Assignment 5 - Analysis

Code ▼

- Nadejda Boev (20056079)
- Due Date 2022/02/16
- Github user 16nbb1
- Github link https://github.com/16nbb1/Biol432_A5_Rentrez (https://github.com/16nbb1/Biol432_A5_Rentrez)

Hide

url <- "https://upload.wikimedia.org/wikipedia/commons/f/f3/Borrelia_burgdorferi_%28CDC-PHIL_-6631%29_lores.jpg" knitr::include_graphics(url)

Learn more about Borrelia burgdorferi from Wikipedia (https://en.wikipedia.org/wiki/Borrelia_burgdorferi)

Loading in packages and Sequences csv

Counting A/T/C/G

Count the number of each base pair (A, T, C and G), in each of the three sequences

- · I've looped through all my rows and done a strsplit and searched annd tabulated each individual letter from all the sequences in each row i
- · This gets appended to the larger dataframe
- I've then printed out the sequence and printed out the full row using the row index

Hide

```
for (i in 1:nrow(df)) {

df[i,'A'] = (data.frame(rbind(table(strsplit(df$Sequence[i], ""))))$A)

df[i,'T'] = (data.frame(rbind(table(strsplit(df$Sequence[i], ""))))$T)

df[i,'C'] = (data.frame(rbind(table(strsplit(df$Sequence[i], ""))))$C)

df[i,'G'] = (data.frame(rbind(table(strsplit(df$Sequence[i], ""))))$G)

# PRINTING OUT

print(df$Sequence[i])

print(dff[i,])
}
```

A	Т	С	G
<int></int>	<int></int>	<int></int>	<int></int>
154	114	82	131
1 row 4-7 of 6 columns			

•	A <int></int>	T <int></int>	C <int></int>	G <int></int>
	155	114	81	131
1 row 4-7 of 6 colu	mns			

•	A <int></int>	T <int></int>	C <int></int>	G <int></int>
	154	115	81	131
1 row 4-7 of 6 co	olumns			

Calculate GC Content (% of nucleotides that are G or C) and create a final table showing GC content

- Since I have the A/T/C/G totals from above, I can use dplyr's mutate to calculate the number of G/Cs across the whole sequence
 I've presented it as a percentage
- I then renamed and shuffled the column names to match the exapple

Sequence ID <chr></chr>	GC Content <chr></chr>
HQ433692.1	44.3%
HQ433694.1	44.1%
HQ433691.1	44.1%
3 rows	