TEACHING STATISTICAL COMPUTING USING THE **GitHub** ECOSYSTEM

Colin Rundel

JSM 2015 - Seattle

Duke University
Department of Statistical Science

STA 523 - STATISTICAL PROGRAMMING

Course details:

- First offered in Fall 2014
- · Core course in Masters of Statistical Science Program
- Approximately 30 Students
 - · 2/3 MSS & MSEM, 1/3 other MS & PhD
 - · Divided into teams of 3-4
 - Disparate backgrounds
- Biweekly team programming assignments
- · Team final project, individual final exam
- · Undergraduate version in Spring 2016

TECHNICAL LEARNING OBJECTIVES

METHODOLOGICAL LEARNING OBJECTIVES

Collaboration

Reproducible Research

- · R Markdown / knitr
- · GNU Make

Data in the Real World

- Messy data
- · Non-flat data

INFRASTRUCTURE

Dedicated departmental server

- · RStudio Server Pro
- Individual departmental accounts
- System wide install of core packages

Github Organization

- 1 private repo / team (Github Education)
- · Shared public repos (e.g. examples)

Continuous Integration

· TravisCI, Wercker, Drone, etc.

ASSIGNMENTS

Assignments are turned in via github (pull the repo at the deadline)

What do we get from this?

- Forces students to use version control (git)
- Simplifies course administration
 - · Code / documentation / scaffolding all in the same place
 - Easy to grab files (pull)
 - Easy to distribute files (push)
- Searchability
- Accountability

EXAMPLE

NYC OpenData

- Parking violations FY2014
 9.1M tickets
- MapPLUTO (Digital Tax Map)
 43K boundaries

Goal:

 Find the boundaries of all 22 police precincts in Manhattan

Grading and feedback is given via pull requests

COURSE PROCESS CARTOON

COURSE PROCESS CARTOON

Github does improve both parts of this cycle

COURSE PROCESS CARTOON

Github does improve both parts of this cycle but doesn't address the fact that the instructor / TAs are the rate limiting step (we don't scale well).

A PAINFULLY COMMON CONVERSATION

Student: We've submitted our HW3!

+1 Day

Me: Your Rmd file doesn't knit, you used **setwd** with an absolute path.

+1 Day

Student: Ok we fixed that, does it work now?

+1 Day

Me: Nope, you used lme4 without checking if it was installed.

+1 Day

:

AUTOMATING (SOME) FEEDBACK

The is a number of fundamental details about every submission we want to check:

- · the code runs, Rmds knit
- the coding style is consistent
- the repo is tidy
- · the code runs in a reasonable time frame
- the implementations are correct

IMPLEMENTATION?

We can take a lesson from the software engineers / developers

IMPLEMENTATION?

We can take a lesson from the software engineers / developers

Use Continuous Integration tools!

COURSE PROCESS CARTOON - IMPROVED

COURSE PROCESS CARTOON - IMPROVED

IMPLEMENTATION

This is currently more aspirational than reality, but the following is planned for the coming Fall 2015 semester.

Key details (subject to change):

- Adopting wercker for CI (uses Docker, steps)
- Enforced coding style via lintr
- Enforced directory structure
- · Allowed file/filetype whitelist
- testthat for testing implementation assignments
- automated scoring of prediction contests

CONCLUSIONS

Using github gives you a lot (for free) ...

- Version control
- Accessible web UI
- Education support

- Collaboration tools
- Search tools
- CI tools

Needs of statistical programming are very similar to the needs of the software development community

- No need to reinvent the wheel use the existing solutions
- Teach the tools students will continue to use

QUESTIONS, COMMENTS?

rundel@gmail.com

github.com/rundel/

github.com/rundel/Presentations/

bit.ly/Sta523_2014 | bit.ly/Sta523_2015