Solutions to Ireland, Rosen "A Classical Introduction to Modern Number Theory"

Richard Ganaye

September 19, 2019

Chapter 4

Ex. 4.1 Show that 2 is a primitive root modulo 29.

```
Proof. Let p = 29: p - 1 = 2^2 \times 7.

2^4 = 16 \neq 1[29]

2^{14} = 4^7 = 4 \times 16^3 = 64 \times 256 \equiv 6 \times (-34) = -204 \equiv 86 = 3 \times 29 - 1 \equiv -1[29]

2^{28} \equiv 1[29] and 2^d \neq 1 if d \mid 28, d < 28, hence 2 is a primitive element modulo 29. \square
```

Ex. 4.2 Compute all primitive roots for p = 11, 13, 17, and 19.

Proof. • p = 11. Then $p - 1 = 10 = 2 \times 5$.

 $2^2=4\not\equiv 1\pmod{11}$, and $2^5=32\equiv -1\not\equiv 1\pmod{11}$, so 2 is a primitive element modulo 11.

The other primitive elements modulo 11 are congruent to the powers $2^i, i \wedge 10 = 1, 1 \leq i < 10$, namely $2, 2^3, 2^7, 2^9$.

 $2^7 \equiv 7 \pmod{11}, 2^9 \equiv 6 \pmod{11}$, so

 $\{\overline{2}, \overline{8}, \overline{7}, \overline{6}\}$ is the set of the generators of $U(\mathbb{Z}/11\mathbb{Z})$.

Similarly:

- p = 13: $\{2, 6, 11, 7\}$ is the set of the generators of $U(\mathbb{Z}/13\mathbb{Z})$.
- $p = 17 : \{3, 10, 5, 11, 14, 7, 12, 6\}$ is the set of the generators of $U(\mathbb{Z}/17\mathbb{Z})$.
- $p = 19 : \{2, 13, 14, 15, 3, 10\}$ is the set of the generators of $U(\mathbb{Z}/19\mathbb{Z})$.

I obtain these results with the direct orders in S.A.G.E.:

```
p = 19; Fp = GF(p); a = Fp.multiplicative_generator()
print([a^k for k in range(1,p) if gcd(k,p-1) == 1])
```

Ex. 4.3 Suppose that a is a primitive root modulo p^n , p an odd prime. Show that a is a primitive root modulo p.

Proof. Suppose that a is a primitive root modulo p^n : then \overline{a} is a generator of $U(\mathbb{Z}/p^n\mathbb{Z})$. If a was not a primitive root modulo p, \overline{a} is not a generator of $U(\mathbb{Z}/p\mathbb{Z})$, so there exists $b \in \mathbb{Z}$, $b \wedge p = 1$ such that $a^k \not\equiv b \pmod{p}$ for all $k \in \mathbb{Z}$. A fortior $a^k \not\equiv b \pmod{p^n}$, and $b \wedge p^n = 1$, so $\overline{b} \in U(\mathbb{Z}/p^n\mathbb{Z})$ and $\overline{b} \not\in \langle \overline{a} \rangle$ in $U(\mathbb{Z}/p^n\mathbb{Z})$, in contradiction with the hypothesis. So a is a primitive root modulo p.

(the reasoning on the orders of a, modulo p and modulo p^n , is possible, but not so easy.)

Ex. 4.4 Consider a prime p of the form 4t + 1. Show that a is a primitive root modulo p iff -a is a primitive root modulo p.

Proof. Solution 1.

As. p-1 is even, $(-a)^{p-1} = a^{p-1} \equiv 1 \pmod{p}$.

If $(-a)^n \equiv 1 \pmod{p}$, with $n \in \mathbb{N}$, then $a^n \equiv (-1)^n \pmod{p}$.

If n is odd, then $a^n \equiv -1, a^{2n} \equiv 1 \pmod{p}$. As a is a primitive root modulo p, $p-1 \mid 2n, 2t \mid n$, so n is even: this is a contradiction.

Consequently, n is even, and $a^n \equiv 1 \pmod{p}$, so $p-1 \mid n$, so the least $n \in \mathbb{N}^*$ such that $a^n \equiv 1 \pmod{p}$ is p-1: the order of a modulo p is p-1, a is a primitive root modulo p.

Reciprocally, if -a is a primitive root modulo p, we apply the previous result at -a to to obtain that -(-a) = a is a primitive root.

Solution 2.

Let $p-1=2^{a_0}p_1^{a_1}\cdots p_k^{a_k}$ the decomposition of p-1 in prime factors. As p_i is odd for $i=1,2,\cdots k, (p-1)/p_i$ is even, and a is primitive, so

$$(-a)^{(p-1)/p_i} = a^{(p-1)/p_i} \not\equiv 1 \pmod{p},$$

 $(-a)^{(p-1)/2} = (-a)^{2k} = a^{2k} = a^{(p-1)/2} \not\equiv 1 \pmod{p}.$

So the order of a is p-1 modulo p (see Ex. 4.8): a is a primitive element modulo p. \square

Ex. 4.5 Consider a prime p of the form 4t+3. Show that a is a primitive root modulo p iff -a has order (p-1)/2.

Proof. Let a a primitive root modulo p.

As $a^{p-1} \equiv 1 \pmod{p}$, $p \mid (a^{(p-1)/2} - 1)(a^{(p-1)/2} + 1)$, so $p \mid a^{(p-1)/2} - 1$ or $p \mid a^{(p-1)/2} + 1$. As a is a primitive root modulo p, $a^{(p-1)/2} \not\equiv 1 \pmod{p}$, so

$$a^{(p-1)/2} \equiv -1 \pmod{p}.$$

Hence $(-a)^{(p-1)/2} = (-1)^{2t+1}a^{(p-1)/2} \equiv (-1) \times (-1) = 1 \pmod{p}$.

Suppose that $(-a)^n \equiv 1 \pmod{p}$, with $n \in \mathbb{N}$.

Then $a^{2n} = (-a)^{2n} \equiv 1 \pmod{p}$, so $p - 1 \mid 2n, \frac{p-1}{2} \mid n$.

So -a has order (p-1)/2 modulo p.

Reciprocally, suppose that -a has order (p-1)/2 = 2t+1 modulo p. Let $2, p_1, \ldots p_k$ the prime factors of p-1, where p_i are odd.

$$a^{(p-1)/2} = a^{2t+1} = -(-a)^{2t+1} = -(-a)^{(p-1)/2} \equiv -1$$
, so $a^{(p-1)/2} \not\equiv 1 \pmod{2}$.

As p-1 is even, $(p-1)/p_i$ is even, so

 $a^{(p-1)/p_i} = (-a)^{(p-1)/p_i} \not\equiv 1 \pmod{p}$ (since -a has order p-1).

So the order of a is p-1 (see Ex. 4.8): a is a primitive root modulo p.

Ex. 4.6 If $p = 2^{2^n} + 1$ is a Fermat prime, show that 3 is a primitive root modulo p.

Proof. Solution 1 (with quadratic reciprocity).

Write $p = 2^k + 1$, with $k = 2^n$.

We suppose that n > 0, so $k \ge 2, p \ge 5$. As p is prime, $3^{p-1} \equiv 1 \pmod{p}$.

In other words, $3^{2^k} \equiv 1 \pmod{p}$: the order of 3 is a divisor of 2^k , a power of 2.

3 has order 2^k modulo p iff $3^{2^{k-1}} \not\equiv 1 \pmod{p}$. As $\left(3^{2^{k-1}}\right)^2 \equiv 1 \pmod{p}$, where p is prime, this is equivalent to $3^{2^{k-1}} \equiv -1 \pmod{p}$, which remains to prove.

$$3^{2^{k-1}} = 3^{(p-1)/2} \equiv \left(\frac{3}{p}\right) \pmod{p}.$$

As the result is true for p=5, we can suppose $n\geq 2$. From the law of quadratic reciprocity:

$$\left(\frac{3}{p}\right)\left(\frac{p}{3}\right) = (-1)^{(p-1)/2} = (-1)^{2^{k-1}} = 1.$$

So $\left(\frac{3}{p}\right) = \left(\frac{p}{3}\right)$

$$p = 2^{2^n} + 1 \equiv (-1)^{2^n} + 1 \pmod{3}$$

 $\equiv 2 \equiv -1 \pmod{3}$,

so $\left(\frac{3}{p}\right) = \left(\frac{p}{3}\right) = -1$, that is to say

$$3^{2^{k-1}} \equiv -1 \pmod{p}.$$

The order of 3 modulo $p = 2^{2^n} + 1$ is $p - 1 = 2^{2^n} : 3$ is a primitive root modulo p. (On the other hand, if 3 is of order p - 1 modulo p, then p is prime, so

$$F_n = 2^{2^n} + 1$$
 is prime $\iff 3^{(F_n - 1)/2} = 3^{2^{2^n - 1}} \equiv -1 \pmod{F_n}$.)

Solution 2 (without quadratic reciprocity, with the hint of chapter 4).

As above, if if we suppose that 3 is not a primitive root modulo p, then $3^{2^{n-1}} \equiv 1 \pmod{p}$, so $n \geq 2$, and $(-3)^{(p-1)/2} = 3^{2^{n-1}} \equiv 1 \pmod{p}$, so -3 is a square modulo p: there exists $a \in \mathbb{Z}$ such that $-3 \equiv a^2 \pmod{p}$.

As $2 \wedge p = 1$, there exists $u \in \mathbb{Z}$ such that $2u \equiv -1 + a \pmod{p}$ (\overline{u} is similar to $\omega = \frac{-1+i\sqrt{3}}{2} \in \mathbb{C}$). Then

$$8u^{3} \equiv (-1+a)^{3}$$

$$\equiv -1+3a-3a^{2}+a^{3}$$

$$\equiv -1+3a+9-3a$$

$$\equiv 8 \pmod{p}$$

As $p \wedge 2 = p \wedge 8 = 1$, $u^3 \equiv 1 \pmod p$. Moreover, if $u \equiv 1 \pmod 3$, then $a \equiv 3 \pmod p$, $-3 \equiv 9 \pmod p$, $p \mid 12$, so p = 2 or p = 3, in contradiction with $p \geq 5$. So the order of u modulo p is $3 : (\mathbb{Z}/p\mathbb{Z})^*$ contains an element \overline{u} of order 3. So $3 \mid p-1$, $p \equiv 1 \pmod 3$, but $p \equiv (-1)^{2^n} + 1 \equiv 2 \equiv -1 \pmod 3$: this is a contradiction, so 3 is a primitive root modulo $p = 2^{2^n} + 1$.

Ex. 4.7 Suppose that p is a prime of the form 8t + 3 and that q = (p - 1)/2 is also a prime. Show that 2 is a primitive root modulo p.

Proof. The first examples of such couples (q, p) are (5, 11), (29, 59), (41, 83), (53, 107), (89, 179). <math>p = 2q + 1 = 8t + 3 and p, q are prime numbers.

From Fermat's little theorem, $2^{p-1} \equiv 1 \pmod{p}$, so $2^{2q} \equiv 1 \pmod{p}$.

The order of 2 modulo p divides 2q: to prove that the order of 2 is 2q = p - 1, it is suffisant to prove

$$2^2 \not\equiv 1 \pmod{p}, \quad 2^q \not\equiv 1 \pmod{p}.$$

If $2^2 \equiv 1 \pmod{p}$, then $p \mid 3$, p = 3 and q = 1 : q is not a prime, so $2^2 \not\equiv 1 \pmod{p}$. If $2^q = 2^{(p-1)/2} \equiv 1 \pmod{p}$, then 2 is a square modulo p (prop. 4.2.1) : there exists $a \in \mathbb{Z}$ such that $2 \equiv a^2 \pmod{p}$.

From the complementary case of law of quadratic reciprocity (see next chapter, prop. 5.1.3), 2 is a square modulo p iff

$$1 = \left(\frac{2}{p}\right) = (-1)^{(p^2 - 1)/8}.$$

Yet $p \equiv 3 \pmod 8$, so $p^2 \equiv 1 \pmod {16}$, $\binom{2}{p} = (-1)^{(p^2-1)/8} = -1$, so 2 is not a square modulo p. This is a contradiction, so $2^q \not\equiv 1 \pmod p$: 2 is a primitive root modulo p.

Ex. 4.8 Let p be an odd prime. Show that a is a primitive root modulo p iff $a^{(p-1)/q} \not\equiv 1 \pmod{p}$ for all prime divisors q of p-1.

Proof. • If a is a primitive root, then $a^k \not\equiv 1$ for all $k, 1 \leq k < p-1$, so $a^{(p-1)/q} \not\equiv 1 \pmod{p}$ for all prime divisors q of p-1.

• In the other direction, suppose $a^{(p-1)/q} \not\equiv 1 \pmod p$ for all prime divisors q of p-1. Let δ the order of a, and $p-1=q_1^{a_1}q_2^{a_2}\cdots q_k^{a_k}$ the decomposition of p-1 in prime factors. As $\delta \mid p-1, \delta = q_1^{b_1}p_2^{b_2}\cdots q_k^{b_k}$, with $b_i \leq a_i, i=1,2,\ldots,k$. If $b_i < a_i$ for some index i, then $\delta \mid (p-1)/q_i$, so $a^{(p-1)/q_i} \equiv 1 \pmod p$, which is in contradiction with the hypothesis. Thus $b_i = a_i$ for all i, and $\delta = q-1$: a is a primitive root modulo p. \square

Ex. 4.9 Show that the product of all the primitive roots modulo p is congruent to $(-1)^{\phi(p-1)}$ modulo p.

Proof. Here we suppose p prime, p > 2. Let g a primitive root modulo p. $U(\mathbb{Z}/p\mathbb{Z})$ is cyclic, generated by \overline{g} :

$$U(\mathbb{Z}/p\mathbb{Z}) = \{\overline{1}, \overline{g}, \overline{g}^2, \dots, \overline{g}^{p-2}\}, \qquad \overline{g}^{p-1} = \overline{1}.$$

 \overline{g}^k is a primitive element iff $k \wedge (p-1) = 1$, so the product of primitive elements in $U(\mathbb{Z}/p\mathbb{Z})$ is

$$\overline{P} = \prod_{\substack{k \wedge (p-1)=1\\1 \le k < p-1}} \overline{g}^k.$$

so $\overline{P} = \overline{g}^S$, where $S = \sum_{\substack{k \wedge (p-1)=1\\1 \leq k < p-1}} k$.

From Ex. 2.22, we know that for $n \geq 2$,

$$\sum_{\substack{k \wedge n = 1 \\ 1 < k < n}} k = \frac{1}{2} n \phi(n).$$

So
$$S = \sum_{\substack{k \wedge (p-1)=1\\1 \le k < p-1}} k = \frac{1}{2}(p-1)\phi(p-1).$$

As p > 2, p-1 is even. $(\overline{g}^{(p-1)/2})^2 = \overline{g}^{p-1} = \overline{1}$, and $\overline{g}^{(p-1)/2} \neq \overline{1}$. As $\mathbb{Z}/p\mathbb{Z}$ is a field, $\overline{g}^{(p-1)/2} = -\overline{1}$.

Thus $\overline{P} = (-\overline{1})^{\phi(p-1)}$: so the product P of all the primitive roots modulo p is such that

$$P \equiv (-1)^{\phi(p-1)} \pmod{p}.$$

Ex. 4.10 Show that the sum of all the primitive roots modulo p is congruent to $\mu(p-1)$ modulo p.

Proof. Notation : $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ is the field with p elements, |x| the multiplicative order of an element $x \in \mathbb{F}_p^*$, $\mathbb{N}^* = \{1, 2, 3, \ldots\}$.

$$\psi: \left\{ \begin{array}{ccc} \mathbb{N}^* & \to & \mathbb{F}_p \\ n & \mapsto & \psi(n) = \sum_{d \in \mathbb{F}_p^*, |d| = n} d \end{array} \right.$$

 $\psi(n)$ is the sum of the elements with order n in \mathbb{F}_p^* . So $\psi(n)=0$ if $n\nmid p-1$, and $S = \psi(p-1)$ is the sought sum of all the primitive roots modulo p.

We compute for all $n \in \mathbb{N}^*$

$$f(n) = \sum_{d|n} \psi(d).$$

f(n) is the sum of elements whose order divides n, in other worlds the sum of the roots of $x^n - 1$. This sum is, up to the sign, the coefficient of x^{n-1} , so is null, except in the case n=1, where the sum of the unique root 1 of x-1 is 1. So

$$f(1) = 1, \quad \forall n > 1, f(n) = 0,$$

 $(f = \chi_{\{1\}})$ is the characteristic function of $\{1\}$).

From the Möbius inversion formula, for all $n \in \mathbb{N}^*$, $\psi(n) = \sum_{d|m} \mu\left(\frac{n}{d}\right) f(d)$, so

$$\psi(p-1) = \sum_{d|p-1} \mu\left(\frac{p-1}{d}\right) f(d) = \mu(p-1).$$

Conclusion:

$$S = \sum_{d \in \mathbb{F}_n^*, |d| = p-1} d = \mu(p-1)$$
:

the sum of all the primitive roots modulo p is congruent to $\mu(p-1)$ modulo p.

Ex. 4.11 Prove that $1^k + 2^k + ... + (p-1)^k \equiv 0 \pmod{p}$ if $p-1 \nmid k$, and $-1 \pmod{p}$ if p - 1 | k.

Proof. Let $S_k = 1^k + 2^k + \dots + (p-1)^k$. Let g a primitive root modulo $p : \overline{g}$ a generator of \mathbb{F}_p^* . As $(\overline{1}, \overline{g}, \overline{g}^2, \dots, \overline{g}^{p-2})$ is a permutation of $(\overline{1}, \overline{2}, \dots, \overline{p-1})$,

$$\overline{S_k} = \overline{1}^k + \overline{2}^k + \dots + \overline{p-1}^k$$

$$= \sum_{i=0}^{p-2} \overline{g}^{ki} = \begin{cases} \overline{p-1} = -\overline{1} & \text{if } p-1 \mid k \\ \frac{\overline{g}^{(p-1)k} - 1}{\overline{g}^k - 1} = \overline{0} & \text{if } p-1 \nmid k \end{cases}$$

since $p-1 \mid k \iff \overline{g}^k = \overline{1}$.

Conclusion:

$$1^{k} + 2^{k} + \dots + (p-1)^{k} \equiv 0 \pmod{p} \text{ if } p - 1 \nmid k$$
$$1^{k} + 2^{k} + \dots + (p-1)^{k} \equiv -1 \pmod{p} \text{ if } p - 1 \mid k$$

4.12 Use the existence of a primitive root to give another proof of Wilson's $theorem(p-1)! \equiv -1 \pmod{p}$.

Proof. As the result is trivial if p=2, we suppose that p is an odd prime.

Let g a primitive root modulo p: \overline{g} a generator of \mathbb{F}_p^* .

As $(\overline{g}^{(p-1)/2})^2 = \overline{g}^{p-1} = \overline{1}$, and $\overline{g}^{(p-1)/2} \neq 1$ in the field \mathbb{F}_n^* , then $\overline{g}^{(p-1)/2} = -1$, and $(\overline{1}, \overline{g}, \overline{g}^2, \dots, \overline{g}^{p-2})$ is a permutation of $(\overline{1}, \overline{2}, \dots, \overline{p-1})$, so

$$\overline{(p-1)!} = \prod_{k=0}^{p-2} \overline{g}^k
= \overline{g}^{\sum_{k=0}^{p-2} k}
= \overline{g}^{(p-2)(p-1)/2}
= \left(\overline{g}^{(p-1)/2}\right)^{p-2}
= (-\overline{1})^{p-2}
= -1$$

Hence $(p-1)! \equiv -1 \pmod{p}$ for each prime p.

Ex. 4.13 Let G be a finite cyclic group and $g \in G$ a generator. Show that all the other generators are of the form g^k , where (k, n) = 1, n being the order of G.

Proof. Suppose $G = \langle g \rangle$, with Card G = n, so the order of g is n.

Let x another generator of G, then $x = g^k$, and $g = x^l$, $k, l \in \mathbb{Z}$, so $g = g^{kl}, g^{kl-1} =$ $e: n \mid kl-1$, then $kl-1=qn, q \in \mathbb{Z}$, so $n \wedge k=1$.

Reciprocally, if $u \wedge k = 1$, there exist $u, v \in \mathbb{Z}$ such that un + vk = 1, so $g = g^{un + vk} = 1$ $(g^n)^u(g^k)v=x^v\in\langle x\rangle$, so $G\subset\langle x\rangle$, $G=\langle x\rangle$: x is a generator of G.

Conclusion: if g is a generator of G, all the other generators are the elements g^k , where $k \wedge n = 1$, n = |G|.

Ex. 4.14 Let A be a finite abelian group and $a, b \in A$ elements of order m and n, respectively. If (m, n) = 1, prove that ab has order mn.

Proof. Suppose $|a|=m, |b|=n, m \wedge n=1$. • If $(ab)^k=e$, then $a^k=b^{-k}$, so $a^{kn}=b^{-kn}=(b^n)^{-k}=e$, so $m\mid kn$, with $m\wedge n=1$, so $m \wedge k$.

Similarly, $b^{km} = a^{-km} = (a^m)^{-k} = e$, so $n \mid km, n \land m = 1 : n \mid k$.

As $n \mid k, m \mid k, n \land m = 1, nm \mid k$.

• Reciprocally, if $nm \mid k, nm = qnm, q \in \mathbb{Z}$, so $(ab)^k = a^k b^k = (a^m)^{qn} (b^n)^{qm} = e$.

$$\forall k \in \mathbb{Z}, \ (ab)^k = e \iff nm \mid k.$$

So |ab| = nm.

Ex. 4.15 Let K be a field and $G \subset K^*$ a finite subgroup of the multiplicative group of K. Extend the arguments used in the proof of Theorem 4.1 to show that G is cyclic.

Solution 1.

Proof. Let n = |G|. From Lagrange's theorem, $a^n = 1$ for all $a \in G$, so the polynomial $x^n - 1 \in K[x]$ has exactly n roots in G, and so

$$\forall x \in K, x \in G \iff x^n = 1.$$

If $d \mid n$, the polynomial $x^d - 1 \in K[x]$ has exactly d roots in K otherwise $x^n - 1 = (x^d - 1)g(x), g(x) \in K[x]$, and $\deg(g) = n - d$ has at most n - d roots, so $x^n - 1$ would have less than n roots in K. As $x_0^d = 1 \Rightarrow x_0^n = 1$, all these roots are in $G : x^d - 1$ has d roots in G.

Let $\psi(d)$ the number of elements in G of order d ($\psi(d) = 0$ if $d \nmid n$). Then $\sum_{c|d} \psi(c) = d$. Applying the Möbius inversion theorem, $\psi(d) = \sum_{c|d} \mu(c) d/c = \Phi(d)$ (Prop. 2.2.5), in particular, $\psi(n) = \phi(n) > 1$ if n > 2. Since a group of order 2 is cyclic, we have shown in all cases the existence of an element of order n in G, so G is cyclic.

(variation: $\psi(d) = 0$ if there exists no element of order d, and $\psi(d) = \phi(d)$ otherwise: see Ex.4.13. So $\psi(d) \leq \phi(d)$ for all $d \mid n$. As $\sum_{d \mid n} \psi(d) = \sum_{d \mid n} \phi(d) = n$, $\psi(d) = \phi(d)$ for all $d \mid n$. So there exists in G an element of order n, and G is cyclic.)

Solution 2.

Proof. Let $n = |G| = p_1^{a_1} \cdots p_k^{a_k}$. From Lagrange's theorem, $y^n = 1$ for all $y \in G$. $p(x) = x^{n/p_1} - 1 \in K[x]$ has at most $n/p_1 < n$ roots in K^* , a fortiori in G, so there exists $a \in G$ such that $a^{n/p_1} \neq 1$.

Let $c_1 = a^{n/p_1^{a_1}} = a^{p_2^{a_2} \cdots p_k^{a_k}}$. Then $c_1^{p_1^{a_1}} = 1$ and $c_1^{p_1^{a_1-1}} = a^{n/p_1} \neq 1$, so $|c_1| = p_1^{a_1}$. Similarly, there exist c_2, \ldots, c_k with respective orders $|c_i| = p_i^{a_i}$.

From exercise 4.14, we obtain by induction that $c = c_1 \cdots c_k$ has order $p_1^{a_1} \cdots p_k^{a_k} = n$, so G is cyclic.

Ex. 4.16 Calculate the solutions to $x^3 \equiv 1 \pmod{19}$ and $x^4 \equiv 1 \pmod{17}$.

Proof. Here we note a the class of a in $\mathbb{Z}/p\mathbb{Z}$.

Let
$$x \in \mathbb{F}_{19}$$
. $x^3 - 1 = 0 \iff x - 1 = 0 \text{ or } x^2 + x + 1 = 0$.

$$x^{2} + x + 1 = 0 \iff (x + 10) - 99 = 0$$

 $\iff (x + 10)^{2} - 4 = 0$
 $\iff (x + 8)(x + 12) = 0$

So, for all $x \in \mathbb{Z}$,

$$x^3 \equiv 1 \pmod{19} \iff x \equiv 1, 7, 11 \pmod{19}$$
.

Let $x \in \mathbb{F}_{17}$.

$$x^4 = 1 \iff x^2 = 1 \text{ or } x^2 = -1 = 4^2$$

 $\iff x = \pm 1 \text{ or } x = \pm 4$

So, for all $x \in \mathbb{Z}$,

$$x^4 \equiv 1 \pmod{17} \iff x \equiv -1, 1, -4, 4 \pmod{17}.$$

Alternatively, we can take primitives roots modulo 19 and 17.

2 is a primitive root modulo 19, Let $x = 2^k \in \mathbb{F}_{19}$.

$$x^{3} = 1 \iff 2^{3k} = 1$$

$$\iff 18 \mid 3k$$

$$\iff 6 \mid k$$

$$\iff x = 1, 2^{6} = 7, 2^{12} = 11$$

3 is a primitive root modulo 17. Let $x = 3^k \in \mathbb{F}_{17}$.

$$x^{4} = 1 \iff 3^{4k} = 1$$

$$\iff 16 \mid 4k$$

$$\iff 4 \mid k$$

$$\iff x = 1, 3^{4} = -4, 3^{8} = -1, 3^{12} = 4$$

Ex. 4.17 Use the fact that 2 is a primitive root modulo 29 to find the seven solutions to $x^7 \equiv 1 \pmod{29}$.

Proof. Let $x \in \mathbb{Z}$, then $x \equiv 2^k \pmod{29}$, $k \in \mathbb{N}$.

$$x^7 \equiv 1 \pmod{29} \iff 2^{7k} \equiv 1 \pmod{29}$$

$$\iff 28 \mid 7k$$

$$\iff 4 \mid k$$

So the group cyclic S of the roots of $x^7 - 1$ in \mathbb{F}_{29} are

$$S = \{1, 2^4, 2^8, 2^{12}, 2^{16}, 2^{20}, 2^{24}\},$$

$$S = \{1, 16, 24, 7, 25, 23, 20\}.$$

Ex. 4.18 Solve the congruence $1 + x + \cdots + x^6 \equiv 0 \pmod{29}$.

Proof. As $(1 + x + \cdots + x^6)(1 - x) = 1 - x^7$,

$$1 + x + \dots + x^6 \equiv 0 \pmod{29} \iff \begin{cases} x^7 \equiv 1 \pmod{29} \\ x \not\equiv 1 \pmod{29} \end{cases}$$

From Ex. 4.17, the solutions are congruent to 2^4 , 2^8 , 2^{12} , 2^{16} , 2^{20} , 2^{24} modulo 29.

Ex. 4.19 Determine the numbers a such that $x^3 \equiv a \pmod{p}$ is solvable for p = 7, 11, 13.

Proof. (a) If
$$p = 7$$
, then $3 \mid p - 1, d = 3 \land (p - 1) = 3$. From Prop. 4.2.1, $\exists x \in \mathbb{Z}, \ a \equiv x^3 \pmod{7} \iff a \equiv 0 \pmod{7} \text{ or } a^{(p-1)/3} = a^2 \equiv 1 \pmod{7}.$

8

So the numbers a such that $x^3 \equiv a \pmod{7}$ is solvable are congruent at 0, 1, -1 modulo 7.

(b) If p = 11, then $d = 3 \land (p - 1) = 1$. With the same proposition,

$$\exists x \in \mathbb{Z}, \ a \equiv x^3 \pmod{11} \iff a \equiv 0 \pmod{11} \text{ or } a^{p-1} = a^6 \equiv 1 \pmod{11}.$$

So all integers a are cube modulo 11, in only one way.

For an alternative proof, the application

$$f: \left\{ \begin{array}{ccc} \mathbb{F}_{11}^* & \to & \mathbb{F}_{11}^* \\ x & \mapsto & x^3 \end{array} \right.$$

f is a bijection. Indeed,

- \bullet f is a group homomorphism,
- $x^3 = 1 \Rightarrow (x^3)^7 = 1 \Rightarrow x = 1 \text{ so } \ker(f) = \{1\},$
- $f: \mathbb{F}_{11}^* \to \mathbb{F}_{11}^*$ is injective and \mathbb{F}_{11}^* is finite, so f is bijective.

In
$$\mathbb{F}_{11}$$
, $0 = 0^3$, $1 = 1^3$, $2 = 7^3$, $3 = 9^3$, $4 = 5^3$, $5 = 3^3$, $6 = 8^3$, $7 = 6^3$, $8 = 2^3$, $9 = 4^3$, $10 = 10^3$.

(c) If p = 13, then $3 \mid p - 1, 3 \land (p - 1) = 3$, so

$$\exists x \in \mathbb{Z}, \ a \equiv x^3 \pmod{13} \iff a \equiv 0 \pmod{13} \text{ or } a^{(p-1)/3} = a^4 \equiv 1 \pmod{13} \iff a \equiv 0, 1, -1, 5, -5 \pmod{13}$$

$$(5 \equiv 8^3 \pmod{13}.)$$

Ex. 4.20 Let p be a prime, and d a divisor of p-1. Show that dth powers form a subgroup of $U(\mathbb{Z}/p\mathbb{Z})$ of order (p-1)/d. Calculate this subgroup for p=11, d=5, for p=17, d=4, and for p=19, d=6.

Proof. Here p is a prime number, and $d \mid p-1$. Let

$$f: \left\{ \begin{array}{ccc} \mathbb{F}_p^* & \to & \mathbb{F}_p^* \\ x & \to & x^d \end{array} \right.$$

Then f is a group homomorphism, and $\operatorname{im}(f)$ is the set of dth powers, and consequently is a subgroup of $U(\mathbb{F}_p) = \mathbb{F}_p^*$. $\ker(f)$ is the group of the roots of $x^d - 1$. As $d \mid p - 1$, the polynomial $x^d - 1$ has exactly d roots (Prop. 4.1.2), so $|\ker(f)| = d$.

As $\operatorname{im}(f) \simeq \mathbb{F}_p^* / \ker(f)$,

$$|\operatorname{im}(f)| = |\mathbb{F}_p^*|/|\ker(f)| = (p-1)/d.$$

So there exist exactly (p-1)/d dth powers in $(\mathbb{Z}/p\mathbb{Z})^*$.

From Prop. 4.2.1, as $d \mid p-1, d \wedge p-1$, for all $x \in \mathbb{F}_n^*$,

$$x \in \operatorname{im}(f) \iff x^{(p-1)/d} = 1.$$

So the group of dth powers is the group of the roots of $x^{(p-1)/d} - 1$.

- If p = 11, d = 5, $im(f) = \{1, -1\}$.
- If $p = 17, d = 4, x \in \text{im}(f) \iff x^4 = 1 : \text{im}(f) = \{1, -1, 4, -4\}.$
- If $p = 19, d = 6, x \in \text{im}(f) \iff x^3 = 1 : \text{im}(f) = \{1, 7, 7^2 = 11\},$ where $7 \equiv 2^6 \pmod{19}$.

Ex. 4.21 If g is a primitive root modulo p, and d|p-1, show that $g^{(p-1)/d}$ has order d. Show also that a is a dth power iff $a \equiv g^{kd} \pmod{p}$ for some k. Do Exercises 16-20 making use of those observations.

Proof. Let $x = \overline{g}^{(p-1)/d} \in \mathbb{F}_p^*$, where g is a primitive root modulo p. For all $k \in \mathbb{Z}$,

$$x^{k} = 1 \iff g^{k\frac{p-1}{d}} = 1$$
$$\iff p-1 \mid k\frac{p-1}{d}$$
$$\iff d \mid k$$

So the ordre of $\overline{g}^{(p-1)/d}$ is d.

- If $\overline{a} = \overline{g}^{kd}$, then $\overline{a} = x^d$, where $x = \overline{g}^k$, so \overline{a} is a dth power.
- If $\overline{a} \neq \overline{0}$ is a dth power, $\overline{a} = x^d, x \in \mathbb{F}_p^*$. As $x \in \langle \overline{g} \rangle, x = \overline{g}^k$, so $\overline{a} = \overline{g}^{kd}$.

So, if $a \not\equiv 0 \pmod{p}$, a is a dth power iff $a \equiv g^{kd} \pmod{p}$ for some k.

By example (Ex. 4.20), 2 is a primitive root modulo 19, so the 6th powers modulo 19 are $2^0 = 1, 2^6 = 7, 2^{12} = 11$.

Ex. 4.22 If a has order 3 modulo p, show that 1 + a has order 6.

Proof. If a has order 3 modulo p, then $0 \equiv a^3 - 1 = (a-1)(a^2 + a + 1) \pmod{p}$, with $a \not\equiv 1 \pmod{p}$, so $a^2 + a + 1 \equiv 0 \pmod{p}$. Thus

$$(1+a)^3 \equiv 1 + 3a + 3a^2 + a^3$$

 $\equiv 1 + 3a + 3(-1-a) + 1$
 $\equiv -1 \pmod{p}$

So $(1+a)^6 \equiv 1 \pmod{p}$.

 $(1+a)^2 \equiv 1 + 2a + a^2 = 1 + 2a + (-1-a) \equiv a \not\equiv 1 \pmod{p}.$

So $(1+a)^6 \equiv 1, (1+a)^2 \not\equiv 1, (1+a)^3 \not\equiv 1 \pmod{p}$, so the order of 1+a divides 6, but doesn't divides 2 or 3, so 1+a has order 6 modulo p.

Ex. 4.23 Show that $x^2 \equiv -1 \pmod{p}$ has a solution iff $p \equiv 1 \pmod{4}$, and that $x^4 \equiv -1 \pmod{p}$ has a solution iff $p \equiv 1 \pmod{8}$.

Proof. If $x^2 \equiv -1 \pmod{p}$, then \overline{x} has order 4 in \mathbb{F}_p^* , hence from Lagrange's theorem, $4 \mid p-1$.

Reciprocally, suppose $4 \mid p-1$, so $p=4k+1, k \in \mathbb{N}^*$. From proposition 4.2.1, as $2 \mid p-1, -1$ is a square modulo p iff $(-1)^{(p-1)/2} \equiv 1 \pmod{p}$, which is true because $(-1)^{(p-1)/2} = (-1)^{2k} = 1$.

If $x^4 \equiv -1 \pmod{p}$, then $\overline{x}^8 = 1 \in \mathbb{F}_p^*$, and $\overline{x}^4 \neq 1$, so x has order 8 in \mathbb{F}_p^* , so $8 \mid p-1$. Reciprocally, if $p \equiv 1 \pmod{8}$, p = 8K + 1, $K \in \mathbb{N}^*$. From Prop.4.2.1, as $4 \mid p-1$, there exists $x \in \mathbb{Z}$ such that $-1 = x^4$ iff $(-1)^{(p-1)/4} \equiv 1 \pmod{8}$, which is true because $(-1)^{(p-1)/4} = (-1)^{2K} = 1$.

Conclusion:

$$\exists x \in \mathbb{Z}, \ x^4 \equiv -1 \pmod{p} \iff p \equiv 1 \pmod{8}.$$

Ex. 4.24 Show that $ax^m + by^n \equiv c \pmod{p}$ has the same number of solutions as $ax^{m'} + by^{n'} \equiv c \pmod{p}$, where m' = (m, p - 1) and n' = (n, p - 1).

Proof. If $a \wedge b \nmid c$, the two equations have no solution. So we can suppose $a \wedge b \mid c$, and after division by $\delta = a \wedge b$, we obtain an equation $a'x^m + b'y^n = c'$, $a' = a/\delta, b' = b\delta, c' = c\delta$, and $a' \wedge b' = 1$. So it remains to prove that $ax^m + by^n \equiv c \pmod{p}$ has the same number of solutions as $ax^{m'} + by^{n'} \equiv c \pmod{p}$ when $a \wedge b = 1$.

In this case the equation au + bv = c has solutions. Let N the number of solutions $(\overline{x}, \overline{y})$ of the equation $\overline{a} \, \overline{x}^m + \overline{b} \, \overline{y}^n = \overline{c}, N'$ the number of solutions $(\overline{x}, \overline{y})$ of the equation $\overline{a} \, \overline{x}^{m'} + \overline{b} \, \overline{y}^{n'} = \overline{c}$. Then

$$\begin{split} N &= \operatorname{Card}\{(\overline{x}, \overline{y}) \in \mathbb{F}_p \times \mathbb{F}_p \mid \overline{a} \, \overline{x}^m + \overline{b} \, \overline{y}^n = \overline{c}\} \\ &= \sum_{\overline{a}\overline{u} + \overline{b}\overline{v} = \overline{c}} \operatorname{Card}\{(\overline{x}, \overline{y}) \in \mathbb{F}_p \times \mathbb{F}_p \mid \overline{x}^m = \overline{u}, \overline{y}^n = \overline{v}\} \\ &= \sum_{\overline{a}\overline{u} + \overline{b}\overline{v} = \overline{c}} \operatorname{Card}\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^m = \overline{u}\} \times \operatorname{Card}\{\overline{y} \in \mathbb{F}_p \mid \overline{y}^n = \overline{v}\}. \end{split}$$

The same is true for N', so it is suffisant to prove that

$$\operatorname{Card}\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^m = \overline{u}\} = \operatorname{Card}\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^{m'} = \overline{u}\},\$$

where $m' = m \wedge (p-1)$, and a similar equality for the equation $\overline{y}^n = \overline{v}$. Let \overline{g} a generator of \mathbb{F}_p^* . Write $\overline{u} = \overline{g}^r, r \in \mathbb{N}$.

$$\exists \overline{x} \in \mathbb{F}_p, \ \overline{x}^m = \overline{u} \iff \exists k \in \mathbb{Z}, \ \overline{g}^{mk} = \overline{g}^r$$

$$\iff \exists k \in \mathbb{Z}, \ p-1 \mid mk-r$$

$$\iff \exists k \in \mathbb{Z}, \exists l \in \mathbb{Z}, \ r = mk + l(p-1)$$

$$\iff m \land (p-1) \mid r$$

So

$$\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^m = \overline{u}\} \neq \emptyset \iff m \land (p-1) \mid r,$$

and similarly

$$\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^{m'} = \overline{u}\} \neq \emptyset \iff m' \land (p-1) \mid r.$$

Since $m' \wedge (p-1) = (m \wedge (p-1)) \wedge (p-1) = m \wedge (p-1)$, these two conditions are equivalent, so these two sets are empty for the same values of \overline{u} .

Let \overline{u} is such that $\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^m = \overline{u}\} \neq \emptyset$, and x_0 a fixed solution of $\overline{x}^m = \overline{u}$. Write $\overline{x} = \overline{g}^k, \overline{x_0} = g^{k_0}$. Let $d = m \land (p-1)(=m')$.

$$\overline{x}^{m} = u \iff \overline{x}^{m} = \overline{x_0}^{m}$$

$$\iff \overline{g}^{mk} = \overline{g}^{mk_0}$$

$$\iff p - 1 \mid m(k - k_0)$$

$$\iff \frac{p - 1}{d} \mid \frac{m}{d}(k - k_0)$$

$$\iff \frac{p - 1}{d} \mid k - k_0$$

$$\iff \exists j \in \mathbb{Z}, k = k_0 + j \frac{p - 1}{d}$$

As g is a primitive root modulo p, the distinct solutions are $x_0, x_0 g^{\frac{p-1}{d}}, \dots, x_0 g^{k\frac{p-1}{d}}, \dots x_0 g^{(d-1)\frac{p-1}{d}}$. so in this case

$$\operatorname{Card}\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^m = \overline{u}\} = d = m \land (p-1).$$

As $m' \wedge (p-1) = m \wedge (p-1)$,

$$\operatorname{Card}\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^m = \overline{u}\} = \operatorname{Card}\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^{m'} = \overline{u}\}.$$

So N = N': $ax^m + by^n \equiv c \pmod{p}$ has the same number of solutions as $ax^{m'} + by^{n'} \equiv c$ (mod p), where m' = (m, p - 1) and n' = (n, p - 1).

Ex. 4.25 Prove Propositions 4.2.2 and 4.2.4.

Proposition 4.2.2. Suppose that a is odd, $e \geq 3$, and consider the congruence $x^n \equiv a \pmod{2^e}$. If n is odd, a solution always exists and it is unique.

If n is even, a solution exists iff $a \equiv 1 \pmod{4}$, $a^{2^{e-2}/d} \equiv 1 \pmod{2^e}$, where $d = 1 \pmod{4}$ $(n, 2^{e-2})$. When a solution exists there are exactly 2d solutions.

Proof. We suppose that a is odd and $e \geq 3$.

From Theorem 2', we know that $\{(-1)^a 5^b \mid 0 \le a \le 1, 0 \le b \le 2^{e-2}\}$ constitutes a reduced residue system modulo 2^e , so we can write

$$a \equiv (-1)^s 5^t \pmod{2^e}, 0 \le s \le 1, 0 \le t \le 2^{e-2},$$

 $x \equiv (-1)^y 5^z \pmod{2^e}, 0 \le y \le 1, 0 \le z \le 2^{e-2}.$

For all $x \in \mathbb{Z}$,

$$x^n \equiv a \pmod{2^e} \iff (-1)^{ny} 5^{nz} \equiv (-1)^s 5^t \pmod{2^e}$$

Then $(-1)^{ny} \equiv (-1)^s \pmod{4}$, $ny \equiv s \pmod{2}$, $(-1)^{ny} = (-1)^s$, so $5^{nz} \equiv 5^t \pmod{2^e}$. Reciprocally, if $ny \equiv s \pmod{2}$ and $5^{nz} \equiv 5^t \pmod{2^e}$, then $x^n \equiv a \pmod{2^e}$, so

$$x^n \equiv a \pmod{2^e} \iff \left\{ \begin{array}{ccc} ny & \equiv & s \pmod{2} \\ 5^{nz} & \equiv & 5^t \pmod{2^e} \end{array} \right. \iff \left\{ \begin{array}{ccc} ny & \equiv & s \pmod{2} \\ nz & \equiv & t \pmod{2^{e-2}} \end{array} \right.$$

since the order of 5 modulo 2^e is 2^{e-2} .

 \bullet Suppose that n is an odd integer. Then

$$\left\{ \begin{array}{lll} ny & \equiv & s \pmod{2} \\ nz & \equiv & t \pmod{2^{e-2}} \end{array} \right. \iff \left\{ \begin{array}{lll} y & \equiv & s \pmod{2} \\ z & \equiv & n't \pmod{2^{e-2}} \end{array} \right.$$

where n' is an inverse of n modulo 2^{e-2} : $nn' \equiv 1 \pmod{2^{e-2}}$.

So $x^n \equiv a \pmod{2^e}$ has an unique solution modulo 2^e .

 \bullet Suppose that n is an even integer.

Then
$$\begin{cases} ny \equiv s \pmod{2} \\ nz \equiv t \pmod{2^{e-2}} \end{cases} \text{ implies } s \equiv 0 \pmod{2} \text{ and } d = n \wedge 2^{e-2} \mid t.$$
Then $a \equiv (-1)^s 5^t \equiv 5^t \pmod{2^e}$, so $a \equiv 1 \pmod{4}$.

Hence $a^{\frac{2^{e-2}}{d}} \equiv \left(5^{2^{e-2}}\right)^{\frac{t}{d}} \equiv 1 \pmod{2^e}$, since 5 has order 2^{e-2} , and $d \mid t$.

So, if n is even, and $d = n \wedge 2^{e-2}$,

$$\exists x \in \mathbb{Z}, \ x^n \equiv a \pmod{2^e} \Rightarrow \begin{cases} a \equiv 1 \pmod{4} \\ a^{\frac{2^{e-2}}{d}} \equiv 1 \pmod{2^e} \end{cases}$$

Reciprocally, suppose that $\begin{cases} a \equiv 1 \pmod{4} \\ a^{\frac{2^{e-2}}{d}} \equiv 1 \pmod{2^e} \end{cases}$. Then $a \equiv (-1)^s 5^t \pmod{2^e}$ implies $a \equiv (-1)^s \pmod{4}$, so s is even, and $a \equiv 5^t \pmod{2^e}$.

Therefore $5^{t\frac{2^{e-2}}{d}} \equiv 1 \pmod{2^e}$, which implies $2^{e-2} \mid t^{\frac{2^{e-2}}{d}}$, so $d \mid t$.

$$\exists x \in \mathbb{Z}, \ x^n \equiv a \pmod{2^e} \iff \exists y \in \mathbb{Z}, \ \exists z \in \mathbb{Z}, \ \begin{cases} ny \equiv s \pmod{2} \\ nz \equiv t \pmod{2^{e-2}} \end{cases}$$

$$\iff \exists z \in \mathbb{Z}, \ nz \equiv t \pmod{2^{e-2}} \pmod{2^{e-2}}$$

$$\iff \exists z \in \mathbb{Z}, \ 2^{e-2} \mid nz - t$$

$$\iff \exists z \in \mathbb{Z}, \ \frac{2^{e-2}}{d} \mid \frac{n}{d}z - \frac{t}{d}$$

$$\iff \exists z \in \mathbb{Z}, \ \exists q \in \mathbb{Z}, \ q \frac{2^{e-2}}{d} + z \frac{n}{d} = \frac{t}{d}$$

As $\frac{2^{e-2}}{d} \wedge \frac{n}{d} = 1$, there exists a solution (q, z_0) of this last equation, where $0 \le z_0 < \frac{2^{e-2}}{d}$, and so $x_0 = 5^{z_0}$ is a particular solution of $x^n \equiv a \pmod{2^e}$, therefore

$$\exists x \in \mathbb{Z}, \ x^n \equiv a \pmod{2^e} \iff \left\{ \begin{array}{ccc} a & \equiv & 1 \pmod{4} \\ a^{\frac{2^{e-2}}{d}} & \equiv & 1 \pmod{2^e} \end{array} \right.$$

If there exists a particular solution $x_0 \equiv (-1)^{y_0} 5^{z_0}$, then

$$x^{n} \equiv a \pmod{2^{e}} \iff x^{n} \equiv x_{0}^{n} \pmod{2^{e}}$$

$$\iff \begin{cases} ny \equiv ny_{0} \pmod{2} \\ nz \equiv nz_{0} \pmod{2^{e-2}} \end{cases}$$

$$\iff n(z - z_{0}) \equiv 0 \pmod{2^{e-2}} \pmod{2^{e-2}} \quad \text{(since } n \text{ even)}$$

$$\iff \frac{2^{e-2}}{d} \mid \frac{n}{d}(z - z_{0})$$

$$\iff \frac{2^{e-2}}{d} \mid z - z_{0}, \quad \text{(since } \frac{2^{e-2}}{d} \land \frac{n}{d} = 1)$$

$$\iff \exists k \in \mathbb{Z}, \ z = z_{0} + k \frac{2^{e-2}}{d}$$

As the order of 5 modulo 2^e is 2^{e-2} , the solutions of $x^n \equiv a \pmod{2^e}$ are

$$x_k = (-1)^y 5^{z_0 + k\frac{2^{e-2}}{d}}, \ 0 \le y < 2, \ 0 \le k < d,$$

so there are exactly 2d solutions modulo 2^e .

Proposition 4.2.4. Let 2^l be the highest power of 2 dividing n. Suppose that a is odd and that $x^n \equiv a \pmod{2^{2l+1}}$ is solvable. Then $x^n \equiv a \pmod{2^e}$ is solvable for all $e \geq 2l+1$, and consequently for all $e \geq 1$). Moreover, all these congruences have the same number of solutions.

Proof. We suppose that a is odd, and that $x^n \equiv a \pmod{2^{2l+1}}$ is solvable. l is such that $n = 2^l n'$, where n' is an odd integer.

Let the induction hypothesis be, for a fixed integer $m \geq 2l+1$,

$$\exists x_0 \in \mathbb{Z}, \ x_0^n \equiv a \pmod{2^m}.$$

Let $x_1 = x_0 + b2^{m-l}$: we show that for an appropriate choice of $b \in \{0,1\}$, $x_1^n \equiv a \pmod{2^{m+1}}$.

$$x_1^n = x_0^n + nb2^{m-l}x_0^{n-1} + 2^{2m-2l}A, \ A \in \mathbb{Z}.$$

Since $m \ge 2l + 1, 2m - 2l \ge m + 1$, so

$$x_1^n \equiv x_0^n + nb2^{m-l}x_0^{n-1} \pmod{2^{m+1}}.$$

$$x_1^n \equiv a \pmod{2^{m+1}} \iff (x_0^n - a) + n'bx_0^{n-1}2^m \equiv 0 \pmod{2^{n+1}}$$

 $\iff \frac{x_0^n - a}{2^m} + n'bx_0^{n-1} \equiv 0 \pmod{2}$

As a is odd, and $x_0^n \equiv a \pmod{2^m}$, $m \ge 1$, x_0 is odd, and n' is odd, so there exists an unique $b \in \{0,1\}$ such that $\frac{x_0^n - a}{2^m} + n'bx_0^{n-1} \equiv 0 \pmod{2}$. So there exists $x_1 \in \mathbb{Z}$ such that $x_1^b \equiv a \pmod{2^{m+1}}$, and the induction is completed. Therefore, $x^n \equiv a \pmod{2^e}$ is solvable for all $e \ge 2l + 1$, and consequently for all $e \ge 1$).

From the Proposition 4.2.2., with the hypothesis $e \geq 3$, we know that the number of solutions of the solvable equation $x^n \equiv a \pmod{2^e}$, $e \geq 2l+1$, is 1 if n is odd, $2(n \wedge 2^{e-2})$ if n is even.

If n is even, $l \ge 1$, $e \ge 2l+1 \ge 3$. Since $e \ge 2l+1$, and $n=2^l n'$ for an odd n', $l \le \frac{e-1}{2} \le e-2$, so $n \wedge 2^{e-2} = n'2^l \wedge 2^{e-2} = 2^l$, and the number of solutions is 2^{l+1} , independent of $e \ge 2l+1$.

Conclusion: under the hypothesis $x^n \equiv a \pmod{2^{2l+1}}$, where $l = \operatorname{ord}_2(n)$, then $x^n \equiv a \pmod{2^e}$ is solvable for all $e \geq 1$, and all these congruences have the same number of solutions for $e \geq 2l+1, e \geq 3$.

Chapter 5

Ex. 5.1 Use Gauss' lemma to determine $\binom{5}{7}$, $\binom{3}{11}$, $\binom{6}{13}$, $\binom{-1}{p}$.

Proof. • a = 5, p = 7.

The array of values of the least residues modulo p = 7, for $1 \le k \le (p-1)/2$.

So the number of negative least residues is $\mu = 1$, and $\left(\frac{5}{7}\right) = (-1)^{\mu} = -1$.

• a = 3, p = 11.

So
$$\mu = 2$$
, $\left(\frac{3}{11}\right) = (-1)^{\mu} = 1$.
• $a = 6$, $p = 13$.

So $\mu = 3$, $\left(\frac{6}{13}\right) = (-1)^{\mu} = -1$.

• If a=-1, and p an odd prime, the values of the least residues of -k modulo p for $k=1,2,\ldots,(p-1)/2$ are -k, all negative. So the number of negative least residues is $\mu=(p-1)/2$, and $\left(\frac{-1}{p}\right)=(-1)^{(p-1)/2}$.

Ex. 5.2 Show that the number of solutions to $x^2 \equiv a \pmod{p}$ is equal to 1 + (a/p).

Proof. Let N the number of solutions of $x^2 \equiv a \pmod{p}$.

- If $\left(\frac{a}{p}\right) = 0$, then $p \mid a, a \equiv 0 \pmod{p}$, so the unique solution of $x^2 \equiv a = 0$ is $x \equiv 0 \pmod{p}$, so $N = 1 = 1 + \left(\frac{a}{p}\right)$.
 - If $(\frac{a}{n}) = -1$, then $N = 0 = 1 + (\frac{a}{n})$.
- If $\binom{a}{p} = 1$, then $x^2 \equiv a \pmod{p}$ has a solution x_0 , and $x^2 \equiv a \pmod{p} \iff x^2 \equiv x_0^2 \pmod{p} \equiv p \mid (x x_0)(x + x_0) \equiv x \equiv \pm x_0 \pmod{p}$, so $N = 2 = 1 + \binom{a}{p}$.

Ex. 5.3 Suppose $p \nmid a$. Show that the number of solutions to $ax^2 + bx + c \equiv 0 \pmod{p}$ is equal to $1 + ((b^2 - 4ac)/p)$.

Proof. Here p is an odd prime number, and $p \nmid a$. Let N be the number of solutions of $ax^2 + bx + c \equiv 0 \pmod{p}$

For $\overline{x} \in \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$,

$$\begin{split} \overline{a}\overline{x}^2 + \overline{b}\overline{x} + \overline{c} &= \overline{a} \left(\overline{x}^2 + \frac{\overline{b}}{\overline{a}} \ \overline{x} + \frac{\overline{c}}{\overline{a}} \right) \\ &= \overline{a} \left(\left(\overline{x} + \frac{\overline{b}}{2\overline{a}} \right)^2 - \frac{\overline{b}^2 - 4\overline{a}\overline{c}}{4\overline{a}^2} \right) \end{split}$$

Let $\Delta = b^2 - 4ac$. Then N is the number of solutions of $\left(\overline{x} + \frac{\overline{b}}{2\overline{a}}\right)^2 - \frac{\overline{\Delta}}{4\overline{a}^2} = \overline{0}$ in \mathbb{F}_p . As in Ex.5.2, N = 1 if $\overline{\Delta} = \overline{0}$, N = 0 if $\overline{\Delta}$ is not a square in \mathbb{F}_p^* , otherwise $\overline{\Delta} = \delta^2$, $\delta \in \mathbb{F}_p^*$, and the solutions are $\overline{x} = (-\overline{b} \pm \overline{\delta})/2\overline{a}$, so N = 2. In the three cases, $N = 1 + \left(\frac{\Delta}{p}\right)$. \square

Ex. 5.4 Prove that $\sum_{a=1}^{p-1} (a/p) = 0$.

Proof. Here p is an odd prime (the result is false if p=2). In the interval [1, p-1], there exist (p-1)/2 residues, and (p-1)/2 nonresidues (Prop. 5.1.2., Corollary 1), so $\sum_{a=1}^{p-1} (a/p) = 0$.

Proof. As an alternative proof, let $S = \sum_{a=1}^{p-1} {a \choose p}$, and b a nonresidue modulo $p: (\frac{b}{p}) = -1$ (such a b exists if $p \neq 2$). As $a \mapsto ab$ is a bijection from \mathbb{F}_p^* to itself,

$$\left(\frac{b}{p}\right)S = \sum_{a=1}^{p-1} \left(\frac{ab}{p}\right) = \sum_{c=1}^{p-1} \left(\frac{c}{p}\right) = S,$$

so -S = S, S = 0.

Ex. 5.5 Prove that $\sum_{x=1}^{p-1}((ax+b)/p)=0$ provided that $p \nmid a$. There is a mistake in the sentence: we must read Prove that $\sum_{x=0}^{p-1}((ax+b)/p)=0$ provided that $p \nmid a$.

By example,

$$\sum_{x=1}^{5-1} \left(\frac{x+1}{5} \right) = \left(\frac{2}{5} \right) + \left(\frac{3}{5} \right) + \left(\frac{4}{5} \right) = -1 \neq 0.$$

Proof. From exercise 5.3, as $\binom{0}{p} = 0$, we know that

$$\sum_{\overline{x} \in \mathbb{F}_p} \left(\frac{x}{p} \right) = \sum_{x=0}^{p-1} \left(\frac{x}{p} \right) = \sum_{x=1}^{p-1} \left(\frac{x}{p} \right) = 0.$$

(This sum is well defined, since $(\frac{x}{p})$ depends only of \overline{x} : $x \equiv x' \pmod{p} \Rightarrow (\frac{x}{p}) = (\frac{x'}{p})$.) As $\overline{a} \neq \overline{0}$ in \mathbb{F}_p , $f: \left\{ \begin{array}{ccc} \mathbb{F}_p & \to & \mathbb{F}_p \\ x & \mapsto & \overline{a}x + \overline{b} \end{array} \right.$ is a bijection. Thus

$$\sum_{x=0}^{p-1} \left(\frac{ax+b}{p} \right) = \sum_{x \in \mathbb{F}_p} \left(\frac{f(x)}{p} \right)$$
$$= \sum_{y \in \mathbb{F}_p} \left(\frac{y}{p} \right) \qquad (y = f(x))$$
$$= 0$$

Ex. 5.6 Show that the number of solutions to $x^2 - y^2 \equiv a \pmod{p}$ is given by:

$$\sum_{y=0}^{p-1} \left(1 + \left(\frac{y^2 + a}{p} \right) \right).$$

Proof. Let $S = \{(\overline{x}, \overline{y}) \in \mathbb{F}_p^2 \mid \overline{x}^2 - \overline{y}^2 = \overline{a}\}$. From Ex.5.2,

$$|S| = \sum_{\overline{y} \in \mathbb{F}_p} \text{Card } \{ \overline{x} \in \mathbb{F}_p \mid \overline{x}^2 = \overline{y}^2 + \overline{a} \}$$
$$= \sum_{y=0}^{p-1} \left(1 + \left(\frac{y^2 + a}{p} \right) \right).$$

Ex. 5.7 By calculating directly show that the number of solutions to $x^2 - y^2 \equiv a \pmod{p}$ is p-1 if $p \nmid a$, and 2p-1 if $p \mid a$. (Hint. Use the change of variables u = x + y, v = x - y.)

Proof. Let $S = \{(\overline{x}, \overline{y}) \in \mathbb{F}_p^2 \mid \overline{x}^2 - \overline{y}^2 = \overline{a}\}$, and $T = \{(\overline{u}, \overline{v}) \in \mathbb{F}_p^2 \mid \overline{u}\,\overline{v} = \overline{a}\}$. Then $f: \begin{cases} S \to T \\ (\overline{x}, \overline{y}) \mapsto (\overline{x} + \overline{y}, \overline{x} - \overline{y}) \end{cases}$ is well defined (if $(\overline{x}, \overline{y}) \in S, (\overline{x} - \overline{y})(\overline{x} + \overline{y}) = a$, so $(\overline{x} + \overline{y}, \overline{x} - \overline{y}) \in T$). Moreover f is a bijection, with inverse $(\overline{u}, \overline{v}) \mapsto ((\overline{u} + \overline{v})/2, (\overline{u} - \overline{v})/2)$, so |S| = |T|.

We compute |T|.

- Suppose $p \nmid a$, so $\overline{a} \neq \overline{0}$. For $\overline{v} \neq 0$, there is no solution, and for each $\overline{v} \neq 0$, we obtain the unique solution $(\overline{a} \, \overline{v}^{-1}, \overline{v})$, so there exist p-1 solutions.
- Suppose $p \mid a$. The solutions of $\overline{uv} = \overline{0}$ are $(\overline{0}, \overline{0})$, $(\overline{0}, \overline{v})$ for each $\overline{v} \neq \overline{0}$, $(\overline{u}, \overline{0})$ for each $\overline{v} \neq \overline{0}$, that is to say N = 1 + (p 1) + (p 1) = 2p 1 solutions.

Conclusion:

Card
$$\{(\overline{x}, \overline{y}) \in \mathbb{F}_p^2 \mid \overline{x}^2 - \overline{y}^2 = \overline{a}\} = p - 1$$
 if $p \nmid a$
= $2p - 1$ if $p \mid a$

Ex. 5.8 Combining the results of Ex. 5.6 and 5.7 show that:

$$\sum_{y=0}^{p-1} \left(\frac{y^2 + a}{p} \right) = \begin{cases} -1 & \text{if } p \nmid a \\ p - 1 & \text{if } p \mid a \end{cases}$$

Proof. Let $S = \{(\overline{x}, \overline{y}) \in \mathbb{F}_p^2 \mid \overline{x}^2 - \overline{y}^2 = \overline{a}\}.$

We obtain in Ex 5.6, $|S| = \sum_{y=0}^{p-1} \left(1 + \left(\frac{y^2 + a}{p}\right)\right)$, and in Ex. 5.7. , |S| = p - 1 if $p \nmid a$, |S| = 2p - 1 if $p \mid a$. So

$$S - p = \sum_{y=0}^{p-1} \left(\frac{y^2 + a}{p} \right) = \begin{cases} -1 & \text{if } p \nmid a \\ p - 1 & \text{if } p \mid a \end{cases}$$

Ex. 5.9 Prove that $1^2 3^2 \cdots (p-2)^2 \equiv (-1)^{(p+1)/2} \pmod{p}$ using Wilson's theorem.

Proof. Here p is an odd prime.

From Wilson's theorem, as $k(p-k) \equiv -k^2 \pmod{p}$ for $k = 1, 2, \dots, p-1$,

$$-1 \equiv (p-1)!$$

$$\equiv \left[1 \times 2 \times \dots \times k \times \dots \times \left(\frac{p-1}{2}\right)\right] \times \left[\left(\frac{p+1}{2}\right) \times \dots \times (p-k) \dots \times (p-2) \times (p-1)\right]$$

$$\equiv \prod_{k=1}^{(p-1)/2} k(p-k)$$

$$\equiv (-1)^{(p-1)/2} \prod_{k=1}^{(p-1)/2} k^2$$

$$\equiv (-1)^{(p-1)/2} \left[\left(\frac{p-1}{2}\right)!\right]^2 \pmod{p}$$

So

$$\left[\left(\frac{p-1}{2} \right)! \right]^2 \equiv (-1)^{(p+1)/2} \pmod{p}.$$

Moreover, from Wilson' theorem and Fermat's little theorem,

$$1^{2}2^{2}3^{2}\cdots(p-1)^{2} = [(p-1)!]^{2} \equiv 1 \pmod{p}$$
$$2^{2}4^{2}\cdots(p-1)^{2} = (2^{p-1})^{2} \left[\left(\frac{p-1}{2}\right)! \right]^{2} \equiv \left[\left(\frac{p-1}{2}\right)! \right]^{2} \pmod{p}$$

Thus

$$1^2 3^2 \cdots (p-2)^2 \left[\left(\frac{p-1}{2} \right)! \right]^2 \equiv 1 \pmod{p}.$$

which gives

$$1^2 3^2 \cdots (p-2)^2 \equiv (-1)^{(p+1)/2} \pmod{p}.$$

Ex. 5.10 Let $r_1, r_2, \ldots, r_{(p-1)/2}$ be the quadratic residues between 1 and p. Show that their product is congruent to 1 (mod p) if $p \equiv 3 \pmod{4}$, and to -1 if $p \equiv 1 \pmod{4}$.

Proof. We proved in Ex. 5.9 that

$$\left[\left(\frac{p-1}{2} \right)! \right]^2 \equiv (-1)^{(p+1)/2} \pmod{p}.$$

The application $f: \left\{ \begin{array}{ccc} \{\overline{1},\overline{2},\ldots,\overline{(p-1)/2}\} & \mapsto & \{\overline{r_1},\overline{r_2},\ldots,\overline{r_{(p-1)/2}}\} \\ x & \mapsto & x^2 \end{array} \right.$ is a bijection, so

$$\prod_{i=1}^{(p-1)/2} r_i \equiv \left[\left(\frac{p-1}{2} \right)! \right]^2 \pmod{p},$$

so

$$\prod_{i=1}^{(p-1)/2} r_i \equiv (-1)^{(p+1)/2} \pmod{p}.$$

That is to say, the product of the quadratic residues between 1 and p is congruent to 1 (mod p) if $p \equiv 3 \pmod{4}$, and to -1 if $p \equiv 1 \pmod{4}$.

Ex. 5.11 Suppose that $p \equiv 3 \pmod{4}$, and that q = 2p + 1 is also prime. Prove that $2^p - 1$ is not prime. (Hint: Use the quadratic character of 2 to show that $q \mid 2^p - 1$) One must assume that p > 3.

Proof. The result is false if p = 3, so we must suppose p > 3.

p=4k+3 for an integer k, so $q=2p+1=8k+7\equiv -1\pmod 8$. Thus

$$\left(\frac{2}{q}\right) = (-1)^{(q^2 - 1)/8} = 1.$$

So $2^{(q-1)/2} \equiv 1 \pmod{q}$, $2^p \equiv 1 \pmod{q}$, so $q \mid 2^p - 1$.

Moreover, as p > 3, $q = 2p + 1 < 2^p - 1$

 $(2p+1 < 2^p-1 \iff 2p < 2^p-2 \iff p+1 < 2^{p-1}.$

 $4+1 < 2^{4-1}$ and for all $k \ge 4$, $k+1 < 2^{k-1}$ implies $k+2 < 2^{k-1} + 1 \le 2^k$, and $4+1 < 2^{4-1}$, so by induction $k+1 < 2^{k-1}$ for all k > 3.

So $q \mid 2^p - 1$ with $1 < q < 2^p - 1 : 2^p - 1$ is composite.

Conclusion: if $p \equiv 3 \pmod{4}$, p > 3 is prime, and q = 2p + 1 is also prime, then $2^p - 1$ is not a prime.

For instance, le Mersenne's number $2^{11}-1=2047$ is not a prime : $2047=23\times89$. \square

Ex. 5.12 Let $f(x) \in \mathbb{Z}[x]$. We say that a prime p divides f(x) if there's an integer n such that $p \mid f(n)$. Describe the prime divisors of $x^2 + 1$ and $x^2 - 2$.

Proof. p divides $x^2 + 1$ iff there exists $a \in \mathbb{Z}$ such that $-1 \equiv a^2 \pmod{p}$, iff p = 2 or $\binom{-1}{n} = 1$ iff p = 2 or $p \equiv 1 \pmod{4}$.

p divides $x^2 - 2$ iff there exists $a \in \mathbb{Z}$ such that $2 \equiv a^2 \pmod{p}$, iff p = 2 or $\binom{2}{p} = 1$ iff p = 2 or $p \equiv \pm 1 \pmod{8}$.

Ex. 5.13 Show that any prime divisor of $x^4 - x^2 + 1$ is congruent to 1 modulo 12.

Proof. • As $a^6 + 1 = (a^2 + 1)(a^4 - a^2 + 1)$, $p \mid a^4 - a^2 + 1$ implies $p \mid a^6 + 1$, so $\left(\frac{-1}{p}\right) = 1$ and $p \equiv 1 \pmod{4}$.

• $p \mid 4a^4 - 4a^2 + 4 = (2a - 1)^2 + 3$, so $\left(\frac{-3}{p}\right) = 1$. As $-3 \equiv 1 \pmod{4}$, $\left(\frac{-3}{p}\right) = \left(\frac{p}{3}\right)$, so $\left(\frac{p}{3}\right) = 1$, thus $p \equiv 1 \pmod{3}$. $4 \mid p - 1 \text{ and } 3 \mid p - 1$, thus $12 \mid p - 1$:

$$p \equiv 1 \pmod{12}$$
.

Ex. 5.14 Use the fact that $U(\mathbb{Z}/p\mathbb{Z})$ is cyclic to give a direct proof that (-3/p) = 1 when $p \equiv 1 \pmod{3}$. [Hint: There is a ρ in $U(\mathbb{Z}/p\mathbb{Z})$ of order 3. Show that $(2\rho + 1)^2 = -3$.]

Proof. Suppose that $p \equiv 1 \pmod{3}$. Let g a generator of \mathbb{F}_p^* . Then g has order p-1, thus $\rho = g^{(p-1)/3}$ has order 3. As $\rho^3 = 1$, $\rho \neq 1$, then $\rho^2 + \rho + 1 = 0$.

$$(2\rho + 1)^{2} = 4\rho^{2} + 4\rho + 1$$
$$= 4(\rho^{2} + \rho + 1) - 3$$
$$= -3.$$

Thus $\left(\frac{-3}{p}\right) = 1$.

The inverse form of this proposition is also true for an odd prime p: if $\left(\frac{-3}{p}\right) = 1$, then there exists $a \in \mathbb{F}_p^*$ such that $-\overline{3} = a^2$. $\rho = \frac{-1+a}{2}$ has order 3. Indeed $\rho^2 = \frac{1+a^2-2a}{4} = \frac{-2-2a}{4} = \frac{-1-a}{2}$, so

$$1 + \rho + \rho^2 = 1 + \frac{-1+a}{2} + \frac{-1-a}{2}$$
$$= 0$$

so $\rho \neq 1, \rho^3 = 1$. The group \mathbb{F}_p^* contains an element of order 3, thus from Lagrange's theorem $3 \mid p-1 : p \equiv 1 \pmod{3}$.

Ex. 5.15 If $p \equiv 1 \pmod{5}$, show directly that (5/p) = 1 by the method of Ex. 5.14. [Hint: Let ρ be an element of $U(\mathbb{Z}/p\mathbb{Z})$) of order 5. Show that $(\rho + \rho^4)^2 + (\rho + \rho^4) - \overline{1} = \overline{0}$, etc.]

Proof. Let g a generator of \mathbb{F}_p^* . g has order p-1, thus $\rho=g^{(p-1)/5}$ has order 5.

$$\begin{cases} \alpha = \rho + \rho^4 \\ \beta = \rho^2 + \rho^3 \end{cases}$$

As $0 = \rho^5 - 1 = (\rho - 1)(1 + \rho + \rho^2 + \rho^3 + \rho^4)$ and $\rho \neq 1$, then $1 + \rho + \rho^2 + \rho^3 + \rho^4 = 0$,

$$\alpha + \beta = -1$$

$$\alpha \beta = \rho^3 + \rho^4 + \rho + \rho^2 = -1$$

So α, β are the roots in \mathbb{F}_p of $x^2 + x - 1$: $\alpha^2 + \alpha - 1 = 0$. Thus $4\alpha^2 + 4\alpha - 4 = (2\alpha + 1)^2 - 5 = 0$: $\overline{5}$ is a square in \mathbb{F}_p^* and $\left(\frac{5}{p}\right) = 1$.

Ex. 5.16 Using quadratic reciprocity find the primes for which 7 is quadratic residue. Do the same for 15.

Proof. 7 is a quadratic residue for 2 and for the odd primes such that $\left(\frac{7}{n}\right) = 1$. From the law of quadratic reciprocity,

$$\left(\frac{7}{p}\right) = 1 \iff (-1)^{(p-1)/2} \left(\frac{p}{7}\right) = 1$$

iff either $p \equiv 1 \pmod{4}$ and $\binom{p}{7} = 1$, or $p \equiv -1 \pmod{4}$ and $\binom{p}{7} = -1$.

In the first case, $p \equiv 1 \pmod{4}, p \equiv 1, 4, 2 \pmod{7}$, which gives $p \equiv 1, -3, 9$ $\pmod{28}$.

In the second case, $p \equiv -1 \pmod{4}, p \equiv -1, -4, -2 \pmod{7}$, which gives $p \equiv$ $-1, 3, -9 \pmod{28}$.

Conclusion: the primes for which 7 is a quadratic residue are 2 and the odd primes p such that

$$\left(\frac{7}{p}\right) = 1 \iff p \equiv \pm 1, \pm 3, \pm 9 \pmod{28}.$$

15 is a quadratic residue for 2 and for the odd primes such that $\left(\frac{15}{p}\right) = 1$.

$$\left(\frac{15}{p}\right) = 1 \iff \left(\frac{3}{p}\right) = \left(\frac{5}{p}\right) = 1 \text{ or } \left(\frac{3}{p}\right) = \left(\frac{5}{p}\right) = -1$$

From the examples of theorem 2, we know that

$$\left(\frac{3}{p}\right) = 1 \iff p \equiv 1, -1 \pmod{12}, \quad \left(\frac{3}{p}\right) = -1 \iff p \equiv 5, -5 \pmod{12},$$

$$\left(\frac{5}{p}\right) = 1 \iff p \equiv 1, -1 \pmod{5}, \quad \left(\frac{5}{p}\right) = -1 \iff p \equiv 2, -2 \pmod{5}.$$

As $5 \wedge 12 = 1$, there exist 8 cases, all possible, which give

$$\left(\frac{15}{p}\right) = 1 \iff p \equiv \pm 1, \pm 7, \pm 11, \pm 17 \pmod{60}.$$

For instance, the primes $2, 7, 11, 17, 43, 53, 59, 61, 67, 137, \ldots$ are suitable.