Homework 6

YangGao 9083410275

Solution 1

Solution 1.1

Assuming each $z_1...z_m$ is unique, the matrix K has ones on the diagonal $(z_i=z_i)$, and zeroes elsewhere $(z_i\neq z_j)$. $v^TKv=\sum_{i=1}^m\sum_{j=1}^m v_iv_jK_{ij}$ when $i\neq j, v_iv_jK_{ij}=v_iv_j*0=0$ when $i=j, v_iv_jK_{ij}=v_i^2*1=$ positive

therefore $v^T K v$ is adding 0's and/or positive values together, and $v^T K v >= 0$

Solution 1.2

each α_i corresponds to a sample, and all other $\alpha_i's$ are multiplying with 0, therefore each sample can be assigned a label determined by the α_i associated with that sample

Solution 1.3

For a z that is not in the training set (i.e z does not equal any previous z in the training set), the model will predict whatever the bias term is. If bias is positive, it will predict positive, if bias is negative, it will predict negative class

Solution 2

Solution 2.2.1

Decision Boundaries with linear SVM and logistic regression classifiers

Linear SVM Decision Boundary, test accuracy = 0.992

Logistic Regression Decision Boundary, test accuracy = 0.992

Decision Boundaries with KNN and NB Classifier

KNN Decision Boundary, test accuracy = 0.992

NB Decision Boundary, test accuracy = 0.992

Accuracies with varying mu

My conclusions: - As μ increases, the accuracy also increases for all classifiers. This makes sense as with increasing μ , our sampled cluster centers move farther apart while covariance stays the same. - For NB, linear SVM and Logistic regression, we have straight lines as the decision boundary. This is because these are linear models, and they separate samples with a linear boundary. For KNN, the decision boundary is not straight as it is made by seeing what the closest K neighbours are.

Solution 2.2.2

Linear SVM Decision Boundary, accuracy = 0.436

Logistic Regression Decision Boundary, accuracy = 0.488

LR linear kernel Decision Boundary, accuracy = 0.48

LR poly Decision Boundary (d=4), accuracy = 1.0

LR rbf Decision Boundary, accuracy = 1

KNN Decision Boundary, accuracy = 1

My conclusions: linear classifiers can't be used directly to achieve high performance on highly non-linear data such as circles. However, using non-linear kernels, we can achieve very high performance.

Solution 2.3

model	accuracy
Linear SVM	0.9482758620689655
SVM with linear kernel	0.9655172413793104
SVM with polynomial kernel $(d = 3)$	0.9137931034482759
SVM with rbf kernel	0.6896551724137931
Logistic Regression	0.9482758620689655
Logistic Regression with linear kernel	0.9827586206896551
Logistic Regression with polynomial kernel (d=3)	1.0
Logistic Regression with rbf kernel	0.6896551724137931
KNN with $K = 15$	0.9827586206896551

I would use C parameter regularization that pushes W to be small

From linear SVM, I found the largest weights in W, which correspond to these features: ['mean concavity', 'mean concave points', 'radius error', 'worst texture', 'worst concavity', 'worst symmetry']