Анализ упаковочных свойств молекул кристаллов кубической сингонии

Всего проанализированно 889 молекул в 567 структурах, удовлетворяющих следующим условиям:

- симметрия структуры описывается пространственной группой кубической сингонии
- структура в записи не является полимером
- структура в записи не является разупорядоченной

Рис. 1. Распределение точечных групп симметрии молекул в кристаллах кубической сингонии

Табл. 1. Распределение точечных групп симметрии молекул в кристаллах кубической сингонии

Симметрия молекулы	Кол-во молекул		
'-4 3 m'	274		
'3'	265		
'3 m'	51		
'm -3 m'	48		
'2 3'	48		
'-4'	32		
'1'	31		
'3 2'	24		
'2'	19		
'm m 2'	17		
'-6 m 2'	17		
'm m m'	12		
'-3'	11		
'-3 m'	6		
$^{\prime}6/\mathrm{m}\ \mathrm{m}\ \mathrm{m}^{\prime}$	6		
'2 2 2'	5		
'6/m'	4		
'4 m m'	4		
'n'	4		
'-4 2 m'	4		
$^{\prime}4/\mathrm{m}\ \mathrm{m}\ \mathrm{m}^{\prime}$	3		
'4 2 2'	2		
'-6'	1		
'4 3 2'	1		

Табл. 2. Диапазоны параметров ячеек для кристаллов кубической сингонии

Пр. гр. кристалла	мин. Пар. яч., Å	макс. Пар. яч., Å	$ V_f $	V_c
F -4 3 c	17.255	39.412	556	2119
F -4 3 m	11.133	13.571	52613	202564
F 2 3	20.510	38.110	520	2024
F 41 3 2	16.432	16.432	1095	4210
F d -3 m	19.795	19.795	57083	218993
F d -3	13.996	31.605	595	2316
F d 3 m	15.826	16.402		
F m -3 c	14.418	14.521	7548	28830
F m -3 m	8.373	18.380	123255	472470
F m -3	10.610	28.817		
F m 3 m	8.839	13.815		
I -4 3 d	13.616	35.533	175	674
I -4 3 m	6.273	20.344	7681	29748
I 2 3	9.701	41.767	110	426
I 21 3	9.682	22.138	159	613
I a -3 d	16.533	34.180	569	2175
I a -3	15.902	25.758	188	731
I a 3	16.376	22.490		
I m -3 m	24.590	24.590	36183	139651
I m -3	9.633	14.501	3160	12030
I m 3	9.736	16.400		
P -4 3 m	5.542	8.666	7545	28921
P -4 3 n	15.507	31.619	121	469
P 2 3	9.201	9.201	113	435
P 21 3	7.586	29.534	46	172
P 4 3 2	18.608	21.143	323	1225
P 41 3 2	10.245	19.329	175	678
P 43 3 2	12.365	19.334	176	681
P m -3 m	6.989	6.989	33563	127898
P m -3 n	10.520	10.520	3952	15250
P n -3	14.825	19.017	130	499
P n 3 m	11.247	11.343		
P n 3 n	20.841	36.238		•
P n 3	19.615	19.615	•••	

Рис. 2. Диапазоны параметров ячейки для кристаллов кубической сингонии

Табл. 3. Значения запрещенного объема для кристаллов с ассиметричными молекулами

Пр. гр. кристалла	Объем молекулы (Å)	Пар. яч. (Å)	V_c	V_f
F 41 3 2	91.416	16.432	4210	1095
F m -3 c	122.859	14.418	28830	7548
F m -3 c	122.859	14.418	28830	7548
F m -3	42.148	10.610	19730	5132
F m -3	89.100	10.629	19730	5132
F m -3	84.495	10.867	19730	5132
F m -3	96.503	10.878	19730	5132
F m -3	136.278	10.644	19730	5132
I 2 3	1549.870	25.421	426	110
I 2 3	2477.170	41.766	426	110
I 2 3	188.394	18.849	426	110
I -4 3 d	67.365	35.533	674	175
I -4 3 d	60.574	31.150	674	175
I -4 3 d	59.398	31.150	674	175
I a -3 d	11.836	16.533	2175	569
I a -3 d	11.930	16.536	2175	569
I m -3 m	11.355	24.590	139651	36183
P 21 3	1816.530	21.023	172	46
P 21 3	2476.490	29.534	172	46
P 21 3	2432.170	29.534	172	46
P 21 3	128.696	19.380	172	46
P 21 3	129.574	19.381	172	46
P 21 3	1189.420	20.029	172	46
P 21 3	102.260	19.551	172	46
P 21 3	105.636	12.817	172	46
P 21 3	10.963	15.069	172	46
P 21 3	44.947	17.863	172	46
P 43 3 2	31.297	17.827	681	176
P -4 3 n	38.114	20.028	469	121
P m -3 n	177.878	10.520	15250	3952
P n 3 n	1277.650	36.238	1363	352