MATHEMATICS FOR COMPUTING

WEEK 5:2

TABLEAU TECHNIQUE

SIGNED FORMULAE

- Given a CPL formula A, let us abbreviate by
 - -T[A] the situation when A is true
 - -F[A] the situation when A is false.

a FORMULAE

For α formulae the conditions for being true or false are unique!

α	α_1	α_2
$T[A \land B]$ $F[A \lor B]$ $F[A \Rightarrow B]$ $T[\neg A]$ $F[\neg A]$	T[A], $F[A],$ $T[A],$ $F[A]$ $T[A]$	T[B] $F[B]$ $F[B]$

B FORMULAE

For β formulae the conditions for being true or false are not unique! Here we have options, or so called "branching conditions":

β	β_1	('or') β ₂
$T[A \lor B]$ $F[A \land B]$ $T[A \Rightarrow B]$	T[A] $F[A]$ $F[A]$	T[B] $F[B]$ $T[B]$

CONSTRUCTION OF A TABLEAU

- **Definition** (Configuration in a tableau) Sets of signed formulae are called configurations.
- Below we define tableau construction rules, so that a rule is applied to a signed formula in the configuration above the horizontal line and the rule's conclusion is a configuration(s) below the horizontal line.
- Remember: in α rules, we have unique conditions for true and false, so α rules simply transform some given configuration to a new one
- Remember: in β rules, we have branching conditions for true and false, so these rules transform some given configuration new configurations reflecting branches

TABLEAU ALGORITHM

- Step I: The initial node is labelled by F[A] itself (e.g.: assume that A is false).
- Step 2: The α and β expansion rules are applied to the formulae within labels of nodes of the graph.
- Step 3.1: If an expansion rule applies to α -formula in a label of a node n_i then create a new node, n_{i+1} , the successor of n_i , and put both conclusions of the rule into the label of n_{i+1} .

TABLEAU ALGORITHM

- Step 3.2: If an expansion rule applies to β -formula in a label of a node n_i then create two nodes $n_{i,l}$ and $n_{i,2}$, the children of n_i , and put the conclusions, $\beta 1$ and $\beta 2$ (of the rule being applied) into $n_{i,l}$ and $n_{i,2}$, respectively.
- Step 4: Apply 3.1 and 3.2 until no expansion rule to a configuration label of a node is applicable; such a configuration is called completed.
- Step 5: a derived configuration label of a node contains both T[B] and F[B], for some CPL formula B. Such a configuration is called closed.

OBTAIN REDUCED GRAPH

- Step 6: Obtain the reduced graph by applying the following deletion rules.
 - Delnode. I Delete every node if is labelled by a closed configuration, e.g. the configuration contains both T[B] and F[B] for some formula B.
 - Delnode.2 If all the successors of a node have been deleted then delete this node.
 - Reduced graph G' is empty if the initial node of the original graph is deleted.
- Step 7: A tableau is called closed if its reduced graph is empty.

OBTAINING VALIDITY

- Statement I. For any CPL formula G, a tableau is closed, if and only if, G is unsatisfiable.
- Statement 2 [correctness of tableau for CPL] A tableau constructed for the assumption F[A] is closed if, and only if A is valid.

TEST YOUR KNOWLEDGE

- Consider $((p \Rightarrow q) \Rightarrow p) \Rightarrow p$. Assuming $F[((p \Rightarrow q) \Rightarrow p) \Rightarrow p]$, construct the tableau
- Consider Axiom 2: $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$ Assuming F[(p $\Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$], construct the tableau.

INDUCTION

MATHEMATICAL INDUCTION

- Mathematical Induction is a special way of proving things. It has only 2 steps:
 - Step 1: Show it is true for the first one
 - Step 2: Show that if **any one** is true then the **next one** is true
 - Then all are true

WHAT IS MATHEMATICAL INDUCTION FOR?

- When we want to prove that all objects of some domain D have a property P, our reasoning depends on the type of D.
 - If D is a finite set of objects then we can simply investigate each of them.
 - If D is an infinite or a very large set then simple observation at its best will only give us some approximate knowledge.

EXAMPLE PROOF OF INDUCTION

Prove that for any integer n, the following is true

$$\sum_{i=1}^{n} i = \frac{\mathbf{n}(\mathbf{n}+1)}{2}$$

We will prove this statement by mathematical induction

Base case: n = 1. We need to prove that (substituting n with 1)

$$\sum_{i=1}^{1} 1 = \frac{1(1+1)}{2} = 1$$

EXAMPLE PROOF OF INDUCTION

- Inductive Hypothesis: Suppose that the formula is valid for some integer n.
- Inductive Step: Now, based on this hypothesis, we need to show the summation formula is valid for n + 1
- Add n + I to both sides of the equation to demonstrate that the formula is still valid for n + I.

INDUCTIVE STEP

$$+(n+1)$$

$$\sum_{i=1}^{n} i + (n+1) = \sum_{i=1}^{n+1} i$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} + (n+1)$$

$$\frac{n(n+1)}{2} + (n+1) = \frac{n(n+1)+2(n+1)}{2} = \frac{(n+1)(n+2)}{2}$$

$$\sum_{i=1}^{i+1} i = \frac{(n+1)(n+2)}{2}$$

EXAMPLE PROOF OF INDUCTION

P(n) statement 1 + 2 +	3 + 4 + 5	5 + n = n(n+1)/2		
	n	recursive form (LHS)	function form (RHS)	
Basic step	1	1	1(1+1)/2 =1	
Check step	2	1 + 2 = 3	2(2+1)/2 =6/2=3	
Check step	3	etc.	etc.	
Induction step (Assume P(k) to be true for some n=k)	<i>k</i> ≥1	1 + 2 + 3 + + k	k(k+1)/2	
P(k+1) step - State - Make appear P(k) form - Use P(k) assumption - Work out a simplification of LHS that matches RHS or vice-versa	k+1	1 + 2 + + k + (k+1)	(k+1)((k+1)+1)/2 = (k+1)(k+2)/2 = k(k+1)/2 + 2 (k+1)/2 = k(k+1)/2 + (k+1)	

Conclude:

Thus, the statement P(k+1) is true if the statement P(k) is true. Since P(1) is true, then by induction, the statement P(n) is true for $n \ge 1$

RECURSION, RECURSIVE FUNCTIONS, RECURSIVE CONSTRUCTIONS

- Based on mathematical induction, we can now introduce recursion.
- Sometimes it is possible to define an object (function, sequence, algorithm, structure) "in terms of itself".

This process is called recursion.

Example: a recursive function on positive integers:

CHECK YOUR KNOWLEDGE

Prove by induction that the following statement is true for whichever value of natural number n:

$$P(n)$$
 statement: $\sum_{i=0}^{n} 2^{(i-1)} = 2^{n} - 1$

METAPROPERTIES OF LOGIC - SOUNDNESS

Definition [Soundness] Logical System L is sound if for every formula A of L, it is correct that if A is a theorem then A is a valid formula.

METAPROPERTIES OF LOGIC - COMPLETENESS

Definition [Completeness] Logical System L is complete if for every formula A of L, it is correct that if A is valid then A is a theorem.

QUESTIONSP

SAPNA.K@IIT.AC.LK