N2PZDQ

Generated by Doxygen 1.8.4

Mon Feb 24 2014 16:05:52

Contents

1	N2P	ZDQ: 2-Nutrients, Quota resolveing NPZD model	1
	1.1	General Overview	1
	1.2	References	1
2	Data	a Type Index	3
	2.1	Class Hierarchy	3
3	Data	a Type Index	5
	3.1	Data Types List	5
4	File	Index	7
	4.1	File List	7
5	Data	Type Documentation	9
	5.1	fabm_hzg_n2pzdq Module Reference	9
		5.1.1 Detailed Description	9
		5.1.2 Member Function/Subroutine Documentation	9
		5.1.2.1 initialize	9
	5.2	fabm_hzg_n2pzdq::type_hzg_n2pzdq Type Reference	9
6	File	Documentation	13
	6.1	n2pzdq.F90 File Reference	13
		6.1.1 Detailed Description	13
In	dex		14

N2PZDQ: 2-Nutrients, Quota resolveing NPZD model

1.1 General Overview

Description

State variables

N2PZDQ model resolves:

- · 2 nutrients, nitrogen and phosphorus in dissolved and detrital form
- · Phytoplankton with flexible C:N:P stoichiometry
- · Zooplankton with fixed stoichiometry

Fluxes

The NPZD (nutrient-phytoplankton-zooplankton-detritus) model described here consists of \$I=4\$ state variables. Nutrient uptake (phytoplankton growth) is limited by light and nutrient availability, the latter of which is modelled by means of Michaelis-Menten kinetics, see eq. (dnp}). The half-saturation nutrient concentration \$\$ used in this formulation has typically a value between 0.2 and 1.5 mmol N\, m\$^{-3}\$. Zooplankton grazing which is limited by the phytoplankton standing stock is modelled by means of an Ivlev formulation, see eq. (dpz}). All other processes are based on linear first-order kinematics, see eqs. (dpn}) - (dzd}).

For all details of the NPZD model implemented here, see[Burchardetal2005b]}.

Here is a diagram of fluxes:

maybe some script here

1.2 References

-?

2	N2PZDQ: 2-Nutrients, Quota resolveing NPZD model		

Data Type Index

2.1 Class Hierarchy

This inheritance list	s sorted roughly, but not completely, alphabetically:		
	q		9
type_base_mode fabm_hzg_n2	pzda::type hza n2pzda		ç

Data Type Index

Data Type Index

3.1 Data Types List

Here are the data types with brief descriptions:

fabm_hzg_n2pzdq		
Module "fabm_hzg_npzd_n2pzdq". this is the module to be included in the FABM library		9
fabm hzg n2pzdg::type hzg n2pzdg		ç

6 **Data Type Index**

File Index

	4	F21 -		5 - A
4	1		1	IQT

Here is a list of all documented files with brief descriptions:
·

 8 File Index

Data Type Documentation

5.1 fabm_hzg_n2pzdq Module Reference

module "fabm_hzg_npzd_n2pzdq". this is the module to be included in the FABM library

Data Types

type type_hzg_n2pzdq

Public Member Functions

• subroutine initialize (self, configurit)

here the n2pzdq namelist is read, variables exported by the model are registered in FABM and variables imported from FABM are made available

5.1.1 Detailed Description

module "fabm_hzg_npzd_n2pzdq". this is the module to be included in the FABM library see Section 1 for a general overview to see what the model is about.

5.1.2 Member Function/Subroutine Documentation

5.1.2.1 subroutine fabm_hzg_n2pzdq::initialize (class (type_hzg_n2pzdq), intent(inout), target *self*, integer, intent(in) *configunit*)

here the n2pzdq namelist is read, variables exported by the model are registered in FABM and variables imported from FABM are made available

here a more detailed description can be provided

The documentation for this module was generated from the following file:

• n2pzdq.F90

5.2 fabm_hzg_n2pzdq::type_hzg_n2pzdq Type Reference

Inheritance diagram for fabm_hzg_n2pzdq::type_hzg_n2pzdq:

Public Member Functions

- · procedure initialize
- · procedure do
- procedure get_light_extinction

Public Attributes

- type(type_state_variable_id) id_din
- type(type_state_variable_id) id_dip
- type(type_state_variable_id) id_phyc
- type(type_state_variable_id) id_phyn
- type(type_state_variable_id) id_phyp
- type(type_state_variable_id) id_detn
- type(type_state_variable_id) id_detp
- type(type_state_variable_id) id_zooc
- type(type_state_variable_id) id_dic
- type(type dependency id) id par
- type(type_dependency_id) id_temp
- type(type_horizontal_dependency_id) id_i_0
- type(type_diagnostic_variable_id) id_gpp
- type(type_diagnostic_variable_id) id_ncp
- type(type diagnostic variable id) id ppr
- · type(type diagnostic variable id) id npr
- type(type_diagnostic_variable_id) id_dpar
- type(type_diagnostic_variable_id) id_dmort
- type(type_diagnostic_variable_id) id_dllim
- type(type_diagnostic_variable_id) id_dnlim
- type(type_diagnostic_variable_id) id_dplim
- type(type_diagnostic_variable_id) id_dqnc
- type(type_diagnostic_variable_id) id_dqpc
- type(type_diagnostic_variable_id) id_den
- type(type_diagnostic_variable_id) id_dep
- type(type_diagnostic_variable_id) id_dec
- type(type_diagnostic_variable_id) id_dgraz
- type(type_diagnostic_variable_id) id_dmortz
- type(type_conserved_quantity_id) id_totn
- type(type_conserved_quantity_id) id_totp
- real(rk) p0
- · real(rk) affin_par
- · real(rk) upmax_n
- real(rk) upmax_p
- real(rk) grow_max
- real(rk) iv
- real(rk) halfsatn
- real(rk) halfsatp
- real(rk) rem_n

- real(rk) rem_p
- real(rk) mort0_phy
- real(rk) mortpar_phy
- real(rk) qmax_n
- real(rk) qmax_p
- real(rk) qmin_n
- real(rk) qmin_p
- real(rk) kc
- real(rk) w_p
- real(rk) w_d
- real(rk) rpn
- real(rk) grazmax
- real(rk) mort_zoo
- real(rk) n
- real(rk) qzn
- real(rk) qzp
- real(rk) eff
- real(rk) e_c
- real(rk) k_detn
- real(rk) k_detp
- real(rk) mort_zoo2
- real(rk) n2
- real(rk) zexcdetfr
- real(rk) dic_per_n
- logical use_dic

The documentation for this type was generated from the following file:

• n2pzdq.F90

File Documentation

6.1 n2pzdq.F90 File Reference

NPZD model extended with 2 nutrients and variable stoichiometry of phyto.

```
#include "fabm_driver.h"
```

Data Types

- module fabm_hzg_n2pzdq
 module "fabm_hzg_npzd_n2pzdq". this is the module to be included in the FABM library
- type fabm_hzg_n2pzdq::type_hzg_n2pzdq

6.1.1 Detailed Description

NPZD model extended with 2 nutrients and variable stoichiometry of phyto.

Author

Lena Spruch, Kai Wirtz, Onur Kerimoglu

Copyright

HZG

Index

```
fabm_hzg_n2pzdq, 9
initialize, 9
fabm_hzg_n2pzdq::type_hzg_n2pzdq, 9
initialize
fabm_hzg_n2pzdq, 9
n2pzdq.F90, 13
```