Pulmonary vascular dysfunction during ARDS

Pr Armand Mekontso Dessap Medical Intensive Care Unit Henri Mondor Hospital Créteil, France Pathophysiology
Diagnosis
Prognosis
Treatment

ARDS is a disease of the pulmonary alveoli AND capillaries

Factors associated with lung vascular dysfunction during ARDS

VASO-OCCLUSION

1. Endothelial lesions, thrombosis, remodeling

VASOCONSTRICTION

- 2. Hypoxemia, hypercapnia
- 3. Endogenous mediators (Tx, LT, ET...)

VESSEL COMPRESSION

- 4. Edema
- 5. Overdistension
- 6. Lung collapse

Vaso-occlusion

Normal adult

Early ARDS

Hypoxic pulmonary vasoconstriction

Endothelins

Role of ventilation

VASO-OCCLUSION

1. Endothelial lesions, thrombosis, remodeling

VASOCONSTRICTION

- 2. Hypoxemia, hypercapnia
- 3. Mediators (Tx, LT, ET...)

VESSEL COMPRESSION

- 4. Edema
- 5. Overdistension
- 6. Lung collapse

Lung injury

Mechanical ventilation

VASO-OCCLUSION

1. Endothelial lesions, thrombosis, remodeling

VASOCONSTRICTION

- 2. Hypoxemia, permissive hypercapnia
- 3. Mediators (Tx, LT, ET...)

VESSEL COMPRESSION

- 4. Edema (VILI)
- 5. Overdistension
- 6. Lung collapse

Intrathoracic pressures alteration: effect on RV function

- ↑ pleural pressure
 - □ ↓ pressure gradient of venous return ?
 - □ ↓ conductance of venous return (collapsible zone)
 - → ↓ RV preload (preload effect)
- † transpulmonary pressure
 - pulmonary capillaries conductance

RV afterload effect and ventricular coupling

Dual effect of PEEP on RV afterload

Role of respiratory settings

Table 2 Factors associated with acute cor pulmonale in patients with acute respiratory distress syndrome

Variable	Odds ratio (95 % CI) by logistic regression			
	Univariate	Multivariable ^a		
Pneumonia as cause of ARDS	2.54_(1.79–3.62), p < 0.0L	2.73 (1.84-4.05), p < 0.01		
Respiratory settings on TEE day Tidal volume <7 mL/kg	1.70 (1.17-2.47), p < 0.01	I/NR		
Respiratory rate \geq 30 breaths/min	1.70 (1.17 - 2.47), p < 0.01 1.70 (1.11 - 2.60), p = 0.02	I/NR		
Plateau pressure $\geq 27 \text{ cmH}_2\text{O}$	1.91 (1.33–2.73), $p < 0.01$	I/NR		
Compliance <30 ml/cmH ₂ O	1.91 (1.33–2.73), $p < 0.01$	I/NR		
Driving pressure $\geq 18 \text{ cmH}_2\text{O}^6$	2.16 (1.51-3.10), p < 0.01	2.28 (1.53-3.38), p < 0.01		
Arterial blood gases on TEE day				
PaO ₂ /FiO ₂ ratio <150 mmHg	2.41 (1.49-3.92), p < 0.01	2.60 (1.50-4.52), p < 0.01		
$PaCO_2 \ge 48 \text{ mmHg}$	2.95 (2.06-4.21), p < 0.01	2.39 (1.62-3.52), p < 0.01		

Driving pressure and ARDS prognosis

Pathophysiology

Diagnosis

Prognosis

Treatment

How to detect lung vascular dysfunction?

- Biology
 - □ ↑blood marker of endothelial injury
 eg: ↑ angiopoietin-2/angiopoietin-1 ratio
 (► may reflect systemic rather than pulmonary endothelial injury)
- Dead space calculation
 - □ ↑alveolar dead space
- Pulmonary artery catheter
 - □ ↑PAP and PVR
 - 个Transpulmonary gradient (PAPm PAOP)
 - CVP > PAOP

Echocardiography to detect lung vascular dysfunction

↑ RV afterload

个PAP

Alteration of pulmonary ejection flow

Cor pulmonale

RV dilatation

Septal dyskinesia

Risk factors for cor pulmonale

Table 3 The acute cor pulmonale risk score

Parameter	Score
Pneumonia as cause of ARDS	1
Driving pressure $\geq 18 \text{ cmH}_2\text{O}^a$	1
PaO ₂ /FiO ₂ ratio <150 mmHg	1
PaCO ₂ $\geq 48 \text{ mmHg}$	1
Total score	0–4

ACP risk score

VALIDATION COHORT

Clinical implications of lung vascular dysfunction during ARDS

Hemodynamics (RV failure)

Oxygenation (PFO shunting)

PFO and PEEP

Pathophysiology Diagnosis

Prognosis

Treatment

Prognosis of dead space fraction

Prognosis of PAC indexes

	Survive (n=47)	Dead (n=98)	n		Survive (n=348)	Dead (n=127)
	(11—47)	(11–30)	р		(11–340)	(11–121)
PAPm, mmHg	27	28	0.49	TPG	14.3	15.7
PVRi	350	367	0.60	PVRI	299.9	326.4
					60 day mortality	•
CVP>PAOP	19%	33%	<0.05	50		n=41
				<u>≱</u> 40-		
RVF	9%	10%	0.98	% mortality 20- n=126	n=308	
				% 20 n=126		

10-

TPG < 12

TPG ≥ 24

TPG 12-24

Patients

Ρ

0.009

0.03

TPG < 12 ■TPG 12-24 TPG ≥ 24

Prognosis of lung vascular dysfunction

Pathophysiology
Diagnosis
Prognosis
Treatment

Intravenous vasodilators

EXAMPLES

- PGE1
- PGI2 (prostacyclin)
- Nitroprusside
- Isoproterenol
- Diltiazem

DRAWBACKS

- Lack of selectivity for the pulmonary circulation
 - Systemic hypotension
- Act on ventilated and non ventilated pulm.vessels
 - □ \uparrow shunt fraction and \downarrow PaO₂
- No clinical benefit in randomized trials

Inhaled NO

Human RV failure Bohrade, AJRCCM 1999

Inhaled NO

P/F RATIO

SURVIVAL

Ventilatory strategy: primum non nocere:

- Avoid excessive hypoxemia / hypercapnia
- Avoid lung vascular stretch
 - Limit driving pressure
 - Limit recruitment maneuvres
- Prone position

Ventilatory strategy: RV protective approach

- Avoid excessive hypoxemia / hypercapnia
- Avoid lung vascular stretch
 - Limit driving pressure
 - Limit recruitment maneuvres
- Prone position

Fig. 1 Proposed approach to preventing acute cor pulmonale and limiting its consequences: a *right* ventricular protective approach. *RR* respiratory rate, *RV* right ventricular, *HME* heat and moisture exchanger, *PP* prone positioning, *PEEP* positive end-expiratory pressure. *Avoid any intrinsic PEEP. **Replace HME by a heated humidifier

Hypercapnia and lung vascular dysfunction

Hypercapnia and lung vascular dysfunction

Hypercapnia and mortality of ARDS

PaCO₂ and RR

Heated humidifier

ECCO₂-R?

Porcine ARDS Morimont, Anesthesiol Scand 2015

Expert opinion

RV protective approach

Fig. 1 Proposed approach to preventing acute cor pulmonale and limiting its consequences: a *right* ventricular protective approach. *RR* respiratory rate, *RV* right ventricular, *HME* heat and moisture exchanger, *PP* prone positioning, *PEEP* positive end-expiratory pressure. *Avoid any intrinsic PEEP. **Replace HME by a heated humidifier

Prone position

Fluid loading

Fluid loading

Massive PE Mercat, CCM 1999

Conclusions

- Lung vascular dysfunction :
 - is present in a significant number of ARDS patients
 - alters prognosis
 - can be detected with various tools, especially echocardiography
 - should prompt a specific ventilatory management