

32 位 微控制器

HC32F146/HC32M140 系列的 LVD

适用对象

VE/ 11/11 3/				
系列	产品型号			
HC32F146	HC32F146F8TA			
	HC32F146J8UA			
	HC32F146J8TA			
	HC32F146KATA			
HC32M140	HC32M140F8TA			
	HC32M140J8UA			
	HC32M140J8TA			
	HC32M140KATA			

目 录

1	摘要			3
	HC32F146 / HC32M140 系列的 LVD			
_	2.1		}	
	2.2		! 月	
			工作原理简介	
			操作流程	
			寄存器介绍	
3	样例代码	玛		8
	3.1	代码	9介绍	8
	3.2	代码	丹运行	9
4	总结			.11
5	版本信息	息		. 12

1 摘要

本篇应用笔记主要介绍如何使用 HC32F146 / HC32M140 系列芯片的 LVD 模块传输数据。

应用笔记 Page 3 of 12

2 HC32F146 / HC32M140 系列的 LVD

2.1 简介

HC32F146 / HC32M140 内部包含两个低电压检测单元: LVD1 和 LVD2 它们用于检测 DVCC 电压。LVD 检测阀值可调,当电压低于阀值电压时,可根据配置产生中断,或者复位。

2.2 说明

2.2.1 工作原理简介

当检测的电压低于设定的阀值电压时,可根据配置产生中断,或者复位,原理框图如下:

应用笔记 Page 4 of 12

2.2.2 操作流程

1) LVD 输出作为中断时:

应用笔记 Page 5 of 12

2) LVD 输出作为复位时:

应用笔记 Page 6 of 12

2.2.3 寄存器介绍

1) LVD1_SET LVD1 设置寄存器

LVD1_SET 是 LVD1 单元 的通用设置寄存器,可以根据需要设置阀值电压、使能或者关闭 LVD1 功能。

2) LVD_INT_STR 中断标志寄存器

LVD_INT_STR 是 LVD 的中断状态标志寄存器,用户可根据设置去查询是否产生中断标志。

3) LVD_IRQ_CLR 中断清除寄存器

LVD_IRQ_CLR 是 LVD 的中断标志清除寄存器,当产生相应的中断时,用户需要手动将对应的标志位写"0",一遍等待下次中断的到来。

4) LVD2_SET

LVD2_SET 是 LVD2 单元 的通用设置寄存器,可以根据需要设置阀值电压、使能或者关闭 LVD1 功能。

应用笔记 Page 7 of 12

3 样例代码

3.1 代码介绍

用户可根据上述的工作流程编写自己的代码来学习验证该模块,也可以直接通过华大半导体的网站下载到设备驱动库(Device Driver Library, DDL)的样例代码并使用其中的 LVD 的 Example 进行验证。

以下部分简要介绍该代码 LVD 输出中断信号的各个部分。

1) 定义 LVD 结构体:

```
stc_lvd_config_t stcCfg;
```

2) 配置 LVD 寄存器参数:

```
stcCfg.enIrqType = LvdTypeIrq;
stcCfg.enThresholdR = Lvd_svhr_4_20V;
stcCfg.enThresholdD = Lvd_svhd_3_00V;
stcCfg.pfnIrqCbk = Lvd1IrqCallback;
```

3) 初始化配置并使能对应单元的 LVD 检测功能:

```
Lvd_Init(LvdChanel1, &stcCfg);
```

应用笔记 Page 8 of 12

3.2 代码运行

用户可以通过华大半导体的网站下载到 LVD 的样例代码,并配合评估用板 (SK-HC32F15_64L V10) 运行相关代码学习使用 LVD 模块。

以下部分主要介绍如何在评估板上运行 LVD 样例代码并观察结果:

- 一 确认安装正确的 IAR(或 Keil,此处使用 IAR 做样例说明,Keil 中操作方法类似)工具(请 从华大半导体完整下载相应的安装包,并参考用户手册进行安装)。
- 从华大半导体网站下载 LVD 样例代码。
- 下载并运行样例代码:
- 1) 打开 LVD-> lvd_detect_irq 项目,并打开'main.c'如下视图:

- 2) 点击 重新编译链接整个项目。
- 3) 点击 将代码下载到评估板上。

应用笔记 Page 9 of 12

4) 可以看见类似如下的视图:

5) 在中断服务函数中设置断点,如下图所示:

6) 点击 运行,调节输入电压, 当输入电压高于 4.2V 或者输入电压低于 3V 的时候会产生中断,程序会停在断点的位置。

应用笔记 Page 10 of 12

- 7) 运行完毕后可以关闭项目文件。
- 8) 用户亦可通过修改代码中 LVD 的相关配置参数或初始化数据来进一步学习 LVD 模块的功能。

4 总结

以上章节简要介绍了 HC32F146 / HC32M140 系列的 LVD, 并详细说明了 LVD 模块的寄存器 及操作流程,并且演示了如何使用 LVD, 在实际开发中用户可以根据自己的需要配置和使用 LVD。

应用笔记 Page 11 of 12

5 版本信息

日期	版本	修改记录
2017-11-13	Rev1.0	低电压检测 LVD 应用笔记初版发布

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: www.hdsc.com.cn

通信地址: 上海市张江高科园区碧波路 572 弄 39 号

邮编: 201203

应用笔记 Page 12 of 12