Capstone Project – The Battle of Neighborhoods – Week [1]

Data Acquisition and Cleaning

Data Acquisition

For this project is a combination of data from three sources. The first data source of the project uses a London crime data that shows the crime per borough in London. The dataset contains the following columns:

- Isoa code: code for Lower Super Output Area in Greater London.
- major category: High level categorization of crime
- minor category: Low level categorization of crime within major category.
- value: monthly reported count of categorical crime in given borough
- **year:** Year of reported counts, 2008-2016
- month: Month of reported counts, 1-12 The second source of data is scraped from a Wikipedia
 page that contains the list of London boroughs. This page contains additional information about
 the boroughs, the following are the columns:
- Borough: The names of the 33 London boroughs.
- Inner: Categorizing the borough as an Inner London borough or an Outer London Borough.
- **Status:** Categorizing the borough as Royal, City or other borough.
- Local authority: The local authority assigned to the borough.
- **Political control:** The political party that control the borough.
- **Headquarters:** Headquarters of the Boroughs.
- Area (sq mi): Area of the borough in square miles.
- **Population (2013 est)[1]:** The population in the borough recorded during the year 2013.
- **Co-ordinates:** The latitude and longitude of the boroughs.
- Nr. in map: The number assigned to each borough to represent visually on a map.

The third data source is the list of Neighborhoods in the Royal Borough of Kingston upon Thames as found on a Wikipedia page. This dataset is created from scratch using the list of neighborhoods available on the site, the following are columns:

- **Neighborhood:** Name of the neighborhood in the Borough.
- Borough: Name of the Borough.
- Latitude: Latitude of the Borough.
- Longitude: Longitude of the Borough.

Data Cleaning

The data preparation for each of the three sources of data is done separately. From the London crime data, the crimes during the most recent year (2016) are only selected. The major categories of crime are pivoted to get the total crimes per borough as per the category (see fig 2.1).

	Borough	Burglary	Criminal Damage	Drugs	Other Notifiable Offences	Robbery	Theft and Handling	Violence Against the Person	Total
0	Barking and Dagenham	1287	1949	919	378	534	5607	6067	16741
1	Barnet	3402	2183	906	499	464	9731	7499	24684
2	Bexley	1123	1673	646	294	209	4392	4503	12840
3	Brent	2631	2280	2096	536	919	9026	9205	26693
4	Bromley	2214	2202	728	417	369	7584	6650	20164

Fig 2.1 London crime data after preprocessing

The second data is scraped from a Wikipedia page using the Beautiful Soup library in python. Using this library, we can extract the data in the tabular format as shown in the website. After the web scraping, string manipulation is required to get the names of the boroughs in the correct form (see fig 2.2). This is important because we will be merging the two datasets together using the Borough names.

Fig 2.2 List of London Boroughs

The two datasets are merged on the Borough names to form a new dataset that combines the necessary information in one dataset (see fig 2.3). The purpose of this dataset is to visualize the crime rates in each borough and identify the borough with the least crimes recorded during the year 2016.

Fig 2.3 London Borough Crime

After visualizing the crime in each borough, we can find the borough with the lowest crime rate and hence tag that borough as the safest borough. The third source of data is acquired from the list of neighborhoods in the safest borough on Wikipedia. This dataset is created from scratch, the pandas data frame is created with the names of the neighborhoods and the name of the borough with the latitude and longitude are left blank (see fig 2.4).

	Neighborhood	Borough	Latitude	Longitude
0	Berrylands	Kingston upon Thames		
1	Canbury	Kingston upon Thames		
2	Chessington	Kingston upon Thames		
3	Coombe	Kingston upon Thames		
4	Hook	Kingston upon Thames		

Fig 2.4 Neighborhoods of the safest borough

The coordinates of the neighborhoods is be obtained using Google Maps API geocoding to get the final dataset (See Fig 2.5).

	Neighborhood	Borough	Latitude	Longitude
0	Berrylands	Kingston upon Thames	51.393781	-0.284802
1	Canbury	Kingston upon Thames	51.417499	-0.305553
2	Chessington	Kingston upon Thames	51.358336	-0.298622
3	Coombe	Kingston upon Thames	51.419450	-0.265398
4	Hook	Kingston upon Thames	51.367898	-0.307145

Fig 2.5 Neighborhoods of the safest borough

The new dataset is used to generate the venues for each neighborhood using the Foursquare API.