STATISTIK – ÜBUNGEN TEIL IV – UNABHÄNGIGE ZUFALLS-EREIGNISSE

A) ANALYTISCHE FERTIGKEITEN

- **A-1)** Ein poissonverteiltes Ereignis trifft im Durchschnitt 7-mal pro Stunde ein. Wie groß ist die Wahrscheinlichkeit, dass es in 15 Minuten nie eintritt? (17.38%)
- **A-2)** Gib die Formel für die Wahrscheinlichkeit an, dass ein mit $E(X) = \lambda$ poissonverteiltes Ereignis im Zeitraum τ überhaupt nicht eintritt.
- **A-3)** Die Lösung dieser Frage hängt mit dem Ergebnis von Aufgabe A-2 zusammen: Gib die Wahrscheinlichkeit dafür an, dass man *mindestens t* Zeiteinheiten warten muss, bis ein in Bsp. A-2 definiertes Ereignis eintritt. Wenn X als Zufallsvariable für die Wartezeit steht, so ist also $P(X \ge t \mid \lambda)$ gesucht. Welche Art Zufallsvariable stellt X in diesem Fall dar?
- **A-4)** Gib die Wahrscheinlichkeit dafür an, dass man *höchstens t* Zeiteinheiten warten muss, bis ein in Bsp. A-2 definiertes Ereignis eintritt. Wenn X als Zufallsvariable für die Wartezeit steht, so ist also $P(X \le t \mid \lambda)$ gesucht.
- **A-5)** Da die Wartezeit X eine kontinuierliche Zufallsvariable ist, kann die Verteilungsfunktion $P(X \le t \mid \lambda)$ aus Bsp. A-4 als Summenhäufigkeit

$$P(X \le t \mid \lambda) = \int_0^t f_{\exp}(x \mid \lambda) \, \mathrm{d}x$$

mit der Wahrscheinlichkeitsdichte $f_{\rm exp}(x|\lambda)$ geschrieben werden. Berechne diese Wahrscheinlichkeitsdichte $f_{\rm exp}(x|\lambda)$ und gib die Formel an.

Die hier berechnete Wahrscheinlichkeitsdichte $\lambda \cdot e^{-\lambda \cdot t}$ und die zu ihr gehörende Verteilung $1 - e^{-\lambda \cdot t}$ nennt man Exponentialverteilung. Sie wird zum Berechnen von Zwischenankunftszeiten verwendet.

B) OFFENE UNTERSUCHUNG

B-1) Ein Produktionsbetrieb arbeitet mit Maschinen, die einen Verschleißteil \mathcal{T} enthalten. Die typischen, für den Teil \mathcal{T} beobachteten Lebensdauern waren in 4000 Fällen:

Klassen Lebensdauer in [h]	Klassenbreite in [h]	Klassenmitte x_i [h]	Anzahl
[2750,3250]	500,00	3000,00	160
]3250,3750]	500,00	3500,00	240
]3750,4250]	500,00	4000,00	400
]4250,4750]	500,00	4500,00	600
]4750,5250]	500,00	5000,00	1200
]5250,5750]	500,00	5500,00	800
]5750,6250]	500,00	6000,00	320
]6250,6750]	500,00	6500,00	200
]6750,7250]	500,00	7000,00	80
		Summe:	4000

Schätze die Wahrscheinlichkeiten für die Lebensdauer des Teiles au' in den gegebenen Klassenbreiten.

Berechne die mittlere Lebensdauer (Erwartungswert) und die Streuung (Standardabweichung) der Lebensdauer (in Stunden). (μ = 4950 Std, σ = 867 Std) Stelle die Wahrscheinlichkeitsfunktion und die Verteilungsfunktion (Summenhäufigkeit) graphisch dar.

- **B-2)** Erzeuge 500 Zufallszahlen, welche die Lebensdauern von 500 Teilen T simulieren (und somit der Verteilung aus Aufgabe B-1 entsprechen).
- **B-3)** Alle Maschinen aus Aufgabe B-1 sind im Betrieb voll ausgelastet. Sowohl Reparaturen als auch ein Teileersatz bei der Wartung führen zu unerwünschten Betriebsunterbrechungen. Die dabei entstehenden Gesamtkosten K_{ges} bestehen aus den Produktionsausfallkosten, den Reparaturkosten und den Materialkosten. Allerdings sind die Gesamtkosten bei Ausfall des Teiles \mathcal{T}' höher als bei einem planmäßigen Wechsel im Zuge von Wartungsarbeiten: die Betriebsunterbrechung ist länger, die Reparatur dauert länger und der Schadensfall verursacht weitere Folgekosten.

Für die Betriebsunterbrechung und Reparaturdauern gilt die umseitige Tabelle.

	Betriebsunter- brechung	davon Reparatur
Ersatz im Schadensfall	6 Std.	5 Std.
Ersatz durch Wartung	2 Std.	2 Std.

Weiters gelten die nachfolgenden Kostensätze.

	Kosten
1 Stunde Betriebsunterbrechung:	2 600 €
Reparaturstunde:	200 €
Materialkosten:	800 €
weitere Folgeschäden:	1 200 €
(nur im Schadensfall)	1 200 0

Für die Gesamtkosten K_{ges} gilt somit:

	Gesamtkosten bei	
	Ersatz nach Ausfall	vorbeugendem Ersatz durch Wartung
Betriebsunterbrechung:	15 600 €	5 200 €
Reparatur:	1 000 €	400 €
Material:	800 €	800 €
Folgeschäden:	1 200 €	1
Gesamtkosten	18 600 €	6 400 €

Für die Wartungsstrategie gilt:

Der Teil ${\mathcal T}$ ist im Schadensfall sofort, spätestens jedoch nach τ Betriebsstunden (τ entspricht dem Wartungsintervall) zu ersetzen.

Bestimme das Wartungsintervall τ derart, dass die anfallenden Gesamtkosten minimiert werden. Verwende dazu den umseitig dargestellten Algorithmus. Dabei stehen die x_i für die in Aufgabe B-2 erzeugten Zufallszahlen.

Legende:

i ... Laufindex für die Zeitvorschreibung

ti ... Modellzeit

 τ ... Instandhaltungsintervall

 x_i ... Lebensdauer des i-ten ersetzten Teiles T

 T_{sim} ... Simulationsdauer = Modellzeit, bei deren Erreichen oder Überschreiten der Simulationslauf abgebrochen wird

 x_i ... Lebensdauer des i -ten ersetzten Teiles T

 z_a ... Anzahl der ausfallsbedingten Reparaturen

 z_{ν} ... Anzahl der vorbeugenden Instandhaltungsaktionen

 K_a ... Kosten einer ausfallsbedingten Reparatur

 K_{ν} ... Kosten einer vorbeugenden Instandhaltungsaktion

 K_{ges} ... Gesamtkosten, mit $K_{ges} = z_a \cdot K_a + z_v \cdot K_v$

Skizze: Wartung nach τ = 3500 Betriebstunden (ca. 70% der mittleren Lebensdauer).

