

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA
CAMPUS SÃO JOSÉ
ENGENHARIA DE TELECOMUNICAÇÕES

Aluno: Arthur Cadore Matuella Barcella Data: 31/01/2022

Turma: 029002 Disciplina: FSC

Relatório - Gases Ideais

Objetivos do relatório:

- 1. Construir gráficos e descrever as leis de transformação para os processos:
- Isotérmico.
- Isocórico.
- Isobárico.

Para esses processos, o número de partículas na realização dos testes foi de <u>250 partículas leves.</u>

2. Construir o gráfico da transformação geral e determinar a constante de proporcionalidade do gás ideal em função do número de partículas do sistema.

Não utilizar massa molar nos cálculos, a massa a ser utilizada é a do sistema Phet, ou seja, unidade de massa atômica (UMA).

3. Determinar a massa das amostras (N partículas) utilizadas no item 1 e no item 2.

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA
CAMPUS SÃO JOSÉ
ENGENHARIA DE TELECOMUNICAÇÕES

Processo Isotérmico:

No processo isotérmico, foi inserido um valor fixo de temperatura no simulador, e então foi variado o volume, a fim de determinar a pressão resultante.

Para validação do sistema isotérmico no simulador, foram utilizados os seguintes parâmetros:

• Temperatura: 500°K

• Número de partículas: 250 (Leves).

Após a simulação das seguintes medidas abaixo, foi possível obter os seguintes dados a partir dos valores inseridos:

	Arthur Cadore M. Barcella - ISOTÉRMICA – Temperatura constante de 500°K					
Medidas	N° de colisões	Volume (nm)	Pressão (kPa)	PV	Т	PV/T
1	374	5	5.937,6	29.688,225	500	59,376
2	395	6	4.863,6	29.181,600	500	58,363
3	415	7	4.265,8	29.860,481	500	59,721
4	422	8	3.738,9	29.911,136	500	59,822
5	427	9	3.313,3	29.819,952	500	59,640
6	486	10	2.958,7	29.586,900	500	59,174
7	496	11	2644,582	29.090,402	500	58,181
8	516	12	2482,463	29.789,556	500	59,579
9	569	13	2269,68	29.505,840	500	59,012
10	649	14	2097,427	29.363,978	500	58,728
11	725	15	1935,308	29.029,620	500	58,059
	MÉDIA			29.529,790		59,060
		[DESVIO PADRÃO	320,523		0,641

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS SÃO JOSÉ

ENGENHARIA DE TELECOMUNICAÇÕES

A partir dos valores obtidos no simulador, é possível gerar um gráfico e acompanhar a curva feita pelo sistema isotérmico, no momento em que o volume é variado.

Processo Isobárico:

No processo isobárico, foi inserido um valor fixo de pressão no simulador, e então foi variada a temperatura, a fim de determinar o volume resultante.

Para validação do sistema isobárico no simulador, foram utilizados os seguintes parâmetros:

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA
CAMPUS SÃO JOSÉ
ENGENHARIA DE TELECOMUNICAÇÕES

• Pressão: 5066,25 (kPa); Equivalente a 50 atm.

• Número de partículas: 250 (Leves).

Os seguintes dados foram obtidos a partir dos valores inseridos no simulador:

	Arthur Cadore M. Barcella - ISOBÁRICA – Pressão constante de 5066,25 Kpa					
Medidas	N° de colisões	Temperatura (K)	Volume (nm)	V/T	Pressão (kPa)	PV/T
1	650	350,0	6,8	0,0194	5066,25	98,43
2	632	380,0	7,4	0,0195	5066,25	98,66
3	628	410,0	8	0,0195	5066,25	98,85
4	622	440,0	8,6	0,0195	5066,25	99,02
5	613	470,0	9,1	0,0194	5066,25	98,09
6	602	500,0	9,7	0,0194	5066,25	98,29
7	596	530,0	10,3	0,0194	5066,25	98,46
8	587	560,0	10,9	0,0195	5066,25	98,61
9	589	590,0	11,5	0,0195	5066,25	98,75
10	581	620,0	12,1	0,0195	5066,25	98,87
11	579	650,0	12,6	0,0194	5066,25	98,21
	MÉDIA			0,01946		98,567
	DESVIO PADRÃO			0,000059		0,2988

A partir dos valores obtidos no simulador, é possível gerar um gráfico e acompanhar a curva feita pelo sistema isobárico, no momento em que a temperatura é variada.

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS SÃO JOSÉ

ENGENHARIA DE TELECOMUNICAÇÕES

Processo Isovolumétrico:

No processo isovolumétrico, foi inserido um valor fixo de volume no simulador, e então foi variada a temperatura, a fim de determinar a pressão resultante.

Para validação do sistema isovolumétrico no simulador, foram utilizados os seguintes parâmetros:

Volume: 8 nm

• Número de partículas: 250 (Leves).

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA
CAMPUS SÃO JOSÉ
ENGENHARIA DE TELECOMUNICAÇÕES

Dados obtidos a partir dos valores inseridos no simulador:

	Arthur Cadore M. Barcella - ISOCÓRICA – Volume constante de 8 nm					
Medidas	N° de colisões	Temperatura (K)	Pressão (kPa)	P/T	V (nm)	PV/T
1	587	350,0	4286,047	12,246	8	97,97
2	602	380,0	4681,215	12,319	8	98,55
3	632	410,0	5035,852	12,283	8	98,26
4	651	440,0	5400,623	12,274	8	98,19
5	647	470,0	5785,658	12,310	8	98,48
6	654	500,0	6170,693	12,341	8	98,73
7	670	530,0	6515,198	12,293	8	98,34
8	685	560,0	6910,365	12,340	8	98,72
9	714	590,0	7244,738	12,279	8	98,23
10	752	620,0	7660,17	12,355	8	98,84
11	763	650,0	8045,205	12,377	8	99,02
	MÉDIA			12,311		98,49
	DESVIO PADRÃO			0,0399		0,3191

A partir dos valores obtidos no simulador, é possível gerar um gráfico e acompanhar a curva feita pelo sistema isovolumétrico, no momento em que a temperatura é variada.

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS SÃO JOSÉ

ENGENHARIA DE TELECOMUNICAÇÕES

Transformação geral e constante de proporcionalidade do gás ideal:

Para determinar a constante de proporcionalidade do gás ideal, antes de tudo, é necessário realizar coletas de diferentes amostras. No simulador, foram inseridas no total 7 amostras com diferentes quantidade de partículas leves.

Com essas amostras, foram feitos experimentos, variando a temperatura e o volume, a fim de receber valores de pressão diferentes para cada caso, e então a partir do valor de pressão a ser aferido, é possível descobrir uma proporção entre pressão, volume e temperatura.

Os valores inseridos e recebidos em cada caso, estão exibidos abaixo:

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS SÃO JOSÉ

ENGENHARIA DE TELECOMUNICAÇÕES

1° AMOSTRA DE PARTICULAS = 350 (Leves)				
N	Pressão (kPa)	Volume (nm)	Temperatura (K)	PV/T
1	9686,67	5	350	138,381
2	9504,285	8	550	138,244
3	9463,755	11	750	138,802
	138,476			
			DESVIO PADRÃO	0,291

2° AMOSTRA DE PARTICULAS = 400 (Leves)				
N	Pressão (kPa)	Volume (nm)	Temperatura (K)	PV/T
1	11014,028	5	350	157,343
2	10811,378	8	550	157,256
3	10791,112	11	750	158,270
	157,623			
	0,562			

3° AMOSTRA DE PARTICULAS = 450 (Leves)				
N	Pressão (kPa)	Volume (nm)	Temperatura (K)	PV/T
1	12483,24	5	350	178,332
2	12280,59	8	550	178,627
3	12148,868	11	750	178,183
	178,381			
DESVIO PADRÃO				0,226

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS SÃO JOSÉ

ENGENHARIA DE TELECOMUNICAÇÕES

4° AMOSTRA DE PARTICULAS = 500 (Leves)				
N	Pressão (kPa)	Volume (nm)	Temperatura (K)	PV/T
1	13770,067	5	350	196,715
2	13486,358	8	550	196,165
3	13516,755	11	750	198,246
	197,042			
	1,078			

5° AMOSTRA DE PARTICULAS = 550 (Leves)				
N	Pressão (kPa)	Volume (nm)	Temperatura (K)	PV/T
1	15168,352	5	350	216,691
2	14874,51	8	550	216,357
3	14742,788	11	750	216,228
	216,425			
			DESVIO PADRÃO	0,239

6° AMOSTRA DE PARTICULAS = 600 (Leves)					
N	Pressão (kPa)	Volume (nm)	Temperatura (K)	PV/T	
1	16475,445	5	350	235,364	
2	16262,663	8	550	236,548	
3	16080,277	11	750	235,844	
	MÉDIA 235,918				
	DESVIO PADRÃO 0,596				

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA
CAMPUS SÃO JOSÉ
ENGENHARIA DE TELECOMUNICAÇÕES

7° AMOSTRA DE PARTICULAS = 650 (Leves)				
N	Pressão (kPa)	Volume (nm)	Temperatura (K)	PV/T
1	17843,333	5	350	254,905
2	17549,49	8	550	255,265
3	17407,635	11	750	255,312
	255,161			
			DESVIO PADRÃO	0,223

A Partir dos dados obtidos, é possível encontrar a constante de proporção (constante "R") com a fórmula geral dos gases.

A constante de proporcionalidade pode ser obtida a partir da seguinte fórmula:

$$P.V = n.R.T$$

Onde:

- P é a <u>pressão</u> gás.
- V é o <u>volume.</u>
- T é a temperatura (absoluta) do gás.
- *n* é a <u>quantidade de matéria</u> da amostra.
- R é a constante de proporcionalidade do gás.

Como o sistema Phet opera utilizando a unidade "UMA" (Unidade de Massa Atômica) como unidade de medição das partículas, <u>o valor de "n" será determinado</u> pela quantidade de partículas (n-partículas) de cada amostra, e pelo valor individual de cada partícula (no caso das partículas leves, será de 4 UMAs).

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA
CAMPUS SÃO JOSÉ

ENGENHARIA DE TELECOMUNICAÇÕES

Dessa forma, para calcular a constante "R", é possível utilizar do valor já mostrado nos experimentos acima:

$$\frac{P.V}{T} = n.R \Rightarrow \frac{\frac{P.V}{T}}{n} = R$$

Onde:

- P é a pressão gás.
- V é o volume.
- T é a temperatura (absoluta) do gás.
- *n* é a <u>quantidade de matéria</u> da amostra.
- R é a constante de proporcionalidade do gás.

A partir da formula informada acima, é possivel calcular o valor da constante de proporcionalidade, dividindo o valor da média gerada nos experimentos, pelo valor das amostras, os valores estão descritos abaixo:

	RESUMO DOS VALORES DAS AMOSTRAS				
PV/T (média)	Tamanho da amostra	Massa da amostra	Constante R1	Constante R2	
138,476	350 partículas	1400 UMAs	0,396	0,099	
157,623	400 partículas	1600 UMAs	0,394	0,099	
178,381	450 partículas	1800 UMAs	0,396	0,099	
197,042	500 partículas	2000 UMAs	0,394	0,099	
216,425	550 partículas	2200 UMAs	0,393	0,099	
235,918	600 partículas	2400 UMAs	0,393	0,099	
255,161	650 partículas	2600 UMAs	0,393	0,099	

MINISTÉRIO DA EDUCAÇÃO

amostra, ou seja, a quantidade de partículas.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA
CAMPUS SÃO JOSÉ
ENGENHARIA DE TELECOMUNICAÇÕES

- Cálculo de R1: Na tabela acima, R1 representa o valor da constante "R" utilizando o valor de "n" como sendo o tamanho da
- Cálculo de R2: O valor de R2, representa o valor da constante "R"
- Calculo de R2: O valor de R2, representa o valor da constante "R" utilizando o valor de "n" como sendo a massa da amostra, ou seja, o valor em UMAs de cada amostra.

A partir desses dados, é possível exibir graficamente os resultados obtidos:

• Gráfico de constante de proporcionalidade de R1:

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA
CAMPUS SÃO JOSÉ
ENGENHARIA DE TELECOMUNICAÇÕES

Gráfico de constante de proporcionalidade de R2:

Determinação da massa das amostras:

Para saber a massa de cada amostra, precisamos saber a quantidade de partículas que cada amostra possui, e também a massa de cada partícula.

Cada partícula (Leve) utilizada do sistema (phet) possui 4 UMAs (Unidade de Massa Atômica).

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA
CAMPUS SÃO JOSÉ
ENGENHARIA DE TELECOMUNICAÇÕES

O valor a ser utilizado (Halliday) para cada "UMA" (Unidade de Massa Atômica) é de: 1, 661. $10^{-27} Kg$

Dessa maneira, os valores de cada amostra utilizada nos testes, está disponível abaixo:

Massa das amostras utilizadas					
Quantidade de Partículas (Leves)	Massa da amostra (UMAs)	Massa da amostra (Kg)			
250 Partículas	1000	1, 661. 10 ⁻²⁴			
350 Partículas	1400	2, 32475. 10 ⁻²⁴			
400 Partículas	1600	2, 65686. 10 ⁻²⁴			
450 Partículas	1800	2, 99897. 10 ⁻²⁴			
500 Partículas	2000	3, 32108. 10 ⁻²⁴			
550 Partículas	2200	3, 65319. 10 ⁻²⁴			
600 Partículas	2400	3, 98529. 10 ⁻²⁴			
650 Partículas	2600	4, 3174. 10 ⁻²⁴			