Machine Learning: Decision Trees

CS540 Jerry Zhu

University of Wisconsin-Madison

X

- The input
- These names are the same: example, point, instance, item, input
- Usually represented by a feature vector
 - These names are the same: attribute, feature
 - For decision trees, we will especially focus on discrete features (though continuous features are possible, see end of slides)

Example: mushrooms

Mushroom cap shapes

Mushroom cap surfaces

Annular rings

Mushroom features

- cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s
- 2. cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s
- cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r, pink=p,purple=u,red=e,white=w,yellow=y
- 4. bruises?: bruises=t,no=f
- 5. odor: almond=a,anise=l,creosote=c,fishy=y,foul=f, musty=m,none=n,pungent=p,spicy=s
- 6. gill-attachment: attached=a,descending=d,free=f,notched=n
- 7. ...

y

- The output
- These names are the same: label, target, goal
- It can be
 - Continuous, as in our population
 prediction → Regression
 - Discrete, e.g., is this mushroom x edible or poisonous? → Classification

Two mushrooms

```
x_1=x,s,n,t,p,f,c,n,k,e,e,s,s,w,w,p,w,o,p,k,s,u

y_1=p

x_2=x,s,y,t,a,f,c,b,k,e,c,s,s,w,w,p,w,o,p,n,n,g

y_2=e
```

- cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s
- 2. cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s
- cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r, pink=p,purple=u,red=e,white=w,yellow=y
- 4. ...

Supervised Learning

- Training set: n pairs of example, label: $(x_1,y_1)...(x_n,y_n)$
- A predictor (i.e., hypothesis: classifier, regression function) $f: x \rightarrow y$
- Hypothesis space: space of predictors, e.g., the set of d-th order polynomials.
- Find the "best" function in the hypothesis space that generalizes well.
- Performance measure: MSE for regression, accuracy or error rate for classification

Evaluating classifiers

During training

- Train a classifier from a training set (x_1,y_1) , (x_2,y_2) , ..., (x_n, y_n) .

During testing

– For new test data $x_{n+1}...x_{n+m}$, your classifier generates predicted labels $y'_{n+1}...y'_{n+m}$

Test set accuracy:

– You need to know the true test labels y_{n+1} ... y_{n+m}

- Test set accuracy:
$$acc = \frac{1}{m} \sum_{i=n+1}^{n+m} 1_{y_i = y'_i}$$

- Test set error rate = $1 - acc$

Decision Trees

- One kind of classifier (supervised learning)
- Outline:
 - The tree
 - Algorithm
 - Mutual information of questions
 - Overfitting and Pruning
 - Extensions: real-valued features, tree > rules, pro/con

A Decision Tree

- A decision tree has 2 kinds of nodes
 - 1. Each leaf node has a class label, determined by majority vote of training examples reaching that leaf.
 - 2. Each internal node is a question on features. It branches out according to the answers.

Automobile Miles-per-gallon prediction

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

A very small decision tree

A bigger decision tree

Decision tree algorithm

buildtree(*examples*, *questions*, *default*)

```
/* examples: a list of training examples
  questions: a set of candidate questions, e.g., "what's the value of feature x_i?"
  default: default label prediction, e.g., over-all majority vote */
IF empty(examples) THEN return(default)
IF (examples have same label y) THEN return(y)
IF empty(questions) THEN return(majority vote in examples)
q = best question(examples, questions)
Let there be n answers to q

    Create and return an internal node with n children

    The i<sup>th</sup> child is built by calling
```

buildtree({example | q=ith answer}, questions\{q}, default)

The best question

- What do we want: pure leaf nodes, i.e. all examples having (almost) the same y.
- A good question

 a split that results in pure child nodes
- How do we measure the degree of purity induced by a question? Here's one possibility (Max-Gain in book):

mutual information (a.k.a. information gain)

A quantity from information theory

- At the current node, there are n=n₁+...+n_k examples
 - n₁ examples have label y₁
 - n₂ examples have label y₂
 - **—** ...
 - n_k examples have label y_k
- What's the impurity of the node?
- Turn it into a game: if I put these examples in a bag, and grab one at random, what is the probability the example has label y_i?

- Probability estimated from samples:
 - with probability $p_1=n_1/n$ the example has label y_1
 - with probability $p_2=n_2/n$ the example has label y_2
 - •
 - with probability $p_k = n_k/n$ the example has label y_k
- $p_1+p_2+...+p_k=1$
- The "outcome" of the draw is a random variable y with probability $(p_1, p_2, ..., p_k)$
- What's the impurity of the node → what's the uncertainty of y in a random drawing?

$$H(Y) = \sum_{i=1}^{k} -\Pr(Y = y_i) \log_2 \Pr(Y = y_i)$$
$$= \sum_{i=1}^{k} -p_i \log_2 p_i$$

 Interpretation: The number of yes/no questions (bits) needed on average to pin down the value of y in a random drawing

p(head)=0.5 p(tail)=0.5 H=1

p(head)=0.51 p(tail)=0.49 H=0.9997

Jerry's coin

p(head)=? p(tail)=? H=?

Conditional entropy

$$H(Y | X = v) = \sum_{i=1}^{k} -\Pr(Y = y_i | X = v) \log_2 \Pr(Y = y_i | X = v)$$

$$H(Y \mid X) = \sum_{v:\text{values of } X} \Pr(X = v) H(Y \mid X = v)$$

- Y: label. X: a question (e.g., a feature). v: an answer to the question
- Pr(Y|X=v): conditional probability

Information gain

Information gain, or mutual information

$$I(Y;X) = H(Y) - H(Y|X)$$

Choose question (feature) X which maximizes
 I(Y;X).

Example

- Features: color, shape, size
- What's the best question at root?

The training set

Example	Color	Shape	Size	Class
1	Red	Square	Big	+
2	Blue	Square	Big	+
3	Red	Circle	Big	+
4	Red	Circle	Small	-
5	Green	Square	Small	-
6	Green	Square	Big	-


```
H(class)=
H(class | color)=
```

Example	Color	Shape	Size	Class
1	Red	Square	Big	+
2	Blue	Square	Big	+
3	Red	Circle	Big	+
4	Red	Circle	Small	-
5	Green	Square	Small	-
6	Green	Square	Big	-

Example	Color	Shape	Size	Class
1	Red	Square	Big	+
2	Blue	Square	Big	+
3	Red	Circle	Big	+
4	Red	Circle	Small	-
5	Green	Square	Small	-
6	Green	Square	Big	-

H(class) = H(3/6,3/6) = 1 H(class | color) = 3/6 * H(2/3,1/3) + 1/6 * H(1,0) + 2/6 * H(0,1)I(class; color) = H(class) - H(class | color) = 0.54 bits

Example	Color	Shape	Size	Class
1	Red	Square	Big	+
2	Blue	Square	Big	+
3	Red	Circle	Big	+
4	Red	Circle	Small	-
5	Green	Square	Small	-
6	Green	Square	Big	-

H(class) = H(3/6,3/6) = 1 H(class | shape) = 4/6 * H(1/2, 1/2) + 2/6 * H(1/2,1/2)I(class; shape) = H(class) - H(class | shape) = 0 bits

Shape tells us nothing about the class!

Example	Color	Shape	Size	Class
1	Red	Square	Big	+
2	Blue	Square	Big	+
3	Red	Circle	Big	+
4	Red	Circle	Small	-
5	Green	Square	Small	-
6	Green	Square	Big	-

H(class) = H(3/6,3/6) = 1 H(class | size) = 4/6 * H(3/4, 1/4) + 2/6 * H(0,1)I(class; size) = H(class) - H(class | size) = 0.46 bits

Example	Color	Shape	Size	Class
1	Red	Square	Big	+
2	Blue	Square	Big	+
3	Red	Circle	Big	+
4	Red	Circle	Small	-
5	Green	Square	Small	-
6	Green	Square	Big	-

I(class; color) = H(class) - H(class | color) = 0.54 bits I(class; shape) = H(class) - H(class | shape) = 0 bitsI(class; size) = H(class) - H(class | size) = 0.46 bits

→ We select color as the question at root

Overfitting Example (regression): Predicting US Population

<i>x</i> =Year	<i>y</i> =Million
1900	75.995
1910	91.972
1920	105.71
1930	123.2
1940	131.67
1950	150.7
1960	179.32
1970	203.21
1980	226.51
1990	249.63
2000	281.42

- We have some training data
 (n=11)
- What will the population be in 2020?

Regression: Polynomial fit

 The degree d (complexity of the model) is important

$$f(x) = c_d x^d + c_{d-1} x^{d-1} + \dots + c_1 x + c_0$$

• Fit (=learn) coefficients c_d , ... c_0 to minimize Mean Squared Error (MSE) on training data

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Matlab demo: USpopulation.m

Overfitting

 As d increases, MSE on training data improves, but prediction outside training data worsens

degree=0 MSE=4181.451643 degree=1 MSE=79.600506 degree=2 MSE=9.346899 degree=3 MSE=9.289570 degree=4 MSE=7.420147 degree=5 MSE=5.310130 degree=6 MSE=2.493168 degree=7 MSE=2.278311 degree=8 MSE=1.257978 degree=9 MSE=0.001433 degree=10 MSE=0.000000

Output y = copy of e, Except a random 25% of the records have y set to the opposite of e

	_	-				•	
		а	b	С	d	е	у
		0	0	0	0	0	0
sp.		0	0	0	0	1	0
records		0	0	0	1	0	0
32 re		0	0	0	1	1	1
Ω.		0	0	1	0	0	1
		••	••	••	••	••	:
		1	1	1	1	1	1

- The test set is constructed similarly
 - y=e, but 25% the time we corrupt it by y= \neg e
 - The corruptions in training and test sets are independent
- The training and test sets are the same, except
 - Some y's are corrupted in training, but not in test
 - Some y's are corrupted in test, but not in training

We build a full tree on the training set

Training set accuracy = 100%25% of these training leaf node labels will be corrupted (\neq e)

And classify the test data with the tree

25% of the test examples are corrupted – independent of training data

On average:

- ¾ training data uncorrupted
 - ¾ of these are uncorrupted in test correct labels
 - ¼ of these are corrupted in test wrong
- ¼ training data corrupted
 - ¾ of these are uncorrupted in test wrong
 - 4 of these are also corrupted in test correct labels
- Test accuracy = $\frac{3}{4} * \frac{3}{4} + \frac{1}{4} * \frac{4}{4} = \frac{5}{8} = 62.5\%$

 But if we knew a,b,c,d are irrelevant features and don't use them in the tree...

The tree would be

In training data, about ¾ y's are 0 here. Majority vote predicts y=0

In training data, about ¾ y's are 1 here. Majority vote predicts y=1

In test data, $\frac{1}{4}$ y's are different from e. test accuracy = ?

The tree would be

In training data, about ¾ y's are 0 here. Majority vote predicts y=0

In training data, about ¾ y's are 1 here. Majority vote predicts y=1

In test data, $\frac{1}{4}$ y's are different from e. test accuracy = $\frac{3}{4}$ = 75% (better!)

Full tree test accuracy = $\frac{3}{4} * \frac{3}{4} + \frac{1}{4} * \frac{1}{4} = \frac{5}{8} = 62.5\%$

In the full tree, we overfit by learning non-existent relations (noise)

Avoid overfitting: pruning

Pruning with a tuning set

- 1. Randomly split data into TRAIN and TUNE, say 70% and 30%
- 2. Build a full tree using only TRAIN
- 3. Prune the tree down on the TUNE set. On the next page you'll see a greedy version.

Pruning

Prune(tree T, TUNE set)

- 1. Compute T's accuracy on TUNE, call it A(T)
- 2. For every internal node N in T:
 - a) New tree $T_N = \text{copy of } T$, but prune (delete) the subtree under N.
 - b) N becomes a leaf node in T_N . The label is the majority vote of TRAIN examples reaching N.
 - c) $A(T_N) = T_N$'s accuracy on TUNE
- 3. Let T* be the tree (among the T_N 's and T) with the largest A(). Set T \leftarrow T* /* prune */
- 4. Repeat from step 1 until no more improvement available. Return T.

Real-valued features

- What if some (or all) of the features x1, x2, ..., xk are real-valued?
- Example: x1=height (in inches)
- Idea 1: branch on each possible numerical value.

Real-valued features

- What if some (or all) of the features x1, x2, ..., xk are real-valued?
- Example: x1=height (in inches)
- Idea 1: branch on each possible numerical value. (fragments the training data and prone to overfitting)
- Idea 2: use questions in the form of (x1>t?), where t is a threshold.
 There are fast ways to try all(?) t.

$$H(y | x_i > t?) = p(x_i > t)H(y | x_i > t) + p(x_i \le t)H(y | x_i \le t)$$
$$I(y | x_i > t?) = H(y) - H(y | x_i > t?)$$

What does the feature space look like?

Axis-parallel cuts

Tree \rightarrow Rules

- Each path, from the root to a leaf, corresponds to a rule where all of the decisions leading to the leaf define the antecedent to the rule, and the consequent is the classification at the leaf node.
- For example, from the tree in the color/shape/size example, we could generate the rule:

if color = red and size = big then +

Conclusions

- Decision trees are popular tools for data mining
 - Easy to understand
 - Easy to implement
 - Easy to use
 - Computationally cheap
- Overfitting might happen
- We used decision trees for classification (predicting a categorical output from categorical or real inputs)

What you should know

- Trees for classification
- Top-down tree construction algorithm
- Information gain
- Overfitting
- Pruning
- Real-valued features