Санкт-Петербургский Политехнический Университет Петра Великого Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

Лабораторная работа №5

по дисциплине "Математическая статистика"

Обучающаяся: А.Д. Балакшина $(\mbox{группа} \ 5030102/20101)$

Преподаватель: А.Н. Баженов

Санкт-Петербург

Содержание

1	Формулировка задания	3
2	Используемые формулы	3
3	Выполнение работы	4
4	Результаты 4.1 Нормальное распределение 4.2 Равномерное распределение	4 4 5
5	Анализ результатов проверки гипотез о нормальности распределения 5.1 Анализ нормально распределённых выборок	5 5
6	Общие выводы	6

1 Формулировка задания

- 1. Сгенерировать выборку объёмом 100 элементов для нормального распределения N(x,0,1).
- 2. По сгенерированной выборке оценить параметры μ и σ нормального закона методом максимального правдоподобия.
- 3. В качестве основной гипотезы H_0 считать, что сгенерированное распределение имеет вид $N(x, \hat{\mu}, \hat{\sigma})$.
- 4. Проверить основную гипотезу, используя критерий согласия χ^2 с уровнем значимости $\alpha=0.05$.
- 5. Исследовать точность (чувствительность) критерия χ^2 :
 - Сгенерировать выборки равномерного распределения объёмом 20, 100 элементов, нормального распределения объёмом 20 элементов.
 - Проверить их на нормальность.

2 Используемые формулы

1. Функция плотности нормального распределения:

$$N(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

2. Статистика критерия χ^2 :

$$\chi^2_{\text{набл}} = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$

где:

- n_i наблюдаемые частоты,
- p_i теоретические вероятности,
- n объём выборки,
- k количество интервалов.

3. Квантиль распределения χ^2 :

$$\chi^2_{1-\alpha}(k-1)$$

где:

- α уровень значимости,
- k-1 степени свободы.

3 Выполнение работы

Лабораторная работа выполнена на языке программирования Python 3.12 с использованием библиотек numpy, scipy. Программа отработала корректно.

4 Результаты

4.1 Нормальное распределение

i	Границы интервалов	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$[-\infty, -1.23]$	4	0.214	4.3	-0.3	0.02
2	[-1.23, -0.45]	4	0.233	4.7	-0.7	0.09
3	[-0.45, -0.14]	4	0.102	2.0	2.0	1.89
4	[-0.14, 0.47]	4	0.189	3.8	0.2	0.01
5	$[0.47,\infty]$	4	0.263	5.3	-1.3	0.30

Таблица 1: $n=20,\,\mu=-0.29,\,\sigma=1.2$

 χ^2 наблюдаемое = 2.3, критическое = 6.0 Гипотеза принимается

i	Границы интервалов	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$[-\infty, -0.91]$	15	0.155	15.5	-0.5	0.01
2	[-0.91, -0.50]	14	0.118	11.8	2.2	0.41
3	[-0.50, -0.13]	14	0.135	13.5	0.5	0.01
4	[-0.13, 0.28]	14	0.167	16.7	-2.7	0.43
5	[0.28, 0.60]	14	0.121	12.1	1.9	0.30
6	[0.60, 1.05]	14	0.137	13.7	0.3	0.01
7	$[1.05, \infty]$	15	0.167	16.7	-1.7	0.17

Таблица 2: $n=100,\,\mu=0.10,\,\sigma=1.0$

 χ^2 наблюдаемое = 1.3, критическое = 9.5 Гипотеза принимается

4.2 Равномерное распределение

i	Границы интервалов	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$[-\infty, -0.61]$	4	0.199	4.0	0.0	0.00
2	[-0.61, -0.07]	4	0.204	4.1	-0.1	0.00
3	[-0.07, 0.38]	4	0.196	3.9	0.1	0.00
4	[0.38, 1.24]	4	0.286	5.7	-1.7	0.51
5	$[1.24,\infty]$	4	0.116	2.3	1.7	1.22

Таблица 3: $n=20,\,\mu=-0.29,\,\sigma=1.2$

 χ^2 наблюдаемое = 1.7, критическое = 6.0 Гипотеза принимается

i	Границы интервалов	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$[-\infty, -1.06]$	15	0.099	9.9	5.1	2.57
2	[-1.06, -0.35]	14	0.193	19.3	-5.3	1.48
3	[-0.35, -0.08]	14	0.105	10.5	3.5	1.15
4	[-0.08, 0.55]	14	0.256	25.6	-11.6	5.28
5	[0.55, 0.95]	14	0.138	13.8	0.2	0.00
6	[0.95, 1.27]	14	0.083	8.3	5.7	3.92
7	$[1.27,\infty]$	15	0.125	12.5	2.5	0.50

Таблица 4: $n=100,\,\mu=0.10,\,\sigma=1.0$

 χ^2 наблюдаемое = 14.9, критическое = 9.5 Гипотеза отвергается

5 Анализ результатов проверки гипотез о нормальности распределения

5.1 Анализ нормально распределённых выборок

Объем выборки n = 20:

- Наблюдаемое значение $\chi^2 = 2.3$ меньше критического значения 6.0.
- Гипотеза о нормальности распределения **принимается**, что согласуется с ожиданиями, так как данные были сгенерированы из нормального распределения.
- Несмотря на небольшой объем выборки, критерий корректно не отвергает гипотезу H_0 .

Объем выборки n = 100:

- Наблюдаемое значение $\chi^2 = 1.3$ значительно меньше критического значения 9.5.
- Гипотеза о нормальности распределения принимается.
- Увеличение объема выборки улучшает точность оценки, и критерий χ^2 демонстрирует высокую чувствительность к нормальному распределению.

5.2 Анализ равномерно распределённых выборок

Объем выборки n = 20:

- Наблюдаемое значение $\chi^2 = 1.7$ меньше критического значения 6.0.
- Гипотеза о нормальности распределения **принимается**, хотя данные были сгенерированы из равномерного распределения, что является ошибкой II рода.
- Это может быть связано с недостаточным объемом выборки для выявления отклонения от нормальности.

Объем выборки n = 100:

- Наблюдаемое значение $\chi^2=14.9$ превышает критическое значение 9.5
- Гипотеза о нормальности распределения **отвергается**, что соответствует ожиданиям, так как данные имеют равномерное распределение.
- Критерий χ^2 демонстрирует слабую чувствительность к отклонениям от нормальности при увеличении объема выборки.

6 Общие выводы

- Критерий χ^2 хорошо работает для больших выборок (N>=100), правильно идентифицируя как нормальные, так и ненормальные распределения
- Для малых выборок (N=20) мощность критерия недостаточна, что приводит к ошибкам II рода. Критерий слабо чувствителен к объему данных для более надежных выводов рекомендуется использовать выборки большего объёма.
- Оценки ММП параметров для нормального распределения показывают хорошую точность