

OPTIMIZACIÓN DE PURIFICACIÓN DE AGUA EN INDUSTRIA FARMACÉUTICA AICA USANDO EDI

TRABAJO DE DIPLOMA PARA OPTAR POR EL TÍTULO ACADÉMICO DE INGENIERO EN AUTOMÁTICA

Autor ARMANDO CESAR MARTIN CALDERÓN

Tutores

Ing. Amanda Martí Coll Ing. Rosaine Ayala Gispert

Este trabajo ha sido parcialmente financiado por: NOMBRE INSTITUCIÓN

LA HABANA, CUBA 2023

Resumen

Esta tesis se enfoca en la implementación de un sistema de Electrodeionización (EDI) en una planta de tratamiento de agua perteneciente a la industria farmacéutica de Laboratorios AICA, con el propósito de optimizar la calidad del agua purificada (PW) y del agua para inyección (WFI). El estudio abarca áreas como la ingeniería automática, la instrumentación, la modificación de la Interfaz Hombre-Máquina (HMI) y la programación del Controlador Lógico Programable (PLC) con el objetivo de alcanzar un control eficiente del proceso de tratamiento de agua.

El trabajo presenta un esquema propuesto que considera los requisitos específicos de la tecnología EDI y examina los desafíos particulares relacionados con la conductividad del agua. Además, se discuten las ventajas y desventajas del uso del EDI en comparación con otras tecnologías de purificación de agua.

Palabras claves

Sistema de Electrodeionización (EDI), Planta de tratamiento de agua, Industria farmacéutica, AICA, Agua purificada (PW), Agua para inyección (WFI), Conductividad del agua,

Abstract

This thesis focuses on the implementation of an Electrodeionization (EDI) system in a water treatment plant belonging to the pharmaceutical industry of Laboratorios AICA, with the purpose of optimizing the quality of purified water (PW) and water for injection (WFI). The study covers areas such as automatic engineering, instrumentation, modification of the Human-Machine Interface (HMI) and programming of the Programmable Logic Controller (PLC) with the objective of achieving efficient control of the water treatment process.

The work presents a proposed scheme that considers the specific requirements of EDI technology and examines the particular challenges related to water conductivity. In addition, the advantages and disadvantages of using EDI compared to other water purification technologies are discussed.

keywords

Electrodeionization System (EDI), Water treatment plant, Pharmaceutical industry, AICA, Purified water (PW), Water for injection (WFI), Water conductivity,

Una frase de dedicatoria, pueden ser dos líneas.

Saludos

Agradecimientos

Primero y ante todo, quiero expresar mi más profundo agradecimiento a mi familia, quienes siempre han sido mi faro en la vida. A mis padres, por su incondicional amor, apoyo y enseñanzas, que me han guiado hasta este punto en mi vida. A mi hermana mayor, que ha sido un pilar de apoyo, sabiduría y amor incondicional. Su presencia ha sido esencial en mi camino y me ha inspirado a ser una mejor persona cada día.

A mis amigos, que se convirtieron en hermanos, gracias por compartir conmigo momentos de risas y lágrimas, por estar a mi lado en los momentos de tensión y alivio, y por ser mi red de apoyo durante este arduo camino. No tengo palabras para expresar cuánto valoro cada uno de ustedes. A mis compañeros de la Escuela Lenin, con quienes compartí tres años de crecimiento y aprendizaje, y a los amigos de mi aula, agradezco su amistad y apoyo en esta etapa tan importante de mi vida.

Quiero expresar mi más sincero agradecimiento a mis dos tutoras, Ing. Amanda Martí Coll e Ing. Rosaine Ayala Gispert, quienes han sido mis mentores y guías en este viaje académico. La dedicación y apoyo de la Ing. Rosaine Ayala Gispert durante el proceso en el centro de trabajo han sido invaluables, y la ayuda de la Ing. Amanda Martí Coll en la metodología ha sido crucial para el desarrollo y conclusión de esta investigación. Les estaré eternamente agradecido por su apoyo y confianza en mis habilidades.

Por último, pero no menos importante, deseo agradecer a todas las personas e instituciones que de alguna manera contribuyeron a la realización de esta investigación, aportando recursos, conocimientos o simplemente un espacio donde reflexionar y crecer.

Este logro no es solo mío, sino de todos los que me han acompañado en este viaje. Con profundo amor y gratitud, dedico esta tesis a cada uno de ustedes.

Tabla de Contenido

Int	rodu	ccion	cion 1		
1.			_	escripción del proceso	6
	1.1.			iteratura sobre sistemas de tratamiento de agua en la indus-	6
		1.1.1.	Importa	incia del tratamiento de agua en la industria farmacéutica clasificaciones de agua en la industria farmacéutica	7
			céutica .	tos y regulaciones aplicables al agua en la industria farma-	9
		1.1.4.		as presentes en el agua y su impacto en los productos farcos	10
			Variable	s críticas en el tratamiento y monitoreo de la calidad del agua	. 10
		1.1.6.		on histórica de las tecnologías de tratamiento de agua en la a farmacéutica	11
		1.1.7.		gías actuales y enfoques de investigación en sistemas de nto de agua para la industria farmacéutica	13
				Etapas del tratamiento de agua en la industria farmacéutica	13
			1.1.7.2.	Variantes de sistemas de purificación de agua	14
				tratamiento de agua	14
	1.2.	Descri	pción del	proceso actual	15
		1.2.1.	Almacer	namiento y bombeo del agua potable	16
		1.2.2.	Dosifica	ción de hipoclorito de sodio y filtración	16
		1.2.3.	Almacer	namiento y monitoreo de parámetros del agua	16
		1.2.4.	Suaviza	ción del agua	16
				Proceso de suavización y disposición de los suavizadores .	17
			1.2.4.2.	Operaciones de producción y regeneración de los suavizadores	17
			1.2.4.3.	Proceso de regeneración de los suavizadores	17
			1.2.4.4.	Monitoreo de la calidad del agua suavizada	18
			1.2.4.5.	Componentes y especificaciones de los suavizadores	18
		1.2.5.	Purificad	ción mediante ósmosis inversa	18
			1.2.5.1.	Descripción general de las etapas de ósmosis inversa	19
			1.2.5.2.	Pretratamiento del agua suavizada y adición de metabisul-	
				fito de sodio	19
			1.2.5.3.	Filtración y control de calidad antes de la ósmosis inversa .	19
				Ajuste del pH y eliminación del CO2 disuelto	19

		1.2.5.5. Primera etapa de ósmosis inversa	
		1.2.5.7. Almacenamiento y monitoreo del agua purificada	
		1.2.5.8. Manejo del flujo de rechazo y recirculación	
2.		lisis de la instrumentación actual	21
	2.1.	Instrumentación en el sistema de ósmosis inversa	22 22
		2.1.2. Sensor de PH	
		2.1.3. Sensor de Nivel	
		2.1.4. Bomba de alta presión	
		2.1.5. Variador de velocidad	27
		2.1.6. Sensor-transmisor de temperatura	29
		2.1.7. Sensor-indicador-transmisor de presión	30
		2.1.8. Manómetro	31 33
		2.1.10. Sensor transmisor - indicador de conductividad	34
		2.1.11. Autómata Programable	35
	2.2.	Análisis de las señales y parámetros de control	
		Evaluación del rendimiento y limitaciones de la instrumentación actual	
3.		ouesta de integración del EDI y nueva instrumentación	37
		Selección y justificación del EDI	
		Modificaciones necesarias en la instrumentación y control Diseño del sistema de control e integración con el PLC existente	37 37
		Estudio de casos similares y lecciones aprendidas	
1		lisis de costos y beneficios	38
7.		Estimación de costos de adquisición e instalación del EDI e instrumentación	30
		adicional	38
		Estimación de costos operativos y de mantenimiento	
		Evaluación de los beneficios	38
	4.4.	Análisis de retorno de inversión y viabilidad económica	38
5.		plimiento de normativas y regulaciones	39
	5.1.	Requisitos regulatorios aplicables a la industria farmacéutica y sistemas de tratamiento de agua	39
	5.2	Evaluación de la conformidad del sistema propuesto con las regulaciones	38
	·	y estándares relevantes	39
6.	Con	clusiones y recomendaciones	40
Re	ferer	ncias bibliográficas	41
7.	Ane	xos	42
Ω		EXAMPLE SECTIONS—	43
u.		Tesis con La Expression Tesis con La Expression La Express	43
	J. 1.	8 1 1 Una breve introducción	43

	. Añadiendo tablas
8.3	. Creando citas
9. El d	desarrollo de la tesis
9.1	. Aquí una nueva sección
	9.1.1. Haciendo una tesis como un profesional
	9.1.2. Otros párrafos más normales
	9.1.3. Ejemplos de inserción de código fuente
	9.1.4. Agregando múltiples imágenes
Má	s ejemplos
	Listas y Enumeraciones
10 Ca	nclusiones
10.00	liciusiones
Anexo	os estados esta
Α.	Cálculos realizados
	A.1. Metodología
	A.2. Resultados

Índice de Tablas

2.1.	Datos técnicos de la bomba dosificadora	23
2.2.	Datos técnicos del sensor de pH	24
2.3.	Datos técnicos delsensor de nivel	25
2.4.	Datos técnicos de la bomba de alta presión	27
2.5.	Datos técnicos del variador de velocidad Danfoss	28
2.6.	Datos técnicos del sensor transmisor de temperatura RTD	30
2.7.	Datos técnicos del sensor de pH	31
2.8.	Datos técnicos del sensor de flujo	32
2.9.	Datos técnicos del manómetro	33
2.10.	Datos técnicos del sensor y el indicador-transmisor de conductividad	35
2.11.	Datos técnicos del autómata programable CPU 315-2DP	36
8.1.	Ejemplo de tablas	44
8.2.	Ejemplo de tablas con colores de filas	45
A.1.	Tabla de cálculo.	53

Índice de Ilustraciones

2.1.	Bomba dosificadora metabisufito de sodio	22
2.2.	Sensor de ph	24
2.3.	Sensor de nivel	25
2.4.	Bomba de alta presión	26
2.5.	Variador de velocidad Danfoss	28
2.6.	Sensor transmisor de temperatura RTD	29
2.7.	Sensor-indicador-transmisor de presión	31
2.8.	Sensor de flujo	32
2.9.	Indicador depresión	33
2.10.	Sensor y el indicador-transmisor de conductividad	34
2.11.	PLC S7-300 CPU 315-2DP	35
8.1.	Título de la imagen en el índice	13
9.1.	Apolo flotando a la izquierda	
9.2.	Ejemplo de imagen múltiple	
A.1.	Imagen en anexo	52

Introducción

La calidad del agua en la industria farmacéutica es de suma importancia, ya que influye directamente en la calidad y seguridad de los productos farmacéuticos, como los inyectables. La presente tesis se enfoca en la implementación de un equipo de Electrodesionización (EDI) en una planta de tratamiento de agua de la industria farmacéutica, con el objetivo de mejorar la calidad del agua purificada (PW) y el agua para inyección. A continuación, se presenta el contexto y la justificación de este proyecto, así como el problema a resolver, la hipótesis, el objeto de estudio, el campo de acción, los objetivos generales y específicos, y la estructura por capítulos.

Contexto y justificación

La industria farmacéutica desempeña un papel fundamental en la promoción y protección de la salud pública, ya que proporciona medicamentos y productos farmacéuticos que salvan vidas y mejoran la calidad de vida de millones de personas en todo el mundo. La producción de estos productos requiere la utilización de agua de alta calidad, especialmente en la fabricación de soluciones inyectables y otros medicamentos críticos. La calidad del agua utilizada en los procesos de fabricación de medicamentos es un factor esencial para garantizar la seguridad, eficacia y estabilidad de los productos finales.

La planta de tratamiento de agua de la empresa AICA, dedicada a la industria farmacéutica, actualmente utiliza un sistema de ósmosis inversa (OI) de doble etapa para la producción de agua purificada (PW). Sin embargo, la planta enfrenta desafíos en la estabilización de los parámetros de calidad del agua, lo que puede afectar negativamente la producción y la calidad de los medicamentos. Este problema se debe, en parte, a la inestabilidad de la calidad del agua potable proveniente del acueducto y otros factores externos.

La implementación de un equipo de Electrodesionización (EDI) como etapa posterior al proceso de OI de doble etapa tiene el potencial de mejorar significativamente la calidad del agua purificada y el agua para inyección, al estabilizar los parámetros de calidad y reducir la conductividad. El EDI es una tecnología de purificación de agua que combina procesos de intercambio iónico y electrodiálisis, eliminando efectivamente las partículas inorgánicas disueltas y reduciendo la concentración de iones en el agua.

La justificación para esta investigación radica en la importancia de garantizar la calidad del agua en la industria farmacéutica y la necesidad de encontrar soluciones efectivas y sostenibles para mejorar y estabilizar la calidad del agua en el proceso de producción.

La implementación exitosa del EDI en la planta de tratamiento de agua de AICA podría resultar en una producción más eficiente y segura de medicamentos, reduciendo el riesgo de contaminación y garantizando el cumplimiento de los estándares regulatorios y de calidad. Además, la experiencia y el conocimiento adquiridos en este proyecto podrían ser aplicables a otras plantas de tratamiento de agua y procesos industriales, contribuyendo al avance del campo de la ingeniería automática y la optimización de procesos en la industria farmacéutica.

Situación problemática

La planta de AICA enfrenta inestabilidad en los parámetros de calidad del agua purificada y el agua para inyección debido a la variabilidad en la calidad del agua potable y otros factores. Esta situación afecta la producción y calidad de los productos farmacéuticos.

Problema a resolver

El problema a resolver es cómo mejorar y estabilizar la calidad del agua purificada y el agua para inyección en la planta de AICA mediante la incorporación de un equipo de Electrodesionización (EDI) y posibles modificaciones en el sistema de control e instrumentación existente.

Hipótesis

La implementación del EDI como etapa posterior al proceso de OI de doble etapa mejorará significativamente la calidad y estabilidad del agua purificada y el agua para inyección en la planta de AICA.

Objeto de estudio

El objeto de estudio es el proceso de tratamiento de agua en la planta de AICA y la implementación del EDI como una solución para mejorar y estabilizar la calidad del agua.

Campo de acción

El campo de acción se centra en la evaluación y propuesta de modificación del sistema de tratamiento de agua en la planta de AICA, incluyendo la implementación del EDI y posibles ajustes en el sistema de control e instrumentación existente.

Objetivo general

El objetivo general es mejorar y estabilizar la calidad del agua purificada y el agua para inyección en la planta de AICA mediante la implementación del EDI y ajustes en el sistema de control e instrumentación.

Objetivos específicos

- 1. Evaluar la situación actual del proceso de tratamiento de agua en la planta de AICA.
- 2. Investigar y proponer la implementación del EDI como etapa posterior al proceso de OI de doble etapa.
- 3. Analizar los requisitos técnicos, económicos y regulatorios para la implementación del EDI en la planta.
- 4. Proponer modificaciones en el sistema de control e instrumentación existente para la integración del EDI.

Alcance y limitaciones

El alcance de esta tesis incluye la evaluación del proceso de tratamiento de agua en la planta de AICA, la propuesta de implementación del EDI y posibles ajustes en el sistema de control e instrumentación existente. Las limitaciones pueden incluir la disponibilidad de información técnica, económica y regulatoria específica, así como restricciones en el acceso a la planta y los equipos involucrados en el proceso.

Metodología

Para abordar el problema planteado en esta tesis, se seguirá una metodología estructurada en diversas etapas, que permitirá una aproximación sistemática al objetivo general. Las etapas de la metodología propuesta son las siguientes:

- Diagnóstico del proceso actual: En esta etapa se analizará el proceso de tratamiento de agua en la planta de AICA, identificando las variables críticas, inestabilidades y limitaciones en la calidad del agua purificada y el agua para inyección. Se recopilarán y analizarán datos de producción, calidad del agua y rendimiento de los equipos involucrados en el proceso.
- Revisión bibliográfica y análisis del estado del arte: Se llevará a cabo una revisión exhaustiva de la literatura científica y técnica relacionada con el tratamiento de agua en la industria farmacéutica, el proceso de OI de doble etapa y la tecnología de EDI. Se buscarán estudios de caso, investigaciones y experiencias previas en la implementación de EDI en plantas similares para identificar las mejores prácticas y lecciones aprendidas.
- Propuesta de implementación del EDI: Basándose en el diagnóstico del proceso actual y el análisis del estado del arte, se propondrá la implementación del EDI como

etapa posterior al proceso de OI de doble etapa en la planta de AICA. Se definirán los requisitos técnicos, de instrumentación y de control para la integración del EDI en el proceso existente.

- Análisis de costos y beneficios: Se llevará a cabo un análisis económico para estimar los costos asociados con la implementación del EDI y las posibles modificaciones en el sistema de control e instrumentación. Además, se evaluarán los beneficios esperados en términos de mejora en la calidad y estabilidad del agua, así como posibles ahorros en el consumo de energía y recursos.
- Evaluación de requisitos regulatorios y de cumplimiento: Se investigarán los requisitos legales y regulatorios aplicables a la implementación del EDI en la planta de AICA, así como las normas y estándares de la industria farmacéutica relacionados con el tratamiento de agua y la calidad del agua purificada y el agua para inyección.
- Desarrollo de modificaciones en el sistema de control e instrumentación: Basándose en la propuesta de implementación del EDI y los requisitos identificados, se desarrollarán las modificaciones necesarias en el sistema de control e instrumentación existente, incluyendo la actualización del HMI y la programación del PLC.

Estructura por capítulos

La estructura de la tesis se presenta a continuación:

Capítulo 1: "Introducción"

En este capítulo se presenta el contexto y justificación, la situación problemática, el problema a resolver, la hipótesis, el objeto de estudio, el campo de acción, el objetivo general, los objetivos específicos, el alcance y las limitaciones, y la metodología de la investigación.

Capítulo 2: Estado del arte y descripción del proceso Este capítulo aborda la revisión de la literatura sobre sistemas de tratamiento de agua en la industria farmacéutica, las tecnologías de purificación de agua (ósmosis inversa, EDI, etc.), la descripción del proceso actual en la planta de AICA, y la instrumentación y control en sistemas de tratamiento de agua.

Capítulo 3: Análisis de la instrumentación actual En este capítulo se realiza la identificación y descripción de los elementos de instrumentación en el sistema de ósmosis inversa, el análisis de las señales y parámetros de control, y la evaluación del rendimiento y limitaciones de la instrumentación actual.

Capítulo 4: Propuesta de integración del EDI y nueva instrumentación Este capítulo presenta la selección y justificación del EDI, las modificaciones necesarias en la instrumentación y control, el diseño del sistema de control e integración con el PLC existente, y el estudio de casos similares y lecciones aprendidas.

Capítulo 5: Análisis de costos y beneficios En este capítulo se lleva a cabo la estimación de costos de adquisición e instalación del EDI e instrumentación adicional, la estimación de costos operativos y de mantenimiento, la evaluación de los beneficios en términos de mejora en la calidad del agua, eficiencia y confiabilidad del proceso, y el análisis de retorno de inversión y viabilidad económica.

Capítulo 6: Cumplimiento de normativas y regulaciones Este capítulo aborda los requisitos regulatorios aplicables a la industria farmacéutica y sistemas de tratamiento de agua,

así como la evaluación de la conformidad del sistema propuesto con las regulaciones y estándares relevantes.

Capítulo 7: Conclusiones y recomendaciones En este último capítulo, se presentan las conclusiones generales y específicas derivadas de los resultados obtenidos en la investigación, así como las recomendaciones para la implementación del EDI en la planta de AICA y futuras investigaciones relacionadas con el tratamiento de agua en la industria farmacéutica.

Capítulo 1

Estado del arte y descripción del proceso

La purificación del agua es un aspecto crítico en la industria farmacéutica, ya que el agua es un componente fundamental en la producción de medicamentos y otros productos sanitarios. La calidad del agua utilizada en estos procesos puede afectar significativamente la eficacia y seguridad de los productos finales. Por lo tanto, es esencial contar con sistemas de tratamiento de agua que sean confiables, eficientes y cumplan con los estándares regulatorios establecidos.

En este capítulo, se revisará el estado del arte en lo que respecta a los sistemas de tratamiento de agua en la industria farmacéutica, con énfasis en las tecnologías de purificación más utilizadas, como la ósmosis inversa y la desionización electroquímica (EDI). Además, se describirá el proceso actual de tratamiento de agua en la planta de AICA y se analizarán los aspectos relacionados con la instrumentación y control en estos sistemas.

1.1. Revisión de la literatura sobre sistemas de tratamiento de agua en la industria farmacéutica

La industria farmacéutica es un sector crítico para la salud y el bienestar de la sociedad, y la calidad del agua utilizada en los procesos de producción desempeña un papel fundamental en la garantía de la seguridad y eficacia de los productos farmacéuticos. En este capítulo, se realizará una revisión exhaustiva de la literatura relacionada con los sistemas de tratamiento de agua en la industria farmacéutica, abordando temas como la importancia del tratamiento de agua, las clasificaciones y requisitos regulatorios, y las tecnologías de tratamiento empleadas.

Esta revisión tiene como objetivo proporcionar un panorama completo del estado actual del conocimiento en este campo, así como identificar las tendencias y enfoques de investigación que podrían dar lugar a mejoras en los sistemas de tratamiento de agua en el futuro. Al comprender en profundidad el contexto y las consideraciones clave en la purificación del agua farmacéutica, se sentarán las bases para una discusión informada sobre la propuesta de incorporar un electrodeionizador (EDI) en el sistema de ósmosis inversa de la planta de AICA, como se detallará en los capítulos posteriores.

1.1.1. Importancia del tratamiento de agua en la industria farmacéutica

El agua es un recurso indispensable en la industria farmacéutica debido a su amplia utilización en múltiples procesos, tales como la producción de medicamentos, la limpieza de equipos, la fabricación de soluciones y reactivos, y la generación de vapor, entre otros. Dada su relevancia, el tratamiento de agua en este sector es de suma importancia para garantizar la calidad, seguridad y eficacia de los productos farmacéuticos. A continuación, se detallan varias razones que explican la importancia del tratamiento de agua en la industria farmacéutica.

Calidad del producto: El agua utilizada en la producción de medicamentos debe cumplir con estándares estrictos de calidad y pureza, ya que su presencia en la composición de los productos puede afectar significativamente su estabilidad, potencia y seguridad. Por ejemplo, la presencia de impurezas en el agua, como iones metálicos, microorganismos o productos químicos, puede reaccionar con los ingredientes activos y excipientes de los medicamentos, alterando sus propiedades y generando efectos adversos en los pacientes.

Regulaciones y normativas: Las agencias reguladoras de todo el mundo, como la FDA (Administración de Alimentos y Medicamentos de EE. UU.) y la EMA (Agencia Europea de Medicamentos), establecen requisitos rigurosos y específicos en cuanto a la calidad del agua empleada en la producción farmacéutica. Estas regulaciones tienen como objetivo garantizar que el agua utilizada cumpla con ciertos niveles de pureza y seguridad, y que los sistemas de tratamiento de agua sean adecuados y efectivos para garantizar la calidad del producto final.

Control de contaminación y biofilm: La proliferación de microorganismos y la formación de biofilm en los sistemas de tratamiento de agua pueden tener consecuencias negativas para la calidad de los productos farmacéuticos. Un tratamiento de agua eficiente debe eliminar o reducir al mínimo la presencia de microorganismos y prevenir la formación de biofilm en las superficies de los equipos y tuberías. De esta manera, se asegura un ambiente adecuado para la producción de medicamentos y se evita la contaminación cruzada.

Eficiencia en los procesos: Un sistema de tratamiento de agua eficiente y bien diseñado puede optimizar los procesos de producción y reducir los costos operativos. El uso de tecnologías avanzadas, como la ósmosis inversa y la electrodeionización (EDI), permite obtener agua de alta calidad y pureza, lo que a su vez disminuye la necesidad de tratamientos adicionales y reduce el consumo de reactivos y energía.

Responsabilidad medioambiental: La industria farmacéutica tiene una responsabilidad ética y legal de minimizar su impacto ambiental. El tratamiento adecuado del agua permite reducir la cantidad de contaminantes y sustancias químicas liberadas al medio ambiente y optimizar el uso de los recursos hídricos. Además, las tecnologías de tratamiento de agua más avanzadas pueden contribuir a la reducción del consumo energético y la generación de residuos.

En resumen, el tratamiento de agua en la industria farmacéutica es fundamental para garantizar la calidad, seguridad y eficacia de los productos, cumplir con las regulaciones y normativas vigentes, controlar la contaminación y la formación de biofilm, optimizar la eficiencia en los procesos y reducir el impacto medioambiental.

El tratamiento adecuado del agua en la industria farmacéutica no sólo garantiza que se cumplan los requisitos de calidad y pureza del agua, sino que también contribuye a la prevención de problemas asociados con la presencia de impurezas y contaminantes. Por lo tanto, es fundamental que las empresas farmacéuticas inviertan en tecnologías de tratamiento de agua apropiadas y en la implementación de sistemas de control y monitoreo efectivos.

1.1.2. Tipos y clasificaciones de agua en la industria farmacéutica

El agua es un componente fundamental en la industria farmacéutica, y su calidad y pureza son aspectos críticos para garantizar la seguridad y eficacia de los productos. Dependiendo de su uso y aplicación, existen diferentes tipos y clasificaciones de agua en la industria farmacéutica. A continuación, se presentan las categorías más comunes:

Agua purificada (PW): Es el tipo básico de agua utilizada en la industria farmacéutica y se obtiene a través de procesos como ósmosis inversa, destilación, intercambio iónico o filtración. La calidad del agua purificada es menor que la del agua para inyección (WFI), pero es adecuada para la fabricación de productos no parenterales y para su uso en procesos de limpieza.

Agua para inyección (WFI): Es un tipo de agua de alta pureza que se utiliza en la fabricación de productos parenterales, es decir, aquellos que se administran por vías como intravenosa, intramuscular o subcutánea. La calidad del WFI es superior a la del agua purificada, y se obtiene mediante procesos de destilación, ósmosis inversa o por una combinación de ambos métodos.

Agua altamente purificada (HPW): Este tipo de agua tiene una calidad intermedia entre el agua purificada y el WFI. Se utiliza en ciertas aplicaciones farmacéuticas donde se requiere un nivel de pureza más elevado que el del agua purificada, pero no se necesita llegar al grado de pureza del WFI.

Agua estéril: Es agua que ha sido sometida a un proceso de esterilización, como la filtración estéril o la autoclave, para eliminar cualquier microorganismo presente. El agua estéril se utiliza en aplicaciones específicas, como en la fabricación de productos estériles o en procesos de limpieza y desinfección que requieren la eliminación de microorganismos.

Cabe destacar que las regulaciones y normativas, como las establecidas por la Farmacopea de Estados Unidos (USP), la Farmacopea Europea (EP) y la Organización Mundial de la Salud (OMS), definen los requisitos de calidad y las especificaciones para cada tipo de agua en la industria farmacéutica. Estas especificaciones incluyen parámetros como

la conductividad, el pH, la presencia de sustancias orgánicas, inorgánicas y microbiológicas, entre otros.

1.1.3. Requisitos y regulaciones aplicables al agua en la industria farmacéutica

La calidad del agua utilizada en la industria farmacéutica está sujeta a una serie de requisitos y regulaciones establecidos por diversas entidades y organismos a nivel nacional e internacional. Estas regulaciones aseguran que el agua cumpla con los estándares de calidad necesarios para garantizar la seguridad y eficacia de los productos farmacéuticos. Algunas de las principales regulaciones y requisitos aplicables al agua en la industria farmacéutica incluyen:

Farmacopeas: Las farmacopeas son documentos oficiales que contienen las especificaciones técnicas y requisitos de calidad para sustancias y productos farmacéuticos, incluidos los diferentes tipos de agua. Entre las farmacopeas más reconocidas a nivel mundial se encuentran la Farmacopea de Estados Unidos (USP), la Farmacopea Europea (EP) y la Farmacopea de Japón (JP). Cada farmacopea establece parámetros específicos de calidad, como la conductividad, el pH, la presencia de sustancias orgánicas, inorgánicas y microbiológicas, entre otros.

Buenas Prácticas de Fabricación (GMP): Las GMP son normas que establecen los requisitos mínimos que deben cumplir los procesos de fabricación, control de calidad y distribución de productos farmacéuticos, incluida la gestión del agua. Estas normas son aplicables a nivel mundial y son emitidas por organismos como la Food and Drug Administration (FDA) en Estados Unidos, la European Medicines Agency (EMA) en Europa y la Organización Mundial de la Salud (OMS).

Directrices y guías técnicas: Además de las farmacopeas y las GMP, existen directrices y guías técnicas emitidas por organismos internacionales y nacionales que abordan aspectos específicos relacionados con el agua en la industria farmacéutica. Estas directrices pueden incluir recomendaciones sobre el diseño y validación de sistemas de tratamiento de agua, el monitoreo de la calidad del agua y la prevención de la contaminación.

Normativas nacionales y locales: Cada país puede tener sus propias normativas y requisitos legales aplicables al agua en la industria farmacéutica. Estas normativas pueden estar en línea con las farmacopeas y las GMP, pero también pueden incluir requisitos adicionales específicos para cada país o región.

El cumplimiento de estas regulaciones y requisitos garantiza la calidad y seguridad del agua utilizada en la fabricación de productos farmacéuticos y, en última instancia, protege la salud de los pacientes.

1.1.4. Impurezas presentes en el agua y su impacto en los productos farmacéuticos

El agua utilizada en la industria farmacéutica puede contener diversas impurezas, las cuales pueden afectar la calidad, seguridad y eficacia de los productos finales. Estas impurezas pueden clasificarse en tres categorías principales: impurezas inorgánicas, impurezas orgánicas y contaminantes microbiológicos.

Impurezas inorgánicas: Incluyen iones metálicos y no metálicos, como calcio, magnesio, sodio, cloruros, sulfatos y silicatos. Estas impurezas pueden afectar la calidad de los productos farmacéuticos al causar cambios en la solubilidad, la estabilidad y la eficacia de los ingredientes activos, así como en la formación de precipitados y la corrosión de equipos y recipientes. Además, algunos iones metálicos, como el hierro, el cobre y el cromo, pueden ser tóxicos y afectar la seguridad de los productos.

Impurezas orgánicas: Son compuestos de origen natural o sintético, como ácidos húmicos y fúlvicos, pesticidas, disolventes y productos químicos de desinfección. Las impurezas orgánicas pueden reaccionar con los ingredientes activos y otros excipientes, lo que puede alterar la estabilidad, la eficacia y la liberación de los fármacos. Además, algunos compuestos orgánicos pueden ser tóxicos y afectar la seguridad de los productos farmacéuticos.

Contaminantes microbiológicos: Incluyen bacterias, hongos, levaduras, virus y protozoos. La presencia de microorganismos en el agua puede causar la contaminación de los productos farmacéuticos, lo que puede llevar a infecciones y reacciones adversas en los pacientes. Además, algunos microorganismos pueden producir sustancias tóxicas, como endotoxinas y micotoxinas, que pueden afectar la seguridad y eficacia de los productos.

El tratamiento adecuado del agua es esencial para eliminar o reducir estas impurezas a niveles aceptables, de acuerdo con las regulaciones y requisitos aplicables en la industria farmacéutica. Un control riguroso de la calidad del agua, así como el uso de tecnologías de purificación adecuadas, como la ósmosis inversa, la desionización y la electrodesionización (EDI), son fundamentales para garantizar la calidad y seguridad de los productos farmacéuticos.

1.1.5. Variables críticas en el tratamiento y monitoreo de la calidad del agua

El tratamiento y monitoreo de la calidad del agua en la industria farmacéutica requieren un enfoque riguroso y sistemático para garantizar la eliminación efectiva de impurezas y el cumplimiento de los requisitos regulatorios. A continuación, se presentan algunas de las variables críticas que deben considerarse durante el tratamiento y monitoreo del agua: **Conductividad eléctrica:**La conductividad eléctrica es una medida de la capacidad del agua para conducir la corriente eléctrica, y está directamente relacionada con la concentración de iones disueltos en el agua. Un mayor valor de conductividad indica una mayor concentración de impurezas inorgánicas. El monitoreo de la conductividad es fundamental para evaluar la efectividad de los procesos de purificación y para asegurar el cumplimiento de los límites establecidos por las regulaciones aplicables.

Contenido de carbono orgánico total (COT): El COT es una medida del contenido de carbono en compuestos orgánicos disueltos en el agua. Un alto nivel de COT indica una mayor concentración de impurezas orgánicas. El monitoreo regular del COT es esencial para garantizar que el agua cumpla con los requisitos de calidad y para evaluar la eficacia de los procesos de purificación en la eliminación de compuestos orgánicos.

Conteo microbiano y endotoxinas: El monitoreo del recuento microbiano y las endotoxinas es fundamental para controlar la calidad microbiológica del agua y garantizar la seguridad de los productos farmacéuticos. Los métodos de análisis microbiológico incluyen el recuento en placa, el método de filtración por membrana y las técnicas de bioluminiscencia. Las endotoxinas, sustancias tóxicas liberadas por bacterias Gram-negativas, se miden mediante el ensayo de lisado de amebocitos de Limulus (LAL).

pH:El pH es una medida de la acidez o alcalinidad del agua y puede afectar la solubilidad, la estabilidad y la reactividad de los ingredientes activos y excipientes en los productos farmacéuticos. El control del pH es esencial para mantener un ambiente adecuado en los sistemas de tratamiento de agua y garantizar la calidad del agua producida.

Turbidez: La turbidez es una medida de la cantidad de partículas en suspensión en el agua, incluidas partículas inorgánicas, orgánicas y microbiológicas. Un nivel elevado de turbidez puede afectar la efectividad de los procesos de purificación y el rendimiento de los equipos. La turbidez se mide utilizando un turbidímetro y se expresa en unidades de turbidez nefelométrica (NTU).

El monitoreo y control de estas variables críticas durante el tratamiento y purificación del agua son fundamentales para garantizar la calidad, seguridad y eficacia de los productos farmacéuticos y cumplir con los requisitos regulatorios aplicables.

1.1.6. Evolución histórica de las tecnologías de tratamiento de agua en la industria farmacéutica

La historia del tratamiento de agua en la industria farmacéutica ha experimentado una evolución considerable a lo largo del tiempo. A medida que la industria ha crecido y los requisitos regulatorios han aumentado en complejidad, las tecnologías de tratamiento de agua han seguido mejorando para garantizar la calidad y la seguridad de los productos farmacéuticos. A continuación, se presenta un breve recorrido histórico de las tecnologías de tratamiento de agua en la industria farmacéutica:

Finales del siglo XIX y principios del siglo XX:Durante este período, los sistemas de tratamiento de agua se basaban en procesos simples como la sedimentación, la filtración y la desinfección con cloro. Estos métodos eran efectivos para eliminar partículas en suspensión e impurezas microbiológicas, pero no eran capaces de eliminar completamente las impurezas químicas.

Mitad del siglo XX:Con el avance de la química y la comprensión de los requisitos de calidad del agua para los productos farmacéuticos, se introdujeron tecnologías más avan-

zadas de tratamiento de agua, como la desionización y la destilación. La desionización es un proceso que utiliza resinas de intercambio iónico para eliminar iones del agua, mientras que la destilación es un proceso de separación basado en la diferencia de volatilidad entre el agua y las impurezas.

Décadas de 1960 y 1970: Durante este período, se desarrolló la tecnología de ósmosis inversa (OI), que utiliza membranas semipermeables para eliminar la mayoría de las impurezas disueltas en el agua, incluidos iones, compuestos orgánicos y partículas en suspensión. La OI ha sido ampliamente adoptada en la industria farmacéutica debido a su eficacia y eficiencia en la producción de agua de alta calidad.

Década de 1990: El desarrollo del proceso de desionización electroquímica, también conocido como desionización capacitiva (CDI) o electrodialización reversible (EDR), proporcionó otra opción para el tratamiento de agua en la industria farmacéutica. Estos sistemas utilizan un campo eléctrico para separar y eliminar iones del agua.

Siglo XXI: Con el desarrollo de la tecnología de desionización electrodialítica (EDI), se ha logrado combinar las ventajas de la desionización y la ósmosis inversa para producir agua de mayor pureza y a una menor tasa de rechazo. La EDI es una tecnología híbrida que utiliza membranas de intercambio iónico y un campo eléctrico para eliminar iones y otras impurezas del agua. Además, los avances en la instrumentación y el control permiten una monitorización y control en tiempo real de las variables críticas en el tratamiento de agua, lo que mejora aún más la calidad y la eficiencia del proceso.

La evolución de las tecnologías de tratamiento de agua en la industria farmacéutica ha sido impulsada por la creciente demanda de productos de alta calidad y la necesidad de cumplir con requisitos regulatorios cada vez más rigrosos. A medida que la industria farmacéutica continúa avanzando, es probable que surjan nuevas tecnologías y enfoques para el tratamiento y monitoreo del agua en el futuro. Algunas áreas de investigación y desarrollo incluyen:

Nanotecnología:La aplicación de nanomateriales y nanopartículas en el tratamiento de agua ofrece oportunidades para mejorar la eficiencia de los procesos existentes y desarrollar nuevos enfoques para la eliminación de impurezas. Por ejemplo, las membranas nanocompuestas y las nanopartículas funcionales pueden mejorar la selectividad y la eficiencia de las membranas de ósmosis inversa y EDI.

Tratamiento biológico:Los enfoques biológicos, como la utilización de microorganismos para la degradación de contaminantes orgánicos, pueden proporcionar alternativas sostenibles y de bajo costo a las tecnologías convencionales de tratamiento de agua.

Sistemas avanzados de monitoreo y control: Los avances en sensores, analítica en línea y tecnologías de control permiten una mejor comprensión y control del proceso de tratamiento de agua en tiempo real. Esto puede llevar a una mayor eficiencia y garantizar una calidad de agua más consistente.

Integración de sistemas y automatización: La integración de diferentes tecnologías

de tratamiento de agua y la automatización de los sistemas de control pueden mejorar la eficiencia general del proceso y reducir los costos de operación y mantenimiento.

En resumen, la evolución histórica de las tecnologías de tratamiento de agua en la industria farmacéutica ha sido impulsada por la necesidad de garantizar la calidad y la seguridad de los productos y cumplir con requisitos regulatorios cada vez más estrictos. A medida que la industria farmacéutica sigue avanzando, es probable que surjan nuevas tecnologías y enfoques para el tratamiento y monitoreo del agua, lo que permitirá seguir mejorando la calidad y la eficiencia de los procesos.

1.1.7. Tecnologías actuales y enfoques de investigación en sistemas de tratamiento de agua para la industria farmacéutica

1.1.7.1. Etapas del tratamiento de agua en la industria farmacéutica

Etapas del tratamiento de agua en la industria farmacéutica

El tratamiento de agua en la industria farmacéutica es fundamental para garantizar la calidad y seguridad de los productos finales. En este apartado, describimos en detalle las etapas principales del tratamiento de agua en la industria farmacéutica.

- 1. Pretratamiento: La etapa de pretratamiento se realiza para eliminar las impurezas más grandes y las partículas sólidas del agua. Esta etapa incluye procesos como la filtración, el ablandamiento y la desinfección. La filtración ayuda a eliminar partículas sólidas y sedimentos, mientras que el ablandamiento reduce la concentración de iones de calcio y magnesio que pueden provocar incrustaciones en las membranas y equipos de tratamiento posteriores. La desinfección, mediante cloración o radiación ultravioleta, elimina microorganismos, virus y bacterias presentes en el agua.
- 2. Tratamiento primario: La ósmosis inversa (RO) es el tratamiento primario más común en la industria farmacéutica. Esta tecnología utiliza membranas semipermeables para separar las impurezas disueltas y los iones del agua. La presión se aplica al agua para forzarla a través de la membrana, dejando atrás las impurezas y los iones. El resultado es un agua pura con una concentración muy baja de iones y contaminantes.
- 3. Tratamiento secundario: Después del tratamiento primario, el agua se somete a un tratamiento secundario para eliminar los iones y contaminantes restantes. Entre los métodos más comunes de tratamiento secundario se encuentran la desionización, el intercambio iónico y la electrodesionización (EDI). La desionización y el intercambio iónico emplean resinas que atraen y retienen iones específicos, eliminándolos del agua. La EDI es una tecnología que combina intercambio iónico y electroquímica para eliminar iones y contaminantes del agua de manera más eficiente.
- 4. Tratamiento final: La última etapa del tratamiento de agua en la industria farmacéutica implica procesos de esterilización y filtración. La esterilización garantiza la eliminación de cualquier microorganismo residual, mientras que la filtración final, que puede incluir filtros de membrana o filtros de profundidad, elimina partículas finas y restos de microorganismos. Este tratamiento final asegura que el agua cumple con los estándares de calidad requeridos en la industria farmacéutica.

1.1.7.2. Variantes de sistemas de purificación de agua

En la industria farmacéutica, existen diversas variantes de sistemas de purificación de agua que se adaptan a las necesidades específicas de cada planta y a los requisitos de calidad del agua. A continuación, se presentan algunas de las variantes más comunes:

Ósmosis inversa simple (RO): La ósmosis inversa es una tecnología ampliamente utilizada para la purificación de agua en la industria farmacéutica. Se basa en la aplicación de presión para forzar el agua a través de una membrana semipermeable, eliminando así las impurezas disueltas y los contaminantes.

Ósmosis inversa de doble paso (RO-RO): Esta configuración consta de dos etapas consecutivas de ósmosis inversa. La segunda etapa de RO trata aún más el agua, eliminando impurezas adicionales y mejorando la calidad del agua. Este enfoque es especialmente útil cuando se requiere un mayor grado de purificación del agua.

Ósmosis inversa seguida de lechos de resina de intercambio iónico (RO-IX): Esta combinación utiliza la ósmosis inversa para eliminar la mayor parte de las impurezas disueltas, y luego pasa el agua a través de lechos de resina de intercambio iónico para eliminar los iones restantes y alcanzar una mayor pureza del agua.

Ósmosis inversa seguida de Electrodeionización (RO-EDI): Esta combinación es considerada una de las mejores soluciones para la industria farmacéutica. La ósmosis inversa elimina la mayor parte de las impurezas disueltas, y luego la electrodeionización (EDI) elimina los iones restantes y mejora aún más la calidad del agua. El sistema RO-EDI es altamente eficiente, confiable y requiere un mantenimiento relativamente bajo en comparación con otras configuraciones.

Ósmosis inversa de doble paso seguida de Electrodeionización (RO-RO-EDI): Esta configuración combina las ventajas de la ósmosis inversa de doble paso y la electrodeionización. Primero, el agua pasa a través de dos etapas de ósmosis inversa para eliminar la mayoría de las impurezas disueltas. Luego, la electrodeionización (EDI) elimina los iones restantes y mejora aún más la calidad del agua. Esta combinación proporciona una calidad de agua excepcionalmente alta, lo que la convierte en la mejor opción para aplicaciones farmacéuticas críticas.

Cabe destacar que la selección de la variante más adecuada para un sistema de purificación de agua en la industria farmacéutica dependerá de factores como la calidad del agua de entrada, los requisitos de calidad del agua de salida, las regulaciones aplicables y las consideraciones económicas.

1.1.7.3. Innovaciones y enfoques de investigación en sistemas de tratamiento de agua

La industria farmacéutica siempre busca mejorar la calidad y eficiencia en los sistemas de tratamiento de agua, lo que ha llevado al desarrollo de diversas innovaciones y enfoques de investigación en este campo. Algunos de estos avances incluyen:

Membranas de ósmosis inversa de alto rendimiento: Los avances en la fabricación de

membranas de ósmosis inversa han permitido el desarrollo de membranas más eficientes y selectivas. Estas membranas de alto rendimiento pueden eliminar impurezas más pequeñas y lograr una mayor pureza de agua, lo que las hace ideales para aplicaciones en la industria farmacéutica.

Sistemas de monitoreo y control en tiempo real: La implementación de sensores avanzados y sistemas de control en tiempo real permite monitorear continuamente la calidad del agua y ajustar los parámetros de funcionamiento del sistema de tratamiento de agua de manera más efectiva. Esto mejora la eficiencia del proceso y garantiza que la calidad del agua se mantenga dentro de los límites establecidos por las regulaciones aplicables.

Tratamiento de agua sin productos químicos: La investigación en el campo del tratamiento de agua sin productos químicos ha llevado al desarrollo de tecnologías innovadoras, como la fotocatálisis, la electrocoagulación y los sistemas de desinfección ultravioleta (UV), que eliminan la necesidad de utilizar productos químicos potencialmente dañinos en el tratamiento del agua.

Recuperación y reutilización del agua: La creciente preocupación por la escasez de agua y la sostenibilidad ha llevado a la investigación en tecnologías de recuperación y reutilización del agua en la industria farmacéutica. Estas tecnologías permiten reducir la cantidad de agua fresca requerida para los procesos y minimizar la cantidad de agua residual generada, lo que reduce el impacto ambiental y los costos asociados.

Integración de tecnologías emergentes: La investigación en el campo del tratamiento de agua también está explorando la integración de tecnologías emergentes, como la inteligencia artificial (IA) y el aprendizaje automático, para optimizar el funcionamiento de los sistemas de tratamiento de agua y predecir posibles problemas antes de que ocurran.

Tratamiento de agua a nanoescala: La nanotecnología está siendo investigada para aplicaciones en el tratamiento de agua, como el uso de nanofiltros y nanopartículas para mejorar la eficiencia de eliminación de impurezas y la calidad del agua tratada.

Estas innovaciones y enfoques de investigación en sistemas de tratamiento de agua tienen el potencial de mejorar significativamente la calidad del agua, la eficiencia del proceso y la sostenibilidad en la industria farmacéutica, lo que permitirá a las plantas cumplir con los requisitos regulatorios más estrictos y garantizar la seguridad y eficacia de los productos farmacéuticos.

1.2. Descripción del proceso actual

La planta de AICA cuenta con un proceso integral de tratamiento y purificación de agua para abastecer a sus instalaciones con agua de alta calidad y pureza. Este proceso es esencial para garantizar el cumplimiento de las normativas y estándares aplicables en la industria farmacéutica y biotecnológica. A continuación, se proporcionará una descripción detallada de las distintas etapas y componentes del proceso actual en la planta de AICA, desde la captación del agua hasta su el punto antes de la distribución y uso en las distintas

áreas de producción.

Sistema Tecnológico y sus plantas de tratamiento

El Sistema Tecnológico es el área de interés para esta investigación y se compone de dos plantas de tratamiento de agua. La primera planta se dedica a la producción de ampolletas, mientras que la segunda planta se encarga de la producción de bulbos. Cabe mencionar que esta última planta aún no opera de manera continua, ya que solo produce vapor para las autoclaves del Laboratorio de Microbiología, y el agua destilada aún no se utiliza en la producción de bulbos.

1.2.1. Almacenamiento y bombeo del agua potable

El Sistema de Tratamiento de Agua de Bulbos en Laboratorios Aica+ se encarga de garantizar la eficiencia y calidad de los diferentes tipos de aguas farmacéuticas, como el agua purificada y destilada, que se utilizan en la planta de producción de inyectables. El proceso comienza con el almacenamiento del agua potable procedente del acueducto en dos cisternas con capacidades de 900 y 700 m3. Posteriormente, el agua cruda es bombeada a través de las bombas de la estación de hidroneumáticos hacia las líneas de Servicios Generales y al Sistema de Tratamiento de Agua, que se divide en dos partes: el Sistema No Tecnológico y el Sistema Tecnológico.

1.2.2. Dosificación de hipoclorito de sodio y filtración

El agua proveniente de la cisterna llega al sistema de pretratamiento de aguas de Bulbo a una presión entre 4 - 5 bar. En la línea de entrada, se dosifica hipoclorito de sodio al 3 % para desinfectar el agua y reducir la concentración de bacterias y microorganismos. El sistema de dosificación consta de un tanque de solución de 50 L y una bomba con capacidad de 1.58 L/h, permitiendo una concentración de cloro residual cercana al 1

1.2.3. Almacenamiento y monitoreo de parámetros del agua

Una vez filtrada, el agua sale del filtro CF-60 con un flujo que oscila entre 7-8 m3/h y se almacena en el tanque de almacenamiento de agua potable, TK-60, con capacidad de 3,000 L. Este tanque sirve como depósito de alimentación para los suavizadores. Se han instalado tomas de muestra antes y después del filtro para monitorear el pH y el cloro residual del agua. Este monitoreo permite verificar la calidad del agua en esta etapa del proceso y asegurar que los parámetros se encuentren dentro de los límites aceptables antes de continuar con el proceso de purificación.

1.2.4. Suavización del agua

Los suavizadores de intercambio iónico son una parte fundamental en la planta de tratamiento de agua, ya que se encargan de eliminar la dureza del agua causada por los cationes de calcio y magnesio. Este proceso es esencial para evitar incrustaciones en las membranas de ósmosis inversa y garantizar una calidad óptima del agua tratada.

1.2.4.1. Proceso de suavización y disposición de los suavizadores

El proceso de suavización comienza cuando el agua es trasegada desde el tanque TK-60 hasta el módulo de suavizadores de intercambio iónico utilizando la bomba P-60. Antes de llegar a los suavizadores, el agua pasa a través del intercambiador de placas E60-1, que disminuye la temperatura del agua hasta valores entre 18 y 20°C, mejorando así la eficiencia del proceso de purificación.

En la línea de entrada y salida del intercambiador, se miden la presión y la temperatura, respectivamente. Además, se cuenta con una válvula reguladora que ajusta el flujo de agua de enfriamiento que entra al intercambiador. Luego, el agua sale del intercambiador y entra a los suavizadores a una presión aproximada de 4 bar a través de los cabezales de distribución.

En este proceso, los suavizadores A64-A y A64-B están dispuestos en serie. El agua que sale del suavizador A64-A entra al suavizador A64-B, que se encarga de rectificar finalmente la calidad del agua suavizada. Ambos suavizadores tienen como objetivo eliminar la dureza del agua, intercambiando los iones de calcio y magnesio por iones de sodio de la resina catiónica fuerte.

1.2.4.2. Operaciones de producción y regeneración de los suavizadores

Los suavizadores de intercambio iónico funcionan mediante dos operaciones principales: producción y regeneración. Estas operaciones son controladas por el Aquatimer instalado en cada suavizador.

Durante la producción, se lleva a cabo la reacción de intercambio iónico en la resina. Con el tiempo, la capacidad de intercambio iónico de la resina disminuye gradualmente y los sólidos disueltos en el agua se acumulan en ella. Cuando la resina se agota, es necesario regenerarla con una solución de cloruro de sodio al 14 % en peso.

1.2.4.3. Proceso de regeneración de los suavizadores

La regeneración de los suavizadores consta de cuatro etapas:

- Contralavado: El lavado a contraflujo tiene como objetivo remover los sólidos depositados en la resina, incluyendo las partículas de resina más pequeñas, levantando y expandiendo ligeramente la cama de resina.
- 2. Regeneración: Durante esta etapa, se pasa salmuera a través de la resina a una velocidad de flujo lenta, lo que aumenta el contacto entre la salmuera y la resina, favoreciendo la regeneración de la misma. La reacción de regeneración implica la liberación de los iones de calcio y magnesio, que son reemplazados por iones de sodio.
- 3. **Enjuague lento:** En este paso, se dispersa la solución de regenerante a través de todo el volumen de resina a una velocidad de flujo requerida, garantizando un contacto adecuado de la salmuera con el fondo de la cama de resina.

4. Enjuague rápido: Después de completar el desplazamiento de la salmuera a través de toda la cama de resina, este último enjuague remueve la salmuera que ha quedado remanente o en exceso en la misma.

Una vez finalizado el proceso de regeneración, los suavizadores están listos para volver a funcionar en la operación de producción, garantizando la eliminación efectiva de la dureza del agua.

1.2.4.4. Monitoreo de la calidad del agua suavizada

El monitoreo de la calidad del agua suavizada es esencial para garantizar la eficiencia del proceso y la protección de las membranas de ósmosis inversa. A la salida de cada suavizador, hay un punto de toma de muestra y en la línea general de salida del agua suave, se encuentra instalado un medidor de dureza en línea (DOROMAT PROFESIONAL). Este medidor permite asegurar que la dureza del agua no supere el límite máximo establecido de 5 mg/l, evitando así la formación de incrustaciones en las membranas de ósmosis inversa.

1.2.4.5. Componentes y especificaciones de los suavizadores

Los suavizadores de intercambio iónico están compuestos por varios componentes clave y cuentan con especificaciones particulares que son importantes para su correcto funcionamiento. Estos incluyen:

Volumen de resina: Cada suavizador tiene una capacidad de 100 litros de resina.

Resina: La resina utilizada en los suavizadores es de tipo catiónica fuerte, marca Purolite C 100. Esta resina permite la eliminación de los iones de calcio y magnesio presentes en el agua, intercambiándolos por iones de sodio.

Tanque TK-64 (cuba de salmuera): Este tanque se utiliza para almacenar y suministrar la solución de cloruro de sodio al 14 % en peso, necesaria para la regeneración de la resina.

Además, el sistema cuenta con elementos como el intercambiador de placas E60-1, que disminuye la temperatura del agua antes de ingresar a los suavizadores, la bomba P-60 para trasladar el agua desde el tanque TK-60 hasta el módulo de suavizadores, y válvulas reguladoras para controlar el flujo de agua de enfriamiento que entra al intercambiador.

1.2.5. Purificación mediante ósmosis inversa

La purificación del agua en una planta de tratamiento es un proceso crucial para garantizar la calidad del agua que será suministrada a los usuarios finales. Uno de los métodos más eficientes y ampliamente utilizados para la purificación del agua es la ósmosis inversa (OI), que se basa en la aplicación de presión para forzar el paso del agua a través de una membrana semipermeable, reteniendo así las impurezas y contaminantes disueltos en el agua.

1.2.5.1. Descripción general de las etapas de ósmosis inversa

El proceso de ósmosis inversa en la planta de tratamiento de agua en estudio se compone de dos etapas o pasos de flujo. La primera etapa consta de tres porta-membranas, cada una con tres tubos colectores de 8 pulgadas de diámetro y 40 pulgadas de longitud, y membranas dispuestas en espiral en su interior. La segunda etapa, por otro lado, tiene dos porta-membranas, uno de los cuales contiene solo dos tubos colectores con membrana, mientras que el tercer tubo colector tiene una simulación de membrana. Esta configuración se estableció para lograr los parámetros de producción de agua purificada de diseño en la ósmosis inversa.

1.2.5.2. Pretratamiento del agua suavizada y adición de metabisulfito de sodio

Antes de ingresar al proceso de ósmosis inversa, el agua suavizada, con un pH entre 5 y 7 y una presión entre 2 y 4 bar, debe someterse a un pretratamiento. Este pretratamiento incluye la dosificación de metabisulfito de sodio (Na2S2O5) mediante un conjunto de bomba dosificadora y tanque de solución. La adición de metabisulfito de sodio es esencial para eliminar el cloro libre residual presente en el agua, ya que este puede dañar químicamente las membranas de la ósmosis inversa.

1.2.5.3. Filtración y control de calidad antes de la ósmosis inversa

Después del pretratamiento, el agua pasa por un filtro de cartuchos de 10 micrómetros. En la entrada y salida del filtro, se instalan manómetros para monitorear la diferencia de presión y, por lo tanto, determinar el grado de ensuciamiento de los cartuchos del filtro.

A continuación, se toma una muestra del agua filtrada en el punto de muestreo del analizador de REDOX en línea, que proporciona una medida de la concentración de cloro en el agua, con un límite máximo de 400 mV. El agua filtrada y tratada se dirige al tanque de alimentación de la ósmosis inversa (TK 50-A) con una capacidad de 500 litros.

En esta etapa, es fundamental garantizar la calidad del agua antes de que ingrese al proceso de ósmosis inversa para evitar problemas en las membranas y garantizar una purificación eficiente.

1.2.5.4. Ajuste del pH y eliminación del CO2 disuelto

Una vez almacenada en el tanque de alimentación de la ósmosis inversa (TK 50-A), el agua suavizada es succionada por la bomba P50-2A para aumentar su presión hasta valores cercanos a 5 bar. Durante este proceso, se dosifica hidróxido de sodio (NaOH) utilizando un conjunto de tanque y bomba dosificadora. La adición de NaOH tiene como objetivo eliminar el CO2 disuelto en el agua, ya que aporta conductividad, y ajustar el pH del agua de alimentación a la ósmosis inversa en un rango entre 8 y 10.

1.2.5.5. Primera etapa de ósmosis inversa

El agua tratada pasa por un filtro de cartucho de 5 micrómetros (CF50A) y luego es impulsada por la bomba P50-A hacia la primera etapa de ósmosis inversa a una presión

entre 9 y 13 bar y una temperatura entre 15 y 25° C. En esta etapa, las membranas retienen sales, sustancias orgánicas y microorganismos presentes en el agua suavizada. El flujo de agua producto de la primera etapa es aproximadamente 4000 l/h, con una conductividad menor a 10 μ S/cm.

1.2.5.6. Segunda etapa de ósmosis inversa

El agua purificada de la primera etapa se bombea hacia la segunda etapa mediante la bomba P50-B, a una presión de 12 bar. El objetivo de la segunda etapa es realizar el pulido final del agua, tanto en términos físico-químicos como microbiológicos. El producto de la segunda etapa, con un flujo de 3000 l/h, se almacena en el tanque TK-70, con capacidad para 6000 litros de agua purificada. Se toman muestras de agua pura para analizar la conductividad, que debe ser menor a 1.3 μ S/cm, así como otros parámetros físico-químicos y microbiológicos, como el carbono orgánico total y la presencia de microorganismos patógenos y bacterias.

1.2.5.7. Almacenamiento y monitoreo del agua purificada

Una vez completadas las dos etapas de ósmosis inversa, el agua purificada se almacena en el tanque TK-70, con una capacidad de 6000 litros. Durante el almacenamiento, se realizan controles de calidad para asegurar que el agua cumpla con los parámetros establecidos. Se analiza la conductividad, que debe ser inferior a 1.3 μ S/cm, así como otros parámetros físico-químicos y microbiológicos, como el carbono orgánico total y la presencia de microorganismos patógenos y bacterias. Este monitoreo permite garantizar que el agua purificada sea segura para su uso posterior.

1.2.5.8. Manejo del flujo de rechazo y recirculación

Durante el proceso de ósmosis inversa, se generan flujos de rechazo que contienen las sales, sustancias orgánicas y microorganismos que han sido retenidos por las membranas. En la primera etapa de ósmosis inversa, el flujo de rechazo varía entre 3000 y 1000 l/h, mientras que en la segunda etapa, el flujo de rechazo es de aproximadamente 1000 l/h.

Actualmente, el rechazo proveniente de la segunda etapa se recircula al tanque de agua suave TK 50, permitiendo que el agua sea tratada nuevamente en el proceso de ósmosis inversa. A pesar de que esto aprovecha una parte del agua y reduce el volumen de agua desechada, se ha identificado que puede haber una pérdida de agua de calidad en este proceso.

Por otro lado, el rechazo de la primera etapa se envía al drenaje debido a su alta concentración de sales y sustancias indeseables. Este flujo de rechazo no se recircula, ya que podría afectar negativamente la calidad del agua suave y la eficiencia del proceso de ósmosis inversa.

Capítulo 2

Análisis de la instrumentación actual

En este capítulo, abordamos un análisis detallado de la instrumentación actual en el sistema de ósmosis inversa, que constituye una parte esencial en la planta de tratamiento de agua de Laboratorios AICA. Este análisis es de vital importancia ya que la ósmosis inversa es el proceso encargado de eliminar gran parte de las sales, sustancias orgánicas y microorganismos presentes en el agua suavizada, siendo crucial para garantizar la calidad del agua purificada y del agua para inyección en la industria farmacéutica.

El objetivo de este análisis es evaluar el rendimiento de la instrumentación existente, identificar posibles áreas de mejora y optimización en la etapa de ósmosis inversa, así como establecer una base sólida de conocimientos sobre el sistema actual antes de incorporar un sistema de Electrodiálisis Reversible (EDI) en el proceso de purificación. La integración del sistema EDI, que será abordada en capítulos posteriores, tiene como finalidad mejorar aún más la calidad del agua purificada y del agua para inyección, reduciendo la concentración de iones, carbono orgánico total y microorganismos en el agua tratada.

Para llevar a cabo este análisis, el capítulo se divide en tres secciones principales. La primera sección, *Instrumentación en el sistema de ósmosis inversa*, describe en profundidad la instrumentación presente en el proceso de ósmosis inversa, incluyendo sensores, actuadores y dispositivos de control que permiten monitorear y controlar las variables críticas del proceso de manera efectiva y precisa.

En la segunda sección, *Análisis de las señales y parámetros de control*, se examinan las diferentes señales y parámetros de control utilizados específicamente en el proceso de ósmosis inversa. Se discutirán las relaciones entre las variables de proceso, cómo estas afectan la calidad del agua purificada y el rendimiento del sistema, así como la importancia de mantener un control adecuado y eficiente de estas variables.

Finalmente, en la tercera sección, *Evaluación del rendimiento y limitaciones de la instrumentación actual en el sistema de ósmosis inversa*, se evalúa el desempeño de la instrumentación actual en términos de eficiencia, precisión y confiabilidad en el contexto del sistema de ósmosis inversa. Se identificarán posibles limitaciones y áreas de mejora, lo que permitirá proponer soluciones y estrategias para optimizar el proceso de purificación de agua antes de la implementación del sistema EDI.

2.1. Instrumentación en el sistema de ósmosis inversa

2.1.1. Bomba dosificadora

Las bombas dosificadoras de metabisulfito de sodio $(Na_2S_2O_5)$ y sosa cáustica (NaOH), como la que se refleja en la Figura 2.1 tienen iguales características técnicas, solamente varían los medios en donde trabajan.

Figura 2.1: Bomba dosificadora metabisufito de sodio

Principio de funcionamiento

La dosificación se lleva a cabo de la siguiente manera: el diafragma de dosificación se fuerza en el extremo líquido; la presión en el lado del líquido hace que la válvula de succión se cierre y el producto químico fluya fuera del lado del líquido a través de la válvula de descarga. Seguidamente, el diafragma de dosificación se fuerza hacia atrás, fuera de la unidad de bombeo. El vacío en el lado líquido hace que la válvula de descarga se cierre y el producto químico fresco fluye hacia la válvula de succión en el lado líquido, concluyendo así un ciclo operativo.

Estas bombas se encuentran ubicadas en dos sitios diferentes: en la entrada del agua al proceso luego del pretratamiento, en el caso de la dosificación de metabisulfito de sodio. La bomba encargada de dosificar la sosa cáustica se localiza después del tanque de almacenamiento de agua pretratada y antes de la bomba de lavado químico. Su funcionamiento se lleva a cabo a través de un controlador PID que se encuentra implementado y se configura tanto de manera automática como manual. Las características técnicas de las bombas dosificadoras se recogen en la Tabla 2.1.

Tabla 2.1: Datos técnicos de la bomba dosificadora.

Fabricante	ProMinent
Modelo	gamma/L
Temperatura del químico dosificado	-10 a +35 °C
Temperatura ambiente de operación	-10 a +45 °C
Tensión de alimentación	100-230 V \pm 10 %, 50-60 Hz
Exclusivamente para la dosificación de líquidos por tanto no es admisible para la dosificación de gases o	

2.1.2. Sensor de PH

sólidos

El valor del pH se usa como unidad de medición del nivel de acidez o alcalinidad de un producto líquido conociendo la concentración de iones H+ en una solución.

En procesos industriales como la producción de medicamentos, procesamiento de alimentos envasados y la purificación de agua, los cuales son muy sensibles al pH, se utiliza en ocasiones el potenciómetro como método de control de los procesos y calidad.

El electrodo tiene integrado un sensor de temperatura de tipo PT100, requiere solo un cable para la conexión y montaje. Mide de manera continua y exacta el valor de temperatura compensado con el pH.

Principio de funcionamiento

El elemento sensible al pH de los electrodos de vidrio es una bombilla de vidrio que suministra un potencial electroquímico que depende del valor de pH del producto. Este potencial se genera porque los pequeños iones H+ penetran a través de la capa exterior de la membrana mientras los iones con carga negativa más grandes permanecen en la solución .

El electrodo de referencia tiene un potencial conocido, constante y estable, no así, el electrodo de trabajo, donde el potencial que se desarrolla depende de la proporción de la concentración de los iones H+ presentes en la solución que se está analizando, así como también de la temperatura en la que esté.

Este sensor está ubicado luego del filtro de 5 micras (5 µm) y antes de las válvulas que permiten en paso de agua a las membranas, de modo que la medición se lleve a cabo, el

PID procese el valor medido y la bomba dosificadora de sosa suministre lo necesario en correspondencia al nivel del alcalinidad o acidez que tenga el agua.

El sensor empleado en la planta de tratamiento de agua se observa en la Figura 2.2 y sus características técnicas en la Tabla 2.2.

Figura 2.2: Sensor de ph

Tabla 2.2: Datos técnicos del sensor de pH.

Fabricante	Endress + Hauser
Rango de medición	0-14
Temperatura de operación	-15 a 130 °C
Salida	4-24 mA
Material del cuerpo del sensor	Cristal
Longitud del cable	1 m
Presión de operación	≤ 6 bar
Protección	IP68
Tamaño	≤ 225 mm

2.1.3. Sensor de Nivel

El sensor Liquiphant T FTL31 (ver Figura 2.3) es un detector de nivel para líquidos. Está diseñado para aplicaciones en todo tipo de industrias. Se utiliza para prevención contra

sobrellenados o la protección de la bomba en seco en los sistemas de limpieza. Con la función IO-Link, la configuración de parámetros se puede hacer fácilmente. Es un interruptor de nivel para líquidos y es utilizado en tanques, contenedores y tuberías, además, ofrece un punto de conmutación exacto independiente de las propiedades cambiantes del producto.

Principio de funcionamiento

El sensor de horquilla vibrante se excita a su frecuencia de resonancia. El accionamiento se realiza piezoeléctricamente. La frecuencia de oscilación cambia cuando la horquilla entra en contacto con el producto. El cambio se analiza y se transfiere en una señal de conmutación.

Figura 2.3: Sensor de nivel

Tabla 2.3: Datos técnicos delsensor de nivel.

Fabricante	Endress + Hauser
Tipo de sensor	Digital (On-OFF)
Modelo	Liquiphant T FTL20H
Temperatura de operación	-40 a 150 °C
Tipo de conexión al proceso	Rosca
Material del cuerpo del sensor	Acero inoxidable 316L
Presión de operación	≤ -1 a 40 bar
Protección	IP68

2.1.4. Bomba de alta presión

Es una bomba centrífuga vertical multietapa con puertos de aspiración y descarga al mismo nivel (en línea) que hace posible su instalación en sistemas monotubo horizontales. Las piezas de la bomba destinadas al contacto con el agua son de acero inoxidable de alta calidad. Un cierre mecánico de cartucho garantiza la máxima fiabilidad, permite llevar a cabo la manipulación de forma segura y facilita el acceso y el mantenimiento. La transmisión de potencia tiene lugar por medio de un acoplamiento dividido. La conexión de las tuberías se lleva a cabo por medio de bridas DIN-ANSI-JIS. La bomba está equipada con un motor asíncrono de 3 fases, refrigerado por ventilador y montado sobre soportes.

Principio de funcionamiento

Una bomba centrífuga es un tipo de bomba hidráulica que, basada en el principio de transformación de la energía, convierte la energía mecánica proveniente de un impulsor rotatorio llamado rodete en energía cinética y potencial requerida para hacer circular el fluido que se desea impulsar. Este fluido entra por el rodete el cual a través de unos alabes impulsa el fluido hacia el exterior mediante la fuerza centrífuga, una vez en el exterior el líquido es recogido por el cuerpo de la bomba donde puede ser enviado hacia las tuberías de salida o hacia el siguiente rodete según las especificaciones de la bomba. La bomba de alta presión (ver Figura 2.4) pertenece al fabricante GRUNDFOS de la serie CRN10-12 se encuentra ubicada a la entrada de las membranas, con el objetivo principal de mantener los niveles correctos de circulación del flujo volumétrico del agua proveniente de la etapa de pretratamiento y lograr superar la presión osmótica que produce la ósmosis inversa.

Figura 2.4: Bomba de alta presión

Tabla 2.4: Datos técnicos de la bomba de alta presión.

Modelo de bomba	GRUNDFOS mod. A
Bomba de caudal	Bomba de caudal
Bomba de prevalencia	H = 170 m
Aprobaciones	CE
Materiales	AISI 316 L
Rango de temperatura del líquido	-20 a 90 ° C
Max envío. T ° C	40 ° C
Voltaje	220 V
Potencia	7.5 KW
Frecuencia principal	60 Hz

2.1.5. Variador de velocidad

El variador utilizado en la planta es del fabricante Danfoss, del modelo VLT® HVAC Basic Drive (ver Figura 2.5). Este tipo de convertidores cuenta con factores de energía avanzada, así como sistemas de mantenimiento y de control de motor. El convertidor VLT® HVAC Basic Drive cuenta con un enorme número de funciones desarrolladas para satisfacer las diversas necesidades. Es la elección perfecta para bombas, ventiladores y compresores en edificios modernos equipados con soluciones cada vez más sofisticadas. Presenta funcionalidad de E/S dedicada para sensores, así como el control E/S descentralizado mediante comunicación serie.

Principio de funcionamiento

El equipo se alimenta con un voltaje de corriente alterna (CA). Lo primero que hace es convertir la CA en CD (corriente directa). El voltaje es filtrado por un banco de capacitores internos, con el fin de suavizar el valor rectificado y reducir la emisión de variaciones de señal. Posteriormente, en la etapa de inversión, la cual está compuesta por transistores (IGBT), que encienden y apagan en determinada secuencia (enviando pulsos) para generar una forma de onda cuadrada de voltaje de CD a una frecuencia constante, y su valor promedio tiene la forma de onda senoidal de la frecuencia que se aplica al motor.

Figura 2.5: Variador de velocidad Danfoss

Tabla 2.5: Datos técnicos del variador de velocidad Danfoss.

	1
Fabricante	DANFOSS
Modelo	VLT® HVAC Basic Drive FC 101
Alimentación	3 × 200-240 V CA
Frecuencia entrada	50/60 Hz
Frecuencia salida	0-400 Hz
Potencia	0.25-11.5 kW
Factor de potencia	≥0,9 nominal con carga nominal
Entradas	4 digitales, 2 analógicas
Máx. longitud de cables motor, apantallados	25m
Máx. longitud de cables motor, no apantallados	50m
Temperatura ambiente	Máx. 50° C
Grado de protección	IP20

2.1.6. Sensor-transmisor de temperatura

En los sensores de resistencia RTD (ver Figura 2.6), la resistencia eléctrica varía al cambiar la temperatura. Son aptos para la medición de temperaturas entre 200 °C y 600 °C y se caracterizan por su alta precisión de medición y estabilidad a largo plazo. El elemento utilizado como resistencia más común es la Pt100. Por norma, los sensores de resistencia RTD de Endress+Hauser cumplen los requisitos de precisión de clase A según IEC 60751.

Principio de funcionamiento

Es un detector de temperatura resistivo, es decir, un sensor de temperatura basado en la variación de la resistencia de un conductor con coeficiente positivo. Consiste en una película delgada de platino en una película de plástico. Su resistencia varía con la temperatura, pasar corriente a través de la RTD genera una caída de voltaje en ella. Al medir este voltaje se puede determinar su resistencia y a su vez la temperatura pues, la relación entre la resistencia y la temperatura es relativamente lineal.

Este instrumento se utiliza en múltiples ocasiones en este proceso de purificación de agua, se localiza: en la entrada de agua de ambos grupos de membranas, con el objetivo de determinar si la temperatura del flujo que desea procesarse se encuentra en parámetros; también puede encontrarse en la salida de concentrado de la segunda etapa de membranas.

Figura 2.6: Sensor transmisor de temperatura RTD

Tabla 2.6: Datos técnicos del sensor transmisor de temperatura RTD.

Fabricante	Endress+Hauser
Tipo de sensor	RTD con conector TSPT-602UXX de 3 hilos
Rango de medición	0 a 200°C
Material	AISI 316 L
Máxima temperature de operación	250 °C
Alpha	0.00385 °C-1
Salida	4 a 20 mA

2.1.7. Sensor-indicador-transmisor de presión

Este tipo de instrumentos permiten la medición y monitoreo de presiones absolutas y relativas en procesos higiénicos; a través de células metálicas o piezoeléctricos. El tipo de medición puede seleccionarse entre presión absoluta y presión relativa.

El sensor instalado en la planta se muestra a continuación en la Figura 2.7, así como sus características técnicas en la Tabla 2.7.

Principio de funcionamiento

La presión del proceso actúa sobre el diafragma del sensor de cerámica, el cambio de capacitancia depende de la presión del sensor cerámico. Un microprocesador evalúa la señal y conmuta la salida o salidas del valor medido correspondiente. El sensor de cerámica es un sensor seco, es decir, no se necesita líquido de llenado para la transmisión de presión. Esto significa que el sensor puede soportar completamente un vacío. Se logra una durabilidad extremadamente alta.

Los transmisores de presión se localizan a la entrada de las membranas para medir la presión del flujo que les llega, así se comprueba el estado de trabajo de las bombas de alta presión y se mantiene el cuidado de las membranas; pueden encontrarse también en el flujo de concentrado de cada una de las etapas de membranas.

Figura 2.7: Sensor-indicador-transmisor de presión

Tabla 2.7: Datos técnicos del sensor de pH.

Fabricante	Endress + Hauser
Modelo	Cerephant PTP35
Tensión de alimentación	12-30 V DC
Rango de medición	0-40 bar
Temperatura de trabajo	-40°C a 100°C- o hasta 135°C durante para un tiempo máximo de 1 hora
Salida	Digital/ 4-20 mA/ 3 cables
Indicación	Display 7 segmentos de 4 dígitos
Material	AISI 316 L

2.1.8. Manómetro

Un flotador se guía de forma concéntrica al tubo metálico cónico. La posición de este flotador se transmite magnéticamente al indicador. El rotámetro de tubo corto es empleado para medir los caudales de líquidos y gases y tiene especial aplicación en medios turbios, opacos o agresivos. El instrumento (ver Figura 2.8) se monta sobre una tubería vertical con dirección de flujo hacia arriba. Los indicadores pueden variar sin influencia de la presión.

Principio de funcionamiento

El principio de funcionamiento de este tipo de caudalímetros se basa en un rotor helicoidal que gira libremente en el interior de un tubo cilíndrico. El líquido de operación empuja las palas del rotor haciendo que giren a una velocidad proporcional al caudal circulante. Una bobina de inducción (pickup) montada exteriormente capta el giro de las palas de la hélice y genera una señal eléctrica que, tratada por los diferentes sistemas electrónicos, proporciona valor de caudal instantáneo, volumen total o parcial, salidas digitales y analógicas o dosificación.

Figura 2.8: Sensor de flujo

Tabla 2.8: Datos técnicos del sensor de flujo.

Fabricante	ROTA Yokogawa
Modelo	RAMC
Material	316L
Presión de operación	≤ 700 bar
Tensión de alimentación	230 v AC +10 %/-15 %, 50/60 Hz
Salida	4 a 20 mA
Indicador	Posee un display 7 segmentos de 8 dígitos con caracteres de 6 mm

Los caudalímetros se encuentran ubicados en las tuberías de rechazo de la ósmosis inversa, con el propósito de medir el flujo de concentrado y determinar el agua que no logra procesarse; lo que permite estimar el posible estado de las membranas.

2.1.9. Indicador de presión

Los manómetros (ver Figura 2.9) se emplean generalmente para reflejar la presión en las tuberías de entrada y salida de las membranas de la ósmosis inversa, para así comprobar el buen funcionamiento de las bombas que impulsan el agua en el proceso, en la planta estudiada, se ubica previo a la bomba presurizadora de la segunda etapa de membranas.

Principio de funcionamiento

Los manómetros Bourdon son óptimos para la medición de presión relativa desde 0.6 hasta 7 bar. Debido a su tecnología mecánica no necesitan energía auxiliar. Los muelles Bourdon consisten en tubos curvados en arco de sección oval. A medida que se aplica presión al interior del tubo, éste tiende a enderezarse. El trayecto del movimiento se transmite a un mecanismo y es la medida de presión que se indica mediante una aguja.

Figura 2.9: Indicador depresión

Tabla 2.9: Datos técnicos del manómetro.

Fabricante	ITEC
Sistema de medición	Tubo de Bourdon
Modelo	P600
Rango de medición	0 a 16 bar
Temperatura del medio de medición	0 a 200°C
Tip de protección	P 65-EN60529/IEC 529
Diámetro	100mm

2.1.10. Sensor transmisor - indicador de conductividad

El sensor transmisor-indicador de conductividad utilizado (ver Figura 2.10) pertenece al fabricante ENDRESS + HAUSER y es a la vez indicador de conductividad y temperatura, pues posee sensor de temperatura integrado. Este transmisor es de célula conductiva, con dos señales de salida 0/4-20mA (señal primaria más señal secundaria) y alimentación de 230VCA. Este tipo de dispositivos son compatibles con reactivos biológicos lo cual ha sido probado y certificado por la USP.

Principio de funcionamiento

Dos electrodos son introducidos en el medio que desea medirse. Se aplica un voltaje de alterna a dichos electrodos para generar una corriente en dicho medio. La resistencia o en este caso su valor inverso, la conductancia (G) es calculada con la ley de Ohm. La conductancia específica se determina usando la constante k, la cual depende de la geometría de cada sensor. Por último, este valor de lectura en μS /cm se convierte en una señal de 4-20 mA

El sensor indicador-transmisor de conductividad se encuentra en las tuberías de permeado de cada una de las etapas de purificación que posee la ósmosis inversa, lo que permite determinar la calidad del agua que se ha procesado.

Figura 2.10: Sensor y el indicador-transmisor de conductividad

Tabla 2.10: Datos técnicos del sensor y el indicador-transmisor de conductividad.

Fabricante	Endress+Hauser
Instrumento	Liquiline M CM42
Celda	Condumax CLS16
Rango de medición	0.04 a 500 μS/cm
Temperatura del medio de medición	-5 a 150 °C
Protección	IP68

2.1.11. Autómata Programable

La planta de agua cuenta con un panel principal (CB1) que contiene un SCADA y un PLC maestro, el cual, a través de una red Profibus, se conecta con todos los subsistemas de la planta de tratamiento de agua entre los cuales se incluye la ósmosis inversa.

El autómata programable empleado es el S7-300 perteneciente a Siemens, de procedencia alemana, estos controladores ahorran espacio de instalación y presentan un diseño modular. El fabricante ofrece una gama amplia de productos de este tipo para el desempeño de tareas de bajo, mediano y/o gran alcance. Los autómatas de Siemens se caracterizan por su robustez, durabilidad y optimización en las tareas de control; además sus módulos pueden emplearse para expandir el sistema de manera centralizada o para crear estructuras descentralizadas de acuerdo con la tarea en cuestión.

El control de las variables, medios técnicos e instrumentos es fundamental para el correcto funcionamiento de la ósmosis, para garantizarlo, se emplea en la planta la CPU 315-2DP (ver Figura 2.11). Se empelan además módulos externos como el módulo de periferia descentralizada ET200S (esclavo), que recibe todas las señales correspondientes a la ósmosis y el módulo CPX de Festo (esclavo).

Figura 2.11: PLC S7-300 CPU 315-2DP

Tabla 2.11: Datos técnicos del autómata programable CPU 315-2DP

Fabricante	Siemens
СРИ	315-2DP
Serie	6ES7V- 315-2AH14-0AB0
Unidad	Modular
Alimentación	24V DC
Memoria central	256 kbytes
Puerto de comunicación	1, RS485
Rango de voltaje permisible	19.2 - 28.8 V
Corriente de entrada	850 mA

2.2. Análisis de las señales y parámetros de control

2.3. Evaluación del rendimiento y limitaciones de la instrumentación actual

Propuesta de integración del EDI y nueva instrumentación

- 3.1. Selección y justificación del EDI
- 3.2. Modificaciones necesarias en la instrumentación y control
- 3.3. Diseño del sistema de control e integración con el PLC existente
- 3.4. Estudio de casos similares y lecciones aprendidas

Análisis de costos y beneficios

- 4.1. Estimación de costos de adquisición e instalación del EDI e instrumentación adicional
- 4.2. Estimación de costos operativos y de mantenimiento
- 4.3. Evaluación de los beneficios
- 4.4. Análisis de retorno de inversión y viabilidad económica

Cumplimiento de normativas y regulaciones

- 5.1. Requisitos regulatorios aplicables a la industria farmacéutica y sistemas de tratamiento de agua
- 5.2. Evaluación de la conformidad del sistema propuesto con las regulaciones y estándares relevantes

Conclusiones y recomendaciones

Síntesis de los resultados y discusión

Conclusiones generales

Recomendaciones para la implementación y futuras investigaciones

[1]

Referencias bibliográficas

[1] Bluegold, "Sistema de electrodesionización EDI para producir agua desmineralizada." https://www.bluegold.es/es/analisis-de-la-tecnologia-del-sistema-de-electrodesionizacion-edi/, Feb. 2021.

Capítulo 7 Anexos

—EXAMPLE SECTIONS—

8.1. Tesis con LaTEX

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

8.1.1. Una breve introducción

Este es un párrafo, puede contener múltiples "Expresiones" así como fórmulas o referencias¹ como (8.1). A continuación se muestra un ejemplo de inserción de imágenes (como la Figura 8.1) con el comando \insertimage:

Figura 8.1: Where are you? de "Internet".

A continuación² se muestra un ejemplo de inserción de ecuaciones simples con el comando \insertequation:

$$a^k = b^k + c^k \quad \forall k > 2 \tag{8.1}$$

¹ Las referencias se hacen utilizando la expresión \label{etiqueta}.

² Como se puede observar las funciones \insert... añaden un párrafo automáticamente.

Este template ha sido diseñado para que sea completamente compatible con editores LETEX para escritorio y de manera online^[?]. La compilación es realizada siempre usando las últimas versiones de las librerías, además se incluyen los parches oficiales para corregir eventuales warnings.

Este es un nuevo párrafo. Para crear un nuevo párrafo basta con usar \\ en el anterior, lo que fuerza una nueva línea. También se insertar un nuevo párrafo con el comando \newp si el compilador de latex arroja una alerta del tipo *Underfull \hbox (badness 10000)* in paragraph at lines ...

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

Añadiendo tablas 8.2.

También puedes usar tablas, ¡Crearlas es muy fácil!. Puedes usar el plugin Excel2Latex [?] de Excel para convertir las tablas a LaTEX o bien utilizar el "creador de tablas online" **[?**].

Tabla 8.1: Ejemplo de tablas.

Columna 1	Columna 2	Columna 3
ω	u	δ
Φ	Θ	Σ
\mathbb{R}	\mathbb{E}	ψ

Tabla 8.2: Ejemplo de tablas con colores de filas.

Valor A	Valor B	Valor C	Valor Esperado
1	а	3x	Cumple
2	b	6x	No cumple
3	С	3x + y	Quizás
4	d	$5\sin x$	No
5	е	0	Sí

8.3. Creando citas

El template por defecto está configurado para trabajar con citas de la librería natbib, y se configuró al estilo *ieeetr*. Puedes usar otros estilos cambiando la configuración \natbibrefstyle si es que usas natbib. También se da soporte a las librerías **bibtex** y **apacite**, para ello puedes cambiar la configuración \stylecitereferences. Una completa guía de estilos la puedes consultar en https://latex.ppizarror.com/doc/bibstylescompared.pdf.

A continuación se detallan algunos links de ayuda para el uso de las referencias:

- Galería de estilos numéricos por corchetes
- Galería de estilos por autor/fecha
- Guía básica referencias Mendeley
- Guía completa de estilos

El desarrollo de la tesis

9.1. Aquí una nueva sección

9.1.1. Haciendo una tesis como un profesional

Figura 9.1: Apolo flotando a la izquierda.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Proin sit amet augue. Praesent lacus. Donec a leo. Ut turpis ante, condimentum sed, sagittis a, blandit sit amet, enim. Integer sed elit. In ultricies blandit libero. Proin molestie erat

dignissim nulla convallis ultrices. Aliquam in magna. Etiam sollicitudin, eros a sagittis pellentesque, lacus odio volutpat elit, vel tincidunt felis dui vitae lorem. Etiam leo. Nulla et justo.

$$\int_{a}^{b} f(x) dx = \frac{\partial^{\eta} f(x)}{\partial x^{\eta}} \cdot \sum_{x=a}^{b} f(x) \underbrace{\left(1 + \Delta x\right)^{1 + \frac{\epsilon}{k}}}$$
(9.1)

Ecuación sin sentido.

Definición 9.1 (ver [?]) Definición definitiva

$$\frac{d}{dx} \int_{a}^{x} f(y) dy = f(x)$$

Proin sit amet augue. Praesent lacus. Donec a leo. Ut turpis ante, condimentum sed, sagittis a, blandit sit amet, enim. Integer sed elit. In ultricies blandit libero. Proin molestie erat dignissim nulla convallis ultrices. Aliquam in magna. Etiam sollicitudin, eros a sagittis pellentesque, lacus odio volutpat elit, vel tincidunt felis dui vitae lorem. Etiam leo. Nulla et

9.1.2. Otros párrafos más normales

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

$$\Lambda_{f} = \frac{L \cdot f}{W} \cdot \frac{Q_{e}^{2}}{8\pi^{2}W^{4}g} + \sum_{i=1}^{l} \frac{f \cdot (M - d)}{l \cdot W} \cdot \underbrace{\frac{(Q_{e} - i \cdot Q)^{2}}{8\pi^{2}W^{4}g}}_{\sim \mathcal{A}}$$

$$Q_{e} = 2.5Q \cdot \int_{0}^{e} V(x) \, dx + \sin^{-1}\left(1 + \frac{1}{1 - e}\right)$$
(9.2)

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

$$f(x) = \frac{\partial^2 u}{\partial t^2}$$
 (9.3)

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nul-

pellentesque felis eu massa.

9.1.3. Ejemplos de inserción de código fuente

El template permite la inserción de los siguientes lenguajes de programación de forma nativa: ABAP, Ada, Assembler x64, Assembler x86[masm], Awk, Bash, Basic, C, Caml, CMake, Cobol, C++, C#, CSS, CSV, CUDA, Dart, Docker, Elisp, Elixir, Erlang, Fortran, F#, GLSL, Gnuplot, Go, Haskell, HTML, INI, Java, Javascript, JSON, Julia, Kotlin, LaTeX, Lisp, LLVM, Lua, Make, Maple, Mathematica, Matlab, Mercury, Modula-2, Objective-C, Octave, OpenCL, OpenSees, Pascal, Perl, PHP, Texto plano, PostScript, Powershell, Prolog, Promela, Pseudocódigo, Python, Q#, R, Racket, Reil, Ruby, Rust, Scala, Scheme, Scilab, Simula, SPARQL, SQL, Swift, TCL, VBScript, Verilog, VHDL y XML.

Para insertar un código fuente se debe usar el entorno sourcecode, o el entorno sourcecodep si es que se quiere utilizar parámetros adicionales. A continuación se presenta un ejemplo de inserción de código fuente en Python (Código ??), Java y Matlab:

9.1.4. Agregando múltiples imágenes

El template ofrece el entorno images que permite insertar múltiples imágenes de una manera muy sencilla. Para crear imágenes múltiples se deben usar las siguientes instrucciones:

Obteniendo así:

(a) Ciudad

(b) Ciudad más grande

Figura 9.2: Ejemplo de imagen múltiple.

Más ejemplos

Listas y Enumeraciones

Hacer listas enumeradas con LaTeX es muy fácil con el template³, también puedes revisar el manual [?], para ello debes usar el comando \begin{enumerate}, cada elemento comienza por \item, resultando así:

- 1. Grecia
- 2. Abracadabra
- 3. Manzanas

También se puede cambiar el tipo de enumeración, se pueden usar letras, números romanos, entre otros. Esto se logra cambiando el **label** del objeto enumerate. A continuación se muestra un ejemplo usando letras con el estilo \alph⁴, números romanos con \roman⁵ o números griegos con \greek⁶:

a) Peras

i) Rojo

 α) Matemáticas

b) Manzanas

ii) Café

 β) Lenguaje

c) Naranjas

iii) Morado

 γ) Filosofía

Peras

* Rojo

Árboles

- Manzanas

* Café

Pasto

Naranjas

* Morado

Flores

³ También puedes revisar el manual de las enumeraciones en https://latex.ppizarror.com/doc/enumitem.p df.

⁴ Con \Alph las letras aparecen en mayúscula.

⁵ Con \Roman los números romanos salen en mayúscula.

⁶ Una característica propia del template, con \Greek las letras griegas están escritas en mayúscula.

Conclusiones

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Anexos

Anexo A. Cálculos realizados

A.1. Metodología

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Figura A.1: Imagen en anexo.

A.2. Resultados

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

Tabla A.1: Tabla de cálculo.

Elemento	ϵ_i	Valor	Descripción
А	10	$3,14\pi$	Valor muy interesante ^a
В	20	6	Segundo elemento
С	30	7	Tercer elemento ¹
D	150	10	Sin descripción
E	0	0	Cero

^a Este elemento tiene una descripción debajo de la tabla

¹ Más comentarios