Speaker adaptation

JHU Summer Workshop, 2009

29 July 2009

Outline

- Speaker-dependent characteristics present in acoustic data
- Modeling speaker characteristics vastly improve recognition performance

Outline

- Speaker-dependent characteristics present in acoustic data
- Modeling speaker characteristics vastly improve recognition performance
- Speaker vectors
- Constrained Maximum Likelihood Linear Regression (CMLLR)
- Subspaces for CMLLR

Phoneme2

Phoneme2

- ullet Speaker-factor in Gaussian mean: $\mu_{jmi} = \mathbf{M}_i \, \mathbf{v}_{jm} + \mathbf{N} \, \mathbf{v}^{(s)}$
- Widely used in speaker identification systems

Constrained Maximum Likelihood Linear Regression

• Transform of the observation space to maximize likelihood under current model: $\mathbf{x}^{(s)} = \mathbf{A}^{(s)}\mathbf{x} + \mathbf{b}^{(s)}$

- Speaker-specific mean: $\mu^{(s)} = \mathbf{A}^{(s)} \mu + \mathbf{b}^{(s)}$
- Speaker-specific variance: $\Sigma^{(s)} = \mathbf{A}^{(s)} \Sigma \mathbf{A}^{(s)^{\top}}$

- ullet The auxiliary function is quadratic in $oldsymbol{W} = [oldsymbol{A}\,,\,oldsymbol{b}]$
- Estimating **W** requires solving $(d^2 + d)$ simultaneous equations in $(d^2 + d)$ variables
 - Invert $(d^2 + d) \times (d^2 + d)$ matrix. $O(d^6)$ complexity.

- ullet The auxiliary function is quadratic in $oldsymbol{W} = [oldsymbol{A}\,,\,oldsymbol{b}]$
- Estimating **W** requires solving $(d^2 + d)$ simultaneous equations in $(d^2 + d)$ variables
 - Invert $(d^2 + d) \times (d^2 + d)$ matrix. $O(d^6)$ complexity.
- Can be simplified for diagonal covariance case. Row-by-row update [Gales & Woodland, 1996].

- ullet The auxiliary function is quadratic in $oldsymbol{W} = [oldsymbol{A}\,,\,oldsymbol{b}]$
- Estimating **W** requires solving $(d^2 + d)$ simultaneous equations in $(d^2 + d)$ variables
 - Invert $(d^2 + d) \times (d^2 + d)$ matrix. $O(d^6)$ complexity.
- Can be simplified for diagonal covariance case. Row-by-row update [Gales & Woodland, 1996].
- For full covariance case, row-by-row update still requires computing $O(d^4)$ statistics [Sim & Gales, 2005].

- ullet The auxiliary function is quadratic in $oldsymbol{W} = [oldsymbol{A}\,,\,oldsymbol{b}]$
- Estimating **W** requires solving $(d^2 + d)$ simultaneous equations in $(d^2 + d)$ variables
 - Invert $(d^2 + d) \times (d^2 + d)$ matrix. $O(d^6)$ complexity.
- Can be simplified for diagonal covariance case. Row-by-row update [Gales & Woodland, 1996].
- For full covariance case, row-by-row update still requires computing $O(d^4)$ statistics [Sim & Gales, 2005].
- Optimal W can be computed using Newton's method.
- Computing inverse Hessian (matrix of second derivatives) will still require $O(d^4)$ storage, $O(d^6)$ computation.

Our approach

- Transform the data and model, such that:
 - average within-class variance is unit
 - covariance of the mean vectors is diagonal
 - average mean is zero.
- Transformation with expected Hessian simplifies to $O(d^2)$ computation.

Our approach

- Transform the data and model, such that:
 - average within-class variance is unit
 - covariance of the mean vectors is diagonal
 - average mean is zero.
- Transformation with expected Hessian simplifies to $O(d^2)$ computation.

Optimation steps

- Compute the local gradient: P
- $oldsymbol{Q}$ Compute gradient in transformed space: $oldsymbol{ ilde{P}}$
- ① Proposed change in f W in this space: $ilde{\Delta}=rac{1}{eta} ilde{f P}$
- ① Transform $\tilde{\Delta}$ back to the original space, and update:
 - $\mathbf{W} \leftarrow \mathbf{W} + k\Delta$
 - Optimal value of k can be computed iteratively

CMLLR Subspaces

- Extending the idea of parameter subspaces to CMLLR transforms
- Express $\mathbf{W}^{(s)}$ as a linear combination of orthonormal basis matrices

$$\mathbf{W}^{(s)} = \mathbf{W}_0 + \sum_{b=1}^B \lambda_b^{(s)} \mathbf{W}_b$$

CMLLR Subspaces

- Extending the idea of parameter subspaces to CMLLR transforms
- Express $\mathbf{W}^{(s)}$ as a linear combination of orthonormal basis matrices

$$\mathbf{W}^{(s)} = \mathbf{W}_0 + \sum_{b=1}^B \lambda_b^{(s)} \mathbf{W}_b$$

Parameter update in the transformed space modified as:

$$\tilde{\Delta} = \frac{1}{\beta} \sum_{b=1}^{B} \tilde{\mathbf{W}}_b \operatorname{Tr}(\tilde{\mathbf{W}}_b \tilde{P}^{\top})$$

CMLLR Subspaces

- Extending the idea of parameter subspaces to CMLLR transforms
- Express $\mathbf{W}^{(s)}$ as a linear combination of orthonormal basis matrices

$$\mathbf{W}^{(s)} = \mathbf{W}_0 + \sum_{b=1}^B \lambda_b^{(s)} \mathbf{W}_b$$

Parameter update in the transformed space modified as:

$$\tilde{\Delta} = \frac{1}{\beta} \sum_{b=1}^{B} \tilde{\mathbf{W}}_b \operatorname{Tr}(\tilde{\mathbf{W}}_b \tilde{P}^{\top})$$

 Helps us to perform speaker-adaptation with relatively little adaptation data

Adaptation per speaker

System	% Accuracy
Baseline	50.3
+ speaker vectors	51.0
+ CMLLR	51.7
+ speaker vectors $+$ CMLLR	52.0

Adaptation per utterance

System	% Accuracy
Baseline	50.3
+ CMLLR	50.3
+ CMLLR subspaces	50.8