Hypothesetoets voor meer dan twee populatiegemiddeldes

Sandra Van Aert

1 december 2011

Enkelvoudige variantie-analyse

- one-way ANOVA (analysis of variance)
- uitbreiding van de tweezijdige toets voor de gelijkheid van twee gemiddelden:

$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_a: \mu_1 \neq \mu_2 \end{cases}$$

 algemeen: toets voor de gelijkheid van g gemiddeldes

$$\begin{cases} H_0: \mu_1 = \mu_2 = \dots = \mu_g = \mu \\ H_a: \text{niet } H_0 \end{cases}$$

Voorbeelden

- vergelijken vochtabsorptie tussen betonsamenstellingen
- vergelijken mortaliteit in functie van socio-economische factoren
- vergelijken vervuilingsgraad voor meerdere rivieren
- vergelijken werking meerdere medicijnen
- vergelijken gewicht in verschillende nesten
- vergelijken smelttemperatuur voor verschillende legeringen

Hoe?

- van elke populatie nemen we een steekproef, zodat we g steekproeven bekomen
- de steekproeven zijn meestal even groot, maar dat hoeft niet
- ► noteer de steekproefgroottes als $n_1, n_2, n_3,...,n_g$

g steekproeven

steekproef 1	steekproef 2	•••	steekproef g
X_{11}	X_{21}		X_{g1}
X_{12}	X_{22}		X_{g2}
:			:
X_{1n_1}	:		
			X_{gn_g}
	X_{2n_2}		
<u> </u>	↓		<u> </u>
\overline{X}_1	\overline{X}_2		\overline{X}_{g}
	\overline{X}		

Voorbeeld

- plastic folie wordt gefabriceerd op 3 extruders
- om na te gaan of de gemiddelde dikte voor elk van de 3 extruders dezelfde is, wordt op 6 lukraak bepaalde plaatsen in de folies, geproduceerd door elke machine, een meting uitgevoerd:

	Meting (in μ m)						
	1	2	3	4	5	6	
Extruder 1	39	45	43	53	49	56	
Extruder 2	56	48	54	58	60	63	
Extruder 3	38	37	40	55	50	50	

3 niveaus van de factor extruder, behandelingen of treatments

Voorbeeld

Variant

- plastic folie wordt gefabriceerd op 3 extruders
- om na te gaan of de gemiddelde dikte voor elk van de 3 extruders dezelfde is, wordt op 6 lukraak bepaalde plaatsen in de folies, geproduceerd door elke machine, een meting uitgevoerd:

	Meting (in μ m)					
	1	2	3	4	5	6
Extruder 1	35	41	39	57	53	60
Extruder 2	50	42	48	64	66	69
Extruder 3	34	33	36	59	54	54

Variant

voorbeeld:

gemiddeldes liggen even ver van elkaar in beide gevallen. algemeen gemiddelde is in beide gevallen identiek:

$$\overline{X} = 49.67$$

variant:

in de eerste figuur is er minder variabiliteit in de gemeten diktes bij elke machine.

daarom geeft de eerste figuur een sterkere indicatie dat er een verschil is in gemiddelde.

▶ totale deviatie: $X_{ij} - \overline{X}$

- ▶ totale deviatie: $X_{ij} \overline{X}$
- verschil tussen de machines: $\overline{X}_i \overline{X}$

- ▶ totale deviatie: $X_{ij} \overline{X}$
- verschil tussen de machines: $\overline{X}_i \overline{X}$
- deviaties binnen een machine: $X_{ii} \overline{X}_i$

- ▶ totale deviatie: $X_{ij} \overline{X}$
- verschil tussen de machines: $\overline{X}_i \overline{X}$
- deviaties binnen een machine: $X_{ij} \overline{X}_i$
- ► totale deviatie: $X_{ij} \overline{X} = (\overline{X}_i \overline{X}) + (X_{ij} \overline{X}_i)$
- totale kwadraatsom:

$$\sum_{i=1}^{3} \sum_{j=1}^{6} (X_{ij} - \overline{X})^2 = \sum_{i=1}^{3} \sum_{j=1}^{6} (\overline{X}_i - \overline{X})^2 + \sum_{i=1}^{3} \sum_{j=1}^{6} (X_{ij} - \overline{X}_i)^2$$
3 6 3 6 3 6

$$\sum_{i=1}^{3} \sum_{j=1}^{6} (X_{ij} - \overline{X})^2 = \sum_{i=1}^{3} 6(\overline{X}_i - \overline{X})^2 + \sum_{i=1}^{3} \sum_{j=1}^{6} (X_{ij} - \overline{X}_i)^2$$

SST

SSA

SSE

Algemeen

- ▶ totale deviatie: $X_{ij} \overline{X}$
- verschil tussen de machines: $\overline{X}_i \overline{X}$
- deviaties binnen een machine: $X_{ij} \overline{X}_i$
- ► totale deviatie: $X_{ij} \overline{X} = (\overline{X}_i \overline{X}) + (X_{ij} \overline{X}_i)$
- totale kwadraatsom:

$$\sum_{i=1}^{g} \sum_{j=1}^{n_i} (X_{ij} - \overline{X})^2 = \sum_{i=1}^{g} \sum_{j=1}^{n_i} (\overline{X}_i - \overline{X})^2 + \sum_{i=1}^{g} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2$$

$$\sum_{i=1}^{g} \sum_{j=1}^{n_i} (X_{ij} - \overline{X})^2 = \sum_{i=1}^{g} n_i (\overline{X}_i - \overline{X})^2 + \sum_{i=1}^{g} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2$$

SST

SSA

SSE

Terminologie

- ► SST:
 - totale kwadraatsom
 - total sum of squares
- ► SSE:
 - binnenkwadraatsom
 - "error" sum of squares
- ► SSA:
 - tussenkwadraatsom
 - "treatment" sum of squares

E(SSE)

$$E\left[\sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2\right] = E\left[\sum_{j=1}^{n_i} \frac{n_i - 1}{n_i - 1} (X_{ij} - \overline{X}_i)^2\right]$$

$$= (n_i - 1)E\left[\frac{\sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2}{n_i - 1}\right]$$

$$= (n_i - 1)E[S_i^2]$$

$$= (n_i - 1)\sigma_i^2 \quad \text{we veronderstellen dat}$$

$$\sigma_1^2 = \sigma_2^2 = \dots = \sigma_g^2 = \sigma^2$$

$$= (n_i - 1)\sigma^2$$

 $\Rightarrow E[SSE] = \sum_{i=1}^{g} (n_i - 1)\sigma^2 = (n - g)\sigma^2$

Binnenvariantie MSE

binnenvariantie

= gemiddelde binnenkwadraatsom

MSE =
$$\frac{\text{SSE}}{n-g} = \frac{\sum_{i=1}^{g} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2}{n-g}$$

verwachte waarde:

$$E[MSE] = E\left[\frac{SSE}{n-g}\right] = \sigma^2$$

▶ indien $X_{ij} \sim N(\mu, \sigma^2)$:

$$\frac{(n-g)\text{MSE}}{\sigma^2} = \frac{\text{SSE}}{\sigma^2} \sim \chi_{n-g}^2$$

Tussenvariantie MSA

•
$$E[SSA] = (g-1)\sigma^2 + \sum_{i=1}^{g} n_i(\mu_i - \mu)^2$$

►
$$E[MSA] = \sigma^2 + \frac{\sum_{i=1}^{g} n_i (\mu_i - \mu)^2}{g - 1}$$

ightharpoonup als H_0 waar is:

$$E[MSA] = \sigma^2$$

$$\frac{(g-1)MSA}{\sigma^2} = \frac{SSA}{\sigma^2} \sim \chi_{g-1}^2$$

F-test

toetsingsgrootheid:

$$F = \frac{MSA}{MSE}$$

• veronderstelling: alle X_{ij} zijn onafh. en $N(\mu, \sigma^2)$ (dus $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_g^2 = \sigma^2$)

- ► $\frac{\text{SSE}}{\sigma^2}$ en $\frac{\text{SSA}}{\sigma^2}$ zijn onafh. χ^2 variabelen met resp. n-g en g-1 vrijheidsgraden
- $\frac{\frac{\text{SSA}/\sigma^2}{g-1}}{\frac{\text{SSE}/\sigma^2}{n-g}} = \frac{\text{MSA}}{\text{MSE}} \text{ is } F_{g-1,n-g}\text{-verdeeld als } H_0 \text{ waar}$

Illustratie: H_0 is waar

http://lstat.kuleuven.be/java/ (Anova/Histograms)

Illustratie: H_0 is onwaar

Beslissingsregel hypothesetoets

 $ightharpoonup H_0$ verwerpen indien

$$\frac{\text{MSA}}{\text{MSE}} \gg 1$$

toetsingsgrootheid f groot

$$f >$$
kritieke waarde $F_{\alpha,g-1,n-g}$

► H_0 verwerpen indien $p < \alpha$ waarbij $p = P(F_{g-1,n-g} \ge f)$

Variantie-analyse tabel: voorbeeld

Source	SS	df	MS	F	<i>p</i> -value
Treatment	439	2	219.500	5.251	0.0187
Error	627	15	41.800		
Total	1066	17			

Variantie-analyse tabel: variant

Source	SS	df	MS	F	<i>p</i> -value
Treatment	439.00	2	219.500	1.752	0.2071
Error	1879.00	15	125.267		
Total	2318.00	17			

Wat als H_0 verworpen wordt?

- ▶ uitvissen waar de belangrijke verschillen zitten
 → significante verschillen
- alle gemiddeldes twee per twee toetsen

```
\begin{cases} H_0: \mu_i = \mu_j \\ H_a: \mu_i \neq \mu_j \\ \text{met behulp van } t\text{-toets} \end{cases}
```

Probleem

stel 3 paarsgewijze toetsen:

```
\mu_1 versus \mu_2 \rightarrow 1 - \alpha betrouwbaarheid \mu_1 versus \mu_3 \rightarrow 1 - \alpha \mu_2 versus \mu_3 \rightarrow 1 - \alpha
```

- gezamenlijke betrouwbaarheid: $(1 \alpha)^3$
- voorbeeld:

$$\alpha = 0.05 \Rightarrow 1 - \alpha = 0.95 \Rightarrow (1 - \alpha)^3 = 0.857 \neq 0.95$$

 je wil gezamenlijke betrouwbaarheid van bijvoorbeeld 0.95

Oplossing

- kies kleinere α
- gemiddeldes twee per twee toetsen
- Tukey methode
- simultane constructie van betrouwbaarheidsintervallen zodat de gezamenlijke betrouwbaarheid gelijk is aan 95%

Tukey methode (R)

```
TukeyHSD(aov(Meting~Extruder))
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Meting ~ Extruder)

$Extruder
diff lwr upr p adj
2-1 9.0 -0.695676 18.695676 0.0707885
3-1 -2.5 -12.195676 7.195676 0.7842171
3-2 -11.5 -21.195676 -1.804324 0.0196076
```

Tukey methode (Matlab)

```
multcompare(stats)
ans =
    1.0000
              2.0000
                      -18.6957
                                  -9.0000
                                              0.6957
    1.0000
              3.0000
                       -7.1957
                                   2.5000
                                             12.1957
    2.0000
              3.0000
                         1.8043
                                  11.5000
                                             21.1957
```

Testen van voorwaarden voor ANOVA

- normaliteit van de residuele waarden kwantieldiagram, Shapiro Wilk toets, Lilliefors toets
- gelijkheid van varianties Bartlett test

Normaliteit - Shapiro Wilk toets (R)

normaliteit aanvaarden indien p-waarde groter dan α (=0.05)

Normaliteit - Lilliefors toets (Matlab)

```
qqplot(residuals(:))
  [h,p]=lillietest(residuals(:))
h =
      0
p =
      0.5000
```

normaliteit aanvaarden indien p-waarde groter dan α (=0.05)

Gelijkheid varianties (R)

```
bartlett.test(Meting-Extruder)

Bartlett test of homogeneity of variances

data: Meting by Extruder
Bartlett's K-squared = 0.6401, df = 2, p-value = 0.7261
```

gelijkheid van varianties aanvaarden indien p-waarde groter dan α (=0.05)

Gelijkheid varianties (Matlab)

vartestn(X)

Group	Count	Mean	Std Dev
1 2 3 Pooled	6 6 6 18	47.5 56.5 45 49.6667	6.37966 5.20577 7.58947 6.46529
Bartlett's statistic Degrees of freedom p-value	0.64012 2 0.7261		

gelijkheid van varianties aanvaarden indien p-waarde groter dan α (=0.05)