Building a magneto-optical trap for rubidium atoms: a practical guide for the intrepid third year

Eleanor McMurtry 760505

November 7, 2017

Abstract

Our goal for this project was to develop a procedure by which third-year undergraduate students could build, test, and experiment with a magneto-optical trap (MOT). We successfully constructed a MOT and demonstrated its effectiveness, though our setup required the use of expensive and fiddly fibre optic couples. These were chosen for flexibility; an implementation of the experiment would need only minor modifications to avoid using these.

This document is intended to be both a reflection of our experiences and a guide for a prospective third year laboratory experiment. I will first outline some of the arelevant theory for the experiment, then discuss the experimental procedures required to build the MOT; I will conclude the document with a brief discussion of our results.

Supervised by Andy McCulloch and Robert Scholten

University of Melbourne School of Physics Thanks also to Alexander Wood for his tireless assistance in the lab.

Contents

1	Introduction	3
2	Background theory	3
	2.1 Hyperfine structure of rubidium-85	3 3 3 3
3	2.6 Repumping	
J	3.1 Absorption spectroscopy	3
4	Results and discussion	3
5	References	3

1 Introduction

Optical trapping methodologies have their origin in the 1970s, when Ashkin (1970) developed what has become known as optical tweezers using electromagnetic gradients.

2 Background theory

- 2.1 Hyperfine structure of rubidium-85
- 2.2 Non-allowed and dark transitions
- 2.3 Saturated absorption spectroscopy
- 2.4 Doppler cooling
- 2.5 The Zeeman effect
- 2.6 Repumping
- 3 Experimental procedure
- 3.1 Absorption spectroscopy
- 3.2 Saturated absorption spectroscopy
- 3.3 Vacuum cell setup
- 3.4 Rubidium sources and magnetic coils
- 4 Results and discussion
- 5 References

References

Ashkin, A. (1970). Acceleration and trapping of particles by radiation pressure. *Physical Review Letters*, 24(156).