Cognome e nome:	, nato il//19	, Matricola			
ISTRUZIONI TASSA	TIVE PER LA COMPILAZIONE DEGI	I ELABORATI			
	a copia) SOLO i fogli ricevuti, che dovranno essere <u>TUTTI</u>				
· · · · · · · · · · · · · · · · · · ·	vere SUL PRESENTE STAMPATO e su tutti gli altri fogli,				
colore rosso o la matita.	ile, separando ed intitolando opportunamente le varie par	· -			
RIPORTARLI SU QUESTO STAMPATO NEL	borato, le formule analitiche risolutive ed risultati numeri LLE APPOSITE CASELLE (formula a sinistra, valore num con segni diagonali a tutta pagina quelli della brutta copic	nerico con unità di misura a destra).			
	con segni aiagonan a iuna pagina quem dena bruna copic SIONE DEL TESTO È PARTE INTEGRANTE DELLA PR				
TDTC(Ele-T	el) – PROVA SCRITTA DEL 15 LUGLIO	O 2003			
Problema 1					
Un processore ad elevate prestazioni,	che in condizioni di massimo carico assorbe	una			
potenza pari a 85 W elettrici ed è caratterizzato da temperatura massima ammissibile 80°C,					
viene raffreddato mediante uno scambiatore di calore a liquido in contatto con la sua					
superficie superiore, nel quale fluisce u	una corrente di acqua con portata 0.60 litri/m	in e in out			
temperatura in ingresso 28°C. Si assumano per l'acqua una densità di 1000 kg/m³ ed un					
	Il coefficiente di convezione nei canali d				
scambiatore, che presentano diametro in	nterno 2 mm e sviluppo longitudinale totale 36	mm, è pari a 15000 W/(m ² .°C).			
	e e processore, riferita all'unità di superficie, è				
della superficie di contatto è pari a 180	mm ² . Trascurando, sia nel processore che nel	lo scambiatore, le dispersioni di			
	nelle di contatto (in favore di sicurezza) e le res				
•	ne del calore, tipicamente molto ridotte), stimare	•			
a) temperatura in uscita					
dell'acqua					
b) massima temperatura raggiunta dal processore					
Problema 2					
	nsore per misure di temperatura in liquido, intes	o come il tempo dall'immersione			
	o il quale la differenza di temperatura tra senso				
*	ensore è costituito da una piastrina con dimen-				
	ità termica 2.5 W/(m·°C), densità 1800 kg/m ³				
	a superficie del sensore è pari a 40 W/(m ² ·°C).				
a) tempo di risposta t ₉₉₉					
u) tempo di risposta 1999					
Problema 3					
	surriscaldamento, in cui il fluido di lavoro è acq	ua Siano 20 kPa la pressione nel			
	caldaia. La portata di fluido processato è pari				
liquido saturo, dalla turbina esce vapore		u yo ng mmi rvenu pompu emuu			
a) temperatura alla fine del					
surriscaldamento					
b) potenza netta erogata dal					
ciclo					

a)	temperatura alla fine del	
	surriscaldamento	
b)	potenza netta erogata dal	
	ciclo	
c)	rendimento termico del	
	ciclo	

Descrivere le varie fasi del processo, rappresentarlo graficamente, individuarlo qualitativamente sul diagramma T-s ed indicare le ipotesi di lavoro formulate.

Trattare SINTETICAMENTE, a parole e con le necessarie formule, diagrammi o equazioni, le tematiche indicate di seguito, riportando tutte le trattazioni relative, in forma chiara e leggibile, <u>sul retro del presente stampato</u>. PARTI RIPORTATE ALTROVE NON SARANNO VALUTATE!

- Funzionamento di un sistema termoelettrico per refrigerazione ad effetto Peltier.
- Legge di Fourier e conduttività termica.
- Corpo nero in irraggiamento termico e leggi relative.