- 1. Carothers 18.1
- 2. Carothers 18.3
- 3. Carothers 18.4
- 4. Carothers 18.6
- 5. Carothers 18.9
- **6.** Carothers 18.11
- 7. Let $f \ge 0$ be Riemann integrable. In this exercise you will show that f is measurable and that its Riemann integral (R) $\int_a^b f$ equals its Lebesgue integral (L) $\int_a^b f$. In your work, you are welcome to use the obvious fact that the Riemann integral and the Lebesgue integral agree for step functions.
 - a) Show that there exists a monotone increasing sequence of step functions φ_n and a monotone decreasing sequence of step functions ψ_n such that $\varphi_n \leq f \leq \psi_n$ for each n and such that

$$(R)\int_a^b (\psi_n - \varphi_n) \to 0.$$

- **b)** Let $\Phi = \sup \varphi_n$ and $\Psi = \inf \varphi_n$. Show that $\Psi \Phi = 0$ almost everywhere.
- **c)** Conclude that *f* is measurable.
- **d)** Conclude that $(R) \int_a^b f = (L) \int_a^b f$.
- **8.** Carothers 18.16
- **9.** Carothers 18.17