Reconocimiento de 8 Herramientas

Luis Alberto Ballado Aradias

CINVESTAV UNIDAD TAMAULIPAS

Cd. Victoria, Tamaulipas - 27 de agosto de 2023

- Conjunto de imagenes
- 2 Segmentación
- 3 Abstracción de caracteristicas
- 4 Clasificador K-nn
- Resultados
- 6 Script de Data Aumentation
- Script de Obtención de rasgos
- 8 Conclusiones

Resumen

† Drone Inspections Based on Best Use Cases https://enterprise-insights.dji.com/blog/complete-guide-to-drone-inspections

- Conjunto de imagenes
- 2 Segmentación
- 3 Abstracción de caracteristicas
- 4 Clasificador K-nn
- Resultados
- 6 Script de Data Aumentation
- Script de Obtención de rasgos
- 8 Conclusiones

 Coordinación eficiente para la exploración multi-VANT

1

- Coordinación eficiente para la exploración multi-VANT
- Optimizar la cobertura en entornos complejos

1

- Coordinación eficiente para la exploración multi-VANT
- Optimizar la cobertura en entornos complejos
- Toma de decisiones colaborativa y asignación de tareas

T

- Coordinación eficiente para la exploración multi-VANT
- Optimizar la cobertura en entornos complejos
- Toma de decisiones colaborativa y asignación de tareas
- Evasión y coordinación de obstáculos en tiempo real

1

- Coordinación eficiente para la exploración multi-VANT
- Optimizar la cobertura en entornos complejos
- Toma de decisiones colaborativa y asignación de tareas
- Evasión y coordinación de obstáculos en tiempo real
- Fusion de información (sensores y navegación)

1

- Conjunto de imagenes
- 2 Segmentación
- 3 Abstracción de caracteristicas
- 4 Clasificador K-nn
- Resultados
- 6 Script de Data Aumentation
- Script de Obtención de rasgos
- 8 Conclusiones

Arquitectura híbrida

1

Multi-robots

Beneficios coordinación multi-VANT

- Eficiencia y cobertura
- Redundancia y tolerancia a fallos
- Adaptabilidad a entornos dinámicos
- Distribución de carga de trabajo
- Esfuerzo colaborativo

†

Panorama Planificación de trayectorias

Figura: Clasificación del enfoque de planificación de rutas¹

¹Different Cell Decomposition Path Planning Methods for Unmanned Air Vehicles - A Review ?

Representación del ambiente 3D

Figura: Mapa probabilistico 3D1

¹Cooperación en robots heterogeneos

- Conjunto de imagenes
- 2 Segmentación
- 3 Abstracción de caracteristicas
- 4 Clasificador K-nn
- Resultados
- 6 Script de Data Aumentation
- Script de Obtención de rasgos
- Conclusiones

Planteamiento del problema

Desarrollar una estrategia de exploración multi-VANT que reduzca el tiempo total de exploración dado un conjunto de \mathcal{V} vehículos aéreos no tripulados. Las capacidades limitadas de energía y sensores abordo de los VANTS les permiten navegar de forma autónoma. Teniendo en cuenta sus limitaciones de energía v la necesidad de una exploración eficiente, el objetivo es determinar la travectoria, las rutas y la asignación de tareas óptimas ó sub-óptimas.

Planteamiento del problema

Desarrollar una estrategia de exploración multi-VANT que reduzca el tiempo total de exploración dado un conjunto de \mathcal{V} vehículos aéreos no tripulados. Las capacidades limitadas de energía y sensores abordo de los VANTS les permiten navegar de forma autónoma. Teniendo en cuenta sus limitaciones de energía y la necesidad de una exploración eficiente, el objetivo es determinar la trayectoria, las rutas y la asignación de tareas óptimas ó sub-óptimas.

Retos multi-VANT

- Coordinación Establecer comunicación efectiva entre los múltiples VANTs. Intercambiar información relevante. Tener baja latencia en su comunicación.
- Planificación Los VANTs deben coordinar sus movimientos para evitar colisiones y lograr una cobertura eficiente del área objetivo.
- Asignación de tareas Se busca evitar la duplicación de esfuerzos optimizando el uso de recursos disponibles.

- Conjunto de imagenes
- 2 Segmentación
- 3 Abstracción de caracteristicas
- 4 Clasificador K-nn
- 6 Resultados
- 6 Script de Data Aumentation
- Script de Obtención de rasgos
- 8 Conclusiones

tareas de exploración en interiores.

① General Diseñar una arquitectura de software descentralizada para implementar una estrategia multi-VANT capaz de resolver los problemas de localización y coordinación en ambientes desconocidos y dinámicos para

- ① General Diseñar una arquitectura de software descentralizada para implementar una estrategia multi-VANT capaz de resolver los problemas de localización y coordinación en ambientes desconocidos y dinámicos para tareas de exploración en interiores.
- Particulares
 - Diseño de solución en base a los algoritmos reportados en la literatura.

- ① General Diseñar una arquitectura de software descentralizada para implementar una estrategia multi-VANT capaz de resolver los problemas de localización y coordinación en ambientes desconocidos y dinámicos para tareas de exploración en interiores.
- 2 Particulares
 - Diseño de solución en base a los algoritmos reportados en la literatura.
 - Valoración propuesta (simulación de propuesta).

① General Diseñar una arquitectura de software descentralizada para implementar una estrategia multi-VANT capaz de resolver los problemas de localización y coordinación en ambientes desconocidos y dinámicos para tareas de exploración en interiores.

- 2 Particulares
 - Diseño de solución en base a los algoritmos reportados en la literatura.
 - Valoración propuesta (simulación de propuesta).
 - Comparación y análisis (escalabilidad, robustez y recursos computacionales).

- Conjunto de imagenes
- 2 Segmentación
- 3 Abstracción de caracteristicas
- 4 Clasificador K-nn
- Resultados
- 6 Script de Data Aumentation
- Script de Obtención de rasgos
- 8 Conclusiones

Metodología/Cronograma

- Conjunto de imagenes
- 2 Segmentación
- 3 Abstracción de caracteristicas
- 4 Clasificador K-nn
- Resultados
- 6 Script de Data Aumentation
- Script de Obtención de rasgos
- 8 Conclusiones

Estado del Arte

REFERENCIA	REPRESENTACION	BUSQUEDA	Control de trayectoria
?[?]	Octomap	Basado en fronte- ras	Control directo de veloci- dad
?[?]	Cuadrícula egocéntrica	Offline RRT*	Curvas de Bezier
?[?]	mapa 3D-Local y 2D- Global	A*	Progración cuadrática
?[?]	3D voxel array TSDF	A*	Optimización cuadrática
?[?]	Octomap	NBVP	Control directo de velocidad
?[?]	Voxel Hashing TSDF	NBVP	Optimización cuadrática
?[?]	Mapa de cuadrícula	Método de marcha rápida	Optimización cuadrática

REFERENCIA	MAPA	Planificador de ru- tas	Control trayectoria
?[?]	Busqueda basada en visibilidad	2D A*	Control MPC
?[?]	Octomap	NBVP	Control directo de velocidad
?[?]	NA	SGBA	Control directo de veloci- dad
?[?]	KD Tree + Mapa en Vo- xel	Búsqueda en Grafo	Movimientos suaves
?[?]	Octree	RRT	Basado en contornos
?[?]	Octomap HGrid	NBVP	Control directo de velocidad

- Conjunto de imagenes
- 2 Segmentación
- 3 Abstracción de caracteristicas
- 4 Clasificador K-nn
- Resultados
- 6 Script de Data Aumentation
- Script de Obtención de rasgos
- 8 Conclusiones

Contribuciones o resultados esperados

- Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software

Contribuciones o resultados esperados

- Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software
- 2 Validación de la solución en un simulador

Contribuciones o resultados esperados

- Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software
- Validación de la solución en un simulador
- 3 Tesis impresa

Bibliografía I