メディアコンピューティング2022

第3回 画像の統計量とヒストグラム

画像の性質を表す諸量

- ■ヒストグラムと統計量
 - ▶ヒストグラム(または濃淡ヒストグラム)
 - ✔横軸:画素値
 - ✔縦軸:各画素値の頻度(その画素値をもつ画素の個数)
 - ◆画像中にどのような値の画素値がどれほど含まれているか

演習03-1

■画像のヒストグラムの作成

■ヒストグラムの描画

```
▶ void show_histogram(const string winname, const cv::Mat hImage)

✓ Winname: ヒストグラムのウィンドウ名

✓ hImage: ヒストグラム画像
```

■histogramという名前空間を作って

```
➤ cv::Mat histogram::make(const cv::Mat src, const cv::Size hsize);

➤ void histogram::show(const string winname, const cv::Mat hImage)

としてもよい
(こっちの方がオブジェクト指向チック)
```

画像の性質を表す諸量

■ヒストグラムと統計量

- ▶統計量
 - ✔最小值,最大值
 - ✓平均值
 - ✓中央値
 - ✓最頻値
 - ✔分散 (標準偏差)

- ◆ヒストグラムからも求めることができる
 - ✓が、あまりやらない
 - ✓一度ヒストグラムを作れば、複数の統計量を別途求めるときはヒストグラムの方が速い

演習03-2 統計量を計算する関数を作る

Stats.hを作り、そこに記述

- ■最小值,最大值
 - ➤ int min(cv::Mat src)
 - ➤ int max(cv::Mat src)
- ■平均値
 - ➤ double average(cv::Mat src)
- ■中央値
 - int median(cv::Mat src)

- ■最頻値
 - ➤ int mode(cv::Mat src)
- ■分散 (標準偏差)
 - ➤ double variance(cv::Mat src)
 - ➤ double stdev(cv::Mat src)

できる人はSTLで表現(Matの型に依らない関数定義) https://docs.opencv.org/3.4/d3/d63/classcv_1_1Mat.html

演習03-2 統計量を計算する関数を作る

■局所統計量

- ▶実際の画像処理では、画像全体の統計量に加えて、局所領域の統計量が欲しい場合が多い
 - ◆実装方法
 - ✓局所用に新たに関数を作る
 - 関数名の頭に"local"を付けるなど
 - ✔同じ関数名で局所領域の原点と矩形サイズを引数に追加 (関数のオーバーロード)
 - ✓追加した引数にデフォルト値を設定(関数は増やさない)

課題03

- ■演習03-2を完成させる
- ■ヒストグラムから各種統計量を計算する関数の作成
 - ▶関数のオーバーロード
 - ▶局所統計量はヒストグラムを作るオーバーヘッドが大き いので作成しなくても良い
- ■Stats.hを「課題03提出箱」に提出