

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of

Ryoji WATANABE et al.

Group Art Unit: 3725

Application No.: 10/647,235

Filed: August 26, 2003

Docket No.: 116939

For: SHREDDER APPARATUS AND SHREDDING METHOD

CLAIM FOR PRIORITY

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

The benefit of the filing dates of the following prior foreign applications filed in the following foreign country(ies) is hereby requested for the above-identified patent application and the priority provided in 35 U.S.C. §119 is hereby claimed:

Japanese Patent Application No. 2002-248789 filed on August 28, 2002

Japanese Patent Application No. 2003-169622 filed on June 13, 2003

In support of this claim, certified copies of said original foreign applications:

are filed herewith.

It is requested that the file of this application be marked to indicate that the requirements of 35 U.S.C. §119 have been fulfilled and that the Patent and Trademark Office kindly acknowledge receipt of these documents.

Respectfully submitted,

James A. Oliff
Registration No. 27,075

Thomas J. Pardini
Registration No. 30,411

JAO:TJP/mlo

Date: January 8, 2004

OLIFF & BERRIDGE, PLC
P.O. Box 19928
Alexandria, Virginia 22320
Telephone: (703) 836-6400

DEPOSIT ACCOUNT USE
AUTHORIZATION
Please grant any extension
necessary for entry;
Charge any fee due to our
Deposit Account No. 15-0461

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 2002年 8月28日
Date of Application:

出願番号 特願2002-248789
Application Number:

[ST. 10/C] : [JP2002-248789]

出願人 富士ゼロックス株式会社
Applicant(s):

2003年12月 4日

特許庁長官
Commissioner,
Japan Patent Office

今井康

【書類名】 特許願
【整理番号】 FE02-00808
【提出日】 平成14年 8月28日
【あて先】 特許庁長官殿
【国際特許分類】 B02C
【発明者】
【住所又は居所】 神奈川県海老名市本郷2274番地 富士ゼロックス株式会社海老名事業所内
【氏名】 渡部 良二
【発明者】
【住所又は居所】 神奈川県川崎市高津区坂戸3丁目2番1号KSP R & D ビジネスパークビル 富士ゼロックス株式会社内
【氏名】 高田 明彦
【発明者】
【住所又は居所】 神奈川県海老名市本郷2274番地 富士ゼロックス株式会社海老名事業所内
【氏名】 榊原 正義
【発明者】
【住所又は居所】 神奈川県海老名市本郷2274番地 富士ゼロックス株式会社海老名事業所内
【氏名】 岸本 一
【発明者】
【住所又は居所】 東京都港区赤坂二丁目17番22号 富士ゼロックス株式会社内
【氏名】 堀野 康夫
【発明者】
【住所又は居所】 神奈川県海老名市本郷2274番地 富士ゼロックス株式会社海老名事業所内
【氏名】 谷野 季之

【発明者】

【住所又は居所】 神奈川県海老名市本郷2274番地 富士ゼロックス株式会社海老名事業所内

【氏名】 松尾 康博

【特許出願人】

【識別番号】 000005496

【氏名又は名称】 富士ゼロックス株式会社

【代理人】

【識別番号】 110000039

【氏名又は名称】 特許業務法人 アイ・ピー・エス

【代表者】 早川 明

【電話番号】 045-228-0131

【手数料の表示】

【予納台帳番号】 132839

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 0105604

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 シュレッダ装置およびその方法

【特許請求の範囲】

【請求項 1】

画像が表示された画像表示部材をシュレッダ処理するシュレッダ装置であって
、前記画像表示部材は、所定のデータを記憶したデータ記憶装置を有し、
前記データ記憶装置を電場および磁場またはこれらのいずれかにさらして、前
記記憶されていたデータを破壊する破壊処理手段と、
前記表示された画像が視認できないように、前記画像表示部材をシュレッダ処
理するシュレッダ処理手段と
を有するシュレッダ装置。

【請求項 2】

前記破壊処理手段は、前記シュレッダ処理手段よりも、前記シュレッダ装置に
前記画像表示部材を挿入するための挿入口に近い位置に設けられる
請求項 1 に記載のシュレッダ装置。

【請求項 3】

前記シュレッダ処理手段は、前記電場または磁場にさらされた後の画像表示部
材を処理する
請求項 1 に記載のシュレッダ装置。

【請求項 4】

前記破壊処理手段は、前記データ記憶装置に電圧を印加して、前記データ記憶
装置を破壊し、前記記憶されていたデータを破壊する
請求項 1 に記載のシュレッダ装置。

【請求項 5】

前記破壊処理手段は、電磁波を印加して、前記記憶されていたデータ以外の上
書データを前記データ記憶装置に上書きし、前記記憶されていたデータを破壊す
る
請求項 1 に記載のシュレッダ装置。

【請求項 6】

前記シュレッダ処理手段は、前記表示された画像が視認できないように、前記画像表示部材を破碎する

請求項 1 に記載のシュレッダ装置。

【請求項 7】

画像が表示された画像表示部材をシュレッダ処理するシュレッダ処理方法であつて、前記画像表示部材は、所定のデータを記憶したデータ記憶装置を有し、

前記データ記憶装置を電場および磁場またはこれらのいずれかにさらして、前記記憶されていたデータを破壊し、

前記表示された画像が視認できないように、前記画像表示部材をシュレッダ処理する

シュレッダ処理方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、非接触メモリが付された画像表示媒体をシュレッダ処理するシュレッダ装置およびその方法に関する。

【0002】

【従来の技術】

例えば、「MYCOM PC WEB, NEWS HEADLINE, (2002年7月5日; <http://pcweb.mycom.co.jp/news/2001/07/05/22.html>)」(文献1)は、記憶したデータを、外部から非接触で読み取ることができる小型の半導体チップ(「ミユーチップ」)を開示する。

また、「特開2001-229199号公報」、「特開2000-285203号公報」、「特開2001-134672号公報」、「特開2001-283011号公報」、「特開2001-148000号公報」および「特開2001-260580号公報」(文献2~8)は、上述の半導体チップの応用例を開示する。

【0003】

【発明が解決しようとする課題】

本発明は、上述した背景からなされたものであり、半導体チップなどのデータ記憶装置が付された画像表示部材を廃棄する場合に、データ記憶装置に記憶されたデータを破壊し、読み出しできないようにすることができるシュレッダ装置およびその方法を提供することを目的とする。

【0004】

【課題を解決するための手段】

[シュレッダ装置]

上記目的を達成するために、本発明にかかるシュレッダ装置は、画像が表示された画像表示部材をシュレッダ処理するシュレッダ装置であって、前記画像表示部材は、所定のデータを記憶したデータ記憶装置を有し、前記データ記憶装置を電場および磁場またはこれらのいずれかにさらして、前記記憶されていたデータを破壊する破壊処理手段と、前記表示された画像が視認できないように、前記画像表示部材をシュレッダ処理するシュレッダ処理手段とを有する。

【0005】

好適には、前記破壊処理手段は、前記シュレッダ処理手段よりも、前記シュレッダ装置に前記画像表示部材を挿入するための挿入口に近い位置に設けられる。

【0006】

好適には、前記シュレッダ処理手段は、前記電場または磁場にさらされた後の画像表示部材を処理する。

【0007】

好適には、前記破壊処理手段は、前記データ記憶装置に電圧を印加して、前記データ記憶装置を破壊し、前記記憶されていたデータを破壊する。

【0008】

好適には、前記破壊処理手段は、電磁波を印加して、前記記憶されていたデータ以外の上書きデータを前記データ記憶装置に上書きし、前記記憶されていたデータを破壊する。

【0009】

好適には、前記シュレッダ処理手段は、前記表示された画像が視認できないように、前記画像表示部材を破碎する。

【0010】**[シュレッダ処理方法]**

また、本発明にかかるシュレッダ処理方法は、画像が表示された画像表示部材をシュレッダ処理するシュレッダ処理方法であって、前記画像表示部材は、所定のデータを記憶したデータ記憶装置を有し、前記データ記憶装置を電場および磁場またはこれらのいずれかにさらして、前記記憶されていたデータを破壊し、前記表示された画像が視認できないように、前記画像表示部材をシュレッダ処理する。

【0011】**【発明の実施の形態】****[背景]**

本発明の理解を助けるために、まず、本発明がなされるに至った背景を説明する。

極小サイズの半導体チップを、漉き込むなどの方法により印刷用紙（画像表示部材）に付し、この半導体チップに情報を記憶させることにより、印刷用紙は、印刷用紙表面から視認される画像情報に加えて、半導体チップに記憶している情報を提供することが可能となった。

この半導体チップは、1mm以下にすることができ、印刷用紙に付しても印刷された画像に影響を与えることはない。

【0012】

このような印刷用紙をシュレッダで破碎（シュレッダ処理）しても、半導体チップが小さいために破壊されない場合があり、半導体チップに記憶されたデータは読み出し可能である。

そのため、半導体チップに機密情報等が記憶されていた場合には、記憶されていた情報が外部に漏洩する虞がある。

【0013】

本発明にかかるシュレッダ処理方法は、以上のような背景から、印刷用紙を破碎するときに、半導体チップに高電圧等を印加して、印刷用紙に付された半導体チップのデータを破壊する。

本発明にかかるシュレッダ処理方法は、このようにして、半導体チップに記憶された情報を読み出しきれないよう処理し、さらに印刷用紙上の画像を視認できないよう処理して、情報の漏洩を防止する。

【0014】

[実施例]

以下、本発明にかかるシュレッダ処理方法の実施例を、具体例を挙げて説明する。

図1は、本発明にかかるシュレッダ処理方法において処理される印刷用紙40(画像表示部材)を例示する図である。

図1に示すように、印刷用紙40には、画像が印刷されている。

印刷用紙40に印刷される画像は、例えば、機密情報であり、閲覧された後は機密情報が視認できないように後処理されることが望まれる。

【0015】

また、印刷用紙40には、ICチップ420(データ記憶装置)が付されている。

印刷用紙40に付されたICチップ420は、非接触にデータの読み出し可能な半導体チップであり、例えば、印刷用紙40の表面に印刷された機密情報よりもさらに機密性の高い情報が記憶される。

ICチップ420に記憶される情報も、閲覧後は、読み出しきれないよう処理されることが望まれる。

なお、ICチップ420は、ROMまたはRAMのいずれにより構成されてもよい。

【0016】

[シュレッダ2]

図2は、本発明にかかるシュレッダ処理方法が適応されるシュレッダ2(シュレッダ装置)のハードウェア構成を例示する図である。

図2に例示するように、シュレッダ2は、シュレッダ2の各構成部分の動作を制御する制御装置12、シュレッダ2の各構成部分に電力を供給する電源装置14、LCD表示装置あるいはCRT表示装置およびキーボード・タッチパネルな

どを含むユーザインターフェース装置（UI装置）16、挿入口センサ18、ICチップ420に電圧を印加する放電ユニット20（破壊処理手段）、印刷用紙40を破碎する破碎カッタ22（シュレッダ処理手段）、および、破碎された印刷用紙40を収容する収容部23から構成される。

また、シュレッダ2の筐体の上面4には、印刷用紙40を挿入するための挿入口6が形成されており、シュレッダ2の筐体内部には、挿入口6から挿入された印刷用紙40を搬送する搬送路8が形成されている。

この搬送路6は、破碎カッタ22で破碎された印刷用紙40（以下、切り屑）を、収容部23に搬送する。

【0017】

UI装置16は、シュレッダ2の筐体の上面4に配設され、シュレッダ2の状態（運転中または切り屑満杯等）を表示する。

挿入口センサ18は、例えば、印刷用紙40の有無を検知する光センサであり、挿入口6の近傍に配設され、挿入口6に挿入される印刷用紙40を検知する。

【0018】

放電ユニット20は、搬送路8の近傍に配設され、印刷用紙40に高電圧を印加する。

破碎カッタ22-1および破碎カッタ22-2は、互いに側面が接触する切り刃であり、搬送路8に配設されている。

破碎カッタ22-1および破碎カッタ22-2は、それぞれ回転軸222-1および回転軸222-2を有し、モータ（不図示）の駆動力を得て、印刷用紙40を収容部23へ引き込む方向に回転し、搬送路8を搬送されてくる印刷用紙40を破碎する（シュレッダ処理）。

破碎カッタ22-1および破碎カッタ22-2は、印刷用紙40に印刷された画像が視認できない程度の細かさで、印刷用紙40を破碎することが望ましい。

【0019】

収容部23は、破碎カッタ22で破碎された切り屑を収容する。

収容部23は、切り屑を取り出すための取出し口（不図示）を有し、収容部23に蓄積された切り屑は、収容部23から取り出されて廃棄される。

【0020】

[放電ユニット20]

図3は、図2に示した放電ユニット20の概略を説明する図である。

図3に示すように、放電ユニット20は、導電性を有する放電ワイヤ202、シールドケース204およびベース電極206などから構成される。

放電ワイヤ202は、例えば、微小径のタングステン線であり、電源装置14により印加された電圧を利用して、ベース電極206に向けてコロナ放電を発生させる。

シールドケース204は、放電ワイヤ202の周囲を囲むように形成されたアルミニウム等の金属板であり、ベース電極206に対向する面に開口を有する。

放電ユニット20は、印刷用紙40が放電ワイヤ202とベース電極206との間に位置するときに、コロナ放電を発生させ、印刷用紙40に付されたICチップ420の中に過電流を発生させて、ICチップ420を破壊する。

【0021】

[全体動作]

図4は、図2に示したシュレッダ2の動作(S10)を示すフローチャートである。

図4に示すように、ステップ100(S100)において、ユーザが、廃棄する印刷用紙40(図1)を挿入口6(図2)に挿入すると、挿入口センサ18は、印刷用紙40が挿入されたことを検知して、制御装置12にその旨を伝える。

制御部12は、各構成部分を制御して、印刷用紙40の処理を開始させる。

電源装置14は、制御部12の制御に従い、放電ユニット20などに電力を供給する。

【0022】

ステップ102(S102)において、搬送路8(図2)は、制御装置12の制御に応じて、挿入された印刷用紙40を放電ユニット20の位置まで搬送する。

【0023】

ステップ104(S104)において、放電ユニット20(図2)は、印刷用

紙40に高電圧を印加してコロナ放電を発生させる。

【0024】

ステップ106(S106)において、コロナ放電の後、搬送路8が、印刷用紙40を破碎カッタ22の位置まで搬送すると、破碎カッタ22-1および破碎カッタ22-2は、回転して印刷用紙40を破碎する。

シュレッダ2は、破碎された印刷用紙40を収容部23に搬送して、処理を終了する。

【0025】

以上のように、シュレッダ2は、印刷用紙40に対してコロナ放電を発生させ、印刷用紙40に付されたICチップ420に過電流を発生させて、ICチップ420の半導体回路の少なくとも一部を破壊し、ICチップ420内のデータを読み出しきれないようにする。

さらに、シュレッダ2は、印刷用紙40を破碎し、印刷用紙40に印刷された画像を視認できないようにする。

【0026】

[変形例]

なお、ICチップ420が書き込み可能な半導体チップである場合、ICチップ420にデータ(以下、上書きデータ)を上書きすることにより、ICチップ420に記憶されていた情報を破壊してもよい。

【0027】

図5は、第2のシュレッダ3のハードウェア構成を示す。

図5に示すように、シュレッダ3は、シュレッダ2の放電ユニット20を、ICチップインターフェース(ICチップIF)24に変更した構成を採る。

ICチップIF24は、ICチップ420に電磁波を印加して、ICチップ420に記憶されているデータを書き換える(図6および図7を参照して後述する)。

なお、シュレッダ3の各構成部分の内、シュレッダ2の各構成部分と実質的に同一な部分には同一の符号が付してある。

【0028】

[ICチップ420・ICチップIF24]

図6は、データの書き込み可能なICチップ420の構成を示す図である。

図7は、図5に示したICチップIF24の構成を示す図である。

図6に示すように、ICチップ420は、アンテナ422、クロック再生回路424、メモリ回路426、データ送受信回路428および電源回路430から構成される。

なお、印刷用紙40のICチップ420が、ICチップIF24のごく近傍を通過することが保証されている場合には、アンテナ422を有さないICチップ420が用いられる場合がある。

【0029】

また、図7に示すように、ICチップIF24は、送信制御回路242、送信回路244、上書きデータ生成回路246、変調回路248およびアンテナ250から構成される。

以下に説明するICチップ420およびICチップIF24の各構成部分の動作により、ICチップIF24を介して、ICチップ420に上書きデータが非接触で書き込まれ、ICチップ420に記憶された機密情報等を示すデータが上書きデータに書き換えられる。

【0030】

ICチップ420（図6）において、電源回路430は、アンテナ422を介して供給される電波信号を整流して、ICチップ420の各構成部分に対して、それらの動作に必要な電力を供給する。

【0031】

クロック再生回路424は、アンテナ422を介してICチップIF24から供給される電波信号から、クロック信号を再生し、メモリ回路426およびデータ送受信回路428に対して出力する。

【0032】

メモリ回路426は、例えば不揮発性のRAMであって、クロック再生回路424から入力されたクロック信号に同期して、データ送受信回路428から入力される上書きデータを記憶する。

【0033】

データ送受信回路428は、アンテナ422から入力される電波信号からデータを復調し、クロック再生回路424から入力されるクロック信号に同期して、メモリ回路426に対して出力する。

【0034】

また、ICチップ420が外部にデータを送信する場合、データ送受信回路428は、メモリ回路426から入力されるデータの値に従って、外部から供給される電波信号の反射強度を、上記クロック信号に同期して変更する。

このように、メモリ回路426が記憶したデータは、外部からICチップ420に対して送信された電波信号の反射信号の強度を変更することにより、ICチップ420から外部に対して送信される。

【0035】

ICチップIF24（図7）において、送信制御回路244は、ICチップIF24の各構成部分の動作を制御する。

また、送信制御回路244は、上書きデータ生成回路246から入力されるデータを、変調回路290に対して出力する。

【0036】

変調回路248は、送信制御回路242から入力されるデータで電波信号を変調し、送信回路244に対して出力する。

【0037】

送信回路244は、ICチップ420に記憶させるデータおよびクロック信号などを含む電波信号を、アンテナ250を介して、ICチップ420に対して送信する。

【0038】

上書きデータ生成回路246は、ICチップ420に書き込むデータを生成し、送信制御回路242に対して出力する。

例えば、上書きデータ生成回路246は、データ後処理済みであることを示すデータを生成する。

【0039】

図8は、図5に示したシュレッダ3の動作(S20)を示すフローチャートである。

なお、図8に示した処理の内、図4に示した処理と実質的に同一なものには、同一の符号が付してある。

シュレッダ3の動作において、S102の処理において印刷用紙40がICチップIF24の近傍まで搬送されると、ステップ108(S108)において、ICチップIF24(図5)は、印刷用紙40のICチップ420に記憶されていたデータを上書きデータに書き換える。

【0040】

このように、ICチップ420にデータを上書きして機密情報等を読み出しきないようにすることは、破碎された印刷用紙40からICチップ420を抽出し再利用したい場合に好適である。

【0041】

[その他の変形例]

シュレッダ2(図2)は、コロナ放電などの非接触放電を用いてICチップ420を破壊したが、導電ブラシまたは導電ローラなどを直接印刷用紙40に接触させて、印刷用紙40を帯電させ、印刷用紙40に付されたICチップ420を破壊してもよい。

また、印刷用紙40に付されたデータ記憶装置が磁気記録装置である場合には、図2に示したシュレッダ2の放電ユニット20を、高磁場を発生させる磁場生成ユニットに変更し、この磁場生成ユニットが、印刷用紙40に付された磁気記録装置を高磁場にさらして、この磁気記録装置内のデータを破壊してもよい。

【0042】

【発明の効果】

以上説明したように、本発明にかかるシュレッダ装置およびその方法によれば、データ記憶装置が付された画像表示部材を廃棄等する場合に、データ記憶装置を電場または磁場にさらして、記憶されたデータを破壊する。

【図面の簡単な説明】

【図1】

本発明にかかる後処理方法において処理される印刷用紙（画像表示部材）を例示する図である。

【図 2】

本発明にかかる後処理方法が適応されるシュレッダ（シュレッダ装置）のハードウェア構成を例示する図である。

【図 3】

図 2 に示した放電ユニットの概略を説明する図である。

【図 4】

図 2 に示したシュレッダの動作（S10）を示すフローチャートである。

【図 5】

第 2 のシュレッダのハードウェア構成を示す。

【図 6】

データの書き込み可能な ICチップの構成を示す図である。

【図 7】

図 5 に示した ICチップ IF の構成を示す図である。

【図 8】

図 5 に示したシュレッダの動作（S20）を示すフローチャートである。

【符号の説明】

2、3 …… シュレッダ

4 …… 上面

6 …… 挿入口

8 …… 搬送路

12 …… 制御装置

14 …… 電源装置

16 …… U I 装置

18 …… 挿入口センサ

20 …… 放電ユニット

202 …… 放電ワイヤ

204 …… シールドケース

206 . . . ベース電極
22 . . . 破碎カッタ
222 . . . 回転軸
23 . . . 収容部
24 . . . I CチップIF
242 . . . 送信制御回路
244 . . . 送信回路
246 . . . 上書きデータ生成回路
248 . . . 変調回路
250 . . . アンテナ
40 . . . 印刷用紙
420 . . . I Cチップ
422 . . . アンテナ
424 . . . クロック再生回路
426 . . . メモリ回路
428 . . . データ送受信回路
430 . . . 電源回路

【書類名】

図面

【図 1】

【図 2】

シユレッダ²

【図3】

【図4】

S10

【図 5】

【図 6】

【図7】

【図8】

s20

【書類名】 要約書

【要約】

【課題】 I Cチップ420が付された印刷用紙40を廃棄等する場合に、I Cチップ420を電場または磁場にさらして、記憶された機密情報などを示すデータを読み出しできないように処理する。

【解決手段】 印刷用紙40に、機密情報など外部に流出させたくない情報を記憶するI Cチップ420が付されている場合に、シュレッダ2は、この印刷用紙40を廃棄するときに、放電ユニット20において、I Cチップ420に高電圧を印加して破壊し、その後に、印刷用紙40を破碎カッタ22で破碎して廃棄する。

【選択図】 図2

特願 2002-248789

出願人履歴情報

識別番号 [000005496]

1. 変更年月日 1996年 5月29日

[変更理由] 住所変更

住 所 東京都港区赤坂二丁目17番22号
氏 名 富士ゼロックス株式会社