### Handout 9

### **Intervention Models**

Class notes for Statistics 451: <u>Applied Time Series</u> Iowa State University

Copyright 2004 W. Q. Meeker.

March 29, 2006 18h 20min

9 - 1

### Los Angeles Ozone Data Monthly Averages 1955-1972

Monthly Average of Hourly Readings of Ozone on Downtown Los Angeles



9-2

### Los Angeles Ozone Data Monthly Averages 1955-1972

Monthly Average of Hourly Readings of Ozone on Downtown Los Angeles



9 - 3

9 - 5

## Graphical Output from Function iden for the Ozone Data with No Differencing



9 - 4

## Graphical Output from Function iden for the Log Ozone Data with No Differencing

Monthly Average of Hourly Readings of Ozone on Downtown Los Angeles



# Graphical Output from Function iden for the Ozone Data with 1 Regular Difference





# Graphical Output from Function iden for the Ozone Data with 1 Seasonal Difference



## Graphical Output from Function iden for the Ozone Data with 1 Regular and 1 Seasonal Difference



# Graphical Output from Function esti for the Ozone Data $SARIMA(0,0,1)(0,1,1)_{12}$ Model, Part 1



# Graphical Output from Function esti for the Ozone Data $SARIMA(0,0,1)(0,1,1)_{12}$ Model, Part 2



9 - 10

# Graphical Output from Function esti for the Ozone Data $SARIMA(3,0,0)(0,1,1)_{12}$ Model, Part 1



# Graphical Output from Function esti for the Ozone Data $SARIMA(3,0,0)(0,1,1)_{12}$ Model, Part 2



# Graphical Output from Function esti for the Ozone Data $SARIMA(1,0,1)(0,1,1)_{12}$ Model, Part 1



# Graphical Output from Function esti for the Ozone Data $SARIMA(1,0,1)(0,1,1)_{12}$ Model, Part 2



9 - 14

# Graphical Output from Function esti for the Ozone Data ${\sf SARIMA}(0,1,1)(0,1,1)_{12}$ Model, Part 1



Graphical Output from Function esti for the Ozone Data  $SARIMA(0,1,1)(0,1,1)_{12}$  Model, Part 2



9-16

# Graphical Output from Function $\tt esti$ for the Ozone Data with Log Transformation and ${\sf SARIMA}(0,1,1)(0,1,1)_{12} \ \, {\bf Model,\ Part\ 1}$



# Graphical Output from Function $\mathtt{esti}$ for the Ozone Data with Log Transformation and $\mathsf{SARIMA}(0,1,1)(0,1,1)_{12} \ \mathbf{Model}, \ \mathsf{Part} \ \mathbf{2}$



#### Innovation to Realization Filter

Innovations



Model:

$$(1 - \mathsf{B}^{12}) Z_t = (1 - \theta_1 \mathsf{B}) (1 - \Theta_1 \mathsf{B}^{12}) a_t$$

$$Z_t = \frac{(1 - \theta_1 \mathsf{B}) (1 - \Theta_1 \mathsf{B}^{12})}{(1 - \mathsf{B}^{12})} a_t = \psi(\mathsf{B}) a_t$$

$$Z_t = a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \cdots$$

9-19

#### Realization to Residual Filter



Model:

$$(1 - \mathsf{B}^{12}) Z_t = (1 - \theta_1 \mathsf{B}) (1 - \Theta_1 \mathsf{B}^{12}) a_t$$

$$a_t = \frac{(1 - \mathsf{B}^{12})}{(1 - \theta_1 \mathsf{B}) (1 - \Theta_1 \mathsf{B}^{12})} Z_t = \pi(\mathsf{B}) Z_t$$

$$a_t = Z_t - \pi_1 Z_{t-1} - \pi_2 Z_{t-2} - \cdots$$

9-20

## **Time Series Intervention Modeling**

Include regression (usually dummy variables) terms to account for permanent or temporary changes in the process.

Some Applications:

- Labor strike
- Onset of the "energy crisis."
- Political party in power
- Effect of promotional events on sales
- Modeling aberration in data
  - ▶ Outliers (accommodation)
  - ► Missing observations (imputation)

9-21

## Los Angeles Ozone Data Monthly Averages 1955-1972

Monthly Average of Hourly Readings of Ozone on Downtown Los Angeles



9-22

#### Changes in the Ozone Process

- Golden State Freeway opened January 1960
- Starting in 1966 all new cars had to have air pollution con-

$$I_{1t} = \begin{cases} 0, & t < \text{January 1960}, \\ 1, & t \ge \text{January 1960}, \end{cases}$$

$$\begin{array}{ll} I_{1t} &=& \left\{ \begin{array}{l} 0, & t < \text{January 1960}, \\ 1, & t \geq \text{January 1960}, \end{array} \right. \\ I_{2t} &=& \left\{ \begin{array}{l} 1, & \text{June-October (warm months) beginning 1966}, \\ 0, & \text{otherwise}, \end{array} \right. \end{array}$$

$$I_{3t} = \begin{cases} 1, & \text{November-May (cool months) beginning 1966,} \\ 0, & \text{otherwise,} \end{cases}$$

#### Possible Input Variables for Intervention Analysis

ullet Step function beginning at time T

$$S_t^{(T)} = \left\{ \begin{array}{ll} 0, & t < T, \\ 1, & t \ge T, \end{array} \right.$$

Example with T = 10

ullet Impulse (or pulse) function at time T

$$P_t^{(T)} = (\mathbf{1} - \mathbf{B}) S_t^{(T)} = S_t^{(T)} - S_{t-1}^{(T)} = \left\{ \begin{array}{l} 1, & t = T, \\ 0, & \text{otherwise,} \end{array} \right.$$

Example with T = 10

#### Possible Input Variables for Intervention Analysis

ullet Step function beginning at time T

$$S_t^{(T)} = \begin{cases} 0, & t < T, \\ 1, & t \ge T, \end{cases}$$

Example with T = 10

|              |   |   | _ |   | _ | _ |   | _ | _ | _ |   |   | 13 |   | _ |  |
|--------------|---|---|---|---|---|---|---|---|---|---|---|---|----|---|---|--|
| $S_t^{(10)}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1  | 1 | 1 |  |

ullet Ramp function beginning at time T

$$R_t^{(T)} = \frac{S_t^{(T)}}{(\mathbf{1} - \mathbf{B})} = R_{t-1}^{(T)} + S_t^{(T)} = \left\{ \begin{array}{l} t - T + \mathbf{1}, & t \geq T, \\ \mathbf{0}, & \text{otherwise,} \end{array} \right.$$

Example with T=10

|              |   |   | _ |   | _ | _ |   | _ | _ | _ |   |   | _ |   | 15 |  |
|--------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|--|
| $R_t^{(10)}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6  |  |

9 - 25

#### Response to Different Kinds of Inputs

|             |                               | 1                             |                                                                                           |
|-------------|-------------------------------|-------------------------------|-------------------------------------------------------------------------------------------|
| Input       | $\omega_1$ B                  | $\frac{\omega_1B}{(1-B)}$     | $rac{\omega_1B}{(1-\delta_1B)}$                                                          |
| $P_t^{(T)}$ | Pulse $\omega_1$              | Step $\omega_1$               | $100\delta_1$ percent increase (decay) from $\omega_1$ to original level                  |
| $S_t^{(T)}$ | Step $\omega_1$               | Ramp $\omega_1$ per unit time | $100\delta_1$ percent increase (decay) from $\omega_1$ to $\frac{\omega_1}{(1-\delta_1)}$ |
| $R_t^{(T)}$ | Ramp $\omega_1$ per unit time |                               |                                                                                           |

With 0  $\leq \delta_1 \leq$  1, if  $\omega_1$  is positive, we have exponential (percent) increase or linear ramp-up. If  $\omega_1$  is negative, we have exponential (percent) decrease or linear ramp-down.

## Strategy for Identifying Intervention Models

- Look at plot of the time series realization and check times of the external events.
- Fit a univariate ARIMA/SARIMA model to the data. Examine residuals, especially around the time of the external events; use as a preliminary noise model.
- Consider the underlying mechanisms related to the event and their possible effect.
- Identify appropriate terms to describe the effect of the intervention.

### Seasonal (Preliminary Noise) Model for the Ozone Data

$$(1 - \mathsf{B}^{12}) Z_t \ = \ (1 - \theta_1 \mathsf{B}) (1 - \Theta_1 \mathsf{B}^{12}) \, a_t$$
 
$$Z_t \ = \ \frac{(1 - \theta_1 \mathsf{B}) (1 - \Theta_1 \mathsf{B}^{12})}{(1 - \mathsf{B}^{12})} \, a_t = \psi_N(\mathsf{B}) \, a_t = N_t$$

Unscrambled model

$$Z_t = Z_{t-12} - \theta_1 a_{t-1} - \Theta_1 a_{t-12} + \theta_1 \Theta_1 a_{t-13} + a_t$$

9 - 28

9 - 27

## **Dummy Variables and "Integrated" Dummy Variables**

| t   | $I_{1t}$ | $I_{2t}$ | $I_{3t}$ | $I_{2t}^* = \frac{I_{2t}}{(1-B^{12})}$ | $I_{3t}^* = \frac{I_{3t}}{(1 - B^{12})}$ |               |
|-----|----------|----------|----------|----------------------------------------|------------------------------------------|---------------|
| 1   | 0        | 0        | 0        | 0                                      | 0                                        |               |
| 2   | 0        | 0        | 0        | 0                                      | 0                                        |               |
| :   | :        | :        | :        | :                                      | :                                        |               |
| 60  | 0        | 0        | 0        | 0                                      | 0                                        | freeway opens |
| 61  | 1        | 0        | 0        | 0                                      | 0                                        |               |
| 62  | 1        | 0        | 0        | 0                                      | 0                                        |               |
| :   | :        | :        | :        | :                                      | :                                        |               |
| 137 | 1        | 0        | 0        | 0                                      | 0                                        | automobile    |
| 138 | 1        | 1        | 0        | 1                                      | 0                                        | emissions     |
| 139 | 1        | 1        | 0        | 1                                      | 0                                        | law passed    |
| 140 | 1        | 1        | 0        | 1                                      | 0                                        |               |
| 141 | 1        | 1        | 0        | 1                                      | 0                                        |               |
| 142 | 1        | 1        | 0        | 1                                      | 0                                        |               |
| 143 | 1        | 0        | 1        | 0                                      | 1                                        |               |
| 144 | 1        | 0        | 1        | 0                                      | 1                                        |               |
|     |          |          |          | Continued                              |                                          |               |

**Dummy Variables and "Integrated" Dummy Variables** 

| t   | $I_{1t}$ | $I_{2t}$ | $I_{3t}$ | $I_{2t}^* = \frac{I_{2t}}{1 - B^{12}}$ | $I_{3t}^* = \frac{I_{3t}}{1 - B^{12}}$ |                  |
|-----|----------|----------|----------|----------------------------------------|----------------------------------------|------------------|
| 145 | 1        | 0        | 1        | 0                                      | 1                                      |                  |
| 146 | 1        | 0        | 1        | 0                                      | 1                                      |                  |
| 147 | 1        | 0        | 1        | 0                                      | 1                                      |                  |
| 148 | 1        | 0        | 1        | 0                                      | 1                                      |                  |
| 149 | 1        | 0        | 1        | 0                                      | 1                                      |                  |
| 150 | 1        | 1        | 0        | 2                                      | 0                                      |                  |
| 151 | 1        | 1        | 0        | 2                                      | 0                                      |                  |
| 152 | 1        | 1        | 0        | 2                                      | 0                                      |                  |
| :   | :        | :        | :        | :                                      | :                                      |                  |
| 216 | 1        | 0        | 1        | 0                                      | 7                                      | last observation |
| 217 | 1        | 0        | 1        | 0                                      | 7                                      | dummy variables  |
| 218 | 1        | 0        | 1        | 0                                      | 7                                      | for forecasting  |
| :   | :        | :        | :        | :                                      | :                                      |                  |
| 236 | 1        | 1        | 0        | 9                                      | 0                                      |                  |
| 237 | 1        | 1        | 0        | 9                                      | 0                                      |                  |
| 238 | 1        | 1        | 0        | 9                                      | 0                                      |                  |
| 239 | 1        | 0        | 1        | 0                                      | 9                                      |                  |
| 240 | 1        | 0        | 1        | 0                                      | 9                                      |                  |
|     |          |          |          |                                        |                                        | 9 - 30           |

#### Seasonal Intervention Model for the Ozone Data

$$Z_t = \omega_1 I_{1t} + \frac{\omega_2}{(1 - \mathsf{B}^{12})} I_{2t} + \frac{\omega_3}{(1 - \mathsf{B}^{12})} I_{3t} + \frac{(1 - \theta_1 \mathsf{B})(1 - \Theta_1 \mathsf{B}^{12})}{(1 - \mathsf{B}^{12})} a_t$$

$$Z_t = \omega_1 I_{1t} + \frac{\omega_2}{(1 - \mathsf{B}^{12})} I_{2t} + \frac{\omega_3}{(1 - \mathsf{B}^{12})} I_{3t} + N_t$$

Unscrambled model

$$(1 - \mathsf{B}^{12})Z_t = \omega_1(1 - \mathsf{B}^{12})I_{1t} + \omega_2I_{2t} + \omega_3I_{3t} + (1 - \theta_1\mathsf{B})(1 - \Theta_1\mathsf{B}^{12})a_t$$

$$Z_t \ = \ Z_{t-12} + \omega_1(I_{1t} - I_{1t-12}) + \omega_2I_{2t} + \omega_3I_{3t} - \theta_1a_{t-1} - \Theta_1a_{t-12} + \theta_1\Theta_1a_{t-13} + a_t$$

#### **Ozone Intervention Model**

$$Z_t = \omega_1 I_{1t} + \frac{\omega_2}{\left(1 - \mathsf{B}^{12}\right)} I_{2t} + \frac{\omega_3}{\left(1 - \mathsf{B}^{12}\right)} I_{3t} + \frac{\left(1 - \theta_1 \mathsf{B}\right) \left(1 - \mathsf{\Theta}_1 \mathsf{B}^{12}\right)}{\left(1 - \mathsf{B}^{12}\right)} a_t$$

$$Z_t = \omega_1 I_{1t} + \frac{\omega_2}{(1 - \mathsf{B}^{12})} I_{2t} + \frac{\omega_3}{(1 - \mathsf{B}^{12})} I_{3t} + N_t$$



9-31

# Graphical Output from Function esti for the Ozone Data with Intervention ${\sf SARIMA}(0,1,1)(0,1,1)_{12}$ Model, Part 1

Monthly Average of Hourly Readings of Ozone on Downtown Los Angeles

Model: Component 1: ms. 1 Component 2: particle 12 ndfls. 1 ms. 1 on us polyto regr variabless can aveg





Data with Intervention  $\mathsf{SARIMA}(0,1,1)(0,1,1)_{12}$  Model, Part 2

Graphical Output from Function esti for the Ozone



9 - 34

# Graphical Output from Function $\mathtt{esti}$ for the Ozone Data with Log Transformation and Intervention $\mathsf{SARIMA}(0,1,1)(0,1,1)_{12} \ \mathsf{Model}, \ \mathsf{Part} \ \mathbf{1}$

Monthly Average of Hourly Readings of Ozone on Downtown Los Angeles

Model: Component 1: max 1 Component 2: periods 12 deflix 1 max 1 on ws logi poten 1 regr variables - occurring
Readinals Vs. Time





# Graphical Output from Function esti for the Ozone Data with Log Transformation and Intervention ${\sf SARIMA}(0,1,1)(0,1,1)_{12} \ {\sf Model}, \ {\sf Part 2}$

Monthly Average of Hourly Readings of Ozone on Downtown Los Angeles

\*\*Model Composer's - see 1 Composer's 2 sected in Table 1 are to be only pipely a long settlette decisioning

\*\*Actual Values\*\*\* Fitted Values\*\*\* Future Values\*\*\*



## **Unscrambled Seasonal Intervention Models**

Overall:

 $Z_t = Z_{t-12} + \omega_1(I_{1t} - I_{1t-12}) + \omega_2 I_{2t} + \omega_3 I_{3t} - \theta_1 a_{t-1} - \Theta_1 a_{t-12} + \theta_1 \Theta_1 a_{t-13} + a_t$ 

Before 1960 and between 1961 and 1966

$$Z_t = Z_{t-12} - \theta_1 a_{t-1} - \Theta_1 a_{t-12} + \theta_1 \Theta_1 a_{t-13} + a_t$$

In 1960

$$Z_t = Z_{t-12} + \omega_1 - \theta_1 a_{t-1} - \Theta_1 a_{t-12} + \theta_1 \Theta_1 a_{t-13} + a_t$$

All warm months after 1966

$$Z_t = Z_{t-12} + \omega_2 - \theta_1 a_{t-1} - \Theta_1 a_{t-12} + \theta_1 \Theta_1 a_{t-13} + a_t$$

All cool months after 1966

$$Z_t \ = \ Z_{t-12} + \omega_3 - \theta_1 a_{t-1} - \Theta_1 a_{t-12} + \theta_1 \Theta_1 a_{t-13} + a_t$$

