

TEMA 3: REGULARIZACIÓN

Mikel Galar Idoate mikel.galar@unavarra.es

Ciencia de datos con técnicas inteligentes Experto Universitario en Ciencia de Datos y Big Data

Índice

- 1. Regularización
 - El problema de sobre-aprendizaje
 - Modificación de la función de coste
 - Regularización en regresión lineal
 - Regularización en regresión logística

Índice

- 1. Regularización
 - El problema de sobre-aprendizaje
 - Modificación de la función de coste
 - Regularización en regresión lineal
 - Regularización en regresión logística

El problema de sobre-aprendizaje

Ejemplo: Regresión lineal

Problema: Sobre-aprendizaje

Si tenemos muchas características, la hipótesis puede modelar los datos de entrenamiento casi perfectamente $(J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0)$, pero el modelo falla al generalizar a nuevos ejemplos (predecir el precio de otras casas)

El problema de sobre-aprendizaje

Ejemplo: Regresión logística

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

 x_2

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2)$$

 $+\theta_5 x_1 x_2 + \theta_6 x_1^3 x_2 + \cdots)$

No se ajusta

Sobre-aprendizaje

- □ El problema de sobre-aprendizaje
 - Pero no siempre podemos dibujar la gráfica
 - Si tenemos más de 2 características
 - Ejemplo
 - Tamaño de la casa
 - N° habitaciones
 - N° pisos
 - Antigüedad
 - Tamaño de la cocina
 - ...
 - Eliminar características puede ser una opción
 - Pero todas podrían aportar algo
 - Si tenemos muchas características pero pocos ejemplos...
 - Sobre-entrenamiento

□ El problema de sobre-aprendizaje

- Posibles soluciones
 - 1. Reducir el número de características
 - Seleccionarlas manualmente
 - Algoritmos de selección de modelos (siguiente tema)
 - 2. Regularización
 - Utilizamos todas las características
 - lacksquare Pero **reducimos la magnitud de los parámetros oldsymbol{ heta}_i**
 - Funciona cuando tenemos muchas características y todas contribuyen a la predicción

Índice

- Regularización
 - El problema de sobre-aprendizaje
 - Modificación de la función de coste
 - Regularización en regresión lineal
 - Regularización en regresión logística

- Modificación de la función de coste
 - Idea
 - lacksquare Si reducimos la magnitud de los parámetros $heta_i$
 - Reducimos la flexibilidad del modelo
 - Reducimos las probabilidad de sobre-aprendizaje

■ Modificación de la función de coste

Idea

Supongamos que penalizamos θ_3 , θ_4 haciendo que sean muy pequeños

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + 1000 \cdot \theta_3^2 + 1000 \cdot \theta_4^2 \qquad \theta_3 \approx 0, \theta_4 \approx 0$$

■ Modificación de la función de coste

- Idea
 - lacksquare Valores bajos para los parámetros $heta_1$, $heta_2$..., $heta_n$
 - Hipótesis más simples
 - Menor tendencia al sobre-aprendizaje
 - Nueva función de coste

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

- Minimizamos también los valores de los parámetros
 - lacksquare En base a un parámetro de regularización λ
 - Que controla el balance entre la complejidad y el error

■ Modificación de la función de coste

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

Minimizamos también los valores de los parámetros

$$\lambda = 0$$

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

- No es una función cuadrática
 - Pero las curvas son más suaves y hay menor complejidad

- Modificación de la función de coste
 - □ ¡Cuidado¡

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

- lacktriangle Qué ocurre si λ toma un valor muy alto $(\lambda=10^{10})$?
 - El algoritmo funciona correctamente
 - lacksquare Da igual lo grande que sea λ
 - El algoritmo no elimina el sobre-aprendizaje
 - El algoritmo no se ajusta
 - Ni si quiera a los datos de entrenamiento
 - El descenso por gradiente no converge

Modificación de la función de coste

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

$$\lambda = 10^{10}$$

Índice

- 1. Regularización
 - El problema de sobre-aprendizaje
 - Modificación de la función de coste
 - Regularización en regresión lineal
 - Regularización en regresión logística

Regularización en regresión lineal

■ Función de coste a minimizar

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$
$$\min_{\theta} J(\theta)$$

- □ Para el descenso por gradiente
 - Tenemos que volver a calcular $\frac{\partial J(\theta)}{\partial \theta_j}$
- Igualmente para la solución directa

■ Solución directa

$$\theta = \begin{pmatrix} X^T X + \lambda \begin{bmatrix} 0 & \cdots & 0 & 0 & 0 \\ \vdots & 1 & & 0 & 0 \\ 0 & & 1 & & 0 \\ 0 & 0 & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} \end{pmatrix}^{-1} X^T y$$

 \square Con $\lambda > 0$ tenemos que la matriz es invertible

Descenso por gradiente

- lacksquare Asignar a $eta=\{ heta_0,\dots, heta_n\}$ valores aleatorios
- Repetir hasta convergencia
 - (n° iteraciones o | error error_anterior | < umbral)

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial J(\theta)}{\partial \theta_j} \quad \text{para } j = 0, \dots, n$$

ACTUALIZAR TODOS LOS $heta_j$ SIMULTÁNEAMENTE

En regresión lineal con múltiples variables y regularización ...

$$h_{\theta}(x) = \theta^T x$$

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

- Descenso por gradiente (anterior)
 - lacktriangle Asignar a heta valores aleatorios (o a ceros)
 - Repetir hasta convergencia
 - (n° iteraciones o | error error_anterior | < umbral)</p>

$$\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)}$$
 para todo $j = 0, ..., n$

ACTUALIZAR TODOS LOS θ_j SIMULTÁNEAMENTE

- lacksquare Asignar a $eta=\{ heta_0,\dots, heta_n\}$ valores aleatorios
- Repetir hasta convergencia
 - (n° iteraciones o | error error_anterior | < umbral)</p>

$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right] \text{ para } j = 0, \dots, n$$

Descenso por gradiente

- lacksquare Asignar a $eta=\{ heta_0,\dots, heta_n\}$ valores aleatorios
- Repetir hasta convergencia
 - (n° iteraciones o | error error_anterior | < umbral)</p>

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{\partial}{\partial \theta_0} \frac{1}{2m} \left[\sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^n \theta_j^2 \right] \text{para } j = 0$$

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} \frac{1}{2m} \left[\sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^n \theta_j^2 \right] \text{ para } j = 0$$

$$1, \dots, n$$

 $heta_0$ no se regulariza

Descenso por gradiente

- lacksquare Asignar a $eta=\{ heta_0,\dots, heta_n\}$ valores aleatorios
- Repetir hasta convergencia

0 por no estar $heta_0$

■ (n° iteraciones o | error – error_anterior | < umbral)</p>

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{2m} \begin{bmatrix} \frac{\partial}{\partial \theta_0} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2 \\ \theta_j \coloneqq \theta_j - \alpha \frac{1}{2m} \begin{bmatrix} \frac{\partial}{\partial \theta_j} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2 \\ \frac{\partial}{\partial \theta_j} \sum_{i=1}^n \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2 \end{bmatrix} - \frac{\partial}{\partial \theta_j} \lambda \sum_{j=1}^n \theta_j^2 \right] \text{ para } j = 1, \dots, n$$

Ya lo conocemos
$$2\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_{j}^{(i)}$$

- lacksquare Asignar a $heta=\{ heta_0,\dots, heta_n\}$ valores aleatorios
- Repetir hasta convergencia
 - (n° iteraciones o | error error_anterior | < umbral)</p>

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{2m} \left[2 \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) \cdot x_j^{(i)} \right] \qquad \text{para } j = 0$$

$$\theta_j \coloneqq \theta_j - \alpha \frac{1}{2m} \left[2 \sum_{i=1}^m \left(h_\theta \big(x^{(i)} \big) - y^{(i)} \right) \cdot x_j^{(i)} \right] + \frac{\partial}{\partial \theta_j} \lambda \sum_{i=1}^n \theta_j^2 \text{ para } j = 1, \dots, n$$

$$\frac{2\lambda}{m} \cdot \theta_j$$

- lacksquare Asignar a $eta=\{ heta_0,\dots, heta_n\}$ valores aleatorios
- Repetir hasta convergencia
 - (n° iteraciones o | error error_anterior | < umbral)</p>

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{2m} \left[2 \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) \cdot x_j^{(i)} \right] \qquad \text{para } j = 0$$

$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{1}{2m} \left[2 \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) \cdot x_{j}^{(i)} + \frac{2\lambda}{m} \cdot \theta_{j} \right] \qquad \text{para } j = 1, \dots, n$$

Descenso por gradiente

- lacksquare Asignar a $eta=\{ heta_0,\dots, heta_n\}$ valores aleatorios
- Repetir hasta convergencia
 - (n° iteraciones o | error error_anterior | < umbral)</p>

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) \cdot x_j^{(i)} \qquad \text{para } j = 0$$

$$heta_j \coloneqq heta_j - lpha \left[rac{1}{m} \sum_{i=1}^m ig(h_ heta(x^{(i)} ig) - y^{(i)} ig) \cdot x_j^{(i)} + rac{\lambda}{m} \cdot heta_j
ight] \hspace{1cm} ext{para } j = 1, \dots, n$$

ACTUALIZAR TODOS LOS θ_j SIMULTÁNEAMENTE

Descenso por gradiente (reescrito)

- lacksquare Asignar a $eta=\{ heta_0,\dots, heta_n\}$ valores aleatorios
- Repetir hasta convergencia
 - (n° iteraciones o | error error_anterior | < umbral)</p>

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta \big(x^{(i)} \big) - y^{(i)} \right) \cdot x_j^{(i)} \qquad \qquad \text{para } j = 0$$

$$\theta_{j} \coloneqq \theta_{j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) \cdot x_{j}^{(i)}$$
 para $j = 1, \dots, n$

Suele tomar un valor pequeño y hace que el valor de $heta_i$ decrezca

Índice

- Regularización
 - El problema de sobre-aprendizaje
 - Modificación de la función de coste
 - Regularización en regresión lineal
 - Regularización en regresión logística

Regularización en regresión logística

■ Función de coste a minimizar

$$J(\theta) = -\left[\frac{1}{m}\sum_{i=1}^{m} y^{(i)}\log\left(h_{\theta}(x^{(i)})\right) + \left(1 - y^{(i)}\right)\log\left(1 - h_{\theta}(x^{(i)})\right)\right] + \frac{\lambda}{2m}\sum_{j=1}^{n}\theta_{j}^{2}$$

$$\min_{\theta} J(\theta)$$

- Para el descenso por gradiente
 - Tenemos que volver a calcular $\frac{\partial J(\theta)}{\partial \theta_i}$

- Descenso por gradiente en regresión logística
 - lacktriangle Asignar a heta valores aleatorios (o a ceros)
 - Repetir hasta convergencia
 - (n° iteraciones o | error error_anterior | < umbral)</p>

$$heta_j\coloneqq heta_j-lpharac{1}{m}{\sum_{i=1}^m}(h_ heta(x^{(i)})-y^{(i)})\cdot x_j^{(i)}$$
 para todo $m{j}=m{0},\dots,m{n}$

ACTUALIZAR TODOS LOS θ_j SIMULTÁNEAMENTE

- lacksquare Asignar a $eta=\{ heta_0,\dots, heta_n\}$ valores aleatorios
- Repetir hasta convergencia
 - (n° iteraciones o | error error_anterior | < umbral)</p>

$$\theta_{j} := \theta_{j} - \alpha \left[\frac{\partial}{\partial \theta_{j}} \left[-\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

La derivada sigue igual
$$\frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) \cdot x_{j}^{(i)} \quad \text{para } j = 0, \dots, n$$

- lacksquare Asignar a $eta=\{ heta_0,\dots, heta_n\}$ valores aleatorios
- Repetir hasta convergencia
 - (n° iteraciones o | error error_anterior | < umbral)</p>

$$\theta_j \coloneqq \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) \cdot x_j^{(i)} + \frac{\partial}{\partial \theta_j} \frac{\lambda}{2m} \sum_{j=1}^n \theta_j^2 \right] \quad \text{para } j = 0, \dots, n$$

- lacksquare Asignar a $eta=\{ heta_0,\dots, heta_n\}$ valores aleatorios
- Repetir hasta convergencia
 - (n° iteraciones o | error error_anterior | < umbral)</p>

$$\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta \big(x^{(i)} \big) - y^{(i)} \right) \cdot x_j^{(i)} \qquad \text{para } j = 0$$

$$\theta_j \coloneqq \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m \left(h_\theta \big(x^{(i)} \big) - y^{(i)} \right) \cdot x_j^{(i)} + \underbrace{\frac{\partial}{\partial \theta_j} \frac{\lambda}{2m} \sum_{j=1}^n \theta_j^2}_{1, \dots, n} \right] \text{para } j = 1, \dots, n$$

$$\theta_0 \text{ no se regulariza}$$

$$\frac{2\lambda}{2m} \theta_j = \frac{\lambda}{m} \theta_j$$

Descenso por gradiente

- lacksquare Asignar a $eta=\{ heta_0,\dots, heta_n\}$ valores aleatorios
- Repetir hasta convergencia
 - (n° iteraciones o | error error_anterior | < umbral)</p>

$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_{j}^{(i)} \qquad \text{para } j = 0, \dots, n$$

$$\theta_{j} \coloneqq \theta_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_{j}^{(i)} + \frac{\lambda}{m} \theta_{j} \right] \qquad \text{para } j = 1, \dots, n$$

ACTUALIZAR TODOS LOS θ_j SIMULTÁNEAMENTE