

Computer Science Fundamentals

Information & Source Coding – Basics

Technische Hochschule Rosenheim Winter 2021/22 Prof. Dr. Jochen Schmidt

Overview

- Intermission: Probability theory crash course
- Statistical information content of a message
- Coding basics & examples for simple codes

Probability Theory Basics

Random Experiment

- Process or trial that is subject to chance, or where we cannot predict the outcome for other reasons
- Quantitative statements are possible using mathematical methods of statistics
 - Repetition of the experiment under constant conditions
- The result of an experiment is referred to as outcome (*Elementarereignis*)
 - outcomes are mutually exclusive
- The set of all possible outcomes is the sample space (*Ergebnisraum*)
- An event (*Ereignis*) is the result of a random experiment, i.e., a subset of the sample space

Random Experiment – Examples

- Experiment "tossing of a coin "
 - sample space: { heads, tails }
- Experiment "rolling of a six-sided die"
 - sample space: { 1, 2, 3, 4, 5, 6 }
- Experiment "Measuring the service life of a light bulb"
 - Infinite (real valued) sample space

Relative Frequency

Relative frequency h

 Quotient of the number of events that have a particular characteristic and the total number of events examined for that characteristic

h = Number of events that have a desired characteristic
Total number of events

• $0 \le h \le 1$ always holds by definition

Relative Frequency

How to determine relative frequency? By many repetitions of the random experiment.

Examples

Tossing a coin

The more often you throw a coin, the less h_{heads} and h_{tails} will differ from 1/2.

Rolling dice

The more often you throw a die, the less h_1 , h_2 , h_3 , h_4 , h_5 and h_6 will differ from 1/6.

Probability

Relationship between probability and relative frequency: Law of large numbers

A: Event under consideration

n: Number of trials

Probability

Exact mathematical definition of probability by the Kolmogorov Axiom System

 Axiom 1: The probability p(A) for the occurrence of a particular event A is a real function that can take all values between zero and one:

$$0 \le p(A) \le 1$$

• Axiom 2: The probability of the occurrence of an event A that is certain to occur is 1:

$$p(A) = 1$$

Axiom 3: For mutually exclusive events A and B the addition theorem holds:

$$p(A \text{ or } B) = p(A) + p(B)$$

 $p(A \cup B) = p(A) + p(B)$

Probability

Some conclusions from the axioms:

• Probability of an event A that is certain not to occur: p(A) = 0

Probability that event A will not occur:

$$p(\bar{A}) = 1 - p(A)$$

$$\bar{A} = \text{"not A"}$$

• Probability that two events A and B will occur together:

$$p(A \text{ and } B) = p(A) \cdot p(B)$$

 $p(A \cap B) = p(A) \cdot p(B)$

Condition:

Events A and B are not mutually exclusive and are independent of each other

Examples

- Roll two distinguishable dice (red and green) simultaneously
 - Probability of green die showing 1 and red die showing 2? $p(A \text{ and } B) = 1/6 \cdot 1/6 = 1/36$

- Roll a single die twice
 - Probability to roll a 1 in the first throw and then a 2 in the second one? $p(A \text{ and } B) = 1/6 \cdot 1/6 = 1/36$

- Roll two indistinguishable dice simultaneously
 - Probability of 1 and 2 being rolled? $p(E) = (1/6 + 1/6) \cdot 1/6 = 1/18$

Remarks

- The previous slides include only what is absolutely necessary for this course
- Many important terms were not explained (e.g., conditional probabilities)
- This will follow in a separate course

Statistical Information Content

Messages & Alphabets

- Messages are formed as strings from single symbols
- The set of all available symbols is called an alphabet
- An alphabet consists of
 - a countable set of symbols (abzählbare Menge), typically a finite set, and
 - an order relation (Ordnungsrelation)
 (a rule that defines the order of the symbols)

Examples:

- {a, b, c, ..., z}
 Set of all lowercase letters in lexicographic order
- {0, 1, 2, ..., 9} finite set of integers 0 to 9 with the order relation ,,<"
- {2, 4, 6, ... } infinite set of even natural numbers with the order relation "<"
- {0, 1}
 Binary digits 0 and 1 with 0 < 1

Messages & Alphabets

Let A be an alphabet, e.g., $A = \{a, b\}$

- Aⁱ, i = 0, 1, 2, ... is the set of all strings of length i that can be formed using A
 - A⁰ is the message of length 0, i.e., "nothing", the so-called empty string, denoted as ε or λ
 - e.g., $A^1 = A = \{a, b\}, A^2 = \{aa, ab, ba, bb\}, A^3 = \{aaa, aab, aba, abb, baa, ...\}$
- $A^+ = A^1 \cup A^2 \cup A^3 \cup ...$ is the set of all messages of any length, excluding length 0 (called Kleene plus, positive Hülle)
 - e.g., A⁺ = {a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, ...}
- $A^* = A^0 \cup A^1 \cup A^2 \cup ...$ is the set of all messages of any length, including length 0 (called Kleene closure, Kleenesche Hülle)
 - e.g., A* = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, ...}
- (A, ∘) forms a semigroup (*Halbgruppe*) more on alphabets in Theoretical Computer Science
 - • = string concatenation being the operator
 - the empty string the neutral element

Information Content of a Message

Consideration of the term information from a specific point of view

- Mathematical definition of information
- Hence
 - not the semantic meaning of information
 - not oriented to the purpose pursued with a message
 - Meaning: Two messages (one with special content one with "nonsense") can contain exactly the same amount of information.
- Shannon's information theory
 - Mainly developed by Claude Shannon until 1950
- Objective
 - Mathematical description of the statistical information content I(x)
 - of a symbol or word x,
 - having a probability of occurrence p(x)

Information

Requirements for a mathematical description

1. The less frequently a certain symbol x occurs, i.e., the smaller p(x), the greater the information content of this symbol should be

$$I(x) \sim \frac{1}{p(x)}$$

2. Total information of a string, e.g., $x_1x_2x_3$ should result from the sum of the individual information

$$I(x_1x_2x_3) = I(x_1) + I(x_2) + I(x_3)$$

3. For the information content of a symbol x that occurs with certainty, i.e., in case p(x) = 1, we want zero information:

$$I(x)=0$$

→ Logarithm function meets these requirements

$$I(x) = \log_b \frac{1}{p(x)}$$

b = scale for measuring information

Information

Definition: Use binary (two states, 0 and 1) \rightarrow b = 2

$$I(x) = \operatorname{ld} \frac{1}{p(x)} = -\operatorname{ld} p(x) \quad [Bit]$$

binary logarithm

- Number of elementary decisions that are necessary to uniquely identify a message symbol by symbol
- Unit of measurement: Bit
- Information content of a symbol = Number of binary digits that must be used for a unique binary representation of the symbol

Information – Example

Calculation of information content for non-binary messages

- Given: Letter b occurs in a German-language text with a probability of 0.016
- Wanted: Information content of this letter

$$I(b) = \operatorname{ld} \frac{1}{0.016} = \frac{\log(\frac{1}{0.016})}{\log(2)} \approx \frac{1.79588}{0.30103} \approx 5.97 \ [Bit]$$

Reminder – Base Change with Logarithms

Base change

$$\log_b(x) = \frac{\log_{10}(x)}{\log_{10}(b)},$$
 i.e. $\log_2(x) = \mathrm{ld}(x) = \frac{\log_{10}(x)}{\log_{10}(2)}$

- using $\log_{10}(2) = \log(2) = 0.30103$
- ... or use any other base than 10

• Notations:

- $\log_{10}(x)$ is $\log(x)$
- $log_2(x)$ is ld(x)
- $log_e(x)$ is ln(x) with $e \approx 2.71828...$

Coding Basics

Coding – Definitions

Objective: Problem-specific representation of a data during storage and transmission

- Coding C
 - an injective mapping from A* to B*
 - Note: $C \subseteq B^*$ holds, i.e., C is a subset of B^*
- Binary code C
 - Target set is a data space B* over the alphabet {0, 1}

Block Codes & Variable Length Codes

- Fixed word length encoding (block codes)
 - all encoded symbols have a constant code word length
- Variable word length encoding
 - Frequently occurring symbols receive short code words
 - Infrequently occurring symbols receive long code words
- First technical code with variable length: Morse Code
 - no binary encoding, as it contains three symbols: dot, dash, and space (a pause)

Coding – Definitions

Schematic representation of the encoding and transmission of messages

- Expectations of a "good" coding
 - representation of the data with as few symbols as possible (source coding, Quellencodierung)
 - as insensitive as possible to noise (channel coding, Kanalcodierung)
 - code should be easy to process in a computer system

Entropy of Data Source

- Message consists of
 - symbols or symbols connected to strings,
 - each carrying different information content, as they occur with different frequency
- Definition of the term
 - average information content of all symbols of a data source
 - = Entropy H (Entropie) of a data source, which has symbols $x_1, x_2, ..., x_n$ of some alphabet A available.
- Sum of the information content of the characters weighted with the probabilities of occurrence

$$H = \sum_{i=1}^{n} p(x_i) \cdot \operatorname{ld} \frac{1}{p(x_i)} = -\sum_{i=1}^{n} p(x_i) \cdot \operatorname{ld} p(x) = \sum_{i=1}^{n} p(x_i) \cdot I(x_i)$$

- The highest average information content is obtained when all characters occur with the same probability
- Unit: bits/symbol

Source Redundancy R_S (Quellen-Redundanz)

• Difference between maximum possible entropy H_0 and actual entropy H of a source

$$R_S = H_0 - H$$
 (bits/symbol)

• we get the maximum possible entropy H_0 , if all symbols of the alphabet A are equally likely. With |A| = n:

$$H_0 = \sum_{i=1}^n p(x_i) \cdot \operatorname{ld} \frac{1}{p(x_i)} = \sum_{i=1}^n \frac{1}{n} \cdot \operatorname{ld} n = \frac{1}{n} \sum_{i=1}^n \operatorname{ld} n = \frac{1}{n} \operatorname{n} \operatorname{ld} n = \operatorname{ld} n$$

• H_0 is independent of the code used

Entropy – Surprisal

- Other interpretation of the concept of entropy to compare data sources:
 - The smaller the entropy, the greater the certainty with which we can predict the occurrence of a symbol.
 - The higher the entropy of a data source, the greater its uncertainty (surprisal).

• Example:

Two data sources

- $A_1 = \{a, b, c, d\}$ with the probabilities of occurrence $p(a) = {}^{11}\!/_{16}$, $p(b) = p(c) = {}^{11}\!/_{8}$, $p(d) = {}^{11}\!/_{16}$
- $A_2 = \{+, -, *\}$ with the probabilities of occurrence $p(+) = \frac{1}{6}$, $p(-) = \frac{1}{2}$, $p(*) = \frac{1}{3}$

Entropies:

•
$$H_1 = \frac{11}{16} \cdot \operatorname{ld} \frac{16}{11} + \frac{1}{8} \cdot \operatorname{ld} 8 + \frac{1}{8} \cdot \operatorname{ld} 8 + \frac{1}{16} \cdot \operatorname{ld} 16 \approx 1.372 \left[\frac{\operatorname{bits}}{\operatorname{symbol}} \right]$$

•
$$H_2 = \frac{1}{6} \cdot \text{ld } 6 + \frac{1}{2} \cdot \text{ld } 2 + \frac{1}{3} \cdot \text{ld } 3 \approx 1.460 \left[\frac{\text{bits}}{\text{symbol}} \right]$$

• Uncertainty for A_2 is greater than for A_1 , as H_2 is greater than H_1

Average Length of a Code

or: expected length of code *L*

- important property of a code
- defined as

$$L = \sum_{i=1}^{n} p_i \cdot l_i$$

where

- *n*: number of code words
- p_i probability of occurrence for code word i
- l_i length of i-th code word
- this is a weighted average over all code word lengths

Shannon's Source Coding Theorem

For any encoding of a data source

$$H \leq L$$

- Entropy H is a lower bound for the average word length L of an optimal code
 - for lower L information will be lost
- If all probabilities of occurrence are the same: H=L
- Proof by Claude Shannon 1948
- Note:
 - this applies to lossless coding
 - in the case of lossy encoding, the mapping of source to destination message space is no longer reversible and unique anyway.

Code Redundancy R (Code-Redundanz)

Difference between average word length L and entropy H

$$R = L - H$$
 (bits/symbol)

- Indicates the proportion of a message that does not carry any information in the statistical sense
 - "wasted" part of a code
- Desirable: Codes with low redundancy
 - Reduced memory requirements and faster message transfer
 - → source coding
- However, redundancy can increase robustness to noise
 - error detection/correction for data transmission/storage
 - → channel coding

Example

- $A_1 = \{a, b, c, d\}$ with $p(a) = \frac{11}{16}$, $p(b) = p(c) = \frac{1}{8}$, $p(d) = \frac{1}{16}$
 - The entropy was H = 1.37 bits/symbol
- We would get the maximum entropy for a uniform distribution, i.e., all probabilities 0.25
 - $H_0 = \operatorname{ld} n = \operatorname{ld} 4 = 2 \operatorname{bits/symbol}$
- Consider the following codes:

		_
Symbol	Code	average code word length (surprisei
а	00	$L = 2 \cdot \frac{11}{16} + 2 \cdot \frac{1}{8} + 2 \cdot \frac{1}{8} + 2 \cdot \frac{1}{16}$ = 2 bits/symbol
b	01	
С	10	Redundancy $R = L - H = 2 - 1.37$ $= 0.63 \text{ bits/symbol}$
d	11	
		-

Symbol	Code	average code word length	
а	0	$L = 1 \cdot \frac{11}{16} + 2 \cdot \frac{1}{8} + 3 \cdot \frac{1}{8} + 3 \cdot \frac{1}{1}$ = 1.5 bits/symbol	
b	10		
С	110	Redundancy	
d	111	R = L - H = 1.5 - 1.37 = 0.13 bits/symbol	

ASCII

- ASCII = American Standard Code for Information Interchange
- is a defined mapping (standard) for binary encoding of characters
 - first published in 1963
 - most common character encoding in the WWW until 2007; UTF-8 now
- includes
 - lowercase/uppercase letters of the Latin alphabet
 - Arabic numerals
 - and many special characters
- original ASCII: 7 Bit block code
 - 8th bit could be used for parity (→ channel coding)
 - Different, standardized, ASCII code extensions available
 - these use the 8th bit to encode an additional set of 128 characters

ASCII (8 Bits) – Subset

Decimal	Octal	Hexa	Binary	Character
32	40	20	00100000	(space)
33	41	21	00100001	!
34	42	22	00100010	"
35	43	23	00100011	#
36	44	24	00100100	\$
37	45	25	00100101	%
38	46	26	00100110	&
39	47	27	00100111	•
40	50	28	00101000	(
41	51	29	00101001)
42	52	2A	00101010	*
43	53	2B	00101011	+
44	54	2C	00101100	,
45	55	2D	00101101	-
46	56	2E	00101110	
47	57	2F	00101111	1
48	60	30	00110000	0
49	61	31	00110001	1
50	62	32	00110010	2
51	63	33	00110011	3
52	64	34	00110100	4
53	65	35	00110101	5
54	66	36	00110110	6
55	67	37	00110111	7
56	70	38	00111000	8
57	71	39	00111001	9
58	72	3A	00111010	:
59	73	3B	00111011	;
60	74	3C	00111100	<
61	75	3D	00111101	=
62	76	3E	00111110	>
63	77	3F	00111111	?

Decimal	Octal	Hexa	Binary	Character
64	100	40	01000000	@
65	101	41	01000001	Ā
66	102	42	01000010	В
67	103	43	01000011	С
68	104	44	01000100	D
69	105	45	01000101	E
70	106	46	01000110	F
71	107	47	01000111	G
72	110	48	01001000	Н
73	111	49	01001001	I
74	112	4A	01001010	J
75	113	4B	01001011	K
76	114	4C	01001100	L
77	115	4D	01001101	М
78	116	4E	01001110	N
79	117	4F	01001111	0
80	120	50	01010000	Р
81	121	51	01010001	Q
82	122	52	01010010	R
83	123	53	01010011	S
84	124	54	01010100	Т
85	125	55	01010101	U
86	126	56	01010110	V
87	127	57	01010111	W
88	130	58	01011000	Х
89	131	59	01011001	Υ
90	132	5A	01011010	Z
91	133	5B	01011011	[
92	134	5C	01011100	Ī
93	135	5D	01011101]
94	136	5E	01011110	۸
95	137	5F	01011111	

Decimal	Octal	Hexa	Binary	Character
96	140	60	01100000	`
97	141	61	01100001	а
98	142	62	01100010	b
99	143	63	01100011	С
100	144	64	01100100	d
101	145	65	01100101	е
102	146	66	01100110	f
103	147	67	01100111	g
104	150	68	01101000	h
105	151	69	01101001	i
106	152	6A	01101010	j
107	153	6B	01101011	k
108	154	6C	01101100	I
109	155	6D	01101101	m
110	156	6E	01101110	n
111	157	6F	01101111	0
112	160	70	01110000	р
113	161	71	01110001	q
114	162	72	01110010	r
115	163	73	01110011	S
116	164	74	01110100	t
117	165	75	01110101	u
118	166	76	01110110	V
119	167	77	01110111	W
120	170	78	01111000	Х
121	171	79	01111001	у
122	172	7A	01111010	Z
123	173	7B	01111011	{
124	174	7C	01111100	
125	175	7D	01111101	}
126	176	7E	01111110	~
127	177	7F	01111111	(del.)

Average word length: 8 bits

Entropy? Redundancy?

When would this be the optimal code to use?

Unicode

- 1991: Foundation of the Unicode Consortium
- originally, Unicode characters were represented using a two-byte system
 - up to 65,536 different characters can be represented
 - BMP (Basic Multilingual Plane) = 2-Byte-System
- Unicode version 3.0 (1999): contained already 49,194 characters
 - extension to 4-byte system required...
- current version (2020): contains 143,859 characters
- different encoding formats available

Unicode

Some Unicode encoding formats (UTF = Unicode Transformation Format)

- UTF-32: uses always 32 bit/4 bytes (not commonly used)
- UTF-16: uses 2 or 4 bytes
 - depending on the character to be encoded common characters require 2 bytes
 - used, e.g., in Windows and Java
- UTF-8: uses 1 to 4 bytes
 - 1 byte (characters 1-127) = 7-bit ASCII
 - 8th bit controls the extension to 2, 3, 4 byte encoding
 - efficient for Latin characters (1 byte)
 - most other characters require 3 bytes
 - used, e.g., WWW, Unix E-Mail

BCD – Binary Coded Decimals

- a method for encoding numbers
- a fixed number of bits is used for each decimal digit
 - usually four, sometimes eight, bits
- each decimal digit is converted independently to a binary block
 - just as we did for conversion hexadecimal to binary

Decimal	Standard Dual	BCD
294	100100110	0010.1001.0100 2 9 4
16289	11111110100001	0001.0110.0010.1000.1001 1 6 2 8 9

BCD

- Bit patterns 1010, 1011, ..., 1111 are not used in BCD code (only 10 decimal digits exist)
- Often used for other purposes, e.g.,
 - 1010 for sign +
 - 1011 for sign –
- Advantages
 - Exact representation of fractions possible (e.g., 0.1_{10}) no accuracy loss caused by conversion
 - conversion from memory representation to display is simple
 - simple scaling by factors of 10
- Disadvantages
 - ineffective (memory wasting) compared to standard binary
 - computationally more expensive (e.g., adding is more complex)
- Used for special-purpose applications
 - business applications that require exact number conversions
 - LCDs/LEDs displaying numbers
 - Storing telephone numbers

Kullback-Leibler Divergence (KL-Divergenz)

- Also: relative entropy, information gain
- Measures how many bits are wasted on average
 - when using (an incorrect) probability distribution q for coding,
 - rather than the real distribution of the code words p?
- Or: how much a probability distribution q differs from the actual distribution p
- For discrete distributions using a finite alphabet with n symbols:

$$\text{KL}(p,q) = \sum_{i=1}^n p(x_i) \operatorname{ld} \frac{p(x_i)}{q(x_i)} \qquad = \operatorname{expected value of ld} \frac{p(x)}{q(x)} \text{ using the density } p(x) \text{ for averaging}$$

$$= \sum_{i=1}^n p(x_i) \operatorname{ld} p(x_i) - \sum_{i=1}^n p(x_i) \operatorname{ld} q(x_i)$$

$$= \sum_{i=1}^n p(x_i) \operatorname{ld} p(x_i) - \sum_{i=1}^n p(x_i) \operatorname{ld} q(x_i)$$

$$= \operatorname{Entropy} H(p) \qquad \operatorname{Cross Entropy} H(p,q) \qquad \operatorname{Note: KL}(p,q) \neq \operatorname{KL}(q,p)$$

Cross Entropy (Kreuzentropie)

- Measures how many bits are needed on average if
 - we use (an incorrect) probability distribution q for coding
 - rather than the real distribution of the code words p
- For discrete distributions using a finite alphabet with n symbols:

$$H(p,q) = H(p) + KL(p,q) = -\sum_{i=1}^{N} p(x_i) \operatorname{ld} q(x_i)$$

- Can also be used for comparing two distributions
- KL/Cross entropy are also widely applied in machine learning for training classifiers like random forests or neural networks

Example

- $A_1 = \{a, b, c, d\}$ with $p(a) = \frac{11}{16}$, $p(b) = p(c) = \frac{1}{8}$, $p(d) = \frac{1}{16}$
 - This is the real distribution
 - The entropy was H(p) = 1.37 bits/symbol
- What if we use a uniform distribution q, i.e., $p(a) = p(b) = p(c) = p(d) = \frac{1}{4}$ instead of the actual one?
- Cross entropy:

$$H(p,q) = -\sum_{i=1}^{n} p(x_i) \operatorname{ld} q(x_i) = -\left(\frac{11}{16} \operatorname{ld} \frac{1}{4} + \frac{1}{8} \operatorname{ld} \frac{1}{4} + \frac{1}{16} \operatorname{ld} \frac{1}{4} + \frac{1}{16} \operatorname{ld} \frac{1}{4}\right) = 2 \text{ bits/symbol}$$

KL divergence:

$$KL(p,q) = \sum_{i=1}^{n} p(x_i) \operatorname{ld} \frac{p(x_i)}{q(x_i)} = \frac{11}{16} \operatorname{ld} \frac{\frac{11}{16}}{\frac{1}{4}} + \frac{1}{8} \operatorname{ld} \frac{\frac{1}{8}}{\frac{1}{4}} + \frac{1}{8} \operatorname{ld} \frac{\frac{1}{8}}{\frac{1}{4}} + \frac{1}{16} \operatorname{ld} \frac{\frac{1}{16}}{\frac{1}{4}} = 0.63 \text{ bits/symbol}$$

Note: These measures do not depend on a particular code (as opposed to redundancy)

Example – Neural Network Training

Training = Determine weights

- define loss function L of output neurons you'll often find cross entropy here
 - p: real distribution, defined by training data
 - q: current distribution, defined by network output
 - we basically compare p to q
- minimize loss

(3) error backpropagation/adjust weights layer by layer