APPLICATION CERTIFICATION On Behalf of Eastern Times Technology Co., Ltd.

Bluetooth 3.0 Keyboard Model No.: ET-3788, ET-3782, ET-3783

FCC ID: TUV3788

Prepared for : Eastern Times Technology Co., Ltd.

Address : Building D, Nan An Industry Park, Youganpu Village

Fenggang Town, Dongguan City, Guangdong, China

Prepared by : ACCURATE TECHNOLOGY CO. LTD

Address : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20131724
Date of Test : August 12, 2013
Date of Report : August 22, 2013

TABLE OF CONTENTS

Description	Page
I	

Test Report Certification

1. G	GENERAL INFORMATION	5
1.1.	Description of Device (EUT)	5
1.2.	Description of Test Facility	
1.3.	<u>.</u>	
2. N	MEASURING DEVICE AND TEST EQUIPMENT	
3. O	OPERATION OF EUT DURING TESTING	8
3.1.	Operating Mode	8
3.2.	Configuration and peripherals	8
4. T	TEST PROCEDURES AND RESULTS	
5. 20	ODB BANDWIDTH TEST	10
5.1.	Block Diagram of Test Setup	10
5.2.	The Requirement For Section 15.247(a)(1)	
5.3.	EUT Configuration on Measurement	
5.4.	Operating Condition of EUT	10
5.5.	Test Procedure	11
5.6.	Test Result	11
6. C	CARRIER FREQUENCY SEPARATION TEST	21
6.1.	Block Diagram of Test Setup	21
6.2.	The Requirement For Section 15.247(a)(1)	
6.3.	EUT Configuration on Measurement	
6.4.	Operating Condition of EUT	21
6.5.	Test Procedure	22
6.6.	Test Result	22
7. N	NUMBER OF HOPPING FREQUENCY TEST	32
7.1.	Block Diagram of Test Setup	
7.2.	The Requirement For Section 15.247(a)(1)(iii)	
7.3.	EUT Configuration on Measurement	
7.4.	Operating Condition of EUT	
7.5.	Test Procedure	
7.6.	Test Result	33
8. D	OWELL TIME TEST	
8.1.	Block Diagram of Test Setup	
8.2.	The Requirement For Section 15.247(a)(1)(iii)	
8.3.	EUT Configuration on Measurement	
8.4.	Operating Condition of EUT	
8.5.	Test Procedure	
8.6.	Test Result	
	MAXIMUM PEAK OUTPUT POWER TEST	
9.1.	Block Diagram of Test Setup	
9.2.	The Requirement For Section 15.247(b)(1)	
9.3.	EUT Configuration on Measurement	
9.4.	Operating Condition of EUT	
9.5.	Test Procedure	68

9.6.	Test Result	68
10. RA	ADIATED EMISSION TEST	78
10.1.	Block Diagram of Test Setup	78
10.2.	The Limit For Section 15.247(d)	
10.3.	Restricted bands of operation	79
10.4.	Configuration of EUT on Measurement	79
10.5.	Test Procedure	80
10.6.	The Field Strength of Radiation Emission Measurement Results	81
11. BA	ND EDGE COMPLIANCE TEST	93
11.1.	Block Diagram of Test Setup	93
11.2.	The Requirement For Section 15.247(d)	93
11.3.	EUT Configuration on Measurement	93
11.4.	Operating Condition of EUT	93
11.5.	Test Procedure	94
11.6.	Test Result	94
12. AN	TENNA REQUIREMENT	126
12.1.	The Requirement	126
12.2.	Antenna Construction	126

Test Report Certification

Applicant : Eastern Times Technology Co., Ltd.Manufacturer : Eastern Times Technology Co., Ltd.

EUT Description : Bluetooth 3.0 Keyboard

(A) MODEL NO.: ET-3788, ET-3782, ET-3783

(B) SERIAL NO.: N/A

(C) POWER SUPPLY: DC 3V ("AAA" batteries $2\times$)

(D) Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.4- 2009

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determ ine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C S ection 15.247 limits. The measurement results are contained in this test report and A CCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sam ple only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test :	August 12, 2013
Prepared by :	BobWarg
	(Engineer)
Approved & Authorized Signer :	Lemb
	(Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Bluetooth 3.0 Keyboard Model Number : ET-3788, ET-3782, ET-3783

(Note: These samples are same except for the model number is difference. So we prepare the ET-3788 for FCC

test.)

Frequency Band : 2402MHz-2480MHz

Number of Channels : 79

Modulation type : GFSK, $\Pi/4$ -DQPSK, 8DPSK

Antenna Gain : 0dBi

Antenna type : PCB Antenna

Power Supply : DC 3V ("AAA" batteries $2\times$)

Applicant : Eastern Times Technology Co., Ltd.

Address : Building D, Nan An Industry Park, Youganpu Village

Fenggang Town, Dongguan City, Guangdong, China

Manufacturer : Eastern Times Technology Co., Ltd.

Address : Building D, Nan An Industry Park, Youganpu Village

Fenggang Town, Dongguan City, Guangdong, China

Date of sample received: August 7, 2013

Date of Test : August 12, 2013

1.2.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.3. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 12, 2013	Jan. 11, 2014
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 12, 2013	Jan. 11, 2014
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 12, 2013	Jan. 11, 2014
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 12, 2013	Jan. 11, 2014
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Feb. 06, 2013	Feb. 05, 2014
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Feb. 06, 2013	Feb. 05, 2014
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Feb. 06, 2013	Feb. 05, 2014
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1067	Feb. 06, 2013	Feb. 05, 2014
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 12, 2013	Jan. 11, 2014
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 12, 2013	Jan. 11, 2014

3. OPERATION OF EUT DURING TESTING

3.1.Operating Mode

The mode is used: Transmitting mode

Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

Hopping

3.2. Configuration and peripherals

EUT

(EUT: Bluetooth 3.0 Keyboard)

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Conducted Emission Test	N/A
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d) Section 15.209	Radiated Emission Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

(EUT: Bluetooth 3.0 Keyboard)

5.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping syst ems shall have hopping channel carrier frequencies separated by a m inimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Measurement

The equipment are installed on the em ission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

5.5.Test Procedure

- 5.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz.
- 5.5.3. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

5.6.Test Result

Channel	Frequency (MHz)	GFSK 20dB Bandwidth (MHz)	Π/4-DQPSK 20dB Bandwidth (MHz)	8DPSK 20dB Bandwidth (MHz)	Result
Low	2402	0.708	1.116	1.160	Pass
Middle	2441	0.704	1.116	1.164	Pass
High	2480	0.704	1.112	1.164	Pass

The spectrum analyzer plots are attached as below.

GFSK Mode

Low channel

Middle channel

High channel

$\Pi/4$ -DQPSK Mode

8DPSK Mode

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

(EUT: Bluetooth 3.0 Keyboard)

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping syst ems shall have hopping channel carrier frequencies separated by a m inimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping system s operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandw idth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transm itter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Measurement

The equipment are installed on the em ission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

6.5. Test Procedure

- 6.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- $6.5.2. Set\ RBW$ of spectrum analyzer to $100\ kHz$ and VBW to $300\ kHz.$ Adjust Span to $3\ MHz.$
- $6.5.3.Set\ the\ adjacent\ channel\ of\ the\ EUT\ maxhold\ another\ trace.$
- 6.5.4. Measurement the channel separation

6.6. Test Result

GFSK

OLDIC				
Channel	Frequency	Channel	Limit	Result
Chamilei	(MHz)	Separation(MHz)	(MHz)	Result
Lovy	2402	1.000	25KHz or 20dB	PASS
Low	2403	1.000	bandwidth	PASS
M: JJI.	2440	1.000	25KHz or20dB	DAGG
Middle	2441	1.000	bandwidth	PASS
High	2479	1.000	25KHz or 20dB	DACC
High	2480	1.000	bandwidth	PASS

$\Pi/4$ -DQPSK

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	1.002	25KHz or 2/3*20dB	PASS
Low	2403	1.002	bandwidth	TASS
Middle	2440	1.008	25KHz or 2/3*20dB	PASS
Wilduie	2441	1.008	bandwidth	TASS
High	2479	1.002	25KHz or 2/3*20dB	PASS
Trigii	2480	1.002	bandwidth	TASS

8QPSK

001 510				
Channel	Frequency	Channel	Limit	Result
Chamilei	(MHz)	Separation(MHz)	(MHz)	Result
Low	2402	1.000	25KHz or 2/3*20dB	PASS
LOW	2403	1.000	bandwidth	rass
Middle	2440	1.004	25KHz or 2/3*20dB	PASS
Miladie	2441	1.004	bandwidth	rass
High	2479	1.002	25KHz or 2/3*20dB	PASS
High	2480	1.002	bandwidth	rass

The spectrum analyzer plots are attached as below.

GFSK Mode

Low channel

Middle channel

High channel

Π /4-DQPSK Mode

Middle channel

300 kHz/

Center 2.4795 GHz

Span 3 MHz

8DPSK Mode

Middle channel

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

(EUT: Bluetooth 3.0 Keyboard)

7.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Measurement

The equipment are installed on the em ission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

7.5.Test Procedure

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as Span=83.5MHz, RBW=100 kHz, VBW=300 kHz.
- 7.5.3.Max hold, view and count how many channel in the band.

7.6.Test Result

Total number of	Measurement result(CH)	Limit(CH)
hopping channel	79	≥15

The spectrum analyzer plots are attached as below.

Number of hopping channels(GFSK)

Number of hopping channels ($\Pi/4$ -DQPSK)

Number of hopping channels(8QPSK)

8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

(EUT: Bluetooth 3.0 Keyboard)

8.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Measurement

The equipment are installed on the em ission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

8.5. Test Procedure

- 8.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=100 kHz, VBW=300 kHz, Span=0Hz, Adjust Sweep=1s. Get the burst (in 1 sec.).
- 8.5.4.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=2ms. Get the pulse time.
- 8.5.5.Repeat above procedures until all frequency measured were complete.

8.6. Test Result

GFSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)
	2402	0.415	132.80	400
DH1	2441	0.410	131.20	400
	2480	0.415	132.80	400
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pu	ulse time \times (1600/(2*)	79))×31.6
	2402	1.680	268.80	400
DH3	2441	1.695	271.20	400
	2480	1.680	268.80	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$				79))×31.6
	2402	2.960	315.73	400
DH5	2441	2.960	315.73	400
	2480	2.960	315.73	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

$\Pi/4$ -DQPSK

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)
	2402	0.415	132.80	400
DH1	2441	0.420	134.40	400
	2480	0.420	134.40	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$				
	2402	1.695	271.20	400
DH3	2441	1.695	271.20	400
	2480	1.695	271.20	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$				
DH5	2402	2.960	315.73	400
	2441	2.960	315.73	400
	2480	2.960	315.73	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

8QPSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)
	2402	0.420	134.40	400
DH1	2441	0.420	134.40	400
	2480	0.420	134.40	400
A period to	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$			
	2402	1.680	268.80	400
DH3	2441	1.680	268.80	400
	2480	1.695	271.20	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$				
DH5	2402	2.960	315.73	400
	2441	2.960	315.73	400
	2480	2.960	315.73	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

The spectrum analyzer plots are attached as below.

DH1 Low channel

250 μs/

Center 2.402 GHz

DH1 Middle channel

DH1 High channel

DH3 Low channel

DH3 Middle channel

DH3 High channel

DH5 Low channel

DH5 Middle channel

DH5 High channel

2DH1 Low channel

2DH1 Middle channel

2DH1 High channel

2DH3 Low channel

2DH3 Middle channel

2DH3 High channel

2DH5 Low channel

2DH5 Middle channel

2DH5 High channel

3DH1 Low channel

3DH1 Middle channel

3DH1 High channel

3DH3 Low channel

3DH3 Middle channel

3DH3 High channel

3DH5 Low channel

3DH5 Middle channel

3DH5 High channel

9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

(EUT: Bluetooth 3.0 Keyboard)

9.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping system s in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Measurement

The equipment are installed on the em ission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

9.5. Test Procedure

- 9.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz for GFSK mode
- 9.5.3.Set RBW of spectrum analyzer to 3MHz and VBW to 3MHz for other mode
- 9.5.4. Measurement the maximum peak output power.

9.6. Test Result

GFSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm)	Limits dBm / W
Low	2402	3.61	30/1.0
Middle	2441	2.48	30/1.0
High	2480	2.43	30/1.0

∏/4-DQPSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm)	Limits dBm / W
Low	2402	2.46	21 / 0.125
Middle	2441	1.87	21 / 0.125
High	2480	2.30	21 / 0.125

8QPSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm)	Limits dBm / W
Low	2402	2.23	21 / 0.125
Middle	2441	2.01	21 / 0.125
High	2480	2.80	21 / 0.125

The spectrum analyzer plots are attached as below.

GFSK Mode

Low channel

Middle channel

High channel

$\Pi/4$ -DQPSK Mode

Low channel

Middle channel

High channel

8QPSK Mode

Low channel

Middle channel

High channel

10. RADIATED EMISSION TEST

10.1.Block Diagram of Test Setup

10.1.1.Block diagram of connection between the EUT and simulators

(EUT: Bluetooth 3.0 Keyboard)

10.1.2. Anechoic Chamber Test Setup Diagram

(EUT: Bluetooth 3.0 Keyboard)

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally m odulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the ba nd that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), m ust also comply with the radiated emission limits specified in Section 15.209(a).

10.3. Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz MHz		GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4. Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

10.5.Test Procedure

The EUT and its sim ulators are placed on a turntable, which is 0.8 m eter high above ground. The turntable can rotate 360 degrees to determine the position of the m aximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be m oved up and down between 1.0 m eter and 4 meters to find out the m aximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both hor izontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables m ust be m anipulated according to ANSI C63.4- 2009 on radiated emission measurement.

The bandwidth of test receiver (R&S ESI26) is set at 120 KHz in 30-1000MHz. and set at 1MHz in above 1000MHz.

The frequency range from 30MHz to 25000MHz is checked.

The final m easurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector. The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation

Result = Reading + Corrected Factor

is as follows:

Where Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Site: 2# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

10.6. The Field Strength of Radiation Emission Measurement Results

Note: 1.We tested GFSK mode, $\Pi/4$ -DQPSK Mode & 8QPSK mode and recorded the worst case data (GFSK mode) for all test mode.

- 2. The fundamental radiated emissions were reduced by 2.4G Band Reject Filter in the attached plots.
- 3. The 18-25GHz emissions are not reported, because the levels are too low against the limit.

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No.: STAR #5011 Polarization: Horizontal Standard: FCC Class B 3M Radiated Power Source: DC 3V

Test item: Radiation Test Date: 2013/08/12
Temp.(C)/Hum.(%) 23 C / 48 % Time: 15:12:14
EUT: Bluetooth 3.0 Keyboard Engineer Signature:
Mode: TX 2402MHz Distance: 3m

Mode: TX 2402MHz Model: ET-3788

Note: Report No.:ATE20131724

Manufacturer: Eastern Times

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #5012

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Bluetooth 3.0 Keyboard

Mode: TX 2402MHz Model: ET-3788

Manufacturer: Eastern Times

Note: Report No.:ATE20131724

Polarization: Vertical Power Source: DC 3V Date: 2013/08/12 Time: 15:16:53 Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #5001

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Bluetooth 3.0 Keyboard

Mode: TX 2402MHz Model: ET-3788

Manufacturer: Eastern Times

Note: Report No.:ATE20131724

Polarization: Vertical Power Source: DC 3V Date: 2013/08/12 Time: 14:04:37 Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #5002

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Bluetooth 3.0 Keyboard

Mode: TX 2402MHz Model: ET-3788

Manufacturer: Eastern Times

Note: Report No.:ATE20131724

Polarization: Horizontal Power Source: DC 3V Date: 2013/08/12 Time: 14:08:10

Distance: 3m

Engineer Signature:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #5013 Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Bluetooth 3.0 Keyboard

Mode: TX 2441MHz Model: ET-3788

Manufacturer: Eastern Times

Note: Report No.:ATE20131724

Power Source: DC 3V Date: 2013/08/12 Time: 15:20:14 Engineer Signature: Distance: 3m

Vertical

Polarization:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #5014

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Bluetooth 3.0 Keyboard

Mode: TX 2441MHz Model: ET-3788

Manufacturer: Eastern Times

Note: Report No.:ATE20131724

Polarization: Horizontal Power Source: DC 3V Date: 2013/08/12

Time: 15:23:45
Engineer Signature:
Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #5003

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Bluetooth 3.0 Keyboard

Mode: TX 2441MHz Model: ET-3788

Manufacturer: Eastern Times

Note: Report No.:ATE20131724

Polarization: Horizontal Power Source: DC 3V

Date: 2013/08/12 Time: 14:11:53 Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #5004

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Bluetooth 3.0 Keyboard

Mode: TX 2441MHz Model: ET-3788

Manufacturer: Eastern Times

Note: Report No.:ATE20131724

Polarization: Vertical Power Source: DC 3V Date: 2013/08/12 Time: 14:15:13 Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #5015

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Bluetooth 3.0 Keyboard

Mode: TX 2480MHz Model: ET-3788

Manufacturer: Eastern Times

Note: Report No.:ATE20131724

Polarization: Horizontal Power Source: DC 3V Date: 2013/08/12 Time: 15:27:15 Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #5016

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Bluetooth 3.0 Keyboard

Mode: TX 2480MHz Model: ET-3788

Manufacturer: Eastern Times

Note: Report No.:ATE20131724

Power Source: DC 3V Date: 2013/08/12 Time: 15:30:43 Engineer Signature: Distance: 3m

Vertical

Polarization:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #5005

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Bluetooth 3.0 Keyboard

Mode: TX 2480MHz Model: ET-3788

Manufacturer: Eastern Times

Note: Report No.:ATE20131724

Polarization: Vertical Power Source: DC 3V Date: 2013/08/12 Time: 14:18:19

Engineer Signature:
Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #5006

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Bluetooth 3.0 Keyboard

Mode: TX 2480MHz Model: ET-3788

Manufacturer: Eastern Times

Note: Report No.:ATE20131724

Polarization: Horizontal Power Source: DC 3V Date: 2013/08/12

Date: 2013/08/12
Time: 14:22:37
Engineer Signature:
Distance: 3m

11.BAND EDGE COMPLIANCE TEST

11.1.Block Diagram of Test Setup

(EUT: Bluetooth 3.0 Keyboard)

11.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally m odulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the ba nd that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), m ust also comply with the radiated emission limits specified in Section 15.209(a).

11.3.EUT Configuration on Measurement

The equipment are installed on the em ission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4. Operating Condition of EUT

- 11.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 11.4.2. Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

11.5.Test Procedure

- 11.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 11.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge.
- 11.5.3. The band edges was measured and recorded.

11.6.Test Result

Frequency (MHz)	Result of Band Edge (dBc)	Limit of Band Edge (dBc)						
	GFSK							
2399.880	44.80	> 20dBc						
2483.998	45.58	> 20dBc						
	∏/4-DQPSK Mode							
2399.802	43.79	> 20dBc						
2484.838	44.09	> 20dBc						
8QPSK								
2399.750	43.26	> 20dBc						
2483.788	44.32	> 20dBc						

$\Pi/4$ -DQPSK Mode

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

3. Display the measurement of peak values.

Non-hopping mode

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #5010 Standard: FCC PK Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Bluetooth 3.0 Keyboard Mode: TX 2402MHz(GFSK)

Model: ET-3788 Manufacturer: Eastern

Note: Report No.:ATE201231724

Polarization: Horizontal Power Source: DC 3V

Date: 2013/08/12 Time: 15:08:58 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2310.000	43.84	-7.81	36.03	74.00	-37.97	peak			
2	2310.000	34.28	-7.81	26.47	54.00	-27.53	AVG			
3	2365.602	51.96	-7.69	44.27	74.00	-29.73	peak			
4	2365.602	40.28	-7.69	32.59	54.00	-21.41	AVG			
5	2390.000	57.45	-7.53	49.92	74.00	-24.08	peak			
6	2390.000	49.70	-7.53	42.17	54.00	-11.83	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #5009 Standard: FCC PK Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Bluetooth 3.0 Keyboard Mode: TX 2402MHz(GFSK)

Model: ET-3788 Manufacturer: Eastern

Note: Report No.:ATE201231724

Polarization: Vertical Power Source: DC 3V

Date: 2013/08/12 Time: 15:07:35 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2310.000	42.74	-7.81	34.93	74.00	-39.07	peak			
2	2310.000	31.58	-7.81	23.77	54.00	-30.23	AVG			
3	2365.882	53.59	-7.69	45.90	74.00	-28.10	peak			
4	2365.882	44.87	-7.69	37.18	54.00	-16.82	AVG			
5	2390.000	58.23	-7.53	50.70	74.00	-23.30	peak			
6	2390.000	50.00	-7.53	42.47	54.00	-11.53	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #5008
Standard: FCC PK
Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Bluetooth 3.0 Keyboard Mode: TX 2480MHz(GFSK)

Model: ET-3788 Manufacturer: Eastern

Note: Report No.:ATE201231724

Polarization: Horizontal Power Source: DC 3V

Date: 2013/08/12 Time: 15:01:01 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	63.76	-7.37	56.39	74.00	-17.61	peak			
2	2483.500	54.73	-7.37	47.36	54.00	-6.64	AVG			
3	2492.102	64.63	-7.39	57.24	74.00	-16.76	peak			
4	2492.102	54.70	-7.39	47.31	54.00	-6.69	AVG			
5	2500.000	57.25	-7.40	49.85	74.00	-24.15	peak			
6	2500.000	50.04	-7.40	42.64	54.00	-11.36	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #5007 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Bluetooth 3.0 Keyboard Mode: TX 2480MHz(GFSK)

Model: ET-3788 Manufacturer: Eastern

Note: Report No.:ATE201231724

Polarization: Horizontal Power Source: DC 3V

Date: 2013/08/12 Time: 14:59:42 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	65.37	-7.37	58.00	74.00	-16.00	peak			
2	2483.500	56.70	-7.37	49.33	54.00	-4.67	AVG			
3	2491.785	63.16	-7.39	55.77	74.00	-18.23	peak			
4	2491.785	53.00	-7.39	45.61	54.00	-8.39	AVG			
5	2500.000	42.40	-7.40	35.00	74.00	-39.00	peak			
6	2500.000	33.86	-7.40	26.46	54.00	-27.54	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR #5065 Standard: FCC PK Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Bluetooth 3.0 Keyboard Mode: TX 2402MHz(PI/4DQPSK)

Model: ET-3788

Manufacturer: Eastern Times

Note: Report No.:ATE201231724

Polarization: Vertical Power Source: DC 3V

Date: 2013/08/12 Time: 15:53:46 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2310.000	43.85	-7.81	36.04	74.00	-37.96	peak			
2	2310.000	34.73	-7.81	26.92	54.00	-27.08	AVG			
3	2366.022	54.02	-7.69	46.33	74.00	-27.67	peak			
4	2366.022	46.70	-7.69	39.01	54.00	-14.99	AVG			
5	2390.000	60.55	-7.53	53.02	74.00	-20.98	peak			
6	2390.000	50.99	-7.53	43.46	54.00	-10.54	AVG			