21-127 Homework 6

Christian Broms Section J

Thursday 1st March, 2018

Complete the following problems. Fully justify each response.

1. Let $a, b \in \mathbb{Z}$. Prove that if d, d' are both gcds of a and b, then $d = \pm d'$.

Proof. Since d, d' are both gcds of a and b, then by definition, a|d', b|d', a|d, b|d, so d|d' and d'|d because both are GCDs. When d, d' = 0, then the case is trivial and we can say $0 = \pm 0$, or if d or d' is zero then the other must also be 0 since both are gcds of a, b and again we say $0 = \pm 0$. In other cases, since d|d' and d'|d we know $|d| \leq |d'|$ and $|d'| \leq |d|$ when $d, d' \neq 0$. Therefore, |d| = |d'|. Because this relation is reliant on absolute value, inserting -d' or d' will yield the same result. Thus, we conclude $d = \pm d'$.

2. Let $a, b \in \mathbb{Z}$, and let $d = \gcd(a, b)$. Prove that $\frac{a}{d}$ and $\frac{b}{d}$ are coprime.

Proof. Because $d = \gcd(a, b)$, we know there exist $u, v \in \mathbb{Z}$ such that d = au + bv, and $\frac{au}{d} + \frac{bv}{d} = 1$. So, by Bezout's Lemma, we can say $\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$. Thus, we have shown that $\gcd\left(\frac{a}{d}, \frac{b}{d}\right)$ is coprime.

3. Let $a, b \in \mathbb{Z}$. Prove that there exists a unique positive least common multiple of a and b. (Note: here you must prove both existence and uniqueness.)

Proof. Existence. Let X be the set of common multiples of a and b, defined as $X = \{x \in \mathbb{N} \mid a|x,b|x\}$. We know $X \neq \emptyset$ because $|ab| \in X$.

Thus, by the well ordering principle, there is a smallest element in X. Let this smallest element be m, so a|m and b|m. So let n be such that a|n and b|n. We need to show that m|n to fufill the second property of the LCM.

Then n = qm + r so n - qm = r with $0 \le r < m$. Because a|m and a|m then a|r. The same is true for b, so b|r. Thus, r = 0, because if r > 0, then $r \in X$, though this is impossible because r < m and we established that m is the smallest element in the set. Therefore, r must be 0, and we conclude that n = qm or m|n and hence the LCM exists.

Uniqueness. Assume that k and ℓ are both Least Common Multiples of a and b. Then, $a|\ell$ and $b|\ell$ and a|k and b|k. In addition, we know that $k|\ell$ and $\ell|k$ because both are LCMs. Then, $|k| \leq |\ell|$ and $|\ell| \leq |k|$. Therefore, $|k| = |\ell|$, and it follows that there can only be one unique LCM.

4. Let $p \in \mathbb{Z}$. Prove that the following are equivalent

- (a) p is irreducible.
- (b) The only divisors of p are $\pm 1, \pm p$
- (c) p is prime (under the definition in Section 3.2, that p is prime whenever $p|ab \Rightarrow p|a \lor p|b$).

Proof. (a \Rightarrow b). Let $a, b \in \mathbb{Z}$, and assume p is irreducible and a|p. Then p = ab. Because p is irreducible, then either a or $b = \pm 1$, that is either a or b is a unit. We can write a, b in terms of p, so if a is a unit then $b = \pm p$, and if b is a unit then $a = \pm p$. Thus, we conclude the only divisors of p are $\pm 1, \pm p$.

(b \Rightarrow c). Assume the only divisors of p are $\pm 1, \pm p$. Then we can say p = ab. Without loss of generality, say $a = \pm 1$ and $b = \pm p$, though the order does not matter. Then, $p|ab \Rightarrow p|1$ or p|p. This fits the definition of a prime, so we conclude that p is a prime.

(c \Rightarrow a). Assume p is prime. Then we can say p|ab and p|a or p|b for some $a, b \in \mathbb{Z}$. First, consider the case when p|a. We can say a = kp for $k \in \mathbb{Z}$. Then, p = ab = kpb and 0 = p(1 - kb), which implies 0 = 1 - kb, and b = 1, so b is a unit. Therefore, since b

is a unit, we know that p is irreducible. The same is true when considering p|b.

5. Suppose $p_1, p_2, \ldots, p_r \in \mathbb{Z}$ are primes. Let $a = p_1^{k_1} p_2^{k_2} \ldots p_r^{k_r}$, and let $b = p_1^{\ell_1} p_2^{\ell_2} \ldots p_r^{\ell_r}$, where $k_1, k_2, \ldots k_r, \ell_1, \ell_2, \ldots, \ell_r$ are nonnegative integers. Prove that $\gcd(a, b) = p_1^{m_1} p_2^{m_2} \ldots p_r^{m_r}$, where $m_i = \min\{k_i, \ell_i\}$ for all $1 \leq i \leq r$.

Proof. We can write a,b as the product of their GCD and some other integer $\alpha,\beta\in\mathbb{Z}$, such that $a=(p_1^{m_1}p_2^{m_2}\dots p_r^{m_r})\alpha$ and $b=(p_1^{m_1}p_2^{m_2}\dots p_r^{m_r})\beta$, where $p_1^{m_1}p_2^{m_2}\dots p_r^{m_r}$ is the GCD of a and b. Note, $\gcd(\alpha,\beta)=1$ because the largest prime factors of a,b are contained within their GCD. Thus, we write $\alpha=p_1^{k_1-m_1}p_2^{k_2-m_2}\dots p_r^{k_r-m_r}$ and $\beta=p_1^{\ell_1-m_1}p_2^{\ell_2-m_2}\dots p_r^{\ell_r-m_r}$. Because $\gcd(\alpha,\beta)=1$ we know that either $k_i-m_i=0$ or $\ell_i-m_i=0$. Rearranging, we have $k_i=m_i$ or $\ell_i=m_i$. Therefore, m_i must be the lesser of k_i and ℓ_i because k_i-m_i , $\ell_i-m_i\geq 0$. Hence, $m_i=\min\{k_i,\ell_i\}$, and we have shown $\gcd(a,b)=p_1^{m_1}p_2^{m_2}\dots p_r^{m_r}$, where $m_i=\min\{k_i,\ell_i\}$ for all $1\leq i\leq r$.

6. Prove that for all $n \geq 2$, there exists a prime in the set

$$\{k \in \mathbb{Z} \mid n \le k \le n!\}.$$

(Hint: consider the divisors of n!-1. Can they be in the set $\{1, 2, \ldots, n\}$?)

Proof. We have $n \leq k \leq (n!-1)$. There are two possibilities. In the first, (n!-1) is prime, and we can say k=(n!-1), where $n \leq k \leq (n!-1)$. We then know that there exists a prime in the set $\{k \in \mathbb{Z} \mid n \leq k \leq n!\}$. In the second case, (n!-1) is not prime, and it has no factors between 2 and n. This is because by definition n! has divisors 2 through n. Since n! and (n!-1) are coprime, (n!-1) cannot have a common divisor. Because we can prime factorize (n!-1), and it has no factors between 2 and n, then the prime factors must be between n and (n!-1). Thus we know that there exists a prime in the set $\{k \in \mathbb{Z} \mid n \leq k \leq n!\}$.