

Phase-2 Submission

Student Name: GUNA M

Register Number: 412023106303

Institution: SRI KRISHNA ENGINEERING COLLEGE:4120

Department: B.E,ELECTRONICS AND COMMUNICATION

ENGINEERING

Date of Submission: 09/05/2025

GitHub Repository Link:

https://github.com/GunaM/Stock-Price-Prediction-Guna

1. Problem Statement

Stock market prediction is a complex task influenced by various factors, including economic indicators, news sentiment, and historical price trends. This project aims to solve the problem of predicting future stock prices using AI-based time series analysis techniques. The focus is on applying machine learning and deep learning models (e.g., ARIMA, LSTM) to analyze and forecast price movements using historical stock data.

- **Problem Type**: Regression
- Why it Matters: Accurate stock prediction supports investors in making informed decisions, helps manage risk, and contributes to building intelligent trading systems. Automating predictions can reduce human error and lead to more data-driven financial strategies.

7 D	•	40		4 •	
2. P	roje	ct U	bie	ectiv	ves
-					

\Box Apply time series analysis techniques for stock price forecasting.
□ Compare traditional ML models (e.g., Linear Regression, Random Forest) with deep learning models (e.g., LSTM).
\square Optimize model performance using RMSE and MAE as evaluation metrics.
\square Explore feature engineering using technical indicators like Moving Averages and RSI.
☐ Improve model accuracy by experimenting with window sizes, normalization, and sequence lengths.
3. Flowchart of the Project Workflow:
CSS
CopyEdit
$Data\ Collection \rightarrow Data\ Preprocessing \rightarrow EDA \rightarrow Feature\ Engineering \rightarrow$
$\textit{Train-Test Split} \rightarrow \textit{Model Building (ML \& DL)} \rightarrow \textit{Evaluation} \rightarrow \textit{Visualization} \rightarrow \textit{Conclusion}$
4. Data Description
□ Dataset Name : Historical Stock Price Data
□ Source: Yahoo Finance (via yfinance API)
□ Data Type : Time-series, structured
□ Number of Records: ~5,000 rows per stock (daily data)
☐ Features : Date, Open, High, Low, Close, Adj Close, Volume

Target Variable:	'Close' price (for next time step prediction)
Dataset Nature:	Dynamic

5. Data Preprocessing

- Handled missing values using forward fill and interpolation
- Checked and removed duplicate rows (none found)
- Converted date column to datetime format and set as index
- Added moving averages (7-day, 30-day), RSI as engineered features
- Normalized data using MinMaxScaler
- Converted time series into supervised learning format using windowing

6. Exploratory Data Analysis (EDA)

Univariate Analysis: Line plots of stock prices over time, volume distribution
Bivariate Analysis: Correlation matrix between technical indicators and target
Multivariate Analysis: Pairplots of price with indicators (MA, RSI)
Insights Summary:

- Strong autocorrelation in stock prices
- Short-term moving averages show predictive signals
- Volume spikes often precede volatility

7. Feature Engineering

- Generated lagged features for Close prices
- Calculated rolling means (MA7, MA30)
- Added RSI (Relative Strength Index)
- Created trend direction (binary up/down) as an auxiliary label
- Justified each feature based on technical analysis strategies
- Justify each feature added or removed.

8. Model Building

Models Used:

- Linear Regression (baseline)
- o Random Forest Regressor
- LSTM (Long Short-Term Memory) network
- Data Split: 80% training, 20% testing (time-aware split)
- Evaluation Metrics:
 - o MAE, RMSE, R² Score
 - o LSTM outperformed traditional models in RMSE

9. Visualization of Results & Model Insights

- Line plots of predicted vs. actual stock prices
- Residual plots to analyze prediction errors
- Feature importance plot from Random Forest
- LSTM learning curves (loss vs. epochs)

10. Tools and Technologies Used

- Language: Python
- IDE/Notebook: Jupyter Notebook
- *Libraries*: pandas, numpy, matplotlib, seaborn, scikit-learn, TensorFlow/Keras, yfinance

• Visualization: Matplotlib, Seaborn, Plotly

11. Team Members and Contributions

KANNISH S - Data cleaning

GUNA M - Model development

HARIGURUBHARATHI - Documentation