Definice

2.2 Matice

Rálná matice typu $m \times n$ je obdélníkové schema (tabulka)

2.3 Vektor

Reálný n-rozměrný aritmetický sloupcový vektor je matice typu $n \times 1$

2.4 * notace

i-tý řádek matice A se značí: $A_{i*} = (a_{i1}, a_{i2}, ..., a_{in})$

2.5 Soustava lineárních rovnic

2.6 Matice soustavy

2.8 Elementární řádkové úpravy

- $\bullet\,$ vynásobení i-tého řádku reálným číslem $\alpha \neq 0$
- přičtení α -násobku j-tého řádku k i-tému, přičemž $i \neq j$ a $\alpha \in \mathbb{R}$
- výměna i-tého a j-tého řádku.

2.12 Odstupňovaný tvar matice

Matice $A \in \mathbb{R}^{m \times n}$ je v řádkově odstupňovaném tvaru, pokud existuje r takové, že platí

- řádky $1, \ldots, r$ jsou nenulové
- řádky $r+1,\ldots,m$ jsou nulové

a navíc označíme-li $p_i = \min(j; a_{ij} \neq 0),$ tak platí

 $p_1 < p_2 < \dots < p_r$

2.13 Hodnost matice

Hodností matice A rozumíme počet nenulových řádků po převodu do odstupňovaného tvaru a značíme rank(A).

2.18 Redukovaný odstupňovaný tvar matice

je v REF a zaroven plati

- $a_{1p_1} = a_{2p_2} = \cdots = a_{rp_r} = 1$ (pivoty jsou jednicky)
- pro kazde i = 1, ..., r je $a_{1p_i} = ... = 0$ (nad pivoty jsou nuly)

3.1 Rovnost

3.2 Součet

3.3 Násobek

- 3.7 Součin
- 3.11 Transpozice
- 3.14 Symetrická matice
- 3.23 Regulární matice
- 3.30 Inverzní matice

4.1 Grupa

Buď $\circ: G^2 \to G$ binární operace na množině G. Pak grupa je dvojice (G, \circ) splňující:

- 1. $\forall a, b, \in G : a \circ (b \circ c) = (a \circ b) \circ c$ (asociativita)
- 2. $\exists e \in G \forall a \in G : e \circ a = a \circ e = a$ (existence neutrálního prvku)
- 3. $\forall a \in G \exists b \in G : a \circ b = b \circ a = e$ (existence inverzního prvku)
- 4.5 Podgrupa
- 4.8 Permutace
- 4.9 Inverzní permutace
- 4.1 Skládání permutací
- 4.13 Znaménko permutace

4.22 Těleso

Těleso je množina T spolu se dvěma komutativními binárními operacemi + a \cdot splňující:

- 1. (T,+)je Abelova grupa, neutrální prvek značíme 0a inverzní kapak -a
- 2. $(T \setminus \{0\}, \cdot)$ je Abelova grupa, neutrální prvek značíme 1 a inverzní ka paka-1
- 3. $\forall a, b, c \in T : a(b+c) = ab + ac$ (distributivita)

4.35 Charakteristika tělesa

5.1 Vektorový prostor

	Buď T těleso s neutrálními prvky 0 pro sčítání a 1 pro	násobení.	Vektorovým	prostorem	nad tělesem 7	T rozumím	e množinu
V	V s operacemi sčítání vektorů $+:V^2 o V$, a násoben	ní vektoru	skalárem \cdot	$: T \times V \rightarrow$	V splňující p	oro každé	$a,b\in T$ a
u	$v,v\in V$:						

- 1. (V,+)je Abelova grupa, neutrální prvek značíme oa inverzní kvpak -v
- 2. a(bv) = (ab)v (asociativita)
- 3. 1v = v
- 4. (a+b)v = av + bv (distributivita)
- 5. a(u+v) = au + av (distributivita)
- 5.4 Podprostor
- 5.8 Lineární obal
- 5.11 Lineární kombinace
- 5.21 Lineární nezávislost
- 5.22 Lineární nezávislost nekonečné množiny
- 5.29 Báze
- 5.32 Souřadnice
- 5.42 Dimenze
- 5.49 Spojení podprostorů
- 5.55 Maticové prostory
- 6.1 Lineární zobrazení
- 6.6 Obraz a jádro
- 6.14 Matice lineárního zobrazení

- 6.20 Matice přechodu
- 6.29 Isomorfismus
- 6.41 Prostor lineárních zobrazení
- 7.1 Afinní podprostor
- 7.7 Dimenze afinního podprostoru
- 7.10 Afinní nezávislost

Věty

1.1 Základní věta algebry

Každý polynom s komplexními koeficienty má alespoň jeden komplexní kořen.

dukaz

pres kruznici a jeji zmensovani v rovine komplexnich cisel. Snizujeme stupen polynomu az na nulu delenim kerenem.

2.22 Frobeniova věta

Soustava (A|b) má (aspoň jedno) řešení právě tehdy, když $\operatorname{rank}(A) = \operatorname{rank}(A|b)$

3.28 o regularni matici

Buď $A \in \mathbb{R}^{m \times n}$. Pak RREF(A) = QA pro nějakou regulární matici $Q \in \mathbb{R}^{m \times n}$

dukaz

RREF(A) získáme aplikací konečně mnoha elementárních řádkových úprav. Nechť jdou reprezentovat maticemi $E_1, E_2, ..., E_k$. Pak $RREF(A) = E_k...E_2E_1A = QA$, kde $Q = E_k...E_2E_1$. Protože matice $E_1, E_2, ..., E_k$ jsou regulární, i jejich součin Q je regulární

3.31 O existenci inverzní matice

Buď $A \in \mathbb{R}^{n \times n}$. Je-li A regulární, pak k ní existuje inverzní matice, a je určená jednoznačně. Naopak, existuje-li k A inverzní, pak A musí být regulární

dukaz

Existence - Vytvořme matici A^{-1} tak, aby její sloupce byly vektory x1,...,xn, to jest, $A^{-1}=(x1|x2|...|xn)$ Druha rovnost - $A(A^{-1}A-I)=AA^{-1}A-A=IA-A=0$ Jednoznacnost - $B=BI=B(AA^{-1})=(BA)A^{-1}=IA^{-1}=A^{-1}$

3.33 Jedna rovnost stačí

Buďte $A, B \in \mathbb{R}^{n \times n}$. Je-li BA = I, pak obě matice A, B jsou regulární a navzájem k sobě inverzní, to jest $B = A^{-1}$ a $A = B^{-1}$

dukaz

vime ze I je regularni, $B = BI = B(AA^{-1}) = (BA)A^{-1} = IA^{-1} = A^{-1}$ a obracene

3.34 Výpočet inverzní matice

Buď $A, B \in \mathbb{R}^{n \times n}$. Nechť matice $(A|I_n)$ typu $n \times 2n$ má RREF tvar $(I_n|B)$. Pak $B = A^{-1}$. Netvoří-li první část RREF tvaru jednotkovou matici, pak A je singulární

dukaz

Je-li RREF $(A|I_n) = (I_n|B)$, potom existuje regulární matice Q taková, že $(I_n|B) = Q(A|I_n)$, neboli po roztržení na dvě části $I_n = QA$ a $B = QI_n$. První rovnost říká $Q = A^{-1}$ a druhá $B = Q = A^{-1}$. Netvoří-li první část RREF tvaru jednotkovou matici, pak RREF $(A) \neq I_n$ a tudíž A není regulární.

3.37 Soustava rovnic a inverzní matice

Buď $A \in \mathbb{R}^{n \times n}$ regulární. Pak řešení soustavy Ax = b je dáno vzorcem $x = A^{-1}b$.

dukaz

Protože A je regulární, má soustava jediné řešení x. Platí $x = Ix = (A^{-1}A)x = A^{-1}(Ax) = A^{-1}b$

3.41 Shermanova–Morrisonova formule

Buď $A \in \mathbb{R}^{n \times n}$ regulární a $b, c \in \mathbb{R}^n$. Pokud $c^T A^{-1} b = -1$, tak $A + b c^T$ je singulární, jinak

$$(A + bc^{T})^{-1} = A^{-1} - \frac{1}{1 + c^{T} A^{-1} b} A^{-1} b c^{T} A^{-1}$$

dukaz

V případě $c^TA^{-1}b = -1$ máme $(A + bc^T)A^{-1}b = AA^{-1}b + bc^TA^{-1}b = b(1 + c^TA^{-1}b) = 0$. Protože $b \neq 0$ a vzhledem k regularitě A je $A^{-1}b \neq 0$, musí matice $(A + bc^T)$ být singulární

3.43 Jednoznačnost RREF

RREF tvar matice je jednoznačně určen

dukaz

$$A = Q_1^{-1}A_1 = Q_2^{-1}A_2$$
, a tedy $A_1 = Q_1Q_2^{-1}A_2 = A_1 = A_2$

4.15 O znaménku složení permutace a transpozice

Buď $p \in S_n$ a buď t = (i, j) transpozice. Pak $sgn(p) = -sgn(t \circ p) = -sgn(p \circ t)$

4.16 Každou permutaci lze rozložit na složení transpozic

4.27 Z_n je těleso právě tehdy, když n je prvočíslo

dukaz

Je-li n složené, pak n=pq, kde 1 < p,q < n. Kdyby Z_n bylo těleso, pak pq=0 implikuje podle tvrzení 4.25 buď p=0 nebo q=0, ale ani jedno neplatí

4.33 O velikosti konečných těles

Existují konečná tělesa právě o velikostech p^n , kde p je prvočíslo a $n \ge 1$

4.38 Malá Fermatova věta

Buď p prvočíslo a buď $0 \neq a \in \mathbb{Z}_p$. Pak $a^{p-1} = 1$ v tělese \mathbb{Z}_p

5.15 o vektorovem prostoru a obalu

Buď V vektorový prostor nad T, a mějme $v1,...,vn \in V$. Pak $span\{v_1,...,v_n\}=\{\sum_{i=1}^n a_iv_i;a_1,...,a_n\in T\}$

5.26 o vektorove zavislosti

Buď V vektorový prostor nad T, a mějme $v1,...,vn \in V$. Pak vektory $v_1,...,v_n$ jsou lineárně závislé právě tehdy, když existuje $k \in 1,...,n$ takové, že $v_k = Pi \neq ka_iv_i$ pro nějaké $a_1,...,a_n \in T$, to jest $vk \in span\{v_1,...,vk-1,v_{k+1},...,vn\}$

5.31 o bazi

Nechť $v_1,...,v_n$ je báze prostoru V. Pak pro každý vektor $u\in V$ existují jednoznačně určené koeficienty $a_1,...,a_n\in T$ takové, že $u=\sum_{i=1}^n a_iv_i$

5.38 O existenci báze

Každý vektorový prostor má bázi

dukaz

Buď $v_1,...,v_n$ systém generátorů V. Jsou-li lineárně nezávislé, tak už tvoří bázi. Jinak podle důsledku 5.27 existuje index k tak,že

$$span\{v_1,...,v_n\} = span\{v_1,...,v_{k-1},v_{k+1},...,v_n\}$$

5.40 Steinitzova věta o výměně

Buď V vektorový prostor, buď $x_1,...,x_m$ lineárně nezávislý systém ve V, a nechť $y_1,...,y_n$ je systém generátorů V. Pak platí:

- 1. m < n
- 2. existují navzájem různé indexy $k_1,...,k_{n-m}$ takové, že $x_1,...,x_m,y_{k_1},...,y_{k_{n-m}}$ tvoří systém generátorů V

dukaz

indukci od m=0 predpoklad pro m-1=> plati i pro m

5.44 Vztah počtu prvků systému k dimenzi

Pro vektorový prostor V platí:

- 1. Nechť $x_1,...,x_m$ jsou lineárně nezávislé. Pak $m \leq dimV$. Pokud m = dimV, potom $x_1,...,x_m$ je báze.
- 2. Nechť $y_1,...,y_n$ jsou generátory V. Pak $n \geq dim V$. Pokud n = dim V, potom $y_1,...,y_n$ je báze

5.45 Rozšíření lineárně nezávislého systému na bázi

Každý lineárně nezávislý systém vektorového prostoru V lze rozšířit na bázi V

5.46 Dimenze podprostoru

Je-li $W \subseteq V$, pak $dimW \leq dimV$. Pokud navíc dimW = dimV, tak W = V

5.50 Spojení podprostorů

Buďte U, V podprostory vektorového prostoru W. Pak $U + V = span(U \cup V)$

5.52 Dimenze spojení a průniku

Buďte U, V podprostory vektorového prostoru W. Pak platí $dim(U+V) + dim(U\cap V) = dimU + dimV$

5.62 Maticové prostory a RREF

Buď $A \in T^{m \times n}$ a buď A^R její RREF tvar s pivoty na pozicích $(1, p_1), ..., (r, p_r)$, kde r = rank(A). Pak:

- 1. nenulové řádky A^R , tedy vektory $A_{1\star}^R,...,A_{r\star}^R$, tvoří bázi R(A)
- 2. sloupce $A_{\star p_1},...,A_{\star p_r}$ tvoří bázi S(A)
- 3. dimR(A) = dimS(A) = r

5.63 Pro každou matici $A \in T^{m \times n}$ platí $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(A^T)$

5.66 O dimenzi jádra a hodnosti matice

Pro každou matici $A \in T^{m \times n}$ platí dim $\operatorname{Ker}(A) + \operatorname{rank}(A) = n$

6.10 Prosté lineární zobrazení

Buď $f: U \to V$ lineární zobrazení. Pak následující jsou ekvivalentní:

- 1. f je prosté
- 2. $Ker(f) = \{o\}$
- 3. obraz libovolné lineárně nezávislé množiny je lineárně nezávislá množina

6.12 Lineární zobrazení a jednoznačnost vzhledem k obrazům báze

Buďte U, V prostory nad T a $x_1, ..., x_n$ báze U. Pak pro libovolné vektory $y_1, ..., y_n \in V$ existuje právě jedno lineární zobrazení takové, že $f(x_i) = y_i, i = 1, ..., n$

6.16 Maticová reprezentace lineárního zobrazení

Buď $f: U \to V$ lineární zobrazení, $B1 = \{x_1, ..., x_n\}$ báze prostoru U, a $B2 = \{y_1, ..., y_m\}$ báze prostoru V. Pak pro každé $x \in U$ je $[f(x)]_{B2} = {}_{B2}[f]_{B1} \cdot [x]_{B1}$

6.18 Jednoznačnost matice lineárního zobrazení

Buď $f:U\to V$ lineární zobrazení, B_1 báze prostoru U, a B_2 báze prostoru V. Pak jediná matice A splňující (6.16) je $A={}_{B_2}[f]_{B_1}$

6.24 Matice složeného lineárního zobrazeni

Buďte $f:U\to V$ a $g:V\to W$ lineární zobrazení, buď B_1 báze $U,\,B_2$ báze V a B_3 báze W. Pak $_{B_3}[g\circ f]_{B_1}=_{B_3}[g]_{B_2}\cdot_{B_2}[f]_{B_1}$

6.35 Isomorfismus n-dimenzionálních prostorů

Všechny n-dimenzionální vektorové prostory nad tělesem T jsou navzájem isomorfní

6.37 O dimenzi jádra a obrazu

Buď $f:U\to V$ lineární zobrazení, U,V prostory nad T,B_1 báze prostoru UaB_2 báze prostoru V. Označme $A=_{B_2}[f]_{B_1}$. Pak:

1. dim $\operatorname{Ker}(f)=\dim\operatorname{Ker}(A)$ 2. dim $f(U)=\dim S(A)=\operatorname{rank}(A)$.

7.4 Charakterizace afinního podprostoru

Buď V vektorový prostor nad tělesem T charakteristiky různé od 2, a buď $\emptyset \neq M \subseteq V$. Pak M je afinní, tj. je tvaru M = U + a právě tehdy, když pro každé $x, y \in M$ a $a \in T$ platí $ax + (1 - a)y \in M$

7.5 Množina řešení soustavy rovnic

Množina řešení soustavy rovnic $A_x = b$ je prázdná nebo afinní. Je-li neprázdná, můžeme tuto množinu řešení vyjádřit ve tvaru $Ker(A) + x_0$, kde x_0 je jedno libovolné řešení soustav