Welcome to MSA Al Bootcamp

- 1. We will be commencing shortly
- 2. This is a Microsoft Teams Non-tech Live event, so you are placed on mute for the entire duration.
- 3. If you have any questions, please select "Ask a question" or upvote by liking existing ones.
- 4. Captions can be turned on anytime by clicking the "CC" icon.
- 5. At any point where you get lost, you can rewind the live stream to any point in time.
- 6. This Bootcamp is being recorded and all recordings can be accessed via the same link you used to access this live event.
- 7. Having this Bootcamp being recorded, should you not consent, please feel free to leave if you wish.
- 8. For updates on the program, please join our Facebook group at https://aka.ms/MSAFacebook We hope you enjoy the session!

presents

Artificial Intelligence and Analytics

Agenda

01 Keynote

02 Introduction to MSA

03 AI & ML Concepts

04 Break

- 05 Project Walk-through
- Project Submission & Assignment Instructions
- 07 Questions and Answers

Speaker Keynote

Joseph Gurney

Graduated from the University of Tasmania in 2018, Joseph is now working at Microsoft as a Premier Field Engineer in Data & Al.

Role

Premier Field Engineer - Data & Al Company

Microsoft – Sydney, Australia

Disruption is the 4th industrial revolution

STEAM

ELECTRICITY

ELECTRONICS & IT

DIGITAL

Microsoft mission

Empower every person and every organization on the planet to achieve more

Intelligent Edge

Introduction to MSA

Overview

The Microsoft Student Accelerator (MSA) program works with students to provide industry relevant training and put those skills in practice to solve a real-world problem.

Training

Start with 6 months of bootcamps, workshops and projects

Imagine Cup Mentorship

Top performing students will then be mentored for the Imagine Cup preparation

Structure

- Consists of a series of bootcamps and complimenting workshops.
- Participants are expected to complete at least 2 bootcamps to be certified as having completed the MSA Program.
- Each bootcamp will require students to finish a project and corresponding MS Learn modules.

Bootcamps vs Workshops

Timeline

Points

- Part of the MSA program and is an indicator of your progress.
 You can accumulate points through completing projects and Microsoft Learn modules.
- The top students with the highest number of points will be mentored to participate in the Microsoft Imagine Cup 2020.

Project

Microsoft Learn Modules

Prizes

 Based on the points accumulated, while top students can earn exclusive Microsoft swags and goodies, there are special prizes for the top 3 participants.

03

Surface Book 2 Xbox One X Surface Headphone

Support and Resources

- Access to exclusive tools and resources such as GitHub,
 Microsoft Learn and helpdesks.
- GitHub will be your primary source of information
- Helpdesks enable participants to ask questions and get help from our volunteers.

GitHub

MS Learn

Helpdesks

Al & ML Concepts

Story Time!

Overview

INTRODUCTION TO ARTIFICIAL INTELLIGENCE (AI)

AI VS MACHINE LEARNING (ML) VS DEEP LEARNING

WHY & WHERE DO WE USE AI

CLOSER LOOK AT HOW AI WORKS

DEMYSTIFYING COMMON JARGONS

Artificial Intelligence

- Theoretical concept of "smart" or "sentient" machines
- Machine which simulate human-like behaviour
- Earliest examples date as early as Greek
 Mythologies (Pandora's box)

Al vs Machine Learning vs Deep Learning

- Terms often used interchangeably
- Are subsets of each other

Machine Learning

- Practical application of AI using programming,
 mathematics and statistics
- Building mathematical models and algorithms in order to identify patterns or generalize information
- Can make decisions or predictions based on those knowledge

Deep Learning

- Subfield of ML inspired by the structure and function of the brain
- "Deep" refers to the number of layers through which the data is transformed
- Commonly applied for computer vision, speech recognition, natural language processing etc.

Why Do We Need Machine Learning?

- The amount of data is growing exponentially
- Finding patterns and other useful information in data is becoming considerably difficult for humans
- Machine Learning gives us the promise to derive meaning from the data
- Frees humans to engage in more creative or decision making tasks

Common Uses of Machine Learning

Image recognition & analysis

Fraud detection

Recommendation systems

Text & speech systems

Bioinformatics

How Does Machine Learning Work?

A typical model can be broken down to:

- Identify the problem then gather and prepare data for the problem we're trying to solve
- 2. Select an appropriate ML model based on the problem
- 3. Train our model on the training data
- 4. Test our model and optimise
- 5. Launch it to the real world!

Data Collection and Processing

- Very important to collect a wide variety of data
- If not provided in a correct format, the algorithm would perform incorrect analysis
- Missing data can significantly decrease the accuracy of the model
- Focus on the features or values we want and drop the insignificant ones

Common Categories of Machine Learning

Supervised Learning

- Is like learning with a teacher
- Use past data to predict future outcomes
- Uses a trial and error bases approach
- Often used for prediction and classification

When Supervised Learning Is Used?

Classification: Machine is trained to classify something into some class.

- classifying whether a patient has disease or not
- classifying whether an email is spam or not

Regression: Machine is trained to predict some value like price, weight or height.

- predicting house/property price
- predicting stock market price

Unsupervised Learning

- Is like learning without a teacher
- The machine learning through observation &
- Tries to learn some type of structure from the data
- No specific way to compare model performance in most unsupervised learning methods.

When Do We Use Unsupervised Learning?

Clustering: A clustering problem is where you want to discover the inherent groupings in the data

 Such as grouping customers by purchasing behavior

Association: An association rule learning problem is where you want to discover rules that describe large portions of your data

Such as people that buy X also tend to buy Y

Reinforcement Learning (RL)

- The models consists a decision process(s) and reward system
- An agent (model) interacts with the environment to maximise the total rewards.
- RL is usually modelled as a Markov Decision Process (image below):

Figure 3.1: The agent–environment interaction in a Markov decision process.

When Not To Use Reinforcement Learning?

You can't apply reinforcement learning model in all situation. Here are some condition when you should not use it:

- When you have enough data to solve the problem with supervised learning
- You need to remember that reinforcement learning is a computingheavy and time-consuming

Common real-world applications of RL:

- A machine learning model to play chess
- Intelligent traffic control system

Importance of Proper Testing

- How the model generalizes unseen data is very important Overfitting & Underfitting (Demystified in later slides)
- Fine tune model's parameters and optimise
- Choose the best performing model

Common Model Evaluation Techniques: Holdouts, Cross-Validation. Read more about them here.

Demystifying Common Jargons

Weights, Biases & Hyperparameters

Weights: Initialised values that decide much influence the input will have on the output. They are updated as our model trains itself.

Biases: Constant values which act like pre-determined notions. And additional input

Hyperparameters: Parameters whose value is set before the learning process begins. Example: learning rate, batch-size etc.

Train, Test & Validation

Train: Go through the training datasets to generate output

Validation: Validate the output generated during training and update weights and biases

Test: Previously unseen data. Used to determine model's accuracy. Tune hypermeters to optimise

Overfitting & Underfitting

Overfitting: When the model memorizes the features and information of the training data rather than generalizing it.

Underfitting: When the model can neither generalize the training data nor unseen data

Thank You!

Please ask any questions in the Q&A section of the Livestream

Attendance Form

https://aka.ms/AttendanceForm

Break (10 mins)

Project walkthrough

Project Walkthrough

- A sample to teach you how to use AzureML and Azure Notebooks in your project
- Uses MNIST Dataset Predicting Handwritten digits
- *If you get lost, you can always re-watch this recording later at your own pace

Project Submission & Assignment Instructions

Assignment Instructions

- In order to complete this Bootcamp, you will need to complete its corresponding Microsoft Learn modules or tutorial and a project.
- All of these will be detailed on GitHub which you can access via a link we sent to you via email.

100PT	3PT	
Project	Microsoft Learn Module	

Project Submission

Submit GitHub links and screenshots of completed tasks here:

https://aka.ms/MSAAusProjectSubmission

 The assessment of this bootcamp is due by 13th June 2020

Questions and Answers

Thank you for attending!

- 1. The recording for this Bootcamp can be accessed via the same link used to access this live event.
- 2. All resources can be found on our GitHub repo which can be accessed via the link we sent to your email.

