

Química Nivel superior Prueba 2

Miércoles 8 de noviembre de 2017 (tarde)

Número	de convo	ocatoria de	el alumno	

2 horas 15 minutos

Instrucciones para los alumnos

- Escriba su número de convocatoria en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Escriba sus respuestas en las casillas provistas a tal efecto.
- En esta prueba es necesario usar una calculadora.
- Se necesita una copia sin anotaciones del cuadernillo de datos de química para esta prueba.
- La puntuación máxima para esta prueba de examen es [95 puntos].

205-004

International Baccalaureate Baccalaureate Baccalauréat International Bachillerato Internacional

Conteste todas las preguntas. Escriba sus respuestas en las casillas provistas a tal efecto.

1. Un estudiante tituló dos ácidos, ácido clorhídrico, HCl (aq) y ácido etanoico, CH₃COOH (aq), con 50,0 cm³ de hidróxido de sodio, NaOH (aq), 0,995 mol dm⁻³ para determinar sus concentraciones. Midió la temperatura de la mezcla de reacción después de cada añadido de ácido y la graficó en función del volumen de cada ácido.

(a)	Use el gráfico para estimar la temperatura inicial de las soluciones.	[1]
(a)	Ose el granco para estimar la temperatura inicial de las soluciones.	נין

	 •	•	٠	•	 •	•	•	•	-		•	•	٠	•	•		 	 	 •	 	•	•	•	•	٠	•	٠	•	•	•	 	 •	•	•	•	•		•	•	•	•	•	•			 	 •	•		
									-								 	 		 											 															 				

	Pred	unta	1.	continu	ación)
۱	rieg	unta	٠.	Continu	acioni

 (d) (i) Determine la variación de calor, q, en kJ, para la reacción de neutralización entre ácido etanoico e hidróxido de sodio. Suponga que las capacidades caloríficas específicas y las densidades de las soluciones son las del agua. (ii) Calcule la variación de entalpía, ΔH, en kJ mol⁻¹, para la reacción entre ácido 	(b)	Determine la temperatura máxima que se alcanza en cada experimento, analizando el gráfico.	[2]
 (c) Calcule la concentración de ácido etanoico, CH₃COOH, en mol dm⁻³. (d) (i) Determine la variación de calor, q, en kJ, para la reacción de neutralización entre ácido etanoico e hidróxido de sodio. Suponga que las capacidades caloríficas específicas y las densidades de las soluciones son las del agua. (ii) Calcule la variación de entalpía, ΔH, en kJ mol⁻¹, para la reacción entre ácido 	HCl	:	
 (c) Calcule la concentración de ácido etanoico, CH₃COOH, en mol dm⁻³. (d) (i) Determine la variación de calor, q, en kJ, para la reacción de neutralización entre ácido etanoico e hidróxido de sodio. Suponga que las capacidades caloríficas específicas y las densidades de las soluciones son las del agua. (ii) Calcule la variación de entalpía, ΔH, en kJ mol⁻¹, para la reacción entre ácido 			
 (d) (i) Determine la variación de calor, q, en kJ, para la reacción de neutralización entre ácido etanoico e hidróxido de sodio. Suponga que las capacidades caloríficas específicas y las densidades de las soluciones son las del agua. (ii) Calcule la variación de entalpía, ΔH, en kJ mol⁻¹, para la reacción entre ácido 	CH ₃	COOH:	
 (d) (i) Determine la variación de calor, q, en kJ, para la reacción de neutralización entre ácido etanoico e hidróxido de sodio. Suponga que las capacidades caloríficas específicas y las densidades de las soluciones son las del agua. (ii) Calcule la variación de entalpía, ΔH, en kJ mol⁻¹, para la reacción entre ácido 			
ácido etanoico e hidróxido de sodio. Suponga que las capacidades caloríficas específicas y las densidades de las soluciones son las del agua. (ii) Calcule la variación de entalpía, ΔH, en kJ mol⁻¹, para la reacción entre ácido	(c)	Calcule la concentración de ácido etanoico, CH ₃ COOH, en mol dm ⁻³ .	[2]
ácido etanoico e hidróxido de sodio. Suponga que las capacidades caloríficas específicas y las densidades de las soluciones son las del agua. (ii) Calcule la variación de entalpía, ΔH, en kJ mol⁻¹, para la reacción entre ácido			
ácido etanoico e hidróxido de sodio. Suponga que las capacidades caloríficas específicas y las densidades de las soluciones son las del agua. (ii) Calcule la variación de entalpía, ΔH, en kJ mol⁻¹, para la reacción entre ácido			
ácido etanoico e hidróxido de sodio. Suponga que las capacidades caloríficas específicas y las densidades de las soluciones son las del agua. (ii) Calcule la variación de entalpía, ΔH, en kJ mol⁻¹, para la reacción entre ácido			
ácido etanoico e hidróxido de sodio. Suponga que las capacidades caloríficas específicas y las densidades de las soluciones son las del agua. (ii) Calcule la variación de entalpía, ΔH, en kJ mol⁻¹, para la reacción entre ácido			
	(d)	ácido etanoico e hidróxido de sodio. Suponga que las capacidades caloríficas específicas y las densidades de las	[2]
			[2]

Véase al dorso

(Pregunta 1: continuación)

(e)	Sugiera por qué la variación de entalpía de neutralización del CH ₃ COOH es menos
	negativa que la del HCl.

[2]

(f) Las curvas **X** e **Y** se obtuvieron cuando un carbonato metálico reaccionó con el mismo volumen de ácido etanoico en dos condiciones diferentes.

(i) Explique la forma de la curva **X** en términos de la teoría de las colisiones. [2]

	(ii) Sugie	ra una posible razón que	justifique las dif	erencias er	ntre las curv	as X e Y .
	La química analít	ica usa instrumentos para	separar, identif	icar y cuan	tificar mater	ia.
	(a) Describa el	espectro de emisión del h	idrógeno.			
	(b) Resuma có de hidróger	mo se relaciona este espe no.	ectro con los niv	eles energe	éticos en el	átomo
	(c) Una muesti	ra de magnesio tiene la siç	guiente composi	ción isotóp	ica.	
		Isótopo	²⁴ Mg	²⁵ Mg	²⁶ Mg	
		Abundancia relativa / %		10,1	11,3	
		nasa atómica relativa del r con dos decimales.	nagnesio basár	idose en es	stos datos.	Dé su
_						

Véase al dorso

-			_	4.	
")rac	บบทรา	7.	COntinue	ICION)
١.		juiitu	盔∙	continua	,

(i)	La combustión completa de 0,1595 g de mentol produce 0,4490 g de dióxido de carbono y 0,1840 g de agua. Determine la fórmula empírica del compuesto y muestre su trabajo.
(iii)	Determine la fórmula molecular del mentol usando sus respuestas a los apartados (d)(i) y (ii).
	apartados (d)(i) y (ii).
	(ii)

(Pregunta 2: continuación)

(e) El óxido nítrico reacciona con cloro.

$$2\mathsf{NO}\left(g\right) + \mathsf{Cl}_2(g) \to 2\mathsf{NOCl}\left(g\right)$$

Los siguientes datos experimentales se obtuvieron a 101,3 kPa y 263 K.

Experimento	[NO] inicial / mol dm ⁻³	[Cl ₂] inicial / mol dm ⁻³	Velocidad inicial / mol dm ⁻³ min ⁻¹
1	$1,30 \times 10^{-1}$	$1,30 \times 10^{-1}$	$3,95 \times 10^{-1}$
2	$1,30 \times 10^{-1}$	$2,60 \times 10^{-1}$	$7,90 \times 10^{-1}$
3	$2,60 \times 10^{-1}$	$2,60 \times 10^{-1}$	3,16

(I) Deduzca el orden de reacción con respecto al Cl ₂ y al NO.	[2]
Cl ₂ :	
NO:	
(ii) Indique la expresión de velocidad para la reacción.	[1]
(iii) Calcule el valor de la constante de velocidad a 263 K.	[1]

Véase al dorso

Luo	tendencias de las propiedades físicas y químicas son útiles para los químicos.	
(a)	Explique la tendencia general de aumento de las energías de primera ionización de los elementos del periodo 3, del Na al Ar.	[2
(b)	Explique por qué los puntos de fusión de los metales del grupo 1 (Li \rightarrow Cs) disminuyen hacia abajo del grupo mientras que los puntos de fusión de los elementos del grupo 17 (F \rightarrow I) aumentan hacia abajo del grupo.	[3
	hacia abajo del grupo mientras que los puntos de fusión de los elementos del grupo 17	[3
	hacia abajo del grupo mientras que los puntos de fusión de los elementos del grupo 17 $(F \to I)$ aumentan hacia abajo del grupo.	[3
	hacia abajo del grupo mientras que los puntos de fusión de los elementos del grupo 17 $(F \to I)$ aumentan hacia abajo del grupo.	[3
Gru	hacia abajo del grupo mientras que los puntos de fusión de los elementos del grupo 17 $(F \to I)$ aumentan hacia abajo del grupo.	[3
Gru	hacia abajo del grupo mientras que los puntos de fusión de los elementos del grupo 17 $(F \to I)$ aumentan hacia abajo del grupo.	[3
Gru	hacia abajo del grupo mientras que los puntos de fusión de los elementos del grupo 17 $(F \to I)$ aumentan hacia abajo del grupo.	[3

(Pre	gunta	3: continuación)	
	(c)	Indique una ecuación para la reacción del óxido de fósforo(V), P ₄ O ₁₀ (s), con agua.	[1]
	(d)	El cobalto forma el complejo de metal de transición [Co(NH ₃) ₄ (H ₂ O)Cl]Br.	
		(i) Indique la forma del ion complejo.	[1]
		(ii) Deduzca la carga del ion complejo y el estado de oxidación del cobalto.	[2]
	Car	ga del ion complejo:	
	Esta	do de oxidación del cobalto:	
	(e)	Describa, en términos de las teorías ácido-base, el tipo de reacción que se produce entre el ion cobalto y el agua para formar el ion complejo.	[2]

- **4.** Las estructuras de Lewis (representación de electrones mediante puntos) son modelos útiles.
 - (a) Dibuje las estructuras de Lewis (representación de electrones mediante puntos) del PF₃ y el PF₅ y use la TRPEV para deducir la geometría molecular y los ángulos de enlace de cada especie.

[6]

	PF_3	PF ₅
Estructura de Lewis (representación de electrones mediante puntos)		
Geometría molecular		
Ángulos de enlace		
(b) Prediga si las mo	léculas de PF ₃ y PF ₅ son polares o no	polares. [1]
(c) Indique el tipo de	hibridación que presenta el átomo de	fósforo en el PF ₃ . [1]

5. El 1,2-etanodiol, HOCH₂CH₂OH, reacciona con cloruro de tionilo, SOCl₂, de acuerdo con la siguiente reacción.

$$HOCH_2CH_2OH(l) + 2SOCl_2(l) \rightarrow ClCH_2CH_2Cl(l) + 2SO_2(g) + 2HCl(g)$$

(a) Calcule la variación de entalpía estándar para esta reacción a partir de los siguientes datos.

[2]

	HOCH ₂ CH ₂ OH(l)	SOCI ₂ (I)	CICH ₂ CH ₂ CI(I)	SO ₂ (g)	HCl(g)
$\Delta H_{\rm f}^{\Theta}$ / kJ mol $^{-1}$	-454,7	-245,7	-165,2	-296,9	-92,3

(b) Calcule la variación de entropía estándar para esta reacción a partir de los siguientes datos.

[1]

[2]

	HOCH ₂ CH ₂ OH(l)	SOCI ₂ (I)	CICH ₂ CH ₂ CI(I)	SO ₂ (g)	HCl(g)
S [⊕] /J K ⁻¹ mol ⁻¹	166,9	278,6	208,5	248,1	186,8

•	• •	• •	•	•	• •	• •	 •	 •	 •	 •	•	 •	 •	 •	 •	• •	•	•	•	•	 •	• •	•	 • •	•	 •	 •	 •	 •	•
 ٠.	٠.											 •	 •	 -									-	 						

(c) La variación de energía libre estándar, ΔG^{\ominus} , para la reacción de arriba es $-103\,\mathrm{kJ\,mol^{-1}}$ a 298 K. Sugiera por qué el valor de ΔG^{\ominus} es tan negativo considerando el signo de ΔH^{\ominus} del apartado (a).

.....

6. Muchas reacci	ones se encuentran	en estado de	equilibrio.
------------------	--------------------	--------------	-------------

((a)	Se pe	ermitió aue	e la siguiente	reacción alcanzara	el ed	uilibrio a	761K.
١.	(~)	, 00 p	Jiiiiiiio qui	o ia oigaioiito	roaddion aldanzara	0. 00	quilibrio a	, 0 , , ,

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$
 $\Delta H^{\ominus} < 0$

(i) Indique la expresión de la constante de equilibrio, K_c , para esta reacción. [1]

(ii) Las siguientes concentraciones en equilibrio, en mol dm⁻³, se obtuvieron a 761 K.

[H ₂ (g)]	$[I_2(g)]$	[HI(g)]
$8,72 \times 10^{-4}$	$2,72 \times 10^{-3}$	$1,04 \times 10^{-2}$

Calcule el valor de la constante de equilibrio a 761 K.

[1]

(iii) Determine el valor de ΔG^{\ominus} , en kJ, para la reacción de arriba a 761 K. Use la sección 1 del cuadernillo de datos.

[1]

(Pregunta 6: continuación)

(iv) Resuma el efecto, si existe, de cada uno de los siguientes cambios sobre la posición de equilibrio. Dé una razón en cada caso.

[2]

[1]

	Efecto	Razón
Aumento de volumen, a temperatura constante		
Aumento de temperatura, a presión constante		

(b) A continuación se dan las ecuaciones para dos reacciones ácido-base.

$$HCO_3^-(aq) + H_2O(l) \rightleftharpoons H_2CO_3(aq) + OH^-(aq)$$

 $HCO_3^-(aq) + H_2O(l) \rightleftharpoons CO_3^{2-}(aq) + H_3O^+(aq)$

(1)	identifique dos especies antiproticas diferentes presentes en las reacciones
	de arriba.

(ii)	Indique qué significa el término base conjugada.	[1]

(iii)	Indique la base conjugada del ion hidróxido, OH¯.	[1]

.....

Véase al dorso

(Pregunta 6: continuación)

(c) El pH del ácido carbónico, H₂CO₃ (aq), 0,010 mol dm⁻³ es 4,17 a 25 °C.

$$H_2CO_3(aq) + H_2O(l) \rightleftharpoons HCO_3^-(aq) + H_3O^+(aq).$$

(i) Calcule la $[H_3O^+]$ en la solución y la constante de disociación, K_a , del ácido a 25 °C.

[3]

																				-		 								 	 				

(ii) Calcule K_b para el HCO_3^- que actúa como base.

[1]

(d) Un estudiante trabajando en el laboratorio clasificó el HNO₃, H₂SO₄, H₃PO₄ y HClO₄ como ácidos basándose en sus pH. Emitió la hipótesis de que "todos los ácidos contienen oxígeno e hidrógeno". Evalúe su hipótesis.

[2]

7. Considere las siguientes reacciones de semiceldas y sus potenciales estándar de electrodo.

	E [⊕] /V
$Mn^{2+}(aq) + 2e^- \rightleftharpoons Mn(s)$	-1,18
$Ni^{2+}(aq) + 2e^- \rightleftharpoons Ni(s)$	-0,26
$I_2(aq) + 2e^- \rightleftharpoons 2I^-(aq)$	+0,54

(a)	Deduzca una ecuación ajustada para la reacción total que se produce cuando se conectan las semiceldas estándar de níquel y de yodo.	[1]
(b)	Prediga, dando una razón, la dirección del movimiento de los electrones cuando se conectan las semiceldas estándar de níquel y de manganeso.	[2]
(c)	Calcule el potencial de la pila, en V, cuando se conectan las semiceldas estándar de yodo y de manganeso.	[1]
(d)	Identifique el mejor agente reductor de la tabla de arriba.	[1]

Véase al dorso

(Pregunta 7: continuación)

(e) Indique y explique los productos de la electrólisis de una solución acuosa concentrada de cloruro de sodio con electrodos inertes. Su respuesta debe incluir las semiecuaciones para las reacciones en cada electrodo.

[4]

[1]

Electrodo positivo (ánodo):	
Electrodo negativo (cátodo):	
Electrodo negativo (cátodo):	

- **8.** La reactividad de los compuestos orgánicos depende de la naturaleza y posición de sus grupos funcionales.
 - (a) A continuación se dan las fórmulas estructurales de dos compuestos orgánicos.

(i) Deduzca el tipo de reacción química y los reactivos que se usan para diferenciar estos compuestos.

.....

/		4.	
<i>(</i> Draaiir	nta Xº 4	continua	nciani
(r regui	πα σ. ν	SOMMA	

Compues	to A :			
Compues	to B :			
(iii)	Deduzca el número de señales y la relaciór	n de áreas de	oboje de les coñeles en	
	los espectros de RMN de ¹ H de los dos con		ebajo de las seriales en	[4]
Compuesto	los espectros de RMN de ¹ H de los dos con Número de señales	npuestos.	Relación de áreas	[4]
Compuesto		npuestos.		[4]
		npuestos.		
Α		npuestos.	Relación de áreas	[4]
В	Número de señales	npuestos.	Relación de áreas	
В	Número de señales	npuestos.	Relación de áreas	

Véase al dorso

		- 10 - NT/74/CITEWI/III 2/31 A/120	U
junta (8: co	ntinuación)	
	(v)	Dibuje representaciones tridimensionales de los dos enantiómeros.	
		que, con ayuda de ecuaciones, el mecanismo de la reacción de sustitución por ales libres del etano con bromo en presencia de luz solar.	
	raulo	ales libres del etario con bromo en presencia de luz solar.	
(c)	Indiq	ue los reactivos que se usan en la nitración del benceno.	
			_
(d)	India	ue una ecuación para la formación del NO_2^+ .	

		•	
Dradiinta S	z: cont	HILLOC	IAN
Pregunta 8	J. GUIII	ıııuac	IUIII

(e)	Explique el mecanismo de la reacción entre el 2-bromo-2-metilpropano, (CH ₃) ₃ CBr, y el hidróxido de sodio acuoso, NaOH (aq). Use flechas curvas para representar el movimiento de los pares electrónicos.	[4]

No escriba en esta página.

Las respuestas que se escriban en esta página no serán corregidas.

