QUEEN MARY, UNIVERSITY OF LONDON

M. Sc. Examination Specimen

MTHM A30 Permutation groups

Duration: 3 hours

Date and time:

You may attempt as many questions as you wish and all questions carry equal marks. Except for the award of a bare pass, only the best FOUR questions answered will be counted. Calculators are NOT permitted in this examination.

Question 1 Let H be a subgroup of a group G. Explain how G acts as a permutation group on the *coset space* $H \setminus G$ (the set of all right cosets of H in G). Prove that

- the stabiliser of the coset Hg in this action is $g^{-1}Hg$;
- the action is faithful if and only if

$$\bigcap_{g \in G} g^{-1}Hg = 1;$$

• the action is primitive if and only if H is a maximal proper subgroup of G.

A *double coset* of H in G is a set of the form $HgH = \{h_1gh_2 : h_1, h_2 \in H\}$. Prove that a double coset is a union of right cosets, and that these right cosets form an orbit of H in its action on the coset space $G \setminus H$. Hence show that G is 2-transitive if and only if $G = H \cup HgH$ for $g \notin H$.

Question 2 Let G be a transitive permutation group on Ω , and let N be a regular normal subgroup of G.

Prove that there is a bijection ϕ between Ω and N which is an isomorphism of N-spaces, where N acts on itself by right multiplication.

Prove that, if $\alpha \in \Omega$ corresponds to the identity element of N under this bijection, then ϕ is also an isomorphism of G_{α} -spaces, where G_{α} acts on N by conjugation.

Hence show that, if Ω is finite, then

- if G is 2-transitive then N is an elementary abelian p-group for some prime p;
- if G is 3-transitive and $|\Omega| > 3$ then N is an elementary abelian 2-group;
- if G is 4-transitive then $|\Omega| = 4$.

Do these conclusions hold if Ω is infinite? Give brief reasons.

Show that a 4-transitive group other than S_4 cannot have a sharply 2-transitive normal subgroup.

Question 3 Let G be the subgroup of S_7 generated by the permutations a = (123)(475) and b = (157)(264). Let H be the stabiliser in G of the point 1.

- (a) Is G transitive?
- (b) Find a set of coset representatives for *H* in *G*, both as permutations and as words in *a* and *b*.
- (c) Find generators for H.
- (d) Find the order of G.
- (e) Does the permutation (123)(456) belong to G?

Question 4 (a) Define the *alternating group* A_n and sketch a proof that A_5 is simple.

- (b) Prove that A_5 has a 2-transitive action of degree 6.
- (c) Construct a primitive action of A_5 of degree 10. What is its rank?
- (d) Construct a primitive permutation group isomorphic to $A_5 \times A_5$.
- (e) Is there a primitive permutation group isomorphic to $A_5 \times A_5 \times A_5$? Give brief reasons.

Question 5 (a) What is an *oligomorphic* permutation group?

- (b) Prove that a permutation group G on a set Ω is oligomorphic if and only if
 - G has only finitely many orbits on Ω ; and
 - the stabiliser of any point of Ω is oligomorphic.
- (c) Let the oligomorphic group G have f_n orbits on the set of n-element subsets of Ω , and F_n orbits on the set of n-tuples of distinct elements of Ω . Prove that

$$f_n < F_n < n! f_n$$

and give examples to show that both bounds can be attained.

(d) Let Ω be the disjoint union of two infinite subsets Ω_1 and Ω_2 , and let G be the direct product of symmetric groups on Ω_1 and Ω_2 . Calculate the numbers f_n and F_n defined in the preceding part.