

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 855 444 A2

(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 29.07.1998 Bulletin 1998/31
- (21) Application number: 98300573.7
- (22) Date of filing: 27.01.1998

- (51) Int CI.6: **C12N 15/57**, C12N 9/64, C12N 1/21, C12N 5/10, C07K 16/40, A61K 48/00, A61K 39/395, A61K 31/70, A61K 38/48, C12Q 1/68, C12Q 1/37
- (84) Designated Contracting States:

 'AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
 NL PT SE
- (30) Priority: 28.01.1997 GB 9701684
- (71) Applicants:
 - SMITHKLINE BEECHAM PLC
 Brentford, Middlesex TW8 9EP (GB)
 - SMITHKLINE BEECHAM CORPORATION Philadelphia Pennsylvania 19103 (US)
- (72) Inventors:
 - Powell, David J., c/o SmithKline Beecham Pharm. King of Prussia, PA 19460 (US)

- Smith, Trudi S., c/o SmithKline Beecham Pharm.
 King of Prussia, PA 19460 (US)
- Chapman, Conrad G.,
 c/o SmithKline Beecham Pharm.
 Harlow, Essex CM19 5AW (GB)
- Murphy, Kay SmithKline Beecham Pharm.
 Harlow Essex CM19 5AW (GB)
- (74) Representative: Crump, Julian Richard John et al fJ Cleveland,
 40-43 Chancery Lane London WC2A 1JQ (GB)

(54) Aspartic proteinase 2 (ASP2)

(57) ASP2 polypeptides and polynucleotides and methods for producing such polypeptides by recombinant techniques are disclosed. Also disclosed are methods for utilizing ASP2 polypeptides and polynucle-

otides in the design of protocols for the treatment of Alzheimer's Disease, cancer, and prohormone processing, among others, and diagnostic assays for such conditions.

09 |47 | 665

EP 0 855 444 A2

- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: +44 171 405 5875
 - (B) TELEFAX: +44 171 831 0749
 - (C) TELEX:
- 10 (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2541 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 20 (ii) MOLECULE TYPE: cDNA

15

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

25								
23	ATGGCCCAAG	CCCTGCCCTG	GCTCCTGCTG	TGGATGGGCG	CGGGAGTGCT	GCCTGCCCAC	60	
	GGCACCCAGC	ACGGCATCCG	GCTGCCCCTG	CGCAGCGGCC	TGGGGGGCGC	CCCCTGGGG	120	
	CTGCGGCTGC	CCCGGGAGAC	CGACGAAGAG	CCCGAGGAGC	CCGGCCGGAG	GGGCAGCTTT	180	
30	GTGGAGATGG	TGGACAACCT	GAGGGGCAAG	TCGGGGCAGG	GCTACTACGT	GGAGATGACC	240	
	GTGGGCAGCC	CCCCGCAGAC	GCTCAACATC	CTGGTGGATA	CAGGCAGCAG	TAACTTTGCA	300	
	GTGGGTGCTG	CCCCCACCC	CTTCCTGCAT	CGCTACTACC	AGAGGCAGCT	GTCCAGCACA	360	CAC
	TACCGGGACC	TCCGGAAGGG	TGTGTATGAG	CCCTACACCC	AGGGCAAGTG	GGAAGGGGAG	420	YAY
35	CTGGGCACCG	ACCTGGTAAG	CATCCCCCAT	GGCCCCAACG	TCACTGTGCG	TGCCAACATT	480	· () a
	GCTGCCATCA	CTGAATCAGA	CAAGTTCTTC	ATCAACGGCT	CCAACTGGGA	AGGCATCCTG	540	13 Sh
	GGGCTGGCCT	ATGCTGAGAT	TGCCAGGCCT	GACGACTCCC	TGGAGCCTTT	CTTTGACTCT	600	is Gli
	${\tt CTGGTAAAGC}$	AGACCCACGT	TCCCAACCTC	TTCTCCCTGC	AGCTTTGTGG	TGCTGGCTTC	660	0000010
40	CCCCTCAACC	AGTCTGAAGT	GCTGGCCTCT	GTCGGAGGGA	GCATGATCAT	TGGAGGTATC	720	
	GACCACTCGC	TGTACACAGG	CAGTCTCTGG	TATACACCCA	TCCGGCGGGA	GTGGTATTAT	780	
	GAGGTGATCA	TTGTGCGGGT	GGAGATCAAT	GGACAGGATC	TGAAAATGGA	CTGCAAGGAG	840	
	TACAACTATG	ACAAGAGCAT	TGTGGACAGT	GGCACCACCA	ACCTTCGTTT	GCCCAAGAAA	900	
45	GTGTTTGAAG	CTGCAGTCAA	ATCCATCAAG	GCAGCCTCCT	CCACGGAGAA	GTTCCCTGAT	960	
	GGTTTCTGGC	TAGGAGAGCA	GCTGGTGTGC	TGGCAAGCAG	GCACCACCCC	TTGGAACATT	1020	
	TTCCCAGTCA	TCTCACTCTA	CCTAATGGGT	GAGGTTACCA	ACCAGTCCTT	CCGCATCACC	1080	
50	ATCCTTCCGC	AGCAATACCT	GCGGCCAGTG	GAAGATGTGG	CCACGTCCCA	AGACGACTGT	1140	
	TACAAGTTTG	CCATCTCACA	GTCATCCACG	GGCACTGTTA	TGGGAGCTGT	TATCATGGAG	1200	
	${\tt GGCTTCTACG}$	TTGTCTTTGA	TCGGGCCCGA	AAACGAATTG	GCTTTGCTGT	CAGCGCTTGC	1260	
	CATGTGCACG	ATGAGTTCAG	GACGGCAGCG	GTGGAAGGCC	CTTTTGTCAC	CTTGGACATG	1320	
55	GAAGACTGTG	GCTACAACAT	TCCACAGACA	GATGAGTCAA	CCCTCATGAC	CATAGCCTAT	1380	
55	GTCATGGCTG	CCATCTGCGC	CCTCTTCATG	CTGCCACTCT	GCCTCATGGT	GTGTCAGTGG	1440	

	CGCTGCCTCC	GCTGCCTGCG	CCAGCAGCAT	GATGACTTTG	CTGATGACAT	CTCCCTGCTG	1500
	AAGTGAGGAG	GCCCATGGGA	GAAAGATAGA	GATTCCCCTG	GGACCACACC	TCCGTGGTTC	156 0
5	ACTTTGGTCA	CAAGTAGGAG	ACACAGATGG	CACCTGTGGC	CAGAGCACCT	CAGGACCCTC	1620
	CCCACCCACC	AAATGCCTCT	GCCTTGATGG	AGAAGGAAAA	GGCTGGCAAG	GTGGGTTCCA	1680
	GGGACTGTAC	CTGTAGGAAA	CAGAAAAGAG	AAGAAAGAAG	CACTCTGCTG	GCGGGAATAC	1740
	TCTTGGTCAC	CTCAAATTTA	AGTCGGGAAA	TTCTGCTGCT	TGAAACTTCA	GCCCTGAACC	1800
10	TTTGTCCACC	ATTCCTTTAA	ATTCTCCAAC	CCAAAGTATT	CTTCTTTTCT	TAGTTTCAGA	18 60
	AGTACTGGCA	TCACACGCAG	GTTACCTTGG	CGTGTGTCCC	TGTGGTACCC	GGGCAGAGAA	1920
	GAGACCAAGC	TTGTTTCCCT	GCTGGCCAAA	GTCAGTAGGA	GAGGATGCAC	AGTTTGCTAT	1980
	TTGCTTTAGA	GACAGGGACT	GTATAAACAA	GCCTAACATT	GGTGCAAAGA	TTGCCTCTTG	2040
15	AATTAAAAA	AAAAACTAGA	TTGACTATTT	ATACAAATGG	GGGCGGCTGG	AAAGAGGAGA	2100
	AGGAGAGGGA	GTACAAAGAC	AGGGAATAGT	GGGATCAAAG	CTAGGAAAGG	CAGAAACACA	2160
	ACCACTCACC	AGTCCTAGTT	TTAGACCTCA	TCTCCAAGAT	AGCATCCCAT	CTCAGAAGAT	2220
	GGGTGTTGTT	TTCAATGTŢT	TCTTTTCTGT	GGTTGCAGCC	TGACCAAAAG	TGAGATGGGA	2280
20	AGGGÇTTATC	TAGCCAAAGA	GCTCTTTTTT	AGCTCTCTTA	AATGAAGTGC	CCACTAAGGA	2340
	AGTTCCACTT	GAACACATGG	AATTTCTGCC	ATATTAATTT	CCATTGTCTC	TATCTGGAAC	2400
	CACCCTTTAA	TCTCTACATA	TGATTAGGTC	CAGCACTTGA	AAATATTCCT	AACCNNAATT	2460
	TGNCTTGGGG	GCTTTGCNGN	CCAGGTGCTA	AAAGGGNTTG	GGTAGGNGNC	CNCTTNTATN	2520
25	TNATNCCTNA	AAAGGTTANN	G				2541

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 501 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

35

40

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

					85	_		_		90					95	•		
F	Ser	Asn	Phe		Val	Gly	Ala	Ala		His	Pro	Phe	Leu	His	Arg	Tyr		
5				100					105					110				-
	Tyr	Gln	Arg	Gln	Leu	Ser	Ser	Thr	Tyr	Arg	Asp	Leu	Arg	Lys	Gly	Val		
			115					120					125					
	Tyr	Glu	Pro	Tyr	Thr	Gln	Gly	Lys	Trp	Glu	Glу	Glu	Leu	Gly	Thr	Asp		
10		[130])				135					140						•
	Leu	Val	Ser	Ile	Pro	His	Gly	Pro	Asn	Val	Thr	Val	Arg	Ala	Asn	Ile	Same as v SEQ 10 No: 7 of 09/471, 60	n
	145					150					155					160	OF 2 - 162.	
	Ala	Ala	Ile	Thr	Glu	ser	Asp	Lys	Phe	Phe	Ile	Asn	Gly	Ser	Asn	Trp	req is no;	Į
15					165					170					175		1	
	Glu	Gly	Ile	Leu	Gly	Leu	Ala	Tyr	Ala	Glu	Ile	Ala	Arg	Pro	Asp	Asp	04 09/471, 61	69
				180					185					190				
	Ser	Leu	Glu	Pro	Phe	Phe	Asp	Ser	Leu	Val	Lys	Gln	Thr	His	Val	Pro		
20			195					200					205					
	Asn	Leu	Phe	Ser	Leu	Gln	Leu	Сув	Gly	Ala	Gly	Phe	Pro	Leu	Asn	Gln		
		210					215					220						
	Ser	Glu	Val	Leu	Ala	ser	Val	Gly	Gly	Ser	Met	Ile	Ile	Gly	Gly	Ile		
25	225					230					235					240		
	qaA	His	Ser	Leu	Tyr	Thr	Gly	Ser	Leu	Trp	Tyr	Thr	Pro	Ile	Arg	Arg		
	_				245		_			250					255	_		
	Glu	Trp	Tyr	Tyr	Glu	Val	Ile	Ile	Val	Arg	Val	Glu	Ile	Asn	Gly	Gln		
30				260					265					270	_			
	Asp	Leu	Lys	Met	qaA	Cys	Lys	Glu	Tyr	Asn	Tyr	Asp	Lys	Ser	Ile	Val		
			275					280				-	285					
	Asp	Ser	Gly	Thr	Thr	Asn	Leu	Arg	Leu	Pro	Lys	Lys	Val	Phe	Glu	Ala		
35		290					295					300						
	Ala	Val	Lys	Ser	Ile	Lys	Ala	Ala	Ser	Ser	Thr	Glu	Lys	Phe	Pro	Asp		
	305					310					315					320		
40	Gly	Phe	Trp	Leu	Gly	Glu	Gln	Leu	Val	Cys	Trp	Gln	Ala	Gly	Thr	Thr		
40					325					330					335			
	Pro	Trp	Asn	Ile	Phe	Pro	Val	Ile	Ser	Leu	Tyr	Leu	Met	Gly	Glu	Val		
		_		340					345		•			350				
45	Thr	Asn	Gln	Ser	Phe	Arg	Ile	Thr	Ile	Leu	Pro	Gln	Gln	Tyr	Leu	Arg		
45			355			-		360					365	-		_		
	Pro			qaA	Val	Ala	Thr	Ser	Gln	Asp	Asp	Сув	Tyr	Lys	Phe	Ala		
		370		-			375			_	-	380	_	_				
50	Ile		Gln	Ser	Ser	Thr	Gly	Thr	Val	Met	Gly	Ala	Val	Ile	Met	Glu		
50	385					390	-				395					400		
		Phe	Tyr	Val	Val	Phe	Asp	Ara	Ala	Ara		Ara	Ile	Glv	Phe			
	1			·	405			_3		410	-,-			- 4	415		•	
	Val	Ser	Ala	Cva		Val	His	Asp	Glu		Ara	Thr	Ala	Ala		Glu		
55			a	420	0	-41		_	425		9			430				
									- ~ 3									

	Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro
	435 440 445
5	Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala
	450 455 460
	Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp
	465 470 475 480
10	Arg Cys Leu Arg Cys Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp
	495 490 495
	Ile Ser Leu Lys
	500
15	
	(2) INFORMATION FOR SEQ ID NO:3:
	(i) SEQUENCE CHARACTERISTICS:
20	(A) LENGTH: 2370 base pairs
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: single
05	(D) TOPOLOGY: linear
25	
	(ii) MOLECULE TYPE: cDNA
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
	GGCAGCTTTG TGGAGATGGT GGACAACCTG AGGGGCAAGT CGGGGCAGGG CTACTACGTG 60
	GAGATGACCG TGGGCAGCCC CCCGCAGACG CTCAACATCC TGGTGGATAC AGGCAGCAGT 120
35	AACTTTGCAG TGGGTGCTGC CCCCCACCCC TTCCTGCATC GCTACTACCA GAGGCAGCTG 180
	TCCAGCACAT ACCGGGACCT CCGGAAGGGT GTGTATGAGC CCTACACCCA GGGCAAGTGG 240
	GAAGGGGAGC TGGGCACCGA CCTGGTAAGC ATCCCCCATG GCCCCAACGT CACTGTGCGT 300
	GCCAACATTG CTGCCATCAC TGAATCAGAC AAGTTCTTCA TCAACGGCTC CAACTGGGAA 360
40	GGCATCCTGG GGCTGGCCTA TGCTGAGATT GCCAGGCCTG ACGACTCCCT GGAGCCTTTC 420
	TTTGACTCTC TGGTAAAGCA GACCCACGTT CCCAACCTCT TCTCCCTGCA GCTTTGTGGT 480
	GCTGGCTTCC CCCTCAACCA GTCTGAAGTG CTGGCCTCTG TCGGAGGGAG CATGATCATT 540
	GGAGGTATCG ACCACTCGCT GTACACAGGC AGTCTCTGGT ATACACCCAT CCGGCGGGAG 600
45	TGGTATTATG AGGTGATCAT TGTGCGGGTG GAGATCAATG GACAGGATCT GAAAATGGAC 660
	TGCAAGGAGT ACAACTATGA CAAGAGCATT GTGGACAGTG GCACCAA CCTTCGTTTG 720 CCCAAGAAAG TGTTTGAAGC TGCAGTCAAA TCCATCAAGG CAGCCTCTCC ACGGGAGAAG 780
	CCCAAGAAAG TGTTTGAAGC TGCAGTCAAA TCCATCAAGG CAGCCTCTCC ACGGGAGAAG 780 TTCCCTGATG GTTTCTGGCT AGGAGAGCAG CTGGTGTGCT GGCAAGCAGG CACCACCCCT 840
	TGGAACATTT TCCCAGTCAT CTCACTCTAC CTAATGGGTG AGGTTACCAA CCAGTCCTTC 900
50	CGCATCACCA TCCTTCCGCA GCAATACCTG CGGCCAGTGG AAGATGTGGC CACGTCCCAA 960
	GACGACTGTT ACAAGTTTGC CATCTCACAG TCATCCACC G GCACTGTTAT GGGAGCTGTT 1020
55	
	TTGGACATGG AAGACTGTGG CTACAACATT CCACAGACAG ATGAGTCAAC CCTCATGACC 1200

Xaa Leu Lys Arg Leu Xaa

77

10

15

20

25

30

35

40

50

(2)	INFORMATION	FOR	SEQ	ID	NO:	5 :

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 19 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GATGAGTTCA GGACGGCAG

19

- (2) INFORMATION FOR SEQ ID NO:6:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GGTGCCATAT GTGTCTCC

18

45 Claims

- An isolated polynucleotide comprising a nucleotide sequence that has at least 80% identity over its entire length
 to a nucleotide sequence encoding the ASP2 polypeptide of SEQ ID NO:2; or a nucleotide sequence complementary to said isolated polynucleotide.
- The polynucleotide of claim 1 wherein said polynucleotide comprises the nucleotide sequence contained in SEQ ID NO:1 encoding the ASP2 polypeptide of SEQ ID NO2.
- The polynucleotide of claim 1 wherein said polynucleotide comprises a nucleotide sequence that is at least 80% identical to that of SEQ ID NO: 1 over its entire length.
 - 4.) The polynucleotide of claim 3 which is polynucleotide of SEQ ID NO: 1.

- The polynucleotide of claim 1 which is DNA or RNA.
- 6. A DNA or RNA molecule comprising an expression system, wherein said expression system is capable of producing a ASP2 polypeptide comprising an amino acid sequence, which has at least 80% identity with the polypeptide of SEQ ID NO:2 when said expression system is present in a compatible host cell.
- 7. A host cell comprising the expression system of claim 6.

15

20

25

30

35

40

45

50

55

- 8. A process for producing a ASP2 polypeptide comprising culturing a host of claim 7 under conditions sufficient for the production of said polypeptide and recovering the polypeptide from the culture.
- 9. A process for producing a cell which produces a ASP2 polypeptide thereof comprising transforming or transfecting a host cell with the expression system of claim 6 such that the host cell, under appropriate culture conditions, produces a ASP2 polypeptide.
- 10. A ASP2 polypeptide comprising an amino acid sequence which is at least 80% identical to the amino acid sequence of SEQ ID NO:2 over its entire length.
- 11. The polypeptide of claim 10 which comprises the amino acid sequence of SEQ ID NO:2.
- 12. An antibody immunospecific for the ASP2 polypeptide of claim 10.
- 13. A method for the treatment of a subject in need of enhanced activity or expression of ASP2 polypeptide of claim 10 comprising:
 - (a) administering to the subject a therapeutically effective amount of an agonist to said polypeptide; and/or (b) providing to the subject an isolated polynucleotide comprising a nucleotide sequence that has at least 80% identity to a nucleotide sequence encoding the ASP2 polypeptide of SEQ ID NO:2 over its entire length; or a nucleotide sequence complementary to said nucleotide sequence in a form so as to effect production of said polypeptide activity *in vivo*.
- 14. A method for the treatment of a subject having need to inhibit activity or expression of ASP2 polypeptide of claim 10 comprising:
 - (a) administering to the subject a therapeutically effective amount of an antagonist to said polypeptide; and/or (b) administering to the subject a nucleic acid molecule that inhibits the expression of the nucleotide sequence encoding said polypeptide; and/or
 - (c) administering to the subject a therapeutically effective amount of a polypeptide that competes with said polypeptide for its ligand, substrate, or receptor.
- 15. A process for diagnosing a disease or a susceptibility to a disease in a subject related to expression or activity of ASP2 polypeptide of claim 10 in a subject comprising:
 - (a) determining the presence or absence of a mutation in the nucleotide sequence encoding said ASP2 polypeptide in the genome of said subject; and/or
 - (b) analyzing for the presence or amount of the ASP2 polypeptide expression in a sample derived from said subject.
- 16. A method for identifying compounds which inhibit (antagonize) or agonize the ASP2 polypeptide of claim 10 which comprises:
 - (a) contacting a candidate compound with cells which express the ASP2 polypeptide (or cell membrane expressing ASP2 polypeptide) or respond to ASP2 polypeptide; and
 - (b) observing the binding, or stimulation or inhibition of a functional response; or comparing the ability of the cells (or cell membrane) which were contacted with the candidate compounds with the same cells which were not contacted for ASP2 polypeptide activity.
 - 17. An agonist identified by the method of claim 16.