Politechnika Warszawska Wydział Elektryczny

Specyfikacja implementacyjna symulatora automatu komórkowego $\it Life$

Autorzy:

- J. Korczakowski, nr albumu 291079
- B. Suchocki, nr albumu 291111 Grupa projektowa nr 11

1 Diagram programu

Rysunek 1: Diagram

2 Opis modułów i ich funkcji

2.1 Board

Zawiera strukturę przechowywującą planszę i rozłożone na niej komórki oraz następujące funkcje:

- 1. board_t make_board(int height, int width).
 - Argumenty:
 - height, width wysokość i szerokość planszy.
 - Wartość zwracana:
 - Nowa plansza (obiekt struktury board_t)
 - Działanie:
 - Funkcja alokuje pamięć na strukturę board_t i zwraca nowo utworzony obiekt.
- 2. board_t read_board_file(char* file_name).
 - Argumenty:

- filename nazwa pliku konfiguracyjnego wejciowego.
- Wartość zwracana:
 - Plansza reprezentująca stan generacji opisanej w pliku konfiguracyjnym wejściowym(obiekt struktury board t)
- Działanie:
 - Funkcja wywołuje make_board i do nowo stworzonej struktury przepisuje stany kolejnych komórek ('0' w pliku konfiguracyjnym oznacza komórkę martwą, a '1' żywą).
- board_t free_board(board_t b).
 - Argumenty:
 - b plansza wskazująca na pamięć, którą program zwolni.
 - Wartość zwracana:
 - Null
 - Działanie:
 - Funkcja zwalnia pamięć wskazywaną przez argument wywołania
- 4. void print_board(FILE* out, board_t b).
 - Argumenty:
 - out strumień wyjściowy, na który program wypisze reprezentację planszy.
 - b plansza, której reprezentację chcemy wypisać na podany strumień wyjściowy.
 - Wartość zwracana:
 - Void
 - Działanie:
 - Funkcja wypisuje reprezentację planszy na zadany strumień wyjściowy.

2.2 Simulator

Odpowiada za symulację kolejnych generacji komórek. Zawiera następujące funkcje:

- 1. board_t simulate_generation(board_t previous_generation, int rules[], int neighbor.
 - Argumenty:
 - previous_generation aktualny stan planszy,

- rules zasady życia komórek,
- neighbourhood przyjęta zasada sąsiedztwa.

• Wartość zwracana:

Plansza reprezentująca stan nowej generacji po przeprowadzeniu symulacji (obiekt struktury board_t)

• Działanie:

- Funkcja na podstawie podanych argumentów, symuluje przejcie komórek do następnej generacji. Symulacja wykonywana jest poprzez iteracyjne sprawdzanie ilości żywych sąsiadów (w podanej jako argument planszy reprezentującej stan generacji przed symulacją) i ustalanie (na podstawie danych zawartych w zasadach podanych jako argument wywołania funkcji) czy komórka przeżywa, umiera lub się ożywa. Nowy stan każdej komórki zapisywany jest do nowej planszy.

2. int count_neighbour_alive(int x,int y, int neighbourhood).

- Argumenty:
 - x,y współrzędne komórki, dla której zliczana jest iloć żywych sąsiadów,
 - neighbourhood przyjęta zasada sąsiedztwa.
- Wartość zwracana:
 - Ilość żywych sąsiadów komórki o współrzędnych podanych jako argumenty wywołania funkcji.
- Działanie:
 - Funkcja zlicza ilość żywych sąsiadów komówki o podanym położeniu według zadanych zasad sąsiedztwa (Moore'a lub von Neumanna).
- 3. int what_happens_with_cell(int neighbours_alive, int rules[]).
 - Argumenty:
 - neighbours_alive ilość żywych sąsiadów komórki,
 - rules przyjęte zasady przżywania komórek.
 - Wartość zwracana:
 - Liczba określająca czy komórka przeżywa (2), umiera (0) czy ożywa (1).
 - Działanie:
 - Funkcja na podstawie podanej ilości żywych sąsiadów ustala (korzystając z przyjętych zasad przeżywania komórek) czy komórka przeżyje, umrze lub ożyje.

2.3 Png generator

Odpowiada za generowanie obrazów .png przedstawiających stan kolejnych generacji. Zawiera następujące funkcje:

- void process_file(board_t b).
 - Argumenty:
 - b plansza reprezentująca stan generacji, dla której wygenerowany zostanie obraz .png.
 - Wartość zwracana:
 - Void
 - Działanie:
 - Funkcja ustawia parametry obrazu wynikowego na podstawie podanej jako argument planszy (stanu generacji).
- void genarate(char* file_name).
 - Argumenty:
 - file_name nazwa pliku obrazu wyjściowego .png.
 - Wartość zwracana:
 - Void
 - Działanie:
 - Funkcja generuje obraz .png o podanej jako argument wywołania nazwie.
- 3. int what_happens_with_cell(int neighbours_alive, int rules[]).
 - Argumenty:
 - neighbours_alive ilość żywych sąsiadów komórki,
 - rules przyjęte zasady przżywania komórek.
 - Wartość zwracana:
 - Liczba określająca czy komórka przeżywa (2), umiera (0) czy ożywa (1).
 - Działanie:
 - Funkcja na podstawie podanej ilości żywych sąsiadów ustala (korzystając z przyjętych zasad przeżywania komórek) czy komórka przeżyje, umrze lub ożyje.

2.4 Main

Jest modułem sterującym programu. Zawiera następujące funkcje:

- 1. void read_rules(FILE* settings_file, int rules[], int neighbourhood)
 - Argumenty:
 - settings_file plik ustawień opisujący ustawienia gry w życie,
 - rules tablica, w której przechowywane będą zasady przeżywania komórek,
 - neighbourhood zmienna, w której przechowywana będzie przyjęta zasada sąsiedztwa.
 - Wartość zwracana:
 - Void
 - Działanie:
 - Funkcja czyta z pliku zasady sąsiedztwa i umieszcza je w podanej jako argument zmiennej neighbourhood. Oprócz tego czyta zasady przeżywania komórek i zapisuje je do podanej jako argument tablicy rules.
- 2. int main(int argc, char** argv)
 - Argumenty:
 - argc ilość podanych argumentów w wierszu poleceń,
 - argv argumenty podane przez użytkownika w wierszu poleceń.
 - Wartość zwracana:
 - Liczba całkowita. W przypadku błędu: 1, przy poprawnym wywołaniu: 0.
 - Działanie:
 - Funkcja steruje wykonywaniem całego programu. Wywołuje funkcje z innych modułów, które razem tworzą spójne działanie.

2.5 Board test

Jest modułem testującym działanie modułu Board. Zawiera następujące funkcje:

- void should_print_board(FILE* out, board_t b)
 - Argumenty:

- out strumień wyjściowy, na który powinna zostać wypisana plansza,
- b plansza, która powinna zostać wypisana.
- Wartość zwracana:
 - Void.
- Działanie:
 - Funkcja powinna poprawnie wypisać podaną jako argument planszę na dany strumień wyjściowy za pomocą funkcji print_board z modułu Board.
- 2. void should_show_board_for_correct_board_file(char *file_name)
 - Argumenty:
 - file_name nazwa pliku, z którego powinna zostać wczytana plansza.
 - Wartość zwracana:
 - Void.
 - Działanie:
 - Funkcja powinna poprawnie przeczytać planszę z podanego (poprawnego) pliku wejściowego, korzystając z funkcji read_from_board_file z modułu Board oraz wypisać ją na standardowe wyjście.
- 3. void should_show_error_message_for_incorrect_board_file(char *file_name)
 - Argumenty:
 - file_name nazwa błędnego pliku konfiguracyjnego wejściowego.
 - Wartość zwracana:
 - Void.
 - Działanie:
 - Funkcja próbuje przeczytać planszę z niepoprawnego pliku wejciowego, używając funkcji read_from_board_file z modułu Board. Próba ta powinna zakończyć się niepowodzeniem. W takim przypadku zostanie wypisany komunikat o błedzie.
- 4. void should_show_confirmation_for_succesful_memory_allocation(int height, int
 - Argumenty:
 - height, width wysokość i szerokość planszy, dla której alokowana będzie pamięć.

- Wartość zwracana:
 - Void.
- Działanie:
 - Funkcja próbuje zaalokować pamięć na planszę korzystając z funkcji make_matrix z modułu Board. Jeżeli ta próba zakończy się powodzeniem, funkcja wypisze komunikat: "Udalo sie".
- 5. void should_show_error_message_for_unsuccessful_memory_allocation(int height,
 - Argumenty:
 - height, width wysokość i szerokość planszy, dla której alokowana będzie pamięć.
 - Wartość zwracana:
 - Void.
 - Działanie:
 - Funkcja próbuje zaalokować pamięć na planszę korzystając z funkcji make_matrix z modułu Board. Jeżeli ta próba zakończy się niepowodzeniem, funkcja wypisze komunikat o błędzie. Przy wywoływaniu tej funkcji, jako argumenty podawane będą bardzo duże liczby w celu przetestowania zachowania funkcji przy braku potrzebnej pamięci.
- 6. int main(int argc, char** argv)
 - Argumenty:
 - argc ilość podanych argumentów w wierszu poleceń ,
 - argv argumenty podane przez użytkownika w wierszu poleceń.
 - Wartość zwracana:
 - Liczba '0'.
 - Działanie:
 - Funkcja steruje działaniem modułu Board_test. Wywołuje funkcje testowe.

2.6 Simulation test

Jest modułem testującym działanie modułu Simulator. Zawiera następujące funkcje:

1. void should_show_generation_after_simulation(board_t prevoius_generation, int

- Argumenty:
 - previous_generation aktualny stan planszy,
 - rules zasady życia komórek,
 - neighbourhood przyjęta zasada sąsiedztwa.
- Wartość zwracana:
 - Void.
- Działanie:
 - Funkcja przeprowadza symulację jednej generacji komórek korzystając z funkcji simulate_generation z modułu Simulator. Wynikową generację komórek wypisuje na standardowe wyjście.
- 2. int main(int argc, char** argv)
 - Argumenty:
 - argc ilość podanych argumentów w wierszu poleceń ,
 - -arg
v argumenty podane przez użytkownika w wierszu poleceń.
 - Wartość zwracana:
 - Liczba '0'.
 - Działanie:
 - Funkcja steruje działaniem modułu Simulation_test. Wywołuje funkcję testową should_show_generation_after_simulation.