

[Handwritten signature]

conversion efficiency in the dip treatment (dipped cord tenacity / greige cord tenacity) $\geq 96\%$;
and (b) elongation at a specific load + dry heat shrinkage $\leq 7.5\%$.

IN THE CLAIMS:

Please cancel claims 2 and 3 without prejudice and disclaimer.

Please amend the claims by replacing the indicated claims with the following clean version. (See attachment for the marked up version of the amended claims.)

2
B

1. (Amended) A polyester fiber comprising polyethylene terephthalate at 90 mol% or higher of a whole repeating unit in a molecular chain thereof, the fiber having an intrinsic viscosity (IV) of 0.85 dl/g or higher and simultaneously meeting the following characteristics:

- (a) strength $\geq 6.0 \text{ cN/dtex}$;
- (b) strength $\times (\text{breaking elongation})^{0.5} \leq 24.0 \text{ cN/dtex. \%}^{0.5}$;
- (c) monofilament linear density $\leq 5.0 \text{ dtex}$; and
- (d) main dispersion peak temperature of loss tangent ($\tan \delta$) in the measurement of dynamic viscoelasticity at 110 Hz $\leq 147.0^\circ\text{C}$.

Please add the following new claims:

7. - - - (New) A method of making a polyester dipped cord, comprising:
twisting one or more than one base yarn together into a pretwisted yarn,
wherein the base yarn is made of a polyester fiber comprising polyethylene terephthalate at 90 mol% or higher of a whole repeating unit in a molecular chain thereof, the fiber having an intrinsic viscosity (IV) of 0.85 dl/g or higher and simultaneously having:

- (a) strength $\geq 6.0 \text{ cN/dtex}$,
- (b) strength $\times (\text{breaking elongation})^{0.5} \leq 24.0 \text{ cN/dtex. \%}^{0.5}$,
- (c) monofilament linear density $\leq 5.0 \text{ dtex}$, and

*b3
Cancelled*

(d) main dispersion peak temperature of loss tangent ($\tan \delta$) in the measurement of dynamic viscoelasticity at 110 Hz $\leq 147.0^{\circ}\text{C}$;

twisting two or more pretwisted yarns together into a greige cord; and subjecting the greige cord to dip treatment to obtain a dipped cord having:

(e) tenacity conversion efficiency in the dip treatment (dipped cord tenacity / greige cord tenacity) $\geq 96\%$, and

(f) elongation at a specific load + dry heat shrinkage $\leq 7.5\%$.

8. (Amended) The method of claim 7, wherein the tenacity conversion efficiency obtained in the dip treatment (dipped cord tenacity / greige cord tenacity) is 98% or higher.
