Algebraic Topology 1 - Assignment 8

M. Durante, s2303760, Leiden University M. Fruttidoro, s2287129, Leiden University I. Prosepe, s2290162, Leiden University

21st November 2018

Exercise 1

(a) First, we give a description of X.

It is enough to describe the attaching maps: $f_1: J_1 \times \partial D^1 \to X_0$ is constant, as $X_0 = \{e_0\}$; $f_2: \partial D^2 \to X_1$ runs along the sides starting from e_0 , moving along a, then b, a^{-1} , b^{-1} , c, d, c^{-1} and d^{-1} , where x^{-1} refers to the 1-cell x with opposite orientation.

By [1, cor. 9.6], we get that $\tilde{C}_0(X,\mathbb{Z}) = H_0(X_0,X_{-1},\mathbb{Z}) \cong H_0(X_0,\mathbb{Z}) \cong \mathbb{Z}, \ \tilde{C}_1(X,\mathbb{Z}) =$ $H_1(X_1, X_0, \mathbb{Z}) \cong \mathbb{Z}^4$ and $\tilde{C}_2(X, \mathbb{Z}) = H_2(X_2, X_1, \mathbb{Z}) \cong \mathbb{Z}$ while for n > 2, since $X_{n-1} = X_n = X$, $\tilde{C}_n(X,\mathbb{Z}) = H_n(X_n, X_{n-1}, \mathbb{Z}) \cong 0.$

We consider now the sequence $0 \to \tilde{C}_2(X,\mathbb{Z}) \xrightarrow{\tilde{\partial}_2} \tilde{C}_1(X,\mathbb{Z}) \xrightarrow{\tilde{\partial}_1} \tilde{C}_0(X,\mathbb{Z}) \to 0$. Trivially, $H_n(X,\mathbb{Z}) \cong H_n(\tilde{C}(X,\mathbb{Z})) \cong 0$ for n > 2.

Choosing for each $j \in J_n$ a generator $1_n \in H_n(D^n, \partial D^n, \mathbb{Z})$, the $e_j^n = \chi_j(1_n)$ form a \mathbb{Z} -basis of

 $H_n(X_n, X_{n-1}, \mathbb{Z})$ by [1, cor. 10.1], hence we may just see where these elements are sent. By [1, thm. 10.4], the coefficient d_{jk} in $\tilde{\partial_n}(e^n_j) = \sum_{k \in J_{n-1}} d_{jk} e^{n-1}_k$ is given by $\deg(h_{n-1} \circ q_k \circ q_k)$ $q \circ f_n|_{\{j\} \times \partial D^n}$).

Since the degree map is multiplicative, being $f_1|_{\{i\}\times\partial D^1}$ constant and hence of degree 0, $\deg(h_0\circ$ $q_k \circ q \circ f_1|_{\{j\} \times \partial D^1}) = \deg(h_0 \circ q_k \circ q) \deg(f_1|_{\{j\} \times \partial D^1}) = 0$, i.e. $\tilde{\partial}_1$ is the zero-map.

It follows that $H_0(X,\mathbb{Z}) \cong \ker(\tilde{\partial}_0)/\operatorname{Im}(\tilde{\partial}_1) = \mathbb{Z}/0 \cong \mathbb{Z}$.

Consider now a loop representing a generator of $H_2(\partial D^2, \mathbb{Z})$. It wraps ∂D^2 once and it is sent by f_2 to a loop wrapping X_1 like f_2 does. Being $X_1 \xrightarrow{q} X_1/X_0$ an identity, it doesn't act, while the projection $X_1/X_0 \xrightarrow{q'} D^1/\partial D^1 \cong S^1$ is s.t. now the image is a loop wrapping S^1 multiple times (once for every wrapping of a 1-cell, which are 8), however for every wrapping there is an inverse wrapping, thus the image of the generating loop under $q' \circ q \circ f_2$ is homotopy equivalent to the constant one and $\deg(h_1 \circ q' \circ q \circ f_2) = \deg(h_1) \deg(q' \circ q \circ f_2) = 0$. It follows that, in $\tilde{\partial}_2(e^2)$, the coefficients are all 0, thus $\tilde{\partial}_2$ is the zero-map and $H_2(X,\mathbb{Z}) \cong H_2(\tilde{C}(X,\mathbb{Z})) \cong \mathbb{Z}$, $H_1(X,\mathbb{Z}) \cong H_1(\tilde{C}(X,\mathbb{Z})) \cong \mathbb{Z}^4$

(b) This surface is a torus of genus 2.

Exercise 10.1

First, we prove that $\varinjlim S^n \cong S^\infty$, where the maps are the inclusions $S^m \xrightarrow{i_{mn}} S^n$.

First of all, we see that the inclusion maps $S^n \xrightarrow{i_n} S^\infty$ are s.t. their diagram commutes, as $i_n \circ i_{mn}(x_0, \ldots, x_m) = (x_0, \ldots, x_m, 0, \ldots, 0) = i_m(x_0, \ldots, x_m)$.

Now, let $S^n \xrightarrow{f_n} X$ be a collection of maps s.t. the diagram commutes. Then, we may construct $S^\infty \xrightarrow{f} X$ by setting, for some $(x_i)_{i \in \mathbb{N}}$, $f((x_i)_{i \in \mathbb{N}}) = f_n(x_0, \dots, x_n)$, where n is s.t. $x_m = 0$ for all m > n. It is well defined: indeed, taking another m with the same property as n, assuming that m > n, we see that $f_n(x_0, \dots, x_n) = f_m \circ i_{nm}(x_0, \dots, x_n) = f_m(x_0, \dots, x_n, 0, \dots, 0) = f_m(x_0, \dots, x_m)$ by the commutativity and the fact that $x_i = 0$ for i > n, hence we are done. The same happens if n > m and the proof is essentially identical.

By construction, $f \circ i_n(x_0, \ldots, x_n) = f_n(x_0, \ldots, x_n)$, hence we are done if we can prove that f is continuous, which follows from the fact that $S^n \cap f^{-1}(U) = f_n^{-1}(U)$, which is open for every n by continuity of f_n . The uniqueness follows from the fact that an f' making the diagram commute has to be s.t. $f' \circ i_n = f_n = f \circ i_n$ for every n and every point of S^{∞} lies in the image of some i_n .

Now we show that the following diagram, where $\pi_n: S^n \to S^n_{/\sim}$ is the projection map and $j_{mn}: S^m_{/\sim} \to S^n_{/\sim}$ is defined as $j_{mn}([x_0,\ldots,x_m]) = [x_0,\ldots,x_m,0\ldots,0]$ (which is again s.t. $j_{nk}\circ j_{mn} = j_{mk}$, as $j_{nk}\circ j_{mn}([x_0,\ldots,x_m]) = [x_0,\ldots,x_m,0,\ldots,0] = j_{mk}([x_0,\ldots,x_m])$), commutes:

$$S^{0} \xrightarrow{i_{0,1}} S^{1} \xrightarrow{i_{1,2}} S^{2} \xrightarrow{i_{2,3}} \cdots$$

$$\downarrow^{\pi_{0}} \qquad \downarrow^{\pi_{1}} \qquad \downarrow^{\pi_{2}}$$

$$S^{0} \xrightarrow{j_{0,1}} S^{1}_{/\sim} \xrightarrow{j_{1,2}} S^{2}_{/\sim} \xrightarrow{j_{2,3}} \cdots$$

To do this, it is sufficient to show that the generic square of the following form commutes:

$$S^{n} \xrightarrow{i_{n,n+1}} S^{n+1}$$

$$\downarrow^{\pi_{n}} \qquad \downarrow^{\pi_{n+1}}$$

$$S^{n}/\sim \xrightarrow{j_{n,n+1}} S^{n+1}/\sim$$

This follows from the fact that $j_{n,n+1} \circ \pi_n(x_0,\ldots,x_n) = j_{n,n+1}([x_0,\ldots,x_n]) = [x_0,\ldots,x_n,0] = \pi_{n+1}(x_0,\ldots,x_n,0) = \pi_{n+1} \circ i_{n,n+1}(x_0,\ldots,x_n).$

Now we will show that $\varinjlim S_{/\sim}^n \cong S_{/\sim}^\infty$, where the map $i_n : S_{/\sim}^n \to S_{/\sim}^\infty$ is defined as $i_n([x_0, \dots, x_n]) = [(x_i)_{i \in \mathbb{N}}]$, where $x_i = 0$ for i > n.

First of all, $i_n \circ i_{mn}([x_0, ..., x_m]) = i_n([x_0, ..., x_m, 0, ..., 0]) = [(x_i)_{i \in \mathbb{N}}] = i_m([x_0, ..., x_m]),$ where $x_i = 0$ for i > m by construction.

Let $S_{/\sim}^n \xrightarrow{g_n} X$ be a collection of maps s.t. the diagram commutes. Then, we may lift each of them through the π_n to maps on S^n , let's say f_n , defined as $f_n := g_n \circ \pi_n$, i.e. $f_n(x_0, \ldots, x_n) = g_n([x_0, \ldots, x_n])$. By construction, $f_m(x_0, \ldots, x_m) = g_m([x_0, \ldots, x_m]) = g_n \circ j_{mn}([x_0, \ldots, x_m]) = g_n([x_0, \ldots, x_m, 0, \ldots, 0]) = f_n(x_0, \ldots, x_m, 0, \ldots, 0) = f_n \circ i_{mn}(x_0, \ldots, x_m)$, hence they make the diagram commute. It follows that there is a unique $f: S^\infty \to X$ s.t. $f \circ i_n = f_n$ and it is defined as before.

Again, by construction, $f((x_i)_{i\in\mathbb{N}}) = f_n(x_0,\ldots,x_n) = g_n([x_0,\ldots,x_n]) = g_n([-x_0,\ldots,-x_n]) = f_n(-x_0,\ldots,-x_n) = f((-x_i)_{i\in\mathbb{N}})$, thus f is uniquely factorized through the quotient map $\pi_\infty: S^\infty \to S^\infty_{/\sim}$, inducing a unique continuous map $g: S^\infty_{/\sim} \to X$.

The thesis follows, as $g \circ j_n \circ \pi_n = g \circ \pi_\infty \circ i_n = f \circ i_n = f_n = g_n \circ \pi_n$ because $j_n \circ \pi_n(x_0, \ldots, x_n) = j_n([x_0, \ldots, x_n]) = [(x_i)_{i \in \mathbb{N}}] = \pi_\infty((x_i)_{i \in \mathbb{N}}) = \pi_\infty \circ i_n(x_0, \ldots, x_n)$, where $x_i = 0$ for i > n, and each projection is an epimorphism, thus $g \circ j_n = g_n$ and the diagram commutes.

Consider the canonical inclusions $j'_{mn}: \mathbb{P}^m_{\mathbb{R}} \to \mathbb{P}^n_{\mathbb{R}}$ used to construct each $\mathbb{P}^n_{\mathbb{R}}$ as a CW-complex and the usual homeomorphisms $\phi: S^n_{/\sim} \to \mathbb{P}^n_{\mathbb{R}}$. We want to show that the following diagram commutes:

$$S_{/\sim}^{0} \xrightarrow{j_{0,1}} S_{/\sim}^{1} \xrightarrow{j_{1,2}} S_{/\sim}^{2} \xrightarrow{j_{2,3}} \cdots$$

$$\downarrow^{\phi_{0}} \qquad \downarrow^{\phi_{1}} \qquad \downarrow^{\phi_{2}}$$

$$\mathbb{P}_{\mathbb{R}}^{0} \xrightarrow{j'_{0,1}} \mathbb{P}_{\mathbb{R}}^{1} \xrightarrow{j'_{1,2}} \mathbb{P}_{\mathbb{R}}^{2} \xrightarrow{j'_{2,3}} \cdots$$

Again, we only have to show it for a generic square of the following form:

$$S_{/\sim}^{n} \xrightarrow{j_{n,n+1}} S_{/\sim}^{n+1}$$

$$\downarrow^{\phi_{n}} \qquad \downarrow^{\phi_{n+1}}$$

$$\mathbb{P}_{\mathbb{R}}^{n} \xrightarrow{j'_{n,n+1}} \mathbb{P}_{\mathbb{R}}^{n+1}$$

We see that $j'_{mn} \circ \phi_m([x_0,\ldots,x_m]) = j'_{mn}([x_0:\ldots:x_m]) = [x_0:\ldots:x_m:0:\ldots:0] = \phi_n([x_0,\ldots,x_n,0,\ldots,0]) = \phi_n \circ j_{mn}([x_0,\ldots,x_n])$, hence we are done. Now we have induced on each S^n a CW-complex structure which is compatible with the maps,

Now we have induced on each S^n a CW-complex structure which is compatible with the maps, as the following diagram shows (remember that in a commutative square we may reverse all of the isomorphisms and still have a commutative square):

$$\partial D^{n+1} \xrightarrow{\qquad} \mathbb{P}^{n}_{\mathbb{R}} \xrightarrow{\qquad \phi_{n}^{-1}} S^{n}_{/\sim}$$

$$\downarrow \qquad \qquad j'_{n,n+1} \downarrow \qquad \qquad \downarrow j_{n,n+1}$$

$$D^{n+1} \xrightarrow{\qquad} \mathbb{P}^{n+1}_{\mathbb{R}} \xrightarrow{\qquad \phi_{n+1}^{-1}} S^{n+1}_{/\sim}$$

In particular, since a succession of finite CW-complexes where X_{n+1} is obtained by glueing to X_n some (n+1)-cells is s.t. $\varinjlim X_n \cong X$, where $X = \bigcup_{n \in \mathbb{N}} X_n$ is again a CW-complex by construction, we have that $\varinjlim \mathbb{P}^n_{\mathbb{R}} \xrightarrow{\text{exists}}$ and it is isomorphic (homeomorphic) to $\varinjlim S_{/\sim}^n \cong S_{/\sim}^\infty$, as the two chains are isomorphic and therefore their colimits are as well. We have therefore induced the desired CW-complex structure on $S_{/\sim}^\infty$.

We shall now compute $H_n(S^{\infty}_{/\sim}, \mathbb{Z})$.

By [1, prop. 9.12], we know that $H_n(S_{/\sim}^{\infty}, \mathbb{Z}) \cong H_n(S_{/\sim}^{n+1}, \mathbb{Z}) \cong H_n(\mathbb{P}_{\mathbb{R}}^{n+1}, \mathbb{Z})$. By [1, thm. 10.9], we can conclude that:

$$H_n(S^{\infty}_{/\sim}, \mathbb{Z}) \cong \begin{cases} \mathbb{F}_2 & \text{if } n \text{ is odd} \\ 0 & \text{otherwise} \end{cases}$$

References

[1] S. Sagave, Algebraic Topology, 2017