Task04 In BFS, for adjacency list, the total time complexity T(n) = O(v) + O(e) + O(1) = O(v+e)for each vertex for each edge single operations However, for adjacency matrix, the total time complexit $T(n) = O(1) + O(v^2)$ single operations checking rows and columns 0 (V2) In DFS, for adjacency list, the total time complexity T(m) = O(1) + O(v) + O(e)single operations for each for each vertex edge = O(v + e)However, for adjacency matrix, the total time complexity - $T(n) = O(1) + O(v^2)$ single operations checking for rows and columns.

	Even though the time complexity of both the algorithms are same, however we can notice th
o + i)	reach the endpoint whereas in BFS, more node are visited to reach the endpoint. 50, Gary
	gets victory as he reaches fasten.
(ample)	However for adirector materia the total time
	$T(m) = 0(0) + 0(v^2)$
	Aumulaa Eura karak balkraanga khorterska alabeta
	(EV) () =
dix 91qr	To DFS fee adjourney list the tal time co
	(9)0 + (0)0 + (0)0 = (7)7
	single operations ton each ton each vertex each
9	Hewever for adjacency matrix; the total time
	- vtixalqmaa
	$\frac{1}{\sqrt{1}(n)} = 0(3) + 0(4)$ $\frac{1}{\sqrt{1}(n)} = 0(3) + 0(4)$ $\frac{1}{\sqrt{1}(n)} = 0(3) + 0(4)$
	. enmuos bau eauer