Towards an Efficient and Economic Deductive System of Matching Logic

FSL group

December 23, 2016

We aim for a Hilbert style deductive system which has a relatively large number of axioms but only a few inference rules.

1 Grammar and extended grammar

$$P := x$$

$$|P_1 \rightarrow P_2|$$

$$|\neg P$$

$$|\forall x.P|$$

$$|\sigma(P_1, \dots, P_n)|$$

$$|P_1 = P_2|$$

$$(*** extended ***)$$

$$|P_1 \lor P_2|$$

$$|P_1 \land P_2|$$

$$|P_1 \leftrightarrow P_2|$$

$$|\exists x.P|$$

$$|\top$$

$$|\bot$$

$$|[P]$$

$$|P|$$

$$|P_1 \subseteq P_2|$$

2 Hilbert proof system

- (K1) $P \rightarrow (Q \rightarrow P)$
- (K2) $(P \to (Q \to R)) \to ((P \to Q) \to (P \to R))$

- (K3) $(\neg P \rightarrow \neg Q) \rightarrow (Q \rightarrow P)$
- (K4) $\forall x.(P \to Q) \to (P \to \forall x.Q)$ if x does not occur free in P
- (K5) $\forall x.P \rightarrow P \text{ if } x \text{ does not occur free in } P$
- (K6) $\forall x.P(x) \rightarrow P(y)$
- (K7) P = P
- (K8) $P_1 = P_2 \to (Q[P_1/x] \to Q[P_2/x])$
- (K9) $\exists y.Q = y \rightarrow (\forall x.P(x) \rightarrow P[Q/x])$ if Q is free for x in P

Inference rules include

- (Modus Ponens) From P and $P \rightarrow Q$, deduce Q.
- (Universal Generalization) From P, deduce $\forall x.P$.

Proposition 1 (Deduction Theorem). *If* $\Gamma \cup \{P\} \vdash Q$ *and the proof does not use* $\forall x$ *-Generalization where x is free in P, then* $\Gamma \vdash P \rightarrow Q$.

3 Inference rules

Axioms

$$\frac{\cdot}{\Gamma \vdash A}$$

where A is an axiom.

Modus Ponens

$$\frac{\Gamma \vdash Q \to P \quad \Gamma \vdash Q}{\Gamma \vdash P}$$

Universal Generalization

$$\frac{\Gamma \vdash P}{\Gamma \vdash \forall x.P} \ (\forall x)$$

Closed-Form Deduction Theorem

$$\frac{\Gamma \cup \{P\} \vdash Q}{\Gamma \vdash P \to Q}$$

where P is closed.

Inclusion

$$\frac{\cdot}{\Gamma \vdash P}$$

where $P \in \Gamma$.

Conjunction Introduction

$$\frac{\Gamma \vdash P \quad \Gamma \vdash Q}{\Gamma \vdash P \land Q}$$

Examples of proof.sty

\infer draws beautiful proof figures easily:

(1)

You can use also some variations:

$$\frac{A \& B \& C}{A}$$

Here are more practical examples:

(7)
$$\frac{A \cdot B}{A \cdot \& B} (\&I) \qquad \frac{A \cdot \& B}{A} (\&E_l) \qquad \frac{A \cdot \& B}{B} (\&E_r)$$

$$\vdots$$

$$\frac{B}{A \to B} (\to I) \qquad \frac{A \to B \cdot A}{B} (\to E)$$

Some techniques: Use \vcenter for an equation of proofs.

(8)
$$\pi = \underline{A} \frac{\underline{B} \underline{C}}{\underline{D}}$$

Use \kern to adjust the form of a proof.

$$\frac{A \quad \frac{B \quad C}{D}}{E}$$