

TEST REPORT

JDE: 675397 N°: 847040-R1-E

Subject

Electromagnetic compatibility and Radio spectrum Matters (ERM) tests according to standards: FCC CFR 47 Part 15, Subpart C **RSS-247 Issue 1.0**

Issued to SCHNEIDER ELECTRIC INDUSTRIES FRANCE

> 22 Chemin du Vieux Chêne 38240 MEYLAN FRANCE

Apparatus under test

♥ Product **HU250**

♦ Trade mark SCHNEIDER ELECTRIC SCHNEIDER ELECTRIC Manufacturer

♦ Model under test EMS59000

Serial number MP1-7 & MP1-5

♥ FCCID 2AHHK-EASERGYHU250 21156-EASERGYHU250 ♥ ICID From August 11th to 14th, 2015 Test date

Test location Moirans

IC Test site 6500A-1 & 6500A-3 Test performed by G.Deschamps Composition of document 46 pages

Modification of the last version None

Document issued on April 15, 2016

Written by: Tests operator Gaëtan Deschamps Approved by:

This document shall not be reproduced, except in full, without the written approval of the LCIE. This document contains results related only to the items tested. It does not imply the conformity of the whole production to the items tested. Unless otherwise specified, the decision of conformity takes into account the uncertainty of measurement. This document doesn't anticipate any certification decision.

Laboratoire Central des Industries Electriques Une société de Bureau Veritas

ZI Centr'alp 170 rue de Chatagnon 38430 Moirans FRANCE Tél: +33 4 76 07 36 36 contact@lcie.fr www.lcie.fr

SUMMARY

1.	TEST PROGRAM	3
2.	SYSTEM TEST CONFIGURATION	5
3.	CONDUCTED EMISSION DATA	12
4.	RADIATED EMISSION DATA	14
5.	BANDWIDTH (15.247)	19
6.	MAXIMUM PEAK OUTPUT POWER (15.247)	24
7.	POWER SPECTRAL DENSITY (15.247)	28
8.	BAND EDGE MEASUREMENT (15.247)	34
9.	OCCUPIED BANDWIDTH	38
10.	ANNEX 1 (GRAPHS)	43
11.	UNCERTAINTIES CHART	46

1. TEST PROGRAM

Standard:

- FCC Part 15, Subpart C 15.247
- ANSI C63.10 (2013)
- 558074 D01 DTS Measurement Guidance v03r03
- RSS-247 Issue 1.0 May 2015 - RSS-Gen Issue 4 - Nov 2014

EMISSION TEST		LIMITS		RESULTS
	Frequency	Quasi-peak value (dBµV)	Average value (dBµV)	☑ PASS
Limits for conducted disturbance at mains ports	150-500kHz	66 to 56	56 to 46	□ FAIL
150kHz-30MHz	0.5-5MHz	56	46	□ NA □ NP
	5-30MHz	60	50	
Radiated emissions 9kHz-30MHz CFR 47 §15.209 (a) CFR 47 §15.247 (d) RSS-247 §5.5	9kHz-490kHz: Measure at 30 490kHz-1.705M	Measure at 300m 9kHz-490kHz : 67.6dBμV/m /F(kHz) Measure at 30m 490kHz-1.705MHz : 87.6dBμV/m /F(kHz) 1.705MHz-30MHz : 29.5 dBμV/m		
Radiated emissions 30MHz-25GHz* CFR 47 §15.209 (a) CFR 47 §15.247 (d) RSS-247 §5.5 Highest frequency: (Declaration of provider)	30MHz-88MHz 88MHz-216MH 216MHz-960M	Measure at 3m 30MHz-88MHz : 40 dBμV/m 88MHz-216MHz : 43.5 dBμV/m 216MHz-960MHz : 46.0 dBμV/m Above 960MHz : 54.0 dBμV/m		
Bandwidth 6dB CFR 47 §15.247 (a) (2) RSS-247 §5.2.1	At least 500kF	At least 500kHz		
Power spectral Density CFR 47 §15.247 (e) RSS-247 §5.2.2	Limit: 8dBm/3	Limit: 8dBm/3kHz		
Maximum Peak Output Power CFR 47 §15.247 (b) RSS-247 §5.4.4	Limit: 30dBm Conducted or F	Radiated measureme	ent	☑ PASS □ FAIL □ NA □ NP
Band Edge Measurement CFR 47 §15.209 (a) CFR 47 §15.247 (d) RSS-247 §5.5	Limit: -20dBc Radiated emis	or ssions limits in rest	ricted bands	☑ PASS □ FAIL □ NA □ NP
Occupied bandwidth RSS-Gen §4.6.1	No limit			☑ PASS □ FAIL □ NA □ NP
Receiver Spurious Emission** RSS-Gen §4.10	See RSS-Gen	§4.10		☐ PASS ☐ FAIL ☑ NA ☐ NP

^{*§15.33:} The highest internal source of a testing device is defined like more the highest frequency generated or used in the testing device or on which the testing device works or agrees.

⁻ If the highest frequency of the internal sources of the testing device is lower than 108 MHz, measurement must be only performed until 1GHz.

⁻ If the highest frequency of the internal sources of the testing device ranges between 108 MHz and 500 MHz, measurement must be only performed until 2GHz.

⁻ If the highest frequency of the internal sources of the testing device ranges between 500 MHz and 1 GHz, measurement must be only performed until 5GHz.

If the highest frequency of the internal sources of the testing device is above 1 GHz, measurement must be only performed until 5 times the highest frequency or 40 GHz, while **taking** smallest of both.

2. SYSTEM TEST CONFIGURATION

HARDWARE IDENTIFICATION (EUT AND AUXILIARIES): 2.1.

Equipment under test (EUT):

EMS59000

Serial Number: MP1-7

Photography of EUT

<u>Power supply:</u> During all the tests, EUT is supplied by V_{nom} : 12VDC For measurement with different voltage, it will be presented in test method.

Name	Туре	Rating	Reference / Sn	Comments
Supply1	□ AC ☑ DC □ Battery	12VDC	-	-

Inputs/outputs - Cable:

Access	Туре	Length used (m)	Declared <3m	Shielded	Under test	Comments
1	Power supply (DC)	0.05				12V
2	WLAN	1				
3	Modbus	1				
4	3rd Party	1				
5	Lampes BVE	1				
6	Outputs	1				
7	Inputs	1				
8	K7 RS485	1				
9	LAN1	1		\checkmark		com for test

Auxiliary equipment used during test:

Туре	Reference	Sn	Comments
Power Supply DC	EMS58588 (PS50)	15260019	Provided by Schneider
Power supply DC	TDK	-	Ref LCIE : A7044055
K7 GSM/GPS	EMS59153	-	
K7 RS485	EMS59151	-	

Equipment information:

_									
Type:	WIFI								
Frequency band:	[2400 – 2483.5] MHz								
Standard:	☑ 802.11b	[☑ 802.	11g	☑ 802.11n	HT20	\checkmark	802.11n	HT40
Spectrum Modulation:		DSSS				☑O	FDN	Л	
Number of Channel:				13					
Spacing channel:				5MH:	Z				
Channel bandwidth:		20MHz				☑ 40	MH	Z	
Antenna Type:	✓ Integral			□ Exter	nal			Dedicated	
Antenna connector:	☐ Yes			☑ No)	☑T	emp	orary for	test
	☑ 1		□ 2	2	□ 3			□ 4	
Transmit chains:	☑ Single antenna ☐ Symme		etrical Asymmetric		al				
Transmit Chains.	Gain 1: 2.27dBi	ain 2:	dBi	Gain 3:	dBi Gain	4: d	lBi	Accum Gain:	nuled dBi
Beam forming gain:	□ Ye	s: d	В			\checkmark	No		
Receiver chains	☑ 1		□ 2)	□ 3			□ 4	
Type of equipment:)		☐ Plug	-in			Combined	l
Ad-Hoc mode:] Yes			☑ No				
		ed)		☐ Off m	ode			☑ No	
Adaptivity mode:	Clear C	hannel <i>i</i>	Assess	ment Time	μς				
	q value for Load Based Equipment								
Duty cycle:				☐ Intermitte	ent duty ☐ 100% duty			/	
Equipment type:	☐ Produ	uction m	odel		✓ Pre-production model				
Type of power source:	☐ AC power supp	ply	<u> </u>	DC power	r supply	□ Ba	atter	y (Select	Type)

CHANNEL PLAN						
802.11b / 802.11g / 802.11n HT20						
Channel	Frequency (MHz)					
Cmin: 1	2412					
2	2417					
3	2422					
4	2427					
5	2432					
6	2437					
Cmid: 7	2442					
8	2447					
9	2452					
10	2457					
11	2462					
12	2467					
Cmax: 13	2472					

CHANNEL PLAN						
802.11n HT40						
Channel Frequency (MHz)						
Cmin: 3	2422					
4	2427					
5	2432					
6	2437					
Cmid: 7	2442					
8	2447					
9	2452					
10	2457					
Cmax: 11	2462					

DATA RATE								
	802.11b							
Data Rate (Mbps)	Data Rate (Mbps) Modulation Type							
1	DBPSK	✓						
2	DQPSK							
5.5	DQPSK							
11	ССК							

	DATA RATE							
802.11g								
Data Rate (Mbps)	Modulation Type	Modulation Worst Case						
6	BPSK	V						
9	BPSK							
12	QPSK							
18	QPSK							
24	16-QAM							
36	16-QAM							
48	64-QAM							
54	64-QAM							

DATA RATE									
			802	2.11n HT20					
Available for EUT	MCS	Spatial	Modulation	Data (Mk	Worst Case				
TOT EU I	Index	streams		(GI = 800ns)	(GI = 400ns)	Modulation			
V	0	1	BPSK	6.5	7.2	V			
$\overline{\checkmark}$	1	1	QPSK	13	14.4				
$\overline{\checkmark}$	2	1	QPSK	19.5	21.7				
$\overline{\checkmark}$	3	1	16-QAM	26	28.9				
\checkmark	4	1	16-QAM	39	43.3				
$\overline{\checkmark}$	5	1	64-QAM	52	57.8				
$\overline{\checkmark}$	6	1	64-QAM	58.5	65				
$\overline{\checkmark}$	7	1	64-QAM	65	72.2				
	8	2	BPSK	13	14.4				
	9	2	QPSK	26	28.9				
	10	2	QPSK	39	43.3				
	11	2	16-QAM	52	57.8				
	12	2	16-QAM	78	86.7				
	13	2	64-QAM	104	115.6				
	14	2	64-QAM	117	130.3				
	15	2	64-QAM	130	144.4				
	16	3	BPSK	19.5	21.7				
	17	3	QPSK	39	43.3				
	18	3	QPSK	58.5	65				
	19	3	16-QAM	78	86.7				
	20	3	16-QAM	117	130				
	21	3	64-QAM	156	173.3				
	22	3	64-QAM	175.5	195				
	23	3	64-QAM	195	216.7				
	24	4	BPSK	26	28.9				
	25	4	QPSK	52	57.8				
	26	4	QPSK	78	86.7				
	27	4	16-QAM	104	115.6				
	28	4	16-QAM	156	173.3				
	29	4	64-QAM	208	231.1				
	30	4	64-QAM	234	260				
	31	4	64-QAM	260	288.9				

	DATA RATE									
			802	2.11n HT40						
Available for EUT	MCS	Spatial	Modulation	Data (Mi	Worst Case					
for EU I	Index	streams		(GI = 800ns)	(GI = 400ns)	Modulation				
V	0	1	BPSK	13	15	V				
V	1	1	QPSK	27	30					
V	2	1	QPSK	40.5	45					
V	3	1	16-QAM	54	60					
V	4	1	16-QAM	81	90					
V	5	1	64-QAM	108	120					
V	6	1	64-QAM	121.5	135					
V	7	1	64-QAM	135	150					
	8	2	BPSK	27	30					
	9	2	QPSK	54	60					
	10	2	QPSK	81	90					
	11	2	16-QAM	108	120					
	12	2	16-QAM	162	180					
	13	2	64-QAM	216	240					
	14	2	64-QAM	243	270					
	15	2	64-QAM	270	300					
	16	3	BPSK	40.5	45					
	17	3	QPSK	81	90					
	18	3	QPSK	121.5	135					
	19	3	16-QAM	162	180					
	20	3	16-QAM	243	270					
	21	3	64-QAM	324	360					
	22	3	64-QAM	364.5	405					
	23	3	64-QAM	405	450					
	24	4	BPSK	54	60					
	25	4	QPSK	108	120					
	26	4	QPSK	162	180					
	27	4	16-QAM	216	240					
	28	4	16-QAM	324	360					
	29	4	64-QAM	432	480					
	30	4	64-QAM	486	540					
	31	4	64-QAM	540	600					

2.1. RUNNING MODE

The EUT is set in the following modes during tests with simulator / software (PuTTY v0.62):

- Permanent emission with modulation on a fixed channel in the data rate that produced the highest power
- Permanent reception
- Emission-reception with a duty cycle above 30% in the data rate that produced the highest output power

2.2. EQUIPMENT MODIFICATIONS

✓ None
✓ Modification:

2.3. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

Where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor AG = Amplifier Gain

Assume a receiver reading of 52.5dBµV is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 dBµV/m.

 $FS = 52.5 + 7.4 + 1.1 - 29 = 32 \, dB\mu V/m$

The 32 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m. Level in μ V/m = Common Antilogarithm [(32dB μ V/m)/20] = 39.8 μ V/m.

2.4. CALIBRATION DATE

The calibration intervals are extended at 12+2 months. This extended interval is based on the fact that there is sufficient calibration data to statistically establish a trend or based on experience of use of the test equipment to assure good measurement results for a longer period

3. CONDUCTED EMISSION DATA

3.1. ENVIRONMENTAL CONDITIONS

Date of test :August 13th, 2015 Test performed by :G.Deschamps

Atmospheric pressure (hPa) :993 Relative humidity (%) :33 Ambient temperature (°C) :22

3.2. TEST SETUP

Mains terminals

The EUT and auxiliaries are set:

☑ 80cm above the ground on the non-conducting table (Table-top equipment)

☐ 10cm above the ground on isolating support (Floor standing equipment)

The distance between the EUT and the LISN is 80cm. The EUT is 40cm away for the vertical ground plane.

The EUT is powered by V_{nom} .

The EUT is powered through a LISN (measure). Auxiliaries are powered by another LISN.

Test setup

3.3. TEST METHOD

The product has been tested according to ANSI C63.10 and FCC Part 15 subpart C. The product has been tested with 120V/60Hz power line voltage and compared to the FCC Part 15 limits. Measurement bandwidth was 9kHz from 150kHz to 30MHz. This was followed by a Quasi-Peak, i.e. CISPR measurement for any strong signal. If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary. The LISN (measure) is 50Ω / 50μ H. The Peak data are shown on plots in annex 1. Quasi-Peak and Average measurements are detailed in a table with frequencies and levels measured. Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on the following page.

Measurements are performed on the phase (L1) and neutral (N) of power line voltage. Graphs are obtained in PEAK detection. Measures are also performed in Quasi-Peak and Average for any strong signal.

3.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Cable + self	-	-	A5329585	06/15	06/16
Conducted emission comb generator	BARDET	-	A3169049	-	-
Power supply DC	TDK	-	A7044055	-	-
LISN tri-phase ESH2-Z5	RHODE & SCHWARZ	33852.19.53	C2320063	11/14	11/15
Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	A2642019	04/15	04/16
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/15	04/16
Transient limiter	RHODE & SCHWARZ	ESH3-Z2	A7122204	11/14	11/15

3.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None □ Divergence:

TEST RESULTS 3.6.

Measurements are performed on the phase (L1) and neutral (N) of the power line.

Results: (PEAK detection)

graph Emc#1 Measure on L1: (see annex 1) Measure on N: graph Emc#2 (see annex 1)

3.7. CONCLUSION

Conducted emission data measurement performed on the sample of the product EMS59000, SN: MP1-5, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Issue 1.0 limits.

N° **847040-R1-E** Page 13/46 Version: 1

4. RADIATED EMISSION DATA

4.1. ENVIRONMENTAL CONDITIONS

Date of test :August 13th, 2015 :August 14th, 2015 Test performed by :G.Deschamps :G.Deschamps

Atmospheric pressure (hPa) :993 :992 Relative humidity (%) :33 :39 Ambient temperature (°C) :22 :20

4.2. TEST SETUP

The installation of EUT is identical for pre-characterization measures in a 3 meters semi- anechoic chamber and for measures on the 10 meters Open site.

The EUT and auxiliaries are set:

☑ 80cm above the ground on the non-conducting table (Table-top equipment) - Below 1GHz

☑ 150cm above the ground on the non-conducting table (Table-top equipment) - Above 1GHz

☐ 10cm above the ground on isolating support (Floor standing equipment)

The EUT is powered by V_{nom}.

Test setup on OATS

Test setup in anechoic chamber

4.3. TEST METHOD

The product has been tested according to ANSI C63.10, FCC part 15 subpart C.

Pre-characterisation measurement: (9kHz – 25GHz)

A pre-scan of all the setup has been performed in a 3 meters semi-anechoic chamber for frequency from 30MHz to 25GHz. Test is performed in horizontal (H) and vertical (V) polarization, the loop antenna was rotated during the test to maximize the emission measurement. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration.

The pre-characterization graphs are obtained in PEAK detection and PEAK/AVERAGE from 1GHz to 25GHz.

Characterization on 10 meters open site from 9kHz to 1GHz:

Radiated Emissions were measured on an open area test site. A description of the facility is on file with the FCC. The product has been tested at a distance of **10 meters** from the antenna and compared to the FCC part 15 subpart C limits. Measurement bandwidth was 9kHz below 30MHz and 120kHz from 30 MHz to 1GHz. Test is performed in horizontal (H) and vertical (V) polarization, the loop antenna was rotated during the test to maximize the emission measurement. The height antenna is varied from 1m to 4m. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown.

Frequency list has been created with anechoic chamber pre-scan results.

Characterization on 3 meters full anechoic chamber from 1GHz to 25GHz:

The product has been tested at a distance of **3 meters** from the antenna and compared to the FCC part 15 subpart C limits. Measurement bandwidth was 1MHz from 1GHz to 25GHz.

Test is performed in horizontal (H) and vertical (V) polarization. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown. The height antenna is

☐ On mast, varied from 1m to 4m

☑ Fixed and centered on the EUT (EUT smaller than the beamwidth of the measurement antenna, ANSI C63.10 §6.6.5) Frequency list has been created with anechoic chamber pre-scan results.

4.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Antenna Bi-log	CHASE	CBL6111A	C2040051	04/14	04/16
Antenna Bi-log	CHASE	CBL6111A	C2040172	06/15	06/17
Cable Measure @3m	-	-	A5329038	08/14	08/15
Cable	SUCOFLEX	106G	A5329061	03/15	03/16
Cable Measure @3m	-	-	A5329206	04/15	04/16
Cable (OATS)	-	-	A5329623	10/14	10/15
Semi-Anechoic chamber #3	SIEPEL	-	D3044017	-	-
Radiated emission comb generator	BARDET	-	A3169050	-	-
OATS	-	-	F2000409	09/14	09/15
Power supply DC	TDK	-	A7044055	-	-
Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	A2642019	04/15	04/16
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	01/15	01/16
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/15	04/16
Turntable chamber (Cage#3)	ETS Lingren	Model 2165	F2000371	-	-
Turntable / Mast controller (OATS)	ETS Lindgren	Model 2066	F2000372	-	-
Antenna mast (OATS)	ETS Lindgren	2071-2	F2000392	-	-
Turntable (OATS)	ETS Lindgren	Model 2187	F2000403	-	-
Table	MATURO Gmbh	-	F2000437	-	-
Table	LCIE	-	F2000461	-	-
Turntable controller (Cage#3)	ETS Lingren	Model 2090	F2000444	-	-

4.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☐ Divergence:			
	☐ Divergence:	☐ Divergence:	☐ Divergence:

4.6. **TEST RESULTS**

Pre-characterization at 3 meters [30MHz-1GHz] 4.6.1.

See graphs for 30MHz-1GHz:

Graph identifier	Polarization	Mode	EUT position	Comments
Emr# 1	H/V	TX	Axis XY	See annex 1

4.6.2. Characterization on 10 meters open site from 30MHz to 1GHz

Worst case final data result:

Frequency list has been created with semi-anechoic chamber pre-scan results. Measurements are performed using a QUASI-PEAK detection.

No	Frequency (MHz)	Limit QPeak (dBµV/m)	Measure QPeak (dBµV/m)	Margin QPeak (dB)	Angle Table (°)	Pol. Ant.	Ht. Ant. (cm)	FC (dB)	Remark
1	38.186	40.0	35.6	-4.4	320	V	100	15.3	
2	49.298	40.0	37.6	-2.4	290	V	100	9.7	
3	60.209	40.0	34.6	-5.4	240	V	100	7.6	
4	67.196	40.0	30.7	-9.3	175	V	100	7.8	
5	127.274	43.5	42.3	-1.2	215	V	100	13.8	
6	138.834	43.5	41.3	-2.2	15	Н	400	13.7	
7	157.520	43.5	41.8	-1.7	120	V	100	12.7	
8	198.878	43.5	41.9	-1.6	109	V	100	11.0	
9	325.000	46.0	38.1	-7.9	122	Н	250	16.9	
10	394.200	46.0	37.0	-9.0	85	Н	250	19.4	
11	425.016	46.0	43.1	-2.9	280	Н	215	19.8	
12	531.052	46.0	39.6	-6.4	315	V	95	22.8	
13	714.720	46.0	42.0	-4.0	0	Н	200	25.2	
14	875.028	46.0	44.2	-1.8	145	Н	100	28.4	
15	925.029	46.0	44.2	-1.8	90	Н	250	28.3	

Note: Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

TEST REPORT N° **847040-R1-E**

Version: 1

Page 17/46

4.6.3. Characterization on 3meters anechoic chamber from 1GHz to 25GHz

Worst case final data result:

The frequency list is created from the results obtained during the pre-characterization in anechoic chamber.

Measurements are performed using a PEAK and AVERAGE detection.

No	Frequency	Limit	Measure	Margin	_	Measure	Margin	Angle	Pol.	Ht.	FC	Remark
	(MHz)	Peak	Peak	Peak	Average	Average	Average	Table	Ant.	Ant.	(dB)	
		(dBµV/m)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(°)		(cm)		
1	2310.120	74.0	58.1	-15.9	54.0	42.9	-11.1	0	Η	80	30.1	
2	2365.120	74.0	57.7	-16.3	54.0	43.1	-10.9	0	Η	80	30.2	
3	2375.550	74.0	58.2	-15.8	54.0	42.7	-11.3	0	Н	80	30.2	
4	2381.880	74.0	58.7	-15.3	54.0	44.2	-9.8	0	Ι	80	30.2	
5	2386.560	74.0	58.4	-15.6	54.0	44.2	-9.8	0	Ι	80	30.2	
6	2484.020	74.0	58.4	-15.6	54.0	47.7	-6.3	120	Η	80	30.4	
7	2487.460	74.0	58.4	-15.6	54.0	47.7	-6.3	120	Н	80	30.4	
8	2488.470	74.0	58.4	-15.6	54.0	47.7	-6.3	120	Ι	80	30.4	
9	2490.450	74.0	51.4	-22.6	54.0	40.4	-13.6	140	Ι	80	30.4	
10	2491.970	74.0	51.4	-22.6	54.0	40.4	-13.6	140	Н	80	30.4	
11	4824.000	74.0	59.5	-14.5	54.0	52.6	-1.4	30	Н	100	36.3	
12	4874.000	74.0	60.2	-13.8	54.0	53.6	-0.4	30	Н	100	36.5	
13	4924.000	74.0	60.2	-13.8	54.0	52.2	-1.8	30	Н	100	36.6	

Note: Measures have been done at 3m distance.

4.7. CONCLUSION

Radiated emission data measurement performed on the sample of the product **EMS59000**, SN: **MP1-5**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Issue 1.0 limits.

5. BANDWIDTH (15.247)

5.1. TEST CONDITIONS

Date of test :August 13th, 2015 Test performed by :G.Deschamps

Atmospheric pressure (hPa) :990 Relative humidity (%) :33 Ambient temperature (°C) :22

5.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Offset: Attenuator+cable 12.7dB

☐ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete, a delta marker is used to measure the frequency difference as the emission bandwidth.

Measurement Procedure: §8.1 Option 1 (DTS Measurement Guidance)

- 1. Set resolution bandwidth (RBW) = 100kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer.

5.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Cable SMA	-	-	A5329636	11/14	11/15
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	01/15	01/16
Power supply DC	TDK	-	A7044055	-	-
Thermo-hygrometer (C3)	OREGON	BAR206	B4204078	04/15	04/16
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/15	04/16

5.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

 $\$ None $\$ Divergence:

5.5. TEST SEQUENCE AND RESULTS

802.11b

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Bandwidth Limit (kHz)
1	2412	10 057	>500
6	2437	10 043	>500
11	2462	10 058	>500
Spectrum spectrum	12.70 dbm Offset 12.70 db ReW 100 lbtz 10 db SWT 56.9 µs Sk9 VSW 300 lbtz Mode Auto FFT	2.41.4930 Grt 2.41.4930 Grt 10 dism 10 dism 2.0 dBm 2.0 dBm 40 d	1.93 dbm 1.93 dbm

802.11g

802.11n HT20

802.11n HT40

Channel Channel Frequency (MHz)		y		6dB Bandwidth (kHz)					Bandwidth Limit (kHz)									
3			24	22						33	864							>500
6			24	37						32	562				>500			
9			24	152						33	792							>500
	Spectrum					•			\	Spectrur					•			(III III)
	Att	20.00 dBm Offse 25 dB SWT	#t 12.70 dB 👄	RBW 100 kHz VBW 300 kHz	Mode S	weep				Att	20.00 dBm 25 dB	Offset 12 SWT	1.1 ms •	RBW 100 kHz VBW 300 kHz	Mode Swee	,		
	●1Pk View				Ma	[1]			-7.53 dBm	•1Pk View					M3[1]			-5.00 dBm
	10 dBm		_	M1		r Sensor 1			95110 GHz Sensor ?	10 dBm				M1	Pwr Se	nsor 1	2.	4532810 GHz Sensor ?
	0 dBm-	M2 D1 -7.3¶0 dBmox	alle and a least of the last			[1] 	بالما	M32.41	-1.35 dBm 94670 GHz	0 dBm	D1 -4.670	Browkeller	مالسلساني	the tony	1[1]	بالباسالية	M3 2.	1.33 dBm 4344670 GHz
	-10 dBm)1 -7.3 1 0 dBmoo	, III, III				- Andrew	autout _{ly}		-10 dBm	- Janes			₩			- Labore	
	-20 dBm-	} 		 						-20 dBm								<u></u>
	-30 dBm	*						_	Widgeneter	-30 dBm								The world
	-40 dBm	-	+						· althoughts	-40 dBm								
	-50 dBm		+-							-50 dBm								
	-60 dBm-		+-	_						-60 dBm-								
	-70 dBm-		+-							-70 dBm-								
	CF 2.422 GF	Hz		691 p	its			Span	50.0 MHz	CF 2.437	GHz			691 p	ts		Spe	an 50.0 MHz
	Marker Type Ref	Tec V-s	value	Y-value	Funct	ion	Eune	tion Result		Marker Type Re	of Tro	X-value		Y-value	Function		unction Resi	ult
	M1 M2	1 2.4	419467 GHz 405647 GHz	-1.35 dBm -8.91 dBm	1		runc	CIOII RESUIC		M1 M2	1	2.43446	57 GHz	1.33 dBm -4.51 dBm	1		unction Res	
	M3 PWR1		439511 GHz	-7.53 dBm 0.00 dBm	1	nsor ?			Sensor	M3 PWR1	1	2.45328		-5.00 dBm 0.00 dBm	1	2		Sensor
	PTINA				Spectrun	$\overline{}$			Jerisor	F111.2				₩ ₩	Jenson			361301
					Ref Level	20.00 dBm			RBW 100 kH					(•)				
									VBW 300 kH		sweep							
				l.	att 1Pk View	25 GB												
				f	●1Pk View	25 08				M	3[1]		2.46	-5.37 dBm 95110 GHz				
				9	10 dBm-	MO			M1	M:	vr Sensor 1			95110 GHz Sensor ?				
				9	10 dBm	MO	Brook		▼	M	vr Sensor 1	بالماليات	M3	95110 GHz Sensor ?				
					10 dBm	MO			▼	M:	vr Sensor 1	allely (M3	95110 GHz Sensor ?				
				-	10 dBm	MO			▼	M:	vr Sensor 1	alady, j	M3	95110 GHz Sensor ? 1.24 dBm 94670 GHz				
					10 dBm— 0 dBm— -10 dBm— -20 dBm— -20 dBm— -30 dBm—	MO			▼	M:	vr Sensor 1	alledy (M3	95110 GHz Sensor ?				
					10 dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -40 dBm-	MO			▼	M:	vr Sensor 1	and the state of t	M3	95110 GHz Sensor ? 1.24 dBm 94670 GHz				
					10 dBm	MO			▼	M:	vr Sensor 1	alled year	M3	95110 GHz Sensor ? 1.24 dBm 94670 GHz				
					10 dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -40 dBm-	MO			▼	M:	vr Sensor 1		M3	95110 GHz Sensor ? 1.24 dBm 94670 GHz				
					10 dBm	MO			▼	M:	vr Sensor 1	wheels of the	M3	95110 GHz Sensor ? 1.24 dBm 94670 GHz				
					10 dBm	01 -4.750 Daniel			▼	M Py M M	vr Sensor 1	will good of the same of the s	M32.44	95110 GHz Sensor ? 1.24 dBm 94670 GHz				
					10 dBm	01 -4.780,	X-value	mhhurler	691 Y-value	Pv P	vr Sensor 1 [[1]		M32.44	95110 GHz Sensor ? 1.24 dBm 94670 GHz				
					10 dBm	01 -4.780,		e of GHz	- Continue	Pv MM M Pv MM M M M M M M M M M M M M M	vr Sensor 1 [[1]		M32.44	95110 GHz Sensor ? 1.24 dBm 94670 GHz				

5.6. CONCLUSION

Bandwidth measurement performed on the sample of the product **EMS59000**, SN: **MP1-7**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Issue 1.0 limits.

6. MAXIMUM PEAK OUTPUT POWER (15.247)

6.1. TEST CONDITIONS

Date of test :August 13th, 2015 Test performed by :G.Deschamps

Atmospheric pressure (hPa) :990 Relative humidity (%) :33 Ambient temperature (°C) :22

6.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency.

Offset: Attenuator+cable 12.7dB

☐ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency.

The product has been tested at a distance of 3 meters from the antenna. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on following table. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

To demonstrate compliance with peak output power requirement of section 15.247 (b), the transmitter's peak output power is calculated using the following equation:

$$E = \frac{\sqrt{30PG}}{d}$$

Where:

- E is the measured maximum fundamental field strength in V/m.
- G is the numeric gain of the transmitting antenna with reference to an isotropic radiator.
- d is the distance in meters from which the field strength was measured.
- P is the power in watts for which you are solving:

$$P = \frac{(Ed)^2}{30G}$$

Maximum peak conducted output power

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

• □ RBW ≥ DTS bandwidth

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW \geq 3 x RBW.
- c) Set span ≥ 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

• ☐ Integrated band power method

This procedure may be used when the maximum available RBW of the measurement instrument is less than the DTS bandwidth.

- a) Set the RBW = 1 MHz.
- b) Set the VBW ≥ 3 x RBW
- c) Set the span \geq 1.5 x DTS bandwidth.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges

• ☑ Power meter

Mean power at the output of the transmitter (A) is deduced after correction due to RF cables loss between the EUT and the fast power sensor.

6.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Cable SMA	-	-	A5329636	11/14	11/15
RF Power sensor	DARE	RPR3006W	A1503029	07/14	07/15
Power supply DC	TDK	-	A7044055	-	-
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	01/15	01/16

<i>6.4.</i>	DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION	

☑ None	□ Divergence:

6.5. TEST SEQUENCE AND RESULTS

Modulation:

802.11b:

Temperature	Tnom				
Voltage	Vnom				
Channel	1 6 11				
Peak Output (dBm)	14.8	15.5	15.2		

802.11g:

Temperature	Tnom				
Voltage	Vnom				
Channel	1 6 11				
Peak Output (dBm)	12.0 14.8 12.1				

802.11n HT20:

Temperature		Tnom			
Voltage	Vnom				
Channel	1 6 11				
Peak Output (dBm)	12.1 14.2 12.0				

802.11n HT40:

Temperature	Tnom				
Voltage	Vnom				
Channel	3 6 9				
Peak Output (dBm)	12.6 10.8 10.1				

6.6. CONCLUSION

Maximum Peak Output Power measurement performed on the sample of the product **EMS59000**, SN: **MP1-7**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Issue 1.0 limits.

7. POWER SPECTRAL DENSITY (15.247)

7.1. TEST CONDITIONS

Date of test :August 13th, 2015 Test performed by :G.Deschamps

Atmospheric pressure (hPa) :990 Relative humidity (%) :33 Ambient temperature (°C) :22

7.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency.

Offset: Attenuator+cable 12.7dB

☐ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency.

The product has been tested at a distance of 3 meters from the antenna. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on following table. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

To demonstrate compliance with peak output power requirement of section 15.247 (b), the transmitter's peak output power is calculated using the following equation:

$$E = \frac{\sqrt{30PG}}{d}$$

Where:

- E is the measured maximum fundamental field strength in V/m.
- G is the numeric gain of the transmitting antenna with reference to an isotropic radiator.
- d is the distance in meters from which the field strength was measured.
- P is the power in watts for which you are solving:

$$P = \frac{(Ed)^2}{30G}$$

Measurement Procedure PKPSD: §10.2 (DTS Measurement Guidance)

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: 3 kHz.
- d) Set the VBW \geq 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Cable SMA	-	-	A5329636	11/14	11/15
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	01/15	01/16
Power supply DC	TDK	-	A7044055	-	-
Thermo-hygrometer (C3)	OREGON	BAR206	B4204078	04/15	04/16
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/15	04/16

7.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None	□ Divergence:

TEST REPORT

N° **847040-R1-E**Version : 1

Page 29/46

7.5. TEST SEQUENCE AND RESULTS

Modulation: 802.11b

Channel	Channel Frequency (MHz)	Power Spectral Density (dBm)	PSD Limit (dBm)
1	2412	-6.75	8.0
6	2437	-5.24	8.0
11	2462	-6.08	8.0

802.11g

802.11n HT40

hannel	Channe Frequenc (MHz)		F	Power Spe Densit (dBm)	y		PSD Limit (dBm)
3	2422			-16.01			8.0
6	2437			-13.13	3		8.0
9	2452			-13.98	3		8.0
Spectr	el 20.00 d8m	M1[1] Pwr Sensor 1	-16.01 (Bim 2.4200460 GHz Sensor ?	Spectrum Ref Level 20.00 dBm Att 25 dB 10 dBm 10 dBm -10 dBm	Offset 12.70 dB • RBW 3 bHz SWT 556 ms • VBW 10 bHz M	MI[1] —Pwr Sensor 1 —Upto Article Ar	-13.13 dtlm 2.4395330 GHz Sensor 7
-70 dam				-70 dBm			
CF 2.42		Att 25 dB S Pl View 10 dBm 0 dBm	Span 50.0 MHz ###################################		13.98 dbm 2.4470800 GHz Sensor 7		Span 50.0 MHz

7.6. CONCLUSION

Power Spectral Density measurement performed on the sample of the product **EMS59000**, SN: **MP1-7**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Issue 1.0 limits.

8. BAND EDGE MEASUREMENT (15.247)

8.1. TEST CONDITIONS

Date of test :August 14th, 2015 Test performed by :G.Deschamps

Atmospheric pressure (hPa) :992 Relative humidity (%) :39 Ambient temperature (°C) :20

8.2. LIMIT

RF antenna conducted test: § 11 (DTS Measurement Guidance)

Set RBW = 100 kHz, Video bandwidth (VBW) > RBW, scan up through 10th harmonic. All harmonics/spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Note: If the device complies with the use of power option 2 the attenuation under this paragraph shall be 30 dB instead of 20 dB. For -20dBc limit, lowest power output level is considered, worst case.

Radiated emission test: § 12 (DTS Measurement Guidance)

Applies to harmonics/spurs that fall in the restricted bands listed in Section 15.205. The maximum permitted average field strength is listed in Section 15.209. For measurements above 1 GHz, set RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation. See results in Radiated emissions section before.

8.3. SETUP

The EUT is placed in an anechoic chamber; levels have been corrected to be in compliant with Peak Output Power measurement. The EUT is turn ON; the graphs of the restrict frequency band are recorded with a display line indicating the highest level and other the 20dB offset below to show compliance with 15.247 (d) and 15.205. The emissions in restricted bands are compared to 15.209 limits.

RBW: 100kHz VBW: 300kHz

8.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Cable SMA	-	-	A5329636	11/14	11/15
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	01/15	01/16
Power supply DC	TDK	-	A7044055	-	-
Thermo-hygrometer (C3)	OREGON	BAR206	B4204078	04/15	04/16
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/15	04/16

8.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

✓ None □ Divergence:

8.6. TEST SEQUENCE AND RESULTS

Offset: Attenuator+cable 12.7dB GRAPH / MODULATION. 802.11b (Worst case):

8.7. CONCLUSION

Band Edge Measurement performed on the sample of the product **EMS59000**, SN: **MP1-7**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Issue 1.0 limits.

9. OCCUPIED BANDWIDTH

9.1. TEST CONDITIONS

Date of test :August 13th, 2015 Test performed by :G.Deschamps

Atmospheric pressure (hPa) :990 Relative humidity (%) :33 Ambient temperature (°C) :22

9.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Offset: Attenuator+cable 12.7dB

☐ Radiated measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Measurement Procedure:

- 1. RBW used should not be lower than 1% of the selected span
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. OBW 99% function of spectrum analyzer used

9.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Cable SMA	-	-	A5329636	11/14	11/15
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	01/15	01/16
Power supply DC	TDK	-	A7044055	-	-

Thermo-hygrometer (C3)	OREGON	BAR206	B4204078	04/15	04/16
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/15	04/16

9.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

✓ None □ Divergence:

9.5. TEST SEQUENCE AND RESULTS

802.11b

annel		Channel requency (MHz)		99% Occupied Bandwidt (MHz)		
1		2412			14.905	
6		2437			14.905	
11		2462			14.905	
Spectrum Ref Level 20.00 dBm Offset Att 25 dB SWT	12.70 dB • RBW 1 MHz 1 ms • VBW 3 MHz Mode Sweep M1[1]	10.54 d8ml	Spectrum Ref Level 20.00 dBm O Att 25 dB S 1Pk View	ffset 12.70 dB ● RBW 1 MHz WT 1 ms ● VBW 3 MHz Mode Sweep	(₩)	
10 dBm-	M1 Occ Bw	2.410700 GHz 14.905933430 MHz	10 dBm-	M1 Occ Bw	2.438740 GHz v 14.905939430 MHz	
-10 dBm			-10 dBm			
-30 dBm		Marine Land	-30 dBm	And A	Le Lie La	
-50 d8m-			-50 dBm			
-60 dBm			-60 dBm			
CF 2.412 GHz	691 pts	Span 100.0 MHz	-70 dBm	691 pts	Span 100.0 MHz	
G 2.422 driz	Spectrum	0 dBm	Mode Sweep	₩	apan 100.0 vinz. j	
	10 dBm-	M1	M1[1] Occ BW	10.60 dBm 2.460700 GHz 14.905933430 MHz		
	-10 d8m					
	-20 dBm					
	-40-dBeagh-	······································	and a	Maria de la casa de la		
	-50 dBm-					
	-60 dBm					

Channel	Channel Frequency (MHz)	uu% ()cciiniaa Banawiath			
3	2422	36.179			
6	2437	39.363			
9	2452	39.652			
25 db SWT 10 dbm 10 dbm -10 dbm -20 dbm -30 dbm -50 dbm -50 dbm -70 dbm	M1(1) 8.38 dBm 2.424460 GHz 10 dBm 0 dBm 11	8 8WT 1 ms e VBW 3 MHz Mode Sweep M1 1 10.34 dBm M1 1 2-434540 GHz 293.363241679 MHz DCC BW 99.363241679 MHz			
CF 2.422 GHz	691 pts Span 100.0 MHz CF 2.437 GHz	691 pts Span 100.0 MHz			

10. ANNEX 1 (GRAPHS)

Frequency	Mes.Peak	Mes.QPeak	LimQP	Mes.QPeak-	Mes.Avg	LimAvg	Mes.Avg-
(MHz)	(dBµV)	(dBµV)	(dBµV)	LimQP (dB)	(dBµV)	(dBµV)	LimAvg (dB)
0.15	56.6	49.38	66	-16.62	21.54	56	-34.46
0.215	55.22	46.33	63.21	-16.88	19.03	53.21	-34.17
19.603	50.43	47.92	60	-12.08	44.38	50	-5.62

			CON	DUCTE	D EMISS	ONS						
Emc	#2						igura	tion	:			
EN 5	5022											
В												
		Fred	quency	range:	[150kH	z - 30N	(IHz					
		50H	lz									
Neut	ral				VB	N :	30k	Hz				
											Civiled Nivacus Nivacus Nivacus Mes Pi Mes Pi Mes Pi Mes Mes Pi Mes Aves Aves Aves Aves Aves Aves Aves Av	EN 55022 - Classe:B - Moy EN 55022 - Classe:B - QC ((Suspect Manuel) (Neutre ((Suspect Manuel) (Phase eak (Neutre) eak (Phase 1) g (Neutre) g (Phase 1) PakkLimAug) (Neutre)
											o Peak (reak/Lim/sig) (Neutre)
												+
												i
												<u> </u>
	\mathcal{A}										. Na M ⁰ 1	A
		WAY MAY					بالمامير			WALLES	AND THE PROPERTY OF THE PARTY O	
				Akinganiy kalibiliya da	Miller Hilliam Andrews	phownhumble	rin "Y y				"Naddle "The Park of the Park	
		_	- Andrewson	halana di Afrika yana yanda	Proposition of the laterature	Marchetenagener	graph of the same	hand burgles and the	المافاليل بالهده	البليبي	MANAMAN	1144
				Fre	équence (MHz)							30
	EN 5 B	В	EN 55022 B Frec 230VAC / 50H Neutral	Emc#2 EN 55022 B Frequency 230VAC / 50Hz Neutral	Emc#2 EN 55022 B Frequency range: 230VAC / 50Hz Neutral	Emc#2 EN 55022 B Frequency range: [150kH: 230VAC / 50Hz RB) Neutral VB)	EN 55022 B Frequency range: [150kHz - 30N 230VAC / 50Hz RBW : VBW :	Emc#2 EN 55022 B Frequency range: [150kHz - 30MHz] 230VAC / 50Hz Reutral VBW: 30kl	Emc#2 EN 55022 B Frequency range: [150kHz - 30MHz] 230VAC / 50Hz Neutral VBW: 30kHz	Emc#2 EN 55022 B Frequency range: [150kHz - 30MHz] 230VAC / 50Hz Neutral VBW: 30kHz	Emc#2 EN 55022 B Frequency range: [150kHz - 30MHz] 230VAC / 50Hz RBW: 10kHz Neutral VBW: 30kHz	Emc#2 EN 55022 B Frequency range: [150kHz - 30MHz] 230VAC / 50Hz RBW: 10kHz Neutral VBW: 30kHz

Frequency (MHz)	Peak (dBµV)
0.15	56.29
0.226	54.79
18.244	35.52
19.624	47.61

		RADIATED EM	SSIONS				
Graph name:	Emr#1		Test configu	ration:			
Limit:	FCC CFR4	7 Part15B					
Class:	В		(H+V) TX mode - Axis XY				
		Frequency range: [3					
Antenna polarization:	Horizontal &	& Vertical		0kHz			
Azimuth:	0° - 360°		VBW : 30	0kHz			
100				FCC/F FCC/F Mes.F	FCC CFR47 Part15B - Class FCC CFR47 Part15B - Class FCC CFR47 Part15B - Class Peak (Horizontale)	e:B - QCrête/3.0m/	
dipovini objection of the state of the stat				A A A A A A A A A A A A A A A A A A A		1504	
JUNI112		Fréquence (Mir	(2)			1GH	
		Spurious emi	ssions				

11. UNCERTAINTIES CHART

Type de mesure / Kind of measurement	Incertitude élargie laboratoire / Wide uncertainty laboratory (k=2) ± x	Incertitude limite du CISPR / CISPR uncertainty limit ± y
Mesure des perturbations conduites en tension sur le réseau d'énergie Measurement of conducted disturbances in voltage on the power port	3.57 dB	3.6 dB
Mesure des perturbations conduites en tension sur le réseau de télécommunication Measurement of conducted disturbances in voltage on the telecommunication port.	3.28 dB	A l'étude / Under consid.
Mesure des perturbations discontinues conduites en tension Measurement of discontinuous conducted disturbances in voltage	3.47 dB	3.6 dB
Mesure des perturbations conduites en courant Measurement of conducted disturbances in current	2.90 dB	A l'étude / Under consid.
Mesure du champ électrique rayonné sur le site en espace libre de Moirans Measurement of radiated electric field on the Moirans open area test site	5.07 dB	5.2 dB

Les valeurs d'incertitudes calculées du laboratoire étant inférieures aux valeurs d'incertitudes limites établies par la norme, la conformité de l'échantillon est établie directement par les niveaux limites applicables. / The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the standard. The conformity of the sample is directly established by the applicable limits values.