Definition

- [[Urnenmodell mit Zurücklegen]]
 - [[Wahrscheinlichkeit]], dass mehr als k Versuche notwendig sind
- Motivation

Beispiel (Auf einen Erfolg warten)

Angenommen wir spielen "Mensch ärgere Dich nicht". Damit wir anfangen können, müssen wir eine 6 würfeln. Wie groß ist die Wahrscheinlichkeit, dass wir mehr als 20 mal würfeln müssen um anfangen zu können?

- PMF $p_k = P(A_k))(1-p)^{k-1}*p$ für $1 \leq k \leq n$ $-P((A_1 \cup \ldots \cup A_n)^C) = (1-p)^n$
- Stichprobenraum $\Omega = \{(\omega_1, ..., \omega_n) \in \{1, ..., N\}^n\}$
 - n unbekannte Anzahl der Versuche

Herleitung

Das Ereignis $A_k = \{ \text{erste rote Kugel nach } k \text{ Versuchen} \}$ (sei hier $1 \le k \le n$) impliziert, dass die ersten k-1 Zahlen in der Folge alle $> N_1$ sind und dass die k-te Zahl $\le N_1$ ist. Es gibt keine Einschränkung für die anderen Zahlen. Dies ergibt $(N-N_1)^{k-1} \times N_1 \times N^{n-k}$ mögliche Kombinationen.

- erst (k-1)-ten mal blau
- beim k-ten mal rot
- beliebige Möglichkeiten danach

Beispiel

Beispiel (Auf einen Erfolg warten)

Angenommen wir spielen "Mensch ärgere Dich nicht". Damit wir anfangen können, müssen wir eine 6 würfeln. Wie groß ist die Wahrscheinlichkeit, dass wir mehr als 20 mal würfeln müssen um anfangen zu können?

P (mels of 20 Versude fur 6er) =

$$\frac{1}{2} P(k \text{ Versude}) = \frac{1}{6} \sum_{k>20} \left(\frac{1}{6}\right)^{k-1} = \left(\frac{5}{6}\right)^{k-1}$$

$$\frac{1}{6} \sum_{k>20} \left(\frac{5}{6}\right)^{k-1} \frac{1}{6}$$

$$\frac{1}{6} \sum_{k>20} \left(\frac{5}{6}\right)^{k-1} \frac{1}{6}$$

$$\frac{1}{6} \sum_{k>20} \left(\frac{5}{6}\right)^{k-1} \frac{1}{6}$$

$$\frac{1}{6} \sum_{k>20} \left(\frac{5}{6}\right)^{k-1} \frac{1}{6}$$

$$\frac{1}{1-x} \sum_{k=0}^{n-1} x^{k} = \frac{1-x}{1-x}$$

$$\frac{1}{1-x} \sum_{k=0}^{n-1} x^{k} = \frac{1-x}{1-x}$$