共享存储多处理机系统

SMP对称多处理机

- * 优点
 - * 对称性
 - * 单地址空间, 易编程性, 动态负载平衡, 无需显示数据分配
 - * 高速缓存及其一致性,数据局部性,硬件维持一致性
 - * 低通信延迟, Load/Store完成
- * 问题
 - * 欠可靠, BUS,OS,SM
 - * 通信延迟(相对于CPU),竞争加剧
 - * 慢速增加的带宽 (MB double/3年,IOB更慢)
 - * 不可扩放性---> CC-NUMA

MPP大规模并行机

计算机机群

简称集群

- 可被看作一台计算机, 性价比比超级计算机高
- 计算机之间用局域相连
- 同构是偶然的, 异构才是普遍的 (组成集群的计算机节点之间体系结构是否相同)

分类

按功能和结构

• 高性能计算集群: 大问题快速解决

• 负载均衡集群:服务器群:分配FIFO,并行量大(双十一)

• 高可用性集群: 节点失效时任务转移到其他正常节点, 更多冗余(微信)

• http绷: 刷新即可

• WAS绷:压力最大,回滚

• 全球都有datacenter

高速缓存

写直达WT

在Mi中修改, Mi+1需要立即修改

写回WB

Mi+1中的修改延迟到Mi中正在修改的字被替换或消除后

高速缓存不一致

- ①由共享可写数据所造成的不一致;
- ②由进程迁移所造成的不一致;
- ③由绕过高速缓存的IO造成的不一致。

监听协议

• 为总线连接的多处理机系统所使用

总线是保证高速缓存一致性最方便的装置,它能使所有处理器观察存储器进行的活动。 如总线业务破坏本地高速缓存中数据的一致性,那么高速缓存的控制器就采取相应动作使本地副本 无效。

基于目录的协议

• 多级互连网络连接的多处理机系统

使用一个目录来记录共享数据的所有高速缓存行的位置和状态

并行计算机体系结构

属性	PVP	SMP	MPP	DSM	COW
结构类型	MIMD	MIMD	MIMD	MIMD	MIMD
处理器类 型	专用定制	商用	商用	商用	商用
互连网络	定制 交叉 开关	总线、交 叉开关	定制网络	定制网络	商用网络 (以太
通信机制	共享变量	共享变量	消息传递	共享变量	ATM) 消息传递
地址空间	单地址空 间	单地址空 间	多地址空 间	单地址空 间	多地址空 间
系 统 存 储 器	集中共享	集中共享	分布非共 享	分布共享	分布 非 共 享
访存模型	UMA	UMA	NORMA	NUMA	NORMA
代表机器		SGI Power Challenge,	Intel Paragon, IBMSP2,曙 光1000/2000	Stanford DASH, Cray T 3D	Berkeley NOW, Alpha
曙光1号 47					Farm 2011/9