Bacterial Genomics Workshop

Evan Snitkin, Ali Pirani, Stephanie Thiede, Arianna Miles-Jay, Kyle Gontjes and Emily Benedict

April 21^{st –} April 23rd 2021

Zoom logistics

- Sessions will be recorded
- Will periodically ask for green check to indicate that we are on the same page
- If you get stuck, put up a red X and we will place you in breakout room with helper
- Please don't be shy about raising your hand to ask questions (or put them in the chat)

Goals of workshop

- Get an overview of steps in microbial genomics pipeline
- Get exposure to common file formats and terminology in genomics
- Get hands on experience with a set of tools that could compose a genomics pipeline
- Get experience working in a high-performance computing environment

Logistics of the workshop

 We will follow the course website closely (for the most part)

https://github.com/alipirani88/Comparative Genomics

 The website is extremely rich in detail, beyond what will be covered in the workshop

Format of sessions

- There will be six sessions
 - A Unix/R review and environment setup
 - Four sessions on different aspects of the genomics pipeline
 - An independent work session where you apply all the skills you learned during the week to analyze a microbial genomics dataset from start to finish!
- Each session will work through published datasets (mostly from our lab)

Moving files to/from remote server

https://cyberduck.io/download/

How do a remote server and compute cluster work?

•

Why Unix?

- Most bioinformatics research is performed in a Unix environment
- Allows for easier interactions with text files
- The power of pipes
- Easy to automate repetitive tasks
- Facilitates interfacing with high-performance compute systems

Unix review

- Moving around
 - Is, pwd, cd
- Directory management
 - mkdir, rmdir
- File management
 - cp, mv, rm
- File viewing/editing
 - less, nano
- Searching files
 - grep, cut, wc, sort, uniq

So you want to sequence some bacteria?

Microbial phylogenetics

Comparative genomics

Genomic epidemiology

DNA and library preparation

1. Sample Preparation

2. Sequencing

Illumina sequencing

https://youtu.be/fCd6B5HRaZ8

Day 1 afternoon – Data QC and variant calling

Sequencing quality control

Forward reads

Reverse reads

FastQC/ Kraken

- 1. Contaminants
- 2. Aberrant quality

€FastQC Report

Summary

- Basic Statistics
- Per base sequence quality
- Per tile sequence quality
- Per sequence quality scores
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Adapter Content
- Kmer Content

@seq1_1 ACTGCACT

Forward reads

+ 8-8,,+@+

.

÷

Trimmomatic

Filter reads

Trim reads

Reverse reads

@seq1_2 TCTATCGA +

A<-9BFCFF

Clean fastq files

Variant identification

Clean fastq files

SAM/BAM files

SAM/BAM files

Raw VCF files

Variant filtering and annotation

VCF files

Filtered VCF files

Filtered VCF files

VCF, BAM, BAI, fasta files

Identifying antibiotic resistance mutations

- 1. Colistin resistance in Klebsiella pneumoniae
 - 1. Distant reference genome
 - 2. Use biological knowledge to hone in on variant of interest
- Daptomycin resistance in VRE
 - 1. Reference is susceptible ancestor from same patient
 - 2. Examine the small number of individual variants to identify putative causal mutation
- Colistin resistance in Acinetobacter
 - 1. Have resistant and susceptible isolate from same patient, but they are quite different
 - 2. Use biological knowledge to identify putative resistance variants that occur in resistant isolate, but not susceptible ancestor

Day 2 morning – Genome assembly and annotation

Genome assembly

metrics

Orient

contigs

Assembly	# Contigs	N50
Genome1	100	100,000
Genome2	150	75,000
Genome3	800	10,000
Genome4	75	150,000

Text files

>pseudo-molecule **ATCGTCGTGCTGC TGCTGTCGTGCTG** CAGTGCATGTGCT **AGACTGTCGATGC** TA **AGCTGTACCGATG ACTGCTGACTGAC**

Fasta file

Genome annotation

>pseudo-molecule
ATCGTCGTGCTGC
TGCTGTCGTGCTG
CAGTGCATGTGCT
AGACTGTCGATGC
TA
AGCTGTACCGATG
ACTGCTGACTGAC

Fasta file

Genbank file

Genbank files, alignment files

Day 2 afternoon— Comparative genomics

Comparative genomics

Day 3 morning – Basic phylogenetic analysis

Phylogenetics

Tree

construction

Recombination

filtering