Technology Stack for Global Food Production Analysis in Power BI

To build a **Global Food Production Analysis** system using **Power BI**, the following **technology stack** is recommended:

1. Data Sources & Ingestion

External Data Sources:

- **FAO Database** Global food production statistics
- World Bank Open Data Agriculture & economic insights
- UN Reports & Government Data Policy, food security, and climate data
- **IoT Sensors & Satellite Data** Real-time agriculture monitoring (weather, soil, crop health)
- CSV, Excel, API Integrations Custom datasets

Lange 1 Data Ingestion Tools:

- Power Query Extract, transform, and load (ETL) data into Power BI
- Azure Data Factory Automate data ingestion from multiple sources
- SSIS (SQL Server Integration Services) ETL for on-premises and cloud data
- Python & R Custom data ingestion and preprocessing

2. Data Storage & Processing

Cloud & On-Prem Storage Solutions:

- Azure Data Lake Scalable storage for large historical datasets (1961-2023)
- SQL Server / Azure SQL Database Relational database for structured storage
- Snowflake / Google BigQuery Cloud-based data warehousing
- PostgreSQL / MySQL Open-source database alternatives

Data Processing Tools:

- Power Query (M Language) Data transformation within Power BI
- Apache Spark / Databricks Distributed processing for big data analytics
- DAX (Data Analysis Expressions) Custom calculations & modeling in Power BI

3. Data Modeling & Business Intelligence (BI)

- Data Modeling Techniques:
- Star Schema / Snowflake Schema Optimized relational database design
- Fact & Dimension Tables Efficient querying and reporting
- DAX Functions Measures & calculated columns for KPI calculations
- BI & Visualization Tools:
- Microsoft Power BI Interactive dashboards and reports
- **Power BI Dataflows** Preprocessing and centralizing datasets
- **Tableau / Looker (Optional)** Alternative visualization tools

4. AI/ML & Advanced Analytics

- **AI & Machine Learning Tools:**
- Azure Machine Learning Predictive analytics and AI-powered forecasting
- Python (Scikit-learn, TensorFlow, Pandas) Data science and machine learning modeling
- R (ggplot2, caret, tidyverse) Statistical analysis and visualization
- **AI-Powered Features in Power BI:**
- **Power BI AutoML** Automated machine learning for trend forecasting
- Cognitive Services (Azure AI) Text analytics, sentiment analysis for policy insights
- Anomaly Detection Identifying irregular patterns in food production data

5. Security & Governance

- Data Security Tools & Compliance:
- Azure Active Directory (AAD) Role-Based Access Control (RBAC)
- Row-Level Security (RLS) in Power BI User-based data access restrictions
- Data Encryption (TLS & AES) Secure transmission and storage
- Compliance Standards: GDPR, FAO Data Guidelines, ISO 27001

6. Deployment & Automation

✓ Deployment Platforms:

- Power BI Service (Cloud) Publish reports and manage access
- On-Premises Power BI Report Server Secure on-prem deployment
- Azure Synapse Analytics Data warehousing & big data processing
- **Automation & DevOps:**
- **Power Automate** Automate data refresh and report distribution
- Azure DevOps / GitHub Version control for Power BI models
- **CI/CD Pipelines** Automated deployment of Power BI reports

Summary of the Technology Stack:

Layer Technology

Data Sources FAO, World Bank, UN Reports, IoT Data

Data Ingestion Power Query, Azure Data Factory, APIs

Data Storage Azure Data Lake, SQL Server, Snowflake

Data Processing Power Query, DAX, Apache Spark

BI & Visualization Power BI, Power BI Service, Tableau (optional)

AI/ML & Forecasting Azure ML, Python, R, AutoML

Security & Governance Azure AD, Row-Level Security (RLS), GDPR Compliance

Deployment & Automation Power BI Service, Azure DevOps, Power Automate