Analog Circuits 101

Dec 2018

Rules of thumb, assumptions and mixed-quality analogies to come!

Digital Signals

Discrete in <u>time</u> and <u>amplitude</u> (voltage) Convey a series of symbols (e.g. 0, 1, 1, 0, 1, 0, 0, 0, 1, 0) Low information density but relatively immune to noise

Digital Signals

Voltage levels don't need to be precise

Wide ranges of circuits can just plug together

Digital Signal Examples

Digital Signal Integrity Issues

Preserve adequate rise/fall times

Keep ringing under control

Analog Signals

Continuous in time and voltage (amplitude)
Represent some time varying quantity (e.g. sound pressure)
Potentially infinite information density (theoretically)

AC vs DC Components

Analog Signal Characteristics

Example: Simple Motor Control

Example: Audio Amplifier

Increase signal amplitude

Input signal has +/- voltage, no DC
Output has +/- voltage, no DC
Not too much distortion

Example Signal - ECG

- Non-invasive
- 12 leads on body
- Measures electrical changes on the skin due to heart activity
- <1mV signal
 - Fetal ECG ~1μV
 - 10kHz bandwidth

What makes analog hard?

Digital – thinking process is more like a <u>logic puzzle</u>; circuit elements are often fairly <u>ideal building blocks</u>

Analog –uses non-ideal components and "true" circuit design principles

- Signal min/max voltages
- DC offsets
- Distortion
- Bandwidth

Project Time!

Let's amplify a signal so it can optimally feed a microcontroller ADC

Signal Observations

Let's introduce the op-amp!

Will set V_{OUT} to force $V_{-} = V_{+}$

Ideal op-amp

Paraphrase: It's really good at trying to set V_{OUT} to force $V_{-} = V_{+}$

Ideal Op-Amp:

Current into $V_{+,} V_{-}$ is zero $V_{+} = V_{-}$ (in "closed loop" operation) Infinite "open-loop" gain: $V_{OUT} = (V_{+} - V_{-}) \times \infty$

Open Loop Systems

A system that does its thing without measuring what's happening

Closed Loop Systems

A system that adapts what it's doing based on what's happening

Closed Loop Systems

Standard Inverting Amplifier

Ideal Op-Amp:

Current into $V_{+,} V_{-}$ is zero $V_{+} = V_{-}$ (in closed loop circuit) Infinite open-loop gain

Real op-amps: V_{IN} Limits

MCP6002

1					
Common Mode Input Range	V_{CMR}	V _{SS} - 0.3	V _{DD} + 0.3	٧	
			1	_	7

"rail-to-rail" input

1A 20 0, 10 220 1				-	11144
Input voltage range	$T_{AMIN} \le T_A \le T_{AMAX}$		±12	±13	٧
	T				

not "rail-to-rail"

Real op-amps: V_{OUT} Limits

<u>MCP6002</u>	I	I	I	I	I	VCM - VSS	
Output							
Maximum Output Voltage Swing	V _{OL} , V _{OH}	V _{SS} + 25	_	V _{DD} – 25	mV	V _{DD} = 5.5V, 0.5V Input Overdrive	
Output Short Circuit Current	Isc	_	±6	_	mA	V _{DD} = 1.8V	
		_	±23	_	mA	V _{DD} = 5.5V	

"rail-to-rail" output

LM741

not "rail-to-rail"

Output voltage swing	V _S = ±15 V	R _L ≥ 10 kΩ	±12	±14	\ \
		$R_L \ge 2 k\Omega$	±10	±13	V
Output short circuit current	T _A = 25°C			25	mA

Input/Output DC Voltage Problem

V_{IN} has no DC component (it's an AC signal centered around 0V DC)

V_{OUT} should vary from 0V to 5V (centered around 2.5V DC)

Real op-amps: I/O DC Offsets

Final Circuit

Making op-amp circuits easier

Become familiar with a few basic op-amp circuits

- Inverting amp
- Non-inverting amp
- Summing amp

Take advantage of proven designs:

- application notes
- examples in data sheets, websites
- op-amp cookbooks

Go-to parts:

- Have a go-to rail/rail I/O 5V op-amp (KM MCP6002)
- Have a go-to split-supply 30V op-amp (KM NE5534)
- Unity gain stable, GBW ~MHz

Finished Circuit

Using a breadboard

Circuit connections

Power supply buses

Internals of board

Using a Multimeter

- Voltage across
- Current through
- Resistance between
- Continuity between

