Fork and D/y/d Connected Transformer Supplied 12-Pulse Uncontrolled Converter fed Retrofit Vector Controlled Induction Motor Drive: A Comparative Study

Aekamdeep Kaur
Department of Electrical Engineering,
Giani Zail Singh Campus College of
Engineering and Technology MRSPTU
Bathinda, India
aekamdeep897@gmail.com

Yugal Gupta
Department of Electrical Engineering,
Indian Institue of Technology Kanpur
Kanpur, India
yugalgupta96@gmail.com

Sumit Ghatak Choudhuri, SMIEEE
Department of Electrical Engineering,
Indian Institue of Technology Roorkee
Roorkee, India
sgceefee@iitr.ac.in

Abstract— This paper presents a comparative investigation when a 12-pulse, uncontrolled converter fed retrofit Vector Controlled Induction Motor Drive (VCIMD) is supplied from D/y/d and Fork transformers, respectively. The study proves that Fork configuration results into reduction of total transformer magnetic rating when compared to D/y/d configuration, at almost same power quality performance level, observed on Full Load (FL) and Light Load (LL), respectively. VCIMD performance is compared under starting and load perturbation modes suitable for various industrial applications. The investigation is realised in MATLAB environment using Simulink and Sim Power System (SPS) toolboxes in Discrete Time Frame (DTF).

Keywords—D/y/d, Fork, Retrofit, Vector Controlled Induction Motor Drive (VCIMD).

I. INTRODUCTION

Three- phase, squirrel-cage induction motors have been widely used for fixed-speed applications due to their simplicity, compactness, ruggedness, reliability, high efficiency, low cost and lesser maintenance. Inherent advantages of adjustable frequency operation can be realised using a suitable control. VCIMD used for variable speed applications show dynamics similar to that of separately excited dc motor. The technique uses two decoupled control signals, one responsible for control of excitation and other for control of torque [1-6].

A block schematic of VCIMD is shown in Fig.1. The system consists of a three-phase, Voltage Source Inverter (VSI), a three-phase, squirrel cage induction motor and necessary control blocks. Speed error is processed to generate reference torque command (T^*) . A suitable value of excitation reference (i_{mr}^*) is generated from shaft speed. The VSI is operated in current controlled mode.

Non-Linear loads such as Power Electronic Converters, draw non-sinusoidal currents from supply and affect other users [7-12]. Techniques based on Pulse multiplication, realised through suitable transformer connection, are discussed in [13-16] for power quality improvement of retrofit loads.

This paper targets towards a comparative investigation between Fork and D/y/d transformer connections and also proves that for the same VCIMD, fork results into lower

rating magnetics than that of D/y/d with similar performance level.

Sections II and III explain design of D/y/d and Fork transformers, respectively for retrofit VCIMD. Drive dynamics and supply end power quality details are presented in Section-IV. The detailed mathematical formulation for calculating magnetic ratings of Inter-Phase Reactor (IPR) and power transformer is also presented in this section. The result prove that for the same drive ratings, the total magnetic rating of fork configuration is lesser as compared to D/y/d.

II. DELTA/STAR/DELTA CONNECTED TRANSFORMER SUPPLING 12-PULSE, AC-DC, UNCONTROLLED CONVERTER FED RETROFIT VCIMD

A. Rating Computation for D/y/d Transformer:

Fig.2 shows the block schematic of D/y/d connected transformer, supplying 12-pulse, uncontrolled converter fed VCIMD. As the transformer windings are isolated, interconverter currents are not possible. IPR connected between dc positive terminals of the converters neutralise instantaneous voltage difference between the two converters at the output port.

For a six-pulse, uncontrolled converter, the DC-Link output voltage, V_d , expressed as a function of transformer secondary line voltage, V_L is,

$$V_{d} = \frac{3\sqrt{2}}{\pi} V_{L} \tag{1}$$

For design simplicity, it is assumed that the load current drawn from DC link (i_d) is constant in nature (I_d) due to highly inductive nature of the load. Fig.3 shows respective current waveforms at secondary and primary side of the transformer and the resultant line current drawn from utility. Currents i_1 , i_2 , i_3 and i_1 , i_2 , i_3 are respective input currents to the 12-pulse, uncontrolled converter. Phase currents of the secondary delta winding, i_1 , i_3 and i_{11} can be obtained as,

$$i_1 = \frac{i_1 - i_2}{3}$$
, $i_{11} = \frac{i_2 - i_3}{3}$ and $i_{111} = \frac{i_3 - i_1}{3}$ (2)

Fig. 1. Block Schematic of Vector Controlled Induction Motor Drive

Phase current at the primary side, i, therefore computes to,

$$\dot{\mathbf{i}}_{\mathbf{a}} = \frac{\dot{\mathbf{i}}_{\mathbf{i}}}{\sqrt{3}} + \dot{\mathbf{i}}_{\mathbf{i}} \tag{3}$$

Similarly, i_s and i_c get computed. The RMS phase currents at secondary star (I_{phs}), secondary delta (I_{phd}) and primary delta (I_{php}), from Fig.3, are computed as,

$$l_{phs} = 0.4082 l_d$$
, $l_{phd} = 0.2357 l_d$ and $l_{php} = 0.4552 l_d$ (4)

Hence, rating of secondary star winding (VA_{SS}) can be obtained as,

$$VA_{SS} = 3 \times V_{phs} \times I_{phs} = 0.5235P_{d}$$
 (5)

where, P_d refers to power drawn from the DC link. Similarly, rating of secondary Delta (VA_{SD}) and primary Star (VA_P) get computed as,

$$VA_{SD} = 3 \times V_{phd} \times I_{phd} = 0.5235 P_d \tag{6}$$

$$VA_p = 3 \times V_{php} \times I_{php} = 1.0112P_d$$
 (7)

Therefore, total rating of D/y/d transformer amounts to,

$$VA_{D/y/d} = \frac{VA_{Primary} + VA_{Sec \, ondary}}{2} = 1.0291P_d$$
 (8)

Fig.2. Block Schematic of D/y/d Transformer Supplying 12-Pulse, Uncontrolled Converter fed Retrofit VCIMD Load

B. Design of Inter-Phase Reactor (IPR)

Line voltages on star secondary can be stated as,

$$V_{ab} = \sqrt{2}V_L \sin(\omega t + 30^{\circ})$$
 (9)

$$V_{bc} = \sqrt{2}V_L \sin(\omega t - 90^\circ)$$
 (10)

$$V_{cs} = \sqrt{2}V_{L} \sin(\omega t + 150^{\circ}) \tag{11}$$

Similarly, secondary delta voltages,

$$V_{LK} = \sqrt{2}V_{L} \sin \omega t \tag{12}$$

$$V_{be} = \sqrt{2}V_L \sin(\omega t - 120^\circ)$$
 (13)

$$V_{\perp} = \sqrt{2}V_L \sin(\omega t + 120^\circ) \tag{14}$$

Voltages across IPR can be expressed as,

$$v_{pq} = v_{po} - v_{qo} \tag{15}$$

Fig. 3. Current Waveforms for D/y/d transformer supplying 12-Pulse Uncontrolled Converter fed Retrofit Constant Current Load: $\{a\}=0.5I_{d}$, $\{b\}=0.0576I_{d}$, $\{c\}=0.1153I_{d}$, $\{d\}=0.0341I_{d}$, $\{e\}=0.5576I_{d}$, $\{f\}=0.9659I_{d}$, $\{g\}=1.1153I_{d}$

 V_{po} and V_{qo} shown in Fig.2, can be obtained for various intervals. From Fig.3, in sub-interval, 0-30°, the current i_1 is

zero while i'2 and i'3 are negative and positive, respectively.

$$V_{po} = V_{c'b'}$$
 and $V_{qo} = V_{c'b'}$ (16)

Therefore, v_{pq} can be mathematically expressed as,

$$v_{pq} = 0.732 V_L \sin(\omega t + 165^\circ)$$
 (17)

Similarly, the same computation can be extended to other intervals, respectively which is tabulated in Table I.

TABLE I

VOLTAGE ACROSS INTER-PHASE REACTOR ATVARIOUS INTERVALS

Sub-interval	1/pq	ωt	Vpq	
0°-30°	0.732V, Sin(ωt +165°)	00	0.189V _I .	
0 30	0.732 V _L Bin(tot + 103)	30°	-0.189V _{1.}	
30°-60°	0.732V, Sin(ωt - 45°)	30°	-0.189V _{1.}	
30 -00	0.732 V _L Sin(tot = 43)	60°	0,189V _L	
60°-90°	0.732V, cos(ωt +15°)	60°	0.189V _I	
00 -90	0.752 V _L COS((0) + 13)	900	-0.189V _I .	
000 1200	0.732V, Sin(-cot - 75°)	900	-0.189V _I .	
90°-120°	0.732 V _L Sin(=(0t = 75)	120°	0.189V ₁	
120°-150°	$0.732V_{L} - \cos(\omega t + 135^{\circ})$	120°	$0.189V_{1.}$	
120 - 150	$0.732 v_{1} - \cos(\omega t + 133)$	150°	-0.189V _I .	
1000 1000	0.7723V Sin(est 159)	150°	-0.189V _I	
150°-180°	$0.732 \text{V}_{L} \text{Sin}(-\omega t - 15^{\circ})$	150°	0.189V ₁ .	

Resultant v_{pq} waveform is shown by Curve-I in Fig.4

Area, under Curve-I for the first quarter cycle is,

Fig.4. Voltage across Inter-Phase Reactor for D/y/d transformer topology: (A) Actual Voltage v_{pq} shown by Curve-I, (B)Approximated Sinusoidal voltage V_{pq} shown by Curve-II

$$\int_{0.732}^{15} 0.732 V_{L} \sin(\omega t + 165^{\circ}) d\omega t = 0.018 V_{d}$$
 (18)

As power transformers are normally rated for sinusoidal voltages and currents, area under Curve-I, is therefore equated with area under an approximated sinusoidal waveform shown by Curve-II, overlapped in Fig. 4. Area under Curve-II, having RMS, 'V' in the first quarter cycle is,

$$\int_{0}^{15^{\circ}} \sqrt{2} V \cos(6\omega t) d\omega t = 0.2357V$$
 (19)

where, ' ω ' refers to the frequency of AC mains in rad/sec. Equating (18) with (19) yields, V = 0.076V, (20)

Peak of the approximated Curve-II, computes to $0.1451 \, V_L$, marked in Fig.4. Rating of IPR can be computed as,

$$VA_{IPR} = \left[\frac{V\frac{I_d}{2} + V\frac{I_d}{2}}{2} \right] = 0.076V_d \cdot \frac{I_d}{2} = 0.038P_d$$
 (21)

Hence, the combined total rating of D/y/d and IPR amounts to 1.0671 $P_{\rm d}$, obtained by adding (8) and (21).

III. FORK CONNECTED AUTO- TRANSFORMER SUPPLYING 12-PULSE, UNCONTROLLED CONVERTER FED RETROFIT VCIMD

A. Rating Computation for Fork Auto-transformer:

Fig.5 shows the block schematic for Fork connected autotransformer supplying 12-Pulse, uncontrolled converter fed Retrofit VCIMD. K_1 , K_2 and K_3 refer to the respective tapings. As secondary windings are not isolated, there may be possibility of inter-converter current paths. To prevent such a situation, IPRs are connected in between respective positive terminals and in between respective negative terminals of the converters. Winding connections are realised such that both secondary windings getting connected to converters I and II have respective phase voltages 15° lagging and leading w.r.t. the main supply. AC supply voltages to transformer primary can be expressed as,

Fig.5. Block Schematic of Fork connected Auto-Transformer supplying 12-Pulse Uncontrolled Converter fed Retrofit VCIMD

$$v_{A} = \sqrt{2}V_{A}\sin(\omega t) \tag{22}$$

$$v_{\rm n} = \sqrt{2} V_{\rm s} \sin(\omega t - 120^{\circ}) \tag{23}$$

$$v_{c} = \sqrt{2}V_{s}\sin(\omega t + 120^{\circ}) \tag{24}$$

where, V_1 , refers to rms AC supply phase voltage. Fig.6 relates K_1 , K_2 and K_3 as,

$$V_A = K_1 V_A + K_2 V_A$$
 and $V_{A_1} = K_1 V_A - K_3 V_B$ (25)

Solving, $K_1 = 0.1865$, $K_2 = 0.1835$ and $K_3 = 0.2988$ DC-link voltage, V_d can be expressed using (1) as,

$$V_{tl} = \frac{(3\sqrt{6})V_{s}}{\pi} \tag{26}$$

Therefore,

$$V_{zig} = K_3 V_s = 0.1277 V_d \tag{277}$$

$$V_{long} = K_1 V_s = 0.3491 V_d$$
 (288)

$$V_{\text{short}} = K_2 V_s = 0.0784 V_d \tag{29}$$

Fig. 7 shows respective winding currents of Fork connection. Balancing mmf for phase A gives,

$$K_2(i_{A_1} + i_{A_2} + i_{A}) + K_1i_{A} + K_3i_{C_1} + K_3i_{B_2} = 0$$
 (30)

$$i_{A} = -\frac{K_{2}(i_{A_{1}} + i_{A_{2}}) + K_{3}(i_{C_{1}} + i_{B_{2}})}{(K_{1} + K_{2})}$$
(3h)

Similarly, in and ic can be computed by mmi balancing as,

$$i_{B} = -\frac{K_{2}(i_{B_{1}} + i_{B_{2}}) + K_{3}(i_{A_{1}} + i_{C_{1}})}{(K_{1} + K_{2})}$$
(33)

$$i_{c} = -\frac{K_{2}(i_{c_{1}} + i_{c_{2}}) + K_{3}(i_{n_{1}} + i_{n_{2}})}{(K_{1} + K_{2})}$$
(33)

From Fig. 7, rms values of currents in zig, long and short windings respectively may be computed as,

$$I_{zig} = (i_{A_1})_{min} = 0.40821_d \tag{34}$$

$$I_{long} = (i_A)_{ms} = 0.0609I_{il}$$
 (35)

$$I_{\text{short}} = (i_{A_1} + i_{A_2} + i_{A_3})_{\text{mis}} = 0.7836I_d$$
 (36)

Using (27) and (34),
$$VA_{zig} = V_{zig} \times I_{zig} = 0.0521P_d$$
 (37)

Similarly, $VA_{long} = 0.02126P_d$ and $VA_{short} = 0.0618P_d$

From above the rating of Fork auto-transformer, VA_{FORK} is computed as,

$$= \frac{6 \times VA_{rig} + 3 \times VA_{long} + 3 \times VA_{short}}{2} = 0.2809P_{d}$$
 (38)

Fig.6. Block Schematic of Fork connected Auto-Transformer supplying 12-Pulse Uncontrolled Converter fed Retrofit VCIMD.

Fig.7 Current Waveforms for Fork Auto-Transformer Supplying 12-pulse, Uncontrolled Converter Fed Constant Current Load $\{a\}=0.5I_d$ $\{b\}=0.0576I_d;\{c\}=0.1153I_d;\{d\}=0.0341I_d;\{e\}=0.576I_d;\{f\}=0.9659I_d;\{g\}=1.1153I_d$

B. Design for Inter-Phase Reactor

Fig. 8 shows connections of IPR between positive terminals of the two converters. Diodes D_3 and D_4 conduct during $0^{\circ}-15^{\circ}$. Therefore,

Fig. 8. IPR Connected Between Positive Terminals of Converters

$$v_{nn} = v_{C_1}, v_{nn} = v_{C_2}$$
 (39)

$$v_{C_1} = V_s \angle 135^\circ, v_{C_2} = V_s \angle 105^\circ$$
 (40)

Resultant voltage across the IPR (v_{pq}) can be computed as,

$$v_{pq} = 0.7319 V_s \sin(\omega t - 150^\circ)$$
 (41)

Similarly, the same computation can be extended to other intervals respectively. Table II tabulates the resultant data.

VOLTAGE ACROSS INTER-PHASE REACTOR AT VARIOUS INTERVALS ωt Interval v_{pq} -0.3659Vs 0°-15° 0.7318V_s Sin(ωt -150°) 150 -0.5174V_s -0.5173Vs 150 15°-45° 1.999 V, Sin(wt - 30°) -0.5173Vs 45° 45° 0.5173Vs 45°-75° 0.73199V, sin(ωt +90°) 75° 0.1894Vs 75° 0.1894Vs 75°-105° 0.73199V, Sin(ωt +90°) 105° -0.1894V_s 105°-135° 105° $-0.1894V_{8}$ 0.73199V, sin(wt + 90°) 135° -0.5175Vs 1359 135°-165° $-0.5173V_{s}$ 1.999 V_c Sin(ωt - 150°) 1659 -0.5173Vs 165°-195° 165° $-0.5173V_{S}$ 0.73199 V, Sin(ωt - 30°) 0.1894V_s 1959 195°-225° 195° 0.1894Vs 0.73199 V, Sin(ωt - 30°) 225° -0.1894V_s 225° 225°-255° -0.1894Vs 0.73199 V_s Sin(ωt - 30°) 255° -0.5175Vs 255º -0.5175Vs 255°-285° 1.999 V, Sin(wt + 90°) 2859 0.5175Vs 285°-315° 2859 0.5175Vs 0.73199V, Sin(wt -150°) 315° 0.1894Vs 0.1894Vs 315°-345° 315° 0.73199V, Sin(wt - 150°) 345° -0.1894Vs 345° -0.1894Vs 345°-360° 0.73199V, Sin(ωt -150°)

Resultant V_{pq} therefore, is obtained as shown in Fig.9

Area under Curve-I for the positive half cycle is computed as,

$$= \int_{30^{\circ}}^{90^{\circ}} v_{pq} dwt = 0.12077 V_{d}$$
 (42)

As transformers are normally rated for sinusoidal voltages and currents, area under curve-I, v_{pq} is compared to that of Curve-II with rms 'V'. Area under Curve-II in the positive half cycle is computed as,

-0.3659Vs

360°

Fig. 9. Voltage across IPR for Fork transformer supplying 12-Pulse Uncontrolled Converter fed Non-Linear Load Curve I: Actual Voltage, Curve-II: Approximated Sinusoidal Voltage

$$= \int_{30^{\circ}}^{400^{\circ}} \sqrt{2} V \sin(3(\omega t - 30^{\circ})) dwt = 0.942 V$$
 (43)

Equating equations (42) and (43),

$$V = 0.128V_d \tag{44}$$

Peak of approximated sinusoid signal computes to 0.4236V_s as per marked in Fig.9. Rating of IPR is,

$$VA_{IPR} = \left[\frac{V\frac{I_d}{2} + V\frac{I_d}{2}}{2} \right] = 0.128V_d \frac{I_d}{2} = 0.06405P_d$$
 (45)

Gross IPR rating amounts to,
$$VA_{IPR(TWO)} = 0.1281P_d$$
 (46)

Henceforth, the combined rating of Fork connected autotransformer and two IPRs amount to $0.4089\,P_d$, as obtained by adding (38) and (46).

IV. RESULTS AND DISCUSSION

To improve the quality of current drawn from AC mains, a comparative investigation has been carried out between D/y/d and Fork topologies with main objective being to investigate which topology gives rise to lower magnetic rating. Respective topologies have been designed and simulated to manifest their power quality performance for retrofit VCIMD.

Simulation is carried out in MATLAB environment. Fig. 11 shows the dynamic response for D/y/d connected, 12-Pulse, Uncontrolled Converter fed retrofit VCIMD for starting and load perturbation modes respectively. The plot consists of reference and actual speed, reference motor currents, actual motor currents, motor developed torque and load torque, utility supply, supply line current and DC-link voltage respectively. Fig.13 portrays two cycles of supply current on FL along with spectrum showing 6.12% THD. The comparison between various power quality parameters on FL and LL is tabulated in Table III.

Fork connected auto-transformer fed VCIMD is simulated in MATLAB environment. Fig.12 shows the dynamic response of the retrofit drive for starting and load perturbation respectively. The plot consists of reference and actual speeds, reference motor currents, actual motor currents, motor developed torque and load torque, utility supply, supply line current and DC-link voltage respectively. Fig.14 shows two cycles of supply current waveform with necessary harmonic

Fig.11.Dynamic Response of D/y/d, 12-pulse, Uncontrolled Converter fed retrofit VCIMD for (A) Source Voltage, (B) Source Current, (C) DC-Link Voltage, (D) Rotor Speed, (E) Reference Currents, (F) Actual Currents and (G) Developed Torque and Load Torque

Fig. 12 Dynamic Response of Fork, 12-pulse, Uncontrolled Converter fed retrofit VCIMD for (A) Source Voltage, (B) Source Current, (C) DC-Link Voltage, (D) Rotor Speed, (E) Reference Currents, (F) Actual Currents and (G) Developed Torque and Load Torque

spectrum when drive is on FL. In this case, the THD in the line current drawn from the supply mains is observed 5.84%

.Necessary parameters relating to supply current power quality have been tabulated in Table III. Table IV provides the comparison between magnetic ratings.

TABLE 111

COMPARISON OF POWER QUALITY INDICIES OF A RETROFIT DRIVE VCIMD FED
FROM 12-PULSE UNCONTROLLED CONVERTER

Topo- logy	THD(%)		THD(%) Distortion Factor		Displacement factor		Power Factor	
- =	LL	FL	LL	FL	LL	FL	LL	FL
D/y/d	8.30	6.12	0.99	0.99	0.98	0.97	0.97	0.97
Fork	8.14	5.84	0.99	0.99	0.98	0.97	0.97	0.96

TABLE IV

RATING OF MAGNETICS IN DIFFERENT CONVERTER TOPOLOGIES

TEATING OF INSTITUTE IN SILVERING CONTENTED TO COOCIED				
Rating expressed as Percentage Total DC-Link Load (P _d)	D/y/d	Fork		
Power Transformer	102.91%	28.09%		
IPR	3.80%	12.81%		
Total Magnetic Rating	106.71%	40.9%		

Fig.13. (A) Supply current (B) THD analysis of supply current for D/y/d connected transformer, supplying 12-pulse uncontrolled converter fed retrofit drive VCIMD

Fig. 14. (A) Supply current (B) THD analysis of supply current for Fork connected transformer ,supplying 12-pulse uncontrolled converter fed retrofit drive VCIMD

V. CONCLUSION

A comparative investigation between D/y/d and Fork connected transformer topologies supplying 12-Pulse, Uncontrolled Converter fed retrofit VCIMD has been carried out with an objective to prove that Fork connection amounts to lesser rating and saving in magnetics.

Based on design computations and MATLAB simulated results, it has been observed that the total rating for transformer and IPR amounts to 106.71% of the total DC-link load in D/y/d topology. On the contrary, Fork topology requires total 40.89% (autotransformer and IPR) of the total DC-link load for same rating retrofit VCIMD. The comparison shows similar performance level both from drive dynamics and supply power quality aspects respectively. Therefore, use of Fork topology saves copper and leads to reduction in cost and improvement in power quality.

VII.APPENDIX

Induction motor specifications: - 30 HP, 3-phase,4 pole, Y-Connected, 415V, 45A, 50Hz, $R_s{=}0.251~\Omega,$ $R_r{=}0.249~\Omega,$ $X_{ls}{=}$ $X_{lr}{=}$ $0.439~\Omega,$ $X_{m}{=}13.085~\Omega,$ $J{=}$ 0.305 Kgm². P1 Controller parameters: - $K_P{=}$ 350, $K_r{=}50.$ DC link filter parameters: - $L_d{=}$ 2mH, $C_d{=}1500\mu F$

REFERENCES

- W. Leonard, "Control of Electric Drives", New Delhi, Narosa Publication, 1985.
- [2] S. Yamamura, "AC Motors for Performance Applications, Analysis and Control", New York, Marcel Dekker, 1986.
- [3] B.K.Bose, "Power Electronics and AC Drives", New Jersey, Prentice Hall, 1986
- [4] J.M.D Murphy and F.G. Turnbulls, "Power Electronic Control of AC motors", Oxford, Pergamon Press, 1988.
- [5] P.Vas, "Vector Control of AC Machines", Oxford, Oxford university Press, 1990.
- [6] I. Boldea and S.A.Nasar, "Vector Control of AC-Drives", Florida, CRC Press, 1992. D.W. Novotny and T.A. Lipo, "Vector Control and Dynamics of AC Drives", Oxford University Press, 1996.
- [7] Johannes Schaefer, "Rectifier circuits: Theory and Design", John Wiley & Sons, Inc., New York, 1965.
- [8] D.A. Paice, "Power Electronic Converter Harmonic Multipulse Methods for Clean Power", IEEE Press, New York, 1996.
- [9] Bin Wu, "High Power Converters and AC-Drives", John Wiley& Sons, Inc., IEEE Press, New York, 1996.
- [10] Ned Mhan , Tore M. Undeland, William P. Robbins, "Power Electronics: Converters, Applications and Design," John Wiley & Sons, Inc., 2006.
- [11] IEEE Standard 519-1992, IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power System, IEEE Inc., New York, 1992.
- [12] Sewan choi, Prasad N. Enjeti and Ira J. Pitel, "Polyphase Transformer Arrangements with Reduced kVA Capacities for Harmonic Current Reduction in Rectifier - Type utility Interface," IEEE Trans. on Power Electronics, Vol.11, No.5, September 1996.
- [13] Bhim Singh, G.Bhuvaneswari and Vipin Garg, "Harmonic Mitigation Using 12- Pulse AC-DC Converter in Vector - Controlled Induction Motor Drives," IEEE Trans. on Power Delivery, Vol.21, No.3, July 2006.
- [14] Bhim Singh and Sanjay Gariola, "A Fork Connected Auto-Transformer Based 24-Pulse AC-DC Converter," in Proc. Of India International Conference on Powe Electronics 2006.
- [15] Bhim Singh, Sanjay Gairola ,Brij .N. Singh, Ambrish Chandra and Kamal Al- Haddad, "Multipulse AC-DC Converters for Improving Power Quality: A Review," IEEE Trans. on Power Electronics, Vol.23 ,No.1. Jan 2008.
- [16] Bhim Singh, G.Bhuvaneswari and R. Kalpana, "Auto Connected transformer -Based 18- Pulse AC-DC Converter for Power Quality Improvement In Switched Mode Power Supplies," IET Power Electron., 2010, Vol.3, Iss.4,pp.524-541.