Yakeen NEET 2.0 2026

Physics By Saleem Sir

Units and Measurements

DPP:10

- Q1 Time intervals measured by a clock give the following readings:
 - 1.25sec, 1.24sec, 1.27sec, 1.21sec and
 - $1.28 \mathrm{sec}$. What is the percentage relative error of the observations?
 - (A) 2%
 - (B) 4%
 - (C) 16%
 - (D) 1.6%
- Q2 A physical quantity P is given by $P=rac{A^3B^{rac{1}{2}}}{C^{-4}D^{rac{3}{2}}}$

The quantity which brings in the maximum percentage error in P is:

- (A) A
- (B)B
- (C) C
- (D)D
- **Q3** If volume is written as, $V = KG^xc^yh^z$. Here, Kis dimensionless constant and G, c, h are gravitational constant, speed of light and Planck's constant, respectively. Find the value of x/z.
 - (A)1

(B) 2

- (C) $\frac{3}{2}$
- (D) 4
- **Q4** During measurement of kinetic energy T, the percentage error in measurement of mass of particle and momentum of particle are 6% and 1% respectively. The percentage error in measurement of kinetic energy is n%. Find the value of n.
 - (A)6

(B)7

(C) 8

- (D) 4
- **Q5** If v stands for velocity of sound, E is modulus of elasticity and d the density, then find x in the

- equation $v = \left(\frac{d}{E}\right)^x$
- (A) 2

- (B) $-\frac{1}{2}$
- (C) $\frac{1}{2}$

- **Q6** Young's modulus of steel is $19 \times 10^{10} Nm^{-2}$ its value dyne ${
 m cm}^{-2}$ is
 - (A) 19×10^{11}
 - (B) 19×10^{17}
 - (C) 19×10^{13}
 - (D) 19×10^{21}
- $\label{eq:condition} \mbox{\bf Q7} \quad 1 \; \mbox{Pascal} = \underline{\qquad} \; C. \, G. \, S \; \mbox{units}$ (or) gram $cm^{-1} \; s^{-2}$

 - (A) 10
- (B) $\frac{1}{10}$
- (C) 100
- (D) 1000
- Q8 The physical quantities not having same dimensions are
 - (A) Speed and $(\mu_0 arepsilon_0)^{-1/2}$
 - (B) Torque and work
 - (C) Momentum and Planck's constant
 - (D) Stress and Young's modules
- If m' is the mass of a body, a' is amplitude of vibration, and ' ω ' is the angular frequency, $\frac{1}{2}ma^2\omega^2$ has same dimensional formula as
 - (A) Impulse
 - (B) Angular momentum
 - (C) Moment of inertia
 - (D) Moment of force
- **Q10** If C is the capacitance of the capacitor, V is the potential difference, the energy stored in a capacitor is given by $E=rac{1}{2}CV^2$. The power of time in dimension of CV^2 is:
 - (A)-2
 - (B) 2
 - (C) 1

Answer Key

Q1	(D)	Q6	(A)
Q2	(C)	Q7	(A)
Q3	(A)	Q8	(C)
Q4	(C)	Q9	(D)
Q5	(B)	Q10	(A)

Master NCERT with PW Books APP

