$Methods\ in\ Ecology\ and\ Evolution$

4 Contents

2

5	Hiei	carchical Bayesian models for vital rates	٠
6		Parameter to model notation keys	į
7		Survival (IPM)	4
8		Growth (IPM)	7
9		Recruitment (IPM)	8
10		Quadrat based model (QBM)	1
11	Sup	porting Figures	14
12	Sup	porting Tables	17
13	\mathbf{List}	of Figures	
10	~		
14 15 16	S1	Comparison of one-step-ahead, out-of-sample forecast error (mean absolute error) between the IPM and QBM models with and without the inclusion of climate covariates.	14
17 18 19 20	S2	Results from ridge regression: summed log pointwise predictive densities $(lppd)$ as a function of the prior variance of climate covariates. Dashed, red vertical lines show the highest prior variance with the highest $lppd$ indicating the value of prior variance for optimal prediction	15
21 22 23	S3	Comparison of one-step-ahead, out-of-sample forecast accuracy (mean correlation between observations and predictions) between the IPM and QBM models with and without the inclusion of climate covariates	16
24	List	of Tables	
25 26	S1	Definition of parameters and model notation for IPM survival and growth models	ę
27	S2	Definition of parameters and model notation for IPM recruitment model	•
28	S3	Definition of parameters and model notation for quadrat based model	4
29	S4	Climate effect key.	4

30	S_5	Statistical results from IPM survival model for <i>B. gracilis.</i>	18
31	S6	Statistical results from IPM survival model for $H.\ comata.$	19
32	S7	Statistical results from IPM survival model for <i>P. smithii</i>	20
33	S8	Statistical results from IPM survival model for $P.\ secunda.$	21
34	S9	Statistical results from IPM growth model for $B.\ gracilis.$	22
35	S10	Statistical results from IPM growth model for $H.\ comata.$	23
36	S11	Statistical results from IPM growth model for $P.\ smithii.$	24
37	S12	Statistical results from IPM growth model for $P.\ secunda.$	25
38	S13	Statistical results from IPM recruitment model for $B.\ gracilis.$	26
39	S14	Statistical results from IPM recruitment model for $H.\ comata.$	27
40	S15	Statistical results from IPM recruitment model for $P.\ smithii.$	28
41	S16	Statistical results from IPM recruitment model for $P.\ secunda.$	29
42	S17	Statistical results from QBM population model for $B.\ gracilis.$	30
43	S18	Statistical results from QBM population model for $H.\ comata.$	31
44	S19	Statistical results from QBM population model for <i>P. smithii.</i>	32
45	S20	Statistical results from QBM population model for $P.\ secunda.$	33
46	S21	Statistical tests to assess whether models without climate covariates have	
47 48		higher accuracy and lower error than models with climate covariates. t-tests are one-sided	34
49	S22	Statistical tests of model comparisons. Table shows results from one-sided	
50		t-tests for the particular comparison	35
51 52	S23	Statistical tests of model comparisons at different forecast horizons. Table shows results from one-sided t-tests for the particular comparison	36
53	S24	Statistical tests of model comparisons at different forecast horizons. Table	- 0
54	.5 — +	shows results from one-sided t-tests for the particular comparison. Note the	
55		reverse order of comparisons relative to Table S23	37

56 Hierarchical Bayesian models for vital rates

Here we describe the statistical models in complete detail, including full description of the Bayesian models and Stan code for each model. We write each model as three parts: (1) a data model (likelihood), (2) a process model, and (3) a parameter model. We then combine these three models to write the posterior and joint distributions as a single model statement. Following the full model expression we provide the Stan code that directly corresponds the statement of posterior and joint distributions. Note that Stan uses standard deviations (σ) to specify distributions rather than variances (σ^2). In our expressions of the posterior and joint distributions we use general probability notation where [.] represents some unspecified distribution. We do this for clarity of model presentation. All prior distributions are defined in the parameter model sections. For clarity, we avoid subscripting species.

67 Parameter to model notation keys

Table S1: Definition of parameters and model notation for IPM survival and growth models.

Parameter	Definition	Notation in statistical results tables
$\overline{\beta_{0,t}}$	intercept for year t	a[t] where t is the numeric year
$eta_{0,t} \ ilde{eta_0}$	global intercept	a_mu
$\beta_{Q,q}$	random effect of quadrat group q	gint[q] where q is the quadrat group
	size effect for year t	b1[t] where t is the numeric year
$eta_{s,t} \ ilde{eta}_s$	global size effect	b1_mu
$\beta_{d,1}$	effect of crowding	w[1]
$\beta_{d,2}$	crowding \times size effect	w[2]
$\beta_{c,k}$	effect of climate covariate k	b2[k] where k is the climate effect
a	first parameter for growth variance	tau
<u>b</u>	second parameter for growth variance	tauSize

Table S2: Definition of parameters and model notation for IPM recruitment model.

Parameter	Definition	Notation in statistical results tables
$\beta_{0,t}$	intercept for year t	a[t] where t is the numeric year
$ ilde{eta_0}$	global intercept	a_mu
$\beta_{Q,q}$	random effect of quadrat group q	<pre>gint[q] where q is the quadrat group</pre>
$\beta_{d,1}$	effect of plot cover	dd
$\beta_{c,k}$	effect of climate covariate k	b2[k] where k is the climate effect
p	mixing fraction for effective plot cover	u
ζ	size parameter for negative binimial likelihood	theta

Table S3: Definition of parameters and model notation for quadrat based model.

		-
Parameter	Definition	Notation in statistical results tables
$eta_{0,t} \ ilde{eta}_0$	intercept for year t	a[t] where t is the numeric year
eta_0	global intercept	a_mu
$\beta_{Q,q}$	random effect of quadrat group q	<pre>gint[q] where q is the quadrat group</pre>
$eta_{s,t}$ $ ilde{eta}_s$	cover effect for year t	b1[t] where t is the numeric year
$ ilde{eta}_s$	global cover effect	b1_mu
$eta_{c,k}$	effect of climate covariate k	b2[k] where k is the climate effect
au	model variance in log normal likelihood	tau

Table S4: Climate effect key.

$\overline{\text{Integer ID } (k)}$	Climate covariate
1	pptLag
2	ppt1
3	ppt2
4	TmeanSpr1
5	TmeanSpr2
6	$ppt1 \times TmeanSpr1$
7	$ppt2 \times TmeanSpr2$

68 Survival (IPM)

We used logistic regression to model the probability that genet i in quadrat q survives from time t to t+1 $(s_{i,q,t})$:

$$y_{i,q,t}^S \sim \text{Bernoulli}(s_{i,q,t})$$
 (1)

$$logit(s_{i,q,t}) = \beta_{0,t} + \beta_{s,t} x_{i,q,t} + \beta_{Q,q} + \mathbf{z}_t' \boldsymbol{\beta}_c + \beta_{d,1} w_{i,t} + \beta_{d,2} (x_{i,q,t} w_{i,q,t})$$
(2)

where $x_{i,q,t}$ is the log of genet i basal area at time t, $\beta_{0,t}$ is a year specific intercept, $\beta_{Q,q}$ is the random effect for the qth quadrat to account for spatial variation, $\beta_{s,t}$ is the year-specific slope parameter for size, \mathbf{z} is a vector of p climate covariates specific to year t, $\boldsymbol{\beta}_c$ is a vector of fixed climate effects of length p, $\beta_{d,1}$ is the effect of intraspecific crowding experienced by the focal genet at time t ($w_{i,q,t}$), and $\beta_{d,2}$ is a size by crowding ($x_{i,q,t}w_{i,q,t}$) interaction effect.

Data, process, and parameter models

data
$$y_{i,q,t}^{S} \sim \operatorname{Bernoulli}(s_{i,q,t}) \ (3)$$
 process
$$\operatorname{logit}(s_{i,q,t}) = \beta_{0,t} + \beta_{s,t} x_{i,q,t} + \beta_{Q,q} + \mathbf{z}_t' \boldsymbol{\beta}_c + \beta_{d,1} w_{i,t} + \beta_{d,2} (x_{i,q,t} w_{i,q,t}) \ (4)$$
 parameters
$$\beta_{0,t} \sim \operatorname{Normal}(\tilde{\beta}_0, \sigma_{\beta_0}^2) \ (5)$$

$$\beta_{s,t} \sim \operatorname{Normal}(\tilde{\beta}_s, \sigma_{\beta_s}^2) \ (6)$$

$$\beta_{Q,q} \sim \operatorname{Normal}(0, \sigma_Q^2) \ (7)$$

$$\beta_c \sim \operatorname{Normal}(0, \sigma_c^2 \mathbf{I}) \ (8)$$

$$\beta_{d,1} \sim \operatorname{Normal}(0, 100) \ (10)$$

$$\beta_{0,2} \sim \operatorname{Normal}(0, 100)$$

$$(10)$$

$$\tilde{\beta}_0 \sim \operatorname{Normal}(0, 100)$$

$$(11)$$

$$\tilde{\beta}_s \sim \operatorname{Normal}(0, 100)$$

$$(12)$$

$$\sigma_Q \sim \operatorname{Cauchy}(0, 5)$$

$$(13)$$

$$\sigma_{\beta_0} \sim \operatorname{Cauchy}(0, 5)$$

$$(14)$$

$$\sigma_{\beta_s} \sim \operatorname{Cauchy}(0, 5)$$

$$(15)$$

77 Full expression of posterior and joint distributions

$$[\boldsymbol{\beta_0}, \tilde{\beta}_0, \boldsymbol{\beta_s}, \tilde{\beta_s}, \boldsymbol{\beta_Q}, \boldsymbol{q}, \boldsymbol{\beta_c}, \beta_{d,1}, \beta_{d,2}, \sigma_Q^2, \sigma_{\beta_0}^2, \sigma_{\beta_s}^2 | y_{i,q,t}^S] \propto$$

$$\prod_{t=1}^T \prod_{i=1}^n [y_{i,q,t}^S | \beta_{0,t}, \beta_{s,t}, \beta_Q, \boldsymbol{\beta_c}, \beta_{d,1}, \beta_{d,2}] \times$$

$$[\beta_{0,t} | \tilde{\beta_0}, \sigma_{\beta_0}^2] \times$$

$$[\beta_{s,t} | \tilde{\beta_s}, \sigma_{\beta_s}^2] [\boldsymbol{\beta_c} | \sigma_{\beta_c}^2] \times$$

$$[\beta_{l}, \boldsymbol{\beta_s}, \sigma_{\beta_s}^2] [\boldsymbol{\beta_c} | \sigma_{\beta_c}^2] \times$$

$$[\beta_{l}, \boldsymbol{\beta_c}, \boldsymbol{$$

78 Stan code for model

```
data{
  // All Data
  int<lower=0> N; // observations
  int<lower=0> Yrs; // years
  int<lower=0> yid[N]; // year id
  int<lower=0> Covs; // climate covariates
  int<lower=0> G; // groups
  int<lower=0> gid[N]; // group id
  int<lower=0,upper=1> Y[N]; // observation vector
  matrix[N,Covs] C; // climate matrix
  vector[N] X; // size vector
  matrix[N,2] W; // crowding matrix
  real beta tau; // prior sdev for climate effects
}
parameters{
  real a mu;
  vector[Yrs] a;
  real b1 mu;
  vector[Yrs] b1;
  vector[Covs] b2;
  vector[2] w;
  vector[G] gint;
  real<lower=0> sig a;
  real<lower=0> sig b1;
  real<lower=0> sig G;
}
transformed parameters{
  real mu[N];
  vector[N] climEff;
  vector[N] crowdEff;
  climEff <- C*b2;</pre>
  crowdEff <- W*w;</pre>
  for(n in 1:\mathbb{N}){
    mu[n] <- inv_logit(a[yid[n]] + gint[gid[n]] +</pre>
                          b1[yid[n]]*X[n] + crowdEff[n] + climEff[n]);
  }
}
model{
  // Priors
  a mu ~ normal(0,10);
  w \sim normal(0,10);
  b1 mu ~ normal(0,10);
  sig_a \sim cauchy(0,5);
  sig_b1 \sim cauchy(0,5);
```

```
sig_G ~ cauchy(0,5);
gint ~ normal(0, sig_G);
b2 ~ normal(0, beta_tau);
a ~ normal(a_mu, sig_a);
b1 ~ normal(b1_mu, sig_b1);

// Likelihood
Y ~ binomial(1,mu);
}
```

79 Growth (IPM)

We modeled growth as a Gaussian process describing log genet size $(y_{i,q,t+1}^G)$ at time t+1 in quadrat q as a function of log size at time t and climate covariates:

$$y_{i,q,t+1}^G \sim \text{Normal}(\mu_{i,q,t+1}, \sigma_{x_{i,q,t+1}}^2)$$
 (22)

$$\mu_{i,q,t+1} = \beta_{0,t} + \beta_{s,t} x_{i,q,t} + \beta_{Q,q} + \mathbf{z}_t' \boldsymbol{\beta}_c + \beta_{d,1} w_{i,q,t} + \beta_{d,2} (x_{i,q,t} w_{i,q,t})$$
(23)

where $\mu_{i,q,t+1}$ is log of genet *i*s predicted size at time t+1, and all other parameters are as described for the survival regression. We capture non-constant error variance in growth by modeling the variance in the growth regression ($\sigma_{xi,q,t+1}^2$) as a nonlinear function of predicted genet size:

$$\sigma_{x_{i,q,t+1}}^2 = a \exp[b \times \mu_{i,q,t+1}] \tag{24}$$

where $\mu_{i,q,t+1}$ is log of predicted genet size predicted from the growth regression (Eq. 4), and a and b are constants.

88 Data, process, and parameter models.

Full expression of posterior and joint distributions

$$[\boldsymbol{\beta_0}, \tilde{\beta}_0, \boldsymbol{\beta_s}, \tilde{\beta}_s, \beta_{Q,q}, \boldsymbol{\beta_c}, \beta_{d,1}, \beta_{d,2}, \sigma_Q^2, \sigma_{\beta_0}^2, \sigma_{\beta_s}^2, a, b | y_{i,q,t+1}^G] \propto \tag{41}$$

$$\prod_{t=1}^T \prod_{i=1}^n [y_{i,q,t+1}^G | \beta_{0,t}, \beta_{s,t}, \beta_Q, \boldsymbol{\beta_c}, \beta_{d,1}, \beta_{d,2}, a, b] \times \tag{42}$$

$$[\beta_{0,t} | \tilde{\beta}_0, \sigma_{\beta_0}^2] \times \tag{43}$$

$$[\beta_{s,t} | \tilde{\beta}_s, \sigma_{\beta_s}^2] [\boldsymbol{\beta_c} | \sigma_{\beta_c}^2] \times \tag{44}$$

$$\prod_{q=1}^{Q_{tot}} [\beta_{Q,q} | \sigma_Q^2] \times \tag{45}$$

$$[\beta_{d,1}] [\beta_{d,1}] [\tilde{\beta}_0] [\tilde{\beta}_s] [\sigma_Q] [\sigma_{\beta_0}] [\sigma_{\beta_s}] [a] [b] \tag{46}$$

90 Stan code for model

91 Recruitment (IPM)

- Our data allows us to track new recruits, but we cannot assign a specific parent to new genets.
- Therefore, we model recruitment at the quadrat level. We assume the number of individuals,
- $y_{q,t+1}^R$, recruiting at time t+1 in quadrat q follows a negative binomial distribution:

$$y_{q,t+1}^R \sim \text{NegBin}(\lambda_{q,t+1}, \phi)$$
 (47)

where λ is the mean intensity and ϕ is the size parameter. We define λ as a function of quadrat composition and climate in the previous year:

$$\lambda_{q,t+1} = \tilde{c}_{q,t} \exp\left(\beta_{0,t} + \beta_{Q,q} + \mathbf{z}_t' \boldsymbol{\beta}_c + \beta_d \sqrt{\tilde{c}_{q,t}}\right)$$
(48)

where $\tilde{c}_{q,t}$ is effective cover (cm²) of the focal species in quadrat q at time t, and all other terms are as in the survival and growth regressions. Effective cover is a mixture of observed cover (c) in the focal quadrat (q) and the mean cover across the entire group (\bar{c}) of Q quadrats in which q is located:

$$\tilde{c}_{a,t} = pc_{a,t} + (1-p)\bar{c}_{Q,t} \tag{49}$$

where p is a mixing fraction between 0 and 1 that is estimated when fitting model.

Data, process, and parameter models

data
$$y_{q,t+1}^R \sim \operatorname{NegBin}(\lambda_{q,t+1},\phi) \qquad (50)$$
 process
$$\lambda_{q,t+1} = \tilde{c}_{q,t} \exp\left(\beta_{0,t} + \beta_{Q,q} + \mathbf{z}_t' \boldsymbol{\beta}_c + \beta_d \sqrt{\tilde{c}_{q,t}}\right) \qquad (51)$$
 parameters
$$\beta_{0,t} \sim \operatorname{Normal}(\tilde{\beta}_0, \sigma_{\beta_0}^2) \qquad (52)$$

$$\beta_{Q,q} \sim \operatorname{Normal}(0, \sigma_Q^2) \qquad (53)$$

$$\beta_c \sim \operatorname{Normal}(0, \sigma_c^2 \mathbf{I}) \qquad (54)$$

$$\beta_d \sim \operatorname{Uniform}(-10, 10) \qquad (55)$$

$$\tilde{\beta}_0 \sim \operatorname{Normal}(0, 100) \qquad (56)$$

$$\sigma_Q \sim \operatorname{Cauchy}(0, 5) \qquad (57)$$

$$\sigma_{\beta_0} \sim \operatorname{Cauchy}(0, 5) \qquad (58)$$

$$\phi \sim \operatorname{Uniform}(0, 10) \qquad (59)$$

$$u \sim \operatorname{Uniform}(0, 1) \qquad (60)$$

Full expression of posterior and joint distributions

$$[\boldsymbol{\beta_0}, \tilde{\beta}, \boldsymbol{\beta_Q}, \boldsymbol{\beta_c}, \beta_d, \sigma_Q^2, \sigma_{\beta_0}^2, \phi, u | y_{q,t+1}^R] \propto$$
(61)

$$\prod_{t=1}^{T} \prod_{i=1}^{n} [y_{q,t+1}^{R} | \beta_{0,t}, \beta_{Q,q}, \beta_{d}, \boldsymbol{\beta_{c}}, \phi, u] \times$$
 (62)

$$[\beta_{0,t}|\tilde{\beta}, \sigma_{\beta_0}^2][\boldsymbol{\beta_c}|\sigma_{\beta_c}^2] \times \tag{63}$$

$$\prod_{q=1}^{Q_{tot}} [\beta_{Q,q} | \sigma_Q^2] [\boldsymbol{\beta_c}] [\beta_d] [\tilde{\beta_0}] [\sigma_Q] [\sigma_{\beta_0}] [\phi] [u]$$
 (64)

104 Stan code for model

```
data{
  int<lower=0> N; // observations
  int<lower=0> Yrs; // years
  int<lower=0> yid[N]; // year id
  int<lower=0> Covs; // climate covariates
  int<lower=0> G; // groups
  int<lower=0> gid[N]; // group id
  int<lower=0> Y[N]; // observation vector
  matrix[N,Covs] C; // climate matrix
  vector[N] parents1; // crowding vector
  vector[N] parents2; // crowding vector
  real<lower=0> tau; // prior variance
}
parameters{
  real a_mu;
  vector[Yrs] a;
  vector[Covs] b2;
  real dd;
  real gint[G];
  real<lower=0> sig a;
  real<lower=0> theta;
  real<lower=0> sig G;
  real<lower=0, upper=1> u;
transformed parameters{
real mu[N];
vector[N] climEff;
vector[N] trueP1;
vector[N] trueP2;
vector[N] lambda;
climEff <- C*b2;</pre>
  for(n in 1:N){
    trueP1[n] <- parents1[n]*u + parents2[n]*(1-u);
    trueP2[n] <- sqrt(trueP1[n]);</pre>
    mu[n] \leftarrow exp(a[yid[n]] + gint[gid[n]] + dd*trueP2[n] + climEff[n]);
    lambda[n] <- trueP1[n]*mu[n];</pre>
  }
}
model{
// Priors
  u \sim uniform(0,1);
  theta \sim uniform(0,10);
  a mu ~ normal(0,10);
```

```
dd ~ uniform(-10,10);
    sig_a ~ cauchy(0,5);
    sig_G ~ cauchy(0,5);
    for(g in 1:G)
        gint[g] ~ normal(0, sig_G);
    for(y in 1:Yrs){
        a[y] ~ normal(a_mu, sig_a);
    }
    for(j in 1:Covs)
        b2[j] ~ normal(0, tau);

// Likelihood
    Y ~ neg_binomial_2(lambda, theta);
}
```

Quadrat based model (QBM)

The model for quadrat cover change from time t to t+1 is

$$y_{q,t+1}^P \sim \text{LogNormal}(\mu_{q,t+1}, \sigma^2)_0^1$$
 (65)

$$\mu_{q,t+1} = \beta_{0,t} + \beta_{s,t} x_{q,t} + \beta_{Q,q} + \mathbf{z}_t' \boldsymbol{\beta}_c$$

$$\tag{66}$$

where $\mu_{q,t+1}$ is the log of proportional cover in quadrat q at time t+1, and all other parameters are as in the individual-level growth model (Eq. 4) except that x now represents log of proportional cover. The log normal likelihood includes a truncation (subscript 0, superscript 1) to ensure that predicted values do not exceed 100% cover.

Data, process, and parameter models.

$$\begin{array}{lll} \text{data} & y_{q,t+1}^{P} \sim \operatorname{LogNormal}(\mu_{q,t+1},\sigma^{2})_{0}^{1} & (67) \\ \\ \text{process} & \mu_{q,t+1} = \beta_{0,t} + \beta_{s,t} x_{q,t} + \beta_{Q,q} + \mathbf{z}_{t}' \boldsymbol{\beta}_{c} & (68) \\ \\ \text{parameters} & \beta_{0,t} \sim \operatorname{Normal}(\tilde{\beta}_{0},\sigma_{\beta_{0}}^{2}) & (69) \\ \\ & \beta_{s,t} \sim \operatorname{Normal}(\tilde{\beta}_{s},\sigma_{\beta_{s}}^{2}) & (70) \\ \\ & \beta_{Q,q} \sim \operatorname{Normal}(0,\sigma_{Q}^{2}) & (71) \\ \\ & \beta_{c} \sim \operatorname{Normal}(0,\sigma_{Q}^{2}) & (72) \\ \\ & \tilde{\beta}_{0} \sim \operatorname{Normal}(0,100) & (73) \\ \\ & \tilde{\beta}_{s} \sim \operatorname{Normal}(0,100) & (74) \\ \\ & \sigma_{Q} \sim \operatorname{Cauchy}(0,5) & (75) \\ \\ & \sigma_{\beta_{0}} \sim \operatorname{Cauchy}(0,5) & (76) \\ \\ & \sigma_{\beta_{s}} \sim \operatorname{Cauchy}(0,5) & (77) \\ \\ & \sigma_{\beta_{s}} \sim \operatorname{Cauchy}(0,5) & (77) \\ \\ & \sigma^{2} \sim \operatorname{Inverse} \operatorname{Gamma}(0.001,0.001) & (78) \\ \end{array}$$

Full expression of posterior and joint distributions

$$[\boldsymbol{\beta_0}, \tilde{\beta_0}, \boldsymbol{\beta_s}, \tilde{\beta_s}, \boldsymbol{\beta_Q}, \boldsymbol{\beta_c}, \sigma_Q^2, \sigma_{\beta_0}^2, \sigma_{\beta_s}^2, \sigma^2 | y_{q,t+1}^P] \propto$$

$$(79)$$

$$\prod_{t=1}^{T} \prod_{i=1}^{n} [y_{q,t+1} | \beta_{0,t}, \beta_{s,t}, \beta_{Q,q}, \boldsymbol{\beta_c}] \times$$
 (80)

$$[\beta_{0,t}|\tilde{\beta_0}, \sigma_{\beta_0}^2] \times \tag{81}$$

$$[\beta_{s,t}|\tilde{\beta}_s, \sigma_{\beta_s}^2][\boldsymbol{\beta_c}|\sigma_{\beta_c}^2] \times \tag{82}$$

$$\prod_{q=1}^{Q_{tot}} [\beta_{Q,q} | \sigma_Q^2] \times \tag{83}$$

$$[\tilde{\beta}_0][\tilde{\beta}_s][\sigma_Q][\sigma_{\beta_0}][\sigma_{\beta_s}][\sigma] \tag{84}$$

113 Stan code for model

```
data{
  int<lower=0> N; // observations
  int<lower=0> Yrs; // years
  int<lower=0> yid[N]; // year id
  int<lower=0> Covs; // climate covariates
  int<lower=0> G; // groups
  int<lower=0> gid[N]; // group id
  real<lower=0, upper=1> Y[N]; // observation vector
  real<lower=0> sd_clim; // prior sd on climate effects
  matrix[N,Covs] C; // climate matrix
```

```
vector[N] X; // size vector
}
parameters{
  real a mu;
  vector[Yrs] a;
  real b1 mu;
  vector[Yrs] b1;
  vector[Covs] b2;
  vector[G] gint;
  real<lower=0> sig_a;
  real<lower=0> sig_b1;
  real<lower=0> sig G;
  real<lower=0> sigmaSq;
}
transformed parameters{
  real mu[N];
  vector[N] climEff;
  real<lower=0> tau;
  tau <- sqrt(sigmaSq);</pre>
  climEff <- C*b2;</pre>
  for(n in 1:N)
    mu[n] \leftarrow a[yid[n]] + gint[gid[n]] + b1[yid[n]]*X[n] + climEff[n];
}
model{
  // Priors
  a mu ~ normal(0,10);
  b1_mu ~ normal(0,10);
  sig a \sim cauchy(0,5);
  sig b1 ~ cauchy(0,5);
  sig_G \sim cauchy(0,5);
  gint ~ normal(0, sig G);
  b2 ~ normal(0,sd clim);
  a ~ normal(a_mu, sig_a);
  b1 ~ normal(b1_mu, sig_b1);
  sigmaSq ~ inv_gamma(1, 1);
  //Likelihood
  Y ~ lognormal(mu, tau);
}
}
```

114 Supporting Figures

Figure S1: Comparison of one-step-ahead, out-of-sample forecast error (mean absolute error) between the IPM and QBM models with and without the inclusion of climate covariates.

Figure S2: Results from ridge regression: summed log pointwise predictive densities (lppd) as a function of the prior variance of climate covariates. Dashed, red vertical lines show the highest prior variance with the highest lppd indicating the value of prior variance for optimal prediction.

Figure S3: Comparison of one-step-ahead, out-of-sample forecast accuracy (mean correlation between observations and predictions) between the IPM and QBM models with and without the inclusion of climate covariates.

Supporting Tables

In all tables, "mean_value" is the mean parameter estimate, "sd_value" is the standard deviation of the estimate from the MCMC, "lo_BCI" is the lower limit of the 95% Bayesian Credible Interval, and "up_BCI" is the upper limit of the 95% Bayesian Credible Interval. See Tables S1-S4 for definitions and notations for model parameters.

Table S5: Statistical results from IPM survival model for $B.\ gracilis.$

Parameter	mean value	sd_value	lo_BCI	up_BCI
a_mu	0.64	0.29	0.06	1.21
a.1.	0.46	0.35	-0.24	1.20
a.10.	0.55	0.36	-0.15	1.25
a.11.	0.23	0.40	-0.54	1.04
a.12.	0.40	0.47	-0.53	1.35
a.13.	0.99	0.53	-0.03	2.06
a.2.	0.29	0.38	-0.46	1.02
a.3.	0.34	0.40	-0.47	1.11
a.4.	0.48	0.27	-0.05	1.00
a.5.	-0.40	0.28	-0.96	0.13
a.6.	1.62	0.25	1.16	2.14
a.7.	1.41	0.25	0.92	1.94
a.8.	1.32	0.27	0.80	1.84
a.9.	0.60	0.29	0.05	1.17
$b1$ _mu	0.73	0.17	0.39	1.07
b1.1.	0.86	0.13	0.62	1.11
b1.10.	0.52	0.09	0.35	0.70
b1.11.	0.30	0.08	0.15	0.46
b1.12.	0.08	0.08	-0.07	0.23
b1.13.	0.11	0.10	-0.08	0.30
b1.2.	0.90	0.12	0.67	1.14
b1.3.	0.96	0.12	0.74	1.20
b1.4.	1.41	0.07	1.27	1.55
b1.5. b1.6.	$0.70 \\ 1.51$	$0.07 \\ 0.15$	$0.57 \\ 1.23$	$0.83 \\ 1.80$
b1.0. b1.7.	1.04	0.13 0.11	0.83	1.80 1.27
b1.7.	0.12	0.11 0.07	-0.03	0.26
b1.9.	0.12	0.10	0.75	1.16
b2.1.	-0.04	0.10	-0.22	0.15
b2.2.	0.05	0.09	-0.12	0.22
b2.3.	0.03	0.09	-0.16	0.21
b2.4.	-0.02	0.10	-0.21	0.16
b2.5.	-0.03	0.09	-0.19	0.15
b2.6.	0.06	0.09	-0.13	0.24
b2.7.	0.03	0.09	-0.15	0.21
gint.1.	0.08	0.17	-0.28	0.43
gint.2.	0.07	0.17	-0.28	0.41
gint.3.	-0.33	0.17	-0.68	-0.01
gint.4.	0.40	0.18	0.05	0.76
gint.5.	-0.19	0.17	-0.54	0.14
gint.6.	-0.08	0.17	-0.44	0.26
sig_a	0.70	0.19	0.43	1.16
sig_b1	0.55	0.14	0.35	0.87
${ m sig}_{ m G}$	0.36	0.18	0.16	0.77
w.1.	-0.09	0.00	-0.10	-0.08
w.2.	0.02	0.00	0.02	0.03

Table S6: Statistical results from IPM survival model for \underline{H} . comata.

0 <u>: Statistica.</u> Parameter	mean_value	sd_value	lo BCI	up_BCI
a_mu	1.28	0.32	0.63	1.95
a_ma a.1.	0.41	0.50	-0.58	1.36
a.10.	2.01	0.39	1.27	2.81
a.11.	0.92	0.43	0.10	1.78
a.12.	0.87	0.60	-0.29	2.09
a.13.	1.25	0.69	-0.06	2.61
a.2.	1.42	0.57	0.28	2.50
a.3.	1.03	0.64	-0.27	2.26
a.4.	1.11	0.52	0.09	2.16
a.5.	-0.34	0.45	-1.30	0.51
a.6.	2.18	0.50	1.25	3.19
a.7.	2.32	0.41	1.59	3.16
a.8.	1.70	0.35	1.07	2.47
a.9.	1.70	0.32	1.08	2.34
b1 mu	0.79	0.12	0.58	1.04
b1.1.	0.89	0.16	0.59	1.23
b1.10.	0.86	0.17	0.55	1.22
b1.11.	0.79	0.13	0.56	1.06
b1.12.	1.05	0.16	0.77	1.38
b1.13.	0.65	0.13	0.41	0.91
b1.2.	0.64	0.15	0.35	0.95
b1.3.	0.58	0.15	0.30	0.89
b1.4.	0.51	0.09	0.33	0.70
b1.5.	0.24	0.10	0.05	0.43
b1.6.	0.86	0.29	0.34	1.50
b1.7.	0.93	0.26	0.47	1.49
b1.8.	1.31	0.23	0.93	1.82
b1.9.	0.87	0.16	0.57	1.21
b2.1.	0.01	0.21	-0.41	0.43
b2.2.	0.13	0.23	-0.34	0.59
b2.3.	0.13	0.24	-0.33	0.60
b2.4.	-0.15	0.21	-0.57	0.27
b2.5.	-0.02	0.22	-0.46	0.40
b2.6.	0.13	0.24	-0.35	0.61
b2.7.	0.15	0.24	-0.32	0.61
gint.1.	0.02	0.15	-0.28	0.33
gint.2.	0.03	0.15	-0.26	0.34
gint.3.	0.22	0.16	-0.04	0.55
gint.4.	-0.16	0.16	-0.51	0.12
gint.5.	0.01	0.14	-0.28	0.30
gint.6.	-0.13	0.16	-0.47	0.15
sig_a	0.98	0.27	0.57	1.67
sig_b1	0.35	0.11	0.19	0.64
sig_G	0.23	0.15	0.03	0.59
w.1.	-0.36	0.04	-0.44 0.09	-0.28
w.2.	0.14	0.03	0.09	0.19

Table S7: Statistical results from IPM survival model for P. smithii.

Parameter	mean_value	$\frac{111}{\text{sd}}$ value	lo BCI	up_BCI
a mu	2.95	0.26	2.44	3.46
a.1.	2.40	0.38	1.64	3.13
a.10.	3.13	0.25	2.66	3.62
a.11.	3.01	0.34	2.37	3.71
a.12.	3.05	0.46	2.22	4.01
a.13.	2.86	0.44	2.01	3.78
a.2.	2.26	0.39	1.44	2.97
a.3.	2.10	0.49	1.10	2.96
a.4.	3.30	0.49	2.40	4.32
a.5.	2.00	0.36	1.25	2.65
a.6.	3.66	0.44	2.86	4.59
a.7.	3.53	0.35	2.90	4.24
a.8.	3.64	0.33	3.03	4.33
a.9.	3.38	0.28	2.85	3.95
b1_mu	1.35	0.15	1.06	1.66
b1.1.	0.80	0.18	0.45	1.16
b1.10.	1.35	0.16	1.05	1.68
b1.11.	1.68	0.17	1.37	2.03
b1.12.	1.97	0.20	1.59	2.37
b1.13.	1.70	0.15	1.41	2.00
b1.2.	0.74	0.10	0.54	0.95
b1.3.	0.82	0.10	0.63	1.02
b1.4.	1.74	0.21	1.34	2.16
b1.5.	0.83	0.12	$0.61 \\ 0.79$	1.07
b1.6. b1.7.	1.34 1.43	$0.29 \\ 0.24$	1.00	$1.92 \\ 1.90$
b1.7.	1.45 1.55	0.24 0.23	1.10	$\frac{1.90}{2.02}$
b1.9.	1.66	0.23 0.17	1.10	$\frac{2.02}{2.02}$
b2.1.	-0.07	0.17	-0.32	0.21
b2.2.	0.10	0.14	-0.20	0.38
b2.3.	0.13	0.15	-0.16	0.42
b2.4.	-0.22	0.15	-0.49	0.09
b2.5.	0.01	0.14	-0.27	0.28
b2.6.	0.10	0.15	-0.19	0.38
b2.7.	0.14	0.15	-0.16	0.43
gint.1.	0.13	0.10	-0.05	0.36
gint.2.	-0.18	0.11	-0.40	0.02
gint.3.	-0.03	0.10	-0.22	0.18
gint.4.	-0.01	0.12	-0.24	0.23
gint.5.	-0.06	0.11	-0.27	0.17
gint.6.	0.16	0.11	-0.03	0.39
sig_a	0.76	0.27	0.36	1.43
sig_b1	0.51	0.14	0.31	0.85
sig_G	0.20	0.12	0.08	0.46
w.1.	-0.45	0.03	-0.52	-0.39
w.2.	0.14	0.03	0.09	0.19

Table S8: Statistical results from IPM survival model for P. secunda.

a_mu 1.31 0.37 0.65 2.15 a.1. 1.14 0.48 0.23 2.17 a.10. 0.53 0.37 -0.12 1.35 a.11. 0.96 0.40 0.25 1.79 a.12. 1.56 0.42 0.83 2.47 a.13. 1.45 0.45 0.62 2.42 a.2. 1.48 0.48 0.66 2.50 a.3. 1.42 0.46 0.62 2.38 a.4. 1.16 0.45 0.34 2.13 a.5. 1.35 0.41 0.62 2.16 a.6. 1.70 0.40 1.02 2.53 a.7. 1.41 0.38 0.77 2.17 a.8. 1.63 0.38 0.97 2.46 a.9. 1.29 0.37 0.65 2.05 b1_mu 0.71 0.08 0.56 0.87		results from			
a.1. 1.14 0.48 0.23 2.17 a.10. 0.53 0.37 -0.12 1.35 a.11. 0.96 0.40 0.25 1.79 a.12. 1.56 0.42 0.83 2.47 a.13. 1.45 0.45 0.62 2.42 a.2. 1.48 0.48 0.66 2.50 a.3. 1.42 0.46 0.62 2.38 a.4. 1.16 0.45 0.34 2.13 a.5. 1.35 0.41 0.62 2.16 a.6. 1.70 0.40 1.02 2.53 a.7. 1.41 0.38 0.77 2.17 a.8. 1.63 0.38 0.97 2.46 a.9. 1.29 0.37 0.65 2.05 b1_mu 0.71 0.08 0.56 0.87	Parameter	mean_value		lo_BCI	up_BCI
a.10. 0.53 0.37 -0.12 1.35 a.11. 0.96 0.40 0.25 1.79 a.12. 1.56 0.42 0.83 2.47 a.13. 1.45 0.45 0.62 2.42 a.2. 1.48 0.48 0.66 2.50 a.3. 1.42 0.46 0.62 2.38 a.4. 1.16 0.45 0.34 2.13 a.5. 1.35 0.41 0.62 2.16 a.6. 1.70 0.40 1.02 2.53 a.7. 1.41 0.38 0.77 2.17 a.8. 1.63 0.38 0.97 2.46 a.9. 1.29 0.37 0.65 2.05 b1_mu 0.71 0.08 0.56 0.87					
a.11. 0.96 0.40 0.25 1.79 a.12. 1.56 0.42 0.83 2.47 a.13. 1.45 0.45 0.62 2.42 a.2. 1.48 0.48 0.66 2.50 a.3. 1.42 0.46 0.62 2.38 a.4. 1.16 0.45 0.34 2.13 a.5. 1.35 0.41 0.62 2.16 a.6. 1.70 0.40 1.02 2.53 a.7. 1.41 0.38 0.77 2.17 a.8. 1.63 0.38 0.97 2.46 a.9. 1.29 0.37 0.65 2.05 b1_mu 0.71 0.08 0.56 0.87					
a.12. 1.56 0.42 0.83 2.47 a.13. 1.45 0.45 0.62 2.42 a.2. 1.48 0.48 0.66 2.50 a.3. 1.42 0.46 0.62 2.38 a.4. 1.16 0.45 0.34 2.13 a.5. 1.35 0.41 0.62 2.16 a.6. 1.70 0.40 1.02 2.53 a.7. 1.41 0.38 0.77 2.17 a.8. 1.63 0.38 0.97 2.46 a.9. 1.29 0.37 0.65 2.05 b1_mu 0.71 0.08 0.56 0.87					
a.13. 1.45 0.45 0.62 2.42 a.2. 1.48 0.48 0.66 2.50 a.3. 1.42 0.46 0.62 2.38 a.4. 1.16 0.45 0.34 2.13 a.5. 1.35 0.41 0.62 2.16 a.6. 1.70 0.40 1.02 2.53 a.7. 1.41 0.38 0.77 2.17 a.8. 1.63 0.38 0.97 2.46 a.9. 1.29 0.37 0.65 2.05 b1_mu 0.71 0.08 0.56 0.87					
a.2. 1.48 0.48 0.66 2.50 a.3. 1.42 0.46 0.62 2.38 a.4. 1.16 0.45 0.34 2.13 a.5. 1.35 0.41 0.62 2.16 a.6. 1.70 0.40 1.02 2.53 a.7. 1.41 0.38 0.77 2.17 a.8. 1.63 0.38 0.97 2.46 a.9. 1.29 0.37 0.65 2.05 b1_mu 0.71 0.08 0.56 0.87	a.12.	1.56			
a.3. 1.42 0.46 0.62 2.38 a.4. 1.16 0.45 0.34 2.13 a.5. 1.35 0.41 0.62 2.16 a.6. 1.70 0.40 1.02 2.53 a.7. 1.41 0.38 0.77 2.17 a.8. 1.63 0.38 0.97 2.46 a.9. 1.29 0.37 0.65 2.05 b1_mu 0.71 0.08 0.56 0.87	a.13.	1.45	0.45	0.62	2.42
a.4. 1.16 0.45 0.34 2.13 a.5. 1.35 0.41 0.62 2.16 a.6. 1.70 0.40 1.02 2.53 a.7. 1.41 0.38 0.77 2.17 a.8. 1.63 0.38 0.97 2.46 a.9. 1.29 0.37 0.65 2.05 b1_mu 0.71 0.08 0.56 0.87	a.2.	1.48	0.48	0.66	
a.5. 1.35 0.41 0.62 2.16 a.6. 1.70 0.40 1.02 2.53 a.7. 1.41 0.38 0.77 2.17 a.8. 1.63 0.38 0.97 2.46 a.9. 1.29 0.37 0.65 2.05 b1_mu 0.71 0.08 0.56 0.87	a.3.	1.42	0.46	0.62	2.38
a.6. 1.70 0.40 1.02 2.53 a.7. 1.41 0.38 0.77 2.17 a.8. 1.63 0.38 0.97 2.46 a.9. 1.29 0.37 0.65 2.05 b1_mu 0.71 0.08 0.56 0.87	a.4.	1.16	0.45	0.34	2.13
a.6. 1.70 0.40 1.02 2.53 a.7. 1.41 0.38 0.77 2.17 a.8. 1.63 0.38 0.97 2.46 a.9. 1.29 0.37 0.65 2.05 b1_mu 0.71 0.08 0.56 0.87	a.5.	1.35	0.41	0.62	2.16
a.7. 1.41 0.38 0.77 2.17 a.8. 1.63 0.38 0.97 2.46 a.9. 1.29 0.37 0.65 2.05 b1_mu 0.71 0.08 0.56 0.87	a.6.	1.70	0.40	1.02	
a.8. 1.63 0.38 0.97 2.46 a.9. 1.29 0.37 0.65 2.05 b1_mu 0.71 0.08 0.56 0.87					
a.9. 1.29 0.37 0.65 2.05 b1_mu 0.71 0.08 0.56 0.87					
b1_mu 0.71 0.08 0.56 0.87					
	b1.1.	0.75	0.19	0.38	1.13
b1.10. 0.47 0.07 0.33 0.61					
b1.11. 0.52 0.09 0.34 0.70					
b1.12. 0.73 0.13 0.49 0.98					
b1.13. 0.85 0.12 0.62 1.09					
b1.2. 0.70 0.16 0.39 1.03					
b1.3. 0.60 0.16 0.28 0.90					
b1.4. 1.00 0.12 0.78 1.24					
b1.5. 0.74 0.11 0.53 0.97					
b1.6. 0.90 0.12 0.68 1.13					
b1.7. 0.63 0.09 0.46 0.81	b1.7.	0.63	0.09		0.81
b1.8. 0.56 0.10 0.36 0.75	b1.8.	0.56	0.10	0.36	0.75
b1.9. 0.86 0.09 0.70 1.03	b1.9.	0.86	0.09	0.70	1.03
b2.10.05 0.09 -0.21 0.12	b2.1.	-0.05	0.09	-0.21	0.12
b2.20.02 0.09 -0.19 0.15	b2.2.	-0.02	0.09	-0.19	0.15
b2.30.01 0.09 -0.19 0.16	b2.3.	-0.01	0.09	-0.19	0.16
b2.4. 0.03 0.08 -0.12 0.19	b2.4.	0.03	0.08	-0.12	0.19
b2.5. 0.02 0.08 -0.14 0.18	b2.5.	0.02	0.08	-0.14	0.18
b2.60.02 0.08 -0.18 0.15					
b2.70.00 0.09 -0.17 0.16					
gint.10.14 0.35 -0.92 0.48					
gint.20.61 0.37 -1.46 0.01	-				
gint.3. 0.16 0.35 -0.60 0.79					
gint.40.15 0.37 -1.02 0.48	-				
gint.5. 0.55 0.36 -0.21 1.22	-				
	0				
sig_a 0.44 0.13 0.25 0.76	~				
sig_b1 0.22 0.07 0.12 0.38	U—				
sig_G 0.58 0.39 0.24 1.58	<u> </u>				
w.10.98 0.07 -1.13 -0.84					
w.2. 0.21 0.05 0.11 0.31	w.2.	0.21	0.05	0.11	0.31

Table S9: Statistical results from IPM growth model for $B.\ gracilis.$

	magan ***1***			
Parameter	mean_value	sd_value	lo_BCI	
a_mu	0.74	0.22	0.33	1.20
a.1.	0.94	0.30	0.37	1.54
a.10.	1.24	0.26	0.72	1.74
a.11.	0.31	0.34	-0.34	1.01
a.12.	0.76	0.45	-0.11	1.67
a.13.	0.50	0.49	-0.43	1.48
a.2.	1.08	0.33	0.42	1.73
a.3.	0.55	0.38	-0.21	1.26
a.4.	0.68	0.30	0.11	1.28
a.5.	-0.56	0.26	-1.10	-0.07
a.6.	0.64	0.20	0.24	1.04
a.7.	1.26	0.16	0.96	1.57
a.8.	1.44	0.17	1.13	1.78
a.9.	0.78	0.20	0.41	1.18
b1_mu	0.77	0.03	0.70	0.84
b1.1.	0.88	0.05	0.79	0.98
b1.10.	0.76	0.03	0.70	0.83
b1.11.	0.88	0.04	0.80	0.95
b1.12.	0.70	0.04	0.61	0.79
b1.13.	0.78	0.04	0.70	0.86
b1.2.	0.78	0.04	0.71	0.85
b1.3.	0.74	0.04	0.67	0.81
b1.4.	0.88	0.03	0.83	0.93
b1.5.	0.57	0.05	0.47	0.66
b1.6.	0.87	0.04	0.79	0.95
b1.7.	0.67	0.03	0.61	0.73
b1.8.	0.71	0.03	0.65	0.77
b1.9.	0.79	0.03	0.73	0.86
b2.1.	-0.02	0.13	-0.27	0.23
b2.2.	0.09	0.14	-0.18	0.36
b2.3.	0.05	0.14	-0.10	0.31
b2.4.	-0.05	0.14	-0.22	0.22
b2.4.	0.06	0.14	-0.19	0.22 0.31
b2.6.	0.11	0.13	-0.16	0.31 0.38
b2.0.	0.06	0.14	-0.10	0.38 0.32
	-0.07	0.13	-0.21	0.32 0.07
gint.1.			-0.22 -0.11	
gint.2.	0.04	0.07		0.18
gint.3.	0.09	0.07	-0.06	0.23
gint.4.	0.02	0.07	-0.12	0.17
gint.5.	0.07	0.07	-0.07	0.21
$_{\cdot}^{\text{gint.6.}}$	-0.17	0.07	-0.32	-0.04
sig_a	0.66	0.18	0.40	1.09
sig_b1	0.11	0.03	0.07	0.19
sig_G	0.14	0.08	0.06	0.35
tau	1.50	0.06	1.39	1.61
tauSize	-0.22	0.01	-0.24	-0.19
w.1.	-0.03	0.00	-0.04	-0.03
w.2.	0.01	0.00	0.00	0.01

Table S10: Statistical results from IPM growth model for H. comata.

	maan ralus			
Parameter	mean_value	sd_value	lo_BCI	
a_mu	0.65	0.22	0.23	1.08
a.1.	0.98	0.28	0.43	1.52
a.10.	1.08	0.15	0.79	1.39
a.11.	0.22	0.19	-0.16	0.59
a.12.	0.48	0.27	-0.03	1.01
a.13.	0.68	0.30	0.06	1.27
a.2.	0.58	0.33	-0.07	1.20
a.3.	0.01	0.37	-0.72	0.73
a.4.	0.43	0.30	-0.17	1.01
a.5.	-0.54	0.29	-1.10	0.03
a.6.	1.18	0.24	0.70	1.65
a.7.	1.88	0.12	1.65	2.11
a.8.	0.63	0.12	0.38	0.87
a.9.	0.79	0.14	0.52	1.05
b1_mu	0.62	0.06	0.49	0.74
b1.1.	0.57	0.09	0.38	0.76
b1.10.	0.72	0.03	0.66	0.79
b1.11.	0.71	0.04	0.63	0.78
b1.12.	0.77	0.04	0.70	0.84
b1.13.	0.63	0.03	0.56	0.69
b1.2.	0.73	0.09	0.55	0.92
b1.3.	0.37	0.10	0.17	0.56
b1.4.	0.60	0.05	0.50	0.70
b1.5.	0.31	0.10	0.12	0.50
b1.6.	0.65	0.12	0.41	0.89
b1.7.	0.41	0.05	0.31	0.52
b1.8.	0.87	0.04	0.79	0.96
b1.9.	0.74	0.04	0.66	0.82
b2.1.	-0.03	0.09	-0.21	0.15
b2.2.	0.04	0.09	-0.12	0.22
b2.3.	0.03	0.09	-0.16	0.21
b2.4.	-0.03	0.09	-0.21	0.15
b2.5.	0.01	0.09	-0.17	0.19
b2.6.	0.05	0.10	-0.13	0.24
b2.7.	0.03	0.10	-0.16	0.22
gint.1.	0.01	0.06	-0.10	0.12
gint.2.	0.03	0.06	-0.07	0.15
gint.3.	-0.08	0.06	-0.21	0.01
gint.4.	-0.02	0.06	-0.14	0.09
gint.5.	0.05	0.06	-0.05	0.17
gint.6.	0.02	0.06	-0.09	0.14
sig_a	0.72	0.19	0.45	1.18
sig_b1	0.20	0.06	0.12	0.34
sig_G	0.08	0.05	0.01	0.21
tau	1.31	0.06	1.19	1.43
tauSize	-0.26	0.03	-0.31	-0.21
w.1.	-0.14	0.04	-0.21	-0.07
w.2.	0.03	0.01	-0.00	0.05
		0.02	0.00	

Table S11: Statistical results from IPM growth model for $P.\ smithii.$

	moon reluc		lo_BCI	
Parameter	mean_value			
a_mu	-0.06	0.07	-0.18	0.07
a.1.	0.01	0.12	-0.22	0.26
a.10.	0.03	0.06	-0.10	0.16
a.11.	-0.05	0.09	-0.23	0.12
a.12.	-0.14	0.11	-0.37	0.08
a.13.	-0.10	0.14	-0.38	0.17
a.2.	0.01	0.14	-0.28	0.28
a.3.	-0.09	0.14	-0.38	0.17
a.4.	-0.15	0.15	-0.45	0.14
a.5.	-0.30	0.10	-0.51	-0.10
a.6.	0.15	0.10	-0.03	0.36
a.7.	-0.12	0.06	-0.23	-0.00
a.8.	0.02	0.06	-0.08	0.13
a.9.	-0.04	0.06	-0.16	0.09
b1_mu	0.59	0.04	0.52	0.66
b1.1.	0.59	0.04	0.52	0.67
b1.10.	0.66	0.03	0.60	0.71
b1.11.	0.62	0.03	0.57	0.67
b1.12.	0.65	0.02	0.60	0.69
b1.13.	0.68	0.02	0.63	0.73
b1.2.	0.49	0.03	0.43	0.54
b1.3.	0.35	0.03	0.30	0.41
b1.4.	0.52	0.03	0.46	0.58
b1.5.	0.46	0.04	0.39	0.53
b1.6.	0.66	0.05	0.57	0.75
b1.7.	0.65	0.03	0.58	0.72
b1.8.	0.64	0.03	0.58	0.70
b1.9.	0.69	0.03	0.64	0.74
b2.1.	-0.07	0.05	-0.16	0.03
b2.2.	0.05	0.08	-0.11	0.21
b2.3.	0.02	0.08	-0.13	0.18
b2.4.	0.02	0.05	-0.08	0.11
b2.5.	0.04	0.06	-0.07	0.14
b2.6.	0.07	0.08	-0.07	0.22
b2.7.	0.03	0.07	-0.11	0.17
gint.1.	0.03	0.04	-0.05	0.11
gint.2.	-0.06	0.04	-0.15	0.02
gint.3.	-0.09	0.04	-0.18	-0.01
gint.4.	-0.00	0.05	-0.10	0.09
gint.5.	0.07	0.04	-0.02	0.15
gint.6.	0.06	0.04	-0.03	0.14
sig_a	0.17	0.04	0.09	0.14
sig_b1	0.12	0.03	0.08	0.19
sig_G	0.09	0.03	0.03	0.13
tau	0.09 0.44	0.04	0.04 0.43	0.21 0.46
tauSize	0.44 0.28	0.01	0.43 0.21	0.40 0.34
w.1.	-0.06	0.03	-0.08	-0.04
w.1. w.2.	-0.00	0.01	-0.03	0.04
W.Z.	-0.01	0.01	-0.03	0.01

Table S12: Statistical results from IPM growth model for $P.\ secunda.$

Parameter	mean_value	sd_value	lo_BCI	
	mean_value 0.51			
a_mu		0.19	0.15	0.89
a.1.	0.77	0.30	0.22	1.36
a.10.	-0.01	0.15	-0.30	0.30
a.11.	0.06	0.23	-0.42	0.49
a.12.	0.32	0.29	-0.29	0.88
a.13.	0.65	0.34	-0.05	1.31
a.2.	0.76	0.31	0.15	1.36
a.3.	1.08	0.35	0.45	1.79
a.4.	0.03	0.30	-0.56	0.64
a.5.	0.48	0.24	0.04	0.99
a.6.	1.53	0.19	1.18	1.92
a.7.	0.22	0.15	-0.06	0.53
a.8.	0.27	0.12	0.05	0.50
a.9.	0.50	0.11	0.28	0.73
b1_mu	0.54	0.05	0.44	0.63
b1.1.	0.45	0.12	0.21	0.68
b1.10.	0.32	0.04	0.24	0.40
b1.11.	0.50	0.05	0.40	0.59
b1.12.	0.44	0.06	0.33	0.55
b1.13.	0.57	0.05	0.46	0.67
b1.2.	0.43	0.09	0.25	0.61
b1.3.	0.51	0.08	0.35	0.66
b1.4.	0.82	0.06	0.71	0.93
b1.5.	0.55	0.05	0.47	0.64
b1.6.	0.64	0.04	0.57	0.72
b1.7.	0.56	0.04	0.48	0.64
b1.8.	0.60	0.04	0.53	0.67
b1.9.	0.60	0.03	0.54	0.66
b2.1.	-0.07	0.09	-0.23	0.10
b2.2.	-0.05	0.09	-0.23	0.13
b2.3.	-0.05	0.09	-0.21	0.13
b2.4.	0.11	0.09	-0.08	0.28
b2.5.	-0.03	0.09	-0.20	0.16
b2.6.	-0.04	0.09	-0.22	0.14
b2.7.	-0.05	0.09	-0.22	0.12
gint.1.	-0.03	0.09	-0.21	0.15
gint.2.	-0.13	0.11	-0.35	0.06
gint.3.	-0.01	0.08	-0.19	0.16
gint.4.	-0.01	0.10	-0.22	0.19
gint.5.	0.23	0.09	0.05	0.42
gint.6.	-0.05	0.09	-0.23	0.12
sig_a	0.56	0.03	0.32	$0.12 \\ 0.98$
sig_a sig_b1	0.15	0.17	0.09	0.36
sig_G	0.18	0.04	0.03 0.07	0.20 0.41
tau	1.05	0.09	0.07	1.13
tau tauSize	-0.08	0.04	-0.13	-0.03
	-0.08			-0.03 -0.14
w.1.		0.06	-0.37	
w.2.	0.07	0.03	0.01	0.12

Table S13: Statistical results from IPM recruitment model for $B.\ gracilis.$

Parameter	mean_value	sd_value	lo_BCI	up_BCI
a_mu	1.67	0.57	0.50	2.74
a.1.	1.54	0.81	-0.28	2.92
a.10.	1.61	0.61	0.35	2.75
a.11.	1.53	0.72	0.01	2.78
a.12.	1.69	0.74	0.10	3.02
a.13.	1.78	0.69	0.33	3.06
a.2.	1.87	0.68	0.46	3.21
a.3.	1.62	0.76	-0.16	2.91
a.4.	1.57	0.78	-0.18	2.94
a.5.	1.56	0.63	0.23	2.67
a.6.	2.05	0.57	0.92	3.19
a.7.	1.71	0.55	0.59	2.76
a.8.	1.74	0.55	0.60	2.75
a.9.	1.49	0.68	0.05	2.68
b2.1.	-0.12	0.27	-0.69	0.38
b2.2.	0.20	1.12	-2.07	2.32
b2.3.	0.15	1.11	-2.14	2.25
b2.4.	0.50	0.32	-0.13	1.11
b2.5.	0.12	0.33	-0.49	0.75
b2.6.	0.43	1.03	-1.60	2.44
b2.7.	-0.51	1.03	-2.47	1.62
$\mathrm{d}\mathrm{d}$	-1.30	0.20	-1.68	-0.89
gint.1.	-0.39	0.34	-1.12	0.19
gint.2.	0.01	0.30	-0.60	0.62
gint.3.	-0.02	0.27	-0.58	0.55
gint.4.	0.02	0.32	-0.59	0.70
gint.5.	-0.05	0.31	-0.82	0.57
gint.6.	0.44	0.32	-0.07	1.13
sig_a	0.42	0.30	0.06	1.19
sig_G	0.47	0.32	0.06	1.22
theta	0.35	0.06	0.25	0.47
u	0.21	0.25	0.01	0.99

Table S14: Statistical results from IPM recruitment model for H. comata.

	resurts from		пошено п	
Parameter	mean_value	sd_value	lo_BCI	up_BCI
a_mu	3.31	0.30	2.73	3.89
a.1.	3.07	0.72	1.52	4.44
a.10.	3.23	0.42	2.40	4.04
a.11.	3.50	0.57	2.40	4.62
a.12.	2.80	0.65	1.35	3.99
a.13.	3.23	0.76	1.78	4.82
a.2.	3.07	0.76	1.55	4.64
a.3.	3.38	0.71	1.94	4.81
a.4.	3.21	0.79	1.62	4.80
a.5.	3.20	0.48	2.26	4.14
a.6.	3.22	0.53	2.12	4.27
a.7.	4.67	0.34	4.03	5.35
a.8.	3.22	0.36	2.53	3.90
a.9.	3.33	0.42	2.47	4.14
b2.1.	-0.24	0.30	-0.82	0.33
b2.2.	-0.38	1.13	-2.68	1.85
b2.3.	-0.28	1.08	-2.43	1.84
b2.4.	-0.23	0.36	-0.94	0.51
b2.5.	-0.86	0.37	-1.55	-0.10
b2.6.	-0.40	1.03	-2.36	1.65
b2.7.	0.32	1.00	-1.63	2.33
$\mathrm{d}\mathrm{d}$	-1.32	0.16	-1.63	-0.99
gint.1.	-0.07	0.14	-0.42	0.16
gint.2.	-0.04	0.15	-0.40	0.23
gint.3.	0.08	0.14	-0.15	0.42
gint.4.	0.01	0.14	-0.29	0.31
gint.5.	0.03	0.14	-0.24	0.34
gint.6.	-0.02	0.14	-0.33	0.25
sig_a	0.78	0.31	0.38	1.55
${ m sig}_{ m G}$	0.16	0.14	0.01	0.53
theta	1.31	0.20	0.97	1.75
u	1.00	0.00	1.00	1.00

Table S15: Statistical results from IPM recruitment model for P. smithii.

Parameter	mean_value	sd_value	lo_BCI	up_BCI
a_mu	6.08	0.31	5.47	6.72
a.1.	7.37	0.51	6.42	8.41
a.10.	6.29	0.28	5.75	6.86
a.11.	6.64	0.33	5.99	7.27
a.12.	5.83	0.40	5.06	6.61
a.13.	5.80	0.43	5.00	6.73
a.2.	6.19	0.42	5.40	7.05
a.3.	5.06	0.45	4.14	5.91
a.4.	5.96	0.40	5.18	6.71
a.5.	4.75	0.39	3.99	5.48
a.6.	6.49	0.30	5.89	7.07
a.7.	6.25	0.28	5.72	6.82
a.8.	6.76	0.26	6.25	7.26
a.9.	5.89	0.31	5.28	6.51
b2.1.	-0.02	0.09	-0.20	0.16
b2.2.	0.05	0.10	-0.14	0.26
b2.3.	0.02	0.10	-0.16	0.20
b2.4.	-0.04	0.09	-0.21	0.15
b2.5.	0.03	0.09	-0.16	0.21
b2.6.	0.06	0.09	-0.13	0.23
b2.7.	0.03	0.09	-0.16	0.20
$\mathrm{d}\mathrm{d}$	-4.26	0.27	-4.84	-3.77
gint.1.	0.06	0.18	-0.23	0.50
gint.2.	0.01	0.18	-0.33	0.43
gint.3.	0.06	0.17	-0.23	0.48
gint.4.	-0.24	0.22	-0.73	0.06
gint.5.	0.06	0.18	-0.23	0.51
gint.6.	0.16	0.20	-0.12	0.64
sig_a	0.82	0.23	0.47	1.35
sig_G	0.25	0.22	0.02	0.73
theta	1.56	0.21	1.21	1.98
u	1.00	0.00	1.00	1.00

Table S16: Statistical results from IPM recruitment model for P. secunda.

		1 <u>11</u>	1- DOI	
Parameter	mean_value	sd_value	lo_BCI	up_BCI
a_mu	3.84	0.28	3.24	4.39
a.1.	3.51	0.61	2.24	4.71
a.10.	3.59	0.39	2.82	4.33
a.11.	3.54	0.50	2.52	4.50
a.12.	3.91	0.52	2.85	4.92
a.13.	3.85	0.64	2.61	5.20
a.2.	4.03	0.62	2.81	5.31
a.3.	4.15	0.58	3.02	5.35
a.4.	3.81	0.67	2.47	5.15
a.5.	3.35	0.45	2.44	4.18
a.6.	3.91	0.43	3.04	4.75
a.7.	3.40	0.42	2.56	4.21
a.8.	4.59	0.35	3.94	5.30
a.9.	4.22	0.37	3.51	4.98
b2.1.	0.02	0.25	-0.47	0.55
b2.2.	0.09	1.10	-2.13	2.24
b2.3.	0.01	1.02	-1.98	1.91
b2.4.	0.34	0.33	-0.33	0.96
b2.5.	-0.15	0.32	-0.81	0.48
b2.6.	0.14	0.98	-1.74	2.10
b2.7.	0.17	0.96	-1.63	2.09
$\mathrm{d}\mathrm{d}$	-1.68	0.16	-1.98	-1.37
gint.1.	-0.05	0.19	-0.44	0.34
gint.2.	-0.04	0.22	-0.50	0.41
gint.3.	0.35	0.22	-0.02	0.83
gint.4.	-0.25	0.24	-0.83	0.14
gint.5.	0.01	0.21	-0.41	0.45
gint.6.	0.04	0.20	-0.35	0.46
sig a	0.65	0.26	0.29	1.28
sig_G	0.34	0.20	0.07	0.91
theta	1.16	0.16	0.89	1.51
u	1.00	0.00	1.00	1.00
	2,00	0.00	2.00	

Table S17: Statistical results from QBM population model for $B.\ gracilis.$

Parameter	mean_value	sd_value	lo_BCI	up_BCI
a mu	-0.38	0.36	-1.07	0.29
a.1.	-0.10	0.40	-0.85	0.69
a.10.	-0.09	0.31	-0.70	0.52
a.11.	-0.20	0.33	-0.83	0.46
a.12.	-0.32	0.42	-1.15	0.54
a.13.	-0.46	0.46	-1.37	0.48
a.2.	-0.22	0.37	-0.94	0.51
a.3.	-0.94	0.38	-1.71	-0.23
a.4.	-0.18	0.41	-1.01	0.61
a.5.	-3.02	0.39	-3.82	-2.27
a.6.	0.70	0.52	-0.25	1.76
a.7.	-0.25	0.37	-0.97	0.48
a.8.	0.27	0.33	-0.38	0.91
a.9.	-0.04	0.30	-0.58	0.57
b1_mu	0.89	0.04	0.81	0.99
b1.1.	0.99	0.10	0.82	1.20
b1.10.	0.76	0.07	0.62	0.90
b1.11.	0.98	0.07	0.84	1.13
b1.12.	0.88	0.08	0.71	1.03
b1.13.	0.90	0.09	0.73	1.07
b1.2.	0.90	0.07	0.76	1.04
b1.3.	0.91	0.07	0.78	1.05
b1.4.	0.87	0.07	0.74	1.01
b1.5.	0.81	0.09	0.62	0.97
b1.6.	1.02	0.09	0.86	1.20
b1.7.	0.78	0.07	0.64	0.91
b1.8.	0.87	0.07	0.73	1.01
b1.9.	0.94	0.08	0.80	1.10
b2.1.	-0.01	0.09	-0.18	0.17
b2.2.	0.04	0.09	-0.14	0.22
b2.3.	0.03	0.10	-0.16	0.22
b2.4.	-0.04	0.10	-0.23	0.15
b2.5.	0.01	0.09	-0.18	0.19
b2.6.	0.04	0.10	-0.14	0.23
b2.7.	0.02	0.10	-0.17	0.21
gint.1.	-0.04	0.07	-0.21	0.07
gint.2.	0.02	0.07	-0.11	0.18
gint.3.	0.02	0.07	-0.11	0.17
gint.4.	0.02	0.07	-0.11	0.18
gint.5.	-0.01	0.07	-0.16	0.12
gint.6.	-0.02	0.07	-0.18	0.09
sig_a	1.07	0.32	0.62	1.81
sig_b1	0.12	0.05	0.03	0.22
sig_G	0.07	0.07	0.01	0.26
tau	0.69	0.03	0.63	0.76

Table S18: Statistical results from QBM population model for *H. comata*.

Danamatan		• 1 1		
Parameter	mean_value	sd_value	lo_BCI	up_BCI
a_mu	-0.68	0.37	-1.43	0.06
a.1.	-0.80	0.56	-1.86	0.32
a.10.	-0.20	0.41	-1.00	0.60
a.11.	-1.00	0.47	-1.91	-0.08
a.12.	-0.91	0.60	-2.06	0.30
a.13.	-0.82	0.67	-2.11	0.47
a.2.	-0.71	0.56	-1.81	0.36
a.3.	-0.87	0.59	-2.03	0.23
a.4.	-0.60	0.64	-1.77	0.68
a.5.	-2.55	0.55	-3.70	-1.46
a.6.	0.60	0.61	-0.61	1.79
a.7.	-0.14	0.48	-1.14	0.73
a.8.	-0.35	0.38	-1.08	0.40
a.9.	-0.52	0.39	-1.28	0.25
b1_mu	0.88	0.05	0.78	0.97
b1.1.	0.88	0.07	0.75	1.04
b1.10.	0.87	0.07	0.74	1.01
b1.11.	0.88	0.06	0.76	1.01
b1.12.	0.88	0.07	0.75	1.03
b1.13.	0.90	0.07	0.77	1.05
b1.2.	0.87	0.07	0.73	1.00
b1.3.	0.88	0.07	0.75	1.03
b1.4.	0.87	0.07	0.74	1.00
b1.5.	0.88	0.07	0.75	1.03
b1.6.	0.87	0.06	0.74	0.99
b1.7.	0.83	0.07	0.69	0.95
b1.8.	0.87	0.06	0.75	0.99
b1.9.	0.88	0.06	0.75	1.00
b2.1.	-0.12	0.18	-0.48	0.25
b2.2.	0.08	0.20	-0.28	0.46
b2.3.	0.08	0.19	-0.29	0.45
b2.4.	-0.13	0.18	-0.48	0.23
b2.5.	0.01	0.18	-0.34	0.37
b2.6.	0.09	0.19	-0.29	0.48
b2.7.	0.09	0.19	-0.29	0.48
gint.1.	0.01	0.07	-0.11	0.16
gint.2.	0.01	0.08	-0.13	0.18
gint.3.	0.00	0.07	-0.13	0.15
gint.4.	0.00	0.07	-0.13	0.16
gint.5.	-0.00	0.07	-0.14	0.15
gint.6.	-0.00	0.07	-0.16	0.14
sig a	0.95	0.29	0.52	1.67
sig b1	0.05	0.04	0.01	0.14
sig_G	0.06	0.07	0.00	0.25
tau	0.74	0.04	0.66	0.83

Table S19: Statistical results from QBM population model for P. smithii.

Parameter mean value of value to RCL up RCL.

Danamatan		• 1 1	la DCI	
Parameter	mean_value	sd_value	lo_BCI	up_BCI
a_mu	-0.83	0.23	-1.32	-0.39
a.1.	-0.87	0.33	-1.54	-0.23
a.10.	-0.70	0.30	-1.29	-0.09
a.11.	-0.78	0.30	-1.37	-0.18
a.12.	-0.97	0.31	-1.64	-0.41
a.13.	-0.87	0.36	-1.58	-0.13
a.2.	-0.79	0.36	-1.46	-0.06
a.3.	-0.86	0.33	-1.52	-0.22
a.4.	-0.89	0.34	-1.57	-0.24
a.5.	-0.99	0.31	-1.62	-0.42
a.6.	-0.64	0.33	-1.29	0.04
a.7.	-0.83	0.28	-1.39	-0.29
a.8.	-0.75	0.29	-1.31	-0.19
a.9.	-0.87	0.28	-1.43	-0.32
b1_mu	0.87	0.03	0.80	0.94
b1.1.	0.88	0.05	0.78	0.98
b1.10.	0.86	0.04	0.78	0.93
b1.11.	0.86	0.04	0.77	0.94
b1.12.	0.88	0.05	0.79	0.98
b1.13.	0.89	0.05	0.80	1.00
b1.2.	0.86	0.05	0.76	0.95
b1.3.	0.88	0.05	0.79	0.98
b1.4.	0.86	0.05	0.77	0.95
b1.5.	0.88	0.04	0.80	0.97
b1.6.	0.86	0.04	0.77	0.93
b1.7.	0.87	0.04	0.79	0.94
b1.8.	0.87	0.04	0.79	0.95
b1.9.	0.89	0.04	0.81	0.97
b2.1.	-0.16	0.13	-0.43	0.09
b2.2.	-0.38	0.97	-2.22	1.53
b2.3.	-0.04	0.85	-1.71	1.67
b2.4.	-0.15	0.20	-0.54	0.27
b2.5.	0.10	0.21	-0.31	0.51
b2.6.	0.68	0.87	-1.09	2.28
b2.7.	0.19	0.80	-1.41	1.74
gint.1.	0.06	0.09	-0.09	0.29
gint.2.	-0.05	0.10	-0.28	0.12
gint.3.	0.01	0.09	-0.15	0.20
gint.4.	-0.10	0.11	-0.37	0.06
gint.5.	0.03	0.10	-0.14	0.25
gint.6.	0.04	0.10	-0.13	0.27
sig a	0.25	0.16	0.02	0.63
sig b1	0.03	0.02	0.00	0.08
sig_G	0.12	0.11	0.01	0.40
tau	0.65	0.03	0.59	0.40 0.72
	0.00	0.00	0.00	0.12

Table S20: Statistical results from QBM population model for $P.\ secunda.$

	results from			
Parameter	mean_value	sd_value	lo_BCI	up_BCI
a_mu	-1.25	0.35	-1.96	-0.54
a.1.	-1.27	0.56	-2.43	-0.19
a.10.	-1.95	0.56	-3.27	-1.00
a.11.	-1.61	0.51	-2.68	-0.61
a.12.	-1.33	0.51	-2.32	-0.34
a.13.	-1.07	0.51	-2.01	0.02
a.2.	-1.24	0.53	-2.28	-0.24
a.3.	-0.70	0.55	-1.76	0.42
a.4.	-1.25	0.48	-2.10	-0.25
a.5.	-1.26	0.50	-2.15	-0.18
a.6.	-0.43	0.51	-1.50	0.54
a.7.	-1.63	0.36	-2.35	-0.94
a.8.	-1.36	0.39	-2.17	-0.57
a.9.	-1.13	0.41	-1.91	-0.32
b1_mu	0.77	0.06	0.64	0.89
b1.1.	0.77	0.08	0.60	0.93
b1.10.	0.69	0.11	0.45	0.87
b1.11.	0.79	0.09	0.63	0.98
b1.12.	0.77	0.08	0.62	0.93
b1.13.	0.76	0.08	0.61	0.91
b1.2.	0.76	0.08	0.61	0.92
b1.3.	0.74	0.08	0.57	0.90
b1.4.	0.83	0.09	0.68	1.04
b1.5.	0.83	0.09	0.67	1.03
b1.6.	0.68	0.10	0.47	0.86
b1.7.	0.78	0.09	0.60	0.98
b1.8.	0.78	0.08	0.62	0.94
b1.9.	0.77	0.08	0.63	0.93
b2.1.	-0.07	0.09	-0.27	0.11
b2.2.	-0.04	0.09	-0.22	0.13
b2.3.	-0.04	0.09	-0.22	0.14
b2.4.	0.04	0.09	-0.13	0.22
b2.5.	-0.02	0.09	-0.19	0.16
b2.6.	-0.05	0.09	-0.23	0.14
b2.7.	-0.04	0.09	-0.22	0.14
gint.1.	0.02	0.10	-0.17	0.25
gint.2.	-0.08	0.12	-0.39	0.10
gint.3.	0.04	0.10	-0.15	0.27
gint.4.	-0.08	0.12	-0.38	0.10
gint.5.	0.07	0.12	-0.12	0.37
gint.6.	0.03	0.10	-0.17	0.25
sig_a	0.59	0.26	0.14	1.18
sig_b1	0.08	0.05	0.01	0.19
sig_G	0.14	0.12	0.01	0.44
tau	0.70	0.04	0.63	0.77

Table S21: Statistical tests to assess whether models without climate covariates have higher accuracy and lower error than models with climate covariates. t-tests are one-sided.

comparison	performance_measure	test_type	test_statistic	df	p_value	species
simple IPM vs. climate IPM	rho	t	-1.196	279.000	0.884	BOGR
simple IPM vs. climate IPM	MAE	t	-2.333	280.000	0.990	BOGR
simple QBM vs. climate QBM	rho	t	-1.798	279.000	0.963	BOGR
simple QBM vs. climate QBM	MAE	t	-3.340	280.000	1.000	BOGR
simple IPM vs. climate IPM	rho	t	-0.037	169.000	0.515	HECO
simple IPM vs. climate IPM	MAE	t	-2.130	170.000	0.983	HECO
simple QBM vs. climate QBM	rho	t	0.747	169.000	0.228	HECO
simple QBM vs. climate QBM	MAE	t	1.145	170.000	0.127	HECO
simple IPM vs. climate IPM	rho	t	0.097	215.000	0.462	PASM
simple IPM vs. climate IPM	MAE	t	-0.556	216.000	0.711	PASM
simple QBM vs. climate QBM	rho	t	0.631	215.000	0.264	PASM
simple QBM vs. climate QBM	MAE	t	4.276	216.000	0.000	PASM
simple IPM vs. climate IPM	rho	t	-1.479	195.000	0.930	POSE
simple IPM vs. climate IPM	MAE	t	-2.185	196.000	0.985	POSE
simple QBM vs. climate QBM	rho	t	-1.564	195.000	0.940	POSE
simple QBM vs. climate QBM	MAE	t	-2.468	196.000	0.993	POSE

Table S22: Statistical tests of model comparisons. Table shows results from one-sided t-tests for the particular comparison.

comparison performance_measure test_type test_statistic df p	_value	
		species
limate IPM vs. simple IPM rho t 1.196 279.000	0.116	BOGR
climate IPM vs. simple IPM MAE t -2.333 280.000	0.010	BOGR
climate QBM vs. simple QBM rho t 1.798 279.000	0.037	BOGR
climate QBM vs. simple QBM MAE t -3.340 280.000	0.000	BOGR
simple IPM vs. simple QBM rho t -1.757 279.000	0.960	BOGR
simple IPM vs. simple QBM MAE t 2.338 280.000	0.990	BOGR
climate IPM vs. climate QBM rho t -1.083 279.000	0.860	BOGR
climate IPM vs. climate QBM MAE t 1.151 280.000	0.875	BOGR
climate IPM vs. simple IPM rho t 0.037 169.000	0.485	HECO
climate IPM vs. simple IPM MAE t -2.130 170.000	0.017	HECO
climate QBM vs. simple QBM rho t -0.747 169.000	0.772	HECO
climate QBM vs. simple QBM MAE t 1.145 170.000	0.873	HECO
simple IPM vs. simple QBM rho t -1.638 169.000	0.948	HECO
simple IPM vs. simple QBM MAE t 4.011 170.000	1.000	HECO
climate IPM vs. climate QBM rho t -0.704 169.000	0.759	HECO
climate IPM vs. climate QBM MAE t 0.329 170.000	0.629	HECO
climate IPM vs. simple IPM rho t -0.097 215.000	0.538	PASM
climate IPM vs. simple IPM MAE t -0.556 216.000	0.289	PASM
climate QBM vs. simple QBM rho t -0.631 215.000	0.736	PASM
climate QBM vs. simple QBM MAE t 4.276 216.000	1.000	PASM
simple IPM vs. simple QBM rho t 0.552 215.000	0.291	PASM
simple IPM vs. simple QBM MAE t -1.033 216.000	0.151	PASM
climate IPM vs. climate QBM rho t 2.022 215.000	0.022	PASM
climate IPM vs. climate QBM MAE t -5.309 216.000	0.000	PASM
climate IPM vs. simple IPM rho t 1.479 195.000	0.070	POSE
climate IPM vs. simple IPM MAE t -2.185 196.000	0.015	POSE
climate QBM vs. simple QBM rho t 1.564 195.000	0.060	POSE
climate QBM vs. simple QBM MAE t -2.468 196.000	0.007	POSE
simple IPM vs. simple QBM rho t 0.297 195.000	0.383	POSE
simple IPM vs. simple QBM MAE t 1.027 196.000	0.847	POSE
climate IPM vs. climate QBM rho t 1.137 195.000	0.128	POSE
climate IPM vs. climate QBM MAE t 0.455 196.000	0.675	POSE

Table S23: Statistical tests of model comparisons at different forecast horizons. Table shows results from one-sided t-tests for the particular comparison.

icsulus from one staca t							
comparison	performance_measure	test_type	test_statistic	df	p_value	species	horizon
climate IPM vs. climate QBM	rho	t	-0.122	167.000	0.549	PASM	1.000
climate IPM vs. climate QBM	rho	t	0.394	149.000	0.347	POSE	1.000
climate IPM vs. climate QBM	rho	t	-0.436	129.000	0.668	HECO	1.000
climate IPM vs. climate QBM	rho	t	-0.318	129.000	0.625	BOGR	1.000
climate IPM vs. climate QBM	rho	t	-1.015	150.000	0.844	PASM	2.000
climate IPM vs. climate QBM	rho	t	-0.876	132.000	0.809	POSE	2.000
climate IPM vs. climate QBM	rho	t	-0.790	115.000	0.784	HECO	2.000
climate IPM vs. climate QBM	rho	t	-0.049	114.000	0.519	BOGR	2.000
climate IPM vs. climate QBM	rho	t	0.610	129.000	0.272	PASM	3.000
climate IPM vs. climate QBM	rho	t	-0.719	112.000	0.763	POSE	3.000
climate IPM vs. climate QBM	rho	t	-1.871	98.000	0.968	HECO	3.000
climate IPM vs. climate QBM	rho	t	-0.006	96.000	0.503	BOGR	3.000
climate IPM vs. climate QBM	rho	t	0.761	108.000	0.224	PASM	4.000
climate IPM vs. climate QBM	rho	t	-0.168	94.000	0.566	POSE	4.000
climate IPM vs. climate QBM	rho	t	-0.600	82.000	0.725	HECO	4.000
climate IPM vs. climate QBM	rho	t	0.196	78.000	0.423	BOGR	4.000
climate IPM vs. climate QBM	rho	\mathbf{t}	0.226	91.000	0.411	PASM	5.000
climate IPM vs. climate QBM	rho	t	-0.043	79.000	0.517	POSE	5.000
climate IPM vs. climate QBM	rho	t	-0.794	70.000	0.785	HECO	5.000
climate IPM vs. climate QBM	rho	t	0.180	65.000	0.429	BOGR	5.000
climate IPM vs. climate QBM	rho	t	-0.331	75.000	0.629	PASM	6.000
climate IPM vs. climate QBM	rho	t	0.743	66.000	0.230	POSE	6.000
climate IPM vs. climate QBM	rho	t	-0.658	59.000	0.743	HECO	6.000
climate IPM vs. climate QBM	rho	t	-0.015	54.000	0.506	BOGR	6.000
climate IPM vs. climate QBM	rho	t	0.805	62.000	0.212	PASM	7.000
climate IPM vs. climate QBM	rho	t	-0.222	53.000	0.587	POSE	7.000
climate IPM vs. climate QBM	rho	t	-1.009	50.000	0.841	HECO	7.000
climate IPM vs. climate QBM	rho	t	-0.095	44.000	0.537	BOGR	7.000
climate IPM vs. climate QBM	rho	t	-0.001	54.000	0.500	PASM	8.000
climate IPM vs. climate QBM	rho	t	-0.155	47.000	0.561	POSE	8.000
climate IPM vs. climate QBM	rho	t	-0.460	43.000	0.676	HECO	8.000
climate IPM vs. climate QBM	rho	t	-1.671	37.000	0.948	BOGR	8.000

Table S24: Statistical tests of model comparisons at different forecast horizons. Table shows results from one-sided t-tests for the particular comparison. Note the reverse order of comparisons relative to Table S23.

comparison	performance_measure	test_type	test_statistic	df	p_value	species	horizon
climate QBM vs. climate IPM	rho	t	0.122	167.000	0.451	PASM	1.000
climate QBM vs. climate IPM	rho	t	-0.394	149.000	0.653	POSE	1.000
climate QBM vs. climate IPM	rho	t	0.436	129.000	0.332	HECO	1.000
climate QBM vs. climate IPM	rho	t	0.318	129.000	0.375	BOGR	1.000
climate QBM vs. climate IPM	rho	t	1.015	150.000	0.156	PASM	2.000
climate QBM vs. climate IPM	rho	t	0.876	132.000	0.191	POSE	2.000
climate QBM vs. climate IPM	rho	t	0.790	115.000	0.216	HECO	2.000
climate QBM vs. climate IPM	rho	t	0.049	114.000	0.481	BOGR	2.000
climate QBM vs. climate IPM	rho	t	-0.610	129.000	0.728	PASM	3.000
climate QBM vs. climate IPM	rho	t	0.719	112.000	0.237	POSE	3.000
climate QBM vs. climate IPM	rho	t	1.871	98.000	0.032	HECO	3.000
climate QBM vs. climate IPM	rho	t	0.006	96.000	0.497	BOGR	3.000
climate QBM vs. climate IPM	rho	t	-0.761	108.000	0.776	PASM	4.000
climate QBM vs. climate IPM	rho	t	0.168	94.000	0.434	POSE	4.000
climate QBM vs. climate IPM	rho	t	0.600	82.000	0.275	HECO	4.000
climate QBM vs. climate IPM	rho	t	-0.196	78.000	0.577	BOGR	4.000
climate QBM vs. climate IPM	rho	t	-0.226	91.000	0.589	PASM	5.000
climate QBM vs. climate IPM	rho	t	0.043	79.000	0.483	POSE	5.000
climate QBM vs. climate IPM	rho	t	0.794	70.000	0.215	HECO	5.000
climate QBM vs. climate IPM	rho	t	-0.180	65.000	0.571	BOGR	5.000
climate QBM vs. climate IPM	rho	t	0.331	75.000	0.371	PASM	6.000
climate QBM vs. climate IPM	rho	t	-0.743	66.000	0.770	POSE	6.000
climate QBM vs. climate IPM	rho	t	0.658	59.000	0.257	HECO	6.000
climate QBM vs. climate IPM	rho	t	0.015	54.000	0.494	BOGR	6.000
climate QBM vs. climate IPM	rho	t	-0.805	62.000	0.788	PASM	7.000
climate QBM vs. climate IPM	rho	t	0.222	53.000	0.413	POSE	7.000
climate QBM vs. climate IPM	rho	t	1.009	50.000	0.159	HECO	7.000
climate QBM vs. climate IPM	rho	t	0.095	44.000	0.463	BOGR	7.000
climate QBM vs. climate IPM	rho	t	0.001	54.000	0.500	PASM	8.000
climate QBM vs. climate IPM	rho	t	0.155	47.000	0.439	POSE	8.000
climate QBM vs. climate IPM	rho	\mathbf{t}	0.460	43.000	0.324	HECO	8.000
climate QBM vs. climate IPM	rho	t	1.671	37.000	0.052	BOGR	8.000