Statistical Tests in R: Descriptive Analysis

Kursus R: Pengenalan dan Praktikal (Sesi 3)

Mohd Azmi Bin Suliman

azmi.suliman@moh.gov.my

Pusat Penyelidikan Penyakit Tak Berjangkit, Institut Kesihatan Umum

Friday, 04 October 2024

Statistical Tests in R: Descriptive Analysis

- Descriptive analysis refers to summarising and describing the main features of a dataset.
- Count and percentage for categorical data.
- Mean, median, standard deviation, and range for numerical data.
- Data visualisation is also part of descriptive analysis.

- There are many ways to perform descriptive analysis in R.
- We can use the base function, or commonly, people use the tidyverse package for descriptive analysis.
- In this session, I will introduce **summarytools** and **gtsummary** packages for descriptive analysis.
 - → Easier to use
 - → More informative.
 - → Nicer outcome (especially when rendering the Quarto document!)

Let's Try!

Setup your project & quarto document.

Create New Project

- Remember last week? RStudio allows for project management.
 - → Project as a 'container' for our work.
- 1. Open RStudio.
- 2. Create a new project.
 - File > New Project > New Directory > New Project
- 3. Set the name and directory.
 - Name: Statistical Tests in R
 - Directory: .../Documents/RStudio
- 4. Click Create Project

Create New Project

Create New Quarto Document

Quarto as R Notebook.

- 1. Create a new Quarto document.
 - File > New File > Quarto Document...
- 2. Set the title
 - Title: Statistical Tests in R
 - Untick Use the visual editor.
- 3. Click Create Empty Document
- 4. Edit the YAML
 - Add the embed-resources: true parameter.

Create a New Quarto Document

- 1. Copy the asthmads_clean.sav dataset into the working directory.
 - Download the dataset from the Google Drive folder.
 - Open the folder to which the dataset was downloaded.
 - Copy the dataset.
 - Open your working directory.
 - File pane > A More > Show Folder in New Window
 - Paste the dataset into the working directory.
- 2. In the Quarto document, add a new level 1 header & level 2 header
 - # Preparation
 - ## Data Import

- 3. Import the dataset. We will use asthmads_clean.sav dataset
 - File > Import Dataset > From SPSS...
 - Select the dataset asthmads_clean.sav
 - Click Open
 - Untick Open Data Viewer
 - Click the clipboard symbol

- 4. Paste the code into the r code chunk
- 5. Use the as_factor function to read the label and apply to the dataset
 - We can use %>% pipe operator to use as_factor function
 - Don't forget to load the tidyverse package first

```
1 library(tidyverse)
2 library(haven)
3 asthmads_clean <- read_sav("Dataset/asthmads_clean.sav") %>%
4 as_factor()
```

1 asthmads clean

```
# A tibble: 150 × 24
      Χ
          id idR
                  Gender
                          Age WorkStatus Height Ht m Weight Pre BMI Pre
  <dbl> <dbl> <fct> <dbl> <fct> <dbl> <fct>
                                        <dbl> <dbl>
                                                        <dbl>
                                                               <dbl>
      1
                           34 Unemployed
                                          179 1.79
                                                        84.2
                                                              26.3
           1 nXSw Female
           2 yg2t Male 31 Unemployed
                                         169 1.69
                                                        81.8 28.6
                                                        88.5 32.9
                         25 Employed
 3
           3 QBW4 Male
                                         164 1.64
      4 4 2x2S Female 33 Unemployed
                                         136 1.36
                                                        53.2 28.8
      5 5 mOnn Male
                                         172 1.72
 5
                         28 Unemployed
                                                        71.3 24.1
 6
      6 6 D3sl Male
                        33 Unemployed
                                                        87.3 27.6
                                         178 1.78
 7
        7 le6j Female 31 Unemployed
                                          140 1.4
                                                        48.8
                                                              24.9
 8
           8 r3qC Female
                        34 Employed
                                         140 1.4
                                                              25.0
                                                        49.1
 9
           9 3Tyt Male
                           31 Employed
                                         171 1.71
                                                               20.6
                                                        60.1
10
     10
          10 cmKF Male
                           28 Employed
                                          163 1.63
                                                                35.0
                                                        93.1
# i 140 more rows
# i 14 more variables: BMI PreCat <fct>, PA HW <dbl>, Weight Post <dbl>,
   BMI Post <dbl>, BMI PostCat <fct>, Tx1 <fct>, Tx2 <fct>, PEFR Pre <dbl>,
   PEFR Post <dbl>, PEFR Diff <dbl>, SxWheeze Pre <fct>, SxWheeze Post <fct>,
   PS Pre <dbl>, PS Post <dbl>
```

Let's Try!

- The primary function of Quarto is for publishing.
- There are various package that can help us to explore our data
- However, if we want to publish the document, we need a better-looking table.
- The gtsummary package is an excellent package for this purpose.

1 library(gtsummary)

- using the tbl_summary function to summarise the data.
- Note: The variable column (Characteristic) will automatically read the variable's label, if available.

```
1 asthmads_clean %>%
2 select(Gender:BMI_PostCat) %>%
3 tbl_summary()
```

Characteristic	$N = 150^{^{7}}$	
Gender		
Female	64 (43%)	
Male	86 (57%)	
ge (year)	30.00 (27.00, 33.00)	
ployment		
Unemployed	80 (53%)	
Employed	70 (47%)	
eight (cm)	167 (151, 176)	
_m	1.67 (1.51, 1.76)	
ight (kg) - before	78 (58, 89)	
I_Pre	27.8 (24.1, 31.7)	
I_PreCat		
Jnderweight	7 (4.7%)	
Normal	23 (15%)	
Overweight	14 (9.3%)	
Obese	106 (71%)	
(%); Median (IQR)		

Characteristic	$N = 150^{^{7}}$
Physical Activity (total hour per week)	2.00 (1.00, 4.00)
Weight (kg) - after	71 (52, 82)
BMI_Post	25.3 (21.4, 28.8)
BMI_PostCat	
Underweight	18 (12%)
Normal	36 (24%)
Overweight	13 (8.7%)
Obese	83 (55%)
¹ n (%); Median (IQR)	

- we can customise it.
 - → change the variable label using the label = parameter

Characteristic	$N = 150^{^{7}}$
Gender	
Female	64 (43%)
Male	86 (57%)
Age (year)	30.00 (27.00, 33.00)
Employment	
¹ n (%); Median (IQR)	
	Descriptive Analysis

Characteristic	$N = 150^{7}$
Unemployed	80 (53%)
Employed	70 (47%)
Height (cm)	167 (151, 176)
Height (m)	1.67 (1.51, 1.76)
Weight (kg) - before	78 (58, 89)
BMI (Pre)	27.8 (24.1, 31.7)
BMI Category (Pre)	
Underweight	7 (4.7%)
Normal	23 (15%)
Overweight	14 (9.3%)
Obese	106 (71%)
Physical Activity (total hour	r per week) 2.00 (1.00, 4.00)
Weight (kg) - after	71 (52, 82)
BMI (Post)	25.3 (21.4, 28.8)
BMI Category (Post)	
Underweight	18 (12%)
Normal	36 (24%)
Overweight	13 (8.7%)
¹ n (%); Median (IQR)	Descriptive Analysis

- we can customise it.
 - → change the digit using the digits = parameter

Characteristic	$N = 150^{7}$	
Gender		
Female	64 (42.7%)	
Male	86 (57.3%)	
ge (year)	30 (27, 33)	
nployment		
Unemployed	80 (53.3%)	
Employed	70 (46.7%)	
eight (cm)	167.00 (151.00, 175.75)	
ight (m)	1.67 (1.51, 1.76)	
eight (kg) - before	77.70 (58.25, 89.45)	
1I_Pre	27.78 (24.13, 31.65)	
MI_PreCat		
Underweight	7 (4.7%)	
Normal	23 (15.3%)	
Overweight	14 (9.3%)	
Obese	106 (70.7%)	
(%); Median (IQR)		

Characteristic	$N = 150^{7}$
Physical Activity (total hour per week)	2.00 (1.00, 4.00)
Weight (kg) - after	70.75 (52.08, 82.08)
BMI_Post	25.31 (21.39, 28.77)
BMI_PostCat	
Underweight	18 (12.0%)
Normal	36 (24.0%)
Overweight	13 (8.7%)
Obese	83 (55.3%)
¹ n (%); Median (IQR)	

- we can customise it.
 - → by default, the numerical variables are reported in Median (IQR)
 - → change it to Mean (SD) using the stat = parameter

Characteristic	$N = 150^{^{7}}$
Gender	
Female	64 (42.7%)
Male	86 (57.3%)
Age (year)	30 (3)
Employment	
Unemployed	80 (53.3%)
Employed	70 (46.7%)
Height (cm)	163.99 (15.34)
Height (m)	1.64 (0.15)
Weight (kg) - before	75.89 (21.27)
BMI_Pre	27.86 (5.28)
BMI_PreCat	
Underweight	7 (4.7%)
Normal	23 (15.3%)
Overweight	14 (9.3%)
Obese	106 (70.7%)
¹ n (%); Mean (SD)	

Characteristic	$N = 150^{7}$
Physical Activity (total hour per week)	2.81 (2.27)
Weight (kg) - after	68.55 (20.46)
BMI_Post	25.14 (5.27)
BMI_PostCat	
Underweight	18 (12.0%)
Normal	36 (24.0%)
Overweight	13 (8.7%)
Obese	83 (55.3%)
¹ n (%); Mean (SD)	

Grouped Summaries with gtsummary

Grouped Summaries with gtsummary

We can also perform grouped summaries using the by = parameter.

Characteristic	Female, $N = 64^{7}$	Male , $N = 86^{1}$
Age (year)	31 (3)	30 (3)
Employment		
Unemployed	47 (73.4%)	33 (38.4%)
Employed	17 (26.6%)	53 (61.6%)
Height (cm)	150.39 (10.98)	174.10 (8.98)
Height (m)	1.50 (0.11)	1.74 (0.09)
¹ Mean (SD); n (%)	Descriptive Analysis	

Characteristic	Female , N = 64 ¹	Male , $N = 86^{1}$
Weight (kg) - before	61.61 (16.23)	86.52 (18.17)
BMI_Pre	27.06 (5.42)	28.46 (5.12)
BMI_PreCat		
Underweight	4 (6.3%)	3 (3.5%)
Normal	10 (15.6%)	13 (15.1%)
Overweight	8 (12.5%)	6 (7.0%)
Obese	42 (65.6%)	64 (74.4%)
Physical Activity (total hour per week)	3.06 (2.27)	2.62 (2.27)
Weight (kg) - after	55.11 (15.56)	78.56 (17.80)
BMI_Post	24.20 (5.35)	25.83 (5.12)
BMI_PostCat		
Underweight	10 (15.6%)	8 (9.3%)
Normal	18 (28.1%)	18 (20.9%)
Overweight	6 (9.4%)	7 (8.1%)
Obese	30 (46.9%)	53 (61.6%)
¹ Mean (SD); n (%)		