Assignment-2

AI24BTECH11036- Shreedhanvi Yadlapally

I. Subjective Problems

1) Tangent at a point P_1 other than (0,0) on the curve $y=x^3$ meets the curve again at P_2 . The tangent at P_2 meets the curve again at P_1 , and so on. Show that the abscissae of $P_1, P_2, P_3 \dots P_n$, form a G.P. Also find the ratio. $\frac{[area(\Delta P_1 P_2 P_3)]}{[area(\Delta P_2 P_3 P_4)]}$

(1993 - 5 Marks)

2) A line through $\mathbf{A}(5,4)$ meets the line x+3y+2=0, 2x+y+4=0 and x-y-5=0 at the points \mathbf{B} , \mathbf{C} and \mathbf{D} respectively. If $(15/AB)^2+(10/AC)^2-(6/AD)^2$, find the equation of the line.

(1993 - 5 Marks)

3) A rectangle *PQRS* has it side *PQ* parallel to the line y = mx and vertices **P**, **Q** and **S** on the lines y = a, x = b and x = -b, respectively. Find the locus of the vertex **R**.

(1996 - 2 Marks)

4) Using co-ordinate geometry, prove that the three altitudes of any triangle are concurrent.

(1998 - 8 Marks)

5) For points $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ of the co-ordn=inate plane, a new distance d(P, Q) is defined by $d(P, Q) = |x_1 - x_2| + |y_1 - y_2|$. Let O = (0, 0) and O = (0, 0)

(2000 - 10 Marks)

- 6) Let *ABC* and *PQR* be any two triangles in the same plane. Assume that the perpendiculars from the points **A**, **B**, **C** to the sides *QR*, *RP*, *PQ* respectively are concurrent. Using vector methods or otherwise, prove that the perpendiculars from **P**, **Q**, **R** to *BC*, *CA*, *AB* respectively are also concurrent. (2000 10 Marks)
- 7) Let a, b, c be real numbers with $a^2 + b^2 + c^2 = 1$. Show that the equation

$$\begin{vmatrix} ax - by - c & bx + ay & cx + a \\ bx + ay & -ax + by - c & cy + b \\ cx + a & cy + b & -ax - by + c \end{vmatrix} = 0$$
 (1)

represents a straight line.

(2001 - 6 Marks)

- 8) A straight line L, through the origin meets the lines x + y = 1 and x + y = 3 at \mathbf{P} and \mathbf{Q} respectively. Through \mathbf{P} and \mathbf{Q} two straight lines L_1 , and L_2 are drawn, parallel to 2x y = 5 and 3x + y = 5 respectively. Lines L_1 and L_2 intersect at \mathbf{R} . Show that the locus of \mathbf{R} , as L, varies, is a straight line. (2002 5 Marks)
- 9) A straight line L with negative slope passes through the point (8,2) and cuts the positive coordinate axes at points \mathbf{P} and \mathbf{Q} . Find the absolute minimum value of OP + OQ, as L varies, where O is the origin.

(2002 - 5 Marks)

10) The area of the triangle formed by the intersection of a line parallel to x-axis and passing through P(h, k) with the lines y = x and x + y = 2 is $4h^2$, Find the locus of the point P.

(2005 - 2 Marks)

II. Assertion and Reason Type Questions

1) Lines $L_1: y - x = 0$ and $L_2: 2x + y = 0$ intersect the line $L_3: y + 2 = 0$ at **P** and **Q**, respectively. The bisector of the acute angle between L_1 and L_2 intersects L_3 at R.

STATEMENT-1: The ratio PR : RQ equals $2\sqrt{2} : \sqrt{5}$.

STATEMENT-2: In any triangle, bisector of an angle divides the triangle into two similar triangles. (2007 - 3 Marks)

- a) Statement-1 is True, Statement-2 is True Statement-2 is not a correct explanation for Statement-1
- b) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- c) Statement-I is True, Statement-2 is False
- d) Statement-1 is False, Statement-2 is True.

III. INTEGER VALUE CORRECT TYPE

1) For a point **P** in the plane, let $d_1(P)$ and $d_2(P)$ be the distance of the point **P** from the lines x - y = 0 and x + y = 0 respectively. The area of the region R consisting of all points **P** lying in the first quadrant of the plane and satisfying $2 \le d_1(P) + d_2(P) \le 4$, is

(JEE Adv. 2014)