

Deep Sequence Modeling

Given an image of a ball, can you predict where it will go next?

Given an image of a ball, can you predict where it will go next?

Sequences in the Wild

Audio

Sequences in the Wild

Introduction to Deep Learning

Text

A Sequence Modeling Problem: Predict the Next Word

A Sequence Modeling Problem: Predict the Next Word

```
"This morning I took my cat for a walk."

given these words

predict the

next word
```

Idea #1: Use a Fixed Window

```
"This morning I took my cat for a walk."

given these predict the

two words next word
```

One-hot feature encoding: tells us what each word is

Problem #1: Can't Model Long-Term Dependencies

"France is where I grew up, but I now live in Boston. I speak fluent ____."

We need information from **the distant past** to accurately predict the correct word.

Idea #2: Use Entire Sequence as Set of Counts

```
"This morning I took my cat for a"
          "bag of words"
[0100100...00110001]
            prediction
```

Problem #2: Counts Don't Preserve Order

The food was good, not bad at all.

VS.

The food was bad, not good at all.

Idea #3: Use a Really Big Fixed Window

```
"This morning I took my cat for a walk."

given these predict the words next word
```

```
[ 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 ... ]
morning I took this cat
```

prediction

Problem #3: No Parameter Sharing

[100000001001001000000010 ...] this morning took the cat

Each of these inputs has a separate parameter:

[00010001000100010000000001...] this morning

Things we learn about the sequence won't transfer if they appear elsewhere in the sequence.

Sequence Modeling: Design Criteria

To model sequences, we need to:

- I. Handle variable-length sequences
- 2. Track long-term dependencies
- 3. Maintain information about **order**
- 4. Share parameters across the sequence

Recurrent Neural Networks (RNNs) as an approach to sequence modeling problems

Recurrent Neural Networks (RNNs)

Recurrent Neural Networks for Sequence Modeling

One to One "Vanilla" neural network

Many to One Sentiment Classification

Many to Many Music Generation ... and many other architectures and applications

Recurrent Neural Network (RNN)

Apply a **recurrence relation** at every time step to process a sequence:

$$h_t = f_W(h_{t-1}, x_t)$$
cell state function old state input vector at time step t
by W

Note: the same function and set of parameters are used at every time step

RNN Intuition

```
my_rnn = RNN()
hidden_state = [0, 0, 0, 0]
sentence = ["I", "love", "recurrent", "neural"]
for word in sentence:
    prediction, hidden_state = my_rnn(word, hidden_state)
next word prediction = prediction
```


RNN State Update and Output

Output Vector

$$\hat{y}_t = \boldsymbol{W}_{hy}^T h_t$$

Update Hidden State

$$h_t = \tanh(\boldsymbol{W}_{\boldsymbol{h}\boldsymbol{h}}^T h_{t-1} + \boldsymbol{W}_{\boldsymbol{x}\boldsymbol{h}}^T x_t)$$

Input Vector

$$x_t$$

$$tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Mathematical formula of the Tanh function

RNNs: Computational Graph Across Time

Re-use the same weight matrices at every time step

RNNs: Computational Graph Across Time

RNNs from Scratch


```
class MyRNNCell(tf keras layers Layer):
  def init (self, rnn units, input dim, output dim):
    super(MyRNNCell, self) init ()
    self W xh = self add weight([rnn units, input dim])
    self.W hh = self.add weight([rnn units, rnn units])
    self W hy = self add weight([output dim, rnn units])
    self.h = tf.zeros([rnn units, 1])
  def call(self, x):
    self h = tf math tanh( self W hh * self h * self W xh * x )
    output = self W hy * self h
    return output, self h
```


RNN Implementation in TensorFlow

tf_keras_layers_SimpleRNN(rnn_units)

Backpropagation Through Time (BPTT)

Recall: Backpropagation in Feed Forward Models

Backpropagation algorithm:

- 1. Take the derivative (gradient) of the loss with respect to each parameter
- Shift parameters in order to minimize loss

RNNs: Backpropagation Through Time

RNNs: Backpropagation Through Time

Standard RNN Gradient Flow: Exploding Gradients

Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Many values > 1:

exploding gradients

Gradient clipping to scale big gradients

Many values < 1: vanishing gradients

- I. Activation function
- 2. Weight initialization
- 3. Network architecture

The Problem of Long-Term Dependencies

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

"The clouds are in the ____"

"I grew up in France, ... and I speak fluent___ "

Without gradient clipping

With gradient clipping

+

Trick #1: Activation Functions

Trick #2: Parameter Initialization

Initialize weights to identity matrix

Initialize biases to zero

$$I_n = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

This helps prevent the weights from shrinking to zero.