Experiments and Events:

Def: An experiment is a process whose outcome is not known in advance with certainy.

Sample Space: Collection of all possible outcomes of an experiment. S or Ω . Each outcome is an element of the sample space $s \in S$.

Operations:

Union: $x \in S : A \cup B = \{x \in A \text{ or } x \in B\}$

$$A \cup B = B \cup A$$

$$A \cup A = A$$

$$A \cup \emptyset = A$$

$$A \cup S = S$$

$$A \subset B \Rightarrow A \cup B = B$$

$$A_1, A_2, \dots, A_n \Rightarrow A_1 \cup A_2 \cup \dots \cup A_n = \bigcup_{i=1}^{i=n} A_i$$

$$\bigcup_{i=1}^{\infty} A_i \to \bigcup_{i \in I} A_i$$

$$(A \cup B) \cup C = A \cup (B \cup C) = A \cup B \cup C$$

Intersections: $A \cap B = \{x \in A \text{ and } x \in B\} = AB$

$$A \cap B = B \cap A$$

$$A \cap A = A$$

$$A \cap \emptyset = \emptyset$$

$$A \cap S = A$$

$$A \subset B \Rightarrow A \cap B$$

$$\bigcap_{i \in I} A_i = \bigcap_{i=1}^{\infty} A_i$$

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \dots \cap A_n$$

$$(A \cap B) \cap C = A \cap (B \cap C) = A \cap B \cap C$$

Complements: $A^c = \{x \in S : x \notin A\}$

$$(A^c)^c = A$$

$$\emptyset^c = S$$

$$S^c = \emptyset$$

$$A \cup A^c = S$$

$$A \cap A^c = \emptyset$$

Dijoint Events:

A and B are disjoint or mutually exclusive if A and B have no outcomes in common. This happens only if $A \cap B = \emptyset$.

Def: A collection A_1, \ldots, A_n is a collection of disjoint evens if and only if $A_i \cap A_j = \emptyset, \forall i, j, i \neq j$

$$\left(\bigcup_{i\in I} A_i\right)^c = \bigcap_{i\in I} A_i^c$$

$$(A \cup B)^c = A^c \cap B^c$$

$$x \in (A \cap B)^c$$

 $\Rightarrow x \notin A \text{ and } x \notin B$

 $\Rightarrow x \in A^c \text{ and } x \in B^c$

 $\Rightarrow x \in A^c \cap B^c$

Probabilities:

Functions over S that measure the likelihood of events

$$\forall A : Pr(A) \ge 0$$

$$Pr(S) = 1$$

For every infinite sequence of disjoint events $A_1, A_2, \dots (A_i \in S)$:

$$Pr\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} Pr(A_i)$$

$$Pr(A_1 \cup A_2 \cup \cdots \cup A_n \cup \ldots)$$

$$= Pr(A_1) + Pr(A_2) + \dots + Pr(A_n) + \dots$$

$$Pr(\emptyset) = 0$$

$$Pr(\bigcup_{i=1}^{n} A_i) = Pr(\bigcup_{i=1}^{n} A_i + \bigcup_{i=n+1}^{\infty} \emptyset) = \sum_{i=1}^{n} Pr(A_i)$$

$$Pr(A^c) = 1 - Pr(A)$$

$$A \subset B \Rightarrow Pr(A) < Pr(B)$$

$$\forall A: 0 < Pr(A) < 1$$

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

Finite Sample Spaces:

$$S := \{s_1, s_2, \dots, s_n\}$$

To obtain a probability distribution over S we need to specify $Pr(s_i) = P_i, \forall i = 1, 2, ..., n$, such that $\sum_{i=1}^{n} P_i = 1$

Def: A sample space S with n outcomes s_1, \ldots, s_n is a *simple sample space* if the probability assigned to each outcome is $\frac{1}{n}$. If A contains m outcomes then $Pr(A) = \frac{m}{n}$.

Counting Methods:

Multiplication Rule: Suppose an experiment has k parts $(k \geq 2)$ such that the i^{th} part of the experiement has n_i possible outcomes, i = 1, ..., k, and that all possible outcomes can occur regardless of which outcomes have occurred in other parts. The sample space S will contain vectors of the form (u_1, u_2, \ldots, u_k) . u_i is one of the n_i possible outcomes of part i. The total number of vectors is $n_1 \cdot n_2 \cdot \ldots \cdot n_k$.

Permutations: Given an array of n elements the first position can be filled with n different elements, the second with n-1, and so on. $n \cdot (n-1) \cdot (n-2)$. $\dots \cdot 1 = n!$

$$P_{n,k} = \frac{n!}{(n-k)!}$$

$$P_{n,n} = n!$$

Combinations: In general we can "combine" n elements taking k at a time in $C_{n,k} = \frac{P_{n,k}}{k!} = \frac{n!}{(n-k)!k!} =$

Multinomial Coefficients: Consider splitting nelements into $k(k \geq 2)$ groups in a way such that group j gets n_j elements and $\sum_{i=1}^k n_j = n$. The n_1 elements in the first group can be selected in $\binom{n}{n_1}$, the second in $\binom{n-n_1}{n_2}$, the third in $\binom{n-n_1-n_2}{n_3}$ and so on until we complete the k groups. Then: $\binom{n}{n_1} \cdot \binom{n-n_1}{n_2} \cdot \binom{n-n_1-n_2}{n_3} \cdot \ldots \cdot \binom{n_k}{n_k} = \binom{n}{n_1,n_2,\ldots,n_k}$

Probability of union: If A_1, A_2, \ldots, A_n are disjoint events then

$$Pr(A_1 \cup A_2 \cup \ldots \cup A_n)$$

$$= Pr(\bigcup_{i=1}^{n} A_i)$$

$$= \Pr(\bigcup_{i=1}^{n} A_i) + \Pr(A_2) + \ldots + \Pr(A_n)$$

$$= \sum_{i=1}^{n} Pr(A_i)$$

If the events are not disjoint:

$$A_1, A_2 : Pr(A_1 \cup A_2) = Pr(A_1) + Pr(A_2) - Pr(A_1 \cap A_2)$$

$$A_1, A_2, A_3: Pr(A_1) + Pr(A_2) + Pr(A_3) - Pr(A_1 \cap A_2) - Pr(A_1 \cap A_3) - Pr(A_2 \cap A_3) + Pr(A_1 \cap A_2 \cap A_3)$$

Conditional Probability:

If A, B are events such that Pr(A) > 0 and Pr(B) > 0 then $Pr(B|A) = \frac{Pr(A \cap B)}{Pr(A)}$ and $Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

Furthermore: $Pr(A \cap B) = Pr(B|A) \cdot Pr(A)$ and $Pr(A \cap B) = Pr(A|B) \cdot Pr(B)$. In general: $Pr(A_1 \cap B) = Pr(A|B) \cdot Pr(B)$ $A_2 \cap \ldots \cap A_n = Pr(A_1) \cdot Pr(A_2|A_1) \cdot \ldots \cdot Pr(A_n|A_1 \cap A_1) \cdot \dots \cdot Pr(A_n|A_1 \cap A_1) \cdot$ $A_2 \cap \ldots \cap A_{n-1}$

Independence: A, B are independent events if Pr(A|B) = Pr(A) and Pr(B|A) = Pr(B). Then, if A, B are independent: $Pr(A \cap B) = Pr(A|B)$. $Pr(B) = Pr(A) \cdot Pr(B)$ and $Pr(A \cap B) = Pr(B|A) \cdot$ $Pr(A) = Pr(B) \cdot Pr(A)$. In general if A_1, A_2, \dots, A_n are independent, $Pr(A_1 \cap A_2 \cap ... \cap A_n) = Pr(A_1)$. $Pr(A_2) \cdot \ldots \cdot Pr(A_n)$. Note that if $A \cap B = \emptyset$ then the two events are not independent. note that if A, B are independent then A, B^c are also independent.

Conditionally Independent: A_1, \ldots, A_k are conditionally independent given B if, for every subset $A_{i_1}, \dots, A_{i_m} : Pr(A_{i_1} \cap \dots \cap A_{i_m} | B) = Pr(A_{i_1} | B) \cdot$ $\dots Pr(A_{i_m}|B).$

Partitions: Let B_1, \ldots, B_k be such that $B_i \cap B_j =$ $\emptyset \forall i \neq j \text{ and } \bigcup_{i=1}^k B_i = S.$ Then these events form a partition of S.

$$A = A \cap S = A \cap \left(\bigcup_{i=1}^{k} B_i\right) = (A \cap B_1) \cup (A \cap B_2) \cup \dots \cup (A \cap B_k). \text{ Then: } Pr(A) = Pr(A \cap S) = Pr(A \cap B_k) \cup \left(\bigcup_{i=1}^{k} B_i\right) = Pr(A \cap B_1) + Pr(A \cap B_2) + \dots + Pr(A \cap B_k) = Pr(A|B_1) \cdot Pr(B_1) + Pr(A|B_2) \cdot Pr(B_2) + \dots + Pr(A|B_k) \cdot Pr(B_k) = \sum_{i=1}^{k} Pr(A|B_i) \cdot Pr(B_i).$$
So, if B_1, \dots, B_k are a partition of S : $Pr(A) = \sum_{i=1}^{k} Pr(A|B_i) \cdot Pr(B_i)$

Bayes' Theorem: $B_1, \ldots, B_k :=$ a partition of S such that $Pr(B_i) > 0, i = 1, \dots, k$. Assume you have A such that Pr(A) > 0. Then: $Pr(B_i|A) = \frac{Pr(A|B_i) \cdot Pr(B_i)}{Pr(A)} = \frac{Pr(A|B_i) \cdot Pr(B_i)}{\sum\limits_{i=1}^{k} Pr(A|B_j) \cdot Pr(B_j)}$