Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная работа №3. ЧАСТЬ 1 Разработка экспертной системы на базе представленного описания

Дисциплина: Интеллектуальные системы

Выполнил студент гр. 13541/3	(подпись)	_ Д.В. Круминьш
Руководитель	(подпись)	_ Е.Н. Бендерская
	" "	2017 r

Содержание

Лабор	аторная работа №3		
3.1	Ознакомьтесь со следующими источниками	2	
3.2	Ознакомьтесь с примерами экспертных систем по ссылке		
3.3	Структура экспертных систем (Рис. 3.1) состоит из следующих основных ком-		
	понентов: решателя(интерпретатора); рабочей памяти (РП), называемой также		
	базой данных (БД); базы знаний (БЗ); компонентов приобретения знаний; объ-		
	яснительного компонента; диалогового компонента	3	
3.4	На примере ОДНОЙ ИЗ ЭС экспертной системы (примеры ЭС выбрать само-		
	стоятельно исходя из демо примеров с сайта ExSys Corvid) укажите содержание		
	следующих компонентов, заполнив Таблицу	4	
3.5	Выполните лабораторные работы 1-6 из методических рекомендаций Д.И. Му-		
	ромцев. Оболочка экспертных систем Exsys Corvid. – СПб: СПб ГУ ИТМО, 2006.		
	– 69 с. В случае необходимости используйте методические рекомендации от раз-		
	работчика	4	
	3.5.1 Лабораторная работа №1 «Создание простейшей системы»	4	
	3.5.2 Лабораторная работа №2 «Улучшение интерфейса пользователя»	5	
	3.5.3 Лабораторная работа №3 «Усиление логики работы системы»	7	
	3.5.4 Лабораторная работа №4 «Обратная связь»	9	
	3.5.5 Лабораторная работа №5 «Числовые переменные и [[]] подстановки»	9	
	3.5.6 Лабораторная работа №6 «Переменные коллекции»	10	
3.6	Разработайте статическую экспертную систему для нахождения характерных		
	неисправностей прибора Диск-250 ДД и метода их решения. Прибор показы-		
	вающий и регистрирующий Диск-250 ДД предназначен для измерения и реги-		
	страции силы тока, а также неэлектрических величин, преобразованных в силу		
	тока. Данная ЭС предназначена для использования слесарями в целях быстрого		
	обнаружения неисправности и ее устранения	11	
3.7	Вывод	15	
Спи	сок литературы	16	

Лабораторная работа №3

3.1 Ознакомьтесь со следующими источниками

- Курс лекций по дисциплине «Системы искусственного интеллекта». Адрес в сети Интернет: http://www.mari-el.ru/mmlab/home/AI/12/index.html
- Курс лекций по дисциплине «Системы искусственного интеллекта» / под ред. М.Н. Морозова. Адрес в сети Интернет: http://khpi-iip.mipk.kharkiv.edu/library/ai/conspai/index.html
- Учебное пособие Татжибаева О.А. «Разработка экспертных систем», 2005 http://window.edu.ru
- Учебное пособие Деревянкина А.А. «Интеллектуальные системы», 2009 http://window.edu.ru/
- Методическое пособие Д.И. Муромцев. Оболочка экспертных систем Exsys Corvid. СПб: СПбГУ ИТМО, 2006. 69 с.

http://faculty.ifmo.ru/csd/dimour/ES/Corvid.pdf

3.2 Ознакомьтесь с примерами экспертных систем по ссылке

http://www.exsys.com/demomain.html.

3.3 Структура экспертных систем (Рис. 3.1) состоит из следующих основных компонентов: решателя(интерпретатора); рабочей памяти (РП), называемой также базой данных (БД); базы знаний (БЗ); компонентов приобретения знаний; объяснительного компонента; диалогового компонента.

Рис. 3.1: Структурная схема экспертной системы

- База данных (рабочая память) предназначена для хранения исходных и промежуточных данных решаемой в текущий момент задачи. Этот термин совпадает по названию, но не по смыслу с термином, используемым в информационно-поисковых системах (ИПС) и системах управления базами данных (СУБД) для обозначения всех данных (в первую очередь долгосрочных), хранимых в системе.
- База знаний (БЗ) в экспертных системах предназначена для хранения долгосрочных данных, описывающих рассматриваемую область (а не текущих данных), и правил, описывающих целесообразные преобразования данных этой области.
- Решатель, используя исходные данные из рабочей памяти и знания из БЗ, формирует такую последовательность правил, которая приводит к решению задачи.
- Компонент приобретения знаний автоматизирует процесс наполнения экспертных систем знаниями, осуществляемый пользователем-экспертом.
- Объяснительный компонент объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату.
- Диалоговый компонент ориентирован на организацию дружественного общения с пользователем как в ходе решения задач, так и в процессе приобретения знаний и объяснения результатов работы.

3.4 На примере ОДНОЙ ИЗ ЭС экспертной системы (примеры ЭС выбрать самостоятельно исходя из демо примеров с сайта ExSys Corvid) укажите содержание следующих компонентов, заполнив Таблицу

ЭС «Cessna Diagnostic and Repair Systems for the Citation X» и ее составляющие части.

Диалоговый компонент	Java-Апплет. Диалог происходит средствами браузера.
База данных	Статическая база данных, содержащая различные стандартные
	ситуации, на основе которых принимается решение.
База знаний	Набор решений, которые необходимо применить в той или иной
	ситуации.
	На основе исходных данных из рабочей памяти и знания из БЗ,
Решатель	формирует последовательность правил, которые приводят к
	решению задачи.

3.5 Выполните лабораторные работы 1-6 из методических рекомендаций Д.И. Муромцев. Оболочка экспертных систем Exsys Corvid. — СПб: СПб ГУ ИТМО, 2006. — 69 с. В случае необходимости используйте методические рекомендации от разработчика.

Примечание: при реализации ЭС все кириллические символы были замены на латинские символы, с соответствующим переводом слов.

3.5.1 Лабораторная работа №1 «Создание простейшей системы»

Цель работы: изучение интерфейса Exsys CORVID на примере простейшей экспертной системы.

```
IF
1
2
       Свет в Вашем доме внезапно перестал работать
  THEN
3
4
       замените лампочку
5
  IF
6
7
       Свет в Вашем доме продолжает работать
8
  THEN
9
       Ничего не делать
  Листинг 3.1: Алгоритм работы ЭС
```

Результат работы экспертной системы:

Рис. 3.2: Работа ЭС по починке света

Результаты работы полностью соответствует представленному алгоритму работы ЭС.

3.5.2 Лабораторная работа №2 «Улучшение интерфейса пользователя»

Цель работы: изучение возможностей форматирования интерфейса пользователя в системе Exsys CORVID.

Примечание: по нажатию кнопки **preview** ничего не происходил, при следующем нажатии программа Exsys CORVID принудительно завершала свою работу без сохранения с ошибкой **Run-time error '457'**.

Результаты работы:

Рис. 3.3: Измененный графический интерфейс

Чего и требовалось ожидать, размер текста и его цвет изменились.

Примечание: использовать графические карты не удалось, рекомендации в файле с лабораторными и на официальном сайте **exsys** не позволяют отобразить вопрос в виде графической карты.

Рис. 3.4: Установка графической карты

3.5.3 Лабораторная работа №3 «Усиление логики работы системы»

Цель работы: усовершенствовать логический блок имеющейся экспертной системы

Рис. 3.5: Логика системы

Результаты работы:

Рис. 3.6: Состояния системы с усиленной логикой

Система успешно переходит по всем новым состояниям.

3.5.4 Лабораторная работа №4 «Обратная связь»

Цель работы: Изучить обратную связь в EXYS CORVID Результаты работы:

Рис. 3.7: Вызов блока обратной связи

Логический блок с обратной связью, был автоматически вызван как и ожидалось.

На мой взгляд, при отсутствии внешнего полного дерева решений, подобная система обратной связи лишь ухудшают систему, так как проектировщик не видит всей логики системы сразу. Например будет 100 логических блоков, и каким образом понять где используется обратная связь, а где нет остается загадкой.

3.5.5 Лабораторная работа №5 «Числовые переменные и [[]] подстановки»

Цель работы: Изучение работы с переменными.

Результаты работы:

Рис. 3.8: Усиленная логика для сгоревшей лампочки

Работа с числовыми переменными не составила проблем, а [[]] подстановки являются действительно мощным инструментом для проектирования системы.

3.5.6 Лабораторная работа №6 «Переменные коллекции»

Цель работы: Научиться работать с переменными коллекции. Результаты работы:

Рис. 3.9: Результат со списком покупок

Чего и требовалось ожидать, в коллекцию была добавлена необходимая запись.

Примечание: разделить текст пустой строкой не удалось.

Проект прилагается к отчету. Имя проекта BULB.

3.6 Разработайте статическую экспертную систему для нахождения характерных неисправностей прибора Диск-250 ДД и метода их решения. Прибор показывающий и регистрирующий Диск-250 ДД предназначен для измерения и регистрации силы тока, а также неэлектрических величин, преобразованных в силу тока. Данная ЭС предназначена для использования слесарями в целях быстрого обнаружения неисправности и ее устранения.

Неисправность	Возможная причина	Способ обнаружения и устранения
		Проверьте наличие напряжения на
		клеммах питания внешнего разъема
	Отсутствует	прибора. При отсутствии напряжения или
	напряжение в сети	значительном несоответствии его
		номинальному значению проверить
		внешний монтаж прибора.
При включении	Сгорела вставка	Заменить вставку плавкую.
прибор не работает	плавкая	Samening betabky islabkylo.

	Неисправен выключатель	При наличии напряжения в разъеме питания прибора проверьте напряжение на клеммах колодки, при отсутствии напряжения проверьте исправность выключателя. Неисправный выключатель замените
При включении прибора сгорает вставка плавкая	Короткое замыкание	Место короткого замыкания в приборе определите последовательным отсоединением отдельных элементов схемы (трансформатора, электродвигателя и т.п.) с последующей проверкой прибора включением в сеть. Дефектный элемент снимите и проверьте отдельно омметром, устраните неисправность
При подаче на вход прибора сигнала, соответствующего началу шкалы, указатель идет к концу шкалы	Неправильно подсоединены выводы реохорда прибора	Поменяйте местами выводы реохорда согласно схеме соединений.
	Неисправна кинематическая система	Проверьте вращения электродвигателя вручную, для чего снимите диаграммный диск и отверткой попробуйте вращать вал электродвигателя в обе стороны: вал должен медленно поворачиваться в ту и другую стороны при одинаковом усилии, приложенном к нему. Если вал заедает, электродвигатель снимите, разберите и устраните заедание.
Электродвигатель не вращается	Обрыв в обмотках электродвигателя	Если механическая часть электродвигателя исправна, отсоедините кабель, подключающий электродвигатель к колодке на шасси и проверьте электродвигатель согласно указаниям в паспорте.
	Неисправен конденсатор, шунтирующий обмотку электродвигателя	Если электродвигатель исправен, но в схеме прибора не работает, проверьте конденсаторы в цепи его обмоток. Неисправный конденсатор замените.

D		Проверьте напряжение на зажимах колодки
Электродвигатель	Нет напряжения на	на шасси прибора. Если оно соответствует
самопроизвольно	управляющей	нормальному, проверьте, нет ли обрыва в
реверсируется в	обмотке	цепи управляющей обмотки
конечных	электродвигателя	электродвигателя; неисправный
положениях		электродвигатель замените
Datacapacity	Загрязняется реохорд	Прочистите реохорд.
Багасараспу	Затирание в	Проверьте движение от руки: тугой ход
	1	указывает на наличие трения в системе.
	кинематической цепи	Смажьте трущиеся детали.
При включении	Неисправен	
прибора	синхронный	Проверьте синхронный электродвигатель и
диаграммный диск не	электродвигатель	при неисправности замените его.
вращается	привода	при пенеправности замените сто.
Бращаетел	диаграммного диска	
Показания прибора	Неисправны датчик	Замените датчик или устраните
не соответствуют	или соединительные	повреждения в соединительных проводах.
истинным значениям	провода	повреждения в соединительных проводах.

Результаты работы:

(b) Дерево условий

Рис. 3.10: Объекты Exsys CORVID

Рис. 3.11: Примеры диалоговых окон

Разработанная система, путем опроса пользователя, позволяет определить неисправность устройства.

3.7 Вывод

В данной работе я познакомился со средой создания экспертных систем - Exsys Corvid. В целом опыт оставил негативное мнение, в частности из-за:

- 1. в системе практически отсутствует поддержка кириллических символов;
- 2. для примеров ЭС их сайт использует java servlets(порождает множество проблем);
- 3. в системе множество багов, возможно они придерживаются стратегии того, что пользователи их системы должны её тестировать;

4. Муромцев Дмитрий Ильич заявляет что обратная связь является «очень мощным средством», тут как раз наоборот, подобная связь не позволяет увидеть полное дерево условий в системе, из-за чего возникает «путаница»

В целом данные проблемы характерны для старых разработок, но последняя версия этой системы - 6.1.0 от 2014 года.

Однако не смотря на данные проблемы, система имеет довольно простой интерфейс, проста в изучении, и позволяет создавать собственные экспертные системы.

Литература

[1] ОБОЛОЧКА ЭКСПЕРТНЫХ СИСТЕМ EXSYS CORVID [Электронный ресурс]. — СПб: СПб ГУ ИТМО, 2006. — URL: http://csd.faculty.ifmo.ru/dimour/ES/Corvid.pdf (дата обращения: 2017-09-26).