### Ch 8.1: Decision Trees

Lecture 16 - CMSE 381

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Wed, March 20, 2024

#### Announcements

#### Last time:

Cubic Splines

#### This lecture:

• 8.1 Decision Trees

#### **Announcements:**

2/29

• Mid-term exam 2: next week

### Section 1

### **Decision Trees**

(MSU-CMSE) Wed, March 20, 2024

# Big idea

 Previously, we've always had some form of function for prediction:

$$f(X_1,\cdots,X_p)=\hat{Y}$$

 Now, we make a sequence of decisions to make a prediction, either regression or classification version



4 / 29

#### Subset of Hitters data

|     | Hits | Years | Salary | LogSalary |
|-----|------|-------|--------|-----------|
| 1   | 81   | 14    | 475.0  | 6.163315  |
| 2   | 130  | 3     | 480.0  | 6.173786  |
| 3   | 141  | 11    | 500.0  | 6.214608  |
| 4   | 87   | 2     | 91.5   | 4.516339  |
| 5   | 169  | 11    | 750.0  | 6.620073  |
|     |      |       |        |           |
| 317 | 127  | 5     | 700.0  | 6.551080  |
| 318 | 136  | 12    | 875.0  | 6.774224  |
| 319 | 126  | 6     | 385.0  | 5.953243  |
| 320 | 144  | 8     | 960.0  | 6.866933  |
| 321 | 170  | 11    | 1000.0 | 6.907755  |

- Remove observations missing salary values
- log transform salary for something closer to bell shape
- Goal: predict log salary (can reverse by returning exp(x) if model returns x)

### A simpler decision tree example

|     | Hits | Years | LogSalary |
|-----|------|-------|-----------|
| 1   | 81   | 14    | 6.163315  |
| 2   | 130  | 3     | 6.173786  |
| 3   | 141  | 11    | 6.214608  |
| 4   | 87   | 2     | 4.516339  |
| 5   | 169  | 11    | 6.620073  |
|     |      |       |           |
| 317 | 127  | 5     | 6.551080  |
| 318 | 136  | 12    | 6.774224  |
| 319 | 126  | 6     | 5.953243  |
| 320 | 144  | 8     | 6.866933  |
| 321 | 170  | 11    | 6.907755  |
|     |      |       |           |

- Top split assigns observations with *Years* < 4.5 to left branch
- Return mean response for players with that.
- Predictions:
  - ► mean log salary is 5.107, so returns exp(5.107) = \$165.174 thousand dollars
  - ► 5.999 ⇒ \$402,834
  - ► 6.740 ⇒ \$845, 346



### Interpretation of example



- Years most important factor for determining salary
- Players with less experience earn lower salaries than more experienced
- For the less experienced players, number of hits plays little role in salary
- For more experienced players, number of hits affects it
- Likely an oversimplification of real relationship, but easier to interpret and has nice graphical representation

7 / 29

## Regions defined by the tree



- Point out tree is "upside down"
- Leaves of the tree:
  - $R_1 = \{X \mid Years < 4.5\}$
  - ► R<sub>2</sub> = {X | Years >= 4.5, Hits < 117.5}
  - $R_3 = \{X \mid Years >= 4.5, Hits >= 117.5\}$

- Other splits are called Internal Nodes
- Segments that connect nodes called Branches or Edges

# Viewing Regions Defined by Tree





9 / 29

# Viewing Regions Defined by Tree

- We divide the predictor space that is, the set of possible values for X<sub>1</sub>, X<sub>2</sub>, ··· , X<sub>p</sub> — into J distinct and non-overlapping regions, R<sub>1</sub>, R<sub>2</sub>, ··· , R<sub>J</sub>.
- ② For every observation that falls into the region  $R_j$ , we make the same prediction = the mean of the response values for the training observations in  $R_j$ .



10 / 29

#### How to build the tree?

Step 1, grow the tree iteratively: in each step, we decide which region  $R_j$  to add.

Step 2, prune the tree: cut the unnecessary branches

(MSU-CMSE) Wed, March 20, 2024

# Step 1: How do we decide on $R_j$ s?

Training error: For any fixed partition,  $R_1, \dots, R_J$ , the training error is defined as

$$RSS = \sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

 $\hat{y}_{R_j}$  = mean response for training observations in jth box **Goal**:

Find optimal boxes  $R_1, \dots, R_J$  that minimize

$$\sum_{j=1}^{J} \sum_{i \in R_{i}} (y_{i} - \hat{y}_{R_{j}})^{2}$$

- Can't actually check every possible partition
- Instead, go for top-down greedy approach called Recursive binary splitting
- Begins at top of tree with all data points

12 / 29

Uses best split at every step

# Recursive Binary Splitting

In the first iteration,

• Pick  $X_j$  and s, so that splitting into  $\{X \mid X_j < s\}$  and  $\{X \mid X_j \ge s\}$  results in largest possible reduction in RSS

$$R_1(j, s) = \{X \mid X_j < s\}$$
  
 $R_2(j, s) = \{X \mid X_j \ge s\}$ 

$$\sum_{i|x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i|x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

13 / 29

## Repeat the process

- Do this repeatedly
- Each time can split one of the previously identified regions
- Keep going until some stopping criterion is reached. E.g. until each region has at most 5
   observations





14 / 29

# Step 2: Pruning



- Big trees leave you open to potential overfitting
- Could just stop building earlier, but that's short sighted
- Instead, grow a big tree and prune it back
- Find subtree with best test error rate

15 / 29

Too many subtrees to test them all

# Weakest Link Pruning

Also called Cost complexity pruning

For every  $\alpha$ , there is a subtree T that minimizes:

$$\sum_{m=1}^{|T|} \sum_{i|x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

- |T| = number of terminal nodes of T
- $R_m$  is rectangle for mth terminal node
- $\hat{y}_{R_m}$  is mean of training observations in  $R_m$

- $\alpha = 0$  gets entire tree
- ullet Increasing lpha penalizes size of tree
- Branches pruned from tree in nested and predictable fashion
- $\bullet$  Easy to get trees for all vales of  $\alpha$

16/29

• Pick  $\alpha$  via CV

# Algorithm version

#### Algorithm 8.1 Building a Regression Tree

- Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations.
- 2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of  $\alpha$ .
- 3. Use K-fold cross-validation to choose  $\alpha$ . That is, divide the training observations into K folds. For each  $k = 1, \ldots, K$ :
  - (a) Repeat Steps 1 and 2 on all but the kth fold of the training data.
  - (b) Evaluate the mean squared prediction error on the data in the left-out kth fold, as a function of  $\alpha$ .
  - Average the results for each value of  $\alpha$ , and pick  $\alpha$  to minimize the average error.
- 4. Return the subtree from Step 2 that corresponds to the chosen value of  $\alpha$ .

(MSU-CMSE) Wed, March 20, 2024

# Messing with $\alpha$



Result of pruning is the three leaf tree on the right

Wed, March 20, 2024

Hits < 117.5

6.74

18 / 29

6.00

#### A small exercise

Build a decision tree for the following training data with  $\alpha=10$ .

|    |          |       |     | •       |
|----|----------|-------|-----|---------|
|    | X1       | X2    | Υ   |         |
| 1  | 0        | 1     | 6   |         |
| 2  | 1        | 0     | 1   |         |
| 3  | 1        | 1     | -1  |         |
|    | 414      |       |     | prune   |
| •  | <u> </u> | )     |     | 1 - Two |
|    |          | 6. 61 | L   |         |
| 51 | \        | 52,53 |     |         |
| ~~ | Ť. 👩     | -5/   | 1 8 | rupt (  |



19 / 29

WLP objective for the green tree = 
$$RSS + \partial |T| = 2 + 10 \cdot 2 = 21$$
 final tree wLP · · · · · orange tree = · · · · =  $0 + 10 \cdot 3 = 30$  wLP · · · · =  $2b + 10 \cdot 1 = 3b$ 

Section 2

Classification Decision Tree

(MSU-CMSE) Wed, March 20, 2024

#### Basic idea



- Example from heart data
- Can't use RSS, need error rate
- Could decide splits by classification error rate
- Gives too much emphasis on large classes, so use something else
- Use two other options
- $\hat{p}_{mk}$  = proportion of training observations in  $R_m$  from the kth class
- $E = 1 \max_{k}(\hat{p}_{mk})$  Fraction of training observations not in the most common class

#### Gini index

$$G = \sum_{k=1}^K \hat{
ho}_{mk} (1-\hat{
ho}_{mk})$$

- Measure of total variance across K classes
- small value if all  $\hat{p}_{mk}$ 's close to zero or 1
- Small value means node contains mostly observations from one class

22 / 29

# Entropy

$$D = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$$

- Positive because  $0 \le \hat{p}_{mk} \le 1$
- ullet Near zero if  $\hat{
  ho}_{mk}$  all near 0 or near 1
- Small value if *m*th node has majority one class

23 / 29

# Example



(MSU-CMSE) Wed, March 20, 2024

## Pruning the example





25 / 29

#### Another small exercise

Grow: Try

Build a decision tree for the following training data with  $\alpha=0.1$ .

|   | X1 | X2 | Υ |
|---|----|----|---|
| 1 | -1 | 2  | 0 |
| 2 | 1  | 0  | 1 |
| 3 | 2  | -1 | 1 |

G=0 => Stop growing 11 prune Ta: . (51, 52,51) Y=(0,1,1) = G= 3.3/ 43.3/ = 4/5 WLP obj for  $T_1 = 0 + 0.1 \cdot 2 = 0.2$  final tree  $T_2 = 4/q + 0.1 \cdot 1$ 

### Linear models vs trees





Not going to beat this case though

27 / 29

# Pros/Cons

#### **Pros:**

- Trees are very easy to explain to people. Often easier to explain than linear regression!
- Trees can be displayed graphically, and are easily interpreted even by a non-expert (especially if they are small).
- Trees can easily handle qualitative predictors without the need to create dummy variables.

#### Cons:

- Not as accurate as other methods of classification and regression
- Not robust: small change in data can cause large change in estimated tree
- Fix.... aggregate many decision trees

28 / 29

#### Summarize

- Split into regions by greedily decreasing RSS
- Prune tree by using cost complexity
- Not robust Next time, figure out how to aggregate trees





29 / 29