

### HAUTE ÉCOLE D'INGÉNIEUR DU VALAIS

# REPORT NAME

COURSE NAME

Author Name 21 janvier 2022

# Table des matières

| 1 | Intr | oductio   | n                                                  | 2  |
|---|------|-----------|----------------------------------------------------|----|
|   | 1.1  | Contex    | tte                                                | 2  |
| 2 | Spéc | cificatio | ns                                                 | 3  |
|   | 2.1  | Cahier    | des charges                                        | 3  |
|   |      | 2.1.1     | LoRaWAN                                            | 3  |
|   |      | 2.1.2     | Edge Computing                                     | 4  |
|   |      | 2.1.3     | Notre interprétation du cahier des charges         | 4  |
|   | 2.2  | Schém     | a bloc global                                      | 5  |
| 3 | LiD  | AR        |                                                    | 6  |
|   | 3.1  | Métho     | de                                                 | 6  |
|   |      | 3.1.1     | Fondamentaux                                       | 6  |
|   |      | 3.1.2     | Caractéristiques                                   | 7  |
|   |      | 3.1.3     | Implémentation                                     | 8  |
|   |      | 3.1.4     | Méthode de mesure                                  | 10 |
|   | 3.2  | Résult    | ats                                                | 11 |
|   |      | 3.2.1     | Caractéristique de l'erreur de mesure              | 11 |
|   |      | 3.2.2     | Mesures de distance dans un environnement perturbé | 14 |
|   |      | 3.2.3     | Stabilité en température des mesures               | 17 |
|   |      | 3.2.4     | Mesure de hauteur en laboratoire                   | 18 |
|   |      | 3.2.5     | Mesure de hauteur en situation réelle              | 21 |
| 4 | Synt | thèse     |                                                    | 23 |
|   | 4.1  | Discus    | sion des résultats                                 | 23 |
|   | 4.2  |           | mes rencontrés                                     |    |
| 5 | Con  | clusion   |                                                    | 24 |

## Introduction

### 1.1 Contexte

Ne vous est-il jamais arrivé de vous réveiller un matin et, lorsque vous prenez votre véhicule ou un transport en commun, surprise! Il a neigé durant la nuit, et les services de déneigement n'y étaient visiblement pas préparés.

LoRaSnow est un projet qui vise à palier à ce problème. Intégrant les dernières technologies de l'internet des objets et une utilisation intelligente de capteurs, ces modules alertent les services privés et communaux de chutes de neige dès les premiers flocons, permettant une réaction rapide et efficace.

En effet, le système d'alerte de piquet en place ne permet pas une vue globale de la région, et tarde parfois à réagir. De plus, les prévisions météorologiques sont parfois imprécises quand il s'agit de quantité de précipitation. Ce projet amène donc une surveillance constante et automatique d'une région, remplaçant par la même occasion le système coûteux déjà en place.

## **Spécifications**

### 2.1 Cahier des charges

LoRaSnow est un projet destiné à détecter de la neige sur une route lorsque les condition météorologiques sont difficiles. Ainsi, le système doit être en mesure de se reprérer sous une neige importante, du brouillard ou encore un vent fort, le tout en maintenant un résultat optimal.

Le but du projet est donc de créer un module capable de détecter de la neige par une quelconque méthode définie et transmettre des données sur un réseau LoRaWAN tout en implémentant une solution en *Edge Computing*. Notre travail ici est d'étudier les différentes possibilités qui s'offrent à nous pour accomplir cette tâche.



FIGURE 2.1 – Conditions typiques de fonctionnement du projet <sup>1</sup>

#### 2.1.1 LoRaWAN

LoRaWAN (acronyme de *long-range wide-area network*) est un réseau de communication radio spécifique à l'internet des objets (IoT). Ce protocole est utilisé pour transmettre des données sur des grandes distances tout en permettant une consommation électrique très faible. La longue portée de son signal permet d'installation d'appareils dans des endroits isolés, sans nécessairement avoir accès au réseau électrique ou mobile.

La topologie de LoRaWAN est dite en étoile d'étoiles. En effet, comme le montre la figure 2.2, le serveur

<sup>1.</sup> Copyright : MediaPunch/Shutterstock

Spécifications SystInf

d'application se trouve au centre, et les passerelles réparties sur un territoire donné communiquent avec les appareils installés.



FIGURE 2.2 – Topologie LoRaWAN <sup>1</sup>

### 2.1.2 Edge Computing

Comme le réseau LoRa utilisé permet une transmission de données bas débit, il est important d'économiser le plus possible la bande passante. Pour cela, la méthode d'optimisation d'*Edge Computing* est privilégiée, rapprochant le traitement des données au plus proche des capteurs.

En pratique, dans ce projet, cela signifie que les données récoltées seront traitées directement sur le module LoRaSnow. Ainsi, uniquement les résultats des mesures seront envoyées dans le cloud.

#### 2.1.3 Notre interprétation du cahier des charges

Comme le cahier des charges donne un objectif à atteindre, nous avons jugé important de préciser les étapes à accomplir pour détecter de la neige sur une route.

#### Mesure de hauteur de neige

Afin d'avoir une indication sur l'enneigement de la route, nous avons trouvé utile d'avoir une information sur la hauteur de neige présente dans le but d'avoir une vue global d'une région grâce à un réseau de capteurs. Sur un vaste territoire comme certaines communes de montagne, l'enneigement peut être irrégulier. De cette manière, nous pouvons connaître facilement l'état des routes dans des endroits isolés.

#### Reconnaissance du débit de neige et de l'état de la route

En plus des informations de hauteur de neige, nous avons couplé une solution de vision par ordinateur qui nous permet de récolter des mesures sur l'enneigement de la route ainsi que le débit actuel de flocons, dans l'objectif de faire des prévisions à court terme.

Nous avons estimé qu'il était important de créer une redondance sur l'indication de l'état de la route. En effet, nous nous attendons à ce que la mesure physique de hauteur de neige ne soit pas capable de donner des résultats pertinents pour les premiers millimètres.

#### Fixation et protection du module

Comme le module LoRaSnow sera exposé au aléas météorologiques de la montagne, un boitier

<sup>1.</sup> Tiré de la page Wikipedia LoRaWAN

Spécifications SystInf

étanche et résistant doit être confectionné. Il doit permettre de protéger totalement l'électronique de l'humidité et d'autres types de perturbations. Il offre aussi un collier de fixation pour permettre une installation facile et fiable. L'élévation du module doit aussi être réglable.

L'avantage principal de ce cahier des charges explicite résite dans le fait qu'il est très facile pour nous de séparer les tâches entre les collaborateurs du projet. Ainsi, chaque solution n'est que très peu couplée les unes par rapport aux autres durant le prototypage.

### 2.2 Schéma bloc global



FIGURE 2.3 – Schéma bloc global du projet

#### Environment

Ceci représente l'environnement mesuré, c'est-à-dire la route enneigée. Il est important de noter que les deux capteurs qui observent l'environnement le font de manière non-intrusive.

#### Height Measurement

Ce capteur se charge de mesurer une hauteur de neige sur la route selon une méthode définie. Il communique ses mesures directement à l'élément central du projet.

#### Compteur Vision

Cette partie s'occupe de mesurer le débit de flocons et sert de complément à la partie de mesure de hauteur.

#### Embedded Electronic

L'électronique embarquée représente la partie central du projet. C'est ici que l'on retrouve le microcontrôleur qui traiter les données reçues par les différents capteur et de transmettre les résultats.

#### LoRa Transmission

Le module de transmission LoRa reçoit les données du microcontrôleur et les envoie sur le réseau LoRaWAN à l'aide d'une antenne à l'intérieur du boitier.

#### LoRa Gateway

La passerelle LoRaWAN couvre une surface donnée dans laquelle se trouvent un ou plusieurs modules LoRaSnow. Ainsi, les données transmises sont réceptionnées et retransmises sur un réseau IP.

#### Cloud Server

Finalement, on retrouve un serveur dans le cloud se chargeant de la bonne réception des données de tous les modules LoRaSnow d'un même groupe. Les données récoltées peuvent ainsi être mise en forme et utilisées pour indiquer par exemple la couverture neigeuse d'une région.

Les trois derniers points évoqués n'ont pas encore été implémentés dans le projet.

## LiDAR

### 3.1 Méthode



FIGURE 3.1 – Garmin Lidar Lite v4

Le LiDAR (ou *laser imaging detection and ranging*) est un système de télédétection par laser utile pour mesurer des distances. Ce dernier envoie des faisceaux laser et mesure le temps que parcourt la lumière jusqu'au sujet. Il est ainsi possible de connaître avec plus ou moins de précision quelle est la distance entre l'objet et le capteur.

#### 3.1.1 Fondamentaux

Le LiDAR a l'avantage de mesurer des distances de manière non-intrusive. De cette manière, il n'y a aucun contact avec le milieu mesuré.

Dans le cadre du projet, cette solution est préférée car elle n'interfère pas avec la route et les machines de déneigement. Nous attendons donc que ce LiDAR mesure une hauteur de neige sur un segment de route de manière fiable, et ce à une distance d'environ 2 mètres du sol afin de protéger les instruments.

À partir d'une mesure de référence au sol, le capteur doit être capable de mesurer une hauteur de neige présente dès les premières chutes, même après déneigement de la route. De plus, les conditions météorologiques extrêmes présentes en altitude ne doivent en aucun cas perturber ces mesures, et ce durant tout l'hiver. De plus, il serait important de ne pas avoir à entretenir ou dépanner le système au cours de la saison, sauf en cas de force majeure.

Lors d'une mesure lorsqu'il neige, les flocons peuvent passer devant le capteur et interférer avec la mesure. De ce fait, une solution efficace devra être développée afin de pouvoir mesurer efficacement la hauteur de neige présente sur la route. De plus, le bruit généré par ces flocons pourra éventuellement nous donner des informations sur le débit de neige actuel.

#### 3.1.2 Caractéristiques

Après une étude détaillée des solutions disponibles sur le marché, nous avons retenu le LiDAR Lite V4 de la firme Garmin, spécialiste des équipements GPS et de capteurs pour diverses applications. Il est disponible pour un prix très raisonnable de 85CHF chez notre fournisseur.

Il a l'avantage principal d'être livré dans un boîtier adapté (comme le montre la figure 3.1), permettant une implémentation mécanique efficace et rapide. Il faut cependant se méfier du fait que ce boîtier n'est pas étanche et ne peut par conséquent par être directement utilisé en extérieur.

| Specification             | Measure                          |
|---------------------------|----------------------------------|
| Operating temperature     | -20 to 60°C                      |
| Operating voltage         | 4.75 to 5.25V                    |
| Current consumption       | 2mA idle                         |
|                           | 85mA during acquisition          |
| Signals voltage           | 3.3V typical                     |
| Range                     | 5cm to 10m                       |
| Resolution                | 1cm                              |
| LED wavelength            | 940nm                            |
| Interface                 | I2C or ANT                       |
| Update rate               | I2C : Greater than 200Hz typical |
| Measurement repeatability | ±1cm to 2m                       |
|                           | ±2cm to 4m                       |
|                           | ±5cm to 10m                      |

TABLE 3.1 – Extrait des spécifications du LiDAR Lite V4

La table 3.1 montre une sélection des caractéristiques importantes du capteur, tirées directement de sa fiche technique <sup>1</sup>. Ci-dessous sont détaillés les éléments essentiels à la sélection de ce capteur.

#### Température de fonctionnement

Cette information s'avère essentielle pour ce projet. En effet, on peut s'attendre à ce que ce capteur puisse fonctionner à des températures négatives, parfois jusqu'à -20°C. La borne supérieure de cette caractéristique nous intéresse moins, car ce sont des températures difficilement atteignables en hiver, même dans un boîtier fermé en plein soleil.

#### Consommation de courant

Cette valeur est cruciale pour un projet qui se veut basse consommation et autonome. En effet, nous ne pouvons pas nous permettre de consommer plus que quelques microampères lorsque le système est en veille.

Ainsi, on remarque que le capteur au repos consomme un courant relativement élevé de 2mA, ce qui n'est malheureusement pas acceptable. Pour cela, un système de déclenchement devra être implémenté (grâce à un MOSFET par exemple) afin de faire tomber cette consommation à zéro. Le courant de 85mA lorsque le LiDAR fait des acquisitions ne pose pas problème car la période de mesure représente une partie négligeable du temps de fonctionnement total.

#### Tension des signaux

Il est important de noter que les signaux qui sont transmis au capteur (par le biais du bus I2C ou par les GPIO) doivent absolument avoir une tension de 3.3V.

<sup>1.</sup> Fiche technique du LiDAR Lite V4 : URL du datasheet

**Gamme de mesure** Le capteur est théoriquement capable de mesurer avec plus ou moins de précision n'importe quelle distance entre 5cm et 10m, ce qui satisfait entièrement les besoins du projet.

#### Longueur d'onde de la LED

Pour effectuer ses mesures, le LiDAR envoie des rayons lumineux infrarouges (940nm) grâce à une LED. Ainsi, compte tenu de la puissance du système et des limitations introduites par ce type de lumière, on peut d'ores et déjà s'attendre à ce que ce capteur ne fonctionne pas durant la journée.

#### Répétabilité des mesures

Cette information est nécessaire pour ajuster nos attentes quant à la précision attendue de ce capteur. Sur le terrain, il est estimé qu'il aura des distances maximales de 3 mètres à mesurer, impliquant une précision typique de ±2cm.

De plus amples tests seront nécessaires pour attester de la véracité de ces informations sur le terrain. Ils seront détaillés dans la section correspondante.

#### 3.1.3 Implémentation



FIGURE 3.2 – LiDAR Lite V4 implémenté sur Arduino Uno

Afin d'implémenter le LiDAR avec un microcontrôleur, il a été choisi d'utiliser l'interface I2C mise à disposition. Ce protocole est relativement simple à mettre en place et permet un bon débit de donnée. En plus des pins d'alimentation et de transmission I2C, le capteur met à disposition deux ports GPIO, dénommés *GPIOA* et *GPIOB*. *GPIOA* permet de déclencher une mesure du capteur sans passer par la modification des registres I2C. *GPIOB* informe le microcontrôleur de l'état actuel de l'acquisition de mesures, et peut donc être configurée en interruption si nécessaire (état bas, prêt; état haut, occupé).

Pour tester simplement et efficacement ce capteur, il a tout d'abord été interfacé sur Arduino Uno à l'aide de la librairie Sparkfun fournie (voir figure 3.2). Les premiers résultats sont détaillés dans la

section correspondante.

Le capteur a été porté ensuite sur une carte de développement *STM32F411RE NUCLEO* de la firme STMicroelectronics (figure 3.3) pour plus de flexibilité et une puissance de calcul plus importante. La libraire mentionnée ci-dessus a été adaptée pour correspondre à l'environnement de développement dans le language C.

| Register Address | Register Name                     | Value / Description                                      |
|------------------|-----------------------------------|----------------------------------------------------------|
| 0x00             | Device command                    | Write 0x04: Take distance measurement with receiver bias |
| 0x01             | System status                     | Read 0x00 : Busy flag (Low, ready; High, busy)           |
|                  |                                   | Other values : See datasheet                             |
| 0x10             | Distance measurement              | Measured distance in cm                                  |
|                  | Low byte                          |                                                          |
| 0x11             | Distance measurement<br>High byte | Measured distance in cm                                  |

TABLE 3.2 – Sélection des registres I2C essentiels

Dans le but de prendre des mesures de distance, plusieurs registres I2C doivent être consultés. La table 3.2 montre une sélection de 4 registres essentiels au fonctionnement de ce capteur. Premièrement, on va envoyer une commande de mesure de distance dans le registre 0x00, puis on attend grâce au status (0x01) que l'appareil ne soit plus occupé. On peut donc ensuite consulter les deux registres 0x10 et 0x11 afin de recomposer une valeur 16 bits représentant la distance mesurée, en centimètre. Par défaut, le LiDAR possède une adresse I2C fixée à 0x62.



FIGURE 3.3 - LiDAR Lite V4 sur STM32-NUCLEO

#### 3.1.4 Méthode de mesure

Une méthode de mesure de hauteur de neige doit être établie avant de poursuivre le développement. Comme le capteur sera placé en bordure de route à un angle connu de la verticale, un peu de trigonométrie est nécessaire afin de retrouver une hauteur de neige avec deux mesures de distances. La situation est schématisée sur la figure 3.4.



FIGURE 3.4 – Schéma de l'installation d'un module LoRaSnow

- $\alpha$  Angle du capteur par rapport à la verticale (en degré)
- $\beta$  Angle du segment de route mesuré par rapport à l'horizontale (en degré)
- $\gamma$  Angle entre le faisceau du LiDAR et le segment de route (en degré)
- $d_1$  Distance de référence entre le capteur et le segment de route (en centimètre)
- $d_2$  Distance mesurée entre le capteur et une hauteur de neige (en centimètre)
- $\Delta d$  Différence entre la distance de référence et la distance à la neige (en centimètre)
- d Hauteur de neige sur la route (en centimètre)
- h Distance entre le capteur et le sol, à la vertical (en centimètre)

Lors de l'installation du module,  $\alpha$ ,  $\beta$  et h doivent être connus. Avec ces valeurs, on peut désormais calculer facilement l'angle  $\gamma$ :

$$\gamma = 180^{\circ} - 90^{\circ} + \beta - \alpha = 90^{\circ} + \beta - \alpha$$

Le  $\Delta d$  est simplement la différence entre la distance de référence et la distance entre la neige et le capteur :

$$\Delta d = d_1 - d_2$$

Ces deux informations nous permettent maintenant de déterminer la hauteur de neige présente sur le segment de route mesuré :

$$d = \Delta d * \cos (90^{\circ} - \gamma)$$

Il est important de noter que la résolution du capteur est de 1 centimètre, ce qui implique que la hauteur de neige mesurée va varier par pas de  $\cos{(90^{\circ} - \gamma)}$ .

#### 3.2 Résultats

Ici seront présentés les résultats des tests qui concernent le LiDAR Lite V4. Au fur et à mesure des résultats, quelques conclusions seront d'ores et déjà tirées.

En annexe, se trouve le protocole de test complet du capteur.

#### 3.2.1 Caractéristique de l'erreur de mesure

Le premier test consiste à mesurer une distance connue avec le capteur et de noter sa valeur mesurée afin de vérifier si la plage de mesure donnée par la fiche technique (5cm à 10m) est vraie.

Ceci nous permet de savoir dans quelle mesure la distance fournie par le capteur représente la réalité. Dans le cas d'une erreur de mesure, il nous est aussi utile de savoir si cette erreur est constante entre plusieurs séries espacées dans le temps.

#### Méthode

Pour ce faire, le capteur a été placé le long d'un étalon gradué de 6 mètres. Un objet est ensuite placé à un interval de 20cm pour le premier mètre, puis à un interval de 50cm. À chaque mesure, on note la valeur mesurée par le LiDAR ainsi que la distance réelle.

Cela nous permet donc de comparer la plage de mesure effective du capteur, dans les tolérences annoncées. La figure 3.5 montre la mise en place du test de distance.



FIGURE 3.5 – Mesure de distance comparée à la distance réelle

La mesure finale de distance est une moyenne de 10 mesures. Cela permet notamment d'éliminer partiellement l'erreur due à la résolution finie du capteur.

Le test a été réalisé en intérieur, en l'absence total d'élément perturbateur, notamment de rayons infrarouges, à température ambiante (25°C).

### Résultats du test



FIGURE 3.6 – Distance mesurée en fonction de la distance réelle



FIGURE 3.7 – Erreur de la distance mesurée par rapport à la distance réelle

Nous avons jugé important de zoomer sur la plage utile entre 0 et 3m afin de visualiser les graphes de manière plus claire.



FIGURE 3.8 – Distance mesurée en fonction de la distance réelle dans la plage utile



FIGURE 3.9 – Erreur de la distance mesurée par rapport à la distance réelle dans la plage utile

#### Conclusion préliminaire

On constate très facilement sur la figure 3.6 que le capteur est perdu au delà de 3.5m, soit bien moins qu'annoncé par le fabricant. La figure 3.7 nous montre une erreur absurde de plus de 5 mètres. On conclut donc que ce capteur ne pourra pas être utilisé pour des distances de plus de 3.5m.

Comme cette grande erreur aplatit totalement les mesures sous 3.5m, nous avons jugé utile d'effectuer un zoom sur cette plage utile. On constate alors que la distance mesurée par le LiDAR reflète avec plus ou moins de précision la distance réelle, comme le montre la figure 3.8. Lorsqu'on trace l'erreur en fonction de la distance réelle, on remarque une erreur généralement bien plus élevée qu'annoncé (figure 3.9), soit

±1cm pour des distances de moins de 2m et ±2cm entre 2 et 4m. Cependant, il faut se rappeler que ce graphe montre uniquement l'erreur à la distance réelle, et non l'erreur de répétabilité. Or, comme ces mesures sont un condensé de plusieurs séquences espacées dans le temps, on remarque que l'erreur est constante, qui donc peut être compensée. De plus, dans le projet, on ne travaille qu'avec des offsets, ce qui limite d'autant plus les effets de cette erreur.

On peut finalement conclure que ce test est réussi. En effet, malgré une erreur non-négligeable de mesure, le capteur a une répétabilité constante. Nous pouvons donc passer au test suivant.

#### 3.2.2 Mesures de distance dans un environnement perturbé

Maintenant que nous savons que le capteur a une répétabilité acceptable, nous cherchons à déterminer comment le LiDAR réagit dans un environnement perturbé. Ainsi, un banc de test a été construit afin de projeter des confettis devant le capteur lorsqu'il mesure. Les détails de sa construction sont expliqués dans la section correspondante. Le but final est de générer du bruit de mesure afin de représenter au mieux une situation réelle, par exemple en pleine tempête de neige. Nous pourrons ainsi développer une méthode de mesure qui permet en tout temps de mesurer une hauteur de neige.

#### Méthode

Afin de vérifier ce test, le capteur ainsi que la plaque de développement ont été montés sur un trépied à environ 1.5m au-dessus du sol, avec un angle de 60° par rapport à la verticale. Le LiDAR pointe le sol, nettoyé au préalable et donc sans confetti. 100 mesures de distance sont réalisées à chaque série afin d'avoir assez d'échantillons pour quantifier le bruit généré.

Sur l'appui du bouton utilisateur de la carte, le programme lance une série de 100 mesures en direction du sol. Cela nous permet dans un premier temps d'avoir une distance de référence à comparer, sans aucune perturbation.

Ensuite, quatre autres séries de mesures sont effectuées, avec quatre niveaux arbitraires de perturbation différents, générés manuellement par les opérateurs, comme le montre la figure 3.10.



FIGURE 3.10 – Mise en place du test de perturbation

#### Résultats du test



FIGURE 3.11 – Histogramme de la mesure de référence



FIGURE 3.12 – Comparaison des 5 mesures effectuées

Les 5 mesures ont été regroupées en un seul graphe de type "Boîte à moustaches" afin de pouvoir comparer avec plus d'aisance les mesures entre-elles. De gauche à droite, on retrouve une augmentation graduelle du bruit généré par les opérateurs.

|        | No Noise | Noise 1 | Noise 2 | Noise 3 | Noise 4 |
|--------|----------|---------|---------|---------|---------|
| Mean   | 160.52   | 157.77  | 145.44  | 145.06  | 127.78  |
| Median | 161      | 158.8   | 150     | 149     | 136.5   |
| Max    | 163      | 161     | 160     | 160     | 161     |

TABLE 3.3 – Différentes méthodes de calcul de distance (en cm)

Afin d'avoir la méthode la plus représentative possible de la distance au sol, trois solutions ont été envisagées. À partir de la série de mesures, nous avons calculé la moyenne, la médiane ainsi que le maximum afin de déterminer laquelle de ces valeurs représente le plus la réalité.

//ANNEXE A: HISTOGRAMME DE CHACUNE DES MESURES

#### Conclusion préliminaire

Premièrement, la figure 3.11 montre l'histogramme des 100 mesures de référence au sol. Elles s'avèrent plutôt rassurantes car on remarque que la répétabilité des mesures est respectée, avec une précision typique de ±2cm. La plupart des mesures sont réparties uniformément autour de 160cm.

On distingue ensuite sur la figure 3.12 que le bruit de mesure a bel et bien augmenté au fil des séries, représenté par la longueur des barres d'erreur. Comme l'indique le principe des boîtes à moustache, le trait central du rectangle représente la médiane des valeurs, alors que les deux autres sont le premier et troisième quartiles. Ainsi, les valeurs médianes des séries s'éloignent de plus en plus de la distance au sol (de référence).

Le but final de la figure 3.12 est d'aider à déterminer quelle est la méthode de mesure la plus efficace pour calculer des distances dans un environnement perturbé. On remarque ainsi d'ores et déjà que la médiane n'est pas un outil fiable, puisque sa valeur d'éloigne de plus en plus de la référence au fil des séries. Cependant, on voit facilement que les valeurs maximales de chaque boîte s'approche très fortement de la distance de référence.

La table 3.3 nous aide à y voir plus clair en ce qui concerne l'efficacité de ces trois méthodes. Pour rappel, selon la mesure de référence, la distance au sol à mesurer est de 160cm.

#### Moyenne

La moyenne représente la meilleure méthode dans le cas d'une mesure sans aucune perturbation. Cependant, on voit que cette méthode devient très imprécise lorsque du bruit apparaît devant le capteur.

#### Médiane

Malgré le fait que la médiane soit généralement plus proche de la réalité par rapport à la moyenne, elle est encore beaucoup trop éloignée de la vraie distance au sol. L'erreur est à nouveau de plus en plus grande dès que les perturbations augmentent.

#### Maximum

La méthode du maximum semble donner une valeur très proche de la vraie distance, et ce peu importe le niveau de perturbation devant le capteur. Il suffit en effet qu'une valeur de la série soit la mesure du sol pour que cette méthode fonctionne. Nous comptons donc sur le fait que, statistiquement, on finisse toujours par faire au moins une mesure de la distance au sol dans la série.

Il semblerait que pour le moment, la méthode du maximum obtienne les résultats les plus prometteurs. Cependant, nous garderons ces 3 méthodes pour les tests suivants afin de confirmer ou non l'efficacité des techniques de calcul.

#### 3.2.3 Stabilité en température des mesures

Le capteur, intégré dans un boîtier étanche, sera soumis à des températures qui varient constamment, de -20°C lors d'une nuit glaciale jusqu'à 30 voire 40°C à l'intérieur du boîtier, en plein soleil. Il est important de savoir comment les mesures prises par le LiDAR vont être influencées par cette variation. À titre d'exemple, imaginons que le système prenne une mesure de distance de référence afin d'être prêt à mesurer des hauteurs de neige. Le soleil vient de se coucher, mais une température de 15°C reigne encore dans le boîtier. Plus tard dans la nuit, alors qu'il fait -5°C, il commence à neiger. Le système de détection se met en marche et commence à mesurer des offsets. Ces derniers seront peut-être faussés par une différence de 20°C entre la mesure de référence et la mesure actuelle!

#### Méthode

Le LiDAR et la plaque de développement sont fixés sur un trépied et sont placés dans une chambre climatique (de la marque *Vötsch*, modèle 4010) afin de faire varier la température ambiante. Comme décrit dans le paragraphe ci-dessus, le système sera soumis à des températures entre -20°C et 40°C. C'est pour cela que le capteur sera soumis à cette même plage de températures, par pas de 5°C. La distance entre le capteur et la paroi opposée de la chambre climatique est de 47cm. Les mesures sont récupérées via le port COM qui lie la carte à l'ordinateur. La figure 3.13 montre la mise en place du test, avec le capteur à l'intérieur de la chambre.



FIGURE 3.13 – Mise en place du test en température

#### Résultats du test



FIGURE 3.14 – Graphe de stabilité en température du LiDAR

Le test a été réalisé à partir d'une température de -15°C et non pas de -20°C. En effet, la chambre climatique utilisée n'était pas en mesure d'atteindre cette consigne dans un temps raisonnable. Les trois méthodes décrites dans le test précédent ont été reprises afin de mieux comprendre la répartition des valeurs mesurées.

#### Conclusion préliminaire

Il semblerait que le capteur soit relativement peu influencé par la variation de température. En effet, en plus de sa résolution fixe de 1cm, nous avons une erreur typique de ±2cm autour de la valeur réelle. Cependant, on constate tout de même que la moyenne et la médiane sont plus influencées que la méthode du maximum. On peut ainsi conclure que le capteur est plutôt stable en température, surtout si on utilise le maximum comme méthode de mesure.

On peut considérer finalement que le capteur est fiable pour une mesure de référence et de hauteur de neige prises à des températures différentes, comme cette différence est noyée dans sa précision typique.

#### 3.2.4 Mesure de hauteur en laboratoire

Maintenant que nous avons caractérisé ce capteur pour plusieurs situations, nous pouvons procéder aux véritables mesures d'épaisseur en laboratoire. En effet, il faut à présent vérifier si la méthode de calcul de la section 3.1.4 est réalisable en condition de laboratoire dans un premier temps.

#### Méthode

Pour effectuer ce test, le capteur est placé dans le banc de test à une hauteur h de 133cm au-dessus du sol. L'angle  $\alpha$  du LiDAR a été fixé à 60°, alors que l'angle  $\beta$  est de 0°. Ces informations ont été fournies au programme de test afin de calculer des bons offsets. La figure 3.15 montre la préparation au test. Le but est de mesurer tout d'abord une distance de référence au sol, sans aucun obstacle ni bruit de mesure. Ensuite, une fois la plaque placée, on effectue quatre mesures différentes, la première sans bruit

puis avec un bruit graduel généré par les opérateurs.

L'obstacle utilisé est une plaque en mousse blanche de protection, d'une épaisseur de 6.6cm.



FIGURE 3.15 – Mise en place du test de mesure d'épaisseur

#### Résultats du test



FIGURE 3.16 – Boîte à moustache des mesures d'épaisseur

Il est important de noter que pour la série de mesure *Noise 3*, la valeur maximale n'atteint pas celle des autres séries. Cela est dû majoritairement au fait qu'une couche de 2cm de confettis se sont accumulés sur la plaque au fil des mesures.



FIGURE 3.17 – Résultat des calculs d'offset par méthode

#### Conclusion préliminaire

Le graphe 3.16 montre la répartition des mesures effectuées sous la forme d'une boîte à moustache. Cela permet de représenter facilement la répartition des mesures autour de la médiane.

On remarque sur les séries *Noise 1* à *Noise 3* que du bruit a bien été généré par les opérateurs, ce qui n'est pas le cas pour les deux premières séquences de mesure. Hormis cela, le graphe est très similaire aux tests dans un environnement perturbé, à la section 3.2.2. On retrouve en effet une médiane qui s'éloigne de plus en plus de la vraie distance, alors que le maximum s'approche le plus de la réalité.

On voit sur la figure 3.17 l'épaisseur calculée à l'aide de la méthode de la section 3.1.4 pour les 3 solutions proposées, à savoir la moyenne, la médiane et le maximum. Ce calcul d'offset a été réalisé pour les quatre séries de mesures à disposition, avec un bruit graduel. On peut ici conclure que la méthode du maximum est la plus proche de la réalité. Pour cette raison, elle sera utilisée pour les tests sur le terrain.

#### 3.2.5 Mesure de hauteur en situation réelle

Après avoir prouvé le fonctionnement du capteur en laboratoire, il est essentiel de le tester en conditions réelles, sous la neige. Pour ce faire, des tests ont été réalisés la nuit du 3 au 4 décembre 2021 à Ayent. Un boitier temporaire a été confectionné afin de protéger le LiDAR et la carte de développement des précipitations.

#### Méthode

Le boitier a été installé sur un trépied à 140cm au-dessus du sol, sous un couvert, à l'abri de la majorité des flocons. Le LiDAR pointe vers le sol avec un angle de 45° par rapport à la verticale, donnant une distance de 197cm entre le capteur et la route. Les données récoltées sont enregistrées via un câble USB sur un ordinateur.

Le but est de mesurer des épaisseurs de neige en partant de 0cm (la route a été nettoyée au préalable) afin de mettre à l'épreuve l'efficacité du capteur et de nos méthodes de mesure. Chaque mesure d'épaisseur est réalisée chaque 30 secondes, et ce pendant plus d'une heure. En parallèle, une double-mètre est posé dans la neige afin de relever périodiquement la hauteur de neige présente sur la route. Une mesure qualitative du débit de neige est aussi effectuée. La figure 3.18 montre la mise en place du test. Le double-mètre et l'ordinateur ne sont pas visibles ici.



FIGURE 3.18 – Mise en place du test en condition réelle

#### Résultats du test

| Mesure n° | Hauteur réelle [cm] | Hauteur mesurée [cm] | Type de précipitation | Heure |
|-----------|---------------------|----------------------|-----------------------|-------|
| 1         | 0                   | 0                    | Petits flocons        | 04h28 |
| 2         | 0.5                 | 0.71                 | Petits flocons        | 04h39 |
| 3         | 0.8                 | 1.41                 | Quelques gros flocons | 04h48 |
| 4         | 1.5                 | 1.41                 | Quelques gros flocons | 05h00 |
| 5         | 2                   | 2.12                 | Quelques gros flocons | 05h08 |
| 6         | 2.5                 | 2.12                 | Quelques gros flocons | 05h14 |
| 7         | 2.8                 | 2.86                 | Quelques gros flocons | 05h21 |
| 8         | 3                   | 2.86                 | Quelques gros flocons | 05h32 |

TABLE 3.4 – Mesures relevée lors du test



FIGURE 3.19 – Résultat des mesures effectuées

La température lors des mesures oscillait entre -2°C et 0°C, sans aucun vent.

Afin de réaliser la courbe *Mesure réelle* de la figure 3.19, une interpolation linéaire a été utilisée entre les différents points de mesure.

#### Conclusion préliminaire

Après avoir passé plusieurs heures dans un froid glacial à mettre à l'épreuve notre projet, nous avons enfin pu obtenir des résultats.

Le tableau 3.4 montre les différentes heures de mesures, mettant notamment en évidence l'erreur entre la valeur réelle et mesurée. Malgré une légère oscillation lors d'un changement proche de valeur (figure 3.19), on peut conclure que le LiDAR arrive bel et bien à mesurer une hauteur de neige, et ce depuis le sol.

On constate par la même occasion que le pas de mesure du capteur dépend effectivement de son angle par rapport à la verticale.

# Synthèse

- 4.1 Discussion des résultats
- 4.2 Problèmes rencontrés

Intro Spec LiDAR Computer Meca Implémentation Analyse Conclusion

# **Conclusion**