Probability and Statistics Notes

Thomas Møller Jensen February 7, 2023

Lecture 1: Elementary digital circuits

The flash converter, an analog signal can be converted from analog to digital using this converter. it will divide a voltage into different levels, shown as the resistors on the figure below. This will produce a truth table of sorts, if we put in a signal that is between 2 and 3 volts in the example on the blackboard, it will correspond to the 2nd row in the table below:

Exercises

- 1. Show by perfect induction the following relations:
 - 1. (A+B)*(A+C) = A + (B*C)

A	В	С	A + B	A + C	(A+B)*(A+C)	B*C	A + (B * C)
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	1	1	1	1
1	0	0	1	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

2.
$$A * (A + B) = A$$

A	В	A + B	A*(A+B)
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

3.
$$A + \overline{A} = 1$$

A	\overline{A}	$A + \overline{A}$			
0	1	1			
1	0	1			

4.
$$\overline{A+B+C} = \overline{A}*\overline{B}*\overline{C}$$

A	В	С	A+B+C	$\overline{A+B+C}$	\overline{A}	\overline{B}	\overline{C}	$\overline{A} * \overline{B} * \overline{C}$
0	0	0	0	1	1	1	1	1
0	0	1	1	0	1	1	0	0
0	1	0	1	0	1	0	1	0
0	1	1	1	0	1	0	0	0
1	0	0	1	0	0	1	1	0
1	0	1	1	0	0	1	0	0
1	1	0	1	0	0	0	1	0
1	1	1	1	0	0	0	0	0

1. Show that the following expression is equivalent to the exclusive or function $\;$ This is denoted by \oplus