

RankSEG: A Consistent Ranking-based Framework for Segmentation

The primary aim of segmentation is to label each foreground feature/pixel of an input with a corresponding class. Specifically, for a feature vector or an image $\mathbf{X} \in \mathbb{R}^d$, a segmentation function $\delta : \mathbb{R}^d \to \{0,1\}^d$ yields a predicted segmentation $\delta(\mathbf{X}) = (\delta_1(\mathbf{X}), \cdots, \delta_d(\mathbf{X}))^\intercal$, where $\delta_j(\mathbf{X})$ represents the predicted segmentation for the j-th feature X_j , and $I(\delta(\mathbf{X})) = \{j : \delta_j(\mathbf{X}) = 1; \text{ for } j = 1, \cdots, d\}$ is the index set of the segmented features of \mathbf{X} provided by δ .

To access the performance for a segmentation function δ , the **Dice** and **IoU** metrics are introduced and widely used in the literature, both of which measure the overlap between the ground truth and the predicted segmentation:

Mini requirement: any method must be consistent with δ^* ; otherwise sub-optimal.

$$\begin{split} \operatorname{Dice}_{\gamma}(\boldsymbol{\delta}) &= \mathbb{E}\Big(\frac{2\big|I(\mathbf{Y}) \cap I(\boldsymbol{\delta}(\mathbf{X}))\big| + \gamma}{\big|I(\mathbf{Y})\big| + \big|I(\boldsymbol{\delta}(\mathbf{X}))\big| + \gamma}\Big) = \mathbb{E}\Big(\frac{2\mathbf{Y}^{\intercal}\boldsymbol{\delta}(\mathbf{X}) + \gamma}{\|\mathbf{Y}\|_{1} + \|\boldsymbol{\delta}(\mathbf{X})\|_{1} + \gamma}\Big), \\ \operatorname{IoU}_{\gamma}(\boldsymbol{\delta}) &= \mathbb{E}\Big(\frac{\big|I(\mathbf{Y}) \cap I(\boldsymbol{\delta}(\mathbf{X}))\big| + \gamma}{\big|I(\mathbf{Y}) \cup I(\boldsymbol{\delta}(\mathbf{X}))\big| + \gamma}\Big) = \mathbb{E}\Big(\frac{\mathbf{Y}^{\intercal}\boldsymbol{\delta}(\mathbf{X}) + \gamma}{\|\mathbf{Y}\|_{1} + \|\boldsymbol{\delta}(\mathbf{X})\|_{1} - \mathbf{Y}^{\intercal}\boldsymbol{\delta}(\mathbf{X}) + \gamma}\Big), \end{split}$$

Existing Methods

Most **existing segmentation methods** are developed under a threshold-based framework with two types of loss functions. Given training data $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1,\cdots,n}$, most existing methods characterize segmentation as a **classification** problem:

$$\begin{split} \widehat{\mathbf{q}} &= \underset{\mathbf{q} \in \mathcal{Q}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} l\left(\mathbf{y}_{i}, \mathbf{q}(\mathbf{x}_{i})\right) + \lambda \|\mathbf{q}\|^{2}, \qquad \widehat{\boldsymbol{\delta}}(\mathbf{x}) = \mathbf{1}(\widehat{\mathbf{q}}(\mathbf{x}) \geq 0.5), \\ (CE) & l_{CE}(\mathbf{y}, \mathbf{q}(\mathbf{x})) = -\sum_{j=1}^{d} \left(y_{j} \log \left(\mathbf{q}_{j}(\mathbf{x})\right) + (1 - y_{j}) \log \left(1 - \mathbf{q}_{j}(\mathbf{x})\right)\right), \end{split} \tag{3} \\ (Focal) & l_{focal}(\mathbf{y}, \mathbf{q}(\mathbf{x})) = -\sum_{j=1}^{d} \left(y_{j} (1 - \mathbf{q}_{j}(\mathbf{x}))^{\vartheta} \log \left(\mathbf{q}_{j}(\mathbf{x})\right) + (1 - y_{j}) \mathbf{q}_{j}^{\vartheta}(\mathbf{x}) \log \left(1 - \mathbf{q}_{j}(\mathbf{x})\right)\right), \end{split}$$

The classification-based framework yields a sub-optimal solution for segmentation.

Segmentation is NOT a Classification Problem!

Lemma 9 (*Dai and Li, 2023*). The **classification-based framework** is **not** calibrated when $l(\cdot, \cdot)$ is any classification-calibrated loss, including the cross-entropy loss and the focal loss.

Ben Dai (The Chinese University of Hong Kong) **Chunlin Li** (University of Minnesota)

RankSEG framework

Theorem 1 (Dai and Li, 2023). A segmentation rule δ^* is **a global maximizer** of $\mathrm{Dice}_{\gamma}(\delta)$ iff it satisfies that

$$\delta_j^*(\mathbf{x}) = \begin{cases} 1 & \text{if } p_j(\mathbf{x}) \text{ ranks top } \tau^*(\mathbf{x}), \\ 0 & \text{otherwise.} \end{cases} \\ \tau^*(\mathbf{x}) = \operatorname{argmax}_{\tau \in \{0,1,\cdots,d\}} \Big(\sum_{j \in J, (\mathbf{x})} \sum_{l=0}^{d-1} \frac{2p_j(\mathbf{x}) \mathbb{P} \left(\Gamma_{-j}(\mathbf{x}) = l \right)}{\tau + l + \gamma + 1} + \sum_{l=0}^{d} \frac{\gamma \mathbb{P} \left(\Gamma(\mathbf{x}) = l \right)}{\tau + l + \gamma} \Big),$$

 $au^*(\mathbf{x})$ is called **optimal segmentation volume**, where $J_{ au}(\mathbf{x})$ is the index set of the au-largest probabilities, $\Gamma(\mathbf{x}) = \sum_{j=1}^d B_j(\mathbf{x})$, and $\Gamma_{-j}(\mathbf{x}) = \sum_{j' \neq j} B_{j'}(\mathbf{x})$ are Poisson-binomial random variables.

Obs: both the **Bayes segmentation rule** $\delta^*(\mathbf{x})$ and the **optimal volume** function $\tau^*(\mathbf{x})$ are achievable when the conditional probability $\mathbf{p}(\mathbf{x}) = (p_1(\mathbf{x}), \cdots, p_d(\mathbf{x}))^{\mathsf{T}}$ is well-estimated.

RankSEG inspired by Thm 1

- Ranking the conditional probability $p_i(\mathbf{x})$
- searching for the **optimal volume** of the segmented features $\tau(\mathbf{x})$

 $O(d \log(d))$.

Step 1 (Conditional probability estimation): Estimate the conditional probability based on logistic regression (the cross-entropy loss):

$$\widehat{\mathbf{q}}(\mathbf{x}) = \underset{\mathbf{q} \in \mathcal{Q}}{\operatorname{argmin}} - \sum_{i=1}^{n} \sum_{j=1}^{d} \left(y_{ij} \log \left(q_{j}(\mathbf{x}_{i}) \right) + (1 - y_{ij}) \log \left(1 - q_{j}(\mathbf{x}_{i}) \right) \right) + \lambda \|\mathbf{q}\|^{2}, \tag{5}$$

where \mathcal{Q} is a class of candidate probability functions, $\|\mathbf{q}\|$ is a regularization for a candidate function, and $\lambda > 0$ is a hyperparameter to balance the loss and regularization. For example, $\mathbf{q} \in \mathcal{Q}$ is usually a deep convolutional neural network for image segmentation, and $\|\mathbf{q}\|$ can be a matrix norm of weight matrices in the network.

Step 2 (Ranking): Given a new instance \mathbf{x} , rank its estimated conditional probabilities decreasingly, and denote the corresponding indices as j_1, \cdots, j_d , that is, $\widehat{q}_{j_1}(\mathbf{x}) \ge \widehat{q}_{j_2}(\mathbf{x}) \ge \cdots \ge \widehat{q}_{j_d}(\mathbf{x})$. **Step 3 (Volume estimation)**: From (4), we estimate the volume $\widehat{\tau}(\mathbf{x})$ by replacing the true conditional probability $\mathbf{p}(\mathbf{x})$ by the estimated one $\widehat{\mathbf{q}}(\mathbf{x})$:

$$\widehat{\tau}(\mathbf{x}) = \underset{\tau \in \{0, \dots, d\}}{\operatorname{argmax}} \sum_{s=1}^{\tau} \sum_{l=0}^{d-1} \frac{2}{\tau + l + \gamma + 1} \widehat{q}_{j_s}(\mathbf{x}) \mathbb{P}(\widehat{\Gamma}_{-j_s}(\mathbf{x}) = l) + \sum_{l=0}^{d} \frac{\gamma}{\tau + l + \gamma} \mathbb{P}(\widehat{\Gamma}(\mathbf{x}) = l), \quad (6)$$

where $\widehat{\Gamma}(\mathbf{x}) = \sum_{j=1}^d \widehat{B}_j(\mathbf{x})$ and $\widehat{\Gamma}_{-j_i}(\mathbf{x}) = \sum_{j \neq j_i} \widehat{B}_j(\mathbf{x})$ are Poisson-binomial random variables, and $\widehat{B}_j(\mathbf{x})$ are independent Bernoulli random variables with success probabilities $\widehat{q}_j(\mathbf{x})$; for $j=1,\cdots,d$.

Finally, the predicted segmentation $\hat{\delta}(\mathbf{x}) = (\hat{\delta}_1(\mathbf{x}), \dots, \hat{\delta}_d(\mathbf{x}))^{\mathsf{T}}$ is given by selecting the indices of the top- $\hat{\tau}(\mathbf{x})$ conditional probabilities:

$$\widehat{\delta}_{j}(\mathbf{x}) = 1$$
, if $j \in \{j_1, \dots, j_{\widehat{\tau}(\mathbf{x})}\}; \quad \widehat{\delta}_{j}(\mathbf{x}) = 0$, otherwise. (7)

Further theoretical results for the proposed framework including the excess risk bounds and convergence rate.

We propose three algorithms

that can solve (5) - (7) with a

computational complexity of

Completely scalable in practice.

Lemma 10 (*Dai and Li, 2023*). The proposed **RankSEG** is calibrated or consistency.

Framework	Thold	(Dice, IoU) (×.01)
threshold-based	0.1	(56.80, 28.40)
	0.2	(63.90, 32.00)
	0.3	(65.70, 32.80)
	0.4	(65.60, 32.80)
	0.5	(64.20, 32.10)
	0.6	(62.30, 32.00)
	0.7	(59.30, 29.60)
	0.8	(54.20, 27.10)
	0.9	(43.40, 21.70)
RankDice(our)	_	(67.10, 33.50)

Additional numerical results are provided on the **CityScapes** and **Kvasir** datasets.

The improvement is consistently observed.

Model	Loss	Threshold (at 0.5) (mDice, mIoU) (×.01)	Argmax (mDice, mIoU) (×.01)	mRankDice (our) (mDice, mIoU) (×.01
DeepLab-V3+	CE	(63.60, 56.70)	(61.90, 55.30)	(64.01, 57.01)
(resnet101) Focal BCE Soft-Dice B-Soft-Dice LovaszSoftmax	Focal	(62.70, 55.01)	(60.50, 53.20)	(62.90, 55.10)
	BCE	(63.30, 31.70)	(59.90, 29.90)	(64.60, 32.30)
	Soft-Dice	_	_	
	B-Soft-Dice	_	_	_
	LovaszSoftmax	(57.70, 51.60)	(56.20, 50.30)	(57.80, 51.60)
PSPNet	CE	(64.60, 57.10)	(63.20, 55.90)	(65.40, 57.80)
B-Soft-Di	Focal	(64.00, 56.10)	(63.90, 56.10)	(66.60, 58.50)
	BCE	(64.20, 32.10)	(65.20, 32.60)	(67.10, 33.50)
	Soft-Dice	(59.60, 54.00)	(58.80, 53.20)	(60.00, 54.30)
	B-Soft-Dice	(63.30, 31.60)	(54.00. 27.00)	(64.30, 32.20)
	LovaszSoftmax	(62.00, 55.20)	(60.80, 54.10)	(62.20, 55.40)
FCN8	CE	(49.50, 41.90)	(45.30, 38.40)	(50.40, 42.70)
(resnet101)	Focal	(50.40, 41.80)	(47.20, 39.30)	(51.50, 42.50)
	BCE	(46.20, 23.10)	(44.20, 22.10)	(47.70, 23.80)
	Soft-Dice	_	_	_
	B-Soft-Dice	_	_	_
	LovaszSoftmax	(39.80, 34.30)	(37.30, 32.20)	(40,00, 34,40)

Table 3: Averaged mDice and mIoU of threshold, argmax, and the proposed mRankDice based on state-ofthe-art models/losses on PASCAL VOC 2012 val set. "—" indicates that either the performance is significantly worse or the training is unstable. Gray color indicates that RankDice/mRankDice is inappropriately applied to a loss function which is not strictly proper. The best performance in each model is bold-faced.