

VOLTAGE DROP

$$V_1$$
 V_2 V_3 V_4 V_4 V_4 V_5 V_6 V_6 V_6 V_6 V_7 V_8 V_8 V_8 V_8 V_8 V_9 V_9

$$A = 1V = V_2 = V_3$$

Il trucco è quello di ricondursi sempre alle configurazioni studiate nella teoria:

- Invertente
- Non invertente

$V_0 = \left(1 + \frac{R_2}{R_1}\right) V_i$

ES1

Siccome
$$V_0 = \left(1 + \frac{R_2}{R_1}\right) V_X$$

Trovo
$$V_X$$
 -0 E' proprio la caduto di tensione di R_4

$$= 0 \ V_4 = V_1 \cdot \frac{R_4}{R_3 + R_4} = 0 \ V_0 = \left(1 + \frac{R_2}{R_1}\right) \cdot V_1 \cdot \frac{R_4}{R_3 + R_4}$$
Ans

ES 2:

$$V_1: V_1 = V_1 \cdot \frac{R_4}{R_3 + R_4} = 0 \quad V_0 = \left(1 + \frac{R_2}{R_1}\right) \cdot V_1 \frac{R_4}{R_3 + R_4}$$

$$V_{2} \cdot V_{x}^{"} = V_{2} \cdot \frac{R_{3}}{R_{3} + R_{4}} = 0 \quad V_{0}^{"} = \left(1 + \frac{Rz}{R_{1}}\right) \cdot V_{2} \cdot \frac{R_{3}}{R_{3} + R_{4}}$$

$$= 0 \quad V_{0} = V_{0}^{'} + V_{0}^{"} = \left(1 + \frac{Rz}{R_{1}}\right) \left[V_{4} \cdot \frac{R_{3}}{R_{3} + R_{4}} + V_{2} \cdot \frac{RL_{1}}{R_{3} + RL_{4}}\right]$$

OUT

Risolvo il Sys:
$$V_0 = 2(V_2 - V_1) = D \begin{cases} V_0'(V_1) = -2V_1 \\ V_0''(V_2) = 2V_2 \end{cases}$$

$$\begin{cases} \frac{1}{R_{1}} & \sqrt{4} = \frac{1}{2} \sqrt{\frac{1}{4}} = 2 \\ \sqrt{6} & \sqrt{1} = \frac{1}{R_{1}} & \sqrt{1} = \frac{1}{R_{1}} \\ \sqrt{6} & \sqrt{1} = \frac{1}{R_{1}} & \sqrt{1} = \frac{1}{R_{1}} & \sqrt{1} = \frac{1}{R_{1}} \\ \sqrt{6} & \sqrt{1} = \frac{1}{R_{1}} & \sqrt{1} = \frac{1}{R_{1}} & \sqrt{1} = \frac{1}{R_{1}} \\ -0 & 3 = 2 + \frac{2R_{3}}{R_{4}} & -0 & \frac{R_{3}}{R_{4}} = \frac{1}{2} \\ \end{pmatrix}$$

quindi
$$\frac{R^2}{R_1} = 2 = 0$$
 $\frac{R_1}{R_2} = \frac{R_3}{R_4} = \frac{1}{2}$ Ans

CONSIDERAZIONI

Gli opamps sono progettati in modo che **la differenza di potenziale degli input sia zero**; quindi se in input non c'è un **forzamento** (di tensione) L'amplificatore tenderà a non far scorrere corrente, non solo all'interno egli input, ma anche nel ramo di feedback.

D'altro canto, invece, se posizioniamo un generatore di tensione in input, ci sarà una corrente che fluisce all'interno dell'opamp.

