098311 Optimization 1 Spring 2018 HW 1

Chen Tessler 305052680 Orr Krupnik 302629027

April 9, 2018

Problem 1. Prove that the induced ℓ_{∞} norm of $A \in \mathbb{R}^{m \times n}$ is given by

$$||A||_{\infty} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |A_{i,j}|$$

Solution By definition,

$$||A||_{\infty} = ||A||_{\infty,\infty} = \max_{x} \{||Ax||_{\infty} : ||x||_{\infty} \le 1\}$$
$$= \max_{x} \left\{ \max_{i=1,\dots,m} \left\{ \sum_{j=1}^{n} |A_{i,j}x_{j}| \right\} : ||x||_{\infty} \le 1 \right\}$$

Notice that the \max_x operation is performed over a weighted sum of rows in A. Since we are limited by $||x||_{\infty} \leq 1$, for any row the maximal value is received when $x = \mathbf{e}$. Plugging this in, we get:

... =
$$\max_{i=1,...,m} \left\{ \sum_{j=1}^{n} |A_{i,j} \mathbf{e}_j| \right\} = \max_{i=1,...,m} \sum_{j=1}^{n} |A_{i,j}|$$

Problem 2. Prove that for any $x \in \mathbb{R}^n$, it holds that:

$$||x||_{\infty} = \lim_{p \to \infty} ||x||_p$$

Solution Let us define $x^* = \max_{j=1,...,n} |x_j|$ By definition of $||\cdot||_p$, we have:

$$\lim_{p \to \infty} ||x||_p = \lim_{p \to \infty} \sqrt[p]{\sum_{i=1}^n |x_i|^p}$$

Additionally, we have that:

$$|x^*| = \sqrt[p]{|x^*|^p} \le \sqrt[p]{\sum_{i=1}^n |x_i|^p} \le \sqrt[p]{\sum_{i=1}^n |x^*|^p} = \sqrt[p]{n|x^*|^p} = \sqrt[p]{n}|x^*|$$

Therefore, since $\lim_{p\to\infty} \sqrt[p]{n}|x^*| = |x^*|$, we can use the Sandwich Theorem and attain:

$$\lim_{p \to \infty} ||x||_p = |x^*| = \max_{j=1,\dots,n} |x_j| \equiv ||x||_{\infty}$$

Problem 3.

a) Suppose that R^m and R^n are equipped with norms $||\cdot||_a$ and $||\cdot||_b$ respectively. Prove the formula:

$$||A||_{a,b} = \max_{x} \{||Ax||_b : ||x||_a = 1\}$$

b) Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times k}$, and assume \mathbb{R}^m , \mathbb{R}^n and \mathbb{R}^k are equipped with the norms $||\cdot||_c$, $||\cdot||_b$ and $||\cdot||_a$ respectively. Prove the following relation:

$$||AB||_{a,c} \le ||A||_{b,c}||B||_{a,b}$$

Solution

a) We note first that for the case of $A = 0^{m \times n}$, the formula holds trivially. Therefore, for the remainder of our proof, we assume A has at least one non-zero element. By definition,

$$||A||_{a,b} = \max_{x} \{||Ax||_{b} : ||x||_{a} \le 1\} = \max_{x} \left\{ \sqrt[b]{\sum_{i=1}^{n} |(Ax)_{i}|^{b}} : \sqrt[a]{\sum_{i=1}^{n} |x_{i}|^{a}} \le 1 \right\}$$

Let us assume the solution for the above optimization problem is some \hat{x} , which satisfies $||\hat{x}|| < 1$. In this case, we will have:

$$||A||_{a,b} = ||A\hat{x}||_b$$

However, let us define $\hat{x}^{\epsilon} = \hat{x} + \epsilon \cdot \mathbf{e}_k$ for some $1 \leq k \leq n$ (for which $\exists i : |A_{i,k}| > 0$) and $\epsilon > 0$, such that $||\hat{x}^{\epsilon}|| \leq 1$. In this case, we have:

$$||A\hat{x}||_b = \sqrt[b]{\sum_{i=1}^n |(A\hat{x})_i|^b} < \sqrt[b]{\sum_{i=1}^n |(A\hat{x}^\epsilon)_i|^b} = ||A\hat{x}^\epsilon||_b$$

The above is contrary to our assumption that \hat{x} is the value of x which maximizes $\max_x\{||Ax||_b:||x||_a \leq 1\}$. Therefore, we must select x for which $||x||_a = 1$ to solve the optimization problem, and we get

$$||A||_{a,b} = \max_{a} \{||Ax||_b : ||x||_a = 1\}$$

b) We define $x_* = \max_x \{ ||ABx||_c : ||x||_a = 1 \}$. Using the formula we have proven in sec. (a), we can write:

$$||AB||_{a,c} = \max_{x} \{||ABx||_{c} : ||x||_{a} = 1\} = ||ABx_{*}||_{c}$$

$$\stackrel{(1)}{\leq} ||A||_{b,c}||Bx_{*}||_{b} \stackrel{(2)}{\leq} ||A||_{b,c}||B||_{a,b}||x_{*}||_{a}$$

$$= ||A||_{b,c}||B||_{a,b}$$

Where (1), (2) both use the inequality from lec. 1 slide 9: $||Ax||_b \leq ||A||_{a,b}||x||_a$.

Problem 4. Let $A \in \mathbb{R}^{m \times n}$. Prove that:

a)
$$||A||_F^2 = \sum_{i=1}^n \lambda_i(A^T A)$$

b)
$$||A||_2 \le ||A||_F \le \sqrt{\min\{m, n\}} ||A||_2$$

c)
$$||A||_2^2 \le ||A||_1 ||A||_{\infty}$$

Solution

a) We use the definition of the Frobenius norm:

$$||A||_F^2 = \sum_{i=1}^n \sum_{j=1}^m A_{i,j}^2 = \sum_{i=1}^n \sum_{j=1}^m A_{j,i}^T A_{i,j} \stackrel{(1)}{=}$$
$$= \sum_{i=1}^n (A^T A)_{i,i} = tr(A^T A) = \sum_{i=1}^n \lambda_i (A^T A)$$

Where (1) arises directly from the structure of A^TA by the rules of matrix multiplication: $(A^TA)_{i,k} = \sum_{j=1}^m A_{j,i}^T A_{k,j}$.

b) By definition, and using the equality we have proven in the previous section:

$$||A||_2 = \sqrt{\lambda_{max}(A^T A)} \le \sqrt{\sum_{i=1}^n \lambda_i(A^T A)} = ||A||_F$$

The above holds, since A^TA is a positive semi-definite matrix ($\forall x \in \mathbb{R}^n$, $x^TA^TAx = (Ax)^TAx \geq 0$), and therefore has only non-negative eigenvalues (see below). Additionally, A^TA has a rank of $min\{m,n\}$, and consequentially, at most $min\{m,n\}$ non-zero eigenvalues. This gives us:

$$||A||_{F} = \sqrt{\sum_{i=1}^{n} \lambda_{i}(A^{T}A)} = \sqrt{\sum_{i=1}^{\min\{m,n\}} \lambda_{i}(A^{T}A)} \le \sqrt{\sum_{i=1}^{\min\{m,n\}} \lambda_{\max}(A^{T}A)} = \sqrt{\min\{m,n\}} ||A||_{2}$$

Proving the non-negativity of the eigenvalues of A^TA is as follows:

For every eigenvector x_i of the matrix A^TA , we have that $A^TAx_i = \lambda_i x_i$. Multiplying by x_i^T we have: $\lambda_i x_i^T x_i = x_i^T A^T A x_i \geq 0$ (since A^TA is positive semi-definite). Finally, $x_i^T x_i$ is a non-negative scalar for any vector x_i , so in order to maintain the inequality, we require $\forall i$, $\lambda_i \geq 0$.

c) We begin by showing that $||A||_2^2 \le ||A^T A||_1$: By definition:

$$||A^{T}A||_{1} = \max_{x} \{||A^{T}Ax||_{1} : ||x||_{1} = 1\} \stackrel{(a)}{=} ||A^{T}Ax_{*}||_{1} \stackrel{(b)}{\geq} ||A^{T}Av||_{1}$$

$$\stackrel{(c)}{=} ||\lambda_{max}(A^{T}A)v||_{1} = |\lambda_{max}(A^{T}A)| \cdot ||v||_{1} \geq \lambda_{max}(A^{T}A)||v||_{1}$$

$$= \lambda_{max}(A^{T}A) \stackrel{(d)}{=} ||A||_{2}^{2}$$

Where:

(a) is by defining x_* as the optimal $x \in \{x : ||x||_1 = 1\}$ which maximizes $||A^T A x||_1$.

(b) since v is some $v \in \{x : ||x||_1 = 1\}$ and (c) by selecting v such that $A^T A v = \lambda_{max}(A^T A)v$ which exists since $A^T A$ is a symmetric matrix.

(d) follows by definition of $||\cdot||_2$ as seen in class.

Finally we now show that $||A^T||_1 = ||A||_{\infty}$ which will conclude our proof.

$$||A^T||_1 = \max_{j'} \sum_{i'=1}^n |A_{i',j'}^T| = \max_{j'} \sum_{i'=1}^n |A_{j',i'}| \stackrel{(e)}{=} \max_i \sum_{j=1}^n |A_{i,j}| = ||A||_{\infty}$$

where (e) is by switching indices such that i = j' and j = i'.

Combining all parts of the proof conducted above, in addition to the proof from Problem 2(b), we get:

$$||A||_2^2 \le ||A^T A||_1 \le ||A^T ||_1 ||A||_1 = ||A||_{\infty} ||A||_1$$

Problem 5. Let $\{A_i\}_{i\in I}\subseteq\mathbb{R}^n$ be a collection of closed sets, where I is a given index set.

- a) Show that $\bigcap_{i \in I} A_i$ is a closed set.
- b) Show that if I is finite, then $\bigcup_{i \in I} A_i$ is closed.
- c) Is section (b) true for infinite index set I?

Solution

a) We denote $B = \bigcap_{i \in I} A_i$. By definition of an intersection over sets, any point in B must also exist in all intersecting sets $\{A_i\}_{i \in I}$. Given a converging sequence $\{x_i\}_{i=0}^{\infty} \subseteq B$ which converges to x_* , by definition of the intersection $\{x_i\}_{i=0}^{\infty} \subseteq A_i$, $\forall i \in I$.

However, each set A_i is a closed set which by definition entails that $x_* \in A_i$, $\forall i \in I$ which as shown above leads to the conclusion that $x_* \in B$.

We have shown that any convergence point of a sequence $\{x_i\}_{i=0}^{\infty} \subseteq B$ such that $x_i \xrightarrow{i \to \infty} x_*$ is contained in B $(x_* \in B) \Rightarrow B$ is a closed set.

b) We denote $C = \bigcup_{i \in I} A_i$. By definition, a set is closed if it contains all the limits of convergent sequences of vectors in the set. Lemma: For any sequence $\{x_i\}_{i=1}^{\infty} \subseteq C$ which converges to some point x_* , there exists some sub-sequence $\{x_{i_k}\}_{k=0}^{\infty} \subseteq A_j$ for some $j \in I$, which converges to x_* .

Proof of the Lemma: assume $\forall j \in I$ there does not exist any sub-sequence $\{x_{i_k}\}_{k=0}^{\infty} \subseteq A_j$, which converges to x_* . Then, for any $j \in I$, there exists some N_j for which $\forall n > N_j, x_n \notin A_j$. Notice that for $\bar{N} = \max_j N_j$, $\{x_n\}_{n=\bar{N}}^{\infty} \not\subseteq A_j \ \forall j \in I$ hence for $\bar{N} = \max_j N_j$, $\{x_n\}_{n=\bar{N}}^{\infty} \not\subseteq \bigcup_{j \in I} A_j = C$. This is a contradiction, since $\{x_i\}_{i=0}^{\infty} \subseteq C$ by definition.

Since A_j is closed, this means $x_* \in A_j$. By definition of C, this also means $x_* \in C$ for any such convergent series. By definition, C is closed.

c) Note that in section (b) we assume that any convergent sequence in C has some natural N for which $\{x_i\}_{i=N}^{\infty} \subseteq A_j$. This may not hold true for an infinite I. For instance, consider the collection of sets $A_i = \left[\frac{1}{i}, 1\right]$. The convergent set of points $x_n = \frac{1}{n}$, which is in the union, converges to 0 which is not in any of the sets A_i . Therefore, $\bigcup_{i \in I} A_i$ is not closed in this case.

Problem 6.

a) Let $f(x) = \max\{f_1(x), f_2(x), ..., f_m(x)\}$ where $f_i(x)$ is a differentiable function for all i = 1, ..., m. Show that for a given point $x \in \mathbb{R}^n$ and a nonzero vector $d \in \mathbb{R}^n$

$$f'(x;d) = \max_{i \in I_-} f'_i(x;d)$$

where $I_x = \{i \in \{1, ..., m\} : f_i(x) = f(x)\}.$

b) For any $x \in \mathbb{R}^n$ and any nonzero vector $d \in \mathbb{R}^n$, compute the directional derivative f'(x;d) of

$$f(x) = \ln(e^{x_1} + e^{x_2} + \dots + e^{x_n}) + \max\{||x - a||, ||x - b||\}$$

Where $a, b \in \mathbb{R}^n$

Solution

a) We begin by showing that $I_x \cap I_{x+td} \neq \emptyset$. If indeed $I_x \cap I_{x+td} = \emptyset$, this entails that $\exists f_*(x) \in \{f_1(x), f_2(x), ..., f_m(x)\}$ such that $f_*(x) \notin I_x$ and $f_*(x+td) \in I_{x+td}$. We denote $f(x) - f_*(x) = \epsilon$, note that $f(x+td) = f_*(x+td)$ and $f_*(x) < f(x)$.

$$0 = \left| f(x+td) - f_*(x+td) \right|$$

$$\stackrel{(a)}{=} \left| f(x) + \nabla f(x_*)^T t d + -(f_*(x) + \nabla f_*(x_{**})^T t d) \right|$$

$$= \left| f(x) - f_*(x) + (\nabla f(x_*) - \nabla f_*(x_{**}))^T t d) \right|$$

$$= \left| \epsilon + (\nabla f(x_*) - \nabla f_*(x_{**}))^T t d \right| \stackrel{t \to 0}{>} 0, \ \forall \epsilon > 0$$

where the final inequality is true, as for any bounded derivatives there exists a T > 0 such that for any 0 < t < T the above holds. Hence $\epsilon \equiv 0 \to f(x) = f_*(x)$ which in turn means that $I_x \cap I_{x+td} \neq \emptyset$. (a) is from the Linear Approximation Theorem where $x_*, x_{**} \in [x, x+td]$.

We now continue to prove $f'(x;d) = \max_{i \in I_x} f'_i(x;d)$. By definition,

$$f'(x;d) = \lim_{t \to 0^{+}} \frac{f(x+td) - f(x)}{t} = \lim_{t \to 0^{+}} \frac{\max_{i \in I, \dots, m} f_{i}(x+td) - \max_{i \in I, \dots, m} f_{i}(x)}{t}$$

$$\stackrel{(1)}{=} \lim_{t \to 0^{+}} \frac{\max_{i \in I_{x+td}} f_{i}(x+td) - \max_{i \in I_{x}} f_{i}(x)}{t}$$

$$\stackrel{(2)}{=} \lim_{t \to 0^{+}} \frac{\max_{i \in I_{x}} f_{i}(x+td) - \max_{i \in I_{x}} f_{i}(x)}{t}$$

$$\stackrel{(3)}{=} \max_{i \in I_{x}} f'_{i}(x;d)$$

Where (1) follows from the definition of I_x (and I_{x+td} respectively), (2) follows the fact that $I_x \cap I_{x+td} \neq \emptyset$ (see proof above) and (3) follows directly from the definition of f'(x;d).

b) We define

$$\bar{f}(x) = \max\{\ln(e^{x_1} + e^{x_2} + \dots + e^{x_n}) + ||x - a||, \ln(e^{x_1} + e^{x_2} + \dots + e^{x_n}) + ||x - b||\}$$

$$= \max\{\bar{f}_1(x), \bar{f}_2(x)\} = f(x)$$

Using the proof from section (a) we have that $\bar{f}'(x;d) = \max_{i \in I_x} \bar{f}'_i(x;d)$ where $I_x = \{i \in \{1,2\} : \bar{f}_i = \bar{f}(x)\}.$

$$\bar{f}(x) = f(x) = \begin{cases} \bar{f}_1(x) & ||x - a|| > ||x - b|| \\ \bar{f}_2(x) & else \end{cases}$$

$$= \ln(e^{x_1} + e^{x_2} + \dots + e^{x_n}) + \begin{cases} ||x - a|| & \text{, } ||x - a|| > ||x - b|| \\ ||x - b|| & \text{, } else \end{cases}$$

Denote $g(x) = \ln(e^{x_1} + e^{x_2} + ... + e^{x_n})$. Since $\forall x_i, e^{x_i} > 0$ and $\ln(\cdot)$ is defined and continuous for any positive input we can define the derivative through the gradient

$$g'(x;d) = \nabla g(x)^T d = \left(\frac{\partial g}{\partial x_1}(x), \frac{\partial g}{\partial x_2}(x), ..., \frac{\partial g}{\partial x_n}(x)\right) d$$

$$= \left(\frac{e^{x_1}}{e^{x_1} + e^{x_2} + ... + e^{x_n}}, \frac{e^{x_2}}{e^{x_1} + e^{x_2} + ... + e^{x_n}}, ..., \frac{e^{x_n}}{e^{x_1} + e^{x_2} + ... + e^{x_n}}\right) d$$

Also we denote $r(x) = ||x - c|| = \sqrt{(x - c)^T (x - c)} = \sqrt{x^T x - x^T c - c^T x + c^T c} = \sqrt{\sum_{i=1}^n (x_i^2 - x_i c_i - x_i c_i + c_i^2)}$ for some $c \in \mathbb{R}^n$

$$r'(x;d) = \nabla r(x)^T d = \left(\frac{\partial r}{\partial x_1}(x), \frac{\partial r}{\partial x_2}(x), ..., \frac{\partial r}{\partial x_n}(x)\right) d$$
$$= \left(\frac{2x_1 - c_1}{2r(x)}, \frac{2x_2 - c_2}{2r(x)}, ..., \frac{2x_n - c_n}{2r(x)}\right) d$$

due to linearity of the derivative operator, i.e. f' = (g + r)' = g' + r' we conclude

$$f'(x;d) = \left(\left(\frac{e^{x_1}}{e^{x_1} + e^{x_2} + \dots + e^{x_n}}, \frac{e^{x_2}}{e^{x_1} + e^{x_2} + \dots + e^{x_n}}, \dots, \frac{e^{x_n}}{e^{x_1} + e^{x_2} + \dots + e^{x_n}} \right) + \left(\frac{2x_1 - c_1}{2r(x)}, \frac{2x_2 - c_2}{2r(x)}, \dots, \frac{2x_n - c_n}{2r(x)} \right) \right) d$$

where $c = arg \max_{a,b} \{||x - a||, ||x - b||\}.$