课程编号: A073003

北京理工大学 2008-2009 学年第一学期

线性代数试题 B 卷

班级	学号	姓名	成绩	

题号	_	=	Ξ	四	五	六	七	八	九	+	总分
得分											
签名											

$$-, (10 分) 已知 A = \begin{pmatrix} 0 & 2 & 5 \\ 0 & 1 & 3 \\ 1 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix}, 求行列式 \begin{vmatrix} A^{7} & 0 \\ 0 & B^{-1} \end{vmatrix}.$$

二、(10 分) 已知矩阵
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
, 矩阵 X 满足 $AXA^{-1} = 2XA^{-1} + I$, 其中 I 为 3 阶

单位矩阵, 求 X。

三、(10分) 求下列线性方程组的通解

$$\begin{cases} x_1 - x_2 + 5x_3 - x_4 = 0, \\ x_1 + x_2 - 2x_3 + 3x_4 = 0, \\ 3x_1 - x_2 + 8x_3 + x_4 = 0, \\ x_1 + 3x_2 - 9x_3 + 7x_4 = 0. \end{cases}$$
(用基础解系表示通解)

四、(10分)已知

$$\alpha_1 = (1,1,1,1), \quad \alpha_2 = (1,1,1,0), \quad \alpha_3 = (0,1,0,1), \quad \alpha_4 = (0,1,0,2),$$

- (1) 求向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的秩和一个极大无关组;
- (2) 用所求的极大无关组线性表出剩余向量。

五、(10分) 已知 $\alpha_1, \alpha_2, \alpha_3$ 是向量空间 R^3 的一个基, $\beta_1 = 2\alpha_1 + \alpha_2, \beta_2 = \alpha_1 + \alpha_2, \beta_3 = \alpha_3$.

- (1) 证明 β_1 , β_2 , β_3 为 R^3 的一个基;
- (2) 求基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵;
- (3) 求向量 $\gamma = \alpha_1 + \alpha_2 + \alpha_3$ 关于基 $\beta_1, \beta_2, \beta_3$ 的坐标。

六、(10 分) 已知矩阵
$$A = \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & 2 \end{pmatrix}$$

- (1) 求 A 的特征值和特征向量;
- (2) 判断 A 是否可以相似对角化。

七、(10 分) 已知向量组: $\alpha_1 = (1,0,1)^T$, $\alpha_2 = (2,1,0)^T$, 求生成子空间 $L(\alpha_1,\alpha_2)$ 的一个标准正交基。

八、(10分)已知实二次型 $f(x_1,x_2,x_3)=X^TAX$,其中A相似于对角矩阵 ${
m diag}(1,2,3)$ 。

- (1) 求二次型 $f(x_1, x_2, x_3)$ 的一个标准形;
- (2) 判断二次型 $f(x_1, x_2, x_3)$ 是否正定。

九、(10分)已知 3 阶矩阵 A 有特征值 1, 2. 且 A = 0。

- (1) 求 A-I 的所有特征值;
- (2) 证明 A-I 为不可逆矩阵。

十、 $(10 \, \text{分})$ 已知 4 阶方阵 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4), \alpha_1, \alpha_2, \alpha_3, \alpha_4$ 均为 4 元列向量,其中 $\alpha_2, \alpha_3, \alpha_4$ 线性无关, $\alpha_1 = 2\alpha_2 - \alpha_3$ 。

- (1) 求线性方程组 AX = 0 的一个解;
- (2) 如果 $\beta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$, 求线性方程组 $AX = \beta$ 的通解。