75:12 ANÁLISIS NUMÉRICO I

FACULTAD DE INGENIERIA UNIVERSIDAD DE BUENOS AIRES

PRIMER EXAMEN PARCIAL

1er Cuatrimestre 2016 11/May/2016

Problema 1

Se desea resolver un problema caracterizado por el siguiente sistema de ecuaciones lineales:

$$\begin{bmatrix}
1,5 & -4,5 & 2,0 \\
1,0 & 1,0 & -5,0 \\
16 & 5,0 & 2,4
\end{bmatrix}$$

- a) Analice la convergencia del sistema para el método de Gauss Seidel. Realice las modificaciones que crea conveniente.
- b) Resuelva el sistema, siendo $b = (0.5 3.0 135.8)^t$ hasta lograr un error relativo menor al 1%.
- c) Estimar experimentalmente el orden de convergencia del método.

Problema 2

Se realizó un muestreo de humedad de un producto bajo diferentes condiciones de tratamiento, el cual determinó los siguientes valores, expresados como pérdida de peso del producto:

Tiempo de proceso (seg):	75	95	120	160	190	220	250	280	330
Pérdida de peso (%):	19,6	20,2	20,7	22,9	23,6	26,0	28,1	29,1	31,2

Se desea hallar la relación de pérdida (P) en función del tiempo (t), para lo cual se propone utilizar la ley $P = C1.t^{C2}$. Utilizando el método de cuadrados mínimos, determinar los valores de los coeficiente C1 y C2.

Pregunta 1

Indique como se obtiene y cuál es la expresión del factor de amplificación de los errores relativos de redondeo de la función cos(x).

Pregunta 2

Explique qué información brinda el número de condición de una matriz