Maxima and Minima

Critical points: Critical points are those points where for all x in the interval either f'(x) = 0 or f is not differentiable.

The points x_1 , x_2 , x_3 , x_4 , and x_5 are critical points. Of these, x_1 , x_2 , and x_5 are stationary points (f'(x) = 0) and X_3 and X_4 are points of non-differentiability (f'(x) is undefined or does not exist).

Stationary Points: Stationary points are those points where for all x in the interval f'(x) = 0. **Inflection points:** Inflection points are those points where for all x in the interval either f''(x) = 0 or f''(x) is undefined.

Concavity: If f is differentiable on an open interval I, then f is said to be concave up on I if f'(x) is increasing on I, and f is said to be concave down on I if f'(x) is decreasing on I.

Relative Extrema:

A function f is said to have a **relative maximum** at x_0 if there is an open interval containing x_0 on which $f(x_0)$ is the largest value, i. e., $f(x_0) \ge f(x)$ for all x in the interval.

A function f is said to have a **relative minimum** at x_0 if there is an open interval containing x_0 on which $f(x_0)$ is the smallest value, i. e., $f(x_0) \le f(x)$ for all x in the interval.

If f has either a relative maximum or a relative minimum at x_0 , then f is said to have a **relative** extremum at x_0 .

RELATIVE MAXIMA AND MINIMA

