Classification Tree

Classification vs Regression

Example		Attributes									
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	<i>T</i>	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	<i>T</i>	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	<i>T</i>	F	T	F	Full	<i>\$\$\$</i>	F	T	French	>60	F
X_6	F	T	F	T	Some	<i>\$\$</i>	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	<i>\$\$</i>	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	<i>T</i>	T	T	T	Full	<i>\$\$\$</i>	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Dosage	Age	Sex	Etc.	Drug Effect.
10	25	Female		98
20	73	Male		0
35	54	Female		100
5	12	Male		44
etc	etc	etc	etc	etc

Decision Tree

Expressiveness

Decision trees can express any function of the input attributes. E.g., for Boolean functions, truth table row \rightarrow path to leaf:

Hypothesis Space

- The number of possible decision trees with n attributes is equal to the number of possible Boolean functions with n attibutes
- Given n attributes we have a truth table with 2^n rows
- Given a truth table we have 2^{2^n} possible Boolean functions

Selecting a feature

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice—gives information about the classification

Entropy = Informativeness

Given n events we need $\log_2 n$ bits to represent them

$$\log_2 n = -\log_2 \frac{1}{n}$$

 $-\log_2\frac{1}{n}$ is the information needed to represent the events

$$-\log_2 \frac{1}{n} = -\sum_{(n \text{ events})} \frac{1}{n} \cdot \log_2 \frac{1}{n}$$
0.5*something=so

 $\frac{1}{n}$ is the probability of the event in case we have a uniform distribution

Entropy = Informativeness

In the most general case, with a generic probability p_i for each event i

$$-\sum_{(n \text{ events})} \frac{1}{n} \cdot \log_2 \frac{1}{n} \sim -\sum_{i=1}^n p_i \cdot \log_2 p_i$$

move to uniformly distributed to the general case

the information needed to represent a set of stochastic prosess

entropy is a wat to measure the informativeness

Entropy and Surprise

Entropy = Expected Surprise

Information Gain (1/2)

compute the entropy associated to the traget feature

$$H\left(\frac{t}{t+f}, \frac{f}{t+f}\right) = -\frac{t}{t+f} \cdot \log_2 \frac{t}{t+f} - \frac{f}{t+f} \cdot \log_2 \frac{f}{t+f}$$

how many times i have a true value over all the value, probability of true probability of false

how informative is this feature i

Example		Attributes									
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	<i>\$\$\$</i>	F	T	French	0–10	T
X_2	T	F	F	T	Full	<i>\$</i>	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	<i>\$</i>	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	<i>\$</i>	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	<i>\$\$\$</i>	F	T	French	>60	F
X_6	F	T	F	T	Some	<i>\$\$</i>	T	T	Italian	0–10	T
X_7	F	T	F	F	None	<i>\$</i>	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	<i>\$\$</i>	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	<i>\$</i>	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	<i>\$\$\$</i>	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	<i>\$</i>	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	<i>\$</i>	F	F	Burger	30–60	T

Information Gain (2/2)

$$R(Some) = \frac{t_i + f_i}{t + f} \cdot I\left(\frac{t_i}{t_i + f_i}, \frac{f_i}{t_i + f_i}\right)$$

$$R(Full) = \frac{t_i + f_i}{t + f} \cdot I\left(\frac{t_i}{t_i + f_i}, \frac{f_i}{t_i + f_i}\right)$$

$$R(None) = \frac{t_i + f_i}{t + f} \cdot I\left(\frac{t_i}{t_i + f_i}, \frac{f_i}{t_i + f_i}\right)$$

$$R(A) = \sum_{i=1}^{v} \frac{t_i + f_i}{t + f} \cdot I\left(\frac{t_i}{t_i + f_i}, \frac{f_i}{t_i + f_i}\right)$$

$$IG(A) = H\left(\frac{t}{t + f}, \frac{f}{t + f}\right) - R(A)$$

Example		Attributes										
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait	
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T	
X_2	Τ	F	F	Τ	Full	\$	F	F	Thai	30–60	F	
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T	
X_4	Τ	F	T	T	Full	\$	F	F	Thai	10–30	T	
X_5	Τ	F	T	F	Full	\$\$\$	F	T	French	>60	F	
X_6	F	T	F	T	Some	<i>\$\$</i>	T	T	Italian	0–10	T	
X_7	F	T	F	F	None	\$	T	F	Rurger	0–10	F	
X_8	F	F	F	T	Some	<i>\$\$</i>	T	T	Thai	0–10	T	
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F	
X_{10}	Τ	Τ	T	T	Full	\$\$\$	F	T	Italian	10–30	F	
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F	
X_{12}	Τ	Τ	Τ	Т	Full	\$	F	F	Burger	30–60	Τ	

Building a Classification Tree

$$H\left(\frac{t}{t+f}, \frac{f}{t+f}\right) = -\frac{6}{12} \cdot \log_2 \frac{6}{12} - \frac{6}{12} \cdot \log_2 \frac{6}{12} = 1$$

$$IG(Patrons) = 1 - \left[\frac{2}{12} \cdot H(0,1) + \frac{4}{12} \cdot H(1,0) + \frac{6}{12} \cdot H\left(\frac{2}{6}, \frac{4}{6}\right) \right] \approx 0,541$$

$$IG(Type) = 1 - \left[\frac{2}{12} \cdot H\left(\frac{1}{2}, \frac{1}{2}\right) + \frac{2}{12} \cdot H\left(\frac{1}{2}, \frac{1}{2}\right) + \frac{4}{12} \cdot H\left(\frac{2}{4}, \frac{2}{4}\right) + \frac{4}{12} \cdot H\left(\frac{2}{4}, \frac{2}{4}\right) \right] = 0$$

Select the attribute with the highest gain

in this case IG(Patrons) become the root node of our classification tree

Example		Attributes										
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait	
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T	
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F	
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T	
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T	
X_5	T	F	T	F	Full	<i>\$\$\$</i>	F	T	French	>60	F	
X_6	F	T	F	T	Some	<i>\$\$</i>	T	T	Italian	0–10	T	
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F	
X_8	F	F	F	T	Some	<i>\$\$</i>	T	T	Thai	0–10	T	
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F	
X_{10}	T	T	T	T	Full	<i>\$\$\$</i>	F	T	Italian	10–30	F	
X_{11}	F	F	F	F	None	<i>\$</i>	F	F	Thai	0–10	F	
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T	

Building a Classification Tree

Example		Attributes									
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	7	Г	F	T	Some	### ###	Г	T	French	0-10	
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F-	Ŧ	F	F	Some	\$	F	F	Burger	0 10	
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	<i>\$\$\$</i>	F	T	French	>60	F
X_6		<i>-T</i>	Γ	T	Some	\$\$	- T -	T	Italian	0-10	
X_7°	_	-	_	_	Α./	ø	<i>-</i>		D	0 10	
	<i> </i>	<i>'</i>	_	<i></i>	ivone	J	_		Durger	0-10	
X_8	<i>F</i>	F	F	T	Some	\$\$	T	T	Thai	0 10	
X_9	F	T	T	F	Full	<i>\$</i>	Τ	F	Burger	>60	F
X_{10}	T	T	T	T	Full	<i>\$\$\$</i>	F	T	Italian	10–30	F
X_{11}	_	$-\Gamma$	$-\Gamma$	$-\Gamma$	None	\$	Г	$-\Gamma$	Thai	0-10	
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Building a Classification Tree

