Domácí úkol 9

Termín odevzdání: 9. 5. 2025 do večera

1.)

Uvažujte funkci

$$F(x,y) = \frac{y^2 \sin(x)}{x^2 + xy + y^2}.$$

Ukažte, že F lze spojitě dodefinovat v bodě (0,0). Pro spojitou funkci najděte parciální derivace prvního řádu všude, kde existují, a rozhodněte ve kterých bodech jsou tyto derivace spojité. Dále najděte parciální derivace 2. řádu všude (i smíšené), kde existují, a rozhodněte ve kterých bodech jsou spojité. Nakonec nalezněte

- derivaci F ve směru, jakým míří vektor (3,2), v bodě $(\frac{\pi}{2},-1)$,
- \bullet derivaci F ve směru osy 2. kvadrantu v bodě (0,0),
- ullet jednotkový vektor ${f v}$, v jehož směru má F v počátku největší derivaci. (stačí přibližná numerická hodnota).

HINT: Zkuste dokázat nerovnost $x^2 + xy + y^2 \ge \frac{1}{2} (x^2 + y^2)$, abyste měli jistotu, že jediný problémový bod je počátek.

Řešení: Nejprve dokážeme nerovnost z *HINTU*.

$$x^{2} + xy + y^{2} \ge \frac{1}{2} (x^{2} + y^{2})$$
$$2x^{2} + 2xy + 2y^{2} \ge x^{2} + y^{2}$$
$$x^{2} + 2xy + y^{2} \ge 0$$
$$(x + y)^{2} \ge 0$$

Vidíme, že funkce má jediný problémový bod a to (0,0), jinde jde o kombinaci spojitých funkcí a nemáme problém. Podívejme se tedy na chování v počátku. Zkusme spočítat limitu, pokud bude existovat, můžeme funkci skutečně spojitě dodefinovat její limitní hodnotou.

$$\lim_{(x,y)\to(0,0)} F(x,y) = \lim_{r\to 0} \frac{r^2 \sin^2(\varphi) \sin(r\cos(\varphi))}{r^2 \cos^2(\varphi) + r^2 \cos(\varphi) \sin(\varphi) + r^2 \sin^2(\varphi)} = \lim_{r\to 0} \sin(r\cos(\varphi)) \frac{\sin^2(\varphi)}{1 + \cos(\varphi) \sin(\varphi)} = 0$$

Poslední rovnost využívá toho, že zlomek je určitě omezený a člen $\sin(r\cos(\varphi))$ před ním jde do nuly. Definujme tedy F(0,0) = 0.

Pro představu, takto nějak vypadá graf funkce F.

Obrázek 1: Graf F

Najděme nyní obě parciální derivace prvního řádu. Nejprve jednoduše zderivujeme, ale poté se důkladně podíváme, kde všude není derivace definována (srovnejte s příkladem 5 v 11. sadě - funkce všude spojitá, ale derivace ne všude existují).

$$\frac{\partial F}{\partial x}(x,y) = \frac{y^2 \cos(x)(x^2 + xy + y^2) - y^2 \sin(x)(2x + y)}{(x^2 + xy + y^2)^2}$$
(1a)

$$\frac{\partial F}{\partial y}(x,y) = \frac{2y\sin(x)(x^2 + xy + y^2) - y^2\sin(x)(x + 2y)}{(x^2 + xy + y^2)^2}$$
(1b)

Tyto vzorce zjevně nejsou definované opět pouze pro bod (0,0). Na ten se podíváme zvlášť, postupujme podle definice parciální derivace.

$$\frac{\partial F}{\partial x}(0,0) = \lim_{h \to 0} \frac{F(h,0) - F(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0$$
$$\frac{\partial F}{\partial y}(0,0) = \lim_{h \to 0} \frac{F(0,h) - F(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0$$

Tohoto výsledku šlo také jednoduše nahlédnout tím, že funkce F je zjevně nulová na osách. Parciální derivace tedy existují všude, i v počátku, ale otázkou zůstává, zda jsou i zde tyto derivace spojitými funkcemi. Mimo počátek jde o racionální funkci, která je zřejmě spojitá, ale v počátku dokážeme, že ani jedna parciální derivace není spojitá, stačí se přiblížit po správné přímce a dostaneme nenulovou limitu. V případě derivace podle x sledujme její chování na ose y. Dosazujeme do (1a) a dostáváme

$$\lim_{y\to 0}\frac{\partial F}{\partial x}(0,y)=\lim_{y\to 0}\frac{y^4}{y^4}=1.$$

U parciální derivace podle y se přibližujme po přímce y=x. Dosazujeme do (1b) a dostáváme

$$\lim_{x \to 0} \frac{\partial F}{\partial y}(x, x) = \lim_{x \to 0} \frac{3x^3 \sin(x)}{9x^4} = \frac{1}{3}.$$

Pokračujme parciálními derivacemi druhých řádů, nejprve mimo počátek.

$$\frac{\partial^2 F}{\partial x^2}(x,y) = -y^2 \frac{4x^3 + 6x^2y + 6xy^2 + 2y^3}{(x^2 + xy + y^2)^3} \cos(x) - y^2 \frac{x^4 + 2x^3y + 3x^2y^2 + 2xy^3 + y^4 - 6xy - 6x^2}{(x^2 + xy + y^2)^3} \sin(x)$$
(2a)

$$\frac{\partial^2 F}{\partial y^2}(x,y) = \frac{2x^4 - 6x^2y^2 - 2xy^3}{(x^2 + xy + y^2)^3} \sin(x)$$
(2b)

$$\frac{\partial^2 F}{\partial y \partial x}(x,y) = \frac{2x^4y + 3x^3y^2 + 3x^2y^3 + xy^4}{(x^2 + xy + y^2)^3} \cos(x) - \frac{4x^3y + 3x^2y^2 - 3xy^3 - y^4}{(x^2 + xy + y^2)^3} \sin(x) \quad (2c)$$

Jelikož jde opět o racionální funkce, máme jistotu, že jsou mimo počátek spojité a tedy ve smíšených derivacích můžeme prohodit pořadí. Nyní se speciálně podíváme na parciální derivace druhého řádu v počátku. Vyjděme z definice parciální derivace a využijme předchozích výsledků.

$$\frac{\partial^2 F}{\partial x^2}(0,0) = \lim_{h \to 0} \frac{\frac{\partial F}{\partial x}(h,0) - \frac{\partial F}{\partial x}(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0$$

$$\frac{\partial^2 F}{\partial y^2}(0,0) = \lim_{h \to 0} \frac{\frac{\partial F}{\partial y}(0,h) - \frac{\partial F}{\partial y}(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0$$

$$\frac{\partial^2 F}{\partial x \partial y}(0,0) = \lim_{h \to 0} \frac{\frac{\partial F}{\partial y}(h,0) - \frac{\partial F}{\partial y}(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0$$

$$\frac{\partial^2 F}{\partial y \partial x}(0,0) = \lim_{h \to 0} \frac{\frac{\partial F}{\partial x}(0,h) - \frac{\partial F}{\partial x}(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h^4}{h^4} - 0}{h} = \lim_{h \to 0} \frac{1 - 0}{h} \dots \text{neexistuje}$$

Vidíme, že v počátku již není vše tak jednoduché a krásně spojité jako jinde, dokonce vidíme, že zde existuje pouze jedna ze smíšených derivací. Ostatní zde existují ale nejsou spojité (stačí se ve vzorečcích (2a)-(2c) přiblížit po přímce y=x a dostaneme nenulovou nebo neexistující limitu).

Nyní už pouze nalezněme hledané směrové derivace. Nesmíme zapomenout na znormování směrového vektoru na normu 1. V bodě $(\frac{\pi}{2}, -1)$ máme spojité parciální derivace,

můžeme tedy použít vzoreček s gradientem.

$$\mathbf{v} = \frac{1}{\sqrt{13}} (3, 2)^T \qquad \frac{\partial F}{\partial \mathbf{v}} \left(\frac{\pi}{2}, -1 \right) = \nabla F \left(\frac{\pi}{2}, -1 \right) \cdot \frac{1}{\sqrt{13}} (3, 2)^T$$

$$\frac{\partial F}{\partial \mathbf{v}} \left(\frac{\pi}{2}, -1 \right) = \left(\frac{16(1-\pi)}{(\pi^2 - 2\pi + 4)^2}, \frac{8\pi(1-\pi)}{(\pi^2 - 2\pi + 4)^2} \right) \cdot \frac{1}{\sqrt{13}} (3, 2)^T =$$

$$= \frac{16(3 - 2\pi - \pi^2)}{\sqrt{13}(\pi^2 - 2\pi + 4)^2} \approx -1.01413...$$

Pro nalezení směrové derivace v počátku musíme použít definici, neboť zde nemáme spojitost parciálních derivací a vzoreček nefunguje.

$$\mathbf{v} = \frac{1}{\sqrt{2}} \left(-1, 1 \right)^T$$

$$\frac{\partial F}{\partial \mathbf{v}}(0,0) = \lim_{h \to 0} \frac{F(-\frac{1}{\sqrt{2}}h, \frac{1}{\sqrt{2}}h) - F(0,0)}{h} = \lim_{h \to 0} \frac{\frac{\frac{1}{2}h^2 \sin(-\frac{1}{\sqrt{2}}h)}{\frac{1}{2}h^2} - 0}{h} = -\frac{1}{\sqrt{2}}$$

Nakonec se podívejme na směr, ve kterém je derivace největší. Opět nemůžeme použít vzoreček s gradientem. Vyjděme z definice s obecným jednotkovým vektorem $\mathbf{v} = (\cos(\varphi), \sin(\varphi))^T$.

$$\frac{\partial F}{\partial \mathbf{v}}(0,0) = \lim_{h \to 0} \frac{F(\cos(\varphi)h, \sin(\varphi)h) - F(0,0)}{h} = \lim_{h \to 0} \frac{\frac{\sin^2(\varphi)h^2 \sin(\cos(\varphi)h)}{h^2(1+\cos(\varphi)\sin(\varphi))}}{h} = \frac{\sin^2(\varphi)\cos(\varphi)}{1+\cos(\varphi)\sin(\varphi)}$$

Tato funkce je spojitá a na intervalu $[0,2\pi]$ nabývá globálního maxima přibližně v bodě $\varphi=5.39541\ldots$, což odpovídá hledanému vektoru

$$\mathbf{v} = (0.631138..., -0.775670...)^T$$