

NP-C: Subset Sum

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Subset Sum

Sea

Conjunto de C={w₁,w₂,...,w_n} números naturales

Determinar

Si es existe un subconjunto de C que sume exactamente W

Es un problema de decisión

Relacionado con el problema de la mochila

¿Subset Sum ∈ "P"?

Utilizando programación dinámica

Se puede resolver en tiempo pseudo-polinomial O(Wn)

Si representamos W en bits

El algoritmos crece exponencialmente a la cantidad de bits de W

¿Existe una solución polinomial?

No se conoce!

¿Subset Sum ∈ "NP"?

Dado

C conjunto de n números naturales

W numero a sumar

T certificado con subconjunto de C

Podemos determinar polinomialmente

$$\sum_{t_i \in T} t_i = W$$

Todo $t_i \in C$

 \Rightarrow SUBSET SUM \in NP

¿Subset Sum ∈ "NP-Hard"?

Probaremos que

3 Dimensional Matching

Dados

3 sets disjuntos X.Y,Z de tamaño n cada uno.

Un set $C \subseteq X,Y,Z$ de triplas ordenadas

Determinar

Si existe un subset de n triplas en C tal que cada elemento de XUYUZ sea contenido exactamente en una de esa triplas?

Reducción de 3DM a SUBSET SUM

Sea

Linstancia de 3DM

Con

X,Y,Z conjuntos de n elementos

 $T \subseteq X \times Y \times Z$ conjuntos de m triplas

Podemos

Representar cada tripla como un vector de bits

Representación vectorial

Utilizaremos vectores de 3*n bits

Los primeros n bits representan los elementos del conjunto X

Los siguientes n bits representan los elementos del conjunto Y

Los últimos n bits representan los elementos del conjunto Z

A cada elemento de los conjuntos X (y similarmente para Y,Z)

Les asignaremos un orden arbitrario de 1 a n

Llamaremos $pos_x(x)$, $pos_y(y)$, $pos_z(z)$ a las funciones que dado el elemento nos retorna su posición en el set

Representación vectorial

A cada t tripla de T

$$t = \{x_i, y_j, Z_k\}$$

La representaremos como un vector V_t de 3n bits

Con todos los bits en cero

Pondremos los siguientes bits en 1

$$pos_x(x_i)$$

$$pos_y(y_i) + n$$

$$pos_z(z_k) + 2n$$

Transformación en un numero entero

Cada vector v_t

Se puede interpretar como un numero w_t en el subconjunto de subset Sum

El Valor W lo formaremos como

el vector con todos los bits en 1

Para sumar W

Tenemos que encontrar aquellos wt que sumados den W

... pero esta propuesta tiene un problema

Problema de Overflow

Puedo elegir 2 o mas números con el mismo bit prendido

Eso genera un overflow

Y podríamos llegar erroneamente a W

Para evitarlo

Podemos redefinir como expresar wi en base al vector

Transformación en un numero entero

Seleccionaremos una base d

Y representaremos cada tripla como un número de la manera:

$$w_t = \sum_{i=1}^{3n} v_t[i] * d^{i-1}$$

Como todos los elementos del vectores estarán en 0 excepto 3 se pude ver como:

$$w_t = d^{pos_x(x_i)-1} + d^{pos_x(y_i)+n-1} + d^{pos_x(z_i)+2n-1}$$

Para la base d

Utilizaremos un valor mayor a m (cantidad de triplas) → d = m+1

(con eso, aunque las m triplas contengan un mismo elemento no será posible el overflow)

Ejemplo

Sea la instancia de 3DM

$$X = \{X_1, X_2, X_3\}$$

$$Y = \{y_1, y_2, y_3\}$$

$$Z = \{Z_1, Z_2, Z_3\}$$

$$T = \{ (x_1, y_1, z_1), (x_2, y_2, z_3), (x_3, y_3, z_1), (x_1, y_1, z_2), (x_3, y_3, z_2), (x_1, y_3, z_2), (x_3, y_3, z_3) \}$$

Tenemos

n=3

m=7

Ejemplo (cont.)

Definimos

Base a utilizar: d=m+1=8

Tamaño del vector: 3*n=9

Calculamos

El vector de cada tripla vt

El vector W

Representamos

Cada vector como un numero en base d

t	\mathbf{v}_{t}		\mathbf{w}_{t}
(X_1,y_1,z_1)	001001001	262144+512+1	262657
(X_2,y_2,Z_3)	100010010	16777216+4096+8	16781320
(x_3, y_3, z_1)	001100100	262144+32768+64	294976
(x_1, y_1, z_2)	010001001	2097152+512+1	2097665
(x_3,y_3,z_2)	010100100	2097152+32768+64	2129984
(x_1, y_3, z_2)	010100001	2097152+32768+1	2129921
(x_3, y_3, z_3)	100100100	16777216+32768+64	16810048
W	111111111		19173961

Ejemplo (cont.)

La instancia de Subset Sum

C = {262657, 16781320, 294976, 2097665, 2129984, 2129921, 16810048}

W=19173961

Resolvemos

(en este caso por fuerza bruta... es NP-C)

Y verificamos que triplas conforman el 3DM

SUBSET SUM es NP-C

Como

Presentación realizada en Junio de 2020