Appendix

Kraken2

BUILD FUNGI DATABASE

kraken2-build --download-taxonomy --db \$DBNAME

kraken2-build --download-library fungi --db \$DBNAME

(assembly summary.txt generated - assembly levels 'full' and major)

alternatives:

wget ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/fungi/assembly_summary.txt or wget ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/fungi/assembly_summary.txt

Download latest version of all RefSeq/Genbank fungal sequences

List FTP directory paths from assembly_summary.txt in new file ftpdirpaths

awk -F "\t" \\$11=="latest"{print \$20}' assembly_summary.txt > ftpdirpaths

Append file extension genomic.fna.gz to all FTP directory names

awk 'BEGIN{FS=OFS="/";filesuffix="genomic.fna.gz"} {ftpdir=\$0;asm=\$10;file=asm"_"filesuffix;print ftpdir,file}' ftpdirpaths > ftpfilepaths

Download all fna.gz files from list in ftpfilepaths, output to references directory

wget -i \$DBNAME/library/fungi/references

Move additionally downloaded ATCC genomes to same references directory

Decompress downloaded fna.gz files to get fna files

gunzip references/*fna.gz

(or submit as script)

Add all fna/fasta files in references directory to library

find references/ -name '*.fna' -print0 | xargs -0 -I{} -n1 kraken2-build --add-to-library {} --db \$DBNAME

Build database

kraken2-build --db \$DBNAME

PREPROCESSING SEQUENCE DATA

concatenate all fastq files from each barcode

cat *.fastq > output.fastq

convert fastq files to fasta files

sed -n '1~4s/^@/>/p;2~4p' \$FILE > \$FILE.fasta

trim adapters with Porechop

porechop --min split read size 400 -i \$INPUT.fasta -o \$OUTPUT.fasta

discard reads with lengths under 500 bases

segtk seg -L 500 \$INPUT.fasta > \$OUTPUT.fasta

CLASSIFY/ASSIGN TAXONOMY

classify sequence reads (fasta format) and generate report with read abundances and standard output

kraken2 --db \$DBNAME \$QUERY.fasta --use-names --report \$QUERY_OUTPUT.report.txt --output \$OUTPUT_PATH

ABUNDANCE ESTIMATION AND DIVERSITY COMPUTATIONS

estimate species abundances and generate Bracken reports using Kraken2 report.txt files

bracken -d \$DBNAME -i \$KRAKEN2_OUTPUT.report.txt -o \$OUTPUT.bracken -w \$OUTPUT.breport -r 500 -l S -t 10

calculate alpha diversity using Diversity Tools python script and standard bracken output

python KrakenTools/DiversityTools/alpha_diversity.py -f \$BRACKEN_OUTPUT.bracken -a BP python KrakenTools/DiversityTools/alpha_diversity.py -f \$BRACKEN_OUTPUT.bracken -a Sh python KrakenTools/DiversityTools/alpha_diversity.py -f \$BRACKEN_OUTPUT.bracken -a F python KrakenTools/DiversityTools/alpha diversity.py -f \$BRACKEN_OUTPUT.bracken -a Si

calculate beta diversity and generate matrix using Diversity Tools python script and all standard bracken output files as shown for 5 files:

python KrakenTools/DiversityTools/beta_diversity.py -i \$BRACKEN_OUTPUT_1.bracken \$BRACKEN_OUTPUT_2.bracken \$BRACKEN_OUTPUT_3.bracken \$BRACKEN_OUTPUT_5.bracken

Scripts

Build DB

List FTP directory paths from assembly_summary.txt in new file ftpdirpaths

awk -F "\t" \\$11=="latest"{print \$20}' assembly summary.txt > ftpdirpaths

Append file extension genomic.fna.gz to all FTP directory names

 $awk \ 'BEGIN\{FS=OFS='', ''; filesuffix=''genomic.fna.gz''\} \{ftpdir=\$0; asm=\$10; file=asm''_''filesuffix; printftpdir, file\}'' \{ftpdirpaths > ftpfilepaths = ftpfilesuffix; printftpdir, file = ftpdirpaths = ftpdirpaths$

*make 'references' directory to keep downloaded fna files

ftp_download.sh

#!/bin/sh

#PBS -I walltime=72:00:00 #PBS -I select=1:ncpus=16:mem=32gb

wget -i /rds/general/project/fisher-aspergillus-analysis/live/clarisse/dog_ear_kraken2_scripts/kraken2_fungi_db/library/fungi/ftpfilepaths -P /rds/general/project/fisher-aspergillus-analysis/live/clarisse/dog_ear_kraken2_scripts/kraken2_fungi_db/library/fungi/references

*gunzip *.fna.gzfiles

add_library.sh

#!/bin/sh

#PBS -I walltime=48:00:00 #PBS -I select=1:ncpus=16:mem=32gb

OTHER OPTIONAL PBS DIRECTIVES

module load anaconda3/personal source activate kraken2_env

find /rds/general/project/fisher-aspergillus-analysis/live/clarisse/dog_ear_kraken2_scripts/kraken2_fungi_db/library/fungi/references -name '*.fna' -print0 | xargs -0 -I{} -n1 kraken2-build --add-to-library {} --db /rds/general/project/fisher-aspergillus-analysis/live/clarisse/dog_ear_kraken2_scripts/kraken2_fungi_db/

kraken2_build_fungi.sh

#!/bin/sh

#PBS -I walltime=48:00:00

#PBS -l select=1:ncpus=16:mem=32gb

OTHER OPTIONAL PBS DIRECTIVES

module load anaconda3/personal source activate kraken2_env

kraken2-build --build --db /rds/general/project/fisher-aspergillus-analysis/live/clarisse/dog_ear_kraken2_scripts/kraken2_fungi_db/

Classify/assign

query and output name list format (dog_kraken2_list.txt):

/rds/general/project/fisher-aspergillus-rawdata/live/clarisse/dog_ear_fasta/Alternaria_3,5Kb.fasta Alternaria_3,5Kb

/rds/general/project/fisher-aspergillus-rawdata/live/clarisse/dog_ear_fasta/Alternaria_6Kb.fasta Alternaria 6Kb

/rds/general/project/fisher-aspergillus-rawdata/live/clarisse/dog_ear_fasta/Aspergillus_3,5Kb.fasta Aspergillus_3,5Kb

/rds/general/project/fisher-aspergillus-rawdata/live/clarisse/dog_ear_fasta/Aspergillus_6Kb.fasta Aspergillus_6Kb

run kraken2 (dog_kraken2.sh):

#!/bin/sh

#PBS -I walltime=48:00:00

#PBS -l select=1:ncpus=16:mem=32gb

module load anaconda3/personal source activate kraken2_env

kraken2 --db /rds/general/project/fisher-aspergillus-analysis/live/clarisse/dog_ear_kraken2_scripts/kraken2_fungi_db/ \$1 --use-names --report /rds/general/project/fisher-aspergillus-results/live/Clarisse/dog_ear_kraken2/\$2.report.txt --output /rds/general/project/fisher-aspergillus-results/live/Clarisse/dog_ear_kraken2/\$2

batch script (qsub dog_kraken2_batch.sh):

#!/bin/sh

#PBS -I walltime=72:00:00

#PBS -I select=1:ncpus=16:mem=32gb

This tells the batch manager to re-run job with parameter varying from 1 to N in steps on stepsize

#PBS -J 1-14

/rds/general/project/fisher-aspergillus-analysis/live/clarisse/dog_ear_kraken2_scripts/dog_kraken2.sh \$(head -\$PBS_ARRAY_INDEX /rds/general/project/fisher-aspergillus-analysis/live/clarisse/dog_ear_kraken2_scripts/dog_kraken2_list.txt | tail -1)
