Generative and Multi-phase Learning for Computer Systems Optimization

Yi Ding, Nikita Mishra, Henry Hoffmann Department of Computer Science, University of Chicago

1. Introduction

Optimizing modern computer systems requires tradeoff:

- Deliver reliable performance
- Minimize energy consumption

Non-optimal points

Energy over optimal 22% X

Goodness of fit

Resource management via system configurations:

- Resources have complex, non-linear effects on performance and energy
- Resource interactions create local optimal

How to find the optimal system configuration?

C \(\{\text{Core assignment}\} \times \{\text{Clock speed assignment}\} \times \{\text{Memory controller}\} \\ \text{Clock Speed} \\ \text{Memory Controller} \\ \text{Cores} \\ \text{Cores}

Memory controller

Figure 1. Example of a Configuration Space

2. Problem Formulation

3. Motivational Example: SRAD on big.LITTLE system

True data

99%

Very far

0 🗸

4. Our Solution

Key Insight: High accuracy ≠ good system results

Machine learning to the rescue, but:

- Scarce data: expensive collection, limited range behavior Generative Model
- Asymmetric benefits: only configs on the optimal frontier useful Multi-phase Sampling

5. Recommender Systems —> Learn by Example

6. Generating Data for Accuracy

Goal: <u>different</u> enough but still <u>realistic</u> to be plausible How:

- Random number generator —- different but not plausible
- Gaussian Mixture Model (GMM) —- plausible but not different

7. Generating Data with a GMM

8. Multi-phase Sampling

9. Experimental Setup

	Mobile	Server
System	Ubuntu 14.04	Linux 3.2.0 system
Architecture	ARM big.LITTLE	Intel Xeon E5-2690
# Applications	21	22
# Configurations	128	1024

Learning Models	Category	Frame
MCGD	MC	Vanille
MCMF	MC	
Nuclear	MC	GM
WNNM	MC	MP
НВМ	Bayesian	MP-G

Frameworks	Definitions
Vanilla	Basic learners
GM	Generative model
MP	Multi-phase sampling
MP-GM	Combine GM and MP

10. Improve Prediction Accuracy w/ GM

11. Improve Energy Savings w/ MP

12. Conclusions

- Generative model improves prediction accuracy.
- Multi-phase sampling method improves energy savings.
- Improving accuracy does not necessarily improve energy consumption.
- We advocate to de-emphasize accuracy but incorporate system structure into learners.