Problem 1: Visually interpreting derivatives

Below is a collection of level sets of a function $f \colon \mathbf{R}^2 \to \mathbf{R}$. (As usual, x is horizontal and y is vertical, and the length scales in the x- and y-directions are equal.)

- (a) (Choose one) $\frac{\partial f}{\partial y}$ at **A** is: NEGATIVE ZERO POSITIVE
- (b) (Choose one) $\frac{\partial f}{\partial y}$ at ${\bf B}$ is: NEGATIVE ZERO POSITIVE
- (c) (Choose one) $\frac{\partial f}{\partial y}$ at ${\bf C}$ is: NEGATIVE ZERO POSITIVE
- (d) (Choose one) $\frac{\partial f}{\partial x}$ at **D** is: NEGATIVE ZERO POSITIVE
- (e) Which partial derivative is larger, in absolute value? $|f_y(\mathbf{A})|$ $|f_y(\mathbf{B})|$
- (f) Which partial derivative is larger, in absolute value? $|f_x(\mathbf{E})|$ $|f_y(\mathbf{E})|$
- (g) At what point(s) (not necessarily labeled) in the region depicted does f reasonably seem to have a local minimum? a local maximum? What can you say about the value taken by f at each of these points?

A picture to help you visualize contour plots. This is not part of the problem.

Solution:

(a) Answer: positive.

Moving a small distance in the positive y ("north") direction from \mathbf{A} changes the value of f from 1.6 (precisely) to some value in the range between 1.6 and 2.0; thus, f increases.

(b) Answer: negative.

Moving a small distance in the positive y ("north") direction from **B** changes the value of f from 4.8 (precisely) to some value in the range between 4.4 and 4.8; thus, f decreases.

(c) Answer: zero.

Moving a small distance in the positive y ("north") direction from \mathbf{C} is simply moving along (i.e., tangent to) the level set of f at level 2.0; thus, f is (instantaneously) unchanging.

(d) Answer: positive.

Moving a small distance in the positive x ("east") direction from **D** changes the value of f from 3.2 (precisely) to some value in the range between 3.2 and 3.6; thus, f increases.

(e) Answer: $|f_y(\mathbf{B})|$.

Consecutive level curves are vertically spaced much closer together near **B** than near **A**; so the (absolute value of the) vertical rate of change at **B** is greater than at **A**.

(f) Answer: $|f_y(\mathbf{E})|$.

The *vertical* spacing of consecutive level curves near **E** is closer together than the *horizontal* spacing here; so the (absolute value of the) vertical rate of change is greater than the (absolute value of the) horizontal rate of change.

(g) We expect that f has a local extremum at some point *inside* the loop, labeled "0.800," that is located to the right of point \mathbf{C} . Judging from the decreasing label-values near this point, we conclude this extremum is a local minimum for f, with f-value less than 0.8 (but greater than 0.4, since otherwise there would be an additional loop depicted in the diagram). No other local extrema are apparent in the region of \mathbf{R}^2 shown.

Problem 2: Partial derivative practice

Compute the first and second partial derivatives in general, verifying equality of mixed partials directly, and evaluate the first partials at the indicated point a.

(a)
$$g(x_1, x_2) = \sin(x_1 x_2 - x_1 + x_2), \mathbf{a} = (\sqrt{\pi}, \sqrt{\pi}).$$

(b)
$$h(x,y) = e^x(x-y)^2$$
, $\mathbf{a} = (0,1)$.

Solution:

(a)
$$g_{x_1} = (x_2 - 1)\cos(x_1x_2 - x_1 + x_2)$$
 and $g_{x_2} = (x_1 + 1)\cos(x_1x_2 - x_1 + x_2)$, so

$$g_{x_1}(\sqrt{\pi}, \sqrt{\pi}) = 1 - \sqrt{\pi}, \ g_{x_2}(\sqrt{\pi}, \sqrt{\pi}) = -1 - \sqrt{\pi}.$$

Also, $g_{x_1x_1} = -(x_2 - 1)^2 \sin(x_1x_2 - x_1 + x_2)$, $g_{x_2x_2} = -(x_1 + 1)^2 \sin(x_1x_2 - x_1 + x_2)$, and (in both ways) $g_{x_1x_2} = -\cos(x_1x_2 - x_1 + x_2) - (x_2 - 1)(x_1 + 1)\sin(x_1x_2 - x_1 + x_2)$.

(b)
$$h_x = e^x(x-y)^2 + 2e^x(x-y)$$
 and $h_y = -2e^x(x-y)$, so

$$h_x(0,1) = -1, \ h_y(0,1) = 2.$$

Also, $h_{xx} = 2e^x(x-y) + e^x(x-y)^2 + 2e^x + 2e^x(x-y)$, $h_{yy} = 2e^x$, and (in both ways) $h_{xy} = -2e^x(x-y) - 2e^x$.

Problem 3: Finding candidates for local extrema

For each of the following functions $f : \mathbf{R}^2 \to \mathbf{R}$, find all critical points.

(a)
$$x_1^2 + 4x_1x_2 + 5x_2^2 - 4x_1 + 2x_2$$
.

(b)
$$x^4y^4 - 2x^2 - 2y^2$$
.

(c)
$$\cos(\pi(x^2+y^2))$$
.

(d)
$$x_1^3 - 3x_1x_2^2 + 3x_2^2$$
.

Solution:

- (a) We have $f_{x_1} = 2x_1 + 4x_2 4$ and $f_{x_2} = 4x_1 + 10x_2 + 2$. These simultaneously vanish only at (12, -5)
- (b) We have $f_x = 4x^3y^4 4x$ and $f_y = 4x^4y^3 4y$. These simultaneously vanish only at $(0,0), (\pm 1, \pm 1)$
- (c) We have $f_x = -2x\pi \sin(\pi(x^2 + y^2))$ and $f_y = -2y\pi \sin(\pi(x^2 + y^2))$. These simultaneously vanish exactly when $x^2 + y^2$ is an integer since $\sin(\pi t) = 0$ precisely for t an integer, as we see by thinking about the meaning of such vanishing in terms of the unit circle and angles. (The case x = y = 0 is treated separately.)
- (d) We have $f_{x_1} = 3x_1^2 3x_2^2$ and $f_{x_2} = -6x_1x_2 + 6x_2$. These simultaneously vanish only at $(0,0), (1,\pm 1)$

Problem 4: Computing extrema on a region I

Find the global extreme values of $f(x,y) = 2x^2 + y^2 + 5y$ on the disk of points (x,y) satisfying $x^2 + y^2 \le 16$.

Solution: By computing the partial derivatives f_x and f_y to see where both vanish at the same point, the function f has one critical point on the interior of the disk: (x,y)=(0,-5/2). On the boundary $x^2+y^2=16$ the function can be expressed entirely in terms of y as

$$2(16-y^2) + y^2 + 5y, -4 < y < 4$$

which by single-variable calculus has a critical point when its derivative -4y + 2y + 5 vanishes, which is to say y = 5/2 (this is in the open interval (-4,4)), in which case $x = \pm \sqrt{39}/2$ due to being on the boundary circle $x^2 + y^2 = 16$. Of course the interval's endpoints $y = \pm 4$ also must be considered, corresponding to x = 0.

So overall we have five candidates for where extrema are attained: (0, -5/2), $(0, \pm 4)$, $(\pm \sqrt{39}/2, 5/2)$. Evaluating the function and seeing which values are largest and smallest, we get a global maximum $f(\pm \sqrt{39}/2, 5/2) = 153/4 = 38.25$ and global minimum f(0, -5/2) = -25/4 = -6.25. (The values of f at $(0, \pm 4)$ are $16 \pm 20 = -4, 36$.)

Problem 5: Computing extrema on a region II

Find the global extreme values of $f(x,y) = x^4y^4 - 2x^2 - 2y^2$ on the region of points (x,y) that lies on or inside the triangle with vertices (-2,-2), (-2,2), (2,-2). (Sketch this triangle first, to get oriented.)

Solution: The function f has five critical points (0,0), $(\pm 1,\pm 1)$ (seen by computing the partial derivatives f_x and f_y and determining they simultaneously vanish, which requires a bit of algebra). All but (1,1) lie in the region (though only (-1,-1) is on the interior). Next, we extremize on the boundary, by substitution on each boundary segment:

(i) On the segment from (-2, -2) to (-2, 2) that is the part of the line x = -2 with $-2 \le y \le 2$, we substitute x = -2 to set up the task:

extremize
$$16y^4 - 8 - 2y^2$$
 when $-2 \le y \le 2$.

The derivative is $64y^3 - 4y$, which vanishes for $y = 0, \pm 1/4$. Accounting for the endpoints of this range of y-values, we get candidates $(-2,0), (-2,\pm 1/4), (-2,-2), (-2,2)$ on this boundary segment at which an extreme value could be attained.

(ii) On the segment from (-2, -2) to (2, -2), which is the part of the line y = -2 with $-2 \le x \le 2$, we substitute y = -2 to set up the task:

extremize
$$16x^4 - 2x^2 - 8$$
 when $-2 \le x \le 2$

The derivative is $64x^3 - 4x$, which vanishes for $x = 0, \pm 1/4$. Accounting for endpoints of this range of x-values, we get the candidates (0, -2), $(\pm 1/4, -2)$, (-2, -2), (2, -2) on this boundary segment at which an extreme value could be attained.

(iii) On the line segment from (-2, 2) to (2, -2), which is the part of the line y = -x with $-2 \le x \le 2$, we substitute y = -x to set up the task:

extremize
$$x^8 - 4x^2$$
 when $-2 \le x \le 2$

The derivative is $8x^7 - 8x$, which vanishes for $x = 0, \pm 1$. Accounting for the endpoints of this range of x-values, we get the candidates of (0,0), (1,-1), (-1,1), (-2,2), (2,-2) on this boundary segment at which an extreme value could be attained.

Comparing values of the function of interest $f(x,y)=x^4y^4-2x^2-2y^2$ at all candidate points we have obtained, both the interior critical point (-1,-1) and the various boundary points, we find a global minimum value $f\left(\pm\frac{1}{4},-2\right)=f\left(-2,\pm\frac{1}{4}\right)=-\frac{2055}{256}\approx -8.06$ and a global maximum value f(2,-2)=f(-2,2)=f(-2,-2)=240.