PRIMITIVES USUELLES

Dans ce tableau, $n \in \mathbb{N}$, $p \in \mathbb{Z} \setminus \{-1\}$, $q \in \mathbb{R} \setminus \{-1\}$ et $a \in \mathbb{R}_+^*$. Le domaine de validité désigne les intervalles sur lesquels les primitives des fonctions réelles considérées sont valides.

Fonction	Primitive	Domaine de validité
$x \mapsto x^n$	$x \mapsto x^{n+1}/(n+1)$	\mathbb{R}
$x \mapsto x^p$	$x \mapsto x^{p+1}/(p+1)$	\mathbb{R}_+^* ou \mathbb{R}^*
$x \mapsto x^q$	$x \mapsto x^{q+1}/(q+1)$	\mathbb{R}_+^*
$x \mapsto 1/x$	$x \mapsto \ln x $	\mathbb{R}_+^* ou \mathbb{R}^*
$x \mapsto e^x$	$x \mapsto e^x$	\mathbb{R}
$x \mapsto \sin x$	$x \mapsto -\cos x$	\mathbb{R}
$x \mapsto \cos x$	$x \mapsto \sin x$	\mathbb{R}
$x \mapsto \tan x$	$x \mapsto -\ln \cos x $	$]-\pi/2+k\pi,\pi/2+k\pi[,k\in\mathbb{Z}$
$x \mapsto \cot x$	$x \mapsto \ln \sin x $	$]k\pi, (k+1)\pi[, k \in \mathbb{Z}$
$x \mapsto 1/\sin x$	$x \mapsto \ln \tan(x/2) $	$]k\pi, (k+1)\pi[, k \in \mathbb{Z}$
$x \mapsto 1/\cos x$	$x \mapsto \ln \tan(x/2 + \pi/4) $	$]-\pi/2+k\pi,\pi/2+k\pi[,k\in\mathbb{Z}$
$x \mapsto 1/\sin^2 x$	$x \mapsto -\cot x$	$]k\pi, (k+1)\pi[, k \in \mathbb{Z}$
$x \mapsto 1/\cos^2 x$	$x \mapsto \tan x$	$]-\pi/2+k\pi,\pi/2+k\pi[,k\in\mathbb{Z}$
$x \mapsto \operatorname{sh} x$	$x \mapsto \operatorname{ch} x$	\mathbb{R}

$x \mapsto \operatorname{ch} x$	$x \mapsto \operatorname{sh} x$	\mathbb{R}
$x \mapsto \operatorname{th} x$	$x \mapsto \ln(\operatorname{ch} x)$	\mathbb{R}
$x \mapsto \coth x$	$x \mapsto \ln \operatorname{sh} x $	\mathbb{R}_+^* ou \mathbb{R}^*
$x \mapsto 1/\operatorname{sh} x$	$x \mapsto \ln \text{th }(x/2) $	\mathbb{R}_+^* ou \mathbb{R}^*
$x \mapsto 1/\operatorname{ch} x$	$x \mapsto 2\operatorname{Arctan}(e^x)$	\mathbb{R}
$x \mapsto 1/\sinh^2 x$	$x \mapsto -\coth x$	\mathbb{R}_+^* ou \mathbb{R}^*
$x \mapsto 1/\operatorname{ch}^2 x$	$x \mapsto \operatorname{th} x$	\mathbb{R}
$x \mapsto 1/(a^2 - x^2)$	$x \mapsto \frac{1}{2a} \ln \left \frac{a+x}{a-x} \right $	$]-\infty, -a[$ ou $]-a, a[$ ou $]a, +\infty[$
$x \mapsto 1/(a^2 + x^2)$	$x \mapsto \frac{1}{a} \operatorname{Arctan}(x/a)$	\mathbb{R}
$x \mapsto 1/\sqrt{a^2 - x^2}$	$x \mapsto \operatorname{Arcsin}(x/a)$]-a,a[
$x \mapsto 1/\sqrt{x^2 - a^2}$	$x \mapsto \ln\left x + \sqrt{x^2 - a^2}\right $	$]-\infty, -a[\text{ ou }]a, +\infty[$
$x \mapsto 1/\sqrt{a^2 + x^2}$	$x \mapsto \ln\left(x + \sqrt{a^2 + x^2}\right)$	\mathbb{R}

Dans ce tableau, $\alpha \in \mathbb{C} \setminus \mathbb{R}$, $p \in \mathbb{Z} \setminus \{0, -1\}$. Les fonctions complexes suivantes sont définies sur \mathbb{R} et leurs primitives sont valables sur cet intervalle.

Fonction	Primitive
$x \mapsto e^{\alpha x}$	$x \mapsto \frac{1}{\alpha} e^{\alpha x}$
$x \mapsto 1/(x-\alpha)$	$x \mapsto \ln x - \alpha + i \operatorname{Arctan}\left(\frac{x - \operatorname{Re}(\alpha)}{\operatorname{Im}(\alpha)}\right)$
$x \mapsto (x - \alpha)^p$	$x \mapsto (x - \alpha)^{p+1}/(p+1)$