Piotr Bury 2022/23

Zadania dodatkowe

Termin: wrzesień

Zadanie 1. Niech $x = 10^{10}$ oraz $y = x^x$. Ile cyfr ma liczba y^y ?

Zadanie 2. Jaki jest następny wyraz ciągu: 1, 2, 4, 7, 8, 11, 14, 16, 17, 19, 22, 26, 28, 29, 41, 44? Wskazówka: W opowiadaniu "Srebrny płomień" o Sherlocku Holmesie jest następujący dialog:

- Jest jeszcze coś, na co chciałby pan zwrócić moją uwagę?
- Na dziwny przypadek psa nocną porą.
- Pies w nocy milczał.
- To jest właśnie dziwny przypadek zauważył Sherlock Holmes.

Zadanie 3. Wyznaczyć wszystkie liczby naturalne dodatnie, które można przedstawić w postaci ilorazu dwóch liczb złożonych.

Zadanie 4. Niech a,b,c,d,x będą takimi liczbami całkowitymi, że (x-a)(x-b)(x-c)(x-d)-4=0 oraz a,b,c,d są parami różne. Wykaż, że $x=\frac{1}{4}\left(a+b+c+d\right)$.

Zadanie 5. Czy istnieją takie liczby niewymierne a, b, że a^b jest liczbą wymierną?

Termin: październik

Zadanie 6. Pociąg Pendolino jedzie na pewnej trasie ze średnią prędkością o 25% większą niż Intercity. O ile procent krócej trwa podróż tym pociągiem?

Zadanie 7. Rozważmy dwa kwadraty "wpisane" w półokrąg. W którym miejscu podstawy półokręgu powinien być punkt X, aby suma pól kwadratów była największa?

Zadanie 8. Rozwiąż równanie $4x^2 - 40[x] + 51 = 0$.

Zadanie 9. Niech $a = \sqrt[4]{2}$. Która liczba jest większa:

Zadanie 10. Rozważmy zbiór $A=\{1,2,3,\ldots,2022\}$. Ile jest podzbiorów zbioru A, których suma elementów wynosi 2 045 247?

Termin: listopad

Zadanie 11. Niech dany będzie 100-kąt foremny. Numerujemy jego boki kolejnymi dodatnimi liczbami naturalnymi. Pod jakim kątem przecinają się proste zawierające boki o numerach 88 i 99?

Zadanie 12. Rozważmy turniej siatkarski, w którym bierze udział 25 drużyn. Każda drużyna rozegrała z każdą dokładnie jeden mecz i nie było remisów. Niech w_i oznacza liczbę wygranych drużyny i, zaś p_i liczbę porażek drużyny i dla $i \in \{1, 2, 3, \ldots, 25\}$. Wykazać równość:

$$w_1^2 + w_2^2 + w_3^2 + \ldots + w_{25}^2 = p_1^2 + p_2^2 + p_3^2 + \ldots + p_{25}^2$$

którą krócej możemy zapisać:

$$\sum_{i=1}^{25} w_i^2 = \sum_{i=1}^{25} p_i^2.$$

Zadanie 13. Oblicz długość boku n-kata foremnego wpisanego w okrąg o promieniu 1.

Zadanie 14. Udowodnij, że jeśli a > 0 i b > a + c, to funkcja kwadratowa $y = ax^2 + bx + c$ ma dwa miejsca zerowe.

Zadanie 15. Niech dany będzie wielomian $W(x) = x^5 + x^2 + 1$. Liczby x_1, x_2, x_3, x_4, x_5 są jego różnymi pierwiastkami (miejscami zerowymi). Oblicz wartość wyrażenia

$$(x_1^2-2)(x_2^2-2)(x_3^2-2)(x_4^2-2)(x_5^2-2).$$

Termin: grudzień

Zadanie 16. Określić wraz z uzasadnieniem, które z poniższych zdań są prawdziwe, a które falszywe.

- 1) $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} : \ y > x+1$
- 2) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} : \ y > x+1$
- 3) $\exists x \in \mathbb{R} \ \exists y \in \mathbb{R} : \ y > x+1$
- 4) $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} : \ y > x+1$
- 5) $\forall y \in \mathbb{R} \ \forall x \in \mathbb{R} : \ y > x + 1$
- 6) $\forall y \in \mathbb{R} \ \exists x \in \mathbb{R} : \ y > x+1$
- 7) $\exists y \in \mathbb{R} \ \exists x \in \mathbb{R} : \ y > x + 1$
- 8) $\exists y \in \mathbb{R} \ \forall x \in \mathbb{R} : \ y > x + 1$

Zadanie 17. Pewien uczeń Sobieskiego jechał do szkoły na hulajnodze elektrycznej z prędkością 10 km/h. Z jaką prędkością powinien wracać ze szkoły, aby średnia prędkość na całej trasie (do szkoły i ze szkoły) była równa 20 km/h?

Zadanie 18. Oblicz $\log \left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)$.

Zadanie 19. Wykaż, że istnieje prosta, która dzieli dokładnie na pół (pod względem powierzchni) zarówno figurę żółtą jak i różową.

Zadanie 20. Z punktu A(2022, 2022) rysujemy łamaną poprzez poprowadzenie odcinka długości 1 w jednym z dowolnych czterech kierunków (prawo, lewo, góra, dół). Kontynuujemy rysowanie poprzez dorysowanie kolejnych odcinków w jednym z czterech kierunków z punktu, w którym kończy się poprzedni odcinek. Ile jest dróg długości n, które kończą się na prostej o równaniu y = 2022?

Rozwiązanie 1. Liczymy po kolei

$$y = (10^{10})^{10^{10}} = 10^{10 \cdot 10^{10}} = 10^{10^{11}}$$

. Tak wiec:

$$y^y = \left(10^{10^{11}}\right)^{10^{10^{11}}} = 10^{10^{11} \cdot 10^{10^{11}}} = 10^{10^{11+10^{11}}}.$$

A zatem liczba y^y ma $10^{11+10^{11}} + 1$ cyfr (bo liczba 10^k ma k+1 cyfr).

Rozwiązanie 2. Wskazówka podpowiada nam, że warto zająć się czymś, czego nie ma, czego brakuje. W powyższym ciągu "brakuje" następujących liczb: 3,5,6,9,10,12,13,15,18,20,21,23,24,25,27, 30, 31, 32,33,34,35,36,37,38,39,40,42,43. Co je łączy? Wszystkie te liczby są powiązane z trójką i piątką: są ich wielokrotnościami lub zawierają te cyfry. Tak więc następną liczbą będzie 46.

Rozwiązanie 3. Zauważmy, że każdą liczbę n można zapisać w postaci $n=\frac{n^3}{n^2}$. Zarówno licznik jak i mianownik są liczbami złożonymi, więc w podany sposób można przedstawić każdą liczbę naturalną dodatnia.

Rozwiązanie 4. Po przeniesieniu 4 na prawą stronę mamy iloczyn czterech liczb całkowitych równy 4. Co więcej liczby te są różne, bo a, b, c, d były różne. Liczba 4 ma łącznie 4 różne dzielniki całkowite, więc powyższy iloczyn składa się z liczb: -2, -1, 1, 2. Bez straty ogólności zachodzi więc:

$$\begin{cases} x - a = -2, \\ x - b = -1, \\ x - c = 1, \\ x - d = 2. \end{cases}$$

Dodając stronami otrzymujemy 4x-(a+b+c+d)=0 skąd $x=\frac{a+b+c+d}{4}$.

Rozwiązanie 5. Rozważmy liczbę $\sqrt{2}^{\sqrt{2}}$. Ciężko stwierdzić, czy ta liczba jest wymierna, czy nie, ale w tej chwili nie ma to znaczenia. Są jednak dwie możliwości:

- jeśli jest ona wymierna, to znaleźliśmy takie liczby a i b, bo $\sqrt{2} \notin \mathbb{Q}$,
- $\bullet\,$ jeśli natomiast jest ona niewymierna, to podnosząc ją do potęgi $\sqrt{2}$ otrzymamy liczbę wymierną,

bowiem
$$\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}} \cdot \sqrt{2} = \sqrt{2}^2 = 2.$$

To oznacza, że takie liczby istnieją, choć z powyższego rozumowanie nie jesteśmy w stanie wskazać, która para jest dobra.

Jest to przykład dowodu niekonstruktywnego, czyli takiego, w którym dowodzimy, że coś istnieje (np. liczba, zbiór, funkcja), jednocześnie nie podając jak ten obiekt wygląda. Co ciekawe, dopiero w roku 1930 wykazano, że liczba $\sqrt{2}^{\sqrt{2}}$ jest niewymierna.

Rozwiązanie 6. Wprowadźmy oznaczenia:

 v_1 – prędkość Intercity, $v_2 = 1,25v_1$ – prędkość Pendolino, $s_1 = s_2 = s$. Wtedy:

$$t_1 = \frac{s}{v_1}, \quad t_2 = \frac{s}{1,25v_1}.$$
 Zatem

$$t_1 = \frac{s}{v_1}, \quad t_2 = \frac{s}{1,25v_1}. \text{ Zatem}$$

$$\frac{\frac{s}{v_1} - \frac{s}{1,25v_1}}{\frac{s}{v_1}} \cdot 100\% = \frac{\frac{1}{v_1} - \frac{1}{1,25v_1}}{\frac{1}{v_1}} \cdot 100\% = \frac{1 - \frac{4}{5}}{1} \cdot 100\% = \frac{1}{5} \cdot 100\% = 20\%,$$

gdzie w pierwszym kroku podzieliliśmy licznik i mianownik przez s, a w drugim pomnożyliśmy przez v_1 .

Rozwiązanie 7. Wprowadźmy oznaczenia jak na rysunku, przy czym P jest tak wybrany na AB, że |AP| = |BC| oraz |PB| = |AD|. Z twierdzenia Pitagorasa: |PC| = |PD|. Tak więc punkt P leży na średnicy półokręgu i jest równo odległy od dwóch punktów na półokręgu. Musi być zatem środkiem tego

Z jednej strony $|PC| = \sqrt{a^2 + b^2}$, gdzie a, b to odpowiednio boki kwadratów, a z drugiej |PC| = r = const.Tak więc niezależnie od długości boków dwóch kwadratów liczba $\sqrt{a^2+b^2}$ jest stała, a zatem suma pól kwadratów, czyli $a^2 + b^2$ jest stała. Punkt X można wiec umieścić gdziekolwiek – szukane pole bedzie zawsze wynosić tyle samo.

Rozwiązanie 8. Zauważmy najpierw oczywistą nierówność: $-40x \le -40[x]$.

$$(2x-3)(2x-17) = 4x^2 - 40x + 51 \le 4x^2 - 40[x] + 51 = 0.$$

Nierówność $(2x-3)(2x-17) \le 0$ jest spełniona przez $x \in \left(\frac{3}{2}, \frac{17}{2}\right)$, a więc $[x] \in \left(\left[\frac{3}{2}\right], \left[\frac{7}{12}\right]\right) = [1, 8]$. To oznacza, że x jest liczbą dodatnią i możemy go wyznaczyć z wyjściowego równania: $x = \frac{1}{2}\sqrt{40[x]-51}$. Rozważmy po kolei przypadki:

- $[x] = 1 \Rightarrow x = \frac{1}{2}\sqrt{40 51}$ Sprzeczność,
- $[x] = 2 \Rightarrow x = \frac{1}{2}\sqrt{29}$,
- $[x] = 3 \Rightarrow x = \frac{1}{2}\sqrt{69}$,
- $[x] = 4 \Rightarrow x = \frac{1}{2}\sqrt{109}$
- $[x] = 5 \Rightarrow x = \frac{1}{2}\sqrt{149}$,
- $[x] = 6 \Rightarrow x = \frac{1}{2}\sqrt{189}$,
- $[x] = 7 \Rightarrow x = \frac{1}{2}\sqrt{229}$
- $[x] = 8 \Rightarrow x = \frac{1}{2}\sqrt{269}$,

Sprawdzając teraz, czy część całkowita otrzymanych iksów jest równa odpowiednim liczbom całkowitym (np. czy $\left[\frac{1}{2}\sqrt{109}\right] = 4$) otrzymujemy równość tylko w czterech przypadkach, dla: $x \in \left\{\frac{1}{2}\sqrt{29}, \frac{1}{2}\sqrt{189}, \frac{1}{2}\sqrt{229}, \frac{1}{2}\sqrt{269}\right\}$

Rozwiązanie 9. Zauważmy, że $a^{16} = 16$, a zatem

a więc liczba 10^{10¹0} jest znacznie większa.

Rozwiązanie 10. Suma wszystkich elementów zbioru A wynosi $\frac{1+2022}{2} \cdot 2022 = 2023 \cdot 1011 = 2045253$. Suma elementów podzbioru zbioru A będzie równa $2045247 \Leftrightarrow$ suma elementów dopełnienia tego zbioru będzie równa 6. Ale takimi podzbiorami są jedynie $\{6\}, \{1,5\}, \{2,4\}, \{1,2,3\}$. Takich zbiorów jest 4, a więc szukanych w zadaniu zbiorów też jest 4.

Rozwiązanie 11. Narysujmy promienie do końców obu boków i wprowadźmy oznaczenia jak na rysunku.

Stukat można podzielić promieniami na 100 trójkatów równoramiennych, gdzie każdy ma między ramionami kąt $\frac{360^{\circ}}{100}$. Zaznaczony na rysunku kąt α jest wyznaczony przez 12 takich trójkątów – ma zatem miarę $12 \cdot \frac{360^{\circ}}{100} = 43, 2^{\circ}$. W każdym takim trójkącie równoramiennym kąt przy podstawie ma miarę $\left(180^{\circ} - \frac{360^{\circ}}{100}\right)$: $2 = 88, 2^{\circ}$. Jest to więc miara kąta OAX oraz OBX. Zatem z sumy kątów w czworokącie $|\langle AXB| = 360^{\circ} - 43, 2^{\circ} - 2 \cdot 88, 2^{\circ} = 140, 4^{\circ}$. Tak więc proste przecinają się pod kątem 140, 4° (lub 39,6° gdy chcemy mieć kat ostry).

Rozwiązanie 12. Zauważmy, że $\sum_{i=1}^{20} w_i = \sum_{i=1}^{20} p_i$, bo każdemu zwycięstwu odpowiada dokładnie jedna porażka. Rozpiszmy:

$$\sum_{i=1}^{25} w_i^2 - \sum_{i=1}^{25} p_i^2 = \sum_{i=1}^{25} (w_i^2 - p_i^2) = \sum_{i=1}^{25} (w_i - p_i)(w_i + p_i) = \dots$$

Wiemy ponadto, że dla każdego i zachodzi $w_i + p_i = n - 1$ (bo to liczba gier każdego gracza). Tak więc:

$$\dots = \sum_{i=1}^{25} (w_i - p_i)(n-1) = (n-1) \sum_{i=1}^{25} (w_i - p_i) = (n-1) \left(\sum_{i=1}^{25} w_i - \sum_{i=1}^{25} p_i \right) = (n-1) \cdot 0 = 0.$$

Przenosząc na drugą stronę otrzymujemy tezę.

Rozwiązanie 13. Z twierdzenia cosinusów

$$x^2 = 1 + 1 - 2\cos\left(\frac{360^\circ}{n}\right).$$

Zatem

$$x = \sqrt{2 - 2\cos\left(\frac{360^{\circ}}{n}\right)} = \sqrt{2}\sqrt{1 - \cos\left(2 \cdot \frac{180^{\circ}}{n}\right)} = \sqrt{2}\sqrt{2\sin^2\frac{180^{\circ}}{n}} = 2\left|\sin\frac{180^{\circ}}{n}\right| = 2\sin\frac{180^{\circ}}{n},$$

gdzie skorzystaliśmy ze wzoru $1-\cos 2x=2\sin^2 x$ oraz faktu, że kąt $\frac{180^\circ}{n}$ należy do pierwszej ćwiartki.

Rozwiązanie 14. Rozważmy dwa przypadki:

- Jeśli c<0, to -c>0. Wtedy $\Delta=b^2-4ac=b^2+4a\cdot(-c)>0$, a więc są dwa rozwiązania. Jeśli $c\geqslant 0$. Wtedy a+c>0 oraz $\Delta=b^2-4ac>(a+c)^2-4ac=a^2-2ac+b^2=(a-c)^2\geqslant 0$,

Rozwiązanie 15. Skoro wielomian ma 5 pierwiastków i jest stopnia 5, to możemy go zapisać w postaci $x^5 + x^2 + 1 = (x - x_1)(x - x_2)(x - x_3)(x - x_4)(x - x_5)$. Podstawiając $x = \sqrt{2}$ oraz $x = -\sqrt{2}$ otrzymujemy:

$$3 + 4\sqrt{2} = (\sqrt{2} - x_1)(\sqrt{2} - x_2)(\sqrt{2} - x_3)(\sqrt{2} - x_4)(\sqrt{2} - x_5)$$

oraz

$$3 - 4\sqrt{2} = (-\sqrt{2} - x_1)(-\sqrt{2} - x_2)(-\sqrt{2} - x_3)(-\sqrt{2} - x_4)(-\sqrt{2} - x_5).$$

Wyciągając znaki "–" przed nawiasy z drugiego wyrażenia, a następnie mnożąc powyższe dwie równości stronami otrzymujemy:

$$(3+4\sqrt{2})(3-4\sqrt{2}) = -(\sqrt{2}-x_1)(\sqrt{2}-x_2)(\sqrt{2}-x_3)(\sqrt{2}-x_4)(\sqrt{2}-x_5)(\sqrt{2}+x_1)(\sqrt{2}+x_2)(\sqrt{2}+x_3)(\sqrt{2}+x_4)(\sqrt{2}+x_5)$$

Stosujac wzory skróconego mnożenia po obu stronach otrzymujemy

$$9 - 32 = -(2 - x_1^2)(2 - x_2^2)(2 - x_3^2)(2 - x_4^2)(2 - x_5^2).$$

Wyciągając ponownie minusy przed nawiasy po prawej otrzymujemy, że szukana wartość to -23.