Álgebra Conmutativa Computacional

F. J. Lobillo

2019/2020

Capítulo 1

Anillos e ideales

1.1

Anillos conmutativos

Definición 1.1. Un *anillo* es un conjunto R sobre el que hay definidas dos operaciones $+: R \times R \to R$ y $\cdot: R \times R \to R$ (denominadas suma y producto) que satisfacen las siguientes propiedades:

Asociativa de la suma. Para cualesquiera $r, s, t \in R$,

$$r + (s + t) = (r + s) + t$$
.

Conmutativa de la suma. Para cualesquiera $r, s \in \mathbb{R}$,

$$r+s=s+r.$$

Elemento neutro para la suma. Existe un elemento $0 \in R$ tal que

$$r + 0 \Rightarrow r$$

para cualquier $r \in R$.

Elemento opuesto para la suma. Para cualquier $r \in R$, existe $-r \in R$ tal que

$$r + (-r) = 0$$
.

Asociativa del producto. Para cualesquiera $r, s, t \in R$,

$$r(st) = (rs)t$$
.

Elemento neutro para el producto. Existe $1 \in R$, tal que

$$r1 = 1r = r$$

para todo $r \in R$.

Distributiva de la suma respecto del producto. Para todos $r, s, t \in R$,

$$r(s+t) = rs + rt$$

у

$$(r+s)t = rt + st.$$

Un anillo se dice conmutativo si satisface la propiedad

Conmutativa del producto. Para cualesquiera $r, s \in R$,

$$rs = sr$$
.

Proposición 1.2. Los elementos neutros para la suma y el producto son únicos. El opuesto de un elemento es único.

Demostración. Si $0, 0' \in \mathbb{R}$ son elementos neutros para la suma

$$0 = 0 + 0' = 0'$$
.

La unicidad del elemento neutro para el producto es análoga. Si -r, r' son opuestos para r,

$$-r = -r + 0 = -r + (r + r') = (-r + r) + r' = 0 + r' = r'.$$

Definición 1.3. Dado un anillo conmutativo R, un elemento r es una *unidad* si tiene inverso para el producto, es decir, si existe $r^{-1} \in R$ tal que

$$rr^{-1} = 1$$
.

El conjunto de la unidades se denota $\mathcal{U}(R)$. Se dice que $r \in R$ es un divisor de cero si existe $s \in R \setminus \{0\}$ tal que rs = 0.

Proposición 1.4. Sea R un anillo. Para cualesquiera $r, s \in R$,

- 1. r0 = 0,
- 2. (-r)s = -(rs) = r(-s),
- 3. $si r \in U(R)$, su inverso es único,
- 4. $si r, s \in \mathcal{U}(R), rs \in \mathcal{U}(R) y (rs)^{-1} = s^{-1}r^{-1}$.

Demostración. Rara cualquier $r \in R$,

$$0 = -(r0) + r0 = -(r0) + r(0+0) = -(r0) + (r0+r0) = (-(r0) + r0) + r0 = 0 + r0 = r0.$$

Dado que

$$(-r)s + rs = (-r + r)s = 0s = 0,$$

se tiene que (-r)s = -(rs) por la unicidad del opuesto. La unicidad del inverso es análoga a la unicidad del opuesto. Finalmente

$$rs(s^{-1}r^{-1}) = r(ss^{-1})r^{-1} = r1r^{-1} = rr^{-1} = 1,$$
 de donde $s^{-1}r^{-1} = (rs)^{-1}$ y $rs \in \mathcal{U}(R)$.

Definición 1.5. Un anillo conmutativo en el que 0 es el único divisor de cero recibe el nombre de *dominio de integridad*. Observemos que R es dominio de integridad si y solo si para cualesquiera $r, s \in R$, si rs = 0 entonces r = 0 o s = 0.

Un *cuerpo* es un anillo conmutativo en el que todo elemento no nulo es una unidad, es decir, $\mathcal{U}(R) = R \setminus \{0\}$.

Ejemplo 1.6. Son anillos conmutativos \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{R}[x]$ donde \mathbb{R} es un anillo conmutativo, \mathbb{Z}_n , \mathbb{F}_q . De los anteriores, \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{F}_q son cuerpos.

Ejemplo 1.7. Sean A_1 , A_2 dos anillos. Es un ejercicio rutinario comprobar que $A_1 \times A_2$ es un nuevo anillo en el que las operaciones se realizan componente a componente, es decir,

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

y

$$(a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$

El cero y el uno de este nuevo anillo son, respectivamente, $(0_1, 0_2)$ y $(1_1, 1_2)$, y el opuesto se calcula

$$-(a_1,a_2)=(-a_1,+a_2).$$

Subanillos e ideales

1.2

Definición 1.8. Dado un anillo A, un subconjunto $B \subseteq A$ es un subanillo si

- $0 \in B \ v \ 1 \in B$;
- dados $a, b \in B, a b \in B$;
- dados $a, b \in B$, $ab \in B$.

Es inmediato comprobar que un subanillo vuelve a ser un anillo con las operaciones heredadas. Pero no todo subconjunto que sea un anillo con las operaciones heredadas es un subanillo, como vamos a comprobar con el siguiente ejemplo.

Ejemplo 1.9. En \mathbb{Z}_6 consideramos el subconjunto $\{0, 2, 4\}$. Es sencillo verificar que {0, 2, 4} es cerrado para la suma, opuesto y producto. Como

$$4 \times 0 = 0, 4 \times 2 = 2, 4 \times 4 = 4,$$

tenemos que $\{0, 2, 4\}$ es un anillo en el que el elemento neutro para el producto es 4.

En adelante, y salvo que específicamente se indique lo contrario, todos los anillos tratados en este curso son anillos conmutativos.

Definición 1.10. Dado un anillo conmutativo A, un subconjunto no vacío $I \subseteq A$ es un ideal si

• dados $a, b \in I$, $a + b \in I$;

■ dados $a \in I$ y $b \in A$, $ab \in I$.

Se denota por $I \leq A$.

Observación 1.11. Si $a, b \in I$, entonces $a - b = a + (-1)b \in I$, por lo que I es un subgrupo abeliano de A.

Proposición 1.12. Sea A un anillo conmutativo y sea $I \subseteq A$ un subgrupo abeliano. I es un ideal de A si y sólo si A/I es un anillo conmutativo con respecto a las operaciones (a + I) + (b + I) = (a + b) + I y (a + I)(b + I) = ab + I.

Demostración. Por ser I un subgrupo abeliano sólo tenemos que ocuparnos de que el producto está bien definido. Supongamos que a+I=a'+I, es decir, $a-a'\in I$. Si I es ideal, a+I=a'+I y b+I=b'+I tenemos que

$$ab - a'b' = ab - a'b + a'b - a'b' = (a - a')b + a'(b - b') \in I$$

luego el producto está bien definido. Recíprocamente, si el producto está bien definido tenemos que (0+I)(b+I)=0+I, por tanto, si $\alpha\in I$

$$ab + I = (a + I)(b + I) = (0 + I)(b + I) = 0 + I,$$

es decir, $ab \in I$, lo que implica que I es un ideal.

Dados ideales $I, J \leq A$, se define

$$I + J = \{x + y \mid x \in I, y \in J\}$$

y $IJ = \{x_1y_1 + \dots + x_ty_t \mid x_i \in I, y_i \in J, 1 \le i \le y\}$

Proposición 1.13. I + J, I \cap J e IJ son ideales de A. I + J es el menor ideal que contiene tanto a I como a J. IJ \subseteq I \cap J.

Demostración. Ejercicio.

Dado $F \subseteq A$, definimos

$$\langle F \rangle = \{ \alpha_1 f_1 + \dots + \alpha_s f_s \mid \alpha_1, \dots, \alpha_s \in A, f_1, \dots, f_s \in F \}.$$

Proposición 1.14. $\langle F \rangle$ *es el menor ideal de* A *que contiene a* F.

Demostración. Es inmediato comprobar que si un ideal contiene a F, debe contener a $\langle F \rangle$. Comprobemos que es un ideal. Sean $a_1 f_1 + \cdots + a_s f_s$, $b_1 g_1 + \cdots + b_t g_t \in \langle F \rangle$. Tenemos que

$$(a_1f_1 + \dots + a_sf_s) + (b_1g_1 + \dots + b_tg_t) =$$

$$a_1f_1 + \dots + a_sf_s + b_1g_1 + \dots + b_tg_t \in \langle F \rangle.$$

Por otra parte, si $a \in A$ y $a_1 f_1 + \cdots + a_s f_s \in \langle F \rangle$,

$$a(a_1f_1 + \cdots + a_sf_s) = (aa_1)f_1 + \cdots + (aa_s)f_s \in \langle F \rangle,$$

lo que demuestra que $\langle F \rangle$ es un ideal.

Definición 1.15. $\langle F \rangle$ recibe el nombre de ideal generado por F. Por convenio, $0 = \langle \varnothing \rangle$. Un ideal I se dice finitamente generado si existen $f_1, \ldots, f_s \in I$ tales que $I = \langle f_1, \ldots, f_s \rangle$.

Proposición 1.16. *Sean*
$$I = \langle F \rangle y J = \langle G \rangle$$
. *Entonces* $I + J = \langle F \cup G \rangle$ $y IJ = \langle fg \mid f \in F, g \in G \rangle$.

Demostración. Ejercicio.

1.3

Morfismos de anillos

Definición 1.17. Sean A y B dos anillos. Una aplicación $f : A \rightarrow B$ es un morfismo de anillos si f(0) = 0, f(1) = 1, f(a + b) = f(a) + f(b)y f(ab) = f(a)f(b).

Observación 1.18. Como consecuencia de la definición, si f : A \rightarrow B es un morfismo de anillos tenemos que

$$0 = f(0) = f(b + (-b)) = f(b) + f(-b),$$

luego f(-b) = -f(b) para cualquier $b \in A$. En consecuencia,

$$f(a-b) = f(a+(-b)) = f(a) + f(-b) = f(a) - f(b),$$

luego f es morfismo de grupos abelianos.

Proposición 1.19. Sea $f: A \rightarrow B$ un morfismo de anillos. Entonces im(f) es un subanillo de B y ker(f) un ideal de A. Además $im(f) \cong$ $A/\ker(f)$.

Demostración. Es sencillo comprobar que im(f) es un subanillo. Como f es un morfismo de grupos abelianos, es también inmediato que ker(f) es un subgrupo abeliano de A. Si $a \in \ker(f)$ y $b \in A$,

$$f(ab) = f(a)f(b) = 0f(b) = 0,$$

luego $ab \in ker(f)$, i.e. ker(f) es un ideal de A. Por último definimos $\phi: A/\ker(f) \to \operatorname{im}(f)$ mediante $\phi(\alpha + \ker(f)) = f(\alpha)$. Esta aplicación está bien definida porque si a + ker(f) = a' + ker(f),

$$\varphi(\alpha + \ker(f)) = f(\alpha) = f(\alpha - \alpha' + \alpha')$$

$$= f(\alpha - \alpha') + f(\alpha') = f(\alpha') = \varphi(\alpha' + \ker(f)).$$

Es sencillo comprobar que ϕ es un morfismo de anillos biyectivo.

Dos ideales I, $J \le A$ se dicen coprimos si A = I + J.

Lema 1.20. Sean I, J, K ideales de A. Entonces I + J = A e I + K = A si y sólo si $I + (J \cap K) = A$.

Demostración. Es inmediato que si $I+(J\cap K)=A$ tenemos que I+J=A e I+K=A. Supongamos por tanto que I+J=A e I+K=A. Existen $a,a'\in I$ $b\in J$ y $c\in K$ tales que 1=a+b y 1=a'+c. Por tanto

$$1 = a+b = a+b(a'+c) = a+ba'+bc = (a+ba')+bc \in I+(J\cap K),$$

luego
$$I + (J \cap K) = A$$
.

Teorema 1.21 (Teorema Chino del Resto). Sean I_1, \ldots, I_t ideales de A coprimos dos a dos, es decir $I_i + I_j = A$ para cualesquiera $i \neq j$. Entonces $A/(I_1 \cap \cdots \cap I_t) \cong (A/I_1) \times \cdots \times (A/I_t)$.

Demostración. Sea $f: A \to (A/I_1) \times \cdots \times (A/I_t)$ el morfismo de anillos definido por $f(\alpha) = (\alpha + I_1, \ldots, \alpha + I_t)$. Veamos que es sobreyectivo. Para ello, dados $\alpha_1, \ldots, \alpha_t \in A$ tenemos que encontrar un $x \in A$ tal que $x + I_i = \alpha_i + I_i$ para cada $1 \le i \le t$. Aplicando iteradamente el Lema 1.20, tenemos que $A = I_i + \bigcap_{j \ne i} I_j$, por lo que existen

 $b_i\in I_i$ y $c_i\in \bigcap_{j\neq i}I_j$ tales que $1=b_i+c_i.$ Sea $x=\alpha_1c_1+\cdots+\alpha_tc_t.$ Dado que

$$\begin{aligned} x + I_i &= a_1 c_1 + \dots + a_t c_t + I_i = a_i c_i + I_i \\ &= a_i (1 - b_i) + I_i = a_i - a_i b_i + I_i = a_i + I_i, \end{aligned}$$

tenemos que f es sobreyectiva. Por otra parte, f(a) = 0 si y solo si $a \in I_i$ para cualquier $1 \le i \le t$, de donde $ker(f) = I_1 \cap \cdots \cap I_t$. El teorema se sigue por tanto de la Proposición 1.19.

Ejercicios sobre Anillos

Todos los anillos considerados en esta relación de ejercicios son conmutativos salvo que se especifique lo contrario.

Ejercicio 1.1. Dados anillos A_1 y A_2 , comprueba que $A_1 \times A_2$ con las operaciones definidas en el Ejemplo 1.7 es un anillo. Calcula sus unidades $\mathcal{U}(A_1 \times A_2)$.

Ejercicio 1.2. Un elemento $e \in A$ se dice idempotente si $e^2 = e$. Demuestra que si e es idempotente, 1 - e también lo es. Demuestra que $A = \langle e \rangle \oplus \langle 1 - e \rangle$, es decir, $A = \langle e \rangle + \langle 1 - e \rangle$ y $\{0\} = \langle e \rangle \cap \langle 1 - e \rangle$.

Ejercicio 1.3. Un elemento $x \in A$ se dice nilpotente si $x^n = 0$ para algún $n \in \mathbb{N}$. Demuestra que si x es nilpotente, 1 - x y 1 + x son unidades de A.

Ejercicio 1.4. Demuestra que el conjunto de los elementos nilpotentes de un anillo conmutativo A es un ideal.

Ejercicio 1.5. Sea $p \in \mathbb{Z}$ primo y sea $R = \left\{ \frac{m}{n} \in \mathbb{Q} \mid p \nmid n \right\}$. Demuestra que R es un subanillo.

Ejercicio 1.6. Demuestra la Proposición 1.13.

Ejercicio 1.7. Demuestra la Proposición 1.16.

Ejercicio 1.8. Demuestra que I(J+K)=IJ+IK para ideales $I,J,K \le M$. ¿Es cierta la identidad $I \cap (J+K)=(I \cap J)+(I \cap K)$?

Ejercicio 1.9. Demuestra que si I + J = A, entonces $IJ = I \cap J$.

Ejercicio 1.10. Un ideal $P \subseteq A$ en un anillo conmutativo se dice primo si, para cualesquiera $a, b \in A$, si $ab \in P$ entonces $a \in P$ o $b \in P$. Demuestra que $\langle p \rangle \subseteq \mathbb{Z}$ es un ideal primo si y solo si p es un número primo.

Ejercicio 1.11. Un ideal $M \leq A$ de un anillo conmutativo se dice maximal si no existe otro ideal $J \leq A$ tal que $M \subsetneq J \subsetneq A$. Demuestra que todo ideal maximal es primo.

Ejercicio 1.12. Demuestra que $P \le A$ es primo si y solo si A/P es un dominio de integridad. Demuestra que $M \le A$ es maximal si y solo si A/M es un cuerpo.

Bibliografía

- [1] David A. Cox, John Little, and Donald O'Shea. *Ideals, Varieties, and Algorithms*. Undergraduate Text in Mathematics. Springer, fourth edition, 2015.
- [2] Serge Lang. *Undergraduate Algebra*. Undergraduate Text in Mathematics. Springer, second edition, 1990.

