Lattice Properties of Acyclic Pipe Dreams

LABORATOIRE INTERDISCIPLINAIRE
DES SCIENCES DU NUMÉRIQUE

Noémie Cartier (LISN, Université Paris-Saclay, France)

1. Pipe dreams

pipe dream: filling of shape with + and + reduced: no pair of pipes cross twice

contact graph $P^{\#}$: edge $a \rightarrow b$ if $a \not \rightarrow b$ in P P acyclic: $P^{\#}$ acyclic $\lim(P)$: linear extensions of $P^{\#}$

Increasing flip: exchanges a - b and a + b

 $\Sigma_F(\omega) = \{ \text{reduced acyclic pipe dreams} \\ \text{on } F \text{ with exit permutation } \omega \}$

More details?

Triangular: arXiv:2303.11025^a

General: in preparation

Contact me:

noemie.cartier@lri.fr https://www.lri.fr/~cartier/

^aJoint work w. N. Bergeron, C. Ceballos and V. Pilaud.

2. Insertion of permutations

Thm. F a shape, ω a permutation:

- $(\ln(P))_{P \in \Sigma_F(\omega)}$ are disjoint
- if $\pi \leqslant \omega$, $\exists ! P \in \Sigma_F(\omega) \mid \pi \in \text{lin}(P)$

Def. *Inserting permutations:*

- $\operatorname{Ins}_{F,\omega}: [\operatorname{id},\omega] \mapsto \Sigma_F(\omega)$ such that $\pi \in \operatorname{lin}_{F,\omega}(\operatorname{Ins}_{F,\omega}(\pi))$
- $\pi \equiv_{F,\omega} \pi'$ if and only if $\operatorname{Ins}_{F,\omega}(\pi) = \operatorname{Ins}_{F,\omega}(\pi')$

Prop. If $UabV \lessdot UbaV \leqslant \omega$:

- $\operatorname{Ins}_{F,\omega}(UabV) = \operatorname{Ins}_{F,\omega}(UbaV)$ or
- $\operatorname{Ins}_{F,\omega}(UabV) \to \operatorname{Ins}_{F,\omega}(UbaV)$ is an increasing flip.

3. Two algorithms

Computing $Ins_{T,1432}(1324)$:

Sweeping algorithm:

Insertion algorithm:

4. Triangular shapes

Thm. $\bullet \equiv_{T,\omega}$ lattice congruence

ullet Ins $_{T,\omega}$ lattice morphism weak order Ins $_{T,\omega}$ increasing flip graph

on $\Sigma_T(\omega)$

Thm.
$$UabV \equiv_{T,\omega} UbaV$$
 iff
$$|\{k < a \mid k \vartriangleleft_{\omega} b\}| \leq \left| \left\{ \begin{array}{c} k \vartriangleleft_{\pi} a \mid a < k < b \\ b \vartriangleleft_{\omega} k \vartriangleleft_{\omega} a \end{array} \right\} \right|$$

Generalizes the sylvester congruence from the weak order to the Tamari lattice

5. General shapes

Thm. $\bullet \equiv_{F,\omega}$ lattice congruence on $[\mathrm{id},\omega]$

• $\operatorname{Ins}_{F,\omega}$ lattice morphism

weak order on $[\mathrm{id},\omega]$

 $\operatorname{Ins}_{F,\omega}$

 $brick\ polyhedron \ skeleton\ on \ \operatorname{Ins}_{F,\omega}([\mathrm{id},\omega])$

Thm. If F sorts ω_0 , then $\forall \omega \in \mathfrak{S}_n$,

$$\operatorname{Ins}_{F,\omega}([\operatorname{id},\omega]) = \Sigma_F(\omega)$$

Generalizes Cambrian congruences from the weak order to Cambrian lattices

6. Generalization to Coxeter groups

 $\mathfrak{S}_n \leftrightarrow \mathsf{Coxeter}\,\mathsf{group}$

transp. $\tau_{i,i+1} \leftrightarrow \text{simple reflection}$

reduced pipe dreams \leftrightarrow subword complex $\pi \in \text{lin}(P) \leftrightarrow \text{root conf.} \subseteq \pi(\Phi^+)$

Thm. $\operatorname{Ins}_{Q,w}$ is well-defined on [e,w].

Thm (Jahn & Stump '22).

 $Q \ sorts \ w_0 \Rightarrow \operatorname{Ins}_{Q,w} \ is \ surjective$

Conj. Q is alternating \Rightarrow

- ullet $\equiv_{Q,w}$ is a lattice congruence
- $\operatorname{Ins}_{Q,w}$ is a lattice morphism