38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023): NIER Track

Towards Self-Adaptive Machine Learning-Enabled Systems Through QoS-Aware Model Switching

Authors: Shubham Kulkarni, Arya Marda, Karthik Vaidhyanathan, Software Engineering Research Center, IIIT Hyderabad, India

ML Trade Off: Speed vs. Accuracy

Yes, we say you should switch, but why? (3) Because of System, Model & Environment Uncertainties!

Model Uncertainties

Models abstract real-world data, leading to potential inaccuracies

Environment Uncertainties

Varying and unpredictable incoming data requests challenge consistent performance

System Uncertainties

Resource constraints and latency issues challenge system performance

The Need for Adaptability

Can we self-adapt system in realtime for optimal outcomes?

Introducing: The ML Model Balancer The Heart of Dynamic Model Switching

Dynamic Evaluation

Assessing models in real-time scenarios

Seamless Switching

Transitions between models in real-time, minimizing latency and ensuring optimal outcomes

Overcoming Model Limitations

By leveraging multiple models, it mitigates the weaknesses of any single model

Prelude to AdaMLS

The foundational concept that **AdaMLS** builds upon for software architecture-driven adaptability

AdaMLS: Our Novel Self Adaptive approach

Learning Engine Functioning: Extracting Adaptation Rules

AdaMLS : Our Novel Self Adaptive approach: Extended MAPE-K + Lightweight Unsupervised Learning + Dynamic Switching

Learning Engine

Unsupervised
Learning
Abstracting
Performance

Machine Learning Enabled System

Dynamic Model Switching in Run-Time

Demonstrated Results: Object Detection Service

Utility: Way to represent Quality of Service, a function of speed and accuracy

AdaMLS vs. Others

Surpasses naive approach & single models

Up to 39% improvement over Yolov5n (Second Best)

Fast Model Transitions

Transition time <

Broad Applicability & Future Promise

Universal Fit

Not just object detection; AdaMLS fits any ML system

Addressing Real-World Challenges

Tackles uncertainties in dynamic environments.

Setting New Benchmarks

Redefining QoS in ML-driven systems, Also making then Sustainable

The Future is Adaptive

Embrace change; enhance performance

- -

