Лекция 7

СОБСТВЕННЫЕ ВЕКТОРЫ И СОБСТВЕННЫЕ ЗНАЧЕНИЯ ЛИНЕЙНОГО ОПЕРАТОРА

Определение. Пусть $\hat{A}: V \to V$ — линейный оператор в линейном пространстве V. Ненулевой вектор $\bar{x} \in V$ называется *собственным вектором* оператора \hat{A} , соответствующим *собственному значению* λ , если $\hat{A}\bar{x} = \lambda\bar{x}$ (7.1) (т.е. если при действии оператора \hat{A} вектор \bar{x} переходит сам в себя, в λ раз растянутый).

Замечание. (краткое определение). Если $\hat{A}\bar{x} = \lambda \bar{x}, \bar{x} \neq \bar{o}$, то \bar{x} – собственный вектор оператора \hat{A} с собственным значением λ .

Примеры.

- 1) $\hat{A}: V^3 \to V^3$, $\bar{a} \neq \bar{o}$ фиксированный вектор; $\hat{A}\bar{x} = [\bar{x}, \bar{a}]$. $\hat{A}\bar{a} = [\bar{a}, \bar{a}] = \bar{o} = 0 \cdot \bar{a} \implies \bar{a}$ собственный вектор с собственным значением $\lambda = 0$.
- **2)** Для оператора $\hat{P}: V^3 \to V^3$ проектирования на плоскость Q любой ненулевой вектор $\bar{x} \parallel Q$ будет собственным вектором, отвечающим собственному значению $\lambda = 1$, т.к. $\hat{P}\bar{x} = \bar{x}$; а любой ненулевой вектор $\bar{y} \perp Q$ будет собственным вектором, отвечающим собственному значению $\lambda = 0$, т.к. $\hat{P}\bar{y} = \bar{o}$.
- 3) $\hat{A}: V^2 \to V^2; \; \hat{A}$ оператор поворота на угол $\varphi = 15^\circ$ не имеет ни одного собственного вектора, т.к. ни один ненулевой вектор после такого поворота не останется коллинеарным самому себе.

Пример. $\hat{A}: V^3 \to V^3$ — оператор зеркального отражения относительно плоскости Q.

Рассмотрим три вектора: $\bar{e}_1 \perp Q$; $\bar{e}_2 \parallel Q$; $\bar{e}_3 \parallel Q$; $\bar{e}_2 \not\parallel \bar{e}_3$.

 $\mathcal{B}=\{\bar{e}_1,\bar{e}_2,\bar{e}_3\}$ — базис в V^3 , т.к. векторы $\bar{e}_1,\bar{e}_2,\bar{e}_3$ линейно независимы (т.к. они не компланарны). Кроме того, $\mathcal{B}=\{\bar{e}_1,\bar{e}_2,\bar{e}_3\}$ — собственный базис, т.к.

$$\hat{A}\bar{e}_{1} = -\bar{e}_{1} = -1 \cdot \bar{e}_{1} + 0 \cdot \bar{e}_{2} + 0 \cdot \bar{e}_{3}$$

$$\hat{A}\bar{e}_{2} = \bar{e}_{2} = 0 \cdot \bar{e}_{1} + 1 \cdot \bar{e}_{2} + 0 \cdot \bar{e}_{3}$$

$$\hat{A}\bar{e}_{3} = \bar{e}_{3} = 0 \cdot \bar{e}_{1} + 0 \cdot \bar{e}_{2} + 1 \cdot \bar{e}_{3}$$

$$\Rightarrow A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 – матрица оператора \hat{A} в базисе \mathcal{B} .

Нахождение собственных значений и собственных векторов **линейного** оператора

Пусть $\hat{A}: V \to V$ — линейный оператор и $\mathcal{B} = \{\bar{e}_1, \dots, \bar{e}_n\}$ — базис в линейном пространстве V.

Пусть \bar{x} – собственный вектор оператора \hat{A} с собственным значением λ , т.е. $\bar{x} \neq \bar{o}$ и $\hat{A}\bar{x} = \lambda \bar{x}$ (7.2).

Пусть A – матрица оператора \hat{A} в базисе \mathcal{B} .

Пусть $\bar{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ – столбец координат вектора \bar{x} в базисе \mathcal{B} .

Тогда

$$A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad (7.3)$$

(7.3) – равенство (7.2) в матричном виде.

Из (7.3)
$$\Rightarrow$$
 $(A - \lambda E) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0$ (7.4)

(7.4) – система линейных однородных уравнений.

Нужно найти ненулевое решение системы (7.4). Система (7.4) имеет ненулевое решение тогда и только тогда, когда

$$rang(A - \lambda E) < n \iff |A - \lambda E| = 0$$
 (7.5)

Таким образом, для того, чтобы линейный оператор \hat{A} имел собственный вектор \bar{x} с собственным значением λ необходимо и достаточно, чтобы выполнялось равенство (7.5). Запишем равенство (7.5) подробнее:

$$|A - \lambda E| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} = 0$$
 (7.6)

Определитель в равенстве (7.6) представляет собой многочлен степени n от λ . Его называют *характеристическим многочленом*, а равенство (7.6) называют *характеристическим уравнением*.

Пусть $\lambda_1, ..., \lambda_r$ – корни характеристического многочлена (7.6). В силу вышесказанного $\lambda_1, ..., \lambda_r$ – собственные значения линейного оператора \hat{A} .

Правило нахождения собственных векторов и собственных значений линейного оператора

- 1) Находим собственные значения линейного оператора, т.е. решаем характеристическое уравнение (7.6).
- **2)** Для каждого собственного значения λ_i решаем однородную систему линейных уравнений:

$$(A - \lambda_i E) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \quad (7.7)$$

Любое ненулевое решение системы (7.7) — собственный вектор линейного оператора \hat{A} , соответствующий собственному значению λ_i .

Пример. Пусть $A = \begin{pmatrix} 5 & 3 \\ 2 & 4 \end{pmatrix}$ — матрица линейного оператора $\hat{A} \colon \mathbb{R}^2 \to \mathbb{R}^2$ в каноническом базисе линейного пространства арифметических векторов \mathbb{R}^2 . Найти собственные векторы и собственные значения оператора \hat{A} .

Решение.

1) Находим собственные значения.

$$\begin{vmatrix} 5 - \lambda & 3 \\ 2 & 4 - \lambda \end{vmatrix} = (5 - \lambda)(4 - \lambda) - 6 = \lambda^2 - 9\lambda + 14 = 0$$

 $\lambda_1 = 2$; $\lambda_2 = 7$ – собственные значения.

2) Далее для каждого собственного значения находим собственные векторы.

1.
$$\lambda_1 = 2$$

$$\begin{pmatrix} 3 & 3 & 0 \\ 2 & 2 & 0 \end{pmatrix} \sim (1 \quad 1 | 0) \implies x_1 + x_2 = 0; \ x_2 = c; x_1 = -c$$

$$\Rightarrow X(c) = {\binom{-1}{1}}c$$

 $\Rightarrow \bar{v}_1 = {-1 \choose 1} c$ — собственные векторы для собственного значения $\lambda_1 = 2$

$$2. \lambda_{2} = 7$$

$$\begin{pmatrix} -2 & 3 & | & 0 \\ 2 & -3 & | & 0 \end{pmatrix} \sim (2 -3|0) \implies 2x_{1} - 3x_{2} = 0; x_{2} = c_{1}; x_{1} = \frac{3}{2}c_{1}$$

$$\Rightarrow X(c_{1}) = \begin{pmatrix} \frac{3}{2} \\ 1 \end{pmatrix} c_{1} = \begin{pmatrix} \frac{3}{2} \\ 2 \end{pmatrix} c$$

 $\Rightarrow \bar{v}_2 = {3 \choose 2} c$ — собственные векторы для собственного значения $\lambda_2 = 7$

Проверка.

1)
$$\begin{pmatrix} 5 & 3 \\ 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix} = 2 \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix} \Rightarrow \lambda_1 = 2; \ \bar{v}_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
2) $\begin{pmatrix} 5 & 3 \\ 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 21 \\ 14 \end{pmatrix} = 7 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix} \Rightarrow \lambda_2 = 7; \ \bar{v}_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

Замечание.

При выполнении проверки собственные векторы можно брать без множителя c. На результат это не влияет.

Теорема. (Инвариантность характеристического многочлена и определителя матрицы линейного оператора).

Характеристический многочлен не меняется при переходе к другому базису. В любом базисе определитель матрицы линейного оператора имеет одно и то же значение.

Доказательство. Пусть \hat{A} : $V \to V$ — линейный оператор в линейном пространстве V. Пусть $\mathcal{B} = \{\bar{e}_1, \dots, \bar{e}_n\}$ и $\mathcal{B}' = \{\bar{e}'_1, \dots, \bar{e}'_n\}$ — базисы в V.

Пусть A и A' — матрицы оператора \hat{A} в базисах \mathcal{B} и \mathcal{B}' соответственно. Тогда $A' = C^{-1}AC$, где C — матрица перехода от базиса \mathcal{B} к базису \mathcal{B}' .

⇒
$$|A'| = |C^{-1}| \cdot |A| \cdot |C| = |A|$$
, т.к. $|C^{-1}| \cdot |C| = 1$.
⇒ $|A'| = |A|$.

Далее в базисе \mathcal{B}' имеем:

$$|A' - \lambda E| = |C^{-1}AC - \lambda E| = |C^{-1}AC - C^{-1}\lambda EC| = |C^{-1}(A - \lambda E)C| =$$

= $|C^{-1}| \cdot |A - \lambda E| \cdot |C| = |A - \lambda E|$ – характеристический многочлен в базисе \mathcal{B}

ч.т.д.

Определение. Две матрицы A и B называются *подобными*, если существует невырожденная матрица C такая, что $A = C^{-1}BC$.

Обозначение. А~В.

Следствие 1. Матрицы линейного оператора в различных базисах подобны.

Следствие 2. $A \sim A$, т.к. $A = E^{-1}AE$.

Следствие 3. Если $A \sim B$ и $B \sim D$, то $A \sim D$.