#### Introdução

A idéia é criar um documento digital retratando os comandos usados no Matlab, acrescendo referências aos gráficos, equações e comentários, de forma fácil, num arquivo texto compatível com Markdown. Mais sobre Markdown e metodologia sugerida ver: Uso do MATLAB nas aulas de Controle + documentação Markdown → https://fpassold.github.io/Controle\_2/sugestao\_uso\_matlab\_em\_controle.html

Então, logo depois de iniciar o Matlab, na sua janela de comandos (CLI) vamos dar o seguinte comando:

```
>> diary aula09092024.txt
```

Isto fará com o que Matlab repasse para o arquivo acima, todos os comandos ingressados na sua CLI.

# Projeto de Controladores

# Ingressando a Planta

A idéia é trabalhar com uma mesma planta, explorando diferentes tipos de controladores. Percebendo quando certo tipo de ação de controle é mais desejada que outra, percebendo se requisitos de controle podem ser atendidos e percebendo que certas plantas se "casam" melhor com certos tipos de controladores. Então ao invés de mudar de planta cada vez que se muda a ação de controle, vamos projetar vários controladores diferentes para o mesmo tipo de planta, colocando o foco no raciocínio à ser adotado na definição de cada controlador.

Iniciando em: Projeto de Controladores Proporcional e com Ação Integral → https://fpassold.github.io/Controle\_2/PI\_parte1.html

A planta sugerida é do tipo 0 de 3a-ordem, sem zeros. Algo como:

$$G(s) = \frac{K}{(s+p_1)(s+p_2)(s+p_3)}$$

Onde os pólos  $p_1$  e  $p_2$  estariam mais próximos do eixo  $j\omega$ , ou seja, acabam dominando a resposta em relação ao terceiro pólo (que estaria mais afastado dos 2 primeiros).

Suponha então que a planta seja:

$$G(s) = \frac{1}{(s+1)(s+4)(s+10)}$$

Usando Matlab:

```
Continuous-time transfer function.

>> zpk(G) % conferindo entrada de dados

ans =

1

(s+10) (s+4) (s+1)

Continuous-time zero/pole/gain model.

>> step(G) % verificando resposta em MA para degrau unitário
```



O gráfico nos permite perceber a "velocidade" ou tempo de resposta da planta. E percebemos também o "**ganho DC**" da planta (valor final, em regime permanente alcançado pela planta) -- apenas 0,025. Ou seja, se a planta recebe um degrau unitário na sua entrada, evolui até seu valor final de 0,025 -- um ganho DC bastante baixo.

Lembrado do **Teorema do Valor Final** associado com Transformada de Laplace, temos que:

$$y(t)|_{t \to \infty} = y(\infty) = \lim_{s \to 0} s \cdot Y(s)$$

Neste caso,  $Y(s) = R(s) \cdot G(s)$ , onde R(s) = transformada de Laplace do sinal de entrada usado para excitar a planta, no caso, uma entrada degrau unitário, então R(s) = 1/s. Assim temos:

$$y(\infty) = \lim_{s o 0} \mathscr{S} \cdot \left( \underbrace{rac{1}{\mathscr{S}}}_{ ext{Degrau}} 
ight) \cdot \left( \underbrace{rac{1}{(s+1)(s+4)(s+10)}}_{G(s)} 
ight)$$

O que resulta:

$$y(\infty) = \frac{1}{(1)(4)(10)} = \frac{1}{40}$$

O que numericamente resulta:

```
>> 1/40
ans =
0.025
```

Note que este valor coincide com o valor final atingido pela planta no gráfico anterior.

Como este ganho é muito baixo, vamos acrescentar artificialmente um ganho na nossa planta para modificar este valor. Suponha que queremos que o ganho DC seja de 0,5, então:

$$0,5 = \frac{K}{(1)(4)(10)}$$
  $\therefore$   $K = 20$ 

Verificando com ajuda do Matlab:



Resta agora iniciar o projeto de algum controlador, iniciando pelo mais simples, que seria simplesmente um controlador proporcional.

### Controlador Proporcional

Este tipo de controlador fecha uma malha de realimentação unitária, simplesmente aplicando um ganho ao sinal de erro no canal de realimentação:

$$C(s) = K$$

o que implica que a planta vai receber o seguinte tipo de sinal,  $u(t) = \sin at$  de controle para a mesma:

$$u(t) = K \cdot e(t)$$

onde e(t) = erro, calculado da seguinte forma:

$$e(t) = r(t) - y(t)$$

onde r(t) = referência usada; y(t) = resposta planta.

Este controlador simplemente faz:

$$u(t) = K(r(t) - y(t))$$

Mas nenhum projeto de controle pode ser considerado um projeto sem **requisitos de controle**. Vamos supor neste caso, que queremos:

- Reduzir tempo de resposta da planta (em MA) em 3x;
- Manter erro em MF abaixo de 10%;
- Tolerável resposta com overshoot máximo de 10%;

Iniciando o projeto, levantando o root-locus deste sistema:

Temos então o seguinte RL:



Notamos que:

- Ganho máximo em torno de K=38,6;
- Ganho para %OS = 10% quando  $K \cong 4$ .

Fechando a malha om ganho K=4:



Nota-se:

- %OS < 10%, **\(\sqrt{:}**
- $t_s=1,9$  segundos. Comparando com resposta em MA:  $t_s=4,31$  segundos, ou, aceleramos a planta  $2,27\times$  (em comparação com resposta em MA):

```
4.31/1.9
ans =
2.2684
```

Falta perceber o erro em regime permanente.

Se  $y(\infty) = 0,667$ , então temos um erro de:

```
>> dcgain(ftmf)
ans =
      0.66667
>> erro= ((1-dcgain(ftmf))/1)*100  % computando o erro em %
erro =
      33.333
```

Obviamente percebemos que com este valor de ganho, mantivemos o %OS abaixo do desejado, mas o erro é muito maior que os 10% desejados. Como esta planta é um sistema do tipo 0, a **teoria dos erro** no informa que sempre haverá erro de regime permanente enquanto não acrescentarmos alguma ação integral. Mas podemos aumentar o valor do ganho para reduzir o valor deste erro. Partindo então um novo projeto de controlador Proporcional.

# Controlador Proporcional 2

O objetivo agora é usando **teoria do erro** calcular valor do ganho para manter erro abaixo do patamar desejado e então verificar o que acontece...

Teoria do erro → https://fpassold.github.io/Controle\_2/3\_erros/erros.pdf

A planta é um sistema tipo 0, o que significa que o controlador proporcional não é capaz de eliminar erro em regime permanente, já que falta ação integral. Mas podemos deduzir que valor de ganho deveria ser adotado para manter erro abaixo do valor desejado:

$$e(\infty) = \frac{1}{1 + K_p}$$

$$K_p = \lim_{s o 0} FTMA(s)$$

 $e(\infty) = 0, 1$  (10% para entrada degrau unitário)

$$e(\infty) = 0, 1 = \frac{1}{1 + K_p}$$

$$K_p = \frac{1-0,1}{0,1}$$

Obtendo os valores numéricos com auxílio do Matlab:

$$K_p = \lim_{s \to 0} FTMA(s) = \lim_{s \to 0} K \cdot G(s) = 9$$

O cálculo do  $\lim_{s o 0} G(s) = \mathsf{pode}$  ser obtido usando a função  $\boxed{\mathsf{degain}(\mathsf{G})}$  :

```
>> limite=dcgain(G)
limite =
    0.5
```

Então:

$$K \cdot 0, 5 = 9$$

Ou, usando Matlab:

```
>> K2=Kp/limite
K2 =
    18
```

Fechando a malha e comprovando teoria do erro:

```
>> ftmf2=feedback(K2*G,1);
>> figure; step(ftmf2)
```

Obtemos o gráfico:



#### Comentários:

- o erro ficou no máximo requirido (10%), mas...
- ullet  $t_s$  aumentou consideravelmente,  $t_s=4,42$  segundos. E era desejado:

```
>> 4.31/3 % reduzir 3 vezes o ts de MA
ans =
1.4367
```

• o %OS aumentou muito, 39% em relação à entrada degrau.

Conclusão final: o erro foi mantido no limite do desejado, mas o o tempo de resposta aumentou consideravelmente devido à resposta oscilatória do sistema (acima do desejado).

Então não há muito mais a fazer para "melhorar" um controlador proporcional. Poderíamos pensar em zerar o erro em regime permanente, acrescentando ação integral, mas então passamos para um novo tipo de controlador.

### Controlador com Ação Integral Pura

O objetivo agora é eliminar o erro de regime permanente mas tentando manter os outros requisitos de controle:



Realizando zoom na região de interesse (dos pólos dominantes) e definindo ganho do controlador:

```
>> axis([-1.75 1 -3 3])
>> hold; sgrid(zeta, 0)
Current plot held
```



Algumas considerações:

• Ganho máximo,  $6,14 < K_i < 7,96$ . Obviamente não usaremos ganho tão elevado.

Notamos que as curvas do RL cruzam a linha guia do  $\zeta$  correspondendo à %OS=10% quando o ganho se encontra na faixa de ganho igual à 0,93:

```
>> K_I=0.93;
>> ftmf_I=feedback(K_I*ftma_I, 1);
>> figure; step(ftmf_I)
```



#### Comentários:

- Realmente o erro de regime permanente foi eliminado ( $y(\infty)=1,0$ , igual à amplitude da entrada degrau unitário adorada como referência para o sistema);
- mas....
  - o  $t_s=9,31$  segundos ficou muito maior que o desejado;
  - $\circ \ \ \%OS = 9,2\%$  que corresponde ao desejado.

Se por acaso fosse usado ganho unitário para a ação integral obteríamos a seguinte resposta:

```
>> ftmf_I2=feedback(1*ftma_I, 1);
>> figure; step(ftmf_I2)
```



Comentário: ganho unitário para ação integral já faz %OS ficar acima do desejado. Porém, como o ganho aumentou, o sistema respondeu um pouco mais rápido:  $t_s=8,91$  segundos.

Note que acrescentar um pólo na origem (a ação integral) normalmente faz um sistema em MF responder de forma mais lenta (apesar de zerar o erro). Uma forma de "consertar" este problema é fazer a ação Integral trabalhar em paralelo com a ação Proporcional, e assim, estaríamos partindo para um controlador PI.

### Controlador PI

Equação geral do PI:

$$C_{PI}(s) = K_p + rac{K_i}{s}$$

$$C_{PI}(s) = rac{K_p \left(s + rac{K_i}{K_p}
ight)}{s}$$

#### Referências:

• Projeto de Controladores com Ação Integral (Aula #2: 2022/2) (aula de 17/10/2022) → https://fpassold .github.io/Controle\_2/control2inf\_2020\_2/17102022.html

• Projeto de PI (por contribuição angular) + Lag; (Aula de 30/10/2020) → https://fpassold.github.io/Controle\_2/PI\_angular\_Lag.html

#### Encerrando atividades no Matlab

Vamos continuar o projeto deste controlador na próxima aula. Mas antes de "abandonar" o Matlab vamos gravar os dados já levantados (para facilitar a continuação na próxima aula) e vamos fechar o arquivo "diary" recém criado:

```
>> save planta % cria arquivo planta.mat com variáveis já calculadas nesta seção de
trabalho
>> diary off
>> quit
```

Fernando Passold, em 9/09/2024