SERII FOURIER

Moldovan Ioana

UNIVERSITATEA BABEȘ-BOLYAI, CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ȘI INFORMATICĂ SPECIALIZAREA MATEMATICĂ

2018

Introducere

Lucrarea de față își propune prezentarea dezvoltării în serie Fourier a unei funcții de variabilă reală, enunțarea unor teoreme de convergență și divergență, precum și rezolvarea unor aplicații sugestive cu ajutorul seriilor Fourier.

Lucrarea de licență este structurată în patru capitole.

Cuprins

Introducere

- 1 SERIA FOURIER
- 2 CONVERGENŢA SERIILOR FOURIER
 - Inegalitatea lui Bessel. Egalitatea lui Parseval
 - Teoreme de convergență
- 3 DIVERGENȚA SERIILOR FOURIER
 - Principiul condensării singularităților
 - Teorema de divergență
- 4 APLICAŢII

Seria Fourier a unei funcții de variabilă reală

Fie $f:[-\pi,\pi] \to \mathbb{R}$ o funcție continuă. Seria trigonometrică

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right)$$

este cunoscută sub numele de seria Fourier a funcției f, iar numerele

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx, \ n = 0, 1, ...$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx, \ n = 1, 2, ...$$

se numesc coeficienții Fourier ai funcției f.

Inegalitatea lui Bessel. Egalitatea lui Parseval

Fie f o funcție de pătrat integrabilă definită pe intervalul $[-\pi,\pi]$ și $a_0,\ a_k,\ b_k$ coeficienții Fourier ai dezvoltării funcției f în serie Fourier. Inegalitatea

$$\frac{1}{2}\pi a_0^2 + \pi \sum_{k=1}^{\infty} (a_k^2 + b_k^2) \le \int_{-\pi}^{\pi} f(x)^2 dx$$

este cunoscută sub numele de inegalitatea lui Bessel, iar relația

$$\frac{1}{2}\pi a_0^2 + \pi \sum_{k=1}^{\infty} (a_k^2 + b_k^2) = \int_{-\pi}^{\pi} f(x)^2 dx.$$

poartă numele de egalitatea lui Parseval.

Teorema de aproximare a lui Weierstrass

Fie f o funcție continuă pe intervalul $[-\pi,\pi]$, cu proprietatea că $f(-\pi)=f(\pi)$. Atunci oricare ar fi $\varepsilon>0$, există un polinom trigonometric astfel încât $|f(x)-T(x)|<\varepsilon$, pentru orice x din intervalul $[-\pi,\pi]$.

Nucleul lui Dirichlet

Funcția

$$D_n(x) = \frac{\sin(x(n+\frac{1}{2}))}{2\sin(\frac{1}{2}x)} = \frac{1}{2} + \sum_{k=1}^n \cos(kx),$$

pentru n = 1, 2, ..., este cunoscută sub numele de *nucleul lui* Dirichlet. Aceasta are următoarea proprietate:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} D_n(x) dx = 1, \ n = 1, 2, \dots.$$

Teorema de convergență

Fie f o funcție de pătrat integrabilă pe intervalul $[-\pi,\pi]$ și fie s_n suma parțială de ordin n a seriei Fourier a funcției f. Fie f extinsă pe axa reală prin condiția de periodicitate $f(x+2\pi)==f(x)$. Presupunem că într-un punct $x\in\mathbb{R}$ prelungirea funcției satisface următoarea condiție de tip Lipschitz:

$$|f(x+t)-f(x)| \le C|t|, |t| < \delta,$$

unde C și δ sunt constante independente de x. Atunci $s_n(x)$ tinde către f(x) când n tinde la ∞ .

Criteriul lui Dirichlet

Fie $f:\mathbb{R}\to\mathbb{R}$ o funcție periodică de perioadă 2π , continuă (cu excepția eventual a unui număr finit de puncte de discontinuitate de prima speță) și monotonă pe porțiuni pe intervalul $[-\pi,\pi]$. Atunci seria Fourier asociată acestei funcții,

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right),$$

este convergentă în toate punctele și suma ei este:

- 1 f(x), în fiecare punct de continuitate x;
- $\frac{f(x+0)-f(x-0)}{2}$, dacă x este punct de discontinuitate pentru f.

Principiul condensării singularităților

O submulţime S a unui spaţiu topologic T se numeşte superdensă în T dacă S este densă, nenumărabilă şi reziduală în T. Fie X şi Y două spaţii normate pe acelaşi K şi $\mathcal{A} \subset (X,Y)^*$. Dacă X este complet si dacă

$$\sup\{\|A(x)\|\mid A\in\mathcal{A}\}=\infty,$$

atunci mulțimea singularităților lui A:

$$S_{\mathcal{A}} = \left\{ x \in X \mid \sup\{\|A(x)\| \mid A \in \mathcal{A}\} = \infty \right\}$$

este superdensă în X.

Teorema de divergență

Fie $s \in [0,1]$. Asociem fiecărei funcții x din spațiul Banach complex C[0,1] șirul $(T_{n,s}(x))_{n \in \mathbb{N}}$ al sumelor parțiale ale seriei Fourier calculate în punctul s,

$$T_{n,s}(x) = \sum_{k=-n}^{n} c_k e_k(s),$$

unde $e_k(s) = e^{2\pi i k s}, \ k \in \mathbb{Z}$.

Teorema de divergență (W. Rudin)

Pentru fiecare $s \in [0,1]$, mulțimea funcțiilor de divergență nemărginită:

$$\left\{x \in C[0,1] \mid \sup\{|T_{n,s}(x)| \mid n \in \mathbb{N}\} = \infty\right\}$$

este superdensă în C[0,1].

Aplicația 4.1

Demonstrați următoarea relație:

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}.$$

Soluţie:

Considerăm dezvoltarea în serie Fourier a funcției $f(x)=x^2,\ 0\leq x<2\pi$, prelungită prin periodicitate de perioadă 2π la întreaga axă reală.

Coeficienții Fourier sunt:

$$a_0 = \frac{1}{\pi} \int_0^{2\pi} x^2 dx = \frac{8\pi^2}{3},$$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} x^2 \cos(nx) dx = \frac{4}{n^2},$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} x^2 \sin(nx) dx = -\frac{4\pi}{n}.$$

Aplicând criteriul lui Dirichlet, avem

$$f(x) = x^2 = \frac{4\pi^2}{3} + \sum_{n=1}^{\infty} \left(\frac{4}{n^2} \cos(nx) - \frac{4\pi}{n} \sin(nx) \right),$$

oricare ar fi $x \in (0, 2\pi)$.

Pentru x = 0 avem

$$\frac{4\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2}$$
.

Tinând cont de condițiile lui Dirichlet și de faptul ca punctul $x_0=0$ este punct de discontinuitate pentru funcția f, atunci avem că seria (4.1) converge către $\frac{0+4\pi^2}{2}=2\pi^2$. Deci

$$4\sum_{n=1}^{\infty}\frac{1}{n^2}=2\pi^2-\frac{4\pi^2}{3}=\frac{2\pi^2}{3}.$$

De unde rezultă ceea ce trebuia demonstrat.

Aplicația 4.2

Dezvoltați în serie Fourier funcția f(x)=x, pentru $0 \le x < 2$ numai după cosinusuri și determinați funcția zeta patru a lui Riemann.

Soluție:

Dezvoltarea funcției f(x) în serie Fourier numai după cosinusuri este

$$f(x) = 1 - \frac{8}{\pi^2} \left[\cos\left(\frac{\pi x}{2}\right) + \frac{1}{3^2} \cos\left(\frac{3\pi x}{2}\right) + \frac{1}{5^2} \cos\left(\frac{5\pi x}{2}\right) + \dots \right],$$

oricare ar fi $x \in (0, 2)$.

Din egalitatea lui Parseval, se obține

$$\frac{1}{2} \int_{-2}^{2} x^{2} dx = \frac{4}{2} + \sum_{n=1}^{\infty} \left(\frac{16}{n^{4} \pi^{4}} \left[\cos(n\pi) - 1 \right]^{2} \right).$$

De unde rezultă

$$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots + \frac{1}{n^4} + \dots = \frac{\pi^4}{96}.$$

Aplicație cu referire la conducția termică

Determinați temperatura unei bare, știind că valoarea problemei pe frontieră este

$$\frac{\partial u}{\partial t} = 2 \frac{\partial^2 u}{\partial x^2}, \ 0 < x < 3, \ t > 0,$$

u(0,t)=u(3,t)=0, temperatura inițială este de $u(x,0)=25^{\circ}C$ și |u(x,t)|< M.

Soluţie:

Fie u(x, t) = X(x)T(t), de unde rezultă

$$\frac{X''}{X} = \frac{T'}{2T} = -\lambda^2.$$

Așadar, o soluție a ecuației cu derivate parțiale este

$$u(x,t) = e^{-2\lambda^2 t} (A\cos(\lambda x) + B\sin(\lambda x)),$$

unde A și B sunt constante.

Ținând cont de condițiile inițiale u(0, t) = u(3, t) = 0, avem

$$u(x,t) = Be^{\frac{-2k^2\pi^2t}{9}}\sin\left(\frac{k\pi x}{3}\right).$$

Pentru a satisface condiția u(x,0)=25, vom apela la principiul superpoziției, deci

$$u(x,t) = \sum_{k=1}^{\infty} B_k e^{\frac{-2k^2\pi^2t}{9}} \sin\left(\frac{k\pi x}{3}\right).$$

Deoarece

$$B_k = \frac{50(1 - \cos(k\pi))}{k\pi},$$

obținem

$$u(x,t) = \frac{100}{\pi} \left[e^{\frac{-2\pi^2 t}{9}} \sin\left(\frac{\pi x}{3}\right) + \frac{1}{3} e^{-2\pi^2 t} \sin(\pi x) + \dots \right].$$

- FIHTENHOLȚ G.M., Curs de calcul diferențial și integral, Editura Tehnică, București 1965.
- MUNTEAN I. Analiză funcțională, Cluj-Napoca, 1993.
- MURRAY R. SPIEGEL, Theory and problems of Fourier Analysis with applications to Boundary value problems, Schaum's Outline Series, McGraw-Hill Book Company.
- PETER L. DUREN, *Invitation to Classical Analysis*, Volumul 17 din *Pure and applied undergraduate texts, The Sally series*, Editura American Mathematical Society, 2012.
- SOLOMON M., MIRON N., *Analiză matematică, volumul II*, Editura Didactică și Pedagogică.
- WREDE R., MURRAY R. SPIEGEL, Advenced Calculus, a treia ediție, Schaum's Outline Series, McGraw-Hill Companies.

- civile.utcb.ro/cmat/cursrt/ec1.pdf.
- www.utgjiu.ro/math/miovanov/book/ms_curs/cap4.pdf.
- https://en.wikipedia.org/wiki/Fourier_series.
- https://ro.wikipedia.org/wiki/Serie_Fourier.

Vă mulțumesc!