

Counting

CSC 225 - LAB 5

In a sequence $S = [s_1, s_2, ..., s_n]$ of n integers, an *inversion* is a pair of elements s_i and s_j where i < j (that is, s_i appears before s_i in the sequence) and $s_i > s_j$. For example, in the sequence

$$S = 2, 1, 5, 3, 4$$

the pairs (2,1), (5,3) and (5,4) are inversions.

An array with n elements may have as many as

$$\binom{n}{2} = \frac{n(n-1)}{2}$$

inversions. When the number of inversions, k, may be any value between 0 and $\frac{n(n-1)}{2}$, the best algorithm for counting inversions has running time $O(n \log n)$. There also exists a O(n + k) algorithm for counting inversions, which is $O(n^2)$ when $k \in O(n^2)$.

Your goal in this lab is to create two algorithms which count the number of inversions in an input sequence:

Input: An array A of n integers in the range 1 to n.

Output: An integer, corresponding to the number of inversions in *A*.

The first algorithm will have a $O(n \log n)$ runtime and will be better for counting inversions when k > n. The second algorithm will have runtime O(n + k) and will be better when $k \le n$ (i.e. O(n + n) = O(n)).

Bonus:

Time permitting, you should try to implement them.

Every time we merge something on the right list, it must be an inversion with everything remaining in the left 1154

Merge
$$(S1, S2, S)$$
 $n_1 \leftarrow |S1|$
 $n_2 \leftarrow |S2|$
 $i \leftarrow 0$
 $j \leftarrow 0$
 $count \leftarrow 0$

While $(i < n_1)$ and $j < n_2$:

 $if S_1[i] < S_2[j]$:

 $S[i+j] \leftarrow S_i[i]$

else:

$$S[i+j] \leftarrow S_{2}[j]$$

$$Count \leftarrow count + (n_{i}-i)$$

$$j+t$$

$$while (i < n_{i}):$$

$$S[i+j] = S_{1}[i]$$

$$i+t$$

$$while (j < n_{2}):$$

$$S[i+j] = S_{2}[j]$$

$$j+t$$

Insertion Sort

1 2 3 4 5

inversions = 1

Total # of inversions: 1+1+1=3

Insertion Sort With Counting (A, n):

Count $\leftarrow 0$ for i = 1 to i = n-1 do: $val \leftarrow A[i]$ $j \leftarrow i-1$ while $(j \ge 0)$ and A[j] > val): A[j+1] = A[j] $count \leftarrow count + 1$ $j \leftarrow j-1$ A[j+1] = val

Normally this is $O(n^2)$ time. But we have that the number of inversions k < n. So the while loop must execute $k \le n$ times. Thus, this takes O(n+n) = O(n) time