# 1 Two-State Chain With Linear Algebra

(a) 
$$P = \begin{bmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{bmatrix}$$

(b) We have  $Pu = \lambda u$  for a vector u and scalar  $\lambda$ . This can be rewritten as  $(\lambda I - P)u = 0$ . Since u is in the nullspace of  $\lambda I - P$ , we can set  $\det(\lambda I - P) = 0$  to find the characteristic polynomial of P and solve for the eigenvalues which are the roots of the characteristic polynomial. We have that

$$\det(\lambda I - P) = 0$$

$$\begin{vmatrix} \lambda - 1 + \alpha & -\alpha \\ -\beta & \lambda - 1 + \beta \end{vmatrix} = 0$$

$$(\lambda - 1 + \alpha)(\lambda - 1 + \beta) - \alpha\beta = 0$$

$$\lambda^2 + (-1 + \alpha - 1 + \beta)\lambda + (-1 + \alpha)(-1 + \beta) - \alpha\beta = 0$$

$$\lambda^2 + (-2 + \alpha + \beta)\lambda + (1 - \alpha - \beta + \alpha\beta) - \alpha\beta = 0$$

$$\lambda^2 - 2\lambda + \lambda\alpha + \lambda\beta + 1 - \alpha - \beta = 0$$

$$\lambda(\lambda - 2) + \alpha(\lambda - 1) + \beta(\lambda - 1) + 1 = 0$$

$$(\lambda - 1)^2 + (\lambda - 1)(\alpha + \beta) = 0$$

$$(\lambda - 1)((\lambda - 1) + (\alpha + \beta)) = 0.$$

Solving for the roots, we have  $\lambda_1 = 1$  and  $\lambda_2 = 1 - \alpha - \beta$ . To find the eigenvectors  $u_1$  and  $u_2$  corresponding to these eigenvalues, we plug the eigenvalues into our equation  $(\lambda I - P)u = 0$ . For  $\lambda = \lambda_1 = 1$  we get

$$(\lambda_1 I - P)u_1 = 0$$

$$\begin{bmatrix} \alpha & -\alpha \\ -\beta & \beta \end{bmatrix} u_1 = 0.$$

From this, we can see that  $u_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ . For  $\lambda = \lambda_2 = 1 - \alpha - \beta$  we get

$$(\lambda_2 I - P)u_2 = 0$$

$$\begin{bmatrix} -\beta & -\alpha \\ -\beta & -\alpha \end{bmatrix} u_2 = 0.$$

From this, we can see that  $u_2 = \begin{bmatrix} 1 \\ -\frac{\beta}{\alpha} \end{bmatrix}$ . From these results, we can see that  $PU = U\Lambda$ , where  $U = \begin{bmatrix} u_1 & u_2 \end{bmatrix}$  and  $\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1-\alpha-\beta \end{bmatrix}$ . Since  $PU = U\Lambda$ , we can also write this as  $P = U\Lambda U^{-1}$ , where U and  $\Lambda$  are  $2\times 2$  matrices as required and  $\Lambda$  is the diagonal matrix of eigenvalues.

- (c)  $P^n = U\Lambda^n U^{-1}$ , since  $P = U\Lambda U^{-1}$ .
- (d) We have  $\pi_0 = \begin{bmatrix} 1 & 0 \end{bmatrix}$ , so the PMF of  $X_n$  is given by

$$\mathbb{P}[X_n = i] = \pi_0 P^n(i)$$

$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -\frac{\beta}{\alpha} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & (1 - \alpha - \beta)^n \end{bmatrix} \left( \frac{1}{\alpha + \beta} \begin{bmatrix} \beta & \alpha \\ \alpha & -\alpha \end{bmatrix} \right) (i)$$

$$= \frac{1}{\alpha + \beta} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & (1 - \alpha - \beta)^n \end{bmatrix} \begin{bmatrix} \beta & \alpha \\ \alpha & -\alpha \end{bmatrix} (i)$$

$$= \frac{1}{\alpha + \beta} \begin{bmatrix} 1 & (1 - \alpha - \beta)^n \end{bmatrix} \begin{bmatrix} \beta & \alpha \\ \alpha & -\alpha \end{bmatrix} (i)$$

$$= \frac{1}{\alpha + \beta} \left[ \beta + \alpha (1 - \alpha - \beta)^n & \alpha - \alpha (1 - \alpha - \beta)^n \right] (i).$$

(e) 
$$\lim_{n\to\infty} \mathbb{P}[X_n = 0] = \lim_{n\to\infty} \frac{\beta + \alpha(1-\alpha-\beta)^n}{\alpha+\beta} = \frac{\beta}{\alpha+\beta}$$
, since  $|1-\alpha-\beta| < 1$ .

### 2 Reducible Markov Chain

(a) See the Figures below.



Figure 1: Recurrent class



Figure 2: Transient class



Figure 3: Recurrent class

(b)  $\mathbb{P}[T_0 < T_5 \mid X_0 = 2] = \alpha(2)$ . Using the recurrence relations, we can get the following equations:

$$\alpha(2) = \frac{1}{2}\alpha(1) + \frac{1}{2}\alpha(3)$$

$$\alpha(1) = (1 - \beta)\alpha(1) + \beta\alpha(0) = 1$$

$$\alpha(0) = 1$$

$$\alpha(3) = \frac{1}{2}\alpha(4) + \frac{1}{2}\alpha(2)$$

$$\alpha(4) = (1 - p)\alpha(4) + p\alpha(5) = 0$$

$$\alpha(5) = 0.$$

Solving for  $\alpha(2)$ , we get that

$$\alpha(2) = \frac{1}{2}\alpha(1) + \frac{1}{2}\alpha(3)$$

$$= \frac{1}{2}(1) + \frac{1}{2}\left(\frac{1}{2}\alpha(4) + \frac{1}{2}\alpha(2)\right)$$

$$= \frac{1}{2} + \frac{1}{4}(0 + \alpha(2))$$

$$= \frac{2}{3}.$$

- (c) The stationary distributions must of of the form  $\pi = \left[c\frac{\beta}{\alpha+\beta} \quad c\frac{\alpha}{\alpha+\beta} \quad 0 \quad 0 \quad (1-c)\frac{q}{p+q} \quad (1-c)\frac{p}{p+q}\right]$ , where  $c \in [0,1]$ . Since  $\pi(i)$  represents the long-term fraction of time spent in state  $i, \pi(2) = \pi(3) = 0$  as 2 & 3 are in the transient class. Since the chain ultimately ends up in one of the recurrent classes, we can use our result from 1(e) to find  $\pi(0), \pi(1), \pi(4), \pi(5)$ , where they are symmetrically of the form  $\frac{\beta}{\alpha+\beta}$ . However, we must also account for a constant factor c (and symmetrically, 1-c), which represents the probability of ending up in the recurrent class  $\{0,1\}$  (and symmetrically,  $\{4,5\}$ ), based on the initial distribution.
- (d) Yes, the distribution of the chain converges to the stationary distribution in part (c). In particular, we have that  $c = \gamma \alpha(2) + (1 \gamma)\alpha(3) = \frac{2\gamma}{3} + (1 \gamma)\frac{1}{3} = \frac{\gamma}{3} + \frac{1}{3}$ . Since the recurrent classes themselves are irreducible & aperiodic, their respective distributions will converge a.s. as  $n \to \infty$  to their respective stationary distributions, scaled by the corresponding probabilities of ending up in the respective classes, as in part (c).

#### 3 Product of Rolls of a Die

We can effectively model this with a Markov chain as follows. Let S represent the start state (where no dice have been rolled yet), and A represent rolling a 1 or a 5 (both of which do not multiply up to 12 with any other roll), and let B represent rolling a 2, 3, 4, or 6 (where one of the rolls  $\in B$  multiplies to 12 with another roll). Finally, let C denote the exit state of obtaining a product of 12 from the last 2 rolls. Then, we have the following state transition diagram:



Figure 4: State transition diagram for rolling a product of 12 from the last 2 rolls

Now we can just calculate the mean hitting time to C starting from S,  $\beta(S)$  from the recurrence relations and equations as follows:

$$\beta(S) = 1 + \frac{1}{3}\beta(A) + \frac{2}{3}\beta(B)$$

$$\beta(A) = 1 + \frac{1}{3}\beta(A) + \frac{2}{3}\beta(B)$$

$$\beta(B) = 1 + \frac{1}{3}\beta(A) + \frac{1}{2}\beta(B) + \frac{1}{6}\beta(C)$$

$$\beta(C) = 0.$$

Solving for  $\beta(S)$ , we get that  $\beta(S) = 10.5$ .

## 4 Metropolis-Hastings Algorithm

- (a) Simulating the Markov chain can be done efficiently as the ratio  $\frac{\pi(y)}{\pi(x)}$  can be efficiently computed as  $\frac{\tilde{\pi}(y)}{\tilde{\pi}(x)}$  since the normalizing constant will cancel out.
- (b) Since  $\pi_k(x)P(x,y) = \pi_k(y)P(y,x)$ , we have that

$$\pi_{k+1}(y) = \sum_{x \in \mathcal{X}} \pi_k(x) P(x, y)$$

$$= \sum_{x \in \mathcal{X}} \pi_k(y) P(y, x)$$

$$= \pi_k(y) \sum_{x \in \mathcal{X}} P(y, x)$$

$$= \pi_k(y).$$

Since  $\pi_{k+1}(y) = \pi_k(y) \ \forall y$ , we have that  $\pi P = \pi$ , and thus  $\pi$  is the stationary distribution of the chain.

(c) For the Metropolis-Hastings chain, to get the term  $\pi(x)P(x,y)$ , we note that P(x,y) can be represented as  $f(x,y)A(x,y)=f(x,y)\min\left(1,\frac{\pi(y)f(y,x)}{\pi(x)f(x,y)}\right)$ . Similarly, we have  $P(y,x)=f(y,x)A(y,x)=f(y,x)\min\left(1,\frac{\pi(x)f(x,y)}{\pi(y)f(y,x)}\right)$ . Now we consider the different cases we can arrive

- at. For  $\pi(y)f(y,x) > \pi(x)f(x,y)$ , we have that  $P(x,y) = f(x,y)\min\left(1,\frac{\pi(y)f(y,x)}{\pi(x)f(x,y)}\right) = f(x,y)$ . Correspondingly,  $P(y,x) = f(y,x)\frac{\pi(x)f(x,y)}{\pi(y)f(y,x)} = \frac{\pi(x)f(x,y)}{\pi(y)}$ . As a result, we have  $\pi(x)P(x,y) = \pi(x)f(x,y) = \pi(x)f(x,y)$ , satisfying detailed balance. For  $\pi(y)f(y,x) = \pi(x)f(x,y)$ , we get P(x,y) = f(x,y) and P(y,x) = f(y,x), so that  $\pi(x)P(x,y) = \pi(x)f(x,y) = \pi(y)f(y,x) = \pi(y)P(y,x)$ , also satisfying detailed balance. Finally, for  $\pi(y)f(y,x) < \pi(x)f(x,y)$ , we have a complementary symmetric case to  $\pi(y)f(y,x) > \pi(x)f(x,y)$ , and can conclude that detailed balance also holds under this condition as well. From part (b), we can thus conclude that  $\pi$  is the stationary distribution of the chain.
- (d) The lazy chain is aperiodic because of the forced self-loop from a state to itself. This ensures that it is possible to reach the same state again in 1 step, or that  $P_{ii} \geq \frac{1}{2} > 0$ , such that  $d(i) = \gcd(n \geq 1 \mid P_{ii}^n > 0) = 1 \,\forall i$  and so the lazy chain is aperiodic. The stationary distribution is the same as before since only a constant factor is introduced on both sides of the detailed balance equation. More concretely, we now have that  $P(x,y) = \frac{1}{2}f(x,y)A(x,y)$  and  $P(y,x) = \frac{1}{2}f(y,x)A(y,x)$ . Thus our analysis in part (c) still holds as the constant factor of  $\frac{1}{2}$  is introduced on both sides, and f(x,y)A(x,y) and f(y,x)A(y,x) are not modified. Thus, the stationary distribution is the same as before.

#### 5 Reversible Markov Chains

- (a) Since x is a leaf node in the tree from the graph of an irreducible Markov chain, then this must mean that x only had non-zero probability transitions to itself or y, since it would not be a leaf node in the graph of the Markov chain otherwise. Furthermore, since  $\pi$  is the stationary distribution of the Markov chain, we have that  $\sum_{j\neq i} \pi(j) P_{ji} = \pi(i) \sum_{i\neq j} P_{ij}$ , or that flow in = flow out. Since x only flows out to y and only receives flow back in from y (when discluding self loops), we thus have that  $\pi(y)P(y,x) = \pi(x)P(x,y)$ , satisfying detailed balance.
- (b) After removing the leaf x from the Markov chain, this does not affect the stationary distribution of the chain for the rest of the states that are not x or y, since x only had non-zero probability transitions to itself or y. As such, the balance equation still hold for these states. Since the probability of a self-transition at y is increased by P(y,x), this also balances the balance equations for y. In particular, removing x removes the transitions P(y,x) and P(x,y) (as well as P(x,x), but this is not part of y's balance equations). Moreover, by increasing the self-transition at y by P(y,x) we account for this since by detailed balance from part (a),  $\pi(y)P(y,x) = \pi(x)P(x,y)$ , and a self-loop occurs exactly on both sides of the balance equations for y, so that  $\pi(y)P(y,x) = \pi(x)P(x,y)$  is the flow from the self-loop that exits and also enters into y, as desired. Thus the balance equations also hold for y, and the stationary distribution of the original chain restricted to  $\mathcal{X} \setminus \{x\}$  is the same as that for the new chain. By induction, we see that every state  $i \in \mathcal{X}$  satisfies the detailed balance equations on the correspondingly restricted states, and thus the Markov chain is reversible.

# 6 [Bonus] Entropy Rate of a Markov Chain

- (a)
- (b)