MEMORY MANAGEMENT

OUTLINE

- Contiguous Memory Allocation
 - Uniprogramming
 - Multiprogramming
- Non-Contiguous Memory Allocation
 - Segmentation
 - Paging

UNIPROGRAMMING

Physical memory

UNIPROGRAMMING

Physical memory

Pros

- 1. No translation & protection
- 2. App can access larger physical address
- 3. Simple

UNIPROGRAMMING

Cons

- 1. Not efficient
- 2. Not powerful

Physical memory

What if we want to run multiple processes?

Each process has the same memory size

fixed-sized partitions

How to manage each block?

What if we want to run multiple processes?

Each process has the same memory size

fixed-sized partitions

What if we want to run multiple processes? Each process has different memory size

variable partitions

What if we want to run multiple processes? Each process has different memory size

P1 P5 P6 P6

variable partitions

FRAGMENTATION

For Multiprogramming, we need to consider fragmentation problem.

- There are several strategies:
 - First fit
 - Best fit
 - Worst fit

For Multiprogramming, we need to consider fragmentation problem.

There are several strategies:

For Multiprogramming, we need to solve fragmentation problem.

- There are several strategies :
 - First fit
 - Best fit
 - Worst fit

Which is better?

Another allocation structure——Buddy System

QUESTION

Q: How to avoid or reduce fragmentation?

- Defragmentation
- Noncontiguous allocation
 - Segmentation
 - Paging

SEGMENTATION

QUESTION

Q: How to know which segment is stored in which physical address?

SEGMENTATION

Pros.

- 1) Make data more "logical", easy to share
- 2) We can do much better on "protection"
- 3) Reduce fragmentation

Cons.

- 1) Segment size is not fixed, more complicated
- 2) One process need allocate memory many times
- 3) Fragmentation is smaller but still a problem

PAGING

Q: What's the idea of Paging?

PAGING

page1
page2
page3
page4
page5
page6

OS page1 page2 page3 Mem page4 page5 page6

QUESTION

Q: How to know which page is stored in which physical address?

PAGING

The idea like database. We need a extra space for "Page Table", and we also need a "index" to speed up the searching.

PAGING

Pros.

- 1) Simple to implement
- 2) Reduce external fragmentation
- 3) Demand paging technique (learn latter) Cons.
- 1) Page table requires extra memory space
- 2) Internal fragmentation problem

LAB REQUIREMENT

- 1. Complete the code, so that it can realize basic memory allocation (basic). Please notice, the program may have some bugs, you are also required to fix it. (be care of input/output buffer)
- 2. You can try to add buddy system/ segmentation /paging to this program, which will give you 20 bonus points.
- 3. read OS_Lab8_Memory_Guide.pdf for detail.