COMUNICAÇÕES MÓVEIS

Localização em Redes Celulares:

Especificação do Projeto da Disciplina

Prof. Daniel C. Cunha dcunha@cin.ufpe.br

Roteiro

- Objetivo do projeto
- Localidade
- Bases de Dados
 - Dados de treinamento
 - Dados de teste (avaliação das soluções)
- Diretrizes do Projeto
 - Estrutura
 - Requisitos mínimos
 - Requisitos complementares
- Entregáveis

Objetivo

Desenvolver uma solução computacional baseada em modelos de aprendizado de máquina para o problema da localização de usuários móveis em redes celulares.

Localidade

Trecho urbano da cidade de Recife-PE. Regiões dos bairros da Cidade Universitária e Várzea.

Bts.csv

Informações sobre as BTSs.

Coluna	Descrição
grupo	Localização do setor
btsId	Identificador da BTS
btsNetName	Nome da BTS
lat	latitude da BTS
lon	longitude da BTS
cch	Canal de Controle BTS
azimuth	Azimute da Antena da BTS
Rssild	Identificador no arquivo de medições (treino/teste)

meds_train_alunos.csv

Dados destinados ao treinamento dos modelos de *Machine Learning*.

Instâncias: 6.775

Indoor: **4.621** (**68,21**%)

Coluna	Descrição
ponto_id	Identificador do ponto
rssi_1_1	Nível do sinal (RSSI) BTS com Rssild=rssi_1_1
rssi_1_2	Nível do sinal (RSSI) BTS com Rssild=rssi_1_2
rssi_1_3	Nível do sinal (RSSI) BTS com Rssild=rssi_1_3
rssi_2_1	Nível do sinal (RSSI) BTS com Rssild=rssi_2_1
rssi_2_2	Nível do sinal (RSSI) BTS com Rssild=rssi_2_2
rssi_2_3	Nível do sinal (RSSI) BTS com Rssild=rssi_2_3
rssi_3_1	Nível do sinal (RSSI) BTS com Rssild=rssi_3_1
rssi_3_2	Nível do sinal (RSSI) BTS com Rssild=rssi_3_2
rssi_3_3	Nível do sinal (RSSI) BTS com Rssild=rssi_3_3
delay_1	Atraso de propagação Grupo 1
delay_2	Atraso de propagação Grupo 2
delay_3	Atraso de propagação Grupo 3
lat	Latitude da medição (ausente no arquivo de teste)
lon	Longitude da medição (ausente no arquivo de teste)
indoor	Ambiente indoor? (ausente no arquivo de teste)

meds_test_alunos.csv

Dados reservados para gerar as predições de localização que serão registradas no arquivo submit_alunos.csv

Instâncias: 2.904

Indoor: 1.994 (68,66%)

Coluna	Descrição
ponto_id	Identificador do ponto (link com o arquivo submit)
rssi_1_1	Nível do sinal (RSSI) BTS com Rssild=rssi_1_1
rssi_1_2	Nível do sinal (RSSI) BTS com Rssild=rssi_1_2
rssi_1_3	Nível do sinal (RSSI) BTS com Rssild=rssi_1_3
rssi_2_1	Nível do sinal (RSSI) BTS com Rssild=rssi_2_1
rssi_2_2	Nível do sinal (RSSI) BTS com Rssild=rssi_2_2
rssi_2_3	Nível do sinal (RSSI) BTS com Rssild=rssi_2_3
rssi_3_1	Nível do sinal (RSSI) BTS com Rssild=rssi_3_1
rssi_3_2	Nível do sinal (RSSI) BTS com Rssild=rssi_3_2
rssi_3_3	Nível do sinal (RSSI) BTS com Rssild=rssi_3_3
delay_1	Atraso de propagação Grupo 1
delay_2	Atraso de propagação Grupo 2
delay_3	Atraso de propagação Grupo 3

submit_alunos.csv

Layout do arquivo que deve ser entregue com as predições de localização para as medições especificadas no arquivo meds_test_alunos.csv.

Coluna	Descrição
ponto_id	Identificador do ponto (link com o arquivo de teste)
lat	Latitude predita para o ponto_id
lon	Longitude predita para o ponto_id

Diretrizes do Projeto

Estrutura (organização)

- Definição do problema
- Ferramentas utilizadas (razões das escolhas)
- Apresentação da(s) solução(ões) proposta(s)
- Resultados obtidos
- Conclusões e principais dificuldades encontradas

Diretrizes do Projeto

Requisitos mínimos (Seção de Resultados)

- Análise preliminar dos dados.
- No mínimo, dois métodos de localização, sendo um deles alguma técnica básica de referência.
- Histograma dos erros obtidos (em metros)*
- Box-plot dos erros obtidos (em metros)*
- Mapa de comparação: posições preditas vs. posições reais*
- Erro de localização médio, mínimo, máximo e desvio-padrão*
- Arquivo Resultados_EquipeX_MetodoY.csv conforme o template submit_alunos.csv**

*Os itens em questão devem ser gerados a partir de uma base de dados contendo 10% de amostras retiradas da base de treino.

**Os arquivos Resultados_EquipeX_Metodo_Y.csv serão gerados como saídas a partir da aplicação dos métodos implementados na base med_test_alunos.csv. Para cada método implementado, deverá ser gerado um arquivo de saída conforme a denominação anteriormente mencionada. Os erros serão calculados a partir de um script gerado pelo professor. O arquivo submit_alunos.csv deve ser usado como modelo para a geração do arquivo de resultados.

Diretrizes do Projeto

Requisitos Complementares

- Avaliação da complexidade da técnica (tempo de processamento).
- Métodos adicionais de localização.
- Uso de IA generativa para expansão da base de dados de medições.

Entregáveis

Data	Entregável
12/03	Relatório parcial (máx. 2 pags.)
27/03	Relatório final (máx. 2 pags.)
28/03 e 02/04	Apresentações dos projetos

Comentários Finais

- Objetivo do projeto
- Localidade
- Bases de Dados
 - Dados de treinamento
 - Dados de teste (avaliação das soluções)
- Diretrizes do Projeto
 - Estrutura
 - Requisitos mínimos
 - Requisitos complementares
- Entregáveis

Curso de Engenharia da Computação **ES290 – Comunicações Móveis**

Prof. Daniel C. Cunha dcunha@cin.ufpe.br www.cin.ufpe.br/~dcunha