

DPaI: Differentiable Pruning at Initialization with Node-Path Balance Principle

Lichuan Xiang^{1*}, Quan Nguyen-Tri^{2,3*}, Lan-Cuong Nguyen^{2,3}, Hoang Pham¹, Khoat Than², Long Tran-Thanh¹, Hongkai Wen¹

¹University of Warwick ²Hanoi University of Science and Technology ³FPT Software AI Center *Equal Contribution

INTRODUCTION

Lottery Ticket Hypothesis (LTH) suggests the existence of sparse networks at initialization that can be trained to full accuracy.

Task: Pruning at Initialization (PaI) identifies LTH before training. \rightarrow Significantly reduce memory and computational costs.

Motivation:

- Node-Path Balancing (NPB) principle optimizing subnetwork's topologies.
- NPB implementations require solving large-scale discrete optimization problems.

Contribution: We introduce Differentiable Pruning at Initialization (DPaI):

- Converts discrete NPB optimization into a differentiable formulation.
- Dynamically optimizes pruning masks to enhance network topology.
- Utilizes efficient gradient-based methods for fast, superior pruning.

NODE-PATH BALANCING

Effective Path: connects an input node to an output node without any interruptions.

Effective Node/Channel: at least one effective path goes through it.

Architecture $f(x, \mathbf{W})$, parameter $\mathbf{W} \in \mathbb{R}^N$. NPB objective is to identify a binary mask \mathbf{M} that:

Maximize $\mathcal{R}_{NPB} := \alpha \log \mathcal{R}_N + (1 - \alpha) \log \mathcal{R}_P$

s.t. $\|\mathbf{M}\|_1 \leq N(1-\rho)$, ρ : desired sparsity

METHOD OVERVIEW

Introduce differentiable score parameters for each weight: $m_{i,j}^{(l)} = \mathrm{Top}_{k^{(l)}}(|s_{i,j}^{(l)}|)$

The number of incoming paths to a node:

$$P(v_j^{(l)}) = \sum_{i=1}^{h^{(l-1)}} m_{i,j}^{(l)} P(v_i^{(l-1)}), \quad \mathcal{R}_P = \sum_{j=1}^{h^{(L)}} P(v_j^{(L)})$$

The number of outgoing paths to a node:

$$\frac{\delta \mathcal{R}_P}{\delta P(v_j^{(l)})} = \sum_{n,p,q,\dots,k} m_{p,n}^{(L)} m_{q,p}^{(L-1)} \dots m_{j,k}^{(l+1)}$$

A node is effective when $N(v_j^{(l)}) > 0$:

$$N(v_j^{(l)}) = P(v_j^{(l)}) \frac{\delta \mathcal{R}_P}{\delta P(v_j^{(l)})}, \quad \mathcal{R}_N = \sum_{l,j} \tanh N(v_j^{(l)})$$

The derivative with respect to \mathcal{R}_P and \mathcal{R}_N :

$$\frac{\delta \mathcal{R}_P}{\delta s_{i,j}^{(l)}} \propto \frac{\delta \mathcal{R}_P}{\delta P(v_j^{(l)})} P(v_i^{(l-1)}), \quad \frac{\delta \mathcal{R}_N}{\delta s_{i,j}^{(l)}} \propto \mathbb{1}_{N(v_j^{(l)})=0} \frac{\delta \mathcal{R}_P}{\delta s_{i,j}^{(l)}}$$

Path Objective: promote the score of edges that connect numerous effective paths.

Node Objective: promote the score of edges in an ineffective node.

Algorithm 1 Differentiable PaI (DPaI)

- 1: **Input:** network $f(x, \mathbf{W})$, final sparsity ρ , iteration steps T, hyperparameter α, β, η
- 2: Initialize the score parameters: $s_{i,j}^{(l)} \sim \mathcal{N}(0,1)$
- 3: Layer-wise sparsity: $k^{(l)} \leftarrow \text{ERK}(\rho)$
- 4: **for** $t \in 1, ..., T$ **do**
- 5: Binarize the mask: $m_{i,j}^{(l)} \leftarrow \text{Top}_{k^{(l)}}(|s_{i,j}^{(l)}|)$
- 6: Number of effective paths: $\mathcal{R}_P \leftarrow f(\mathbb{1}, \mathbf{M})$
- 7: Calculate the derivatives: $\frac{\delta \mathcal{R}_P}{\delta s_{i,j}^{(l)}}$, $\frac{\delta \mathcal{R}_N}{\delta s_{i,j}^{(l)}}$, $\frac{\delta \mathcal{R}_C}{\delta s_{i,j}^{(l)}}$
- 8: Update the score parameters: $s_{i,j}^{(l)} \leftarrow s_{i,j}^{(l)} + \eta \left((1 \alpha) \frac{\delta \mathcal{R}_P}{\delta s_{i,j}^{(l)}} + \alpha \left((1 \beta) \frac{\delta \mathcal{R}_N}{\delta s_{i,j}^{(l)}} + \beta \frac{\delta \mathcal{R}_C}{\delta s_{i,j}^{(l)}} \right) \right)$
- 9: end for
- 10: **Output:** pruned network $f(x, \mathbf{M} \odot \mathbf{W})$

CONVERGENCE ANALYSIS

Assuming, edge $m_{i,j}^{(l)}$ replaces $m_{p,q}^{(l)}$, and the rest of the sub-network remains fixed.

Optimising
$$\mathcal{R}_P$$
: $\left| \frac{\delta \log \mathcal{R}_P}{\delta s_{i,j}^{(l)}} \right| > \left| \frac{\delta \log \mathcal{R}_P}{\delta s_{p,q}^{(l)}} \right|$

Optimising
$$\mathcal{R}_N$$
: $N(v_j^{(l)}) = 0 \to N(v_j^{(l)}) > 0$
If $N(v_q^{(l)}) = 0$: $\left| \frac{\delta \log \mathcal{R}_P}{\delta s_{i,j}^{(l)}} \right| > \left| \frac{\delta \log \mathcal{R}_P}{\delta s_{p,q}^{(l)}} \right|$

f
$$N(v_q^{(l)}) > 0$$
: $\left| \frac{\delta \log \mathcal{R}_P}{\delta s_{i,j}^{(l)}} \right| > 0$

Optimising \mathcal{R}_{NPB} :

If
$$N(v_j^{(l)}) = 0$$
, $N(v_q^{(l)}) > 0$: $\left| \frac{\delta \log \mathcal{R}_P}{\delta s_{i,j}^{(l)}} \right| > \epsilon \left| \frac{\delta \log \mathcal{R}_P}{\delta s_{p,q}^{(l)}} \right|$

If $N(v_j^{(l)}) > 0$, $N(v_q^{(l)}) = 0$: $\left| \frac{\delta \log \mathcal{R}_P}{\delta s_{i,j}^{(l)}} \right| > \frac{1}{\epsilon} \left| \frac{\delta \log \mathcal{R}_P}{\delta s_{p,q}^{(l)}} \right|$

Otherwise: $\left| \frac{\delta \log \mathcal{R}_P}{\delta s_{i,j}^{(l)}} \right| > \left| \frac{\delta \log \mathcal{R}_P}{\delta s_{p,q}^{(l)}} \right|$

Figure 1: The convergence of different objective:

RESULTS

Figure 2: DPaI consistently outperforms prior PaI methods across datasets and sparsity levels.

Figure 3: Easy to select effective hyperparameter from a variety of node-path balanced topologies.

Figure 4: DPaI significantly outperforms PHEW and NPB in pruning speed under large-scale settings.

