SCALING GEOMETRIC MONITORING OVER DISTRIBUTED STREAMS

by

Alexandros D. Keros

A thesis submitted in partial fulfillment of the requirements for the degree

of

UNDERGRADUATE

in

Electronic and Computer Engineering

Approved:	
Dr. Vasilis Samoladas	first reader
Major Professor	Committee Member
second reader Committee Member	dean

Technical University of Crete Chania, Crete, Greece

2015

Copyright © Alexandros D. Keros 2015

All Rights Reserved

Scaling Geometric Monitoring over Distributed Streams

by

Alexandros D. Keros, Undergraduate Technical University of Crete, 2015

Abstract

BLAH BLAH

Thesis Supervisor: Dr. Vasilis Samoladas

Department: Electronic and Computer Engineering

(24 pages)

Public Abstract

BLAH BLAH

Acknowledgments

my mum

Contents

	F	Page
Al	bstract	iii
Pυ	ublic Abstract	iv
Ac	cknowledgments	v
Lis	st of Tables	viii
Lis	st of Figures	ix
Ι	INTRODUCTION AND PRELIMINARIES	1
1	Introduction	2 2 2 2 2
2	Theoretical Background	3 5 5 5
3	Related Work	6
II	PROBLEM DEFINITION AND IMPLEMENTATION	7
4	Problem Statement	8
5	Implementation 5.1 Geometric Monitoring 5.2 Heuristic Balancing 5.3 Distance Based Node Matching 5.4 Implementation Challenges	
II	I RESULTS AND CONCLUSIONS	10
6	Experimental Results	11 11 11 11

	6.4	Overall Results	11
7	Con	clusions and Future Work	12
	7.1	Conclusions	12
	7.2	Future Work	12
Re	eferen	ces	13
Aı	pend	lix	14
	Cha	pter A Geometric Monitoring Python Implementation	15
	A.1	Python	15
	A.2	Numpy and Scipy	15
	A.3	Openopt	15
	A.4	NetworkX	15
	A.5	Putting It All Together	15

List of Tables

Table Page

List of Figures

Figure Page

Part I

INTRODUCTION AND PRELIMINARIES

Introduction

- 1.1 Overview
- 1.2 Motivation
- 1.3 Contributions
- 1.4 Thesis Outline

Theoretical Background

The present chapter contains the necessary background knowledge used throughout the length of this thesis. Section 2.1 describes the "Geometric Approach to Monitoring Threshold Functions over Distributed Data Streams" in detail, as formulated by I.Sharfman, A.Shuster, D.Keren [?]. Section 2.2 presents multi-objective optimization and dives into the algorithms used in our implementation. Section 2.3 discusses graph maximum weight matching used for node pairing and, finally, in Section 2.4 we explain the Savitzky-Golay filtering used for velocity approximation.

2.1 Geometric Monitoring of Distributed Streams

The Continuous Distributed Monitoring Model, a.k.a. Data Stream System

idea: having a real-time overview over the system

application examples: ISP network traffic, distributed sensors etc

complexity: monitoring value or threshold monitoring over the whole set of observations, in real time

goal: minimize communication while retaining the highest accuracy possible possible solutions:

1.centralize

- suffers from network overload, storage overload
- 2.poll
- not real time, update frequency-accuracy trade-off
- 3.GM monitoring
- -apply convex opt theory in order to reduce communication while retaining accuracy bounds details of geometric monitoring model

2.1.1 System Architecture

```
fully distributed node topology

.no coordinator-center node

.communication between nodes

image

coordinator based node topology

.coordinator-center node

.nodes communicate only with coordinator
image
```

2.1.2 Computational Model

```
stream and node notation
weights
statistics vectors
global statistics vector
monitored function
threshold
```

estimate vector

drift vector

general operation of distributed algorithm

drift vector definition

general operation of coordinator based algorithm

balancing process

slack vector

drift vector definition

2.1.3 Geometric Interpretation

node local constraints make sure global violation is accurately monitored how?

convexity property of drift vectors

theorem of bounded convex hull by local constraints (balls) monochromaticity of balls balls monochromatic means threshold upheld

2.1.4 Protocol

decentralized algorithm (in short, for completeness) centralized algorithm (in detail) we will focus on that

2.2 Multiobjective Optimization

what is mop

use examples

kinds:

a.numerical

b.evolutionary

2.2.1 Sohr's algorithm a.k.a. ralg

algorithm description

2.3 Maximum Weight Matching in Graphs

general graph theory (introductory)
what is max weight matching
algorithm description

2.4 Savitzky-Golay Filtering

filtering generals

examples of uses of filters

filters:

Kalman

- +,- Moving Average
- +,- Savitzky-Golay a.k.a. ???? +,- algorithm description

Chapter 3
Related Work

Part II

PROBLEM DEFINITION AND IMPLEMENTATION

Chapter 4 Problem Statement

Implementation

- 5.1 Geometric Monitoring
- 5.2 Heuristic Balancing
- 5.3 Distance Based Node Matching
- 5.4 Implementation Challenges

Part III

RESULTS AND CONCLUSIONS

Experimental Results

- 6.1 Experimental Setting
- 6.2 Heuristic Balancing
- 6.3 Distance Based Node Matching
- 6.4 Overall Results

Conclusions and Future Work

- 7.1 Conclusions
- 7.2 Future Work

References

Appendix

Chapter A

Geometric Monitoring Python Implementation

- A.1 Python
- A.2 Numpy and Scipy
- A.3 Openopt
- A.4 NetworkX
- A.5 Putting It All Together