Discrete Mathematics Exercise 11

Qiu Yihang, 2020/10/29

1. a) Solution:

Let $A = \{x \in \mathbb{N} \mid x > 10\}$. We can construct a bijection $f: A \to \mathbb{N}$ where f(x) = x - 11. Thus, A is a countably infinite set.

b) Solution:

Let $B = \{x \in \mathbb{Z}^- \mid x \text{ is an odd negative integer}\}$.

We can construct a bijection $f: B \to \mathbb{N}$ where f(x) = [(x+1)/2].

Thus, B is a countably infinite set.

d) Solution:

 $\{x \in \mathbb{R} \mid 0 < x < 2\}$ is uncountable.

We can construct a bijection $f(x) = \begin{cases} 1/x(x-2) + 1 & 0 < x < 1 \\ 1/x(2-x) - 1 & 1 \le x < 2 \end{cases}$ from (0,2) into \mathbb{R} .

Thus, $(0,2) \approx \mathbb{R}$.

Thus, (0,2) is uncountable.

e) Solution:

We can construct a bijection $f: A \times \mathbb{Z}^+ \to \mathbb{N}$ where $f(x, y) = \begin{cases} 2y - 2 \\ 2y - 1 \end{cases}$ $\begin{cases} x = 2 \\ x = 3 \end{cases}$

Thus, $A \times \mathbb{Z}^+$ is countably infinite.

2. Proof:

We can construct an injection f from $[0,1)\times[0,1)$ into [0,1) s.t. when $x=0.\overline{a_1a_2a_3\dots a_n\dots a_n\dots a_n}$ and $y=0.\overline{b_1b_2b_3\dots b_n\dots a_n}$, $f(x,y)=0.\overline{a_1b_1a_2b_2a_3b_3\dots a_nb_n\dots a_n}$.

(Specially, considering $0.\overline{a_1a_2a_3...a_n99999999....} = 0.\overline{a_1a_2a_3...(a_n+1)00000000....}$, we made it a rule that we adopt the former way and abandon the latter one.)

We can also construct an injection g(x) = (0,x) from [0,1) into $[0,1) \times [0,1)$.

By Berstein's Theorem, we know there exists a bijection from $[0,1) \times [0,1)$ into [0,1).

Thus, $[0,1) \times [0,1) \approx [0,1)$.

QED

3. Proof:

H(f)(b)(a) = f(a)(b) defines a function $H: (A \to (B \to C)) \to (B \to (A \to C))$. First, we prove H is an injection.

For any
$$f_1, f_2 \in (A \to (B \to C))$$
,

$$H(f_1) = H(f_2) \text{ iff. } \forall b \in B (H(f_1)(b) = H(f_2)(b))$$

iff. $\forall b \in B \ \forall a \in A \left(H(f_1)(b)(a) = H(f_2)(b)(a) \right)$

iff. $\forall b \in B \ \forall a \in A \left(f_1(a)(b) = f_2(a)(b) \right) \ \text{iff.} \ f_1 = f_2.$

Then we prove H is a surjection.

For any
$$h \in (B \to (A \to C))$$
,

exists an
$$f \in (A \to (B \to C))$$
 s.t. $\forall a \in A \ \forall b \in B \ (f(b)(a) = f(a)(b))$.

Therefore, H is a bijection.

Thus,
$$(A \to (B \to C)) \approx (B \to (A \to C))$$
.

QED

4. Proof:

$$H(f,g)(a) = (f(a),g(a))$$
 defines a function $H:(A \to B) \times (A \to C) \to (A \to B \times C)$.

First, we prove H is an injection.

For any
$$(f_1, g_1), (f_2, g_2) \in (A \rightarrow B) \times (A \rightarrow C),$$

$$H(f_1, g_1) = H(f_2, g_2)$$
 iff. $\forall a \in A (H(f_1, g_1)(a) = H(f_2, g_2)(a))$

iff.
$$\forall a \in A ((f_1(a), g_1(a)) = (f_2(a), g_2(a)))$$

iff.
$$\forall a \in A (f_1(a) = f_2(a)) \land (g_1(a) = g_2(a))$$

iff.
$$(f_1 = f_2) \land (g_1 = g_2)$$
 iff. $(f_1, g_1) = (f_2, g_2)$.

Now we prove H is a surjection.

For any
$$h \in (A \to B \times C)$$
, exists a $(f,g) \in (A \to B) \times (A \to C)$ s.t. for any $a \in A$, $h(a) = (x,y)$, $f(a) = x$, $g(a) = y$.

Therefore, H is a bijection.

Thus,
$$(A \to B \times C) \approx (A \to B) \times (A \to C)$$
.

QED

5. Proof:

Let A be the set of all functions from \mathbb{R} into \mathbb{R} , i.e. $A = (\mathbb{R} \to \mathbb{R}) = \mathbb{R}^{\mathbb{R}}$.

Let B be the set of all binary relations on \mathbb{R} , i.e. $B = \mathcal{P}(\mathbb{R} \times \mathbb{R}) \approx 2^{\mathbb{R} \times \mathbb{R}}$.

Lemma. $\mathbb{N} \times \mathbb{R} \approx \mathbb{R} \times \mathbb{R}$.

Proof. We can construct an injection f(x,y) = (x,y) from $\mathbb{N} \times \mathbb{R}$ into $\mathbb{R} \times \mathbb{R}$.

We can construct an injection g from $\mathbb{R} \times \mathbb{R}$ into $\mathbb{N} \times \mathbb{R}$ s.t.

when
$$x = \overline{\ldots a_k \ldots a_3 a_2 a_1 \ldots b_1 b_2 b_3 \ldots b_n \ldots \ldots} \in \mathbb{R}$$
 and $y \in \mathbb{R}$, let $a = \overline{a_1 b_1 a_2 b_2 a_3 b_3 \ldots \ldots a_n b_n \ldots} \in \mathbb{N}$, $g(x,y) = (a,y)$.

(For those undefined a_n , let them be 0.)

By Berstein's Theorem, there exists a bijection from $\mathbb{N} \times \mathbb{R}$ into $\mathbb{R} \times \mathbb{R}$.

Thus, $\mathbb{N} \times \mathbb{R} \approx \mathbb{R} \times \mathbb{R}$.

Qed.

Thus, $\mathbb{R}^{\mathbb{R}} \approx (2^{\mathbb{N}})^{\mathbb{R}} \approx 2^{\mathbb{N} \times \mathbb{R}} \approx 2^{\mathbb{R} \times \mathbb{R}}$

In other words, $A \approx B$.

QED