Tsinghua-Berkeley Shenzhen Institute Information Theory and Statistical Learning Fall 2020

Problem Set 2

Issued: Monday 28th September, 2020 Due: Monday 12th October, 2020

Notations: We use Bern(p) to denote the Bernoulli distribution with the parameter p, and use Binom(n, p) to denote the binomial distribution with parameters n and p.

- 2.1. Please use Chain Rule for mutual information to derive $I(X_1, \ldots, X_n; Y_1, \ldots, Y_m)$.
- 2.2. Conditional mutual information vs. unconditional mutual information. Give examples of joint random variables X, Y, and Z such that
 - (a) I(X;Y|Z) < I(X;Y).
 - (b) I(X;Y|Z) > I(X;Y)
- 2.3. Information measures. Suppose Z_1, \ldots, Z_n are i.i.d. Bern $\left(\frac{1}{2}\right)$ random variables, and let $X_A \triangleq (Z_i)_{i \in A}$ be the random vector consisting of the bits with indices in A. Prove that
 - (a) For all non-empty $A \subset \{1, \ldots, n\}$, we have $H(X_A) = |A|$.
 - (b) For all non-empty $A_1, A_2 \subset \{1, \dots, n\}$, we have

$$H(X_{A_1}, X_{A_2}) = |A_1 \cup A_2|, \tag{1a}$$

$$H(X_{A_1}|X_{A_2}) = |A_1 \setminus A_2|,$$
 (1b)

$$I(X_{A_1}; X_{A_2}) = |A_1 \cap A_2|. \tag{1c}$$

- 2.4. Let (X,Y) be uniformly distributed in the unit l_p -ball $B_p \triangleq \{(x,y) : |x|^p + |y|^p \leq 1\}$, where $p \in (0,\infty)$. Also define the l_∞ -ball $B_\infty \triangleq \{(x,y) : |x| \leq 1, |y| \leq 1\}$.
 - (a) Are X and Y independent for p = 1?
 - (b) Compute I(X;Y) for $p=\frac{1}{2}, p=1$ and $p=\infty$.
 - (c) What do you think I(X;Y) converges to as $p \to 0$. Explain it.
- 2.5. Let $\mathcal{N}(\boldsymbol{m}, \boldsymbol{\Sigma})$ be the Gaussian distribution on \mathbb{R}^n with mean $\boldsymbol{m} \in \mathbb{R}^n$ and covariance matrix $\boldsymbol{\Sigma}$.
 - (a) Under what conditions on $m_0, \Sigma_0, m_1, \Sigma_1$ is

$$D\left(\mathcal{N}(\boldsymbol{m}_{1}, \boldsymbol{\Sigma}_{1}) \| \mathcal{N}(\boldsymbol{m}_{0}, \boldsymbol{\Sigma}_{0})\right) < \infty \tag{2}$$

- (b) Compute $D(\mathcal{N}(\boldsymbol{m}, \boldsymbol{\Sigma}) || \mathcal{N}(0, \boldsymbol{I}_n))$, where \boldsymbol{I}_n is the $n \times n$ identity matrix.
- (c) Compute $D(\mathcal{N}(\boldsymbol{m}_1, \boldsymbol{\Sigma}_1) || \mathcal{N}(\boldsymbol{m}_0, \boldsymbol{\Sigma}_0))$ for a non-singular $\boldsymbol{\Sigma}_0$.
- 2.6. There are two probability distribution P and Q over a finite alphabet X with cardinality k. Let us use $P_1 \geq P_2 \geq \cdots \geq P_k$ and $Q_1 \geq Q_2 \geq \cdots \geq Q_k$ to denote the non-increasing ordering of p.m.f P and Q respectively $(\sum_{i=1}^k P_i = \sum_{i=1}^k Q_i = 1)$. We say that P is more uniform then Q if

$$\forall l \in [1:k], \sum_{i=1}^{l} P_i \le \sum_{i=1}^{l} Q_i \tag{3}$$

In this problem, we would like to prove that if P is more uniform then Q in the sense of (3), then

$$H(P) \ge H(Q) \tag{4}$$

- (a) Prove that for convex function $f(\cdot)$, $\sum_{i=1}^k f(P_i) \leq \sum_{i=1}^k f(Q_i)$.
- (b) Use (a) to prove (4)
- 2.7. Total correlation. For a given set of n random variables X_1, \ldots, X_n , the total correlation $C(X_1, \ldots, X_n)$ is defined as the K-L divergence from the joint distribution to the product distribution, i.e.,

$$C(X_1,\ldots,X_n) \triangleq D\left(P_{X^n} \middle\| \prod_{i=1}^n P_{X_i}\right).$$

(a) Prove that

$$C(X_1, \dots, X_n) = \sum_{i=1}^n H(X_i) - H(X^n)$$
 (5a)

$$= \sum_{i=1}^{n-1} I(X^i; X_{i+1}). \tag{5b}$$

- (b) When will the total correlation be zero?
- 2.8. Divergence of order statistics. Given $x^n = (x_1, \dots, x_n) \in \mathbb{R}^n$, let $x_{(1)} \leq \dots \leq x_{(n)}$ denote the ordered entries. Let P, Q be distributions on \mathbb{R} and $P_{X^n} = P^n, Q_{X^n} = Q^n$.
 - (a) Prove that

$$D(P_{X_{(1)}...X_{(n)}} || Q_{X_{(1)}...X_{(n)}}) = nD(P||Q).$$
(6)

(b) Show that

$$D(\operatorname{Binom}(n,p)||\operatorname{Binom}(n,q)) = nD(\operatorname{Bern}(p)||\operatorname{Bern}(q)). \tag{7}$$