Basic Electronic Circuits Lab (IEC-103)

Experiment-04

Objective

To realize instrumentation and transconductance amplifier.

Components

- Op-amp IC (741)
- Resistances (100 Ω , 220 Ω , 330 Ω , 470, 510 Ω , 5.1 k Ω , 10 k Ω , and 20 k Ω)
- Breadboard
- Connecting wires

Equipment

- Function Generator for generating input signals.
- Power supplies ($\pm 12 \text{ V}$) to power up op-amp.
- · CRO for input and output voltage measurements.

741 Op Amp IC

741 Op Amp IC (Pin Diagram)

Power Supply (Fixed)

Signal Source

Oscilloscope

Instrumentation Amplifier

 $R = 10 \text{ k}\Omega$ and $R_G = 5 \text{ k}\Omega$, $10 \text{ k}\Omega$, and $20 \text{ k}\Omega$

Instrumentation Amplifier

Output voltage

$$v_o = \left(1 + \frac{2R}{R_G}\right) \left(v_2 - v_1\right)$$

Observations

S. No	v ₁	\mathbf{v}_2	R_{G}	v _{out} (V)
1	0 V	0 V	5 kΩ	
2	1 V (peak)	0 V	5 kΩ	
3	0 V	1 V (peak)	5 kΩ	
4	1 V (peak)	1 V (peak)	5 kΩ	
5	0 V	0 V	10 kΩ	
6	1 V (peak)	0 V	10 kΩ	
7	0 V	1 V (peak)	10 kΩ	
8	1 V (peak)	1 V (peak)	10 kΩ	
9	0 V	0 V	20 kΩ	
10	1 V (peak)	0 V	20 kΩ	
11	0 V	1 V (peak)	20 kΩ	
12	1 V (peak)	1 V (peak)	20 kΩ	

Transconductance Amplifier

 $R1 = R3 = R2 = R4 = R = 10 \text{ k}\Omega$, and $R_L = 100 \Omega$, 220 Ω , 330 Ω , 470 Ω , 510 Ω

Transconductance Amplifier

Load Current

$$i_{L} = \frac{v_{1}}{R}, G_{m} = \frac{i_{L}}{v_{1}} = \frac{1}{R}, v_{L} = R_{L}i_{L}$$

Observations

S. No	\mathbf{v}_1	R_{L}	$v_L(mV)$	i _L (μA)
1	0.2 V (peak)	100 Ω		
2	0.2 V (peak)	220 Ω		
3	0.2 V (peak)	330 Ω		
4	0.2 V (peak)	470 Ω		
5	0.2 V (peak)	510 Ω		