

University of Engineering and Management Institute of Engineering & Management, Salt Lake Campus Institute of Engineering & Management, New Town Campus University of Engineering & Management, Jaipur

Syllabus for B.Tech Admission Batch 2023

Subject Name: Computer Organization & Architecture

Credit:3

Subject Code: PCCCS402

Lecture Hours: 36

Pre-requisite: Digital Electronics, Basic Electronics

Relevant Links:

Study Material Coursera NPTEL LinkedIn Learning Infosys

Springboard

Module number	Торіс	Sub-topics	Mapping with Industry and International Academia	Lecture Hours	Corresponding Lab Assignment
1	Introduction and Performance Evaluation	Role of abstraction, basic functional units of a computer, Stored Program Architecture, Von-Neumann model of computation, A note on Moore's law, clocking methodology, Amdahl's law, Notion of IPC, and performance.	International Academia: https://ocw.mit.edu/cours es/6-823-computer-system -architecture-fall-2005/pa ges/lecture-notes/ AICTE-prescribed syllabus: https://www.aicte-india.or g/sites/default/files/Model Curriculum/Updated-AI CTE%20-%20UG%20CS E.pdf Industry Mapping: SPEC	3L	 Familiarization of Hardware assembling for a digital computer. Familiarization of SPEC Benchmark Application for CPU.

			(https://www.spec.org)			
		"Computer Organization and Design: The Hardware/Software Interface", David A. Patterson and John L. Hennessy, 5th Edition, Elsevier. – Chapter1				
2	Data representation and basic operations	Fixed and floating point (IEEE 754 Single and double precision format) representation of numbers; Overflow; Design of Adders - Ripple Carry Adder, Carry Look Ahead Adder, multiplication - shift-and-add, Booth multiplier, carry save multiplier, etc. Division - non-restoring and restoring techniques, floating point arithmetic. 1. Computer System Architecture: Third Edition, Morris Mano Chapter 3 2. Computer Organization: Fifth Edition Carl Hamacher, Zvonko Vranesic and Safwat Zaky Chapter 6	International Academia: https://web.stanford.edu/c lass/cs107/ AICTE-prescribed syllabus: https://www.aicte-india.or g/sites/default/files/Model Curriculum/Updated-AI CTE%20-%20UG%20CS E.pdf Industry Mapping: VHDL - online platform (https://www.edaplaygrou nd.com/) VHDL- Xilinx ISE Hardware Chipsets (TTI IC Chipsets 7400, 7402, 7404, 7408, 7432,7486, 74151, 74153, 7483; CMOS IC Chipsets 4081,4011,4071,4001,407 0, 4013D)	7L	 1. 2. 5. 7. 	Implementation of Half Adder, Half Subtractor, Full Adder, Full Subtractor using VHDL (Dataflow Model). a) Implementation of Full Adder using VHDL (Behavioral Model). b) Implementation of n-bit Carry propagation adder in VHDL (Behavioral Model). Implementation of 4:1 MUX using 2:1 MUX (using Structural Method) in VHDL. Implementation of signed multiplier using VHDL. Implementation of Non-Restoring Division algorithm using VHDL. Realization of Boolean Expressions Using Basic Gates (IC Chips). Design an 8 to 1 multiplexer unit (MUX) using basic gates and using IC 74151.

					8. Design of A 4-Bit Parallel Binary Adder Circuit Using The IC-Chip7483. 9. Use a multiplexer unit to design a composite ALU [ALU Logic circuit, shift circuit and arithmetic circuit]. 10. Implementation of Full adder using FPGA kit.
3	Instruction Set Architecture	CPU registers, instruction format and encoding, addressing modes, instruction set, instruction types, instruction decoding and execution, basic instruction cycle, Reduced Instruction Set Computer (RISC), Complex Instruction Set Computer (CISC), Case study - instruction sets of some common CPUs. 1. Computer System Architecture: Third Edition, Morris Mano. – Chapter 8	International Academia: https://ocw.mit.edu/cours es/6-823-computer-system -architecture-fall-2005 https://www.cse.iitd.ac.in/ ~srsarangi AICTE-prescribed syllabus: https://www.aicte-india.or g/sites/default/files/Model Curriculum/Updated-AI CTE%20-%20UG%20CS E.pdf Industry Mapping: Keil MDK (https://www.keil.com) TRACE32 Simulator (https://www.lauterbach.com) Arm Instruction Emulator (https://developer.arm.co m/Tools%20and%20Soft ware/Arm%20Instruction %20Emulator)	6L	 Generate Happy numbers. Generate Autonomic numbers Generate Hardy-Ramanuja n number Implement a 4-function calculator.
4	Processor Design	hardwired and micro-programmed	International Academia: https://ocw.mit.edu/cours es/6-823-computer-system	3L	Design a primitive CPU for the given instruction subset-

		design approaches, Case study - design of a simple hypothetical CPU 1. Computer System Architecture: Third Edition, Morris Mano. -Chapter 7 2. Computer Organization: Fifth Edition Carl Hamacher, Zvonko Vranesic and Safwat Zaky Chapter 7	-architecture-fall-2005 AICTE-prescribed syllabus: https://www.aicte-india.or g/sites/default/files/Model _Curriculum/Updated-AI CTE%20-%20UG%20CS E.pdf Industry Mapping: Keil MDK (https://www.keil.com) TRACE32 Simulator (https://www.lauterbach.com) Arm Instruction Emulator (https://developer.arm.co m/Tools%20and%20Soft ware/Arm%20Instruction %20Emulator)		i) data transfer ii) arithmetic operations iii) logical operations iv) branch statements
5	Memory hierarchy	Memory hierarchy; Main memory organization - paging, segmentation, virtual memory; Cache memory- different indexing mechanisms, Trade-offs related to block size, associativity, and cache size, Processor-cache interactions for a read/write request, basic optimizations like write through/write-back caches, Average memory access time, Cache replacement policies (LRU), locality of reference, Memory interleaving; introduction to magnetic disks (notion of tracks, sectors). 1. Computer System Architecture: Third Edition, Morris Mano. –Chapter 12	International Academia: https://ocw.mit.edu/cours es/6-823-computer-system -architecture-fall-2005 AICTE-prescribed syllabus: https://www.aicte-india.or g/sites/default/files/Model _Curriculum/Updated-AI CTE%20-%20UG%20CS E.pdf Industry Mapping: VHDL - online platform (https://www.edaplaygrou nd.com/) VHDL- Xilinx ISE	7L	 Implementation of memory unit consisting of 16X4 RAM and 8X 4 ROM. Implement Read Write operation using 16X4 RAM.

6	Input/Output Organization	Programmed I/O, Interrupt-driven I/O, and DMA. 1. Computer System Architecture: Third Edition, Morris Mano. – Chapter 11	International Academia: https://ocw.mit.edu/cours es/6-823-computer-system -architecture-fall-2005 AICTE-prescribed syllabus: https://www.aicte-india.or g/sites/default/files/Model Curriculum/Updated-AI CTE%20-%20UG%20CS E.pdf Industry Mapping: 8051 Microcontroller	2L	 Interface 7 segment display using 8051 Microcontroll er and requisite I/O modules. Interface 4X4 keypad using 8051 Microcontroller and requisite I/O modules.
7	Parallel Processing	Pipelining - Basic concepts, instruction and arithmetic pipeline, different types of dependencies and hazards, techniques for handling hazards, Pipeline optimization techniques - reservation table; Superscalar, superpipelined and VLIW processor architectures; Array and vector processors; Multiprocessor architectures; Centralized sharedmemory architecture and distributed shared memory architecture; Cache Coherence; 1. "Computer Organization and Design: The Hardware/Software Interface", David A. Patterson and John L. Hennessy, 5th Edition, Elsevier. – Chapter4 and Chapter 6	International Academia: https://ocw.mit.ed u/courses/6-823- computer-system- architecture-fall- 2005 AICTE-prescribed syllabus: https://www.aicte- india.org/sites/def ault/files/Model_C urriculum/Update d-AICTE%20- %20UG%20CSE. pdf Industry Mapping: 1. RIPES (https://github.co m/mortbopet/Ripe s) VHDL - online platform (https://www.edapl ayground.com), VHDL- Xilinx ISE	6L	 Implement a Pipelined Multiplier using VHDL and FPGA Kit. Implement a Pipeline Control Unit using RIPES

Text Books:

- 1. Computer System Architecture: Third Edition, Morris Mano.
- 2. Computer Organization: Fifth Edition Carl Hamacher, Zvonko Vranesic and Safwat Zaky.
- 3. Computer Organization and Design: The Hardware/Software Interface: David A. Patterson and John L. Hennessy.

Reference Books:

- 1. Computer Organization and Architecture Designing for Performance: William Stallings
- 2. Computer Architecture and Organization: John P Hayes
- 3. Computer Architecture and Parallel Processing: K. Hwang, F. A. Briggs

List of Assignments:

- 1. Familiarization of Hardware assembling for a digital computer.
- 2. Familiarization of SPEC Benchmark Application for CPU.
- 3. Realization of Boolean Expressions Using Basic Gates (IC Chips).
- 4. Design an 8 to 1 multiplexer unit (MUX) using basic gates and using IC 74151.
- 5. Design of A 4-Bit Parallel Binary Adder Circuit Using The IC-Chip7483.
- Implementation of Half Adder, Half Subtractor, Full Adder, Full Subtractor using VHDL (Dataflow Model).
- 7. a) Implementation of Full Adder using VHDL (Behavioral Model). b) Implementation of n-bit Carry propagation adder in VHDL (Behavioral Model).
- 8. Implementation of 4:1 MUX using 2:1 MUX (using Structural Method) in VHDL.
- 9. Implementation of signed multiplier using VHDL.
- 10. Implementation of Non-Restoring Division algorithm using VHDL.
- 11. Use a multiplexer unit to design a composite ALU [ALU Logic circuit, shift circuit and arithmetic circuit].
- 12. Implementation of Full adder using FPGA kit.
- 13. Design a primitive CPU for the given instruction subset
 - i) data transfer
 - ii) arithmetic operations
 - iii) logical operations
 - iv) branch statements
- 14. Implementation of memory unit consisting of 16X4 RAM and 8X 4 ROM.
- 15. Implement Read Write operation using 16X4 RAM.
- 16. Interface 7 segment display using 8051 Microcontroller and requisite I/O modules.
- 17. Implement a Pipelined Multiplier using VHDL and FPGA Kit.