Calculus III Honors Spring 2012 Exam 1 - Practice Problems, Set 2

1. T (F) If
$$(a_n)$$
 is increasing and $a_n < 1$ for all n , then $\lim_{n \to \infty} a_n = 1$.

2. (T) F If
$$\sum a_n = \infty$$
 and $\sum b_n = \infty$, then $\sum (a_n + b_n) = \infty$.

3. T (F) If
$$a_n \to 0$$
 as $n \to \infty$, then $\sum a_n$ converges.

4. Define what it means for a series to converge.
$$\mathcal{N}_{o}$$

For each of the following problems, determine (a) if the sequence (a_n) converges, and if so, find its limit; and (b) if the series $\sum a_n$ converges, and if possible, find its limit.

5.
$$a_n = \cos(n\pi/2)$$

6.
$$a_1 = 5$$
, $a_{n+1} = a_n/3$.

(a) dweges (b) diverges
(a)
$$\rightarrow 0$$
 (b) $\rightarrow \frac{5}{1-1/3} = \frac{15}{2}$

$$7. \ a_n = \frac{n^n}{n!}$$

8.
$$a_n = \frac{2}{n^2 - 2n}$$
 , $n > 2$

9.
$$a_n = \left(\frac{1}{n} - \frac{1}{n+1} + \frac{1}{n+2}\right)$$

$$= (1 - \frac{1}{3}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{5}) + \frac{1}{3}$$

10.
$$a_1 = 1$$
, $a_{n+1} = \sqrt{1 + a_n}$.

9. (a) -> 0 (b)
$$\left(1 - \frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{4} + \frac{1}{5}\right) + \left(\frac{1}{4} - \frac{1}{5} + \frac{1}{6}\right) + \dots$$

$$= 1 + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots = 2 + \frac{1}{n} - \frac{1}{2} \quad \text{diveyes}$$

10. (a) note an in increasing (at least note an >0).

if it has a limit L it must satisfy

$$L = \sqrt{LL} = 2 L^2 = 1 + L = 2 L^2 - L - 1 = 0$$

$$= 2 L = 1 + \sqrt{5}$$
Since L>0, have $L = \frac{L + \sqrt{5}}{2}$.

To check limit exists, can show by induction

an in increasing & an < $\frac{1 + \sqrt{5}}{2}$ for all n.