y)X	1	1. A probe apparatus, comprising:
K,	2	a first positioning unit configured to be optionally added onto a probe
	3	station platform;
	4	a probe arm attached to the first positioning unit;
	5	a second positioning unit attached to the probe arm;
сти ст. 2571 В.Д. И.Д.	6	a cantilever attached to the second positioning unit, the cantilever having a
14	7	tip, the first and second positioning units configured to position the tip over a
1900 Mari	8	device under test (DUT), the probe apparatus including an electrical signal path
	9	between the tip of cantilever and probe station user instruments; and
	10	a motion sensor configured to detect motion of the cantilever.

- 2. The probe apparatus of claim 1 wherein the cantilever is micro-1
- 2 machined.
- 3. The probe apparatus of claim 1 wherein the first positioning unit 1
- 2 comprises mechanical screws.
- 4. The probe apparatus of claim 1 wherein the second positioning unit 1
- 2 comprises piezoelectric elements.

1	5. The probe apparatus of claim 1 wherein the second positioning unit
2	comprises voice coil positioners.

- 6. The probe apparatus of claim 1 wherein motion of the cantilever is used to obtain an image of a surface of the DUT.
- 7. The probe apparatus of claim 6 wherein non-contact forces between the cantilever and the DUT are measured to obtain the image.
- 8. The probe apparatus of claim 1 wherein motion of the cantilever is used to detect a signal in an electrical trace of the DUT.
- 9. The probe apparatus of claim 1 wherein the cantilever is used to supply a signal to an electrical trace of the DUT from the probe station user instruments.
- 1 10. The probe apparatus of claim 1 further comprising a buffer amplifier included in the electrical path from the tip the cantilever.
- 1 11. The probe apparatus of claim 10 wherein the cantilever is attached to
 2 a support structure attached to the second positioning unit, wherein the buffer
 3 amplifier is mounted on the on the support structure.

3

2

to the cantilever.

- 1 12. The probe apparatus of claim 10 wherein the buffer amplifier
 2 comprises a field effect transistor (FET) input buffer in relatively close proximity
- 1 13. The probe apparatus of claim 1 further comprising a series resistor

included in the electrical path from the tip the cantilever.

- 1 14. The probe apparatus of claim 13 wherein the cantilever is attached to 2 a support structure attached to the second positioning unit, wherein the series 3 resistor is mounted on the on the support structure.
- 1 15. The probe apparatus of claim 1 wherein the motion sensor utilizes a 2 light bounce technique to detect motion of the cantilever.
- 1 16. The probe apparatus of claim 15 further comprising a mirror optically coupled between the cantilever and the motion sensor.
- 1 17. The probe apparatus of claim 16 wherein the mirror is positioned so as
 2 not to interfere with an optical path of an optical imaging system positioned to
 3 optically view the DUT.

- 1 18. The probe apparatus of claim 1 wherein the motion sensor senses
- 2 optical interference of a light beam deflected off the cantilever with a reference
- 3 light beam to detect motion of the cantilever.
- 1 19. The probe apparatus of claim 1 wherein the motion sensor senses a
- 2 change in resistance of a resistor in the cantilever to detect motion of the
- 3 cantilever.
- 1 20. The probe apparatus of claim 1 wherein the motion sensor senses a
- 2 change in capacitance between the cantilever and an electrode positioned near the
- 3 cantilever to detect motion of the cantilever.
- 1 21. The probe apparatus of claim 1 wherein the cantilever comprises a
- 2 solid conductor.
- 1 22. The probe apparatus of claim 1 wherein the cantilever comprises a
- 2 conducting material on another material.
- 1 23. A method for probing a device under test (DUT), comprising:
- 2 optionally adding a probe apparatus to a probe station platform;
- 3 coarsely positioning with a first positioning unit of the probe apparatus a
- 4 tip of a cantilever of the probe apparatus over a surface of the DUT;

8

5	finely positioning with a second positioning unit attached to the first
6	positioning unit the tip of the cantilever of the probe apparatus over the surface of
7	the DUT; and

- 1 24. The method for probing the DUT of claim 23 further comprising
- 2 obtaining an image of the surface of the DUT.

sensing motion of the cantilever.

- 25. The method for probing the DUT of claim 23 further comprising
 obtaining a signal in an electrical trace of the DUT.
- 26. The method for probing the DUT of claim 25 further comprising
 buffering the signal in the electrical trace of the DUT with a buffer amplifier
 included an electrical path from the tip of the cantilever relatively close to the tip
 of the cantilever.
- 27. The method of probing the DUT of claim 23 wherein sensing motion
 of the cantilever comprises:
- 3 reflecting light from the cantilever; and
- detecting a change in an angle at which the light reflected from the
- 5 cantilever.

- 1 28. The method of probing the DUT of claim 23 wherein sensing motion
- 2 of the cantilever comprises detecting a change in a resistance of the cantilever
- 3 responsive to a bending of the cantilever.
- 1 29. The method of probing the DUT of claim 23 wherein sensing motion
- 2 of the cantilever comprises detecting a change in a capacitance between the
- cantilever and an electrode in close proximity to the cantilever, the change in the 3
- capacitance responsive to a bending of the cantilever. 4

A probe apparatus, comprising: 1

first positioning means for coarse positioning configured to be optionally 2

3 added onto a probe station platform;

a probe arm attached to the coarse positioning means; 4

second positioning means for fine positioning attached to the probe arm; 5

a cantilever attached to the second positioning unit, the cantilever having a 6

7 tip, the first and second positioning units configured to position the tip over a

device under test (DUT), the probe apparatus including an electrical signal path 8

between the tip of cantilever and probe station user instruments; and 9

10 motion sensor means configured to detect motion of the cantilever.

- 31. The probe apparatus of claim 30 wherein the electrical signal path 1
- includes buffer means relatively close to the tip of the cantilever for buffering an 2
- electrical signal from tip of the cantilever. 3
- 32. The probe apparatus of claim 30 wherein the electrical signal path 1
- includes resistive means relatively close to the tip of the cantilever for reducing a 2
- load on the DUT resulting from the cantilever. 3
- 33. The probe apparatus of claim 30 wherein the motion sensor means 1
- includes reflecting means for reflecting light reflected from the cantilever. 2