lokalne właściwe równe $\frac{\sqrt{2}}{2}e^{\frac{3\pi}{4}+2n\pi}$;

- h) w punkcie x = -1 funkcja l ma maksimum lokalne właściwe równe -2, a w punkcie x = 1 minimum lokalne właściwe równe 2;
- i) w punkcie x=1 funkcja m ma maksimum lokalne właściwe równe $\frac{\pi}{2}-\ln 2$.

8.5 a)
$$f_{\min} = f(3) = -89$$
, $f_{\max} = f(6) = 100$; b) $g_{\min} = g(-1) = -1$, $g_{\max} = g(5) = 5 - 2\sqrt{5}$; c) $h_{\min} = h\left(\frac{3\pi}{2}\right) = -2$, $h_{\max} = h\left(\frac{\pi}{3}\right) = \frac{3\sqrt{3}}{2}$; d) $p_{\min} = p(3) = 0$, $p_{\max} = p(4) = e^4$.

- 8.6 a) Funkcja f jest ściśle wypukła na (-1,1) oraz ściśle wklęsła na $(-\infty,-1),$ $(1,\infty)$. Nie ma punktów przegięcia;
- b) Funkcja g jest ściśle wypukła na $\left(\frac{\pi}{2}+2k\pi,\frac{3\pi}{2}+2k\pi\right)$, gdzie $k\in \mathbf{Z}$ oraz ściśle wklęsła na $\left(-\frac{\pi}{2}+2k\pi,\frac{\pi}{2}+2k\pi\right)$, gdzie $k\in \mathbf{Z}$. Punkty przegięcia wykresu tej funkcji to: $x=\frac{\pi}{2}+k\pi$, gdzie $k\in \mathbf{Z}$;
- c) Funkcja h jest ściśle wypukła na $\left(k\pi, \frac{\pi}{2} + k\pi\right)$, gdzie $k \in \mathbb{Z}$, oraz ściśle wklęsła na $\left(-\frac{\pi}{2} + k\pi, k\pi\right)$, gdzie $k \in \mathbb{Z}$. Punkty przegięcia wykresu tej funkcji to: $x = k\pi$, gdzie $k \in \mathbb{Z}$;
- d) funkcja p jest ściśle wypukła na $\left(-\infty, \frac{1}{2}\right)$ oraz ściśle wklęsła na $\left(\frac{1}{2}, \infty\right)$. Punkt przegięcia wykresu tej funkcji to $x = \frac{1}{2}$.

Dziewiąty tydzień

Badanie funkcji (6.4).

Przykłady

• Przykład 9.1

Zbadać przebieg zmienności podanych funkcji i następnie sporządzić ich wykresy:

a)
$$f(x) = x^3 - 3x^2 + 4$$
; b) $g(x) = \frac{\ln x}{x}$; c) $h(x) = e^{-x^2}$; d) $p(x) = \frac{x}{1 - x^2}$.

Rozwiązanie

- a) I. Dziedziną funkcji $f(x) = x^3 3x^2 + 4$ jest R.
- II. Funkcja f jest ciągła na R, bo jest wielomianem. Miejscami zerowymi funkcji f są: $x_1 = -1$, $x_2 = 2$. Funkcja f przecina oś Oy w punkcje y = 4.
- III. Obliczamy granice funkcji f na "krańcach" dziedziny, czyli granice

$$\lim_{x \to -\infty} \left(x^3 - 3x^2 + 4 \right) = \lim_{x \to -\infty} \left[x^3 \left(1 - \frac{3}{x} + \frac{4}{x^3} \right) \right] = (-\infty) \cdot 1 = -\infty;$$

$$\lim_{x \to \infty} \left(x^3 - 3x^2 + 4 \right) = \lim_{x \to \infty} \left[x^3 \left(1 - \frac{3}{x} + \frac{4}{x^3} \right) \right] = \infty \cdot 1 = \infty.$$

IV. Szukamy asymptot funkcji f. Ponieważ funkcja f ma w obu nieskończonościach granice niewłaściwe, więc może mieć tam ewentualnie asymptoty ukośne. Z prostych rachunków wynika jednak, że funkcja f nie ma asymptot ukośnych w $-\infty$ ani w ∞ .

V. Zbadamy teraz pierwszą pochodną funkcji f. Mamy $D_{f'} = \mathbf{R}$ oraz $f'(x) = 3x^2 - 6x$. Korzystając z warunku koniecznego szukamy punktów, w których funkcja f może mieć ekstrema. Mamy

$$f'(x) = 0 \iff 3(x^2 - 2x) = 0 \iff x = 0 \text{ lub } x = 2.$$

Przy pomocy pochodnej ustalimy przedziały monotoniczności rozważanej funkcji. Mamy

$$f'(x) > 0 \iff 3x(x-2) > 0 \iff x < 0 \text{ lub } x > 2.$$

Zatem funkcja f jest rosnąca na przedziałach $(-\infty,0)$, $(2,\infty)$. Podobnie,

$$f'(x) < 0 \iff 0 < x < 2.$$

Funkcja f jest zatem malejąca na przedziale (0,2). Z powyższych rozważań wynika, że funkcja f ma w punkcie x=0 maksimum lokalne właściwe równe 4, a w punkcie x=2 minimum lokalne właściwe równe 0.

VI. Przechodzimy obecnie do badania drugiej pochodnej. Mamy $D_{f''} = \mathbf{R}$ oraz f''(x) = 6x - 6. Z warunku koniecznego szukamy punktów, w których funkcja f może mieć punkty przegięcia. Mamy

$$f''(x) = 0 \iff 6(x-1) = 0 \iff x = 1.$$

Przy pomocy drugiej pochodnej ustalimy przedziały wypukłości rozważanej funkcji. Mamy

$$f''(x) > 0 \iff 6(x-1) > 0 \iff x > 1.$$

Funkcja f jest zatem ściśle wypukła na przedziale $(1, \infty)$. Ponadto,

$$f''(x) < 0 \iff x < 1.$$

Funkcja f jest zatem ściśle wklęsła na przedziale $(-\infty, 1)$. Z powyższych rozważań wynika, że punkt (1, 2) jest punktem przegięcia wykresu badanej funkcji.

VII. Wyniki uzyskane w punktach I-VI zestawiamy w tabeli:

x	-∞	-∞< <i>x</i> <0	0	0 <x<1< th=""><th>1</th><th>1<x<2< th=""><th>2</th><th>2<x<∞< th=""><th>∞</th></x<∞<></th></x<2<></th></x<1<>	1	1 <x<2< th=""><th>2</th><th>2<x<∞< th=""><th>∞</th></x<∞<></th></x<2<>	2	2 <x<∞< th=""><th>∞</th></x<∞<>	∞
f''(x)	-∞	_	_	_	0	+	+	+	∞
f'(x)	∞	+	0	-	-3	-	0	+	∞
f(x)	-∞	_	4	/	2	/	0		∞
			max.		p.p.		min.		

VIII. Na podstawie tabeli sporządzamy wykres funkcji.

b) I. Dziedziną funkcji $g(x) = \frac{\ln x}{x}$ jest przedział $(0, \infty)$.

II. Funkcja g jest ciągła $\dot{\mathbf{w}}$ swojej dziedzinie, bo jest ilorazem funkcji ciągłych. Miejscem zerowym funkcji jest x=1.

III. Obliczamy granice funkcji g na "krańcach" jej dziedziny. Mamy

$$\lim_{x\to 0^+}\frac{\ln x}{x}=\frac{-\infty}{0^+}=-\infty \ \text{oraz} \ \lim_{x\to \infty}\frac{\ln x}{x}\left\lceil\frac{\infty}{\infty}\right\rceil \stackrel{H}{=}\lim_{x\to \infty}\frac{1}{x}=0.$$

IV. Na podstawie wartości powyższych granic stwierdzamy, że prosta x=0 jest asymptotą pionową prawostronną funkcji g, a prosta y=0 jest asymptotą poziomą tej funkcji w ∞ .

V. Zbadamy teraz pierwszą pochodną funkcji g. Mamy $D_{g'}=(0,\infty)$ oraz

$$g'(x) = \frac{1 - \ln x}{x^2}.$$

Korzystając z warunku koniecznego szukamy punktów, w których funkcja g może mieć ekstrema. Mamy

$$g'(x) = 0 \iff \frac{1 - \ln x}{x^2} = 0 \iff x = e.$$

Przy pomocy pochodnej ustalimy teraz przedziały monotoniczności rozważanej funkcji. Mamy

$$g'(x) > 0 \Longleftrightarrow \frac{1 - \ln x}{x^2} > 0 \Longleftrightarrow 1 - \ln x > 0 \Longleftrightarrow 0 < x < \epsilon.$$

Funkcja g jest zatem rosnąca na przedziale (0, e). Podobnie

$$g'(x) < 0 \iff x > e$$
.

Funkcja g jest zatem malejąca na przedziale (e, ∞) . Z powyższych rozważań wynika, że funkcja g ma w punkcie x = e maksimum lokalne właściwe równe e^{-1} .

VI. Przechodzimy teraz do badania drugiej pochodnej. Mamy $D_{a''} = (0, \infty)$ oraz

$$g''(x) = \frac{2\ln x - 3}{x^3}.$$

 ${\bf Z}$ warunku koniecznego szukamy punktów, w których funkcja gmoże mieć punkty przegięcia. Mamy

$$g''(x) = 0 \iff \frac{2\ln x - 3}{x^3} = 0 \iff 2\ln x - 3 = 0 \iff x = e^{\frac{3}{2}}.$$

Przy pomocy drugiej pochodnej ustalimy przedziały wypukłości rozważanej funkcji. Mamy

$$g''(x) > 0 \iff \frac{2\ln x - 3}{x^3} > 0 \iff 2\ln x - 3 > 0 \iff x > e^{\frac{3}{2}}.$$

Funkcja g jest zatem ściśle wypukła na przedziałe $\left(e^{\frac{3}{2}},\infty\right)$. Ponadto

$$g''(x) < 0 \Longleftrightarrow 0 < x < e^{\frac{3}{2}}.$$

Badana funkcja jest zatem ściśle wklęsła na przedziale $\left(0,e^{\frac{3}{2}}\right)$. Z powyższych rozważań wynika, że punkt $\left(e^{\frac{3}{2}},\frac{3}{2}e^{-\frac{3}{2}}\right)$ jest punktem przegięcia wykresu funkcji g.

VII. Wyniki uzyskane w punktach I-VI zestawiamy w tabeli:

x	0	0 <x<e< th=""><th>e</th><th>$e < x < e^{\frac{3}{2}}$</th><th>$e^{\frac{3}{2}}$</th><th>$e^{\frac{3}{2}} < x < \infty$</th><th>∞</th></x<e<>	e	$e < x < e^{\frac{3}{2}}$	$e^{\frac{3}{2}}$	$e^{\frac{3}{2}} < x < \infty$	∞
g''(x)	-∞	_	_		0	+	0
g'(x)	∞	+	0	_	$-\frac{1}{2}e^{-3}$	_	0
g(x)	-∞	-	e^{-1}		$\frac{3}{2}e^{-\frac{3}{2}}$	_	0
			max.		p.p.		

VIII. Na podstawie tabeli sporządzamy wykres funkcji g.

c) I. Dziedziną funkcji $h(x) = e^{-x^2}$ jest R.

II. Funkcja h jest parzysta i ciągła na R. Funkcja h nie ma miejsc zerowych i nie jest okresowa.

III. Obliczamy granice funkcji h na "krańcach" jej dziedziny. Mamy $\lim_{x\to\infty}e^{-x^2}=e^{-\infty}=$

0. Z parzystości funkcji h wynika, że także $\lim_{x \to -\infty} e^{-x^2} = 0$.

IV. Z wartości powyższych granic wynika, że prosta y=0 jest asymptotą poziomą tej funkcji w obu nieskończonościach.

V. Zbadamy teraz pierwszą pochodną funkcji h. Mamy $D_{h'}=R$ oraz $h'(x)=-2xe^{-x^2}$. Korzystając z warunku koniecznego szukamy punktów, w których funkcja h może mieć ekstrema. Mamy

$$h'(x) = 0 \iff -2xe^{-x^2} = 0 \iff x = 0.$$

Przy pomocy pochodnej ustalimy teraz przedziały monotoniczności funkcji h. Mamy

$$h'(x) > 0 \iff -2xe^{-x^2} > 0 \iff x < 0.$$

Funkcja h jest zatem rosnąca na przedziale $(-\infty,0)$. Z parzystości funkcji h wynika zatem, że jest ona malejąca na przedziale $(0,\infty)$. Z warunku wystarczającego wynika, że funkcja h ma w punkcie x=0 maksimum lokalne właściwe równe 1.

VI. Przechodzimy teraz do badania drugiej pochodnej. Mamy $D_{h''} = \mathbf{R}$ oraz $h''(x) = 2(2x^2 - 1)e^{-x^2}$. Z warunku koniecznego szukamy punktów przegięcia wykresu funkcji h. Mamy

$$h''(x) = 0 \iff 4\left(x^2 - \frac{1}{2}\right)e^{-x^2} = 0 \iff x = \frac{1}{\sqrt{2}} \text{ lub } x = -\frac{1}{\sqrt{2}}.$$

Przy pomocy drugiej pochodnej ustalimy przedziały wypukłości rozważanej funkcji. Mamy

$$h''(x) > 0 \iff 4\left(x^2 - \frac{1}{2}\right)e^{-x^2} > 0$$

$$\iff \left(x - \frac{1}{\sqrt{2}}\right)\left(x + \frac{1}{\sqrt{2}}\right) > 0$$

$$\iff x < -\frac{1}{\sqrt{2}} \text{ lub } x > \frac{1}{\sqrt{2}}.$$

Funkcja h jest zatem ściśle wypukła na przedziałach $\left(-\infty,-\frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}},\infty\right)$. Ponadto

$$h''(x) < 0 \iff -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}.$$

Zatem badana funkcja jest ściśle wklęsła na przedziale $\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$. Z rozważań tych wynika, że punkty $\left(-\frac{1}{\sqrt{2}},e^{-\frac{1}{2}}\right)$, $\left(\frac{1}{\sqrt{2}},e^{-\frac{1}{2}}\right)$ są punktami przegięcia wykresu funkcji h. VII. Wyniki uzyskane w punktach I-VI zestawiamy w tabeli:

x	-∞	$-\infty < x < -\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}} < x < 0$	0	$0 < x < \frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}} < x < \infty$	∞
h''(x)	0	+	0	_	_	_	0	+	0
h'(x)	0	+	$\sqrt{2}e^{-\frac{1}{2}}$	+	0	_	$-\sqrt{2}e^{-\frac{1}{2}}$	_	0
h(x)	0		$e^{-\frac{1}{2}}$	/	1		$e^{-\frac{1}{2}}$)	0
			p.p.		max.		p.p.		

VIII. Na podstawie tabeli sporządzamy wykres funkcji.

d) I. Dziedziną funkcji $p(x)=\frac{x}{1-x^2}$ jest zbiór $(-\infty,-1)\cup(-1,1)\cup(1,\infty)$. II. Funkcja ta jest ciągła na swojej dziedzinie i ma miejsce zerowe tylko w punkcie x=0. III. Obliczamy granice funkcji p na "krańcach" jej dziedziny. Mamy

$$\lim_{x \to 1^{-}} \frac{x}{1 - x^{2}} = \frac{1}{0^{+}} = \infty; \qquad \lim_{x \to 1^{+}} \frac{x}{1 - x^{2}} = \frac{1}{0^{-}} = -\infty; \qquad \lim_{x \to \infty} \frac{x}{1 - x^{2}} = 0.$$

Z nieparzystości funkcji k wynika, że

$$\lim_{x \to -1^{-}} \frac{x}{1 - x^{2}} = \infty; \qquad \lim_{x \to -1^{+}} \frac{x}{1 - x^{2}} = -\infty; \qquad \lim_{x \to -\infty} \frac{x}{1 - x^{2}} = 0.$$

IV. Z poprzedniego punktu wynika zatem, że proste x=-1, x=1 są asymptotami pionowymi obustronnymi tej funkcji oraz, że prosta y=0 jest jej asymptotą poziomą w

obu nieskończonościach.

V. Zbadamy teraz pierwszą pochodną funkcji p. Mamy $D_{p'} = D_p$ oraz

$$p'(x) = \frac{x^2 + 1}{(1 - x^2)^2}.$$

Funkcja p nie ma ekstremów lokalnych, bo

$$p'(x) = \frac{x^2 + 1}{(1 - x^2)^2} \neq 0$$
, dla $x \in D_p$

Funkcja p jest rosnąca na każdym z przedziałów dziedziny, bo

$$p'(x) = \frac{x^2 + 1}{(1 - x^2)^2} > 0 \text{ dla } |x| \neq 1.$$

VI. Przechodzimy teraz do badania drugiej pochodnej. Mamy $D_{p''}=D_p$ oraz

$$p''(x) = \frac{2x(x^2+3)}{(1-x^2)^3}.$$

Z warunku koniecznego szukamy punktów przegięcia wykresu funkcji p. Mamy

$$p''(x) = 0 \iff \frac{2x(x^2 + 3)}{(1 - x^2)^3} = 0 \iff x = 0.$$

Przy pomocy drugiej pochodnej ustalimy przedziały wypukłości rozważanej funkcji. Mamy

$$p''(x) > 0 \iff x < -1 \text{ lub } 0 < x < 1.$$

Funkcja jest zatem ściśle wypukła na przedziałach $(-\infty, -1)$, (0, 1). Z nieparzystości tej funkcji wynika, że jest ona ściśle wklęsła na przedziałach (-1, 0), $(1, \infty)$. Z rozważań tych wynika dalej, że jedynie punkt (0, 0) jest punktem przegięcia wykresu funkcji p. W punktach x = -1, x = 1 funkcja wprawdzie zmienia rodzaj wypukłości, ale punkty te nie należą do dziedziny funkcji.

VII. Wyniki uzyskane w punktach I-VI zestawiamy w tabeli:

x	-∞	$-\infty < x < -1$	-1_	-1 ₊	-1 < x < 0	0	0 < x < 1	1_ 1+	$1 < x < \infty$	$ \infty $
p''(x)	0	+			-	0	+			0
p'(x)	0	+			+	1	+		+	0
p(x)	0		8	∞	1	0		∞ -∞		0
						p.p.				

VIII. Na podstawie tabeli sporządzamy wykres funkcji.

