EECS 151/251A Discussion 7

Alisha Menon 10/12/21, 10/13/21, 10/18/21

Administrativia

- Slip week for labs lab 5 due **10/15**, **11:59pm**
- Homework 5 posted, due **10/15**, **11:59pm**

Agenda

- Transistor as a switch model
- Inverter
- Complementary CMOS gates

Transistor Models

Transistor review

- CMOS
 - Complementary Metal Oxide Semiconductor (FET)
- Transistor basics
 - N-type or P-type based on carrier type
 - Potential between source and gate forms a "channel"
 - Channel connects source and drain
 - Defined by "threshold" voltage V_{th}

Transistors connect outputs to supplies

Transistors as switches

Inverters

CMOS inverter

Most basic CMOS logic gate

Inverter noise margins

Noise margin high: $NM_H = V_{OH} - V_{IH}$

Noise margin low: $NM_L = V_{IL} - V_{OL}$

Static complementary CMOS

Static gates

Static complementary CMOS

NAND gate

NAND gate

- Notice that the PUN and PDN are "opposite"
 - Meaning serial vs. parallel
 - This concept known as "duality"
- Also notice that the gate was inverting
 - How do we make an AND? (next slides)
- Easiest way to make a gate is to define the PDN first
 - Make the PUN by flipping the branches of the PDN

XNOR gate

AND gate

CMOS gate sizing

 Choosing the width of a transistor (typically use minimum length)

Minimum sized inverter:

- Unless otherwise stated, complex gates should:
 - Have equal pull-up and pull-down resistances
 - Pull-up and pull-down resistances equivalent to minimum sized inverter

Transistor stacks — R vs. W

Gate sizing example – XNOR

Gate sizing example

$$R_{on,p} = 3*R_{on,n}$$

Inverter delay

Simple dynamic model

Simple dynamic model

Inverter delay

NMOS with size W

PMOS with same R as NMOS

Inverter fanout

