Module 1: Limits Of Function Values if f(x) is arbitarily close to the no. k, for all to s sufficiently close to c other the c itself, then we say that approaches the limit L as or approaches to 8. (Right Cont limit fon) = L The timit of a function is the value of the function as the input get close or approaches the some number 4. A: find the limit of the function $f(n) = \frac{n^2-1}{n-1}$ at n=1 $\lim_{N\to 1} f(n) = \lim_{N\to 1} \frac{N^2-1}{2^{-1}}$ = lim (n+1) (n+1) (n+1) 11 24 : (4) 6 will x (40) = 141 = 5 (40) (40); (40); (40); (40) = 141 = 5 Q. find the limits of the identity function and constant function as or approaches to C. Identity functions in the constant of the con primotor sit to time of built she APIABOUDiscuss the behaviour of the following Constant Function (unit - Step function). o mil - what of so was The unit step for uln) has no limit as n -> 0. Because it jumps at x=0. for -ve values of n, >a it is arbitarily close to 0. For the values of ne, it isansbitority close to i. There is no single value 4. fcm) = K Las or approaches to 0. 6 tim for = lim k = K. 200 download from ktuspecial

```
Module 1: Limit Of Franchigh January Trained I seem timing
           1 1 16: LiMic and k over real numbers and limit extends to
        Sufficiently close to 6 other the C itseff. = (A) remilion of
           lim g (n) = M
                           1. Sum Rule: limil (f(n) + g(n) + lim g (a)
            2. Difference Rule: lim (fm)-g(n)) = lim f(n) - lim g(n) = L-M
            3. Constant Multiplication Rule:
                       lim (kfon) = Klim fon) = KLi
           4. Product Rule: im (f(n) *g(n)) = lim f(n) x lim g(n) = LXM
  5. Quotient Rule: lim (fon)/gin) =tilim! fon inil= 1/M
            6. Power Rule: lim (fin) - (lim fin) no = (L) Historial
            4. Root Rule: lim fin) lim Nfin) = (lim fin) no not
      Q. find the limit of the following
Sicucited sit O'lim' (23742-3) Wazanzagetter dream the B.tech
                                                 Constant America
· (noithmit my com) = limons + lim 4n2 - lim 3
                      = c9 + 4 lim n2 - 3
                        = c3+4c2-3
                             lim 922+5 . H = 1 lim 92 + lim 5
                       ownload from ktuspocial
```

 $\frac{1}{2} = \frac{3}{2} = \frac{3}{2}$ Sum + - 0 1 Produit = 2 Q. Evaluate lim 122+100-10 taking conjugative of radical $\lim_{N\to 0} (\sqrt{x^2+100} - 10) (\sqrt{x^2+100} + 10) = \lim_{N\to 0} (\sqrt{x^2+100})^2 - 10^2$ $= \lim_{n\to 0} \frac{1}{n^2 \sqrt{n^2 + 100} + 10} = \lim_{n\to 0} \frac{n^2}{2^2 \sqrt{n^2 + 100} + 10} = \frac{1}{\sqrt{n^2 + 100} + 10}$ - Evaluation of the Collynomials and Hatical - Timetion The Sandwitch theorem Um Plan - Plus Suppose that g(n) & f(m) & h(m) for all n in some open interval containing C l'et theorem, is a calculus theorem that helps in lim g (x) = L determine the timels, of an inequality function - by comparing it to two other function with 11m f(m) = 1 Known limit; れラし lim fun) = L クナウィ Given a function u shtistying the condition. 1 - n? Z u chiz 1+22,2/0.

for all or mot equal to 0, find lim u(x). By using Sandwitch theorem lim h(m) = lim 1+m2 = 1+0=1+0 = 1iculova 0

```
How does the function g(n) = n'sin ( 1/2) behaves near n = 0.1
                                                   By using sandwitch theorem, 3- 3- ( 31- (C-1) -
                                    Since the range of the sin function lies between -1 and 1,
                                     Similarly sin 1/2 is also her blw -1 and +1
                                          i-e, -1 4- sin (1/21) 4 1 [mulliplying, on in both sides].
                                             => - 22 42 sin (1/21) 4 912
                                                                                                                                                                    By using Somdwitch theorem
                                                                 f(n) < g(m) < h(n)
                                                                                        lim f(n) = lim - n2 = 0
                                                                      \lim_{n\to 0} \lim_{n\to 0} \frac{\partial r(x)}{\partial x^{2}} = 0
                                                                                       · · lim g(n) = lim n2 sin (1/2) = 0
                                                                                                                                                                                                                                    (1-R2)(R8-3) ON F
                          Q find the limit of the following.
                                                                                                                                                                             (1-100) coll x (105-8) coll =
                                     => 2-62 +9 = 0
                                      => (21-3) (2-3)=0 g=-6
                                                                                                                                                                                                                                                    lin Ha (Sary)2
\frac{2 \lim_{N \to 4} \frac{2 \ln n}{(n+1)(n-3)}}{(n+1)(n-3)} = \frac{2}{-4-3}
\frac{2 \lim_{N \to 4} \frac{2 \ln n}{(n+1)(n-3)}}{(n+1)(n-3)} = \lim_{N \to 5} \frac{2 \lim_{N \to 5} \frac{2 \ln n}{(n+2)}}{(n+5)(n+2)}
\Rightarrow n^2 - 3n - 10 = 0
P = -10 \quad (n-5) \quad (n+2) = 0
\Rightarrow n^2 - 10n + 25 = 0
                                                                                                            download from ktuspecial
```

```
lim (x3-15)
                                    = (1-2)3-15) = -8-15 = -23 = It little to prime per
                                                              in west all milion the sit to proof our in-
                                                                    It town in wind coll odle of the min photonical
                   lim (-2+52-2)
                                                                                            = \lim_{n\to 2} (-n^2) + \lim_{n\to 2} (5n) - \lim_{n\to 2} (2)
                                                                                                                      TR 2 (CA) ME12 NO - CE
                           6.
                  lim
                                          = lim louts
                                                 2->2
                                                 11m 11-23
                                                 n→2
                                                                    o - ( ist factio and a Corp mil ...
               lim (8-32)(22-1)
              x->2/3
                          = lim (8-39) x lim (2n-1) Palenallal add to timil all bail o
                             92->2/3
                                                                    2 ->2/3
                                                                                                                                           1-19 00 (E-10) d
  8. /lim 42/32/14)2
          カーシナシ
                        = lim (4m) of lime (3m +4) aream the Brech
                       = tin hx - /2 (-3x-1/2 +4) 2 (8-x) [-2x-1/2 +4]
                     = -2 \cdot \left( \frac{-3 + 8}{2} \right)^{2} = -2 \cdot \left( \frac{5}{2} \right)^{2} = -2 \times 25 = -25 = 0
9. lim (5-y)4/3 (3-10) = 0-01-108-10-6 (2)
       3-3-3 -3 | 4/3 tours of 1 | 5- (-3)) 4/3 = 6-10 (81) 4/3 = (25) 4/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/3 = (25) 1/
                                                                                                                                       P=25 (N b) (005) D
                                                       download from ktuspecial
```

10.
$$\lim_{h \to 0} \frac{3}{\sqrt{3h+1}+1}$$

$$= \lim_{h \to 0} \frac{3}{\ln m \sqrt{3h+1}+1}$$

$$= \lim_{h \to 0} \frac{3}{\ln m \sqrt{3h+1}+1}$$

$$= \lim_{h \to 0} \frac{3}{\sqrt{1+1}}$$

21.
$$\lim_{x \to \pi} \sqrt{x_1 2} \left\{ \sin(\frac{x}{2}) \right\}$$

$$= \sqrt{\pi + 2} \times 1 = \sqrt{\pi + 2}$$
22. $\lim_{x \to -3} \frac{2 - \sqrt{x_1^2 - 5}}{2 + 13}$

$$= \lim_{x \to -3} \frac{2 - \sqrt{x_1^2 - 5}}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -3} \frac{(2 - (\sqrt{x_1^2 - 5})^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -3} \frac{(2 - (\sqrt{x_1^2 - 5})^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -3} \frac{(2 - (\sqrt{x_1^2 - 5})^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -3} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -3} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -3} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -3} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -1} \frac{(3 + x_1^2)}{(x + 3)(2 + \sqrt{x_1^2 - 5})}$$

$$= \lim_{x \to -$$

 $\lim 2\sin n$ if $\lim 1-\frac{n^2}{6} \leq \frac{2\sin n}{2-2\cos n} \leq 1$ CHILD + IX STILL = 7170 2-20057 gind & find & hind lim qm): lim 1-22 = 601-0=1 (250/12) (2500-0) adl -(15x7 + 2) (1+10) lim h(n) = lim 1 i. Sim 12 Sin 71 = (32 5) = (3 n→0 2-210)n (10.0) = | (2.0) E = 011 = (3.0) E = R tovaluate $\lim_{n\to\infty} \frac{8n^2 + 2n + 1}{2n^2 + n + 1}$ if in finity is in denomiter = 0 11m 8n2+2n+1 n→0 n2 222+21+1 22 3+2+1 = -18+0+0 = 3/2 2+1 + 1 = 2+0+0 = 3+ 12 1 2+ 1 1 1 12 = tim - (4-1) x = = tim -t lim 4x2 - x+2 2x2 +3x -1 a. lim We can together dream the B. Tests $= \frac{4n^{2} - n^{2}}{n^{2}} + \frac{2}{n^{2}} +$ $\lim_{n\to\infty} \frac{4n^2 - n + 2}{n^2} = \frac{4n^4 - n}{n^2}$ N2 2+3/2-1/2 2+0-0 - 1/2-2 2+3/2-1/2 2+0-0 - Production Contri OR 1/m 37 (4 - 1/2 + 2/2) = 4-1/2 + 2/2 = 4-0+0 = 4/2-2

2/2 (2 + 3/2-01/2) load from the special 2 +0-0

```
Right - Handed Continuity
                    A function fon) is continuous from the right at n = a if
                                             (1-1: + + H) R
                       lim fin) = fia)
           Left-Handed Continuity
                      A function fund is said to continuous from the left at nead
                          lim find : find : find the find find find the
                                                     * lim (w) is defined
       Q. Determine this the function fun) is continuous from the left at n=2.
          f(n) = 32 +3 ; n<2
            from lim from = dim f(n2+3) = 2^2+3 = 4+3 = 9
                  f(2):5
                                                        (6) = (13)
               => lim fm) + f(a2)
              ·· f(x) = lim for It is not cont left - continuous ....
function (m) : I'm check the continues of the function at not
     Q. Determine if the function f(x) is continuous from the right at x=-1.
                       gen)= { Sin xog; tax &e-1 the B tech = N = xi (1)}
            \lim_{n\to -1^+} f_{(n)} = \lim_{n\to -1^+} f_{(n^2)} = (-1)^2 = 1
\lim_{n\to -1^+} f_{(n)} = \lim_{n\to -1^+} f_{(n)} = (-1)^2 = 1
\lim_{n\to -1^+} f_{(n)} = \lim_{n\to -1^+} f_{(n)} = (-1)^2 = 1
               if f(n) = Yn is continuous at ac s(i-) } f(n) }
               :. the function gens is not right continuous.
     Q. Determine if the function fun = {32-9; 12131 dollis continuous from the eight
                                       12-62+9; 9273 John wood (0) 7:
         lim fm) = lim f (n²-6x19) = 1849 9-1849 = 000 : 2-33 two load from ktuspecial = 000 :
```

One-Sided Limit

$$f(3) = 3 \times 3 - 9 = 0$$

 $\lim_{x \to 3^+} f(x) = f(x3)$

i function from is eas right continuous at or = 3:

Q Determine if the function fix) is continous from the left at n = 1

3- 4 = mx | x +1 | + 8inx

+ 13 = 13tr11 = 2

Etickela 1.2

 $\lim_{n\to 3} f(n) = \lim_{n\to 4} 2n+1 = 2+1 = 3$

lim f(m) = fu) " to all on all on other inition (u) = (m) mil mil = (m) = mil mil = (m) = mil = (m) = mil = (m) = mil = (m) = (m) = (m) = mil = (m) =

.. The given function is left continuous at n:1.

Continuous timetion de la continue de settembre prominossia was only single

A function is called continuous if it is continuous out every point in domain. The domain of a function is a set of all input values for which the function is defined.

Consider the function from and is continuous at every point in its domain (its domain is the set of all real numbers). Therefore find = 92 is a continuous function. We can together dream the B.tech

Consider fini? 1/21 is not a continuous function, because it is not continuous at n=0. i.e, f(n) = 1/2 is continuous at everypoint except n=0. n=0 is called the point of discontinuity or the function has a discontinuity .. the function is continuous at all points except the of relitaria.

Q. At what points are the Pollowing functions y fm) continuous.

n-2=0 > A n=2 is the only point of discontinuity .. the function is continuous at every point except n=2.

```
0 = F- Ex & = (0)7
                                                 (BAS) - (10) 1111
             ٠١ ر8 = ي
           i. the function is continuous at every point encept a and 3.
       3. | y = ADC | 21+1 + Sin 2
            the function is continuous at every points.
         hu, the denominator
                      , for all or also the limit onists
            i. the function is continuous at every point.
                   . The given function is afte continuous as so ..
          the funtiere the denominator vanishes at 12 = 0
                2=0 is the only discontinuous point
          .. the given function is continuous at every point except or = 0.
 in dumain. The domain of a function is a set of all import values
                               for which the function is defined.
when n = 1, y = tan Tt , the limit does not exist it ishicie
the function is not continuous. I see sai il aisonos is)
                                                         · adiasawit
            when n=3, y=tam312, also distontinuous
the function is discontinuous at all point where ton is
at in caued the point of discontinuity of the function has a discontinuity
           .. the function is continuous at all points except the odd integers:
        of At what points are the following twartions yo (in) continuous.
            download from ktuspecial
```

Derivative site of the service of a curve is and and (11) - (d + 1 1) rd = (1)] The derivative gives the rate of change of a function Pin) with respect to on at n = x, denoted by f'end). The rate of a function or the derivative of a function fund at n.a is defined by ficar = lim flath)! Flat All the Pollowing are the interpretations for the limits of the difference quotient or f'(a) = lim f(a+h)-f(a) -> 1st principle of differentiation 1) The slope of the graph y = fon) at x = a 2) The slope of the tangent line to the curve y = fin) at n = a

3) The rate of change of fix) at n = a 4) The derivative f'(x) at x = at. - Cut to side out the form Qr find the derivative of fin) = in2 at n = 2 using the 1st principle of differential f(2) = lim f(e2+h) = f(2) 1 = 1 × 01 - h · · · · = (isth) = lim (2+b)2-4 defining 12 minus of home home for the brief to svitovised suit built and Q2. Find the derivative of f(x1) = \(\na \text{ at } n = 4 \text{ uoing 1st principle} \). (dif)(9) = 11th f(44h) - f(4) unis - (di o) unis unis = $\lim_{h \to 0} \frac{\sqrt{h+h} - 2}{h} = \lim_{h \to 0} \frac{\sqrt{h+h} - 2}{h \to 0} \left(\sqrt{h+h} + 2 \right)$ = lim (VHIh)2-(2)2 = lim H+K-H lim lim thinhit
h>0 H(H+h+2) h>0 H(H+h+2)

```
Qs Find the derivative of Sin) = 3n2+2n at n=1. wing 1 prinuple.
                                                                                                                                                                                                            f (14h)=
                               P(1)= lim f(1+h)-f(1)
                          11: desirative direct operate of a function of a function of the miles
                                         = lim $(8+2h) - fgx12+2x1 100 20 1im f 3+2h -5 01 100 3(1+6) +16
               out to Confined by +2(ith) - (3x1+3x1) out to confined be for still by the city of the cit
                                           = lim 3(1+2h+h2) + 2+2h - 5 11 = lim 3+6h+3h3+2+2h-5
                                                                                                                        (1) - (h) - mil - (b)h
                                                h→0
                                           = lim \\ \tau + 8h + 3h^2 - \tau = \lim \\ \K (8 + 3h)
                                                                           1) The stope of the graphed for adole age (1
                     The slope of the tangent line to the curve q = fin) at a = a
                       of find the derivative of from = 1/2 at n=2 using it first principle.
Hodanstib to f(2), it lim fi(2+h) - fu), to=film of/2+hovido/2+b soil buit
                                                                                 2- (2th)
                                                          h=0 (21h)2
                       Qi find the derivative of sin) = sin 2 at 2 0 uoing 1st principle.
                                    f(0) = lim f(0+h) - f(0)
                                                               = lim Sin (0 +h) - Sin 0 (1) - limit
      (chather) (chather) and - 2 orige will

(chather) ord
                       limissinh solih (1) hopo costh [by using L-hospital Rule]
```

Qu' find the derivative of P(n) . In x at n = 1. using it principle: f(1) = lim f(1th) - f(1) Using L-Hospitals Rule) = 1im In(1th)-In1 lim Inlith) - Du - och = lim /1th = 1 = 1 = 1 ifferentiation Sims-Dule: de (fix)+g(x)) = de fix) + de g(x) = f(x) + g'(x) Difference - Rule: d (fin)-gin) = d fin)-d gin) = d fin)-d gin) 7(0) = in lar /2 - (max 30)

Constant Rule : d (1) = 0

Constant x lication Rule: d (kfin) = Kd fin) - kfin)

Product Rule: de sin).gin) = de sin) de gin) + gin) de fin)

Quotient Rule: d. fon? = g(n) f'(n) - f(n)g'(n)

[g(n)]2 (g(n))2

Power Rule: din (nn) = mon-1

s lind the derivative of find : " Enth Q. Find the derivate of jon - 5n1 1000 fr - 60 - 1000 (1) Q1. Find dan of Pm) = 12213) since 1, will set to agold set built a

fin): 2n3. cos x to sinh of rom ktuspecial = 2n3cos n + 6n3. sim

Q3. find dan of Fens (11) - (dt 1) 1 mil = (1) 4 Find = e cosn riel - (dillat will = fin) - cf-sinn) + : cosnie = encosn - ensinn = en (cosn-sinn) 2. f(n) = en/2 = en(n2- 2x) = 84 (e mn - 2en) (4) + (4) + (4) + (4) + (4) + (4) + (4) + (4) + (4) 3. fcm) = lmn () = () fin) = mlan/2 - monx 392 = n2 - 3n2 mox = n(1-3 mn) = 1-3 mn (10) H (10) Little (10) 1 Le (10) 1 Me I woithous no 4. Find the slope of the curve y = no at n = 3, find the slope of curve y = 22 at x Pla): lim flath) - flat) = (1) + (2) = si2/sinn ... 11 4 = sinn al n = T/4 = lim f (3th)2-(3)2 | ABDUL | lim f (14+6h+b2) - 4 1011000 = lim 6h th2 = 6x lim x (6+h) = 6+0 = 6 5. Find the derivative of find = 22/sina $f'(n) = 20 \times \frac{\sin n \cdot 2n - 2^2 \cdot \cos n}{\sin^3 n} = \frac{2 \times \sin n \cdot - n^2 \cdot \cos n}{\sin^3 n}$ 6. Find the slope of the curve y = singulating The lim dy = cos x
at x = 11/4 des vanload from ktuspecial

Higher Order Derivates
Higher Order Derivates The first order derivative of the fary = fin) is denoted by dy or y'or f'cas. Again differentiate this first order with respect to a we get the
fral. Again differentiate this first order with respect to a . We get the
second order derivatives dy or you f"(2), again differentiale the
Second order derivatives dy or y" or f"(n), again differentiate the second orde wirth n, we get dy or y" or f"(n) and so on.
find the fourth order derivative of the function.
y = 3915
$y' = i5x^4$ $y'' = 60x^3$ [xoiz - xous] = 2 = [xoiz - xous] = - xous] = - xous] = - xous
y"= 15x4 [xoiz - xoos] " = [xoiz - xoos] = [xoiz - xoos] = - xoos
U" - 4 180 %
8,000 = 36001 = 36. [10115 - 10115 - 10115 - 1015
20 10 12 1 20 - 20 10 10 1 20 10 1 20 10 10 10 10 10 10 10 10 10 10 10 10 10
Find the ist order and and order derivative of fond = 1/x.
$f'(x) = -\frac{1}{x^2}$
$\beta''(y) = \frac{\chi^2}{(\chi^2)^2} = \frac{\chi^2}{\chi^2} = \frac$
Cal 10 and a cal 1
find the third derivative of fix) = n5-4x3+2
f(x) = 5x-12x+1
P(n) = 5-12 2023 - 242 can together dream the Blech
$\beta'''(x) = \frac{60x^2 - 24}{120x^2 + 24}$
Find the derivatives of all orders of $y = \frac{n^4}{3^2} - \frac{9n^2}{200} - n$ $y' = \frac{4n^9}{3} - \frac{6n}{2} - 1 = 2n^3 - 3n - 1$ $y'' = 6n^2 - 3$
$y' = \frac{2191^9 - 691 - 1}{3} = 291^9 - 391 - 1$
u" = 692-3
$q^{n0} = 12n$

y""- 12
y""'- 0
download from ktuspecial

Q-

Q.

Q.

Q.

```
Find the 4th derivative of y = ensing.
           = en cosn + sinnen = en [con + sinn)
                                    second order derivatives $4,000 pourse
11:0
       dx = ex (-sinx + coix) + (coix + sinx) e.
                                                     we there are being
            =- e sinn + e com + e com + e sinx
                                that the fourth order derivative of the function
            = ລະແວນ
       \frac{d^3y}{dn^3} = 2\left[e^{2x} - \sin n + \cos n \cdot e^{2x}\right]
= 2\left[e^{2x} \cos n - e^{2x} \sin n\right] = 2e^{2x}\left[\cos n - \sin n\right]
              = 2e7 [-sinn - coin] + [coin-sinn] . 2e2
              =- 2 ensina - 2encosa + 2encosa - 2ensina
                            thed the ist order and and and derivative of the
       Find the third derivative of P(n) = 213 lnn
         6(2) = 3/3 + pws . 3 2/3
                  22 + 322 pux
          f"(n) = 2n+ 62 3n2. 1+ mn. 62
                                                  to saturate bout all built
                 = 27x+37x+lan671/17x
    Q. Find the 1st order derivative f(m) = \frac{n^3}{\sqrt{n^2 + 1}} and \frac{1}{\sqrt{n^2 + 1}} and \frac{1}{\sqrt{n^2 + 1}} and \frac{1}{\sqrt{n^2 + 1}} and \frac{1}{\sqrt{n^2 + 1}}
```

Instantancous Pate of Change

Chair - Luke

8 - (C+RE18 -

Chain-Rule

Find the derivative of y = 13m+2).

$$y = (3\alpha + 2)^{3}$$

$$\frac{dy}{dn} = 3(3\alpha + 2)^{2} \frac{d}{dn}(3\alpha + 2)$$

$$= 3(3\alpha + 2)^{2} \cdot 3$$

1= 0x5 y = f 3n+2)3 (1) f(n) = 213 u(n) = 189

Turpian (proportion)

dy de du E 3 m2 x 3

9 u2 = 9 3 nt)

du eon

201 - 001 - (T) - D

du du costa

8:01-001-8=3/17/0

$$\frac{dy}{dn} \cdot \frac{1}{2\sqrt{5n^2+3n}} \cdot \frac{d(5\cdot n^2+3n)}{dn}$$

```
Q; y= langa+1)
                                                                           Inaplied Differentiation
         dy sec (2011). d (2011)

dn sec (2011). 2 = 2 sec 20 (2011)
     Q 4=215in 2 + 21 cos 2
                                                                                 : to stoving of hot D
          = ncosta + sinta - nsinta + costa + costa = 1)
           = \alpha \frac{d}{dn} \left( sin^4 \alpha \right) + sin^4 \alpha \cdot \frac{d}{dn} (n) + \alpha \cdot \frac{d}{dn} (cos^2 n) + \frac{d}{dn} cos^2 n \cdot \frac{d}{dn} (n)
            = n.45in2 · d (sinn) + 8in n.1 + 2. -2 cos x. d (com) + cos x · 1
         = 2.45in 2. cos x + sin x ++ 22c22 cos 2 5052 + cos 2
= 71. 4sin 3x cos + sin 3x + 28in 7x + 1.
  \theta^{4} \int cos \theta = \left(\frac{1+cos \theta}{\sin \theta}\right)^{2}
       a) diff the equi of the chipellines as to implicate the estimate the estimate of the color
         \frac{df}{d\theta} = a \left( \frac{\sin \theta}{1 + \cos \theta} \right) \cdot \frac{d}{dm} \left( \frac{\sin \theta}{1 + \cos \theta} \right)^{\frac{1}{2} + \cos \theta}
                  = 2 (sin 0) (1+ cose) cose - sine (0 + sine)
                     2 (sine) (1+(010) (010 + sine 2 (sine) 6010+(010) 4 sine
                 = \frac{2(\sin \theta) \cdot 1 + (0 \cdot \theta)}{(1 + (0 \cdot \theta))^2} = \frac{2(\sin \theta)}{(1 + (0 \cdot \theta))^2}
     y = \pi \tan 2\sqrt{\pi} + 7
\frac{dy}{dn} = \pi \lambda \sec^{2} 2\sqrt{x} \cdot \frac{d}{dn} 2\sqrt{n} + \frac{d}{dn} (7)
= \pi \sec^{2} 2\sqrt{n} \cdot 2\sqrt{n} \cdot 2\sqrt{n} + \tan 2\sqrt{n} \operatorname{pecial}
= x \sec^{2} 2\sqrt{n} \cdot \frac{1}{\sqrt{n}} = \frac{\pi \sec^{2} 2\sqrt{n}}{\sqrt{n}} + \tan 2\sqrt{n} \operatorname{pecial}
 Q. y = 2 tan 2 /2 + 7
```

Implicit Differentiation

(1 5 wal b. (1, 102) 752 ... (b) It is used when a function is given in an implicit form. meaning, it is not solved for I variable in terms of the other.

(1+ railed h)

Q. Find the derivate of:

n2+y2= r2 implicity to find dy/don.+ (1-00000 + 1000000).

diff both sides with respect to 92.

| => d (n2+y2) = d (12) 4 (m2) + 4 (y2) = 4 (+2)

292 + 24 du = 0 200 - 200 - 200 - 200

2y dy = 1-2% Paris + 100 100 Paris P

dy . - 21/y

diff the ean of the elipellipse n2 + y2 =1 impliciflytto finglidylan

diff both sides with respect to ocally b. (Brish & 36 $\frac{d}{dm} \left(\frac{m^2}{a^2} + \frac{d}{dn} \right) = \frac{d}{dm} \left(\frac{m}{a^2} + \frac{d}{dn} \right) = \frac{d}{dm} \left(\frac{m^2}{a^2} + \frac{d}{dn} \right) = \frac{d}{dn} \left(\frac{d}{dn} \right)$

 $\frac{\partial^2 ai^2}{\partial t^2} = \frac{\partial^2 a$

 $\frac{1}{a^2}2n+\frac{1}{b^2}\cdot 2y\cdot \frac{dy\cdot z_0(0)}{dn} = \frac{0(0)+1}{(0(0)+1)} \cdot \frac{(0(0)+1)}{(0(0)+1)} = \frac{1}{(0(0)+1)}$

24 dy = -2n/22 $\frac{dy}{dn} = -\frac{2}{a^2} \frac{1}{(1)} \frac{b}{b} + \frac{1}{(1)} \frac{b}{b} + \frac{1}{(1)} \frac{b}{b} + \frac{1}{(1)} \frac{b}{b} = \frac{1}{(1)} \frac{b}{b}$ O HENDOSYN + 7

download From ktarpecial

Sular) : 00.19 diff both sides with respect to or d (22+24-142) = du (1) 11 + (pro) corp + proper 2000 d (n') + d (ny) + d (y) = 0 = 10 - 10 (no) core 2n + n·dy + y:1 + 2y dy = 0 - (po) 1010 10 221+ 204 + y + 2y dy - 0 2n+y+dy (x+2y)=0 dy (2+24) =-201 74 50 = (4-2) 50 (3 dy = -2n-4 100 hrs - 20 8 = 103 . (h. 16) . [hphr - 1] . 26 on - 12 god : 27 - 274 - 274 - 27 day 4) n2 y + y 3 = 7 d (2) + d (y') = d (7) 2 dy + y-2n + 3y dy = 0 n² dy + 3y² dy = - 2my 100 m2+3y2-10) + (p-10) 1 (p 10) 50 Tro his - xxx = 16x (2, h-1) + [2/hp -1] (h-1) , 68 cos (my) - d (my) = 1 + dy costny)[ndy + y]= 1+ dy/dn Cose n'ay - dy = 1 - rasing) - y. =?

302(my) [ndy + y] = 1+dy Sinlary): orty du so of suggest affice cobie atois Hilb ncostryldy + y costry): 1+ dy (1) 10. [1] 10. $\pi \cos(my) \frac{dy}{dn} - \frac{dy}{dn} = 1 - y \cos(my)$. dy (neos (ny) - 1) = 11-ycos (ny)+ 100 10 + 100 dy = 1-ycos(my)
nios(my)-1 n2(x-y2) = n2 -y2 dy (n' (n-y2)) = d (n')-y2) n? [1-2ydy]+ [n-y'). 2n = 2n - 2ydy 2-222ydy + 222-2242 = 22 - 2y dy L = Fhillip ay dy - 222 y dy = 222-22-22-227 = 224 dy (2y-22y) = 2/2 22 22/2 2 2 (2 - 21 - 22 + 2y) dy = 21/2-21 2n-22-22/212242 3h- 3 (23h) 92 (n-y) of (n-y) + (n-y) 2n = 2x - 2y dy 222 (21-4) [1-dy/dn]+(21-y2) 22 02 22-24 dy 22 (2-4) - 22/2(21-4) the + 24 th = 22-34 th 22/21/20 -1 - 22/20-4) dy + 24 du = 22 22 - 22 (22) an [ay-22/2/2-4)] = 2n-2n(n-y)2-222(n-y)100 dy = 22,722 (n-4)2 -22,7 (2 -2). ay-an'(n-y) miles

```
Egr of romal line
             Tangent hine 2nd Normal hine
                                                                                                                    (1-10) T- = 9.16
              Equation Of Tangent hine
                                                                                                                      15. + _ C = {
               The ean of the tangent line to the curve y = fin) at the point (norgo)
               is given by (y-yo) = f'(no) (n-no) where f'(n) is the slope of the
            tiquation of Normal hine
                  A normal line to a curve at a given point is the line that is Lar
             to the tangent line at that point the slope of the normal line is
                     the eve reciprocal of the slope of the tangent line. and the ean
                     of the normal line 13
                                    (y-y_0) = \frac{1}{f(x_0)}(x-x_0)
   A propulie is launted its beight till in meters is given by the for
Q. Find the eqn of the tangent and normal, lines to the curve y = 912 at the
            two gent line and the normal line the curve at the sail target
               Egn of tangent line : y you = of (no) lon-no) 12 - = (of jan) = 20
                                                                           y-1 = 8(m-1) 0 5+ 101- = (1) + (mo) = f(1)=2
                                                                              4 = 20 = 2+1 UC+ CXU1- (
                                               y=2x-1 (05-16)0 = 31-17
                  Fign of normal line: y-yo = -1 (n-no)
                                                     2 mil 15 min y = 15 = 10 (n- 16)
API ABOUL KÄLAM

1 + Mr = 1 + 
          find the eqn of tangent and the normal lines to the wive y = 91^2 + 321 + 2 at 21 = 1.

Clib)

\Rightarrow y = 1^2 + 321 + 2 = 6
              y-yo = f'(no) (y-yn-no) (" (n) = 2n 13 + "
                y - 6 = 5(n - 1)
y = 5n - 5 + 6
y = 5n + 1 download from ktuspecial
```

Eqn of normal line

$$y-6=-\frac{1}{5}[n-1)$$
 $5y-90=-n+1$
 $y=-\frac{\pi}{2}+\frac{31}{5}$

Since the eqn of tangent and normal lines to the curve, $y=e^{\pi}$ at $n=0$
 $y'=e^{\pi}$

A projectile is launthed its height htt) in meters is given by the function, hell $y=-5t^2+20t+29$, where $t=-\frac{\pi}{2}$ is the size of the size of the size of the function.

A projectile is launthed its height hell in meters is given by the hill) = -5t²+20t+28, where this the time in Secondo. Find the equation the and the normal line to the curve at t = 25.

that = -5x4+20x2+15=-20+40+25=145

hit = -10t+20

y-45=0(n-20)

y=45

Y-45=-16[n-2)

Not defined

Not defined

Page 15 the time in Secondo. Find the equation is a secondo. Find the equation is

The eqn of normal line is not defined (Since the tangant line is horizontal the normal line is vertical) therefore, the eqn of the normal line is t=2.

Find eqn of langent and normal line to the curve $y = \sin n$ at $n = \pi / 4$ $y = \sin \frac{\pi}{4} = 1/2$ $y'(n) = \cos n$ $y'(n_0) = \cos \pi / 2$ $y'(n_0) = \cos \pi / 3$

Eqn of tangent time

$$y - y_0 = \frac{1}{(n_0)} (n - n_0)$$

$$y - \frac{1}{v_2} = \frac{1}{v_2} (n - n_0)$$

$$y - y_0 = \frac{1}{f(n_0)} (n - n_0)$$

Linearization

Linearization is a method is used to appr. the value of a function mear a given point using its derivatives. For a function fin) that is differentiable at on = a, the linear apprimation (linearization) of fin) near n = a is given by L(x) = f(a) + f'(a)(n-a). hin) ~ fin) at off

Straffer

Q. Linearise
$$f(n) = \sqrt{x}$$
, at $n = 4$.

$$L(x) = f(a) + f'(a)(n-a)$$

$$= 2 + \frac{1}{4}(n-4)$$

$$=$$

approximation personners in cost to an year the Bon in a appress of the to estimate the performance in a ment some

kinearise
$$f(n) = e^{2n}$$
 at $n = 0$

$$f'(n) = e^{\pi}$$
. We can together dream the B.tech

$$f'(0) = e^{0} = 1$$

$$f'(0) = 1 + 1(n-0)$$

$$L(n) = 1 + 1(n - 0)$$

$$= 1 + 2$$

$$= 100 + 2 + 001 = 0$$

Linearise fin) = hon at n = 1

$$f(0) = m_1 = 0$$

 $f'(x) = \frac{1}{x}$

$$f(n) = \frac{1}{n} = 1$$
 $h(n) = 0 + 1 (n-1)$

download from ktuspecial

hineanise
$$f(n) = \tan \alpha$$
 at $\alpha = 1$

$$f'(\pi/4) = \tan \frac{\pi}{4} = 1$$

$$f'(\pi/4) = \sec^2 \frac{\pi}{4}$$

$$f'(\pi/4) = \cdot 2$$

$$f(\pi/4) = \cdot 2$$

$$f(\pi/4) = 1 + 2 | \alpha - \pi/4 |$$

$$= 1 + 2\alpha - \frac{2\pi}{42}$$

$$= 1 + 2\alpha - \frac{\pi}{2}$$

The resistance R of a resistor is given by R(T) = e0.17 where T is the temperature in oc linearize the function at T = 25 to appx. the resister for small temperature changes around the point.

(No - 6) 0 = 7 - 6

1 2 N - W 2 1 1 - N 2 2 1

L(1) = R(a)
$$r R'(a) (\pi - a)$$

= $12 \cdot 182 + 1 \cdot 218 T - 30 \cdot 45$

= $12 \cdot 18 \cdot 268$

R'(1) = $e^{0.17} \cdot 0.1 = 0.1 e^{0.17}$

R'(25) = $0.1 e^{0.12} \cdot 25$

R'(25) = $0.1 e^{0.12} \cdot 25$

R(25) = $e^{0.12} \cdot 25$

R(25) = $e^{0.12} \cdot 25$

R(25) = $e^{0.12} \cdot 25$

Esuppose a city's population Plt) in too thousands is given by the eqn plt) = 100 e 0.02t where 'l' is the number of years. Find the linear approx. Of the population in at f = 0 in year 2020. Use this linear approx. of the to estimate the population in the year 2021.

$$P(t) = 100e^{0.02t}$$
 $P(0) = 100e^{0.02 \times 0} = 100$
 $P'(0) = 100 \cdot e^{0.02 \times 0} = 100$
 $P'(0) = 100 \cdot e^{0.02 \times 0} = 100$

L(t) =
$$P(a) + P'(a) (t-a)$$

= $100 + 2 (t-0)$
= $100 + 2t$

Estimated population in the year 2020 = 100+2t.

hinearise fin) = sina al m=on / : con to privación of menoso of f(x) = cosa => f'al - con # = 1/3 col - 5.8 = (10)? P(a) = Sin # = 1/2 = P(a) + P(a) (x-a)= $\frac{1}{2} + \frac{1}{2} (n - \frac{\pi}{6}) = \frac{1}{2} + \frac{1}{2} (n - \frac{\pi}{6})$ L(x) = P(a) + P'(a) (x-a) (ou , o) ... to solution 2: 9 (e . wo I to much expines +12 Concavity Coneavity describes the curvature nature of a graph of a function. A Function may be concave up or concave down. f 200 = 1 concave up (convex) P (00) = -1 Inflexion (ocas 107 penerot 3) f(x) = e x The second Derivative Test for Concavity Let y = fcm) be a twice differentiable function on an interval 1, (i) If P"(x)70 on I, the graph of f on I is concave. up. (ii) If f"(n) (0 on I, the graph of fover I is concave down. (iii) If f"(x)=0 or f"(x) is not defined; then this points are known as APJ ABDUL KALAM O > (x) 7 (x) x of Inflexion points. a. Determine the concavity of fish = 302+4; (it contains down on (-1/3, 45) 1 - 1 = (mit GA for asi, fillaso) it is concave ap. P300 = 6 - 206 For aci, f"(x) 2 b o fois concave down . 2- " == (R) 7 (P. B) concave up on (1,00)

```
Q. Determine the concavity of fund = 20 - 622+92611112 = (10)
                                          f(n) = 3m2-12n+9 = 100 · (u)
            y)
                                                                                                                                                             1 = 1 ais = (D) 7
                                          f (n) = 6x - 12
                             for x >2, f"(x)>0
                                                                                               (D-31 (D) 7 7 (D) 2 = (D) 1
                              for x <2; f"(x) <0 - 4 . = (4) -10 / (6) =
                                fis concave up on (2, 00)
                                fis concave down on (-00, 2)
                                                                                                                                                                                              phiromo
         2) fem = ln'(n) ; for x>0. won a misoring and radio cop piraconol!
                                                                           function may be consuled or consoled during
                                                                     Castros) cho (routes)
                                                                    for (x>0), f'(n) <0
                                                                        f'is contave down (0,00)
                                                                                                               Contast games
             3) f(n) = e 22
                           f'(x) = e. -22 plines of interior interior of 2 deals willing in 2 moise and
                     = \frac{-n^2}{-2e} + 4n^2 = \frac{-n^2}{-2e} + 4n^2 = \frac{-n^2}{-2e} + 4n^2 = \frac{-n^2}{-2e} + 4n^2 = \frac{-n^2}{-2e} + \frac{-n^2}{-2e} = \frac{-n
                                    = 2e<sup>2</sup> (2n<sup>2</sup>-1)
for 23 / ("(n) > 0 We can together aream
                             for n2 (1/2 f"(x) (0
                             fis coneave up on (-00, 1/2) U (1/2,00)
                              fis concare down on (-J's, J's)
                  fin) = e - n2
                      Pin) = e2 - 2x
                                                                                         P(n) = 0 10 10 10 10 102 1 1 "(n) > 0
                                                                                        f"(n)=en-2
                                                                                                                   P'is concave up on & (104 00)
                                                                                                   n=ln2 f is convave up on : (-0, ln2)
                                                                        download from ktuspecial
```

Q Find the eqn of the tangent line and normal line to the curve 6213oy + 297 174-6-0 at (-1,0) f'(n) = 12n + 3 (dyz+ y) + Hyd+ 17 dy + 1100 5v - 108 = (10) 9. a 1291 + 8 dy xtry + 4y dy 1 17 dy, = 0 3 dy xt 4y dy + 17 dy = -12 x 3y dy (374 44 +117) = -122 34 127 7 = dy = - (127 +34) 2 1 EV + = (26,00) } Egn of largon line f(xo, yo) = -(12x-1+3x0) = 12 = 6 3x-1 14x0 117 (ex - nc) cx4- = 6. 1 y-y0 = f(no,y0) (n-n0) y-0= = = (2-1-1) Egn of normal line