

TOMOGRAPHY IMAGE QUALITY ASSESSMENT

Non confidential (Online available)

Tutor: Hammami Omar (ENSTA)

Arnaud Demortière (UPJV)

Student: Zhang kai 08/31/2020

Abstract

Images perception plays a fundamental role in the tomography-based approaches for microstructure characterization and has a profound impact on all subsequent image processing steps (segmentation and analysis). However, the enhancement of image perception frequently involves the observer-dependence, which translate into user-to-user dispersion and uncertainties in the calculated parameters. This work presents an objective quantitative method, which utilizes convolutional neural networks, for tomographic image quality assessment. Compared to most existing data-driven methods, our method requires less annotations and is more appropriate for tomographic images applications. Different metrics were employed to evaluate the correlation of our predicted scores with the subjective human opinion as well as the segmentation accuracy. The evaluation results from this work demonstrate that our method can be a direct tool that guides the enhancement process and conduct to a reliable segmentation results in respect to the subjective human opinion. As a result, the image processing can turn into a very robust, observer-independent process.

Keywords:

Image quality assessment, Semantic segmentation, Tomography images

Contents

- 1. INTRODUCTION
- 2. METHOD
- 3. RESULTS
- 4. CONCLUSION

Tomography images: generation workflow

Data Acquisition (2D projections)

Data Reconstruction (3D volume)

Tomography images: analysis workflow

Image quality assessment

Trust-worthy quantitative metric

Image quality assessment

• **FR-IQA**: Full reference image quality assessment.

• **RR-IQA**: Reduced reference image quality assessment.

• NR-IQA: No reference image quality assessment.

Method

Pipeline of tomography image quality assessment method

Data generation

Detailed structure of data generation.

- Tackle the insufficient dataset problem
- Reduce the cost for human annotations

Score prediction

Structure of score prediction module. \bar{y} is the human annotated score or the generated score by label projection. \hat{y} is the score predicted by the network.

Score p

Score prediction - ranking

① Rank loss

$$L(\hat{y}_i, \hat{y}_j) = max(0, m + \hat{y}_j - \hat{y}_i)$$
 Higher score means better quality

Score prediction - regression

300 ----- 2.47

② MSE loss

$$L(\hat{y},y) = (\hat{y} - y)^2$$

Regress the ranking information to a specific score, in the range of 1 to 5 (terrible, bad, average, good, excellent)

Evaluation method - two metrics

Pearson's linear correlation coefficient (PLCC). It measures the capability of the metric to predict the subjective scores with low error.

$$ext{PLCC} = rac{\displaystyle\sum_{i=1}^{M_d} \left(\widehat{y}_i - \widehat{y}_{avg}
ight) \left(y_i - y_{avg}
ight)}{\left(\displaystyle\sum_{i=1}^{M_d} \left(\widehat{y}_i - \widehat{y}_{avg}
ight)^2
ight)^{rac{1}{2}} \left(\displaystyle\sum_{i=1}^{M_d} \left(y_i - y_{avg}
ight)^2
ight)^{rac{1}{2}}}$$

Spearman's rank ordered correlation coefficient (SROCC). It compares the monotonicity of the prediction performance.

$$ext{SROCC} = 1 - rac{6\sum_{i=1}^{M_d}(d_i)^2}{M_d(M_d^2-1)}$$

Evaluation method - segmentation

· High uncertainty

Low uncertainty

True condition

Predicted condition

Phase 1 (w) (b)

Phase 1 (w) green blue

Phase 2 (b)

Phase 2 (b)

Evaluation method - segmentation

Intersection-Over-Union (IoU)

Dice Coefficient (F1 Score)

Results – Dataset creation

attributes	description		
Total number of images	111 images		
Image size	224×224		
Image bits	8-bit		
Distortion types	Ring artifact, noise, blur		
Annotation label	terrible, bad, average, good, excellent		
Number of observers for each image	15(averagely)		

Results – Data generation

The qualitative results of label projection. The red box means the human labels with 95% confidence. The red dot in each line is the average value of labels.

metric distortion	Num of images	SROCC	PLCC
Ring artifact	15	0.655	0.641
Noise	25	0.813	0.858
Blur	20	0.852	0.846

Results - Score prediction

Evaluation results of score prediction module. The figures from left to right are the evaluation of images with ring artifact distortion, noise and blur, respectively. The red box represents the scores with confidence

29 images for training; 56 images for testing

Metric	Method	Ring Artifact	Noise	Blur	ALL
SROCC	BRISQUE [1]	0.785	0.737	0.861	0.794
	RankIQA [2]	0.761	0.769	0.897	0.809
	TIQA(ours)	0.839	0.778	0.895	0.837
PLCC	BRISQUE[1]	0.450	0.757	0.849	0.685
	RankIQA[2]	0.758	0.768	0.879	0.801
	TIQA(ours)	0.871	0.799	0.854	0.841

138 millions

9 millions

Results – Correlation

Results of different distorted images evaluated by TIQA and segmentation. For F1 score, it is in the range of 0 (the worst) and 1 (the best).

Results – Correlation

Point correlation between predicted segmentation mask and ground truth for phase 2. The figures from left to right demonstrate the correlation results from images with different types of distortion. The color bar shows the distortion at different level, from little distortion to severe distortion. The solid line means the point correlation at X direction while the dash line indicates the relation at Y direction.

metric distortion	SROCC	PLCC
Ring artifact	0.925	0.887
Noise	0.829	0.877
Blur	0.928	0.952

Quantitative results of the correlation between predicted quality score and segmentation accuracy

Conclusion

- A NR-IQA method is proposed for TIQA which requires a small number of annotations and achieves outperformed results.
- A data generation method is developed by imitating the human observers to label the distorted images automatically for the purpose of addressing the insufficient data problem.
- The correlation between our predicted quality scores and the segmentation performance is investigated.

Reference

- 1. Mittal, A., Moorthy, A. K. & Bovik, A. C. Blind/referenceless image spatial quality evaluator. in *Conference Record Asilomar Conference on Signals, Systems and Computers* 723–727 (2011). doi:10.1109/ACSSC.2011.6190099.
- 2. Liu, X., Weijer, J. Van De & Bagdanov, A. D. RanklQA: Learning from Rankings for No-Reference Image Quality Assessment. in *Proceedings of the IEEE International Conference on Computer Vision* vols 2017-Octob 1040–1049 (Institute of Electrical and Electronics Engineers Inc., 2017).
- 3. Tan, M. & Le, Q. V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. 36th Int. Conf. Mach. Learn. ICML 2019 2019-June, 10691–10700 (2019).
- 4. Zhou, L., Zhang, C. & Wu, M. D-linknet: Linknet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. *IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work.* 2018-June, 192–196 (2018).

Thanks