1. For any $\beta \neq 0$, if β is an eigenvalue of \mathcal{L}_{ω} , then

$$\frac{\beta+\omega-1}{\beta^{1/2}\omega}$$
, $-\frac{\beta+\omega-1}{\beta^{1/2}\omega}$

are eigenvalues of J.

2. For every $\alpha \neq 0$, if α and $-\alpha$ are eigenvalues of J, then $\mu_{+}(\alpha,\omega)$ and $\mu_{-}(\alpha,\omega)$ are eigenvalues of \mathcal{L}_{ω} , where $\mu_{+}(\alpha,\omega)$ and $\mu_{-}(\alpha,\omega)$ are the squares of the roots of the equation

$$\lambda^2 - \alpha\omega\lambda + \omega - 1 = 0.$$

It follows that

$$\rho(\mathcal{L}_{\omega}) = \max_{\alpha \mid p_{J}(\alpha) = 0} \{ \max(|\mu_{+}(\alpha, \omega)|, |\mu_{-}(\alpha, \omega)|) \},$$

and since we are assuming that J has real roots, we are led to study the function

$$M(\alpha, \omega) = \max\{|\mu_{+}(\alpha, \omega)|, |\mu_{-}(\alpha, \omega)|\},\$$

where $\alpha \in \mathbb{R}$ and $\omega \in (0,2)$. Actually, because $M(-\alpha,\omega) = M(\alpha,\omega)$, it is only necessary to consider the case where $\alpha \geq 0$.

Note that for $\alpha \neq 0$, the roots of the equation

$$\lambda^2 - \alpha \omega \lambda + \omega - 1 = 0.$$

are

$$\frac{\alpha\omega \pm \sqrt{\alpha^2\omega^2 - 4\omega + 4}}{2}.$$

In turn, this leads to consider the roots of the equation

$$\omega^2 \alpha^2 - 4\omega + 4 = 0,$$

which are

$$\frac{2(1\pm\sqrt{1-\alpha^2})}{\alpha^2},$$

for $\alpha \neq 0$. Since we have

$$\frac{2(1+\sqrt{1-\alpha^2})}{\alpha^2} = \frac{2(1+\sqrt{1-\alpha^2})(1-\sqrt{1-\alpha^2})}{\alpha^2(1-\sqrt{1-\alpha^2})} = \frac{2}{1-\sqrt{1-\alpha^2}}$$

and

$$\frac{2(1-\sqrt{1-\alpha^2})}{\alpha^2} = \frac{2(1+\sqrt{1-\alpha^2})(1-\sqrt{1-\alpha^2})}{\alpha^2(1+\sqrt{1-\alpha^2})} = \frac{2}{1+\sqrt{1-\alpha^2}},$$

these roots are

$$\omega_0(\alpha) = \frac{2}{1 + \sqrt{1 - \alpha^2}}, \quad \omega_1(\alpha) = \frac{2}{1 - \sqrt{1 - \alpha^2}}.$$