An Extension of Pushdown System and Its Model Checking Method

Naoya Nitta¹ and Hiroyuki Seki¹

Nara Institute of Science and Technology 8916-5 Takayama, Ikoma, Nara 630-0192, Japan {naoya-n,seki}@is.aist-nara.ac.jp

Abstract. In this paper, we present a class of infinite transition systems which is an extension of pushdown systems (PDS), and show that LTL (linear temporal logic) model checking for the class is decidable. Since the class is defined as a subclass of term rewriting systems, pushdown stack of PDS is naturally extended to tree structure. By this extension, we can model recursive programs with exception handling.

1 Introduction

Model checking [2] is a well-known technique which automatically verifies whether a system satisfies a given specification. Most of existing model checking methods and tools assume that a system to be verified has finite state space. This is a serious restriction when we apply model checking to software verification since a program is usually modeled as a system with infinite state space. There are two approaches to resolving the problem. One is that if a system to be verified has infinite state space, then the system is transformed into an abstract system with finite state space [4,11]. However, the abstract system does not always retain the desirable property which the original system has, in which case the verification fails.

Another approach is to introduce a new subclass of transition systems which is wider than finite state systems. Pushdown system (abbreviated as PDS) is such a subclass that is wider than finite state systems and yet has decidable properties on model checking. A PDS can model a system which has well-nested structure such as a program involving recursive procedure calls. Recently, efficient algorithms of LTL and CTL* model checking for PDS have been proposed in [5,6] (also see related works). The transition relation of a PDS is defined by transition rules which rewrite the finite control and a prefix of the string in the pushdown stack. Thus, if we model a program as a PDS, we are forced to define the behavior of the program by transition rules on strings.

In this paper, we focus on term rewriting system (abbreviated as TRS), which is one of the well-known general computation models, and define the model checking problem for TRS. For simplicity, we consider the rewrite relation induced by the rewriting only at the root position of a term (root rewriting). Since a transition in a PDS changes the finite control and a prefix of the strings

in the stack, PDS can be regarded as a TRS with root rewriting. Next, a new subclass of TRS, called generalized-growing TRS (GG-TRS) is defined. GG-TRS properly includes growing TRS [17] of Nagaya and Toyama. We present a necessary and sufficient condition for a left-linear(LL-)GG-TRS \mathcal{R} to have an infinite rewrite sequence which visits terms in a given set infinitely often. Based on this condition, we then present a condition for \mathcal{R} to satisfy a given LTL formula ϕ . The latter condition is decidable if \mathcal{R} has a property called pre-(or post-)recognizability preserving property. Lastly, we introduce a subclass of TRS called LL-SPO-TRS and show that every TRS in this subclass has pre-recognizability preserving property. Every PDS belongs to both of GG-TRS and LL-SPO-TRS. Furthermore, we show that a program with recursive procedure and exception handling can be naturally modeled as a TRS in both GG-TRS and LL-SPO-TRS, which is not strongly bisimilar to any PDS. In this sense, the decidability results on LTL model checking in this paper is an extension of the results in [5,6]. Detailed proofs are omitted due to space limitation (see [18]).

Related Works. The model checking problem for PDS and the modal μ calculus is studied in [24]. For LTL and CTL*, efficient model checking algorithms for PDS are proposed in [5,6]. Major applications of model checking for PDS are static analysis of programs and security verification. For the former, Esparza et al. [6] discuss an application of model checking for PDS to dataflow analysis of recursive programs. Some results obtained by using their verification tool are also reported in [7]. The first work which applies model checking of a pushdown-type system to security verification is Jensen et al.'s study [13], which introduces a safety verification problem for a program with access control which generalizes JDK1.2 stack inspection. Nitta et al. [19,20] improve the result of [13] and show that a safety verification problem is decidable for an arbitrary program with stack inspection. In [20], a subclass of programs which exactly represents programs with JDK1.2 stack inspection is proposed, for which the safety verification problem is decidable in polynomial time of the program size. In [6], it is shown that LTL model checking is decidable for an arbitrary programs with stack inspection. Jha and Reps show that name reduction in SPKI [22] can be represented as a PDS, and prove the decidability of a number of security problems by reductions to decidability properties of model checking for PDS [14]. Among other infinite state systems for which model checking has been studied are process rewrite system (PRS) [16] and ground TRS [15]. PRS includes PDS and Petri Net as its subclasses. However, LTL model checking is undecidable for both of PRS and ground TRS.

2 Preliminaries

2.1 Term Rewriting System

We use the usual notions for terms, substitutions, etc (see [1] for details). Let N denote the set of natural numbers. Let \mathcal{F} be a *signature* and \mathcal{V} be an enumerable set of *variables*. An element in \mathcal{F} is called a *function symbol* and the *arity* of

 $f \in \mathcal{F}$ is denoted by arity(f). A function symbol c with arity(c) = 0 is called a constant. The set of terms generated by \mathcal{F} and \mathcal{V} is denoted by $\mathcal{T}(\mathcal{F},\mathcal{V})$. The set of variables occurring in t is denoted by Var(t). A term t is ground if $Var(t) = \emptyset$. The set of all ground terms is denoted by $\mathcal{T}(\mathcal{F})$. A term is *linear* if no variable occurs more than once in the term. A substitution θ is a mapping from \mathcal{V} to $\mathcal{T}(\mathcal{F},\mathcal{V})$ and written as $\theta = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ where t_i with $1 \leq i \leq n$ is a term which substitutes for the variable x_i . The term obtained by applying a substitution θ to a term t is written as $t\theta$. We call $t\theta$ an instance of t. A position in a term t is defined as a sequence of positive integers, and the root position is the empty sequence denoted by λ . The depth of a position $p \in (N-\{0\})^*$, written as |p|, is the length of p (e.g. |132|=3). Let \leq_{pref} denote the prefix relation on positions. The set of all positions in a term t is denoted by Pos(t). Also let us define $Pos_{=n}(t) = \{p \in Pos(t) \mid |p| = n\}$ and $Pos_{\geq n}(t) = \{ p \in Pos(t) \mid |p| \geq n \}$. A subterm of t at a position $p \in Pos(t)$ is denoted by $t_{|p}$. Pos(t,s) is the set $\{p \mid t_{|p} = s\}$. If $t_{|p} = f(\cdots)$, then we write lab(t,p) = f. If a term t is obtained from a term t' by replacing the subterms of t' at positions p_1, \ldots, p_m $(p_i \in Pos(t'), p_i \text{ and } p_j \text{ are disjoint if } i \neq j)$ with terms t_1, \ldots, t_m , respectively, then we write $t = t'[p_i \leftarrow t_i \mid 1 \le i \le m]$. The depth of a term t is $max\{|p| \mid p \in Pos(t)\}$. For terms s,t, let mgu(s,t) denote the most general unifier of s and t if it is defined. Otherwise, let $mgu(s,t) = \bot$.

A rewrite rule over a signature \mathcal{F} is an ordered pair of terms in $\mathcal{T}(\mathcal{F}, \mathcal{V})$, written as $l \to r$. A term rewriting system (TRS) over \mathcal{F} is a finite set of rewrite rules over \mathcal{F} . For terms t, t' and a TRS \mathcal{R} , we write $t \to_{\mathcal{R}} t'$ if there exists a position $p \in \mathcal{P}os(t)$, a substitution θ and a rewrite rule $l \to r \in \mathcal{R}$ such that $t/p = l\theta$ and $t' = t[p \leftarrow r\theta]$. Define $\to_{\mathcal{R}}^*$ to be the reflexive and transitive closure of $\to_{\mathcal{R}}$. Sometimes $t \to_{\mathcal{R}}^* t'$ is called a rewrite sequence. Also the transitive closure of $\to_{\mathcal{R}}$ is denoted by $\to_{\mathcal{R}}^+$. The subscript \mathcal{R} of $\to_{\mathcal{R}}$ is omitted if \mathcal{R} is clear from the context. A redex $(in \mathcal{R})$ is an instance of l for some $l \to r \in \mathcal{R}$. A normal form (in \mathcal{R}) is a term which has no redex as its subterm. Let NF $_{\mathcal{R}}$ denote the set of all ground normal forms in \mathcal{R} . A rewrite rule $l \to r$ is left-linear (resp. right-linear) if l is linear (resp. r is linear). A rewrite rule is linear if it is left-linear and right-linear. A TRS \mathcal{R} is left-linear (resp. right-linear, linear) if every rule in \mathcal{R} is left-linear (resp. right-linear, linear).

2.2 Tree Automata and Recognizability

A tree automaton (TA) [8] is defined by a 4-tuple $\mathcal{A} = (\mathcal{F}, \mathcal{Q}, \Delta, \mathcal{Q}^{final})$ where \mathcal{F} is a signature, \mathcal{Q} is a finite set of states, $\mathcal{Q}^{final} \subseteq \mathcal{Q}$ is a set of final states, and Δ is a finite set of transition rules of the form $f(q_1, \ldots, q_n) \to q$ where $f \in \mathcal{F}$, arity(f) = n, and $q_1, \ldots, q_n, q \in \mathcal{Q}$ or of the form $q' \to q$ where $q, q' \in \mathcal{Q}$. Consider the set of ground terms $\mathcal{T}(\mathcal{F} \cup \mathcal{Q})$ where we define arity(q) = 0 for $q \in \mathcal{Q}$. A transition of a TA can be regarded as a rewrite relation on $\mathcal{T}(\mathcal{F} \cup \mathcal{Q})$ by regarding transition rules in Δ as rewrite rules over $\mathcal{F} \cup \mathcal{Q}$. For terms t and t' in $\mathcal{T}(\mathcal{F} \cup \mathcal{Q})$, we write $t \vdash_{\mathcal{A}} t'$ if and only if $t \to_{\Delta} t'$. The reflexive and transitive closure and the transitive closure of $\vdash_{\mathcal{A}}$ is denoted by $\vdash_{\mathcal{A}}^*$ and $\vdash_{\mathcal{A}}^+$, respectively. For a TA \mathcal{A} and $t \in \mathcal{T}(\mathcal{F})$, if $t \vdash_{\mathcal{A}}^* q_f$ for a final state $q_f \in \mathcal{Q}^{final}$, then we say t is

accepted by \mathcal{A} . The set of all ground terms in $\mathcal{T}(\mathcal{F})$ accepted by \mathcal{A} is denoted by $\mathcal{L}(\mathcal{A})$ and we say that \mathcal{A} recognizes $\mathcal{L}(\mathcal{A})$. A subset $L \subseteq \mathcal{T}(\mathcal{F})$ of ground terms is called a tree language. A tree language L is recognizable if there is a TA \mathcal{A} such that $L = \mathcal{L}(\mathcal{A})$.

For a TRS \mathcal{R} and a tree language L, let $post_{\mathcal{R}}^*(L) = \{t \mid \exists s \in L \text{ s.t. } s \to_{\mathcal{R}}^* t\}$ and $pre_{\mathcal{R}}^*(L) = \{t \mid \exists s \in L \text{ s.t. } t \to_{\mathcal{R}}^* s\}$. A TRS \mathcal{R} is said to effectively preserve post-recognizability (abbreviated as post-PR) if, for any TA \mathcal{A} , $post_{\mathcal{R}}^*(\mathcal{L}(\mathcal{A}))$ is also recognizable and we can effectively construct a TA which accepts $post_{\mathcal{R}}^*(\mathcal{L}(\mathcal{A}))$. We define pre-PR in a similar way. For a TRS \mathcal{R} , let $\mathcal{R}^{-1} = \{r \to l \mid l \to r \in \mathcal{R}\}$. By definition, $post_{\mathcal{R}^{-1}}^*(L) = pre_{\mathcal{R}}^*(L)$. Thus, a TRS \mathcal{R} is pre-PR if and only if \mathcal{R}^{-1} is post-PR. The class of recognizable tree languages is closed under boolean operations and the inclusion problem is decidable for the class [8]. Due to these properties, some important problems, e.g., reachability, joinability and local confluence are decidable for post-PR TRS [10, 12]. However, whether a given TRS is pre-PR (post-PR) is undecidable [9], and decidable subclasses of pre-PR or post-PR TRS have been proposed, some of which are listed with inclusion relation:

RL-SM(semi-monadic)-TRS^[3] \subset RL-GSM(generalized semi-monadic)-TRS ^[12] \subset RL-FPO(finitely path overlapping)-TRS^[23]

where RL stands for 'right-linear.' As a decidable subclass of pre-PR TRS, left-linear growing TRS (LL-G-TRS) [17] is known. A TRS \mathcal{R} is a G-TRS if for every rule $l \to r$ in \mathcal{R} , every variable in $\mathcal{V}ar(l) \cap \mathcal{V}ar(r)$ appears at depth 0 or 1 in l. Hence, a shallow TRS is always a G-TRS. Note that \mathcal{R} is an SM-TRS if and only if \mathcal{R}^{-1} is a G-TRS and the left-hand side of any rule in \mathcal{R} is not a constant.

2.3 Transition Systems and Linear Temporal Logic

A transition system is a 3-tuple $S = (S, \to, s_0)$, where S is a (possibly infinite) set of states, $\to \subseteq S \times S$ is a transition relation and $s_0 \in S$ is an initial state. The transitive closure of \to and the reflexive and transitive closure of \to are written by \to^+ and \to^* , respectively. A run of S is an infinite sequence of states $\sigma = s_1 s_2 \ldots$ such that $s_i \to s_{i+1}$ for each $i \ge 1$. Let $At = \{\alpha_1, \alpha_2, \ldots, \alpha_k\}$ be a set of atomic propositions. The syntax of linear temporal logic (LTL) formula ϕ is defined by

$$\phi ::= tt \mid \alpha_i \mid \neg \phi \mid \phi_1 \land \phi_1 \mid \mathcal{X}\phi \mid \phi_1 \mathcal{U}\phi_2$$

 $(1 \le i \le k \text{ and } \phi_1, \phi_2 \text{ are LTL formulas})$. For a transition system $\mathcal{S} = (S, \to, s_0)$, a valuation of \mathcal{S} is a function $\nu : At \to 2^S$. The validity of an LTL formula ϕ for a run $\sigma = s_1 s_2 \dots$ w.r.t. a valuation ν is denoted by $\sigma \models^{\nu} \phi$, and defined in the standard way [2]. We say ϕ is valid at s w.r.t. ν , denoted as $s \models^{\nu} \phi$, if and only if $\sigma \models^{\nu} \phi$ for each run σ starting in s.

2.4 Model Checking for TRS

Given a TRS \mathcal{R} over a signature \mathcal{F} and a term $t_0 \in \mathcal{T}(\mathcal{F})$, we can define a transition system $\mathcal{S}_{\mathcal{R}} = (\mathcal{T}(\mathcal{F}), \rightarrow_{\mathcal{S}_{\mathcal{R}}}, t_0)$ where $\rightarrow_{\mathcal{S}_{\mathcal{R}}} = \rightarrow_{\mathcal{R}} \cup \{(t, t) \mid t \in NF_{\mathcal{R}}\}.$

Note that the reflexive relation $\{(t,t) \mid t \in \mathrm{NF}_{\mathcal{R}}\}$ is needed to make the transition relation $\to_{\mathcal{S}_{\mathcal{R}}}$ total. The validity of LTL formula ϕ at t_0 in $\mathcal{S}_{\mathcal{R}}$ w.r.t. $\nu:At \to 2^{\mathcal{T}(\mathcal{F})}$ is denoted as $\mathcal{R}, t_0 \models^{\nu} \phi$. From an LTL formula ϕ , we can construct a Büchi automaton which recognizes the set of models of $\neg \phi$. Therefore, we often assume that we are given a Büchi automaton instead of an LTL formula. In a similar way to the model checking method in [6], we define a Büchi TRS which synchronizes a transition system $\mathcal{S}_{\mathcal{R}}$ given by a TRS \mathcal{R} with a Büchi automaton \mathcal{B} . First, to make the definition constructive, we make a few observations. To synchronize $\mathcal{S}_{\mathcal{R}}$ with \mathcal{B} , we must construct a Büchi TRS so that the redex can keep track of the information on the current state of \mathcal{B} and the valuation of the current term of $\mathcal{S}_{\mathcal{R}}$. However, if we allow an arbitrary redex to be rewritten, transmitting the above information to the next redex in the Büchi TRS becomes difficult. For this reason, we consider root rewriting, which restricts rewriting positions to the root position.

Definition 1. (Root Rewriting) For terms t, t' and a TRS \mathcal{R} , we say $t \to_{\mathcal{R}} t'$ is root rewriting, if there exist a substitution θ and a rewrite rule $l \to r \in \mathcal{R}$ such that $t = l\theta$ and $t' = r\theta$.

If we consider root rewriting, it is not difficult to see that there effectively exists a TRS of which the rewrite relation exactly corresponds to $\to_{\mathcal{S}_{\mathcal{R}}}$. Let $\{\Lambda_1, \ldots, \Lambda_m\}$ be a set of terms in $\mathcal{T}(\mathcal{F}, \mathcal{V})$ such that $\operatorname{NF}_{\mathcal{R}} = \bigcup_{1 \leq i \leq m} \{\Lambda_i \theta \mid \theta : \mathcal{V} \to \mathcal{T}(\mathcal{F}) \text{ is a substitution}\}$, and $mgu(\Lambda_i, \Lambda_j) = \bot(1 \leq i < j \leq m)$. Also, let $\widetilde{\mathcal{R}} = \mathcal{R} \cup \{\Lambda_i \to \Lambda_i \mid 1 \leq i \leq m\}$. Then, $t \in \operatorname{NF}_{\mathcal{R}}$ if and only if there exists a unique Λ_i such that $t \to_{\widetilde{\mathcal{R}}} t \to_{\widetilde{\mathcal{R}}} \cdots$ where $\Lambda_i \to \Lambda_i$ is applied in each rewrite step. Hence, we know $\to_{\mathcal{S}_{\mathcal{R}}} = \to_{\widetilde{\mathcal{R}}}$, i.e., the transition relation $\to_{\mathcal{S}_{\mathcal{R}}}$ of $\mathcal{S}_{\mathcal{R}}$ can be induced by TRS $\widetilde{\mathcal{R}}$. Next, we extend the definitions of valuations of PDS [5,6].

Definition 2. (Simple Valuation)

Let $\mu: At \to \mathcal{T}(\mathcal{F}, \mathcal{V})$ be a function such that for each $\alpha \in At$ and $l \to r \in \widetilde{\mathcal{R}}$, $mgu(l, \mu(\alpha)) = l$ or $= \bot$. The simple valuation $\nu: At \to 2^{\mathcal{T}(\mathcal{F})}$ given by μ is defined as $\nu(\alpha) = \{\mu(\alpha)\theta \mid \theta \text{ is a substitution}\}.$

In the definition, $\mu(\alpha)$ specifies a pattern of terms for which proposition α is true. For example, if $\mu(\alpha_1) = f(x, g(y))$ then $\mathcal{R}, t \models^{\nu} \alpha_1$ if and only if t is an instance of f(x, g(y)). The restriction that $mgu(l, \mu(\alpha)) = l$ or $= \perp$ guarantees that for a rewrite rule $l \to r$, whether $\mathcal{R}, l\theta \models^{\nu} \alpha$ is determined independent of a substitution θ .

Definition 3. (Regular Valuation)

For each atomic proposition $\alpha \in At$, a TA \mathcal{A}_{α} is given. The regular valuation $\nu : At \to 2^{\mathcal{T}(\mathcal{F})}$ given by $\langle \mathcal{A}_{\alpha} \rangle_{\alpha \in At}$ is defined as $\nu(\alpha) = \mathcal{L}(\mathcal{A}_{\alpha})$.

Definition 3 says that $\mathcal{R}, t \models^{\nu} \alpha$ if and only if t is accepted by \mathcal{A}_{α} . This is a natural extension of regular valuation ν of PDS, where a configuration $\langle q, w \rangle$ is a pair of a control location q and a sequence w of stack symbols and $\langle q, w \rangle \models^{\nu} \alpha$ if and only if the sequence qw is accepted by a finite state automaton \mathcal{A}_{α} given for α .

Definition 4. (Büchi TRS) Let At be a set of atomic propositions, \mathcal{R} be a TRS, $\mathcal{B} = (\mathcal{Q}_{\mathcal{B}}, \mathcal{L}_{\mathcal{B}}, \mathcal{Q}_{\mathcal{B}}, \mathcal{Q}_{\mathcal{B}}^{acc})$ ($\mathcal{L}_{\mathcal{B}} = 2^{At}$, $\mathcal{Q}_{\mathcal{B}} \cap \mathcal{F} = \emptyset$) be a Büchi automaton, and ν be the simple valuation given by $\mu : At \to \mathcal{T}(\mathcal{F}, \mathcal{V})$. For \mathcal{R} , \mathcal{B} and ν , we define Büchi TRS \mathcal{BR}^{ν} as follows: The signature of \mathcal{BR}^{ν} is $\mathcal{F}_{\mathcal{BR}^{\nu}} = \mathcal{Q}_{\mathcal{B}} \cup \mathcal{F}$ (for any $q \in \mathcal{Q}_{\mathcal{B}}$, arity(q) = 1), and \mathcal{BR}^{ν} is the minimum set of rules satisfying: $q \stackrel{a}{\to} q' \in \mathcal{\Delta}_{\mathcal{B}}, l \to r \in \widetilde{\mathcal{R}}$, and $a \subseteq \{\alpha \in At \mid mgu(l, \mu(\alpha)) = l\}$ $\Rightarrow q(l) \to q'(r) \in \mathcal{BR}^{\nu}$.

If ν is regular, then we can reduce a model checking problem w.r.t. ν to a model checking problem w.r.t. a simple valuation in a similar way to [6].

Lemma 1. Let \mathcal{R} be a TRS, $t_0 \in \mathcal{T}(\mathcal{F})$ be an initial state, ϕ be an LTL formula, $\mathcal{B} = (\mathcal{Q}_{\mathcal{B}}, \mathcal{L}_{\mathcal{B}}, \mathcal{Q}_{\mathcal{B}}, \mathcal{Q}_{\mathcal{B}}^{acc})$ ($\mathcal{L}_{\mathcal{B}} = 2^{At}$, $\mathcal{Q}_{\mathcal{B}} \cap \mathcal{F} = \emptyset$) be a Büchi automaton which represents $\neg \phi$, and ν be the simple valuation given by $\mu : At \to \mathcal{T}(\mathcal{F}, \mathcal{V})$. Also, let $\mathcal{T}_{acc} = \{q_a(t) \mid q_a \in \mathcal{Q}_{\mathcal{B}}^{acc}, t \in \mathcal{T}(\mathcal{F})\}$. \mathcal{R} , $t_0 \not\models^{\nu} \phi$ if and only if there exists an infinite root rewrite sequence of Büchi TRS $\mathcal{B}\mathcal{R}^{\nu}$ starting in $q_{0\mathcal{B}}(t_0)$ and visiting \mathcal{T}_{acc} infinitely often.

3 Generalized-Growing TRS and Its Model Checking

The restriction of root rewriting (Definition 1) on TRS \mathcal{R} is insufficient to make the model checking problem for \mathcal{R} decidable, because root rewriting TRSs are still Turing powerful. In fact, we can define an automaton with two pushdown stacks (which is Turing powerful) as a left-linear root rewriting TRS by encoding a state of the finite control as a root symbol q with arity 2 and each of the two stacks as each argument of q. The reason why root rewriting TRSs are Turing powerful is unrestricted information flow between different arguments of a function symbol such as q above. We introduce a subclass of TRS, called LL-GG-TRS, in which the information of (function symbol in) an argument is never shifted to another argument, and show that if an LL-GG-TRS \mathcal{R} is post-PR (or pre-PR), then LTL model checking for \mathcal{R} is decidable. For positions p_1, p_2 , we define the least common ancestor $p_1 \sqcup p_2$ as the longest common prefix of p_1 and p_2 .

Definition 5. (Left-Linear Generalized-Growing TRS (LL-GG-TRS)) A left-linear rule $l \to r$ is generalized-growing, if every two different variables $x, y \in Var(l) \cap Var(r)$ satisfy the following condition: For the positions o_l^x, o_l^y of x, y in l and for each positions $o_r^x \in Pos(r, x), o_r^y \in Pos(r, y)$ of x, y in r,

$$|o_l^x| - |o_l^x \sqcup o_l^y| \ \le \ |o_r^x| - |o_r^x \sqcup o_r^y|, \ and \ |o_l^y| - |o_l^x \sqcup o_l^y| \ \le \ |o_r^y| - |o_r^x \sqcup o_r^y|.$$

 \mathcal{R} is left-linear generalized-growing (LL-GG), if every rule in TRS \mathcal{R} is left-linear and generalized-growing.

Obviously, an LL-G-TRS (see Sect. 2.2) is always an LL-GG-TRS.

Example 1. Consider $\mathcal{R}_1 = \{ f(g(x,y)) \to f(h(y),x) \}$. The position of x is 11 in l and 2 in r, and the position of y is 12 in l and 11 in r. Since $11 \sqcup 12 = 1$ and

```
void main() {
L0:
         switch (random_integer) {
         case 0:
                                                  \mathcal{R}_2 = \{
L1:
             main();
                                                      L_0(x,y) \to L_1(x,y),
             break;
                                                      L_0(x,y) \rightarrow L_2(x,y),
         case 1:
                                                      L_0(x,y) \rightarrow L_5(x,y),
L2:
             try {
                                                                                       : seq
                                                      L_0(x,y) \to L_6(x,y),
L3:
                 main();
                                                      L_4(x,y) \to L_6(x,y),
             } catch (e) {
                                                      L_6(x,y) \to x
                                                                                       : ret
L4:
                 nop;
                                                                                       : throw
                                                      L_5(x,y) \to y
             }
                                                      L_1(x,y) \to L_0(L_6(x,y),y),
             break;
                                                                                       : call
                                                      L_3(x,y) \to L_0(L_6(x,y),y),
         case 2:
L5:
                                                      L_2(x,y) \rightarrow L_3(x,L_4(x,y))
                                                                                       : try-catch
             throw e;
                                                  }
L6:
         return;
     }
```

Fig. 1. A sample program with exception handling

 $2 \sqcup 11 = \lambda$, \mathcal{R}_1 is an LL-GG-TRS, but \mathcal{R}_1 is not an LL-G-TRS because variables x and y occur at depth 2 in l. On the other hand, $\mathcal{R}_1^{-1} = \{ f(h(y), x) \to f(g(x, y)) \}$ is not an LL-GG-TRS, since the difference of the depth of positions in l between y and the least common ancestor of x and y is larger than that in r.

Example 2. (Recursive Program with Exception Handling)

It is well-known that a program with recursive procedure can be naturally modeled as a PDS, and further in [21], a PDS model of Java-like programs including exception handling was proposed. In this model, the exception handling mechanism is implemented by adding extra control states and rules which represent low-level operations of the execution environment. On the other hand, in this example, we present an LL-GG-TRS model of recursive programs, which is closer to the behavioral semantics incorporated with exception handling in the source code level. For example, a Java-like program in the left half of Fig. 1 can be directly modeled as an LL-GG-TRS \mathcal{R}_2 shown in the right half. Note that the class LL-GG-TRS is properly wider than the class of PDSs w.r.t. strong bisimulation equivalence, and \mathcal{R}_2 is an example of LL-GG-TRS which has no strongly bisimilar PDS [18]. In a Java program, try-catch-throw statements are used for specifying exception handling. By the execution of a throw statement, an exception is propagated in the program. If an exception occurs within a try block, then the control immediately moves to the catch statement coupled with the try statement (with unwinding the control stack). From a program Prog including try-catch-throw statements, we can construct an LL-GG-TRS \mathcal{R} as follows. In \mathcal{R} , every term t has the form of $f(t_1, t_2)$ where f denotes the current program location of Prog, t_1 denotes the next state of t if a return statement is executed at t, and t_2 denotes the next state of t if an exception occurs at t. A constant symbol \square denotes the stack bottom. Every unit execution of Prog belongs to one

of the five types, **seq**, **call**, **ret**, **try-catch** and **throw**, and is translated into one of the following rules according to its type:

 $\begin{array}{c} \mathbf{seq:}\ current(x,y) \to succ(x,y),\\ \mathbf{call:}\ caller(x,y) \to callee(succ(x,y),y),\\ \mathbf{ret:}\ ret(x,y) \to x,\\ \mathbf{try\text{-}catch:}\ try(x,y) \to succ(x,catch(x,y)),\\ \mathbf{throw:}\ throw(x,y) \to y. \end{array}$

A seq rule and a call rule represent a sequential execution in a method and a method invocation, respectively. A try-catch rule represents the behavior of a try-catch block, where *succ* is the entry point of the try block and *catch* is the entry point of the catch block. A ret rule and a throw rule represent a return statement and a throw statement, respectively. It is interesting to recognize a symmetry between (call, ret) rules and (try-catch, throw) rules. Recall the program in Fig. 1. Since the statement at L2 is try, the entry point of the try block is L3, and the entry point of the catch block is L4, $L_2(x,y) \rightarrow L_3(x, L_4(x,y)) \in \mathcal{R}_2$.

In the following, we only consider root rewrite sequences consisting of ground terms. The first lemma for LL-GG-TRS states that for any root rewrite sequence σ if there exists a position o_0 in the first term t_0 of σ such that the depth of (a residual of) o_0 is never shortened in σ , then for every 'sufficiently deep' position p_0 in t_0 , every residual of p_0 never be contained in any redex. For a TRS \mathcal{R} , let $\max_v(\mathcal{R})$ be the maximum depth of positions of variables in the left-hand sides of rules in \mathcal{R} , and $\max_f(\mathcal{R})$ be the maximum depth of positions of function symbols in both sides of rules in \mathcal{R} . For a rewrite sequence $\sigma: t \to_{\mathcal{R}}^* t'$ and $p \in Pos(t)$, the set of residuals of p in σ , denoted as $Res(p, \sigma)$, is defined as follows. $Res(p, t \to_{\mathcal{R}}^0 t) = \{p\}$. Assume $t = l\theta \to_{\mathcal{R}} r\theta = t'$ for a rule $l \to r$ and a substitution θ .

$$Res(p, t \to_{\mathcal{R}} t') = \begin{cases} \{p'_1 p_2 \mid r_{|p'_1} = x\} \text{ if } p = p_1 p_2 \text{ and } l_{|p_1} = x \in Var(l), \\ \emptyset & \text{otherwise.} \end{cases}$$

For a rewrite sequence $t \to_{\mathcal{R}}^* t' \to_{\mathcal{R}} t''$, $Res(p, t \to_{\mathcal{R}}^* t' \to_{\mathcal{R}} t'') = \{p'' \mid p' \in Res(p, t \to_{\mathcal{R}}^* t') \text{ and } p'' \in Res(p', t' \to_{\mathcal{R}} t'')\}$. We abbreviate $Res(p, t \to_{\mathcal{R}}^* t')$ as Res(p, t') if the sequence $t \to_{\mathcal{R}}^* t'$ is clear from the context.

Lemma 2. Let \mathcal{R} be an LL-GG-TRS and $c = max_v(\mathcal{R}) + max_f(\mathcal{R}) + 1$. Also let $\sigma = t_0 \to_{\mathcal{R}} t_1 \to_{\mathcal{R}} \cdots \to_{\mathcal{R}} t_{k-1} \to_{\mathcal{R}} t_k \to_{\mathcal{R}} t_{k+1}$ of \mathcal{R} be a root rewrite sequence and $o_0 \in Pos(t_0)$ be a position. If there exists a position $o_i \in Res(o_0, t_i)$ such that $|o_0| \leq |o_i|$ for each $i(1 \leq i \leq k)$, then every position $p_0 \in Pos_{\geq c}(t_0)$ satisfies the following (a) and (b):

(a) For an arbitrary $p_k \in Res(p_0, t_k)$,

$$|p_k| - |o_k \sqcup p_k| \ge |p_0| - |o_0 \sqcup p_0|$$
 and $|p_k| > \max_f(\mathcal{R})$.

(b) For an arbitrary $s \in \mathcal{T}(\mathcal{F})$,

$$t_0[p_0 \leftarrow s] \to_{\mathcal{R}}^* t_{k+1}[Res(p_0, t_{k+1}) \leftarrow s].$$

Proof Sketch. (a) By induction on the length k of σ (see [18] for the detail). (b) By (a), each $p_i \in Res(p_0, t_i) (0 \le i \le k)$ satisfies $|p_i| > max_f(\mathcal{R})$. Hence, we can construct a rewrite sequence starting in $t_0[p_0 \leftarrow s]$, applying the rules in the same order as σ .

The next lemma states that for any infinite root rewrite sequence σ of an LL-GG-TRS and any term t_n in σ , one can find a term t_m after t_n such that every 'sufficiently deep' position in t_m does not affect the rewrite sequence after t_m .

Definition 6. (Longest-Living Position) Let $t_0 \to_{\mathcal{R}} t_1 \to_{\mathcal{R}} \cdots$ be a rewrite sequence and $o_0 \in Pos(t_0)$ be a position. The lifetime of o_0 (in t_0) is defined as k, if there exists k such that $Res(o_0, t_i) \neq \emptyset$ ($0 \le i \le k$) and $Res(o_0, t_i) = \emptyset$ (i > k). Otherwise ($Res(o_0, t_i) \neq \emptyset$ for any $i \ge 0$), the lifetime of o_0 is undefined. A position which has the maximum lifetime in t_0 is called the longest-living position, if the lifetime of every position in t_0 is defined.

Lemma 3. Let \mathcal{R} be an LL-GG-TRS and $c = max_v(\mathcal{R}) + max_f(\mathcal{R}) + 1$. If there exists an infinite root rewrite sequence $\sigma = t_0 \to_{\mathcal{R}} t_1 \to_{\mathcal{R}} \cdots$ of \mathcal{R} , then for any $n \geq 0$, there exists m > n such that for every $p_m \in Pos_{\geq c}(t_m)$, k > m and $s \in \mathcal{T}(\mathcal{F})$, $t_m[p_m \leftarrow s] \to_{\mathcal{R}}^* t_k[Res(p_m, t_k) \leftarrow s]$ holds.

Proof Sketch. Assume that there exists a position p_n in t_n of which the lifetime is undefined (the proof for the other case is given in [18]). Let p_i be the deepest residual of p_n in $t_i(i > n)$, and m be the minimum j(>n) such that $|p_j| \le |p_i|$ for each i(>j). Note that m is always defined since $t_n \to_{\mathcal{R}} t_{n+1} \to_{\mathcal{R}} \dots$ is an infinite sequence. Also, $t_m \to_{\mathcal{R}} t_{m+1} \to_{\mathcal{R}} \dots$ and p_m satisfy the hypothesis of Lemma 2. Hence, by Lemma 2(b), the lemma holds.

Definition 7. (Inclusion Order \supseteq_a) The inclusion order \supseteq_a w.r.t. constant a is the least relation satisfying the following condition:

- For any term t, $t \supseteq_a a$.
- If $t_1 \supseteq_a t'_1, t_2 \supseteq_a t'_2, \ldots t_n \supseteq_a t'_n$, then $f(t_1, t_2, \ldots, t_n) \supseteq_a f(t'_1, t'_2, \ldots, t'_n)$.

In the rest of this section, we assume a is a new constant which is not a member of \mathcal{F} . For a term $t \in \mathcal{T}(\mathcal{F} \cup \{a\})$, let $|t|_a$ denote |Pos(t,a)|. When a tuple of terms $\boldsymbol{\theta} = \langle \theta_1, \dots, \theta_n \rangle \in \mathcal{T}^n(\mathcal{F} \cup \{a\})$ is given where $n = |t|_a$, let $t\boldsymbol{\theta}$ denote $t[p_i \leftarrow \theta_i \mid 1 \leq i \leq n]$ for $Pos(t,a) = \{p_1, \dots, p_n\}$, by slightly abusing the notation. The following lemma states that every infinite root rewrite sequence of an LL-GG-TRS has a kind of cyclic property.

Lemma 4. Let \mathcal{R} be an LL-GG-TRS and $c = max_v(\mathcal{R}) + max_f(\mathcal{R}) + 1$. For an infinite root rewrite sequence $\sigma = t_0 \to_{\mathcal{R}} t_1 \to_{\mathcal{R}} \cdots$ of \mathcal{R} , there exist a term

 $t_{\rm R} \in \mathcal{T}(\mathcal{F} \cup \{a\})(n = |t_{\rm R}|_a)$ of which the depth is c or less and tuples of terms $\boldsymbol{\theta} \in \mathcal{T}^n(\mathcal{F} \cup \{a\}), \boldsymbol{\theta}' \in \mathcal{T}^n(\mathcal{F})$ such that $t_{\rm R} \in pre^*(\{t_{\rm R}\boldsymbol{\theta}\})$ and $t_0 \in pre^*(\{t_{\rm R}\boldsymbol{\theta}'\})$ hold.

Let $\mathcal{T}_G \subseteq \mathcal{T}(\mathcal{F} \cup \{a\})$ be a set of terms, which is downward-closed w.r.t \sqsubseteq_a . If terms in \mathcal{T}_G appear infinitely often in σ , then $t_R \in pre^*(\mathcal{T}_G \cap pre^+(\{t_R \theta\}))$ and $t_0 \in pre^*(\{t_R \theta'\})$ hold.

Proof. We define an infinite sequence $\sigma_0, \sigma_1, \sigma_2, \ldots$ of infinite sequences and a function $f: N \to N$ as follows (Fig. 2). The kth element of σ_i is denoted as $\sigma_i(k)$.

- -i=0: $\sigma_0=\sigma$.
- -i > 0: $f^i(0)$ is defined as m in Lemma 3 when infinite root rewrite sequence σ_{i-1} and $n = f^{i-1}(0)$ are given. $\sigma_i(k)$ is defined according to k as follows:
 - $k < f^i(0)$: $\sigma_i(k)$ is undefined.
 - $k = f^i(0)$:

$$\sigma_i(k) = \sigma_{i-1}(k)[Pos_{=c}(\sigma_{i-1}(k)) \leftarrow a]. \tag{3.1}$$

• $k > f^i(0)$: By the definition of $f^i(0)$, we can use Lemma 3 and obtain:

$$\sigma_{i-1}(f^i(0))[Pos_{=c}(\sigma_{i-1}(f^i(0))) \leftarrow a] \quad \rightarrow_{\mathcal{R}}^* \sigma_{i-1}(k)[\mathcal{P}^{i,k} \leftarrow a], \quad (3.2)$$

where:

$$\mathcal{P}^{i,k} = Res(Pos_{=c}(\sigma_{i-1}(f^i(0))), \sigma_{i-1}(k)) \subseteq Pos_{\geq (max_f(\mathcal{R})+1)}(\sigma_{i-1}(k)).$$

Now, let

$$\sigma_i(k) = \sigma_{i-1}(k)[\mathcal{P}^{i,k} \leftarrow a], \tag{3.3}$$

then (3.2) can be written as $\sigma_i(f^i(0)) \to_{\mathcal{R}}^* \sigma_i(k)$ by (3.1).

For the infinite sequence $\sigma_0, \sigma_1, \sigma_2, \ldots$,

$$\sigma_0(k) \supseteq_a \sigma_1(k) \supseteq_a \sigma_2(k) \supseteq_a \cdots \supseteq_a \sigma_j(k) \left(f^j(0) \le k < f^{j+1}(0) \right) \tag{3.4}$$

holds by (3.3). Now, we consider the infinite sequence $\sigma_1(f(0)), \sigma_2(f^2(0)), \ldots$ by picking up the 'diagonal' terms. Then, the depths of these terms are always c or less. By this fact, we can see that there exist an integer i and an infinite sequence $i < j_0 < j_1 < j_2 < \cdots$ of numbers such that for every $j_h(h \ge 0)$,

$$\sigma_i(f^i(0)) = \sigma_{j_h}(f^{j_h}(0)).$$
 (3.5)

By (3.4) and (3.5), $\sigma_i(f^i(0)) \sqsubseteq_a \sigma_i(f^{j_0}(0))$. Hence, for $t_R = \sigma_i(f^i(0))$, there exists $\boldsymbol{\theta} \in \mathcal{T}^n(\mathcal{F} \cup \{a\})$ such that $\sigma_i(f^{j_0}(0)) = t_R \boldsymbol{\theta}$. Since $\sigma_i(f^i(0)) \to_{\mathcal{R}}^* \sigma_i(f^{j_0}(0))$, $t_R \in pre^*(\{t_R \boldsymbol{\theta}\})$ holds. Similarly, by (3.4), we can obtain $\sigma_i(f^i(0))(=t_R) \sqsubseteq_a \sigma_0(f^i(0))(=t_R \boldsymbol{\theta}')$ for some $\boldsymbol{\theta}' \in \mathcal{T}^n(\mathcal{F})$, and thus $\sigma_0(0)(=t_0) \in pre^*(\{t_R \boldsymbol{\theta}'\})$ holds. By (3.1), the depth of t_R is c or less. Next, we consider the case that terms in \mathcal{T}_G appear infinitely often in σ . We can easily see that there exist integers l, m and $\sigma_0(l) \in \mathcal{T}_G$ such that $f^i(0) \leq l < f^{j_m}(0)$ holds. By (3.4), $\sigma_0(l) \sqsupseteq_a \sigma_i(l)$, and thus $\sigma_i(l) \in \mathcal{T}_G$ because \mathcal{T}_G is a downward-closed set. On the other hand, since $t_R = \sigma_i(f^i(0)) \to_{\mathcal{R}}^* \sigma_i(l) \to_{\mathcal{R}}^+ \sigma_i(f^{j_m}(0))$, we can obtain $\sigma_i(l) \in \mathcal{T}_G \cap pre^+(\{t_R \boldsymbol{\theta}\})$ and $t_R \in pre^*(\{\sigma_i(l)\})$ in a similar way to the above case. Hence, $t_R \in pre^*(\mathcal{T}_G \cap pre^+(\{t_R \boldsymbol{\theta}\}))$.

Fig. 2. Proof of Lemma 5: infinite sequence $\sigma_0, \sigma_1, \cdots$

Theorem 1. Let \mathcal{R} be an LL-GG-TRS and $c = max_v(\mathcal{R}) + max_f(\mathcal{R}) + 1$. Let $\mathcal{T}_G \subseteq \mathcal{T}(\mathcal{F} \cup \{a\})$ be a set of terms, which is upward-closed and downward-closed w.r.t \sqsubseteq_a . There exists an infinite root rewrite sequence of \mathcal{R} starting in t_0 in which terms in \mathcal{T}_G appear infinitely often if and only if there exist $t_R \in \mathcal{T}(\mathcal{F} \cup \{a\}) (|t_R|_a = n)$ of which the depth is c or less and tuples of terms e0 e1 e2 e3 e3, e4 e6 e7 e6 e7 e7 e8 such that e8 e9 pre*e9 e9 and e8 e9 and e9 and e9 e9 ost*e9 (e1 e9) hold.

Proof. The *only if* part of this theorem follows from Lemma 4.

The *if* part is proved as follows. If $t_0 \in pre^*(\{t_R\boldsymbol{\theta}'\})$ and $t_R \in pre^*(\mathcal{T}_G \cap pre^+(\{t_R\boldsymbol{\theta}\}))$, then there exists a term $t_G \in \mathcal{T}_G$ such that $t_R \in pre^*(\{t_G\})$ and $t_G \in pre^+(\{t_R\boldsymbol{\theta}\})$ hold. By these facts, we can construct infinite root rewrite sequence $t_0 \to_{\mathcal{R}}^* t_R\boldsymbol{\theta}' \to_{\mathcal{R}}^* t_G\boldsymbol{\theta}' \to_{\mathcal{R}}^+ t_R\boldsymbol{\theta}\boldsymbol{\theta}' \to_{\mathcal{R}}^+ t_R\boldsymbol{\theta}^2\boldsymbol{\theta}' \to_{\mathcal{R}}^+ \cdots$, where $\boldsymbol{\theta}' = \langle \theta'_1, \dots, \theta'_n \rangle$ and $\boldsymbol{\theta}\boldsymbol{\theta}'$ is a term obtained by replacing a in $\boldsymbol{\theta}$ by one of $\theta'_1, \dots, \theta'_n$. Since $t_G\boldsymbol{\theta}^n\boldsymbol{\theta}' \sqsubseteq_a t_G$ and \mathcal{T}_G is upward-closed, $t_G\boldsymbol{\theta}^n\boldsymbol{\theta}' \in \mathcal{T}_G$. Therefore, terms in \mathcal{T}_G appear infinitely often in the above sequence.

Theorem 2. Let \mathcal{R} be an LL-GG-TRS, $t_0 \in \mathcal{T}(\mathcal{F})$, ϕ be an LTL formula, ν be a simple valuation. There exists a term $t_R \in \{q(t') \mid q \in \mathcal{Q}_{\mathcal{B}}, t' \in \mathcal{T}(\mathcal{F} \cup \{a\})\}$ of which the depth is c or less, and

$$\mathcal{R}, t_0 \not\models^{\nu} \phi \Leftrightarrow t_{\mathrm{R}} \in pre^*_{[\mathcal{BR}^{\nu}]}(\mathcal{T}_{\mathrm{acc}} \cap pre^+_{[\mathcal{BR}^{\nu}]}(\mathcal{T}'_{\mathrm{R}})) \ and \ q_{0\mathcal{B}}(t_0) \in pre^*_{[\mathcal{BR}^{\nu}]}(\mathcal{T}_{\mathrm{R}})$$
$$\Leftrightarrow post^+_{[\mathcal{BR}^{\nu}]}(post^*_{[\mathcal{BR}^{\nu}]}(\{t_{\mathrm{R}}\}) \cap \mathcal{T}_{\mathrm{acc}}) \cap \mathcal{T}'_{\mathrm{R}} \neq \emptyset$$
$$and \ \mathcal{T}_{\mathrm{R}} \cap post^*_{[\mathcal{BR}^{\nu}]}(\{q_{0\mathcal{B}}(t_0)\}) \neq \emptyset,$$

where \mathcal{B} is a Büchi automaton representing $\neg \phi$, $q_{0\mathcal{B}}$ and $\mathcal{Q}^{acc}_{\mathcal{B}}$ are the initial state and accepting states of \mathcal{B} , $\mathcal{T}_{acc} = \{q_a(t) \mid q_a \in \mathcal{Q}^{acc}_{\mathcal{B}}, t \in \mathcal{T}(\mathcal{F} \cup \{a\})\}$, $\mathcal{T}_R = \{t_R \boldsymbol{\theta} \mid \boldsymbol{\theta} \in \mathcal{T}^n(\mathcal{F})\}$, $\mathcal{T}_R' = \{t_R \boldsymbol{\theta} \mid \boldsymbol{\theta} \in \mathcal{T}^n(\mathcal{F} \cup \{a\})\}$.

Proof. If \mathcal{R} is an LL-GG-TRS, then \mathcal{BR}^{ν} is also an LL-GG-TRS. \mathcal{T}_{acc} is upward-closed and downward-closed w.r.t \sqsubseteq_a . Therefore, by Lemma 1 and Theorem 1, the theorem holds.

Corollary 1. Let \mathcal{R} be an LL-GG-TRS, $t_0 \in \mathcal{T}(\mathcal{F})$, ϕ be an LTL formula, ν be a simple valuation. If \mathcal{BR}^{ν} is pre-PR or post-PR, then \mathcal{R} , $t_0 \models^{\nu} \phi$ is decidable.

Proof. The corollary follows from the facts that the number of candidates for t_R in Theorem 2 is finite, that we can construct TAs which recognize \mathcal{T}_{acc} , $\{q_{0\mathcal{B}}(t_0)\}$, \mathcal{T}_R and \mathcal{T}'_R .

4 Computing pre^*

By Corollary 1, if an LL-GG-TRS \mathcal{R} is post-PR or pre-PR, then LTL model checking for \mathcal{R} is decidable. Unfortunately, an LL-GG-TRS is not always post-PR. For example, $\mathcal{R} = \{f(x,y) \to f(g(x),g(y))\}$ is an LL-GG-TRS. However, $post_{\mathcal{R}}^+(\{f(a,a)\})$ is not recognizable and thus \mathcal{R} is not post-PR. It is unknown whether every LL-GG-TRS is pre-PR. In this section, we propose a decidable subclass of pre-PR TRS. Let \mathcal{R} be a TRS. By the definition of pre-PR, for a given TA \mathcal{A} , if we can extend \mathcal{A} so that $t \to_{\mathcal{R}} s \in pre_{\mathcal{R}}^*(\mathcal{L}(\mathcal{A}))$ implies $t \in pre_{\mathcal{R}}^*(\mathcal{L}(\mathcal{A}))$ (backward closedness w.r.t. $\to_{\mathcal{R}}$) then \mathcal{R} is pre-PR. This requires us to add to \mathcal{A} new states and transition rules to satisfy the condition that $t \to_{\mathcal{R}} s \vdash_{\mathcal{A}}^* q$ implies $t \vdash_{\mathcal{A}}^* q$. For example, let $f(g(x,y)) \to g(h(y),x) \in \mathcal{R}$, t = f(g(a,b)), s = f(h(b),a), and $s \vdash_{\mathcal{A}}^* f(h(q_2),q_1) \vdash_{\mathcal{A}}^* q$ for states q_1,q_2 and q of a TA \mathcal{A} . Note that $t \to_{\mathcal{R}} s$ with substitution $\theta = \{x \mapsto a, y \mapsto b\}$. Then, we add the following states and transition rules to \mathcal{A} so that $t \vdash_{\mathcal{A}}^* q$.

```
states: \langle g(q_1, q_2) \rangle, \langle f(g(q_1, q_2)) \rangle.
rules: g(q_1, q_2) \rightarrow \langle g(q_1, q_2) \rangle, f(\langle g(q_1, q_2) \rangle) \rightarrow \langle f(g(q_1, q_2)) \rangle, \langle f(g(q_1, q_2)) \rangle \rightarrow q.
```

That is, we use a subterm of the left-hand side of the rewrite rule as a state to keep track of the position where the head of \mathcal{A} is located. However, states substituted into variables such as q_1, q_2, q above may recursively be subterms, and hence the above construction does not always halt. The condition for a TRS \mathcal{R} to be an LL-SPO-TRS stated below is a condition for \mathcal{R} not to have a kind of overlapping between subterms of rewrite rules, which guarantees that the above construction always halts.

4.1 LL-SPO-TRS

For an ordinary rewrite relation not limited to root rewriting, LL-FPO⁻¹-TRS is known as a decidable subclass of pre-PR TRS (see Sect. 2.2). Based on the definition of LL-FPO⁻¹-TRS, we define a new subclass called LL-SPO-TRS and show that every LL-SPO-TRS is pre-PR with respect to root rewriting.

Definition 8. (Sticking Out Relation)

Let s and t be terms in $\mathcal{T}(\mathcal{F}, \mathcal{V})$. We say s sticks out of t if $t \notin \mathcal{V}$ and there exists a position $o_{var} \in Pos(t)$ (lab $(t, o_{var}) \in \mathcal{V}$) such that

- for any positions o $(\lambda \leq_{pref} o \prec_{pref} o_{var})$, $o \in Pos(s)$ and lab(s, o) = lab(t, o), and
- $-o_{var} \in Pos(s)$ and $s_{|o_{var}}$ is not a ground term.

When the position o_{var} is of interest, we say that s sticks out of t at o_{var} . If s sticks out of t at o_{var} and $lab(s, o_{var})$ is not a variable, then we say that s properly sticks out of t (at o_{var}).

For example, f(g(x), a) sticks out of f(g(y), b) at 11 and f(g(g(x)), a) properly sticks out of f(g(y), b) at 11. Remember that a configuration of a PDS is a pair $\langle q, w \rangle$ of a control location (finite control) q and a sequence w of symbols stored in the pushdown stack. In the rest of this section, we assume that a signature \mathcal{F} is decomposed into Π and Σ , that is, $\mathcal{F} = \Pi \cup \Sigma$ and $\Pi \cap \Sigma = \emptyset$. For each $\pi \in \Pi$, we assume $arity(\pi) = 1$. Each $\pi \in \Pi$ is called a control symbol and each $f \in \Sigma$ is called a data symbol.

Definition 9. (Simply Path Overlapping TRS (SPO-TRS))

A TRS \mathcal{R} is SPO if every rule in \mathcal{R} has the form either $\pi_1(l) \to \pi_2(r)$, $\pi_1(l) \to r$ or $l \to r$ where $\pi_1, \pi_2 \in \Pi$ and $l, r \in \mathcal{T}(\Sigma, \mathcal{V})$, and the sticking-out graph $G_{\mathcal{R}}$ of \mathcal{R} has no cycle with weight one or more. The sticking-out graph of a TRS \mathcal{R} is a weighted directed graph $G_{\mathcal{R}} = (\mathcal{R}, E)$. Let $v_1 \stackrel{i}{\to} v_2$ denote a directed edge from a node v_1 to a node v_2 with weight i. E is defined as follows. Let $v_1 : l_1 \to r_1$ (or $\pi_{11}(l_1) \to r_1$ or $\pi_{11}(l_1) \to \pi_{12}(r_1)$) and $v_2 : l_2 \to r_2$ (or $\pi_{21}(l_2) \to r_2$ or $\pi_{21}(l_2) \to \pi_{22}(r_2)$) be rules in \mathcal{R} . Replace each variable in $Var(l_1) \setminus Var(r_1)$ or $Var(l_2) \setminus Var(r_2)$ with a constant not in \mathcal{F} , say \diamond .

- (1) If l_1 properly sticks out of r_2 , then $v_1 \stackrel{1}{\rightarrow} v_2 \in E$.
- (2) If r_2 sticks out of l_1 , then $v_1 \stackrel{0}{\rightarrow} v_2 \in E$.

If \mathcal{R} is an LL-SPO-TRS, then for any TA \mathcal{A} , we can construct a TA \mathcal{A}_* such that $\mathcal{L}(\mathcal{A}_*) = pre_{\mathcal{R}}^*(\mathcal{L}(\mathcal{A}))$ (see [18]). That is, every LL-SPO-TRS is pre-PR.

Theorem 3. For every recognizable tree language L and LL-SPO-TRS \mathcal{R} , $pre_{\mathcal{R}}^*(L)$ is also recognizable.

Corollary 2. Assume $t_0 \in \mathcal{T}(\mathcal{F})$, ϕ is an LTL formula and ν is a simple valuation. If $\mathcal{R} \in LL\text{-}GG\text{-}TRS \cap SPO\text{-}TRS$, then $\mathcal{R}, t_0 \models^{\nu} \phi$ is decidable.

Proof. Let $\mathcal{B} = (\mathcal{Q}_{\mathcal{B}}, \mathcal{L}_{\mathcal{B}}, \mathcal{Q}_{\mathcal{B}}, q_{0\mathcal{B}}, \mathcal{Q}_{\mathcal{B}}^{acc})$ be a Büchi automaton representing $\neg \phi$ and Π be the set of control symbols of \mathcal{R} . Consider the construction of Büchi TRS \mathcal{BR}^{ν} from \mathcal{R} , \mathcal{B} and ν . If \mathcal{R} is an SPO-TRS, then by constructing $\langle q, p \rangle(l) \rightarrow \langle q', p' \rangle(r) \in \mathcal{BR}^{\nu}$ instead of $q(p(l)) \rightarrow q'(p'(r)) \in \mathcal{BR}^{\nu}$ for each rule $p(l) \rightarrow p'(r) \in \mathcal{R}$ $(p, p' \in P)$, \mathcal{BR}^{ν} becomes an SPO-TRS. By Corollary 1 and Theorem 3, \mathcal{R} , $t_0 \models^{\nu} \phi$ is decidable.

4.2 Application

As mentioned in Sect. 3, we can model a recursive program with exception handling by an LL-GG-TRS. If the LL-GG-TRS is always an SPO-TRS, then

Fig. 3. The relation between TRS subclasses

LTL model checking for the TRS is decidable. Recall \mathcal{R}_2 in Example 2. Since for any two rules $l_1 \to r_1$ and $l_2 \to r_2$ in \mathcal{R}_2 , l_1 never properly sticks out of r_2 , \mathcal{R}_2 is an SPO-TRS. Similarly, we can easily see that every LL-GG-TRS constructed by the method in Example 2 is always an SPO-TRS. Thus, LTL model checking problem is decidable for recursive programs with exception handling.

5 Conclusion

In this paper, we introduced two classes of TRS, LL-GG-TRS and SPO-TRS, and showed that for a TRS in LL-GG-TRS \cap SPO-TRS, LTL model checking is decidable. Since every PDS is a member of LL-GG-TRS \cap SPO-TRS, this model checking is considered as an extension of LTL model checking for PDS. In fact, a recursive program with exception handling can be modeled as a TRS to which this model checking method can be applied and to which no PDS is strongly bisimilar.

We can reduce some decision problems of TRS to LTL model checking problems. For example, let ν be a regular valuation and α_{NF} be an atomic proposition such that $\nu(\alpha_{NF}) = \text{NF}_{\mathcal{R}}$. Whether there exists no infinite rewrite sequence starting in t_0 (strongly normalizing) is checked by $\mathcal{R}, t_0 \models^{\nu} \diamondsuit(\alpha_{NF})$, and whether there exists a finite rewrite sequence starting in t_0 (weakly normalizing) is checked by $\mathcal{R}, t_0 \not\models^{\nu} \Box(\neg \alpha_{NF})$.

The following problems remain as future study:

- finding a wider subclass of TRS in which LTL model checking is solvable,
- developing an efficient LTL model checking method w.r.t. regular valuation,
- and finding other applications of this model checking method.

Acknowledgments. The authors would like to thank Professor Igor Walukiewicz of Université Bordeaux I for his valuable comments and discussions.

References

- F. Baader and T. Nipkow: Term Rewriting and All That, Cambridge University Press, 1998.
- 2. E.M. Clarke, O. Grumberg and D. Peled: Model Checking, MIT Press, 2000.
- J.L. Coquidé, M. Dauchet, R. Gilleron and S. Vágvölgyi: Bottom-up tree pushdown automata: classification and connection with rewrite systems, *Theoretical Computer Science*, 127, 69–98, 1994.
- J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Păsăreanu, Robby and H. Zheng: Bandera: Extracting finite-state models from Java source code, Int'l Conf. on Software Engineering, 439–448, 2000.
- J. Esparza, D. Hansel, P. Rossmanith and S. Schwoon: Efficient algorithms for model-checking pushdown systems, CAV2000, LNCS 1855, 232–247, 2000.
- J. Esparza, A. Kučera and S. Schwoon: Model-checking LTL with regular variations for pushdown systems, TACS01, LNCS 2215, 316–339, 2001.
- J. Esparza and S. Schwoon: A BDD-based model checker for recursive programs, CAV2001, LNCS 2102, 324–336, 2001.
- 8. F. Gécseq and M. Steinby: Tree Automata, Académiai Kiadó, 1984.
- 9. R. Gilleron: Decision problems for term rewriting systems and recognizable tree languages, STACS'91, LNCS 480, 148–159, 1991.
- R. Gilleron and S. Tison: Regular tree languages and rewrite systems, Fundamenta Informaticae, 24, 157–175, 1995.
- S. Graf and H. Saidi: Construction of abstract state graphs with PVS, CAV97, LNCS 1254, 72–83, 1997.
- P. Gyenizse and S. Vágvölgyi: Linear generalized semi-monadic rewrite systems effectively preserve recognizability, *Theoretical Computer Science*, 194, 87–122, 1998.
- T. Jensen, D. Le Métayer and T. Thorn: Verification of control flow based security properties, IEEE Symp. on Security and Privacy, 89–103, 1999.
- S. Jha and T. Reps: Analysis of SPKI/SDSI certificates using model checking, IEEE Computer Security Foundations Workshop, 129–144, 2002.
- 15. C. Löding: Model-checking infinite systems generated by ground tree rewriting, FOSSACS, LNCS 2303, 280–294, 2002.
- 16. R. Mayr: Process rewrite systems, Inform. & Comput., 156, 264-286, 1999.
- T. Nagaya and Y. Toyama: Decidability for left-linear growing term rewriting systems, RTA99, LNCS 1631, 256–270, 1999.
- N. Nitta and H. Seki: An extension of pushdown system and its model checking method, Technical Report, Nara Institute of Science and Technology, 2003.
- N. Nitta, Y. Takata and H. Seki: Security verification of programs with stack inspection, 6th ACM Symp. on Access Control Models and Technologies, 31–40, 2001.
- N. Nitta, Y. Takata and H. Seki: An efficient security verification method for programs with stack inspection, 8th ACM Conf. on Computer and Communication Security, 68–77, 2001.
- J. Obdržálek: Model checking Java using pushdown systems, ECOOP Workshop on Formal Techniques for Java-like Programs, 2002.
- 22. http://www.pobox.com/~cme/spki.txt
- T. Takai, Y. Kaji and H. Seki: Right-linear finite path overlapping term rewriting systems effectively preserve recognizability, RTA2000, LNCS 1833, 246–260, 2000.
- 24. I. Walukiewicz: Pushdown processes: Games and model-checking, CAV96, LNCS 1102, 62–74, 1996.