Übungen zur Linearen Algebra und Analytischen Geometrie Sommersemester 2025 Esentepe-Gharbi

Blatt 6

(1) Überzeugen Sie sich, dass das Gleichungssytem Ax = b mit

$$A = \begin{bmatrix} -1 & 0 & 3 \\ 1 & -2 & 0 \\ 0 & -2 & 3 \end{bmatrix} \quad , \quad b = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$$

unlösbar ist. Finden Sie dann alle Lösungen \hat{x} sodass

$$||b - A\hat{x}|| = \min_{x \in \mathbb{R}^3} ||b - Ax||$$

erfüllt. Berechnen Sie $A\hat{x}$ und $||b - A\hat{x}||$.

- (2) Seien A und b wie in Übung 1 und $\pi \colon \mathbb{R}^3 \to \mathbb{R}^3$ die Orthogonalprojektion auf den Unterraum U = Bild(A).
 - (a) Ist A invertierbar?
 - (b) Berechnen Sie $\pi(b)$.
- (3) Seien U, V, W endlichdim. euklid. oder unitäre Vektorraume und

$$f: V \to W$$
 , $q: U \to V$

lineare Abbildungen. Zeigen Sie dass

- (a) $(f \circ g)^* = g^* \circ f^*$.
- (b) $(f^*)^* = f$.

gilt.

(4) Es sei $V = M_{2\times 2}(\mathbb{R})$ der Vektorraum der 2×2 Matrizen mit Koeffizienten in \mathbb{R} mit $\langle A,B\rangle = \operatorname{Spur}(A^TB)$. Die lineare Abbildung $f\colon V\to V$ ist gegeben durch $f(A)=A+A^T$. Es seien

$$M = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} \quad \text{und} \quad A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

- (a) Berechnen Sie $\langle M, A \rangle$.
- (b) Berechnen Sie $\langle M, A^T \rangle$.
- (c) Berechnen Sie $\langle M, f(A) \rangle$.
- (d) Berechnen Sie $\langle f^*(M), A \rangle$.
- (e) Berechnen Sie f^* .
- (5) Es seien $V = \mathbb{R}^4$ mit Standardskalarprodukt and

$$\mathcal{B} = \left(\begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right)$$

eine Basis. Es seien $f \colon V \to V$ eine lineare Abbildung mit

$$[f]_{\mathcal{B},\mathcal{B}} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Finden Sie $[f^*]_{\mathcal{B},\mathcal{B}}$.