

Fundamentos de computadores

TEMA 3. BLOQUES COMBINACIONALES BÁSICOS

Objetivos

- Conocer el funcionamiento de los circuitos combinacionales siguientes:
 - Decodificadores
 - Codificadores
 - Multiplexores
 - Demultiplexores

Material de estudio

- Poliformat, sección "Recursos"
 - Ejercicios sin solución.
 - Soluciones a los ejercicios.
 - Examenes de años anteriores.
- Poliformat, sección "Contenidos"
 - Mòdulo 4: Bloques combinacionales básicos.
 - Mòdulo 5: Composición de bloques combinacionales.
 - Mòdulo 6 Generación de funciones con multiplexores.
 - Mòdulo 7: Generación de funciones con decodificadores.
 - Todos los módulos incluyen teoría y ejercicios

Índice

- 1. Introducción
- 2. Decodificadores
 - Decodificadores binarios
 - 2. Composición de decodificadores binarios
 - 3. Decodificadores no binarios
- 3. Codificadores
- 4. Multiplexores
 - 1. Composición de multiplexores
 - 2. Multiplexores para datos de *n* bits
- 5. Demultiplexores

Bibliografía BLOQUE II

FCO

Principal

- Introducción a los Computadores. J. Sahuquillo y otros. Ed. SP-UPV, 1997 (ref. 97.491).
 - Bloques I, II, III y IV

Recomendable

- Organización y Diseño de Computadores:
 La Interficie Circuitería/Programación.
 D.A. Patterson y J.L. Hennessy. Ed. Reverté.
 - Bloques III y IV
- Digital Design: Principles and Practices. J.F. Wakerly. Ed. Prentice Hall.
 - Bloque II

Otros

- Computer Organization. V.C. Hamacher y otros. Ed. McGraw-Hill.
- Organización de Computadoras: Un Enfoque Estructurado.
 A.S. Tanenbaum. Ed. Prentice Hall.
- Sistemas Digitales. A. Lloris y otros. Ed. McGraw-Hill.

Índice

1. Introducción

- 2. Decodificadores
 - Decodificadores binarios
 - 2. Composición de decodificadores binarios
 - 3. Decodificadores no binarios
- 3. Codificadores
- 4. Multiplexores
 - 1. Composición de multiplexores
 - 2. Multiplexores para datos de *n* bits
- 5. Demultiplexores

Introducción (i)

- En el tema anterior se han estudiado los principios básicos necesarios para abordar la descripción e implementación de circuitos digitales a partir de las puertas lógicas elementales.
- En este tema se aplicarán dichos principios para comprender el funcionamiento e implementación de los circuitos combinacionales básicos más utilizados.

Introducción (ii)

- Estos circuitos implementan funciones sencillas
 - Se pueden encontrar integrados en pastillas (chips)
- Se estudiará la importancia de dichos circuitos como elementos básicos en la implementación de las diferentes unidades funcionales del computador y en la transferencia de información entre ellas.

Introducción (iii)

- En un circuito combinacional, la relación entre las entradas y las salidas puede expresarse mediante una función lógica
 - El valor de las salidas en un instante dado depende exclusivamente del valor de las entradas en ese instante
- Las puertas lógicas introducen un pequeño retardo entre la entrada y la salida (del orden de nanoseg.)
 - En un circuito combinacional real los cambios en las entradas se manifiestan en las salidas con un retardo
 - El retardo depende del tipo de puertas, su nº de entradas y el nivel del circuito

Índice

1. Introducción

2. Decodificadores

- Decodificadores binarios
- 2. Composición de decodificadores binarios
- 3. Decodificadores no binarios
- 3. Codificadores
- 4. Multiplexores
 - 1. Composición de multiplexores
 - 2. Multiplexores para datos de *n* bits
- 5. Demultiplexores

Decodificadores

- Decodificadores binarios
 - m entradas y n = 2^m salidas (2 a 4, 3 a 8, 4 a 16)
- Decodificadores de BCD a 7 segmentos
 - 4 entradas y 7 salidas
- Decodificadores de BCD a decimal
 - 4 entradas y 10 salidas

Decodificadores binarios (i)

FCO

Decodificador binario

ENTR	ADAS	SALIDAS				
В	Α	S3	S2	S1	S0	
0	0	0	0	0	1	
0	1	0	0	1	0	
1	0	0	1	0	0	
1	1	1	0	0	0	

Las salidas son mutuamente excluyentes

Decodificadores binarios (ii)

FCO

Uso de un decodificador binario para habilitar dispositivos:

Decodificadores binarios (iii)

Diseño de un decodificador binario

ENTR	ADAS	SALIDAS				
В	Α	S3	S2	S1	S0	
0	0	0	0	0	1	
0	1	0	0	1	0	
1	0	0	1	0	0	
1	1	1	0	0	0	

Las funciones de salida sólo valen 1 para una valoración → No se podrán formar grupos por Karnaugh → No hay simplificación posible, sirve la forma canónica para obtener la expresión algebraica.

Decodificadores binarios (iv)

FCO

 Con entrada de habilitación (Enable o strobe)

ENT	TRAD	DAS				
G	В	Α	S3	S2	S1	S0
0	Χ	Χ	0	0	0	0
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0

Decodificadores binarios (v)

Circuito integrado 74LS139

Entrada de habilitación y salidas activas a nivel bajo. Se indica con los círculos en el símbolo lógico y las barras en los nombres de las variables.

ENTRADAS			SALIDAS				
/G	В	Α	/S3	/S2	/S1	/S0	
1	Х	X	1	1	1	1	
0	0	0	1	1	1	0	
0	0	1	1	1	0	1	
0	1	0	1	0	1	1	
0	1	1	0	1	1	1	

Índice

- 1. Introducción
- 2. Decodificadores
 - Decodificadores binarios
 - 2. Composición de decodificadores binarios
 - 3. Decodificadores no binarios
- 3. Codificadores
- 4. Multiplexores
 - 1. Composición de multiplexores
 - 2. Multiplexores para datos de *n* bits
- 5. Demultiplexores

Composición de decodificadores (i)

FCO

- Tamaño más grande existente en el mercado: 4 a 16
- Podemos implementar decodificadores mayores combinando o componiendo decodificadores más pequeños en paralelo

Ejemplo: Decod.de 3 a 8 (con decodificadores de 2 a 4)

E2	E 1	E0		NO SE ACTIVA	
0 0 0	0 0 1	0 1 0	/DEC0 /DEC1 /DEC2	A S0 D /DEC0 B S1 D /DEC0 1 S2 D /DEC0 G S3 D /DEC0	1 2
0 1 1 1 1	1 0 0 1 1	1 0 1 0 1	/DEC2 /DEC3 /DEC4 /DEC5 /DEC6 /DEC7	E0	5 6

Composición de decodificadores (ii)

FCO

Decodificador de 3 a 8 utilizando dos decodificadores de 2 a 4 y otro de 1 a 2:

Composición de decodificadores (iii)

Composición de decodificadores (iv)

Índice

- 1. Introducción
- 2. Decodificadores
 - Decodificadores binarios
 - 2. Composición de decodificadores binarios
 - 3. <u>Decodificadores no binarios</u>
- 3. Codificadores
- 4. Multiplexores
 - 1. Composición de multiplexores
 - 2. Multiplexores para datos de *n* bits
- 5. Demultiplexores

Decodificadores no binarios (i)

FCO

Decodificador BCD a 7 segmentos (salidas no excluyentes)

	E	ENTRADAS				SALIDAS					
DECIMAL	D	С	В	Α	а	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	0	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	0	0	1	1

Decodificadores no binarios (ii)

FCO

Decodificador BCD a decimal

	Е	ENTRADAS					SALIDAS							
DECIMAL	D	С	В	Α	S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	1	0	0	0	0	0	0	0	0
2	0	0	1	0	0	0	1	0	0	0	0	0	0	0
3	0	0	1	1	0	0	0	1	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	1	0	0	0	0	0
5	0	1	0	1	0	0	0	0	0	1	0	0	0	0
6	0	1	1	0	0	0	0	0	0	0	1	0	0	0
7	0	1	1	1	0	0	0	0	0	0	0	1	0	0
8	1	0	0	0	0	0	0	0	0	0	0	0	1	0
9	1	0	0	1	0	0	0	0	0	0	0	0	0	1

Índice

- 1. Introducción
- 2. Decodificadores
 - 1. Decodificadores binarios
 - 2. Composición de decodificadores binarios
 - 3. Decodificadores no binarios
- 3. Codificadores
- 4. Multiplexores
 - 1. Composición de multiplexores
 - 2. Multiplexores para datos de *n* bits
- 5. Demultiplexores

Codificadores (i)

Función opuesta al decodificador

- Codificador binario
 - $m = 2^n$ entradas y n salidas
 - La salida codifica en binario el número de la entrada activa
 - Se emplean en subsistemas de entrada/salida
 - Ejemplo: el código de salida identifica el dispositivo que realiza una petición al procesador
 - Es necesario establecer una prioridad en las entradas si éstas pueden activarse a la vez

Codificadores (ii)

FCO

Codificador binario (con prioridad)

E	NTR	AD/	SALIDAS			
E3	E2	E1	S1	S0	E	
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

- Las entradas de más peso tienen prioridad sobre las de menos peso
- La salida E indica "al menos una entrada activa en el codificador"

Índice

- 1. Introducción
- 2. Decodificadores
 - Decodificadores binarios
 - 2. Composición de decodificadores binarios
 - 3. Decodificadores no binarios
- 3. Codificadores
- 4. Multiplexores
 - 1. Composición de multiplexores
 - 2. Multiplexores para datos de *n* bits
- 5. Demultiplexores

Multiplexores (i)

- Muy utilizados en los caminos que sigue la información en los sistemas informáticos
- Las líneas de selección indican qué entrada se obtendrá en la salida

Multiplexores (ii)

Multiplexores (iii)

_	ENTR	ADAS DE	Salida
HABILITACIÓN	SELI	ECCIÓN	
/G	В	Α	S
1	X	X	0
0	0	0	E0
0	0	1	E1
0	1	0	E2
0	1	1	E 3

Multiplexores (iV)

FCO

Ejemplo de diseño de un MUX de 2 entradas

Α	E1	E0	S
0	X	0	0
0	X	1	1
1	0	Χ	0
1	1	X	1

Tabla reducida

Tabla extendida

Mapa de Karnaugh

Multiplexores (v)

• El multiplexor como generador de funciones

$$f = \sum_{z,y,x} (0,1,4,6,7)$$

Z	y	x	f
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Composición de multiplexores (i)

FCO

MUX de 8 entradas de datos con MUX's de 4 entradas de datos

Composición de multiplexores (ii)

- Método general. Ejemplo:
 - Se desea implementar un multiplexor de 1024 a 1 a base de una composición con multiplexores de 3 entradas de selección. ¿Cuántos se necesitan y cómo se organizan?

Composición de multiplexores (iii)

- Para cubrir 1024 entradas con mux. de 8 entradas
 necesitamos 1024 / 8 = 128 mux. de 8 entradas en el nivel 1.
- Para cubrir las salidas de esos 128 multiplexores
 necesitamos 128 / 8 = 16 mux. de 8 entradas en el nivel 2.
- Para cubrir las salidas de esos 16 multiplexores
 necesitamos 16 / 8 = 2 mux. de 8 entradas en el nivel 3.
- Para cubrir las salidas de esos 2 multiplexores necesitamos: 1 mux. de 2 entradas en el nivel 4.
 - Este último se puede implementar también con 1 mux. de 8 entradas:

Multiplexores para datos de *n* bits (i)

- Construcción de multiplexores de datos de ancho mayor que 1 bit.
 - Ejemplo: MUX de 8 entradas de datos de 4 bits

Multiplexores para datos de *n* bits (ii)

FCO

Ejemplo de uso de un MUX de 4 entradas

Índice

- 1. Introducción
- 2. Decodificadores
 - Decodificadores binarios
 - 2. Composición de decodificadores binarios
 - 3. Decodificadores no binarios
- 3. Codificadores
- 4. Multiplexores
 - 1. Composición de multiplexores
 - 2. Multiplexores para datos de *n* bits
- 5. Demultiplexores

Demultiplexores

- Se pueden construir a partir de decodificadores
- Pueden ser utilizados para habilitar dispositivos

Material de estudio

- Poliformat, sección "Recursos"
 - Ejercicios sin solución.
 - Soluciones a los ejercicios.
 - Examenes de años anteriores.
- Poliformat, sección "Contenidos"
 - Mòdulo 4: Bloques combinacionales básicos.
 - Mòdulo 5: Composición de bloques combinacionales.
 - Mòdulo 6 Generación de funciones con multiplexores.
 - Mòdulo 7: Generación de funciones con decodificadores.
 - Todos los módulos incluyen teoría y ejercicios

Fundamentos de computadores

TEMA 3. BLOQUES COMBINACIONALES BÁSICOS