Лабораторная работа 1.4.1

Изучение экспериментальных погрешностей на примере физического маятника.

И. М. Артёмов

7 октября 2022 г.

Цель работы: 1) на примере измерения периода свободных колебаний физического маятника познакомиться с систематическими и случайными погрешностями, прямыми и косвенными измерениями; 2) проверить справедливость формулы для периода колебаний физического маятника и определить значение ускорения свободного падения; 3) убедиться в справедливости теоремы Гюйгенса об обратимости точек опоры и центра качания маятника; 4) оценить погрешность прямых и косвенных измерений и конечного результата.

Оборудование: металлический стержень с опорной призмой; закреплённая на стене консоль; подставка с острой гранью для определения центра масс маятника; секундомер; счётчик колебаний (механический или электронный); линейки металлические различной длины; штангенциркуль; электронные весы; математический маятник (небольшой груз, подвешенный на нитях).

1. Теоретическое введение.

Пусть однородный стержень длины l подвешен на оси O на расстоянии a от центра масс C. При отклонении стержня от вертикали на угол $\varphi \ll 1$, начинаются колебания стержня, которые можно описать уравнением моментов относительно оси O:

$$I\ddot{\varphi} \approx -mga\varphi,$$
 (1)

где φ - угол отклонения маятника от вертикали, m - его масса, I - момент инерции относительно оси подвеса.

Имеем дело с уравнением гармонических колебаний с периодом:

$$T = 2\pi \sqrt{\frac{I}{mga}} \tag{2}$$

Рис. 1. Стержень как физический маятник

Рис. 2. К теореме Гюйгенса

С учётом теоремы Гюйгенса-Штейнера: $I = \frac{ml^2}{12} + ma^2$, получим:

$$T = 2\pi \sqrt{\frac{\frac{l^2}{12} + a^2}{ga}} \tag{3}$$

Заметим, что если положить:

$$l_{\rm np} = \frac{l^2}{12a} + a,\tag{4}$$

получим, что период равен периоду колебаний математического маятника с длиной $l_{\rm np}.$

Заметим, что
$$\frac{dl_{\rm np}}{da}=1-\frac{l^2}{12a^2}$$
 , отсюда $a_m=\frac{l}{2\sqrt{3}}$ — значение a , при котором период

Т минимален.

Докажем также meopemy Γ юйгенса. Пусть период одинаков при $a=a_1$ и $a=a_2$. Тогда:

$$\forall a \in \{a_1, a_2\} \hookrightarrow a + \frac{l^2}{12a} = l_{\pi p}(a_1) \Rightarrow a^2 - l_{\pi p}(a_1)a + \frac{l^2}{12} = 0 \Rightarrow a_1 + a_2 = l_{\pi p}(a_1),$$

то есть если сместить точку подвеса на расстояние $l_{\rm np}$ вниз, то период колебаний не изменится.

В работе также будет изучаться затухание колебаний. Предполагая, что диссипация обусловлена вязким трением, пропорциональным угловой скорости маятника, получим для мощности потерь:

$$P = -\alpha \dot{\varphi}^2 \quad (\alpha > 0), \tag{5}$$

Усредним P по периоду, считая затухание малым:

$$\langle P \rangle_T = \langle -\xi E_{\kappa}(t) \rangle_T \approx -\xi \frac{E}{2} \quad (\xi > 0),$$

где E - энергия системы в данном периоде. То есть:

$$\frac{dE}{dt} = -\xi \frac{E}{2}, \text{ откуда: } E = E_0 \exp(-2\gamma t) \quad (\gamma = \xi/4) \Rightarrow$$
$$\Rightarrow A(t) = A_0 \exp(-\gamma t) \tag{6}$$

За время $\tau=1/\gamma$ амплитуда A колебаний падает в e раз. Отношение времени жизни колебаний к периоду определяет добротность системы:

$$Q = \pi \frac{\tau}{T} \tag{7}$$

Параметр τ легко определить, зная время τ_2 , за которое амплитуда падает в 2 раза:

$$\tau = \frac{\tau_2}{\ln 2} \tag{8}$$

Наконец, добавим поправки к формуле (3), учитывающие, конечные массу и размер призмы. Точная формула имеет вид:

$$T = 2\pi \sqrt{\frac{I_{\rm cT} + I_{\rm np}}{m_{\rm cT}ga - m_{\rm np}ga_{\rm np}}} \tag{9}$$

Здесь $I_{\rm np}, m_{\rm np}, a_{\rm np}$ - соответственно момент инерции призмы относительно оси подвеса, её масса и расстояние от оси подвеса до центра масс призмы (знак "минус"в знаменателе означает, что призма находится над осью).

Заметим, что $m_{\rm np} \sim 10^{-1}$ кг, $a_{\rm np} \sim 1$ см, $m_{\rm cr} \sim 1$ кг, $a \geq 10$ см, поэтому $I_{\rm np}/I$ ст $\sim 10^{-3}$. Это означает, что можно не учитывать $I_{\rm np}$. Однако для моментов, создаваемых силами тяжести призмы и стержня, имеем:

$$\frac{M_{\rm пp}}{M_{\rm cr}} = \frac{m_{\rm пp} g a_{\rm пp}}{m_{\rm cr} g a} \sim 10^{-2},$$

то есть имеем ошибку до 1% . Будем учитывать эту поправку.

Чтобы измерить $a_{\rm пp}$, будем находить расстояние $x_{\rm ц}$ от центра масс стержня с призмой до точки подвеса и вычислять $a_{\rm np}$ по очевидной формуле:

$$a_{\rm np} = \frac{m_{\rm cT}a - (m_{\rm cT} + m_{\rm np})x_{\rm II}}{m_{\rm np}}$$
 (10)

Рис. 3. Смещение центра масс из-за подвесной призмы

В итоге формула для периода примет вид:

$$T = 2\pi \sqrt{\frac{\frac{l^2}{12} + a^2}{g(1 + \frac{m_{\text{пр}}}{m_{\text{ст}}})x_{\text{II}}}}$$
 (11)

2. Ход работы.

1. Заметим, что погрешности измерения l и a равны цене деления линейки, то есть $\sigma_l = \sigma_a = 0.1$ см. Ускорение свободного падения можно найти, зная период, из формулы (3):

$$g = \frac{4\pi^2}{T^2} l_{\text{mp}} \tag{12}$$

Тогда $\varepsilon_g=\sqrt{(2\varepsilon_T)^2+(\varepsilon_{l_{\rm np}})^2}.$ Обозначим $f(l,a)\equiv l_{\rm np}\equiv \frac{l^2}{12a}+a.$ Тогда:

$$\frac{\partial f}{\partial l} = \frac{l}{6a} \quad ; \quad \frac{\partial f}{\partial a} = 1 - \frac{l^2}{12a^2}$$

$$\varepsilon_f = \frac{1}{f} \sqrt{\left(\frac{\partial f}{\partial l}\sigma_l\right)^2 + \left(\frac{\partial f}{\partial a}\sigma_a\right)^2} = \frac{\sigma_a}{\frac{l^2}{12} + a^2} \sqrt{\frac{l^2}{36a^2} + \left(1 - \frac{l^2}{12a^2}\right)^2}$$

Пусть
$$\mu = l/a$$
. Тогда получим: $\varepsilon_f = \frac{12}{13\mu} \sqrt{\frac{\mu^2}{36} + \left(1 - \frac{\mu^2}{12}\right)^2} \frac{\sigma_a}{l}$. (13)

Построим график функции $\varepsilon_f(\mu)$ для $\mu \in [2;10]$ и l=1 м (примерно в таком диапазоне мы будем производить измерения). График показан на Рис. 4. Нетрудно видеть, что ошибка измерения $l_{\rm np}$ на всём диапазоне не превосходит 0.1%. Примерно с такой точностью есть смысл измерять период T.

Рис. 4. График зависимости $\varepsilon_f(\mu)$ для $\mu \in [2;10]$

2. Измерим длину l стержня линейкой, взвесим стержень и призму на электронных весах, определим расстояние от края пустого стержня до его центра масс. Получим (погрешность измерения массы на весах оценили как единицу последнего разряда, т. е. $\sigma_m = 0.1 \, \Gamma$):

$$l=(100\pm0.1)~{
m cm}~;~m_{
m mp}=(74.9\pm0.1)~{
m f}~;~m_{
m ct}=(1022.4\pm0.1)~{
m f}$$
 $X_{
m m}=(50.0\pm0.1)~{
m cm}$

Нетрудно видеть, что расстояние от края стержня до его центра масс $X_{\rm ц}=l/2$, поэтому будем измерять a от оси до середины стержня. Расстояние $x_{\rm ц}$ от центра масс стержня с призмой до оси будем вычислять по формуле:

$$x_{\text{II}} = a - (X_{\text{II}} - x_{\text{II}}^{'}),$$
 (14)

где $x_{_{\mathrm{II}}}^{'}$ - расстояние от края стержня до центра масс.

3. Установим призму на некотором расстоянии от середины стержня, и измерим a и $x_{\pi}^{'}$. Получим:

$$a=(45.0\pm0.1)~{
m cm}~;~x_{_{
m II}}^{'}=(46.8\pm0.1)~{
m cm}~;~x_{_{
m II}}=(41.8\pm0.2)~{
m cm}$$

Погрешность измерения $x_{\rm ц}$ считалась, как:

$$\sigma_{x_{\text{II}}} = \sqrt{\sigma_a^2 + \sigma_{X_{\text{II}}}^2 + \sigma_{x_{\text{II}}}^2} = \sigma_a \sqrt{3} \approx 0.2 \text{ cm}$$
 (15)

4. Проведём предварительный опыт. Устанавливаем маятник на консоли, отклоняем на малый угол (не более 5°), убеждаемся, что он качается без помех, призма не просклальзывает, колебания затухают слабо. Измеряем время n=20 полных колебаний маятника и вычисляем период T

$$t_{20} = (31.91 \pm 0.01) \text{ c}$$
; $T = \frac{t_{20}}{n} \approx (1.5955 \pm 0.0005) \text{ c}$

Здесь за систематическую погрешность измерения времени секундомером была принята единица последнего разряда $\sigma_t = 0.1~\mathrm{c}$, а $\sigma_T = \sigma_{t_{20}}/n = 0.0005~\mathrm{c}$

Вычислим предварительное значение g по формуле (3):

$$g = \frac{4\pi^2}{T^2} \left(\frac{l^2}{12a} + a \right) \approx (9.850 \pm 0.007) \frac{M}{c^2}$$
 (16)

Здесь погрешность g считалась по формулам, приведённым в пункте 1, в частности ε_f считалось по формуле (13) для $\mu = l/a = 20/9$, а $\varepsilon_T = \varepsilon_{t_{20}}$. Получили отклонение от теоретического значения g не более 10%.

5. Проведём серию из N=10 измерений времени t_{20} полных n=20 колебаний стержня. Результаты - в табл. 1.

N опыта	t_{20}, c
1	31.91
2	31.90
3	32.07
4	31.87
5	31.84
6	31.94
7	31.82
8	31.90
9	32.00
10	31.98

Таблица 1

Вычислим среднее значение и ошибки измерения времени t_{20} :

$$t_{20} = \overline{t_{20}} = \frac{\sum_{i=1}^{N} t_{20,i}}{N} = (31.92 \pm 0.07) \text{ c} \; ; \; \sigma_{t_{20}}^{\text{случ}} = \sqrt{\frac{\sum_{i=1}^{N} (t_{20,i} - t_{20})^2}{N(N-1)}} \approx 0.07 \text{ c} \quad (17)$$

$$\sigma_{t_{20}}^{\text{сист}} = 0.01 \text{ c} \quad ; \quad \sigma_{t_{20}}^{\text{полн}} = \sqrt{\sigma_{t_{20}}^{\text{случ}^2} + \sigma_{t_{20}}^{\text{сист}^2}} \approx 0.07 \text{ c} \quad ; \quad \varepsilon_{t_{20}} \approx 2 \cdot 10^{-3}$$
 (18)

Для периода имеем: $T=(1.596\pm0.004)$ с. Заметим, что точность измерения T порядка 0.1%, поэтому изменять n не будем. Значение g определим по более точной формуле (11):

$$g = \frac{4\pi^2}{T^2} \frac{\frac{l^2}{12} + a^2}{\left(1 + \frac{m_{\text{пр}}}{m_{\text{cr}}}\right) x_{\text{II}}}$$
(19)

Заметим, что знаменатель второй дроби близок к a, $\sigma_{x_{\text{ц}}} = \sigma_a \sqrt{3}$, а относительная погрешность определения $\psi = (1 + m_{\text{пр}}/m_{\text{ст}})$:

$$\varepsilon = \frac{\sigma_{\frac{m_{\rm IP}}{m_{\rm CT}}}}{\psi} \approx \frac{\frac{\sigma_{m_{\rm IP}}}{m_{\rm CT}}}{\psi} \approx 10^{-4}$$

Поэтому будем считать σ_g по формулам из п.1 аналогично тому, как делали при предварительном расчёте. Получим:

$$g = (9.87 \pm 0.04) \, \frac{\mathrm{M}}{\mathrm{c}^2}$$

- 6. Проведём аналогичные измерения ещё для 9 значений a. При этом вблизи минимума периода $a_m = \frac{l}{2\sqrt{3}}$ стоит провести больше измерений. Результаты в табл. 2-11.
- 7. Для $a=40~{\rm cm}~l_{\rm пp}\approx 60.8~{\rm cm}$. Установим эту длину у математического маятника и проведём опыт из K=7 измерений времени t_{20} полных n=20 колебаний маятника. Результат в таблице 12.

a = 400 mm				
N опыта	t_{20}, c			
1	31.20			
2	31.24			
3	31.17			
4	31.38			
5	31.18			
6	31.09			
7	31.25			
8	31.25			
9	31.47			
10	31.12			

2	31.24	2
3	31.17	3
4	31.38	4
5	31.18	5
6	31.09	6
7	31.25	7
8	31.25	8
9	31.47	9
10	31.12	10
Таблиц	ца 2	r
a = 290	ММ	a
N опыта	t_{20}, c	No
1	20.44	1

IN OHBITA	ι_{20}, ι
1	30.44
2	30.28
3	30.32
4	30.44
5	30.50
6	30.38
7	30.41
8	30.43
9	30.41
10	30.37

Таблица 5

$a=250\mathrm{mm}$				
N опыта	t_{20}, c			
1	30.72			
2	30.62			
3	30.60			
4	30.72			
5	30.78			
6	30.69			
7	30.81			
8	30.41			
9	30.59			
10	30.56			

Таблица 8

a = 350 мм					
N опыта	t_{20}, c				
1	30.78				
2	30.80				
3	30.71				
4	30.60				
5	30.72				
6	30.79				
7	30.75				
8	30.78				
9	30.72				
10	30.70				

Таблица 3

a = 280) _{MM}
N опыта	t_{20}, c
1	30.37
2	30.59
3	30.25
4	30.47
5	30.50
6	30.47
7	30.41
8	30.47
9	30.62
10	30.40

Таблица 6

a=208 мм					
N опыта	t_{20}, c				
1	31.25				
2	31.31				
3	31.25				
4	31.34				
5	31.32				
6	31.28				
7	31.35				
8	31.31				
9	31.26				
10	31.28				

Таблица 9

a = 300 mm				
t_{20}, c				
30.50				
30.53				
30.53				
30.47				
30.44				
30.44				
30.53				
30.53				
30.44				
30.66				

Таблица 4

a=270 мм				
N опыта	t_{20}, c			
1	30.65			
2	30.40			
3	30.53			
4	30.72			
5	30.87			
6	30.50			
7	30.70			
8	30.84			
9	30.40			
10	30.44			

Таблица 7

$a=150\mathrm{mm}$				
N опыта	t_{20}, c			
1	33.66			
2	33.79			
3	33.69			
4	33.60			
5	33.75			
6	33.72			
7	33.65			
8	33.75			
9	33.66			
10	33.70			

Таблица 10

№ серии	a, mm	$x'_{\text{\tiny L}}$, mm	$x_{\mathrm{ц}}$, мм	n	t_{20}, c	<i>T</i> , c	g , M/c^2
1	450 ± 1	468 ± 1	418 ± 2	20	31.92 ± 0.07	1.596 ± 0.004	9.87 ± 0.04
2	400 ± 1	475 ± 1	375 ± 2	20	31.24 ± 0.11	1.562 ± 0.006	9.78 ± 0.07
3	350 ± 1	476 ± 1	326 ± 2	20	30.74 ± 0.06	1.537 ± 0.003	9.83 ± 0.04
4	300 ± 1	478 ± 1	278 ± 2	20	30.51 ± 0.06	1.526 ± 0.003	9.85 ± 0.04
5	290 ± 1	479 ± 1	269 ± 2	20	30.40 ± 0.06	1.520 ± 0.003	9.91 ± 0.04
6	280 ± 1	480 ± 1	260 ± 2	20	30.44 ± 0.10	1.522 ± 0.005	9.87 ± 0.07
7	270 ± 1	481 ± 1	251 ± 2	20	30.61 ± 0.17	1.531 ± 0.009	9.77 ± 0.11
8	250 ± 1	482 ± 1	232 ± 2	20	30.65 ± 0.11	1.533 ± 0.006	9.84 ± 0.07
9	208 ± 1	485 ± 1	193 ± 2	20	31.30 ± 0.03	1.565 ± 0.002	9.85 ± 0.02
10	150 ± 1	489 ± 1	139 ± 2	20	33.70 ± 0.05	1.685 ± 0.003	9.86 ± 0.03

Таблица 11

N опыта	t_{20}, c
1	33.66
2	33.79
3	33.69
4	33.60
5	33.75
6	33.72
7	33.65

Таблица 12

Отсюда получим: $t_{20} = (31.32 \pm 0.12) \text{ c}$; $T_{math} = (1.566 \pm 0.006) \text{ c}$

Так как при этом $T_{phys} = (1.562 \pm 0.006)$ с (табл. 11), то $\Delta T = T_{math} - T_{phys} = (0.004 \pm 0.008)$ с, то есть в пределах погрешности значения T_{math} и T_{phys} совпадают.

Заметим, что для $a_1=40$ см, $a_2=l_{\rm np}(a_1)-a_1\approx 20.8$ см. Из таблицы 11:

$$T(a_1) = (1.562 \pm 0.006) \text{ c}$$
; $T(a_2) = (1.565 \pm 0.002) \text{ c}$
 $\Delta T = T(a_2) - T(a_1) = (0.003 \pm 0.006) \text{ c}$

В пределах погрешности $T(a_1)$ и $T(a_2)$ совпадают, что подтверждает meopemy $\Gamma voũzenca$.

8. По данным табл. 11 усредним g:

$$g = \frac{\sum_{i=1}^{10} g_i}{10} = (9.843 \pm 0.019) \frac{M}{c^2} \; ; \; \varepsilon_g = 2 \cdot 10^{-3}$$

Погрешность g считалась, как:

$$\sigma_g = \frac{1}{10} \sqrt{\sum_{i=1}^{10} \sigma_{g_i}^2}$$

Рис. 5. Экспериментальная и теоретическая зависимость T(a)

9. Построим экспериментальную зависимость T(a) по данным табл. 11. Зависимость имеет минимум между a=28 см и a=29 см, что согласуется с теорией: $a_m=\frac{l}{2\sqrt{3}}\approx 28.87$ см. Построим также теоретическую кривую T(a) при $a\in[14;50]$ см. Она задаётся формулой:

$$T(a) = 2\pi \sqrt{\frac{\frac{l^2}{12} + a^2}{ga}} = 2\pi \sqrt{\frac{z^2 + a^2}{ga}} = 2\pi \sqrt{\frac{z}{a}} \sqrt{\frac{z}{a} + \frac{a}{z}} \quad \left(z^2 = \frac{l^2}{12}\right)$$
 (20)

Отсюда видно, что $T = T_m$ при a = z, при этом зависимость T(a) можно переписать в виде:

$$T(a) = \frac{T_m}{\sqrt{2}} \sqrt{\frac{z}{a} + \frac{a}{z}} \tag{21}$$

Поэтому для проверки соответствия эксперимента теоретическим расчётам построим также график T(a) по формуле (21) для экспериментального значения $T_m \approx 1.520$ с. Соответсвующие графики приведены на рис. 5, 6, 7. Нетрудно видеть, что точки в пределах погрешности ложатся на теоретические кривые, а кривая, построенная с использованием экспериментального T_m , близка к теоретической кривой.

10. Построим график зависимости u(v), где $u=T^2x_{\rm ц},\ {\rm v}=a^2$. При этом ошибки величин u и v будем считать по формулам:

$$\sigma_u = \sqrt{(T^2 \sigma_{x_{ii}})^2 + (2T \sigma_T x_{ii})^2} = T \sqrt{(T \sigma_{x_{ii}})^2 + (2x_{ii}\sigma_T)^2}$$
 (22)

Рис. 6. Экспериментальная и теоретическая зависимость T(a)

Рис. 7. Экспериментальная и теоретические зависимости T(a)

Рис. 8. Γ рафик зависимости u(v) и его аппроксимация линейной функцией

$$\sigma_v = 2a\sigma_a \tag{23}$$

График зависимости и его аппроксимация линейной функцией по хи-квадрат показаны на рис. 8. Выразим коэффициенты зависимости u(v) теоретически. Из формулы (11) получим:

$$T^{2}x_{\text{II}} = \frac{4\pi^{2}}{g\psi}a^{2} + \frac{\pi^{2}l^{2}}{3\psi g} \Rightarrow u = \frac{4\pi^{2}}{g\psi}v + \frac{\pi^{2}l^{2}}{3\psi g} = \beta v + \alpha, \ \psi = \left(1 + \frac{m_{\text{IIP}}}{m_{\text{ct}}}\right)$$

Обработка методом хи-квадрат даёт:

$$\beta = (3.739 \pm 0.019) \frac{\mathrm{c}^2}{\mathrm{m}^2} \; ; \; \alpha = (0.3107 \pm 0.0019) \mathrm{m} \cdot \mathrm{c}^2 \; ; \; r \approx 0.99989 \; (коэф. корреляции)$$

$$\frac{\chi^2}{d.o.f.} \approx 0.21$$

В итоге получим:

$$g = \frac{4\pi^2}{\psi\beta} = (9.84 \pm 0.05) \frac{M}{c^2} \; ; \; \varepsilon_g = 5 \cdot 10^{-3}$$

Погрешность g, с учётом того, что $\varepsilon_{\psi} \ll \varepsilon_{\beta}$, считалась, как:

$$\sigma_g = g\varepsilon_\beta = g\frac{\sigma_\beta}{\beta}$$

11. Для a=40 см измерим время τ_2 , за которое амплитуда колебаний маятника уменьшается в 2 раза (с 10° до 5°). Получим:

$$\tau_2 = (290.28 \pm 0.01) \text{ c}$$

Тогда время жизни:
$$au = \frac{ au_2}{\ln 2} pprox (418.78 \pm 0.01) \; \mathrm{c} \quad (\sigma_{ au} = au arepsilon_{ au_2})$$

Добротность:
$$Q=\pi \frac{\tau}{T(a)}\approx 842\pm 8 \quad (\sigma_Q=Q\varepsilon_T)$$
. Система высокодобротна.

3. Вывод

В ходе работы были проверены формулы для периода физического маятника и теорема Гюйгенса об обратимости точек опоры. Полученные экспериментальные данные хорошо согласуются с теоретическим описанием рассматриваемых явлений. Было исследовано затухание колебаний, найдено время жизни и добротность системы. Также было определено ускорение свободного падения g двумя способами: путём усреднения значений, полученных в каждой серии измерений периода полных n колебаний маятника и путём анализа экспериментальной зависимости периода колебаний от параметров установки. Точность измерений в обоих случаях примерно одинакова ($\sim 0.1\%$), однако только второй способ дал значение, в пределах погрешности совпадающее с теоретическим $g=9.81~\text{m/c}^2$. Из этого можно сделать вывод, что анализ зависимостей, параметром которых является искомая величина, даёт более точные результаты, чем усреднение значений величины в каждой точке измерения.