Chapter 1

Formation of Crystal

Today's lecture

Profile

cohesive energy.

Potential between Two Atoms

Potential between Two Atoms

$$U(R) = \frac{-a}{R^m} + \frac{b}{R^n}$$
attraction repulsion

a,b,m,n>0 and n>m

$$F(R) = -\frac{\partial U(R)}{\partial R}$$

$$F(R) = F_a(R) + F_r(R)$$

$$R = R_0$$
: $F(R) = 0$.

 $R > R_0$: F(R) > 0, attractive

 $R < R_0$: F(R) < 0, repulsive

$$\left. \frac{\partial U(R)}{\partial R} \right|_{R=R_0} = 0 \text{ } R_0 \text{ } U(R_0)$$

interatomic bonding Ionic bond Van der Waals bond Hydrogen bond Covalent bond Metallic bond

Potential between Two Atoms

Relationship Between Binding Energy and Melting Point

melting temperatures T

A higher binding energy means a higher melting point!

Ionic Crystal - Ionic Bond

Ionic bond is formed between atoms with large differences in electronegativity.

Group 1 alkali metals — Li, Na, K, Rb, Cs

Group 7 halogen elements—F, Cl, Br, I

A transfer of electrons between two atoms results the electrostatic force of attraction between positively and negatively charged ions

- **♦** Binding Energy: 150~370 *kcal/mol*
- **♦** Typical Crystal Structure: NaCl、CsCl、ZnS

Cohesive Energy in Ionic Crystals

The interaction between two ions can be described as:

$$U(R) = \frac{-a}{R^m} + \frac{b}{R^n} \quad u(r) = -\frac{\delta q^2}{4\pi\varepsilon_0 r} + \frac{b}{r^n} \qquad \begin{array}{l} q: \text{ charges of ion,} \\ \delta = +1 \text{ for the unlike charges} \\ \delta = -1 \text{ for the like charges} \end{array}$$

For a crystal with N cations and N anions, the total cohesive energy are:

$$U = \frac{1}{2} (2N) \sum_{j=1}^{2N-1} \left(-\frac{\delta_{j} q^{2}}{4\pi \varepsilon_{0} r_{j}} + \frac{b}{r_{j}^{n}} \right) = \frac{r_{j} = \ell_{j} r}{U(r) = -\frac{N\alpha q^{2}}{4\pi \varepsilon_{0} r} + \frac{NB'}{r^{n}}}$$

Here r: the nearest distance between two atoms

$$B' = \sum_{j=1}^{2N-1} \frac{b}{l_j^n}$$

$$B' = \sum_{j=1}^{2N-1} \frac{b}{l_i^n} \qquad \alpha = \sum_{j=1}^{2N-1} \frac{\delta_j}{l_i} \qquad \mathbf{Madelung constant}$$

How to calculate a Madelung constant?

In 2-D ionic crystal,

$$\alpha = \sum_{j \neq 0} \frac{\delta_{j}}{\ell_{j}} \quad r_{j} = \ell_{j} r$$

$$\alpha_1 = 4 \cdot \frac{1}{2} \cdot \frac{1}{1} - 4 \cdot \frac{1}{4} \cdot \frac{1}{\sqrt{2}} \approx 1.293$$

$$\alpha_2 = 4 - 4 \cdot \frac{1}{\sqrt{2}} - 4 \cdot \frac{1}{2} \cdot \frac{1}{2} + 8 \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{5}} - 4 \cdot \frac{1}{4} \cdot \frac{1}{2\sqrt{2}} \approx 1.607$$

 $\alpha_3 \approx 1.6105$

Example: Madelung Constant of NaCl Crystal

Ionic bond

$$\alpha = \sum_{j \neq 0} \frac{\delta_j}{\ell_j}$$

Taking Na⁺ as reference ion: First near: 6 Cl⁻, r=1, R=1/2; Second near: 12 Na⁺, $r=2^{1/2}$, R=1/4; Third near: 8 Cl⁻, $r=3^{1/2}$, R=1/8

$$\alpha = \frac{1}{2} \times 6 - \frac{1}{4} \times \frac{1}{\sqrt{2}} \times 12 + \frac{1}{8} \times \frac{1}{\sqrt{3}} \times 8 = 1.457$$

$$\alpha = \frac{1}{2} \times 6 - \frac{1}{4} \times \frac{1}{\sqrt{2}} \times 12 + \frac{1}{8} \times \frac{1}{\sqrt{3}} \times 8 + \dots$$
 The bigger the cell, the more exactness the Madelung constant is.

structure	NaCl	CsCl	Cubic ZnS
α	1.748	1.763	1.638

Practice

A chain consisting of univalent cations and anions is shown as follow, please calculate the Madelung constant.

$$\alpha = \sum_{j \neq 0} \frac{\delta_j}{\ell_j} = ?$$

How to calculate B' and n

For B'

3' and n
$$U(r) = -\frac{N\alpha q^2}{4\pi\varepsilon_0 \underline{r}} + \frac{N\underline{B}'}{r^{\underline{n}}}$$

$$B' = \sum_{j=1}^{2N-1} \frac{b}{l_j^n}$$

$$\frac{\partial U}{\partial r}\Big|_{r_0} = -\frac{N}{2} \left[-\frac{\alpha q^2}{4\pi\varepsilon_0 r^2} + \frac{nB'}{r^{n+1}} \right]_{r_0} = 0 \qquad \Rightarrow \qquad B' = \frac{\alpha q^2}{4\pi\varepsilon_0 n} r_0^{n-1}$$

$$U=f(B',n,r)$$

 $B'=f,(n)$ $\Rightarrow n=f_3(k)$
 $K=f_2(U,r)$
 $K \Rightarrow f_3(x) \Rightarrow n \Rightarrow b' \Rightarrow U$

How to calculate B' and n

$$U(r) = -\frac{N\alpha q^{2}}{4\pi\varepsilon_{0}r} + \frac{NB'}{r^{n}} B' = \sum_{j=1}^{2N-1} \frac{b}{l_{j}^{n}}$$

For B'

$$\left. \frac{\partial U}{\partial r} \right|_{r_0} = -\frac{N}{2} \left[-\frac{\alpha q^2}{4\pi \varepsilon_0 r^2} + \frac{nB'}{r^{n+1}} \right]_{r_0} = 0 \qquad \Longrightarrow \qquad B' = \frac{\alpha q^2}{4\pi \varepsilon_0 n} r_0^{n-1}$$

For n

$$V = N\gamma r^3$$
 γ -volume factor $\frac{\partial U}{\partial V} = \frac{\partial U}{\partial r} \frac{\partial r}{\partial V} = \frac{\partial U}{\partial r} \frac{1}{3\gamma N r^2}$

$$\frac{\partial U}{\partial V} = \frac{\partial U}{\partial r} \frac{\partial r}{\partial V} = \frac{\partial U}{\partial r} \frac{1}{3\gamma N r^2}$$

$$\frac{\partial^2 U}{\partial V^2} = \frac{\partial}{\partial V} \left(\frac{\partial U}{\partial V} \right) = \dots = \frac{1}{9\gamma^2 N^2 r^4} \frac{\partial^2 U}{\partial r^2} - \frac{2}{9\gamma^2 N^2 r^5} \frac{\partial U}{\partial r}$$

CsCl structure
$$\frac{3}{3}$$

ZnS structure
$$\frac{1}{3}$$

$$K = -V \frac{\mathrm{d}p}{\mathrm{d}V} = V_0 \left(\frac{\mathrm{d}^2 U}{\mathrm{d}V^2}\right)_{V_0} = N\gamma r_0^3 \frac{1}{9\gamma^2 N^2 r_0^4} \left(\frac{\partial^2 U}{\partial r^2}\right)_{r_0} = \frac{1}{9\gamma N r_0} \left(\frac{\partial^2 U}{\partial r^2}\right)_{r_0} = n = 1 + \frac{72\pi\varepsilon_0 \gamma r_0^4}{q^2 \alpha e^2} K$$

 r_0 and K are decided by experiments, and γ is calculated according to the crystal structure.

interatomic bonding

Ionic bond

Van der Waals bond Hydrogen bond

Covalent bond

Metallic bond

Ionic crystal Cohesive Energy

How to calculate the γ of a crystal?

$$V = N \gamma R_0^3$$

CsCl structure

$$V = a^3$$
, $N = 2$, $R_0 = \frac{\sqrt{3}}{2}a$,

$$\gamma = \frac{4}{3\sqrt{3}}$$

ZnS structure

$$V = a^3$$
, $N = 8$, $R_0 = \frac{\sqrt{3}}{4}a$

$$\gamma = \frac{8}{3\sqrt{3}}$$

How about NaCl?

interatomic bonding Ionic bond Van der Waals bond Hydrogen bond Covalent bond Metallic bond

Ionic crystal Cohesive Energy

Properties of Alkali Halide Crystal with NaCl Structure

Ionic Crystal	Nearest neighbor separation $R_0(\mathring{A})$	Bulk modulus E(10 ¹⁰ N/m ²)	Cohesive Energy $U_0(10^{-16}\text{J/ion pair})$
LiF	2.014	6.71	-1.68
LiCl	2.570	2.98	-1.38
NaCl	2.82	2.40	-1.27
NaBr	2.989	1.99	-1.21
NaI	3.237	1.51	-1.13

Today's lecture

Profile

