CheggSolutions - Thegdp

Subject: Calculus

Topic: Convergence Tests and Estimation via Integrals

Problem (a)

Given Statement:

For each integer \(k \ge 1 \), define \(a_k = \int_k^\infty \frac{k}{x^3} \, dx \). By virtue of the Integral Test, we may conclude that the infinite series \(\sum_{k=1}^\infty \frac{k}{k^3} \) is convergent.

Solution:

1. Define the integrand and perform the integration.

2. Evaluate the definite integral:

 $\begin{tabular}{ll} $$ (a_k = \left[-\frac{k}{2x^2} \right]_k^{\infty} = 0 - \left(-\frac{k}{2k^2} \right) = \frac{1}{2k} \] \label{eq:linear_energy} $$ (a_k = \frac{1}{2k} \). $$$

Explanation: The given integral has been evaluated using standard integration techniques. The bounds are applied to find the final value of \(a_k \).

Conclusion:

By the Integral Test, the original statement about the series:

Answer: True

Problem (b)

Question:

Does the Remainder Estimate Theorem for the Integral Test apply to \(\sum_{k=7}^\infty \frac{1}{k^3} \) for \(n = 7 \) and \(N \to \infty \)?

Solution:

1. Consider the given series:

2. Check if the conditions for the Integral Test apply:

The function $\ (f(x) = \frac{1}{x^3})\$ is positive, continuous, and decreasing for $\ (x \ge 7)$. Therefore, the remainder estimate theorem can be applied.

Explanation: The check ensures the function satisfies the conditions required for the Integral Test and Remainder Estimate Theorem.

Answer: Yes

Problem (c)

Given:

Compute \(R_7 \) such that the Remainder Estimate Theorem guarantees: \[\int_{7}^\infty \frac{1}{x^3} \, dx < R_7 < \int_{6}^\infty \frac{1}{x^3} \, dx \]

Solution:

1. Evaluate the integrals:

 $$$ \left(\frac{7}^\infty \frac{1}{x^3} \right) \, dx = \left(\frac{1}{2x^2} \right) - \left(\frac{7}^\infty \frac{1}{x^3} \right) \, dx = \left(\frac{1}{2x^2} \right)$

Explanation: The integrals are evaluated similarly as in part (a), considering the new bounds.

Therefore, the remainder \(R_7 \) is bounded as:

Explanation: The inequality form of the Remainder Estimate Theorem is used to establish the bounds for \(R_7 \).

Answer: \(\frac{1}{98} \) and \(\frac{1}{72} \)

Final Solution Summary

- (a) True(b) Yes
- (c) \(\frac{1}{98} \) and \(\frac{1}{72} \)