

TRƯỜNG ĐẠI HỌC VINH VINH UNIVERSITY

Noi tạo dụng tương lai cho tuổi trẻ

Chương 2: Các phép toán cơ bản và phương pháp xử lý ảnh số

Ths. Nguyễn Thị Minh Tâm Email: tamntm@vinhuni.edu.vn

Đại học Vinh Viện Kỹ thuật Công nghệ

ĐẠI HỌC VINH - 2022

4. Kỹ thuật Histogram

- Histogram là một trong những đặc trưng cơ bản được sử dụng trong xử lý ảnh số.
- Histogram dùng để phục vụ cho việc nén ảnh và phân đoạn ảnh.
- Việc tính toán Histogram rất đơn giản, cho nên nó được sử dụng trong các công cụ xử lý ảnh thời gian thực.

Khái niệm Histogram

- Histogram (lược đồ mức xám) là biểu đồ tần suất thống kê số lần xuất hiện các mức xám trong ảnh
- Gọi r_k là giá trị mức xám của pixel thứ k của ảnh f(x,y)
 - Với k = 0, 1, 2, ..., L-1
- Đặt $h(r_k) = n_k$ với n_k là tổng số pixel có giá trị mức xám k
- Lúc đó h (r_k) gọi là Histogram không chuẩn hóa
- Đặt $p(r_k) = h(r_k) / (MxN)$
 - $p(r_k)$ gọi là Histogram chuẩn hóa hay Histogram của ảnh
 - Với M là số hàng, N là số cột của ma trận ảnh

Kỹ thuật Histogram

• Ví dụ Histogram của ảnh

12	4	16	8	10	14	16	10
12	4	16	8	10	14	16	10
4	16	10	8	16	14	16	10
4	10	10	4	16	14	10	4
4	10	16	4	10	10	10	4
12	4	16	4	10	10	16	16
12	4	10	8	10	4	16	12
12	4	10	8	10	4	16	12
Ånh kích thurớp θ ν θ							

r _k	4	8	10	12	16
h(r _k)	15	5	19	7	14
p(r _k)	15/64	5/64	19/64	7/64	14/64
	= 0,23	= 0,08	= 0,3	= 0,1	= 0,21

Ví dụ Histogram của ảnh

Cách biểu diễn Histogram

- ■Ta biểu diễn Histogram của ảnh trong hệ trục tọa độ xOy:
 - -Trục Ox: biểu diễn các giá trị màu có trong ảnh (biểu diễn u, u \in [0, L])
 - -Trục Oy: biểu diễn Histogram tương ứng H(u)

Histogram

Histogram

Kỹ thuật Histogram

Ta có nhận xét

- Với ảnh dark thì histogram có các cột tập trung vào bên trái tương ứng với màu tối
- Với ảnh light thì histogram có tập trung vào bên phải chứa các pixel trắng
- Với ảnh độ tương phản thấp (low-contrast) thì histogram có các cột tập trung xít nhau và ở giữa
- Với ảnh độ tương phản cao (high-contrast) thì histogram san đều
 với các giá trị
- → Sử dụng kỹ thuật thay đổi Histogram của ảnh để tăng cường ảnh

- Ảnh đầu vào có thể:
 - Tối → không nhìn rõ nét,
 - Sáng \rightarrow mờ,
 - Độ tương phản thấp → khó nhìn thấy các đối tượng.
- Chúng ta phải xử lý để ảnh đầu ra rõ hơn, có nhiều thông tin hơn.
- Quá trình xử lý là ánh xạ mỗi điểm ảnh với cấp xám k trong ảnh đầu vào thành điểm ảnh tương ứng với cấp xám s_k trong ảnh đầu ra.

- Ý tưởng chung:
 - Cho ảnh đầu vào f(x,y), có mức sáng thuộc [a, b],
 - Thực hiện san bằng để g(x,y) có mức sáng ∈ $[a_1, b_1]$
 - sao cho: Histogram tại tất cả các vị trí xấp xỉ bằng nhau

Cân bằng Histogram (Equalization Histogram)

- Bước 1: Tính xác suất $p_r(r_k)$ giá trị mức xám r_k có trong ảnh:
- $p_r(r_k) = h(r_k)/(M.N)$
 - $-h(r_k) = n_k$ là tổng số pixel có giá trị mức xám r_k
 - M.N là tổng số pixel có trong ảnh
 - Bước 2: Tính hàm mật độ xác suất
 - $s_k = (L-1) \times \sum_{j=i...k} p_r(r_j) \text{ v\'oi } k=0,1,2,...,L-1$
 - Bước 3: Làm tròn s_k
 - Ánh thu được từ s_k gọi là ảnh cân bằng Histogram
 - Giá trị làm tròn s_k gọi là mức xám của pixel thứ k trong ảnh cân bằng Histogram

- Ví dụ:
- Giả sử có 1 ảnh 3 bit, với mức xám L=8, ảnh có kích thước 64x64 pixel (M x N = 4096), với giá trị mức xám như bảng sau:

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

$$s_0 = 7\sum_{j=0}^{5} p_r(r_j) = 7p_r(r_0) = 1.33$$

 $s_1 = 3.08 \to 3$
 $s_2 = 4.55 \to 5$
 $s_3 = 5.67 \to 6$
 $s_4 = 6.23 \to 6$
 $s_5 = 6.65 \to 7$
 $s_6 = 6.86 \to 7$
 $s_7 = 7.00 \to 7$

s _k	n(s _k)	p _s (s _k)
1	790	0.19
3	1028	0.25
5	850	0.21
6	656+329	0.24
7	245+122+81	0.10

Ảnh gốc

Ảnh cân bằng Histogram

Histogram cân bằng

■ Hàm cân bằng Histogram trong OpenCV:

cv2.equalizeHist(img)

■ Hiện Histogram trên matplotlib:

plt.hist(img)

Ví dụ về cân bằng Histogram

Chú thích ảnh bằng các hình vẽ cơ bản

- Vẽ đường thẳng
- Vẽ đường tròn
- Vẽ hình chữ nhật
- Vẽ hình elip
- Viết chữ lên ảnh

Vẽ đường thẳng

line(image, start_point, end_point, color, thickness)

Vẽ hình tròn

- circle(image, center_coordinates, radius, color, thickness)
- #circle(img, tâm, bán_kính, màu, độ_dày_nét_vẽ)

• Ví dụ:

Vẽ hình chữ nhật

rectangle(image, start_point, end_point, color, thickness)

```
• Ví dụ:
    start_point =(200,115)
    end_point =(400,425)
```


Vẽ hình elip

 ellipse(image, centerCoordinates, axesLength, angle, startAngle, endAngle, color, thickness)

```
    Ví dụ:
        ellipse_center = (315,190)
        axis1 = (100,50)
        axis2 = (125,50)
    cv2.ellipse(imageEllipse, ellipse_center, axis1, 0, 0, 360, (255, 0, 0), thickness=3)
        cv2.ellipse(imageEllipse, ellipse_center, axis2, 90, 0, 360, (0, 0, 255), thickness=3)
```


Viết text lên ảnh

Thank you!

