

## AOUS66414

40V N-Channel AlphaSGT™

## **General Description**

- Trench Power MOSFET AlphaSGT<sup>TM</sup> technology
- Low R<sub>DS(ON)</sub>
- Logic Level Driving
- Excellent Gate Charge x RDS(ON) Product (FOM)
- RoHS and Halogen-Free Compliant

Orderable Part Number

## **Applications**

• High Frequency Switching and Synchronous Rectification

## **Product Summary**

 $\begin{array}{lll} V_{DS} & 40V \\ I_{D} \; (at \; V_{GS} \! = \! 10V) & 92A \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 10V) & < 2.2 m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 4.5V) & < 3.2 m\Omega \end{array}$ 

100% UIS Tested 100% Rg Tested

Form



# UltraSO-8<sup>™</sup> Top View Bottom View



Package Type



Minimum Order Quantity

| Oraciable Fait Number                  |                              | i ackage i ypc                        | 1 01111     | William Oraci Quantity |  |  |
|----------------------------------------|------------------------------|---------------------------------------|-------------|------------------------|--|--|
| AOUS66414                              |                              | Ultra SO8                             | Tape & Reel | 3000                   |  |  |
| Absolute Maximum                       | Ratings T <sub>A</sub> =25°C | unless otherwise note                 | d           |                        |  |  |
| Parameter                              |                              | Symbol                                | Maximur     | n Units                |  |  |
| Drain-Source Voltage                   |                              | $V_{DS}$                              | 40          | V                      |  |  |
| Gate-Source Voltage                    |                              | $V_{GS}$                              | ±20         | V                      |  |  |
| Continuous Drain                       | T <sub>C</sub> =25°C         |                                       | 92          |                        |  |  |
| Current <sup>G</sup>                   | T <sub>C</sub> =100°C        | I <sub>D</sub>                        | 92          | A                      |  |  |
| Pulsed Drain Current <sup>C</sup>      |                              | I <sub>DM</sub>                       | 360         |                        |  |  |
| Continuous Drain<br>Current            | T <sub>A</sub> =25°C         |                                       | 40          | A                      |  |  |
|                                        | T <sub>A</sub> =70°C         | IDSM                                  | 32          | ^                      |  |  |
| Avalanche Current <sup>C</sup>         |                              | I <sub>AS</sub>                       | 42          | A                      |  |  |
| Avalanche energy                       | L=0.3mH                      | E <sub>AS</sub>                       | 265         | mJ                     |  |  |
| Power Dissipation <sup>B</sup>         | T <sub>C</sub> =25°C         | P <sub>D</sub>                        | 92          | W                      |  |  |
|                                        | T <sub>C</sub> =100°C        | r <sub>D</sub>                        | 37          | VV                     |  |  |
|                                        | T <sub>A</sub> =25°C         | P <sub>DSM</sub>                      | 6.2         | W                      |  |  |
| Power Dissipation A                    | T <sub>A</sub> =70°C         | DSM                                   | 4.0         |                        |  |  |
| Junction and Storage Temperature Range |                              | ige T <sub>J</sub> , T <sub>STG</sub> | -55 to 150  | 0 °C                   |  |  |

| Thermal Characteristics               |                                          |                 |     |       |      |  |  |  |
|---------------------------------------|------------------------------------------|-----------------|-----|-------|------|--|--|--|
| Parameter                             | Symbol                                   | Тур             | Max | Units |      |  |  |  |
| Maximum Junction-to-Ambient A         | t ≤ 10s<br>Steady-State R <sub>θJA</sub> |                 | 15  | 20    | °C/W |  |  |  |
| Maximum Junction-to-Ambient AD        |                                          |                 | 40  | 50    | °C/W |  |  |  |
| Maximum Junction-to-Case Steady-State |                                          | $R_{\theta JC}$ | 1.1 | 1.35  | °C/W |  |  |  |



### Electrical Characteristics (T<sub>J</sub>=25°C unless otherwise noted)

| Symbol                      | Parameter                                          | eter Conditions                                                         |                                                                 | Min | Тур  | Max    | Units |
|-----------------------------|----------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------|-----|------|--------|-------|
| STATIC                      | PARAMETERS                                         |                                                                         |                                                                 |     |      |        |       |
| BV <sub>DSS</sub>           | Drain-Source Breakdown Voltage                     | $I_D = 250 \mu A, V_{GS} = 0 V$                                         |                                                                 | 40  |      |        | V     |
| I <sub>DSS</sub>            | Zero Gate Voltage Drain Current                    | $V_{DS}$ =40V, $V_{GS}$ =0V                                             | T <sub>.I</sub> =55°C                                           |     |      | 1<br>5 | μA    |
| I <sub>GSS</sub>            | Gate-Body leakage current                          | V <sub>DS</sub> =0V, V <sub>GS</sub> =±20V                              | 1, 22, 2                                                        |     |      | ±100   | nA    |
| $V_{GS(th)}$                | Gate Threshold Voltage                             | V <sub>DS</sub> =V <sub>GS</sub> , I <sub>D</sub> =250μA                |                                                                 | 1.3 | 1.8  | 2.3    | V     |
| , ,                         | Static Drain-Source On-Resistance                  | $V_{GS}$ =10V, $I_D$ =20A                                               |                                                                 |     | 1.8  | 2.2    | mΩ    |
| R <sub>DS(ON)</sub>         |                                                    |                                                                         | T <sub>J</sub> =125°C                                           |     | 2.7  | 3.3    |       |
|                             |                                                    | $V_{GS}$ =4.5V, $I_D$ =20A                                              |                                                                 |     | 2.5  | 3.2    | mΩ    |
| g <sub>FS</sub>             | Forward Transconductance                           | rward Transconductance V <sub>DS</sub> =5V, I <sub>D</sub> =20A         |                                                                 |     | 100  |        | S     |
| $V_{SD}$                    | Diode Forward Voltage                              | I <sub>S</sub> =1A, V <sub>GS</sub> =0V                                 |                                                                 |     | 0.7  | 1      | V     |
| Is                          | Maximum Body-Diode Continuous Current <sup>G</sup> |                                                                         |                                                                 |     |      | 92     | Α     |
| DYNAMI                      | C PARAMETERS                                       |                                                                         | -                                                               |     | -    | -      | -     |
| C <sub>iss</sub>            | Input Capacitance                                  | V <sub>GS</sub> =0V, V <sub>DS</sub> =20V, f=1MHz                       |                                                                 |     | 4350 |        | pF    |
| Coss                        | Output Capacitance                                 |                                                                         |                                                                 |     | 730  |        | pF    |
| C <sub>rss</sub>            | Reverse Transfer Capacitance                       |                                                                         |                                                                 |     | 40   |        | pF    |
| $R_g$                       | Gate resistance                                    | f=1MHz                                                                  |                                                                 | 0.8 | 1.6  | 2.4    | Ω     |
| SWITCH                      | ING PARAMETERS                                     |                                                                         |                                                                 |     |      |        |       |
| <b>Q</b> <sub>g</sub> (10V) | Total Gate Charge                                  |                                                                         |                                                                 |     | 55   | 80     | nC    |
| Q <sub>g</sub> (4.5V)       | Total Gate Charge                                  | V10V V20V                                                               | V <sub>GS</sub> =10V, V <sub>DS</sub> =20V, I <sub>D</sub> =20A |     | 24   | 35     | nC    |
| $Q_{gs}$                    | Gate Source Charge                                 | VGS-10V, VDS-20V, ID-20A                                                |                                                                 |     | 13   |        | nC    |
| $Q_{gd}$                    | Gate Drain Charge                                  |                                                                         |                                                                 | 3.6 |      | nC     |       |
| Q <sub>oss</sub>            | Output Charge                                      | $V_{GS}$ =0V, $V_{DS}$ =20V                                             | V <sub>GS</sub> =0V, V <sub>DS</sub> =20V                       |     | 30   |        | nC    |
| t <sub>D(on)</sub>          | Turn-On DelayTime                                  |                                                                         |                                                                 |     | 12   |        | ns    |
| t <sub>r</sub>              | Turn-On Rise Time                                  | $V_{GS}$ =10V, $V_{DS}$ =20V, $R_L$ =1 $\Omega$ , $R_{GEN}$ =3 $\Omega$ |                                                                 |     | 3.5  |        | ns    |
| t <sub>D(off)</sub>         | Turn-Off DelayTime                                 |                                                                         |                                                                 |     | 47   |        | ns    |
| t <sub>f</sub>              | Turn-Off Fall Time                                 |                                                                         |                                                                 |     | 5.5  |        | ns    |
| t <sub>rr</sub>             | Body Diode Reverse Recovery Time                   | I <sub>F</sub> =20A, di/dt=500A/μs                                      |                                                                 |     | 18   |        | ns    |
| $Q_{rr}$                    | Body Diode Reverse Recovery Charge                 | <sub>e</sub> I <sub>F</sub> =20A, di/dt=500A/μs                         |                                                                 |     | 45   |        | nC    |

A. The value of  $R_{QJA}$  is measured with the device mounted on  $1in^2$  FR-4 board with 2oz. Copper, in a still air environment with  $T_A$  =25° C. The Power dissipation  $P_{DSM}$  is based on  $R_{QJA}$   $\leq$  10s and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design.

APPLICATIONS OR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation  $P_D$  is based on  $T_{J(MAX)}=150^{\circ}$  C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature  $T_{J(MAX)}$ =150° C.

D. The  $R_{\theta JA}$  is the sum of the thermal impedance from junction to case  $R_{\theta JC}$  and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using  $<300\,\mu s$  pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsin k, assuming a maximum junction temperature of T<sub>J(MAX)</sub>=150° C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T<sub>A</sub>=25° C.



### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS





0

0

5

10

 ${
m I_D}$  (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

20

15

25

30



V<sub>GS</sub> (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)



V<sub>GS</sub> (Volts) Figure 2: Transfer Characteristics (Note E)



Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)



V<sub>SD</sub> (Volts) Figure 6: Body-Diode Characteristics (Note E)



### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS









V<sub>GS</sub>> or equal to 4.5V Figure 9: Maximum Forward Biased Safe Operating Area (Note F)



Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toCase (Note F)



Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)



### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



T<sub>CASE</sub> (° C)
Figure 12: Power De-rating (Note F)



T<sub>CASE</sub> (° C)
Figure 13: Current De-rating (Note F)



V<sub>DS</sub> (Volts) Figure 14: Coss stored Energy



Pulse Width (s)
Figure 15: Single Pulse Power Rating Junctionto-Ambient (Note H)



Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

Rev.1.0: May 2019 www.aosmd.com Page 5 of 6

Vdd

Figure A: Gate Charge Test Circuit & Waveforms



Figure B: Resistive Switching Test Circuit & Waveforms



Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms



Figure D: Diode Recovery Test Circuit & Waveforms

