Puntos Notables: Angle Chasing

EMMANUEL BUENROSTRO

17 August 2025

En este entrenamiento vamos a ver distintas configuraciónes conocidas, pero centrandonos en propiedades que salen principalmente con ángulos (incluido ver lados iguales con isosceles/tangentes, ciclicos, paralelogramos, etc).

Nota: Cualquier cosa de esas puedes checarla en este pdf

§1 Centros del triangulo

En un triangulo ABC algunos centros del triangulo son:

- H, ortocentro: Es la intersección de las tres alturas.
- O, circuncentro: Es la intersección de las tres mediatrices, es el centro de la circunferencia que contiene a los puntos A, B, C
- *I*, *incentro*: Es la intersección de las tres bisectrices interiores, es el centro de la circunferencia que es tangente interiormente a los tres lados del triangulo.
- I_A , A-excentro: Es la intersección de la bisectriz interior de A, y las bisectrices exteriores de B y C, es el centro de la circunferencia tangente interiormente a los lados AB, AC y exteriormente al lado BC. (Analogo para I_B , I_C)

§2 *H*

§2.1 Existe *H*

Primero vamos a probar que H existe, es decir:

Exercise 2.1 (*H* existe). Demuestra que las tres alturas de un triangulo concurren.

Claim 2.2 — Sea H' la intersección de las alturas de B y C, entonces AH' es la altura desde A.

Proof. Sean B', C' los pies de altura desde B, C, respectivamente. Por los ángulos de 90 que se forman podemos notar los siguientes ciclicos:

$$BC'B'C$$
 y $AC'HB'$

Entonces queremos probar que $AH' \perp BC$, entonces queremos probar que:

$$\angle BAH' = 90 - \angle ABC = 90 - \angle C'BC = \angle C'CB$$

Pero por los ciclicos sabemos que:

$$\angle BAH' = \angle C'AH' = \angle C'B'H = \angle C'B'B = \angle C'CB$$

Demostrando lo que queriamos probar y que H' = H.

Entonces, en la prueba demostramos los siguientes ciclicos ¹

AC'HB', C'HA'B, A'CB'H y AB'A'B, BC'B'C, CA'C'A

 $^{^1{\}rm Los}$ que no vienen explicitamente en la prueba son analogos

§2.2 Division de Angulos

Los ciclicos antes mencionados nos dan las siguientes igualdades de ángulos:

$$\angle ABH = \angle ACH = \alpha$$

 $\angle BAH = \angle BCH = \beta$
 $\angle CAH = \angle CBH = \gamma$

Donde nombrar cada uno de estos ángulos nos sirve para poder hacer cuentas con los ángulos y esto es muy util e importante al momento de resolver problemas.

Algo que cumplen es $\alpha + \beta + \gamma = 90^{\circ}$

§2.3 Mas propiedades

Los siguientes son propiedades de la configuración que vale la pena ver:

- Sea Y la reflexión de H sobre BC, demuestra que Y esta en el circulo de ABC.
- \bullet Sea M el punto medio de BC y sea X la reflexión de H sobre M. Demuestra que X esta en el circulo de ABC.
- $XY \parallel BC$.
- \bullet BHCX es un paralelogramo
- AX es diametro de el circuncirculo de ABC.
- Sea Q la intersección de HM con (ABC), demuestra que QAB'HC' es ciclico.

§3 *O*

§3.1 Mediatrices

En las propiedades de H usabamos el circuncirculo de ABC, pero ¿como sabemos que realmente existe?, vamos a demostrarlo.

Primero vamos a definir las mediatrices.

Definition 3.1. La mediatriz de PQ es el lugar geometrico de todos los puntos X tales que XP = XQ.

Okey, esta definición suena algo no tan bonito, pero vamos a ver que en realidad es lo mismo que esto:

Claim 3.2 — La mediatriz de PQ es la recta perpendicular a PQ que pasa por el punto medio de PQ.

Remark. Viendo la parte de ángulos en esto, los puntos X en la mediatriz cumplen que $\angle XPQ = \angle XQP$.

Proof. Para demostrar esto tenemos que ver dos direcciones.

• Todos los puntos X que cumplen XP = XQ estan en la recta perpendicular a PQ que pasa por el punto medio de PQ.

• Todos los puntos que estan en la recta perpendicular a PQ que pasa por el punto medio de PQ, cumplen que XP = XQ.

Para la primer parte, si XP = XQ, entonces sea M' el pie de altura de X hacia PQ. Como XP = XQ y $\angle XM'P = \angle XM'Q = 90^\circ$ entoces los triangulos XM'Q, XM'P son congruentes y M'P = M'Q, y el unico punto en la recta PQ que cumple que M'P = M'Q es el punto medio de PQ, probando que todos los puntos X estan en la recta perpendicular a PQ que pasa por el punto medio de PQ.

Para la segunda parte, si X esta en la recta perpendicular a PQ que pasa por el punto medio de PQ, entonces si M es el punto medio de PQ y como MP = MQ, $\angle XMP = \angle XMQ = 90^{\circ}$ se tiene que XMP, XMQ son congruentes y XP = XQ probando la segunda parte.

§3.2 Existe *O*

Entonces ahora para probar que O existe tenemos que ver que las tres mediatrices concurren.

Claim 3.3 — En un triangulo ABC las mediatrices de AB, BC, CA concurren.

Proof. Sea O' la intersección de la mediatriz de AB y AC, entonces queremos probar que O' esta en la mediatriz de BC.

Como O' esta en la mediatriz de AB, AC entonces

$$O'B = O'A y O'A = O'C$$

Entonces O'B = O'C y O' esta en la mediatriz de BC.

Entonces
$$O' = O$$
.

Además con esto probamos que existe un punto O tal que OA = OB = OC = R, entonces tomando un circulo centrado en O y radio R tenemos un circulo que pasa por A, B, C, el circuncirculo.

§3.3 División de Ángulos

Al igual que con H podemos nombrar ángulos iguales, que esta vez se obtienen de los isosceles con OA = OB = OC.

$$\angle CBO = \angle BCO = \alpha$$

$$\angle ACO = \angle CAO = \beta$$

$$\angle BAO = \angle ABO = \gamma$$

Algo que cumplen es $\alpha + \beta + \gamma = 90^{\circ}$

§3.4 Más propiedades

Algunas propiedades importantes de O junto con H son:

- Sea M el punto medio de BC, sea X la reflexion de H sobre M, entonces A, O, X son colineales.
- $\angle BAH = \angle CAO^2$

 $^{^{2}}$ Esto se le dice AH, AO son isogonales

§4 I y I_A

§4.1 Bisectrices

Primero vamos a probar que existen, para eso tenemos que ver propiedades de las bisectrices.

Definition 4.1. La bisectriz interior de $\angle BAC$ es la recta que divide el ángulo interno en dos iguales.

Definition 4.2. La bisectriz exterior de $\angle BAC$ es la recta que divide el ángulo exterior en dos iguales.

Una propiedad a notar es que la bisectriz interior y la exterior son perpendiculares.

Estas son como usualmente se piensan estas definiciones, pero en realidad si las tomas juntas son:

Claim 4.3 — Las bisectrices de $\angle BAC$ son el lugar geometrico de los puntos P que equidistan de la recta AB y AC.

Proof. Sean X, Y los pies de altura de P hacia AB, AC podemos notar que APX, APY son congruentes si y solo si AX = AY o $\angle PAX = \angle PAY$.

Entonces para ver las dos direcciones tenemos que:

$$\angle PAX = \angle PAY \Rightarrow APX \cong APY \Rightarrow PX = PY$$

ó

$$PX = PY \Rightarrow APX \cong APY \Rightarrow \angle PAX = \angle PAY$$

Probando que un punto equidista a AB, AC si y solo si esta en alguna bisectriz.

§4.2 *I* existe

Ahora veamos que concurren para ver que I existe.

Claim 4.4 — En un triangulo ABC las bisectrices interiores de $\angle BAC, \angle ACB, \angle CBA$ concurren

Proof. Sea I' la interseccion de las bisectrices de B, C. Sean D, E, F los pies de perpendicular desde I' hacia BC, CA, AB.

Entonces como I' esta en la bisectriz de B y C entonces I'F = I'D y I'D = I'E Entonces

$$I'F = I'D = I'E$$

y I' esta en la bisectriz interna de A, entonces I' = I.

Entonces como I'F = I'D = I'E = r, considera el circulo con centro I radio r y pasa por D, E, F además por los ángulos de 90° formados con I se tiene que los lados del triangulo ABC son tangentes a ese circulo, el incirculo.

Las pruebas para I_A , I_B , I_C son similares.

Algunas propiedades elementarias son:

- AE = AF, BF = BD, CD = CE
- A, I, I_A son colineales
- $\angle IBI_A = 90^{\circ}$
- \bullet AFIE, BDIF, CEID son ciclicos.

§4.3 División de Ángulos

De igual manera que con los centros anteriores podemos dividir los ángulos, esta vez de la manera trivial.

$$\angle BAI = \angle CAI = \alpha$$

$$\angle ABI = \angle CBI = \beta$$

$$\angle ACI = \angle BCI = \gamma$$

Algo que cumplen es $\alpha + \beta + \gamma = 90^{\circ}$

§4.4 Lema Incentro Excentro

Para este lema vamos a aprovecharnos de que $\angle IBI_A = 90^{\circ}$.

Gracias a esta propiedad podemos notar que IBI_AC es ciclico. Además el centro es el punto medio de II_A digamos J, por lo tanto J esta en la bisectriz de A. Notemos que

$$\angle AJI = \angle BJI = 2\angle BCI = \angle BCA$$

por lo que ABJC es ciclico, entonces el centro esta en el circuncirculo, y como esta en la bisectriz es el punto medio del arco BC.

Lemma 4.5 (Incentro-Excentro)

Sea J el punto medio del arco BC, entonces $JB=JC=JI=JI_A$, es decir, J es el centro de $BICI_A$.

§5 Problemas

" i'm not ready at all but it's now august 2 and THE SHOW MUST GO ON"

Evan Chen

Problem 5.1 (\star) . Demuestra todas las propiedades que no demostramos en la teoria.

Problem 5.2. Sea ABC un triangulo, sean D, E, F los pies de altura de A, B, C respectivamente. Demuestra que H es el incentro de DEF.

Problem 5.3. En un triangulo ABC sean D, E, F los pies de alturas de A, B, C, respectivamente. DemFuestra que los triangulos AEF, BFD, CDE, ABC son semejantes entre si.

Problem 5.4. Si I es el incentro del triangulo ABC prueba que

$$\angle BIC = 90 + \frac{1}{2} \angle BAC$$

Problem 5.5. Demuestra que en un triangulo ABC el punto medio del arco BC es el circuncentro de BIC pero sin usar nada del excentro (tipo, usando puros ángulos/propiedades del triangulo solito).

Problem 5.6. Sea I el incentro de un triangulo ABC con AB < AC. La linea AI intersecta el circuncirculo de ABC en D. El circuncirculo de CDI intersecta BI de nuevo en K. Prueba que BK = CK.

Problem 5.7. Sea ABC un triangulo acutangulo, sea K la intersección de la bisectriz interna de $\angle BAC$ y de la mediatriz de BC, demuestra que A, B, C, K son conciclicos.

Problem 5.8. Demuestra que I es el ortocentro del triangulo $I_AI_BI_C$.

Problem 5.9. Sea ABC un triangulo. El incirculo de ABC es tangente a AB, AC en D, E. Sea O el circuncentro de BCI. Demuestra que $\angle ODB = \angle OEC$

Problem 5.10. Sea ABC un triangulo acutangulo con circuncentro O, sea K un punto tal que KA es tangente al circuncirculo de ABC, y $\angle KCB = 90^{\circ}$. Un punto D en BC cumple que $KD \parallel AB$, demuestra que A, O, D son colineales.

Problem 5.11 (9 puntos). Demuestra que en un triangulo ABC, los puntos medios de AH, BH, CH, AB, BC, CA y los pies de altura A', B', C' son todos conciclicos. (Con angulos)

Problem 5.12 (OTIS). Sea ABC un triangulo con circuncentro O y ortocentro H. Prueba que AO = AH si y solo si $\angle BAC = 60$

Problem 5.13 (\star). Sea ABC un triangulo acutangulo, sea D el pie de altura desde C. La bisectriz de $\angle ABC$ intersecta CD en E e intersecta al circuncirculo ω de ADE en F. Si $\angle ADF = 45$ muestra que CF es tangente a ω .

Problem 5.14 (AoPS). Sea ABC un triangulo acutangulo con circuncirculo ω y sea O el centro de ω . M es el punto medio de BC, H el ortocentro, BE la altura, ℓ es una recta que pasa por E y es perpendicular a ME. El rayo MH intersecta a ω en Q, BE intersecta ω en B y N. QN intersecta ℓ en P. Prueba que C, Q, P son colineales.