NASA TMX-55134

N65-18257

(ACCESSION NUMBER)

(PAGES)

(PAGES)

(CODE)

(CODE)

(CATEGORY)

TIME VARYING SOLAR CYCLE PROTONS PROGRAM MANUAL

BY
R. A. DEVANEY
R. C. BLANCHARD
J. ANDARY

OCTOBER 1964

GODDARD SPACE FLIGHT CENTER GREENBELT, MD.

TIME VARYING SOLAR CYCLE PROTONS PROGRAM MANUAL

by

R. A. Devaney
R. C. Blanchard
J. Andary

Theoretical Division
National Aeronautics and Space Administration
GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryland

TABLE OF CONTENTS

			Page
	INTRO	DUCTION	1
I.	DIURN	AL AVERAGED ATMOSPHERE	3
II.	B-L SI	EARCH	9
	А. В. С.	Introduction	9 10 11
		1. Main Program	11 13
		Fortran Listing	15 36 36
		 Card Description	36 37
	G.	Output	38
		1. Tape 3 Sample	$\frac{39}{40}$
		a. Card Description	41 42
	н.	Running Time	43
ш.	LONGIT	TUDINAL AVERAGING PROCESSOR	45
	A. B. C. D. E. F.	Introduction	45 45 48 49 54
		1. Tape 2	54
		a. Card Description	54 55

			Page
		2. Tape 5	56
		a. Card Description	
	G.	Output	58
		1. Tape 3 Sample	
		a. Card Description	
	Н.	Running Time	66
IV.	LAMBI	DA PUNCH	67
	A. B. C. D. E. F.	Introduction	67 69 71 75
		1. Card Description	
	G.	Output	77
		1. Tape 3 Sample	
		a. Card Description	
	Н.	Running Time	82
v.	''BOUN	CE" AVERAGE CALCULATION	83
	В. С.	Introduction	83 8 7
		1. Main Program	
	E.	Fortran Listing	91

			Page
	F.	Input	. 99
		 Card Description	
	G.	Output	. 101
		1. Tape 3 Sample	
		a. Card Description	
	н.	Running Time	. 106
vı.	R , Σ C .	ALCULATION AND FLUX ELIMINATION	. 107
	В.	Introduction	107
		1. Main Program	
	E. F.	Fortran Listing	
		1. Card Description	
	G.	Output	121
		1. Tape 3 Sample	
		a. Card Description	
	н.	Running Time	130
VII.	CONSE	RVATION EQUATION CALCULATION	131
			131 133
		1 Main Program	138

			Page
		 Subroutine RUNGE Subroutine DERIV Subroutine TABLE 	. 140
		Fortran Listing	. 157
		1. Card Description	
	н.	Output	. 161
		 Transient Steady-State Sample	. 164
	I.	Running Time	. 168
VIII.	STEAD	Y-STATE CALCULATION	. 169
	В.	Introduction	. 169 . 170
		1. Main Program	
		Fortran Listing	
		 Card Description	
	G. H.	Output	
IX.	REFER	ENCES	. 191
Y	III liga	TRATIONS	109
Λ_{\bullet}	TUDUDI	INALIONO	• 1 93

LIST OF FIGURES

Figure		Page
1.	A time history of the 10.7 cm solar flux according to the measurements of the National Research Council of Canada for the recent past. The heavy dotted line indicates the approximate yearly average.	193
2.	A mapping of the polar coordinates R and λ onto the B-L plane where R = (h + 6378.2)	194
3.	B-L contours for the northern hemisphere at an L of 1.25 earth radii	195
4.	B-L contours for the southern hemisphere at an L of 1.25 earth radii	196
5.	Schematic of a trapped particle's north-south motion	197
6.	The weighing factor, $A(\lambda)$, versus latitude for various mirror latitudes, λ_0 , where λ_0 are the asymptotes of each curve	198
7.	A time history of the atmosphere scale factor, R , as a function of B at L = 1.25 e.r	199
8.	A time history of the atmospheric loss parameter, Σ , as a function of B at L = 1.25 e.r	200
9.	A time history of the constructed mean solar cycle variation of the 10.7 cm solar flux with reference time t_0 of Jan., 1954.	201
10.	A time history of the relative inner belt source strength	202
11.	The proton energy loss spectrum for an oxygen target	203
12.	The slope of proton energy loss versus energy for an oxygen target	204
13.	A comparison of the steady-state and transient proton flux energy spectrums for $L=1.25,\ B=.199$ at solar minimum and solar maximum	205

Figure		Page
14.	The time required in terms of solar cycles to build steady- state conditions versus energy as a function of B	206
15.	A time history of proton flux as a function of energy at L = 1.25, B = .209 for the first and tenth solar cycles	207
	LIST OF TABLES	
Table		Page
1.	Diurnal averaged number densities of Helium (He) as a function of altitude for five solar flux numbers	4
2.	Diurnal averaged number densities of Oxygen (O) as a function of altitude for five solar flux numbers.	5
3.	Diurnal averaged number densities of Molecular Oxygen (O_2) as a function of altitude for five solar flux numbers	6
4.	Diurnal averaged number densities of Nitrogen (N_2) as a function of altitude for five solar flux numbers. \dots	7
5.	Diurnal averaged number densities of Hydrogen (H) as a function of altitude for five solar flux numbers.	8

TIME VARYING SOLAR CYCLE PROTONS PROGRAM MANUAL

INTRODUCTION

The purpose of this manual is to provide a detailed description of the programs employed in calculating the variation of the proton population in the earth's radiation belt due to solar cycle atmospheric and source changes. This report makes no attempt to make detail explanations of the theory involved in the calculations. An adequate list of references is provided for those interested in the explanation of the methods and the results to be expected. The entire process involves several interdependent steps. For example, the diurnal averaged atmosphere and the rings output from the B-L search routine are input to the longitudinal averaging processor. The output from this program is then used as input to the "bounce" average program and so forth. Each program description includes the equations used, a flow chart and Fortran listing of the program, input and output specifications, card descriptions, sample input and output data and running time. The code is written in Fortran II language and assembled under GSFC-NASA Theoretical Division monitor system on the IBM-7094 computer.

I. DIURNAL AVERAGED ATMOSPHERE

Contained here are tables of number density vs. altitude and solar flux number. Separate tables of He, O, O_2 , N_2 and H are contained in Tables 1-5. The models are those generated by Harris and Priester. (2) Each model refers to a given solar radiation flux in units of 10^{-22} watts/m 2 /cycle/sec. The link between solar flux, S, and time is given by Figure 1 (reproduced from reference 2 with the permission of Harris and Priester). This data is included for continuity and is used as input for the longitudinal averaging processor. The Harris and Priester atmosphere and solar flux vs. time curve is the data used and is subject to change as soon as better data becomes available. Such changes can be performed without effecting the logic of the following programs.

Table 1
Diurnal Averaged Number Densities of He as a
Function of Altitude for Five Solar Flux Numbers.

S h(km.)	250	200	150	100	70
120	2.500E07	2.500E07	2.500E07	2.500E07	2.500E07
200	4.413E06	4.872E06	5.484E06	6.319E06	6.982E06
300	2.642E06	2.843E06	3.050E06	3.205E06	3.212E06
400	1.945E06	2.007E06	2.012E06	1.885E06	1.689E06
500	1.499E06	1.477E06	1.390E06	1.154E06	9.272E05
600	1.176E06	1.107E06	9.646E05	7.236E05	5.231E05
700	9.327E05	8.387E05	6.842E05	4.607E05	3.021E05
800	7.461E05	6.422E05	4.916E05	$3.004\mathrm{E}05$	1.783E05
900	6.016E05	4.964E05	3.574E05	$1.984\mathrm{E}05$	1.074E05
1000	4.886E05	$3.871\mathrm{E}05$	2.628E05	1.331E05	6.593E04
1100	3.995E05	$3.044\mathrm{E}05$	1.953E05	9.050E04	4.119E04
1200	3.287E05	2.411E05	1.466E05	6.238E04	2.616E04
1300	2.721E05	1.925E05	1.110E05	4.353E04	1.687E04
1400	2.265E05	1.547E05	8.482E04	3.074E04	1.104E04
1500	1.895E05	1.251E05	6.537E04	2.195E04	7.328E03
1600	1.595E05	1.019E05	5.078E04	1.584E04	4.925E03
1700	1.348E05	8.346E04	3.974E04	1.155E04	3.351E03
1800	1.145E05	6.875E04	3.133E04	8.497E03	2.306E03
1900	9.774E04	5.696E04	2.487E04	6.308E03	1.605E03
2000	8.378E04	4.743E04	1.988E04	4.724E03	1.128E04

Table 2
Diurnal Averaged Number Densities of O as a
Function of Altitude for Five Solar Flux Numbers.

S h(km.)	250	200	150	100	70
120	7.600E10	7.600E10	7.600E10	7.600E10	7.600E10
200	3.600E09	3.457E09	3.209E09	2.795E09	2.416E09
300	8.870E08	7.134E08	5.124E08	2.809E08	1.564E08
400	3.054E08	2.054E08	1.112E08	4.025E07	1.471E07
500	1.168E08	6.616E07	2.788E07	6.771E06	1.675E06
600	4.749E07	2.287E07	7.708E06	1.273E06	2.183E05
700	2.024E07	8.364E06	2.232E06	2.611E05	3.153E04
800	8.983E06	3.207E06	6.918E05	5.747E04	4.946E03
900	4.130E06	1.282E06	2.252E05	1.342E04	8.320E02
1000	1.960E06	5.312E05	7.645E04	3.301E03	1.488E02
1100	9.567E05	2.275E05	2.696E04	8.502E02	2.810E01
1200	4.791E05	1.003E05	9.834E03	2.284E02	5.381E00
1300	2.456E05	4.538E04	3.701E03	6.379E01	1.162E00
1400	1.287E05	2.106E04	1.434E03	1.848E01	2.527E-1
1500	6.878E04	9.997E03	5.706E02	5.541E00	5.729E-2
1600	3.746E04	4.849E03	2.330E02	1.717E00	1.352E-2
1700	2.077E04	2.399E03	9.744E01	5.486E-1	3.312E-3
1800	1.170E04	1.210E03	4.170E01	1.806E-1	8.412E-4
1900	6.700E03	6.216E02	1.824E01	6.079E-2	2.212E-4
2000	3.893E03	3.247E02	8.149E00	2.128E-2	6.010E-5

 $\begin{array}{c} {\rm Table~3}\\ {\rm Diurnal~Averaged~Number~Densities~of~O_2~as~a}\\ {\rm Function~of~Altitude~for~Five~Solar~Flux~Numbers.} \end{array}$

S h(km.)	250	200	150	100	70
120	1.200E11	1.200E11 7.910E08 4.269E07 4.069E06 4.886E05 6.758E04 1.033E03 1.714E03 3.031E02 5.682E01 1.122E01 2.322E00 5.028E-1	1.200E11	1.200E11	1.200E11
200	9.900E08		5.699E08	3.438E08	2.151E08
300	7.683E07		1.791E07	4.503E06	1.188E06
400	1.020E07		1.048E06	1.191E05	1.427E04
500	1.217E06		7.983E04	4.808E03	2.444E02
600	3.142E05		7.106E03	1.857E02	5.155E00
700	6.428E04		7.062E02	9.135E00	1.265E-1
800	1.364E04		7.688E01	5.002E-1	3.528E-3
900	3.242E03		8.962E00	3.010E-2	1.102E-4
1000	7.981E02		1.122E00	1.975E-3	3.821E-6
1100	2.056E02		1.493E-1	1.403E-4	1.459E-7
1200	5.526E01		2.106E-2	1.074E-5	5.274E-9
1300	1.544E01		3.139E-3	8.835E-7	2.788E-10
1400	4.474E00	1.136E-1	4.927E-4	7.772E-8	1.382E-11
1500	1.342E00	2.778E-2	8.124E-5	7.292E-9	7.412E-13
1600	4.157E-1	6.520E-3	1.405E-5	7.277E-10	4.288E-14
1700	1.328E-1	1.653E-3	2.541E-6	7.702E-11	2.667E-15
1800	4.370E-2	4.342E-4	4.800E-7	8.627E-12	1.777E-16
1900	1.478E-2	1.177E-4	9.452E-8	1.200E-12	1.267E-17
2000	5.142E-3	2.906E-5	1.937E-8	1.270E-13	9.626E-19

 $\begin{array}{c} {\rm Table~4} \\ {\rm Diurnal~Averaged~Number~Densities~of~N_2~as~a} \\ {\rm Function~of~Altitude~for~Five~Solar~Flux~Numbers.} \end{array}$

S h(km.)	250	200	150	100	70
120 200	5.800E11	5.800E11	5.800E11	5.800E11	5.800E11
1 1	7.393E09 7.630E08	6.180E09	4.743E09	3.136E09	2.124E09
300		4.639E08	2.210E08	6.739E07	2.113E07
400	1.278E08	5.777E07	2.151E07	2.682E06	4.225E05
500	2.562E07	8.798E06	1.810E06	1.407E05	1.156E04
600	5.730E06	1.521E06	3.239E05	8.800E03	3.844E02
700	1.403E06	2.884E05	2.763E04	6.190E02	1.471E01
800	3.664E05	5.88 3E0 4	3.899E03	4.802E01	6.320E-1
900	1.012E05	1.276E04	5.894E02	4.057E00	3.006E-2
1000	2.932E04	2.918E03	9.470E01	3.702E-1	1.570E-3
1100	8.862E03	6.994E02	1.609E01	3.627E-2	8.936E-5
1200	2.783E03	1.725E02	2.878E00	3.798E-3	1.016E-5
1300	9.053E02	4.558E01	5.404E-1	4.237E-4	3.674E-7
1400	3.041E02	1.233E01	1.063E-1	5.017E-5	2.633E-8
1500	1.075E02	3.456E00	2.183E-2	6.287E-6	2.023E-9
1600	3.768E01	1.002E00	4.677E-3	8.321E-7	1.661E-10
1700	1.380E01	3.001E-1	1.042E-3	1.160E-7	1.454E-11
1800	5.211E00	9.268E-2	2.313E-4	1.699E-8	1.353E-12
1900	2.005E00	2.949E-2	5.746E-5	2.612E-9	1.334E-13
2000	7.927E-1	9.654E-3	1.431E-5	4.619E-10	1.393E-14

Table 5
Diurnal Averaged Number Densities of H as a
Function of Altitude for Five Solar Flux Numbers.

S h(km.)	250	200	150	100	70
120 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800	4.356E04 1.071E04 8.035E03 7.205E03 6.690E03 6.272E03 5.904E03 5.573E03 5.272E03 4.996E03 4.742E03 4.502E03 4.291E03 4.090E03 3.903E03 3.730E03 3.417E03	4.356E04 1.224E04 9.323E03 8.328E03 7.660E03 7.102E03 6.609E03 6.168E03 5.769E03 5.408E03 5.079E03 4.778E03 4.503E03 4.250E03 4.018E03 3.804E03 3.606E03 3.424E03	4.356E04 1.447E04 1.114E04 9.837E03 8.898E03 8.107E03 7.415E03 6.803E03 6.260E03 5.774E03 4.947E03 4.594E03 4.275E03 3.986E03 3.723E03 3.484E03 3.266E03	4.356E04 1.790E04 1.380E04 1.189E04 1.046E04 9.263E03 8.214E03 7.360E03 6.597E03 5.933E03 5.352E03 4.843E03 4.395E03 3.998E03 3.647E03 3.335E03 2.809E03	4.356E04 2.104E04 1.611E04 1.352E04 1.157E04 9.974E03 8.638E03 7.518E03 6.571E03 5.768E03 5.083E03 4.495E03 3.989E03 3.552E03 3.173E03 2.843E03 2.555E03 2.303E03
1900 2000	3.276E03 3.144E03	3.255E03 3.098E03	3.066E03 2.884E03	2.587E03 2.387E03	2.081E03 1.886E03

II. B-L SEARCH

A. Introduction

This program produces contours of constant B and L as a function of longitude, latitude and altitude in both the northern and southern hemispheres. The desired initial values of B and L are read into the program along with an approximate corresponding latitude, λ , which can easily be obtained by the use of Figure 2. The dipole equation $r_0 = L_0 \cos^2 \lambda$ relating the initial L and the geocentric distance r_0 is used with the radius of the earth, r_e , and the equation $h_1 = r_e (r_0 - 1)$ to provide an approximation of the altitude. This is fed, together with a longitude of 180 degrees and latitude λ, into subroutine INVAR which calculates B and L for a given longitude, latitude and altitude. This subroutine makes use of the transformation developed by McIlwain (3) using the 48 spherical harmonic coefficients of Jenson and Cain (4). INVAR numerically integrates the longitudinal invariant I using a series expansion for the magnetic field. Then L is calculated as a function of both B and I by using a dipole representation of the earth. The B and L obtained in this manner are returned to the main program. Here the accuracy of the initial approximation is checked. If the computed L is found to be within an accuracy of 10⁻⁴ of the initial L the program will enter into a search routine with linear interpolation in latitude and altitude in order to arrive at a correct B. The search parameters Δh (increment in altitude) and $\Delta\lambda$ (increment in latitude) are prefixed and must remain small in order that interpolation may hold. Once B is found, it is checked, together with the value of L, to insure an accuracy of 10⁻³ in comparison with the initial values. If the accuracy is sufficient the subroutine RING will be called for the northern hemisphere. This subroutine takes a given latitude and altitude and computes the B and L contour map for longitudes of 10 degree increment for the full 360 degrees. The program then computes the contour map for the southern hemisphere at the same B and L, increments B by .01 gauss and returns to the northern hemisphere. It will continue in this manner until the altitude drops below 100 kilometers, at which point the next initial B, L and λ will be read until input data is exhausted. The entire process prepares input for the longitudinal averaging processor.

B. Mnemonics

Quantity	Description	Units
CONVR	conversion factor - degrees to radians	
RE	radius of the earth	km.
DELH	delta altitude	km.
ALONG	geocentric longitude	degrees
DLAT	delta latitude	11
ALAT	geocentric latitude	,,
В	magnetic induction	gauss
EL	magnetic field line	earth radii
R	geocentric distance	''
Н	altitude	km.
SAVB	temporary storage of B	gauss
SAVH	temporary storage of H	km.
SAVLAT	temporary storage of ALAT	degrees
LCNT	an indicator used to indicate when	
	the altitude has dropped below 100 km.	

C. Flow Charts

1. Main Program

D. Fortran Listing

```
DIMENSION SAVB(32), SAVLAT(32), SAVH(32)

1 FORMAT(2F12.5,F8.5)

2 FORMAT(5F12.5)

3 FURMAT (5A.42F)

4 FURMAT (5A.42F)

5 FORMAT (4A.4HUONG,8X.3HLAT.9X.3HALT.10X.1HB.11X.1HL)

5 FORMAT (4H.BO=1F8.5.4X.4H LO=1F8.5.4X.13H INITIAL LAT=1F8.5)

5 FORMAT (1H1.5X.42F) INTERMEDIATE RESULTS—-SOUTHERN HEMISPHERE)

7 FORMAT (1H1.5X.42F) INTERMEDIATE RESULTS—-NORTHERN HEMISPHERE)

8 FORMAT (1H1.5X.42F) INTERMEDIATE RESULTS—-NORTHERN HEMISPHERE)

9 FORMAT (60HOINTERPOLATION CANNOT PROCEED—MAKE INITIAL LATITUDE SM
                                                                                                                                                                                                                                   10 FCRMAT (37HOVALUE OF L IS NOT WITHIN .CC1 OF ELO)
CORRAD INPUT TAPE 2,1,80,ELO,ALAT
WRITE CUTPUT TAPE 3,5
WRITE CUTPUT TAPE 3,3
WRITE LUTPUT TAPE 3,4
CONVR=.01745313
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GU TO 21
WRITE GUIPUT TAPE 3.2.ALGNG.ALAT.H1.B1.EL1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CALL INVARIALAT, ALONG, H1, . 01, 61, EL1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CALL INVAR(ALAI, ALONG, H2, .01, B2, EL2)
H1=H1-(EL1-EL0)*(H1-H2)/(EL1-EL2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     IF(ABSF(CKEL)-1.6-4)14,14,12
IF(CKEL) 11.14,13
HZ=H1-DELH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DU 100 N=1,32
K0=EL0*CUSF(ALAT*CONVR)**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DO 200 I=1,32
IF(SAVb(I)-B0) 200,30,31
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       IF (N-1) 28,28,101
WRITE CUTPUT TAPE 3,9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ALAT=ALAT+BLAT
[F(81-60):100,100,105
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      AL1=SAVLAT(I-1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     SAVLAF (N) =ALAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              H1=RE*(KU-1.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          AL2=SAVLAT(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CKEL = EL 1 - EL 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             DELH=DLLH/2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          61=SAVB(1-1)
                                                                                                                                                                                                                                                                                                                                                                 RE=6376.2
DELH=100.
ALONG=180.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     HZ=HI+LELH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           SAVH(N)=H1
                                                                                                                                                                                                                                                                                                                                                                                                                                                  ALATO=ALAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 SAVB(N)=61
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CALL EXIT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 60 10 20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CONTINUE
                                                                                                                                                                                                                          1ALLER)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       LCN T=C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    100
103
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Ξ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           104
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               12
13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    101
ں
```

```
GC TO 3CO
2CO GCMINUE
3CO CALL INVAR(ALAT.ALUNG.H..Ol.B.EL)
WRITE GUIPUT TAPE 3,2,ALCNG.ALAT.hn.G.EL
            ALAT=AL2-(AL2-AL1)*(B2-B0)/(B2-B1)
H=H1-(GC-G1)*(H1-F2)/(B2-U1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       END(1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0)
                                                                                                                                                                   CKL=EL=EL0

IF (AB3F(CKL)=1.5-3) 106.106.107

IO7 WRITE CUIPUT TAPE 3.10

CALL CAII
                                                                                                                                                                                                                               106 CKB=B=B0
FF (AUSFICKB)=1.E=3) 102:102:103
103 WAITE CUPPUT TAPE 3:8
                                                                                                                                                                                                                                                                                                                                                                      IF (ALATU-11.) 500,501,501
                                                                                                                                                                                                                                                                           CALL FAIT

LOZ CALL AING(ALAI, H, LCNT)

I F (LCAT) 403,403,403,400

463 IF(CLAT) 401,401,402

62 CELH=100.
                                                                                                                                                                                                                                                                                                                                                                                                                   5C1 ALAT=-ALATC+11.
5C2 WAITE UUTPUT TAPE 3.6
6L TO 104
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ALAT=SAVLAT(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ALA F=ALA10+1.
HI = SAVF(1-1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ALATO=ALAT
                                              6c f0 3Cv
6=SAVd(1)
                                                                                           H=SAVH(I)
                                                                                                                                                                                                                                                                                                                                                                                                       GC TO 302
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 05LH=100.
                                                                                                                                                                                                                                                                                                                                                                                        SCO ALAT=-1.
                                                                                                                                                                                                                                                                                                                                                          CLAT=-2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DLAT=2.
                                                             30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     10%
```

STCHAGE NCT USED BY PROGRAM

	DEC CCT		DEC CCT 523 01013 518 01006 513 01001 508 00774 503 00767		EFN LOC 5 00731 10 00652		DEC UCT 413 00635 15 CC017 15C 00226 311 C0467		DEC 0CT 4 CCC04				1FN LUC 34 00164 50 00276 68 00410 81 00514 91 00551
R R R S S :: S		E STATEMENT	ALGNG CKB DLAT HI		33 20 80 4		6) D)4C1 L)9		(FIL)		(18+)	LUCATIONS	EFN 13 105 200 502
DIMENSION AND EQUIVALENCE STATEMENTS	DEC OCT	R EQUIVALENCE	DEC 0CT 524 C1C14 519 C1CC7 514 01C02 509 C0775 504 CC770	ATEMENTS	EFN LCC 4 00741 9 00665	PRUGRAM	DEC GCT 32767 77777 266 00412 145 00221 263 00407		DEC OCT 8 CC010 1 COCU1	АКҮ	(514)	RS AND OCTAL	1FN LCC 33 00160 49 00272 64 00376 79 00502 90 00546
ION AND EQUI		DIMENSION, DR	ALAT B DELH EL LCNT	FORMAT ST	4(8) 4(8)	C IN SOURCE	4) 6)20L E)8 E)3	K VECTOR	RING (TSH)	UT FROM LIBRARY	(RTN)	FURMULA NUMBERS	EFN 122 100 30 103 501
	DEC DCT 591 01117	IN COMMON,	DEC 0CT 525 01015 520 01010 515 01003 510 00776 505 00771	SOURCE PRUGRAM	EFN LUC 3 00752 0 00674	NOT APPEARING	000 000 000 000 000 000 000 000 000 00	IN TRANSFER	0EC 0CT 6 00006 3 00003	es not cutPut	(FPT)	INTERNAL	1FN LGC 29 00134 42 00227 59 00325 77 00471 8b 00543
ES APPEARING IN	SAVLAT	APPEARING	ALATO HZ CONVR LL2	FOR	8)3 8)8	SYMBOLS	3) 0)10F E)5 E)1 E)1H	INS OF NAMES	INVAR (STH)	IC SUPRCUTINES	(FIL)	RRL SPUNGING	ETN 20 14 11 31 106
DEC OCT 32561 77461 NS FOR VARIABLES	CEC OLT 559 01057	VARIABLES NUT	CEC 0C1 526 01016 521 01011 516 01004 511 00777 506 00772 501 00465	BOLS AND LUCATIONS	EFN LUC 2 00754 7 00706	TONS FOR CTHER	DEC 0CT 399 00e17 500 00764 14 00016 202 00312 345 00531	LUCATIONS	DEC 0C1 7 COU07 2 COU02	ENTRY POINTS 1	RING	FCRMULA NUMBERS WITH CORRESPUNDING	1FN LLC 26 CO111 46 CO222 53 CO315 75 CO457 45 CO533
T DEC 60 32561 STGRAGE LOCATIONS FOR	SAVH	LCCATIONS FOR	AL2 B1 CKL LL1 H	SYME	812	LOCATIONS	2) C)61 D)601 E)F		EXIT (RIN)	J	INVAR		EFN 104 111 101 107 402
DEC UCT 624 01160 STGA	DEC UCT 623 01157	STURAGE LO	527 01017 527 01017 522 01012 517 01005 512 01000 507 00773		EFN LEC 1 GL/57 C CU/20		DEC UCT 496 CC760 459 CC763 185 CC275 186 CC274 33C CC512		0 00000 n		LXII	EXTERNAL	15 CUG23 35 CU167 51 CU302 59 UG413 84 GG25 94 CU566
	SAVB		AL1 86 CKEL LLU HZ		1(0		0) (0 0) (0 0) (0 0) (0 0) (0 0) (0 0) (0		503 (FPT)		513		EFV 400 21 28 300 403

```
CALL INVAK(PHI,18C.,ALI,0.61,5DES,ELDES)
ARITE CUTPUT TAPE 3,107,0DES,ELDES
WRITE CUTPUT TAPE 3,101
WALTE CUTPUT TAPE 3,103,PALNG,PHI,ALI,8DEs,ELDES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CALL INVAR(PHIN, XLONG, ALIN, 0.01, BN, ELN)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CALL INVAK[PHII,XLONG,ALT,U.CI.6P,ELP] &P=(4P-u)/UPHI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CALL INVARIPHI, XLCNG, ALTI, U.CI, BA, ELA)
                                                                                                                                                                                                                                                                                                                                                                                                                                          CALL INVAR(PFI,XLCNG,ALT,G.C1,6.CL)
SUBSTILLING MING(PHI, ALT, LCNT)
[2] FLAMAI (25x, 14h FINAL RESULTS)
[32 FORMAII(17h 210 NCT CUNVERGE)
[43 FORMAII(3F12.2, 2F12.5)
[44 FORMAI (3F1 8=1F8.5, 4X, 3H L=1F8.5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GO TC 40
IF(ABSF(RLN/RL)-1.5) 11,20,20
IF(ABSF(RBN)-ERRE) 12,12,30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          RLN=ELDES-ELN
IF(ADSF(RBN/RB)-1.5) 10.20,20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             UELP=(RU*ELA-RL*BA)/DEN
DELA=(UP*RL-ELP*RB)/DEN
                                                                                                                                                                                                                                                                                                                                 IF (PRLNG) 91,92,52
31 XLUNG = 360, + PRLNG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CLA=(LLA-EL)/DALT
CUMPUIE CLRRECTIONS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             DEN=BP*ELA-ELP*BA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RB=BCES-B
RL=CLDES-EL
COMPUTE PARTIALS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ELP=(ELP-EL)/DPHI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                IF(K-2) 21,11,11
                                                                                                                                                                                                                                                                                                                                                                                                                            COMPLIE & AND L
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        EA=(UA-B)/CALT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ALT1=AL1+CALT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   PHIN=PHI+DELP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ALTN=ALT+DELA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           PHIL=PHI+CPEI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CPHI=CPHI/2.
UALT=CALT/2.
                                                                                                                                                                                                                                                                                                                                                                                       92 XLONG = PALWG
93 CENTINUE
                                                                                                            CALTS=5.C
ERRB=1.0F-4
ERRE=1.0c-3
                                                                                                                                                                                                      PRLNG=-180.C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            R6N=CDES-6N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           DC 40 1=1,20
                                                                                                                                                                                                                                                                                               UPHI=UPHIS
                                                                                                                                                                                                                                                                                                                 CALI=CALIS
                                                                                            CPF15=4.0
                                                                                                                                                                IHd = IHdx
                                                                                                                                                                                  XALT = ALT
                                                                                                                                                                                                                                                                                                                                                                        GU TO 93
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ド=ド+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ¥#0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                20
                                                                                                                                                                                                                                                                                                                                                                                                                              ں
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ں
```

18

```
12 IF(Absf(ALN)-ERRL) 50,50,30

50 PHI=PHIN
E=BN
ALI=ALTN
ERREN
AN CONTINUE
WREREN
AN CONTINUE
WREELS
PREACHO.
IF(PRENC-180.5) 9,3,3
50 PHI=PHIN
ALI=ALTN
WRITE CUIPUT TAPE 3,102
PREACHO.
IF(PRENC-180.5) 9,3,3
ALI=ALTN
WRITE CUIPUT TAPE 3,103,PRENG,PHI,ALI,B,LL
WRITE CUIPUT TAPE 3,10
```

STCRASE NOT USED BY PROGRAM

	00642 00642 00635 00630 00623 00616	רככ	001 00605 00372	100		LUC 00144 00350 00507
	0EC C 418 0C 413 0C 408 CC 403 938 CC 3993 0C	7 7	DEC (389 C(250 O(DEC		1FN 1 26 00 60 00
STATEMENT	BN DELA EREA ERRB PHIN		C)2CC		LOCATIONS	EFN 92 11 71
EQUIVALENCE	DEC CCI 419 CC643 419 CC643 409 CC631 409 CC624 399 CC617 394 CC612	TEMENTS EFN LCC 107 00567 PROGRAM	DEC CCT 365 C0555 243 00363	DEC OCT	WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS	1FN LCC 24 CO140 59 CO340 72 CO425
IMENSION, CF	BOES DALTS CPHIS EL PHII	RAT STA 8)38 SCURCE	6) E)B VECTOR	VECTOR T FROM LIBRA	RMULA NUMBEF	EFN 91 10 50
IN COMMON. D	DEC 0CT 420 00644 415 00637 416 00632 460 00625 460 00625 395 00613		3) 352 00540 E)9 231 00547 NAMES IN TRANSEER	UF NAMES IN TRANSFER VECTOR (STH) 1 00001 SUBROUTINES NOT CUTPUT FROM LIBRARY	INTERNAL FO	1FN LGC 21 00131 55 00326 68 C0407
APPEARING 1	COPHI COPHI COPHI COPHI COPHI COPHI	FOR S 8137 80LS	L: ()	^	RRESPONDING	EFN 9 21 40
LCCATIONS FOR VARIABLES NOT APPEARING IN COMPON, DIMENSION, OR EQUIVALENCE	CEC CCT 421 00645 416 00646 411 00633 401 00626 401 00621 356 00614 351 006C7	SYMBULS AND LCCATIONS FFN LCC 36 102 C0576 LOCATIONS FOR OTHER SYM	DEC CCI 347 C0533 335 Q0517	DEC OCT Z COCOZ ENTRY POINTS TO	JMBERS WITH CO	1FN LCC 16 C0C75 54 00322 62 00373 85 C0524
ZATIONS FOR	ALTN B B CEN GLN A RBN XLGNG	SYME 3)36 LOCA1	2)	(511.)	(STH) - FCRMULA NUMBERS	ETN 6 20 30 70
423 00647 STORAGE LCO	CCT CC646 7 0C641 2 CC634 7 0C627 7 0C622 7 0C615	1 LGC	EC UCT 387 00603 88 00130 326 00506	00000 0	(FIL) EXTERNAL	N LOC 13 COC64 27 00146 61 C0355 83 CG520
4	DEC ALTI 45 BP 41 CLLP 41 ELUES 40 ERLNG 39 XALI 39	EFN 8135 101	DEC 1) 38 0)201 83 5)H 320	DEC INVAR	INVAR	EFN IFN 1 1 1 1 93 2 2 1 2 6 6 3 8 8

```
INVARCO1
INVARCO2
INVARCO3
                                                                                                                                                                                                                                                                                                                                                                                INVARCO?
INVARCOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         INVARBIS
INVARBIS
INVARCIS
INVARDIG
INVARDIU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           INVAR019
INVAR020
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 INVAROZI
INVAROZZ
INVAROZ3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            INVAR015
                 NVARUCC
                                                    NVARAOL
                                                                                    INVARBOL
                                                                                                                                                                                                                                                                          NVAR004
                                                                                                                                                                                                                                                                                                             INVAROUS
                                                                                                                                                                                                                                                                                                                                                 INVARCOS
                                                                                                                                                                                                                                                                                                                                                                                                                                                   INVAROC9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      INVAROLU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             INVAROII
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                NVAR012
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   INVAR013
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      INVAR014
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              INVAR024
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              INVAR025
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       INVAR028
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              INVAR029
                                                                                                                          NVARCOI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 INVAR026
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 INVARUBO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       INVARO32
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              INVAR033
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 INVAR034
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                INVARO35
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       INVARO36
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          INVARO38
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       I N V A R U 2 7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       INVAROBL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          NVAR037
SUBRCLING INVAR(FLAT, FLCNG, ALT, ERR, FU, FL)

NLTE BROKE IN L IS IYPICALLY LESS HAAN 0.1* ERR
FLATITUCE IN DEGREES.

ALT=ALTITUCE IN DEGREES.

BLE = ALTITUCE IN SUBFACE UF LATTF IN KILUMETERS

BIMENSIGN V(3.3), E(200), ARC(200), VN(3), VP(3), BEG(200), BENE(200),

IRLOGIZUO), ECC(200), AL(3), RR(3), RR(3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ## 21 J=2.1EP

## 28 ASUM= 2AC(J) + ARC(J) + 1)

## 28 ASUM= ARC(J) + ARC(J)

## 28 ASUM= ARC(J) + ARC(J)

## 28 ASUM= ARC(J) + ARC(J) + BRC(J) + ARC(J) + A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ECO(JUP)=12.67ARC(JUP))*LCGF(HEND(JUP)/BEG(JUP))
CALL INTES (ARC+66,8END)&,3+P+CC(+FLINT)
27 CALL GARNEL (B(2),FLINT+FL)
18 BE=H(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         $C=$4*,29*450*

DCO=$LUC(J-1)-GCC *$4*$C

CG(J)=bCC +CCO *{$A+$C}

DEG(J)=cXPF(LCO+ECG(J)*,5*4RC(J))

BLNG(J)=cXPF(CO+ECG(J)*,5*4RC(J))
                                                                                                                                                                                                                                                     V(2,2)=(90, FLAT)/57,2957795
V(3,2)=FLONG/97,2957795
AK(1)=0.
AK(2)=(1,0+V(1,2))*SCHTF(ERR)*0.3
CCLT=1,5700-C.2067+CGSF(V(3,2)+1,239)
IF(V(2,2)-CCL))0.10.11
AKC(2)=-AKC(2)
10 CALL START (HI,R2,X3,50,ARC,ERR,V)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        12 VN(1)=v(1,3)
CALL LINES (R1,R2,R3,B,ARC,ERR,J,VP,VN)
IF(J-200)16,17,17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                END(1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ARC(J)=ABSF(ARC(J))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        BLOG(J)=LCGF(B(J))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       BEG (JUP) = BENE(JEP)
                                                                                                                                                                                                                             V(1,2) = AL F/6371.2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DC 40 J=1,JUP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      SA= . 7 > # AKC ( J )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        VP(1)=V(1,2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DC 12 1=1.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  J.P = JU.P - 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FL=-1.0
GU FC 18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              JUP=J
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  91
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1.7
```

ں ں ں

195.31

STURAGE NOT USED BY PROGRAM

		DEC CCT 1506 02742 1106 02122		DEC CCT 278 CC426 273 00421		DEC 0CT 268 CO414		DEC 0CT 3 CC003				IFN LGC 22 CO152
	MENTS	۵	STATEMENT	r))))		6)63		LINES			LOCATIONS	EFN 16
	ALENCE STATE	DEC CCT 7CU C1274 294 C0446	VARIAELLS NUT APPEARING IN COMPON, CIMENSION, OR EQUIVALENCE STATEMENT	DEC OCT 219 CC427 274 CO422	PROGRAM	DEC OCT 258 OC402		DEC DCT 6 CCCO¢	ARY	START	RS AND DCTAL	1FN LCC 20 C0147 46 C0354
	ON AND EQUIV	BLDG R3	INENSION, OF	DCLT JEP		9	N VECTOR	INTEG	JT FROM LIBRA	SCRI	JAMULA NUMBER	6FN 17 18
	IG IN DIMENSI	DEC 0C1 9C0 01604 297 00451	IN COMMON, D	DEC CCT 28C CO430 275 CO423 27U CO416	CT APPEARING	DEC CC1 245 00365	LCCATICNS OF NAMES IN TRANSFER VECTOR	DEC GCT 5 00005 2 00002	SUBRECTINES NOT CUTPUT FROM LIBRARY	907	S INTERNAL FI	IFN LGC 16 00123 44 C0350
	LES APPEARIN	BEND R2	T APPEARING	CCO FLINT SC	ER SYMBULS N	9	CNS OF NAMES	EXP START		LINES	CORRESPONDIN	EFN 12 27
DCC 0CT 32561 77461	STURAGE LECATIONS FOR VARIABLES APPEARING IN DIMENSION AND EQUIVALENCE STATEMENTS	LEC CCT 11C0 C2114 3C0 C0454 291 C0443	VARIAELLS NO	DEC CCT 281 C0431 276 C0424 271 C0417	LOGATIONS FOR CTHER SYMBOLS NOT APPEARING IN SOURCE	DEC CUT 242 CO362	LCCATI	LEC CLT 1 COCO1 0 COCCC	ENTRY POINTS TO	INTeG	FURMULA NUMBERS WITH CORRESPONDING INTERNAL FURMULA NUMBERS AND OCTAL LOCATIONS	JFN LLC 12 CO107 38 CO3C3
	AGE LCCATIC	9 E C ∨ I	LUCATIONS FOR	bCC DX SA	LUCA	(2)		COS Surt		EXP		EFN 10 21
DEC CCT 1507 C2743	STCF	DEC CCT 1306 02432 500 00764 1103 02117	STURAGE LU	DEC CC1 282 CU432 277 CC425 272 CC420		DEC 0CT 264 CC410 269 OC415		DEC LCT 7 CCCC7 4 06004		502	EXIERNAL	IFN LUC 11 CG105 25 CO164
		ARC CCO VP		ASUR DN OUL		1)		CARMEL		CARMEL		EFN 11 40

```
LINESOO8
                                                                                                                                                  LINESO12
LINESO13
                                                                                                                                                                                                  LINES016
LINES017
                                                                                                                                                                                                                            L INES018
L INES019
                                                                                                                                                                                                                                                                                        LINES023
LINES024
                                                                                                                                                                                                                                                                                                                                                                                       LINESO31
LINESO32
LINESO33
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            LINESO38
LINESO39
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        LINES042
LINES043
LINES044
  LINESOCO
LINESOO1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   L INE S051
L INE S052
                                                                                                                             INESOID
                                                                                                                                                                          INE S014
                                                                                                                                                                                      INE S015
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        .INE S046
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                LINES048
                                     INESOGB
                                                  INESCO4
                                                               INE S005
                                                                           INESOO6
                                                                                       INE SOC7
                                                                                                                                       . INE SO 1.1
                                                                                                                                                                                                                                                    LINE $020
                                                                                                                                                                                                                                                                 INES021
                                                                                                                                                                                                                                                                            .INE S022
                                                                                                                                                                                                                                                                                                                 LINESO25
                                                                                                                                                                                                                                                                                                                            INES026
                                                                                                                                                                                                                                                                                                                                         INE 5027
                                                                                                                                                                                                                                                                                                                                                                           INES030
                                                                                                                                                                                                                                                                                                                                                                                                                           INE 5034
                                                                                                                                                                                                                                                                                                                                                                                                                                       INE S035
                                                                                                                                                                                                                                                                                                                                                                                                                                                    INES036
                                                                                                                                                                                                                                                                                                                                                                                                                                                                .1NES037
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     INESA39
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                INES040
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             INES041
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            LINES045
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     .INES047
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             .1NES049
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           LINESOSC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              LINES053
SUBROBLINE LINES (R1,R2,R3,B,ARC,ERR,J,VP,VN)
DIMENSION B(200),ARC(200),R1(3),R2(3),R3(3),VN(3),VP(3),RA(3)
CRE=0.25
IF(ERR-0.15625)74,75,75
CRE= (ERR**0.333333333)
A3=ARC(3)
                                                                                                                                                                                                                                                                         DG 5 1=1,3

DD=R1(1)/AA-R2(1)/BB+R3(1)/CC

GU TG(6,8),1S

RT=R1(1)-(AD*R1(1)-BD*RZ(1)+CD*R3(1)-DD*ARCJ)*ARCJ

RA(1)=K1(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CALL MAGNET (AER, SIT, VN(3), BR, BT, BP, B(J), VN(2))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           DER=(6356.912+SSO*(21.3677+.106*SSQ))/6371.2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                81 IF(VN(3)-6.283185307)82,82,83
83 VN(3)=VN(3)=6.283185307
                                                                                                                                                                                                                                                                                                                                                                                                                                       IF(VN(2)-3.141592653178,78,79
                                                                                                                                                                                                                                                                                                                                                                                   RLAR=(R2[1)+R3(1))/2,-DD*AO6
VN(1)=VP(1)+A3*RBAR
IF(VN(2))76,17,77
VN(2)=-VN(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           78 IF(VN(3))80,81,81
80 VN(3)=VN(3)+6.283185307
                                                                                                                                                                                                                                                                                                                                                                                                                                                    VN(2)=0.283185307-VN(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GU TO (9,10),IS
SIT=ABSF(SINF(VN(2)))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       PREZEPRELEVN(Z)
PREJEPRELESITEVN(3)
SSG=SITESIT
                                                                                                                                                                                                                            AKCJ=A1+A2+A3
AU= (ASUM+A1)/AA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           AER=VN(1)-DER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                R3(1)=BR/B(J)
DN=B(J)*VN(1)
                                                                                                                          AC6=A3*A3/6.0
                                                                                                                                                                                                               AU6=A3*A3/6.0
                                                                         AAB=AHSF (A3)
SNA=A3/AAH
                                                                                                                                                                                                                                                                                                                                       R1(I)=R2(I)
R2(I)=H3(I)
R3(I)=RI
VP(I)=VN(I)
                                                                                                                                                                                                                                                    BD=ASUM/BB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            PRE1=VN(1)
                                                                                                   A1=ARC(1)
A2=ARC(2)
                                                                                                                                      J=3
ILP=1
IS=1
G0 T0 87
IS=1
                                                                                                                                                                                                                                                                  CU=A1/CC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GU TO 78
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GU TO 81
                                                                                                                                                                                                                                                                                                                                                                                                                                                                09
                                                 7.5
                                                                                                                                                                                                                                                                                                                                                                                        B 2 E 9 L 6
                                                                                                                                                                                         99
                                                                                                                                                                                                                                                                             36
```

```
LINESO68
LINESO68
LINESO69
LINESO70
LINESO71
LINESO73
                                                                                                                                                                                               LINESO75
LINESO76
                                                                                                                                                                                                                 LINESO77
LINESO78
LINESO79
LINESO54
LINESO55
LINESO56
LINESO57
LINESO58
LINESO59
LINESO60
                                                               LINESO61
LINESO62
LINESO63
                                                                                LINES085
LINES086
LINES087
LINES088
                                                                                                                                                                                                                                                                         LINES083
LINES084
                                                                                                                                                                                       LINE 5074
                                                                                                                                                                                                                                              LINESOBO
                                                                                                                                                                                                                                                                 LINES082
                                                                                                                                                                                                                                                                                                                                           LINES090
                                                                                                                                                                                                                                                                                                                                                              LINES092
                                                                                                                                                                                                                                                                                                                                                                      LINES093
                                                                                                                                                                                                                                                                                                                                                                                 LINES094
                                                                                                                                                                                                                                                                                                                                                                                          LINES095
                                                                                                                                                                                                                                                                                                                                                                                                  LINES096
                                                                                                                                                                                                                                                                                                                                                                                                                    LINES093
                                                                                                                                                                                                                                                        LINESOR1
                                                                                                                                                                                                                                                                                                                                                    LINESC91
                                                                                                                                                                                                                                                                                                                                                                                                           LINESO97
                                                                                                                                                                                                                                                                                                                                                                                                                              END(1,1,0,0,0,0,0,1,0,0,0,0,0,0,0)
                                                                                                                                                                                                                                                                                                                A3=A3*.2*(8.+X)/(.8+X)
AM=(2.-R3(2)*VN(1))*VN(1)*CRE
                                                                                                                                                                                                                                                                                                                                                    IF(SNA*R3(1)+.5)85,85,73
AM=-.5*SNA*VN(1)/R3(1)
IF(ABSF(A3)-AM)73,73,86
                                                                                                                                                                                                                                                                                                                                   IF(ABSr(A3)-AM)84,84,72
                                                                                                                                                                                                                                                                                     IF(B(J)-b(Z))49,45,60
                                                                  GU 1C 36
IO SIT=ABSF(SINF(VN(Z)))
          R3(3)=EP/(UN*SIT)
                                                                                                                                                                                                                                                                   1F(J-200)67.60.60
                                                                                                                                                                                              CC=ASUM+A2

DC 91 1=1.3

VN(1)=VP(1)

R3(1)=R2(1)

R2(1)=R1(1)

R1(1)=RA(1)
                                                                                                                                                                                                                                                                                                                                                                                                    AAB=ABSF(A3)
                                                                                                                                                                                                                                                                                                                                                                                           ARC ( J+1 ) = 43
R3(2)=81/DN
                                                                                                                                                                    ASUM=A2+A1
AA=ASUM*A1
                    ASUM=43+A2
                             AM=ASUM*AZ
                                                CC=ASUK*A3
                                                                                                                                                                                                                                                                                                                                                                                86 A3=SNA*AM
                                                                                                                                                                                                                                                                                                                                             A3=SNA*AM
                                       HH=13+12
                                                                                                                                                                                         HB=A2*A1
                                                                                                                                                                                                                                                         60 TC 73
                                                                                                                                                                                                                                                                             1 = 7 Z
                                                                                                                                                    1-0-0
                                                                                                                                                            [[p=3
                                                                                                                                                                                                                                                                                              11P=2
                                                                                                                                                                                                                                                                                                         A2=A3
                                                          1 >= 2
                                                                                                                                                                                                                                                                                                                                             72
84
85
                                                                                                                                                                                                                                                                   06
                                                                                                                                                                                                                                                                             29
                                                                                                                                                                                                                                                                                              64
                                                                                                                                                                                                                                                                                                                                                                                                                       60
                                                                                                                                                                                                                                                15
```

STCRAGE NCT USED BY PRUGKAM

	DEC CCT		DEC DCT 642 01202	637 01175	632 01170 627 01163	622 01156	16110 118		DEC. OCT	0	277 00425			DEC OCT				1FN LGC 27 00346		44 00456	(1 000 L)	98 01062	
∨ 		STATEMENT	44	ARCJ	a C	PREI	·			6	E)A						LOCATIONS	EFN 6	11	E 6	T 0		
VALENCE STATE	DEC OCT	OR EQUIVALENCE	DEC CCT 643 01203			623 01157		PROGRAM	DEC	æ	155 00233			DEC DC1 3 COCO3	ARY		RS AND OCTAL	1FN LDC 24 00327				97 01057	
ON AND FOLL			448	AC 6	CKE	010	X X	IN SCURCE		(9	E) 1	E) P	VECTOR	SURT	T FROM LIBR		RMULA NUMBE	EFN 36	16	81	96	99	
1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N	פרכ סרו	VARIABLES NOT APPEARING IN COMPON. LIMENSION.	DEC OCT A3 644 01204	639	CC 629 01165	42.6	SSG 614 01146	SYMECLS NOT APPEARING IN	DEC OCT		612	E1G 493 00755	NAMES IN TRANSFER	DEC OCT SIN 1 C0001	SUBRCUTINES NOT CUTPUT FROM LIBRARY		CCRRESPENDING INTERNAL FURMULA NUMBERS AND OCTAL LOCATIONS	EFN IFN LUC 66 17 00274	ct.	41	10 eb 00374		!
T 32561 77461 STERRAGE LICATIONS FOR VARIABLES, APPLARING IN PIMENSION AND EDUTUALENCE STATEMENTS	UEG GUT		DEC GCT 645 C1205	049	635 01173 630 01166	629	6 1 5	LOGATIONS FOR GIHER SYM	1.00	2 0	119		LCCATIONS OF	UEC UCT 2 CCUO2	ENTRY POINTS IC SUB	SERT.	NUMBERS WITH CORRESP	1FN LLC	34	0 !		0.5	
CIPIZ STORAGE IDGATI	11211	STURAGE LECATIONS FOR		4		CIIE2 ILP		רסכ	139	01134 2)	1142 C	CC444 F.)K		UCT CCCOO MAGNET		MAD VE F SIN	EXICRNAL FCAMULA NUMBERS WITH	LCC FFN C0234 75				01033	
)59)39		51018	DEC 646	AE 641	ASUM 636 (DN 626 (616		Dic	604	C162 61C 0	767		DEC EXP(3 c, 0		EXP(3 F)		EFN 1FN 74 0 (υ, 	α: · πη •	≎ ~ •	72 93 (101

N. SAG. DAY. B. S. B. S. C. S. C. S. C. S. C. C. S. C.	01018015
DIMENSION N (200) ARC (200) (V (3) - R2 (3) - R2 (3)	STARIOOI
SIT=ABSF(SINE(V(2.2.2))	STAR 1002
AER=V(1, <)	STARTOCE
SSQ=SII**II	STARTC04
UER=(6350.912+SSC*(21.367/+.108*SSQ))/6371.2	STARTCOS
V(1,2)=AER+GER	STARTOCE
	STARTACe
11 V(3,2)=V(3,2)+6.2E3185307	STARTECE
	STARTCCE
12 CALL MAGNET(AEP,SIT,V(3,2),BR,BT,BP,B(2),V(2,2))	STARTOCI
R2(1)=BR/6(2)	STARTOGE
DN=B(2)*V(1,2)	STARIC09
R2(2)=61/DN	STARTOLU
R2(3)=GP/(DN*SIT)	STARTOII
1 S = 0	START012
1 C0 2 I=1,3	START013
2 V(I,1)=V(I,2)-ARG(2)+32(I)	START014
SIT=A6SF(SINF(V(2,1)))	STARTOLS
3 SSG=SIT*SIT	STARTULE
<pre>DER=(6.56.912+SSG*(21.3677+.108*SSG))/6371.2</pre>	STARTOLY
AER=V(1,1)-OER	STARTO13
CALL MAGNET(AER,SIT,V(3,1),68,6T,69P,8(1),V(2,1))	STAKTO19
IF(B(1)-b(2))4,5,5	STARTOZU
4 ARC(2)=-ARC(2)	STARIO21
60 10 1	S1AR1C22
5 R1(1)=8R/B(1)	START023
ARC(3)=ARC(2)	STARTU24
DN=B(1)*V(1,1)	STARTO25
R1(2)=81/6N	START026
R1(3)=BP/(LN*SIT)	STARTO27
DG 6 [=1,3	STARTCZB
6 V(I,1)=V(I,2)-ARC(2)*(R1(I)+R2(I))/2.	STAR1029
SIT=ABSF(SINF(v(2,1)))	STARTU3C
15#15+1	STARTO31
60 TO (3,7), IS	STARTU32
	STARTO33
8 V(I,3)=V(I,2)+ARG(3)*((1,5)*R2(I)-,5*R1(I))	SIART034
RETURN	STARTC35
END(1,1,0,0,0,0,0,1,0,0,0,0,0,0)	

STCRAGE NET USED BY PREGRAM

UEC OCT 32561 77461

	CC1 8 CC440		DEC CCT 273 CC421		100				N LOC 20 00231 40 00355
	DEC 288 (DEC 27		DEC				1FN 20 40 0
E STATEMENT	NO O		6					LOCATIONS	EFN 2
IVALENC	DEC CC1 289 C0441 284 C0434	Α	DEC CCT 267 C0413		100			OCTAL	1FN LCC 19 CO227 36 GO330
R EQU	DEC 289 284	PROGR	DEC 267		DEC	ARY		RS ANE	1FN 19 36
UIMENSION, C	81 850	G IN SCURCE	(9	* VECTOR		JI FROM LIBR		JRMULA NUMBE	EFN 1
OMPUN.	DEC 001 290 00442 280 00435	PPEAKIN	DEC 0CT 259 00403	TRANSFEI	00.1	ar curp		ERNAL FI	1FN LOC 12 00173 30 00305
~	0EC 290 283	4 10	0EC 259	N S	DEC	VES N		IN I	1FN 12 30
APPEAKING	як S1T	S SYNBCLS 1	3)	LCCATIONS OF NAMES IN TRANSFER VECTOR		SUBROUTIN		RESPONDING	EFN 12 5
LOCATIONS FOR VARIABLES NOT APPEARING IN COMMUN, DIMENSION, OR EQUIVALENCE STATEMENT	UEC 0C1 291 C0443 286 C0436	LOCATIONS FOR CTHER SYMBOLS NOT APPEARING IN SOURCE PROGRAM	DEC UCT 257 C0401 193 C0301	LCCATIC	UEC OCT 0 OCCOO	ENTRY POINTS TO SUBROUTINES NOT CUTPUT FROM LIBRARY		EATERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS	1FN LCC 10 00167 28 C0302
CATIONS FOR	8.P 0.E.R	LOCAT	2) E)8		NIS	Ē		L FORMULA NUN	EFN 1
STORAGE LO	DEC LCT 292 CC444 287 CC437		DEC UCT 280 C0430 283 C0433		UEC CCT 1 CCOC1		NI o	EAFERNAL	1FN LUC 9 00164 22 CU245 41 00357
	AER IS		11)		MAGNET		MAGNET		EFN 10 3

	NICO
### CALLY CCEFFICIENTS FLW 156G (JUNE 1962) ###################################	N T C C
2.140.959.71120.95c01 2.140.959.71120.95c01 2.140.959.71120.95c01 2.140.959.71120.95c01 2.140.959.71120.95c01 2.140.959.71120.95c02 2.240.959.71120.95c02 2.240.950.95c03 2.240.	N 100
-5.15/17/5/37/5/27/5/27/5/27/5/27/5/27/5/27/5/2	NT00
-1.338119469C02 -1.338119469C02 -1.35118691E-02 -2.4956905C-03 -2.49481335C02 -4.7948639E-02 -4.7948639E-03 -4.794863E-03 -4.79486491E-03 -4.794863E-03 -4.79486491E-03 -4.794863E-03 -4.79486491E-03 -4.794863E-03 -4.7948691E-03 -4.7948691E-03 -4.7948691E-03 -4.7948691E-03 -4.7948691E-03 -4.7948601E-03 -4.7948691E-03 -4.7948691E-0	N 101
### ### ##############################	5N TO 1
### ### ### ### #### #### ############	SNTOI
PAGN 101 PAGN 101 PAGN 102 PAG	1010
	101%
7.0042540501-03 7.0042540501-03 7.0042540501-03 7.0042540502-03 7.0042540502-03 7.0042540502-03 7.0042540502-02 7.0042540502-03 7.0042540502-02 7.0042540502-02 7.0042540502-03 7.0042540502-03 7.0045240502-03 7.0045240502-03 7.0045240502-03 7.0045240502-03 7.0045240502-03 7.0045240502-03 7.0045240502-03 7.0045240502-03 7.0045240502-03 7.00452402-03 7.	NTO I
7.0095405E-C3 -2.6439540E-C3 -3.4406760E-02 -1.0447026E-02 -1.0447026E-02 -1.0447026E-02 -1.0447026E-02 -1.0447026E-02 -2.040246E-04 -2.7533549E-03 -2.14728328E-03 -2.14728328E-03 -2.14728328E-03 -2.14728328E-03 -2.14728328E-03 -2.14728328E-03 -2.14728328E-03 -2.147338E-03 -2.147338E-03 -2.147338E-03 -2.147338E-03 -2.147338E-03 -2.147338E-03 -2.14738E-03 -2.157873E-02 -2.157873E-03 -2.157873E-03 -2.1634825E-03 -2.1	SNT02
## ## ## ## ## ## ## ## ## ## ## ## ##	SN 102
-3.44067606E-02 -1.944067606E-02 -1.944067606E-02 -1.94476026E-02 -1.94476026E-02 -1.94476026E-02 -1.94476026E-03 -1.944766E-03 -1.948746E-03 -1.948748E-03	3NT02
## ## ## ## ## ## ## ## ## ## ## ## ##	3NT02
PAGNIO2 PAGNIO3 PAGN	SNTO2
	SNTO2
### ### ##############################	SN 102
3.211/2428E-03 MAGN 103 1.2.4128928E-02 MAGN 103 1.2.26829448E-04 MAGN 103 1.2.26829448E-03 MAGN 103 1.2.36829448E-03 MAGN 103 1.3.47113.58E-03 MAGN 103 1.3.47114L-02 MAGN 103 1.3.4866943E-03 MAGN 104 1.3.486544E-04 MAGN 104 1.3.486344E-04 MAGN 104 1.3.4863446E-04 MAGN 104 1.3.4863446E-04 MAGN 104 1.3.4863446E-04 MAGN 104 1.3.486346E-04 MAGN 104 1.3.486346E-03 MAGN 104 1.3.48646E-03 MAGN 104 1.3.4866248E-03 MAGN 105 1.3.4866248E-03 MAGN 105 M	SNTO3
### ##################################	SN T 0 3
### ##################################	SOTO
1.1.147.1358E-03 -5.7980501E-02 -1.5789322E-03 MAGNT03 -1.578932E-03 MAGNT03 -1.578932E-03 MAGNT03 MAGNT04 -1.1824456E-03 MAGNT04 -1.1824456E-02 -1.2856943E-03 MAGNT04 -1.1856943E-03 MAGNT04 -1.2856943E-03 MAGNT04 -1.2856943E-03 MAGNT04 MAGNT04 -1.2186592E-03 MAGNT04 MAGNT04 -1.2186692E-03 MAGNT06 -1.2186692E-03 MAGNT06 MAGNT06 -1.2186692E-03 MAGNT06 MAGNT06 -1.2186692E-03 MAGNT06 MAGNT06 -1.2186692E-03 MAGNT06 MAGNT06 MAGNT06 MAGNT06 -1.2186692E-03 MAGNT06 MAGNT06 MAGNT06 MAGNT06 MAGNT06 MAGNT06 MAGNT06	50103
### ##################################	501V5
### ### ##############################	SNTO
1.4865943FE-02 1.18865943FE-03 1.18865943FE-04 1.18863949FE-03 1.18863949FE-03 1.18863949FE-03 1.18863949FE-03 1.188639496E-03 1.188639496-03 1.188639496-03 1.188639496-03 1.188639496-03 1.188639496-03 1.188639496-03 1.188639496-03 1.188639496-03 1.188639496-03 1.18869496-03 1.18869696-03 1.18869696-03 1.18869696-03 1.18869696-03 1.18869696-03 1.18869696-03 1.18869696-03 1.18869696-03 1.18869696-03 1.18869696-03 1.18869696-03 1.18869696-03 1.18869696-03 1.188696996-03 1.188696996-03 1.188696996-03 1.188696996-03 1.188696996-03 1.1886969996-03 1.1886969996-03 1.1886969996-03 1.18869699996-03 1.18869699999-03 1.188699999-03 1.188699999-03 1.188699999-03 1.188699999-03 1.188699999-03 1.188699999-03 1.188699999-03 1.18869999-03 1.18869999-03 1.18869999-03 1.18869999-03 1.18869999-03 1.18869999-03 1.18869999-03 1.18869999-03 1.18869999-03 1.18869999-03 1.18869999-03 1.18869999-03 1.1886999-03 1.1886999-03 1.1886999-03 1.1886999-03 1.188699-0	5NT03
### ##################################	SNTO4
1.1824946E-G2 -1.1824949E-G2 -1.2607732E-G2 -2.2604021E-G3 -2.4264021E-G3 -2.42	SNT04
1.0005/732L-02 1.0005/732L-02 1.385024902L-04 MAGNTO 1.385024902LE-03 MAGNTO 1.2.2004402LE-03 MAGNTO 1.2.2002078L-03 MAGNTO 1.2.21865222E-03 MAGNTO 1.2.21865203E-03 MAGNTO 1.2.21865203E-03 MAGNTO 1.2.21865203E-03	0 1 2 2
### ##################################	40±05
= 7.95897466=-C4 = 2.00044021E-03 = 4.59713E55E-C3 PAGNTO = 2.420.03078E-03 PAGNTO = 2.420.03078E-03 PAGNTO = 3.406522E-C3 PAGNTO PAGNTO PAGNTO PAGNTO PAGNTO PAGNTO PAGNTO PAGNTO PAGNTO PAGNTO PAGNTO	SNTO
=-2.cc044021E-03	GNIO
= 4,59712455E-03	GN T 0 4
= 2.420620781=03 = 1.2180656228 PAGNTO = 5.75481202381=03 PAGNTO = 6.75461401E=03 PAGNTO = 5.406040781=03 PAGNTO	
#AGNTO #A	GN105
### ### ##############################	GNT05
==3.406640/3E=C3	0 N N N N N N N N N N N N N N N N N N N
	50105
D#39647918]]+=	144444444444444444444444444444444444444

		MAGNIOSO	FAGN 1091 FAGN 1093 FAGN 1094 FAGN 1095 FAGN 1097 FAGN 1097 FAGN 1097 FAGN 1097 FAGN 1097	MAGNTIOS MAGNTIOS MAGNTIOS MAGNTIOS MAGNTIOS
31E-03	0)**2-{FM-1. -5*5)} 327) 154,154	(N) dS + (Z) dS - (I)	P(L)	DP([]=C*DP(J)-S*P(J)-CONSI(])*DP(K) FM=M-1 SUMR=SUMR+P(I)*IS SUMR=SUMR+P(I)*IS SUMP=SUMP+FM*P(I)*TS SUMP+FM*P(I)*TS SUMP+FM*P(I)*TS SUMP+FM*P(I)*(-G(I)*SP(M)+H(I)*CP(M))
H(42)=-1.14623013E-03 H(49)=-3.24831891E-04 P(1)=1.0 DP(1)=0.0 SP(1)=0.0 CP(1)=1.0 CD(1)=1.0 CD(1)=1.0 CD(1)=1.0 CD(1)=1.0 CD(1)=1.0 CD(1)=1.0 CD(1)=1.0 DC(1)=1.0 DC(1)=1.0 DC(1)=1.0 DC(1)=1.0 EN=M	= N + 7 * (M - 1) CUNST(1) = ((FN - 2.0) * * 2 - C = SQRTF (ABSF (1.0 - S * S)) L + T + L + L + S + S + S + S + S + S + S + S	CP(M)=CP(2)*CP(N)+CP(2)*SP(N) ACR(M)=AR*ACR(N) ACR(M)=AR*ACR(N) CP(M)=CP(2)*CP(N) ACR(M)=AR*ACR(N) CP(M)=CP(2)*CP(N) CP(M)=CP(N)=AR*ACR(N) CP(M)=CP(M)=CP(M) CP(M)=CP(M)=CP(M) CP(M)=CP(M)=CP(M) CP(M)=CP(M)=CP(M)=CP(M) CP(M)=CP(M)=CP(M)=CP(M) CP(M)=CP(M)	1=8*H-7	DP(I)=C*DP(J)-S*P(J)-CON TS*E(I)*CP(M)+H(I)*SP(M) TS*E(I)*CP(M)+H(I)*SP(M) SUMR-SUMR+P(I)*TS SUMT-SUMT+DP(I)*TS SUMT-SUMP+FM*P(I)*(G(I) BR=BR+ADR(N)*FN*SUMR BTHET-BTHET-ADR(N)*SUMT

STCRAGE NOT USED BY PROGRAM

		0CT 01333		CCT 01057 01052 01045		01036 01043		CC 1				LOC 00365 00541
		DEC 731 Q		DEC 559 0 554 0 549 0		DEC 542 0 547 0						: -
		G DE						DEC				.
	EMEN1S	J	E STATEMENT	⊷ ≥ Ø		99() 99()					LOCATIONS	E F S 6 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8
	E STAT	0CT 01475	VALENC	DEC OCT 560 01060 555 01053 550 01046	_	01023 01042 01042 00346		1 20			OCTAL	LCC C0347 C0512
	ALENC	DEC OCT 829 01475	EDUIN	DEC 560 (555 (PROGRAM	531 C 531 C 546 C 230 C		DEC	× ⊀		S AND	1FN 69 C 92 C
	IN AND EQUIV	d	MENSION, OR	S UM T F R		6) C) G5 C) 408	VECTCR		FROM LIBRA		MULA NUMBER	EFN 151 88
	STORAGE LOCATIONS FOR VARIABLES APPEARING IN CIMENSION AND EQUIVALENCE STATEMENTS	DCC DCT 570 01072 577 01101	IN COMMON, DIMENSION, OR EQUIVALENCE STATEMENT	DEC GCT 561 01061 556 01054 551 01047	NOT APPEARING IN SOURCE	DEC DCT 477 00735 545 01041 173 00255	NAMES IN TRANSFER VECTOR	DEC 0CT 0 0C000	ENTRY POINTS TO SUBROUTINES NOT GUTPUT FROM LIBRARY		FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS	1FN LCC 68 00307 81 00443 109 00672
	ES APPEARIN	C P S P	APPEARING	S 3 3 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 6 6 6 6	SYMBOLS	3) C) 64 D) 404	90	SGRT	C SUBROUTIN		RRESPONDING	EFN 80 90
DEC OLT 32561 77461	S FOR VARIABL	UEC OCT 633 01171 780 01414	VARIABLES NOT APPEARING	DEC CLT 562 01062 557 01055 552 01050	IONS FOR CTHER	DEC 0C1 472 C0730 544 01040 3C7 00463	LCCATIONS	UEC 0CT 1 CCC01	NTRY POINTS T		MBERS WITH CO	1FN LCC 8 CCC71 73 CO375 1C6 CO635
€0	GE LOCATION	CONST	LOCATIONS FOR	K I P SUMP	LOCATIONS	2) C)G3 0)20D		SIN	יד	SORT	FORMULA NU	EFN 152 155
DEC 0CT 830 01476	STORA	DEC 0CT 584 01110 682 01252	STURAGE LOC	DEC 0CT 563 01063 558 01056 553 01051		DEC OCT 537 01031 543 01037 548 01044		DEC UCT 2 00002		NIS	EXTERNAL	1FN LCC 5 CC064 72 C0367 102 C0607
		A D A		α ¬ z		(1) (1) (2) (2) (3) (2)		500		ככs		EFN 150 154

	CHREDISTINE INITE (ARC. REG. RENG. B. JEP. ECG. F.)	INTEGOOL
	JUNE STON A P. C. (200) - B. G. (200) - B. (200) - B. (200)	INTEG002
4	7.** In 2.1.** 2	INTEGOC3
- (15 (K + 4) 4 - 1 2 0	INTEG004
' =		INTEG005
7	∆	INTEGOO6
	「「つって、・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	INTEGOO7
	<pre></pre>	INTEGOOR
	ASUM AKC (KK) + AKC (KK+1)	INTEGO09
	DN=ARC(KK)+ARC(KK+1)+ASUF	INTEG010
	BB=(-4+4RC(KK+1)*(ARC(KK)+4SLM)+X2+ASUM++2-X3+ARC(KK)++2)/CN	INTEGOIL
	CH A # ARC (KK+1) - X2 # ASUK+X9 # AKC (KK)) / DN	INTEG012
	FI=1.570796326*(14+88*88/(4.*C))/SCRTF(ABSF(C))	INTEG013
	NA DESCRIPTION OF THE PROPERTY	INTEG014
20	T=SQRIF(1BEND(2)/B(2))	INTEGO15
	F1=(2.*T-LOGF((1.+T)/(1T)))/ECG(2)	INTEGOIG
	IF(8(2)-ben0(KK))21,21,25	INTEGOIT
25	_	INTEGOIR
21		INTEG019
,		INTEG020
	スス # ストー】	INTEG021
22		INTEG022
		INTEG023
	TF(ABG1)26.26.27	INTEG024
26	•	INTEG025
,		INTEG026
27		INTEG027
3,0		INTEG028
i		INTE6029
3.1	TB=SQRTF(AKG1)	INTEG030
,	60 10 32	INTEGO31
20		INTEG032
32		INTEG033
2		INTEG034
ì		INTEG035
24		
30		
30		INTEGOSE
	END(1:1:0:0:0:0:0:0:1:0:0:0:0:0:0:0:0)	

STCRAGE NCT USED BY PROGRAM

		0CT 0556 0551		0CT 0531		CCT				LOC 00246 00374 00430
		DEC 0CT 366 00556 361 00551		DEC OCT 345 CO531		DEC				1FN 17 0 29 0 36 0
	STATEMENT	∪ ⊢		(6					OCATIONS	EFN 2C 27 23
	LOCATIONS FOR VARIABLES NOT APPEARING IN COMMON. DIMENSION, OR EQUIVALENCE STATEMENT	DEC	PRUGRAM	DEC 0CT 339 00523		DEC OCT	ARY		WAL FORMULA MUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS	IFN LCC 7 CC135 27 CC371 35 CO423
	CIMENSION, CI	88 1E	NOT APPEAKING IN SCURCE PROGRAM	(9)	K VECTOR		ENIRY POINTS TO SUBROUTINES NOT CUTPUT FROM LIBRARY		URPULA NUPBER	EFN 14 26 32
	IN COMMON.	DEC DC1 368 CO560 363 OO553	NGT APPEAKIN	DLC DCT 333 00515 202 00312	LECATIONS OF NAMES IN TRANSFER VECTOR	DEC OCT	NES NOT CUTP		C INTERNAL F	1FN LUC 6 00127 24 00355 34 00421 40 00505
	OT APPEARING	ASUR TB	LUCATIONS FOR CTHER SYMBOLS	3) E15	ICNS OF NAME		TC SUBRCUTI		CCRRESPONDIN	EFR 111 222 330
UEC OCT 32561 77461	ABLLS N	00561 00561 00554 00547	FOR CT	JEC 0CT 329 CO511 52 CO134	LUCAT	00.T 00.00	POINTS		N TH	LCC CO122 CO313 CO413 CO503
UEC 32561	VARIA	UEC 369 364 359	ATICNS	DEC 329 92		DEC 0	ENIRY		VUMBERS	1FN 5 21 32 33
	CATIONS FOR	< X X	7007	2)2		SGRI			AL FORMULA N	EFN 6 21 31 5
DEC LC1 371 CG363	STURAGE LE	uc 1 cus 62 cus 53 cus 50		DCT CU536 00546		10000		SCN 1	EXTERNA	100 00117 00365 00461 00445
DFC 371	STi	DEC 370 C 365 C 366 C		DEC 350 358		DEC 1		Л		1FN 4 C 20 C 3 C C 3 B C
		A461 DN X2		09(3		707		907		CFN 4 25 28 24

		CARMICOL
		0.11.11.11
XX=LOG F((X[**3]*8]/0.311653)		CARFLOG2
[F(XX+22.)].[.8		CARMLCC3
B [F(XX+5.)2.2.9		CARPLU04
		CARMLCOS
		CARMLCOR
		CARMLCC1
1 60= 334333**X+*30062102		CARMLCOR
Gu 10 /		CARMLC09
2 GG=((((((-a.1537/35r-14*xx+8.3232531E-15)*Xx+1.0066562E-9)*Xx+	-15)*XX+1,0066562E-9)*XX+	CARML010
13.1045063E-0)*XX+3.2916354E-6)*XX+8.2711G56E-0)*XX+1.3714067E-3)	16566-5)****1.3714c676-3)*	CARMLO11
2XX+_0130172451*XX+_43432642)*XX+_62337691	16	CARML012
7 91 19		CARML013
3 GG# [9)*XX-2.1997943E-8)*XX-	CARML014
15.397(6421-1)*XX-1.1888228-6)*XX+3.6379917E-5)*XX+1.1.1784234E-3)*	9917[-J)*XX+1.1784234E-3)*	CARMLU15
2XX+1.4449244[[-2]**X+*43352788)*XX+.6228644	644	CARPL016
60. 10. 7		CARMLOIT
4 GG={{{{{{{{}}}}}}})*XX+3.5766148c-07)*XX-	CARML018
11.25313321-5)*XX+1.9451313E-5)*XX-3.2077032E-4)*XX+2.1680398E-3)*	7032E-4)*XX+2.1680398E-3)*	CARMLC19
2XX+1,2d1/936E-2)*XX+,43510529)*XX+.6222353	350	CARFL020
SC 10 /		CARMLO21
> GD={(1(2,3212095E-3*XX-3*8049276L-6)*XX+2*170224E-4)*XX-6*7310339CAKML02Z	X+2.170224d-4)*XX-6.731033	9CARML022
1E-3)*XX+.12038224)*XX18461796)*XX+2.CCC/187	001187	CARML623
56 10 /		CARFL024
6 GG=XX=3.0460681		CARPLO25
7 VL=(((1,0+eXP F(GG))*C.311653)/R)**(1./3.	3.)	CARML026
END COMPUTE L		CARMLC21
RETURN		CARML028

SICHAGE NCT USED BY PROGRAM

		00.1		001		00.1				FN LGC 9 GC071 19 G0252
		DEC		DEC		DEC				P. 9
	E STATEMENT								LOCATIONS	E F N 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	QUIVALENC	DEC OCT	GRAM	DEC DCT 238 00356		DEC OCT			AND OCTAL	11 8 CCC64 17 CO226
	ENSION, OR E	DE	N SCURCE PRO	DE 61 2	ecter	DE	ROP LIBRARY		JLA NUMBERS	EFN 1F 11 7 5
	IRING IN COMMON, CIME	DEC OCT	SCLS NOT APPEARING IN	DEC OCT 3) 192 00300	LUCATIONS OF NAMES IN TRANSFER VECTOR	DEC DCT LCG 0 00000	ENTRY POINTS TO SUBROLTINES NOT OUTPUT FROM LIBRARY		INDING INTERNAL FORMU	EFN IFN LOC 10 7 00057 4 15 00171
DEC OCT 32561 77461	STURAGE LOCATIONS FOR VARIABLES NCT APPEARING IN COMMON, CIMENSION, OR EQUIVALENCE STATEMENT	UEC UCT XX 248 G037G	LOCATIONS FOR OTHER SYMBOLS NOT APPEARING IN SCURCE PROGRAM	UEC 0CT 2) 191 00277	LUCATIONS UF	DEC UCT 2 2 CCU02	ENTRY POINTS TO SUBF		EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS	1FN LUC 6 COU52 13 GO134
DEC UCT 250 Q0372	HAGE LUCATIONS F	UC1 00371	רנ	UCT 00364		0C1 00001 ExP(3		CXP(3 LGG	EXTERNAL FORMULA	LCC EFN 60045 9 600 76 3
DEC 250	ST	DEC 249		DEC 244		DEC 1				1+N 3 (
		99		1		Exp		EXP		EFN 8 2

E. Restrictions

ALAT must be remotely close to the correct latitude corresponding to the initial B in order to save machine time and to insure the accuracy of the answers. ALAT must always be positive and greater than the geomagnetic equator at geocentric longitude of 180° . This means that ALAT must be greater than 4° .

F. Input

Cards containing the initial values of B, L and λ are all the data necessary for the execution of this program. This data is entered on logical tape number two. Each card represents a single case.

1. Card Description

Columns	Mode	Quantity	Units	Description
1-12	F	ВО	gauss	initial magnetic induction
13-24	F	ELO	earth radii	initial magnetic field line
25-32	F	ALAT	degrees	initial latitude

2. Sample

GENERAL PURPOSE DATA SHEET

TARE 2	TAPE 2 TAPE 2 TAPE 2 TAPE 2 TAPE 2 TAPE 3 TAPE 3 TAPE 3 TAPE 3 TAPE 4 TAPE 4 TAPE 5 TAPE 5 TAPE 6 TAPE 6 TAPE 6 TAPE 6 TAPE 7 TAPE 8	Problem		PUT B	-L SEA	i	UNITIA	8	· ~													
. 1 1 1 1 1 2 2 1 2 9 1 1 1 1 2 2 1 1 1 1	1 . 1 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 .	Sponsor	1	DE 2		1		!			940	5	1 10 M			Poge		•				\top
					3					1		;				-					1	Т
1 1 1 2 2 2 1 1 1 2 3 2 1 1 0 1 1 2 3 2 1 1 0 1 1 1 2 3 2 1 1 1 0 1 1 2 3 2 1 1 1 0 1 1 2 3 2 1 1 1 2 3 2 1 1 1 2 3 2 3 1 1 2 3 3 3 3	1. 18 8 1. 0 1. 1 2 5 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1.									1	8	R	5	;[8	R B	B	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 K K B	۲ ۲	F _	8
1 2 5 1 1 1 1 8 8 1 1 1 0 1 1 1 2 5 1 1 0 1 1 1 1 2 5 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .			=	-			-				-								+		
1 5 9 1 1 . 2 5 1 1 0 1 1 . 4 1 1 . 5 1 1 0 1 1 . 4 1 1 . 5 1 . 5 1 1 .	1 . 2 5 1 1 . 4 1 1 . 5 1 1 . 9 1 . 9			<u> </u>	2					- 0		+										
			-	=	7			. 2		-												
	CSFC FORM SET IL CALL - 40)			_	6			·														L
	GSFC FORM SLIL (July - 60)																					
	GSFC FORM SAIL (July - 40)																					Γ^{-}
	CSFC FORM SET: 1 (July - 40)																					Ι
	CSPC FORM SG11 (July - 40)																					
	CSFC FORM SALI (July- 60)																					Г
	CSFC FORM SLI1 (July - 40)																					T
	OSSC FORM Sci.1 (July. 60)																					
	034C FORM SAL1 (July - 60)																					
	GSFC FORM SL1.1 (July - 60)																					1
	OSFC FORM 541-1 (July - 40)																					
	GSFC FORM S1-1 (July - 40)																					1
	GRFC FORM 541-1 (July - 60)																					T
	GSFC FORM \$41:1 (July - 60)																					
	GSFC FORM 541-1 (July - 60)																					
	GFC FORM S41-1 (July - 60)																					
	GSFC FORM 541-1 (July - 60)																					
	GSFC FORM 541-1 (July - 60)																					
	GSFC FORM 541-1 (July - 60)																					
	GSFC FORM 541-1 (July - 60)																					
	08FC FORM 54-1 (July - 60)																					_

G. Output

Output from this program appears on logical tapes 3 and 5. Both tapes contain the same information with the exception that tape 3 also contains the intermediate results of the search routine. Tape 5 is the output to be used in the longitudinal averaging processor. This tape is punched onto cards which can be combined with similar output from other runs. All this data can then be used as input to the longitudinal averaging processor, but it is important that a blank card follow the last of the data cards. This arrangement is discussed in the next section.

1. Tape 3 Sample

BO= 0.11000	LO= 1.75	000 INITIA	L LAT=26.000	000
		SNORTHERN HE		
LONG	LAT	ALT	• В	L
180.00000	26.00000	3533.22839	0.10159	1.75000
180.00000	28.00000	3257.93344	0.11298	1.75000
180.00000	27.47628	3330.02185	0.10985	1.74955
B = 0.10985	L= 1.7495			
		FINAL RESULTS)	
-180.00	27.48	3330.02	0.10985	1.74955
-180.00	27.48	3330.02	0.10985	1.74955
-170.00	25.79	3309.07	0.10987	1.75027
-160.00	23.86	3298.23	0.10987	1.75043
-150.00	21.82	3293.89	0.10987	1.75049
-140.00	19.74	3290.96	0.10986	1.74966
-130.00	17.71	3287.41	0.10986	1.74966
-120.00	15.73	3279.11	0.10986	1.74966
-110.00	13.83	3263.27	0.10987	1.75054
-100.00	11.97	3234.47	0.10987	1.75049
-90.00	10.27	3190.87	0.10987	1.75052
-80.00	8.93	3132.92	0.10986	1.75014
-70.00	8.27	3067.73	0.10986	1.74978
-60.00	8.66	3009.01	0.10985	1.74947
-50.00	10.36	2972.82	0.10985	1.74926
-40.00	13.12	2964.85	0.10985	1.74926
-30.00	16.35	29 7 9.89	0.10985	1.74933
-20.00	19.48	3011.16	0.10985	1.74939
-10.00	22.19	3052.95	0.10985	1.74927
-0.	24.34	3101.34	0.10985	1.74913
10.00	25.90	3153.89	0.10985	1.74914
20.00	26.92	3210.03	0.10985	1.74922
30.00	27.49	3269.30	0.10985	1.74940
40.00	27.80	3331.19	0.10986	1.74874
50.00	28.10	3397.64	0.10987	1.74857
60.00	28.53	3466.52	0.10985	1.74941
70.00	29.03	3528.77	0.10985	1.74939
80.00	29.55	3579.90	0.10985	1.74936
90.00	29.99	3614.76	0.10985	1.74941
100.00	30.27	3629.99	0.10985	1.74857
110.00	30.48	3626.67	0.10985	1.74880
120.00	30.63	3605.07	0.10986	1.74932
130.00	30.67	3566 .43	0.10987	1.74938
140.00	30.64	3517.70	0.10987	1.74968
150.00	30.42	3464.00	0.10988	1.75053
160.00	29.83	3410.37	0.10986	1.74985
170.00	28.87	3364.67	0.10986	1.75002

2. <u>Tape 5</u>

INTERME	EDIATE RESUL	TSSOUTHERN	HEMISPHERE	
LONG	LAT	ALT	\mathfrak{E}	L.
180.00000	-15.00000	3695.08514	0.10030	1.74998
180.00000	-17.00000	3433.09256	0.11171	1.74995
180.00000	-16.70013	3472.37378	0.10990	1.74989
B = 0.10990	L= 1.7498	9		
		FINAL RESULT	7.5	
-180.00	-16.70	3472.37	0.10990	1.74989
-180.00	-16.70	3472.37	0.10990	1.74989
-170.00	-18.67	3441.67	0.10990	1.75006
-160.00	-20.70	3407.85	0.10990	1.75001
-150.00	-22.78	3370.58	0.10990	1.75002
-140.00	-24.86	3327.75	0.10990	1.75005
-130.00	-26.87	3277.04	0.10988	1.74890
-120.00	-28.92	3219.97	0.10987	1.74896
-110.00	-30.96	3153.88	0.10987	1.74892
-100.00	-32.95	3077.77	0.10987	1.74908
-90.00	-34.76	2990.94	0.10987	1.74901
-80.00	-36.23	2895.15	0.10988	1.74917
-70.00	-37.17	2794.22	0.10989	1.74943
-60.00	-37.39	2694.25	0.10990	1.74975
-50.00	-36.73	2603.75	0.10991	1. 7 5009
-40.00	-35.09	2533.92	0.10991	1.75021
-30.00	-32.47	2497.69	0.10991	1.75013
-20.00	-29.06	2503.03	0.10987	1.74902
-10.00	-25.47	2545.84	0.10990	1.74915
-0.	-22.21	2615.13	0.10990	1.74996
10.00	-19.60	2695.72	0.10990	1.75003
20.00	-17.80	2780.87	0.10990	1.75013
30.00	-16.70	2870.66	0.10990	1.75012
40.00	-15.98	2969.88	0.10990	1.75012
50.00	-15.29	3079.53	0.11000	1.74901
60.00	-14.53	3205.88	0.10990	1.75006
70.00	-13.64	3328.53	0.10990	1.75010
80.00	-12.77	3437.57	0.10990	1.75010
90.00	-12.08	3524.42	0.10990	1.75011
100.00	-11.65	3585.00	0.10990	1.75007
110.00	-11-42	3618.98	0.10990	1.74908
120.00	-11.44	3631.77	0.10990	1.74995
130.00	-11.60	3624.71	0.10991	1.75053
140.00	-11.89	3601.71	0.10990	1.74967
150.00	-12.51	3570.65	0.10989	1.74957
160.00	-13.51	3536.55	0.10989	1.74939
170.00	-14.92	3503.21	0.10988	1.74915

a. Card Description

Columns	Mode	Quantity	Units	Description
1-12	F	PRLNG	degrees	geocentric longitude
13-24	F	РШ	degrees	geocentric latitude
25-36	F	ALT	km.	altitude
37-48	F	В	gauss	magnetic induction
49-60	F	EL	earth radii	magnetic field line

b. Sample GE

GENERAL PURPOSE DATA SHEET

1	Problem Sponsor	OUTPUT - B-L SEARCH TAPE 5	CH (B-L CONTOURS)	Dote	SAMPLE	Poge	
10 10 10 10 10 10 10 10	3 4	678901123456		化多苯甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲	***************	\$ \$7 \$1 \$1 \$2 \$1 \$1 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$3 \$2 \$3 \$3 \$4 \$2 \$2 \$3 \$4 \$2 \$3 \$4 \$3 \$4 \$3 \$4 \$3 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4	R.
18 0 0 0 0 0 0 0 0 0							
17 10 10 10 10 10 10 10		180.0	5 . 6	580.6	. 0 9 9 7 4	496	
16 0 0 0 0 0 0 0 0 0		1 7 0 . 0	3 . 9	5 58 . 7	. 0 9 9 7	7 5 0 4	
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		160.0	2 . 0	546.1	. 0 9 9 7	5 0 6	
1400.00 0 </td <td></td> <td>150.0</td> <td>6 .</td> <td>539.2</td> <td>. 0 9 9 7 6</td> <td>7 5 0 6</td> <td></td>		150.0	6 .	539.2	. 0 9 9 7 6	7 5 0 6	
13 0 0 0 0 0 0 0 0 0		1 4 0 . 0	. 9	533.4	. 0 9 9 7	7 4 9 7	
12 0 0 0 0 0 1 3 0 0 3 5 1 5 0 4 6 0 0 0 9 9 7 6 1 0 7 5 0 5 11 0 0 0 0 0 0 1 1 2 0 0 2 3 4 9 4 0 9 0 0 0 0 9 9 7 6 1 0 7 5 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		130.0	5 . 9	527.4	7 6 6 0 .	7 5 0 5	
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 2 0 . 0	3 . 9	5 1 5 . 4	. 0997	7 5 0 5	
1 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 0 . 0	2 . 0	494.9	. 0997	7 5 0 5	
9 0 0 0 0 0 1 0 0 0 <td>_</td> <td>100.0</td> <td>0 . 1</td> <td>462.3</td> <td>. 0997</td> <td>5 0 4</td> <td></td>	_	100.0	0 . 1	462.3	. 0997	5 0 4	
8 0 . 0 0 0 0		0 0 6	. 4	415.3	. 0997	7 5 0 3	
70.00 0.00		8 0 . 0	-	354.4	. 0997	7 4 9 7	
6 0 . 0 0 0 0		7 0 . 0	. 4	287.5	. 0997	4 9 8	
50.00 8.45 3190.38 0.09974 1.7494 40.00 11.14 3190.33 0.09974 1.7494 30.00 114.35 3199.33 0.09974 1.7494 10.00 0.09974 1.7494 10.00 0.09974 1.7494 10.00 0.09974 1.7493 10.00 0.09974 1.7493 10.00 0.09974 1.7494 10.00 0.09974 1.7494 10.00 0.09974 1.7494 10.00 0.09974 1.7494 10.00 0.09974 1.7494 10.00 0.09974 1.7494 10.00 0.09974 1.7494 10.00 0.09974 1.7494 10.00 0.09974 1.7494 10.00 0.09974 1.7494 10.00 0.09974 1.7494 10.00 0.09974 1.7494 10.00 0.09974 1.7494 10.00 0.09974 1.7494 10.00 0.09974 1.7494 10.00		0 0 9	. 8	226.1	. 0997	7 4 8 9	
4 0 0 0 0 1 1 1 . 1 4 3 1 8 2 . 4 9 0 . 0 9 9 7 4 1 . 7 4 9 4 3 0 0 0 0 0 1 4 . 3 5 3 1 9 9 . 3 3 0 . 0 9 9 7 4 1 . 7 4 9 4 2 0 0 0 0 0 0 1 7 . 5 0 3 2 3 2 . 5 1 0 . 0 9 9 7 4 1 . 7 4 9 4 1 0 0 0 0 0 0 0 7 4 1 . 7 4 9 4 1 . 7 4 9 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		50.0	. 4	190.3	. 0997	7 4 9 4	
3 0 . 0 0 1 4 . 3 5 3 19 9 . 3 3 0 . 0 9 9 7 4 1 . 7 4 9 4 2 0 . 0 0 0 0 0 0 0 0 9 7 4 1 . 7 4 9 3 1 0 . 0 0 0 0 0 9 7 4 1 . 7 4 9 3 1 0 . 0 0 0 0 0 9 7 4 1 . 7 4 9 3 1 0 . 0 0 0 0 0 9 7 4 1 . 7 4 9 3 1 0 . 0 0 0 0 0 9 7 4 1 . 7 4 9 3 1 0 . 0 0 0 0 0 9 7 4 1 . 7 4 9 4 2 0 . 0 0 0 0 0 9 7 4 1 . 7 4 9 4 3 0 . 0 0 0 0 0 9 7 4 1 . 7 4 9 4 3 0 . 0 0 0 0 0 9 7 4 1 . 7 4 9 4 3 0 . 0 0 0 0 0 9 7 4 1 . 7 4 9 4 4 0 . 0 0 0 0 0 9 7 4 1 . 7 4 9 4 3 4 3 7 . 1 1 0 . 0 9 9 7 4 1 . 7 4 9 4 4 0 . 0 0 1 . 2 5 . 6 7 3 4 9 7 . 8 1 0 . 0 9 9 7 4 1 . 7 4 9 4 4 0 . 0 0 0 1 . 2 6 . 0 5 3 5 6 2 . 5 7 0 . 0 9 9 7 4 1 . 7 4 9 4 5 0 . 0 5 3 5 6 2 . 5 7 0 . 0 9 9 7 4 1 . 7 4 9 5 5 0 . 0 5 3 5 6 2 . 5 7 0 . 0 9 9 7 4 1 . 7 4 9 5		4 0 . 0	1 . 1	182.4	7 6 6 0 .	7494	
2.0.00 17.50 3232.51 0.09974 1.7494 10.00 0.09974 1.7499 10.00 0.09974 1.7492 10.00 0.09973 1.7492 10.00 0.09974 1.7492 10.00 0.09974 1.7494 20.00 0.09974 1.7494 30.00 0.09974 1.7494 40.00 0.09974 1.7494 50.00 0.09974 1.7493		3 0 . 0	. 3	199.3	. 0 9 9 7	7 4 9 4	
1.0. 0.0		2 0 . 0	7 . 5	232.5	. 0 9 9 7	7 4 9 4	
0. 00 0. 00 22.42 3326.28 0. 09973 1.7494 0. 00 24.01 3380.07 0. 09974 1.7494 0. 00 0. 09974 1.7494 0. 00 3437.11 0. 09974 1. 7494 0. 00 35.67 81 0. 09974 1. 7494 0. 00 3562.57 0. 09974 1. 7494 0. 00 3631.112 0. 09974 1. 7495		1 0 . 0	0 . 2	276.2	. 0 9 9 7	7493	
0.00 0.00		0 . 0	2 . 4	326.2	7 6 6 0 .	7 4 9 2	
0. 0 0 0 0 0 0 0 <		0 . 0	4 . 0	380.0	. 0 9 9 7	7 4 9 4	
0.00 0.00 25.67 3497.81 0.09974 11.7493 0.00 0.00 362.57 0.09974 1.7493 0.00 0.09974 1.7495		0 . 0	5 . 0	437.1	. 0 9 9 7	7 4 9 4	
0.00 26.05 3562.57 0.09974 1.7493 0.00 26.39 3631.112 0.09974 1.7495		0 . 0	5 . 6	497.8	. 0997	7 4 9 4	
0.000 0 126.39 3631.12 0.09974 1.7495		· 0	9	562.5	.0997	4 9 3	
		0 . 0	6 . 3	631.1	. 0 9 9 7	7 4 9 5	-

H. Running Time

This program takes about ten minutes for each 100 kilometers in altitude. The initial minimum altitude is required in order to estimate the number of kilometers for a particular run. Use Figure 2 and the initial values of B, L and λ to arrive at an estimate of the initial altitude h. Subtracting 800 kilometers from this value will give the approximate initial minimum altitude of the first ring. This is the altitude used in figuring the running time.

III. LONGITUDINAL AVERAGING PROCESSOR

A. Introduction

Input to this program are the five diurnal average number density tables (Tables 1-5) and the B-L contour rings output from the B-L search routine. The tables are interpolated (extrapolated) in order to obtain a density value for every ten degrees of longitude in the B-L contours. The densities are then added together for each of the five flux models, and the resulting sum is divided by 36 to arrive at the longitudinally averaged number density. This is done for the northern and southern hemispheres separately and then these values are added together and divided by two in order to obtain one number density for each B and L and each of the five flux models. These final values are used as input to the lambda punch program.

B. Mnemonics

Quantity	Description	Units
H(J)	J th altitude from the diurnal averaged atmosphere tables, Tables 1-5	km.
S1(J),, S5(J)	diurnal averaged atmosphere densities for the J th altitude and fluxes of 250, 200, 150, 100 and 70×10^{-22} watts/m ² /cycle/sec from Tables 1-5	atoms/cm ³
A1,, A5	temporary storage of $S1(J), \ldots, S5(J)$	11
$SS1(J), \ldots, SS5(J)$	natural logarithms of S1(J),, S5(J)	
AVHA	sum of EL	earth radii
AVBN1,,AVBN5	density summation for the five flux models	atoms/cm ³
LONG	geocentric longitude	degrees
РНІ	geocentric latitude	degrees

Quantity	Description	Units
ALT	altitude	km.
В	magnetic induction	gauss
EL	magnetic field line	earth radii
Y(I)	temporary storage of SSK(J) at altitude $I = J$ depending on whether $K = 1, 2, 3, 4$ or 5	
нА	temporary storage of altitude	km.
YA	natural logarithm of density at altitude ALT	
BARN	density at altitude ALT	atoms/cm ³
BARNAV(K)	temporary storage of BARN for flux model K	11
JUNK	temporary storage of K	
AVERH1	average longitudinal value of EL for only one hemisphere	earth radii
AVERN1,, AVERN5	averaged densities for the five flux models and one hemisphere	atoms/cm ³
FINI	end of file trigger for tape 6	
EL1	EL for northern hemisphere	earth radii
EL2	EL for southern hemisphere	11
B1	B for northern hemisphere	gauss
B2	B for southern hemisphere	11

Quantity	Description	Units
EN1,,EN5	the first time this designation appears it represents the northern hemisphere densities for the five flux models. The second time it appears it represents the densities for the north and south averaged together.	atoms/cm ³
EN12,, EN52	averaged southern hemisphere densities for the five flux models	11
ITT	counter to keep track of which hemi- sphere is being considered	
ITTI	counter to keep track of which atmospheric constituent is being considered	
XLA(ITTI)	first six letters of the constituent name designated by ITTI	
XLB(ITTI)	last two letters of the constituent name designated by ITTI	
TSA	first six letters of constituent name	
TSB	last two letters of constituent name	

C. Flow Chart

D. Fortran Listing

```
LCNGITULINAL AVERAGING PRCCESSUR
DIMENSICN S1(20).52(20).53(20).53(20),H(20).5S1(20).5S2(20)
L1.5S3(20).5S4(20).5S2(20).7(20).HANAAV(5).ALA(5).XLB15)
L1.5S3(20).SS4(20).SS5(20).7(20).HANAAV(5).ALA(5).XLB15)
FURMATION.3S4 AVERAGE NUMBER GENSITIES FCR DIFF S / 11X.
1194SOUTHERN HEMISPHERC)
FURMATION.12FAGERAGE L=1F6.3,3X,2HB=1F6.5)
FURMATION.12FAGERAGE L=1F6.3,3X,2HB=1F6.5)
FURMATION.12FAGERAGE L=1F6.3,3X,2HB=1F6.5)
FURMATION.12FAGERAGE L=1F6.3,3X,2HB=1F6.5)
FURMATION.12FAGERAGE L=1F6.3,3X,2HB=1F6.5)
FURMATION.12FAGERAGE L=1F6.3,3X,2HB=1F6.5)
FURMATION.2SHAIMOSPHERIC CONSITILENT—-,A6,A2///)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CCNTINUE
UC 151 N=1,20
Read Invol. Tape 2,152,51(N),52(N),53(N),54(N),55(N)
IF(SI(I)) 151,666,151
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       WRITE CUIPUL TAPE 3.5.XLA(ITII).XLB(ITII)
                                                                                                                                                                                       FURMAI(1H0)
FURMAI(2F8.5,564,46,42)
                                                                                                                                                                                                                          FURMAT(5E12.4)
FCRMAT(3F12.2,2F12.5)
FURMAT(5E12.6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SSI(1) = LCGF(A1)
SS2(1) = LCGF(A2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         $$3(I) = LUGF(43)
$$4(I) = LUGF(A4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               SSS(1) = LGGF(45)
                                                                                                                                                                                                                                                                                  XLA(1)=6FFELIUM
XLA(2)=6HGXYGEN
XLA(3)=6H C 2
XLA(4)=6FYITRGG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             H[N+1]=F(N)+100.
                                                                                                                                                                                                                                                                                                                                                         XLA(5)=6FHYURUG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             00 150 N=2,19
                                                                                                                                                                                                                                                                                                                                                                                           XLR(2)=2H
XLR(3)=2H
XLR(4)=2F_N
XLR(5)=2FFN
IIT=1
IITI=1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           00 10 1=1,20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       H(1)=120.
                                                                                                                                                                                                                                                                                                                                                                            XLB(1)=2h
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           H(2)=200.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               A3=53(1)
A4=54(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               A1=51(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CUNTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                A2=52(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      A>= S5(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      AVBN1=U.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        AVBN2=U.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         AVEN3=U.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           AVGN4=C.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    AVHA=C.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                10
2001
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                150
153
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         151
                                                                                                                                            4
5
7
7
103
152
     ပ
```

```
GU TC 23
CCNIINCE
YA=Y1-(Y1-YG)*(H1-FA)/(H1-FC)
GC TC LGG3
YA=Y(20)+(FA-F(2C))*(Y(20)-Y(19))/(F(2C)-F(19))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1002 YAY(2)-(H(2)-HA)*(Y(2)-Y(1))/(H(2)-H(1))
1003 BARN=EAPF(YA)
502 BARNAV(K)=0ARN
                                             ITTI=ITTI+1

IF (ITTI=5) 157,157,153

WRITE UUTPUT TAPE 3.5,XLA([11]),XLB([ITT])

GL TG 153

GL TG (20C,201,202,203,204),K

EC 300 I=1,20
EU 2660 M=1,36
READ IMPUT IAPE 5, 103,LCNG,PHI,ALT,P.EL
IF (B) 155,155,505
REWINE 5
                                                                                                                                                                                                                                                                                                                                                               IF(HA-12G.) 10G2,1GC0,4G1
IF(HA-2GGG.) 1GGC,1GGC,1GC1
DC 2G J=1,2G
IF( H(J)-HA ) 20,21,22
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               AVBN2 = BARNAV(2)+AVBN2
AVBN3 = BARNAV(3)+AVBN3
AVBN4 = BARNAV(4)+AVBN4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  AVBVI = DARNAV(1)+AVBVI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            IF(JUNK-5) 100,290,100
                                                                                                                                                    GC 10 400
OU 304 1=1,20
Y(I) =555(I)
CONTINDE
                                                                                                                                                                                                                                                       GC TC 400
DC 303 [=1,20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           AVH 3=EL+AVFA
                                                                                                                                Y(I) = SI(I)
CUNTINCE
                                                                                                                                                                                                                              Y(I) =SS3(I)
CCNTINUE
                                                                                                                                                                                                                                                                              Y(1) = 554(1)
CCNTINUS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  GL 10 1003
                                                                                                                                                                                                                                                                                                                                                                                                                                                    Y1=Y(J)
HG=H(J-1)
                                                                                                                                                                                                                                                                                                                                                                                                                            6C TO 30
H1=H(J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            YC=Y(J-1)
                                                                                                                                                                                                                                                                                                                                                                                                                1 ( ) Y=4 Y
                                                                                                                                                                                                                                                                                                                                                       HA=ALT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   JUNK = K
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   20
23
30
10c1
                                                                                                                                                                                                                                                                                                                                                                                         1000
                                                                                                                                                                                                                                                                    203
                                                                                                                                                                                                                                                                                                                  204
                                                                                                503
                                                                                                                                                                                            301
                                                                                                                                                                                                                                           302
                                                                                                                                                                                                                                                                                           303
                                                                                                                                                                                                                                                                                                                                         304
400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           06%
                                                                                                                                                                                                                                                                                                                                                                             401
                                                                                                                                                                                                                                                                                                                                                                                                                2.1
                                                                                                                                                                                                                                                                                                                                                                                                                                        22
```

```
WRITE LUTPUT TAPE 3,8,AVERNI,AVERN2,AVERN3,AVERN4,AVERN5
WRITE CUTPUT TAPE 6,7,AVERFI,8,XLA(ITII),ALU(ITII)
WRITE LUTPUT TAPE 6,4,AVERNI,AVERN2,AVERN3,AVERN4,AVERN5,XLA(ITII)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           READ INPUT TAPE 6,7,ELL.BIL,TSA.TSU
IF(ELI) 602,663,662
READ INPUT TAPE 6,4,ENI,EN2,EN3,EN4,EN5,TSA,TSE
READ INPUT TAPE 6,7,ELZ,B2,TSA,TSU
READ INPUT TAPE 6,7,ELZ,B2,TSA,TSE
READ INPUT TAPE 6,4,ENIZ,ENZZ,EN3Z,EN4Z,EN5Z,FSA,TSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             EN5=(EN5+EN52)/2.
WRITE LUIPUT TAPE 10.7.EL.b.TSA.TSB
WRITE LUIPUT TAPE 10.4.EN1.EN2.EN3.EN4.EN5.TSA.TSB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CALL FAIT
End[1:1:0:0:0:0:0:0:1:0:0:0:0:0:0:0]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FINI≖O.
WRITE CUIPUI TAPE 6,7,FINI,FINÍ
                                                                                                                                                                                     MRITE UUIPUT TAPE 3,2,4VERHI,8
If (III-1) 36,35,36
WAITE GUIPUT TAPE 3,3
III-III+1
AVBN5 = BURNAV(5)+AVBN5
                                                                                                                                                                                                                                                                        GC TO 37
WRITE CUTPUT TAPE 3,1
[ff=1
                                                                                                                                                                                                                                                                                                                                                                                                                       WRITE CLIPUT TAPE 3,6
GC TO 2001
                                                           AVERHI=AVHA/36.

AVEANI = AVBAI/36.

AVERNZ = AVBAZ/36.

AVERNZ = AVBAZ/36.

AVERNZ = AVERA/36.

AVERNZ = AVERA/36.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       84(81+32)/2.
EN1=(EN1+CN12)/2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  EW2=(EN2+EN22)/2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      EN3=(E-13+EN321/2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           EN4 = (EN4+EN42)/2.
                                                                                                                                                                                                                                                                                                                                                                                                       1, XL B ( [ 1 T 1 )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            GC 10 c01
                    CUNTINUE
                    100 CUNTINUE
2000 CENTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             REWINE 6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   £03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 £ C J
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        709
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    009
                                                                                                                                                                                                                                  3,5
                                                                                                                                                                                                                                                                                               3.6
                                                                                                                                                                                                                                                                                                                                      3.7
```

STERAGE NET USED BY PROGRAM

	DEC 1041	LCT 620×1		UEC 32561	CL T 77461								
		STCRAG	CRAGE LOCATIONS FUR VARIABLES	NS FU	3 VARIABL	ES APPEASING	2 (EGUIVALENCE	E STATEMENIS	S	D.F.C	100
E 280.AV	06C 80C 98C	CC1 C1440 01724	T SS	0.80 0.40 0.00 0.00	Cul Cles4 Cl7CC	188		\$52 \$52 x+	1020 900 790	C1774 C1664 C1426	S S S >	0201 0203 0203	01750 01560 01464
554	366	60 01334 Sturage LOC/	SS5 LOCATIONS FOR		840 CISIC VARIABLES NGT	A ∃ 9 4 4	OFFCN.	LIMENSICM, CR		ii.	STATEMENT		
	DEC	ננו		ויבנ	770	•	DEC OCT	Š	UEC 782	100	4	0 i C 781	CCT 01415
T .	785	01421	A2	764	01420	AVBAZ		AVENS	777	C1411	AVENS	176	01410
4 V D V S	78C	01414	AVEKH1	774		AVERNI		AVERN2	277	01404	AVERN3	171	01403
AVERN4	770	01402	AVERNS	765		AVEA	768 01460	19	767	61372	E C	761	01371
Bu N	765	01375	TC .	764		1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		E L	757	C1365	EN32	156	01364
EN12	760	2/5/2	F 242	754		EN4		EN52	152	C1366	ENS	151	01357
0 1 2	25.	01356	HO	749		1	746 01554	ΗA	147	C1353	1111	746	01332
<u> </u>	745	14810	٦.	744	01350	J CON		Y	737	C1340	158	736	01340
≱: C	740	01344	∠ ≻	734		4 7	733 01:35			•			
2			SYA	WELLS	AND LCCATICAS	FOR	SCURCE PRECERAN	FORMAT	STATEMENTS	2			
	2	רננ		E F	Luc		EFN LLC		FFN	רככ	9 10	ی کا نا	100
311 816		01324 01246	213 517	7	01306 01245	(3) (3)	3 01211 0 01242	8137	103	01240	8)40	152	01235
			LUCA	SVDIJA	FOR CINE	R SYMBELS	NCT APPEARING	IN SCURCE	PROGRAM	3. 0			
,	Drc	100	í	SEC.		<i>-</i>	5ec 001	(7	DEC 32767	CCT 77177	()	DEC 662	CCT 01226
<u> </u>	725	132	[9]		01330	C) (3	729 01331	C) 04	730	C1332	0.065	731	01333
007()	132	133	01215			61219	24500 657	E)408	143	C0217	300 CE	205	00210
	85 C 212 C	c12 632	R(=	e è 219	00130	9 (1)	141 CO215 220 OO342	E) 14	257	0401	£)15	264	00410
E)112	250	66372											
					LCCATICN	INS OF NAME	S IN TRANSFER	VECTOR					
EAIT (RIN)	DEC 8 4	001 00010 00004	CXP (R&T)	ů£ C	0CT 7 CCCC7 6 CCCD6	LC6 (STE)	DEC CUT 5 CCUO5 1 COCO1	(FIL) (TSF)	DEC 2 3	CCC02 CCC03	(FPI)	DEC 0	00000
				ENTRY	PCINTS	TC SUBROUTINES	NES NOT OUTPUT	I FROM LIBRARY	Z D R Y				
E x I i		4 × 1	907		(F11)	(FPT)	(RTA)	(RMT)		(STF)	(15H)		

	I F	64	19	11	96	86	104	125	145	: •
LOCATIONS	E E	2001	200	302	4	20	1003	35	602	!
OCTAL								C0544		
SAND	FN	4.	6.5	75	85	93	103	115	142	
NUMBERS								2000		
FURMULA										
ANAL	ر داد	62100	39200	00130	00351	00403	1 4400	114 00541	90700	
INTE	IFN	36	79	13	83	16	101	114	138	
NUMBERS WITH CCRRESPONDING INTERNAL								100		
I Z	1 10	CC 71	6.54.5	0325	0346	0373	0446	00517	Cc 24	
LMBERS	Z 11.	35 (55 0	71 0	81 6) 5B	100 C	108 0	130 0	
FCKMULA	EFN	153	155	107	304	1000	30	067	37	
EXICANAL	221									
	IFA	7	56	6.5	43	28	6	102	128	163
	2.5	150	164	700	503	101	2 3	205	36	&C.3

LDC

E. Restrictions

Input tables must have densities for altitudes starting at 120 kilometers and followed by each 100-kilometer level up to 2000 kilometers. If the tables are changed then the program must be modified. The tables must be input in the following order:

- (1) helium,
- (2) oxygen,
- (3) molecular oxygen,
- (4) nitrogen,
- (5) hydrogen.

F. Input

Input to this program is handled by two tapes. On tape 2 are entered the diurnal averaged atmosphere tables (Tables 1-5). These tables are punched on cards and placed one behind the other at the end of the Fortran deck. These tables must be input in the following order: helium, oxygen, molecular oxygen, nitrogen and hydrogen. This is necessary in order that the constitutuent names may be correctly punched on the output. It is also important that a blank card follow the last table in order to notify the program when it has reached the end of the file.

On tape 5 are placed the B-L contours which were produced by the B-L search program. As with the tables, the last card must be blank in order to designate an end of file.

1. Tape 2

a. Input Card Description

ATMOSPHERE TABLES

Columns	$\underline{\text{Mode}}$	Quantity	Units		Descrip	tion	
1-12	E	S1(N)	atoms/cm ³	density f	or flux mo	del 1, al	titude N
13-24	${f E}$	S2(N)	11	11	**	2,	17
25-36	${f E}$	S3(N)	11	11	11	3,	11
37-48	${f E}$	S4(N)	11	11	11	4,	11
49-60	${f E}$	S5(N)	11	11	11	5,	11

b. Sample

GENERAL PURPOSE DATA SHEET

Preblem		MA	1	NIGHT - LONGITHIN	I C	1		N C A	AVERAGING PROCESSOR	۲		Į,	(DENCITY		TABLEC															l		Γ
Spensor						!	:					9		-]	1		-				Barre	- 1					,					
	l	APE	7									4		SA	SAMPLE						-		TABL	(TABLES 1-5)	(5-1							
1234	9 6 7	•	5 = 2	2 0	7 2 2	8	R	2 23 34	3 2 2	R	E 00	***************************************	網網	第 第	8		*		8	25	報	8 43 8	8	8	8	/9 8 8	8	27 17 25	2 27 24	R	100	8 6
																							E					F				F
5	. 8	0 E	-		5.	8 0 0	0 E	+			0 8	0 E +	1 1		5 .	0 8	0E +	+11			0 8	+ 0 0	Ξ					<u> </u>				
7	39	3 E	6 9 +		6 . 1	®	0 E	6 0 +		4	7 4 3	3 € +	60		3.	1 3 (+ 9	60+		2	1 2 4	4 E +	60	<u> </u>				\vdash				
7	. 6 3	0 E	8 0 +		4	6 3 9	ш	+ 0 8		2	2 1 0	0 E +	- 0 8		. 9	7 3	9 E +	+07		7	1 1 3	+	0 7		-			+			-	
-	. 2 7	8 E	8 +		5	777	7E +	+ 0 7		2	151	1 E +	0 7		2	8 9	2 E +	9 0		4	2 2 5	ъ. н	0 5	-				-			-	F
2	. 5	2 E +	+ 0 7		· ∞	7 9 8	ш	9 0 +		-	- 8	+ 0 E +	9 0		=	4 0	7 E +	+ 0 5		=	1 5 6	+ + +	4	-				+			F	\sqsubset
5	. 7 3	9 0	9 0 +		=	5 2 1	ш	9 0 +		٠, س	2 3 9	9 E +	0 5		8	0	0 + +	0 3		т С	8 4	<u>+</u> ш	0 2					-	<u> </u>		-	
-	4	3 E	+ 0 6		2	8 8 4	ш	+ 0 5		2	7 6 3	3 H	4		•	1 9 () E +	- 0 2		-	4 7 1	+ +	-								-	Ι
က	99.	4 E	+ 0 5			80	ш	+ 0 4		3	8 9 5	9 E +	- 0 3		4	8 0 2	2 E +	0		9	3 2 0	I I	-0	=			ļ	-	<u> </u>		-	Τ.
-	0	1 2 E +	+ 0 5		1.2	2 7 6	ш	+ 0 4		5 .	8 9 4	4 E +	0 2		4	0 5 7	7 E +	0			9 0 0	ш	0 2	-				+			-	I
2	. 9 3	2 E	+ 0 4		2	9 1 8	ш	+ 0 3		6	4 7 0	+ 0 E	0		ო	7 0 2	2 E -	0		-	5 7 0	Ш	0					=			-	Ţ
∞	. 8	2 E	+ 0 3		•	9 9 4	ш	+ 0 2		-	6 0 9) E +	0 1		3	6 2 7	7 E -	- 0 2			9 3 6	Ш	0.5								-	
2	. 7	3 E	+ 0 3		1 . 7	7 5 2	ш	+ 0 2		7	8 7 8	3 E +	0		3	7 9 8	8 E ~	- 0 3		-	0 1 6	m I	0 5					_			-	
٥	.0	3 E	+ 0 2		4	5 5 8	ш	+ 0		5 .	4 0 4	<u> </u>	0		4	2 3 7	7 E _	- 0 4			6 7 4	Ш	0 7						<u> </u>			
3	0 4	<u>н</u>	+ 0 2		1.2	2 3 3	ш	- 0 +		-	0 6 3	3 E	0		5	0 1 7	7 E -	-0 5		2	633	ш	8	-			-	<u> </u>				Ι
=	0.	5 E	+ 0 2		3 . 4	4 5 6	ш	0 0 +		2 . 1	8 3	ш	0 2		9	2 8 7	7 E _	9 0		2 (0 2 3	Ш !	6					<u> </u>				
ω	. 76	ж 8	10 +		1 .0	002	ш	0 0 +		4	6 7 7	ш	0 3		8	3 2 1	1 E -	0 7		1	1 9 9	III	0						-	 	<u> </u>	ļ
	۳ 8	<u>Ш</u>	+ 0		3 .	00	w	- 0 -		-	0 4 2	<u>п</u>	ю О		_	160	0 E -	0 7		1	4 5 4	Ш	=	_						-		
5	. 2 1	+ Ш	0 0		9.2	2 6 8	3 E	- 0 2		2 . 4	4 1 4	- 3	0 4		-	6 9	9 E _	0 8		-	3 5 3	ill ill	1									
2	8	5 E +	0		2.9	949	ш	- 0 2		5 . 7	7 4 6	- E	0.5		3	6 1 2	2 E -	0 0		-	3 4	I Ш	3								<u> </u>	
7	. 92	7 E -	-0		6	6 5 4	ш	- 0 3		1	4 3 1	L L	0 5			9 1 9	9 E -	1 0		-	3 9 3	Ш	4				Ė			<u> </u>	<u> </u>	
7	. 60	+ 0 E	0		7 . '6	0 0 9	ш	+ 10		7 . 6	0 0 9) E +	1 0		1	0 9	0 E +	0		7 . (0 0 9	+ Ш	0				+			F		
3	9	т Н О	60		E	4 5 7	w	60+		3	2 0 9) E +	6 0		2 .	7 9 5	5 E +	6		2 . 4	4 1 6	+	60							-		
80	. 8	+ U	8 0		_	1 3 4	+ <u>"</u>	8 0		5 . 1	2 4	+ Ш	ω		2 .	8 0 9	9 E +	0 8		· ·	564	+ Ш	0 8									
3	. 0 5	5 4 E +	0		2 . 0	0 5 4	+ 4	8 0	\exists		= 1	2 E +	80		4	. 0 2 5	5 E +	0 7		1	4 7 1	+	0 7									
	7	:																						1		l	-]			-	1

GSFC FORM 541-1 (July - 60)

2. <u>Tape 5</u>

a. Input Card Description

B-L CONTOURS

Columns	Mode	Quantity	Units	Description
1-12	F	LONG	degrees	geocentric longitude
13-24	\mathbf{F}	РНІ	degrees	geocentric latitude
25-36	F	ALT	km	altitude
37-48	\mathbf{F}	В	gauss	magnetic induction
49-60	${f F}$	${f EL}$	earth radii	magnetic field line

b. Sample

GENERAL PURPOSE DATA SHEET

Problem	The Control of the Control	1												Γ
	INLOI - LONGI	- 1	AVERAGING PROCESSOR	SOUR (B-L)	(B-L CUNIOURS)									
Spaneor	TAPE 5			\$	SAMPLE	•		4	Poge		Ť			
1 2 3 4 5	M 01 21 11 01 6 8 2 9 5	3 3 4 4 8 8 N N N N N N N N N N N N N N N N	2333373	美国祖际印象	20 00 00 00 00 00 00 00 00 00 00 00 00 0		6 6 6 6	8 8 8 8 9 5	2000	8 8 8	8 8 8	* 8 24	B 17 B 8	R
														F
	- 180.00	2 5	. 63	3580.	8 9	0 0 9	974		7 4 9 6 8					
	- 170.00	2 3	. 9 4	3558.	7.7	0 0 9	9 7 5	÷	7 5 0 4 7					-
	- 160.00	2 2	. 0	3546.	1 2	0 . 0 9	9 2 6	1	7 5 0 6 0					
	- 1 5 0 . 0 0	1 9	66.	3539	2 4	0 . 0 9	9 2 6	. 1	75062					
	- 1 4 0 . 0 0	17	. 9 1	3533.	42	0 0 0	9 7 4		74979					
	- 130.00	1.5	. 9 3	3527.	4 8	0 0 9	9 2 6		7 5 0 5 7					
	- 120.00	1 3	. 9 5	3 5 1 5.	4 6	0 0 9	9 4 6	1	7 5 0 5 8					
	- 1 1 0 . 0 0	1 2	. 0 2	3 4 9 4	0 6	0 0 0	9 1 6	-	7 5 0 5 6					
	- 100.00	1 0	. 16	3462	3.4	0 0 9	9 4 6	=	7 5 0 4 7					-
	00.06-	∞	. 4 7	3 4 1 5	3 5	0 . 0 9	6 7 5	1	7 5 0 3 1					
	- 8 0 . 0 0	7	. 12	3 3 5 4	4 2	0 . 0 9	974	-	7 4 9 7 1					Ė
	- 7 0 . 0 0	9	. 4 6	3 2 8 7	5 9	0.09	974	1	74983					
	00.09-	9	. 8	3226	1 6	0 . 0 9	9 2 6		7 4 8 9 8					
	- 50.00	œ	. 4 5	3190.	3 8	0 0 0	9 7 4	-	74949					
	- 40 . 00	1	. 1 4	3182	4 9	0 0 9	974	_:	7 4 9 4 5					
	-30.00	1 1 4	. 3 5	3 1 9 9 .	3 3	0 0 9	974	<u>-</u>	7 4 9 4 9					
	-20.00	1 7	. 5 0	3232	5 1	0 . 0 9	974	- 1	7 4 9 4 5					
	-10.00	2 0	. 24	3 2 7 6	2 0	6 0 0	9 7 4	Ė	74937					
	- 0 . 0 0	2 2	. 4 2	3 3 2 6	28	0 . 0 9	973	1	7 4 9 2 9					
	10.00	2 4	. 0 1	3380.	0 7	0 0 9	974	<u>-</u>	7 4 9 4 1					
	20.00	2 5	. 0 5	3 4 3 7 .	1.1	0 0 9	974	=	7 4 9 4 2					
	30.00	2 5	. 67	3497.	8 1	0 0 9	974	-	7 4 9 4 7					
	4 0 . 0 0	2 6	. 0 5	3 5 6 2 .	5 7	0 0 9	974	=	7 4 9 3 2					
		2 6	. 39	3631.	1 2	0 0 9	974	<u>-</u>	7 4 9 5 7					
CEEC ECOM	DM 641.1 / 1.1 401													

GSFC FORM 541-1 (July - 60)

G. Output

Output for this program appears on logical tapes 3 and 10. Tape 3 will contain the averaged densities for each of the five flux models at a particular B and L for both northern and southern hemispheres and for each of the five constituents. The constituents (He, O, O_2 , N_2 , H) follow each other in the same order as they exist in the tables which are input on tape 2. Tape 3 is printed with appropriate headings.

Tape 10 also contains densities for the five flux models at each B and L but here the northern and southern hemispheres are averaged together to give one final value for each B and L. Tape 10 contains no headings but each card is labeled with the appropriate constituent name. This tape is punched in order to be used as input to the lambda punch.

A scratch tape must be set up on logical tape unit 6. Although no data appears on this tape at the completion of the program it is used in intermediate steps to store data.

1. Tape 3 Sample

ATMOSPHERIC CONSTITUENT--HELIUM

AVERAGE L= 1.142 B=.23891
AVERAGE NUMBER DENSITIES FOR DIFF S
NORTHERN HEMISPHERE
0.8300E 06 0.7508E 06 0.6289E 06 0.4600E 06 0.3382E 06

AVERAGE L= 1.142 B=.23890 AVERAGE NUMBER DENSITIES FOR DIFF S SCUTHERN HEMISPHERE 0.1346E 08 0.1210E 08 0.1064E 08 0.9134E 07 0.8207E 07

AVERAGE L= 1.142 B=.22741 AVERAGE NUMBER DENSITIES FOR DIFF S NCRTHERN HEMISPHERE 0.7137E 06 0.6282E 06 0.5063E 06 0.3493E 06 0.2433E 06

AVERAGE L= 1.142 B=.22736 AVERAGE NUMBER DENSITIES FOR DIFF S SCUTHERN HEMISPHERE C.1428E 07 0.1402E 07 0.1357E 07 0.1293E 07 0.1250E 07

AVERAGE L= 1.142 B=.23465 AVERAGE NUMBER DENSITIES FOR DIFF S NCRTHERN HEMISPHERE 0.7842E 06 0.7021E 06 0.5795E 06 0.4145E 06 0.2984E 06

AVERAGE L= 1.142 B=.23466 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.5205E 07 0.4932E 07 0.4608E 07 0.4235E 07 0.3986E 07

AVERAGE L= 1.142 B=.21968 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.6485E 06 0.5615E 06 0.4423E 06 0.2952E 06 0.1996E 06

AVERAGE L= 1.142 B=.21968
AVERAGE NUMBER DENSITIES FOR DIFF S
SOUTHERN HEMISPHERE
0.8665E 06 0.8125E 06 0.7325E 06 0.6253E 06 0.5477E 06

AVERAGE L= 1.170 B=.23992 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.7300E 06 0.6415E 06 0.5134E 06 0.3472E 06 0.2351E 06

AVERAGE L= 1.170 B=.23991
AVERAGE NUMBER DENSITIES FOR DIFF S
SOUTHERN HEMISPHERE
0.1571E 08 0.1399E 08 0.1217E 08 0.1032E 08 0.9197E 07

AVERAGE L= 1.170 B=.23467 AVERAGE NUMBER DENSITIES FOR DIFF S SCUTHERN HEMISPHERE 0.5025E 07 0.4766E 07 0.4459E 07 0.4106E 07 0.3874E 07

AVERAGE L= 1.170 B=.22957

AVERAGE NUMBER DENSITIES FUR DIFF S

NORTHERN HEMISPHERE

0.6319E 06 0.5403E 06 0.4158E 06 0.2647E 06 0.1693E 06

AVERAGE L= 1.170 B=.22956 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.1975E 07 0.1940E 07 0.1885E 07 0.1810E 07 0.1758E 07

AVERAGE L= 1.170 B=.21976 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.5513E 06 0.4595E 06 0.3410E 06 0.2052E 06 0.1246E 06

AVERAGE L= 1.170 B=.21977
AVERAGE NUMBER DENSITIES FOR DIFF S
SCUTHERN HEMISPHERE
0.8559E 06 0.8062E 06 0.7343E 06 0.6406E 06 0.5740E 06

AVERAGE L= 1.170 B=.20975 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.4812E 06 0.3913E 06 0.2804E 06 0.1600E 06 0.9249E 05

AVERAGE L= 1.170 B=.20972
AVERAGE NUMBER DENSITIES FOR DIFF S
SOUTHERN HEMISPHERE
0.6456E 06 0.5736E 06 0.4764E 06 0.3555E 06 0.2730E 06

AVERAGE L= 1.170 B=.20474

AVERAGE NUMBER DENSITIES FOR DIFF S

NORTHERN HEMISPHERE

0.4513E 06 0.3629E 06 0.2560E 06 0.1428E 06 0.8090E 05

AVERAGE L= 1.170 B=.20475
AVERAGE NUMBER DENSITIES FOR DIFF S
SOUTHERN HEMISPHERE
0.5692E 06 0.4911E 06 0.3896E 06 0.2688E 06 0.1907E 06

AVERAGE L= 1.170 B=.20141 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.4332E 06 0.3460E 06 0.2419E 06 0.1333E 06 0.7469E 05 AVERAGE L= 1.170 B=.20134 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.5207E 06 0.4399E 06 0.3375E 06 0.2199E 06 0.1474E 06

AVERAGE L= 1.188 B=.23382 AVERAGE NUMBER DENSITIES FOR DIFF S NCRTHERN HEMISPHERE 0.6179E 06 0.5248E 06 0.3992E 06 0.2485E 06 0.1550E 06

AVERAGE L= 1.188 B=.23383 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.3782E 07 0.3632E 07 0.3447E 07 0.3229E 07 0.3084E 07

AVERAGE L= 1.188 B=.21177

AVERAGE NUMBER DENSITIES FOR DIFF S

NCRTHERN HEMISPHERE

C.4507E 06 0.3605E 06 0.2517E 06 0.1373E 06 0.7561E 05

AVERAGE L= 1.188 B=.21175

AVERAGE NUMBER DENSITIES FOR DIFF S

SCUTHERN HEMISPHERE

0.6639E 06 0.5964E 06 0.5050E 06 0.3904E 06 0.3108E 06

AVERAGE L= 1.188 B=.25851 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.8776E 06 0.7972E 06 0.6687E 06 0.4846E C6 0.3495E 06

AVERAGE L= 1.188 B=.25853 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.8554E 09 0.6005E 09 0.3943E 09 0.2397E 09 0.1695E 09

AVERAGE L= 1.188 B=.24959 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.7733E 06 0.6856E 06 0.5550E 06 0.3807E 06 0.2603E 06

AVERAGE L= 1.188 B=.24954 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.1175E 09 0.9275E 08 0.7004E 08 0.5030E 08 0.3995E 08

AVERAGE L= 1.188 B=.23938 AVERAGE NUMBER DENSITIES FOR DIFF S NURTHERN HEMISPHERE 0.6690E 06 0.5769E 06 0.4486E 06 0.2890E 06 0.1862E 06

AVERAGE L= 1.188 B=.23934 AVERAGE NUMBER DENSITIES FOR DIFF S SCUTHERN HEMISPHERE 0.1212E 08 0.1095E 08 0.9695E 07 0.8383E 07 0.7571E 07 AVERAGE L= 1.188 B=.21981 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.5056E 06 0.4133E 06 0.2976E 06 0.1702E 06 0.9799E 05

AVERAGE L= 1.188 B=.21981 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.8335E 06 0.7838E 06 0.7133E 06 0.6223E 06 0.5579E 06

AVERAGE L= 1.188 B=.20482 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.4087E 06 0.3211E 06 0.2185E 06 0.1146E 06 0.6086E 05

AVERAGE L= 1.188 B=.20481 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.5597E 06 0.4837E 06 0.3855E 06 0.2689E 06 0.1932E 06

AVERAGE L= 1.200 B=.24991
AVERAGE NUMBER DENSITIES FOR DIFF S
NCRTHERN HEMISPHERE
0.7400E 06 0.6498E 06 0.5184E 06 0.3469E 06 0.2312E 06

AVERAGE L= 1.200 B=.24992 AVERAGE NUMBER DENSITIES FOR DIFF S SCUTHERN HEMISPHERE C.1125E 09 0.8896E 08 0.6733E 08 0.4849E 08 0.3861E 08

AVERAGE L= 1.200 B=.23952 AVERAGE NUMBER DENSITIES FOR DIFF S NCRTHERN HEMISPHERE 0.6373E 06 0.5438E 06 0.4160E 06 0.2608E 06 0.1634E 06

AVERAGE L= 1.200 B=.23948

AVERAGE NUMBER DENSITIES FOR DIFF S

SCUTHERN HEMISPHERE

0.1122E 08 0.1018E 08 0.9049E 07 0.7866E 07 0.7131E 07

AVERAGE L= 1.200 B=.22940 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.5508E 06 0.4569E 06 0.3357E 06 0.1976E 06 0.1166E 06

AVERAGE L= 1.200 B=.22938
AVERAGE NUMBER DENSITIES FOR DIFF S
SOUTHERN HEMISPHERE
C.1666E 07 0.1638E 07 0.1594E 07 0.1536E 07 0.1496E 07

AVERAGE L= 1.200 B=.21979
AVERAGE NUMBER DENSITIES FOR DIFF S
NORTHERN HEMISPHERE
0.4790E 06 0.3869E 06 0.2735E 06 0.1516E 06 0.8459E 05

AVERAGE L= 1.200 B=.21980 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.8144E 06 0.7642E 06 0.6936E 06 0.6031E 06 0.5390E 06

AVERAGE L= 1.200 B=.20970 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.4136E 06 0.3249E 06 0.2207E 06 0.1151E 06 0.6061E 05

AVERAGE L= 1.200 B=.20971
AVERAGE NUMBER DENSITIES FOR DIFF S
SOUTHERN HEMISPHERE
0.6189E 06 0.5489E 06 0.4559E 06 0.3416E 06 0.2637E 06

AVERAGE L= 1.200 B=.18974

AVERAGE NUMBER DENSITIES FOR DIFF S

NORTHERN HEMISPHERE

0.3116E 06 0.2325E 06 0.1468E 06 0.6859E 05 0.3260E 05

AVERAGE L= 1.200 B=.18975 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.3818E 06 0.3026E 06 0.2112E 06 0.1179E 06 0.6790E 05

2. Tape 10

a. Output card description

	Columns	$\underline{\text{Mode}}$	Quantity	<u>Units</u>	$\underline{\underline{\mathbf{D}}}$	escription	<u>n</u>
B, L Card	1-8	F	EL	earth radii	averaged	magnetic	field line
	9-16	F	В	gauss	magnetic	induction	1
	72-80	-	-	-	constitue	nt name	
Density	1-12	\mathbf{E}	EN1	atoms/cm ³	density fo	or flux mo	odel 1
Card	13-24	E	EN2	atoms/cm ³	den	11	2
	25-36	E	EN3	11	11	11	3
	37-48	E	EN4	**	11	11	4
	49-60	E	EN5	11	**	11	5
	72-80		-	-	constitue	nt name	

b. Sample

GENERAL PURPOSE DATA SHEET

TAPE 10	10	10	ATENADING	ATENADING	ATENADING	AVERAGING	AVENAGING					ייטרב	755	5	~ 1		Dere SAMPLE	<u> </u>	၌ အ	SAMPLE		בין בין	A GE						6	2						*			İ		
2345	1 6 7	•	11 01	2 2	3	4 8 8		Q	S S	N	ĸ	2 2	8	R	8	M	×	瞬	局		*		1	!	:	8	26 26	8 8	10	8	Ö	8	8	8	8	8	R	2 2	7	R	1 6
									\vdash					-							<u> </u>					-	\vdash				F	_		\vdash				! 🗔			
-	- 9	9 6		2 3	00	0				寸				\Box				\exists			$\vdash \dashv$					\vdash						<u> </u>						Z	İΞ	o _×	90
0 .	∞	8 - E	-	3	╛		4	-	4 E		3		0	9 .	9 7	2	ш	- 3		0	-	7	9 8		1 4		0	2 0	က	9 E	-	4	E				<u> </u>	Z	=	œ	90
-	4 1 9	_		2 2	^	3	_+		\dashv		\exists			-				\exists			\neg											<u> </u>						z	-	œ	90
0	2 4 3	3 O E	-	0		-	2	2 5	8 E		0		0	. 2	0	œ	ш	1 0		0		7 4	38 I	-	0		-	5	2	ш	=	0	E	H	L		<u> </u>	z	旨	o _×	0
-	4 1 9	80		2 3	4	6 5																								L		_			\vdash		 	Z	E	2	90
0	274	3 E	=	7			3	=	9 E		1 2	_	0	ن	77	-	ш	1 2		0	. 5	6 0	5 E		1			6 7	8	ш	-	7		\vdash				Z	=	œ	90
-	4 2 0	0		7	6	80	\dashv		\dashv						-									_							_			F				Z	-	2	0
0	6 7 8	4 E	0	æ	0	·	4	œ	∞ 		0 8		0	2	5 3	3 E		8		0	=	0 5	7 E	0	- 80	<u> </u>	0	4 7	20	ш	0	7	-	F	<u> </u>			Z	=	2	
	7 0 0	=	0	2 3	6	-						-																			F	F		-				Z	+=	œ	
	5 1 8	0 E	=	က			9	5 6	5 E		1 3		0	٥	3	0 E		1 3		0	=	9	5 E		4	Ι_		2 7	Ξ	ш	-	4						Z	-	œ	OGE
	7 0 0	0	0	2 3	4	6 7		\Box																			Ī	-			1		\vdash	-	-			Z	<u> </u>		ပ
0 . 2	2 2 5	₩		2	3		2 5	-	9 E		1 2		0	7	9 6	2 E	[1 2	\dashv	0	ო	- 0	о П		7			4 8	5 8	ш	=	7			-			Z	-	8	GE
=	6 6 9	4		2 2	5	9	\rightarrow		-			\dashv			\dashv				-			\Box								<u> </u>								Z	-	RO	GE
0	9 5	9 9	=	0		-	9 7	5	5 E		0		0	0	4 9	9		0	-	0	0	=	9		0			8 7	8 5	ш	Ē	0						z	=	RO	GE
- 1	0	2	-	2 1	6	9	\dashv		\dashv			\dashv																						_				Z	=	8	G m
8	7	2 E	õ	∞	9	- 1	9	œ	9 E		8		0	က	9 9	2 E		8		0		9 9	7 E	0	<u></u>			8 0	1 5	ш	9	7		ļ				Z	=	8	G
=	0	9		2 0	6	2	\dashv		-																									-	\vdash			Z	+=	8	G
0	8	3 E	0	7	읙	·1	3 6	0	2 E	9			0	_	3 4	3 E		0 7		0	7	9 0	0	9	9			3	8	ш	0	-2	F		-	<u> </u>		Z	 -	8	GE
-	0	0		2 0	4 7	4	\dashv																				<u> </u>	-				_						z	-	₩	GE
0 . 2	8	7 E	<u>:</u>	7	٥	٠	6 6	æ	7 E.	0	9		0	5	7 0	2 E	0	9		0	7	6 1	5 E	0	5	Ĭ		3 0	6 6	ш	0	4	F			-	E	z	 	0	S
- 1	0 0	5 0]	2 0	3											_						L				_			\vdash		<u> </u>				-	_		z	-		S
-	2 8	m m	0	7	읙	· .	0	^	9 E	0	9		0	œ	5 5	8 E		0 5		0	30	6	5 E	0	4			5 0	5	ш	0	8	1	\vdash				z	=	8	Ü
	7 9	5 0	[2 3	3	~			\dashv			\neg											$oxed{oxed}$		H													Z	<u> </u>	80	GE
<u> </u>	0 9 7 2 5 E	SE	=	_			_	٧	7.	=	2		_	_	~	4		•	_	~	_	-	10	Ŀ	•	-		-	•	ī	-		F	F	F	F	Ė	1	-	0	U

GSFC FORM \$41-1 (July - 60)

H. Running Time

An allowance of 8 seconds for each B-L line will give a close estimate of the running time for this program.

IV. LAMBDA PUNCH

A. Introduction

This program takes the cards from the longitudinal averaging processor and punches the latitude in degrees on every B-L card. This value is necessary in the execution of the "bounce" average calculation.

Computing the latitude is done by the method of false position using the equation.

$$B = \frac{M}{r_e^3} \frac{\sqrt{4 - 3\cos^2 \lambda}}{L^3 \cos^6 \lambda} \tag{1}$$

where M is the earth's magnetic dipole moment, r_e is the radius of the earth and λ is the latitude. B is traded to the right hand side of equation (1) and the resulting function is evaluated for zero at a fixed B and L:

BFUNF(B, L,
$$\lambda$$
) = $\frac{M}{r_e^3} = \frac{\sqrt{4-3\cos^2 \lambda}}{L^3\cos^6 \lambda} - B$

B. Mnemonics

Quantity	Description	Units
IT	counter to eliminate repetition in computation	-
LT	L counter	~
KT	counter to determine whether a particular L is the first L considered	-
RTD	conversion factor - radians to degrees	-
DTR	" - degrees to radians	-

Quantity	Description	Units
RE	radius of the earth (6378.16 \times 10 ⁵)	cm
EM	the earth's magnetic dipole moment (8.1 \times 10 ²⁵ gauss cm ³) divided by the radius of the earth cubed	gauss
NPT	count of the number of B's to a given L	-
BL(J)	J th magnetic field line	earth radii
B(I)	I th magnetic induction for a given L	gauss
SS1(I),, SS5(I)	longitudinally averaged number densities for the five flux models and the $I^{th}\ B$.	atoms/cm ³
RATIO(I)	ratio of the upper limit on the latitude XLW2 to the lower limit on the latitude XLW1 for the I th B.	-
BCOM(I)	B computed for the final latitude XLAMP(I) at B(I)	gauss
XLW1	lower limit on the latitude	radians
XLW2	upper limit on the latitude	11
FXLW1	BFUNF computed for XLW1	-
FXLW2	" " XLW2	-
XLAMP(I)	final selected latitude for B(I)	radians/ degrees
TERM 1	BFUNF computed for XLW1	-
TBLAM(J, I)	latitude for the I^{th} B of the J^{th} L	degrees
TEST(K)	temporary storage of XLAMP(J)	radians
CKT(K)	the absolute value of TEST(K)/TEST(K-1	l) -
SCKT(J)	temporary storage of final CKT(K)	-

D. Fortran Listing

LAMPUN

```
FURMATS

100 FCRMATICE

101 FURMATICELE 4.12X, A6.42)

102 FURMATICE ERRURA 12

103 FURMATICE ERRURA 12)

104 FURMATICE IN NPT.5X, 1HL, 9X, 1HB, 6X, 6HLAMBEA, 4A, 9HB CCMP. , 1CA, 51 RATI
                                                                                                                                                                                                                                                                                                                                                                           KT=0
L1=LT+1
READ IMPL TAPE 2.1CO.NPT
WRITE OUTPUT TAPE 5.1CO.NPT
BUD 18 1=1.NPT
READ IMPUT TAPE 2.1C1.BL[Lf].e(I).xLa,xLb
READ IMPUT TAPE 2.1C2.SS1(I).SS2(I).SS3(I).SS4(I).SS5(I).xLA,xLb
IF(KT) 8.7.8
ELI=BL(LT)
LAMPOA PLNCH
DIMCNSION BL25),TCLAML75,23),SS1(25),SS2(25),SS3(29),SS4(25),
ISS5(25),wCGN(25),WL(20),TCS1(20),CKT(2C),SCKT(25),XLAMP(25)
BFUNF(G,EM.EL,XLAM)=EM*SGRIF(4.Q-3.C*CCSF(XLAM)**E)/((EL*x3)*
ICCSF(XLAM)**E)-3
LRCR I = LAMSDA GREATER THAN 9C.0 D.G.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           IF (ELL-bu(LTJ) 12,10,12

IF (IT) 11,9,11

SELF RELEASED BY WETHER OF FALSE POSITION
DETERMINE APPROX. SCIN. USING 1 DEG. INCREMENTS
RTD=57,29,78

RTD=57,29,78

REF6316,1055
EM=8.1E25/RE=#3
                                                                                                                                                                                                                                                                         105 FCRMAI(14)
106 FURMAI(4%,2FIG.5,FIG.1,2E15.7)
107 FURMAI(2FB.5,FB.3,48%,46,42/5E12.4,12x,46,A2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FXLW1= #FUNF(B(J), EM, FL, XLW1)
FXLW2= #FUNF(B(J), EM, EL, XLW2)
IF(FXLW1) 405, 410, 405
IF(FXLW2) 406, 411, 406
IF(FXLW1-SIGNF(FXLW1, FXLW2)) 16, 401, 16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1F(XLA2-1.5707961) 359,359,4C7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     WRITE CUTPUT TAPE 3,103, LERR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       DU 199 II=1,NPT
BCOM(II)=0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   DC 2CG J=1,NPT
XLW1=0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             359 XLW2=XLW1+DTR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CALL EXIT
410 XLAMP(J)=XLW1
GU TO 2CU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               405 IF(FXLW2) 4
406 IF(FXLW1-SI
401 XLW1=XLW2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       EL=8[(LT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             60 10 9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 4C7 1ERR=1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         K1=1
                                                                                                                                                                                                                                                          0
                                                                                                                                                                                                                                                                                                                                                                                                     5 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ď
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 661
                                                                                                        ں ں
```

STORAGE NOT USED BY PROGRAM

0EC LCT 1446 02546

*:*_

CC1 C2265 0245C	CCT 01016 C1011 01004	LUC 00742	CCT 11117 0C116 CO125 00450	100 00000		100
0.00 1.205 1.320	DEC 526 521 516	EFN 104	0EC 32767 510 85 296	DEC		DEC
SCK 1 585	STATCMENT FALKI K K K K K K K K K K K K K K K K K K	e)38	4) C)G3 E)E E)E	(FP1)		
0CF 5 023.11 5 023.11	UPEC OCT DEC OCT DEC OCT CCI CCI <td>EMENTS EFA LCC 103 CC745</td> <td>60.1 60.1 60.775 60.775 60.114</td> <td>CCCC6</td> <td>(TSH)</td> <td>00.1</td>	EMENTS EFA LCC 103 CC745	60.1 60.1 60.775 60.775 60.114	CCCC6	(TSH)	00.1
DEC 1225 1345 (DEC 927 C 927 C 927 C 927 C 917 C 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	TEPE EFN 10	PRCGRAM DEC 445 C 505 C 76 C 291 C)))	IONS	Dic
CKT 554	FENSION, TENSION, TENSION, TENSION, TENSION	SCURCE PRUGRAM FCHMAT STATEMENTS EFN LCC 162 00750 8137 103 0 167 00722	DEC	OF NAMES IN TRANSFER VLCTCR DEC CCI SCRT 2 GGG2 (FIL) (1SF) 3 00003	(5TH)	
051 62545 62532 62234	GMMUN, LIN CC1 01020 01013 C1006	PRUGRAM 1 LCC 06750 00722	CUT CUT 00067 CC/74 00451 00352	NAMES IN TRANSFER VLCTCR DEC CCI CRI 2 00002 SP) 3 00003	(RTN) TIC STATEN	- 2
Duc 1445 (1370 (1180 (15 COA 528 C 528 C 528 C	EFN FCZ C	NCI APP 0 EC 439 0 508 C 297 0 234 0	o In 1	THY:	<u>.</u>
583 XL APP	APPEARING EL II XIVEL	FCR 8)36 8)38			(FPT)	
06.1 02366 62563 02335	001021 01021 01014 01007	SYMBOLS AND LOCATIONS EFN LCC 35 1C1 00753 3A 1C6 00726	LOCATIONS FOR CTHER SYMBOLS DEC 00.7 1)1 499 00763 2) 6) 454 00706 7) 40A 116 00164 D)40G ETH 183 00267 ETR	LCCATICNS OF DEC	CHIN) FOLKES TO SECRECTIONS WELLONDER FROM LEGARITY (FIL) (FIL) (FPT) (RIN) (5TH) (AMPES AND LOCATIONS OF AHITHMATIC STATEMENT FUNCTIONS	100
UEC 1270 1395 1245	VARIAN CEC 529 529 524 519 516	EFN EFN 1C1 1C6	1CNS F CEC 454 C 454 C 116 C 183 C	0EC 7 7 5	A SES	CEC
17 BL 1270 0236 B 1445 02545 CKT 1225 C2311 14 SS2 1395 C2563 S53 1370 02532 SS4 1345 C2501 03 TEST 1245 02335 XLAMP 1180 02234	STURAGE LCCATIONS FOR C UCT C UCT CL1 25 C1015 TERR 20 01016 NPT NP C C1010 C UP C C C C C C C C C C C C C C C C C	SYM+ 8135 813A	LGCA1 1)1 6) 0)40A E)H	EXII (SIH)	S E # 3 S S F # 3 S S F # 3 S S F # 3 S S F # 3 S S F # 3 S S F # 3 S S F # 3 S S F # 3 S S F # 3 S S F # 3 S S F # 3 S S F # 3 S S F # 3 S S F # 3 S S F # 3 S S F # 3 S S F # 3 S S F # 3 S F # 3 S S F # 3 S F # 3 S F F # 3 S F F # 3 S F F # 3 S F F # 3 S F F F F F F F F F F F F F F F F F F	
77 024 026 028	JRAGE LCCA UCT 01022 U1015 01010	155 66759 0072	00.770 00.770 00.770 00.736 00.736	10000 10000 40000	£ x 1 1	500
DEC 1295 1420 1155	STC: DEC 536 (525 (526 (EFN 100 105	0 EC 493 504 511 302	DEC.	ני	DEC
BCOM SS1 TBLAM	DIR FALWZ LI	3)34 8139	1) 4)1 C)64 E)6 E)6	CDS (3 IN)	S L S	

CATERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FURPULA NUMBERS AND OCIAL LUCATIONS

```
LUC
CC122
CC224
OC27C
CC440
CC535
1FN
29
44
54
66
79
EFN
4 C5
4 11
5 01
15
LCC
CC115
CO167
CO264
CO426
16N
26
40
52 (
64 C
 6fN
1
399
410
367
261
 LLC
000644
00155
00247
00356
00454
 16N
23
37
46
62
62
70
84
 EFN
18
159
407
502
200
 ECC31
C0132
C024C
C0354
C0452
 1FN
16
31 (
46 C
61 C
65 C
65 C
 EFW 2 9 401 500 309 11
 LCC
CLUZZ6
CO1Z6
CUZZ6
CUZZ73
CU4443
 FFV
113
126
136
136
150
150
150
```

E. Restrictions

Before the first card of a new L line section a counter card must be inserted in order to inform the computer of the number of B's connected with that L.

F. Input

There are three different cards in the input deck for this program. A counter card is followed by the designated number of card pairs for each L line of every constituent. The card pairs consist of a B-L card and a density card in that order. These are the cards output from the longitudinal averaging processor.

1. (Tape 2)

CARD DESCRIPTION

	Columns	$\underline{\text{Mode}}$	Quantity	<u>Units</u>		Des	cript	ion	
Counter Card	1-2	I	NPT	-	B-L, de	ensi	ty ca	rd pai:	r counter
B-L	1-8	${f F}$	EL	earth radii	magnet	ic fi	ield l	ine	
Card	9-16	F	В	gauss	magnet	ic iı	nduct	ion	
	73-80	-	-	-	constitu	ıent	nam	e	
Density	1-12	E	SS1	atoms/cm ³	density	for	flux	model	1
Card	13-24	E	SS2	**	11	11	11	11	2
	25-36	E	SS3	11	11	11	11	11	3
	37-48	E	SS4	11	11	11	11	11	4
	49-60	E	SS5	ŦŦ	11	11	11	11	5
	73-80	-	-	-	constitu	ıent	nam	e	

AGTATO.

2. Sample

GENERAL PURPOSE DATA SHEET

Problem	INPUT	INPUT - LAMBDA	A PUNC	프																		
Sponsor	TAPE	2						-	Date	SAMPLE	LE				8				,			
12345	6 7 8 9	4 81 22 11 04	4887	8	2 23 23	20 10 10 10 10 10 10 10 10 10 10 10 10 10	R	8 8 8 8	網網	8 8	10 A1 42 4	8 # 6 6	4 8 6	20.00	16 16 16 16 16 16 16 16 16 16 16 16 16 1	57 38 59	80 61 62 69	3 64 65 65	67 68 69 70	2 27 E	74 15 15 15 15 15	73 28 29 80
4																						
1 - 1	4 1 9 6 0	. 2 3 8	0 6																	z	<u>~</u> ⊢	OGEN
0	8 8 1 E	- 3	. 4	9 1 4	-	3	9 . 0	9 7 S E	E 1 3	0	. 1 2	0 9 E	1 4	0	2036	E 1	4			z	<u>⊢</u>	O G E N
1 . 1	4 1 9 6 0	1 2 2 7	38																	z	⊢ R	0 G E N
0 . 2	2 4 3 0 E	0 -	0.2	2 5 8	Н	0	0 . 2	0 3 8 E	E 1 0	0	1 7	4 8 E	1 0	0	1 5 2 1	E 1	0			z	I T	OGEN
1 . 1	1 9 8 0	2 3 4	6 5																	z	_ 	O G E N
0	2 7 4 5 E	1 2	0	1 1 9	-	2 0	0 3	7 7 1 6	E 12	0	. 5 0	9 SE	1 2	0	6 7 8 0	E 1	2			z	٦ ٦	OGEN
1 . 1	4 2 0 0 0	2 1 9	8 9																	z	<u>~</u>	O G EN
0 . 6	5 7 8 4 E	80	. 4	4 8 8	0	8	0 . 2	5 3 3 E	E 0 8	0	. 1 0	5 7 E	8 0	0	4 7 2 0	E 0	7			z	<u>-</u>	O G E'N
7																						
-	7 0 0 1 0	2 3 9	1 6																	z	T R	O G E N
· •	5180E	1 3	9 0	5 6 5	- В	3	6 .	3 3 0 6	E 13	0	9 1 .	1 SE	1 4	0	2 7 1 1	E 1	4			z	<u>-</u> ح	O G E N
-	7 0 0 0 0	0 . 2 3 4	2 9 1																	z	_ 고	O G EN
0	2 2 5 8 E	1 2	0 . 2	5 1 9	E 1	2 (0 . 2	9 6 2 E	E 1 2	0	. 3 8	1 9E	1 2	0	4 8 5 8	ш	2			z	<u>-</u> ۳	O G E N
-	6994 0	0 . 2 2 9	9 2 6			_														z	_ 	O G E N
0	9956E	0 -	6 . 0	7 5 5	-	0	6 . 0	4 9 0 E	E 10	0	1 6 .	1 0 E	1 0	0	8 7 8 5	E 1	0			z	_ _ _ R	O G E N
-	7002	0 . 2 1 9	9 / (z	_ T_R	OGEN
. 0	3 7 4 2 E	8 0	0 . 6	6 8 0	E 0	8	0 3	6 6 2 E	E 0 8	0	. 16	6 7 E	8		8 0 1 5	0 E	7			Z	_ ⊢	OGEN
1 17	9 0 0	0 2 0 9	7 3																	z	_ ⊢	OGEN
0 . 7	7 8 5 3 E	0 7	0 3	6 0 2	E 0	7	0	3 4 3	E 0 7	0	. 2 0	9 O E	9 0	0	3 8 8 6	О В	5			z	_ 	OGEN
1 . 17	0 0 0	0 2 0 4	4 7 4																	z	<u>-</u>	OGEN
0 . 2	2 6 8 7 E	0 7	0 9	8 6	E 0) 9	0 . 2	7 0 2	E 0 6	0	. 26	1 5 E	0 5	0	3 0 9 9	Е 0	4			z	_ _ R	OGEN
1 . 17	0 0 5	0 2 0 1	1 3 7																	Z	_ ⊢	O G E N
0	2 8 1 E	0 7	0 .	6 4 0	E 0) 9	8	5 5 8 E	E 0 5	0	. 59	9 5 E	0 4	0	5 0 5 9	Е 0				Z	I T	OGEN
																	İ					

GSFC FORM 541-1 (July - 60)

G. Output

Output for this program occurs on logical tapes 3 and 5. Tape 3 contains the results of the latitude calculation. The counter NPT is printed along with L, B, λ , BCOMP and the ratio RATIO. BCOMP is the new B computed by inserting the values of L and λ into equation (1). It should compare with the initial B. RATIO is the ratio of λ to a former value of the latitude computed in the intermediate steps. It is the same as SCKT (refer to the mnemonics listing). RATIO should be within .0001 of unity.

Tape 5 contains the same data that was input on tape 2 with the exception that latitudes were added. This tape is punched and used as input for the "bounce" average calculation.

1. Tape 3 Sample

NPT 4	L	В	LAMBDA	B COMP.	RATIO	
•	1.14200	0.23890	9.836	0.2389C00E-00	0.1000009E	01
	1.14200	0.22738	7.740	0.2273800E-00	0.1000034E	01
	1.14200	0.23465	9.129	0.2346499E-00	0.1000039E	01
	1.14200	0.21968	5.867	0.21968001-00	0.1000023E	01

NPT 7	L	В	LAMBDA	B CUMP.	RATIO
	1.17005	0.23991	12.444	0.2399099E-00	0.1000030E 01
	1.17005	0.23467	11.752	0.2346700E-00	0.1000012E 01
	1.17005	0.22956	11.022	0.2295600E-00	0.1000005E 01
	1.17005	0.21976	9.420	0.2197599E-00	0.1000056E 01
	1.17005	0.20973	7.346	0.2097300E-00	0.1000005E 01
	1.17005	0.20474	6.014	0.2047400E-00	0.1000015E 01
	1.17005	0.20137	4.894	0-2013700E-00	0.1000025E 01

2. Tape 5

a. Output card description

	$\underline{Columns}$	$\underline{\text{Mode}}$	Quantity	Units	:	Desc	riptic	n	
Counter Card	1-2	I	NPT	-	B-L-λ a	and d	ensity	y ca	rd pair
$\mathbf{B}\mathbf{-L}\mathbf{-}\lambda$	1-8	\mathbf{F}	\mathbf{EL}	earth radii	magnetic	e fiel	d line)	
Card	9-16	F	В	gauss	magnetic	e indu	action	ì	
	17-24	F	XLAM	degrees	latitude				
	73-80	-	-		constitue	ent na	ame		
Density	1-12	E	SS1	atoms/cm ³	density f	or fl	ux m	odel	1
Card	13-24	E	SS2	**	11	11	11	11	2
	25-36	E	SS3	11	11	11	11	11	3
	37-48	E	SS4	11	**	11	11	11	4
	49-60	E	SS5	11	11	11	11	11	5
	73-80	-	-	-	constitue	ent na	ame		

b. Sample

GENERAL PURPOSE DATA SHEET

Problem	8	OUTPUT - LAMBDA	LAMB	DA PUN	NCH																			
Spensor	↓	TAPE 5								Date	SA	SAMPLE					Poge			10				
1 2 3 4 8	8 6 7 8	9 00 11	# 62 #	8878		22 23	3 2 2	2 2 3	9 15 91	網票	1 1 1 1 1	346			15 OS	35 38 38	18 19	9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	25 25 26 26 27 28	8 73 88	57 27 27	R	1 PE 12 PE 1	8
																								\vdash
4																								
- -	4 2 0 0	0	2 3 8	0 6	6	. 8	9														Z	 - R	90	Z
· •	3 8 8 1	П —	3	0	9 1 4	E 1	3	. 6	9 7 5	Е 1	3	0 1 2	2 0 9 E	1 4	0	. 2 0	3 6 E	1 4			z	-	ROG	Z
-	4 2 0 0	0	2 2 7	3 8	4	7.4	0														Z	 - R	<u>၁</u>	Z
0	2430	ш	0	0 . 2	2 5 8	<u>-</u>	0	0 . 2	0 3 8	-	0 0	-	7 4 8 E	1 0	0	. 1.5	2 1 E	0			Z	_ 	0	Z
-	4 2 0 0		234	6 5	6	. 1 2	6					_									z	I R	0	N
0	2745	5E 1	2	. 3	1 1 9		2	0	7 7 1	ш	2 (0 5 0	9 5 E	1 2	0	. 6 7	8 0 E	1 2			Z	-	R 0 G	Z
	4 2 0 0		2 1 9	8 9	5	9 8	7														Z	<u>+</u>	<u>၅</u>	Z
	6 7 8 4	0	æ	0 . 4	4 8 8	0	œ	0 . 2	5 3 3	E 0	8	0 1 0	5 7 E	8 0	0	4 7	2 0 E	0 7			z	I T	0	Z
7	-																					-		
-	7005	0	2 3 9	9 1	1 2	4 4	4														Z	- 4	90	Z
0	5 1 8 0	0 E 1	9	9 .	5 6 5	<u>-</u>	က	0 .	3 3 0	<u>-</u>	3 0	. 16	1 S E	1 4	0	. 2 7	1 1 E	1 4			z	<u>⊢</u>	90	Z
- -	7005		2 3 4	6 7	-	. 7 5	2														Z	œ ⊢ -	90	Z
0 . 2	2 2 5 8	ш	2	0 . 2 5	5 1 9	п п	2	0 . 2	9 6 2	E 1	2 0	. 38	1 9 E	1 2	0	4 8	5 8 E	1 2			Z	 R	90	Z
	7 0 0 5	0	2 2 9	5 6	1	. 02	2														Z	_ ⊢	90	Z
0	9 9 5 6	<u>-</u>	0	0 . 9	7 5 5	E 1	0	0 9	490	E 1	0 0	1 6 1	1 0 E	1 0	0	. 8 7	8 5 E	1 0			z	⊢	90	Z
-	7 0 0 5	0	2 1 9	7 6	9	. 4 2	0														z	_ H	OGE	Z
0	8 7 4 2	E 0	80	9 .	089	E 0	8	0 3	6 6 2	E 0) 8	0 . 16	6 7 E	0 8	0	0 8	1 5 E	0 7			Z	<u>⊢</u>	0 G E	z
- -	7 0 0 5	0	209	7 3	7	. 34	9														Z	1 T R	OGE	Z
0 . 7	7 8 5 3	E 0	7	0 . 3	6 0 2	E 0	7	0	3 4 3	E 0	7 0	. 2 0	6 0 E	9 0	0	. 3 8	8 6 E	0.5			Z	<u>₽</u>	OGE	Z
11.17	7 0 0 5		204	7 4	9	. 0 1	4														Z	<u>⊢</u>	3 O C	z
0	2 6 8 7	0 E	7	6 .	987	E 0	9	0 . 2	702	E 0) 9	0 . 26	1 5 E	0 5	0	. 30	9 9 E	0 4			z	T R	О В	z
1 . 17	7 0 0 5	0	2 0 1	3.7	4	68	4														Z	_ ⊢ R	90	Z
0	1281	E 0	7	0 4 0	0 7 9	E 0	9	. 0	558	E 0	5	0 5 9	9 S E	0 4	0	5 0	5 9 E	0 3			z	<u>т</u>	0 G	Z

GSFC FORM 541-1 (July - 60)

H. Running Time

This program will take close to a minute for every two L lines evaluated.

V. "BOUNCE" AVERAGE CALCULATION

A. Introduction

The "bounce" average of the number density is defined (5) by the equation

$$\overline{\rho} = \frac{\int_{\lambda_{s}}^{\lambda_{n}} \rho(B, L) ds}{\int_{\lambda_{s}}^{\lambda_{n}} ds}$$
(1)

In other words, for a given mirror point λ_0 and a given field line L, the "bounce" average of the number density is the average number of atoms/cm³ that a particle encounters while spiraling about a field line from the northern to the southern mirror points (see Figure 5). The earth is assumed to be a dipole. This gives symmetry to the magnetic field, permitting the integrals in equation (1) to be evaluated over a fourth of a complete oscillation (see page 189, reference 1, for a discussion of the motion of trapped particles in a magnetic field.)

The output from the lambda punch becomes input to this program. Results are printed and punched for use in later programs. Subroutine TABLE is included to interpolate (extrapolate) the density table to supply the appropriate density at any latitude specified by the main program.

B. Equations

To calculate equation (1) we project the element of arc length ds onto the field line L. Next we eliminate L from the equation and use the dipole representation

$$B = \frac{M}{r^3} (1 + 3 \sin^2 \lambda)^{1/2}$$
 (2)

to express B in terms of λ . This gives the "bounce" average $\overline{\rho}$ weighted over latitude for a given field line as

RHOAV =
$$\frac{\int_0^{\lambda_0} \rho(\lambda) A(\lambda) d\lambda}{\int_0^{\lambda_0} A(\lambda) d\lambda}$$
 (3)

where the "weighing" factor is

$$A(\lambda) = \frac{\cos^4 \lambda \sqrt{4 - 3\cos^2 \lambda}}{\sqrt{\cos^6 \lambda \sqrt{4 - 3\cos^2 \lambda}} - \cos^6 \lambda \sqrt{4 - 3\cos^2 \lambda}}$$

This factor allows for the fact that particles spiraling about the field line stay longer at the mirror latitudes λ_0 (see page 189, reference 1, for a complete treatment of the derivation). Figure 6 is a plot of $A(\lambda)$ versus λ for different mirror latitudes. Since $A(\lambda)$ becomes undefined at λ_0 we divided equation (3) into two cases:

$$RHOAV = \frac{\int_{0}^{\lambda_{0}-2h} \rho(\lambda)A(\lambda)d\lambda + \int_{\lambda_{0}-2h}^{\lambda_{0}} \rho(\lambda)A(\lambda)d\lambda}{\int_{0}^{\lambda_{0}-2h} A(\lambda)d\lambda + \int_{\lambda_{0}-2h}^{\lambda_{0}} A(\lambda)d\lambda}$$

Next we designate the square of the denominator of $A(\lambda)$ by $q(\lambda)$. Expanding about λ_0 by Taylor's series gives us

$$g(\lambda) = (\lambda - \lambda_0) \sum_{i=1}^{\infty} \frac{q(i)_{(\lambda_0)}}{i!} (\lambda - \lambda_0)^{i-1}$$

where $q^{(i)}$ (λ_0) is the ith derivative of q evaluated at λ_0 . To approximate the infinite series we define

$$S(\lambda) = SLAMF(\lambda, \lambda_0) = -\sum_{i=1}^{3} \frac{q^{(i)}(\lambda_0)}{i!} (\lambda - \lambda_0)^{i-1}$$

where the minus sign is inserted in order to avoid the square root of a negative number. In the program we let S1LAMF(λ, λ_0), S2LAMF(λ, λ_0) and S3LAMF(λ, λ_0) represent the first, second and third terms of SLAMF(λ, λ_0) respectively and we define

WLAMF(
$$\lambda$$
, λ_0) = $\frac{\cos^4 \lambda \sqrt{4 - 3 \cos^2 \lambda}}{\sqrt{\text{SLAMF}(\lambda, \lambda_0)}}$

This gives

$$\int_{\lambda_0-2h}^{\lambda_0} \rho(\lambda) A(\lambda) d\lambda = \int_{\lambda_0-2h}^{\lambda_0} \frac{\rho(\lambda) W LAMF(\lambda, \lambda_0)}{\sqrt{\lambda_0 - \lambda}} d\lambda$$
 (4)

and

$$\int_{\lambda_0-2h}^{\lambda_0} A(\lambda) d\lambda = \int_{\lambda_0-2h}^{\lambda_0} \frac{\text{WLAMF}(\lambda, \lambda_0)}{\sqrt{\lambda_0 - \lambda}} d\lambda$$
 (5)

which are linearly approximated by the equations

ADDNUM =
$$\sqrt{2h} \left[\frac{4}{5} \rho(\lambda_0) \text{WLAMF}(\lambda_0, \lambda_0) + \frac{16}{15} \rho(\lambda_0 - h) \text{WLAMF}(\lambda_0 - h, \lambda_0) \right]$$

+ $\frac{2}{15} \rho(\lambda_0 - 2h) \text{WLAMF}(\lambda_0 - 2h, \lambda_0) \right]$

and

$$\textbf{ADDDEN} = \sqrt[4]{2h} \left[\frac{4}{5} \text{ WLAMF} \left(\lambda_0, \lambda_0 \right) + \frac{16}{15} \text{ WLAMF} \left(\lambda_0 - h, \lambda_0 \right) + \frac{2}{15} \text{ WLAMF} \left(\lambda_0 - 2h, \lambda_0 \right) \right]$$

respectively. The final step is to integrate by Simpson's rule⁽⁶⁾ and add on ADDNUM and ADDDEN to get the correct density $\bar{\rho}$.

Additional equations used in this program are listed below:

$$AAAF(\lambda) = \sqrt{4 - 3 \cos^2 \lambda}$$

$$BBBF(\lambda) = \cos^6 \lambda$$

MONEF(
$$\lambda$$
) = $3\cos^4\lambda\sin 2\lambda$ the first derivative of BBBF(λ) used in computing S1LAMF(λ , λ ₀)

MTWOF(
$$\lambda$$
) = $\frac{15}{2}$ (cos λ sin 2λ)² - 6 cos⁶ λ the second derivative of BBBF(λ) used in computing S2LAMF(λ , λ_0)

$$\label{eq:mthrf} \begin{split} \text{MTHRF}(\lambda) &= 48 \, \cos^4 \lambda \, \sin \, 2\lambda - 15 \, \sin^3 2\lambda \qquad \text{the third derivative of BBBF}(\lambda), \\ &\quad \text{used in computing S3LAMF}(\lambda, \lambda_0) \end{split}$$

ETAF(
$$\lambda$$
) = 10 cos 2 λ - 3 sin² 2 λ - 6 cos² 2 λ a factor which appears in the second and third derivatives of AAAF(λ)

NONEF(
$$\lambda$$
) = $\frac{3 \sin 2\lambda}{2AAAF(\lambda)}$ the first derivative of AAAF(λ) used in computing S1LAMF(λ , λ_0).

$$\text{NTWOF(λ) = } \frac{3 \text{ ETAF(λ)}}{4(4-3 \cos^2 \! \lambda)^{3/2}} \qquad \text{the second derivative of AAAF(λ) used in computing S2LAMF(λ, λ_0).}$$

$$NTHRF(\lambda) = \frac{3}{4} \frac{-20 \sin \lambda - 6 \sin 4\lambda - \frac{9 ETAF(\lambda) \sin 2\lambda}{4 - 3 \cos^2 \lambda}}{(4 - 3 \cos^2 \lambda)^{3/2}} \\ the third derivative of AAAF(\lambda), used in computing S3LAMF (\lambda, \lambda, \lambda_0)$$

WGTF(λ , λ_0) the designation for A(λ) when integrating by Simpson's rule

ALAM the value of the denominator in equation (3) but without equation (5)

RHOAS the value of the numerator in equation (3) but without equation (4)

BSUBO B_0 computed by equation (2) for λ_0 .

C. Mnemonics

Quantity	Description	Units
DTR	Conversion factor - degrees to radians	-
RTD	Conversion factor - radians to degrees	-
RE	radius of the earth, 6378.165×10^5 cm.	cm.
EM	earth's magnetic dipole moment, 8.1×10^{25} gauss cm 3 , divided by the radius of the earth cubed.	gauss
HVAR	number of partitions in Simpson's rule	-
NPT	counter of the B's for a given L	-
XLAB1	first six letters of constituent identification name	-
XLAB2	remaining two letters of constituent identification name	-
EL	magnetic field line L	earth radii
EL B(I)	magnetic field line L I th magnetic induction for a given L	earth radii gauss
	_	
B(I)	I th magnetic induction for a given L (a) the first time this designation is used it represents the longitudinally averaged density for the I th solar flux model and the J th magnetic induction	gauss
B(I)	I th magnetic induction for a given L (a) the first time this designation is used it represents the longitudinally averaged density for the I th solar flux model and the J th magnetic induction (b) the second time this designation is used it	gauss
B(I) SS(I,J)	I th magnetic induction for a given L (a) the first time this designation is used it represents the longitudinally averaged density for the I th solar flux model and the J th magnetic induction (b) the second time this designation is used it represents the log of the densities in (a)	gauss
B(I) SS(I,J) LCNT	I th magnetic induction for a given L (a) the first time this designation is used it represents the longitudinally averaged density for the I th solar flux model and the J th magnetic induction (b) the second time this designation is used it represents the log of the densities in (a) line counter for output on tape 3	gauss atoms/cm ³ -

Quantity	Description	Units
XLAMO	mirror latitude λ_0	radians
RHOLO(I)	density for I th flux model at mirror latitude	atoms/cm ³
HS	integration interval h for Simpson's rule	radians
RHOAV	"bounce" average density	atoms/cm ³
RATRHO	ratio of density at mirror latitude to density RHOAV	-
RHOLOP	density at mirror latitude	atoms/cm ³
DENB(K)	temporary storage of "bounce" average density at K^{th} flux model for tape 5 punch	atoms/cm ³

D. Flow Chart

1. Main Program

E. Fortran Listing

BCUNCE

```
PROGRAM IC CCMPUTE RHO TRIPLE BAR AS FUNCTION OF L.LAMBDA AND FLUX DIMENSION B/20).XL M/20).SS(5.20).

LIXLAMM.CO).S(5.20).DENB(20).RHOLO(5).EEL(5)

FRECUENCY LUZ(10).LOGO(4.1.10).LOZ(10).LOZ(10.5).199(1.0.100)

1,301(5:1.0).196(1.0.10).LZ(10.0.5).ZC(10.0).ZI(199).ZS9(100).

ZZ61(59).L199(C.1.10).LZOI(C.1.10).LZCZ(C.1.10)
                                                                                                                                                                                                                                                                                                                                                                                                       1HL RHU AT MIRKOR RHUZAV, RFO INTEGRAL UF INTEGRAL OF 53 (LA 2M.) FORZZZX,4HLAI.,31X,8HLAIIIUDE,19X,21H-HC-A DLAM A CLAM,CX,
                                                                                                                                                                                                                                                                                                                                                PETITION BY AN WAHELUX AVERAGE INTEGRAL UP INTEGRAL UP INTEGRAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1-[9-0*_TAF(XL)*(SINF(Z-0*XL))/(4-0-3-0*(LCSF(XL))**2)))
2/((4-0-3-0*(CGSF(XL)**2))**1.5)
$1LAMF(XL,XL()=-1.0*(AAAF(XLC)**ONEF(XLC)-GBBF(XLC)**NLNFF(XLO))
$2LAMF(XL,XL()=(AAAF(XLC)**NTMCF(XLC)**NTMCF(XLC))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             MINDF(XL)=1.5*(CCSF(XL)+SINF(2.0+XL))++2-6.0+(CCSF(XL)++6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          SOLAMF (XL, XLC) = (AAAF (XLC) + MTHRF (XLC) - BEBF (XLC) + NTHRF (XLC))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SLAMF(XL, XLC) = S1LAMF(XL, XLC) + S2LAMF(XL, XLC) + S3LAMF(XL, XLC)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              6 FURMAT(36X, 12, 1P6E14.4)
7 FURMAT(34H0 ERROR - S(LAM) IS NEG. CR ZCRUZOH SLI = E15.5,
105 SL2 = L15.5, 6H SL3 = E15.5, 8H XLMO = E12.5, 5H HS = E15.5,
8 FURMAT (25H1L/10E CHLCR HS OCCUNED)
9 FURMAT (30H1GUGTIENT OVERFLOR HAS OCCURE)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     NCNCFIXL)=1.5%SINF(2.0*XL)/AAAF(XL)
NIMGF(AL)=0.75%F(XL)/((4.6-3.0*(CCSF(AL)**2))**1.5)
NIMGF(AL)=(0.75%(-20.0*(SINF(2.0*XL))-6.6*(SINF(4.0*XL))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  WLAMF(XL, XLU) = (COSF(XL) * *4) * ADAF(XL) / SGRIF(SLAPF(XL,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             BBBF(XL)= CGSF(XL)**6
EIAF(XL)=10.64(CGSF(2.0*XL))-3.04(SINF(2.0*XL)**2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       MIHRF(XL)=40.0+(CCSF(XL)++4)+(SINF(2.0+XL))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 WGTF(AL, XLC) = (CCSF(XL) **4) *ABAF(XL)/SORTF(
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1-6.0*((CGSF(2.0*XL))**2)
MGNCF(XL)=-3.6*(CCSF(XL)**4)*SINF(2.0*XL)
                                                                                                                                                                                                                                                                                                                                                                           4 FCRMATCLOHICCNSTITUENT L,5x,11HMIRRCR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   JABAF (XLU) * BBBF (XL) - BBBF (XLU) * AAAF (XL))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 AAAF (XL) = SCRTF (4.C-3.0*(CCSF(XL)*+2))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            313HINT. INTERVAL///)
5 FLRMAT(3X, A6, A2, Fb. 4, F8.3, F8.4)
                                                                                                                                                                                                                                                                                                      2 FCRMAT(2F8.5,F8.3,48X,A6,A2)
3 FURMAT(5E12.4,12X,A6,A2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C TURN CEF LIVIEL CHECK LIGHT
C AND GUOTILM UVERFICH LIGHT
IF CIVILE CHECK 3C, 30
30 IF GUOTIENT UVERFICH 31,31
C PROCHAM CONSTANTS
31 DTR=1.7493250-2
BUUNCE AVERAGE CALCULATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1-15.0*((SINF(2.0*XL))**3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2*((xL-xL0)**2)/(-6.0)
                                                                                                                                                                                                                                                                       1 FURMAT(12,70x,46,42)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ARITHMETIC FUNCTIONS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2*(XL-XLC)/(-2.0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           EM#8.1025/35##3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     RE=6370.16585
                                                                                                                                                                                                                                        C FURMAIS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ں ں
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ب
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ں
```

```
105 CCNTINUE
C XLAMM(K)=WORKING VALUE GF LAMBOA (IN RAD.) SURTED IN DECREASING URLER
C LENSITY SUBSCRIPTS MATCHED UP MITH SURTED LAMBDA-S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          C. LINEAR TATERS. (EXTRAP.) TO FING DENSITY (FACM TABLE) ASSOCIATED WITH C. PIRACR LATITUDE
                                                                                                                                       REAL IN TABLES OF DENSITY FOR GIVEN L AND VARICUS LAMBDA-S
DENSITY - FIRST SUBSCRIPT = FLUX NO., SECOND SUBS. = LATITUDE NC.
32 ALAG INPUT TAPE 2,1,NPT,XLAB1,XLAB2
DG 100 I=1,NPT
                                                                                                                                                                                                                                                                                                                                                      SORT LAMECA-S IN DECREASING CROER
SUBSCRIPT = 1 = MAX VALUE UP 1C SUBSCRIPT = NPT = MIN VALUE
                                                                                                                                                                                                                      | Read Input Tape 2.2, EL. 8(1), XL M(1), XLAE1, XLAB2 | 100 RLAB IAPUT TAPE 2.3, ($$(1F,1), 1F=1,5), XLAU1, XLAB2 | WRITE CUTPUT TAPE 3.4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                120 DC 1140 KI=1.5
CALL LAGLE. (KI, XLAME, SS, RHGS, NPT, XLAMW)
1140 RHOLOGAN) = AHES
C FIND INFEGRATION INTERVAL FOR SIPPSON-S RULE (HS)
1197 HS=XLAMC/I-VAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   S3FUN=53LAME(XLAMC+TWCF,XLAMC)
158 IF(ABSF(S3FUN)-1.CE-7) 2CC+2CO+199
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1300 IF(XLarC-XLARRF) 1301,120,1302
                                                                                                                                                                                                                                                                                                                                                                                                                                    101 XMIN=56.0
102 DC 105 I=1,NPf
103 IE(XMI-XL M(I)) 105,105,104
164 XMIN=xL M(I)
99 IF DIVIDE CHECK 33,98
98 IF QULITENT CVERFLOW 34,32
33 WRITE LUIPUT TAPE 3,8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DC 1160 IL=1.5
1108 SSI(L.1)=LCGF(S(IL,1))
108 CSNINNE
C MIRKER LATITUDE
                                                                      CALL EXIT
34 WRITE CUIPUT TAPE 3,9
CALL EXIT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    106 11(K) 107,107,101
C STGRL LGS CF CENSITIES
107 CC 108 [=1,nPI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1301 XLAFO=ALAPC+C.C174
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1302 XLAMO=ALAMC-C.(174
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              XLAMM(K)=XMIN*LIR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1105 S(KF,K)=5S(KF,JJ)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           XLAWRF=XLANW(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           UC 1105 KF=1,5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.9 HV43=FVAK+2.C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        XL M(JJ)=cC.C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   XLAMB=0.0174
                                                                                                                                                                                                                                                                                                                                     EL3=EL*EL*EL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                TMDF=/.C*FS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CC 1E 13CC
                                                                                                                                                                                                                                                                                                                  LCNT=0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   K = K - 1
                                                                                                                                                                                                                                                                                                                                                                                                              K=NPT
                                                                                                                                                                                                                                                                                                                                                                ں ں
                                                                                                                                                   ں ن
```

```
*(WGIF(0.0,XLAMC)+4.0*A4+2.0*A2+WGTF(XLIMIT,
                                                                                                                                                                                                                                                                                                                                                                                             C INTEGRATE CENDMINATOR BY SIMPSON-S RULE (ALLAM) FUNCTION)
KLIMIT-XLAMU-THHA
Xn={KLIMIT/ThGH)+0.1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CALL TABLE (K,XLANC-HA,SS,RHCWZ,NPI,XLAMN)
CALL TABLE (K,XLANC-TWHA,SS,RHCW3,NPI,XLAMN)
AUGNUS-SCPH+(G,3+PHCM1+MLANF/KLANC,XLANC)+1,0666667*
IRHOW2-MLAMF/KLANG-MLANC)+C,13323333*RHCW3*
ZWLAMF(ALANG-TWHA,XLAMG))
INTEGRATE NUMERAIOR BY SIMPSEN-S RULE RHC(LAN),A(LAN)
                                                                                                                                                                                                                                                                           1201 TF(SL2) 1200,1200,1202
1202 TF(SL3) 1200,1200,1203
1203 ADDDEW=SL2H*(C.W*MLAMF(XLAMC,XLAML)+1.0666667*
1MLAMF(ALAMG-FA+XLAMF)+0.1333333*MLAMF(XLAMO-TMHA,
COMPUTE AUGUNU FUNCTION FOR FINAL INTEGRATION STEPS 200 SEZHESLERFETHER)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           WRITE CUTPUT TAPE 3,5,XLA21,XLA82,EL,XLAPF,ESUEC WRITE CUTPUT TAPE 5,2,EL,ESUEC,XLAPP,XLABI,XLAB2
                                                                                                                                                                                                        1199 IF(SLI) 1266-1260-1201
1200 WRITE USTPUT TAPE 3,7.5L1.5E2,5L3,XLAMG+H5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     C ind SIMPSUN-S RULE FUR ALLAMBGA)
BSUBC==M*AAAF(XLAMG)/(EL3*BBBF(XLAMD))
                                                                                                                                                                                       SL3=SL wF (XLAMU-THOP, XLAML)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        DC 300 K=1.5
ADDEND FUNCIICN FOR NUMERATOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   INTEGRATE FIVE CENSITY MUDELS
                                                                                                                                                                  SL2=SLAMF (XLAMU-HS, XLAMU)
                                                                                                                  C TEST IF SLAMF NEG.
SLI=SLAMF(XLAMU,XLAMU)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             209 DG 210 [S=1,nM]
XLAM=XLAM+TNCH
210 A4=A4+NGTH(XLAM,XLAMO)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      212 AZ=AZ+NGIF (XLAM, XLAMO)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       211 DU 212 ISS=1,NM2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      XLAMP=XLAMC*RID
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           259 DC 26C KS=1, AM1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            XLAM=ALAP+IWLH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      RHON1=KHULG(K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                XLAM=XLAM+TWCH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ALAM=F503
                                                                                             Had 3=1 5/3.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            LCNT=LCNT+L
                                                                                                                                                                                                                                                           CALL EXII
                                                                   INHA=INCH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              RHD A 2 = C.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       RH044=0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     XLAM=0.C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          XLAM=-HS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   XLAM=-HS
                                                                                                                                                                                                                                                                                                                                                                           2XLAM())
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Nr2=N-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     IXLAMU))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.0=4A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     42=0.C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 NET AN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             203
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ں
```

```
XLAM=0.0

ZLI DG ZCZ NS=1,NMZ
XLAM=1.0

ZCZ ZAL TACLE (K.XLAM,SS,RHCTAE,NPT,XLAM)

ZCZ Z+DAZ=KHUAZ+R+OTAB+MGF (XLAM,XLAM)

CALL TACLE (K.,CLO,SS,RHCTAP)

ALL TABLE (K.XLAM.SS.RHCTAB.NPT.XLAMW)
250 RFOA4=KHUA4+RHOTAB+WGIF(XLAM.XLAMG)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ر. ن
```

RHCLCD-RHCLO(K)
WAITE COTPOUT TAPE 3,6,K,RFCAV,RHCLCP,RATRHC,RHCNUM,RHCDEN,S3FUN
LCAT-LCAT+1
LCAT+1
C. SICAR ECOACE AVERAGE DENSITIES FUR A-5 PUNCH
3CO DGWS(K)-RHCAV

CCMPUTE RATIO OF SOUNCE DENSITY 16 INTITAL

ں

RATRHG=RHULD(K)/PEGAV REDAVERECAUPZRHUDEN REUNUM=RHCAS+ADDNUM RHUDEN=ALAM+ACCCEN

WAITE CUIPUT TAPE 5,3, DENE(1), DENE(2), DENE(3), DCNB(4), DENB(5), C DECREMENT MIRROR LATITUDE BY 2 DEGREES XLAND=XLAMU=C.03450653 1XLAE1,XLAS2

306 IF(XLNG) 59,99,301 301 IF(LCN1-4.) 120,307,307 307 WRITE CUTPLT TAPE 3,4 GC TO 120 LCN1=0

END(1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0)

STCRAGE NOT USED BY PROGRAM

		CCT 03COE		100	02636	02624	02617	02612	60920	02666	020 73	30570	10070	1000		Ü	02411			ני ב	12524	2530	02334	2545	2552	00250	0471		100	CC003
		Dic 1542				1428							1348			я 14	.0			DEC	J		1244 0						DEC	M 07
	PENIS	vi	STATEMENT	:	2 d d	<u>`</u>		RE	KHCAS	REDS	× ;	L (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)				8)8				1)4	4.11	()	5(7	C) 20C	0)4CF	6112		i	SIN (RIN)
	APPEARING IN LIMENSION AND EQUIVALENCE STATEMENTS	DEC CCT 1652 C3164	IN COMPON, LIMENSION, OR EQUIVALENCE STATEMEN	0EC CCT	1439 62031	1429 02625		1415 C2613			1300 62514	1394 02562	1389 02555		TEMENTS	EFN LCC	4 02455	1000	PROGRAM	DEC CCT	O				1385 02551	127 00177	217 00331			000000
	ICH AND EGUI	4FOLG	IMENSION, C	2	ב ב ב ב	HVAR	LCNI	RATKHO	ATLASC PLONE	8 P. I. I. I. I. I. I. I. I. I. I. I. I. I.	2 2	XI AH2	XLIAIT		FCRMAT STATEMENTS		\$ 00 X		IN SCHACE		113	(+)	415	713	C1102	0.1400	E) 6	VECTOR	-	(FPT)
	NG IN CIMENSI	CEC CUI 1672 03210 1712 03760	IA COMMON. L	Dag 001				1420 02614	1415 02607						URCE PRUGRAM	FFN LUC	3 02460 6 02355		NGI APPEAKING			1217 02361	1373 62335		-	222 C0336	212 0C324	CF NAMES IN TRAISFER VECTOR	DEC CUT	000000
		ALM KENB	T APPEARING	AFUPEA	6 T C	2)	×		2017	0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40	2.15	AL 481	NLAM		TLAS FOR SO		ກ ສ (ນ ລ		SYMPELS		112	3	414	(1)	C) 1C1	130K	F .	INS OF NAMES		(F1L)
UEC UCT 32561 77461	STERASE LECATIONS FOR VARIABLES	DEC DCT 1647 C3157 1692 C3234	VARIABLES NO	UEC CUT				1461 02015				1396 02564			SYMBOLS AND LUCATIONS FOR SOURCE PROGRAM		7 02464		LOCATIONS FOR CINER	מבכ מרו			1371 62533			223 00337	_	LCCATICAS	DEC 00.1	11 00013 8 00010
	ASF LCCATIC	MWY X NEW X NEW X	3c LCCATIONS FOR	74	ST CO	FS03	X	- 44 - 4	NEC LA	1 3 D 1 Y	175	1 MOH	ALAMKE		34 X 50		612 617		LUCA	:	17	51	413	10	C) 62	20210	ה ה		FXIT	TABLE (TSH)
DEC LCT 1733 62365	STCR	DEC LCI 1732 C33C4 1642 C3152	STURAGE LC	DEC CCT 1442 GCG42	1437 02635	1432 02530	1427 02023	1417 02516	1412 02604	1467 62577	1402 02572	1397 02565	1392 02560	1387 6253		EFN LCC	1 02464			DEC LCT	1330 06470	1350 0250	1369 02531	16670 7761	1382 02546	167 00247	720 101		DEC CCT	5 CCC05
		e sa		42	DAUSE	Α.) <u>,</u>	RHGA2	AHCAV	RECTAB	SBECN	TWHA	XLAMP	z ×		-	816									C) 50F			SUC	SCRT (STH)

ENTRY POINTS IC SUBRCLTINES NCT GUTPUT FROM LIBRARY

(RIN)		ב ב ב	_	_	_		207 2	39 CC054	58 CC172	99733 89	76 00325	92500 98	20 00412	115 00621	46 01141	
(FPT)		CEC		SILAM 9		CCATIONS								211 1		
(FIL)		DEC	_	_	_	NUMBERS AND OCTAL LC	FN LLC	37 00050	57 CC170	65 C0251	75 00320	83 00361	97 00451	113 00604	142 01120	167 01345
175.61	FUNCTI			NTWC		LLA NUMBERS									197	
8031	AND LECATIONS OF ARITHMETIC STAIGHEAT	DEC 00.1	-	-	-	PLACING INFERNAL FURMULA	IFN LLC	36 00046	45 00124	62 00213	72 00:10	82 00354	96 00446	111 00 276	140 01100	166 01340
\$ 19	ILNS (F ARII				51.08	KE. SPUNCING									760	
	AMES AND LOCAT	Lic OLT	_	5C3 C16C1	-	FCRMULA NUMBERS WITH CO	IIN LCC	31 1675	43 00066	60 00505	71 00500	79 00340	69 CO41C	102 00502	136 01061	165 01334
FXP(3	6/			MUNU		FCRMULA NU	SEN	16	22	104	1104	120	227	1203	528	306
EXI) (18F)			_	_	1031 64967	ZALERNAL						-		_	117 00627	_
(818)			0 A A	~ ~ ~	321.50		1) 5	30	34	103	107	1562	661	1202	212	900

C SUBROUTINE TABLE
C SUBROUTINE TABLE
C SUBROUTINE TO INTERP. (EXTRAP.) IN CENSITY TABLE FOR WIVEN SUBROUTINE TO INTERP. (EXTRAP.) IN CENSITY TABLE FOR WIVEN SUBROUTINE TO INTERP. (EXTRAP.) IN CELL (20) ** (APPRICO) ** (APPRIC END(1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0)

97

ں ں

STCRAGE NCT USED BY PROGRAM

		100		CCT		CCT 0 00201 3 00111		100	
		DEC		DEC		DEC 129 C 73 C		DEC	
	FNTS		STATEMENT			A)1C1 D)1C3			
	STERAGE LEGATIONS FOR VARIABLES APPEARING IN DIMENSION AND EQUIVALENCE STATEMENTS	00.1	STURAGE LOCATIONS FOR VARIABLES NOT APPEARING IN COMMON, CIMENSION, OR EQUIVALENCE STATEMENT	100 0	GRAM	DEC DCT 150 C0226 161 C0241		100 0	
	EQUIVAL	DEC	IN . OR EC	DEC	RCE PRO	9) 15 (2) 102 10		DEC	LIBRARY
	ON AND		INENS 10		UN SCU		< VECTOR		LT FROM
	DIMENS	00.1	OMMON.	100	PPEARIN(DEC 0CT 144 C0220 1 160 0C240 4 77 00115	TRANSFE	100	OT LUTP
	RING IN	DEC	NG IN C	DEC	S NCT A	DEC 1 144 1 160 4 77	MES IN	DEC	TINES N
	ES APPEA		APPEARI		LOCATIONS FOR OTHER SYMBOLS NOT APPEARING IN SCURCE PROGRAM	(9) (1) (1) (1)	LCCATICNS OF NAMES IN TRANSFER VECTOR		CHIRY POINTS TO SUBHOLTINES NOT CUTPUT FROM LIBRARY
CCT 77461	VARIABL	CU 1	SLES NOT	00.T	FOR OTHE	0CT 50216 50237 50110	LCCATIC	601	CINTS I
UEC CCT 32561 77461	SAS FOR	EEC CLI 203 CC313	VARIA	UEC 0CT 162 C0242	FICAS F	UEC CCT 142 00216 159 00237 72 00110		LEC	CNTRY 6
	LCCATIO	>	TONS FOR	۸ <i>۲</i>	7007	2) C)62 E.13			
.1 !14	STCRAGE	793	SE LCCAT	.T 243		21 232 236 71			
DEC UCT 204 00314		DEC LCT 183 C0267	STURBE	DEC LCT 163 CC243		DEC CCT 154 CC232 158 CC236 121 CC171		00000 0 0 00000	
		E		X X		1) (101) (1) (1) (1)		ν X	

EFN 55 75

EFN IFN LCC 50 8 00112 65 16 C0152

EFN IFN LUC 20 6 CGC71 57 12 C0132

1FN LGG > GUGGZ 11 GULZS 18 GULZS

£FN 15 56 100

EXILENDAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS

F. Input

The input to this program are simply the cards output from the lambda punch. Each constituent can be run separately or they can all be run at the same time. Any number of L lines may be run also. A counter card must state the number of points to each L line which is run. Counter cards are included in the output from the lambda punch but they must be corrected if the number of points per L line are changed before running this program. Input occurs on tape 2.

1. Input card description

	Columns	Mode	Quantity	Units	Desc	ription	
Counter Card	1-2	I	NPT	-	B-L- λ , der counter	isity cai	rd pair
$B-L-\lambda$ Card	1-8 9-16 17-24 73-80	F F F	EL B(I) XLAM(I)	earth radii gauss degrees	magnetic f magnetic i latitude constituent	nduction	
Density Card	1-12 13-24 25-36 37-48 49-60 73-80	E E E E	SS(1,I) SS(2,I) SS(3,I) SS(4,I) SS(5,I)	atoms/cm ³	density for	flux mo	odel 1 2 3 4 5

GENERAL PURPOSE DATA SHEET

2. Sample

1 1 1 1 1 1 1 1 1 1	Problem	E	INP	INPUT - "BOUNCE"	. BOU	SE	- 1	AVERAGE		CALCULATION	ULAT	S		k									9					7					
1 14 20 0 0 1 2 2 2 2 2 2 2 2 2	Sponse		TAP			ŀ	١				ļ	ł				SAMP	쁴		-		-		8			١	ı	5					
1 1 1 1 1 1 1 1 1 1	2 3	∞		=	2	10	4	R	8	Ħ	10	R	ᄍ	8	19	28	₹		8	•	5 6	88	18	8	8	8	18	6	8	2	K	F	R
1. 14 2 0 0 0 0 . 2 3 8 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E	F															_								_							+	_
1 1 1 1 1 1 1 1 1 1	4	+										+	-																			4	
0 . 1		4	0 0		r.	6		6	00				-				_													0	>	ш	
0. 18 8 2 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			4 7 E	-		0	6	3 6		-	0			ш			_	∞	ш		0	_	5		_					0	>	ш	
0. 18 8 2 E 09 10 0 12 14 2 0 0 0 0 13 18 E 09 10 10 14 30 E 09 10 10 14 2 0 0 1 14 2 0 0 1 14 2 0 0 1 14 2 0 0 1 14 2 0 0 1 14 2 0 0 1 14 2 0 0 1 14 2 0 0 1 14 2 0 0 1 14 2 0 0 1 14 2 0 0 1 14 2 0 0 1 14 2 0 0 1 14 2 0	+		0	0	2	3			_	+		-	-																	0	>	<u>u</u>	
0.14200 0.23465 1.1 0.1508E 11 0.1582E 11 0.1733E 11 0.1910E 11. 0	0		8 2 E	0			2	2			+	7.	_			0	4				0	4	5							0	>	ш	
0.114200 0.21968	· ·	4	0	0	က	9		6	-	+																				0	>	ш	
14200 0 . 2 1968 5 . 8677		=	7 1 E	I	1	0	-	0		+	0		œ	ш	_	0		က	ш	$\overline{}$	0		-1	m						0	>	ш	
0. 7 5 9 9 E 0 8 0 0 1 5 7 2 E 0 8 0 0 0 1 3 0 E 0 8 0 0 0 2 4 7 0 E 0 8 0 0 1 5 7 2 E 0 8 0 0 1 5 7 2 E 0 8 0 0 1 5 7 2 E 0 8 0 0 1 5 7 2 E 0 8 0 0 1 5 7 2 E 0 8 0 0 1 5 7 2 E 0 8 0 0 1 5 7 2 E 0 8 0 0 1 5 7 2 E 0 8 0 0 1 5 7 2 E 0 8 0 0 1 5 7 2 E 0 8 0 0 1 5 7 2 E 0 8 0 0 1 5 7 2 E 0 8 0 0 1 5 7 2 E 0 8 0 0 1 5 7 2 E 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4	0	0	ļ -	9		5	- 00			-		<u> </u>																0	>	ш	
0.120 SE 112 0.23 467 11.02 1444 0.1400E 12 0.1677E 12 0.2031E 12 0.00 XYGE 0.120 SE 112 0.13467 11.052 0.13467 11.052 0.1440E 12 0.1677E 12 0.2031E 12 0.0 XYGE 0.170 SE 0.23 467 11.052 0.13467 11.052 0.13467 11.052 0.13467 11.052 0.1441E 11.00.1476E 11.00.170 SE 0.170 SE 0.184E 0.8 0.1848E 0.8 0.1441E 0.1441E 0.1443E 0.0 XYGE 0.1562 0.1562 0.1562 0.1562 0.1562 0.1562 0.1562 0.1563 0.1562 0.			0 0	, c	•	C	٠,	2	ш	+	0	-	n		+ -	0	7	7	Ш	-	0	-	7	ш						0	>	Ü	
0.112005 0.23991 112.444 0.1400E 12 0.1677E 12 0.2031E 12 0.2037E 12 0.XYGE 0.117005 0.23467 111.752 0.1444 0.1440E 12 0.1677E 12 0.2031E 12 0.2037E 12 0.XYGE 0.177005 0.22956 11 0.2047E 12 0.1562E 111 0.1443E 10 0.XYGE 0.2047E 12 0.XYGE 0.2047E 13 0.2050 0.21976 0.2047E 13 0.1541E 10 0.1541E 10 0.1541E 10 0.1541E 10 0.1541E 10 0.1541E 10 0.1541E 10 0.1541E 10 0.1541E 10 0.1541E 10 0.1541E 10 0.1541E 10 0.1541E 10 0.1541E 10 0.1541E 10 0.1541E 10 0.1541E 0.8 0.1541E 0.8 0.1541E 0.8 0.1541E 0.8 0.1541E 0.8 0.1541E 0.8 0.1541E 0.8 0.1541E 0.8 0.2128E 0.8 0.2 0.20137 0.4184E 0.7 0.1520E 0.7 0.2128E 0.8 0.2128E 0.8 0.2128E 0.8 0.2128E 0.8 0.2128E 0.8 0.2128E 0.8 0.2128E 0.8 0.2128E 0.8 0.2128E 0.8 0.2128E 0.8 0.2128E 0.8 0.2128E 0.8 0.2128E 0.8 0.2 0.2128E 0.8 0.2128E 0.8 0.2128E 0.8 0.2128E 0.8 0.2128E 0.8 0.2 0.2128E 0.8 0.2128E 0.8 0.2128E 0.8 0.2128E 0.8 0.2128E 0.8 0.2 0.2128E 0.8 0.2 0.2128E 0.8 0.2 0.2128E 0.8 0.2 0.2128E 0.8 0.2 0.2128E 0.8 0.2 0.2128E 0.8 0.2 0.2128E 0.8 0.2 0.2128E 0.8 0.2 0.2128E 0.8 0.2 0.2128E 0.8 0.2 0.2128E 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	_		:	-	,					_					-																		
0 1 2 0 5 6 1 2 0 1 2 7 0 6 1 2 0 1 4 0 0 6 1 2 0 1 4 5 0 6 1 2 0 0 1 5 6 2 6 1 2 0 2 0 3 1 6 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			u		~	0						-	+-				+-	+		E										0	>	ш	
0 1 3 4 9 E 1 1 0 0 5 0 . 2 3 4 6 7 1 1 1 . 7 5 2	· c	\	2 C C		,	\ c		- -	· LL		0	_	0		_	0	+	7		+	0	~	က	ш	+					0	_	ш	
0. 1349E 11 0. 1380E 11 0. 1441E 11 0. 1562E 11 0. 1703E 11 0. 1703E 1 0. 1 7 0 8	-	-	2 0	- C	~	9		_				-						=					-							0	Y	ш	
0 1 5 6 3 E 10 0 0 1 1 5 4 1 E 10 0 0 1 1 3 T 1 8 E 10 0 0 1 1 4 7 6 E 10 0 0 1 1 4 4 3 E 10 0 0 1 4 4 3 E 10 0 0 X Y G E 1 1 7 0 0 5 0 0 2 1 9 7 6 1 9 1 4 2 0 0 0 1 5 1 3 E 10 0 0 1 1 4 7 6 E 10 0 0 1 1 4 4 3 E 10 0 0 1 4 4 3 E 10 0 0 X Y G E 1 1 7 0 0 5 0 0 2 0 9 7 3 1 7 3 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· _ c	-	9 4	-	,	0	-	- ∞	ш		0	1	4	_	_	P		9			0	_	0		\leftarrow					0		ш	
0 . 8 1 4 7 E 0 8 0 . 2 1 9 7 6 9 9 4 2 0 0 . 1 5 1 3 E 1 0 0 0 . 1 4 7 6 E 1 0 0 0 . 1 4 4 3 E 1 0 0 0 . 0 X Y G E 1 7 0 0 5 0 . 2 1 9 7 6 9 9 4 2 0 0 . 4 9 4 8 E 0 8 0 . 3 2 1 8 E 0 8 0 . 2 1 8 4 E 0 8 0 . 0 2 0 7 7 6 E 1 7 0 0 5 0 . 2 0 9 7 3 7 . 3 4 6 0 . 6 9 0 5 E 0 7 0 . 2 4 6 9 E 0 7 0 . 9 4 6 1 E 0 6 0 . 0 0 X Y G E 1 7 0 0 5 0 . 2 0 4 7 4 7 6 0 8 0 . 6 9 0 5 E 0 7 0 . 7 4 3 0 E 0 6 0 . 2 1 2 8 E 0 6 0 . 0 0 X Y G E 1 7 0 0 5 0 . 2 0 1 3 7 8 6 0 7 0 . 2 8 1 5 E 0 7 0 . 7 4 3 0 E 0 6 0 . 2 1 2 8 E 0 6 0 . 0 0 X Y G E 1 7 0 0 5 0 . 2 0 1 3 7 8 4 8 9 4 0 0 0 1 5 2 0 E 0 7 0 . 3 2 0 1 E 0 6 0 . 7 3 9 1 E 0 5 0 . 0 0 X Y G E 1 8 5 8 9 E 0 7 0 . 4 1 8 4 E 0 7 0 . 1 5 2 0 E 0 7 0 . 3 2 0 1 E 0 6 0 . 7 3 9 1 E 0 7 0 . 7 3 9 1 E 0 7 0 . 7 3 9 1 E 0 7 0 . 7 3 9 1 E 0 7 0 . 7 3 9 1 E 0 7 0 . 7 3 9 1 E 0 7 0 . 7 3 9 1 E 0 7 0 . 7 3 9 1 E 0 7 0 . 7 3 9 1 E 0 7 0 . 7 4 3 0 E 0 . 7 0 . 7 3 9 1 E 0 7 0 . 7 3 9 1 E 0 7 0 . 7 4 3 0 E 0 . 7 0 . 7 3 9 1 E 0 7 0 . 7 3 9 1 E 0 7 0 . 7 3 9 1 E 0 7 0 . 7 3 9 1 E 0 7 0 . 7 3 9 1 E 0 7 0 . 7 3 9 1 E 0 7 0 . 7 3 9 1 E 0 7 0 . 7 4 3 0 E 0 . 7 0 . 7 3 9 1 E 0 7 0 . 7 3 9 1 E 0 7 0 . 7 3 9 1 E 0 7 0 . 7 4 3 0 E 0 . 7 0 . 7 3 9 1 E 0 7 0 . 7 3 9 1	-	-	, 0	· c	,			! -	0				<u> </u>	<u> </u>																0	>	ш	
1 7 0 0 5 0 0 2 1 9 7 6 0 0 0 4 2 0 0 0 4 9 8 0 0 0 3 2 1 8 6 0 0 0 2 1 8 4 E 0 8 0 0 0 2 1 8 4 E 0 8 0 0 0 2 1 8 4 E 0 8 0 0 0 2 1 8 4 E 0 8 0 0 0 2 1 8 4 E 0 8 0 0 0 2 1 8 6 6 0 0 0 2 1 8 6 6 0 0 0 0 0 0 0 0	-	-	9 6		1) 0	_	4	•	_	0	+	-		•	0	=	7		_	0	-	4	ш	_					0	_	E	
0 . 8 1 4 7 E 0 8 0 . 2 0 9 7 3 7 . 3 4 6 0 8 0 . 4 9 4 8 E 0 8 0 . 3 2 1 8 E 0 8 0 . 2 1 8 4 E 0 8 0 . 2 1 8 4 E 0 8 0 . 0 . 7 9 7 G E 0 8 0 . 2 0 9 7 3 7 . 3 4 6 0 0 0 . 6 9 0 5 E 0 7 0 . 2 4 6 9 E 0 7 0 . 9 4 6 1 E 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1_		5 0	-	-	7	1		4	+			-	-																0	>	ш	
0 X Y G E 0 S 0 . 2 0 9 7 3		00	4 7	0		0	9	2	ш		0	-	4			0	•	_			0	. 2	∞	Ε	$\overline{}$					0	>	ш	
0. 2 2 0 6 E 0 8 0 . 13 5 3 E 0 8 0 . 6 9 0 5 E 0 7 0 . 2 4 6 9 E 0 7 0 . 9 4 6 1 E 0 6 0 0 0 0 X 9 G E 1 7 0 0 5 0 2 0 4 7 4 4 6 . 0 1 4 4 . 8 9 4 0 0 0 . 2 8 1 5 E 0 7 0 . 3 2 0 1 E 0 6 0 0 . 7 3 9 1 E 0 5 0 0 X 9 G E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+	1	0	-	0	1		1																						0	>	ш	
0 X Y G E 0 S 0 . 2 0 4 7 4 4 6 . 0 1 4 0 0 . 2 8 1 5 E 0 7 0 . 7 4 3 0 E 0 6 0 . 2 1 2 8 E 0 6 0 0 X Y G E 0 1 7 0 0 . 2 8 1 5 E 0 7 0 . 3 2 0 1 E 0 6 0 . 7 3 9 1 E 0 5 0 . 0 0 X Y G E 0 8 8 5 8 9 E 0 7 0 . 4 1 8 4 E 0 7 0 . 1 5 2 0 E 0 7 0 . 3 2 0 1 E 0 6 0 . 7 3 9 1 E 0 5 0 . 0 X Y G E		. 2	90	0		-	_	5	Ш		0	9	0		-	0	2	9			0	6	9							0	×	ш	
0 1256E 08 0 6731E 07 0 2815E 07 0 7430E 06 0 2128E 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		17	0		2 0		_	9	0																					0	×	ш	
0 X Y G E 0 . 2 0 1 3 7 4 . 8 9 4 0 0 . 1 5 2 0 E 0 7 0 . 3 2 0 1 E 0 6 0 . 7 3 9 1 E 0 5 0 0 0 X Y G E	°	-	5 6			0		8	ш	+	0	2	_			0	. 7	3			0	. 2	2							0	×	ш	
8 5 8 9 E 0 7 0 4 1 8 4 E 0 7 0 1 1 5 2 0 E 0 7 0 3 2 0 1 E 0 6 0 0 7 3 9 1 E 0 5	+	1	0	0	0	8		4	œ ·	-											\exists					\exists		_			>	w	
	Ľ	80	- oo			0		∞	Ш		0	=	2			<u> </u>	. 3	0		$\overline{}$. 7	6	ш		\dashv	\exists			의	×	ш	

GSFC FORM 541-1 (July - 60)

G. Output

Output from this program appears on logical tapes 3 and 5. Tape 3 gives results which are to be printed. Each page is devoted to a single L line for a specific constituent. Of the eleven columns which cross the page, the first contains the constituent name. This is followed by the value of L, the mirror latitude λ_0 , the corresponding value of B, the flux model number, the "bounce" average number density, the longitudinally averaged number density, the ratio of the longitudinally averaged number density to the "bounce" averaged number density, the value of $\int_0^{\lambda_0} \rho(\lambda) A(\lambda) d\lambda$, the value of $\int_0^{\lambda_0} A(\lambda) d\lambda$ and the third term of SLAMF(λ_0 + 2h, λ_0). All these additional values are included as an intermediate check on the process.

Tape 5 contains the data to be punched. The counter card has been eliminated and all that remains are the B-L- λ card and the "bounce" average density card with constituent names punched to the right of each card.

1. Tape 3 Sample

CONSTITUENT	_	MIRACE LAI.	1 5	FLux	AVERAGE RHÚ	RE AT MIRRER LATITUDE	KHUZAV. RHO	INTEGRAL CE RHO*A - DLAM	INTEGRAL CF A CLAM	S3 (LAM.) FCR INT. INTERVAL
+ + + + + + + + + + + + + + + + + + +	1.1420	6.973	C • 2 3 38	⊣ ∾55	1.0423E 06 1.0098E 06 8.9910E 05 7.6346E 05	2.6674E Co 2.5110E Co 2.3114E C6 2.6675E C6	2.4419C 00 2.4866E 00 2.5707E 00 2.7084E 00	8.2198E 05 7.5985E 05 6.7656E 05 5.7449E 05	7.5248E-01 7.5248E-01 7.5248E-01 7.5248E-01	-9.9948E-08 -9.9948E-08 -9.9948E-08
HEL I UM	1.1420	6.973	C.2239	v 1324				5.0734F 05 4.6787L 05 4.1802E 05 3.5022E 05 2.6778E 05	7.5248E-01 7.4783E-01 7.4783E-01 7.4783E-01	-9.99448E-08 -9.9891E-08 -9.9891E-08 -9.9891E-08
HELIUM	1.1420	4.973	C.2168	ಎ ಎಬಹತು					7.4428E-01 7.4428E-01 7.4428E-01 7.4428E-01 7.4428E-01	-9.9846E-08 -9.9846E-08 -9.9846E-08 -9.9846E-08
HELIUM	1.1426	2.973	C.2122	o ⇔ഗഹ4		4.4396E 05 3.7534E 05 2.8801E 05 1.8869E 05	1.2042E 00 1.2306E 00 1.2736E 00 1.2735 00 1.3445		7.4185F-01 7.4185E-01 7.4185E-01 7.4185E-01	-9.5703E-08 -9.5703E-08 -9.5703E-08 -9.5703E-08
hel 10.P	1.1420	616.0	6.503.9	೧ ಎಲ್ಲಾಕ				2.1293E 05 1.7079E 05 1.1981E 05 6.7786F 04 4.0009E 04	7.4C64E-C1 7.4C64E-C1 7.4C64E-C1 7.4C64E-C1 7.4C64E-C	-9.5809E-08 -9.5809E-08 -9.5809E-08 -9.5809E-08

CONSTITUENT		MIRRCR LAI.	ಖ	FLUX	AVERACE RHG	RHC AT MIRKOR LATITUDE	RHO/AV. RHO	INTEGRAL OF RHO*A DLAM	INTEGRAL OF A CLAM	
HEL ILM	1.17cu	1.176u 11.963	C.2362							
				-	1.1605E 06	3.9406E 06	3.3955 00	8.8337E 05	7.6118E-0	_
				~:	1.0334E 06	3.6392E 06	3.4480E 00		7.6118E-01	_
				~					7.6118E-0	_
				4					7.6118E-0	_
				5	6.7968E 05				7.6118E-0	_
HEL ILM	1.1760	695.6	C.2229							
				_		0			7.5516E-0	_
				~	4.9857E 05	1.943BE 05	1.5945E 00	3.7650E 05	7.5516E-0	_
				~		6.9577F 05			7.5516E-0	_
				4		5.7327E 05			7.5516E-0	
				L.	Z.1014E 05		2.2800E 00	1.6322E 05	7.5516E-C	_
HEL IUM	1.1760		1.963 C.2124							
				-			1.2188F 0C		7.5001F-0	_
				7		5.2299E 05			7.5001E-01	
				~					7.5colE-0	_
				4	1.9767E 05		1.5108E 0C	1.4826E 05	7.5C01E-01	_
				٦,	1.3185E 05	2.2157E 05	1.6805E 00	9.8892E 04	7.5C01E-01	_
HELICK	1.1700	5.963	C.2046							
									7.4590E-01	
				~1	3.65446 05					
				ن.		3.2122E 05	1.2142E 00	1.9734E 05	7.4590E-C1	
				5	1.5ceb£ 05				7.4590E-01	
				'n	9.5489E 04	1.3457E 05			7.4590E-C1	
HEL I UM	1.1700	3.963	C-1991							
				-	4.1452E 05	4.5089E 05			7.4290E-01	
				~	3.3C17E 05	0			7.4290E-01	
				~		0			7.4290E-C1	
				÷	1.2947E 05	1.5551E 05	1.2011£ 00	9.6186F 04	7.4290E-01	
				3,7	1.4132E 04	9.3376E 04		5.5073E 04	7.4290E-C1	
HEL IUM	1.1700	1.963	0.1959							
				-	3.8312E 05	ပ	1.0432E 00	2.8393E 05	7.4110E-01	
				7	2.5599E 05		1.0534E DC		7.4110E-01	
				m					7.4110E-01	
				4					7.4110E-CI	
				· ·	5.7030F 04	6-5489F 04			7,4110E-01	

2. <u>Tape 5</u>

a. Output card description

	Columns	Mode	Quantity	Units	Des	scription	
B-L-\ Card	1-8 9-16 17-24 73-80	F F -	EL BSUBO XLAMP	earth radii gauss degrees -	magnetic magnetic latitude constitue	induction	
Density	1-12	E	DENB(1)	atoms/cm ³	density fo	or flux m	odel 1
Card	13-24	${f E}$	DENB(2)	11	11	11	2
	25-36	${f E}$	DENB(3)	11	11	11	3
	37-48	\mathbf{E}	DENB(4)	7.7	11	11	4
	49-60	${f E}$	DENB(5)	**	11	11	5
	73-80	-	-	_	constitue	nt name	

b. Sample

GENERAL PURPOSE DATA SHEET

1407 E 0140	_	OUTPUT	UT _	- "BOUNCE"	NCE"	₹	'ERAGE		CALCULATION	;ULA	Õ	-																						İ	
Sponeor		TAPE	2										o G	2	\ ₹	SAMPLE	m							P 990					•						Т
1 2 3 4	5 6 7	:	5 5	* 9 2	9		8	2 2 2	8	8 2	R	F 19	R	8 8	のいの	8	4				8	9	1 1	18	8	2	8		6	6	1 6			"	T
										_			E			E				<u> </u>											! 🗀		•	2	
													ļ.								1				E		1	1	$oxed{\Box}$			1	\perp	#	
																			_				<u> </u>			_	-				\vdash	+	+-	1	1
-	4 2 0	0	0 . 2	3 3	7 6		œ	. 9 7	3												_	<u> </u>					‡					×	G	z	Ţ
0	183	3 E	-		0	1 8	3 8 6	_	0	0		8 7	0 E	_	0		1 9	5 2	ш	0	0	. 2	0.5	8	-	0				1	0	×	G	z	
-	4 2 0	0		23	9 4		٠	6 7	3																	-	 			-	0				T
0	7 4 8	4 E	0			6 2 (9 0 0	0	œ	0	4	6 8	ж Ш	0	0 0	0	3.4	6 8	E	8 0	0	. 2	9	3	0	8	_				0				П
-	4 2 0	0		1 6	0	_	4	9 7	က																						0	×	S E	z	1
0	0 0	3 E	8		0	6 5	9 O E	0	7	0	٠ ص	0	9 E	0	7		1 7	6 0	ш	7 0	0		5 3	1 E	0	9				_	0	> ×	<u>я</u>	z	
=	4 2 0	0	0 .	1 2	1 5	\dashv	7	6	က																						0	×	G		
0	1.4.6	ж 8 Е	0		0	7 5	9 5 E	О Ш	9	0	<u>ო</u>	2.4	w ®	0			6	9	ш	0 5	0		0 5	7 E	0	5					0	×	GE	z	L
-	4 2 0	0	0 . 2	6 0	œ	7	0	9.	3	\exists						-															0	×	GE	z	İ.
6	2 5 8	4 E	9		-	0	7 8 E	<u>о</u>	9	0	<u>س</u>	4 6	9 E	0 5	5	0	6 3	3 7	ш	4	0	_	4 3	0 E	0	4					0	×	GE	z	Ι
=	7 0 0	2	0	3 6	2 3	_	=	9	က							=	_														0	×	GE	z	Τ -
0	3.5 1	1 E	-		0	3 5	8	—	0	0		7 5	ш	-			0	6 8	ш	0	0	. 4	4 9	4 E	-	0				-	0	×	G E	z	T
-	7 0 0	5	0 . 2	2 2	8 7		0	9	3				_																		0	×	GE	z	
0	5 1 9	9 E	0		9	-	2 1 E	0	-	0		0	9 E	8 0		0	2 0	9 7 6	E	8	0	-	5 0	0 E	ō	- œ				\vdash	0	×	G E	z	Τ.
	700	2	0 .	7	4 2		-	9	3																<u> </u>	=				-	0	×	GE	z	т—
0	1 3 8	9 E	8		. 8	Ξ	3 9 E	0	7	0	4	9 0	8 E	0 7			1 4	7 9	О	0 7	0	. 5	0 6	9	0	9					0	×	GE	z	_
-	7 0 0	5	0 .	0	5 7			9 6	3																-						0	×	ш	z	Ţ
0	7 0 1	3 E	0	\exists	. 0	3 3	ж ш	0	7	0	-	2 4	3 E	0			2 7	7 2 E	0	9	0	9	9 8	9 E	0	2					0	×	GE	Z	1
	7 0 0	5 0	-	6 6	1 2	-	6	9 6	ω																						0	×	GE	z	
0	4 1 5	7 E	0		-	1 7 2	2 5 E	0	7	0	٠	0	<u>u</u>	9			7 5	7 0 6	0	5	0	-	3 0	5 E	0	5					0	×	GE	z	Т
-	7 0 0	5 0	-	9 5	9 2			9	3	\exists		-	\dashv				\exists	_													0	<u>≻</u> ×	G	z	
0 . 2	2 5 4	3 E	0 7		0	<u> </u>	9 1 8	0	9	9	. 2	15	9E	90	\exists	0	2 2	7	0	5	0	. 2	7 3	5 E	Ò	4			_		0		G	z	
מינים מיני	77 77 2	:	•	í													i		i		ĺ														B

FC FORM 541-1 (July - 64

H. Running Time

This program will take about twenty minutes for every two \boldsymbol{L} lines if five constituents are run together.

VI. R, ∑ CALCULATION AND FLUX ELIMINATION

A. Introduction

This program computes the atmospheric scale factor R and the atmospheric loss parameter Σ . The scale factor is used in the next program in order to relate the energy loss of the atmosphere with the measured energy loss data. (7) The atmospheric loss parameter appears in the calculation of the proton loss term of the conservation equation in the next section. Solar flux S is eliminated from both R and Σ by subroutine ELIM. This subroutine logrithmically interpolates Figure 9 to yield R and Σ as functions of time rather than solar flux S. B, L, and λ and the "bounce" averaged number densities are input to this program. B, L, λ , R and Σ are output for use in the conservation equation calculation.

B. Equations

For a given B and solar flux model, the "bounce" average number densities of the five constituents are put together to form an average number of equivalent oxygen atoms/ cm^3 by the equation OXY = RHO/8 where

RHO =
$$14\bar{n}^{(N_2)} + 8\bar{n}^{(0)} + 2\bar{n}^{(He)} + 16\bar{n}^{(0_2)} + \bar{n}^{(H)}$$

and $\bar{\bar{n}}^{\;(J)}$ is the "bounce" average number density for the J^{th} constituent.

The scale factor R is given by the equation

$$R(L, B, t) = \frac{(OXYGEN ATOMS/CM^3)ATMOS}{(OXYGEN ATOMS/CM^3)NTP}$$

where (oxygen atoms/cm³) ATMOS is OXY and (oxygen atoms/cm³) NTP comes from the following relationship of an ideal gas:

$$22414 \, \text{cm}^3 / \text{Kmole} = .60249 \times 10^{24} \, \text{atoms/Kmole}$$

or $(oxygen\ atoms/cm^3)_{NTP}=2.69\times 10^{19}$. Figure 7 is an example of the output from this program. It shows the time dependence of the atmosphere in terms of the scale factor R.

Sigma is given by the equation

$$\sum = \frac{\bar{\bar{n}}^{(He)}}{2} \sigma(He) + \left[\frac{\bar{\bar{n}}^{(0)} + 2\bar{\bar{n}}^{(0)}}{8} + \frac{2\bar{\bar{n}}^{(N_2)}}{7} \right] \sigma(0) \text{ atoms/cm.}$$

where $\sigma(\text{He})$ and $\sigma(0)$ are the interaction cross sections of helium and oxygen respectively. Figure 8 again illustrates output from this program. It shows $\log_e \Sigma$ as a function of time for various values of B at an L of 1.25 earth radii.

C. Mnemonics

Quantity	Description	Units
NPT	counter of the number of B's to a given L	-
C	(oxygen atoms/cm ³) NTP = 2.69×10^{19}	atoms/cm ³
SIGHE	$\sigma(\text{He}) = .143 \times 10^{-24}$	cm ²
SIGO	$\sigma(0) = .36 \times 10^{-24}$	"
EL	magnetic field line L	earth radii
B(N)	N th magnetic induction B for a given L line	gauss
ALATO(N)	latitude corresponding to B(N)	degrees
HE1(N),, HE5(N)	helium "bounce" averaged densities for B(N) and the five flux models	atoms/cm ³
01(N),, 05(N)	oxygen "bounce" averaged densities for B(N) and the five flux models	atoms/cm ³
021(N),, 025(N)	molecular oxygen "bounce" averaged densities for B(N) and the five flux models	atoms/cm ³
AN21(N),, AN25(N)	nitrogen "bounce" averaged densities for B(N) and the five flux models	atoms/cm ³

Quantity	Description	Units
H1(N),, H5(N)	hydrogen "bounce" averaged densities for $B(N)$ and the five flux models	atoms/cm ³
RHO1(N),,RHO5(N)	RHO for $B(N)$ and the five flux models (see equation on page 105)	atoms/cm ³
OXY1(N),, OXY5(N)	OXY for B(N) and the five flux models (see equation on page 105)	atoms/cm ³
SIG1(N),, SIG5(N)	atmospheric loss parameter Σ for B(N) and the five flux models	atoms/cm
RAT1(N),, RAT5(N)	scale factor R for $B(N)$ and the five flux models	-
LCNT	counter to notify subroutine whether it is working with R or $\boldsymbol{\Sigma}$	-
ARG1	temporary storage of RAT1 or SIG1 depending on LCNT	depends on LCNT
ARG2	temporary storage of RAT2 or SIG2 depending on LCNT	depends on LCNT
ARG3	temporary storage of RAT3 or SIG3 depending on LCNT	depends on LCNT
ARG4	temporary storage of RAT4 or SIG4 depending on LCNT	depends on LCNT
ARG5	temporary storage of RAT5 or SIG5 depending on LCNT	depends on LCNT

D. Flow Charts

1. Main program

2. Subroutine Elim.

E. Fortran Listing

```
DIMENSION B(12), RED(1(12), RED(1(12), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2), RED(1(2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FCRMAI (14x,brs=250,7x,5HS=2C0,7x,5FS=156,7x,5FS=1CC,7x,4HS=70)
FURMAI (5HCLAI=F8,4,4x,2HL=F8,4,4x,2HB=F8,4)
FURMAI (5FE,4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CONITYLE
PE 19 N=1.NPI
READ 19 N=1 TAPE 2.1.EL.0(N).ALATO(N)
READ 19PUT TAPE 2.8.AM21(N).AN22(N).AN23(N).AN24(N).ANZ5(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               REGI(V)=14.8AV21(N)+8.*C1(N)+2.*HE1(N)+16.*C21(N)+H1(N)
REGI(V)=14.*AN22(N)+6.*G2(N)+2.*HE2(N)+16.*C22(N)+H2(N)
REGI(V)=14.*AN23(N)+8.*C3(N)+2.*FC3(N)+10.*C23(N)+H3(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         SISHE=.143e-24
NIGO=.36e-24
NEW PER INDITION 2.1, EL, 3(N), ALATO(N)
READ INPUT IAPE 2, 9, HII(N), HEZ(N), HE3(N), HE5(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           READ INDUI TAPE 2:1, EL, 9(N), ALATO(N)
READ INDUI TAPE 2:8, G21(N), C22(N), C23(N), L24(N), C25(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DU 17 NEITAPT
READ INDUT TAPE 2.1,EL.8(N),ALATO(N)
RLAD INPUT TAPE 2.6,01(N),52(N),03(N),84(N),65(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CC 14 m=1.NPT
RCAD IMPLETIMPE 2.1.EL.C(N).ALATO(N)
RLAG IMPLETAME 2.6.MI(N).H3(N).H3(N).F4(N).H5(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FCRWAT (SELZ.6)
FURMAT (12X,2HLF-8.5,4X,2HB=F8.5,4X,4HLAT=F6.3)
FURMAT (8H RATIO.4X,5ELZ.4)
FURMAT (6H SATAO.4X,5ELZ.4)
FURMAT (5ELZ.4)
                                                                                                          RATIO, SIGMA CALCULATION AND FLUX ELIMINATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               READ INPUT TAPE 2,9,NPT WRITE UUTPUT TAPE 3,3
RRITE CUTPUT TAPE 3,3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CONTINUE
DC 18 N=1.NPI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Co 15 N=1.821
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FERMAT (IHI)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (71)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FC8MAT (//)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C=2.69±19
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1 FLRMAT (27
3 FCRWAT (41
3 FCRWAT (51
4 FCRWAT (51
5 FCRWAT (11
6 FCRWAT (61
9 FCRWAT (61
9 FCRWAT (61
10 FCRWAT (61
12 FCRWAT (61
12 FCRWAT (61
13 FCRWAT (61
13 FCRWAT (61
13 FCRWAT (61
14 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT (61
16 FCRWAT 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CUNTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CONTINCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CCNIINOS
84110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                <del>,</del>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ୍ଷ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1
                                                                                                                                    ر،
```

STCRAGE NOT USED BY PROGRAM

		DEC OCT 32556 77454			926 01636 698 01272	818 01462	770 01402	1097 02111	1037 02015		638 01176			DEC 0CT 586 01112		EFN LGC 5 01072 10 01047		DEC CCT 526 01016		0EC CC1 3 CCCC3		
		ARG5 3	ENTS		AN24 H3	E E	022	53 0xx3	RAT3	RH03	\$162	,	STATEMENT	8160		8)5 8)5		6)		(314)		
	STATEMENTS	DEC OCT	STLARGE LEGATIONS FOR VARIABLES APPEARING IN DIMENSION AND EQUIVALENCE STATEMENTS	DEC OCT		830	782		1049	1169			STURBUSE LOCATIONS FOR VARIABLES NOT APPEARING IN COMMUN, LIMENSION, OR EQUIVALENCE STATEMENT	DEC OCT HE 587 01113	STATEMENTS	EFN LCC 8)4 4 C1074 8)9 9 01050	CE PROGRAM	DEC CCT 4) 32767 11117		DEC CCT N) 2 CCCO2	IBKARY	
	STORAGE LOCATIONS FOR VARIABLES APPEARING IN COMMON STATEMENTS	56 ARG4	ENSION AND EQ		56 AN23							32	N. LIMENSION	1 14 SIGHE	PREGRAM FORMAT STATEMENTS		SYMBOLS NOT APPEARING IN SOURCE PROGRAM		SFER VECTOR	T CO (RTN)	SUCACUTINES NOT CUTPUT FROM LIBRARY	7
	SLES APPEARI	DEC OCT 3 32558 77456	SING IN DIME	טוּכּ	055	77)	205		1711		217	5 662 01132	NG IN COMMU	DEC CC1 T 588 01114	SCURCE	EFN LCC 3 3 01075 8 8 01052 0 13 01024	S NOT APPEA	0EC CCT 3) 518 01006	MES IN THAN	05C 0CF 0 0CCCO	TINES NOT C	(154:)
	S FCR VARIAE	ARG3	ABLES APPEAF				10		OXAI			\$918	NOT APPEARIU	TON	SYMBOLS AND LCCATIONS FOR	8 (8 8) S (9)	THER SYMBOL		LECATIONS OF NAMES IN FRANSFER VECTOR	4 (FPI)	וא זכ אוואפר	(STF)
UEC OCT 32555 77453	GE LOCATION	DEC DCT 32559 77457	NS FOR VARI	100	562 01/02					1073 02061			VARIABLES	DEC DCT 589 C1115	BELS AND LC	LEA LUC 2 01101 7 01057 12 01026	LOCATIONS FOR CTHER	CEC CCT 513 C1C01	7777	UEC CCT 4 OCCC4	ENTRY POINTS TO	(KTN)
	STORA	AKG2	AGE LECATIO		A 121	жо ғ	n c I I	024	60	CXYS	2H05	\$164 ¥	CATIONS FOR	ä	SYN	4)2 4)7 6)7	10C/	2)		(F1L)		(FPT)
DEC CCT 1194 02252		DFC CC1 32560 77460 32561 77461			DEC		68e 01256				1025 02501		STURAGE LO	DEC UCT 590 01116		EFN LCC 1 01104 6 01063 11 01035		DEC CCT 581 C1105		DEC CCT 5 CCCO5 1 CCCO1		(711)
		ARG1 3			ALATO	A.425	4 ·	629 023	70	CXY4	7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1015 SX	•	ى		a)1 3(a)3 3(a)		î		ELIM (15F)		Lt Ir.

-	
EFN 19 30	
LEC CC164 CO566	
7.4 8.4 1.8	
EFN 1.8 25	
LLC 00127 00427	
1FN 46 74	
-	
LCC COC72 GO403 CO176	
1FN 36 67 120	
EFN 16 15 50	
LUC 00013 00256 00703	
1FN 24 6C 6C	
EFN 100 14	
	FN LUC EFN IFN LCC EFN IFN LLC EFN IFN LLC Z4 CCC13 I5

```
SUBROLIINE ELIMINIE SOLAR FLUX
SUBROLIINE ELIMINIE ELIMINIE SOLAR FLUX
SUBROLIINE ELIM
SUBROLIINE ELIM
SUBROLIINE ELIM
SUBROLIINE ELIM
SUBROLIINE ELIM
SUBROLIINE ELIM
SUBRATI (17/////)

E GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWATI (512.0)

F GRWA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          WRITE CUTPUT TAPE 3.5
DO 20 J=1.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        GO TO 1660
DO 50 J=1.5
IF(HA-S(J))56,51,52
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 IF(HA-250.)40,41,41
IF(HA-70.)42,42,43
ANS=Y(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00 30 K=1,12
HA=ST(K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Y(J)=LUGF(A)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GD TD 1CUC
ANS=Y(5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ANS=Y(J)
GO TO 1CCO
H1=S(J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        A=R(J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          43
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          42
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               23
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              40
41
                    ں
```

116

```
Y1=Y(J)
HU=S(J-1)
Y0=Y(J-1)
Y0=Y(J-1)
Y0=Y(J-1)
ANS=Y1-(Y1-YC)*(H1-HA)/(H1-HC)
GU TG LCG
SO CGNINGE
1CGO X=EXPF(ANS)
ITIME=K-1
WRITE UUIPUT TAPE 3.3.ITIPE.HA.ANS.X
30 CGNINGE
HRITE UUIPUT TAPE 3.4
RRITE UUIPUT TAPE 5.6.XS(1),XS(3),XS(3),XS(6)
RRITE UUIPUT TAPE 5.6.XS(1),XS(3),XS(3),XS(1),XS(1)
RRITE UUIPUT TAPE 5.6.XS(1),XS(3),XS(1),XS(1)
RRITE UUIPUT TAPE 5.6.XS(1),XS(3),XS(1),XS(1)
RRITE UUIPUT TAPE 5.6.XS(1),XS(1),XS(1),XS(1)
XS(1)
RRITE UUIPUT TAPE 5.6.XS(1),XS(1),XS(1),XS(1),XS(1),XS(1)
RRITE UUIPUT TAPE 5.6.XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1),XS(1)
```

STCRAGE NCT USED BY PROGRAM

		0CT 77454		0CT 00462		CCT 00430 00423		10C 00367		0CT 00420 0C211		DCT				LOC C0131 00161
		DEC 32556		90EC 306 (DEC 280 275		EFN S		DEC 272 (137 (DEC				1FN 44 53
		ARG5 3	MENTS	>	STATEMENT	Y H		815		C)61 E)E					LOCATIONS	EFN 4C 52
	ATEMENTS	DEC OCT ARG4 32557 77455	ALENCE STATE	DEC 0CT 296 C0450	ECUIVALENCE	DEC OCT 281 CO431 276 CO424	IEMENTS	EFN LGC 4 G04C4	PROGRAM	DEC 0CT 227 C0343 107 C0153		05C CCT	ΔRY		RS AND OCTAL	1FN LCC 40 C0115 51 C0154
	IN COMPON ST	ARG4 3	CN AND EQUIV	×	INENSION, OF	ī×	FORMAT STAT	8)4	IN SCURCE	6)	< VECTOR	(514)	JT FROM LIBR		DRMULA NUMBE	EFN 20 51
	STORAGE LUCATIONS FOR VARIABLES APPEARING IN COMMON STATEMENTS	DEC OCT ARG3 32558 77456	G IN CINENSI	DEC OLT 323 00503	IN COMMON, L	DEC CCI 282 00432 277 00425	SYMBELS AND LECATIONS FOR SOURCE PROGRAM FORMAT STATEMENTS	EFN LÜC 3 00410	LOCATIONS FOR CTHER SYMBOLS NOT APPEARING IN SCURCE	05C 00T 214 00326 141 00215	LLCATIONS OF NAMES IN TRANSFER VECTOR	DEC OCT 1 00001	ENTRY POINTS TO SUBROUTINES NOT CUIPUT FROM LIBRARY		G INTERNAL FI	JFN LLC 37 PO105 49 PO144 65 CO250
	FCR VARIABLE	ARG3	SLES APPEARIN	ST	OT APPEARING	5 x	ATIONS FOR SI	8)3	HER SYMBOLS	3)	ICNS OF NAME	(F1L)	IC SUBRCUTI		CCRRESPUNDIN	EFN 18 43 30
DEC DCT 32555 77453	LUCATIONS	CEC OCT 32559 77457	FOR VARIA	DEC 0CT 3C1 00455	ARIABLES N	CEC CCT 283 00433 278 C0426	LS AND LCC	EFN LCC 2 06412	IONS FOR CT	DEC DCT 211 00323 62 C0122	LCCAT	uec 001 2 00002	VIRY POINTS	(SIH)	WBERS WITH	JFN LCC 36 COJCI 47 COJ41 60 CC/16
3.82	STORAGE	D 4362-32	STURAGE LOCATIONS FOR VARIABLES APPEARING IN CINENSION AND EQUIVALENCE STATEMENTS	o s	SICRAGE LOCATIONS FOR VARIABLES NOT APPEARING IN COMMUN, DIMENSION, OR EQUIVALENCE STATEMENT	< ¬	SYMBG	8)2 E	LUCATI	2) 2) 0)206		, 907	3	(FIL)	EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS	EFN 17 42 1000
UEC		DEC CCT 3256C 7746C 32561 77461	STCR	DEC CC1 311 CC467	STURAGE LO	DEC LCT 284 CC434 279 CU427 274 CC422		EFN LCC 1 CC414 6 CU352		DEC LCT 269 06415 273 00421		DEC LCT 3 CC003		iÜs	EXTERNA	JEN LCC 34 LCO74 45 CU136 59 CG212
)		D) A3G1 32 LCNT 32		8		D SNA IIIRE YI		6)1 8)1 3)6		0 1) 0)00		D EXP		EXP		EFN I 14 41 50

F. Input

Input to this program are the "bounce" average density cards together with the $B-L-\lambda$ cards output from the last program. The cards are rearranged by L line rather than by constituent as they have been arranged in previous programs. A counter card must again be inserted in order to inform the computer of the number of card pairs per constituent for a given L-line. All input is on tape 2. For a given L-line the constituents must be in the following order:

- (1) helium,
- (2) oxygen,
- (3) molecular oxygen,
- (4) nitrogen,
- (5) hydrogen.

1. Input Card Description

	Columns	Mode	Quantity	Units	Description
Counter Card	1-2	I	NPT	-	B-L- λ and density card pair counter
B-L-λ	1-8	${f F}$	EL	earth radii	magnetic field line
Card	9-16	\mathbf{F}	В	gauss	magnetic induction
	17-24	F	ALATO	degrees	latitude
	73-80	-	-	-	constituent name
Density	1-12	E	*	atoms/cm ³	density for flux model 1
Card	13-24	E	*	**	density for flux model 2
	25-36	E	*	**	density for flux model 3
	37-48	E	*	††	density for flux model 4
	49-60	\mathbf{E}	*	11	density for flux model 5
	73-80	-	-	-	constituent name

All of the five constituents use the same card format here. Therefore the quantity on a given density card (HE, 0, 02 N2 or H) will depend on the constituent name listed in columns 73-80 of that same card.

GENERAL PURPOSE DATA SHEET

GENERAL PURPOSE DATA	
Sample	
2	

Problem	INPUT R,	, E CALCULATION	ON AND FLUX	X ELIMINATION	NOI									
Sponsor	TAPE 2				Date	SAMPLE				Poge		•		Ĭ
1 2 3 4	5 6 7 8 9 10 11	20 8 12 8 12 18 19 2	20 21 22 23 24 25 25	7 28 29 30 31	23 34 35 35 35	37 38 39 40 41	28466	4 4 5 5	8 8 8 8 8	88 63 88 88	25 25 25 25 25 25 25 25 25 25 25 25 25 2	65 65 68 69 73 73	172 73 74 75 75 77 78	8 73 80
5														
	4 2 0 0 0	2 3 3 7 6	8 . 9 7 3										HELIUM	
0	0 9 2 E 0	0 . 1 0 1	0	0 . 8 9 9	1 E 0 6	0 . 7	6 3 5E	9 0	0 . 6 7 4	2 E 0	9		HEL-UM	_
1-	0 0	4	6 . 9 7 3										HELLUM	
	2 5 6 E 0	0 . 5 5 9	0 E 0 6	0 . 4 6 8	3 E 0 6	0 3	5 8 1 E	9 0	0 . 2 8 6	8 E 0	9		HELIUM	-
	2 0 0 0	1 6 8 0											HE L	_
	7 7 5 E 0	1	5 E 0 6	0 . 3 2 2	6 E 0 6	0 . 2	2 1 0E	9 0	0 . 1 5 8	6 E 0	9		HELLW	=
1-	2 0 0 0	5	2 . 9 7 3										HELLUM	_
	6 8 3 E 0	0 . 3 0 5	4 E 0 6	0 . 2 2 6	2 E 0 6	0	3 9 9 E	9 0	0 . 907	, 0 E 0	2		HEL U	_
-	2 0 0 0	8.8 6.0	0 . 9 7 3										HELIUM	~
0	8 7 5 E 0	0	6 E 0 6	0 . 1 6 1	8 E 0 6	0	1.2 5 E	0.5	0 . 5 4 0) 2 E 0	5		HELLUM	_
-	2 0 0 0	3 3 7 6	8 . 9 7 3										OXYGEN	
0	1 8 3 3 E 1	0	8 E 1 0	0 . 1 8 7	0 E 1 0	0	9 5 2 E	1 0	0 . 2 0 5	8 E 1	0		O X Y G E N	_
1 1 4	2 0 0 0 .	2 2 3 9 4	6.973										OXYGEN	
0	4 8 4 E 0	0 . 6 2 0		0 . 4 8 9	8 E 0 8	0	4 8 9 E	8 0	0 . 2 6 1	13 E 0	8		OXYGEN	
二	20000	1 6 8 0	4 . 9 7 3										OXYGEN	7
0	1003年0	8 0 6 5 6	0 E 0 7	0 . 3 8 0	9 E 0 7	0	7 0 9 E	0 7	0 8 5 3	3 1 E 0	9		O X Y G E N	
=	4 2 0 0 0 .	2 1 2 1 5	2 . 9 7 3										O X GEN	
ė	1468E 0	7 0 7 5 9	5 E 0 6	0 . 3 2 4	8 E 0 6	0 . 9	1 8 6 E	0 5	0 . 3 0 5	7 E 0	5		OXYGEN	
=	420	2 0 9 8 8	01. 9 7 3										OXYGEN	
-	2 5 8 4 E 0	6 0 1107	8 E 0 6	0 . 3 4 6	6 E 0 5	0	3 3 7 E	0 4	0 . 1 4 3	3 O E 0	4		O X Y G E N	
=	42000	23376	8 9 7 3										0 2	
0	5968E 1	9 9 9 0 0	5 E 1 0	0 787	2 E 1 0	0	1 0 2 6 E	=	0 . 1 3 2	2 0 E 1	-		0 2	
-	14200	2 2 3 9 4	6 9 7 3										0 2	\exists
1	11.11.11.15													

GSFC FORM 541-1 (July - 60)

G. Output

Output for this program occurs on tapes 3 and 5. Tape 3 contains two groups of data for each L. The first group lists the values of R, Σ and OXY as functions of position and flux model. The second group contains R, $\log_e R$, Σ , $\log_e \Sigma$ and solar flux as functions of position and time.

On tape 5 is the data to be punched for use in the conservation equation calculation. Each B-L- λ card is followed by two R cards which are followed in turn by two Σ cards.

1. Tape 3 Sample

	S=250	S=200	S=150	S=100	S=70
	L= 1.14200	8= 0.2337	6 LAT= δ.	973	
$\gamma \chi \gamma$	0.54798 11	0.59758 11	0.68248 11	0.8475E 11	0.1046b 12
ATIO	0.203/E-08	0.2221E-05	0.25378-08	0.3151E-08	0.38895-08
SIGMA	0.3031E-14	0.33036-14	0.37686-14	0.46728-14	0.57576-14
	L= 1.14200	A= 3 2239	4 LAT= 6.	073	
OXY	0.3250E 03	0.2545E 09	0.18356 09	0.11388 09	0.7492E 08
RATIO	0.1208E-10	0.234326-11		0.4231E-11	0.27056-11
SIGMA	0.1765E=15	0.13796-16	0.9906E-17		0.39848-17
SIGNA	0.17656-15	0.13145-10	3.330005-17	0.01010-17	Ø • 3704E=17
	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	n = 6 21/0	3 1 A T /	. 70	
a	L= 1.14200		0 LAT= 4.		
OXY	0.16318 08	0.9054 07		0.2141E 07	0.1007= 07
RATIO	0.6065E-12	0.3700E-12	0.19628-12		0.37446-13
SIGMA	0.84066-18	0.51442-18	0.2747E-16	0.1145E=18	0.56336-19
	L= 1.14200		5 LAT= 2.		
OXY	0.1731E 07	û.8997c 06	0.39828 06	0.1296E 06	0.5424E 05
RATIU	0.6435E-13	0.3345=-13	0.1480h-13	0.4816E=14	0.20166-14
SIGMA	0.1023E-16	J.5769E-19	0.3173c-19	0.1425E-19	0.7878E-25
	L= 1.14200	r= 0.2098	E LAT= 0.	973	
OXY	0.3371E 06	0.1677E Go	0.7598E 05	0.2981E 05	0.1557∈ 05
RATIO	0.1253E-13	0.62325-14	0.28246-14	0.1108E-14	0.57895-15
SIGMA	0.3255E-13	0.21438-13	0.13146-19		0.39275-20
	3.2., , , , , ,				

LAT=	8.9730	L=	1-1420	8=	0.2338	
TIME	SÜL	AR		LOG D	F	RATIO
YRS)	FLU	X		RATIO		
0	70.	00	-0-	17365E	02	0.38892E-08
1	75.	00	-0.	19400E	02	0.37550E-08
2	130.	00	-0.	19706E	02	0.27666E-08
3	230.	00	-0.	199776	02	0.21087E-08
4	250.	00	-0.	20012E	02	0.20368E-08
5	220.	00	-0.	19960E	02	0.21457E-08
6	185.	00	-0.	19885£	02	0.23118E-08
7	140.	00	-0.	19749E	02	0.26492E-08
8	105.	00	-0.	19597E	02	0.30832E-08
9	90.	00	-0-	19505E	02	0.33798E-08
10	75.	00	-0.	1940QE	02	0.37550E-08
11	70.	00	-0.	193656	02	0.38892E-08

TIME	SULAR	LUG UF	SIGMA
(YRS)	FLUX	SIGMA	
0	70.00	-0.32788E 02	0.57570E-14
1	75.00	-0.32823E 02	0.55601E-14
2	130.00	-0.33126E 02	0.41067E-14
3	230.00	-0.33396E 02	0.31370E-14
4	250.00	-0.33430E 02	0.30307E-14
5	226.00	-0.33378E 02	0.31915L-14
6	185.00	-0.33304E 02	0.34365E-14
7	140.00	-0.33169E 02	0.39339E-14
8	105.00	-0.33019E 02	0.45726E-14
9	90.00	-0.32928E 02	0.50088E-14
10	75.00	-0.32823E 02	0.55601E-14
11	70.00	-U.32768E 02	0.57570E-14

LAT=	6.9730	L =	1.1420	<u>{</u> ; =	0.2239	
TIME	SOL	AR		LOG 9	+	GITAS
(YRS)	FLU:	X		RATIO		
0	70.	Úΰ	-0.	26607E	02	0.27852E-11
1	75.	00	-0.	26537£	02	0.29862E-11
2	130.	00	-0.	25902E	υZ	0.56356E-11
3	230.	ÚΘ	-0.	25237E	ე2	0.10957E-10
4	250.	0.0	-0.	25139E	92	0.12083E-10
5	220.	00	-0.	25286E	02	0.10434E-10
6	185.	00	-0.	25482E	02	0.85774E-11
7	140.	oo	-0.	25806E	92	0.62006E-11
8	105.	ტე	-0.	26141Ë	02	0.44381E-11
9	90.	0.0	-0.	26 32 8£	0.2	0.36806E-11
10	75.	00	-0.	265 37 E	U2	0.2986 2 E-11
11	70.	0.0	-U.	26607E	02	0.27852E-11

TIME	SOLAR	LOG OF	SIGMA
YRS)	FLUY	SIGMA	
0	70.00	-0.40064£ 02	0.39844E-17
1	75.00	-0.39993E 02	0.42776E-17
2	130.00	-0.39347E 02	0.81603E-17
3	230.00	-0.38675E 02	0.159916-16
4	250.00	-0.38576E 02	U.17648E-16
5	220.00	-0.38724E 02	0.15221E-16
6	185.00	-0.38922E 02	0.12488E-16
7	140.00	-0.37250E 02	0.89911E~17
8	105.00	-0.30590E 02	0.64039F-17
9	90.00	-0.3978DE 02	0.52931E-17
10	75.00	-0.39993E 02	0.42776E-17
11	70.00	-0.40064E 02	0.39844E-17

LAT=	4.9730 L=	1.1420 b= 0.2168	
TIME	SOLAR	LUG UF	RATIO
(YRS)	FLUX	DITAS	
0	70.00	-0.30916£ 02	0.37441E-13
1	75.00	-0.30790E 02	0.42455E-13
2	130.00	-0.29620F 02	0.136775-12
3	230.00	-0.283 29 E 02	0.49772E-12
4	250.00	-0.28131E 02	0.60649E-12
5	220.00	-0.28428E 02	0.45089E-12
6	185.00	-0.28815E 02	0.30591E-12
7	140.00	-0.29440£ 02	0.16382E-12
8	105.00	-0.30072E 02	0.87100E-13
9	90.00	-0.30413E 02	0.61897E-13
10	75.00	-0.307902 02	0.424556-13
11	70.00	-0.30916E 02	0.37441E-13

TIME	SULAR	LOS DE	SIGMA
		-	310
(YRS)	FLUX	SIGMA	
0	70.00	-0.44323E 02	0.56327E-19
1	75.00	-0.44205E 02	0.633958-19
2	130.00	-0.43089E 02	0.19356E-18
3	230.00	-0.41817E 02	0.69067E-18
4	250.00	-0.41620E 02	0.84064E-18
5	220.00	-0.41915E 02	0.62604E-18
6	185.00	-0.42300£ 02	0.42613E-18
7	140.00	-0.42914E 02	0.23059£-18
8	105.00	-0.43526E 02	0.12495E-18
9	90.00	-0.43850E 02	0.90378E-19
10	75.00	-0.44205E 02	0.63395E-19
11	70.00	-0.44323E 02	0.56327E-19

LAT=	2.9730	L=	1.1420	B =	0.2121	
TIME	SUL	AR		LUG U	=	RATIO
YRS)	FLU	X		CATIO		
0	70.	00	-0.	33838E	02	0.201636-14
1	75.	oo	-0.	33692E	02	0.23311E-14
2	130.	00	-0.	32293E	02	0.94462E-14
3	230.	00	-0.	30636E	02	0.49528E-13
4	250.	00	-0.	30374E	02	0.64346E-13
5	220.	00	-0.	30767E	02	0.43452E-13
6	185.	00	-0.	31273E	02	0.261898-13
7	140.	00	-0.	32069£	02	0.11824t-13
8	105.	00	-0-	32855E	02	0.53884E-14
9	90.	00	-0.	33257E	32	0.36028E-14
10	75.	00	-0.	33692E	02	0.23311E-14
11	70.	0 0	-0.	33838E	02	0.20163L-14

TIME	SOLAR	LOG OF	SIGMA
(YRS)	FLUX	SISMA	
0	70.00	-C.46290E 02	0.78783E-20
1	75.00	-0.46191E 02	0.869671-20
2	130.00	-0.45217E 02	0.23039E-19
3	230.00	-0.43942E 02	0.82457E-19
4	250.00	-0.43727E 02	0.10228E-18
5	220.00	-0.440500 02	0.74037E-19
6	185.00	-0.44455E 32	0.49381E-19
7	140.00	-0.45057E 02	0.27037E-19
8	105.00	-0.45617E 02	0.15442E-19
9	90.00	-0.458958 02	U.11698E-19
10	75.00	-0.46191E 02	0.86967E-20
11	70.00	-0.45290E 02	0.76783E-20

LAT=	0.9739	L=	1.1420	8=	0.2099	
TIME	SOLA	٠٦		LUG B	F	RATIO
(YRS)	FLUX	(RATIO		
0	70.0	O	-0.	35085E	02	0.57888E-15
1	75.0	0	-0.	34977E	02	0.54504E-15
2	130.0	0	-0.	33875E	0.5	U.19426E-14
3	230.0	0.0	-0.	32290E	0.2	J.94762E-14
4	250.0	C	-0.	32011t	92	0.12530F-13
5	220.0	C	-0.	32430E	.02	0.824096-14
6	185.0	10	-0.	32946E	9.2	0.491511-14
. 7	140.0	0	-0.	33688E	02	0.23424E-14
8	105.0	00	-() _•	3 4343E	02	0.12167E-14
9	90 . 0	0.0	-0.	346538	02	0.89241E-15
10	75.0	O	-0.	34777E	02	0.645046-15
11	70.0	0	-0.	35085E	02	0.57888E-15

TIME	SULAR	LOG UF	SIGMA
YRS)	FLUX	SIGMA	
0	70.00	-0.46986E 02	0.39268E-20
1	75.00	-0.46895d 02	0.43043E-20
2	130.00	-0.46041h 02	0.10104E-19
3	230.00	-0.45039E 02	0.275416-19
4	250.00	-0.44872E 02	0.32550E-19
5	220.00	-0.45122E 02	0.25333E-19
6	185.00	-0.45436E 02	0.18539F-19
7	140.00	-0.45910E 02	0.11524E-19
8	105.00	-0.45370E 02	0.727326-20
9	90.00	-0.46619E 02	Ü•5668 5 E− 2 0
10	75.00	-0. 4 6895E 02	0.430436-20
1.1	7000	-0.45986E 02	0.342685-20

2. Tape 5

a. Output Card Description

	Columns	Mode	Quantity	<u>Units</u>	Description
B-L-λ	1-8	F	ALATO	degrees	latitude
	9-16	${f F}$	EL	earth radii	magnetic field line
	17-24	F	В	gauss	magnetic induction
1st R	1-10	E	XS(1)	-	R for time 0
Card	11-20	${f E}$	XS(2)	-	R for time 1
	21-30	E	XS(3)	-	R for time 2
	31-40	E	XS(4)	-	R for time 3
	41-50	E	XS(5)	-	R for time 4
	51-60	E	XS(6)	-	R for time 5
2nd R	1-10	E	XS(7)		R for time 6
Card	11-20	E	XS(8)	_	R for time 7
	21-30	E	XS(9)	_	R for time 8
	31-40	E	XS(10)	-	R for time 9
	41-50	E	XS(11)	_	R for time 10
	51-60	E	XS(12)	-	R for time 11
1st ∑	1-10	E	XS(1)	atoms/cm	Σ for time 0
Card	11-20	E	XS(2)	11	Σ for time 1
	21-30	E	XS(3)	11	Σ for time 2
	31-40	${f E}$	XS(4)	11	Σ for time 3
	41-50	E	XS(5)	*1	Σ for time 4
	51-60	E	XS(6)	11	Σ for time 5

	Columns	$\underline{\underline{Mode}}$	Quantity	Units	Description
2nd ∑	1-10	E	XS(7)	atoms/cm	Σ for time 6
Card	11-20	E	XS(8)	tt	Σ for time 7
	21-30	${f E}$	XS(9)	ff	Σ for time 8
	31-40	E	XS(10)	tt	Σ for time 9
	41-50	E	XS(11)	11	Σ for time 10
	51-60	E	XS(12)	**	Σ for time 11

This five card group is repeated for each new \boldsymbol{B} and \boldsymbol{L} .

b. Sample

GENERAL PURPOSE DATA SHEET

Problem	E .		5	Ę	OUTPUT-R,	<u>ب</u> م	M	ð	CALCU		ATION	ž	AND		FLUX		₹	¥.	ELIMINATION																İ	İ		İ	İ							
Sponsor	ğ		[4	TAPE	~	1	J	I	l	- 1		l									اد	SAMPLE	اتا								ď	Poge						ě								
1 2 3	•	ب د		•	<u>ء</u>	Ħ	2	15 15	4	9	R	8	R	19	10	R	A	育	馬用	前	B	R	8		*		9	•	26 26 26	25 25	岩岩	8	9 8	8	25	8 8	8	88 /6		27.17.05	54 Ex	2	78 77	爬	8	
		E								 					-							_										_	E			\vdash						-				
	∞	1 6	က	0	-		1 4	7	0	0		2 3	က	∞																		_				 							-			
. 0	œ	8	ш	0	0	·	3 7	3,	5 E	0	æ		27	9	7 E	- 1	8 0		2 1	0	9 E	-0	8	. 2	0	3 7	_ _	0 8	0	. 2	1 4	9 E	0	∞		-					_	-	-			
0	n	1 2	ш	0	8		2 6	4	9 E	위	œ		3	œ	3 E	0	œ	0	3	∞	0 E	0	8	. 3		5 5	ш	0 8	0	3	8 8	분	0	80		-							-			
0	7	5.7	w	-	4		5 5	9	0 E	-	4		4	0	7 E	-	4		3	₁	7 E .	-	4 0	. 3	0	3 1	Ш	-	4 0		1 9	—	-	4		_							-			
. 0	4	3 7	ш	-	0	·	3 9	3.4	ш	-	4		4 5	~	ω m	-	4		5.0	0	9 E .	-	4 0	. 5	5	6 0	E	1 4	0		7 5	7	-	4								-	-			
9		6 7	3		_		4	2 0		0	•	2 2	3 9														-									_						-	-			
0.2	7	8.5	ш		1 0		2 9	9 8	ш	-			5 6	က	9			0	0	6	9 E -		0	<u>-</u>	7	0 8	E _	-	0	=	0 4	3	-	0	_					<u> </u>		-	\vdash		I	
	5	7.7 E		-	- 1 0		6 2	0	ш	-			4	<u>س</u>	ж ш		_=		3	<u>∞</u>	JE.	_ 1	1 0	2	0	8 6	i W	-	0	2	7 8	5 E	1-	Ξ												
0	٥	8	ш	-	0 /		4 2	7 8	ш	-	7	0	8	9	<u>ш</u>	_	7		1 5	٥	9 E	1 –	9	-	7	6 5	Ш	1 6	0	-	5 2	2 E	-	9				_					-			
0		2 4 9	ш	-	9	·	8 9	6	ш	-	~		6 4	0	4 E		~		5 2	٥	3 E -	- 1	7 0	. 4	7	7 8	П	1 7	.0	ω.	8	4 m	-	_				 				ļ —		-		
4		9.7	3		_		1 4	2 0	0	-	•	2 1	9	00																												_				
	3.7	4 4 E	<u> </u>	=	3.0	4	4 2	4	5 E .		3		1 3	9	8 E		2	0	49	7	7 E -	-1	2 0	6	0	6 5	_ =	1 2	0	4	5 0	9	7	7									<u> </u>	 		
	3 0	5 9	w	-	2 0	•	1 6	ω ω	ш	-	2		8 7	-	0 E	ī	m		9	8	0 E -	- 1	3 0	. 4	2	4 5	I I	1 3	0	т	7 4	4 E	-	က										-		
0	5 6	ъ С	<u></u>	-	0	·	6 3	3.9	ш	-	6		- 0	က	9 9	-	<u>∞</u>	0	6 9	0	7 E -	-	8 0		4	9 0	E _	- 8	0	9	2 6	0 E	-	8												
	4 2	9	_ 	-	8		2 3	9	ш	-	80		1 2	5	О П		∞		0 6	3	ш	-	0 6	9	3	3 9	H	- 6	0		6 3	3 E	-	6												
	2 .	9 7	3 0				4	2 0		0	·	2 1	2 1																													-	<u> </u>	 		
0	0	1 6	ш	=	0	· I	2 3	8	ш	-	4		9 4	4	6 E	-	4	0	4 9	5	3E-	-	3 0		4	3 5	l W	1 3	G	4	3 4	5 E	-	6				-					<u> </u>			
	2 6	1 9	ш	-	3 0	$\overline{}$	=	8 2	ш	-	~		5 3	8	8 E	_	4		3 6	0	3E _	-	4 0	. 2	3	3 1	- ∃	1 4	0	. 2	-	6 E	-	4												
0	∞	7 8	ш	- 2	0		9	9 7	ш	-	0		2 3	0	4 E	-	6	0	8 2	4	6E -	-	9 0	_	0	2 3	E _	- 8	0	~	4 0	4 E	-	6			_									
	4 9	3 8	ш	-	0 6	·	2 7	0	ш	-	6	-	1.5	4	4 E	-	6	0	1	7 (0E -	-11	9 0	8	9	9 7	E _	2 0	0	. 7	8 7	8	- 2	0												
		9 7	30		-		4	2 0		0	·	2 0	6 6																								-									
	5 7	6 8	i iii	-	50	•	6 4	5 0	ш	-	3	0	-	4	3 E		4		9 4	7	9 E -	7	4 0	=	7	5 3	E _	1	0	80	2 4	ı E	-	4												
0	4 9	1 5	E -	-	4		2 3	4 2	ш	-	4	0	1 2	-	7 E	-	4		6 8	2 4	m	=	5 0		4	20	E	1 5	0	'n	7 8	9 E	-	S												
	39	2 7	7E -	7	00	- 1	4 3	0 4	ш	-2	0	0 .	1 0	-	0E	-1	6	0	2 7	5 4	ш	Ξ	90	<u></u>	2	5 5	E 🗀	1 9	0	2	5 3	3 E	-	6												
GSFC FORM 541:1 (1414 - 40)	Ē	2	3	- T	2	3				i												ı	ĺ	ĺ	ĺ			l		ĺ	l	l	l	ĺ	ĺ	İ	İ								1	

H. Running Time

The running time for this program will be about three minutes for every \boldsymbol{L} line.

VII. CONSERVATION EQUATION CALCULATION

A. Introduction

This program studies the build-up of proton density by use of the conservation equation (see equation (1)). Several lines of action are available. Either a transient or a time-averaged steady state solution can be calculated for any of 15 desired energy levels without altering the program.

In the transient steady-state solution the conservation equation is integrated as a function of time for a particular energy level until maximum and minimum values of the densities start repeating from one solar cycle to another. At this point the cycle number is recorded together with the time of the maximum and minimum densities. These values are printed with the maximum and minimum density and flux values as well as with the ratio of the maximum flux to the minimum flux. In addition, when calculating the transient steady-state solution, one may have the time history of any one of the energy levels printed on tape 5 with as many points as desired.

In the time-averaged steady-state solution the condition $dN_p/dt=0$ yields a density equation for density N_p which is solved using the relative neutron source strength Φ together with Σ and R from the last program. All these values are averaged over time for this solution of the conservation equation.

Three subroutines assist the main program: subroutine RUNGE is used in integrating by the Runge Kutta technique, subroutine DERIV is used to evaluate dN_p/dt for a given t and N_p and subroutine TABLE interpolates any given table either logarithmically or linearly.

B. Equations

The form of the particle conservation equation used for the study of the proton population as a function of time is given by

$$\frac{dN_{p}}{dt} = C_{0}\Phi - C_{1}N_{p}\left(\frac{dE}{dx}\right) - C_{2}N_{p}\frac{d}{dE}\left(\frac{dE}{dx}\right) - C_{2}N_{p}^{\Sigma}$$
(1)

where $\frac{dE}{dx}$, $\frac{d}{dE}\left(\frac{dE}{dx}\right)$, Φ and Σ are the quantities to be supplied and where:

 $N_{n} = density$

$$C_0 = A_0/L^2 E_0^{B_0} \cos^4 \lambda_0$$

$$C_1 = A_1/E^{B_1}$$

$$C_2 = A_2 E^{B_2}$$

E = Energy

 A_0, \ldots, A_2 = high or low energy conservation equation coefficients depending on whether E > 80 MeV. or E \leq 80 MeV. respectively

 λ_0 = mirror latitude

The condition dNp/dt=0 yields the equation for the time averaged steady state proton density:

$$N_{p} = \frac{A_{0}\Phi}{L^{2}E^{B_{0}}\left[\frac{A_{1}}{E^{B_{1}}}\left(\frac{dE}{dX}\right) + A_{2}E^{B_{2}}\frac{d}{dE}\left(\frac{dE}{dX}\right) + A_{2}E^{B_{2}}\Sigma\right]\cos^{4}\lambda_{0}}$$

where Φ , Σ and the scale factor R used in calculating dE/dx and d/dE (dE/dx) are all averaged over time.

The density N_p gives a flux by the equation:

$$F1ux = 2C_2N_p = N_pv$$

where v is the neutron velocity factor.

C. Mnemonics

Quantity	Description			Units
TIME(J)	Abscissa of tin 12 years	me in incre	ements of years for	years
ELOSS(J)	dE/dk corresp	onding to I	E(J) (see Figure 11)	Mev/cm.
E(J)	energy corres	ponding to	ELOSS(J) "	Mev.
CONVM	conversion fac	etor — mont	ths to seconds	-
ALO	A_0 for $E \le 80$	Mev. (see	page 130)	# protons cm. sec. Mev.
AL1	A ₁ "	11	11	cm./sec.
AL2	A 2 "	11	11	cm./Mev ² /sec.
АН0	A_0 for $E > 80$	Mev. (see	page 130)	# protons cm. sec. Mev.
AH1	A , "	**	11	cm./sec.
AH2	A 2 ''	11	11	cm./Mev ² /sec.
BL0	B_0 for $E \le 80$	Mev. (see	page 130)	-
BL1	B ₁ ''	11	11	-
BL2	B ₂ ''	**	11	-
вно	B_0 for $E > 80$	Mev. (see	page 130)	-
BH1	B ₁ "	11	11	-
ВН2	B ₂ ''	11	11	-
DELOSS(J)	d(dE/dx)/dE c (see Figure 12		ing to DE(J)	cm 1
DE(J)	energy corres (see Figure 12		DELOSS(J)	Mev.

Quantity	Description	Units
PREL(J)	♦ for TIME(J) (see page 130 and Figure 11)	-
AVPRL	simple average of PREL(1),, PREL(12)	-
ALAT	mirror latitude \(\lambda_0\)	degrees
EL	magnetic field lineL	earth radii
В	magnetic induction B	gauss
CONVR	conversion factor - degrees to radians	-
ALATO	ALAT in radians	radians
CSLAT4	cos4(ALATO)	-
ELEL	L ²	(earth radii) ²
R(I)	atmospheric scale factor R for TIME(I)	-
SIG(I)	atmospheric loss parameter Σ for TIME(I)	atoms/cm.
ENO	initial density N_{p_0} for integration	# protons/cm ³
TSUBO	initial time to for integration	months
DT1	integration interval for ICSUBO	months
DT2	integration interval for all other cycles	months
TEND	end limit on integration	months
IEST	initial energy level subscript	-
IEDEL	increment for energy level subscript	-
IEEND	final energy level subscript	-
IEPR	subscript of energy level whose time history is desired	-

Quantity	Description	Units
NPRINT	a control factor for the time history print on tape 5. Density and flux are given for every NPRINT increments in time. (See Restriction (1)).	_
ICSUBO	initial cycle number corresponding to ENO and TSUBO	-
SUMR	sum of R(1),, R(12)	-
AVR	simple average of R(1),, R(12)	-
SUMSIG	sum of SIG(1),, SIG(12)	atoms/cm
AVSIG	simple average of SIG(1),, SIG(12)	atoms/cm
Т	time	months
TMAX	time of an eleven year cycle - 132 months	months
TCK	time check to see if TEND has been reached	months
DT	increment in time	months
ICYCLE	cycle number	-
EMAX(J)	maximum density for cycle J	atoms/cm ³
EMIN(J)	minimum density for cycle J	atoms/cm ³
ETMAX(J)	time at EMAX(J)	months
ETMIN(J)	time at EMIN(J)	months
M	subscript to indicate the energy level which is under consideration	-
ENER	energy level M under consideration	Mev.
ITEST3	test value to see if the energy level under consideration is to have its time history printed on tape 5	-

Quantity	Description	Units
ALOSS	temporary storage of ELOSS(M)	Mev./cm.
X(1),,		
X(15)	temporary storage of DE(1),, DE(15)	Mev
Y(1),,		
Y(15)	temporary storage of DELOSS(1),, DELOSS(15)	em ⁻¹
ALOSSA(J)	$(dE/dx) \times R(J)$ for energy ENER	Mev./cm.
DLOSSA(J)	$(d(dE/dx)/dE) \times R(J)$ for energy ENER	cm ⁻¹
A0	temporary storage of ALO or AHO	# protons cm. sec. Mev.
A1	temporary storage of AL1 or AH1	cm/sec
A2	temporary storage of AL2 or AH2	cm/Mev ² sec
В0	temporary storage of BL0 or BH0	-
B1	temporary storage of BL1 or BH1	-
B2	temporary storage of BL2 or BH2	-
C0	conservation equation coefficient (see page 129)	# protons/cm ³ sec Mev.
C1	conservation equation coefficient (see page 129)	cm/sec. Mev.
C2	conservation equation coefficient (see page 129)	cm/sec. Mev.
DEDX	temporary storage of ALOSSA(J)	Mev./cm.
DDEDX	temporary storage of DLOSSA(J)	cm ⁻¹

Quantity	Description	Units
DENS	proton density N _p	# protons/cm ³ Mev.
FLUX	proton flux	# protons/cm ² sec. Mev.
NP	counter of the increments in time; used as a check for NPRINT	-
N 5	counter of the number of prints on tape 5	-
EN	proton density N_{p}	atoms/cm ³ Mev
ICYM1	the value ICYCLE-1 used in testing for steady-state	-
TEST1	test to see if steady state has been reached	-
TEST2	test to see if steady state has been reached	-
EPR1	minimum density in cycle ICYM1	# protons/cm ³ Mev.
FLPR1	flux for EPR1	# protons/cm ² sec. Mev.
TPR1	time of EPR1	months
EPR2	maximum density in cycle ICYM1	# protons/cm ³ Mev.
FLPR2	flux for EPR2	# protons/cm ² sec. Mev.
TPR2	time of EPR2	months
RATIO	ratio of FLPR2 to FLPR1	-

D. Flow Chart

1. Main Program

2. Subroutine RUNGE

3. Subroutine DERIV

4. Subroutine TABLE

CCASER

```
CLNSEXVATION EQUATION CALCULATION
IF DIT=6.c THEN HRANCH TO TIME AVERAGE STEADY STATE SCLUTION.
LTHEMMIS-INFEGRATE STEADY STATE SOLUTION AVERAGED GVER TIME.
DIMENSION of LIS). ELOSS(15). TIME(12). WILD). DELOSS(15). DE(15). PREL(12). TALOSSA(12). DECSSA(12). X(15). Y(15). SIG(12).
THEMMISSA(12). PLOSSA(12). X(15). Y(15). SIG(12).
TEMMISSA(12). PLOSSA(12). LPIN(200). ETMIN(200).
                                                                                                                CCNVERT 1MG.= 36CC*24*30 SEC
CCNVM= 2.592E6
                                                                                                                                                                                                                                                                            | Time(++1)=TIPE(J)+12.0
| ELOS(I)=5.38956-2
| ELOSS(I)=5.38956-2
| ELOSS(I)=1.67556-2
| ELOSS(I)=1.6756-2
| ELOSS(I)=1.6756-2
| ELOSS(I)=1.6756-3
| ELOSS(I)=1.6756-3
| ELOSS(I)=1.67406-3
| ELOSS(I)=3.4456-3
| ELOSS(II)=3.4456-3
| ELOSS(II)=3.4456-3
| ELOSS(II)=3.4456-3
| ELOSS(II)=3.4456-3
| ELOSS(II)=3.4456-3
| ELOSS(II)=3.6456-3
| ELOSS(II)=3.6456-3
| ELOSS(II)=3.6456-3
| ELOSS(II)=3.6456-3
| E(J)=1.0
| E(J)=1.0
| E(J)=1.0
| E(J)=1.0
| E(J)=1.0
| E(J)=1.0
| E(J)=1.0
| E(J)=1.0
| E(J)=1.0
| E(J)=1.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ALO=CCNVM* 2.964E-13
ALI=CCNVM*3.463E+8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         AL2=CE (VN: 47.255E+8
                                                                                                                                                                                                                                                                 DC 11 J=1,11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      10-E-80 MEV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 E(10)=350.
E(11)=350.
E(11)=350.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        E(12)=400.
E(13)=500.
E(14)=600.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               810=2.569
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              E(15) = 100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 E(8)=200.
                                                                                                                                                                                                                                                                                     _
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  \circ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ري
          000
```

8L1=.323 8L2=.417

143

CONSER

```
CENSER
```

```
ZF5.1//23h ENERGY LEVEL START =13./23h DELTA ENRRGY LEVEL =13.
323H ENERGY LEVEL ENG =13./30H ENERGY LEVEL TIME HISTORY =13.
47x,92P.INCICATES ENERGY LEVEL AT WHICH TIME HISTORY OF DENSITY AND SFLUX WILL BE PRINIED ON TAME 5. /46x,43h,ERG INDICATES NO TIME HI 6STORY ON TAME 5. /46x,43h,ERG INDICATES NO TIME HI 6STORY ON TAME 5. /46x,43h,ERG **** =15//35H PRI 7NITING ON TAME 5 AFTER EVERY,16,9H DELTA I./)
WRITE CUIPUT TAME 3.7C2.(R(I).SIG(I).T=1,12)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    NO. I TIME (MC)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              IFIGILI SCC.ICCC.ICGB

1000 WRITE CUIPUL TAPE 3.1001.ALAT.FL.B

1001 FCRMAT(48H) TIME AVERAGE STEADY STATE SCLUTION FCR LATO =F8.4.

1011 L =F7.4,6H & =F7.44///

280H LNERGY PROTON- PHI BAR SIG BAK
                                                                                                                                                                                                                                                                                                                                                              B ******
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     C HEADING AND BASIGAPREL, AVERAGED FOR TIME AVERAGE ST.ST. SOLUTION
400 READ THPUT TAPE 2,720,ENG.ISUBO,DII.CIZ.TENG.IESI.IEBEL.ILEND.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             JUGS PALLYNON.

GL ID 1059

JOSE WAITE UUTPUT TAPE 3,705,ALAI,EL,B

705 FORMAI(45H) TRANSIENT STLADY STATE SCLUTION FOR LAIC =F8.4,

705 FORMAI(45H) TRANSIENT STLADY STATE

706 FORMAI(45H) TRANSIENT STLADY

707 FORMAI TRANSIENT STATE

708 JAHUM -,53, 7HPROTCN-,63,7HPROTON-,33,13H FLUX RATIO/

71 JAHUM -,53, 7HPROTCN-,63,7HPROTON-,33,13H FLUX RATIO/

71 JAHUM -,53,7HPROTCN-,63,7HPROTON-,33,13H FLUX RATIO/

71 JAHUM -,53,7HPROTCN-,63,7HPROTON-,33,13H FLUX RATIO/

71 JAHUM -,53,7HPROTCN-,63,7HPROTON-,33,13H FLUX RATIO/

71 JAHUM -,53,7HPROTON-,63,7HPROTON-,33,13H FLUX RATIO/

71 JAHUM -,53,7HPROTON-,33,13H FLUX RATIO/

71 JAH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              TEENO MUST OF LESS THAN OR EGUAL TO 15 , BUT GREATER THAN O
                                                                                                                                                                                                     DENSITY/)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FLUA, 9X, 31PDENSITY I TIME (MO)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          C(CE/DX)/DE/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 53x,13H1 (MAX/MIN)/
51bX,1H1,37X,1H1,35X,1H1)
                                                                                                                                                              WRITE CUTPUT TAPE 3,700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        SUMS I G = SUMS I G + S I G (NN)
                                                 IIEPA-WPRIAT-ICSUBC
C INPUT PRINTEUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         AVS16=5URS15/12.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DC 1006 NN=1,12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DC 1003 NW=1,12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             DC 1068 AL=1,12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              DU 1002 NN=1+12
SUMR=SUMK+R(NN)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           DC 1005 NN=1,12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ICUS PREL(NN)=AVPRL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1006 SIG(NN)=AVSIG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 AVR=SIJMR/12.6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ( NEV)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             LNERGY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          SUMS 18=0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               3 (DE/LX)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1003 RINN)=AVR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               THAX=132.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SUMR=0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1CK=0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              T=TSUUC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             286H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     434H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1005
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1002
```

144

```
ENER-E(F)

C TIME HISTOLY HEADING CN FAPE 5

ITEST3=M-LIPR

IF(ITC)=13 31C,301,31C

301 WRITE OUTPUT TAPE 5.302.ENER.ALAT.EL.B

302 FORMAT(404) I TIME HISTORY OF DENSITY ANG FLUX FOR ENERGY =F6.1.

1 344 1 Latol = F8.4 64 1 Latol = F7.44/24X,95HIME

2 DENSITY I TIME
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ALOSSA(J)=K(J)*ALCSS
20 DLOSSA(J)=K(J)*EANS
NOW HAVE (DE/DX)ATHOS AND (D(DE/DX)/DE)ATHOS AS FUNCTIONS
OF TIME FOR A GIVEN ENERGY AND L
710 IF(ENER-BO.) 21,21,22
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DENS-AU-AVPRL/((AC/CO)*(C1*DEDX+C2*(CDEDX+AVSIG)))
FLUX=2.0*DENS*C2/CCNVM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C COMPUTE TIKE AVERAGE STEADY STATE SCLUTION IF(DT1) 50C+11C0+1959
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           23 CU=AO/IELEL*ENER**BO*CSLAT4)
                              1099 DU 3CC M=IEST, IEFNG, IECEL
                                                                                                                                                                                                                                                                                                                                                                                                                                              X(K)=BL(K)
2G1 Y(K+)=BLG(SK)
CALL TABLE(ENEK,EANS,15)
DG 2G J=1,12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           C1=A1/(ENER**B1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DDEDX=CLGSSA(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C2=A2*LNCR**62
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1100 DEDX=AL055A(1)
                                                                                                                                                                                                                                                                                                                                                                                                             310 ALDSS=LLCSS(M)
0G 201 K=1,15
                                                               ICYCLE = ICSUBC
                                                                                             EIMAX(1)=0.0
                                                                                                                               EIMIN(1) =0.0
                                                                               EMAX(1)=LNC
                                                                                                               EMIN(1)=LNO
                                                                                                                                                                                                                                                                                                                                                                                               GC TC 5C0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           A2=AL2
B0=BLC
B1=BL1
B2=BL2
G0 T0 23
A0=AH0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          A2=AH2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          21 AU=ALC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Al=AHI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            80=8⊬0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Bl=BHl
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              B2=8H2
                                             DT=DT1
                                                                                                                                                                                                                                                                                                                                                                               15000.1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            A1=AL1
CONSER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ں ں
```

CONSER

```
FLS(N5)=EN1#2.0#C2/CCNVM

MAITE CUTENT TAPE 5.916.(T5(I),FLS(I),ES(I),I=1,N5)

916 FORMATIZUX,OPF9.3.0PF11.4,1PE12.4,2H I,CPF9.3,CPF11.4,1PE12.4,

12H I,CPF5.3,CPF11.4,1PE12.4)

1CY5=ICYCLE+1
WRITE ULIPUT TAPE 3,1101, ENER, FLUX, DENS, AVPRL, AVSIG.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CHECK ENU PLINT FGR MIN-MAX
101 IF(EMAX(ILYCLE)-EN1) 010,815,811
                                                                                                                                                                                                                                                                                                                                                                                799 IF(EMAX(ICYCLE)-EN1) 800, 36,801
                                                                                                                                                                                                                                                                                                                                                                                                                                                 801 IF(EMIN(16.YCLE)=EN1) 30,30,862
862 EMIN(16.YCLE)=EN1
ETMIN(16.YCLE)=T1
60 TC 36
                                                                                                                            SO CALL ALNGE(T, SM, DT, DEN, T1, EN1)
IF(T1-TFAX) 31,10C,100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       WRITE CUIPUT TAPE 5,900,1CY5
                                    1101 FURMAF(1HC, FE. 2, 1P6E13.4)
                                                                                                                                                                                                                                                     IF(NP-NPKINT) 799,911,911
911 N5=N5+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      C ADJUST END OF 11 YEAR CYCLE
100 EN1=EN+((FMAX-T)/CT)*GEN
IF(ITCST3) 101,915,101
C PRINT TIME HISTORY ON 5
                                                                                                                                                                                                                                                                                                                                 E5(N5)=EN1
FL5(N5)=EN1*2.0*C2/CCNVM
                                                                         BEGIN RUNGE KUTTA TECHNIQUE
                                                                                                                                                                                                           C TEST/STORE TIME HISTORY
TF(TTESTS) 759,910,793
                                                                                                                                                                                                                                                                                                                                                                    C TEST AND STURE MIN-MAX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ETMAX(ICYCLE)=IMAX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    810 EMAX(ICYCLE)=EN1
                                                                                                                                                                                                                                                                                                                                                                                                    8CO EMAX(ICYCLE)=ENI
                                                                                                                                                                                                                                                                                                                                                                                                                      ETMAX(ICYCLE)=T1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               T5(N5)-TR.1X
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GC TC 015
                          1DEDX, CUECX
                                                            60 TC 3C0
                                                                                                                                                                                                                                                                                                                 T1=(4N)4I
                                                                                                                                                                                                                                                                                                                                                                                                                                          0c TO 30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1+6N=5N 516
                                                                                                                                                                                                                                                  1+dN=dN 016
                                                                                                                                                                              31 EN=EN1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0=GN
                                                                                            0=dN 6651
                                                                                                              0=¢N
                                                                                                                                                                                               1=1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ں
```

CCNSER

```
823 FURWAIGNES, 33, 13, 4H I, OPF9, 4, OPF13, 4, IPe13, 4, 3H [, OPF1C, 4, 10PF1C, 4, 10PF1C, 4, 10PF1C, 4, 10PF1C, 4, 10PF1C, 4, 10PF1C, 4, 10PF1C, 4, 10PF1C, 4, 10PF1C, 4, 10PF1C, 4, 10PF1C, 4, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10PF1C, 10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               831 WRITE CUT-UUT TAPE 3,832
832 FORMATIVZZZ 52H - I BLEW UP. RERUN THIS CASE WITH SMALLER DELTA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  857 FURMAT(UPPS,2,3X,13,4H I.OPF9,4,CPF13,4,1PE13,4,3H I.OPF10,4,10PF14,4,1PE13,4,3H I.OPF1C,4,10PF14,4,1PE13,4,3H I.OPF1C,4,1PE13,5,5, SCLN. AS YET)
WRITE UCIPUT TAPE 3,824
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     MKITE CUIPUI TAPE 3,857.ENER,1GYGLE,IPRI,FLPKI,EPKI,IPRZ,FLPRZ,
1EPRZ,FATIO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      WAITE CUTPUT TAPE 3,823, ENER, ICYMI, TPRI, FLPRI, EPKI, TPRZ, FLPRZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C NO TRANSLLME SFEADY STATE SCLUTION AS YET 855 TPRIMETING (CYCLE)
EPRIMEMIALING (CYCLE)
                                                                                                 TESTI=LMAKITCYCLE)/EMAX(ICYMI )-1.C
TESTE=EMIN(ICYCLE)/EMIN(ICYMI )-1.C
IF(AMS) (ILSTI)-1.CE-4) 821,821,849
821 IF(AMS) (ILSTZ)-1.CE-4) 822,822,849
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GO TO 200
830 WRITE CUTPUT TAPE 3,824
824 FORMAT(18x,1PI,37x,1HI,35x,1HI)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         GU TU 45c
849 IF(TCK-1END) 850,855,855
850 I=0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TPRZ=L[MAX(ICYM])
EPRZ=ENAX(ICYM])
FLPRZ=EPRZ*Z*O*CZ/CONVM
                                                                                                                                                                                                                                                                                                                                                                                           EPR1=FMIN(ICYMI)
FLPR1=LPMI*2.C*C2/CONVM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FLPR1=EPR1*2.0*C2/CONVM
TPR2=EIMAX(ICYCLE)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FLP. 42=EPR2 + 2 . C + C2 / CUNVM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          RATIU=/LPR2/FLPR1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      EIMAX(ICYCLE)=0.0
EIMIN(ICYCLE)=0.0
GC TO 30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   EPR2=[NAX (ICYCLE)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          RATIG=FLPR2/FLPR1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ICYCL+=ICYCLE+1
EMAX(ICYCLE)=EN1
EMIN(ICYCLE)=EN1
819 SIDP 77777
820 ICYM1=ICYCLE-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1.CPR2.KAI1U
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              60 FC 500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      856 T≈15UHC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ENHENI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DI=CI2
```

148

		00000				רמ	00555	C0622	00771	65010	01241	01307	01425	01473	01606	01743
		DEC 5				IFN	145	158	183	203	223	235	258	268	284	304
		(FIL)		(1SH)	LOCATIONS	E E	1002	1098	201	23	916	805	811	821	3E R	008
		001 00000 000001		(STH)	D OCTAL										01517	
10/01/64		DEC 6 1	ARY		RS AN	IFN	141	156	180	161	220	234	255	264	282	306
10/0	VECTOR	148LE (TSH)	FRCM LIBR	(RIN)	PULA NUMBE	E N	1000	1008	310	22	31	801	810	820	631	856
	LCCATICNS OF NAMES IN TRANSFER VECTOR	00.1 8 00010 4 00004	POINTS IC SUBRCUTINES NOT CUTPUT FROM LIBRARY	(FPT)	EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS										0 01510	
	ES IN	DEC B	INES		NG IN										7.80	
	CNS UF NAM	RUNGE (STH)	TC SUBRCLT	(FIL)	CRRUSPONDI	EFF	400	1006	106	21	30	900	101	818	861	855
	LUCATI	00007 00007 00002	POINTS	TABLE	WITH C										01564	
		DEC 7	ENTRY P	_	UMBERS	IFN	113	151	173	189	514	230	240	261	219	287
		EXP(3 (RIN)		RUNGE	FORMULA N	FFN	200	1005	301	710	1665	199	915	815	860	950
		000000		LXP(3	EXTERNAL	201	00021	00566	00646	010C7	01120	01251	01314	01432	01500	01616
		DEC 3 0				FN	26	148	163	188	201	225	236	259	569	286
CCNSEK		COS (FPT)		CC S		EFN	11	1003	1099	20	1100	1114	100	81S	822	349

CENSER

PRUGKAM	
Α	
LSEC	
NC1	
STCRAGE	

	0CT 77354 77437	CCT 41762 14702		CCT 03066 03061 03054	03047 03042 03035	03030 03023 03016	03004 02777 02772 02772		LOC 02734 02234 02301		CCT 02114 CC311 0C703 01413
	0EC 32492 32543	DEC 17394 6594		DEC 1590 1585 1580	1575 1570 1565	1560 1555 1550 1550	1540 1535 1530 1525		EFN 7C0 823 9CC		DEC 11C0 201 451 779
	DLCSSA Y	S ERAX FLS	STATEMENT	AH1 ALATC AVSIG	B B DEDX	ENI FLPRI	IEST IEST NP ICK TPRI		8)LS 8)PN 8)S4		6) D)203 E)C E)16
N 15	CCT 77457 77456	CCT 42053	OR EQUIVALENCE	C3067 C3067 O3062 C3⊕5	03050 03043 03036	03031 C3C24 C3017	03005 03005 02773 02766	s	LCC C2344 C2740 C2215 C2257	2	0CT 77777 02761 0C620 01230
STATEMENTS	DEC 32559 32558	EGUIVALENCE DEC (CSS 17451 45 MIN 16794 40	R EQUI			1561 1556 1551		STATEMENTS	302 302 726 862 1101	PREGRAM	DEC 32767 1521 4C0 664
IN COMMEN S	:	ANC EL ET	DIMENSION, D	AH0 AL2 AVR	840 812 CCECX	DT2 ENG EPR2	IEPR NPRINI TAN	FCRMAT STA	8)9E 8)MG 8)CU 8)CU	IN SCURCE	4) C)68 E)L E)L
APPEAKING I	001 77460 77420	01%ens1Cn 661 26512 41452		0CT 03C70 03063 03056	03051 03044 03037	03032 03025 03020	03006 03001 02774 02767	PRCCKAN	LEC 02744 02464 02153 02546	PEARING	01757 02760 02760 00310 01202
	528 528	1 N EC 594	IN COMMON.			1562 1557 1552 1552 1562		SCURCE	EFN 3 (705 (857 (1001 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (100) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000)	NCT AP	DEC 1007 (1520 (200 (642 (
FCR VARÍABLES	C1 TIME	S APPEARI E5 ETMAX	APPEARING	AZ AL1 AVPRI	BL1 BL1 CSLAT4	E11 EPR1	IEEND IEEND SUMSIG TEST2 TSUE0		8)3 8)7 8)6 8)6	SYMBOLS	3) C167 D1603 E113
0CT 77324 CATIONS		CCT 42C01 42C72 40322	VARIABLES NOT	001 03071 03064 03057		03033 03026 03021		AND LCCATIONS FOR	LCC C2746 C2554 C2173 02253	FOR CTHER	CCT C1750 C2757 01734 01117
DEC 32468 4GE LOC	S2561 32561 32480	DEC DEC 17469 17466 16594				1563 1558 1553	15338 1523 1523 1523 1523	MBCLS	6FN 2 702 832 832 916	ATICNS	CEC 1CCU 1519 988 591
S T03.		CRAGE LUCATIONS FUR DE 17465 4 E 17466 4 T5 16554 4	LOCATIONS FOR	A1 ALO ALCSS	B10 BLC CONVR	Dens Elected	IEDEL R SUMR TEST1	SYI	8)2 8)1LU 8)0C 8)0C	רטכי	2) C)G6 D)220 E)12
uc1 42673	04 (SICRA UCT 42020 41142 42034	STURAGE LOG	UCT 03072 03065 03060	03053 03046 03041	03634 03027 03022	03010 03010 03003 02771 02771		LGC C2750 02726 C2160 C2272		UCT 02751 02756 01615 01035
DEC 17467	0EC 52504 32516	DEC 17424 16994 1743c	STU				1544 1534 1534 1529 1524		EFN 1 701 824 902		DEC 1513 1518 909 541
	ALGSSA PREL	CELUSS CMIN		A0 AH2 A1 A1	BO BH2 CCNVM	E A N N N N N N N N N N N N N N N N N N	ICYMI ICYMI ITEST3 RATIO TEND		8)1 8)LT 8)PO 8)S6		() () () () () () () () () () () () () () (

```
CUMPROLITINE FOR RUNGE KUITA TECHNIQUE
SUBROCIIME ALNGE(10, YO, ), DELY, TA, YA)
CUMPROLITINE ALNGE(10, YO, ), DELY, TA, YA)
CALL DELY(IC, YO, EER)
TI = TO+1/2.
YI = YO+CONII/2.
CALL CLAIV(III, YI, CER)
CCNT2=URR+H
YI = YO+CCNT2/2.
CALL CLAIV(II, YI, CER)
CCNT3=URR+H
TI=TO+H
YI = YO+CCNT3/2.
CALL CLRIV(II, YI, CER)
CGNT4=CRRY(II, YI, CER)
CGNT4=CRRY(II, YI, CER)
TI=TO+H
YI=YO+CCNT3
TA=TO+H
DELY=(LGNII+2.*CCNI2+2.*CCNT3+CDNI4)/6.
TA= TO+H
YA= YO+CRTY
RETURN
END(II, I, O, U, C, O, O, I, O, C, G, G, C, O, O)
```

STCRAGE NCT USED BY PROGRAM

		CCT 77451 77455		001100		CC1		100
		DEC 32553 32557		DEC 120 (DEC		DEC
		DEC BLGSSA 32553 Y 32557	STATEMENT	CER				
	ATEMENTS	DEC DCT C2 32559 77457 X 32558 77456	EQUIVAL ENC	CCNT4 121 COL71	ROGRAM	DEC GCT		DEC OCT
	STURAGE LOGATIONS FOR VARIABLES APPEAKING IN COMMON STATEMENTS	C2 3;	JIMENSION, OR	CCN14	LUCATIONS FOR CIHER SYMBOLS NOT APPEARING IN SCURCE PROGRAM	ū	. VECTOR)
	S APPEAKING	DEC GC1 CL 3256G 77460 IME 3255G 77454	IN CCMMON, D	DEC 6CF CENT3 122 00172	NOT APPEARING	0EC CCT 6) 110 00156	LECATIFINS OF NAMES IN TRANSFER, VECTOR	פוכ מרו
	FCR VARIABL	C1 TIME	GI APPEARING	CUNTS	HER SYMBOLS	(9)	ICNS GF NAME	
DEC OCT 32551 17441	CATICNS	0CT 77461 77461	ABLES	00.T 00173 00166	FOK C1	DEC 001 108 00154	LECAT	CCT
06C 32551	STURAGE LO	DEC CCT CC 32561 77461 STC 32552 7745C	STURBED LOCATIONS FOR VARIABLES NOT APPEARING IN COMPON, DIMENSION, OR EQUIVALENCE STATEMENT	DEC CC17 CC472 123 CO173 Y1 118 CO166	LUCATIONS	υΕ C 3) 1C8		UEC
DEC CC1 125 CC175		04C 4CT ALGSS4 52954 77552 PAFL 32555 77553	STURASE LCC	050 601 CC (1) 124 CU 174 TI 115 CU 167		0ec uct 1) 11e culo4		DEC CCT G CCCCO
		ALGSS4 . Paft .		11 11 13		1.3		CERIV

ENTRY POINTS TO SUBROLTINES NOT CUTPUT FROM LIBRARY

CERIV

```
C SUBROWINE TO EVALUATE (DAZO) FOR A GIVEN T AND EN
SUB COLING DERIVITIENTOEN)
DITENSIGN THE (12) PRELITZ).ALOSSA(12).X(15).Y(15).SIG(
112)
COMMON CC.CI.CZ.X.Y.TIME.PREL.ALOSSA.BLC.SSA.SIG
DO IN E.1.12
X(K) = TIPE(K)
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CONTINCT
CO
```

DEC CCT 114 CC162

STERAGE NET USED BY PROGRAM

	DEC CCT DLOSSA 32492 77354 Y 32543 77437		DEC CCT 109 CC155		CCT		100				EFN IFN LGC 5 28 CC076
	DEC 32492 32543				DEC		DEC				1FN 2
	PLOSSA Y	STATEMENT	SIGMA							LCCATIONS	EFN 5
COMMON STATEMENTS	DEC 0CT C2 32559 77457 X 32558 77456	NSION, GR EQUIVALENCE	DEC DCT P 11C C0156	SCURCE PROGRAM	DEC OCT	CTCR	DEC OCT	ROM LIBRARY		LA NUMBERS AND OCTAL	EFN IFN LGC 4 22 CG063
STORAGE LOCATIONS FOR VARIABLES APPEARING IN COPPON STATEMENTS	DEC CCT CI 32560 77460 TIME 32528 77420	PPEARING IN COMMUN, DIME	DEC CCT EXX 111 CO157	LUCATIONS FOR CIHER SYMBOLS NOT APPEARING IN SCURCE PROGRAM	DEC DCT 6) 98 00142	LECATIONS OF NAMES IN TRANSFER VECTOR	DEC OCT	ENTRY POINTS TO SUBROLTINES NOT CUIPUT FROM LIBRARY		RESPONDING INTERNAL FURME	EFN IFN LCC 3 16 00C50
SICRAGE LOCATIONS FOR	0eC 0CT C0 32561 77461 S1G 32480 77340	STERRGE LECATIONS FOR VARIABLES NOT APPEARING IN COMMUN, DIMENSION, OR EQUIVALENCE STATEMENT	uec cci Ex 112 00160	LUCATIONS FOR GIMER	DEC OCT 2) 95 COL37	LGCATIONS	DEC OCT	ENIRY POINTS TO		EXIERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FURMULA NUMBERS AND OCTAL LOCATIONS	EFN 1FN LCC 2 10 CCC35
	05C 0C1 ALGSSA 32564 77370 PREL 32516 77464	STURAGE LCCA	DEC GCT ANS 113 CC161 FANS 104 CU154		0EC UCT 1) 104 06150		DEC CCT TABLE O CCCCO		TABLE	EXIERNAL	EFN 1FN LOC

TAULE

STORAGE NOT USED BY PROGNAM

		11 115 137		151 151		CT 113		DCT				CC 061 130
		CCT 5 77415 3 77437		DEC CCT 105 CC151		DEC CCT 75 CC113						IFN LCC 14 CCO61 25 CO130
		DEC 32525 32543		DEC 10		DEC 7		DEC				IFN 1 2
		DEC BLCSSA 32525 Y 32543	STATEMENT	7		D14CA					LCCATIONS	EFN 22 23
	TATEMENTS	DEC 0CT C2 32559 77457 X 32558 77456	LECATIONS FOR VARIABLES NOT APPEARING IN COMPON. CIMENSION. OR EQUIVALENCE STATEMENT	DEC CC1 106 C0152	PROGRAM	DEC CCT 102 C0146		DEC OCT	LARY		FCRMULA NUMBERS WITH CCRRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS	21 12 CC053 42 24 CC123
	SICRAGE LOCATIONS FOR VARIABLES APPEARING IN COMPON STATEMENTS	C 2	CIMENSION. C	H	LOCATIONS FOR OTHER SYMECLS NOT APPEARING IN SCURCE PROGRAM	0)61	R VECTOR		ENTRY PGINTS TO SUBRGUIINES NOT CUTPUT FRCM LIBRARY		ORMULA NUMBE	
	ES APPEARING	EEC 6CT C1 32560 77460 11PE 32528 77420	IN COMPON.	CEC CCT 1C7 00153	NOT APPEARIN	DEC OCT 93 00135	LCCATIONS OF NAMES IN TRANSFER VECTOR	DEC OCT	NES NOT CLTF		IG INTERNAL F	1FN LCC 16 00045 22 00117
	FCA VARIABL	CI	CT APPEARING	0 +	HER SYMECLS	()	ICNS CF NAME		TC SUBRGLII		CCRRESPONCIA	EFN 11 41
LCC 0CT 32523 77413	CATICNS	LEC CCI CO 32561 /7461 SIG 32524 77414	ABLES N	DEC 0CT 1CB C0154 1C3 C0147	FCR OT	EC 0CT 52 00134 82 C0122	LCCAT	DEC CCT O CCCCC	PCINTS		S WITH	EFN IFN LCC 1C 9 CCC43 50 21 00114
0.00 32523) (F LC)	ufC 82561 82524	VARI	UEC 108 103	LICNS	UEC 52 82		DEC 0	ENTRY		UMBER	1FN 9 21
.,	STERAL	00 518	CATIONS FOR	41 41	LOCA	2) E)C		907				EFN 10 50
08C CCT 11C CC156		UST 77416 77417	STURAGE LC	DEC LCT 109 CG155 104 CC156		DFC CC1 99 CU143 43 CCC60		10000		١٤٥	EXILRNAL	1FN LCC 6 0C031 20 00111
0£C 11C		0EC 32526 3252	STL	DEC 109 104		0FC 99 44		υFC LCT 1 6C001		ب		IFN 6 20
		0EC UST ALCSSA 32526 77416 PREL 32527 77417		NA VOY		.03		, X		EXP		EFN 12 20

F. Restrictions

- (1) $132/(NPRINT \times DT1)$ must be less than 5000 in order that T5, E5 and FL5 subscripts do not exceed their dimension specifications.
- (2) IEEND cannot exceed 15 since the table of energy levels contains only 15 values (see energy level table below)

G. Input

Input to this program consists of five data cards and four control cards for every B-L line considered. The data cards are those output by the preceeding program. The control cards are those that handle the selection of the many available calculations in this program. The first control card contains the initial density (END) and the initial time (TSUBO) for integration. The second card contains the integration interval for the first cycle (DT1), the integration interval for all other cycles (DT2) and the end limit of integration (TEND). Setting DT1 equal to zero will give a time averaged steady state solution of the equation. The next control card defines the energy level(s) to be used. It gives the initial energy level subscript (IEST), the increment in energy level subscripts (IEDEL) and the final energy level subscript (IEEND). Energy levels are as follows:

$$E(1) = 10 \text{ MeV}$$
 $E(6) = 125 \text{ MeV}$ $E(11) = 350 \text{ MeV}$.
 $E(2) = 25 \text{ MeV}$ $E(8) = 150 \text{ MeV}$ $E(12) = 400 \text{ MeV}$.
 $E(3) = 50 \text{ MeV}$ $E(8) = 200 \text{ MeV}$ $E(13) = 500 \text{ MeV}$.
 $E(4) = 75 \text{ MeV}$ $E(9) = 250 \text{ MeV}$ $E(14) = 600 \text{ MeV}$.
 $E(5) = 100 \text{ MeV}$ $E(10) = 300 \text{ MeV}$ $E(15) = 700 \text{ MeV}$.

Note that IEST, IEEND and IEDEL must be greater than zero and that IEND cannot be greater than 15. The fourth control card contains three numbers (1) IEPR is the subscript of that energy level whose time history is to be printed on tape 5. If IEPR = 0 then no time history will be printed. (2) NPRINT tells the computer how often to print density, flux and time values on tape 5 if IEPR \neq 0. Values will be given for every NPRINT increments in time. However, if $132/(NPRINT \times DT1)$ is greater than 5000 the computer will print an error message and go on to the next case. This is done in order to prevent time, energy and flux subscripts from exceeding their dimension statement capacities. (3) ICSUBO is the cycle number at initial density (ENO) and initial time (TSUBO). ICSUBO is always greater than or equal to 1. All input occurs on tape 2.

1. Input Card Description

	Columns	Mode	Quantity	<u>Units</u>	Description
Card 1	1-8	\mathbf{F}	ALAT	degrees	latitude
	9-16	F	EL	earth radii	magnetic field line
	17-24	\mathbf{F}	В	gauss	magnetic induction
Card 2	1-10	E	R(1)	-	scale factor R for TIME(1)
	11-20	${f E}$	R(2)	-	scale factor R for TIME(2)
	21-30	\mathbf{E}	R(3)	-	scale factor R for TIME(3)
	31-40	\mathbf{E}	R(4)	-	scale factor R for TIME(4)
	41-50	${f E}$	R(5)	-	scale factor R for TIME(5)
	51-60	E	R(6)	-	scale factor R for TIME(6)
Card 3	1-10	${f E}$	R(7)	-	scale factor R for TIME(7)
	11-20	E	R(8)	-	scale factor R for TIME(8)
	21-30	E	R(9)	-	scale factor R for TIME(9)
	31-40	E	R(10)	-	scale factor R for TIME(10)
	41-50	E	R(11)	-	scale factor R for TIME(11)
	51-60	\mathbf{E}	R(12)	_	scale factor R for TIME(12)
Card 4	1-10	E	SIG(1)	atoms/cm	atmospheric loss parameter Σ for TIME(1)
	11-20	E	SIG(2)	atoms/cm	atmospheric loss parameter Σ for TIME(2)
	21-30	E	SIG(3)	atoms/cm	atmospheric loss parameter Σ for TIME(3)
	31-40	E	SIG(4)	atoms/cm	atmospheric loss parameter Σ for TIME(4)
	41-50	E	SIG(5)	atoms/cm	atmospheric loss parameter Σ for TIME(5)
	51-60	${f E}$	SIG(6)	atoms/cm	atmospheric loss parameter Σ for TIME(6)

	Columns	Mode	Quantity	Units	Description
Card 5	1-10	E	SIG(7)	atoms/cm	atmospheric loss parameter Σ for TIME(7)
	11-20	E	SIG(8)	atoms/cm	atmospheric loss parameter Σ for TIME(8)
	21-30	E	SIG(9)	atoms/cm	atmospheric loss parameter Σ for TIME(9)
	31-40	E	SIG(10)	atoms/cm	atmospheric loss parameter Σ for TIME(10)
	41-50	E	SIG(11)	atoms/cm	atmospheric loss parameter Σ for TIME(11)
	51-60	E	SIG(12)	atoms/cm	atmospheric loss parameter Σ for TIME(12)
Card 6	1-10	E	ENO	# protons/ cm ³	initial proton density
	11-20	E	TSUBO	months	initial time
Card 7	1-8	\mathbf{F}	DT1	months	first cycle integration interval
	9-16	F	DT2	months	remaining cycle integration interval
	17-24	\mathbf{F}	TEND	months	limit of integration
Card 8	1-3	I	IEST	-	initial energy level subscript*
	4-6	I	IEDEL	-	energy level subscript incre- ment*
	7-9	I	IEEND	-	final energy level subscript*
Card 9	1-5	I	IEPR	-	subscript of energy level to be printed on tape 5
	6-10	I	NPRINT	- -	print on tape 5 after so many increments in time
	11-15	I	ICSUBO		cycle corresponding to ENO and TSUBO

^{*}see table of energy levels in INPUT.

GENERAL PURPOSE DATA SHEET

Sample	
'n	

Problem	E	INPUT - CONSERVATION	8	NSER	\ \ ATE		Ş	É	15	100	EQUATION CALCULATION	S														ı			1					_
Sponsor		TAPE	2										Oate		SAM	SAMPLE						۵	Poge					•						T
- 23	2 0	6 8 7	2 2 0	2	15 15 17	7 18 19	20.00	22	10	8 27	8 8	30 31 32	常用	35 35 37	28 88	4	9	9	9	8 50	의 의 대	88 85	18 13	8 8	29 19 0	35 28	88	67 68 6	88 K	77.72	12	F 24	38 79 60	R
2 8 .	0 6	5 0	-	0 9	0	0	. 2	2 0	80																									
- 0	6 7 9	E - 1	50.	2 0	7 8 E	-	5 0	-	6 2	ж Ш	1 4	4 0	1 6	7 4 E	E - 1	3 0	. 2 3	3 7 0	E _	1 3 (0	4 0	7 E -	- 1 3										
0 . 7	0 4 6	E - 1	4 0	2 2	6 7 E	- 1	4	. 7	-	9 E	-	5 0	3 9	3 8 E	— П	5 0	. 2	0 7 8	E _	1 5 (0	6 7	3 6	- 15	2									1
0. 7.2	2 0 8	E - 2	0	8	0 9 E	-2	1 0	. 3	5 7	1 E	- 2 0	0	2 5	1 8 E	-	0 6	. 3 4	4 7 9	E -	1 9 (0 . 2	1 4	2E -	- 1	6									
-	159	_ 	9 0	. 4 5	8 1 E	: - 2	0	=	6	ιπ	- 2 0	0 0	1 2	7 3 E	E - 2	0 0	φ	3 0 9	E	2 1 (0 . 7	2 0	8 E	- 2 1										
	0	. 0 E	6		0	0 E	0																											
0	0 -	0	0	5 0	0 0 1	1 3 2	0		0																									- 1
2	2	1 4																															_	1
	0		0		-																													
1 5	9.4	5.0	=	2 5	0	0		2 4	0																									
0 3	5 2 9	E - 1	2 0 .	38	8 0 E	-	2 0	6	2 3	3 6	-12	2 0 .	2 2	8 9 E		1 0	. 2	6 1 7	I Ш	=	0	1 4	ш	-				_					_	- 1
0	639	E - 1	1 0	° -	5 4 E	1	1 0	9	6 5	3 E	- 17	2 0	5 1	5 5 E		2 0	3	8 8	E _	1 2 (0 . 3	5 2	9 E	- 12	2									
. 4	9 0 2	E - 1	0 8	5 4	0 1 E	-	8	-	3 1	1 E	- 1 7	7 0 .	3 2	9 9 E		7 0	. 3 7	7 8 0	u u	1 7	0 . 3	0 8	2 E	- 1	7			_				_		
0 . 2	3 5 0 E		1 7 0	. 14	9 9 E	-	7 0	6	3 7	7 E .	- 1	8 0	7 2	2 4 E	E - 1	8 0	. 5	4 0 1	L L	1 8	0 . 4	0	2 E	- -	œ				_					Ţ
	0	. 0 E	0		0	0 E	0																											Т
0	0	0 0	0	0 .	0	1 3	2 0	. 0	0																									
2	2	1.4																															_	
	4	1 0	0		_																			_										
	-												-																					
	-					_															_													
	=					-	-						-																					7
	-					_																												
	-																																	
	-					-																												
						1			1							ļ																		ì

GSFC FORM 541-1 (July - 60)

H. Output

Output from this program exists in several forms. First of all there is the output from the transient steady-state solution. In this solution there are two pages of printout for each case (each B-L line considered). The first page merely lists the input with explanatory headings. The second page lists each energy level and the cycle number at which steady-state was reached for that energy level. It also gives the maximum and minimum density and flux for that cycle with the times at which they appear within the cycle. Finally it lists the ratio of the maximum to the minimum flux. If, for any energy level, the absolute value of the minimum flux becomes greater than 50,000 protons/cm² sec. mev. then the program will ask that a smaller integration interval be used and go on to the next case. On the other hand, if the ratio of the maximum to the minimum flux becomes less than 1.09 for any energy level the program will neglect all higher energy levels and pass on to the next case since there will be no solar cycle variations in higher energy levels. This output occurs on tape 3.

The time-averaged steady-state solution has the same output with the exception that on the second page for a given B-L line $\overline{\Phi}$, $\overline{\Sigma}$, dE/dx and d/dE (dE/dx) are printed along with the flux and density for each energy level.

Time histories for energy levels are printed on tape 5 if requested during the steady-state solution. Here time, flux and density are printed for each cycle at the intervals indicated by NPRINT. See figure 13 for an idea of the results to be expected from the transient steady-state solution. Figure 15 shows output from several time history runs.

1. Transient Steady-State Sample

#**** PRUGRAM INPUT ****

ENERGY LEVEL START = 2 DELTA UNERGY LEVEL = 2 ENERGY LEVEL ENU = 14 NP SUB 0 = 0. 1 SUB 0 = 0. DELTA 71 = 0. DELTA 72 = 0.1000 1 ENC ** = 13200.0 LATO *** = 15.9450 L ***** = 1.2560 B ***** = 0.2240 NP SUB 0 = 0.

INDICATES ENERGY LEVEL AT MHICH TIME HISTORY OF DENSITY AND FLUX WILL BE PRINTED ON TAPE A5. ZERG INDICATES NO TIME HISTORY ON TAPE A-5. 0 ENERGY LEVEL TIME HISTORY =

1C DELTA T. PRINTING ON TAPE A-5 AFTER EVERY

CYCLE AT I SUB ZERO **** =

\$16(1) (-,49026-18 (-,49026-18 (-,131)16-17 (-,31)16-0.3529E-12 0.3880E-12 0.5289E-12 0.2617E-11 0.2617E-11 0.1054E-11 0.1054E-12 0.1054E-12 0.3880E-12 0.3880E-12 R(I)

162

TIME AVERAGE STEADY STATE SULUTION FOR LATG = 15.9450 . L = 1.2500 . B = 0.2240

PROTON- FLUX	PRUTON- DENSITY	PhI BAK	SIG BAR	(DE/GX)	DIBEZDXIZDE
1.0457E-01	1.55216-11	1.1462E 0G	1.58688-18	2.85766-14	9.6523E-16
5.00946-02	4.4027E-12	1.1462E 00	1.58686-18	1.1943E-14	1.2295E-16
3.7291E-02	2.6373E-12	1.1462E CO	1.58688-18	8.1699E-15	4.8304E-17
2.59941-02	1.56398-12	1.1462E CO	1.58686-18	5.9342E-15	1.9541E-17
1.8619E-U2	9.7436E-13	1.1462E 00	1.58686-18	4.6547E-15	8.6384E-18
1.40356-62	6.6527E-13	1.1462E 00	1.58686-18	4.0121E-15	4.87935-18
8.9035E-U3	3.6709E-13	1.1462E CU	1.58686-18	3.3845E-15	2.0338E-18

2. Tape 5 Time History Sample

**** PROSRAS INPUT ****

ENERGY LEVEL START = DELTA ENERGY LEVEL = 1 ENERGY LEVEL = 1 L4TD *** = 26.9350 L**** = 1.5793 N 5U3 = 0.2238 NP 5U3 = 0.025 DELTA TI = 0.1035 DELTA TI = 0.1035 TEND ** = 132793.0

ENERGY LEVEL TIME HISTORY =

INDICATES ENERGY LEVEL AT WHICH TIME HISTORY OF DENSITY AND FLUX MILL BE PRINTED ON TAPE AS. Zerd indicates no time history on Tape A-5.

) DELIA I. PRINTING ON TAPE A-5 VETER EVERY

\$16(1) \$3.99(6-2) \$3.99(6-2) \$3.15(16-2) \$3.15(16-2) \$3.115(19-1) \$4.115(19-2) \$3.12(19-2 A(1) 0.1679E-15 0.2079E-15 0.1629E-15 0.2370E-13 0.1407E-13 0.1707E-14 0.7046E-14 0.7116E-15 0.3938E-15 0.3938E-15

164

TRANSIENI STEADY STATE SOLUTION FOR LATD = 28.9050 , L = 1.6070 , H = 3.2238

FLUX RATIO (MAX/MIN)	17.7515	2.8521	1,5435	1.2922	1.1585	1.1394	1.3595
7-	-						
PROTON- I	1.30306-39	1.3238E-79 I	5.89146-13	3.0624E-10 1	1.7883E-12 [1.18416-13	6.3054E-11 I
P.1.0104- FLUX	87.7855	15,3626	8.3303	5.3901	3.4172	2.4983	1.5293
MAXIMUM - TIME (M3)	22.5733	28.1333	29,5333	35.3303	37,3363	30.0000	30,0000
PROTON- I DENSITY I	7.34026-13 [4.6253E-10	3.5847E-10 1	2.3700E-10 I	1.5436E-19 I	1.0673E-10	5.8954E+11 1
PAOTON- FLUX	4.9453	5.2627	5.3683	3.9392	2.9496	2.2517	1.4299
CYCLE I MINIMUM - NO. I TIME (MO)	54.0100	68.5000	72.5000	74.9000	74.5003	74.5000	75.0000
CYCLE 1	5	9	11	1 61	31 16	41	59
ENERGY (MEV)	25.00	75.00	125.00	200.03	300.00	400.00	00.009

3. Time Averaged Steady State Sample

***** PRUGRAM INPUT ****

LA10 *** = 28.7050 L ***** = 1.6000 B ***** = 0.2208 NP SUB 0 = 0. T SUB 0 = 0. DELTA T1 = 0.1000 DELTA I2 = 0.1000 T TND ** = 13200.0 ENLRGY LEVEL START = 3 DELTA ENERGY LEVEL = 8 ENERGY LEVEL = 8 ENERGY LEVEL = 8

INDICATES ENERGY LEVEL AT WHICH TIME HISTORY OF DENSITY AND FLUX WILL BE PRINTED ON TAPE AS. ZERD INDICATES NO TIME HISTORY ON TAPE A-5. ENERGY LEVEL TIME HISTORY

PRINTING ON TAPE A-5 AFTER EVERY 50 DELIA T.

CYCLE AT T SUB ZERO **** =

0.1679E-15 0.7208E-21 0.204E-15 0.8099E-21 0.1628E-14 0.8571E-20 0.1674E-13 0.2518E-19 0.2776E-19 0.2577E-19 0.7046E-14 0.1199E-19 0.7046E-14 0.1199E-20 0.3938E-15 0.1273E-20 0.278E-15 0.1578E-20 0.278E-15 0.1578E-20 0.278E-15 0.1679E-15 0.7208E-21 0.1679E-15 0.7208E-21

TIME HISTORY	90	TIME HISTORY OF DENSITY AND FLUX FUR ENERGY = 200.6	X FUR CA	WERGY = 200.6	. LATO = 28	28.9050 , L	= 1.6000 , 8	= 0.2208		
CYCLE NO. =	-	TIME	FLUX	DENSITY 1	TIME	FLUX	DENSITY 1	1 I ME	FLUX	DENSITY
	•			5.1058E-12 1	10.000	0.1695	1.0200E-11 1	15.000		1.52/36-11
		20,000	0.3372	2.0286E-11 1	25.000		2.5191E-11 I	30.000	0.4951	2.9734E-11
				3-30436-11 1	55.000	740000	3.0334r-11 4.1517F-11	45.000		5.838[F-1]
		000.59		4.61616-11	000.07		4.90781-11	75.000		5.7344F-11
				5.5390E-11 1	n5.000		5.9921E-11 1	000.06		6.4106E-11
				6.8516E-11 I	1.10.060		7.3072E-11 1	105.000		7.7672E-11
		110,000	1.3681	8.2313E-11 1	115.000	1.4466	8.7032E-11 I	120.000		9.13356-11
CV: 1 + Mil. =	0			9.6723E-11 1	130.000	1.6903	1.01.70710.1	132.000		1.0371E-10
2				1.08765-10 [10.000	1.8912	1.13795-10 1	15,000		1.1878F-10
				1.2361E-10 1	75.000	2.1290	1.2809E-10 1	900.00	2.1c/8	1.31636-10
		35.000		1.3277E-10 1	40.000	2.1675	1.3041E-10 1	45.000		1.2682E-10
			2.0335	1.2234E-10 I	55.000	1.9827	1.1929E-10 1	000.000		1.1/77E-10
				1.1758E-10 I	000.07	1.9700	1.18526-10 1	75.000		1.20396-10
		000.08		1.23155-10 1	000.50	2.1032	1.26545-10 1	000.06		1.3038E-10
				1.3438E-10 1	117.000	2.5380	1.5900E-10 1	120.000		1.4349E-10
		125.000	2.6975	1.6229E-10 1	1 50.000	2,7795	1.67235-10 1	132,000	2,8128	1.6423F-10
CYCLE 40. =	~			-			-			2
			2.8960	1.7424E-10 1	10.000	2.9789	1.79226-10 [15.000	3.0609	1.8416E-10
		20.000		1.888/E-10 1	75.000		1.9309E-10 I	30.000	3.2571	1.9596E-10
				1 01-366661	9000		1.8982E-10 1	000	3.0364	1.8268E-10
				1.62705-10	20.000		1.6260E-10 1	25,000	2 7154	1.04601-10
				1.6558F-10 f	45.000		1.6862F-10 1	000.00	2.8640	1.7255-10
				1.7632E-10 1	100.000		1.80656-10 1	105.000	3.0761	1.85074-10
		110.000	3.1509	1.8957E-10 1	115.000	3.2275	1.94186-10 1	170.000	3.3059	1.9890E-10
CVC1 F .40. =	7		1.3860	2.03/2E-10 1	1 10 . 000	3.4676	2.0863E-10 1	132.000	3.5007	2.1062E-10
	٢	5.000	3.5835	7.1560F-10 I	10.000		7.20565-10 1	15.000	1.7475	2.25465-10
				2.30110-10 1	25.000		2.3416E-10 I	30.000	9326	2. 3660E-10
			3.9051	2.3495E-10 1	40.000	3.7789	2.2736E-10 I	45.000		2.1798E-10
		20.000		2.0742E-10 [55.000		1.9945E-10 I	000.09		1.9418E-10
				1.9120E-10 1	000-07		1.9011E-10 I	75.000		1.9052E-10
			3,440	2.0264E-10 1	000-001	3.64443	2.0696E=10 1	90.000		1.9870E-10
			5869	2.1580F-10 1	115.000	3,6631	2.2034F-10 1	120.000		2.25095-10
			3.8209	2.2388E-10 1	130.000	3.9023	2.3478E-10 1	132.000	3.9353	2.3576E-10
CYCLE 40. =	5			-			-			
				2.4173E-10 1	10.000		2.4667E-10 I	15.000		2.5156E-10
				2.5615E-10 I	25.000		2.6010F-10 I	30.000		2.6227E-10
				2 34346-10 1	40.000	4.1730	2.510/E-10 1	45.000		2.4027E-10
		000.00	3.4772	2.0420F=10 1	70.000		2.0762E=10 1	25.000	1.3382	2.178/E-10
				2.0931E-10 1	85.000	3.5237	2.1200E-10 I	000.06		2.1541E-10
				2.1934E-10 1	100.000		2.2358E-10 I	105.000		2.2793E-10
				2.3237E-10 1	115.000	3.9382	2.3694E-10 I	120.000		2.4163E-10
				2.4041E-10 I	1.50.000		2.5130E-10 I	132,000		2.5328E-10
CYCLE NO. =	9				000			000		
			4.5410	2.7261F-10 1	25.000	4.5954	2.764MF-10 1	10-000	1001-4	2.08U4E-10 2.7349F-10
		35.000		2.7572E-10 I	40.000	4.4220	2.6605E-10 I	45.000		2.54366-10
				2.4137E-10 I	55.000	3.8468	2.3144E-10 1	000.09		2.2468E-10
				2.2058E-10 1	70.000	3.6346	2.1868E-10 I	75.000		2.1651E-10
		80.000		2.2001E-10 I	900.58	3.7000	2.22611-10 1	90.000		2.2597E-10
			3.8206 0.363	2.2986E-10 I	100.000	3.8906	2.3406f-10 I	105.000	3.9626	2.3841E-10
		125.000	4.2693	2.4284E-10 1	130-000	4.3503	2.4/40E-10 1	142-000		2.63208L=10
CYCLE NO. =	7			- 27 32006-3	>	,	1	•		21111

I. Running Time

Transient steady-state solutions where DT1 = .5 and DT2 = 1.0 will cover eleven cycles per minute. See figure 14 for an idea of how many cycles are necessary to reach steady-state for various B's at an L of 1.25 earth radii.

Runs requesting a time history print on tape 5 take about twice as long.

Time averaged steady state solutions take about a quarter of a minute for each B-L line.

VIII. STEADY-STATE CALCULATION

A. Introduction

This program evaluates the solar maximum and solar minimum steady state conditions of the conservation equation. That is, with dN_p/dt set equal to zero, the flux and density are studied at solar minimum (time = 0.0 years, see Figure 1) and solar maximum (time = 4.0 years). The mean lifetimes of the protons are also calculated as well as dE/dx, d/dE(dE/dx), the three coefficients of the conservation equation C_0 , C_1 and C_2 and the source and loss terms. This is all printed together with the appropriate Σ for a given B, L, λ and energy level. All 15 energy levels of the preceeding program are evaluated for each B and L.

B. Equations

The equations used in this program are listed below:

SOURCE =
$$XX = A_0 \Phi / L^2 E^{B_0} \cos^4 \lambda_0$$

$$LOSS = YY = \frac{A_1 N_p}{E^{B_1}} \left(\frac{dE}{dX}\right) + A_2 N_p E^{B_2} \frac{d}{dE} \left(\frac{dE}{dX}\right) + A_2 N_p E^{B_2} \Sigma$$

MEAN LIFETIME =
$$TAU = N_p/XX$$

$$FLUX = FLUXP = N_p(EXT)E^{B_2}C = N_p\beta C = N_pv$$

DENSITY = EN1 =
$$\frac{A_0 \Psi}{L^2 E^{B_0} \cos^4 \lambda_0 \left[\frac{A_1}{E^{B_1}} \left(\frac{dE}{dX} \right) + A_2 E^{B_2} \left(\frac{d}{dE} \left(\frac{dE}{dX} \right) + \Sigma \right) \right]}$$

where C = speed of light

 Φ = PREL = relative neutron source strength

 Σ = SIG = atmospheric loss parameter

- A_0 , ..., A_2 = high or low energy conservation equation coefficients depending upon whether E > 80 MeV. or $E \le 80$ MeV respectively
- B_0, \ldots, B_2 = high or low energy conservation equation coefficients depending upon whether E > 80 MeV. or E \leq 80 MeV. respectively

 λ_0 = Mirror latitude

 N_p = proton number density

v = neutron velocity

$$\beta = \mathbf{v}/\mathbf{C}$$

$$EXT = \beta/E^{B_2}$$

C. Mnemonics

Quantity	Description			<u>Units</u>
TIME(J)	abscissa of tin 12 years	me in increme	nts of years for	years
ELOSS(J)	dE/dX corres	ponding to E(J) (see Figure 11)	Mev./cm.
E(J)	energy corres (see Figure 1	sponding to EL 1)	OSS(J)	Mev
ALO	A_0 for $E \le 80$) Mev. (see pro	eceeding page)	# protons cm. sec. Mev.
AL1	A ₁ ''	11	**	cm/sec
AL2	A ₂ ''	11	**	cm./Mev ² sec.
АН0	A_0 for $E > 80$	Mev. (see pre	eceeding page)	# protons cm. sec. Mev.
AH1	A ₁ ''	11	11	cm. sec.
AH2	A ₂ ''	ff	**	cm/Mev ² sec.

Quantity	Description			Units
BLO	B_0 for E \leq 80 Mev. (see preceeding page)			-
BL1	B ₁ ''	**	**	-
BL2	B ₂ ''	11	**	_
ВН0	$B_0 \text{ for } E > 80$	Mev. (see pre	eceeding page)	-
ВН1	B ₁ "	11	**	-
BH2	B ₂ ''	11	**	-
DELOSS(J)	-			cm. ⁻¹
DE(J)	energy corresponding to DELOSS(J) (see Figure 12)			Mev.
PREL(J)	Φ for TIME(J page 167)) (see Figure 1	1 and	-
CONVR	conversion fa	actor - degrees	s to radians	-
ALAT	mirror latitu	$de \lambda_0$		degrees
EL	magnetic fiel	d line L		earth radii
В	magnetic indu	uction B		gauss
R(J)	atmospheric	scale factor R	for TIME(J)	-
SIG(J)	atmospheric	loss parametei	$r \Sigma$ for TIME(J)	atoms/cm
ALATO	ALAT in radians			radians
SVPR	temporary storage of PREL(1)			_
SVSG	temporary storage of SIG(1)			atoms/cm
t	time			years

Quantity	Description	Units
M	energy level subscript	-
ENER	energy level E(M)	Mev.
ALOSS	dE/dX for E(M)	Mev/cm
X(k)	temporary storage of DE(k)	Mev.
Y(k)	temporary storage of DELOSS(k)	cm ⁻¹
EANS	d(dE/dX)/dE for $E(M)$	cm ⁻¹
ALOSSA(J)	(dE/dX) X R(J) for $E(M)$	Mev/cm
DLOSSA(J)	(d(dE/dX)/dE) X R(J) for E(M)	cm ⁻¹
A0	temporary storage of AL0 or AH0	# protons cm. sec. Mev.
A1	temporary storage of AL1 or AH1	cm./sec.
A2	temporary storage of AL2 or AH2	cm/Mev ² sec.
В0	temporary storage of BL0 or BH0	-
B1	temporary storage of BL1 or BH1	-
B2	temporary storage of BL2 or BH2	-
EXT	(see page 168)	-
C0	conservation equation coefficient c_0 where $C_0 = A_0/L^2 E^{B_0} \cos^4 \lambda_0$	# protons cm ² sec. Mev.
C1	conservation equation coefficient C_1 where $C = A_1/E^{B_1}$	cm/sec. Mev.
C2	conservation equation coefficient C_2 where $C_2 = A_2 E^{B_2}$	cm/sec. Mev.

Quantity	Description	<u>Units</u>
KCK	counter to determine if solar maximum or solar minimum is being evaluated	-
T1	particular time under consideration	years
EN1	proton density	# protons Mev. cm
FLUXP	proton flux	# protons cm² sec. Mev.
TAU	mean proton lifetime	sec
xx	conservation equation source term (see page 167)	# protons cm ² sec.
YY	conservation equation loss term (see page 167)	# protons cm ² sec.

D. Flow Charts

1. Main Program

2. Subroutine Table

STLACY

```
STEADY STATE
DIMENSION E(15),FLCSS(15),TIPE(12),R(12),UELCSS(15),UL(15),PREL(5)
1,ALUSSA(12),CLQSSA(12),X(15),Y(15),SIG(12)
                                                                                                                                                                         | FURMAT(6110-4)
| FURMAT(6110-4)
| FURMAT(6110-4)
| FURMAT(16110-4) | LC2C.4, LF2C.5, LE2C.5)
| FURMAT(1010-4) | FURMAT(101-4) | FURMAT(101-4) | FURMAT(101-4) | FURMAT(101-4) | FURMAT(101-4) | FURMAT(101-4) | FURMAT(101-4) | FURMAT(101-4) | FURMAT(101-4) | FURMAT(101-4) | FURMAT(101-4) | FURMAT(101-4) | FURMAT(101-4) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6) | FURMAT(101-6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ELOSS(5)=6.6553E-3
ELOSS(0)=7.3567L-3
ELOSS(0)=7.3567L-3
ELOSS(0)=4.6543E-3
ELOSS(10)=4.6543E-3
ELOSS(11)=3.6563E-3
ELOSS(11)=3.6602E-3
ELOSS(11)=3.6701E-3
ELOSS(13)=3.2701E-3
ELOSS(14)=3.0476E-3
ELOSS(15)=2.8542E-3
E(1)=10.
E(2)=25.
E(3)=50.
E(4)=75.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2.964F-13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ELOSS(1)=5.3985E-2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ELOSS(2)=2.5732E-2
ELOSS(3)=1.4755E-2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ELUSS(4)=1.0754E-2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                86-5-417
86-5-100 MEV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    10-E-80 MEV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    E(11)=350.
E(12)=400.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          E(14) = oCC.
E(15) = 7CC.
                                                                                                                                          CUMMON X+Y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            E(10)=300.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              E(13)=500.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       810=2.009
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         E(6)=125.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      E(1)=15C.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  E(8)=200.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           E(9)=250.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   BL1=.523
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  11 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     A10=
             ں
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ب
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             J
```

STLADY

```
20 CGNTINCE NEW (BEZEX)AIPCS AND (DECEDA)/DE)AIPCS AS FUNCTIONS NEW HAVE (CEX A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY AND LITTLE FOR A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GIVEN FRESY A GI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FLUXP=ENTECTION (C1*ALSSA(1)+C2*DLESSA(1)+C2*SIG(1))
FLUXP=ENT*EXTERNEX**H*2.5978E1C
TAU=ENT/C6**PRE(1)*2.592E0
WRITE CUTPUT TAPE 3.3.11.cm, FLUXP, TAU
WRITE CUTPUT TAPE 3.7.CG,C1,C2
WRITE CUTPUT TAPE 3.7.CG,C1,C2
WRITE CUTPUT TAPE 3.8.ALGSSA(1)*DLESSA(1)*SIG(1)
Y*C1*ALCSSA(1)*C2*GLESSA(1)*C2*SIG(1)
WRITE CUTPUT TAPE 3.5,FN1,AX,YY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             EXI=*0496
C0=A0/(c1**2.*ENC/**R0*CCSF(ALAIU)**4)
C1=A1/(FNEC/**E1)
C2=A2*LNEA**E2
KCK=O
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FND(1,C,C,O,C,C,C,C,C,C,C,C,C,C,C,C)
Y(K)=LLLU3S(K)
CCNTIAC
CALL TABLI(GNLW,FANS,15)
DC 20 J=1,12
ALOSS#(J)=K(J)*ALCSS
BLOSS#(J)=K(J)*CANS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ALOSSA(1)=ALCSSA(2)
DLOSSA(1)=DLCSSA(5)
PKEL(1)=PYEL(5)
SIG(1)=51G(5)
KCK=1
WRITE GUIPUT TAPE 3,6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       IFIKCK) 301.31.301
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GU TO 30
PREL(1)=SVPR
SIG(1)=SVSG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         A2=AL2
30=8LC
81=8L1
82=8L2
EXT=.0484
6U TC 23
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00 10 200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          11=1+4.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             A2=AH2
B0=BH0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    AG=AHO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     AU=ALC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    17V=1V
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1 - 4 - 1 v
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     B1=6H1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        82=8F2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1=11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              301
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     21
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          23
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      300
                                                            2 C 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          3.1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         36
```

178

STEAUY

10/01/64

STCKAGE NCT USED BY PROGRAM

		100		01441 01422 01422		CCT 01257	01252	01240	01233	01221	01214		LUC 01165		01110		00000				160 00460 00751
		DEr		DEC 801 786		DEC 687	682	672	66.7	700	652		EFN 5		DEC 584		DEC O				125 125 167
			EMENTS	ELUSS	E STATEMENT	A+ 1	ALATC	811	C 2	SVSG	*		8) S		()		(FPT)			LUCATIONS	EFN 21 301
	STATEMENTS	DEC OCT	EGUIVALENCE STATEMENT	DEC OCT 715 C1313 703 C1277	OR ECUIVALENC	DEC	683	673	668		653	ATEMENTS	EFN LCC 4 01175 9 01126	PRUGRAM	DEC 0CT 32767 77777		DEC CC1	RARY	(1SF)	ERS AND OCTAL	1FN LCC 123 C0452 159 C0727
-	COMPCN		ANC	CLOSSA S16	OIMENSION,					SVPR		AN FCRMAT ST	819	NG IN SCURCE	. 4	ER VECTOR	(FIL)	PUT FROM LIBRARY	(511)	FURRULA NUMBERS	LFN 20 20 31
	PPEARIN	100	N CIMENSION	CCI (01353 4 01406	COMMUN	9 01261	4 01254	4 01242	9 01235	9 01223	4 01216	PRGGR	LUC 3 01262 6 01137	APPEARING	0CT 2 00766	TRANSFER	00.1 5 00005 1 00001	NCT CUTPUT	(*T%)		LUC 7 00435 8 00371
	LES A	CEC	ING IN	DEC 741 774	2	DEC 689						SCURCE	E E	NC1	DEC 502	ES IN	DEC			NG IN	111 111 145
	FCR VARIABLES APPEARING IN		SLES APPEARING	ਜ਼ੁਰ ਜ਼ੁਰ	NOT APPEARING	AZ	ALI	BFZ	0 រ	KCK.	-	FOR	# E E	HER SYMBOLS	<u> </u>	ICNS OF NAME	TAULE (13H)	TC SUBRULTINES	(FPT)	CCHRESPONDING INTERNAL	201 30
0CT 77423	ICRAGE LOCATIONS	0CT 77442	VARIABLES	C1372 C1334 C1334	ABLES NO	01262	01255	C1243	01236	01224	01717	AND LECATIONS	LCC 012C4 01147	FOR OTHE	00.760	LOCAFICNS	CC003	POINTS	(FIL)		LUC C0254 C0515
DEC 32531	כב רטכ	UEC 32546	UNS FOR	DEC 762 732	VARI	DEC 690	685 685	675	670	660	652	MBCLS 4	EFN 2 7	LOCATIONS	UEC 496		DEC 7	ENTRY	J	NUMBERS WITH	140 140
	SICRA	>	LUCATI	CELUSS PREL	LACATIONS FOR	14	ALO	BH1	6 V V	FLUXP	TAU	SYM	812	LOCA	2)		EXP(3		TABLE	. FCRMULA	EFN 500 23
01461		0CT 77461	STURAGE	UC1 01327 01460	STURAGE LE	LCT 01263	70	01244	01237	C1225	07270		LCC 01206 01160		01201 01201		C0000		EXP(3	EXTERNAL	LCC C0023 C0477 C0755
DEC 817		DEC 32561		DEC 727 816	STL	DEC 691			671	661			EFN 1 6		DEC 647		DEC 6 2				16N 16 133 169
		*		ALOSSA		PΟ	AHZ	940	3 10 C 10 V 20	EX.	Ē		5)1 8)6		2		COS (RTN)		CCS		EFN 11 22 300

TABLE

180

TABLE

10/01/64

STERAGE NET USED BY PROGRAM

		DEC CCT		0EC 0CT 105 C0151		DEC CCT 75 00113		DEC CCT				1FN LGC 14 CCO61 25 CO130
			STATEMENT	- -		D)4CA		_			LOCATIONS	EFN 22
	COMMON STATEMENTS	DEC OCT	ENSION. OR EQUIVALENCE	DEC OCT HI 106 C0152	N SCURCE PROGRAM	C/C 102 C0146	ECTCR	DEC OCT	REM LIBRARY		JLA NUMBERS AND OCTAL	EFN IFN LCC 21 12 CC053 42 24 C0123
	SIGRAGE LOCATIONS FOR VARIABLES APPEARING IN COMMON STATEMENTS	0 t C 0 C T	STURAGE LECATIONS FOR VARIABLES NOT APPEARING IN COMMON. DIMENSION. OR EQUIVALENCE STATEMENT	0EC CCT FO 1C7 00153	LOCATIONS FOR CTHER SYMUCLS NOT APPEARING IN SCURCE PROGRAM	0kc 0CT 6) 93 00135	LUCATIONS OF NAMES IN TRANSFER VECTOR	DEC 001	ENTRY POINTS TO SCHROLTINES NOT GUTPUT FROM LIBRARY		EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS	EFA IFA LCC 11 1C COU45 41 22 COII1
LEC 001 32531 77423	SIGRAGE LOCATIONS FO	UEC 0CT Y 32546 1745	CNS FOR VARIABLES NCT	LEC OCT A 1ÇB G0154 Y1 1C3 C0147	LOCATIONS FOR CTHER	DEC GCT 2) 92 00134 E)C 82 C0122	LLCATICA	LCG CCT	ENTRY POINTS TO		RMULA NUMBERS WITH COR	EfN 1FN LCC 10 5 CC043 5C 21 CC114
0LC CC1 110 CV156		DEC CC1 X 32561 77461	STURAGE LECATI	DEC CCT ANS 109 CC155 YO 104 CO150		DEC CC1 1) 99 CC143 E)7 43 CCC60		DEC LC1 LC001		Exp LCC	EXTERNAL FC	EFN IFN - LGC 12 e GCG31 20 20 CO111

F. Input

Input to this program occurs on logical tape 2 and consists of B, L, λ , R(1), ..., R(12) Σ (1), ..., Σ (12) for each case under consideration. As with the conservation equation calculation the B-L- λ card is followed by two R cards which are followed in turn by two Σ cards. The control cards are left out of this program since there is only one method of computation available here.

1. Input Card Description

	Columns	Mode	Quantity	Units	Description
B - L -λ	1-8	${f F}$	ALAT	degrees	latitude
Card	9-16	F	EL	earth radii	magnetic field line
	17-24	\mathbf{F}	В	gauss	magnetic induction
First					
R Card	1-10	${f E}$	R(1)	_	scale factor R for TIME(1)
	11-20	${f E}$	R(2)	-	scale factor R for TIME(2)
	21-30	${f E}$	R(3)	_	scale factor R for TIME(3)
	31-40	E	R(4)	-	scale factor R for TIME(4)
	41-50	${f E}$	R(5)	_	scale factor R for TIME(5)
	51-60	\mathbf{E}	R(6)	-	scale factor R for TIME(6)
Second					
R Card	1-10	\mathbf{E}	R(7)	_	scale factor R for TIME(7)
	11-20	\mathbf{E}	R(8)	~	scale factor R for TIME(8)
	21-30	${f E}$	R(9)	-	scale factor R for TIME(9)
	31-40	\mathbf{E}	R(10)	~	scale factor R for TIME(10)
	41-50	\mathbf{E}	R(11)	~	scale factor R for TIME(11)
	51-60	\mathbf{E}	R(12)	-	scale factor R for TIME(12)
First					
Σ Card	1-10	E	SIG(1)	atoms/cm	atmospheric loss parameter ∑ for TIME(1)
	11-20	E	SIG(2)	atoms/cm	atmospheric loss parameter Σ for TIME(2)
	21-30	E	SIG(3)	atoms/cm	atmospheric loss parameter Σ for TIME(3)
	31-40	E	SIG(4)	atoms/cm	atmospheric loss parameter Σ for TIME(4)

	Columns	Mode	Quantity	Units	Description
	41-50	E	SIG(5)	atoms/cm	atmospheric loss parameter ∑ for TIME(5)
	51-60	E	SIG(6)	atoms/cm	atmospheric loss parameter Σ for TIME(6)
Second					
Σ Card	1-10	E	SIG(7)	atoms/cm	atmospheric loss parameter Σ for TIME(7)
	11-20	E	SIG(8)	atoms/cm	atmospheric loss parameter Σ for TIME(8)
	21-30	E	SIG(9)	atoms/cm	atmospheric loss parameter Σ for TIME(9)
	31-40	E	SIG(10)	atoms/cm	atmospheric loss parameter Σ for TIME(10)
	41-50	E	SIG(11)	atoms/cm	atmospheric loss parameter Σ for TIME(11)
	51-60	E	SIG(12)	atoms/cm	atmospheric loss parameter Σ for TIME(12)

GENERAL PURPOSE DATA SHEET

2. Sample

Problem	Ę	Z	INPUT - STEADY	-ST	EAD	Y ST	STATE					İ		ĺ																									_
Sponsor	8	1	TAPE	2											Date	2		SAMPLE	빌							Poge							Jo .						
1 2 3	4	6.7	0, 6 9	=	H 8 2	8	8 4	8	8	8	16	B	R	易留	R Si	解	19	育用	8	2	1			16	28 28	8	45 96	8	9	8	8	19	8	R	27 27	4 ×	7. 8.7	R	8
																									\vdash				-							_			
9	6	7 3	0	Ė	1 4	2 0		0	2 2	3 9																													
0 . 2	7 8	3 E	- 11		2 9	8 6	E		0	5 6	က	6 E .		1 0	_	6 0	9 E	- 1	0 0	-	2 0	8 E	- 1	0 0	. 1	0 4	3 E	-11	0										
0 8	5 7	7 E -	111	0	6 2	0 1	E –	1	0	4 4	3	8 E .	-	1 0	. 3	8 9	l E	- 1	1 0	. 2	9 8	6 E	ارا –	1 0	. 2	7 8	5 E .	- 1	1										
0 . 3	9 8	4 E	– اا ا	7 0	4 2	7 8	E –	1 7	0	8 1	9	E	=	7 0	_	5 9	3 6	_ 1	0 9	[1]	7 6	5 E	- 1	0 9	1	5 2	2 E .	- 1	9										
	2 4	9 E -	- 16	0	89	9 1	E	17	0	6 4	0	4E -	-	7 0	. 5	29	3 E		7 0	. 4	2 7	8 E	- 1	7 0	. 3	9 8	4 E -	- 1	7										
4	9	7 3 (0		1 4	2 0			2 1	8 9																			_										
0 . 3	7 4	4 E	_ 1 3		4 2	4 5	n I	1 3	0	1	•	8 E	-	2 0	4	9 7	7 E	-	2 0	•	9 0	5 E	-	2 0	4	5 0	9 E	- 1	2										
0 .	0 5	9 E	- 12	0	1 6	3	Щ	1 2	0	8 7	_	Н	-	3 0	9	- 9	9 0	_	3 0	4	2 4	5 E	-	3	·	7 4	4 E	-	3									-	
0 . 5	6 3	3 E -	- 19	0	6.3	3 9	П П	٥ -		- 6	3	ш	-	0	9	0 6	7 E	-	0	œ	4	6 E	_	8	9	2 6	OE.	-	8										
0 . 4	2 6	1 E	- 18	0	2 3	0 6	E _	1 8	0	1 2	5	OE.	-	8 0	. 9	0 3	8 E	- 1	0 6	. 6	3 3	9 E	-11	9 0	. 5	6 3	3 E -	- 11	6										
2	. 9	7 3	0	\equiv	1 4	2 0		0	2 1	2 1												=																	
0 . 2	0 1	6 E	-14	0	2 3	3 1	E	1 4		9	4	ш	-	4 0	4	9 5	3	-	3 0	9	4 3	5 E	-	3 0	4	3.4	5E	=	3										
0 . 2	6 1	9E-	- 1 3		Ξ	8 2	ш	13	0	5 3	ж ж	ш	-	4 0	ب	0 9	3 E	_	4 0	. 2	3 3	ш	-11	4 0	. 2	0 1	6E-	Ė	4										
0 . 7	8 7	8 E	- 2 0	0	8	9 7	Ē	2 0		2 3	0	ш	-	0	œ •	2 4	9 E	-	0 6	-	0 2	3 E	-11	8 0	7	4 0	4 E	-	0	\exists									
0 . 4	9 3	끯	- 19	0	2 7	0 4	E	1 9		1 5	4	ш	-	0 6	-	1 7	0 E	- 1	0 6	∞	6 9	7 E .	- 2	0 0	. 7	8 7	8 E	- 2	0										
0	6	7 3	0		1 4	2 0			2 0	6	_																												
0 . 5	7 8	9 E -	- 15	0	6 4	5 0	E _	1 5	0	- 9	4	3 E	=	0	6	4 7	9 9	-	4 0	-	2 5	3 E	-11	3 0	80	2 4	ıE.	-	4			_							
. 4	9 1	5 E -	- 14	9	2 3	4 2	E	1 4	0	12	1 7	П	-	0	∞	9 2	4 E	-	5 0	9	4 5	0 E	_ 1	5 0	. 5	7 8) E	=	5										
0	9 2	7 E .	- 2 0	0	4 3	0 4	1 113	2 0		-	0	ш	-	0 6	. 2	7 5	4 E	-	0 6	ω.	2 5	5 E	-	9 0	. 2	5 3 ;	3 E	-	9	-		-							
- 0	8 5	1 <u>E</u>	- 19	<u></u>	Ξ	5 2	<u>п</u>	6	0	7 2	7 3	ш	- 2	0 0	. 5	9 9	8 E	-2	0 0	4	3 0	4 E	- 2	0 0	. 3	9 2	7 E -	- 2 (0										
							-									_		\dashv			\exists																		
				_	_																																		
																						_										\Box							
	\exists		\exists			\exists	_]	\exists	\exists	\exists	\exists		\dashv	\dashv	\dashv	\exists		긕		=		\dashv	\exists	\dashv	\dashv	\exists	目	_	二	\exists		\dashv	\dashv	\dashv		\Box		\dashv	

GSFC FORM 541-1 (July - 60)

G. Output

Output for this program occurs on tape 3. Time, density, flux, mean lifetime, dE/dX, d(dE/dX)/dE, Σ , source and loss are all printed for each energy level at a given B, L and latitude. The headings are listed below with explanations and dimensions:

TIME - time - years

N(E) - density - # protons/cm³ Mev.

FLUX - flux - # protons/cm² sec. Mev.

MEAN LIFETIME - proton mean lifetime - sec.

 $C0 - C_0$ (see MNEMONICS) - # protons/cm³ sec. Mev.

C1 - C, (see MNEMONICS) - cm/sec. Mev.

C2 - C₂ (see MNEMONICS) - cm/sec. Mev.

ALOSSA - (dE/dX) ATMOS - Mev./cm.

DLOSSA - (d(dE/dX)/dE) ATMOS - cm^{-1}

 $SIG - \Sigma - atoms/cm$

SOURCE - conservation equation source term - # protons/cm3 Mev.

LOSS - conservation equation loss term - # protons/cm3 Mev.

ENERGY - energy - Mev.

LATO - latitude - degrees

L - magnetic field line - earth radii

B - magnetic induction - gauss

```
LATO= 12.954 L= 1.188
                            \theta = 0.2331
         ENERGY= 10.00MEV
                           N(E)
        TIME
                                                 FLUX
                                                                MEAN LIFETIME
                        0.7172E-13
                                                0.00031
         0.
                                                                 0.30695E-04
   CO = 0.72115E-15
                        C1= 0.10386E 09
                                             C2 = 0.21759  10
  3S4= 0.47404E-10 DLOSSA= 0.35124E-11
                                            SIG= 0.13080E-14
 N(E) = 0.71720E - 13 SOURCE = 0.90144E - 15
                                           LOSS= 0.12569E-01
                            N(E)
                                                  FLUX
                                                                 MEAN LIFETIME
        TIME
                         0.7083E-13
         4.000
                                                 0.00031
                                                                 0.37893E-04
    CO= 0.72115E-15
                        C1= 0.10386E 09
                                             C2= 0.21/59E 10
ALDSSA= 0.38400E-10 DLOSSA= 0.28452E-11
                                            SIG= 0.10610z-14
  N(E) = 0.708316-13 SOURCE = 0.72115E-15
                                           LOSS= 0.10181E-01
         ENERGY=
                  25.00MEV
                            N(E)
        TIME
                                                  FLUX
                                                                 MEAN LIFETIME
                         0.2246E-13
                                                 0.00015
                                                                  0.95765E-04
                        C1= 0.64318E 08
                                             C2= 0.33586E 10
    CO= 0.72376E-16
ALOSSA= 0.22595E-10 DLUSSA= 0.76320E-12
                                            SIG= 0.130806-14
  N(E) = 0.22457E - 13 SQURCE = 0.90470E - 16
                                           LOSS= 0.40286E-02
        TIME
                                                  FLUX
                                                                MEAN LIFETIME
         4.000
                         0.2218E-13
                                                 0.00015
                                                                  0.11822E-03
                        C1= 0.643185 08
    CO = 0.72376E-16
                                             62= 0.33686E 10
ALDSSA= 0.18303E+10 DLOSSA= 0.61823E-12
                                             SIG= 0.10010E-14
  N(F)= 0.22178E-13 SOURCE= 0.72376E-16
                                           LOSS= 0.326346-02
         ENERGY=
                  50.00MEV
        TIME
                                                                 MEAN LIFETIME
                                                  FILLIX
                         0.99815-14
         0.
                                                 0.00009
                                                                  0.2422/E-03
    CO= 0.12715E-16
                        C1= 0.44760E 08
                                             C2= 0.46386E 10
ALOSSA= 0.12956E-10 DLUSSA= 0.21465E-12
                                            SIG= 0.13080E-14
  N(E)= 0.99806E-14 SOURCE= 0.15894E-16
                                            LOSS= 0.15925E-02
                                                                 MEAN LIFETIME
        TIME
                            N(F)
                                                  FLUX
                         0.98578-14
                                                                  0.29908E-03
         4.000
                                                 0.00009
    CO = 0.12715E-16
                        C1= 0.44760E 08
                                             C2= 0.46886E 10
ALOSSA = 0.10495E-10 DLUSSA = 0.17387E-12
                                             SIG= 0.10610E-14
  N(E) = 0.98567E-14 SCURCE = 0.12715E-16
                                            LOSS= 0.12900E-02
         ENERGY=
                   75.00MEV
        TIME
                            N(E)
                                                                 MEAN LIFETIME
                                                  FLUX
                         0.63685-14
                                                 0.00007
                                                                  0.42753E-03
         0.
    CO= 0.45973E-17
                         C1= 0.36207E 08
                                             C2= 0.56891E 10
ALOSSA= 0.94431E-11 OLOSSA= 0.97214E-13
                                             SIG= 0.13080E-14
  N(E) = 0.63681E-14 SUURCE= 0.57466E-17
                                            LOSS= 0.90241E-03
        TIME
                            M(E)
                                                                 MEAN LIFETIME
                                                  FLUX
         4.000
                         0.6289E-14
                                                 0.00007
                                                                  0.527776-03
    CO= 0.45973E-17
                         C1= 0.36207E 08
                                             C2= 0.56591E 10
ALOSSA= 0.76493E-11 DLOSSA= 0.78748E-13
                                             SIG = 0.10610E - 14
  N(E)= 0.62890E-14 SOURCE= 0.45973E-17
                                            LOSS= 0.73100E-03
         ENERGY= 100.00MEV
        TIME
                                                                 MEAN LIFETIME
                                                  FLUX
         0.
                         0.4893E-14
                                                 0.00005
                                                                  0.69244E-03
                                              C2= 0.65475E 10
    CO= 0.21809E-17
                         C1= 0.22509E 08
ALOSSA= 0.76002F-11 DLOSSA= 0.57659E-13
                                             SIG= 0.13080E-14
  N(E)= 0.48928E-14 SOURCE= 0.27261E-1/
                                            LOSS= 0.55716E-03
        TIME
                                                                 MEAN LIFETIME
                            N(E)
                                                  FLUX
         4.000
                         0.4832E-14
                                                 0.00006
                                                                  0.85480E-03
    C0 = 0.21509E-17
                         C1= 0.22509E 08
                                              C2= 0.65475E 10
ALOSSA= 0.61565E-11 0LOSSA= 0.46707E-13
                                             SIG= 0.10610e-14
  N(C) = 0.48320E-14 SOURCE = 0.21309E-17
                                            LOSS= 0.45134E-03
         ENERGY= 125.00MEV
        TIME
                                                                 MEAN LIFETIME
                            4(E)
                                                  FLUX
         0.
                                                                  0.952895-03
                         0.38125-14
                                                 0.00005
    CO= 0.12348E-17
                         C1= 0.19444E U8
                                              C2= 6.76599E 10
ALOSSA= 0.64599E-11 DLOSSA= 0.38193E-13
                                             SIG= 0.13080E-14
  N(E) = 0.38123E-14 SOURCE = 0.15435F-17
                                            LOSS= 0.40488E-03
                                                                 MEAN LIFETIME
        LIME
                            N(E)
                                                  FLUX
         4.000
                                                                 0.11763E-02
                         0.37658-14
                                                 0.00005
```

		0.1.0.10.4.4.5.00		
		C1= 0.19444E 08	C2= 0.70599E 10	
		OLOSSA= 0.30938E-13	SIG = 0.10510E - 14	
M(F)=		SOURCE = 0.12348E-17	LUSS= 0.32798E-03	
	ENERGY= 1			
	TIME	N(E)	FLUX	MEAN LIFETIME
	0.	0.3115E-14	0.00005	0.12391E-02
	0.77584E-18		C2= 0.75275E 10	
		DLOSSA= 0.27029E-13	SIG= 0.13080E-14	
14 (€) =	U.311485-14	SOURCE= 0.96980E-18	LOSS= 0.31135E-03	
	TIME	N(E)	FLUX	MEAN LIFETIME
	4.000	0.3076E-14	0.00005	0.152962-02
C O =	0.77584E-18	C1= 0.17252E 08	C2= 0.75275E 10	
ALOSSA=	0.46035E-11	DLDSSA= 0.21895E-13	SIG= 0.10610E-14	
N(E)=	0.30/61E-14	SOURCE= 0.77584E-18	LOSS= 0.25222E-03	
	ENERGY= 20	00.00MEV		
	TIME	N(E)	FLUX	MEAN LIFETIME
	0.	0.2258E-14	0.00004	0.18701E-02
CO=	0.37265E-18		C2= 0.83106E 10	
		DLOSSA= 0.15451E-13	SIG= 0.13080E-14	
		SUURCE= 0.46582E-18	LOSS= 0.20630E-03	
	LIME	N(E)	FLUX	MEAN LIFETIME
	4.000	0.2230E-14	0.00004	0.23084E-02
Ca=	U.37265E-18		C2= 0.83106E 10	0.230842 02
		DLUSSA= 0.12516E-13	SIG= 0.10610E-14	
		SUURCE= 0.37265E-18		
3/10/2	ENERGY= 2:	- · · · · · - · · - · -	LOSS= 0.16713E-03	
	- · · · · - · · - ·	N(E)	1.1.10	MTAS LICETIAN
	TIME O.	0.1753E-14	FLUX	MEAN LIFETIME
CO-		C1= 0.12340E 08	0.00003	0.25641E-02
		DLOSSA= 0.98392E-14	C2= 0.89736E 10 SIG= 0.13080E+14	
		SOURCE= 0.26375E-18	LOSS= 0.15046E-03	
(41L)-	TIME	N(E)	FLUX	MEAN LIFETIME
	4.000	0.1731E-14	0.00003	0.31651E-02
C 0-		C1= 0.12340£ 08	C2= 0.89736E 10	0.316312-02
		DLOSSA= 0.79702E-14 SOURCE= 0.21100E-18	SIG= 0.10610E-14	
14 f E) -			LOSS= 0.12189E-03	
	ENERGY= 30 TIME	N(E)	FLUX	MEAN LIFETIME
	0.	0.1404E-14	0.00003	0.32680E-02
C0-		C1= 0.10949E 08		0.32000E-02
		DLOSSA= 0.68303E-14		
		SOURCF = 0.16571F-18	-	
14 (E) -			LOSS= 0.11805E-03	MCAN LICTIM
	TIME	N(E)	FLUX	MEAN LIFETIME
6.0	4.000	0.13866-14	0.00003	0.40338E-02
	0.13257E-18			
		DLOSSA= 0.55329E-14	SIG = 0.10610E - 14	
N(F) ≠		SOURCE = 0.13257E-18	LUSS= 0.95643E-04	
	ENERGY= 35			
	TIME	N(E)	FLUX	MEAN LIFETIME
	0.	0.1142E-14	0.00002	0.39376E-02
	0.89495E-19		C2 = 0.10075E 11	
		DLOSSA= 0.50877E-14	SIG = 0.13080E - 14	
N(E)=		SUURCE= 0.11187E-18	LOSS= 0.97978E-04	
	TIME	N(E)	FLUX	MEAN LIFETIME
	4.000	0.1127E-14	0.00002	0.48601E-02
C0=	0.89495E-19	C1= 0.98958E 07	C2= 0.10075E 11	
ALOSSA=	0.27458E-11	DLOSSA= 0.41212E-14	SIG= 0.10610E-14	
N(E)=	0.11274E-14	SOURCE= 0.89495E-19	LOSS= 0.79381E-04	
	ENERGY= 4	DO.OOMEV		
	TIME	N(E)	FLUX	MEAN LIFETIME
	0.	0.9561E-15	0.00002	0.46341E-02
	0.63676E-19		$0.2 = 0.10548 \pm 11$	
_		DLOSSA= 0.38580E-14	SIG = 0.13080E - 14	
N(E)=	0.95607E-15	SDURCE= 0.79596E-19	LUSS= 0.83253E-04	
	0.75001E 15			
	TIME 4.000	N(E)	FLUX 0.00002	MEAN LIFETIME 0.57195E-02

```
C1= 0.90659E 07
                                             C2= 0.10548E 11
    CO= 0.63676E-19
ALOSSA= 0.25697F-11 DLUSSA= 0.31252E-14
                                            SIG= 0.10510E-14
  N(E) = 0.94400E-15 SOURCE= 0.63676E-19
                                           LOSS= 0.674546-04
         ENERGY= 500.00MEV
                                                  FLUX
                                                                 MEAN LIFETIME
        TIME
                            N(\pm)
                         0.6953E-15
         0.
                                                 0.00002
                                                                 0.59518E-02
                        C1= 0.78313E U7
                                              C2= 0.11390E 11
    CO= 0.36654E-19
   SSA= 0.28715E-11 0LOSSA= 0.24088E-14
                                             SIG= 0.13080c-14
  N(E)= 0.69526E-15 SOURCE= 0.45068E-19
                                            LOSS= 0.64821E-04
                                                  FLUX
                                                                 MEAN LIFETIME
        TIME
                            N(E)
                         0.6864E-15
                                                 0.00002
                                                                  0.734516-02
         4.000
                                             C2= 0.11390E 11
                         C1= 0.78313E 07
    CO= 0.36054E-19
                                             SIG= 0.106106-14
ALOSSA = 0.23260F-11 DLOSSA = 0.19512E-14
  N(2) = 0.68642E-15 SOURCE= 0.36054E-19
                                            LOSS= 0.52525E-04
         EMERGY= 600.00MEV
        TIME
                            N(E)
                                                  FLUX
                                                                 MEAN LIFETIME
                         0.52485-15
                                                 0.00001
                                                                  0.714995-02
         0.
                         C1= 0.69485E 07
                                              C2= 0.12127E 11
    CO= 0.22653E-19
ALOSSA= 0.26761E-11 OLOSSA= 0.16081E-14
                                             SIG= 0.13080E-14
  N(C) = 0.5247/E-15 SQUACE = 0.28316E-19
                                            LDSS= 0.53959E-04
                                                                 MEAN LIFETIME
        TIME
                            N(E)
                                                  FLUX
         4.000
                         0.51818-15
                                                 0.00001
                                                                  0.88230E-02
    CO= 0.22653E-19
                         C1= 0.69485E 07
                                              C2= 0.12127E 11
ALOSSA= 0.21678F-11 DLOSSA= 0.13026E-14
                                             $16= 0.10610E-14
  N(E) = 0.51805E-15 SOURCE= 0.22653E-19
                                            LOSS= 0.43727E-04
         FNERGY= 700.00MEV
                            NIE
                                                  FLUX
                                                                 MEAN LIFETIME
        TIME
                         0.4033E-15
                                                 0.00001
                                                                  0.81399E-02
                                              62= 0.12788E 11
                         C1= 0.62302E 07
    CO= 0.152926-19
ALOSSA= 0.25414E-11 DLOSSA= 0.11503E-14
                                             SIG= 0.13080E-14
  N(E) = 0.40331E-15 SQURCE= 0.19115E-19
                                            LOSS= 0.47397E-04
                                                                 MEAN LIFETIME
                            N(E)
                                                  FLUX
                                                                  0.10044E-01
         4.000
                         0.3981E-15
                                                 0.00001
    CO= 0.15292E-19
                         C1= 0.62302E 07
                                              C2= 0.12/88E 11
ALOSSA = 0.20586E-11 DLOSSA = 0.93180E-15
                                             SIG= 0.10610E-14
  N(E) = 0.398118-15 SOURCE = 0.15292E-19
                                            LOSS= 0.38412E-04
```

H. Running Time

This program will do eleven cases in a minute and a half.

IX. REFERENCES

- 1. Blanchard, R.C., Hess, W.N., "Solar Cycle Effects in Inner Zone Protons," NASA, GSFC Publ. X-640-64-50, March, 1964.
- 2. Harris, I., and Priester, W., "Theoretical Models for the Solar-Cycle Variation of the Upper Atmosphere," NASA, GSFC publ. X-640-62-70, June 1962.
- 3. McIlwain, C.E., "Coordinates for Mapping the Distribution of Magnetically Trapped Particles," <u>Journal of Geophysical Research</u>, vol. 66, (1961), pp. 3681-3691.
- 4. Jensen, D.C., and Cain, J.C., unpublished, presented at April, 1962, meeting of the American Geophysical Union, Washington, D.C.
- 5. Ray, Ernest, C., "On the Theory of Protons Trapped in the Earth's Magnetic Field," Journal of Geophysical Research, vol. 65, no. 4, April, 1960, pp. 1125-1133.
- 6. Scarborough, J.B., <u>Numerical Mathematical Analysis</u>, 3rd Edition, Oxford University Press, copyright, 1955.
- 7. Aron, W.A., Hoffman, B.C., Williams, F.C., "Range-Energy Curves" (2nd Rev. 1949) U.S.A.E.C., Univ. of Calif. Rad. Lab.

X. ILLUSTRATIONS

Figure 1–A time history of the 10.7 cm solar flux according to the measurements of the National Research Council of Canada for the recent past. The heavy dotted line indicates the approximate yearly average.

Figure 2-A mapping of the polar coordinates R and λ onto the B-L plane where R = (h + 6378.2)

g (danzz)

Figure 3-B-L contours for the northern hemisphere at an L of 1.25 earth radii

Figure 4–B-L contours for the southern hemisphere at an L of 1.25 earth radii

WHERE:

- ds Element of Arc along the particle's helical trajectory
- dl Element of Arc along the field line

Figure 5-Schematic of a trapped particle's north-south motion

Figure 6-The weighing factor, A(λ), versus latitude for various mirror latitudes, $\lambda_{\rm o}$, where $\lambda_{\rm o}$ are the asymptotes of each curve

Figure 7-A time history of the atmosphere scale factor, R, as a function of B at $L=1.25\ e.r.$

Figure 8-A time history of the atmospheric loss parameter Σ , as a function of B at L = 1.25 e.r.

Figure 9-A time history of the constructed mean solar cycle variation of the 10.7 cm. solar flux with reference time $t_{\rm o}$ of Jan., 1954

Figure 10-A time history of the relative inner belt source strength

Figure 11-The proton energy loss spectrum for an oxygen target

Figure 12-The slope of proton energy loss versus energy for an oxygen target

 \mathbb{C}^{2}

Figure 13-A comparison of the steady-state and transient proton flux energy spectrums for $L=1.25,\ B^{\bullet}=.199$ at solar minimum and solar maximum

۲.

Figure 14-The time required in terms of solar cycles to build steady state conditions versus energy as a function of B

Figure 15-A time history of proton flux as a function of energy at L \approx 1.25, B = .209 for the first and tenth solar cycles