ARITHMÉTIQUE DANS L'ANNEAU $(\mathbb{Z}, +, \cdot)$

8.1 DIVISIBILITÉ ET DIVISION EUCLIDIENNE

§1 La relation « divise » dans \mathbb{Z}

Définition 1

Soit $(a, b) \in \mathbb{Z}^2$. On dit que a divise b, et l'on note $a \mid b$ lorsqu'il existe $q \in \mathbb{Z}$ tel que b = aq.

Dans ce cas, on dit aussi que a est un **diviseur** de b ou que b est un **multiple** de a.

Notation

- On note par $a\mathbb{Z} = \{ aq \mid q \in \mathbb{Z} \}$ l'ensemble des multiples de a.
- On note $D(b) = \left\{ a \in \mathbb{N} \mid a \mid b \right\}$ l'ensemble des diviseurs positifs de b.

Exemples 2

- **1.** 5 | 210, 3 | 18.
- **2.** $D(6) = \{1, 2, 3, 6\}.$
- **3.** $4\mathbb{Z} = \{ \dots, -16, -12, -8, -4, 0, 4, 8, 12, 16, \dots \}.$
- **4.** 0 est divisible par n'importe quel entier et le seul entier divisible par 0 est 0.

$$\forall a \in \mathbb{Z}, a \mid 0 \text{ et } \left(0 \mid a \iff a = 0\right).$$

5. Le seul diviseurs de 1 est 1, mais 1 divise tout entier relatif.

$$\forall b \in \mathbb{Z}, 1 \mid b.$$

Proposition 3

Lien avec la relation \leq

La divisibilité est liée à l'ordre naturel sur Z par

$$\forall b \in \mathbb{Z}, \forall a \in \mathbb{Z}, a \mid b \implies (b = 0 \ ou \ |a| \le |b|) \,.$$

La réciproque est fausse.

Démonstration. Pour tout $k \ge 1$, on a $k|a| \ge |a|$.

Proposition 4

Propriétés de la relation $\Big| \sup \mathbb{Z}$

La relation $| sur \mathbb{Z} est$

1. réflexive :
$$\forall a \in \mathbb{Z}, a \mid a$$
;

2. transitive:
$$\forall (a, b, c) \in \mathbb{Z}^3, (a \mid b \text{ et } b \mid c) \implies a \mid c$$
;

Démonstration.

1. Soit
$$a \in \mathbb{Z}$$
. On a $a = a \times 1$ et $1 \in \mathbb{Z}$, donc $a \mid a$.

2. Soient
$$a, b, c \in \mathbb{Z}$$
 tels que $a \mid b$ et $b \mid c$. Il existe donc $p, q \in \mathbb{Z}$ tels que $b = qa$ et $c = pb$, d'où $c = (qp)a$ et $qp \in \mathbb{Z}$,

c'est-à-dire,
$$a \mid c$$
.

Corollaire 5

Soit $(a, b) \in \mathbb{Z}^2$.

$$a \mid b \iff b \in a\mathbb{Z} \iff b\mathbb{Z} \subset a\mathbb{Z}.$$

Définition 6

Soit $(a, b) \in \mathbb{Z}^2$. On dit que les entiers a et b sont associés si $(a \mid b \text{ et } b \mid a)$.

Proposition 7

Caractérisation des couples d'intiers associés

Soit $(a, b) \in \mathbb{Z}^2$. Les assertions suivantes sont équivalentes

- 1. a et b sont associés.
- 2. $a\mathbb{Z} = b\mathbb{Z}$.
- 3. a = b ou a = -b.

§2 Compatibilité avec les opérations algébriques

Proposition 8

Compatibilité avec les opérations algèbriques

Soit $(a, b, c, d) \in \mathbb{Z}^4$.

1. Combinaison linéaire à coefficients entiers : si a | b et a | c, alors

$$\forall (u,v) \in \mathbb{Z}^2 \ a \ \Big| \ ub + vc.$$

En particulier, si $a \mid b$ et $a \mid c$, alors $a \mid b + c$ et $a \mid b - c$.

- **2.** Produit: Si $a \mid b$ et $c \mid d$, alors $ac \mid bd$.

 En particulier, si $a \mid b$ alors pour tout $k \in \mathbb{N}$, $a^k \mid b^k$.
- 3. Multiplication/division par un entier : si $c \neq 0$, alors $a \mid b \iff ac \mid bc$.

Démonstration. 1. Supposons $a \mid b$ et $a \mid c$, alors il existe $p, q \in \mathbb{Z}$ tels que b = pa et c = qa. Pour tout $u, v \in \mathbb{Z}$, on a

$$ub + vc = upa + vqa = (up + vq)a$$
 et $up + vq \in \mathbb{Z}$,

c'est-à-dire, $a \mid ub + vc$.

2. Supposons $a \mid b$ et $c \mid d$, alors il existe $p, q \in \mathbb{Z}$ tels que b = pa et d = cq. Alors

$$bd = (pa)(cq) = (pq)(ac)$$
 et $pq \in \mathbb{Z}$,

c'est-à-dire, ac | bd.

3. (\Longrightarrow) On a toujours $c \mid c$, donc si $a \mid b$, on a $ac \mid bc$.

(\iff) Si $ac \mid bc$ et $c \neq 0$, alors il existe $q \in \mathbb{Z}$ tel que bc = acq, en divisant cette égalité par $c \neq 0$, on obtient

$$b = aq$$
 et $q \in \mathbb{Z}$,

c'est-à-dire, $a \mid b$.

8.2 LES NOMBRES PREMIERS

§1 Définition

Définition 9

Un **nombre premier** est un entier naturel $p \ge 2$ dont les seuls diviseurs strictement positifs sont 1 et p. On note \mathbb{P} l'ensemble des nombres premiers.

Avec des quantificateurs, cela s'écrit

$$\forall (a, b) \in \mathbb{N}, p = ab \implies a = 1 \text{ ou } b = 1.$$

Proposition 10

Pour qu'un entier p > 1 soit premier, il faut et il suffit qu'il ne soit pas produit de deux entiers strictement plus grand que 1.

Théorème 11

(Euclide)

Tout entier n > 1 est un produit (fini) de nombres premiers. En particulier, n possède au moins un diviseur premier.

§2 Crible d'Erathosthène

Proposition 12

Soit n > 1. Si n n'est pas premier, il possède un facteur premier p tel que $p^2 \le n$.

Algorithme 13

Crible d'Erathosthène

Si l'entier n n'est divisible par aucun nombre premier p tel que $p^2 \le n$, alors n est un nombre premier.

§3 Ensemble des nombres premiers

Théorème 14

L'ensemble \mathbb{P} des nombres premiers est infini.

De très nombreuses preuves de ce résultat existent. Proposons ici la démonstration d'Euclide, sans doute la plus connue, en raisonnant par l'absurde.

Démonstration. Supposons que l'ensemble des nombres premiers $\mathbb P$ soit fini. On peut alors écrire $\mathbb P = \{p_1, \dots, p_k\}$. On introduit l'entier $n = p_1 p_2 \dots p_k + 1 \ge 2$. Cet entier a un diviseur premier p. Ce nombre premier p est donc l'un des p_i . Or p divise $p_1 p_2 \dots p_k = n - 1$, donc p divise (n - 1) - n = 1, ce qui est absurde.

8.3 DIVISION EUCLIDIENNE

§1 Division euclidienne

Définition 15

Division euclidienne dans $\mathbb Z$

Soient $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$. Alors il existe un unique couple d'entiers $(q, r) \in \mathbb{Z} \times \mathbb{N}$ vérifiant

$$a = bq + r$$
 et $0 \le r < b$.

- q est le **quotient** de la division euclidienne de a par b.
- r est le **reste** de la division euclidienne de a par b et on le note $a \mod b$..

L'opération qui remplace a par r s'appelle la **réduction modulo** b.

Démonstration. • Commençons prouver l'unicité d'un couple $(q,r) \in \mathbb{Z} \times \mathbb{N}$ tel que a = bq + r et $0 \le r < b$. Supposons l'existence de deux couples (q,r) et (q',r') vérifiant ces conditions. Alors a = qb + r = q'b + r', d'où r - r' = b(q - q'); ainsi b divise |r - r'|. Puisque $0 \le r < b$ et $0 \le r' < b$, on en déduit -b < r - r' < b, c'est-à-dire $0 \le |r - r'| < b$. Or le seul multiple de b dans [0, b[est 0, on a donc $0 \le r'$. Puisque $0 \le r'$ 0 et $0 \le r'$ 0, on a par conséquent $0 \le r'$ 0.

• Soit $E = \{ k \in \mathbb{Z} \mid kb \le a \}$. Cet ensemble est une partie non vide et majorée de \mathbb{Z} . En effet, si $a \ge 0$, $0 \in E$ et a majore E (car $b \ge 1$). Si a < 0, alors 0 majore E.

L'ensemble E admet donc un plus grand élément q. On a donc $qb \le a < (q+1)b$ (sinon $q+1 \in E$) et en posant r=a-bq, on a bien $0 \le r < b$.

Exemple 16

Proposition 17

Soit r le reste de la division euclidienne de a par b. On a

$$b \mid a \iff r = 0.$$

§2 Sous-groupes de $(\mathbb{Z}, +)$

Définition 18

Une partie A de \mathbb{Z} est appelée **sous-groupe** (additif) de \mathbb{Z} si elle vérifie les conditions ci-dessous:

- 1. $0 \in A$.
- 2. A est stable pour l'addition:

$$\forall (x, y) \in A^2, x + y \in A.$$

3. A est stable par passage à l'opposé:

$$\forall x \in A, -x \in A.$$

Théorème 19

- 1. Pour tout entier $n \in \mathbb{Z}$, $n\mathbb{Z}$ est un sous-groupe de \mathbb{Z} .
- 2. Réciproquement, soit A un sous-groupe de \mathbb{Z} , il existe un unique entier $n \geq 0$ tel que

$$A = n\mathbb{Z}$$
.

Proposition 20

Soient A et B deux sous-groupes de \mathbb{Z} , alors la somme de ces deux sous-groupes

$$A + B = \{ a + b \mid a \in A \text{ et } b \in B \}$$

est un sous-groupe de \mathbb{Z} .

Proposition 21

Soient A et B deux sous-groupes de \mathbb{Z} , alors l'intersection $A \cap B$ de ces deux sous-groupes est un sous-groupe de \mathbb{Z} .

8.4 Plus grand commun diviseur, algorithme d'Euclide

§1 Plus grand commun diviseur de deux entiers

Définition 22

Soient a et b deux entiers relatifs quelconques. On appelle **plus grand commun diviseur** (ou pgcd) de a et b l'unique entier $d \ge 0$ tel que

$$a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$$
.

on note cet entier pgcd(a, b) ou $a \wedge b$.

Théorème 23

Soient a et b deux entiers relatifs quelconques et d = pgcd(a, b).

- 1. L'entier d divise a et b.
- 2. Réciproquement, tout diviseur commun à a et b divise d.
- 3. On a la relation de Bézout:

$$\exists (u, v) \in \mathbb{Z}^2, ua + vb = d.$$

4. Si a et b sont deux entiers relatifs non nuls, alors

$$\operatorname{pgcd}(a,b) = \max \left\{ \ n \in \mathbb{N} \ \middle| \ n \ \middle| \ a \ et \ n \ \middle| \ b \ \right\}.$$

Test 24

Déterminer le pgcd de 105 et 48.

Remarque

- On a toujours pgcd(0, 0) = 0.
- On a toujours pgcd(a, 0) = |a|.
- Si $a, b \in \mathbb{Z}$, pgcd(a, b) = pgcd(|a|, |b|).
- a divise b si, et seulement si, pgcd(a, b) = |a|.

§2 Entiers premiers entre eux

Définition 25

Soient $a, b \in \mathbb{Z}$. On dit que a et b sont **premiers entre eux** lorsque leur seuls diviseurs communs sont -1 et 1:

$$\forall d \in \mathbb{Z}, (d \mid a \text{ et } d \mid b \implies d = \pm 1).$$

Théorème 26

Égalité de Bézout

Deux entiers a et b sont premiers entre eux si, et seulement si

$$\exists (u, v) \in \mathbb{Z}^2, ua + vb = 1.$$

Définition 27

Soient $a_1, a_2, \ldots, a_r \in \mathbb{Z}$.

- On dit que a_1, \ldots, a_r sont **premiers entre eux dans leur ensemble** si leurs seuls diviseurs communs sont ± 1 .
- On dit que a_1, \ldots, a_r sont **premiers entre eux deux à deux** a_i et a_j sont premiers entre eux pour tous $i, j \in [1, r]$ distincts.

§3 Lemme de Gauß, lemme d'Euclide

Théorème 28

Lemme de Gauß

Si a est premier avec b et a divise bc, alors a divise c.

Démonstration. Il existe des entier u, v, w tel que ua + vb = 1 et bc = aw. On peut donc écrire

$$c = uac + vbc = uac + vaw = a(uc + vw).$$

Théorème 29

Lemme d'Euclide

Un entier $p \ge 2$ *est un nombre premier si et seulement si il vérifie la condition*

$$\forall (a,b) \in \mathbb{Z}^2, p \mid ab \implies (p \mid a \ ou \ p \mid b);$$

appelée lemme d'Euclide.

Démonstration. C'est un cas particulier du lemme de Gauß. Ou bien p divise a, ou bien il est premier avec a et il divise alors b.

On peut néanmoins une démonstration directe.

Démonstration. Soit p premier divisant ab mais pas a. Nous devons donc montrer que p divise b.

L'ensemble A des entiers n > 0 tels que p divise an contient p, b et $m = \min A > 0$, mais pas 1, donc m > 1.

Pour tout $n \in A$, effectuons la division euclidienne n = mq + r, avec $0 \le r < m$; alors p divise an - (am)q = ar. Comme r < m, on a $r \notin A$, d'où r = 0, ce qui montre que m divise n. En particulier, m divise p et p. Or p est premier et p = p 1, donc p = p qui divise ainsi p .

Corollaire 30

- 1. Si p premier divise $a_1a_2 \cdots a_n$, il divise au moins l'un des facteurs.
- **2.** Si p premier divise a^n , $(n \in \mathbb{N}^*)$, alors il divise a.

Théorème 31

- 1. Si a est premier avec b et c, alors a est premier avec bc.
- 2. Si a et b sont premiers entre eux, et que $a \mid c$ et $b \mid c$, alors $ab \mid c$.

Démonstration. À faire (exercice!).

§4 Algorithme d'Euclide

Théorème 32

Soient des entiers a et b.

- 1. Soit k un entier, alors pgcd(a, b) = pgcd(a kb, b).
- 2. $Si \ b > 0$, pgcd(a, b) = pgcd(b, r) avec $r = a \mod b$.
- 3. Soit un entier m > 0, alors $pgcd(ma, mb) = m \times pgcd(a, b)$.
- **4.** Soit un entier d > 0; si d divise a et b, soient a' et b' les entiers tels que a = da' et b = db'. Alors d est le pgcd de a et b si, et seulement si, a' et b' sont premiers entre eux.

Algorithme 33

Algorithme d'Euclide

On pose $r_0 = a$, $r_1 = b$, puis pour tout k jusqu'à avoir $r_N = 0$,

$$r_{k+2} = r_k \mod r_{k+1},$$

c'est-à-dire r_{k+2} est le reste dans la division euclidienne de r_k par r_{k+1} . Alors $\operatorname{pgcd}(a,b) = r_{N-1}$.

Exemple 34

On a pgcd(105, 48) = 3.

En «remontant les calculs», cela permet de trouver des entiers $u, v \in \mathbb{Z}$ tels que

$$105u + 48v = 3$$
.

Algorithme 35

Algorithme d'Euclide étendu

On peut supposer que $0 \le b \le a$ et on note $r_0 = a$ et $r_1 = b$. Tant que $r_{k+1} > 0$, on effectue la division euclidienne de r_k par r_{k+1} :

$$r_k = q_{k+2}r_{k+1} + r_{k+2}$$
.

La suite ainsi construite est finie, de rang final N pour lequel $R_N = 0$.

On définit alors deux nouvelles suite finies $(u_k)_{0 \le k \le N}$ et $(v_k)_{0 \le k \le N}$ par les relations

$$\begin{split} (u_0, v_0) &= (1, 0) \\ (u_1, v_1) &= (0, 1) \\ \forall k \in [\![0, N-2]\!], \left(u_{k+2}, v_{k+2}\right) &= \left(u_k - q_{k+2} u_{k+1}, v_k - q_{k+2} v_{k+1}\right). \end{split}$$

On vérifie alors par récurrence que pour tout $k \in [0, N]$,

$$H(k): r_k = au_k + bv_k.$$

En effet, on on a

$$r_0 = a = a \times 1 + b \times 0 = au_0 + bv_0$$

et $r_1 = b = a \times 0 + b \times 0 = au_1 + bv_1$.

D'où H(0) et H(1). Soit $k \in [0, N-2]$. On suppose H(k) et H(k+1), c'est-à-dire

$$r_k = au_k + bv_k \quad \ et \quad \ r_{k+1} = au_{k+1} + bv_{k+1}.$$

Alors

$$r_{k+2} = r_k - q_{k+2}r_{k+1}$$

$$= (au_k + bv_k) - q_{k+2} (au_{k+1} + bv_{k+1}) \qquad \because H(k) \text{ et } H(k+1)$$

$$= a (u_k - q_{k+2}u_{k+1}) + b (v_k - q_{k+2}v_{k+1})$$

$$= au_{k+2} + bv_{k+2}.$$

d'où H(k) et $H(k+1) \implies H(k+2)$. D'après le principe de récurrence, la relation H(k) est donc vérifiée pour tout $k \in [0, N]$, en particulier

$$pgcd(a, b) = R_{N-1} = au_{N-1} + bv_{N-1}.$$

§5 Plus petit commun multiple de deux entiers

Définition 36

Soient a et b deux entiers relatifs quelconques. On appelle **plus petit commun multiple** (ou ppcm) de a et b l'unique entier $m \ge 0$ tel que

$$a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$$
,

on note cet entier ppcm(a, b) ou $a \vee b$.

Théorème 37

Soient a et b deux entiers relatifs quelconques et m = ppcm(a, b).

- 1. L'entier m est un multiple de a et de b.
- 2. Réciproquement, tout multiple commun à a et b est multiple de m.
- 3. Si a et b sont deux entiers relatifs non nuls, alors

$$ppcm(a, b) = \min \left\{ n \in \mathbb{N}^* \mid a \mid n \text{ et } b \mid n \right\}.$$

§6 Généralisation

Définition 38

Soient $a_1, a_2, \dots, a_r \in \mathbb{Z}$.

• On appelle **plus grand commun diviseur** de a_1, \ldots, a_r l'unique entier naturel d pour lequel

$$a_1\mathbb{Z} + a_2\mathbb{Z} + \dots + a_r\mathbb{Z} = d\mathbb{Z}.$$

•

• On appelle **plus petit commun multiple** de a_1, \ldots, a_r l'unique entier naturel m pour lequel

$$a_1 \mathbb{Z} \cap a_2 \mathbb{Z} \cap \cdots \cap a_r \mathbb{Z} = m \mathbb{Z}.$$

8.5 DÉCOMPOSITION EN FACTEURS PREMIERS

§1 Facteurs premiers d'un entier. Le théorème de décomposition

Théorème 39

Décomposition en facteurs premiers

Soit $n \in \mathbb{N}$ tel que $n \ge 2$. Alors n admet une factorisation unique en facteurs premiers, à l'ordre des facteurs près, c'est-à-dire

$$\exists ! m \in \mathbb{N}^{\star}, \exists ! (p_1, \dots, p_m) \in \mathbb{P}^m, p_1 \leq p_2 \leq \dots \leq p_m \ et \ n = p_1 p_2 \cdots p_m.$$

Exemple 40

$$90 = 9 \times 10 = 3 \times 3 \times 2 \times 5 = 2 \times 3 \times 3 \times 5 = 2 \times 3^{2} \times 5.$$

§2 Valuation *p*-adique

Définition 41

La décomposition de $n \ge 2$ en facteurs premiers peut également s'écrire sous la forme

$$n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_r^{\alpha_r}$$

où

- les p_i sont des nombres premiers deux à deux distincts,
- $\alpha_i \geq 1$.

Cette écriture est unique, à l'ordre des facteurs près.

- L'entier α_i est appelé **exposant** du nombre premier p_i dans la décomposition de n en facteur premier et noté $v_{p_i}(n)$.
- Si p est un nombre premier distinct de p_1, \dots, p_r , on pose $v_p(n) = 0$.

On dit que $v_p(n)$ est la **valuation** *p***-adique** de *n*.

Proposition 42

Soit
$$a, b \in \mathbb{N}^*$$
, et $p \in \mathbb{P}$. On a

$$v_p(ab) = v_p(a) + v_p(b).$$

Proposition 43

Soit $a, b \in \mathbb{N}^*$, alors $a \mid b$ si, et seulement si

$$\forall p \in \mathbb{P}, v_p(a) \leq v_p(b).$$

Proposition 44

Soit n un entier non nul qui se décompose en produit de facteurs premiers (distincts) de la façon suivante

$$n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_r^{\alpha_r}$$

Alors, les diviseurs de n dans \mathbb{N}^* sont les entiers naturels de la forme

$$d=p_1^{\gamma_1}\cdot p_2^{\gamma_2}\cdot \cdots \cdot p_r^{\gamma_r}, \quad avec \ 0\leq \gamma_i\leq \alpha_i \ pour \ i=1\dots r.$$

Test 45

Quels sont les diviseurs de 90?

§3 Applications

Proposition 46

Soit a et b deux entiers non nuls qui se décomposent en produits de facteurs premiers (distincts) de la façon suivante

$$a = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_r^{\alpha_r} \qquad \qquad b = p_1^{\beta_1} \cdot p_2^{\beta_2} \cdot \dots \cdot p_r^{\beta_r}$$

où les α_i et β_i sont des entiers éventuellement nuls. Alors

$$\operatorname{pgcd}(a,b) = p_1^{\min(\alpha_1,\beta_1)} \times p_2^{\min(\alpha_2,\beta_2)} \times \cdots \times p_r^{\min(\alpha_r,\beta_r)}$$

Test 47

Retrouver le pgcd de 105 et 48.

Proposition 48

Soit a et b deux entiers non nuls qui se décomposent en produits de facteurs premiers (distincts) de la façon suivante

$$a = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_r^{\alpha_r} \qquad b = p_1^{\beta_1} \cdot p_2^{\beta_2} \cdot \dots \cdot p_r^{\beta_r}$$

où les α_i et β_i sont des entiers éventuellement nuls. Alors

$$\mathrm{ppcm}(a,b) = p_1^{\max(\alpha_1,\beta_1)} \times p_2^{\max(\alpha_2,\beta_2)} \times \cdots \times p_r^{\max(\alpha_r,\beta_r)}$$

Proposition 49

Soit de entiers a > 0 et b > 0. Si d = pgcd(a, b) et m = ppcm(a, b), alors ab = dm.

Démonstration. On remarque que pour $x, y \in \mathbb{N}$, on a $x + y = \max(x, y) + \min(x, y)$. Il suffit alors de comparer les exposants de p dans ab et dm: ils sont égaux.

8.6 LA RELATION DE CONGRUENCE

§1 La notion de congruence dans $\mathbb Z$

Définition 50

Soit $a, b, n \in \mathbb{Z}$ trois entiers. On défini la relation de congruence par

$$(a \equiv b \pmod{n}) \iff (\exists k \in \mathbb{Z}, a = b + kn).$$

On dit que «a est **congru** à b **modulo** n». Les réels a et b diffèrent donc d'un multiple entier de n c'est-à-dire $x - y \in n\mathbb{Z}$.

Exemple 51

- $230897 \equiv 7 \pmod{10}$.
- $17 \equiv 2 \pmod{3}$, mais aussi $17 \equiv -1 \pmod{3}$.

Notation

Pour tous entiers a et n, on note $a + n\mathbb{Z}$ l'ensemble des entiers congrus à a modulo n. Ce sont les entiers de la forme a + kn, où $k \in \mathbb{Z}$. On note

$$a + n\mathbb{Z} = \{ a + kn \mid k \in \mathbb{Z} \}.$$

Exemple 52

L'ensemble des nombres impairs peut donc se noter $1 + 2\mathbb{Z}$; celui des nombres donc l'écriture décimale termine par 5 peut se noter $5 + 10\mathbb{Z}$.

§2 Lien avec la division euclidienne

Proposition 53

Soit $a, b, r \in \mathbb{Z}$. Le reste de la division euclidienne de a par b est r si, et seulement si

$$a \equiv r \pmod{b}$$
 et $0 \le r < b$.

On a donc

$$b \mid a \iff a \equiv 0 \pmod{b}$$
.

§3 Compatibilité avec les opérations algébriques

Proposition 54

Soient $n \in \mathbb{Z}^*$, $a, b, c, d, k \in \mathbb{Z}$ et $p \in \mathbb{N}$.

1. Si $a \equiv b \pmod{n}$ et $c \equiv d \pmod{n}$, alors

$$a + c \equiv b + d \pmod{n}$$
; $a - c \equiv b - d \pmod{n}$; $ac \equiv bd \pmod{n}$.

2. Si $a \equiv b \pmod{n}$, alors

$$ka \equiv kb \pmod{kn}$$
; $ka \equiv kb \pmod{n}$; $a^p \equiv b^p \pmod{n}$

Test 55

Démontrer la proposition précédente.

§4 Équations du premier degré en congruence

Soit un entier n > 0, et $a, b \in \mathbb{Z}$. On cherche les entiers $x \in \mathbb{Z}$ tels que

$$ax \equiv b \pmod{n}$$
.

Tout revient à chercher $x \in \mathbb{Z}$ pour lequel il existe $y \in \mathbb{Z}$ tel que ax + ny = b. Ce problème a déjà été étudié et il admet des solutions si, et seulement si b est un multiple de pgcd(a, n).

On se limite désormais au cas où a est premier avec n. L'égalité de Bézout permet d'introduire $(u, v) \in \mathbb{Z}^2$ tel que

$$au + nv = 1$$
.

On a $au \equiv 1 \pmod{n}$ et on dit que u est **un inverse modulo** n de a. Il y a unicité de u si l'on décide que $0 \le u < n$.

Pour résoudre $ax \equiv b \pmod{n}$, multiplions par u:

$$aux \equiv ub \pmod{n}$$
, c'est-à-dire $x \equiv ub \pmod{n}$.

Inversement, et en remultipliant par n, on trouve comme solution du problème tout entier congru à $ub \pmod{n}$.

Exemple 56

Résoudre $5x \equiv 9 \pmod{17}$.

§5 Petit théorème de Fermat

Théorème 57

Petit théorème de Fermat

Soit p un nombre premier. Si $a \in \mathbb{Z}$ n'est pas multiple de p, on a

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Démonstration. Supposons que a n'est pas divisible par p et notons

$$N = a \times 2a \times 3a \times \dots \times (p-1)a = (p-1)!a^{p-1}.$$

Pour tout entier k, notons r_k le reste de la division euclidienne de ka par p. Alors

$$N \equiv r_1 \times r_2 \times \dots r_{p-1} \pmod{p}.$$

Montrons que r_1, \ldots, r_{p-1} sont tous distincts deux à deux. En effet, si $r_i = r_j$, alors (i - j)a est divisible par p, donc, en utilisant le lemme d'Euclide, (i - j) est aussi divisible par p. Or -p < i - j < p, on a donc nécessairement i = j.

De plus, en utilisant de nouveau le lemme d'Euclide, aucun ka n'est divisible par p, donc aucun r_k n'est nul. On en déduit alors que $(r_1, r_2, \dots, r_{p-1})$ est une permutation de $(1, 2, \dots, p-1)$ et donc

$$r_1 \times r_2 \times r_3 \times \dots r_{p-1} = (p-1)!$$

Finalement, on en déduit

$$(p-1)!a^{p-1} \equiv (p-1)! \pmod{p},$$

autrement dit, $(p-1)!(a^{p-1}-1)$ est divisible par p. Puisque p est premier, p ne divise pas (p-1)! et le lemme d'Euclide assure alors que $a^{p-1}-1$ est divisible par p.

Démonstration. On peut également faire une démonstration par récurrence (voir en exercice).

Un énoncé équivalent est

Théorème 58

Petit théorème de Fermat

Soit p un nombre premier et $a \in \mathbb{Z}$. On a

$$a^p \equiv a \pmod{p}$$
.