EAIiIB	Aleksander Lis	iecki	Rok	Grupa	Zespół
Informatyka	Natalia Matere	k	II	2	6
Pracownia	Temat:				Nr ćwiczenia:
FIZYCZNA					
WFiIS AGH	Elektroliza				35
Data wykonania:	Data oddania:	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	OCENA:
20.12.2016	04.01.2017				

Ćwiczenie nr 35: Elektroliza

1 Cel ćwiczenia

Wyznaczanie równoważnika elektrochemicznego miedzi oraz stałej Faradaya w doświadczeniu z elektrolizą wodnego roztworu CuSO₄

2 Wstęp teoretyczny

Elektroliza zachodzi w układach, w których występują substancje zdolne do jonizacji, czyli rozpadu na jony. Samo zjawisko jonizacji może być wywołane zarówno przyłożonym napięciem elektrycznym, jak i zjawiskami nie generowanymi bezpośrednio przez prąd – dysocjacją elektrolityczną, autodysocjacją, wysoką temperaturą czy działaniem silnego promieniowania.

By zobojętnić jon na elektrodzie, musi przepłynąć ładunek równy $w \cdot e$, gdzie e - ładunek elementarny elektronu [C], a w - wartościowość jonu. Liczbę atomów które wydzieliły się na elektrodzie możemy wyznaczyć jako stosunek całkowitego ładunku $(I \cdot t)$ do ładunku pojedynczego jonu $(w \cdot e)$

$$N = \frac{It}{we} \tag{1}$$

gdzie

I natężenie płynącego prądu [A]

t czas przepływu prądu [s]

w wartościowość jonu [bezwymiarowa]

e ładunek elementarny elektronu [C]

Aby obliczyć masę osadzonych atomów, mnożymy ich ilość przez masę jednego atomu. Masę pojedynczego atomu można wyznaczyć jako stosunek masy molowej do liczby Avogadra, stąd

$$m = N \frac{\mu}{N_A} = \frac{\mu}{weN_A} It \tag{2}$$

gdzie

 μ masa molowa jednego atomu substancji [q]

 N_A liczba Avogadra [mol]

N liczba atomów

Zauważamy, że masa wydzielonej substancji jest proporcjonalna do natężenia prądu I, czasu przepływu prądu t oraz współczynnika oznaczanego k i zwanego elektrochemicznym równoważnikiem substancji.

$$k = \frac{\mu}{weN_A} \tag{3}$$

gdzie

k elektrochemiczny równoważnik substancji $\left[\frac{kg}{C}\right]$

Iloczyn eN_A wyraża ładunek potrzebny do wydzielenie jednego gramorównoważnika chemicznego substancji. Oznacza się go zwykle jako F i nazywa stałą Faradaya. Ze wzoru (3) wynika jego zależność od k:

$$F = \frac{\mu}{wk} \tag{4}$$

gdzie

F to stała Faradaya $\left[\frac{C}{mol}\right]$

Nie należy mylić elektrolizy z procesami zachodzącymi w ogniwie galwanicznym. W elektrolizie energia elektryczna zamieniana jest na chemiczną, a w ogniwie galwanicznym kierunek przemian energetycznych jest przeciwny, tzn. energia chemiczna w procesie reakcji redoks zamieniana jest na energię elektryczną, co objawia się generowaniem prądu w obwodzie łączącym elektrody ogniwa. Ze względu na odwrotny przebieg procesu w ogniwach galwanicznych katoda jest naładowana dodatnio, a anoda ujemnie, jednak procesy chemiczne zachodzące na obu ogniwach mają podobny charakter.

3 Układ pomiarowy

Rysunek 1: Schemat obwodu elektrycznego

Przyrządy

Układ pomiarowy został przedstawiony na rysunku 1.

- Naczynie do elektrolizy siarczanu miedzi CuSO₄ z miedzianymi elektrodami w kształcie równoległych płyt, oddalonych od siebie o kilka centymetrów
- Zasilacz napięcia stałego
- Amperomierz
- Opornica suwakowa
- Waga elektroniczna

4 Wyniki pomiarów

czas elektrolizy	t	=	35	min
natężenie prądu	I	=	0,515	A
masa katody przed elektrolizą	m_1	=	72,817	g
masa katody po elektrolizie	m_2	=	73,185	g
masa wydzielonej miedzi	$m = m_2 - m_1$	=	0,368	g
masa anod przed elektrolizą	M_{1A}	=	225,321	g
	M_{1B}	=	122,350	g
masa anod po elektrolizie	M_{2A}	=	224,984	g
	M_{2B}	=	122,213	g
zmiana masy anod	$M = M_2 - M_1$	=	0,337	g

Dane określające niepewność przyrządów:

Klasa amperomierza			0,5	
Używany zakres amperomierza		0	0,75	A
Niepewność graniczna wagi (znamionowa)	Δm	=	0,001	g
Niepewność pomiaru masy	u(m)	=	0,00058	g

5 Opracowanie wyników

Aby obliczyć współczynnik elektrochemiczny k korzystamy ze wzoru:

$$k = \frac{m}{It}$$
 (5)
$$k = \frac{m}{It} = \frac{0,368}{0,515 \cdot 35 \cdot 60} \frac{g}{A \cdot s} = 0,3403 \cdot 10^{-3} \frac{g}{A \cdot s}$$

Korzystając z otrzymanej wartości współczynnika k i wzoru obliczamy doświadczalną wartość stałej Faradaya ze wzoru 4:

$$F = \frac{\mu}{wk} = \frac{63,58}{2 \cdot 0,3403 \cdot 10^{-3}} \frac{C}{mol} = 93418 \frac{C}{mol},$$

gdzie

 $\mu~$ to masa molowa miedzi równa $63,58~\frac{g}{mol}$

 $w \,$ to wartościowość miedzi równa 2.

Korzystając z otrzymanej wartości stałej Faradaya F, obliczamy doświadczalną wartość ładunku elementarnego ze wzoru:

$$e = \frac{F}{N_A} \tag{6}$$

$$e = \frac{F}{N_A} = \frac{93418}{6,0222 \cdot 10^{23}} C = 1,551 \cdot 10^{-19} C,$$

gdzie N_A to liczba Avogadra, która jest wielkością stałą informującą o liczbie cząsteczek lub atomów zawartych w jednym molu substancji.

6 Obliczanie niepewności pomiarowej

Za niepewność pomiaru czasu przyjęto u(t)=3s, ze względu na opóźnioną reakcję przy włączaniu stopera.

Mimo, iż niepewność graniczna pomiaru wagi wynosiła 0,001g przyjęto ją jako:

$$u(m) = 0,005g$$

Biorąc pod uwagę nieuniknione błędy w trakcie wykonania doświadczenia tj. niedokładnego wysuszenia elektrod, niedokładne przepłukanie elektrod lub zanieczyszczenia samego elektrolitu.

Aby policzyć niepewność wartości ładunku elektrycznego, który przepłynął przez elektrolit musimy znać niepewność pomiaru natężenia:

$$u(I) = \frac{\text{klasa amperomierza} \cdot \text{zakres}}{100} \tag{7}$$

gdzie

u(I) niepewność wartości natężenia prądu [A]

Podstawiając do wzoru otrzymujemy:

$$u(I) = \frac{0, 5 \cdot 0, 75}{100} = 0,0038$$

Niepewność pomiaru ładunku elektrycznego:

$$u(e) = t \cdot u(I) \tag{8}$$

gdzie

u(e) niepewność pomiaru ładunku elektrycznego [C]

A zatem korzystając ze wzoru 8 niepewność wartości ładunku elektrycznego wynosi:

$$u(e) = 2100 \cdot 0,0028 = 5,88 C$$

Niepewność względna i bezwzględna równoważnika elektrochemicznego

$$\frac{u(k)}{k} = \sqrt{\left[\frac{u(m)}{m}\right]^2 + \left[\frac{u(I)}{I}\right]^2} = \sqrt{\left[\frac{0,005}{0,368}\right]^2 + \left[\frac{0,0038}{0,515}\right]^2} \approx 0,015$$

gdzie

 $u(k)\,$ niepewność bezwzględna równoważnika elektrochemicznego $\left[\frac{kg}{C}\right]$

krównoważnik elektrochemiczny substancji $\left\lceil \frac{kg}{C} \right\rceil$

u(m) niepewność pomiaru masy [kg]

m masa wydzielonej podczas elektrolizy miedzi [kg]

u(I) niepewność natężenia prądu płynącego podczas elektrolizy [A]

I natężenie prądu podczas elektrolizy [A]

$$u(k) = \frac{u(k)}{k} \cdot k = 0,015 \cdot 0,3403 \cdot 10^{-3} \approx 0,0051 \cdot 10^{-3} \frac{g}{A \cdot s}$$

Niepewność względna i bezwzględna stałej Faradaya oraz ładunku elementarnego

$$\frac{u(F)}{F} = \sqrt{\left[\frac{u(\mu)}{\mu}\right]^2 + \left[\frac{u(k)}{k}\right]^2} = \sqrt{\left[\frac{u(k)}{k}\right]^2} = \frac{u(k)}{k} = \frac{u(e)}{e}$$

gdzie

 $U(F)\,$ niepewność bezwzględna stałej Faradaya $\left[\frac{C}{mol}\right]$

F stała Faradaya $\left[\frac{C}{mol}\right]$

 $u(\mu)$ niepewność masy molowej miedzi $\left[\frac{g}{mol}\right]$

 μ masa molowa miedzi $\left[\frac{g}{mol}\right]$

u(e) niepewność wyznaczonego ładunku elementarnego [C]

e wartość wyznaczonego ładunku elementarnego [C]

$$u(F) = F\frac{u(k)}{k} = 94318 \cdot 0,015 = 1401,27 \frac{C}{mol}$$

$$u(e) = e^{\frac{u(k)}{k}} = 1,551 \cdot 10^{-19} \cdot 0,015 = 0,023 \cdot 10^{-19} C$$

7 Podsumowanie wyników

	wartość	wartość	różnica	niepewność	niepewność
	tablicowa	wyznaczona			względna [%]
$k\left[\frac{mg}{A\cdot s}\right]$	0,329	0,3403	0,013	0,0051	1,5
$F\left[\frac{C}{mol}\right]$	96500	93418	3082	1401,27	1,5
$e[10^{-19}C]$	1,602	1,551	0,051	0,023	1,5

8 Wnioski

- Masa anod uległa zmniejszeniu, a masa katody zwiększeniu.
- Wyznaczone wielkości stałej Faradaya, równoważnika elektrochemicznego miedzi oraz ładunku elementarnego nie mieszczą się w granicach błędu. Wyjaśnia to zapewne możliwość powstanie sporego błędu przypadkowego, jak np. niedokładne wysuszenie płytek, niedokładne ich opłukanie lub zanieczyszczenie elektrolitu.
- Elektrolity mogą być dobrymi przewodnikami.