

Graphen I

Gustavo Crivelli, Beini Ma, Matthias Schimek, Matthias Schmitt

ICPC-Praktikum 2015 - Graphen I

Gliederung

Einleitung

BFS

DFS

Iterative Tiefensuche

Starke Zusammenhangskomponenten

Bipartite Graphen

Brücke

Idee des Algorithmus

- DFS Algorithmus mit begrenzt Suchtiefe, repetiert mit steigenden Werte.
- Besucht neue Knoten in BFS Ordnung, hat aber geringer Speicherverbrauch als BFS
 - BFS Speicherverbrauch: $\mathcal{O}(b^d)$
 - $\blacksquare \ \ \text{Iterative Tiefensuche Speicherverbrauch: } \mathcal{O}(\textit{bd})$

Wo *b* (*branching factor*) die durchschnittliche Zahl Nachbarn eines Knotens ist,

- und *d* die Tiefe des flachsten Ziels.
- Laufzeit: O(b^d)

Anfang: A

Anfang: A

d = 0: A

Anfang: A

d = 0: A

d = 1: ABCE

Anfang: A

d = 0: A

d = 1: ABCE

d = 2: ABDFCGEF

Anfang: A

d = 0: A

d = 1: ABCE

d = 2: ABDFCGEF

d = 3: ABDFECGEFB

Rekursive begrenzt DFS Algorithmus

```
vector < vector <int > adjList;
const int LIMITBREAK = -1;

int iterativeDFS(int origin)
{
    int depth = 0, found = LIMITBREAK;
    while(found == LIMITBREAK)
    {
        found = limitedDFS(origin,depth);
        depth++;
    }
    return found;
}
```


Rekursive begrenzt DFS Algorithmus

```
int limitedDFS(int v, int depth)
{
    if(depth == 0 && v == goal)
        return v:
    else if(depth > 0)
        for(int i = 0; i < adjList[v].size(); i++)</pre>
             int found = limitedDFS(adjList[v][i], depth-1);
             if (found != LIMITBREAK)
                 return found:
    return LIMITBREAK:
```


Schach

- Besonders sinnvoll f
 ür Probleme, die hoch branching factor haben, z.B.: Schach
- Im Durchschnitt hat ein Schachspieler für jeder Position 35~38 mögliche Bewegungen
- Iterative Tiefensuche findet die beste Bewegung bis zum eine Tiefe T, innerhalb ein Zeitlimit

Beispielaufgabe

UVa 11383 Come and Go

In einer Stadt gibt es *N* Kreuzungen, die durch Straßen verbunden sind. Da man in der Stadt von einem Punkt (Kreuzung) zu jedem anderen kommen möchte, sollte es eine Verbindung zwischen zwei beliebigen Kreuzungen geben.

Für eine gegebene Stadt mit *N* Kreuzungen und *M* Straßen soll entschieden werden, ob dies möglich ist.

Definition Strongly Connected Components SCC

In einem gerichteten Graph G = (V, E), wird $V' \subseteq V$ starke Zusammenhangskomponente (SCC) genannt, wenn zwischen je zwei Knoten in V' ein Pfad existiert.

Beispielaufgabe

UVa 11383 Come and Go

In einer Stadt gibt es *N* Kreuzungen, die durch Straßen verbunden sind. Da man in der Stadt von einem Punkt (Kreuzung) zu jedem anderen kommen möchte, sollte es eine Verbindung zwischen zwei beliebigen Kreuzungen geben.

Für eine gegebene Stadt mit *N* Kreuzungen und *M* Straßen soll entschieden werden, ob dies möglich ist.

Definition Strongly Connected Components SCC

In einem gerichteten Graph G = (V, E), wird $V' \subseteq V$ starke Zusammenhangskomponente (SCC) genannt, wenn zwischen je zwei Knoten in V' ein Pfad existiert.

- Zum Lösen der Aufgabe untersuchen, ob das Straßennetz der Stadt aus einer oder mehreren SCCs besteht.
- ightharpoonup ightharpoonup Benötigen effizienten Algorithmus zum Finden von SCCs

Algorithmus von Tarjan für SCCs

- Wurde von Robert Tarjan gefunden
- Basiert auf dem Konzept der DFS
- Laufzeit: $\mathcal{O}(|V| + |E|)$

- Zum Lösen der Aufgabe untersuchen, ob das Straßennetz der Stadt aus einer oder mehreren SCCs besteht.
- ⇒ Benötigen effizienten Algorithmus zum Finden von SCCs

Algorithmus von Tarjan für SCCs

- Wurde von Robert Tarjan gefunden
- Basiert auf dem Konzept der DFS
- Laufzeit: $\mathcal{O}(|V| + |E|)$

STACK:

• A

- dfs num(B) = 1

STACK:

- B

• dfs num(A) = 0 • dfs low(A) = 0

• dfs num(B) = 1

• dfs num(C) = 2

• dfs low(B) = 1

- dfs low(C) = 2
- STACK:
 - B
 - C

В Α D

- dfs num(B) = 1
- dfs num(C) = 2
- STACK:

 - B • C
 - D

- dfs num(D) = 3
- dfs low(D) = 3

Sourcecode

```
void findSCC(int u) {
        dfs low[u] = dfs num[u] = dfsNumberCounter++: // initalize
       S.push back(u): visited[u] = 1:
        for (int j = 0; j < AdjacenceList[u].size(); <math>j++) {
                ii v = AdjacenceList[u][i];
                if (dfs_num[v.first] == UNVISITED) // not yet visited by DFS
                        findSCC(v.first);
                if (visited[v.first]) // belongs to current SCC
                        dfs low[u] = min(dfs low[u]. dfs low[v.first]):
        if (dfs low[u] == dfs num[u]) { // root of current SCC
                cout << "SCC " << ++numSCC: // print vertices in SCC
                while(true) {
                        int v = S.back(); S.pop back(); visited[v] = 0;
                        cout << " " <<v:
                        if (u == v) break:
                cout << endl:
```


- findSCC(int u) findet alle SCCs, die von Konten u aus erreichbar sind.
- Für vollständige Liste an SCCs findSCC(int u) für alle Knoten eines Graphen laufen lassen.

Bipartite Graphen

Definition

Separatoren und Brücken in ungerichteten Graphen

Sei G = (V, E) ein ungerichteter Graph.

- G heißt **Bipartite** falls sich seine Knoten in zwei disjunkte Teilmengen A, B aufteilen lassen, so dass es zwischen den Knoten innerhalb einer Teilmenge keine Kanten gibt.
- Das heißt, für jeder Kante $\{u, v\} \in E$ gilt entweder $u \in A$ und $v \in B$ oder $u \in B$ und $v \in A$.

Bipartite Graphen Beispiel

Bipartite Graphen Beispiel

DFS Algorithmus

DFS Algorithmus

DFS Algorithmus

DFS Algorithmus

DFS Algorithmus


```
vector < vector < int > > adjList;
vector < int > colorDFS [200];
const int UNVISITED = -1, NOT_BIP = 0, BIP = 1;
int solveDFS(int v, int color) //int main() -> solveDFS(0,0)
    if (colorDFS[v] == UNVISITED)
        colorDFS[v] = color;
        for(int i = 0; i < adjList[v].size(); i++)
            if(solveDFS(adjList[v][i], 1 - color) == NOT_BIP)
                return NOT_BIP:
    else if(colorDFS[v] != color)
        return NOT_BIP;
    return BIP:
```


BFS Algorithmus

```
vector < vector < int > > adjList;
const int UNVISITED = -1, NOT_BIP = 0, BIP = 1;
int checkBFS(int nVertex) {
    vector < int > color(nVertex, UNVISITED);
    queue < int > q; q.push(0);
    while(!q.empty()) {
        int vertex = q.front(); q.pop();
        for(int i = 0; i < adjList[vertex].size(); i++) {</pre>
            int next = adjList[vertex][i];
            if(color[next] == UNVISITED) {
                 color[next] = 1 - color[vertex];
                 q.push(next); }
            else if(color[next] == color[vertex])
                 return NOT BIP:
    return BIP:
```

Definition

Separatoren und Brücken in ungerichteten Graphen

Sei G = (V, E) ein ungerichteter Graph.

- **Ein Knoten** $v \in V$ heißt **Separator** von G, wenn durch sein Entfernen bestehende Zusammenhangskomponenten aufgetrennt werden.
- **Eine Kante** $\{u, v\} \in E$ heißt **Brücke**, wenn durch ihr Entfernen uund v in verschiedenen Zusammenhangskomponenten liegen.

Brücken und Separatoren **Beispiel**

Brücken und Separatoren Beispiel

Brücken und Separatoren **Beispiel**

Algorithmen

- Naive Herangehensweise:
 - Entferne einen Knoten/Kante
 - Prüfe mittels DFS/BFS ob sich eine neue Zusammenhangskomponente ergeben hat
 - Wiederhole Schritt 1 f
 ür alle Knoten/Kanten
- Laufzeit: $\mathcal{O}(|V| \cdot (|V| + |E|))$ bwz. $\mathcal{O}(|E| \cdot (|V| + |E|))$
- **E**s existiert Algorithmus in $\mathcal{O}(|V| + |E|)$
- Basiert auf DFS und ähnelt Algorithmus zum Finden von SCCs

- Führe eine DFS im Graph durch.
- Besuchte Knoten erhalten zwei Nummern:
 - dfs_num(u): Speichert Schritt, in dem Knoten u von DFS besucht wurde.
 - dfs_low(u): Niedrigster Wert von dfs_low, der von Knoten u aus erreicht werden kann.
- Wenn $dfs_{low}(v) \ge dfs_{low}(u)$, dann ist u ein Separator
 - Von v kann kein Knoten w "vor" u erreicht werden.
 - "vor" bedeutet: (dfs_num(w) > dfs_num(u)
 - Um Knoten w "vor" u zu erreichen, muss man durch u laufen
 - \Rightarrow *u* teilt Graph in zwei Zusammenhangskomponenten.
 - (Spezialfall: Gilt nicht, wenn u Wurzel der DFS)

- Führe eine DFS im Graph durch.
- Besuchte Knoten erhalten zwei Nummern:
 - 1. **dfs num(u):** Speichert Schritt, in dem Knoten u von DFS besucht wurde.
 - 2. dfs low(u): Niedrigster Wert von dfs low, der von Knoten u aus erreicht werden kann.

- Führe eine DFS im Graph durch.
- Besuchte Knoten erhalten zwei Nummern:
 - 1. **dfs num(u):** Speichert Schritt, in dem Knoten u von DFS besucht wurde.
 - 2. dfs low(u): Niedrigster Wert von dfs low, der von Knoten u aus erreicht werden kann.
- Wenn **dfs** $low(v) \ge dfs$ num(u), dann ist u ein Separator

- Führe eine DFS im Graph durch.
- Besuchte Knoten erhalten zwei Nummern:
 - 1. **dfs num(u):** Speichert Schritt, in dem Knoten u von DFS besucht wurde.
 - 2. dfs low(u): Niedrigster Wert von dfs low, der von Knoten u aus erreicht werden kann.
- Wenn **dfs** $low(v) \ge dfs$ num(u), dann ist u ein Separator
 - Von v kann kein Knoten w "vor" u erreicht werden.
 - "vor" bedeutet: (dfs num(w) > dfs num(u))
 - Um Knoten w "vor" u zu erreichen, muss man durch u laufen.
 - $\Rightarrow u$ teilt Graph in zwei Zusammenhangskomponenten.
 - (Spezialfall: Gilt nicht, wenn u Wurzel der DFS)

- Besuchte Knoten erhalten zwei Nummern:
 - 1. **dfs num(u):** Speichert Schritt, in dem Knoten *u* von DFS besucht wurde
 - 2. **dfs low(u):** Niedrigster Wert von **dfs low**, der von Knoten *u* aus erreicht werden kann.
- - $\Rightarrow \{u, v\}$ teilt Graph in zwei Zusammenhangskomponenten.

- Besuchte Knoten erhalten zwei Nummern:
 - 1. **dfs num(u):** Speichert Schritt, in dem Knoten *u* von DFS besucht wurde
 - 2. **dfs low(u):** Niedrigster Wert von **dfs low**, der von Knoten *u* aus erreicht werden kann.
- Wenn **dfs** low(v) > dfs num(u), dann ist $\{u, v\}$ eine Brücke
 - Von v kann Knoten v nur über die Kante u. v erreicht werden.
 - Ansonsten dfs low(v) seq dfs num(u).
 - $\Rightarrow \{u, v\}$ teilt Graph in zwei Zusammenhangskomponenten.

Karkruher Institut für Technologie

Illustration des Algorithmus'

- dfs num(B) = 1
- dfs low(B) = 1

dfs num(A) = 0
 dfs low(A) = 0

- dfs num(E) = 4
- dfs low(E) = 1

- dfs num(C) = 2
- dfs low(C) = 2

- dfs num(F) = 5
- dfs low(F) = 1