Формулировка проблемы

Во время обучения нейронных сетей проблема слишком больших градиентов может проявляться как взрыв градиентов (gradient explosion). Это явление приводит к нестабильности обучения, когда обновления весов становятся слишком большими. что может повлиять на:

- 1. Плохую сходимость или её отсутствие.
- 2. Переполнение чисел при вычислениях (overflow).
- 3. Потерю эффективности в обновлении весов.

Мы рассмотрим, **как определить слишком большие градиенты** на этапе обучения нейронной сети, а также приведём **эмпирические правида** и способы диагностики

Анализ задачи

1. Ключевая метрика — норма градиента

При каждой итерации обучения для набора весов ${f w}$ нейронной сети вычисляется градиент функции потерь L по отношению к ${f w}$:

$$\mathbf{g} = \nabla_{\mathbf{w}} L$$

Для оценки величины градиента можно использовать его норму:

• Евклидова норма (L2-норма):

$$\|\mathbf{g}\|_2 = \sqrt{\sum_i g_i^2}.$$

Максимальная компонента (L∞-норма):

$$\|\mathbf{g}\|_{\infty} = \max_i |g_i|.$$

Большие значения нормы указывают на слишком большой градиент.

2. Признаки слишком больших градиентов

Критерии, по которым можно диагностировать проблему:

- 1. Резкие скачки значения функции потерь.
 - ullet Если в течение обучения значение функции потерь L резко возрастает (вместо убывания), это может быть признаком взрыва градиенто
- 2. Великая величина нормы градиента.
 - Значения $\|\mathbf{g}\|_2$ или $\|\mathbf{g}\|_\infty$ становятся на несколько порядков больше обычных значений (например, 10^3 , 10^4 или выше).
 - Это можно наблюдать при логировании или визуализации нормы градиента.
- 3. Численные ошибки.
 - Переполнение или генерация NaN (Not a Number) в параметрах весов или функции потерь.
- 4. Плохие обновления весов.
 - Если после применения градиентного шага веса изменяются слишком сильно (например, больше их начальных значений).

3. Эмпирические правила для определения слишком больших градиентов

Существует несколько практических подходов для диагностики проблемы:

- 1. Мониторинг нормы градиента.
 - ullet Норма $\|\mathbf{g}\|_2$ должна оставаться в разумных пределах. Типичные значения зависят от модели, но обычно варьируются в диапазоне 10^{-2} до 10^1 .
 - ullet Если $\|{f g}\|_2 > 10^2$ (особенно в ранние итерации), это сигнал к проверке.
- 2. Оценка изменения весов.
 - Если относительное изменение весов на шаге обучения становится слишком большим:

$$\frac{\|\Delta \mathbf{w}\|_2}{\|\mathbf{w}\|_2} > \varepsilon,$$

где $arepsilon pprox 10^{-1}$ или 10^{-2} .

- 3. Проверка производной функции потерь.
 - Если производная функции потерь по весам имеет тенденцию резко возрастать на определённых итерациях, это явный признак взрыва градиентов
- 4. Анализ весов
 - Если веса становятся слишком большими (например, на порядки выше 1), это может быть результатом слишком больших градиентов

Способы диагностики и рекомендации

А. Практические способы диагностики:

- 1. **Логирование нормы градиентов.** На каждой итерации логируйте значения $\|\mathbf{g}\|_2$ или $\|\mathbf{g}\|_\infty$. Визуализация таких значений может помочь выявить тенденции роста
- 2. Трассировка NaN. Если веса, функция потерь или градиенты становятся NaN, это явный признак численной нестабильности.
- 3. **Визуализация потерь.** Построение графика значения L от итерации поможет увидеть неожиданные скачки.

В. Эмпирические пределы:

1. Норма градиента:

$$10^{-2} \leq \|\mathbf{g}\|_2 \leq 10^1.$$

Если $\|\mathbf{g}\|_2 > 10^2$, это потенциальная проблема. 2. **Шаг обновления весов:**

$$\frac{\|\Delta \mathbf{w}\|_2}{\|\mathbf{w}\|_2} \leq 0.1.$$

С. Меры для предотвращения взрыва градиентов:1. Градиентный клиппинг: Ограничение нормы градиента:

$$\mathbf{g} \leftarrow \mathbf{g} \cdot \min \left(1, \frac{c}{\|\mathbf{g}\|_2}\right),$$

где c — предельное значение нормы (например, c=1.0).

- 2. **Правильная инициализация весов:** Используйте подходящие методы, такие как He или Xavier initialization.
- 3. Нормализация данных и входов. Убедитесь, что входные данные имеют нулевое среднее и единичное стандартное отклонение
- 4. **Использование малых шагов обучения.** Слишком большой шаг обучения (η) может усугублять взрыв градиентов.
- 5. Использование устойчивых архитектур. Например, использование LSTM вместо стандартных RNN для предотвращения взрыва градиентов в рекуррентных сетях

Вывод

Тревогу о взрыве градиентов стоит бить, если:

- $\|{f g}\|_2$ значительно превышает значения $10^1 \text{-} 10^2$.
- Относительное изменение весов ($\|\Delta {f w}\|_2/\|{f w}\|_2$) становится чрезмерным
- Наблюдаются резкие скачки функции потерь или генерация NaN.

Использование техник, таких как градиентный клиппинг и подходящая инициализация весов, помогает предотвратить эту проблему

0 D 7 C V

Сообщить ChatGPT