MAP 531: Homework

Paul-Antoine GIRARD & Adrien TOULOUSE

Problem 1: Estimating parameters of a Poisson distribution

We recall that the Poisson distribution with parameter $\theta > 0$ has a pdf given by $(p(\theta, k), k \in \mathbb{N})$ w.r.t the counting measure on \mathbb{N} :

$$p(\theta, k) = e^{-\theta} \frac{\theta^k}{k!}$$

Question 1

The poisson distribution is a discrete distribution since it has a countable number of possible values (N).

In statistics, we use this distribution to compute the probability of a given number of (rare) events in a time period.

For example a poisson distribution can model:

- The number of patients arriving in an emergency room between 9 and 10am.
- The number of network failures per day.
- In quality control, the number of manufacturing defect.

Question 2

We assume that X follows a Poisson distribution with parameter $\theta > 0$.

We will use the fact that $e^{\theta} = \sum_{i=0}^{\infty} (\frac{\theta^i}{i!}), \forall \theta \in \mathbb{R}$

$$\mathbb{E}[\mathbb{X}] = \sum_{i=0}^{\infty} (i*p(\theta,i)) = \sum_{i=0}^{\infty} (i*e^{-\theta}\frac{\theta^i}{i!}) = \theta*e^{-\theta}\sum_{i=1}^{\infty} (\frac{\theta^{i-1}}{(i-1)!}) = \theta*e^{-\theta}\sum_{i=0}^{\infty} (\frac{\theta^i}{i!}) = \theta*e^{-\theta}*e^{\theta} = \theta$$

$$\mathbb{E}[\mathbb{X}^2] = \sum_{i=0}^{\infty} (i^2 * p(\theta, i)) = \sum_{i=0}^{\infty} (i^2 * e^{-\theta} \frac{\theta^i}{i!}) = \theta * e^{-\theta} \sum_{i=1}^{\infty} (i \frac{\theta^{i-1}}{(i-1)!}) = \theta * e^{-\theta} \sum_{i=0}^{\infty} ((i+1) \frac{\theta^i}{i!})$$

$$=\theta*e^{-\theta}[\sum_{i=0}^{\infty}(i\frac{\theta^i}{i!})+\sum_{i=0}^{\infty}(\frac{\theta^i}{i!})]=\theta*e^{-\theta}[\theta\sum_{i=0}^{\infty}(\frac{\theta^i}{i!})+e^{\theta}]=\theta*e^{-\theta}[\theta*e^{\theta}+e^{\theta}]=\theta(\theta+1)$$

$$\mathbb{V}(\mathbb{X}) = \mathbb{E}[\mathbb{X}^2] - \mathbb{E}[\mathbb{X}]^2 = \theta(\theta+1) - \theta^2 = \theta$$

Question 3

We are provided with n independent observations of a Poisson random variable of parameter $\theta \in \Theta = \mathbb{R}_+^*$. Our observations are $X_k \sim Pois(\theta), \forall k \in 1, ..., n$.

The corresponding statistical model is:

$$\mathcal{M}^n = (\mathbb{N}^n, \mathcal{P}(\mathbb{N}^n), \{\mathbb{P}^n_{\theta}, \theta \in \Theta\})$$

with $\mathbb{P}_{\theta}^{n} = \mathbb{P}_{\theta} \otimes ... \otimes \mathbb{P}_{\theta}$ (n times)

We are trying to estimate the parameter θ .

Question 4

The likelihood function is the function on θ that makes our n observations most likely.

Using the independence of the X_k :

$$l(\theta) = \prod_{k=1}^{n} e^{-\theta} \frac{\theta^{X_k}}{X_k!}$$

$$L(\theta) = log(l(\theta)) = \sum_{k=1}^{n} (-\theta + X_k log(\theta) - log(X_k!)) = -n\theta + log(\theta) \sum_{k=1}^{n} X_k - \sum_{k=1}^{n} log(X_k!)$$

By derivating with respect to θ , we have:

$$L'(\theta) = -n + \frac{\sum_{k=1}^{n} X_k}{\theta}$$
$$L''(\theta) = -\frac{\sum_{k=1}^{n} X_k}{\theta^2} < 0$$

Since, the second derivative of the log-likelihood function is negative, the function is concave and admits a global maximum given by:

$$L'(\theta) = 0 \Leftrightarrow -n + \frac{\sum_{k=1}^{n} X_k}{\theta} = 0 \Leftrightarrow \hat{\theta}_{MLE} = \overline{X}$$

So, the maximum likelihood estimator is:

$$\hat{\theta}_{MLE} = \overline{X}$$

Question 5

Since the X_k are iid, we have that:

$$\mathbb{E}[\overline{X}] = \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}[X_k] = \mathbb{E}[X_1] = \theta$$

$$\mathbb{V}(\overline{X}) = \frac{1}{n^2} \sum_{k=1}^{n} \mathbb{V}(X_k) = \frac{1}{n} \mathbb{V}[X_1] = \frac{\theta}{n}$$

Applying the central limit theorem, we have that $\sqrt{n}(\hat{\theta}_{MLE} - \theta)$ converges towards a Gaussian $\mathcal{N}(0,\theta)$.

Question 6

The weak law of large numbers gives us that $\hat{\theta}_{MLE}$ converges in probability towards θ .

By continuous mapping, $\sqrt{\hat{\theta}_{MLE}}$ converges in probability towards $\sqrt{\theta}$. Then, by Slutsky's theorem, we have that $\sqrt{n} \frac{(\hat{\theta}_{MLE} - \theta)}{\sqrt{\hat{\theta}_{MLE}}}$ converges in law towards a gaussian $\mathcal{N}(0, 1)$.

Let's check this result in R by simulating 1000 times our random variable $\sqrt{n} \frac{(\hat{\theta}_{MLE} - \theta)}{\sqrt{\hat{\theta}_{MLE}}}$ with a sample size of 100:

```
estim <- function(x, theta){
  n <- length(x)
  est <- sqrt(n) * (mean(x) - theta) / sqrt(mean(x))
  return(est)}</pre>
```

```
set.seed(42)
Nattempts = 1e3
nsample = 100
theta = 3

samples <- lapply(1:Nattempts, function(i) rpois(nsample, theta))
realisations <- sapply(samples, function(x) estim(x, theta))

hist(realisations, probability = TRUE)
d = density(realisations, kernel='gaussian')
lines(d, col = 'red')</pre>
```

Histogram of realisations

qqnorm(realisations)
qqline(realisations)

Normal Q-Q Plot

This confirms what we found theoretically: the random variable $\sqrt{n} \frac{(\hat{\theta}_{MLE} - \theta)}{\sqrt{\hat{\theta}_{MLE}}}$ follows a standard gaussian distribution.

Question 7

Let $Z_n = \sqrt{n} \frac{(\hat{\theta}_{MLE} - \theta)}{\sqrt{\hat{\theta}_{MLE}}}$ be our random variable.

Denote z_{alpha} the α -quantile for the standard Normal distribution for $\alpha \in (0, 1)$.

$$\lim_{n \to +\infty} \mathbb{P}(-z_{1-\alpha/2} \le Z_n \le z_{1-\alpha/2}) \ge 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-z_{1-\alpha/2} \sqrt{\frac{\hat{\theta}_{MLE}}{n}} \le \hat{\theta}_{MLE} - \theta \le z_{1-\alpha/2} \sqrt{\frac{\hat{\theta}_{MLE}}{n}}) \ge 1 - \alpha$$

For $\alpha \in (0,1)$, an asymptotic confidence interval for θ of level α is therefore:

$$[\hat{\theta}_{MLE} - z_{1-\alpha/2} \frac{\sqrt{\hat{\theta}_{MLE}}}{\sqrt{n}}; \ \hat{\theta}_{MLE} + z_{1-\alpha/2} \frac{\sqrt{\hat{\theta}_{MLE}}}{\sqrt{n}}]$$

Question 8

We apply the δ -method with $g(x) = 2\sqrt{x}$

We have: $g'(x) = \frac{1}{\sqrt{x}}$

So,

$$\sqrt{n}(g(\hat{\theta}_{MLE}) - g(\theta)) \xrightarrow{d} \mathcal{N}(0, g'(\theta)^2 \times \theta) \Leftrightarrow \sqrt{n}(g(\hat{\theta}_{MLE}) - g(\theta)) \xrightarrow{d} \mathcal{N}(0, 1)$$

Question 9

Let $W_n = \sqrt{n}(2\sqrt{\hat{\theta}_{MLE}} - 2\sqrt{\theta})$ be our random variable.

We know by the last question that $W_n \stackrel{d}{\to} \mathcal{N}(0,1)$.

$$\lim_{n \to +\infty} \mathbb{P}(-z_{1-\alpha/2} \le W_n \le z_{1-\alpha/2}) \ge 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-\frac{z_{1-\alpha/2}}{2\sqrt{n}} \le \sqrt{\hat{\theta}_{MLE}} - \sqrt{\theta} \le \frac{z_{1-\alpha/2}}{2\sqrt{n}}) \ge 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-\frac{z_{1-\alpha/2}}{2\sqrt{n}} \le \sqrt{\hat{\theta}_{MLE}} - \sqrt{\theta} \le \frac{z_{1-\alpha/2}}{2\sqrt{n}}) \ge 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-\frac{z_{1-\alpha/2}}{2\sqrt{n}} \le \sqrt{\hat{\theta}_{MLE}} - \sqrt{\theta} \le \frac{z_{1-\alpha/2}}{2\sqrt{n}}) \ge 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-\frac{z_{1-\alpha/2}}{2\sqrt{n}} \le \sqrt{\hat{\theta}_{MLE}} - \sqrt{\theta} \le \frac{z_{1-\alpha/2}}{2\sqrt{n}}) \ge 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-\frac{z_{1-\alpha/2}}{2\sqrt{n}} \le \sqrt{\hat{\theta}_{MLE}} - \sqrt{\theta} \le \frac{z_{1-\alpha/2}}{2\sqrt{n}}) \ge 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-\frac{z_{1-\alpha/2}}{2\sqrt{n}} \le \sqrt{\hat{\theta}_{MLE}} - \sqrt{\theta} \le \frac{z_{1-\alpha/2}}{2\sqrt{n}}) \ge 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-\frac{z_{1-\alpha/2}}{2\sqrt{n}} \le \sqrt{\hat{\theta}_{MLE}} - \sqrt{\theta} \le \frac{z_{1-\alpha/2}}{2\sqrt{n}}) \ge 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-\frac{z_{1-\alpha/2}}{2\sqrt{n}} \le \sqrt{\hat{\theta}_{MLE}} - \sqrt{\theta} \le \frac{z_{1-\alpha/2}}{2\sqrt{n}}) \ge 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-\frac{z_{1-\alpha/2}}{2\sqrt{n}} \le \sqrt{\hat{\theta}_{MLE}} - \sqrt{\theta} \le \frac{z_{1-\alpha/2}}{2\sqrt{n}}) \ge 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-\frac{z_{1-\alpha/2}}{2\sqrt{n}} \le \sqrt{\hat{\theta}_{MLE}} - \sqrt{\theta} \le \frac{z_{1-\alpha/2}}{2\sqrt{n}}) \ge 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-\frac{z_{1-\alpha/2}}{2\sqrt{n}} \le \sqrt{\hat{\theta}_{MLE}} - \sqrt{\theta} \le \frac{z_{1-\alpha/2}}{2\sqrt{n}}) \ge 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-\frac{z_{1-\alpha/2}}{2\sqrt{n}} \le \sqrt{\hat{\theta}_{MLE}} - \sqrt{\theta} \le \frac{z_{1-\alpha/2}}{2\sqrt{n}}) \ge 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-\frac{z_{1-\alpha/2}}{2\sqrt{n}} \le \sqrt{\hat{\theta}_{MLE}} - \sqrt{\theta} \le \frac{z_{1-\alpha/2}}{2\sqrt{n}}) \ge 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-\frac{z_{1-\alpha/2}}{2\sqrt{n}} \le \sqrt{\hat{\theta}_{MLE}} - \sqrt{\theta} \le \frac{z_{1-\alpha/2}}{2\sqrt{n}})$$

$$\Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(\sqrt{\hat{\theta}_{MLE}} - \frac{z_{1-\alpha/2}}{2\sqrt{n}} \le \sqrt{\hat{\theta}} \le \sqrt{\hat{\theta}_{MLE}} + \frac{z_{1-\alpha/2}}{2\sqrt{n}}) \ge 1 - \alpha$$

When n goes towards infinity, $\frac{z_{1-\alpha/2}}{2\sqrt{n}}$ goes to 0. Since $\sqrt{\hat{\theta}_{MLE}}$ is positive, there exists a n_0 such that $\sqrt{\hat{\theta}_{MLE}} - \frac{z_{1-\alpha/2}}{2\sqrt{n}}$ is positive and we can take the squares in the inequality without changing the order of the inequalities:

$$\Leftrightarrow \lim_{n \to +\infty} \mathbb{P}((\sqrt{\hat{\theta}_{MLE}} - \frac{z_{1-\alpha/2}}{2\sqrt{n}})^2 \le \theta \le (\sqrt{\hat{\theta}_{MLE}} + \frac{z_{1-\alpha/2}}{2\sqrt{n}})^2) \ge 1 - \alpha$$

For $\alpha \in (0,1)$, an asymptotic confidence interval for θ of level α is therefore:

$$[(\sqrt{\hat{\theta}_{MLE}} - \frac{z_{1-\alpha/2}}{2\sqrt{n}})^2; (\sqrt{\hat{\theta}_{MLE}} + \frac{z_{1-\alpha/2}}{2\sqrt{n}})^2]$$

Question 10

Based on the first moment of a poisson distribution, we easily have that:

$$\hat{\theta}_{MME} = \overline{X}$$

We can remark that $\hat{\theta}_{MME} = \hat{\theta}_{MLE}$

Based on the second moment of a poisson distribution, we have:

$$n^{-1} \sum_{k=1}^{n} X_k^2 = \hat{\theta}_2(\hat{\theta}_2 + 1)$$

Let's define the function h(x)=x(x+1)Its inverse on \mathbb{R}_+^* is $h^{-1}(x)=\frac{1}{2}[-1+\sqrt{4x+1}]$ and this gives us:

$$\hat{\theta}_2 = \frac{1}{2} \left[-1 + \sqrt{(4n^{-1} \sum_{k=1}^n X_k^2) + 1} \right]$$

Question 11

 $\mathbb{E}[\hat{\theta}_{MLE}] = \frac{1}{n} \sum_{k=1}^n \mathbb{E}[X_k]$ by linearity of the expectation. So,

$$\mathbb{E}[\hat{\theta}_{MLE}] = \frac{1}{n} * n * \theta = \theta$$

Therefore, $\hat{\theta}_{MLE}$ is an unbiased estimator of θ , ie. $b_{\theta}^*(\hat{\theta}_{MLE}) = 0$ $\mathbb{V}(\hat{\theta}_{MLE}) = \frac{1}{n^2} \sum_{i=1}^n \mathbb{V}(X_i)$ by independence of the X_k .

$$\mathbb{V}(\hat{\theta}_{MLE}) = \frac{1}{n^2} * n * \theta = \frac{\theta}{n}$$

The quadratic risk Q is:

$$Q = b_{\theta}^* (\hat{\theta}_{MLE})^2 + \mathbb{V}^* (\hat{\theta}_{MLE}) = 0 + \frac{\theta}{n} = \frac{\theta}{n}$$

Question 12

 $\hat{\theta}_{MLE}$ is an unbiased estimator. So the Cramer-Rao bound is given by:

$$\frac{1}{I_n(\theta^*)} = \frac{1}{\mathbb{E}[-L''(\theta^*)]}$$

By derivating the log-likelihood function with respect to θ , we have:

$$L'(\theta^*) = -n + \frac{\sum_{i=1}^n X_k}{\theta}$$
$$-L''(\theta^*) = \frac{\sum_{i=1}^n X_k}{\theta^2}$$

Therefore,

$$\mathbb{E}[-L''(\theta^*)] = \frac{\sum_{i=1}^n \mathbb{E}[X_k]}{\theta^2} = \frac{n}{\theta}$$

Finally,

$$\frac{1}{I_n(\theta^*)} = \frac{\theta}{n} = \mathbb{V}(\hat{\theta}_{MLE})$$

We can conclude that our estimator $\hat{\theta}_{MLE}$ is efficient.

Question 13

$$\hat{\theta}_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X_n})^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \theta + \theta - \overline{X_n})^2 = \frac{1}{n} \sum_{i=1}^n [(X_i - \theta)^2 + (\theta - \overline{X_n})^2 + 2(X_i - \theta)(\theta - \overline{X_n})]$$

$$= \frac{1}{n} \sum_{i=1}^n (X_i - \theta)^2 + (\theta - \overline{X_n})^2 + \frac{2}{n} (\theta - \overline{X_n}) \sum_{i=1}^n (X_i - \theta) = \frac{1}{n} \sum_{i=1}^n (X_i - \theta)^2 + (\theta - \overline{X_n})^2 + 2(\theta - \overline{X_n})(\overline{X_n} - \theta)$$

$$= \frac{1}{n} \sum_{i=1}^n (X_i - \theta)^2 - (\theta - \overline{X_n})^2$$

Question 14

$$\mathbb{E}[(\theta - \overline{X_n})^2] = \mathbb{E}[\theta^2 - 2\theta \overline{X_n} + \overline{X_n}^2] = \theta^2 - 2\theta \mathbb{E}[\overline{X_n}] + \mathbb{E}[\overline{X_n^2}]$$

$$= -\theta^2 + \mathbb{V}(\overline{X_n}) + \mathbb{E}[\overline{X_n}^2] = -\theta^2 + \frac{\theta}{n} + \theta^2 = \frac{\theta}{n}$$

$$\mathbb{E}[\hat{\theta}_2] = \mathbb{E}[\frac{1}{n} \sum_{i=1}^n (X_i - \theta)^2 - (\theta - \overline{X_n})^2] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[(X_i - \theta)^2] - \mathbb{E}[(\theta - \overline{X_n})^2]$$

$$= \frac{1}{n} \sum_{i=1}^n \mathbb{V}(X_i) - \frac{\theta}{n} = \theta(1 - \frac{1}{n})$$
itas is:

Therefore the bias is:

$$b_{\hat{\theta}_2} = -\frac{\theta}{n}$$

We can get an unbiased estimator $\hat{\theta}_3$ by defining $\hat{\theta}_3 = (1 - \frac{1}{n})^{-1} \hat{\theta}_2$

Question 15

Using the previous questions, we know that:

$$\hat{\theta}_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \theta)^2 - (\theta - \overline{X_n})^2$$

therefore, we have:

$$\sqrt{n}(\hat{\theta}_2 - \theta) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \theta)^2 - \sqrt{n}(\theta - \overline{X_n})^2 - \sqrt{n}\theta = \sqrt{n}(\overline{Y_n} - \theta) - \sqrt{n}(\theta - \overline{X_n})^2$$

where:

$$\forall i \in [1, n], Yi = (X_i - \theta)^2$$
$$\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$$

Since:

$$\mathbb{E}[Y_i] = \mathbb{V}(X_i) = \theta$$

and

$$\mathbb{V}(Y_i) = 2\theta^2 + \theta$$

We can apply the central limit theorem, and we have that

$$\sqrt{n}(\overline{Y_n} - \theta) \stackrel{d}{\to} \mathcal{N}(0, 2\theta^2 + \theta)$$

We also have that:

$$\sqrt{n}(\theta - \overline{X_n})^2 = \sqrt{n}(\overline{X_n} - \theta)^2 = \sqrt{n}(\overline{X_n} - \theta)(\overline{X_n} - \theta)$$

Applying the central limit theorem, we have that: $\sqrt{n}(\overline{X_n} - \theta) \xrightarrow{d} \mathcal{N}(0, \theta)$. On the other hand, applying the law of large numbers: $(\theta - \overline{X_n}) \xrightarrow{p} 0$.

Applying Slutsky's theorem, $\sqrt{n}(\theta - \overline{X_n})^2$ converges in distribution towards the constant 0. Therefore, it converges in probability towards 0.

Now, we can apply Slutsky's theorem to $\sqrt{n}(\overline{Y_n}-\theta)-\sqrt{n}(\theta-\overline{X_n})^2$ which gives us finally that:

$$\sqrt{n}(\hat{\theta}_2 - \theta) \stackrel{d}{\to} \mathcal{N}(0, 2\theta^2 + \theta)$$

We can now compute an other asymptotic confidence interval centered in $\hat{\theta}_2$.

Let $V_n = \sqrt{n}(\hat{\theta}_2 - \theta)$ be our random variable.

We know by the first part of question that $\frac{V_n}{\sqrt{2\theta^2+\theta}} \stackrel{d}{\to} \mathcal{N}(0,1)$.

In order to apply slutsky's theorem, we will prove that $\hat{\theta}_2 \stackrel{p}{\to} \theta$.

Let $\epsilon > 0$. By Chebyshev's inequality,

$$P(\mid \hat{\theta}_2 - \theta \mid > \epsilon) < \frac{Var(\hat{\theta}_2 - \theta)}{\epsilon^2} = \frac{\theta^2 + \theta}{n\epsilon^2} \underset{n \to +\infty}{\longrightarrow} 0$$

So, we have that $\hat{\theta}_2 \stackrel{p}{\to} \theta$ and by continuous mapping,

$$\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2} \stackrel{p}{\to} \sqrt{2\theta^2 + \theta}$$

Then, by Slutsky's theorem, we have that $\sqrt{n} \frac{(\hat{\theta}_2 - \theta)}{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}$ converges in law towards a gaussian $\mathcal{N}(0, 1)$.

$$\lim_{n \to +\infty} \mathbb{P}(-z_{1-\alpha/2} \leq \frac{V_n}{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}} \leq z_{1-\alpha/2}) \geq 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}} \leq \hat{\theta}_2 - \theta \leq z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}}) \geq 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}} \leq \hat{\theta}_2 - \theta \leq z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}}) \geq 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}} \leq \hat{\theta}_2 - \theta \leq z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}}) \geq 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}} \leq \hat{\theta}_2 - \theta \leq z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}}) \geq 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}} \leq \hat{\theta}_2 - \theta \leq z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}}) \geq 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}} \leq \hat{\theta}_2 - \theta \leq z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}}) \geq 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}} \leq \hat{\theta}_2 - \theta \leq z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}}) \geq 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}} \leq \hat{\theta}_2 - \theta \leq z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}}) \geq 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}} \leq \hat{\theta}_2 - \theta \leq z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}}) \geq 1 - \alpha \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(-z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}} \leq \hat{\theta}_2 - \theta \leq z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}})$$

$$\Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(\hat{\theta}_2 - z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}} \leq \theta \leq \hat{\theta}_2 + z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}}) \geq 1 - \alpha$$

For $\alpha \in (0,1)$, an asymptotic confidence interval for θ of level α is therefore:

$$[\hat{\theta}_2 - z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}}; \ \hat{\theta}_2 + z_{1-\alpha/2} \frac{\sqrt{2\hat{\theta}_2^2 + \hat{\theta}_2}}{\sqrt{n}}]$$

Question 16

Let $s \in \mathbb{R}$. The probability generating function of the Poisson distribution is given by:

$$G_{\mathbb{X}}(s) = \mathbb{E}[exp(s\mathbb{X})] = \sum_{k=0}^{\infty} e^{ks} e^{-\theta} \frac{\theta^k}{k!} = e^{-\theta} \sum_{k=0}^{\infty} \frac{(\theta e^s)^k}{k!} = e^{-\theta} e^{\theta e^s} = e^{\theta(e^s - 1)}$$

In order to compute the first and second moment of the Poisson distribution, we can now use the moment generating function. Let's compute its first and second order derivatives.

$$G'_{\mathbb{X}}(s) = \theta e^s e^{\theta(e^s - 1)}$$

$$G''_{\mathbb{Y}}(s) = \theta [e^s e^{\theta(e^s - 1)} + \theta e^{2s} e^{\theta(e^s - 1)}] = \theta e^s [e^{\theta(e^s - 1)} + \theta e^s e^{\theta(e^s - 1)}]$$

Then, we have:

$$\begin{split} \mathbb{E}[\mathbb{X}] &= G_{\mathbb{X}}'(0) = \theta \\ \mathbb{E}[\mathbb{X}^2] &= G_{\mathbb{X}}''(0) = \theta(1+\theta) \\ \mathbb{V}(\mathbb{X}) &= \mathbb{E}[\mathbb{X}^2] - \mathbb{E}[\mathbb{X}]^2 = \theta(1+\theta) - \theta^2 = \theta \end{split}$$

We will now show that: $\mathbb{V}[(\mathbb{X}_i - \theta)^2] = 2\theta^2 + \theta$

$$G_{\mathbb{X}}^{(3)}(s) = (1 + 3\theta e^{s} + \theta^{2} e^{2s})\theta e^{s+\theta(e^{s} - 1)}$$

$$G_{\mathbb{X}}^{(4)}(s) = (1 + \theta^{3} e^{3s} + 6\theta^{2} e^{2s} + 7\theta e^{s})\theta e^{s+\theta(e^{s} - 1)}$$

$$\mathbb{E}[\mathbb{X}^{3}] = G_{\mathbb{X}}^{(3)}(0) = \theta + 3\theta^{2} + \theta^{3}$$

$$\mathbb{E}[\mathbb{X}^{4}] = G_{\mathbb{X}}^{(4)}(0) = \theta^{4} + 6\theta^{3} + 7\theta^{2} + \theta$$

$$\mathbb{V}[(\mathbb{X}_{i} - \theta)^{2}] = \mathbb{E}[(\mathbb{X} - \theta)^{4}] - \mathbb{E}[(\mathbb{X} - \theta)^{2}]^{2} = \mathbb{E}[\mathbb{X}^{4}] - 4\theta \mathbb{E}[\mathbb{X}^{3}] + 6\theta^{2}\mathbb{E}[\mathbb{X}^{2}] - 4\theta^{3}\mathbb{E}[\mathbb{X}] + \theta^{4} - Var(\mathbb{X})^{2}$$

$$= \theta^{4} + 6\theta^{3} + 7\theta^{2} + \theta - 4\theta(\theta + 3\theta^{2} + \theta^{3}) + 6\theta^{2}(\theta + \theta^{2}) - 4\theta^{4} + \theta^{4} - \theta^{2} = 2\theta^{2} + \theta$$

Problem 2: Analysis of the USJudgeRatings dataset

This exercise is open. You are asked to use the tools we have seen together to analyze the USJudgeRatings data set. This data set is provided in the package datasets. Your analysis should be reported here and include:

- an introduction
- a general description of the data
- the use of descriptive statistics
- the use of all techniques we have seen together that might be relevant
- a conclusion

Overall, your analysis, including the graphs and the codes should not exceed 15 pages in pdf.

Introduction

We are given to analyse a dataset, named USJudgeratings, containing various ratings of state judges in the US Superior Court made by lawyers. The different variables given help us to determine if a judge is worthy staying in the US Superior Court or not. We will start by doing a general description of the data and applying descriptive statistics to better apprehend the data.

General description

We start by uploading our data.

```
data(USJudgeRatings)
```

First, let's see how the dataset is organized.

```
str(USJudgeRatings)
```

```
'data.frame':
                   43 obs. of 12 variables:
   $ CONT: num 5.7 6.8 7.2 6.8 7.3 6.2 10.6 7 7.3 8.2 ...
##
   $ INTG: num 7.9 8.9 8.1 8.8 6.4 8.8 9 5.9 8.9 7.9 ...
   $ DMNR: num 7.7 8.8 7.8 8.5 4.3 8.7 8.9 4.9 8.9 6.7 ...
##
##
   $ DILG: num 7.3 8.5 7.8 8.8 6.5 8.5 8.7 5.1 8.7 8.1 ...
                7.1 7.8 7.5 8.3 6 7.9 8.5 5.4 8.6 7.9 ...
##
   $ CFMG: num
##
   $ DECI: num 7.4 8.1 7.6 8.5 6.2 8 8.5 5.9 8.5 8 ...
   $ PREP: num 7.1 8 7.5 8.7 5.7 8.1 8.5 4.8 8.4 7.9 ...
##
##
   $ FAMI: num 7.1 8 7.5 8.7 5.7 8 8.5 5.1 8.4 8.1 ...
##
   $ ORAL: num
                7.1 7.8 7.3 8.4 5.1 8 8.6 4.7 8.4 7.7 ...
##
   $ WRIT: num 7 7.9 7.4 8.5 5.3 8 8.4 4.9 8.5 7.8 ...
   $ PHYS: num 8.3 8.5 7.9 8.8 5.5 8.6 9.1 6.8 8.8 8.5 ...
   $ RTEN: num 7.8 8.7 7.8 8.7 4.8 8.6 9 5 8.8 7.9 ...
```

The data is stored in a dataframe.

```
dim(USJudgeRatings)
```

```
## [1] 43 12
```

We are provided with n = 43 observations and p = 12 quantitative variables.

We can have a full view of the dataset by using the kable function:

```
library(knitr)
library(kableExtra)
kable(USJudgeRatings, 'latex', caption = "Ratings of US judges", booktabs = T) %>%
kable_styling(latex_options = "striped", font_size = 6)
```

Table 1: Ratings of US judges

							Juages					
	CONT	INTG	DMNR	DILG	CFMG	DECI	PREP	FAMI	ORAL	WRIT	PHYS	RTEN
AARONSON,L.H.	5.7	7.9	7.7	7.3	7.1	7.4	7.1	7.1	7.1	7.0	8.3	7.8
ALEXANDER, J.M.	6.8	8.9	8.8	8.5	7.8	8.1	8.0	8.0	7.8	7.9	8.5	8.7
ARMENTANO, A.J.	7.2	8.1	7.8	7.8	7.5	7.6	7.5	7.5	7.3	7.4	7.9	7.8
BERDON,R.I.	6.8	8.8	8.5	8.8	8.3	8.5	8.7	8.7	8.4	8.5	8.8	8.7
BRACKEN,J.J.	7.3	6.4	4.3	6.5	6.0	6.2	5.7	5.7	5.1	5.3	5.5	4.8
BURNS,E.B.	6.2	8.8	8.7	8.5	7.9	8.0	8.1	8.0	8.0	8.0	8.6	8.6
CALLAHAN,R.J.	10.6	9.0	8.9	8.7	8.5	8.5	8.5	8.5	8.6	8.4	9.1	9.0
COHEN,S.S.	7.0	5.9	4.9	5.1	5.4	5.9	4.8	5.1	4.7	4.9	6.8	5.0
DALY, J. J.	7.3	8.9	8.9	8.7	8.6	8.5	8.4	8.4	8.4	8.5	8.8	8.8
DANNEHY, J.F.	8.2	7.9	6.7	8.1	7.9	8.0	7.9	8.1	7.7	7.8	8.5	7.9
DEAN,H.H.	7.0	8.0	7.6	7.4	7.3	7.5	7.1	7.2	7.1	7.2	8.4	7.7
DEVITA,H.J.	6.5	8.0	7.6	7.2	7.0	7.1	6.9	7.0	7.0	7.1	6.9	7.2
DRISCOLL,P.J.	6.7	8.6	8.2	6.8	6.9	6.6	7.1	7.3	7.2	7.2	8.1	7.7
GRILLO, A.E.	7.0	7.5	6.4	6.8	6.5	7.0	6.6	6.8	6.3	6.6	6.2	6.5
HADDEN,W.L.JR.	6.5	8.1	8.0	8.0	7.9	8.0	7.9	7.8	7.8	7.8	8.4	8.0
HAMILL,E.C.	7.3	8.0	7.4	7.7	7.3	7.3	7.3	7.2	7.1	7.2	8.0	7.6
HEALEY.A.H.	8.0	7.6	6.6	7.2	6.5	6.5	6.8	6.7	6.4	6.5	6.9	6.7
HULL,T.C.	7.7	7.7	6.7	7.5	7.4	7.5	7.1	7.3	7.1	7.3	8.1	7.4
LEVINE,I.	8.3	8.2	7.4	7.8	7.7	7.7	7.7	7.8	7.5	7.6	8.0	8.0
LEVISTER,R.L.	9.6	6.9	5.7	6.6	6.9	6.6	6.2	6.0	5.8	5.8	7.2	6.0
MARTIN,L.F.	7.1	8.2	7.7	7.1	6.6	6.6	6.7	6.7	6.8	6.8	7.5	7.3
MCGRATH, J.F.	7.6	7.3	6.9	6.8	6.7	6.8	6.4	6.3	6.3	6.3	7.4	6.6
MIGNONE, A.F.	6.6	7.4	6.2	6.2	5.4	5.7	5.8	5.9	5.2	5.8	4.7	5.2
MISSAL,H.M.	6.2	8.3	8.1	7.7	7.4	7.3	7.3	7.3	7.2	7.3	7.8	7.6
MULVEY,H.M.	7.5	8.7	8.5	8.6	8.5	8.4	8.5	8.5	8.4	8.4	8.7	8.7
NARUK,H.J.	7.8	8.9	8.7	8.9	8.7	8.8	8.9	9.0	8.8	8.9	9.0	9.0
O'BRIEN,F.J.	7.1	8.5	8.3	8.0	7.9	7.9	7.8	7.8	7.8	7.7	8.3	8.2
O'SULLIVAN,T.J.	7.5	9.0	8.9	8.7	8.4	8.5	8.4	8.3	8.3	8.3	8.8	8.7
PASKEY,L.	7.5	8.1	7.7	8.2	8.0	8.1	8.2	8.4	8.0	8.1	8.4	8.1
RUBINOW, J.E.	7.1	9.2	9.0	9.0	8.4	8.6	9.1	9.1	8.9	9.0	8.9	9.2
SADEN.G.A.	6.6	7.4	6.9	8.4	8.0	7.9	8.2	8.4	7.7	7.9	8.4	7.5
SATANIELLO, A.G.	8.4	8.0	7.9	7.9	7.8	7.8	7.6	7.4	7.4	7.4	8.1	7.9
SHEA,D.M.	6.9	8.5	7.8	8.5	8.1	8.2	8.4	8.5	8.1	8.3	8.7	8.3
SHEA, J.F. JR.	7.3	8.9	8.8	8.7	8.4	8.5	8.5	8.5	8.4	8.4	8.8	8.8
SIDOR,W.J.	7.7	6.2	5.1	5.6	5.6	5.9	5.6	5.6	5.3	5.5	6.3	5.3
SPEZIALE, J.A.	8.5	8.3	8.1	8.3	8.4	8.2	8.2	8.1	7.9	8.0	8.0	8.2
SPONZO,M.J.	6.9	8.3	8.0	8.1	7.9	7.9	7.9	7.7	7.6	7.7	8.1	8.0
STAPLETON, J.F.	6.5	8.2	7.7	7.8	7.6	7.7	7.7	7.7	7.5	7.6	8.5	7.7
TESTO,R.J.	8.3	7.3	7.0	6.8	7.0	7.1	6.7	6.7	6.7	6.7	8.0	7.0
TIERNEY,W.L.JR.	8.3	8.2	7.8	8.3	8.4	8.3	7.7	7.6	7.5	7.7	8.1	7.9
WALL,R.A.	9.0	7.0	5.9	7.0	7.0	7.2	6.9	6.9	6.5	6.6	7.6	6.6
WRIGHT,D.B.	7.1	8.4	8.4	7.7	7.5	7.7	7.8	8.2	8.0	8.1	8.3	8.1
ZARRILLI,K.J.	8.6	7.4	7.0	7.5	7.5	7.7	7.4	7.2	6.9	7.0	7.8	7.1

The variables are all numeric. An observation in this dataset represents the different ratings received by a judge (given by his name) in the US Superior Court. Let's define properly what each variable means.

colnames(USJudgeRatings)

```
## [1] "CONT" "INTG" "DMNR" "DILG" "CFMG" "DECI" "PREP" "FAMI" "ORAL" "WRIT"
## [11] "PHYS" "RTEN"
```

The variables are:

- CONT: The number of contacts of the lawyer with judge.
- *INTG* : The judicial integrity of the judge.
- DMNR: Demeanor of the judge.
- DILG: Diligence of the judge.
- CFMG: Case flow managed by the judge.
- DECI: Prompt decisions taken by the judge.
- PREP: How the judge is prepared trial.
- FAMI: The judge's familiarity with law.
- ORAL: The judge's sound oral rulings.
- WRIT: The judge's sound written rulings.
- \bullet *PHYS* : The judge's physical ability.
- RTEN: Scaling if the judge is worthy to retain in the US Superior court.

Descriptive dataset analysis

summary(USJudgeRatings)

##	CONT	INTG	DMNR	DILG		
##	Min. : 5.700	Min. :5.900	Min. :4.300	Min. :5.100		
##	1st Qu.: 6.850	1st Qu.:7.550	1st Qu.:6.900	1st Qu.:7.150		
##	Median : 7.300	Median :8.100	Median :7.700	Median :7.800		
##	Mean : 7.437	Mean :8.021	Mean :7.516	Mean :7.693		
##	3rd Qu.: 7.900	3rd Qu.:8.550	3rd Qu.:8.350	3rd Qu.:8.450		
##	Max. :10.600	Max. :9.200	Max. :9.000	Max. :9.000		
##	CFMG	DECI	PREP	FAMI		
##	Min. :5.400	Min. :5.700	Min. :4.800	Min. :5.100		
##	1st Qu.:7.000	1st Qu.:7.100	1st Qu.:6.900	1st Qu.:6.950		
##	Median :7.600	Median :7.700	Median :7.700	Median :7.600		
##	Mean :7.479	Mean :7.565	Mean :7.467	Mean :7.488		
##	3rd Qu.:8.050	3rd Qu.:8.150	3rd Qu.:8.200	3rd Qu.:8.250		
##	Max. :8.700	Max. :8.800	Max. :9.100	Max. :9.100		
##	ORAL	WRIT	PHYS	RTEN		
##	Min. :4.700	Min. :4.900	Min. :4.700	Min. :4.800		
##	1st Qu.:6.850	1st Qu.:6.900	1st Qu.:7.700	1st Qu.:7.150		
##	Median :7.500	Median :7.600	Median :8.100	Median :7.800		
##	Mean :7.293	Mean :7.384	Mean :7.935	Mean :7.602		
##	3rd Qu.:8.000	3rd Qu.:8.050	3rd Qu.:8.500	3rd Qu.:8.250		
##	Max. :8.900	Max. :9.000	Max. :9.100	Max. :9.200		

All the variables (except the variable CONT) seem to be ranged between 0 and 10.

The last variable, RTEN, is our response variable. It says if the lawyers think that the judge is worthy staying in the US Superior Court or not.

We can observe that each variable seems to follow a symetric distribution, since median and mean are always close.

Let's inspect the dataframe for missing values, outliers and errors:

```
sum(is.na(USJudgeRatings))
```

[1] 0

There are no missing values in the dataframe.

Outvals = boxplot(USJudgeRatings)

We observe the presence of outliers for 10 of the 12 variables (with larger values for CONT and with lower values for the other variables).

Let's take a closer look at these outliers.

max(USJudgeRatings\$CONT)

[1] 10.6

rownames(USJudgeRatings)[which.max(USJudgeRatings\$CONT)]

[1] "CALLAHAN,R.J."

The judge with the biggest number of contacts of lawyer is judge Callahan with a a number of 10.6 contacts. min(USJudgeRatings\$RTEN)

[1] 4.8

rownames(USJudgeRatings)[which.min(USJudgeRatings\$RTEN)]

[1] "BRACKEN, J. J."

The judge with the lowest rating for worthiness of retention is judge Bracken with a rating of 4.8.

max(USJudgeRatings\$RTEN)

[1] 9.2

rownames(USJudgeRatings)[which.max(USJudgeRatings\$RTEN)]

[1] "RUBINOW, J.E."

The judge with the highest rating for worthiness of retention is judge Rubinow with a rating of 9.2.

We are not provided with extra information and nothing indicated that these outliers correspond to mistakes. Thus, we will assume that they aren't mistakes and keep them in our analysis.

hist(USJudgeRatings\$CONT, main="CONT")

hist(USJudgeRatings\$PREP, main="PREP")

hist(USJudgeRatings\$WRIT, main="WRIT")

WRIT

hist(USJudgeRatings\$RTEN, main="RTEN")

RTEN

USJudgeRatings\$RTEN

```
round(var(USJudgeRatings), 2)
         CONT INTG DMNR DILG CFMG DECI PREP FAMI
                                                    ORAL
                                                          WRIT PHYS
        0.89 -0.10 -0.17 0.01 0.11 0.07 0.01 -0.02 -0.01 -0.04 0.05 -0.03
## INTG -0.10
              0.59 0.85 0.60 0.54 0.50 0.64 0.64
                                                    0.71
                                                          0.67 0.54
                                                                     0.79
## DMNR -0.17
              0.85
                    1.31 0.86 0.80 0.74 0.93
                                              0.91
                                                    1.05
                                                          0.98 0.85
## DILG
        0.01
              0.60
                    0.86 0.81 0.74 0.69 0.84
                                              0.82 0.87
                                                          0.83 0.69
                                                                      0.92
## CFMG
              0.54
                    0.80 0.74 0.74 0.68 0.79
                                              0.76
                                                    0.83
        0.11
                                                          0.78 0.71
                    0.74 0.69 0.68 0.64 0.73
                                              0.72
## DECI
        0.07
              0.50
                                                    0.77
                                                          0.73 0.66
## PREP
        0.01
              0.64
                    0.93 0.84 0.79 0.73 0.91
                                              0.90
                                                    0.95
                                                          0.90 0.76
                    0.91 0.82 0.76 0.72 0.90
                                              0.90 0.94
## FAMI -0.02
              0.64
                                                         0.90 0.75
                                                                     0.98
                    1.05 0.87 0.83 0.77 0.95
## ORAL -0.01
              0.71
                                              0.94
                                                    1.02
                                                          0.96 0.85
                    0.98 0.83 0.78 0.73 0.90
## WRIT -0.04
              0.67
                                              0.90
                                                    0.96
                                                          0.92 0.77
                                                                      1.02
                    0.85 0.69 0.71 0.66 0.76
                                              0.75
## PHYS 0.05 0.54
                                                    0.85
                                                          0.77 0.88
                    1.19 0.92 0.88 0.82 1.00
## RTEN -0.03 0.79
                                              0.98
                                                    1.09
                                                          1.02 0.94
round(sqrt(diag(var(USJudgeRatings))),2)
## CONT INTG DMNR DILG CFMG DECI PREP FAMI ORAL WRIT PHYS RTEN
## 0.94 0.77 1.14 0.90 0.86 0.80 0.95 0.95 1.01 0.96 0.94 1.10
print('The smallest standard deviation is: ')
## [1] "The smallest standard deviation is: "
min(round(sqrt(diag(var(USJudgeRatings))),2))
## [1] 0.77
print('The largest standard deviation is: ')
## [1] "The largest standard deviation is: "
```

```
max(round(sqrt(diag(var(USJudgeRatings))),2))
```

```
## [1] 1.14
```

Regarding the dispersion, we look at the interquartile range (given by the boxplots) and the empirical standard deviation. Overall, the dispersions are not very high (around 1). We find that the variables DMNR and RTEN have the largest standard deviation, while the DECI variable has the smallest.

Let's measure the correlations between the 11 first variables and the variable RTEN. For this we use the correlations function and the pairs function to visualize the scatter plots of the variables two by two.

```
round(cor(USJudgeRatings),2)
```

```
##
         CONT
               INTG DMNR DILG CFMG DECI PREP
                                                FAMI
                                                       ORAL
                                                             WRIT PHYS
                                                                        RTEN
         1.00 -0.13 -0.15 0.01 0.14 0.09 0.01 -0.03 -0.01 -0.04 0.05 -0.03
## CONT
## INTG -0.13
               1.00
                     0.96 0.87 0.81 0.80 0.88
                                                0.87
                                                       0.91
                                                             0.91 0.74
                                                                        0.94
## DMNR -0.15
               0.96
                     1.00 0.84 0.81 0.80 0.86
                                                0.84
                                                       0.91
                                                             0.89 0.79
                                                                        0.94
## DILG
         0.01
               0.87
                     0.84 1.00 0.96 0.96 0.98
                                                0.96
                                                       0.95
                                                             0.96 0.81
                                                                        0.93
## CFMG
         0.14
               0.81
                     0.81 0.96 1.00 0.98 0.96
                                                0.94
                                                       0.95
                                                             0.94 0.88
                                                                        0.93
## DECI
         0.09
               0.80
                     0.80 0.96 0.98 1.00 0.96
                                                0.94
                                                       0.95
                                                             0.95 0.87
                                                                        0.92
                     0.86 0.98 0.96 0.96 1.00
                                                0.99
## PREP
         0.01
               0.88
                                                       0.98
                                                             0.99 0.85
                                                                        0.95
## FAMI -0.03
               0.87
                     0.84 0.96 0.94 0.94 0.99
                                                1.00
                                                       0.98
                                                             0.99 0.84
                                                                        0.94
## ORAL -0.01
               0.91
                     0.91 0.95 0.95 0.95 0.98
                                                0.98
                                                       1.00
                                                             0.99 0.89
                                                                         0.98
## WRIT -0.04
                     0.89 0.96 0.94 0.95 0.99
                                                0.99
                                                       0.99
               0.91
                                                             1.00 0.86
                                                                        0.97
## PHYS
        0.05
               0.74
                     0.79 0.81 0.88 0.87 0.85
                                                0.84
                                                       0.89
                                                             0.86 1.00
                                                                        0.91
## RTEN -0.03
                     0.94 0.93 0.93 0.92 0.95
               0.94
                                                0.94
                                                       0.98
                                                             0.97 0.91
                                                                        1.00
library(corrplot)
```

```
## corrplot 0.84 loaded
```

```
corrplot(cor(USJudgeRatings))
```


variables have a strong positive correlation two by two except the variable CONT which is not correlated to all the other variables. The number of contacts of a lawyer with the judge doesn't seem to explain the

ratings received by the judge.

```
par(mfrow=c(1,2))
hist(USJudgeRatings$CONT, probability= TRUE, main="Histogram of CONT", xlab="CONT")
d = density(USJudgeRatings$CONT, kernel = 'c', bw = 0.3)
lines(d, col="red")
hist(USJudgeRatings$RTEN, probability= TRUE, main="Histogram of RTEN", xlab="RTEN")
d = density(USJudgeRatings$RTEN, kernel = 'o', bw = 0.3)
lines(d, col="red")
```

Histogram of CONT

Histogram of RTEN


```
par(mfrow=c(1,2))
plot(ecdf(USJudgeRatings$CONT), verticals = TRUE, do.points = FALSE, main = "ECDF CONT")
plot(ecdf(USJudgeRatings$RTEN), verticals = TRUE, do.points = FALSE, main = "ECDF RTEN")
```


Normal Q-Q Plot

QQ plots suggests that the RTEN variable seems to follow a Gaussian distribution except for lower values.

```
kurtosis
## function (x, na.rm = FALSE, type = 3)
## {
##
       if (any(ina \leftarrow is.na(x))) {
##
            if (na.rm)
##
                x \leftarrow x[!ina]
            else return(NA)
##
##
       }
       if (!(type %in% (1:3)))
##
##
            stop("Invalid 'type' argument.")
       n <- length(x)
##
##
       x <- x - mean(x)
       r <- n * sum(x^4)/(sum(x^2)^2)
##
       y <- if (type == 1)
##
##
            r - 3
       else if (type == 2) {
##
##
            if (n < 4)
##
                stop("Need at least 4 complete observations.")
            ((n + 1) * (r - 3) + 6) * (n - 1)/((n - 2) * (n - 3))
##
##
       }
       else r * (1 - 1/n)^2 - 3
##
##
## }
## <bytecode: 0x7ffd35e79200>
## <environment: namespace:e1071>
skewness
## function (x, na.rm = FALSE, type = 3)
## {
##
       if (any(ina \leftarrow is.na(x))) {
##
            if (na.rm)
                x \leftarrow x[!ina]
##
            else return(NA)
##
##
       }
##
       if (!(type %in% (1:3)))
            stop("Invalid 'type' argument.")
##
##
       n <- length(x)
##
       x \leftarrow x - mean(x)
##
       y \leftarrow sqrt(n) * sum(x^3)/(sum(x^2)^(3/2))
##
       if (type == 2) {
##
            if (n < 3)
##
                stop("Need at least 3 complete observations.")
##
            y \leftarrow y * sqrt(n * (n - 1))/(n - 2)
##
##
       else if (type == 3)
##
            y \leftarrow y * ((1 - 1/n))^(3/2)
##
       У
## }
```

library(e1071)

<bytecode: 0x7ffd35f17f90>
<environment: namespace:e1071>

Conclusion

Our analysis has