Text Categorization: Discriminative Classifiers

Part 1

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Overview

- What is text categorization?
- Why text categorization?
- How to do text categorization?
 - Generative probabilistic models
 - Discriminative approaches
- How to evaluate categorization results?

Anatomy of Naïve Bayes Classifier

Two categories: θ_1 and θ_2

$$score(d) = \log \frac{p(\theta_1 \mid d)}{p(\theta_2 \mid d)} = \log \frac{p(\theta_1) \prod_{w \in V} p(w \mid \theta_1)^{c(w,d)}}{p(\theta_2) \prod_{w \in V} p(w \mid \theta_2)^{c(w,d)}}$$

 $= log \frac{p(\theta_1)}{p(\theta_2)} + \sum_{w \in V} \underline{c(w,d)} log \frac{p(w \mid \theta_1)}{p(w \mid \theta_2)}$ Weight on each word (feature) β_i doesn't depend on d!

Sum over all words (features $\{x_i\}$)

Feature value: x_i=c(w,d)

$$d = (x_1, x_2, ..., x_M), x_i \in \mathcal{Y}$$

$$d = (x_1, x_2, ..., x_M), \ x_i \in \Re$$

$$score(d) = \beta_0 + \sum_{i=1}^M x_i \beta_i \quad \beta_i \in \Re$$
 = Logistic Regression!

Discriminative Classifier 1: Logistic Regression

Binary Response Variable: $Y \in \{0,1\}$

Predictors:
$$X = (x_1, x_2, ..., x_M), x_i \in \Re$$

$$Y = \begin{cases} 1 & \text{category}(d) = \theta_1 \\ 0 & \text{category}(d) = \theta_2 \end{cases}$$

Modeling p(Y|X) directly

Allow many other features than words!

$$log \frac{p(\theta_1 \mid d)}{p(\theta_2 \mid d)} = log \frac{p(Y = 1 \mid X)}{p(Y = 0 \mid X)} = log \frac{p(Y = 1 \mid X)}{1 - p(Y = 1 \mid X)} = \beta_0 + \sum\nolimits_{i = 1}^{M} x_i \beta_i \quad \beta_i \in \Re$$

$$p(Y = 1 \mid X) = \frac{e^{\beta_0 + \sum_{i=1}^{M} x_i \beta_i}}{e^{\beta_0 + \sum_{i=1}^{M} x_i \beta_i} + 1}$$

Estimation of Parameters

- Training Data: T={(Xi, Yi)}, i=1,2, ..., |T|
- Parameters: $\vec{\beta} = (\beta_0, \beta_1, ..., \beta_M)$
- Conditional likelihood: $p(T | \vec{\beta}) = \prod_{i=1}^{|T|} p(Y = Y_i | X = X_i, \vec{\beta})$

$$p(Y = 1 \mid X) = \frac{e^{\beta_0 + \sum_{i=1}^{M} x_i \beta_i}}{e^{\beta_0 + \sum_{i=1}^{M} x_i \beta_i} + 1} \qquad p(Y = 0 \mid X) = \frac{1}{e^{\beta_0 + \sum_{i=1}^{M} x_i \beta_i} + 1}$$

$$p(Y = 0 \mid X) = \frac{1}{e^{\beta_0 + \sum_{i=1}^{M} x_i \beta_i} + 1}$$

• Maximum Likelihood estimate $\bar{\beta}^* = \arg \max_{\bar{\beta}} p(T | \bar{\beta})$

Can be computed in many ways (e.g., Newton's method)

Discriminative Classifier 2: K-Nearest Neighbors (K-NN)

- Find k examples in the training set that are most similar to the text object to be classified ("neighbor" documents)
- Assign the category that is most common in these neighbor text objects (neighbors vote for the category)
- Can be improved by considering the distance of a neighbor (a closer neighbor has more influence)
- Can be regarded as a way to directly estimate the conditional probability of label given data instance, i.e., p(Y|X)
- Need a similarity function to measure similarity of two text objects

Illustration of K-NN Classifier

K-NN as an Estimate of p(Y|X)

Text Categorization: Discriminative Classifiers

Part 2

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Discriminative Classifier 3: Support Vector Machine (SVM)

- Consider two categories: $\{\theta_1, \theta_2\}$
- $f(X) \ge 0 \Rightarrow X$ is in category θ_1 $f(X) < 0 \Rightarrow X$ is in category θ_2
- Use a linear separator $f(X) = \beta_0 + \sum_{i=1}^{M} x_i \beta_i$ $\beta_i \in \Re$

Which Linear Separator Is the Best?

Best Separator = Maximize the Margin

Only the Support Vectors Matter

Linear SVM

Classifier: $f(x)=w^Tx+b$

 $f(X) \ge 0 \Rightarrow X$ is in category $\theta_1 \longleftarrow$

Parameters: w, b

 $f(X) < 0 \Rightarrow X$ is in category θ_2

Training Data: $T = \{(\mathbf{x}_i, \mathbf{y}_i)\}, i = 1, ..., |T|.$ \mathbf{x}_i is a feature vector; $\mathbf{y}_i \in \{-1, 1\}$

Goal 1: Correct labeling on training data:

If $y_i = 1 \rightarrow w^T x_i + b \ge 1$

If $y_i = -1 \rightarrow w^T x_i + b \le -1$

Goal 2: Maximize margin Large margin \Leftrightarrow Small w^Tw **Constraint**

 $|\forall i, y_i(w^Tx_i+b)\geq 1$

Objective

Minimize $\Phi(w)=w^Tw$

The optimization problem is quadratic programming with linear constraints

Linear SVM with Soft Margin

Classifier: $f(x)=w^Tx+b>0$?

Parameters: w, b

Added to allow training errors

Training Data:
$$T=\{(x_i, y_i)\}, i=1, ..., |T|$$
.

Find w, b, and ξ_i to minimize

$$\Phi(\mathbf{w}) = \mathbf{w}^{\mathrm{T}} \mathbf{w} + C \sum_{i \in [1,|T|]} \xi_{i}$$

$$\forall i \in [1,|T|], y_i(\mathbf{w}^T\mathbf{x}_i+\mathbf{b}) \ge 1 - \xi_i, \quad \xi_i \ge 0$$

C>0 is a parameter to control the trade-off between minimizing the errors and maximizing the margin

The optimization problem is still quadratic programming with linear constraints

Summary of Text Categorization Methods

- Many methods are available, but no clear winner
 - All require effective feature representation (need domain knowledge)
 - It is useful to compare/combine multiple methods for a particular problem
- Most techniques rely on supervised machine learning and thus can be applied to any text categorization problem!
 - Humans annotate training data and design features
 - Computer optimizes the combination of features
 - Good performance requires 1) effective features and 2) plenty of training data
 - Performance is generally (much) more affected by the effectiveness of features than by the choice of a specific classifier

Summary of Text Categorization Methods (cont.)

- How to design effective features? (application-specific)
 - Analyze the categorization problem and exploit domain knowledge
 - Perform error analysis to obtain insights
 - Leverage machine learning techniques (e.g., feature selection, dimension reduction, deep learning)
- How to obtain "enough" training examples?
 - Low-quality ("pseudo") training examples may be leveraged
 - Exploit unlabeled data (using semi-supervised learning techniques)
 - Domain adaptation/transfer learning ("borrow" training examples from a related domain/problem)

Suggested Reading

Manning, Chris D., Prabhakar Raghavan, and Hinrich Schütze. *Introduction to Information Retrieval*. Cambridge: Cambridge University Press, 2007. (Chapters 13-15)

Text Categorization: Evaluation

Part 1

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Overview

- What is text categorization?
- Why text categorization?
- How to do text categorization?
 - Generative probabilistic models
 - Discriminative approaches
- How to evaluate categorization results?

General Evaluation Methodology

- Have humans to create a test collection where every document is tagged with the desired categories ("ground truth")
- Generate categorization results using a system on the test collection
- Compare the system categorization decisions with the human-made categorization decisions and quantify their similarity (or equivalently difference)
 - The higher the similarity is, the better the results are
 - Similarity can be measured from different perspectives to understand the quality of results in detail (e.g., which category performs better?)
 - In general, different categorization mistakes may have a different cost that inevitably depends on specific applications, but it is okay not to consider such a cost variation for relative comparison of methods

Classification Accuracy (Percentage of Correct Decisions)

 $\mathbf{1_N}$...

Classification Accuracy = Total number of correct decisions

Total number of decisions made

$$\frac{count(y(+)) + count(n(-))}{kN}$$

Problems with Classification Accuracy

- Some decision errors are more serious than others
 - It may be more important to get the decisions right on some documents than others
 - It may be more important to get the decisions right on some categories than others
 - E.g., spam filtering: missing a legitimate email costs more than letting a spam go
- Problem with imbalanced test set
 - Skewed test set: 98% in category 1; 2% in category 2
 - Strong baseline: put all instances in category 1 → 98% accuracy!

Per-Document Evaluation

	$\mathbf{c_1}$	$\mathbf{c_2}$	c ₃	$\mathbf{c}_{\mathbf{k}}$
$\mathbf{d_1}$	y(+)	y(-)	n(+)	n(+)
$\mathbf{d_2}$	y(-)	n(+)	y(+)	n(+)
$\mathbf{d_3}$	n(+)	n(+)	y(+)	n(+)

	System ("y")	System ("n")
Human (+)	True Positives TP	False Negatives FN
Human (-)	False Positives FP	True Negatives TN

How good are the decisions on d_i?

When the system says "yes," how many are correct?

Precision
$$= \frac{TP}{TP + FP}$$

$$\mathbf{Recall} = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{FN}}$$

Does the doc have all the categories it should have?

Per-Category Evaluation

	System ("y")	System ("n")	
Human (+)	True Positives TP	False Negatives FN	
Human (-)	False Positives FP	True Negatives TN	

How good are the decisions on c_i?

When the system says "yes," how many are correct?

Precision
$$=\frac{TP}{TP+FP}$$

$$\mathbf{Recall} = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{FN}}$$

Has the category been assigned to all the docs of this category?

Combine Precision and Recall: F-Measure

$$F_{\beta} = \frac{1}{\frac{\beta^{2}}{\beta^{2}+1}} \frac{1}{R} + \frac{1}{\beta^{2}+1} \frac{1}{P} = \frac{(\beta^{2}+1)P * R}{\beta^{2}P + R}$$

$$F_1 = \frac{2PR}{P + R}$$

Why not 0.5*P+0.5*R?

P: precision

R: recall

β: parameter (often set to 1)

What is R if the system says "y" for all category-doc pairs?

Text Categorization: Evaluation

Part 2

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

(Macro) Average Over All the Categories

(Macro) Average Over All the Documents

Micro-Averaging of Precision and Recall

First pool all decisions, then compute precision and recall

$$Precision = \frac{TP}{TP + FP}$$

	System ("y")	System ("n")
Human (+)	True Positives (TP)	False Negatives (FN)
Human (-)	False Positives(FP)	True Negatives(TN)

$$\mathbf{Recall} = \frac{TP}{TP + FN}$$

Sometimes Ranking Is More Appropriate

- The categorization results are often passed to a human for
 - further editing (e.g., correcting system mistakes on news categories)
 - prioritizing a task (e.g., routing an email to the right person for processing)
- In such cases, we can evaluate the results as a ranked list if the system can give scores for the decisions
 - E.g., discovery of spam emails (→ rank emails for the "spam" category)
 - Often more appropriate to frame the problem as a ranking problem instead of a categorization problem (e.g., ranking documents in a search engine)

Summary of Categorization Evaluation

- Evaluation is always very important, so get it right!
- Measures must reflect the intended use of the results for a particular application (e.g., spam filtering vs. news categorization)
 - Consider: How will the results be further processed (by a user)?
 - Ideally associate a different cost with each different decision error
- Commonly used measures for relative comparison of different methods:
 - Accuracy, precision, recall, F score
 - Variations: per-document, per-category, micro vs. macro averaging
- Sometimes ranking may be more appropriate

Suggested Reading

- Manning, Chris D., Prabhakar Raghavan, and Hinrich Schütze. *Introduction to Information Retrieval*.
 Cambridge: Cambridge University Press, 2007.
 (Chapters 13-15)
- Yang, Yiming. 1999. An Evaluation of Statistical Approaches to Text Categorization. *Inf. Retr.* 1, 1-2 (May 1999), 69-90. DOI=10.1023/A:1009982220290

Opinion Mining and Sentiment Analysis: Motivation

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Opinion Mining and Sentiment Analysis: Motivation

Objective vs. Subjective Sensors

How can we mine and analyze opinion buried in text?

What Is an Opinion?

Objective statement or Factual statement (can be proved right/wrong)

Depends on culture, background, and context

Opinion Representation

- Basic Opinion Representation
 - Opinion holder: Whose opinion is this?
 - Opinion target: What is this opinion about?
 - Opinion content: What exactly is the opinion?
- Enriched Opinion Representation
 - Opinion context: Under what situation (e.g., time, location) was the opinion expressed?
 - Opinion sentiment: What does the opinion tell us about the opinion holder's feeling (e.g., positive vs. negative)?

A Product Review (Explicit Holder and Target)

- Basic Opinion Representation
 - Opinion holder: Whose opinion is this?

Reviewer X

— Opinion target: What is this opinion about?

Product: iPhone 6

— Opinion content: What exactly is the opinion?

Review Text

- Enriched Opinion Representation
 - Opinion context: Under what situation (e.g., time, location) was the opinion expressed?Year = 2015
 - Opinion sentiment: What does the opinion tell us about the opinion holder's feeling (e.g., positive vs. negative)?
 Positive

Relatively Easy to Mine and Analyze

A Sentence in News (Implicit Holder and Target)

Harder to Mine and Analyze: Need deeper NLP

Variations of Opinions

- Opinion holder: Individual vs. group
- Opinion target: One entity, a group of entities, one attribute of an entity, someone else's opinion, etc.

Opinion content:

- Surface variation: one sentence/phrase, a paragraph, a whole article
- Sentiment/emotion variation: positive vs. negative, happy vs. sad, etc.

Opinion context

- Simple context: Different time, location, etc.
- Complex context: Potentially includes the entire discourse context of an opinion

Different Kinds of Opinions in Text Data

Indirect/Inferred Opinion:

"This phone ran out of battery in just 1 hour."

The Task of Opinion Mining

Often some elements of the representation are already known

Simplest Opinion Mining task(s)?

Why Opinion Mining?

Decision Support

- Help consumers choose a product or service
- Help voters decide whom to vote for
- Help policy makers design new policy

Understand People

- Help understand people's preferences to better serve them (e.g., optimize a product search engine; optimize recommender systems)
- Help with advertising (targeted advertising)

"Voluntary Survey" (humans as sensors; aggregated opinions)

- Business intelligence
- Market research
- Data-driven social science research
- Gain advantage in any prediction (text-based prediction)

Opinion Mining and Sentiment Analysis: Sentiment Classification

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Sentiment Classification

Sentiment Classification: Task Definition

- Input: An opinionated text object
- Output: A sentiment tag/label
 - Polarity analysis: e.g., categories = {positive, negative, neutral}, or categories ={5, 4, 3, 2, 1}
 - Emotion analysis (beyond polarity): e.g., categories ={happy, sad, fearful, angry, surprised, disgusted}
- A special case of text categorization! → Any text categorization method can be used to do sentiment classification
- Further improvement comes from
 - More sophisticated features appropriate for sentiment tagging
 - Consideration of the order of the categories (e.g., ordinal regression)

Commonly Used Text Features

- Character n-grams: can be mixed with different n's
 - General and robust to spelling/recognition errors, but less discriminative than words
- Word n-grams: can be mixed with different n's
 - Unigrams are often very effective, but not for sentiment analysis (e.g., "it's not good" or "it's not as good as")
 - Long n-grams are discriminative, but may cause overfitting
- POS tag n-grams: mixed n-gram with words and POS tags
 - E.g., "ADJECTIVE NOUN" or "great NOUN"

Commonly Used Text Features (cont.)

- Word classes
 - Syntactic (= POS tags)
 - Semantic Concept: e.g., thesaurus/ontology, recognized entities
 - Empirical word clusters (e.g., cluster of paradigmatically or syntagmatically related words)
- Frequent patterns in text (e.g., frequent word set; collocations)
 - More specific/discriminative than words
 - May generalize better than pure n-grams
- Parse tree-based (e.g., frequent subtrees, paths)
 - Even more discriminative, but need to avoid overfitting
- Pattern discovery algorithms are very useful for feature construction

NLP Enriches Text Representation with Complex Features

A dog is chasing a boy on the playground

6

Feature Construction for Text Categorization

- Feature design affects categorization accuracy significantly
- A combination of machine learning, error analysis, and domain knowledge is most effective
 - Domain knowledge → seed features, feature space
 - Machine learning → feature selection, feature learning
 - Error analysis → feature validation
- NLP enriches text representation → enriches feature space (more likely overfitting!)
- Optimizing the tradeoff between exhaustivity and specificity is a major goal

high coverage (frequent)

discriminative (infrequent)

Sentiment Analysis: Ordinal Logistic Regression

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Motivation: Rating Prediction

- Input: An opinionated text document d
- Output: Discrete rating $\mathbf{r} \in \{1, 2, ..., k\}$
- Using regular text categorization techniques
 - Doesn't consider the order and dependency of the categories
 - The features distinguishing r=2 from r=1 may be the same as those distinguishing r=k from r=k-1 (e.g., positive words generally suggest a higher rating)
- Solution: Add order to a classifier (e.g., ordinal logistic regression)

Logistic Regression for Binary Sentiment Classification

Binary Response Variable: $Y \in \{0,1\}$ Predictors: $X = (x_1, x_2, ..., x_M), x_i \in \Re$

$$Y = \begin{cases} 1 & X \text{ is POSITIVE} \\ 0 & X \text{ is NEGATIVE} \end{cases}$$

$$\log \frac{p(Y=1 \,|\, X)}{p(Y=0 \,|\, X)} = \log \frac{p(Y=1 \,|\, X)}{1-p(Y=1 \,|\, X)} = \beta_0 + \sum\nolimits_{i=1}^{M} x_i \beta_i \quad \beta_i \in \Re$$

$$p(Y = 1 \mid X) = \frac{e^{\beta_0 + \sum_{i=1}^{M} x_i \beta_i}}{e^{\beta_0 + \sum_{i=1}^{M} x_i \beta_i} + 1}$$

Logistic Regression for Multi-Level Ratings

$$Y_{j} = \begin{cases} 1 & \text{rating is } j \text{ or above} \\ 0 & \text{rating is lower than } j \end{cases}$$

Predictors: $X = (x_1, x_2, ..., x_M), x_i \in \Re$ Rating: $r \in \{1, 2, ..., k\}$

 $\log \frac{p(Y_j = 1 \mid X)}{p(Y_j = 0 \mid X)} = \log \frac{p(r \ge j \mid X)}{1 - p(r \ge j \mid X)} = \alpha_j + \sum_{i=1}^{M} x_i \beta_{ji} \quad \beta_{ji} \in \Re$ Classifier 1 Rating **Classifier 2**

$$p(r \ge j \mid X) = \frac{e^{\alpha_j + \sum_{i=1}^{M} x_i \beta_{ji}}}{e^{\alpha_j + \sum_{i=1}^{M} x_i \beta_{ji}} + 1}$$

Rating Prediction with Multiple Logistic Regression Classifiers

Text Object: $X = (x_1, x_2, ..., x_M), x_i \in \Re$

Rating: $r \in \{1, 2, ..., k\}$

After training k-1 Logistic Regression Classifiers

$$p(r \ge j \mid X) = \frac{e^{\alpha_j + \sum_{i=1}^{M} x_i \beta_{ji}}}{e^{\alpha_j + \sum_{i=1}^{M} x_i \beta_{ji}} + 1}$$

j=k, k-1, ..., 2

Problems with k-1 Independent Classifiers?

$$\log \frac{p(Y_{j} = 1 \mid X)}{p(Y_{i} = 0 \mid X)} = \log \frac{p(r \ge j \mid X)}{1 - p(r \ge j \mid X)} = \alpha_{j} + \sum_{i=1}^{M} x_{i} \beta_{ji} \quad \beta_{ji} \in \Re$$

$$p(r \ge j \mid X) = \frac{e^{\alpha_j + \sum_{i=1}^{M} x_i \beta_{ji}}}{e^{\alpha_j + \sum_{i=1}^{M} x_i \beta_{ji}} + 1}$$

How many parameters are there in total? (k-1)*(M+1)

The k-1 classification problems are dependent. The positive/negative features tend to be similar!

Ordinal Logistic Regression

Key Idea:
$$\forall i = 1, ..., M, \forall j = 3, ..., k, \beta_{ji} = \beta_{j-1i}$$

- → Share training data → Reduce # of parameters

$$\begin{array}{l} \text{Rating} & \log \frac{p(Y_j=1\,|\,X)}{p(Y_j=0\,|\,X)} = \log \frac{p(r\geq j\,|\,X)}{1-p(r\geq j\,|\,X)} = \alpha_j + \sum_{i=1}^M x_i \beta_i \quad \beta_i \in \Re \\ \\ \frac{k}{k-1} & \text{Classifier 1} \\ \frac{k-2}{k-2} & \text{Classifier k-1} \end{array} \quad p(r\geq j\,|\,X) = \frac{e^{\alpha_j + \sum_{i=1}^M x_i \beta_i}}{e^{\alpha_j + \sum_{i=1}^M x_i \beta_i} + 1} \\ \text{How many parameters are there in total?} \qquad \text{M+k-1} \end{array}$$

Ordinal Logistic Regression: Rating Prediction

$$p(r \geq j \mid X) \geq 0.5 \Leftrightarrow \frac{e^{\alpha_{j} + score(X)}}{e^{\alpha_{j} + score(X)} + 1} \geq 0.5 \Leftrightarrow score(X) \geq -\alpha_{j}$$

$$score(X) = \sum_{i=1}^{M} \beta_{i} x_{i}$$

$$k + 1 + 1 + 1 + 1$$

$$k-2 + 1 + 1 + 1$$

$$classifier 2 - 1 + 1 + 1$$

$$classifier k-1 - 1 + 1$$

$$r = j \Leftrightarrow score \in [-\alpha_{i}, -\alpha_{i+1}), define \alpha_{1} = \infty, \alpha_{k+1} = -\infty$$