CDQZ OI Test for Freshman

csimstu

September 13, 2012

题目名称	文件名	时间限制	内存限制
Five Powers	${\rm five.*\{in,out,cpp,pas,c\}}$	1s	64MB
Brick Towers	$brick.*{in,out,cpp,pas,c}$	1s	64MB
Cipher Matrix	$cipher.*{in,out,cpp,pas,c}$	1s	64MB

Contents

1	Five	Powers	2
	1.1	题目描述	2
	1.2	输入格式	2
	1.3	输出格式	2
	1.4	样例输入 1	2
	1.5	洋例输出 1	2
	1.6	样例输入 2	2
	1.7	·····································	2
	1.8	数据范围	2
	1.9	 提示	2
2	Brio	Towers	3
	2.1	题目描述	3
	2.2	输入格式	3
	2.3	输出格式	3
	2.4	洋例输入 1	3
	2.5	<mark>样例输出 1</mark>	3
	2.6	洋例输入 2	3
	2.7	洋例输出 2	3
	2.8	<mark>数据范围</mark>	3
	2.9	提示	3
3	_	er Matrix	4
	3.1	题目描述	4
	3.2	输入格式	4
	3.3	输出格式	4
	3.4		4
	3.5	 	4
	3.6	数据范围	5
	2 7	H 	_

1 Five Powers

1.1 题目描述

给你一个01字符串,你需要把它切割成几段,使每段都是5的幂数(即1,5,25,125,625...),且不含前导零,要求段数最少。输出最小段数。如果不可能,输出-1。

1.2 输入格式

一行,即所给的01字符串。

1.3 输出格式

一个数。

1.4 样例输入 1

101101101

1.5 样例输出 1

3

1.6 样例输入 2

00000

1.7 样例输出 2

- 1

1.8 数据范围

对于 100% 的数据,字符串长度小于 50。

1.9 提示

第一个样例中,101101101 可以分割成 101-101-101。

2 Brick Towers

2.1 题目描述

你有 nR 块红砖 nB 块蓝砖,红砖每块高度均为 hR,蓝砖每块高度均为 hB。你要用这些砖来堆 Brick Tower。一个 Brick Tower 是不断将一块砖堆在另一块上来建成的,并且相邻两块砖颜色不能相同。两个 Brick Tower 被视作不同当且仅当它们高度不同,与颜色无关。求所能修建的Brick Tower 的不同数目总和。

2.2 输入格式

四个数,分别为 nR, hR, nB, hB。

2.3 输出格式

一个数。

2.4 样例输入 1

1 2 3 4

2.5 样例输出 1

4

2.6 样例输入 2

4 4 4 7

2.7 样例输出 2

12

2.8 数据范围

对于 100% 的数据,所有数都不超过 474747474。

2.9 提示

第一个样例:

- red (height 2);
- blue (height 4);
- red, blue (height 6);
- blue, red, blue (height 10).

3 Cipher Matrix

3.1 题目描述

一个数阵是一个长方形的矩阵,矩阵中每个元素范围是 0-9。 给定一个数阵 G,用以下算法可以得到一个加密后的数阵 E:

```
for(i=0;i<rows;++i){
    for(j=0;j<cols;++j){
        E[i][j] = 0
        for(r=0;r<rows;++r){
            for(c=0;c<cols;++c){
                if( (r equals i) or (c equals j))
               {E[i][j] = E[i][j] + G[r][c]}
            }
        }
    }
}</pre>
```

比如 G 为:

| 0 | 1 | 3 |

那么加密得到的 E 就是:

```
| 6 | 9 | 11 |
|------
| 14 | 15 | 17 |
```

给你加密后的 E,求数阵 G。

3.2 输入格式

第一行为 n, m,分别为 E 的行数和列数。 之后为一个 $n \times m$ 的矩阵,第 i+1 行 j 列的数表示 $\mathrm{E}[\mathrm{i}][\mathrm{j}]$ 。

3.3 输出格式

如果仅有一个解,则输出一个 $n \times m$ 的数阵。第 i 行 j 列的数表示 G[i][j]; 如果误解,输出"NO SOLUTIONS"; 如果多解,输出"n SOLUTIONS",n 为解的个数。

3.4 样例输入

2 3 6 9 11 14 15 17

3.5 样例输出

0 1 3 2 5 7

3.6 数据范围

对于 100% 的数据, $1 \le n, m \le 50$,所有数字小于 10000。

3.7 提示

小心吧!