$$f(a, b, c) = a \cdot b + \overline{a} \cdot \overline{b} + c \cdot \overline{b}$$

Apartat A Per fer-la només amb NOT i OR, manipulem l'expressió aplicant Morgan als productes...

$$f(a,b,c) = \overline{\overline{a} + \overline{b}} + \overline{a+b} + \overline{\overline{c}+b}$$

I ja està. El logigrama queda així:

 $\mbox{\bf Apartat B}$ Per fer-la només amb \mbox{NOT} i AND, manipulem l'expressió aplicant Morgan a la suma...

$$f(a,b,c) = \overline{\overline{a \cdot b} \cdot \overline{\overline{a} \cdot \overline{b}} \cdot \overline{c \cdot \overline{b}}}$$

I ja està. El logigrama queda així:

Apartat C Una XOR de N entrades es comporta com una OR de N entrades, sempre que no hi hagi més d'una entrada que sigui 1. En l'expressió donada...

- El producte ab només es 1 per a les entrades (1,1,0), (1,1,1).
- El producte $\overline{a}\overline{b}$ només es 1 per a les entrades (0,0,0), (0,0,1).
- El producte $c\bar{b}$ només es 1 per a les entrades $(0,0,1),\,(1,0,1).$

L'entrada (0,0,1) causa dos 1, però si restringim un dels productes:

$$f(a, b, c) = a \cdot b + \overline{a} \cdot \overline{b} + a \cdot c \cdot \overline{b}$$

Aquesta expressió és equivalent, però ara es compleix que, per a totes les entrades de f, no hi haurà més d'un producte que evaluï a 1. Per tant, la suma es pot canviar a XOR sense alterar la funció:

$$f(a,b,c) = a \cdot b \oplus \overline{a} \cdot \overline{b} \oplus a \cdot c \cdot \overline{b}$$

Ara només queda canviar els negats per $(x \oplus 1)$:

$$f(a,b,c) = ab \oplus (a \oplus 1) (b \oplus 1) \oplus ac (b \oplus 1)$$

El logigrama queda així

Problema 2.4 Del cronograma, s'extreuen els següents parells $\mathrm{E/S}$:

$$\begin{array}{ccccc} (1,1,1) \to 1 & (1,0,1) \to 0 & (0,0,0) \to 0 & (0,0,0) \to 0 \\ (0,0,1) \to 1 & (1,0,0) \to 1 & (1,0,0) \to 1 & (1,1,1) \to 1 \\ (0,1,0) \to 1 & (0,1,0) \to 1 & (0,0,1) \to 1 & (1,1,0) \to 0 \end{array}$$

Escrivim la taula de veritat de la funció (prenem com a inespecificacions els vectors d'entrada que no apareixen al cronograma):

abc	f
000	0
001	1
010	1
011	_
100	1
101	0
110	0
111	1

Apartat A Fent simplificació en SdP amb Karnaugh:

a bc	00	01	11	10
$a \setminus$				
0	0	1	_	1
1	1	0	1	0

L'expressió simplificada en SdP:

$$f(a,b,c) = \overline{a}b + \overline{a}c + bc + a\overline{b}\overline{c}$$

S'aplica Morgan a la suma exterior per convertir l'expressió en NAND de NANDs:

$$f(a,b,c) = \overline{\overline{a}\overline{b} \cdot \overline{a}\overline{c} \cdot \overline{b}\overline{c} \cdot \overline{a}\overline{b}\overline{c}}$$

Només faltaria expressar els negats com $\overline{x\cdot x}$ per eliminar les NOT, però ho farem directament en el logigrama:

Apartat B Ens fixem en el mapa de Karnaugh de l'apartat A. El patró «d'escacs» ens resulta familiar. Concretament, ens recorda una XOR. Fem la prova de considerar que $f(a,b,c)=a\oplus b\oplus c$, i resulta que encaixa en la taula de veritat. El logigrama queda, doncs:

$$a$$
 b
 c
 f