Analiza zstępująca. Gramatyki typu LL(k)

Języki formalne i techniki translacji - Wykład 9

Maciek Gębala

3 grudnia 2019

Maciek Gehala

naliza zstepujaca. Gramatyki typu I I (k)

Notatki

Analiza metodą zstępującą

- Mamy ciąg tokenów (terminali) $w \in T^*$ i gramatykę G = (N, T, P, S).
- Chcemy sprawdzić czy $w \in L(G)$?
- Szukamy lewostronnego wyprowadzenia dla w.
- Budujemy drzewo wyprowadzenia dla w zaczynając od korzenia i tworząc wierzchołki w porządku preorder.

Maciek Gęba

Analiza zstępująca. Gramatyki typu LL(k

Przykład

ullet Weźmy napis ${\it w}={\it cad}$ i gramatykę

 $\mathcal{S} \ o \ \mathit{cAd}$

 $A \rightarrow ab|a$

- Zaczynamy od symbolu początkowego, pierwszą literą w jest c więc bierzemy produkcję $S \to cAd$ i wyprowadzamy $S \Rightarrow cAd$
- Pierwsza litera cAd jest zgodna z pierwszą literą w więc przechodzimy do symboli A i a. Możemy teraz użyć produkcji A → ab i otrzymać ciąg cabd.
- Druga litera się zgadza więc sprawdzamy trzecią. Niestety mamy d i b czyli źle. Musimy wrócić do A i poszukać alternatywnego wyprowadzenia.
- ullet Używamy produkcji A
 ightarrow a i tym razem jest dobrze.
- $\bullet \ \, \mathsf{Uzyskali\acute{s}my} \ \mathsf{wyprowadzenie} \colon \mathcal{S} \Rightarrow \mathit{cAd} \Rightarrow \mathit{cad}.$

Maciek Gębala

Analiza zstępująca. Gramatyki typu LL

Przykład

Weźmy gramatykę

 $S \rightarrow aAd|aB$

 $A \rightarrow b|c$

 $B \rightarrow ccd|ddc$

- Weźmy słowo w = accd
- $S \Rightarrow aAd$

• $S \Rightarrow aAd \Rightarrow abd$ źle, $abd \neq accd$, nawracamy

• $S \Rightarrow aAd \Rightarrow acd$ źle, $acd \neq accd$, nawracamy

S ⇒ aB

• $S \Rightarrow aB \Rightarrow accd$ OK

Newsel
Notatki
Notatki
Notatki

Faktoryzacja lewostronna Notatki Kiedy nie jest jasne na podstawie pierwszego symbolu, którą produkcję wybrać do rozwinięcia nieterminala, przekształcamy te produkcje tak aby decyzję podjąć później. Przykład instr → if wyr then instr else instr|if wyr then instr ullet instr o if wyr then instr koniec koniec o else instr|arepsilon|Algorytm lewostronnej faktoryzacji gramatyki Notatki $\bullet\,$ Dla każdego nieterminala A znajdź najdłuższy prefiks α wspólny dla co najmniej dwóch prawych stron A-produkcji. • Jeśli $\alpha \neq \varepsilon$ to zamień produkcje $A \to \alpha \beta_1 | \dots | \alpha \beta_n | \gamma_1 | \dots | \gamma_m$ na produkcje $A \rightarrow \alpha B |\gamma_1| \dots |\gamma_m|$ $B \rightarrow \beta_1 | \dots | \beta_n$ gdzie B jest nowym dodatkowym nieterminalem. • Transformację powtarzamy dopóki zmienia ona gramatykę. Analizatory przewidujące Notatki Często uważnie tworząc gramatykę, usuwając w niej lewostronną rekurencję i wykonując lewostronną faktoryzację możemy uzyskać gramatykę, która przy wyprowadzeniu nie potrzebuje nawrotów. Wyprowadzenie w takiej gramatyce może być łatwo sprawdzane prostym, deterministycznym automatem ze stosem. Przykład Notatki Weźmy gramatykę $E \rightarrow E+T|T$ $\rightarrow T*F|F$ \rightarrow (E)|id • Eliminujemy lewostronną rekurencję \rightarrow TG \rightarrow +TG| ε \rightarrow FV \rightarrow *FV| ε (E)|idGramatyka nie potrzebuje lewostronnej faktoryzacji.

Działanie analizatora przewidującego na id + id * id

Stos	Wejście	Wyjście
\$ <i>E</i>	id + id * id\$	
\$GT	id + id * id\$	$E \rightarrow TG$
\$GVF	id + id * id\$	$T \rightarrow FV$
\$GV	+id * id\$	$F \rightarrow id$
\$ <i>G</i>	+id * id\$	$V \rightarrow \varepsilon$
\$GT	id * id\$	$G \rightarrow +TG$
\$GVF	id * id\$	$T \rightarrow FV$
\$GV	* <i>id</i> \$	$F \rightarrow id$
\$GVF	id\$	$V \rightarrow *FV$
\$GV	\$	$F \rightarrow id$
\$ <i>G</i>	\$	V ightarrow arepsilon
\$	\$	$G \rightarrow \varepsilon$

Maciek Gebala

naliza zstenujaca. Gramatyki tynu III(k)

Zbiory *FIRST* i *FOLLOW*

 FIRST pomaga wybrać produkcję którą możemy użyć do wyprowadzania napisu.

$$FIRST(\alpha) = \{x \in T : \exists_{\beta} \ \alpha \Rightarrow^* x\beta\}$$

 FOLLOW pomaga synchronizować symbole podczas odzyskiwania kontroli w trybie paniki.

$$FOLLOW(A) = \{x \in T : \exists_{\alpha} \exists_{\beta} S \Rightarrow^* \alpha Ax\beta\}$$

 Na podstawie tych funkcji generujemy tablicę analizatora przewidującego która dla nieterminala A i terminala a wyznacza którą produkcję możemy użyć.

Maciek Gębal

Analiza zstępująca. Gramatyki typu LL(k

Wyznaczanie FIRST(X)

Dla wszystkich symboli X z gramatyki G tworzymy zbiory FIRST według następujących reguł

- Jeśli X jest terminalem to $FIRST(X) = \{X\}.$
- **②** Jeśli $X \to \varepsilon$ jest produkcją to do FIRST(X) dodajemy ε .
- Jeśli X jest nieterminalem i $X \to Y_1 Y_2 \dots Y_k$ to a dodajemy do FIRST(X) jeżeli istnieje i takie, że $a \in FIRST(Y_i)$ oraz $\varepsilon \in FIRST(Y_j)$ dla każdego j < i. $\varepsilon \in FIRST(X)$ jeśli należy do wszystkich $FIRST(Y_i)$

Ponadto

- $FIRST(X\alpha) = FIRST(X)$ gdy $\varepsilon \notin FIRST(X)$
- $FIRST(X\alpha) = FIRST(X) \cup FIRST(\alpha)$ gdy $\varepsilon \in FIRST(X)$

Maciek Gębala

Analiza zstępująca. Gramatyki typu LL(k

Wyznaczanie FOLLOW(A)

Dla wszystkich nieterminali A FOLLOW(A) tworzymy według następujących reguł

- Dla symbolu początkowego S do FOLLOW(S) dodajemy \$.
- Jeśli mamy produkcję $\mathbf{A} \to \alpha \mathbf{B} \beta$ to do FOLLOW(B) dodajemy wszystkie symbole z $FIRST(\beta)$ poza ε .
- Jeśli mamy produkcję $A \rightarrow \alpha B$ albo produkcję $A \rightarrow \alpha B\beta$, gdzie $\varepsilon \in FIRST(\beta)$ to do FOLLOW(B) dodajemy wszystkie symbole z FOLLOW(A).

Notatki
Notatki
Notatki

D	r-1	بارار	00
	IΖV	IXI	aС

- $FIRST(E) = FIRST(T) = FIRST(F) = \{(, id\}$
- $FIRST(G) = \{+, \varepsilon\}$
- $FIRST(V) = \{*, \varepsilon\}$
- *FOLLOW*(*E*) = *FOLLOW*(*G*) = {),\$}
- $FOLLOW(T) = FOLLOW(V) = \{+, \}$
- *FOLLOW*(*F*) = {+,*,),\$}

Maciek Gebala

naliza zstepujaca. Gramatyki typu LL(k)

Budowa tablic analizatora przewidującego

Dla każdej produkcji $A \to \alpha$

- **1** dla każdego $a \in T$ jeśli $a \in FIRST(\alpha)$ to wpisz $A \to \alpha$ do M[A, a].
- jeśli $\varepsilon \in FIRST(\alpha)$ to dla każdego $b \in FOLLOW(A)$ wpisz $A \to \alpha$ do M[A,b].

Maciek Gębala

naliza zstępująca. Gramatyki typu *LL(k*

Przykład

Maciek Gebala

Analiza zstepujaca, Gramatyki typu LL()

Gramatyki LL(1)

- Pierwsze L przeglądanie od lewej do prawej.
- Drugie L tworzenie lewostronnego wyprowadzenia.
- 1 używanie do podejmowania decyzji jednego symbolu w każdym kroku.
- Dla każdego nieterminala z dwóch różnych prawych stron produkcji nie da się wyprowadzić ciągów zaczynających się od tego samego terminala.

Niestety nie wszystkie gramatyki bezkontekstowe dają się sprowadzić do postaci LL(1).

Notatki
No. 11
Notatki
Notatki
Notatki

Gramatyki LL(1)

Gramatyka jest typu LL(1) gdy z (rozpatrujemy wyprowadzenia lewostronne)

$$S \Rightarrow^* wA\alpha \Rightarrow w\beta\alpha \Rightarrow^* wx$$
, $S \Rightarrow^* wA\alpha \Rightarrow w\gamma\alpha \Rightarrow^* wy$

oraz

$$FIRST(x) = FIRST(y)$$

wynika, że $\beta = \gamma$.

Inaczej: jeśli $S\Rightarrow^* wA\alpha\Rightarrow w\beta\alpha\Rightarrow^* wx$, to aby odgadnąć następny krok w wyprowadzeniu należy poznać pierwszy znak x.

.

naliza zstenujaca. Gramatyki tynu //(k)

Notatki

Testowanie na własność LL(1)

G jest *LL*(1), gdy dla $S \Rightarrow^* wA\alpha$ i dowolnych produkcji $A \to \beta$, $A \to \gamma$ mamy

 $FIRST(\beta\alpha) \cap FIRST(\gamma\alpha) = \emptyset.$

Zalety własności: FIRST można efektywnie obliczyć!

Maciek Gębal

Analiza zstępująca. Gramatyki typu LL(k

Dowód własności

- Niech $c \in FIRST(\beta\alpha) \cap FIRST(\gamma\alpha)$, $\beta \neq \gamma$. Wtedy potrafimy zbudować wyprowadzenia z $\beta\alpha$ i $\gamma\alpha$ uzyskując c na pierwszym miejscu. Otrzymamy $S \Rightarrow^* wA\alpha \Rightarrow w\beta\alpha \Rightarrow^* wcx$ i $S \Rightarrow^* wA\alpha \Rightarrow w\gamma\alpha \Rightarrow^* wcy$, ponieważ FIRST(cy) = c = FIRST(cx), z definicji LL(1) mielibyśmy $\beta = \gamma$. Zatem gramatyka nie jest LL(1).
- Niech G nie będzie LL(1), tj.: jeśli S ⇒* wAα ⇒ wβα ⇒* wcx i S ⇒* wAα ⇒ wγα ⇒* wcy, wtedy c ∈ FIRST(βα) ∩ FIRST(γα). (oczywiste!)

Maciek Gebala

Analiza zstepujaca, Gramatyki typu LL(k

Test na LL(1)

G jest LL(1) wtedy i tylko wtedy, gdy dla każdego A i każdej produkcji $A o \beta | \gamma : FIRST(\beta \ FOLLOW(A)) \cap FIRST(\gamma \ FOLLOW(A)) = \emptyset.$

Dowód (⇐) - z pustości wynika *LL*(1)

Oczywiście:

- Jeśli $S\Rightarrow^* wA\alpha\Rightarrow w\beta\alpha\Rightarrow^* wx$ to FIRST(x) należą do $FIRST(\beta\ FOLLOW(A))$.
- Gdyby $S\Rightarrow^*wA\alpha\Rightarrow w\gamma\alpha\Rightarrow^*wy$ oraz FIRST(x)=FIRST(y)=c, to mielibyśmy $c\in FIRST(\beta\ FOLLOW(A))\cap FIRST(\gamma\ FOLLOW(A))$.
- Ale jest to niemożliwe.

Notatki
Notatki

Zakładamy, że $c \in FIRST(\beta FOLLOW(A)) \cap FIRST(\gamma FOLLOW(A))$. Dowód: (⇒) z *LL*(1) wynika pustość pewnego x, $S \Rightarrow vA\alpha \Rightarrow v\gamma\alpha \Rightarrow^* vcy$ dla pewnego y, i FIRST(cy) = c = FIRST(cx). Równocześnie $\beta \neq \gamma$, więc G nie jest LL(1)! ② $c \notin FIRST(\beta)$, $c \notin FIRST(\gamma)$, ale $c \in FOLLOW(A)$; $\varepsilon \in FIRST(\beta)$, $\varepsilon \in FIRST(\gamma)$. Wtedy: $S \Rightarrow^* vA\alpha \Rightarrow v\beta\alpha \Rightarrow^* v\alpha \Rightarrow^* vcx$. Także $S \Rightarrow^* vA\alpha \Rightarrow v\gamma\alpha \Rightarrow^* v\alpha \Rightarrow^* vcx$. Wherew definic LL(1). Test na *LL*(1) Notatki Dowód: (⇒) z LL(1) wynika pustość • $c \in FIRST(\gamma)$, $c \notin FIRST(\beta)$, ale $c \in FOLLOW(A)$ • $i \in FIRST(\beta)$. Wtedy: $S \Rightarrow^* wA\alpha \Rightarrow w\beta\alpha \Rightarrow^* w\alpha \Rightarrow^* wcx$. Także: $S \Rightarrow^* wA\alpha \Rightarrow w\gamma\alpha \Rightarrow^* wcy\alpha \Rightarrow^* wcycx$. Ponieważ $\mathit{FIRST}(\mathit{cx}) = \mathit{c} = \mathit{FIRST}(\mathit{cycx}) \text{ oraz } \beta \neq \gamma, \text{ mamy sprzeczność}$ z LL(1). Tabele parsowania dla *LL*(1) Notatki • M[A, a] zawiera $A \rightarrow \beta$, jeśli $a \in FIRST(\beta \ FOLLOW(A))$. • Zgodnie z poprzednim twierdzeniem nie ma konfliktów dla LL(1). • Parsing z taką tabelą określa jednoznacznie jedyne możliwe wyprowadzenie lewostronne. Gramatyka spoza *LL*(1) Notatki • Gramatyka G $S \rightarrow \varepsilon | abA$ A → Saa|b • *G* nie jest *LL*(1): $S \Rightarrow abA \Rightarrow abSaa \Rightarrow ababAaa \Rightarrow^* ab\underline{a}...$ S \Rightarrow abA \Rightarrow abSaa \Rightarrow abaa ullet Jeden znak nie wystarczy aby rozróżnić pomiędzy ${oldsymbol S} o arepsilon$ i S o abA dla drugiego kroku wyprowadzenia.

Notatki

Test na LL(1)

 $FIRST_k(\alpha)$ zdefiniowane tak jak $FIRST(\alpha)$:

- $\exists \alpha \Rightarrow^* w$, w składa się z terminali, $|w| \geqslant k$ i x jest prefiksem wdługości k, to $x \in FIRST_k(\alpha)$, lub
- $\exists \alpha \Rightarrow^* w$, w składa się z terminali, |w| < k i x = w, to $x \in \mathit{FIRST}_k(\alpha)$.

Gramatyka LL(k)

Gramatyka jest $LL(k) \Leftrightarrow z$

 $S \Rightarrow^* wA\alpha \Rightarrow w\beta\alpha \Rightarrow^* wx$

 $S \Rightarrow^* wA\alpha \Rightarrow w\gamma\alpha \Rightarrow^* wy$

 $FIRST_k(x) = FIRST_k(y)$

wynika, że $\beta = \gamma$.

Inaczej: jeśli $S\Rightarrow^* wA\alpha\Rightarrow w\beta\alpha\Rightarrow^* wx$, to wystarcza poznać kznaków x aby określić następny krok wyprowadzenia $S \Rightarrow^* wA\alpha$.

Gramatyka nie-LL(k) dla dowolnego k

Przykład

Gramatyka

 $S \rightarrow A|B$

 $A \rightarrow aAb|0$

 $B \rightarrow aBbb|1$

definiuje

$$\{a^n0b^n: n\geqslant 0\} \cup \{a^n1b^{2n}: n\geqslant 0\}.$$

Jest to język rozpoznawany deterministycznym automatem ze stosem, ale nie jest w żadnym LL(k).

(Blok symboli a może być dowolnie długi i nie można się zdecydować na $S \Rightarrow A \text{ lub } S \Rightarrow B$.)

Podstawowa własność

G jest LL(k) wtedy i tylko wtedy, gdy dla dowolnych $S \Rightarrow^* wA\alpha$, oraz $A \rightarrow \beta$, $A \rightarrow \gamma$ mamy

 $FIRST_k(\beta\alpha) \cap FIRST_k(\gamma\alpha) = \emptyset$

Następująca własność nie jest równoważna $\overline{LL(k)!}$

Jeśli $A \to \beta, A \to \gamma, \beta \neq \gamma$, to $FIRST_k(\beta \ FOLLOW_k(A)) \cap FIRST_k(\gamma \ FOLLOW_k(A)) = \emptyset$

Przykład

 $\mathcal{S} o a$ Aaa|bAba i A o b|arepsilon, to widać z definicji, że gramatyka jest LL(2).

Ale: $FOLLOW_2(A) = \{aa, ba\},$ $FIRST_2(b FOLLOW_2(A)) \cap FIRST_2(\varepsilon FOLLOW_2(A)) = \{ba\}$

Notatki
Notatki
Natali
Notatki

Konstrukcja parsera LL(k)Notatki • G - gramatyka LL(k), $wx \in L_G$ • Konstruujemy lewostronne wyprowadzenie dla wx, zakładamy, że mamy $\mathcal{S} \Rightarrow^* w \alpha$, takie że α zaczyna się nieterminalem, $\alpha \Rightarrow^* X$. • Z definicji, z w i k następnych znaków x można określić następny krok wyprowadzenia. • Problem: w nie można przechować na stosie (tam jest α). Tabele LL(k) Notatki $L_1 \oplus_k L_2 = \{w: \exists_{x \in L_1} \exists_{y \in L_2} \ (w = xy \land |xy| \leqslant k) \lor (w = \textit{FIRST}_k(xy))\}$ $T_{A,L}$ trzeba traktować jednocześnie jako funkcję. Niech \boldsymbol{u} ma długość k. Wtedy $\bigcirc \ \, \textit{$T_{A,L}(u)$} = \texttt{error}, \quad \text{jeśli dla żadnej produkcji $A \to \alpha$ nie zachodzi}$ $u \in FIRST_k(\alpha) \oplus_k L$, $\begin{array}{ll} \bullet & T_{A,L}(u) = (A \rightarrow \alpha, \langle Y_1, \ldots, Y_m \rangle) & \text{jeśli dla dokładnie jednej} \\ \text{produkcji } A \rightarrow \alpha \text{ mamy } u \in \mathit{FIRST}_k(\alpha) \oplus_k L, (\langle Y_1, \ldots, Y_m \rangle) \\ \end{array}$ zdefiniowane poniżej) • $T_{A,L}(u) = \texttt{error}$ jeśli dla więcej niż jednej produkcji $A \to \alpha$ mamy $u \in FIRST_k(\alpha) \oplus_k L$, (dla języka LL(k) nie powinno to zajść). Definicja $\langle Y_1, \ldots, Y_m \rangle$ Notatki Niech $\alpha = x_0 B_1 x_1 B_2 x_2 \dots B_m x_m$, gdzie B_i jest nieterminalem, a x_i to ciąg terminali. Wtedy: $Y_i = FIRST_k(x_iB_{i+1} \dots B_mx_m \oplus_k L).$ Y_i mówi jakie ciągi wyprowadzane za B_i są dopuszczalne o ile skorzystamy z $A \rightarrow \alpha$. Konstrukcja tabel LL(k)Notatki Konstruujemy tylko takie $T_{A,L}$, które okazują się niezbędne: dla sytuacji początkowej $\mathcal{I}=\{\mathcal{T}_{\mathcal{S},\{\varepsilon\}}\}$ rozszerzamy dopóty, dopóki coś nowego się pojawia. Reguła:

 \in

 $x_0B_1x_1B_2x_2...B_mx_m, \langle Y_1,...,Y_m\rangle$),

 \mathcal{I}

T(u)

jeśli T

dołącz T_{B_i,Y_i} do \mathcal{I} .

(A

Parser LL(k)

- Krok parsera:
 - $M[T_{A,L}, u]$ zdefiniowany jak następuje: niech $T_{A,L}(u) = (A \rightarrow x_0 B_1 x_1 B_2 x_2 \dots B_m x_m, \langle Y_1, \dots, Y_m \rangle)$, wtedy usuń $T_{A,L}$ ze stosu, zapisz $x_0 T_{B_1, Y_1}, x_1, \dots, T_{B_m, Y_m}, x_m$ na stosie, (głowica nie porusza się).

 M[a, av] = usuń a ze stosu i przesuń głowicę o 1 pozycję,

 $M[\$, \varepsilon] = \text{accept}$,

 M[X, u] = reject, w p.p.

Podstawowa własność

Dla każdej LL(k)-gramatyki LL(k)-parser określa wyprowadzenie lewostronne gdy $w\in L_G$, lub daje komunikat błędu w przeciwnym wypadku.

Dowód długi i oczywisty.

Maciek Gębala Analiza zstępująca. Gramatyki typu LL(k)

Notatki
Notatki
Notatki
Notatki
Notatki
Notatki
Notatki