$$\pi_1 = .5$$
,  $\pi_2 = .5$ 







## Linear Discriminant Analysis (LDA)

## the dashed lined represents the Bayes decision boundary (Bayes Classifier)

we classify a new point to which density is highest

ullet when priors are different, take them into account and compare  $\pi_k f_k(x)$ 

## on the right, we favor the pink class the decision boundary has shifted to the left

## Linear Discriminant Analysis (LDA)

$$\pi_1 = .5, \quad \pi_2 = .5$$

$$\pi_1 = .3, \quad \pi_2 = .7$$





- the dashed lined represents the Bayes decision boundary (Bayes Classifier)
- we classify a new point to which density is highest
- ullet when priors are different, take them into account and compare  $\pi_k f_k(x)$
- on the right, we favor the pink class the decision boundary has shifted to the left

Linear Discriminant Analysis (LDA)

