Introducción al Aprendizaje Reforzado Conceptos básicos y métodos tabulares

Julio Waissman Vilanova

Departamento de Matemáticas Universidad de Sonora

Universidad Autónoma de Baja California, marzo 2010

Estados continuos.

Plan de la presentación

Conceptos Básicos.

Métodos tabulares.

Estados continuos.

Conclusiones.

¿Aprendizaje?

- El aprendizaje supervisado utiliza un conjunto de datos de aprendizaje previamente clasificado. Aprendizaje con maestro.
- El aprendizaje no supervisado utiliza un conjunto de datos sin clasificar. Descubrimiento de conocimiento en bases de datos (KDD).
- ► El aprendizaje reforzado utiliza la interacción con el medio para establecer una política de comportamiento. Aprendizaje con crítico.

Esquema general del aprendizaje reforzado.

Conceptos Básicos.

Conclusiones.

Elementos principales.

- ► Conjunto de estados, $s_t \in S$, con al menos un estado inicial y posiblemente estados finales.
- ▶ Conjunto de acciones en cada estados, $a_t \in A(s_t)$.
- ▶ Valor de recompensa, $r_t \in \mathbb{R}$.
- ▶ Una política, π , con $\pi(s_t, a_t) \in [0, 1]$

$$\pi = \begin{bmatrix} s_1 & \cdots & s_n \\ \hline a_1 & 0.1 & \cdots & 0.9 \\ \vdots & \vdots & \ddots & \vdots \\ a_m & 0.9 & \cdots & 0.7 \end{bmatrix}$$

Objetivo.

Conceptos Básicos.

- ▶ Encontrar una política subóptima π^* de operación.
- ► El criterio de optimización es la maximización del regreso, definido como:

$$R_t = \sum_{k=t}^{T} r_k$$
 (episódico), $R_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k}$ (continuo).

Utilizando la exploración/explotación de información.

Funciones de valor

Evaluación de un estado.

$$egin{aligned} V^{\pi}(s) = & E_{\pi}\Big\{R_t|s_t = s\Big\}, \ V^{\pi}(s) = & \sum_{a}\pi(s,a)\sum_{s'}\mathcal{P}^a_{ss'}ig[\mathcal{R}^a_{ss'} + \gamma V^{\pi}(s')ig]. \end{aligned}$$

Evaluación de una acción en un estado,

$$Q^{\pi}(s,a) = E_{\pi}\Big\{R_t|s_t = s, a_t = a\Big\}.$$

Permite encontrar políticas óptimas,

$$V^*(s) = \max_{\pi} V^{\pi}(s), \qquad Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a).$$

Método de diferencias temporales.

- Utilizan la experiencia para encontrar la función de valor.
- Calcula una política pseudo-óptima.
- Se basan en la actualización por el nuevo estado:

$$V_t(s_t) \leftarrow V_t(s_t) + \alpha \Big[V_{t+1}(s_t) - V_t(s_t) \Big]$$

$$V_t(s_t) \leftarrow V_t(s_t) + \alpha \Big[r_{t+1} + \gamma V_t(s_{t+1}) - V_t(s_t) \Big],$$

donde $\alpha \in [0, 1]$ es el factor de aprendizaje.

Método SARSA.

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha [r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

Método QLearning.

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha [r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t)]$$

Método Actor/Critic.

$$p(s_t, a_t) = p(s_t, a_t) + \beta \Big[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \Big]$$

$$\pi_t(s, a) = \frac{e^{p(s, a)}}{\sum_b e^{p(s, b)}}$$

Exploración / Explotación del conocimiento.

- Utilizar el conocimiento adquirido por el agente.
- Explorar racionalmente estados desconocidos.
- Los métodos clásicos son:
 - Avaro
 - ► *ϵ*−Avaro
 - Softmax o Distribución de Boltzmann,

$$P(a_t|s_t) = \frac{e^{p(a_t,s_t)/T}}{\sum_b e^{p(b,s_t)/T}},$$

donde T es la temperatura.

Para más información

Reinforcement Learning: A Survey.

Journal of Artificial Inteligence Research, 4:237–285, 1996.

Gracias por su atención