Simulation d'automates

Question 1.

On effectue la division par 2 d'un entier n: le reste donne le premier chiffre (bit de poids faible) dans l'écriture binaire, et on applique récursivement sur le quotient entier $\lfloor n/2 \rfloor$.

L'écriture avec bit de poids fort en premier est simplement un retournement de la liste. On peut également réécrire la fonction en récursive terminale.

2. Automates déterministes

Question 2. On va utiliser les fonctions de recherche dans une liste de couples, List.mem et List.assoc. Rappelons les défintions :

Pour le parcours de la liste des transitions, de type (('a * 'b) * 'a) list, il faut adapter la fonction mem afin de tester s'il existe une transition de la forme ((q, a),):

Question 3. L'automate est déterministe, pas nécessairement complet : il n'y a qu'un seul chemin possible pour la lecture d'un mot. Une fonction auxiliaire récursive va prendre progressivement les transitions, en gardant en paramètre le mot restant à lire :

Question 4. Il s'agit d'implémenter l'automate reconnaissant les mots binaires divisibles par d, en s'inspirant de la construction pour les mots divisibles par 3 (cours), et par 5 (exercice).

Si un mot u est tel que u est congru à k modulo d, et si b est un bit (0 ou 1), alors le mot ub est congru à 2k + b modulo d. L'automate possède d états, le seul état initial est 0 (également le seul état final), et les transitions sont décrites par la remarque précédente : $(q, 0, 2*q \mod d)$ et $(q, 1, 2*q + 1 \mod d)$. La fonction auxiliaire ici construit les transitions progressivement, à partir de l'état 0 jusqu'à l'état d-1.

3. Automates non déterministes

Question 5. L'idée est d'échanger le sens de toutes les flèches : $((q_i, a), q_j)$ se transforme en $((q_j, a), q_i)$. Il faut également échanger états finals et état initial, ce qui rend l'automate obtenu non déterministe.

Question 6. Ici, il faut parcourir toutes les transitions car plusieurs chemins sont à envisager. Il faut également tester si le mot vide est accepté Enfin, il faut partir de tous les états initiaux : s'il existe un état initial et un chemin acceptant partant de cet état, alors le mot est reconnu. La fonction List.exists peut être utile. Rappelons sa définition :

```
List.exists pred 1 vérifie qu'il existe un élément x dans la liste I tel que pred(x) est vrai.
```

List.exists : ('a -> bool) -> 'a list -> bool

Question 7.

```
1 let reconnu2 a mot =
2   let rec aux e m delta = match (m, delta) with
3   | ([],_) -> mem e a.nd_accept
4   | (_,[]) -> false
5   | (a1::m1, ((q, c), r)::v) when q = e && c = a1 -> aux r m1 a.nd_delta || aux e m v
6   | (m, _::v) -> aux e m v
7 in exists (function e -> aux e mot a.nd_delta) a.nd_init ;;
```

```
ligne 3 : (* le mot vide est-il reconnu : etat e = etat acceptant? *)
```

ligne 4: (* transitions vides *)

ligne 5 : (* le mot commence par a_1 et la transition est (e, a_1, r) , alors soit on prend la transition et on va en r pour lire m_1 , soit on ne prend pas la transition et on ne change pas d'état *)

```
ligne 6 : (* si la transition ne correspond pas à ((e, a_1), _), on parcourt le reste des transitions *)
```

ligne 7 : on teste chaque etat initial : le mot est reconnu si l'un des etats fournit un chemin acceptant