Decision Trees

INSOFE Lab Activity on Decision Trees 23 July 2017

Contents

Goal Agenda Reading & Understanding the Data Read the Data Understand the data Data Pre-processing Verify Data Integrity Split the Data into train and test sets Impute the missing values Build a Decision Tree Model the tree Variable Importance in trees Rules from trees
Reading & Understanding the Data Read the Data Understand the data Data Pre-processing Verify Data Integrity Split the Data into train and test sets Impute the missing values Build a Decision Tree Model the tree Variable Importance in trees Rules from trees
Read the Data Understand the data Data Pre-processing Verify Data Integrity Split the Data into train and test sets Impute the missing values Build a Decision Tree Model the tree Variable Importance in trees Rules from trees
Understand the data
Data Pre-processing Verify Data Integrity Split the Data into train and test sets Impute the missing values Build a Decision Tree Model the tree Variable Importance in trees Rules from trees
Verify Data Integrity
Split the Data into train and test sets Impute the missing values Build a Decision Tree Model the tree Variable Importance in trees Rules from trees
Impute the missing values Build a Decision Tree Model the tree Variable Importance in trees Rules from trees
Impute the missing values Build a Decision Tree Model the tree Variable Importance in trees Rules from trees
Model the tree
Model the tree 5 Variable Importance in trees 5 Rules from trees 6
Variable Importance in trees
Rules from trees
Plotting the tree
Evaluating the model
Predictions on the test data
CART Trees
Goal
Agenda
Reading & Understanding the Data
Read the Data
Understand the data
Data Pre-processing
Verify Data Integrity
Split the Data
Build a Regression Tree
Model the tree
Tree Explicability
Evaluation on Test Data

C5.0 Trees

NOTE Before starting this assignment please remember to clear your environment, you can do that by running the following code chunk

```
rm(list=ls(all=TRUE))
```

Goal

• The goal of this activity is to predict wether a patient has liver disease or not based on various patient related attributes

Agenda

- Get the data
- Data Pre-processing
- Build a model
- Predictions
- Communication

Reading & Understanding the Data

Read the Data

Make sure the dataset is located in your current working directory, or else you can change your working directory using the "setwd()" function.

```
setwd("F:/INSOFE/MachineLearning/Week8/LabDecisionTree")
ilpd_data <- read.csv("ilpd_data.csv")</pre>
```

Understand the data

- Use the str(), summary(), head() and tail() functions to get the dimensions and types of attributes in the dataset
- The dataset has 582 observations and 11 variables
- The variable descriptions are given below:

```
    1 - age : Age of the patient
    2 - gender : Gender of the patient
    3 - TB : Total Bilirubin content
    4 - DB : Direct Bilirubin content
    5 - alk_phos : Alkaline Phosphotase content
```

 ${\bf 6}$ - alamine : Alamine Aminotransferase content

7 - aspartate : Aspartate Aminotransferase content

8 - TP : Total Protiens content9 - albumin : Albumin content

10 - A/G : Ratio of Albumin and Globulin

11 - Disease: Whether the patient has liver disease or not

str(ilpd_data)

```
## $ aspartate: int 100 68 20 59 14 12 11 19 58 59 ...
             : num 7.5 7 6.8 7.3 7.6 7 6.7 7.4 6.8 5.9 ...
## $ albumin : num 3.2 3.3 3.4 2.4 4.4 3.5 3.6 4.1 3.4 2.7 ...
              : num 0.74 0.89 1 0.4 1.3 1 1.1 1.2 1 0.8 ...
   $ disease : Factor w/ 2 levels "no","yes": 2 2 2 2 2 2 2 1 2 2 ...
summary(ilpd data)
                                      TB
                                                      DB
##
        age
                      gender
                                                Min. : 0.100
##
   Min. : 4.00
                   Female:141
                                Min. : 0.400
                   Male :441
##
   1st Qu.:33.00
                                1st Qu.: 0.800
                                                1st Qu.: 0.200
   Median :45.00
                                Median : 1.000
                                                Median : 0.300
   Mean :44.71
                                Mean : 3.303
                                                Mean : 1.488
   3rd Qu.:57.75
                                3rd Qu.: 2.600
                                                3rd Qu.: 1.300
##
                                     :75.000
##
   Max.
         :90.00
                                Max.
                                                Max. :19.700
##
##
      alk_phos
                       alamine
                                       aspartate
                                                            TP
##
   Min. : 63.0
                    Min. : 10.00
                                      Min. : 10.0
                                                      Min.
                                                             :2.700
   1st Qu.: 175.2
                    1st Qu.: 23.00
                                      1st Qu.: 25.0
                                                      1st Qu.:5.800
   Median : 208.0
                    Median : 35.00
                                      Median: 42.0
                                                      Median :6.600
         : 290.8
                          : 80.82
                                           : 110.1
   Mean
                    Mean
                                      Mean
                                                      Mean
                                                            :6.483
                    3rd Qu.: 60.75
   3rd Qu.: 298.0
##
                                      3rd Qu.: 87.0
                                                      3rd Qu.:7.200
##
   Max. :2110.0
                    Max.
                          :2000.00
                                      Max.
                                            :4929.0
                                                      Max. :9.600
##
      albumin
                        A.G
                                    disease
                          :0.3000
                                    no:167
  Min.
         :0.900
                   Min.
##
##
   1st Qu.:2.600
                   1st Qu.:0.7000
                                    yes:415
                   Median :0.9400
  Median :3.100
## Mean :3.142
                   Mean :0.9471
## 3rd Qu.:3.800
                   3rd Qu.:1.1000
## Max. :5.500
                         :2.8000
                   Max.
##
                   NA's
                          :4
head(ilpd_data)
    age gender
                 TB DB alk_phos alamine aspartate TP albumin A.G disease
          Male 10.9 5.5
                             699
                                      64
## 1 62
                                              100 7.5
                                                          3.2 0.74
                                                                       ves
                                      60
## 2 62
          Male 7.3 4.1
                             490
                                               68 7.0
                                                          3.3 0.89
## 3 58
          Male 1.0 0.4
                             182
                                      14
                                               20 6.8
                                                          3.4 1.00
                                                                       yes
          Male 3.9 2.0
## 4 72
                                      27
                                               59 7.3
                             195
                                                          2.4 0.40
                                                                       yes
## 5 46
          Male 1.8 0.7
                             208
                                      19
                                                14 7.6
                                                          4.4 1.30
                                                                       yes
## 6 26 Female 0.9 0.2
                             154
                                      16
                                                12 7.0
                                                          3.5 1.00
                                                                       yes
tail(ilpd_data)
                 TB DB alk_phos alamine aspartate TP albumin A.G
      age gender
## 577
       32
           Male 12.7 8.4
                              190
                                        28
                                                 47 5.4
                                                            2.6 0.90
## 578
       60
            Male 0.5 0.1
                               500
                                        20
                                                 34 5.9
                                                            1.6 0.37
## 579
       40
            Male 0.6 0.1
                               98
                                        35
                                                 31 6.0
                                                            3.2 1.10
## 580
       52
            Male 0.8 0.2
                               245
                                        48
                                                 49 6.4
                                                            3.2 1.00
## 581
       31
            Male 1.3 0.5
                               184
                                        29
                                                 32 6.8
                                                            3.4 1.00
## 582 38
            Male 1.0 0.3
                                                 24 7.3
                                                            4.4 1.50
                               216
                                        21
      disease
##
## 577
          yes
## 578
           no
## 579
          yes
```

```
## 580 yes
## 581 yes
## 582 no
```

Data Pre-processing

Verify Data Integrity

• Verify if the dataset has missing values

```
sum(is.na(ilpd_data))
```

[1] 4

• Verify the data types assigned to the variables in the dataset

```
str(ilpd_data)
```

```
## 'data.frame':
                   582 obs. of 11 variables:
             : int 62 62 58 72 46 26 29 17 55 57 ...
            : Factor w/ 2 levels "Female", "Male": 2 2 2 2 1 1 2 2 2 ...
## $ TB
              : num 10.9 7.3 1 3.9 1.8 0.9 0.9 0.9 0.7 0.6 ...
## $ DB
              : num 5.5 4.1 0.4 2 0.7 0.2 0.3 0.3 0.2 0.1 ...
## $ alk_phos : int 699 490 182 195 208 154 202 202 290 210 ...
## $ alamine : int 64 60 14 27 19 16 14 22 53 51 ...
## $ aspartate: int 100 68 20 59 14 12 11 19 58 59 ...
              : num 7.5 7 6.8 7.3 7.6 7 6.7 7.4 6.8 5.9 ...
## $ albumin : num 3.2 3.3 3.4 2.4 4.4 3.5 3.6 4.1 3.4 2.7 ...
              : num 0.74 0.89 1 0.4 1.3 1 1.1 1.2 1 0.8 ...
## $ disease : Factor w/ 2 levels "no", "yes": 2 2 2 2 2 2 2 1 2 2 ...
# Dependent variable is 'disease' and independent variables are discrete and categorical variables
```

Split the Data into train and test sets

- Use stratified sampling to split the data into train/test sets (70/30)
- Use the createDataPartition() function from the caret package to do stratified sampling

```
library(caret)
```

```
## Loading required package: lattice
## Loading required package: ggplot2
# Set the seed after attaching the caret package
set.seed(007)
# The first argument is the imbalanced class reference variable, the second is the proportion to sample
# Remember to include list = F as the function returns a list otherwise which would not be able to subs
trainRows <- createDataPartition(ilpd_data$disease, p = .7, list = F)
train_df <- ilpd_data[trainRows, ]</pre>
```

```
test_df <- ilpd_data[-trainRows, ]</pre>
```

Impute the missing values

• Impute missing values using knnImputation() function in both the train and test datasets

```
library(DMwR)

## Loading required package: grid

train_df <- knnImputation(train_df)

test_df <- knnImputation(test_df)

#Missing values are imputed with knnImputation function

sum(is.na(train_df))

## [1] 0

sum(is.na(test_df))</pre>
```

Build a Decision Tree

Model the tree

[1] 0

• Use Quinlan's C5.0 decision tree algorithm implementation from the C50 package to build your decision tree

```
library(C50)
c5_entropy <- C5.0(disease ~ . , train_df)</pre>
```

• Build a rules based tree

```
# Use the rules = T argument if you want to extract rules later from the model

c5_entropy_rules <- C5.0(disease ~ . , train_df, rules = T)
```

Variable Importance in trees

• Find the importance of each variable in the dataset

```
C5imp(c5_entropy, metric = "usage")
```

```
##
             Overall
              100.00
## DB
## alk_phos
               71.81
## alamine
               66.67
               41.67
## TB
## gender
               38.48
## TP
               24.51
## albumin
               11.27
               8.82
## age
## aspartate
               7.11
                1.96
## A.G
```

Rules from trees

 \bullet Understand the summary of the returned c5.0 rules based on the decision tree model

```
summary(c5_entropy_rules)
```

```
## Call:
## C5.0.formula(formula = disease ~ ., data = train_df, rules = T)
## C5.0 [Release 2.07 GPL Edition]
                                       Sat Aug 05 20:33:34 2017
##
## Class specified by attribute `outcome'
##
## Read 408 cases (11 attributes) from undefined.data
##
## Rules:
##
## Rule 1: (5, lift 3.0)
## gender = Male
## TB <= 1.6
## alk_phos > 195
## alk_phos <= 216
## aspartate <= 23
  -> class no [0.857]
##
##
## Rule 2: (4, lift 2.9)
## DB <= 0.1
## aspartate <= 33
## albumin > 3.7
## -> class no [0.833]
##
## Rule 3: (4, lift 2.9)
## gender = Female
## TB <= 0.7
## alamine <= 34
## aspartate > 33
  -> class no [0.833]
##
## Rule 4: (4, lift 2.9)
## age <= 14
## gender = Male
## alk_phos <= 515
## alamine <= 34
## -> class no [0.833]
##
## Rule 5: (8/1, lift 2.8)
## gender = Female
## alamine <= 14
## -> class no [0.800]
##
## Rule 6: (43/9, lift 2.7)
## gender = Male
```

```
## TB > 0.6
  TB <= 1.6
##
   alk_phos <= 195
   alamine <= 34
##
##
    TP > 5.1
##
   -> class no [0.778]
## Rule 7: (152/13, lift 1.3)
##
    TB > 1.6
##
   -> class yes [0.909]
## Rule 8: (389/103, lift 1.0)
   alamine > 14
##
##
   -> class yes [0.734]
##
## Default class: yes
##
##
## Evaluation on training data (408 cases):
##
##
            Rules
##
##
        No
                Errors
##
             69(16.9%)
##
         8
                          <<
##
##
##
       (a)
             (b)
                    <-classified as
##
##
        58
              59
                     (a): class no
##
        10
             281
                     (b): class yes
##
##
##
    Attribute usage:
##
     99.02% alamine
##
##
     50.00% TB
##
     15.69% gender
##
     12.75% alk_phos
     10.54% TP
##
##
      3.19% aspartate
##
      0.98% age
##
      0.98% DB
##
      0.98% albumin
##
##
## Time: 0.0 secs
```

Plotting the tree

• Call the plot function on the tree object to visualize the tree

```
plot(c5_entropy)
```


Evaluating the model

Predictions on the test data

• Evaluate the decision tree using the standard error metrics on test data

```
predicted <- predict(c5_entropy, test_df)</pre>
```

• Report error metrics for classification on test data

```
library(caret)
library(e1071)

confusionMatrix(predicted, test_df$disease)
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction no yes
               19 21
##
          no
##
          yes 31 103
##
##
                  Accuracy : 0.7011
##
                    95% CI: (0.6272, 0.7681)
##
       No Information Rate: 0.7126
       P-Value [Acc > NIR] : 0.6658
##
##
##
                     Kappa : 0.224
    Mcnemar's Test P-Value : 0.2120
##
##
               Sensitivity: 0.3800
##
##
               Specificity: 0.8306
##
            Pos Pred Value : 0.4750
##
            Neg Pred Value: 0.7687
                Prevalence: 0.2874
##
##
            Detection Rate: 0.1092
##
      Detection Prevalence: 0.2299
```

```
## Balanced Accuracy : 0.6053
##

## 'Positive' Class : no
##
```

CART Trees

NOTE Before starting this assignment please remember to clear your environment, you can do that by running the following code chunk

```
rm(list=ls(all=TRUE))
```

• The classification and regression trees use gini index in place of the gain ratio (based on information gain) used by the ID3 based algorithms, such as c4.5 and c5.0

Goal

- The goal of this activity is to predict the heating load of a residential building, if the building parameters are given
- Hence, in the future architects would be able to build more energy efficient buildings as they can optimize the building parameters to reduce the heating load

Agenda

- Get the data
- Data Pre-processing
- Build a model
- Predictions
- Communication

Reading & Understanding the Data

Read the Data

• Make sure the dataset is located in your current working directory, or else you can change your working directory using the "setwd()" function.

```
setwd("F:/INSOFE/MachineLearning/Week8/LabDecisionTree")
energy_data <- read.csv("building_energy.csv", na.strings = "")</pre>
```

Understand the data

- Use the str(), summary(), head() and tail() functions to get the dimensions and types of attributes in the dataset
- The dataset has 768 observations and 9 variables

```
str(energy_data)
```

```
## 'data.frame': 768 obs. of 9 variables:
## $ relative_compactness : num 0.98 0.98 0.98 0.98 0.9 0.9 0.9 0.9 0.86 0.86 ...
## $ surface area
                           : num 514 514 514 514 564 ...
## $ wall_area
                           : num 294 294 294 318 ...
                           : num 110 110 110 110 122 ...
## $ roof area
## $ overall height
                           : num 7777777777...
## $ orientation
                           : int 2345234523...
                           : num 0000000000...
## $ glazing_area
## $ glazing_area_distribution: int 0 0 0 0 0 0 0 0 0 0 ...
## $ heating_load
                            : num 15.6 15.6 15.6 15.6 20.8 ...
summary(energy_data)
## relative_compactness surface_area
                                                     roof_area
                                     wall_area
## Min. :0.6200
                  Min. :514.5
                                    Min. :245.0
                                                    Min. :110.2
                      1st Qu.:606.4
## 1st Qu.:0.6825
                                    1st Qu.:294.0
                                                    1st Qu.:140.9
## Median :0.7500
                      Median :673.8 Median :318.5
                                                   Median :183.8
## Mean :0.7642
                      Mean :671.7 Mean :318.5
                                                    Mean :176.6
## 3rd Qu.:0.8300
                      3rd Qu.:741.1
                                    3rd Qu.:343.0
                                                    3rd Qu.:220.5
## Max. :0.9800
                      Max. :808.5 Max. :416.5 Max. :220.5
## overall_height orientation
                               glazing_area
                                              glazing_area_distribution
## Min. :3.50 Min. :2.00 Min. :0.0000
                                              Min. :0.000
## 1st Qu.:3.50
                1st Qu.:2.75
                             1st Qu.:0.1000
                                              1st Qu.:1.750
## Median: 5.25 Median: 3.50 Median: 0.2500 Median: 3.000
## Mean :5.25 Mean :3.50 Mean :0.2344 Mean :2.812
## 3rd Qu.:7.00
                 3rd Qu.:4.25 3rd Qu.:0.4000
                                              3rd Qu.:4.000
## Max. :7.00
                 Max. :5.00 Max. :0.4000 Max. :5.000
##
   heating load
## Min. : 6.01
## 1st Qu.:12.99
## Median:18.95
## Mean :22.31
## 3rd Qu.:31.67
## Max. :43.10
head(energy data)
##
    relative_compactness surface_area wall_area roof_area overall_height
## 1
                   0.98
                              514.5
                                       294.0
                                               110.25
                                                                  7
## 2
                   0.98
                                       294.0
                              514.5
                                               110.25
## 3
                   0.98
                              514.5
                                       294.0
                                               110.25
                                                                  7
                                                                  7
## 4
                   0.98
                              514.5
                                       294.0
                                               110.25
## 5
                   0.90
                                                                  7
                              563.5
                                       318.5
                                               122.50
## 6
                   0.90
                              563.5
                                       318.5
                                               122.50
## orientation glazing_area glazing_area_distribution heating_load
## 2
             3
                         0
                                                 0
                                                         15.55
## 3
             4
                         0
                                                 0
                                                         15.55
## 4
             5
                         0
                                                 0
                                                         15.55
## 5
                                                 0
                                                         20.84
## 6
             3
                         0
                                                 0
                                                         21.46
tail(energy_data)
##
      relative_compactness surface_area wall_area roof_area overall_height
```

343.0 220.5

0.64

784.0

763

```
## 764
                         0.64
                                      784.0
                                                 343.0
                                                            220.5
                                                                              3.5
## 765
                         0.62
                                      808.5
                                                 367.5
                                                            220.5
                                                                              3.5
## 766
                         0.62
                                      808.5
                                                 367.5
                                                            220.5
                                                                              3.5
                         0.62
                                                            220.5
## 767
                                      808.5
                                                 367.5
                                                                              3.5
## 768
                         0.62
                                      808.5
                                                 367.5
                                                            220.5
                                                                              3.5
##
       orientation glazing_area glazing_area_distribution heating_load
                              0.4
                                                             5
## 763
                                                                      18.16
                  5
                                                             5
## 764
                              0.4
                                                                       17.88
## 765
                  2
                              0.4
                                                             5
                                                                       16.54
                  3
                                                             5
## 766
                              0.4
                                                                       16.44
## 767
                  4
                              0.4
                                                             5
                                                                       16.48
                                                             5
## 768
                              0.4
                                                                       16.64
```

The variable names are self explanatory, for further information visit http://www.sciencedirect.com/science/article/pii/S037877881200151X

Data Pre-processing

Verify Data Integrity

• Verify if the dataset has missing values

```
sum(is.na(energy_data))
```

[1] 0

• Verify the data types assigned to the variables in the dataset

```
# Enter answer here
str(energy_data)
## 'data.frame': 768 obs. of 9 variables:
```

```
: num 0.98 0.98 0.98 0.98 0.9 0.9 0.9 0.9 0.86 0.86 ...
   $ relative compactness
                           : num 514 514 514 514 564 ...
##
  $ surface_area
  $ wall area
                                  294 294 294 318 ...
                            : num
## $ roof_area
                                  110 110 110 110 122 ...
                            : num
## $ overall height
                            : num
                                  7777777777...
## $ orientation
                            : int 2 3 4 5 2 3 4 5 2 3 ...
                            : num 0000000000...
## $ glazing area
##
   $ glazing_area_distribution: int 0000000000...
   $ heating_load
                           : num 15.6 15.6 15.6 15.6 20.8 ...
```

Split the Data

• Split the data into train/test sets (70/30)

```
set.seed(123)

train_rows <- sample(1:nrow(energy_data), 0.7*nrow(energy_data))

train_cart <- energy_data[train_rows, ]

test_cart <- energy_data[-train_rows, ]</pre>
```

Build a Regression Tree

Model the tree

• Use the rpart package to build a cart tree to predict the heating load

```
library(rpart)
cart_gini <- rpart(heating_load ~ ., train_cart)</pre>
printcp(cart_gini)
##
## Regression tree:
## rpart(formula = heating_load ~ ., data = train_cart)
## Variables actually used in tree construction:
## [1] glazing_area
                            overall_height
                                                 relative_compactness
##
## Root node error: 54235/537 = 101
##
## n = 537
##
##
           CP nsplit rel error
                                 xerror
## 1 0.792696
                  0 1.000000 1.007002 0.0381495
## 2 0.083385
                  1 0.207304 0.208413 0.0146844
## 3 0.028539
                 2 0.123919 0.124980 0.0096109
## 4 0.013993
                 3 0.095380 0.096733 0.0071921
## 5 0.013968
                 4 0.081387 0.090938 0.0069360
               5 0.067418 0.073302 0.0059459
## 6 0.010000
```

Tree Explicability

• Print the variable importance

```
cart_gini$variable.importance
```

```
##
        relative_compactness
                                            surface_area
##
                  47514.5995
                                              47514.5995
##
              overall_height
                                               roof_area
##
                  42992.1627
                                              42992.1627
##
                    wall_area
                                            glazing_area
##
                   17061.8176
                                               3064.3188
## glazing_area_distribution
##
                     637.6964
```

• Plot the regression tree

```
library(rpart.plot)
library(RColorBrewer)
#fancyRpartPlot(cart_gini)
rpart.plot(cart_gini)
```


Evaluation on Test Data

• Report error metrics on the test data

```
predicted_cart <- predict(cart_gini, test_cart)

library(DMwR)

regr.eval(test_cart$heating_load, predicted_cart)

## mae mse rmse mape
## 2.0686987 7.2917648 2.7003268 0.1085194</pre>
```