EUROPEAN PATENT APPLICATION

(21) Application number: 89107459.3

(i) Int. Cl.4: C12N 15/00 , C12P 21/02

2 Date of filing: 25.04.89

The applicant has filed a statement in accordance with Rule 28 (4) EPC (issue of a sample only to an expert). Accession number(s) of the deposit(s): NRRL Y-15851, B-18114, B-15867, B-15868, B-15869, B-15890 and B-18016.

- Priority: 25.04.88 US 186420
- Date of publication of application: 06.12.89 Bulletin 89/49
- (M) Designated Contracting States: AT BE CH DE ES GB GR IT LI LU NL SE
- (7) Applicant: PHILLIPS PETROLEUM COMPANY 5th and Keeler Bartlesville Oklahoma 74004(US)
- (7) Inventor: Marashi, Farhad Rt. 2, Box 3360 Bartlesville, OK 74006(US) Inventor: Fuke, Motohiro 4522 E 103rd Street Tulsa, OK 74137(US) Inventor: McComble, William Richard 1561 Kings Dr. No. 1217

Bartlesville, OK 74006(US) Inventor: Barr, Robert Dean 121 Mulberry Ln. Bartlesville, OK 74003(US) Inventor: Sreekrishna, Kotikanvadan 1060 Rolling Meadows Ct. Bartlesville, OK 74006(US) Inventor: Wong, Ricky Ngok-Shun 1805 Spring Creek Pky. Unit Plano, TX 75023(US) Inventor: Davis, Frances Marie 10301 Stella Link Houston, TX 77025(US) Inventor: Vineyard, Karen Marie 1715 Crescent Dr. Bartlesville, OK 74006(US) Inventor: Parker, Kathryn Ann 2025 S. Dewey Bartlesville, OK 74003(US)

- (2) Representative: Dost, Wolfgang, Dr.rer.nat..Dipi.-Chem. et al Patent- & Rechtsanwälte Bardehle . Pagenberg , Dost , Altenburg , Frohwitter , Geissler & Partner Galileiplatz 1 Postfach 86 06 20 D-8000 München 86(DE)
- Expression of human serum albumin in metholotrophic yeasts.
- A process for the production of HSA. Also disclosed are DNA molecules and methylotrophic veasts transformed with the molecules. Additionally disclosed is a novel HSA nucleotide sequence.

Expression of Human Serum Albumin in Methylotrophic Yeasts

Fleid of the invention

This invention relates to the field of recombinant DNA biotechnology. In one aspect, this invention relates to a process for the expression of human serum albumin (HSA) in methylotrophic yeasts. In another aspect the present invention relates to novel DNA molecules and novel yeast strains transformed therewith.

Background

10

Human serum albumin is the most abundant plasma protein of adults. The concentration of albumin is 40 mg/ml, or 160g of albumin circulating throughout the human body for a 70 Kg adult male. This protein maintains osmotic pressure and functions in the binding and transport of copper, nickel, calclum (weakly, at 16 2-3 binding sites) bilirubin and protoporphyrin, long chain fatty acids, prostaglandins, steroid hormones (weak binding with these hormones promotes their transfer across the membranes), thyroxine, triiodothyronine, cystine, and glutathione. According to Peters et al, over 10,000 kilograms of purified albumin are administered annually in the United States alone to patients with circulatory failure or with albumin depletion.

Currently the only commercial source of HSA is from fractionalized blood. Considering the possible dangers of blood borne contaminants and pathogens, it would be a considerable contribution to the commercial production of HSA to develop alternate methods of producing HSA. With the advent of recombinant DNA biotechnology, it is now possible to produce HSA by alternate methods.

Unfortunately, although HSA has been produced in <u>E. coli</u> cells there are significant disadvantages to producing HSA in this host. For example, <u>E. coli</u> produces endotoxins which must be removed by expensive purification steps.

Thus it would be a significant contribution to the art to develop a process for the production of HSA.

Therefore, it is an object of this invention to provide a process for the enhanced production of HSA.

Yet another object of this invention is to provide novel vectors containing DNA sequences which code for HSA.

A further object of this invention is to provide novel methylotrophic yeasts transformed with a vector or

vectors capable of enhanced production of HSA.

A still further object of this invention is a novel nucleotide sequence coding for HSA.

- 35

Summary of the Invention

In accordance with the present invention, we have discovered a process for the production of HSA o comprising transforming a methylotrophic yeast with at least one vector having a compatible expression cassette containing a structural gene for HSA thereof, and culturing the resultant transformants under conditions suitable to obtain the production of HSA and a novel nucleotide sequence coding for HSA.

Detailed Description of the Figures

Figure 1 provides a representation of plasmid pA0904 which contains a linear integrative site-specific vector in the fragment clockwise from Bglll to Bglll. The structural gene may be inserted in the unique so EcoRI site of this plasmid. This plasmid may be recovered from the plasmid DNA or NRAIL B-18114 by an EcoRI digest and gel electrophoresis to recover a linear –7-4 Kb EcoRI fragment corresponding to Figure 1. Figure 2(a) provides a linear may of pA0904.

Figure 2(b) provides linear map of pA0807, a derivative of pA0804 containing an fl-on of approximately 458 base pairs.

Figure 2(c) provides a linear map of pA0807N which has Notl sites inserted in place of the Bgill sites of pA0807.

Figure 2(d) provides linear map of pHSA113 which is a linear map of pA0807N with an HSA gene inserted in the unique EcoRI site.

Figure 3 provides a representation of pA0807N in circular form.

Figure 4 provides a representation of plasmid pTHFKΔ an autonomous yeast plasmid DNA of NRRL B-18115 by an EcoRI digestion gel electrophoresis and recovering the 6.2 KB EcoRI fragment.

Figure 5 provides a representation of pHSA13, which is a derivative of pTHFKA containing a HSA gene inserted in the unique EcoRI site of pTHFKA.

Detailed Description

The HSA structural genes have been sequenced by Lawn et al. Nuc. Acids. Res. 9:6105 (1981), Dugaiczyk et al. Proc. Natl. Acad. Sci. USA 79:71 (1982).

This gene may be obtained by reisolation of the gene by the technique of Lawn et al., Dugaiczyk et al. or as described in Example I or synthesized in vitro by a custom gene manufacturer such as British Blotechnology, tud. One possible method of obtaining the HSA gene would be to screen a liver cDNA and library with disponucieotide probes and optionally with immunoscreening positive plaques for the HSA structural gene. Performing this type of isolation scheme, an HSA gene was isolated having the nucleotide sequence shown in Table 1.

10

20

35

50

Table 1 Nucleatide Sequence of IISA13

Table ! (Continued)

The nucleotide sequence provided in Table 1 was obtained by sequencing the isolated HSA DNA, which may be performed by any suitable technique such as the dideoxynucleotide chain termination method of Sanger et al., PNAS 74, 5483 (1977), or by subcloring using M13 derivatives, sequencing as is s described by Sanger et al., J. Mol. Biol. 142, 1617 (1980).

This sequence is a novel nucleotide sequence compared to the sequences published by Lawn et al. and Dugaiczyk et al. A comparison of the nucleotide sequences is provided in Table 2.

Table 2 HSA Sequence Comparison

HSA AAs													479 GLU		
														-	
										LYS					
1.	LAWN	GTA	GAG	GCT	AAA	GTG	CAG	CTG	AAC	AAG	CTA	ÁCA	GAG	CTT	GCA
			GLY												
2.	DUGAI	GTT	GGG	GCT	AAG	GTA	CAA	TTG	AAT	GAG	CTG	ACC	GAA	CTC	GCT
3.	DUGAII	GTT	GAG	GCT	AAG	GTA	CAA	CTG	AAT	GAG	CŢA	ACC	GAA	стс	GCA
				VAL											
4.	HSA13	GTT	GAG	GTT	AAG	GTA	CAA	TTG	AAT	GAG	CTA	ACC	GAA	CTT	GCA
						_									
	rces:					Du	gaica	zyk e	et a.	1.,	DNA	, 3)	Duga	icz	ket

Once the structural gene for HSA is recovered, it may first be necessary to insert the structural gene into a vector and a compatible host cell line to propagate the gene, or to further tailor the gene and the like.

Culturing the host may be accomplished by any suitable means. General techniques for culturing hosts an already known in the art and any adaptation of these methods to the specific requirements of the strains used herein is well within the abilities of those skilled in the art.

Recovery of plasmid DNA from hosts can be accomplished by several techniques due to its compact size and closed circular superhicial form. For example, following the harvest host cells may be pelleted by centrifugation and then resuspended and lysed. The lysate should be centrifuged to remove cell debris and the supernatant containing DNA retained. A phenol extraction can then be performed to remove most other contaminants from the DNA. The phenol-extracted DNA may then be further treated using a density gradient centrifugation or a gel filtration technique to separate the plasmid DNA from the bacterial DNA. The techniques for achieving the separation alluded to above are well known in the art and numerous methods of performing these techniques are known.

Nuclease digestion of the plasmids may be accomplished by choosing appropriate endonucleases which will cut the selected plasmid in such a way as to facilitate the recovery of the HSA structural gene. The endonucleases used will depend on the plasmid from which the HSA gene is to be excised.

Gel electrophoresis of DNA may be accomplished using numerous techniques. See P. G. Sealy and E. M. Southern. Gel Electrophoresis of Nucleic Acids - A Practical Approach (D. Rickwood and B. D. Hameds), p. 39 (1982). Elution may also be accomplished using numerous techniques appropriate for the gel involved, such as electroelution, diffusion. gel dissolution (agarose gels) or physical extrusion (agarose gels). It is additionally recognized that elution may not be necessary with some gels such as high-quality, low melting temperature agarose.

Once the fragment containing the HSA structural gene or fragments thereof is isolated, additional manufulations may be required before it is inserted in the vector. These manipulations may include, but are not limited to the addition of linkers or blunt-ending the fragment.

Following the isolation of the HSA structural gene, the gene is inserted into a suitable methylotrophic yeast vector such as a plasmid or linear site-specific integrative vector. Federably vectors for the practice of this invention are those compatible with the Pichia genus and most preferably Pichia pastoria.

Plasmids have long been one of the basic elements employed in recombinant DNA technology.

Plasmids are circular extractoronosomal double-stranded DNA found in microorganisms. Plasmids have been found to occur in single or multiple copies per cell. Included in plasmid DNA is the information required for plasmid reproduction, i.a. an autonomous replication sequence such as those disclosed by Crego in European Application 0150989 published May 14, 1866. One more means of phenotypically selecting the plasmid in transformed cells may also be included in the information encoded in the plasmid.

Phenotypic or selection markers, such as ambitiothe resistance genes or genes which complement detects in the host biochemical pathways, permit clones of the host cells which have been transformed to be recognized, selected, and maintained.

recognized, selected, and members.

To express the HSA structural gain in methylotrophic yeasts, the gene must be operably linked to a 5 regulatory region and 3 termination sequence, which forms the expression cassette which will be inserted

into the host via a vector.

The following terms are defined herein for the purpose of clarification.

Operably linked-refers to a juxtaposition wherein the components are configured so as to perform their function.

Regulatory region--DNA sequences which respond to various stimuli and affect the rate of mRNA transcription.

3' Termination sequence-sequences 3' to the stop codon which function to stabilize the mRNA such as sequences which elicit polyadenylation.

sequences which enter polyecter years.

"Pichia compatible" refers to DNA sequences which will perform their normal function in <u>Pichia</u> such as regulatory regions and 3 termination sequences derived from <u>Pichia</u>.

regulatory regions and 3 eminiatud sequences section and the sequences of the sequences and the sequences of the sequences of the sequences of the sequence of at least 1) a first insertable DNA fragment (2) a selectable marker gene; and 3) a second insertable DNA fragment may also be used for the practice of this invention.

The first and second insertable DNA fragments are sech at least about 200 nucleotides in length and so have nucleotide sequences which are homologous to portions of the genomic DNA of the species to be transformed. The various components of the integrative vector are serially arranged forming a linear fragment of DNA such that the expression cassette and the selectable marker gene are positioned between the 3 end of the first insertable DNA fragment and the 5 end of the second insertable DNA fragment. The first and second insertable DNA fragments are oriented with respect to one another in the serially arranged 3s linear fragment as they are so oriented in the parent genome.

se linear tragment as uny are so oriented in the pleast internation of the process of the proces

The first insertable DNA fragment may contain an operable regulatory region which may comprise the regulatory region which may comprise the regulatory region utilized in the expression cassette. The use of the first insertable DNA fragment as the regulatory region for an expression cassette is a preferred embodiment of this invention. Figure 1 provides regulatory region for expression cassette is a preferred embodiment of this invention. Figure 1 provides regulatory region for a cassette.

Optionally as shown in Figure 1 an insertion site or sites and a 3 termination sequence may be placed immediately 3 to the first insertable DNA tragment. This conformation of the linear site-specific integrative vector has the additional advantage of providing a ready site for insertion of a structural gene without necessitating the addition of a compatible 3 termination sequence.

necessitating the actuation of a companies deministration of the practice of this invention could contain a polylinker site to facilitate the insertion of structural genes or cassettes or the like, between the first insertable DNA fragment and the second insertable DNA fragment, or the regulatory region and termination sequence as shown in Floure 4.

It is also necessary to include at least one selectable marker gene in the DNA used to transform the host strain. This facilitates selection and isolation of those organisms which have incorporated the transforming DNA. The marker gene confers a phenotypic trail to the transformed organism which the host did not have, e.g., restoration of the ability to produce a specific amino add where the untransformed host strain has a defect in the specific amino add blosynthetic pathway or resistance to antibiotics and the like.

Exemplary selectable marker genes may be selected from the group consisting of the HIS4 gene and the ARG4 gene from Pichia pastoris and Saccharomyzos carevisiae, the invertase gene (SUC2) from Saccharomyzos cerevisiae, vie throates gene from the E. coll transposable elements Triffor nor TRIFO.

Those of skill in the art recognize that additional DNA sequences can also be incorporated into the vectors employed in the practice of the present invention, such as for example, bacterial plasmid DNA, bacteriophage DNA, and the like. Such sequences enable the amplification and maintenance of these vectors in bacterial hosts.

If the first insertable DNA fragment does not contain a regulatory region, a suitable regulatory region will 51 need to be inserted operably linked to the structural gene, in order to provide an operable expression cassette. Similarly if no 3 termination sequence is provided at the insertion site to complete the expression cassette, a3 termination sequence will have to be operably linked to the structural gene to be inserted.

Those skilled in the art are aware of numerous regulatory regions which have been characterized and could be employed in conjunction with methylotrophic veasts. Exemplary regulatory regions include but are an extension to the include but are not involved to the extension of the control property of the present invention are those characterized by their ability to respond to methanol-containing media, such regulatory regions as dependently of the property of the present invention are those characterized by their ability to respond to methanol-containing media, such regulatory regions selected from the group consisting of AOX, DNAS, PAB and disclosed in EP-A-0183071.

The most preferred regulatory region for the practice of this invention is the ADX1 regulatory region.

3 termination sequences may be utilized in the expression cassette or be part of the vector as discussed above. 3 termination sequences may function to terminate, polyadenylate and/or stabilize the some seenger RNA coded for by the structural gene when operably linked to a gene. A few examples illustrative sources for 3 termination sequences for the practice of this invention include but are not limited to the Saccharomyces cerevistae, Hansenula polymorpha, and Pichia 3 termination sequences. Preferred are those derived from Pichia pastoris such as those selected from the group consisting of the 3 termination sequences of ADX1 gene, DHAS gene, p40 gene and HISA ghene. And particularly preferred is so the 3 termination sequences of the ADX1 gene, DHAS gene, p40 gene and HISA ghene. And particularly preferred is so the 3 termination sequences of the ADX1 gene, DHAS gene, p40 gene and HISA ghene.

For the practice of the current invention either linear site-specific integrative vectors such as the Bglll fragments of the constructs shown in Figure 1 and 2 or plasmids such as provided in Figure 4 may be used.

The insertion of the HSA structural gene into suitable vectors may be accomplished by any suitable technique which cleaves the vector chosen at an appropriate site or sites and results in at least one operable expression cassette containing the HSA structural gene being present in the vector.

Ligation of HSA structural gene may be accomplished by any appropriate ligation technique such as utilizing T4 DNA ligase.

The initial selection, propagation, and optional amplification of the ligation mixture of the HSA structural gene and a vector is preferably performed by transforming the mixture into a bacterial host such as E. coll. (Although the ligation mixture could be transformed directly into a yeast host). Suitable transformation techniques for E. coil are well known in the art. Additionally, selection markers and bacterial origins of replication necessary for the maintenance of a vector is a beclarial host are also well known in the art.

The isolation and/or purification of the desired plasmid containing the HSA structural gene in an 50 expression system may be accomplished by any suitable means for the separation of plasmid DNA from the host DNA.

Similarly the vectors formed by ligation may be tested preferably after propagation to verify the presence of the HSA gene and its operable linkage to a regulatory region and a 3 termination sequence. This may be accomplished by a variety of techniques including but not limited to endonuclease digestion, 59 gel electrophoresis, or endonuclease digestion-Southern hybridization.

Transformation of plasmids or linear vectors into yeast hosts may be accomplished by suitable transformation techniques including but not limited to those taught by Hinnen et al., Proc. Natl., Acad. Sci. 75, (1978) 1929; the et al., J. Bacteriol. 153, (1983) 163; Cregg et al Mol. Cell Biol. 5 (1985) pp. 3376; or

Sreekrishna et al., Gene, 59 (1987) pg. 115. Preferable for the practice of this invention is the transformation technique of Cregg. It is desirable for the practice of this invention to utilize an excess of linear vectors and select for multiple insertions by Southern hybridization.

The yeast host for transformation may be any suitable methylotrophic yeast. Methylotrophic yeast include but are not limited to yeast capable of growth on methanol selected from the genera consisting of Hansenula, Candida, Kloeckera, Pichia, Saccharomyces, Torulopsis and Rhodotorula. A list of specific species which are exemplary of this class of yeasts may be found in C. Anthony, The Blochemistry of Methylotrophs, 269 (1982). Presently preferred are methylotrophic yeasts of the genus Pichla such as the auxotrophic Pichia pastoris GS115 (NRRL Y-15851). Auxotrophic methylotrophic yeasts are also advantagoods to the practice of this invention for their ease of selection. It is recognized that wild type methylotrophic yeast strains may be employed with equal success if a suitable transforming marker gene is selected, such as the use of SUC2 to transform Pichia pastoris to a strain capable of growth on sucrose or an antibiotic resistance marker is employed, such as G418.

Transformed methylotrophic yeast cells can be selected for using appropriate techniques including but not limited to culturing previously auxotrophic cells after tranformation in the absence of a biochemical product required (due to the cell's auxotrophy), selection for and detection of a new phenotype ("methanol slow"), or culturing in the presence of an antibiotic which is toxic to the yeast in the absence of a resistance gene contained in the transformant.

isolated transformed methylotrophic yeast cells are cultured by appropriate fermentation techniques such as shake flask fermentation, high density fermentation or the technique disclosed by Cregg et al. High-Level Expression and Efficient Assembly of Hepatitis B Surface Antigen in the Methylotrophic Yeast, Pichia Pastoris 5 Bio/Technology 479 (1987).

Examples

General information pertinent to the Examples:

Strains

Pichia pastoris GS115 (his4) [NRRL Y-15851] Pichia pastoris KM71 (his4 aox1:ARG4) E.coli YMC9 (F- λ- endoAl hsds 17 SUPE44 thi 1) used for all plasmid constructions and preparations. E.coli DH5x F' [(F', endAl hsd RI7 (r'k, mk) Sup E.44, thi-1, \u03b4 recAl,

gyr A96, rel Al, 080dlac ₹ -ΔM15,

Δ(lac ZYAargF)U1691

E.coli JM107 . endAl, gyrA96, thi, hsdR17, supE44, relAl,traD36 (r_K-, m_K*) Δ(lac proA,B)/F', proA,B, lacl^q ZAM15.

E. coli Y1088 [(ATCC no.37195); ∆lacU169 supE supF hsdR⁻ hsdM^{*} metB trpR tonA21 proC::Tn5 -(pMC9 = pBR322-laction) was used for the amplification of the library for the purpose of DNA isolation, and preparation of plaque-purified phage stocks.

E. coli Y1090 [ATCC no.37197); ΔlacU169 proA± Δlon araD139 strA supF trpC22::Tn10 (pMC9)] was used as host for all immunological plaque screenings, and subsequent screening with various oligonucleotide probes.

Buffers, Solutions and Media

The buffers, solutions and media employed in the following examples have the compositions given helow:

Media, per liter

LB + amp 10g yeast extract
20g tryptone
10g NaCl
adjust to pH 7.5 with SM NaOH
100mg ampicillin

roomg ampicilin

LB 10g yeast extract
20g tryptone

10g NaCl

adjust to Pp 7.5 with 5M paOH

HGY 13.4g YNB without amino acids 400µg biotin

10g glucose 10ml glycerol

MM 13.4g YNB without amino acids

400µg biotin

Sml methanol

LB agar plate 1-2% agar in LB

LB top agar 0.8% agar in LB

top agarose 0.8% agarose in LB

LBH LB + 10mH HgSO4

LBM/AMP LBM + 50µg/ml ampicillin

H-top agar	16g Bacto-tryptone
	10g Bacto-yeast extract
	So NaCl in 1 liter NaC

		. Sg Matt in I liter H2	١
SH		5.8g NaCl	
	**	2g HgSO4 · 7H2O	
		50ml 1 <u>M</u> Tris·Cl, pH 7.	5
		5ml 2% gelatin	

SDR, 1 liter	13.48 YNB (*) 400 6 biotin 6 µ biotin
	182g Sorbitol
	10g dextrose
	10g agar
	50mg each of glutamine, methionine,
	lysine, leucine and isoleucine

2g histidine assay mix

SDHR,	1	liter	SDR	+	40mg	histidine

Buffers and Solutions

TE Buffer:					
10mM	Tris * CI (pH 8.0)				
1mM	EDTA (pH 8.0)				

High Salt Buffer:				
50mM	Tris * CI, pH 8.0			
10mM	MgCl ₂			
100mM	NaCl			

Restrictio	n Digestion Buffers:
HS buffer:	1
50mM 100mM	Tris*Cl (pH 7.5), 10mM MgCl ₂ , NaCl and 1mM dithiothreitol
MS buffer:	
10mM 50mM	Tris*Cl (ph 7.5), 10mM MgCl ₂ , NaCl and 1mM dithiothreitol
LS buffer:	
10mM	Tris*Cl (ph 7.5), 10mM MgCl ₂ , and 1mM dithiothreito

1	Ligation But	fer:
	50mM	Tris*Cl (pH 7.4)
	10mM	MgCl ₂
	10mM	dithiothreitol
	1mM	ATP and
	100µg/ml	BSA.

Nick Translation	on (NT) Buffer:
50mM	Tris*Cl (pH 7.2)
10mM	MgSO ₄
0.1mM ·	dithiothreitol and
1mM	EDTA

Phosphotase Buffer:				
50mM 1mM	Tris*Cl (pH 9.0) MgCl ₂			
1mM 1mM	ZrıCl₂ and Spermidine			

Kinase Buffer:	
50mM	Tris*CI (pH 7.6)
10mM	MgCl ₂
5mM	dithiothreitol
0.1mM	EDTA, and 0.1mM spermidine

 Na₂CO₃/NaHCO₃

 Buffer

 .015mM
 Na₂CO₃

 .035mM
 NaHCO₃

Blotto Buffer	: 8 <u>1</u>
50g	nonfat dry milk
1g	thimerosal
100µl	anti foam A (Sigma)
0.5ml	Tween 20 in 1X D-PBS (11) (Duibecco's Phosphate Buffered Saline, Gibco)

TBST	
1X -	TBS
.05%	Tween 20

CaS	
1mM 10mM 10mM	Sorbitol CaCl ₂ Tris*Cl, pH 7.5 filter sterilize

Example I

isolation of HSA-cDNA

- A human liver λgt11-cDNA expression library (lot #2102) was purchased from Clontech Laboratories, Inc. This library had a titer of 9 x 10⁹ phage per ml. and was composed of 5.5 X 10⁵ independent, clear plaque phage isolates with an estimated insert size raping from 0.15 to 1.8 klobase pairs.
- An aliquot representing 4 x 10° independent phage isolates was screened for those which contained nucleotide sequences complimentary to probe #1. Probe #1 is a 19 bp oligonucleotide (shown in step 5 below) which includes the codons for the first six amino acids of the mature, secreted form of human serum albumin. Screening was performed as follows.

Step 1. E. coli Transfection

E. coli Y1088, ATCC no. 37195 was suspended in liquid medium LBO composed of LB broth [5.0g/ yeast extract (Ditco), 10.0g/l tryptone (Ditco) 5.0g/l social chiode); supplemented with 0.2% D-glucose. A 50bl aliquot of this suspension was spread over a solid growth medium composed of 1.2% Agar Noble

(Difco) in LB containing 50µg/ml amplcIllin (LB+Amp). Bacterial colonies were allowed to grow overnight at 37°C. A few colonies were transferred to 10ml of LB-Amp modia and was incubated at 30°C in a rotatory shaker set at 250 pm in order to obtain an overnight culture to be used for screening of the library.

An aliquot of the Ag11-cDNA expression library was diluted one hundred fold in SM buffer (SGmM 5 ris+101, pH 7.5, 0.1M NaCi, 8.1mM MagS, 0.0.1% (wh) gelatin], 4.4M usa mixed with 4.0ml of the overnight culture of E_ coil Y1088, and the mixture was incubated at 30°C for 20 minutes. 0.2ml aliquots were added to 2.5ml Soft agar medium maintained at 55°C ((0.7% Agar Noble) (Dilco) in LB] and was spread evenly over the bottom agar (IB containing 1.2% Agar Noble) in a petil dish with a diameter of moment of the containing 1.2% Agar Noble) in a petil dish with a diameter of phage plaques were allowed to appear but not become confluent (usually about 4 to 6 housz).

Step 2. Filter Lifts

Top agar containing plaques were overlayed with S&S Nitrocellulose filters (0.45u pore size and &2mm in diameter). The filters on the agar were pierced in five spots with an 18 gaupe needie on a syringe containing India Ink in order to help in orienting the filters at a later stage. After one minute the filters were transferred with plaque side up on 3MM Whatmann filter paper saturated with 1.5M No2IO.SM NoOH. After 2 minutes the filters were blotted from the bottom side and transferred to a second 3MM Whatmann filter 2 paper saturated with neutralizing solution (1.0M Trist VHC), pH 8.0, 1.5M NaCIO. After 8 minutes of neutralizating, the filters were insed in 6XSSC (0.9M NaCI, 90mM sodium citrate, pH 7.0). Filters were hinted for year only were based for 2 first, at 80°C in a vacuum owen.

25 Step 3. Prehybridization and Hybridization With #1 Probe and Autoradiography

Plaques which contained cDNA for human serum albumin were identified by the hybridization of the DNA with radioactivity-labeled oligonucleotides which were selected for their nucleotide sequence complementarity with human serum albumin cDNA, but not complementarity with either bacterial or transforming vector DNAs.

A. Preparation of Labeled Oligonucleotide Probes

35 Radioactive oligonucleotide probes were prepared by mixing approximately 100ng of a given oligonucleotide with 100uC in of 129/E/TP in 10uI of a buffer containing 70 mM tis-HC (ID f 75, 10 mM MGC); 1.0 mM KCI, 5.0 mM dithiothreitol, 1.0 mM spermidine. Ten units of 14 polynucleotide kinase was added and the mixture was incubated at 37 °C for 30 minutes. The enzyme was inactivated by 4 5 minute 10 mixture was inactivated at 37 °C for 30 minutes. The enzyme was inactivated by 4 5 minute 30 curification from the reaction mixture.

B. Prehybridization

The filter lifts containing phage DNA were incubated for 3-16 hours in a solution composed of 0.9M NaCl, 8.0mM NaEDTA, 19.8mM Tris *HCI (plf 8.0), 0.1% Fiscil, 0.1% polyimplyprolifone, 0.1% bovine serum albumin, 0.1% SDS and 10% Dextran sulfale. The temperature of incubation was 37 °C. Ten millities of solution was used per filter.

C. Hybridization

The prehybridized filters were hybridized in the same solution as prehybridization, but containing , radioactivly-labeled oligonucleotide #1 at a concentration of 2ng/ml. Incubation was for 20-48 hr. at 37 °C so using 2ml of solution per filter.

D. washing

Filters were washed four times (20 minutes per wash) at room temperature in 0.9M NaCl, 90mM sodium citrate (pH 7.0), and once at 45 °C I hour) in the same buffer but containing 0.1% SDs. 10ml volumes of solutions were used for washing each filter.

E. Autoradiography

Filters were air dried and placed in a x-ray film exposing cassette adjacent to an x-ray film (Kodak XAR-2 or XAR-5). Cassettes were incubated at -80 °C for 20-48 hrs.

Step 4. Immunoscreening for HSA Protein Positive Plaques

The cloning site in the λgt11 vector was within the β-galactosidase coding region. Since IPTG (isopropy) β-D-thiogalactoside) induces expression of the β-galactosidase gene in the λgt11 vector, it may also be used to induce expression of genes that are cloned in-frame with respect to β-galactosidase and produce β-galactosidase fusion-proteins. Therefore, whole or partial HSA genes in-frame and in the correct orientation should yield immunoreactive metafel. The E_coll starth Y1909 ATCC No. 37197 was used for detection of HSA expression-positive plaques. Infection with phage and plating procedures were as described above for the E_coll starth Y1908. After the plaques were approximately imm in diameter, nitrocellulose filters that had been previously soaked in 10mM (IPTG) and dried were placed on the top agar. Plates were incubated at 43°C for 4-6 hours. The filters were then removed from the plates and Immersed in a blocking solution composed of 1% gelatin, 0.05% Bnj Ss in TBST. Filters were incubated at room temperature with gentle rocking for 0.5° is flours. When plaque lifts were desired from the same plates so the plate in the plates and the same plates of the plate in the plate same plate in the same plates.

Oversying the induceanuse minas.

The IPTG filters were removed from the blocking solution and plaques expressing immunoreactive HSA were identified using a 1:1000 dilution of goat anti-HSA (rephelometric grade, Atlantic Antibodies, Catalog number 00:1-11, Scarborough, ME) in blocking solution. After incubation for 1 hour at room temperature, so filters were washed five times in TBST, for 10 minutes per wash. All incubations and washings were performed with gentler ocking. Binding of anti-HSA antibodies was detected by incubation with a 1:1000 dilution (0.5 µg/min) of alkaline phosphatase-conjugated rabbit antipost IgG (kinkegaard and Perry Laboratories, Gaithesburg, MD) in locking solution for 1 hour at room temperature. After washing as above, filters were incubated in the phosphatase substate system composed of nitrobluetetrazolium and 5-bromo-4-bloro-3-indoly) phosphate (Kirkegaard and Perry Laboratories) in 0.1 M Tris buffer for 10-30 minutes at room temperature. A stable purple precipitate was deposited at the reaction site in the membrane. The reaction was stopped by washing filters in water, and the filters were dired in air.

In some experiments ¹²⁵I-protein G was used for Identification of positive plaques. In this case, the filters were incubated for 4 hours in a solution of TBS (TBST without Tween-20) containing 0.3µCl of ¹²⁵I-protein G per In, following incubation with anti-HSA antibody and subsequent washes, as described above. Filters were washed twice in BTBS (TBS containing 0.05% Brij 58) followed by two additional washes in TBS. All washing were done at 10 minute intervals with gentle rocking at room temperature. Autoradiography was performed as described above.

Step 5. Plaque Hybridization with Oligonucleotides #2, #3, M1 and M2

Purified plaques were screened with the following oligonucleotides:

#1: #2: #3: M1:	5'-CCTCACTCTTGTGTGCATC-3' 5'-CCACTTCGGCAATGCAGGGGATTTTTCCAACAGAGG-3 5'-CCCTCCTCGGCAAAGCAGG-3 5'-GAAATAAAGGTTACCCACTTCAT-3'
M2:	5'-CCCACTTCATTGTGCCAAAG-3'

The #1 probe hybridizes to 19 nucleotides corresponding to the first six amino acids of the mature HSA protein. The #2 probe is complementary to the nucleotides which correspond to amino acids #281 to #292

of the mature HSA protein, and are upstream from a single PstI restriction endonuclease site within the HSA-cDNA sequence. The #3 probe can be used for the detection of clones which include nucleotides for the amino acids #565 to #571 of the mature HSA protein. The above three oligonucleotides were chosen, herause there were no nucleotide variations in the published HSA cDNA sequences within those regions.

Potential probes were screened for lack of sequence homology to the known sequences in Agt11 vector, and E. coli DNA. This screening was necessary in order to decrease nonspecific sites of hybridization. Based on this analysis the probe M2 could be expected to exhibit a low level of binding to vector sequences. Since the M2 probe includes nucleotides complementary to ten bases upstream from the ATC start codon, any clone hybridizing under high stringency conditions would be expected to contain all or most of the ten bases and hence, the entire HSA coding sequence.

Example II

Cloning of Human Serum Albumin CDNA into M13mP18 for Sequence Analysis

Step 1. Preparation of M13mp18 Clonging Vector

M13mp18 (New England Biolabs) replicative form DNA (4u.g) was digested to completion with 40 units of EcoRI in 50u.l of high salt buffer at 37°C for 1 hour. The digested sample was heated at 70°C for 5 to 5 minutes to inactivate the enzyme. Celf intestinal sikaline phosphatase (CIAP, 1 unit) was added and the mixture was incubated at 50°C for 1 hour. The reaction was terminated by addition of 1/10 volume of 500 mM EGTA (pH 8). The CIAP was inactivated by heating at 65°C for 45 minutes. The reaction mixture was extracted with an equal volume of TE-saturated phenol followed by chloroform extraction. The linearized M13mp18 in the auguous phase was predpitated by adding 3 volumes of 3M sodium acetate and absolute of the 10°C for 10°C f

35 Step 2. Preparation of HSA cDNA Insert and ligation With M13mp18 Vector

A. Preparation of High Titer Plate Lysates

Recombinant phages positive for the antibodies and oligonucleotide screenings as described in Example I were amplified for preparation of phage DNA. The plating cells were prepared from an overnight culture of E. coil Y1088 in 40 ml of LBM * AMP. Cells were, harvested by centrifugation at 3,000 X g for 15 minutes at 700m temperature and the pellet was resuspended in 15-16 ml of 10 mM MgSC. Individual plaques from LB plates (prepared as described in Example I) in the form of agar plugs were suspended in 45 0.1 ml of E. coil Y1088 plating cells. After standing at room temperature for 10 minutes, 2.5 ml of LBM and 2.5 ml of LB top agar at 55°. C was added. The mixture was poured onto prevarred (42° C) LB agar plates. After about 10 minutes at room temperature, the plates were inverted and incubated at 42° C overnight. On the next day, the phage particles were recovered by flooding the plates with 3 ml of SM. One drop of 10 memore the cell debits. The superature flight-fiter levels was stored at 4° C.

B. Titering of the High-titer Lysate

s 1µ1 and 10µ1 aliquots from the 10⁻¹ dilution of the high-liter lysate in SM were mixed with 0.3 ml of E. coii '1088 plating cells. After incubation at 37 °C for 10 minutes, 3 ml of LB top agar prewarmed at 55 °C was added. The mixture was poured onto LB plates and incubated at 42 °C overnight. The number of plaque forming units (pfu) per ml lysate was recorded as the titer.

C. Preparation of Phage DNA by Plate Lysate Method

About 10⁶ pfu were plated out as described above for the itiering except that 6 ml of top agarose was user/acted from the top agarose inds M. After confluent lysis of the plating bacteria, the phage was extracted from the top agarose into SM. The phage DNA was then isolated from the supernatant by using Lambdasorb Phage Adsorbant (Promega Biotec, Madison, WI) according to the suggested protocol of the manufacturer.

to D. Ligation Reaction with M13mp18

HSA-Agt11 recombinant DNA (4-5µg) was digested with 20 units of EcoRi in 30µl of high salt buffer for 3 hours at 37°C. After digestion, the reaction mixture was processed further as described in step 1. The total mixture was ligated using the T4 ligase with the EcoRh-ClaP treated M13mp18. A typical ligation reaction (final volume 10µl) contained 4-5µg of total DNA and 0.8µg of M13mp18 in 1 X ligation buffer (50mM Tris-HCl, phf 7.6, 10mM MgCl₂1 mM ATP, 1mM DTT, 5% (WV) polyethylene glycol-8000). Ligation was performed at 15°C overricht wisin 1-2 units of T4 DNA ligase.

20 Step 3. Transformation of Competent Cells

Aliquots of the ligation mixture (1-5u.1) were mixed with 300ul of E. coil JM07 competent cells [Mandel et al., J. Mol. Biol. 83, 154 (1970)]or 100ul of E. coil DH5x F frozen competent cells (BRL) and kept on ice for 40 minutes. Uptake of DNA was induced by heat shock at 42° C for 2 minutes. The transformed cells 28 were then returned to ice. A plating mixture containing 200ul of freshly prepared E. coil JM107 in exponential phase, 40ul of X-gal in 2% dimethylformanide, 100ul of 10 mM IPTG and 3m 07 H-top age at 55° C was added. The transformation mixture was poured onto LB agar plates. The plates were incubated overnight at 37° C for place formation.

Step 4. Preparation of M13 ssDNA Templates and DNA Sequence Analysis

Colorless plaques containing recombinant M13 phage were picked and amplified in E. coli JM107 in 1.5 ml of 2XYT at 37 °C for 5-6 hours with vigorous shaking. After amplification, the cultures were spun down at 35 14,000g for 1 min, to separate the cells from the supernatant. The cell pellets were used for preparation of the double-stranded replicative form of M13, while the supernatants were used for the isolation of singlestranded DNA templates. M13 ds RF was isolated using the alkaline lysis method of Birnboim and Doily, Nucl. Acids Research 7:1513 (1979). M13 ssDNA templates were isolated from the culture supernatants by polyethylene glycol precipitation and phenol extraction. Briefly, 1ml of the culture supernatant ml) was mixed with 200µl of 20% polyethylene glycol-6000 in 2.5 M NaCl. After leaving the mixture at room temperature for 15 minutes, the M13 phage particles were recovered by centrifugation at 14,000 X g for 5 minutes. The phage pellet was resuspended in 100 µl TE followed by extraction with buffer-saturated phenol. The aqueous phase containing the M13 ssDNA was mixed with 3 volumes of sodium acetate and ethanol mixture. After chilling at -20 °C overnight, the DNA precipitate was recovered by centrifugation at 45 14,000 X g for 10 minutes at 4 °C. The dried DNA was dissolved in 50µl TE and 5µl was used for the sequencing reaction. DNA sequencing was performed by the dideoxynucleotide chain termination method of Sanger et al., Proc. Natl. Acad. Sci., 74:5463 (1977). The complete sequence of HSA 13 is shown at Table 1.

Example III

ss Creation of pA0807N

The pA0804 plasmid is available in an E. coli host from the Northern Regional Research center of the United States Department of Agriculture, Peoria, Illinois (accession number NRRL B-18114). PA0804 is

recoveredby isolating the plasmid DNA, digesting with EcoRI, gel electrophoresing to recover the ~7.5 Kb fragment, which is linear pA0804 cut at its unique EcoRI site. Plasmid pA0807N was constructed starting from pA0804, pBR322 and bacteriophage if DNA as Tollows

Step 1. Preparation of fl-ori DNA

fl bacteriophage DNA 50 μg was dipasted with 50 units of Real and Dral at 37° C for 4 hours in 200µl of MS buffer to release the ~458 bp DNA fragment containing the fl origin of replication (ori). The digestion mixture was extracted with an equal volume of phenolchloroform (VV) followed by extracting the aqueous layer with an equal volume of chloroform. Finally, the DNA in the aqueous phase was precipitated by adjusting the NGC concentration to 0.2M and adding 2.5 volumes of absolute ethanol. The mixture was allowed to stand on ite (4° C) for 10 minutes and the DNA precipitate was collected by centrifugation for 30 minutes at 10,000 xp in a mirrodruge at 4° C. The DNA pellet was washed 2 times with 70% aqueous ethanol. The washed pellet was vacuum dried and dissolved in 25µl of TE buffer. This DNA was electrophoresed on 1.5% agarose gel and the gel protino containing the ~458 bp fil-ort fragment was excised out and the DNA in the gel was electroeluted into 500µl of 5mM EDTA pH 80.) The DNA solution was phenolchloroform extracted as detailed above and the DNA precipitate was dissolved in 25µl of TE buffer(first fragment).

Step 2. Cloning of fl-ori into Dral Sites of pBR322

pBR322 (2ug) was partially digested with 2 units Dral in 20ul of MS buffer at 37 °C for 10 minutes. The 2 reaction was terminated by phenochchrofrom extraction followed by precipitation of DNA as detailed in step 1 above. The DNA pellet was dissolved in 20ul of TE buffer. About 100 ng of this DNA was ligated with 100 ng of ft-ori tragment (step 1) in 20ul of ligation there by incubating at 14 °C overnight with 1 unit of T4 DNA ligase. The ligation was terminated by heating at 70 °C for 10 minutes and then used to transform E. coil and YMC9 (Maniatis, et al.) to obtain pBRII-ori which contains ft-ori cloned into the Dral sites (nucleoilde sostitions 3322 and 3251) of pBR322.

Step 3. Creation of pA0807

pBRII-ori (10ug) was digested for 4 hours at 37 °C with 10 units each of PstI and Ndel. The digested DNA was phenotichloroform extracted, precipitated and dissolved in 25ul of TE buffer as detailed in step 1 above. This material was electrophoresed on a 1.2% agarcse gel and the Ndel - PstI fragment (approximately 0.8 kb) containing the fl-ori was isolated and dissolved in 20ul of TE buffer as detailed in Step 1 above. About 100 ng of this DNA was mixed with 100 ng of pA0804 that had been digested with PstI and Ndel and phosphatase treated. This mixture was ligated in 20ul of ligation buffer by incubating Tor overnight at 14 °C with 1 unit of 14 DNA ligase. The ligation reaction was terminated by heating at 70 °C for 10 minutes. This DNA was used to transform Ecoli strain YMC9 to obtain pA0807.

5 Step 4. Conversion of the Two BgIII Sites in pA0807 to NotI Sites to Create pA0807N

p.A0807 (10ug) was digasted with 10 units of Bgill for 4 hours at 37°C in 50µl of HS buffer. The Bgill chesive ends were filled in by incubating the Bgill Cleaved DNA (10ug) in 50 ut of NT buffer with 5 units of the Klenow fragment of DNA polymerase at room temperature for 30 minutes. This mixture was pheson onlichloroform extracted and the DNA was recovered as described in step 1 above. The DNA pellet was dissolved in 25 ut of TE buffer. This DNA was mixed with 50 ng(1 ut) of phosphorylated Not! Inliker (pGCGGCCGC) obtained from New England Biolabs, 40ul of 5x ligation buffer, 129 ut water and 5 units of 14 DNA ligase. This mixture was incubated overright at 14°C. Ligation was terminated by heating to 70°C for 10 minutes. Following this the ligation mixture was digested with 10 units of Not! after adjusting the so solution to HS buffer condition. The DNA was preclipitated after phenotichloroform extraction as detailed in step 1 above. The precipitate was dissolved in 50 ul of TE buffer and electrophoresed on a 0.9% agarose gel. The DNA fragments lower band corresponded to the migration position of the fragment containing pBR322 portion and file-ori and the upper band corresponded to the remaining portion of pA0807; i.e.,

5 AOX1, 3 AOX1 and HIS4) were isolated from the gel by using the protocol described in step 1 above. The gel purified DNA fragments were dissolved in 10 ut of 15 buffer. The DNA fragment representing the linear site specific fingerative vector was phosphatased by incubating for 30 minutes with 2 units of CIAP at 37 C in 200ul of phosphatase buffer. The phosphatased DNA was phenoichloroform extracted and precipitated as described in step 1. This DNA was mixed with the upper band DNA representing the rest of the pA0807 plasmid (see above) and ligited overnight at 4 C with 5 units of T4 DNA ligase in 30 ut of ligation buffer. The ligation mixture was heated for 10 minutes at 70 °C, cooled on ice and a 10 ut aliquot was used to transform E. coil fMXG9 to obtain pA0807N. The structure of pA0807N is shown in Figure 3

Example IV

Construction of Pichia pastoris HSA Expression Vectors

Step 1. Recovery of HSA Fragment

15

20

The HSA gene corresponding to about 2.0 Kb was released from mp18-HSA13 replicative form DNA (see example ii) by EcoRI digestion. About 1 ug of plasmid mp18-HSA13 was digested at 37° for 27 biows this 5 units of EcoRI Tin 20 ul of HS buffer. The reaction was terminated by diluting to 50 ul with dH₂O immediately extracted with phenotchloroform, and precipitated as detailed in Step 1, of Example III. The DNA precipitate was dissolved in 10 ul of water and stored at -20° C later use. The HSA gene was Inserted into vectors pTHFKA and pA0607N at their EcoRI sites to obtain the PIChia pastoris HSA expression lasmids pHSA13 and pHSA113.

30 Step 2. Vector Manipulations for Insertion of HSA Gene

About 10 ug each of pTHFKA (Figure 4) and pA807N were digested with 10 units of EcoPI in 100ul of Hours at 37°C. The reaction mixture was adjusted to alkaline phosphatase buffer conditions and treated with 10 units of CIAP in 200 ul reaction volume for 30 minutes at 37°C. Phosphatase treatment was terminated by phenoichloroform extraction and the DNAs were precipitated and dissolved in TE buffer at a final concentration of 100 upmil as detailed in step 1 of example III.

Step 3. Insertion of HSA Gene into Expression Vectors

About 100 ng each of EcoRi cut and CIAP treated vectors pTHFKA and pA0807N (step 2, example IV) and relixed with approximately 100 ng each of EcoRI digested mp18-HSA13 (Step 1, Example IV) in 20 ut of ligation buffer and ligated with 2 units of 14 5/INA ligase at 4 °C for 16 hours. Ligation was terminated by heating to 70° C for 10 minutes and used to transform E. coli strain DG75° to obtain plasmids pHSA13 and pHSA113.

Example V

Transformation of Pichia pastoris with pHSA113 and pHSA13

Step 1. pHSA113 Vector Preparation

About 20 ug of pHSA113 was digested for 18 hours at 37 °C in 200 ul of HS buffer with 50 units of Notl.

About 20 ul of this mixture was directly used for transformation of Pichia pastoris GS115 (his4) deposited with the Northern Regional Research Center of the United States Department of Agriculture, accession number NRRI V-15851. The remaining approximately 180 ul of the Nbt (deaved pHSA113 was phenol:chloroform extracted and precipitated as detailed in step 1 of example III. The DNA precipitate was a dissolved in 20 ul of CaS solution and was also used for transformation of GS115. The NotI cleaved pHSA113 can integrate Into a Pichia locus. Because the NotI fragment form pHSA113 also carries the histidinal dehydrogenase gene of Pichia the resulting transformants can be readily selected based on the

Pichia strain KM71 (his4, acutARG4) was transformed for His + with 10 ug of pHSA 13. In addition to HIS4 this plasmid carries an autonomously replicating sequence ARS1. It can replicate within Pichia in the autonomous form. Such transformants will be referred to as "autonomous transformants". The reason for using this strain is that KM71 is "methanol-slow" due to the discreption of ADX1 by ARG4 and has been shown to express higher levels of #-galactosidase when lacZ is placed under the control of the ADX1 for more than the methanol-normal strain GS115. For negative control KM71 was also transformed with 15 pX30. NRRL B-15800, a plasmid also containing His4.

Step 2. Cell Growth

Pichia pastoris GS115 (NRRL Y-15951) was inoculated Into about 10 ml of YPD medium and shake cultured at 30 °C for 12-20 hours. 100 ml of YPD medium was inoculated with seed culture to give an Obyso of about 0.001. The medium was cultured in a shake flask at 30 °C for about 12-20 hours. The culture was hervested when the Obyso was about 0.2-0.3 (after approximately 16-20 hours) by centrifugation at 1500 g for 5 minutes using a Sorvall ROSC.

Step 3. Preparation of Spheroplasts

The cells were washed once in 10 ml of sterile water, and then centrifuged at 1500 g for 5 minutes. (Centrifugation is performed after each cell wash at 1500 g for 5 minutes using a Sorvall RT6000B unless otherwise indicated.) The cells were then washed once in 10 ml of freshly prepared SED, once in 10 ml of sterile 1M sorbitol, and finally resuspended in 10ml of SCE buffer. 7.5 at 1 of 3mg/ml Zymolyase (100,000 unitisg obtained from Miles Laboratories) was added to the cell soution. The cells were then incubated at 30°C for about 10 minutes. (A reduction of 60% in ODc₆₀ can be utilized as a correct time and 3°C concentration marker). The spheroplasts were washed once in 10 ml of sterile 1M sorbitol by centrifugation at 700 g for 5-10 minutes. (The time and speed for centrifugation may vary; centrifuge enough to pellet the spheroplasts but not so much they rupture from the force). 10 ml of sterile CaS was used as a final cell wash, and the cells were centrifuged again at 700 g for 5-10 minutes and resuspended in 0.8 ml of CaS.

Step 4. Transformation

GS115 cells were transformed with 10 µg of the linear HSA vectors using the spheroplast transformation technique of Sreekrishna et al. in Gene 59, 115-125 (1987), DNA samples were added (up to 20 µl volume) to 12 x 75 mm sterile polypropylene tubes. (DNA should be in a suitable buffer, such as TE buffer), 100 µl of spheroplasts were added to each DNA sample and incubated at room temperature for about 20 minutes. I mil of PEG solution was added to each sample and incubated at room temperature for about 15 minutes and centrifuged at 700 g for 5-10 minutes. SOS (150 µl) was added to the pellet and incubated for 30 minutes at froom temperature. Finally, 850 µl of 11 M sorbition was added.

Step 5. Regeneration of Spheroplasts

A bottom agar layer of 20 ml of regeneration agar SDR was poured per plate at least 30 minutes before st transformation samples were ready. In addition, 8 ml aliquots of regeneration agar were distributed to 15 ml conical bottom Coming tubes in a 45 C bath during the period that transformation samples were in SOS. Aliquots of 50, 250 or 800 µl of the transformed sample was added to the 8 ml aliquots of metted receneration agar held at 45 C and poured onto plates containing the solid 20 ml bottom agar layer. The plates were incubated at 30°C for 3-5 days.

Step 6. Selection of Transformants

Transformants were selected for by culturing on SDR, a media lacking histidine. Cultures which grew in the absence of histidine were additionally screened for the "methanol slow" phenotype (indicating site selective integration). The transformed GS115 cells showning evidence of both phenotypes were then cultured and assayed for the production of HSA.

Example Vi

Methanol Induced Expression of HSA in GS115/pHSA13 Autonomous Transformants

kM71 strains transformed with plasmid pHSA13 and negative control kM71 transformed with pV130 were grown in 10 ml cultures on MGY to an optical density of 8.00 at 600 nm and then shifted to MM medium. After incubation on MM for 3 days, cells were harvested by centrifugation and media supermatant was adjusted to 1 mM phenyimethylsultonyl fluoride (PMSF) and stored frozen for HSA analysis (Supermatant M). The cells were suspended in 500 ul breaking buffer containing 1 mM PMSF and vigorousity vortexed with glass beads for a total of 4 minutes with intermittent periods on ice. Following this the samples were centrifuged in a microtype at 10,000 xg for 10 minutes at 4 C and the clear supermatant between the containing 1 ml with 500 ul breaking buffer containing 6M urea and this extract was designated as Supermatant I. The various supermatants were analyzed for HSA by PAGE immunoblot as described in Methods in Enzymology, Vol. 152 (1987), "Guide to Molecular Cloning Techniques"; as well as quantitative HSA-ELISA. The HSA-ELISA procedure developed for this purpose is given in Example VIII. Supernatant I. contained the highest level of HSA compared to other fractions as determined by HSA-ELISA (Table 3) (HSA was present predominantly in the solble) fraction as assessed by PAGE-electroimmunoblotting)

Table 3

HSA Concentration in Supernatant I Prepared from KM71 Transformants			
Transformant	ng HSA/mg protein	HSA %	
KM71/pYJ30-1	<1	<0.0001%	
KM71/pHSA13-1	8914	0.89%	
KM71/pHSA13-2	15777	1.6%	
KM71/pHSA13-4	5648	0.56%	
KM71/pHSA13-6	88885	8.9%	

Example VII

Methanol Regulated Expression of HSA in GS115/pHSA113 Integrative Transformants

Several thousand His+ transformants of GS115 obtained using NotI cleaved pHSA113 were pooled and an aliquot was inoculated into 10 ml of MGY and grown to saturation. At this point cells were switched to

MM and incubated at 30°C on a shaker. After 2 days on MM, cells were harvested and supernatant I was prepared and analyzed for HSA expression as described in example VI. The expression level of HSA was -0.1% of soluble protein.

The His+ transformant pool was also screened for "methanol slow" transformants by replica plating of colonies on MD plates onto MM plates. Several His+ - methanol slow transformants were grown on MGV and shifted to MM. Cell extracts were prepared and analyzed for HSA expression levels as described in Example VI. Levels of HSA were detected up to 20 molt, or 2% of total soluble cellular position.

Example VIII

HSA ELISA

Soul of 1:500 goat-anti-HSA antibodies in Na₂CO₂NaHCO₃ buffer, pH 9.5, were placed in wells of 96 well ELISA plates (Coming) and incubated for 1 hr. at 37° C. They were washed 2 X with TBST, 2 X with dH₂O, 200µl of blotto buffer were added to each, and they were then incubated overnight at 37° C. After 200µl of the place of the standard solutions = 2-14 ng/mi). The samples were rotated for two hours at room temperature, then washed 5X with TBST, 2X with dH₂O, and 50µl of a 1:2000 dilution of horseradish peroxidease-conjugated goat anti-HSA antibodies (Cooper Biomedical, Inc.) in blotto buffer (Gul/10ml) were added. The plates were again shaken for 1 hr. at room temperature, then washed 3X with TBST, 3X with dH₂O and 100µl of ABTS (ABTS peroxidase substrate solution, Kirkegaard and Perry Labs., 28 inc.) werend to room temperature was added. Finally, the samples were shaken for 20 min. at room temperature, 100µl of 2% oxalic acid was added to each to stop the reaction, and absorbance at 405nm was read.

30 Claims

- 1. A process for the production of HSA comprising
- a) transforming a methylotrophic yeast with at least one vector having at least one expression cassette containing a structural gene for HSA, operably linked to a regulatory region and a 3' termination sequence; and thereafter
 - b) culturing the resulting transformed yeast strain to obtain the production of said HSA protein.
 - 2. The process of claim 1 wherein said vector is selected from plasmids and linear integrative site-specific vectors.
- 3. The process of claim 2 wherein said linear integrative site-specific vector contains the following serial arrangement:
- a) a first insertable DNA fragment.
- b) at least one marker gene, and at least one expression cassette containing a structural gene for HSA, operably linked to a regulatory region and a 1 dermination sequence, and
 c) a second insertable DNA fragment;
- wherein the order of the marker gene and cassette of component (b) may be interchanged.
 - 4. The process of claim 3 wherein the first insertable DNA fragment and the second insertable DNA fragment are derived from the DNA sequence of a gene isolated from <u>Pichia pastoris</u> and selected from AOX1. o40. DNAS and HIS4.
 - 5. The process of claim 3 wherein said expression cassette comprises
 - a) a regulatory region selected from AOX1, p40, DHAS and HIS4, isolated from Pichia pastoris, acid phosphatase, galactosidase, alcohol dehydrogenase, cytochrome c, alpha-mating factor and glyceraldehyde 3-phosphate dehydrogenase isolated from Saccharomyces cerevisiae operably linked to
 - b) a structural gene for HSA, operably linked to
- 5 c) a 3' termination sequence from Pichia pastoris selected from the 3' termination sequence isolated from the AOX1 gene, p40 gene, DHAS gene andHIS4 gene.

- 6. The process of claim 3 wherein said marker gene is selected from HIS4 and ARG4, isolated from Pichia pastoris, SUC2 isolated from Saccharomyces cerevisiae and G418^R gene of Tn903 and Tn601.
- 7. The process of claim 3 wherein said vector comprises a) a first insertable DNA fragment which is about one kilobase of the 5' AOX1 regulatory region isolated from Pichia pastoris operably linked to
 - b) a structural gene for HSA, operably linked to
 - c) the 3' termination sequence of AOX1 isolated from Pichia pastoris ligated to
 - d) at least one marker gene which is HIS4 isolated from Pichia pastoris ligated to
- e) a second insertable DNA fragment which is about 0.65 kilobases of the 3' AOX1 termination 10 sequence.
 - 8. The process of claim 2 wherein the plasmid comprises an autonomously replicating DNA sequence and a marker gene.
 - 9. The process of claim 8 wherein said plasmid comprises
 - a) the 5' AOX1 regulatory region isolated from Pichia pastons operably linked to
 - b) a structural gene for HSA, operably linked to
 - c) the 3' termination sequence of AOX1 isolated from Pichia pastoris ligated to
 - d) at least one marker gene
- e) a second DNA fragment which is about a 0.19 kilobase sequence of an autonomous replicating 20 DNA sequence.
 - 10. The process of claim 8 wherein said marker gene is as defined in claim 6; preferably wherein said marker gene is HIS4.
 - 11. A linear integrative site-specific vector comprising the following serial arrangement
 - a) a first insertable DNA fragment,
 - b) at least one marker gene and at least one expression cassette containing a structural gene for HSA, operably linked to a regulatory region and a 3' termination sequence, and c) a second insertable DNA fragment:
 - wherein the order of the marker gene and cassette of component (b) may be interchanged.
 - 12. The vector of claim 11, wherein said vector is defined as in any of claims 4 7.
 - 13. A plasmid comprising the following
 - a) an autonomously replicating sequence capable of replication in methylotrophic yeasts
 - b) at least one marker gene
- c) at least one expression cassette containing a structural gene for HSA operably linked to a 35 regulatory region and a 3 termination sequence.
 - 14. The plasmid of claim 19 wherein said expression cassette and said marker gene are as defined in claims 5 and 6.
 - 15. The vector pHSA13.
 - 16. Methylotrophic yeast transformed with at least one vector containing at least one expression cassette comprising a regulatory region operably linked to structural gene for HSA, operably linked to a 3 termination sequence.
 - 17. The methylotrophic yeast of claim 16 wherein the yeast is Pichia pastoris.
 - 18. The methylotrophic yeast of claim 16 wherein the yeast is Pichia pastoris strain GS115.
 - 19. The methylotrophic yeast of any of claims 16 18 wherein said vector is at least one linear integrative site-specific vector as defined in any of claims 3 - 7.
 - 20. Pichia pastoris GS115/pHSA113.
 - 21. Pichia pastoris GS115 transformed as in claim 18 or 19 wherein said GS115 is transformed with more than one copy of said linear integrative site-specific vector.
 - 22. The yeast of any of claims 16 18 wherein said vector is at least one plasmid as defined in claim 13 or 14.
 - 23. Pichia pastoris GS115/pHSA113.
 - 24. A nucleotide seguence coding for HSA wherein said sequence is recited in Table 1.

FIG. 1

FIG. 4

FIG. 5

@

EUROPEAN PATENT APPLICATION

Application number: 89107459,3

2 Date of filing: 25.04.89

(S) Int. Ct.4: C 12 N 15/00 C 12 P 21/02

② Priority: 25.04.88 US 186420

Date of publication of application:
 06.12.89 Bulletin 89/49

Designated Contracting States:
 AT BE CH DE ES GB GR IT LI LU NL SE

AT BE CH DE ES GB GR IT LI LU NL SE

Bate of deferred publication of search report:

Applicant: PHILLIPS PETROLEUM COMPANY
 5th and Keeler

Bartiesville Okishoma 74004 (US)

inventor: Marsshi, Farhad
Rt. 2, Box 3360

27.12.89 Bulletin 89/52

Bartlesville, OK 74006 (US)
Fuke, Motohiro
4522 E 103rd Street
Tulsa, OK 74137 (US)

McComble, William Richard 1561 Kings Dr. No. 1217 Bartlesville, OK 74006 (US) Barr, Robert Dean 121 Mulberry Ln. Bartlesville, OK 74003 (US)

Sreekrishna, Kotikanyadan 1060 Rolling Meadows Ct. Bartiesville, OK 74006 (US)

Wong, Ricky Ngok-Shun 1805 Spring Creek Pky, Unit Plano, TX 75023 (US)

Davis, Frances Marie 10301 Stella Link Houston, TX 77025 (US)

Vineyard, Karen Marie 1715 Crescent Dr. Bartlesville, OK 74006 (US)

Parker, Kathryn Ann 2025 S. Dewey Bartlesville, OK 74003 (US)

Expression of human serum albumin in metholotrophic yeasts.

 A process for the production of HSA. Also disclosed are DNA molecules and methylotrophic yeasts transformed with the molecules. Additionally disclosed is a novel HSA nucleotide sequence.

FIG. 2

Bundesdruckerel Berlin

89 10 7459

ategory	Citation of document wi	h indication, where appropriate,	Relevant to claim	CLASSIFICATIO APPLICATIO	TION OF THE
Y		PHILLIPS PETROLEUM	1-23	C 12 N C 12 P (C 12 N	15/00 21/02 // 15/00
X	EP-A-0 206 733 (* abstract; page 2: claims 1-9,13	12, lines 8-15; figure	24	C 12 R	1:84)
Υ ,			1-23	٠.	
D,A	EP-A-0 226 752 (COMPANY) * whole document	PHILLIPS PETROLEUM	1-7,11, 12,16- 21		
D,Y	COMPANY)	PHILLIPS PETROLEUM	1		
D,A	* whole document	>0	2-17		
X	EP-A-0 248 637 (DELTA BIOTECHNOLOGY	24		
	* column 1, line 7 - column 12, line 47; column 5, example III; figure 3; claims 1.5.6.8.9 *			TECHNICAL FIELDS SEARCHED (Int. Cl.4)	
Υ	2141815 1,5,0,6,5		1	C 12 N	15/00
D,A	COMPANY) * abstract; page	PHILLIPS PETROLEUM 7, lines 5-17; page 9, 3, line 11; claims * -/-	8-10,13 ,14,22, 23		* 1
	T is		-		
				· -	
	_				
	The present search report	has been drawn up for all claims			
\vdash	Piece of search	Date of completion of the sea	ırch	Examiner	
-	BERLIN	27-09-1989	JUI	IA P.	

CATEGORY OF CITED DOCUMENTS

- T: theory or principle underlylog the invention E: earlier patent document, but published on, or after the filling date
 D: document cited in the application
 L: document cited for other reasons

EUROPEAN SEARCH REPORT

Application Number

EP 89 10 7459

<u> </u>	DOCUMENTS CONSIDER	ED TO BE RELEVAN	٧T		
ategory	Citation of document with indicati	on, where appropriate,	Relevant to claim	CLASSIFICATION APPLICATION	ON OF THE (lot. Cl.4)
A		BIOTECHNOLOGY	1		
1					
. A	EP-A-0 188 677 (PHILL: COMPANY) * page 10, lines 24-30 - page 12, line 22; cl 11,13,23,24,27-30 *	page 11, line 3	1-23	-	
Α	EP-A-0 256 421 (PHILL COMPANY) * page 4, line 37; pag		1,5,6, 16-18		
A	CHEMICAL ABSTRACTS vol. 107, no. 1, 6 Jul abstract no. 5669n, 6 USA; G. THILL et al.: methylotrophic yeast F a host for heterologol production" & Microb.	lumbus, Ohio, "The ichia pastoris as s protein	1	TECHNICAL SEARCHED	. FIELDS (lot. Cl.4)
	Proc. Int. Symp., 5th 1987), pages 289-296	1986, (Pub.			
				-	
			-		
1,					
-	The present search report has been	drawn up for all claims	*	7	
F-	Place of search	Date of completion of the sear		Examiner 11 T.A. D.	2.
1	BERLIN	27-09-1989	ال	JLIA P.	
Υ:	CATEGORY OF CITED DOCUMENT particularly relevant if token alooe particularly relevant if combined with aooth document of the same category technological background	E : earlier pat after the f D : document L : document	cited to the applic cited for other reas	puonsnea on, or atlon	8