Mortality modeling and forcasting

February 9, 2016

Introduction

- The life table plays an important role in actuarial sciences.
- It is one of the oldest topics in the field of statistics.
- Important in any area where birth, death or illness may happen.
- Oldest documented life table is Halley's in 1693.
- It is not limited to human beings.

Halley's life table (1693)

la de	Per-	Acre	(Para	Ace	Der	Acre	Doc	Acel	Dev.	Age	Per_	Age.	Persons.
Age.	fons.	Curt.	fons	Curt.	fons	Curt.	fons	Curt.	fons	Curt	fons		
I	1000		680		628		585		539		481	7	5547
2	855	, -	670		022	23	579	30	531	37	472	14	4584
3	798	10	661		616		573		523		463	21	4270
4	760		553	٠	610		569		515		454	28	3564
5	732	12	646		éoa,		560		507		445	35	3604
6	710	13	640	- 20	598		553	34	499		436	42	3178 2709
7	692	14	634	21	592	38	546	35	490	42	427	49 56	2194
	Per-	Age.	Per-	Age.	Per-	Age	Per-	Age.	Per-	Age.	Per-	63	1694
Cort	fons.	Curt.	fons	Curt.	fons		fons	Curt.	fons	Curt.	fons	70	1204
43	419	50	34.5	57	272	64	202	.71	131	78	58	77	692
44	407	51	335	58	262	65	192	72	120	'''	49	84	253
45	397	52	324	59	252	65	182	73	109		41	100	107
45	387	53	313		242		172	74	98	18	34		
47	377 367	54	302 292	.6 I	232	68	162	,,,	88	82	28		340C0
48	307	55 56	282	63	222	69	152	1 1	78 68	83	23	6	· Taral
1 49 1	>>//		-04	~,	212	70	1142	77	08	64	20	_ Sur	n Total.

Types of life tables

- Cohort (dynamic, generational): Records the actual mortality within a group of individuals over a periode of time starting from birth to last death in the group.
- Period (static, current): Considers the mortality of an entire population at a specific point of time.

Cohort life table

- Suppose we can follow a group, e.g 100.000, of people from a certain group (Female/Male, Non-Smoker/Smoker . . .) born on the same day, then we can record, at each birthday, the number of group members alive and the number of those dying within the next year.
- Then the ratio of these two quantities gives us the probability of dying at age x.
- In practice this is difficult (even impossible) to do.

Period life table

- Instead period life tables are much more commonly used.
- These tables are constructed based on an evaluation of the mortality experience of persons from all ages in a short period of time (typically from 1 to 5 years).
- This evaluation can be based on census information provided at regular intervals.

Columns of a life table

- lx: The number of persons alive at age x.
- dx: The number of persons dead in the interval (x, x+1).
- Lx: The total number of person-years lived in the interval (x, x+1).
- qx: Probability of dying at age x.
- mx: Mortality rate at age x. mx = dx/Lx.
- Tx: Total number of person-years lived by the group from age $x \ til \ \omega$, where ω is the ultimate age.
- ex: The residual life expectancy of persons alive at age x.

Construction of a life table (Period)

- q(x) (or m(x)) from census data.
- q(x) = 1 exp(-m(x))
- I(0) = 100.000
- d(x) = I(x)*q(x)
- I(x+1) = I(x) d(x)
- L(x) = I(x) + a(x)*d(x) (usually a(x)=0.5 except at extreme ages).
- $T(x) = Sum \text{ from age } x \text{ to } \omega \text{ of the } L(x) \text{ column.}$
- e(x) = T(x)/I(x)

Conclusion

Knowing m(x), we can calculate all the other quantities.

The force of mortality $\mu_{x,t}$

- Let $D_{x,t}$ denote the number of deaths of people aged x in year t.
- Let $E_{x,t}$ denote the exposure of age x in year t. This is just L(x) in year t.

Then we can define the force of mortality $\mu_{x,t}$ as:

$$\mu_{x,t} = D_{x,t}/E_{x,t}$$

The force of mortality $\mu_{x,t}$

Take for example the data from HMD of "France (Total Population)", then $\mu_{x,t}$ can be calculated as follows:

```
Mu<-DEATH[,3:5]/EXPOSURE[,3:5]
head(Mu)
```

```
## Female Male Total
## 1 0.18698611 0.22293069 0.20534411
## 2 0.04670190 0.04666953 0.04668535
## 3 0.03392803 0.03430644 0.03412039
## 4 0.02291217 0.02315458 0.02303538
## 5 0.01599465 0.01607464 0.01603530
## 6 0.01383446 0.01363534 0.01373288
```

The force of mortality $\mu_{x,t}$

Force of mortality as a function of time and age

The force of mortality $\mu_{x,t}$ as a function of t (Male)

The force of mortality $\mu_{x,t}$ as a function of t (Female)

Detecting outliers in the $\mu_{x,t}$ series (Male)

Detecting outliers in the $\mu_{x,t}$ series (Male)

Detecting outliers in the $\mu_{x,t}$ series (Female)

Detecting outliers in the $\mu_{x,t}$ series (Female)

Comparing $\mu_{x,t}$ for t=1900 and t=1990

```
year = 1900
D1900 = DEATH[DEATH$Year == year, ]
E1900 = EXPOSURE[EXPOSURE$Year == year, ]
Mu1900 = D1900[, 3:5]/E1900[, 3:5]
year = 1990
D1990 = DEATH[DEATH$Year == year, ]
E1990 = EXPOSURE[EXPOSURE$Year == year, ]
Mu1990 = D1990[, 3:5]/E1990[, 3:5]
```

Comparing $\mu_{x,t}$ for t=1900 and t=1990

Comparing $p_t(x, x + 1)$ for t=1900 and t=1990

```
PM1900=PF1900=matrix(0,111,111)
PM1990=PF1990=matrix(0,111,111)
for(x in 0:110){
  PM1900[x+1,1:(111-x)] = exp(-cumsum(Mu1900[(x+1):111,2]))
  PF1900[x+1,1:(111-x)] = exp(-cumsum(Mu1900[(x+1):111,1]))
  PM1990[x+1,1:(111-x)] = exp(-cumsum(Mu1990[(x+1):111,2]))
  PF1990[x+1,1:(111-x)] = exp(-cumsum(Mu1990[(x+1):111,1]))
}
```

Comparing $p_t(x, x + 1)$ **for t=1900** and **t=1990**

Comparing $p_t(x, x + h)$ from t=1900 to t=1990 (Male)

Comparing $p_t(x, x + h)$ from t=1900 to t=1990 (Female)

General remarks on $\mu_{x,t}$

- $x \mapsto \log(\mu_{x,t})$ has a very similar shape for different t's, and it is (almost) linear from age 30 to 80.
- $t \longmapsto \log(\mu_{x,t})$ has decreasing trend across (almost) all ages.
- In other words, $\log(\mu_{x,t})$ has fixed characteristics for all t's and changing ones through the years.

The Lee-Carter model (1992)

$$\log(\mu_{x,t}) = \alpha_x + \beta_x \kappa_t + \epsilon_{x,t}$$

- α_x : Age specific component independent of time.
- κ_t: Time varying parameter indicating the general level of mortality through the years.
- β_{X} : Represents the effect of κ_t on each age.
- $\epsilon_{x,t}$: i.i.d noise.

Due to overparameterization, identification assumptions are imposed e.g:

$$\sum_{x} \beta_{x} = 1, \qquad \sum_{t} \kappa_{t} = 0$$

Estimation is done via Likelihood estimation under certain assumptions.

Estimation of the Lee-Carter model using demography package

- The demography package has built-in functions for the estimation and forcasting of demographic statistics using the Lee-Carter model.
- In addition, one can use the function hmd.mx to fetch data directly from the Human Mortality Database.

```
library(demography)
usa<-hmd.mx("USA","aymane10@hotmail.com","STK4500","USA")
usa.90<-extract.ages(usa,ages = 0:90 )

lc.male<- lca(usa.90, series = "male")
lc.female<- lca(usa.90, series = "female")</pre>
```

Estimates of α_x , β_x and κ_t (male)

Estimates of α_x , β_x and κ_t (female)

Forcasting in the Lee-Carter model

Forcasting in the Lee-Carter model is easily done in the **demography** package

```
forecast.lc.male <- forecast(lc.male, h=20)
forecast.lc.female <- forecast(lc.female, h=20)</pre>
```

This based on the assumption that κ_t is a time series of the form:

$$\kappa_t = \theta + \kappa_{t-1} + \xi_t$$

and ξ_t are i.i.d normally distributed r.v with mean 0 and variance σ^2 .

Forcasting in the Lee-Carter model

Forcasting in the Lee-Carter model

Estimation and forcastng of κ_t

```
kappat <- lc.female$kt</pre>
smoothkt <- ets(kappat)</pre>
forecastkt <- forecast(smoothkt, h=100)</pre>
or more concretely
(fittedkt <- auto.arima(kappat))</pre>
## Series: kappat
## ARIMA(0,1,0) with drift
##
## Coefficients:
##
      drift
## -1.7861
## s.e. 0.2766
##
```

Estimation and forecasting of κ_t (Female)

Estimation and forecasting of κ_t (Male)

The LifeMetrics functions

- The problem with the demography package is that it implements only the Lee-Carter model.
- Although the Lee-Carter model is widely used in practice, there are other models that have improved the ideas in L-C.
- For example, the Renshaw-Haberman model (2006) adds another component that takes into account the year of birth (i.e cohort effect)

$$\log(\mu_{x,t}) = \alpha_x + \beta_x \kappa_t + \delta_x \gamma_{t-x} + \epsilon_{x,t}$$

- The LifeMetrics package has several models that are built-in.
- In addition one can simulate different senarios based on the forecasted component.

LifeMetrics

```
DEATH_90<- deaths[deaths$Age<90,]
EXPOSURE 90<- exposures[exposures$Age<90,]
Ages <- unique(DEATH_90$Age)
Years <- unique(DEATH_90$Year)</pre>
ages <- seq(0,length(Ages)-1)
years <- seq(Years[1], Years[length(Years)])</pre>
n <- length(ages)</pre>
m <- length(years)</pre>
EXPOSUREM tx <- t(matrix(EXPOSURE 90[,4],n,m))</pre>
EXPOSUREF_tx <- t(matrix(EXPOSURE_90[,3],n,m))</pre>
DEATHM tx <- t(matrix(DEATH 90[,4],n,m))
DEATHF_tx <- t(matrix(DEATH_90[,3],n,m))</pre>
```

LifeMetrics

```
source("C:/Users/Amin/Documents/R/fitModels.r")
LeeCarterM <- fit701(xv=ages,yv=years,</pre>
                       etx=EXPOSUREM tx, dtx=DEATHM tx,
                      wa=WeightFun)
LeeCarterF <- fit701(xv=ages,yv=years,</pre>
                       etx=EXPOSUREF_tx,dtx=DEATHF_tx,
                      wa=WeightFun)
```

LifeMetrics

Forecasting with LifeMetrics

```
source("C:/Users/Amin/Documents/R/simModels.r")
forcastsLC <- sim2001(LeeCarterM$x,LeeCarterM$y,</pre>
                       LeeCarterM$beta1, LeeCarterM$beta2,
                       LeeCarterM$kappa2,
                       nsim = 10000,
                       nyears = 60,
                       tmax = 40,
                       x0 = 40
```

Effect of increased longevity on a life insurance annuity

- Using the forcasted time series κ_t , we can forecast practically any demographical or actuarial quantity we need.
- For example, we can calculate the projected PV, at different points in the future, of a deferred temporary life annuity with term 30 issued for a person aged 40 and deferred for 30 years

$$\sum_{k=30}^{30+30-1} \frac{1}{(1+i)^k} p(x, x+k)$$

Effect of increased longevity on a life insurance annuity

