

Event Detection

Social Media & Network Analytics

Overview

- Introduction and Motivation for Event Detection
- Definition of Event
- Trend Detection (Time)
- General Event Detection

Acknowledgements

- Part of these slides are based on:
 - Kostas Tsiousiouliklis presentation on "Trend and Event Detection in Social Streams"

Introduction

We are surrounded by events

Social Media based Event Detection

Can we use social media to help identify them?

From Li et al, "Tedas: a Twitter based Event Detection and Analysis System"

Social Media based Event Detection

Can we use social media to help identify them?

From Middleton et al, "Real-time Crisis Mapping of Natural Disasters using Social Media

Applications

- Crowd-sourced, sometimes more up to date and widespread then traditional sources of events
- Emergency/Crisis management
 - What, where, when, who
 - Traffic accident, natural disasters
- How situation evolves with time
- Reaction
 - VW diesel emissions scandal
- Enhance decision making

Overview

- Introduction and Motivation for Event Detection
- Definition of Event
- Trend Detection (Time)
- General Event Detection

Event Definition

- Collins Dictionary:
 - An event is something that happens, especially when it is unusual or important.
- Event:
 - who, when, where, what (4 w's)

From Bouchachia et al, "Social media for crisis management"

Social Media Event Management Tasks

Event detection

Event tracking

Event summarisation

Social Media Event Detection

- Use of social media to detect significant events
- Input:
 - Collection of social media data that arrives over time
 - Tweets, Instagram posts, videos
 - Generally unstructured data
- Output:
 - Event (who, when, where, what)
 - Not always all 4 elements
 - For social media, typically focus is when, where and sometimes what

Social Media Event Detection Taxonomy

Planned vs unplanned

- Entity vs situation
- Local vs global

Retrospective vs online (real-time)

2016-2019 Now

Social Media Event Detection Taxonomy

Topic Specific

- Track interest about brands, products, entities (e.g., Apple)
- Planned, known events, interested in effect (e.g., G7 meeting)

Unknown Events

- Unplanned, breaking news (e.g., Amazon fires, HK protests)
- Discover events when, where, what.

Overview

- Introduction and Motivation for Event Detection
- Definition of Event
- Trend Detection (Time)
- General Event Detection

Trend Detection (Time)

 Interested in detecting when this topic is trending or has breaking news

From Lukas Masuch, "Trend detection and Analysis on Twitter", slideshare

Trend Detection (Time)

- Generally look for differences of keywords volume over time
- Detect bursts
 - Typically significant events will cause burst like behaviour
 - In raw social media activity/posts (volume)

From Jongman et al., "Early Flood Detection for Rapid Humanitarian Response"

Simple Frequency Ratios

- Capture relative growth
- Tokenise social media stream
 - Stream of words
 - Compute frequency

Compare some historical average vs current average

Pa	γ ast Freq. / C	JED an	Is nat	
Term	Past Freq. (per time unit)	Current Freq. (per time unit)	Ratio	
Bush fire	1	20	20	$C \longrightarrow k$
Hawks	50	500	10	Louren
PM	1,000	1,700	1.7	SPRV
HK Protest	20,000	23,000	1.15	

Issues?

- Words with low frequency get artificially inflated ratios
 - If word is new, past frequency is 0
 - E.g., #thisIsTheBestCourseEverAtRMIT
- Ratio
 - Which word is trending more (as an event)?
 - One that goes from 10 to 15, or 10,000 to 15,000?
- Need better statistics to capture relative growth

Goodness of fit

 Assume that the terms are drawn independently at random from a static distribution, where each term has a fixed prior likelihood of been selected (multinomial distribution)

 Is the observed drawn from the same distribution?

Goodness of fit

• Common test of goodness of fit is the chisquared test

 $\chi^2 = \sum_{E} \frac{(O - E)^2}{E}$

	Previous (Expected)	Current (Observed)
Category 1	70	68
Category 2	30	32
Total	100	100

$$\chi^{2} = \frac{(68-70)^{2}}{70} + \frac{(32-30)^{2}}{30} = 0.19$$

Goodness of fit

- A chi-square value of 0.19 corresponds to a pvalue of 0.663
 - Using hypothesis testing at significance level 0.05, we can say the two distributions difference are not statistically significant (p-value > 0.05)
 - We cannot reject the Null hypothesis (the observed values fit the expected values)

From Wikipedia page on Chi-square test

Chi-Square test

- For burst/trend detection, use the chi-square value to determine burstiness of individual terms
- Example
 - Of N (large) total past terms, 20 where "bush fire". Of N present terms, 30 are "bush fire". 20 is expected frequency, 30 is observed frequency

$$\chi^{2} = \frac{(30-20)^{2}}{20} + \frac{((N-30)-(N-20))^{2}}{N-20} = \frac{10^{2}}{20} + \frac{10^{2}}{N-20} \approx 5$$

• Using approximation, if HK protest expected is 40, observed is 60:

$$\chi^2 \approx \frac{(60-40)^2}{40} = 10$$

So HK protest is more "bursty"

Chi Square Test

- In a nutshell:
 - If observed > expected, then burstiness score is:

$$\frac{(O-E)^2}{E}$$

otherwise 0

- If E = 0:
 - Add one smoothing

$$\frac{((O+1)-(E+1))^2}{E+1} = \frac{(O-E)^2}{E+1}$$

• If low frequencies still dominate, use thresholds or Yate's correction:

$$\frac{(|O - E| - 0.5)^2}{E}$$

Other possibilities

- Regression to account for seasonality/periodicity
 - + standard deviation + other factors
 - Expected model
- ARIMA type models
- Change point detection statistics
 - Control charts, CUSUM
- State based models
 - Kalman filters, Hidden markov models

Overview

- Introduction and Motivation for Event Detection
- Definition of Event
- Trend Detection (Time)
- General Event Detection

General Event Detection

- Events represented by
 - Keywords (what)
 - Start and end times (when)
 - Geographical location (where)
- Tracks (local) events across time
- Provides a significance score for each detected event
- Need geo-tagged tweets (but this can be predicted/learnt)

- Temporal keyword extraction
 - Time window
 - Burstiness detection
- Spatial estimation of usage of keyword
 - Divide map into a grid of cells
 - Usage ratio of keyword:
 - number of users using keyword in cell / number of users tweeting in cell
 - Use entropy of usage ratio to identify keywords that are highly concentrated in few spatial areas (more likely to be local events)

EvenTweet: Online Clustering

- Online clustering
 - Each existing cluster of keywords has a spatial signature
 - For each new keyword, compute cosine similarity of spatial signature to each centroid
 - If within a similarity threshold, add to cluster (select largest if there are a few possible cluster candidates)

If close to none of existing clusters, create a new one

- Cluster scoring
 - Rank clusters, as there might be many of them and not all relevant
 - Each keyword has a k_score, calculated based on:
 - The last time it had bursty behaviour, its degree of burstiness
 - How long it has been a member of its current cluster
 - Recency of last time it (re)joined as a member of cluster
 - Each cluster then ranked according to the sum of k_score of its keywords
 - Clusters whose keywords has high burstiness, where the busrty keywords have persisted for a while and they also been bursty recently

2012 UEFA European Football Championship

HashTag Clustering based Event Detection

- Demonstrate another entity to track
 - Events are assumed to be clusters of related hashtags
- Applied hierarchical clustering to obtain clusters of hashtags
- Only keep clusters whose size is multiple standard deviations above mean cluster size

Gallipoli 2012

Fenerbahce vs Galatasaray 2012

Geo-spatial Event Detection in Twitter Stream

- An example that uses classifier to determine if identified clusters represent significant events
- 2 step approach:
 - Identify locations with high tweet activity
 - Identify geo-spatial clusters of tweets (e.g. 3 or more tweets in a 200m radius, posted within 30 mins)
 - Evaluate clusters with a classification approach
 - Do these clusters constitute a significant (real-world) event?
 - Use a C4.5 Decision Tree

Geo-spatial Clustering of Tweets

What is the classification task?

- Suspicious package in #GrandCentral #NYC #bomb threat poor of not sure?? http://t.co/VwU7SP3X
- Suspicious package found in Grand Central Station... the 456 train..the trains are closed !! [pic]: http://t.co/9YPki4k2
- Something happened in the #456 #trainstation in #GrandCentral #NYC http://t.co/GGKvQura
- Accident on the #456train in #midtown #NYC http://t.co/fj2mJJmf

VS.

- refinery29: This image of Madeleine Albright playing the drums all be the best thing you'll see today: http://t.co/rGwQ5RdG «@_PrettyPoison Guess ill fill out more job apps today» make punna fill out some 2!
- The Glamour & Glitz at the 2012 Emmy's that we loved! http://t.co/CiTFszfL
- @IszwanieSyahira: i'm happy and i hope u feel the same too.
 weeeee ~.~
- How to prepare yourself for Friday's apocalypse http://cnet.co/IPU

We need to automatically determine which of the tweet clusters (tweets issued close to each other in a short time frame) represent real-world events and which are just random chatter.

Classifier Features

Decision Tree

Tweet cluster:

- Suspicious package in #GrandCentral #NYC #bomb threat possibility not sure?? http://t.co/VwU7SP3X
- Suspicious package found in Grand Central Station... the 456 train..the trains are closed !! [pic]: http://t.co/9YPki4k2
- Something happened in the #456 #trainstation in #GrandCentral #NYC http://t.co/GGKvQura
- Accident on the #456train in #midtown #NYC http://t.co/fj2mJJmf

Textual features

Feature Group	#	Brief Description	
Common Theme	1	Calculates the n-gram overlap between different tweets in the cluster.	
Near Duplicates	1	Indicating how many tweets in the cluster are near-duplicates of other tweets	
		in the cluster.	
Positive Sentiment	3	Indicating positive sentiment in the cluster.	
Negative Sentiment	3	Indicating negative sentiment in the cluster.	
Overall Sentiment	2	Indicating the overall sentiment tendency of the cluster.	
Sentiment Strength	3	Indicating the sentiment strength of the cluster.	
Subjectivity	2	Indicating whether tweeters make subjective reports rather than just sharing	
		information, e.g., links to newspaper articles.	
Present Tense	2	Indicating whether tweeters talk about the here & now rather than making	
		general statements.	
# Ratio	1	Number of hashtags relative to the number of posts in the cluster.	
@ Ratio	1	Number of @s relative to the number of posts in the cluster.	
RT Ratio	1	Fraction of tweets in the cluster that are retweets.	
Semantic Category	13	Indicating whether the cluster belongs to certain event categories, e.g., "sport	
		event" or "fire".	

Other features

Feature Group	#	Brief Description
Link ratio	1	Indicating the number of posts that contain links.
Foursquare ratio	1	Fraction of tweets originating from Foursquare.
Tweet count	1	Score based on how many tweets there are in the cluster.
Poster count	2	Score based on how many different users posted the tweets in the cluster.
Unique coordinates	2	Score based on how many unique locations the posts are from.
Special location	1	Fraction of tweets that are from a certain known "bad" location, e.g., airports
		or train stations.

Framework

TEDAS: Topic Specific Event Detection

- TEDAS is an example, targeted towards detecting crime and disasters (and traffic accidents)
 - Can query location and time for events
 - Can query keywords for events

From Li et al, "Tedas..."

TEDAS Architecture

Temporal and Spatial Topic Models

Recall last lecture we discussed the LDA topic

- They have been extended for many other purposes, including for event detection
- We restrict ourselves to topic models that models time and space.

Topic over Time Model (TOT)

Location Time Constrained Topic (LTT)

Summary

- Introduced event detection
 - Applications
 - Mostly unsupervised method
- Approaches
 - Burst detection
 - General Event Detection
 - Unplanned, topic-specific, topic models