Generatori di sequenze pseudocasuali

Manuela Aprile

Maria Chiara Fumi

Indice

- Concetti base e terminologia
- Random bit generator
- Pseudorandom bit generator
- Cenni di statistica
- Test Statistici

Concetti base e terminologia

- Numero arbitrario = numero qualunque
- Numero casuale = numero estratto da un insieme di valori equiprobabili
- Numero pseudocasuale = numero casuale generato da calcolatore

Requisiti di una sequenza casuale

- Periodo lungo
- Ripetibilità
- Sottosequenze non correlate
- Ordinamento interno non uniforme/numeri ben distribuiti

Generatori di random bit

- Random numbers VS random bits
- Hardware based
 - Bias e correlazione
- Software based
 - Maggiori difficoltà implementative
 - Maggiore esposizione ad attacchi
- De-skewing
 - Funzioni Hash

La generazione di "vere" sequenze di numeri casuali non è possibile su di un computer senza uno speciale hardware

Generatori di pseudorandom bit

- Un PRNG può essere definito come una struttura (S;□; f; U; g)
- I cambiamenti di stato sono determinati dalla ricorrenza $s_n = f(s_{n-1})$ per n > 0
- L'output al passo n è : $u_n = g(s_n) \in U$, i valori u_n sono i nostri "numeri random"
- \circ S(i+P)=S(i)

Algoritmi di generazione sequenze

Middle Square (John Von Neumann 1946)

Lineare congruenziale (Lehemer 1951)

Congruenza quadratica (Knuth 1981)

Middle Square

- a compreso tra 0 ed 1 numero pari di n cifre decimali;
- a^2 (doppia precisione);
- $a^2 * 10^(n/2)$;
- b=prime n cifre decimali (secondo elemento della sequenza)

Esempio:

```
a=0.5772156649 (n=10)

a^2 = 0.33317792380594919201

a^2 *10^5 => 33317.792380594919201

b=0.7923805949
```

Lineare Congruenziale

$$X_{n+1} = (aX_n + b) \bmod m, \quad n \ge 0$$

- Successione definita per ricorrenza
- Insieme dei valori finiti [0,m-1]

$$y_n = \frac{x_n}{(m-1)}$$

- Sequenza distribuita nell'intervallo [0,1]
- Se b=0 è detto moltiplicativo

$$x_i = (a_1 x_{i-1} + \dots + a_k x_{i-k}) \mod m,$$

Esempio:

Parametri iniziali: X0 = 3, m = 9, b = 2, a = 7

$$X1 = (7 \leftarrow 3+2) \mod 9 = \underline{5}$$

$$X2 = (7 \leftarrow 5+2) \mod 9 = 1$$

$$X3 = (7 \leftarrow 1+2) \mod 9 = 0$$

$$X4 = (7 \leftarrow 0+2) \mod 9 = 2$$

$$X5 = (7 \leftarrow 2+2) \mod 9 = 7$$

$$X6 = (7 \leftarrow 7+2) \mod 9 = 6$$

$$X7 = (7 \leftarrow 6+2) \mod 9 = 8$$

Congruenza Quadratica

$$X_n = (aX_{n-1}^2 + bX_{n-1} + c) \mod m$$

Esempio:

Parametri iniziali: X0 = 2, a=2, b=3, c=1, m=4

$$X1 = (2*4+3*2+1) \mod 4 = 3$$

 $X2 = (2*9+3*3+1) \mod 4 = 0$
 $X3 = (2*16+3*4+1) \mod 4 = 1$
 $X4 = (2*1+3*1+1) \mod 4 = 2$
 $X5 = (2*4+3*2+1) \mod 4 = 3$

Esempi di generatori

- ANSI X9.17
 - Generazione chiavi e inizializzazione vettori per l'algoritmo DES
- FIPS 186
 - Generazione parametri segreti(chiavi e firme)
 per DSA
 - Funzioni one-way SHA-1 o DES

Applicazioni e librerie

- Simulazione
- Protocolli di comunicazione sicura
- Crittografia

• ...

Java, Matlab, Excel,

Requisiti di un generatore

- Periodo lungo
- Portabilità
- Efficienza
- Ripetibilità
- Jumping Ahead

Cenni di statistica

- Distribuzione normale
- Distribuzione uniforme
- Altre distribuzioni
- Funzione inversa di distribuzione
- Riduzione alla distribuzione uniforme

Distribuzione Normale

X variabile aleatoria $N(\mu, \underline{\hspace{0.5cm}})$

$$f(x) = \frac{1}{\sqrt{2/2}} \exp \left[\frac{(x | / /)^2}{2/2} \right] - \langle x \langle x \rangle$$

Somma di più variabili aleatorie con stesso valor medio e stessa varianza

Distribuzione Uniforme

X variabile aleatoria N(0,1)

Altre distribuzioni

- Chi-square
- Poisson
- Bernoulli
- Esponenziale

• ...

Non esistono ancora efficienti algoritmi in grado di generare sequenze di numeri con distribuzioni diverse da quelle uniformi senza utilizzarle

Funzione di distribuzione inversa

 Passare da una sequenza con una data distribuzione ad una differente

$$U = F_X(X) \Leftrightarrow X = F_X^{-1}(U)$$

 \bullet X = F_(U) monotona non decrescente di U

Riduzione alla distribuzione uniforme

Distribuzione normale \ Distribuzione uniforme

Postulati di Golomb

- Primo tentativo di test dei generatori
- Il numero di 0 e 1 differiscono al più di 1 nel ciclo della sequenza s
- II. Nel ciclo di S almeno la metà delle *run* hanno lunghezza 1, almeno un quarto hanno lunghezza 2, ...
- III. L'auto-correlazione C(t) è two-valued

$$N \cdot C(t) = \sum_{i=0}^{N-1} (2s_i - 1) \cdot (2s_{i+t} - 1) = \begin{cases} N, & \text{if } t = 0, \\ K, & \text{if } 1 \le t \le N - 1. \end{cases}$$

Test

- Verifica della qualità del generatore
- Consente di accettare o rifiutare l'ipotesi statistica
 Ho, circa la distribuzione della sequenza
- Significance level
 probabilità di rifiutare Ho quando questo è vero
 (Type 1 Error, Type 2 Error)
- La conclusione di ogni test è solo probabilistica

One-sided test:

- $x \square$ scelta in modo tale che $P(X > x \square) = \square$
- se Xs>x□ la sequenza fallisce il test

• Two-sided test:

- scelta x□ in modo tale che

$$P(X>x_{\square})=P(X<-x_{\square})=\square/2.$$

- se Xs>x□ o Xs<-x□ la sequenza fallisce il test

Frequency test (Monobit test)

• Determina se il numero di 0 e 1 è circa lo stesso

$$X_1 = \frac{(n_0 - n_1)^2}{n}$$

on n0 e n1 indichiamo il numero di 0 e 1

Esempio

S= 11100 01100 01000 10100 11101 11100 10010 01001 n0=84, n1= 76 X1=0.4

Serial test (Two bit test)

Determina se il numero di occorrenze di 00, 01, 10, 11 come sottosequenze di S sia pressoché uguale

$$X_2 = \frac{4}{n-1} \left(n_{00}^2 + n_{01}^2 + n_{10}^2 + n_{11}^2 \right) - \frac{2}{n} \left(n_0^2 + n_1^2 \right) + 1$$

$$n00+n01+n10+n11=(n-1)$$

Esempio

S= 11100 01100 01000 10100 11101 11100 10010 01001 n00=44, n01=40, n10=40, n11=35, X2=0.6252

Poker test

k sottostringhe di lunghezza m

$$k = \lfloor \frac{n}{m} \rfloor \ge 5 \cdot (2^m)$$

• Si determina se ogni sottosequenza lunga m appare lo stesso numero di volte in s

$$X_3 = \frac{2^m}{k} \left(\sum_{i=1}^{2^m} n_i^2 \right) - k$$

Esempio

S= 11100 01100 01000 10100 11101 11100 10010 01001 m=3, k=53, X3=9.6415 000 → 5, 001 → 10, 010 → 6, ...

Run test

• Determina se il numero di *run* di varia lunghezza è compatibile con quanto atteso per una sequenza casuale.

$$X_4 = \sum_{i=1}^k \frac{(B_i - e_i)^2}{e_i} + \sum_{i=1}^k \frac{(G_i - e_i)^2}{e_i}$$

Numero gap di lunghezza i in una sequenza casuale lunga m: $e_i = (n-i+3)/2^{i+2}$

Esempio

S= 11100 01100 01000 10100 11101 11100 10010 01001 e1=20.25, e2=10.0625, e3=5, k=3, X4=31.7913

25 Blocks lunghi 1, 4 lunghi 2, 5 lunghi 3

8 Gaps lunghi 1, 20 lunghi 2, 12 lunghi 3

Autocorrelation test

 Analizza la correlazione tra la sequenza s e la sua copia ritardata

$$X_5 = 2\left(A(d) - rac{n-d}{2}
ight)/\sqrt{n-d}$$
 $A(d) = \sum_{i=0}^{n-d-1} s_i \oplus s_{i+d}$

• Valore di shift $1 \le d \le \lfloor n/2 \rfloor$

Esempio

S= 11100 01100 01000 10100 11101 11100 10010 01001

d=8, allora A(8)=100, X5=3.8933

FIPS 140-1

- Vengono specificati quali sono gli intervalli di validità che una sequenza deve soddisfare perché il suo generatore superi i test
- Sia s una stringa di 20000 bits
 - monobit test: 9654<n1<10346
 - poker test: m=4, 1.03 < X3 < 57.4
 - runs test:

Length of run	Required interval
1	2267 - 2733
2	1079 - 1421
3	502 - 748
4	223 - 402
5	90 - 223
6	90 - 223

Maurer's universal statistical test

- Non si può comprimere l'output di un generatore casuale senza perdita di informazione.
- È in grado di individuare ogni possibile difetto di un generatore.
- Richiede sequenze di output più lunghe.

Conclusioni

• Un PRBG che supera tutti i test è detto generatore pseudorandom di bit crittograficamente sicuro

"Costruire un generatore che superi tutti i test è un sogno impossibile" (Pierre L'Ecuyer)