2022-2023 MP2I

24. Dimension des espaces vectoriels

Exercice 1. © On se place dans \mathbb{R}^3 . Montrer que Vect((1,2,3),(2,-1,1)) = Vect((1,0,1),(0,1,1)). Donner la dimension de cet espace vectoriel.

Exercice 2. © Soient $F_1 = \{(x, y, z) / 2x - 3y + z = 0\}$ et $F_2 = \{(\lambda + 2\mu, \lambda - \mu, \lambda - 7\mu), (\lambda, \mu) \in \mathbb{R}^2\}$. Déterminer les dimensions de F_1 et F_2 et montrer que $F_1 = F_2$.

Exercice 3. (m) Montrer que $((X+1)^2, (X+2)^2, (X+3)^2)$ est une base de $\mathbb{R}_2[X]$.

Exercice 4. (m) Soit $F = \{(x, y, z, t) \in \mathbb{R}^4 / 3x - y = y + 2z - t = 0\}$. Donner une base de F et une base d'un supplémentaire de F.

Exercice 5. (m) Soit $F = \{P \in \mathbb{R}_3[X] / P(1) = 0\}$ et $G = \{P \in \mathbb{R}_3[X] / P(-1) = 0\}$. Vérifier que F et G sont des espaces vectoriels, déterminer leurs dimensions ainsi que celle de $\dim(F \cap G)$.

Exercice 6. (i) Soit E de dimension finie et F et G deux sous-espaces vectoriels de E tels que $F \cap G = \{0\}$. Montrer que F admet un supplémentaire dans E contenant G.

Exercice 7. © Soient F et G deux sous-espaces vectoriels de dimension 3 de \mathbb{R}^5 . Montrer que $F \cap G$ n'est pas réduit à $\{0\}$.

Exercice 8. (m) Soit E un espace vectoriel de dimension finie. On suppose que $E = F_1 \oplus F_2$. Soit G un sous espace vectoriel tel que $G \cap F_1 = \{0\}$ et $F_2 \subset G$. Montrer que $F_2 = G$.

Exercise 9. (m) Soit $n \in \mathbb{N}^*$, $\mathcal{P} = \{ P \in \mathbb{K}_{2n}[X] / P(-X) = P(X) \}$ et $\mathcal{I} = \{ P \in \mathbb{K}_{2n}[X] / P(-X) = -P(X) \}$.

- 1) Montrer que \mathcal{P} et \mathcal{I} sont des sous-espaces vectoriels et $\mathbb{K}_{2n}[X]$ et qu'ils sont en somme directe.
- 2) En exhibant des familles libres explicites, montrer que $\dim(\mathcal{P}) \geq n+1$ et $\dim(\mathcal{I}) \geq n$.
- 3) En faisant le moins de calculs possibles, montrer que les inégalités précédentes sont des égalités et en déduire une base de \mathcal{P} , de \mathcal{I} et le fait que $\mathbb{K}_{2n}[X] = \mathcal{P} \oplus \mathcal{I}$.

Exercice 10. (i) Soit E un espace vectoriel de dimension finie. Soit $u \in \mathcal{L}(E)$ telle que pour tout $x \in E$, il existe $p_x \in \mathbb{N}^*$ tel que $u^{p_x}(x) = 0$. Montrer que u est nilpotent, c'est à dire qu'il existe $p \in \mathbb{N}^*$ tel que pour tout $x \in E$, $u^p(x) = 0$. Donner un contre exemple à ce résultat en dimension infinie.

Exercice 11. (m) Calculer le rang des vecteurs $e_1 = (x, 1, 2), e_2 = (2, x, 3), e_3 = (0, 1, -1)$ suivant les valeurs de $x \in \mathbb{R}$.

Exercice 12. (m) Soit
$$n \ge 1$$
. On pose $\Delta : \left\{ \begin{array}{ll} \mathbb{R}_n[X] & \to & \mathbb{R}[X] \\ P & \mapsto & P(X+1) - P(X) \end{array} \right.$

- 1) Vérifier que Δ est linéaire et déterminer $\ker(\Delta)$.
- 2) Déterminer alors $Im(\Delta)$ en utilisant le théorème du rang.

Exercice 13. (m) Soit E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. On suppose que $\ker u$ admet un supplémentaire F dans E stable par u (c'est à dire que $u(F) \subset F$). Montrer que $F = \operatorname{Im}(u)$.

Exercice 14. (m) Soit E un espace vectoriel de dimension n et $f, g \in L(E)$.

- 1) Déterminer le noyau et l'image de $h: \left\{ \begin{array}{ccc} \operatorname{Im}(f) & \to & E \\ x & \mapsto & g(x) \end{array} \right.$ en fonction de f et g.
- 2) En déduire à l'aide du théorème du rang que $rg(g \circ f) \ge rg(f) + rg(g) n$.

Exercice 15. (m) Soit E un espace vectoriel de dimension 3 et $u \in \mathcal{L}(E)$ tel que $u^3 = 0$ et $\operatorname{rg}(u) = 2$. Montrer que $\operatorname{Im}(u^2) = \ker(u)$ et que $\ker(u^2) = \operatorname{Im}(u)$.

Exercice 16. $\boxed{\mathbf{m}}$ Soit E un espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. Montrer l'équivalence des trois propriétés :

- $\ker(f) = \ker(f^2)$.
- $\operatorname{Im}(f) = \operatorname{Im}(f^2)$.
- $E = \ker(f) \oplus \operatorname{Im}(f)$.

Exercice 17. (i) Soit E un espace vectoriel de dimension finie n.

- 1) Montrer que n est pair si et seulement si il existe $u \in \mathcal{L}(E)$ telle que $\mathrm{Im}(u) = \ker(u)$.
- 2) On suppose n pair. Montrer que $\operatorname{Im}(u) = \ker(u) \Leftrightarrow \left(u^2 = 0 \text{ et } \operatorname{rg}(u) = \frac{n}{2}\right)$.

Exercice 18. (i) Soit E de dimension finie et F, G deux sous-espaces vectoriels de E. Trouver une CNS pour qu'il existe $u \in \mathcal{L}(E)$ tel que $F = \ker(u)$ et $G = \operatorname{Im}(u)$.

Exercice 19. (m) Soit E un \mathbb{R} -ev de dimension n et $f \in L(E)$. On suppose qu'il existe $x_0 \in E$ tel que $(f(x_0), \ldots, f^n(x_0))$ soit une base de E.

- 1) Montrer que f est un automorphisme.
- 2) Montrer qu'il existe $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ tels que $\mathrm{Id}_E = \sum_{k=1}^n \alpha_k f^k$.
- 3) Réciproquement, montrer que s'il existe $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ tels que $\mathrm{Id}_E = \sum_{k=1}^n \alpha_k f^k$, alors f est un automorphisme et exprimer f^{-1} en fonction de f et des α_k .

Exercice 20. (m) Soit E un \mathbb{K} -ev de dimension n. Soient H_1 et H_2 deux hyperplans de E. Quelles sont les possibilités pour la dimension de $\dim(H_1 \cap H_2)$? Déterminer une CNS permettant de déterminer dans quel cas on est.

Exercice 21. (i) Soit E de dimension finie et F et G deux sous-espaces vectoriels de E de même dimension. Montrer qu'ils admettent un supplémentaire commun.

Exercice 22. (i) Soit E un espace vectoriel de dimension finie et $u, v \in \mathcal{L}(E)$. On suppose que $u + v = u \circ v$. Montrer que $u - \mathrm{Id}_E$ et $v - \mathrm{Id}_E$ sont inversibles et en déduire que $u \circ v = v \circ u$.

Exercice 23. (i) Soient E et F de dimensions finies et $u, v \in \mathcal{L}(E, F)$.

- 1) Montrer que $rg(u+v) \le rg(u) + rg(v)$ et en déduire que $|rg(u) rg(v)| \le rg(u+v)$.
- 2) On suppose u + v inversible et $u \circ v = 0$. Montrer que rg(u) + rg(v) = dim(E).

Exercice 24. * Soit E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$ non nul. Montrer l'équivalence entre :

- $u^2 = 0$.
- Il existe un projecteur p tel que $p \circ u = u$ et $u \circ p = 0$.
- Il existe un projecteur p tel que $p \circ u u \circ p = u$.