

AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior versions, and listings, of claims in the application.

1. (Currently Amended) A compound of the formula I:

or a pharmaceutically acceptable salt thereof;

wherein X and Y are independently selected from the group consisting of O, CF₂, CH₂, and CHF;

wherein A is independently selected from the group consisting of P(O)OH, CHCOOH, and C(COOH)₂;

R₂ is selected from the group consisting of H, OH, isosteres of OH, C₁-C₂₅ alkyloxy, C₆-C₁₀ aryloxy, C₃-C₈ cycloalkyloxy, C₃-C₈ cycloalkyl C₁-C₆ alkoxy, C₂-C₂₂ alkenyloxy, C₃-C₈ cycloalkenyloxy, C₇-C₃₂ aralkyloxy, C₇-C₃₂ alkylaryloxy, C₉-C₃₂ aralkenyloxy, and C₉-C₃₂ alkenylaryloxy;

R₃-R₆ are independently selected from the group consisting of H and OH, H, OH, isosteres of OH; and

R₁ and R₇ are independently selected from the group consisting of C₁-C₂₅ alkyl, C₆-C₁₀ aryl, C₃-C₈ cycloalkyl, C₂-C₂₂ alkenyl, C₃-C₈ cycloalkenyl, C₇-C₃₂ aralkyl, C₇-C₃₂ alkylaryl, C₉-C₃₂ aralkenyl, and C₉-C₃₂ alkenylaryl;

with the provisos that (i) when X is O, Y is O or CH₂, and R₃ is H, at least one of R₂ and R₄-R₆ is not OH; (ii) when A is CHCOOH, or C(COOH)₂, X and Y cannot be simultaneously O; and (iii) all of R₂-R₆ are not simultaneously H; (iii) R₅ and R₄ are not simultaneously H; and (iv) R₂, R₃, R₅, and R₆ are not simultaneously OH or H.

2. (Canceled)

3. (Previously Presented) The compound of claim 1, which has the formula Ia:

4. (Previously Presented) The compound of claim 1, which has the formula Ib:

5. (Currently Amended) The compound of claim [[2]] 1, wherein X and Y are O.

6. (Previously Presented) The compound of claim 1, wherein R₁ is a C₁-C₂₅ alkyl.

7. (Previously Presented) The compound of claim 1, wherein R₁ is a C₁₀-C₂₅ alkyl.

8. (Previously Presented) The compound of claim 1, wherein R₁ is a C₁₅-C₂₀ alkyl.

9. (Previously Presented) The compound of claim 1, wherein R₁ is a C₁₈ alkyl.

10. (Previously Presented) The compound of claim 1, wherein R₇ is a C₁-C₂₅ alkyl.

11. (Previously Presented) The compound of claim 1, wherein R₇ is a C₁-C₁₅ alkyl.

12. (Previously Presented) The compound of claim 1, wherein R₇ is a C₁-C₅ alkyl.

13. (Previously Presented) The compound of claim 1, wherein R₇ is methyl.

14. (Previously Presented) The compound of claim 1, wherein R₂ is C₁-C₂₅ alkyloxy.

15. (Previously Presented) The compound of claim 1, wherein R₂ is C₁-C₁₅ alkyloxy.

16. (Previously Presented) The compound of claim 1, wherein R₂ is C₁-C₅ alkyloxy.
17. (Previously Presented) The compound of claim 1, wherein R₂ is methoxy.
18. (Previously Presented) The compound of claim 1, wherein R₂ is C₇-C₃₂ aralkyloxy.
19. (Previously Presented) The compound of claim 1, wherein R₂ is cyclohexylmethoxy.
20. (Previously Presented) The compound of claim 1, wherein R₂ is H.
21. (Previously Presented) The compound of claim 1, wherein R₃ is H.
22. (Previously Presented) The compound of claim 1, wherein R₄ is H.
23. (Previously Presented) The compound of claim 1, wherein R₅ is H.
24. (Previously Presented) The compound of claim 1, wherein R₆ is H.
25. (Previously Presented) The compound of claim 1, wherein R₂ and R₃ are H.
26. (Previously Presented) The compound of claim 1, wherein R₃ and R₄ are H.
27. (Previously Presented) The compound of claim 1, wherein R₅ and R₆ are H.
28. (Original) The compound of claim 3, wherein X and Y are O, R₁ is C₁₈H₃₇, and R₇ is methyl.
29. (Original) The compound of claim 28, wherein R₂ is methoxy, R₃ is H, and R₄-R₆ are OH.
30. (Original) The compound of claim 28, wherein R₂-R₃ are H and R₄-R₆ are OH.
31. (Original) The compound of claim 28, wherein R₂-R₃ and R₅-R₆ are OH and R₄ is H.
32. (Original) The compound of claim 28, wherein R₂ is i-butyloxy, R₃ is H, and R₄-R₆ are OH.

33. (Original) The compound of claim 28, wherein R₂ is cyclohexylmethoxy, R₃ is H, and R₄-R₆ are OH.

34. (Original) The compound of claim 28, wherein R₂-R₃ and R₆ are OH and R₄-R₅ are H.

35. (Original) The compound of claim 28, wherein R₂-R₄ and R₆ are OH and R₅ is H.

36. (Original) The compound of claim 28, wherein R₂, R₄, and R₆ are OH and R₃ and R₅ are H.

37. (Previously Presented) A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.

38. (Currently Amended) A method of preventing or treating a disease, or a condition that predisposes to a disease, which is characterized by the inhibiting activation of the serine/threonine kinase Akt or decreasing phosphorylation in a tumor cell of an animal comprising administering to the animal a preventive or treatment an effective amount of a compound of claim 1.

39-52. (Canceled)

53. (Previously Presented) A method of increasing apoptosis of a cell comprising contacting the cell with a compound of claim 1.

54. (Previously Presented) A method for inhibiting PH domain binding comprising exposing a material containing an PH domain to a compound of claim 1.

55. (Previously Presented) A method for determining the presence of a PH domain in a material comprising:

- (a) exposing a sample of said material to a PH domain binding compound and obtaining a first binding result;
- (b) exposing another sample of said material to a compound of claim 1 and obtaining a second binding result; and
- (c) comparing the first and second binding results to determine whether a PH domain is present in the material.

56. (New) A method of treating cancer in a mammal comprising administering to the mammal an effective amount of a compound of claim 1.

57. (New) The method of claim 56, wherein the cancer is selected from the group consisting of lung cancer, breast cancer, ovarian cancer, colorectal cancer, and brain cancer.

58. (New) A compound of the formula I:

or a pharmaceutically acceptable salt thereof;

wherein X and Y are independently selected from the group consisting of O, CF₃, CH₂, and CHF;

wherein A is independently selected from the group consisting of P(O)OH, CHCOOH, and C(COOH)₂;

R₂ is selected from the group consisting of C₁-C₂₅ alkyloxy, cyclohexylmethoxy, and C₇-C₃₂ aralkyloxy;

R₃-R₆ are independently selected from the group consisting of H, OH, isosteres of OH; and R₁ and R₇ are independently selected from the group consisting of C₁-C₂₅ alkyl, C₆-C₁₀ aryl, C₃-C₈ cycloalkyl, C₂-C₂₂ alkenyl, C₃-C₈ cycloalkenyl, C₇-C₃₂ aralkyl, C₇-C₃₂ alkylaryl, C₉-C₃₂ aralkenyl, and C₉-C₃₂ alkenylaryl;

with the provisos that (i) when X is O, Y is O or CH₂, and R₃ is H, at least one of R₂ and R₄-R₆ is not OH; (ii) when A is CHCOOH or C(COOH)₂, X and Y cannot be simultaneously O; and (iii) all of R₂-R₆ are not simultaneously H.

59. (New) The compound of claim 58, wherein R₂ is C₁-C₂₅ alkyloxy.

60. (New) The compound of claim 58, wherein R₂ is C₇-C₃₂ aralkyloxy.

61. (New) The compound of claim 58, wherein R₂ is cyclohexylmethoxy.

62. (New) The compound of claim 58, wherein R₃ and R₄ are H.

63. (New) The compound of claim 58, which has the formula Ia:

(Ia)

wherein X and Y are O, R₁ is C₁₈H₃₇, R₇ is methyl, R₂ is methoxy, R₃ is H, and R₄-R₆ are OH.

64. (New) A method of increasing apoptosis of a cell comprising contacting the cell with a compound of claim 58.

65. (New) A method for inhibiting PH domain binding comprising exposing a material containing an PH domain to a compound of claim 58.

66. (New) A pharmaceutical composition comprising a compound of claim 58 and a pharmaceutically acceptable carrier.

67. (New) A method of treating cancer in a mammal comprising administering to the mammal an effective amount of a compound of claim 58.

68. (New) A method of inhibiting activation of the serine/threonine kinase Akt or decreasing phosphorylation in a tumor cell of an animal comprising administering to the animal an effective amount of a compound of claim 58.

69. (New) The method of claim 67, wherein the cancer is selected from the group consisting of lung cancer, breast cancer, ovarian cancer, colorectal cancer, and brain cancer.