which, in view of (A3), yields u. The composition of the second with the first mapping is

$$b \mapsto \overrightarrow{ab} \mapsto a + \overrightarrow{ab},$$

which, in view of (A3), yields b. Thus, these compositions are the identity from \overrightarrow{E} to \overrightarrow{E} and the identity from E to E, and the mappings are both bijections.

When we identify E with \overrightarrow{E} via the mapping $b \mapsto \overrightarrow{ab}$, we say that we consider E as the vector space obtained by taking a as the origin in E, and we denote it by E_a . Because E_a is a vector space, to be consistent with our notational conventions we should use the notation $\overrightarrow{E_a}$ (using an arrow), instead of E_a . However, for simplicity, we stick to the notation E_a .

Thus, an affine space $\langle E, \overrightarrow{E}, + \rangle$ is a way of defining a vector space structure on a set of points E, without making a commitment to a **fixed** origin in E. Nevertheless, as soon as we commit to an origin a in E, we can view E as the vector space E_a . However, we urge the reader to think of E as a physical set of points and of \overrightarrow{E} as a set of forces acting on E, rather than reducing E to some isomorphic copy of \mathbb{R}^n . After all, points are points, and not vectors! For notational simplicity, we will often denote an affine space $\langle E, \overrightarrow{E}, + \rangle$ by (E, \overrightarrow{E}) , or even by E. The vector space \overrightarrow{E} is called the vector space associated with E.

One should be careful about the overloading of the addition symbol +. Addition is well-defined on vectors, as in u+v; the translate a+u of a point $a \in E$ by a vector $u \in E$ is also well-defined, but addition of points a+b does not make sense. In this respect, the notation b-a for the unique vector u such that b=a+u is somewhat confusing, since it suggests that points can be subtracted (but not added!).

Any vector space \overrightarrow{E} has an affine space structure specified by choosing $E = \overrightarrow{E}$, and letting + be addition in the vector space \overrightarrow{E} . We will refer to the affine structure $\langle \overrightarrow{E}, \overrightarrow{E}, + \rangle$ on a vector space \overrightarrow{E} as the canonical (or natural) affine structure on \overrightarrow{E} . In particular, the vector space \mathbb{R}^n can be viewed as the affine space $\langle \mathbb{R}^n, \mathbb{R}^n, + \rangle$, denoted by \mathbb{A}^n . In general, if K is any field, the affine space $\langle K^n, K^n, + \rangle$ is denoted by \mathbb{A}^n_K . In order to distinguish between the double role played by members of \mathbb{R}^n , points and vectors, we will denote points by row vectors, and vectors by column vectors. Thus, the action of the vector space \mathbb{R}^n over the set \mathbb{R}^n simply viewed as a set of points is given by

$$(a_1,\ldots,a_n)+\begin{pmatrix}u_1\\\vdots\\u_n\end{pmatrix}=(a_1+u_1,\ldots,a_n+u_n).$$

We will also use the convention that if $x = (x_1, ..., x_n) \in \mathbb{R}^n$, then the column vector associated with x is denoted by \mathbf{x} (in boldface notation). Abusing the notation slightly, if $a \in \mathbb{R}^n$ is a point, we also write $a \in \mathbb{A}^n$. The affine space \mathbb{A}^n is called the *real affine space of dimension* n. In most cases, we will consider n = 1, 2, 3.