

points

In this quiz, you will practice changing from the standard basis to a basis consisting of orthogonal vectors.

what is ${f v}$ in the basis defined by ${f b_1}$ and ${f b_2}$? You are given that ${f b_1}$ and ${f b_2}$ are

Given vectors $\mathbf{v}=\begin{bmatrix}5\\-1\end{bmatrix}$, $\mathbf{b_1}=\begin{bmatrix}1\\1\end{bmatrix}$ and $\mathbf{b_2}=\begin{bmatrix}1\\-1\end{bmatrix}$ all written in the standard basis,

$$\bigcirc \quad \mathbf{v_b} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

orthogonal to each other.

$$\mathbf{v_b} = \begin{bmatrix} 2 \end{bmatrix}$$

$$\mathbf{v}_{\mathbf{b}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

The vector \mathbf{v} is projected onto the two vectors $\mathbf{b_1}$ and $\mathbf{b_2}$.

$$\mathbf{v_b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

points

Given vectors $\mathbf{v}=\begin{bmatrix}10\\-5\end{bmatrix}$, $\mathbf{b_1}=\begin{bmatrix}3\\4\end{bmatrix}$ and $\mathbf{b_2}=\begin{bmatrix}4\\-3\end{bmatrix}$ all written in the standard basis, what is ${\bf v}$ in the basis defined by ${\bf b_1}$ and ${\bf b_2}$? You are given that ${\bf b_1}$ and ${\bf b_2}$ are orthogonal to each other. $\mathbf{v_b} = \begin{bmatrix} 2 \\ 11 \end{bmatrix}$

$$\mathbf{v_b} = \begin{bmatrix} 11 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} 2/5 \\ 11/5 \end{bmatrix}$$

The vector \mathbf{v} is projected onto the two vectors $\mathbf{b_1}$ and $\mathbf{b_2}$.

$$\mathbf{v_b} = \begin{bmatrix} -2/5 \\ 11/5 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} 11/5 \\ 2/5 \end{bmatrix}$$

points

3. Given vectors $\mathbf{v} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ all written in the standard basis, what is ${\bf v}$ in the basis defined by ${\bf b_1}$ and ${\bf b_2}$? You are given that ${\bf b_1}$ and ${\bf b_2}$ are orthogonal to each other. $\mathbf{v_b} = \begin{bmatrix} 5/4 \\ -5/2 \end{bmatrix}$

$$\mathbf{v_b} = \begin{bmatrix} -5/2 \end{bmatrix}$$

Correct The vector \mathbf{v} is projected onto the two vectors $\mathbf{b_1}$ and $\mathbf{b_2}$.

$$\mathbf{v_b} = \begin{bmatrix} 2/5 \\ -4/5 \end{bmatrix}$$

Given vectors $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$ and $\mathbf{b_3} = \begin{bmatrix} -1 \\ 2 \\ -5 \end{bmatrix}$ all written in the standard basis, what is v in the basis defined by b_1 , b_2 and b_3 ? You are given that b_1 , $\mathbf{b_2}$ and $\mathbf{b_3}$ are all pairwise orthogonal to each other. $\mathbf{v_b} = \begin{bmatrix} 3/5 \\ -1/3 \\ -2/15 \end{bmatrix}$

The vector \mathbf{v} is projected onto the vectors $\mathbf{b_1}$, $\mathbf{b_2}$ and $\mathbf{b_3}$.

$$\mathbf{v_b} = \begin{bmatrix} -3/5 \\ -1/3 \\ 2/15 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} -3/5 \\ -1/3 \\ -2/15 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$$

5.

Given vectors $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} 0 \\ 2 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{b_3} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 0 \end{bmatrix}$ and $\mathbf{b_4} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 3 \end{bmatrix}$ all are given that b_1 , b_2 , b_3 and b_4 are all pairwise orthogonal to each other. $\mathbf{v_b} = \begin{bmatrix} \mathbf{v} \\ 1 \\ 1 \\ 1 \end{bmatrix}$

 $\mathbf{v_b} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$

The vector ${f v}$ is projected onto the vectors ${f b_1},{f b_2},{f b_3}$ and ${f b_4}$.