Heat Transfer

Introduction to convection and the conservation equations

Prof. Dr.-Ing. Reinhold Kneer
Prof. Dr.-Ing. Dr. rer. pol. Wilko Rohlfs
Prof. Dr. ir. Kees Venner

Learning Goals

Classification

- Understanding Convection and the distinction from Advection
- Convection as the interaction of heat Conduction and Advection
- Classification of convection problems

Conservation Equation

- Derive the conservation equations for mass, momentum and energy
- Understand the similarity between momentum and energy transport

OF TWENTE

How is the heat transferred?

Heat Conduction (conduction/diffusion)

Source: www.tec-science.com/de/thermodynamik-waermelehre/waerme/warme-und-thermodynamisches-gleichgewicht/www.tec-science.com/de/thermodynamik-waermelehre/waerme/warum-befinden-sich-heizkorper-meist-unter-einem-fenster/

How is the heat transferred?

Heat Conduction (conduction/diffusion)

Convection

Source: www.tec-science.com/de/thermodynamik-waermelehre/waerme/warme-und-thermodynamisches-gleichgewicht/www.tec-science.com/de/thermodynamik-waermelehre/waerme/warum-befinden-sich-heizkorper-meist-unter-einem-fenster/

How is the heat transferred?

Heat Conduction (conduction/diffusion)

Advection

Heat flow in radial directional along the gradients

Fourier Law

$$\dot{q}^{\prime\prime} = -\lambda \nabla T$$

Heat is transported by fluid movement along a current path

Enthalpy flow density

$$\dot{h}^{\prime\prime} = \rho u c_p T$$

Heat Conduction (conduction/diffusion)

Advection

Convective Heat Transfer (convection)

Transport along the current (flow) paths: Transport perpendicular to the current paths:

Convection (and Conduction) only Conduction

Mechanism of convective heat transfer

What is the difference in comparison to pure heat conduction?

Classifications according to flow condition

External

Internal

Forced Convection

 Driven by externally generated movement of the fluid/object

Classifications according to flow condition

External

OF TWENTF

Internal

Forced Convection

 Driven by externally generated movement of the fluid/object

Free Convection

 Inherently driven due to heat transfer (density differences)

Classifications according to flow condition

External

Internal

Forced Convection

 Driven by externally generated movement of the fluid/object

Free Convection

 Inherently driven due to heat transfer (density differences)

Empirical description by the heat transfer coefficient

$$\dot{Q} = \alpha A \left(T_W - T_\infty \right)$$

Fourier's Heat Conduction Law

$$\dot{Q} = -A\lambda_f \left(\frac{\partial T}{\partial y}\right)_{y=0,f}$$

The heat transfer coefficient α describes the approximately linear relationship between the amount of heat transferred and the temperature gradient. α is a SYSTEM parameter, not a material property!

 $\alpha = \frac{-\lambda_f \left(\frac{\partial T}{\partial y}\right)_{y=0,f}}{(T_W - T_\infty)}$

Nusselt number

• Dimensionless heat transfer coefficient with the reference length L (∂T)

$$Nu = \frac{\alpha L}{\lambda} = L \frac{-\left(\frac{\partial I}{\partial y}\right)_{y=0,f}}{(T_W - T_\infty)}$$

Boundary Layer

- Near-wall layer with significant gradient of Velocity and Temperature
- What happens here? → Conservation Equation

Conservation Equation

For Mass \dot{m} , Momentum \dot{I} , Energy h, \dot{q}'' .

General Balance

Temporal change of a quantity inside the control volume

Net transport of the quantity across the boundaries of the control volume

External forces (for momentum equation)

Work output of the external forces (for energy equation)

Continuity Equation

Set Balance

Mass Flows

$$\frac{\partial m}{\partial t} = \dot{m}_{x}(x) - \dot{m}_{x}(x + dx) + \dot{m}_{y}(y) - \dot{m}_{y}(y + dy)$$

$$\frac{\partial \rho}{\partial t} dV$$

$$= -\frac{\partial \rho u}{\partial x} dx dy dz - \frac{\partial \rho v}{\partial y} dx dy dz$$

incompressible $\rho = const.$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Momentum Equation: x-direction

Set Balance

Slide 14

Temporal Change

Steady state $\frac{\partial I_{\chi}}{\partial t} dV = 0$

$$\frac{\partial I_{\mathcal{X}}}{\partial t}dV = 0$$

Momentum Flow

$$-\left(\rho u\frac{\partial u}{\partial x} + \rho v\frac{\partial u}{\partial y}\right) dxdydz$$

Momentum Equation: x-direction

Set Balance

Temporal Change

Steady state $\frac{\partial I_{\chi}}{\partial t} dV = 0$

Momentum Flow

$$-\left(\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y}\right) dx dy dz$$

External Forces acting ON the volume

Pressure Change $-\frac{\partial p}{\partial x}dxdydz$

Momentum Equation: x-direction

Set Balance

Temporal Change

Steady state
$$\frac{\partial I_{\chi}}{\partial t}dV = 0$$

Momentum Flow

$$-\left(\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y}\right) dx dy dz$$

External Forces acting ON the volume

Pressure Change $-\frac{\partial p}{\partial x}dxdydz$ **Shear Stress** (if incompressible) $\eta \left(\frac{\partial^2 \mathbf{u}}{\partial x^2} + \frac{\partial^2 \mathbf{u}}{\partial y^2} \right) dx dy dz$

Momentum Equation (steady state, incompressible)

Momentum Flows Pressure Shear Stress

x-direction $\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} + \rho w \frac{\partial u}{\partial z} = -\frac{\partial p}{\partial x} + \eta \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$ y-direction $\rho u \frac{\partial v}{\partial x} + \rho v \frac{\partial v}{\partial y} + \rho w \frac{\partial v}{\partial z} = -\frac{\partial p}{\partial y} + \eta \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right)$ z-direction $\rho u \frac{\partial w}{\partial x} + \rho v \frac{\partial w}{\partial y} + \rho w \frac{\partial w}{\partial z} = -\frac{\partial p}{\partial z} + \eta \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right)$

+ Volume forces (e.g. Gravitation)

Energy Conservation: Enthalpy Flows

Set Balance

Temporal Change

$$\frac{\partial U}{\partial t} = \rho c_p \frac{\partial T}{\partial t} dV \text{ (steady state } \frac{\partial U}{\partial t} = 0)$$

Enthalpy Flows

$$-\left(\rho u c_p \frac{\partial T}{\partial x} + \rho v c_p \frac{\partial T}{\partial y}\right) dx dy dz$$

UNIVERSITY

OF TWENTE

Energy Conservation: Heat conduction / diffusion

Set Balance

Temporal Change

$$\frac{\partial U}{\partial t} = \rho c_p \frac{\partial T}{\partial t} dV \text{ (stationär } \frac{\partial U}{\partial t} = 0)$$

Enthalpy Flows

$$-\left(\rho u c_p \frac{\partial T}{\partial x} + \rho v c_p \frac{\partial T}{\partial y}\right) dx dy dz$$

Heat Conduction

(if λ homogeneous)

$$\lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) dx dy dz$$

OF TWENTE

Energy Conservation (steady state, incompressible, λ homogeneous)

Enthalpy Flows

Heat Conduction

$$\rho u c_p \frac{\partial T}{\partial x} + \rho v c_p \frac{\partial T}{\partial y} + \rho w c_p \frac{\partial T}{\partial z} = \chi \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \text{Work against problems}$$

$$a = \frac{\lambda}{\rho c_p}$$
+ Work against problems of the shear stresses, volume forces

+ Work against pressure,

Compared to Conservation of Momentum

Impulse Flows

Pressure Shear Stresses

$$\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} + \rho w \frac{\partial u}{\partial z} = -\frac{\partial p}{\partial x} + \eta \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + \text{Volume forces (e.g. Gravitation)}$$

$$\frac{1}{\rho} \qquad v = \frac{\eta}{\rho}$$

Similarity between Momentum and Energy transport

Momentum Flows Pressure Shear Stresses

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + v\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right)$$

$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} + w\frac{\partial T}{\partial z} =$$

 $\frac{v}{Pr} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right)$

Enthalpy Flows (advective transport) **Heat Conduction**

Prandtl number

$$Pr = \frac{v}{a} = \frac{\text{Diffusive Momentum transport}}{\text{Diffusive Heat transport}}$$

Comprehension questions

What is meant by a heat transfer coefficient and what does it describe?

Why does the Fourier's law of heat conduction also apply on the fluid side in the immediate vicinity of the wall?

What does the dimensionless Nusselt number mean?

What is the difference between natural and forced convection?

