General configuration data for the

environment and the robot in the simulaton.

«dataTvpe»

+genericSimConfig(out obj: genericSimConfig, main_title: string, robot_sim_body: wbmSimBody, env_settings: wbmSimEnvironment)

+DF GROUND COLOR 2: vector {readOnly}

+getPayloadTable(out pl_tbl: table, obj)
+payloadFrame(out wf_H_pl: matrix, obj, wf_R_b: matrix, wf_p_b: vector, q_j: vector, pl_idx: integer)

+get1oo11 able(out tool_b): table, obj)
+updateToolFrame(obj, t_idx: integer, new_frm_tt: vector)
+toolFrame(out wf_H_tt: matrix, obj, wf_R_b: matrix, wf_p_b: vector, q_j: vector, t_idx: integer)
+toolFrame(out wf_H_tt: matrix, obj, wf_R_b: matrix, wf_p_b: vector, q_j: vector)
+toolFrame(out wf_H_tt: matrix, obj, t_idx: integer)

+toolFrame(out wf_H_tt: matrix, obj)
+jacobianTool(out wf_J_tt: matrix, obj, wf_R_b: matrix, wf_p_b: vector, q_j: vector, t_idx: integer)
+jacobianTool(out wf_J_tt: matrix, obj, wf_R_b: matrix, wf_p_b: vector, q_j: vector)

+getStateChains(out chn_q; cell, out chn_dq; cell, obj, chain_names; string[1..*], q_j; vector, dq_j; vector)
+getStateJointNames(out jnt_q; vector, out jnt_dq; vector, obj, joint_names; string[1..*])

+getStateJointNames(out jnt_q: vector, out jnt_dq: vector, obj, joint_names: string[1.*], q_j: vector, dq_j: vector)
+getStateJointldx(out jnt_q: vector, out jnt_dq: vector, obj, joint_idx: integer[1.*], q_j: vector, dq_j: vector)
+getStateJointldx(out jnt_q: vector, out jnt_dq: vector, obj, joint_idx: integer[1.*], q_j: vector, dq_j: vector)
+getStateParams(out stParams: wbmStateParams, obj, stChi: vector)
+getStateParams(out stParams: wbmStateParams, obj, stChi: matrix)

____etJointValues(out_int_q: vector, out_int_dq: vector, obj, q_j: vector, dq_j: vector, joint_idx: integer[1..*], len: integer) -checkInitStateDimensions(out result: logical, obj, stlnit: wbmStateParams)

+payloadFrame(out wf H pl: matrix, obj, wf R b: matrix, wf p b: vector, q j: vector)

+getStateChains(out chn_q: cell, out chn_dq: cell, obj, chain_names: string[1..*])

+getPositions(out vqT_b: vector, out q_j: vector, obj, stChi: vector)
+getPositions(out vqT_b: matrix, out q_j: matrix, obj, stChi: matrix)
+getPositionsData(out stmPos: matrix, obj, stmChi: matrix)

+get.robot_config(out robot_config: wbmBaseRobotConfig, obj) +get.robot_params(out robot_params: wbmBaseRobotParams, obj)
+set.init_state(obj, stlnit: wbmStateParams)

-getLinkName(out lnk_name: string, obj, lnk_list: vector, idx: integer)

+getBaseVelocities(out v_b: vector, obj, stChi: vector) +getBaseVelocities(out v_b: matrix, obj, stChi: matrix)

+get.stvqT(out vqT_b: vector, obj)
+get.robot_body(out robot_body: wbmBody, obj)

+get.init_state(out stInit; wbmStateParams, obi) +dispConfig(obj, prec: integer)
-initConfig(obj, robot_config: wbmBaseRobotConfig)

+get.stvChiInit(out stvChi: vector, obi) +get.stvLen(out stvLen: integer, obj)

+get.vqTInit(out vqT_b: vector, obj)

+getMixedVelocities(out v_b: vector, out dq_j: vector, obj, stChi: vector)
+getMixedVelocities(out v_b: matrix, out dq_j: matrix, obj, stChi: matrix)

+setToolLinks(obj, ee_link_names: string[1..*], frames_tt: matrix)
+getToolLinks(out tool_links: wbmToolLink[0..*], out nTools: integer, obj)

+payloadFrame(out wi_H_pl: matrix, obj, wi_h_b: matrix, obj, pl_idx: integer)

+payloadFrame(out wi_H_pl: matrix, obj)

+jacobianTool(out wf_J_tt: matrix, obj, t_idx: integer)
+jacobianTool(out wf_J_tt: matrix, obj)

+getToolTable(out tool_tbl: table, obi)

+nPlds: integer +nTools: integer +stvLen: integer

+body

0..1

wbmBody

+wbmBody(out obj: wbmBody, chain_names: string[1..*], chain_idx: matrix, joint_names: string[1..*], joint_idx: vector)

+tool links

Configuration data to define the

body components of the robot.

+pt mass: double

+lnk_p_pl: vector

«dataType»

+urdf_link_name: string +ee_vqT_tt: vector

Tool at a spezified end-effector link, i.e.

hand/finger, with an orientation and translation relative to the link frame.

+chains.name: string[1..*] {readOnly}

+nJoints: integer {readOnly}

+chains.start_idx: integer[1..*] {readOnly} +chains.end_idx: integer[1..*] {readOnly} +nChains: integer {readOnly} +joints.name: string[1..*] {readOnly} +joints.idx: integer[1..*] {readOnly}

+getChainTable(out chn_tbl: table, obj)
+getJointTable(out jnt_tbl: table, obj)

+getChainIndices(out jnt_idx: vector, obj, chain_name: string)
+getJointIndex(out jnt_idx: integer, obj, joint_name: string)

+getJointNames(out jnt_names: string[1..*], obj, joint_idx: vector)

Payload at a specified link, e.g. hands, with a point mass at a specified position in the frame of the reference link.