Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ "МЭИ"

Институт информационных и вычислительных технологий

Кафедра математического и компьютерного моделирования

Отчёт по лабораторной работе №8 "Регрессионный анализ"

> Студент: Симаков А.М. Преподаватель: Шевченко О.В.

1 Введение

В линейный регрессионный анализ входит широкий круг задач, связанных с построением (восстановлением) зависимостей между группами числовых переменных

$$X \equiv (x_1, ..., x_p), \quad Y = (y_1, ..., y_m)$$

Предполагается, что X - независимые переменные (факторы, объясняющие переменные) влияют на значения Y - зависимых переменных (откликов, объясняемых переменных). По имеющимся эмпирическим данным $(X_i, Y_i), i \in [1, n] \cap \mathbb{N}$ требуется построить функцию f(X), которая приближенно описывала бы изменение Y при изменении X:

$$Y \approx f(X)$$

Предполагается, что множество допустимых функций, из которого подбирается f(X), является параметрическим:

$$f = f(X, \theta),$$

где θ - неизвестный параметр (вообще говоря, многомерный). При построении f(X) будем считать, что

$$Y = f(X, \theta) + \varepsilon,$$

где первое слагаемое - закономерное изменение Y от X, а второе - ε - случайная составляющая с нулевым средним; $f(X,\theta)$ является условным математическим ожиданием Y при условии известного X и **называется регрессией** Y по X.

2 Простая линейная регрессия

Пусть X и Y одномерные величины; обозначим их x и y, а функция $f(x,\theta)$ имеет вид $f(x,\theta) = A + bx$, где $\theta = (A,b)$. Относительно имеющихся наблюдений $(x_i,y_i), i \in [1,n] \cap \mathbb{N}$, полагаем, что

$$y_i = A + bx_i + \varepsilon_i,$$

где $\varepsilon_1, ..., \varepsilon_n$ - независимые (ненаблюдаемые) одинаково распределенные случайные величины. Можно различными методами подбирать "лучшую" прямую линию. Широко используется **метод наименьших квадратов**.

Построим оценку параметра $\theta = (A, b)$ так, чтобы величины

$$e_i = y_i - f(x_i, \theta) = y_i - A - bx_i$$

называемые остатками, были как можно меньше, а именно, чтобы сумма их квадратов была минимальной:

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - A - bx_i)^2 \to \min_{(A,b)}$$

Чтобы упростить формулы, положим $x_i = x_i - \overline{x} + \overline{x}$. Тогда

$$y_i = a + b(x_i - \overline{x}) + \varepsilon_i, \quad i \in [1, n] \cap \mathbb{N},$$

где $\overline{x} = \sum_{i=1}^{n} x_i/n$, $a = A + b\overline{x}$ Сумму

$$\sum_{i=1}^{n} (y_i - a - b(x_i - \overline{x}))^2$$

минимизируем по (a, b), приравнивая нулю производные по a и b. Получим систему линейных уравнений относительно a и b. Ее решение $(\widehat{a},\widehat{b})$ легко находится

$$\widehat{a} = \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$\widehat{b} = \frac{\sum_{i=1}^{n} (y_i - \overline{y})(x_i - \overline{x})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Свойства оценок

Нетрудно показать, что если $M\varepsilon_i=0,\quad D\varepsilon_i=\sigma^2,$ то

- 1. $M\widehat{a}=a, \quad M\widehat{b}=b \implies$ обе оценки несмещённые 2. $D\widehat{a}=\sigma^2/n, \quad D\widehat{b}=\sigma^2/\sum_{i=1}^n(x_i-\overline{x})^2$
- 3. $cov(\widehat{a}, \widehat{b}) = 0$

Если дополнительно предположить нормальность распределения ε_i , то

- 4. \widehat{a},\widehat{b} имеют нормальное распределение и независимы
- 5. Остаточная сумма квадратов

$$Q^{2} = \sum_{i=1}^{n} \left(y_{i} - \widehat{a} - \widehat{b}(x_{i} - \overline{x}) \right)^{2}$$

независима от $(\widehat{a}, \widehat{b})$, а $Q^2/\sigma^2 \sim \chi^2_{n-2}$

Оценка для σ^2 и доверительные интервалы

Свойство 5 даёт возможность несмещенно оценивать неизвестный параметр σ^2 величиной

$$s^2 = \frac{Q^2}{n-2}$$

Поскольку s^2 независима от \widehat{a} и \widehat{b} , отношения

$$\sqrt{n}\frac{\widehat{a}-a}{s}, \quad \frac{\widehat{b}-b}{s_b}: \quad s_b = \frac{s}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}}$$

имеют распределение Стьюдента с (n-2) степенями свободы, и потому доверительные интервалы для a и b таковы:

$$|\widehat{a} - a| \le t_p \frac{s}{\sqrt{n}}, \quad |\widehat{b} - b| \le t_p s_b,$$

где tp - квантиль уровня $(1+P_d)/2$ распределения Стьюдента с n-2 степенями свободы, P_d - коэффициент доверия.

Проверка гипотезы о коэффициенте наклона

Обычно возникает вопрос: может быть, y не зависит от x, т.е. b=0, и изменчивость y обусловлена только случайными составляющими ε_i ? Проверим гипотезу H:b=0. Если 0 не входит в доверительный интервал для b, т.е.

$$\frac{|b|}{s_b} > t_p,$$

то гипотезу H следует отклонить. Уровень значимости при этом $\alpha = 1 - P_d$.

Другой способ (в данном случае эквивалентный) проверки гипотезы H состоит в вычислении статистики

$$F = \frac{\widehat{b}^2 / D\widehat{b}}{Q^2 / (\sigma^2 (n-2))} = \frac{\widehat{b}^2}{s_b^2},$$

распределенной, если H верна, по закону $\mathcal{F}(1,n-2)$ Фишера с числом степеней свободы 1 и n-2. Если

$$F > F_{1-\alpha}$$

где $F_{1-\alpha}$ - квантиль уровня $1-\alpha$ распределения $\mathcal{F}(1,n-2)$, то гипотеза H отклоняется с уровнем значимости α .

Вариация зависимой переменной и коэффициент детерминации

Рассмотрим вариацию (разброс) T_{ss} (total sum of square) значений y_i относительно среднего значения \overline{y}

$$T_{ss} = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

Обозначим \widehat{y}_i предсказанные с помощью функции регрессии значения $y_i: \widehat{y} = \widehat{a} + \widehat{b}x_i$. Сумма R_{ss} (regression sum of square)

$$R_{ss} = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2$$

означает величину разброса, которая обусловлена регрессией (ненулевым значением наклона \widehat{b}). Сумма E_{ss} (error sum of squares)

$$E_{ss} = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

означает разброс за счет случайных отклонений от функции регрессии. Оказывается,

$$T_{ss} = R_{ss} + E_{ss},$$

т.е. полный разброс равен сумме разбросов за счет регрессии и за счет случайных отклонений. Величина R_{ss}/T_{ss} - доля вариации значений y_i , обусловленной регрессией (т.е. доля закономерной изменчивости в общей изменчивости). Статистика

$$R^2 = \frac{R_{ss}}{T_{ss}} = 1 - \frac{E_{ss}}{T_{ss}}$$

называется коэффициентом детерминации. Если $R^2=0$, это означает, что регрессия ничего не дает, т.е. знание x не улучшает предсказания для y по сравнению с тривиальным $\widehat{y}_i=\overline{y}$. Другой крайний случай $R^2=1$ означает точную подгонку: все точки наблюдений лежат на регрессионной прямой. Чем ближе к 1 значение R^2 , тем лучше качество подгонки.

3 Пример

В таблице приведены данные по 45 предприятиям легкой промышленности по статистической связи между стоимостью основных фондов (fonds, млн руб.) и средней выработкой на 1 работника (product, тыс. руб.); z - вспомогательный признак: z=1 - федеральное подчинение, z=2 – муниципальное. Таблица

fonds	product	Z	fonds	product	Z	fonds	product	Z
6,5	18,3	1	9,3	17,2	2	10,4	21,4	2
10,3	31,1	1	5,7	19,0	2	10,2	23,5	2
7,7	27,0	1	12,9	24,8	2	18,0	31,1	2
15,8	37,9	1	5,1	21,5	2	13,8	43,2	2
7,4	20,3	1	3,8	14,5	2	6,0	19,5	2
14,3	32,4	1	17,1	33,7	2	11,9	42,1	2
15,4	31,2	1	8,2	19,3	2	9,4	18,1	2
21,1	39,7	1	8,1	23,9	2	13,7	31,6	2
22,1	46,6	1	11,7	28,0	2	12,0	21,3	2
12,0	33,1	1	13,0	30,9	2	11,6	26,5	2
9,5	26,9	1	15,3	27,2	2	9,1	31,6	2
8,1	24,0	1	13,5	29,9	2	6,6	12,6	2
8,4	24,2	1	10,5	34,9	2	7,6	28,4	2
15,3	33,7	1	7,3	24,4	2	9,9	22,4	2
4,3	18,5	1	13,8	37,4	2	14,7	27,7	2

Построим диаграмму рассеяния наблюдений, чтобы убедиться, что предположение линейности регрессионной зависимости не лишено смысла.

Теперь выполним регрессионный анализ.

```
Multiple Regression Results

Dep. Var.: PR Multiple R: ,77227708 F = 63,54427
RI: ,59641189 df = 1,43
No. of cases: 45 adjusted RI: ,58702612 p = ,000000
Standard error of estimate: 5,008213030
Intercept: 11,502116301 Std.Error: 2,128204 t( 43) = 5,4046 p < ,0000

F beta=,772
```

В окне Multiple Regression Results имеем основные результаты: коэффициент детерминации $R^2 = RI : 0.596$. Гипотеза о нулевом значении наклона отклоняется с высоким уровнем значимости p = 0.000000 (т.е. р $< 10^{-6}$). Кнопка Regression summary – на экране таблица результатов:

Regression Summary for Dependent Variable: PR							
Continue R= ,77227708 RI= ,59641189 Adjusted RI= ,58702612 F(1,43)=63,544 p<,00000 Std.Error of estimate: 5,0082							
		St. Err.		St. Err.			
N=45	BETA	of BETA	В	of B	t(43)	p-level	
Intercpt			11,50212	2,128204	5,404612	,000003	
F	,772277	,096880	1,43440	,179942	7,971466	,000000	

В ее заголовке повторены результаты предыдущего окна; в столбцах приведены: В - значения оценок неизвестных коэффициентов регрессии; $St.\ Err.\ of\ B$ - стандартные ошибки оценки коэффициентов, t - значение статистики Стьюдента для проверки гипотезы о нулевом значении коэффициента; p - level - уровень значимости отклонения этой гипотезы. В данном случае, поскольку значения p- level очень малы (меньше 10^{-4}), гипотезы о нулевых значениях коэффициентов отклоняются с высокой значимостью. Итак, имеем регрессию:

$$product = 11.5 + 1.43 fonds,$$

соответствующие стандартные ошибки коэффициентов: 2.1 и 0.18; значение s: s=5.01 ($Std\ Error\ of\ estimate$ - ошибка прогноза выработки по фондам с помощью этой функции). Значение коэффициента детерминации $R^2=RI=0.596$ достаточно велико (доля R=0.77 всей изменчивости объясняется вариацией фондов).

Уравнение регрессии показывает, что увеличение основных фондов на 1 млн руб. приводит к увеличению выработки 1 работника в среднем на $\beta_1=1.43$ тыс. руб.

Для удобства интерпретации параметра $\beta_1 = \Delta y/\Delta x$ пользуются коэффициентом эластичности

$$\Theta = eta_1 rac{\overline{x}}{\overline{y}} = rac{\Delta y}{\Delta x} \cdot rac{\overline{x}}{\overline{y}} = rac{\Delta y}{\overline{y}} \Big/ rac{\Delta x}{\overline{x}},$$

который показывает среднее изменение (в долях или %) зависимой переменной y при изменении фактора x:

$$\frac{\Delta y}{\overline{y}} = \Im \frac{\Delta x}{\overline{x}}$$

Теперь построим регрессию выработки по фондам для более однородной совокупности - для предприятий федерального подчинения (z=1). Можно ожидать, что качество подгонки улучшится. Предварительно визуально оценим данные процедурой Scatterplot.

Возвращаемся в окно Multiple Regression. В окнах M.R.Results и Regression summary получаем результаты:

$$product = 12.55 + 1.44 fonds$$

 $R^2 = RI = 0.897, \quad s = 2.68$

Коэффициент детерминации увеличился с 0.597 до 0.897, значение s уменьшилось с 5.01 до 2.68. Действительно, подгонка улучшилась

4 Множественная регрессия

Обобщением линейной регрессионной модели с двумя переменными является многомерная регрессионная модель (или модель множественной регрессии). Пусть n раз измерены значения факторов $x_1, x_2, ..., x_k$ и соответствующие значения переменной y; предполагается, что (0)

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \varepsilon_i, \quad i \in [1, n] \cap \mathbb{N}$$

(второй индекс у х относится к номеру фактора, а первый - к номеру наблюдения); предполагается также, что (1)

$$M\varepsilon_i = 0, \quad M\varepsilon_i^2 = \sigma^2$$

 $M(\varepsilon_i\varepsilon_j) = 0, \quad i \neq j$

т.е. ε_i - некоррелированные случайные величины. Первое соотношения удобно записывать в матричной форме:

$$Y = X\beta + \varepsilon \qquad (13),$$

где $Y = (y_1, ..., y_k)^T$ - вектор-столбец значений зависимой переменной, T - символ транспонирования $\beta = (\beta_0, \beta_1, ..., \beta_k)^T$ - вектор-столбец (размерности k) неизвестных коэффициентов регрессии, $\varepsilon = (\varepsilon_1, ..., \varepsilon_n)^T$ - вектор случайных отклонений,

$$X = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1k} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & \cdots & x_{nk} \end{pmatrix}$$

-матрица $n \times (k+1)$; в i - й строке $(1, x_{i1}, ..., x_{ik})$ находятся значения независимых переменных в i-м наблюдении первая переменная - константа, равная 1.

Оценка коэффициентов регрессии

Построим оценку для вектора $\widehat{\beta}$ так, чтобы вектор оценок $\widehat{Y}=X\beta$ зависимой переменной минимально (в смысле квадрата нормы разности) отличался от вектора Y заданных значений:

$$||Y - \widehat{Y}||^2 = ||Y - X\beta||^2 \to \min_{\widehat{\beta}}$$

Решением является (если ранг матрицы равен k+1) оценка (2)

$$\widehat{\beta} = (X^T X)^{-1} X^T Y$$

Нетрудно проверить, что она несмещенная. Ковариационная (дисперсионная) матрица равна

$$D\widehat{\beta} = (\widehat{\beta} - \beta)(\widehat{\beta} - \beta)^T = \sigma^2(X^T X)^{-1} = \sigma^2 Z$$

Теорема Гаусса - Маркова. В условиях (1) оценка (2) является наилучшей (в смысле минимума дисперсии) оценкой в классе линейных несмещенных оценок.

Оценка дисперсии σ^2 ошибок

Обозначим

$$e = Y - \widehat{Y} = Y - X\widehat{\beta} = \left(I - X(X^TX)^{-1}X^T\right)Y = BY$$

вектор остатков (или невязок); $B = I - X(X^TX)^{-1}X^T$ - матрица; можно проверить, что $B^2 = B$. Для остаточной суммы квадратов $||e||^2$ справедливо соотношение

$$M||e||^2 = M \sum_{i=1}^n e_i^2 = (n-k-1)\sigma^2,$$

откуда следует, что несмещенной оценкой для σ^2 является

$$s^{2} = \frac{||e||^{2}}{n - k - 1} = \frac{Y^{T}BY}{n - k - 1}$$

Если предположить, что ε_i нормально распределены, то справедливы следующие свойства оценок:

- 1. $(n-k-1)\frac{s^2}{\sigma^2} \sim \chi^2_{n-k-1}$
- 2. Оценки $\widehat{\beta}$ и s^2 независимы
- 3. Как и в случае простой регрессии, справедливо соотношение:

$$T_{ss} = R_{ss} + E_{ss}$$

в векторном виде:

$$||Y - \overline{Y}||^2 = ||Y - \widehat{Y}||^2 + ||\widehat{Y} - \overline{Y}||^2$$

Поделив обе части на полную вариацию игреков

$$T_{ss} = \sum_{i=1}^{n} (y_i - \overline{y})^2,$$

получим коэффициент детерминации

$$R^{2} = \frac{R_{ss}}{T_{ss}} = 1 - \frac{||Y - \widehat{Y}||^{2}}{||Y - \overline{Y}||^{2}}$$

Коэффициент R^2 показывает качество подгонки регрессионной модели к наблюдённым значениям y_i . Если $R^2=0$, то регрессия Y на $x_1,...,x_k$ не улучшает качество предсказания y_i по сравнению с тривиальным предсказанием. Другой крайний случай $R^2=1$ означает точную подгонку: все $\varepsilon_i=0$, т.е. все точки наблюдений лежат на регрессионной плоскости. Однако, значение R^2 возрастает с ростом числа переменных (регрессоров) в регрессии, что не означает улучшения качества предсказания, и потому вводится скорректированный (adjusted) коэффициент детерминации

$$R_{adj}^2 = 1 - \frac{||Y - \widehat{Y}||^2 / (n - k - 1)}{||Y - \overline{Y}|| / (n - 1)} = 1 - (1 - R^2) \frac{n - 1}{n - k - 1}$$

Его использование более корректно для сравнения регрессий при изменении числа переменных (регрессоров).

Доверительные интервалы для коэффициентов регрессии. Стандартной ошибкой оценки $\hat{\beta}_j$ является величина $\sigma \sqrt{z_{jj}}$, оценка для которой

$$\underline{sj} = s\sqrt{z_{jj}}, \qquad j = 0, 1, ..., k,$$

где z_{jj} - диагональный элемент матрицы Z. Если ошибки ε_i распределены нормально, то, в силу свойств 1) и 2), приведенных выше, статистика

$$t = \frac{(\hat{\beta}_j - \beta_j)/\sigma\sqrt{z_{jj}}}{s/\sigma} = \frac{\hat{\beta}_j - \beta_j}{s_j} \sim t(n - k - 1)$$

распределена по закону Стьюдента с (n-k-1) степенями свободы, и потому неравенство

$$\left|\hat{\beta}_{j} - \beta_{j}\right| \leq t_{R} s_{j}$$

где $t_{\mathcal{D}}$ - квантиль уровня $(1 + P_{\mathcal{D}}) / 2$ этого распределения, задает доверительный интервал для β_i с уровнем доверия $P_{\mathcal{D}}$.

Проверка гипотезы о нулевых значениях коэффициентов регрессии. Для проверки гипотезы H_0 об отсутствии какой бы то ни было линейной связи между y и совокупностью факторов, H_0 : $\beta_1 = \beta_2 = ... = \beta_k = 0$, т.е. об одновременном равенстве нулю всех коэффициентов, кроме коэффициента β_0 при константе, используется статистика

$$F = \frac{R^2/k}{(1-R^2)/(n-k-1)} = \frac{R_{ss}}{E_{ss}} \cdot \frac{(n-k-1)}{k} = \frac{\sum_{i} (\hat{y}_i - \bar{y})^2/k}{\sum_{i} e_i^2/(n-k-1)},$$

распределенная, если H_0 верна, по закону Фишера с k и n - k - 1 степенями свободы. H_0 отклоняется, если

$$F > F_{\alpha}(k, n - k - 1),$$

где F_{α} - квантиль уровня 1 - α .

Отбор наиболее существенных объясняющих переменных

Различные регрессии (с различным набором переменных) можно сравнивать по скорректированному коэффициенту детерминации R^2_{adj} : принять тот вариант регрессии, для которого он максимален

5 Пример

Исследуется зависимость урожайности у зерновых культур (${\rm ц/ra}$) от ряда факторов (переменных) сельскохозяйственного производства, а именно,

 x_1 - число тракторов на 100 га;

 x_2 - число зерноуборочных комбайнов на 100 га;

 x_3 - число орудий поверхностной обработки почвы на 100 га;

 x_4 - количество удобрений, расходуемых на гектар (т/га);

 x_5 - количество на гектар (ц/га) химических средств защиты растений.

Исходные данные для 20 районов области приведены в таблице.

	\mathcal{Y}	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅
1	9.7	1.59	.26	2.05	.32	.14
2	8.4	.34	.28	.46	.59	.66
3	9.0	2.53	.31	2.46	.30	.31
4	9.9	4.63	.40	6.44	.43	.59
5	9.6	2.16	.26	2.16	.39	.16
6	8.6	2.16	.30	2.69	.32	.17
7	12.5	.68	.29	.73	.42	.23
8	7.6	.35	.26	.42	.21	.08
9	6.9	.52	.24	.49	.20	.08
10	13.5	3.42	.31	3.02	1.37	.73
11	9.7	1.78	.30	3.19	.73	.17
12	10.7	2.40	.32	3.30	.25	.14
13	12.1	9.36	.40	11.51	.39	.38
14	9.7	1.72	.28	2.26	.82	.17
15	7.0	.59	.29	.60	.13	.35
16	7.2	.28	.26	.30	.09	.15
17	8.2	1.64	.29	1.44	.20	.08
18	8.4	.09	.22	.05	.43	.20
19	13.1	.08	.25	.03	.73	.20
20	8.7	1.36	.26	.17	.99	.42

Здесь мы располагаем выборкой объема n=20; число независимых переменных (факторов) k=5. Матрица должна содержать 6 столбцов размерности 20; первый столбец состоит из единиц, а столбцы со 2-го по 6-й представлены соответственно столбцами $3\div 7$ таблицы. Специальный анализ (здесь не приводимый) технологии сбора исходных данных показал, что допущения (1) могут быть приняты в качестве рабочей гипотезы, поэтому можем записать уравнения статистической связи между y_i и $Xi=(x_{i1},x_{i2},...,x_{i5}), i\in [1,n]\cap \mathbb{N}$ в виде (0).

Предварительно визуально оценим имеющиеся данные, построив несколько диаграмм рассеяния:

Иногда такой просмотр позволяет увидеть основную зависимость. В нашем примере этого нет.

Выполним регрессионный анализ.

Для начала посмотрим на зависимость y от всех пяти факторов.

Multiple Re	egression Resu	lts				? X
Multiple	Regression	Results				
Dep. Var. : Y Multiple R : ,71923865 F = 3,000755 RI: ,51730424 df = 5,14 No. of cases: 20 adjusted RI: ,34491290 p = ,047874 Standard error of estimate: 1,599006627 Intercept: 3,514595106 Std.Error: 5,418530 t(14) = ,64863 p < ,5271						
X5 1		65 RI= ,517	iable: Y 730424 Adju			a=,729
N=20	BETA	St. Err. of BETA	В	St. Err.	t(14)	p-level
Intercpt			3,51460	5,41853	,648625	,527078
X1	-,006596	1,002443	-,00613	,93167	-,006580	,994843
X2	,359977	,498031	15,54246	21,50311	,722800	,481704
X3	,150640	1,141174	,10990	,83254	,132004	,896859
X4	,728616	,251328	4,47458	1,54345	2,899065	,011664
X5	-,288692	,304031	-2,93251	3,08833	-,949546	,358448

В окне Mult. Regr. Results имеем основные результаты: коэффициент детерминации $R^2=0.517$; для проверки гипотезы H_0 об отсутствии какой бы то ни было линейной связи между переменной y и совокупностью факторов определена статистика F=3.00; это значение соответствует уровню значимости p=0.048 согласно распределению $\mathcal{F}(5,14)$ с df=5 и 14 степенями свободы. поскольку значение p весьма мало, гипотеза H_0 отклоняется.

В заголовке окна Regression summary повторены результаты предыдущего окна; в столбце указаны оценки неизвестных коэффициентов $\widehat{\beta}_j$. Таким образом, оценка $\widehat{f}(x)$ неизвестной функции регрессии f(x) в данном случае:

$$\widehat{f}(x) = 3.51 - 0.06x_1 + 15.5x_2 + 0.11x_3 + 4.47x_4 - 2.93x_5$$

В столбце $St.\ Err.\ of\ B$ указаны стандартные ошибки s_j оценок коэффициентов; видно, что стандартные ошибки в оценке всех коэффициентов, кроме β_4 , превышают значения самих коэффициентов, что говорит о статистической ненадежности последних. В столбце t(14) -значение статистики Стьюдента для проверки гипотезы о нулевом значении соответствующих коэффициентов; в столбце p-level -уровень значимости отклонения этой гипотезы; достаточно малым (0.01) этот уровень является только для коэффициента при x_4 . Только переменная x_4 - количество удобрений, подтвердила свое право на включение в модель. В то же время проверка гипотезы об отсутствии какой бы то ни было линейной связи между y и $(x_1, ..., x_5)$ с помощью статистики F (об этом сказано выше)

$$F = 3.00, \quad p = 0.048$$

говорит о том, что следует продолжить изучение линейной связи между y и $(x_1,...,x_5)$, анализируя как их содержательный смысл, так и матрицу парных корреляций:

Correlation	Correlations (rehrun2.sta)						
Continue	X1	X2	Ж3	X4	X5	Υ	
X1	1,000000	,854254	,977908	,110444	,341013	,430250	
X2	,854254	1,000000	,881920	,026852	,459592	,374079	
X3	,977908	,881920	1,000000	,029819	,277923	,403153	
X4	,110444	,026852	,029819	1,000000	,570629	,577310	
X5	,341013	,459592	,277923	,570629	1,000000	,332137	
Y	,430250	,374079	,403153	,577310	,332137	1,000000	

Из матрицы видно, что x_1, x_2, x_3 (оснащенность техникой) сильно коррелированы (парные коэффициенты корреляции 0.854, 0.882 и 0.978), т.е. имеет место дублирование информации, и потому, по-видимому, есть возможность перехода от исходного числа признаков (переменных) к меньшему.

Сравним различные регрессии, пошагово отбирая переменные. 1-й шаг. Найдем одну наиболее информативную переменную. При k=1 величина R^2 совпадает с квадратом обычного (парного) коэффициента корреляции $R^2=r^2(y,x)$, из матрицы корреляций находим:

$$\max_{1 \le j \le 5} r^2(y, x_i) = r^2(y, x_4) = 0.577^2 = 0.333,$$

так что в классе однофакторных регрессионных моделей наиболее информативным предиктором (предсказателем) является x_4 - количество удобрений. Вычислим скорректированный (adjusted) коэффициент детерминации: $R^2_{adj}(1) = 0.296$

```
Multiple Regression Results

Dep. Var.: Y Multiple R: ,57730960 F = 8,998098
RI: ,33328637 df = 1,18
No. of cases: 20 adjusted RI: ,29624673 p = ,007691
Standard error of estimate: 1,657337484
Intercept: 7,874628680 Std.Error: ,6633540 t( 18) = 11,871 p < ,0000

X4 beta=,577
```

2-й шаг. Среди всевозможных пар (x_4, x_j) , j = 1, 2, 3, 5, выбирается наиболее информативная (в смысле R^2 или, что то же самое, в смысле R^2_{adj}) пара:

$$R_{adj}^2(x_4, x_1) = 0.406$$
 $R_{adj}^2(x_4, x_2) = 0.399$ $R_{adj}^2(x_4, x_3) = 0.421$ $R_{adj}^2(x_4, x_5) = 0.255$

откуда видно, что наиболее информативной парой является (x_4, x_3) , которая дает

$$R_{adj}^2(2) = \max R_{adj}^2(x_4, x_j) = 0.421$$

Вычислим оценку уравнения регрессии урожайности по факторам x_3 и x_4 .

🔚 Regressior	Regression Summary for Dependent Variable: Y							
Continue	ntinue R= ,69452640 RI= ,48236693 Adjusted RI= ,42146892 F(2,17)=7,9209 p<,00371 Std.Error of estimate: 1,5027							
		St. Err.		St. Err.				
N=20	BETA	of BETA	В	of B	t(17)	p-level		
N=20 Intercpt	BETA	of BETA	7,290812	of B	t(17) 11,10090	p-level ,000000		
	,386281	of BETA ,174574	7,290812 ,281812					

$$\widehat{f}(x_3, x_4) = 7.29 + 0.28x_3 + 3.47x_4$$
 (2)

0.66, 0.13, 1.07 - стандартные ошибки, взятые из столбца Std. Err. of B таблицы Regression Results для варианта независимых переменных (x_3, x_4) . Все три коэффициента статистически значимо отличаются от нуля при уровне значимости $\alpha = 0.05$, что видно из столбца p-level той же таблицы. 3-й шаг.

Среди всевозможных троек (x_4, x_3, x_j) , j = 1, 2, 5, выбираем аналогично наиболее информативную:

Видим, что наиболее информативной тройкой является (x_4, x_3, x_5) , которая дает

$$R_{adj}^2(3) = 0.404$$

что меньше, чем $R_{adj}^2(2) = 0.421$; это означает, что третью переменную в модель включать нецелесообразно, т.к. она не повышает значение (более того, уменьшает). Итак, результатом анализа является (2)

6 Нелинейная зависимость

Связь между признаком x и y может быть нелинейной, например, в виде полинома:

$$y = P_k(x) + \varepsilon,$$

где $P_k(x) = \beta_0 + \beta_1 x + ... + \beta_k x^k$, k - степень полинома, ε - случайная составляющая, $\varepsilon = 0, D\varepsilon = \sigma^2$.

Для имеющихся данных $(x_i, y_i), i = 1, ..., n$, можно записать

$$y_i = \beta_0 + \beta_1 x_i + \dots + \beta_k x_i^k + \varepsilon$$

или в матричной форме

$$Y = X\beta + \varepsilon$$
,

где

$$X = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^k \\ 1 & x_2 & x_2^2 & \cdots & x_2^k \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^k \end{pmatrix}$$

Имеем задачу (13), и потому все формулы п.2. оказываются справедливыми и в этом случае. Слово "линейный" в названии "линейный регрессионный анализ" означает линейность относительно параметров β_j , но не относительно факторов x_j .

Пример. Имеются эмпирические данные о зависимости y - выработки на одного работника доменного производства от x - температуры дутья; данные приведены в таблице в условных единицах.

No	X	Y	№	X	Y
1	1.01	8.8	11	5.80	11.8
2	1.15	9.2	12	6.14	12.2
3	1.91	8.7	13	6.64	13.1
4	2.47	10.2	14	6.85	14.4
5	2.66	9.3	15	8.11	17.5
6	2.74	9.4	16	8.47	18.6
7	2.93	10.7	17	9.09	18.6
8	4.04	8.5	18	9.23	18.0
9	4.50	8.9	19	9.59	23.8
10	4.64	8.0	20	9.96	18.4

Образуем таблицу $4\nu \times 20c$, в первые 2 столбца поместим исходные данные x и y. В третьем столбце поместим значения нового фактора x2 квадратов температур, в четвертом - x3 третьих степеней температур. Сначала оценим имеющиеся данные визуально, с помощью диаграммы рассеяния.

Видим, что зависимость, возможно, нелинейная. Построим несколько регрессий:

1) первой степени: $y = \beta_0 + \beta_1 x$; получим:

	Regression Summary for Dependent Variable: Y						
Continue R= ,89808430 RI= ,80655541 Adjusted RI= ,79580849 F(1,18)=75,050 p<,00000 Std.Error of estimate: 2,0992							
		St. Err.		St. Err.			
N=20	BETA	of BETA	В	of B	t(18)	p-level	
Intercpt			5,372930	,988060	5,437857	,000036	
X	,898084	,103667	1,395732	,161112	8,663135	,000000	

$$y = 5.37 + 1.40x$$
, Std. Err. of B: 0.98, 0.16
 $R_{adj}^2 = 0.796$, $s = 2.09$

2) второй степени: $y = \beta_0 + \beta_1 x + \beta_2 x^2$; получим:

Regression	Regression Summary for Dependent Variable: Y							
Continue	R= ,94994734 RI= ,90239994 Adjusted RI= ,89091758 F(2,17)=78,590 p<,00000 Std.Error of estimate: 1,5343							
		St. Err.		St. Err.				
N=20	BETA	of BETA	В	of B	t(17)	p-level		
_								
Intercpt			9,956839	1,334237	7,46257	,000001		
Intercpt	-,581944	,370072	9,956839 -,904412	1,334237 ,575137	7,46257 -1,57252	,000001 ,134256		

$$y = 9.96 - 0.9x + 0.21x^2$$
, Std. Err. of B: 1.33, 0.57, 0.05 $R_{adj}^2 = 0.891, s = 1.53$

Эта регрессия лучше предыдущей в смысле R_{adj}^2 и s. Однако, возможно, регрессия третьей степени окажется лучше?

3) третьей степени: $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$; получим:

Regression	Regression Summary for Dependent Variable: Y						
	R= ,95220628 RI= ,90669680 Adjusted RI= ,88920245 F(3,16)=51,828 p<,00000 Std.Error of estimate: 1,5463						
		St. Err.		St. Err.			
N=20	BETA	of BETA	В	of B	t(16)	p-level	
Intercpt			11,60650	2,345520	4,94837	,000145	
X	-1,49268	1,124621	-2,31981	1,747798	-1,32727	,203048	
X2	3,75005	2,633718	,51624	,362563	1,42386	,173696	
ХЗ	-1,36097	1,585487	-,01887	,021978	-,85839	,403351	

$$y = 11.6 - 2.32x + 0.52x^2 - 0.02x^3$$
, Std. Err. of B: 2.35, 1.75, 0.36, 0.02 $R_{adi}^2 = 0.889, s = 1.55$

Поскольку степень увеличилась без увеличения R_{adj}^2 , от регрессии третьей степени отказываемся в пользу второй степени. Однако гипотеза о нулевом значении β_1 в регрессии второй степени не отклоняется (p-level=0.1), и потому построим 4) регрессию $y=\beta_0+\beta_2x^2$ без линейного члена; получим:

🧱 Regression Summary for Dependent Variable: Y							
Continue	Continue R= ,94244528 RI= ,88820311 Adjusted RI= ,88199217 F(1,18)=143,01 p<,00000 Std.Error of estimate: 1,5959						
N=20	BETA	St. Err.	В	St. Err.	t(18)	p-level	
Intercpt			8,025412	,542069	14,80516	,000000	
X2	,942445	,078810	,129739	,010849	11,95852	,000000	

$$y = 8.03 + 0.13x^2$$
, Std. Err. of B: 0.54, 0.01
 $R_{adi}^2 = 0.882, s = 1.6$

Сравнивая ее по R_{adj}^2 и s с регрессией для второй степени, отдаем предпочтение регрессии для второй степени, поскольку ошибка s прогноза меньше.

7 Нелинейная зависимость – обобщение

Предполагается, что связь между факторами $(x_1, ..., x_p)$ и y выражается следующим образом:

$$y = \beta_0 + \beta_1 \varphi_1(x_1, ..., x_p) + ... + \beta_k \varphi_k(x_1, ..., x_p) + \varepsilon,$$

где $\varphi_j(\cdot,...,\cdot)$ - система некоторых функций. Имеется n наблюдений при различных значениях $x\equiv ((x_1,...,x_p):x^1,...,x^n$; тогда

$$y = \beta_0 + \sum_{j=1}^k \beta_j \varphi_j(x^i) + \varepsilon_i, i = 1, ..., n,$$

или в матричной форме

$$Y = X\beta + \varepsilon,$$

где - матрица $n \times (k+1)$, в i-й строке которой $(1, \varphi_1(x^i), \varphi_2(x^i), ..., \varphi_k(x^i)); y$, β , ε , как в (13). Получили задачу (13), и потому все формулы п.2 оказываются справедливыми.

Пример. Имеется 20 наблюдений по некоторому технологическому процессу химического производства; $x,\ y$ - изменяемое содержание двух веществ , z - контролируемый параметр получаемого продукта. Полагая, что

$$z = P(x, y) + \varepsilon,$$

где $P(x,y) = \beta_0 + \beta_1 x + \beta_2 y + \beta_3 x^2 + \beta_4 x y + \beta_5 y^2$ - многочлен второй степени, ε - случайная составляющая, $\varepsilon = 0, D\varepsilon = \sigma^2$, необходимо оценить функцию P(x,y) и найти точку ее минимума. Исходные данные приведены в таблице.

i			7
	x_i	y_i	Z_i
1	-3	-2	160
2	-3	1	61.4
3	-3	3	0.5
4	-2	-3	148.8
5	-2	0	86.5
6	-2	2	45
7	-1	-2	121.2
8	-1	3	18
9	0	-3	74.2
10	0	-1	110.2
11	0	2	99.6
12	1	-1	107.9
13	1	1	94.5
14	1	3	115.4
15	2	-3	17.1
16	2	1	105.4
17	2	-3	86.9
18	3	-2	7.7
19	3	0	60.9
20	3	2	112.2

Образуем таблицу $6\nu \times 20c$, в 3 столбца которой ввести исходные данные. Образуем новые факторы - столбцы, соответствующие x^2 , xy, y^2 , и вычислим их значения.

Проведем регрессионный анализ:

Regression Summary for Dependent Variable: Z						_
Continue	R= ,91126516 RI= ,83040420 Adjusted RI= ,76983427 F(5,14)=13,710 p<,00006 Std.Error of estimate: 21,848					
		St. Err.		St. Err.		
N=20	BETA	of BETA	В	of B	t(14)	p-level
Intercpt			100,1670	10,71454	9,34869	,000000
X	-,126634	,111895	-2,7600	2,43873	-1,13172	,276765
Y	-,209164	,112401	-4,3334	2,32867	-1,86088	,083892
X2	-,148392	,112427	-1,8913	1,43294	-1,31990	,208043
XY	,819221	,114725	8,7830	1,22998	7,14073	,000005
¥2	-,097215	,116105	-1,2334	1,47301	-,83730	,416490

Получили регрессию

$$z(x,y) = 100.167 - 2.76x - 4.33y - 1.89x^2 + 8.78xy - 1.23y^2$$
 Std. Err. of B: 10.71, 2.43, 2.32, 1.43, 1.23, 1.47

Трехмерный график полученной функции:

