Math. pour Informatique CC2

AU 2019-2020 MIAGE 1 Durée : 1h30

Exercice 1:

1. Donner la table de vérité de :

a.
$$(\bar{P} \Leftrightarrow R)$$
 et Q

b.
$$(Q \Rightarrow R) \Leftrightarrow \bar{P}$$

2. Montrer, en utilisant des tables de vérité, que :

a.
$$(\overline{P \ et \ Q}) \sim (\overline{P} \ ou \ \overline{Q})$$

b.
$$(P et Q) ou R \sim (P ou R)et(Q ou R)$$

Exercice 2:

- 1. Soit $x \in \mathbb{Q}$. Montrer par absurde que : $x + \sqrt{2} \notin \mathbb{Q}$.
- 2. Montrer par récurrence que : $\forall n \geq 1$; $\sum_{k=0}^{n-1} k^3 = \left(\frac{n^2(n+1)^2}{4}\right)$.
- 3. Montrer par récurrence que : $\forall n \in \mathbb{N}^*, 4^{2n+2} 15n 16$ est divisible par 225.
- 4. Montrer par contraposée que : $a^2 pair \Rightarrow a pair$.
- 5. Montrer par disjonction de cas que : $\forall n \in \mathbb{N}$:

$$\frac{n(n+1)}{2} \in \mathbb{N}$$

Exercice 3:

1. On définit sur \mathbb{C} la relation T par :

a.
$$(a+ib) T (a'+ib') \Leftrightarrow (a < a')ou(a = a'et b \le b')$$

Montrer que T est une relation d'ordre sur \mathbb{C} .

- 2. On définit une relation R sur \mathbb{Z} par :
 - a. $\forall n, m \in \mathbb{Z}$; $n R m \Leftrightarrow n m \text{ divisible par } 3$.
 - b. Montrer que R est une relation d'équivalence sur \mathbb{Z} .
 - c. Donner la classe d'équivalence C_n d'un entier relatif n.