Jee Jung Hyc January: 17, 2001 Burch, Sewalt Koldsh, Etuck, c (703) 205-1001 #20465-0801

대 한 민 국 특 허 KOREAN INDUSTRIAL PROPERTY OFFICE

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Industrial Property Office.

특허출원 2000년 제 2066 호

12

Application Number

년 월 Date of Application 2000년 01월 17일

CERTIFIED COPY OF 엘지전자 주식회사 PRIORITY DOCUMENT

인 : Applicant(s)

2000

27

COMMISSIONE

 【서류명】
 특허출원서

 【권리구분】
 특허

 【수신처】
 특허청장

【참조번호】 0006

【제출일자】 2000.01.17

【국제특허분류】 H04N

【발명의 명칭】 프로그램 가이드의 데이터 처리 장치

【발명의 영문명칭】 apparatus for processing data of program guide + 프로그램

-PANT.

--. TC -

【출원인】

【명칭】 엘지전자 주식회사

【출원인코드】 1-1998-000275-8

【대리인】 【성명】 김용인

【대리인코드】 9-1998-000022-1

【포괄위임등록번호】 1999-001100-5

【대리인】

【성명】 심창섭

 【대리인코드】
 9-1998-000279-9

 【포괄위임등록번호】
 1999-001099-2

【발명자】

【성명의 국문표기】 이정혜

【성명의 영문표기】LEE, Jung-hye【주민등록번호】730920-2011612

【우편번호】 137-140

【주소】 서울특별시 서초구 우면동 16번지

【국적】 KR

【심사청구】 청구

【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정

에 의한 출원심사 를 청구합니다. 대리인

김용인 (인) 대리인

심창섭 (인)

【수수료】

【기본출원료】16면29,000원【가산출원료】0면0원

1020000002066

2000/12/2

【우선권주장료】

【심사청구료】

【합계】

【첨부서류】

0 건

0 원

2 항

173,000 원

202,000 원

1. 요약서·명세서(도면)_1통

【요약서】

[요약]

본 발명은 SCID_필터(종래의 PID_필터에 해당)의 SCID와 프레임_필터(종래의 섹션 필터에 해당)의 프레임_헤더를 효과적 조합함으로써 프레임 필터를 효과적으로 사용하고, 또한 APG 데이터를 저장하는 버퍼를 효과적으로 사용함으로써 버퍼의 크기를 줄이는 프로그램 가이드 데이터 처리를 위한 장치를 제공하기 위한 것으로서, 프레임_필터의 각 헤더에 대응되는 SCID를 적어도 한 개 이상 갖도록 하여 SCID_필터(PID_필터)와 프레임_필터(섹션_필터)가 다대다 대응이 되고, 또한 APG 데이터를 저장하기 위한 버퍼의 크기가 '(APG_SCID개수) * (사용자가 셋팅하는 버퍼크기 : 버퍼가 풀(full)나지 않을 최소 크기)'인데 있다.

【대표도】

도 2

【색인어】

EPG, APG

【명세서】

【발명의 명칭】

프로그램 가이드의 데이터 처리 장치{apparatus for processing data of program guide}

【도면의 간단한 설명】

도 1 은 종래 기술에 따른 프로그램 가이드 데이터 처리를 위한 장치를 나타낸 구성도

도 2 는 본 발명에 따른 프로그램 가이드 데이터 처리를 위한 장치를 나타낸 구성

도 3 은 도 2 에 나타낸 프레임 필터의 각 프레임_헤더를 나타낸 구성도

도 4 는 본 발명에 따라 버퍼에 APG 데이터를 전송할 때 호스트가 읽어 가는 레지스터의 구성도

*도면의 주요부분에 대한 부호의 설명

10 : PID 필터 20 : 섹션 필터

30, 300 : 버퍼 100 : SCID 필터

200 : 프레임 필터

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

❤ 본 발명은 디지털 방송에 관한 것으로, 특히 프로그램 가이드 데이터 처리를 위한

장치에 관한 것이다.

- 디지털 방송은 영상 및 음성 스트림(stream)이 디지털 정보로 압축되어 방송되고, 또한 시스템 정보 및 프로그램 정보가 PSIP(Program and System information Protocol) 규격에 맞추어 압축되어 방송된다.
- V기 PSIP는 전자 프로그램 가이드와 시스템 정보를 하나로 정의해 놓은 것으로 지상파 및 케이블 디지털 방송을 위한 ATSC의 규격(standard)으로서, MPEG-2(Moving Picture Experts Group; ISO/IEC 13818-1 시스템)의 방법으로 인코딩된 메시지들을 파성(parsing)하여 프로그램에 관한 다양한 정보를 제공하기 위해 정의해 놓은 것이다 (1997 DEC. document A/65).
- <12> 즉, 상기 PSIP는 MPEG-2 비디오와 AC-3 오디오 포맷으로 만들어진 A/V 데이터를 송수신하고, 각 방송국의 채널들에 대한 정보 및 채널의 각 프로그램에 대한 정보 등을 전송할 수 있도록 여러 테이블들로 구성되어 있다.
- <13> 이와 같이 상기 PSIP는 채널을 선택하여 원하는 방송의 A/V 서비스를 하는 주 기능과 방송 프로그램에 대한 EPG, 즉 방송 안내 서비스를 하는 부가 기능을 지원한다.
- 이때 채널 선택을 위한 채널 정보와 A/V의 수신을 위한 패킷 인식 번호(PID)등의 정보는 가상 채널 테이블(Virtual Channel Table : VCT)을 통해서, 그리고 각 채널의 방송 프로그램들의 EPG 정보들은 EIT(Event Information Table)를 통해서 각각 전송되어진다.
- <15>이때 상기 EIT는 가상 채널의 이벤트에 관한 정보들(제목, 시작 시간등)을 가지며, 여기서 하나의 이벤트는 대부분의 경우 하나의 전형적인 티브이 프로그램이다.

기리고 PSIP는 적어도 최소 4 개, 최대 128 개의 EIT를 가지며, 각 EIT는 특정시간 대역을 가진 이벤트 정보를 제공한다.

- <17> 이와 같이 디지털 티브이에서 방영될 프로그램의 정보를 표시하는 전자 프로그램 가이드는 사용자와의 인터페이스를 편리하게 하기 위해서 다수개의 섹션들이 조합된 테이블에 의해 여러 가지의 표현 형태를 가진다.
- 18> 그 중 흔히 알려진 전자 프로그램 가이드(EPG) 방식은 젬스타(gemster)의 테이블 - 방식이 있다.
 - <19> 또 미국 위성 방송 중 가장 높은 시장 점유율을 가진 DIRECTV의 DSS(Digital Satellite System)은 기존의 EPG(Electrical Program Guide)보다 한 차원 높은 AGP를 2000년부터 서비스하게 된다.
 - <20> 따라서 APG 데이터를 효과적으로 처리하는 트랜스포트 디먹스(이하 TP 라 칭함)의 개발이 시급해져 있다.
 - -21> 그러면 APG와 유사한 구조와 내용을 가진 MPEG의 PSI를 처리하는 종래의 TP 구조를 통해 설명하면 다음과 같다.
 - <22> TP는 패킷 단위로 들어온 PSI 데이터를 PID_필터와 섹션_필터를 거쳐 필터링된다.
 - <23> 이때, 섹션_헤더 하나에 PID 하나로(PID 한 개에는 섹션_헤더 여러개가 메핑될 수 있다.) 메핑 된다.
 - 또한 필터를 통과한 데이터는 섹션_필터에 셋팅된 섹션_헤더의 종류별로 저장되며, 그에 따라 셋팅가능한 섹션_헤더의 개수만큼 버퍼를 가진다.
 - <25> 따라서 각 버퍼의 크기는 섹션의 최대 길이의 2 배 이상이 되어야 한다.

- <26> 그러면 이러한 종래 기술의 문제점을 살펴보도록 한다.
- <27> 실 예로 종래의 구조를 갖는 도 1을 참조하여 두 가지 문제점을 설명하면 다음과 같다.
- <28> 먼저, 편의상 32개의 PID, 32개의 섹션 헤더를 셋팅할 수 있는 TP를 예로 들어 설명한다.
- <29> 하나는 일반적으로 섹션_필터는 마스킹이 가능하기 때문에 실제로는 섹션_헤더의 일부 필드만을 세팅할 수 있다.
- <30> 따라서 셋팅된 하나의 섹션_헤더가 여러 개의 PID와 조합을 이룰 수 있다.
- <31> 즉, 섹션이 PID_필터의 0, 1, 또는 2번 PID와 메칭되고, 그리고 섹션_필터의 0번 헤더와 메칭되는 경우에만 필터를 통과하도록 필터링 하는 경우가 있을 수 있다.
- '그러나 종래 데이터 처리 장치의 구조는 섹션_헤더 하나에 PID 하나가 메핑되므로 같은 종류의 섹션_헤더인 상기 0번 헤더는 PID_필터의 0, 1, 그리고 2번 PID와 각각 하 나씩만 메칭되므로 총 3개로 셋팅해야 한다.
- <33> 따라서 셋팅할 수 있는 헤더는 32개 중 29개 남게 된다.
- <34> 이와 같이 종래의 TP는 32개의 헤더를 셋팅할 수 있는 메모리를 갖고도 PID 한 개와만 메핑되기 때문에 같은 헤더값을 두 번 이상 셋팅하게 되어 32개를 모두 이용하지 못하는 결과를 초래하게 된다.
- <35> 두 번째는 PSI 데이터를 저장하기 위한 버퍼가 언제나 섹션_필터의 혜더 개수와 같으므로 그 크기가 매우 커지게 된다.
- <36 위와 같은 경우를 보면 버퍼크기는 '32 x (사용자가 정하는 크기:버퍼가 풀(full)</p>

나지 않는 최소 크기)'가 된다.

<37> 따라서 하드웨어 크기를 줄이는데 걸림돌이 된다.

【발명이 이루고자 하는 기술적 과제】

- 의와 같이 이상에서 설명한 종래 기술에 따른 프로그램 가이드 데이터 처리는 다음
 과 같은 문제점이 있다.
- <39> 첫째, 섹션_헤더 하나는 PID 하나와만 메핑이 이루어지므로 헤더를 셋팅할 수 있는 메모리를 모두 이용하지 못하는 문제가 있다.
- 둘째, PSI 데이터를 저장하기 위한 버퍼가 언제나 섹션_필터의 헤더 개수와 같으므로 그 크기가 매우 커지게 되어 하드웨어의 크기를 줄이는데 어려움이 있다.
- 따라서 본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, SCID_필터(종래의 PID_필터에 해당)의 SCID와 프레임_필터(종래의 섹션 필터에 해당)의 프레임_ 헤더를 효과적 조합함으로써 프레임 필터를 효과적으로 사용할 수 있게 하는데 그 목적이 있다.
- 석2> 본 발명의 다른 목적은 APG 데이터를 저장하는 버퍼를 효과적으로 사용함으로써 버퍼의 크기를 줄이는데 있다.

【발명의 구성 및 작용】

생기와 같은 목적을 달성하기 위한 본 발명에 따른 프로그램 가이드 데이터 처리를 위한 장치의 특징은 SCID_필터(PID_필터)와 프레임_필터(섹션_필터)가 다대다 대응이 되며 이 대응을 설정하기 위해 프레임_필터의 각 혜더에 대응되는 SCID가 1 개 이상 갖 는데 있다.

<44> 본 발명의 다른 특징은 APG 데이터를 저장하기 위한 버퍼 크기는 '(APG_SCID개수)
* (사용자가 셋팅하는 버퍼크기 : 버퍼가 풀(full)나지 않을 최소 크기)'인데 있다.

- <45> 본 발명의 다른 목적, 특성 및 잇점들은 첨부한 도면을 참조한 실시예들의 상세한 설명을 통해 명백해질 것이다.
- <46>본 발명에 따른 프로그램 가이드 데이터 처리를 위한 장치의 바람직한 실시예에 대 하여 첨부한 도면을 참조하여 설명하면 다음과 같다.
 - <47> 도 2 는 본 발명에 따른 프로그램 가이드 데이터 처리를 위한 장치를 나타낸 구성 도이고, 도 3 은 도 2 에 나타낸 프레임 필터의 각 프레임_헤더를 나타낸 구성도이다.
 - <48> 도 2를 보면 SCID_필터의 SCID와 프레임_필터의 프레임_헤더는 다대다 대응으로 메 곡 핑되어 있다.
 - <49> 상기 프레임_필터를 기준으로 살펴보면 프레임_헤더0(섹션_헤더0)에는 SCIDO, SCID1, SCID2가 대응된다.
 - <50> 따라서 도 3과 같이 프레임_헤더0의 SCID_number는 0x0, 0x1, 0x2로 셋팅 된다.
 - <51> 그리고 프레임_헤더 1 내지 프레임_헤더 31도 상기와 동일한 방법으로 셋팅되어 있다.
 - <52> 여기서는 프레임_헤더0의 경우만 생각해 보기로 한다.
 - <53> 종래 기술로는 이와 같은 경우 프레임_헤더0을 별도로 세 번 셋팅하여 SCID0,
 SCID1, SCID2에 각각 대응시켜야 하므로 같은 크기의 프레임_필터를 쓴다고 해도 실제로
 셋팅된 프레임_헤더의 종류는 더 적어진다.
 - <54> 또한 APG는 많은 종류의 대상(object)(일종의 테이블 개념)이 오므로 셋팅해야 하

는 프레임_헤더의 종류가 매우 많아 종래 기술로 구현할 경우 실제로 프레임_필터가 제기능을 발휘하기가 어렵다.

- 한편 하나의 프레임_헤더에 SCID_number를 몇 개 만들 것인가는 상황에 맞춰 정의할 수 있다.
- 이와 같이 SCID_필터(PID_필터)와 프레임_필터(섹션_필터)는 다대다 대응이 되며, 이 대응을 설정하기 위해 프레임_필터의 각 헤더에 대응되는 SCID를 1 개 이상 갖게 된다.
- - <58> 실 예를 들어 SCID 레지스터 3에 셋팅된 SCID와 대응된다면 3을 셋팅하면 된다.
 - <59> 이렇게 하면 32개의 SCID와 대응되는 프레임_필터를 가진 경우 한 SCID당 5 비트만 할당하면 된다.
 - <60> 다음으로 APG 데이터를 저장하는 버퍼에 대해 살펴보면 다음과 같다.
 - (61) TP는 호스트에 APG 데이터를 프레임단위로 모아서 전송되야 하며, 또한 SCID와 프레임_헤더별로 각각 구분 지어 전송해야 한다.
 - (62) 따라서 종래에는 이를 위해 SCID와 프레임_헤더별로 버퍼를 따로 두었으나, 본 발명에서는 버퍼의 크기를 줄이기 위해 버퍼를 따로따로 두지 않는 대신 APG 데이터를 가져 갈 때 호스트가 읽어 가는 레지스터에 메칭된 SCID 번호와 프레임_헤더번호를 써준다.
 - <63> 상기 레지스터의 구조를 도 4 에 나타내었다.

(64) 그리고, 하나의 SCID 하에서는 한 개의 프레임이 완성되기 전에 다른 프레임이 시작되지 않지만 다른 SCID를 갖는 프레임끼리는 한 프레임이 끝나기 전에 다른 프레임이 시작될 수 있다.

- <66> 그리고, 프레임의 도착을 알려 줄 때, 프레임_시작_포인트, 프레임_종료_포인트와 함께 그 프레임이 메칭된 SCID와 프레임_헤더의 레지스터 번호를 같이 알려 주게 된다.
- <67> 이와 같이 구성된 본 발명에 따른 프로그램 가이드 데이터 처리를 위한 장치의 동 작을 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.
- <68> 도 2를 통해 제안된 구조와 종래 구조를 실시예를 통해 비교하면 다음과 같다.
- <69> 설명의 간략화를 위해 프레임_헤더 0부터 5까지만 살펴보겠다.
- <70> 도 2를 보면 프레임_헤더0부터 프레임_헤더5는 SCID 0부터 SCID 3과 다대다로 대응되어 있다.
- 대응된 SCID의 개수가 4개이므로 버퍼의 크기는 '4 X(버퍼가 풀(full)나지 않을 최소 크기)'면 된다.
- <72> 정리해 보면 SCID 레지스터 4개, 프레임_헤더 레지스터 6개, 버퍼'4 * (버퍼가 풀 (full) 나지 않을 최소 크기)'가 필요하다.
- <73> 그러나 이것을 종래의 구조로 구현하게 되면 SCID 레지스터 4개, 프레임_혜더 레지스터 11 개, 버퍼 '11 ㄨ버퍼가 풀(full)나지 않을 최소 크기)'가 필요하게 된다.
- <74> 이는 도 2에 나타난 화살표의 개수만큼 프레임_헤더를 셋팅해야 하며 그 개수만큼

프레임_헤더를 셋팅해야 하며 그 개수만큼 구분된 버퍼가 필요하기 때문이다.

따라서, 같은 내용이 프레임_필터를 구현하기 위해서 종래의 구조에서는 프레임_혜
 더 레지스터와 버퍼의 크기가 더 커야한다.

【발명의 효과】

- <76> 이상에서 설명한 바와 같은 본 발명에 따른 프로그램 가이드 데이터 처리를 위한 장치는 다음과 같은 효과가 있다.
- <??> 첫째, APG의 프레임 필터와 버퍼 크기를 줄이는 효과가 있다.
- 5째, 같은 크기의 프레임_필터를 쓸 경우에는 더 많은 종류의 프레임_헤더를 걸러
 낼 수 있으므로 프레임_헤더의 종류가 매우 많은 APG의 경우, 성능을 향상시킬 수 있다.
- <79> 셋째, 다른 EPG 데이터를 처리하는 TP에 적용할 수 있다.
- '80' 넷째, TP에서 섹션_필터링을 할 경우 본 특허를 적용하면 섹션_필터와 버퍼 크기를 줄일 수 있다.
- (81) 이상 설명한 내용을 통해 당업자라면 본 발명의 기술 사상을 이탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다.
- <82> 따라서, 본 발명의 기술적 범위는 실시예에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의하여 정해져야 한다.

【특허청구범위】

【청구항 1】

프레임_필터의 각 헤더에 대응되는 SCID를 적어도 한 개 이상 갖도록 하여 SCID_필터(PID_필터)와 프레임_필터(섹션_필터)가 다대다 대응이 되는 것을 특징으로 하는 프로그램 가이드 데이터 처리 장치.

【청구항 2】

제 1 항에 있어서,

장기 SCID는 SCID_필터에 셋팅된 순서(SCID 레지스터의 번호)를 포함하는 것을 특징으로 하는 프로그램 가이드 데이터 처리 장치.

【도면】

[도 1]

[도 2]

[도 3]

- -		
프레임_헤더 필드 31	프레임_헤더 필드 30	
(5 bits) ex)0×14	SCID_number (5 bits) ex)0-7	
(5 bits) ex)0~15	SCID_number (5 bits) ex)0×15	
(5 bits) ex)0~1a	SCID_number (5 bits) ex)知音	
SCID_number SCID_	SCID_number SCID_number SCID_number (5 bits) (5 bits) (5 bits) mask_bits ex)0~7 ex)0~15 ex)2을 (3 bits)	

•															
	프레임_헤더 핆드4			프레임_헤더 필드3		프레임_헤더 핑드2			프레임_헤더 필드1			프레임_헤더 필드 0			
	ex)0×2	(5 bits)	SCID_number	ex)0×2	(5 bits)	SCID_number	ex)0~0	(5 bits)	SCID_number	ex)0×1	(5 bits)	SCID_number	ex)0~0	(5 bits)	SCID_number
	ex)0×3	(5 bits)	SCID_number	ex)없음	(5 bits)	SCID_number	ex)없음	(5 bits)	SCID_number	ex)0×2	(5 bits)	SCID_number SCID_number	ex)0×1	(5 bits)	SCID_number
	ex)었음	(5 bits)	SCID_number SCID_number SCID_number	ex)없음	(5 bits)	SCID_number SCID_number SCID_number	ex)없음	(5 bits)	SCID_number SCID_number SCID_number	ex)없음	(5 bits)	SCID_number	ex)0~2	(5 bits)	SCID_number SCID_number SCID_number SCID_number
	(3 bits)	mask_bits	SCID_number	(3 bits)	mask_bits	SCID_number	(3 bits)	mask_bits	SCID_number	(3 bits)	mask_bits	SCID_number	(3 bits)	mask_bits	SCID_number

Frame_start_point Frame_start_point (버퍼의 시작 어드레스)	
Frame_start_point (버퍼의 종료 어드레스)	
메칭된 SCID_number	
frame_header _number	

17-17