgacgt ccgac 15

<210> 64
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 64
tcaggagggtg aaggg 15

<210> 65

<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 65
atggcattga ctcaa 15

<210> 66
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 66
tcagcgcagc tggat 15

<210> 67
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 67
atgacgcggc cggtg 15

<210> 68
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 68
tcagcgggtg agccg 15

<210> 69
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 69
gtgtccaccg tttcc 15

<210> 70		
<211> 15		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer		
<400> 70		
tcactgcgtt ccgga		15
<210> 71		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer		
<400> 71		
gtgtgcccggt tgacagac		18
<210> 72		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer		
<400> 72		
tcagcccacg ggctggga		18
<210> 73		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer		
<400> 73		
gtgttggcgt atgaggac		18
<210> 74		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer		

<400> 74		
tcagaccgcg gacatctg		18
<210> 75		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer		
<400> 75		
atggccggcc tggtcatg		18
<210> 76		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer		
<400> 76		
tcaggacccg agggtcac		18
<210> 77		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer		
<400> 77		
gtggaccaga cgtctacg		18
<210> 78		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer		
<400> 78		
tcatgcaggt gcagcgtg		18
<210> 79		
<211> 18		
<212> DNA		
<213> Artificial Sequence		

<220>
<223> Description of Artificial Sequence: primer

<400> 79
atgaggccgc tcgttcgg 18

<210> 80
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 80
tcatcccgcc ccggcggc 18

<210> 81
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 81
atgagaacgc ggcgacgc 18

<210> 82
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 82
tcacggccgg aggctac 18

<210> 83
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 83
gtgtatcagc cggactgt 18

<210> 84

```

<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 84
ctactcattc cagttgtg 18

<210> 85
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 85
atgtctacgg gctatatc 18

<210> 86
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 86
tcagccgccc gtggcgcc 18

<210> 87
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 87
atgttctccc ccggcgcc 18

<210> 88
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 88
tcagtagcc tggtgccc 18

```

```

<210> 89
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 89
atgaattcgc tcgacgac 18

<210> 90
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 90
tcagctcccg gtcgccgc 18

<210> 91
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 91
atgaccgcga cgaatcct 18

<210> 92
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 92
ctaggcggcg cgtccgc 18

<210> 93
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

```

<400> 93
atgagcacca cggccgag 18

<210> 94
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 94
tcagccgcgc gccgacgg 18

<210> 95
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 95
atgaccctgg aggcctac 18

<210> 96
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 96
gtgaaaagtg actctgcc 18

<210> 97
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 97
gtgaccacga acaccatc 18

<210> 98
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 98
tcatgcgggg ctcccggt 18

<210> 99
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 99
tcaacggcga gttggctg 18

<210> 100
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 100
tcacccgcga tctcgatc 18

<210> 101
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 101
tcacacctgcc gtactcac 18

<210> 102
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<220>
<221> misc_feature
<222> (15)..(15)
<223> s is g or c

```

<220>
<221> misc_feature
<222> (19)..(19)
<223> r is a or g

<400> 102
agctccatca agtcsatgrt cgg

<210> 103
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<220>
<221> misc_feature
<222> (9)..(9)
<223> s is g or c

<220>
<221> misc_feature
<222> (12)..(12)
<223> s is g or c

<400> 103
ccgggtttsa csgcgttagaa ccaggcg

```

27


```

<210> 104
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<220>
<221> misc_feature
<222> (6)..(6)
<223> v is a or g

<220>
<221> misc_feature
<222> (9)..(9)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (12)..(12)
<223> y is t or c

<220>
<221> misc_feature
<222> (15)..(15)

```

```
<223> b is c or g  
  
<220>  
<221> misc_feature  
<222> (18)..(18)  
<223> v is a or g  
  
<400> 104  
gacacvgcnt gytcbtcv  
18  
  
<210> 105  
<211> 18  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence: primer  
  
<220>  
<221> misc_feature  
<222> (1)..(1)  
<223> r is a or g  
  
<220>  
<221> misc_feature  
<222> (4)..(4)  
<223> s is g or c  
  
<220>  
<221> misc_feature  
<222> (7)..(7)  
<223> r is a or g  
  
<220>  
<221> misc_feature  
<222> (10)..(10)  
<223> v is a, g, or c  
  
<220>  
<221> misc_feature  
<222> (13)..(13)  
<223> n is a, c, g, or t  
  
<220>  
<221> misc_feature  
<222> (16)..(16)  
<223> r is a or g  
  
<400> 105  
rtgsgcrttv gtnccrct  
18  
  
<210> 106  
<211> 26  
<212> DNA  
<213> Artificial Sequence  
  
<220>
```

<223> Description of Artificial Sequence: primer

<220>
<221> misc_feature
<222> (3)..(3)
<223> s is g or c

<220>
<221> misc_feature
<222> (9)..(9)
<223> s is g or c

<400> 106
gcstcccgsg acctgggctt cgactc

26

<210> 107
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<220>
<221> misc_feature
<222> (3)..(3)
<223> s is g or c

<220>
<221> misc_feature
<222> (6)..(6)
<223> s is g or c

<220>
<221> misc_feature
<222> (9)..(9)
<223> s is g or c

<220>
<221> misc_feature
<222> (21)..(21)
<223> s is g or c

<220>
<221> misc_feature
<222> (24)..(24)
<223> s is g or c

<400> 107
agsgasgasg agcaggcggg stcsac

26

<210> 108
<211> 22
<212> DNA
<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: primer

<220>
<221> misc_feature
<222> (2)..(2)

<220>
<221> misc_feature
<222> (5)..(5)
<223> s is g or c

<220>
<221> misc_feature
<222> (7)..(8)
<223> s is g or c

<220>
<221> misc_feature
<222> (11)..(11)
<223> s is g or c

<220>
<221> misc_feature
<222> (14)..(14)
<223> s is g or c

<400> 108
csggsgssgc sggsttcatc gg
```

22

```
<210> 109
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<220>
<221> misc_feature
<222> (4)..(4)
<223> w is a or t

<220>
<221> misc_feature
<222> (5)..(5)
<223> r is g or a

<220>
<221> misc_feature
<222> (11)..(11)
<223> r is g or a

<220>
```

```

<221> misc_feature
<222> (12)..(12)
<223> s is g or c

<220>
<221> misc_feature
<222> (15)..(15)
<223> s is g or c

<400> 109
gggwrctggy rsggscgcgt a gttg                                24

<210> 110
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 110
aggtgtggaggc gctcaccgag                                20

<210> 111
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 111
gggcgtcagg ccgttaagaag                                20

<210> 112
<211> 3035
<212> DNA
<213> Streptomyces globisporus

<220>
<221> CDS
<222> (101)..(1096)
<223> sgcA gene

<220>
<221> CDS
<222> (1143)..(2705)
<223> sgcB gene

<400> 112
ggatccggaa agaccggaat tccgccccca gcccggtcga actcgatcg ctcctggtag 60
aactgacgaa gcgtcatcgc cgtgacaagg aggccggaccg atg agg atg ctg gtg      115
                                         Met Arg Met Leu Val

```

1	5	
acg ggc gga gcg ggt ttc atc ggc tcg cag ttc gtg cg	ggc aca ctg	163
Thr Gly Gly Ala Gly Phe Ile Gly Ser Gln Phe Val Arg Ala Thr Leu		
10	15	20
cac ggc gag ctg ccg ggt tcc gag gac gcc cg	gtg acg gtc ctg gac	211
His Gly Glu Leu Pro Gly Ser Glu Asp Ala Arg Val Thr Val Leu Asp		
25	30	35
aag ctg acg tac tcc ggc aat ccg gcc aac ctc acc tcc gtc gcg gcc		259
Lys Leu Thr Tyr Ser Gly Asn Pro Ala Asn Leu Thr Ser Val Ala Ala		
40	45	50
cat ccg cgg tac acc ttc gtc cag ggc gac acc gtc gac ccg cgc gtc		307
His Pro Arg Tyr Thr Phe Val Gln Gly Asp Thr Val Asp Pro Arg Val		
55	60	65
gtc gac gag gtg gtc gcc ggc cac gac gtc atc gtc cac ttc gcg gcg		355
Val Asp Glu Val Val Ala Gly His Asp Val Ile Val His Phe Ala Ala		
70	75	80
85		
gag tcg cac gtg gac cgc tcg atc gac acc gcc acc cgg ttc gtc acg		403
Glu Ser His Val Asp Arg Ser Ile Asp Thr Ala Thr Arg Phe Val Thr		
90	95	100
acc aac gtg ctc ggg acc cag acg ctg ctg gaa gcg gct ctc cgg cac		451
Thr Asn Val Leu Gly Thr Gln Thr Leu Leu Glu Ala Ala Leu Arg His		
105	110	115
ggg gtc ggc cgg ttc gtg cac gtg acc gac gag gtc tac ggg tcg		499
Gly Val Gly Arg Phe Val His Val Ser Thr Asp Glu Val Tyr Gly Ser		
120	125	130
atc gcc tcc ggc tca tgg acc gag gac acc ccg ctc gcc ccc aac gtc		547
Ile Ala Ser Gly Ser Trp Thr Glu Asp Thr Pro Leu Ala Pro Asn Val		
135	140	145
ccc tac gcg gcg tcg aag gcg ggt tcg gac ctg atg gcg ctc gcc tgg		595
Pro Tyr Ala Ala Ser Lys Ala Gly Ser Asp Leu Met Ala Leu Ala Trp		
150	155	160
165		
cac cgc acc cgg ggc ctg gac gtc gtc acc cgg tgc acc aac aac		643
His Arg Thr Arg Gly Leu Asp Val Val Val Thr Arg Cys Thr Asn Asn		
170	175	180
tac ggt ccc tac cag tac ccc gag aag gtg atc ccg ctc ttc gtc acc		691
Tyr Gly Pro Tyr Gln Tyr Pro Glu Lys Val Ile Pro Leu Phe Val Thr		
185	190	195
aac atc ctc gac ggc ttg cgg gtg ccc ctg tac ggg gac ggc gcc cac		739
Asn Ile Leu Asp Gly Leu Arg Val Pro Leu Tyr Gly Asp Gly Ala His		
200	205	210
cgc cgg gac tgg ctg cac gtg tcc gac cac tgc cgg gcc atc cag atg		787
Arg Arg Asp Trp Leu His Val Ser Asp His Cys Arg Ala Ile Gln Met		
215	220	225

gtc atg aac tcc ggc cgg gcc ggg gag gtc tac cac atc ggc ggc ggc		835	
Val Met Asn Ser Gly Arg Ala Gly Glu Val Tyr His Ile Gly Gly Gly			
230	235	240	245
acc gaa ctc tcc aac gag gaa ctc acc ggc ctg ttg ctc acg gcg tgc		883	
Thr Glu Leu Ser Asn Glu Glu Leu Thr Gly Leu Leu Leu Thr Ala Cys			
250	255	260	
ggc acc gac tgg tcc tgc gtg gac cgg gtg gcc gac cgg cag ggg cac		931	
Gly Thr Asp Trp Ser Cys Val Asp Arg Val Ala Asp Arg Gln Gly His			
265	270	275	
gac cgc cgc tac tcg ctc gac atc acg aag atc cgg cag gaa ctg ggc		979	
Asp Arg Arg Tyr Ser Leu Asp Ile Thr Lys Ile Arg Gln Glu Leu Gly			
280	285	290	
tac gag ccc ctg gtc gcc ttc gag gac ggc ctg gcc gcg acg gtg aag		1027	
Tyr Glu Pro Leu Val Ala Phe Glu Asp Gly Leu Ala Ala Thr Val Lys			
295	300	305	
tgg tac cac gag aac cgt tcg tgg tgg cag ccg ctg aag gaa gcg gcc		1075	
Trp Tyr His Glu Asn Arg Ser Trp Trp Gln Pro Leu Lys Glu Ala Ala			
310	315	320	325
ggc ctc ctg gac gcc gtc ggc tgacggcagc caccgctagg aacaccccaag		1126	
Gly Leu Leu Asp Ala Val Gly			
330			
gaaaggagcc acctcc gtg aca gca gtc aag gag ccg acg tcc cgc gca gga		1178	
Met Thr Ala Val Lys Glu Pro Thr Ser Arg Ala Gly			
335	340		
cg ^g cg ^g gag tgg atc gct ctc gtc ctc tcc ttg ccc acg atg ctg		1226	
Arg Arg Glu Trp Ile Ala Leu Val Val Leu Ser Leu Pro Thr Met Leu			
345	350	355	360
ttg atg ctg gac atc aac gtc ctc atg ctg gcc ttg ccg cag ttg agc		1274	
Leu Met Leu Asp Ile Asn Val Leu Met Leu Ala Leu Pro Gln Leu Ser			
365	370	375	
gag gat ctc ggc gcg agc agc acg caa cag ctg tgg atc acc gac atc		1322	
Glu Asp Leu Gly Ala Ser Ser Thr Gln Gln Leu Trp Ile Thr Asp Ile			
380	385	390	
tac gga ttc gcg atc gcc ggc ttc ctg gtg acc atg ggc acc ctc ggc		1370	
Tyr Gly Phe Ala Ile Ala Gly Phe Leu Val Thr Met Gly Thr Leu Gly			
395	400	405	
gac cgg atc ggc cgc cgc agg ctc ctg ctc ggg ggc gcg ggc gtc ttc		1418	
Asp Arg Ile Gly Arg Arg Leu Leu Leu Gly Gly Ala Ala Val Phe			
410	415	420	
gcg gtc gtg tcc gtc gcc gcg ttc tcc gac agc gcg gcg atg ctc		1466	
Ala Val Val Ser Val Val Ala Ala Phe Ser Asp Ser Ala Ala Met Leu			
425	430	435	440

gtc gtc agc cgc gcc gtg ctc ggc gtc gcc ggg gcc acg gtg atg ccc Val Val Ser Arg Ala Val Leu Gly Val Ala Gly Ala Thr Val Met Pro 445 450 455	1514
tcg acg ctc gcg ctc atc agc aac atg ttc gag gac ccc aag gag cg Ser Thr Leu Ala Leu Ile Ser Asn Met Phe Glu Asp Pro Lys Glu Arg 460 465 470	1562
ggc acc gcc atc gcc atg tgg gcg agc gcc atg atg gcc gga gtc gcc Gly Thr Ala Ile Ala Met Trp Ala Ser Ala Met Met Ala Gly Val Ala 475 480 485	1610
ctc ggg ccc gcc gtc ggc ctc gtc ctc gcc gcg ttc tgg tgg gga Leu Gly Pro Ala Val Gly Gly Leu Val Leu Ala Ala Phe Trp Trp Gly 490 495 500	1658
tcg gtg ttc ctc atc gcc gtt ccg gtg atg ctg ctg gtg gtg gtc acc Ser Val Phe Leu Ile Ala Val Pro Val Met Leu Leu Val Val Val Thr 505 510 515 520	1706
ggc ccc gtg ctg ctc acc gag tcc cgc gac ccg gac gcc gga cg Gly Pro Val Leu Leu Thr Glu Ser Arg Asp Pro Asp Ala Gly Arg Leu 525 530 535	1754
gac ctg ctg agc gcg ggg ctc tcc ctc gcg acc gtg ctg ccg gtg atc Asp Leu Leu Ser Ala Gly Leu Ser Leu Ala Thr Val Leu Pro Val Ile 540 545 550	1802
tac gga ctg aag gag ctg gcc ccg acc ggg tgg gac ccg ctc gcc gcc Tyr Gly Leu Lys Glu Leu Ala Arg Thr Gly Trp Asp Pro Leu Ala Ala 555 560 565	1850
ggc gcg gtg ctc ggc gtg atc ttc ggc gcg ctg ttc gtc cag cgc Gly Ala Val Val Leu Gly Val Ile Phe Gly Ala Leu Phe Val Gln Arg 570 575 580	1898
cag ccg ccg ttg gcc gac ccc atg ctg gac ctc ggc ctc ttc gcc gac Gln Arg Arg Leu Ala Asp Pro Met Leu Asp Leu Gly Leu Phe Ala Asp 585 590 595 600	1946
cgc acc ctg ccg gcg ggt ctg acg gtc agt ctg gtc aac gcc gtc atc Arg Thr Leu Arg Ala Gly Leu Thr Val Ser Leu Val Asn Ala Val Ile 605 610 615	1994
atg ggc ggg acc gga ctg atg gtc gcc ctg tac ctc cag acg atc gcc Met Gly Thr Gly Leu Met Val Ala Leu Tyr Leu Gln Thr Ile Ala 620 625 630	2042
ggt cac tcc ccg ttg gcc ggg ctg tgg ctg ctg atc ccg gcc tgc Gly His Ser Pro Leu Ala Ala Gly Leu Trp Leu Leu Ile Pro Ala Cys 635 640 645	2090
atg ctc gtc gtg ggc gta cag ctg tcg aac ctg ctg gcc cag ccg atg Met Leu Val Val Gly Val Gln Leu Ser Asn Leu Leu Ala Gln Arg Met 650 655 660	2138
ccc cct tcc ccg gtg ctg ctg ggg gga ctg ctg atc gcg gcc gtc gga	2186

Pro Pro Ser Arg Val Leu Leu Gly Gly Leu Leu Ile Ala Ala Val Gly			
665	670	675	680
cag ctc ctg atc acc cag gtg gac acc gag gac acc gcc ctc ctc atc			2234
Gln Leu Leu Ile Thr Gln Val Asp Thr Glu Asp Thr Ala Leu Leu Ile			
685	690	695	
gct gcc acc acc ctg atc tac ttc ggc gcc tca ccg gtg ggg ccg atc			2282
Ala Ala Thr Thr Leu Ile Tyr Phe Gly Ala Ser Pro Val Gly Pro Ile			
700	705	710	
acc acg ggc gcg atc atg gga gcc gcg ccc ccg gag aag gct ggt gcc			2330
Thr Thr Gly Ala Ile Met Gly Ala Ala Pro Pro Glu Lys Ala Gly Ala			
715	720	725	
gcc tcg tcg ctg tcc gcc acc ggc ggc gag ttc gga gtg gct ctc ggc			2378
Ala Ser Ser Leu Ser Ala Thr Gly Gly Glu Phe Gly Val Ala Leu Gly			
730	735	740	
atc gct ggc ctg ggg agt ctg ggc acc gtc gtg tac agc gcc ggg gtc			2426
Ile Ala Gly Leu Gly Ser Leu Gly Thr Val Val Tyr Ser Ala Gly Val			
745	750	755	760
gag gtg ccg gac gct ggc ggg ccc gcc gac gcc gac gcc gct cag gag			2474
Glu Val Pro Asp Ala Ala Gly Pro Ala Asp Ala Asp Ala Ala Gln Glu			
765	770	775	
agc atc gcc ggc gcc ctg cac acg gcc ggt cag ctg gca ccg ggc agc			2522
Ser Ile Ala Gly Ala Leu His Thr Ala Gly Gln Leu Ala Pro Gly Ser			
780	785	790	
gcc gac gcc ctg ctg gac tcc gct cgc gct gcc ttc acc agc ggc gtg			2570
Ala Asp Ala Leu Leu Asp Ser Ala Arg Ala Ala Phe Thr Ser Gly Val			
795	800	805	
cag tcc gtc gcc gcc tgc gcc gtg ttc tcc ctg gct ctc gcc gtc			2618
Gln Ser Val Ala Ala Val Cys Ala Val Phe Ser Leu Ala Leu Ala Val			
810	815	820	
ctc atc ggc acc cgg ctg cgg gac att tcc gct atg gac cac ggg cac			2666
Leu Ile Gly Thr Arg Leu Arg Asp Ile Ser Ala Met Asp His Gly His			
825	830	835	840
ggc gag gaa ccg gcc gag aac gac gct caa ccg gcc aca tgagcgcact			2715
Gly Glu Glu Pro Ala Glu Asn Asp Ala Gln Pro Ala Thr			
845	850		
tccggagatg caacggccgc cgtcgaggta tgaggatcac cttccgggt gcacctgcac			2775
ggcaacggag gcgttagtggaa gtactgaaac agcacggcg agaccatgcc cggccaggaa			2835
ctcgaacagt ggaagtggcg caggctccag gccgccatgg accacgccag aaggcttcg			2895
cccttctggc gggAACGACT cccccgagaac atcacctcca tggcggacta cgcggcgccg			2955
gtgcctctcc tgcgcaaggc cgaccctcctc gccggcggaaag ccgcgtctcc cccttacggc			3015

acctggccct cgctggatcc

3035

<210> 113
<211> 332
<212> PRT
<213> Streptomyces globisporus

<220>
<223> sgcA

<400> 113
Met Arg Met Leu Val Thr Gly Gly Ala Gly Phe Ile Gly Ser Gln Phe
1 5 10 15
Val Arg Ala Thr Leu His Gly Glu Leu Pro Gly Ser Glu Asp Ala Arg
20 25 30
Val Thr Val Leu Asp Lys Leu Thr Tyr Ser Gly Asn Pro Ala Asn Leu
35 40 45
Thr Ser Val Ala Ala His Pro Arg Tyr Thr Phe Val Gln Gly Asp Thr
50 55 60
Val Asp Pro Arg Val Val Asp Glu Val Val Ala Gly His Asp Val Ile
65 70 75 80
Val His Phe Ala Ala Glu Ser His Val Asp Arg Ser Ile Asp Thr Ala
85 90 95
Thr Arg Phe Val Thr Thr Asn Val Leu Gly Thr Gln Thr Leu Leu Glu
100 105 110
Ala Ala Leu Arg His Gly Val Gly Arg Phe Val His Val Ser Thr Asp
115 120 125
Glu Val Tyr Gly Ser Ile Ala Ser Gly Ser Trp Thr Glu Asp Thr Pro
130 135 140
Leu Ala Pro Asn Val Pro Tyr Ala Ala Ser Lys Ala Gly Ser Asp Leu
145 150 155 160
Met Ala Leu Ala Trp His Arg Thr Arg Gly Leu Asp Val Val Val Thr
165 170 175
Arg Cys Thr Asn Asn Tyr Gly Pro Tyr Gln Tyr Pro Glu Lys Val Ile
180 185 190
Pro Leu Phe Val Thr Asn Ile Leu Asp Gly Leu Arg Val Pro Leu Tyr
195 200 205
Gly Asp Gly Ala His Arg Arg Asp Trp Leu His Val Ser Asp His Cys
210 215 220
Arg Ala Ile Gln Met Val Met Asn Ser Gly Arg Ala Gly Glu Val Tyr
225 230 235 240

His	Ile	Gly	Gly	Gly	Thr	Glu	Leu	Ser	Asn	Glu	Glu	Leu	Thr	Gly	Leu				
														245	250	255			
Leu	Leu	Thr	Ala	Cys	Gly	Thr	Asp	Trp	Ser	Cys	Val	Asp	Arg	Val	Ala				
														260	265	270			
Asp	Arg	Gln	Gly	His	Asp	Arg	Arg	Tyr	Ser	Leu	Asp	Ile	Thr	Lys	Ile				
																275	280	285	
Arg	Gln	Glu	Leu	Gly	Tyr	Glu	Pro	Leu	Val	Ala	Phe	Glu	Asp	Gly	Leu				
																290	295	300	
Ala	Ala	Thr	Val	Lys	Trp	Tyr	His	Glu	Asn	Arg	Ser	Trp	Trp	Gln	Pro				
																305	310	315	320
Leu	Lys	Glu	Ala	Ala	Gly	Leu	Leu	Asp	Ala	Val	Gly								
																325	330		

<210> 114

<211> 521

<212> PRT

<213> Streptomyces globisporus

<220>

<223> sgcB

<400> 114

Met	Thr	Ala	Val	Lys	Glu	Pro	Thr	Ser	Arg	Ala	Gly	Arg	Arg	Glu	Trp
1				5						10					15

Ile	Ala	Leu	Val	Val	Leu	Ser	Leu	Pro	Thr	Met	Leu	Leu	Met	Leu	Asp		
															20	25	30

Ile	Asn	Val	Leu	Met	Leu	Ala	Leu	Pro	Gln	Leu	Ser	Glu	Asp	Leu	Gly		
															35	40	45

Ala	Ser	Ser	Thr	Gln	Gln	Leu	Trp	Ile	Thr	Asp	Ile	Tyr	Gly	Phe	Ala		
															50	55	60

Ile	Ala	Gly	Phe	Leu	Val	Thr	Met	Gly	Thr	Leu	Gly	Asp	Arg	Ile	Gly			
															65	70	75	80

Arg	Arg	Arg	Leu	Leu	Leu	Gly	Gly	Ala	Ala	Val	Phe	Ala	Val	Val	Ser		
															85	90	95

Val	Val	Ala	Ala	Phe	Ser	Asp	Ser	Ala	Ala	Met	Leu	Val	Val	Ser	Arg		
															100	105	110

Ala	Val	Leu	Gly	Val	Ala	Gly	Ala	Thr	Val	Met	Pro	Ser	Thr	Leu	Ala		
															115	120	125

Leu	Ile	Ser	Asn	Met	Phe	Glu	Asp	Pro	Lys	Glu	Arg	Gly	Thr	Ala	Ile		
															130	135	140

Ala	Met	Trp	Ala	Ser	Ala	Met	Met	Ala	Gly	Val	Ala	Leu	Gly	Pro	Ala			
															145	150	155	160

Val Gly Gly Leu Val Leu Ala Ala Phe Trp Trp Gly Ser Val Phe Leu
 165 170 175

 Ile Ala Val Pro Val Met Leu Leu Val Val Val Thr Gly Pro Val Leu
 180 185 190

 Leu Thr Glu Ser Arg Asp Pro Asp Ala Gly Arg Leu Asp Leu Leu Ser
 195 200 205

 Ala Gly Leu Ser Leu Ala Thr Val Leu Pro Val Ile Tyr Gly Leu Lys
 210 215 220

 Glu Leu Ala Arg Thr Gly Trp Asp Pro Leu Ala Ala Gly Ala Val Val
 225 230 235 240

 Leu Gly Val Ile Phe Gly Ala Leu Phe Val Gln Arg Gln Arg Arg Leu
 245 250 255

 Ala Asp Pro Met Leu Asp Leu Gly Leu Phe Ala Asp Arg Thr Leu Arg
 260 265 270

 Ala Gly Leu Thr Val Ser Leu Val Asn Ala Val Ile Met Gly Gly Thr
 275 280 285

 Gly Leu Met Val Ala Leu Tyr Leu Gln Thr Ile Ala Gly His Ser Pro
 290 295 300

 Leu Ala Ala Gly Leu Trp Leu Leu Ile Pro Ala Cys Met Leu Val Val
 305 310 315 320

 Gly Val Gln Leu Ser Asn Leu Leu Ala Gln Arg Met Pro Pro Ser Arg
 325 330 335

 Val Leu Leu Gly Gly Leu Leu Ile Ala Ala Val Gly Gln Leu Leu Ile
 340 345 350

 Thr Gln Val Asp Thr Glu Asp Thr Ala Leu Leu Ile Ala Ala Thr Thr
 355 360 365

 Leu Ile Tyr Phe Gly Ala Ser Pro Val Gly Pro Ile Thr Thr Gly Ala
 370 375 380

 Ile Met Gly Ala Ala Pro Pro Glu Lys Ala Gly Ala Ala Ser Ser Leu
 385 390 395 400

 Ser Ala Thr Gly Gly Glu Phe Gly Val Ala Leu Gly Ile Ala Gly Leu
 405 410 415

 Gly Ser Leu Gly Thr Val Val Tyr Ser Ala Gly Val Glu Val Pro Asp
 420 425 430

 Ala Ala Gly Pro Ala Asp Ala Asp Ala Ala Gln Glu Ser Ile Ala Gly
 435 440 445

 Ala Leu His Thr Ala Gly Gln Leu Ala Pro Gly Ser Ala Asp Ala Leu
 450 455 460

Leu Asp Ser Ala Arg Ala Ala Phe Thr Ser Gly Val Gln Ser Val Ala
 465 470 475 480
 Ala Val Cys Ala Val Phe Ser Leu Ala Leu Ala Val Leu Ile Gly Thr
 485 490 495
 Arg Leu Arg Asp Ile Ser Ala Met Asp His Gly His Gly Glu Glu Pro
 500 505 510
 Ala Glu Asn Asp Ala Gln Pro Ala Thr
 515 520

<210> 115
 <211> 329
 <212> PRT
 <213> Saccharopolyspora erythraea

<400> 115
 Met Arg Val Leu Val Thr Gly Gly Ala Gly Phe Ile Gly Ser His Tyr
 1 5 10 15

Val Arg Gln Leu Leu Gly Gly Ala Tyr Pro Ala Phe Ala Gly Ala Asp
 20 25 30

Val Val Val Leu Asp Lys Leu Thr Tyr Ala Gly Asn Glu Glu Asn Leu
 35 40 45

Arg Pro Val Ala Asp Asp Pro Arg Phe Arg Phe Val Arg Gly Asp Ile
 50 55 60

Cys Glu Trp Asp Val Val Ser Glu Val Met Arg Glu Val Asp Val Val
 65 70 75 80

Val His Phe Ala Ala Glu Thr His Val Asp Arg Ser Ile Leu Gly Ala
 85 90 95

Ser Asp Phe Val Val Thr Asn Val Val Gly Thr Asn Thr Leu Leu Gln
 100 105 110

Gly Ala Leu Ala Ala Asn Val Ser Lys Phe Val His Val Ser Thr Asp
 115 120 125

Glu Val Tyr Gly Thr Ile Glu His Gly Ser Trp Pro Glu Asp His Leu
 130 135 140

Leu Glu Pro Asn Ser Pro Tyr Ser Ala Ala Lys Ala Gly Ser Asp Leu
 145 150 155 160

Ile Ala Arg Ala Tyr His Arg Thr His Gly Leu Pro Val Cys Ile Thr
 165 170 175

Arg Cys Ser Asn Asn Tyr Gly Pro Tyr Gln Phe Pro Glu Lys Val Leu
 180 185 190

Pro Leu Phe Ile Thr Asn Leu Met Asp Gly Arg Arg Val Pro Leu Tyr

195	200	205
Gly Asp Gly Leu Asn Val Arg Asp Trp Leu His Val Thr Asp His Cys		
210	215	220
Arg Gly Ile Gln Leu Val Ala Glu Ser Gly Arg Ala Gly Glu Ile Tyr		
225	230	235
Asn Ile Gly Gly Thr Glu Leu Thr Asn Lys Glu Leu Thr Glu Arg		
245	250	255
Val Leu Glu Leu Met Gly Gln Asp Trp Ser Met Val Gln Pro Val Thr		
260	265	270
Asp Arg Lys Gly His Asp Arg Arg Tyr Ser Val Asp His Thr Lys Ile		
275	280	285
Ser Glu Glu Leu Gly Tyr Glu Pro Val Val Pro Phe Glu Arg Gly Leu		
290	295	300
Ala Glu Thr Ile Glu Trp Tyr Arg Asp Asn Arg Ala Trp Trp Glu Pro		
305	310	315
Leu Lys Ser Ala Pro Asp Gly Gly Lys		
325		

<210> 116

<211> 333

<212> PRT

<213> Streptomyces fradiae

<400> 116

Met Arg Val Leu Val Thr Gly Gly Ala Gly Phe Ile Gly Ser His Phe		
1	5	10
15		

Thr Gly Gln Leu Leu Thr Gly Ala Tyr Pro Asp Leu Gly Ala Thr Arg		
20	25	30

Thr Val Val Leu Asp Lys Leu Thr Tyr Ala Gly Asn Pro Ala Asn Leu		
35	40	45

Glu His Val Ala Gly His Pro Asp Leu Glu Phe Val Arg Gly Asp Ile		
50	55	60

Ala Asp His Gly Trp Trp Arg Arg Leu Met Glu Gly Val Gly Leu Val		
65	70	75
80		

Val His Phe Ala Ala Glu Ser His Val Asp Arg Ser Ile Glu Ser Ser		
85	90	95

Glu Ala Phe Val Arg Thr Asn Val Glu Gly Thr Arg Val Leu Leu Gln		
100	105	110

Ala Ala Val Asp Ala Gly Val Gly Arg Phe Val His Ile Ser Thr Asp		
115	120	125

Glu Val Tyr Gly Ser Ile Ala Glu Gly Ser Trp Pro Glu Asp His Pro
 130 135 140
 Val Ala Pro Asn Ser Pro Tyr Ala Ala Thr Lys Lys Ala Ser Asp Leu
 145 150 155 160
 Leu Ala Leu Ala Tyr His Arg Thr Tyr Gly Leu Asp Val Arg Val Thr
 165 170 175
 Arg Cys Ser Asn Asn Tyr Gly Pro Arg Gln Tyr Pro Glu Lys Ala Val
 180 185 190
 Pro Leu Phe Thr Thr Asn Leu Leu Asp Gly Leu Pro Val Pro Leu Tyr
 195 200 205
 Gly Asp Gly Gly Asn Thr Arg Glu Trp Leu His Val Asp Asp His Cys
 210 215 220
 Arg Gly Val Ala Leu Val Gly Ala Gly Gly Arg Pro Gly Val Ile Tyr
 225 230 235 240
 Asn Ile Gly Gly Thr Glu Leu Thr Asn Ala Glu Leu Thr Asp Arg
 245 250 255
 Ile Leu Glu Leu Cys Gly Ala Asp Arg Ser Ala Leu Arg Arg Val Ala
 260 265 270
 Asp Arg Pro Gly His Asp Arg Arg Tyr Ser Val Asp Thr Thr Lys Ile
 275 280 285
 Arg Glu Glu Leu Gly Tyr Ala Pro Arg Thr Gly Ile Thr Glu Gly Leu
 290 295 300
 Ala Gly Thr Val Ala Trp Tyr Arg Asp Asn Arg Ala Trp Trp Glu Pro
 305 310 315 320
 Leu Lys Arg Ser Pro Gly Gly Arg Glu Leu Glu Arg Ala
 325 330

<210> 117
 <211> 331
 <212> PRT
 <213> Streptomyces argillaceus

<400> 117
 Met Thr Thr Thr Ser Ile Leu Val Thr Gly Gly Ala Gly Phe Ile Gly
 1 5 10 15
 Ser His Tyr Val Arg Thr Leu Leu Gly Pro Arg Gly Val Pro Asp Val
 20 25 30
 Thr Val Thr Val Leu Asp Lys Leu Thr Tyr Ala Gly Thr Leu Thr Asn
 35 40 45
 Leu Ala Glu Val Ser Asp Ser Asp Arg Phe Arg Phe Val Arg Gly Asp
 50 55 60

Ile	Cys	Asp	Ala	Pro	Leu	Val	Asp	Asp	Leu	Leu	Ala	Val	His	Asp	Gln
65					70				75					80	
Val	Val	His	Phe	Ala	Ala	Glu	Ser	His	Val	Asp	Arg	Ser	Ile	Leu	Gly
					85				90					95	
Ala	Ala	Asp	Phe	Val	Arg	Thr	Asn	Val	Thr	Gly	Thr	Gln	Thr	Leu	Leu
					100				105					110	
Asp	Ala	Ala	Leu	Arg	Gln	Gly	Ile	Glu	Thr	Phe	Val	His	Ile	Ser	Thr
					115				120					125	
Asp	Glu	Val	Tyr	Gly	Ser	Ile	Asp	Ala	Gly	Ser	Trp	Pro	Glu	Thr	Ala
					130				135					140	
Pro	Val	Ser	Pro	Asn	Ser	Leu	Tyr	Ser	Ala	Ala	Lys	Ala	Ser	Ser	Asp
					145				150					155	
Leu	Val	Ala	Leu	Ala	Tyr	His	Arg	Thr	His	Gly	Leu	Asp	Val	Arg	Val
					165				170					175	
Thr	Arg	Cys	Ser	Asn	Asn	Tyr	Gly	Ser	His	Gln	Phe	Pro	Glu	Lys	Val
					180				185					190	
Ile	Pro	Leu	Phe	Val	Thr	Ser	Leu	Leu	Asp	Gly	Arg	Glu	Val	Pro	Leu
					195				200					205	
Tyr	Gly	Asp	Gly	Thr	Asn	Val	Arg	Asp	Trp	Leu	His	Val	Asp	Asp	His
					210				215					220	
Val	Arg	Ala	Ile	Glu	Leu	Val	Arg	Thr	Gly	Gly	Arg	Ala	Gly	Glu	Val
					225				230					235	
Tyr	Asn	Ile	Gly	Gly	Thr	Glu	Leu	Ser	Asn	Lys	Glu	Leu	Thr	Gln	
					245				250					255	
Leu	Leu	Leu	Asp	Ala	Cys	Gly	Ala	Gly	Trp	Asp	Arg	Val	Arg	Tyr	Val
					260				265					270	
Thr	Asp	Arg	Lys	Gly	His	Asp	Arg	Arg	Tyr	Ser	Val	Asp	Cys	Thr	Lys
					275				280					285	
Ile	Arg	Arg	Glu	Leu	Gly	Tyr	Arg	Pro	Ala	Arg	Glu	Phe	Gly	Asp	Ala
					290				295					300	
Leu	Ala	Glu	Thr	Val	Ala	Trp	Tyr	Arg	His	His	Arg	Ala	Trp	Trp	Glu
					305				310					315	
Pro	Leu	Thr	Arg	Ala	Tyr	Gly	Ala	Val	Ala	Ala					
					325				330						

<210> 118
<211> 6
<212> PRT
<213> Artificial Sequence .

<220>
<223> Description of Artificial Sequence: 6-His tag

<400> 118
His His His His His His
1 5

<210> 119
<211> 256

<212> PRT

<213> Artificial

<220>

<223> Computed consensus sequence.

<400> 119

Met Arg Val Leu Val Thr Gly Gly Ala Gly Phe Ile Gly Ser His Tyr
1 5 10 15

Val Arg Ile Leu Gly Pro Ala Val Val Leu Asp Lys Leu Thr Tyr Ala
20 25 30

Gly Asn Asn Leu Val Ala Pro Arg Phe Phe Val Arg Gly Asp Ile Asp
35 40 45

Val Val Glu Val Met Asp Val Val Val His Phe Ala Ala Glu Ser His
50 55 60

Val Asp Arg Ser Ile Ala Phe Val Thr Asn Val Gly Thr Asn Thr Leu
65 70 75 80

Leu Ala Ala Leu Gly Val Lys Phe Val His Val Ser Thr Asp Glu Val
85 90 95

Tyr Gly Ser Ile Gly Ser Trp Pro Glu Asp Pro Leu Pro Asn Ser Pro
100 105 110

Tyr Ala Lys Ala Gly Ser Asp Leu Ile Ala Leu Ala Tyr His Arg Thr
115 120 125

His Gly Leu Asp Val Val Thr Arg Cys Ser Asn Asn Tyr Gly Pro Gln
130 135 140

Phe Pro Glu Lys Val Leu Pro Leu Phe Ile Thr Asn Leu Leu Asp Gly
145 150 155 160

Val Pro Leu Tyr Gly Asp Gly Asn Arg Asp Trp Leu His Val Asp His
165 170 175

Cys Arg Gly Ile Leu Val Gly Arg Ala Gly Glu Ile Tyr Asn Ile Gly
180 185 190

Gly Gly Thr Glu Leu Thr Asn Glu Leu Thr Val Leu Glu Cys Gly Asp
195 200 205

Trp Ser Val Val Asp Arg Gly His Asp Arg Arg Tyr Ser Val Asp Thr
210 215 220

Lys Ile Arg Glu Leu Gly Tyr Pro Phe Glu Gly Leu Ala Thr Val Trp
225 230 235 240

Tyr Arg Asp Asn Arg Ala Trp Trp Glu Leu Pro Leu Lys Ala Gly Gly
245 250 255