3.1 Problem 1: SVM[6pts]

The "maximum margin classifier" (also called linear "hard margin" SVM) is a classifier that leaves the largest possible margin on either side of the decision boundary. The samples lying on the margin are called support vectors.

3.1.a Draw on Figure 1 the decision boundary obtained by the linear hard margin SVM method with a thick solid line. Draw the margins on either side with thinner dashed lines. Circle the support vectors.

3.2.b The removal of which sample will change the decision boundary?

A.

3.2 Problem 2: k-means cluster[6pts]

Cluster the following eight points (with (x, y) representing locations) into three clusters: A1(2, 10), A2(2, 5), A3(8, 4), A4(5, 8), A5(7, 5), A6(6, 4), A7(1, 2), A8(4, 9)

Initial cluster centers are: A1(2, 10), A4(5, 8) and A7(1, 2).

The distance function between two points a = (x1, y1) and b = (x2, y2) is defined as P(a, b) = |x2 - x1| + |y2 - y1|

Use K-Means Algorithm to find the three cluster centers after the second iteration.

Ist iteration:		
$P(A_{\Sigma(A)}) = 5$	P(A2, A1) = 12	$P(A_5,A_1)=10$
P(A2, A4) = 6	P(A3, Au)=7/	P(A5, A4) = 5 V
P(Ax, A7)=4 V	P(A3, A7) = 9	P = (rA, eA) 9
P(A0,A1)=10	P(A81A1)=3	
P(A6, A4)= 5 V	P (A8, A6) = 2 V	
P (A6, A7)=7	P(A8, A7)=10	
Cluster1: A1 → C	(2,10)	
Cluster 2: A3, A4,	A5, A6, A8 => C2 (6,6)
Cluster 3: Azi Az=	((글, 글)	

A1(21(0)	Οv			
A2(2,5)	5	5	2 ✓	
A3(814)	17	4 v	7	
Au(5,8)	б	3 ✓	8	
Ats (7,5)	(0	2 V	7	
A. (6,4)	10	2 /	5	
A7 (1,2)	9	9	2.7	
A8(4,9)	3 1	Б	· · · · · · · · · · · · · · · · · · ·	

3.3 Problem 3: PCA algorithm [6pts]

Consider the two dimensional patterns (2, 1), (3, 5), (4, 3), (5, 6), (6, 7), (7, 8).

Compute the principal component using PCA Algorithm.

3.4 Problem 4: SVM[7pts]

Assume we have 6 points showing 6 observations in a 2-D Euclidean space as below:

Observation	X_1	X_2	Y
1	0	2	class 1
2	0	3	class 1
3	1	3	class 1
4	1	1	class 2
5	2	1	class 2
6	2	2	class 2

Using a maximum margin classifier, determine the optimal separating hyperplane and give an equation for it, and determine which observations are the support vectors.

First, let's assume that we have a separating hyperplane defined as:

$$f(\vec{x}) = \beta_0 + \vec{x}^T \vec{\beta} = 0$$

where $\vec{x} = (x_1, x_2), \vec{\beta} = (\beta_1, \beta_2).$

Since we have two classes: class 1 and class 2, without loss of generality we can take y = 1 for class 1, and y = -1 for class 2.

Next let's define the sign function:

$$sign(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases} \tag{1}$$

Recall from lecture notes that when we fit a maximal margin classifier, with the classification rule as $G(\vec{x}) = sign(\beta_0 + \vec{x}^T \vec{\beta})$, we want to find $\beta_0, \vec{\beta}$ such that with $|\vec{\beta}| = 1$, $y_i(\beta_0 + x_{i,1}\beta_1 + x_{i,2}\beta_2) \ge M$ is true for all integer $1 \le i \le 6$ (for all the sample points in our toy dataset), the value of M is maximized.

Since we assume that a separating hyperplane exists, we have M > 0, then we have:

$$y_i(\beta_0 + x_{i,1}\beta_1 + x_{i,2}\beta_2) \ge M$$

$$y_i(\frac{\beta_0}{M} + \frac{x_{i,1}\beta_1}{M} + \frac{x_{i,2}\beta_2}{M}) \ge \frac{M}{M}$$

$$y_i(\frac{\beta_0}{M} + \frac{x_{i,1}\beta_1}{M} + \frac{x_{i,2}\beta_2}{M}) \ge 1$$

Now let's take: $\frac{\beta_0}{M} = \beta_0', \frac{\beta_1}{M} = \beta_1', \frac{\beta_2}{M} = \beta_2'$, and the above expression can be changed into:

$$y_i(\beta_0' + x_{i,1}\beta_1' + x_{i,2}\beta_2') \ge 1$$

Since $|\vec{\beta}| = \sqrt{\beta_1^2 + \beta_2^2} = 1$, $\sqrt{{\beta_1'}^2 + {\beta_2'}^2} = \frac{1}{M}$, maximizing M is equivalent with minimizing $\sqrt{{\beta_1'}^2 + {\beta_2'}^2} = \frac{1}{M}$

Now, we can transform our optimization problem into the below linear programming styled problem:

With the constraints $y_i(\beta'_0 + x_{i,1}\beta'_1 + x_{i,2}\beta'_2) \ge 1$ satisfied for all integer $1 \le i \le 6$ (for all the sample points in our toy dataset), find that value of $\beta'_0, \beta'_1, \beta'_2$ such that the value of $\sqrt{{\beta'_1}^2 + {\beta'_2}^2}$ is maximized.

Next we list all of our constraints:

$$\begin{split} &(\beta_0'+0\beta_1'+2\beta_2')\geq 1 & & [1] \\ &(\beta_0'+0\beta_1'+3\beta_2')\geq 1 & & [2] \\ &(\beta_0'+1\beta_1'+3\beta_2')\geq 1 & & [3] \\ &-(\beta_0'+1\beta_1'+1\beta_2')\geq 1 & & [4] \\ &-(\beta_0'+2\beta_1'+1\beta_2')\geq 1 & & [5] \\ &-(\beta_0'+2\beta_1'+2\beta_2')\geq 1 & & [6] \end{split}$$

[1] + [6] gives us: $\beta'_1 \le -1$

[3] + [4] gives us: $\beta_2' \ge 1$

Since we want to minimize $\sqrt{{\beta_1'}^2+{\beta_2'}^2}$, we take $\beta_1'=-1$ and $\beta_2'=1$.

Then, [3] becomes $\beta'_0 + (-1) + 3 \times 1 \ge 1$, which is $\beta'_0 \ge -1$;

[4] becomes $-(\beta_0'+(-1)+1)\geq 1$, which is $\beta_0'\leq -1$.

Now we know that if we take $\beta_1'=-1$ and $\beta_2'=1$, then $\beta_0'=-1$.

The last step is to verify that $\beta_0' = -1, \beta_1' = -1$, and $\beta_2' = 1$ satisfies all the constraints listed above:

$$\begin{array}{lll} -1+0+2\geq 1 & & [1](satisfied, equality\ reached) \\ -1+0+3\geq 1 & & [2](satisfied, equality\ not\ reached) \\ -1-1+3\geq 1 & & [3](satisfied, equality\ reached) \\ -(-1-1+1)\geq 1 & & [4](satisfied, equality\ reached) \\ -(-1-2+1)\geq 1 & & [5](satisfied, equality\ not\ reached) \\ -(-1-2+2)\geq 1 & & [6](satisfied, equality\ reached) \end{array}$$

So, we get our optimal solution $\beta_0' = -1$, $\beta_1' = -1$, and $\beta_2' = 1$, which means that our best separating hyperplane has equation: $-1-x_1+x_2=0$, or $x_2=x_1+1$, our classification rule is that $y_j=sign(-1-x_{j,1}+x_{j,2})$ for some sample with index j, with y=1 for class 1, and y=-1 for class 2, and from the inequality satisfiability check we know that observation 2 and 5 are not support vectors, while observation 1,3,4, and 6 are support vectors.