Ringen en Lichamen

Luc Veldhuis

2 Oktober 2017

Stelling

Zij R een ring met $1 \neq 0$. Als $b(x) \in R[x]$, $b(x) \neq 0$, kopcöefficient van b(x) in R^* . Als $a(x) \in R[x]$, dan bestaan er unieke q(x), r(x) in R[x] met $\deg(r(x)) < \deg(b(x))$ en a(x) = q(x)b(x) + r(x).

Bewijs existentie

Doe inductie naar $\deg(a(x))$. Als $\deg(a(x)) < \deg(b(x))$ dan a(x) = 0b(x) + a(x). Als $\deg(a(x)) = n \ge \deg(b(x)) = m$, schrijf $a(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \ne 0$ en $b(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$ met $b_m \in R^*$. Dan is $\deg(\tilde{a}(x)) < \deg(a(x))$ voor $\tilde{a}(x) = a(x) - a_n b_m^{-1} x^{n-m} b(x)$. Volgens de inductie bestaan $\tilde{q}(x)$, $\tilde{r}(x)$ met $\deg(\tilde{r}(x)) < \deg(\tilde{q}(x))$ en $\tilde{a}(x) = \tilde{q}(x)b(x) + \tilde{r}(x)$.

Bewijs uniciteit

Als
$$a(x) = q(x)b(x) + r(x) = q_1(x)b(x) + r_1(x)$$
 met $\deg(r(x))$, $\deg(r_1(x)) < \deg(b(x))$.

Dan $(q(x) - q_1(x))b(x) = r_1(x) - r(x)$.

 $\deg((q(x) - q_1(x))b(x)) = \deg(q(x) - q_1(x)) + \deg(b(x)) = \deg(r(x) - r_1(x))$.

Maar $\deg(r(x) - r_1(x)) < \deg(b(x))$.

Dan volgt $q(x) = q_1(x)$, dus $r(x) = r_1(x)$.

Voorbeeld

In
$$\mathbb{F}_5[x]$$
. $x^5 + \overline{1} = (\overline{3}x^3 + x)(\overline{2}x^2 + \overline{1}) + (\overline{4}x + \overline{1})$. Staart deling geeft $\overline{2}x^5 + \overline{1}/x^5 + \overline{1} \setminus \overline{3}x^3 + x$.

Vorige keer

Euclidische ring: een **domain** *R* met norm

 $N: R\setminus\{0\} \to \{1,2,3,\dots\}$ zodat voor $a,b\in R$ met $b\neq 0$ er $q,r\in R$ bestaan met a=qb+r en of r=0 of $r\neq 0$ en N(r)< N(b).

Voorbeeld

- \mathbb{Z} met N(a) = |a|
- $\mathbb{Z}[i]$ met $N(a+bi)=a^2+b^2$
- k[x], k een lichaam, met $N(f(x)) = \deg(f(x))$

Stelling

Elke ideaal in een Euclidische ring R is hoofd ideaal.

Als $I \neq (0)$ dan wordt I voortgebracht door elk element $x \neq 0$ in I met minimale norm.

Bewijs

Als I = (0) dan is het duidelijk, dus stel $I \neq (0)$.

Neem $x \neq 0$ in I met $N(x) = \min\{N(y)|y \neq 0, y \in I\}$.

Dan is $x \in I$, dus $(x) \subseteq I$.

Voor de andere inclusie, neem $a \in I$. Schrijf a = qx + r met $q, r \in R$ en r = 0 of $r \neq 0$ met N(r) < N(x). Als $r \neq 0$, dan is $r = a - qx \in I$ maar dan $\min\{N(y)|y \neq 0, y \in I\} \leq N(r) < N(x)$. Tegenspraak.

Conclusie: r = 0 en $a = qx \in (x)$, dus I = (x).

Definitie

R commutatief, $a, b \in R$.

- b deelt a, (b|a) betekend er is een $c \in R$ met a = cb.
- d = ggd(a, b) als geldt dat:
 - d|a en d|b
 - Als e|a en e|b dan ook e|d.

Voorbeeld

Als $1 \in R$:

- $b|a \Leftrightarrow a \in (b) \Leftrightarrow (a) \subseteq (b)$ want a = cb en $(b) = \{cb|c \in R\}$
- d|a en $d|b \Leftrightarrow (a,b) \subseteq (d)$
- e|a en $e|b \Rightarrow e|d$ is $(a,b) \subseteq (e) \Rightarrow (d) \subseteq (e)$.

Opgave

Als d, d' allebei een ggd zijn van a en b, dan geldt d|d' en d'|d (en omgekeerd): als d en d' elkaar delen en d is een ggd, dan ook d'.

Opgave

In een domein R geldt x|y en $y|x \Leftrightarrow$ er bestaat $u \in R^*$ met $y = ux \Leftrightarrow (x) = (y)$.

In
$$\mathbb{Z}[\sqrt{-5}]$$
 hebben $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ en $b = 2 + 2\sqrt{-5}$ geen ggd .

Stel d = ggd(a, b), dus d|a en d|b. Dan geldt N(d)|N(a) = 36 en N(d)|N(a) = 24.

$$a = cd \Rightarrow N(a) = N(c)N(d) \Rightarrow N(d)|N(a) \Rightarrow N(d)|12.$$

Merk op 2|a en 2|b, dus 2|d en daarom 4 = N(2)|N(d).

$$1 + \sqrt{-5}|a|$$
 en $1 + \sqrt{-5}|b|$, dus $1 + \sqrt{-5}|d|$ en

$$6 = N(1+\sqrt{-5})|N(d) \Rightarrow 12|N(d).$$

$$N(d) = \pm 12$$
, dus $N(d) = 12$.

Als $d = x + y\sqrt{-5}$ dan is dus $12 = x^2 + 5y^2$. Dat heeft geen oplossingen met $x, y \in \mathbb{Z}$, dus d bestaat niet.

In $\mathbb{Z}[\sqrt{-5}]$ hebben 2 en $1+\sqrt{-5}$ ggd1 maar $(2,1+\sqrt{-5}) \neq (1)$. Stel d|2 en $d|1+\sqrt{-5} \Rightarrow N(d)|N(2)=4$ en $N(d)|N(1+\sqrt{-5})=6$. Dus N(d)=1 of N(d)=2, komt niet voor als norm. Dus $d=\pm 1$. Dan is $ggd(2,1+\sqrt{-5})=1$ (of -1) want 1 deelt alles.

Opgave

In $\mathbb{Z}[x]$ is ggd(2,x) = 1 maar $(2,x) \neq (1)$.

Stelling

Zij R een Euclidische ring. Dan:

- Elke 2 elementen a, b hebben een ggd: (a, b) = (d) met d = ggd(a, b).
- d = xa + yb met $x, y \in R$ en d, a, b zijn te berekenen met behulp van het uitgebreide Euclidische algoritme: (a, b) = (a qb, b).

In $\mathbb{Q}[x]$ bereken $ggd(x^5+1, x^3+1) = x+1$.

Tabel: Uitwerking

$$\begin{vmatrix} x^5 + 1 & x_i & y_i & q_i \\ x^3 + 1 & 0 & 1 \\ -x^2 + 1 & 1 & -x^2 & x^2 \\ x + 1 & x & 1 - x^3 & -x & x^3 + 1 = (-x)(-x^2 + 1) + x + 1 \\ -x^2 + 1 = (-x + 1)(x + 1) + 0 \end{vmatrix}$$

en
$$x + 1 = x(x^5 + 1) + (1 - x^3)(x^3 + 1)$$

In
$$\mathbb{Z}[i]$$
 bereken $ggd(3+4i,5) = -2-i = 1(3+4i) + (-1-i)5$. Dus $(3+4i,5) = (-2-i) = (2+i)$.

§8.2 Hoofdideaalringen

Definitie

Een hoofdideaalring (HIR) (Engels: Princiap Ideal Domain) is een domain zodat elk ideaal een hoofdideaal is.

Voorbeeld

Euclidische ringen (\mathbb{Z} , $\mathbb{Z}[i]$, k[x] met k een lichaam).

Stelling

Zij R een HIR, $a, b \in R$, d een voortbrenger van (a, b), dan:

- d = ggd(a, b)
- Er bestaan $x, y \in R$ met d = xa + yb

Bewijs

- Algoritme: als $(a, b) = (d) \Rightarrow d$ is ggd(a, b)
- $(a, b) = \{xa + yb | x, y \in R\}$

§8.2 Hoofdideaalringen

Voorbeeld

 $\mathbb{Z}[\frac{1+\sqrt{-19}}{2}]=\{a+b\frac{1+\sqrt{-19}}{2}\}$ met $a,b\in\mathbb{Z}$ deelring van $\mathbb C$ is een HIR maar geen Euclidische ring.