

Sashank Pappu

Azure Data & Al Specialist.

Certified from MIT on 'Advanced Analytics and Big Data Challenges'. Technology Enthusiast and Data Specialist. Certified Designer in Computer Vision

Certifications

- Microsoft Certified Power BI Developer.
- Microsoft Certified Azure Machine Learning Developer from Microsoft Virtual Academy
- Certified on Practical Data Analytics with Microsoft Cortana Intelligence Suite.

Currently working as Independent Consultant on Azure Data & Al and Enterprise Trainer on Azure Data Analytics , Cortana Intelligence Suite and Cognitive Sciences

xperience

9+ years of total experience as Data Specialist and Data Engineer.

raining

Expert facilitator and corporate behavioral trainer with 5 years of experience in designing programs, content development, Data Analytics and Machine Learning.

You can see me on – Sashankpappu.com

What we can learn together ??

- Azure Data Ecosystem
- Storage (Blob Vs Data Lake)
- Data Lake Storage
- Data Lake Analytics
- Data Factory

URL:https://github.com/aagasp/azuredataecosystem

Questionnaire

To be taken after each section.

Request you to ask the questions in Chat window.

Will respond to them after a logical break point in each topic.

This would make the workshop interesting and approachable .

Request not to use Phones or get distracted for next 3 hours .

Expected Outcome!

Azure Data Ecosystem – When to use what!

Architectural
Standards & Best
Practices in Azure.

Hands on Project ready confidence.

Tackling Real world challenges in Azure Data Platform

Real world use cases and architectures for huge clients.

Time to adapt is shrinking

Source: BBC

Experts predict that in the next decade, only 25% of the companies currently listed on the S&P 500 will remain there, and the other 75% will be replaced by new companies.

Approach of Data is Changing!!!

Data Lake - Customer Challenges

Data Silos

Data spans sources Inefficiency in colocation

Analytics

Open interfaces to data Variety of analytics tools

Perf & Scale

Storage bottlenecks
IoT sources – Small
writes
Price-performance
Data grows
independently

Security

Compliance challenges Effectively control access Corporate policies

The Intelligent Lake Petabytes of Data + Intelligence

Data Lake Store

No-limits data Lake

- Petabyte-sized files
- Trillions of objects
- Scalable I/O for parallel analytics
- Enterprise-grade Security

Data Lake Analytics

Analytics job service

- Scale instantly
- Scale per job
- Infused with Artificial Intelligence

Azure Data Lake Storage Gen 1 Vs BLOB

Azure Blob Storage	Azure Data Lake	
General purpose storage for storing applications and user data	Specialized storage for storing Big Data which is optimized for Analytics	
Object based flat system	Hierarchical system with folders	
Security based on shared secret keys and signed URLs	Security based on Azure AD authentication	
LRS, ZRS, GRS and RA-GRS	LRS, ZRS, GRS and RA-GRS	
SDKs available for .NET, Java, Python, Node.js, C++, Ruby	.NET, Java, Node.js	

ADLS Gen1 + BLOB = ADLS Gen 2

Use	Data Lake Store	Blob Storage	Data Lake Gen 2
Hot/Cold Storage Tiers	No	Yes	Yes
Redundant Storage	No	Yes	Yes
AD Security	Yes	No	Yes
HDFS Compatible	Yes	No	Yes

ADLS Gen1 + BLOB = ADLS Gen2

Evolving Data Lake Strategy

Azure Data Lake Storage Gen2: Single Data Lake Store that combines the performance and innovation of ADLS with the scale and rich feature set of Blob Storage

Azure Data Lake Use Cases

Retail Scenario Implementation

TYPES OF DATA

DATA LAKE ZONE

CONSUMER OUTPUT

Structured Data

Un-structured Data

Images

Emails

Acquire/Ingest

Apply Metadata, Protect sensitive

Data Quality and Validation

Data Quality and Validation

Data as and when required in formats suitable to consumers

Data Visualization
Data Prep Tools

Best Practices – Modern Data Warehouse

Advanced Analytics Approach

Azure Data Lake Store

Introducing Azure Data Lake Store

A hyper-scale repository for big data analytics workloads

Store **ANY DATA** in its native format

HADOOP FILE SYSTEM (HDFS) for the cloud

ENTERPRISE GRADE

No limits to **SCALE**

Optimized for analytic workload **PERFORMANCE**

The Data Lake Approach

Any data

Unstructured
Semi-structured
Structured

Durable and highly available

Automatically replicates your data
Three copies within a single region
Highly available

Unlimited storage

Unlimited account sizes

Individual file sizes from gigabytes to petabytes

No limits to scale

Hands on — Data Lake Gen2

Creation of Data Lake Gen2 Account

Security Considerations

Data Protection

Protect the data at rest

Protect the data in transit

Support browser cross-domain access

Control who can access data

Audit storage access

Understand storage account keys

- Data is generated or consumed by custom applications
- The applications are written in various languages.
- Create authorized apps in Active Directory to control access to the data in blobs

Understand shared access signatures

- You shouldn't share storage account keys with external third-party applications
- For untrusted clients, use a shared access signature (SAS)
- Types of shared access signatures
 - service-level shared access signature
 - account-level shared access signature

Control network access to your storage account

- Storage accounts accept connections from clients on any network
- To limit access to selected networks, you must first change the default action.
- You can restrict access to specific IP addresses, ranges, or virtual networks

Understand Advanced Threat Protection for Azure Storage

- Often any protection only shows you that an intrusion has already occurred.
- What you really want is a way to be notified when suspicious activity is happening
- Advanced Threat Protection, detects anomalies in account activity
- It then notifies you of potentially harmful attempts to access your account.

Azure Data Lake Analytics

Quick Recap

ADL VS SQL DB

Azure Data Lake

ADL Analytics + ADL Store

SQL DB

SQL Query + DB Storage

U-SQL

A new language for Big Data

Familiar syntax to millions of SQL & .NET developers

Unifies declarative nature of SQL with the imperative power of C#

Unifies structured, semi-structured and unstructured data

Distributed query support over all data

History

History

Bing needed to...

• Understand user behavior

And do it...

- At massive scale
- With agility and speed
- At low cost

So they built ...

Cosmos

Cosmos

- Batch Jobs
- Interactive
- Machine Learning
- Streaming

Thousands of Developers

Pricing

Azure Data Lake Analytics (ADLA) Demo

Job Scheduling States, Queue, Priority

Job Status

Job Summary

Preparing	Queued	Running	Finalizing
9	-	-	—
37 seconds	0 seconds	9.9 minutes	
Job Result	Succeeded		
Total Duration	10.8 minutes		
Submit Time	1/24/2016 10:14:52 AM		
Start Time	1/24/2016 10:15:48 AM		
End Time	1/24/201	6 10:25:42 AM	
Compilation	37 secon	ds	
Queued	0 seconds		
Running	9.9 minu	tes	
Account	datainsightsadhoc		
Author	BD Telemetry Service@SPI		

UX

The script is being compiled by the Compiler Service

All jobs enter the queue.

Are there enough ADLAUs to start the job?

If yes, then allocate those ADLAUs for the job

The U-SQL runtime is now executing the code on 1 or more ADLAUs or finalizing the outputs

The job has concluded.

U-SQL Job Compilation

U-SQL Compilation Process

U-SQL Metadata Service

Compilation output (in job folder)

Deployed to Vertices

The Job Folder

Inside the Default ADL Store:

/system/jobservice/jobs/Usql/YYYY/MM/DD/hh/mm/JOBID

/system/jobservice/jobs/Usql/2016/01/20/00/00/17972fc2-4737-48f7-81fb-49af9a784f64

Job folder Structure

 /system/jobservice/jobs/Usql/YYYY/MM/DD/hh/m m/JOBID

Data Explorer

moldatalake

- ▼ ☐ Storage accounts
 - ▼ 🚺 moldatalakeadls (default)
 - catalog
 - iislogs
 - output
 - - ▼ jobservice
 - ▼ i jobs
 - ▼ 📜 Usql
 - ▼ 2017
 - ▼ 109

ADLAUs

Azure

Parallelism N = N ADLAUs

Data

Lake

Analytics

Unit

1 ADLAU ~=

A VM with 2 cores and 6

GB of memory

Vertex Execution

Store Basics

Files are split apart into **Extents**.

Extents can be up to 250MB in size.

For availability and reliability, extents are replicated (3 copies).

Enables parallelized read

Parallel writing

Front-end machines for a web service

Azure Data lake

As file size increases, more opportunities for parallelism

ADLA File Management

Hands on

The importance of partitioning input data

Search engine clicks data set

A log of how many clicks a certain domain got within a session

SessionID	Domain	Clicks
3	cnn.com	9
1	whitehouse.gov	14
2	facebook.com	8
3	reddit.com	78
2	microsoft.com	1
1	facebook.com	5
3	microsoft.com	11

Data Partitioning Compared

File: Keys (Domain) are scattered across the extents

U-SQL Table partitioned on Domain The keys are now "close together" also the index tells U-SQL exactly which extents contain the key

Click Data:

```
    CREATE TABLE SampleDBTutorials.dbo.ClickData (
        SessionId int,
        Domain string,
        Clinks int,
        INDEX idx1 //Name of index
        CLUSTERED (Domain ASC) //Column to cluster by
        );
```

INSERT INTO SampleDBTutorials.dbo.ClickData SELECT * FROM @clickdata;

Find all the rows for cnn.com

```
// Using a U-SQL Table partitioned by Domain
@ClickData =
                                               @ClickData =
   SELECT
                                                   SELECT *
                                                   FROM MyDB.dbo.ClickData;
FROM "/clickdata.tsv"
USING Extractors.Tsv();
                                               @rows = SELECT *
@rows = SELECT *
    FROM @ClickData
                                                   FROM @ClickData
    WHERE Domain == "cnn.com";
                                                   WHERE Domain == "cnn.com";
OUTPUT @rows
                                               OUTPUT @rows
    TO "/output.tsv"
                                                   TO "/output.tsv"
    USING Outputters.tsv();
                                                   USING Outputters.tsv();
```

File CNN, CNN, CNN, FB, FB, FB, WH WH WH **EXTENT 1** EXTENT 3 **EXTENT 2** Read Read Read Filter Filter **Filter** Write Write Write Because "CNN" could be anywhere, all extents must be read.

U-SQL Table Partitioned by Domain

Thanks to "Partition Elimination" and the U-SQL Table, the job only reads from the extent that is known to have the relevant key

How many clicks per domain?

U-SQL Table Partitioned by Domain

Hands on Lab -ADLA

Creating Data Catalog Objects

How about a Break!!!

Data Factory

INTRODUCTION

AZURE DATA FACTORY

What is **Azure Data Factory**

Introduction to Azure Data Factory Service, a data integration service in the cloud

Data Factory is a cloudbased data integration service that orchestrates and automates the movement and trans formation of data.

You can create **data integration** solutions using the **Data Factory** service that can ingest data from various data stores, **transform/process** the data, and publish the result data to the data stores.

Azure Data Factory

Enables enterprises

To ingest data from multiple on-premises and cloud sources easily, and gets your data where it needs to go. Prepare and partition your data as you ingest it, or apply pre-processing steps.

Allows you to create data pipelines

That move and transform data, and then run the pipelines on a specified schedule (hourly, daily, weekly, etc.).

Provides rich visualizations

To display the lineage and dependencies between your data pipelines, and monitor all your data pipelines from a single unified view.

Produce trusted data

What can We use Data Factory for?

Use it to **ingest data** from multiple on-premises and cloud sources.

Schedule, orchestrate, and manage the **data transformation** and analysis process.

Transform raw data into finished or shaped data that's ready for consumption by BI tools or by your onpremises or cloud applications and services.

Manage your entire network of data pipelines at a glance to identify issues and take action

Data Sources Usage

A pipeline is a logical grouping of activities. They are used to group activities into a unit that together perform a task.

To understand pipelines better, you need to understand an activity first.

What is Activity

Activities define the actions to perform on your data. For example, you may use a Copy activity to copy data from one data store to another data store. Similarly, you may use a Hive activity, which runs a Hive query on an Azure HDInsight cluster to transform or analyze your data. You may also choose to create a custom .NET activity to run your own code.

Activity 1 Activity 2 Activity 3

Data movement, activities

Copy Activity in Data Factory copies data from a source data store to a sink data store. Data from any source can be written to any sink.

Data transformation activities

Data Transformation Activity transforms data to desired format and shape. Transformation activities that can be added to pipelines either individually or chained with another activity.

Linked services define the information needed for Data Factory to connect to external resources (Examples: Azure Storage, on-premises SQL Server, Azure HDInsight).

Linked services are used for two purposes in Data Factory:

To represent a data store

including, but not limited to, an on-premises SQL Server, Oracle database, file share, or an Azure Blob Storage account.

that can host the execution of an activity. For example, the HDInsight Hive activity runs on an HDInsight Hadoop cluster.

Connecting To The Cloud Data Source

Linked Services

Datasets

2. Create the Data Factory

Portal, PowerShell and Visual Studio

Using the Portal

- Use in Non-MS Clients
- Use for Exploration
- Use when teaching or in a Demo

ADF V2

Concepts

datasets as inputs and produces one or more datasets as output.

is a grouping of logically related activities. It is **Data Source** Pipeline Dataset used to group activities into a unit that performs a task Concepts Activities define the actions to perform on computing environment Linked services your data. Each activity Activity takes zero or more

Expressions & Parameters

String functions – concat, substring, replace, indexof etc.

Collection functions – length,
union, first, last etc.

Logic functions –
equals, less than,
greater than, and, or,
not etc.

Conversation
functions – coalesce,
xpath, array, int,
string, json etc.

Math functions – add, sub, div, mod, min, max etc.

Date functions – utcnow, addminutes, addhours, format etc.

System variables

Pipeline scope

Variable Name

@pipeline().DataFactory

@pipeline().Pipeline

@pipeline().RunId

@pipeline().TriggerType

@pipeline().TriggerId

@pipeline().TriggerName

@pipeline().TriggerTime

Trigger scope

Variable Name

trigger().scheduledTime

trigger().startTime

Trigger

Type of triggers

- Manual execution
- Schedule trigger: A trigger that invokes a pipeline on a wall-clock schedule.
- Tumbling window trigger: A trigger that operates on a periodic interval, while also retaining state.

Schedule trigger

A schedule trigger runs pipelines on a wall-clock schedule. This trigger supports periodic and advanced calendar options. For example, the trigger supports intervals like "weekly" or "Monday at 5:00 PM and Thursday at 9:00 PM."

```
"properties": {
    "name": "MyTrigger",
   "type": "ScheduleTrigger",
   "typeProperties": {
        "recurrence": {
            "frequency": "Hour",
            "interval": 1,
            "startTime": "2017-11-01T09:00:00-08:00",
            "endTime": "2017-11-02T22:00:00-08:00"
   "pipelines": [{
            "pipelineReference": {
                "type": "PipelineReference",
                "referenceName": "SQLServerToBlobPipeline"
            "parameters": {}
            "pipelineReference": {
                "type": "PipelineReference",
                "referenceName": "SQLServerToAzureSQLPipeline"
            "parameters": {}
```

Tumbling window trigger

Tumbling window triggers are a type of trigger that fires at a periodic time interval from a specified start time, while retaining state. Tumbling windows are a series of fixed-sized, non-overlapping, and contiguous time intervals.

```
"name": "PerfTWTrigger",
"properties": {
 "type": "TumblingWindowTrigger",
 "typeProperties": {
    "frequency": "Minute",
   "interval": "15",
   "startTime": "2017-09-08T05:30:00Z",
   "delay": "00:00:01",
   "retryPolicy": {
     "count": 2,
      "intervalInSeconds": 30
    "maxConcurrency": 50
 "pipeline": {
    "pipelineReference": {
      "type": "PipelineReference",
      "referenceName": "DynamicsToBlobPerfPipeline"
    "parameters": {
      "windowStart": "@trigger().outputs.windowStartTime",
      "windowEnd": "@trigger().outputs.windowEndTime"
  "runtimeState": "Started"
```

Control flow

Control flow

For Each activity

Filter activity

Get metadata

Execute Pipeline

If Condition activity

Web activity

Lookup activity

Wait activity

Until activity

Branching

- On success
- •On failure
- •On completion
- On skip

Hands on Usecase

- One of the Manufacturing client needs data coming from multiple sources to be automated to generate reports and even send the email at the end.
- This should be a one time creation of pipeline but any new source integration should not impact the pipeline process.

Usecase

Build 2019

Whats New !!!


```
contraction to the contract of the contract of
```

ADF Data How Workstream

- Explicit user action
- User places data source(s) on design surface, from toolbox
- Select explicit sources

- Implicit/Explicit
- Data Lake staging area as default
- User does not need to configure this manually
- Advanced feature to set staging area options
- File Formats / Types(Parquet, JSON, txt, CSV ...)

- Explicit user action
- User places transformations on design surface, from toolbox
- User must set properties for transformation steps and step connectors

- Explicit user action
- User chooses destination connector(s)
- User sets connector property options

	Update *	New *	Unchanged	Total
Nuber of columns	2	1	15	18
Nuber of rows	30	0	2,483	2,234

Output schema	Data Preview

Order	Date * 🛅	Column* 🍫	Profit * 1.2	Column 123	Continent_data abc	Column abc
11	12/03/2018	~	2455.45	Cell Contents	North America	Cell Contents
2	12/03/2018	~	2455.45	Cell Contents	Europe	Cell Contents
3	12/03/2018		2455.45	Cell Contents	North America	Cell Contents
4	12/03/2018		2455.45	Cell Contents	North America	Cell Contents
5	12/03/2018	~	2455.45	Cell Contents	Africa	Cell Contents
6	12/03/2018	~	2455.45	Cell Contents	Asia	Cell Contents
7	12/03/2018	~	null	Cell Contents	Europe	Cell Contents
8	12/03/2018		null	Cell Contents	North America	Cell Contents
9	12/03/2018		49582.23	Cell Contents	Asia	Cell Contents
10	12/03/2018		49582.23	Cell Contents	Asia	Cell Contents
11	12/03/2018	~	mull	Cell Contents	Europe	Cell Contents
12	12/03/2018		49582.23	Cell Contents	Europe	Cell Contents
13	12/03/2018		49582.23	Cell Contents	North America	Cell Contents

Continent_data abc ×

528	51.8%	North America
203	20.3	Asia
136	13.6%	Africa
116	11.6%	Europe
17	1.7%	America
10	1.0%	Other

- Content Type
 Missing Value
 Unique Values
 5 (5%)
- Most Common North America (52.8%)
- Skewness -0.043210436

Future is most promising for ADF

Data Flows are in Public Preview since Build 2019. (Since 1 Week)

Hands on Usecase

- One of the Manufacturing client needs data coming from multiple sources to be automated to generate reports and even send the email at the end.
- This should be a one time creation of pipeline but any new source integration should not impact the pipeline process.

Usecase