Graphics Systems and Models

2주차, 2023

Prof. Kim, Soo Kyun

그래픽스 시스템

- 컴퓨터 그래픽스 시스템도 일종의 컴퓨터 시스템
- 6개의 구성 요소
 - 입력 장치, 중앙처리 장치, 그래픽 처리 장치
 - 메모리, 프레임 버퍼, 출력 장치

입력장치 (1)

 다음과 같은 3차원 물체를 입력할 수 있는 방법은 무 엇인가?

입력장치 (2)

• 3차원 물체를 입력할 수 있는 방법은 무엇인가?

입력장치 (3)

• 3차원 물체를 입력할 수 있는 방법은 무엇인가?

모델러가 만드는 방법 혹시 다른 방법은 없을까?

입력장치 (4)

• 3차원 물체를 입력할 수 있는 방법은 무엇인가?

3D Scanner

The Digital Michelangelo Project: 3D Scanning of Large Statues

입력장치 (5)

• 3차원 스캐너

Full-Body 3D Scanner

3D Scanners

픽셀과 프레임 버퍼 (1)

- 래스터 방식 (Raster)
 - 그래픽스 시스템 안에서 픽셀의 배열, 즉 래스터로 생성됨
 - 각 픽셀은 영상의 한 위치나 작은 영역에 대응
 - 픽셀은 프레임 버퍼(frame buffer)라고 부르는 메모리의 한 부분 에 집단으로 저장

Pixels

픽셀과 프레임 버퍼 (2)

• 폴리곤에 라인과 와이어 프레임 이미지를 그려줌

픽셀과 프레임 버퍼 (3)

- 해상도 (resolution)
 - 프레임 버퍼의 픽셀 수가 우리들이 볼 수 있는 영상의 상세 함을 결정
 - 1비트 깊이의 프레임 버퍼
 - 두 색만들 표시
 - 8비트 깊이의 프레임 버퍼
 - 256가지 색을 표시 (2의 8승)
 - 각 픽셀의 비트 수로 정의되는 프레임 버퍼의 깊이(depth), 즉 정밀도(precision)가 주어진 시스템이 얼마나 많은 색을 표현할 수 있는지를 결정함

픽셀과 프레임 버퍼 (4)

- 래스터화(rasterization) 혹은 주사변화(scan conversion)
 - 응용프로그램에 의하여 픽셀에 관한 정보를 처리하여 프레임 버퍼에 저장시키는 것

The CPU and GPU

- Central processing unit (CPU)
 - Doing both the normal processing and the graphics processing
 - Rasterization or scan conversion
 - 응용프로그램에 의하여 픽셀에 관한 정보를 처리하여 프레임 버퍼에 저장시키는 것
- Graphics processing units (GPUs)
 - Custom-tailored to carry out specific graphics functions
 - High degree of parallelism

출력장치

Cathode-ray tube (CRT)

- Flat-panel monitors
 - Light-emitting diodes (LEDs), liquid-crystal displays (LCDs), and plasma panels
- Projection systems
 - Digital light projection (DLP)
- Hard-copy devices

Input Devices

- Most graphics systems provide a keyboard and at least one other input device
 - Pointing devices

Computer Graphics: 1980-1990

Realism comes to computer graphics

smooth shading

environment mapping

bump mapping

Computer Graphics: 1980-1990

- Special purpose hardware
 - Silicon Graphics geometry engine
 - VLSI implementation of graphics pipeline
- Industry-based standards
 - PHIGS
 - RenderMan
- Networked graphics: X Window System
- Human-Computer Interface (HCI)

Computer Graphics: 1990-2000

- OpenGL API
- Completely computer-generated feature-length movies (Toy Story) are successful
- New hardware capabilities
 - Texture mapping
 - Blending
 - Stencil buffers

Computer Graphics: 2000-

- Photorealism
- Graphics cards for PCs dominate market
 - Nvidia, ATI
- Game boxes and game players determine direction of market
- Computer graphics routine in movie industry: Maya, Lightwave
- Programmable pipelines

컴퓨터 그래픽스의 표준 1

OpenGL

http://www.opengl.org

컴퓨터 그래픽스의 표준 2

OpenGL

http://www.opengl.org

컴퓨터 그래픽스의 표준 3

- OpenGL
 - http://www.opengl.org

Image Formation (1)

- There always has been analogous process how image are formed by physical imaging systems
 - Cameras
 - Microscopes
 - Telescopes
 - Human visual system
 - Rods(간상체) and cones(원추체) are light sensors
 - Rods monochromatic, night vision
 - Cones color sensitive
 - Three types of cones
 - Only three values (the tristimulus values) are sent to the brain

The Human Visual System

Image Formation (2)

Elements of image formation

- Objects
 - Independent of any viewer and of any image-formation process
- Viewer (camera)
 - To form the image of objects
- Light sources

Image Seen by Three Different Viewers

Light and Images

- Interaction between light and the surfaces of the object How much light enters the camera
- Light = visible spectrum
 - Wavelengths in the range 350~780 nm
 - Long wavelengths: reds
 - Short wavelengths: blues

The Electromagnetic Spectrum

Imaging Models

Ray tracing

- Image formation techniques
- Following rays of light from a point source finding which rays enter the lens of the camera

Radiosity

Based on conservation of energy

Imaging Models

• Pinhole camera

Synthetic-Camera Model (1)

- Conceptual foundation for three-dimensional computer graphics
 - Projector
 - Line from the center of lens to a point on the object
 - COP (center of projection)
 - The center of the lens
 - Projection plane
 - Virtual image plane that are moved in front of the lens

Equivalent views of image formation

Synthetic-Camera Model (2)

Graphics Architectures

- Graphics pipeline
 - Geometry collection of primitive types and vertices

Geometric pipeline

- Vertex processing
 - World and view transformations
 - Projection
 - Lighting
- Clipping and primitive assembly
- Rasterization
- Fragment processing

Vertex Processing (1)

- Much of the work in the pipeline is in converting object representations from one coordinate system to another
 - Object coordinates
 - Camera (eye) coordinates
 - Screen coordinates
- Every change of coordinates is equivalent to a matrix transformation
- Vertex processor also computes vertex colors

Vertex Processing (2)

- Projection is the process that combines the 3D viewer with the 3D objects to produce the 2D image
 - Perspective projection: all projectors meet at the center of projection
 - Parallel projection: projectors are parallel, center of projection is replaced by a direction of projection

Primitive Assembly

- Vertices must be collected into geometric objects before clipping and rasterization can take place
 - Line segments
 - Polygons
 - Curves and surfaces

Clipping

- Just as a real camera cannot "see" the whole world, the virtual camera can only see part of the world or object space
 - Objects that are not within this volume are said to be clipped out of the scene

Rasterization

- If an object is not clipped out, the appropriate pixels in the frame buffer must be assigned colors
- Rasterizer produces a set of fragments for each object
- Fragments are "potential pixels"
 - Have a location in frame buffer
 - Color and depth attributes
- Vertex attributes are interpolated over objects by the rasterizer

Fragment Processing

- Fragments are processed to determine the color of the corresponding pixel in the frame buffer
- Colors can be determined by texture mapping or interpolation of vertex colors
- Fragments may be blocked by other fragments closer to the camera
 - Hidden-surface removal

#