MA1522: Linear Algebra for Computing

Tutorial 5

Revision

Linearly Independent

A set $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is linearly independent if

$$c_1\mathbf{u}_1+c_2\mathbf{u}_2+\cdots+c_k\mathbf{u}_k=\mathbf{0},$$

has only the trivial solution $c_1 = c_2 = \cdots = c_k = 0$.

 $\Leftrightarrow \text{ the homogeneous linear system } \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_k \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \text{ has only the trivial solution.}$

Theorem

 $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\} \subseteq \mathbb{R}^n$ linearly independent \Leftrightarrow RREF of $\mathbf{A} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_k \end{pmatrix}$ has no non-pivot columns.

Idea

- 1. A set is linearly independence if and only if there are no redundancy when taking the span, i.e. no subset of $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ can span $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$.
- 2. A set $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is linearly independent if and only if the linear combination $\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_k \mathbf{u}_k$ is unique.

Special Cases

- 1. $\{\mathbf{0}\}$, where $\mathbf{0} \in \mathbb{R}^n$ is the zero vector is always linearly dependent.
- 2. If $\mathbf{v} \neq \mathbf{0}$, then $\{\mathbf{v}\} \in \mathbb{R}^n$ is linearly independent.
- 3. $\{\mathbf{v_1}, \mathbf{v_2}\}$ is linearly dependent if and only if one is a scalar multiple of the other, $\alpha \mathbf{v_1} = \mathbf{v_2}$ or $\mathbf{v_1} = \beta \mathbf{v_2}$.
- 4. The empty set $\{\} = \emptyset$ is linearly independent.
- 5. Any subset of \mathbb{R}^n containing more than n vectors must be linearly dependent.
- 6. If $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is linearly dependent, then for any $\mathbf{u} \in \mathbb{R}^n$, $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k, \mathbf{u}\}$ is linearly dependent.
- 7. $\{\mathbf{u}_1,\mathbf{u}_2,...,\mathbf{u}_k\}$ linearly independent and $\mathbf{u} \not\in \text{span}\{\mathbf{u}_1,\mathbf{u}_2,...,\mathbf{u}_k\} \Rightarrow \{\mathbf{u}_1,\mathbf{u}_2,...,\mathbf{u}_k,\mathbf{u}\}$ linearly independent.
- 8. Subset of linearly independent set is linearly independent.
- 9. A set $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ containing n vectors in \mathbb{R}^n is linearly independent if and only if it spans \mathbb{R}^n .

Basis

Let $V \subseteq \mathbb{R}^n$ be a subspace. A set $S = \{\mathbf{u}_1, \cdots \mathbf{u}_k\} \subseteq V$ is a <u>basis</u> for V if

- (i) span(S) = V, and
- (ii) S is linearly independent.
- ▶ Basis to the solution space: Let $V = \{ \mathbf{u} \mid \mathbf{A}\mathbf{u} = \mathbf{0} \}$, and $s_1\mathbf{u}_1 + s_2\mathbf{u}_2 + \cdots + s_k\mathbf{u}_k, \quad s_1, s_2, ..., s_k \in \mathbb{R}$ the general solution to the homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$. Then $\{\mathbf{u}_1, \cdots \mathbf{u}_k\}$ is a basis for V.
- A subset $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\} \subseteq \mathbb{R}^n$ is a basis for \mathbb{R}^n if and only if k = n and $\mathbf{A} = (\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_n)$ is an invertible matrix.

Equivalent Statements for Invertibility

Let A be a square matrix of order n. The following statements are equivalent.

- (i) A is invertible.
- (ii) A has a left inverse.
- (iii) A has a right inverse.
- (iv) The reduced row-echelon form of **A** is the identity matrix.
- (v) A can be expressed as a product of elementary matrices.
- (vi) The homogeneous system Ax = 0 has only the trivial solution.
- (vii) For any \mathbf{b} , the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution.
- (viii) The determinant of **A** is nonzero, $det(\mathbf{A}) \neq 0$.
- (ix) The columns/rows of A are linearly independent.
- (x) The columns/rows of **A** spans \mathbb{R}^n .

Dimension

Theorem

Suppose $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ and $T = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m\}$ are bases for a subspace $V \subseteq \mathbb{R}^n$. Then k = m.

The <u>dimension</u> of a subspace $V \subseteq \mathbb{R}^n$ is the number of vectors in any basis, denoted as dim(V).

Theorem

The dimension of a solution space $V = \{ u \mid Au = 0 \}$ is the number of non-pivot columns in the RREF of A.

Theorem

Let V be a k-dimensional subspace. Then

- (i) any subset of V containing more than k vectors must be linearly dependent;
- (ii) any subset of V containing less than k vectors cannot span V.

Basis

Theorem (Spanning set theorem)

Let $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m\}$ be a subset of vectors in \mathbb{R}^n , and let $V = \operatorname{span}(S)$. Then there must be a subset of S that is a basis for V.

The basis S' of V that is a basis subset of S has $\dim(V)$ vectors, i.e. need to remove $m - \dim(V)$ vectors from S to obtain a basis S'.

Theorem (Linear independence theorem)

Let $T = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m\}$ a linearly independent subset of V, $T \subseteq V$. Then there must be a set T' containing T, $T \subseteq T'$ such that T' is a basis for V.

The basis T' has $\dim(V)$ vectors. Need to add $\dim(V) - m$ more independent vectors to extend T to be a basis for V.

Tutorial 5 Solutions

Question 1(a)

$$S = \left\{ \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 6 \\ 6 \end{pmatrix} \right\}.$$

- (i) Determine if S is linearly independent.
- (ii) If S is linearly dependent, express one of the vectors in S as a linear combination of the others.

The set S is linearly dependent since it contains 4 vectors from \mathbb{R}^3 .

$$\begin{pmatrix} 2 & 0 & 2 & 3 \\ -1 & 3 & 4 & 6 \\ 0 & 2 & 3 & 6 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{9}{2} \\ 0 & 1 & 0 & \frac{15}{2} \\ 0 & 0 & 1 & -3 \end{pmatrix}.$$

Thus

$$\begin{pmatrix} 3 \\ 6 \\ 6 \end{pmatrix} = \frac{9}{2} \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} + \frac{15}{2} \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}.$$

Question 1(b)

$$S = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix} \right\}.$$

- (i) Determine if S is linearly independent.
- (ii) If S is linearly dependent, express one of the vectors in S as a linear combination of the others.

The set S is linearly independent since S has only two vectors which are not multiples of each other.

Question 1(c)

$$S = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}.$$

- (i) Determine if S is linearly independent.
- (ii) If S is linearly dependent, express one of the vectors in S as a linear combination of the others.

Any set containing the zero vector is linearly dependent. Indeed we have

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}.$$

Question 1(d)

$$S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \right\}.$$

- (i) Determine if S is linearly independent.
- (ii) If S is linearly dependent, express one of the vectors in S as a linear combination of the others.

$$\left(\begin{array}{ccc|c} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & -1 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

So
$$a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + c \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 has only the trivial solution and S is a linearly independent set.

Question 2(a)

Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent vectors in \mathbb{R}^n . Determine if $S_1 = \{\mathbf{u}, \mathbf{v}\}$ is linearly independent.

Any subset of a linearly independent set is linearly independent.

Question 2(b)

Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent vectors in \mathbb{R}^n . Determine if $S_2 = \{\mathbf{u} - \mathbf{v}, \mathbf{v} - \mathbf{w}, \mathbf{w} - \mathbf{u}\}$ is linearly independent.

Observe that $(\mathbf{u} - \mathbf{v}) + (\mathbf{v} - \mathbf{w}) + (\mathbf{w} - \mathbf{u}) = \mathbf{0}$. So, S_2 is linearly dependent.

Question 2(c)

Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent vectors in \mathbb{R}^n . Determine if $S_3 = \{\mathbf{u} - \mathbf{v}, \mathbf{v} - \mathbf{w}, \mathbf{u} + \mathbf{w}\}$ is linearly independent.

We have

$$a(\mathbf{u} - \mathbf{v}) + b(\mathbf{v} - \mathbf{w}) + c(\mathbf{w} + \mathbf{u}) = \mathbf{0} \quad \Leftrightarrow \quad (a+c)\mathbf{u} + (-a+b)\mathbf{v} + (-b+c)\mathbf{w} = \mathbf{0}.$$

Since $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent, we have

$$\begin{cases}
 a & + c = 0 \\
 -a + b & = 0 \\
 - b + c = 0
\end{cases}$$

The system has only the trivial solution a = 0, b = 0, c = 0. Thus S_3 is linearly independent.

Question 2(d)

Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent vectors in \mathbb{R}^n . Determine if $S_4 = \{\mathbf{u}, \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} + \mathbf{w}\}$ is linearly independent.

$$a\mathbf{u} + b(\mathbf{u} + \mathbf{v}) + c(\mathbf{u} + \mathbf{v} + \mathbf{w}) = \mathbf{0} \quad \Leftrightarrow \quad (a+b+c)\mathbf{u} + (b+c)\mathbf{v} + c\mathbf{w} = \mathbf{0}.$$

Since $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent, we have a+b+c=b+c=c=0. Solving for a,b,c gives the trivial solution a=0,b=0,c=0. Thus S_4 is linearly independent.

Question 2(e)

Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent vectors in \mathbb{R}^n . Determine if $S_5 = \{\mathbf{u} + \mathbf{v}, \mathbf{v} + \mathbf{w}, \mathbf{u} + \mathbf{w}, \mathbf{u} + \mathbf{v} + \mathbf{w}\}$ is linearly independent.

$$(u + v) + (v + w) + (u + w) - 2(u + v + w) = 0.$$

So, S_5 is linearly dependent.

Question 3(a)

Find a basis for
$$V=\left\{ egin{array}{c} (a+b) \\ a+c \\ c+d \\ b+d \end{array} \middle| \begin{array}{c} a,b,c,d \in \mathbb{R} \end{array} \right\}.$$

$$\begin{pmatrix} a+b \\ a+c \\ c+d \\ b+d \end{pmatrix} = a \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + c \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} + d \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \Rightarrow V = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} = - \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}.$$

So,
$$\left\{ \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} \right\}$$
 is a basis for V .

Question 3(b)

Find a basis for
$$V = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\}.$$

The set contains 4 vectors in \mathbb{R}^3 . Subset of any 3 vectors will form a basis for V, that is, $V = \mathbb{R}^3$.

```
>> V=[1 -1 0 1;0 2 3 -1;-1 3 0 1];
a=[1:4];
for i = 1:4
V(:,setdiff(a,i))
rref(V(:,setdiff(a,i)))
end
```

Question 3(c)

Find a basis for V, the solution space of the following homogeneous linear system

$$\begin{cases} a_1 & + a_3 + a_4 - a_5 = 0 \\ a_2 + a_3 + 2a_4 + a_5 = 0 \\ a_1 + a_2 + 2a_3 + a_4 - 2a_5 = 0 \end{cases}$$

So,
$$\left\{ \begin{pmatrix} -1\\-1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\1\\0\\-1\\1 \end{pmatrix} \right\}$$
 is a basis for V .

Question 4

For what values of a will
$$\mathbf{u}_1 = \begin{pmatrix} a \\ 1 \\ -1 \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} -1 \\ a \\ 1 \end{pmatrix}$, $\mathbf{u}_3 = \begin{pmatrix} 1 \\ -1 \\ a \end{pmatrix}$ form a basis for \mathbb{R}^3 ?

$$\left\{ \begin{pmatrix} a \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ a \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ a \end{pmatrix} \right\} \text{ is a basis for } \mathbb{R}^3 \text{ if and only if } \begin{pmatrix} a & -1 & 1 \\ 1 & a & -1 \\ -1 & 1 & a \end{pmatrix} \text{ is invertible, if and only if its determinant is nonzero.}$$

- >> syms a; A=[a -1 1;1 a -1;-1 1 a];
- >> simplify(det(A))

The set is a basis if and only if $a \neq 0$.

Question 5(a)

Suppose
$$U = \operatorname{span} \left\{ \mathbf{u}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 1 \end{pmatrix} \right\}$$
, $V = \operatorname{span} \left\{ \mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 2 \\ -1 \end{pmatrix} \right\}$. Define the sum $U + V = \{ \mathbf{u} + \mathbf{v} \mid \mathbf{u} \in U \text{ and } \mathbf{v} \in V \}$. Is $U \cup V$ a subspace of \mathbb{R}^4 ?

No.
$$\mathbf{u}_1, \mathbf{v}_1 \in U \cup V$$
 but we will show that $\mathbf{w} = \mathbf{u}_1 + \mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 2 \\ 1 \end{pmatrix}$ is not, that is, \mathbf{w} is neither in U nor

V.

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 2 & 2 \\ 1 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 2 & 2 \\ 0 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

>> u1=[1;1;1;1];u2=[1;2;2;1];v1=[1;0;1;0];v2=[1;0;2;-1];

Question 5(b)

Show that U + V a subspace by showing that it can be written as a span of a set. What is the dimension?

Any vector in U + V can be written as

$$\mathbf{u} + \mathbf{v} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2,$$

that is, $U + V = \text{span}\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{v}_1, \mathbf{v}_2\}$, and hence, U + V is a subspace. Since $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{v}_1, \mathbf{v}_2\}$ is a spanning set, it suffices to find a linearly independent subset of it to form a basis.

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 1 & 2 \\ 1 & 1 & 0 & -1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

This shows that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{v}_1\}$ is a basis for U + V, and hence $\dim(U + V) = 3$.

Question 5(c)

Show that U+V contains U and V. This shows that U+V is a subspace containing $U\cup V$.

Given any $\mathbf{u} \in U$, let $\mathbf{v} = \mathbf{0} \in V$, and so $\mathbf{u} = \mathbf{u} + \mathbf{0} = \mathbf{u} + \mathbf{v} \in U + V$. This shows that $U \subseteq U + V$. Similarly, given any $\mathbf{v} \in V$, let $\mathbf{u} = \mathbf{0} \in U$, and so $\mathbf{v} = \mathbf{0} + \mathbf{v} = \mathbf{u} + \mathbf{v} \in U + V$. Since $U \subseteq U + V$ and $V \subseteq U + V$, $U \cup V \subseteq U + V$.

Alternatively, since span $\{\mathbf{u}_1, \mathbf{u}_2\}$ and span $\{\mathbf{v}_1, \mathbf{v}_2\}$ are subsets of span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{v}_1, \mathbf{v}_2\}$. In fact, U + V is the smallest subspace that contains $U \cup V$.

Question 5(d)

What are the dimensions of U and V?

It is clear that $\{\mathbf{u}_1, \mathbf{u}_2\}$ and $\{\mathbf{v}_1, \mathbf{v}_2\}$ are linearly independent sets. Hence, $\dim(U) = \dim(V) = 2$.

Question 5(e)

Show that $U \cap V$ a subspace by showing that it can be written as a span of a set. What is the dimension?

A vector in $\mathbf{w} \in U \cap V$ must be able to be written as a linear combination of $\mathbf{u}_1, \mathbf{u}_2$, and as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . In other words, we must be able to find $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$ such that $\mathbf{w} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2$, in other words, we are solving the homogeneous linear system $\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 - \beta_1 \mathbf{v}_1 - \beta_2 \mathbf{v}_2 = \mathbf{0}$.

So for any choice of $s \in \mathbb{R}$, $\alpha_1 = -2s$ and $\alpha_2 = s$, or $\beta_1 = -2s$ and $\beta_2 = s$ will work, that is, $\mathbf{w} = -s(2\mathbf{u}_1 - \mathbf{u}_2) = -s(2\mathbf{v}_1 - \mathbf{v}_2)$. Hence, $U \cap V = \mathrm{span}\{2\mathbf{u}_1 - \mathbf{u}_2\} = \mathrm{span}\{2\mathbf{v}_1 - \mathbf{v}_2\}$, and this shows that $U \cap V$ is a subspace, with $\dim(U \cap V) = 1$.

Question 5(f)

Verify that
$$\dim(U+V) = \dim(U) + \dim(V) - \dim(U \cap V)$$
.

Indeed,
$$3 = 2 + 2 - 1$$
.