Fiche ML

Charles Vin

S2-2023

1 Généralité

- Fonction de perte : quantifie l'erreur associé à une décision. Erreur simple : A chaque fois qu'on se trompe, on compte 1 : 0-1 loss
- Risque : Proba de se tromper, $R(y_i|x)=\sum_j l(y_i,y_j)P(y_j|x)$ = Moyenne de la Loss pondéré par les probas
- Risque continue?: $R(f) = \int_{x \in \mathcal{X}} R(f(x)|x) p(x) dx$ (p(x) = ????) = Esperance du X sur notre domaine continue

2 Arbre de décision

Algo général:

- 1. Déterminer la meilleure caractéristique dans l'ensemble de données d'entraînement.
- 2. Diviser les données d'entraînement en sous-ensembles contenant les valeurs possibles de la meilleure caractéristique.
- 3. Générez de manière récursive de nouveaux arbres de décision en utilisant les sous-ensembles de données créés.
- 4. Lorsqu'on ne peut plus classifier les données, on s'arrête.

Méthode de division des données : On vas utiliser l'entropie

Définition 2.1 (Entropie). Origine de la formule de l'entropie Soit X une variable aléatoire pouvant prendre n valeurs x_i

$$H(X) = -\sum_{i=1}^{n} P(X = x_i) \log(P(X = x_i)).$$

Mesure l'homogénéité d'un dataset. C'est également la moyenne de la suprise (voir la vidéo)

Définition 2.2 (Gain d'information). Mesure la réduction expects de l'entropie causé par le partitioning des exemples.

En faisant un test T sur un des attributs, on obtient deux partitions d'exemples de X : X_1 qui vérifie le test et X_2 qui ne vérifie pas le test (resp. Y_1 et Y_2).

$$H(Y|T) = \frac{|X_1|}{|X|}H(Y_1) + \frac{|X_2|}{|X|}H(Y_2).$$

Gain d'information:

$$I(T, Y) = H(Y) - H(Y|T).$$

On veut maximiser le gain d'information par le split \Leftrightarrow minimiser H(Y|T)

3 Classfieur bayesien

On a:

- P(y) fréquence des classe dans le dataset
- -P(x|y) les points de notre jeux de donnée. Graphiquement : les points coloriés

On cherche:

$$\arg\max_{y} P(y|x) = \arg\max_{y} \frac{P(x|y)P(y)}{P(x)}.$$

Par indépendance des dimensions de x, on peut parfois développer le $P(x|y) = P(x_1|y) \dots P(x_d|y)$. Puis rapport de vraisemblance pour prendre la décision. Remarque :

- Classifier bayésien = le classifier qui minimise le risque = le meilleurs classifieur possible
- Classfier optimal car minimise l'erreur car en choisissant la plus grande proba, on peut pas réduire 1 P(y|x) qui est déjà le plus grand possible
- P(x) difficile à calculer = répartition des points dans l'espace, dans le graph 2d non colorié. En général très petit, uniquement utile pour générer des données, pas pour faire l'argmax (aka classifier).

4 Estimation de densité

4.1 Par histogramme

Définition 4.1 (Estimation par histogramme). — Cas discret : Comptage dans chaque classe puis normalisation par le nombre d'exemple N

Cas continue : Discrétisation des valeurs puis comptage et normalisation

Importance de la discrétisation :

- Petit → sur-apprentissage,
- Trop grand → sous-apprentissage

Limite:

- Grande dimention → Perte de sens exponentiel (3 ou 4 max)
- Effet de bord : petit changement dans les bins, gros changement d'estimation.
- \rightarrow Solution : Estimation par noyaux

4.2 Estimation de densité par noyaux

Figure 1 – Intuition de l'estimation par noyaux

Intuition figure 1 : Plutôt que de décider d'une discrétisation a priori, l'estimation est faîte en centrant une fenêtre autour du point d'intérêt x_0 (dans un espace de dimension d) à posteriori. \rightarrow Problème : pas continue (si on bouge la boite et qu'un point rentre dedans, ça fait faire un saut à la fonction)

4.2.1 Fenêtre de Parzen

On combine la solution précédente avec une densité/noyaux. Classiquement Gaussien. pour obtenir un truc lisse et continue

Définition 4.2 (Fenêtre de Parzen). Soit $(x_1,\ldots,x_N)\sim f$ iid

$$\hat{f}_h(x) = \frac{1}{N * h} \sum_{i=1}^{N} K(\frac{x - x_i}{h}).$$

Avec K le noyaux **centrée et réduit sur** x , souvent une fonction gaussienne. Si c'est une fonction rectangle ça fonctionne aussi. Puis y'a plein d'autre noyaux possible.