Inhaltsverzeichnis

Allgemeine Informationen (letztes Update: 25.11.2015)				
1	Blat 1.1 1.2 1.3 1.4	01 Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4	3	
2	Blat	02	7	
	2.1	Aufgabe 1		
	2.2	Aufgabe 2	7	
	2.3	Aufgabe 3	7	
	2.4	Aufgabe 4	7	
3	Blatt 03			
	3.1	Aufgabe 1	8	
	3.2	Aufgabe 2	8	
	3.3	Aufgabe 3	8	
	3.4	Aufgabe 4	8	
4	Blatt 04			
	4.1	Aufgabe 1	9	
	4.2	Aufgabe 2	9	
	4.3	Aufgabe 3	9	
	4.4	Aufgabe 4	9	
5	Blatt 05			
	5.1	Aufgabe 1	10	
	5.2	Aufgabe 2		
	5.3	Aufgabe 3		
	5.4	Aufgabe 4		

Allgemeine Informationen

Dies ist eine Mitschrift des Übungsbetriebs der Vorlesung Analysis I für Informatiker und Statistiker im Wintersemester 2015/16 bei Prof. Dr. Peter Pickl. Ohne Anspruch auf Richtigkeit oder Vollständigkeit.

1.1 Aufgabe 1

a)

$$\prod_{i=1}^{2} \left(\sum_{j=1}^{3} (ij)\right) = \left(\sum_{j=1}^{3} (1j)\right) \cdot \left(\sum_{j=1}^{3} (2j)\right)
= \left((1 \cdot 1) + (1 \cdot 2) + (1 \cdot 3)\right) \cdot \left((2 \cdot 1) + (2 \cdot 2) + (3 \cdot 2)\right)
= (1 + 2 + 3) \cdot (2 + 4 + 6)
= 6 \cdot 12
= 72$$

b) Die Umbennung der Variablen i, j aus a) zu k, m ändert nichts am Rechenweg und somit auch nicht das Ergebnis. Das Ergebnis ist wieder 72.

c)

$$\sum_{m=1}^{3} \left(\prod_{k=1}^{2} (km)\right) = \left(\prod_{k=1}^{2} (k1)\right) + \left(\prod_{k=1}^{2} (k2)\right) + \left(\prod_{k=1}^{2} (k3)\right)$$

$$= (1 \cdot 1) \cdot (2 \cdot 1) + (1 \cdot 2) \cdot (2 \cdot 2) + (1 \cdot 3) \cdot (2 \cdot 3)$$

$$= (2 + 8 + 18)$$

$$= 28$$

d)

$$\prod_{k=1}^{2} (k \sum_{m=1}^{3} (m)) = (1 \sum_{m=1}^{3} (m)) \cdot (2 \sum_{m=1}^{3} (m))$$

$$= (1 \cdot (1+2+3)) \cdot (2 \cdot (1+2+3))$$

$$= (1 \cdot 6) \cdot (2 \cdot 6)$$

$$= 72$$

e)

$$\sum_{m=1}^{3} (m \prod_{k=1}^{2} (k)) = (1 \prod_{k=1}^{2} (k)) + (2 \prod_{k=1}^{2} (k)) + (3 \prod_{k=1}^{2} (k))$$

$$= (1 \cdot (1 \cdot 2)) + (2 \cdot (1 \cdot 2)) + (3 \cdot (1 \cdot 2))$$

$$= 2 + 4 + 6$$

$$= 12$$

1.2 Aufgabe 2

a) Bemerkung: Bernoulli Induktionsanfang: n = 1

$$(1+x)^1 = (1+x) \ge 1 + 1x$$

Induktionsvoraussetzung:

$$(1+x)^n \ge 1 + nx \qquad \forall n \in \mathbb{N}$$

Induktionsschritt: $n \rightarrow n+1$ Zu Zeigen ist

$$(1+x)^{(n+1)} \ge 1 + (n+1)x$$

Es gilt:

$$(1+x)^{(n+1)} = (1+x)^n \cdot \underbrace{(1+x)}_{\geq 0}$$

$$\stackrel{IV}{\geq} (1+nx)(1+x)$$

$$= 1+x+nx+nx^2$$

$$= 1+(n+1)x+\underbrace{(nx^2)}_{\geq 0}$$

$$\geq 1+(n+1)x \quad \Box$$

b) Bemerkung: Dies ist eine Erweiterung der gaußschem Summenformel. Induktionsanfang: n = 1

$$\sum_{k=1}^{1} k^2 = 1^2 = \frac{1 \cdot (1+1)(2 \cdot 1 + 2)}{6} = \frac{6}{6} = 1$$

Induktionsvoraussetzung:

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+2)}{6}$$

Induktionsschritt: $n \rightarrow n+1$ Zu Zeigen ist

$$\sum_{k=1}^{n+1} k^2 = \frac{(n+1)(n+2)(2n+3)}{6}$$

Es gilt:

$$\sum_{k=1}^{n+1} k^2 = (n+1)^2 + \sum_{k=1}^{n} k^2$$

$$\stackrel{IV}{=} (n+1)^2 + \frac{n(n+1)(2n+1)}{6}$$

$$= \frac{6(n+1)^2 + n(n+1)(2n+1)}{6}$$

$$= \frac{(n+1)(n+2)(2n+3)}{6} \quad \Box$$

1.3 Aufgabe 3

Bemerkung: Einfach immer: Laut Vorlesung sieht man leicht, dass ... gilt.

- i) $1 \cdot n = n \cdot 1$
- ii) $n \cdot m = m \cdot n$

Laut Vorlesung gilt:

- a) $1 \cdot n = n$ $\forall n \in \mathbb{N}$
- b) $m \cdot n' = m \cdot n + m \quad \forall m, n \in \mathbb{N}$
- c) $m' \cdot n = m \cdot n + n$ $\forall m, n \in \mathbb{N}$

Zeige i)

$$n \cdot 1 = 1 \cdot n \stackrel{a)}{=} n$$

Induktionsanfang: n = 1

$$1 \cdot 1 = 1$$

Induktionsvoraussetzung:

$$n \cdot 1 = 1 \cdot n = n$$

Induktionsschritt: $n \rightarrow n+1$ Zu Zeigen ist

$$(n+1) \cdot 1 = 1 \cdot (n+1) = n+1$$

Es gilt:

$$(n+1) \cdot 1 = n' \cdot 1$$

$$\stackrel{c)}{=} n \cdot 1 + 1$$

$$\stackrel{IV}{=} n + 1 \quad \square$$

Zeige nun ii)

$$n \cdot m = m \cdot n \quad \forall m, n \in \mathbb{N}$$

Induktion über m.

Induktionsanfang: m = 1

$$n \cdot 1 \stackrel{i)}{=} 1 \cdot n$$

Induktionsvoraussetzung:

$$n \cdot m = m \cdot n$$

Induktionsschritt: $m \rightarrow m+1$

Zu Zeigen ist

$$n \cdot (m+1) = (m+1) \cdot n$$

Es gilt:

$$(m+1) \cdot n = m' \cdot n$$

$$\stackrel{c)}{=} m \cdot n + n$$

$$\stackrel{IV}{=} n \cdot m + n$$

$$\stackrel{b)}{=} n \cdot m'$$

$$= n \cdot (m+1) \quad \Box$$

1.4 Aufgabe 4

Finde Tripel (M, e, S).

Bemerkung: $M \leftarrow$ Mengensystem, $e \leftarrow$ neutrales Element, $S \leftarrow$ Abbildungsvorschrift.

a) i), ii) und iv) werden erfüllt. Das heißt entweder $k \in M$ existieren, sodass S(k) = e gilt [iii) verletzt, da 1 kein Nachfolger einer \mathbb{N} -Zahl ist], oder $\exists X, e \in X$ und $k \in X \cap M$ gilt $S(k) \in X$ aber $M \not\subset X$ [v) verletzt]. Beispiel:

$$M = \{e, \star\}$$
$$S(e) = \star$$
$$S(\star) = e$$

- i) $e \in M$ per Defintion von M
- ii) S(k) existiert für alle $k \in M$ und ist eindeutig.

iv)
$$S(k) = S(\tilde{k}) \Longrightarrow k = \tilde{k} \quad \forall k, \tilde{k} \in M$$

- iii) ist wegen $S(\star) = e$ verletzt.
- b) (M,e,S) soll i), ii), iii) und v) erfüllen. Beispiel:

$$M = \{e, \star\}$$

 $S(e) = \star$
 $S(\star) = \star$

- iv) wegen $S(e) = S(\star) = \star \text{ jedoch } e \neq \star \text{ verletzt.}$
- c) (M,e,S) verletzt iv) und v), erfüllt aber i), ii), iii). Beispiel:

$$M = \{e, \star <>\}$$

$$S(e) = \star$$

$$S(\star) = \star$$

$$S(<>) = \star$$

i), ii), iii) offensichtlich erfüllt. iv) nach b) verletzt. Sei dazu $X = \{e, \star\}$. Dann ist $e \in X$, $S(e) = \star \in X$ Aber, weil $<> \not\in X$ ist $M \not\subset X$. Also v) verletzt.

2.1 Aufgabe 1

- a) Bemerkung: $\Leftrightarrow \longleftarrow$ genau, wenn dann $a \sim_a b \Leftrightarrow r = \widetilde{r}$, wobei $a = m \cdot 7 + r$ und $b = \widetilde{m} \cdot 7 + \widetilde{r}$ $(m, \widetilde{m}, r, \widetilde{r} \in \mathbb{N}_0)$
 - Reflexivität: ist offensichtlich.
 - Symmetrie: ist offensichtlich.
 - Transitivität: Sei dazu $a \sim b \wedge b \sim c$. Dann gilt

$$a = m \cdot 7 + r$$
 und $b = k \cdot 7 + \widetilde{r}$
 $b = n \cdot 7 + r$ und $c = l \cdot 7 + \widetilde{r}$

Zu Zeigen ist $r = \tilde{r}$.

Wäre $r \neq \widetilde{r}$, dann wäre wegen k = n auch $b \neq b$. Fehler!

Also $r = \tilde{r}$.

Es handelt sich um eine Äquivalenzrelation, denn die Relation \sim_a ist reflexiv, symmetrisch und transitiv.

- b) $a \sim_b b \Leftrightarrow a^2 b^2 = k \cdot 7 \ (a, b, k \in \mathbb{Z})$
 - Reflexivität: $a^2 a^2 = 0.7 \checkmark$
 - Symmetrie: Sei dazu $a \sim b$. Dann $\exists k \in \mathbb{Z}$:

$$a^2 - b^2 = k \cdot 7 \Leftrightarrow b^2 - a^2 = -k \cdot 7$$

Da $-k \in \mathbb{Z}$ folgt $b \sim a$.

• Transitivität: Sei $a \sim b$ und $b \sim c$. Dann $\exists k, l \in \mathbb{Z}$:

$$a^{2} - b^{2} = k \cdot 7 \wedge b^{2} - c^{2} = l \cdot 7 \checkmark$$

$$\Rightarrow a^{2} - c^{2} = k \cdot 7 + b^{2} + l \cdot 7 - b^{2} = \underbrace{(k+l)}_{\in \mathbb{Z}} \cdot 7 \checkmark$$

Es handelt sich um eine Äquivalenzrelation, denn die Relation \sim_b ist reflexiv, symmetrisch und transitiv.

- 2.2 Aufgabe 2
- 2.3 Aufgabe 3
- 2.4 Aufgabe 4

- 3.1 Aufgabe 1
- 3.2 Aufgabe 2
- 3.3 Aufgabe 3
- 3.4 Aufgabe 4

4.1 Aufgabe 1

Bemerkung: Archimedisches Axiom, Bernoulli Ungleichung

zu Zeigen:

$$\forall \varepsilon > 0$$
 : $\exists N \in \mathbb{N}$: $q^n < \varepsilon \quad \forall n > N$

Archimedisches Axiom:

$$\forall \varepsilon > 0$$
 : $\exists N \in \mathbb{N}$: $0 < \frac{1}{\varepsilon} < 1 + nx$, $x > 0$

Bernoulli Ungleichung:

$$(1+x)^n \ge 1 + nx$$
 $\forall x \ge -1$, $\forall n \ge 0$

$$\frac{1}{\varepsilon} \stackrel{Ar.}{<} 1 + nx \stackrel{Be.}{\leq} (1+x)^n$$

Damit

$$\frac{1}{\varepsilon} < (1+x)^n \Leftrightarrow \frac{1}{(1+x)^n} < \varepsilon$$

Setze $x := \frac{1}{q} - 1$, dann folgt

$$rac{1}{(rac{1}{q})^n} < arepsilon \Leftrightarrow q^n < arepsilon \quad \Box$$

4.2 Aufgabe 2

Bemerkung: Cantor Diagonalargument

zu a)

Sei M_j $\forall j \in \mathbb{N}$ eine abzählbare Menge. Dann ist zu zeigen: $\bigcup_{j \in \mathbb{N}} M_j$ ist abzählbar. Da M_j abzählbar, existiert für

jedes $j \in \mathbb{N}$ bijektive Abbildung $\rho_j : \mathbb{N} \to M_j$.

Nummeriere Elemente von M_i wie folgt:

$$m_1^j$$
 : $\rho_j(1)...m_n^j := \rho_j(n)$

4.3 Aufgabe 3

4.4 Aufgabe 4

5.1 Aufgabe 1

 $(a_n)_{n\in\mathbb{N}},\,(b_n)_{n\in\mathbb{N}}$ konvergent. Zu zeigen

$$\lim_{n\to\infty}a_n\cdot b_n=a\cdot b$$

 $(a_n)_{n\in\mathbb{N}}$ konvergent, also insbesondere beschränkt. Das heißt $\exists K>0$ mit $|a_n|\leq K\ \forall n\in\mathbb{N}$. Durch eventuelle Vergrößerung von K gilt auch $|b_n|\leq K\ \forall n\in\mathbb{N}$.

- 5.2 Aufgabe 2
- 5.3 Aufgabe 3
- 5.4 Aufgabe 4