Data Fund for Nature Resultados da Pesquisa

Alunos: Alexandre Matias, Lucas Nolasco e Nicolas Abril Agosto - 2020

Sumário

- 1. Equipe
- **2.** Tema
- **3.** Objetivos
- **4.** Dados e modelos
- **5.** Resultados
- **6.** Limitações

Equipe

Nome da equipe: Data Fund for Nature

A equipe é composta pelos seguintes membros:

- Alexandre Herrero Matias
- Lucas da Silva Nolasco
- Nicolas Abril

Tema

A linha temática seguida durante toda a execução do projeto foi sobre a "Extinção de Espécies".

Esta linha temática foi dividida em quatro assuntos que foram investigados pelos membros do grupo:

- 1. Transmissão de vulnerabilidade entre espécies
- 2. Influência de uma espécie
- 3. Padrões de vulnerabilidade
- 4. Impactos causados por espécies invasoras

Objetivos

Com esse projeto tentamos entender:

- Quais as características das espécies ameaçadas de extinção.
- Como as interações entre as espécies afetam suas situações.
- Quais os impactos causados pela extinção de uma espécie.

Dados Utilizados

Usamos três bases de dados, uma delas responsável por fornecer os dados de estado de preservação das espécies, outra fornecendo dados de interações entre os diferentes grupos de seres vivos, e por fim uma que cataloga as principais espécies invasoras conhecidas.

- 1. IUCN Red List Mantida pela União Internacional para Conservação da Natureza (IUCN), descreve o estado de preservação de uma grande diversidade de espécies, cobrindo desde animais e plantas até fungos.
- 2. Global Biotic Interactions (GloBI) Contém informações de quais espécies interagem com quais outras e qual a natureza das interação. Essa base é de acesso público e foi criada a partir da combinação de múltiplas outras fontes de dados também públicas.
- 3. IUCN Global Invasive Species Database (GISD) Também mantida pela União Internacional para Conservação da Natureza (IUCN), contém informações sobre espécies exóticas e invasoras que impactam negativamente a biodiversidade.

Resultados

Qual a influência de uma espécie ameaçada de extinção no estado das espécies com que ela interage?

Imaginamos que espécies ameaçadas de extinção estejam mais fechadas em grupos com outras espécies ameaçadas, com mais interações entre elas do que com espécies não-ameaçadas

A separação não é tão forte, mas existe uma tendência

Métrica usada para avaliar: Prevalência de interações com espécies ameaçadas de extinção.

Quantas vezes mais uma espécie tem interações com espécies ameaçadas acima do esperado se as interações fossem aleatórias.

$$Prevalencia = rac{prop_{amea arsigma ados_vizinhan arsigma a}}{prop_{amea arsigma ados_grafo}}$$

Realmente parecem interagir mais com outras espécies ameaçadas.

Prevalência média das espécies				
Ameaçadas	1,07			
Não-Ameaçadas	1,71			

Apenas vizinhos diretos não captura as estruturas maiores.

Expandindo a ideia da prevalência para partições maiores:

Prevalência média das espécies							
	Distância 1	Distância 2	Distância 3	Comunidade			
Ameaçadas	1,07	0,79	0,96	0,92			
Não-Ameaçadas	1,71	1,78	1,07	1,61			

Se a hipótese é verdade, vizinhança distância 2 captura melhor os agrupamentos

Limitações

A base de dados de interações é bastante esparsa e se foca mais nas espécies que são interessantes para a sociedade (comércio, medicina, etc).

Os resultados são difíceis de interpretar e de generalizar para todas as espécies do mundo.

Para avaliar a importância das espécies dentro da cadeia alimentar, foi criado um grafo com as seguintes características:

- Interações de alimentação;
- Grafo direcionado;
- Clusterização com o algoritmo de Leiden (2 agrupamentos principais);

Authority:

- Métrica que faz parte do algoritmo HITS;
- Mede a importância de um nó baseado nos nós que apontam para ele;
- Destaque:
 - Caretta Caretta (tartaruga marinha)
 que está em situação de
 vulnerabilidade;

Hub:

- Métrica que faz parte do algoritmo HITS;
- Mede a importância de um nó baseado nos nós que ele aponta;
- Destaque:
 - Merluccius merluccius (pescada) que está em situação de vulnerabilidade;

Rede de Interações

A criação da rede de interações se fez criando grafo onde cada nó é uma espécie e cada aresta uma interação entre duas espécies.

Devido ao grande número de nós e arestas do grafo obtido foi necessário diminuí-lo para realizarmos nossas análises. Para este caso foram analisadas apenas as interações de alimentação entre espécies onde uma delas está correndo perigo crítico de extinção.

Métricas

Para avaliar a influência de um nó na rede de interações foram utilizadas três métricas diferentes:

- 1. Vulnerabilidade
- 2. Centralidade de grau
- 3. Centralidade de Katz

Vulnerabilidade

A métrica de vulnerabilidade de um nó é calculada pelo módulo da diferença entre a eficiência global do grafo completo e a eficiência global do grafo quando este nó é removido:

$$Vul(u) = |GloEff(G) - GloEff(G - u)|$$

Vulnerabilidade

Distribuição dos reinos das espécies que mais influênciam na eficiencia global

Centralidade de grau

A centralidade de grau é uma métrica simples de centralidade onde o seu valor é dado pela quantidade de arestas incidentes em um dado nó:

$$d(u) = \sum_{j=1}^{n} a_{kj}$$

Centralidade de grau

Distribuição dos reinos das espécies com maiores graus de centralidade

Centralidade de Katz

A centralidade de Katz é uma generalização da métrica de centralidade de autovetor porém esta pode ser aplicada em grafos direcionados acíclicos:

$$x(u) = \alpha \sum_{j=1}^{n} a_{kj} (x_j + 1)$$

Centralidade de Katz

Distribuição dos reinos das espécies com maiores centralidades de autovetor

Destaque

Castanea dentata - Castanheiro-americano

- Era comum no leste da América do Norte, mas foi quase exterminado no século XX por uma doença chamada praga do castanheiro
- Sua diminuição causou a extinção de duas espécies de insetos, Ectodemia castanea e Ectodemia phleophaga, e pelo menos cinco outras, as quais foram vistas pela última vez em 1936

Limitações

O grande tamanho da rede de interações obtida sem a filtragem impossibilitou sua análise através do pacote NetworkX de Python. Para isso foi pensado na utilização do software Gephi que faz uma melhor análise de grande redes, porém dada a falta de algumas métricas no software, como a eficiência global do grafo, foi decidido pela filtragem e posterior análise do grafo.

Espécies invasoras

Nesse tópico exploramos algumas perguntas:

- É possível identificar espécies invasoras a partir dos dados inicialmente utilizados?
- Qual a influência destas espécies invasoras na rede de interações?
- As espécies invasoras apresentam um maior número de interações com espécies em risco de extinção?

Identificação de espécies invasoras

Para validar a possibilidade de identificar espécies invasoras a partir dos dados de localização, foram cruzados os dados da Red List com os da GISD.

O que foi descoberto é que as espécies em comum não apresentam informações sobre latitude e longitude, portanto não seria possível identificá-las.

	Species	scientificName	redlistCategory	populationTrend	systems	realm	possiblyExtinct	possiblyExtinctInTheWild	longitude	latitude
0	Alectoris chukar	Alectoris chukar	Near Threatened	Decreasing	Terrestrial	Palearctic	False	False	NaN	NaN
1	Ammotragus Iervia	Ammotragus Iervia	Vulnerable	Decreasing	Terrestrial	Afrotropical Palearctic	False	False	NaN	NaN
2	Ammotragus Iervia	Ammotragus Iervia	Vulnerable	Decreasing	Terrestrial	Afrotropical Palearctic	False	False	NaN	NaN
3	Anolis lineatus	Anolis lineatus	Near Threatened	Decreasing	Terrestrial	Neotropical	False	False	NaN	NaN
4	Bacopa monnieri	Bacopa monnieri	Endangered	Stable	Terrestrial Freshwater (=Inland waters)	Palearctic	False	False	NaN	NaN
5	Cedrela odorata	Cedrela odorata	Vulnerable	Decreasing	Terrestrial	Neotropical	False	False	NaN	NaN
6	Cercopithecus mona	Cercopithecus mona	Near Threatened	Decreasing	Terrestrial	Afrotropical	False	False	NaN	NaN
7	Cyprinus carpio	Cyprinus carpio	Vulnerable	Unknown	Freshwater (=Inland waters)	Palearctic	False	False	NaN	NaN
8	Cyprinus carpio	Cyprinus carpio	Vulnerable	Unknown	Freshwater (=Inland waters)	Palearctic	False	False	NaN	NaN
9	Erythrocebus patas	Erythrocebus patas	Near Threatened	Decreasing	Terrestrial	Afrotropical	False	False	NaN	NaN
10	Hemitragus jemlahicus	Hemitragus jemlahicus	Near Threatened	Decreasing	Terrestrial	Indomalayan Palearctic	False	False	NaN	NaN
11	Hydrocharis morsus-ranae	Hydrocharis morsus-ranae	Endangered	Unknown	Freshwater (=Inland waters)	Palearctic	False	False	NaN	NaN
12	Hypophthalmichthys molitrix	Hypophthalmichthys molitrix	Near Threatened	Decreasing	Freshwater (=Inland waters)	Indomalayan Palearctic	False	False	NaN	NaN
13	Juniperus bermudiana	Juniperus bermudiana	Critically Endangered	Increasing	Terrestrial	Neotropical	False	False	NaN	NaN
14	Litoria aurea	Litoria aurea	Vulnerable	Decreasing	Terrestrial Freshwater (=Inland waters)	Australasian	False	False	NaN	NaN
15	Macaca fascicularis	Macaca fascicularis	Vulnerable	Decreasing	Terrestrial	Australasian Indomalayan	False	False	NaN	NaN
16	Nymphoides peltata	Nymphoides peltata	Critically Endangered	Unknown	Freshwater (=Inland waters)	Palearctic	False	False	NaN	NaN
17	Oreochromis mossambicus	Oreochromis mossambicus	Vulnerable	Unknown	Freshwater (=Inland waters)	Afrotropical	False	False	NaN	NaN
18	Oreochromis mossambicus	Oreochromis mossambicus	Vulnerable	Decreasing	Freshwater (=Inland waters)	Afrotropical	False	False	NaN	NaN
19	Oryctolagus cuniculus	Oryctolagus cuniculus	Near Threatened	Decreasing	Terrestrial	A frot ropical Australasian Neotropical Oceanian	False	False	NaN	NaN
20	Oryctolagus cuniculus	Oryctolagus cuniculus	Endangered	Decreasing	Terrestrial	Palearctic	False	False	NaN	NaN
21	Ovis ammon	Ovis ammon	Near Threatened	Decreasing	Terrestrial	Indomalayan Palearctic	False	False	NaN	NaN
22	Potamogeton perfoliatus	Potamogeton perfoliatus	Near Threatened	Decreasing	Freshwater (=Inland waters)	A frot ropical Australasian Neotropical Palearctic	False	False	NaN	NaN
23	Python bivittatus	Python bivittatus	Vulnerable	Decreasing	Terrestrial	Indomalayan	False	False	NaN	NaN
24	Rangifer tarandus	Rangifer tarandus	Vulnerable	Decreasing	Terrestrial	Nearctic Palearctic	False	False	NaN	NaN
25	Rusa unicolor	Rusa unicolor	Vulnerable	Decreasing	Terrestrial	Indomalayan	False	False	NaN	NaN
26	Salmo salar	Salmo salar	Vulnerable	Decreasing	Freshwater (=Inland waters) Marine	Palearctic	False	False	NaN	NaN
27	Trapa natans	Trapa natans	Near Threatened	Decreasing	Freshwater (=Inland waters)	Palearctic	False	False	NaN	NaN
28	Utricularia gibba	Utricularia gibba	Near Threatened	Decreasing	Freshwater (=Inland waters)	Palearctic	False	False	NaN	NaN
29	Utricularia gibba	Utricularia gibba	Near Threatened	Decreasing	Freshwater (=Inland waters)	Palearctic	False	False	NaN	NaN

Rede de Interações

Para a rede de interações da espécies invasores foi criado um grafo a partir dos dados cruzados da GISD e GloBI para espécies que agem como fonte de interação e dados cruzados da Red List e GloBI para espécies que agem como alvo de interação.

Devido ao grande número de nós e arestas do grafo obtido foi necessário diminuí-lo para realizarmos nossas análises. Para este caso foram analisadas apenas as interações de alimentação.

Métricas

Da mesma forma como feito anteriormente, para avaliar a influência de um nó na rede de interações foram utilizadas três métricas diferentes:

- 1. Vulnerabilidade
- 2. Centralidade de grau
- 3. Centralidade de Katz

Vulnerabilidade

Centralidade de grau

Centralidade de Katz

Interações com espécies em risco de extinção

Espécies invasoras com maior número de interações com espécies em risco de extinção

Destaque

Batrachochytrium dendrobatidis

- Fungo originado no leste da Ásia
- Causa uma doença conhecida como quitridiomicose em anfíbios
- Pelo menos 501 espécies de anfíbios sofrem declínios em suas populações provocadas pelo fungo

Limitações

A base de dados da Red List se mostrou um pouco incompleta com relação às coordenadas geográficas de algumas espécies. Desta forma as espécies invasoras que tínhamos interesse precisaram vir de uma terceira fonte de dados.

Além disso da mesma forma como foi apresentado anteriormente, o grande tamanho da rede de interações obtida sem a filtragem impossibilitou sua análise através do pacote NetworkX de Python. E da mesma forma o software Gephi não foi utilizado por não apresentar algumas métricas necessárias para análise.