University of Wrocław: Data Science

Theoretical Foundations of Large Data Sets, List 1

- 1. Let X_1, \ldots, X_n be the simple random sample from the distribution with the density $f(x,\alpha) = (\alpha+1)x^{\alpha}$, for $x \in (0,1)$, $\alpha > -1$.
 - a) Find the maximum likelihood estimator $\hat{\alpha}_{MLE}$ of the parameter α .
 - b) Find the Fisher Information and the asymptotic distribution of this estimator. Use these results to estimate the mean squared error of $\hat{\alpha}_{MLE}$.
 - c) Calculate the moment estimator $\hat{\alpha}_{mom}$ of the parameter α .
 - d) Fix $\alpha = 5$ and generate one random sample of the size n = 20. Calculate both estimators and the respective values of $\alpha \hat{\alpha}$ and $(\alpha \hat{\alpha})^2$. Which estimator is more accurate?
 - e) Generate 1000 samples of the size n = 20 and
 - i) draw histograms, box-plots and q-q plots for both estimators;
 - ii) estimate the bias, the variance and the mean-squared error of both estimators and construct approximate 95% confidence intervals for these parameters. In case of MLE compare the values of these parameters to the values provided by the asymptotic distribution of $\hat{\alpha}_{MLE}$.

Which estimator is more accurate?

- f) Repeat point e) for n=200. Compare the results with those for n=20.
- 2. Let X_1, \ldots, X_n be the simple random sample from the distribution with the density $f(x,\lambda) = \lambda e^{-\lambda x}$, for x > 0, $\lambda > 0$.

Find the uniformly most powerful test at the level $\alpha = 0.05$ for testing the hypothesis $H_0: \lambda = 5$ against $H_1: \lambda = 3$.

- a) Provide the formula for the critical value for this test.
- b) Provide the formula for the power of this test.
- c) Provide the formula for the p-value for a given random sample. For n = 20 generate one random sample from H_0 and one random sample from H_1 and find the respective p-values. What conclusions can be drawn based on the p-values?
- d) What is the distribution of the p-value when data come from H_0 ?
- e) Generate 1000 samples of the size n = 20 from H_0 and calculate respective p-values.
 - i) Compare the distribution of these p-values to the distribution derived in d): draw a histogram and a respective q-q plot.

lab_1_2022 1

- ii) Use these simulations to construct the 95% confidence interval for the type I error of the test.
- f) Generate 1000 samples of the size n=20 from H_1 and calculate respective p-values.
 - i) Compare the distribution of p-values under H_0 and under H_1 .
 - ii) Use these simulations to construct the 95% confidence interval for the power of the test. Compare with the theoretically calculated power.
- g) Repeat points e)-f) for n = 200. Critically compare these results with the results for n = 20.

lab_1_2022 2