

2018학년도 1학기 산업수학 및 실습

A Mathematical Model of Fetal Heart Circulation

6조

201410335 국승호 201513208 양다은 201710285 김희정 201710304 정창해

Index

Introduction

Introduction

Assumptions

- 태아는 3kg이고 임신 37~38주차 상태이다.
- 피의 흐름에 관해서는 ohm's law, volume conservation, compliance
 3가지를 사용한다.
- 난원공을 통한 흐름은 우심방을 통하지 않고 바로 좌심방으로 가는 것으로 가정한다.
- 각 심방과 심실을 하나로 본다.
- 양과 인간의 태아의 심장 순환이 유사하다고 가정한다.

목표

Compartments

- FPL: fetal-side placenta
- UV: umbilical vein
- IVC : inferior vena cava
- RA: right atrium
- LA : left atrium
- AA: ascending aorta
- SVC: superior vena cava
- PA: pulmonary artery

- DA: descending aorta
- UB: upper body
- LB: lower body
- BR: brain
- HE: liver
- IN: intestines
- MY: myocardium
- PV: pulmonary vein

Parameters Compliance(ml/mmHg)

Parameter	값	Parameter	값
AA	0.07	LB	1.4
BR	0.6	MY	0,25
DA	0.14	PA	0,25
FPL	1.4	PV	0,25
HE	3.0	RA	1
IN	0.25	SVC	0.1
IVC	0.2	UB	0.9
LA	1	UV	0.3

Parameters Resistance(mmHg·min/ml)

Parameter	값	Parameter	값
AA-BR	0.6	DA-IN	0,577
AA-DA	0.0067	DA-LB	0.144
AA-MY	0.6	FPL-UV	0,0091
AA-UB	0.125	HE-IVC	0.0086
BR-IVC	0.7	IN-HE	0.116
BR-SVC	80.0	IVC-LA	0,00357
DA-FPL	0.053	IVC-RA	0.00204
DA-HE	1,36	LB-IVC	0.0208

Parameters Resistance(mmHg·min/ml)

Parameter	값	Parameter	값
LB-SVC	0.15	UB-SVC	0,017
MY-RA	0.17	UV-HE	0,027
PA-DA	0.004	UV-IVC	0,0355
PA-PV	0.412	LA-AA	0.0813
PV-LA	0.122	RA-PA	0.0551
SVC-LA	0.04		
SVC-RA	0.0029		
UB-IVC	0.15		

Parameters P(0)(mmHg)

Parameter	값	Parameter	값
AA	49.4	LB	10,0
BR	9.9	MY	14.1
DA	48.5	PA	51,6
FPL	20	PV	14.5
HE	8.1	RA	4.2
IN	14.9	SVC	5,1
IVC	5,1	UB	10.1
LA	3.6	UV	15.1

참고: F. J. Huikeshoven, I. D. Hope, G. G. Power, R. D. Gilbert and L. D. Longo. (1985)

Mathematical model of fetal circulation and oxygen delivery.

$$C = \frac{\Delta V}{\Delta P} = \frac{\frac{dV}{dt}}{\frac{dP}{dt}}$$

$$\Rightarrow \frac{dP}{dt} = \frac{1}{C} \frac{dV}{dt}$$

$$=\frac{1}{C}\left(Q_{in}-Q_{out}\right)$$

$$C = C_{Max} (\frac{C_{\min}}{C_{Max}})^{\frac{1-e^{\frac{-tc}{ au S}}}{1-e^{\frac{-TS}{ au S}}}}$$

$$C = C_{\min} \left(\frac{C_{Max}}{C_{\min}} \right)^{\frac{1-e^{\frac{-T-TS}{\tau D}}}{1-e^{\frac{-T+TS}{\tau D}}}}$$

- TS : duration of systole
- τS: time constant during systole in LV.
- τD: time constant during diastole in LV.

• C4, C5(Max, min)

$$C(W) = C_0 \times W$$

```
A(1,1) = C1 + dt * (1/R1 + 1/R2);
                                      A(1,2) = -dt/R2;
                                      A(1,3) = 0;
                                    A(1,4) = 0;
C_1 \frac{dP_1}{dt} = \frac{P_{10} - P_1}{R_1} - \frac{P_1 - P_2}{R_2}
A(1,4) = 0;
A(1,5) = 0;
A(1,6) = 0:
                                      A(1,6) = 0;
                                      A(1,7) = 0;
                                      A(1,8) = 0;
                                      A(1,9) = 0;
                                      A(1,10) = -dt/R1;
                                      A(1,11) = 0;
```

% dP1/dt

참고: F. J. Huikeshoven, I. D. Hope, G. G. Power, R. D. Gilbert and L. D. Longo. (1985)

Mathematical model of fetal circulation and oxygen delivery.

% dP1/dt

A(1,1) = C1 + dt * (1/R23 + 1/R1);A(1,2) = -dt/R1;A(1,3) = 0;

A(1,4) = 0;A(1,5) = 0;A(1,6) = 0;

 $C_{1}\frac{dP_{1}}{dt} = \frac{P_{13} - P_{1}}{R_{23}} - \frac{P_{1} - P_{2}}{R_{1}} \qquad \begin{array}{c} A(1,0) = 0; \\ A(1,7) = 0; \\ A(1,8) = 0; \end{array}$

A(1,9) = 0;A(1,10) = 0;

A(1,11) = 0;A(1.12) = 0:

A(1,16) = 0;

A(1,13) = -dt/R23; A(1,14) = 0;A(1,15) = 0;

Results & Discussion

- Parameter가 steady state에서의 자료
- 자료 한계
- Compliance

05 References

- F. J. Huikeshoven, I. D. Hope, G. G. Power, R. D. Gilbert and L. D. Longo. (1985) Mathematical model of fetal circulation and oxygen delivery. Am J Physiol Regulatory Integrative Comp Physiol 249: pp. 192-202.
- Frank C. Hoppensteadt and Vharles S. Peskin. (2001) Modeling and simulation in Medicine and the life sciences second edition. Springer-Verlag. p.46
- E. Jung. "Optimal Cardiopulmonary Resuscitation Technique Depending on Body Size". Applied Mathematics and Computation. (2012) pp.9615-9622
 - (이미지)
- Stanford Children's Health. "fetal circulatory system", http://www.stanfordchildrens.org/en/topic/default?id=blood-circulation-in-the-fetus-and-newborn-90-P02362 (2018. 6. 4)
- American Heart Association. "fetal circulation", http://www.heart.org/HEARTORG/Conditions/CongenitalHeartDefects/SymptomsDiagnosisofCongenitalHeartDefects/Fetal-Circulation_UCM_315674_Article.jsp#.WxpcN9Uza70 (2018. 6. 8)

