Métodos Numéricos

Segundo Cuatrimestre 2015

Práctica 5

Autovalores y Autovectores. Método de la potencia.

Descomposición en Valores Singulares.

1. Hallar los autovalores y autovectores de las siguientes matrices:

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix} \qquad
\begin{pmatrix}
1 & -1 & 0 \\
-2 & 4 & -2 \\
0 & -1 & 1
\end{pmatrix} \qquad
\begin{pmatrix}
-1 & -3 & -9 \\
0 & 5 & 18 \\
0 & -2 & -7
\end{pmatrix}$$

- 2. Sea A una matriz de $\mathbb{R}^{n\times n}$. Demostrar las afirmaciones siguientes:
 - a) Si A es simétrica entonces todos sus autovalores son reales.
 - b) Si A es simétrica entonces existe una base de autovectores reales de A.
 - c) Si A es simétrica y definida positiva (resp. negativa) entonces todos sus autovalores son reales positivos (resp. negativos).
 - d) Si A es ortogonal entonces todos sus autovalores tienen módulo 1.
 - e) Si A es antisimétrica entonces 0 es el único autovalor real posible.
 - f) Si A es triangular entonces sus autovalores son los elementos de la diagonal.
- 3. Sea A una matriz de $n \times n$ y λ un autovalor de A.
 - a) Probar que λ^k es un autovalor de A^k para todo $k \in \mathbb{N}$.
 - b) Probar que si $\lambda \neq 0$ y A es inversible entonces λ^{-1} es un autovalor de A^{-1} .
 - c) Probar que $a\lambda + b$ es un autovalor de aA + bI.
 - d) Sea $P(x) := a_0 x^m + a_1 x^{m-1} + \dots + a_m$. Probar que $P(\lambda)$ es un autovalor de $P(A) := a_0 A^m + a_1 A^{m-1} + \dots + a_m I$.
- 4. Sea A una matriz con dos autovalores distintos λ_1, λ_2 . Sean v_1, v_2 autovectores de A correspondientes λ_1, λ_2 respectivamente.
 - a) Demostrar que v_1, v_2 son linealmente independientes.
 - b) Si A es simétrica, demostrar que v_1, v_2 son ortogonales.
- 5. Demuestre que en el método de la potencia normalizado, los vectores $x^{(k)}$ convergen a un autovector de λ_1 .
- 6. Sea A una matriz simétrica de $\mathbb{R}^{n\times n}$ cuyos autovalores (reales) $\lambda_1, \ldots, \lambda_n$ satisfacen la condición $|\lambda_1| > |\lambda_2| \ge \ldots \ge |\lambda_n|$. Sea $\{x_1, \ldots, x_n\}$ una base ortonormal de autovectores de A tal que x_i es autovector de autovalor λ_i para $1 \le i \le n$. Dado un vector inicial $y_0 \in \mathbb{R}^n$ tal que $x_1^t y_0 \ne 0$, se define la sucesión $\{y_k\}_{k\in\mathbb{N}_0}$ por:

$$y_{k+1} := \frac{Ay_k}{\|Ay_k\|}$$
 para $k = 0, 1, 2, \dots$

donde $\|\cdot\|$ es una norma arbitraria.

Demostrar que $A^k y_0 = a_1 \lambda_1^k x_1 + \dots + a_n \lambda_n^k x_n$ (donde $a_i = y_0^t x_i$ para $1 \le i \le n$) y que $y_k = \frac{A^k y_0}{\|A^k y_0\|}$ para todo $k \in \mathbb{N}$.

7. Para cada $k \in \mathbb{N}$ se define el cociente de Rayleigh r_k por $r_k := \frac{y_k^t A y_k}{y_k^t y_k}$. Demostrar que lím $_{k \to \infty} r_k = \lambda_1$, es decir, que el método de las potencias converge. Más aún, demostrar que los errores relativos verifican:

$$\frac{r_k - \lambda_1}{\lambda_1} = n_k \left(\frac{\lambda_2}{\lambda_1}\right)^{2k},$$

donde los números n_k forman una sucesión acotada (notación: $\frac{r_k - \lambda_1}{\lambda_1} = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}\right)$).

- 8. Sea $A \in \mathbb{R}^{n \times n}$ una matriz con autovalores $\lambda_1, \ldots, \lambda_n$ distintos y autovectores v_1, \ldots, v_n .
 - a) Sea $H \in \mathbb{R}^{n \times n}$ una matriz ortogonal tal que $Hv_1 = \alpha e_1$. Justificar como se puede obtener esta matriz. Demostrar que

$$HAH^{-1} = \begin{bmatrix} \lambda_1 & b^t \\ 0 & B \end{bmatrix}$$

con $B \in \mathbb{R}^{n-1 \times n-1}$ y $b \in \mathbb{R}^{n-1}$.

- b) Demostrar que $\lambda_2, \ldots, \lambda_n$ son autovalores de B.
- c) Sea w_2 el autovector de B asociado a λ_2 . Demostrar que

$$v_2 = H^{-1} \begin{bmatrix} \beta \\ w_2 \end{bmatrix}, \text{ con } \beta = \frac{1}{\lambda_2 - \lambda_1} b^t w_2.$$

- 9. Sea $A \in \mathbb{R}^{m \times n}$ una matriz de rango r y $A = U \Sigma V^t$ su descomposición en valores singulares (SVD), con $U \in \mathbb{R}^{m \times m}$, $\Sigma \in \mathbb{R}^{m \times n}$ y $V \in \mathbb{R}^{n \times n}$, siendo $\Sigma = \text{diag}\{\sigma_1, \sigma_2, \ldots, \sigma_r, 0, \ldots, 0\}$ y $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$. Llamamos a σ_i el i-ésimo valor singular. Sean v_1, \ldots, v_n las columnas de V y u_1, \ldots, u_m las columnas de U. Demostrar:
 - a) v_1, \ldots, v_n son autovectores de $A^t A$.
 - b) u_1, \ldots, u_m son autovectores de AA^t .
 - c) $\lambda_i = \sigma_i^2$ son los autovalores de A^tA asociados al autovector v_i .
- 10. Hallar la descomposición en valores singulares de las siguientes matrices.

$$A_1 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \qquad A_2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad A_3 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 11. Sea $A \in \mathbb{R}^{m \times n}$ y $A = U \Sigma V^t$ la descomposición SVD de A.
 - a) Expresar en función de U, Σ y V a las siguientes matrices:
 - 1) A^tA
 - $2) AA^t$
 - 3) $(A^tA)^{-1}A^t$ (asumiendo A con columnas linealmente independientes)
 - b) Hallar la descomposición SVD de las siguientes matrices:
 - $1) A^t$
 - 2) A^{-1} (suponiendo m = n y A inversible)
 - c) Dado $\alpha \in \mathbb{R}_{>0}$, hallar los valores singulares de la matriz $(A^tA + \alpha I)^{-1}A^t$ y expresarlos en función de α y los valores singulares de A.

- 12. Sean dos matrices $A, B \in \mathbb{R}^{n \times n}$.
 - a) Demostrar que todos los valores singulares de A son iguales si y solo si A es múltiplo de una matriz ortogonal.
 - b) Demostrar que A y B tienen los mismos valores singulares si y solo si existen P y Q matrices ortogonales tal que A = PBQ.
- 13. Sea $A \in \mathbb{R}^{m \times n}$, demostrar que los valores singulares de la matriz $\begin{pmatrix} I_n \\ A \end{pmatrix}$ son $\sqrt{1 + \sigma_i^2}$, donde I_n es la matriz indentidad de $\mathbb{R}^{n \times n}$ y σ_i es el *i*-ésimo valor singular de A.
- 14. Sea $A \in \mathbb{R}^{n \times n}$, con A una matriz simétrica definida positiva. Demostrar que los autovalores de A coinciden con sus valores singulares.
- 15. Supongamos que $A \in \mathbb{R}^{m \times n}$ tiene columnas ortogonales w_1, w_2, \dots, w_n donde $||w_i||_2 = \alpha_i > 0$. Calcular $A^t A$ y hallar las matrices U, Σ y V de la descomposición en valores singulares de A.
- 16. Sea $A \in \mathbb{R}^{m \times n}$, $m \ge n$, con $A = Q \begin{pmatrix} R \\ 0 \end{pmatrix}$ descomposición QR de A (con $R \in \mathbb{R}^{n \times n}$). Hallar la descomposición SVD de A asumiendo que $R = U\Sigma V^t$ es la descomposición SVD de R.
- 17. Sea $A \in \mathbb{R}^{m \times n}$ una matriz de rango 1. Llamamos rango de A a la dimensión del espacio generado por la imagen $Im(A) = \{Ax \mid x \in \mathbb{R}^n\}$. Sea u un vector unitario en Im(A).
 - a) Demostrar que todas las columnas de A son múltiplos de u.
 - b) Mostrar que A se puede escribir de la forma $A = \sigma u v^t$, con $v \in \mathbb{R}^n$ unitario y $\sigma > 0$.
 - c) Mostrar que existe una matriz ortogonal $U \in \mathbb{R}^{m \times m}$ cuya primer columna es u y una matriz ortogonal $V \in \mathbb{R}^{n \times n}$ cuya primer columna es v. ¿Cómo podría construir dichas matrices?
 - d) Deducir que toda matriz A de rango 1 tiene descomposición SVD. ¿Quién es Σ ?
- 18. Se
a $A \in \mathbb{R}^{m \times n}$ y $A = U \Sigma V^t$ su descomposición SVD. Demostrar:
 - a) $||Ax||_2/||x||_2$ se maximiza para $x=v_1$, con v_1 la primer columna de V.
 - b) $||A||_2 = \sigma_1$. Deducir que $||A||_2 = \sqrt{\rho(A^t A)}$.
 - c) $||A||_F = \sqrt{\sum_{i=1}^n \sigma_i^2}$.
 - d) Si m = n y A es inversible, entonces $\kappa_2(A) = \sigma_1/\sigma_n$.

Resolver en computadora

I Aplicar el método de las potencias para encontrar el máximo autovalor de A comenzando con $x^{(0)} = (1,0,0)^t$.

$$A = \left(\begin{array}{rrr} 4 & -1 & 1 \\ -1 & 3 & -2 \\ 1 & -2 & 3 \end{array}\right)$$

II Hallar todos los autovalores y autovectores de las siguientes matrices usando el método de las potencias:

$$A_1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 1 & -1 & 0 \\ -2 & 4 & -2 \\ 0 & -1 & 1 \end{pmatrix} \qquad A_3 = \begin{pmatrix} -1 & -3 & -9 \\ 0 & 5 & 18 \\ 0 & -2 & -7 \end{pmatrix}$$

III Sea $A \in \mathbb{R}^{5 \times 3}$ dada por

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \\ 5 & 6 & 7 \end{pmatrix}$$

Si $A = U\Sigma V^t$ es su descomposición en valores singulares con U y V ortogonales, Σ diagonal con elementos en la diagonal en orden decreciente, u_i las columnas de U, v_i las columnas de V y σ_i los valores singulares, verificar que:

- $||Av_1||_2 = \sigma_1$
- $||A||_2 = \sigma_1$
- $\|A\|_2 = \sqrt{\rho(A^t A)}$
- \bullet Si rg(A)=r, entonces $A=\sum_{i=1}^r\sigma_iu_iv_i^t$

Funciones útiles

Tanto $Matlab^1$ como $Numpy^2$ proveen funciones para calcular la descomposición SVD de una matriz.

■ En Matlab:

$$A = [8 \ 2; \ 2 \ 4; \ 5 \ 3]$$

 $[U,S,V] = \mathbf{svd}(A)$

■ En Python, usando Numpy:

from numpy import *
from numpy.linalg import *

$$A = matrix([[8,2],[2,4],[5,3]], float)$$

U, s, $V = svd(A)$

En los dos casos, un segundo parámetro permite generar la descomposición en su forma 'corta'.

Referencias

- [1] J. Demmel. Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM), 1997.
- [2] G.H. Golub and C.F. Van Loan. *Matrix Computations*. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, 2012.
- [3] C. Meyer. Matrix Analysis and Applied Linear Algebra Book and Solutions Manual. Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics, 2000.
- [4] D.S. Watkins. Fundamentals of Matrix Computations. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley, 2010.

¹ http://www.mathworks.com/help/matlab/ref/svd.html

²http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.svd.html