Théorie de l'information, MA7W08EX : Examen du 28 juin 2018

Master Sciences et Technologies, mention Mathématiques ou Informatique, spécialité
Cryptologie et Sécurité informatique

Responsable: Gilles Zémor

Durée : 3h. Sans document. Les exercices sont indépendants.

- EXERCICE 1. On tire à pile ou face 4 fois de suite.
 - a) On appelle X_{12} le nombre de «face» obtenus au cours des lancers 1 et 2 et X_{23} le nombre de «face» obtenus au cours des lancers 2 et 3. Calculer l'information mutuelle $I(X_{12}, X_{23})$.
 - b) On appelle X_{123} le nombre de «face» obtenus au cours des trois premiers lancers et X_{234} le nombre de «face» obtenus au cours des trois derniers lancers. Calculer $I(X_{123}, X_{234})$.
- EXERCICE 2. Quelle est la plus petite valeur de p_1 pour laquelle l'algorithme de Huffman appliqué à la loi de probabilité $p_1 \geqslant p_2 \geqslant p_3 \geqslant p_4$ mène à l'arbre suivant?

- Exercice 3. Un joueur A jette deux dés : on note X la somme des deux faces.
 - a) Construire un code de Huffman pour X.
 - b) Un joueur B doit découvrir la valeur de X en posant à A des questions dont la réponse est «oui» ou «non». Une procédure est dite optimale si elle permet au joueur B de poser une suite de questions successives dont les réponses déterminent X, et telle que le nombre moyen de questions est minimum.
 - Quel est le nombre moyen de questions pour une procédure optimale?
 - Quelle est la première question de la procédure optimale?

- EXERCICE 4. Soit C un code linéaire binaire de paramètres [n,k,d]. Soit $I \subset \{1,2,\ldots,n\}$ l'ensemble des coordonnées nulles d'un mot de C de poids d. On considère le code poinçonné $C_{|I|}$ de support I et déduit de C, c'est-à-dire le code de longueur |I| = n d constitué de tous les mots $\mathbf{x}_{|I|} = (x_i)_{i \in I}$ déduits des mots $\mathbf{x} = (x_1, \ldots, x_n) \in C$.
 - a) Montrer que $C_{|I|}$ a pour paramètres [n-d, k-1, d'] avec $d' \ge d/2$.
 - b) En déduire qu'un code C de dimension 3 et de distance minimale d a une longueur au moins égale à $\frac{7}{4}d$.
 - c) Donner une borne inférieure sur la longueur n d'un code de dimension k et de distance minimale d.
- EXERCICE 5. Soit G la matrice génératrice d'un code linéaire binaire C de longueur n et de dimension k. On suppose que la matrice G ne contient pas de colonne tout à 0. Montrer que la somme des poids de tous les mots de C égale $n2^{k-1}$.
- EXERCICE 6. On considère un canal d'alphabet d'entrée et de sortie $\mathfrak{X}=\mathfrak{Y}=\{1,2,3,4,5\}$ et qui
 - transforme 5 en 5 avec probabilité 1,
 - pour $x \neq 5$ transforme x en x avec probabilité 1/2 et transforme x en x avec probabilité 1/2.

On appelle X et Y les variables d'entrée et de sortie. Soit p = P(X = 5).

- a) Calculer H(Y|X) en fonction de p.
- b) Pour toute valeur de p fixée, calculer le maximum de H(Y). On pourra écrire H(Y) = H(Y, Z) où Z est la variable de Bernoulli qui vaut 1 si X = 5 et 0 sinon.
- c) En déduire la capacité du canal. On rappelle que la dérivée de h(p) vaut $\log_2 \frac{1-p}{p}$.
- d) Décrire une méthode de codage simple permettant d'atteindre la capacité du canal sans faire d'erreur de décodage.
- Exercice 7. Soit C le code binaire de matrice génératrice

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}.$$

- a) Quels sont les paramètres de ce code?
- b) Montrer que ce code est uniquement décodable. Ceci veut dire que pour tout mot $\mathbf{y} \in \mathbb{F}_2^{10}$, il existe un unique mot de code \mathbf{c} qui minimise la distance $d(\mathbf{c}, \mathbf{y})$. On pourra utiliser une matrice de parité du code.