Московский	государственный	университет	имени	M.B.	Ломоносов	зa
Факул	ьтет вычислитель	ной математі	ики и к	иберн	етики	

Отчёт по заданию 3 в рамках курса «Суперкомпьютерное моделирование и технологии»

Выполнила:

Лапенко Юлия Андреевна Группа 627 Вариант 2

1 Описание условия

В трехмерной замкнутой области $\Omega = [0 \le x \le L_x] \times [0 \le y \le L_y] \times [0 \le z \le L_z]$ для $(0 < t \le T]$ требуется найти решение u(x,y,z,t) уравнения в частных производных:

$$\frac{\partial^2 u}{\partial t^2} = \Delta u$$

с начальными условиями

$$u|_{t=0} = \varphi(x, y, z)$$
$$\frac{\partial u}{\partial t}|_{t=0} = 0$$

при условии, что на границах области заданы следующие граничные условия:

$$u(0, y, z, t) = 0,$$
 $u(L_x, y, z, t) = 0,$
 $u(x, 0, z, t) = 0,$ $u(0, L_y, z, t) = 0,$
 $u(x, y, 0, t) = u(x, y, L_z, t),$ $u_z(x, y, 0, t) = u_z(x, y, L_z, t).$

2 Численный метод решения задачи

Для численного решения задачи введем на Ω сетку $\bar{\omega}_{h\tau} = \omega_h \times \omega_{\tau}$, где

$$T = T_0,$$

$$L_x = L_{x0}, L_y = L_{y_0}, L_z = L_{z_0}$$

$$\bar{\omega}_h = \{(x_i = ih_x, y_j = jh_y, z_k = kh_z), i, j, k = 0, 1, \dots, N, h_x N = L_x, h_y N = L_y, h_z N = L_z\},$$

$$\omega_\tau = \{t_n = n\tau, n = 0, 1, \dots, K, \tau K = T\}.$$

Обозначения: ω_h – множество внутренних узлов сетки $\bar{\omega}_h$, а γ_h – множество граничных сетки.

Аналитическая функция u(x, y, z, t) для варианта 2 выглядит так:

$$u(x, y, z, t) = \sin\left(\frac{\pi}{L_x}x\right) \cdot \sin\left(\frac{\pi}{L_y}y\right) \cdot \sin\left(\frac{2\pi}{L_z}z\right) \cdot \cos(a_t \cdot t + 2\pi), \quad a_t = \pi\sqrt{\frac{1}{L_x^2} + \frac{1}{L_y^2} + \frac{4}{L_z^2}}$$

Задание значений на слое u_{ijk}^0 происходит следующим образом:

$$u_{ijk}^0=\varphi(x_i,y_j,z_k),$$
 где $(x_i,y_j,z_k)\in\bar{\omega}_h,$ $\varphi(x_i,y_j,z_k)=u(x_i,y_j,z_k,0)$

Значения в узлах сетки u^1_{ijk} вычисляются так:

$$u_{ijk}^{1} = u_{ijk}^{0} + \frac{\tau^{2}}{2} \Delta_{h} \varphi(x_{i}, y_{j}, z_{k}), \quad \text{где } (x_{i}, y_{j}, z_{k}) \in \omega_{h},$$
 $u_{ijk}^{1} = u(x_{i}, y_{j}, z_{k}, \tau), \quad \text{где } (x_{i}, y_{j}, z_{k}) \in \gamma_{h}.$

Разностная аппроксимация для граничного условия по z:

$$u_{ij0}^{n+1}=u_{ijN}^{n+1},\quad u_{ij1}^{n+1}=u_{ijN+1}^{n+1},\quad$$
 где $i,j,k=0,1,\ldots,N.$

Значения на последующих слоях вычисляются следующим образом:

$$\frac{u_{ijk}^{n+1} - 2u_{ijk}^n + u_{ijk}^{n-1}}{\tau^2} = \Delta_h u^n, \quad (x_i, y_j, z_k) \in \omega_h, \quad 1, 2, \dots, K - 1,$$

где Δ_h – семиточечный разностный аналог оператора Лапласа:

$$\Delta_h u^n = \frac{u_{i-1,j,k}^n - 2u_{i,j,k}^n + u_{i+1,j,k}^n}{h_x^2} + \frac{u_{i,j-1,k}^n - 2u_{i,j,k}^n + u_{i,j+1,k}^n}{h_y^2} + \frac{u_{i,j,k-1}^n - 2u_{i,j,k}^n + u_{i,j,k+1}^n}{h_z^2}$$

3 Реализация решения задачи

Для начала нужно вычислить, как узлы сетки будут распределены по процессорам. Реализуем блочное разбиение. Заведем для этого класс DivisionInfo, который будет содержать следующую информацию:

- CubeVolume Volume количество узлов в сетке $\bar{\omega}_h$ по каждому измерению, а также диапазоны индексов из глобальной сетки $\bar{\omega}_h$ по каждому измерению.
- CubeCoordinate Coord координаты процессора по каждому измерению внутри сетки из блоков.
- CubeNumber CubeNum количество блоков по каждому измерению (эти данные одинаковые для всех процессоров).

Чтобы вычислить количество шагов K, необходимое для сходимости численного метода, воспользуемся условием устойчивости для трехмерной схемы «крест»:

$$a_t \tau \sqrt{\frac{1}{h_x^2} + \frac{1}{h_y^2} + \frac{1}{h_z^2}} \le 1$$

Из этого следует:

$$a_t \tau \sqrt{\frac{1}{h_x^2} + \frac{1}{h_y^2} + \frac{1}{h_z^2}} = a_t \frac{T}{K} \sqrt{\frac{1}{h_x^2} + \frac{1}{h_y^2} + \frac{1}{h_z^2}} \le 1 \Rightarrow a_t T \sqrt{\frac{1}{h_x^2} + \frac{1}{h_y^2} + \frac{1}{h_z^2}} \le K.$$

Заменив неравенство на равенство, получим значение K.

После того как эти данные вычислены, можно вычислить значения в сетках u_0 и u_1 для каждого процессора и посчитать погрешность как максимум из модулей разности между значениями в узлах сетки и значениями функции u в точках (x_i, y_j, z_k, t_n) . Посчитанные погрешности будет собирать процессор с рангом 0, используя функцию MPI_Reduce с аргументом MPI_MAX.

Далее будем обозначать за u_2 сетку, значения в узлах которой нам нужно вычислить на текущем шаге, за u_1 и u_0 – сетки, хранящие значения в узлах на прошлом и позапрошлом слое по времени соответственно.

Каждый процессор хранит свои локальные части глобальных сеток u_1 и u_0 , поэтому

вычисление значений внутренних узлов сетки u_2 тривиально. Трудности возникают при подсчете значений в граничных узлах этой сетки. Для подсчета нужно организовать обмен точек с соседями по каждой координате. Рассмотрим следующие случаи:

- 1. Вычисление границ по координате X. Для этого каждый процессор берет сначала ту грань блока, которая соответствует плоскости YZ при меньшем значении координаты X (такие плоскости будем называть левыми стенками), и заполняет двумерный массив соответствующими граничными значениями сетки u_1 . Далее вычисляется ранг соседей слева и справа по координате X (для первого блока соседом слева будет последний блок). С помощью функции MPI_Sendrecv производится передача двумерного массива соседу слева и одновременное получение массива от соседа справа. Далее пересчитываются значения в правой стенке YZ. Аналогично, после соответствующих обменов, считаем левые стенки. Для граничных блоков в сетке значения в крайних стенках равны 0 (граничное условие первого рода).
- 2. Для вычисления стенок XZ по координате Y производятся аналогичные действия.
- 3. Для вычисления стенок XY по координате Z придется изменить алгоритм, поскольку по Z граничные условия периодические. Для этого первый блок заполняет левую стенку двумерного массива XY значениями $u_1[i,j,1]$, в то время как остальные блоки используют $u_1[i,j,0]$. Передаем эту стенку соседу слева, получаем от правого соседа его левую стенку. Далее производим вычисления в правых стенках XY всех блоков. Чтобы отправить свою правую стенку соседу слева последний блок будет использовать уже посчитанные значения $u_2[i,j,Z_{max}]$, в то время как остальные блоки отправляют $u_1[i,j,Z_{max}]$. Левая стенка первого блока полностью копирует правую стенку из массива, присланного последним блоком.

После поочередного выполнения этих действий считаем погрешность по описанному ранее алгоритму и высылаем процессу с рангом 0. На каждом шаге по времени будет выводиться максимальная погрешность. Всего шагов по времени сделаем 20, как сказано в описании задания. Время выполнения программы вычисляется как максимум времен каждого процессора по отдельности (процессор с рангом 0 собирает времена с помощью редукции по максимуму).

Задействовать OpenMP мы будем для циклов, их в коде большое количество. Для примера можно рассмотреть функцию updateYXLeft() из файла task3.cpp. Распараллеливаемые циклы, выполняющиеся друг за другом, можно поместить в единую секцию #pragma omp parallel, а внутри нее размещать прагмы #pragma omp for, что поможет снизить накладные расходы на запуск нитей. Также для циклов можно добавлять клаузу nowait, что позволит нитям не дожидаться завершения цикла и перейти к следующему циклу, поскольку между циклами неявно появляется барьер.

N_p	N^3	Т	S	δ
1	128^{3}	10.53250	1.00000	0.0000006051
4	128^{3}	3.16360	3.32928	0.0000006017
8	128^{3}	1.44000	7.31424	0.0000006017
16	128^{3}	1.02310	10.29469	0.0000006017
32	128^{3}	0.55020	19.14304	0.0000006017
1	256^{3}	108.45930	1.00000	0.0000000379
4	256^{3}	40.80650	2.65789	0.0000000378
8	256^{3}	19.11920	5.67279	0.0000000378
16	256^{3}	17.01840	6.37306	0.0000000378
32	256^{3}	4.53360	23.92344	0.0000000378
1	512^{3}	867.30670	1.00000	0.0000000024
4	512^{3}	370.99470	2.33779	0.0000000024
8	512^{3}	187.85770	4.61683	0.0000000024
16	512^{3}	97.66530	8.88040	0.0000000024
32	512^{3}	48.87710	17.74464	0.0000000024

N_p	Thr	N^3	Τ	S	δ
1	4	128^{3}	7.90810	1.00000	0.0000006051
2	4	128^{3}	4.13980	1.91026	0.0000006034
4	4	128^{3}	2.28040	3.46786	0.0000006017
8	4	128^{3}	1.16510	6.78749	0.0000006017
1	4	256^{3}	86.98200	1.00000	0.0000000379
2	4	256^{3}	49.28200	1.76499	0.0000000378
4	4	256^{3}	23.81850	3.65187	0.0000000378
8	4	256^{3}	12.01360	7.24029	0.0000000378
1	4	512^{3}	737.95810	1.00000	0.0000000024
2	4	512^{3}	402.86250	1.83179	0.0000000024
4	4	512^{3}	231.57870	3.18664	0.0000000024
8	4	512^{3}	113.69860	6.49048	0.0000000024

Таблица 1: Результаты вычислений для $L_x=L_y=L_z=1$ с использованием MPI и MPI+OpenMP

4 Исследование масштабируемости

Будем запускать получившуюся программу на системе Polus. Сначала запустим версию, включающую только MPI. Для значений $L_x = L_y = L_z = 1$ также запустим гибридную версию MPI+OpenMP на 4 потоках (для $L_x = L_y = L_z = \pi$ публиковать таблицу с гибридной версией не будем, поскольку принципиально запуск этой версии ничем не отличается). Результаты представлены в таблицах 1 и 2.

Версия программы, использующая только MPI, неплохо масштабируется. Идеального ускорения, равного количеству процессов, добиться не получается, поскольку присутствуют накладные расходы на обмен стенками между блоками и сбор информации о погрешностях на каждом процессе. С использованием OpenMP получилось добиться еще большего ускорения, что можно заметить, если сравнить время работы программы на одном и том же размере и количестве процессоров в левой и правой подтаблице таблицы 1.

Для наглядности также продемонстрируем графики аналитического (рисунок 1) и посчитанного (рисунок 2) решений для маленькой сетки, где N=8, на 20-м шаге. На рисунке 3 размещен график погрешности.

N_p	N^3	Τ	S	δ
1	128^{3}	10.18750	1.00000	0.0000053072
4	128^{3}	3.10560	3.28036	0.0000052140
8	128^{3}	1.42980	7.12512	0.0000052140
16	128^{3}	1.05500	9.65640	0.0000052140
32	128^{3}	0.47200	21.58369	0.0000052140
1	256^{3}	107.73360	1.00000	0.0000003351
4	256^{3}	40.62910	2.65164	0.0000003331
8	256^{3}	19.22530	5.60374	0.0000003331
16	256^{3}	10.83830	9.94008	0.0000003331
32	256^{3}	4.30430	25.02930	0.0000003331
1	512^{3}	868.56020	1.00000	0.0000000210
4	512^{3}	371.60010	2.33735	0.0000000209
8	512^{3}	187.75920	4.62593	0.000000209
16	512^{3}	97.05730	8.94894	0.000000209
32	512^{3}	51.16600	16.97534	0.0000000209

Таблица 2: Результаты вычислений для $L_x = L_y = L_z = \pi$

Рис. 1: Значения в узлах сетки для аналитического решения

Рис. 2: Значения в узлах сетки для посчитанного решения

Рис. 3: Погрешность в узлах сетки (абсолютные значения)