Package 'COMMA'

October 30, 2024

```
Title Correcting Misclassified Mediation Analysis
Version 1.1.0
Author Kimberly Webb [aut, cre]
Maintainer Kimberly Webb <kah343@cornell.edu>
Description Use three methods to estimate parameters from a mediation analysis
     with a binary misclassified mediator. These methods correct for the problem
     of ``label switching" using Youden's J criteria. A detailed description of the
     analysis methods is available in Webb and Wells (2024), ``Effect estimation in
     the presence of a misclassified binary mediator" <doi:10.48550/arXiv.2407.06970>.
Depends R (>= 4.2.0)
Imports Matrix (> 1.4-1), turboEM (>= 2021.1), dplyr (>= 1.1.4),
     foreach (>= 1.5.2), parallel (>= 4.3.1), doParallel (>= 1.0.17)
Suggests knitr (>= 1.40), kableExtra (>= 1.3.4), ggplot2 (>= 3.5.0),
     markdown (>= 1.13), stats (>= 4.3.1), svglite (>= 2.1.3)
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2
VignetteBuilder knitr
Collate 'sum_every_n1.R' 'sum_every_n.R' 'pistar_compute.R'
     'pi_compute.R' 'COMBO_weight.R' 'COMBO_EM_function.R'
     'COMBO_EM_algorithm.R' 'COMMA_data.R' 'w_m_normalY.R'
     'w_m_binaryY.R' 'EM_function_normalY_XM.R'
     'EM_function_normalY.R' 'EM_function_bernoulliY_XM.R'
     'EM_function_bernoulliY.R' 'COMMA_EM.R' 'COMMA_boot_sample.R'
     'COMMA EM bootstrap SE.R' 'COMMA OLS.R'
     'COMMA_OLS_bootstrap_SE.R' 'COMMA_PVW.R'
     'COMMA PVW bootstrap SE.R' 'EM function poissonY.R'
     'EM_function_poissonY_XM.R' 'NCHS2022_sample.R'
     'misclassification prob.R' 'theta optim.R' 'theta optim XM.R'
     'true_classification_prob.R' 'w_m_poissonY.R'
LazyData true
```

NeedsCompilation no

Repository CRAN

Date/Publication 2024-10-30 19:30:06 UTC

Contents

СОМВО	O_EM_algorithm	EM-Algorithi Model	m Estin	nation	of the	Binary	Outcome	Misclassifica	tion
Index									40
	w_m_poissonY				• • •				38
	w_m_normalY								
	w_m_binaryY								
	true_classification_p								
	theta_optim_XM .								
	theta_optim								
	sum_every_n1								33
	sum_every_n		. .						32
	pi_compute		. .						32
	pistar_compute								. 3
	NCHS2022_sample								
	misclassification_pro								
	EM_function_poisso								
	EM_function_poisso								
	EM_function_norma								
	EM_function_norma								
	EM_function_berno								
	EM_function_berno	-							
	COMMA_PVW_bo								
	COMMA_PVW	-							
	COMMA_OLS_boo								
	COMMA_EM_boot	1 —							
	COMMA_EM COMMA_EM_boot								
	COMMA_data								
	COMMA_boot_sam	•							
	COMBO_weight .								
	COMBO_EM_funct								
	COMBO_EM_algor								

Description

Jointly estimate β and γ parameters from the true outcome and observation mechanisms, respectively, in a binary outcome misclassification model.

Usage

```
COMBO_EM_algorithm(
  Ystar,
  x_matrix,
  z_matrix,
  beta_start,
  gamma_start,
  tolerance = 1e-07,
  max_em_iterations = 1500,
  em_method = "squarem"
)
```

Arguments

Ystar	A numeric vector of indicator variables (1, 2) for the observed outcome Y*. There should be no NA terms. The reference category is 2.
x_matrix	A numeric matrix of covariates in the true outcome mechanism. x_matrix should not contain an intercept and no values should be NA.
z_matrix	A numeric matrix of covariates in the observation mechanism. z_matrix should not contain an intercept and no values should be NA.
beta_start	A numeric vector or column matrix of starting values for the β parameters in the true outcome mechanism. The number of elements in beta_start should be equal to the number of columns of x_matrix plus 1.
gamma_start	A numeric vector or matrix of starting values for the γ parameters in the observation mechanism. In matrix form, the gamma_start matrix rows correspond to parameters for the Y* = 1 observed outcome, with the dimensions of z_matrix plus 1, and the gamma parameter matrix columns correspond to the true outcome categories $M \in \{1,2\}$. A numeric vector for gamma_start is obtained by concatenating the gamma matrix, i.e. gamma_start <- c(gamma_matrix).
tolerance	A numeric value specifying when to stop estimation, based on the difference of subsequent log-likelihood estimates. The default is 1e-7.

max_em_iterations

An integer specifying the maximum number of iterations of the EM algorithm.

The default is 1500.

em_method A character string specifying which EM algorithm will be applied. Options are "em", "squarem", or "pem". The default and recommended option is "squarem".

Value

COMBO_EM_algorithm returns a data frame containing four columns. The first column, Parameter, represents a unique parameter value for each row. The next column contains the parameter Estimates, followed by the standard error estimates, SE. The final column, Convergence, reports whether or not the algorithm converged for a given parameter estimate.

4 COMBO_weight

COMBO_EM_function	EM-Algorithm Function for Estimation of the Misclassification Model
-------------------	---

Description

EM-Algorithm Function for Estimation of the Misclassification Model

Usage

```
COMBO_EM_function(param_current, obs_Y_matrix, X, Z, sample_size, n_cat)
```

Arguments

param_current	A numeric vector of regression parameters, in the order β , γ . The γ vector is obtained from the matrix form. In matrix form, the gamma parameter matrix rows correspond to parameters for the Y* = 1 observed outcome, with the dimensions of Z. In matrix form, the gamma parameter matrix columns correspond to the true outcome categories $j=1,\ldots,n_{cat}$. The numeric vector gamma_v is obtained by concatenating the gamma matrix, i.e. gamma_v <- c(gamma_matrix).
obs_Y_matrix	A numeric matrix of indicator variables (0, 1) for the observed outcome Y*. Rows of the matrix correspond to each subject. Columns of the matrix correspond to each observed outcome category. Each row should contain exactly one 0 entry and exactly one 1 entry.
Χ	A numeric design matrix for the true outcome mechanism.
Z	A numeric design matrix for the observation mechanism.
sample_size	An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the design matrix, X or Z.
n_cat	The number of categorical values that the true outcome, Y, and the observed outcome, Y* can take.

Value

COMBO_EM_function returns a numeric vector of updated parameter estimates from one iteration of the EM-algorithm.

COMBO_weight	Compute E-step for Binary Outcome Misclassification Model Esti- mated With the EM-Algorithm

Description

Compute E-step for Binary Outcome Misclassification Model Estimated With the EM-Algorithm

COMMA_boot_sample

5

Usage

```
COMBO_weight(ystar_matrix, pistar_matrix, pi_matrix, sample_size, n_cat)
```

Arguments

ystar_matrix A numeric matrix of indicator variables (0, 1) for the observed outcome Y*. Rows of the matrix correspond to each subject. Columns of the matrix correspond to each observed outcome category. Each row should contain exactly one 0 entry and exactly one 1 entry. A numeric matrix of conditional probabilities obtained from the internal funcpistar_matrix tion pistar_compute. Rows of the matrix correspond to each subject and to each observed outcome category. Columns of the matrix correspond to each true, latent outcome category. A numeric matrix of probabilities obtained from the internal function pi_compute. pi_matrix Rows of the matrix correspond to each subject. Columns of the matrix correspond to each true, latent outcome category. sample_size An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the observed outcome matrix, ystar_matrix. The number of categorical values that the true outcome, Y, and the observed n_cat

Value

COMBO_weight returns a matrix of E-step weights for the EM-algorithm, computed as follows: $\sum_{k=1}^{2} \frac{y_{ik}^* \pi_{ikj}^* \pi_{ij}}{\sum_{\ell=1}^{2} \pi_{ik\ell}^* \pi_{i\ell}}.$ Rows of the matrix correspond to each subject. Columns of the matrix correspond to the true outcome categories $j=1,\ldots,n_{-}$ cat.

COMMA_boot_sample

Generate Bootstrap Samples for Estimating Standard Errors

Description

Generate Bootstrap Samples for Estimating Standard Errors

outcome, Y*, can take.

```
COMMA_boot_sample(
  parameter_estimates,
  sigma_estimate = 1,
  outcome_distribution,
  interaction_indicator,
  x_matrix,
  z_matrix,
  c_matrix
)
```

6 COMMA_data

Arguments

parameter_estimates

A column matrix of β , γ , and θ parameter values obtained from a COMMA analysis function. Parameter estimates should be supplied in the following order: 1) β (intercept, slope), 2) γ (intercept and slope from the M = 1 mechanism, intercept and slope from the M = 2 mechanism), and 3) θ (intercept, slope, coefficient for x, slope coefficient for m, slope coefficient for c, and, optionally, slope coefficient for xm if using).

sigma_estimate A numeric value specifying the estimated standard deviation. This value is only required if outcome_distribution is "Normal". Default is 1. For non-Normal outcome distributions, the value should be NULL.

outcome_distribution

A character string specifying the distribution of the outcome variable. Options are "Bernoulli", "Normal", or "Poisson".

interaction_indicator

A logical value indicating if an interaction between x and m should be used to generate the outcome variable, y.

x_matrix A numeric matrix of predictors in the true mediator and outcome mechanisms.

x_matrix should not contain an intercept and no values should be NA.

z_matrix A numeric matrix of covariates in the observation mechanism. z_matrix should

not contain an intercept and no values should be NA.

c_matrix A numeric matrix of covariates in the true mediator and outcome mechanisms.

c_matrix should not contain an intercept and no values should be NA.

Value

COMMA_boot_sample returns a list with the bootstrap sample data:

obs_mediator A vector of observed mediator values. A vector of true mediator values. true_mediator outcome A vector of outcome values.

A matrix of predictor values in the true mediator mechanism. Identical to that x_matrix

supplied by the user.

z matrix A matrix of predictor values in the observed mediator mechanism. Identical to

that supplied by the user.

c_matrix A matrix of covariates. Identical to that supplied by the user.

Generate Data to use in COMMA Functions COMMA_data

Description

Generate Data to use in COMMA Functions

COMMA_data 7

Usage

```
COMMA_data(
    sample_size,
    x_mu,
    x_sigma,
    z_shape,
    c_shape,
    interaction_indicator,
    outcome_distribution,
    true_beta,
    true_gamma,
    true_theta
)
```

Arguments

sample_size An integer specifying the sample size of the generated data set.

x_mu A numeric value specifying the mean of x predictors generated from a Normal

distribution.

x_sigma A positive numeric value specifying the standard deviation of x predictors gen-

erated from a Normal distribution.

z_shape A positive numeric value specifying the shape parameter of z predictors gener-

ated from a Gamma distribution.

c_shape A positive numeric value specifying the shape parameter of c covariates gener-

ated from a Gamma distribution.

interaction_indicator

A logical value indicating if an interaction between x and m should be used to

generate the outcome variable, y.

outcome_distribution

A character string specifying the distribution of the outcome variable. Options

are "Bernoulli", "Normal", or "Poisson".

true_beta A column matrix of β parameter values (intercept, slope) to generate data under

in the true mediator mechanism.

true_gamma A numeric matrix of γ parameters to generate data in the observed mediator

mechanisms. In matrix form, the gamma matrix rows correspond to intercept (row 1) and slope (row 2) terms. The gamma parameter matrix columns corre-

spond to the true mediator categories $M \in \{1, 2\}$.

true_theta A column matrix of θ parameter values (intercept, slope coefficient for x, slope

coefficient for m, slope coefficient for c, and, optionally, slope coefficient for xm

if using) to generate data in the outcome mechanism.

Value

COMMA_data returns a list of generated data elements:

obs_mediator A vector of observed mediator values.

8 COMMA_EM

A vector of true mediator values. true_mediator outcome A vector of outcome values. A vector of generated predictor values in the true mediator mechanism, from the Х Normal distribution. A vector of generated predictor values in the observed mediator mechanism z from the Gamma distribution. A vector of generated covariates. x_design_matrix The design matrix for the x predictor. z_design_matrix The design matrix for the z predictor. c_design_matrix The design matrix for the c predictor.

Examples

```
set.seed(20240709)
sample_size <- 10000
n_cat <- 2 # Number of categories in the binary mediator
# Data generation settings
x_mu <- 0
x_sigma <- 1
z_shape <- 1
c_shape <- 1
# True parameter values (gamma terms set the misclassification rate)
true_beta <- matrix(c(1, -2, .5), ncol = 1)
true_gamma <- matrix(c(1, 1, -.5, -1.5), nrow = 2, byrow = FALSE)
true_theta <- matrix(c(1, 1.5, -2, -.2), ncol = 1)
example_data <- COMMA_data(sample_size, x_mu, x_sigma, z_shape, c_shape,
                           interaction_indicator = FALSE,
                           outcome_distribution = "Bernoulli",
                           true_beta, true_gamma, true_theta)
head(example_data$obs_mediator)
head(example_data$true_mediator)
```

COMMA_EM

EM Algorithm Estimation of the Binary Mediator Misclassification Model

Description

Jointly estimate β , γ , and θ parameters from the true mediator, observed mediator, and outcome mechanisms, respectively, in a binary mediator misclassification model.

COMMA_EM 9

Usage

```
COMMA_EM(
 Mstar,
  outcome,
  outcome_distribution,
  interaction_indicator,
  x_matrix,
  z_matrix,
  c_matrix,
  beta_start,
  gamma_start,
  theta_start,
  sigma_start = NULL,
  tolerance = 1e-07,
  max_em_iterations = 1500,
  em_method = "squarem"
)
```

Arguments

Mstar A numeric vector of indicator variables (1, 2) for the observed mediator M*.

There should be no NA terms. The reference category is 2.

outcome A vector containing the outcome variables of interest. There should be no NA

terms.

outcome_distribution

A character string specifying the distribution of the outcome variable. Options are "Bernoulli", "Normal", or "Poisson".

interaction_indicator

A logical value indicating if an interaction between x and m should be used to

generate the outcome variable, y.

x_matrix A numeric matrix of predictors in the true mediator and outcome mechanisms.

x_matrix should not contain an intercept and no values should be NA.

z_matrix A numeric matrix of covariates in the observation mechanism. z_matrix should

not contain an intercept and no values should be NA.

c_matrix A numeric matrix of covariates in the true mediator and outcome mechanisms.

c_matrix should not contain an intercept and no values should be NA.

beta_start A numeric vector or column matrix of starting values for the β parameters in

the true mediator mechanism. The number of elements in beta_start should be equal to the number of columns of x_matrix and c_matrix plus 1. Starting values should be provided in the following order: intercept, slope coefficient for the x_matrix term, slope coefficient for first column of the c_matrix, ..., slope

coefficient for the final column of the c_matrix.

gamma_start A numeric vector or matrix of starting values for the γ parameters in the observation mechanism. In matrix form, the gamma_start matrix rows correspond to

parameters for the M* = 1 observed mediator, with the dimensions of z_matrix plus 1, and the gamma parameter matrix columns correspond to the true me-

diator categories $M \in \{1,2\}$. A numeric vector for gamma_start is obtained

10 COMMA_EM

by concatenating the gamma matrix, i.e. gamma_start <- c(gamma_matrix). Starting values should be provided in the following order within each column: intercept, slope coefficient for first column of the z_matrix, ..., slope coefficient for the final column of the z_matrix.

theta_start

A numeric vector or column matrix of starting values for the θ parameters in the outcome mechanism. The number of elements in theta_start should be equal to the number of columns of x_matrix and c_matrix plus 2 (if interaction_indicator is FALSE) or 3 (if interaction_indicator is TRUE). Starting values should be provided in the following order: intercept, slope coefficient for the x_matrix term, slope coefficient for the mediator m term, slope coefficient for first column of the c_matrix, ..., slope coefficient for the final column of the c_matrix, and, optionally, slope coefficient for xm).

sigma_start

A numeric value specifying the starting value for the standard deviation. This value is only required if outcome_distribution is "Normal". Otherwise, this value is set to NULL.

tolerance

A numeric value specifying when to stop estimation, based on the difference of subsequent log-likelihood estimates. The default is 1e-7.

max_em_iterations

A numeric value specifying when to stop estimation, based on the difference of subsequent log-likelihood estimates. The default is 1e-7.

em_method

A character string specifying which EM algorithm will be applied. Options are "em", "squarem", or "pem". The default and recommended option is "squarem".

Value

COMMA_EM returns a data frame containing four columns. The first column, Parameter, represents a unique parameter value for each row. The next column contains the parameter Estimates, followed by the standard error estimates, SE. The final column, Convergence, reports whether or not the algorithm converged for a given parameter estimate.

Examples

```
set.seed(20240709)
sample_size <- 2000

n_cat <- 2 # Number of categories in the binary mediator

# Data generation settings
x_mu <- 0
x_sigma <- 1
z_shape <- 1
c_shape <- 1

# True parameter values (gamma terms set the misclassification rate)
true_beta <- matrix(c(1, -2, .5), ncol = 1)
true_gamma <- matrix(c(1, 1, -.5, -1.5), nrow = 2, byrow = FALSE)
true_theta <- matrix(c(1, 1.5, -2, -.2), ncol = 1)
example_data <- COMMA_data(sample_size, x_mu, x_sigma, z_shape, c_shape,</pre>
```

Description

Estimate Bootstrap Standard Errors using EM

```
COMMA_EM_bootstrap_SE(
   parameter_estimates,
   sigma_estimate = 1,
   n_bootstrap,
   n_parallel,
   outcome_distribution,
   interaction_indicator,
   x_matrix,
   z_matrix,
   c_matrix,
   tolerance = 1e-07,
   max_em_iterations = 1500,
   em_method = "squarem"
)
```

parameter_estimates

A column matrix of β , γ , and θ parameter values obtained from a COMMA analysis function. Parameter estimates should be supplied in the following order: 1) β (intercept, slope), 2) γ (intercept and slope from the M = 1 mechanism, intercept and slope from the M = 2 mechanism), and 3) θ (intercept, slope, coefficient for x, slope coefficient for m, slope coefficient for c, and, optionally, slope coefficient for xm if using).

sigma_estimate A numeric value specifying the estimated standard deviation. This value is only required if outcome_distribution is "Normal". Default is 1. For non-Normal outcome distributions, the value should be NULL.

n_bootstrap

A numeric value specifying the number of bootstrap samples to draw.

n_parallel

A numeric value specifying the number of parallel cores to run the computation on.

outcome_distribution

A character string specifying the distribution of the outcome variable. Options are "Bernoulli", "Normal", or "Poisson".

interaction_indicator

A logical value indicating if an interaction between x and m should be used to generate the outcome variable, y.

x_matrix

A numeric matrix of predictors in the true mediator and outcome mechanisms. x_matrix should not contain an intercept and no values should be NA.

z_matrix

A numeric matrix of covariates in the observation mechanism. z_matrix should not contain an intercept and no values should be NA.

c_matrix

A numeric matrix of covariates in the true mediator and outcome mechanisms. c_matrix should not contain an intercept and no values should be NA.

tolerance

A numeric value specifying when to stop estimation, based on the difference of subsequent log-likelihood estimates. The default is 1e-7.

max_em_iterations

A numeric value specifying when to stop estimation, based on the difference of subsequent log-likelihood estimates. The default is 1e-7.

em_method

A character string specifying which EM algorithm will be applied. Options are "em", "squarem", or "pem". The default and recommended option is "squarem".

Value

COMMA_EM_bootstrap_SE returns a list with two elements: 1) bootstrap_df and 2) bootstrap_SE. bootstrap_df is a data frame containing COMMA_EM output for each bootstrap sample. bootstrap_SE is a data frame containing bootstrap standard error estimates for each parameter.

Examples

```
set.seed(20240709)
sample_size <- 2000
```

n_cat <- 2 # Number of categories in the binary mediator

COMMA_OLS 13

```
# Data generation settings
x_mu <- 0
x_sigma <- 1
z_shape <- 1
c_shape <- 1
# True parameter values (gamma terms set the misclassification rate)
true_beta <- matrix(c(1, -2, .5), ncol = 1)
true_gamma <- matrix(c(1, 1, -.5, -1.5), nrow = 2, byrow = FALSE)
true_theta <- matrix(c(1, 1.5, -2, -.2), ncol = 1)
example_data <- COMMA_data(sample_size, x_mu, x_sigma, z_shape, c_shape,</pre>
                            interaction_indicator = FALSE,
                            outcome_distribution = "Bernoulli",
                            true_beta, true_gamma, true_theta)
beta_start <- matrix(rep(1, 3), ncol = 1)</pre>
gamma_start <- matrix(rep(1, 4), nrow = 2, ncol = 2)</pre>
theta_start <- matrix(rep(1, 4), ncol = 1)</pre>
Mstar = example_data[["obs_mediator"]]
outcome = example_data[["outcome"]]
x_matrix = example_data[["x"]]
z_matrix = example_data[["z"]]
c_matrix = example_data[["c"]]
EM_results <- COMMA_EM(Mstar, outcome, "Bernoulli", FALSE,
                        x_matrix, z_matrix, c_matrix,
                        beta_start, gamma_start, theta_start)
EM_results
EM_SEs <- COMMA_EM_bootstrap_SE(EM_results$Estimates, sigma_estimate = NULL,</pre>
                                 n_bootstrap = 3,
                                 n_parallel = 1,
                                 outcome_distribution = "Bernoulli",
                                 interaction_indicator = FALSE,
                                 x_matrix, z_matrix, c_matrix)
EM_SEs$bootstrap_SE
```

COMMA_OLS

Ordinary Least Squares Estimation of the Binary Mediator Misclassification Model

Description

Estimate β , γ , and θ parameters from the true mediator, observed mediator, and outcome mechanisms, respectively, in a binary mediator misclassification model using an ordinary least squares

14 COMMA_OLS

correction.

Usage

```
COMMA_OLS(
  Mstar,
  outcome,
  x_matrix,
  z_matrix,
  c_matrix,
  beta_start,
  gamma_start,
  theta_start,
  tolerance = 1e-07,
 max_em_iterations = 1500,
 em_method = "squarem"
)
```

Arguments

Mstar A numeric vector of indicator variables (1, 2) for the observed mediator M*.

There should be no NA terms. The reference category is 2.

outcome A vector containing the outcome variables of interest. There should be no NA

terms.

A numeric matrix of predictors in the true mediator and outcome mechanisms. x_matrix

x_matrix should not contain an intercept and no values should be NA.

A numeric matrix of covariates in the observation mechanism. z_matrix should z_matrix

not contain an intercept and no values should be NA.

A numeric matrix of covariates in the true mediator and outcome mechanisms. c_matrix

c_matrix should not contain an intercept and no values should be NA.

A numeric vector or column matrix of starting values for the β parameters in beta_start

> the true mediator mechanism. The number of elements in beta_start should be equal to the number of columns of x_matrix and c_matrix plus 1. Starting values should be provided in the following order: intercept, slope coefficient for the x_matrix term, slope coefficient for first column of the c_matrix, ..., slope

coefficient for the final column of the c_matrix.

gamma_start A numeric vector or matrix of starting values for the γ parameters in the obser-

vation mechanism. In matrix form, the gamma_start matrix rows correspond to parameters for the M* = 1 observed mediator, with the dimensions of z_matrix plus 1, and the gamma parameter matrix columns correspond to the true mediator categories $M \in \{1, 2\}$. A numeric vector for gamma_start is obtained by concatenating the gamma matrix, i.e. gamma_start <- c(gamma_matrix). Starting values should be provided in the following order within each column: intercept, slope coefficient for first column of the z_matrix, ..., slope coefficient

for the final column of the z_matrix.

A numeric vector or column matrix of starting values for the θ parameters in the outcome mechanism. The number of elements in theta_start should be equal

theta_start

COMMA_OLS 15

to the number of columns of x_matrix and c_matrix plus 2. Starting values should be provided in the following order: intercept, slope coefficient for the x_matrix term, slope coefficient for the mediator m term, slope coefficient for first column of the c_matrix, ..., slope coefficient for the final column of the c_matrix.

tolerance

A numeric value specifying when to stop estimation, based on the difference of subsequent log-likelihood estimates. The default is 1e-7.

max_em_iterations

A numeric value specifying when to stop estimation, based on the difference of subsequent log-likelihood estimates. The default is 1e-7.

em_method

A character string specifying which EM algorithm will be applied. Options are "em", "squarem", or "pem". The default and recommended option is "squarem".

Details

Note that this method can only be used for Normal outcome models, and interaction terms (between x and m) are not supported.

Value

COMMA_PVW returns a data frame containing four columns. The first column, Parameter, represents a unique parameter value for each row. The next column contains the parameter Estimates. The third column, Convergence, reports whether or not the algorithm converged for a given parameter estimate. The final column, Method, reports that the estimates are obtained from the "PVW" procedure.

Examples

```
set.seed(20240709)
sample_size <- 2000
n_cat <- 2 # Number of categories in the binary mediator
# Data generation settings
x_mu <- 0
x_sigma <- 1
z_shape <- 1
c_shape <- 1
# True parameter values (gamma terms set the misclassification rate)
true_beta <- matrix(c(1, -2, .5), ncol = 1)
true_gamma <- matrix(c(1, 1, -...5, -1...5)), nrow = 2, byrow = FALSE)
true_theta <- matrix(c(1, 1.5, -2, 2), ncol = 1)
example_data <- COMMA_data(sample_size, x_mu, x_sigma, z_shape, c_shape,
                            interaction_indicator = FALSE,
                            outcome_distribution = "Normal";
                            true_beta, true_gamma, true_theta)
beta_start <- matrix(rep(1, 3), ncol = 1)</pre>
```

COMMA_OLS_bootstrap_SE

Estimate Bootstrap Standard Errors using OLS

Description

Estimate Bootstrap Standard Errors using OLS

Usage

```
COMMA_OLS_bootstrap_SE(
   parameter_estimates,
   sigma_estimate = 1,
   n_bootstrap,
   n_parallel,
   x_matrix,
   z_matrix,
   c_matrix,
   tolerance = 1e-07,
   max_em_iterations = 1500,
   em_method = "squarem"
)
```

Arguments

```
parameter_estimates
```

A column matrix of β , γ , and θ parameter values obtained from a COMMA analysis function. Parameter estimates should be supplied in the following order: 1) β (intercept, slope), 2) γ (intercept and slope from the M = 1 mechanism, intercept and slope from the M = 2 mechanism), and 3) θ (intercept, slope, coefficient for x, slope coefficient for m, slope coefficient for c, and, optionally, slope coefficient for xm if using).

sigma_estimate	A numeric value specifying the estimated standard deviation. Default is 1.	
n_bootstrap	A numeric value specifying the number of bootstrap samples to draw.	
n_parallel	A numeric value specifying the number of parallel cores to run the computation on.	
x_matrix	A numeric matrix of predictors in the true mediator and outcome mechanisms. x_matrix should not contain an intercept and no values should be NA.	
z_matrix	A numeric matrix of covariates in the observation mechanism. z_matrix should not contain an intercept and no values should be NA.	
c_matrix	A numeric matrix of covariates in the true mediator and outcome mechanisms. c_matrix should not contain an intercept and no values should be NA.	
tolerance	A numeric value specifying when to stop estimation, based on the difference of subsequent log-likelihood estimates. The default is 1e-7.	
max_em_iterations		
	A numeric value specifying when to stop estimation, based on the difference of subsequent log-likelihood estimates. The default is 1e-7.	
em_method	A character string specifying which EM algorithm will be applied. Options are "em", "squarem", or "pem". The default and recommended option is "squarem".	

Value

COMMA_OLS_bootstrap_SE returns a list with two elements: 1) bootstrap_df and 2) bootstrap_SE. bootstrap_df is a data frame containing COMMA_OLS output for each bootstrap sample. bootstrap_SE is a data frame containing bootstrap standard error estimates for each parameter.

Examples

```
set.seed(20240709)
sample_size <- 2000
n_cat <- 2 # Number of categories in the binary mediator
# Data generation settings
x_mu <- 0
x_sigma <- 1
z_shape <- 1
c_shape <- 1
# True parameter values (gamma terms set the misclassification rate)
true_beta <- matrix(c(1, -2, .5), ncol = 1)
true_gamma <- matrix(c(1, 1, -.5, -1.5), nrow = 2, byrow = FALSE)
true_theta <- matrix(c(1, 1.5, -2, 2), ncol = 1)
example_data <- COMMA_data(sample_size, x_mu, x_sigma, z_shape, c_shape,
                           interaction_indicator = FALSE,
                           outcome_distribution = "Normal";
                           true_beta, true_gamma, true_theta)
beta_start <- matrix(rep(1, 3), ncol = 1)</pre>
gamma_start <- matrix(rep(1, 4), nrow = 2, ncol = 2)</pre>
```

18 COMMA_PVW

COMMA_PVW

Predictive Value Weighting Estimation of the Binary Mediator Misclassification Model

Description

Estimate β , γ , and θ parameters from the true mediator, observed mediator, and outcome mechanisms, respectively, in a binary mediator misclassification model using a predictive value weighting approach.

```
COMMA_PVW(
   Mstar,
   outcome,
   outcome_distribution,
   interaction_indicator,
   x_matrix,
   z_matrix,
   c_matrix,
   beta_start,
   gamma_start,
   theta_start,
   tolerance = 1e-07,
   max_em_iterations = 1500,
   em_method = "squarem"
)
```

COMMA_PVW 19

Arguments

Mstar A numeric vector of indicator variables (1, 2) for the observed mediator M*.

There should be no NA terms. The reference category is 2.

outcome A vector containing the outcome variables of interest. There should be no NA

terms.

outcome_distribution

A character string specifying the distribution of the outcome variable. Options

are "Bernoulli", "Poisson", or "Normal".

interaction_indicator

A logical value indicating if an interaction between x and m should be used to

generate the outcome variable, y.

x_matrix A numeric matrix of predictors in the true mediator and outcome mechanisms.

x_matrix should not contain an intercept and no values should be NA.

z_matrix A numeric matrix of covariates in the observation mechanism. z_matrix should

not contain an intercept and no values should be NA.

c_matrix A numeric matrix of covariates in the true mediator and outcome mechanisms.

c_matrix should not contain an intercept and no values should be NA.

beta_start A numeric vector or column matrix of starting values for the β parameters in

the true mediator mechanism. The number of elements in beta_start should be equal to the number of columns of x_matrix and c_matrix plus 1. Starting values should be provided in the following order: intercept, slope coefficient for the x_matrix term, slope coefficient for first column of the c_matrix, ..., slope

coefficient for the final column of the c_matrix.

gamma_start A numeric vector or matrix of starting values for the γ parameters in the obser-

vation mechanism. In matrix form, the gamma_start matrix rows correspond to parameters for the M* = 1 observed mediator, with the dimensions of z_matrix plus 1, and the gamma parameter matrix columns correspond to the true mediator categories $M \in \{1,2\}$. A numeric vector for gamma_start is obtained by concatenating the gamma matrix, i.e. gamma_start <- c(gamma_matrix). Starting values should be provided in the following order within each column: intercept, slope coefficient for first column of the z_matrix, ..., slope coefficient

for the final column of the z_matrix.

theta_start A numeric vector or column matrix of starting values for the θ parameters in the

outcome mechanism. The number of elements in theta_start should be equal to the number of columns of x_matrix and c_matrix plus 2 (if interaction_indicator

is FALSE) or 3 (if interaction_indicator is TRUE). Starting values should be provided in the following order: intercept, slope coefficient for the x_matrix term, slope coefficient for the mediator m term, slope coefficient for first column of the c_matrix, ..., slope coefficient for the final column of the c_matrix, and,

optionally, slope coefficient for xm).

tolerance A numeric value specifying when to stop estimation, based on the difference of

subsequent log-likelihood estimates. The default is 1e-7.

max_em_iterations

A numeric value specifying when to stop estimation, based on the difference of subsequent log-likelihood estimates. The default is 1e-7.

20 COMMA_PVW

em_method

A character string specifying which EM algorithm will be applied. Options are "em", "squarem", or "pem". The default and recommended option is "squarem".

Details

Note that this method can only be used for binary outcome models.

Value

COMMA_PVW returns a data frame containing four columns. The first column, Parameter, represents a unique parameter value for each row. The next column contains the parameter Estimates. The third column, Convergence, reports whether or not the algorithm converged for a given parameter estimate. The final column, Method, reports that the estimates are obtained from the "PVW" procedure.

Examples

```
set.seed(20240709)
sample_size <- 2000
n_cat <- 2 # Number of categories in the binary mediator
# Data generation settings
x_mu <- 0
x_sigma <- 1
z_shape <- 1
c_shape <- 1
# True parameter values (gamma terms set the misclassification rate)
true_beta <- matrix(c(1, -2, .5), ncol = 1)
true_gamma <- matrix(c(1, 1, -...5, -1...5)), nrow = 2, byrow = FALSE)
true_theta <- matrix(c(1, 1.5, -2, -.2), ncol = 1)
example_data <- COMMA_data(sample_size, x_mu, x_sigma, z_shape, c_shape,
                            interaction_indicator = FALSE,
                            outcome_distribution = "Bernoulli",
                            true_beta, true_gamma, true_theta)
beta_start <- matrix(rep(1, 3), ncol = 1)</pre>
gamma_start \leftarrow matrix(rep(1, 4), nrow = 2, ncol = 2)
theta_start <- matrix(rep(1, 4), ncol = 1)
Mstar = example_data[["obs_mediator"]]
outcome = example_data[["outcome"]]
x_matrix = example_data[["x"]]
z_matrix = example_data[["z"]]
c_matrix = example_data[["c"]]
PVW_results <- COMMA_PVW(Mstar, outcome, outcome_distribution = "Bernoulli",
                         interaction_indicator = FALSE,
                         x_matrix, z_matrix, c_matrix,
                         beta_start, gamma_start, theta_start)
```

PVW_results

```
COMMA_PVW_bootstrap_SE
```

Estimate Bootstrap Standard Errors using PVW

Description

Estimate Bootstrap Standard Errors using PVW

Usage

```
COMMA_PVW_bootstrap_SE(
  parameter_estimates,
  sigma_estimate,
  n_bootstrap,
  n_parallel,
  outcome_distribution,
  interaction_indicator,
  x_matrix,
  z_matrix,
  c_matrix,
  tolerance = 1e-07,
 max_em_iterations = 1500,
 em_method = "squarem"
)
```

Arguments

parameter_estimates

A column matrix of β , γ , and θ parameter values obtained from a COMMA analysis function. Parameter estimates should be supplied in the following order: 1) β (intercept, slope), 2) γ (intercept and slope from the M = 1 mechanism, intercept and slope from the M = 2 mechanism), and 3) θ (intercept, slope, coefficient for x, slope coefficient for m, slope coefficient for c, and, optionally, slope coefficient for xm if using).

sigma_estimate A numeric value specifying the estimated standard deviation. This value is only required if outcome_distribution is "Normal". Default is 1. For non-Normal outcome distributions, the value should be NULL.

n_bootstrap

A numeric value specifying the number of bootstrap samples to draw.

n_parallel

A numeric value specifying the number of parallel cores to run the computation

outcome_distribution

A character string specifying the distribution of the outcome variable. Options are "Bernoulli", "Normal", or "Poisson".

interaction_indicator

A logical value indicating if an interaction between x and m should be used to generate the outcome variable, y.

x_matrix A numeric matrix of predictors in the true mediator and outcome mechanisms.

x_matrix should not contain an intercept and no values should be NA.

z_matrix A numeric matrix of covariates in the observation mechanism. z_matrix should

not contain an intercept and no values should be NA.

c_matrix A numeric matrix of covariates in the true mediator and outcome mechanisms.

c_matrix should not contain an intercept and no values should be NA.

tolerance A numeric value specifying when to stop estimation, based on the difference of

subsequent log-likelihood estimates. The default is 1e-7.

max_em_iterations

A numeric value specifying when to stop estimation, based on the difference of

subsequent log-likelihood estimates. The default is 1e-7.

em_method A character string specifying which EM algorithm will be applied. Options are

"em", "squarem", or "pem". The default and recommended option is "squarem".

Value

COMMA_PVW_bootstrap_SE returns a list with two elements: 1) bootstrap_df and 2) bootstrap_SE. bootstrap_df is a data frame containing COMMA_PVW output for each bootstrap sample. bootstrap_SE is a data frame containing bootstrap standard error estimates for each parameter.

Examples

```
set.seed(20240709)
sample_size <- 2000
n_cat <- 2 # Number of categories in the binary mediator
# Data generation settings
x_mu <- 0
x_sigma <- 1
z_shape <- 1
c_shape <- 1
# True parameter values (gamma terms set the misclassification rate)
true_beta <- matrix(c(1, -2, .5), ncol = 1)
true_gamma <- matrix(c(1, 1, -.5, -1.5), nrow = 2, byrow = FALSE)
true_theta <- matrix(c(1, 1.5, -2, -.2), ncol = 1)
example_data <- COMMA_data(sample_size, x_mu, x_sigma, z_shape, c_shape,</pre>
                            interaction_indicator = FALSE,
                            outcome_distribution = "Bernoulli",
                            true_beta, true_gamma, true_theta)
beta_start \leftarrow matrix(rep(1, 3), ncol = 1)
gamma_start <- matrix(rep(1, 4), nrow = 2, ncol = 2)</pre>
theta_start <- matrix(rep(1, 4), ncol = 1)
```

```
Mstar = example_data[["obs_mediator"]]
outcome = example_data[["outcome"]]
x_matrix = example_data[["x"]]
z_matrix = example_data[["z"]]
c_matrix = example_data[["c"]]
PVW_results <- COMMA_PVW(Mstar, outcome, outcome_distribution = "Bernoulli",
                         interaction_indicator = FALSE,
                         x_matrix, z_matrix, c_matrix,
                         beta_start, gamma_start, theta_start)
PVW_results
PVW_SEs <- COMMA_PVW_bootstrap_SE(PVW_results$Estimates,</pre>
                                   sigma_estimate = NULL,
                                   n_{bootstrap} = 3,
                                   n_parallel = 1,
                                   outcome_distribution = "Bernoulli",
                                   interaction_indicator = FALSE,
                                   x_matrix, z_matrix, c_matrix)
PVW_SEs$bootstrap_SE
```

EM_function_bernoulliY

EM Algorithm Function for Estimation of the Misclassification Model

Description

Function is for cases with $Y \sim Bernoulli$ and with no interaction term in the outcome mechanism.

Usage

```
EM_function_bernoulliY(
  param_current,
  obs_mediator,
  obs_outcome,
  X,
  Z,
  c_matrix,
  sample_size,
  n_cat
)
```

Arguments

param_current

A numeric vector of regression parameters, in the order β , γ , θ . The γ vector is obtained from the matrix form. In matrix form, the gamma parameter matrix rows correspond to parameters for the M* = 1 observed mediator, with the

dimensions of Z. In matrix form, the gamma parameter matrix columns correspond to the true mediator categories $j=1,\ldots,$ n_cat. The numeric vector gamma_v is obtained by concatenating the gamma matrix, i.e. gamma_v <c(gamma_matrix). obs_mediator A numeric vector of indicator variables (1, 2) for the observed mediator M*. There should be no NA terms. The reference category is 2. obs_outcome A vector containing the outcome variables of interest. There should be no NA terms. Χ A numeric design matrix for the true mediator mechanism. Ζ A numeric design matrix for the observation mechanism. c_matrix A numeric matrix of covariates in the true mediator and outcome mechanisms. c_matrix should not contain an intercept and no values should be NA. sample_size An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the design matrix, X or Z. The number of categorical values that the true outcome, M, and the observed n_cat outcome, M* can take.

Value

EM_function_bernoulliY returns a numeric vector of updated parameter estimates from one iteration of the EM-algorithm.

```
EM_function_bernoulliY_XM
```

EM Algorithm Function for Estimation of the Misclassification Model

Description

Function is for cases with $Y \sim Bernoulli$ and with an interaction term in the outcome mechanism.

```
EM_function_bernoulliY_XM(
   param_current,
   obs_mediator,
   obs_outcome,
   X,
   Z,
   c_matrix,
   sample_size,
   n_cat
)
```

param_current	A numeric vector of regression parameters, in the order β, γ, θ . The γ vector is obtained from the matrix form. In matrix form, the gamma parameter matrix rows correspond to parameters for the M* = 1 observed mediator, with the dimensions of Z. In matrix form, the gamma parameter matrix columns correspond to the true mediator categories $j=1,\ldots,$ n_cat. The numeric vector gamma_v is obtained by concatenating the gamma matrix, i.e. gamma_v <- c(gamma_matrix).
obs_mediator	A numeric vector of indicator variables (1, 2) for the observed mediator M*. There should be no NA terms. The reference category is 2.
obs_outcome	A vector containing the outcome variables of interest. There should be no NA terms.
Χ	A numeric design matrix for the true mediator mechanism.
Z	A numeric design matrix for the observation mechanism.
c_matrix	A numeric matrix of covariates in the true mediator and outcome mechanisms. c_matrix should not contain an intercept and no values should be NA.
sample_size	An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the design matrix, X or Z.
n_cat	The number of categorical values that the true outcome, M , and the observed outcome, $M\star$ can take.

Value

EM_function_bernoulliY returns a numeric vector of updated parameter estimates from one iteration of the EM-algorithm.

EM_function_normalY

EM Algorithm Function for Estimation of the Misclassification Model

Description

Function is for cases with $Y \sim Normal$ and with no interaction term in the outcome mechanism.

```
EM_function_normalY(
  param_current,
  obs_mediator,
  obs_outcome,
  X,
  Z,
  c_matrix,
  sample_size,
  n_cat
)
```

param_current	A numeric vector of regression parameters, in the order β, γ, θ . The γ vector is obtained from the matrix form. In matrix form, the gamma parameter matrix rows correspond to parameters for the M* = 1 observed mediator, with the dimensions of Z. In matrix form, the gamma parameter matrix columns correspond to the true mediator categories $j=1,\ldots,$ n_cat. The numeric vector gamma_v is obtained by concatenating the gamma matrix, i.e. gamma_v <- c(gamma_matrix).
obs_mediator	A numeric vector of indicator variables (1, 2) for the observed mediator M*. There should be no NA terms. The reference category is 2.
obs_outcome	A vector containing the outcome variables of interest. There should be no NA terms.
Χ	A numeric design matrix for the true mediator mechanism.
Z	A numeric design matrix for the observation mechanism.
c_matrix	A numeric matrix of covariates in the true mediator and outcome mechanisms. c_matrix should not contain an intercept and no values should be NA.
sample_size	An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the design matrix, X or Z.
n_cat	The number of categorical values that the true outcome, M , and the observed outcome, $M*$ can take.

Value

 ${\tt EM_function_bernoulliY}\ returns\ a\ numeric\ vector\ of\ updated\ parameter\ estimates\ from\ one\ iteration\ of\ the\ EM-algorithm.$

```
EM_function_normalY_XM
```

EM Algorithm Function for Estimation of the Misclassification Model

Description

Function is for cases with $Y \sim Normal$ and with an interaction term in the outcome mechanism.

```
EM_function_normalY_XM(
   param_current,
   obs_mediator,
   obs_outcome,
   X,
   Z,
   c_matrix,
   sample_size,
   n_cat
)
```

obs_mediator A numeric vector of indicator variables (1, 2) for the observed mediator M*. There should be no NA terms. The reference category is 2. obs_outcome A vector containing the outcome variables of interest. There should be no NA terms. X A numeric design matrix for the true mediator mechanism. Z A numeric design matrix for the observation mechanism. c_matrix A numeric matrix of covariates in the true mediator and outcome mechanisms. c_matrix should not contain an intercept and no values should be NA. sample_size An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the design matrix, X or Z. The number of categorical values that the true outcome, M, and the observed outcome, M* can take.	param_current	A numeric vector of regression parameters, in the order β, γ, θ . The γ vector is obtained from the matrix form. In matrix form, the gamma parameter matrix rows correspond to parameters for the M* = 1 observed mediator, with the dimensions of Z. In matrix form, the gamma parameter matrix columns correspond to the true mediator categories $j=1,\ldots,$ n_cat. The numeric vector gamma_v is obtained by concatenating the gamma matrix, i.e. gamma_v <- c(gamma_matrix).
terms. X A numeric design matrix for the true mediator mechanism. Z A numeric design matrix for the observation mechanism. c_matrix A numeric matrix of covariates in the true mediator and outcome mechanisms. c_matrix should not contain an intercept and no values should be NA. sample_size An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the design matrix, X or Z. n_cat The number of categorical values that the true outcome, M, and the observed	obs_mediator	
A numeric design matrix for the observation mechanism. c_matrix A numeric matrix of covariates in the true mediator and outcome mechanisms. c_matrix should not contain an intercept and no values should be NA. sample_size An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the design matrix, X or Z. n_cat The number of categorical values that the true outcome, M, and the observed	obs_outcome	e
c_matrix A numeric matrix of covariates in the true mediator and outcome mechanisms. c_matrix should not contain an intercept and no values should be NA. Sample_size An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the design matrix, X or Z. n_cat The number of categorical values that the true outcome, M, and the observed	Χ	A numeric design matrix for the true mediator mechanism.
c_matrix should not contain an intercept and no values should be NA. sample_size An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the design matrix, X or Z. n_cat The number of categorical values that the true outcome, M, and the observed	Z	A numeric design matrix for the observation mechanism.
value should be equal to the number of rows of the design matrix, X or Z. n_cat The number of categorical values that the true outcome, M, and the observed	c_matrix	
	sample_size	
	n_cat	

Value

EM_function_bernoulliY returns a numeric vector of updated parameter estimates from one iteration of the EM-algorithm.

Description

Function is for cases with $Y \sim Poisson$ and without an interaction term in the outcome mechanism.

```
EM_function_poissonY(
  param_current,
  obs_mediator,
  obs_outcome,
  X,
  Z,
  c_matrix,
  sample_size,
  n_cat
)
```

param_current	A numeric vector of regression parameters, in the order β, γ, θ . The γ vector is obtained from the matrix form. In matrix form, the gamma parameter matrix rows correspond to parameters for the M* = 1 observed mediator, with the dimensions of Z. In matrix form, the gamma parameter matrix columns correspond to the true mediator categories $j=1,\ldots,$ n_cat. The numeric vector gamma_v is obtained by concatenating the gamma matrix, i.e. gamma_v <- c(gamma_matrix).
obs_mediator	A numeric vector of indicator variables (1, 2) for the observed mediator M*. There should be no NA terms. The reference category is 2.
obs_outcome	A vector containing the outcome variables of interest. There should be no NA terms.
Χ	A numeric design matrix for the true mediator mechanism.
Z	A numeric design matrix for the observation mechanism.
c_matrix	A numeric matrix of covariates in the true mediator and outcome mechanisms. c_matrix should not contain an intercept and no values should be NA.
sample_size	An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the design matrix, X or Z.
n_cat	The number of categorical values that the true outcome, M , and the observed outcome, $M\star$ can take.

Value

 ${\tt EM_function_bernoulliY}\ returns\ a\ numeric\ vector\ of\ updated\ parameter\ estimates\ from\ one\ iteration\ of\ the\ EM-algorithm.$

```
EM_function_poissonY_XM
```

EM Algorithm Function for Estimation of the Misclassification Model

Description

Function is for cases with $Y \sim Poisson$ and with an interaction term in the outcome mechanism.

```
EM_function_poissonY_XM(
  param_current,
  obs_mediator,
  obs_outcome,
  X,
  Z,
  c_matrix,
  sample_size,
  n_cat
)
```

misclassification_prob 29

Arguments

param_current	A numeric vector of regression parameters, in the order β, γ, θ . The γ vector is obtained from the matrix form. In matrix form, the gamma parameter matrix rows correspond to parameters for the M* = 1 observed mediator, with the dimensions of Z. In matrix form, the gamma parameter matrix columns correspond to the true mediator categories $j=1,\ldots,$ n_cat. The numeric vector gamma_v is obtained by concatenating the gamma matrix, i.e. gamma_v <- c(gamma_matrix).
obs_mediator	A numeric vector of indicator variables $(1, 2)$ for the observed mediator M*. There should be no NA terms. The reference category is 2.
obs_outcome	A vector containing the outcome variables of interest. There should be no NA terms.
X	A numeric design matrix for the true mediator mechanism.
Z	A numeric design matrix for the observation mechanism.
c_matrix	A numeric matrix of covariates in the true mediator and outcome mechanisms. c_matrix should not contain an intercept and no values should be NA.
sample_size	An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the design matrix, X or Z.
n_cat	The number of categorical values that the true outcome, M , and the observed outcome, $M\star$ can take.

Value

EM_function_bernoulliY returns a numeric vector of updated parameter estimates from one iteration of the EM-algorithm.

misclassification_prob

Compute Conditional Probability of Observed Mediator Given True Mediator, for Every Subject

Description

Compute the conditional probability of observing mediator $M^* \in \{1,2\}$ given the latent true mediator $M \in \{1,2\}$ as $\frac{\exp\{\gamma_{kj0} + \gamma_{kjZ}Z_i\}}{1 + \exp\{\gamma_{kj0} + \gamma_{kjZ}Z_i\}}$ for each of the $i=1,\ldots,$ n subjects.

```
misclassification_prob(gamma_matrix, z_matrix)
```

30 NCHS2022_sample

Arguments

gamma_matrix A numeric matrix of estimated regression parameters for the observation mecha-

nism, M* | M (observed mediator, given the true mediator) ~ Z (misclassification predictor matrix). Rows of the matrix correspond to parameters for the M* = 1 observed mediator, with the dimensions of z_matrix. Columns of the matrix correspond to the true mediator categories $j=1,\ldots,$ n_cat. The matrix should

be obtained by COMMA_EM, COMMA_PVW, or COMMA_OLS.

z_matrix A numeric matrix of covariates in the observation mechanism. z_matrix should

not contain an intercept.

Value

misclassification_prob returns a dataframe containing four columns. The first column, Subject, represents the subject ID, from 1 to n, where n is the sample size, or equivalently, the number of rows in z_matrix. The second column, M, represents a true, latent mediator category $M \in \{1,2\}$. The third column, Mstar, represents an observed outcome category $M^* \in \{1,2\}$. The last column, Probability, is the value of the equation $\frac{\exp\{\gamma_{kj0}+\gamma_{kjz}Z_i\}}{1+\exp\{\gamma_{kj0}+\gamma_{kjz}Z_i\}}$ computed for each subject, observed mediator category, and true, latent mediator category.

Examples

```
set.seed(123)
sample_size <- 1000
cov1 <- rnorm(sample_size)
cov2 <- rnorm(sample_size, 1, 2)
z_matrix <- matrix(c(cov1, cov2), nrow = sample_size, byrow = FALSE)
estimated_gammas <- matrix(c(1, -1, .5, .2, -.6, 1.5), ncol = 2)
P_Ystar_M <- misclassification_prob(estimated_gammas, z_matrix)
head(P_Ystar_M)</pre>
```

NCHS2022_sample

Example data from the National Vital Statistics System of the National Center for Health Statistics (NCHS), 2022

Description

Example data from the National Vital Statistics System of the National Center for Health Statistics (NCHS), 2022

Usage

NCHS2022_sample

Format

A dataframe 30 columns, including demographic and birth information for a random sample of 20,000 singleton births from nulliparous mothers in the US in 2022.

pistar_compute 31

Source

https://data.nber.org/nvss/natality/inputs/raw/2022/

Examples

```
## Not run:
data("NCHS2022_sample")
head(NCHS2022_sample)
## End(Not run)
```

pistar_compute

Compute Conditional Probability of Each Observed Outcome Given Each True Outcome, for Every Subject

Description

Compute Conditional Probability of Each Observed Outcome Given Each True Outcome, for Every Subject

Usage

```
pistar_compute(gamma, Z, n, n_cat)
```

Arguments

gamma	A numeric matrix of regression parameters for the observed outcome mechanism, Y* Y (observed outcome, given the true outcome) ~ Z (misclassification predictor matrix). Rows of the matrix correspond to parameters for the Y* = 1 observed outcome, with the dimensions of Z. Columns of the matrix correspond to the true outcome categories $j=1,\ldots,n_{\text{cat}}$.
Z	A numeric design matrix.
n	An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the design matrix, Z.
n_cat	The number of categorical values that the true outcome, Y, and the observed outcome, Y* can take.

Value

pistar_compute returns a matrix of conditional probabilities, $P(Y_i^* = k | Y_i = j, Z_i) = \frac{\exp\{\gamma_{kj0} + \gamma_{kjz} Z_i\}}{1 + \exp\{\gamma_{kj0} + \gamma_{kjz} Z_i\}}$ for each of the $i = 1, \ldots,$ n subjects. Rows of the matrix correspond to each subject and observed outcome. Specifically, the probability for subject i and observed category \$1\$ occurs at row i. The probability for subject i and observed category \$2\$ occurs at row i+ n. Columns of the matrix correspond to the true outcome categories $j=1,\ldots,$ n_cat.

32 sum_every_n

pi_compute	Compute Probability of Each True Outcome, for Every Subject
p1_compace	Compute 1 robustity of Each True Succente, for Every Subject

Description

Compute Probability of Each True Outcome, for Every Subject

Usage

```
pi_compute(beta, X, n, n_cat)
```

Arguments

beta	A numeric column matrix of regression parameters for the Y (true outcome) \sim X (predictor matrix of interest).
X	A numeric design matrix.
n	An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the design matrix, X.
n_cat	The number of categorical values that the true outcome, Y, can take.

Value

pi_compute returns a matrix of probabilities, $P(Y_i=j|X_i)=\frac{\exp(X_i\beta)}{1+\exp(X_i\beta)}$ for each of the $i=1,\ldots,$ n subjects. Rows of the matrix correspond to each subject. Columns of the matrix correspond to the true outcome categories $j=1,\ldots,$ n_cat.

sum_every_n

Sum Every "n"th Element

Description

Sum Every "n"th Element

Usage

```
sum_every_n(x, n)
```

Arguments

x A numeric vector to sum over

n A numeric value specifying the distance between the reference index and the

next index to be summed

Value

sum_every_n returns a vector of sums of every nth element of the vector x.

sum_every_n1 33

CIIM	everv	n1
Suiii_		_111

Sum Every "n"th Element, then add 1

Description

Sum Every "n"th Element, then add 1

Usage

```
sum_every_n1(x, n)
```

Arguments

x A numeric vector to sum over

n A numeric value specifying the distance between the reference index and the

next index to be summed

Value

sum_every_n1 returns a vector of sums of every nth element of the vector x, plus 1.

theta_optim	Likelihood Function for Normal Outcome Mechanism with a Binary
	Mediator

Description

Likelihood Function for Normal Outcome Mechanism with a Binary Mediator

Usage

```
theta_optim(param_start, m, x, c_matrix, outcome, sample_size, n_cat)
```

Arguments

m

param_start

A numeric vector or column matrix of starting values for the θ parameters in the outcome mechanism and σ parameter. The number of elements in param_start should be equal to the number of columns of x_matrix and c_matrix plus 2 (if interaction_indicator is FALSE) or 3 (if interaction_indicator is TRUE). Starting values should be provided in the following order: intercept, slope coefficient for the x_matrix term, slope coefficient for the mediator m term, slope coefficient for first column of the c_matrix, ..., slope coefficient for the final column of the c_matrix, and, optionally, slope coefficient for xm). The final entry should be the starting value for σ .

A vector or column matrix containing the true binary mediator or the E-step weight (with values between 0 and 1). There should be no NA terms.

34 theta_optim_XM

Х	A vector or column matrix of the predictor or exposure of interest. There should be no NA terms.
c_matrix	A numeric matrix of covariates in the true mediator and outcome mechanisms. c_matrix should not contain an intercept and no values should be NA.
outcome	\boldsymbol{A} vector containing the outcome variables of interest. There should be no NA terms.
sample_size	An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the design matrix, X or Z.
n_cat	The number of categorical values that the true outcome, M, and the observed outcome, M* can take.

Value

 $the \verb|ta_optim| returns a numeric value of the (negative) log-likelihood function.$

theta_optim_XM	theta_optim_XM	Likelihood Function for Normal Outcome Mechanism with a Binary Mediator and an Interaction Term
----------------	----------------	--

Description

Likelihood Function for Normal Outcome Mechanism with a Binary Mediator and an Interaction Term

Usage

```
theta_optim_XM(param_start, m, x, c_matrix, outcome, sample_size, n_cat)
```

Arguments

param_start	A numeric vector or column matrix of starting values for the θ parameters in the outcome mechanism and σ parameter. The number of elements in param_start should be equal to the number of columns of x_matrix and c_matrix plus 2 (if interaction_indicator is FALSE) or 3 (if interaction_indicator is TRUE). Starting values should be provided in the following order: intercept, slope coefficient for the x_matrix term, slope coefficient for the mediator m term, slope coefficient for first column of the c_matrix,, slope coefficient for the final column of the c_matrix, and, optionally, slope coefficient for xm). The final entry should be the starting value for σ .
m	vector or column matrix containing the true binary mediator or the E-step weight (with values between 0 and 1). There should be no NA terms.
х	A vector or column matrix of the predictor or exposure of interest. There should be no NA terms.
c_matrix	A numeric matrix of covariates in the true mediator and outcome mechanisms. c_matrix should not contain an intercept and no values should be NA.

outcome	A vector containing the	outcome variables of interest.	There should be no NA
---------	-------------------------	--------------------------------	-----------------------

terms.

sample_size An integer value specifying the number of observations in the sample. This

value should be equal to the number of rows of the design matrix, X or Z.

n_cat The number of categorical values that the true outcome, M, and the observed

outcome, M* can take.

Value

theta_optim_XM returns a numeric value of the (negative) log-likelihood function.

true_classification_prob

Compute Probability of Each True Mediator, for Every Subject

Description

Compute the probability of the latent true mediator $M \in \{1,2\}$ as $P(M_i = j | X_i) = \frac{\exp(X_i \beta)}{1 + \exp(X_i \beta)}$ for each of the i = 1, ..., n subjects.

Usage

 $true_classification_prob(beta_matrix, x_matrix)$

Arguments

beta_matrix A numeric column matrix of estimated regression parameters for the true me-

diator mechanism, M (true mediator) ~ X (predictor matrix of interest), obtained

from COMMA_EM, COMMA_PVW, or COMMA_OLS.

x_matrix A numeric matrix of covariates in the true mediator mechanism. x_matrix

should not contain an intercept.

Value

true_classification_prob returns a dataframe containing three columns. The first column, Subject, represents the subject ID, from 1 to n, where n is the sample size, or equivalently, the number of rows in x_matrix. The second column, M, represents a true, latent mediator category $M \in \{1,2\}$. The last column, Probability, is the value of the equation $P(M_i = j|X_i) = \frac{\exp(X_i\beta)}{1+\exp(X_i\beta)}$ computed for each subject and true, latent mediator category.

36 w_m_binaryY

Examples

```
set.seed(123)
sample_size <- 1000
cov1 <- rnorm(sample_size)</pre>
cov2 <- rnorm(sample_size, 1, 2)</pre>
x_matrix <- matrix(c(cov1, cov2), nrow = sample_size, byrow = FALSE)</pre>
estimated_betas <- matrix(c(1, -1, .5), ncol = 1)
P_M <- true_classification_prob(estimated_betas, x_matrix)
head(P_M)
```

w_m_binaryY

Compute E-step for Binary Mediator Misclassification Model Estimated With the EM Algorithm

Description

Note that this function should only be used for Binary outcome models.

Usage

```
w_m_binaryY(
  mstar_matrix,
  outcome_matrix,
  pistar_matrix,
  pi_matrix,
  p_yi_m0,
  p_yi_m1,
  sample_size,
  n_cat
)
```

Arguments

mstar_matrix

A numeric matrix of indicator variables (0, 1) for the observed mediator M*. Rows of the matrix correspond to each subject. Columns of the matrix correspond to each observed mediator category. Each row should contain exactly one 0 entry and exactly one 1 entry.

outcome_matrix A numeric matrix of indicator variables (0, 1) for the observed outcome Y. Rows of the matrix correspond to each subject. Columns of the matrix correspond to each observed outcome category. Each row should contain exactly one 0 entry and exactly one 1 entry.

pistar_matrix

A numeric matrix of conditional probabilities obtained from the internal function pistar_compute. Rows of the matrix correspond to each subject and to each observed mediator category. Columns of the matrix correspond to each true, latent mediator category.

w_m_normalY 37

pi_matrix	A numeric matrix of probabilities obtained from the internal function pi_compute. Rows of the matrix correspond to each subject. Columns of the matrix correspond to each true, latent mediator category.
p_yi_m0	A numeric vector of outcome probabilities computed assuming a true mediator value of 0.
p_yi_m1	A numeric vector of outcome probabilities computed assuming a true mediator value of 1.
sample_size	An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the observed mediator matrix, mstar_matrix.
n_cat	The number of categorical values that the true outcome, M, and the observed outcome, M*, can take.

Value

w_m_binaryY returns a matrix of E-step weights for the EM-algorithm. Rows of the matrix correspond to each subject. Columns of the matrix correspond to the true mediator categories $j=1,\ldots,$ n_cat.

w_m_normalY Compute E-step for Binary Mediator Misclassification Model Estimated With the EM Algorithm

Description

Note that this function should only be used for Normal outcome models.

Usage

```
w_m_normalY(
   mstar_matrix,
   pistar_matrix,
   pi_matrix,
   p_yi_m0,
   p_yi_m1,
   sample_size,
   n_cat
)
```

Arguments

mstar_matrix

A numeric matrix of indicator variables (0, 1) for the observed mediator M*. Rows of the matrix correspond to each subject. Columns of the matrix correspond to each observed mediator category. Each row should contain exactly one 0 entry and exactly one 1 entry.

38 w_m_poissonY

pistar_matrix	A numeric matrix of conditional probabilities obtained from the internal function pistar_compute. Rows of the matrix correspond to each subject and to each observed mediator category. Columns of the matrix correspond to each true, latent mediator category.
pi_matrix	A numeric matrix of probabilities obtained from the internal function pi_compute. Rows of the matrix correspond to each subject. Columns of the matrix correspond to each true, latent mediator category.
p_yi_m0	A numeric vector of Normal outcome likelihoods computed assuming a true mediator value of 0.
p_yi_m1	A numeric vector of Normal outcome likelihoods computed assuming a true mediator value of 1.
sample_size	An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the observed mediator matrix, mstar_matrix.
n_cat	The number of categorical values that the true outcome, M , and the observed outcome, $M\star$, can take.

Value

w_m_normalY returns a matrix of E-step weights for the EM-algorithm. Rows of the matrix correspond to each subject. Columns of the matrix correspond to the true mediator categories $j=1,\ldots,$ n_cat.

w_m_poissonY Compute E-step for Binary Mediator Misclassification Model Estimated With the EM Algorithm

Description

Note that this function should only be used for Poisson outcome models.

```
w_m_poissonY(
   mstar_matrix,
   outcome_matrix,
   pistar_matrix,
   pi_matrix,
   p_yi_m0,
   p_yi_m1,
   sample_size,
   n_cat
)
```

w_m_poissonY

Arguments

mstar_matrix	A numeric matrix of indicator variables (0, 1) for the observed mediator M*. Rows of the matrix correspond to each subject. Columns of the matrix correspond to each observed mediator category. Each row should contain exactly one 0 entry and exactly one 1 entry.
outcome_matrix	A numeric matrix of indicator variables (0, 1) for the observed outcome Y. Rows of the matrix correspond to each subject. Columns of the matrix correspond to each observed outcome category. Each row should contain exactly one 0 entry and exactly one 1 entry.
pistar_matrix	A numeric matrix of conditional probabilities obtained from the internal function pistar_compute. Rows of the matrix correspond to each subject and to each observed mediator category. Columns of the matrix correspond to each true, latent mediator category.
pi_matrix	A numeric matrix of probabilities obtained from the internal function pi_compute. Rows of the matrix correspond to each subject. Columns of the matrix correspond to each true, latent mediator category.
p_yi_m0	A numeric vector of outcome probabilities computed assuming a true mediator value of 0.
p_yi_m1	A numeric vector of outcome probabilities computed assuming a true mediator value of 1.
sample_size	An integer value specifying the number of observations in the sample. This value should be equal to the number of rows of the observed mediator matrix, mstar_matrix.
n_cat	The number of categorical values that the true outcome, M , and the observed outcome, $M\star$, can take.

Value

w_m_poissonY returns a matrix of E-step weights for the EM-algorithm. Rows of the matrix correspond to each subject. Columns of the matrix correspond to the true mediator categories $j=1,\ldots,$ n_cat.

Index

```
* datasets
    NCHS2022_sample, 30
COMBO_EM_algorithm, 2
COMBO_EM_function, 4
COMBO_weight, 4
COMMA_boot_sample, 5
COMMA_data, 6
COMMA_EM, 8
COMMA_EM_bootstrap_SE, 11
COMMA_OLS, 13
COMMA_OLS_bootstrap_SE, 16
COMMA_PVW, 18
COMMA_PVW_bootstrap_SE, 21
EM_function_bernoulliY, 23
EM_function_bernoulliY_XM, 24
EM_function_normalY, 25
EM_function_normalY_XM, 26
EM_function_poissonY, 27
EM_function_poissonY_XM, 28
misclassification_prob, 29
NCHS2022_sample, 30
pi_compute, 32
pistar_compute, 31
sum_every_n, 32
sum_every_n1, 33
theta_optim, 33
theta_optim_XM, 34
true_classification_prob, 35
w\_m\_binaryY, \color{red}{\bf 36}
w_m_normalY, 37
w_m_poissonY, 38
```