Progetto: Acquisizione e Analisi del Traffico HTTP e HTTPS con Wireshark

Obiettivo

In questo progetto, esploreremo l'utilizzo di **Wireshark** per catturare e analizzare il traffico di rete nei protocolli **HTTP** e **HTTPS**, mettendo in evidenza le differenze tra un protocollo non sicuro e uno crittografato. Attraverso l'analisi dei pacchetti acquisiti, potremo comprendere meglio il funzionamento della crittografia in HTTPS e i rischi legati all'uso di HTTP in contesti non sicuri.

Parte 1: Acquisire e Visualizzare il Traffico HTTP

Passaggio 1: Configurazione di Rete

Nello **Screenshot**, viene eseguito il comando ip address, che mostra i dettagli dell'interfaccia di rete del sistema. L'indirizzo IP assegnato all'interfaccia **enp0s3** è **192.168.43.244**. Questa configurazione è essenziale per identificare il dispositivo nel traffico di rete e capire su quale interfaccia catturare i pacchetti.

```
ừ Applications 🚦 💹 Terminal - analyst@secOps:~
57/
                          Terminal - analyst@secOps:~
     Edit View Terminal Tabs
                             Help
[analyst@secOps ~]$ ip address
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group defaul
t qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP gr
oup default qlen 1000
    link/ether 08:00:27:ba:c6:98 brd ff:ff:ff:ff:ff:ff
    inet 192.168.43.244/24 brd 192.168.43.255 scope global dynamic enp0s3
       valid_1ft 3523sec preferred_1ft 3523sec
    inet6 fe80::a00:27ff:feba:c698/64 scope link
       valid_lft forever preferred_lft forever
3: ovs-system: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group defaul
t glen 1000
    link/ether 6e:ba:c5:ea:43:01 brd ff:ff:ff:ff:ff
4: s1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1
    link/ether fe:7a:c9:7b:70:43 brd ff:ff:ff:ff:ff:ff
[analyst@secOps ~]$
```

Passaggio 2: Avvio della Cattura del Traffico HTTP

Nello **Screenshot**, si avvia la cattura del traffico HTTP con il comando **tcpdump**:

```
sudo tcpdump -i enp0s3 -s 0 -w httpdump.pcap
```

```
[analyst@secOps ~]$ sudo tcpdump –i enpOs3 –s O –w httpdump.pcap
tcpdump: listening on enpOs3, link–type EN1OMB (Ethernet), capture size 262144 b
ytes
```

Il comando specifica di catturare tutto il traffico sull'interfaccia **enp0s3** e salvarlo nel file **httpdump.pcap**. Questo file sarà successivamente analizzato in **Wireshark**.

Passaggio 3: Login su un Sito HTTP non Protetto

Nello **Screenshot**, viene mostrata la pagina di login del sito **Altoro Mutual**, accessibile tramite il protocollo HTTP. Il sito non utilizza HTTPS, quindi le

credenziali inserite nel form, come il nome utente **Admin** e la password, vengono inviate in chiaro sulla rete.

Passaggio 4: Accesso al Sito come Amministratore

Nello **Screenshot 4**, vediamo la schermata di successo del login, dove l'utente **Admin** ha effettuato l'accesso al conto aziendale da **800000 Corporate**. Questa fase indica il completamento del processo di login e il successo dell'operazione.

Passaggio 5: Visualizzazione del File di Cattura in Wireshark

Nello **Screenshot**, il file **httpdump.pcap** viene aperto in Wireshark. Nel gestore di file vediamo che il file è stato salvato insieme a un altro file di cattura **capture.pcap**, confermando che i pacchetti sono stati catturati correttamente e pronti per l'analisi.

Passaggio 6: Analisi dei Pacchetti HTTP

Nello **Screenshot**, all'interno di Wireshark viene applicato un filtro **HTTP** per visualizzare solo il traffico HTTP. Un pacchetto di interesse mostra una richiesta **POST** al percorso **/doLogin**. Analizzando il contenuto del pacchetto, possiamo vedere che le credenziali di accesso sono state trasmesse in chiaro.

 Screenshot mostra ulteriori dettagli del pacchetto HTTP, confermando che le credenziali username = Admin e password = Admin sono visibili nel traffico intercettato. Questo dimostra la vulnerabilità del protocollo HTTP, che non protegge i dati sensibili trasmessi sulla rete.

Parte 2: Acquisire e Visualizzare il Traffico HTTPS

Passaggio 1: Apertura di un Sito Web HTTPS

Nello **Screenshot**, viene aperta una pagina di login del sito NetAcad, che utilizza HTTPS. Questo protocollo garantisce che le comunicazioni tra il client e il server siano protette tramite crittografia, impedendo a malintenzionati di intercettare e leggere i dati sensibili.

Il lucchetto verde visibile accanto all'URL nel browser conferma che la connessione è crittografata, e tutti i dati trasmessi saranno protetti. Questo è un esempio chiave del passaggio da una connessione non sicura a una connessione sicura.

Passaggio 2: Cattura del Traffico HTTPS

Nello **Screenshot**, il comando **tcpdump** viene utilizzato nuovamente per catturare il traffico HTTPS. In particolare, viene applicato un filtro per

monitorare solo il traffico sul porto **443**, che è il porto standard per le comunicazioni HTTPS. Il file risultante viene salvato in **httpdump.pcap**, pronto per essere analizzato.

Passaggio 3: Analisi del Traffico HTTPS in Wireshark

Nello **Screenshot**, Wireshark mostra il traffico **HTTPS** catturato. A differenza di HTTP, il contenuto del pacchetto è crittografato. Nello **Screenshot 10**, vediamo un pacchetto TLS con il protocollo **TLSv1.2** in azione. Il payload del pacchetto non è leggibile, indicando che la comunicazione è protetta da crittografia.

Applications analyst - File 🔟 [httpdump.pc 🔟 [6302 251.84 🔟 httpdump.pc 🔟 [Terminal - a 🔟 12:49 analyst						
httpdump.pcap [Wireshark 2.5.1]						
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help						
	a	<u>a</u> L 🖺 🗶 C	Q 🐠 📎	*		¥ ¥ • •
Filter	tcp.port==44	tcp.port==443		Expression	Clear Apply Save	
No.	Time	Source	Destination	Protocol	Length Info	
	52 43.708217	34.120.5.221	192.168.43.244	TLSv1.2	1003 Certificate, Server Key Exchang	ge, Server Hello Dor
!	53 43.708220	192.168.43.244	34.120.5.221	TCP	66 43192 → 443 [ACK] Seα=203 A	
	55 43.711403	192.168.43.244	34.120.5.221	TLSv1.2	159 Client Key Exchange, Change C	ipher Spec, Encrypte
:	56 43.711746	192.168.43.244	34.120.237.76	TCP	74 47878 → 443 [SYN] Sea=0 Win:	=29200 Len=0 MSS=
:	57 43.712168	192.168.43.244	34.120.237.76	TCP	74 47880 → 443 [SYN] Sea=0 Win:	=29200 Len=0 MSS=
	59 43.712408	192.168.43.244	34.120.237.76	TCP	74 47882 → 443 [SYN] Sea=0 Win:	=29200 Len=0 MSS=
(50 43.714970	192.168.43.244	34.120.5.221	TLSv1.2	159 Client Key Exchange, Change C	ipher Spec, Encrypte
	66 43.756966	34.120.237.76	192.168.43.244	TCP	74 443 → 47880 [SYN, ACK] Seg=0	0 Ack=1 Win=65535
(57 43.756987	192.168.43.244	34.120.237.76	TCP	66 47880 → 443 [ACK] Sea=1 Ack:	=1 Win=29312 Len=
	58 43.757065	34.120.237.76	192.168.43.244	TCP	74 443 → 47882 [SYN, ACK] Sea=0	0 Ack=1 Win=65535
(59 43.757070	192.168.43.244	34.120.237.76	TCP	66 47882 → 443 [ACK] Sea=1 Ack:	=1 Win=29312 Len=
7	70 43.757621	34.120.237.76	192.168.43.244	TCP	74 443 → 47878 [SYN, ACK] Seg=0	Ack=1 Win=65535
	71 43.757628	192.168.43.244	34.120.237.76	TCP	66 47878 → 443 [ACK] Seg=1 Ack:	
	73 43.761616	34.120.5.221	192.168.43.244	TLSv1.2	376 New Session Ticket, Change Cip	her Spec, Encrypte
-	74 43.761623	34.120.5.221	192.168.43.244	TLSv1.2	361 New Session Ticket, Change Cip	oher Spec, Encrypte
	75 43.761625	34.120.5.221	192.168.43.244	TLSv1.2	135 Application Data	
-	76 43.761626	34.120.5.221	192.168.43.244	TLSv1.2	135 Application Data	
	78 43.764358	192.168.43.244	34.120.237.76	TLSv1.2	272 Client Hello	
	79 43.764555	192.168.43.244	34.120.237.76	TLSv1.2	272 Client Hello	
;	30 43.767317	192.168.43.244	34.120.237.76	TLSv1.2	272 Client Hello	
1	35 43.802227	192.168.43.244	34.120.5.221	TCP	66 43190 → 443 [ACK] Sea=296 A	ck=3350 Win=40448
	26 42 002540	403 460 43 344	24 420 5 224	TCD		

Passaggio 4: Differenze tra HTTP e HTTPS

Lo **Screenshot**, mostra ulteriori dettagli di un pacchetto TLS. Sebbene il pacchetto trasporti dati crittografati, non è possibile vedere il contenuto reale della comunicazione, proteggendo le informazioni sensibili come credenziali di accesso e altre transazioni. Questo rappresenta il vantaggio principale di HTTPS rispetto a HTTP.

