

Hypergraphs and Information Fusion for Term Representation Enrichment. Applications to Named Entity Recognition and Word Sense Disambiguation

Ph.D. Thesis Defense

Pavel Soriano-Morales Supervised by Sabine Loudcher and Julien Ah-Pine February 7th, 2018

Why is it useful to us to understand text?

How do we extract meaning from text?

We use **Natural Language Processing** (NLP), a field of computer science interested in making computers comprehend text and obtain useful information from it

Feature Representation and Knowledge Discovery

How do we represent text for the machine to understand?

Dealing with data sparsity Leveraging heterogeneity What techniques do we use to discover meaning from text?

Finding semantic communities

Introduction

Representing Text

- \cdot Common ways to represent text
 - Lexical
 - Syntactic
 - Constituency Tree
 - Dependency Tree
 - Semantic

- Common ways to represent text
 - Lexical
 - Syntactic
 - · Constituency Tree
 - Dependency Tree
 - Semantic
- Example Phrase

The report contains copies of the minutes of these meetings

- Common ways to represent text
 - Lexical
 - Syntactic
 - Constituency Tree
 - Dependency Tree
 - Semantic
- Example Phrase

The report contains copies of the minutes of these meetings

Lexical Representation

- Common ways to represent text
 - Lexical
 - Syntactic
 - Constituency Tree
 - Dependency Tree
 - Semantic
- Example Phrase

The report contains copies of the minutes of these meetings

Constituency Tree Representation

- Common ways to represent text
 - Lexical
 - Syntactic
 - Constituency Tree
 - Dependency Tree
 - Semantic
- Example Phrase

The report contains copies of the minutes of these meetings

Dependency Tree Representation

Represention Models

Main Challenges and Contributions

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - Hypergraph model to hold different types of linguistic information

Main Challenges and Contributions

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - Hypergraph model to hold different types of linguistic information
- 2. How can we combine these features while dealing with feature sparsity?
 - Multimedia fusion techniques to combine and densify representation spaces

Main Challenges and Contributions

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - Hypergraph model to hold different types of linguistic information
- 2. How can we combine these features while dealing with feature sparsity?
 - Multimedia fusion techniques to combine and densify representation spaces
- 3. How can we find communities existing within the language networks?
 - An alternative network-based algorithm to discover semantically related words within a text

Contributions in Detail

Hypergraph Linguistic Model

Hypergraph Linguistic Model Introduction

Leveraging contexts

- We extract linguistic information from words based on the distributional hypothesis (a word is defined by its surroundings)
- These surroundings are defined as contexts
- Contexts are formed by the interactions a word participates in.
 These interactions can be lexical or syntactical or other types.

Hypergraph Linguistic Model Introduction

Leveraging contexts

- We extract linguistic information from words based on the distributional hypothesis (a word is defined by its surroundings)
- These surroundings are defined as contexts
- Contexts are formed by the interactions a word participates in.
 These interactions can be lexical or syntactical or other types.

We use network models to represent contexts

- Graphs structures can give us a clearer view into the relations of words within a text
- · Allow us to apply methods from graph theory
- Ultimately graphs are transformed to a vectorial representation through the adjacency/incidence matrices

Hypergraph Linguistic Model Classic Language Networks

Example phrase

The report contains copies of the minutes of these meetings

Example phrase

The report contains copies of the minutes of these meetings

Lexical Networks

Sentence Level

Example phrase

The report contains copies of the minutes of these meetings

Syntactic Networks

Constituency Tree

Example phrase

The report contains copies of the minutes of these meetings

Syntactic Networks

Dependency Tree

Hypergraph Linguistic Model Limitations and Proposition

Limitations of existing representations

- Language networks generally employ a single type of textual information
- The edges of the network relate maximum two words at each time

Hypergraph Linguistic Model Limitations and Proposition

Limitations of existing representations

- Language networks generally employ a single type of textual information
- The edges of the network relate maximum two words at each time

Proposition

- Use a hypergraph model to link together the different types of networks
- This allows for a semantic overview at three different layers: short range, medium range, and long range at once
- Relating more than two words at the same time

Lexical Networks

Sentence Level

Syntactic Networks

Constituency Tree

Syntactic Networks

Dependency Tree

Syntactic Networks Constituency Tree meetings copies NP, MP, minutes contains

Contributions in Detail

Combining Features and Dealing with Sparsity

Combining Features and Dealing with Sparsity Multimedia Fusion Techniques

· Definition

- Used in multimedia analysis tasks to integrate multiple media
- We adapt them to combine textual information
- The goal is to obtain rich insights about the data being treated
- By creating a single representation from heterogeneous information

Combining Features and Dealing with Sparsity Multimedia Fusion Techniques

Definition

- · Used in multimedia analysis tasks to integrate multiple media
- We adapt them to combine textual information
- The goal is to obtain rich insights about the data being treated
- By creating a single representation from heterogeneous information

Main fusion operators:

- Early Fusion $E_{\alpha}(\cdot)$,
- Late Fusion $L_{\beta}(\cdot)$,
- Cross Fusion $X_{\gamma}(\cdot)$

Combining Features and Dealing with Sparsity Early and Late Fusion

DEFINITIONS

M ^L	Lexical features	MS	Syntactic features
S^L	Lexical similarities	SS	Syntactic similarities

EARLY FUSION

Matrices M^L and M^S have the same number of rows

DEFINITIONS

M^L	Lexical features	MS	Syntactic features
S^L	Lexical similarities	SS	Syntactic similarities

EARLY FUSION

Matrices M^L and M^S have the same number of rows

LATE FUSION: SIMILARITY FUSION

Matrices S^L and S^S have the same size

Combining Features and Dealing with Sparsity

Cross Fusion

n

Combining Features and Dealing with Sparsity **Hybrid Fusion**

Combining fusion operators

 Applying one function to the result of another to produce a new fusion function

Combining Features and Dealing with Sparsity Hybrid Fusion

Combining fusion operators

 Applying one function to the result of another to produce a new fusion function

· First Degree

- E(M^L, M^S), L(S^S, M^L)
- Cross Feature Fusion: $X_F(S^S, M^L)$
- Cross Similarity Fusion: $X_S(S^S, S^L)$

$$X_F(S^L, M^S)$$

Cross Feature Fusion

Cross Similarity Fusion

$$\begin{array}{c} w_1 \\ w_2 \\ w_3 \end{array} \left(\begin{array}{c} S^L \\ \end{array} \right) \ X \ \begin{array}{c} w_1 \\ w_2 \\ w_3 \end{array} \left(\begin{array}{c} f_{s_1} f_{s_2} f_{s_3} \\ M^S \end{array} \right) \ = \ \begin{array}{c} w_1 \\ w_2 \\ w_3 \end{array} \left(\begin{array}{c} x_{s_1} f_{s_2} f_{s_3} \\ x_{s_3} f_{s_2} f_{s_3} \end{array} \right) \\ & \begin{array}{c} w_1 \\ w_2 \\ w_3 \end{array} \left(\begin{array}{c} S^L \\ \end{array} \right) \ X \ \begin{array}{c} w_1 \\ w_2 \\ w_3 \end{array} \left(\begin{array}{c} S^S \\ \end{array} \right) \ = \ \begin{array}{c} w_1 \\ w_2 \\ w_3 \end{array} \left(\begin{array}{c} x_{s_3} f_{s_2} f_{s_3} \\ x_{s_3} f_{s_3} f_{s_3}$$

15/40 Pavel SORIANO-MORALES

Combining fusion operators

 Applying one function to the result of another to produce a new fusion function

· Second Degree

- Cross Feature Early Fusion: $X_F(S^T, E(M^S, M^L))$
- Late Cross Feature Fusion: $L(M^T, X_F(S^T, M^T))$

Pavel SORIANO-MORALES 15/40

Combining Features and Dealing with Sparsity **Hybrid Fusion**

Combining fusion operators

 Applying one function to the result of another to produce a new fusion function

Higher Degree

• Triple Early Double Late Cross Feature Fusion: $E(M_L, E(E(M_T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$

$$E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$$

Combining Features and Dealing with Sparsity **High Degree Fusion**

Higher Degree Operator

$$E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$$

Pavel SORIANO-MORALES 16/40

$$E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$$

$L(M^T, X_E(S^T, M^T)))$

Pavel SORIANO-MORALES 16/40

$$\begin{array}{c|c} E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))) & L(M^L, X_F(S^S, M^L)))) \\ \hline \\ E(M^T, L(M^T, X_F(S^T, M^T))) \\ \hline \\ E(M^T, L(M^T, X_F(S^T, M^T))) \\ \hline \\ W_1 \\ W_2 \\ W_3 \\ \hline \\ M^T \end{array} \right] \\ \begin{array}{c|c} I \\ W_1 \\ W_2 \\ W_3 \\ \hline \\ E(M^T, L(M^T, X_F(S^T, M^T))) \\ \hline \\ = W_2 \\ W_3 \\ \hline \\ E(M^T, L(M^T, X_F(S^T, M^T))) \\ \hline \\ \end{array} \right)$$

$$\begin{array}{c} \textbf{E}(\textbf{M}_{L}, \textbf{E}(\textbf{E}(\textbf{M}^{T}, \textbf{L}(\textbf{M}^{T}, \textbf{X}_{F}(\textbf{S}^{T}, \textbf{M}^{T}))), \textbf{L}(\textbf{M}^{L}, \textbf{X}_{F}(\textbf{S}^{S}, \textbf{M}^{L})))) \\ \\ \textbf{E}(\textbf{E}(\textbf{M}^{T}, \textbf{L}(\textbf{M}^{T}, \textbf{X}_{F}(\textbf{S}^{T}, \textbf{M}^{T}))), \textbf{L}(\textbf{M}^{L}, \textbf{X}_{F}(\textbf{S}^{S}, \textbf{M}^{L})))) \\ \\ \overset{\textbf{w}_{1}}{\overset{\textbf{w}_{2}}{\overset{\textbf{w}_{3}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{2}}{\overset{\textbf{w}_{2}}{\overset{\textbf{w}_{3}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{2}}{\overset{\textbf{w}_{3}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{2}}{\overset{\textbf{w}_{3}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{2}}{\overset{\textbf{w}_{3}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{2}}{\overset{\textbf{w}_{3}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{2}}{\overset{\textbf{w}_{3}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{2}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{2}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{2}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{2}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{2}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{2}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{2}}{\overset{\textbf{w}_{1}}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}_{1}}}{\overset{\textbf{w}_{1}}{\overset{\textbf{w}}}}}{\overset{\textbf{w}_{1}}}{\overset{\textbf{w}_$$

$$E(M_{L}, E(E(M^{T}, L(M^{T}, X_{F}(S^{T}, M^{T}))), L(M^{L}, X_{F}(S^{S}, M^{L}))))$$

$$E(M_{L}, E(E(M^{T}, L(M^{T}, X_{F}(S^{T}, M^{T}))), L(M^{L}, X_{F}(S^{S}, M^{L}))))$$

$$w_{1} \choose w_{2} \choose w_{3}} \begin{pmatrix} f_{1,1}f_{1,2}f_{1,3} & & & \\ & f_{1,1}f_{1,2}f_{1,3} & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ &$$

Pavel SORIANO-MORALES 16/40

Contributions in Detail

Finding Communities in the Network

Contributions in Detail

Finding Communities in the Network Introduction

- · Language networks tend to be scale-free
 - There are certain nodes (hubs) that are very well connected forming communities within the network

Finding Communities in the Network Introduction

· Language networks tend to be scale-free

 There are certain nodes (hubs) that are very well connected forming communities within the network

Seminal approaches

- Hyperlex [Vó4]
- University of York (UoY) [KM07]

Finding Communities in the Network Introduction

Language networks tend to be scale-free

 There are certain nodes (hubs) that are very well connected forming communities within the network

Seminal approaches

- Hyperlex [Vó4]
- University of York (UoY) [KMo7]

Limitations of existing approaches

- Single typed networks
- Large number of parameters

Finding Communities in the Network Introduction

Language networks tend to be scale-free

 There are certain nodes (hubs) that are very well connected forming communities within the network

Seminal approaches

- Hyperlex [Vó4]
- University of York (UoY) [KMo7]

Limitations of existing approaches

- Single typed networks
- Large number of parameters

Proposition

- Be able to exploit different types of linguistic information (lexical or syntactic co-occurrence)
- Keep the number of parameters low and allow for their automatic adjusting according to the network's nature

Finding Communities in the Network **Proposed Method**

Applications to NLP

Hypergraph Model Instantiation

Hypergraph Model Instantiation Hypergraph Model Instantiation

- Apply our proposed linguistic model to a real world corpus
 - Use the English Wikipedia as input and generate a textual structure following the proposed network model

- Apply our proposed linguistic model to a real world corpus
 - Use the English Wikipedia as input and generate a textual structure following the proposed network model
- Steps performed

Pavel SORIANO-MORALES 19/40

Hypergraph Model Instantiation Hypergraph Incidence Matrix

-		CONSTITUENT		DEPENDENCY		SENTENCE	
		NP ₁ DT:NN	NP ₂ NP:PP:PP	NP ₃ NNS	nsubj contains	dobj contains	S ₁
	report	1			1		1
NN	copies		1	1		1	1
ININ	minutes		1				1
	meetings		1				1
VB	contains						1

Characteristics of the enriched space

- · Sparsity is reduced
- Semantic relatedness differs according to the representation space

	Lexical Features (5.49%) M ^L	Syntactic Features (4.97%) M ^S	Early Fusion (5.23%) $E(M^{L}, M^{S})$	X_F Fusion (16.75%) $X_F(S^s, M^L)$	X_F Fusion (13.45%) $X_F(S^L, M^S)$
	priests	monk	sailor	vassal	sailor fluent
priest	nun canton sailor burial	regent aedile seer meek	regent nuclei nun relic	regent nun sailor monk	dean nuclei chorus

Applications to NLP

Solving Named Entity Recognition

Solving Named Entity Recognition Introduction

· NER Objective

 The goal is to automatically discover mentions that belong to a well-defined semantic category.

Solving Named Entity Recognition Introduction

NER Objective

 The goal is to automatically discover mentions that belong to a well-defined semantic category.

Classic entities types

- · Location (LOC)
- Organization (ORG)
- · Person (PER)
- Miscellaneous (MISC)
- None (O)

NER Objective

 The goal is to automatically discover mentions that belong to a well-defined semantic category.

· Classic entities types

- · Location (LOC)
- · Organization (ORG)
- · Person (PER)
- Miscellaneous (MISC)
- None (O)

Our goal

 We assess the effectiveness of the classic fusion methods and propose new hybrid combinations

Solving Named Entity Recognition Representation Spaces

Example Phrase

Australian scientist discovers star with telescope

Three different types of features

Word	Features	Feature Type
Australian	word:Australian, word+1:scientist,	Lexical (L)
scientist	Australian/JJ/amod, discovers/VBZ/nsubj_inv	Syntactic (S)
discover	discover, no-capital-letter, prf:dis, suf:ver, VBZ	Standard (T)

- Preprocessing
 - · Normalize numbers

· Preprocessing

- Normalize numbers
- · Test Corpora
 - CoNLL-2003 (CONLL): Train: 219,554 lines. Test: 50,350 lines
 - Wikiner (WNER): 3.5 million words.
 - Wikigold (WGLD): 41,011 words.

- Preprocessing
 - · Normalize numbers
- Test Corpora
 - CoNLL-2003 (CONLL): Train: 219,554 lines. Test: 50,350 lines
 - Wikiner (WNER): 3.5 million words.
 - Wikigold (WGLD): 41,011 words.
- · Learning Algorithm
 - Structured Perceptron

Preprocessing

- · Normalize numbers
- Test Corpora
 - CoNLL-2003 (CONLL): Train: 219,554 lines. Test: 50,350 lines
 - Wikiner (WNER): 3.5 million words.
 - Wikigold (WGLD): 41,011 words.
- Learning Algorithm
 - · Structured Perceptron
- · Evaluation Metric
 - F-measure
 - Evaluated with a 5-fold CV (WNER and WGLD)

Α	Single Features				
	CONLL	WNER	WGLD		
M^{T}	77.41	77.50	59.66		
$M^{\scriptscriptstyle L}$	69.40	69.17	52.34		
M ^s	32.95	28.47	25.49		

Α	В	Early Fusion (EF)			
		CONLL	WNER	WGLD	
ML	Ms	72.01	70.59	59.38	
$M^{\scriptscriptstyle L}$	M^{T}	78.13	79.78	61.96	
M ^s	M^{T}	77.70	78.10	60.93	
M ^L	$E(M^S, M^T)$	78.90	80.04	63.20	

A	В	Baseline (EF)				
		CONLL	WNER	WGLD		
M ^L	$E(M^S, M^T)$	78.90	80.04	63.20		

First Degree Fusion

		Cross Feature Fusion (X _F F)			
		CONLL	WNER	WGLD	
SL	M^{T}	49.90	70.27	62.69	
S ^s	M^{T}	47.27	51.38	48.53	
S⁻	$M^{\scriptscriptstyle L}$	52.89	62.21	50.15	

A	В	Baseline (EF)				
		CONLL	WNER	WGLD		
M ^L	$E(M^S, M^T)$	78.90	80.04	63.20		

Second Degree Fusion

Α	В	Early Cross Feature Fusion (EX _F F)		
		CONLL	WNER	WGLD
M ^τ	$X_F(S^s, M^L)$	49.58	77.32	61.69

A	В	Baseline (EF)			
		CONLL	WNER	WGLD	
ML	$E(M^S, M^T)$	78.90	80.04	63.20	

Second Degree Fusion

Α	В	Late Cross Feature Fusion (LX _F F)		
		CONLL	WNER	WGLD
M ^τ	$X_F(S^s, M^T)$	56.53	62.27	52.39

A	В	Baseline (EF)				
		CONLL	WNER	WGLD		
M ^L	$E(M^S, M^T)$	78.90	80.04	63.20		

High Degree Fusion

		Triple Early Double Late Cross Feature Fusion (EEELX _F LX _F)		
		CONLL	WNER	WGLD
$\mathbf{M}^{\scriptscriptstyle{\mathrm{L}}}_{lpha=0.95}$	$\hat{\mathbf{b}}_{\text{EEELX}_{\text{F}}\text{LX}_{\text{F}}}$	79.67	81.79	67.05
$\hat{b}_{\text{EEELX}_{F}LX_{F}} = E(E(M^{T}, L(M^{T}, X_{F}(S^{S}, M^{T}))), L(M^{L}, X_{F}(S^{S}, M^{L})))$				

· Split the operator in four different models

Analyzing the Best Fusion Operator

Split the operator in four different models

$$\begin{array}{l}
(M_1) \ M^{\perp} \\
(M_2) \ E_{\alpha}(M^{\perp}, M^{\tau}) \\
(M_3) \ E_{\alpha}(M^{\perp}, M^{\tau}, L(M^{\tau}, X_F(S^s, M^{\tau}))) \\
(M_4) \ E_{\alpha}(M^{\perp}, M^{\tau}, L(M^{\tau}, X_F(S^s, M^{\tau})), L(M^{\perp}, X_F(S^s, M^{\perp})))
\end{array}$$

Solving Named Entity Recognition Analyzing the Best Fusion Operator

Error Analysis Model

• To facilitate the interpretation, we change the prediction model to a logistic regression with L_1 normalization, which also benefits from the enriched spaces

Solving Named Entity Recognition Analyzing the Best Fusion Operator

Error Analysis Model

 To facilitate the interpretation, we change the prediction model to a logistic regression with L₁ normalization, which also benefits from the enriched spaces

Procedure

- We find an error on a model and then see if this error was fixed in the next evolved model
- We study the weights assigned to each feature and see if those added by the fusion make the model change its decision

Solving Named Entity Recognition Analyzing the Best Fusion Operator

Error Analysis Model

 To facilitate the interpretation, we change the prediction model to a logistic regression with L₁ normalization, which also benefits from the enriched spaces

Procedure

- We find an error on a model and then see if this error was fixed in the next evolved model
- We study the weights assigned to each feature and see if those added by the fusion make the model change its decision

Experiment

• We follow the location name *Green* from (M_3) (incorrectly classified as ORG) to (M_4) (correctly classified as LOC)

The location *Green* is classified as ORG by (M_3) . It is fixed by (M_4) , classifying it as LOC

 M_3

The location *Green* is classified as ORG by (M_3) . It is fixed by (M_4) , classifying it as LOC

 M_4

Applications to NLP

Solving Word Sense Induction and Disambiguation

Solving Word Sense Induction and Disambiguation Introduction

WSI/WSD Objective

 The goal is to determine a set of possible senses to a given word according to its possible contexts (WSI). Then, assigning a correct sense to a particular instance of said word (WSD)

Solving Word Sense Induction and Disambiguation **Introduction**

WSI/WSD Objective

 The goal is to determine a set of possible senses to a given word according to its possible contexts (WSI). Then, assigning a correct sense to a particular instance of said word (WSD)

Our goals

- Assess the effectiveness of the fusion enriched spaces
- Evaluate the pertinence of our community discovering algorithm

- Feature Space
 - · Lexical (L) and Syntactic (S) Features
- Preprocessing
 - Remove very frequent and very infrequent words

- Feature Space
 - Lexical (L) and Syntactic (S) Features
- Preprocessing
 - Remove very frequent and very infrequent words
- Test Corpora
 - Semeval Competition 2007: Train 219,554 lines. Test 50,350 lines

- Feature Space
 - Lexical (L) and Syntactic (S) Features
- Preprocessing
 - · Remove very frequent and very infrequent words
- Test Corpora
 - Semeval Competition 2007: Train 219,554 lines. Test 50,350 lines
- · Clustering Algorithm
 - Spectral Clustering
 - · Proposed Community Algorithm

- Feature Space
 - Lexical (L) and Syntactic (S) Features
- Preprocessing
 - Remove very frequent and very infrequent words
- · Test Corpora
 - Semeval Competition 2007: Train 219,554 lines. Test 50,350 lines
- · Clustering Algorithm
 - · Spectral Clustering
 - · Proposed Community Algorithm
- Evaluation Metrics
 - Supervised Recall (SR)
 - Unsupervised F-measure (UF)

Solving Word Sense Induction and Disambiguation

Experimental Protocol

- Feature Space
 - Lexical (L) and Syntactic (S) Features
- Preprocessing
 - Remove very frequent and very infrequent words
- Test Corpora
 - Semeval Competition 2007: Train 219,554 lines. Test 50,350 lines
- · Clustering Algorithm
 - · Spectral Clustering
 - · Proposed Community Algorithm
- Evaluation Metrics
 - · Supervised Recall (SR)
 - Unsupervised F-measure (UF)
 - Proposed H-measure

H-measure =
$$\frac{1}{2} \left(2 * \frac{SR * UF}{SR + UF} + \frac{\delta}{\delta + |\#cl - \delta|} \right)$$

 δ is the average true number of senses of the words in a test corpus

Supervised Recall

Fusion Operation / System	Recall (%)			#cl
	all	nouns	verbs	
Single Features				
M ^L	79.20	82.10	75.80	4.13
M ^s	79.10	81.60	76.20	4.47
	Early Fusion (EF)			
$E(M^{L}, M^{S})$	78.70	81.11	76.10	4.46
Late Cross Feature Fusion (LX _F F)				
$L(M^s, X_F(S^L, M^s))$	78.60	81.10	75.80	4.22
$L(M^{\scriptscriptstyle L},X_{\scriptscriptstyle F}(S^{\scriptscriptstyle L},M^{\scriptscriptstyle L}))$	79.50	82.80	75.70	3.96

Unsupervised F-measure

Fusion Operation / System	F-measure (%)			#cl
	all	nouns	verbs	
	Single Features			
M^{L}	72.70	76.90	67.90	4.13
Ms	69.30	69.40	69.20	4.47
	Early Fusion (EF)			
$E(M^L, M^s)$	74.00	76.66	71.11	4.46
	Cross Feature Fusion (X _F F)			
$X_F(S^s, M^L)$	78.90	80.70	76.90	1.08

Solving Word Sense Induction and Disambiguation Spectral Clustering Evaluation: H-measure

Fusion Operators / System

Supervised Recall

Fusion Operation / System	Recall (%)			#cl
	all	nouns	verbs	
	Single Features			
M ^L	78.70	81.00	76.00	4.21
M ^s	78.41	80.30	76.10	2.26
	Early Fusion (EF)			
$E(M^L, M^S)$	78.80	81.00	76.40	2.43
	Cross Feature Fusion (X _F F)			
$X_F(S^{\scriptscriptstyle L},M^{\scriptscriptstyle L}))$	79.10	81.60	76.40	1.73

Unsupervised F-measure

F-measure (%)			#cl
all	nouns	verbs	
Single Features			
63.80	61.30.90	66.50	4.21
75.90	78.80	72.60	2.26
Early Fusion (EF)			
76.90	80.20	73.10	2.43
Cross Feature Fusion (X _S F)			
78.30	79.70	76.80	1.10
	63.80 75.90 76.90	all nouns 5in 63.80 61.30.90 75.90 78.80 Early 76.90 80.20 Cross Feature	all nouns verbs Sin le Feat Feat 63.80 61.30.90 66.50 75.90 78.80 72.60 Early Fusion 76.90 80.20 73.10 Cross Feature Fusion (

Solving Word Sense Induction and Disambiguation Proposed Algorithm Evaluation: H-measure

Conclusions

Conclusions

Insights From our Contributions

- Hypergraph linguistic model to hold heterogeneous information
 - Hypergraphs allow a multi-layered representation of text within a single resource.
 - The Wikipedia-based instantiation serves as a NLP system starting point

Insights From our Contributions

- Hypergraph linguistic model to hold heterogeneous information
 - Hypergraphs allow a multi-layered representation of text within a single resource.
 - The Wikipedia-based instantiation serves as a NLP system starting point
- Multimedia fusion techniques to combine and densify representations
 - High-degree combinations of linguistic representations reduce sparsity
 - These fusion spaces achieve improvements on NER and WSI/WSD compared to single features and trivial fusion

Insights From our Contributions

- Hypergraph linguistic model to hold heterogeneous information
 - Hypergraphs allow a multi-layered representation of text within a single resource.
 - The Wikipedia-based instantiation serves as a NLP system starting point
- Multimedia fusion techniques to combine and densify representations
 - High-degree combinations of linguistic representations reduce sparsity
 - These fusion spaces achieve improvements on NER and WSI/WSD compared to single features and trivial fusion
- Finding semantically-related communities on linguistic networks
 - The proposed community finding method improves over similar algorithms while being simpler and allowing for heterogeneous features

Conclusions Future Work

Hypergraph Linguistic Model

- A dataframe-like structure specialized on linguistic information based on the proposed model
- Defining inter-features similarities measures within the network

Hypergraph Linguistic Model

- A dataframe-like structure specialized on linguistic information based on the proposed model
- Defining inter-features similarities measures within the network

Combining Features and Dealing with Sparsity

- Finding a more principled way to determine what type of context with what type of fusion operation according to the task at hand
- Exploring fusion with other types of features (other modalities)

Future Work

Hypergraph Linguistic Model

- A dataframe-like structure specialized on linguistic information based on the proposed model
- Defining inter-features similarities measures within the network

Combining Features and Dealing with Sparsity

- Finding a more principled way to determine what type of context with what type of fusion operation according to the task at hand
- Exploring fusion with other types of features (other modalities)

Applications to NLP

- Comparison with other distributional representations (word embeddings)
- Using the large Wikipedia-based network as a background corpus to further enrich domain-specific corpora
- Test more feature weighting schemes, validate findings on more datasets

Publications Produced by our Research

- Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, Sabine Loudcher: Fusion Techniques for Named Entity Recognition and Word Sense Induction and Disambiguation. DS 2017
- Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, Sabine Loudcher: Using a Heterogeneous Linguistic Network for Word Sense Induction and Disambiguation. CICLING 2016
- Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, Sabine Loudcher: Hypergraph Modelization of a Syntactically Annotated English Wikipedia Dump. LREC 2016
- Adrien Guille, Edmundo-Pavel Soriano-Morales, Ciprian-Octavian Truica: Topic modeling and hypergraph mining to analyze the EGC conference history. EGC 2016
- Adrien Guille, Edmundo-Pavel Soriano-Morales: TOM: A library for topic modeling and browsing. EGC 2016
- Julien Ah-Pine, Edmundo-Pavel Soriano-Morales: A Study of Synthetic Oversampling for Twitter Imbalanced Sentiment Analysis. DMNLP@PKDD/ECML 2016
- Sabine Loudcher, Wararat Jakawat, Edmundo-Pavel Soriano-Morales, Cécile Favre: Combining OLAP and information networks for bibliographic data analysis: a survey. Scientometrics 103(2) 2015

Pavel SORIANO-MORALES 39/40

Thank you for your attention

- Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, Sabine Loudcher: Fusion Techniques for Named Entity Recognition and Word Sense Induction and Disambiguation. DS 2017
- Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, Sabine Loudcher: Using a Heterogeneous Linguistic Network for Word Sense Induction and Disambiguation. CICLING 2016
- Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, Sabine Loudcher: Hypergraph Modelization of a Syntactically Annotated English Wikipedia Dump. LREC 2016
- Adrien Guille, Edmundo-Pavel Soriano-Morales, Ciprian-Octavian Truica: Topic modeling and hypergraph mining to analyze the EGC conference history. EGC 2016
- Adrien Guille, Edmundo-Pavel Soriano-Morales: TOM: A library for topic modeling and browsing. EGC 2016
- Julien Ah-Pine, Edmundo-Pavel Soriano-Morales: A Study of Synthetic Oversampling for Twitter Imbalanced Sentiment Analysis. DMNLP@PKDD/ECML 2016
- Sabine Loudcher, Wararat Jakawat, Edmundo-Pavel Soriano-Morales, Cécile Favre: Combining OLAP and information networks for bibliographic data analysis: a survey. Scientometrics 103(2) 2015

Pavel SORIANO-MORALES 40/40

Appendix

Proposed Method: Step One

Creation of the linguistic network

• After preprocessing, we build a HLM G_{tw} that contains the co-occurrent (lexically and syntactically) words for a target word tw.

Computing the similarity between nodes

- G_{tw} is represented as a bipartite graph B_{tw}. Left nodes U represent words and right nodes W correspond to the hyperedges. An edge from a node u to a node w depicts the incidence of node u in hyperedge w.
- A similarity matrix S_{tw} of dimension $|U| \times |U|$ is calculated using the Jaccard similarity: given $n_{i,j} \in U$, then $Jaccard(i,j) = \frac{|N(i) \cap N(j)|}{|N(i) \cup N(j)|}$.
- Induce a new incidence matrix F_{tw} from S_{tw} containing only the closest neighbours to each word $n_i \in U$. Each of these hyperedges represent a set of words that are deemed similar between them according to their Jaccard index value, which must be equal or higher than an assigned threshold th_1 .

· Clustering words together

 We select the top c-nodes in F_{tw} according to their degree. These nodes are candidate hubs, which must surpass a second threshold th₂ to be considered as proper hubs. We use the average Jaccard measure defined for each node n as:

$$\textit{AvgJaccard}(n) = \frac{1}{|\textit{hedges}(n)|} \sum_{h \in \textit{hedges}(n)} \frac{\sum_{\substack{i \in h \\ j \in h; i \neq j}} \textit{Jaccard}(i,j)}{|h|}$$

where hedeges(n) is the set of hyperedges n is incident in and its cardinality is defined as |hedges(n)|. |h| is the number of nodes in hyperedge h.

 Accepted hubs represent senses alongside with their co-occurrent words. The final set of senses is called SoStw.

Structured Perceptron

Algorithm 1: Training phase of the Structured Perceptron

```
Input: Data x \in X
Input: True labels y \in \mathcal{Y}
```

Input: Max number of iterations MaxIteration

Output: A vector of lerned weights w

1 for Iteration = 1...MaxIterations do foreach $(x, y) \in \mathcal{X}, \mathcal{Y}$ do $\hat{y} = \arg\max_{\hat{u} \in \mathcal{Y}} w \cdot \Phi(x, y)$ 3 if $\hat{y} \neq y$ then $w \leftarrow w + \Phi(x, y) - \Phi(x, \hat{y})$ end

- 8 end
- 9 return w

end

Spectral Clustering

The normalized Laplacian of an affinity (symmetric and positive) matrix $W \in \mathbb{R}^{n \times n}$, with $w_{ij} = w_{ji} \ge 0$, is defined as:

$$\mathcal{L} = I - D^{-1/2}WD - 1/2 \tag{1}$$

where I is the identity matrix and D is the degree matrix of W. D is defined as the diagonal matrix with the degrees d_1, \ldots, d_n on the diagonal. As W may not be an adjacency matrix, we define the degrees of each row in the matrix as: $d_i = \sum_{j=1}^n w_{ij}$.

Spectral Clustering 2

Given a symmetric and positive similarity matrix $W \in \mathbb{R}^{n \times n}$, and a number of desired clusters k, the steps required to perform spectral clustering are:

- 1. Obtain the normalized Laplacian ${\cal L}$ as indicated in Equation 1.
- 2. Obtain the first k eigenvectors $u_{1...k}$ of \mathcal{L} .
- 3. Store said eigenvectors as columns in a matrix $V \in \mathbb{R}^{n \times k}$. This matrix is akin to a lower-dimension projection of the original similarity matrix W.
- 4. Cluster the points in V_i with k-means. The clusters found and their members correspond to the cluster of the spectral algorithm.

Pavel SORIANO-MORALES

Precision and Recall for NER

CONLL

Method	All_F	ALL_P	ALL_R
M^{τ}	77.41	77.39	77.42
M^{ι}	69.4	80.73	60.86
M ^s	32.95	53.79	23.75
$E(M^{T}, M^{L}, M^{S})$	78.9	78.82	78.99
$E(M_L, E(E(M_T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$	79.67	80.45	78.9

Precision and Recall for NER

WNER

Method	All_F	ALL_P	ALL_R
M^{τ}	77.5	77.83	77.18
M^{L}	69.17	79.07	61.47
M ^s	28.47	38.36	22.45
$E(M^{T}, M^{L}, M^{S})$	80.04	80.26	79.83
$E(M_L, E(E(M_T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$	81.79	82.28	81.32

Precision and Recall for NER

WGLD			
Method	All_F	ALL_P	ALL_R
M^{τ}	59.66	60.37	58.75
$M^{\scriptscriptstyle L}$	52.34	68.42	42.38
M ^s	25.49	36.55	19.56
$E(M^{T}, M^{L}, M^{S})$	63.2	63.88	62.54
$\frac{E(M_{L}, E(E(M_{T}, L(M^{T}, X_{F}(S^{T}, M^{T}))), L(M^{L}, X_{F}(S^{S}, M^{L}))))}{L(M^{L}, X_{F}(S^{S}, M^{L}))))}$	67.05	69.63	64.64

Examples of Senses Found

Word: authority

- Dependencies
 - process: [neighborhood, lawyer, idea, seizure, council, subsidiary, need, collector, court, office]
 - cabinet: [create, trade, stability, manager, swine, department, misconduct, settlement, economist, math]
- Lexical
 - shop: [shop, sketch, young, month, pareo, woman, moscow, opposite, tahitian, handler, verso]
 - supply: [supply, justice, money, hugo, telephone, authority, initiative, alberta, bundesbank, utility, impact]
 - evidence: [council, machine, court, august, district, instance, fulham, auditor, hammersmith, plant]

Word: authority (4 senses in Gold Standard

- Best fusion operator: $X_F(S^{\iota}, M^{\iota})$
 - block: [allow, including, study, told, seek, make, support, claim, provide, lawyers]
 - veto: [says, court, companies, years, does, law, loans, congress, trading, days]
 - federal: [federal, president, new, u.s., line-item, banks, local, company, airline, transportation]
 - **government**: [legislation, million, bush, year, people, billion, secretary, department, officials, house]