Cryptography - Day 3

Defining Security

Review

 XOR is a binary "exclusive or" operation that is represented by

 XOR is a binary "exclusive or" operation that is represented by ⊕

• Suppose $A=a_1\dots a_n$ and $B=b_1\dots b_n$ then $A\oplus B=C$ where $C=c_1\dots c_n$ such that $c_i=0$ if $a_i=b_i$ and $c_i=1$ if $a_i\neq b_i$.

• Suppose $A = 1001 \ 0010 \ \text{and} \ B = 0000 \ 1110$

• Suppose $A = 1001 \ 0010$ and $B = 0000 \ 1110$

• $A \oplus B = 10010010$

 \oplus 0000 1110

• Suppose $A = 1001 \ 0010$ and $B = 0000 \ 1110$

```
• A \oplus B = 10010010
```

 \oplus 0000 1110

1001 1100

Byte-wise shift cipher

• $\mathcal{M} = \{\text{strings of bytes}\}\$

Byte-wise shift cipher

- $\mathcal{M} = \{\text{strings of bytes}\}\$
- Gen: choose uniform byte $k \in \mathcal{K} = \{0, ..., 255\}$

Byte-wise shift cipher

- $\mathcal{M} = \{\text{strings of bytes}\}\$
- Gen: choose uniform byte $k \in \mathcal{K} = \{0, ..., 255\}$
- $Enc_k(m_1...m_t)$: output $c_1...c_t$, where $c_i := m_i \oplus k$
- $Dec_k(c_1...c_t)$: output $m_1...m_t$, where $m_i := c_i \oplus k$

Say plaintext is "Hi" and key is 1111 0001

Say plaintext is "Hi" and key is 1111 0001

• "Hi" = 0x4869 = 0100100001101001

Say plaintext is "Hi" and key is 1111 0001

• "Hi" = 0x48 69 = 0100 1000 0110 1001

XOR with "Hi" with the key

Say plaintext is "Hi" and key is 1111 0001

• "Hi" = 0x48 69 = 0100 1000 0110 1001

XOR with "Hi" with the key

0100 1000 0110 1001 ⊕
1111 0001 1111 0001

Say plaintext is "Hi" and key is 1111 0001

• "Hi" = 0x48 69 = 0100 1000 0110 1001

XOR with "Hi" with the key

- 0100 1000 0110 1001 ⊕
 1111 0001 1111 0001
 - = 1011 1001 1001 1000

Say plaintext is "Hi" and key is 1111 0001

• "Hi" = 0x4869 = 0100100001101001

XOR with "Hi" with the key

- 0100 1000 0110 1001 ⊕
 1111 0001 1111 0001
 - = 1011 1001 1001 1000=0xB9 98=unprintable

Byte-wise Vigenère cipher

- The key is a string of bytes
- The plaintext is a string of bytes
- To encrypt, XOR each character in the plaintext with the next character of the key
 - Wrap around in the key as needed
- Decryption just reverses the process

Say plaintext is "Hello!" and key is 0xA1 2F

- Say plaintext is "Hello!" and key is 0xA1 2F
- "Hello!" = 0x48 65 6C 6C 6F 21

- Say plaintext is "Hello!" and key is 0xA1 2F
- "Hello!" = 0x48 65 6C 6C 6F 21
- XOR with 0xA1 2F A1 2F A1 2F

- Say plaintext is "Hello!" and key is 0xA1 2F
- "Hello!" = 0x48 65 6C 6C 6F 21
- XOR with 0xA1 2F A1 2F A1 2F
- 0x48 ⊕ 0xA1

- Say plaintext is "Hello!" and key is 0xA1 2F
- "Hello!" = 0x48 65 6C 6C 6F 21
- XOR with 0xA1 2F A1 2F A1 2F
- 0x48 ⊕ 0xA1
 - $-0100\ 1000 \oplus 1010\ 0001$

- Say plaintext is "Hello!" and key is 0xA1 2F
- "Hello!" = 0x48 65 6C 6C 6F 21
- XOR with 0xA1 2F A1 2F A1 2F
- 0x48 ⊕ 0xA1
 - $-0100\ 1000 \oplus 1010\ 0001 = 1110\ 1001 = 0xE9$

- Say plaintext is "Hello!" and key is 0xA1 2F
- "Hello!" = 0x48 65 6C 6C 6F 21
- XOR with 0xA1 2F A1 2F A1 2F
- 0x48 ⊕ 0xA1
 - $-0100\ 1000 \oplus 1010\ 0001 = 1110\ 1001 = 0xE9$

Ciphertext: 0xE9 4A CD 43 CE 0E

Attacking the (variant) Vigenère cipher

- Two steps:
 - Determine the key length
 - Determine each byte of the key

Using plaintext letter frequencies

Useful observations

- Only 128 valid ASCII chars (128 bytes invalid)
- 0x20-0x7E printable
- 0x41-0x7a includes upper/lowercase letters
 - Uppercase letters begin with 0x4 or 0x5
 - Lowercase letters begin with 0x6 or 0x7

- Let p_i (for 0 ≤ i ≤ 255) be the frequency of byte
 i in general English text
 - I.e., $p_i = 0$ for i < 32 or i > 127
 - I.e., p_{97} = frequency of 'a'
 - The distribution is far from uniform

 If the key length is N, then every Nth character of the plaintext is encrypted using the same "shift"

- If the key length is N, then every Nth character of the plaintext is encrypted using the same "shift"
 - If we take every Nth character and calculate frequencies, we should get the p_i's in permuted order

- If the key length is N, then every Nth character of the plaintext is encrypted using the same "shift"
 - If we take every Nth character and calculate frequencies, we should get the p_i's in permuted order
 - If we take every Mth character (M not a multiple of N) and calculate frequencies, we should get something close to uniform

- Assume length is k
- For key length k, tabulate q_0 , ..., q_{255} and compute Σ q_i^2

- Assume length is k
- For key length k, tabulate q_0 , ..., q_{255} and compute Σ q_i^2
 - If close to uniform, $\Sigma q_i^2 \approx 256 \cdot (1/256)^2 = 1/256$
 - If a permutation of p_i , then $\sum q_i^2 \approx \sum p_i^2$
 - Could compute $\sum p_i^2$ (but somewhat difficult)
 - Key point: will be much larger than 1/256

- Assume length is k
- For key length k, tabulate q_0 , ..., q_{255} and compute Σ q_i^2
 - If close to uniform, $\Sigma q_i^2 \approx 256 \cdot (1/256)^2 = 1/256$
 - If a permutation of p_i , then $\sum q_i^2 \approx \sum p_i^2$
 - Could compute $\sum p_i^2$ (but somewhat difficult)
 - Key point: will be much larger than 1/256
- Compute Σq_i^2 for each possible key length, and look for maximum value

Determining the ith byte of the key

Assume the key length N is known

Determining the ith byte of the key

- Assume the key length N is known
- Look at every Nth character of the ciphertext, starting with the ith character
 - Call this the ith ciphertext "stream"
 - Note that all bytes in this stream were generated by XORing plaintext with the same byte of the key

- Assume the key length N is known
- Look at every Nth character of the ciphertext, starting with the ith character
 - Call this the ith ciphertext "stream"
 - Note that all bytes in this stream were generated by XORing plaintext with the same byte of the key
- Try decrypting the stream using every possible byte value B
 - Get a candidate plaintext stream for each value

Could use {p_i} as before, but not easy to find

- Could use {p_i} as before, but not easy to find
- When the guess B is correct:
 - All bytes in the plaintext stream will be between
 32 and 127

- Could use {p_i} as before, but not easy to find
- When the guess B is correct:
 - Frequencies of lowercase letters (as a fraction of all lowercase letters) should be close to known English-letter frequencies
 - Tabulate observed letter frequencies q'_0 , ..., q'_{25} (as fraction of all lowercase letters)
 - Should find $\Sigma q'_i p'_i \approx \Sigma p'_i^2 \approx 0.065$, where p'_i corresponds to English-letter frequencies
 - In practice, take B that maximizes $\Sigma q'_i p'_i$

Defining secure encryption

Crypto definitions (generally)

- Security guarantee/goal
 - What we want to achieve and/or what we want to prevent the attacker from achieving

- Threat model
 - What (real-world) capabilities the attacker is assumed to have

Recall

- A private-key encryption scheme is defined by a message space \mathcal{M} and algorithms (Gen, Enc, Dec):
 - Gen (key-generation algorithm): generates k
 - Enc (encryption algorithm): takes key k and message $m \in \mathcal{M}$ as input; outputs ciphertext c

$$c \leftarrow Enc_k(m)$$

 Dec (decryption algorithm): takes key k and ciphertext c as input; outputs m.

$$m := Dec_k(c)$$

Private-key encryption

Threat models for encryption

- Ciphertext-only attack obtain only ciphertext
- Known-plaintext attack obtain ciphertext with some knowledge of the message
- Chosen-plaintext attack obtain encryptions of chosen messages
- Chosen-ciphertext attack obtain decryptions of chosen ciphertext

Goal of secure encryption?

- How would you define what it means for encryption scheme (Gen, Enc, Dec) over message space M to be secure?
 - Against a (single) ciphertext-only attack

 "Impossible for the attacker to learn the plaintext from the ciphertext"

- "Impossible for the attacker to learn the plaintext from the ciphertext"
 - What if the attacker learns 90% of the plaintext?

 "Impossible for the attacker to learn any character of the plaintext from the ciphertext"

- "Impossible for the attacker to learn any character of the plaintext from the ciphertext"
 - What if the attacker is able to learn (other) partial information about the plaintext?
 - E.g., salary is greater than \$75K

Perfect secrecy

 "Regardless of any prior information the attacker has about the plaintext, the ciphertext should leak no additional information about the plaintext"

- Consider the shift cipher
 - So for all $k \in \{0, ..., 25\}$, Pr[K = k] = 1/26
- Say Pr[M = 'a'] = 0.7, Pr[M = 'z'] = 0.3
- What is Pr[C = 'b'] ?
 - Either M = 'a' and K = 1, or M = 'z' and K = 2
 - $-\Pr[C='b'] = \Pr[M='a'] \cdot \Pr[K=1] + \Pr[M='z'] \cdot \Pr[K=2]$ $= 0.7 \cdot (1/26) + 0.3 \cdot (1/26)$ = 1/26

Consider the shift cipher, and the distribution
 Pr[M = 'one'] = ½, Pr[M = 'ten'] = ½

```
    Pr[C = 'rqh'] = ?
    = Pr[C = 'rqh' | M = 'one'] · Pr[M = 'one']
    + Pr[C = 'rqh' | M = 'ten'] · Pr[M = 'ten']
    = 1/26 · ½ + 0 · ½ = 1/52
```

- Consider the shift cipher, and the distribution
 Pr[M = 'one'] = ½, Pr[M = 'ten'] = ½
- Take m = 'ten' and c = 'rqh'

```
    Pr[M = 'ten' | C = 'rqh'] = ?
    = 0
    ≠ Pr[M = 'ten']
```

```
    Shift cipher;
    Pr[M='hi'] = 0.3,
    Pr[M='no'] = 0.2,
    Pr[M='in']= 0.5
```

```
    Pr[M = 'hi' | C = 'xy'] = ?
    = Pr[C = 'xy' | M = 'hi'] · Pr[M = 'hi']/Pr[C = 'xy']
```

Example 4, continued

• Pr[C = 'xy' | M = 'hi'] = 1/26

```
    Pr[C = 'xy']
    = Pr[C = 'xy' | M = 'hi'] · 0.3 + Pr[C = 'xy' | M = 'no'] · 0.2 + Pr[C='xy' | M='in'] · 0.5
    = (1/26) · 0.3 + (1/26) · 0.2 + 0 · 0.5
    = 1/52
```

Example 4, continued

```
    Pr[M = 'hi' | C = 'xy'] = ?
    = Pr[C = 'xy' | M = 'hi'] · Pr[M = 'hi']/Pr[C = 'xy']
    = (1/26) · 0.3/(1/52)
    = 0.6
    ≠ Pr[M = 'hi']
```

Conclusion

- The shift cipher is not perfectly secret!
 - At least not for 2-character messages

How to construct a perfectly secret scheme?

One-time pad

- Patented in 1917 by Vernam
 - Recent historical research indicates it was invented (at least) 35 years earlier

Proven perfectly secret by Shannon (1949)

One-time pad

- Let $\mathcal{M} = \{0,1\}^n$
- Gen: choose a uniform key $k \in \{0,1\}^n$
- $Enc_k(m) = k \oplus m$
- $Dec_k(c) = k \oplus c$

• Correctness:

$$Dec_k(Enc_k(m)) = k \oplus (k \oplus m)$$

= $(k \oplus k) \oplus m = m$

One-time pad

