Deep Neural Network 라?

Multilayer Perceptrons이라고도 표현하며,

여러 개의 Hidden layer을 쌓아서 여러 개의 가중치(weight)합이 최종 결과(Output)로 나오게 된다.

Deep neural network

Pima Dataset

Pima Indians의 당뇨병 데이터 세트이다.

이 데이터 셋은 Pima Indian에 대한 의료 기록 데이터와 그들이 15년 이내에 당뇨병이 시작되었는지(Binary) 여부가 나와있는 CSV 파일입니다.

Download: https://www.kaggle.com/uciml/pima-indians-diabetes-database/data

총 768명의 Pima Indian들의 데이터 파일이 있으며, Outcome으로는 당뇨병이 걸렸는지 안 걸렸는지 여부를 0또는 1로 구분된다.

Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
6	148	72	35	0	33.6	0.627	50	1
1	85	66	29	0	26.6	0.351	31	0
8	183	64	0	0	23.3	0.672	32	1
1	89	66	23	94	28.1	0.167	21	0
0	137	40	35	168	43.1	2.288	33	1
5	116	74	0	0	25.6	0.201	30	0
3	78	50	32	88	31	0.248	26	1
10	115	0	0	0	35.3	0.134	29	0
2	197	70	45	543	30.5	0.158	53	1
8	125	96	0	0	0	0.232	54	1
4	110	92	0	0	37.6	0.191	30	0
10	168	74	0	0	38	0.537	34	1
10	139	80	0	0	27.1	1.441	57	0
1	189	60	23	846	30.1	0.398	59	1
5	166	72	19	175	25.8	0.587	51	1
7	100	0	0	0	30	0.484	32	1
0	118	84	47	230	45.8	0.551	31	1
7	107	74	0	0	29.6	0.254	31	1
1	103	30	38	83	43.3	0.183	33	0
1	115	70	30	96	34.6	0.529	32	1
3	126	88	41	235	39.3	0.704	27	0
8	99	84	0	0	35.4	0.388	50	0
7	196	90	0	0	39.8	0.451	41	1
9	119	80	35	0	29	0.263	29	1
11	143	94	33	146	36.6	0.254	51	1

순서는 아래와 같이 진행될 것이다.

- 1. Load Data
- 2. Define Model
- 3. Compile Model
- 4. Fit Model
- 5. Evaluate Model
- 6. Tie It All Together

그리고 2, 4를 바꿔가면서 최적의 성능을 내는 Deep Neural Network를 완성할 것이다.

총 768개의 Data중에,

514개를 Training Data 254개를 Test Data 로 정확도를 평가한다

Training

Test

Data	input:	(254, 8)
	output:	(254,)

Data	input:	(254, 8)
	output:	(254,)

Model Architecture

 $batch_size = 50$

Accuracy = 77

Input Layer	input:	(514, 8)		
Input Layer	output:	(514, 12)		
→				
Dense	input:	(514, 8)		
Dense	output:	(514, 8)		
—				
Output Layer	input:	(514, 8)		
	output:	(514, 1)		
epoch = 150 batch size = 10				

Accuracy = 74

Output Layer	input:	(514, 200)
Output Layer	output:	(514, 1)

epoch = 150 \dot{b} atch_size = 10 Accuracy = 75

Model Architecture

