STAT 390 A Statistical Methods in Engineering and Science

Week 5 Lectures – Part 1 – Spring 2023

Joint Distributions and Independence
of Random Variables

Alexander Giessing
Department of Statistics
University of Washington

April 24, 2023

Outline

1 Joint Distributions of Discrete Random Variables

2 Joint Distributions of Continuous Random Variables

Independent Random Variables

How to study many random variables?

- How to predict or control one random variable using another?
 - ▶ number of COVID-19 cases last week and this week.
 - education level and income.
 - SP500 and IBM stocks.
- What does it mean to say that two random variables are independent?
- How to compute the expectation and variance of several random variables?
- How to describe the dependence (i.e. covariance and correlation) between several random variables?

Example: Sum and Maximum of Two Dice

- ullet Denote by S the sum and by M the maximum of two fair dice.
- To describe the **joint event**

$$\{(S,M)=(a,b)\}:=\{S=a\}\cap \{M=b\},$$

we need to describe how the probability mass is distributed over the range of (S, M), i.e.

$$\{(a,b): a \in \{1,2,\ldots,12\}, b \in \{1,2,\ldots,6\}\}.$$

 \bullet The (marginal) pmfs of M and S are given by

				4		
p_M	1/36	3/36	5/36	7/36	9/36	11/36

S	2	3	4	5	6	7	8	9	10	11	12
$\overline{p_S}$	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

Example: Sum and Maximum of Two Dice

(Derivation of p_M and p_S .)

Example: Sum and Maximum of Two Dice (Cont.)

The joint probability mass function

$$p_{S,M}(a,b) = P(\{S=a\} \cap \{M=b\})$$

is given by

$p_{S,M}$				M			
		1	2	3	4	5	6
	2	1/36	0	0	0	0	0
	3	0	2/36	0	0	0	0
	4	0	1/36	2/36	0	0	0
	5	0	0	2/36	2/36	0	0
	6	0	0	1/36	2/36	2/36	0
S	7	0	0	0	2/36	2/36	2/36
	8	0	0	0	1/36	2/36	2/36
	9	0	0	0	0	2/36	2/36
	10	0	0	0	0	1/36	2/36
	11	0	0	0	0	0	2/36
	12	0	0	0	0	0	1/36

Joint Probability Mass Function

The joint distribution of two discrete random variables X and Y, defined on the same sample space Ω , is given by prescribing the probabilities of all possible values of the pair (X,Y).

Joint Probability Mass Function

Let X and Y be two discrete random variables defined on the same sample space Ω . Their joint probability mass function $p: \mathbb{R}^2 \to [0,1]$ is defined by

$$p(a,b) := P(\{X=a\} \cap \{Y=b\}) = P(X=a,Y=b) \quad \text{for } -\infty < a,b < \infty.$$

- The joint pmf satisfies:
 - $0 \le p(a, b) \le 1$ for all $-\infty < a, b < \infty$.

Marginal Probability Mass Function

MARGINAL PROBABILITY MASS FUNCTION

Let p be the joint probability mass function of random variables X and Y. The marginal probability mass functions of X and Y are defined by

$$p_X(a) := \sum_{b \in \text{Range}(Y)} p(a, b)$$
 and $p_Y(b) := \sum_{a \in \text{Range}(X)} p(a, b)$.

• Recall the example of the sum and maximum of two dice. Since

$${S = 6} = {S = 6, M = 1} \cup {S = 6, M = 2} \cup ... \cup {S = 6, M = 6}$$

and because all six events on the RHS are mutually exclusive, we have

$$p_S(6) = P(S = 6) = P(S = 6, M = 1) + \dots + P(S = 6, M = 6)$$

= \dots = 5/36.

Example: Sum and Maximum of Two Dice (Cont.)

We retrieve the marginal probability mass functions p_S (and p_M) by summing over the columns (and rows) of the joint probability mass function.

$p_{S,M}$				M				p_S
		1	2	3	4	5	6	
	2	1/36	0	0	0	0	0	1/36
	3	0	2/36	0	0	0	0	2/36
	4	0	1/36	2/36	0	0	0	3/36
	5	0	0	2/36	2/36	0	0	4/36
	6	0	0	1/36	2/36	2/36	0	5/36
S	7	0	0	0	2/36	2/36	2/36	6/36
	8	0	0	0	1/36	2/36	2/36	5/36
	9	0	0	0	0	2/36	2/36	4/36
	10	0	0	0	0	1/36	2/36	3/36
	11	0	0	0	0	0	2/36	2/36
	12	0	0	0	0	0	1/36	1/36
p_M		1/36	3/36	5/36	7/36	9/36	11/36	1

Joint Distribution Function

Joint Distribution Function (Discrete Random Variables)

The joint (cumulative) distribution function F of two discrete random variables X and Y is the function $F: \mathbb{R}^2 \to [0,1]$ defined by

$$F(a,b) := P(X \le a, Y \le b) = \sum_{x \le a} \sum_{y \le b} p(x,y) \quad \text{for } -\infty < a, b < \infty.$$

• If X and Y have range a_1, a_2, \ldots and b_1, b_2, \ldots , respectively, then

$$F(a,b) = \sum_{a_i \le a} \sum_{b_i \le b} p(a_i, b_j).$$

• Recall the example of the sum and maximum of two dice. Verify at home that $F_{S,M}(5,3) = 8/36$.

Marginal Distribution Function

MARGINAL DISTRIBUTION FUNCTION

Let F be the joint (cumulative) distribution function of random variables X and Y. Then the marginal distribution function of X is given for each a by

$$F_X(a) := P(X \le a) = F(a, +\infty) = \lim_{b \to \infty} F(a, b),$$

and the marginal distribution function of Y is given for each b by

$$F_Y(b) := P(Y \le b) = F(+\infty, b) = \lim_{a \to \infty} F(a, b).$$

- Recall the example of the sum and maximum of two dice. Verify at home that $F_S(5) = F_{S,M}(5, +\infty) = F_{S,M}(5, 6) = 10/36$.
- This definition also applies to continuous random variables (see below)!

Outline

1 Joint Distributions of Discrete Random Variables

2 Joint Distributions of Continuous Random Variables

3 Independent Random Variables

Joint Continuous Distribution

- Recall: The probability that a single continuous RV X lies in the interval [a,b] is equal to the area under the pdf of X over the interval.
- Analgous for joint distribution of continuous RVs X and Y:

 The probability that the pair (X,Y) fall in the rectangle $[a_1,b_1] \times [a_2,b_2]$ is equal to the volume under the joint pdf of (X,Y) over the rectangle.

(Volume under a joint pdf f on the rectangle $[-0.5, 1] \times [-1.5, 1]$.)

Joint Continuous Distribution

Joint Continuous Distribution

Two random variables X and Y, defined on the same sample space Ω , have a joint continuous distribution if there exists a function $f: \mathbb{R}^2 \to [0, \infty]$ such that for all real numbers $a_1 \leq b_1$ and $a_2 \leq b_2$,

$$P(a_1 \le X \le b_1, \ a_2 \le Y \le b_2) := P(\{a_1 \le X \le b_1\} \cap \{a_2 \le Y \le b_2\})$$

$$= \int_{a_1}^{b_1} \int_{a_2}^{b_2} f(x, y) dx dy.$$

The function f satisfies $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1$ and $f(x,y) \ge 0$ for all $(x,y) \in \mathbb{R}^2$. We call f the joint probability density function of X and Y.

Marginal Probability Density Function

MARGINAL PROBABILITY DENSITY FUNCTION

Let f be the joint probability density function of random variables X and Y. The marginal probability density functions of X and Y are defined by

$$f_X(x) := \int_{-\infty}^{\infty} f(x, y) dy$$
 and $f_Y(y) := \int_{-\infty}^{\infty} f(x, y) dx$.

- ullet Thus, the marginal pdfs of each of the random variables X and Y can be obtained by "integrating out" the other variable.
- Integration is the analogous operation to the summation over the range in the case of discrete random variables.

Optional: Calculating Probabilities from a Joint PDF

Suppose that X and Y have joint probability density function

$$f(x,y) = \begin{cases} \frac{2}{75} (2x^2y + xy^2) & \text{for } 0 \le x \le 3, 1 \le y \le 2, \\ 0 & o/w. \end{cases}$$

$$P(1 \le X \le 2, 4/3 \le Y \le 5/3) = \int_{1}^{2} \int_{4/3}^{5/3} f(x, y) dx dy$$

$$= \frac{2}{75} \int_{1}^{2} \left(\int_{4/3}^{5/3} (2x^{2}y + xy^{2}) dy \right) dx$$

$$= \frac{2}{75} \int_{1}^{2} \left(x^{2} + \frac{61}{81} x \right) dx$$

$$= \frac{187}{2025}.$$

Joint Distribution Function

Joint Distribution Function (Continuous Random Variables)

Let X and Y be two random variables with joint probability density function f. The joint (cumulative) distribution function $F: \mathbb{R}^2 \to [0,1]$ is defined by

$$F(a,b) := P(X \le a, Y \le b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f(x,y) dx dy \quad \text{for } -\infty < a, b < \infty.$$

- Marginal (cumulative) distribution functions F_X and F_Y can be found as in the case of discrete random variables.
- Facts from calculus:
 - $f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y).$
 - $P(a_1 \le X \le b_1, a_2 \le Y \le b_2) = F(b_1, b_2) F(b_1, a_2) F(a_1, b_2) + F(a_1, a_2).$

(Derivations.)

Joint Distribution Function (Cont.)

(Graphical derivation of $P(a_1 \le X \le b_1, a_2 \le Y \le b_2) = \ldots$)

Optional: Joint and Marginal DF

Suppose that X and Y have joint probability density function

$$f(x,y) = \begin{cases} \frac{2}{75} (2x^2y + xy^2) & \text{for } 0 \le x \le 3, 1 \le y \le 2, \\ 0 & o/w. \end{cases}$$

Find the joint (cumulative) distribution function of (X,Y). For $0 \le a \le 3$ and $1 \le b \le 2$ we have, since f(x,y) = 0 for x < 0 or y < 1,

$$F(a,b) = \int_{-\infty}^{a} \left(\int_{-\infty}^{b} f(x,y) dy \right) dx$$
$$= \frac{2}{75} \int_{0}^{a} \left(\int_{1}^{b} (2x^{2}y + xy^{2}) dy \right) dx$$
$$= \frac{1}{225} (2a^{3}b^{2} - 2a^{3} + a^{2}b^{3} - a^{2}).$$

Optional: Joint and Marginal DF (Cont.)

Suppose that X and Y have joint probability density function

$$f(x,y) = \begin{cases} \frac{2}{75} (2x^2y + xy^2) & \text{for } 0 \le x \le 3, 1 \le y \le 2, \\ 0 & o/w. \end{cases}$$

For either $a \notin [0,3]$ or $b \notin [1,2]$ the expression for F(a,b) is different:

• For $a \in [0,3]$ and b > 2, then, since f(x,y) = 0 for y > 2,

$$F(a,b) = F(a,2) = \frac{1}{225}(6a^3 + 7a^2).$$

• Verify at home that for $b \in [1, 2]$ and a > 3,

$$F(a,b) = F(3,b) = \frac{1}{75}(3b^3 + 18b^2 - 21).$$

• Note that these are the marginal distribution functions of X and Y, respectively, i.e. $F_X(a) = F(a,2)$ and $F_Y(b) = F(3,b)$.

Optional: Joint and Marginal PDF

Suppose that X and Y have joint probability density function

$$f(x,y) = \begin{cases} \frac{2}{75}(2x^2y + xy^2) & \text{for } 0 \le x \le 3, 1 \le y \le 2, \\ 0 & o/w. \end{cases}$$

The pdf of X for $x \in [0,3]$ can be found in two ways:

• By differentiating F_X :

$$f_X(x) = \frac{d}{dx}F_X(x) = \frac{d}{dx}\left(\frac{1}{225}(6x^3 + 7x^2)\right) = \frac{2}{225}(9x^2 + 7x).$$

• By integrating f(x,y) over $y \in [1,2]$:

$$f_X(x) = \int_{-\infty}^{\infty} f(x,y)dy = \frac{2}{75} \int_{1}^{2} (2x^2y + xy^2)dy = \frac{2}{225} (9x^2 + 7x).$$

The pdf of X for $x \notin [0,3]$ is $f_X(x) = 0$.

Optional: Joint and Marginal PDF (Cont.)

Suppose that X and Y have joint probability density function

$$f(x,y) = \begin{cases} \frac{2}{75} (2x^2y + xy^2) & \text{for } 0 \le x \le 3, 1 \le y \le 2, \\ 0 & o/w. \end{cases}$$

Verify at home (by differentiating F_Y or integrating out x in f(x,y)) that the pdf of Y for $y \in [1,2]$ is

$$f_Y(y) = \frac{1}{25}(3y^2 + 12y).$$

The pdf of Y for $y \notin [1, 2]$ is $f_Y(y) = 0$.

Outline

Joint Distributions of Discrete Random Variables

2 Joint Distributions of Continuous Random Variables

3 Independent Random Variables

How to model independent random variables?

• Recall that two events A and B are independent if and only if

$$P(A \cap B) = P(A)P(B).$$

- Therefore, we would like to define independence of RV as something like: "Two random variables X and Y are independent if and only if all events involving only X and all events involving only Y are independent."
- \bullet If X and Y are discrete RV, then an adequate definition for independence would be

$$P(X = a, Y = b) = P(X = a)P(Y = b)$$
 for all $-\infty < a, b < \infty$.

• **Problem:** This definition is useless in the case of continuous RV.

Independent Random Variables

INDEPENDENT RANDOM VARIABLES

The random variables X and Y with joint distribution function F are independent if, for all $-\infty < a, b < \infty$,

$$F(a,b) = F_X(a)F_Y(b).$$

Random variables that are not independent are called dependent.

 If X and Y are discrete random variables with joint pmf p above definition is equivalent to

$$p(a,b) = p_X(a)p_Y(b)$$
 for all $-\infty < a, b < \infty$.

ullet If X and Y are jointly continuous random variables with joint pdf f above definition is equivalent to

$$f(a,b) = f_X(a)f_Y(b)$$
 for all $-\infty < a, b < \infty$.

Example: Verifying the Obvious.

We toss two fair coins. Show that the outcomes of the coin tosses are independent.

- Let $X \in \{H, T\}$ be the outcome of the first coin toss.
- Let $Y \in \{H, T\}$ be the outcomes of the second coin.
- The joint pmf of X and Y is given by

$$\begin{array}{c|cccc} & p(x,y) & 0 & 1 \\ \hline x & 0 & 1/4 & 1/4 \\ & 1 & 1/4 & 1/4 \end{array}$$

• We need to check whether for all $a, b \in \{H, T\}$,

$$P(X = a, Y = b) = P(X = a)P(Y = b).$$

Obviously (?) this is the case.

Example: Dependent Random Variables

Show that the random variables X and Y are dependent!

• Joint pmf of X and Y:

$$\begin{array}{c|ccccc} p(x,y) & 0 & 1 & 2 \\ \hline 0 & 0.01 & 0 & 0 \\ x & 1 & 0.09 & 0.09 & 0 \\ 2 & 0 & 0 & 0.81 \\ \hline \end{array}$$

• Summing over the columns (the rows) of the joint pmf we obtain the marginal pmf of X (pmf of Y):

• To show that X and Y are not independent it suffices to find **one pair** (x, y) which violates the independence property. One such pair is (0, 0),

$$p(0,0) = 0.01 \neq 0.001 = p_X(0)p_Y(0).$$

Propagation of Independence

Are transformed independent random variables again independent?

- ullet Let X and Y be two independent random variables with joint distribution function F.
- For I = (a, b] an interval on the real line define the transformed random variables

$$U = \begin{cases} 1 & \text{if } X \in I, \\ 0 & \text{if } X \notin I, \end{cases} \quad \text{and} \quad V = \begin{cases} 1 & \text{if } Y \in I, \\ 0 & \text{if } Y \notin I. \end{cases}$$

• U and V are independent because for all values $u, v \in \{0, 1\}$,

$$P(U=u,V=v) = P(U=u)P(V=v).$$

For example,

$$\begin{split} P(U=0,V=1) &= P(X \in I^c, Y \in I) \\ &= P(X \in I^c) P(Y \in I) = P(U=0) P(V=1). \end{split}$$

Propagation of Independence (Cont.)

Propagation of Independence

Let X_1, X_2, \ldots, X_n be independent random variables. For functions $h_i : \mathbb{R} \to \mathbb{R}, i = 1, \ldots, n$, define the random variables

$$Y_i = h_i(X_i).$$

Then Y_1, Y_2, \ldots, Y_n are also independent.

- Important consequence: We can simulate independent random variables of any distribution if we can generate independent uniform random variables!
 - ▶ Let $U_1, ..., U_n$ be n independent unform random variables. Recall from Week 4 Lecture, Part 2,

$$X_i := -\frac{1}{\lambda} \ln(U_i) \sim Exp(\lambda).$$

▶ By above result, X_1, \ldots, X_n are independent exponentially distributed random variables with rate parameter $\lambda > 0$.

Modeling Extreme Events

- Floodings. Let X_1, \ldots, X_{365} be the water levels of a river during the days of a particular year.
 - If the water levels exceed a certain hight h of the dykes, there will be a flooding. What is the probability of a flood?
 - Answer: $P(\max\{X_1,\ldots,X_{365}\} > h)$.
- Drought. Let X_1, \ldots, X_{365} be the precipitation in a certain region during the days of a particular year.
 - ► If the precipitation falls below a certain amount h, there will be a drought. What is the probability of a drought?
 - Answer: $P(\max\{X_1, \dots, X_{365}\} < h)$.
- Financial markets. Let X_1, \ldots, X_{252} be the stock prices of the IBM stock during the trading days of a particular year.
 - \triangleright Sell or buy stocks if they exceed (or fall below) a certain threshold t.
 - ▶ Answer: Sell with probability $P(\max\{X_1, ..., X_{252}\} > t)$ and buy with probability $P(\max\{X_1, ..., X_{252}\} < t)$.

Extremes of Independent Random Variables

DISTRIBUTION OF MAXIMUM AND MINIMUM.

Let X_1, X_2, \ldots, X_n be independent random variables with the same distribution function F. Let

$$U = \max\{X_1, \dots, X_n\}$$
 and $V = \min\{X_1, \dots, X_n\}$.

Then,

$$F_U(a) = (F(a))^n$$
 and $F_V(a) = 1 - (1 - F(a))^n$.

(Derivations.)

Example: Uniform Athletes Competing for Gold.

Consider 10 amateur athletes, none of which is a clear favorite to win the 100m dash. We therefore assume that the final times are uniformly and independently distributed between 10 and 12 seconds. What is the probability that athlete 1 wins the race if he finishes in 11 seconds?

- X_k = time in seconds of athlete $k=1,\ldots,10$ and $Z:=\min\{X_1,\ldots X_{10}\}.$
- If the smallest X_k is at least 11 seconds, then athlete 1 wins the race. Therefore the probability that we want to compute is

$$P(Z \ge 11).$$

• Since the X_k are uniformly distributed between 10 and 12 seconds, their distribution function is

$$F_{X_1}(x) = \dots F_{X_{10}}(x) \equiv F(x) = \begin{cases} 0 & \text{if } x < 10 \\ \frac{x - 10}{2} & \text{if } 10 \le x \le 12 \\ 1 & \text{if } x > 12. \end{cases}$$

• By the independence and the previous theorem we have

$$P(Z \ge 11) = 1 - F_Z(11) = (1 - F(11))^{10} = \left(1 - \frac{1}{2}\right)^{10} = 0.5^{10} = 0.1\%.$$