PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1
	1 2 3 3 4 4 4 4 2 3 4 4 5 5 5 5 5 6 6 6 6 6	M1
1.	2 3 4 4 5 5 5	
	3 $\begin{vmatrix} 4 & 5 & 5 & 6 & 6 & 6 \end{vmatrix}$ All \geq 5 correctly indicated	A1
	3 4 5 5 6 6 6	
	3 4 5 5 6 6 6	
	21 7 Attempt to count ≥ 5	M1
	$\therefore \text{ P (sum at least 5)} = \frac{21}{36} = \frac{7}{12}$ Attempt to count 2.3 $\frac{21}{36}; \frac{7}{12}; 0.58\dot{3}; 0.583$	A1
		(5 marks
Alt 1	Tree with relevant branches	M1
	All correct - $\frac{2}{6}$, $\frac{3}{6}$ on those branches $P(\text{sum at least 5}) = \left(\frac{2}{6} \times \frac{3}{6}\right) + \left(\frac{3}{6} \times \frac{2}{6}\right)$	A1
	$\frac{1}{6} \qquad 3 \qquad P(\text{sum at least 5}) = \left(\frac{2}{6} \times \frac{3}{6}\right) + \left(\frac{3}{6} \times \frac{2}{6}\right)$	M1
	$+ \left(\frac{3}{6} \times \frac{3}{6}\right) \text{ (At least 2)}$	A1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	3/ 3/6 2	
	$ \begin{array}{c} 3/6 \\ 1/6 \\ 3 \\ 2/6 \\ 2 \end{array} = \frac{21}{36}; \frac{7}{12}; 0.58\dot{3}; 0.583 $	A1 (5)
	$\frac{3}{6}$ 3	

1

Question Number	Scheme		Marks
Alt 2	Outcomes (2, 3), (3, 3), (3, 2)	Recognising 2 pairs All correct Can be implied	M1 A1
	$\left(\frac{2}{6} \times \frac{3}{6}\right) + \left(\frac{3}{6} \times \frac{3}{6}\right) + \left(\frac{3}{6} \times \frac{2}{6}\right)$	Multiplying 2 pairs of 2 probs. & adding	M1
	21	All correct	A1
	$\frac{21}{36}$		A1 (5)
Alt 3	$P(\text{sum} \ge 5) = 12 \left(\frac{1}{6} \times \frac{1}{6}\right) + 9 \left(\frac{1}{6} \times \frac{1}{6}\right)$	$a(p_1 \times p_2)$ or $b(p_1 \times p_2)$	M1
		$p_1 = p_2 = \frac{1}{6}$	A1
	a() + b()		M1
		21 or 12 + 9	A1
	$\frac{21}{36}$	$\frac{21}{36}$	A1 (5)
Alt 4	<u>x 2 3 4</u>	5 6 2, 3, 4, 5, 6	M1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{12}{36}$ $\frac{9}{36}$ Adding probability	M1
		All correct	A1
	$P(X \ge 5) = \frac{12}{36} + \frac{9}{36}$	Adding P(5) & P(6)	M1
	$\frac{21}{36}$	$\frac{21}{36}$	A1 (5)

_	estion mber	Scheme		Mar	ks
2.	(a)	Scatter diagram	Labels (not x, y)	B1	
			Sensible scales allow axis interchange	B1	
			Points	B2	
		1500 5000	(-1 ee)		(4)
	(b)	$S_{hc} = 884484 - \frac{1562 \times 5088}{9} = 1433\frac{1}{3}$	correct use of S	M1	
			14331/3; 1433. 3	A1	
		$S_{hh} = 1000 \frac{2}{9}$; $S_{cc} = 2550$	$1000\frac{2}{9}$, $1000.\dot{2}$; 2550	A1; A1	(4)
		(NB: accept :- 9; i.e.:- $159\frac{7}{27}$; $111\frac{11}{81}$; $283\frac{1}{3}$))		
		1433 ½		M1	
	(c)	$r = \frac{1433 \frac{1}{3}}{\sqrt{1000 \frac{2}{9} \times 2550}}$	substitution in correct formula	A1 ft	
		= 0.897488	AWRT 0.897(accept 0.8975)	A1	(3)
	(d)	Taller people tend to be more confiden	t context	B1	(1)
	(e)	$b = \frac{1433.\dot{3}}{1000.\dot{2}} = 1.433014$		M1	
		$a = \frac{5088}{9} - \frac{1433.\dot{3}}{1000.\dot{2}} \times \frac{1562}{9} = 316.6256$	allow use of their b	M1	
		$\therefore c = 317 + 1.43h$	3sf	A1	(3)
	(f)	$h = 180 \Rightarrow c = 574.4 \text{ or } 574.5683$	subt. of 180	M1	
			574 - 575	A1	(2)
	(g)	$161 \le h \le 193$		B1	(1)
				(18 m	arks)
		NB (a) No graph paper $\Rightarrow 0/4$			

1 -	estion mber	Scheme		Mar	·ks
3.	(a)	$0.5 + b + a = 1$ $0.3 + 2b + 3a = 1.7$ $\therefore a = 0.4$	use of $\Sigma P(X = x) = 1$ use of $E(x) = \Sigma x P(X = x)$	M1 A1 M1 A1	
	(b) (c)	$b = 0.1$ $P(0 < X < 1.5) = P(X = 1) = 0.3$ $E(2X - 3) = 2E(X) - 3$ $= 2 \times 1.7 - 3 = 0.4$	a = 0.4, b = 0.1 Use of $E(aX + b)$	B1 B1 M1 A1	(5) (1) (2)
-	(d)	$Var(X) = (1^2 \times 0.3) + (2^2 \times 0.1) + (3^2 \times 0.4) - 1.7^2$ = 1.41 (*)	Use of $E(x^2) - \{E(x)\}^2$	M1 A1 ft	
	(e)	$Var(2X - 3) = 2^{2} Var(X)$ = 4 × 1.41 = 5.64	CSO Use of Var	A1 M1 A1	(3)
				(13 n	narks)

1	estion mber	Scheme	Marks
4.	(a)(i)	$\bar{x} = \frac{270}{16} = 16.875$ 16.875, 16%; 16.9; 16.88	B1
		$sd = \sqrt{\frac{4578}{16} - 16.875^2}$ $\frac{\sum x^2}{16} - \bar{x}^2 \& $	M1
		All correct = 1.16592 AWRT 1.17	A1 ft A1
	(ii)	Mean % attendance = $\frac{16.875}{18} \times 100 \ (= 93.75)$ cao	B1 ft (5)
	(b)	First 4 1 means 14 Second 1 8 means 18	
	, ,	(1) A 1 A A A (2) Doth Lobels and 1 hour	B1
		(1) 5 1 5 5 5 5 (4) Back-to-back	
		(3) 6 6 6 1 6 6 6 (3) S and L	$M1 \rightarrow$
		(5) 7 7 7 7 7 1 7 (1) (ignore totals)	dep.
		(6) 8 8 8 8 8 8 1 8 8 8 (3) Sensible splits of 1	M1
		(0) 1 9 (1) First-correct	$A1 \rightarrow$
			A1 (5)
	(c)	Mode Median IQR	
		First 18 17 2 Second 15 16 3	B1 B1 B1
		Second 15 16 3	B1 B1 B1 (6)
	(d)	$\label{eq:medians} \begin{aligned} & \text{Median}_S < \text{Median}_F; \text{Mode}_F > \text{Mode}_S; \\ & \text{Second had larger spread/IQR} & \text{ANY THREE sensible} \\ & \text{Only 1 student attends all classes in second} & \text{comments} \\ & \text{Mean}\%_F > \text{Mean}\%_S & & & & \end{aligned}$	B1 B1 B1 (3)
		Tricativos - Tricativos	(19 marks)

Question Number	Scheme	Marks
5. (a)	Let L represent length of visit \therefore L ~ N (90, σ^2) P(L < 125) = 0.80 or P(L > 125) = 0.20	
	$\therefore P\left(Z < \frac{125 - 90}{\sigma}\right) = 0.8 \qquad \therefore P\left(L > \frac{125 - 90}{\sigma}\right) = 0.20 \qquad \begin{array}{c} \text{Standardising,} \\ \pm (125 - 90), \sigma/\sigma^2/\sqrt{\sigma} \end{array}\right)$	M1
	$\therefore \frac{125 - 90}{\sigma} = 0.8416$	B1
	$\frac{\pm (125 - 90)}{\sigma} = z \text{ value}$	M1
	$\sigma = \frac{35}{0.8416} = 41.587$ AWRT 41.6	A1 (4)
(b)	$\sigma = \frac{35}{0.8416} = 41.587$ AWRT 41.6 $P(L < 25) = P\left(Z < \frac{125 - 90}{41.587}\right)$ Standardising 25, 90, their +ve 41.587	M1
	= $P(Z < -1.56)$ = $1 - P(Z < 1.56)$ For use of symmetry or $\Phi(-z) = 1 - \Phi(z)$; p< 0.5 = 0.0594	M1 A1 (3)
(c)	-0.0394 $90 + 3\sigma = 215 \Rightarrow 6.25 \text{ pm for latest arrival}$ $90 + 2\sigma = 173. \dot{3} \Rightarrow 7.07 \text{ pm for latest arrival}$ Based on $2\sigma/3\sigma$ rule	$\begin{bmatrix} A1 & (3) \\ B1 & \end{bmatrix}$
	∴ This normal distribution is <u>not</u> suitable.	B1 (2) (9 marks)

Question Number	Scheme	Marks
6. (a)	A, B, C inside S $A, B no overlap$ $A, C overlap$	B1 B1 B1 (3)
(b)	$P(A C) = \frac{P(A \cap C)}{P(C)} = \frac{P(A)P(C)}{P(C)} = P(A)$ Use of independence $= 0.2$	M1 A1 (2)
(c)	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ use of $P(A \cup B)$ & $P(A \cap B) = 0$ can be implied = 0.2 + 0.4 - 0 = 0.6	M1 A1 (2)
(d)	$P(A \cup C) = P(A) + P(C) - P(A \cap C)$ Use of $P(A \cup C)$ & independence $ \therefore 0.7 = 0.2 + P(C) - 0.2 P(C) $ $ \therefore 0.5 = P(C) \{1 - 0.2\} $ Solving for $P(C)$ from an equation with $P(C)$ terms $ \therefore P(C) = \frac{5}{8} $	M1 A1 M A1 (4)
	7.6	(11 marks)
	NB $P(B \cup C) = P(B) + P(C) - P(B \cap C)$ = 0.4 + 0.625 - $P(B \cap C) \Rightarrow P(B \cap C) > 0$	