Estadística

Probabilidades y Estadística (C) - 2019 - Parte 2

Estadística

$POBLACION \leftrightarrow F$	MUESTRA $X_1, \ldots X_n$ i.i.d. $X_i \sim F$
Parámetro: Valor asociado de F	Estimador:estadístico para estimar
$\theta = \theta(F)$	$\widehat{\theta}_n = \widehat{\theta}_n(X_1, \dots, X_n)$
heta: valor poblacional	$\widehat{ heta}_n$ nueva variable aleatoria

Máxima verosimilitud

Caso discreto

- Modelo: $\mathcal{M} = \{p(\cdot, \theta), \theta \in \Theta\}.$
- $\mathbf{x} = x_1, \dots, x_n$ realización de X_1, \dots, X_n i.i.d.
- Función de verosimilitud asociada a $\mathbf{x} = x_1, \dots, x_n$:

$$L(\cdot \; ; \; \mathbf{x} \;) : \Theta \to \mathbb{R}$$

$$L(\theta; \mathbf{x}) = \mathbb{P}(X_1 = x_1, \dots, X_n = x_n), X_i \sim p(\cdot, \theta).$$

$$L(\theta; \mathbf{x}) = \prod_{i=1}^{n} p(x_i; \theta)$$

$$L(\theta \; ; \; \mathbf{x} \;) \; = \; \prod_{i=1} p(x_i, \theta) \; ,$$

Nos interesa ver cuán **verosímil** es que un determinado parámetro haya generado los datos.

Máxima verosimilitud

Caso discreto

- Modelo: $\mathcal{M} = \{p(\cdot, \theta), \theta \in \Theta\}.$
- $\mathbf{x} = x_1, \dots, x_n$ realización de X_1, \dots, X_n i.i.d.
- Función de verosimilitud asociada a $\mathbf{x} = x_1, \dots, x_n$:

$$L(\cdot; \mathbf{x}) : \Theta \to \mathbb{R}$$

$$L(\theta; \mathbf{x}) = \mathbb{P}(X_1 = x_1, \dots, X_n = x_n), X_i \sim p(\cdot, \theta).$$

$$L(\theta \; ; \; \mathbf{x} \;) \; = \; \prod_{i=1} p(x_i, \theta) \; ,$$

Nos interesa ver cuán **verosímil** es que un determinado parámetro haya generado los datos.

• Propuesta de máxima verosimilitud:

$$h_n(\mathbf{x}) = \underset{\theta \in \Theta}{\operatorname{argmax}} L(\theta \; ; \; \mathbf{x} \;) \; .$$

o sea

$$L(h_n(\mathbf{x}), \mathbf{x}) \ge L(\theta, \mathbf{x})$$

Estimador de Máxima verosimilitud

Caso discreto

Bajo el modelo $\mathcal{M}=\{p(\cdot,\theta)\ , \theta\in\Theta\}$, el estimador de máxima verosimilitud para θ es la variable aleatoria

$$\widehat{\theta}_n = h_n(X_1, \dots, X_n)$$

Máxima Verosimilitud

Caso continuo

- Modelo: $\mathcal{M} = \{f(\cdot, \theta), \theta \in \Theta\}$, con $f(\cdot, \theta)$ función de densidad.
- $\mathbf{x} = x_1, \cdots, x_n$ realización correspondiente a X_1, \dots, X_n
- Función de verosimilitud: $L(\cdot ; \mathbf{x}) : \Theta \to \mathbb{R}$

$$L(\theta; \mathbf{x}) = f_{X_1, \dots, X_n}(x_1, \dots, x_n), X_i \sim f(\cdot, \theta).$$

$$L(\theta; \mathbf{x}) = \prod_{i=1}^n f(x_i, \theta),$$

• Propuesta de Máxima Verosimilitud:

$$h_n(\mathbf{x}) = \underset{n=0}{\operatorname{argmax}} L(\theta ; \mathbf{x}).$$

o sea

$$L(h_n(\mathbf{x}), \mathbf{x}) > L(\theta, \mathbf{x})$$

• Definimos el EMV siendo $\widehat{\theta}_n = h_n(X_1, \cdots, X_n)$.

Ejemplo $\mathcal{E}(\lambda)$: $f(x,\lambda) = \lambda e^{-x\lambda} \mathcal{I}_{(0,\infty)}(x)$. X_1, \dots, X_n v.a. i.i.d. $X_i \sim \mathcal{E}(\lambda), \lambda > 0$

$$L(\lambda; \mathbf{x}) = \prod_{i=1}^{n} f(x_i, \lambda) = \prod_{i=1}^{n} \lambda e^{-x_i \lambda} \mathcal{I}_{(0,\infty)}(x_i)$$

• si $x_i > 0 \ \forall i$

$$L(\lambda; \mathbf{x}) = \lambda^n e^{-\lambda \sum_{i=1}^n x_i}$$

• Si consideramos el $\log L$, resulta

$$\ell(\lambda; \mathbf{x}) = n \log(\lambda) - \lambda \sum_{i=1}^{n} x_i$$

Derivando e igualando a 0 queda

$$rac{n}{\lambda} - \sum_{i=1}^{n} x_i = 0 \Rightarrow$$
 punto crítico es $1/ar{x}_n$ ver que maximiza!

$$\bullet \Rightarrow \widehat{\lambda} = 1/\bar{X}_n$$

$$X_1, \cdots, X_n$$
 v.a. i.i.d. $X_i \sim \mathcal{N}(\mu, 9), \ f(x, \mu, 9) = \frac{1}{\sqrt{2\pi}} \ \frac{1}{3} \ e^{-\frac{1}{2} \frac{(x-\mu)^2}{9}}$

$$L(\mu, \cdot)$$

$$L(\mu, 9; \mathbf{x}) = \prod_{i=1}^{n} f(x_i, \mu, 9)$$

$$X_1, \dots, X_n$$
 v.a. i.i.d. $X_i \sim \mathcal{N}(\mu, 9), \ f(x, \mu, 9) = \frac{1}{\sqrt{2\pi}} \frac{1}{3} e^{-\frac{1}{2} \frac{(x - \mu)^2}{9}}$
$$L(\mu, 9; \mathbf{x}) = \prod_{i=1}^{n} f(x_i, \mu, 9) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \frac{1}{3} e^{-\frac{1}{2} \frac{(x_i - \mu)^2}{9}}$$

$$L(\mu, 9; \mathbf{x}) = \prod_{i=1}^{n} f(x_i, \mu, 9) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \frac{1}{3} e^{-\frac{1}{2} \frac{(x_i - \mu)^2}{9}}$$

$$X_1, \cdots, X_n$$
 v.a. i.i.d. $X_i \sim \mathcal{N}(\mu, 9), \ f(x, \mu, 9) = \frac{1}{\sqrt{2\pi}} \ \frac{1}{3} \ e^{-\frac{1}{2} \frac{(x-\mu)^2}{9}}$

$$L(\mu, 9; \mathbf{x}) = \prod_{i=1}^{n} f(x_i, \mu, 9) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \frac{1}{3} e^{-\frac{1}{2} \frac{(x_i - \mu)^2}{9}}$$

$$L(\mu, 9; \mathbf{x}) = \left(\frac{1}{\sqrt{2\pi}}\right)^n \left(\frac{1}{3}\right)^n e^{-\frac{1}{2} \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{9}}$$

 X_1, \dots, X_n v.a. i.i.d. $X_i \sim \mathcal{N}(\mu, 9), f(x, \mu, 9) = \frac{1}{\sqrt{2\pi}} \frac{1}{3} e^{-\frac{1}{2} \frac{(x-\mu)^2}{9}}$

$$L(\mu, 9; \mathbf{x}) = \left(\frac{1}{\sqrt{2\pi}}\right)^n \left(\frac{1}{3}\right)^n e^{-\frac{1}{2}\frac{\sum_{i=1}^n (x_i - \mu)^2}{9}}$$

Tomemos logaritmo

$$\ell(\mu, 9; \mathbf{x}) = cte - \frac{1}{2} \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{9}$$

Maximizar a $\ell(\mu, 9; \mathbf{x})$ como función de μ equivale a minimizar

$$h(\mu) = \sum_{i=1}^{n} (x_i - \mu)^2$$

Un par de clases atrás, vimos que $h(\mu)$ se minimiza en \bar{x}_n

EMV de
$$\mu:\widehat{\mu}=\bar{X}_n$$

$$X_1,\cdots,X_n$$
 v.a. i.i.d. $X_i\sim\mathcal{N}(\mu,\sigma^2)$, $f\left(x,\mu,\sigma^2\right)=\frac{1}{\sqrt{2\pi\sigma^2}}\,e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$

$$L(\mu, \sigma^2; \mathbf{x}) = \prod_{i=1}^{n} f(x_i, \mu, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - x_i)^2}{2\sigma^2}}$$

$$L(\mu, \sigma^2; \mathbf{x}) = \prod_{i=1}^n f(x_i, \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

$$X_1, \cdots, X_n$$
 v.a. i.i.d. $X_i \sim \mathcal{N}(\mu, \sigma^2)$, $f(x, \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$

$$\frac{n}{\sqrt{2\pi\sigma^2}}$$

$$L(\mu, \sigma^{2}; \mathbf{x}) = \prod_{i=1}^{n} f(x_{i}, \mu, \sigma^{2}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}}$$

$$L(\mu, \sigma^2; \mathbf{x}) = \prod_{i=1}^{n} f(x_i, \mu, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}}$$

$$L(\mu, \sigma^2; \mathbf{x}) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{-\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\sigma^2}}$$

$$X_1, \cdots, X_n$$
 v.a. i.i.d. $X_i \sim \mathcal{N}(\mu, \sigma^2)$, $f(x, \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$

$$L(\mu, \sigma^2; \mathbf{x}) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{-\sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}}$$

Tomando logaritmo y resolviendo las ecuaciones

$$\frac{\partial \ell(\mu,\sigma^2;\mathbf{x})}{\partial \mu} = 0 \quad \text{ y } \quad \frac{\partial \ell(\mu,\sigma^2;\mathbf{x})}{\partial \sigma^2} = 0$$

se obtiene que los EMV de μ y σ^2 son

$$\widehat{\mu} = \bar{X}_n$$
 $\widehat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - \bar{X}_n)^2}{n}$

Notemos que el estimador ...

$$\widehat{\theta}_n \equiv \widehat{\theta}_n(X_1, \dots, X_n)$$

- ullet $\widehat{\theta}_n$ es una variable aleatoria.
- $\widehat{\theta}_n$ tiene distribución (siempre).

Sampling distribution of
$$\widehat{\theta}_n$$
: $f_{\widehat{\theta}_n}$

- ullet $\widehat{ heta}_n$ tiene (en general) esperanza: $\mathbb{E}(\widehat{ heta}_n) = \int u f_{\widehat{ heta}_n}(u) du$
- ullet $\widehat{ heta}_n$ tiene (en general) varianza: $\mathbb{V}(\widehat{ heta}_n)$

Sesgo y Varianza: ejemplo

- $X_i \sim \mathcal{U}(0,\theta)$
- $\bullet \ \widehat{\theta}_n = 2\overline{X}_n.$
- $\bullet \ \widetilde{\theta}_n = \max\{X_1, \dots, X_n\}.$
- Calcule la esperanza y varianza de cada estimador.

Sesgo - Definiciones (pensando en modelos paramétricos...)

Sesgo (Bias) del estimador $\widehat{\theta}_n$:

$$\operatorname{sesgo}(\widehat{\theta}_n) = \mathbb{E}(\widehat{\theta}_n) - \theta \quad \left(\operatorname{sesgo}(\widehat{\theta}_n, \theta) = \mathbb{E}_{\theta}(\widehat{\theta}_n) - \theta\right)$$

Sesgo - Definiciones (pensando en modelos paramétricos...)

Sesgo (Bias) del estimador $\widehat{\theta}_n$:

$$\operatorname{sesgo}(\widehat{\theta}_n) = \mathbb{E}(\widehat{\theta}_n) - \theta \quad \left(\operatorname{sesgo}(\widehat{\theta}_n, \theta) = \mathbb{E}_{\theta}(\widehat{\theta}_n) - \theta\right)$$

• $\widehat{\theta}_n$ se dice INSESGADO si sesgo $(\widehat{\theta}_n) = 0$ (para todo θ) sesgo $(\widehat{\theta}_n, \theta) = 0$, $\forall \theta \equiv \mathbb{E}_{\theta}(\widehat{\theta}_n) = \theta$, $\forall \theta$.

Dicho en palabras, el estimador $\widehat{\theta}_n$ se dice insesgado si su esperanza coincide con el valor de interés que queremos estimar:

• $(\widehat{\theta}_n)_{n\geq 1}$ se dice ASINTOTICAMENTE INSESGADO si $\lim_{n\to\infty} \operatorname{sesgo}(\widehat{\theta}_n) = 0 \quad \text{(para todo θ)}$

$$\lim_{n \to \infty} \operatorname{sesgo}(\widehat{\theta}_n, \theta) = 0 , \forall \theta \quad \equiv \quad \lim_{n \to \infty} \mathbb{E}_{\theta}(\widehat{\theta}_n) = 0 , \forall \theta$$

Consistencia (de la suceción de ESTIMADORES)

A medida que aumenta el tamaño n de la muestra, el estimador se acerca a lo que queremos conocer.

$$\widehat{\theta}_n \longrightarrow^{\mathcal{P}} \theta$$
, cuando $n \to \infty$

Consistencia (de la suceción de ESTIMADORES)

A medida que aumenta el tamaño n de la muestra, el estimador se acerca a lo que queremos conocer.

$$\widehat{\theta}_n \longrightarrow^{\mathcal{P}} \theta$$
 , cuando $n \to \infty$

Definición: $(\widehat{\theta}_n)_{n\geq 1}$ se dice consistente sii

$$\widehat{\theta}_n \longrightarrow^{\mathcal{P}} \theta$$
 , cuando $n \to \infty$, para todo θ .

 $\widehat{\theta}_n(X_1,\ldots,X_n) \longrightarrow^{\mathcal{P}} \theta(F)$, cuando $X_i \sim F$, $\forall F$ en mi modelo.

Error cuadrático medio (ECM)

$$\mathsf{ECM} : \mathbb{E}\left\{(\widehat{\theta}_n - \theta)^2\right\} \quad \mathsf{ECM}(\widehat{\theta}_n, \theta) : \mathbb{E}\left\{(\widehat{\theta}_n - \theta)^2\right\}.$$

Lema: Si el ECM de un estimador converge a cero entonces vale la consistencia:

$$\mathbb{E}\left\{(\widehat{\theta}_n - \theta)^2\right\} \longrightarrow 0 \quad \text{implica que} \quad \widehat{\theta}_n \longrightarrow^{\mathcal{P}} \theta \; .$$

Propidades

Lema: El error cuadrático medio de un estimador se descompone de la siguiente manera:

$$\mathsf{ECM}(\widehat{\theta}_n, \theta) = \mathbb{V}(\widehat{\theta}_n) + \left\{ \mathbb{E}(\widehat{\theta}_n) - \theta \right\}^2$$

En particular... Si

$$\mathbb{V}(\widehat{\theta}_n) \to 0 \quad \mathsf{y} \quad \mathbb{E}(\widehat{\theta}_n) \to \theta$$

tenemos que ECM converge a cero, y por lo tanto el estimador es consistente:

$$\widehat{\theta}_n \longrightarrow^{\mathcal{P}} \theta$$

Precisión y exactitud

Precisión (varianza): se refiere a la dispersión del conjunto de valores obtenidos de mediciones repetidas de una magnitud.

Exactitud (sesgo): se refiere a cuán cerca del valor real se encuentra el valor medido. En términos estadísticos, la exactitud está relacionada con el sesgo de una estimación.

Sesgo - Varianza

Propiedades

Consistencia

$$\widehat{ heta}_n(X_1,\dots,X_n) o heta(F)$$
 en probabilidad, cuando $X_i\sim F$ abreviado: $\widehat{ heta} o heta$

- Error cuadratico medio: $ECM = \mathbb{E}\{(\widehat{\theta}_n \theta)^2\}$
- Lema: Si $\mathbb{E}\{(\widehat{\theta}_n \theta)^2\} \to 0$, entonces $\widehat{\theta}_n \to \mathcal{P}$
- Sesgo: $\mathbb{E}(\widehat{\theta}_n) \theta$.
- Estimador insesgado: Sesgo=0: $\mathbb{E}(\widehat{\theta}_n) \theta$
- Lema: $\mathbb{E}\left\{(\widehat{\theta}_n \theta)^2\right\} = \mathbb{V}(\widehat{\theta}_n) + \left\{\mathbb{E}(\widehat{\theta}_n) \theta\right\}^2$
- ullet Si $\mathbb{V}(\widehat{ heta}_n) o 0$ y $\mathbb{E}(\widehat{ heta}_n) o heta$, entonces

$$\mathbb{E}\{(\widehat{\theta}_n - \theta)^2\} \to 0$$