平均周转时间和带权周转时间 - psupsuoooo的日志

响应时间: 从提交第一个请求到产生第一个响应所用时间。

周转时间:从作业提交到作业完成的时间间隔。

平均周转时间: 衡量不同调度算法对相同作业流的调度性能。

带权周转时间: 反映长短作业的差别。

平均带权周转时间:比较某种算法对不同作业流调度性能设有三道作业,它们的提交时间和运行时间见下表。

作业号	提交时间/时	运行时间/h	
1	10:00	2	
2	10:10	1	
3	10:25	0. 25	

注:为计算方便,"时"均为十进制。试给出在下面两种调度算法下,作业的执行顺序、平均周转时间和带权周转时间。

- (2) 短作业优先SJF调度算法。

「分析与解答」(1) 采用FCFS调度算法时,作业的执行顺序是作业1à作业2à作业3。由此可得到运行表见下。

作业号	提交时刻/时	运行时间/h	开始时刻/时	完成时刻/时
1	10:00	2	10:00	12:00
2	10:10	1	12:00	13:00
3	10:25	0. 25	13:00	13:15

那么,平均周转时间为

 $T=(\Sigma Ti)/3=[(12-10)+(13-10:10)+(13:15-10:25)]/3=[2+2.83+2.83]/3=2.55h$

带权平均周转时间为

 $W=[\Sigma (Ti/Tir)]/3=(2/2+2.83/1+2.83/0.25)/3=5.05h$

(2) 在SJF调度算法下,作业的执行顺序是作业1à作业3à作业2;由此得运行表见下。

作业号	提交时刻/时	运行时间/h	开始时刻/时	完成时刻/
1	10:00	2	10:00	12. 00
2	10:10	1	12:15	13:15
3	10:25	0. 25	12:00	12:15

那么,平均周转时间为

 $T = (\Sigma Ti) /3 = [(12-10) + (13:15-10:10) + (12:15-10:25)]/3 = [2+3.08+1.83]/3 = 2.30h$

带权平均周转时间为

 $W=[\Sigma (Ti/Tir)]/3=(2/2+3.08/1+1.83/0.25)/3=3.80h$

30、在一个批处理单道系统中,采用响应比高者优先的作业调度算法。当一个作业进入系统后就开始调度,假定作业都是仅计算,忽略调度花费的时间。现有三个作业,进入系统的时间和需要计算的时间如下表所示:

作业	进入系统时间	需要计算时间	开始时间	完成时间	周转时间
1	9: 00	60分钟			
2	9: 10	45 分钟			
3	9: 15	25分钟			

- (1) 求出每个作业的开始时间、完成时间及周转时间并填入表中。
- (2) 计算三个作业的平均周转时间应为多少?

[分析与解答]

作业	进入系统时间	需要计算时间	开始时间	完成时间	周转时间	
1	9: 00	60分钟	9: 00	10: 00	60分钟	
2	9: 10	45分钟	10: 25	11: 10	120分钟	
3	9: 15	25分钟	10: 00	10: 25	70分钟	

平均周转时间: (60分钟+120分钟+70分钟)/3=83.33分钟

第三章 处理机管理

1	处理机调度级别
1.	调度:选出待分派的作业或进程
2.	处理机调度: 分配处理机
3.	三级调度: 高级调度(作业调度)、中级调度(内存对换)、低级调度(进程调度)
1	作业状态
1.	作业状态分为四种: 提交、后备、执行和完成。
2.	作业状态变迁图:
1	作业调度和调度的功能
1.	作业调度的任务
后备状态	· →执行状态
执行状态	: →完成状态
2.	作业调度的功能
1)	记录系统中各个作业的情况
2)	按照某种调度算法从后备作业队列中挑选作业
3)	为选中的作业分配内存和外设等资源
4)	为选中的作业建立相应的进程
5)	作业结束后进行善后处理工作
1	进程调度和调度的功能
1.	进程调度: 后备状态 →执行状态
2.	进程调度时机:任务完成后、等待资源时、运行到时了、发现重调标志
3.	进程调度的功能: 保存现场、挑选进程、恢复现场
1	两级调度模型
	作业调度和进程调度的区别

作业调度(宏观调度)	进程调度(微观调度)

为进程活动做准备,即 有获得处理机的资格	使进程活动起来,即分 配得到了处理机
调度次数少	调度频率高
有的系统不设作业调度	进程调度必不可少

1 评价调度算法的指标

调度性能评价准则: CPU利用率、吞吐量、周转时间.、就绪等待时间和响应时间

- 1. 吞吐量:单位时间内CPU完成作业的数量
- 2. 周转时间:
- 1) 周转时间=完成时刻一提交时刻
- 2) 平均周转时间=周转时间/n
- 3) 带权周转时间=周转时间/实际运行时间
- 4) 平均带权周转时间=带权周转时间/n
 - 1 简单的调度算法

用于作业调度:从作业对列(按时间先后为序)中选择队头的一个或几个作业运行。

用于进程调度: 从就绪队列中选择一个最先进入该队列的进程投入运行。

例如 设有三个作业,编号为1,2,3。各作业分别对应一个进程。各作业依次到达,相差一个时间单位。

- ① 图示出采用FCFS方式调度时这三个作业的执行顺序
- ② 算出各作业的周转时间和带权周转时间

作业	到达时间	运行时 间	开始时间	完成时间	周转时间	带权周转 时间
1	0	24	0	24	24	1
2	1	3	24	27	26	8. 67
3	2	3	27	30	28	9. 33

平均周转时间T=26 平均带权周转时间 W=6.33

2. 时间片轮转(RR)调度算法的实现思想:系统把所有就绪进程按先进先出的原则排成一个队列。新来的进程加到就绪队列末尾。每当执行进程调度时,进程调度程序总是选出就绪队列的队首进程,让它在CPU上运行一个时间片的时间。当时间片到,产生时钟中断,调度程序便停止该进程的运行,并把它放入就绪队列末尾,然后,把CPU分给就绪队列的队首进程。

时间片:是一个小的时间单位,通常10~100ms数量级。

例如 设四个进程A、B、C和D依次进入就绪队列(同时到达),四个进程分别需要运行12、5、3和6个时间单位。

- ① 图示RR法时间片q=1和q=4示进程运行情况
- ② 算出各进程的周转时间和带权周转时间
- 3. 优先级调度算法的实现思想:从就绪队列中选出优先级最高的进程到CPU上运行。
- 1) 两种不同的处理方式: 非抢占式优先级法、抢占式优先级法
- 2) 两种确定优先级的方式:静态优先级、动态优先级

例如 假定在单CPU条件下有下列要执行的作业:

作业	运行时间	优先级
1	10	3
2	1	1
3	2	3
4	1	4
5	5	2

① 用执行时间图描述非强占优先级调度算法执行这些作业的情况

② 算出各作业的周转时间和带权周转时间

作业	到达时间	运行时 间	开始时 间	完成时间	周转时间	带权周转时间		
1	0	10	0	10	10	1. 0		
2	1	1	18	19	18	18. 0		
3	2	2	11	13	11	5. 5		
4	3	1	10	11	8	8. 0		
5	4	5	13	18	14	28		
	平均周转时间T=12.2 平均带权周转时间 W=7.06							

1 Shell命令执行过程

- 1. 读命令: shell命令解释程序将命令行读到自己的工作区中。
- 2. 判对错: 判断命令是否正确, 若有错则发出相应的错误信息。
- 3. 建子进程:终端进程调用系统调用fork,创建一个子进程。
- 4. 等待完成:终端进程将等待自己创建的子进程完成工作,变成睡眠态。

如果用户键入的命令行末尾有"&"符号,表明是后台命令,则立即转(8),发提示符。

- 5. 子进程运行:子进程被创建后处于就绪态,进入就绪队列排队。当进程调度程序选中它之后,就把CPU分给它使用。
- 6. 子进程终止:子进程完成工作后,一方面释放它所占用的资源;另一方面唤醒父进程。 子进程从系统中消失。
- 7. 父进程运行:子进程唤醒父进程。
- 8. 发提示符:终端进程发提示符,让用户键入新的命令。

阅读(4949) | 评论(0) 喜欢 推荐 转载