§5 Nullmengen

In diesem Paragraphen sei stets $\emptyset \neq X \in \mathfrak{B}_d$. Wir schreiben wieder λ statt λ_d .

Definition

Sei $N \in \mathfrak{B}_d$. N heißt eine (Borel-)Nullmenge, genau dann wenn $\lambda(N) = 0$ ist.

Beispiel

- (1) Ist $N \subseteq \mathbb{R}^d$ höchstens abzählbar, so ist $N \in \mathfrak{B}_d$ und $\lambda(N) = 0$.
- (2) Sei $j \in \{1, ..., d\}$ und $H_j := \{(x_1, ..., x_d) \in \mathbb{R}^d : x_j = 0\}$. Aus Beispiel (5) nach 2.7 folgt, dass H_j eine Nullmenge ist.

Lemma 5.1

Seien $M, N, N_1, N_2, \ldots \in \mathfrak{B}_d$.

- (1) Ist $M \subseteq N$ und N Nullmenge, dann ist M Nullmenge.
- (2) Sind alle N_j Nullmengen, so ist auch $\bigcup N_j$ eine Nullmenge.
- (3) N ist genau dann eine Nullmenge, wenn für alle $\varepsilon > 0$ offene Intervalle $I_1, I_2, \ldots \subseteq \mathbb{R}^d$ existieren mit $N \subseteq \bigcup I_j$ und $\sum_{j=1}^{\infty} \lambda(I_j) \leq \varepsilon$.

Beweis

- $(1) \ 0 \le \lambda(M) \le \lambda(N) = 0$
- (2) $0 \le \lambda(\bigcup N_j) \le \sum \lambda(N_j) = 0$
- (3) Folgt aus 2.10.

Bemerkung:

- (1) Q ist "klein": Q ist "nur" abzählbar.
- (2) \mathbb{Q} ist "groß": $\overline{\mathbb{Q}} = \mathbb{R}$
- (3) \mathbb{Q} ist "klein": $\lambda(\mathbb{Q}) = 0$

Definition

- (1) Sei (E) eine Eigenschaft für Elemente in X. (E) gilt **für fast alle** (ffa) $x \in X$, genau dann wenn (E) **fast überall** (fü) (auf X) gilt, genau dann wenn eine Nullmenge $N \subseteq X$ existiert, sodass (E) für alle $x \in X \setminus N$ gilt.
- $(2) \int_{\varnothing} f(x) \, \mathrm{d}x := 0$

5. Nullmengen

Satz 5.2

Seien $f: X \to \overline{\mathbb{R}}$ messbare Funktionen.

- (1) Ist f integrierbar, so ist f fast überall endlich.
- (2) Ist $f \ge 0$ auf X, so ist $\int_X f(x) dx = 0$ genau dann wenn fast überall f = 0.
- (3) Ist f integrierbar und $N \subseteq X$ eine Nullmenge, so gilt:

$$\int_{N} f(x) \, \mathrm{d}x = 0$$

Beweis

- (1) ist gerade 4.10.
- (2) ist gerade 4.5(3)
- (3) Setze $g := \mathbb{1}_N f$. Aus 4.11 folgt, dass g integrierbar ist, also ist nach 4.9 auch |g| integrierbar. Für $x \in X \setminus N$ gilt:

$$g(x) = |g(x)| = 0$$

D.h. |g|=0 fast überall. Aus (2) folgt damit $\int_X |g|\,dx=0$. Dann ist mit 4.11:

$$\left| \int_{X} g \, dx \right| \le \int_{X} |g| \, dx = 0$$

und somit $\int_X g \, dx = 0$.

Satz 5.3

 $f, g: X \to \overline{\mathbb{R}}$ seien messbar.

(1) Ist f integrierbar und gilt fast überall f = g, so ist g integrierbar und es gilt:

$$\int_X f \, dx = \int_X g \, dx$$

(2) Ist f integrierbar und $g:=\mathbbm{1}_{\{|f|<\infty\}}\cdot f,$ so ist g integrierbar und es gilt:

$$\int_X f \, dx = \int_X g \, dx$$

(3) Sind f und g beide ≥ 0 auf X, und ist fast überall f = g, so ist

$$\int_X f \, dx = \int_X g \, dx$$

Beweis

(1) Nach Voraussetzung existiert eine Nullmenge $N \subseteq X$, sodass gilt:

$$\forall x \in X \setminus N : f(x) = q(x)$$

Aus 5.2(3) folgt dann $\int_N f \, dx = 0$. Sei $x \in X \setminus N$ Dann gilt:

$$(\mathbb{1}_N|g|)(x) = \mathbb{1}_N(x) \cdot |g(x)| = 0$$

D.h.: Fast überall ist $\mathbb{1}_N|g|=0$. Aus 5.2(2) folgt $\int_N|g|\,dx=\int_X\mathbb{1}_N\cdot|g|\,dx=0$. Dann gilt:

$$\int_{X} |g| \, dx = \int_{X} \left(\mathbb{1}_{N} |g| + \mathbb{1}_{X \setminus N} |g| \right) \, dx$$

$$= \int_{X} \mathbb{1}_{N} |g| \, dx + \int_{X} \mathbb{1}_{X \setminus N} |g| \, dx$$

$$= \int_{X} \mathbb{1}_{X \setminus N} |g| \, dx$$

$$\leq \int_{Y} |f| \, dx \overset{4.9}{<} \infty$$

4.9 liefert nun, dass |q| und damit auch q integrierbar ist. Weiter gilt:

$$\int_{X} g \, dx \stackrel{4.12}{=} \int_{N} g \, dx + \int_{X \setminus N} g \, dx = \int_{X \setminus N} g \, dx$$

$$= \int_{X \setminus N} f \, dx \stackrel{5.2(3)}{=} \int_{N} f \, dx + \int_{X \setminus N} f \, dx$$

$$\stackrel{4.12}{=} \int_{X} f \, dx.$$

- (2) Setze $N := \{|f| = \infty\}$. Aus 5.2(1) folgt, dass N eine Nullmenge ist. Sei $x \in X \setminus N$, so ist $x \in \{|f| < \infty\}$ und g(x) = f(x). D.h. fast überall ist f = g. (Klar: g ist mb). Dann folgt die Behauptung aus (1).
- (3) Fall 1: $\int_X f dx < \infty$ Dann ist f integrierbar, damit ist nach (1) auch g integrierbar und es gilt:

$$\int_X f \, dx = \int_X g \, dx$$

Fall 2: $\int_X f dx = \infty$.

Annahme: $\int_X g \, dx < \infty$. Dann gilt nach Fall 1: $\int_X f \, dx < \infty$.

Definition

 (f_n) sei eine Folge von Funktionen $f_n: X \to \overline{\mathbb{R}}$.

- (1) (f_n) konvergiert fast überall (auf X) genau dann, wenn eine Nullmenge $N \subseteq X$ existiert, sodass für alle $x \in X \setminus N$ $(f_n(x))$ in $\overline{\mathbb{R}}$ konvergiert.
- (2) Sei $f: X \to \overline{\mathbb{R}}$. (f_n) konvergiert fast überall (auf X) gegen f genau dann, wenn eine Nullmenge $N \subseteq X$ existiert mit: $f_n(x) \to f(x) \forall x \in X \setminus N$ In diesem Fall schreiben wir: $f_n \to f$ fast überall.

Satz 5.4

Sei (f_n) eine Folge messbarer Funktionen $f_n: X \to \overline{\mathbb{R}}$ und (f_n) konvergiere fast überall (auf X). Dann:

- (1) Es existiert $f: X \to \overline{\mathbb{R}}$ messbar mit $f_n \to f$ fast überall.
- (2) Ist $g: X \to \overline{\mathbb{R}}$ eine Funktion mit $f_n \to g$ fast überall, so gilt f = g fast überall.

Bemerkung: Ist g wie in (2), so muss g nicht messbar sein (ein Beispiel gibt es in der Übung).

Beweis

(1) Es existiert eine Nullmenge $N_1 \subseteq X : (f_n(x))$ konvergiert in $\overline{\mathbb{R}}$ für alle $x \in X \setminus N_1$.

$$f(x) = \begin{cases} 0 & x \in N_1 \\ \lim_{n \to \infty} f_n(x) & x \in X \setminus N_1 \end{cases}$$

 $g_n:=\mathbbm{1}_{X\setminus N}\cdot f_n,\ g_n$ ist messbar und $g_n(x)\to f(x)$ für alle $x\in X.$ Mit 3.5 folgt: f ist messbar.

(2) Es existiert eine Nullmenge $N_2 \subseteq X$: $f_n(x) \to g(x) \, \forall x \in X \setminus N_2$. $N = N_1 \cup N_2$. Aus 5.1 folgt: N ist eine Nullmenge.

Für
$$x \in X \setminus N : f(x) = g(x)$$
.

Satz 5.5 (Satz von Beppo Levi (Version III))

Sei (f_n) eine Folge messbarer Funktionen $f_n: X \to [0, +\infty]$ und für jedes $n \in \mathbb{N}$ gelte: $f_n \leq f_{n+1}$ fast überall. Dann existiert eine messbare Funktion $f: X \to [0, +\infty]$ mit: $f_n \to f$ fast überall und

$$\int_X f \mathrm{d}x = \lim_{n \to \infty} \int_X f_n \mathrm{d}x$$

Beweis

Zu jedem $n \in \mathbb{N}$ existiert eine Nullmenge $N_n : f_n(x) \leq f_{n+1}(x) \forall x \in X \setminus N_n$. $N := \bigcup_{n=1}^{\infty} N_n$; Mit 5.1 folgt: N ist eine Nullmenge.

Dann: $f_n(x) \leq f_{n+1}(x) \forall x \in X \setminus N \forall n \in \mathbb{N}$.

 $\hat{f}_n := \mathbbm{1}_{X \setminus N} \cdot f_n, \, \hat{f}_n \text{ ist messbar, } \hat{f}_n \leq \hat{f}_{n+1} \text{ auf } X \text{ für alle } n \in \mathbb{N}.$

 $f(x) := \lim_{n \to \infty} \hat{f}_n(x) \, (x \in X); \, 3.5 \text{ liefert: } f \text{ ist messbar. Weiter: } \hat{f}_n \to f.$

$$\int_X f dx \stackrel{4.6}{=} \lim_{n \to \infty} \int_X \hat{f}_n dx \stackrel{5.3.(2)}{=} \lim_{n \to \infty} \int_X f_n dx$$