

CHEMISTRY Chapter 20

Electroquímica

Helicoteoría

Electroquímica

Rama de la química que estudia la relación entre la energía química y la energía eléctrica. Relaciona los fenómenos químicos con los fenómenos eléctricos. Comprende: Electrólisis y celdas galvánicas.

Celdas Galvánicas

Se conocen también como pilas. Son dispositivos que producen corriente continua a partir de reacciones redox (óxido-reducción) espontáneas.

Componentes de una celda galvánica

- Semicelda anódica
- 2 Electrodo anódico
- Solución anódica
- Semicelda catódica
- Electrodo catódico

- Solución catódica
- Puente salino
- Conductor metálico
- Voltímetro

Pila de Daniell

El Puente Salino

El puente salino cumple con las siguientes funciones:

- ✓ Permite el contacto eléctrico entre las dos semiceldas de modo que se cierra el circuito.
- ✓ Impide la mezcla mecánica de las soluciones ya que si esto ocurriese la reacción sería directa y los electrones no fluirán por el conductor externo.
- ✓ Mantiene la neutralidad eléctrica de las semiceldas al dejar fluir iones a través de su masa. Dicho flujo de iones se llama corriente interna de la pila.

Diagrama de una Celda Galvánica

Fuerza Flectromotriz de una Pila

$$\Delta \epsilon^{o} = \epsilon^{o}_{red} + \epsilon^{o}_{ox}$$

Donde:

¿
o
red : potencial estándar de reducción
ç
o
o
x: potencial estándar de oxidación

Helicopráctic

¿Cuál es el poten**a** al estándar, ε°, para las siguiente celda a 25 °C, Mg_(s) / Mg²⁺_(ac) // Sn²⁺_(ac) / Sn_(s)?

Datos

Semirreacciones	ε ^ο (V)
$Mg^{2+}_{(ac)} + 2e^- \leftrightarrows Mg_{(s)}$	-2,38
$\operatorname{Sn^{2+}}_{(ac)} + 2e^{-} \leftrightarrows \operatorname{Sn}_{(s)}$	-0,14

Semirreacción de reducción

$$Sn^{2+}_{(ac)} + 2e^{-} \Rightarrow Sn_{(s)} \epsilon^{\circ} Red = -0.14 V$$

Semirreacción de oxidación

$$Mg_{(s)} = Mg^{2+}_{(ac)} + 2e^{-}$$
 $\epsilon^{o} Oxid = +2,38 V$

$$\epsilon^{\circ}$$
 Celda = $-0.14 + 2.38$

$$ε$$
° Celda = +2,24 V

$$\varepsilon^{\circ}$$
 Celda = ε° Red + ε° Oxi

La reacción total que se lleva a cabo en una celda voltaica

es:
$$Cd_{(s)} + Co^{2+}_{(ac)} \leftrightarrows Cd^{2+}_{(ac)} + Co_{(s)}$$

¿Cuál sería el diagrama para dicha pila?

El potencial estándar del electrodo

$$Cd^{2+}_{(ac)} + 2e^{-} \leftrightarrows Cd_{(s)},$$
 es $-0,40 \text{ V}$
y el potencial estándar de la pila
 $Cd_{(s)} / Cd^{2+}_{(ac)} / Cu^{2+}_{(ac)} / Cu_{(s)}$ es $+0,78 \text{ V}$

¿Cuál es el potencial estándar del electrodo de cobre?

Semirreacción de reducción

Semirreacción de oxidación

$$Cu^{2+}_{(ac)} + 2e^{-} \leftrightarrows Cu_{(s)}$$
 $\varepsilon^{\circ} Red = x V$

$$Cd_{(s)} \leftrightarrows Cd^{2+}_{(ac)} + 2e^{-}$$

$$\epsilon^{\circ}$$
 Oxid = + 0,40 V

$$\epsilon^{\circ}$$
 Celda = + 0,78 V

$$\varepsilon^{\circ}$$
 Red + ε° Oxd = ε° Celda

$$X + 0,40 = +0,78$$

$$X = +0.38 V$$

- 4 Escriba verdadero (V) o falso (F) según corresponda.
 - a. Una celda galvánica consiste en provocar una reacción
 - química por medio de la electricidad. F (
 - b. En las celdas galvánicas los electrones migran de cátodo a áfiodo.
 - c. En una celda galvánica en el ánodo se produce la oxidación.

Determine el potencial estándar, en V, de la pila diseñada a 25 °C en el cual ocurre el siguiente proceso:

$$2 \text{ Al}_{(s)}^{+} + 3 \text{Cu}^{2+}_{(ac)} \leftrightarrows 2 \text{ Al}^{3+}_{(ac)} + 3 \text{ Cu}_{(s)}^{+}$$

 $Al^{3+}_{(ac)} / Al_{(s)}, \epsilon^{\circ} = -1,66 \text{ V}$
 $Cu^{2+}_{(ac)} / Cu_{(s)}, \epsilon^{\circ} = +0,34 \text{ V}$

RESOLUCION

$$Al_{ac}$$
 / $Al^{3+}_{(s)}$, ε° = +1,66 V
 $Cu^{2+}_{(ac)}$ / $Cu_{(s)}$, ε° = +0,34 V
 $\varepsilon^{\circ}_{pila}$ = $\varepsilon^{\circ}_{oxd}$ + $\varepsilon^{\circ}_{red}$
 $\varepsilon^{\circ}_{pila}$ = +1,66v + 0,34v

$$\varepsilon^{\circ}_{\text{pila}} = +2,00\text{v}$$

Se construye una celda voltaica que utiliza la reacción siguiente y opera a 298 K:

$$2 \text{ Al}_{(s)} + 3 \text{ Mn}^{2+}_{(ac)} \leftrightarrows 2 \text{ Al}^{3+}_{(ac)} + 3 \text{ Mn}_{(s)}$$

¿Cuál es la fem de esta celda en condiciones estándar?
 $\text{Al}^{3+} + 3\text{e}^- \leftrightarrows \text{Al}$, $\epsilon^\circ = -1,66 \text{ V}$
 $\text{Mn}^{2+} + 2\text{e}^- \leftrightarrows \text{Mn}$, $\epsilon^\circ = -1,18 \text{ V}$

RESOLUCION:

Al
$$\Rightarrow$$
 Al³⁺ + 3e⁻, ε ° = +1,66 V
Mn²⁺ + 2e⁻ \Rightarrow Mn, ε ° = -1,18 V
 ε °_{pila} = ε °_{oxd} + ε °_{red}
 ε °_{pila} = +1,66v - 1,18v

$$\varepsilon^{\circ}_{\text{pila}} = +0.48v$$

(V)

Professión a la celda galvánica mostrada escriba verdadero (V) o falso (F), según corresponda

$$Cu_{(s)}/Cu^{2+}_{(ac)}//Ag^{+}_{(ac)}/Ag_{(s)}$$
 $Cu^{2+}_{(ac)} + 2e^{-} \leftrightarrows Cu_{(s)}$, $\varepsilon^{\circ} = +0,34 \text{ V}$
 $Ag^{+}_{(ac)} + e^{-} \leftrightarrows Ag_{(s)}$, $\varepsilon^{\circ} = +0,80 \text{ V}$
a. La masa del electrodo de cobre disminuye. (V)
b. El cobre se oxida.

c. La reacción es espontánea en condiciones estándar a 25 °C.

$$Cu_{(s)} = Cu^{2+}_{(ac)} + 2e^{-}, \epsilon^{\circ} = -0.34 \text{ V}$$

RESOLUCION:

$$\varepsilon^{\circ}_{\text{pila}} = \varepsilon^{\circ}_{\text{oxd}} + \varepsilon^{\circ}_{\text{red}}$$

 $\varepsilon^{\circ}_{\text{pila}} = -0.34\text{v} + 0.80\text{v}$

$$\varepsilon^{\circ}_{\text{pila}} = +0.46\text{v}$$

Es espontánea por ser (+)

Una de las pilas estándar más sencillas es la pila de Daniell se usan dos semiceldas: La primera contiene una solución 1M de sulfato de zinc (ZnSO₄) y un electrodo de zinc que funciona como ánodo, la segunda contiene una solución 1M de sulfato de cobre (II) CuSO₄ y un electrodo de cobre que funciona como Cátodo. Estas dos semiceldas se conectan con un puente salino el cual contiene NaCl_(ac) . Determine el potencial estándar de la pila formada por el par

$$Cu^{2+}_{(ac)} + 2e^{-} \leftrightarrows Cu_{(s)}$$
, $\epsilon^{\circ} = +0.34 \text{ V}$
 $Zn^{2+}_{(ac)} + 2e^{-} \leftrightarrows Zn_{(s)}$, $\epsilon^{\circ} = -0.76 \text{ V}$

RESOLUCION:

$$\varepsilon^{\circ}_{\text{pila}} = \varepsilon^{\circ}_{\text{oxd}} + \varepsilon^{\circ}_{\text{red}}$$
 $Zn_{(s)} \leftrightarrows Zn^{2+}_{(ac)} + 2e^{-}, \varepsilon^{\circ} = +0,76 \text{ V}$

$$\varepsilon^{\circ}_{\text{pila}} = +0,76\text{v} + 0,34\text{v}$$

$$\varepsilon^{\circ}_{\text{pila}} = +1,1\text{v}$$