

Matrix Algebra - Review

Contents

1	Ove	erview	1
2	Alg	ebraic Operations	2
	2.1	Transpose	2
		Determinant	
		Rank	
	2.4	Minors	3
	2.5	Cofactors	3
	2.6	Inversion	3

1 Overview

Matrices are rectangular arrays of elements. The elements of a matrix are referred to as *scalars* and will be denoted by lowercase letters, a, b, α , β , etc.

Boldface uppercase letters will be used to represent matrices, such as

$$\mathbf{A} = \begin{bmatrix} 5 & 3 \\ 8 & 1 \end{bmatrix}$$

Horizontal sets of entries such as $(5\ 3)$ and $(8\ 1)$ are called rows, whereas vertical sets of entries such as $(5\ 8)$ and $(3\ 1)$ are called columns. It will often be convenient to refer to the element in the *i*th row and *j*th column of **A** as a_{ij} . Rather than explicitly displaying all elements of **A**, the shorthand notation $\mathbf{A} = [a_{ij}]$ will sometimes be used.

If **A** has m rows and n columns, it is said to be an $m \times n$ (or m by n) matrix. In that case, the indices i and j in the shorthand notation indicate collectively the range of values $i = 1, 2, \dots, m$ and $j = 1, 2, \dots, n$. In particular, when m = n = 1, the matrix has a single element and is just a scalar. The subscripts are then unnecessary.

If n=1, the matrix has a single column and is called a *column matrix*. The column index j is then superfluous and is sometimes omitted. Similarly, when m=1, the matrix is called a *row matrix*. Whenever m=n, the matrix is called a *square matrix*. In general, m and n can take on any finite integer values.

It is very often in control systems engineering that A, B, C, D are used as state variable matrices. The input vector is \mathbf{u} and output vector is \mathbf{y} . The state vector is \mathbf{x} .

2 Algebraic Operations

2.1 Transpose

The operation of matrix transposition is the interchanging of each row with the column of the same index number. If $\mathbf{A} = [a_{ij}]$, then the transpose of \mathbf{A} is $\mathbf{A}^T = [a_{ji}]$. The matrix \mathbf{A} is said to be symmetric if $\mathbf{A} = \mathbf{A}^T$. If $\mathbf{A} = -\mathbf{A}^T$, then \mathbf{A} is skew-symmetric. An important property of matrix transposition of products is illustrated by

$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T, \ (\mathbf{A}\mathbf{B}\mathbf{C})^T = \mathbf{C}^T \mathbf{B}^T \mathbf{A}^T \tag{1}$$

2.2 Determinant

Given $\mathbf{A} = [a_{ij}]$, $|\mathbf{A}| = a_{11}a_{22} - a_{12}a_{21}$ for 2×2 matrix \mathbf{A} . $\mathbf{B} = [b_{ij}]$, $|\mathbf{B}| = b_{11}b_{22}b_{33} + b_{12}b_{23}b_{31} + b_{13}b_{21}b_{32} - b_{13}b_{22}b_{31} - b_{12}b_{21}b_{33} - b_{11}b_{23}b_{32}$ for a 3×3 matrix \mathbf{B} .

Let

$$\mathbf{A} = \begin{bmatrix} 12 & 19 \\ 11 & 6 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 3 & 9 & 4 \\ 9 & 3 & 2 \\ 3 & 10 & 3 \end{bmatrix}$$

Find $|\mathbf{A}|$, $|\mathbf{B}|$.

Answer:

$$|\mathbf{A}| = -137, \ |\mathbf{B}| = 102$$

2.3 Rank

The rank of a matrix **A** may be defined as the size of the largest sub-matrix (may be the original matrix) such that the determinant of the sub-matrix is not zero.

Let

$$\mathbf{A} = \begin{bmatrix} 7 & 1 & 8 \\ 4 & 5 & 8 \\ 10 & 4 & 2 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 7 & 1 & 8 \\ 4 & 5 & 8 \\ 8 & 10 & 16 \end{bmatrix}$$

Find $|\mathbf{A}|$, $|\mathbf{B}|$ and determine their ranks if possible.

Answer:

$$|\mathbf{A}| = -354 \neq 0 \Rightarrow r(\mathbf{A}) = 3, |\mathbf{B}| = 0 \Rightarrow r(B) \neq 3$$

If $|\mathbf{B}| = 0$, try to find a non-zero determinant from a smaller size sub-matrix, e.g. $\mathbf{B}_{33} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ and determine $|\mathbf{B}_{33}|$. If the result is not zero, the rank can be assigned as the size of matrix \mathbf{B} .

Answer:

$$r(\mathbf{B}) = 2$$

2.4 Minors

Minors are the determinant of sub-matrices obtained from ignoring the corresponding elements in the selected row and column. Given a 3×3 matrix $\mathbf{A} = \begin{bmatrix} a_{ij} \end{bmatrix}$, the minor corresponding to the 1st row and 2nd column element is $M_{12} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}$. Let

Let $\mathbf{A} = \begin{bmatrix} 3 & 9 & 4 \\ 9 & 3 & 2 \\ 3 & 10 & 3 \end{bmatrix}$

Construct the minor M.

Answer:

$$\mathbf{M} = \begin{bmatrix} -11 & 21 & 81 \\ -13 & -3 & 3 \\ 6 & -30 & -72 \end{bmatrix}$$

2.5 Cofactors

The cofactor is a matrix formed from the minor where elements are multiplied by power of (-1) raised to the sum of the row and column indices. $C_{ij} = (-1)^{i+j} M_{ij}$.

Construct the cofactor of matrix A given above.

Answer:

$$\mathbf{C} = \begin{bmatrix} -11 & -21 & 81\\ 13 & -3 & -3\\ 6 & 30 & -72 \end{bmatrix}$$

2.6 Inversion

The inversion of a matrix is given by $\mathbf{A}^{-1} = \frac{adj(\mathbf{A})}{det(\mathbf{A})}$. Where the adjoint matrix $adj(\mathbf{A})$ is obtained as the transpose of the cofactor matrix $\mathbf{C}^T = [C_{ij}]^T$. However, the inversion does not exist if $det(\mathbf{A}) = 0$.

Let

$$\mathbf{A} = \begin{bmatrix} 1 & 8 \\ 4 & 4 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 7 & 1 \\ 4 & 5 \end{bmatrix}$$

Find A^{-1} , B^{-1} .

Answer:

$$\mathbf{A}^{-1} = \begin{bmatrix} -0.1429 & 0.2857 \\ 0.1429 & -0.0357 \end{bmatrix}, \ \mathbf{B}^{-1} = \begin{bmatrix} 0.1613 & -0.0323 \\ -0.1290 & 0.2258 \end{bmatrix}$$

Let

$$\mathbf{A} = \begin{bmatrix} 1 & 8 & 2 \\ 4 & 4 & 7 \\ 2 & 6 & 3 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 7 & 1 & 8 \\ 4 & 5 & 8 \\ 17 & 5 & 10 \end{bmatrix}$$

Find A^{-1} , B^{-1} .

Answer:

$$\mathbf{M} = \begin{bmatrix} \begin{vmatrix} 4 & 7 \\ 6 & 3 \end{vmatrix} & \begin{vmatrix} 4 & 7 \\ 2 & 3 \end{vmatrix} & \begin{vmatrix} 4 & 4 \\ 2 & 3 \end{vmatrix} & \begin{vmatrix} 4 & 4 \\ 2 & 6 \end{vmatrix} \\ \begin{vmatrix} 8 & 2 \\ 6 & 3 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} & \begin{vmatrix} 1 & 8 \\ 2 & 6 \end{vmatrix} \\ \begin{vmatrix} 8 & 2 \\ 4 & 7 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 4 & 7 \end{vmatrix} & \begin{vmatrix} 1 & 8 \\ 4 & 7 \end{vmatrix} & \begin{vmatrix} 1 & 8 \\ 4 & 4 \end{vmatrix} \end{bmatrix} = \begin{bmatrix} -30 & -2 & 16 \\ 12 & -1 & -10 \\ 48 & -1 & -28 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} -30 & 2 & 16 \\ -12 & -1 & 10 \\ 48 & 1 & -28 \end{bmatrix}, \ adj(\mathbf{A}) = \begin{bmatrix} -30 & -12 & 48 \\ 2 & -1 & 1 \\ 16 & 10 & -28 \end{bmatrix}$$

$$det(\mathbf{A}) = (1)(4)(3) + (8)(7)(2) + (2)(4)(6) - (2)(4)(2)(8)(4)(3) - (1)(7)(6) = 18$$

$$\mathbf{A}^{-1} = \frac{adj(\mathbf{A})}{det(\mathbf{A})} = \begin{bmatrix} -1.6667 & -0.6667 & 2.6667 \\ 0.1111 & -0.0556 & 0.0556 \\ 0.8889 & 0.5556 & -1.5556 \end{bmatrix}, \ \mathbf{B}^{-1} = \begin{bmatrix} -0.0282 & -0.0847 & 0.0904 \\ -0.2712 & 0.1864 & 0.0678 \\ 0.1836 & 0.0508 & -0.0876 \end{bmatrix}$$

Let

$$\mathbf{A} = \begin{bmatrix} 1 & 8 \\ 4 & 4 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 7 & 1 \\ 4 & 5 \end{bmatrix} \ \mathbf{C} = \begin{bmatrix} 5 & 8 \\ 4 & 2 \end{bmatrix}$$

Find \mathbf{A}^{-1} , \mathbf{B}^{-1} , \mathbf{C}^{-1} , $(\mathbf{A}\mathbf{B}\mathbf{C})^{-1}$, $(\mathbf{C}\mathbf{B}\mathbf{A})^{-1}$. Using the results from above, find also $\mathbf{C}^{-1}\mathbf{B}^{-1}\mathbf{A}^{-1}$ and $\mathbf{A}^{-1}\mathbf{B}^{-1}\mathbf{C}^{-1}$. What conclusion can be drawn on the order of multiplication among the matrix inversions?

Answer

$$\mathbf{A}^{-1} = \begin{bmatrix} -0.1429 & 0.2857 \\ 0.1429 & -0.0357 \end{bmatrix}, \ \mathbf{B}^{-1} = \begin{bmatrix} 0.1613 & -0.0323 \\ -0.1290 & 0.2258 \end{bmatrix}, \ \mathbf{C}^{-1} = \begin{bmatrix} -0.0909 & 0.3636 \\ 0.1818 & -0.2273 \end{bmatrix}$$
$$(\mathbf{ABC})^{-1} = \begin{bmatrix} 0.0209 & -0.0206 \\ -0.0165 & 0.0188 \end{bmatrix}, \ (\mathbf{CBA})^{-1} = \begin{bmatrix} 0.0180 & -0.0375 \\ -0.0048 & 0.0129 \end{bmatrix}$$
$$\mathbf{C}^{-1}\mathbf{B}^{-1}\mathbf{A}^{-1} = \begin{bmatrix} 0.0209 & -0.0206 \\ -0.0165 & 0.0188 \end{bmatrix}, \ \mathbf{A}^{-1}\mathbf{B}^{-1}\mathbf{C}^{-1} = \begin{bmatrix} 0.0180 & -0.0375 \\ -0.0048 & 0.0129 \end{bmatrix}$$