

(原课后答案网)

最专业的课后习题答案分享社区

教材课后答案 | 练习册答案 | 期末考卷答案 | 实验报告答案

第1章 习题答案

```
1.7
1)
 (100)_{10} = (64)_{16}
 (127)_{10} = (7F)_{16}
 (255)_{10} = (FF)_{16}
 (16.5)_{10} = (10.8)_{16}
 (50.375)_{10} = (32.6)_{16}
2)
                                      (127)_{10} = (11111111)_2 (255)_{10} = (111111111)_2
 (100)_{10} = (1100100)_2
                                           (50.375)_{10} = (110010.011)_{2}
 (16.5)_{10} = (10000.1)_{2}
                                                        /补码。
1.10 (+1011)<sub>2</sub> , (01011) _{\bar{R}\bar{M}} , (01011)_{\bar{L}\bar{M}} , (01011)_{\bar{A}\bar{M}} 。
        (\pm 00110)_2 , (000110)_{\text{ $p$}} , (000110)_{\text{$p$}} , (000110)_{\text{$p$}} .
        (-1101)_2 , (11101)_{\text{ QG}} , (10010)_{\text{ZG}} , (10011)_{\text{AG}} .
      1.12
(1) Y = \sum_{m} (2,3,5,6,7)
(2) Y = \sum_{m} (7,9,10,11,14,15)
(3) Y = \sum_{m} (6.7, 11, 12, 13, 14, 15)
(4) Y = \sum_{m} (3,6,7,11,12,13,14,15)
1.14
\boxtimes (a) Y = A\overline{B}C \bullet B\overline{C} = A\overline{B}C + B\overline{C}
\mathbb{S}(b) Y = \overline{\overline{A} + C + A + B + B + C} = ABC + \overline{ABC}
\mathbb{S}(\mathbf{c}) \quad \mathbf{Y} = \overline{\mathbf{A} \oplus \mathbf{B} \oplus \mathbf{C}} = \overline{\mathbf{A} B C} + A B \overline{\mathbf{C}} + A \overline{B} C + \overline{A} B C
\boxtimes (d) Y_1 = \overline{AB + (A \oplus B)C} = AB + AC + BC
             Y_2 = A \oplus B \oplus C = \overline{A}B\overline{C} + A\overline{B}\overline{C} + \overline{A}\overline{B}C + ABC
      1.17
```

(1)
$$\overline{Y} = \overline{A}\overline{B} + A\overline{C}$$

(2)
$$\overline{Y} = A + \overline{B}C + C\overline{D}$$

(3)
$$\overline{Y} = \overline{AD} + A\overline{C} + \overline{BC} + C\overline{D}$$

(4)
$$\overline{Y} = \overline{A} + B + \overline{C} + \overline{D}$$

1.18

(1) 对偶式为:
$$Y' = (A + BC) \bullet (B + C + \overline{A + B})$$

(2) 对偶式为:
$$Y' = (AC + \overline{BD})[(\overline{B} + C)D + A + D]$$

(3) 对偶式为:
$$Y' = [\overline{(A + \overline{B})(\overline{A} + C)} + D](\overline{BC} + A\overline{BD})$$

(4) 对偶式为:
$$Y' = \overline{AB} + \overline{CD} + \overline{ABC}(\overline{AB} + C)$$

AMMA JAANIMANA. 1.19 用公式法将下列函数化简为最简与-或形式。

(1)
$$Y = A + B + C$$

- (2) Y = 1
- (3) Y = AD
- (4) Y = A + CD
- (5) Y = 0

(6)
$$Y = \overline{ABCD} + ABCD$$

(7)
$$Y = ABCD\overline{E}$$

$$(8) Y = A + B + \overline{C} + D$$

1.20

$$(1) \quad Y = B\overline{C} + A\overline{C}$$

$$(2) Y = \overline{A}\overline{B} + AC$$

(3)
$$Y = \overline{ABC} + A\overline{BC} + \overline{ACD} + \overline{BD}$$

函数不能再化简,已为最简与或式。

$$(4) \quad Y = \overline{A}B\overline{C} + BCD + \overline{A}D$$

1.21

(1)
$$Y = \overline{AB} + AC + B\overline{C}$$
 或者 $Y = \overline{AC} + AB + \overline{BC}$

(2) Y = C

(3)
$$Y = \overline{B} + C\overline{D} + \overline{A}\overline{D}$$

(4)
$$Y = \overline{BD} + A\overline{D} + \overline{BC} + \overline{ACD}$$

1.22

$$(1) Y = \overline{A} + \overline{B} + \overline{C} + D$$

(2)
$$Y = AB + \overline{D} + \overline{AC}$$

(3)
$$Y = \overline{BC} + \overline{BD}$$

1.23

(1)
$$Y = \overline{ACD} + \overline{ABD} + AD$$
 \Rightarrow $Y = \overline{ACD} + \overline{BCD} + AD$

$$(2) Y = B + \overline{AD} + AC$$

$$(3) Y = \overline{A} + B + C$$

$$(4) \quad Y = \overline{A} + \overline{B}\overline{D}$$

$$(5)$$
 Y=1.

(6)
$$Y = CD + AC + \overline{BD}$$

1.24

(1)
$$Y = \overline{\overline{ABBCAC}}$$

(2) $Y = \overline{\overline{BCDACD}}\overline{\overline{BCDACD}}$

(3)
$$Y = \overline{\overline{A}\overline{B}A\overline{\overline{C}}}$$

(4)
$$Y = \overline{\overline{BCCDBC}}$$

或者
$$Y = \overline{\overline{BCBDBC}}$$

第二章答案

1.

2.

- (1) $v_0=0.6V$
- (2) $v_0=3.6V$
- (3) $v_0=3.6V$, $v_A=3V$

$$(4) v_0 = 2.8V, V_B = 2.2V$$

3.

(1)
$$\frac{V_I - 0.7V}{R_B} \ge \frac{9V - 0.1V}{60 \times R_c}$$
$$V_I \ge \frac{8.9 \times 12}{60 \times 1.2} + 0.7 \approx 2.2V$$

5.

 $\begin{array}{c}
A \longrightarrow \& \\
B \longrightarrow & \bullet \\
\end{array}$

, 采用多发射极三极管可以加快门电路速度

· daalinans com

6.

可以,与非或非输入端接在一起即可,异或门将输入端之一接 1。 7.

$$V_{IL} \leq 0.4V, I_{IL} \leq 0.4 mA$$

$$\therefore 0.4 \times 5 \times R_2 \le 0.4V$$

9.
$$R_2 \le 0.2K\Omega = 200\Omega$$

$$V_{IH} \ge 4V, I_{IH} \le 20 \mu A$$

$$\therefore 5 - 20 \times 5 \times (R_1 + R_2) \ge 4V$$

$$R_2 \le 0.01M\Omega - 200\Omega = 9.8K\Omega$$

10.

$$G_{ML} = \frac{16mA}{1.6mA} = 10$$

$$G_{MH} = \frac{4mA}{40\mu A} = 100$$

又与非门 V_L 输入时每个门算一路,...可以驱动图是连接的10个与非门。 $G_M = 10$ 11.

又或非门 V_{L} 输入时每个输入端算一路,

:.可以驱动图是连接的5个二输入或非门。 如果每个的输入端改为4个则只能驱动2个

12.

$$R_L \times (8-3\times0.4) \ge 5-0.4$$

$$\therefore R_L \ge \frac{4.6}{6.8} \approx 0.7 K\Omega = 700\Omega$$

$$R_L(3\times100+3\times20) \le 5-3.2$$

$$\therefore R_L \le \frac{1.8}{360} = 0.005 M\Omega = 5K\Omega$$

15. CMOS 输入端悬空时栅极积累电荷极性不定,造成逻辑值不定甚至引起振荡。

 $Y_3 = \overline{A \oplus B + C} = AB\overline{C} + \overline{A}\overline{B}\overline{C}$

17.

18.

(a)
$$Y_2 = AB$$
, (b)异或门。 (c) $Y_3 = \overline{AB + CD}$

(a)
$$Y = \overline{\overline{A \bullet B} \bullet \overline{C}} = \overline{A + B + C}$$
, (b) $Y = \overline{C} \bullet \overline{AB}$

第三章习题答案

3. 1可有多种表示式。

$$Y = \overline{A \oplus B \oplus C}$$

或
$$Y = AB\overline{C} + A\overline{B}C + \overline{A}BC + \overline{A}B\overline{C}$$

或 $Y = A \odot B \oplus C$

或 $Y = A \oplus B \odot C$

真值表:

A	В	C	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

由真值表看出,此电路为检测 ABC 三变量中是否有奇数个零。 (偶数个1时为1,奇数个1时为0)

3. 2

S0	S 1	S2	S 3	Y
0	0	0	0	1
0	0	0	1	A+B
0	0	1	0	$\overline{A} + B$
0	0	1	1	В
0	1	0	0	$A + \overline{B}$
0	1	0	1	A
0	1	1\^	0	$\overline{A \oplus B}$
0	M.	1\	1	AB
1	0	0	0	$\overline{A} + \overline{B}$
1 //	0 X	0	1	$A \oplus B$
1	0	1	0	$\overline{\overline{A}}$
1	0	1	1	$\frac{A}{\overline{A}B}$ \overline{B}
1	1	0	0	\overline{B}
1	1	0	1	$A\overline{B}$
1	1	1	0	\overline{AB}
1	1	1	1	0

3. 3

 $Y_1 = A \oplus B \oplus C$

$$Y_2 = AB + (A \oplus B)C = AC + BC + AB$$

真值表:

A	В	C	Y2	Y1
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1

0	1	1 0 1 0	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

由真值表可以看出,电路为一个全加器。Y1为A、B、C三变量之和,Y2为进位标志。

M. Jaanwans. com

3. 4 化简与否均可。

$$Z = \overline{AB} + A\overline{BC} + \overline{ABC} + ABC$$
, 由卡诺图化简可得:

$$Z = \overline{AB} + AC + \overline{AC}$$
 或 $Z = AC + \overline{BC} + \overline{AC}$

3. 5

$$Y_{1} = \overline{\overline{ABC}} \cdot \overline{\overline{ABC}} \cdot \overline{\overline{ABC}} \cdot \overline{\overline{ABC}} \cdot \overline{\overline{ABC}}$$

$$= \overline{\overline{ABC}} + \overline{\overline{ABC}} + \overline{\overline{ABC}} + \overline{\overline{ABC}} + \overline{\overline{ABC}}$$

$$= \overline{\overline{AC}} + \overline{\overline{ABC}} + \overline{\overline{ABC}} + \overline{\overline{ABC}}$$

$$Y_{2} = \overline{\overline{ABC}} + \overline{\overline{ABC}} + \overline{\overline{ABC}} + \overline{\overline{ABC}}$$

$$= \overline{\overline{ABC}} + \overline{\overline{AC}} + \overline{\overline{ABC}}$$

3.6(电路略)

$$Y_{1} = A\overline{B} + A\overline{C}D + A\overline{C}$$

$$= A\overline{B} + A\overline{C}$$

$$= \overline{A\overline{B} \cdot A\overline{C}}$$

或
$$Y_1 = A\overline{BC} = \overline{A\overline{BC}}$$
 只用两个与非门和一个非门。

$$Y_{2} = A\overline{B} + \overline{AC} + B\overline{CD} + ABD$$

$$= A\overline{B} + \overline{AC} + B\overline{CD} + AD$$

$$= \overline{AB} \cdot \overline{\overline{BC}} \cdot \overline{BCD} \cdot \overline{AD}$$

$$Y_3 = \overline{C} + \overline{AB}$$
$$= \overline{\overline{AB} \cdot C}$$

$$Y_4 = \overline{BD} + ABC$$
$$= \overline{\overline{BD}} \cdot \overline{ABC}$$

3. 7

真值表为:

\mathbf{B}_2	\mathbf{B}_1	\mathbf{B}_0	Y13	Y12	Y11	Y10	Y25	Y24	Y23	Y22	Y21	Y20
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0	0	0	0	0	1
0	1	0	0	1	0	0	0	0	0	1	0	0
0	1	1	0	1	1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0	1	0	0	0	0
1	0	1	1	0	1	0	0	1	1	0	0	1
1	1	0	1	1	0	0	1	0	0	1	0	0
1	1	1	1	1	1	0	1	1	0	0	0	1

$$Y_{10} = 0$$

$$Y_{11} = B_0$$

$$Y_{12} = B_1$$

$$Y_{13} = B_2$$

$$Y_{20} = B_0$$

$$Y_{21} = 0$$

$$Y_{22} = B_1 \overline{B_0}$$

$$Y_{23} = \overline{B_2}B_1B_0 + B_2\overline{B_1}B_0$$

$$Y_{24} = B_2 \overline{B_1} + B_2 B_0$$

$$Y_{25} = B_2 B_1$$

电路图略

3. 8

真值表:

 A	В	CI	S	C
0	0	0	0	0
0	0	1 4	1	1
0	1	\ 0\	1	1
0	17 1 .	\1 \	0	1
1	0	• 0	1	0
1/<	0	1	0	0
1	×1,	0	0	0
1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	1	1

逻辑函数表达式为:

$$S = \overline{ABC}_{I} + \overline{ABC}_{I} + A\overline{BC}_{I} + ABC_{I}$$

$$= \overline{\overline{ABC}_{I}} \cdot \overline{\overline{ABC}_{I}} \cdot \overline{ABC}_{I} \cdot \overline{ABC}_{I}$$

$$C = \overline{AC}_{I} + \overline{AB} + BC_{I}$$

$$= \overline{\overline{AC}_{I}} \cdot \overline{\overline{AB}} \cdot \overline{BC}_{I}$$

电路图略

3. 9

解:以 ABCD 表示四个双位开关,并用 0,1分别表示开关的两个状态,以 Y 表示灯的状态,1 表示亮,0 表示灭。并设 ABCD=0000 时 Y=0,从这个状态开始,单独改变任何一个开关的状态 Y 的状态都会变化。

则真值表为:

A	В	C	D	Y
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

则由真值表可得 Y 的表达式为:

$$Y = \sum (m1, m2, m4, m7, m8, m11, m13, m14)$$

$$=\overline{ABCD}+\overline{ABCD}+\overline{ABCD}+\overline{ABCD}+\overline{ABCD}$$

$$+A\overline{BCD}+A\overline{B}CD+AB\overline{C}D+ABC\overline{D}$$

由Y的表达式可以看出,出现了ABC三变量的所有最小项,所以可以用8选1数据选择器CC4512完成,将ABC作为地址输入,D及其反变量接到数据输入端。电路图如下:

3. 10

	8421	BCD			循环	不码			余3	3码			242	1码	
В3	B2	B1	В0	X3	X2	X1	X0	Y3	Y2	Y1	Y0	E3	E2	E1	E0
0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
0	0	0	1	0	0	0	1	0	1	0	0	0	0	0	1
0	0	1	0	0	0	1	1	0	1	0	1	0	0	1	0
0	0	1	1	0	0	1	0	0	1	1	0	0	0	1	1
0	1	0	0	0	1	1	0	0	1	1	1	0	1	0	0
0	1	0	1	0	1	1	1	1	0	0	0	1	0	1	1
0	1	1	0	0	1	0	1	1	0	0	1	1	1	0	0
0	1	1	1	0	1	0	0	1	0	1	0	1	1	0	1
1	0	0	0	1	1	0	0	1	0	1	1	1	1	1	0
1	0	0	1	1	1	0	1	1	1	0	0	1	1	1	1

循环码:

$$X_3 = B_3$$

$$X_2 = \overline{B_3}B_2 + B_3\overline{B_2} = \overline{\overline{B_3}B_2} \cdot \overline{B_3}\overline{\overline{B_2}}$$

$$X_1 = \overline{B_2}B_1 + B_2\overline{B_1} = \overline{\overline{B_2}B_1} \cdot \overline{B_2\overline{B_1}}$$

$$X_0 = \overline{B_1}B_0 + B_1\overline{B_0} = \overline{\overline{B_1}B_0} \cdot \overline{B_1}\overline{B_0}$$

余3码:

$$Y_3 = B_3 + B_2 B_0 + B_2 B_1 = \overline{\overline{B_3} \cdot \overline{B_2 B_0} \cdot \overline{B_2 B_1}}$$

$$Y_{2} = \overline{B_{2}}B_{0} + \overline{B_{2}}B_{1} + B_{2}\overline{B_{1}}\overline{B_{0}} = \overline{\overline{B_{2}}B_{0}} \cdot \overline{\overline{B_{2}}B_{1}} \cdot \overline{B_{2}}\overline{B_{1}}\overline{B_{0}}$$

$$Y_{1} = \overline{B_{1}}B_{0} + B_{1}B_{0} = \overline{\overline{B_{1}}\overline{B_{0}}} \cdot \overline{B_{1}}\overline{B_{0}}$$

$$Y_{0} = \overline{B_{1}}B_{0} + \overline{B_{3}}\overline{B_{0}} = \overline{\overline{B_{1}}B_{0}} \cdot \overline{\overline{B_{3}}B_{0}}$$

$$2421 \overline{A} = \overline{B_{1}} \cdot \overline{B_{2}} \cdot \overline{B_{2}}\overline{B_{0}} \cdot \overline{B_{2}}\overline{B_{0}}$$

$$\overline{B_{1}} \cdot \overline{B_{2}} \cdot \overline{B_{2}}\overline{B_{0}} \cdot \overline{B_{2}}\overline{B_{0}}$$

$$\overline{B_{1}} \cdot \overline{B_{2}} \cdot \overline{B_{2}}\overline{B_{0}} \cdot \overline{B_{2}}\overline{B_{0}}$$

$$Y_1 = \overline{B_1}\overline{B_0} + B_1B_0 = \overline{\overline{B_1}\overline{B_0}} \cdot \overline{B_1B_0}$$

$$Y_0 = \overline{B_1}\overline{B_0} + \overline{B_3}\overline{B_0} = \overline{\overline{B_1}\overline{B_0}} \cdot \overline{\overline{B_3}\overline{B_0}}$$

2421 码:

$$\begin{split} E_3 &= B_3 + B_2 B_0 + B_2 B_1 = \overline{\overline{B_3 \cdot \overline{B_2 B_0} \cdot \overline{B_2 B_1}}} \\ E_2 &= B_3 + B_2 \overline{B_0} + B_2 B_1 = \overline{\overline{B_3 \cdot \overline{B_2 \overline{B_0}} \cdot \overline{B_2 \overline{B_0}}} \cdot \overline{B_2 B_1}} \end{split}$$

$$E_1 = B_3 + \overline{B_2}B_1 + B_2\overline{B_1}B_0 = \overline{B_3} \cdot \overline{\overline{B_2}B_1} \cdot \overline{B_2\overline{B_1}B_0}$$

 $E_0 = B_0$

3. 11

(1)

真值表: ABCD	Y
0 0 0 0	0 化简得: $Y = \overline{BCD \cdot \overline{ACD} \cdot \overline{ABD} \cdot \overline{ABC}}$
0001	0 Colores I = Bob Aob Abb Abc
0 0 1 0	0
0 0 1 1	□ 逻辑电路图: A
0 1 0 0	
0 1 0 1	
0 1 1 0	
0 1 1 1	1
1 0 0 0	
1 0 0 1	[º
1 0 1 0	
1 0 1 1	
1 1 0 0	O
1 1 0 1	
1 1 1 0	i
1 1 1 1	1

(2)

0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

 $Y = \overline{ABCD} + \overline{ABCD} +$

3. 12

3. 13 (1)

对于 74153,有:

$$Y_1|_{74153} = [D_{10}(\overline{A_1}\overline{A_0}) + D_{11}(\overline{A_1}A_0) + D_{12}(A_1\overline{A_0}) + D_{13}(A_1A_0)] \cdot S_1$$

$$Y_2 \mid_{74153} = [D_{20}(\overline{A_1}\overline{A_0}) + D_{21}(\overline{A_1}A_0) + D_{22}(A_1\overline{A_0}) + D_{23}(A_1A_0)] \cdot S_2$$

将待求逻辑函数的输入变量 A_1 、 A_2 分别接到 74153 的 A_0 、 A_1 端,将输入变量 A_3 接到 $\overline{S_1}$

端, $\overline{A_3}$ 接到 $\overline{S_2}$ 端,并将 74153 的两个输出端相加,则有:

$$Y_1 = \sum (m0, m1, m3, m5, m6, m8, m10, m11)$$
 $= \overline{A_3} \overline{A_2} \overline{A_1} \overline{A_0} + \overline{A_3} \overline{A_2} \overline{$

(2) $Y_{2} = \sum (m0, m2, m4, m5, m6, m7, m8, m9, m14, m15)$ $= \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$ $+ \overline{ABCD} + A\overline{BCD} + A\overline{BCD} + AB\overline{CD} + AB\overline{CD}$ $= \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABC} + \overline{ABC} + AB\overline{C} + AB\overline{C}$

对比可得:

$$\overline{S_1} = A, \overline{S_2} = \overline{A}, A_0 = B, A_1 = C,$$
 $D_{10} = D_{11} = \overline{D}, D_{12} = D_{13} = 1, D_{20} = D_{23} = 1, D_{21} = D_{22} = 0$

B
C

$$\begin{aligned} Y_3 &= A\overline{B} + B\overline{C} + C\overline{D} + \overline{D}A \\ &= A\overline{B}\overline{C}\overline{D} + A\overline{B}\overline{C}\overline{D} +$$

对比可得:

$$\overline{S_1} = A, \overline{S_2} = \overline{A}, A_0 = B, A_1 = C,$$
 $D_{10} = 0, D_{11} = D_{13} = \overline{D}, D_{12} = 1,$
 $D_{20} = D_{21} = 1, D_{22} = 0, D_{23} = \overline{D}$

$$(4)$$

$$Y_{4} = \overline{BD} + \overline{CD} + \overline{AC}$$

$$= \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

$$+ \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

$$= \overline{ABC} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

对比可得:

$$\begin{split} \overline{S_1} &= A, \overline{S_2} = \overline{A}, A_0 = B, A_1 = C, \\ D_{10} &= 1, D_{11} = \overline{D}, D_{12} = 1, D_{13} = 0, \\ D_{20} &= 1, D_{21} = \overline{D}, D_{22} = D, D_{23} = 0 \end{split}$$

3. 14

全加器真值表

CI	A	В	S	C
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1 (
1	1	1	1	1

逻辑函数表达式为:

$$S = \overline{ABC}_{I} + \overline{ABC}_{I} + A\overline{BC}_{I} + ABC_{I}$$

$$= \overline{\overline{ABC}_{I}} \cdot \overline{\overline{ABC}_{I}} \cdot \overline{ABC}_{I} \cdot \overline{ABC}_{I}$$

$$= \overline{\overline{m}_{1}} \cdot \overline{m_{2}} \cdot \overline{m_{4}} \cdot \overline{m_{7}}$$

$$C = \overline{C_1}AB + C_1\overline{AB} + C_1A\overline{B} + C_1AB$$
$$= \overline{m_3 \cdot m_5 \cdot m_6 \cdot m_7}$$

以 CI,A,B 做为 74LS138 的地址输入端,令 $A_2=C_I$, $A_1=A$, $A_0=B$, 电路图如下:

(1)

CC4512 的输出逻辑函数为:

$$egin{align*} Y_1 &= \sum (m1, m3, m4, m8) \ &= \overline{A_3} \overline{A_2} \overline{A_1} A_0 + \overline{A_3} \overline{A_2} A_1 A_0 + \overline{A_3} A_2 \overline{A_1} \overline{A_0} + A_3 \overline{A_2} \overline{A_1} \overline{A_0} \ orall$$
 对比可知:

$$D_1 = D_3 = D_4 = \overline{A_3}, D_0 = A_3, D_2 = D_5 = D_6 = D_7 = 0$$

则电路图如下:

(2)

CC4512 的输出逻辑函数为:

$$\begin{split} Y_2 &= \sum \left(m0, m1, m3, m5, m6, m7, m10, m12, m15 \right) \\ &= \overline{A_3} \, \overline{A_2} \, \overline{A_1} \, \overline{A_0} + \overline{A_3} \, \overline{A_2} \, \overline{A_1} \, A_0 + \overline{A_3} \, \overline{A_2} \, \overline{A_1} \, A_0 + \overline{A_3} \, \overline{A_2} \, \overline{A_1} \, \overline{A_0} \\ &+ \overline{A_3} \, A_2 \, A_1 \, \overline{A_0} + \overline{A_3} \, A_2 \, A_1 \, A_0 + \overline{A_3} \, \overline{A_2} \, \overline{A_1} \, \overline{A_0} + A_3 \, A_2 \, \overline{A_1} \, \overline{A_0} + A_3 \, A_2 \, \overline{A_1} \, \overline{A_0} \\ &= \overline{A_3} \, \overline{A_2} \, \overline{A_1} + \overline{A_3} \, \overline{A_2} \, \overline{A_1} \, A_0 + \overline{A_3} \, \overline{A_2} \, \overline{A_1} + \overline{A_3} \, A_2 \, \overline{A_1} \, A_0 + A_3 \, \overline{A_2} \, \overline{A_1} \, \overline{A_0} + A_3 \, \overline{A_2} \, \overline{A_1} \, \overline{A_0} + A_3 \, A_2 \, \overline{A_1} \, \overline{A_0} + A_3 \, A_2 \, \overline{A_1} \, \overline{A_0} + A_3 \, \overline{A_2} \, \overline{A_1} \, \overline{A_0} + \overline{A_3} \, \overline{A_2} \, \overline{A_1} \, \overline{A_0} + \overline{A_3}$$

$$D_0=D_2=1, D_1=D_3=D_7=A_0, D_5=D_6=\overline{A_0}, D_4=0$$
则电路图如下:

3. 16

解: IoI₁组合四种取值代表"输血者"的四种血型, I₂I₃组合四种取值代表"受血者"的四种血型

真值表: 00→A, 1→B, 10→AB, 11→0

$I_0 I_1 I_2 I_3$	Y	
0000	1 0	1000
00010	0	
0 1 0 1	Ĭ	1 1 0 I 1 1 1 0
ŎÎĪĬ	l ô	1 1 1 1

用卡诺图化减得: $Y = AB + C\overline{D} + B\overline{C}D + \overline{ABD}$ 四变量,用 8 选 1 — CC4512 实现(图略)

3. 17

设定被水浸过为1,不浸为0;灯亮为1,不亮为0,则由题意得真值表如下:

A	В	В	G	Y	R
0	0	0	0	0	1
0	0	\ 1 \	0	1	0
0	1 •	\0	×	×	×
0	1 1	1	1	0	0
1/	0	0	×	×	×
1	0	1	×	×	×
1	1	0	×	×	×
1	1	1	0	1	0

利用卡诺图化简得到:

$$G = \overline{A}BC$$

$$Y = \overline{ABC} + ABC$$

$$R = \overline{ABC}$$

则电路图如下:

3. 18

(1)

74LS151 的输出函数为:

$$W = \overline{A_2} \overline{A_1} \overline{A_0} D_0 + \overline{A_2} \overline{A_1} A_0 D_1 + \overline{A_2} \overline{A_1} \overline{A_0} D_2 + \overline{A_2} \overline{A_1} A_0 D_3$$
$$+ A_2 \overline{A_1} \overline{A_0} D_4 + A_2 \overline{A_1} A_0 D_5 + A_2 A_1 \overline{A_0} D_6 + A_2 A_1 A_0 D_7$$

则由题图可得:

$$Y = \overline{ABC} \cdot 0 + \overline{ABCD} + \overline{ABCD$$

A	В	C	D	Y
0	0	0	0	0
0	0	0	1 .	0
0	0	1	0	0
0	0	1 .	1	1
0	The state of the s	0	0	0
0	X121	0	1	1
0	1 •	\1	0	1
0	1.0	1	1	0
1/	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

 $Y = \overline{ABCD} + \overline{ABCD} +$

$$Y = \sum (m1, m3, m6, m7, m8, m10, m11, m13, m15)$$

= $\overline{ABCD} + \overline{ABCD} + \overline{$

$$A_2 = A, A_1 = B, A_0 = C,$$

$$D_0 = D_1 = D_6 = D_7 = D, D_2 = 0, D_3 = D_5 = 1, D_4 = \overline{D},$$

得到电路图如下:

3. 19

加法器制作加法,相减用补码运算(相加减的为两个正数)。设被减数为 $C=C_3C_2C_1C_0$,减数为 $D=D_3D_2D_1D_0$,相减时 D 取补码,补码=反码+1。

CI 输入 M, M=0 时,D 取原码和 C 相加;M=1 时,D 取反码,再加上 CI=1 正 好为补码,和 C 相加即可。S 为和。

当 M=0 时 C0 为进位; 当 M=1 时 C0 的反为符号位。

所以,有,

输入端: $A_3=C_3$, $A_2=C_2$, $A_1=C_1$, $A_0=C_0$, CI=M $B_3=\overline{M}D_3+M\overline{D}_3$, $B_2=\overline{M}D_2+M\overline{D}_2$, $B_1=\overline{M}D_1+M\overline{D}_1$, $B_0=\overline{M}D_0+M\overline{D}_0$ 输出端: $Y=Y_3Y_2Y_1Y_0$ 进位输出或者符号位: $Z=M\oplus CO$ (电路图略)

- 1)两个BCD码相加,最大为18,超过9后应产生进位,但芯片在15以内不产生进位,超过15产生进位,但和不足逢十进一,所以必须加以修正
- 2)两个BCD 码相加必须由三部分构成:一部分进行相加;第二部分产生修正控制信号;第三部分完成加6修正
- 3) 第一、三部分由两片全加器完成,由第二部分产生判别信号,当有进位输出时或者和数在 10~15 的情况下产生控制信号 F:

$$F = CO + S_3S_2S_1S_0 + S_3S_2S_1\overline{S_0} + S_3S_2\overline{S_1}S_0 + S_3S_2\overline{S_1}\overline{S_0} + S_3\overline{S_2}S_1S_0 + S_3\overline{S_2}S_1\overline{S_0}$$

$$= CO + S_3S_2 + S_3S_1$$

3. 21

$$Y = \overline{S_1} \overline{S_0} AB + \overline{S_1} S_0 (A + B) + S_1 \overline{S_0} (A \oplus B) + S_1 S_0 \overline{A}$$

化简得: $Y = \overline{S_1} \overline{S_0} AB + \overline{S_1} S_0 \overline{A}B + \overline{S_1} S_0 \overline{A}B + S_1 \overline{S_0} \overline{A}B$

3. 22

$$\begin{split} Y &= \overline{Z_2} \overline{Z_1} \overline{Z_0} \overline{Y_0} + \overline{Z_2} \overline{Z_1} \overline{Z_0} \overline{Y_1} + \overline{Z_2} \overline{Z_1} \overline{Z_0} \overline{Y_2} + \overline{Z_2} \overline{Z_1} \overline{Z_0} \overline{Y_3} + Z_2 \overline{Z_1} \overline{Z_0} \overline{Y_4} + Z_2 \overline{Z_1} \overline{Z_0} \overline{Y_5} + Z_2 \overline{Z_1} \overline{Z_0} \overline{Y_7} \\ &= \overline{Z_2} \overline{Z_1} \overline{Z_0} \overline{\overline{X_2} \overline{X_1} \overline{X_0}} + \overline{Z_2} \overline{Z_1} \overline{Z_0} \overline{\overline{X_1} \overline{X_0}} + \overline{Z_1} \overline{Z_0} \overline{\overline{X_1} \overline{X_0}} + \overline{Z_1} \overline{Z_0} \overline{\overline{X_1} \overline{X_0}} + \overline{Z_1} \overline{$$

可见,本电路完成用 $Z_2Z_1Z_0$ 选择 $X_2X_1X_0$ 的最小项或其反变量的功能。

3. 23

需用 3 片,连接有多种方式,其中一种如下: $C = C_9 C_8 \cdots C_0$, $D = D_9 D_8 \cdots D_0$

3. 24

由图得到的输出逻辑式为

$$Y = \overline{ACD} + A\overline{BD} + B\overline{C} + C\overline{D}$$

(1) 当 B=0, C=D=1 时,输出逻辑式简化为 $Y=A+\overline{A}$,故 A 改变状态时存在竞争-冒险现象。

- (2) 当 A=1, C=0, D=1 时,输出逻辑式简化为 $Y=B+\overline{B}$,故 B 改变状态时存在竞争-冒险现象。
- (3) 当 A=0, B=D=1 时,或者当 $A=\times$, B=1, D=0 时,输出的逻辑式简化为 $Y=C+\overline{C}$, 故 C 改变状态时存在竞争-冒险现象。
- (4) 当 A=1, B=0, C=1 时, 或者当 A=0, $B=\times$, C=1 时, 输出的逻辑式简化为 $Y=D+\overline{D}$, 故 D 改变状态时存在竞争-冒险现象。

3. 25

(1)

$$F_1 = \overline{CD}$$
, $F_2 = \overline{AB\overline{C}}$, $Y = \overline{\overline{CD} \cdot \overline{AB\overline{C}}} = CD + AB\overline{C}$

当 D=B=A=1, C 发生跳变时,各点逻辑函数如下:

$$F_1 = \overline{C}$$
, $F_2 = C$, $Y = C + \overline{C}$

波形图如下:

(2)

由图得到逻辑表达式:

$$Y = \overline{\overline{CD} \cdot \overline{ABC}} = CD + AB\overline{C}$$

当 D=B=A=1 时, $Y=C+\overline{C}$,则有可能有竞争冒险

(3)

加入冗余项:

$$Y = CD + AB\overline{C} = CD + AB\overline{C} + ABD$$

电路修改略

第四章 习题

4.4 由两个与非门构成的基本 RS 触发器的输入如图 P4.4 所示,画出 \mathbf{Q} 和 $\overline{\mathbf{Q}}$ 端的波形。

4.5 由两个或非门构成的基本 RS 触发器的输入波形如图 P4.5 所示,画出输出 \mathbf{Q} 和 $\overline{\mathbf{Q}}$ 的波形。

4.6 图 P4.6 是一个防抖动输出的开关电路。当拨动开关 S 时,由于开关触点接通瞬间发生振颤。

 $\overline{S_D}$ 和 $\overline{R_D}$ 的电压波形如图中所示,试画出 Q 、 \overline{Q} 端对应的电压波形。

4.7 在同步 RS 触发器中,若 CP、S、R 的电压波形如图 P4.7 所示。画出 \mathbf{Q} 和 $\overline{\mathbf{Q}}$ 端的波形。设触发器的初始状态为 \mathbf{Q} =0。

图 P4.7

4. 10 主从型 JK 触发器输入波形如图 P4. 10 所示,画出输出端 ${f Q}$ 和 $\overline{{f Q}}$ 的波形。设触发器初始状态 ${f Q}$ =0。

4.11 主从型 JK 触发器组成图 P4.11 (a) 所示电路,输入波形如图 P4.11 (b) 所示,画出各触

发器 Q 端的波形。

解: $J_1 = \overline{AB}$, 先画出 J 的波形, 然后画 Q. 。

4. 12 主从型 RS 触发器的 CP、S、R、 $\overline{\mathbf{R}_{\mathrm{D}}}$ 各输入的电压波形如图 P4. 12 所示,画出端 \mathbf{Q} 和 $\overline{\mathbf{Q}}$ 端

对应的电压波形。

4.14 维持阻塞 D 触发器构成图 P4.14 所示的电路,输入波形如图 P4.14 (b) 所示。画出各触发

图 P4.14

4.16 上升沿触发的维持阻塞型 D 触发器 74LS74 组成图 (a) 所示电路,输入波形如图 (b) 所示, 画出 Q1 和 Q2 的波形,设 Q 初态为 0。

4. 20 画出图 P4. 20 电路在图中所示 CP、 $\overline{R_D}$ 信号作用下 Q1、Q2、Q3 的输出电压波形,并说明 Q1、Q2、Q3 输出信号的频率与 CP 信号频率之间的关系。

 Q_1 、 Q_2 、 Q_3 的频率分别是CP频率的1/2、1/4和1/8。

第五章答案

5.5

$$\begin{split} J_1 &= X \, \overline{Q_2}, K_1 = X Q_2 \, \therefore \, Q_1^{n+1} = X \bullet \overline{Q_1} \bullet \overline{Q_2} + \overline{X Q_2} Q_1 = X \bullet \overline{Q_2} + \overline{X} Q_1 + Q_1 \bullet \overline{Q_2} \\ J_2 &= \overline{X} Q_1, K_2 = \overline{X} \bullet \overline{Q_1} \, \therefore \, Q_2^{n+1} = \overline{X} Q_1 \bullet \overline{Q_2} + \overline{\overline{X} \bullet \overline{Q_1}} Q_2 = \overline{X} \bullet Q_1 + X Q_2 + Q_1 \bullet Q_2 = Z \\ \mathbb{F}$$
降沿触发

$$Q2$$
 $S_{1} = \overline{Q_{3}}, K_{1} = 1, \therefore Q_{1}^{n+1} = \overline{Q_{1}} \bullet \overline{Q_{3}}$
 $J_{2} = K_{2} = Q_{1}, \therefore Q_{2}^{n+1} = Q_{1} \oplus Q_{2}$
 $J_{3} = Q_{1}Q_{2}, K_{3} = 1, \therefore Q_{3}^{n+1} = Q_{1}Q_{2} \bullet \overline{Q_{3}}$
 $O00, 100, 010, 011, 111, 000$
 S 进制计数器

 $CP_{1} = CP_{3}$
 $CP_{2} = Q_{1}$
 $Q_{1}^{n+1} = \overline{Q_{3}} \bullet \overline{Q_{1}} \bullet CP_{1}$

5.6

$$J_1 = \overline{Q_3}, K_1 = 1, \therefore Q_1^{n+1} = \overline{Q_1} \bullet \overline{Q_3}$$

$$J_2 = K_2 = Q_1, \therefore Q_2^{n+1} = Q_1 \oplus Q_2$$

$$J_3 = Q_1 Q_2, K_3 = 1, \therefore Q_3^{n+1} = Q_1 Q_2 \bullet \overline{Q_3}$$

000, 100, 010, 011, 111, 000

5 进制计数器

5.8

$$CP_1 = CP_3$$

$$CP_2 = Q_1$$

$$Q_1^{n+1} = \overline{Q_3} \bullet \overline{Q_1} \bullet CP_1$$

$$Q_2^{n+1} = \overline{Q_2} \bullet CP_2$$

$$Q_3^{n+1} = Q_1 Q_2 \overline{Q_3} \bullet CP_3$$

000, 100, 010, 011, 111, 000 5 进制

5.9

$$CP_1 = Q_1Q_2 + Q_0 \rightarrow Q_0^{n+1}$$

$$CP_2 = Q_1$$

$$Q_0^{n+1} = \overline{Q_1 Q_2} \overline{Q_0} \bullet CP_0$$

$$Q_1^{n+1} = \overline{Q_1} \bullet CP_1$$

$$Q_2^{n+1} = \overline{Q_2} \bullet CP_2$$

能自启动的7进制计数器

5.10

 $D_0 = AQ_2$

 $D_1 = Q_1$

 $D_2 = A + \overline{Q_2}$

 $CP_1 = \overline{Q_0}$

A=0 时 Q2 翻转, Q0 不变, Q1 不变

A=1 时 Q2=Q0=1, Q1 不变

A 发生变化才会引起变化

5.11

74163 是同步清零同步置数的思维二进制计数器

只有 S0 时 Z 为 0, 所以 $Z = Q_2 + Q_1 + Q_0$

$/\overline{LD}$	00	01	11	10
000	000/0	100/0	X	X/1
001	X/1	X	X	001/0
011	000/0	011/0	X	X
010	010/0	X/1	X	X
			THE STATE OF THE S	
110	000/0	X	X	110/0
111	X	X	X	X
101	101/0	X	X	X/1
100	X/1	100/0	X	X

$$\overline{LD} = Q_2 \overline{Q_1} \overline{Q_0} \overline{X_0} + \overline{Q_1} \overline{Q_0} \overline{X_1} + \overline{Q_2} \overline{Q_1} \overline{Q_0} \overline{X_1} + Q_2 \overline{Q_1} \overline{X_1}$$

$$D_2 = Q_2 \overline{Q_1} + Q_2 X_1 + \overline{Q_1} X_0$$

$$D_1 = \overline{Q_2}Q_1\overline{Q_0} + Q_1X_0 + Q_1X_1$$

$$D_0 = Q_2 \overline{Q_1} Q_0 + Q_0 X_1 + Q_0 X_0$$

$$D_3 = 0$$

按照表达式就可以画出电路图 (略)

5.12

两个 74161 都连成 0000,0001,0010,0011,0100,1000,1001,1010,1011,1100 循环的 10 进制计数器,右边只有在左边为 1100 时才计一个数 100 进制计数器

7490 是异步清 0, 先连成 10 进制, 当输出为 0111 清 0。不唯一, 图略。 7490 是异步置 9, 先连成 10 进制, 当输出为 0110 置 9。不唯一, 图略。

5.14

74161 是异步清 0 当输出为 0111 清 0。不唯一,图略。 也可以用同步置数,如输出为 0110 置 0,等等。不唯一,图略。

5.15

7490 是异步清 0,先连成 1 个 10 进制做个位, Q_D 为 5 进制时钟输入。5 进制输出 100 时清 0。

5.16

74161 级联, 高位 QA 低位 QD 与非同步置数 00000001, 图略

5.17

图中为整体同步置数,所以置数变化为 111111111 ——X

M=100 时, 预置值 10011100

M=200 时, 预置值 00111000

M=152 \circ

5.18

序列数为 10, 因而将 74161 接为 10 进制计数器。计数器输出接多路器选择输入端。对应输入位接相应的 0 和 1。

5.19

5.20

以74161低3位输出接多路器选择输入端。对应输入位接相应的0和1。

$$\begin{split} &Q_3^{n+1} = \overline{Q_3} \overline{Q_2} \, \overline{Q_1} \overline{Q_0} + Q_3 Q_0 \, \therefore J_3 = \overline{Q_2} \overline{Q_1} \overline{Q_0}, K_3 = \overline{Q_0} \\ &Q_2^{n+1} = Q_3 \overline{Q_0} + Q_2 Q_0 + Q_2 Q_1 \, \therefore J_2 = Q_3 \overline{Q_0}, K_2 = \overline{Q_3} \overline{Q_0} + Q_0 + Q_1 = \overline{Q_3} \overline{Q_0} \overline{Q_0} \\ &Q_1^{n+1} = Q_1 Q_0 + Q_2 \overline{Q_1} \overline{Q_0} + Q_3 \overline{Q_0} \, \therefore J_1 = Q_2 \overline{Q_0} + Q_3 \overline{Q_0}, K_1 = \overline{Q_3} \overline{Q_0} + Q_0 = \overline{Q_3} \overline{Q_0} \\ &Q_0^{n+1} = \overline{Q_0} \, \therefore J_0 = K_0 = 1 \end{split}$$

根据表达式画图

5.22 原始状态表

	0	1
S0	S0/0	S1/0
S1	S2/0	S3/0
S2	S4/0	S5/1
S3	S6/1	\$7/0
S4	S8/0	\$9/0
S5	S10/0	S11/0
S6	S12/0	S13/1
S7	S14/0	S15/0
S8	S0/0	S1/0
S9	S2/0	S3/0
S10	S4/0	S5/1
S11	S6/1	S7/0
S12	\$8/0	S9/0
S13	S10/0	S11/0
S14	S12/1	S13/1
S15	S14/0	S15/0

5.23

(a)

. ` •	• /				. \			
В	X							
С	X	X						
D	X	X	X					
Е	X	X	X	√				
F	√	X	X	X	X			
G	X	X	√	X	X	X		
Н	X	√	X	X	X	X	X	
I	X	X	X	X	X	X	X	X
	A	В	С	D	Е	F	G	Н

	0	1
A	A/0	C/1

В	B/1	C/0
С	B/0	A/0
D	C/1	D/0
I	B/0	D/0

图略

(b)

В	X						
C	X	√					
D	X	X	X				
Е	X	X	X	X			
F	√	X	X	X	X		
G	X	X	X	X	X	X	
Н	X	√	√	X	X	X	X
	A	В	С	D	Е	F	G

	00	01	10	(1)
A	D/0	D/0	A/0	A/0
В	B/1	D/0	A/0	E/1
D	D/0	B/0	A/0	E/1
Е	B/1	A/0	A/0	E/1
G	G/0	G/0	A/0	A/0

5.24

状态图:

卡诺图:

Q1Q0 X	00	01	11	10
0	00/0	00/0	00/0	00/0

1	01/0	10/0	11/1	11/0
- n : 1		,		

$$Q_1^{n+1} = XQ_1 + XQ_0$$

$$Q_0^{n+1} = XQ_1 + X\overline{Q_0}$$

$$Z = XQ_1Q_0$$

5.25

2⁴ ≥11,所以 N=4

	所以,	CP0=CP,	CP1=CP,	CP2=Q1,	CP3=01
--	-----	---------	---------	---------	--------

Qn	Qn+1	D
0000	0001	xx01
0001	0010	xx10
0010	0011	xx11
0011	0100	0100
0100	0101	xx01
0101	0110	xx10
0110	0111	xx11
0111	1000	1000
1000	1001	xx01
1001	1010	xx10
1010	0000	0000

1011	XXXX	xxxx
1100	XXXX	XXXX
1101	xxxx	XXXX
1110	xxxx	XXXX
1111	XXXX	XXXX

$$D_0 = \overline{Q_1}\overline{Q_0} + \overline{Q_3}\overline{Q_0}$$

$$D_1 = \overline{Q_1}Q_0 + \overline{Q_3}Q_1\overline{Q_0}$$

$$D_2 = \overline{Q_3} \overline{Q_2}$$

$$D_3 = Q_2$$

Walth dann dan be com

第六章习题答案

6. 5

解: 对于 74 的 TTL 电路,取 $V_{OH}=3V$, $V_{OL}=0$, $V_{TH}=1.3V$,R1=4k 由于 $R_1+R_S>>R$,则有:

$$T_1 = RC \ln \frac{2V_{OH} - V_{TH}}{V_{OH} - V_{TH}} = 1.02 \times 10^{-6} \text{S}$$

$$T_2 = RC \ln \frac{V_{OH} + V_{TH}}{V_{TH}} = 0.36 \times 10^{-6} \text{S}$$

$$f = \frac{1}{T} = \frac{1}{T_1 + T_2} = 0.72 \text{MHz}$$

6. 6

解:石英晶体的多谐振器频率为 f=1MHz

74LS90 为下降沿计数,并由电路可知,当 QC=1,QB=1 即 110 时,被异步清零。 波形如下:

6. 7

解: T1=1ms, T2=2mS

波形如下:

6. 8

补充两道 555 的题:

6. 9 用 555 定时器设计一个单稳态触发器。要求输出脉冲宽度在 1-10 秒范围内手动可调。给定 555 定时器的电源为 15V,触发信号来自 TTL 电路,高低电平分别为 3.4V 和 0.1V。

- 解: (1) 若使图 A6.27 的单稳态电路正常工作,触发信号必须能将触发输入端电压(2 端) 拉到 V_{T-} 以下,而在触发信号到来之前,2 端电压应高于 V_{T-} 。由于 V_{T-} =5V,而触 发脉冲最高电平仅为 3.4V,所以需要在输入端加分压电阻,使 2 端电压在没有触发脉冲时略高于 5V。可取 R_1 =22k Ω 、 R_2 =18k Ω ,经分压后 2 端电压为 6.75V。触发脉冲经微分电容 C_d 加到 2 端。
 - (2) 取 C=100uF,为使 $T_W=1\sim10$ 秒,可求出 R的阻值变化范围

取 $100 \,\mathrm{k}\,\Omega$ 的电位器与 $8.2 \,\mathrm{k}\,\Omega$ 电阻串联作为 R, 即可得到 $T_{\mathrm{W}} = 1 \sim 10$ 秒的调节范围。

6.10 如图所示的由 555 定时器组成的多谐振荡器电路中, 若 R1=R2=5.1k, C=0.01uF, VCC=12V, 计算电路的振荡频率

解:

$$f = \frac{1}{(R_1 + 2R_2) \operatorname{Cln2}} = \frac{1}{3 \times 5.1 \times 10^3 \times 0.01 \times 10^{-6} \times 0.69} \operatorname{Hz}$$

= 9.47 kHz

HERE ! WHITE days the com