

Lecture Notes on Nov/21

Cryptographic Algorithms

ECE217 Data Structure and Algorithms

Instructor: Dr. Shayan (Sean) Taheri

Definitions and Goals

Cryptology Cryptography Cryptanalysis Symmetric Ciphers Ciphers Ciphers Ciphers Ciphers Ciphers Mathematical Attacks Brute Force Force

Definitions

- Cryptography: The science (art) of encryption.
- Cryptanalysis: The science (art) of breaking encryption.
- <u>Cryptology</u>: Cryptography + Cryptanalysis.

Lorenz cipher machine, used to encrypt communications.

> Goals

- Encryption: To Prevent Intruder (e.g., Eve) from Intercepting Valid Message.
- Authentication: To Prevent Intruder from Impersonating Valid User (e.g., Alice or Bob).

Insecure Channel

Alphabet shift ciphers are believed to have been used by Julius Caesar over 2,000 years ago. This is an example with k=3. In other words, the letters in the alphabet are shifted three in one direction to encrypt and three in the other direction to decrypt.

Symmetric/Secret/Private Key and Asymmetric/Public Key

- > Symmetric/Secret/Private Key for Encryption and Authentication
 - Alice and Bob share a secret key, Kab.
 - Encryption: Plaintext message is encrypted and decrypted with Kab.
 - Authentication: Alice proves to Bob that she knows Kab (e.g., a password).
- > Public Key for Encryption
 - Bob generates <u>2 keys</u>, <u>Keb</u> (<u>Public Key</u>) and <u>Kdb</u> (<u>Private Key</u>).
 - Bob publishes Keb.
 - Alice encrypts: Ciphertext/C = Encryption/E (Keb, Plaintext/P).
 - Bob decrypts: **Plaintext/P** = **Decryption/D** (**Kdb**, **Ciphertext/C**).
 - It must not be possible to compute Kdb (Private Key) from Keb (Public Key).

Authentication by Digital Signature

- Public Key for Authentication
 - Alice generates Kea (Public Key) and Kda (Private Key).
 - Alice publishes Kea (Public Key).
 - Alice signs:
 - (Plaintext/P, Signature/S) = DigitalSignature/DS (Kda, Plaintext/P).
 - Alice sends (Plaintext/P, Signature/S) to Bob.
 - Bob verifies:

Plaintext/P = DigitalVerification/DV (Kea, Signature/S) → Since only Alice knows Kda (Private Key).

> Public Key for "Encryption + Authentication" Algorithm (Exercise).

Cryptographic Algorithms

> Types

- Symmetric/Private Key Encryption/Decryption (e.g., Block Ciphers).
- Asymmetric/Public Key Encryption/Decryption.
- Hash Function and Message Authentication Code.
- Digital Signature.

➤ Block Ciphers

• Example: AES, DES, 3DES, Two-fish, Blowfish, Serpent, RC4, IDEA.

Block Ciphers – Modes

- \triangleright ECB Electronic Code Book: $C_i = E(K, P_i)$
- > CBC Cipher Block Chaining:
 - $C_i = E(K, P_i XORC_{i-1})$
 - $C_0 = IV$ (Initialization Vector: Fixed, random, counter, or nonce)

- K₀ = IV (nonce = Number used once)
- $K_i = E(K, K_{i-1})$
- $C_i = P_i XOR K_i$
- > CTR Counter
 - K_i = E (K, nonce | | i)
 - $C_i = P_i XOR K_i$

- ECB Mode (Left)
- CBC Mode (Right)

CTR Mode

Block Ciphers – Architecture

- ➤ **Substitution/S Boxes**: Invertible lookup tables that they depend on key.
- **Permutation/P Boxes**: They reorder bits (may depend on key).
- **Key Schedule**: Function of key (e.g. bit selection or simple hash).

Secure Hash Function

> Goals

- Collision Resistance: It takes $2^{n/2}$ work to find any m_1 , m_2 such that $h(m_1) = h(m_2)$.
- **First Preimage Resistance**: Given h(m) it takes 2ⁿ work to find m.
- Second Preimage Resistance: Given m_1 it takes 2^n work to find m_2 such that $h(m_1) = h(m_2)$.

 SHA-1 (Bottom-Right)

> Applications

PRNG (Bottom-Left)

5 x 32 bit state (80 rounds)

- **Faster Digital Signatures**: Alice signs h(P) instead of P.
- Password Verification (e.g. UNIX) without Storing Passwords.
- Strong Pseudo-Random Number Generation (PRNG).
- Message Authentication Code (MAC).

DES Cryptographic Algorithm in C++ Language

```
Data Encryption Standard (DES) Operations in C++ Language
     // Instructor: Dr. Shayan (Sean) Taheri
     // Driver Code
4
   int main(){
       // Task 1: Determine a 64-Bit Key and a 64-Bit Plaintext
       // Task 2: Generate 16 Keys for Encryption
10
       // Task 3: Prepare the Keys for Decryption
11
12
       // Task 4: Use the DES Operations for Encryption and Decryption
13
14
       // Task 5: Display the Encrypted and the Decrypted Data along with the Original Data
15
17
```


> Reading Assignment:

Handbook of Applied Cryptography. First Edition. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.

✓ Chapter 1: Overview of Cryptography.

> Assignment 3 Deadline: November/30/2022.

Questions?