FB1: Suppose that $f: A \to B$ is a surjective function. Define the following relation on A:

$$a_1 \sim a_2$$
 if and only if $f(a_1) = f(a_2)$.

Show that this is an equivalence relation. Denote by A/\sim the set of equivalence classes of \sim . Prove that

$$|A/\sim| = |B|.$$

The relation on A is **reflexive** because $f(a_1) = f(a_1)$; thus,

$$a_1 \sim a_1$$
.

Furthermore, the relation is **symmetric** because $f(a_1) = f(a_2)$ implies that $f(a_2) = f(a_1)$; thus,

$$a_2 \sim a_1$$
.

Finally, the relation is **transitive** because, if for an element $a_3 \in A$ there is a relation $a_2 \sim a_3$, then the condition $f(a_2) = f(a_3)$ applies, which combined with $f(a_1) = f(a_2)$ implies that $f(a_1) = f(a_3)$; thus,

$$a_1 \sim a_3$$
.

By surjectivity, each element in B is a distinct value f(a), where $a \in A$. Since the relation \sim partitions the set A into distinct subsets (each containing a distinct collection of f(a)), each equivalence class corresponds to exactly one element in B. Thus, $|A/\sim| = |B|$.

FB2: Suppose that G is a group with identity element e. Let $\alpha, \beta, \gamma \in G$ be arbitrary. Prove the following statements.

- (i) $\alpha\beta\gamma = e \text{ implies } \beta\gamma\alpha = e.$
- (ii) $\beta \alpha \gamma = \alpha^{-1}$ implies $\gamma \alpha \beta = \alpha^{-1}$.

(i)

 $\alpha\beta\gamma=e$ implies that either $\beta\gamma=\alpha^{-1}$ or $\alpha\beta=\gamma^{-1}$. If $\beta\gamma=\alpha^{-1}$, then

$$\alpha^{-1}\alpha = e$$

$$\Leftrightarrow \beta\gamma\alpha = e.$$

Because of associativity, $(\alpha\beta)\gamma=\alpha(\beta\gamma)=e$; thus, $\alpha\beta=\gamma^{-1}$ also implies $\beta\gamma\alpha=e$. Therefore, $\alpha\beta\gamma=e$ implies $\beta\gamma\alpha=e$.

(ii)

Using the law of inverses and 'multiplying' on the left both sides of the equation by α ,

$$\beta \alpha \gamma = \alpha^{-1}$$

$$\Leftrightarrow \alpha \beta \alpha \gamma = \alpha \alpha^{-1}$$

$$\Leftrightarrow (\alpha \beta)(\alpha \gamma) = e,$$

where $\alpha\beta=(\alpha\gamma)^{-1}$ or $\alpha\gamma=(\alpha\beta)^{-1}$. By associativity, any other case is equivalent. In either case, they can swapped to find

$$(\alpha \gamma)(\alpha \beta) = e$$

$$\Leftrightarrow \alpha \gamma \alpha \beta = \alpha \alpha^{-1}$$

$$\Leftrightarrow \gamma \alpha \beta = \alpha^{-1}.$$

Therefore, $\beta \alpha \gamma = \alpha^{-1}$ implies $\gamma \alpha \beta = \alpha^{-1}$.

FB3: A parametric curve is described by the following equations

$$\frac{dx}{dt} = x, y = \cos t, z = \sin t,$$

and passes through $\langle 1,1,0 \rangle$ when t=0. By solving the ODE for x(t), or otherwise, find an expression for x in terms of t and use this to write the space curve as a vector function. Hence, find the unit tangent to the curve $\mathbf{T}(t)$ at the point $\langle 1,1,0 \rangle$.

To solve the separable differential equation, the variables need to be separated into

$$\frac{1}{x}dx = dt.$$

Then by integrating both sides one gets

$$\ln |x| = t + C$$
.

Since the curve passes through (1,1,0) when t=0, the constant C is found by

$$ln(1) = 0 + C$$

$$\Rightarrow C = 0.$$

Thus,

$$ln(x) = t$$
$$\Rightarrow x = e^t$$

for all x > 0.

The parametric curve is written as a vector function $m{r}(t)$ by

$$\mathbf{r}(t) = \langle e^t, \cos(t), \sin(t) \rangle.$$

The tangent to the curve at t is

$$\mathbf{T}(t) = \frac{r'(t)}{|r'(t)|}$$

$$= \frac{\langle e^t, -\sin(t), \cos(t) \rangle}{\sqrt{e^{2t} + \sin^2(t) + \cos^2(t)}}$$

$$=\frac{\langle e^t, -\sin(t), \cos(t)\rangle}{\sqrt{e^{2t}+1}}.$$

Hence, when t = 0,

$$\mathbf{T}(0) = \frac{\langle 1, 0, 1 \rangle}{\sqrt{2}}.$$