CHUYÊN ĐỀ

BÀI GIẢNG MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP

Mục tiêu

Kiến thức

+ Nhận biết được các dạng phương trình lượng giác thường gặp và cách giải.

Kĩ năng

- + Biết áp dụng công thức nghiệm đối với từng phương trình lượng giác cơ bản.
- + Vận dụng phương pháp giải phương trình phù hợp vào từng trường hợp.

I. LÍ THUYẾT TRỌNG TÂM

SƠ ĐỒ HỆ THỐNG HÓA SƠ ĐỒ CHUNG GIẢI PHƯƠNG TRÌNH LƯỢNG GIÁC

II. CÁC DẠNG BÀI TẬP

Dạng 1: Phương trình thuần nhất

$$a\sin x + b\cos x = c \qquad (a,b \in \mathbb{R} \setminus \{0\}).$$

Ví dụ: Giải phương trình $\sqrt{3} \sin 3x - \cos 3x = 2$.

Hướng dẫn giải

Để giải phương trình có dạng trên, ta thực hiện

theo các bước sau

Bước 1. Kiểm tra

- Nếu $a^2 + b^2 < c^2$ phương trình vô nghiệm.

- Nếu $a^2 + b^2 \ge c^2$ khi đó phương trình có nghiêm, ta thực hiện tiếp Bước 2.

Bước 2. Chia hai vế phương trình cho Ta có $\sqrt{3} \sin 3x - \cos 3x = 2$.

$$\sqrt{a^{2} + b^{2}} \neq 0 \text{ ta được} \qquad \Leftrightarrow \frac{\sqrt{3}}{2} \sin 3x - \frac{1}{2} \cos 3x = 1 \Leftrightarrow \sin\left(3x - \frac{\pi}{6}\right) = 1$$

$$\frac{a}{\sqrt{a^{2} + b^{2}}} \sin x + \frac{b}{\sqrt{a^{2} + b^{2}}} \cos x = \frac{c}{\sqrt{a^{2} + b^{2}}}. \quad (**)$$
Đặt
$$\frac{a}{\sqrt{a^{2} + b^{2}}} = \cos \alpha; \frac{b}{\sqrt{a^{2} + b^{2}}} = \sin \alpha,$$

$$\Leftrightarrow 3x - \frac{\pi}{6} = \frac{\pi}{2} + k2\pi (k \in \mathbb{Z}) \Leftrightarrow x = \frac{2\pi}{9} + \frac{k2\pi}{3} (k \in \mathbb{Z}).$$

phương trình (**) trở thành

$$\sin x.\cos\alpha + \cos x.\sin\alpha = \frac{c}{\sqrt{a^2 + b^2}}$$

$$\Leftrightarrow \sin(x+\alpha) = \frac{c}{\sqrt{a^2+b^2}}.$$

Phương trình $\sin(x+\alpha) = \frac{c}{\sqrt{a^2 + b^2}}$ là phương

trình lượng giác dạng cơ bản nên dễ dàng giải được.

Một số dạng mở rộng:

$$a \sin u + b \cos u = \sqrt{a^2 + b^2} \sin v$$

$$\Rightarrow \frac{a}{\sqrt{a^2 + b^2}} \sin u + \frac{b}{\sqrt{a^2 + b^2}} \cos u = \sin v$$

$$\Leftrightarrow \sin(u + \alpha) = \sin v.$$

$$a \sin u + b \cos u = \sqrt{a^2 + b^2} \cos v$$

$$\Rightarrow \frac{a}{\sqrt{a^2 + b^2}} \sin u + \frac{b}{\sqrt{a^2 + b^2}} \cos u = \cos v$$

$$\Leftrightarrow \cos(u - \alpha) = \cos v.$$

$$a \sin u + b \cos u = a' \sin v + b' \cos v \quad \text{v\'oi}$$

$$a^2 + b^2 = a'^2 + b'^2$$

$$\Rightarrow \sin(u + \alpha) = \sin(v + \beta).$$

Dạng đặc biệt:

1)
$$\sin x + \cos x = 0 \Leftrightarrow x = -\frac{\pi}{4} + k\pi (k \in \mathbb{Z}).$$

$$2)\sin x - \cos x = 0 \Leftrightarrow x = \frac{\pi}{4} + k\pi (k \in \mathbb{Z}).$$

$$\Leftrightarrow \frac{\sqrt{3}}{2}\sin 3x - \frac{1}{2}\cos 3x = 1 \Leftrightarrow \sin\left(3x - \frac{\pi}{6}\right) = 1$$

$$\Leftrightarrow 3x - \frac{\pi}{6} = \frac{\pi}{2} + k2\pi(k \in \mathbb{Z}) \Leftrightarrow x = \frac{2\pi}{9} + \frac{k2\pi}{3}(k \in \mathbb{Z})$$

Vậy phương trình đã cho có nghiệm

$$x = \frac{2\pi}{9} + \frac{k2\pi}{3} \big(k \in \mathbb{Z} \big).$$

♣ Ví dụ mẫu

Ví dụ 1. Giải phương trình $\sin 2x + 2\cos 2x = 1 + \sin x - 4\cos x$.

Hướng dẫn giải

Ta có $\sin 2x + 2\cos 2x = 1 + \sin x - 4\cos x$

$$\Leftrightarrow 2\sin x \cos x + 2(2\cos^2 x - 1) - 1 - \sin x + 4\cos x = 0$$

$$\Leftrightarrow \sin x (2\cos x - 1) + 4\cos^2 x + 4\cos x - 3 = 0$$

$$\Leftrightarrow \sin x (2\cos x - 1) + (2\cos x - 1)(2\cos x + 3) = 0$$

$$\Leftrightarrow (2\cos x - 1)(2\sin x + 2\cos x + 3) = 0$$

$$\Leftrightarrow \begin{cases} \cos x = \frac{1}{2} \Leftrightarrow x = \pm \frac{\pi}{3} + k2\pi (k \in \mathbb{Z}) \\ 2\sin x + 2\cos x = -3 \end{cases}$$

Xét phương trình $2 \sin x + 2 \cos x = -3$; có $2^2 + 2^2 = 8 < (-3)^2$ nên vô nghiệm.

Vậy phương trình có nghiệm $x = \pm \frac{\pi}{3} + k2\pi (k \in \mathbb{Z})$.

Ví dụ 2. Giải phương trình $3\sin 3x - \sqrt{3}\cos 9x = 1 + 4\sin^3 3x$.

Hướng dẫn giải

Ta có $3\sin 3x - \sqrt{3}\cos 9x = 1 + 4\sin^3 3x$. $\Leftrightarrow (3\sin 3x - 4\sin^3 3x) - \sqrt{3}\cos 9x = 1$

$$\Leftrightarrow \sin 9x - \sqrt{3}\cos 9x = 1 \Leftrightarrow \sin\left(9x - \frac{\pi}{3}\right) = \sin\frac{\pi}{6} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{18} + k\frac{2\pi}{9} \\ x = \frac{7\pi}{54} + k\frac{2\pi}{9} \end{bmatrix} (k \in \mathbb{Z}).$$

Vậy phương trình có nghiệm $x = \frac{\pi}{18} + k \frac{2\pi}{9}, x = \frac{7\pi}{54} + k \frac{2\pi}{9} (k \in \mathbb{Z}).$

🖶 Bài tập tự luyện dạng 1

Câu 1: Phương trình $\sqrt{3} \sin x - \cos x = 1$ có nghiệm là

A.
$$\begin{bmatrix} x = -\pi + k2\pi \\ x = \frac{\pi}{6} + k2\pi \end{bmatrix}, k \in \mathbb{Z}.$$

B.
$$\begin{bmatrix} x = -\frac{2\pi}{3} + k2\pi \\ x = \frac{\pi}{6} + k2\pi \end{bmatrix}, k \in \mathbb{Z}.$$

C.
$$\begin{bmatrix} x = \frac{\pi}{3} + k2\pi, & k \in \mathbb{Z}. \\ x = \pi + k2\pi \end{bmatrix}$$

$$\mathbf{D.} \begin{bmatrix} x = k2\pi \\ x = \frac{\pi}{6} + k2\pi \end{bmatrix}, k \in \mathbb{Z}.$$

Câu 2: Phương trình $\sin x + \sqrt{3}\cos x = 0$ có nghiệm âm lớn nhất bằng

A.
$$\frac{-\pi}{3}$$
.

B.
$$\frac{-\pi}{6}$$
.

C.
$$\frac{-5\pi}{6}$$
.

D.
$$\frac{-5\pi}{3}$$
.

Câu 3: Nghiệm của phương trình $\sin x + \cos x = 1$ là

$$\mathbf{A.} \ x = k2\pi \big(k \in \mathbb{Z} \big).$$

$$\mathbf{C.} \ \ x = \frac{\pi}{4} + k2\pi \big(k \in \mathbb{Z} \big).$$

$$\mathbf{D.} \begin{bmatrix} x = \frac{\pi}{4} + k2\pi \\ x = -\frac{\pi}{4} + k2\pi \end{bmatrix} (k \in \mathbb{Z}).$$

Câu 4: Số nghiệm của phương trình $\sin x + \cos x = 1$ trên khoảng $(0, \pi)$ là

A. 0.

B. 1.

C. 2.

D. 3.

Câu 5: Điều kiện để phương trình $3 \sin x + m \cos x = 5$ vô nghiệm là

$$\mathbf{A.} \begin{bmatrix} m \le -4 \\ m \ge 4 \end{bmatrix}.$$

B.
$$m > 4$$
.

C.
$$m < -4$$
.

D.
$$-4 < m < 4$$
.

Câu 6: Điều kiện để phương trình $m \sin x - 3\cos x = 5$ có nghiệm là

A.
$$m \ge 4$$
.

B.
$$-4 \le m \le 4$$
.

C.
$$m \ge \sqrt{34}$$
.

Câu 7: Phương trình $\sqrt{3} \sin 3x + \cos 3x = -1$ tương đương với phương trình nào sau đây?

$$\mathbf{A.} \, \sin \left(3x - \frac{\pi}{6} \right) = -\frac{1}{2}.$$

$$\mathbf{B.} \sin \left(3x + \frac{\pi}{6} \right) = -\frac{\pi}{6}.$$

$$\mathbf{C.} \sin\left(3x + \frac{\pi}{6}\right) = -\frac{1}{2}.$$

$$\mathbf{D.} \sin \left(3x + \frac{\pi}{6} \right) = \frac{1}{2}.$$

Câu 8: Trong các phương trình sau phương trình nào có nghiệm?

$$\mathbf{A.} \ \sqrt{3} \sin x = 2.$$

B.
$$\frac{1}{4}\cos 4x = \frac{1}{2}$$
.

C.
$$2 \sin x + 3 \cos x = 1$$
.

D.
$$\cot^2 x - \cot x + 5 = 0$$
.

Câu 9: Cho phương trình $\sqrt{3}\cos x + \sin x = \sqrt{2}$ trên đoạn $[0; \pi]$. Chọn câu trả lời đúng.

A. Phương trình có nghiệm
$$x = \frac{\pi}{4}$$
; $x = \frac{3\pi}{4}$. **B.** Phương trình có nghiệm $x = \frac{5\pi}{12}$.

B. Phương trình có nghiệm
$$x = \frac{5\pi}{12}$$
.

C. Phương trình có nghiệm
$$x = \frac{3\pi}{7}$$
; $x = \frac{4\pi}{7}$. D. Phương trình có nghiệm $x = \frac{2\pi}{5}$.

D. Phương trình có nghiệm
$$x = \frac{2\pi}{5}$$
.

Câu 10: Phương trình $\sin 8x - \cos 6x = \sqrt{3} (\sin 6x + \cos 8x)$ có nghiệm là

A.
$$x = \frac{\pi}{3} + k\pi$$
$$x = \frac{\pi}{6} + k\frac{\pi}{2}, k \in \mathbb{Z}.$$

B.
$$x = \frac{\pi}{5} + k\pi$$
$$x = \frac{\pi}{7} + k\frac{\pi}{2}, k \in \mathbb{Z}.$$

C.
$$x = \frac{\pi}{4} + k\pi$$
$$x = \frac{\pi}{12} + k\frac{\pi}{7}, k \in \mathbb{Z}.$$

$$\mathbf{D.} \begin{bmatrix} x = \frac{\pi}{8} + k\pi \\ x = \frac{\pi}{9} + k\frac{\pi}{3}, k \in \mathbb{Z}. \end{bmatrix}$$

Câu 11: Phương trình nào sau đây vô nghiệm?

A.
$$\sqrt{3} \sin 2x - \cos 2x = 2$$
.

B.
$$3\sin x - 4\cos x = 5$$
.

$$\mathbf{C.} \sin x = \cos \frac{\pi}{4}.$$

D.
$$\sqrt{3} \sin x - \cos x = -3$$
.

Câu 12: Số nghiệm của phương trình $\sin 2x - 2\cos x = 0$ thuộc đoạn $\left[-\frac{5\pi}{2}; \frac{\pi}{2} \right]$ là

Câu 13: Phương trình $\cos 7x - \sqrt{3} \sin 7x = -\sqrt{2}$ có các họ nghiệm là

A.
$$x = \frac{5\pi}{84} + k \frac{2\pi}{7}, k \in \mathbb{Z}.$$

$$x = \frac{11\pi}{84} + k \frac{2\pi}{7}, k \in \mathbb{Z}.$$

B.
$$x = \frac{-5\pi}{84} + k \frac{2\pi}{7}, k \in \mathbb{Z}.$$
$$x = \frac{11\pi}{84} + k \frac{2\pi}{7}.$$

C.
$$x = \frac{-\pi}{84} + k \frac{2\pi}{7}, k \in \mathbb{Z}.$$
$$x = \frac{\pi}{84} + k \frac{2\pi}{7}$$

D.
$$x = \frac{-5\pi}{84} + k \frac{2\pi}{7}, k \in \mathbb{Z}.$$
$$x = \frac{-11\pi}{84} + k \frac{2\pi}{7}, k \in \mathbb{Z}.$$

Câu 14: Phương trình $\sin x + \sqrt{3} \cos x = 0$ có nghiệm dương nhỏ nhất bằng

A.
$$\frac{2\pi}{3}$$
.

B.
$$\frac{5\pi}{6}$$
.

Câu 15: Phương trình $\tan x - \sin 2x - \cos 2x + 2\left(2\cos x - \frac{1}{\cos x}\right) = 0$ có nghiệm dương nhỏ nhất bằng

$$\mathbf{A.} \ \frac{\pi}{4}$$

$$\mathbf{B.} \ \frac{\pi}{2}.$$

Câu 16: Nghiệm của phương trình $\sin x + \cos x = -1$ với $k \in \mathbb{Z}$ là

A.
$$x = k2\pi$$
.

B.
$$\begin{bmatrix} x = \pi + k2\pi \\ x = -\frac{\pi}{2} + k2\pi \end{bmatrix}$$
 C. $x = \frac{\pi}{4} + k2\pi$.

$$\mathbf{C.} \ \ x = \frac{\pi}{4} + k2\pi.$$

$$\mathbf{D.} \begin{bmatrix} x = \frac{\pi}{4} + k2\pi \\ x = -\frac{\pi}{4} + k2\pi \end{bmatrix}.$$

Câu 17: Để phương trình $2\sin^2 x - \sin x \cos x - \cos^2 x = m$ có nghiệm thì giá trị của m là

A.
$$m \le \frac{1 - \sqrt{10}}{2}$$
.

B.
$$m = \frac{1 \pm \sqrt{10}}{2}$$
.

C.
$$m \ge \frac{1 + \sqrt{10}}{2}$$
.

D.
$$\frac{1-\sqrt{10}}{2} \le m \le \frac{1+\sqrt{10}}{2}$$
.

Câu 18: Phương trình $\cos 2x + \sin x - 1 = 0$ có số họ nghiệm là

A. 1.

B. 3.

C. 2.

D. 0.

Câu 19: Phương trình $\tan x - \sin 2x - \cos 2x + 2\left(2\cos x - \frac{1}{\cos x}\right) = 0$ có các họ nghiệm là

A.
$$x = \frac{\pi}{4} + k \frac{\pi}{2}, k \in \mathbb{Z}.$$

B.
$$x = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}.$$

C.
$$x = -\frac{\pi}{4} + k \frac{\pi}{2}, k \in \mathbb{Z}.$$

D.
$$x = -\frac{\pi}{6} + k \frac{\pi}{2}, k \in \mathbb{Z}.$$

Câu 20: Cho phương trình $\tan x - 3 \cot x = 4 \left(\sin x + \sqrt{3} \cos x \right)$. Với $k \in \mathbb{Z}$ thì nghiệm của phương trình là

A.
$$\begin{bmatrix} x = -\frac{\pi}{3} + k2\pi \\ x = \frac{-4\pi}{9} + k\frac{2\pi}{3} \end{bmatrix}$$
B.
$$\begin{bmatrix} x = -\frac{\pi}{3} + k\pi \\ x = \frac{4\pi}{9} + k\frac{2\pi}{3} \end{bmatrix}$$
C.
$$\begin{bmatrix} x = \frac{\pi}{3} + k2\pi \\ x = \frac{4\pi}{9} + k\frac{2\pi}{3} \end{bmatrix}$$
D.
$$\begin{bmatrix} x = \frac{\pi}{12} + k2\pi \\ x = \frac{4\pi}{9} + k\frac{2\pi}{3} \end{bmatrix}$$

C.
$$x = \frac{\pi}{3} + k2\pi \\ x = \frac{4\pi}{9} + k\frac{2\pi}{3}$$

D.
$$x = \frac{\pi}{12} + k2\pi$$
$$x = \frac{4\pi}{9} + k\frac{2\pi}{3}$$

Dang 2:Phương trình bậc hai của một hàm số lượng giác

Phương pháp giải

Ví dụ: Giải phương trình $2\sin^2 x + \sin x - 3 = 0$.

Phương trình bậc hai đối với một hàm số lượng giác có dạng tổng quát $at^2 + bt + c = 0$.

Hướng dẫn giải

Đặt $t = \sin x$, điều kiện $|t| \le 1$.

Phương trình đã cho trở thành

 $2t^2 + t - 3 = 0 \Leftrightarrow \begin{vmatrix} t = 1 \\ t = \frac{3}{2} \end{vmatrix}$

Trong đó:

t là một trong các hàm số $\sin u$, $\cos u$, $\tan u$, $\cot u$

và u = u(x).

$$a;b;c\in\mathbb{R},a\neq0.$$

Khi đặt ẩn phụ để giải ta phải lưu ý đến điều kiện của ẩn phụ. Nếu đặt

+)
$$t = \sin u, t = \cos u$$
 thì điều kiện $|t| \le 1$.

+)
$$t = \sin^2 u, t = \cos^2 u$$
 thì điều kiện $0 \le t \le 1$.

+)
$$t = |\sin u|, t = |\cos u|$$
 thì điều kiện $0 \le t \le 1$.

Kết hợp với điều kiện $|t| \le 1$ ta được t = 1.

Với
$$t = 1$$
 thì $\sin x = 1 \Leftrightarrow x = \frac{\pi}{2} + k2\pi, (k \in \mathbb{Z}).$

Vậy phương trình đã cho có nghiệm

$$x = \frac{\pi}{2} + k2\pi, (k \in \mathbb{Z}).$$

Khi tìm được $t_1;t_2$ thỏa mãn thì phải giải tiếp $\sin = t_1; \sin u = t_2; \dots$

🕌 Ví dụ mẫu

Ví dụ. Giải phương trình $3\sin^2 2x + 7\cos 2x - 3 = 0$.

Hướng dẫn giải

Ta có
$$3\sin^2 2x + 7\cos 2x - 3 = 0 \Leftrightarrow 3(1-\cos^2 2x) + 7\cos 2x - 3 = 0$$

$$\Leftrightarrow 3\cos^2 2x - 7\cos 2x = 0 \Leftrightarrow \cos 2x (3\cos 2x - 7) = 0 \Leftrightarrow \begin{bmatrix} \cos 2x = 0 \\ 3\cos 2x - 7 = 0 \end{bmatrix}$$

Trường hợp 1:
$$\cos 2x = 0 \Leftrightarrow 2x = \frac{\pi}{2} + k\pi \Leftrightarrow x = \frac{\pi}{4} + k\frac{\pi}{2}, (k \in \mathbb{Z}).$$

Trường hợp 2: $3\cos 2x - 7 = 0 \Leftrightarrow \cos 2x = \frac{7}{2} > 1$ (loại).

Vậy phương trình đã cho có nghiệm $x = \frac{\pi}{4} + k \frac{\pi}{2}, (k \in \mathbb{Z}).$

Bài tập tự luyện dạng 2

Câu 1: Phương trình $2\sin^2 x + \sin x - 3 = 0$ có nghiệm là

A.
$$k\pi(k \in \mathbb{Z})$$
.

$$\mathbf{B.} - \frac{\pi}{2} + k\pi (k \in \mathbb{Z}).$$

C.
$$\frac{\pi}{2} + k2\pi (k \in \mathbb{Z})$$
.

$$\mathbf{D.} - \frac{\pi}{2} + k2\pi (k \in \mathbb{Z}).$$

Câu 2: Với $k \in \mathbb{Z}$, phương trình $\cos^2 x + 2\cos x - 3 = 0$ có nghiệm là

A.
$$x = k2\pi$$
.

B.
$$x = 0$$
.

$$\mathbf{C.} \ \ x = \frac{\pi}{2} + k2\pi.$$

D. Vô nghiệm.

Câu 3: Nghiệm dương bé nhất của phương trình $2\sin^2 x + 5\sin x - 3 = 0$ là

A.
$$x = \frac{\pi}{6}$$
.

B.
$$x = \frac{\pi}{2}$$
.

C.
$$x = \frac{3\pi}{2}$$
.

D.
$$x = \frac{5\pi}{6}$$
.

Câu 4: Xét phương trình $3\cos^2 x - 2\cos x - 4 = 0$ trên đoạn $[0;3\pi]$. Chọn câu trả lời đúng.

A. Phương trình có 3 nghiệm.

B. Phương trình có 4 nghiệm.

C. Phương trình có 2 nghiệm.

D. Phương trình vô nghiệm.

Câu 5: Nghiệm của phương trình $2\sin^2 x - 3\sin x + 1 = 0$ thỏa mãn điều kiện $0 \le x < \frac{\pi}{2}$ là

A.
$$x = \frac{\pi}{3}$$
.

B.
$$x = \frac{\pi}{2}$$
.

C.
$$x = \frac{\pi}{6}$$
.

D.
$$x = \frac{5\pi}{6}$$
.

Câu 6: Nghiệm của phương trình $\tan^2 x + 2 \tan x + 1 = 0$ là

$$\mathbf{A.} \ \frac{\pi}{4} + k \frac{\pi}{2}, k \in \mathbb{Z}.$$

A.
$$\frac{\pi}{4} + k \frac{\pi}{2}, k \in \mathbb{Z}$$
. **B.** $-\frac{\pi}{4} + k\pi, k \in \mathbb{Z}$. **C.** $\frac{\pi}{2} + k2\pi, k \in \mathbb{Z}$. **D.** $k\pi, k \in \mathbb{Z}$.

$$\mathbf{C.} \ \frac{\pi}{2} + k2\pi, k \in \mathbb{Z}.$$

D.
$$k\pi, k \in \mathbb{Z}$$
.

Câu 7: Với $k \in \mathbb{Z}$, phương trình $\cos^2 2x + \cos 2x - \frac{3}{4} = 0$ có nghiệm là

$$\mathbf{A.} \ \ x = k\pi.$$

B.
$$x = k2\pi$$
.

C.
$$x = \pm \frac{\pi}{6} + k\pi$$
.

C.
$$x = \pm \frac{\pi}{6} + k\pi$$
. **D.** $x = \pm \frac{2\pi}{3} + k2\pi$.

Câu 8: Với $k \in \mathbb{Z}$, phương trình $\sin^2 x - 2\sin x = 0$ có nghiệm là

A.
$$x = k2\pi$$
.

B.
$$x = k\pi$$
.

C.
$$x = \pi + k2\pi$$
.

D.
$$x = -k2\pi$$
.

Câu 9: Nghiệm của phương trình $\cot^2 3x - \cot 3x - 2 = 0$ là

$$\mathbf{A.} \ x = \begin{bmatrix} \frac{\pi}{4} + k\frac{\pi}{3} \\ \frac{1}{3}\operatorname{arccot} 2 + k\frac{\pi}{3} \end{bmatrix}, k \in \mathbb{Z}.$$

B.
$$x = \begin{bmatrix} -\frac{\pi}{4} + k\frac{\pi}{3} \\ -\frac{1}{3}\operatorname{arccot} 2 + k\frac{\pi}{3} \end{bmatrix}, k \in \mathbb{Z}.$$

C.
$$x = \begin{bmatrix} \frac{\pi}{4} + k\pi \\ \frac{1}{3} \operatorname{arccot} 2 + k\frac{\pi}{3} \end{bmatrix}, k \in \mathbb{Z}.$$

$$\mathbf{D.} \ x = \begin{bmatrix} \frac{\pi}{4} + k\pi \\ \frac{1}{3} \operatorname{arccot} 2 + k\pi \end{bmatrix}, k \in \mathbb{Z}.$$

Câu 10: Nghiệm âm lớn nhất của phương trình $2\cos 2x + 2\cos x - \sqrt{2} = 0$ là

A.
$$x = -\frac{5\pi}{6}$$
.

B.
$$x = -\frac{7\pi}{6}$$
.

C.
$$x = -\frac{\pi}{3}$$
.

D.
$$x = -\frac{\pi}{4}$$

Câu 11: Trong các phương trình sau phương trình nào có nghiệm?

$$\mathbf{A.} \ \sqrt{3} \sin x = 2.$$

B.
$$\frac{1}{4}\cos 4x = \frac{1}{2}$$
.

C.
$$2\sin x + 3\cos x = 5$$
.

D.
$$\cot^2 x - \cot x - 5 = 0$$
.

Câu 12: Xét phương trình $13\sin^2 x - 78\sin x + 15 = 0$ trên đoạn $[0; 2\pi]$. Lựa chọn phương án đúng.

A. Phương trình có 2 nghiệm.

B. Phương trình có 4 nghiệm.

C. Phương trình vô nghiệm.

D. Cả A, B, C đều sai.

Câu 13: Phương trình $3\cos x + 2|\sin x| = 2$ có nghiệm là

$$\mathbf{A.} \ x = \frac{\pi}{8} + k\pi \big(k \in \mathbb{Z} \big).$$

$$\mathbf{B.} \ \ x = \frac{\pi}{2} + k\pi \big(k \in \mathbb{Z} \big).$$

$$\mathbf{C.} \ \ x = \frac{\pi}{4} + k\pi \big(k \in \mathbb{Z} \big).$$

D.
$$x = \frac{\pi}{6} + k\pi (k \in \mathbb{Z}).$$

Câu 14: Xét phương trình $\tan^2 x - \frac{4\sqrt{3}}{3} \tan x + 1 = 0$ trên đoạn $[0; 3\pi]$. Chọn câu trả lời đúng?

A. Phương trình có 5 nghiệm.

B. Phương trình có 4 nghiệm.

C. Phương trình có 6 nghiệm.

D. Phương trình có 3 nghiệm.

Câu 15: Xét phương trình $\sin^2 x - 5\sin x + 6 = 0$ trên đoạn $[0; 2\pi]$. Chọn câu trả lời đúng?

A. Phương trình có 2 nghiệm.

B. Phương trình có 4 nghiệm.

C. Cả A, B, D đều sai.

D. Phương trình có 3 nghiệm.

Câu 16: Cho x thỏa mãn phương trình sau $(\tan x + \cot x)^2 - (\tan x + \cot x) = 2$

Giá trị của biểu thức $\tan x + \frac{1}{\tan x}$ là

A. 0.

B. 2.

C. 3.

D. $\sqrt{2}$.

Câu 17: Cho x thỏa mãn phương trình $\sin x + \sin^2 \frac{x}{2} = 0,5$. Giá trị của biểu thức $y = \tan x$ là

A. 1.

B. 0,5.

C. $\sqrt{3}$.

D. 0.

Câu 18: Cho $x = \arctan\left(\frac{-1}{3}\right) + k\pi$ là nghiệm của một trong phương trình sau, hỏi đó là phương trình nào?

A. $3\sin^2 x - \sin 2x - \cos^2 x = 0$.

B. $3\sin^2 2x - 4\cos^2 2x = 2$.

C.
$$\frac{1}{\sin 2x} + \frac{1}{\cos 2x} = \frac{2}{\sin 4x}$$
.

D.
$$\cos x + 2\cos^2 x = 0$$
.

Câu 19: Cho phương trình $\frac{\sin^3 x + \cos^3 x}{2\cos x - \sin x} = \cos 2x$. Nếu giải phương trình bằng cách đặt $\tan x = t$ thì

phương trình trên sẽ tương đương với phương trình nào dưới đây?

A.
$$2t^2 + t - 1 = 0$$
.

B.
$$t^2 + 2t - 1 = 0$$
.

C.
$$t^2 + t - \frac{1}{2} = 0$$
.

D.
$$t^2 + t + 1 = 0$$
.

Câu 20: Cho phương trình $2\sin x - 2\cos x = 1 - \sqrt{3}$. Nếu giải phương trình bằng cách bình phương hai vế thì ta được phương trình nào sau đây?

$$\mathbf{A.}\sin 2x = \sin \frac{\pi}{4}.$$

B.
$$\sin 2x = \sin \frac{\pi}{6}$$
.

$$\mathbf{C.}\sin 2x = \sin \frac{\pi}{3}.$$

$$\mathbf{D.} \, \cos 2x = \cos \frac{\pi}{3}.$$

Dạng 3. Phương trình lượng giác đẳng cấp

Phương pháp giải

Phương trình lượng giác đẳng cấp có dạng tổng Ví dụ: Giải phương trình sau quát

$$a.\sin^2 x + b.\sin x \cos x + c.\cos^2 x = d.$$

Ta có thể giải phương trình lương giác đẳng cấp theo hai cách sau

Cách 1:

Bước 1. Kiểm tra $\cos x = 0$ có là nghiệm của phương trình hay không, nếu có thì nhận nghiệm này.

Bước 2. Nếu $\cos x \neq 0$ thì chia cả hai vế của phương trình cho $\cos^2 x$ đưa về phương trình bậc hai theo $\tan x$.

$$(1) \Leftrightarrow a \frac{\sin^2 x}{\cos^2 x} + b \frac{\sin x \cos x}{\cos^2 x} + c \frac{\cos^2 x}{\cos^2 x} = \frac{d}{\cos^2 x}$$

$$\Leftrightarrow a \tan^2 x + b \tan x + c = d(1 + \tan^2 x).$$

Bước 3. Đặt $t = \tan x$ đưa về phương trình bậc hai để giải.

$$2\sqrt{3}\cos^2 x + 6\sin x \cdot \cos x = 3 + \sqrt{3}.$$
 (1)

Hướng dẫn giải

Với
$$\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}.$$

Thay vào phương trình (1) ta có $0 = 3 + \sqrt{3}$

⇒ phương trình vô nghiệm.

Với $\cos x \neq 0$. Chia cả hai vế của phương trình (1) cho $\cos^2 x$ ta được

$$2\sqrt{3} + 6\tan x = (3 + \sqrt{3})(1 + \tan^2 x)$$

$$\Leftrightarrow$$
 $(3+\sqrt{3})\tan^2 x - 6\tan x + 3 - \sqrt{3} = 0$ (2). Đặt

 $\tan x = t$ phương trình (2) trở thành

$$(3+\sqrt{3})t^2-6t+3-\sqrt{3}=0 \Leftrightarrow \begin{bmatrix} t=1\\ t=\frac{3-\sqrt{3}}{3+\sqrt{3}} \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} \tan x = 1 \\ \tan x = \frac{3 - \sqrt{3}}{3 + \sqrt{3}} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{4} + k\pi \\ x = \frac{\pi}{12} + k\pi \end{bmatrix}, k \in \mathbb{Z}.$$

Vậy phương trình đã cho có nghiệm

$$\begin{bmatrix} x = \frac{\pi}{4} + k\pi \\ x = \frac{\pi}{12} + k\pi \end{bmatrix}, k \in \mathbb{Z}.$$

Cách 2: Dùng công thức ha bâc.

$$\sin^2 x = \frac{1 - \cos 2x}{2}; \cos^2 x = \frac{1 + \cos 2x}{2};$$
$$\sin x \cos x = \frac{\sin 2x}{2}.$$

Đưa phương trình đã cho về phương trình

$$b\sin 2x + (c-a)\cos 2x = d - c - a.$$

Đây là phương trình bậc nhất đối với sin và cosin ta đã biết cách giải ở dạng 1.

Ta có
$$2\sqrt{3}\cos^2 x + 6\sin x \cdot \cos x = 3 + \sqrt{3}$$

 $\Leftrightarrow \sqrt{3}(1+\cos 2x) + 3\sin 2x = 3 + \sqrt{3}$
 $\Leftrightarrow \cos 2x + \sqrt{3}\sin 2x = \sqrt{3}$
 $\Leftrightarrow \frac{1}{2}\cos 2x + \frac{\sqrt{3}}{2}\sin 2x = \frac{\sqrt{3}}{2}$
 $\Leftrightarrow \cos\left(2x - \frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$
 $\Leftrightarrow \left[x = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}.\right]$

Vậy phương trình có 2 họ nghiệm là

$$x = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}$$

$$x = \frac{\pi}{12} + k\pi$$

Tổng quát: Đối với phương trình đẳng cấp bậc $n(n \ge 2: A(\sin^n x, \cos^n x, \sin^k x \cos^h x) = 0)$ trong đó $k + h = n; k, h, n \in \mathbb{N}$, ta cũng giải tương tự theo hai cách.

Cách 1: Nếu $\cos x \neq 0$ thì chia cả hai vế cho $\cos^n x$.

Cách 2: Dùng công thức hạ bậc.

♣ Ví dụ mẫu

Ví dụ. Cho phương trình $2\sin^2 x - \sin x \cos x - \cos^2 x = m$. Tìm m để phương trình có nghiệm.

Hướng dẫn giải

- Nếu $\cos x = 0 \Rightarrow$ Phương trình có dạng $2\sin^2 x = m$

Để phương trình có nghiệm thì m = 2. (*)

- Nếu $\cos x \neq 0 \Leftrightarrow m \neq 2$ thì ta chia cả hai vế của phương trình cho $\cos^2 x$.

Phương trình đã cho trở thành $2 \tan^2 x - \tan x - 1 - \frac{m}{\cos^2 x} = 0$

$$\Leftrightarrow$$
 $(2-m)\tan^2 x - \tan x - m - 1 = 0.$ (1)

Với $m \ne 2$ thì phương trình (1) là phương trình bậc hai ẩn $t = \tan x$.

Xét
$$\Delta = -4m^2 + 4m + 9$$
.

Để phương trình đã cho có nghiệm thì $\begin{cases} \Delta \ge 0 \\ m \ne 2 \end{cases} \Leftrightarrow \begin{cases} \frac{1 - \sqrt{10}}{2} \le m \le \frac{1 + \sqrt{10}}{2}. (**) \end{cases}$

Kết hợp (*) và (**), ta được $\frac{1-\sqrt{10}}{2} \le m \le \frac{1+\sqrt{0}}{2}$ là những giá trị cần tìm.

Vậy với $\frac{1-\sqrt{10}}{2} \le m \le \frac{1+\sqrt{0}}{2}$ thì phương trình đã cho có nghiệm.

♣ Bài tập tự luyện dạng 3

Câu 1: Phương trình $\cos^2 x - 3\sin x \cos x - 2\sin^2 x = 1$ có nghiệm là

B.
$$x = k2\pi$$
$$x = \frac{-\pi}{4} + k2\pi (k \in \mathbb{Z}).$$

C.
$$x = k\pi$$
$$x = \frac{-\pi}{3} + k2\pi (k \in \mathbb{Z}).$$

D.
$$\begin{cases} x = k\pi \\ x = \frac{-\pi}{4} + k\pi \end{cases} (k \in \mathbb{Z}).$$

Câu 2: Phương trình $\sqrt{3} \sin x + \cos x = \frac{1}{\cos x}$ có nghiệm là

A.
$$\begin{cases} x = k\pi \\ x = \frac{\pi}{3} + k\pi \end{cases} (k \in \mathbb{Z}).$$

B.
$$x = k2\pi$$
$$x = \frac{\pi}{3} + k2\pi (k \in \mathbb{Z}).$$

C.
$$x = \frac{k\pi}{2}$$

$$x = \frac{\pi}{3} + k\pi$$
 $(k \in \mathbb{Z}).$

D.
$$x = k\pi(k \in \mathbb{Z}).$$

Câu 3: Phương trình $3\cos^2 4x + 5\sin^2 4x = 2 - 2\sqrt{3}\sin 4x \cdot \cos 4x$ có nghiệm là

A.
$$x = \frac{-\pi}{6} + k\pi, k \in \mathbb{Z}.$$

B.
$$x = \frac{-\pi}{12} + k \frac{\pi}{2}, k \in \mathbb{Z}.$$

C.
$$x = \frac{-\pi}{18} + k \frac{\pi}{3}, k \in \mathbb{Z}.$$

D.
$$x = \frac{-\pi}{24} + k \frac{\pi}{4}, k \in \mathbb{Z}.$$

Câu 4: Cho x thỏa mãn phương trình $\sin^2 x + \frac{1 - \sqrt{3}}{2} \sin 2x - \sqrt{3} \cos^2 x = 0$. Giá trị nguyên của $\tan x$ là

A. 1.

B. −1

C. 3.

D. 2.

Câu 5: Phương trình $2\sin^2 x - \sin 2x + \cos^2 x = 1$ có nghiệm là

A. $\begin{cases} x = -\frac{\pi}{4} + k2\pi \\ x = \arctan 2 + k\pi \end{cases}, k \in \mathbb{Z}.$

B. $\begin{bmatrix} x = \frac{\pi}{4} + k\pi \\ x = \arctan 2 + k\pi \end{bmatrix}, k \in \mathbb{Z}.$

C. $\begin{cases} x = k\pi \\ x = \arctan 2 + k\pi \end{cases}, k \in \mathbb{Z}.$

D. $\begin{cases} x = -\frac{\pi}{4} + k\pi \\ x = \arctan 2 + k\pi \end{cases}, k \in \mathbb{Z}.$

Câu 6: Giải phương trình $-\sin^2 x + 2\sqrt{3}\sin x \cos x + 1 = 2$ ta được nghiệm là

A. $x = \frac{-\pi}{6} + k\pi, k \in \mathbb{Z}.$

- **B.** $x = \frac{\pi}{3} + k\pi, k \in \mathbb{Z}$.
- C. $x = \arctan \frac{1+\sqrt{3}}{2} + k\pi$ $x = \arctan \frac{-1+\sqrt{3}}{2} + k\pi$, $k \in \mathbb{Z}$.
- **D.** $x = \frac{-\pi}{3} + k\pi, k \in \mathbb{Z}.$

Câu 7: Cho x thỏa mãn phương trình $\sin^3 x - \sqrt{3}\cos^3 x = \sin x \cdot \cos^2 x - \sqrt{3}\sin^2 x \cdot \cos x$. Giá trị nguyên của $\tan x$ là

A. 1.

B. ±1.

C. $\sqrt{3}$.

 $\mathbf{D.} \begin{bmatrix} \tan x = -\sqrt{3} \\ \tan x = \pm 1 \end{bmatrix}.$

Câu 8: Phương trình $2\sin^2 x - 5\sin x \cos x - \cos^2 x = -2$ có thể được đưa về phương trình nào trong các phương trình sau

A. $4\sin^2 x + 5\sin 2x - \cos^2 x = 0$.

- **B.** $5\sin 2x + 3\cos 2x = 5$.
- C. $4\sin^2 x + 5\sin x \cos x + \cos^2 x = 0$.
- D. Một phương trình khác.

Câu 9: Kết quả nào cho dưới đây là đúng? Phương trình $\sin^2 \frac{x}{2} - \sin x + 3\cos^2 \frac{x}{2} = 0$ có tập nghiệm là

A. $S = \emptyset$.

B. $S = \{-\pi + k2\pi, k \in \mathbb{Z}\}.$

 $\mathbf{C.} \ S = \left\{ \frac{\pi}{2} + k2\pi, k \in \mathbb{Z} \right\}.$

D. Đáp án khác.

Câu 10: Khi m = 2 thì phương trình

 $(4-6m)\sin^3 x + 3(2m-1)\sin x + 2(m-2)\sin^2 x \cdot \cos x - (4m-3)\cos x = 0$ có bao nhiều họ nghiệm?

A. 0.

B. 2.

C. 1.

D. 3.

Câu 11: Cho phương trình $\sin^3 x - \sqrt{3} \cos^3 x = \sin x \cdot \cos^2 x - \sqrt{3} \sin^2 x \cdot \cos x$. Nghiệm của phương trình là

A.
$$x = \frac{-\pi}{3} + k\pi$$
.

B.
$$x = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}.$$

C.
$$x = \frac{\pi}{4} + k\frac{\pi}{2}, k \in \mathbb{Z}.$$
$$x = -\frac{\pi}{3} + k\pi$$

D.
$$x = \frac{\pi}{4} + k \frac{\pi}{2}, x = -\frac{\pi}{3} + k\pi, k \in \mathbb{Z}.$$

Câu 12: Phương trình $2\sin^2 x + \sin 2x + 1 = 0$ có tập nghiệm là

A.
$$S = \emptyset$$
.

B.
$$S = \{k\pi, k \in \mathbb{Z}\}.$$

C. Phương trình vô số nghiệm.

D. Đáp án khác.

Câu 13: Phương trình $\sin^2 2x + \sqrt{3} \sin 4x + 3\cos^2 2x = 0$ có nghiệm là

$$\mathbf{A.} \ \ x = \frac{-\pi}{3} + k\pi \big(k \in \mathbb{Z} \big).$$

B.
$$x = \frac{\pi}{4} + k\pi (k \in \mathbb{Z}).$$

C.
$$x = \frac{-\pi}{6} + k \frac{\pi}{2} (k \in \mathbb{Z}).$$

D.
$$x = \frac{\pi}{4} + k \frac{\pi}{2}, x = \frac{\pi}{3} + k\pi (k \in \mathbb{Z}).$$

Câu 14: Phương trình $\sin^2 4x + 3\cos^2 4x = 0$ có tập nghiệm là

A.
$$S = \emptyset$$
.

B.
$$S = \{k\pi, k \in \mathbb{Z}\}.$$

C. Phương trình vô số nghiệm.

D. Đáp án khác.

Câu 15: Cho x thỏa mãn phương trình $\sin 2x + 2 \tan x = 3$. Giá trị của biểu thức

$$(\tan x - 1)(2\tan^2 x - \tan x + 3)$$
 là

D. 2.

Câu 16: Cho phương trình $3\sin^2\frac{x}{2} + \sqrt{3}\sin x + \cos^2\frac{x}{2} = 0$. Số nghiệm của phương trình đã cho trong

khoảng $(0;2\pi)$ là

D. 1.

Câu 17: Cho phương trình $2\sqrt{3}\cos^2 x - \sin 2x = 0$, khẳng định đúng là

A. Phương trình có 1 họ nghiệm.

B. Phương trình vô nghiệm.

C. Phương trình có 2 họ nghiệm.

D. Cả A, B, C đều sai.

Câu 18: Cho x thỏa mãn phương trình $\sin^3\left(x-\frac{\pi}{4}\right) = \sqrt{2}\sin x$. Giá trị của biểu thức

 $\left(2\tan^2 x - \tan x + 3\right)\tan x \text{ là}$

A. 1.

B. -6.

C. 3.

D. 2.

Câu 19: Cho phương trình $\frac{1-\tan x}{1+\tan x} = 1+\sin 2x$, khẳng định đúng là

A. Phương trình có 2 họ nghiệm.

B. Phương trình vô nghiệm.

C. Phương trình có 1 họ nghiệm.

D. Cả A, B, C đều sai.

Câu 20: Cho phương trình $\sin^2 x + (2m-2)\sin x \cdot \cos x - (m+1)\cos^2 x - m = 0$. Giá trị của m để phương trình có nghiêm là

A.
$$-2 \le m \le 1$$
.

B.
$$0 \le m \le 1$$
.

C.
$$0 \le m$$
.

D.
$$m \ge -2$$
.

Dạng 4. Phương trình lượng giác đối xứng

4 Phương pháp giải

Phương trình lượng giác đối xứng có dạng tổng quát

$$a(\sin x + \cos x) + b\sin x \cos x + c = 0$$

Trong đó $a,b,c \in \mathbb{R}$.

Để giải phương trình lượng giác đối xứng, ta làm như sau.

Đặt
$$t = \sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right)$$
.

Điều kiện $|t| \le \sqrt{2}$.

Ta có $(\sin x + \cos x)^2 = 1 + 2\sin x \cos x$

$$\Rightarrow \sin x \cos x = \frac{t^2 - 1}{2}.$$

Khi đó phương trình đã cho trở thành

$$bt^2 + 2at - b + 2c = 0.$$

Đây là phương trình bậc hai đã biết cách giải.

Chú ý: Cách giải trên áp dụng cho phương trình

$$a(\sin x - \cos x) + b\sin x \cos x + c = 0.$$

Đặt $t = \sin x - \cos x \Rightarrow \sin x \cos x = \frac{1 - t^2}{2}$.

Ví du.

$$\sin x + \cos x - 2\sin x \cos x + 1 = 0.$$
 (1)

Hướng dẫn giải

Đặt
$$t = \sin x + \cos x \left(-\sqrt{2} \le t \le \sqrt{2} \right)$$

$$\Rightarrow \sin x \cos x = \frac{t^2 - 1}{2}.$$

Khi đó phương trình (1) trở thành

$$t-2\left(\frac{t^2-1}{2}\right)+1=0 \Leftrightarrow t^2-t-2=0 \Leftrightarrow \begin{bmatrix} t=-1\\ t=2 \end{bmatrix}.$$

Kết hợp với điều kiện $-\sqrt{2} \le t \le \sqrt{2}$ ta được

$$t = -1 \Leftrightarrow \sin x + \cos x = -1 \Leftrightarrow \sqrt{2} \sin \left(x + \frac{\pi}{4} \right) = -1$$

$$\Leftrightarrow \sin\left(x + \frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2} \Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{2} + k2\pi \\ x = \pi + k2\pi \end{bmatrix} (k \in \mathbb{Z}).$$

Vậy phương trình có 2 họ nghiệm là

$$\begin{bmatrix} x = -\frac{\pi}{2} + k2\pi \\ x = \pi + k2\pi \end{bmatrix} (k \in \mathbb{Z}).$$

👃 Ví dụ mẫu

Ví dụ 1. Giải phương trình $\sin x - \cos x + 14 \sin x \cos x = 1$. (1)

Hướng dẫn giải

Đặt
$$t = \sin x - \cos x \left(-\sqrt{2} \le t \le \sqrt{2}\right) \Rightarrow \sin x \cos x = \frac{1 - t^2}{2}$$
.

Khi đó phương trình (1) trở thành $t + 7(1 - t^2) = 1 \Leftrightarrow 7t^2 - t - 6 = 0 \Leftrightarrow t = 1$ $t = -\frac{6}{7}$

- Nếu
$$t = 1$$
 thì $\sin x - \cos x = 1 \Leftrightarrow \sin\left(x - \frac{\pi}{4}\right) = \sin\frac{\pi}{4} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{2} + k2\pi \\ x = \pi + k2\pi \end{bmatrix}$

- Nếu
$$t = -\frac{6}{7}$$
 thì $\sin x - \cos x = \frac{-6}{7}$

$$\Leftrightarrow \sin\left(x - \frac{\pi}{4}\right) = \frac{-3\sqrt{2}}{7} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{4} + \arcsin\frac{-3\sqrt{2}}{7} + k2\pi \\ x = \frac{5\pi}{4} - \arcsin\frac{-3\sqrt{2}}{7} + k2\pi \end{bmatrix} (k \in \mathbb{Z}).$$

Vậy phương trình đã cho có 4 họ nghiệm $x = \frac{\pi}{2} + k2\pi$; $x = \pi + k2\pi$

$$x = \frac{\pi}{4} + \arcsin \frac{-3\sqrt{2}}{7} + k2\pi; x = \frac{5\pi}{4} - \arcsin \frac{-3\sqrt{2}}{7} + k2\pi (k \in \mathbb{Z}).$$

Ví dụ 2. Giải phương trình $\sin^3 x + \cos^3 x + 1 = \frac{3}{2} \sin 2x$. (2)

Hướng dẫn giải

$$(2) \Leftrightarrow 1 + (\sin x + \cos x)(\sin^2 x - \sin x \cos x + \cos^2 x) = 3\sin x \cos x$$

$$\Leftrightarrow 1 + (\sin x + \cos x)(1 - \sin x \cos x) = 3\sin x \cos x. \quad (*)$$

Đặt
$$t = \sin x + \cos x \left(-\sqrt{2} \le t \le \sqrt{2} \right) \Rightarrow \sin x \cos x = \frac{t^2 - 1}{2}$$
.

Khi đó phương trình (*) trở thành $1+t\left(1-\frac{t^2-1}{2}\right)=3.\frac{t^2-1}{2}$

$$\Leftrightarrow t^{3} + 3t^{2} - 3t - 5 = 0 \Leftrightarrow (t+1)(t^{2} + 2t - 5) = 0 \Leftrightarrow \begin{bmatrix} t = -1 \\ t = -1 - \sqrt{6} < -\sqrt{2} \Rightarrow t = -1. \\ t = -1 + \sqrt{6} > \sqrt{2} \end{bmatrix}$$

Suy ra $\sin x + \cos x = -1 \Leftrightarrow \sqrt{2} \cos \left(x - \frac{\pi}{4} \right) = -1$

$$\Leftrightarrow \cos\left(x - \frac{\pi}{4}\right) = \cos\frac{3\pi}{4} \Leftrightarrow \begin{bmatrix} x = \pi + k2\pi \\ x = \frac{-\pi}{2} + k2\pi \end{bmatrix} (k \in \mathbb{Z}).$$

Vậy phương trình đã cho có 2 họ nghiệm $x = \pi + k2\pi; x = \frac{-\pi}{2} + k2\pi (k \in \mathbb{Z}).$

Bài tập tự luyện dạng 4

Câu 1: Cho phương trình $-\sqrt{2}(\sin x + \cos x) + 2\sin x \cos x + 1 = 0$. Đặt $t = \sin x + \cos x$, ta được phương trình nào dưới đây?

A.
$$t^2 + \sqrt{2}t = 0$$
.

B.
$$t^2 + \sqrt{2}t + 2 = 0$$
. **C.** $t^2 - \sqrt{2}t = 0$. **D.** $t^2 - \sqrt{2}t - 2 = 0$.

C.
$$t^2 - \sqrt{2}t = 0$$
.

D.
$$t^2 - \sqrt{2}t - 2 = 0$$

A. -1. B. $\sqrt{2}$. C. $-\sqrt{2}$. D. $-\frac{\sqrt{2}}{2}$. Câu 7: Cho phương trình $\sin 2x + 4(\sin x - \cos x) - 5 = 0$. Số nghiệm của phương trình thỏa mãn $0 < x < \pi$ là A. 1. B. 0. C. 2. D. 4. Câu 8: Phương trình nào sau đây vô nghiệm? A. $\sqrt{3} \sin 2x - \cos 2x = 2$. B. $\sin 2x - \sin x + \cos x = 1$. C. $\sin x = \cos \frac{\pi}{4}$. D. $\sqrt{3} \sin x - \cos x = -3$. Câu 9: Cho x thỏa mãn phương trình $\sin 2x + \sin x - \cos x = 1$. Giá trị lớn nhất tìm được của $\sin \left(x - \frac{\pi}{4}\right)$	Câu 2: Nếu $(1 + \sin x)(1 + \sin x)$	$+\cos x$) = 2 thì $\cos\left(x - \frac{\pi}{4}\right)$	nhận giá trị là	
A. $\begin{bmatrix} x = k2\pi \\ x = \frac{3\pi}{2} + k2\pi, & k \in \mathbb{Z}. \end{bmatrix}$ B. $\begin{bmatrix} x = k\pi \\ x = \frac{3\pi}{2} + k\pi, & k \in \mathbb{Z}. \end{bmatrix}$ C. $x = \frac{3\pi}{2} + k2\pi, & k \in \mathbb{Z}. \end{bmatrix}$ D. Vô nghiệm. Câu 4: Cho phương trình $\sin 2x - 2(\sin x - \cos x) - 2 = 0$. Nghiệm dương nhỏ nhất của phương trình là A. $x = \frac{\pi}{2}.$ B. $x = 0.$ C. $x = \frac{3\pi}{2}.$ D. $x = \frac{5\pi}{6}.$ Câu 5: Phương trình $\sin 2x + 2(\cos x - \sin x) - 1 = 0$ có nghiệm là A. $x = \frac{\pi}{4} + k\pi, & k \in \mathbb{Z}.$ B. $x = \frac{\pi}{4} + k2\pi, & k \in \mathbb{Z}.$ C. $x = -\frac{\pi}{4} + k\pi, & k \in \mathbb{Z}.$ D. Vô nghiệm. Câu 6: Cho phương trình $\sqrt{2}(\sin x + \cos x) = \tan x + \cot x. \text{ Nếu } t = \sin x + \cos x \text{ thì giá trị của } t \text{ thỏa mãn } t \le \sqrt{2} \text{ là}$ A. $-1.$ B. $\sqrt{2}.$ C. $-\sqrt{2}.$ D. $-\frac{\sqrt{2}}{2}.$ Câu 7: Cho phương trình $\sin 2x + 4(\sin x - \cos x) - 5 = 0.$ Số nghiệm của phương trình thỏa mãn $0 < x < \pi \text{ là}$ A. $1.$ B. $0.$ C. $2.$ D. $4.$ Câu 8: Phương trình nào sau đây vô nghiệm? A. $\sqrt{3} \sin 2x - \cos 2x = 2.$ B. $\sin 2x - \sin x + \cos x = 1.$ C. $\sin x = \cos \frac{\pi}{4}.$ D. $\sqrt{3} \sin x - \cos x = -3.$ Câu 9: Cho x thỏa mãn phương trình $\sin 2x + \sin x - \cos x = 1.$ Giá trị lớn nhất tim được của $\sin \left(x - \frac{\pi}{4}\right)$	A. -1.	B. 1.	C. $-\frac{\sqrt{2}}{2}$.	D. $\frac{\sqrt{2}}{2}$.
Câu 4: Cho phương trình $\sin 2x - 2(\sin x - \cos x) - 2 = 0$. Nghiệm. Câu 4: Cho phương trình $\sin 2x - 2(\sin x - \cos x) - 2 = 0$. Nghiệm dương nhỏ nhất của phương trình là A. $x = \frac{\pi}{2}$. B. $x = 0$. C. $x = \frac{3\pi}{2}$. D. $x = \frac{5\pi}{6}$. Câu 5: Phương trình $\sin 2x + 2(\cos x - \sin x) - 1 = 0$ có nghiệm là A. $x = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}$. B. $x = \frac{\pi}{4} + k2\pi, k \in \mathbb{Z}$. C. $x = -\frac{\pi}{4} + k\pi, k \in \mathbb{Z}$. D. Vô nghiệm. Câu 6: Cho phương trình $\sqrt{2}(\sin x + \cos x) = \tan x + \cot x$. Nếu $t = \sin x + \cos x$ thì giá trị của t thỏa mãn $ t \le \sqrt{2}$ là A. -1 . B. $\sqrt{2}$. C. $-\sqrt{2}$. D. $-\frac{\sqrt{2}}{2}$. Câu 7: Cho phương trình $\sin 2x + 4(\sin x - \cos x) - 5 = 0$. Số nghiệm của phương trình thỏa mãn $0 < x < \pi$ là A. 1. B. 0. C. 2. D. 4. Câu 8: Phương trình nào sau đây vô nghiệm? A. $\sqrt{3} \sin 2x - \cos 2x = 2$. B. $\sin 2x - \sin x + \cos x = 1$. C. $\sin x = \cos \frac{\pi}{4}$. D. $\sqrt{3} \sin x - \cos x = -3$. Câu 9: Cho x thỏa mãn phương trình $\sin 2x + \sin x - \cos x = 1$. Giá trị lớn nhất tìm được của $\sin \left(x - \frac{\pi}{4}\right)$	Câu 3: Phương trình sin	$ax - \cos x + 2\sin 2x + 1 = 0 $ c	ó nghiệm là	
Câu 4: Cho phương trình $\sin 2x - 2(\sin x - \cos x) - 2 = 0$. Nghiệm dương nhỏ nhất của phương trình là $\mathbf{A}. \ x = \frac{\pi}{2}.$ $\mathbf{B}. \ x = 0.$ $\mathbf{C}. \ x = \frac{3\pi}{2}.$ $\mathbf{D}. \ x = \frac{5\pi}{6}.$ Câu 5: Phương trình $\sin 2x + 2(\cos x - \sin x) - 1 = 0$ có nghiệm là $\mathbf{A}. \ x = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}.$ $\mathbf{B}. \ x = \frac{\pi}{4} + k2\pi, k \in \mathbb{Z}.$ $\mathbf{C}. \ x = -\frac{\pi}{4} + k\pi, k \in \mathbb{Z}.$ $\mathbf{D}. \ \text{Vô nghiệm}.$ Câu 6: Cho phương trình $\sqrt{2}(\sin x + \cos x) = \tan x + \cot x$. Nếu $t = \sin x + \cos x$ thì giá trị của t thỏa mãn $ t \le \sqrt{2}$ là $\mathbf{A}1.$ $\mathbf{B}. \ \sqrt{2}.$ $\mathbf{C}. \ -\sqrt{2}.$ $\mathbf{D}. \ -\frac{\sqrt{2}}{2}.$ Câu 7: Cho phương trình $\sin 2x + 4(\sin x - \cos x) - 5 = 0$. Số nghiệm của phương trình thỏa mãn $0 < x < \pi$ là $\mathbf{A}. \ 1.$ $\mathbf{B}. \ 0.$ $\mathbf{C}. \ 2.$ $\mathbf{D}. \ 4.$ Câu 8: Phương trình nào sau đây vô nghiệm? $\mathbf{A}. \ \sqrt{3}\sin 2x - \cos 2x = 2.$ $\mathbf{B}. \ \sin 2x - \sin x + \cos x = 1.$ $\mathbf{C}. \ \sin x = \cos \frac{\pi}{4}.$ $\mathbf{D}. \ \sqrt{3}\sin x - \cos x = -3.$ Câu 9: Cho x thỏa mãn phương trình $\sin 2x + \sin x - \cos x = 1$. Giá trị lớn nhất tìm được của $\sin \left(x - \frac{\pi}{4}\right)$	$\mathbf{A.} \left[\begin{array}{l} x = k2\pi \\ x = \frac{3\pi}{2} + k2\pi \end{array}, k \in \mathbb{Z} \right]$	\mathbb{Z} .	B.	
A. $x = \frac{\pi}{2}$. B. $x = 0$. C. $x = \frac{3\pi}{2}$. D. $x = \frac{5\pi}{6}$. Câu 5: Phương trình $\sin 2x + 2(\cos x - \sin x) - 1 = 0$ có nghiệm là A. $x = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}$. B. $x = \frac{\pi}{4} + k2\pi, k \in \mathbb{Z}$. C. $x = -\frac{\pi}{4} + k\pi, k \in \mathbb{Z}$. D. Vô nghiệm. Câu 6: Cho phương trình $\sqrt{2} (\sin x + \cos x) = \tan x + \cot x$. Nếu $t = \sin x + \cos x$ thì giá trị của t thỏa mãn $ t \le \sqrt{2}$ là A. -1 . B. $\sqrt{2}$. C. $-\sqrt{2}$. D. $-\frac{\sqrt{2}}{2}$. Câu 7: Cho phương trình $\sin 2x + 4(\sin x - \cos x) - 5 = 0$. Số nghiệm của phương trình thỏa mãn $0 < x < \pi$ là A. 1. B. 0. C. 2. D. 4. Câu 8: Phương trình nào sau đây vô nghiệm? A. $\sqrt{3} \sin 2x - \cos 2x = 2$. B. $\sin 2x - \sin x + \cos x = 1$. C. $\sin x = \cos \frac{\pi}{4}$. D. $\sqrt{3} \sin x - \cos x = -3$. Câu 9: Cho x thỏa mãn phương trình $\sin 2x + \sin x - \cos x = 1$. Giá trị lớn nhất tìm được của $\sin \left(x - \frac{\pi}{4}\right)$	$\mathbf{C.} \ \ x = \frac{3\pi}{2} + k2\pi, k \in \mathbb{Z}$		D. Vô nghiệm.	
Câu 5: Phương trình $\sin 2x + 2(\cos x - \sin x) - 1 = 0$ có nghiệm là A. $x = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}$. B. $x = \frac{\pi}{4} + k2\pi, k \in \mathbb{Z}$. C. $x = -\frac{\pi}{4} + k\pi, k \in \mathbb{Z}$. D. Vô nghiệm. Câu 6: Cho phương trình $\sqrt{2}(\sin x + \cos x) = \tan x + \cot x$. Nếu $t = \sin x + \cos x$ thì giá trị của t thỏa mãn $ t \le \sqrt{2}$ là A. -1 . B. $\sqrt{2}$. C. $-\sqrt{2}$. D. $-\frac{\sqrt{2}}{2}$. Câu 7: Cho phương trình $\sin 2x + 4(\sin x - \cos x) - 5 = 0$. Số nghiệm của phương trình thỏa mãn $0 < x < \pi$ là A. 1. B. 0. C. 2. D. 4. Câu 8: Phương trình nào sau đây vô nghiệm? A. $\sqrt{3} \sin 2x - \cos 2x = 2$. B. $\sin 2x - \sin x + \cos x = 1$. C. $\sin x = \cos \frac{\pi}{4}$. D. $\sqrt{3} \sin x - \cos x = -3$. Câu 9: Cho x thỏa mãn phương trình $\sin 2x + \sin x - \cos x = 1$. Giá trị lớn nhất tìm được của $\sin \left(x - \frac{\pi}{4}\right)$	Câu 4: Cho phương trìn	$h \sin 2x - 2(\sin x - \cos x) -$	2 = 0. Nghiệm dương nhỏ	nhất của phương trình là
A. $x = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}$. B. $x = \frac{\pi}{4} + k2\pi, k \in \mathbb{Z}$. C. $x = -\frac{\pi}{4} + k\pi, k \in \mathbb{Z}$. D. Vô nghiệm. Câu 6: Cho phương trình $\sqrt{2} \left(\sin x + \cos x \right) = \tan x + \cot x$. Nếu $t = \sin x + \cos x$ thì giá trị của t thỏa mãn $ t \le \sqrt{2}$ là A. -1 . B. $\sqrt{2}$. C. $-\sqrt{2}$. D. $-\frac{\sqrt{2}}{2}$. Câu 7: Cho phương trình $\sin 2x + 4 \left(\sin x - \cos x \right) - 5 = 0$. Số nghiệm của phương trình thỏa mãn $0 < x < \pi$ là A. 1. B. 0. C. 2. D. 4. Câu 8: Phương trình nào sau đây vô nghiệm? A. $\sqrt{3} \sin 2x - \cos 2x = 2$. B. $\sin 2x - \sin x + \cos x = 1$. C. $\sin x = \cos \frac{\pi}{4}$. D. $\sqrt{3} \sin x - \cos x = -3$. Câu 9: Cho x thỏa mãn phương trình $\sin 2x + \sin x - \cos x = 1$. Giá trị lớn nhất tìm được của $\sin \left(x - \frac{\pi}{4} \right)$	A. $x = \frac{\pi}{2}$.	B. $x = 0$.	C. $x = \frac{3\pi}{2}$.	D. $x = \frac{5\pi}{6}$.
Câu 6: Cho phương trình $\sqrt{2} (\sin x + \cos x) = \tan x + \cot x$. Nếu $t = \sin x + \cos x$ thì giá trị của t thỏa mẫn $ t \le \sqrt{2}$ là A. -1 . B. $\sqrt{2}$. Câu 7: Cho phương trình $\sin 2x + 4(\sin x - \cos x) - 5 = 0$. Số nghiệm của phương trình thỏa mẫn $0 < x < \pi$ là A. 1 . B. 0 . C. 2 . D. $-\frac{\sqrt{2}}{2}$. Câu 8: Phương trình nào sau đây vô nghiệm? A. $\sqrt{3} \sin 2x - \cos 2x = 2$. B. $\sin 2x - \sin x + \cos x = 1$. C. $\sin x = \cos \frac{\pi}{4}$. D. $\sqrt{3} \sin x - \cos x = -3$. Câu 9: Cho x thỏa mãn phương trình $\sin 2x + \sin x - \cos x = 1$. Giá trị lớn nhất tìm được của $\sin \left(x - \frac{\pi}{4}\right)$	Câu 5: Phương trình sin	$12x + 2(\cos x - \sin x) - 1 = 0$	có nghiệm là	
Câu 6: Cho phương trình $\sqrt{2} \left(\sin x + \cos x \right) = \tan x + \cot x$. Nếu $t = \sin x + \cos x$ thì giá trị của t thỏa mãn $ t \le \sqrt{2}$ là A1. B. $\sqrt{2}$. C. $-\sqrt{2}$. D. $-\frac{\sqrt{2}}{2}$. Câu 7: Cho phương trình $\sin 2x + 4(\sin x - \cos x) - 5 = 0$. Số nghiệm của phương trình thỏa mãn $0 < x < \pi$ là A. 1. B. 0. C. 2. D. 4. Câu 8: Phương trình nào sau đây vô nghiệm? A. $\sqrt{3} \sin 2x - \cos 2x = 2$. B. $\sin 2x - \sin x + \cos x = 1$. C. $\sin x = \cos \frac{\pi}{4}$. D. $\sqrt{3} \sin x - \cos x = -3$. Câu 9: Cho x thỏa mãn phương trình $\sin 2x + \sin x - \cos x = 1$. Giá trị lớn nhất tìm được của $\sin \left(x - \frac{\pi}{4} \right)$	$\mathbf{A.} \ \ x = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}.$		B. $x = \frac{\pi}{4} + k2\pi, k \in \mathbb{Z}.$	
$ t \le \sqrt{2}$ là A1. B. $\sqrt{2}$. C. $-\sqrt{2}$. D. $-\frac{\sqrt{2}}{2}$. Câu 7: Cho phương trình $\sin 2x + 4(\sin x - \cos x) - 5 = 0$. Số nghiệm của phương trình thỏa mãn $0 < x < \pi$ là A. 1. B. 0. C. 2. D. 4. Câu 8: Phương trình nào sau đây vô nghiệm? A. $\sqrt{3} \sin 2x - \cos 2x = 2$. B. $\sin 2x - \sin x + \cos x = 1$. C. $\sin x = \cos \frac{\pi}{4}$. D. $\sqrt{3} \sin x - \cos x = -3$. Câu 9: Cho x thỏa mãn phương trình $\sin 2x + \sin x - \cos x = 1$. Giá trị lớn nhất tìm được của $\sin \left(x - \frac{\pi}{4}\right)$	$\mathbf{C.} \ \ x = -\frac{\pi}{4} + k\pi, k \in \mathbb{Z}.$		D. Vô nghiệm.	
A. -1. B. $\sqrt{2}$. C. $-\sqrt{2}$. D. $-\frac{\sqrt{2}}{2}$. Câu 7: Cho phương trình $\sin 2x + 4(\sin x - \cos x) - 5 = 0$. Số nghiệm của phương trình thỏa mãn $0 < x < \pi$ là A. 1. B. 0. C. 2. D. 4. Câu 8: Phương trình nào sau đây vô nghiệm? A. $\sqrt{3} \sin 2x - \cos 2x = 2$. B. $\sin 2x - \sin x + \cos x = 1$. C. $\sin x = \cos \frac{\pi}{4}$. D. $\sqrt{3} \sin x - \cos x = -3$. Câu 9: Cho x thỏa mãn phương trình $\sin 2x + \sin x - \cos x = 1$. Giá trị lớn nhất tìm được của $\sin \left(x - \frac{\pi}{4}\right)$	Câu 6: Cho phương trìn	$\sinh \sqrt{2} \left(\sin x + \cos x \right) = \tan x$	$+\cot x$. Nếu $t = \sin x + \cos x$	x thì giá trị của t thỏa mãn
Câu 7: Cho phương trình $\sin 2x + 4(\sin x - \cos x) - 5 = 0$. Số nghiệm của phương trình thỏa mãn $0 < x < \pi$ là A. 1. B. 0. C. 2. D. 4. Câu 8: Phương trình nào sau đây vô nghiệm? A. $\sqrt{3} \sin 2x - \cos 2x = 2$. B. $\sin 2x - \sin x + \cos x = 1$. C. $\sin x = \cos \frac{\pi}{4}$. D. $\sqrt{3} \sin x - \cos x = -3$. Câu 9: Cho x thỏa mãn phương trình $\sin 2x + \sin x - \cos x = 1$. Giá trị lớn nhất tìm được của $\sin \left(x - \frac{\pi}{4}\right)$	$ t \le \sqrt{2}$ là			
$0 < x < \pi$ là A. 1. B. 0. C. 2. D. 4. Câu 8: Phương trình nào sau đây vô nghiệm? A. $\sqrt{3} \sin 2x - \cos 2x = 2$. B. $\sin 2x - \sin x + \cos x = 1$. C. $\sin x = \cos \frac{\pi}{4}$. D. $\sqrt{3} \sin x - \cos x = -3$. Câu 9: Cho x thỏa mãn phương trình $\sin 2x + \sin x - \cos x = 1$. Giá trị lớn nhất tìm được của $\sin \left(x - \frac{\pi}{4}\right)$	A. –1.	B. $\sqrt{2}$.	C. $-\sqrt{2}$.	D. $-\frac{\sqrt{2}}{2}$.
A. 1. B. 0. C. 2. D. 4. Câu 8: Phương trình nào sau đây vô nghiệm? A. $\sqrt{3} \sin 2x - \cos 2x = 2$. B. $\sin 2x - \sin x + \cos x = 1$. C. $\sin x = \cos \frac{\pi}{4}$. D. $\sqrt{3} \sin x - \cos x = -3$. Câu 9: Cho x thỏa mãn phương trình $\sin 2x + \sin x - \cos x = 1$. Giá trị lớn nhất tìm được của $\sin \left(x - \frac{\pi}{4}\right)$	Câu 7: Cho phương t	trình $\sin 2x + 4(\sin x - \cos x)$	(x) - 5 = 0. Số nghiệm củ	a phương trình thỏa mãn
Câu 8: Phương trình nào sau đây vô nghiệm? A. $\sqrt{3} \sin 2x - \cos 2x = 2$. B. $\sin 2x - \sin x + \cos x = 1$. C. $\sin x = \cos \frac{\pi}{4}$. D. $\sqrt{3} \sin x - \cos x = -3$. Câu 9: Cho x thỏa mãn phương trình $\sin 2x + \sin x - \cos x = 1$. Giá trị lớn nhất tìm được của $\sin \left(x - \frac{\pi}{4}\right)$	$0 < x < \pi$ là			
A. $\sqrt{3} \sin 2x - \cos 2x = 2$. B. $\sin 2x - \sin x + \cos x = 1$. C. $\sin x = \cos \frac{\pi}{4}$. D. $\sqrt{3} \sin x - \cos x = -3$. Câu 9: Cho x thỏa mãn phương trình $\sin 2x + \sin x - \cos x = 1$. Giá trị lớn nhất tìm được của $\sin \left(x - \frac{\pi}{4}\right)$	A. 1.	B. 0.	C. 2.	D. 4.
C. $\sin x = \cos \frac{\pi}{4}$. D. $\sqrt{3} \sin x - \cos x = -3$. Câu 9: Cho x thỏa mãn phương trình $\sin 2x + \sin x - \cos x = 1$. Giá trị lớn nhất tìm được của $\sin \left(x - \frac{\pi}{4}\right)$	Câu 8: Phương trình nào	o sau đây vô nghiệm?		
Câu 9: Cho x thỏa mãn phương trình $\sin 2x + \sin x - \cos x = 1$. Giá trị lớn nhất tìm được của $\sin \left(x - \frac{\pi}{4}\right)$	$\mathbf{A.} \ \sqrt{3} \sin 2x - \cos 2x =$	= 2.	$\mathbf{B.} \sin 2x - \sin x + \cos x =$	=1.
	$\mathbf{C.} \sin x = \cos \frac{\pi}{4}.$		$\mathbf{D.} \ \sqrt{3} \sin x - \cos x = -3.$	
	Câu 9: Cho x thỏa mãn là	phương trình $\sin 2x + \sin x$	$-\cos x = 1$. Giá trị lớn nhấ	at tim được của $\sin\left(x - \frac{\pi}{4}\right)$

TOANMATH.com

C. $\frac{1}{2}$.

B. $\frac{\sqrt{2}}{2}$.

Câu 10: Số họ nghiệm của phương trình $\sin 2x - \sin x + \cos x - 1 = 0$ là

A. 0.

D. 1.

D. 1.

Câu 11: Phương trình nào sau đây vô nghiệm?

A.
$$4(\sin x - \cos x) + \sin 2x - 5 = 0$$
.

B.
$$2\cos^2 x - \cos x - 1 = 0$$
.

C.
$$2(\sin x - \cos x) - \sin 2x + 2 = 0$$
.

D.
$$3\sin x - 2 = 0$$
.

Câu 12: Nghiệm âm lớn nhất của phương trình $\sin x + \cos x = 1 - \frac{1}{2}\sin 2x$ là

A.
$$x = -\frac{\pi}{6}$$
.

B.
$$x = -\frac{\pi}{2}$$
.

C.
$$x = -\frac{3\pi}{2}$$

C.
$$x = -\frac{3\pi}{2}$$
. **D.** $x = -\frac{5\pi}{6}$.

Câu 13: Số nghiệm của phương trình $2\sqrt{2}(\sin x + \cos x) - \sin 2x - 3 = 0$ thỏa mãn điều kiện $\pi < x < 5\pi$ là

B. 0.

C. 3.

D. 2.

Câu 14: Trong các phương trình sau phương trình nào có nghiệm?

A.
$$\sqrt{3} \sin x = 2$$
.

B.
$$\frac{1}{4}\cos 4x = \frac{1}{2}$$
.

C.
$$2\sqrt{2}(\sin x + \cos x) + \sin 2x + 3 = 0$$
.

D.
$$\cot^2 x - \cot x + 5 = 0$$
.

Câu 15: Điều kiện để phương trình $\sqrt{2} (\sin x + \cos x) + m - 2 = 0$ có nghiệm là

A.
$$m \le 0$$
.

B. Không có giá trị nào của *m*.

C.
$$m \ge 4$$
.

D.
$$0 \le m \le 4$$
.

Câu 16: Phương trình $3(\sin x + \cos x) + \frac{1}{2}\sin 2x = -3$ có nghiệm là

A.
$$x = -\frac{\pi}{4} + k\pi, k \in \mathbb{Z}.$$

B.
$$\begin{bmatrix} x = -\frac{\pi}{2} + k2\pi \\ x = \pi + k2\pi \end{bmatrix}, k \in \mathbb{Z}.$$

$$\mathbf{C.} \ \ x = -\frac{\pi}{2} + k2\pi, k \in \mathbb{Z}.$$

Câu 17: Nghiệm của phương trình $2(\sin x + \cos x) + \sin 2x + 1 = 0$ thỏa mãn điều kiện $0 < x < \pi$ là

A.
$$x = \frac{3\pi}{4}$$
.

B.
$$x = \frac{-\pi}{2}$$
. **C.** $x = \pi$.

$$\mathbf{C.} \ \ x = \pi.$$

D.
$$x = \frac{-\pi}{4}$$
.

Câu 18: Từ phương trình $\sin^3 x + \cos^3 x + 1 = \frac{3}{2}\sin 2x$ ta tìm được $\cos\left(x + \frac{\pi}{4}\right)$ có giá trị bằng

B.
$$\pm \frac{\sqrt{2}}{2}$$
.

C.
$$-\frac{\sqrt{2}}{2}$$
.

D.
$$\frac{\sqrt{2}}{2}$$
.

Câu 19: Có bao nhiều giá trị nguyên của tham số m để phương trình $\sin x \cos x - \sin x - \cos x + m = 0$ có nghiêm?

A. 1.

B. 2.

C. 3.

D. 4.

Câu 20: Giá trị của m để phương trình $m(\sin x + \cos x) + \sin 2x = 0$ có nghiệm là

A. Không có giá trị nào của m.

B. $\forall m$.

C. m = -1.

D. Cả A, B, C đều sai.

ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN

Dạng 1. Phương trình thuần nhất

1- C	2- A	3- B	4- B	5- D	6- D	7- C	8- C	9- B	10- C
11- D	12- B	13- A	14- A	15- A	16- B	17- D	18- B	19- A	20- B

HƯỚNG DẪN GIẢI CHI TIẾT

Câu 1.

Phương trình $\sqrt{3} \sin x - \cos x = 1$ có nghĩa $\forall x \in \mathbb{R} \Leftrightarrow D = \mathbb{R}$.

Ta có
$$\sqrt{3}\sin x - \cos x = 1 \Leftrightarrow \frac{\sqrt{3}}{2}\sin x - \frac{1}{2}\cos x = \frac{1}{2} \Leftrightarrow \sin\left(x - \frac{\pi}{6}\right) = \frac{1}{2}$$

$$\Leftrightarrow \sin\left(x - \frac{\pi}{6}\right) = \sin\frac{\pi}{6} \Leftrightarrow \begin{bmatrix} x - \frac{\pi}{6} = \frac{\pi}{6} + k2\pi \\ x - \frac{\pi}{6} = \pi - \frac{\pi}{6} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{3} + k2\pi \\ x = \pi + k2\pi \end{bmatrix}.$$

Câu 2.

Phương trình $\sin x + \sqrt{3}\cos x = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$\sin x + \sqrt{3}\cos x = 0 \Leftrightarrow \frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x = 0 \Leftrightarrow \sin\left(x + \frac{\pi}{3}\right) = 0 \Leftrightarrow x + \frac{\pi}{3} = k\pi \Leftrightarrow x = -\frac{\pi}{3} + k\pi.$$

Vậy phương trình có nghiệm âm lớn nhất $x = -\frac{\pi}{3}$ là với k = 0.

Câu 3.

Phương trình $\sin x + \cos x = 1$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$\sin x + \cos x = 1 \Leftrightarrow \frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x = \frac{1}{\sqrt{2}} \Leftrightarrow \sin \left(x + \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}}$$

$$\Leftrightarrow \sin\left(x + \frac{\pi}{4}\right) = \sin\frac{\pi}{4} \Leftrightarrow \begin{bmatrix} x + \frac{\pi}{4} = \frac{\pi}{4} + k2\pi \Leftrightarrow x = k2\pi \\ x + \frac{\pi}{4} = \pi - \frac{\pi}{4} + k2\pi \Leftrightarrow x = \frac{\pi}{2} + k2\pi \end{bmatrix}, k \in \mathbb{Z}.$$

Câu 4.

Phương trình $\sin x + \cos x = 1$ có nghĩa $\forall x \in \mathbb{R} \Leftrightarrow D = \mathbb{R}$.

Ta có
$$\sin x + \cos x = 1 \Leftrightarrow \frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x = \frac{1}{\sqrt{2}} \Leftrightarrow \sin \left(x + \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}}$$

$$\Leftrightarrow \sin\left(x + \frac{\pi}{4}\right) = \sin\frac{\pi}{4} \Leftrightarrow \begin{vmatrix} x + \frac{\pi}{4} = \frac{\pi}{4} + k2\pi \Leftrightarrow x = k2\pi \\ x + \frac{\pi}{4} = \pi - \frac{\pi}{4} + k2\pi \Leftrightarrow x = \frac{\pi}{2} + k2\pi \end{vmatrix}, k \in \mathbb{Z}.$$

Theo bài ra $x \in (0; \pi) \Rightarrow x = \frac{\pi}{2}$.

Câu 5.

Phương trình $3\sin x + m\cos x = 5$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Điều kiện để phương trình có nghiệm $3^2 + m^2 \ge 5^2 \iff m^2 \ge 16 \iff \begin{bmatrix} m \le -4 \\ m \ge 4 \end{bmatrix}$.

Vậy phương trình vô nghiệm khi -4 < m < 4.

Câu 6.

Phương trình $m.\sin x - 3\cos x = 5$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Điều kiện để phương trình có nghiệm $m^2 + (-3)^2 \ge 5^2 \iff m^2 \ge 16 \iff \begin{bmatrix} m \le -4 \\ m \ge 4 \end{bmatrix}$.

Câu 7.

Phương trình $\sqrt{3} \sin 3x + \cos 3x = -1$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$\sqrt{3}\sin 3x + \cos 3x = -1 \Leftrightarrow \frac{\sqrt{3}}{2}\sin 3x + \frac{1}{2}\cos 3x = -\frac{1}{2} \Leftrightarrow \sin\left(3x + \frac{\pi}{6}\right) = -\frac{1}{2}$$
.

Câu 8.

Phương trình $2\sin x + 3\cos x = 1$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$. Ta có $2^2 + 3^2 - 1^2 = 12 > 0$.

Vậy phương trình $2 \sin x + 3 \cos x = 1$ có nghiệm.

Câu 9.

Phương trình $\sqrt{3}\cos x + \sin x = \sqrt{2}$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$\sqrt{3}\cos x + \sin x = \sqrt{2} \Leftrightarrow \frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x = \frac{\sqrt{2}}{2} \Leftrightarrow \sin\left(x + \frac{\pi}{3}\right) = \frac{\sqrt{2}}{2}$$

$$\Leftrightarrow \sin\left(x + \frac{\pi}{3}\right) = \sin\frac{\pi}{4} \Leftrightarrow \begin{vmatrix} x + \frac{\pi}{3} = \frac{\pi}{4} + k2\pi \Leftrightarrow x = -\frac{\pi}{12} + k2\pi \\ x + \frac{\pi}{3} = \pi - \frac{\pi}{4} + k2\pi \Leftrightarrow x = \frac{5\pi}{12} + k2\pi \end{vmatrix}, k \in \mathbb{Z}.$$

Vì
$$x \in [0; \pi]$$
 nên $x = \frac{5\pi}{12}$

Câu 10.

Phương trình $\sin 8x - \cos 6x = \sqrt{3} (\sin 6x + \cos 8x)$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có $\sin 8x - \cos 6x = \sqrt{3} \left(\sin 6x + \cos 8x \right) \Leftrightarrow \sin 8x - \sqrt{3} \cos 8x = \cos 6x + \sqrt{3} \sin 6x$

$$\frac{1}{2}\sin 8x - \frac{\sqrt{3}}{2}\cos 8x = \frac{1}{2}\cos 6x + \frac{\sqrt{3}}{2}\sin 6x \Leftrightarrow \sin\left(8x - \frac{\pi}{3}\right) = \sin\left(6x + \frac{\pi}{6}\right)$$

$$\sin\left(8x - \frac{\pi}{3}\right) = \sin\left(6x + \frac{\pi}{6}\right) \Leftrightarrow \begin{bmatrix} 8x - \frac{\pi}{3} = 6x + \frac{\pi}{6} + k2\pi \Leftrightarrow x = \frac{\pi}{4} + k\pi \\ 8x - \frac{\pi}{3} = \pi - 6x - \frac{\pi}{6} + k2\pi \Leftrightarrow x = \frac{\pi}{12} + \frac{k\pi}{7} \end{bmatrix}, k \in \mathbb{Z}.$$

Câu 11.

Phương trình $\sqrt{3} \sin x - \cos x = -3$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Để phương trình có nghiệm thì $\left(\sqrt{3}\right)^2 + \left(-1\right)^2 \ge \left(-3\right)^2 \Leftrightarrow 4 \ge 9$ (vô lí).

Vậy phương trình $\sqrt{3} \sin x - \cos x = -3$ vô nghiệm.

Câu 12.

Phương trình $\sin 2x - 2\cos x = 0$ có nghĩa $\forall x \in \mathbb{R} \Leftrightarrow D = \mathbb{R}$.

Ta có $\sin 2x - 2\cos x = 0 \Leftrightarrow 2\sin x \cos x - 2\cos x = 0$

$$\Leftrightarrow 2\cos x (\sin x - 1) = 0 \Leftrightarrow \begin{bmatrix} \cos x = 0 \Rightarrow x = \frac{\pi}{2} + k\pi \\ \sin x = 1 \Rightarrow x = \frac{\pi}{2} + k2\pi \end{bmatrix} \Rightarrow x = \frac{\pi}{2} + k\pi.$$

Vì
$$x \in \left[-\frac{5\pi}{2}; \frac{\pi}{2} \right]$$
 nên $x = -\frac{5\pi}{12}; x = -\frac{3\pi}{2}; x = -\frac{\pi}{2}; x = \frac{\pi}{2}.$

Vậy phương trình có 4 nghiệm thỏa mãn đề bài.

Câu 13.

Phương trình $\cos 7x - \sqrt{3} \sin 7x = -\sqrt{2}$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$\cos 7x - \sqrt{3} \sin 7x = -\sqrt{2} \Leftrightarrow \frac{1}{2} \cos 7x - \frac{\sqrt{3}}{2} \sin 7x = -\frac{\sqrt{2}}{2}$$

$$\Leftrightarrow \frac{\sqrt{3}}{2}\sin 7x - \frac{1}{2}\cos 7x = \frac{\sqrt{2}}{2} \Leftrightarrow \sin\left(7x - \frac{\pi}{6}\right) = \sin\frac{\pi}{4} \Leftrightarrow \begin{bmatrix} 7x - \frac{\pi}{6} = \frac{\pi}{4} + k2\pi \Rightarrow x = \frac{5\pi}{84} + \frac{k2\pi}{7} \\ 7x - \frac{\pi}{6} = \pi - \frac{\pi}{4} + k2\pi \Rightarrow x = \frac{11\pi}{84} + \frac{k2\pi}{7} \end{bmatrix}, k \in \mathbb{Z}.$$

Câu 14.

Phương trình $\sin x + \sqrt{3}\cos x = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$\sin x + \sqrt{3}\cos x = 0 \Leftrightarrow \frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x = 0 \Leftrightarrow \sin\left(x + \frac{\pi}{3}\right) = 0 \Leftrightarrow x + \frac{\pi}{3} = k\pi \Leftrightarrow x = -\frac{\pi}{3} + k\pi.$$

Vậy phương trình có nghiệm dương nhỏ nhất là $x = \frac{2\pi}{3}$ với k = 1.

Câu 15.

Phương trình có nghĩa
$$\Leftrightarrow \cos x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k\pi \Leftrightarrow D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \right\}.$$

Ta có
$$\tan x - \sin 2x - \cos 2x + 2\left(2\cos x - \frac{1}{\cos x}\right) = 0 \Leftrightarrow \frac{\sin x}{\cos x} - \sin 2x - \cos 2x + 4\cos x - \frac{2}{\cos x} = 0$$

$$\Leftrightarrow \sin x - 2\sin x \cos^2 x - \cos 2x \cos x + 2(2\cos^2 x - 1) = 0 \Leftrightarrow \sin x (1 - 2\cos^2 x) - \cos 2x \cos x + 2\cos 2x = 0$$

$$\Leftrightarrow -\sin x \cos 2x - \cos 2x \cos x + 2\cos 2x = 0 \Leftrightarrow \cos 2x \left(\sin x + \cos x - 2\right) = 0$$

$$\Leftrightarrow \begin{cases} \cos 2x = 0 \\ \sin x + \cos x = 2 \end{cases} \Leftrightarrow x = \frac{\pi}{4} + k \frac{\pi}{2}, k \in \mathbb{Z}.$$

Vậy phương trình có nghiệm dương nhỏ nhất là $x = \frac{\pi}{4}$ với k = 0.

Câu 16.

Phương trình $\sin x + \cos x = -1$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$\sin x + \cos x = -1 \Leftrightarrow \frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x = -\frac{1}{\sqrt{2}} \Leftrightarrow \sin \left(x + \frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}}$$

$$\Leftrightarrow \sin\left(x + \frac{\pi}{4}\right) = \sin\frac{-\pi}{4} \Leftrightarrow \begin{bmatrix} x + \frac{\pi}{4} = -\frac{\pi}{4} + k2\pi \Leftrightarrow x = -\frac{\pi}{2} + k2\pi \\ x + \frac{\pi}{4} = \pi - \frac{-\pi}{4} + k2\pi \Leftrightarrow x = \pi + k2\pi \end{bmatrix}, k \in \mathbb{Z}.$$

Câu 17.

Phương trình $2\sin^2 x - \sin x \cos x - \cos^2 x = m$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$2\sin^2 x - \sin x \cos x - \cos^2 x = m \Leftrightarrow (1 - \cos 2x) - \frac{1}{2}\sin 2x - \frac{1}{2}(1 + \cos 2x) = m$$

$$\Leftrightarrow \sin 2x + 3\cos 2x = -2m + 1$$
. (1)

Để phương trình (1) có nghiệm thì
$$(1-2m)^2 \le 1+9 \Leftrightarrow 4m^2-4m-9 \le 0 \Leftrightarrow \frac{1-\sqrt{10}}{2} \le m \le \frac{1+\sqrt{10}}{2}$$
.

Câu 18.

Phương trình $\cos 2x + \sin x - 1 = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có $\cos 2x + \sin x - 1 = 0 \Leftrightarrow 1 - 2\sin^2 x + \sin x - 1 = 0$

$$\Leftrightarrow 2\sin^2 x - \sin x = 0 \Leftrightarrow \sin^2 x - \frac{1}{2}\sin x = 0 \Leftrightarrow \left(\sin x - \frac{1}{4}\right)^2 = \frac{1}{16} \Leftrightarrow \begin{vmatrix} \sin x - \frac{1}{4} = \frac{1}{4} \Leftrightarrow \sin x = \frac{1}{2}(1) \\ \sin x - \frac{1}{4} = -\frac{1}{4} \Leftrightarrow \sin x = 0(2) \end{vmatrix}.$$

Giải (1) ta có
$$\sin x = \frac{1}{2} \Leftrightarrow \sin x = \sin \frac{\pi}{6} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ x = \frac{5\pi}{6} + k2\pi \end{bmatrix}$$
.

Giải (2) ta có $\sin x = 0 \Leftrightarrow x = k\pi, k \in \mathbb{Z}$.

Câu 19.

Phương trình có nghĩa
$$\Leftrightarrow \cos x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k\pi \Leftrightarrow D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \right\}.$$

Ta có
$$\tan x - \sin 2x - \cos 2x + 2\left(2\cos x - \frac{1}{\cos x}\right) = 0 \Leftrightarrow \frac{\sin x}{\cos x} - \sin 2x - \cos 2x + 4\cos x - \frac{2}{\cos x} = 0$$

$$\Leftrightarrow \sin x - 2\sin x \cos^2 x - \cos 2x \cos x + 2\left(2\cos^2 x - 1\right) = 0 \Leftrightarrow \sin x\left(1 - 2\cos^2 x\right) - \cos 2x \cos x + 2\cos 2x = 0$$

$$\Leftrightarrow$$
 $-\sin x \cos 2x - \cos 2x \cos x + 2\cos 2x = 0$

$$\Leftrightarrow \cos 2x (\sin x + \cos x - 2) = 0 \Leftrightarrow \begin{cases} \cos 2x = 0 \\ \sin x + \cos x = 2 \end{cases} \Leftrightarrow x = \frac{\pi}{4} + k \frac{\pi}{2}, k \in \mathbb{Z}.$$

Câu 20.

Phương trình có nghĩa
$$\Leftrightarrow \sin 2x \neq 0 \Leftrightarrow x \neq k \frac{\pi}{2} \Leftrightarrow D = \mathbb{R} \setminus \left\{k \frac{\pi}{2}\right\}.$$

Ta có
$$\tan x - 3 \cot x = 4 \left(\sin x + \sqrt{3} \cos x \right) \Leftrightarrow \frac{\sin x}{\cos x} - 3 \frac{\cos x}{\sin x} = 4 \left(\sin x + \sqrt{3} \cos x \right)$$

$$\Leftrightarrow \sin^2 x - 3\cos^2 x = 4\sin x \cos x \left(\sin x + \sqrt{3}\cos x\right)$$

$$\Leftrightarrow \left(\sin x + \sqrt{3}\cos x\right)\left(\sin x - \sqrt{3}\cos x\right) = 4\sin x.\cos x\left(\sin x + \sqrt{3}\cos x\right) \Leftrightarrow \begin{bmatrix}\sin x + \sqrt{3}\cos x = 0\\\sin x - \sqrt{3}\cos x = 4\sin x.\cos x\end{bmatrix}$$

Trường hợp 1:

$$\sin x + \sqrt{3}\cos x = 0 \Leftrightarrow \frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x = 0 \Leftrightarrow \sin\left(x + \frac{\pi}{3}\right) = 0 \Leftrightarrow x + \frac{\pi}{3} = k\pi \Leftrightarrow x = -\frac{\pi}{3} + k\pi.$$

Trang 21

Trường hợp 2:
$$\sin x - \sqrt{3}\cos x = 4\sin x.\cos x \Leftrightarrow \frac{1}{2}\sin x - \frac{\sqrt{2}}{2}\cos x = 2\sin x.\cos x$$

TOANMATH.com

$$\Leftrightarrow \sin\left(x - \frac{\pi}{3}\right) = \sin 2x \Leftrightarrow \begin{bmatrix} x = \frac{-\pi}{3} + k2\pi \\ x = \frac{4\pi}{9} + \frac{k2\pi}{3} \end{bmatrix}$$

Dạng 2. Phương trình bậc hai của hàm số lượng giác

1- C	2- A	3- A	4- A	5- C	6- B	7- C	8- B	9- A	10- D
11- D	12- A	13- B	14- C	15- C	16- B	17- B	18- A	19- A	20- C

HƯỚNG DẪN GIẢI CHI TIẾT

Câu 1.

Phương trình $2\sin^2 x + \sin x - 3 = 0$ có nghĩa $\forall x \in \mathbb{R} \Rightarrow D = \mathbb{R}$.

Đặt
$$t = \sin x, |t| \le 1$$
. Ta có $2\sin^2 x + \sin x - 3 = 0 \Leftrightarrow 2t^2 + t - 3 = 0 \Leftrightarrow \left[t = 1 \atop t = \frac{-3}{2} \Leftrightarrow t = 1 \pmod{|t| \le 1} \right]$.

Với
$$t = 1$$
, ta có $\sin x = 1 \Leftrightarrow x = \frac{\pi}{2} + k2\pi (k \in \mathbb{Z})$.

Câu 2

Phương trình $\cos^2 x + 2\cos x - 3 = 0$ có nghĩa $\forall x \in \mathbb{R} \Rightarrow D = \mathbb{R}$.

Đặt
$$t = \cos x, |t| \le 1$$
. Ta có $\cos^2 x + 2\cos x - 3 = 0 \Leftrightarrow t^2 + 2t - 3 = 0 \Leftrightarrow \begin{bmatrix} t = 1 \\ t = -3 \end{bmatrix} \Leftrightarrow t = 1 \text{ (do } |t| \le 1 \text{)}.$

Với
$$t = 1$$
, ta có $\cos x = 1 \Leftrightarrow x = k2\pi (k \in \mathbb{Z})$.

Câu 3.

Phương trình $2\sin^2 x + 5\sin x - 3 = 0$ có nghĩa $\forall x \in \mathbb{R} \Rightarrow D = \mathbb{R}$.

Đặt
$$t = \sin x, |t| \le 1$$
. Ta có $2\sin^2 x + 5\sin x - 3 = 0 \Leftrightarrow 2t^2 + 5t - 3 = 0 \Leftrightarrow \begin{bmatrix} t = \frac{1}{2} & \Leftrightarrow t = \frac{1}{2} & \text{(do } |t| \le 1). \\ t = -3 & \text{(do } |t| \le 1). \end{bmatrix}$

Với
$$t = \frac{1}{2}$$
, ta có $\sin x = \frac{1}{2} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ x = \frac{5\pi}{6} + k2\pi \end{bmatrix} (k \in \mathbb{Z}).$

Vậy nghiệm dương bé nhất của phương trình là $x = \frac{\pi}{6}$.

Câu 4.

Phương trình $3\cos^2 x - 2\cos x - 4 = 0$ có nghĩa $\forall x \in \mathbb{R} \Rightarrow D = \mathbb{R}$.

$$\text{D} \, \text{\'at} \, t = \cos x, |t| \le 1.$$

Ta có
$$3\cos^2 x - 2\cos x - 4 = 0 \Leftrightarrow 3t^2 - 2t - 4 = 0 \Leftrightarrow \left[t = \frac{1 - \sqrt{13}}{3} \Leftrightarrow t = \frac{1 - \sqrt{13}}{3} (\operatorname{do}|t| \le 1). \right]$$

Với
$$t = \frac{1 - \sqrt{13}}{3}$$
, ta có $\cos x = \frac{1 - \sqrt{13}}{3} \Leftrightarrow \begin{bmatrix} x = \arccos \frac{1 - \sqrt{13}}{3} + k2\pi \\ x = -\arccos \frac{1 - \sqrt{13}}{3} + k2\pi \end{bmatrix} (k \in \mathbb{Z}).$

Vì $x \in [0,3\pi]$ nên phương trình chỉ có 3 nghiệm.

$$x = \arccos \frac{1 - \sqrt{13}}{3}, x = \arccos \frac{1 - \sqrt{13}}{3} + 2\pi, x = -\arccos \frac{1 - \sqrt{13}}{3} + 2\pi.$$

Câu 5.

Phương trình $2\sin^2 x - 3\sin x + 1 = 0$ có nghĩa $\forall x \in \mathbb{R} \Rightarrow D = \mathbb{R}$.

Đặt
$$t = \sin x, |t| \le 1$$
. Ta có $2\sin^2 x - 3\sin x + 1 = 0 \Leftrightarrow 2t^2 - 3t + 1 = 0 \Leftrightarrow \begin{bmatrix} t = \frac{1}{2}, t = 1 \end{bmatrix}$

Với
$$t = \frac{1}{2}$$
, ta có $\sin x = \frac{1}{2} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ x = \frac{5\pi}{6} + k2\pi \end{bmatrix} (k \in \mathbb{Z}).$

Với
$$t = 1$$
, ta có $\sin x = 1 \Leftrightarrow x = \frac{\pi}{2} + k2\pi (k \in \mathbb{Z})$.

$$\text{Vi } x \in \left[0; \frac{\pi}{2}\right) \text{ nên } x = \frac{\pi}{6}.$$

Câu 6.

Phương trình $\tan^2 x + 2 \tan x + 1 = 0$ có nghĩa $\Leftrightarrow x \neq \frac{\pi}{2} + k\pi$.

Đặt
$$t = \tan x$$
. Ta có $\tan^2 x + 2\tan x + 1 = 0 \Leftrightarrow t^2 + 2t + 1 = 0 \Leftrightarrow t = -1$.

Với
$$t = -1$$
, ta có $\tan x = -1 \Leftrightarrow \tan x = \tan \frac{-\pi}{4} \Leftrightarrow x = -\frac{\pi}{4} + k\pi (k \in \mathbb{Z}).$

Câu 7.

Phương trình $\cos^2 2x + \cos 2x - \frac{3}{4} = 0$ có nghĩa $\forall x \in \mathbb{R} \Rightarrow D = \mathbb{R}$.

Đặt
$$t = \cos 2x, |t| \le 1$$
. Ta có $\cos^2 2x + \cos 2x - \frac{3}{4} = 0 \Leftrightarrow t^2 + t - \frac{3}{4} = 0 \Leftrightarrow \begin{bmatrix} t = \frac{1}{2} \\ t = \frac{-3}{2} \end{bmatrix} \Leftrightarrow t = \frac{1}{2} \text{ (do } |t| \le 1 \text{)}.$

Với
$$t = \frac{1}{2}$$
, ta có $\cos 2x = \frac{1}{2} = \cos \frac{\pi}{3} \Leftrightarrow \begin{bmatrix} 2x = \frac{\pi}{3} + k2\pi \\ 2x = -\frac{\pi}{3} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k\pi \\ x = -\frac{\pi}{6} + k\pi \end{bmatrix} (k \in \mathbb{Z}).$

Câu 8.

Phương trình $\sin^2 x - 2\sin x = 0$ có nghĩa $\forall x \in \mathbb{R} \Rightarrow D = \mathbb{R}$.

Đặt
$$t = \sin x, |t| \le 1$$
. Ta có $\sin^2 x - 2\sin x = 0 \Leftrightarrow t^2 - 2t = 0 \Leftrightarrow \begin{bmatrix} t = 0 \\ t = 2 \end{cases} \Leftrightarrow t = 0 \text{ (do } |t| \le 1 \text{)}.$

Với t = 0, ta có $\sin x = 0 \Leftrightarrow x = k\pi (k \in \mathbb{Z})$.

Câu 9.

Phương trình $\cot^2 3x - \cot 3x - 2 = 0$ có nghĩa $\Leftrightarrow x \neq \frac{k\pi}{3}$.

Đặt
$$t = \cot 3x$$
. Ta có $\cot^2 3x - \cot 3x - 2 = 0 \Leftrightarrow t^2 - t - 2 = 0 \Leftrightarrow \begin{bmatrix} t = -1 \\ t = 2 \end{bmatrix}$.

Với
$$t = -1$$
, ta có $\cot 3x = -1 \Leftrightarrow \cot 3x = \cot \frac{3\pi}{4} \Leftrightarrow 3x = \frac{3\pi}{4} + k\pi \Leftrightarrow x = \frac{\pi}{4} + \frac{k\pi}{3} (k \in \mathbb{Z}).$

Với
$$t = 2$$
, ta có $\cot 3x = 2 \Leftrightarrow 3x = \operatorname{arccot} 2 + k\pi \Leftrightarrow x = \frac{1}{3}\operatorname{arc} \cot 2 + k\frac{\pi}{3} (k \in \mathbb{Z}).$

Câu 10.

Phương trình $2\cos 2x + 2\cos x - \sqrt{2} = 0$ có nghĩa $\forall x \in \mathbb{R} \Rightarrow D = \mathbb{R}$.

Ta có $2\cos 2x + 2\cos x - \sqrt{2} = 0 \Leftrightarrow 4\cos^2 x - 2 + 2\cos x - \sqrt{2} = 0 \Leftrightarrow 4\cos^2 x + 2\cos x - 2 - \sqrt{2} = 0$. Đặt $t = \cos x, |t| \le 1$.

Ta có
$$4\cos^2 x + 2\cos x - 2 - \sqrt{2} = 0 \Leftrightarrow 4t^2 + 2t - 2 - \sqrt{2} = 0 \Leftrightarrow \left[t = \frac{\sqrt{2}}{2} \right] \\ t = \frac{-2 - \sqrt{36 + 16\sqrt{2}}}{8} \Leftrightarrow t = \frac{\sqrt{2}}{2} (\operatorname{do}|t| \le 1).$$

Với
$$t = \frac{\sqrt{2}}{2}$$
, ta có $\cos x = \frac{\sqrt{2}}{2} = \cos \frac{\pi}{4} \Leftrightarrow x = \pm \frac{\pi}{4} + k2\pi (k \in \mathbb{Z})$.

Vậy nghiệm âm lớn nhất của phương trình là $x = -\frac{\pi}{4}$.

Câu 11.

Ta có $\sqrt{3} \sin x = 2 \Leftrightarrow \sin x = \frac{2}{\sqrt{3}} > 1$ (vô nghiệm).

Ta có
$$\frac{1}{4}\cos 4x = \frac{1}{2} \Leftrightarrow \cos 4x = 2 > 1$$
 (vô nghiệm).

Ta có $2^2 + 2^2 < 5^2$ nên phương trình $2 \sin x + 3 \cos x = 5$ (vô nghiệm)

Câu 12.

Phương trình $13\sin^2 x - 78\sin x + 15 = 0$ có nghĩa $\forall x \in \mathbb{R} \Rightarrow D = \mathbb{R}$. Đặt $t = \sin x, |t| \le 1$.

Ta có
$$13\sin^2 x - 78\sin x + 15 = 0 \Leftrightarrow 13t^2 - 78t + 15 = 0 \Leftrightarrow \begin{bmatrix} t = 0,199 \\ t = 5,801 \end{bmatrix} \Leftrightarrow t = 0,199 \text{ (do } |t| \le 1\text{)}.$$

Với
$$t = 0,199$$
, ta có $\sin x = 0,199 \Leftrightarrow \begin{bmatrix} x = \arcsin 0.199 + k2\pi \\ x = \pi - \arcsin 0.199 + k2\pi \end{bmatrix} (k \in \mathbb{Z}).$

Vì $x \in [0; 2\pi]$ nên phương trình có hai nghiệm.

Câu 13.

Phương trình $3\cos x + 2|\sin x| = 2$ có nghĩa $\forall x \in \mathbb{R} \Rightarrow D = \mathbb{R}$.

Ta có
$$3\cos x + 2|\sin x| = 2 \iff 3\cos x + 2\sqrt{1 - \cos^2 x} = 2$$
.

Đặt
$$t = \cos x, |t| \le 1$$
. Ta có $3\cos x + 2|\sin x| = 2 \Leftrightarrow 3t + 2\sqrt{1-t^2} = 2 \Leftrightarrow t = 0$.

Với
$$t = 0$$
, ta có $\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi (k \in \mathbb{Z})$.

Câu 14.

Phương trình $\tan^2 x - \frac{4\sqrt{3}}{3} \tan x + 1 = 0$ có nghĩa $\iff x \neq \frac{\pi}{2} + k\pi$.

Đặt
$$t = \tan x$$
. Ta có $\tan^2 x - \frac{4\sqrt{3}}{3} \tan x + 1 = 0 \Leftrightarrow t^2 - \frac{4\sqrt{3}}{3} t + 1 = 0 \Leftrightarrow \begin{bmatrix} t = \frac{\sqrt{3}}{3} \\ t = \sqrt{3} \end{bmatrix}$

Với
$$t = \frac{\sqrt{3}}{3}$$
, ta có $\tan x = \frac{\sqrt{3}}{3} \Leftrightarrow \tan x = \tan \frac{\pi}{6} \Leftrightarrow x = \frac{\pi}{6} + k\pi (k \in \mathbb{Z}).$

Với
$$t = \sqrt{3}$$
, ta có $\tan x = \sqrt{3} \Leftrightarrow \tan x = \tan \frac{\pi}{3} \Leftrightarrow x = \frac{\pi}{3} + k\pi (k \in \mathbb{Z}).$

Vì
$$x \in [0; 3\pi]$$
 nên $x = \frac{\pi}{6}$; $x = \frac{7\pi}{6}$; $x = \frac{13\pi}{6}$; $x = \frac{\pi}{3}$; $x = \frac{4\pi}{3}$; $x = \frac{7\pi}{3}$.

Vậy phương trình có 6 nghiệm thỏa mãn đề bài.

Câu 15.

Phương trình $\sin^2 x - 5\sin x + 6 = 0$ có nghĩa $\forall x \in \mathbb{R} \Rightarrow D = \mathbb{R}$. Đặt $t = \sin x, |t| \le 1$.

Ta có
$$\sin^2 x - 5\sin x + 6 = 0 \Leftrightarrow t^2 - 5t + 6 = 0 \Leftrightarrow \begin{bmatrix} t = 3 \\ t = 2 \end{cases} \Leftrightarrow t = \emptyset \text{ (do } |t| \le 1 \text{)}.$$

Vậy phương trình vô nghiệm.

Câu 16.

Phương trình
$$(\tan x + \cot x)^2 - (\tan x + \cot x) = 2$$
 có nghĩa $\Leftrightarrow \begin{cases} \cos x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k\pi \\ \sin x \neq 0 \Leftrightarrow x \neq k\pi \end{cases} \Leftrightarrow x \neq k\frac{\pi}{2}.$

Đặt
$$t = \tan x + \cot x$$
. Ta có $(\tan x + \cot x)^2 - (\tan x + \cot x) = 2 \Leftrightarrow t^2 - t - 2 = 0 \Leftrightarrow \begin{bmatrix} t = 2 \\ t = -1 \end{bmatrix}$.

Với
$$t = 2$$
, ta có
$$\begin{cases} \tan x + \cot x = 2 \\ \tan x \cot x = 1 \end{cases} \Leftrightarrow \begin{cases} \tan x = 1 \\ \cot x = 1 \end{cases}$$

Với
$$t = -1$$
, ta có
$$\begin{cases} \tan x + \cot x = -1 \\ \tan x \cot x = 1 \end{cases}$$
 (vô nghiệm).

$$V_{ay}^2 \tan x + \frac{1}{\tan x} = 2.$$

Câu 17.

Phương trình $\sin x + \sin^2 \frac{x}{2} = \frac{1}{2}$ có nghĩa $\forall x \in \mathbb{R} \Rightarrow D = \mathbb{R}$.

Ta có
$$\sin x + \sin^2 \frac{x}{2} = \frac{1}{2} \Leftrightarrow \sin x + \frac{1 - \cos x}{2} = \frac{1}{2} \Leftrightarrow 2\sin x + 1 - \cos x = 1 \Leftrightarrow 2\sin x - \cos x = 0.$$
 (*)

Vì
$$\cos x = 0$$
 thì (*) vô nghiệm nên (*) $\Rightarrow 2 \frac{\sin x}{\cos x} - 1 = 0 \Leftrightarrow 2 \tan x - 1 = 0 \Leftrightarrow \tan x = \frac{1}{2}$.

Câu 18.

Phương trình $3\sin^2 x - \sin 2x - \cos^2 x = 0$ có nghĩa $\forall x \in \mathbb{R} \Rightarrow D = \mathbb{R}$.

Ta có
$$3\sin^2 x - \sin 2x - \cos^2 x = 0 \Leftrightarrow 3\sin^2 x - 2\sin x \cos x - \cos^2 x = 0$$
. (1)

Vì $\cos x = 0$ không là nghiệm của phương trình (1) nên ta chia cả hai vế của phương trình cho $\cos^2 x$.

Ta có $3\sin^2 x - 2\sin x \cos x - \cos^2 x = 0 \Rightarrow 3\tan^2 x - 2\tan x - 1 = 0$.

Đặt
$$t = \tan x$$
. Ta có $3\tan^2 x - 2\tan x - 1 = 0 \Leftrightarrow 3t^2 - 2t - 1 = 0 \Leftrightarrow \begin{bmatrix} t = 1 \\ t = -\frac{1}{3} \end{bmatrix}$

Với
$$t = 1$$
, ta có $\tan x = 1 \Leftrightarrow \tan x = \tan \frac{\pi}{4} \Leftrightarrow x = \frac{\pi}{4} + k\pi (k \in \mathbb{Z}).$

Với
$$t = -\frac{1}{3}$$
, ta có $\tan x = -\frac{1}{3} \Leftrightarrow x = \arctan \frac{-1}{3} + k\pi (k \in \mathbb{Z})$.

Câu 19.

Ta có
$$\frac{\sin^3 x + \cos^3 x}{2\cos x - \sin x} = \cos 2x \Leftrightarrow \sin^3 x + \cos^3 x = (\cos^2 x - \sin^2 x)(2\cos x - \sin x)$$

$$\Leftrightarrow \sin^3 x + \cos^3 x = 2\cos^3 x - 2\cos x \sin^2 x - \sin x \cos^2 x + \sin^3 x$$

$$\Leftrightarrow \cos^3 x - 2\sin^2 x \cos x - \sin x \cos^2 x = 0 \Leftrightarrow \frac{\cos^3 x}{\cos^3 x} - \frac{2\sin^2 x \cos x}{\cos^3 x} - \frac{\sin x \cos^2 x}{\cos^3 x} = 0$$

(Điều kiện
$$\cos x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k\pi$$
).

$$\Leftrightarrow 1-2\tan^2 x - \tan x = 0 \Leftrightarrow 2\tan^2 x + \tan x - 1 = 0.$$

Đặt
$$\tan x = t$$
, ta có $2 \tan^2 x + \tan x - 1 = 0 \iff 2t^2 + t - 1 = 0$.

Câu 20.

Phương trình $2\sin x - 2\cos x = 1 - \sqrt{3}$ có nghĩa $\forall x \in \mathbb{R} \Rightarrow D = \mathbb{R}$.

Ta có
$$2\sin x - 2\cos x = 1 - \sqrt{3} \Leftrightarrow \left(\sin x - \cos x\right)^2 = \left(\frac{1 - \sqrt{3}}{2}\right)^2$$

$$\Leftrightarrow \sin^2 x + \cos^2 x - 2\sin x \cos x = 1 - \frac{\sqrt{3}}{2} \Leftrightarrow \sin 2x = \frac{\sqrt{3}}{2} \Leftrightarrow \sin 2x = \sin \frac{\pi}{3}.$$

Dạng 3. Phương trình lượng giác đẳng cấp

1- D	2- A	3- D	4- B	5- C	6- C	7- D	8- B	9- A	10- C
11- C	12- A	13- C	14- A	15- B	16- D	17- C	18- B	19- C	20- A

HƯỚNG DẪN GIẢI CHI TIẾT

Câu 1

Phương trình $\cos^2 x - 3\sin x \cos x - 2\sin^2 x = 1$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Với
$$\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \Rightarrow$$
 phương trình vô nghiệm.

Với $\cos x \neq 0$. Chia cả hai vế của phương trình cho $\cos^2 x$ ta được $\cos^2 x - 3\sin x \cos x - 2\sin^2 x = 1 \Leftrightarrow 1 - 3\tan x - 2\tan^2 x = 1 + \tan^2 x$

$$\Leftrightarrow \tan^2 x + \tan x = 0 \Leftrightarrow \begin{bmatrix} \tan x = -1 \Leftrightarrow x = -\frac{\pi}{4} + k\pi \\ \tan x = 0 \Leftrightarrow x = k\pi \end{bmatrix}$$

Câu 2.

Phương trình $\sqrt{3} \sin x + \cos x = \frac{1}{\cos x}$ có nghĩa khi $\cos x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$.

Chia cả 2 v'e của phương trình cho $\cos x$ ta được

$$\sqrt{3}\sin x + \cos x = \frac{1}{\cos x} \Leftrightarrow \sqrt{3}\tan x + 1 = 1 + \tan^2 x$$

$$\Leftrightarrow \tan^2 x - \sqrt{3} \tan x = 0 \Leftrightarrow \begin{bmatrix} \tan x = \sqrt{3} \Leftrightarrow x = \frac{\pi}{3} + k\pi \\ \tan x = 0 \Leftrightarrow x = k\pi \end{bmatrix} (k \in \mathbb{Z}).$$

Câu 3.

Phương trình $3\cos^2 4x + 5\sin^2 4x = 2 - 2\sqrt{3}\sin 4x \cdot \cos 4x$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Với
$$\cos 4x = 0 \Leftrightarrow x = \frac{\pi}{8} + \frac{k\pi}{4}, k \in \mathbb{Z} \Rightarrow \text{ phương trình vô nghiệm.}$$

Với $\cos 4x \neq 0$. Chia cả hai vế của phương trình cho $\cos^2 4x$ ta được

$$3\cos^2 4x + 5\sin^2 4x = 2 - 2\sqrt{3}\sin 4x \cdot \cos 4x \Leftrightarrow 3 + 5\tan^2 4x = 2(1 + \tan^2 4x) - 2\sqrt{3}\tan 4x$$

$$\Leftrightarrow 3\tan^2 4x + 2\sqrt{3}\tan 4x + 1 = 0 \Leftrightarrow \tan 4x = -\frac{\sqrt{3}}{3} \Leftrightarrow 4x = -\frac{\pi}{6} + k\pi \Leftrightarrow x = -\frac{\pi}{24} + k\frac{\pi}{4}(k \in \mathbb{Z}).$$

Câu 4

Phương trình $\sin^2 x + \frac{1 - \sqrt{3}}{2} \sin 2x - \sqrt{3} \cos^2 x = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$\sin^2 x + \frac{1 - \sqrt{3}}{2} \sin 2x - \sqrt{3} \cos^2 x = 0 \Leftrightarrow \sin^2 x + (1 - \sqrt{3}) \sin x \cos x - \sqrt{3} \cos^2 x = 0.$$

Với
$$\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \Rightarrow$$
 phương trình vô nghiệm.

Với $\cos x \neq 0$. Chia cả hai vế của phương trình cho $\cos^2 x$ ta được

$$\sin^2 x + \left(1 - \sqrt{3}\right)\sin x \cos x - \sqrt{3}\cos^2 x = 0 \Leftrightarrow \tan^2 x + \left(1 - \sqrt{3}\right)\tan x - \sqrt{3} = 0 \Leftrightarrow \begin{bmatrix} \tan x = -1 \\ \tan x = \sqrt{3} \end{bmatrix}$$

Vậy giá trị nguyên của $\tan x$ là -1.

Câu 5.

Phương trình $2\sin^2 x - \sin 2x + \cos^2 x = 1$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$2\sin^2 x - \sin 2x + \cos^2 x = 1 \iff 2\sin^2 x - 2\sin x \cos x + \cos^2 x = 1$$
.

Với
$$\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \Rightarrow$$
 phương trình vô nghiệm.

Với $\cos x \neq 0$. Chia cả hai vế của phương trình cho $\cos^2 x$ ta được

$$2\sin^2 x - 2\sin x \cos x + \cos^2 x = 1 \Leftrightarrow 2\tan^2 x - 2\tan x + 1 = 1 + \tan^2 x$$

$$\Leftrightarrow \tan^2 x - 2 \tan x = 0 \Leftrightarrow \begin{bmatrix} \tan x = 0 \Leftrightarrow x = k\pi \\ \tan x = 2 \Leftrightarrow x = \arctan 2 + k\pi \end{bmatrix}, k \in \mathbb{Z}.$$

Câu 6.

Phương trình $-\sin^2 x + 2\sqrt{3}\sin x \cos x + 1 = 2$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Với
$$\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \Rightarrow$$
 phương trình vô nghiệm.

Với $\cos x \neq 0$. Chia cả hai vế của phương trình cho $\cos^2 x$ ta được

$$-\sin^2 x + 2\sqrt{3}\sin x \cos x + 1 = 2 \Leftrightarrow -\tan^2 x + 2\sqrt{3}\tan x = 1 + \tan^2 x$$

TOANMATH.com

$$\Leftrightarrow 2\tan^2 x - 2\sqrt{3}\tan x + 1 = 0 \Leftrightarrow \begin{bmatrix} \tan x = \frac{1+\sqrt{3}}{2} \Leftrightarrow x = \arctan\frac{1+\sqrt{3}}{2} + k\pi \\ \tan x = \frac{-1-\sqrt{3}}{2} \Leftrightarrow x = \arctan\frac{-1-\sqrt{3}}{2} + k\pi \end{bmatrix}, k \in \mathbb{Z}.$$

Câu 7.

Phương trình $\sin^3 x - \sqrt{3}\cos^3 x = \sin x.\cos^2 x - \sqrt{3}\sin^2 x.\cos x$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Với $\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \Rightarrow$ phương trình vô nghiệm.

Với $\cos x \neq 0$. Chia cả hai vế của phương trình cho $\cos^3 x$ ta được

$$\sin^3 x - \sqrt{3}\cos^3 x = \sin x \cdot \cos^2 x - \sqrt{3}\sin^2 x \cdot \cos x \Leftrightarrow \tan^3 x - \sqrt{3} = \tan x - \sqrt{3}\tan^2 x$$

$$\Leftrightarrow \tan^3 x + \sqrt{3} \tan^2 x - \tan x - \sqrt{3} = 0 \Leftrightarrow \begin{bmatrix} \tan x = 1 \\ \tan x = -1 \\ \tan x = -\sqrt{3} \end{bmatrix}$$

Câu 8.

Phương trình $2\sin^2 x - 5\sin x \cos x - \cos^2 x = -2$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có $2\sin^2 x - 5\sin x \cos x - \cos^2 x = -2 \Leftrightarrow 4\sin^2 x - 5.2\sin x \cos x - 2\cos^2 x = -4$

$$\Leftrightarrow 5\sin 2x + 2\cos^2 x - 4\sin^2 x - 4 = 0 \Leftrightarrow 5\sin 2x + 3(\cos^2 x - \sin^2 x) - (\cos^2 x + \sin^2 x) - 4 = 0$$

 $\Leftrightarrow 5\sin 2x + 3\cos 2x = 5.$

Câu 9.

Phương trình $\sin^2 \frac{x}{2} - \sin x + 3\cos^2 \frac{x}{2} = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$\sin^2 \frac{x}{2} - \sin x + 3\cos^2 \frac{x}{2} = 0 \Leftrightarrow \frac{1 - \cos x}{2} - \sin x + \frac{3(1 + \cos x)}{3} = 0 \Leftrightarrow \sin x - \cos x - 2 = 0$$

$$\Leftrightarrow \frac{1}{\sqrt{2}}\sin x - \frac{1}{\sqrt{2}}\cos x = \frac{2}{\sqrt{2}} \Leftrightarrow \sin\left(x - \frac{\pi}{4}\right) = \sqrt{2}.$$

Có $\sqrt{2} > 1 \Rightarrow$ phương trình vô nghiệm.

Câu 10.

Phương trình $(4-6m)\sin^3 x + 3(2m-1)\sin x + 2(m-2)\sin^2 x \cdot \cos x - (4m-3)\cos x = 0(1)$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Với
$$m = 2 \Rightarrow (1) \Leftrightarrow -8\sin^3 x + 9\sin x - 5\cos x = 0.$$

Với
$$\cos x = 0 \Rightarrow -8\sin^3 x + 9\sin x - 5\cos x = 0 \Leftrightarrow -8\sin^3 x + 9\sin x = 0 \Leftrightarrow \begin{cases} \sin x = \frac{3\sqrt{2}}{4} \\ \sin x = -\frac{3\sqrt{2}}{4} \end{cases}$$
 (loại).

Với $\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \Rightarrow$ phương trình vô nghiệm.

Với $\cos x \neq 0$. Chia cả hai vế của phương trình cho $\cos^3 x$ ta có

$$-8\sin^3 x + 9\sin x - 5\cos x = 0 \Leftrightarrow -8\tan^3 x + 9\tan x (1 + \tan^2 x) - 5(1 + \tan^2 x) = 0$$

$$\tan^3 x - 5 \tan^2 x + 9 \tan x - 5 = 0 \Leftrightarrow \tan x = 1 \Leftrightarrow x = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}.$$

Vậy phương trình có 1 họ nghiệm.

Câu 11.

Phương trình $\sin^3 x - \sqrt{3} \cos^3 x = \sin x \cdot \cos^2 x - \sqrt{3} \sin^2 x \cos x$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Với $\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \Rightarrow$ phương trình vô nghiệm.

Với $\cos x \neq 0$. Chia cả hai vế của phương trình cho $\cos^3 x$ ta có

 $\sin^3 x - \sqrt{3}\cos^3 x = \sin x \cdot \cos^2 x - \sqrt{3}\sin^2 x \cos x \Leftrightarrow \tan^3 x - \sqrt{3} = \tan x - \sqrt{3}\tan^2 x$

$$\tan x = 1 \Leftrightarrow x = \frac{\pi}{4} + k\pi$$

$$\tan^3 x + \sqrt{3} \tan^2 x - \tan x - \sqrt{3} = 0 \Leftrightarrow \tan x = -1 \Leftrightarrow x = -\frac{\pi}{4} + k\pi \quad , k \in \mathbb{Z}.$$

$$\tan x = -\sqrt{3} \Leftrightarrow x = -\frac{\pi}{4} + k\pi$$

Kết hợp nghiệm ta được
$$\begin{bmatrix} x = \frac{\pi}{4} + k\frac{\pi}{2} \\ x = -\frac{\pi}{3} + k\pi \end{bmatrix} (k \in \mathbb{Z}).$$

Câu 12.

Phương trình $2\sin^2 x + \sin 2x + 1 = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có $2\sin^2 x + \sin 2x + 1 = 0 \Leftrightarrow 2\sin^2 x + 2\sin x \cos x + 1 = 0$

Với $\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \Rightarrow$ phương trình vô nghiệm.

Với $\cos x \neq 0$. Chia cả hai vế của phương trình cho $\cos^2 x$ ta có

 $2\sin^2 x + 2\sin x \cos x + 1 = 0 \Leftrightarrow 2\tan^2 x + 2\tan x + 1 + \tan^2 x = 0 \Leftrightarrow 3\tan^2 x + 2\tan x + 1 = 0 \text{ (vô nghiệm)}.$

Câu 13.

Phương trình $\sin^2 2x + \sqrt{3} \sin 4x + 3\cos^2 2x = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có $\sin^2 2x + \sqrt{3} \sin 4x + 3\cos^2 2x = 0 \Leftrightarrow \sin^2 2x + 2\sqrt{3} \sin 2x \cos 2x + 3\cos^2 2x = 0$.

Với $\cos 2x = 0 \Leftrightarrow x = \frac{\pi}{4} + \frac{k\pi}{2}, k \in \mathbb{Z} \Rightarrow \text{ phương trình vô nghiệm.}$

Với $\cos 2x \neq 0$. Chia cả hai vế của phương trình cho $\cos^2 2x$ ta có

 $\sin^2 2x + 2\sqrt{3} \sin 2x \cos 2x + 3\cos^2 2x = 0 \Leftrightarrow \tan^2 2x + 2\sqrt{3} \tan 2x + 3 = 0$

$$\Leftrightarrow \tan 2x = -\sqrt{3} \Leftrightarrow x = -\frac{\pi}{6} + \frac{k\pi}{2}, k \in \mathbb{Z}.$$

Câu 14.

Phương trình $\sin^2 4x + 3\cos^2 4x = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Với $\cos 4x = 0 \Leftrightarrow x = \frac{\pi}{8} + \frac{k\pi}{4}, k \in \mathbb{Z} \Rightarrow \text{ phương trình vô nghiệm.}$

Với $\cos 4x \neq 0$. Chia cả hai vế của phương trình cho $\cos^2 4x$ ta có $\sin^2 4x + 3\cos^2 4x = 0 \Leftrightarrow \tan^2 4x + 3 = 0$ (Vô lí).

Vậy phương trình vô nghiệm.

Câu 15.

Phương trình $\sin 2x + 2\tan x = 3$ có nghĩa $\cos x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$.

Ta có $\sin 2x + 2 \tan x = 3 \Leftrightarrow 2 \sin x \cos x + 2 \tan x = 3$.

Với $\cos x \neq 0$. Chia cả hai vế của phương trình cho $\cos^2 x$ ta có

 $2 \sin x \cos x + 2 \tan x = 3 \Leftrightarrow 2 \tan x + 2 \tan x (\tan^2 x + 1) = 3(\tan^2 x + 1)$

$$\Leftrightarrow 2 \tan^3 x - 3 \tan^2 x + 4 \tan x - 3 = 0 \Leftrightarrow (\tan x - 1)(2 \tan^2 x - \tan x + 3) = 0.$$

Câu 16.

Phương trình $3\sin^2\frac{x}{2} + \sqrt{3}\sin x + \cos^2\frac{x}{2} = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$3\sin^2\frac{x}{2} + \sqrt{3}\sin x + \cos^2\frac{x}{2} = 0 \Leftrightarrow 3\frac{1-\cos x}{2} + \sqrt{3}\sin x + \frac{1+\cos x}{2} = 0$$

$$\Leftrightarrow 2\sqrt{3}\sin x - 2\cos x + 4 = 0 \Leftrightarrow \frac{\sqrt{3}}{2}\sin x - \frac{1}{2}\cos x = -1 \Leftrightarrow \sin\left(x - \frac{\pi}{6}\right) = -1$$

$$\Leftrightarrow x - \frac{\pi}{6} = -\frac{\pi}{2} + k2\pi \Leftrightarrow x = -\frac{\pi}{3} + k2\pi, k \in \mathbb{Z}.$$

Vì
$$x \in (0; 2\pi)$$
 nên $x = \frac{5\pi}{3}$ với $k = 1$.

Phương trình có 1 nghiệm thỏa mãn đề bài.

Câu 17.

Phương trình $2\sqrt{3}\cos^2 x - \sin 2x = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$2\sqrt{3}\cos^2 x - \sin 2x = 0 \Leftrightarrow \sqrt{3}(1 + \cos 2x) - \sin 2x = 0 \Leftrightarrow \sin 2x - \sqrt{3}\cos 2x - \sqrt{3} = 0$$

$$\Leftrightarrow \frac{1}{2}\sin 2x - \frac{\sqrt{3}}{2}\cos 2x = \frac{\sqrt{3}}{2} \Leftrightarrow \sin\left(2x - \frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} = \sin\frac{\pi}{3} \Leftrightarrow \begin{bmatrix} 2x - \frac{\pi}{3} = \frac{\pi}{3} + k2\pi \Leftrightarrow x = \frac{\pi}{3} + k\pi \\ 2x - \frac{\pi}{3} = \frac{2\pi}{3} + k2\pi \Leftrightarrow x = \frac{\pi}{2} + k\pi \end{bmatrix}, k \in \mathbb{Z}.$$

Vậy phương trình có 2 họ nghiệm.

Câu 18.

Phương trình $\sin^3\left(x-\frac{\pi}{4}\right) = \sqrt{2}\sin x$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$\sin^3\left(x - \frac{\pi}{4}\right) = \sqrt{2}\sin x \Leftrightarrow \left(\frac{\sin x - \cos x}{\sqrt{2}}\right)^3 = \sqrt{2}\sin x$$

$$\Leftrightarrow \sin^3 x - 3\sin^2 x \cos x + 3\sin x \cos^2 x - \cos^3 x = 4\sin x. (1)$$

Với
$$\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$
.

$$(1) \Leftrightarrow \sin^3 x - 4\sin x = 0 \Leftrightarrow \begin{bmatrix} \sin x = \pm 2\\ \sin x = 0 \Leftrightarrow x = k\pi \end{bmatrix}$$
(loại).

Với $\cos x \neq 0$. Chia cả hai vế của phương trình cho $\cos^3 x$ ta có

(1)
$$\Leftrightarrow \tan^3 x - 3\tan^2 x + 3\tan x - 1 = 4\tan x (1 + \tan^2 x)$$

$$\Leftrightarrow 3 \tan^3 x + 3 \tan^2 x + \tan x + 1 = 0 \Leftrightarrow \tan x = -1.$$

Vậy
$$(2 \tan^2 x - \tan x + 3) \tan x = -6$$
.

Câu 19.

Phương trình
$$\frac{1-\tan x}{1+\tan x} = 1+\sin 2x \text{ có nghĩa} \Leftrightarrow \begin{cases} \cos x \neq 0 \\ \tan x = -1 \end{cases} \Leftrightarrow \begin{cases} x \neq \frac{\pi}{2}+k\pi \\ x \neq -\frac{\pi}{4}+k\pi \end{cases} (k \in \mathbb{Z}).$$

Ta có
$$\frac{1-\tan x}{1+\tan x} = 1+\sin 2x \Leftrightarrow \frac{1-\frac{\sin x}{\cos x}}{1+\frac{\sin x}{\cos x}} = \sin^2 x + 2\sin x \cos x + \cos^2 x$$

$$\Leftrightarrow \frac{\cos x - \sin x}{\cos x + \sin x} = (\cos x + \sin x)^2 \Leftrightarrow \cos x - \sin x = (\cos x + \sin x)^3.$$
 (3)

Chia cả hai vế của phương trình (3) cho $\cos^3 x \neq 0$ ta được

$$1 + \tan^2 x - (1 + \tan^2 x) \tan x = (1 + \tan x)^3$$

$$\Leftrightarrow \tan^3 x + \tan^2 x + 2 \tan x = 0 \Leftrightarrow (\tan^2 x + \tan x + 2) \tan x = 0.$$
 (*)

Do
$$\tan^2 x + \tan x + 2 = 0$$
 vô nghiệm nên (*) $\Leftrightarrow \tan x = 0 \Leftrightarrow x = k\pi (k \in \mathbb{Z})$.

Vây phương trình có 1 ho nghiêm.

Câu 20.

Phương trình $\sin^2 x + (2m-2)\sin x \cdot \cos x - (m+1)\cos^2 x - m = 0$ (1) có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Với
$$\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}.$$

Ta có $(1) \Leftrightarrow 1-m=0$. Để phương trình có nghiệm thì m=1.

Với $\cos x \neq 0$. Chia cả hai vế của phương trình cho $\cos^2 x$ ta có

$$(1) \Leftrightarrow \tan^2 x + (2m - 2) \tan x - (m + 1) - m(1 + \tan^2 x) = 0 \Leftrightarrow (1 - m) \tan^2 x + 2(m - 1) \tan x - (2m + 1) = 0.$$

Để phương trình có nghiệm thì $(m-1)^2 - (1-m)(-2m-1) \ge 0 \Leftrightarrow -m^2 - m + 2 \ge 0 \Leftrightarrow -2 \le m \le 1$.

Dạng 4. Phương trình lượng giác đối xứng

1- C	2- D	3- A	4- C	5- A	6- B	7- B	8- D	9- B	10- B
11- A	12- C	13- D	14- C	15- D	16- B	17- A	18- B	19- C	20- B

HƯỚNG DẪN GIẢI CHI TIẾT

Câu 1.

Phương trình $-\sqrt{2}(\sin x + \cos x) + 2\sin x \cos x + 1 = 0(1)$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Đặt
$$t = \sin x + \cos x, (|t| \le \sqrt{2}).$$

Ta có
$$\sin x \cos x = \frac{t^2 - 1}{2} \Rightarrow (1) \Leftrightarrow t^2 - \sqrt{2}t = 0.$$

Câu 2.

Phương trình $(1+\sin x)(1+\cos x)=2$ có nghĩa $\forall x \in \mathbb{R} \Leftrightarrow D=\mathbb{R}$.

Ta có
$$(1+\sin x)(1+\cos x) = 2 \Leftrightarrow \cos x + \sin x + \sin x \cos x = 1$$
.

Đặt
$$t = \sin x + \cos x, (|t| \le \sqrt{2}).$$

Ta có
$$\sin x \cos x = \frac{t^2 - 1}{2} (1) \Rightarrow t^2 + 2t - 3 = 0 \Leftrightarrow \begin{bmatrix} t = 1 \\ t = -3 \end{bmatrix}$$
.

Do
$$|t| \le \sqrt{2}$$
 nên $t = 1$.

Với
$$t = 1$$
, ta có $t = \sin x + \cos x = \sqrt{2} \cos \left(x - \frac{\pi}{4} \right) = 1 \Leftrightarrow \cos \left(x - \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2}$.

Câu 3.

Phương trình $\sin x - \cos x + 2\sin 2x + 1 = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có $\sin x - \cos x + 2\sin 2x + 1 = 0 \Leftrightarrow \sin x - \cos x + 4\sin x \cos x + 1 = 0$. (1)

Đặt
$$t = \sin x - \cos x, (|t| \le \sqrt{2}).$$

Ta có
$$\sin x \cos x = \frac{1-t^2}{2} \Rightarrow (1) \Leftrightarrow t+2(1-t^2)+1=0 \Leftrightarrow 2t^2-t-3=0 \Leftrightarrow \begin{bmatrix} t=-1 \\ t=\frac{3}{2} \end{bmatrix}.$$

Do
$$|t| \le \sqrt{2}$$
 nên $t = -1$.

Với
$$t = -1$$
, ta có $t = \sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4} \right) = -1 \Leftrightarrow \sin \left(x - \frac{\pi}{4} \right) = -\frac{1}{\sqrt{2}} = \sin \frac{-\pi}{4}$

$$\Leftrightarrow \begin{bmatrix} x - \frac{\pi}{4} = -\frac{\pi}{4} + k2\pi \Leftrightarrow x = k2\pi \\ x - \frac{\pi}{4} = \pi - \frac{-\pi}{4} + k2\pi \Leftrightarrow x = \frac{3\pi}{2} + k2\pi \end{bmatrix}, k \in \mathbb{Z}.$$

Câu 4.

Phương trình $\sin 2x - 2(\sin x - \cos x) - 2 = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$\sin 2x - 2(\sin x - \cos x) - 2 = 0 \Leftrightarrow 2(\sin x - \cos x) - 2\sin x \cos x + 2 = 0.$$
 (1)

Đặt
$$t = \sin x - \cos x$$
, $(|t| \le \sqrt{2})$. Ta có $\sin x \cos x = \frac{1 - t^2}{2}$

$$\Rightarrow (1) \Leftrightarrow 2t - (1 - t^2) + 2 = 0 \Leftrightarrow t^2 + 2t + 1 = 0 \Leftrightarrow t = -1.$$

Với
$$t = -1$$
, ta có $t = \sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4}\right) = -1 \Leftrightarrow \sin \left(x - \frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}} = \sin \frac{-\pi}{4}$

$$\Leftrightarrow \begin{vmatrix} x - \frac{\pi}{4} = -\frac{\pi}{4} + k2\pi \Leftrightarrow x = k2\pi \\ x - \frac{\pi}{4} = \pi - \frac{-\pi}{4} + k2\pi \Leftrightarrow x = \frac{3\pi}{2} + k2\pi \end{vmatrix}, k \in \mathbb{Z}.$$

Vậy nghiệm dương nhỏ nhất của phương trình là $x = \frac{3\pi}{2}$.

Câu 5

Phương trình $\sin 2x + 2(\cos x - \sin x) - 1 = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$\sin 2x + 2(\cos x - \sin x) - 1 = 0 \Leftrightarrow 2\sin x \cos x - 2(\sin x - \cos x) - 1 = 0.$$
 (1)

Đặt
$$t = \sin x - \cos x$$
, $(|t| \le \sqrt{2})$. Ta có $\sin x \cos x = \frac{1 - t^2}{2}$

$$\Rightarrow (1) \Leftrightarrow 1 - t^2 - 2t - 1 = 0 \Leftrightarrow t^2 + 2t = 0 \Leftrightarrow \begin{bmatrix} t = 0 \\ t = -2 \end{bmatrix}$$

Do
$$|t| \le \sqrt{2}$$
 nên $t = 0$.

Với
$$t = 0$$
, ta có $t = \sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4} \right) = 0 \Leftrightarrow \sin \left(x - \frac{\pi}{4} \right) = 0 \Leftrightarrow x - \frac{\pi}{4} = k\pi \Leftrightarrow x = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}.$

Câu 6.

Phương trình
$$\sqrt{2} \left(\sin x + \cos x \right) = \tan x + \cot x \text{ có nghĩa} \Leftrightarrow \begin{cases} \cos x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k\pi \\ \sin x \neq 0 \Leftrightarrow x \neq k\pi \end{cases} \Leftrightarrow x \neq k \frac{\pi}{2}.$$

Ta có
$$\sqrt{2} (\sin x + \cos x) = \tan x + \cot x$$

$$\Leftrightarrow \sqrt{2} \left(\sin x + \cos x \right) = \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} \Leftrightarrow \sqrt{2} \left(\sin x + \cos x \right) = \frac{1}{\sin x \cos x}. \tag{1}$$

Đặt
$$t = \sin x + \cos x$$
, $(|t| \le \sqrt{2})$. Ta có $\sin x \cos x = \frac{t^2 - 1}{2}$

$$\Rightarrow (1) \Leftrightarrow \sqrt{2}t = \frac{2}{t^2 - 1} \Leftrightarrow \sqrt{2}t^3 - \sqrt{2}t - 2 = 0 (t \neq 1) \Leftrightarrow t = \sqrt{2}.$$

Câu 7.

Phương trình $\sin 2x + 4(\sin x - \cos x) - 5 = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$\sin 2x + 4(\sin x - \cos x) - 5 = 0 \Leftrightarrow 4(\sin x - \cos x) + 2\sin x \cos x - 5 = 0.$$
 (1)

Đặt
$$t = \sin x - \cos x$$
, $(|t| \le \sqrt{2})$. Ta có $\sin x \cos x = \frac{1 - t^2}{2}$

$$\Rightarrow$$
 (1) \Leftrightarrow 4t+1-t²-5=0 \Leftrightarrow t²-4t+4=0 \Leftrightarrow t=2 (loai).

Vậy phương trình vô nghiệm hay không có nghiệm thỏa mãn $0 < x < \pi$.

Câu 8.

Phương trình $\sqrt{3} \sin x - \cos x = -3$ có nghĩa $\forall x \in \mathbb{R} \Leftrightarrow D = \mathbb{R}$.

Ta có
$$\left(\sqrt{3}\right)^2 + \left(-1\right)^2 < \left(-3^2\right)$$
.

Vậy phương trình vô nghiệm.

Câu 9.

Phương trình $\sin 2x + \sin x - \cos x = 1$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có $\sin 2x + \sin x - \cos x = 1 \Leftrightarrow \sin x - \cos x + 2\sin x \cos x - 1 = 0$. (1)

Đặt
$$t = \sin x - \cos x$$
, $(|t| \le \sqrt{2})$. Ta có $\sin x \cos x = \frac{1 - t^2}{2}$

$$\Rightarrow (1) \Leftrightarrow t+1-t^2-1=0 \Leftrightarrow t^2-t=0 \Leftrightarrow \begin{bmatrix} t=1 \\ t=0 \end{bmatrix}.$$

Với
$$t = 1$$
, ta có $t = \sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4} \right) = 1 \Leftrightarrow \sin \left(x - \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2}$.

Với
$$t = 0$$
, ta có $t = \sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4} \right) = 0 \Leftrightarrow \sin \left(x - \frac{\pi}{4} \right) = 0$.

Vậy giá trị lớn nhất của $\sin\left(x - \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$.

Câu 10.

Phương trình $\sin 2x - \sin x + \cos x - 1 = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có $\sin 2x - \sin x + \cos x - 1 = 0 \Leftrightarrow \sin x - \cos x - 2\sin x \cos x + 1 = 0.$ (1)

Đặt
$$t = \sin x - \cos x$$
, $(|t| \le \sqrt{2})$. Ta có $\sin x \cos x = \frac{1 - t^2}{2}$

$$\Rightarrow (1) \Leftrightarrow t - (1 - t^2) + 1 = 0 \Leftrightarrow t^2 + t = 0 \Leftrightarrow \begin{bmatrix} t = -1 \\ t = 0 \end{bmatrix}.$$

Với
$$t = -1$$
, ta có $t = \sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4}\right) = -1 \Leftrightarrow \sin \left(x - \frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}} = \sin \frac{-\pi}{4}$

$$\Leftrightarrow \begin{bmatrix} x - \frac{\pi}{4} = -\frac{\pi}{4} + k2\pi \Leftrightarrow x = k2\pi \\ x - \frac{\pi}{4} = \pi - \frac{-\pi}{4} + k2\pi \Leftrightarrow x = \frac{3\pi}{2} + k2\pi \end{bmatrix}, k \in \mathbb{Z}.$$

Với
$$t = 0$$
, ta có $t = \sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4} \right) = 0 \Leftrightarrow \sin \left(x - \frac{\pi}{4} \right) = 0 \Leftrightarrow x - \frac{\pi}{4} = k\pi \Leftrightarrow x = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}.$

Vậy phương trình có 3 họ nghiệm.

Câu 11.

Phương trình $4(\sin x - \cos x) + \sin 2x - 5 = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$4(\sin x - \cos x) + \sin 2x - 5 = 0 \Leftrightarrow 4(\sin x - \cos x) + 2\sin x \cos x - 5 = 0.$$
 (1)

Đặt
$$t = \sin x - \cos x$$
, $(|t| \le \sqrt{2})$. Ta có $\sin x \cos x = \frac{1 - t^2}{2}$

$$\Rightarrow$$
 $(1) \Leftrightarrow 4t+1-t^2-5=0 \Leftrightarrow t^2-4t+4=0 \Leftrightarrow t=2$ (loại).

Vậy phương trình vô nghiệm.

Câu 12.

Phương trình $\sin x + \cos x = 1 - \frac{1}{2}\sin 2x$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có $\sin x + \cos x = 1 - \frac{1}{2}\sin 2x \Leftrightarrow \sin x + \cos x + \sin x \cos x - 1 = 0.$ (1)

Đặt
$$t = \sin x + \cos x$$
, $(|t| \le \sqrt{2})$. Ta có $\sin x \cos x = \frac{t^2 - 1}{2}$

$$\Rightarrow (1) \Leftrightarrow t + \frac{t^2 - 1}{2} - 1 = 0 \Leftrightarrow t^2 + 2t - 3 = 0 \Leftrightarrow \begin{bmatrix} t = 1 \\ t = -3 \end{bmatrix}.$$

Do
$$|t| \le \sqrt{2}$$
 nên $t = 1$.

Với
$$t = 1$$
, ta có $t = \sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right) = 1 \Leftrightarrow \sin \left(x + \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} = \sin \frac{\pi}{4}$

$$\Leftrightarrow \begin{bmatrix} x + \frac{\pi}{4} = \frac{\pi}{4} + k2\pi \Leftrightarrow x = k2\pi \\ x + \frac{\pi}{4} = \frac{3\pi}{4} + k2\pi \Leftrightarrow x = \frac{\pi}{2} + k2\pi \end{bmatrix}, k \in \mathbb{Z}.$$

Vậy nghiệm âm lớn nhất của phương trình là $x = -\frac{3\pi}{2}$.

Câu 13.

Phương trình $2\sqrt{2}(\sin x + \cos x) - \sin 2x - 3 = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$2\sqrt{2}(\sin x + \cos x) - \sin 2x - 3 = 0 \Leftrightarrow 2\sqrt{2}(\sin x + \cos x) - 2\sin x \cos x - 3 = 0.$$
 (1)

Đặt
$$t = \sin x + \cos x$$
, $(|t| \le \sqrt{2})$. Ta có $\sin x \cos x = \frac{t^2 - 1}{2}$

$$\Rightarrow (1) \Leftrightarrow 2\sqrt{2}t - (t^2 - 1) - 3 = 0 \Leftrightarrow t^2 - 2\sqrt{2}t + 2 = 0 \Leftrightarrow t = \sqrt{2}.$$

Với
$$t = \sqrt{2}$$
, ta có $t = \sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right) = \frac{1}{2} \Leftrightarrow \sin \left(x + \frac{\pi}{4} \right) = 1 \Leftrightarrow x = \frac{\pi}{4} + k2\pi, k \in \mathbb{Z}$.

Do
$$x \in [\pi; 5\pi]$$
 nên $x = \frac{9\pi}{4}; x = \frac{17\pi}{4}$.

Vậy có 2 nghiệm thỏa mãn đề bài.

Câu 14.

Ta có $\sqrt{3} \sin x = 2 \Leftrightarrow \sin x = \frac{2}{\sqrt{3}} > 1 \Rightarrow$ Phương trình vô nghiệm.

Ta có
$$\frac{1}{4}\cos 4x = \frac{1}{2} \Leftrightarrow \cos 4x = 2 > 1 \Rightarrow$$
 Phương trình vô nghiệm.

Ta có
$$\Delta = (-1)^2 - 4.1.5 = -19 < 0 \implies$$
 Phương trình $\cot^2 x - \cot x + 5 = 0$ vô nghiệm.

Câu 15.

Phương trình $\sqrt{2} (\sin x + \cos x) + m - 2 = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$\sqrt{2} (\sin x + \cos x) + m - 2 = 0 \Leftrightarrow m = -\sqrt{2} (\sin x + \cos x) + 2$$
.

Có
$$-\sqrt{2} \le \sin x + \cos x \le \sqrt{2} \Leftrightarrow -2 \le \sqrt{2} \left(\sin x + \cos x\right) \le 2$$

$$\Leftrightarrow -2 \le -\sqrt{2} \left(\sin x + \cos x \right) \le 2 \Leftrightarrow 0 \le -\sqrt{2} \left(\sin x + \cos x \right) + 2 \le 4 \Leftrightarrow 0 \le m \le 4.$$

Câu 16.

Phương trình $3(\sin x + \cos x) + \frac{1}{2}\sin 2x = -3$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$3(\sin x + \cos x) + \frac{1}{2}\sin 2x = -3 \Leftrightarrow 3(\sin x + \cos x) + \sin x \cos x + 3 = 0.$$
 (1)

Đặt
$$t = \sin x + \cos x, (|t| \le \sqrt{2})$$

Ta có
$$\sin x \cos x = \frac{t^2 - 1}{2} \Rightarrow (1) \Leftrightarrow 3t + \frac{t^2 - 1}{2} + 3 = 0 \Leftrightarrow t^2 + 6t + 5 = 0 \Leftrightarrow \begin{bmatrix} t = -1 \\ t = -5 \end{bmatrix}$$

Do
$$|t| \le \sqrt{2}$$
 nên $t = -1$.

Với
$$t = -1$$
, ta có $t = \sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right) = -1 \Leftrightarrow \sin \left(x + \frac{\pi}{4} \right) = -\frac{\sqrt{2}}{2} = \sin \frac{-\pi}{4}$

$$\Leftrightarrow \begin{cases} x + \frac{\pi}{4} = -\frac{\pi}{4} + k2\pi \Leftrightarrow x = -\frac{\pi}{2} + k2\pi \\ x + \frac{\pi}{4} = \pi - \frac{-\pi}{4} + k2\pi \Leftrightarrow x = \pi + k2\pi \end{cases}, k \in \mathbb{Z}.$$

Câu 17.

Phương trình $2(\sin x + \cos x) + \sin 2x + 1 = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$2(\sin x + \cos x) + \sin 2x + 1 = 0 \Leftrightarrow 2(\sin x + \cos x) + 2\sin x \cos x + 1 = 0.$$
 (1)

Đặt
$$t = \sin x + \cos x, (|t| \le \sqrt{2}).$$

Ta có
$$\sin x \cos x = \frac{t^2 - 1}{2} \Rightarrow (1) \Leftrightarrow 2t + t^2 - 1 + 1 = 0 \Leftrightarrow t^2 + 2t = 0 \Leftrightarrow \begin{bmatrix} t = 0 \\ t = -2 \end{bmatrix}$$

Do $|t| \le \sqrt{2}$ nên t = 0.

Với
$$t = 0$$
, ta có $t = \sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right) = 0 \Leftrightarrow \sin \left(x + \frac{\pi}{4} \right) = 0$

$$\Longleftrightarrow x + \frac{\pi}{4} = k\pi \Longleftrightarrow x = -\frac{\pi}{4} + k\pi, k \in \mathbb{Z}.$$

Do
$$x \in (0; \pi)$$
 nên $x = \frac{3\pi}{4}$.

Câu 18.

Phương trình $\sin^3 x + \cos^3 x + 1 = \frac{3}{2}\sin 2x$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có $\sin^3 x + \cos^3 x + 1 = \frac{3}{2}\sin 2x \Leftrightarrow (\sin x + \cos x)(\sin^2 x + \sin x \cos x + \cos^2 x) + 1 = 3\sin x \cos x$

$$\Leftrightarrow (\sin x + \cos x)(1 + \sin x \cos x) + 1 = 3\sin x \cos x.$$
 (1)

Đặt
$$t = \sin x + \cos x, (|t| \le \sqrt{2}).$$

Ta có
$$\sin x \cos x = \frac{t^2 - 1}{2} \Rightarrow (1) \Leftrightarrow t \left(1 + \frac{t^2 - 1}{2}\right) + 1 = 3\frac{t^2 - 1}{2} \Leftrightarrow t^3 - 3t^2 + t + 5 = 0 \Leftrightarrow t = -1.$$

Với
$$t = -1$$
, ta có $t = \sin x + \cos x = \sqrt{2} \cos \left(x - \frac{\pi}{4}\right) = -1 \Leftrightarrow \cos \left(x - \frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2} \Leftrightarrow \cos \left(x + \frac{\pi}{4}\right) = \pm \frac{\sqrt{2}}{2}$.

Câu 19.

Phương trình $\sin x \cos x - \sin x - \cos x + m = 0$ (1) có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Đặt
$$t = \sin x + \cos x, (|t| \le \sqrt{2}).$$

Ta có
$$\sin x \cos x = \frac{t^2 - 1}{2} \Rightarrow (1) \Leftrightarrow \frac{t^2 - 1}{2} - t + m = 0 \Leftrightarrow -2m = t^2 - 2t - 1 \Leftrightarrow (t - 1)^2 = -2m + 2.$$

Do
$$-\sqrt{2} \le t \le \sqrt{2} \implies -\sqrt{2} - 1 \le t - 1 \le \sqrt{2} - 1 \implies 0 \le (t - 1)^2 \le 3 + 2\sqrt{2}$$
.

Để phương trình có nghiệm thì $0 \le -2m + 2 \le 3 + 2\sqrt{2} \Leftrightarrow -\frac{1 + 2\sqrt{2}}{2} \le m \le 1$.

Vì $m \in \mathbb{Z}$ nên $m \in \{-1, 0, 1\}$.

Câu 20.

Phương trình $m(\sin x + \cos x) + \sin 2x = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có $m(\sin x + \cos x) + \sin 2x = 0 \Leftrightarrow m(\sin x + \cos x) + 2\sin x \cos x = 0$. (1)

Đặt
$$t = \sin x + \cos x \left(-\sqrt{2} \le t \le \sqrt{2}\right)$$
.

Ta có
$$\sin x \cos x = \frac{t^2 - 1}{2} \Rightarrow (1) \Leftrightarrow t^2 + mt - 1 = 0.$$

 $\Delta = m^2 + 4 > 0 \implies$ Phương trình luôn có hai nghiệm phân biệt $t_1; t_2$.

Theo Vi-ét ta có $t_1 \cdot t_2 = -1$.

Suy ra luôn có ít nhất một nghiệm thỏa mãn $-\sqrt{2} \le t \le \sqrt{2}$.

Vậy phương trình luôn có nghiệm.