Netflix Movie Recommender System

Using Natural Language Processing and Cosine Similarity

Name: Gaurav Kumar

Student Id: INTERNSHIP_171273103266163398a8c87

Group no.: B1 G4

edunet Mail: gauravk8271@edunetmail.com

personal mail: gauravk8271@gmail.com

Institute name: IIT kharagpur

phone: 6204780646

OUTLINE

- Introduction
- Dataset Overview
- Data Preprocessing
- Feature Extraction
- Model Training
- Recommendations
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

Objective: Develop a movie recommender system to suggest movies based on user preferences.

Importance: Enhances user experience by providing personalized movie recommendations.

Applications: Used by streaming services like Netflix, Amazon Prime, and Hulu to improve user engagement and satisfaction.

PROPOSED SOLUTION

Develop a content-based movie recommender system using natural language processing (NLP) and cosine similarity to suggest movies based on descriptions and genres.

Key Steps:

1. Data Collection:

• Use a dataset with id, title, overview, and genre.

2. Data Preprocessing:

- Handle missing values and ensure consistency.
- Create tags by combining overview and genre.

3. Feature Extraction:

Convert tags into numerical vectors using CountVectorizer.

4. Model Training:

Compute cosine similarity between movie vectors.

5. **Recommendation System:**

• Implement a function to recommend movies based on similarity scores.

6. Evaluation and Improvement:

- Assess recommendation accuracy.
- Explore enhancements like additional features and advanced NLP techniques.

7. **Deployment:**

- Save the model and similarity matrix using pickle.
- Develop a user interface for real-time recommendations.

Benefits:

- Personalized movie recommendations.
- Enhanced user experience.
- Scalable for large datasets and real-time use.

Dataset overview

- Source: Movie metadata dataset containing information about various movies.
- **Key Columns:** id, title, overview, genre.
- Initial Exploration:
 - Displayed the first 10 records to understand the structure of the data.
 - Descriptive statistics to get an overview of the dataset.
 - Checked for missing values and data types to ensure data quality.

Data Processing

Column Selection: Focused on id, title, overview, and genre.

Feature Engineering:

- Created a new feature tags by combining overview and genre.
- This new feature helps in capturing the essence of the movie plot and genre.

Column Dropping: Removed the original overview and genre columns to simplify the dataset.

Feature Extraction

Vectorization Technique: Used CountVectorizer to convert text data into numerical vectors.

• **Parameters:** max_features=10000 (limits the number of features to 10,000 most frequent words), stop_words='english' (removes common English stop words).

Transformation: Converted the tags feature into vectors.

Result: Obtained a high-dimensional sparse matrix representing the textual data.

Model Training

Similarity Measure: Used cosine similarity to measure the similarity between movies.

Cosine Similarity: Measures the cosine of the angle between two vectors, capturing the similarity in their direction.

Implementation: Calculated the cosine similarity between all movie vectors to find similar movies.

Recommendations

Example Process:

- Identified the index for a specific movie (e.g., "The Godfather").
- Sorted movies based on similarity scores to find the most similar movies.

Function Implementation:

- Developed a recommand function to recommend movies based on a given title.
- Example Output: Provided recommendations for "Iron Man".

Demonstration: Displayed the top 5 similar movies for the given example

RESULT

Key Results:

- 1. Data Preprocessing: Combined overview and genre into tags.
- 2. **Feature Extraction:** Converted tags to vectors using CountVectorizer.
- 3. **Model Training:** Calculated cosine similarity between movie vectors.
- 4. Recommendation System: Recommended movies based on similarity scores.
 - Example: For "Iron Man," recommendations included "Iron Man 2," "The Avengers," and "Iron Man 3."

Conclusion:

Efficiently provided personalized movie recommendations.

Future Enhancements:

- Add features like cast and ratings.
- Use advanced NLP techniques.
- Scale for real-time recommendations.

RESULT

PROJECT LINK(GITHUB, GOOGLE DRIVE LINK)

Github: https://github.com/gamerGK/Netflix-movie-recommender-system

CONCLUSION

- **Summary:** Developed a functional movie recommender system using NLP and cosine similarity.
- **Effectiveness:** The system effectively recommends movies based on the content and genre.
- **Key Takeaways:** Highlighted the importance of feature engineering and similarity measures in building a recommender system.

FUTURE SCOPE

- **Enhanced Features:** Incorporate additional features like cast, crew, and keywords to improve recommendations.
- Advanced NLP Techniques: Utilize techniques like TF-IDF, Word2Vec, or BERT for better text understanding.
- Real-time Recommendations: Develop a scalable solution to provide real-time recommendations.
- User Interaction: Incorporate user feedback to continuously improve the recommendation system.

REFERENCES

Resources Used:

- Pandas: For data manipulation and analysis.
- Scikit-learn: For vectorization and similarity calculations.
- **Pickle:** For saving and loading the trained model and data.
- Documentation: Relevant documentation for libraries and tools used.

COURSE CERTIFICATE 1

In recognition of the commitment to achieve professional excellence

Link:

https://www.credly.co m/go/ntf38ahF

Gaurav Kumar

Has successfully satisfied the requirements for:

Getting Started with Enterprise Data Science

Issued on: 08 JUN 2024

Issued by IBM

Verify: https://www.credly.com/go/ntf38ahF

COURSE CERTIFICATE 2

In recognition of the commitment to achieve professional excellence

Gaurav Kumar

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: 08 JUN 2024 Issued by IBM

Verify: https://www.credly.com/go/jXaMxJfn

https://www.credly.com/ go/jXaMxJfn

COURSE CERTIFICATE 3

In recognition of the commitment to achieve professional excellence

Link:

https://www.credly.co m/go/69ViUI9I

Gaurav Kumar

Has successfully satisfied the requirements for:

Getting Started with Enterprise-grade Al

Issued on: 08 JUN 2024 Issued by IBM

Verify: https://www.credly.com/go/69ViUl9I

THANK YOU

Name: Gaurav Kumar

Student Id: INTERNSHIP_171273103266163398a8c87

Group no.: B1 G4

edunet Mail: gauravk8271@edunetmail.com

personal mail: gauravk8271@gmail.com

Institute name: IIT kharagpur

phone: 6204780646

