Измерение вязкости воздуха по течению в тонких трубках (1.3.3)

Ладченко Мария

Введение

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

Оборудование: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

Теоретические сведения

Рассмотрим движение вязкой жидкости или газа по трубке круглого сечения. При малых скоростях потока движение оказывается ламинарным (слоистым), скорости частиц меняются по радиусу и направлены вдоль оси трубки. С увеличением скорости потока движение становится турбулентным, а слои перемешиваются. При турбулентном движении скорость в каждой точке быстро меняет величину и направление, сохраняется только средняя величина скорости.

Характер движения газа (или жидкости) в трубке определяется безразмерным числом Рейнольдса:

 $Re = \frac{vr\rho}{\eta}$

где v — скорость потока, r — радиус трубки, ρ — плотность движущейся среды, η — её вязкость. В гладких трубах круглого сечения переход от ламининарного движения к турбулентному происходит при $Re \approx 1000$.

При ламинарном течении объем газа V, протекающий за время t по трубе длиной l, определяется формулой Пуазейля:

 $Q = \frac{\pi r^4}{8\Delta l\eta} (P_1 - P_2)$

В этой формуле $P_1 - P_2$ – разность давлений в двух выбранных сечениях 1 и 2, расстояние между которыми равно Δl . Величину Q обычно называют расходом. Формула (1) позволяет определять вязкость газа по его расходу.

Отметим условия, при которых справедлива формула (1). Прежде всего необходимо, чтобы с достаточным запасом выполнялось неравенство Re < 1000. Необходимо также, чтобы при течении не происходило существенного изменения удельного объёма газа (при выводе формулы удельный объём считался постоянным). Для жидкости это предположение выполняется практически всегда, а для газа — лишь в тех случаях, когда перепад давлений вдоль трубки мал по сравнению с самим давлением. В нашем случае давление газа равно атмосферному (10^3 см вод. ст.), а перепад давлений составляет не более 10 см вод. ст., т. е. менее 1% от атмосферного. Формула (1) выводится для участков трубки, на которых закон распределения скоростей газа по сечению не меняется при двидении вдоль потока.

Рис. 1: Формирование потока газа в трубке круглого сечения

При втекании газа в трубку из большого резервуара скорости слоёв вначале постоянны по всему направлению. По мере продвижения газа по трубке картина распределения скоростей меняется, так как сила трения о стенку тормозит прилежащие к ней оси. Характерное для ламинарного течения параболическое распределение скоростей устанавливается на некотором расстоянии a от входа в трубку, которое зависит от радиуса трубки r и числа Рейнольдса по формуле

$$a \approx 0.2 rRe$$

Градиент давления на участке формирования потока оказывается больше, чем на участке с установившимся ламинарным течением, что позволяет разделить эти участки экспериментально. Формула (2) даёт возможность оценить дину участка формирования.

Экспериментальная установка

Схема экспериментальной установки изображена на Рис. 2. Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной (рабочей) трубке, микроманометр подключён к двум её выводам, а все остальные отверстия плотно закрыты пробками.

Рис. 2: Экспериментальная установка

Перед входом в газовый счётчик установлен водяной U-образный манометр. Он служит для измерения давления газа на входе, а также предохраняет счётчик от выхода из строя. При превышении максимального избыточного давления на входе счётчика (~ 30 см вод. ст.) вода выплёскивается из трубки в защитный баллон Б, создавая шум и привлекая к себе внимание экспериментатора.

Газовый счётчик. В работе используется газовый счётчик барабанного типа, позволяющий измерять объём газа ΔV прошедшего через систему. Измеряя время Δt при помощи секундомера, можно вычислить средний объёмный расход газа $Q = \Delta V/\Delta t$ (для получения массового расхода [кг/с] результат необходимо домножить на плотность газа ρ).

Рис. 3: Газовый счетчик

Работа счётчика основана на принципе вытеснения: на цилиндрической ёмкости жёстко укреплены лёгкие чаши (см. Рис. 3, где для упрощения изображены только две чаши), в которые поочередно поступает воздух из входной трубки расходомера. Когда чаша наполняется, она всплывает и её место занимает следующая и т.д. Вращение оси предаётся на счётно-суммирующее устройство. Для корректной работы счётчика он должен быть заполнен водой и установлен горизонтально по уровню (подробнее см. техническое описание установки).

Микроманометр. В работе используется жидкостный манометр с наклонной трубкой. Разность давлений на входах манометра измеряется по высоте подъёма этилового спирта. Регулировка наклона позволяет измерять давление в различных диапазонах.

На крышке прибора установлен трехходовой кран, имеющий два рабочих положения -(0) и (+). В положении (0) производится установка мениска жидкости на ноль, что необходимо сделать перед началом работы (в процессе работы также рекомендуется периодически проверять положение нуля). В положении (+) производятся измерения.

Ход работы

Эксперимент проводился при комнатной температуре $T_{\text{комн}} = 298,6K$, при атмофсерном давлении $P_{\text{атм}} = 101,75 \text{ к}\Pi$ а и при относительной влажности в помещении $\eta = 74\%$. Давление, измеряемое микроманометром, определяется по формуле:

$$P = 9.81 \cdot K \cdot l$$

где l – показание макроманометра, K – коэффициент наклона, P – Давление в паскалях.

Зависимость разности давлений от расхода

Эксперимент проводился на первой трубе с диаметром $d_1=4.10\pm0.05$ мм.

ΔP , дел	V, л	$\Delta P, \Pi a$	Q, л/с	$\Delta t, c$
241	4.807	472.84	160.23	30
215	4.518	421.83	150.60	30
189	4.209	370.81	140.30	30
171	3.979	335.50	132.63	30
149	3.755	292.33	125.16	30
130	3.549	255.06	118.30	30
102	3.205	200.12	106.83	30
94	3.118	184.42	103.93	30
89	3.063	174.61	102.10	30
84	2.971	164.80	99.03	30
77	2.899	151.07	96.63	30
71	2.787	139.30	92.90	30
66	2.626	129.49	87.53	30
61	2.450	119.68	81.66	30
55	2.222	107.91	74.06	30
50	2.050	98.10	68.33	30
45	1.868	88.29	62.26	30
39	1.623	76.51	54.1	30
34	1.433	66.70	47.76	30
30	1.252	58.86	41.73	30
25	1.059	49.05	35.29	30
20	0.841	39.24	28.03	30

По угловому коэффициенту и формуле (1) можно оценить вязкость воздуха, воспользовавшись МНК аппроксимацией. Она составила $\eta=(2.13\pm0.12)\cdot10^{-5}~\Pi a\cdot c$

Эксперимент проводился на второй трубе с диаметром $d_1=4{,}10\pm0{,}05$ мм., где $\Delta t=30{\rm c}$

$\Delta P, \Pi a$	Q, мл/с
274.68	259.16
233.47	239.53
196.20	212.73
184.42	199.63
176.58	190.53
166.77	184.26
156.96	177.66
145.18	174.30
137.34	171.46
123.60	160.53
105.94	156.53
68.67	153.93
56.89	144.36
31.39	96.53

По угловому коэффициенту и формуле (1) можно оценить вязкость воздуха, воспользовавшись МНК аппроксимацией. Она составила $\eta=(2.05\pm0.10q)\cdot10^{-5}~\Pi \text{a}\cdot\text{c}$

Зависимость разности давлений от длины участка

t, c	ΔP , Πa	L, cm	Q, мл/с
30	321	131	69,6
30	221	81	69,9
30	145	41	69,5
30	68	11	60,7

Таблица 1: Результаты измерений разности давлений от расхода

$$Re_{\rm kp1} = \frac{\rho Q}{\pi R \eta} = 902 \pm 48$$
 $Re_{\rm kp1} = \frac{\rho Q}{\pi R \eta} = 1102 \pm 61$

Вывод

экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.