MICROCONTROLADORES

PROJETO

Luminária com intensidade controlada em lux

Marlon Mateus

Tópicos 1. Proposta do Projeto

- 2. Materiais Utilizados
- 3. Diagrama do Projeto
 - 4. Fototransistor
 - 5. Resultados
 - 6. Fluxograma & Implementação do código
 - 7. Referências

Proposta do Projeto

- Construção de um sistema de iluminação controlado capaz de iluminar uma área de superfície, como uma mesa de estudos ou bancada de laboratório
- Medir a luminosidade desse ambiente e realizar o processamento dessa grandeza física
- Controlar a luminosidade de acordo com o valor (em lux) especificado pelo usuário

Materiais Utilizados

- Luminária extensível de mesa
- LED de 3 W como fonte de luz (especificado em 1000 lux para o projeto)
- Fototransistor TIL64 como sensor de luminosidade
- Microcontrolador MSP430G2553 da Texas Instruments

- Módulo de conversão A/D e PWM do microcontrolador
- Controlador digital do tipo Pl (implementado em C)
- Atuador do LED (TIP125 PNP) com potência controlada por PWM
- Filtro RC
- Fonte de bancada
- Luxímetro para calibração do sistema

Diagrama do Projeto

Para o usuário visualizar a luminosidade em **lux**, realizam-se testes com o luxímetro e tensões amostradas pelo A/D, variando a intensidade da luz emitida pela luminária. Dessa forma, se obtém uma equação de reta aproximada por linearização para ser implementada no firmware para a conversão das grandezas físicas:

 $Iux = \kappa.A/D$

Fototransistor

- Apresenta maiores correntes que fotodiodos resposta praticamente instantânea
- Relativamente mais baratos que circuitos integrados sensores de luz
- Fornecem nível de tensão que fotoresistores não são capazes de fornecer

[AGARWAL].

Para o cálculo do resistor Re, foi utilizada a equação: $R_E = \frac{VCC - (0,3 V)}{r}$

$$R_E = \frac{VCC - (0,3 V)}{I_L}$$

Sendo Vcc a tensão entre GND e o coletor, IL a corrente no coletor e 0,3 V a tensão VcE de saturação do fototransistor. Desta forma, em Vout, o sinal é filtrado para então ocorrer a leitura no conversor A/D.

Resultados

Variando-se a corrente fornecida ao LED em 5[V] DC pela fonte de bancada, obteve 1900 [lx] como fluxo luminoso máximo ao atingir na base do fototransistor produzindo uma corrente de circuito l∟=0.39 [mA]. Sendo assim, considerando 0,3[V] a queda de tensão do fototransistor e utilizando a Lei de Ohm:

$$V=RE.IL \Rightarrow RE=(3.6-0.3)/0.39m : RE\approx 8 [k\Omega]$$

De acordo com o valor acima, utilizou-se um resistor $\frac{1}{4}$ [W] de valor comercial 8 [k Ω] ± 10%.

Figura: gráfico obtido pelas amostras Lux vs A/D

Foram utilizados capacitores de 100 [nF] e 100 [uF] em paralelo com alimentação e próximos do transistor para atenuar os ruídos gerados na rede de alimentação nos instantes de transição de chaveamento.

Figura: circuito de condicionamento do atuador com tratamento de ruídos

Foi projetado o filtro passa-baixa passivo de primeira ordem para atenuar ruídos da rede elétrica e integrar o sinal do circuito de aquisição representado na figura abaixo.

Figura: circuito de aquisição com filtragem para tratamento de ruídos

$$f_c = \frac{1}{2 \cdot \pi \cdot R_f \cdot C_f}$$

Fazendo R_f =(10+12) [$k\Omega$] e C_f =10 [μ F], temos uma frequência de corte de aproximadamente 1,38 Hz. Sendo um filtro de 1ª ordem (-20dB/déc), a atenuação em 60 Hz será de, aproximadamente, 38,4 dB.

Figura: gráfico da resposta em frequência do filtro passa-baixas dimensionado

Figura 16: curva simulada obtida pelo *Process Models*, curva experimental LUX e curva obtida *Transfer Functions Models*

$$LUX(s) = \frac{4,8578}{0,21544s + 1}$$

Sendo um sistema de 1ª ordem, o controlador do tipo PI é normalmente utilizado. Os coeficientes do controlador podem ser encontrados:

$$K_p$$
 \cong 4,1173 K_i \cong 0,1147

Ao implementar em código, foi feito um ajuste fino dos valores dos coeficientes para melhor desempenho do sistema, definindo K_P=4 e K_i=0,17018.

Fluxograma & Implementação do Código

Referências

[1] AGARWAL, Tarun. TYPES OF PHOTODETECTORS. Disponível em: https://www.elprocus.com/phototransistor-basics-and-advantages/. Acesso em: 23 ago. 2018.

[2] BALBINOT, A. BRUSAMARELLO, V.J. Instrumentação e Fundamentos de Medidas: 2. ed. Editora LTC, 2011.