Complejidad y Optimización Programación Entera y Mixta

Carlos Alberto Ramirez Restrepo

Programa de Ingeniería de Sistemas Escuela de Ingeniería de Sistemas y Computación, home page: http://eisc.univalle.edu.co/ carlos.a.ramirez@correounivalle.edu.co

Plan

Generalidades

Programación Entera y Mixta

- En la programación lineal entera o mixta se tiene que todas o varias de las variables están restringidas a tomar sólo valores enteros.
- De esta manera, una vez aplicado el método simplex (o algún otro método) la solución obtenida no necesariamente será entero.
- Una alternativa es redondear la solución óptima no entera (continua obtenida
- No obstante, por lo general esto NO conduce a la solución óptima entera

Programación Entera y Mixta

- En la programación lineal entera o mixta se tiene que todas o varias de las variables están restringidas a tomar sólo valores enteros.
- De esta manera, una vez aplicado el método simplex (o algún otro método) la solución obtenida no necesariamente será entero.
- Una alternativa es redondear la solución óptima no entera (continua) obtenida
- No obstante, por lo general esto NO conduce a la solución óptima entera

Programación Entera y Mixta

- En la programación lineal entera o mixta se tiene que todas o varias de las variables están restringidas a tomar sólo valores enteros.
- De esta manera, una vez aplicado el método simplex (o algún otro método) la solución obtenida no necesariamente será entero.
- Una alternativa es redondear la solución óptima no entera (continua) obtenida
- No obstante, por lo general esto NO conduce a la solución óptima entera.

Programación Entera y Mixta

- En la programación lineal entera o mixta se tiene que todas o varias de las variables están restringidas a tomar sólo valores enteros.
- De esta manera, una vez aplicado el método simplex (o algún otro método) la solución obtenida no necesariamente será entero.
- Una alternativa es redondear la solución óptima no entera (continua) obtenida
- No obstante, por lo general esto NO conduce a la solución óptima entera.

Generalidades

Considere nuevamente el problema de las pinturas, para el cuál se planteó el siguiente modelo:

Maximizar

$$3x_e + 2x_i$$

sujeto a

$$x_e + 2x_i \le 6$$

 $2x_e + x_i \le 8$
 $-x_e + x_i \le 1$
 $x_i \le 2$
 $x_1, x_2 \ge 0$

Programación Entera y Mixta

Generalidades

El anterior problema puede ser representado gráficamente así:

La solución continua a este problema es $x_e = 10/3$, $x_i = 4/3$ y el valor de la función objetivo es z = 38/3.

Programación Entera y Mixta

Generalidades

El anterior problema puede ser representado gráficamente así:

La solución continua a este problema es $x_e = 10/3$, $x_i = 4/3$ y el valor de la función objetivo es z = 38/3.

- Si se redondea la solución, se obtendrían 4 alternativas de solución:
 - $x_0 = 3$. $x_i = 1$
 - $x_e = 4$, $x_i = 1$
 - $x_e = 3$, $x_i = 2$
 - $x_e = 4$, $x_i = 2$
- No obstante, con estas soluciones se pierde la factibilidad o la optimidad.

Programación Entera y Mixta

- La complejidad de envontrar soluciones óptimas enteras es alta.
- Para solucionar problema de programación entera se utiliza el método branch and bound (ramificar y acotar).

Programación Entera y Mixta

- La complejidad de envontrar soluciones óptimas enteras es alta.
- Para solucionar problema de programación entera se utiliza el método branch and bound (ramificar y acotar).

Plan

Generalidades

Programación Entera y Mixta

- El algoritmo branch and bound aplica iterativamente el método simplex.
- La idea de este algoritmo es dividir el problema succesivamente en subproblemas, aplicando en cada uno una restricción adicional con el fin de forzar el simplex a tomar soluciones enteras.

Programación Entera y Mixta

- El algoritmo branch and bound aplica iterativamente el método simplex.
- La idea de este algoritmo es dividir el problema succesivamente en subproblemas, aplicando en cada uno una restricción adicional con el fin de forzar el simplex a tomar soluciones enteras.

Branch and Bound

Considere el siguiente problema:

Maximizar

$$5x_1 + 4x_2$$

sujeto a

$$x_1 + x_2 \le 5$$

 $10x_1 + 6x_2 \le 45$
 $x_1, x_2 \ge 0$ y enteros

Se utilizará el término PLO para referenciar este problema.

Branch and Bound

Considere el siguiente problema:

Maximizar

$$5x_1 + 4x_2$$

sujeto a

$$x_1 + x_2 \le 5$$

 $10x_1 + 6x_2 \le 45$
 $x_1, x_2 \ge 0$ y enteros

Se utilizará el término PLO para referenciar este problema.

- Solucion de PL0: $\chi_1 = 3.75$, $\chi_2 = 1.25$, $\chi_2 = 23.75$.
- Claramente, esta solución es no entera. Por consiguiente, es necesario ramificar.

Programación Entera y Mixta

- Se selecciona una variable que no cumpla la restricción de ser entera.
- Por ejemplo, se escoge x₁ que es denominada la variable de ramificación.
- En la solución continua encontrada, se tiene que $x_1 = 3.75$.
- Puesto que debe cumplirse que x_1 sea entera, luego se tiene que $x_1 \le 3$ o $x_1 \ge 4$.

Branch and Bound

Se generan dos problemas, agregando al problema anterior una de las restricciones anteriores:

Problema PL1

$$max \ z = 5x_1 + 4x_2$$

sujeto a

 $x_1 + x_2 \le 5$
 $10x_1 + 6x_2 \le 45$
 $x_1 \le 3$
 $x_1, x_2 \ge 0$

Problema PL2

$$max \ z = 5x_1 + 4x_2$$

sujeto a

 $x_1 + x_2 \le 5$
 $10x_1 + 6x_2 \le 45$
 $x_1 \ge 4$
 $x_1, x_2 \ge 0$

Branch and Bound

Se generan dos problemas, agregando al problema anterior una de las restricciones anteriores:

Problema PL1 $max \ z = 5x_1 + 4x_2$ sujeto a $x_1 + x_2 \le 5$ $10x_1 + 6x_2 \le 45$ $x_1 \le 3$ $x_1, x_2 \ge 0$

Problema PL2

$$max \ z = 5x_1 + 4x_2$$

sujeto a

 $x_1 + x_2 \le 5$
 $10x_1 + 6x_2 \le 45$
 $x_1 \ge 4$
 $x_1, x_2 \ge 0$

Branch and Bound

Se generan dos problemas, agregando al problema anterior una de las restricciones anteriores:

Problema PL1

$$max z = 5x_1 + 4x_2$$

sujeto a

$$x_1 + x_2 \le 5$$

$$10x_1 + 6x_2 \le 45$$
• $x_1 \le 3$

$$x_1, x_2 \ge 0$$

Problema PL2

$$max z = 5x_1 + 4x_2$$

sujeto a

$$x_1 + x_2 \le 5$$

 $10x_1 + 6x_2 \le 45$
• $x_1 \ge 4$
 $x_1, x_2 \ge 0$

Programación Entera y Mixta

- Problemas pendientes a resolver: {PL1, PL2}.
- Se escoge y resuelve uno de los problemas, por ejemplo PL1.

- Solucion de PL1: $x_1 = 3$, $x_2 = 2$, z = 23.
- Se llegó a una solución óptima de PL1 que es entera.
- No tiene sentido buscar más en PL1.
- Esta solución es candidata para solución óptima entera y se debe almacenar

Programación Entera y Mixta

- Problemas pendientes a resolver: {PL2}.
- Se resuelve el problema PL2.

Branch and Bound

- Solucion de PL2: $x_1 = 4$ $x_2 = 5/6$, z = 23.33.
- Dado que el valor de x₂ no es entero, la solución no es entera.

x1<=3

xl>=4

Programación Entera y Mixta

- Es necesario ramificar x_2 en PL2.
- De esta manera, se generan 2 nuevos problemas agregando a PL2 la restricción $x_2 \le 0$ (PL3) y la restricción $x_2 \ge 1$ (PL4) respectivamente.

Branch and Bound

Los problemas PL3 y PL4 son como sigue:

Problema PL3 $max \ z = 5x_1 + 4x_2$ sujeto a $x_1 + x_2 \le 5$ $10x_1 + 6x_2 \le 45$ $x_1 \ge 4$ $x_2 \le 0$ $x_1, x_2 \ge 0$

Problema PL4

$$max \ z = 5x_1 + 4x_2$$

sujeto a

 $x_1 + x_2 \le 5$
 $10x_1 + 6x_2 \le 45$
 $x_1 \ge 4$
 $x_2 \ge 1$
 $x_1, x_2 \ge 0$

Branch and Bound

Los problemas PL3 y PL4 son como sigue:

Problema PL3 $max \ z = 5x_1 + 4x_2$ sujeto a $x_1 + x_2 \le 5$ $10x_1 + 6x_2 \le 45$ $x_1 \ge 4$ $x_2 \le 0$ $x_1, x_2 \ge 0$

Problema PL4

$$max \ z = 5x_1 + 4x_2$$

sujeto a

 $x_1 + x_2 \le 5$
 $10x_1 + 6x_2 \le 45$
 $x_1 \ge 4$
 $x_2 \ge 1$
 $x_1, x_2 \ge 0$

Branch and Bound

Los problemas PL3 y PL4 son como sigue:

Problema PL3

$$max z = 5x_1 + 4x_2$$

sujeto a

$$x_1 + x_2 \le 5$$

$$10x_1 + 6x_2 \le 45$$

$$x_1 \ge 4$$

$$x_2 \le 0$$

$$x_1, x_2 \ge 0$$

Problema PL4

$$max z = 5x_1 + 4x_2$$

sujeto a

$$\begin{array}{rcl}
 x_1 & + & x_2 & \leq & 5 \\
 10x_1 & + & 6x_2 & \leq & 45 \\
 & x_1 & \geq & 4 \\
 \hline & x_2 & \geq & 1 \\
 & x_1, x_2 & > & 0
 \end{array}$$

Programación Entera y Mixta

- Problemas pendientes a resolver: {PL3, PL4}.
- Se resuelve el problema PL4.
- PL4 tiene la restricción x₂ ≥ 1, la cua no es satisfactible considerando las otras restricciones

Programación Entera y Mixta

- Problemas pendientes a resolver: {PL3, PL4}.
- Se resuelve el problema PL4.
- PL4 tiene la restricción x₂ ≥ 1, la cual no es satisfactible considerando las otras restricciones.

Programación Entera y Mixta

- Problemas pendientes a resolver: {PL3, PL4}.
- Se resuelve el problema PL4.
- PL4 tiene la restricción x₂ ≥ 1, la cual no es satisfactible considerando las otras restricciones
- En consecuencia, el problema PL4 no tiene solución y está agotado.

Programación Entera y Mixta

- Problemas pendientes a resolver: {PL3}.
- Se resuelve el problema PL3.

- Solucion de PL3: $x_1 = 4$, $x_2 = 0$, z = 22.5.
- Esta solución no es entera.
- Sin embargo, el problema está agotado puesto que una solución entera tendrá un valor de z ≤ 22.5, que es menor que el mejor valor encontrado 23.
- En consecuencia, no se ramifica.

- Dado que no hay problemas pendietes, el algoritmo finaliza.
- El algoritmo retorna el mejor candidato en la búsqueda, que fue encontrado en el problema PL1 correspondiente a la solución óptima entera x₁ = 3, x₂ = 2 y z = 23.

Programación Entera y Mixta

Branch and Bound

El siguiente es el algoritmo branch and bound:

```
BRANCH-AND-BOUND (PL)
max_value = -inf
best sol = null
L = \{PL\} //stack
while !is_empty(L)
   current = L.first
   sol = SIMPLEX(current)
   if sol == null or sol.value < max_value or is_integer(sol) then
      if is_integer(sol) and sol.value > max_value then
         max_value = sol.value
         best sol = sol
   else
      Let PL' and Pl'' new problems with one additional constraint
      L.add(PL')
      L.add(PL'')
return best sol
```

Programación Entera y Mixta

- Por lo general, el algoritmo branch and bound es muy costoso, ya que requiere la solución de un problema PL en cada hoja del arból.
- Es posible acelerarlo, si en lugar de la optimización se aplica una reoptimización en el problema nuevo, es decir:
 - se conoce la solución (y su última tabla simplex)
 - se agrega la nueva restricción
 - se actualiza la solución óptima

Programación Entera y Mixta

- Por lo general, el algoritmo branch and bound es muy costoso, ya que requiere la solución de un problema PL en cada hoja del arból.
- Es posible acelerarlo, si en lugar de la optimización se aplica una reoptimización en el problema nuevo, es decir:
 - se conoce la solución (y su última tabla simplex)
 - se agrega la nueva restricción
 - se actualiza la solución óptima

Programación Entera y Mixta

- Por lo general, el algoritmo branch and bound es muy costoso, ya que requiere la solución de un problema PL en cada hoja del arból.
- Es posible acelerarlo, si en lugar de la optimización se aplica una reoptimización en el problema nuevo, es decir:
 - se conoce la solución (y su última tabla simplex)
 - se agrega la nueva restricción
 - se actualiza la solución óptima

Programación Entera y Mixta

- Por lo general, el algoritmo branch and bound es muy costoso, ya que requiere la solución de un problema PL en cada hoja del arból.
- Es posible acelerarlo, si en lugar de la optimización se aplica una reoptimización en el problema nuevo, es decir:
 - se conoce la solución (y su última tabla simplex)
 - se agrega la nueva restricción
 - se actualiza la solución óptima.

Programación Entera y Mixta

- Por lo general, el algoritmo branch and bound es muy costoso, ya que requiere la solución de un problema PL en cada hoja del arból.
- Es posible acelerarlo, si en lugar de la optimización se aplica una reoptimización en el problema nuevo, es decir:
 - se conoce la solución (y su última tabla simplex)
 - se agrega la nueva restricción
 - se actualiza la solución óptima.

Programación Entera y Mixta

Branch and Bound

En el ejemplo anterior:

sujeto a

Programación Entera y Mixta

Branch and Bound

De esta manera, al aplicar simplex tenemos:

Var. Básicas	z	x ₁	X ₂	s ₁	s ₂	RHS	
Z	1	-5	-4	0	0	0	-
s_1	0	1	1	1	0	5	$5/1=5$ entra x_1
s ₂	0	10	6	0	1	45	$45/10 = 4.5$ sale s_2
Z	1	0	-1	0	0.5	22.5	-
<i>s</i> ₁	0	0	0.4	1	-0.1	0.5	$0.5/0.4 = 1.25$ entra x_2
<i>x</i> ₁	0	1	0.6	0	0.1	4.5	$4.5/0.6 = 7.5$ sale s_1
Z	1	0	0	2.5	0.25	23.75	
<i>x</i> ₂	0	0	1	2.5	-0.25	1.25	
<i>X</i> ₁	0	1	0	-1.5	0.25	3.75	solución óptima

Programación Entera y Mixta

- Dado que la solución no es entera, entonces se ramifica en 2 problemas nuevos, agregando las restricciones $x1 \le 3$ (PL1) y $x1 \ge 4$ (PL2).
- Si se decide continuar con PL1: Se expresa la nueva restricción $x_1 \le 3$ en términos de las variables no básicas usando $x_1 1.5s_1 + 0.25s_2 = 3.75$, es decir $1.5s_1 0.25s_2 + 3.75 \le 3$ o con una nueva variable de holgura s_2 :

$$1.5s_1 - 0.25s_2 + s_3 = -0.75$$

Programación Entera y Mixta

- Dado que la solución no es entera, entonces se ramifica en 2 problemas nuevos, agregando las restricciones $x1 \le 3$ (PL1) y $x1 \ge 4$ (PL2).
- Si se decide continuar con PL1: Se expresa la nueva restricción $x_1 \le 3$ en términos de las variables no básicas usando $x_1 1.5s_1 + 0.25s_2 = 3.75$, es decir $1.5s_1 0.25s_2 + 3.75 \le 3$ o con una nueva variable de holgura s_3 :

$$1.5s_1 - 0.25s_2 + s_3 = -0.75$$

Branch and Bound

Programación Entera y Mixta

Branch and Bound

Agregando esta nueva restricción al tablero final y aplicando el método simplex se obtiene:

Var. Básicas	Z	x ₁	X ₂	s ₁	s ₂	S 3	RHS	
Z	1	0	0	2.5	0.25	0	23.75	
<i>x</i> ₂	0	0	1	2.5	-0.25	0	1.25	
<i>X</i> ₁	0	1	0	-1.5	0.25	0	3.75	entra s ₂
s ₃	0	0	0	1.5	-0.25	1	-0.75	sale s ₃
Z	1	0	0	4	0	1	23	
<i>x</i> ₂	0	0	1	1	0	-1	2	
<i>X</i> ₁	0	1	0	0	0	1	3	
S 3	0	0	0	-6	1	-4	3	sol. opt. entera

Programación Entera y Mixta

Branch and Bound

• Si se decide continuar con PL2: Se expresa la nueva restricción $x_1 \ge 4$ en términos de las variables no básicas usando $x_1 - 1.5s_1 + 0.25s_2 = 3.75$, es decir $1.5s_1 - 0.25s_2 + 3.75 \ge 4$ o con una nueva variable de holgura s_3 :

$$1.5s_1 - 0.25s_2 - s_3 = 0.25$$

Branch and Bound

Programación Entera y Mixta

Branch and Bound

Agregando esta nueva restricción al tablero final y aplicando el método simplex se obtiene:

Var. Básicas	Z	x_1	\mathbf{x}_{2}	s_1	s_2	s_3	RHS	
Z	1	0	0	2.5	0.25	0	23.75	
<i>X</i> ₂	0	0	1	2.5	-0.25	0	1.25	
<i>x</i> ₁	0	1	0	-1.5	0.25	0	3.75	entra s ₁
S 3	0	0	0	1.5	-0.25	1	-0.75	sale s ₃
Z	1	0	0	0	2/3	5/3	23.33	
<i>X</i> ₂	0	0	1	0	1/6	5/3	5/6	
<i>x</i> ₁	0	1	0	0	0	-1	4	
5 3	0	0	0	1	-1/6	-2/3	1/6	sol. opt. no entera

Dado que la solución no es entera, se debe repetir el procedimiento anterior hasta hallar una solución entera.

Branch and Bound

Programación Entera y Mixta

Branch and Bound

Agregando esta nueva restricción al tablero final y aplicando el método simplex se obtiene:

Var. Básicas	z	x_1	x_2	s_1	s ₂	s ₃	RHS	
Z	1	0	0	2.5	0.25	0	23.75	
<i>X</i> ₂	0	0	1	2.5	-0.25	0	1.25	
<i>x</i> ₁	0	1	0	-1.5	0.25	0	3.75	entra s ₁
S 3	0	0	0	1.5	-0.25	1	-0.75	sale s ₃
Z	1	0	0	0	2/3	5/3	23.33	
<i>X</i> ₂	0	0	1	0	1/6	5/3	5/6	
<i>x</i> ₁	0	1	0	0	0	-1	4	
5 3	0	0	0	1	-1/6	-2/3	1/6	sol. opt. no entera

Dado que la solución no es entera, se debe repetir el procedimiento anterior hasta hallar una solución entera.

Programación Entera y Mixta

Preguntas

?