

Machine Learning

Agrupamiento

Jose Luis Paniagua Jaramillo jlpaniagua@uao.edu.co

- Aprendizaje Supervisado vs Aprendizaje No Supervisado
- 2 Agrupamiento
- Algoritmos de Agrupamiento
 - k-means
 - Gaussian Mixture Models
- Referencias

- Aprendizaje Supervisado vs Aprendizaje No Supervisado
- 2 Agrupamiento
- Algoritmos de Agrupamiento
 - k-means
 - Gaussian Mixture Models
- Referencias

Aprendizaje Supervisado vs Aprendizaje No Supervisado

- Aprendizaje Supervisado vs Aprendizaje No Supervisado
- 2 Agrupamiento
- Algoritmos de Agrupamiento
 - k-means
 - Gaussian Mixture Models
- Referencias

Agrupamiento

- Es una tecnica de aprendizaje no supervisado.
- El objetivo es agrupar datos con características similares en grupos (clusters).

- 🕕 Aprendizaje Supervisado vs Aprendizaje No Supervisado
- 2 Agrupamiento
- Algoritmos de Agrupamiento
 - k-means
 - Gaussian Mixture Models
- Referencias

- Aprendizaje Supervisado vs Aprendizaje No Supervisado
- 2 Agrupamiento
- Algoritmos de Agrupamiento
 - k-means
 - Gaussian Mixture Models
- Referencias

k-means I

cuantos grupos hay?

k-means II

La función del algoritmo k-means es encontrar el centro (centroide) de cada grupo y asignar cada dato al grupo mas cercano.

k-means

El algoritmo k-means se puede resumir en cuatro pasos:

- Elejir e inicializar aleatoriamente el numero de centroides k.
- Asignar cada dato (**sample**) al grupo mas cercano.
- Mover los centroides al centro de los datos que fueron asignados a este.
- Repetir los pasos 2 y 3 hasta que:
 - Las asignaciones de los datos a los grupos no cambie.
 - Se cumpla una tolerancia definida por el usuario.
 - Se cumpla el numero total de iteraciones.

k-means III

k-means IV

Cuantos grupos hay?

k-means V

Que se puede concluir acerca de los datos ubicados cerca de las fronteras de decisión?

k-means VI

14/26

Resumen

- Debido a la inicializacion aleatoria de los centroides, estos no siempre terminan en el centro del cluster.
- Para tratar de encontrar la solución optima, se utilizan estrategias como ejecutar el algoritmo varias veces y seleccionar el mejor resultado. Otra opción es inicializar de forma manual los centroides.
- Especificar el numero de clusters a priori es una de las limitantes de este algoritmo.
- No se obtienen buenos resultados cuando los datos estan dispersos. Por esta razon se deben normalizar antes de entrenar el algoritmo.

Metricas De Desempeño

Inercia del Modelo

Sum of Squared Distance

$$SSE = \sum_{i=1}^{n} \sum_{j=1}^{k} w^{(i,j)} \|x^{(i)} - \mu^{(j)}\|_{2}^{2}$$

k-means++ l

Cual es el problema?

- El numero de clusters que se seleccionan no siempre es el correcto en problemas reales.
- Se asume que los clusters no se solapan.
- Se asume que al menos existe un dato en cada cluster.

k-means++ II

Solucion: k-means++

Selecciona los centroides de tal manera que gueden uno lejos del otro.

Pasos para la inicializacion en k-means++

- Seleccionar un centroide $c^{(1)}$ de forma aleatoria.
- Calcular la distancia mínima entre cada **sample** $x^{(i)}$ y el centroide $c^{(1)}$.
- Seleccionar el sample $x^{(i)}$ mas alejado del centroide ya selecciondo como el nuevo centroide $c^{(i)}$
- Repetir pasos 2 y 3 hasta que se hayan seleccionado todos los k centroides.
- Continuar con el algoritmo k-means clásico.

- Aprendizaje Supervisado vs Aprendizaje No Supervisado
- Agrupamiento
- Algoritmos de Agrupamiento
 - k-means
 - Gaussian Mixture Models
- Referencias

Gaussian Mixture Models I

Gaussian Mixture Models II

20/26

GMM

- Es un modelo probabilistico donde se asume que los datos fueron generados a partir de un mezcla de varias distribuciones gausianas cuyos parámetros no son conocidos.
- Todos los datos generados a partir de una distribución gausiana forman un cluster que normalmente tiene forma de elipsoide.
- Cada cluster puede tener diferente forma (elipsoide), tamaño, densidad y orientación.

Gaussian Mixture Models III.

21/26

Como funciona el algoritmo?

- Se deben establecer el numero *k* de distribuciones gausianas.
- Para cada dato (**instancia**), un cluster es seleccionado de forma aleatoria de los k clusters definidos en el paso 1. La probabilidad de seleccionar uno de los clusters (ith) en particular esta definida por el peso del cluster $\phi^{(j)}$.
- Una vez la ith instancia ha sido asignada al cluster jth la localización de esta instancia es tomada aleatoriamente de una distribucion gausiana con media $\mu^{(j)}$ y matriz de covarianza $\Sigma^{(j)}$.

Gaussian Mixture Models IV

Que hace el algoritmo?

Dado un dataset X, el algoritmo estima los pesos ϕ y todos los parametos de las distribuciones de probabilidad $u^{(1)}$ a $u^{(k)}$ v $\Sigma^{(1)}$ a $\Sigma^{(k)}$

Expectation-Maximization (EM)

- el algoritmo **EM** es muy similar a k-means.
 - inicializa los parametros de los clusters de forma aleatoria.
 - Repite 2 pasos hasta que converja:
 - primero asigna datos (instancias) a los clusters (expectation step).
 - luego actualiza los clusters (maximization step)

EM es una generalización de **k-means**, ya que no solo encuentra los centroides ($\mu^{(1)}$ a $\mu^{(k)}$) si no que ademas encuentra el tamaño, la forma y orientación ($\Sigma^{(1)}$ a $\Sigma^{(k)}$) y su peso relativo ($\phi^{(1)}$ a $\phi^{(k)}$)

Gaussian Mixture Models V

Gaussian Mixture Models VI

- Aprendizaje Supervisado vs Aprendizaje No Supervisado
- 2 Agrupamiento
- Algoritmos de Agrupamiento
 - k-means
 - Gaussian Mixture Models
- Referencias

Referencias

Aurélien Géron.

Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems.

O'Reilly Media, 2019.

https://scikit-learn.org/stable/index.html