北京大学数学科学学院期末试题

2007-2008 学年第一学期

考试科目:		泛函分析 II	考试时间:		2008 年 1 月
姓	名:		学	号:	

本试题共 6 道大题,满分 100 分

注 按杨磊老师的说法,期末考试分开卷和闭卷两部分。开卷部分是写关于 Feynman-Kac 公式的证明或者 Feynman 路径积分的应用的一篇文章; 闭卷部分试 题如下 (6 道题都是张恭庆和郭懋正老师《泛函分析讲义》下册书上的)

- 2. (20 分) 设 A 是 Hilbert 空间上的对称算子,则以下三个命题等价:
 - (1) A 是自伴算子;
 - (2) A^* 是闭算子且 $ker(A^* \pm iI) = \{\theta\}$
 - (3) $R(A \mp iI) = \mathcal{H}.$ (第 68 页定理 6.2.4)
- 3. (15 分)设 A 是一个闭对称算子,求证 $\sigma(A)$ 或者是 (1)闭上半平面;或者是 (2)闭下半平面;或者是 (3)整个平面;或者是 (4)实轴的子集。(第 115 页 6.4.5 题)
- 4. (10 分)设 A 是一个闭对称算子,A 的子解集至少包含一个实数,则 A 是自伴 算子。(第 115 页 6.4.6 题)
- 5. (20 分)设 = $C(-\infty, +\infty)$ 定义线性算子

$$(T(t)u)(s) = \begin{cases} u(s), & t = 0, \\ e^{-\lambda i} \sum_{n=0}^{\infty} \frac{(\lambda t)^n}{n!} u(s - n\mu), & t > 0. \end{cases}$$

其中参数 $\lambda, \mu > 0$. 证明 $\{T(t)|t \geq 0\}$ 是强连续压缩半群。并证明它的无穷小生成元是差分算子

$$(Au)(s) = \lambda(u(s-\mu) - u(s)).$$

(第 181 页 7.2.3 题)

6. (15 分)(1) 在 Hilbert 空间 $\mathcal{H} = L^2(\mathbb{R}^3)$, 设 $V \in L^2(\mathbb{R}^3, \lambda > 0)$, 证明

$$\lim_{\lambda \to \infty} \| V(-\triangle + \lambda)^{-1} \|,$$

并进而证明 V 关于 $-\triangle$ 紧的。

(2) 设 $V \in L^2(\mathbb{R}^3)$ 是实值函数,证明 $\sigma_{\infty\infty}(-\Delta + V) = [0, \infty)$. (提示:利用 $\sigma_{\infty\infty}(-\Delta) = [0, \infty)$)。(第 136 页 6.5.9 题 + 第 137 页 6.5.17 题)

(编辑: 伏贵荣 2017 年 2 月)