PH3915 September 2023

Simple Discounting, Compounding and Decision Criteria

Simple Compounding/Discounting

Let, P = the principal (beginning amount)

r = the interest rate

V_n = the value of the amount at the end of year n,

Assume, P = \$100 (e.g. a bond) and r = 10%

Then,
$$V_1 = P + r \cdot P = P(1 + r) = $110$$
 $V_2 = V_1(1 + r) = P(1 + r)(1 + r) = P(1 + r)^2 = 121$
 $V_6 = V_5(1 + r) = P(1 + r)(1 + r)(1 + r)$
 $(1 + r)(1 + r) = 177$

or, $P(1 + r)^6 = V_6$
 $V_n = V_{n-1}(1 + r) = P(1 + r)^n$

General formula for simple compounding is

$$V_{\rm n} = P(1 + r)^{\rm n}$$

Discounting formula reverses this process and is

$$P = V_{\rm n}/(1 + {\rm r})^{\rm n}$$

Annuities

If V_n = the value of the amount at the end of year n, and If $V_1 = V_2 = V_3 = ... = V_n$, we have a series of of fixed payments called an annuity.

When this is the case, the present value formula for discounting $[P = V_n / (1 + r)^n]$, is transformed into

$$P = V \left[\frac{1}{1+r} + \frac{1}{(1+r)^2} + \frac{1}{(1+r)^3} + \dots + \frac{1}{(1+r)^n} \right]$$

or the present discounted value of an annuity.

Note: This is equivalent to

$$P = \sum_{t=0}^{n} \frac{V_{t}}{(1+r)^{t}}$$

Where all V_t are equal.

Or,

$$P = V_t \sum_{t=0}^{n} \frac{1}{(1+r)^t}$$

Table A: Simple Discounting Example

$$P = V_n / (1+r)^n = V_5 / (1.09)^5$$

$$= $500/(1.09) (1.09) (1.09) (1.09) (1.09)$$

$$= $500/1.5386 = $324.97$$

Alternatively, using the table, where r = 9%, and n=5 years we find 0.6499. Simply multiple 0.6499 x 500 = \$324.97.

Thus, the table give us
$$\frac{1}{(1+r)^n}$$

For various r and n values, as 0.6499 = 1/1.5386.

Table B: Present Value of Annuities

$$P = V \left[\frac{1}{1+r} + \frac{1}{(1+r)^2} + \dots + \frac{1}{(1+r)^6} \right]$$
$$= 500 \left[\frac{1}{1.06} + \frac{1}{(1.06)^2} + \frac{1}{(1.06)^3} + \dots + \frac{1}{(1.06)^6} \right]$$

= 500 [4.917] = \$2,458.50, the present discounted value of the annuity; i.e, 4.917 is from the table where, r = 6% and n = 6 years.

Thus, table B gives us
$$\sum_{t=0}^{n} \frac{1}{(1+r)^{t}}$$

As if V = 1.

This value is then multiplied by the real value of V to yield P.

Problem 1

Assume we have the opportunity to invest in a new activity and we have the following information.

REVENUE		COSTS
$R_0 = \$0$	(TODAY)	$C_0 = \$0$
$R_1 = 100$	(YEAR 1)	$C_1 = 50$
$R_2 = 300$	(YEAR 2)	$C_2 = 200$
$R_3 = 400$	(YEAR 3)	$C_3 = 400$
$R_4 = 100$	(YEAR 4)	$C_4 = 200$

R = 12%

Given $P = V_n/(1+r)^n$, find the present value of revenue and then of costs. Determine the present value of profit.

Solution to Problem 1

 $C_0 = \$0$

Use Table A:

 $R_0 = \$0$

$$R_1 = 100 (.8929) = 89.29$$

 $R_2 = 300 (.7972) = 239.16$
 $R_3 = 400 (.7118) = 284.72$
 $R_4 = 100 (.6355) = 63.55$
 $$676.72$

$$C_1 = 50 = (.8929) = 44.65$$

 $C_2 = 200 (.7972) = 159.44$
 $C_3 = 400 (.7118) = 284.72$
 $C_4 = 200 (.6355) = 127.10$
\$615.91

Profit (discounted) = \$676.72 - \$615.91 = \$60.81

Problem 2

R = 12%

REVENUES	COSTS
$R_0 = \$0$	$C_0 = 1000
$R_1 = 100$	$C_1 = 600$
$R_2 = 300$	$C_2 = 600$
$R_3 = 500$	$C_3 = 600$
$R_4 = 800$	$C_4 = 600$
$R_5 = 800$	$C_5 = 700$
$R_6 = 800$	$C_6 = 200$
$R_7 = 800$	$C_7 = 200$
$R_8 = 800$	$C_8 = 200$
$R_9 = 800$	•
•	•
•	•
•	•
$R_{20} = 800$	$C_{20} = 200$

Find the present value of revenues, costs and profits, utilizing Tables A and B.

Solution to Problem 2

$R_0 = \$0$	C ₀ = \$1000 (no discounting)
$R_1 = 100 (.8929) = 89.29$	$C_1 = 600(3.037) = 1822.00 to where, 3,037 is a 4
	C ₄ year annuity at 12% interest
R ₂ = 300(.7972) = 239.16	$C_5 = 700(.5674) = 397.18$
R ₃ = 500(.7118) = 355.90	C_6 = 200(6.811) (.5674) = 772.91 to where 6.811 is a 15 year C_{20} annuity; 0.5674 is the 5 year discount factor at 12%
R_4 = 800(7.120) (.7118) to = 4,054.42 R_0 where, 7.120 is a 17 year annuity at 12% interest, and 0.7118 is the 3 year discount factor at r = 12%	Present value of costs = \$3,992
Present value of R = \$4,738.76	

Present value of profit = \$4,738.76 - \$3,992.29 = \$747.47

Solution to Exercise

Alternative #1:

$$R_0 = $0$$

$$R_1 = 6,000(.9259) = 5555.40$$

$$R_2 = 20,000(8.244)(.9259)$$

 R_{15}

$$R_{16} = 5,000(8.559) (.3152)$$

 R_{30}

 $C_3 = 4000(11.258) (.8573)$

 $C_1 = 2000(.9259) = 1851.80$

 $C_2 = 5000(.8573) = 4286.50$

$$to = 38,605.93$$

 $C_0 = $100,000$

 C_{32}

Scrap Value

$$-1,000 \times 0.0994 = -99.40$$

Present Value = \$144,644.83

Present Value = \$171,706.77

Net present value = \$27,061.94

Alternative #2:

Net present value = \$35,000

Solution: Choose alternative #2

Brief Review

(1) $V_n = P(1 + r)^n$, is the simple compounding formula

(2)
$$P = V_n/(1 + r)^n \underline{or}$$

$$P = \sum_{t=0}^{n} V_t / (1+r)^t,$$

Is the formula for present value (simple) discounting table A calculates

$$\frac{1}{(1+r)^n}$$
 for you.

(2)
$$P = V \left[\frac{1}{1+r} + \frac{1}{(1+r)^2} + \frac{1}{(1+r)^3} + \dots + \frac{1}{(1+r)^n} \right]$$

$$\underline{\text{or}} \qquad P = V \sum_{t=0}^{n} 1/(1+r)^{t}$$

Is the formula for finding the discounted present value of an annuity.

Table B calculates
$$\sum_{t=0}^{n} 1/(1+r)^t$$
 for you.

Compounding/Discounting Multiple Times per Year

$$P=V_n/(1+r/m)^{mn}$$

Where, m = number of times per year
which we compound
n = number of years
r = discount rate

Decision Criteria

1. Net Present Value Rule (NPV):

Formula:
$$NPV = A_0 + \frac{A_1}{(1+r)} + \frac{A_2}{(1+r)^n} + \dots + \frac{A_n}{(1+r)^n}$$

Where A = benefits less costs

r = social discount rate

n = year

The net benefits (benefits less costs) in each period are discounted to the present to yield the NPV, if NPV > $0 \rightarrow$ accept project. If NPV < $0 \rightarrow$ reject.

When considering mutually exclusive projects, the one with the higher NPV is recommended.

Alternatively, the formula may be stated.

$$\sum_{t=0}^{n} B_{t} / (1+r)^{t} = \sum_{t=0}^{m} C_{t} / (1+r)^{t}$$

Decision Criteria

2. Benefit – Cost Ratio (B/C):

The discounted present value of benefits is divided by the discounted present value of costs. If b/c = < reject.

When considering mutually exclusive projects, the one with the higher b/c is recommended.

When the NPV and b/c ratios make contradictory recommendations, the NPV rule is superior.

$$\sum_{t=0}^{n} B_{t} (1+r)^{t} / \sum_{t=0}^{n} C (1+r)^{t}$$

Decision Criteria

3. Internal Rate of Return Rule (IRR):

Formula:
$$A_0 + \frac{A_1}{1+i} + \frac{A_2}{(1+i)^2} + \dots + \frac{A_n}{(1+i)^n} = 0$$

Where A = benefits less cost

I = the internal rate of return

r = the social discount rate

n = years

- If r < i = > accept project
- If r > i => reject project

- The internal rate of return that will reduce the future net benefit stream to zero is calculated and compared to the social discount rate.
- Where the decision-criteria conflict, the NPV rule is always superior.

Numerical Example Illustrating Comparison of Decision Rules

Assume Projects 1, 2 & 3 are Mutually Exclusive (only one will be funded)

Basic question: Which project should be funded?

Project 1

Discount Rate

Decision Rule

	r = 10%	r = 6%
Net Present Value	-\$56,741	\$29,606
Benefit/Cost Ratio	0.92	1.04

Project 2

Discount Rate

Decision Rule

	1 = 10%	1 = 6%
Net Present Value	\$383,500	\$541,767
Benefit/Cost Ratio	1.59	1.80

Project 3

Discount Rate

 $r = 100/_{\circ}$ $r = 60/_{\circ}$

ח	ecision	Rule
U	GCISIOLI	Nule

	1 - 10%	1 - 070
New Present Value	\$126,478	\$163,721
Benefit/Cost Ratio	2.71	3.11