Elementi di teoria della Computazione (Prof.ssa De Felice) Anno Acc. 2018-2019

Prova scritta - 29 ottobre 2019

Nome e Cognome, email:

Matricola:

Firma:

Spazio riservato alla correzione: non scrivere in questa tabella.

1	2	3	4	5	6	Tot.	7	
							SI NO	

Leggere le tracce con attenzione!

La domanda n.7 non concorre al raggiungimento della sufficienza, ma solo alla determinazione del voto finale.

È vietato copiare, collaborare o comunicare con altri studenti. È vietato l'utilizzo di libri, appunti o lucidi.

I risultati della prova scritta e le informazioni per la conclusione dell'esame saranno pubblicati sulla piattaforma e-learning.

1. (15 punti)

Sia $X \subseteq \Sigma^*$ un linguaggio regolare.

- (a) Sia $Y = \{x \in X \mid x = a^n b^n z, n \ge 0, z \in \Sigma^*\}$. Provare o confutare che Y è regolare.
- (b) Sia $Z = \{x \in X \mid x = abz, z \in \Sigma^*\}$. Provare o confutare che Z è regolare.
- 2. (15 punti)

Dimostrare che per ogni NFA \mathcal{A} esiste un DFA \mathcal{B} equivalente ad \mathcal{A} , cioè tale che $L(\mathcal{A}) = L(\mathcal{B})$. Occorre definire ogni termine utilizzato nella prova.

- 3. (15 punti)
 - (a) Dare la definizione di funzione calcolabile.
 - (b) Sia $f:\{a,b\}^* \to \{a,b\}^*$ la funzione che associa a ogni stringa non vuota w la stringa I(w) che si ottiene cambiando in w ogni occorrenza della lettera a con la lettera b e ogni occorrenza della lettera b con la lettera a. Inoltre $f(\epsilon) = \epsilon$. Provare che f è calcolabile.
- 4. (15 punti)
 - Enunciare il teorema di Rice.
 - È possibile utilizzare il Teorema di Rice per mostrare che il seguente linguaggio è indecidibile? Giustificare la risposta.

 $X = \{\langle M \rangle \mid M \text{ è una MdT che si ferma su ogni input di lunghezza dispari}\}.$

- È possibile utilizzare il Teorema di Rice per mostrare che il seguente linguaggio è indecidibile? Giustificare la risposta.

 $Y = \{\langle M \rangle \mid M \text{ è una MdT che ha un insieme vuoto di stati}\}.$

Prova scritta 2

- 5. (15 punti)
 - Definire la classe di complessità P.
 - Mostrare che $\{0^n1^n \mid n \ge 0\} \in P$.
- 6. (15 punti)

Siano X e Y due linguaggi su un alfabeto Σ . Per ognuna delle affermazioni seguenti dire se essa risulta sicuramente vera oppure sicuramente falsa. Motivare la risposta, risposte non motivate non saranno valutate.

- (a) Se Y è in NP e $X \leq_P Y$ allora anche X è in NP.
- (b) Se X è NP-completo, $X \leq_P Y$ e $Y \in NP$ allora anche Y è NP-completo.
- (c) Se Y è NP-completo e $X \leq_P Y$ allora X è decidibile.
- (d) $NP \cap Co NP = \emptyset$.
- (e) Se $Y \in NP$ e $X \leq_P Y$ allora $X \notin EXPTIME$
- 7. Si consideri il seguente problema di decisione:

Dati un insieme A, una collezione B_1, \ldots, B_m di sottoinsiemi di A e un intero positivo k, esiste un sottoinsieme H di A di cardinalità k che interseca ogni B_i ?

Si definisca il linguaggio INTERSECA associato a tale problema e si dimostri che INTERSECA è NP-completo.