UNCLASSIFIED

AD NUMBER
AD871756
NEW LIMITATION CHANGE
TO Approved for public release, distribution unlimited
FROM Distribution: Further dissemination only as directed by Army Missile Research Development and Engineering Lab, Redstone Arsenal, AL; May 1970 or higher DoD authority.
AUTHORITY
USAMC ltr 15 Nov 1972.

-65-7 AD

REPORT NO. RD-TR-65-7

LONGITUDIMAL STABILITY CHARACTERISTICS OF A SERIES OF RINGTAIL-BODY COMBINATIONS AT MACH NUMBERS OF 0.8-4.5

Ьу

Charles E. Brazzel James H. Henderson Joseph C. Craft

May 1970

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of this Command, ATTN: AMSMI-RD.

U.S. ARMY MISSILE COMMAND

Redstone Arsenal, Alabama 35309

LONGITUDINAL STABILITY CHARACTERISTICS OF A SERIES OF RINGTAIL-BODY COMBINATIONS AT MACH NUMBERS OF 0.8-4.5

by

Charles E. Brazzel James H. Henderson Joseph C. Craft

DA Project No. 15222901A206 AMC Management Structure Code No. 5221.11.148

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of this Command, ATTN: AMSMI-RD.

Aerodynamics Branch Advanced Systems Laboratory Research and Engineering Directorate U. S. Army Missile Command Redstone Arsenal, Alabama 35809

Abstract

An analysis is made of experimentally determined stability characteristics of a series of ringtails in combination with bodies of revolution. Results of the analysis show ringtails to be efficient stabilizing devices, when missile overall diameter is limited.

Contents

		Page
1.	Introduction	ĭ
2.	Apparatus and Tests	1
3.	Presentation of Results	2
4.	Discussion	3
5.	Conclusions	9
Appen	dix. Parameters Used in Correlation of Ringtail Supersonic	
	Normal Force	53
Roford	ences	71
ive let e	211000	71
	Illustrations	
Table		Page
Table		rage
I	Total Configuration Coefficients	11
II	Ringtail Coefficients	20
A-I	Ringtail Correlation Parameters, Definition of Terms	54
A-II	Critical Mach Numbers for Each Flow Condition, $\delta = 4 \deg \dots$	55
A-III	Critical Betas for Each Flow Condition, $\delta = 4 \text{ deg } \dots$	56
A-IV	Ringtail Correlating Parameters	57
Figure	e	Page
1	Body Configurations	29
2	Ringtail Geometry, 4-Degree Internal Expansion Angle	30
3	Ringtail Geometry, Various Internal Angles	31
4	Geometry of Noncircular Support Struts	32
5	Model Installation, Transonic Tunnel	3 3
6	Model Installation, Supersonic Tunnel	33
.7	Variation of Center of Pressure with Mach Number for Some	
-	Typical Configurations, $\delta = 4$ deg, $\phi = 4$ deg	34
8	Variation of Mean Value of Ringtail Center of Pressure with	
	Mach Number	35
9	Effect of Ringtail Geometry and Longitudinal Position on the	
	Variation of $\Delta C_{N_{\alpha}}$ with Mach Number, $\delta = 4 \deg$, $\phi = 4 \deg$.	36

Illustrations (Concluded)

Figure		Page
10	Effect of Ringtail Internal Angle on $\Delta C_{N_{\alpha}}$ (Constant Leading	
11	Diameter, A = 2)	39
	at Ringtail Midchord)	41
12	Effect of Planar Type Support Struts on $\Delta C_{{N}\alpha}$	42
13	Afterbody Geometry Effect on Ringtail Contribution to Normal	
	Force, $A = 2$, $C = 1$, $\delta = 4$ deg	43
14	Effects of Chord, Diameter, and Longitudinal Position on $\Delta C_{N_{\alpha}}$	
	of Ringtails, $\delta = 4 \text{ deg.} \dots$	44
15	Comparison of Ringtail with Equivalent Planar Fin $\Delta c_{N_{lpha}}$	49
16	Correlation of Ringtail $\Delta C_{{N}_{lpha}}$ (Ringtail Leading Edge Mach Line	
	Does Not Impinge Upon Body)	50
17	Correlation of Ringtail $\Delta C_{N_{\alpha}}$ (Ringtail Leading Edge Mach Line	
	Impinges Upon Body; Reflected Mach Line Misses Ringtail	
	Surface	51
A-1	Ringtail Geometry Nomenclature	68
A-2	Flow Conditions	69

Symbols

Text	Tables		
A	A	ringtail diameter in the plane of the leading edge (Figure 2)	calibers
a _t		for equivalent planar fins, the slope of the line connecting tip leading edge to root trailing edge divided by the slope of the Mach line	
В		ringtail diameter in the plane of the trailing edge (Figure 2)	calibers
c	C	longitudinal distance between ringtail leading edge and trailing edge (Figure 2)	calibers
$\mathbf{c}_{_{\mathbf{N}}}$		normal force/(qS)	
C _m		pitching moment about body nose/(q SD)	
$^{\mathtt{C}}_{\mathtt{N}_{\alpha}}$	A1	initial slope of normal force coefficient curve (Table I)	deg-1
	A3	nonlinear coefficient of C_N as a function	
		of α (Table I, Equation 1)	deg ⁻³
$^{\mathrm{c}}{}_{\mathrm{m}}{}_{\alpha}$	B1	initial slope of pitching moment curve (Table I)	deg ⁻¹
	B3	nonlinear coefficient for C as a function	
		of α (Table I, Equation 2)	deg ⁻³
D		body diameter = 1 cal = 1.15 in.	
E	E	longitudinal distance between ringtail trailing edge and the plane of the body base (positive ahead of base) (Figure A-1, Tables A-II and A-III)	calibers

Symbols (Continued)

Text	Tables		
E	E	ratio of value of center of pressure determined from the variation of normal force and pitching moment with angle of attack to the value of center of pressure determined from the variation of pitching moment with normal force (Equation 4, Table I)	
F		diameter of circular cross section strut	calibers
G		longitudinal distance from ringtail leading edge to projection of circular strut centerline on ringtail external surface	calibers
M		Mach number	
q		dynamic pressure	psi
s		reference area, π D ² /4	cal ²
x _{cp} /D	C1	center of pressure location of total configuration aft of nos. (Table I)	calibers
x _{cp} /c	XCP/C	center of pressure location of ringtail fraction of chord from leading edge (Table II, Equation 5)	
α		angle of attack in pitch plane	deg
β		$\sqrt{ \mathbf{M}^2 - 1 }$	
$\Delta C_{N_{\alpha}}$	A1	${f C}_{f N}_{m{lpha}}$ (body with ringtail) ${f C}_{f N}_{m{lpha}}$ (body alone)	deg ⁻¹

Symbols (Concluded)

Text	Tables							
ΔC _m α	C _m	α (body with ringtail) (Table II) α (body alone)	deg-1					
δ	ang tail	le between the chordline of the ring- section and model longitudinal axis	deg					
φ	at le	angle between outer surface of ringtail at leading edge and model longitudinal axis (centerline)						
		Model Nomenclature						
В	body	V (Figure 1)						
T	ring and	tail configuration (Figures 2, 3, 4)						
x	ring to th	tail longitudinal position relative se body base						
		Longitudinal distance, E						
	X1	0, 5						
	X2	0.0						
	Х3	-0.5						
	X4	-0.9						
	X 5	-0.25						
R	ringt (for	ail configuration tested aft end forward example, T13R)						
s	ringt strut	ail configuration with faired support (for example, T13S)						

I. Introduction

A considerable amount of interest has been shown recently in the use of ringtails as stabilizing surfaces. A part of this interest can be attributed to the need for stabilizer configurations which have the required stability characteristics and which fit within the geometric restraints imposed by stowage or launcher considerations.

Presented is the analysis of stability characteristics on a series of ringtail configurations. The test data used for this analysis was obtained as part of an investigation of base drag reduction by means of favorable interference (such as that induced by ringtails). Before exploring base drag reduction by favorable interference, it appeared reasonable to first insure that ringtails had no undesirable stability characteristics. Tabulated data from these tests have been published previously [1] and an analysis of drag characteristics was presented [2]. Subsequent to completion of the ringtail stability tests an exploratory investigation of the effects of favorable interference on base pressure at supersonic speeds has been made [3].

2. Apparatus and Tests

The tests were conducted in the Aerodynamic Wind Tunnel, 1-foot transonic tunnel, Propulsion Wind Tunnel Facility, Arnold Engineering Development Center, Tennessee, and in Supersonic Tunnel No. I, Ballistic Research Laboratories, Aberdeen Proving Grounds, Maryland. The transonic facility is a continuous flow, nonreturn type with a perforated wall test section 1 foot square in cross section capable of operating at Mach numbers from 0.55 to 1.5 [4]. The supersonic tunnel [5] is a closed-circuit, continuous flow, variable pressure facility with a flexible nozzle for obtaining a range of Mach numbers from 1.5 to 5.0. The test section is 13 inches wide by 15 inches high.

The test bodies of revolution (Figure 1) had a diameter (1 caliber) of 1.15 inch, a 4-caliber ogival nose, and a total length of 10 calibers. The basic body used in the test had a cylindrical afterbody. One configuration was tested with a boattailed afterbody.

The ringtails had a half-diamond profile and were attached to the body either by four posts of circular cross section or four faired support struts. The wind-tunnel model was designed to allow testing each ringtail at several longitudinal positions relative to the body. The configurations tested had an internal expansion angle of 4 degrees and were supported by feur circular cross section posts. Chord length, ringtail diameter, and longitudinal position were varied for this group of tests to determine their effect on longitudinal static

stability. The diverging annulus configuration was selected to avoid choking in the ringtail-body annulus and to minimize the effect of support posts on normal force. The geometry of this series of ringtails is presented in Figure 2. Additional ringtail-body configurations were tested to determine the effects of ringtail internal expansion angle (Figure 3), non-circular support struts (Figure 4), and a boattailed afterbody.

The models were sting mounted in the test sections on a six-component internal strain-gage balance. Photographs of the model installed in the transmic and supersonic test sections are shown in Figures 5 and 6, respectively. The investigation was conducted at Reynolds numbers of 3×10^6 to 5×10^6 , based on model length. The Mach number range was from 0.8 to 4.5 and the angle-of-attack range was from -4 to +10 degrees. A transition strip 0.25 inch wide, located 0.5 inch from the body nose, was used during the tests.

During preliminary analysis difficulties were encountered in reading slopes to an acceptable accuracy. The errors were of the same order of magnitude as the effects of some of the variables being studied. To minimize neatter and uncertainties in the analysis, a least-squares routine was developed to fit a third-order curve through the data points, assuming skew-symmetry through a displaced origin. The routine was mechanized for machine computation to yield initial slopes, third-order effects, displacement from the origin, and an indication of the quality of the curve fit. A discussion of the curve-fitting routine is presented by Adams [6].

3. Presentation of Results

Stability coefficients and higher-order effects of angle of attack were generated by the curve fitting routine [6]. Presented in Table I are coefficients representing data for body-ringtail configurations. These coefficients are defined in the following equations:

$$C_{N} = (A1) \alpha + (A3) \alpha^{3}$$
 where $(A1) = C_{N}$ at $\alpha = 0$ (1)

$$C_{m} = (B1) \alpha + (B3) \alpha^{3} \text{ where } (B1) = C_{m} \text{ at } \alpha = 0$$
 (2)

$$C_{m} = (C1) C_{N} + (C3) C_{N}^{3} \text{ where } (C1) = X_{cp}/D \text{ at } C_{N} = 0$$
 . (3)

Equation (4) is a ratio of center of pressure as determined by equations (1) and (2) divided by center of pressure as determined from equation (3).

$$E = [(B1)/(A1)]/(C1) \simeq \left[\left(\frac{dC_m}{d\alpha} \right) / \left(\frac{dC_N}{d\alpha} \right) \right] / \left(\frac{dC_m}{d\alpha} \right). \quad (4)$$

The experimental data were curve fit to the above equations using the method of least squares. Table II shows the constants determined from these curve fits and represents total configuration minus body alone normal force and pitching moment. Therefore, all interference factors are included. Center of pressure is determined from the resulting force contributions of ringtails. Ringtail normal force, $\Delta C_{N_{C}}$, was determined by subtracting A1 for body alone

from A1 for total configuration. Pitching moment was determined in the same way using B1. Then center of pressure is given by equation (5):

$$X_{ep}/C = \left(-\Delta C_{m_{\alpha}}/\Delta C_{N_{\alpha}}\right)(D/C)$$
 (5)

The variation of total configuration center of pressure location with Mach number is presented in Figure 7 for several typical body-ringtail combinations. Because of the large amount of scatter noted in center of pressure location, $X_{\rm cp}/C$, data in Table II, a mean value at each Mach number was determined by using all data shown. This mean value is presented in Figure 8 as a function of Mach number.

The variation of the ringtail contribution to initial normal coefficient curve slope with Mach number is shown in Figure 9 for the ringtail configurations with circular support struts and an internal expansion angle of 4 degrees (Figure 2). The effect of ringtail internal angle on ringtail normal force, $\Delta C_{N_{\alpha}}$, is shown in Figures 10 and 11. The effect of planar-type supports on $\Delta C_{N_{\alpha}}$ is

presented in Figure 12. Figure 13 shows the effects of body boattail on ringtail $\Delta C_{N_{C}}$ compared to the effects with a cylindrical afterbody.

4. Discussion

a. Center of Pressure

The center of pressure on ringtails is expressed in percent chord in equation (5) and tabulated in Table II. As expected, there is a wide variation in the values for a given Mach number. Much of this can be explained from an error analysis of the numerical steps involved in determining center of pressure location, $X_{\rm cp}/C$. A small error in A1 or B1 in equations (1) and (2) could be magnified several times in $X_{\rm cp}/C$. Some of the scatter no doubt is

due to changing flow conditions with geometry variations; for example, longitudinal position. In order to eliminate the scatter, a mean value for $X_{\rm cp}/C$ was determined at each Mach number. These mean values, which represent all ringtail configurations, are presented in Figure 8. These values are adequate for engineering estimates of total configuration static stability of ringtail missile configurations. The error resulting from the use of these mean values will be small compared to the moment arm of the ringtail $\Delta C_{\rm N}$. Ringtail effects on

configuration geometry are illustrated then by variations in $\Delta c_{\stackrel{}{N}_{\alpha}}$.

The stabilizing efficiency of ringtails, especially at the higher Mach numbers, compares favorably with that of planar fins. To illustrate this, a line is shown at high Mach numbers on Figure 7 representing X_{cp}/D for a planar fin. These values show the most stable position possible for a rectangular planar fin with a total span equal to the ringtail maximum diameter. Planar fins are flush with the missile base corresponding to position X2 for ringtails.

b. Normal Force Characteristics

As indicated in the previous section, the ringtail contribution to total stability is characterized by variation of $\Delta C_{N_{\alpha}}$ with geometric variations. Discussed in the following paragraphs are the variations of $\Delta C_{N_{\alpha}}$ with planform geometry and longitudinal position, internal angle of ringtail, support strut profile, and body boattail.

(1) Planform Geometry and Longitudinal Position. Values of $\Delta C_{\mbox{$N$}_{\alpha}}$ for the series of ringtails having a 4-degree internal expansion angle, δ , and support struts of circular cross section have been cross-plotted to yield the carpet plots presented in Figure 14. These plots are convenient for design purposes since they show the effects of chord, leading edge diameter, and longitudinal position on $\Delta C_{\mbox{$N$}_{\alpha}}$. It is obvious that additional lift is obtainable with ringtails

by increasing either the chord or the diameter. This is analogous to the results of planar fins. Where boundary layer thickness is large compared to the distance between the ringtail and body, an increase in chord length will not necessarily produce additional normal force. This is comparable to low-aspect ratio planar fins.

Evaluation of the supersonic lifting efficiency of ringtails was made by comparing planar fins having equal chords and having total spans equal to ring

maximum diameter. Ringtail configurations have a 4-degree internal expansion and at longitudinal positions with the trailing edge flush with the base (position X2) were used in the comparison. Planar fin normal force and fin-body interference were determined by the method of Gafarian [7].

A convenient way of presenting the comparison between ringtails and planar fins is by the use of the parameter a_t , which is the ratio of the slope of the line connecting the equivalent planar fin leading edge tip and root trailing edge to the Mach line slope. The variation with a_t of ringtail $\Delta C_{N_{\alpha}}$ to planar fin $C_{N_{\alpha}}$ ratio (which includes fin-body interference) is shown in Figure 15. This ratio varies from about 1.3 to 2.0. The minimum values of the normal force ratio occurs at approximately the same value of a_t for the various configurations.

The ringtail leading edge Mach line (Figure 15) would intersect with the body base at an a_t of 1.0 for a hypothetical ringtail having a 0-degree internal expansion angle. For the actual configurations compared, Mach line impingement occurs at values of a_t slightly above 1 and the reflected Mach line impinges the ringtail trailing edge at values of a_t slightly above 0.5. With decreasing values of a_t , it appears that the minimum value of normal force ratio occurs at an a_t between the leading edge Mach line impingement on the body and the impingement of the reflected Mach line at ring trailing edge.

The strong similarity in the variation of normal force ratio with \mathbf{a}_t for such a wide variation in geometry and Mach number suggests that supersonic linearized planar wing theory may be useful in the analysis of ringtail aerodynamics.

Examination of Figure 9 indicates that ringtail longitudinal position has a major effect on the variation of $\Delta C_{N_{_{\scriptstyle \alpha}}}$ with Mach number for the various configurations. There is a relationship between $\Delta C_{N_{_{\scriptstyle \alpha}}}$ and the Mach number of ringtail Mach line impingement upon the body. For example, in Figure 9 (configuration T4) the values of $\Delta C_{N_{_{\scriptstyle \alpha}}}$ for ringtail positions X1 and X2 denart from the data for position X3 as Mach number is decreased. The points of departure appear to be at a slightly higher Mach number than where Mach line impingement occurs. If boundary layer and strut effects were accounted for,

it is possible that the point of departure relative to the Mach line location could be predicted. These effects are also noticeable in Figure 14 for Mach numbers of 2.5 and 3.0 where on the left side of the plot no effect of longitudinal position on ΔC_N is apparent.

It is also apparent from Figure 9f that $\Delta C_{N \atop \alpha}$ is affected by the body base expansion wave. The data for position X4 (most rearward position) depart from the X3 data as Mach number is decreased.

As Mach number is further decreased, the reflected Mach line impinges upon the ringtail trailing edge resulting in a recovery of $\Delta C_{N_{C}}$. This recovery

is indicated in Figure 9d for configuration T2X1 and T2X2. For the rearward longitudinal position (X3) no recovery in ΔC_N is apparent. This is likely to the effect of the body expansion wave.

In general, the position of Mach lines emanating from the ringtail leading edge and their reflections from the body in relation to the body base and ringtail trailing edge results in an oscillatory variation of ΔC_{N} with Mach number as indicated by Ehlers [8,9].

The appendix has been prepared to define various flow conditions and to indicate the Mach numbers corresponding to these for the various ringtail configurations. The flow conditions considered are:

1) Ringtail leading edge Mach line impingement on body base

2) Ringtail leading edge Mach line impingement on ringtail trailing edge after reflection on body

3) Body base Mach line impingement on ringtail trailing edge

4) Ringtail leading edge Mach line reflection from body surface and impingement on the ringtail inner surface concurrently with impingement on body base.

5) Ringtail leading edge Mach line impingement on body base after reflection from body and ringtail inner surface

The effects of conditions 4 and 5 on ringtail normal force characteristics are not apparent in Figure 9. The small Mach number increment between conditions for particular configurations, the occurrence of more than one condition at the same Mach number, and the fact that these conditions occur in the transonic region complicates any analysis of normal force characteristics where multiple Mach line reflections occur. The oscillations are to be expected because of the many interactions.

An attempt was made to correlate ringtail normal force for the various ringtail configurations having an internal expansion angle of 4 degrees. It was found that a reasonable correlation could be found for Mach numbers higher than the value for Mach line impingement on the body (condition 1). A second correlation was obtained at Mach numbers between the impingement of the leading edge Mach line on the body base and the reflection of this Mach line on the ringtail trailing edge (between conditions 1 and 2). No data were included in either correlation for the condition where the body base Mach line (expansion of flow

around base) impinged on the ringtail inner surface. The coefficients used in the two correlations and a summary of Mach numbers corresponding to each condition are tabulated in the appendix.

The correlation of Mach numbers higher than condition 1 is presented in

Figure 16. The correlating terms are $\frac{\Delta C_N}{B^2-1}$ which represent normal force based on ringtail trailing edge body base annulus area [8, 10] and $\beta \frac{A}{C}$ which is the geometric relationship of the leading edge Mach line to the body base. Data that do not correlate well are generally for the smallest ringtail diameter configurations where boundary layer effects are more pronounced. For this correlation, it appears that the position of the ringtail trailing edge with respect to the body base has little effect as long as the body base expansion wave is avoided.

Normal force also correlates well using the parameter $\frac{\Delta C_{N_{\alpha}}}{A^2-1}$ which bases normal force on the annulus area at ringtail leading edge. This parameter is also tabulated in the appendix.

The second correlation of $\Delta C_{N_{\alpha}}$ is presented in Figure 17. This correlation represents Mach numbers below where the leading edge Mach line impinges on the body base and Mach numbers above the impingement of the reflected Mach line of the ringtail trailing edge (between condition 1 and condition 2). As in the case of the first correlation, conditions were avoided where the base expansion interferes with the ringtail. The ordinate in Figure 17 is the same as for the first correlation except that it has been multiplied by ringtail leading edge diameter to chord ratio $\frac{A}{C}$.

The abscissa in Figure 17 is the product of the slope of the leading edge Mach lines at critical conditions 1 and 2 each normalized by the Mach line slope (appendix, Figure A-2).

Correlation of flow regimes having multiple reflections of the leading edge Mach line may be possible. However, for the present investigation, the large increments in Mach number and longitudinal position did not provide sufficient data points. Using critical Mach numbers in Table A-2 enables one to trace the oscillations due to multiple reflections, but no general expression was found to describe this region.

(2) Ringtail Internal Angle. Shown in Figure 1 are the effects of internal angle on $\Delta C_{N_{\alpha}}$ for various ringtail longitudinal positions. (It should

be noted that configuration T7 has the same ringtail cross section as configuration T4 but has been rotated to give a zero internal angle). In general, increasing internal angle increases the supersonic $\Delta C_{N_{C}}$ for the most forward ringtail

location (X1). This effect is less pronounced as the ringtail moves aft. The effect of internal angle on $\Delta C_{N_{CC}}$ for configurations T13, T13R, and T14 are

shown in Figure 11 for several longitudinal positions. T14 is configuration T13 rotated to zero internal angle and T13R is T13 mounted onto the body backward. The configurations with the converging ringtail-body annulus (T13R) have choked flow resulting in a negative slope of ΔC_N .

(3) Support Strut Profile. Circular support struts were used in the investigation of ringtail geometry effects to minimize the strut normal force contribution. Two configurations T8S and T13S were investigated with noncircular supports. Support strut geometry is shown in Figure 4. The incremental strut effects on ΔC_N for these configurations are shown in Figures 12a

and 12b. Strut effects on $\Delta C_{N_{_{\hbox{$\alpha$}}}}$ for the smaller diameter ringtail configuration (T13, T13S) are negligible.

One configuration geometrically similar to ringtail T1 with a noncircular strut was tested on a cylindrical afterbody in the Langley Unitary tunnel and Cornell 8-foot Transonic Tunnel as a part of another investigation. This configuration (T1F) is compared to ringtail T1X3 of the present investigation in Figure 12c. Geometry of ringtail, T1F, is presented in the same figure. The variation of ΔC_{N} with Mach number shows similar trends for both configurations.

(4) Boattail Effects. The effect of boattailing the afterbody on ΔC_N is shown in Figure 13 for configuration T4 for the various longitudinal

positions. The boattail effect on $\Delta C_{\begin{subarray}{c}N\\\alpha\end{subarray}}$ is small and dependent upon ringtail longitudinal position.

5. Conclusions

The results of an investigation of a parametric series of ringtails in combination with bodies of revolution lead to the following conclusions:

1) The ringtail is an efficient stabilizing device especially where a total span limitation is imposed by launchers and stowage considerations.

- 2) No undesirable stability characteristics are apparent in the present results except for configurations where the annulus between the ringtail and body is smaller at the trailing edge than at the leading edge. However, these results are applicable only to coasting stages or lowacceleration regimes. Missiles with moderate to high acceleration rates may show detrimental effects on stability induced by the jet plume to be larger on ringtails than on comparable planar fins.
- 3) It appears that ringtail supersonic normal force can be correlated by simple parameters suggested by linear theory.

TABLE I. TOTAL CONFIGURATION COEFFICIENTS

CONFIG	HN	Al	B1	C1	A 3	в3	C 3	E
BITIXI BITIXI BITIXI BITIXI	995 995 1005	.07999 .07999 .09074 .09872 .08464		-5.78 -6.185 -6.245 -5.930	000401 000401 000225 000025	00168 00359 00172 00039 00180	60345 -1.16910 29530 04174 48678	.997 .984 .998 1.022
BITIXI BITIXI BITIXI BITIXI BITIXI	1.20 1.30 1.50	.07879 .04861 .09303 .08670 .08056	- 4385 - 7233 - 5491 - 4409	-5.600 -6.087 -5.986 -5.594 -5.114	000263 000020 000070 000201 000226	00216 .00028 00031 00138 00162	84063 1.48930 -10837 28581 63191	2.444 .986 .999 .997
BITIXI BITIXI BITIXI BITIXI	2.50 3.00 4.50	07668 07690 07618 07894 08039	3760 3682 3427 3864	-4.903 -4.779 -4.522 -4.701 -4.820	.000139 .000167 .000289 .000351	00088 00085 00201 00230 00218	36788 19426 -1.04425 80949 73564	1.001 .994 .995 .997
BITIX2 BITIX2 BITIX2 BITIX2 BITIX2	800 900 1005	.08849 .09298 .08245 .09032 .09238	- 5534 - 6033 - 5037 - 5823 - 6030	-6.235 -6.522 -6.057 -6.450 -6.516	.000134 .000330 .000175 .000159	00090 00303 00151 00119 00127	08945 66567 26192 17805 12740	1.002 1.008 1.008 .999 1.001
STITE STATE	10000	10278 09849 10617 08984	6719 6482 7408 6338 5266	-6.498 -6.590 -6.795 -6.400 -5.870	000129 .000113 .000033 .000115	-00080 -00064 -00023 -00060 -00176	05052 .09412 .36981 .10554 34231	1.005 .998 1.026 .998
	00000	00010	4839 4362 4013	-5.671 -5.172 -5.026	.000111 .000188 .000232 .000363 .000424	00049 00096 00161 00237 00278	•18229 •06954 ••48203 ••62239 ••72980	1.000 1.998 1.996 1.995
	1.88		6158 4160 4570	-6.672 -6.400 -6.198 -6.002 -6.029	.010062 .000412 .000312 .000291 .000171	00046 00399 00282 00262 00136	06020 -1.05732 -1.03696 -1.23388 51785	1.000 .985 .992 .994
	000	87118	- 4438 - 4075 - 5371 - 5700	-5.890 -6.099 -6.285 -6.477 -6.319	000217 000218 000184 000145 000138	00181 00160 00140 00080 00078	88806 37334 21787 .13608 .10616	.998 .998 .997 .989
	100		- 4323	-6.084 -6.711 -6.76 -7.67 -7.6	000119 000238 000232 000353 000380	000 62 00117 00148 00225 00232	• 12850 • 02380 • • 24554 • • 45483 • • 35504	1.000 .998 .999 .998 1.001
	1.89		4873 7132 3740 8101	-5.707 -6.213 -9.179 -6.388 -6.763	000413 000373 000273 000016	00365 00325 00240 00186 -00007	-1.12695 35686 .14145 32457 .10980	.990 .994 .541 .998 1.002
	100		-1.0160 -0125 -0125 -0122	-0.747 -0.225 -0.225 -0.001	.000024 .000256 .000114 .000130 000039	-00004 -00206 -00085 -00081 -00092	•12990 -•25021 -•06867 -•01123 •65299	1.293 .997 .999 1.001
B + XXXX	7.50 4.50 4.50	0 0 0 0 2 0 0 0 0 5 0 0 0 0 7 0 0 0 0 7 3	4486 4486 4417	-5.214 -5.043 -4.989 -5.108	.000239 .000210 .000362 .000388	00160 00138 00256 00254	37423 35676 75910 55307	•998 •999 •995 •996
POOD NOT	1.00 1.00	09262 11093 09130 10521		-6.275 -6.920 -6.371 -6.695	.000350 .000719 .000466 .000137	00317 00679 00371 00420 00117	75505 62134 67406 74223 07894	988 990 981 1.000
BITZXZ	1.30 1.50 1.75 2.50 2.50	12452 13165 13245 19453	8814 9389 8442 7305 5447	-7.041 -7.160 -6.900 -6.541 -5.773	-000050 000065 000049 000011 -000304	.00008 .00166 .00115 .00090 00217	•21537 •59775 •45638 •58363 •33129	1.005 .996 .999 .983
8112X2 8112X2	3.00 4.00 4.50	.09319 .09073 .08930	5107 4871 4818	-5.483 -5.384 -5.407	.000226 .000366 .000413	00150 00259 00275	24849 55381 45172	. 999 997 997

TABLE I. TOTAL CONFIGURATION COEFFICIENTS (Continued)

CONFIG	MN	Al	B1	C 1	43	A3	C 2	:
B172X3 B172X3 B172X3 B172X3 B172X3	99505	.09407 .09789 .08535 .10465	6181 6642 5417 7404	-6.602 -6.880 -6.417 -7.011 -7.076	.000332 .006778 .000360 .000080	00297 00765 00368 00037 00054	-1.09788 -1.09788 -2.97015 -5046 -5883	995 986 989 989
B1T2X3 B1T2X3 B1T2X3 B1T2X3 B1T2X3	1.10 1.30 1.50 1.75 2.00	10043 12008 12638 12236	6934 9622 9152 8901 7768	-6.910 -7.319 -7.290 -7.228 -6.879	.000721 .000037 .000087 .000016 .000142	00177 00022 00044 00070 00043	- 16718 - 26628 - 98028 - 43376 - 32734	1.094 993 1.004 1.000
6172X3 6172X3 6172X3 6172X3 6172X3	2.50 3.00 4.00 4.50	.10497 .10434 .09340 .09035	-,6770 6466 5312 5093	-6.445 -6.191 -5.701 -5.650	.000208 .000170 .000372 .000434	00101 00072 00268 00290	-23193 -231923 -435419	1.000 1.000 997 997
6173X1 6173X1 6173X1 6173X1 8173X1	.80 .90 .95 1.00 1.05	• 24 1 1 2 • 30 6 1 5 • 1 9 0 9 5 • 2 6 9 4 0 • 3 1 2 8 6	-1.7891 -2.4253 -1.3598 -2.0793 -2.5047	-7.444 -7.966 -7.139 -7.727 -6.037	000728 000919 -000544 000381 000638	.00691 .00908 00461 .00378 .00633	-16362 -11111 -04967 -05443 -06503	.996 .994 .997 .998 .996
8173X1 8173X1 8173X1 8173X1 8173X1	1.10 1.30 1.50 1.75 2.00	. 29527 .30753 .23319 .20825 .18684	-2.3383 -2.3026 -1.7632 -1.5216 -1.3197	-7.934 -7.540 -7.565 -7.312 -7.065	000366 002238 -000329 -000317 -000165	.00383 -01461 -00190 -00211 -00077	-04823 -00562 -03708 -02080 -05412	998 992 999 999
8173X1 8173X1 8173X1 8173X1	2.50 3.00 4.00 4.30	16141 15285 14002 13760	-1.0767 9922 8918 8845	-6.680 -6.499 -6.374 -6.421	.000189 .000245 .000324 .000302	00111 00138 00189 00159	.03071 .05126 .05102 .10015	998 998 999 1.000
8173X2 8173X2 8173X2 8173X2 8173X2	.80 .90 .95 1.00 1.05	.23210 .30369 .18760 .22830 .27218	-1.8008 -2.5380 -1.4114 -1.7984 -2.2138	-7.769 -8.399 -7.560 -7.897 -8.172	000558 000748 000876 .000130 000687	.00532 .00785 00798 00079 .00632	-10638 -09985 -10529 -01726 -04796	998 994 995 997
8173X2 8173X2 8173X2 8173X2 8173X2	1.30 1.30 1.50 1.75 2.00	.26566 .32247 .24900 .21466 .19285	-2.1642 -2.5681 -2.0349 -1.6697 -1.4527	-6.150 -8.373 -8.041 -7.780 -7.543	000082 002593 .000038 .000350 .000208	.00125 .01736 .00028 00255 00110	03379 04247 03566 01550	999 951 1.016 999
8173X2 8173X2 8173X2 8173X2	2.50 3.00 4.00 4.50	17241 16937 15062 14317	-1.2455 -1.0988 -1.0431 9803	-7.227 -7.148 -6.921 -6.052	.000187 .000107 .000284 .000342	00085 00001 00143 00160	.08578 .14059 .12393 .19616	999 907 1.000 999
8173X3 8173X3 8173X3 8173X3 8173X3	80 95 1 05	·21715 ·28827 ·23060 ·23849 ·23105	-1.6702 -2.5103 -1.9350 -1.9168 -2.0860	-8.000 -8.729 -8.390 -8.396 -8.427	000025 000598 .000257 .000193	.00060 -00672 00185 00110	04346 09003 02128 03876 04043	.961 .997 1.000 1.071
B1 T3X3 B1 T3X3 B1 T3X3 B1 T3X3 B1 T3X3	1.30 1.30 1.75 2.00	.24644 .28689 .25324 .23280 .22397	-2.2861 -2.4592 -2.2181 -1.9399 -1.8419	-8.478 -8.526 -8.503 -8.340 -8.235	.000054 000094 .000024 .000319 000040	.00003 .00173 .00049 00224 .00145	.03309 .04627 .03892 .02918 .10096	1.094 .993 1.030 .999 .998
6173X3 B173X3 B173X3 B173X3	2 • 50 3 • 00 4 • 00 4 • 50	19495 17721 15165 14497	-1.5488 -1.3481 -1.1024 -1.0362	-7.918 -7.635 -7.268 -7.156	.000060 .000179 .000291 .000264	-00054 -00046 -00120 -00108	·13194 ·14292 ·21223 ·21668	1.003 996 1.000 .998
B174X1 B174X1 B174X1 B174X1 B174X1	.80 .90 .95 1.00 1.05	• 18059 • 18905 • 20467 • 24346 • 23625	-1.3246 -1.4170 -1.5683 -1.9415 -1.8841	-7.338 -7.526 -7.670 -7.980 -7.987	.000057 .000767 000331 000205 000335	00034 00683 -00325 -00204 -00357	-01227 -08209 -10153 -03893 -08827	.999 .995 .999 .998
8174X1 8174X1 8174X1 8174X1 8174X1	1 • 10 1 • 30 1 • 50 1 • 75 2 • 00	.22500 .20982 .17977 .15275 .13783	-1.7733 -1.5914 -1.3151 -1.0660 9209	-7.897 -7.596 -7.337 -6.992 -6.680	000333 000125 .000096 .000260	.00367 .00159 00041 00175 00103	12311 08479 04545 01848	.997 .998 .998 .998 1.000
51T4X1 B1T4X1 B1T4X1 B1T4X1	2.50 3.00 4.00 4.50	.12951 .12762 .11950 .11552	8318 8005 7368 7126	-6.425 -6.272 -6.171 -6.164	.000225 .000196 .000316 .000369	00126 00114 00190 00207	.07115 .03446 .01790 .08956	.999 1.000 .999 1.000
B1T4X2 B1T4X2 B1T4X2 B1T4X2 B1T4X2	480 •90 •95 1•00 1•05	.20654 .21258 .16140 .28228 .22398	-1.5978 -1.7228 -1.2168 -2.4349 -1.8139	-7.613 -8.108 -7.602 -8.269 -8.183	000197 .000408 .000799 000006 001025	-00152 00353 00764 -00007 -00901	00130 01586 16561 .00923 .07676	1.016 .999 .991 1.043 .989

TABLE I. TOTAL CONFIGURATION COEFFICIENTS (Continued)

C014F 16	äн	Al	ar	C1	АЗ	83	C3	E
B1T4X2 B1T4X2 B1T4X2 B1T4X2 B1T4X2	1.10 1.20 1.30 1.50 1.75	.21407 .22304 .22399 .18478 .16261	-2.2573 -2.3276 -1.6266 -1.4365 -1.2222	-10.656 -10.702 -8.163 -7.768 -7.527	000175 000322 000154 .000331	.03620 .03710 .00210 00271 00229	3.85507 3.71409 .08921 01521 .01444	.989 .975 .998 1.000
B114X2 B114X2 B114X2 B114X2 B114X2	2.00 2.50 3.00 4.00 4.50	.15650 .14784 .13891 .12254 .11719	-1.1620 -1.0599 9543 7573	-7.390 -7.184 -6.874 -6.522 -6.454	.000077 .000161 .000150 .000272 .000397	00012 00046 00053 00143 00217	.17162 .18678 .16297 .13998 .16672	1.004 .997 .999 .999 1.001
B174X3 B174X3 B174X3 B174X3 B174X3	.80 .90 .95 1.00 1.05	.18677 .22957 .16628 .17614 .18506	-1.5196 -1.9633 -1.3248 -1.4225	-8.135 -8.365 -7.988 -8.084 -8.229	.000267 .000230 .000579 .000328	00245 00207 00557 00349	03640 00387 12724 06453 01921	1.000 1.022 .997 .999
B114X3 B114X3 B114X3 B114X3 B174X3	1.20	18941 23062 23080 20741 18479	-1.5871 -1.9449 -1.9783 -1.8230 -1.5118	-8.384 -8.493 -8.589 -8.442 -8.180	-000623 -001006 -000051 -000028 -000173	00499 .00918 .00110 .00032 00080	.02605 .06663 .05978 .05378	999 992 997 1 041 1 000
B1T4X3 B1T4X3 B1T4X3 B1T4X3 B1T4X3	2.00 2.50 3.00 4.50	.16926 .15187 .13841 .12372 .11895	-1.3416 -1.1507 9967 8423 8006	-7.955 -7.5055 -7.6055 -6.84	.000129 .000181 .000213 .000232 .000235	00025 00065 00091 00097 00081	•14640 •18042 •19666 •25054 •36392	996 998 999 1 000
B1T4X4 B1T4X4 B1T4X4 B1T4X4 B1T4X4	80 90 95 1.00 1.05	.16928 .20849 .14935 .15532 .19060	-1.3933 -1.8162 -1.1883 -1.2574 -1.6354	-8.237 -8.707 -8.016 -8.133 -8.605	.000 401 .000645 .000829 .000696 000074	00390 00642 00847 00702 .00140	08879 06319 27096 19962 12588	999 1 000 992 995 997
B1T4X4 B1T4X4 B1T4X4 B1T4X4 B1T4X4	1.10 1.20 1.30 1.50 1.75	.18361 .18890 .19735 .18757 .16134	-1.5583 -1.5896 -1.7012 -1.5892 -1.3373	-8.515 -8.625 -8.478 -8.478	.000.208 .000.053 .000.118 .000.141 .000.206	00176 00026 00063 00091 00121	.00059 .02511 .04567 .03710	.996 .990 .999 .999 1.001
B174X4	3.00	13928	-1:0797 -:9667	-7:329	.000228 .000267	-:00106	:16287	1:003
B1T5X1 B1T5X1 B1T5X1 B1T5X1 B1T5X1	.80 .90 .95 1.00 1.05	•14674 •13613 •16260 •14784 •12874	-1.0692 9681 -1.2173 -1.0920 9056	-7.288 -7.122 -7.628 -7.390 -7.053	.000196 .000332 .000075 .000274 .000339	00166 00293 00038 00233 00300	05768 15700 .03655 06877 18171	.999 .998 .981 .999 .997
B175X1 B175X1 B175X1 B175X1 B175X1	1.10 1.30 1.50 1.75 2.00	12475 13712 11996 10839 10375	8612 9665 -,7956 6845 6309	-6.919 -7.047 -6.637 -6.314 -6.078	.000326 .000072 .000256 .000185 .000206	00287 00028 00184 00107 00126	20799 .07963 05243 .06340 00240	997 1.000 1.000 1.000
B175X1 B175X1 B175X1 B175X1	2.50 3.00 4.00 4.50	.10754 .10327 .09856 .09696	6550 5989 5538 5464	-6.086 -5.799 -5.623 -5.790	.000133 .000238 .000294 .000295	00048 00143 00191 00164	- 22187 - 03180 - 18888 - 02474	.999 .999 .999 .973
B1T5X2 B1T5X2 B1T5X2 B1T5X2 B1T5X2	.80 .90 .95 1.00 1.05	• 15498 • 13742 • 15946 • 15198 • 14392	-1.2011 -1.0532 -1.2495 -1.1804 -1.0989	-7.751 -7.663 -7.837 -7.766	.000268 .000647 .000114 .000248	00226 00534 00084 00200 00216	04005 09953 .01279 01359 06457	1.000 1.000 1.000 1.000
B1T5X2 B1T5X2 B1T5X2 B1T5X2 B1T5X2	1.10 1.20 1.30 1.50 1.75	.14192 .14782 .15731 .13243 .12702	-1.0767 -1.1266 -1.1582 9666 9069	-7.592 -7.641 -7.766 -7.267 -7.140	.000292 .000217 .000049 .000251 .000174	00245 00164 00003 00197 00092	05837 .00517 .08872 02203 .13650	.999 .997 .948 1.004
B1T5X2 B1T5X2 B1T5X2 B1T5X2 B1T5X2	2.00 2.50 3.00 4.00 4.50	.12144 .11365 .10562 .09880 .09758	8446 7500 6509 5797 5680	-6.957 -6.603 -6.163 -5.934 -5.992	.000216 .000169 .000251 .000301 .000282	00117 00058 00139 00175 00161	.15593 .31037 .10603 .00880 .01583	.999 .999 .999 .988 .971
8175X3 8175X3 8175X3 8175X3 8175X3	.80 .90 .95 1.00 1.05	• 16523 • 14066 • 14649 • 15321 • 14388	-1.9127 -1.1103 -1.1829 -1.2468 -1.1519	-11.3015 -7.915 -8.062 -8.106	.000139 .000418 .000520 .000173	04054 00408 00446 00145 00167	8 • 19931 • • 16807 • • 06026 • • 00953 • • 01795	1.001 1.001 1.000

TABLE I. TOTAL CONFIGURATION COEFFICIENTS (Continued)

CONFIG	MAI	± 1	81	L I	A 3	83	C 3	F
8175X3 8175X3 8175X3 8175X3 8175X3	1.10 1.20 1.30 1.50 1.75	•14229 •14915 •14912 •14379 •13138	-1.1322 -1.1626 -1.1938 -1.1182 9939	-7.957 -8.000 -8.024 -7.820 -7.566	.000225 .000046 .000085 .000073	00168 00004 00015 0015	.03240 .09145 .04509 .12358 .13880	1.000 .974 .997 .994
8175X3 8175X3 8175X3 8175X3 8175X3	2.00 2.50 3.00 4.00 4.50	•12268 •11322 •10650 •09887 •09783	~.8957 ~.7760 ~.6629 ~.6043 ~.5919	-7.300 -6.855 -6.413 -6.116 -6.044	.000229 .000185 .000206 .000308 .000326	00132 00073 00101 00171 00181	15588 30761 20469 09960 10589	1.000 999 999 999 1.001
8216X1 8216X1 8216X1 8216X1	.80 .90 .95 1.00	• 17615 • 18005 • 18058 • 20503 • 21066	-1.2857 -1.3387 -1.3289 -1.5812 -1.6397	-7.653 -7.450 -7.316 -7.728 -7.775	•000137 •000532 •000370 •000800 •000355	00099 00459 00323 00727 00305	.00011 06470 04088 07731 01879	.953 .997 1.005 .997 1.001
8276X1 8276X1 8276X1 8276X1 8276X1	1.30 1.30 1.50 1.75 2.00	• 20450 • 20263 • 17909 • 15110 • 13914	-1.5707 -2.1027 -1.3034 -1.0477 9314	-7.812 -7.588 -7.318 -6.939 -6.693	•000160 •000042 •000188 •000181 •000224	00112 .00003 00134 00107 00132	.01431 .04290 .00124 .04917	983 1.367 994 999
8216X1 8216X1 8216X1 8216X1	2.50 3.00 4.00 4.50	.13178 .12897 .11844 .11430	8455 8183 7250 6935	-6.419 -6.343 -6.127 -5.076	.000223 .000172 .000280 .000304	00138 00085 00159 00171	.01680 .09379 .05615 .06701	1.000 1.000 999 .998
8216X2 8216X2 8216X2 8216X2 8216X2	.80 .90 .95 1.00 1.05	.17347 .16517 .15519 .18128 .18301	-1.2999 -1.2709 -1.1758 -1.4220 -1.4565	-7.756 -7.775 -6.987 -8.052 -7.961	•000041 •001036 •000223 •000164 •000276	00009 00979 00191 00121	-03914 11508 00721 -01841 -00054	.966 .989 1.084 .974 .999
8216X2 8216X2 8216X2 8216X2 8216X2	1 • 10 1 • 30 1 • 50 1 • 75 2 • 00	•18510 •19589 •16941 •15564 •15234	-1.4713 -1.5545 -1.2805 -1.1545 -1.1153	-7.950 -7.938 -7.561 -7.419 -7.337	•000194 •000272 •000337 •000200 •000165	00146 00205 00284 00111 00065	•01336 •01240 ••04263 •08698 •14131	.999 .999 .999 .999
R2T6X2 B2T6X2 R2T6X2 R2T6X2	2.50 3.00 4.00 4.50	• 14688 • 13550 • 11966 • 11467	-1.0472 9247 7735 7346	-7.142 -6.825 -6.464 -6.383	.000153 .000203 .000308 .000364	00039 00092 00163 00202	• 19414 • 15975 • 15925 • 14362	.998 .999 .999
8276X3 8276X3 9276X3 8276X3 8276X3	.80 .90 .95 1.00 1.05	•18216 •17647 •14880 •16231 •18864	-1.5013 -1.4557 -1.1669 -1.3070 -1.5817	-8.244 -8.292 -7.871 -8.067 -8.378	• 000 380 • 000 958 • 000 770 • 000 777 • 000 355	00333 00924 00748 00743 00309	02380 10342 23665 16479 01266	.999 .994 .996 .998 1.000
8216X3 8216X3 8216X3 8216X3 8216X3	1.10 1.30 1.50 1.75 2.00	.19847 .22577 .19680 .16998 .15544	-1.6769 -1.9012 8222 -1.3614 -1.2053	-8.449 -8.541 -8.343 -8.027 -7.752	•000135 •000053 •000069 •000156 •000222	00097 00006 00000 00065 00133	.01939 .03339 .06861 .10948 .09068	.999 .985 .500 .997
R2T6X3 B2T6X3 B2T6X3 B2T6X3	2.50 3.00 4.00 4.50	.14145 .12972 .12061 .11576	-1.0430 9076 8099 7688	-7.373 -6.993 -6.718 -6.639	•00023H •000251 •00022 •000302	00128 00132 00091 00143	• 14070 • 15646 • 26514 • 27566	1.000 1.000
8177X1 8177X1 8177X1 8177X1 8177X1	.80 .90 .95 1.05	.20511 .19640 .23724 .23632 .22701	-1.6136 -1.5485 -1.8980 -1.9348 -1.8547	-7.959 -7.883 -8.190 -8.196 -8.175	000008 -000096 000138	.00043 00373 00056 .00106 .00145	04577 04371 .01608 .01131 .03115	988 1.000 997 998
B177X1 B177X1 B177X1 B177X1 B177X1	1.10 1.30 1.50 1.75 2.00	.22761 .17212 .18818 .18729 .13831	-1.8603 -1.3303 -1.4261 -1.3447 9261	-8.180 -7.726 -7.593 -7.186 -6.726	000290 .000134 000375 000282 .000849	.00304 00073 .00339 .00338 00668	.07133 .04984 .11648 .23860 -,18898	.999 1.000 .998 .999
B1T7X1 B1T7X1 B1T7X1 B1T7X1	2.50 3.00 4.00 4.50	.11834 .11392 .10604 .10275	7189 6679 5969 5813	-6.075 -5.865 -5.635 -5.659	.000782 .000264 .000304 .000307	00193 00178 00219 00189	10226 11927 29192 11192	•999 •997 •998 •999
B1T7X2 B1Y7X2 B1T7X2 B1T7X2 B1T7X2	.80 .90 .95 1.00 1.05	.17773 .19772 .23856 .23796 .22959	-1.6033 -1.5507 -1.9239 -1.9400 -1.8694	-7.932 -7.845 -8.146 -8.166 -8.146	.000001 .000350 00009 000058 000203	.00036 00307 .00026 .00075 .00216	.04779 03344 .01277 .02296 .04778	1.137 .999 .990 .998

TABLE I. TOTAL CONFIGURATION COEFFICIENTS (Continued)

CONFIG	MN	A1	81	Cl	A3	Ð 3	C 3	٤
8117X2 8177X2 8177X2 8177X2 8177X2	1.10 1.20 .80 .90	.22829 .20234 .19565 .18593 .23505	-1.8594 -1.6196 -1.4695 -1.3749 -1.8311	-8.153 -6.010 -7.520 -7.401 -7.810	000345 000208 -000047 -000451 -000118	.00355 .00242 00014 00358 00082	.08018 .10751 .02723 06088	998 999 998 999
81 T7X2 81 T7X2 81 T7X2 81 T7X2 81 T7X2	1.00 1.05 1.10 1.30 1.50	.22998 .21986 .22068 .16670 .19718	-1.7844 -1.6938 -1.7088 -1.2156 -1.4395	~7.757 -7.744 -7.748 -7.511 -7.333	.000097 .000008 000210 .000247 000348	00085 00002 .00208 00177 .00323	00716 .00341 .04949 .00169	1.000 .994 .999 .970
8177X2 8177X2 8177X2 8177X2 8177X2	1.75 2.50 2.50 3.00 4.00	.23940 .15640 .13190 .12918 .11958	-1.9679 -1.1603 8935 8548 7663	-8.377 -7.441 -6.774 -6.615 -6.416	001623 .000941 .000296 .000171 .000184	-01739 -00784 -00195 -00074 -00052	-71620 -11616 -02058 -15460 -32284	981 996 999 1.000 1.000
B177X2	4.50	.11381	7163	-6.290	.000195	00066	.31392	1.000
8117X3 8117X3 8117X3 8117X3 8117X3	.80 .90 .95 1.00 1.05	.19591 .19254 .21434 .20964 .20244	-1.6195 -1.5789 -1.7989 -1.7581 -1.6858	-8.266 -8.202 -8.393 -8.385 -8.325	000026 .000341 .000236 .000234 .000186	.00065 00304 00233 00218 00167	.05816 02675 02849 02035 01315	.999 .999 .999 1.000 1.000
B117X3 B117X3 B117X3 B117X3 B117X3	1 • 10 1 • 20 1 • 30 1 • 75	.20550 .18372 .16343 .22340 .19265	-1.7143 -1.5102 -1.3041 -1.8516 -1.5837	-8.347 -8.345 -7.980 -8.340 -8.234	000113 .000028 .000328 000731 .000229	.00128 .00019 00265 .00725 00122	.04081 .06575 00629 .21645 .08281	999 1.001 999 993 998
B177X3 B177X3 B177X3 B177X3 B177X3	2.50 2.50 3.00 4.50	16879 15174 13774 12118	-1.3317 -1.1386 9808 8106 7510	-7.899 -7.508 -7.121 -6.715	.000187 .000158 .000168 .000168	00085 00045 00090 00027 00050	.11320 .18593 .16163 .40758 .47958	998 999 999 996 999
B1T7X4 B1T7X4 B1T7X4 B1T7X4 B1T7X4	.80 .90 .95 1.00	.16937 .18201 .21868 .21528 .18619	-1.4256 -1.5507 -1.8937 -1.8698 -1.5778	-8.418 -8.413 -8.804 -8.740 -8.477	.000440 .000409 .000072 000029 .000236	00354 00379 00024 00069 00216	.02505 04491 .03463 .04678 01874	999 999 983 993
B1T7X4 B1T7X4 B1T7X4 B1T7X4 B1T7X4	1 • 10 1 • 20 1 • 30 1 • 50 1 • 75	• 19220 • 19226 • 19566 • 19751 • 16599	-1.6356 -1.6783 -1.6859 -1.6905 -1.3814	-8.511 -8.529 -8.553 -8.320	.000212 .000034 .000038 .000062 .000175	00197 .00000 .00001 .00014 00084	02057 .04052 .04462 .08335 .10333	1.023 1.012 1.000 1.000
8177X4	3.00	14106	-1.0867 9658	-7.582 -7.383	:000179 :000181	00057 00045	.20279 .26687	1.002
8178X1 8178X1 8178X1 8178X1 8178X1	1.75 2.00 2.50 3.00 4.00	.15632 .14482 .13943 .13811 .12701	-1.0976 9836 9221 9044 8101	-7.030 -6.791 -6.616 -6.546 -6.376	.000090 .000185 .000173 .000153 .000294	00014 00099 00079 00069 00156	.11950 .07655 .11479 .113021 .11540	1.000 1.000 1.000 1.000
8178X2 8178X2 8178X2 8178X2 8178X2	1.75 2.00 2.50 3.00 4.00	17068 16627 15320 14217	-1.3037 -1.2605 -1.1108 9900 8497	-7.637 -7.547 -7.255 -6.962 -6.659	.000068 .000054 .000173 .000210	.00017 .00042 00060 00098 00141	13436 17455 15637 14086 18320	1.000 1.004 1.000 1.000
B1T8X2	4.50	.12400	8195	-6,607	.000319	00172	.15069	1.000
8178X3 8178X3 8178X3 8178X3 8178X3	1.75 2.00 2.50 3.00 4.00	19646 11217 15249 14196 12014	-1.5201 -1.3623 -1.1557 -1.0294 8891	-8.207 -7.989 -7.586 -7.253 -6.934	.000109 .000101 .000189 .000195	00010 00008 00076 00088 00112	.11287 .13271 .16582 .16058 .23246	993 990 999 1.000
B1 T8X3	4.50	.12350	8511	-6.887	.000354	00173	.27368	1.000
81785X1 81785X1 81785X1 81785X1 81785X1	1.75 2.00 2.50 3.00 4.00	.19411 .18259 .16803 .15584 .13788	-1.4263 -1.3191 -1.1820 -1.0600 9048	-7.345 -7.224 -7.043 -6.802 -6.560	.000032 .000145 .000190 .000208 .000367	.00036 00054 00070 00101 00219	.08040 .07744 .11792 .09206 .06120	1.000 999 998 999 1.000
B1T8SX1	4.50	•13239	8591	-6.489	.000383	00245	.00926	.999

TABLE I. TOTAL CONFIGURATION COEFFICIENTS (Continued)

CONFIG	MN	Al	81	C 1	A3	83	СЗ	E
81785X2 81785X2 81785X2 81785X2 81785X2	1.75 2.00 2.50 3.00	.20992 .19382 .17125 .15543	-1.6623 -1.5060 -1.2749 -1.1076	-7.925 -7.770 -7.450 -7.127	000004 .000127 .000202 .000207	-00097 -00031 -00083	.10259 .08680 .11790 .10283	•999 •999 •999
BITBSX2	4.00	.13646	7541	-6.823	.000310	00103	.10303 .14981	1.000
	4.50	.13187	8946	-6.779	•000402	00231	•13295	1.000
81785X3 81785X3 81785X3 81785X3 81785X3	1.75 2.00 2.50 3.00 4.00	.20991 .19091 .16649 .15253 .13595	~1.7512 ~1.5500 ~1.2870 ~1.1306	-8.320 -8.127 -7.737 -7.414 -7.097	.000071 .000177 .000294 .000235 .000315	.00020 00064 00172 00109	•08308 •10370 •09873 •15681	1.002
B1785X3	4.50	•13155	9642 9231			00145	24285	999
BITIONS				-7.014	.000334	00186	•16002	1.000
BITIOXI BITIOXI BITIOXI BITIOXI BITIOXI	1.75 2.00 2.50 3.00 4.00	.23923 .21926 .21233 .20060 .16643	-1.8062 -1.6169 -1.5587 -1.4519 -1.1570	-7.558 -7.378 -7.353 -7.240 -6.929	.000301 .000278 .000167 .000117 .000306	00200 00188 00052 00019	•01754 •01441 •06806 •07620	•998 •998 •999 1•000
BITIOXI	4.50	.15864	-1.0873	-6.853	.000310	00162	•09043 •10216	1.000
BITIOX2 BITIOX2	1.75	.25531	~2.0719	-R. 11A				
B1110X2 B1110X2 B1110X2	1.75 2.00 2.50 3.00 4.00	.25531 .25085 .22865 .20282 .16892	~2.0719 ~2.0376 ~1.8392 ~1.5467 ~1.2310	-8.116 -8.099 -7.919 -7.641 -7.289	.000291 .000049 .000085 .000129 .000271	00189 .00060 .00027 00014 00115	•02536 •06196 •07571 •09400 •14346	1.002 1.015 1.015 997
B1710X2	4.50	.15957	-1.1475	-7.188	.000305	00150	•13922	1.000
B1710X3 B1710X3 B1710X3 B1710X3 B1710X3	1.75 2.00 2.50 3.00 4.00	.28300 .25941 .22561 .20371 .17147	~2.4602 ~2.2087 ~1.8516 ~1.6253 ~1.3064	-8.716 -8.569 -8.286 -8.005 -7.627	.000142 .000145 .000166 .000143	00025 00022 00036 00019 00065	• 04126 • 05384 • 08054 • 10343	• 997 • 993 • 990 • 996 • 998
81T10X3	4.50	-16132	-1.2139	-7.528	.000278	~.00108	•16526 •20143	•998 •999
BITIIXI BITIIXI BITIIXI BITIIXI BITIIXI	1.75 2.00 2.50 3.00 4.00	•16953 •17336 •16170 •14724 •12790	~1.2350 ~1.2669 ~1.1520 ~.9994 ~.8223	-7.288 -7.306 -7.127 -6.800 -6.426	.000250 .000150 .000176 .000131	00161 00053 00060 00040	.03893 .09824 .13454 .13627 .05940	1.000 1.000 999 1.000
Prilivi	4.50	•12286	-,7852	-6.387	. 00337	00195	.07574	1.000
B1T11X2 B1T11X2 B1T11X2 B1T11X2 B1T11X2	1.75 2.00 2.50 3.00 4.00	• 19631 • 17969 • 16083 • 14690 • 12835	-1.5691 -1.4012 -1.1984 -1.0440 8653	-8.018 -7.808 -7.464 -7.126 -6.735	.000135 .000211 .000190 .000149	00037 00111 00068 00031 00137	.08652 .08051 .15480 .20740 .19253	. 996 . 998 . 998 . 997 1. 000
	4.50	•12329	~•8238 ,	-6.674	.000328	00173	.17883	1.001
81711X3 81711X3 81711X3 81711X3 81711X3	1.75 2.00 2.50 3.00 4.00	.19627 .17274 .16118 .14660 .12906	~1.6453 ~1.3998 ~1.2561 ~1.0882 ~.9060	-8.388 -8.118 -7.801 -7.429 -7.012	.000169 .000303 .000168 .000181	00081 00194 00049 00058 00130	.07268 .08220 .17140 .21065 .24972	.999 .998 .998 .999
B1711X3	4.50	-12400	8637	-6.956	.000336	00151	.32519	1.001
B1712X1 B1712X1 B1712X1 B1712X1 B1712X1	.80 .90 .95 1.00 1.05	.07888 .05741 .06000 .05856 .06363	4353 2370 2613 2490 2956	-5.493 -4.372 -4.650 -4.460 -4.691	000172 .000442 .000509 .000434 .000217	.00186 ~.00388 00453 00386 00184	1.86333 -3.96612 -3.11369 -3.79544 -1.95989	1.004 944 936 953
B1T12X1 B1T12X1 B1T12X1 B1T12X1 B1T12X1	1 • 10 1 • 30 1 • 50 1 • 75 2 • 00	.06589 .06449 .07280 .07213 .07022	3145 2890 3468 3470 3276	-4.779 -4.539 -4.805 -4.838 -4.695	.000159 .000257 .000261 .000171	00116 00190 00187 00110 00116	-1.03771 -1.44333 89246 35612 30818	998 987 991 994
B1712X1 B1712X1	3.00	.06976 .06958	305+ 2984	-4.435 -4.376	.000269 .000323	00165 00208	54527 73079	.987 .980
81712X2 81712X2 81712X2 81712X2 81712X2	.80 .90 .95 1.00 1.05	.07960 .07197 .06855 .06270 .05637	4728 3982 3707 3103 2483	-6.104 -5.586 -5.497 -5.013 -4.663	.000111 .000291 .000397 .000270	00046 00256 00344 00225 00422	-1.46297 -1.86597 -1.24633	.973 .990 .983 .986

TABLE I. TOTAL CONFIGURATION COEFFICIENTS (Continued)

CONFIG	MN	A 1	81	C 1	A3	83	C3	ε
B1112X2 B1112X2 B1112X2 B1112X2 B1112X2	1.10 1.30 1.50 1.75 2.00	.05696 .07357 .07916 .07986 .07677	2485 -3968 4300 4456 4120	-4.579 -5.433 -5.572 -5.381	000051 000051 000145 000129	- 00370 - 00001 - 00094 - 00057 - 00085	.56490 18711 .18982 .06200	- 961 999 1.001
81712X2 81712X2	3.50 3.00	.01439	3800 .0396	-5.024 -4.137	.000241 ,001910	00136 01247	-9.02235	1.001
B1712X5 B1712X5 B1712X5 B1712X5 B1712X5	.80 .90 .95 1.00 1.05	.08794 .07356 .07102 .06143 .06007	5649 4259 3504 3056 2916	-6.462 -5.840 -6.202 -5.116 -4.972	000270 .000132 .000072 .000370	00296 00080 00027 00326 00325	2.55997 .05285 .42000 -2.47270 -2.98823	.993 .991 .795 .972
B1T12X5 B1T12X5 B1T12X5 B1T12X5 B1T12X5	1.10 1.30 1.50 1.75 2.00	.06026 .07297 .07750 .07865 .07710	2868 3959 4237 4404 4258	-4.865 -5.468 -5.543 -5.426	.000370 .000265 .000195 .000176	00323 00217 00142 00105 00106	-3.16818 -1.05908 49780 14884 01044	.978 .992 .997 1.010 1.017
81712X5 81712X5	2.50 3.00	.07648 .07516	3977 3730	-5.196 -5.001	.000248 .000335	00140	15261 44793	1.000
81713X1 81713X1 81713X1 81713X1 81713X1	.80 .90 .95 1.00 1.05	.06774 .06011 .04971 .05893 .05978	3423 2770 1777 2677 2774	-5.062 -4.674 -3.797 -4.582 -4.663	.000072 .000214 .000329 .000181 .000165	00063 00173 00281 00136 00115	68456 -1.78056 -5.04970 -1.51471 -1.08310	.998 .985 .941 .991
B1713X1 B1713X1 B1713X1 B1713X1 B1713X1	1.10 1.30 1.50 1.75 2.00	.05992 .05646 .06292 .06300 .06193	2722 2234 2645 2661 2570	-4.542 -4.078 -4.270 -4.292 -4.209	.000065 .000275 .000218 .000204 .000216	00042 00217 00167 00137	35615 -2.32220 -1.36300 80599 71423	1.000 .970 .984 .983
B1713X1 B1713X1	2.50 3.00	.06252 .06361	2457 2440	-4:022 -4:005	.000269 .000354	00168 00242	79331 -1.02569	.976 .957
B1713X2 B1713X2 B1713X2 B1713X2 B1713X2	.90 .95 1.00 1.05	.07779 .07151 .06624 .05822 .05894	4670 4017 3561 2760 2802	-6.048 -5.685 -5.404 -4.856 -4.813	000107 .000224 .000221 .000344 .000273	-00152 -00209 -00174 -00285 -00220	2.49280 -1.25588 -1.21062 -2.65081 -2.43099	.992 .988 .994 .976
81713X2 81713X2 81713X2 81713X2 81713X2	1 • 10 1 • 30 1 • 50 1 • 75 2 • 00	.06125 .06631 .07191 .06983	- 3004 - 3282 - 3627 - 3490 - 3346	-4.923 -4.978 -6.444 -5.007 -4.897	.000218 .000182 .000099 .000173	00157 00139 00055 00100 00096	-1.44460 -1.03375 .02664 22926 16326	•996 •994 •782 •998
81713X2 81713X2	2.50 3.00	.06761 .06746	3061 2908	-4.567 -4.431	.000265 .000367	00154 00244	46426 80802	:991 :972
81713X5 81713X5 81713X5 81713X5 81713X5	.80 .90 .95 1.00	.07127 .07553 .06859 .06409	3982 4559 3903 3412 2901	-5.611 -6.050 -5.669 -5.306 -4.911	000023 -000145 -000150 -000181 -000203	-00148 -00108 -00115 -00131 -00162	-98812 -31531 -62610 -59732 -1.40395	.995 .997 .997 1.003
81713X5 81713X5 81713X5 81713X5	1.10 1.30 1.50 1.75 2.00	.05865 .07053 .07426 .06957 .06834	2760 3824 4006 3555	-4.764 -5.429 -5.394 -5.124 -5.009	.000207 .000181 .000097 .000195	00172 00114 00053 00118 00130	-1.73348 31720 03561 21744 30809	.987 .998 1.000 .997 .994
B1T13X5	2.50 3.00	.06768 .06753	3117 2998	-4.669 -4.556	.000290	00181 00238	54098 74061	.986 .974
BITI3RXI BITI3RXI BITI3RXI BITI3RXI BITI3RXI	.80 .90 .95 1.00 1.05	04041 03511 03552 04747 04455	1445 0964 0894 1978 1741	-3.682 -3.116 -3.115 -4.414 -4.209	.000275 .000416 .000514 .000453	00191 00323 00405 00359 00387	-6.13485 12.57245 10.27203 -4.53453 -5.40850	.971 .881 .808 .944
BITISRXI BITISRXI BITISRXI BITISRXI	1 • 10 1 • 50 1 • 75 2 • 00	.03695 .00988 .01063 .00537	1223 -1627 -1515 -1963	-3.615 4.545 -5.979 -5.831	.000533 .000878 .000621 .000746	00413 00718 00474 00561	-7.73023 14.17061 15.33287 9.55541	.868 3.624 2.383 5.262
B1T13RX2 B1T13RX2 B1T13RX2 B1T13RX2 B1T13RX2	.80 .90 .95 1.00	.04489 .02639 .05462 .05948 .05519	1698 0032 2722 3202 2784	-3.783 892 -5.053 -5.526 -5.252	.000080 .000367 .000321 .000489 .000518	00063 00291 00244 00401 00432	-2.87304 37.19969 -2.42096 -2.22427 -2.90273	.999 .136 .986 .973 .960

TABLE I. TOTAL CONFIGURATION COEFFICIENTS (Continued)

CONFIG	MN	Δl	81	C 1	A 3	83	C3	E
B1T13RX2	1.10	.04723	2040	-4.685	.000599	00492	-4.76953	.921
B1T13RX2	1.30	.02331	-0354	-1.363	.000744	00628	13.47291	1.113
B1T13RX2	1.50	.01290	-1443	1.785	.000858	00712	20.36411	6.263
B1T13RX2	1.75	.00571	-2158	-6.236	.000620	00491	29.41389	6.054
BIT13RX5 BIT13RX5 BIT13RX5 BIT13RX5 BIT13RX5	.80 .90 .95 1.00	.04920 .04741 .06270 .06983 .06745	1912 1974 5091 4167 3954	-2.497 -4.418 -5.984 -5.997 -5.890	.000031 000147 .000047 .000326	00012 .00202 .00021 00266 00243	07994 26.19680 1.84295 -1.22694 -1.13936	1.556 .942 1.356 .995
B1113RX5 B1113RX5 B1113RX5 B1113RX5	1.10 1.30 1.50 2.00	.05995 .02179 .00624 02043	3188 -0702 -2410 -5108	-5.395 424 7.474 4.546	.000324 .000759 .000911 .000961	00265 00679 00818 00822	-1.91533 25.16602 31.08602	985 7.594 5.162 5.498
A1T135X1	.80	.08039	3491	-5.125	000002	-00017	.57508	•847
B1T135X1	.90	.06863	3586	-5.225	.000132	-00102	74859	•999
B1T135X1	.95	.06496	3169	-4.892	.000243	-00205	-2.12009	•997
B1T135X1	1.00	.06505	3229	-4.980	.000235	-00180	-1.53603	•996
B1T135X1	1.05	.09309	3988	-5.368	000020	-00082	2.40246	•798
B11135X1 B11135X1 B11135X1 B11135X1 B11135X1	1.30 1.50 1.75 2.00	.06537 .06444 .06167 .06428 .06596	3238 2980 2599 2835 2945	-4.967 -4.668 -4.367 -4.454 -4.496	.000155 .000211 .000373 .000200 .000195	00105 00172 00286 00128 00116	82556 -1-33652 -1-89325 52196 46960	•997 •990 •966 •990 •992
B17135X1	2.50	.06671	2818	-4.294	.000268	00167	67123	.983
B17135X1	3.00	.06716	2795	-4.277	.000336	00223	83035	.972
BIT135X2 BIT135X2 BIT135X2 BIT135X2 BIT135X2	.80 .90 .95 1.00	.08380 .07690 .07212 .07194 .06257	5211 4562 4088 4080 -4931	-6.254 -5.946 -5.688 -5.814 -5.724	000182 .000113 .000335 .000061	.00206 00080 00296 00032 00003	2.18256 15200 -1.80970 -20593 -87978	.994 .997 .996 .975 1.376
B1T135X2	1.10	.06194	1291	-5.793	.000066	0016	•73387	•359
B1T135X2	1.30	.06739	3483	-5.160	.000228	00175	•91621	•994
B1T135X2	1.50	.06656	3134	-4.830	.000347	00298	•1•69477	•974
B1T135X2	1.75	.06689	3226	-4.830	.000210	00135	•31126	•998
B1T135X2	2.00	.06873	3354	-4.899	.000192	00112	•24225	•996
B11135X2	2.50	.07008	3280	4.703	.000264	00157	47966	•995
B11135X2	3.00	.06896	3073	-4.554	.000354	00235	78495	•978
B1T135X5 B1T135X5 B1T135X5 B1T135X5 B1T135X5	.80 .90 .95 1.00	.08569 .08829 .07777 .06613 .06383	5468 5799 4753 3571 3310	-6.415 -6.585 -6.023 -5.422 -5.22	000106 000038 .000128 .000277 .000212	.00172 .00073 00082 00246 00185	1.33804 .80833 10281 -2.18857 -1.93776	.994 .997 1.014 .995 .992
B1T13SX5	1.10	.06257	3193	-5.145	.000273	00216	-1.85162	• 991
B1T13SX5	1.30	.07137	3879	-5.467	.000225	00173	73452	• 994
B1T13SX5	1.50	.07319	3878	-5.315	.000189	00130	47359	• 996
B1T13SX5	1.75	.06665	3258	-4.916	.000236	00160	40501	• 994
B1T13SX5	2.00	.06894	3445	-5.014	.000205	00125	24763	• 996
B1T135X5	2.50	.06987	3328	-4.799	.000279	00173	53160	:992
B1T135X5	3.00	.06921	3175	-4.691	.000368	00246	70398	:977
81714X1 81714X1 81714X1 81714X1 81714X1	.80 .90 .95 1.00	.07272 .07258 .08761 .07773 .07611	- • 3986 - • 3992 - • 5349 - • 4442 - • 4295	-5.511 -5.481 -6.115 -5.711 -5.626	.000038 .000009 -000042 .000100 .000115	00006 .00016 .00073 00059 00068	•33101 •53730 •74690 •04702 •08993	.994 1.003 .998 1.000 1.003
81714X1 81714X1 81714X1 81714X1 81714X1	1.10 1.30 1.50 1.75 2.00	.07289 .05869 .05637 .06283	3981 2608 2216 2784 3518	-5.467 -4.515 -4.129 -4.540 -3.992	.000188 .000285 .000388 .000246 .000132	00120 00206 00294 00161 00055	32178 -1 - 84448 -2 - 30037 71836 08449	.998 .934 .951 .976 1.213
B1714X1	2.50	.07268	3364	-4.517	.000213	00111	41430	1.024
B1714X1	3.00	.06623	2771	-4.275	.000290	00182	64719	.978
B1714X2 B1714X2 B1714X2 B1714X2 B1714X2	.80 .90 .95 1.00	.07312 .06439 .09379 .07745 .07469	-•4187 -•3295 -•5917 -•4612 -•4282	-5.779 -5.149 -6.519 -6.071 -5.722	.000034 .000262 000010 .000072 .000224	00011 00224 .00268 00039 00163	•19220 •2•15544 •82322 •05448 ••62655	•990 •993 •967 •980 •999
B1714X2	1:10	.07516	4287	-5.715	.000111	00076	29261	.997
B1714X2		.06467	3231	-5.010	.000241	00204	-2.02783	.997

TABLE I. TOTAL CONFIGURATION COEFFICIENTS (Concluded)

CONFIG	MN	Al	81	C 1	A3	83	Ċ3	E
B1714X2 B1714X2 B1714X2 B1714X2 B1714X2	1.50 1.75 2.00 2.50 3.00	.05791 .05651 .06807 .07071 .06994	2411 2284 324 331: 3221	-4.244 -4.243 -4.667 -4.578 -4.641	.000307 .000303 .000188 .000269 .000342	00238 00215 00106 00162 00215	-1.37120 -1.10028 59533 94725 /34/5	.981 .952 1.017 1.024
81714X5 81714X5 81714X5 81714X5 81714X5	.80 .90 .95 1.00 1.05	.07050 .07431 .07516 .07002 .06679	4033 4273 4519 3619	-5.819 -5.819 -6.728 -5.488	.000080 00086 .000287 .000307 .000311	00039 .00134 00234 00248 00272	2.51080 88331 -1.09025 -1.73203	.994 .988 .996 .991 .987
81714X5 81714X5 81714X5 81714X5 81714X5 81714X5	1.10 1.30 1.50 1.75 2.00	.06772 .05146 .04231 .04431 .05742 .06958	3700 2027 0870 0987 2231 3262 3579	-5.530 -4.231 -3.031 -2.390 -4.622 -4.882	.000 321 .000 475 .000 457 .000 450 .000 315	00268 00397 00580 00378 00236	-1.40181 -3.79824 -7.27127 -1.26848 -1.60953 -1.22909 57056	.987 .930 .678 .932 .949

TABLE II. RINGTAIL COEFFICIENTS

CONF 1G	HN	Al	A3	81	8.3	XCP/C
TIXI	. 899 995 1.005	.04293 .03701 .04705 .05387 .03990	000142 000326 000010 -000010	0577 0490 0492 0594 0453	00013 00018 -00019 -00009	125 098 -301 -196 -152
TIXI TIXI TIXI TIXI TIXI	1.10 1.20 1.30 1.50	.03374 .00510 .05038 .04398 .03549	-000195 -000071 -000061 -000015 -000062	- 0409 - 5502 - 0610 - 0472 - 0483	-00011 -00002 -00015 -00004	.050 .052 .235 147
TIXI TIXI TIXI TIXI TIXI	2.00 2.50 3.00 4.00 4.50	.03111 .02659 .02182 .02118 .02059	000066 000091 000026 000086 000092	.0367 .0214 .0194 .0198 .0226	00019 .00002 .00010 .00004 00004	.093 .593 .481 .420 .203
T1X2 T1X2 T1X2 T1X2 T1X2	.80 .90 .95 1.05	.04605 .05000 .03877 .04547 .04764	.000077 .000255 .000693 .000694 .000081	-0326 -0291 -0220 -0238 -0204	.00026 .00003 00005 00012	.056 .224 .302 .429
TIX2 TIX2 TIX2 TIX2	1.10 1.20 1.30 1.50	.05773 .05498 .06352 .05643 .04477	000197 .000022 000098 000071	0474 0237 0007 0226 0254	00085 .00003 .00002 00012	094 .425 .985 .466 .243
T1X2 T1X2 T1X2 T1X2 T1X2	2.00 2.50 3.00 4.00 4.50	.03985 .03434 .03014 .02407 .02042	000094 000070 000083 000074 000001	-0162 -0056 -0091 -0086 -0060	00008 00012 00007 00009	.457 .782 .597 .523 .608
T1X3 T1X3 T1X3 T1X3 T1X3	.80 .90 .95 1.00	.04994 .03883 .03497 .03077 .03122	.000005 .000337 .000230 .000226 .000077	.0085 .0049 .0037 .0077 .0022	00002 00011 00001 00006 00025	.106 .165 .192 0.000 .239
T1X3 T1X3 T1X3 T1X3 T1X3	1 • 10 1 • 20 1 • 30 1 • 50 1 • 75	.03041 .03659 .04397 .05008 .04672	-000149 -000127 -000053 000041 000026	.0023 .0002 .0029 0017 0085	0.00000 -00012 -00010 -00002	.232 .326 .245 .378 .575
T1X3 T1X3 T1X3 T1X3 T1X3	2.00 2.50 3.00 4.00 4.50	.04406 .03531 .03192 .02543 .02238	000086 000050 000083 000084 000045	0032 0113 9079 0067 0054	-00013 -00011 -00006 -00011 -00029	.430 .760 .663 .684
T2X1 T2X1 T2X1 T2X1	.80 .995 1.00 1.05	.04590 .06808 .02792 .06193 .07477	E85000. 045000. 191000. 961000. 870000.	.0859 .0968 .0612 .0886 .0846	.00007 0.00000 .00004 00006 00037	219 -180 503 -172 -438
T2X1 T2X1 T2X1 T2X1 T2X1	1.10 1.30 1.50 1.75 2.00	.07276 .06616 .07081 .06134 .05757	000083 -000094 000036 00034 000244	-1574 -0926 -0915 -0717 -0751	00005 00010 00020 00002 00017	.200 .295 .405 .264
T2X1 T2X1 T2X1 T2X1	2.50 3.00 4.00 4.50	.03656 .03466 .02889 .02693	000019 000105 000075 000037	.0455 .0419 .0358 .0307	00001 00006 00011 .00015	• 390 • 369 • 342 • 431
T2X2 T2X2 T2X2 T2X2 T2X2	.80 .90 .95 1.00 1.05	.05231 .06875 .04791 .03983 05153	.000220 .000587 .000334 .000393 .006561	.0596 .0595 .0392 .0377 1.2068	00008 00007 00016 00014 07257	012 .232 .272 .158
12X2 12X2 12X2 12X2 12X2	1.10 1.30 1.50 1.75 2.00	.06161 .08340 .08836 .07738 .06795	-000050 000112 000215 000213 000216	0424 0493 0406 0339 0506	.00007 00002 .00052 .00015 .00009	.388 .474 .591 .610 .338
T 2 X 2 T 2 X 2 T 2 X 2 T 2 X 2	2.50 3.00 4.00 4.50	.04422 .03883 .03297 .02950	-000046 -000089 -,000071 -000012	.0212 .0215 .0200 .0163	00007 00002 00010	•573 •507 •460 •508

TABLE II. RINGTAIL COEFFICIENTS (Continued)

CONFIG	MN	Al	A3	81	83	XCP/C
T2X3 T2X3 T2X3 T2X3 T2X3	.80 .90 .95 1.00	.05376 .05391 .04167 .05768 .05991	.000202 .000646 .000698 .000007 .000011	.0337 .0241 .0214 .0057	00006 00034 00017 00011 00009	001 1778 2775 2470
12X3 12X3 12X3 12X3 12X3	1.30 1.30 1.50 1.75 2.00	•05683 •07896 •08309 •07749 •06729	-000114 -000125 -000063 -000148 -000063	- 0059 - 0759 - 0116 - 0109 - 0023	00011 00006 00035 .00029	1.463 1.409 431 680 •585
12X3 12X3 12X3 12X3	2.50 3.00 4.00 4.50	•05466 •04998 •03564 03055	000050 000145 000065 000009	0067 0029 0026 0007	.00027 .00020 -00013 .00025	.664 .607 .490 .575
13X1 13X1 13X1 13X1 13X1	. 80 . 95 . 95 1 . 05	•19991 •26448 •14727 •22578 •26812	000809 001017 .000462 000474 000732	3339 34509 32508 32235	00081 00045 00054 00052 00065	·2193 ·1693 ·388
T3X1 T3X1 T3X1 T3X1 T3X1	1.30 1.30 1.75 2.00	•25076 •26640 •19020 •16318 •14127	000444 002364 .000145 .000153 000040	.3106 .4569 .2329 .2145 .1946	00025 00822 -00078 .00055 .00018	.507 .189 .516 .457 .414
13X1 13X1 13X1 13X1	2.50 3.00 4.50	-11110 -09849 -08226 -07789	000069 000070 000113 000123	.1580 .1366 .1082 .0975	00002 .00029 .00018 .00024	•385 •408 •456 •498
13X2 13X2 13X2 13X2 13X2 13X2	. 90 . 95 . 05	•19089 •26202 •14392 •18468 •22744	000639 000846 .000794 .000037 000781	2320 2077 1658 1917 2076	00070 .00003 .00049 .00002 00115	.189 .271 .231 .307 .391
T3X2 T3X2 T3X2 T3X2 T3X2	1 - 10 1 - 30 1 - 75 2 - 00	•22115 •28134 •20601 •16959 •14728	000160 002719 000146 000186 000003	1886 3408 1193 1305	-00001 -00902 -00005 -00044 -00028	.431 .192 .613 .486 .449
T3X2 T3X2 T3X2 T3X2	2.50 3.00 4.00 4.50	•12210 •11501 •09286 •08337	000071 000208 000153 000083	.0992 .1952 .0629 .0565	.00022 .00028 .00024 .00063	458 131 548 548
T3X3 T3X3 T3X3 T3X3 T3X3	.80 .90 .95 1.00	•17594 •24660 •18692 •18487 •18631	000106 000696 .000175 .000100 000640	.2131 .0812 .0722 .0752 -0759	00009 .00040 .00043 .00034 .0006	140 .447 .409 .395 .938
T3X3 T3X3 T3X3 T3X3 T3X3	1.10 1.30 1.50 1.75 2.00	•20193 •24576 •21025 •18773 •17840	000024 000220 000160 000155 000245	1255 .0939 0215 .0417 .0437	.00015 .00034 .00012 .00044 .00035	1.081 .734 .518 .503
T3X3 T3X3 T3X3 T3X3	2.50 3.00 4.00 4.50	•14464 •12284 •09389 •08517	000198 000136 000146 000161	.0213 .0242 .0139 .0186	.00034 .00055 .00054 .00037	•568 •535 •521
T4X1 T4X1 T4X1 T4X1 T4X1	.80 .90 .95 1.00 1.05	•13938 •14738 •16099 •19984 •19151	000024 .000669 000413 000298 000429	.1931 .1823 .1796 .2002 .1780	00021 -00050 00035 00050 00038	•114 •263 •384 •498 •570
T4X1 T4X1 T4X1 T4X1 T4X1	1.10 1.30 1.50 1.75 2.00	•18049 •16869 •13678 •10768 •09226	000411 000251 000088 000096	.1729 .1910 .1468 .1151 .1033	00008 00011 00006 .00034 .00025	•542 •367 •426 •431 •380
T4X1 T4X1 T4X1 T4X1	2.50 3.00 4.00 4.50	•07920 •07326 •06174 •05572	000033 000119 000121 000056	.0839 .0760 .0580 .0477	.00019 .00004 .00009 .00043	•440 •462 •560 •643

TABLE II. RINGTAIL COEFFICIENTS (Continued)

CONFIG	MN	Al	A3	яì	ä3	XCP/C
T4X2 T4X2 T4X2 T4X2 T4X2	.80 .90 .95 1.05	.16410 .16960 .11772 .17924	000254 .000333 .000717 000071	.1687 .1056 .0984 .0908 .1255	00063 .00031 .0006 00034 00184	- 028 - 037 - 627 - 627 - 627
T4X2 T4X2 T4X2 T4X2 T4X2	1 • 20 1 • 30 1 • 75	.16902 .17953 .18286 .14179 .11754	000243 000413 000280 .000147 .000149	- 4251 - 4102 - 0975 - 0755	.03409 .03342 .00011 -00001	.466 .467 .510
T4X2 T4X2 T4X2 T4X2 T4X2	2.50 3.00 4.00 4.50	.11093 .09753 .08455 .06478 .05739	000128 000097 000165 000165 000028	.0489 .0391 .0351 .0261 .0197	.00019 .00035 .00019 .00012 .00061	559 5599 5584 556
14X3 14X3 14X3 14X3 14X3	.80 .90 .95 1.00	•14433 •18659 •12260 •13129 •14032	.000210 .000155 .000497 .000263 .000310	.0492 .0350 .0392 .0417 .0277	-00004 00001 00007 00021 00005	• 159 • 312 • 180 • 182 • 302
14X3 14X3 14X3 14X3 14X3	1 • 10 1 • 20 1 • 30 1 • 50 1 • 75	.14436 .18711 .18967 .16442 .13972	-000555 -001099 -000177 -000156 -00009	0015 .0483 .0189 0847 0103	-00088 -00136 -00014 -00001	.510 .241 .426 1.015
T4X3 T4X3 T4X3 T4X3 T4X3	2-00 2-50 3-00 4-00 4-50	.12369 .10156 .08405 .06596 .05915	000076 000077 000102 000205 000190	0031 0114 0123 0053	.00034 .00036 .00044 .00018	•525 •612 •646 •580 •601
74X4 74X4 74X4 74X4 74X4	.80 .90 .95 1.00 1.05	•12684 •16551 •10567 •11047 •14586	.000344 .000570 .000747 .000631	.0006 -0287 -0064 -0013 -0298	00007 00021 00047 00041	.095 .273 .039 .111
T+X4 T+X4 T+X4 T+X4 T+X4	1.20 1.30 1.50 1.75	.13856 .14539 .15622 .14458 .11878	-000140 000038 000008 000043 000013	0307 0136 0435 0493 0535	00004 00019 .00010 00011	.321 .193 .378 .440
14X4 14X4	2.50 3.00	.09236 .08033	000088 000155	0475 0400	.00013 .00003	:614 :597
15 X 1 15 X 1 15 X 1 15 X 1 15 X 1	.80 .90 .95 1.00 1.05	•10553 •09446 •11892 •10422 •08400	.000115 .000234 ~.000007 .000181 .000245	.1100 .1020 .1099 .0935 .0814	00014 .00005 .00008 0008 00021	.096 .033 .293 .338
75 X 1 75 X 1 75 X 1 75 X 1	1.30 1.30 1.50 2.75	.08024 .09599 .07697 .06332 .05818	-000248 -000054 -000072 -000021 -000001	.0825 .0889 .0682 .0535	00003 00001 .00011 .00027	.119 .266 .356 .438
T5X1 T5X1 T5X1 T5X1	2.50 3.00 4.00 4.50	.05733 .04891 .04080 .03716	000125 000077 000143 000130	.0420 .0341 .0316 .0283	.00005 .00017 00014 .00012	.612 .671 .542 .564
T5X2 T5X2 T5X2 T5X2 T5X2	.80 .90 .95 1.00	•11254 •09444 •11576 •10713 •09918	.000211 .000572 .000032 .000183	.0498 .0236 .0463 .0463 .0399	.00024 .00089 .00001 .00013	.262 .593 .3341 .329
15x2 15x2 15x2 15x2	1 • 10 1 • 20 1 • 35 1 • 75	.09687 .10431 .11618 .08944 .08195	.000224 .000126 000077 .000067 .000010	.0340 .0386 .0991 .0219 .0169	.00011 .00007 .00001 -00007 .00031	.415 .383 421 .591
T5X2 T5X2 T5X2 T5X2 T5X2	2.00 2.50 3.00 4.00 4.50	.07587 .06334 .05126 .04104 .03778	-000011 000069 000064 000136 000143	.0157 .0071 .0056 .0081 .0129	.00029 .00031 .00034 .00009 .00002	.655 .813 .817 .671

TABLE II. RINGTAIL COEFFICIENTS (Continued)

CONFIG	MN	A1	A3	81	В3	XCP/C
100000 100000 100000	#9999 1	12279 007281 102330	.000082 .000343 .000438 .000108	5593 0011 0168 0135	- 04175 - 00014 - 00045 - 00027	185 439 3393
1303	00000	.09724 .10564 .10799 .10080 .08631	000157 000041 000041 000111	0178 -0159 0184 0161 0265	-00021 -00004 -00007 -00003 -00038	- 471 - 084 - 450 - 432 - 678
1 2 X 3 X 3 X 3 X 3 X 3 X 3 X 3 X 3 X 3 X	3.000	.07711 .06291 .05214 .04111 .03803	-000024 -000073 -000109 -000129 -000099	0230 0232 0176 0160 0085	.00027 .00032 .00027 .00020 .00026	•663 •781 •729 •815 •539
T6Y1 T6X1 X6T X6T	900 1 005	.14527 .14995 .15069 .17571 .17831	.000010 .000377 .000207 .000604 .000169	.1868 .1764 .1896 .1758 .1707	.00008 .00034 .00004 .00033 0.00000	· 214 · 323 · 241 · 499 • 542
T6X1 T6X1 T6X1	1.20	17067 16727 14094 11012	000011 000121 000016 0.000000	-1732 -3934 -1531 -1171 -1052	-00001 -00006 -00010 -00031 -00036	-485 -413 -436 -415
Text Text	2.50 3.00 4.00 4.50	.08510 .07825 .06312 .05699	-,000061 -,000182 -,000149 -,000107	.0955 .0750 .0578 .0550	.00003 .00001 .00017 .00013	• 377 • 541 • 584 • 534
T6X2 T6X2 T6X2 T6X2 T6X2	.60 .90 .95 1.00 1.05	14259 13507 12530 15196	000086 000861 000032 000090	.1458 .0954 .0888 .0975 .0774	.00062 .00018 00011 .00003 .00006	- 022 - 293 - 291 - 358 - 486
16X2 16X2 16X2 16X2 16X2	1.10 1.30 1.50 1.75 2.00	.15127 .16053 .13126 .11466 .11018	.000023 .000109 .000133 .000019 000048	.0786 .0874 .0792 .0557 .0528	.00001 .00016 00011 .00046 .00044	.480 .455 .396 .514 .520
16X2 16X2 16X2 16X2	2.50 3.00 4.00 4.50	.10020 .08478 .06434 .05766	000131 000151 000121 000047	.0448 .0339 .0215 .0206	.00032 .00025 .00041 .00042	•552 •600 •645 •642
16X3 16X3 16X3 16X3 16X3	.80 .90 .95 1.00 1.05	• 15128 • 14637 • 11891 • 13299 • 15629	.000253 .000803 .000607 .000581 .000169	.0313 .0238 .02328 .0085	.00017 00005 00021 00006 00004	• 293 • 315 • 318 • 445
T6X3 T6X3 T6X3 T6X3 T6X3	1.10 1.30 1.50 1.75 2.00	. 16464 19041 15865 12900 11333	000036 000110 000135 000025 .000009	.0067 .0395 .8114 0078 0057	00009 00004 .00005 .00048 .00033	.459 .292 -560 .550
T6X3 T6X3 T6X3	2.50 3.00 4.00	.09477 .07900 .06529	000046 000103 000208	0053 0068 0054	.00028 .00033 .00026	•555 •586 •582
16×3 17×1 17×1 17×1 17×1	4.50 .80 .90 .95 1.00	.05845 .16390 .15473 .18858 .19270	000109 000089 -000322 -000014 000206	0057 -1493 -1243 -1256 -1355	-00039 -00009 -00013 -00011 -00056	•597 •589 •693 •796
17X) 17X i 17X i 17X i 17X i	1.05 1.10 1.30 1.50 1.75	18227 18310 13099 14519 14222	000232 000368 000559 000446	.1150 .1120 .0751 .1199 .1618		.869 .888 .926 .674 .221
17×1 17×1 17×1	2.00 2.00 3.00 4.50	.09274 .06803 .05956 .04833 .04295	.000644 .000024 000051 000133 000118	.1029 .0851 .0716 .0638 .0513	.00111 .00009 .00008 00032 00001	•390 •249 •297 •179 •305

TABLE II. RINGTAIL COEFFICIENTS (Continued)

COMF10	MAL	^ 1	A2	<u>a 1</u>	93	XC#/C
T7X2 T7X2 T7X2 T7X2 T7X2	.80 .90 .95 1.00 1.05	13529 15474 19488 19311 18485	000049 000275 000123 000297	- 1249 - 1291 - 1429 - 1425 - 1261	.00066 .00019 00012 00018 00047	1.923 -165 -164 -262 -317
17x2 17x2 17x2 17x2 17x2	1.10 1.20 .80 .90	• 18324 • 15883 • 15444 • 14426 • 19137	000413 000299 000034 .000353 .000036	.1150 .0908 .1988 .1932 .2206	00026 00012 00011 -00029 -00007	- 372 - 428 - 287 - 339 - 152
17x2 17x2 17x2 17x2 17x2 17x2	1.00 1.30 1.30	• 18636 • 17517 • 17557 • 125419	.000004 .000086 000288 .000121 000532	• 2225 • 2044 • 1942 • 1356 • 1965	00037 00054 00044 -00025 00086	193 167 102 079 274
17X2 17X2 17X2 17X2 17X2	1.75 2.00 2.50 3.00 4.00	•19433 •11083 •08159 •07482 •06182	001787 .000736 .000038 000144 000253	.0797 .0496 .0461 .0373 .0293	.00065 .00087 .00021 .00019 .00015	• 589 • 552 • 434 • 501 • 526
17X2	4.50	.05401	000230	.0269	.00010	.501
17x3 17x3 17x3 17x3 17x3	-80 -90 -95 1-00 1-05	.15347 .14956 .17066 .16479 .15770	000083 .000266 .000164 .000169	.0407 .0491 .0457 .0412 .0382	.00021 -00013 -00026 -00019 -00041	· 234 • 171 • 232 • 245 • 257
T7X3 T7X3 T7X3 T7X3 T7X3	1.10 1.20 1.50 1.75	• 16045 • 14021 • 12230 • 18041 • 14758	000181 000063 000202 000915	.0322 .0140 .0144 .0466 0036	00021 -00001 -00018 00067 -00056	299 4900 3841 524
T7X3 T7X3 T7X3 T7X3 T7X3	2.00 2.50 3.00 4.00 4.50	- 12322 - 10144 - 08338 - 06342 - 05445	000018 000100 000119 000269 000214	-0021 -0005 -0031 -0010 -0034	.00032 .00033 .00024 .00024	.482 .5037 .482 .582
17X4 17X4 17X4 17X4 17X4	.80 .90 .95 1.00	• 12693 • 13903 • 17500 • 17043 • 14145	.000383 .000334 000010 000094 .000142	0308 0080 0057 0141 0163	.00068 .00006 .00019 .00005 00040	.342 .157 .132 .215
17×4 17×4 17×4 17×4 17×4	1 • 10 1 • 20 1 • 30 1 • 50 1 • 75	• 14715 • 14875 • 15453 • 15452 • 12343	-000144 -000057 -000088 -000122 -000044	0221 0687 0451 0512 0511	00021 00012 0006 	• 250 • 561 • 3931 • 4313
17×2	2.00 3.00	.09656 .08056	000051 000241	0218 0368	.00039	.325 .556
18x1 18x1 18x1 18x1 18x1 18x1	1.75 2.50 2.50 4.50 4.50	11125 -09912 -08975 -06925 -06280	000074 000020 000085 000162 000163 000069	1105 1105 10770 10598 10544	.00025 .00016 .00014 .00015 .00021	428 358 4580 533
18×2 18×2 18×2 18×2 18×2 18×2	1.75 200 2.50 3.00 4.00 4.50	12561 12070 10289 08781 06985	000096 000151 000085 000105 000151 000106	.0567 .0481 .0418 .0320 .0262 .0256	.00034 .00026 .00033 .00034 .00028	.548 .601 .5935 .6324 .601
18X3 18X3 18X3 18X3 18X3 18X3	1.75 2.50 3.00 4.50	.14139 .12640 .10218 .08760 .07038	000055 000104 000069 000120 000185 000071	0019 .0053 0102 0095 0079 0110	.00048 .00023 .00033 .00029 .00023 .00062	5138 4598 6012

TABLE II. RINGTAIL COEFFICIENTS (Continued)

CONFIG	MN	Al	A3	81	83	XCP/C
T85X1 T85X1 T85X1 T85X1 T85X1	1.75 2.50 2.50 4.00 4.50	.14904 .13702 .11772 .10148 .08012 .07259	000132 000060 000068 000107 000070 000042	.1684 1527 .1189 .0987 .0738	•00017 •00021 •00040 •00029 •00031 •00019	.370 .389 .587 .578 .537
185XX2 185XX2 185XX2 185XX2 185XX2	1.75 2.50 2.50 3.00 4.00 4.50	.16485 .14825 .12094 .10107 .07920	000168 000078 000056 000108 000127 000023	.0905 .0781 .0582 .0470 .0347 .0292	.00042 .00026 .00039 .00026 .00031	• 45713 • 45713 • 5569 • 5569
T85X3 T85X33 T85X33 T85X3	75000	16484 11638 11618 07817 07175	000093 000028 000086 000122 000091	.0015 .0050 0015 0050 0049 0025	.00040 .00043 .00048 .00053 .00029	961563 945555 • 45555
TIOXI TIOXI TIOXI TIOXI TIOXI	1.750 2.500 3.000 4.50	.19416 .17369 .16202 .14624 .10917 .09884	-000137 -000073 -000098 -000131 -000115	2397 22216 1852 1544 1121 1042	•00050 •00035 •00035 •00029 •00029	1795586 43785755 43785555
TIOX2 TIOX2 TIOX2 TIOX2 TIOX2 TIOX2	1.750 2.500 3.000 4.500	21024 20528 17835 14846 11117	-000127 000136 000186 000186 000120	.1348 .0680 .0816 .0580 .0533	.00051 .00039 .00032 .00037 .00039	949587 4565555
TIOX3 TIOX3 TIOX3 TIOX3 TIOX3	705000 705000 705000 705000	23793 17530 17535 11371	000022 000062 0000172 000227 000147	0234 023251 00044	.000661 .00050 .000468 .00051	1255555 288346 544555
TIIXI TIIXI TIIXI TIIXI	1.75 2.50 3.00 4.50	12446 12779 111139 109288 107014 106306	- 000086 - 000055 - 000184 - 000159 - 000088	1139 11856 07565 048	.00038 .00027 .00036 .00013 00001	446 449. 644. 614. 614. 644.
T11X2 T11X2 T11X2 T11X2 T11X2 T11X2	1.75 2.50 3.00 4.00 4.50	15124 13452 19254 107059	- 000029 - 000066 - 000166 - 000156 - 0000797	.0476 .0416 .0305 .0253 .0180	.00047 .00030 .00042 .00042 .00027	• 580 • 586 • 632 • 635 • 660 • 701
TIIXAA TIIIXA TIIIXA TIIIXA TIIIXA	1.75 2.50 3.00 4.50 4.50	.15120 .11087 .09224 .07130	- 000005 - 000098 - 000134 - 000149 - 000089	7-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	.00037 .00039 .00045 .00041 .00066	.589 .618 .649 .625
T12X1 T12X1 T12X1 T12X1 T12X1	.80 .90 .95 1.00	.03767 .01574 .01632 .01489	- 000253 - 000344 - 000427 - 000341 - 000123	.0653 .0459 .0399 .0403	00030 -00020 -00027 00001 00027	- 932 - 9355 - 940 - 306
T12X1 T12X1 T12X1 T12X1 T12X1	1.10 1.30 1.50 1.75 2.00 2.50	021386 0223867 00225887 0022588		.0406 .0401 .0454 .0457 .0289 .0316	.00001 .00023 .00023 0003 00005	- 119 - 026 - 181 - 190 - 504 - 293
112X1	3.00	.01949	000099	.0199	00014	.583

TABLE II. RINGTAIL COEFFICIENTS (Continued)

CONF 1G	MN	Al	A3	81	83	XCP/C
112X2 112X2 112X2 112X2 112X2	.80 .90 .95 1.00 1.05	.03929 .02999 .02487 .01829 .01163	000019 .000159 .000197 .000387	.0343 .0309 .0160 .0204 .0150	.00024 00012 00024 00013 00001	.301 .175 .487 .031
T12X2 T12X2 T12X2 T12X2 T12X2	1.30 1.50 1.75 2.00	.01336 .03245 .03587 .03730 .03237	-000328 -000111 -000005 -000090 -000058	.0161 .8180 .0246 .0234 .0100	-00023 -00010 -00002 -00012 -00004	.035 .451 .498 .752
T12X2 T12X2	2.50 3.00	02861 03570	000075 .001488	1940	00004 .00534	.588
112X5 112X5 112X5 112X5 112X5	.80 .90 .95 1.00 1.05	.04673 .03189 .02734 .01761 .01533	000351 .000034 000010 .000277 .000278	.0263 .0185 .0610 .0158 .0087	00018 .00016 00005 00013	.349 .335 -984 .090 .345
112X5 112X5 112X5 112X5 112X5	1.10 1.30 1.50 1.75 2.00	.01575 .03184 .03451 .03609 .03270	.000292 .000139 .000011 000043 000035	.0120 .0180 .0155 .0165 0005	.00005 .00003 00008 00013 .00006	.190 .347 .440 .434 .812
712X5 712X5	2.50 3.00	.02956 .02507	000068 000087	.0065 .0011	00001 00006	.624 .764
113X1 113X1 113X1 113X1 113X1	.80 .90 .95 1.00 1.05	.02743 .01813 .00603 .01452 .01504	000058 .000082 .000247 .000108 .00071	.0462 .0335 .0206 .0253 .0250	00032 00006 .00019 .00013 00010	263 438 325 114
T13X1 T13X1 T13X1 T13X1 T13X1	1.10 1.30 1.50 1.75 2.00	.01632 .01534 .01963 .02044 .01753	000042 .000113 .000068 000015 000014	.0270 .0267 .0277 .0343 .0166	00010 00002 .00002 00017 .00001	094 0923 257 523
T13X1 T13X1	2.50 3.00	.01560 .01352	000047 000068	.0189 .0146	00008 00017	•240 •381
T13X2 T13X2 T13X2 T13X2 T13X2	.80 .90 .95 1.00	.03748 .02953 .02256 .01381 .01420	000237 .000092 .000139 .000271 .000179	.0220 .0278 .0075 .0099 .0088	.00004 00032 .00018 .00027 00007	.373 .175 .645 .234 .338
T13X2 T13X2 T13X2 T13X2 T13X2	1.30 1.30 1.50 1.75 2.00	•01765 •02519 •02862 •02727 •02398	.000111 .000020 000051 000046 000051	.0071 .0204 .0194 .0197 .0035	-00028 00017 00005 00011 0-00000	•570 •135 •276 •229 •844
113X2 113X2	2.50 3.00	.02069 .01737	000051 000055	.0094 .0063	00002	.515 .612
113X5 113X5 113X5 13X5 3X5	.80 .90 .95 1.00 1.05	.03096 .03355 .02531 .01968 .01483	090153 .000013 .000068 .000108	.0256 .0088 .0009 .0034 .0052	00016 00010 00018 00019	149 .453 .548 .358
113X5 113X5 113X5 113X5 113X5	1.30 1.50 1.75 2.00	.01505 .02941 .03097 .02701 .02394	.900100 .000019 000053 000024 000015	.0055 .0084 .0050 .0106 0028	.00002 .00007 00005 00007 .00002	.343 .428 .560 .314 .858
T13X5	2.50 3.00	.02076 .01744	000026 000057	-:0045 -:0020	0.00000 00012	•501 •855
T13RX1 T13RX1 T13RX1 T13RX1 T13RX1	.80 .90 .95 1.00 1.05	-00010 -00687 -00816 -00306 -00019	.000145 .000284 .000432 .000380 .000406	0293 0359 0330 0194 0290	.00043 .00046 .00080 .00062 .00053	
T13RX1 T13RX1 T13RX1 T13RX1 T13RX1	1.10 1.30 1.50 1.75 2.00	00465 02214 03341 03193 03903	.000426 .000598 .000728 .000402 .000516	0378 0578 0755 0718 0957	.00087 .00078 .00111 .00063 .00102	-1.179 878 066 -1.083

TABLE II. RINGTAIL COEFFICIENTS (Continued)

CONFIG	HN	Al	A3	81	RA	XCD/C
T13RX2 T13RX2 T13RX2 T13RX2 T13RX2	.80 .90 .95 1.00 1.05	- 00458 - 01559 - 01094 - 01045	000050 .000235 .000239 .000416 .000424	0098 0299 0217 0217 0269	00024 -00029 -00048 -00026	-1.046
T13RX2 T13RX2 T13RX2 T13RX2 T13RX2	1 • 10 1 • 30 1 • 50 1 • 75 2 • 00	-00363 -01781 -03039 -03665 -05052	.000492 .000582 .000708 .000401 .000594	0367 0460 0637 0567 0749	.00074 .00056 .00097 .00045 .00082	-1.756 -1.237 642 582
T13RX5 T13RX5 T13RX5 T13RX5 T13RX5	.80 .90 .95 1.00	• 00889 • 00543 • 01902 • 72542 • 02271	000099 000279 000035 .000253	-0119 -0139 -1809 -0147 -0213	00022 .00008 .00039 .00028 .00008	1.734
T13RX5 T13RX5 T13RX5 T13RX5 T13RX5	1 • 10 1 • 30 1 • 50 1 • 75 2 • 00	-01635 -01933 -03705 -05107 -06483	.000217 .000597 .000761 .000530	0243 0264 0336 0288 0392	.00026 .00020 .00044 .00027 .00056	724 234 -131 .087
T13RX5 T13RX5	2.50 3.00	06086 04525	.000776 .000644	0256 0191	.00046 .00026	·284 ·282
T135X1 T135X1 T135X1 T135X1 T135X1	•80 •90 •95 1•00 1•05	.04008 .02665 .02128 .02064 .04835	000132 0.000000 -000161 -000162 000114	. 1659 . 0371 . 0339 . 0313 . 2317	00026 00017 00009 00023 00002	-047 -166 -084
T135X1 T135X1 T135X1 T135X1 T135X1	1.10 1.30 1.50 1.75 2.00	•02177 •02332 •01838 •02172 •02156	.000048 .000049 .000223 000019 000035	0249 0319 0198 0297 0194	-00017 -00021 -00038 -00012 -00004	•312 •073 •383 •074 •573
1135X1	2.50 3.00	:01979	000048 000086	.0247 .0146	00008 00016	.201 .620
T135X2 T135X2 T135X2 T135X2	.80 .90 .95 1.00	.04349 .03492 .02844 .02753 .01783	000312 000019 .000253 .000008 000040	.0280 .0227 .0136 .0151 .8184	00017 00014 00010 00017 00009	•312 •321 •489 •414
NAME OF THE PARTY	1.10 1.30 1.50 1.75 2.00	.01834 .02677 .02327 .02433 .02433	000041 .000066 .000197 000009 ~.000038	•1853 •0161 •0152 •0167 •0062	-00017 -00007 0.00000 -00009 -00003	• 358 • 302 • 267 • 728
13582 13582	2.50 3.00	.02316 .01887	000052 000068	.0122 .0048	00002 00010	:437 :728
7135X5 7135X5 7135X5 7135X5	.80 .90 1.00 1.05	•04538 •04631 •03409 •02172 •01909	000236 000170 .000046 .000204 .000118	.0212 .0124 .0036 .0079 .0069	-00025 -00012 -00017 -00001 -00033	234 447 620 345 347
1135XXXXX 1135XXXXX 1133XXXXXX	1.10 1.30 1.50 1.75 2.00	• 01.025 • 02.790 • 02.799 • 02.454	•000166 •000063 •000039 •000017 ••000025	.0014 .0113 .0071 .0111 ~.0008	-00024 -00008 -00010 -00008 -00003	•654 •334 •479 •241 •767
T135X5	2.50 3.00	.02295 .01912	000037 000054	0053	00003	.486 .895
T14X1 T14X1 T14X1 T14X1 T14X1	.80 .90 .95 1.00 1.05	.03241 .03060 .04393 .03332 .03137	000092 000123 000124 000027 .000021	.0397 .0360 .0424 .0368 .0312	00009 00022 -00002 00009 00013	•2268 •2703 •377 •472
T14X1 T14X1 T14X1 T14X1 T14X1	1.10 1.30 1.50 1.70	02929 -01757 -01738 -02727 -0287	.000081 .000123 .000238 .000027 000098	.0258 .0116 .0051 .0203 .0288	.00035 .00019 .00045 .00001 00006	•593 •829 1•117 •464 •444
114 <u>81</u>	2:50 3:00	•0257¢ •01614	-:000103 -:000132	:0277	-:00007 -:00021	1:024

TABLE II. RINGTAIL COEFFICIENTS (Concluded)

CONFIG	MN	Al	A 3	B1	83	XCP/C
T14X2 T14X2 T14X2 T14X2 T14X2	.80 •90 •95 1•00	-03241 -05011 -03304 -03015	000096 -000130 000092 000001	0236 0474 0170 0203	- 00018 - 00009 - 00029 - 00001	-1232 -133 -450 -281
T14X2 T14X2 T14X2 T14X2 T14X2	1.30 1.50 1.75 2.00	.03156 .02355 .01462 .01395 .02367	.000004 .000079 .000157 .000084 000042	0179 0091 0010 0071 0104	-00002 -00023 -00020 -00004 -00001	.394 .587 .927 .456 .531
T14X2 T14X2	2.50 3.00	.02379 .01985	000047 000080	0149 0002	00002 00002	1:010
T14X5 T14X5 T14X5 T14X5 T14X5	.80 .90 .95 1.00 1.05	.03019 .03233 .03148 .02561 .02205	000050 000218 .000205 .000234 .000217	.0128 .0252 .0009 .0066 .0056	0.00000 .00001 .00024 .00027 00021	- 280 - 098 - 702 - 458 - 462
T14X5 T14X5 T14X5 T14X5 T14X5	1.10 1.30 1.50 1.75 2.00	.02412 .01034 -00098 .00175 .01302	.000214 .000313 .000497 .000231	-0022 -0026 -0009 -0148 -0054	.00020 .00018 .00018 00012 00004	1.001 246 .290
T14X5	2.50 3.00	.02266 .02322	000008 000102	0090	0.00000	.309 .838

FIGURE 1. BODY CONFIGURATIONS

RINGTAIL	A	<u>B</u>	<u>c</u>	F	G
TI	1.500	1.605	0.750	0.046	0.375
T2	1.500	1.657	1.125	0.052	0.543
T 3	2.000	2.210	1,500	0.080	0.750
T4	2.000	2.140	1.000	0.070	0.500
T5	2.000	2.080	002.0	0.060	0,300
TIO	2.500	2.475	1.250	0.092	0.625
TII	2.500	2.405	0.750	0,089	0.375
TI2	1.250	1.425	1.230	0,048	0.782
T13	1.250	1.381	0.937	0.048	0.423

FIGURE 2. RINGTAIL GEOMETRY, 4-DEGREE INTERNAL EXPANSION ANGLE

a. 0-DEGREE INTERNAL EXPANSION

6. 6-DEGREE INTERNAL EXPANSION

c. TI3R - 4-DEGREE INTERNAL COMPRESSION
OBTAINED BY REVERSING CONFIGURATION
TI3 (FIGURE 2)

FIGURE 3. RINGTAIL GEOMETRY, VARIOUS INTERNAL ANGLES

FIGURE 4. GEOMETRY OF NONCIRCULAR SUPPORT STRUTS

FIGURE 5. MODEL INSTALLATION, TRANSONIC TUNNEL

FIGURE 6. MODEL INSTALLATION, SUPERSONIC TUNNEL

FIGURE 7. VARIATION OF CENTER OF PRESSURE WITH MACH NUMBER FOR SOME TYPICAL CONFIGURATIONS, $\delta = 4$ deg, $\phi = 4$ deg

FIGURE 8. VARIATION OF MEAN VALUE OF RINGTAIL CENTER OF PRESSURE WITH MACH NUMBER

FIGURE 9. EFFECT OF RINGTAIL GEOMETRY AND LONGITUDINAL POSITION ON THE VARIATION OF ΔC_N WITH MACH NUMBER, δ = 4 deg α

FIGURE 9. EFFECT OF RINGTAIL GEOMETRY AND LONGITUDINAL POSITION ON THE VARIATION OF ΔC_N WITH MACH NUMBER, δ = 4 deg (Continued). α

FIGURE 9. EFFECT OF RINGTAIL GEOMETRY AND LONGITUDINAL POSITION ON THE VARIATION OF ΔC_N WITH MACH NUMBER, δ = 4 deg, ϕ = 4 deg (Concluded) α

FIGURE 10. EFFECT OF RINGTAIL INTERNAL ANGLE ON ΔC_{N} (CONSTANT LEADING DIAMETER, A = 2)

FIGURE 10. EFFECT OF RINGTAIL INTERNAL ANGLE ON ΔC_N (CONSTANT LEADING DIAMETER, A = 2) (Continued)

÷ ,

FIGURE 11. EFFECT OF RINGTAIL INTERNAL ANGLE ON $\Delta C_{N_{\alpha}}$ (CONSTANT DIAMETER AT RINGTAIL MIDCHORD)

FIGURE 12. EFFECT OF PLANAR TYPE SUPPORT STRUTS ON $\Delta C_{N_{_{lpha}}}$

FIGURE 13. AFTERBODY GEOMETRY EFFECT ON RINGTAIL CONTRIBUTION TO NORMAL FORCE, $A=2,\ C=1,\ \delta=4$ deg

c. X3, E • -0.5

FIGURE 14. EFFECTS OF CHORD, DIAMETER, AND LONGITUDINAL POSITION ON ΔC_1 OF RINGTAILS, $\delta=4$ deg

FIGURE 14. EFFECTS OF CHORD, DIAMETER, AND LONGITUDINAL POSIT ON ON $\Delta^{\mathbb{C}}_N$ OF RINGTAILS, $\delta = 4$ deg (Continued)

FIGURE 14. EFFECTS OF CHORD, DIAMETER, AND LONGITUDINAL POSITION ON $\Delta C_{
m N}$ OF RINGTAILS, $\delta = 4$ deg (Continued)

FIGURE 14. EFFECTS OF CHORD, DIAMETER, AND LONGITUDINAL POSITION ON $\Delta C_{
m N}$ OF RINGTAILS, $\delta = 4$ deg (Continued)

47

FIGURE 14. EFFECTS OF CHORD, DIAMETER, AND LONGITUDINAL POSITION ON A OF RINGTAILS, $\delta = 4$ deg (Concluded)

FIGURE 15. COMPARISON OF RINGTAIL WITH EQUIVALENT PLANAR FIN $\Delta C_{
m N}$

49

FIGURE 16. CORRELATION OF RINGTAIL ΔC_N (RINGTAIL LEADING EDGE MACH LINE DOES NOT IMPINGE UPON BODY) α

FIGURE 17. CORRELATION OF RINGTAIL ΔC_{N} (RINGTAIL LEADING EDGE MACH LINF IMPINGES UPON BODY; REFLECTED MACH LINE MISSES RINGTAIL SURFACE)

Appendix Parameters Used in Correlation of Ringtail Supersonic Normal Force

Definitions of the ringtail correlating parameters are shown in Table A-I. Plots using these parameters were seen in Figures 16 and 17. A summary of the Mach numbers and 3's corresponding to the critical conditions is shown in Tables A-II and A-III. The COND column in Table A-IV may be used to help in identifying the data points used in Figures 16 and 17. This column has been left blank for the reader's use. The first regime for correlation includes Mach numbers greater than critical condition 1 (where the ringtail leading edge Mach line impinges on the body base). The second regime includes Mach numbers less than condition 1 and above condition 2 (where the Mach line impinges on the ring surface after reflection from the body surface). An additional condition is imposed on both regimes; that is, the expansion wave from the body base does not impinge on the ringtail surface. Tables of correlating parameters are presented for all Mach numbers tested, but only the points within the regimes and above a Mach number of 1.5 were included in Figures 16 and 17.

Flow conditions 3 and 4 occur only on longitudinal position which extend aft of the base. Flow condition 5 is used as a limiting condition which overrides conditions 1 and 2 if condition 5 is greater than condition 1 or condition 2.

Figure A-1 shows the geometry rotation used for the ringtail configurations. Sketches illustrating the five flow conditions are shown in Figure A-2.

Data points outside the limits imposed for Figures 16 and 17 are not as easily correlated. The effects of the reflections and impingements are easily traced in Figure 9 and Figure 14.

TABLE A-I. RINGTAIL CORRELATION PARAMETERS, DEFINITION OF TELLIS

М	Mach number
В	$beta = \sqrt{ (M^2 - 1) }$
FCT1	$\Delta C_{N_{\omega}}$
FCT2	α (A/C)β
FCT3	$\Delta C_{N_{\infty}}/(A^2-1)$
FCT4	$\Delta C_{N_{s}}/(B^{2}-1)$
FCT5	$\beta^2 C (C + E) / [(A - 1) (A + B - 2)]$
FCT6	$(A/C) \Delta C_{N_{\perp}}/(A^2-1)$
FCT7	$(A/C) \Delta C_{N_{\infty}}/(B^2-1)$
COND	critical condition

TABLE A-II. CRITICAL MACH NUMBERS FOR EACH FLOW CONDITION, δ = 4 deg

V	1 acg							
CONF	A	С	E	CONDI	CUNDZ	COND3	COND4	CONDS
T1X1	1.5	0.750	0.5	5.099	1.686	_	-	1.644
T1X2	1.5	0.750	0.0	3.162	1 • 686	-	-	1.300
T1X3	1.5	0.750	-0.5	1.414	1 • 686	1.931	1.414	1.036
Taxi	1.5	1.125	0.5	6.576	2 • 186	_	-	1.901
Texe	1.5	1.125	0.0	4.609	2.186	-		1.557
T2X3	1.5	1.125	-0•5	2.692	2 • 186	1.821	2.692	1.220
T3x1	2.0	1.500	0.5	4.123	1.686	-	-	1 • 469
T3X2	2.0	1.500	0.0	3.162	1 • 686	-		1.300
T3x3	2.0	1.500	-0•5	2.236	1 • 686	1 • 297	2.236	1.147
T4×1	2.0	1.000	0.5	3.162	1.368	-	-	1.300
T4×2	2.0	1.000	0.0	2.236	1.368	-	-	1.147
T4X3	2.0	1.000	-0.5	1.414	1 • 368	1.330	1.414	1.036
T4X4	2.0	1.000	-0.9	1.019	1 • 368	1.868	1.019	1.000
T5X1	2.0	0.600	0.5	2.416	1 • 154	_	-	1.178
T5x2	2.0	0.600	0.0	1.562	1 - 154	-	-	1.054
TSX3	2.0	0.600	-0•5	1.019	1 • 154	1.362	1.019	1.000
TIOXI	2.5	1.250	0.5	2.538	1.272	-	-	1.195
TIOX2	2.5	1.250	0.0	1.943	1.272	~	-	1.104
TIOX3	2.5	1.250	-0•5	1.414	1 • 272	1.164	-	1.036
T11X1	2.5	0.4750	0.5	1.943	1.110	~	-	1.104
T11x2	2.5	0.750	0.0	1.414	1.110	-	-	1.036
T11X3	2•5	0.750	-0.5	1.054	1.110	1.178	1.054	1.001
T12X1	1 • 25	1.250	0.5	14.035	3.836	-	-	2.952
T12X2	1.25	1.250	0.0	10.049	3.836	-	_	2.441
T12X5	1 • 25	1.250	-0.25	8.062	3 • 836	1.544	8.062	2.143
T13X1	1 • 25	0.937	0.5	11.539	3.133	-	-	2.646
TIBER	1 . 25	0.937	0.0	7.562	3.133	-	-	2.064
T13\5	1.25	0.937	-0.25	5.586	3.133	1.649	-	1.730

TABLE A-III. CRITICAL BETAS FOR EACH FLOW CONDITION, $\delta = 4$ deg

CONF	A	С	Ε	COND 1	CONDS	COND3	COND4	CONDS
TIXI	1 • 5	0.750	0.5	5.000	1 • 357	_	_	1.305
T1X2	1.5	0.750	0.0	3:000	1 • 357	-	-	0.630
TIX3	1.5	0.750	-0•5	1.000	1.357	1.652	1.000	0.271
T2X1	1.5	1.125	0.5	6.500	1.944	_	-	1.617
TZXZ	1.5	1.125	0.0	4.500	1.944	-		1.194
T2X3	1.5	1.125	-0•5	2.500	1.944	1.522	2.500	0.700
T3X1	2.0	1.500	0.5	4.000	1 • 357	-	_	1.077
T3x2	2.0	1.500	0.0	3.000	1 • 357	-	-	0.830
T3X3	2.0	1.500	-0•5	2.000	1 • 357	0.826	2.000	0.563
14X1	2.0	1.000	0.5	3.000	0.934	-	-	0.830
T4X2	2.0	1.000	0.0	2.000	0.934	_	-	0.563
T4X3	2.0	1.000	-0.5	1.000	0.934	0.877	1.000	0.271
14X4	2.0	1.000	-0.9	0.200	0.934	1.578	0.200	0.019
TSXI	2.0	0.600	0.5	2.200	0.576	_	-	0.623
T5X2	2+0	0.600	0.0	1.200	0.576	_	_	0.335
T5X3	2.0	0.600	-0.5	0.200	0.576	0.925	0.200	0.021
Tioxi	2.5	1.250	0.5	2,333	0.787	-	-	0.654
TIOX2	2.5	1.250	0.0	1.666	0.787	-	-	0.468
TIOX3	2.5	1.250	-0•5	1.000	0.767	0,597	-	0.271
T11X1	2.5	0.750	0.5	1.666	0.483	-	-	0.468
T11X2	2.5	0.750	0.0	1.000	0.483	-	-	0.271
T11X3	2.5	0.750	-0.5	0.333	0.483	0.623	0.333	0.062
Tiexi	1 • 25	1.250	0.5	14.000	3.703	-	-	2.777
T12X2	1.25	1.250	0.0	10.000	3.703	_	-	2.227
T12X5	1.25	1.250	-0 • 25	8.000	3.703	1 • 175	8.000	1.895
T13X1	1.25	0.937	0.5	11,496	2.969	_	_	2.450
T13X2	1 • 25	0.937	0.0	7.496		-	-	1.806
T13X5	1.25	0.937	-0.25	5.496	2.969	1.312	-	1.412

TABLE A-IV. RINGTAIL CORRELATING PARAMFTERS

CCNF	MACH	BETA	FCTL	FCT2	FCT3	FCT4	FCT5	FC 16	FCT7 CS	"N.f"
TIXI	•90	.500	.C425	1.20	.0343	.C272	.61	.(686	.C544	
T_X1	.90	.435	.0370	.87	.0296	.C234	.38	.0572	.6469	
TIXI	•95	•-12	.0470			.0298	.16	.C752	.0596	
			.C538	.6.	.03/6 .0430	.C341	0.00	.0850		
TIXI	1.00	0.000 .320	.C399	0.00 .64					.0662 .0506	
					.0319	.0253	.17	8630.		
TIXI	1.10	•458	.0337	.91	.0269	.0213	. 35	.0539	.0427	
TIX1	1.20	• 663	.0051	1.32	.0040	.CG32	. 74	.CC81	.0064	
TIXI	1.30	30	.0503	1.66	.0402	.0319	1.17	.0804	.0638	
TIXI	1.50	11d	.0439	2.23	.0351	.C278	2.12	.0702	.0557	
T_X1	1.75	1.436	.0354	2.87	.0283	.0224	3.49	.0566	. 6449	
T_X1	2.00	1.732	.0311	3.46	.0248	.C197	5.09	· C497	.0394	
TIXI	2.50	2.291	.C265	4.58	·C212	.C168	8.70	.0424	.0336	
TIXI	3.00	2.628	.C218	5.65	.0174	.C138	13.57	.0348	.027c	
TIXI	4.00	3.872	.0211	7.74	.0168	.0133	25.45	.C337	.0267	
Tixi	4.50	4 • 38 7	.C205	8.77	.0164	·C130	32.66	.C328	.0260	
TIXZ	-80	•000	.0460	1.20	.0369	.C291	. 36	.0736	.0583	
T1X2	• 90	.435	.0500	. 27	.0400	.C317	.19	.C800	.0634	
T1 X2	• 95	12ء۔	.C387	.62	.0309	.C245	•C9	·C619	.0491	
T1X2	1.00	0.000	.C454	0.00	.0363	.C298	0.00	.0726	.057€	
T1X2	1.05	•32C	.0476	•64	.0380	.C3CZ	.10	.C761	.0504	
T1X2	1.10	.453	.C577	.91	.0461	.C366	.21	.0923	.6732	
LTX5	1.20	• - 63	.0549	1.32	·C439	84د).	.44	.0878	.0696	
T1 X 2	1.30	• 030	.C635	1.66	-0508	.C402	.70	.1016	.CBC5	
T1X2	1.50	1.118	.C564	2.23	.0451	.C357	1.27	.0902	.0715	
T1X2	75	1.436	•C447	2.87	.0357	.C283	2.09	· 0715	.U567	
T1 X2	2.00	1.732	.C398	3.46	.C318	.0252	3.05	.0630	.C5C5	
T1X2	2.50	2.491	·C343	4.58	.0274	.C217	5.34	•C549	.0435	
T1X2	3.00	2.028	.0301	5.65	.0240	.C190	8.14	.C481	.0361	
T1 X2	4.00	3.872	.C24C	7.74	.0152	.0152	15.27	.0384	• C 3 C 4	
T1 X2	4.50	87د.4	.C204	8.77	.0163	.0129	19.59	.0326	•C25E	
T L X 3	. 80	.000	.0499	1.20	.0399	.C 16	.12	.0798	.0633	
TIX3	• 90	•435	.0388	.87	.031C	.0246	.06	•C£20	.0492	
TIX3	.95	12د.	.C349	.54	.C279	.0221	•03	• 05 v 8	.C442	
T1X3	1.00	0.000	.C307	0.00	.0245	.C:94	C.00	.0491	.0389	
T1X3	1.05	- 260	.0312	.64	.0249	.C.97	3ن.	.C499	.C?45	
11X3	1.10	.458	.C304	.91	.C243	.Cl92	.07	.C486	.0385	
T: X3	1.20	. 563	.C365	1.32	.0292	.C231	.14	.0584	.C463	
T_X3	1.30	0 ده و	.0435	1.66	.0351	.C278	.23	· C702	.6557	
T1 X3	1.50	118	.C50C	2.23	.0400	.C317	• + 2	.0800	.C634	
TIX3	1.15	1.436	.C467	2.97	.0373	.C296	.69	.0747	.0592	
TLX3	2.00	1.732	- 0440	3.46	.0352	.0279	1.01	.C704	.U558	
TLX3	2.50	2.191	.C353	4.58	.0282	.C223	1.78	.0564	.0447	
T1 X3	3.00	2.028	.C319	5.65	.C255	.0202	2.71	.0510	.C404	
TIX3	4.00	3.872	.0254	7.74	.0203	.0161	5.09	.0406	.0322	
TIX3	4.50	4.187	.0223	8.77	.0178	.C . 41	6.53	.0356	. U 2 E 2	

TABLE A-IV. RINGTAIL CORRELATING PARAMETERS (Continued)

CLAF	ЧАСН	BETA	FC T1	FCTL	FC T3	FCT,	FC 15	FCT6	FLŢ7	CCNL
Taxi	• Ħ O	LUJ	.0459	.90	.0367	.0262	1.13	.0489	• C 3 5 O	
TLXI	. 30	.433	.0680	.56	.0544	89د).	. 60	.C725	.6519	
TLX1	. 10	2	.C < 79	.4:	•0223	.0.59	.3C	.0297	.6213	
Taxi		0.000	.0619	0.06	C495	. C354	c.co	.0660	.C472	
TLXI	05		.0747	.42	.0597	.C427	. 32	.0796	.C570	
TUXL		6453	C 72 7	.61	.U581	.C+16	.66	.C775	.C555	
T2x1	1.30	060	.C661	1.10	.0528	78د C	2.18	.C705	·C5C4	
1-31	50	113	.0708	1.49	.0566	0405	3. 14	.0755	.C540	
TIXI	75	1.436	.0613	1,91	.0490	15د0.	6.51	.C653	.C468	
TZXI	2.00	1.732	.C575	2.30	.0460	.C329	9.47	.C613	.0439	
TOXI	50	291	.0383	3.05	.0300	.C219	16.58	. 0408	• C2 92	
f L x 1	3.CO	2.523	.C346	3.77	.0276	.C.98	25.28	.C369	.0264	
TLXI	4.00	3.7.	.0288	5.16	.0230	.C.64	47.39	.C307	.0219	
raxi	4.50	4.187	.0269	5.84	.0215	.C.54	6C.82	.0286	.0205	
TOXZ	.80	. (00	.C523	. BC	.0419	.0299	.78	.0557	.0399	
Tax2	90	.435	.0689	.58	.0551	.C354	.41	. 6734	. 6526	
1 4 x 2	.95	.312	.0479	.41	.0333	.C.74	.21	.0510	.0345	
TCX2	1.00	0.000	.()8	0.00	9160.	. C227	C.CO	. 0424	.0303	
12x2	1.05		15	.42	C412	C295	. 22	C549	0393	
T2x2	10	.453	.0616	.61	.0492	.C352	.45	.C657	.0470	
T2x2	30	.030	. C 834	1.10	.0567	.C477	1.00	. 6889	.1637	
T_42	1.50	118	.C883	1.49	.0706	.C505	2.73	.0941	.U674	
TIXI	75	1.435	·C773	1.91	.0419	.C442	4.51	.0824	.0590	
12x2	2.00	1.732	.0679	2.30	.0543	8563.	6.56	. 6724	-0518	
T., X2	2.50	291	.C442	3.05	•C353	.C253	11.48	.6471	7د 3 6 .	
1212	000ء د	2.:28	.C388	3.77	·C310	.C222	17.50	.C413	. 0296	
1-12	4.00	3 72	.C329	5.1:	.0263	.C188	32.81	.0350	.C251	
T2X2	4.50	4.387	.0295	5.84	·C236	.C168	42.11	.0314	.C225	
T2X3	.80	.600	.C537	.ec	.0429	70دی.	. 43	.0572	.C410	
TZX3	. 10	ذ 43.	.0559	.5d	.0447	.0320	. 23	.0596	.C426	
*2X3	.95	.312	.0416	.41	•U332	.C.39	.11	.0443	.C317	
T2x3	00	0.000	.C576	0.00	.0460	.C329	C.GO	.0614	. (439	
T2 X 3	1.05	20د.	.C599	.42	.0479	343.	. 12	.0638	.0457	
T 2 X 3	4.10	.458	.0568	.61	.0454	.0325	. 25	.0605	.0433	
raxa	30	• ĉ 30	.c789	1.16	.0631	.C451	. ₹3	.C841	-C6C2	
T2x3	1.30	118	.C83C	1.49	.0584	.C475	1.51	.0885	.0633	
T 2 X 3	75	1.436	.0774	1.91	.0619	.C443	2.50	. C 825	.C591	
TZX3	2.00	1.732	.C672	2.30	.0337	.C384	3.64	.0716	.0513	
T2X3	2.50	291	,C546	3.05	.0436	.C312	6.38	.0582	.C417	
1243	3.00	2.528	.C499	3.77	.0399	.C285	9.72	.0532	.0381	
1 143	4,00	3.37	.0356	5.10	•0284	.0203	10.23	.0379	• C271	
12×3	4.50	87 د . 4	.C305	5.84	.C244	.0174	23.39	.0325	•C232	

TABLE A-IV. RINGTAIL CORRELATING PARAMETERS (Continued)

CUNF	MACH	BETA	FCT1	FC T2	FCT3	FC 14	ΓυΤο	1016	FCT7	CCVL
T3X1	. 90	.600	.1999	.8C	.0566	14د.	. 48	.0883	.:686	
T3X1	.90	.435	.2644	.5₺	.0881	.0690	. 25	.1175	.(967	
T3X1	.95	.312	.1472	. 41	.0490	.0370	. 13	.C¢54	• C5 C5	
T3X1	1.00	0.000	.2257	0.00	.0752	.C581	C.00	.1C03	.L774	
T3X1	.05	02د.	.2681	.47	.0393	.C590	3	.1191	.0920	
T3XI	1.10	.458	.2507	.6.	.0835	. C 64 5	. 28	.1114	.0860	
T3XI	1.30	.830	.2664	1.10	.0383	.Cc35	.73	.1183	.0914	
TBXL	1.50	1.118	.1902	1.49	.0634	€8+0.	1.69	.CE45	.1.652	
TEXE	75	1.436	.1631	:.91	.0543	. (419	2.79	, C724	(5.3	
T3x1	2.00	1.732	.1412	2.30	.0470	.C363	4.67	.0627	. (.484	
T3x1	2.50	291	.1111	3.05	.0370	.0290	72	.0493	.0381	
T3X1	3.00	2.528	.0984	3.77	•032g	. 0 25 3	.C. ⊍5	.0437	.63:7	
T3X1	4.00	3 • ઇ 7 2	.C822	5.16	.0274	.0211	2C.36	.0365	. 6.2 62	
T3X1	4.50	4.387	.0778	5.84	.0259	.0200	26.13	.0345	.0267	
T3X2	.80	.600	.1908	.8¢	.0636	.0491	. 36	.0847	.0654	
T 3X2	.90	.435	.2620	•5=	.Cé73	. 6674	.19	.1164	.0859	
T3X2	• 95	12د.	.1439	.41	.0479	. 0370	• C 9	.0639	.6493	
TJXZ	1.00	0.000	.1846	0.00	.0017	.C+75	C. UO	.C820	.0633	
T3X2	1.05	-320	.2274	. 4 £	.0758	. (585	.10	.1610	.6780	
SXET	1.10	.458	.2211	.61	.0737	.C369	. 41	.0982	. (.75R	
SXLT	1.30	0 3 ن •	.2813	1.10	•C137	.C/24	.70	.1250	.0965	
13X2	1.50	1.118	.2060	1.49	.0686	.C53C	1.∠7	•6615	.6767	
T3X2	1.75	1.436	.1695	1.91	.0565	.C436	2.09	·C753	.U5:1	
T3X2	2.00	1.732	.1472	2.3C	•C490	.C378	3.05	.0654	•0505	
T3X2	2.50	2.291	.1221	3.05	.0407	.C314	5.34	.0542	.6419	
T3X2	3.00	2.s2d	.1150	3.77	.0383	.0296	8.14	.0511	.0394	
T3X2	4.00	3.872	•C728	5.16	.0309	.0238	15.27	.0412	•r316	
T3x2	4.50	4.387	.C833	5.84	.0277	.0214	19.39	.0370	.0285	
T3X3	.80	•000	.1759	.8C	.0596	•C+5Z	4	.0791	.6663	
T3X3	.90	•435	.2466	∙5₺	.0322	.0034	.12	1095	. 1846	
EXET	• 95	12ء،	.1869	.41	.0623	.C →81	`.¢6	.UE30	.0641	
T3X3	1.00	0.000	.1948	0.00	.0015	•C→75	c. ∪∩	.CE21	.1.634	
T 3 X 3	1.05	20د •	.1863	• 4 2	.0621	.Ç→79	.06	.CF27	.0019	
T3X3	1.10	.459	.2019	.61	.Ua73	.C.19	.14	.0897	.0693	
T3X3	30	• e 3 O	.2457	1.10	.0813	•C632	.46	.1091	.C843	
EX£T	1.50	1.113	.2102	1.49	.0700	.C>41	. 84	.6934	· C721	
T3X3	1.75	1.436	.1877	1.91	.0625	. C + 8 3	1.39	· C834	· C644	
T3X3	2.00	1.732	.1784	2.3C	.0594	· C459	2.03	.0792	.0612	
T3X3	2.50	291	.1446	3.05	.0482	•C372	3.56	.0642	.0496	
TJX3	3.00	2.023	.1228	3.77	-0409	16ء	5.42	.C545	• U421	
T3 X3	4.CO	3.672	.0938	5.16	.C312	· C = 41	1C.18	.0416	.0321	
T 5 X 3	4.50	4.387	.C851	5.34	.0293	.0219	13.06	.C378	.0292	

TABLE A-IV. RINGTAIL CORRELATING PARAMETERS (Continued)

6611	MACH	BETA	FCT1	1413	FCT3	FCT4	FCTo	FÇ T 6	FUT7 COND
T4×1	. 30	0.	.1393	1.20	.0464	.0863	.25	.C928	.c778
T+X1	. 10	.43:	.1473	. 27	.0491	.C+11	.13	.0982	.6822
74 x 1	. 15	1 2	.1609	.62	.0516	•C449	.06	·1072	.C&98
1 + X 1	00	n , 563	998	0.00	.0565	. じっちゃ	C.00	.1332	,1116
THEL		. 200	.1915	. 64	.0638	.C>34	.07	.1276	.1069
[-> X]	1.10	3ر4.	.1004	. 41	. CoCl	د٥٤٥.	4	.1202	.1007
T = X 1	1.30	3 3	.1686	1.6%	.0562	.C+71	.48	.1124	.0942
TAKE	: .56	119	,1167	2.23	.0455	. (38:	.67	.C911	.C763
THXI	1.75	1.435	1076	2.57	.0358	. 6 300	1.44	.0717	.C6C1
74 K I	2.00	1.732	.0922	3.45	.0307	.0.57	2.10	.C614	.6515
THAL	2.50	29.	.0792	4.53	.0264	.0 . 21	3.67	,C528	.C44Z
TAXI	3.00	2.028	.0732	5.65	.0244	.0204	5.6C	.C488	.C4CE
T-X1	4.00	3.672	.0617	7.74	.0205	.C.72	10.51	.0411	·C344
14×1	4.50	4.387	.0557	£.77	.0185	.0.55	13.49	.0371	.C311
T4X2	06.	00	.1641	1.20	.0547	.(¬5°	.16	1094	.0916
	.30		.1696	.67	.0565		.08	.1130	.0947
14 X2		.435				.0473 .0328		.0794	.657
14 X2	.95	12د.	.1177	.62	.0392		.04	.1582	.1326
T4X2	1.00	0.000	.2374	C.CC	.0791	£6c).	C.0C		
T4X2	1.C5	20ء.	.1792	.64	.0557	0000	• C4	.1194	.1001
T+ #2	1.10	.458	• 169C	.91	.0563	.0472	.09	.1126	.C944
T+X2	1.20	. 66.3	.1795	1.32	.0598	.0501	.20	.1196	.1002
1442	1.30	.030	.1826	1.66	.0009	.0.10	.32	.1218	.1021
T4 x2	50	1.119	.1417	2.23	.0472	.0395	. 5 8	.0944	.C791
5 X + T	1.75	1.436	.1175	2.87	.0391	2٤ د ٠	. 76	.C783	.C656
14×2	2.00	1.732	-1109	3.46	.0369	.6369	1.40	.0739	.0619
1+x2	4.50	2.291	. 0975	4.58	·C325	. C 272	2.45	.C650	.0544
1445	3.00	228	.C845	5.65	.0281	.0236	3.73	.0563	.0472
14 X 2	4.00	372	.0647	7.74	.0215	.0180	7.00	.C431	.C361
T+x2	4.30	4.387	.0573	9.77	.019:	.(.60	8.99	.c382	.C320
T+X3	.90	.603	.1443	1.20	• U481	•C≠03	.08	.0962	.C8C6
T4 x 3	.90	.435	.1865	.87	.C:21	.0521	.04	.1243	.1042
T4X3	.95	.:12	.1226	.62	.0409	42د).	•02	.CE17	.C684
T+×3	00	0.000	.1312	U.0C	.0437	.(366	C.O.	.C874	.6733
T → × 3	1.05	.320	.1403	.64	.0467	.0391	.02	.0935	.C783
T4.X3	1.10	. +5 d	.1443	.91	.0481	.Ç⇔C3	.04	.0962	.0806
T+X3	1.20	.603	.1971	1.32	.0623	.()22	.1 C	.1247	045
T4X3	30	.630	.1896	1.65	.Ct32	29د ۲۰	.16	.1264	•1059
14×3	1.50	113	644	2.23	~G549	.0459	.29	.1096	.0918
14X3	4.75	1.435	.1397	2.87	.0465	.6390	.48	.0931	.0780
T+x3	2.00	1.732	.1236	3.46	.C412	.0345	.70	.0824	.6690
T4 X3	2,50	291	.1015	4.5€	.0334	.C283	1.22	.CE76	.0567
T+X3	3.00	2.523	.CB4C	5.65	.0180	.CZ34	1.86	.0560	.6469
T4X3	4.00	3.072	.0659	7.74	.0219	.0.84	3.5C	. 0439	.0368
T4X3	4.50	467	.0591	e.77	.0197	.C165	4. 49	.0394	.C330
14X4	. 80	000	.1269	1.20	.0422	.6334	.01	.CE45	. 6768
T4X4	.90	.435	655	.87	.0551	.0462	£.00	.1103	.0924
14X4	. 95	.12	.1056	.62	.0352	.0235	C.JC	.0704	.0590
T4 X4	00	0.000	.1104	0.00	.0368	.0306	C.00	.C736	.C616
T4X4	1.05	20	.1458	.64	.0426	.(407	0.00	.0972	.6814
T4X4	1.10	.458	.1385	91	.0451	.(186	C.CC	.0923	.6773
14 X 4		.663	.1453	1.32	.0484	.C+05	.02	.0968	.0011
1414	1.20		.1562	1.66	.0520	.0436	.03	.1041	.0872
	30	30	. 44.5	2.23	.0461	.(403	.05	.0963	.0807
14X4	1.50	113	.1187	2.67	.0395	.C331	.09	.6791	.0663
T4X4	1.75	1.436	.0923	4.5:	.0307	.0257	.24	.Ce15	.0515
14 X4	- 50	2.491		5.65	.0267	.0224	.37	.0535	.0448
1444	3.00	223	.0803	2.0.	•0261		• 2 1	*****	•0770

TABLE A-IV. RINGTAIL CORRELATING PARAMETERS (Continued)

CCNF	MACH	BETA	FCT1	FCT2	FCT3	FCT4	FCT5	FC16	FC T7	רראר
T5X1	.80	• 00	.1055	2.00	.C351	.0317	.11	-1172	.1057	
T5 X 1	.90	.435	.C944	1.45	.0314	.0283	.06	1048	.C945	
15X1	.95	٠٦٦٥	.1189	1.04	.0317	.6357	.03	.1321	.1191	
TSXI	1.00	0.000	.1042	C.OC	.0347	.Co13	C.0C	.1157	1044	
TSXL	1.05					.0252				
		.320	.0840	1.06	.C2EC		.03	.0933	.CB41	
15 X 1	1.10	.458	.0802	1.52	.0267	.C241	.06	.0891	.0803	
T5X1	30	.830	.0959	2.76	.0319	.C288	•21	.165	.0960	
T5X1	1.50	1.118	.0769	3.72	.C256	.C231	• 39	.0854	.C770	
T5X1	1.75	1.436	.C633	4.79	.0211	.0190	5ه.	.0703	.0634	
T5X1	2.00	1.732	.0581	5.77	.0193	.0174	. 95	. C645	.6582	
T5X1	2.50	2.291	.C573	7.63	.0191	.C172	1.66	.C636	.0574	
T5 X 1	3.00	2.628	.0489	9.42	.C163	.C147	2.53	.0543	.0490	
T5X1	4.00	5.572	.0408	12.90	.C136	.0122	4.75	.C453	.C408	
T5X1	4.50	4.387	.0371	14.62	.0123	.0111	6.1C	-C412	.0371	
T5X2	.80	.000	.1125	2.00	.0375	.0338	• 06	.1249	.1127	
T5X2	.90	.435	.C944	1.45	.C314	.0283	•03	.1048	.0945	
T5X2	.95	.312	.1157	1.04	.0385	.C347	.01	.1285	.1159	
T5X2	1.00	0.000	.1071	0.00	.0357	.C321	C.0C	.1189	.1073	
T5X2	1.05	.320	.C991	1.06	.033C	.C297	.01	.1101	.0993	
T5X2	1.10	.458	.0968	1.52	.0322	.C291	.03	.1C75	.6970	
T5X2	1.20	.663	.1043	2.21	.0347	.C313	.07	.115a	-1045	
T5X2	1.30	.830	.1161	2.76	.C387	.C349	.11	.1289	.1163	
T5 X 2	1.50	1.118	.0894	3.72	.0298	.C268	. 21	.0993	.0895	
T5X2	1.75	1.436	.0819	4.78	.0273	.C246	.35	. C909	.0820	
T5X2	2.00	1.732	.('58	5.77	.0252	.C227	.51	.0842	.0759	
T5X2	2.50	2.291	.C633	7.63	.0211	.C190	.90	.0703	.0634	
T5X2	3.00	2.828	.0512	9.42	.0170	.C153	1.38	.0568	.0513	
T5X2	4.00	3.572	.0410	12.90	.0136	.C123	2.59	.0455	.C410	
T5X2	4.50	4.387	.C377	14.62	.0125	.011.	3.33	.0418	.6377	
T5x3	.80	.000	.1227	2.00	.0409	.0368	.01	.1363	.1229	
T5X3	.90	.435	.0976	1.45	.0325	.0293	C.00	.1084	.0978	
T5X3	.95	.312	.1028	1.04	.0342	.0309	C.OC	.1142	030	
T5X3	1.00	0.000	.1083	0.00	.0361	.C325	C.00	.1203	.1085	
TSXS	1.05	20د.	.C991	1.06	.0330	.C297	C.00	.1101	.0993	
T5X3	1.10	.458	.0972	1.52	.0324	.C292	0.00	.1079	.0974	
T5X3	1.20	.663	.1056	2.21	.0352	.C317	.01	.1173	.1058	
T5×3	1.30	.630	.1079	2.76	.0359	.0324	. 01	.1198	.1081	
TSX3	1.50	118	.1008	3.72	.0336	.C303	. 03	.1119	•.010	
T5X3	1.75	1.436	.0863	4.78	.C287	.0259	. 05	.0958	.C864	
T5X3	2.00	1.732	.0771	5.77	.0257	.C231	.08	. C & 5 6	.C772	
T5X3	2.50	2.291	.0629	7.63	.0209	.C189	.15	.0693	.0630	
T5x3	3.00	2.628	.C521	9.42	.0173	.C156	.23	.C578	.0522	
T5x3	4.00	3.672	.C411	12.90	·C137	.C123	. 43	.0456	.C411	
T5X3	4.50	4.387	.C380	14.62	.0126	.C114	. 55	.C422	.0380	

TABLE A-IV. RINGTAIL CORRELATING PARAMETERS (Continued)

LLNF	MACH	BETA	FCTI	FCT2	FCT3	FC14	FCT5	FC16	FC T7	CCND
Texi	.80	.600	.1452	1.20	.0464	.C405	.25	.0968	.0811	
76×1	.90	.435	,1499	.87	.0499	.C41A	. i ś	0999	+0837	
Tux:	.45	.312	.150 é	.62	.0502	.C420	.06	.1004	·C841	
Text	1.co	0.000	757	0.00	.0565	.0490	C.00	.1171	·0981	
TEXI	1.05	20 د .	.1783	.64	.C594	.C498	.07	.1188	.0996	
Tuxi	1.10	.458	.1706	. 91	.0568	.C476	-14	.1137	.0953	
Toxi	1.30	.030	.1672	1.66	.0557	.0467	.48	.1114	.0934	
TEXT	1.50	1.118	.1405	2.23	.0465	.0393	. 87	.0939	.0787	
Toxl	1.75	1.436	.1101	2.87	.C367	·C307	1.44	.0734	.C615	
Toxi	2.00	1.732	.0970	3.46	.0323	.C270	2.10	.0646	.C541	
TUXI	2.50	2.491	.0851	4.58	.0283	.C237	3.67	.0567	.0475	
T6X1	3.00	2.628	.C782	5.65	.C26C	. C21 8	5.60	.C521	.C436	
Taxi	4.00	3.572	.C631	7.74	.0210	-0176	10.51	.0420	·C352	
Toxi	4.50	4.287	.C569	8.77	.0189	.C158	13.49	.C379	.0317	
Tux2	• 60	·c00	.1425	1.20	.0475	.0398	.16	.0950	.0796	
Tox2	.90	.435	.1350	.87	.C45C	.C377	•0B	. 0900	.0754	
TGX2	.95	12د،	.1253	.62	.0417	.0350	.04	.0835	.0700	
Tox2	1.00	0.000	.1519	0.00	.0506	.C+24	C.CO	.1012	.0848	
Tc X2	1.05	.320	.:506	. 64	.0502	.0420	.04	.1004	-C841	
Tox2	1.10	.458	.1512	.91	.0504	.0422	.09	.1008	.0844	
Tox2	30	.630	.1605	1.66	.0535	.C448	.32	.1070	.0896	
Tox2	50	1.110	.1312	2.23	.0437	·C366	-58	.C874	.0733	
T6X2	1.75	1.436	.1146	2.87	.C382	.C320	- 96	. C764	.C640	
T6X2	2.00	1.732	.1101	3.46	.C367	.0307	1.40	.0734	.C615	
Tox2	50	2.291	.1002	4.58	.0334	.C279	2.45	. C668	.0559	
Tex2	3.CO	2.028	.C847	5.65	.C282	.C236	3.73	.0564	•C473	
T6X2	4.00	3.872	.0643	7.74	.0214	.0179	7.00	.0428	⊌C359	
T6X2	4.50	4.387	.0576	8.77	.0192	.0160	8.99	.C384	.0321	
Toxa	.80	.600	.1512	1.20	.0504	.C422	• C B	.1008	.C844	
T6X3	.90	.435	.1463	. 87	.C487	.C408	.04	.0975	.0817	
Tox3	.95	12د.	.1169	.62	.039€	.C332	.02	.0792	.0664	
T5X3	00	0.000	.1329	G.OC	.0443	.C371	0.00	.C886	.0742	
T6X3	1.C5	.320	.1562	.64	.C52C	.C436	-02	.1041	.0872	
Tox3	1.10	.458	.1646	.91	.0548	.0459	-04	.1097	.0919	
Tox3	1.30	.£30	.1904	1.66	.0634	31 ذC	-16	.1269	.i063	
T5X3	1.50	1.18	.1586	2.23	.0528	.C443	• 2 9	.1057	.0886	
T6X3	1.75	1.436	.1290	2.07	.C43C	.C360	•48	.0860	·C720	
1013	2.00	1.732	.1133	3.46	.0377	.C316	- 70	.C755	.0633	
TaX3	2.50	2.291	.C947	4.58	.0315	.C264	1.22	.0631	.0529	
T6X3	3.00	2.628	.C79C	5.65	.C263	.C220	1.86	.0526	-C441	
T5X3	4.00	3.372	.0652	7.74	.0217	.C182	3.50	.0434	-C364	
ToX3	4.50	87 د. 4	.0584	8.77	.0194	.0163	4.49	.0389	•C326	

TABLE A-IV. RINGTAIL CORRELATING PARAMETERS (Continued)

CCAF	MACH	BEIA	FCT1	FCT2	FCT3	FC T4	FLIS	613F	FC T7	CCVC
T7X1	-80	.600	.1639	1.20	.C546	·C546	.27	.1092	092	
T7X1	. 90	.435	.1547	.87	.0515	.C515	.14	.1031	.1031	
T7X1	. 95	. 312	.1885	.62	.0628	.0628	.07	.1250	.1256	
T7X1	1.00	0.000	.1927		. 0642	.C 642	C.00	.1284	.1284	
T7X1	1.05	20د و	.1822	.64	.0507	.C607	.07	.1214	.1214	
17X1	1.10	.458	.1831	.91	.0610	.(010	.15	.1220	.1220	
T7XI	1.30	-630	.1309		.0436	.C436	.51	.C872	.0872	
T7X1		1.118	.1451	2.23	.C483	·C483	.93	.0967	.0967	
T7X1	1.75	1.436	-1422	2.87	.0474	.C474	1.54	.C948	.0948	
T7XI	2.00	1.732	.0927	3.46	.0309	.0309	2.24	.C618	.C618	
T7X1	2.50	2.491	.0680	4.58	.0226	.C226	3.93	.0453	.C453	
T7×1	3.00	2.628	.0595	5.65	.0199	·C198	5.99	.0376	.C396	
T7X1	4.00	3.072	.0483	7.74	.0161	.C:61	11.24	.C322	.0322	
T7X1	4.50	4.387	.0429	8.77	.0143	·C.43	14.43	.C286	.0286	
T7.X2	. 60	-600	.1352	1.20	.C45C	.C450	.18	.C901	.C901	
T7X2	- 90	.435	.1547	.87	.0515	.C515	.09	.1631	.1031	
T7X2	. 95	+312	.1948	.62	.0649	.0649	.04	.1298	.: 298	
T7X2	1.CO	0.000	.1931		.C643	.0643	C.00	.1287	.1287	
T7x2	1.05	-32C	.1848	.64	.0616	.C616	•05	.1232	.1232	
T7X2	1.10	.458	.1832	.91	.0610	.C610	-10	.1221	.1221	
T7X2	1.20	.663	-1588	1.32	.0529	•C529	.21	.1058	.1058	
T7X2	.80	-600	. 1544	1.20	. 0514	.Ç514	.18	.1029	.1029	
T7X2	• 90	•43 <i>5</i>	-1442	.87	.0480	.C48C	.09	.C561	.0961	
T7X2	. 95	-312	.1913	.62	.C637	.0637	.04	.1275	.: 275	
	1.00	0.000	.1867	0.OC	.G621	.C621	C.00	.1242	.1242	
T7X2	1.05	.320	.1751	.64	.0583	.0583	-05	.1167	.:167	
T7X2	1.10	-458	.1761	-91	.0587	.C587	-10	-1174	.1174	
T7X2	1.30	-830	.1255	1.66	.0418	.C418	.34	.C636	6683 .	
T7X2	1.50	1.118	.1541	2.23	.C513	.C513	.62	.1027	.1027	
T1X2	1.75	1.436	. 1943	2.87	.0647	.C647	1.03	.1295	.1295	
T7X2	2.00	1.732	.1108	3.46	.0369	.0369	1.49	.C738	.0738	
T7X2	2.50	2.291	.C815	4.58	.C271	.C271	2.62	. C543	·C543	
T7X2	3.00	2.428	.C748	5.65	.0249	.C249	3.99	.C498	.C498	
T7X2	4.00	3.072	.0618	7.74	.0206	.0206	7.49	.C412	.0412	
T7X2	4.50	4.387		8.77	.018C	10100	9.62		.036C	
T7X3	.80	.500	. 1534	1.2C	.C511	.C511	.09	.1022	.1022	
T7X3	. 90	. 435	. 1495	. A7	-0498	_C498	-04	- 0596	-0996	

TABLE A-IV. RINGTAIL CORRELATING PARAMETERS (Continued)

17x3	. 95	2 ند ٠	.1706	.62	.0568	.0568	.02	.1137	.1137
17X3	1.00	0.000	.1647	C.OC	.0549	.C549	C.00	.1098	.1098
T7X3	1.05	20د.	.1577	. 64	.0525	.0525	.02	.1051	.1051
T7X3	1.10	.458	.1604	.91	.0534	.C534	.05	.1069	.1069
T7X3	1.20	. 263	.1402	1.32	·C467	.0467	.10	.0934	.0934
T7X3	1.30	.:3C	.1223	1.66	.0407	.0407	.17	.0815	.C815
T7K3	50	118	.1804	2.23	.0601	.C6Cl	.31	J1202	.1202
T7X3	1.75	1.436	.1475	2.87	.0491	·C491	.51	.0983	.0983
T7X3	2.00	1.732	.1232	3.46	.C410	.C410	.74	.C821	.CB21
T/X3	2.50	291	.1014	4.58	.0338	.C338	1.31	.C676	.0676
T7X3	3.CO	228	.0833	5.65	.0277	·C277	1.99	.C555	.0555
T7X3	+. 00	3.672	.0634	7.74	.C211	.C211	3.74	.0422	.C422
T7 K3	4.50	87د.4	.C544	8.77	.C181	.C181	4.31	.0362	.0362
T7X4	. 60	.000	.1269	1.2C	.C423	•C423	.01	.Ce46	.0846
T7X4	.90	.435	.139C	.87	.0463	• 0463	C.UC	.C926	.C926
T7X4	. 95	.312	.1750	- 62	.C583	.C583	C.00	.1166	.1166
17X4	1.00	0.000	.1704	C.CC	.0568	.C568	C.00	.1136	.1136
T7X4	1.05	. 220	-1414	.64	.C471	.C471	C.00	.C942	.0942
T7X4	1.10	. 458	.1471	.91	. C49C	.C490	.01	.0980	°C 960
T7X4	1.20	. 663	.1487	1.32	.0495	.C495	. 02	.0991	.C991
17X4	1.30	•=3C	.1545	1.60	.0515	.0515	.03	.1630	.:030
T7X4	1.50	1.118	.1545	2.23	.0515	.0515	.06	.1030	.1030
T7X4	1.75	1.436	.1234	2.87	.6411	.C411	.:0	.0822	.C822
17X4	2.00	1.732	.C966	3.46	.0322	.0322	.14	.C644	.C644
T7X4	3.C0	2.028	.G805	5.65	.C268	.C_68	.39	.C536	.0536
T7X4	.80	00	.1269	1.2C	.0423	.C423	.01	.0846	.C846
17X4	. 90	.435	.1390	.87	.C463	.C463	C.00	.0926	.C946
17X4	. 95	.312	.1750	.62	.C583	.C583	C.U0	.1166	.:166
T7X4	1.00	0.000	.1704	C.00	.C568	.0568	C.CC	.1.36	. 136
T7X4	1.05	.320	.1414	. 64	.C471	.C471	C.CC	.0942	.0942
T7X4	1.10	.458	.1471	.91	.0490	.C+90	.01	.0980	.0980
17X4	1.20	. 563	.1487	1.32	.0495	. C495	.02	.0991	.C991
T7X4	1.30	0£a•	1545	1.66	.C515	.C515	.03	.1030	.1030
T7X4	1.30	1.119	.1545	2.23	.0515	.C515	.06	.1030	.1030
T7X4	1.75	1.436	.1234	2.87	.C411	.C411	••0	.C822	.0822
17X4	2.00	1.732	.0966	3.46	.0322	•C322	.14	.0644	.0644
T7×4	3.00	2.:28	.C805	5.65	.0268	-C268	.39	.0536	.0536

TABLE A-IV. RINGTAIL CORRELATING PARAMETERS (Continued)

CONF	MACH	BETA	FCT1	FC T2	FCT3	FCT4	FCT5	FCT6	FCT7	CCNC
TaXl	1.75	1.436	.1112	2.87	.C370	.C286	1.39	.0741	.0572	
Taxi	2.00	1.732	.0992	3.46	.0330	.0255	2.03	.C661	.0510	
Taxi	2.50	2.291	.C891	4.58	.0297	.C229	3.56	.C594	.C458	
Taxi	3.00	2.628	.0837	5.65	.0279	.C215	5.42	.0558	.0430	
T8X1										
	4.00	3.672	.0692	7.74	.0230	.C178	10.18	.0461	.C356	
TSX1	4.50	4.387	.C628	8.77	.0209	.C161	13.06	.C418	· C323	
Tsx2	1.75	1.436	.1256	2.87	.C418	.C323	. 93	.C837	. 6646	
TaX2	2.00	1.732	.1207	3.46	.0402	.0110	1.35	.0804	·C621	
Taxz	2.50	2.291	.1028	4.58	.0342	.C264	2.37	.C685	.0529	
T8X2	3.CO	2.828	.ce78	5.65	•0292	.0226	3.61	.0585	.C452	
T8X2	4.00	3.672	.C698	7.74	.0232	.0179	6.78	.0465	.C359	
T8x2	4.50	4.387	.0642	8.77	.0214	.C165	€.71	.0428	.0330	
T3X3	1.75	1.436	.1413	2.87	.0471	. C 36 3	.46	.C942	.0727	
T8X3	2.00	1.732	.1266	3.46	.C422	. C325	.67	.0844	.C651	
T d X 3	2.50	2.291	.1021	4.5€	.0340	.C262	1.18	.0680	.0525	
TEXE	3.00	2.528	.0876	5.65	.0292	.C225	1.80	.C584	.0451	
T8X3	4.CO	3.472	.C703	7.74	.0234	.C180	3.39	.0468	.0361	
T8X3	4.50	4.387	.C637	8.77	.0212	.0164	4.35	.0424	.C328	
T10X1	1.75			2.87						
		1.436	1941		.0369	.0315	. 94	.C739	.0630	
Tioxi	2.00	1.732	.1736	3.46	.C33C	.C282	1.37	.0661	.0564	
Tioxi	2.50	2.291	.1620	4.58	.0308	.C263	2.41	.0617	.0526	
TIOXI	3.00	2.828	.1462	5.65	.0278	.C237	3.67	.C556	.U475	
110X1	4.00	3.672	.1091	7.74	•02C7	.1177	6.88	.0415	.C354	
Tioxi	4.50	4.387	.C988	8.77	.c188	.C160	8.84	.0376	.0321	
T10X2	1.75	1.436	.2102	2.87	.0400	.C341	.67	.CEDC	-0682	
T10X2	2.00	1.732	.2052	3.46	.0390	.C333	• 98	.¢781	.0666	
TIOX2	2.50	2.491	.1783	4.58	.0339	.C289	1.72	.0679	.0579	
T10X2	3.00	2.628	.1484	5.65	.0282	.C241	2.62	.0565	.C482	
T10X2	4.00	3.672	.1111	7.74	.0211	.C:80	4.92	.0423	.6360	
T10X2	4.50	4.387	·C997	8.77	.C189	.C161	6.31	.0379	.0323	
110x3	1.75	1.436	.2379	2.87	.C453	.C386	.40	.0906	.C772	
T10X3	2.00	1.732	.2138	3.46	.0407	.C347	. 59	.CE14	.C694	
T10X3	2.50	2.291	.1753	4.58	.0333	.C284	1.03	.C667	.0569	
TIOX3	3.00	2.828	.1493	5.65	.C284	.C242	1.57	.0568	.C465	
TIOX3	4.CO	3.072	.1137	7.74	.0216	.C184	2.95	.0433	.0369	
T10X3	4.50	4.387	.1015	8.77	.0193	.C164	3.78	.C386	.0329	
11121	1.75	1.436	.1244	4.78	.0236	.0215	.41	.C789	.0716	
Tlixi	2.00	1.732	.1277	5.77	.0243	.0220	.6C	.C810	.0735	
111X1	2.50			7.63	.C212					
		2.491	.1113			.C192	1.05	.0706	.0641	
Tlixi	3.00	2.028	.C928	9.42	-0176	.C160	1.61	0589	.C534	
TIIXI	4.00	3.872	.C701	12.90	.0133	.C121	3.01	• C445	.0403	
Tlixi	4.50	4.387	.0630	14.62	.C12C	.C108	3.67	.0399	.C362	
T11X2	1.75	1.436	.1512	4.78	.0288	.C261	. 24	.0959	.C871	
T11X2	2.00	1.732	.1341	5.77	.0255	.C231	. 36	.C851	.0772	
T11X2	2.50	2.291	.1105	7.63	.0210	.0190	.63	.C701	.0636	
T11x"	3.00	2.628	.C925	9.42	·C176	.C159	.96	.0587	.0532	
TL1X2	4.00	3.872	.C705	12.90	.0134	.0121	1.81	.0447	.C406	
T11X2	4.50	4.387	.0634	.4.62	.012C	.C109	2 ن 2 ،	.C402	.03c5	
T11X3	1.75	1.436	.1512	4.78	.C288	.C261	.CB	.0959	.C871	
T11 X3	2.00	1.732	.1271	5.77	.0242	.0219	.12	.0806	.C732	
T11X3	2.50	2.291	.1108	7.63	.0211	.C.91	.21	.0703	.0638	
Tlix3	3.00	2.028	.0922	9.42	.0175	.0159	.32	.C585	.0531	
T11×3	4.00	3.672	.0713	12.90	.G135	.C123	.60	·C452	.C410	
T11X3	4.50	4.387	•C642	14.62	.0122	.0110	.77	.C407	.0369	
	1000		74545	2 1 1 0 2			•		40367	

TABLE A-IV. RINGTAIL CORRELATING PARAMETERS (Cor nued)

CLAF	MACH	BETA	FCT1	FCT2	FCT3	FCT4	FCT5	FCT6	FCT7 C	CNU
T12X1	.80	.600	.C376	.60	.0668	.C364	4.66	.0668	.0364	
T12X1	.90	.435	·C157	.43	.0279	. (152	2.44	_C277	.0152	
IASLI	.75	.312	.0163	. 31	.C2 89	.C158	1.26	.0289	.0158	
TIZXI	1.00	0,000	·C149	0.00	.0264	.C144	c.00	.C264	.0144	
(12X1	1.05	. 220	.C:88	. 3 &	.0334	.0182	1.32	.C334	-0182	
T12x1	1.10	.458	.C213	.45	•C378	.C206	2.72	.0378	.C2C6	
Y12X1	1.30	ناوره	·C233	.83	.0414	.C226	8.94	.0414	.C226	
T12X1	1.50	218	.0298	1.11	.0529	.C289	16.20	.0529	.0289	
T12X1	75	1.436	.C245	1.43	-0524	.0286	26.73	.C524	.C286	
T12X1	2.00	1.732	•C258	1.73	.0458	.C250	38.88	.0458	.C250	
T12X1	2.50	291	.CZ23	2.25	-0405	.c221	68.05	.0405	.0221	
112X1	3.00	2.528	·C194	2.82	.0344	.c:88	103.70	.C344	.0188	
T12X2	.80	00	•C392	.6C	.0696	.C380	3.33	.0696	.C360	
T12x.	.90	.435	•C299	.43	.0531	.C29C	1.75	.0531	.C290	
T12X2	. 45	.312	.C248	.31	-0440	.C24C	.90	.C440	.0240	
T12X2	1.00	C.COO	.C192	0.00	.0323	.0176	c.cc	.0323	.0176	
T1242	1.05	.320	.C116	• 32	.C2C6	.c112	. 94	-0206	.C112	
T12X2	1.10	.458	.C133	.45	.0236	.0129	1.94	.C236	.C129	
T12X2	1.30	• ± 30	.C324	.83	.0576	.C314	€.38	.C576	.0314	
T12X2	1.50	1.113	.C358	1.11	·C636	47ذ،	11.57	-0636	.C347	
T12X2	1.75	1.436	.C373	1.43	.0663	.0361	19.09	.0663	.0361	
T12X?	2.00	1.732	.0323	1.73	.0574	.C313	27.77	•0574	.0313	
T12X2	2.50	2.291	-0286	2.29	- G5C8	.C277	4 E . 6 C	.C508	.0277	
T12 X2	3.00		0357		0634			0634		
T12X5	.80	.600	.C467	.6C	.0830	.C453	2.66	.C83C	.0453	
T12X5	. 90	.435	.0318	.43	.0565	80t).	1.40	.C565	.C308	
T12X5	. 95	12د.	.0273	• 3 1	.0485	. C264	.72	.0485	.C264	
T12X5	1.00	0.000	.C178	0.00	.0316	.C172	C.00	.0316	.0172	
T12X5	05	.320	.0153	•32	.0272	.C148	• 75	.C272	.0148	
T12X5	1.10	.458	.C157	. 45	-0279	.0152	1.55	-C279	.0152	
T12X5	1.30	. 630	.C318	-83	• G565	.C308	5.11	.0565	.C3CB	
T12X5	1.50	118	.C345	1.11	- C612	.C334	9.25	-C613	.0334	
T12X5	1.75	1.436	.0360	1.43	-0640	.C349	15.27	-C640	.0349	
T12X5	Z.CC	1.732	.C327	1.73	.0581	17د.	22.22	. C581	.0317	
T12X5	2.50	2.291	.C295	2.29	.0524	.C286	38.88	. 0524	.C286	
T12X5	3.00	2.629	.C250	2.82	. 0444	.C242	59.25	. C444	.C242	

TABLE A-IV. RINGTAIL CORRELATING PARAMETERS (Concluded)

CLNt	MALH	BETA	FCT1	FCT2	FCT3	FCT4	FCT5	FC16	FLT7	CCNC
T13X1	.80	.600	.0274	.8C	.0487	.0302	3.07	.0649	.C4C2	
T13X1	.70	.435	.0181	.5€	.6321	•0199	1.62	.0429	.C266	
T13X1	.95	12د.	.000	.41	.0106	.CC66	.63	.0142	.0088	
T13X1	1.00	0.000	.0145	C.0C	.0257	·C159	C.OC	.C343	.0213	
T13X1	1.G5	.320	.C15C	. 42	.0266	·C.65	.67	.0355	•C22C	
T13X1	1.10	.458	.0163	.61	.0289	·C179	1.79	.0386	•C239	
£13×1	1.30	.530	.0153	1.10	.0272	.C168	5.88	.0362	.0224	
T13X1	1.50	1.118	.C196	1.45	.0348	·C216	16.66	. C4 4	.0288	
T13X1	1.75	1.436	.C204	1.91	.0362	·C224	17.60	. 04	·C299	
T13X1	2.00	1.732	.C175	2.31	.0311	·C192	25.60	.0415	.C257	
T13X1	2.50	2.291	.0156	3.05	.0277	·C171	44.80	.C369	.0229	
T13X1	3.00	2.828	.C135	3.77	.024C	.C148	60.28	.0320	.C198	
T13X2	.80	.000	.C374	. 9C	.0664	•C412	2.00	.0886	.0549	
T13X2	.90	.435	.C295	.58	.C524	-C325	1.05	.C699	.0433	
T13X2	. 95	. 112	.0225	-41	.04CC	•C248	•54	·C533	.033C	
T13X2	1.00	0.000	.C138	0.00	. G245	.C152	C.00	.0327	.C202	
T13X2	1.05	.320	.C142	•42	.0252	.C156	.57	.C336	.C208	
T13X2	1.10	.458	.0176	.61	.0312	.C194	1.16	.C417	.0258	
T13X2	1.30	.830	.0251	1.1C	.0446	.C276	3.63	.C595	.C369	
T13X2	1.50	1.118	.C286	1.49	.0508	.C315	6.95	.0678	•C420	
T13X2	1.75	1.436	.0272	1.91	.0483	·C299	11.47	.C645	.0399	
T13X2	2.00	1.732	.CZ39	2.31	.C424	•C263	16.69	.0566	.0351	
T13X2	2.50	2.491	.C206	3.05	.C366	.C227	25.21	.0488	•C3C2	
T13X2	3.00	2.628	.C173	3.77	.0307	.0190	44.52	.C410	.0254	
T:3X5	.80	.600	.0309	.8C	.0549	.C340	1.46	.C732	.0454	
T13X5	.90	.435	.C335	- 58	• 0595	.C369	•77	.0794	•C492	
T13X5	.95	.312	.C253	-41	.04 9	.C278	• 39	.0600	.0372	
T13X5	1.00	0.000	,0196	C.0C	.0348	.C216	C.00	.C464	.c288	
T13X5	1.05	.320	.0148	• 42	.0263	.C163	.41	.0351	•C217	
T13X5	1.10	.458	.C150	-61	.C266	.C165	- 85	.0355	•C220	
T13X5	1.30	.630	.C294	1.10	.0522	·C324	2.81	.0697	.0432	
T13X5	1.50	1.118	.0309	1.49	.0549	.C340	5.10	.C732	.0454	
T13X5	1.75	1.436	.C27C	1.91	.04ec	.0297	E-41	. C640	.C397	
T13X5	2.00	1.732	.C239	2.31	.0424	.C263	12.24	.0566	·C351	
T13X5	2.50	2.291	.C207	3.05	.0368	.C228	21.42	.0490	.C304	
T13X5	3.00	2.828	.0174	3.77	.0309	.C191	32.64	.C412	.CZ55	

FIGURE A-1. RINGTAIL GEOMETRY NOMENCLATURE

CONDITION | RINGTAIL LEADING EDGE MACH LINE IMPINGEMENT ON BODY BASE

$$\cot \mu = \beta = \frac{2(C + E)}{A - 1}$$

CONDITION 2 RINGTAIL LEADING EDGE MACH LINE IMPINGEMENT ON RINGTAIL TRAILING EDGE AFTER REFLECTION ON BODY

CONDITION 3 BODY BASE MACH LINE IMPINGEMENT ON RINGTAIL TRAILING EDGE

$$\cot \mu = \beta = \frac{2E}{B-1}$$

CONDITION 4 RINGTAIL LEADING EDGE MACH LINE REFLECTION FROM BODY SURFACE AND IMPINGEMENT ON THE RINGTAIL INNER SURFACE CONCURRENTLY WITH IMPINGEMENT ON BODY BASE.

cot (
$$\mu$$
) = β

IF

$$\frac{(A - B) (C + E)^2 + (A - I) (C + E)}{C(A - I) - (A - B) (C + E)} > E$$

CONDITION 5 RINGTAIL LEADING EDGE MACH LINE IMPINGEMENT ON BODY BASE AFTER REFLECTION FROM BODY AND RINGTAIL INNER SURFACE

$$\cot \mu = \beta = \frac{X \cos 2\delta - \sin 2\delta}{\cos 2\delta + X \sin 2\delta + 2}$$
WHERE
$$X = \frac{2 (C + E)}{(A - I)}$$

FIGURE A-2. FLOW CONDITIONS

References

- 1. Rubin, Donald V., Exploratory Investigation of the Effect of Ringtail on the Jet On Base Pressure of a Body of Revolution at Free Stream Mach Numbers of 2.5 and 3.0, U. S. Army Missile Command, Redstone Arsenal, Alabama, 5 July 1966, Report No. RD-TR-66-16 (Unclassified).
- 2. Rubin, Donald V., <u>Tabulated Stability Data for a Series of Ring-tail-Body Configurations at Mach Numbers from 0.8 to 4.5</u>, U. S. Army Missile Command, Redstone Arsenal, Alabama, 1 April 1965, Report No. RD-TR-65-6 (Unclassified).
- 3. Connolly, Paul R., The Zero-Lift Foredrag and Body Base Drag
 Coefficients of a Series of Ringtail-Strut Body Configurations at Mach
 Numbers from 0.8 to 4.50, U. S. Army Missile Command, Redstone
 Arsenal, Alabama, May 1965, Report No. RE-TR-65-8 (Unclassified).
- 4. Propulsion Wind Tunnel Facility, Test Facilities Handbook, 3, 5th ed., Arnold Engineering Development Center, Tullahoma, Tennessee, July 1963.
- 5. BRL Memo 1292, Ballistic Research Laboratories, Aberdeen Proving Grounds, Maryland, July 1960.
- 6. Adams, Carl L., Computer Method for Wind Tunnel Analysis, U. S. Army Missile Command, Redstone Arsenal, Alabama, 14 April 1966, Report No. RE-TM-66-5.
- 7. Gafarian, A. V., and Phillips, W. L., The Supersonic Lift and Centers of Pressure of Rectangular and Clipped-Delta Fins in Combination with Long Cylindrical Bodies-Comparison Between Theory and Experiment, Naval Ordnance Test Station, China Lake, California, 1953, NOTS TM-966.
- 8. Ehlers, F. E., "On the Lift, Drag and Moment on a Ring Concentric to a Cylindrical Body in Supersonic Flow," <u>Journal of Aeronautical Sciences</u>, 28, No. 2, February 1961, pp. 170-171.
- 9. Ehlers, F. E., "The Lift and Moment on a Ring Concentric to a Cylindrical Body in Supersonic Flow," <u>Journal of Aeronautical Sciences</u>, 22, No. 4, April 1955, pp. 239-248.
- 10. Ribner, H., "The Ring Airfoil in Non-Axial Flow," Journal of the Aeronautical Sciences, 14, No. 9, September 1947, pp. 529-530.

Security Classification										
DOCUMENT CONTI										
(Security classification of title, body of abstract and indexing a			CURITY CLASSIFICATION							
Advanced Systems Laboratory		Inclass								
Research and Engineering Directorate	25. eg	QUP								
U. S. Army Missile Command Redstone Arsenal, Alabama 35809		NA.								
LONGITUDINAL STABILITY CHARACTERISTICS OF A SERIES OF RINGTAIL-BODY										
COMBINATIONS AT MACH NUMBERS OF 0.8 -	4, 5									
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Technical Report										
8. AUTHOR(8) (First name, middle initial, lant name)										
Charles E. Brazzel										
James H. Henderson										
JOSEPH C. Craft	TA. TOTAL NO. OF PASE		7b. NO. OF REFS							
12 May 1970	83	· }	10							
SE CONTRACT OR SPANT NO.	SA ORIGINATOR'S REPO	AT NUMB								
(DA) 40000001 1 000	ND MD									
b PROJECT NO. (DA) 18222901A206	RD-TR-65-7									
AMC Management Structure Code No.	ah arusa 858085 Na/	81 /day ad	or numbers that may be applyined							
* 5221.11.148	Min report)	-: (www -=								
4	AD									
10. DISTRIBUTION STATEMENT	ole and each trans	mittal	to foreign gavern							
This document is subject to special export contr ments or foreign nationals may be made only wi										
ATTN: AMSMI-RD.	n prior approvai c	or turn	Command,							
II. SUPPLEMENTARY NOTES	12. SPONSO NING MILITAL	RY ACTIV	1111							
	1									
None	Same as No. 1									
ID. ADDYRACY										
× .										
An analysis is made of experimentally de	termined stability	chara	cteristics of a series							
of ringtails in combination with bodies of revolu										
be efficient stabilizing devices, when missile ov										
be emclent stabin zing devices, when missile ov	erall manierer is	Hillicea	••							
			j							
,										
•										
·										
			;							

UNCLASSIFIED

Security Classification						
NEY WORDS	HOLE	K A	HOLE	K D	LINK C	
			2022		7002	WT
Ringtails	1					
Bodies of revolution	i		1			
Tube-launched configurations	i	l	1			
Mach numbers 0.8 - 4.5	1	1				
Longitudinal stability characteristics	1				i i	
Longitudinal Stability characteristics		ŀ	Ì			
		ļ			(
	l	1				
		ł	<u> </u>			
	Ì	1			1	
	ľ	ŀ				
		{	{ i			1
	1	i	1			
	1	1				
	}	1	!		[
	1		[l]	
	1			Ì	1	
		ĺ			i	
	i		i		ĺ	
	ļ				ļ	
					1	l
	1	i				
		}			[ŀ
	1	1		l	1 1	ł
	İ	ĺ				
		l	ļ	İ		
	- 1	ł			{	
	į	1		l	l :	
		ŀ		}	1	
				ł		
	1	ł	1		1	•
	1	[İ	ł	
		l	Į,			
		1	1	{		
		l		ĺ	i	
		ļ.		1		
		ľ]	Į		ŀ
	· 1	ļ	1		1	
		1	1	Ì	ì	•
	1	Ì	1	1		1
	1	Į.	1	[Į į	
			1		[l
	ı	ſ		1	1	l
		1	1	1	1	1
	j	l		l	1	
	[t		l	į į	1
		1		I		
		1		ŀ		
	1	l .	1	l	ì i	

UNCLASSIFIED
Security Classification

SUPPLEMENTARY

INFORMATION

DEPARTMENT OF THE ARMY

HEADQUARTERS UNITED STATES ARMY MISSILE COMMAND REDSTONE ARSENAL. ALABAMA 35809

AMSMI-RDK

SUBJECT: Errata for Report No. RD-TR-65-7, entitled "Longitudinal

Stability Characteristics of a Series of Ringtail-Body

Combinations at Mach Numbers of 0, 8-4, 5"

TO: Recipients of Subject Report

It is requested that the following changes be made in all copies of the subject report:

Page 50, change ordinate scale designation to read $\left(\frac{\Delta C_{N_a}}{B^2-1}\right)$.

Page 42, Figure 12(b), add the ordinate scale designation $\Delta C_{N_{\bar{\bf d}}}$ (T13S-T13).

Page 42, Figure 12(c), add the ordinate scale designation $\Delta C_{\mbox{\scriptsize N_{0}}}$.

APPROVED:

ROBERT H. PEZMEY, JR.

Acting Director

Advanced Systems Laboratory

Research & Engineering Directorate