Algebraische Geometrie

Prof. Dr. F. Herrlich

Wintersemester 2008/2009

Die Mitarbeiter von http://mitschriebwiki.nomeata.de/

Inhaltsverzeichnis

Vo	rwort	3
1		4 4 6 8 9 11
2	2.8 Der projektive Raum $\mathbb{P}^n(k)$	1 7 17 20 22 25 28
3	3.14 Lokale Ringe zu Punkten3.15 Dimension einer Varietät3.15 Dimension einer Varietät3.16 Der Tangentialraum3.16 Der Tangentialraum	34 35 36
4	4.18 Funktionenkörper in einer Variablen	43 46 49 54
	enannte Sätze	56
Sat Sat Pro	z 2 Hilbertscher Nullstellensatz	8 8 19 50

Vorwort

Über dieses Skriptum

Dies ist ein Mitschrieb der Vorlesung "Algebraische Geometrie" von Prof. Dr. F. Herrlich im Wintersemester 08/09 an der Universität Karlsruhe. Die Mitschriebe der Vorlesung werden mit ausdrücklicher Genehmigung von Prof. Dr. F. Herrlich hier veröffentlicht, Prof. Dr. F. Herrlich ist für den Inhalt nicht verantwortlich.

Wer

Getippt wurde das Skriptum soweit von Diego De Filippi, Felix Wellen, Tobias Columbus und Andreas Schatz, die Wiki-Technik ist von Joachim Breitner.

Wo

Alle Kapitel inklusive LaTeX-Quellen können unter http://mitschriebwiki.nomeata.de abgerufen werden. Dort ist ein von Joachim Breitner programmiertes Wiki, basierend auf http://latexki.nomeata.de installiert. Das heißt, jeder kann Fehler nachbessern und sich an der Entwicklung beteiligen. Auf Wunsch ist auch ein Zugang über Subversion möglich.

1 Affine Varietäten

§1 Der Polynomring

Sei k ein Körper, $k[X_1, \ldots, X_n], n \geq 0$ der Polynomring über k in n Variablen.

Universelle Abbildungseigenschaft (UAE) des Polynomrings

Ist A eine k-Algebra und sind $a_1, \ldots, a_n \in A$, so gibt es genau einen k-Algebra-Homomorphismus $f: k[X_1, \ldots, X_n] \to A$ mit $f(X_i) = a_i$ für $i = 1, \ldots, n$.

Folgerung: Jede endlich erzeugte k-Algebra ist Faktorring eines Polynomrings.

$$n=1$$
, also $k[X]$

Euklidischer Algorithmus: Zu $f,g \in k[X], g \neq 0$ gibt es $q,r \in k[X]$ mit f = qg + r und deg(r) < deg(g) oder r = 0.

Folgerung: k[X] ist Hauptidealring.

Eindeutige Primfaktorzerlegung

 $k[X_1, \ldots, X_n]$ ist faktorieller Ring.

Folgerung: Jedes irreduzible Polynom erzeugt ein Primideal.

Hilbertscher Basissatz

 $k[X_1, \ldots, X_n]$ ist noethersch, d.h.

- Jedes Ideal ist endlich erzeugbar.
- Jede aufsteigende Kette von Idealen wird stationär.

§2 Die Zariski-Topologie

Sei k ein algebraisch abgeschlossener Körper.

Definition 1.2.1

Eine Teilmenge $V \subseteq k^n$ heißt **affine Varietät**, wenn es eine Menge von Polynomen $F \subseteq k[X_1, \ldots, X_n]$ gibt, so dass $V(F) = V = \{x = (x_1, \ldots, x_n) \in k^n : f(x) = 0 \text{ für alle } f \in F\}.$

Beispiele

- 1) n = 1: $V \subseteq k$ affine Varietät $\Leftrightarrow V$ endlich oder V = k
- 2) $f \in k[X_1, \ldots, X_n]$ linear (d.h. deg(f) = 1) $\Rightarrow V(f)$ ist affine Hyperebene.

 f_1, \ldots, f_r linear $\Rightarrow V(f_1, \ldots, f_r)$ ist affiner Unterraum. (Jeder affine Unterraum lässt sich so beschreiben.)

- 3) Quadriken sind affine Varietäten.
- 4) Lemniskate

$$C = \{P(x, y) \in \mathbb{R}^2 : d(P, P_1) = d(P, P_2) = c\}$$

für Punkte $P_1P_2 \in k^2, c > 0$.

Für $P_1(-1,0)$ und $P_2(1,0)$ ist C = V(f) mit $f = ((x+1)^2 + y^2)((x-1)^2 + y^2) - 1$. Dies ist aber keine affine Varietät, da das in \mathbb{C}^2 nicht klappt.

Bemerkung 1.2.2

- (i) Für $F_1 \subseteq F_2 \subseteq k[X_1, \dots, X_n]$ ist $V(F_1) \supseteq V(F_2)$.
- (ii) $V(f_1 \cdot f_2) = V(f_1) \cup V(f_2)$ und $V(f_1, f_2) = V(f_1) \cap V(f_2)$
- (iii) V(F) = V((F)) für das von F erzeugte Ideal $(F) \subset k[X_1, \dots, X_n]$
- (iv) $V(F) = V(\sqrt{F})$ für das von F erzeugte Radikalideal

$$\sqrt{(F)} = \{ g \in k[X_1, \dots, X_n] : \exists d > 0 \text{ mit } g^d \in (F) \}$$

(v) Zu jeder affinen Varietät $V \subseteq k^n$ gibt es endlich viele Polynome f_1, \ldots, f_r , so dass $V = V(f_1, \ldots, f_r)$, da jedes Ideal in $k[X_1, \ldots, X_n]$ endlich erzeugbar ist.

Beweis (iii) "
$$\subseteq$$
 " Sei $x \in V(F), g \in (F)$. Schreibe $g = a_1 f_1 + \cdots + a_r f_r$ mit $f_i \in F, a_i \in k[X_1, \ldots, X_n]$, dann ist $g(x) = a_1(x) f_1(x) + \cdots + a_r(x) f_r(x) = 0$.

Definition 1.2.3

- (i) Für eine Teilmenge $V \subseteq k^n$ heißt $I(V) := \{ f \in k[X_1, \dots, X_n] : f(x) = 0 \text{ für alle } x \in V \}$ das **Verschwindungsideal**.
- (ii) $A(V) := k[X_1, ..., X_n]/I(V)$ heißt **affiner Koordinatenring** von V. Für $f, g \in k[X_1, ..., X_n]$ gilt: $f|_V = g|_V \Leftrightarrow f g \in I(V)$

Bemerkung 1.2.4

Für jede Teilmenge $V \subseteq k^n$ gilt:

- (i) I(V) ist Radikalideal,
- (ii) $V \subset V(I(V))$,
- (iii) V(I(V)) ist die kleinste Varietät, die V umfasst. Schreibweise: $V(I(V)) =: \overline{V}$.
- (iv) Sind V_1, V_2 affine Varietäten, so gilt:

$$V_1 \subseteq V_2 \Leftrightarrow I(V_1) \supseteq I(V_2)$$

Beweis (iii) Sei V' eine affine Varietät mit $V \subseteq V'$ und sei $I' \subseteq k[X_1, \ldots, X_n]$ ein Ideal mit V' = V(I'). Dann ist $I' \subseteq I(V) \Rightarrow V(I') \supseteq V(I(V))$.

(iv) "
$$\Leftarrow$$
" $I(V_1) \supseteq I(V_2) \Rightarrow V(I(V_1)) \subseteq V(I(V_2))$. Mit $V_1 = V(I(V_1))$ und $V_2 = V(I(V_2))$ folgt die Behauptung.

Bemerkung 1.2.5

Für jede Teilmenge $V \subseteq k^n$ gilt:

- (i) A(V) ist reduzierte k-Algebra, d.h. es gibt in A(V) keine nilpotenten Elemente (also $f^d \neq 0$ für alle $f \neq 0, d > 0$).
- (ii) Ist $V \subseteq V'$, so gibt es einen surjektiven k-Algebra-Homomorphismus $A(V') \longrightarrow A(V)$.

Beweis (i) Sei $g \in A(V), f \in k[X_1, ..., X_n]$ mit $\overline{f} = g$. Dann ist $(g^d = 0 \text{ (in } A(V)) \Leftrightarrow f^d \in I(V))$ und da I(V) Radikalideal ist, folgt $f \in I(V)$ und somit g = 0.

(ii) Es ist $I(V') \subseteq I(V)$, also

Definition + Satz 1.2.6

Die affinen Varietäten in k^n bilden die abgeschlossenen Mengen einer Topologie, der **Zariski-Topologie**.

Beweis • $k^n = V(0)$ und $\emptyset = V(1)$ sind affine Varietäten.

• Seien $V_1 = V(I_1)$ und $V_2 = V(I_2)$ affine Varietäten. Dann ist $V_1 \cup V_2 = V(I_1 \cdot I_2) = V(I_1 \cap I_2)$. Denn: " \subseteq " klar " \supseteq ": Sei $x \in V(I_1 \cdot I_2), x \notin V_1$. (Zu zeigen: $x \in V_2$)

Dann gibt es ein $f \in I_1$ mit $f(x) \neq 0$.

Da $x \in V(I_1 \cdot I_2)$ ist $f(x) \cdot g(x) = 0$ für alle $g \in I_2 \Rightarrow x \in V(I_2) = V_2$.

• Seien $V_i = V(I_i), i \in J$, affine Varietäten $\Rightarrow \bigcap_{i \in J} V_i = V(\sum_{i \in J} I_i)$.

Denn: " \supseteq " klar " \subseteq ": Sei $x \in \cap V_i$, $f \in \sum I_i$. Schreibe $f = a_1 f_1 + \cdots + a_r f_r$ mit $f_k \in I_{i_k}$, $a_k \in k[X_1, \ldots, X_n] \Rightarrow f(x) = a_1(x) \cdot 0 + \cdots + a_r(x) \cdot 0 = 0$

Bemerkung 1.2.7

- (i) Für $f \in k[X_1, \ldots, X_n] \setminus \{0\}$ ist $D(f) := k^n \setminus V(f)$ nichtleere offene Teilmenge von k^n .
- (ii) Die D(f) bilden eine Basis der Zariski-Topologie.

Beweis (ii) Zu zeigen: Jede offene Menge U ist Vereinigung von Mengen der Form D(f). Zeige dazu: Zu jedem $x \in U$ gibt es ein f mit $x \in D(f) \subseteq U$.

Sei $V = k^n \setminus U$, also V = V(I) für ein Ideal I. Da $x \notin V$, gibt es $f \in I$ mit $f(x) \neq 0 \Rightarrow x \in D(f)$. Weil $f \in I$, ist $V \cap D(f) = \emptyset \Rightarrow D(f) \subseteq U$

Bemerkung 1.2.8

Die Zariski-Topologie auf k^n ist nicht hausdorffsch.

Beweis Wegen 2.7 genügt es zu zeigen, dass $D(f) \cap D(g) \neq \emptyset$ für alle $f, g \in k[X_1, \dots, X_n] \setminus \{0\}$. Induktion über n:

 $\underline{n=1}$: V(f) und V(g) sind endlich $\Rightarrow D(f) \cap D(g) = k \setminus V(f \cdot g)$ ist unendlich.

 $\underline{n>1}$: Zerlege f und g in Primfaktoren (vgl. §1) und wähle $a\in k$, so dass (X_n-a) nicht Teiler von f oder g ist. Identifiziere $V(X_n-a)=\{(x_1,\ldots,x_n)\in k^n:x_n=a\}$ mit k^{n-1} .

Nach der Wahl von a sind $f|_{V(X_n-a)}$ und $g|_{V(X_n-a)}$ nicht identisch 0, also $f'=f(X_1,\ldots,X_{n-1},a)$ $\neq 0 \neq g(X_1,\ldots,X_{n-1},a) =: g'$ in $k[X_1,\ldots,X_n]$. Nach Induktionsvoraussetzung gibt es $x' \in k^{n-1}$ mit $f'(x') \neq 0 \neq g'(x') \Rightarrow$ Für $x=(x',a) \in k^n$ gilt $f(x)=f'(x') \neq 0 \neq g'(x') = g(x)$. \square

§3 Irreduzible Komponenten

Definition 1.3.1

- a) Ein topologischer Raum X heißt irreduzibel, wenn er nicht Vereinigung von zwei echten abgeschlossenen Teilmengen ist.
- b) Eine abgeschlossene Teilmenge von X heißt irreduzible Komponente, wenn sie irreduzibel ist (bzgl. der induzierten Topologie) und maximal (bzgl. Inklusion).

Proposition 1.3.2

Eine affine Varietät $V \subseteq k^n$ ist genau dann irreduzibel, wenn I(V) Primideal in $k[X_1, \ldots, X_n]$ ist. Das ist genau dann der Fall, wenn der affine Koordinatenring A(V) =: k[V] nullteilerfrei ist.

Beweis " \Rightarrow " Seien $f_1, f_2 \in k[X_1, \dots, X_n]$ mit $f_1 \cdot f_2 \in I(V)$. Sei $f_1 \notin I(V)$. Dann ist $V \not\subset V(f_1)$.

Nach Voraussetzung ist $V \subseteq V(f_1 \cdot f_2) = V(f_1) \cup V(f_2)$.

 $V \text{ irreduzibel} \Rightarrow V \subseteq V(f_2)$

 $\Rightarrow f_2(x) = 0$ für alle $x \in V$

 $\Rightarrow f_2 \in I(V)$.

"\(\subseteq "\) Sei $V = V_1 \cup V_2$ mit $V_i = V(I_i)$, i = 1, 2. Sei $V_1 \neq V$.

 $\Rightarrow V \nsubseteq V(I_1)$

 $\Rightarrow \exists x \in V \text{ und } f \in I_1 \text{ mit } f(x) \neq 0$

Also $f \notin I(V) \subseteq I(V_1)$

Andererseits ist $V = V(I_1) \cup V(I_2) = V(I_1 \cdot I_2) \Rightarrow I_1 \cdot I_2 \subseteq I(V)$

 $\Rightarrow f \cdot g(x) = 0$ für alle $g \in I_2$

I(V) prim und $f \notin I(V) \Rightarrow g \in I(V)$ für alle $g \in I_2$

 $\Rightarrow V_2 = V(I_2) \supseteq V(I(V)) = V$

Satz 1

Jede affine Varietät $V \in k^n$ hat eine Zerlegung in endlich viele irreduzible Komponenten. Diese Zerlegung ist eindeutig.

Beweis 1. Schritt V ist endliche Vereinigung von irreduziblen Untervarietäten.

Sei dazu \mathcal{B} die Menge der Varietäten in k^n , die nicht endliche Vereinigung von irreduziblen Untervarietäten sind. Sei weiter $\mathcal{J} := \{I(V) \mid V \in \mathcal{B}\}.$

Zu zeigen: $\mathcal{B} = \emptyset$

Annahme: $\mathcal{J} \neq \emptyset$. Dann enthält \mathcal{J} ein maximales Element $I_0 = I(V_0)$ für ein $V_0 \in \mathcal{B}$.

 $\Rightarrow V_0$ ist minimales Element in \mathcal{B} .

 $V_0 \in \mathcal{B} \Rightarrow V_0$ reduzibel

 $\Rightarrow V_0 = V_1 \cup V_2$ mit $V_1 \neq V_0 \neq V_2, V_i$ abgeschlossen

 $\Rightarrow V_i \notin \mathcal{B}, i = 1, 2 \text{ (da } V_0 \text{ minimales Element in } \mathcal{B})$

 $\Rightarrow V_i$ ist endliche Vereinigung von irreduziblen Untervarietäten

 $\Rightarrow V_0$ auch. Widerspruch!

2. Schritt "Irreduzible Komponenten"

Sei $V = V_1 \cup \cdots \cup V_n$ mit irreduziblen Varietäten V_1, \ldots, V_n .

Ohne Einschränkung sei $V_i \nsubseteq V_j$ für $i \neq j$.

Sei $W \subseteq V$ irreduzibel und $V_i \subseteq W$ für ein i.

Es ist $W = V \cap W = (V_1 \cup \cdots \cup V_n) \cap W = (V_1 \cap W) \cup \cdots \cup (V_n \cap W)$

 $W \text{ irreduzibel} \Rightarrow \exists i \text{ mit}$

$$V_j \cap W = W \Rightarrow V_i \subseteq W = W \cap V_j \subseteq V_j \Rightarrow i = j \text{ und } W = V_i$$

 $\Rightarrow V_1, \dots, V_n$ sind irreduzible Komponenten von V.

Genauso: $W \subseteq V$ irreduzible Komponente $\Rightarrow \exists j : W \subseteq V_j$,

 $da W maximal \Rightarrow Zerlegung eindeutig.$

Beispiele 1.3.3

$$f = y^2 - x(x-1)(x+1) \in \mathbb{R}[x,y]$$
 $E := V(f)$

§4 Der Hilbertsche Nullstellensatz

Satz 2 (Hilbertscher Nullstellensatz)

Sei k ein Körper, $n \geq 1, m \subseteq k[X_1, \ldots, X_n]$ maximales Ideal. Dann ist $L = k[X_1, \ldots, X_n]/m$ eine endlich erzeugte Körpererweiterung von k.

Beweis Siehe Algebra II, Theorem 4.

Folgerung 1.4.1

Ist k algebraisch abgeschlossen, so entsprechen die maximalen Ideale in $k[X_1, \ldots, X_n]$ bijektiv den Punkten in k^n .

Beweis

 $x = (x_1, \ldots, x_n) \mapsto (X_1 - x_1, \ldots, X_n - x_n)$ (maximal, da Faktorring Körper) ist eine injektive Zuordnung $\varphi : k^n \to m$ -Spec $(k[X_1, \ldots, X_n])$ (= Menge der Maximalideale). φ surjektiv:

Sei $m \in m$ -Spec $(k[X_1, \ldots, X_n]), \alpha : k[X_1, \ldots, X_n]/m \to k$ der Isomorphismus, den es nach Satz 2 gibt. (Das ist tatsächlich ein Isomorphismus, da k algebraisch abgeschlossen ist und somit jede endliche Erweiterung von k wieder k selbst ist.)

$$\Rightarrow X_i - \alpha(X_i) \in m, i = 1, \dots, n \text{ (da } \alpha \in \operatorname{Hom}_k \Rightarrow \alpha(X_i - \alpha(X_i)) = 0)$$

$$\Rightarrow (X_1 - \alpha(X_1), \dots, X_n - \alpha(X_n)) \subseteq m$$

Folgerung 1.4.2 (Schwacher Nullstellensatz)

Für jedes echte Ideal $I \subseteq k[X_1, \dots, X_n]$ ist $V(I) \neq \emptyset$.

Beweis
$$I \subseteq m$$
 für ein maximales Ideal $m \Rightarrow V(I) \supseteq V(m) \neq \emptyset$

Sei jetzt k algebraisch abgeschlossen, $n \geq 1$, und

$$\mathcal{V}_n := \{ V \subseteq k^n \mid V \text{ affine Variet\"{a}t} \}$$

$$\mathcal{I}_n := \{ I \subseteq k[X_1, \dots, X_n] \mid I \text{ Radikalideal} \}$$

Satz 3 (Hilbertscher Nullstellensatz)

Die Zuordnungen

$$V: \mathcal{I}_n \to \mathcal{V}_n, \quad I \mapsto V(I)$$

 $I: \mathcal{V}_n \to \mathcal{I}_n, \quad V \mapsto I(V)$

sind bijektiv und zueinander invers.

Beweis Zu zeigen: (1) V(I(V)) = V für jedes $V \in \mathcal{V}_n$

- (2) I(V(I)) = I für jedes $I \in \mathcal{I}_n$
- (1): Ist Bemerkung 2.4 (iii).
- (2): Zeige: $I(V(I)) = \sqrt{I}$ für jedes Ideal $I \subseteq k[X_1, \dots, X_n]$.

 $\underline{\underline{\text{"}\subseteq\text{"}}}$: Sei $g \in I(V(I))$, seien f_1, \ldots, f_m Erzeuger von I.

 $\overline{\text{Zu zeigen:}} \ \exists d: g^d = \sum_{i=1}^m a_i f_i \ \text{für gewisse} \ a_i \in k[X_1, \dots, X_n].$

Betrachte in $k[X_1, \ldots, X_n, Y]$ das von f_1, \ldots, f_m und gY - 1 erzeugte Ideal J.

Es ist $V(J) = \emptyset$

Schwacher Nullstellensatz $\Rightarrow J = k[X_1, \dots, X_n, Y]$

$$\Rightarrow \exists b_i, b \in k[X_1, \dots, X_n, Y] \text{ sodass } 1 = \sum_{i=1}^m b_i f_i + b(gY - 1)$$

In $R := k[X_1, ..., X_n, Y]/(gY - 1)$ gilt also

 $1 = \sum_{i=1}^m b_i f_i \ (b_i \in k[X_1, \dots, X_n, \frac{1}{g}]$ die Restklasse von b_i). Multipliziere mit Hauptnenner g^d . \square

Bemerkung 1.4.3

Sei k algebraisch abgeschlossen, $V \subseteq k^n$ eine affine Varietät. Dann entsprechen die Punkte in V bijektiv den maximalen Idealen in k[V] (= $k[X_1, \ldots, X_n]/I(V)$).

Beweis Die maximalen Ideale in k[V] entsprechen bijektiv denjenigen maximalen Idealen in $k[X_1, \ldots, X_n]$, die I(V) umfassen, also nach 4.1 den Punkten (x_1, \ldots, x_n) , für die $(X_1 - x_1, \ldots, X_n - x_n) \supseteq I(V)$ ist

$$\Leftrightarrow \underbrace{V(X_1 - x_1, \dots, X_n - x_n)}_{\{(x_1, \dots, x_n)\}} \subseteq V(I(V)) = V$$

§5 Morphismen

Definition + Bemerkung 1.5.1

- (a) Sei k algebraisch abgeschlossener Körper, $V \subseteq k^n$ und $W \subseteq k^m$ affine Varietäten. Eine Abbildung $f: V \to W$ heißt **Morphismus**, wenn es Polynome $f_1, \ldots, f_m \in k[X_1, \ldots, X_n]$ gibt, so dass $f(x) = (f_1(x), \ldots, f_m(x))$ für jedes $x \in V$.
- (b) Jeder Morphismus $V \to W$ ist Einschränkung eines Morphismus $k^n \to k^m$.
- (c) Die affinen Varietäten über k bilden zusammen mit den Morphismen aus (a) eine Kategorie Aff(k). Als Objekte von Aff(k) bezeichnen wir k^n mit $\mathbb{A}^n(k)$.

Beispiele 1.5.2

- (1) Projektionen und Einbettungen $\mathbb{A}^n(k) \to \mathbb{A}^m(k)$.
- (2) Jedes $f \in k[X_1, \dots, X_n]$ ist Morphismus $\mathbb{A}^n(k) \to \mathbb{A}^1(k)$.

(3)
$$V = \mathbb{A}^1(k), W = V(Y^2 - X^3) \subseteq \mathbb{A}^2(k)$$
 ("Neilsche Parabel")

 $f: V \to W, x \mapsto (x^2, x^3)$ ist Morphismus.

fist bijektiv: injektiv $\sqrt{}$

surjektiv: Sei $(x,y) \in W \setminus \{(0,0)\}$, d.h. $y^2 = x^3$

Dann ist
$$(x,y) = f(\frac{y}{x}) = ((\frac{y}{x})^2, (\frac{y}{x})^3) = (\frac{x^3}{x^2}, \frac{y^3}{y^2}), f(0) = (0,0)$$

Umkehrabbildung:

$$g(x,y) = \begin{cases} 0 & (x,y) = (0,0) \\ \frac{y}{x} & sonst \end{cases}$$
 ist kein Morphismus.

(4) Sei char $(k) = p > 0.f : \mathbb{A}^n(k) \to \mathbb{A}^n(k), (x_1, \dots, x_n) \mapsto (x_1^p, \dots, x_n^p)$, heißt Frobenius-Morphismus. f ist bijektiv, aber kein Isomorphismus. Die Fixpunkte von f sind die Elemente von $\mathbb{A}^n(\mathbb{F}_p)$.

Bemerkung 1.5.3

Morphismen sind stetig bezüglich der Zariski-Topologie.

Beweis Ohne Einschränkung sei $f: \mathbb{A}^n(k) \to \mathbb{A}^m(k)$. Sei $V \subseteq \mathbb{A}^m(k)$ abgeschlossen, V = V(I) für ein Radikalideal $I \subseteq k[X_1, \dots, X_n]$. Zu zeigen: $f^{-1}(V)$ abgeschlossen in $\mathbb{A}^n(k)$.

Genauer gilt:
$$f^{-1}(V) = V(J)$$
 mit $J = \{g \circ f \mid g \in I\}$

denn:
$$x \in f^{-1}(V) \Leftrightarrow f(x) \in V \Leftrightarrow g(f(x)) = 0$$
 für alle $g \in I \Leftrightarrow x \in V(J)$

Bemerkung 1.5.4

Jeder Morphismus $f: V \to W$ induziert einen k-Algebra-Homomorphismus $f^{\sharp}: k[W] \to k[V]$ (durch Hintereinanderschalten).

Genauer: Sei $V \subseteq \mathbb{A}^n(k), W \subseteq \mathbb{A}^m(k)$

$$k[X_1, \dots, X_m] \xrightarrow{g \mapsto g \circ f} k[X_1, \dots, X_n]$$

$$\downarrow \qquad \qquad \downarrow$$

$$k[W] = k[X_1, \dots, X_m]/I(W) \xrightarrow{f^{\sharp}} k[X_1, \dots, X_n]/I(V) = k[V]$$

 f^{\sharp} existiert, weil für alle $g \in I(W)$ gilt: $g \circ f(x) = g(f(x)) = 0$ für alle $x \in V$

Proposition 1.5.5

Sei $f:V\to W$ ein Morphismus von affinen Varietäten, $\alpha:=f^{\sharp}:k[W]\to k[V]$ der induzierte k-Algebra-Homomorphismus. Seien $x\in V,\ y\in W$ und $m_x\subset k[V],\ m_y\subset k[W]$ die Verschwindungsideale zum jeweiligen Punkt. Dann gilt:

$$f(x) = y \Leftrightarrow \alpha^{-1}(m_x) = m_y$$

Beweis "
$$\Rightarrow$$
" $g \in m_y \Leftrightarrow g(y) = 0 \Rightarrow g \circ f(x) = 0 \Leftrightarrow \underbrace{g \circ f}_{=\alpha(g)} \in m_x \Leftrightarrow g \in \alpha^{-1}(m_x) \Leftrightarrow m_y \subseteq g \circ f(x) = 0$

 $\alpha^{-1}(m_x)$. Gleichheit folgt daraus, dass m_y maximales Ideal ist.

<u>"\("\)</u> Wäre $f(x) \neq y$, dann gäbe es ein $g \in k[W]$ mit g(f(x)) = 0 und g(y) = 1.

Andererseits:

$$\alpha(g)(x) = (g \circ f)(x) = g(f(x)) = 0 \Leftrightarrow \alpha(g) \in m_x \Leftrightarrow g \in \alpha^{-1}(m_x) = m_y \Leftrightarrow g(y) = 0$$

Satz 4

Sei k ein algebraisch abgeschlossener Körper. Dann ist

$$\Phi: \underline{Aff} \longrightarrow \underline{k} - \underline{Alg}^{\circ}$$

$$V \longmapsto k[V]$$

$$f \longmapsto f^{\sharp}$$

eine kontravariante Äquivalenz von Kategorien. Hierbei bezeichnet \underline{k} -Alg $^{\circ}$ die Kategorie der endlich erzeugten, reduzierten k-Algebren.

Beweis Φ ist ein Funktor: $\sqrt{}$

Definiere Umkehrfunktor Ψ :

(i) Sei $A \in k - Alg^{\circ}, a_1, \dots, a_n$ Erzeuger von A

 $\Rightarrow p_A: k[X_1,\ldots,X_n] \to A, X_i \mapsto a_i \text{ ist surjektiver } k\text{-Algebra-Homomorphismus.}$

Sei $I_A := \text{Kern}(p_A)$ (Radikalideal).

 $\Psi(A) := V(I_A) \subseteq k^n$ affine Varietät mit $k[V(I_A)] \cong A$.

(ii) Sei $\alpha: A \to B$ k-Algebra-Homomorphismus in $k - \text{Alg}^{\circ}$.

Definiere die Abbildung $f_{\alpha} := V(I_B) \to V(I_A)$ durch $f_{\alpha}(y) = x$, falls $m_x = \alpha^{-1}(m_y)$. Diese ist wohldefiniert aufgrund der folgenden

Proposition 1.5.6

Sei $\alpha:A\to B$ ein Homomorphismus von endlich erzeugten k-Algebren, $m\subset B$ ein maximales Ideal. Dann ist $\alpha^{-1}(m)\subset A$ ein maximales Ideal.

(Beispiel.: Für $\alpha : \mathbb{Z} \to \mathbb{Q}$ ist $\alpha^{-1}(\{0\})$ kein maximales Ideal.)

Beweis

$$A \xrightarrow{\alpha} B \downarrow \qquad \downarrow \downarrow$$

$$A/\alpha^{-1}(m) \xrightarrow{\overline{\alpha}} B/m$$

 α induziert einen injektiven k-Algebra-Homomorphismus $\overline{\alpha}$. Nach dem HNS ist B/m=k. k hat keine echte k-Unteralgebra $\Rightarrow A/\alpha^{-1}(m)=k$.

Ende des Beweises des Satzes Noch zu zeigen: $f_{\alpha}: V(I_B) \to V(I_A)$ ist ein Morphismus. Schreibe dazu $A \cong k[X_1, \dots, X_n]/I_A$, $B = k[Y_1, \dots, Y_m]/I_B$.

$$k[X_1, \dots, X_n] \xrightarrow{\tilde{\alpha}} k[Y_1, \dots, Y_m]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A \xrightarrow{\alpha} B$$

Bastle Lift $\tilde{\alpha}$ von α :

 $\tilde{\alpha}(X_i) = f_i \text{ mit } \overline{f_i} = \alpha(\overline{X_i})$

Beh.: Für $y \in V(I_B)$ ist $f_{\alpha}(y) = (f_1(y), \dots, f_n(y))$.

<u>Denn</u>: Sei $y = (y_1, \ldots, y_m)$, dann ist m_y das Bild in B von $M_y = (Y_1 - y_1, \ldots, Y_m - y_m) \Rightarrow \alpha^{-1}(m_y)$ ist das Bild in A von $\tilde{\alpha}^{-1}(M_y) = (X_1 - f_1(y), \ldots, X_n - f_n(y))$.

Nachrechnen: $\Phi \circ \Psi \cong \mathrm{id}_{k-\mathrm{Alg}^{\circ}}, \quad \Psi \circ \Phi \cong \mathrm{id}_{\mathrm{Aff}(k)}$

§6 Reguläre Funktionen

Bemerkung 1.6.1

Sei $V \subseteq \mathbb{A}^n(k)$ eine affine Varietät. Dann gilt für $h \in k[X_1, \dots, X_n]$: \overline{h} ist Einheit in $k[V] \Leftrightarrow V(h) \cap V = \emptyset$

Beweis
$$V(h) \cap V = \emptyset \Leftrightarrow (h) + I(V) = k[X_1, \dots, X_n]$$

 $\Leftrightarrow 1 = g \cdot h + f \text{ für } g \in k[X_1, \dots, X_n] \text{ und } f \in I(V)$
 $\Leftrightarrow 1 = \overline{g} \cdot \overline{h} \text{ in } k[V].$

Definition 1.6.2

Sei $V \subseteq \mathbb{A}^n(k)$ eine affine Varietät, $U \subseteq V$ offen.

a) Eine Abbildung $f: U \to \mathbb{A}^1(k)$ heißt **reguläre Funktion** auf U, wenn es zu jedem $x \in U$ eine Umgebung $U(x) \subseteq U$ und $g_x, h_x \in k[V]$ gibt mit $h_x(y) \neq 0$ für alle $y \in U(x)$ und $f(x) = \frac{g_x(y)}{h_x(y)}$ für alle $y \in U(x)$.

b) Eine Abbildung $f: U \to U'$ mit $U' \subseteq \mathbb{A}^m(k)$ offen heißt **Morphismus**, wenn es reguläre Funktionen f_1, \ldots, f_m auf U gibt mit $f(x) = (f_1(x), \ldots, f_m(x))$.

Beispiele 1.6.3

 $\frac{1}{x}$ ist eine reguläre Funktion auf $k \setminus \{0\}$.

Dann ist $U \to \mathbb{A}^2(k)$, $x \mapsto (x, \frac{1}{x})$ ein Isomorphismus mit Bild V(XY-1).

Definition 1.6.4

a) Eine **Prägarbe** besteht aus einer k-Algebra $\mathcal{O}(U)$ für jede offene Menge $U\subseteq V$ zusammen mit k-Algebra-Homomorphismen

$$\rho_{UU'}: \mathcal{O}(U) \to \mathcal{O}(U') \quad \forall U' \subseteq U \text{ offen}$$

so dass $\rho_{UU''} = \rho_{U'U''} \circ \rho_{UU'}$ für $U'' \subseteq U' \subseteq U$ gilt.

b) Eine Prägarbe heißt *Garbe*, falls zusätzlich noch folgende Bedingungen gelten:

Sei $U \subseteq V$ offen und $(U_i)_{i \in I}$ eine offene Überdeckung von U.

- (i) Ist $f \in \mathcal{O}(U)$ und $\rho_{UU'}(f) =: f|_{U_i} = 0$ für alle $i \in I$, so ist f = 0.
- (ii) Ist für jedes $i \in I$ ein $f_i \in \mathcal{O}(U_i)$ gegeben, so dass für alle $i, j \in I$ gilt $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$, so gibt es $f \in \mathcal{O}(U)$ mit $f|_{U_i} = f_i$ für jedes $i \in I$.

Bemerkung 1.6.5

Sei $V \subseteq \mathbb{A}^n(k)$ eine affine Varietät.

(a) Für jedes offene $U \subseteq V$ ist

$$\mathcal{O}(U) := \{ f : U \to k \mid f \text{ regulär} \}$$

eine k-Algebra.

- (b) $f \mapsto \frac{f}{1}$ ist ein k-Algebra-Homomorphismus $k[V] \to \mathcal{O}(U)$ für jedes offene $U \subseteq V$. Dieser ist injektiv, falls U dicht in V ist. Dies ist für alle $\emptyset \neq U$ der Fall, wenn V irreduzibel ist. (Gegenbsp.: $V(X \cdot Y)$, U = D(x), f = y)
- (c) Die Zuordnung $U \mapsto \mathcal{O}(U)$ ist eine Garbe $\mathcal{O} = \mathcal{O}_V$ von k-Algebren auf V.

Beweis Seien $f_1, f_2 \in \mathcal{O}(U)$. Ohne Einschränkung sei $U_1(x) = U_2(x) =: U(x)$ für alle $x \in U$. Sei $f_i = \frac{g_{i,x}}{h_{i,x}}$ auf U(x).

 $\Rightarrow h_{1,x}(y) \cdot h_{2,x}(y) \neq 0$ für alle $y \in U(x) \Rightarrow f_1 \pm f_2$ und $f_1 \cdot f_2$ sind reguläre Funktionen. Mit $h_x = 1$ und $g_x = f$ für alle x ist jedes $f \in k[V]$ reguläre Funktion auf jedem offenen U. \square

Proposition 1.6.6

Für jede affine Varietät $V \subseteq \mathbb{A}^n(k)$ gilt $\mathcal{O}(V) = k[V]$.

Beweis Nach Bem. 1.6.5(b) ist $k[V] \to \mathcal{O}(V)$ injektiv, also gilt ohne Einschränkung $k[V] \subseteq \mathcal{O}(V)$.

Sei zunächst V irreduzibel: Sei $f \in \mathcal{O}(V), x_i \in V, i = 1, 2, U_i \subseteq V$ offene Umgebungen von x_i , auf denen $f(y) = \frac{g_i(y)}{h_i(y)}$ gilt für geeignete $g_i, h_i \in k[V], h_i(y) \neq 0 \ \forall y \in U_i$.

Dann ist $U := U_1 \cap U_2$ offen <u>und dicht</u> in $V \Rightarrow g_1 h_2 - g_2 h_1 \in I(U)$ (weil $\frac{g_1(y)}{h_1(y)} = f(y) = \frac{g_2(y)}{h_2(y)}$ für alle $y \in U$).

Mit $V(I(U)) = \overline{U} = V$ folgt $g_1 h_2 = g_2 h_1$ in $k[V] \Rightarrow \frac{g_1}{h_1} = \frac{g_2}{h_2}$ auf $U_1 \cap U_2$, d.h. $\exists g, h \in k[V]$ mit $\frac{g_i}{h_i} = \frac{g}{h}, i = 1, 2$.

Ist V zusammenhängend, so sei $V = V_1 \cup \cdots \cup V_r$ die Zerlegung in irreduzible Komponenten. Die Argumentation ist die gleiche, allerdings für $x \in V_1 \cap V_i$ (V_i geeignet).

Ist $V = V_1 \stackrel{.}{\cup} V_2$ disjunkte Vereinigung von affinen Varietäten V_1, V_2 , so ist

 $\mathcal{O}(V) = \mathcal{O}(V_1) \oplus \mathcal{O}(V_2)$ (folgt aus der Definition von regulären Funktionen) und $k[V] = k[V_1] \oplus k[V_2]$ (Übung).

Proposition 1.6.7

Sei $V \subseteq \mathbb{A}^n(k)$ eine affine Varietät, $f \in k[V]$. Dann ist $\mathcal{O}(D(f)) \cong k[V]_f$ (Lokalisierung von k[V] nach dem multiplikativen System $S = \{f^d : d \geq 0\}$, d.h.: $k[V]_f := \{\frac{g}{f^m} \mid g \in k[V], m \geq 0\}$). D(f) ist als offene Teilmenge von V zu interpretieren.

Beispiele 1.6.8

1)
$$V = \mathbb{A}^1(k), \quad f = x, \quad D(f) = k \setminus \{0\}$$

$$\mathcal{O}(D(f)) = \{\frac{g}{h} : g, h \in k[X] \text{ mit } h(x) \neq 0 \text{ für alle } x \neq 0\}$$

$$= \{\frac{g}{x^d} : g \in k[X], d \geq 0\}$$
2) $V = V(x \cdot y) \subseteq \mathbb{A}^2(k), f = x \in k[V] = k[X, Y]/(X \cdot Y)$

$$D(f) = V - V(x) = x\text{-Achse ohne die } 0$$

$$k[V]_x = \{\frac{g}{x^d} : g \in k[V], d \geq 0\}/ \sim \text{mit der Äquivalenzrelation } \frac{g}{x^d} \sim 0 \Leftrightarrow \exists d' \geq 0 \text{ mit } x^{d'} \cdot g = 0 \Leftrightarrow g = y \cdot g' \text{ für ein } g' \in k[V] \Rightarrow \text{Kern}(k[V] \to k[V]_x) = (y) \Rightarrow k[V]_x \cong k[X]_x.$$

Beweis Sei I = I(V), also $k[V] \cong k[X_1, \dots, X_n]/I$. Sei weiter $\tilde{f} \in k[X_1, \dots, X_n]$ Repräsentant von f.

Beh.:
$$D(f)$$
 ist isomorph zu einer affinen Varietät $W := V(\underbrace{I + (\tilde{f}X_{n+1} - 1)}) \subseteq \mathbb{A}^{n+1}(k)$

Beweis: Übung (Blatt 4, A.3).

Nach Prop. 6.4:
$$\mathcal{O}(D(f)) \cong \mathcal{O}(W) = k[W] = k[X_1, ..., X_{n+1}]/\tilde{I}$$

Sei
$$\alpha: k[X_1, \dots, X_{n+1}] \to k[V]_f$$
 der durch $x_i \mapsto \begin{cases} x_i : i = 1, \dots, n \\ \frac{1}{f} : i = n+1 \end{cases}$ erzeugte Homomorphismus.

Beh.: $\operatorname{Kern}(\alpha) = \tilde{I}$

"
\(\sigma^{\cup v} \) induziert einen Homomorphismus: \(\tilde{\alpha} : \bigver_{k[V][X_{n+1}]} \) / \(\tilde{I} \to k[V]_f \)

zu zeigen ist also: A k-Algebra, $f \in A$ $\alpha: A[X] \to A_f$, so ist $\operatorname{Kern}(\alpha) = (Xf - 1)$.

Nachtrag

Behauptung

Für $x \in V$ ist $f_{\alpha}(x) = (f_1(x), \dots, f_n(x)) =: y$. Noch zu zeigen: $\alpha^{-1}(m_x) = m_y$. Es ist $m_y = \overline{(Y_1 - f_1(x), \dots, Y_m - f_m(x))}$. Dann ist $\alpha(m_y)$ das von $\overline{\tilde{\alpha}(Y_i) - f_i(x)}$, $i = 1, \dots, n$ erzeugte Ideal. Also:

$$\Rightarrow \alpha(m_y) \subseteq m_x$$
$$\Rightarrow m_y \subseteq \alpha^{-1}(m_x)$$
$$\Rightarrow m_y = \alpha^{-1}(m_x)$$

Proposition 1.6.9

Seien $V \subseteq \mathbb{A}^n(k), W \subseteq \mathbb{A}^m(k)$ affine Varietäten und $U_1 \subseteq V, U_2 \subseteq W$ offen. Dann gilt: Eine Abbildung $f: U_1 \longrightarrow U_2$ ist genau dann ein Morphismus, wenn f stetig ist und für jedes offene $U \subseteq U_2$ gilt:

$$g \circ f \in \mathcal{O}(f^{-1}(U))$$
 für jedes $g \in \mathcal{O}(U)$

Beweis " \Rightarrow " f ist stetig nach 1.5.3. Seien $g \in \mathcal{O}(U), x \in f^{-1}(U), U'$ Umgebung von f(x), sodass $g(y) = \frac{h_1(y)}{h_2(y)}$ für alle $y \in U'$, wobei $h_1, h_2 \in k[W], h_2(y) \neq 0$ für alle $y \in U'$. Daraus folgt für $z \in f^{-1}(U')$:

$$g \circ f(z) = \frac{h_1(f(z))}{h_2(f(z))} = (*)$$

weil f ein Morphismus ist, gilt $f(z) = \left(\frac{a_1(z)}{b_1(z)}, \dots, \frac{a_m(z)}{b_m(z)}\right)$ für geeignete $a_i, b_i \in k[V]$ und \times alle $z \in f^{-1}(U')$ und damit

$$(*) = \frac{h_1\left(\frac{a_1(z)}{b_1(z)}, \dots, \frac{a_m(z)}{b_m(z)}\right)}{h_2\left(\frac{a_1(z)}{b_1(z)}, \dots, \frac{a_m(z)}{b_m(z)}\right)} =: \frac{\tilde{h}_1}{\tilde{h}_2}(z), \text{ mit } \tilde{h}_i \in k[V].$$

"\(\infty\) Seien $x \in U_1$ und $U \subseteq W$ eine offene Umgebung von $f(x) \Rightarrow f^{-1}(U) \subseteq V$ ist offen. Sei $p_i: U \longrightarrow k$ die *i*-te Koordinatenfunktion, also $p_i(y_1, \ldots, y_m) = y_i, i = 1, \ldots, m$. Nach Voraussetzung ist $p_i \circ f \in \mathcal{O}(f^{-1}(U)), i = 1, \ldots, m$. Also gibt es $g_i, h_i \in k[V]$ mit $p_i \circ f(y) = \frac{g_i(y)}{h_i(y)}$ für alle y in einer geeigneten Umgebung von x.

$$\Rightarrow f(z) = \left(\frac{g_1(z)}{h_1(z)}, \dots, \frac{g_m(z)}{h_m(z)}\right) \Rightarrow f \text{ ist ein Morphismus.}$$

Definition 1.6.10

Sei $V \subseteq \mathbb{A}^n(k)$ eine affine Varietät und irreduzibel. Dann heißt $k(V) := \operatorname{Quot}(k[V])$ Funktionenkörper von V.

Beispiele 1.6.11

(a)
$$V = \mathbb{A}^n(k) \Rightarrow k(V) = k(X_1, \dots, X_n)$$

(b)
$$V = V(Y^2 - X^2) \subseteq \mathbb{A}^2(k)$$

 $k[V] = k[X, Y]/(Y^2 - X^2) \cong k[T^2, T^3] \subseteq k[T]$
 $\Rightarrow k(V) \cong k(T)$

Proposition 1.6.12

Sei $f:V\longrightarrow W$ ein Morphismus von irreduziblen affinen Varietäten.

- (a) f induziert genau dann einen Körperhomomorphismus $\varphi_f: k(W) \longrightarrow k(V)$, der den k-Algebrenhomomorphismus $f^{\sharp}: k[W] \longrightarrow k[V]$ fortsetzt, wenn f^{\sharp} injektiv ist.
- (b) f^{\sharp} ist genau dann injektiv, wenn f(V) dicht in W ist (in diesem Fall heißt f **dominant**).

Beweis

- (a) $k(W) = \operatorname{Quot}(k[W])$. Für $x = \frac{a}{b} \in k(W)$ mit $a, b \in k[W], b \neq 0$ muss gelten $\varphi_f(x) = \frac{f^{\sharp}(a)}{f^{\sharp}(b)}$. Das ist wohldefiniert $\Leftrightarrow f^{\sharp}(b) \neq 0$ für alle $b \neq 0$.
- (b) Sei $\alpha:=f^{\sharp}:k[W]\longrightarrow k[V],\ Z\subseteq V,$ dann gilt $\alpha^{-1}(I(Z))=I(f(Z)),$ denn:

$$g \in \alpha^{-1}(I(Z))$$

$$\Leftrightarrow \forall z \in Z : \alpha(g)(z) = 0$$

$$\Leftrightarrow \forall z \in Z : (g \circ f)(z) = 0$$

$$\Leftrightarrow g \in I(f(Z))$$

Für
$$Z=V$$
 heißt das: $\operatorname{Kern}(\alpha)=\alpha^{-1}(0)=\alpha^{-1}(I(V))=I(f(V)).$ Also: $\operatorname{Kern}(\alpha)=0\Leftrightarrow I(f(V))=0\Leftrightarrow V(I(f(V)))=\overline{f(V)}=W$

§7 Rationale Abbildungen

Definition + Bemerkung 1.7.1

Sei $V \subseteq \mathbb{A}^n(k)$ eine affine Varietät.

- (a) Eine **rationale Funktion** auf V ist eine Äquivalenzklasse von Paaren (U, f), wobei $U \subseteq V$ offen und dicht und $f \in \mathcal{O}(U)$ ist. Dabei sei $(U, f) \sim (U', f') :\Leftrightarrow f|_{U \cap U'} = f'|_{U \cap U'}$
- (b) In jeder Äquivalenzklasse [(U', f')] gibt es ein (bezüglich " \subseteq ") maximales Element (U, f), dessen U **Definitionsbereich** der rationalen Funktion heißt. $V \setminus U$ heißt Pol(stellen)menge.
- (c) Die rationalen Funktionen auf V bilden eine k-Algebra Rat(V).
- (d) Ist V irreduzibel, so ist $Rat(V) \cong k(V)$.

Beweis (a) \sim ist transitiv: Seien $(U, f) \sim (U', f'), (U', f') \sim (U'', f''),$ dann folgt: $f|_{U \cap U' \cap U''} = f''|_{|U \cap U'' \cap U''}$. Da $U \cap U' \cap U''$ dicht in V ist, ist dann auch $f|_{U \cap U''} = f''|_{|U \cap U''}$.

- (b) Ist $(U, f) \sim (U', f')$, so definiere auf $U \cup U'$ eine Funktion \tilde{f} durch $\tilde{f}(x) = \begin{cases} f(x) & x \in U \\ f'(x) & x \in U' \end{cases}$. Dann ist $\tilde{f} \in \mathcal{O}(U \cup U')$.
- (c) $f \pm g, f \cdot g$ sind reguläre Funktionen auf $U \cap U'$, wobei (U, f) und (U', g) Repräsentanten sind.
- (d) $\frac{g}{h} \in k(V)$ ist eine reguläre Funktion auf D(h). D(h) liegt dicht in V, weil V irreduzibel ist. Es folgt: $\frac{g}{h} \mapsto (D(h), \frac{g}{h})$ ist ein wohldefinierter k-Algebrenhomomorphismus $\alpha : k(V) \longrightarrow \operatorname{Rat}(V)$.

 α ist surjektiv, denn:

Sei (U, f) ein Repräsentant einer rationalen Funktion auf V. Dann gibt es offenes $U' \subseteq U$ und $g, h \in k[V]$ mit $f(x) = \frac{g(x)}{h(x)}$ für alle $x \in U'$. Da V irreduzibel ist, ist U' dicht in V. Also ist $\alpha(\frac{g}{h})$ gleich der Klasse $(U', \frac{g}{h})$, was gleich der Klasse von (U, f) ist. \square

Definition + Bemerkung 1.7.2

Seien $V \subseteq \mathbb{A}^n(k), W \subseteq \mathbb{A}^m(k)$ affine Varietäten.

- (a) Eine **rationale Abbildung** $f: V \longrightarrow W$ ist eine Äquivalenzklasse von Paaren (U, f_U) , wobei $U \subseteq V$ offen und dicht ist und $f_U: U \longrightarrow W$ ein Morphismus ist; dabei sei $(U, f_U) \sim (U', f'_U) :\Leftrightarrow f_U|_{U \cap U'} = f_{U'}|_{|U \cap U'}$.
- (b) Rationale Funktionen sind rationale Abbildungen $V \longrightarrow \mathbb{A}^1(k)$.
- (c) Jede rationale Abbildung hat einen maximalen Definitionsbereich.
- (d) Die Komposition von dominanten rationalen Abbildungen ist wieder eine dominante rationale Abbildung wegen $\overline{f(U)} = \overline{f(\overline{U})}$.
- (e) Jede dominante rationale Abbildung $f: V \dashrightarrow W$ induziert einen k-Algebrenhomomorphismus $Rat(W) \longrightarrow Rat(V)$.
- (f) Eine dominante rationale Abbildung $f: V \dashrightarrow W$ heißt **birational**, wenn es eine rationale Abbildung $g: W \dashrightarrow V$ gibt mit $f \circ g \sim \mathrm{id}_W$ und $g \circ f \sim \mathrm{id}_V$.

Beispiele

- 1) $f: \mathbb{A}^1(k) \longrightarrow \mathbb{A}^2(k), x \mapsto (x, \frac{1}{x})$ ist eine rationale Abbildung.
- 2) $\sigma: \mathbb{A}^2(k) \dashrightarrow \mathbb{A}^2(k), (x,y) \mapsto (\frac{1}{x}, \frac{1}{y})$ ist eine birationale Abbildung. Es gilt $\sigma \circ \sigma = \mathrm{id}$ auf $\mathbb{A}^2(k) V(XY)$.

Proposition 1.7.3

Seien V, W irreduzible affine Varietäten. Dann gibt es zu jedem Körperhomomorphismus $\alpha : k(W) \longrightarrow k(V)$ eine rationale Abbildung $f : V \longrightarrow W$ mit $\alpha = \alpha_f$.

Beweis Wähle Erzeuger g_1, \ldots, g_m von k(W) als k-Algebra. Für $\alpha(g_i) \in k(V) = \operatorname{Rat}(V)$ sei $U_i \subseteq V$ der Definitionsbereich. Sei $\tilde{U} := \bigcap_{i=1}^m U_i$, \tilde{U} ist offen und dicht in V. Sei $U \subseteq \tilde{U}$ affin (d.h. isomorph zu einer affinen Varietät) und dicht (sowas gibt es, da D(f) affine Teilmenge).

$$\overset{1.6.6}{\Rightarrow} \alpha(g_i) \in \mathcal{O}(U) = k[U], i = 1, \dots, m$$

$$\Rightarrow \alpha|_{k[W]} : k[W] \longrightarrow k[U] \text{ ist } k\text{-Algebrenhomomorphismus.}$$

$$\overset{\text{Satz 2}}{\Rightarrow} \text{Es gibt einen Morphismus } f : U \longrightarrow W \text{ mit } f^{\sharp} = \alpha.$$

 α_f ist der von f^{\sharp} induzierte Homomorphismus auf Quot(k[W]).

Proposition 1.7.4

Zu jeder endlich erzeugten Körpererweiterung K/k gibt es eine irreduzible affine k-Varietät V mit $K \cong k(V)$.

Beweis Seien $x_1, \ldots, x_n \in K$ Erzeuger der Körpererweiterung K/k. Sei weiter $A := k[x_1, \ldots, x_n]$ die von den x_i erzeugte k-Algebra. A ist nullteilerfrei, da $A \subseteq K$. Nach Satz 2 gibt es eine affine Varietät V mit $A \cong k[V]$. V ist irreduzibel, da A nullteilerfrei. $k(V) = \operatorname{Quot}(k[V]) \cong \operatorname{Quot}(A) = K$.

Korollar 1.7.5

Die Kategorie der endlich erzeugten Körpererweiterungen K/k (mit k-Algebrenhomomorphismen) ist äquivalent zur Kategorie der irreduziblen affinen Varietäten über k mit dominanten rationalen Abbildungen.

2 Projektive Varietäten

Der projektive Raum $\mathbb{P}^n(k)$ **§**8

Erinnerung

$$\mathbb{P}^{n}(k) = \{ \text{ Geraden in } k^{n+1} \text{ durch } 0 \}$$
$$= (k^{n+1} \setminus \{0\}) /_{\sim} \text{ mit } (x_0, \dots, x_n) \sim (y_0, \dots, y_n) : \Leftrightarrow \exists \lambda \in k^{\times} : \lambda x_i = y_i \text{ für } i = 1, \dots, n \}$$

Schreibweise $(x_0: \dots : x_n) := [(x_0, \dots, x_n)]_{\sim}$ ("homogene Koordinaten")

Beispiele

 $\underline{n} = 0$: $\mathbb{P}^0(k)$ ist ein Punkt.

$$\underline{n=1}$$
: $\mathbb{P}^1(k) \longrightarrow k \cup \{\infty\}$ ist bijektiv.

$$(x_0:x_1) \mapsto \begin{cases} \frac{x_1}{x_0}: & x_0 \neq 0 \\ \infty: & x_0 = 0 \end{cases} \text{Also: } \mathbb{P}^1(\mathbb{R}) = \frac{S^1}{\pm 1}$$

$$k \in {\mathbb{R}, \mathbb{C}}$$
:

$$\overline{\mathbb{P}^n(k) = (k^{n+1} \setminus \{0\})} / \sim \stackrel{(k=\mathbb{R})}{=} S^n / + 1$$

 $\mathbb{P}^2(\mathbb{R})$ ist nicht orientierbar ("Kreuzhaube").

$$\pi_1(\mathbb{P}^2(\mathbb{R})) \cong \mathbb{Z}/_{2\mathbb{Z}}$$

$$\underline{k = \mathbb{F}_q} \colon \mathbb{P}^n(\mathbb{F}_q) \text{ hat } \underbrace{\frac{q^{n+1}-1}{q-1}}_{=1+q+q^1+\cdots+q^n} \text{ Punkte.}$$

Bemerkung 2.8.1

Für $n \ge 1$ und $i = 0, \dots, n$ sei

$$U_i := \{(x_0 : \dots : x_n) \in \mathbb{P}^n(k) | x_i \neq 0\}$$

(a)
$$\mathbb{P}^n(k) = \bigcup_{i=0}^n U_i$$

$$\rho_i: \begin{array}{ccc} U_i & \longrightarrow & k^n \\ (x_0: \cdots: x_n) & \longmapsto & (\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}) \end{array}$$

ist wohldefiniert und bijektiv.

Umkehrabbildung:

$$(y_1, \ldots, y_n) \mapsto (y_1 : \cdots : y_i : 1 : y_{i+1} : \cdots : y_n)$$

(c) $\varphi_i: \mathbb{P}^n(k) \setminus U_i \longrightarrow \mathbb{P}^{n-1}(k), (x_0:\cdots:x_n) \mapsto (x_0:\cdots:x_{i-1}:x_{i+1}:\cdots:x_n)$ ist bijektiv.

Folgerung 2.8.2

 $\mathbb{P}^n(k)$ ist disjunkte Vereinigung von $\mathbb{A}^n(k)$ und $\mathbb{P}^{n-1}(k)$, oder auch von $\mathbb{A}^n(k)$, $\mathbb{A}^{n-1}(k)$, ..., $\mathbb{A}^0(k)$.

Beobachtung

- (a) Ist $f \in k[X_0, \dots, X_n]$ homogen vom Grad $d \geq 0$, so gilt für $(x_0, \dots, x_n) \in k^{n+1}$ und $\lambda \in k$ stets $f(\lambda x_0, \dots, \lambda x_n) = \lambda^d f(x_0, \dots, x_n)$.
- (b) Jedes homogene Polynom in $k[X_0,\ldots,X_n]$ hat eine wohldefinierte Nullstellenmenge in $\mathbb{P}^n(k)$.

Definition 2.8.3

Eine Teilmenge $V \subseteq \mathbb{P}^n(k)$ heißt **projektive Varietät**, wenn es eine Menge $\mathcal{F} \subset k[X_0, \dots, X_n]$ von homogenen Polynomen gibt, sodass

$$V = V(\mathcal{F}) := \{ x = (x_0 : \dots : x_n) \in \mathbb{P}^n(k) | f(x) = 0 \text{ für alle } f \in \mathcal{F} \}.$$

Beispiele 2.8.4

- (a) $H_i = V(X_i) = \mathbb{P}^n(k) \setminus U_i \stackrel{\varphi_i}{=} \mathbb{P}^{n-1}(k)$ ist eine projektive Varietät ("Hyperebene").
- (b) $V = V(X_0X_2 X_1^2) \subset \mathbb{P}^2(k)$ ist eine projektive Varietät. $V \cap U_0 = V(\frac{x_2}{x_0} - (\frac{x_1}{x_0})^2) \text{ Parabel in } \mathbb{A}^2(k)$ $V \cap U_1 = V(\frac{x_0}{x_1} \cdot \frac{x_2}{x_1} - 1) \text{ Hyperbel in } \mathbb{A}^2(k)$

Definition + Bemerkung 2.8.5

(a) $S = k[X_0, ..., X_n]$ ist **graduierter Ring** (genau: graduierte k-Algebra), das heißt:

$$S = \bigoplus_{d=0}^{\infty} S_d, \ S_d \cdot S_e \subseteq S_{d+e}$$

(hier: $S_d = \{ f \in k[X_0, \dots, X_n] \mid f \text{ homogen vom Grad } d \}, S_0 = k \}$

- (b) Ein Ideal $I \subseteq S$ heißt **homogen**, wenn I von homogenen Elementen erzeugt wird. Äquivalent: $I = \bigoplus_{d=0}^{\infty} (I \cap S_d)$
- (c) Summe, Produkt, Durchschnitt und Radikal von homogenen Idealen sind wieder homogen.

Beweis (c) Seien I_1, I_2 homogene Ideale mit homogenen Erzeugern $(f_i)_{i \in \mathcal{I}}$ beziehungsweise $(g_i)_{i\in\mathcal{J}}$, dann folgt, dass I_1+I_2 von den f_i und g_i erzeugt wird. Genauso $I_1\cdot I_2$.

$$\bigoplus_{d=0}^{\infty} ((I_1 \cap I_2) \cap S_d) = \bigoplus_{d=0}^{\infty} ((I_1 \cap S_d) \cap (I_2 \cap S_d))$$
$$= \left(\bigoplus_{d=0}^{\infty} I_1 \cap S_d\right) \cap \left(\bigoplus_{d=0}^{\infty} I_2 \cap S_d\right) = I_1 \cap I_2$$

 $\Rightarrow I_1 \cap I_2$ ist homogen.

Sei $I := I_1, x \in \sqrt{I}, x = \sum_{d=0}^n x_d, x_d \in S_d$. Zu zeigen: $x_d \in \sqrt{I}$.

Dann gibt es $m \ge 0$ mit $x^m \in I$: $x^m = x_n^m +$ Terme kleineren Grades $\Rightarrow x_n^m \in I$ da die Summe aller Monome gleichen Grades auch immer in I liegen $\Rightarrow x_n \in \sqrt{I}$. Mit Induktion folgt die Behauptung $(x - x_n = \sum_{d=0}^{n-1} x_d \in \sqrt{I} \Rightarrow x_{n-1} \in I)$

Definition + Bemerkung 2.8.6

- (a) Für $V \subseteq \mathbb{P}^n(k)$ sei I(V) das Ideal in $k[X_0, \dots, X_n]$, das von allen homogenen Polynomen f erzeugt wird, für die $f(x) = 0 \ \forall x \in V$ gilt. I(V) heißt **Verschwindungsideal** von V. I(V) ist Radikalideal.
- (b) Für eine Menge $F \subset k[X_0, \dots, X_n]$ von homogenen Polynomen sei $V(F) = \{x \in \mathbb{P}^n(k) : f(x) = 0 \ \forall f \in F\}$ die zugehörige projektive Varietät. Für ein homogenes Ideal I sei $V(I) = \{x \in \mathbb{P}^n(k) : f(x) = 0 \text{ für alle homogenen } f \in I\}$. Dann ist $V(F) = V((F)) = V(\sqrt{(F)})$ wobei (F) das von F erzeugte Ideal sei.

Beweis (a) $\sqrt{I(V)}$ ist nach 2.8.5 c) auch ein homogenes Ideal, wird also von homogenen Elementen f_i erzeugt.

$$\Rightarrow f_i^m(x) = 0 \ \forall x \in V \text{ und ein } m \ge 0 \Rightarrow f_i(x) = 0 \Rightarrow f_i \in I(V) \Rightarrow \sqrt{I(V)} = I(V)$$

Proposition 2.8.7

- (a) Die projektiven Varietäten bilden die abgeschlossenen Mengen einer Topologie. Diese heißt die **Zariski-Topologie** auf $\mathbb{P}^n(k)$.
- (b) Eine projektive Varietät V ist genau dann irreduzibel, wenn I(V) ein Primideal ist.
- (c) Jede projektive Varietät besitzt eine eindeutige Zerlegung in irreduzible Komponenten.

Beweis Wie im affinen Fall.

Definition + Bemerkung 2.8.8

- (a) Für eine nicht leere projektive Varietät $V \subseteq \mathbb{P}^n(k)$ heißt $\tilde{V} := \{x = (x_0, \dots, x_n) \mid (x_0 : \dots : x_n) \in V\} \cup \{(0, \dots, 0)\}$ der **affine Kegel** über V.
- (b) \tilde{V} ist affine Varietät. Genauer V = V(I) für ein homogenes Ideal I in $k[X_0, \ldots, X_n]$, so ist $\tilde{V} = V(I)$ als affine Varietät in $\mathbb{A}^{n+1}(k)$.
- (c) $I(\tilde{V}) = I(V)$

Beweis (b) Klar ist $(x_0 : \cdots : x_n) \in V \Leftrightarrow (x_0, \dots, x_n) \in \tilde{V} \setminus \{(0, \dots, 0)\}$. Da $V \neq \emptyset$, enthält das Ideal I, für das V = V(I) ist, kein Element aus $k \setminus \{0\}$. Für jedes homogene Element $f \in I$ ist daher $deg(f) > 0 \Rightarrow f(0, \dots, 0) = 0 \Rightarrow \tilde{V} = V(I)$.

(c) Für jedes homogene Polynom $f \in k[X_0, ..., X_n]$ gilt $f \in I(V) \Leftrightarrow f \in I(\tilde{V})$. Es genügt zu zeigen, dass $I(\tilde{V})$ ein homogenes Ideal ist.

Sei also $f \in I(\tilde{V})$ mit $f = \sum_{i=0}^{d} f_i$, f_i homogen vom Grad i. Sei $x = (x_0, \dots, x_n) \in \tilde{V}$. Dann ist $(\lambda x_0, \dots, \lambda x_n) = \lambda x \in \tilde{V} \ \forall \lambda \in k$, also $0 = f(\lambda x) = \sum_{i=0}^{d} \lambda^i f_i(x) \ \forall \lambda \in k$. Dies ist ein lineares Gleichungssystem mit |k| Zeilen. k ist aber algebraisch abgeschlossen, hat also unendlich viele Elemente $\Rightarrow f_i(x) = 0 \ \forall i \in \{0, \dots, d\} \Rightarrow f_i \in I(\tilde{V})$.

Proposition 2.8.9 (Projektiver Nullstellensatz)

Sei k algebraisch abgeschlossen, $n \geq 0$. Für jedes von (X_0, \ldots, X_n) verschiedene Radikalideal $I \subseteq k[X_0, \ldots, X_n]$ gilt $I(\underbrace{V(I)}_{\subset \mathbb{P}^n(k)}) = \sqrt{I}$.

Beweis Für gegebenes Radikalideal I sei $V \subseteq \mathbb{P}^n(k)$ die zugehörige projektive Varietät. Ist $I = k[X_0, \dots, X_n]$, so ist $V(I) = \emptyset$ und $I(V(I)) = k[X_0, \dots, X_n] = \sqrt{k[X_0, \dots, X_n]}$. Ist $I \subseteq k[X_0, \dots, X_n]$ homogen, so ist mit der Voraussetzng $I \neq (X_0, \dots, X_n)$ $I \subseteq (X_0, \dots, X_n)$, und so ist die affine Nullstellenmenge von I in $\mathbb{A}^n(k)$ echte Obermenge von $\{(0,\ldots,0)\}$, enthält also einen Punkt $(x_0,\ldots,x_n)\neq (0,\ldots,0)$. Dann ist $(x_0:\cdots:x_n)\in V$, also $V\neq\emptyset$. Nach 2.8.8 b) ist \tilde{V} auch die durch I bestimmte affine Varietät in $\mathbb{A}^{n+1}(k)$. Nach 2.8.8 c) ist $I(\tilde{V})=I(V)$. Nach Satz 3 (Hilbertscher Nullstellensatz) ist $I(\tilde{V})=\sqrt{I}$.

Definition + Bemerkung 2.8.10

Sei $V \subseteq \mathbb{P}^n(k)$ projektive Varietät mit homogenem Verschwindungsideal I(V). Dann heißt $k[V] := k[X_0, \dots, X_n]/I(V)$ der **homogene Koordinatenring** von V. k[V] ist graduierte k-Algebra. Dabei ist $k[V]_d := k[X_0, \dots, X_n]_d/(I(V) \cap k[X_0, \dots, X_n]_d)$.

§9 Affine und projektive Varietäten

Es ist
$$U_i = \{(x_0 : \dots : x_n) \in \mathbb{P}^n(k) : x_i \neq 0\} = \mathbb{P}^n(k) \setminus V(X_i)$$
 offen.
 $\rho_i : U_i \to \mathbb{A}^n(k) \ (x_0 : \dots : x_n) \mapsto (\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i})$ ist bijektiv.

Proposition 2.9.1

Die Bijektionen $\rho_i: U_i \to \mathbb{A}^n(k), i = 0, \dots, n$ sind Homöomorphismen bzgl. der jeweiligen Zariski-Topologie.

Beweis OE i=0, $\rho:=\rho_0$

(i) ρ ist stetig: Genügt zu zeigen: Für jedes $f \in k[X_1, \ldots, X_n]$ ist $\rho^{-1}(D(f))$ offen in U_0 . Äquivalent dazu: $\rho^{-1}(V(f))$ ist abgeschlossen in U_0 . Dies folgt aus:

Bemerkung + Definition 2.9.2

Für $f \in k[X_1, ..., X_n]$ ist $\rho^{-1}(V(f)) = U_0 \cap V(F)$.

Dabei sei $f = \sum_{i=0}^{d} f_i$, f_i homogen vom Grad i, $f_d \neq 0$ und $F := \sum_{i=0}^{d} f_i \cdot X_0^{d-i} \in k[X_0, \dots, X_n]$. F ist homogen vom Grad d und heißt die **Homogenisierung** von f.

Beweis
$$x = (x_1, \dots, x_n) \in V(f) \Leftrightarrow f(x_1, \dots, x_n) = 0 \Leftrightarrow \sum_{i=0}^d f_i(x_1, \dots, x_n) = 0 \Leftrightarrow F(1:x_1:\dots:x_n) = 0 \Leftrightarrow \rho^{-1}(x) \in V(F).$$

Damit ist gezeigt, dass ρ stetig ist.

(ii) ρ^{-1} ist stetig: Wie in (i) genügt zu zeigen: Für jedes homogene $F \in k[X_0, \ldots, X_n]$ ist $\rho(V(F) \cap U_0)$ abgeschlossen in $\mathbb{A}^n(k)$.

Beachte: Die $D(F), F \in k[X_0, ..., X_n]$ homogen bilden eine Basis der Zariski-Topologie auf $\mathbb{P}^n(k)$ (Bew. wie in Bemerkung 1.2.7 (ii)).

Bemerkung + Definition 2.9.3

 $\rho(V(F)\cap U_0)=V(f)$, wobei mit $y_i:=\frac{x_i}{x_0}, i=1,\ldots,n,\ f\in k[Y_1,\ldots,Y_n]$ definiert sei durch $f(Y_1,\ldots,Y_n)=F(1,\frac{x_1}{x_0},\ldots,\frac{x_n}{x_0})$.

f heißt **Dehomogenisierung** von F bzgl. x_0 .

Beweis
$$x = (x_0 : \dots : x_n) \in V(F) \cap U_0 \Leftrightarrow x_0 \neq 0 \text{ und } F(x) = 0 \Leftrightarrow F(1, \frac{x_1}{x_0}, \dots, \frac{x_n}{x_0}) = 0 \Leftrightarrow f(\rho(x)) = 0 \Leftrightarrow \rho(x) \in V(f)$$

Beispiele 2.9.4

 $F(X_0, X_1, X_2) = X_1^2 - X_0 X_2, \quad f_{X_0}(Y_1, Y_2) = F(1, \frac{x_1}{x_0}, \frac{x_2}{x_0}) = Y_1^2 - Y_2, \quad f_{X_1}(Y_0, Y_2) = 1 - Y_0 Y_2$ Frage: Wie sieht F aus, wenn $V(F) \cap U_0 = \emptyset$?

Antwort: z.B. $F = X_0^d, \sqrt{(F)} = (X_0)$.

Bemerkung 2.9.5

- (a) Sei $f \in k[X_1, ..., X_n]$, $F \in k[X_0, ..., X_n]$ die Homogenisierung. Dann gilt für die Dehomogenisierung \tilde{f} von F bzgl. X_0 : $\tilde{f} = f$.
- (b) Sei $F \in k[X_0, ..., X_n]$ homogen, $f \in k[Y_1, ..., Y_n]$ die Dehomogenisierung bzgl. X_0 , \tilde{F} die Homogenisierung von f. Dann gilt: $F = \tilde{F} \cdot X_0^d$ für ein $d \ge 0$.

Beweis (a) Sei $f = \sum_{i=0}^{d} f_i$, $f_d \neq 0 \Rightarrow F = \sum_{i=0}^{d} f_i X_0^{d-i} \Rightarrow \tilde{f} = \sum_{i=0}^{d} f_i \cdot 1 = f$.

(b) Schreibe $F = X_0^d \cdot \tilde{F}$ mit $X_0 \nmid \tilde{F}$. Dann hat die Dehomogenisierung von \tilde{F} bzgl. X_0 denselben Grad wie $\tilde{F} \Rightarrow$ ihre Homogenisierung ist \tilde{F} .

Definition + Bemerkung 2.9.6

Eine Teilmenge $W \subseteq \mathbb{P}^n(k)$ heißt *quasiprojektive Varietät*, wenn eine der folgenden Bedingungen erfüllt ist:

- (i) W ist offen in einer projektiven Varietät.
- (ii) Es gibt eine offene Teilmenge $U \subset \mathbb{P}^n(k)$ und eine abgeschlossene Teilmenge $V \subset \mathbb{P}^n(k)$, so dass $W = U \cap V$.

Beispiele 2.9.7

 $\mathbb{P}^2 \setminus \{(0:0:1)\}$ ist quasiprojektiv, aber weder projektiv noch affin (was zu zeigen wäre).

Proposition 2.9.8

Betrachte $\mathbb{A}^n(k)$ über $\rho_0: U_0 \xrightarrow{\sim} \mathbb{A}^n(k)$ als Teilmenge von $\mathbb{P}^n(k)$. Für ein Radikalideal $I \subseteq k[X_1, \ldots, X_n]$ sei $I^* \subseteq k[X_0, \ldots, X_n]$ das von den Homogenisierungen aller $f \in I$ erzeugte Ideal. Dann ist $V_p(I^*) \subseteq \mathbb{P}^n(k)$ der Zariski-Abschluss von $V_a(I) \subseteq \mathbb{A}^n(k)$.

Beweis (i) " $V_a(I) \subseteq V_p(I^*)$ ": Sei $x = (x_1, \dots, x_n) \in V_a(I)$ und sei $f \in I$, $F \in I^*$ die Homogenisierung von f.

Dann ist $F(\rho_0^{-1}(x)) = F(1:x_1:\dots:x_n) = f(x_1,\dots,x_n) = 0$, weil $f \in I = I(V(I))$.

(ii) Sei $V \in \mathbb{P}^n(k)$ abgeschlossen, mit $V_a(I) \subseteq V$.

Zu zeigen: $V(I^*) \subseteq V$.

Sei dazu $V=V(\mathcal{J})$ für ein homogenes Ideal $\mathcal{J}.$ Zu zeigen also: $\mathcal{J}\subseteq I^*.$

Sei $F \in \mathcal{J}$ homogen, $f = F(1, \frac{x_1}{x_0}, \dots, \frac{x_n}{x_0})$ die Dehomogenisierung von F bzgl. x_0 .

Sei $y = (y_1, \ldots, y_n) \in V_a(I)$.

Dann ist $f(y) = F(1, y_1, \dots, y_n) = 0$, weil $\rho_0^{-1}(y) \in V(\mathcal{J})$. Somit folgt $f \in I$.

Sei \tilde{F} die Homogenisierung von f, also $\tilde{F} \in I^*$, dann folgt mit 2.9.5: $F = \tilde{F} \cdot X_0^d$ für ein $d \geq 0 \Rightarrow F \in I^*$.

Bemerkung 2.9.9

Sei W eine quasiprojektive Varietät in $\mathbb{P}^n(k)$.

- (a) Die Zariski-Topologie auf W besitzt eine Basis aus affinen Varietäten.
- (b) W ist quasikompakt (d.h. jede offene Überdeckung von W besitzt eine endliche Teilüberdeckung)

Beweis (a) Sei $W = \bigcup_{i=0}^n (W \cap U_i)$ mit $U_i = \{(x_0 : \cdots : x_n) \in \mathbb{P}^n(k) : x_i \neq 0\} \cong \mathbb{A}^n(k)$.

Also Œ $W \subseteq \mathbb{A}^n(k)$, W ist offen in einer affinen Varietät, nämlich dem Zariski-Abschluss V_i von $W \cap U_i$ in U_i . Nach 1.2.7(ii) bilden die D(f), $f \in k[V_i]$ eine Basis der Zariski-Topologie auf $W \cap U_i$. Jedes D(f) ist aber isomorph zu einer affinen Varietät mittels

$$\rho: \begin{array}{ccc} D(f) & \longrightarrow & \mathbb{A}^{n+1}(k) \\ (x_1, ..., x_n) & \longmapsto & (x_1, ..., x_n, \frac{1}{f(x_1, ..., x_n)}) \end{array}$$

für $f \in k[X_1, ..., X_n]$. Bild von ρ ist V(Yf - 1).

(b) Sei $(O_j)_{j\in J}$ offene Überdeckung von W. Nach dem Beweis von (a) wird jedes O_j überdeckt von offenen Teilen der Form D(f) für geeignete $f \in k[\overline{O_j \cap U_i}]$.

Also Œ $O_j = D(f_j)$ für ein $f_j \in k[X_0, \dots, \hat{X}_i, \dots, X_n]$ (im Folgenden bedeutet \hat{X}_i : "die *i*-te Variable streichen").

Sei $F_i \in k[X_0, \ldots, X_n]$ die Homogenisierung von f_i . Dann ist

$$W \subseteq \bigcup_{j \in J} D(F_j) = \mathbb{P}^n(k) - \bigcap_{j \in J} V(F_j) = \mathbb{P}^n(k) - V(\underbrace{\sum_{j \in J} (F_j)}_{=:I})$$

I ist endlich erzeugtes Ideal, z.B. von $F_1, \ldots, F_r \Rightarrow W \subseteq \bigcup_{j=1}^r D(F_j) \Rightarrow W \subseteq \bigcup_{j=1}^r D(f_j)$

§10 Reguläre Funktionen

Definition 2.10.1

Sei $W \subseteq \mathbb{P}^n(k)$ eine quasiprojektive Varietät. Eine Abbildung $f: W \to k$ heißt **reguläre Funktion** auf W, wenn $f|_{W \cap U_i}$ reguläre Funktion ist für $i = 0, \ldots, n$.

Bemerkung 2.10.2

Sind $G, H \in k[X_0, ..., X_n]$ homogen vom gleichen Grad, so ist $\frac{G(x)}{H(x)}$ wohlbestimmte Funktion auf $\mathbb{P}^n(k) \setminus V(H)$.

Bemerkung 2.10.3

Sei $V \subseteq \mathbb{P}^n(k)$ quasiprojektive Varietät. Dann gilt:

 $f: V \to k$ ist regulär genau dann, wenn für alle $p \in V$ eine Umgebung U_p von p existiert, sowie homogene Polynome G_p, H_p vom gleichen Grad, so dass $f(x) = \frac{G_p(x)}{H_p(x)}$ für alle $x \in U_p$.

Beweis " \Rightarrow " Sei $p \in U_i$, $g_p, h_p \in k[V_i]$ $(V_i = \overline{V \cap U_i})$ wie in 1.6.2 (d.h. es gibt ein $U_p \subseteq U$, $g_p, h_p \in k[V_i]$, $h_p(x) \neq 0 \ \forall x \in U_p$: $f(x) = \frac{g_p(x)}{h_p(x)}$).

Seien \tilde{g}_p , \tilde{h}_p Repräsentanten von g_p bzw. h_p in $k[X_0,...,\hat{X}_i,...,X_n]$ und G_p,H_p Homogenisierungen.

Ist $deg(G_p) \neq deg(H_p)$, so ersetze G_p durch $G_p \cdot X_i^{deg(H_p) - deg(G_p)}$ (falls $deg(H_p) > deg(G_p)$). $\forall x \in U_p$ ist dann

$$f(x) = \frac{g_p(x)}{h_p(x)} = \frac{G_p(x_0 : \dots : x_{i-1} : 1 : x_{i+1} : \dots : x_n)}{H_p(x_0 : \dots : x_{i-1} : 1 : x_{i+1} : \dots : x_n)}$$

"⇐" Dehomogenisieren ...

Bemerkung 2.10.4

Sei $V \subseteq \mathbb{P}^n(k)$ eine quasiprojektive Varietät. Für jede offene Teilmenge U von V sei $\mathcal{O}(U) = \mathcal{O}_V(U) = \{f : U \to k \mid f \text{ regulär}\}.$

- (a) $\mathcal{O}(U)$ ist k-Algebra.
- (b) \mathcal{O}_V ist eine Garbe von k-Algebren auf V.

Lemma 1

Sei $V \subseteq \mathbb{P}^n(k)$ eine projektive Varietät, $f \in k[V]$ homogen, $l \in \mathcal{O}_V(D(f))$. Dann besitzt D(f) eine offene Überdeckung $(U_i)_{i \in J}$ mit $U_i = D(h_i)$ für homogene $h_i \in k[V]$, so dass

$$l(x) = \frac{g_i(x)}{h_i(x)} \quad \forall x \in U_i$$

 $g_i \in k[V]$ ebenfalls homogen mit $deg(g_i) = deg(h_i)$

Beweis Eine offene Überdeckung $(U'_i)_{i \in J'}$ mit $l(x) = \frac{G_i(x)}{H_i(x)} \, \forall x \in U'_i, \ G_i, H_i$ vom gleichen Grad, existiert nach Bem 10.3. Seien g'_i und h'_i deren Restklassen in k[V]. (Beachte: $D(h'_i)$ kann größer als U'_i sein)

Nach dem Beweis von 9.9 a) wird U_i' überdeckt von offenen Mengen der Form $D(\tilde{h_i}')$ für homogene $\tilde{h_i'} \in k[V]$ (da die $D(\tilde{h_i'})$ eine Basis der Zariski-Topologie bilden), also

$$D(\tilde{h}'_i) \subseteq U'_i \subseteq D(h'_i)$$

$$\Rightarrow V(h'_i) \subseteq V(\tilde{h}'_i), \text{ also } \tilde{h}'_i \in \sqrt{(h'_i)} \quad (HNS)$$

$$\Rightarrow (\tilde{h}'_i)^m = ah'_i \text{ für ein } a \in k[V] \text{ und ein } m \ge 0$$

$$\Rightarrow \text{Auf } D(\tilde{h}'_i) \text{ ist } l = \frac{g'_i}{h'_i} = \frac{g'_i a}{(\tilde{h}'_i)^m}$$

Da $D(\tilde{h'_i}) = D((\tilde{h'_i})^m)$, ist mit $h_i := (\tilde{h'_i})^m$ die Behauptung erfüllt.

Satz 5

Sei $V \subseteq \mathbb{P}^n(k)$ eine projektive Varietät.

- (a) Ist V zusammenhängend, so ist $\mathcal{O}(V) \cong k$.
- (b) Sei k[V] der homogene Koordinatenring von $V, f \in k[V]$ homogen. Dann ist $\mathcal{O}_V(D(f)) \cong k[V]_{(f)} := \{\frac{g}{f^r} : g \in k[V] \text{ homogen, } deg(g) = r \cdot deg(f)\} \not$ ("homogene Lokalisierung" von k[V] nach den Potenzen von f).

Beweis (b) $k[V]_{(f)}$ ist k-Algebra $\sqrt{}$

Sonderfälle: f = 0

$$\deg(f) = 0$$
: $D(f) = V \stackrel{a)}{\Rightarrow} \mathcal{O}(D(f)) \cong k$

 $k[V]_{(f)} = \{ \frac{g}{f^r} : \deg(g) = 0 \} \cong k.$

Sei also $\deg(f) \geq 1$:

Sei $\alpha: k[V]_{(f)} \to \mathcal{O}(D(f)), \frac{g}{f^r} \mapsto \frac{G}{F^r} (G, F \in k[X_0, ..., X_n] \text{ Repräsentanten})$ ist wohldefinierter, injektiver k-Algebra-Homomorphismus (Kern ist 0).

<u>surjektiv</u>: Sei $l \in \mathcal{O}(D(f))$

Nach dem Lemma gibt es eine offene Überdeckung $(U_i)_{i\in J}$ von D(f) und $g_i, h_i \in k[V]$ homogen vom gleichen Grad mit

$$l(x) = \frac{g_i}{h_i}(x)$$
 für alle $x \in U_i$

und $U_i = D(h_i) \ \forall i \in J$

<u>Beh.</u>: Œ $g_i h_j = g_j h_i$ in k[V] für alle i, j.

<u>Denn</u>: Auf $U_i \cap U_j$ gilt $\frac{g_i}{h_i} = \frac{g_j}{h_j}$, deshalb ist $g_i h_j = g_j h_i$ Nach dem Lemma ist $V \setminus (U_i \cap U_j) = V(h_i) \cup V(h_j) \Rightarrow h_i h_j (g_i h_j - g_j h_i) = 0$ auf ganz V. Setze $\tilde{g}_i = g_i h_i$, $\tilde{h}_i = h_i^2 \Rightarrow \frac{\tilde{g}_i}{\tilde{h}_i} = \frac{g_i}{h_i} = l$ auf U_i und $\tilde{g}_i \tilde{h}_j - \tilde{g}_j h_i = 0$ auf V $\Rightarrow \tilde{g_i}\tilde{h_i} = \tilde{g_i}\tilde{h_i} \text{ in } k[V].$

Nach Bem 9.9 und dem Lemma überdecken endlich viele der $D(h_i)$ ganz D(f), also Œ

$$\begin{split} D(f) &= \bigcup_{i=1}^r D(h_i) \\ \Rightarrow &V(f) = \bigcap_{i=1}^r V(h_i) = V(h_1, ..., h_r) \\ \Rightarrow &f \in I(V(h_1, ..., h_r)) \overset{HNS}{=} \sqrt{(h_1, ..., h_r)} \\ \Rightarrow &f^m = \sum_{i=1}^r a_i h_i \text{ für geeignetes } m \geq 0, a_i \in k[V] \text{ homogen.} \end{split}$$

Setze $g := \sum_{i=1}^{r} a_i g_i$. Dann ist g homogen und $\deg(g) = \deg(f)$. Für j = 1, ..., r gilt

$$f^{m}g_{j} = \sum_{i=1}^{r} (a_{i}h_{i})g_{j} \stackrel{Beh.}{=} \sum_{i=1}^{r} a_{i}g_{i}h_{j} = gh_{j}$$

 \Rightarrow auf U_j ist $\frac{g}{f^m} = \frac{g_j}{h_j} = l$

V irreduzibel (Die Konstante auf jeder Komponente muss auf den Durchschnitten gleich sein)

Sei $V_i := V \cap U_i$ (wobei $U_i = D(X_i) = \{(x_0 : \dots : x_n) \in \mathbb{P}^n(k) : x_i \neq 0\}$). Œ $V_i \neq \emptyset$

Sei $f \in \mathcal{O}(V)$. Dann ist $f|_{V_i} \in \mathcal{O}(V_i) \stackrel{b)}{=} k[V]_{(X_i)}$ (i = 0, ..., n).

(Beachte: Beim Beweis des (b)-Teils wurde der (a)-Teil nur für den Fall, dass deg f=0 ist, verwendet. Hier ist aber $f = X_i$, also deg f = 1).

Da V irreduzibel ist, folgt mit 2.8.7 b), dass k[V] nullteilerfrei ist.

Sei also $L := \operatorname{Quot}(k[V])$. Insbes. $f_i := f \mid_{V_i} \in L$.

Schreibe $f_i = \frac{g_i}{X_i^{d_i}}$ für ein homogenes $g_i \in k[V]$ vom Grad d_i .

 $f_i = f_j$ auf $U_i \cap U_j \Rightarrow f_i = f_j = f$ in L.

Beh. 1: f ist ganz über k[V].

Dann ist
$$f^m + \sum_{j=1}^{m-1} a_j f^j = 0$$
 für geeignetes $m \ge 0$, $a_j \in k[V]$.

Multipliziere mit $X_i^{d_i m} \Rightarrow \underbrace{g_i^m}_{\text{deg}=d_i m} + \sum_{j=1}^{m-1} a_j \underbrace{g_i^j \cdot X^{d_i (m-j)}}_{\text{deg}=d_i m} = 0$

 \Rightarrow Œ a_j homogen vom Grad $0 \Rightarrow a_j \in k$ und damit auch $f \in k$.

Beweis von Beh. 1:

Genügt (Alg II): k[V][f] ist in einem endlich erzeugten k[V]-Modul enthalten.

<u>Beh. 2</u>: $k[V][f] \subseteq \frac{1}{X_0^a} k[V]$, wobei $d = \sum_{i=0}^n d_i$

Beweis von Beh. 2: Zu zeigen: $X_0^d \cdot f^j \in k[V]$ für jedes $j \geq 0$. Dies folgt aus

Beh. 3: $k[V]_d \cdot f^j \subseteq k[V]_d$ für alle $j \ge 0$.

Beweis von Beh. 3:

 $k[V]_d$ wird erzeugt von den Restklassen der Monome $X_0^{j_0} \cdot \ldots \cdot X_n^{j_n}$ mit $\sum_{i=0}^n j_i = d$ (und $j_i \geq 0$) $\Rightarrow \exists i \text{ mit } d_i \leq j_i$

$$\Rightarrow X_0^{j_0} \cdot \dots \cdot X_n^{j_n} \cdot f = X_0^{j_0} \cdot \dots \cdot X_i^{j_i - d_i} \cdot \dots \cdot X_n^{j_n} \cdot g_i \in k[V]_d$$

§11 Morphismen

Definition + Bemerkung 2.11.1

Seien $V \subseteq \mathbb{P}^n(k)$ und $W \subseteq \mathbb{P}^m(k)$ quasiprojektive Varietäten.

- (a) Eine Abbildung $f: V \longrightarrow W$ heißt **Morphismus** wenn es zu jedem $x \in V$ eine Umgebung U_x und homogene Polynome $f_0^{(x)}, \ldots, f_m^{(x)} \in k[X_o, \ldots, X_n]$, alle vom gleichen Grad, sodass $f(y) = \left(f_0^{(x)}(y) : \cdots : f_m^{(x)}(y)\right)$ für jedes $y \in U_x$.
- (b) Die Morphismen $V \longrightarrow \mathbb{A}^1(k)$ entsprechen bijektiv den regulären Funktionen auf V.
- (c) Morphismen sind stetig.
- (d) Die quasiprojektiven Varietäten über k bilden mit den Morphismen aus a.) eine Kategorie $Var^{\circ}(k)$.

Beweis (a) -

- (b) Sei $f: V \longrightarrow \mathbb{A}^1(k)$ ein Morphismus. Sei $x \in V, U_x, f_0^{(x)}, f_1^{(x)}$ wie in a.), das heißt: $f(y) = \left(f_0^{(x)}: f_1^{(x)}\right)$ für alle $y \in U_x$ (wobei $\mathbb{A}^1(k)$ mit U_0 identifiziert sei). Dann ist $\frac{f_1^{(x)}(y)}{f_0^{(x)}(y)} \in k$ für alle $y \in U_x$. $\Rightarrow f \in \mathcal{O}(V)$. Die Umkehrung folgt aus Bemerkung 2.10.3.
- (c) Wie für affine Varietäten, siehe 1.5.3.

Beispiele

1.) Die Abbildung $(x_0 : x_1 : x_2) \mapsto (x_0 : x_1)$ ist ein Morphismus $\mathbb{P}^2(k) \setminus \{(0 : 0 : 1)\} \longrightarrow \mathbb{P}^1(k)$, der sich nicht stetig auf ganz $\mathbb{P}^2(k)$ fortsetzen lässt.

Für
$$(\lambda : \lambda : \mu), \lambda \neq 0$$
, ist $f(\lambda : \lambda : \mu) = (1 : 1)$
aber für $(\lambda : -\lambda : \mu), \lambda \neq 0$, ist $f(\lambda : -\lambda : \mu) = (1 : -1)$

 $\{(1:1)\}$ und $\{(1:-1)\}$ sind abgeschlossen, also müssen ihre Urbilder auch abgeschlossen sein. Der Abschluss von $\{(x_0:x_1:x_2)\subseteq \mathbb{P}^2(k):x_0=x_1\}$ ist aber in $V(X_0-X_1)$ enthalten, denn $V(X_0-X_1)$ ist irreduzibel und es gilt:

$$V(X_0 - X_1) = \{(x_0 : x_1 : x_2) \subseteq \mathbb{P}^2(k) : x_0 = x_1\}$$

= \{(0 : 0 : 1)\} \cup \{(\lambda : \lambda : \mu) \in \mathbb{P}^2(k) : \lambda \in k^\times, \mu \in k\}

Das Urbild von $\{1,1\}$ ist $V(X_0-X_1)\setminus\{(0:0:1)\}$, also nicht abgeschlossen.

2.) Sei $E := V(X_0X_2^2 - X_1^3 + X_1X_0^2)$ (elliptische Kurve $y^2 = x^3 - x$).

$$f: \begin{array}{ccc} E \setminus \{(0:0:1)\} & \longrightarrow & \mathbb{P}^1(k) \\ (x_0:x_1:x_2) & \longmapsto & (x_0:x_1) \end{array}$$

lässt sich zu einem Morphismus $E \longrightarrow \mathbb{P}^1(k)$ fortsetzen.

Sei $(x_0: x_1: x_2) \in E \setminus \{(0:0:1), (1:0:0)\}$ mit $x_2^2 + x_1 x_0 \neq 0$ Dann ist auch $x_1 \neq 0$ und somit

$$f(x_0: x_1: x_2) = (x_0: x_1) \stackrel{x_2^2 + x_1 x_0 \neq 0}{=} (x_0(x_2^2 + x_1 x_0) : x_1(x_2^2 + x_1 x_0))$$
$$= (x_1^3: x_1(x_2^2 + x_1 x_0)) \stackrel{x_1 \neq 0}{=} (x_1^2: x_2^2 + x_1 x_0)$$

Seien

$$U = E \setminus \{(0:0:1)\}$$

$$U' = E \setminus \{(1:0:0)\}$$

 $\Rightarrow E = U \cup U'$.

$$f: U \longrightarrow \mathbb{P}^1$$
, $(x_0: x_1: x_2) \mapsto (x_0: x_1)$ ist ein Morphismus.
 $f': U' \longrightarrow \mathbb{P}^1$, $(x_0: x_1: x_2) \mapsto (x_1^2: x_2^2 + x_1 x_0)$ ist ein Morphismus.

Auf $U \cap U'$ gilt f(y) = f'(y).

Folgerung 2.11.2

Eine Abbildung $f: V \longrightarrow W$ von quasiprojektiven Varietäten ist genau dann ein Morphismus, wenn f stetig ist und für jedes offene $U \subseteq W$ und jedes $g \in \mathcal{O}_W(U)$ gilt:

$$g \circ f \in \mathcal{O}_V(f^{-1}(U))$$

Beweis Folgt aus 2.11.1 b). Alternativ: Beweis von Proposition 1.6.6 anpassen.

" \Rightarrow " f ist ein Morphismus $\Rightarrow f$ ist stetig. Mit 2.11.1.b) folgt: $g: U \to k$ ist ein Morphismus $(U \subseteq W) \Rightarrow g \circ f$ ist als Komposition von Morphismen auch ein Morphismus, also folgt mit 2.11.1.b), dass $g \circ f \in \mathcal{O}_V(f^{-1}(U))$

" \Leftarrow " Angenommen, f ist kein Morphismus.

Sei $f = (f_1, ..., f_m)$. Dann existiert ein f_i , dass sich auf U_x nicht als Polynom darstellen lässt.

Sei g_i die Projektion auf diese Komponente.

Dann ist $g \circ f = f_i$ kein Morphismus, also $g \circ f \notin \mathcal{O}_V(f^{-1}(U))$

Folgerung 2.11.3

Sind V, W affine Varietäten, so ist eine Abbildung $f: V \longrightarrow W$ genau dann ein Morphismus von affinen Varietäten, wenn sie ein Morphismus im Sinne von Definition 2.11.1 a) ist.

Eleganter: Die Homöomorphismen $\mathbb{A}^n(k) \xrightarrow{\sim} U_0 \subseteq \mathbb{P}^n(k) \ (n \geq 0)$ induzieren einen volltreuen Funktor $Aff(k) \longrightarrow Var^{\circ}(k)$.

Proposition 2.11.4

Für jedes $n \geq 1$ ist $Aut(\mathbb{P}^n(k)) \simeq \operatorname{PGL}_{n+1}(k) = \operatorname{GL}_{n+1}(k)/\{\lambda \cdot I_{n+1} : \lambda \in k^{\times}\}$

Beweis Für $A \in GL_{n+1}(k)$ sei

$$\sigma_A : \mathbb{P}^n(k) \to \mathbb{P}^n(k)$$
 die Abbildung $\sigma_A(x_0 : \dots : x_n) = (y_0 : \dots : y_n)$ mit $A \cdot \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_0 \\ \vdots \\ y_n \end{pmatrix}$.

 σ_A ist wohldefiniert, da $A(\lambda x) = \lambda Ax$.

 σ_A ist Morphismus, denn y_i ist lineares Polynom in den x_i

 σ_A ist Automorphismus, da $\sigma_A \circ \sigma_{A^{-1}} = id$

Es ist $\sigma_A \circ \sigma_B = \sigma_{A \cdot B} \Rightarrow \sigma : \operatorname{GL}_{n+1}(k) \to \operatorname{Aut}(\mathbb{P}^n(k)), A \mapsto \sigma_A$ ist Gruppenhomomorphismus. Noch zu zeigen:

- 1. $\{\lambda \cdot I_{n+1} : \lambda \in k^{\times}\} = \ker \sigma$
- 2. σ ist surjektiv.

Beweis von 1:

"⊆": klar.

" \supseteq ": Sei $\sigma_A = id$. Dann gibt es für $i = 0, \ldots, n$ ein $\lambda_i \in k^{\times}$ mit

$$A \cdot \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ \lambda_i \\ \vdots \\ 0 \end{pmatrix} \leftarrow i$$

$$\Rightarrow A = \begin{pmatrix} \lambda_0 \\ \vdots \\ \lambda_n \end{pmatrix}$$

$$\Rightarrow A \cdot \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} \lambda_0 \\ \vdots \\ \lambda_n \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} \lambda \\ \vdots \\ \lambda \end{pmatrix} \text{ für ein } \lambda \in k^{\times}$$

$$\Rightarrow \lambda_0 = \dots = \lambda_n = \lambda$$

Bemerkung 2.11.5

Sei $f: \mathbb{P}^n(k) \to \mathbb{P}^m(k)$ ein Morphismus, dann gibt es homogene Polynome $f_0, \ldots, f_m \in$ $k[X_0,\ldots,X_n]$, so dass $f(x)=(f_0(x):\cdots:f_m(x))$ für alle $x\in\mathbb{P}^n(k)$.

Beweis Übungsblatt 8, Aufgabe 3

Beweis (von Beh. 2) Sei $f: \mathbb{P}^n(k) \to \mathbb{P}^n(k)$ Automorphismus, dann gibt es also nach 2.11.5 homogene Polynome $f_0, \ldots, f_n \in k[X_0, \ldots, X_n]$ vom gleichen Grad d mit $f(x) = (f_0(x) : \cdots : f_n(x) : \cdots$ $f_n(x)$). Genauso gibt es homogene Polynome $g_0, \ldots, g_n \in k[X_0, \ldots, X_n]$ vom gleichen Grad e mit $f^{-1}(x) = (g_0(x) : \cdots : g_n(x)).$

Es ist $(f_0(f^{-1}(x)):\cdots:f_n(f^{-1}(x)))=(x_0:\cdots:x_n)$ für jedes $x\in\mathbb{P}^n(k)$.

 $\Rightarrow f_i \circ f^{-1} = X_i \cdot h$ für ein homogenes Polynom h vom Grad $d \cdot e - 1$. h kann keine Nullstelle haben, denn $f_i \circ f^{-1}$ ist auf ganz $\mathbb{P}^n(k)$ definiert.

$$\Rightarrow h \in k^{\times} \Rightarrow d \cdot e = 1 \Rightarrow d = 1 \text{ und } e = 1$$

$$\Rightarrow f_i = \sum_{j=0}^m a_{ij} X_j$$
 für geeignete $a_{ij} \in k$.

$$\Rightarrow f = \sigma_A \text{ mit } A = (a_{ij}).$$

Beispiele
Seien
$$n = 1, A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(k), x = (x_0 : x_1) \in \mathbb{P}^1(k)$$

Dann ist $\sigma_A(x) = (ax_0 + bx_1 : cx_0 + dx_1)$

In U_1 ist also

$$\sigma_A(x) = \frac{ax_0 + bx_1}{cx_0 + dx_1} = \frac{a\frac{x_0}{x_1} + b}{c\frac{x_0}{x_1} + d}$$

Erinnerung / Definition + Bemerkung 2.11.6

Sei $V \subset \mathbb{P}^n(k)$ quasiprojektive Varietät.

(a) Eine **rationale Funktion** auf V ist eine Äquivalenzklasse von Paaren (U, f), wo $U \subset V$ offen und dicht und $f \in \mathcal{O}_V(U)$ mit der Äquivalenzrelation (U, f) $(U', f') :\Leftrightarrow f|_{U \cap U'} =$ $f'|_{U\cap U'}$.

- (b) Ist V irreduzibel, so bilden die rationalen Funktionen auf V einen Körper k(V), den **Funktionenkörper** von V.
- (c) Ist V irreduzibel, so ist $k(V) \simeq Quot(k[U])$ für jede dichte, affine und offene Teilmenge $U \subset V$.
- (d) Ist W eine weitere quasi-projektive Varietät, so ist eine $rationale\ Abbildung\ f:V \dashrightarrow W$ eine Äquivalenzklasse von Paaren (U,f_U) , wo $U\subset V$ offen, dicht und $f_U:U\to W$ Morphismus und $(U,f_U)\sim (U',f'_U):\Leftrightarrow f_U|_{U\cap U'}=f_{U'}|_{U\cap U'}.$
- (e) Erinnerung: Eine rationale Abbildung $f: V \dashrightarrow W$ heißt **dominant**, wenn $f_U(U)$ dicht in W ist, für einen (jeden) Repräsentanten (U, f_U) von f.
- (f) Die Zuordnung $V \mapsto k(V)$ ist eine kontravariante Äquivalenz von Kategorien

$$\left\{ \begin{array}{ll} & \text{irred. quasi-proj. Variet"aten} \\ + & \text{dom. rationale Abb.} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{ll} & \text{endl. erzeugte K\"orpererweiterungen } K/k \\ + & k\text{-Algebra-hom.} \end{array} \right\}$$

§12 Graßmann-Varietäten

Sei k ein algebraisch abgeschlossener Körper, $1 \le d \le n$ natürliche Zahlen.

Definition + Bemerkung 2.12.1

Sei V ein n-dimensionaler k-Vektorraum.

- (a) $G(d,n)(V) := \{U \subseteq V : U \text{ ist Untervektorraum von } V, \dim(U) = d\}$
- (b) $G(d, n) := G(d, n)(k^n)$
- (c) Es gibt eine Bijektion $G(d, n)(V) \to G(d, n)$.

Beispiele

$$d = 1$$
: $G(1, n) = \mathbb{P}^{n-1}(k)$

Bemerkung 2.12.2

Es gibt "natürliche" Bijektionen

$$G(d,n) \to G(n-d,n)$$

für alle $1 \le d \le n - 1$.

Beweis Sei V^* der Dualraum zu V. Dann ist die Bijektion gegeben durch

$$G(d, n)(V) \to G(n - d, n)(V^*)$$

$$U \mapsto \{l \in V^* : U \subseteq \text{Kern}(l)\}$$

$$\bigcap_{l \in U^*} \text{Kern}(l) \leftrightarrow U^*$$

Bemerkung + Definition 2.12.3

Sei
$$\mathcal{F}_n(k) = \{((x_1 : ... : x_n), (y_1, ..., y_n)) \in \mathbb{P}^{n-1}(k) \times k^n :$$

$$(y_1:...:y_n)=(x_1:...:x_n) \text{ oder } (y_1,...,y_n)=(0,...,0)$$

Beh. $\mathcal{F}_n(k)$ ist quasiprojektive Varietät, als Untervarietät von

$$\mathbb{P}^{n-1} \times \mathbb{P}^n \hookrightarrow \mathbb{P}^N$$
$$((x_1 : \dots : x_n), (y_0 : \dots : y_n)) \mapsto (x_1 y_0 : x_1 y_1 : \dots : x_n y_n)$$

mit N = n(n+1) und $x_i y_k : x_j y_k = x_i y_l : x_j y_l$

Denn: $\mathcal{F}_n(k) = V(x_i y_j - x_j y_i, 1 \le i \le j)$

Sei $pr: \mathcal{F}_n(k) \to \mathbb{P}^{n-1}(k)$ die Projektion auf die erste Komponente.

pr ist ein surjektiver Morphismus.

Für $x := (x_1 : \cdots : x_n) \in \mathbb{P}^{n-1}(k)$ ist

$$pr^{-1} = \{((x_1 : \dots : x_n)(y_1, \dots, y_n)) \in \mathbb{P}^{n-1} \times k^n : y_i = \lambda x_i \text{ für ein } \lambda \in k \text{ und alle } i = 1, \dots, n\}$$

$\mathcal{F}_n(k)$ heißt tautologisches Bündel

Für die folgende Proposition, sei zunächst folgende

Erinnerung: Ist e_1, \dots, e_n Basis von v, so ist $e_{i_1} \wedge \dots \wedge e_{i_d}$, $1 \leq i_1 \leq \dots < i_j \leq n$ Basis von $\bigwedge^d V$. (zwei e_{i_j} vertauschen dreht das Vorzeichen, zwei gleiche e_{i_j} gibt deshalb 0)

Proposition 2.12.4

G(d,n)(V) "ist" quasiprojektive Varietät.

Genauer: Sei $\bigwedge^d V$ die d-te äußere Potenz von V und sei

$$\psi := \psi_{d,n}: \begin{array}{ccc} G(d,n)(V) & \longrightarrow & \mathbb{P}(\bigwedge^d V) \\ U & \longmapsto & [u_1 \wedge \cdots \wedge u_d] \end{array}$$

wobei u_1, \dots, u_d eine Basis von U ist. Dann gilt:

- (a) ψ ist wohldefiniert.
- (b) ψ ist injektiv

(c) Bild(
$$\psi$$
) ist Zariski-abgeschlossen in $\mathbb{P}(\bigwedge^d V) = \mathbb{P}^{N-1}(k)$, $N = \dim(\bigwedge^d V) = \begin{pmatrix} n \\ d \end{pmatrix}$

Beweis (a) Sei v_1, \dots, v_n eine weitere Basis von U.

Dann gibt es ein
$$A \in GL_d(k)$$
 mit $A \cdot \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$
 $\Rightarrow v_1 \wedge \dots \wedge v_d = \sum_{i=1}^d a_{1i} u_i \wedge \dots \wedge \sum_{i=1}^d a_{di} u_i = (\sum_{\sigma = S_d} (-1)^{sign(\sigma)} a_{1\sigma(1)} \cdot \dots \cdot a_{d\sigma(d)}) \cdot u_1 \wedge \dots \wedge u_d = \det A \cdot u_1 \wedge \dots \wedge u_d$

(b) Sei $u_i, ..., u_d$ eine Basis von U

Zu zeigen: U ist durch $[u_1 \wedge ... \wedge u_d]$ eindeutig bestimmt.

Dies folgt aus der Behauptung:

$$U = \{ v \in V : v \land (u_1 \land \dots \land u_d) = 0 \}$$

Beweis der Beh.: $v \wedge (u_1 \wedge ... \wedge u_d) = 0$

 $\Leftrightarrow v, u_1, ..., u_d$ sind linear abhängig

$$\Leftrightarrow v \in \langle u_1, ..., u_d \rangle = U$$

(c) Wir brauchen homogene Gleichungen, die in allen Punkten in $\mathrm{Bild}(\psi)$ erfüllt werden. Beoobachtung:

Bild
$$(\psi) = \{ [\omega] : \omega \in \bigwedge^d V \text{ und } \omega = u_1 \wedge \cdots \wedge u_d \text{ für lin. unabh. Vektoren } u_1, \dots, u_d \text{ in } V \}$$

$$(\omega \text{ ist "total zerlegbar"})$$

Für $\omega \in \bigwedge^d V$ sei

$$\varphi_{\omega}: \begin{array}{ccc} V & \longrightarrow & \bigwedge^{d+1} V \\ v & \longmapsto & \omega \wedge v \end{array}$$

und $L_{\omega} = (l_{ij}(\omega))$ ("Plücker Koordinaten") die Darstellungsmatrix von φ_{ω} bezüglich der Basen e_1, \ldots, e_n und $\{e_{i_1} \wedge \cdots \wedge e_{i_{d+1}} : 1 \leq i_1 < \cdots < i_d \leq n\}$. Die Abbildung

$$\varphi: \begin{array}{ccc} \bigwedge^d V & \longrightarrow & \operatorname{Hom}_k(V, \bigwedge^{d+1} V) \\ \omega & \longmapsto & \varphi_\omega \end{array}$$

ist linear. Dabei sind die $l_{ij}(\omega)$ linear in ω , das heißt

$$l_{ij}: \bigwedge^d V \longrightarrow k$$

 $\omega \longmapsto l_{ij}(\omega)$

ist eine lineare Abbildung.

Behauptung

 $[\omega] \in \text{Bild}(\psi) \Leftrightarrow \det(l_{ij}(\omega))_{\substack{i \in \mathcal{I} \\ j \in \mathcal{J}}} = 0$ für alle (n-d+1)-Minoren $\mathcal{I} \times \mathcal{J}$ von L_{ω} Diese Determinaten sind homogene Polynome vom Grad n-d+1 in den Linearformen l_{ij} . Also ist

$$Bild(\psi) = V((\det(l_{ij})_{\substack{i \in \mathcal{I} \\ j \in \mathcal{J}}}) : \mathcal{I} \times \mathcal{J} \text{ ist } (n-d+1)\text{-Minor })$$

das heißt Bild (ψ) ist abgeschlossen.

Beweis (der Behauptung)

$$\det(l_{ij})_{\substack{i \in \mathcal{I} \\ j \in \mathcal{J}}} = 0 \text{ für alle } (n - d + 1)\text{-Minoren}$$
$$\Leftrightarrow \operatorname{Rg}(\varphi_{\omega}) \leq n - d$$
$$\Leftrightarrow \dim(\operatorname{Kern}(\varphi_{\omega})) \geq d$$

Die Behauptung lautet also:

Behauptung (')

 ω total zerlegbar $\Leftrightarrow \dim(\operatorname{Kern}(\varphi_{\omega})) \geq d$

Behauptung (")

- a) $\dim(\operatorname{Kern}(\varphi_{\omega})) \leq d$
- b) $\dim(\operatorname{Kern}(\varphi_{\omega})) = d \Leftrightarrow \omega \text{ total zerlegbar}$
- c) Für $v \neq 0$: $v \in \text{Kern}(\varphi_{\omega}) \Leftrightarrow \exists \omega' \in \bigwedge^{d-1} V \text{ und } \omega = v \wedge \omega'$

Beweis (c) $\times v = e_n$

$$\begin{split} \omega &= \sum_{1 \leq i_1 < \dots < i_d \leq n} \lambda_{\underline{i}} \cdot e_{i_1} \wedge \dots \wedge e_{i_d} \\ \Rightarrow 0 &= \omega \wedge v = \sum_{1 \leq i_1 < \dots < i_d \leq n} \lambda_{\underline{i}} \cdot e_{i_1} \wedge \dots \wedge e_{i_d} \wedge e_n \\ \Leftrightarrow \lambda_{\underline{i}} &= 0 \text{ für alle } \underline{i} = (i_1, \dots, i_d) \text{ mit } i_d \neq n \\ \Rightarrow \omega &= \left(\sum_{1 \leq i_1 < \dots < i_{d-1} \leq n} \lambda_{i_1, \dots, i_{d-1}, n} \cdot e_{i_1} \wedge \dots \wedge e_{i_{d-1}}\right) \wedge e_n =: \omega' \wedge e_n \end{split}$$

- (a) Aus (c) folgt mit Induktion über m: Sind $v_1, \ldots, v_m \in \text{Kern}(\varphi_\omega)$ linear unabhängig, so gibt es $\omega \in \bigwedge^{d-m} V$ mit $\omega = \omega_m \wedge v_1 \wedge \cdots \wedge v_m \Rightarrow m \leq d$
- (b) " \Rightarrow " Sei v_1, \ldots, v_m eine Basis von Kern (φ_{ω}) $\stackrel{Bew.a)}{\Rightarrow} \omega = \lambda \cdot v_1 \wedge \cdots \wedge v_d$ für ein $\lambda \in k^{\times}$ " \Leftarrow " Sei $\omega = u_1 \wedge \cdots \wedge u_d$

$$v \in \operatorname{Kern}(\varphi_{\omega}) \Leftrightarrow v, u_1, \dots, u_d$$
 linear abhängig
$$\Leftrightarrow v \in < u_1, \dots, u_d >$$

$$\Rightarrow \operatorname{Kern}(\varphi_{\omega}) = < u_1, \dots, u_d >$$
 mit dim $\operatorname{Kern}(\varphi_{\omega}) = d$

§13 Varietäten

Seien V_1 , V_2 quasiprojektive Varietäten, $U_i \subseteq V_i$ offen (i = 1, 2), $\varphi : U_1 \to U_2$ ein Isomorphismus.

Sei $V := (V_1 \stackrel{\cdot}{\cup} V_2) /_{\sim}$, wobei für $x \in V_1$ und $y \in V_2$ gelte

$$x \sim y : \Leftrightarrow x \in U_1 \text{ und } y = \varphi(x) \in U_2$$

V ist ein topologischer Raum mit der Quotiententopologie. Für $U\subseteq V$ offen sei

$$\mathcal{O}_V(U) := \{ f : U \to k \mid \forall x \in U \ \exists U_x \text{ offen mit } U_x \subseteq V_1 \text{ oder } U_x \subseteq V_2 \text{ und } f \mid_{U_x} \text{ ist regulär} \}$$

d.h. $f|_{U_x} \in \mathcal{O}_{V_1}(U_x)$, bzw. $\mathcal{O}_{V_2}(U_x)$.

Ist $x \in U_1$ (oder $x \in U_2$), so ist \times $U_x \subseteq U_1$ und $\varphi(U_x) \subseteq U_2$ ebenfalls offene Umgebung von x in V.

dann ist
$$f \in \mathcal{O}_{V_2}(\varphi(U_x)) \Leftrightarrow f \circ \varphi \in \mathcal{O}_{V_1}(U_x)$$

Bemerkung 2.13.1

 \mathcal{O}_V ist Garbe von k-Algebra auf V.

Definition 2.13.2

V wie oben heißt die aus V_1 und V_2 durch Verkleben längs U_1 und U_2 via φ entstandene **Prävarietät**. (Begriff nicht so in der Literatur)

Beispiele 2.13.3

(a) $V_1 = V_2 = \mathbb{A}^1(k), U_1 = U_2 = \mathbb{A}^1 \setminus \{0\}$ $\varphi : U_1 \to U_2, x \mapsto \frac{1}{r}$

Dann ist die Verklebung V von V_1 und V_2 längs φ isomorph zu $\mathbb{P}^1(k)$.

Dabei heißt $\Psi: V \to \mathbb{P}^1(k)$ **Isomorphismus**, wenn Ψ ein Homöomorphismus ist und für jedes offene $U \subset \mathbb{P}^1(k)$ gilt:

$$\mathcal{O}_{\mathbb{P}^n(k)} \to \mathcal{O}_V(\Psi^{-1}(U)), \quad f \mapsto f \circ \Psi$$

ist ein Isomophismus von k-Algebren. $\Psi: V \to \mathbb{P}^1(k)$ sei wie folgt definiert:

$$\Psi \mid V_1 = \rho_0 : \mathbb{A}^1(k) \to \mathbb{P}^1(k), \quad x \mapsto (1:x)$$

$$\Psi \mid V_2 = \rho_1 : \mathbb{A}^1(k) \to \mathbb{P}^1(k), \quad y \mapsto (y:1)$$

für $x \in U_1$ ist $(1:x) = (\varphi(x):1) = (\frac{1}{x}:1)$

<u>Übungsaufgabe</u>: Verklebe n+1 Kopien von $\mathbb{A}^n(k)$, so dass $\mathbb{P}^n(k)$ entsteht.

(b) $\overline{V_1 = V_2 = \mathbb{A}^1(k)}$, $U_1 = U_2 = \mathbb{A}^1(k) \setminus \{0\}$ $\varphi : U_1 \to U_2$, $\varphi = \mathrm{id}$, V Verklebung längs φ . Für jedes offene $U \subseteq V$ mit $0_1 \in U$ und $0_2 \in U$ und jedes $f \in \mathcal{O}_V(U)$ ist $f(0_1) = f(0_2)$. So ein V heißt **separiert**.

Bemerkung 2.13.4

Ein topologischer Raum ist genau dann hausdorffsch, wenn die Diagonale

$$\Delta := \{(x, x) \mid x \in X\} \subset X \times X$$

abgeschlossen in $X \times X$ ist.

Beweis " \Rightarrow " Sei X hausdorffsch, $(x, y) \in (X \times X) \setminus \Delta$

 $\Rightarrow x \neq y$. Dann gibt es ein $x \in U$ offen, $y \in V$ offen mit $U \cap V = \emptyset$

 $\Rightarrow U \times V$ ist offene Umgebung von (x,y) mit $(U \times V) \cap \Delta = \emptyset$

"\(\sim \)" Sei $x \neq y \in X$, W eine offene Umgebung von (x,y) in $X \times X$ mit $W \cap \Delta = \emptyset$

Œ $W = U \times V$, da die $U \times V$ eine Basis der Toplogie auf $X \times X$ bilden $\Rightarrow U \cap V = \emptyset$

Definition 2.13.5

Eine Prävarietät X heißt **separiert**, wenn $\Delta \subset X \times X$ abgeschlossen ist.

Beispiele 2.13.6

Sei V wie im letzten Beispiel. Dann ist $\Delta \subset V \times V$ nicht abgeschlossen:

In $V \times V$ gibt es über (0,0) die folgenden Punkte:

 $(0_1, 0_1), (0_1, 0_2), (0_2, 0_1), (0_2, 0_2).$

Davon liegen $(0_1, 0_1)$ und $(0_2, 0_2)$ in Δ , die beiden anderen nicht. Diese liegen aber in $\overline{\Delta}$.

Definition 2.13.7

(a) Eine **Prävarietät** über k ist ein topologischer Raum X, zusammen mit einer Garbe \mathcal{O}_X von k-Algebren, der eine endliche offene Überdeckung $X = U_1 \cup ... \cup U_n$ besitzt, so dass $(U_i, \mathcal{O}_X |_{U_i})$ isomorph zu einer affinen Varietät ist.

(b) Eine separierte Prävarietät heißt *Varietät*.

Definition 2.13.8

Für eine Prävarietät X mit affiner Überdeckung $(U_i)_{i=1,\dots,n}$ sei $X \times X$ die Prävarietät, die durch Verkleben der $U_i \times U_j$, $i, j = 1, \dots, n$ hervorgeht.

Dabei ist $U_i \times U_j$ die affine Varietät, die durch $\mathcal{O}_X(U_i) \otimes_k \mathcal{O}_X(U_j)$ bestimmt ist. Produkt ist folgendes:

3 Lokale Eigenschaften

§14 Lokale Ringe zu Punkten

Erinnerung / Definition + Bemerkung 3.14.1

Sei V eine Varietät (über einem algebraisch abgeschlossenen Körper k) und $x \in V$.

(a)

$$\mathcal{O}_{V,x} := \{ [(U,f)] : U \subseteq V \text{ offen, } x \in U, f \in \mathcal{O}_V(U) \}$$

heißt $\pmb{lokaler}$ \pmb{Ring} von V in x, dabei sei $(U,f)\sim (U',f') \Leftrightarrow f|U\cap U'=f'|U\cap U'$

(b) $\mathcal{O}_{V,x}$ ist ein lokaler Ring mit maximalem Ideal

$$m_x = \{ [(U, f)] \in \mathcal{O}_{V,x} : f(x) = 0 \}.$$

(c)
$$\mathcal{O}_{V,x} = \varinjlim_{U \subseteq V \text{ offen, } x \in U} \mathcal{O}_V(U)$$

Bemerkung 3.14.2

Seien $V, x \in V$ wie in 3.14.1, sei weiter $V_0 \subseteq V$ offen und affin mit $x \in V_0$. Dann gilt:

- (a) $\mathcal{O}_{V,x} \cong k[V_0]_{m_x^{V_0}}$, wobei $k[V_0]$ der affine Koordinatenring von V_0 sei und $m_x^{V_0}$ das zu x gehörige maximale Ideal in $k[V_0]$, das heißt $m_x^{V_0} = \{f \in k[V_0] : f(x) = 0\}$.
- (b) Ist V irreduzibel, so ist $\mathcal{O}_{V,x} \cong \{f = \frac{g}{h} \in k(V) : g, h \in k[V_0], h(x) \neq 0\}.$

Beweis Übung.

Proposition 3.14.3

Seien V, W Varietäten, $x \in V, y \in W$. Ist $\mathcal{O}_{V,x} \cong \mathcal{O}_{W,y}$ (als k-Algebra), so gibt es (affine) offene Umgebungen $U_1 \subseteq V$ von x und $U_2 \subseteq W$ von y mit $U_1 \cong U_2$.

Beweis Übungsblatt 7 Aufgabe 1. □

Bemerkung 3.14.4

Sei $\varphi:V\longrightarrow W$ ein Morphismus von Varietäten. Für jedes $x\in V$ induziert φ einen k-Algebrenhomomorphismus

$$\varphi_x^{\sharp}: \mathcal{O}_{W,\varphi(x)} \longrightarrow \mathcal{O}_{V,x} \quad \text{mit} \quad \varphi_x^{\sharp}(m_{\varphi(x)}) \subseteq m_x.$$

Beweis $\times V, W$ affin (geeignet einschränken!).

Dann induziert φ einen k-Algebrenhomomorphismus

$$\varphi^{\sharp}: \begin{array}{ccc} k[W] & \longrightarrow & k[V] \\ f & \longmapsto & f \circ \varphi \end{array}$$

Dabei gilt für $f \in k[W]$:

$$(*) \quad f \in m_{\varphi(x)}^W \Leftrightarrow f(\varphi(x)) = 0 \Leftrightarrow (f \circ \varphi)(x) = 0 \Leftrightarrow \varphi^{\sharp}(f) \in m_x^V$$

 $\Rightarrow \varphi^{\sharp}$ induziert einen Homomorphismus

$$\varphi_x^{\sharp}: \underbrace{k[W]_{m_{\varphi(x)}^W}} \longrightarrow \underbrace{k[V]_{m_x^V}}_{\cong \mathcal{O}_{V,x}}.$$

Aus (*) folgt weiter:

$$\varphi_x^{\sharp}(\underbrace{m_{\varphi(x)}^W \cdot k[W]_{m_{\varphi(x)}^W}}_{=m_{\varphi(x)}}) \subseteq m_x^V k[V]_{m_x^V} = m_x \qquad \Box$$

§15 Dimension einer Varietät

Definition 3.15.1

Sei X ein topologischer Raum $(\neq \emptyset)$. Dann heißt

$$\dim(X) := \sup\{n \in \mathbb{N} : \text{ Es gibt irreduzible Teilmengen } \emptyset \neq V_0 \subsetneq \ldots \subsetneq V_n \subseteq X\}$$

die (Krull-)Dimension von X.

Erinnerung / Definition 3.15.2

Sei R ein Ring (kommutativ mit Eins).

(a) Für ein Primideal $\wp \subseteq R$ heißt

$$ht(\wp) := \sup\{n \in \mathbb{N} : \text{ Es gibt Primideale } \wp_0 \subsetneq \ldots \subsetneq \wp_n = \wp\}$$

die $H\ddot{o}he$ von \wp .

(b) dim $R := \sup\{\operatorname{ht}(\wp) : \wp \subset R \text{ Primideal}\}\ \text{heißt } (Krull-)Dimension \text{ von } R.$

Bemerkung 3.15.3

Sei V eine affine Varietät. Dann ist $\dim(V) = \dim(k[V])$.

Beweis Nach Proposition 1.3.2 ist eine abgeschlossene Teilmenge Z von V genau dann irreduzibel, wenn ihr Verschwindungsideal I(Z) ein Primideal ist. Nach Satz 2 ist das eine Bijektion.

Proposition 3.15.4

- (a) $\dim(k[X_1,...,X_n]) = n$
- (b) Ist A eine nullteilerfreie k-Algebra, so haben alle maximalen Primidealketten die gleiche Länge.

Beweis Algebra 2.

Bemerkung + Definition 3.15.5

Sei V eine Varietät, $x \in V$, $V_0 \subseteq V$ eine offene und affine Umgebung von x.

- (a) dim $\mathcal{O}_{V,x} = \text{ht}(m_x^{V_0}) (= \text{ht}(m_x^{V_0} \cdot k[V_0]_{m_x^{V_0}}))$
- (b) Ist V irreduzibel, so ist

$$\dim \mathcal{O}_{V,x} = \dim \mathcal{O}_{V,y} = \dim V$$
 für alle $x, y \in V$.

- (c) $\dim_x V := \dim \mathcal{O}_{V,x}$ heißt **lokale Dimension** von V in x.
- (d) $\dim_x V = \max\{\dim Z : Z \text{ irreduzible Komponente von } V, x \in Z\}$

Beweis b) Ist V affin (also $V = V_0$), so folgt die Aussage aus a) und Proposition 3.15.4(b). Im allgemeinen Falle überdecke V durch affine Varietäten V_i (i = 1, ..., n). Da V irreduzibel ist, ist $V_i \cap V_j \neq \emptyset \ \forall i, j$.

 \Rightarrow dim $\mathcal{O}_{V,x}$ ist unabhängig von x, also gleich dim V_i für jedes $i=1,\ldots,n$. noch zu zeigen: dim V_i = dim V.

Sei $Z_0 \subsetneq Z_1 \subsetneq \ldots \subsetneq Z_d = V$ eine maximale Kette von irreduziblen Teilmengen. Dabei ist $Z_0 = \{z_0\}$ einpunktig. Es folgt $d = \dim \mathcal{O}_{V,z_0}$.

d) Œ sei V affin. Die irreduziblen Komponenten Z_1,\ldots,Z_n von V entsprechen den minimalen Primidealen in k[V]. Es gilt $x\in Z_i\Leftrightarrow m_x^V\supseteq I(Z_i)=:\mu_i$. Weiter ist $k[Z_i]=k[V]/\mu_i$. Es folgt: $\dim \mathcal{O}_{V,x}=\operatorname{ht}(m_x^V)=\max_{i=1;\mu_i\subseteq m_x^V}^n\{\text{maximale L\"ange einer Primidealkette }\mu_i\subsetneq\wp_1\subsetneq\ldots\subsetneq m_x^V\}=\max_{i=1;\mu_i\subseteq m_x^V}^n\{\underbrace{\dim k[Z_i]}\}.$

§16 Der Tangentialraum

Zunächst einige einführende Beispiele:

Beispiele

1.) $V = V(Y^2 - X^3 + X), x = (0, 0).$

Die Tangente in x an V ist die y-Achse, also V(X). Der Tangentialraum in x = (1,0) ist derselbe, d.h. der Tangentialraum ist nicht als affiner Raum, sondern als Vektorraum zu verstehen.

- 2.) $V = V(Y^2 X^3 + X^2)$ (Newton-Knoten), x = (0,0). Hier kann man an den Nullpunkt 2 Tangenten anlegen (y = x und y = -x). Der Tangentialraum, wie wir ihn definieren werden, ist der davon aufgespannte $\mathbb{A}^2(k)$.
- 3.) $V = V(Y^2 X^3)$, x = (0,0). Ist jeder beliebige eindimensionale Unterraum im Tangentialraum enthalten?
- 4.) $V = V(X^2 + Y^2 Z^2)$ (doppelter Kegel), x = (0, 0, 0), y = (1, 0, 1).

Definition + Bemerkung 3.16.1

Sei $V \subseteq \mathbb{A}^n(k)$ eine affine Varietät, $x \in V$, I = I(V).

- (a) Für $f \in I$ sei $f^{(1)} := f_x^{(1)} := \sum_{i=1}^n \frac{\partial f}{\partial X_i}(x) \cdot X_i$. Weiter sei I_x das von den $f^{(1)}$, $f \in I$, erzeugte Ideal in $k[X_1, \dots, X_n]$ und $T_x := T_{V,x} := V(I_X)$. $T_{V,x}$ heißt **Tangentialraum** an V in x.
- (b) T_x ist ein linearer Unterraum von $\mathbb{A}^n(k)$.
- (c) Sind f_1, \ldots, f_r Erzeuger von I, so wird I_x erzeugt von $f_1^{(1)}, \ldots, f_r^{(1)}$.

Beispiele von oben:

- 1.) $I_x = (X), \quad T_x = V(X)$
- 2.) $I_x = (0), \quad T_x = \mathbb{A}^2(k)$
- 3.) $I_x = (0), \quad T_x = \mathbb{A}^2(k)$
- 4.) $I_x = (0), \quad T_x = \mathbb{A}^3(k);$ $I_y = (2X - 2Z) = (X - Z), \quad T_y = V(X - Z)$

Bemerkung 3.16.2

Jeder Morphismus $\varphi: V \to W$ von affinen Varietäten induziert für jedes $x \in V$ eine k-lineare Abbildung $d_x \varphi: T_{V,x} \to T_{W,\varphi(x)}$.

Beweis $\times x = 0$, $\varphi(x) = 0$.

Schreibe $\varphi = (\varphi_1, \dots, \varphi_m)$. Brauche k-Algebrenhomomorphismus:

$$(d_x\varphi)^{\sharp}: k[Y_1,\ldots,Y_m]/I_{\varphi(x)} \to k[X_1,\ldots,X_n]/I_x$$

Für j = 1, ..., m ist $\varphi^{\sharp}(Y_j) = Y_j \circ \varphi = \varphi_j \Rightarrow (\varphi^{\sharp}(Y_j)^{(1)}) = \sum_{i=1}^n \frac{\partial \varphi_j}{\partial X_i}(0) \cdot X_i =: (d_x \varphi)^{\sharp}(Y_j).$

Sei $f \in I_{\varphi}$, Œ $f = g^{(1)}$ für ein $g \in I(V)$.

Schreibe $g^{(1)} = \sum_{j=1}^m a_j Y_j$, $a_j \in k = (d_x \varphi)^\sharp(f) = \sum_{j=1}^m a_j \sum_{i=1}^n \frac{\partial \varphi_i}{\partial X_i}(0) \cdot X_i = \sum_{i=1}^n (\sum_{j=1}^m a_j \frac{\partial \varphi_i}{\partial X_i}(0)) \cdot X_i = (g \circ \varphi)^{(1)}$

$$\operatorname{da} \frac{\partial (g \circ \varphi)}{\partial X_i}(0) = \sum_{j=1}^m \underbrace{\frac{\partial g}{\partial Y_j}(\varphi(0))}_{=a_j} \underbrace{\frac{\partial \varphi_j}{\partial X_i}(0)}_{=a_j}$$

Proposition + Definition 3.16.3

Sei $V \subseteq \mathbb{A}^n(k)$ eine affine Varietät, $x \in V$. Dann ist T_x in natürlicher Weise isomorph zu dem Dualraum $(m_x/m_x^2)^{\vee}$ von m_x/m_x^2 . Der k-Vektorraum $(m_x/m_x^2)^{\vee}$ heißt **Zariski-Tangentialraum** an V in x.

 m_x/m_x^2 ist ein k-Vektorraum: Zunächst ist m_x/m_x^2 ein R-Modul für $R=\mathcal{O}_{V,x}$. Weiter ist $R/m_x=k$.

Da $m_x \cdot (m_x/m_x^2) = 0$ ist, hat m_x/m_x^2 eine Struktur als R/m_x -Modul.

Definition + Bemerkung 3.16.4

Sei V eine Varietät, $x \in V$.

(a) x heißt nichtsingulärer Punkt (oder regulärer Punkt), wenn

$$\dim T_{V,x} = \dim_x V.$$

(b) (Jacobi-Kriterium) Sei $U \subseteq V$ eine offene, affine Umgebung von $x, f_1, \ldots, f_r \in$ $k[X_1,\ldots,X_n]$ Erzeuger des Verschwindungsideals I(U). Dann gilt:

$$x$$
 nichtsingulär $\Leftrightarrow \operatorname{Rang}\left(\frac{\partial f_i}{\partial X_j}(x)\right)_{i,j} = n - \dim_x V$

(c) Ist x singulär, so ist dim $T_{V,x} > \dim_x V$.

b) Sei $x \in V$, $V = V(f_1, ..., f_r) \subseteq \mathbb{A}^n(k)$. Beweis

$$\mathcal{J}_f(x) := \left(\frac{\partial f_i}{\partial X_j}(x)\right)_{\substack{i=1,\dots,r\\j=1,\dots,n}}$$

 $T_{V,x}$ ist die Lösungsmenge des LGS $\mathcal{J}_f(x) \cdot X = 0$, denn $f_i^{(1)} = \sum_{j=1}^n \frac{\partial f_i}{\partial X_j}(x) \cdot X_j$.

- c) Sei $\mathcal{J}_f := \left(\frac{\partial f_i}{\partial X_j}\right)_{i,j}$.
 - $\Rightarrow \operatorname{Rang}(\mathcal{J}_f(x)) = \max\{d: \exists (d \times d) \text{-Minor } M \text{ von } \mathcal{J}_f \text{ mit } \det M(x) \neq 0\}$
 - \Rightarrow Es gibt eine offene Teilmenge U von V, auf der Rang $(\mathcal{J}_f(x))$ maximal ist.

Beispiele 3.16.5

(a)
$$V = (Y^2 - X^3 - X^2) =: V(f)$$

$$\mathcal{J}_f = \left(\frac{\partial f}{\partial X}, \frac{\partial f}{\partial Y}\right) = (-3X^2 - 2X, 2Y)$$

$$Rang(\mathcal{J}_f(x)) = \begin{cases} 0 &, -3X^2 - 2X = 0 \text{ und } Y = 0\\ 1 &, \text{ sonst} \end{cases}$$

(b) $V = V(f) \subseteq \mathbb{A}^n(k)$ mit einem Polynom $f \in k[X_1, \dots, X_n]$. $x \in \mathbb{A}^n(k)$ singulärer Punkt von $V \Leftrightarrow 0 = f(x) = \frac{\partial f}{\partial X_1}(x) = \dots = \frac{\partial f}{\partial X_n}(x)$

Proposition 3.16.6

$$\mathcal{T}_{V,x} \cong \left(\frac{m_x}{m_x^2}\right)^* \qquad \mathcal{O}_{V,x}/m_x \cong k$$

(in natürlicher Weise)

Beweis Sei I = I(V) das Verschwindungsideal von V in $k[X_1, ..., X_n]$. Œ x = (0, ..., 0)

Dann ist
$$\mathcal{M} := m_x^{\mathbb{A}^n} = (x_1, ..., x_n)$$

 $\Rightarrow m_x^V = \frac{\mathcal{M}_x}{I} \cap \mathcal{M}_x = \frac{\mathcal{M}_x}{I}$, da $I \subseteq \mathcal{M}_x$

Beh. 1:
$$m_x/m_x^2 \cong m_x^V/(m_x^V)^2$$

Denn: $\mathcal{O}_{x,V} \cong k[v]_{m_x^V}$
 $m_x = m_x^V k[V] m_x^V$

$$m_x = m_x^V k[V] m_x^V$$

 $a\mapsto \frac{a}{1}$ ist ein Homomorphismus $\rho: m_x^V\to m_x\to m_x/m_x^2$ mit Kern $(m_x^V)^2$ ρ ist surjektiv: Sei $p=q\cdot \frac{a}{b}\in m_x$ mit $q\in m_x^V,\ a,b\in k[V],\ b\notin m_x^V$

Ansatz: Wähle $\tilde{a}(=q\cdot\tilde{b})\in m_x^V\Rightarrow p-\frac{\tilde{a}}{1}=q\cdot\frac{a}{b}-\frac{q\cdot\tilde{b}}{1}=q\frac{a-\tilde{b}b}{b}$ Hätte gerne: $a - b\tilde{b} \in m_x^V$

??????????????????????

Beh. 2:
$$m_x/(m_x^V)^2 \cong \mathcal{M}_x/\mathcal{M}_x^2 + I = \mathcal{M}_x/\mathcal{M}_x^2 + I_x$$
denn: $m_x/(m_x^V)^2 \cong \mathcal{M}_x/I/(\mathcal{M}_x/I)^2$

$$\cong (\mathcal{M}_x/I)/(\mathcal{M}_x^2/I \cap \mathcal{M}_x^2)$$

$$\cong (\mathcal{M}_x/I)/(\mathcal{M}_x^2 + I/I)$$

$$\cong \mathcal{M}_x/\mathcal{M}_x^2 + I$$
Example 1. If $I = I$ we have $I = I$.

Definiere k-lineare Abbildung: $\alpha:(m_x/m_x^2)^*\to \mathcal{T}_x$ durch $l\mapsto (l(\overline{X_1}),...,l(\overline{X_n}))\in k^n$

Zu zeigen: α ist wohldefiniert, d.h. $\alpha(l) \in \mathcal{T}_x$

Sei also $f \in I_x$. Zu zeigen: $f(\alpha(l)) = 0$

$$f = g_x^{(1)} \text{ für ein } g \in I$$

$$\Rightarrow f(L(l)) = \sum_{\substack{\frac{\partial g}{\partial X_i}}} (x) l(\overline{X_i})$$

$$= l(\overline{\sum_{i=1}^n \frac{\partial g}{\partial X_i}} (x) X_i)$$

$$= l(g_x^{(1)}) = 0 \text{ weil } g_x^{(1)} \in I_x \subseteq \mathcal{M}_x^2 + I_x$$
Umkahrabbildung:

Umkehrabbildung:

$$\beta: \begin{array}{ccc} \mathcal{T}_x & \longrightarrow & (m_x/m_x^2)^* \\ (l_1, ..., l_n) & \longmapsto & (\overline{X}_i \mapsto l_i) \end{array}$$

Wohldefiniertheit von β : Ist $\sum \lambda_i X_i \in I_X$, so ist $\sum \lambda_i l_i = 0$, da jedes Polynom in I_x auf dem Tangentialraum verschwindet, $l_i \in \mathcal{T}_x$

Definition 3.16.7

- (a) Ein lokaler Ring heißt **regulär**, wenn dim $R = \dim_{R/m}(m/m^2)$ ist.
- (b) Sei V eine Varietät. Ein Punkt $x \in V$ ist genau dann nichtsingulär, wenn $\mathcal{O}_{V,x}$ ein regulärer, lokaler Ring ist.

Definition + Bemerkung 3.16.8

Sei $V = V(f_1, \ldots, f_r) \subseteq \mathbb{A}^n(k)$ eine affine Varietät.

(a) Für $i = 1, \ldots, r$ sei

$$f_i^1 := \sum_{j=1}^n \frac{\partial f_i}{\partial X_j} \cdot Y_j \in k[X_1, \dots, X_n, Y_1, \dots, Y_n]$$

Dann heißt

$$\mathcal{T}_V = V(f_1, \dots, f_r, f_1^1, \dots, f_r^1) \subseteq \mathbb{A}^n \times \mathbb{A}^n = \mathbb{A}^{2n}$$

Tangentialbündel über V.

- (b) Sei $p: \mathbb{A}^n \times \mathbb{A}^n \to \mathbb{A}^n$ die Projektion auf die ersten n Komponenten. Dann ist $p(\mathcal{T}_V) = V$.
- (c) Für jedes $x \in V$ ist $p^{-1}(x) \cong T_{V,x}$.
- (d) Ist V eine beliebige Varietät und V_1, \ldots, V_m eine affine Überdeckung von V, so verkleben sich die Tangentialbündel $\mathcal{T}_{V_1}, \dots, \mathcal{T}_{V_m}$ zu einer Varietät \mathcal{T}_V , dem **Tangentialbündel** über V.

Beispiele 3.16.9

Beispiele 3.16.9
$$V = V(\underline{Y^2 - X^3 - X^2})$$
 $\mathcal{T} = V(Y^2 - X^3 - X^2, -(2X + 3X^2)W + 2YZ) \subseteq \mathbb{A}^4$

$$X^{2}(W^{2}(2+3X)^{2}-4Z^{2}(X+1)) =$$

$$V = V(Y^{2} - X^{3} - X^{2}) \qquad \mathcal{T} = V(Y^{2} - X^{3} - X^{2}, -(2X + 3X^{2})W + 2YZ) \subseteq \mathbb{A}^{4}$$

$$\underline{\text{Beh}} : \mathcal{T}_{V} \text{ hat 2 irreduzible Komponenten } \mathcal{T}_{1} \text{ und } \mathcal{T}_{2}.$$

$$\ddot{\text{Aquivalent dazu: }} I := I(Y^{2} - X^{3} - X^{2}, -(2X + 3X^{2})W + 2YZ) \text{ ist kein Primideal.}}$$

$$\underline{X^{2}}(W^{2}(2 + 3X)^{2} - 4Z^{2}(X + 1)) = \underbrace{(WX(2 + 3X) - 2YZ)(WX(2 + 3X) + 2YZ) - 4Z^{2}X^{2}(X + 1) + 4Z^{2}Y^{2}}_{=4Z^{2}}$$

$$\underline{Y^{2} - X^{2}(X + 1)}$$

$$\Rightarrow \mathcal{T}_{1} = V(Y^{2} - X^{3} - X^{2}, W^{2}(2 - 3X)^{2} - 4Z^{2}(X + 1)) \subset \mathcal{T}_{V}$$

$$\Rightarrow \mathcal{T}_1 = V(Y^2 - X^3 - X^2, W^2(2 - 3X)^2 - 4Z^2(X + 1)) \subset \mathcal{T}_V$$

$$\mathcal{T}_2 = V(Y^2 - X^3 - X^2, X) \subset \mathcal{T}_V = V(X, Y) = \mathbb{A}^2 \text{ "uber dem Nullpunkt.}$$

$$\mathcal{T}_1 \cap \mathcal{T}_2 = V(X, Y, W^2 - Z^2)$$

§17 Der singuläre Ort einer Varietät

Definition 3.17.1

Für eine Varietät V heißt

$$Sing(V) := \{x \in V : x \text{ ist singulärer Punkt}\}$$

der **singuläre** Ort von V.

Satz 6

Sei V eine Varietät über k. Dann ist Sing(V) echte Untervarietät von V.

Beweis Œ sei V affin in $\mathbb{A}^n(k)$, V irreduzibel. Sei $d = \dim V$.

Sing(V) ist abgeschlossen: Sei
$$V = V(f_1, ..., f_r), \ \mathcal{J} = \left(\frac{\partial f_i}{\partial X_j}\right)_{\substack{i=1,...,r\\j=1,...,n}}^{i=1,...,r}$$

$$\overline{\mathrm{Dann ist Sing}(V) = \{x \in V : \mathrm{Rg}(\mathcal{J}(x)) < n - d = d'\}} =$$

$$\{x \in V : \det(M(x)) = 0 \text{ für alle } (d' \times d') - \text{Minoren } M \text{ von } \mathcal{J}\} = 0$$

 $\left(\bigcap_{M(d'\times d')-\text{Minoren }M\text{ von }\mathcal{J}}V(\det(M))\right)\cap V.$

 $Sing(V) \neq V$:

<u>Fall 1</u>: V = V(f) Hyperfläche, f quadratfreies Polynom

$$\Rightarrow \operatorname{Sing}(V) = \{x \in V : \frac{\partial f}{\partial X_j}(x) = 0, j = 1, ..., n\}$$

Wäre
$$\mathrm{Sing}(V) = V$$
, so wäre $\frac{\partial f}{\partial X_j} \in I(V) = (f)$ für $j = 1, ..., n \Rightarrow \frac{\partial f}{\partial X_j} = 0$ für $j = 1, ..., n \Rightarrow$

$$\int \operatorname{char}(k) = 0: \quad f \in k, \text{Wid!}$$

$$\begin{cases} \operatorname{char}(k) = 0: & f \in k, \text{Wid!} \\ \operatorname{char}(k) = p: & f(X_1, ..., X_n) = g(X_1^p, ..., X_n^p) = g^p, \text{Wid!} \end{cases}$$

Fall 2 V ist beliebig. Dann folgt die Behauptung aus der folgenden Proposition.

Proposition 3.17.2

Jede irreduzible Varietät V der Dimension d ist birational Äquivalent zu einer Hyperfläche in $\mathbb{A}^{d+1}(k)$

Beweis Ziel: Finde eine irreduzible Hyperfläche $W \subseteq \mathbb{A}^{d+1}(k)$ mit $k(W) \cong k(V)$. Dann folgt die Proposition aus Korollar 7.5.

Sei $X_1,...,X_d$ Transzendenzbasis von k(V) (Noether-Normalisierung von k(V)).

Dann ist $k(V)/k(X_1,...,X_d)$ endlich.

Sei $k(V)/k(X_1,...,X_d)$ einfach (falls char(k)=p, so gibt es eine Transzendenzbasis mit dieser Eigenschaft).

Sei $y \in k(V)$ ein primitives Element.

Sei $y^m + a_{m-1}y^{m-1} + ... + a_1y + a_0$ das Minimalpolynom. Sei $a_i = \frac{f_i}{g_i}$ mit $f_i, g_i \in k[X_1, ..., X_d]$.

Sei $g = \Pi g_i, W := V(g^m y^m + g^m a_{m-1} y^{m-1} + \dots + g^m a_0).$

W ist eine Hyperfläche in $\mathbb{A}^{d+1}(k)$

$$k[W] = k[X_1, ..., X_d, gY]/(...) \Rightarrow k(W) \cong k(V)$$

Bemerkung 3.17.3

Sei V eine Varietät, $x \in V$. Dann gilt:

 $\mathcal{O}_{V,x}$ nullteilerfrei \Leftrightarrow es gibt genau eine irreduzible Komponente Z von V mit $x \in Z$.

Beweis Œ V affin. Seien $V_1 \neq V_2$ irreduzible Komponenten von V. Dann gilt:

$$x \in V_1 \cap V_2$$

 $\Leftrightarrow I(V_1) + I(V_2) \subseteq m_x^V$
 $\Leftrightarrow \mu_{i,x} := I(V_i) \cdot \mathcal{O}_{V,x}$ ist minimales Promideal in $\mathcal{O}_{V,x}$ $(i = 1, 2)$ mit $\mu_{1,x} \neq \mu_{2,x}$
 $\Leftrightarrow (0)$ nicht Primideal in $\mathcal{O}_{V,x}$
 $\Leftrightarrow \mathcal{O}_{V,x}$ nicht nullteilerfrei

(das vorletzte "
$$\Leftarrow$$
" folgt mit der Übung: $\bigcap_{\mathfrak{p} \text{ Primideal in } R} \mathfrak{p} = \sqrt{(0)}$)

Proposition 3.17.4

Sei V eine Varietät, $x \in V$. Gibt es irreduzible Komponenten $V_1 \neq V_2$ von V mit $x \in V_1 \cap V_2$, so ist x singulärer Punkt von V.

Beweis Es genügt zu zeigen:

Proposition 3.17.5

Jeder reguläre lokale Ring R ist nullteilerfrei.

Beweis (mit Import von $(1), \cdot, (3)$; siehe unten) Sei $d = \dim R$. Induktion über d:

d=0:
$$m/m^2 = 0 \Rightarrow m = 0$$
 (Nakayama)

d=1: $\dim(m/m^2) = 1 \Leftrightarrow R$ ist diskreter Bewertungsring, also insbesondere nullteilerfrei.

d>1: Seien $\mathfrak{p}_1,\ldots,\mathfrak{p}_r$ die minimalen Primideale von R. $\mathfrak{p}_i\neq m,$ da dim $R\geq 1,$ außerdem

$$\stackrel{(2)}{\Rightarrow} \ \exists a \in m \ \mathrm{mit} \ a \notin \mathfrak{p}_i, i = 1, \cdots, r$$

Behauptung

a ist ein Primelement in R.

Dann gibt es ein i mit $\mathfrak{p}_i \subseteq (a)$

Für jedes $b \in \mathfrak{p}_i$ gibt es also $q \in R$ mit $b = q \cdot a$

$$\Rightarrow q \in \mathfrak{p}_i, \text{ da } \mathfrak{p}_i \text{ Primideal } , a \notin \mathfrak{p}_i$$

$$\Rightarrow \mathfrak{p}_i \subseteq \mathfrak{p}_i \cdot (a) \subseteq \mathfrak{p}_i \cdot m$$

$$\stackrel{(Nakayama)}{\Rightarrow} \mathfrak{p}_i = 0$$

Beweis (der Behauptung) Zeige: S := R/(a) ist regulärer lokaler Ring der Dimension d-1.

Es ist
$$m_S = \frac{m}{a}$$
 und $\frac{m_S}{m_S^2} = \frac{m}{a}$ $\frac{m_S}{m_S^2} = \frac{m}{a}$ $\frac{m_S}{m_S^2} = \frac{m}{a}$ $\frac{m_S}{m_S^2} = \frac{m}{a}$ $\frac{m_S}{m_S^2} = \frac{m}{m_S^2}$ $\frac{m_S}{m_S^2} = \frac{m}{m_S^2} = \frac{m_S}{m_S^2} = \frac{m_S}{m_S^2}$

Sei \mathfrak{p} minimales Primideal in R, das in einer Kette der Länge d vorkommt und $R' := R/\mathfrak{p}$. Dann ist dim $R' = \dim R = d$ und R' nullteilerfrei. Da $a \notin \mathfrak{p}$, ist $\bar{a} \neq 0$ in $R' \Rightarrow \operatorname{ht}(\mathfrak{p}) = 1$ für jedes minimale (Primideal \mathfrak{q} in R' mit $\bar{a} \in \mathfrak{q}$)

$$\Rightarrow \dim S = \dim R' / (\bar{a}) = \dim R' / \mathfrak{q} = d - 1$$

Import:

- (1) Jeder noethersche Ring hat nur endlich viele minimale Primideale.
- (2) Vermeiden von Primidealen: Sei R ein Ring, $\mathfrak{p}_0 \subseteq R$ ein Ideal, $\mathfrak{p}_1, \dots, \mathfrak{p}_r$ Primideale. Ist $I \subseteq R$ Ideal mit $I \nsubseteq \mathfrak{p}_i, i = 0, \dots, r$, so ist $I \nsubseteq \bigcap_{i=0}^r \mathfrak{p}_i$
- (3) Krullscher Hauptidealsatz: Sei R nullteilerfrei, noethersch, $x \in R, x \neq 0, x \neq R^{\times}$. Dann hat jedes Primideal, das x enthält und minimal mit dieser Eigenschaft ist, Höhe 1.

4 Nichtsinguläre Kurven

§18 Funktionenkörper in einer Variablen

Satz 7

Ist K/k Funktionenkörper in einer Variablen über k (das heißt endlich erzeugt, $\operatorname{trdeg}_k(K) = 1$), so gibt es eine bis auf Isomorphie eindeutig bestimmte nichtsinguläre Kurve C mit $k(C) \cong K$.

Beweis Sei $C_K = \{R \subset K : R \text{ ist diskreter Bewertungsring, } k \subset R\}$

Ist C nichtsinguläre Kurve, so ist für jedes $x \in C$ der lokale Ring $\mathcal{O}_{C,x}$ ein diskreter Bewertungsring in k(C) mit $k \subset \mathcal{O}_{C,x}$

Die Eindeutigkeit wird aus Prop. 18.4 und Prop. 18.5 folgen.

Bemerkung 4.18.1

Für $f \in K$ ist $P_F := \{R \in C_K : f \notin R\}$ endlich (Polstellenmenge von f).

Beweis Œ $f \in K \setminus k$ (sonst ist $P_f = \emptyset$).

Dann ist $g := \frac{1}{f}$ transzendent über k, also K/k(g) endlich.

dann sei B der ganze Abschluss von k[g] in K. B ist dann ein Dedekindring (Alg I, Satz ...) und somit endlich erzeugte, reduzierte k-Algebra.

 \Rightarrow es gibt eine affine Varietät Vmit $k[V] \cong B.$

Für jedes $x \in V$ ist $\mathcal{O}_{V,x}$ ein diskreter Bewertungsring $\Rightarrow V$ ist nicht singulär.

Sei $R \in P_f$, also $f \notin R$. Dann ist $g \in R \stackrel{g \notin R}{\Rightarrow} g \in m_R \Rightarrow k[g] \subseteq R \Rightarrow B \subseteq R$. (R ist normal). $m := m_R \cap B$ ist maximales Ideal in $B \Rightarrow B_m$ ist diskreter Bewertungsring, $B_m \subseteq R$

Beh.: Dann ist $B_m = R$.

<u>Denn</u>: Andernfalls sei $a \in R \setminus B_m$.

Schreibe $a = u \cdot f^{-n}$ mit $u \in B_m^{\times}, n > 0, (f) = m$

Dann wäre $\frac{1}{a} = u^{-1} \cdot f^n \in m \Rightarrow a \in R^{\times}$

 $f^n \in \mathbb{R}^{\times}$, Widerspruch zu $f^n \in m_R$.

 $\Rightarrow \exists x \in V \text{ mit } R = \mathcal{O}_{V,x}, g \in m_R.$

ist $g(x) = 0 \Rightarrow x \in V(g) \subset V$.

da $g \neq 0$, ist $V(g) \neq V$, also endlich.

Bemerkung 4.18.2

Sei C eine irreduzible, nichtsinguläre Kurve über k, K = k(C). Dann gilt:

- (a) $\mathcal{O}_{C,x} \in C_K$ für jedes $x \in C$
- (b) $\varphi: \begin{array}{ccc} C & \longrightarrow & C_K \\ x & \longmapsto & \mathcal{O}_{C,x} \end{array}$ ist injektiv.
- (c) $C_K \setminus \varphi(C)$ ist endlich.

Beweis c) Œ Sei C affin, dann ist K = Quot(k[C])

Für $R \in C_k$ gilt: $R \in \varphi(C) \Leftrightarrow k[C] \subset R$ (denn das ist äquivalent zu $R = k[C]_m$ für ein maximales Ideal $m \subset k[C]$).

Seien $x_1, ..., x_r$ Erzeuger von k[C] als k-Algebra, dann ist

$$\varphi(C) = \{R \in C_K : x_i \in R \text{ für } i = 1, ..., r\} = \bigcap_{i=1}^r \{R \in C_K : x_i \in R\}$$

Nach 18.1. ist $C_k \setminus U_i(=P_{x_i})$ endlich $\Rightarrow C_K \setminus \varphi(C)$ ist endlich.

Bemerkung 4.18.3

 C_K ist Varietät durch

- (a) $U \subseteq C_K$ offen $\Leftrightarrow C_K \setminus U$ endlich (oder $U = \emptyset$)
- (b) Für U sei $\mathcal{O}(U) = \mathcal{O}_{C_K}(U) = \bigcap_{R \in U} R$

Beweis Sei C affine, nichtsinguläre Kurve mit $k(C) \cong K$. Dann ist nach 18.2 $\varphi(C)$ offen und dicht in C_K und $\varphi: C \to \varphi(C)$ ist Isomorphismus, denn $\mathcal{O}_{C_K,R_0} = R_0$ für jedes $R_0 \in C_K$.

Für $U \subset C_K$ offen mit $R_0 \in U$ ist $\mathcal{O}(U) \hookrightarrow R_0$

$$\Rightarrow \mathcal{O}_{C_K,R} = \lim_{R_0 \in U} \mathcal{O}(U) \hookrightarrow R_0.$$

Für $f \in R_0$ sei $U_f = C_K \setminus P_f \Rightarrow f \in \mathcal{O}(U_f)$

Für $U \subset C$ offen ist $\mathcal{O}_C(U) = \bigcap_{x \in U} \mathcal{O}_{C,x}$

Wir sind sicher: $\varphi: C \to \varphi(C)$ ist ein homöomorphismus.

Wir brauchen noch: Für jedes offene $U \subset C$ einen Isomorphismus von k-Algebren (verträglich mit " \subseteq "):

$$\alpha_{U}: \qquad \mathcal{O}_{C_{K}}(\varphi(U)) \longrightarrow \mathcal{O}_{C}(U)$$

$$\parallel \qquad \qquad \parallel$$

$$\bigcap_{R \in \varphi(U)} R \qquad \qquad \bigcap_{x \in U} \mathcal{O}_{C,x}$$

$$\parallel \qquad \qquad \parallel$$

$$\bigcap_{R \in \varphi(U)} \mathcal{O}_{C_{K},R} \qquad = \qquad \bigcap_{x \in U} \mathcal{O}_{C_{K},\varphi(x)}$$

<u>Beh.</u>: Für jedes $R \in L_K$ gibt es eine affine Kurve C_R mit $R \in \varphi(C_R)$, also mit $k[C_R] \subset R$. <u>Denn</u>: Sei $g \in R \setminus k$, B der ganze Abschluss von k[g] in K. Dann ist $B \subset R$ und $B = k[C_R]$ für eine nichtsinguläre, affine Kurve C_R (siehe 18.1).

Proposition 4.18.4

 C_K ist projektiv.

Beweis Sei $C_K = \bigcup_{i=1}^r V_i$ mit affinen nichtsingulären Kurven V_i wie in $\ref{eq:condition}$. Seien weiter $V_i \subseteq \mathbb{A}^{n_i}(k)$ und C_i der Zariski-Abschluss von V_i in $\mathbb{P}^{n_i}(k)$. C_i ist projektive Kurve (eventuell singulär). Nach Proposition 4.18.6 lässt sich die Einbettung $V_i \hookrightarrow C_i$ zu einem Morphismus $\varphi_i : C_K \longrightarrow C_i$.

Sei $\varphi: C_K \longrightarrow \prod_{i=1}^r C_i$ ist projektiv, $C := \overline{\varphi(C_K)}$ auch. $\varphi: C_K \longrightarrow C$ ist dominant $\Rightarrow k(C) \subseteq K \Rightarrow k(C) \cong K$.

Behauptung

 φ ist surjektiv.

Beweis Sei $x \in C$, R der ganze Abschluss von $\mathcal{O}_{C,x}$ in K. R ist normal, also diskreter Bewertungsring

$$\Rightarrow R \in C_K \Rightarrow \mathcal{O}_{C,x} \subseteq R \cong \mathcal{O}_{C,\varphi(R)} \Rightarrow x = \varphi(R)$$

Beweis (obiges "\(\times\)") für i mit $R \in V_i$ ist $R \cong \mathcal{O}_{V_i,\varphi_i(R)}$. Die Projektion $pr_i: C \longrightarrow C_i$ ist dominant

$$\Rightarrow \mathcal{O}_{V_i,\varphi_i(R)} \longrightarrow \mathcal{O}_{C,\varphi(R)}$$
 ist injektiv,

also ein Isomorphismus, da $\mathcal{O}_{V_i,\varphi_i(R)}$ ein diskreter Bewertungsring ist. (benutze: Ist R diskreter Bewertungsring, $K = \operatorname{Quot}(R)$, $S \subset K$ lokaler Ring mit $R \subseteq S$ und $m_S \cap R = m_R$, so ist R = S)

Noch zu zeigen:

Bemerkung 4.18.5

Sei $\varphi: V \longrightarrow W$ ein bijektiver Morphismus. Ist für jedes $x \in V$ der induzierte Homomorphismus $\mathcal{O}_{W,\varphi(x)} \longrightarrow \mathcal{O}_{V,x}$ ein Isomorphismus, so ist φ ein Isomorphismus.

Beweis Œ V, W affin, sei A := k[W], B := k[V]

Die Voraussetzung ist äquivalent zu:

 $\alpha: A \longrightarrow B$ ist ein k-Algebrenhomomorphismus, sodass $\alpha_m: A_m \longrightarrow B_{m'}$ für jedes maximale Ideal m von A ein Isomorphismus ist (wobei m' das, wegen der Bijektivität von φ , eindeutig bestimmte maximale Ideal von B mit $\alpha^{-1}(m') = m$).

Zu zeigen: α ist bijektiv

 α ist injektiv, da φ surjektiv ist.

 α ist surjektiv: Sei $x \in B$, $I_x := \{y \in A : y \cdot x \in A\}$

 I_x ist Ideal in A.

Ist $I_x = A$, so ist $1 \in I_x$, also $x \in A$.

Ist $I_x \neq A$, so sei m maximales Ideal in A mit $I_x \subseteq m$

$$Vor.$$
 $\exists a \in A, b \in A - m \text{ mit } \frac{x}{1} = \frac{a}{b} \text{ in } A_m = B_{m'}$

$$\Rightarrow \exists t \in A - m \text{ mit } t \cdot (b \cdot x - a) = 0$$

$$\Rightarrow t \cdot bx = ta \in A$$

$$\Rightarrow tb \in I_x \subseteq m \text{ Widerspruch! ,da } t \notin b \notin m$$

Proposition 4.18.6

Sei C nichtsinguläre irreduzible Kurve, V projektive Varietät, $\emptyset \neq U \subseteq C$ offen und $\varphi : U \longrightarrow V$ ein Morphismus. Dann gibt es genau einen Morphismus $\bar{\varphi} : C \longrightarrow V$ mit $\bar{\varphi}|U = \varphi$

Beweis C-U ist endlich, also $\times C-U = \{x\}$, $\times V = \mathbb{P}^n(k)$ und $\varphi(U) \not\subset V(X_i)$, $i = 1, \ldots, n$ Sei $h_{ij} := \frac{X_i}{X_j} \circ \varphi$ für $i \neq j$. h_{ij} ist regulär auf $\varphi^{-1}(D(X_i))$ ($\neq \emptyset$, da $\varphi(U) \not\subset V(X_j)$) $\Rightarrow h_{ij} \in k(C) =: K$

Nach Voraussetzung ist $\mathcal{O}_{C,x}$ diskreter Bewertungsring in K. Sei $v_x: K^{\times} \longrightarrow \mathbb{Z}$ die zugehörige Bewertung. Seien weiter $v_i := v_x(h_{i,0}), i = 1, \ldots, n$ und $r_k := \min\{v_t, i = 1, \ldots, n\}$. Für $i \neq k$ ist dann

$$v_x(h_{ik}) = v_x \left(\frac{X_i X_0}{X_0 X_k} \circ \varphi \right)$$

$$= v_x \left(\left(\frac{X_i}{X_0} \circ \varphi \right) \cdot \left(\frac{X_0}{X_k} \circ \varphi \right) \right)$$

$$= v_x(h_{i,0}) - v_x(h_{k,0})$$

$$= r_i - r_k > 0$$

 \exists Umgebung \bar{U} von xmit $h_{ik} \in \mathcal{O}_C(\bar{U}), i=1,\ldots,n$, $i \neq k.$ Für $y \in U$ sei

$$\tilde{\varphi}(y) := \begin{cases} (h_{0k}(y) : \dots : h_{nk}(y)) & k = 0 \text{ oder } r_k \le 0 \\ (1 : h_{1,k}(y) \cdot h_{k,0}(y) : \dots : h_{m,k}(y) \cdot h_{k,0}(y)) & k \ne \text{ und } r_k > 0 \end{cases}$$

 $\tilde{\varphi}$ ist Morphismus $\bar{U} \longrightarrow V$ (mit Bild in $D(X_k)$ beziehungsweise $D(X_0)$. Für $y \neq x$ ist $\tilde{\varphi}(y) = \varphi(y)$).

§19 Divisoren

Definition 4.19.1

Sei C eine nichtsinguläre, irreduzible Kurve.

(a) Ein **Divisor** auf C ist eine endliche formale Summe

$$D = \sum_{i=1}^{n} n_i P_i$$
, wobei $n \in \mathbb{N}$, $n_i \in \mathbb{Z}$, $P_i \in C$

$$\mathrm{Div}(C) := \{D = \sum n_i P_i: \ D \ \mathrm{ist \ Divisor \ auf} \ C\}$$

ist eine freie abelsche Gruppe, genannt Divisorengruppe von C.

- (b) Für $D = \sum_{i=1}^{n} n_i P_i$ heißt $\deg(D) := \sum_{i=1}^{n} n_i \operatorname{der} \operatorname{\mathbf{\textit{Grad}}}$ von D.
- (c) D heißt **effektiv**, wenn alle $n_i \geq 0$ sind.

Definition + Bemerkung 4.19.2

Sei C wie in 19.1, $f \in k(C)^{\times}$.

- (a) Für $P \in C$ heißt $\operatorname{ord}_P(f) := v_P(f)$ die **Ordnung** von f in P (dabei sei v_P die zu P gehörige diskrete Bewertung von k(C)).
- (b) $\operatorname{div}(f) := \sum_{P \in C} \operatorname{ord}_P(f) \cdot P$ heißt **Divisor** von f.
- (c) $D \in \text{Div}(C)$ heißt **Hauptdivisor**, wenn ein $f \in k(C)^{\times}$ existiert mit D = div(f).

- (d) Die Hauptdivisoren bilden eine Untergruppe $Div_H(C)$ von Div(C).
- (e) $Cl(C) := Div(C)/Div_H(C)$ heißt **Divisorenklassengruppe** von C.
- (f) Divisoren $D, D' \in \text{Div}(C)$ heißen **linear äquivalent**, wenn D D' Hauptdivisor ist. Schreibweisen: $D \equiv D'$, $D \sim D'$

Beweis

b) Zu zeigen: $\{P \in C : \operatorname{ord}_P(f) \neq 0\}$ ist endlich.

 ${P \in C : \operatorname{ord}_P(f) \neq 0} = V(f) \cup V(\frac{1}{f}) \text{ und } f \neq 0.$

d)
$$\operatorname{div}(f) + \operatorname{div}(g) = \operatorname{div}(f \cdot g); \quad -\operatorname{div}(f) = \operatorname{div}(\frac{1}{f}); \quad 0 = \operatorname{div}(1)$$

Beispiele 4.19.3

(a) $C = \mathbb{P}^1(k)$

Dann gilt $D \in \text{Div}(C)$ ist Hauptdivisor $\Leftrightarrow \deg(D) = 0$

denn " \Rightarrow " Sei $f = \frac{\prod_{i=1}^{n} (X - a_i)}{\prod_{j=1}^{m} (X - b_j)} \in k(C)^{\times}$ mit $a_i, b_j \in k$, $a_i \neq b_j$ für alle i, j

 $\Rightarrow \operatorname{div}(f) = \sum_{i=1}^{n} a_i - \sum_{j=1}^{m} b_j + (m-n) \cdot \infty$

 $\Rightarrow \deg(\operatorname{div}(f)) = 0$

"
—" Für Null- und Polstellen, die nicht im Punkt ∞ liegen, schreib
ef wie oben, mit den entsprechenden Linearfakoren für die Nullstellen im Zähler, bzw. für die Polstellen im Nenner, jeweils mit Vielfachheiten.

(b) $C = V(Y^2Z - X^3 + XZ^2) \subseteq \mathbb{P}^2(k)$ (Homogenisierung von $y^2 = x^3 - x$) $C = V(y^2 - x^3 + x) \cup \{(0:1:0)\}$ Sei $f = y = \frac{Y}{Z} \in k(C)^{\times}$. Gesucht: div(f)

Auf $U_0 = D(Z)$ ist y regulär und hat 3 Nullstellen, nämlich $P_{-1} = (-1,0), P_0 = (0,0)$ und $P_1 = (1, 0)$.

 $\underline{P_0}$: m_{P_0} wird erzeugt von x und y.

Es ist $y^2 = x(\underline{x^2 - 1}) \Rightarrow y$ erzeugt m_{P_0} (mit x dagegen lässt sich nur y^2 erzeugen).

Mit y = x(x-1)(x+1) und dem gleichen Argument zeigt man das gleiche für P_{-1} und

 $\Rightarrow P_0, P_{-1}, P_1$ haben alle Ordnung 1.

 $P_{\infty} = (0:1:0)$:

 $m_{P_{\infty}}$ wird erzeugt von $\frac{X}{V}$ und $\frac{Z}{V}$ mit der Gleichung

$$\frac{Z}{X} = \left(\frac{X}{Y}\right)^3 - \frac{X}{Y}\left(\frac{Z}{Y}\right)^2$$

$$\Rightarrow \left(\frac{X}{Y}\right)^3 = \frac{Z}{Y} \left(\underbrace{1 + \frac{X}{Y} \frac{Z}{Y}}_{\mathcal{O}_{C, P_{\infty}}^{\times}}\right)$$

$$\Rightarrow \frac{X}{Y}$$
 erzeugt $m_{P_{\infty}}$

$$\Rightarrow \operatorname{ord}_{P_{\infty}}\left(\frac{Y}{Z}\right) = -3$$

Insgesamt folgt: $\operatorname{div}(f) = P_{-1} + P_0 + P_1 - 3P_{\infty}$

Definition + Bemerkung 4.19.4

Seien C, C' nichtsinguläre Kurven, $f: C \to C'$ ein nichtkonstanter Morphismus.

- (a) Sei $Q \in C'$ und $t \in m_Q$ Erzeuger. Für $P \in f^{-1}(Q)$ heißt $e_P(f) := \operatorname{ord}_P(t \circ f)$ **Verzweigungsordnung** von f in P.
- (b) $e_P(f)$ hängt nicht von der Wahl von t ab.
- (c) Für $Q \in C'$ sei

$$f^*Q := \sum_{P \in f^{-1}(Q)} e_P(f) \cdot P$$

und
$$f^* : \operatorname{Div}(C') \to \operatorname{Div}(C)$$

der induzierte Gruppenhomomorphismus.

(d) $f^*(\operatorname{Div}_H(C')) \subseteq \operatorname{Div}_H(C)$

Beweis d.) Sei $D = \operatorname{div}(g \circ f) \in \operatorname{Div}_H C'$.

Es gilt $f^*D = \operatorname{div}(g \circ f)$, denn:

Für $P \in C$ ist $\operatorname{ord}_P(g \circ f) = N$, falls $g \circ f = t_P^N \cdot u$ für eine Einheit $u \in \mathcal{O}_{C,P}^{\times}$ und einen Erzeuger t_P von m_P . Der Koeffizient von P in f^*D ist

$$\underbrace{\operatorname{ord}_{f(P)}(g)}_{=:n} \cdot \underbrace{v_P(t_Q \circ f)}_{=:m}$$

mit Q := f(P). Also:

$$g = t_Q^n \cdot u_1, t_Q \circ f = t_P^m \cdot u_2$$

$$\Rightarrow g \circ f = (t_Q^n \circ f)^n \cdot (u_1 \circ f) = t^{m \cdot n} \cdot \underbrace{u_2^n(u_1 \circ f)}_{\in \mathcal{O}_{C,P}^{\times}}$$

$$\Rightarrow \operatorname{ord}_P(g \circ f) = n \cdot m$$

Definition + Proposition 4.19.5

Sei $f:C\longrightarrow C'$ ein nichkonstanter Morphismus irreduzibler, nichtsingulärer, projektiver Kurven.

- (a) $\deg(f) := [k(C) : k(C')]$ heißt **Grad** von f (dabei wird k(C') als Teilkörper von k(C) über den von f induzierten Homomorphismus aufgefasst).
- (b) Für $Q \in C'$ ist $\sum_{P \in f^{-1}(Q)} e_P(f) = \deg(f)$

Beweis b.) Sei $f^{-1}(Q) = \{P1, \dots, P_r\}, t = t_Q$ ein Erzeuger von m_Q

$$\Rightarrow e_{P_i}(f) = \operatorname{ord}_{P_i}(t \circ f) = \operatorname{ord}_{P_i}(t) = \dim_k \left(\mathcal{O}_{C,P_i/(t)} \right) (*)$$

wobei
$$(t) = \left(t_{P_i}^{e_{P_i}(f)}\right).$$

 \times C' affin, $\overset{\circ}{C}$ affin (die P_i müssen in C sein)

Sei R = k[C'], S = k[C]. Dann ist S der ganze Abschluss von R in k(C). Sei $U = R - m_Q$, also $R_U = \mathcal{O}_{C',Q}$, $S' := S_U$ ist ganz über R_U .

Behauptung: S' ist freier R_U -Modul vom Rang n := (f).

"Beweis": S' ist endlich erzeugter R_U -Modul: vergleich Algebra II, Dedekindringe.

Mit dem Elementarteilersatz für Hauptidealringe folgt die Behauptung "frei". Weiter ist

$$S' \bigoplus_{\mathcal{O}_{C',Q}} k(C') = k(C) \Rightarrow \operatorname{Rg}(S') = [k(C) : k(C')] = n$$

Die maximalen Ideale m_1, \ldots, m_r von S' entsprechen P_1, \ldots, P_r , genauer: $S'_{m_i} = \mathcal{O}_{C,P_i}$ Es ist S'/t. S' n-dimensionaler Vektorraum über $R_U/(t) = k$. Weiter gilt:

$$tS' = \left(\bigcup_{i=1}^{r} tS'_{m_i}\right) \cap S'$$

Mit dem chinesischen Restsatz folgt:

$$S'/tS' = \bigoplus_{i=1}^{r} S'/(tS_{-m_i}' \cap S') \cong \bigoplus_{i=1}^{r} S'_{m_i}/tS'_{m_i} = \bigoplus_{i=1}^{r} \mathcal{O}_{C,P_i}/(t)$$

und dim
$$(\mathcal{O}_{C,P_i}/(t)) = e_{P_i}(f)$$

Satz 8

Jeder Hauptdivisor auf einer irreduziblen, nichtsingulären Kurve hat Grad 0.

Beweis (Beweisidee)

 $f \in k(C) \setminus k$ kann aufgefasst werden als rationale Abbildung $C \dashrightarrow \mathbb{P}^1(k)$. Nach Prop. 18.5 ist f sogar ein Morphismus $f: C \to \mathbb{P}^1(k)$. Der Satz folgt dann aus:

Beh 1: "div $(f) = f^*((0) - (\infty))$ "

Beh 2: $\deg(f^*D) = \deg(f) \cdot \deg(D)$ für jeden Divisor D.

Beweis (von Beh 1) Seien $(x_0 : x_1)$ homogene Koordinaten auf $\mathbb{P}^1(k)$. Dann ist $\operatorname{div}(\frac{X_1}{X_0}) = (1:0) - (0:1)$ und

$$f^*((1:0) - (0:1)) \stackrel{4.19.4d.)}{=} \operatorname{div}\left(\frac{X_1}{X_0} \circ f\right) = \operatorname{div}(f)$$

Beweis (von Beh 2) folgt aus Proposition 4.19.5 b.)

§20 Das Geschlecht einer Kurve

Sei C eine nichtsinguläre, projektive Kurve über k.

Definition + Bemerkung 4.20.1

Sei $D = \sum n_P P$ ein Divisor auf C.

- (a) $L(D) := \{ f \in k(C) : D + \operatorname{div}(f) \ge 0 \} \cup \{ 0 \}$ heißt **Riemann-Roch-Raum** zu D, L(D) ist k-Vektorraum.
- (b) L(0) = k
- (c) Ist deg(D) < 0, so ist L(D) = 0

(d) Für $l(D) := \dim L(D)$ gilt:

$$l(D) = l(D')$$
, falls $D \equiv D'$

Beweis (a) $f \in L(D) \Leftrightarrow \text{für jedes } P \in C \text{ ist } \text{ord}_P(f) \geq -n_P \text{ ord}_P(f+g) \geq \min(\text{ord}_P(f), \text{ord}_P(g))$

(d) Sei $D' = D + \operatorname{div}(g)$. Dann ist $L(D') \longrightarrow L(D)$, $f \mapsto fg$ ein Isomorphismus von k-Vektorräumen, denn

$$D' + \operatorname{div}(f) \ge 0 \Leftrightarrow D + \operatorname{div}(g) + \operatorname{div}(f) \ge 0$$

 $\Leftrightarrow D + \operatorname{div}(fg) \ge 0$

Satz + Definition 9 (Riemann)

- (a) Für jeden Divisor $D \in \text{Div}(C)$ mit $\deg D \ge -1$ ist $l(D) \le \deg D + 1$.
- (b) Es gibt ein $\gamma \in \mathbb{N}$, sodass für alle $D \in \text{Div}(C)$ gilt

$$l(D) \ge \deg D + 1 - \gamma$$

(c) Das kleinste $\gamma \in \mathbb{N}$, für das (b) erfüllt ist, heißt **Geschlecht** von C, Schreibweise: g = g(C).

Bemerkung 4.20.2

- (a) Sind C und C' isomorph, so ist g(C) = g(C').
- (b) $q(\mathbb{P}^1(k)) = 0$

Beweis (a) $\sqrt{}$

(b) Zu zeigen: für jeden Divisor D vom Grad ≥ 0 auf $\mathbb{P}^1(k)$ ist $l(D) = \deg D + 1$. Schreibe: $D = D' + D_0$ mit $D' \geq 0$ und $\deg(D_0) = 0$. Nach Beispiel 4.19.3 ist D_0 Hauptdivisor.

$$\Rightarrow l(D') = l(D).$$
 Also Œ $D \geq 0,$

$$D = \sum_{i=1}^{r} n_i P_i \text{ mit } n_i \ge 1.$$

$$\Rightarrow L(D) = \{ f \in k(X) : \operatorname{ord}_{P_i}(f) \ge -n_i, i = 1, \dots, r \text{ und } f \text{ regulär auf } \mathbb{P}^1(k) \setminus \{P_1, \dots, P_r\} \}$$

Also ist

$$1, \frac{1}{X - P_1}, \dots, \frac{1}{(X - P_1)^{n_1}}, \dots, \frac{1}{(X - P_2)^{n_2}}, \dots, \frac{1}{(X - P_2)^{n_2}}, \dots, \frac{1}{(X - P_r)^{n_r}}$$

$$\vdots$$

eine Basis von L(D).

Beweis (von Satz 9) (a) Induktion über $d = \deg(D)$

d=0: Ist $f\in L(D), f\neq 0$, so ist $D+\operatorname{div}(f)\geq 0$. Da $\deg(D+\operatorname{div}(f))=0$, folgt $D+\operatorname{div}(f)=0$

$$\Rightarrow D = -\operatorname{div}(f) = \operatorname{div}(\frac{1}{f})$$
$$\Rightarrow L(D) = f \cdot k \Rightarrow l(D) \le 1$$

 $d \geq 1$: Sei $D = \sum_{P \in C}$ und $f_1, \dots, f_{d+2} \in L(D)$.

Zu zeigen: die f_i sind linear abhängig. Sei dazu $P \in C$. Sortiere die f_i so, dass

$$\operatorname{ord}_{P}(f_{i}) = -n_{P} \text{ für } i = 1, \dots, k \text{ und}$$

 $\operatorname{ord}_{P}(f_{i}) > -n_{P} \text{ für } i = k+1, \dots, d+2 \text{ (für ein } k \geq 0)$
 $\Rightarrow f_{i} \in L(D-P) \text{ für } i = k+1, \dots, d+2$

Ist k=0 oder k=1, so sind $f_2,\ldots,f_{d+2}\in L(D-P)$ nach Induktionsvoraussetzung linear abhängig. Sei also $k\geq 2$.

Sei
$$g_i := u_i(P) \cdot f_1 - u_1(P) \cdot f_i = t^{-n_P} \underbrace{\left(u_i(P) \cdot u_1 - u_1(P) \cdot u_i\right)}_{\in m_P}$$

("=", wegen $f_i = t^{-n_P} \cdot u_i$ für $u_i \in \mathcal{O}_{C,P}^{\times}$ und einen Erzeuger $t = t_P$ von m_P)

$$\Rightarrow g_i \in L(D-P), i = 2, \dots, k$$

 $\Rightarrow g_2, \dots, g_k, f_{k+1}, \dots, f_{d+2}$ sind linear abhängig
 $\Rightarrow f_1, \dots, f_k, f_{k+1}, \dots, f_{d+2}$ sind linear abhängig

(b) **Behauptung 1:** Für jeden Divisor $D \in \text{Div}(C)$ und jedes $P \in C$ gilt

$$l(D+P) \le l(D)+1$$

denn: Sei f_1, \ldots, f_n eine Basis von L(D+P). Wie oben sei $f_1, \ldots, f_k \notin L(D), f_{k+1}, \ldots, f_n \in L(D)$. Definiere $g_i, i = 2, \ldots, k$ wie oben (ist $k \leq 1$, so ist $l(D) \geq n - 1$).

$$g_2, \ldots, g_k$$
 linear unabhängig $\Rightarrow g_2, \ldots, g_k, f_{k+1}, \ldots, f_n$ linear abhängig $\Rightarrow l(D) \ge n-1$

Für $D \in \text{Div}(C)$ sei s(D) := deg D + 1 - l(D). Dann ist zu zeigen

$$\exists \gamma \in \mathbb{N} \ \forall D \in \mathrm{Div}(C) : s(D) \leq \gamma$$

Es gilt

- (i) s(D) = s(D') für $D \equiv D'$ (4.20.1 (d))
- (ii) $s(D') \le s(D)$, falls $D' \le D$ (Behauptung 1)

Wähle nun $f \in k(C) - k$ fest. Sei

$$N := f^*(0) = \sum_{\substack{P \in C \\ f(P) = 0}} \operatorname{ord}_P(f) \cdot P$$

der Nullstellendivisor von f. $\deg(N) = \deg(f) =: n$.

Behauptung 2: Zu jedem Divisor $D \in Div(C)$ gibt es einen linear äquivalenten Divisor D' mit $D' \leq m \cdot N$ für ein $m \geq 1$.

Behauptung 3: Es gibt ein $\gamma \in \mathbb{N}$ mit $l(m \cdot N) \geq m \cdot n + 1 - \gamma$ für alle $m \geq 1$. Dann ist für $D \in Div(C)$ und D' wie in Behauptung 2

$$s(D) \stackrel{\text{(i)}}{=} s(D') \stackrel{\text{(ii)}}{\leq} s(m \cdot N) = m \cdot n + 1 - l(m \cdot N)$$

$$\stackrel{\text{Beh. 3}}{\leq} m \cdot n + 1 - (m \cdot n + 1) + \gamma = \gamma$$

Beweis (von Behauptung 2) Sei $D = \sum n_P \cdot P$

Gesucht: $h \in k(C)$ mit

$$n_P + \operatorname{ord}_P h \le \begin{cases} m \cdot \operatorname{ord}_P(f) &: \operatorname{ord}_P(f) > 0 \\ 0 &: \operatorname{ord}_P(f) \le 0 \end{cases}$$

Seien P_1, \ldots, P_r die Punkte in C, für die $n_i := n_{P_i} > 0$ ist, aber $\operatorname{ord}_{P_i}(f) \leq 0$. Sei $h_i := \frac{1}{f} - \frac{1}{f(P_i)} \in k(C)^{\times}, i = 1, \ldots, r$

$$\Rightarrow$$
 ord _{P_i} $(h_i) \ge 1, i = 1, \dots, r$

 $\operatorname{ord}_P(h_i) \geq 0$ für alle $P \neq P_i$ mit $\operatorname{ord}_P(f) \leq 0$

$$\Rightarrow h := \prod_{i=1}^{r} h_i^{n_i}$$
 hat die gewünschte Eigenschaft

Beweis (von Behauptung 3) Sei $g_1, ..., g_n$ eine Basis von k(C) über $k(f) = k(\frac{1}{f})$.

Dabei können die g_i so gewählt werden, dass sie ganz über $k\left[\frac{1}{f}\right]$ sind.

- \Rightarrow Jede Polstelle von g_i ist auch Polstelle von $\frac{1}{f}$, also Nullstelle von f.
- $\Rightarrow \operatorname{div}(g_i) + \gamma_0 N \ge 0$ für ein geeignet großes $\gamma_0 \in \mathbb{N}$ $(i = 1, ..., n) \Rightarrow g_i \in L(\gamma_0 N)$

Sei $m \ge 1$

Beh.: $\frac{g_i}{f^{\nu}} \in L((m+\gamma_0)N), \quad i=1,...,n; \quad \nu=0,...,m$

$$\frac{g}{\text{div}(\frac{g}{f^{\nu}}) + (m + \gamma_0)N} = \text{div}(g_i) - \nu \operatorname{div}(f) + mN + \gamma_0 N \ge (m - \nu)N \ge 0, \text{ da div}(g_i) + \gamma_0 N \ge 0 \text{ (s.o.)}$$

$$\Rightarrow l(m + \gamma_0)N) \ge m(n+1)$$

Die
$$\frac{g_i}{f^{\nu}}$$
 sind k -linear unabhängig.

$$\Rightarrow l((m+\gamma_0)N) \geq m(n+1)$$

$$\stackrel{Bew.1+Ind.}{\Rightarrow} l(mN) \geq n(m+1) - \gamma_0 n = mn - \underbrace{n(\gamma_0-1)}_{:=\gamma-1}$$

(Denn: Kommt ein Punkt hinzu, so vergrößert sich die Dimension um 0 oder 1.)

Folgerung 4.20.3

Sei C eine nichtsinguläre, projektive Kurve, g = g(C). Dann gibt es ein $d_0 \in \mathbb{Z}$, so dass für alle $D \in \text{Div}(C) \text{ mit deg}(D) \geq d_0 \text{ gilt:}$

$$l(D) = \deg(D) + 1 - g$$

Beweis Nach Satz 8 gibt es ein D_0 mit $l(D_0) = \deg(D_0) + 1 - g$. Sei $d_0 = \deg(D_0) + g$ und sei $D \in \operatorname{Div}(C)$ mit $\deg(D) \geq d_0$ $\Rightarrow l(D - D_0) \geq \deg(D) - \deg(D_0) + 1 - g \geq 1$ Also gibt es ein $f \in L(D - D_0), f \neq 0$ $\Rightarrow D' := D + \operatorname{div}(f) \geq D_0$ $s(D) = s(D') \geq s(D_0) = g, \quad (s(D) = \deg(D) + 1 - l(D))$ mit Satz 8: $s(D) \leq g \quad \forall D \Rightarrow s(D) = g$

Proposition 4.20.4

Sei $C \subseteq \mathbb{P}^2(k)$ eine nichtsinguläre projektive Kurve vom Grad $d \geq 1$ (d.h. C = V(F) für ein homogenes Polynom F vom Grad d). Dann ist

$$g(C) = \frac{1}{2}(d-1)(d-2)$$

Also: $d=1,2\Rightarrow g=0; d=3\Rightarrow g=1; d=4\Rightarrow g=3; d=5\Rightarrow g=6$... Es esistieren somit keine nichtsingulären Kurven vom Geschlecht 2,4,5,... in $\mathbb{P}^2(k)$

Beispiele 4.20.5

 $V(X_0^d + X_1^d + X_2^d)$ ist nichtsingulär $(d \geq 1, \, \mathrm{char}(k) \nmid d)$ ("Fermat-Kurve")

Beweis Beh. 1: Es gibt eine Gerade $L \subset \mathbb{P}^2(k)$ mit $\sharp(C \cap L) = d$.

<u>Denn</u>: Ausnahme bilden nur die Tangenten. Deren Menge ist aber ein Zariski-abgeschlossener Unterraum der Menge der Geraden.

Sei $L = V(F_1)$ wie in Beh. 1, $L \cap C = \{P_1, ..., P_d\}$ Œ $P_i \in D(X_0), i = 1, ..., d$

Beh.: Für $D=\sum_{i=1}^d P_i,\ m\geq 1$ und $g\in L(mD)$ gibt es ein homogenes Polynom $H\in k[X_0,X_1,X_2]$ mit $g=\frac{H}{F_1^m}$

Denn: Sei

$$f_1 = \frac{F_1}{X_0} \in k(C)$$

Dann ist $\operatorname{div}(f_1^m g) = mD - mD' + \operatorname{div}(g)$ mit einem effektiven Divisor D' mit Träger in $V(X_0)$ $\Rightarrow f_1^m g$ ist ein Polynom in $\frac{X_1}{X_0}$ und $\frac{X_2}{X_0}$ vom Grad m.

Die Homogenisierung H von $f_1^m g$ erfüllt $g = \frac{H}{F_1^m}$

Also:

$$\begin{split} L(mD) &= k[X_0, X_1, X_2]_m / F \cdot k[X_0, X_1, X_2]_{m-d} \\ \Rightarrow l(mD) &= \frac{1}{2}(m+1)(m+2) - \frac{1}{2}(m-d+1)(m-d+2) \\ &= \frac{1}{2}[d(m-d+2) + d(m+1)] \\ &= md - \frac{1}{2}(d^2 - 3d) \\ &= md + 1 - \frac{1}{2}(d-1)(d-2) \end{split}$$

§21 Der Satz von Riemann-Roch

Sei C eine nichtsinguläre projektive Kurve über k, k algebraisch abgeschlossen.

Erinnerung / Definition + Bemerkung 4.21.1

 $\Omega_C := \Omega_{k(C)/k}$ sei der k(C)-Vektorraum der k-Differentiale von k(C). Die Elemente von $\Omega_{k(C)/k}$ heißen **rationale Differentiale** oder **meromorphe Differentiale** auf C. Es gilt: $\dim_{k(C)} \Omega_C = 1$

Beweis

- Ist $C = \mathbb{P}^1(k)$, so ist k(C) = k(X) und $\Omega_C = k(C) \cdot dX$.
- Im Allgemeinen ist k(C) = k(x, y) für geeignete x, y. x und y sind algebraisch abgängig, das heißt es gibt $F \in k[X, Y]$ mit $F(x, y) = 0 \Rightarrow dF(x, y) = 0$. Es gibt also lineare Gleichungen zwischen dx und dy.

Definition + Bemerkung 4.21.2

Sei $\omega \in \Omega_C, \omega \neq 0$

- (a) Für $P \in C$ sei t_P ein Erzeuger von m_P und $\omega = f dt_P$ (für ein $f \in k(C)$). Dann ist ord_P $\omega := \operatorname{ord}_P(f)$ unabhängig von der Wahl des Erzeugers t_P .
- (b) $\operatorname{div}(\omega) := \sum_{P \in C} \operatorname{ord}_P(\omega) \cdot P$ ist Divisor auf C.
- (c) $K \in \text{Div } C$ heißt **kanonisch**, wenn es ein $\omega \in \Omega_C$ gibt mit $K = \text{div}(\omega)$.
- (d) Je zwei kanonische Divisoren sind linear äquivalent.

Beweis (a) Übung!

(b) Sei $P \in C, t_P$ Erzeuger von m_P

$$U = C - \{\tilde{P} \in C : t_P \notin \mathcal{O}_{\tilde{P}}\}\$$

ist offen in C. Für $Q \in U$ ist $t_Q := t_P - t_P(Q) \in m_Q$ und $d(t_Q) = d(t_P)$. Die Teilmenge

$$U' = \{ Q \in U : t_Q \notin m_a^2 \}$$

ist offen (!). Für $Q \in U'$ ist $\operatorname{ord}_Q(\omega) = \operatorname{ord}_P(f)$. $\Rightarrow \operatorname{ord}_Q(\omega) \neq 0$ für nur endlich viele $Q \in U'$.

Beispiele

$$C = \mathbb{P}^1(k), \omega = dz$$

In $a \in C$ ist z - a ein Erzeuger von m_a

$$\Rightarrow \operatorname{ord}_a \omega = 0, \operatorname{da} \omega = dz = 1 \cdot d(z - a)$$

In ∞ ist $\frac{1}{z}$ Erzeuger von m_{∞} .

$$dz = -z^2 d(\frac{1}{z}), \operatorname{ord}_{\infty}(z^2) = -2 \Rightarrow \operatorname{div}(\omega) = -2 \cdot \infty$$

Satz 10 (Riemann-Roch)

Sei C eine nichtsinguläre projektive Kurve über k, K ein kanonischer Divisor auf C. Dann gilt für jeden Divisor $D \in \text{Div}(C)$:

$$l(D) - l(K - D) = \deg D + 1 - g$$

Beweis für den Fall $C \subset \mathbb{P}^2(k)$.

Behauptung: Für jeden Divisor D mit l(D) > 0 und jedes $P \in C$ gilt: Ist $l(K - D - P) \neq l(K - D)$, so ist l(D + P) = l(D).

Proposition 4.21.3

Sei $C = V(F) \subset \mathbb{P}^2(k)$ nichsinguläre projektive Kurve vom Grad $d \geq 3$ und $L \subset \mathbb{P}^2(k)$ eine Geradee mit $L \cap C = \{P_1, \dots, P_d\}$. Dann ist

$$K = \sum_{i=1}^{d} (d-3)P_i$$

ein kanonischer Divisor.

Probe:

$$\deg K + 2 = d(d-3) + 2 = d^2 - 3d + 2 = 2g$$
$$g = \frac{1}{2}(d-1)(d-2) = \frac{1}{2}(d^2 - 3d + 2)$$

Beweis Œ $L = V(X_0)$. Sei $X = \frac{X_1}{X_0}, Y = \frac{X_2}{X_0}$ (als Elemente von k(C)) Behauptung:

$$\operatorname{div}(dx) = \sum_{i=1}^{d} (d-3)P_i + \operatorname{div}(f_y)$$

wobei f_y die Klasse in k(C) von $\frac{1}{X_0^{d-1}} \cdot \frac{\partial F}{\partial X_2}$ ist. Dann ist

$$\operatorname{div}(f_y) = \sum_{P \in U_0} \operatorname{ord}_P \frac{\partial F}{\partial X_2} \cdot P - \sum_{i=1}^d (d-1) \cdot P_i$$

Zu zeigen ist also:

$$\operatorname{div} dx = \sum_{P \in U_0} \operatorname{ord}_P \frac{\partial F}{\partial X_2} P - 2 \cdot \sum_{i=1}^d P_i$$

Folgerung 4.21.4

$$D = 0: 1 - l(K) = 1 - g$$

(a)
$$l(K) = g$$

(b)
$$deg(K) = 2g - 2, g - 1 = deg K + 1 - g; D = K$$

(c) für
$$\deg D \ge 2y - 1$$
 ist $l(D) = \deg D + 1 - g$

Vokabeln

(Krull-)Dimension, 35
affine Kegel, 19 affine Varietät, 4 affiner Koordinatenring, 5
birational, 16
Definitionsbereich, 15 Dehomogenisierung, 20 Divisor, 46 Divisorengruppe, 46 Divisorenklassengruppe, 47 dominant, 15, 28
effektiv, 46
Funktionenkörper, 14, 28
Garbe, 12 Geschlecht, 50 Grad, 46, 48 graduierter Ring, 18
Hauptdivisor, 46 homogen, 18 homogene Koordinatenring, 20 Homogenisierung, 20 Höhe, 35
irreduzibel, 6 irreduzible Komponente, 6 Isomorphismus, 32
kanonisch, 54
linear äquivalent, 47 lokale Dimension, 36 lokaler Ring, 34
meromorphe Differentiale, 54 Morphismus, 9, 11, 25
nichtsingulärer Punkt, 38
Ordnung, 46
Pol(stellen)menge, 15 projektive Varietät, 18 Prägarbe, 12

Prävarietät, 31, 32
quasiprojektive Varietät, 21
rationale Abbildung, 16, 28 rationale Differentiale, 54 rationale Funktion, 15, 27 regulär, 39 reguläre Funktion, 11, 22 regulärer Punkt, 38 Riemann-Roch-Raum, 49
separiert, 32 singuläre Ort, 40
Tangentialbündel, 39 Tangentialraum, 37 tautologisches Bündel, 29
Varietät, 33 Verschwindungsideal, 5, 19 Verzweigungsordnung, 48
Zariski-Tangentialraum, 37 Zariski-Topologie, 6, 19