The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. Many applications use a mix of several languages in their construction and use. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). It affects the aspects of quality above, including portability, usability and most importantly maintainability. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. Techniques like Code refactoring can enhance readability. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Different programming languages support different styles of programming (called programming paradigms). Integrated development environments (IDEs) aim to integrate all such help. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. Normally the first step in debugging is to attempt to reproduce the problem. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. There are many approaches to the Software development process. Following a consistent programming style often helps readability.