Quiz 26

Name: K-e y

You must show your work to get full credit.

There is a rational root test for polynomials of degree higher than two. Here it is for polynomials of degree three.

Theorem (Rational root test). Let a_0 , a_1 , a_2 , and a_3 be integers with $a_3 \neq 0$. Let $p = \frac{p}{q}$ be a rational root of

 $a_3x^3 + a_2x^2 + a_1x + a_0 = 0$

with $\frac{p}{q}$ in lowest terms. (That is gcd(a,b) = 1) Then

 $p \mid a_0$ and $q \mid a_3$

1. What are the possible rational roots of $x^3 - 7 = 0$?

Here $d_0 = 1$ and $d_3 = -7$ Possible rational roots are: $\frac{\pm 1}{5}$ $\frac{\pm 7}{5}$ will have $r = \frac{\pm 1}{5}$ $r = \frac{\pm 1}{5}$ $r = \frac{\pm 1}{5}$ polices $p = \pm 1$ $p = \pm 1$ p = 1 $p = \pm 1$ p = 1 $p = \pm 1$ p = 1 p

2. Explain why $x^3 - 7 = 0$ has no rational roots.

The only vossible rutional roots ove r = 1, -1, 7, -7 we now try all of those $1^3 - 7 = -6 \neq 0$ are roots all roots all roots must be $7^3 - 7 = 7(7^2 - 1) = 7(48) \neq 0$ roots must be $7^3 - 7 = 7(1^2 - 1) = -7(48) \neq 0$

3. Prove $\sqrt[3]{7}$ is irrational.

the
$$x = \sqrt[3]{7}$$
, then

 $x^3 = 7$

and so $x^3 - 7 = 0$.

Thus $x = \sqrt[3]{7}$ is

a root of $x^3 - 7 = 0$

and since $x^3 - 7 = 0$ has

no rational roots, it must be

 $x^3 = 7$