HEALPix Demonstration file

Revision: Version 2.14a; June 22, 2010

Prepared by: Healpix team

Abstract: Test document

TABLE OF CONTENTS

synneed				3
ananeed				7
bj_of_l*				10
build_needlet				11
set_input				13
set_needlet_environment				14
write_bl2				16

synneed 3

Synneed

Location in HEALPix directory tree: src/f90/NeedATool/synneed_dr.f90

It computes the needlet coefficients of a given temperature map in the **HEALPix** format.

synneed is directly adapted from the NEEDATOOL code described in Pietrobon et al, SApJ, , (2010).

The scaling is dominated by the spherical harmonic decomposition as implemented in alm2map and map2alm_iterative. Needlet specifics and mask can be selected by the user.

FORMAT

% synneed [parameter_file]

QUALIFIERS

B =

healpix_dir = Defines the path of the **HEALPix** software package.

mapfile = Defines the input scalar field defined on a pixelized sphere, (default=

HEALPIX/test/temp_map.fits).

mapnside = Defines the resolution of the input map, (default= 256).

l_max = Defines the maximum ℓ value at which the needlet analysis is carried out. (default= 500)

Defines the shape in harmonic domain of the filter function $b(\cdot)$. (default= 2.)

compute_needlets = Sets the needlet coefficients computation. If "F" only filter functions b_{ℓ}^2 are computed (default= T)

maskfile = Defines the FITS file describing the sky cut applied to the input temperature map. (default='')

bl2_root = Defines the tag attached to the file where filters are saved. (default=test_bl2)

need_root = Defines the tag attached to the file where needlet coefficients are saved. (default= test_needlet_coefficients)

nside_boost = Necessary to determine the needlet coefficient resolution according to $\ell \leq \text{nside_boost} * N_{\text{side}}$. (default= 2)

DESCRIPTION Needlet filters in harmonic domain are computed according to the procedure described in Pietrobon et al. SApJ, (2010). These functions are defined in the interval $x \in [1/B, B]$, where $x \equiv \ell/B^j$ with j integer number which defines the needlet scale. The parameter B (must be greater than 1.) is chosen by the user according to the properties of the field analyzed. B, that must get values larger than one, can be varied by the user according to the scale analysis of interest. Needlet coefficients are univocally specified by the resolution i and the their positions are defined in the **HEALPix** pixelization scheme. The resolution of the needlet coefficients is set by the code by means of the function set_nside. For each resolution j the coefficients are stored in a **HEALPix** map format.

DATASETS

The following datasets are involved in the **Synneed** processing.

Dataset	Description
/data/pixel_window_	nxxxx.fitFiles containing pixel windows
	for various nsmax.

SUPPORT

This section lists those routines and facilities (including those external to the HEALPix distribution) which can assist in the utilisation of **Synneed**.

read_fits_map	This $\mathbf{HEALPix}$ IDL facility can be used to read
	the output needlet coefficients.
synfast	This HEALPix Fortran facility can create a
	HEALPix map suitable to be decomposed onto
	needlet frame.
ananeed	This HEALPix Fortran facility can reconstruct
	a HEALPix map given needlet coefficients.

EXAMPLES: #1

synneed

synneed 5

 ${\tt synneed}$ runs in interactive mode, self-explanatory.

EXAMPLES: #2

synneed filename

When 'filename' is present, synneed enters the non-interactive mode and parses its inputs from the file 'filename'. This has the following structure: the first entry is a qualifier which announces to the parser which input immediately follows. If this input is omitted in the input file, the parser assumes the default value. If the equality sign is omitted, then the parser ignores the entry. In this way comments may also be included in the file. In this example, the file contains the following qualifiers:

```
healpix_dir = /usr/local/Healpix_2.14/
l_max = 500
B = 2.0
compute_needlets = T
mapfile = temp_map.fits
mapnside = 256
bl2_root = test_bl2
need_root = test_needlet_coefficients
nside_boost = 2
```

synneed reads the 'temp_map.fits', in map in produces the needlet filter functions and 'test_bl2_B2.00_Nj008_j.dat', where $j = 1, \ldots, j_{\text{max}}$, coefficients 'test_needlet_coefficients_B2.00_Nj008.fits'. Needlet coefficients are j_{max} maps in the **HEALPix** format.

RELEASE NOTES

Revision 1: Initial release (HEALPix 2.15)

ananeed 7

Ananeed

Location in HEALPix directory tree: src/f90/NeedATool/ananeed_dr.f90

It reads in the needlet coefficients of a given scalar field and reconstructs the original map in the **HEALPix** format.

ananeed is directly adapted from the NEEDATOOL code described in Pietrobon et al, SApJ, , (2010).

The scaling is dominated by the spherical harmonic decomposition as implemented in alm2map and map2alm_iterative. The needlet coefficients and specifics and mask can be selected by the user.

FORMAT

% ananeed [parameter_file]

QUALIFIERS

healpix_dir = Defines the path of the **HEALPix** software package.

mapfile = Defines the input needlet coefficients defined on a pixelized sphere,

(default = HEALPIX/test/temp_needlet_coefficients.fits).

mapnside = Defines the resolution of the input needlet coefficinets, (default=

256).

 $l_{-}max = Defines the maximum \ell$ value at which the needlet analysis is carried

out. (default = 500)

B = Defines the shape in harmonic domain of the filter function $b(\cdot)$.

(default = 2.)

need_maskfile = Defines the FITS file describing the sky cut applied to the input

needlet coefficients. (default="')

 ${\it need_root} = \qquad {\it Defines the tag attached to the file where recovered map is saved}.$

(default= test_recmap)

nside_boost = Necessary to determine the needlet coefficient resolution according

to $\ell \leq \texttt{nside_boost} * N_{side}$. (default= 2)

DESCRIPTIONNeedlet coefficients are read in and needlet filters in harmonic domain are computed according to the procedure described in Pietrobon et al. SApJ, (2010). These functions are defined in the interval $x \in [1/B, B]$, where $x \equiv \ell/B^j$ with j integer number which defines the needlet scale. The parameter B (must be greater than 1.) is chosen by the user according to the properties of the field analyzed. The value of B must match the value used to create needlet coefficients. Needlet filters are necessary to properly sum up the needlet coefficients and reconstruct the input map.

DATASETS

The following datasets are involved in the **Ananeed** processing.

Dataset	Description
/data/pixel_window	nxxxx.fitFiles containing pixel windows for various nsmax.

SUPPORT

This section lists those routines and facilities (including those external to the HEALPix distribution) which can assist in the utilisation of Ananeed.

$read_fits_map$	This HEALPix IDL facility can be used to read				
	the output recovered map as well as the input				
	needlet coefficients.				
anafast	This HEALPix Fortran facility analyzes a				
	HEALPix map.				
synneed	This HEALPix Fortran facility decomposed a				
	HEALPix map onto needlet frame.				

EXAMPLES: #1

ananeed

ananeed runs in interactive mode, self-explanatory.

ananeed 9

EXAMPLES: #2

ananeed filename

When 'filename' is present, ananeed enters the non-interactive mode and parses its inputs from the file 'filename'. This has the following structure: the first entry is a qualifier which announces to the parser which input immediately follows. If this input is omitted in the input file, the parser assumes the default value. If the equality sign is omitted, then the parser ignores the entry. In this way comments may also be included in the file. In this example, the file contains the following qualifiers:

```
healpix_dir = /usr/local/Healpix_2.14/
l_max = 500
B = 2.0
mapfile = temp_needlet_coefficients.fits
mapnside = 256
need_maskfile = ''
need_root = test_recmap
nside_boost = 2
```

ananeed reads in the needlet coefficients in 'temp_needlets.fits', and reconstructs the original scalar field map.

RELEASE NOTES

Revision 1: Initial release (HEALPix 2.15)

bj_of_l*

Location in HEALPix directory tree: src/f90/mod/needlets_mod.f90

This function computes the needlet filters in harmonic domain. Filters span the interval $x \in [1/B, B]$ where $x = \ell/B^j$, for $j = 1, \ldots, j_{\text{max}}$ is set according to ℓ_{max} and B by the subroutine set_needlet_environment.

EXAMPLE:

```
use needlets_mod, only: bj_of_l, set_needlet_environment, set_input
...
call set_input
call set_needlet_environment
call bj_of_l
```

Outputs in $\mathfrak{b}12$ the squared of the needlet filter in harmonic space normalized to 1

MODULES & ROUTINES

This section lists the modules and routines used by **bj_of_l***.

needlet_variables module which loads the basic needlet variable re-

quired by the package.

RELATED ROUTINES

This section lists the routines related to **bj_of_l***.

set_input ask the user for the needlet variables

set_needlet_environment set the needlet variables

build_needlet 11

build_needlet

Location in HEALPix directory tree: src/f90/mod/needlets_mod.f90

This subroutine returns the needlet coefficients for a given needlet scale. The $a_{\ell m}$ of the map are required as input. Needlet variable need to be initialized before.

ARGUMENTS

name & dimensionality	kind	in/out	description
j	I4B	IN	The needlet scale which determines the range f multipoles $(\ell \in [B^{j-1}, B^{j+1}]).$
alms(1:nmap, 0:nlmax, 0:nmmax)	DPC	IN	$a_{\ell m}$ of the map to be decomposed.
nmap	I4B	IN	number of maps in the $a_{\ell m}$ array.
nlmax	I4B	IN	The maximum ℓ value for the analysis.
nmmax	I4B	IN	The maximum m value for the analysis.
need_side	I4B	IN	The N_{side} value of the needlet coefficients.
needlet(0:)	DP	OUT	Needlet coefficients.

EXAMPLE:

use needlets_mod
integer(i4h) ...

integer(i4b) :: j, nlmax, nmmax, nside

 ${\tt complex(dp),\ dimension(1:p,0:nlmax,\ 0:nmmax)}$

real(dp), dimension(:), allocatable :: needlet

 ${\tt call set_input}$

call set_needlet_environment

```
nlmax = lmax
nmmax = nlmax
p = 1
nside = 256
npix = 12*nside**2
allocate( needlet(0:npix-1) )
call build_needlet(j,alms, nlmax, nmmax, nside, needlet)
```

This computes needlet coefficients for the chosen scale j given the $a_{\ell m}$ of the map.

MODULES & ROUTINES

This section lists the modules and routines used by **build_needlet**.

alm_tools module, containing:

alm2map which build a **HEALPix** map given a set of spher-

ical harmonic coefficients.

RELATED ROUTINES

This section lists the routines related to **build_needlet**.

set_input asks for input needlet parameters.
set_needlet_environment initializes the needlet variables.

parsing_hpx asks for global needlet parameters.

set_input 13

set_input

Location in HEALPix directory tree: src/f90/mod/needlets_mod.f90

This subroutine asks for the necessary input needlet parameters [lmax, B, nside_boost]. lmax sets the maximum multipole value at which the analysis is performed. B is the fundamental needlet parameter which defines the multipole range for each needlet scale j. nside_boost $\in [1,4]$ is used to set the resolution of the needlet coefficients $N_{\rm side}$ given ℓ , according to the relation $\ell_{\rm max} \leq {\tt nside_boost} * N_{\rm side}$.

FORMAT

call set_input()

ARGUMENTS

No arguments required.

EXAMPLE:

use needlets_mod

```
call set_input
call set_needlet_environment
.
```

This sets needlet variables and initializes arrays.

RELATED ROUTINES

This section lists the routines related to **set_input**.

set_input asks for input needlet parameters.
set_needlet_environment initializes the needlet variables.

parsing_hpx asks for global needlet parameters.

$set_needlet_environment$

Location in HEALPix directory tree: src/f90/mod/needlets_mod.f90

This subroutine initializes needlet variables and arrays given the input needlet parameters [lmax, B, nside_boost]. It calls bj_of_l which computes the needlet filters and provides information on the needlet sets generated.

FORMAT

call set_needlet_environment(voice)

ARGUMENTS

name & dimensionality	kind in/out	description
voice OPTIONAL	LGT INOUT	If .true. displays ℓ range for each j and other information.

EXAMPLE:

```
use needlets_mod
logical :: voice = .true.
call set_input
call set_needlet_environment(voice)
:
```

This sets needlet variables and initializes arrays.

RELATED ROUTINES

This section lists the routines related to **set_needlet_environment**.

$\operatorname{set_input}$	asks for input needlet parameters.						
bj_of_l	computes needlet filters in harmonic domain.						
write_bl2_l	writes into formatted files the needlet filters $b^2(\ell/B^j)$.						

$write_bl2$

Location in HEALPix directory tree: src/f90/mod/needlets_mod.f90

This subroutine writes into formatted files the needlet filters defined in harmonic domain.

FORMAT

call write_bl2(in_root)

ARGUMENTS

name & dimensionality	kind in/out	description
in_root	CHR(l ₫ħ ≔filena	mellere) prefix of the output files.

EXAMPLE:

use needlets_mod

character(len=filenamelen) :: in_root

in_root = 'bl2'
call set_input
call set_needlet_environment(voice)
: call write_bl2(in_root)

After setting needlet variables and computing the filters $b^2(\ell/B^j)$ (wrapped in set_needlet_environment), this writes them into formatted files 'in_root_B2.00_Nj009_j.dat', where j runs from 1 to $j_{\rm max}$ and 2. 00 and 009 are defined internally by the code according to the B parameter set by the user and the number of resolutions required.

RELATED ROUTINES

This section lists the routines related to write_bl2.

set_input asks for input needlet parameters.

write_bl2 17

 bj_of_l set_needlet_environment

computes needlet filters in harmonic domain. initializes the needlet variables.