

Today: Bits, Bytes, and Integers

- ▶ Representing information as bits
- ▶ Bit-level manipulations
- ▶ Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- ▶ Summary

Binary Representations 3.3V 2.8V 0.5V 0.0V • Three most important binary number representations • Unsigned integers • Two's complement integers (for signed integers) • Floating point numbers

Encoding Byte Values

- ▶ Byte = 8 bits
- Binary 000000002 to 111111112
- Decimal: 0₁₀ to 255₁₀
- $^{\circ}\,$ Hexadecimal 00_{16} to FF_{16}
- Base 16 number representation
- Use characters '0' to '9' and 'A' to 'F'
- Write FA1D37B $_{16}$ in C as
 - 0xFA1D37B

Byte-Oriented Memory Organization

- ▶ Programs reference (virtual) addresses for data/instr.
 - Simple concept: very large byte array
 - Implemented with hierarchy of different memory types
- System provides address space private to particular "process"
 - Program being executed
- Program can clobber its own data, but not that of others
- ▶ Compiler + Run-Time System Control Allocation
- Where different program objects should be stored
- All allocation within single virtual address space

Machine Words

- ▶ Smallest unit addressable by machine
- Nominal size of integer-valued data
- Most current machines (still) use 32 bits
- 4-byte word/pointer limits address spaces to 4GB
- High-end systems use 64 bits (8 bytes) words
 - Potential address space ≈ 1.8 X 10¹⁹ bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
- Machines can support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Data Representations

C Data Type	Typical 32-bit	Intel IA32	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	4	8
long long	8	8	8
float	4	4	4
double	8	8	8
long double	8	10/12	10/16
pointer	4	4	8

Referencing (multi-byte) Data

- Address specifies location of first byte
- ➤ Treatment of adderssed byte(s) depends on reference type

Byte Ordering

- How should bytes within a multi-byte word be ordered in memory?
- ▶ Conventions
- Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
- Little Endian: x86
 - Least significant byte has lowest address

Byte Ordering Example

- ▶ Big Endian
- Least significant byte has highest address
- ▶ Little Endian
- · Least significant byte has lowest address
- ▶ Example
- ∘ Variable x has 4-byte representation 0x01234567
- Address given by &x is 0x100

 Big Endian
 0x100 0x101 0x102 0x103

 01
 23
 45
 67

 Little Endian
 0x100 0x101 0x102 0x103 0x103

 67
 45
 23
 01

Examining Data Representations

- ▶ Code to Print Byte Representation of Data
- $^{\circ}\,$ Casting pointer to unsigned char * creates byte array

show_bytes Execution Example

int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result (Linux):
 int a = 15213;
 0x11ffffcb8 0x6d

0x11ffffcb9 0x3b 0x11ffffcba 0x00 0x11ffffcbb 0x00

Representing Strings char S[6] = "18243"; ▶ Strings in C • Represented by array of characters • Each character encoded in ASCII format • Standard 2 1 1 1 1 31 38 31 · Standard 7-bit encoding of character set 38 • Character "0" has code 0x30 32 32 Digit i has code 0x30+i 34 33 34 33 String should be null-terminated • Final character = 0 ▶ Compatibility • Byte ordering not an issue

Data Representation Example

- Is it more compact to represent positive numerical data as an integer or a string of characters?
 - Ignore arithmetic operations, just consider data size!
 - It depends!
 - On the range of numbers to be represented.
 - Integers will always need 4 (or 8) bytes per number.
 - String of chars need 1 byte per digit (plus null-terminator)
 - More compact for numbers from 0-999

Today: Bits, Bytes, and Integers

- ▶ Representing information as bits
- ▶ Bit-level manipulations
- ▶ Integers
 - Representation: unsigned and signed
 - · Conversion, casting
 - · Expanding, truncating
 - · Addition, negation, multiplication, shifting
- ▶ Summary

Boolean Algebra

- ▶ Developed by George Boole in 19th Century
- Algebraic representation of logic
- Encode "True" as 1 and "False" as 0

■ A&B = 1 when both A=1 and B=1

■ A | B = 1 when either A=1 or B=1

& 0 1 0 0 0 1 0 1 | | 0 1 | 0 0 1 | 1 1 1 1 | Exclusive-Or (Xor)

Not ■ ~A = 1 when A=0

■ A^B = 1 when either A=1 or B=1, but not both

~ 0 1 1 0 ^ 0 1 0 0 1 1 1 0

General Boolean Algebras

- ▶ Operate on Bit Vectors
- · Operations applied bitwise

```
01101001
                                     01101001
& 01010101 | 01010101
01000001 | 01111101
                                   ^ 01010101
00111100
```

▶ All of the Properties of Boolean Algebra Apply

Representing & Manipulating Sets

- ▶ Representation
- Width w bit vector represents subsets of $\{0, ..., w-1\}$ aj = 1 if $j \in A$

{0,3,5,6}

- 01101001
- · 76543210
- {0,2,4,6}
- 01010101 76543210 Operations
- & Intersection
 | Union
 ^ Symmetric difference 01000001 01111101 00111100
- { 0, 6 } { 0, 2, 3, 4, 5, 6 } { 2, 3, 4, 5 } { 1, 3, 5, 7 } Complement

Bit-Level Operations in C

- Operations &, I, ~, ^ available in C
 Apply to any "integral" data type

 long, int, short, char, unsigned

 View arguments as bit vectors
- Operations applied bit-wise
- Examples (Char data type)
 ~0x41 → 0xBE
 ~01000001₂ → 101111110₂
- ~0x00 → 0xFF
 ~0000000002 → 1111111112
- 0x69 & 0x55 → 0x41 · 01101001z & 01010101z → 01000001z
- 0x69 | 0x55 → 0x7D · 01101001₂ | 01010101₂ → 01111101₂

Contrast: Logic Operations in C

- ▶ Contrast to Logical Operators
- &&, ||, !
 · 0 → "False"; nonzeros → "True"
 - Always return 0 or 1 (often interpreted as true or false)
 - Early termination
- Examples (char data type)

- !0x41 → 0x00 !0x00 → 0x01 !!0x41 → 0x01
- 0x69 && 0x55 → 0x01
 0x69 || 0x55 → 0x01

Shift Operations

- ▶ Left Shift: x << y⋄ Shift bit-vector x left y positions
 - Throw away extra bits on left
 Fill with 0's on right

- ▶ Right Shift: x >> y
 Shift bit-vector x right y positions
 Throw away extra bits on right
 Logical shift
 Fill with 0's on left

 - Arithmetic shift
 Replicate most significant bit on right
- Undefined Behavior
- Shift amount < 0 or ≥ word size

Argument x	01100010
<< 3	00010000
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010000
Log. >> 2	00101000
Arith. >> 2	11101000

Today: Bits, Bytes, and Integers

- ▶ Representing information as bits
- ▶ Bit-level manipulations
- ▶ Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- · Addition, negation, multiplication, shifting
- ▶ Summary

Unsigned Two'

asigned Two's Complement $B2U_w(X) = \sum_{i=0}^{w-1} x_i 2^i \qquad B2T_w(X) = -x_{w-1} 2^{w-1} + \sum_{i=0}^{w-1} x_i 2^i$ short int x = 15213; short int y = -15213;

- ▶ Sign Bit
 - $\circ~$ For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - \cdot 1 for negative

Encoding Example (Cont.)

Numeric Ranges

- Unsigned ValuesUMin =
 - *UMin* = 0
 - \circ UMax = $2^w 1$
 - $OMax = 2^{w} 111...1$
- ► Two's Complement Values

 ∘ *TMin* = −2^{w-1}
 - 100...0
 - ∘ *TMax* = 2^{w-1} 2
 - 011...1
- Other ValuesMinus 1
- Mint

Values for	W = 16	1111		
	Decimal	Hex	Binary	
UMax	65535		11111111 11111111	
TMax	32767		01111111 11111111	
TMin	-32768	80 00	10000000 00000000	
-1	-1	FF FF	11111111 11111111	
0	0	00 00	00000000 00000000	

Values for Different Word Sizes

	W			
	8 16 32 64			64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-129	-32 768	-2 147 492 649	-0 222 272 026 954 775 909

- Observations
 - | TMin | = TMax + 1
 - Asymmetric range
 - \circ UMax = 2 * TMax + 1
- C Programming
 - #include limits.h>
 - Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX LONG_MIN
 - Values platform specific

Unsigned & Signed Numeric Values

X	B2U(X)	B2T(X)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

- ▶ Equivalence
- Same encodings for nonnegative
- Uniqueness
 - Every bit pattern represents unique integer value
- Each representable integer has
- unique bit encoding → Can Invert Mappings

 - U2B(x) = B2U⁻¹(x)
 Bit pattern for unsigned integer
- $\circ T2B(x) = B2T^{-1}(x)$
- · Bit pattern for two's comp integer

Today: Bits, Bytes, and Integers

- ▶ Representing information as bits
- ▶ Bit-level manipulations
- ▶ Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - · Addition, negation, multiplication, shifting
- ▶ Summary

Signed vs. Unsigned in C
 Constants By default are considered to be signed integers Unsigned if have "U" as suffix 00, 42949672590
<pre>P Casting Explicit casting between signed & unsigned same as U2T and T2U int tx, ty; unsigned ux, uy; tx = (int) ux; uy = (unsigned) ty;</pre>
 Implicit casting also occurs via assignments and procedure calls tx = ux; uy = ty;

Casting Surprises

- Expression Evaluation
 - If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
 Including comparison operations <, >, ==, <=, >=

 - Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

• Constant ₁ 0 -1 -1 2147483647 2147483647 -1 (unsigned)-1 2147483647	Constant ₂ 0U 0 0U -2147483647-1 -2147483647-1 -2 2147483648U	Relation ==	Eval. unsigned signed unsigned signed unsigned signed unsigned unsigned unsigned
2147483647	(int) 2147483648U	>	signed

Code Security Example

 $/\!\!^{\star}$ Kernel memory region holding user-accessible data $\!\!^{\star}/\!\!$ #define KSIZE 1024 char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcopy(user_dest, kbuf, len);
 return len;

- ullet Similar code found in FreeBSD's getpeername ()
- ▶ There are legions of smart people trying to find vulnerabilities in programs

Typical Usage

/* Kernel memory region holding user-accessible data */ #define KSIZE 1024 char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;</pre>

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, MSIZE);
 printf("%s\n", mybuf);

Summary

Casting Signed ↔ Unsigned: Basic Rules

- ▶ Bit pattern is maintained
- ▶ But reinterpreted
- ► Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - \circ int is cast to unsigned!!

Today: Bits, Bytes, and Integers

- ▶ Representing information as bits
- ▶ Bit-level manipulations
- ▶ Integers
 - $\,^\circ\,$ Representation: unsigned and signed
 - · Conversion, casting
 - Expanding, truncating
 - $\,^\circ\,$ Addition, negation, multiplication, shifting
- ▶ Summary

Sign Extension

- ▶ Task:
- Given w-bit signed integer x
 Convert it to w+k-bit integer with same value
- Make k copies of sign bit:
- $\circ \ \ X' = \ x_{w-1},...,x_{w-1},x_{w-1},x_{w-1},x_{w-2},...,x_0$

Sign Extension Example

short int x = 15213; int ix = (int) x; short int y = -15213; int iy = (int) y;

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
V	-15213	C4 93	11000100 10010011
iv	-15213	FF FF C4 93	11111111 11111111 11000100 10010011

- ▶ Converting from smaller to larger integer data type
- ▶ C automatically performs sign extension

Summary:

Expanding, Truncating: Basic Rules • Expanding (e.g., short int to int)

- · Unsigned: zeros added
- Signed: sign extension
- Both yield expected result
- ▶ Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - · Result reinterpreted
 - · Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behaviour

Today: Bits, Bytes, and Integers

- ▶ Representing information as bits
- ▶ Bit-level manipulations
- Integers
 - Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- · Addition, negation, multiplication, shifting
- ▶ Summary

Negation: Complement & Increment

- Claim: Following Holds for 2's Complement ~x + 1 == -x
- ▶ Complement
 - Observation: ~x + x == 1111...111 == -1
 - X 10011101 + ~X 01100010
 - -1 11111111
- ➤ Complete Proof?

Complement & Increment Examples

x = 15213

	Decimal		Binary
x	15213	3B 6D	00111011 01101101
~x			11000100 10010010
~x+1	-15213	C4 93	11000100 10010011
w	-15213	C4 93	11000100 10010011

x = 0

	Decimal	Hex	Binary
0	0	00 00	00000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	00000000 00000000

Unsigned Addition Operands: w bits True Sum: w+1 bits Discard Carry: w bits UAdd_w(u,v) Implements Modular Arithmetic $s = UAdd_w(u,v) = (u+v) (w 2^w)$ $UAdd_w(u,v) = \begin{cases} u+v & u+v < 2^w \\ u+v-2^w & u+v \geq 2^w \end{cases}$

Mathematical Properties

- Modular Addition Forms an Abelian Group
- Closed under addition
- $0 \leq \mathsf{UAdd}_w(u\,,v) \leq 2^w 1$
- Commutative
- $UAdd_w(u, v) = UAdd_w(v, u)$
- $\mathsf{UAdd}_{w}(t, \, \mathsf{UAdd}_{w}(u \, , \, v)) \, = \, \, \, \mathsf{UAdd}_{w}(\mathsf{UAdd}_{w}(t, \, u \,), \, v)$
- **0** is additive identity
- Use $u_1(u_1, u_2) = u_2(u_1, u_2)$ Every element has additive inverse
- Let $UComp_w(u) = 2^w u$ $UAdd_w(u, UComp_w(u)) = 0$

Two's Complement Addition

u Operands: w bits True Sum: w+1 bits Discard Carry: w bits

+ v ...

- ▶ TAdd and UAdd have Identical Bit-Level Behavior
- Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v); t = u + v

∘ Will give s == t

TAdd Overflow

- ▶ Functionality
 - True sum requires w +1 bits
 - · Drop off MSB
- Treat remaining bits as 2's comp. integer

Visualizing 2's Complement Addition

- ▶ Values
- 4-bit two's comp.
- Range from -8 to +7
- ▶ Wraps Around

 - ∘ If sum ≥ 2^{w-1}
 - · Becomes negative
 - · At most once
 - \circ If sum < -2^{w-1}
 - · Becomes positive
 - At most once

Mathematical Properties of TAdd

- ▶ Isomorphic Group to unsigneds with UAdd
 - \circ TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))
 - Since both have identical bit patterns
- ▶ Two's Complement Under TAdd Forms a Group
 - · Closed, Commutative, Associative, 0 is additive identity
 - · Every element has additive inverse

$$TComp_w(u) = \begin{cases} -u & u \neq TMin_w \\ TMin_w & u = TMin_w \end{cases}$$

Multiplication

- ▶ Computing Exact Product of w-bit numbers x, y Either signed or unsigned
- ▶ Ranges
- Unsigned: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
- Up to 2w bits
- Two's complement min: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
- Up to 2w-1 bits
 Two's complement max: x * y ≤ (-2^{w-1}) ² = 2^{2w-2}
- Up to 2w bits, but only for (TMin_w)²
- Maintaining Exact Results
- Would need to keep expanding word size with each product computed
- Done in software by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C Operands: w bits True Product: 2*w bits UMult_w(u, v) Discard w bits: w bits Standard Multiplication Function Ignores high order w bits Implements Modular Arithmetic UMult_w(u, v) = u · v mod 2*w

Code Security Example #2: XDR Code void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) { /* * Allocate buffer for ele_cnt objects, each of ele_size bytes * and copy from locations designated by ele_src */ void *result = malloc(ele_cnt * ele_size); if (result == NULL) /* malloc failed */ return NULL; void *next = result; int i; for (i = 0; i < ele_cnt; i++) { /* Copy object i to destination */ memcpy(next, ele_src[i], ele_size); /* Move pointer to next memory region */ next += ele_size; } return result; }</pre>

malloc(ele_cnt * ele_size) Mhat if: ele_cnt = 2²⁰ + 1 ele_size = 4096 = 2¹² Allocation=?? How can I make this function secure?

Compiled Multiplication Code C Function int mul12(int x) { return x*12; } Compiled Arithmetic Operations leal (%eax, %eax, 2), %eax sall \$2, %eax C compiler automatically generates shift/add code when multiplying by constant

Correct Power-of-2 Divide • Quotient of Negative Number by Power of 2 • Want $| \mathbf{x} | / 2^k |$ (Round Toward 0) • Bias dividend toward 0 (Additive Bias: $2^k - 1$) • Compute as $| (\mathbf{x} + 2^k - 1) | / 2^k |$ • In C: $(\mathbf{x} + (1 < \langle \mathbf{x} \rangle - 1) > k$ Case 1: No rounding Dividend: u $+2^k - 1$ Divisor: $| 2^k |$ Biasing has no effect

► Addition: Unsigned/signed: Normal addition followed by truncate, same operation on bit level Unsigned: addition mod 2™ • Mathematical addition + possible subtraction of 2w • Signed: modified addition mod 2™ (result in proper range) • Mathematical addition + possible addition or subtraction of 2w ► Multiplication: • Unsigned: Normal multiplication followed by truncate, same operation on bit level • Unsigned: multiplication mod 2™ • Signed: modified multiplication mod 2™ (result in proper range)	
Arithmetic: Basic Rules • Unsigned ints, 2's complement ints are isomorphic rings: isomorphism = casting • Left shift • Unsigned/signed: multiplication by 2 ^k • Always logical shift • Right shift • Unsigned: logical shift, div (division + round to zero) by 2 ^k	
Olisigned: oligical shirt, div (division + round to zero) by 2 ^k Signed: arithmetic shift Positive numbers: div (division + round to zero) by 2 ^k Negative numbers: div (division + round away from zero) by 2 ^k Use biasing to fix	
Today: Integers Representation: unsigned and signed Conversion, casting Expanding, truncating Addition, negation, multiplication, shifting Summary	

Arithmetic: Basic Rules

Properties of Unsigned Arithmetic

- Unsigned Multiplication with Addition Forms Commutative Ring
 - Addition is commutative group
- Closed under multiplication
- 0 ≤ UMult_w(u, v) ≤ 2^w-1
 Multiplication Commutative
- $UMult_w(u, v) = UMult_w(v, u)$ Multiplication is Associative
- $\mathsf{UMult}_{\mathsf{w}}(t, \mathsf{UMult}_{\mathsf{w}}(u, v)) = \mathsf{UMult}_{\mathsf{w}}(\mathsf{UMult}_{\mathsf{w}}(t, u), v)$ o 1 is multiplicative identity
- $UMult_w(u, 1) = u$
- Multiplication distributes over addtion

 $\mathsf{UMult}_{w}(t,\,\mathsf{UAdd}_{w}(u\,,\,v)) \;=\; \; \mathsf{UAdd}_{w}(\mathsf{UMult}_{w}(t,\,u\,),\,\mathsf{UMult}_{w}(t,\,v))$

Properties of Two's Comp. Arithmetic

- Isomorphic Algebras

 - Unsigned multiplication and addition
 Truncating to w bits
 Two's complement multiplication and addition
 Truncating to w bits
 Reth Form Binary
- ▶ Both Form Rings
- Isomorphic to ring of integers mod 2^w
- ➤ Comparison to (Mathematical) Integer Arithmetic
- Both are rings
- Integers obey ordering properties, e.g., u>0 \Rightarrow u+v>v u>0, v>0 \Rightarrow $u \cdot v>0$
- These properties are not obeyed by two's comp. arithmetic

TMax + 1 == TMin15213 * 30426 == -10030

Why Should I Use Unsigned?

- ▶ *Don't* Use Just Because Number Nonnegative

• Easy to make mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
• Can be very subtle

#define DELTA sizeof(int)

int i; for (i = CNT; i-DELTA >= 0; i-= DELTA)

- ▶ Do Use When Performing Modular Arithmetic
- Multiprecision arithmetic
- ▶ Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension

		_

Integer C Puz	zles
Č	• $x < 0$ $\Rightarrow ((x^*2) <$ • $ux >= 0$ • $x \& 7 == 7$ $\Rightarrow (x << 30)$ • $ux > -1$
Initialization int x = foo();	• x > y
<pre>int y = bar(); unsigned ux = x; unsigned uy = y;</pre>	• x <= 0
unsigned dy – y,	• x >> 3 == x/8