IN THE CLAIMS:

1	1. (currently amended) A method of forming a layer of interconnect in
2	an integrated circuit comprising the steps of:
3	depositing a first layer of interlayer dielectric (ILD) on a lower layer of
4	said integrated circuit above a set of lower alignment marks;
5	depositing a first hardmask layer of TaN on said first layer of ILD, said
6	first layer being substantially transparent in a relevant wavelength range in
7	which said hardmask layer has a resistivity greater than about 400 micro
8	Ohm-cm;
9	forming an upper set of alignment marks;
0	patterning said ILD through said hardmask layer to form a set of apertures
1	in said ILD; and
	forming a conductive interconnect in said set of apertures.

2. (currently amended) A method of forming a layer of interconnect in
2. an integrated circuit comprising the steps of:
3. depositing a first layer of interlayer dielectric (ILD) on a lower layer of
4. said integrated circuit above a set of lower alignment marks;
5. depositing a first hardmask layer of TaN on said first layer of ILD, said
6. first layer being substantially transparent in a relevant wavelength range;
7. forming an upper set of alignment marks;

- .8 patterning said ILD through said hardmask layer to form a set of apertures
- 9 <u>in said ILD; and</u>
- forming a conductive interconnect in said set of apertures;
- in which said hardmask layer is deposited by sputter deposition of Ta in
- an ambient containing N_2 and a carrier gas such that $(N_2 flow)/(N_2 + carrier)$
- 13 flow) > 0.5.
 - 1 3. (original) A method according to claim 1, in which said hardmask
 - layer is deposited by chemical vapor deposition by reacting a precursor gas
 - 3 containing Ta in an ambient containing N_2 .
 - 1 4. (original) A method according to claim 2, in which said hardmask
 - 2 layer is substantially transparent in said relevant wavelength range.
 - 1 5. (original) A method according to claim 3, in which said hardmask
 - 2 layer is substantially transparent in said relevant wavelength range.
 - 1 6. (original) A method according to claim 2, in which said hardmask
 - layer has a resistivity greater than about 400 micro Ohm-cm.
 - 1 7. (Canceled)

- 8. (original) A method according to claim 2, in which said hardmask
- layer has a thickness ranging from 5nm to 100nm.
- 9. (original) A method according to claim 3, in which said hardmask
- layer has a thickness ranging from 5nm to 100nm.
- 1 10. (original) A method according to claim 2, in which said hardmask
- layer has a composition of less than 50% Ta.
- 1 11. (original) A method according to claim 3, in which said hardmask
- layer has a composition of less than 50% Ta.
- 1 12. 22 (canceled)