We have a car PUF that uses 2 arbiter PUFs – a working PUF and a reference PUF, as well as a secret threshold value $\tau > 0$.

Let Δ_w , Δ_r be the difference in timings experienced for the two PUFs on the same challenge. The response to this challenge is 0 if $|\Delta_w - \Delta_r| \le \tau$ and the response is 1 if $|\Delta_w - \Delta_r| > \tau$ where $\tau > 0$ is the secret threshold value.

We have

$$\Delta_{31} = w_0 \cdot x_0 + w_1 \cdot x_1 + \dots + w_{31} \cdot x_{31} + \beta_{31} = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b$$

where

$$x_i = d_i \cdot d_{i+1} \cdot \dots \cdot d_{31}$$

$$w_0 = \alpha_0$$

$$w_i = \alpha_i + \beta_{i-1} \text{ (for } i > 0\text{)}$$

Where $d_i = (1 - 2c_i)$; c_i is the ith index of challenge vector **C**.

where
$$\alpha_i = \frac{(p_i - q_i + r_i - s_i)}{2}$$
 and $\beta_i = \frac{(p_i - q_i - r_i + s_i)}{2}$

If $\Delta_{31} < 0$, upper signal wins and the answer is 0.

If $\Delta_{31} > 0$, lower signal wins and the answer is 1.

Thus, answer is simply $\frac{\operatorname{sign}(\mathbf{W}^{\mathsf{T}}\mathbf{X}+b)+1}{2}$

Now we will implement same model for our both working and reference PUFs:

Let (\mathbf{u}, \mathbf{p}) , (\mathbf{v}, \mathbf{q}) be the two linear models that can exactly predict the outputs of the two arbiter PUFs sitting inside the CAR-PUF.

For working PUF:

$$\Delta_w = w_0 \cdot x_0 + w_1 \cdot x_1 + \dots + w_{31} \cdot x_{31} + \beta_{31} = \mathbf{u}^\mathsf{T} \mathbf{x} + p$$

For reference PUF:

$$\Delta_r = w_0 \cdot x_0 + w_1 \cdot x_1 + \dots + w_{31} \cdot x_{31} + \beta_{31} = \mathbf{v}^{\mathsf{T}} \mathbf{x} + q$$

If
$$|\Delta w - \Delta r| - \tau \le 0 \rightarrow 0$$

If
$$|\Delta w - \Delta r| - \tau > 0 \rightarrow 1$$

And $|\Delta_{\mathbf{u}} - \Delta_{\mathbf{r}}| - \tau = |(\mathbf{u} - \mathbf{v})^{\mathsf{T}} \mathbf{x} + p - q| - \tau$ {since we are using same challenge for the both PUFs}

For our problem response is:

$$\begin{aligned} & \text{Response} = \frac{1 + \text{sign} \big(\mathbf{w}^\mathsf{T} \varphi(c) + b \big)}{2} = \mathbf{r} & \quad \Rightarrow \text{giveneqn(1)} \\ & \text{Response} = \frac{1 + \text{sign} \big(|\Delta_\mathbf{w} - \Delta_\mathbf{r}| - \tau \big)}{2} = \frac{1 + \text{sign} \big(|(\mathbf{u} - \mathbf{v})^\mathsf{T} \mathbf{x} + p - q| - \tau \big)}{2} & \quad \Rightarrow \text{we haveeqn(2)} \\ & \text{Let } & \Delta = \Delta_\mathbf{w} - \Delta_\mathbf{r} = (\mathbf{u} - \mathbf{v})^\mathsf{T} \mathbf{x} + p - q \end{aligned}$$

If we multiply $|\Delta| - \tau$ by a positive number, then the sign($|\Delta_w - \Delta_r| - \tau$) remains same. We will multiply it by $|\Delta| + \tau$ (which is always positive).

$$(|\Delta| - \tau) * (|\Delta| + \tau) = \Delta^2 - \tau^2$$

So, we can write the above response as:

Response =
$$\frac{1+\text{sign}(|\Delta_{\mathbf{w}}-\Delta_{\mathbf{r}}|-\tau)}{2} = \frac{1+\text{sign}(\Delta^2-\tau^2)}{2}$$
eqn(3)

Let $\mathbf{w} = (\mathbf{u} - \mathbf{v})^{\mathsf{T}}$ and $\mathbf{k} = \mathbf{p} - \mathbf{q}$.

$$\Delta^2 = (w_0 \cdot x_0 + w_1 \cdot x_1 + \dots + w_{31} \cdot x_{31} + k) * (w_0 \cdot x_0 + w_1 \cdot x_1 + \dots + w_{31} \cdot x_{31} + k)$$

$$\Delta^{2} = \sum_{i=0}^{31} w_{i} \cdot x_{i}^{2} + \sum_{i=0}^{31} 2kw_{i} \cdot x_{i} + \sum_{i=0 \ \& \ i!=j}^{31} \sum_{j=0}^{31} 2w_{i}w_{j} \cdot x_{i} \cdot x_{j} + k^{2}$$

This equation has total 32+32+496+1=561 terms but x^2_i terms will merge into constant since $x_i=\pm 1$ => its square will be 1 always. Let this whole constant is K which further will merge into τ^2 term and make new constant. In such way $\Delta^2-\tau^2$ has 561-32-1=528 variables in the form 2^{nd} and 3^{rd} term in the above equation.

So,

$$\Delta^{2} - \tau^{2} = \sum_{i=0}^{31} 2kw_{i} \cdot x_{i} + \sum_{i=0}^{31} \sum_{k:i=j}^{31} 2w_{i}w_{j} \cdot x_{i} \cdot x_{j} + b \dots eqn(4)$$

Where $b = K - \tau^2$

As we are given our response in the form of above-mentioned equation.

From equations 1,2 and 3:

$$\mathbf{W}^{\mathsf{T}} \mathbf{\phi}(\mathbf{c}) + b = \Delta^2 - \tau^2$$

After putting the values of right-hand side term from the equation (3),

$$\phi(\mathbf{c}) = (x_0, x_1 \dots x_{31}, x_0 x_1 \dots x_{30} x_{31})$$

Thus, the dimensionality of the function $\phi(c)$ is 528.