Connectedness

Thomas Cohn

9/14/18

Prop: The Following are Equivalent (TFAE):

- (1) There exists $f: X \to \{0,1\}$ continuous and surjective.
- (2) There exists $A \subset X$ open and closed in X with $\emptyset \neq A \neq X$.

Proof:

- $(1) \to (2)$ $A = f^{-1}[\{1\}]$. Clearly, $\emptyset \neq A \neq X$. A is closed because $\{1\}$ is closed and f is continuous. A is open because $A^{\complement} = X \setminus A = f^{-1}[\{0\}]$ is closed.
- (2) \to (1) Let $f = \mathbb{I}_A$ (the indicator function for A). $A \neq \emptyset$, and $A \neq X$, so f is surjective. $f^{-1}[\{1\}]$ is open, $f^{-1}[\{0\}]$ is open, so f is continuous. \Box

Defn: If this holds, we say that X is <u>disconnected</u>. We say X is <u>connected</u> if it is not disconnected.

Prop: [0,1] is connected. Proof: Let $f:[0,1] \to \{0,1\}$ be continuous. It's enough to show that f is not surjective. Use the intermediate value theorem. \square

Defn: A topological space X is said to be <u>path-connected</u> $\leftrightarrow \forall \alpha, \beta \in X$, there is a continuous map $\varphi : [0,1] \to X$ with $\varphi(0) = \alpha$ and $\varphi(1) = \beta$.

Prop: X is path connected $\rightarrow X$ is connected.

Proof: Suppose to the contrary X is path-connected, but $\exists f: X \to \{0,1\}$ continuous and surjective. Pick $\alpha, \beta \in X$ with $f(\alpha) = 0$, $f(\beta) = 1$, and φ as above. Then $(f \circ \varphi) : [0,1] \to \{0,1\}$ is also continuous and surjective. So then [0,1] is disconnected. Oops! \square

Examples and Special Cases:

- 1. $X \subset \mathbb{R}^n$ is convex $\to X$ is path-connected $\to X$ is connected.
- 2. $X = \{(x,y) \in \mathbb{R}^2 : x > 0, y = \sin\left(\frac{1}{x}\right)\} \cup \{(x,y) \in \mathbb{R}^2 : x = 0, -1 \le y \le 1\}$ is connected, but not path-connected (proven in a supplement, to be given later).
- 3. $X \subset \mathbb{R}^n$ is open, connected $\to X$ is path-connected (proved in HW 3).

Given $x \in X$ metric space, $B \subset X$.

Set $d(x, B) = \inf \{ d(x, b) : b \in B \}.$

 $d(x, B) > 0 \leftrightarrow x \in \operatorname{Ext} B$.

 $d(x, B) = 0 \leftrightarrow x \notin \operatorname{Ext} B \leftrightarrow x \in \operatorname{Int} B \cup \operatorname{Bd} B \leftrightarrow x \in \overline{B}.$

Fact: $X \to \mathbb{R}$, $x \mapsto d(x, B)$ is Lipschitz, and hence continuous (proved in HW 3).

Defn: Given $A, B \subset X$, $d(A, B) = \inf \{d(a, B) : a \in A\} = \inf \{d(a, b) : a \in A, b \in B\}$. d(B, A) = d(A, B) and $d(A, B) \ge 0$. But there's no triangle inequality!