KonukhinaOV 30112024-105800

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 1092 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 11 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 253 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 5 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 3580 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 788 МГц до 838 МГп.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

- 1) -98 дБм 2) -101 дБм 3) -104 дБм 4) -107 дБм 5) -110 дБм 6) -113 дБм 7) -116 дБм
- 8) -119 дБм 9) -122 дБм

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что: $s_{21} = -0.16021 + 0.47339i, \ s_{31} = 0.52334 + 0.17712i.$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

- 1) -20 дБн 2) -22 дБн 3) -24 дБн 4) -26 дБн 5) -28 дБн 6) -30 дБн 7) -32 дБн
- 8) -34 дБн 9) 0 дБн

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 1. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Pi}|$ Какой комбинацией $\{n; m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 2?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 1 – Экран анализатора спектра

Варианты ОТВЕТА:

$$1) \ \{5;17\} \quad 2) \ \{7;-3\} \quad 3) \ \{9;-33\} \quad 4) \ \{3;-8\} \quad 5) \ \{11;-13\} \quad 6) \ \{9;-23\} \quad 7) \ \{5;-23\}$$

8) $\{9; -43\}$ 9) $\{5; -8\}$

На рисунке 2 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_4$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно мгновенно.

Рисунок 2 – Двойной балансный смеситель

Частота гетеродина 466 МГц, частота ПЧ 31 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 1) 1367 MΓ_Ц
- 2) 466 MΓ_{II}
- 3) 404 MΓ_{II}
- 4) 435 MΓ_{II}.

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 2.8 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 6 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 5.8 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 3.)

Рисунок 3 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

- 1) 1.3 дБ 2) 1.9 дБ 3) 2.5 дБ 4) 3.1 дБ 5) 3.7 дБ 6) 4.3 дБ 7) 4.9 дБ 8) 5.5 дБ
- 9) 6.1 дБ

Для полного подавления **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный Т-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная минус 33 градусов.

Чему равна индуктивность компонента фазовращателя, если частота ПЧ равна 74 МГ_{ІІ}?

Варианты ОТВЕТА:

1) 58.4 нГн 2) 198.1 нГн 3) 128.2 нГн 4) 90.2 нГн