CSC110 Lecture 17: Modular Arithmetic

David Liu and Tom Fairgrieve, Department of Computer Science

Navigation tip for web slides: press? to see keyboard navigation controls.

Announcements & Today's plan

- Assignment 3 has been posted—please start early!
 - Check out the A3 FAQ (+ corrections)
 - Additional TA office hours
 - Review advice on academic integrity
- PythonTA survey 1

Shiva's last class 🥯

Today you'll learn to...

- 1. Define modular equivalence.
- 2. State and prove some properties of modular equivalence.
- 3. Translate between a proof of existence and an algorithm.
- 4. Define the terms order and Euler totient function and state properties of these term.

This will prepare us for the study of cryptographic algorithms next week.

Modular Arithmetic

Definition

Let $a, b, n \in \mathbb{Z}$, and assume $n \neq 0$. We say that a is equivalent to b modulo n when $n \mid a - b$. In this case, we write $a \equiv b \pmod{n}$.

Examples:

$$10 \equiv 1 \pmod{3}$$
 $10 \equiv 601 \pmod{3}$ $10 \equiv -2 \pmod{3}$

Modular equivalence and remainders

Warning: $a \equiv b \pmod{n}$ does NOT mean that b is the remainder when a is divided by n.

But...

Theorem. Let $a,b,n\in\mathbb{Z}$ and assume $n\neq 0$. Then $a\equiv b\pmod n$ if and only if $a\ \%\ n=b\ \%\ n$.

A few properties of modular equivalence

Let $a,b,c,n\in\mathbb{Z}$, and assume $n\neq 0$. Then:

- $a \equiv b \pmod{n} \Leftrightarrow b \equiv a \pmod{n}$ (symmetry)
- ullet $(a \equiv b \pmod n \land b \equiv c \pmod n) \Rightarrow a \equiv c \pmod n$ (transitivity)

Example: since $10 \equiv 601 \pmod{3}$

• $601 \equiv 10 \pmod{3}$

Example: since $601 \equiv 10 \pmod{3}$ and $10 \equiv 1 \pmod{3}$

• $601 \equiv 1 \pmod{3}$

Modular equivalence and arithmetic operations

For all $a, b, c, d, n \in \mathbb{Z}$, if $n \neq 0$ and $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$, then:

```
1. a + b \equiv c + d \pmod{n}
```

$$2. a - b \equiv c - d \pmod{n}$$

$$3. ab \equiv cd \pmod{n}$$

Example: since $12 \equiv 2 \pmod{5}$ and $9 \equiv 4 \pmod{5}$

- $21 \equiv 6 \pmod{5}$
 - lacksquare and then $21 \equiv 1 \pmod{5}$, since $6 \equiv 1 \pmod{5}$
- $3 \equiv -2 \pmod{5}$
- $108 \equiv 8 \pmod{5}$
 - and then $108 \equiv 3 \pmod{5}$, since $8 \equiv 3 \pmod{5}$

Example: Proof of 1 ($a+b \equiv c+d \pmod{n}$)

Let $a, b, c, d, n \in \mathbb{Z}$. Assume that:

- $n \neq 0$
- ullet $a\equiv c\pmod n$, i.e., $\exists k_1\in\mathbb{Z},\ c-a=k_1n$
- ullet $b\equiv d\pmod n$, i.e., $\exists k_2\in\mathbb{Z},\ d-b=k_2n$

We want to prove that $a+b\equiv c+d\pmod n$, i.e.,

$$\exists k_3 \in \mathbb{Z}, \; (c+d)-(a+b)=k_3n.$$

(rough work)

Given: the two equations

$$c-a=k_1n \ d-b=k_2n$$

Want: the equation

$$(c+d)-(a+b)=\underline{\qquad} n$$

Let $k_3 = k_1 + k_2$.

Then we can prove $(c+d)-(a+b)=k_3n$ with a calculation:

$$(c+d)-(a+b)=(c-a)+(d-b) \ =k_1n+k_2n \ =(k_1+k_2)n \ =k_3n$$

Exercise 1: Modular arithmetic practice

You proved this statement in Question 3 of the exercise:

$$orall a,b,c\in\mathbb{Z},\; orall n\in\mathbb{Z}^+,\; a\equiv b\pmod n\Rightarrow ca\equiv cb\pmod n$$

What about the converse?

$$orall a,b,c\in \mathbb{Z},\; orall n\in \mathbb{Z}^+,\; ca\equiv cb\pmod n\Rightarrow a\equiv b\pmod n$$

In other words, can we "divide by c" in modular equivalence?

Let n=12. Let a=3, b=6, and c=4. Then:

- ca=12, and so $ca\equiv 0\pmod{12}$
- ullet cb=24, and so $cb\equiv 0\pmod{12}$
- Hence, $ca \equiv cb \pmod{12}$
- But $a \not\equiv b \pmod{12}$!!!

What is division?

In normal arithmetic, division relies on multiplying by reciprocals:

$$rac{a}{b} = a imes b^{-1}$$

 b^{-1} is the reciprocal (or inverse) of b since $b \times b^{-1} = 1$.

What is division?

What's the equivalent of a reciprocal in modular arithmetic?

$$10 \times 5 \equiv 1 \pmod{7}$$

So "5 is a reciprocal of 10" modulo 7 and "10 is a reciprocal of 5" modulo 7.

What is the reciprocal of 10 modulo 15?

 $10 \times \ldots \equiv 1 \pmod{15}$

Looks like there isn't one!

Given $a \in \mathbb{Z}, n \in \mathbb{Z}^+$, when must $a \times p \equiv 1 \pmod{n}$ for some $p \in \mathbb{Z}$?

Theorem (Modular inverse theorem).

Let $n \in \mathbb{Z}^+$ and $a \in \mathbb{Z}$. If $\gcd(a,n) = 1$, then there exists $p \in \mathbb{Z}$ such that $ap \equiv 1 \pmod{n}$.

We call this p a modular inverse of a modulo n.

Proof of the Modular inverse theorem

Let $n \in \mathbb{Z}^+$ and $a \in \mathbb{Z}$. Assume $\gcd(a,n) = 1$. We want to prove that there exists $p \in \mathbb{Z}$ such that $ap \equiv 1 \pmod{n}$.

By the **GCD Characterization theorem**, there exist $p, q \in \mathbb{Z}$ such that

$$1 = pa + qn$$

Rearranging, we have 1-pa=qn, and so by the definition of divisibility $n\mid 1-pa$.

Then by the definition of modular equivalence, $pa \equiv 1 \pmod{n}$ or, equivalently, $ap \equiv 1 \pmod{n}$!

Theorem. (Modular division)

Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. If gcd(a, n) = 1, then for all $b \in \mathbb{Z}$, there exists a $k \in \mathbb{Z}$ such that $ak \equiv b \pmod{n}$.

Justification: Since $\gcd(a,n)=1$, there is a $c\in\mathbb{Z}$ such that $a\times c\equiv 1\pmod{n}$. Hence $a\times (cb)\equiv b\pmod{n}$. Take k=cb.

Exercise 2: Modular division

Modular exponentiation and order

Consider:

The powers of 2 modulo 7 enter a cycle of length 3:

• 1, 2, 4, 1, 2, 4, 1, 2, 4, ...

What about other exponentiation bases $a \in \{0,1,\dots,6\}$ modulo 7? ($2^k,3^k$, etc.) modulo 7

Base a	Cycle length
0	1
1	1
2	3
3	6
4	3
5	6
6	2

order (cycle length)

Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. We define the **order of** a **modulo** n to be the smallest positive integer k such that $a^k \equiv 1 \pmod{n}$, when such a number exists.

We denote the order of a modulo n as $\operatorname{ord}_n(a)$.

For example, $\operatorname{ord}_7(2) = 3$ and $\operatorname{ord}_7(3) = 6$.

Consider $\operatorname{ord}_{17}(a)$ —notice anything?

Base a	$\operatorname{ord}_{17}(a)$
0	1
1	1
2	8
3	16
4	4
5	16
6	16
7	16
8	8

Basea	$\operatorname{ord}_{17}(a)$	
9	8	
10	16	
11	16	
12	16	
13	4	
14	16	
15	8	
16	2	

It seems that $ord_{17}(a)$ is always a factor of 16...

Fermat's Little Theorem.

Let $p, a \in \mathbb{Z}$ and assume p is prime and that $p \nmid a$. Then $a^{p-1} \equiv 1 \pmod{p}$.

How can we extend this to non-prime numbers?

The **Euler totient function** (or **Euler phi function**) is defined as:

$$arphi: \mathbb{Z}^+ o \mathbb{N}$$

$$arphi(n) = ig|ig\{a \mid a \in \{1,\ldots,n-1\} ext{ and } \gcd(a,n) = 1ig\}ig|$$

Interpretation: $\varphi(n)$ equals the number of positive integers that are coprime with n.

Examples

- $\varphi(5) = 4 \ (\{1, 2, 3, 4\})$
- $\varphi(17) = 16 \ (\{1, 2, \dots, 16\})$
- For any prime number $p, \varphi(p) = p-1 \ \ (\{1,2,\ldots,p-1\})$

- $\varphi(6) = 2 \ (\{1,5\})$
- $\varphi(15) = 8 \ (\{1, 2, 4, 7, 8, 11, 13, 14\})$

$$\varphi(15)$$

Note $15 = 3 \cdot 5$ and 3, 5 are prime.

1. Start with 15 - 1 = 14 numbers.

1	2	3	4	5
6	7	8	9	10
11	12	13	14	

2. Remove the multiples of 3:

$$14 - 4 = 10$$
.

1	2	3	4	5
6	7	8	9	10
11	12	13	14	

3. Remove the multiples of 5:

$$10 - 2 = 8$$
.

$\varphi(pq)$

Theorem. For all prime numbers $p,q\in\mathbb{Z}^+$, arphi(pq)=(p-1)(q-1).

Proof sketch.

- Start with pq-1 numbers ($\{1,2,\ldots,pq-1\}$).
- Remove the (q-1) multiples of p.
 - (pq-1)-(q-1)
- Remove the (p-1) multiples of q.
 - (pq-1) (q-1) (p-1)

The remaining count is:

$$(pq-1)-(q-1)-(p-1)=pq-q-p+1 \ = (p-1)(q-1)$$

Generalizing Fermat's Little Theorem

Fermat's Little Theorem.

Let $p, a \in \mathbb{Z}$ and assume p is prime and that $p \nmid a$.

Then $a^{p-1} \equiv 1 \pmod{p}$.

Euler's Theorem.

Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$, and assume $\gcd(a,n) = 1$.

Then $a^{\varphi(n)} \equiv 1 \pmod{n}$.

We'll use Euler's Theorem next week in our study of cryptographic algorithms, so stay tuned!

Summary

Today you learned to...

- 1. Define modular equivalence.
- 2. State and prove some properties of modular equivalence.
- 3. Translate between a proof of existence and an algorithm.
- 4. Define the terms order and Euler totient function and state properties of these term.

Homework

- Readings:
 - From today: 7.4, 7.5
 - Next week: Chapter 8
- Work on Assignment 3
- Prep 7 has been posted!

Good luck with your MAT137 test!

