Large Scale Machine Learning: Support Vector Machines

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

Application: Spam Filtering

Example: Spam filtering

	viagra	learning	the	dating	nigeria	spam?
$\vec{x}_1 = ($	1	0	1	0	0)	$y_1 = 1$
$\vec{x}_2 = ($	0	1	1	0	0)	$y_2 = -1$
$\vec{x}_3 = ($	0	0	0	0	1)	$y_3 = 1$

- Instance space $x \in X(|X| = n)$ data points)
 - Binary or real-valued feature vector x of word occurrences
 - d features (words + other things, d~100,000)
- Class y ∈ Y
 - y: Spam (+1), Ham (-1)

Linear models for classification

Binary classification:

$$f(x) = \begin{cases} +1 & \text{if } \mathbf{w}^{(1)} \mathbf{x}^{(1)} + \mathbf{w}^{(2)} \mathbf{x}^{(2)} + \dots \mathbf{w}^{(d)} \mathbf{x}^{(d)} \ge \theta \\ -1 & \text{otherwise} \end{cases}$$

Decision boundary is **linear**

- Input: Vectors x_i and labels y_i
 - Vectors x_i are binary (real) valued
- Goal: Find vector $w = (w^{(1)}, w^{(2)}, ..., w^{(d)})$

Each w; is a real number

Note:

$$\mathbf{x} \Leftrightarrow \langle \mathbf{x}, 1 \rangle \quad \forall \mathbf{x}$$

 $\mathbf{w} \Leftrightarrow \langle \mathbf{w}, -\theta \rangle$

Linear Classifiers

- Each feature has a weight w⁽ⁱ⁾
- Prediction is based on the weighted sum:

$$f(x) = \sum_{i} w^{(i)} x^{(i)} = w \cdot x$$

- If the f(x) is:
 - Positive: Predict +1
 - Negative: Predict -1

