Régressions possibles

12 mars 2019

1 Termes

1.1 Variables

- $L^{\mathring{T}}/L^{\mathring{L}}$ perte_relative_partielle : [-2;+2] suite à hausse taxe partielle
- G^p gagnant_partielle_categorie : G/N/P suite à hausse taxe partielle compensée
- G gagnant_categorie : G/N/P suite à hausse taxe compensée
- \tilde{G} gain : [-6; +5] suite à hausse taxe compensée
- A^I taxe_approbation : Oui/Non/NSP approbation hausse taxe compensée avant info (I pour initial ou ignorant)
- P progressivite : Oui/Non/NSP hausse taxe compensée avantagerait les plus modestes (seulement pour apres_modifs)
- Γ simule_gagnant : ménage simulé gagnant avec 5 chances sur 6 suite à hausse taxe compensée
- $\widehat{\Gamma}$ simule gain : gain simulé du ménage suite à hausse taxe compensée
- G^P/G^F : gagnant_[progressif/feedback]_categorie: G/N/P suite à hausse taxe compensée et à affichage de l'info sur la progressivité I^P / simule gagnant Γ
- $\hat{\Gamma}^C$ simule_gain_cible : gain simulé du ménage suite à hausse taxe compensée
- A^P/A^F taxe_[progressif/feedback]_approbation : Oui/Non/NSP approbation hausse taxe compensée après info progressivité et/ou simule_gagnant (A^r pour renseigné)
- π categorie_cible : /20/30/40/50/70/ catégorie de revenus du répondant et de son ménage
- T (resp. T_2) traite_cible : indicatrice que le répondant (resp. son conjoint) reçoit un versement dans la taxe avec compensation ciblée (T = (R < c))
- $-\Theta$ (resp. Θ^C) versement : versement reçu comme compensation de la taxe
- G^C gagnant_cible_categorie : G/N/P suite à hausse taxe avec compensation ciblée
- A^C taxe_cible_approbation : Oui/Non/NSP approbation hausse taxe avec compensation ciblée
- R (resp. R_2): revenu (resp. revenu du conjoint)
- **C** : vecteur de contrôles

1.2 Réformes

- V hausse TVA
- $\mathring{p}: \mathring{T}, \mathring{L}$ hausse taxe partielle
- -p:T,L hausse taxe partielle compensée
- Ø hausse taxe compensée
- C hausse taxe avec compensation ciblée (20/30/40/50) percentiles)

1.3 Traitements

- p:T,L variante_partielle : fuel ou chauffage
- S apres_modifs : 2è moitié : rajout de questions et d'information sur la progressivité
- r: F, P variante feedback: f/p: feedback (2/3) / progressivité (1/3)
- I^P info_progressivite : info sur la progressivité ((variante : progressivité) ou (apres_modifs et variante : feedback et variante_progressivite : fb info))
- c cible $\leq \pi$ categorie_cible : cible attribuée aléatoirement comme max ou min de categorie cible (sauf pour categorie cible=>70)

2 Intérêt personnel

2.1 Gain subjectif avec ciblage

$$A_i^C = \delta_0 + \beta_G G_i^C + \delta_A A_i^I + \epsilon_i$$

2.2 Discontinuité

$$A_i^C = \delta_0 + \beta_T T_i + \beta_2 T_{2,i} + \delta_R R_i + \epsilon_i$$

2.3 Discontinuité instrumentée

$$G_i^C = \gamma_0 + \alpha_T T_i + \alpha_2 T_{2,i} + \gamma_A A_i^I (+\gamma_R R_i) + \eta_i$$

$$A_i^C = \delta_0 + \beta_G \widehat{G}_i^C \left(+ \sum_c \beta_c \mathbf{1}_{c_i = c} + \beta_{G \cdot c} \widehat{G}_i^C \mathbf{1}_{c_i = c} \right) + \delta_A A_i^I (+\delta_R R_i) + \epsilon_i$$

${f 2.4}$ Simulation comme instrument (à travers G^F)

introduire A^I produit un effet

$$\begin{split} G_i^F &= \gamma_0 + \Gamma_i + \gamma_A A_i^I + \gamma_R R_i + \eta_i \\ A_i^F &= \delta_0 + \beta_G \widehat{G_i^F} + \delta_A A_i^I + \delta_R R_i + \epsilon_i \end{split}$$

2.5 Simulation comme instrument (à travers ΔG^F)

introduire A^I produit un effet

$$\Delta G_i^F = \gamma_0 + \Gamma_i + \gamma_A A_i^I + \gamma_R R_i + \eta_i$$

$$A_i^F = \delta_0 + \beta_G \widehat{\Delta G_i^F} + \delta_A A_i^I + \delta_R R_i + \epsilon_i$$

3 Persistance et biais des croyances

3.1 Persistance après la simulation

$$\Delta G_i^F = \delta_0 + \beta_{\Gamma} \Gamma_i + \beta_{\mathbf{C}} \mathbf{C}_i + \epsilon_i$$

3.2 Simulation comme instrument

$$\Delta A_i^F = \delta_0 + \beta_\Gamma \Gamma_i + \beta_\mathbf{C} \mathbf{C}_i + \epsilon_i$$

3.3 Biais de confirmation

$$\Delta A_i^F = \delta_0 + \beta_j G_i + \epsilon_i \,|\, \Gamma_i = j$$

3.4 Biais à la perte

U: update_correct vaut +1 si le répondant adopte le feedback qui infirme sa croyance initiale, -1 s'il update contre le feedback qui pourtant le confirme, 0 s'il n'update pas

$$U_i = \delta_0 + \beta_G G_i^F \mid \Gamma_i \neq G_i$$

4 Modèle adaptatif bayésien

On fait l'hypothèse que

$$\mathbb{P}_{i,t}\left(G_{i} > 0\right) = f\left(\tilde{G}_{i}\right)$$

et on estime f. On a le gain subjectif $\tilde{G}_i = \tilde{\Gamma}_i - b + \epsilon_i$ où l'erreur de l'individu i par rapport au gain objectif $\tilde{\Gamma}_i$ est $-b + \epsilon_i$, avec $\mathbb{E}\left[\epsilon_i\right] = 0$ (et en espérant que $\mathbb{E}\left[\epsilon_i \mid \Delta \hat{E}_i\right] = 0$). (On pourrait faire dépendre b de caractéristiques observables dans une extension). On peut estimer le biais b directement.

$$\tilde{G}_{i} = \underbrace{110 - \Delta E_{i}}_{\tilde{\Gamma}_{i}} - b + \epsilon_{i}$$

$$= \underbrace{110 - \Delta \hat{E}_{i}}_{\hat{\Gamma}_{E}} + \iota_{i} - b + \epsilon_{i}$$

On suppose que le répondant connaît notre estimation $\widehat{\Gamma}_i$ du gain objectif, qui est biaisée avec un biais noté ι_i (qu'on peut estimer dans une extension pour estimer b plus précisément). Le répondant sait qu'il est biaisé. Il sait que l'écart $\widehat{G}_i - \widehat{\Gamma}_i$ entre son estimation et la nôtre est en moyenne de $\iota_i - b$, mais ne sait pas quel part de cet écart est dû à son biais, et quelle part est due à notre biais (l'estimation qu'il croit être la nôtre est $\widehat{\Gamma}_i + \iota_i$). Il sait aussi qu'outre le biais, il y a un bruit ϵ_i dans son estimation de ses dépenses $\Delta E_i + b - \epsilon_i$, ce qui l'empêche de connaître parfaitement notre biais ι_i , sur lequel il a néanmoins une information partielle (liée à ses caractéristiques inobservées par nous).

Après le feedback, il va réviser son gain subjectif en

$$\tilde{G}_{i}^{F} = \hat{\Gamma}_{i} + \iota_{i} - (\alpha + \eta_{i}) b + \epsilon_{i}$$

 $\alpha \in [0;1]$ ssi le répondant update dans le bon sens. (On pourrait rendre le nouveau bruit $\eta_i b$ indépendant de b, à voir en fonction des données).

 \tilde{G}_i^F n'est pas observée, mais on peut l'estimer à partir de l'estimation de f (et en regroupant des individus similaires) :

$$\tilde{G}^F = \hat{f}^{-1} \left(\mathbb{P}_{i,t+1} \left(G_i^F > 0 \right) \right)$$

Le paramètre qui nous intéresse est α , car il représente l'ampleur de la révision effectuée par le répondant. On l'estime en utilisant $\tilde{G}_i - \tilde{G}_i^F = b (\alpha + \eta_i - 1)$:

$$\hat{\alpha} = 1 + \frac{\tilde{G}_i - \hat{G}_i^F}{b}$$

TODO : mettre ça dans un cadre bayésien (le 5/6 n'intervient pas par exemple!). Pistes : $\tilde{\mathbb{P}}(\Gamma > 0) \stackrel{\text{hyp.}}{=} \tilde{\mathbb{P}}\left(\hat{\Gamma} > 0\right) \implies \tilde{\mathbb{P}}\left(\hat{\Gamma} > 0 \mid \Gamma > 0\right) = \tilde{\mathbb{P}}\left(\Gamma > 0 \mid \hat{\Gamma} > 0\right) = \frac{5}{6}$; $\tilde{\mathbb{P}}(\Gamma > 0)$ peut être estimé/encadré à partir de G et $L^{\hat{p}}$; $\tilde{\mathbb{P}}\left(\tilde{G}_i^F > 0 \mid \hat{\Gamma} > 0\right) = \tilde{\mathbb{P}}\left(\hat{\Gamma}_i + \iota_i - (\alpha + \eta_i) \, b > -\epsilon_i \mid \hat{\Gamma}_i > 0\right)...$; le répondant est certain quand il croit que $\text{Var}\left(\epsilon_i\right)$ est faible, mais alors après un feedback infirmant, il devrait soit réviser son estimation fortement (car il se rend compte qu'un $|\epsilon_i|$ élevé est improbable) : réviser b, soit ça signifie qu'il croit que notre estimation est fortement biaisée ($\hat{\Gamma}_i + \iota_i$, avec $|\iota_i|$ élevé) : réviser ι_i (cela dénote une irrationalité ou un manque de confiance en nous, car la révision devrait être vers $\iota_i = 0$) ; on faisait l'hypothèse que le répondant connaissait $\hat{\Gamma}_i$ mais on devrait peut-être rajouter une erreur sur ce terme (ou interpréter ι_i ainsi).