HW 2.1

- 1. (24 points) Consider the following two statement forms:
 - $A: p \rightarrow (\sim q \wedge r)$
 - B: (~p∨~q)∧r
 - a) (15 *points*) Construct a **single** truth table that displays the truth values of the above two statement forms. Use as many rows & columns as you need in the following table.

P	2	٢	~P	~9	~g A T	p -> (-911)	~p v~q	(~p v-q) 1,	
T	T	T	F	F	F	F	F	F	
1	T	F	F	F	F	F	F	F	
1	F	1	F	T	T	T	T	T	
T	F	F	F	T	F	F	T	F	
F	7	7	T	4	F	T	T	T	
F	T	F	T	F	F	T	†	F	
k	F	T	T	T	T	7	T	T	
P	F	F	T	T	F	T	T	P	

A

b) (9 *points*) Define what it means for two statement forms *A* & *B* to be logically equivalent. Are the above *A* & *B* logically equivalent? Prove or disprove the following <u>using only the</u> <u>definition (i.e. without using the truth table)</u>.

$$p \to (\sim q \land r) \equiv (\sim p \lor \sim q) \land r$$

- I statement forms are logically equivalent if and only if they have the same touth values for ALL truth values of their statement variables.
- p → (~q 1 r) ≠ (~p v ~q) 1 r because they do NOT have the same truth values for all truth values of p, q, & r, such as when (p, q, r) = (F,T,F)

$$p \rightarrow (-qAr) = T$$

 $(-p \vee -q) Ar = F$

B

Math 263: Discrete Mathematics

2. (22 points) Consider the following statement:

"If Trevor didn't pass quiz 1, then he needs to redo quiz 1 and study harder for quiz 2"

a) (5 *points*) Define 3 statement variables p,q,&r, and write the **statement form** of the above conditional statement involving only " \rightarrow , \vee or \wedge ". Do not use negation " \sim ".

Statement form:
$$\rho \rightarrow (q \Lambda r)$$

b) (5 *points*) Using the same p, q, & r as above, write the statement in words that corresponds to: $\sim p \lor (q \land r)$

Either Trevor did pass quiz 1 or Trevor needs to redo quiz 1 and Trevor needs to study harder for quiz 2.

c) (6 points) Apply the negation "~" to the statement form given in part b), and simplify it using logical equivalences laws. Use only one law in each step and include a name for each law.

$$\sim (-\rho \vee (q \wedge r)) \equiv \sim (\sim \rho) \wedge \sim (q \wedge r)$$
 by DeMorgans law $\equiv \sim (\sim \rho) \wedge (\sim q \vee \sim r)$ by DeMorgans law $\equiv \rho \wedge (\sim q \vee \sim r)$ by Donble Negative law

d) (6 points) Write in words the negation of the statement that you found in part b). (Hint: use part c))

Trevor didn't pass quiz 1 & Either Trevor does not need to redo quiz 1 or Trevor does not need to study harder for quiz 2.

3. (24 *points*) Prove the following logical equivalence using **standard logical equivalences**. Justify each step by stating the name of the standard logical equivalence law & use only one law in each step.

$$(p \wedge q) \wedge \sim r \equiv \sim (p \wedge r) \wedge (q \wedge p)$$

RHS =
$$\sim (\rho \Lambda r) \Lambda (q \Lambda p)$$

= $(\rho V \sim r) \Lambda (q \Lambda p)$ by De Morgans Law

= $(q \Lambda p) \Lambda (\sim p V \sim r)$ by Commutative law

= $q \Lambda (p \Lambda (\sim p V \sim r))$ by Associative law

= $q \Lambda ((p \Lambda \sim p) V (p \Lambda \sim r))$ by Distributive law

= $q \Lambda ((p \Lambda \sim r) V (p \Lambda \sim r))$ by Negation law

= $q \Lambda ((p \Lambda \sim r) V (p \Lambda \sim r))$ by Commutative law

= $q \Lambda ((p \Lambda \sim r) V (p \Lambda \sim r))$ by Commutative law

= $q \Lambda ((p \Lambda \sim r))$ by Identity law

= $(q \Lambda p) \Lambda \sim r$ by Commutative law

= $(q \Lambda p) \Lambda \sim r$ by Commutative law

= $(p \Lambda q) \Lambda \sim r$ by Commutative law

= $(p \Lambda q) \Lambda \sim r$ by Commutative law

= $(p \Lambda q) \Lambda \sim r$