Dataset Description

We benchmarked on the Bitcoin Alpha trust network

• **Nodes**: 3,783

• **Edges**: 24,186 (directed, weighted, signed)

• **Edge weights**: -10 to +10 (trust score)

Source: https://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html

Member 1

1. Machine Specification

Component	Specification
Model	HP Pavilion x360
Name	
Chip	Intel core i5 10th Generation
Memory	8 GB
Storage	512 GB SSD
OS	Windows

2. Algorithms and Complexity Analysis

2.1 Dijkstra's Algorithm

Procedure Dijkstra(G, S)

BEGIN

Initialize distances: $dist[S] \leftarrow 0$, others $\leftarrow \infty$

Initialize priority queue PQ with (0, S)

WHILE PQ is NOT EMPTY DO

$$(d, U) \leftarrow EXTRACT-MIN(PQ)$$

IF $d \ge dist[U]$ THEN CONTINUE

FOR EACH V in Neighbors of U DO

IF
$$dist[U] + weight(U, V) < dist[V]$$
 THEN
$$dist[V] \leftarrow dist[U] + weight(U, V)$$

$$parent[V] \leftarrow U$$

INSERT/UPDATE PQ with (dist[V], V)

END IF

END FOR

END WHILE

END

Best Case:

Time: $O((V + E) \log V)$

- Occurs when the graph is sparse ($E \approx V$) and the priority queue operations are efficient. Each vertex is extracted once (O(V log V)), and each edge is relaxed once (O(E log V)).
- In our dataset (\sim 3,783 nodes, \sim 15,000 edges), this is typical since E is relatively small compared to V².

Average Case:

Time: $O((V + E) \log V)$

• On average, Dijkstra's explores most vertices and edges, with priority queue operations dominating the runtime. The binary heap implementation ensures O(log V) per operation (extract-min and decrease-key).

Worst Case:

Time: $O((V + E) \log V)$

• Happens when the graph is dense ($E \approx V^2$). Each vertex is processed once, and each edge relaxation involves a priority queue update. For our dataset, this isn't the case, but the complexity remains the same due to the priority queue.

Space Complexity:

- O(V) for the distance array, parent array, and priority queue (stores up to V vertices).
- Total space: O(V).

2.2 Bellman-Ford Algorithm

Procedure BellmanFord(G, S)

BEGIN

```
Initialize distances: dist[S] \leftarrow 0, others \leftarrow \infty

FOR I = 1 TO |V| - 1 DO

FOR EACH edge (U, V, w) in G.E DO

IF dist[U] + w < dist[V] THEN

dist[V] \leftarrow dist[U] + w

parent[V] \leftarrow U

END IF
```

END FOR

IF no updates in this iteration THEN BREAK

END FOR

END

Best Case:

Time: O(V + E)

• Occurs when early termination kicks in after the first iteration (e.g., a graph where the source is isolated or distances stabilize quickly). Only one pass over all edges is needed.

Average Case:

Time: O(VE)

• Typically, Bellman-Ford performs V-1 iterations over all edges to ensure shortest paths are found. For our dataset (~3,783 nodes, ~15,000 edges), this is significant but mitigated by early termination if updates cease.

Worst Case:

Time: O(VE)

• Happens when the graph requires the full V-1 iterations to compute shortest paths (e.g., a path graph where distances update in each iteration). For our dataset, this means $\sim 3,783 \times 15,000$ operations, which is computationally expensive.

Space Complexity:

- O(V) for the distance and parent arrays.
- O(E) for storing the edge list (though this is part of the input).
- Total space: O(V), excluding the edge list.

2.3 Diameter (Using All-Pairs Dijkstra's)

Procedure ComputeDiameter(G)

BEGIN

Initialize max dist $\leftarrow 0$

FOR EACH U in G.V DO

CALL Dijkstra(G, U) to get distances dist[]

FOR EACH V in G.V DO

IF
$$dist[V] \neq \infty$$
 AND $dist[V] > max_dist$ THEN

 $max dist \leftarrow dist[V]$

Update longest path

END IF

END FOR

END FOR

RETURN max_dist

END

Best Case:

Time: $O(V(V + E) \log V)$

• Occurs when the graph is sparse ($E \approx V$), and Dijkstra's is efficient. Each Dijkstra's run takes O((V + E) log V), and we run it V times. For our dataset (\sim 3,783 nodes, \sim 15,000 edges), this is the typical case.

Average Case:

Time: $O(V(V + E) \log V)$

• On average, each Dijkstra's call explores most vertices and edges, multiplied by V calls. The priority queue operations dominate, as in Dijkstra's.

Worst Case:

Time: $O(V(V + E) \log V)$

• Happens when the graph is dense $(E \approx V^2)$, making each Dijkstra's run $O((V + V^2) \log V)$ = $O(V^2 \log V)$. Total runtime becomes $O(V^3 \log V)$. Our dataset is sparse, so we avoid this worst case.

Space Complexity:

- O(V) for the distance and parent arrays in each Dijkstra's call.
- O(V) for the priority queue per call.
- Total space: O(V), as arrays are reused across calls.

3. Algorithm Graph Plots

3.1 Dijkstra Performance:

3.2 Bellmanford Performance:

Input Size k = 1000

3.3 Diameter Performance:

4. Implementation Details

4.1 Data Structures

Adjacency:

- **Dijkstra's, Bellman-Ford, and Diameter:** Adjacency list implemented as a vector<vector<Edge>> for Dijkstra's and Diameter, and a vector<Edge> for Bellman-Ford. Each Edge struct stores (to, weight) for Dijkstra's and Diameter, and (from, to, weight) for Bellman-Ford, reflecting the directed graph from the dataset (source, target, weight, timestamp).
- **BFS (Not Implemented):** Would use a queue<int> for node indices, with O(1) amortized enqueue/dequeue.
- **DFS & Cycle Detection (Not Implemented):** Would use recursion with a call stack, supplemented by bool Visited[] and bool InStack[] arrays for cycle detection.

Impact on Complexity:

- Core operations (vector access, queue operations, edge traversal) are O(1) per element.
- For Dijkstra's, priority queue (implemented via priority_queue) adds O(log V) per insert/update due to heap operations.
- Overall algorithmic complexity (O((V + E) log V) for Dijkstra's, O(VE) for Bellman-Ford, O(V(V + E) log V) for Diameter) is governed by graph size and algorithm logic, not data structure overhead beyond the priority queue in Dijkstra's.

4.2 Choice of Stack vs. Queue

• Dijkstra's:

Uses a priority queue (priority_queue<pair<long long, int>, vector<pair<long long, int>>, greater<>>) instead of a standard queue or stack. This choice ensures the minimum distance node is always processed next, critical for greedy shortest-path computation. A queue (FIFO) or stack (LIFO) would not maintain the order needed for optimal path selection.

• Bellman-Ford:

 Does not use a queue or stack explicitly; relies on iterative edge relaxation over all edges. The absence of a dynamic data structure simplifies implementation but requires V-1 passes, leveraging the algorithm's inherent structure rather than stack/queue ordering.

• Diameter:

 Internally uses Dijkstra's with a priority queue for each source node to compute all-pairs shortest paths. The priority queue choice mirrors Dijkstra's, ensuring efficient extraction of minimum distance nodes. A queue or stack would not suit the all-pairs approach, as it requires repeated shortest-path computations from each vertex.

Member 2

1. Machine Specification

Component	Specification
Chip	Intel core i5 6th Generation
Memory	8 GB
Storage	512 GB SSD
OS	Windows

2. Algorithms and Complexity Analysis

2.1 Prims Algorithm (MST)

```
Procedure PrimMst.run(Graph, Start Node)
BEGIN
Initialize an empty set visited
Initialize a priority queue pq (min-heap)
Mark start as visited
Push all edges from start to pq
WHILE pq is NOT EMPTY DO
Pop the minimum weight edge (u, v)
IF v is NOT visited THEN
Add (u, v) to MST
Mark v as visited
Push all edges from v to pq
END IF
END WHILE
```

Best Case:

- Time: O(E log V)
- When graph is sparse and priority queue operations dominate. Each edge is added to the queue at the most once.

Average Case:

- Time: O(E log V)
- On average performance remains O(E log V) as heap operations determine performance in typical cases.

Worst Case:

- Time: O(E log V)
- All edges are pushed into the priority queue, and we perform heap operations for each, resulting in O(E log V).

Space Complexity:

• O(V) for the visited array and O(E) for the priority queue.

2.2 Kruskal Algorithm (MST)

```
Procedure KruskalMST.run(Graph)

BEGIN

Initialize disjoint sets using Union-Find

Extract all edges and sort by weight

FOR each edge (u, v) in ascending order of weight DO

IF u and v are in different components THEN

Add edge to MST

Union their components

END IF

END FOR
```

Time Complexity:

END

- Best, Average, and Worst Case: O(E log E)
 - Best Case: Sorting edges dominates the runtime; few union operations are needed.
 - On average, sorting still dominates, and Union-Find operations are near constant with path compression.
 - Worst: All edges need sorting and checked for cycles.

Space Complexity:

- O(V) for Union-Find parent and rank maps
- O(E) for storing edges
- Total: O(V + E)

2.3 Average Degree Calculation

Time Complexity:

- Best, Average, and Worst Case: O(E)
 - o Best: File read is linear in the number of edges.
 - Average: Each edge is processed once with constant-time map and set operations.
 - Worst: Each edge is processed once with constant-time map and set operations.

Space Complexity:

- O(V) for degree map and nodes set
- So, the total space complexity = O(V)

Average degree txt file

```
degree > ≡ average_degree.txt

1 Average Degree: 12.7867

2 Total Nodes: 3783

3 Total Edges: 24186

4
```

3. Algorithm Graph Plots

3.1 Prims Algorithm

3.2 Kruskal Algorithm

Graph of Execution time of Kruskal

3.3 Average Degree

Graph of Execution time of Average Degree

4. Implementation Details

4.1 Data Structures

- **Graph:** Stored as an adjacency list using unordered map<int, vector<pair<int, double>>>
- **Prim's:** Uses set<int> for visited nodes and a **min-heap** (priority queue) to select the smallest edge.
- **Kruskal's:** Uses a **sorted edge list** and a **Union-Find** structure (unordered_map for parent and rank).
- **Average Degree:** Uses unordered_map<int, int> for node degrees and set <int> for unique nodes.
- All operations like insertion, access, and updates are O(1) or O(log E), so they don't impact overall complexity.

4.2 Choice of Stack vs. Queue

- Prim's: Uses a min-heap (not a stack/queue) to ensure greedy selection.
- Kruskal's: Relies on Union-Find, no queue or stack involved.
- Average Degree: Processes data linearly—no need for stack/queue.
- The selected structures ensure efficiency; using incorrect ones (e.g., a regular queue in Prim's) would break correctness or increase time complexity.

4.3 Execution Time

• Prim Algo: 113300 ms

• Kruskal Algo: 104974 ms

• Average Degree: 206130 ms

Member 3

1. Machine Specification

Compone	Specification
nt	
Model Name	MacBook Pro (16-inch, Mac16,8)
Chip	Apple M4 Pro (8 performance + 4 efficiency cores)
Memory	24 GB LPDDR5
Storage	500 GB SSD
OS	macOS 15.4.1

2. Algorithms and Complexity Analysis

2.1 Breadth-First Search (BFS)

```
Procedure BFS(G, S)
   BEGIN
     FOR I = 0 TO Size of G.V - 1 STEP 1 DO
       Visited[I] \leftarrow FALSE
     END FOR
  Create an empty queue Q
     Visited[S] \leftarrow TRUE
     ENQUEUE(Q, S)
  WHILE Q is NOT EMPTY DO
       U \leftarrow DEQUEUE(Q)
       FOR EACH V in Neighbors of U DO
         IF Visited[V] = FALSE THEN
            Visited[V] \leftarrow TRUE
            ENQUEUE(Q, V)
         END IF
       END FOR
     END WHILE
   END
```

Best Case:

- Time: O(V+E)
- This is O(V+E) because BFS must check every vertex and edge at most once.

Average Case:

- Time: O(V+E)
- On average, it explores all vertices and their edges in the connected component of the starting node.

Worst Case:

- Time: O(V+E)
- Happens when the entire graph is connected, so all vertices and all edges are explored.

Space Complexity:

• O(V) for the visited array and the queue in the worst case (when all vertices are enqueued).

2.2 Depth-First Search (DFS)

Procedure DFS(G, U)

BEGIN

```
Visited[U] ← TRUE

FOR EACH V in Neighbors of U DO

IF Visited[V] = FALSE THEN

DFS(G, V)

END IF

END FOR
```

END

Time Complexity:

- Best, Average, and Worst Case: O(V+E)
 - · Every vertex is visited once $\rightarrow O(V)$
 - · Every edge is explored once \rightarrow O(E)
 - · So, total = O(V+E)

Space Complexity:

• Visited array: O(V) to track visited nodes

2.3 Cycle Detection in Directed Graphs

Procedure DetectCycle(G)

BEGIN

```
FOR EACH V in G.V DO
       Visited[V] \leftarrow FALSE
       InStack[V] \leftarrow FALSE
     END FOR
  FOR EACH V in G.V DO
       IF Visited[V] = FALSE THEN
          IF CALL DFS Cycle(V) THEN
            RETURN TRUE
       END IF
     END IF
     END FOR
  RETURN FALSE
END
Procedure DFS_Cycle(U)
BEGIN
     Visited[U] \leftarrow TRUE
     InStack[U] \leftarrow TRUE
  FOR EACH V in Neighbors of U DO
       IF InStack[V] = TRUE THEN
         RETURN TRUE // Back edge \Rightarrow cycle
       ELSE IF Visited[V] = FALSE AND CALL DFS Cycle(V) THEN
         RETURN TRUE
     END IF
     END FOR
```

$InStack[U] \leftarrow FALSE$ RETURN FALSE

END

Time Complexity:

- Best, Average, and Worst Case: O(V+E)
 - Every vertex is visited once, and every edge is explored once during the DFS traversal. The cycle check involves checking neighbors but still follows the same traversal pattern.

Space Complexity:

- Visited array: O(V)
- InStack array: O(V)
- Call stack (in DFS): O (V
- So, the total space complexity = O(V)

3. Algorithm Graph Plots

3.1 BFS Performance

Time grows roughly linearly with |V| + |E|.

3.2 DFS Performance

Similar linear trend; slightly faster than BFS

3.3 Cycle Detection Performance

Measured in microseconds, same in linear O(V+E).

4. Implementation Details

4.1 Data Structures

Adjacency:

• LinkedList per vertex for neighbors; each node stores (target, rating, timestamp).

BFS:

- Queue built from the same Node type.
- Enqueue/dequeue in O(1) amortized.

DFS & Cycle Detection:

• Recursive calls manage their own call-stack.

• Additionally for cycle detection, we maintain a separate boolean inRecursionStack[].

Impact on Complexity:

- All core operations (enqueue, dequeue, push, pop, neighbor traversal) remain O(1).
- Thus overall algorithmic complexity is governed purely by the graph size, not by data-structure overhead.

4.2 Choice of Stack vs. Queue

· DFS via Recursion (Call Stack)

I deliberately used recursion instead of a Stack class. With recursion, when you visit a node and push all its neighbors onto the call stack, the *first* neighbor pushed is automatically the *first* one you explore, exactly matching DFS order. If I use a stack, I must reverse the neighbor list each time to achieve the same behavior.

· BFS via Queue

For breadth-first search, a FIFO Queue is the natural and only data structure that can be used.

5. Graph Visualization

