Lecture 20 announcements

- HW 10 is due Thursday
- HW 6 and HW 7 grading are completed. Scores will show on D2L shortly.

Lecture 20 outline

- CART (part 2)
- Variance of an average (e.g., an average of trees)
- Random Forest (part 1)

CART (part2)

FOR CLASSIFICATION, USE A DIFFERENT COST FCM E.G. :

$$= \frac{1}{N_{R_m}} \underbrace{\sum_{i \in R_m} \left[y_i \neq \hat{y}(R_m) \right]}_{A_m}$$

ASSIGNMENT IN RMI

(CLASSW/ MOST PATA PTS. IN Rm.

= CLASSIFICATION ERROR RATE

IN Rm

OR OTHER METRIC (IN TEXT).

CART WITH THESE COST FONS. WORKS FOR C>2
CLASSES A LSO.

Murphy Fig. 16.5(b)

BECAUSE CART IS A GREEDY ALGORITHM, GRIWING THE

TREE UNTIL THE OPTIMAL STOPPING POINT TYPICALLY

DESN'T YIELD THE BEST RESULTS. USUALLY IT IS

RUN PAST THIS POINT, TO YIELD A TREE THAT

OVERFITS. THEN TREE IS PRUNED.

"WEAKEST LINK PRUNING";

— COLLAPSE THE INTERNAL NODE THAT

	GIVES	THE	SMALLEST	//	eeas e	IN
	COST F	CN;	ITERATE.	Ä		
_	USEG	R055-	VALIDATIO	N TO	HALT	WHE

MIN, VALIDATION ERROR IS REACHED,

[MURAHY F.G. 16.5b, 16.6].

CART SUMMARY CM 16.2.	4]
PROS	CONS
· ALGORITHM IS FAIRLY	· PREDICTIVE ACCURACY
SIMPLE	UFTEN ISN'T AS FOOD
· INCORPORATES LINEAR	AS WITH SOME OTHER
AND NONLINEAR BOUNDARIES	MODES.
ON ITS OWN.	· CAN BE UNSTABLE
· CAN INCLUDE SOME AUTO-	TO SCIGHT CHANGES
MATIC FEATURE SELECTION,	IN DATA.

OR RANIL FEATURE IMPOR-	=> HIGHI	VAR IANCE.
TANCE.		
· TYPICALLY ROBUST TO		
OUTLIERS.		

VARIANCE OF AN AVERAGE

$$(1) \begin{cases} var(x) = \mathbb{E}_{\mathcal{S}} \left\{ \left(h_{g}^{(\mathcal{S})}(x) - h_{g}(x) \right)^{2} \right\} \\ h_{g}^{(\mathcal{S})}(x) \stackrel{\triangle}{=} \frac{1}{B} \frac{\mathcal{S}}{b} h_{g}^{(\mathcal{S})}(x) \end{cases}$$

IN WHICH DE IS ONE DATASET DRAWN

(WITH REPLACEMENT) FROM D, AND USED TO

TO TRAIN TREE b.

NOTE THAT:

IF WE TAKE AVERAGE OF Bild RANDOM

VARIABLES V; i,=),2,---, B, EACH WITH

VARIANCE T2, THE AVERAGE WILL HAVE

VARIANCE: -2

IF, INSTEAD, THE R.V. ARE IDENTICALLY
DISTRIBUTED BUT HAVE PAIRWISE CORRELATION

P≥ 0, ONE CAN SHOW THAT:

R	ANDOM	FORESTS
11	1.14201.1	10.0010

- (a) DRAW MANY DATASETS FROM LT, WITH REPLACEMENT.
 - EST. f. (x).

AT EACH POINT, X,

COULD TAKE AVERAGE RESULT (REGRESSION):

$$\widehat{f}(x) = \frac{1}{M} \sum_{m=1}^{M} \widehat{f}_m(x)$$

OR COULD TAKE A VOTE (CLASSIFICATION)

- THIS BY ITSELF IS CALLED BAGGING

 CFOR "BOOTSTRAP AGGREGATING"),

 BUT:
- · DATASETS ARE (HIGHLY) CORRELATED
 - · REDUCES VAR SOME, BUT NOT A LOT.

(b) BEFORE SPLITTING EACH REGION Rm
SERECT A RANDOM SUBSET OF & FEATURES (d< D or d<< D),
THEN SELECT BEST FEATURE OUT OF THE
SUBSET TO THRESHOLD,
CORRELATION BETWEEN TREES IS
TYPICALLY MUCH SMALLER
= REDUCES VARIANCE BY A LOT MORE.