Stock portfolio performance Data Set

December 22, 2018

1 Stock portfolio performance Data Set

Data Set Information: There are three disadvantages of weighted scoring stock selection models. First, they cannot identify the relations between weights of stock-picking concepts and performances of portfolios. Second, they cannot systematically discover the optimal combination for weights of concepts to optimize the performances. Third, they are unable to meet various investors preferences. This study aims to more efficiently construct weighted scoring stock selection models to overcome these disadvantages. Since the weights of stock-picking concepts in a weighted scoring stock selection model can be regarded as components in a mixture, we used the simplex centroid mixture design to obtain the experimental sets of weights. These sets of weights are simulated with US stock market historical data to obtain their performances. Performance prediction models were built with the simulated performance data set and artificial neural networks. Furthermore, the optimization models to reflect investors preferences were built up, and the performance prediction models were employed as the kernel of the optimization models so that the optimal solutions can now be solved with optimization techniques. The empirical values of the performances of the optimal weighting combinations generated by the optimization models showed that they can meet various investors preferences and outperform those of S&P 500 not only during the training period but also during the testing period.

Data Access https://archive.ics.uci.edu/ml/datasets/Stock+portfolio+performance

Attribute Information: The inputs are the weights of the stock-picking concepts as follows:

X1=the weight of the Large B/P concept

X2=the weight of the Large ROE concept

X3=the weight of the Large S/P concept

X4=the weight of the Large Return Rate in the last quarter concept

X5=the weight of the Large Market Value concept

X6=the weight of the Small systematic Risk concept

The outputs are the investment performance indicators (normalized) as follows:

Y1=Annual Return

Y2=Excess Return

Y3=Systematic Risk

Y4=Total Risk

Y5=Abs. Win Rate

Y6=Rel. Win Rate

1.0.1 Objective

In this notebook, a neural networks was built using Sklearn MLPRegressor to predict the outcome each investment performances indicators. To optimize the outcome, the model was iterated to determine the best number model performance based on the number of hidden layers.

1.0.2 Libraries to be used

dtypes: float64(18), int64(1)

```
In [1]: # Data Setup
        import numpy as np
        import pandas as pd
        import seaborn as sns
        # Linear Regression
        from sklearn.neural_network import MLPRegressor
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import mean_squared_error
1.0.3 Data Import
In [2]: df = pd.read_excel('stock portfolio performance data set.xlsx', skiprows=[0])
1.0.4 EDA, Initial
In [3]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 63 entries, 0 to 62
Data columns (total 19 columns):
                                            63 non-null int64
Large B/P
                                            63 non-null float64
Large ROE
                                            63 non-null float64
Large S/P
                                            63 non-null float64
                                            63 non-null float64
Large Return Rate in the last quarter
Large Market Value
                                            63 non-null float64
 Small systematic Risk
                                            63 non-null float64
Annual Return
                                            63 non-null float64
Excess Return
                                            63 non-null float64
                                            63 non-null float64
Systematic Risk
Total Risk
                                            63 non-null float64
Abs. Win Rate
                                            63 non-null float64
Rel. Win Rate
                                            63 non-null float64
Annual Return.1
                                            63 non-null float64
Excess Return.1
                                            63 non-null float64
Systematic Risk.1
                                            63 non-null float64
Total Risk.1
                                            63 non-null float64
Abs. Win Rate.1
                                            63 non-null float64
Rel. Win Rate.1
                                            63 non-null float64
```

memory usage: 9.4 KB

In [4]:	<pre>df.isnull().any()</pre>				
Out[4]:		False			
	Large B/P	False			
	Large ROE	False			
	Large S/P	False			
	False				
	Large Market Value	False			
	Small systematic Risk				
	Annual Return	False			
	Excess Return	False			
	False				
	Total Risk	False			
	False				
	Rel. Win Rate Annual Return.1				

Rel. Win Rate.1
dtype: bool

Total Risk.1

Excess Return.1
Systematic Risk.1

Abs. Win Rate.1

In [5]: df.describe()

Out[5]:		ID	Large B/P	Large ROE	Large S/P	\
	count	63.000000	63.000000	63.000000	63.000000	
	mean	32.000000	0.166619	0.166619	0.166619	
	std	18.330303	0.199304	0.199304	0.199304	
	min	1.000000	0.000000	0.000000	0.000000	
	25%	16.500000	0.000000	0.000000	0.000000	
	50%	32.000000	0.167000	0.167000	0.167000	
	75%	47.500000	0.291500	0.291500	0.291500	
	max	63.000000	1.000000	1.000000	1.000000	

	Large Ret	turn Rate	in the	last quarter	Large Market Value	\
count				63.000000	63.000000	
mean				0.166619	0.166619	
std				0.199304	0.199304	
min				0.000000	0.000000	
25%				0.000000	0.000000	
50%				0.167000	0.167000	
75%				0.291500	0.291500	
max				1.000000	1.000000	

Small systematic Risk Annual Return Excess Return Systematic Risk $\$

False

False

False

False

False

count mean std min 25% 50% 75% max	63.000000 0.166619 0.199304 0.000000 0.000000 0.167000 0.291500 1.000000		0.040384 0.010 0.028337 0.007 -0.053382 -0.014 0.021405 0.004 0.042629 0.010 0.061776 0.015		63.00000 0.010196 0.007972 -0.014856 0.004378 0.010413 0.015840 0.026548		63.000 1.206 0.271 0.800 0.997 1.181 1.363 1.939	636 843 792 674 784 218
count mean std min 25% 50% 75% max	Total Risk 63.000000 0.124854 0.031626 0.078831 0.100883 0.119563 0.139269 0.218617	Abs. Win Rate 63.000000 0.578571 0.043731 0.40000 0.550000 0.650000 0.650000	63.00 0.59 0.10 0.30 0.50 0.50	Rate 00000 52381 00975 00000 00000 50000 50000	63.00 0.5 0.1 0.20 0.49 0.5 0.69	00000 70737 12040 00000 95695 79611 55315	\	
count mean std min 25% 50% 75% max	Excess Return 63.000 0.563 0.115 0.200 0.473 0.566 0.644 0.800	0000 6 3039 5526 0000 8730 6175 4828	c Risk.1 3.000000 0.413916 0.143286 0.200000 0.303774 0.400817 0.496449 0.800000	63 0 0 0 0 0	Risk.1 Abs .000000 .397544 .135746 .200000 .294651 .374831 .459415 .800000	63. 0. 0. 0. 0.	Rate.1 000000 628571 104956 200000 560000 680000 800000	\
count mean std min 25% 50% 75% max df.sha	Rel. Win Rate 63.000 0.536 0.134 0.200 0.466 0.533 0.666 0.800	0000 6508 4633 0000 6667 3333						

In [6]: df.shape

Out[6]: (63, 19)

In [7]: sns.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x1a1777ea90>

1.0.5 Data Setup, EDA Continued

This data set

```
#y1 = df_n['Annual\ Return']

#y2 = df_n['Excess\ Return']

#y3 = df_n['Systematic\ Risk']

#y4 = df_n['Total\ Risk']

#y5 = df_n['Abs.\ Win\ Rate']

#y6 = df_n['Rel.\ Win\ Rate']

print('Shape of x: {}\nShape of y: {}'.format(x.shape, y.shape))

The shape of the new data frame is: (63, 12)

Shape of x: (63, 6)

Shape of y: (63, 6)
```

In [9]: sns.pairplot(df_n)

Out[9]: <seaborn.axisgrid.PairGrid at 0x1a1fc51cc0>

1.0.6 Model Selection

R^2

mse

To obtain the best numbers of hidden layers, the code below iterates different over the model with different hidden layers. For each iteration R Squared and the Mean Squared Error of the model being will be attached to a list. Then, by filtering the maximum R Squared and the minimum Mean Squared Error the best number of hidden layyers was determined.

```
In [15]: #best_parameters = []
         \#best\_score = []
         score_l = []
         mse_1 = []
         x_train, x_test, y_train, y_test = train_test_split(x, y, random_state = 12, test_size
         t = range(1, 2010, 10)
         for i in t:
             model = MLPRegressor(solver='lbfgs', learning_rate_init=0.019,hidden_layer_sizes=
                              learning_rate='adaptive')
             model.fit(x_train, y_train)
             y_pred = model.predict(x_test)
             score = model.score(x_test, y_test)
             mse = mean_squared_error(y_test, y_pred)
             score_l.append(score)
             mse_l.append(mse)
         df_params = pd.DataFrame({'R^2':score_1, 'mse':mse_1 }, index=t)
         df_params.shape
Out[15]: (201, 2)
In [16]: # Model Selection
         df_params['R^2'].max(), df_params['mse'].min()
         maxs = df_params[df_params['R^2'] == df_params['R^2'].max()]
         mins = df_params[df_params['mse'] == df_params['mse'].min()]
         print('Maximum R^2: \n{} \n\nMinimum Mean Squared error: \n{} \n \nThe best number of
Maximum R^2:
          R^2
801 0.782108 0.003329
Minimum Mean Squared error:
```

801 0.782108 0.003329

The best number of hidden layers: Int64Index([801], dtype='int64')