

Multi-user Interface for Co-located Real-time Collaborative Work with Digital Mock-up

Virtual Concept Workshop 2016 Bordeaux, France on 17 - 18, March 2016

Bo LI, Ruding LOU, Frédéric SEGONDS, Frédéric MERIENNE

BO.LI@ensam.eu

01

Context

02

State of the art

CONTENTS

03

Proposed approach

04

Experiment evaluation

05

Conclusion

06

Perspective

Concurrent Engineering

(Segonds, Nelson et al. 2012)

Propose approach

Context

Interoperability

Collaborative work

Perspective

Context

Scientific issue

Research question
A multi-view CHI supp

A multi-view CHI support system for multiple users could improve the collaborative work efficiency?

Multi-view Device

ARTS ET MÉTIERS ParisTech

Multi-view Application

A DMU-like collaboration

■ Relationships inside and limit by constrains

If change Multi-view system into Seperated Systems, the result is?

Even better

The same

Others

(Seokhwan K,2012)

A quantitative experiment

H1: multi-view system provides higher collaboration efficiency.

H2: the requirement of mutual awareness of where the other's constrains are,

H2.1: for the user who is checking constrains, does considerably vary across the systems (decline when using multi-view CHI than using 2 CHIs or 1 split CHI).

H2.2: for the user who is modifying the application, does not considerably vary across multi-view CHI, 2 CHIs and 1 split CHI.

Experiment setup

Time	Finish time
Time_QnA	Sum of response time that helper answers player's questions (all the question/answer pairs).
Num_QnA	Number of question/answer pairs
Time_QnA_devi dedby_Time	Ratio of communication time to finish time

Experiment results

Users achieve more efficiently the collaborative task using the multiview system than without it, with less number of communications (H1).

For a player who is always focus on asking questions, the demand of mutual awareness may always keep on a high level (H2.1). For a helper, he has feeling of different demands of knowing of player's position (H2.2). But this is only significant comparing multiview CHI to the other two CHIs.

ARTS ET MÉTIERS ParisTech

Conclusion

Multi-view CHI system

can support multiple users in co-located and real-time working condition. It increases the collaborative efficiency among different users from various domains comparing to Two CHIs and One split CHI working conditions.

Perspective

Multiinteraction
CHI
system

with imposed interaction VS. user-centered interaction metaphor is proposed. We are going to make another experiment.

Reference

- Segonds, F. e., d\'e,ric, J. Nelson and A. e. Aoussat, ziane (2012). "PLM and architectural rehabilitation: a framework to improve collaboration in the early stages of design." <u>International Journal of Product Lifecycle Management</u> 6(1): 1-19.
- Dolezal, W. R. (2008). "Success factors for digital mock-ups (DMU) in complex aerospace product development." <u>Technische Universität München, Genehmigten Dissertation, Munich, Germany</u>.
- France, R. and B. Rumpe (2007). <u>Model-driven development of complex software: A research roadmap</u>. 2007 Future of Software Engineering.
- Rio, M., T. Reyes and L. Roucoules (2013). "Toward proactive (eco) design process: modeling information transformations among designers activities." <u>Journal of Cleaner Production</u> 39: 105-116.
- Johansen, R. (1988). Groupware: Computer support for business teams, The Free Press.
- Martin, P., P. Bourdot and D. Touraine (2011). <u>A reconfigurable architecture for multimodal and collaborative interactions in Virtual Environments</u>. 3D User Interfaces (3DUI), 2011 IEEE Symposium on.
- Kulik, A., A. e. Kunert, S. Beck, R. Reichel, R. Blach, A. Zink and B. Froehlich (2011). "C1x6: a stereoscopic six-user display for co-located collaboration in shared virtual environments." ACM Transactions on Graphics (TOG) 30(6): 188.
- Matusik, W., C. Forlines and H. Pfister (2008). <u>Multiview user interfaces with an automultiscopic display</u>. Proceedings of the working conference on Advanced visual interfaces.
- Nagano, K., T. Utsugi, M. Hirano, T. Hamada, A. Shirai and M. Nakajima (2010). <u>A new multiplex content displaying system</u> compatible with current 3D projection technology. ACM SIGGRAPH 2010 Posters.
- Kim, S., X. Cao, H. Zhang and D. Tan (2012). <u>Enabling concurrent dual views on common LCD screens</u>. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
- Lissermann, R., J. Huber, M. Schmitz, J. u. Steimle, rgen and h. a. M\"u, user, Max (2014). <u>Permulin: mixed-focus collaboration on multi-view tabletops</u>. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
- Sreng, J., F. Bergez, J. e. Legarrec, r\'e,mie, c. L\'e, Anatole and C. Andriot (2007). <u>Using an event-based approach to improve the multimodal rendering of 6DOF virtual contact</u>. Proceedings of the 2007 ACM symposium on Virtual reality software and technology.
- Bell, M., T. Chennavasin, C. H. Clanton, M. Hulme, E. Ophir and M. Vieta (2008). Processing of Gesture-Based User Interactions.

ARTS ET MÉTIERS

THANKS