# FINDING THE BEST LOCALITY BASED ON INTEREST

### **Abstract**

Day to day life, people migrate from one location to another. In This project, we will see how data can help then find a place of their interest.

# **Contents**

| 1. Introduction | 2 |
|-----------------|---|
| 1.1 Background  | 2 |
| 1.2 Problem     | 2 |
| 1.3 Interest    | 2 |
| 2. Data         | 2 |
| 3. Methodology  | 2 |
| 4. Result       | 5 |
| 5. Discussion   | 6 |
| 6. Conclusion   | 6 |
| 7 Reference     | 6 |

### 1. Introduction

### 1.1 Background

People migrate from one location to another. It is part of our life. Most people would have migrated from one location to another at least once in their life. It may be due to job change, looking for the school for children or moving to another rented house.

### 1.2 Problem

It will be challenging to find the place of your interest. Everyone will have different demand and interest. In this article we will see how we use publicly available date to find solution.

### 1.3 Interest

Anyone migrating from one location to another will be interested in understanding the place they are moving to.

### 2. Data

Based on the problem we are looking for area of interest. This information, we can get it from Foursquare [1] APIs.

And other information we need is, how do we split the location. There are multiple ways we can do this:

- Divide the area into small grids
- Divide by county
- Divide by zip code

I went for the last option, based on zip code. For this, I needed the zip code details and found <a href="www.unitedstateszipcodes.org">www.unitedstateszipcodes.org</a> [2]. They have a free database (for non-commercial use) with all USA zip codes and their location co-ordinates.

# 3. Methodology

In my work, I used SQL databases like MySQL, MariaDB. However, for this project, I tried the python dataframes for the first time. It was a new experience.

I filtered only zip code, city, state and co-ordinate information.

|   | zip      | primary_city | state | latitude | longitude |
|---|----------|--------------|-------|----------|-----------|
| 0 | 501      | Holtsville   | NY    | 40.81    | - 73.04   |
| 1 | 544      | Holtsville   | NY    | 40.81    | - 73.04   |
| 2 | 601      | 1 Adjuntas   | PR    | 18.16    | - 66.72   |
| 3 | 602 Agua | Aguada       | PR    | 18.38    | - 67.18   |
| 4 | 603      | Aguadilla    | PR    | 18.43    | - 67.15   |

Here are the user inputs I have considered: (New) Location, interested venues.

For this example, I have taken Austin, TX and "Gym, Park, Indian Restaurant, Bar" as interested venues.

First, I filtered the zip code for Austin and visualized the zips with the area of diameter 4km using python folium library.



This showed good amount of coverage. It has high density in the centre of the town. For this problem that is ok.

Next, I collected all the nearby places using Foursquare APIs and converted into a table.

| ; |   | zip   | Latitude | Longitude | Venue                                        | Venue Latitude | Venue Longitude | Venue Category |
|---|---|-------|----------|-----------|----------------------------------------------|----------------|-----------------|----------------|
|   | 0 | 73301 | 30.26    | -97.74    | Ladybird Lake Hike & Bike Trail (Rainey St.) | 30.258917      | - 97.740925     | Trail          |
|   | 1 | 73301 | 30.26    | -97.74    | Kimpton Hotel Van Zandt                      | 30.260078      | -97.739147      | Hotel          |
|   | 2 | 73301 | 30.26    | -97.74    | Craft Pride                                  | 30.257896      | - 97.738862     | Beer Garden    |
|   | 3 | 73301 | 30.26    | -97.74    | Rainey Street Outdoor Food Trucks            | 30, 258436     | -97.738968      | Food Truck     |
|   | 4 | 73301 | 30.26    | -97.74    | Fairmont Austin                              | 30.262074      | -97.738261      | Hotel          |

Then I filtered only the user's interesting venues.

|   | zip      | Latitude | Longitude | Venue                                 | Venue Latitude | Venue Longitude | Venue Category |
|---|----------|----------|-----------|---------------------------------------|----------------|-----------------|----------------|
| 0 | 73 3 0 1 | 30.26    | -97.74    | Lustre Pearl                          | 30.260715      | -97.738281      | Bar            |
| 1 | 73301    | 30.26    | -97.74    | Auditorium Shores at Lady Bird Lake   | 30.259792      | -97.749013      | Park           |
| 2 | 73301    | 30.26    | -97.74    | RIDE Indoor Cycling                   | 30.264560      | -97.746643      | Gym            |
| 3 | 73301    | 30.26    | -97.74    | Butler Park (formerly Town Lake Park) | 30.261792      | -97.754974      | Park           |
| 4 | 73301    | 30.26    | -97.74    | Rustic Tap                            | 30.269533      | -97.749145      | Bar            |

Again, utilized folium to visualize how these places are spread across.



Then grouped the area based on the coverage of all/most of the venues the user is interested in.



We found the area that the user can start looking before he/she moved to the new location.

# 4. Result

We found the area(s) which may match the user's preference. These are the zip codes the user can start with.

| zip   | Latitude | Longitude | Gym  | Park | Indian Restaurant | Ваг  |
|-------|----------|-----------|------|------|-------------------|------|
| 78717 | 30.49    | -97.75    | True | True | True              | True |
| 78745 | 30.21    | -97.80    | True | True | True              | True |
| 78727 | 30.43    | -97.72    | True | True | True              | True |
| 78728 | 30.45    | -97.69    | True | True | True              | True |
| 78757 | 30.35    | -97.73    | True | True | True              | True |
| 78753 | 30.38    | -97.67    | True | True | True              | True |
| 78731 | 30.35    | -97.77    | True | True | True              | True |
| 78716 | 30.26    | -97.74    | True | True | False             | True |
| 78715 | 30.26    | -97.74    | True | True | False             | True |
|       |          |           |      |      |                   |      |

# 5. Discussion

In this model, I mostly used the visualization methods to identify the solution. We can solve this used multiple ways as I discussed in the Data section. This show how we can utilize the data science to solve the day to day problems. One additional improvement we could do is, we can group some of the zip codes using DBSCAN algorithm. After seeing the result, I felt that I don't need to go for that option.

### 6. Conclusion

As more people are migrating to new places and this model will help them to identify the places they can start looking before they move in. Again, there is always place for improvements

### 7. Reference

[1] Foursquare API

[2] www.unitedstateszipcodes.org