CONCOURS COMMUN POLYTECHNIQUE (ENSI)

FILIERE MP

MATHEMATIQUES 1

EXERCICE 1 : normes équivalentes

- 1. Soit $f \in E$. f est de classe C^1 sur [0,1]. Donc la fonction |f'| est continue sur le segment [0,1] et par suite la fonction |f'| est intégrable sur le segment [0,1]. On en déduit que ||f|| existe dans \mathbb{R} .
- Pour tout $f \in E$, $||f|| = |f(0)| + 2 \int_{0}^{1} |f'(t)| dt \ge 0$.
- Soit $f \in E$.

$$\begin{split} \|f\| &= 0 \Rightarrow |f(0)| + 2 \int_0^1 |f'(t)| \; dt = 0 \Rightarrow |f(0)| = \int_0^1 |f'(t)| \; dt = 0 \\ &\Rightarrow f(0) = 0 \; \text{et} \; \forall t \in [0,1], \; |f'(t)| = 0 \; (\text{fonction continue, positive, d'intégrale nulle}) \\ &\Rightarrow f(0) = 0 \; \text{et} \; f \; \text{est constante sur} \; [0,1] \\ &\Rightarrow \forall t \in [0,1], \; f(t) = f(0) = 0 \\ &\Rightarrow f = 0. \end{split}$$

• Soient $f \in E$ et $\lambda \in \mathbb{R}$.

$$\|\lambda f\| = |\lambda f(0)| + 2\int_0^1 |\lambda f'(t)| \ dt = |\lambda| \left(|f(0)| + 2\int_0^1 |f'(t)| \ dt \right) = |\lambda| \|f\|.$$

• Soit $(f, g) \in E^2$.

$$\|f+g\| = |f(0)+g(0)| + 2\int_0^1 |f'(t)+g'(t)| \ dt \le |f(0)| + |g(0)| + 2\int_0^1 |f'(t)| \ dt + 2\int_0^1 |g'(t)| \ dt = \|f\| + \|g\|.$$

On a montré que

 $\| \ \|$ est une norme sur E.

2. i) Soient N et N' deux normes sur un espace vectoriel E.

$$N \text{ et } N' \text{ sont \'equivalentes} \Leftrightarrow \exists (\alpha,\beta) \in]0, +\infty[^2/ \ \forall f \in E, \ \alpha N(f) \leqslant N'(f) \leqslant \beta N(f).$$

ii) Soit $f \in E$.

$$||f|| = |f(0)| + 2 \int_0^1 |f'(t)| dt \le 4|f(0)| + 2 \int_0^1 |f'(t)| dt = 2||f||',$$

et aussi

$$||f||' = 2|f(0)| + \int_0^1 |f'(t)| dt \le 2|f(0)| + 4 \int_0^1 |f'(t)| dt = 2||f||.$$

Ainsi, $\forall f \in E$, $\frac{1}{2} ||f|| \le ||f||' \le 2 ||f||'$ et donc

 $\| \|$ et $\| \|'$ sont des normes équivalentes.

3. Pour $f \in E$, posons $||f||_1 = \int_0^1 |f(t)| dt$. Montrons que les normes $|| || et || ||_1$ ne sont pas équivalentes. Pour cela vérifions que $\sup \left\{ \frac{\|f\|}{\|f\|_1}, \ f \in E \setminus \{0\} \right\} = +\infty.$ Posons $S = \sup \left\{ \frac{\|f\|}{\|f\|_1}, \ f \in E \setminus \{0\} \right\}.$

Pour
$$\mathfrak{n}\in\mathbb{N}^*$$
 et $t\in[0,1],$ posons $f_\mathfrak{n}(t)=t^\mathfrak{n}.$ Pour tout $\mathfrak{n}\in\mathbb{N}^*,$

$$\|f_n\|_1 = \int_0^1 t^n dt = \frac{1}{n+1},$$

et

$$\|f_n\| = 0 + 2 \int_0^1 f'_n(t) dt = 2(f_n(1) - f_n(0)) = 2,$$

 $\text{puis } \frac{\|f_n\|}{\|f_n\|_1} = 2(n+1). \text{ Mais alors, pour tout entier naturel non nul } n, \ S \geqslant \frac{\|f_n\|}{\|f_n\|_1} = 2(n+1). \text{ Quand } n \text{ tend vers } +\infty,$ on obtient $S = +\infty.$

On a montré que sup $\left\{\frac{\|f\|}{\|f\|_1}, f \in E \setminus \{0\}\right\} = +\infty$ et donc $\|\|f\|$ n'est pas équivalente à $\|f\|$.

EXERCICE 2 : continuité d'une fonction définie par une intégrale

- Soient I et J deux intervalles de $\mathbb R$ puis $g: I \times J \to (x,t) \mapsto g$ une application de $I \times J$ dans \mathbb{R} . Si
 - pour tout x de I, l'application $t \mapsto g(x, t)$ est continue par morceaux sur J,
 - pour tout t de J, l'application $x \mapsto g(x,t)$ est continue sur I,
 - il existe une fonction φ positive, continue par morceaux et intégrable sur J telle que pour tout (x,t) de I \times J, $|g(x,t)| \leq \varphi(t)$, (hypothèse de domination)

alors la fonction $f: x \mapsto \int_{T} g(x,t) dt$ est définie et continue sur I.

- 2. Pour $(x,t) \in \mathbb{R} \times [0,+\infty[$, posons $g(x,t) = \frac{\operatorname{Arctan}(xt)}{1+t^2}$ de sorte que pour tout $x \in \mathbb{R}$, $f_1(x) = \int_0^{+\infty} g(x,t) dt$.
 - pour tout x de \mathbb{R} , l'application $t \mapsto g(x,t)$ est continue par morceaux sur $[0,+\infty[$,

 - pour tout t de $[0, +\infty[$, l'application $x \mapsto g(x,t)$ est continue sur \mathbb{R} , pour tout (x,t) de $\mathbb{R} \times [0, +\infty, |g(x,t)| \le \frac{\pi}{2(1+t^2)} = \varphi(t)$ où φ est une fonction positive, continue par morceaux et intégrable sur $[0, +\infty[$ (car dominée par $\frac{1}{t^2}$ au voisinage de $+\infty$).

D'après le théorème de continuité des intégrales à paramètres, la fonction f_1 est continue sur \mathbb{R} .

3. $f_2(0) = 0$ puis, si x > 0,

$$f_2(x) = \int_0^{+\infty} x e^{-xt} dt = \left[-e^{-xt} \right]_0^{+\infty} = 1 - \lim_{t \to +\infty} e^{-xt} = 1 \text{ (car } x > 0).$$

Donc,

$$\forall x \geqslant 0, \ f_2(x) = \left\{ \begin{array}{l} 0 \ \mathrm{si} \ x = 0 \\ 1 \ \mathrm{si} \ x > 0 \end{array} \right..$$

 f_2 n'est pas continue en 0. Comme la fonction $g:(x,t)\mapsto xe^{-xt}$ vérifie les deux premières hypothèses du théorème de continuité des intégrales à paramètres, q ne peut vérifier l'hypothèse de domination. Cette hypothèse de domination est donc nécessaire pour être sûr de la continuité de la fonction $x \mapsto \int_{\mathbb{R}} g(x,t) dt$.

EXERCICE 3 : une intégrale curviligne

La forme différentielle $\omega = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$ est continue sur $D = \mathbb{R}^2 \setminus \{(0,0)\}$ et le cercle de centre O et de rayon 1 est contenu dans D. Une paramétrisation de ce cercle parcouru une fois dans le sens trigonométrique est γ : $\left\{ \begin{array}{l} x = \cos t \\ y = \sin t \end{array} \right.,$ t variant de 0 à 2π . Cette paramétrisation est de classe C^1 puis

$$\int_{\gamma} \omega = \int_{0}^{2\pi} \left(\frac{-\sin t}{\cos^2 t + \sin^2 t} (-\sin t) + \frac{\cos t}{\cos^2 t + \sin^2 t} (\cos t) \right) \ dt = \int_{0}^{2\pi} 1 \ dt = 2\pi.$$

Problème : comparaison de convergences

Partie I

- 1. (a) Si f est une fonction définie sur I à valeurs dans \mathbb{R} , on pose $\|f\|_{\infty} = \sup\{|f(x), x \in I\} (\|f\|_{\infty} \text{ est élément de } [0, +\infty])$. La série de fonctions de terme général f_n , $n \in \mathbb{N}$, converge normalement sur I si et seulement si pour tout $n \in \mathbb{N}$, $\|f_n\|_{\infty}$ est un réel et la série numérique de terme général $\|f_n\|_{\infty}$, $n \in \mathbb{N}$, converge.
- (b) Soit $x \in I$. Pour tout entier $n, 0 \le |f_n(x)| \le ||f_n||_{\infty}$. Puisque la série de terme général $||f_n||_{\infty}$ converge, il en est de même de la série numérique de terme général $|f_n(x)|$, $n \in \mathbb{N}$. Ceci montre que la série numérique de terme général $|f_n(x)|$, $n \in \mathbb{N}$, est absolument convergente.

Ainsi, pour tout x de I, la série numérique de terme général $f_n(x)$, $n \in \mathbb{N}$, est absolument convergente ou encore la série de fonctions de terme général f_n , $n \in \mathbb{N}$, est absolument convergente sur I. On a montré que la convergence normale entraı̂ne la convergence absolue.

2. Puisque la série de fonctions de terme général f_n , $n \in \mathbb{N}$, converge normalement sur I, cette série converge simplement sur I et pour chaque entier n et chaque x de I, on peut poser $R_n(x) = \sum_{k=n+1}^{+\infty} f_k(x)$.

Soit $x \in I$. Pour tout entier naturel n,

$$|R_n(x)| \leqslant \sum_{k=n+1}^{+\infty} |f_k(x)| \leqslant \sum_{k=n+1}^{+\infty} ||f_k||_{\infty}.$$

 $\mathrm{Ainsi,\;pour\;tout\;}x\in\mathrm{I\;et\;tout\;}n\in\mathbb{N},\;|R_n(x)|\leqslant\sum_{k=n+1}^{+\infty}\|f_k\|_{\infty}\;\mathrm{et\;donc\;}\sum_{k=n+1}^{+\infty}\|f_k\|_{\infty}\;\mathrm{est\;un\;majorant\;de\;}\{|R_n(x)|,\;x\in\mathrm{I}\}.$

 $\mathrm{Comme} \ \|R_n\|_{\infty} \ \mathrm{est} \ \mathrm{le} \ \mathrm{plus} \ \mathrm{petit} \ \mathrm{des} \ \mathrm{majorants} \ \mathrm{de} \ \{|R_n(x)|, \ x \in \mathrm{I}\}, \mathrm{ceci} \ \mathrm{montre} \ \mathrm{que} \ \mathrm{pour} \ \mathrm{tout} \ n \in \mathbb{N}, \ \|R_n\|_{\infty} \leqslant \sum_{k=n+1}^{+\infty} \|f_k\|_{\infty}.$

Puisque la série numérique de terme général $\|f_n\|_{\infty}$, $n \in \mathbb{N}$, converge, la suite $\left(\sum_{k=n+1}^{+\infty} \|f_k\|_{\infty}\right)_{n \in \mathbb{N}}$ des restes à l'ordre n

tend vers 0 quand n tend vers $+\infty$. Mais alors, la suite $(\|R_n\|_\infty)_{n\in\mathbb{N}}$ tend vers 0 quand n tend vers $+\infty$. Ceci montre que la suite des restes R_n , $n\in\mathbb{N}$, converge uniformément vers 0 sur I ou encore que la série de fonctions de terme général f_n , $n\in\mathbb{N}$, converge uniformément sur I.

Ainsi, la convergence normale entraîne la convergence uniforme.

3. Soit $x \in [0,1]$. La suite numérique $(f_n(x))_{n \in \mathbb{N}^*}$ est alternée en signe et sa valeur absolue, à savoir $\left(\frac{x^2}{n^2} + \frac{1}{n}\right)_{n \in \mathbb{N}^*}$, tend vers 0 en décroissant (somme de deux suites décroissantes). On en déduit que la série numérique de terme général $f_n(x), n \in \mathbb{N}$, converge d'après le critère spécial aux séries alternées. De plus, d'après une majoration classique de la valeur absolue du reste à l'ordre n d'une série alternée, pour tout $n \in \mathbb{N}^*$,

$$|R_n(x)| = \left| \sum_{k=n+1}^{+\infty} f_k(x) \right| \leqslant |f_{n+1}(x)| = \frac{x^2}{(n+1)^2} + \frac{1}{n+1} \leqslant \frac{1}{(n+1)^2} + \frac{1}{n+1}.$$

 $\mathrm{Ainsi,\ pour\ tout\ } n \in \mathbb{N}^* \mathrm{\ et\ tout\ } x \in [0,1], \ |R_n(x)| \leqslant \frac{1}{(n+1)^2} + \frac{1}{n+1} \mathrm{\ et\ donc},$

pour tout
$$n \in \mathbb{N}^*$$
, $\|R_n\|_{\infty} \le \frac{1}{(n+1)^2} + \frac{1}{n+1}$.

Puisque $\frac{1}{(n+1)^2} + \frac{1}{n+1}$ tend vers 0 quand n tend vers $+\infty$, il en est de même de $\|R_n\|_{\infty}$. Ceci montre que

la série de fonctions de terme général f_n , $n \in \mathbb{N}^*$, converge uniformément sur [0,1].

Soit $x \in [0,1]$. La série numérique de terme général $\frac{x^2}{n^2}$, $n \in \mathbb{N}^*$, converge et la série numérique de terme général $\frac{1}{n}$, $n \in \mathbb{N}^*$, diverge. On en déduit que la série numérique de terme général $|f_n(x)| = \frac{x^2}{n^2} + \frac{1}{n}$, $n \in \mathbb{N}^*$, diverge (si cette série convergeait, alors la série de terme général $\frac{1}{n} = |f_n(x)| - \frac{x^2}{n^2}$, $n \in \mathbb{N}^*$, convergerait ce qui n'est pas). Donc

pour tout $x \in [0, 1]$, la série numérique de terme général $f_n(x)$, $n \in \mathbb{N}^*$, n'est pas absolument convergente.

Ainsi, la convergence uniforme n'entraîne pas la convergence absolue.

4. On sait que pour tout réel x, $e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$ et que la série de fonctions de terme général $f_n: x \mapsto \frac{x^n}{n!}$, $n \in \mathbb{N}$, converge absolument sur \mathbb{R} .

Soit $n \in \mathbb{N}$. Pour tout réel x, posons $R_n(x) = e^x - \sum_{k=0}^n \frac{x^k}{k!}$. Puisque $\lim_{n \to +\infty} R_n(x) = +\infty$ d'après un théorème de croissances comparées, la fonction R_n n'est pas bornée sur \mathbb{R} . Par suite, pour tout entier naturel n, $\|R_n\|_{\infty}$ et donc la série de fonctions de terme général f_n , $n \in \mathbb{N}$, ne converge pas uniformément sur \mathbb{R} vers la fonction exponentielle.

Ainsi, la convergence absolue n'entraîne pas la convergence uniforme.

PARTIE II

5. Puisque la suite $(\alpha_n)_{n\in\mathbb{N}^*}$ est décroissante et positive, pour tout entier naturel non nul n, on a $0 \le \alpha_n \le \infty$. Donc la suite $(\alpha_n)_{n\in\mathbb{N}^*}$ est bornée.

Soit $x \in [0, 1[$. Pour tout $n \in \mathbb{N}^*$,

$$|f_n(x)| = \alpha_n x^n (1-x) \le \alpha_0 (1-x) x^n$$
.

Puisque |x| < 1, la série géométrique de terme général $\alpha_0(1-x)x^n$, $n \in \mathbb{N}^*$ converge et il en est de même de la série numérique de terme général $|f_n(x)|$, $n \in \mathbb{N}^*$. Ainsi, pour tout réel $x \in [0,1[$, la série numérique de terme général $f_n(x)$, $n \in \mathbb{N}^*$, converge absolument et donc converge. On a montré que la série de fonctions de terme général f_n , $n \in \mathbb{N}^*$, converge simplement sur [0,1[.

6. (a) Soit $n \in \mathbb{N}^*$. La fonction f_n est dérivable sur [0, 1[et pour tout $x \in [0, 1[$,

$$f'_n(x) = \alpha_n (nx^{n-1}(1-x) - x^n) = \alpha_n x^{n-1}(n - (n+1)x).$$

La fonction f_n est positive, croissante sur $\left[0,\frac{n}{n+1}\right]$ et décroissante sur $\left[\frac{n}{n+1},1\right]$. On en déduit que

$$\|f_n\|_\infty = f_n\left(\frac{n}{n+1}\right) = \alpha_n \times \left(\frac{n}{n+1}\right)^n \times \frac{1}{n+1} = \frac{\alpha_n}{n+1}\left(1 + \frac{1}{n}\right)^{-n}.$$

(b) (Puisque la suite $(\alpha_n)_{n\in\mathbb{N}}$ peut s'annuler une infinité de fois, on n'utilisera pas des équivalents.)

$$\left(1+\frac{1}{n}\right)^{-n}=\exp\left(-n\ln\left(1+\frac{1}{n}\right)\right)\underset{n\to+\infty}{=}\exp\left(-n\left(\frac{1}{n}+o\left(\frac{1}{n}\right)\right)\right)=\exp(-1+o(1))=\frac{1}{e}+o(1).$$

puis

$$\|f_n\|_{\infty} \underset{n \to +\infty}{=} \left(\frac{\alpha_n}{n} + o\left(\frac{\alpha_n}{n}\right)\right) \left(\frac{1}{e} + o(1)\right) = \frac{\alpha_n}{en} + o\left(\frac{\alpha_n}{en}\right).$$

Si la série de terme général $\frac{\alpha_n}{n}$, $n \in \mathbb{N}^*$, converge il en est de même de la série numérique de terme général $\frac{\alpha_n}{en}$, $n \in \mathbb{N}^*$, puis de la série numérique de terme général o $\left(\frac{\alpha_n}{en}\right)$, $n \in \mathbb{N}^*$, et finalement de la série numérique de terme général $\|f_n\|_{\infty} = \frac{\alpha_n}{en} + o\left(\frac{\alpha_n}{en}\right)$.

$$\begin{split} \|f_n\|_\infty &= \frac{\alpha_n}{en} + o\left(\frac{\alpha_n}{en}\right). \\ \text{R\'eciproquement, supposons que la s\'erie de terme g\'en\'eral } \|f_n\|_\infty, \ n \in \mathbb{N}^*, \ \text{converge. Il existe un rang } n_0 \ \text{\`a partir duquel } o\left(\frac{\alpha_n}{en}\right) \geqslant -\frac{1}{2} \times \frac{\alpha_n}{en} \ \text{et donc } \|f_n\|_\infty = \frac{\alpha_n}{en} + o\left(\frac{\alpha_n}{en}\right) \geqslant \frac{1}{2} \times \frac{\alpha_n}{en}. \ \text{Pour } n \geqslant n_0, \ \text{on a alors} \end{split}$$

$$0 \leqslant \frac{\alpha_n}{n} \leqslant 2e \|f_n\|_{\infty}.$$

Ceci montre que la série de terme général $\frac{\alpha_n}{n}$ converge. On a montré que la série de terme général $\|f_n\|_{\infty}$, $n \in \mathbb{N}^*$, converge si et seulement si la série de terme général $\frac{\alpha_n}{n}$, $n \in \mathbb{N}^*$, converge ou encore

$$\sum_{n\geqslant 1} f_n \text{ converge normalement sur } [0,1[\text{ si et seulement si } \sum_{n\geqslant} \frac{\alpha_n}{n} \text{ converge}.$$

7. (a) Soit $n \in \mathbb{N}^*$. Pour tout $x \in [0, 1[$,

$$\sum_{k=n+1}^{+\infty} x^k = x^{n+1} \sum_{k=0}^{+\infty} x^k = \frac{x^{n+1}}{1-x}.$$

(b) On suppose que la suite $(\alpha_n)_{n\in\mathbb{N}^*}$ converge vers 0.

Soit $n \in \mathbb{N}^*$. Soit $x \in [0, 1[$. D'après la question 5), la série numérique de terme général $f_n(x)$, $n \in \mathbb{N}^*$, converge. On peut donc poser $R_n(x) = \sum_{k=n+1}^{+\infty} f_k(x)$. Ensuite, d'après la question a),

$$0\leqslant R_n(x) = \sum_{k=n+1}^{+\infty} f_k(x) = \sum_{k=n+1}^{+\infty} \alpha_k x^k (1-x) \leqslant \alpha_{n+1} (1-x) \sum_{k=n+1}^{+\infty} x^k = \alpha_{n+1} x^{n+1} \leqslant \alpha_{n+1}.$$

Ainsi, pour tout $n \in \mathbb{N}^*$ et tout $x \in [0,1[,|R_n(x)| \leqslant \alpha_{n+1}]$ et donc pour tout $n \in \mathbb{N}^*$, $\|R_n\|_{\infty} \leqslant \alpha_{n+1}$. Puisque la suite $(\alpha_n)_{n \in \mathbb{N}^*}$ tend vers 0 quand n tend vers $+\infty$, il en est de même de la suite $(\|R_n\|_{\infty})_{n \in \mathbb{N}^*}$. Ceci montre que la série de fonctions de terme général f_n , $n \in \mathbb{N}^*$, converge uniformément sur [0,1[.

(c) On suppose que la série de fonctions de terme général f_n , $n \in \mathbb{N}^*$, converge uniformément sur [0,1[.

La suite $(\alpha_n)_{n\in\mathbb{N}}$ est décroissante et positive. Cette suite admet donc une limite que l'on note ℓ et qui est un réel positif ou nul. Supposons $\ell \neq 0$ ou encore plus précisément $\ell > 0$.

Soit $n \in \mathbb{N}^*$. Pour tout $x \in [0, 1[$,

$$\begin{split} R_n(x) &= \sum_{k=n+1}^{+\infty} \alpha_n x^k (1-x) \\ &\geqslant \ell (1-x) \sum_{k=n+1}^{+\infty} x^k \; (\mathrm{car} \; \mathrm{la} \; \mathrm{suite} \; (\alpha_n)_{n \in \mathbb{N}^*} \; \mathrm{tend} \; \mathrm{vers} \; \; \ell \; \mathrm{en} \; \mathrm{d\acute{e}croissant}) \\ &= \ell x^{n+1}. \end{split}$$

 $\text{Mais alors, pour tout r\'eel } x \in [0,1[, \|R_n\|_{\infty} \geqslant |R_n(x)| \geqslant \ell x^{n+1}. \text{ Quand } x \text{ tend vers 1, on obtient } \|R_n\|_{\infty} \geqslant \ell.$

Ainsi, pour tout entier naturel non nul n, $\|R_n\|_{\infty} \ge \ell$. Comme $\ell > 0$, $\|R_n \mathbb{L}_{\infty}$ ne tend pas vers 0 quand n tend vers $+\infty$ ou encore la série de fonctions de terme général f_n , $n \in \mathbb{N}^*$, ne converge pas uniformément sur [0,1[. Par contraposition, si la série de fonctions de terme général f_n , $n \in \mathbb{N}^*$, converge uniformément sur [0,1[alors la suite $(\alpha_n)_{n \in \mathbb{N}^*}$ converge vers 0. On a montré que

$$\sum_{n\geqslant 1}f_n \text{ converge uniformément sur } [0,1[\text{ si et seulement si } (\alpha_n)_{n\in\mathbb{N}^*} \text{ converge vers } 0.$$

- 8. (a) Pour $n \in \mathbb{N}^*$, on pose $\alpha_n = \frac{1}{n}$. La suite $(\alpha_n)_{n \in \mathbb{N}^*}$ est une suite décroissante de réels positifs. La série numérique de terme général $\frac{\alpha_n}{n} = \frac{1}{n^2}$, $n \in \mathbb{N}^*$, converge et donc la série de fonctions de terme général f_n , $n \in \mathbb{N}^*$, converge normalement sur [0, 1] d'après la question 6.(b).
- (b) Pour $n \in \mathbb{N}^*$, on pose $\alpha_n = 1$. La suite $(\alpha_n)_{n \in \mathbb{N}^*}$ est une suite décroissante de réels positifs. La suite $(\alpha_n)_{n \in \mathbb{N}^*}$ ne converge pas vers 0 et donc la série de fonctions de terme général f_n , $n \in \mathbb{N}^*$, ne converge pas uniformément sur [0,1] d'après la question 7.(c).
- (c) On pose $\alpha_1=2$ et pour $n\geqslant 2$, on pose $\alpha_n=\frac{1}{\ln n}$. La suite $(\alpha_n)_{n\in\mathbb{N}^*}$ est une suite décroissante de réels positifs. La suite $(\alpha_n)_{n\in\mathbb{N}^*}$ converge vers 0 et donc la série de fonctions de terme général $f_n, n\in\mathbb{N}^*$, converge uniformément sur [0,1[d'après la question 7.(c).

Vérifions que la série de terme général $\frac{\alpha_n}{n}$, $n \in \mathbb{N}^*$, diverge. Puisque la suite $\left(\frac{\alpha_n}{n}\right)_{n \in \mathbb{N}^*}$ est décroissante (produit de suites positives décroissantes) et positive, la série de terme général $\frac{\alpha_n}{n}$, $n \in \mathbb{N}^*$, est de même nature que l'intégrale $\int_2^{+\infty} \frac{dx}{x \ln x}$ (comparaison série et intégrale). Or, pour X > 2

$$\int_{2}^{X} \frac{dx}{x \ln x} = [\ln(\ln x)]_{2}^{X} = \ln(\ln(X)) - \ln(\ln(2)),$$

et quand X tend vers $+\infty$, on obtient $\int_2^{+\infty} \frac{dx}{x \ln x} = +\infty$. Mais alors série de terme général $\frac{\alpha_n}{n}$, $n \in \mathbb{N}^*$, diverge et donc la série de fonctions de terme général f_n , $n \in \mathbb{N}^*$, ne converge pas normalement sur [0,1[d'après la question 6.(b).

9. Ci-dessous, toute implication non écrite est fausse.

