Homework 3: Problem 3

William Svoboda (wsvoboda)

Collaborators: Epi Torres-Smith, Leslie Kim

Problem 3:

We wish to show that any simple graph G = (V, E) with $\delta(G) > \frac{1}{2} \cdot (|V| - 2)$ is connected.

We can partition G into two subgraphs with $\frac{|V|}{2}$ vertices each. If we take any vertex v from either of the subgraphs, the maximum degree it could have is $\frac{|V|}{2}-1$ since it could be connected to every vertex in the subgraph besides itself (creating a connected component). There could not be more edges from the vertex because in a simple graph self loops and multiple edges are not allowed. However, it is given that $\delta(G)>\frac{1}{2}\cdot(|V|-2)=\frac{|V|}{2}-1$, so there must actually be one additional edge from v to the other connected component. Therefore, the graph G must actually be connected.