

Desarrollo de un sistema de simulación de entrenamiento en conducción de vehículos livianos

Jhon Sebastian Arbelaez Gonzalez - Ingeniería de Sistemas y Computación, Universidad de Caldas, Manizales, Colombia jhon.1701722389@ucaldas.edu.co

INTRODUCCIÓN

Estudios realizados detallan que las principales causas de accidentes viales obedecen a excesos de velocidad, arrojando una cifra del 45%, desobedecer señales de tránsito en un 42%, conducir en estado de embriaguez 4% y conducir en contravía un 3% [1].

Las persona en estado de embriagues presenta un deterioro en su forma de conducción, lo que se evidencia en la reducción de l rendimiento, tiempos de respuesta y perdida de precisión al momento de realizar tareas referente a la conducción [2].

Contar con un sistema capaz de realizar simulaciones de conducción y generar escenarios comunes de accidentalidad, permite observar el comportamiento de las personas, obtener información relevante y mejorar la forma de reacción al conducir por medio de la práctica y el entrenamiento [3].

PREGUNTA DE INVESTIGACIÓN

¿Cómo complementar los procesos de entrenamiento en conducción de vehículos livianos con el apoyo de sistemas computacionales?

OBJETIVO

Fomentar el apoyo en los procesos de entrenamiento en conducción de vehículos livianos por medio de sistemas de simulación.

METODOLOGÍA

1. Criterios normativos, funcionales y de aprendizaje [4][5]

Código Nacional de Tránsito

Centros de Enseñanza Automovilística

2. Implementación del sistema de simulación **de conducción** [6][7][8]

Fase 1 Simulador de conducción

Fase 2 Diseño de escenarios

Fase 4 Pruebas técnicas

3. Evaluación en muestra piloto [9]

Fase 3 Sistema de recopilación de datos

RESULTADOS E IMPACTOS ESPERADOS

Sistema de simulación para apoyar los procesos de entrenamiento en conducción de vehículos livianos.

- 1 prototipo del sistema de simulación de conducción.
- 1 tramite interno en oficina de proyectos para registro de sistema de simulación en la Dirección Nacional de Derechos de Autor.
- Interacción con profesional encargado de realizar los procesos de entrenamiento en conducción.

Fomentar el uso de los sistemas de simulación para la enseñanza/aprendizaje, seguimiento y control de procesos de entrenamiento y practica..

Referencias

[1] Radio, R. (2020). RCN Radio. Accidentes de tránsito, la principal causa de muerte en menores de 5 a 14 años: Fasecolda. Obtenido de RCN Radio: https://www.rcnradio.com/colombia/accidentes-de-transito-la-principal-causa-demuerte-en-menores-de-5-14-anos-fasecolda

[2] Freydier, C., Berthelon, C., Bastien-Toniazzo, M., & Gineyt, G. (2014). Divided attention in young drivers under the influence of alcohol. Journal of Safety Research, 13-18.

[3] Bornard, J.-C., Sassman, M., & Bellet, T. (2016). Use of a computational simulation model of drivers' cognition to predict decision making and behaviour while driving. Biologically Inspired Cognitive Architectures, 41-50.

[4] Leyes.co. (6 de 11 de 2021). Códigos y Estatutos. Obtenido de Leyes.co: https://leyes.co/codigo_nacional_de_transito_terrestre.htm

[5]Colombia, P. (18 de 10 de 2021). ¿Cómo certificar centro de Enseñanza Automovilística? Obtenido de PracticaTest.co: https://practicatest.co/blog/licencias-conduccion/como-certificar-cea-colombia

[6] Weir, D. H. (2010). Application of a driving simulator to the development of in-vehicle human-machine-interfaces. IATSS Research, 16-21.

[7] Kuniyoshi, J. R., Costa, A. T., Figueira, A. C., Jr., F. I., & Larocca, A. P. (2021). Driver's visual perception as a function of age. Using a driving simulator to explore driver's eye movements in vertical signs. Transportation Research Interdisciplinary Perspectives, 1-8.

[8] Zhao, X., Chen, H., Li, X., Xin Chang, X. F., & Chen, Y. (2021). Development and application of connected vehicle technology test platform based on driving simulator: Case study. Accident Analysis and Prevention, 1-14. [9] Huang, Y., Yan, X., Li, X., & Yang, J. (2020). Using a multi-user driving simulator system to explore thepatterns of vehicle fleet rear-end collisions occurrence under different foggy conditions and speed limits. Transportation Research Part F, 161-172.