CS224 Computer Organization Preliminary Report

Lab 06 Section 2

Burak Ozturk 21901841

a. Direct Mapped Caches

Row Major Summing

Matrix Size: 64 x 64

	Block Size (number of words)				
Cache Size (bytes)	32	64 128		256	512
2048	Miss Rate: 3%	Miss Rate: 1%	Miss Rate: 1%	Miss Rate: 0%	Miss Rate: 0%
	Miss #: 132	Miss #: 66	Miss #: 33	Miss #: 17	Miss #: 9
4096	Miss Rate: 3%	Miss Rate: 1%	Miss Rate: 1%	Miss Rate: 0%	Miss Rate: 0%
	Miss #: 132	Miss #: 66	Miss #: 33	Miss #: 17	Miss #: 9
8192	Miss Rate: 3%	Miss Rate: 1%	Miss Rate: 1%	Miss Rate: 0%	Miss Rate: 0%
	Miss #: 132	Miss #: 66	Miss #: 33	Miss #: 17	Miss #: 9
16384	Miss Rate: 3%	Miss Rate: 1%	Miss Rate: 1%	Miss Rate: 0%	Miss Rate: 0%
	Miss #: 132	Miss #: 66	Miss #: 33	Miss #: 17	Miss #: 9
32768	Miss Rate: 3%	Miss Rate: 1%	Miss Rate: 1%	Miss Rate: 0%	Miss Rate: 0%
	Miss #: 132	Miss #: 66	Miss #: 33	Miss #: 17	Miss #: 9

Matrix Size: 128 x 128

	Block Size (number of words)				
Cache Size (bytes)	32	64	64 128		512
2048	Miss Rate: 3% Miss Rate: 2		Miss Rate: 1%	Miss Rate: 0%	Miss Rate: 0%
	Miss #: 516 Miss #: 258		Miss #: 129	Miss #: 65	Miss #: 33
4096	Miss Rate: 3%	Miss Rate: 2%	Miss Rate: 1%	Miss Rate: 0%	Miss Rate: 0%
	Miss #: 516	Miss #: 258	Miss #: 129	Miss #: 65	Miss #: 33
8192	Miss Rate: 3%	Miss Rate: 2%	Miss Rate: 1%	Miss Rate: 0%	Miss Rate: 0%
	Miss #: 516	Miss #: 258	Miss #: 129	Miss #: 65	Miss #: 33
16384	Miss Rate: 3%	Miss Rate: 2%	Miss Rate: 1%	Miss Rate: 0%	Miss Rate: 0%
	Miss #: 516	Miss #: 258	Miss #: 129	Miss #: 65	Miss #: 33
32768	Miss Rate: 3%	Miss Rate: 2%	Miss Rate: 1%	Miss Rate: 0%	Miss Rate: 0%
	Miss #: 516	Miss #: 258	Miss #: 129	Miss #: 65	Miss #: 33

Column Major Summing

Matrix Size: 64 x 64

	Block Size (number of words)					
Cache Size (bytes)	32	64	64 128		512	
2048	Miss Rate: 91%	Miss Rate: 91%	Miss Rate: 45%	Miss Rate: 33%	Miss Rate: 11%	
	Miss #: 4100	Miss #: 4098	Miss #: 2049	Miss #: 1025	Miss #: 513	
4096	Miss Rate: 91%	Miss Rate: 91%	Miss Rate: 45%	Miss Rate: 33%	Miss Rate: 11%	
	Miss #: 4100	Miss #: 4098	Miss #: 2049	Miss #: 1025	Miss #: 513	
8192	Miss Rate: 91%	Miss Rate: 91%	Miss Rate: 45%	Miss Rate: 33%	Miss Rate: 11%	
	Miss #: 4100	Miss #: 4098	Miss #: 2049	Miss #: 1025	Miss #: 513	
16384	Miss Rate: 3%	Miss Rate: 1%	Miss Rate: 1%	Miss Rate: 0%	Miss Rate: 0%	
	Miss #: 132	Miss #: 66	Miss #: 33	Miss #: 17	Miss #: 9	
32768	Miss Rate: 3%	Miss Rate: 1%	Miss Rate: 1%	Miss Rate: 0%	Miss Rate: 0%	
	Miss #: 132	Miss #: 66	Miss #: 33	Miss #: 17	Miss #: 9	

Matrix Size: 128 x 128

	Block Size (number of words)				
Cache Size (bytes)	32	64 128		256	512
2048	Miss Rate: 98%	Miss Rate: 98%	Miss Rate: 98%	Miss Rate: 49%	Miss Rate: 24%
	Miss #: 16388	Miss #: 16386	Miss #: 16385	Miss #: 8193	Miss #: 4097
4096	Miss Rate: 98%	Miss Rate: 98%	Miss Rate: 98%	Miss Rate: 49%	Miss Rate: 24%
	Miss #: 16388	Miss #: 16386	Miss #: 16385	Miss #: 8193	Miss #: 4097
8192	Miss Rate: 98%	Miss Rate: 98%	Miss Rate: 98%	Miss Rate: 49%	Miss Rate: 24%
	Miss #: 16388	Miss #: 16386	Miss #: 16385	Miss #: 8193	Miss #: 4097
16384	Miss Rate: 98%	Miss Rate: 98%	Miss Rate: 98%	Miss Rate: 49%	Miss Rate: 24%
	Miss #: 16388	Miss #: 16386	Miss #: 16385	Miss #: 8193	Miss #: 4097
32768	Miss Rate: 98%	Miss Rate: 98%	Miss Rate: 98%	Miss Rate: 49%	Miss Rate: 24%
	Miss #: 16388	Miss #: 16386	Miss #: 16385	Miss #: 8193	Miss #: 4097

b. Fully Associative Caches

Column Major Summing

Matrix Size: 64 x 64

	Cache Type				
Cache Size/Block Size	Direct Mapped	Fully Associative / LRU	Fully Associative / Random		
16384 / 512 (Good)	~100%	~100%	~100%		
2048 / 128 (Medium)	55%	55%	55%		
2048 / 32 (Poor)	9%	9%	11%		

Graph:

As seen in the graph, results are exactly same for all three caches (Fully associative / Random is a little better due to randomness.). Change from direct mapped to fully associative cache does not make a difference because while doing column by column reading neighboring integers are placed in cache too and cache is large enough to get same miss rate for every cache. That means for "good" cache, there is enough cache size in direct mapped therefore fully associative is not needed and for "medium" and "poor" caches, most of the misses are not conflict misses but capacity miss therefore fully associativity does not help.

Matrix Size: 128 x 128

	Cache Type				
Cache Size/Block Size	Direct Mapped	Fully Associative / LRU	Fully Associative / Random		
2048 / 512 (Good)	76%	76%	76%		
2048 / 256 (Medium)	51%	51%	51%		
2048 / 64 (Poor)	2%	2%	2%		

Same with 64 x 64 Fully Associative but randomness doesn't help that much this time.

c. N-way Set Associative Caches

Column Major Summing

Matrix Size: 64 x 64

Cache Size/Block Siz	e: 2048 / 128 (Med	dium)		
N-way Cache	1	2	4	
Hit Rate	2	2	2	
Miss Rate	98	98	98	
Miss Count	16385	16385	16385	
Cache Size/Block Siz	e: 16384 / 512 (Go	ood)		
N-way Cache	1	2	4	8
Hit Rate	~100%	~100%	~100%	~100%
Miss Rate	~0%	~0%	~0%	~0%
Miss Count	9	9	9	9
Cache Size/Block Siz	e: 2048 / 32 (Poor)		
N-way Cache	1	2	4	8
Hit Rate	9	9	9	9
Miss Rate	91	91	91	91
Miss Count	4100	4100	4100	4100

For all three cases, miss rate does not change as the N increases or decreases because as in Part B, misses are not conflict misses but capacity misses. Therefore making cache more divided by increasing N, does not do any good other than wasting resources.

Column Major Summing

Matrix Size: 128 x 128

Cache Size/Block Siz	e: 2048 / 256 (Med	dium)		
N-way Cache	1	2		
Hit Rate	51	51		
Miss Rate	49	49		
Miss Count	8193	8193		
Cache Size/Block Siz	e: 2048 / 512 (Goo	od)		
N-way Cache	1			
Hit Rate	76%			
Miss Rate	24%			
Miss Count	4097			
Cache Size/Block Siz	e: 2048 / 64 (Poor)		
N-way Cache	1	2	4	8
Hit Rate	2	2	2	2
Miss Rate	98	98	98	98
Miss Count	16386	16386	16386	16386