

ex2 预引报告

动胸溝 计84 20/80/1365

实验方法:将滑线电阻、电感线圈及电容箱接入实验电路。调节工、使之分别为

aging,测量对应的电压U和功率P.

对于电阻
$$R = \frac{P}{L^2}$$
 对于电感 $R_c = \frac{P}{L^2}$ $X_c = \sqrt{(\frac{L}{L})^2 - R_c^2}$, $Z = R_c + j \times L$, $L = \frac{X_c}{2Nf}$ 对于电容 $|Z| = \frac{1}{L^2}$, $X_c = \sqrt{Z^2 - \frac{1}{L^4}}$, $C = -\frac{1}{2Nf \times c}$

1络2. 相量图的画法.

实验法:将上述滑线电阻、电影线圈发电容和组成左图电路,今I=0.8A和I=1.0A,测量只以以. 总阻抗 |Z|= U, 中=cos¹PUI

交流电路参数的测定 终结报告

2018011365 计84 张鹤潇

一、 数据处理与分析

任务1. 三表法测阻抗

表 1 电阻R≈ 160Ω的阻抗测定

I (A)	U (V)	P (W)	R (Ω)	R 平均值(Ω)
0.80	133. 1	106. 1	165.8	166. 4
1.00	167.0	167.0	167. 0	100. 4

表 2 电感线圈L≈500 mH的阻抗测定

I (A)	U (V)	P (W)	$R_L(\Omega)$	$X_L(\Omega)$	L(H)	R_L 平均值(Ω)	X_L 平均值(Ω)	Z ∠ φ	
0.80	126.7	9.8	15.3	157.6	0.50	15.2	157 7	150.4 /04.5°	
1.00	158.5	15. 3	15. 3	157.8	0.50	15. 3	157. 7	158.4∠84.5°	

表 3 电容箱 $C \approx 16 \mu F$ 的阻抗测定

I (A)	U (V)	P(W)	$ Z (\Omega)$	$X_{\mathcal{C}}(\Omega)$	$C(\mu F)$	X_C 平均值(Ω)	C平均值(μF)
0.80	154.9	0.1	193. 6	-193.6	16.4	-194. 2	16. 4
1.00	194.7	0.2	194. 7	-194.7	16. 3	-194. Z	10.4

测得电阻R = 166.4 Ω ; 电感线圈的等效参数 $R_L=15.3\,\Omega$, $X_L\approx 157.7\,\Omega$, L = 0.50 H; 电容的等效参数 $R_C=0.18\,\Omega$, $X_C=-194.2\,\Omega$, C = 16.4 μF .

任务2. 相量图的画法

表 4 R、L、C 串并联电路参数测定

I (A)	U(V)	$U_2(V)$	P (W)	$ Z (\Omega)$	ф(°)	Z 平均值(Ω)	φ平均值(°)
0.80	108. 9	102.5	72. 5	136. 1	33. 7	126 4	22 5
1.00	136. 7	128. 7	114. 3	136. 7	33. 3	136. 4	33. 5

测得 $|Z|=136.4~\Omega$, $\varphi=33.5^\circ$.

以 I=1A 时测得的 $\dot{U}_2=128.7 \angle 0^\circ$ V为参考相量,

$$\begin{split} \dot{I}_R &= \frac{\dot{U}_2}{R} = 0.773 \angle 0^\circ \ A \\ Z_C &= R_C + j X_c = 194.2 \angle - 90^\circ \ \Omega \end{split}$$

$$\dot{I}_{C} = \frac{\dot{U}_{2}}{Z_{C}} = 0.663 \angle 90^{\circ} \text{ A}$$

$$\dot{U}_1 = \dot{I}_{H} \dot{g} Z_L = 161.6 \angle 125.1^{\circ} V$$

$$\dot{\textbf{U}}_{\text{i}+\hat{\textbf{J}}} = \dot{\textbf{U}}_{1} + \dot{\textbf{U}}_{2} = 137.0 \angle 74.8^{\circ} \text{ A, } \vec{\textbf{m}} \left| \dot{\textbf{U}} \right|_{\text{g_{i}}} = 136.7 \text{V, } \left| \dot{\textbf{U}} \right|_{\text{g_{i}}} \approx \left| \dot{\textbf{U}}_{1} + \dot{\textbf{U}}_{2} \right|_{\text{i}+\hat{\textbf{J}}_{2}$}.$$

图 1 R、L、C 串并联实验相量图

二、误差分析

由任务 1 测量结果,可得 $Z=R_L+jX_L+\frac{R(jX_C)}{R+jX_C}=134.1\angle33.8\,^\circ\Omega.$

与任务2测量结果比较:

$$|Z|$$
 的相对误差 = $\frac{|Z|_{x,w} - |Z|_{t/\hat{y}}}{|Z|_{x,w}} = 1.67\%$

$$\phi$$
的相对误差 = $\phi_{x} - \phi_{t} = -0.3$ °

实验误差来源,包括系统误差:

- 电参数测量仪测量精度带来的误差;
- 导线电阻带来的误差。

偶然误差:

- 测量仪读数时示数不稳定造成的误差;
- 测量电压时,表笔接触不良或接入电路位置不同造成误差
- 测量电流时,电流钳接反或测量的位置不同引起误差。

三、 思考题

1. 如果调压器的输入输出端接反了, 会发生什么情况?

答:如果输入输出端接反了,则调压器由降压变为升压,接入实验电路的电压过大,可能损坏仪器或引发危险;在测量结束,断开电路前将调压器归零时,会导致电源短路,十分危险。

2. 如何根据 I, U, P 的实验结果直接计算电感线圈的并联等值电路的参数?

答:设电感线圈并联等值电路由纯电阻R和纯电感iX组成.

由 I, U, P 的实验结果,根据
$$|Z_L| = \frac{U}{I}$$
, $R_L = \frac{P}{I^2}$, $X_L = \sqrt{|Z_L|^2 - R_L^2}$, 可以计算出 $Z_L = R_L + jX_L$. 又由 $Z_C = \frac{R \times jX}{R + jX} = \frac{RX^2 + jXR^2}{R^2 + X^2}$, 可知 $R_L = \frac{RX^2}{R^2 + X^2}$, $X_L = \frac{XR^2}{R^2 + X^2}$, 联立解出 $R = \frac{R_L^2 + X_L^2}{R_L}$, $X = \frac{R_L^2 + X_L^2}{X_L}$, 代入 R_L , R_L , R_L , R_L , 化简得 $R = \frac{U^2}{P}$, R_L ,

3. 如何判断被测阻抗是感性还是容性?

- 可以升高电源频率,测量元件的阻抗。如果阻抗升高,表明元件为感性;如果降低则为 容性。
- 可以用示波器测量元件两端的电压和电流,观察相位关系。若电压相位领先电流则是表明元件为感性,反之则为容性。

4. 对纯电阻, 电感和电容元件, 如何简化测量方式?

答: 直接测量元件两端的 $U,I,|Z| = \frac{U}{I}$.

对纯电阻R = |Z|; 对纯电感 $X_L = |Z|$; 对纯电容 $X_c = -|Z|$.

四、 实验结论

- 1. 由电容箱,电感线圈的有功功率不为0,可知其也具有一定的电阻。
- 2. 若用阻抗Z = R + jX刻画电阻,电感,电容对交流电的阻碍作用,则:对于纯电阻,电压与电流同相位,阻抗Z = R;对于感性元件,电压相位领先于电流,X > 0;对于容性元件,电流相位领先于电压,X < 0.
- 3. 用相量法表示的交流电路参数 $\dot{\mathbf{U}},\dot{\mathbf{U}}_1,\dot{\mathbf{U}}_2$ 及 $\dot{\mathbf{I}}_{R},\dot{\mathbf{I}}_{C},\dot{\mathbf{I}}$ 的合成满足平行四边形法则。

五、 实验总结

通过本次实验,我学习了交流电路元件和仪表的基本使用方法,如数字电参数测试仪,自耦调压器等;也在推导公式、处理数据、绘制相量图的过程中加深了对相量法、复阻抗、

容性感性等概念的理解。复阻抗和相量的引入使我们可以通过测量 I、U、P 等参数求解电路,而不必处理微分方程。

在实验中,需要注意不要把调压器的输入输出端接反了。每次重新接线时,要先将调压器归零,再断开电源,最后改接线。注意实验安全。

因为实验前的预习准备比较充分,实验过程进行的比较顺畅,在以后的实验中也要努力 保持。 彩:15

组员: 张鹤涛 20/8011365 新日 20/8011359

仪器: 空心 贼箱 15022895

调压器下13.

十进电客箱 03001939

数字电参数测量仪 DCY-1204 12006778.

滑线电阻

R	= 160.	1		丁进电	各相
	I(A)	U(V)	P(w)	R(1)	R平均(小)
	0.80	133.1	106.1		
	1.00	167-0	167.0		

L=roomH

(格):

I(A)	U(v)	P(w)	RL(N)	XL(1)	L(H)	XL(A) 均值	知	IZILO
	126.7							
1.00	1.811	13.3						

CZIBUF

7	T(A)	(J(v)	P(w)	Z (<u>/</u> L)	$X_{\mathcal{C}}(\Lambda)$	C(UF)	XL(人) 七別的	C(以下) 步打筒
		154.9		12161	744(5 67		7-3 11	VIA
	1.00	194.7	0.2					

1862.

				Z (1)	4(°)	対値	均值
080	108.9	102.5	72.5			-	,
1.00	136.7	128.7	114.3				

开始时间: 16:50

结束时间:17:04