实用优化算法作业(1)

1 【习题1.6】设 $f(x) = e^{-x} + x^2$, 试用黄金分割法求其极小点. 取初始区间为[-1,1], $\epsilon = 0.1$

【解:】 $x_2 = -1 + 0.618(1 - (-1)) = 0.236$. $f_2 = f(x_2) = 0.845$, $x_1 = -1 + 0.382(1 - (-1)) = -0.236$. $f_1 = f(x_1) = 1.322$

曲于 $f_1 > f_2$, 则a = -0.236, $x_1 = 0.236$, $f_1 = 0.845$. $\diamondsuit x_2 = -0.236 + 0.618(1 - (-0.236)) = 0.528$, $f_2 = f(x_2) = 0.869$.

由于这时 $f_1 < f_2$,故有 $b = x_2 = 0.528$, $x_2 = x_1 = 0.236$, $f_2 = f_1 = 0.845$. $\Rightarrow x_1 = -0.236 + 0.382(0.528 - (-0.236)) = 0.0558$. $f_1 = f(x_1) = 0.949$.

由于这时 $f_1 > f_2$,故取a = 0.0558, $x_1 = 0.236$, $f_1 = 0.845$. $x_2 = 0.348$, $f_2 = 0.827$.

由于 $f_1 > f_2$, 取a = 0.236, $x_1 = x_2 = 0.348$, $f_1 = 0.827$, $x_2 = 0.416$, $f_2 = 0.833$.

由于 $f_1 < f_2$, 取 $b = x_2 = 0.416$, $x_2 = x_1 = 0.348$, $f_2 = f_1 = 0.827$, $x_1 = 0.305$, $f_1 = 0.830$.

由于 $f_1 > f_2$, 故取 $a = x_1 = 0.305$, $x_1 = x_2 = 0.348$, $f_1 = f_2 = 0.827$, $x_2 = 0.374$, $f_2 = 0.827$;

由于 $f_1 < f_2$,故取 $b = x_2 = 0.374$, $x_2 = x_1 = 0.348$, $f_2 = f_1 = 0.827$, $x_1 = 0.331$, $f_1 = 0.828$.

这时, b-a=0.069<0.1, 中止算法, 得近似解 $x^*=0.339$.

2【习题3.5】试用最速下降法求解

min
$$x_1^2 + 2x_2^2$$
.

设初始点为 $x_0 = (4,4)$, 迭代三次, 并验证相邻两次迭代的搜索方向是正交的.

【解: 】记
$$f(x) = x_1^2 + 2x_2^2$$
,则

$$g(x) = \nabla f(x) = \begin{pmatrix} 2x_1 \\ 4x_2 \end{pmatrix}.$$

在初始点处 $f(x^0)=48$, $g(x^0)=(8,16)^T$, 搜索方向为 $p^0=-g(x^0)=(-8,-16)$. 考虑

$$\min_{a \ge 0} f(x^0 + \alpha p^0) = 16(3 - 20\alpha + 36\alpha^2).$$

其极小点为 $\alpha^0 = 5/18$. 则

$$x^{1} = x^{0} + \alpha^{0} p^{0} = \begin{pmatrix} 16/9 \\ -4/9 \end{pmatrix}.$$

此时

$$g^{1} = g(x^{1}) = \begin{pmatrix} 32/9 \\ -16/9 \end{pmatrix}, p^{1} = -g^{1} = \begin{pmatrix} -32/9 \\ 16/9 \end{pmatrix}.$$

考虑

$$\min_{a>0} f(x^1 + \alpha p^1) = \frac{32}{81} (9 - 40\alpha + 48\alpha^2).$$

其极小点为 $\alpha^1 = 5/12.$ 则

$$x^2 = x^1 + \alpha^1 p^1 = \begin{pmatrix} 8/27 \\ 8/27 \end{pmatrix}.$$

此时

$$g^2 = g(x^2) = \begin{pmatrix} 16/27 \\ 32/27 \end{pmatrix}, p^2 = -g^2 = \begin{pmatrix} -16/27 \\ -32/27 \end{pmatrix}.$$

考虑

$$\min_{a \ge 0} f(x^2 + \alpha p^2) = \left(\frac{8}{27}\right) (3 - 20\alpha + 36\alpha^2).$$

其极小点为 $\alpha^2 = 5/18$. 则

$$x^3 = x^2 + \alpha^2 p^2 = \begin{pmatrix} 32/243 \\ -8/243 \end{pmatrix}$$