MS-CALID: a Context-Aware Local Infrastructure Detection and Monitoring System

Rares Folea

Andrei Vatavu

Faculty of Automatic Control and Computers University Politehnica of Bucharest

Contents

Introduction

Object detection

3 Object tracking

Performance issues

5 Closing remarks

Our intelligence is what makes us human, and AI is an extension of that quality.

Yann LeCun

Professor, New York University

MS-CALID

Aims to be an automated software system for local infrastructure detection and monitoring built on top of YOLOv4.

Capable of detecting: households, houses, administrative buildings, hotels, religious entities, public roads, number of cars, alleys and parks, vegetation and offer live monitoring solutions such as notifications on traffic values

MS-CALID

 Trained on a custom labelled dataset consisting of hundreds of aerial frames obtained from the region of Slanic-Moldova, Bacau, Romania.

Road, alley and cars detection

Object Tracking

Object detection

24h

Training time on a Nvidia 1060 6 GB

6000

Total trained epochs

Performance

3251

Labelled objects

9 FPS

Live processing performance

99.35%

High accuracy performance

Takeaways

Fast and Real Time Detection

High accuracy

We are still far away from solving the problem of Computer Vision.

Reason for Takeaway 3.

Thank you!

Follow MS-CALID development: https://github.com/raresraf/MS-CALID/