Fitting a Multiple Linear Model in F1 data to predict Fastest Lap Speed.

Alex Gichuki 2023-04-08

```
# Setup

library(tidyverse)
library(tidymodels)
library(kableExtra)
library(psych)
library(GGally)
library(ggfortify)
library(car)
```

Reading the clean F1 data. Working with data from race 841 to race 1046 for all drivers who completed the race.

```
# Reading the full data
f1_full_df <- read.csv("Formula_One.csv")

# Creating a subset data set: removing driverId from the f1_full_df
f1_df <- f1_full_df %>%
    select(-driverId)

# Glance at the dataset
kable(head(f1_df))
```

raceldcircuitldgridfinishingPositionpointslapsraceDurationrankfastestLapSpeedaltitudeaveragePitstopDurationaverageLapDurationfastestLapDuration 841 1 1 1 25 58 5370259 4 212.488 10 23319.50 92590.67 89844 841 18 58 5392556 8 211.382 10 23213.00 92975.10 90314 15 58 5400819 7 841 1 6 3 211.969 10 25109.00 93117.57 90064 5402031 2 841 12 58 1 5 213.336 10 24055.00 93138.47 89487 5 10 58 841 1 3 5408430 3 213.066 10 24058.67 93248.79 89600 841 8 58 5424563 5 212.396 20950.33 93526.95 89883

Specifying the categorical variables

```
# Convert the following variables to categorical variables using as.factor()
f1_df$raceId <- as.factor(f1_df$raceId)
f1_df$circuitId <- as.factor(f1_df$circuitId)
f1_df$grid <- as.factor(f1_df$grid)
f1_df$finishingPosition <- as.factor(f1_df$finishingPosition)
f1_df$rank <- as.factor(f1_df$rank)</pre>
```

Evaluating the data before fitting the model

kable(summary(f1_df))

raceld	circuitld	grid	finishingPositio	npoints	laps	raceDuration	nrank	fastestLapSpe	edaltitud	leaveragePitstopDura	tionaverage
855 : 19	9 : 145	1 : 190	1 :208	Min. : 0.00	Min. :43.00	Min. : 4526665	2 : 195	Min. :148.6	Min. : -7.0	Min. : 17349	Min. : 62
991 : 19	13 : 133	2 : 183	2 :208	1st Qu.: 2.00	1st Qu.:53.0	1st Qu.: 005426327	1 : 193	1st Qu.:193.3	1st Qu 7.0	.: 1st Qu.: 21919	1st Qu.:
887 : 18	3 : 121	3 : 182	3 :208	Median : 8.00	Median :57.00	Median : 5767019	3 : 184	Median :205.1	Media	n Median : 23624	Median
862 : 17	15 : 109	4 : 168	4 :204	Mean : 9.47	Mean :59.35	Mean : 6005680	4 : 178	Mean :204.4	Mean : 191.8	: Mean : 68089	Mean :1
877 : 17	17 : 108	5 : 147	5 :195	3rd Qu.:15.0	3rd 00Qu.:66.0	3rd Qu.: 006185797	5 : 164	3rd Qu.:219.0	3rd Qu.: 162.0	3rd Qu.: 26934	3rd Qu.:
894 : 17	24 : 106	6 : 141	6 :186	Max. :50.00	Max. :87.00	Max. :14743144	6 : 150	Max. :255.0	Max. :2227.	0 Max. :1747072	Max. :21
(Other):20	10(Other):139	95(Other):11	06(Other):908	NA	NA	NA	(Other):10	53NA	NA	NA	NA
Creating a	Scatter plot I	Matrix to eva	luate correlations								

```
pairs.panels(
   f1_df,
hist.col = "blue",
method= "pearson",
density = TRUE,
ellipses = TRUE
)
```


#Fitting a Multiple Linear Regression Model

model1 = Using all variables

term <chr></chr>	estimate <dbl></dbl>	std.error <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>
(Intercept)	3.723314e+02	3.676941e+00	101.26117888	0.00000e+00
raceld842	4.509409e+00	5.026297e-01	8.97163310	7.016861e-19
raceld843	1.495968e+00	4.759307e-01	3.14324633	1.697481e-03
raceld844	1.065721e+00	1.641964e-01	6.49052490	1.096766e-10
raceld845	-2.365035e+01	1.124630e+00	-21.02944385	3.635466e-88
raceld846	-7.997381e+01	3.252617e+00	-24.58752578	1.132657e-115
raceld847	-5.809546e+01	6.727294e+00	-8.63578451	1.241174e-17
raceld848	2.855135e-01	5.022888e-01	0.56842496	5.698158e-01
raceld849	1.732362e+01	9.202477e-01	18.82495503	1.935014e-72
raceld850	-7.793233e+00	4.576138e-01	-17.03015204	1.648168e-60
1-10 of 308 rows			Previous 1 2 3 4	5 6 31 Next

Model 1 Summary statistics

glance(model1)

r.squared <dbl></dbl>	adj.r.squared <dbl></dbl>	sigma <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>	df <dbl></dbl>	logLik <dbl></dbl>	AIC <dbl></dbl>	BIC <dbl></dbl>	deviance <dbl></dbl>
0.9997739	0.9997401	0.3388739	29602.58	0	275	-565.1665	1684.333	3251.531	211.4122
1 row 1-10 of 12	columns								

The r squared is very high which could suggest over fitting. Additionally the resulting model is very complex due to the categorical variables in the data with many levels. A simpler model would be better.

Fitting model 2: Removing one variable from each variable pair with high correlation. Here I remove averagePitstopDuration and averageLapDuration

term <chr></chr>	estimate <dbl></dbl>	std.error <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>
(Intercept)	3.721949e+02	3.691063e+00	1.008368e+02	0.000000e+00
raceld842	5.728528e+00	4.087811e-01	1.401368e+01	1.792793e-42
raceld843	2.717478e+00	3.747219e-01	7.251986e+00	6.018542e-13
raceld844	1.064661e+00	1.648713e-01	6.457527e+00	1.357638e-10
raceld845	-2.794940e+01	4.213689e-01	-6.633002e+01	0.000000e+00
raceld846	-9.177788e+01	1.544249e+00	-5.943205e+01	0.000000e+00
raceld847	-7.263865e+01	5.741895e+00	-1.265064e+01	3.090636e-35
raceld848	8.904665e-01	4.826403e-01	1.844990e+00	6.519935e-02
raceld849	2.101010e+01	2.194115e-01	9.575657e+01	0.000000e+00
raceld850	-8.969758e+00	3.584500e-01	-2.502373e+01	3.231651e-119
1-10 of 306 rows			Previous 1 2 3 4	5 6 31 Next

glance(model2)

r.squared <dbl></dbl>	adj.r.squared <dbl></dbl>	sigma <dbl></dbl>	statistic <dbl></dbl>	p.value df <dbl> <dbl></dbl></dbl>	logLik <dbl></dbl>	AIC <dbl></dbl>	BIC <dbl></dbl>	deviance <dbl></dbl>
0.9997718	0.999738	0.3402734	29574.6	0 273	-575.0408	1700.082	3255.964	213.3936
1 row 1-10 of 12 c	olumns							

This model reduces the r squared by a little bit. But the model is still complex.

Fitting Model 3: How about removing race id

tidy(model3)

term	estimate	std.error	statistic	p.value
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
(Intercept)	5.342308e+02	2.521893e+00	2.118372e+02	0.000000e+00
circuitld2	6.860154e+00	2.635776e-01	2.602707e+01	5.274919e-129
circuitld3	1.730827e+00	2.201560e-01	7.861822e+00	6.112316e-15
circuitld4	-8.673097e+00	2.619902e-01	-3.310466e+01	2.582753e-192
circuitld5	2.158893e+00	3.494692e-01	6.177633e+00	7.849273e-10
circuitId6	-4.321983e+01	3.762589e-01	-1.148673e+02	0.000000e+00
circuitId7	-1.197246e+01	2.819337e-01	-4.246552e+01	4.577153e-282
circuitId9	1.117709e+01	2.180482e-01	5.125973e+01	0.000000e+00
circuitId10	-1.039156e+01	2.694709e-01	-3.856282e+01	3.365050e-244
circuitId11	-1.298076e+01	2.939708e-01	-4.415664e+01	1.483901e-298
-10 of 101 rows		Pre	evious 1 2 3 4	5 6 11 Next

glance(model3)

tidy(model4)

r.squared <dbl></dbl>	adj.r.squared <dbl></dbl>	sigma <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>	df <dbl></dbl>	logLik <dbl></dbl>	AIC <dbl></dbl>	BIC <dbl></dbl>	deviance <dbl></dbl>
0.9956394	0.9954253	1.421807	4651.811	0	99	-3697.707	7597.414	8168.847	4077.438
1 row 1-10 of 12 c	columns								

Has high R squared but still the model is complex to interpret.

Fitting model 4: Fitting a model without specifying race Id and circuit Id

estimate std.error statistic p.value <chr> <dbl> <dbl> <dbl> <dbl> (Intercept) 6.142154e+02 6.573291e+00 93.44108787 0.000000e+00 grid1 4.480685e+00 3.219906e+00 1.39155771 1.642076e-01 grid2 4.112473e+00 1.28200357 1.999866e-01 3.207848e+00 grid3 4.189320e+00 3.200443e+00 1.30898149 1.906876e-01 grid4 4.181141e+00 3.200935e+00 1.30622475 1.916230e-01 3.201427e+00 1.841046e-01 grid5 4.253645e+00 1.32867143 grid6 4.596418e+00 3.203581e+00 1.43477503 1.515040e-01 grid7 4.811214e+00 3.205054e+00 1.50113382 1.334753e-01 grid8 4.475252e+00 3.215268e+00 1.39187514 1.641115e-01

term <chr></chr>	estimate <dbl></dbl>	std.error <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>
grid9	4.078153e+00	3.212590e+00	1.26942841	2.044327e-01
1-10 of 71 rows		Previous	1 2 3 4 5	6 8 Next

glance(model4)

r.squared <dbl></dbl>	adj.r.squared <dbl></dbl>	sigma <dbl></dbl>	statistic <dbl></dbl>	p.value df <dbl> <dbl></dbl></dbl>	logLik <dbl></dbl>	AIC <dbl></dbl>	BIC <dbl></dbl>	deviance <dbl></dbl>
0.9146567	0.9117369	6.245255	313.2538	0 70	-6845.751	13835.5	14242.86	79800.58
1 row 1-10 of 12 co	olumns							

The resulting model has a significantly lower R squared than the previous 3 models, and is lesser complex 3 models. But we could do better.

Fitting model 5: Fitting a model that does not include any of the categorical variables: That is a model that does not include raceld, circuit ld, grid, finishingPosition, and rank.

term <chr></chr>	estimate <dbl></dbl>	std.error <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>
(Intercept)	6.197824e+02	4.111012e+00	150.7615266	0.000000e+00
points	-2.670302e-02	1.743921e-02	-1.5312059	1.258685e-01
laps	-3.400933e+00	5.098050e-02	-66.7104699	0.000000e+00
raceDuration	-3.276077e-06	4.506326e-07	-7.2699510	5.042177e-13
altitude	5.248524e-03	4.023939e-04	13.0432477	1.874199e-37
fastestLapDuration	-2.322844e-03	2.191553e-05	-105.9908019	0.000000e+00
averageLapDuration	1.999731e-04	3.037322e-05	6.5838618	5.768063e-11
averagePitstopDuration	-4.186296e-07	9.062293e-07	-0.4619467	6.441672e-01

glance(model5)

r.squared <dbl></dbl>	adj.r.squared <dbl></dbl>	sigma <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>	df <dbl></dbl>	logLik <dbl></dbl>	AIC <dbl></dbl>	BIC <dbl></dbl>	deviance <dbl></dbl>
0.9129958	0.9127071	6.210836	3161.602	0	7	-6866.153	13750.31	13801.23	81353.59
row 1-10 of 12 d	columns								

Model 5 does not include any categorical variables. The resulting structure is simple and easy to interpret and the R squared is high too at 0.9129958. This could be a good candidate for a final model. It explains 91.30% variation in fastestLapSpeed.

autoplot(model5)

assumption being violated. ## Testing Multicolinearity

Checking multicolinearlity

```
vif(model5)
##
                   points
                                             laps
                                                             raceDuration
##
                 1.027706
                                        11.100297
                                                                15.220442
##
                 altitude
                               fastestLapDuration
                                                       averageLapDuration
##
                 1.103511
                                         3.928247
                                                                20.455395
## averagePitstopDuration
##
                 1.486094
```

averageLapDuration, laps, and raceDuration have very high multi-colinearity since the VIF values are higher than 10. Creating a model without this variables. This indicates that the assumption of multicolinearity is violated by these three variables,

Fitting model 6: A model that does not include variables with high mutlicolinearity from model 5.

estimate	std.error	statistic	p.value <dbl></dbl>
\dbl/	~ubi>	~ubi>	~ubi>
2.179206e+02	3.814285e+00	57.132758	0.000000e+00
9.421390e-02	5.803440e-02	1.623415	1.046500e-01
4.365306e-03	1.332458e-03	3.276130	1.069436e-03
-1.717898e-04	3.878366e-05	-4.429437	9.930629e-06
9.677020e-06	2.485803e-06	3.892915	1.021202e-04
	<dbl> 2.179206e+02 9.421390e-02 4.365306e-03 -1.717898e-04</dbl>	<dbl> <dbl> 2.179206e+02 3.814285e+00 9.421390e-02 5.803440e-02 4.365306e-03 1.332458e-03 -1.717898e-04 3.878366e-05</dbl></dbl>	<dbl> <dbl> <dbl> 2.179206e+02 3.814285e+00 57.132758 9.421390e-02 5.803440e-02 1.623415 4.365306e-03 1.332458e-03 3.276130 -1.717898e-04 3.878366e-05 -4.429437</dbl></dbl></dbl>

glance(model6)

r.squared <dbl></dbl>	adj.r.squared <dbl></dbl>	sigma <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>	df <dbl></dbl>	logLik <dbl></dbl>	AIC <dbl></dbl>	BIC <dbl></dbl>	deviance <dbl></dbl>
0.0294426	0.02760442	20.72917	16.01728	6.32124e-13	4	-9419.164	18850.33	18884.28	907523.5
1 row 1.10 of 12 columns									

vif(model6)

```
## points altitude fastestLapDuration
## 1.021698 1.086218 1.104406
## averagePitstopDuration
## 1.003783
```

The resulting model has a very very low R squared, which suggests that the removed variables make significant contributions to the model. I now consider re-introducing the removed variables with high VIF, one by one.

Fitting Model 7: Since the model has a very low r squared, I return "laps" variable and evaluate the resulting model

term <chr></chr>	estimate <dbl></dbl>	std.error <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>
(Intercept)	6.394469e+02	3.139615e+00	203.670486	0.000000e+00
points	-2.995163e-02	1.761945e-02	-1.699918	8.929361e-02
laps	-3.722877e+00	2.577846e-02	-144.418115	0.000000e+00
altitude	5.543227e-03	4.041394e-04	13.716126	4.441421e-41
fastestLapDuration	-2.320132e-03	1.896333e-05	-122.348309	0.000000e+00
averagePitstopDuration	-8.517595e-07	7.573171e-07	-1.124706	2.608413e-01
6 rows				

glance(model7)

r.squared <dbl></dbl>	adj.r.squared <dbl></dbl>	sigma <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>	df <dbl></dbl>	logLik <dbl></dbl>	AIC <dbl></dbl>	BIC <dbl></dbl>	deviance <dbl></dbl>
0.910794	0.9105827	6.285954	4310.666	0	5	-6892.607	13799.21	13838.82	83412.41
row 1-10 of 12 o	columns								

The r squared is high again, suggesting that laps is indeed an important variable.

The residual plots look good and QQ plots look fairly good and there is no strong evidence that the assumptions of normality and linearlity are violated.

```
vif(model7)
```

```
## points laps altitude
## 1.024137 2.770755 1.086661
## fastestLapDuration averagePitstopDuration
## 2.871323 1.013172
```

The VIF values are less than 10, so this looks good.

Fitting Model 8: How about re-introducing averageLapDuration or raceDuration to see if the resulting model fits well, and if the VIF values are acceptable?

term <chr></chr>	estimate <dbl></dbl>	std.error <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>
(Intercept)	6.393842e+02	3.141214e+00	203.5468581	0.000000e+00
points	-3.058501e-02	1.764391e-02	-1.7334598	8.316006e-02
laps	-3.721806e+00	2.582524e-02	-144.1150678	0.000000e+00
altitude	5.519486e-03	4.055573e-04	13.6096339	1.705723e-40
fastestLapDuration	-2.312003e-03	2.213176e-05	-104.4653977	0.000000e+00
averagePitstopDuration	-4.830822e-07	9.172529e-07	-0.5266620	5.984837e-01
averageLapDuration	-7.499093e-06	1.052394e-05	-0.7125746	4.761878e-01
7 rows				

glance(model8)

r.squared <dbl></dbl>	adj.r.squared <dbl></dbl>	sigma <dbl></dbl>	statistic <dbl></dbl>	p.value df <dbl> <dbl></dbl></dbl>	logLik <dbl></dbl>	AIC <dbl></dbl>	BIC <dbl></dbl>	deviance <dbl></dbl>
0.9108155	0.9105619	6.286687	3591.469	0 6	-6892.352	13800.7	13845.97	83392.34
row 1-10 of 12 columns								

The r squared is significantly high at 0.9108155.

```
vif(model8)
```

```
## points laps altitude
## 1.026742 2.780171 1.094044
## fastestLapDuration averagePitstopDuration averageLapDuration
## 3.910059 1.485952 2.396842
```

VIF values are all less than 10 which is strong evidence that multicolinearity assumption is not violated.

```
autoplot(model8)
```


From the plot above, linearity seems to hold reasonably well in the Residual vs Fitted plot, since the blue solid line closely follows the dashes line. Also, from the QQ plot, the data is normal distributed since most of the data points lie close the dashed line.

I settle on model 8 as the best model to predict "fastestLapSpeed". The final model from this analysis shows that "fastestLapSpeed" can be predicted using "points", "lap", "altitude", "fastestLapDuration", "averagePitstopDuration" and "averageLapDuration". The resuylting model has an r squared value of 0.9108155 which is significantly highy, showing that there is a strong relationship between the response variable with the predictor variables. The model can explain 91.08% of the variation in "fastestLapSpeed" using the 6 predictor variables.