CF7670C-V3简要说明			
PIN序 号	简称	功能	演示代码中接 STM32F103对应 的10名称
PIN 1	VCC	VCC电源输入(单电源电压3.3V. 方焊盘标记的为第一脚)	VCC 3.3V
PIN 2	GND	地	GND
PIN 3	SCL	OV7670 SCCB SCL 不带上拉电阻	PD2
PIN 4	SDA	OV7670 SCCB SDA 带4.7K上拉电阻	PD3
PIN 5	VSYNC	0V7670 帧同步信号	PC3
PIN 6	HREF	0V7670 行同步信号	未接
PIN 7	WEN	FIF0(AL422)写允许,输入高电平允许0V7670输出的图象写入FIF0	PF11
PIN 8	NC/RE#	空脚(提前定货可以获得此脚为FIF0读允许信号"RE#"的版本)	未接
PIN 9	RRST	FIFO读地址复位,拉低至少1个完整的读周期(RCK周期)FIFO读地址归零	PF7
PIN 10	0E#	FIFO数据输出使能, 拉低为正常输出, 拉高后D[07] 为高阻	PF9
PIN 11	RCK#	FIFO 读数据时钟,与I8080总线RD#信号类似	PF10
PIN 12	GND	地	GND
PIN 13	DO	数据输出 BITO	PB8
PIN 14	D1	数据输出 BIT1	PB9
PIN 15	D2	数据输出 BIT2	PB10
PIN 16	D3	数据输出 BIT3	PB11
PIN 17	D4	数据输出 BIT4	PB12
PIN 18	D5	数据输出 BIT5	PB13
PIN 19	D6	数据输出 BIT6	PB14
PIN 20	D7	数据输出 BIT7	PB15

STM32F103ZET6 10控制采集CF7670C-V3模块演示代码简要说明:

通过STM32普通10(PD2, PD3模拟)0V7670 SCCB总线对0V7670进行初始化

对应函数: Sensor_init()//初始化CMOS Sensor

请按此方式调用: while(1!=Sensor_init()){}//初始化CMOS Sensor

0V7670传感器的初始化配置文件"Sensor_config. h" 是一个2纬数组,第一个为代表0V7670寄存器,第2个为写入0V7670寄存器的数据

通过初始化后0V7670将按RGB565数据格式320*240分辨率输出图象

VSYNC为负有效输出.FIF0的写地址指针将在每个VSYNC信号到来时归零

HREF为正有效输出,通过拉高WEN信号 0V7670的HREF对应的行的有效数据将写入FIF0(假如通过精确控制某个HREF有效时拉高或者拉低WEN 将可实现精确采集指定某行的数据

PCLK为正相位输出(上沿时候D[0--7]数据有效)

初始化完成后初始化STM32F103中断(只用了VSYNC触发STM32外部中断)第一个VSYNC脉冲到来STM32进中断,拉高WEN,并令标志变量Vsync=1(初始状态Vsync=0)第2个VSYNC脉冲到来STM32进中断,拉低WEN,并令标志变量Vsync=2此时FIF0里面就已经缓冲好0V7670写进来的完整的RGB565 320*240的图象数据153600字节在main主循环中检测标志变量Vsync=2时就可以读FIF0中的数据 并送TFT LCD显示注意 演示代码中使用9600循环(每个循环连续采集8个像素/16个字节送TFT显示 只为加速)采集完一个完整的图象数据送TFT LCD显示后可再令Vsync=0,将进入下一个大循环:

注意事项: CF7670C-V3模块最大工作电压3.3V,请确保电源波纹尽量小 否则影响图象效果,杜帮线/飞线连接 若线路比较长将会有干扰,可在读FIF0数据之前适当加入NOP等待改善,任何输入不得超过3.3v,任何输出不得短路,任何输出最大电流扇出能力为5毫安,STM32F103ZET6采集CF7670C-V3模块演示代码为IAR ARM 6.40.2编译,若低版本编译将导致不可预测错误,CF7670C-V3模块SCL不带上拉电阻,若MCU 10设置为开漏输出 需要用户自己外接上拉电阻,本例MCU 10为推挽输出,SCCB最大通信频率 400KHZ,0V7670 320*240分辨率最大VSYNC频率最大60FPS.FIF0容量为384K需要注意所设置0V7670最大每帧数据不要超过FIF0容量