CE342: DESIGN & ANALYSIS OF ALGORITHMS

Credits and Hours:

Teaching Scheme	Theory	Practical	Tutorial	Total	Credit
Hours/week	3	2	-	5	4
Marks	100	50	-	150	

Pre-requisite courses:

- Data Structure and Algorithms
- Programming language

Outline of the Course:

Sr.	Title of the unit	Minimum number
No.		of hours
1.	Basics of Algorithms and Mathematics	03
2.	Analysis of Algorithm	06
3.	Greedy Algorithm	07
4.	Divide and Conquer Algorithm	07
5.	Dynamic Programming	08
6.	Exploring Graphs	04
7.	Backtracking & Branch & Bound	05
8.	String Matching and Introduction to NP- Completeness	05
	Total hours (Theory):	45
	Total hours (Lab):	30
	Total hours:	75

Detailed Syllabus:

1.	Basics of Algorithms and Mathematics	03 Hours	05%
	What is an algorithm?, Performance Analysis, Model for		
	Analysis- Random Access Machine (RAM), Primitive		
	Operations, Time Complexity and Space Complexity		
2.	Analysis of Algorithm	06 Hours	14%
	The efficiency of algorithm, average and worst case		
	analysis, elementary operation, Asymptotic Notation,		

	Analysing control statement, Analysing Algorithm using		
	Barometer, Solving recurrence Equation, Sorting Algorithm		
3.	Greedy Algorithm	07 Hours	16%
	General Characteristics of greedy algorithms, Problem solving		
	using Greedy Algorithm Making change problem		
	Graphs: Minimum Spanning trees (Kruskal's algorithm,		
	Prim's algorithm, Graphs: Shortest paths; The Knapsack		
	Problem; Job Scheduling Problem		
4.	Divide and Conquer Algorithm	07 Hours	16%
	Multiplying large Integers Problem, Binary Search Sorting		
	(Merge Sort, Quick Sort), Matrix Multiplication, Exponential		
5.	Dynamic Programming	08 Hours	18%
	Introduction, The Principle of Optimality, Problem Solving		
	using Dynamic Programming – Calculating the Binomial		
	Coefficient, Making Change Problem, Assembly Line-		
	Scheduling Knapsack Problem, Shortest Path Matrix Chain		
	Multiplication, Longest Common Subsequence		
6.	Exploring Graphs & Backtracking	04 Hours	09%
	An introduction using graphs and games, Traversing Trees -		
	Preconditioning Depth First Search- Undirected Graph;		
	Directed Graph, Breath First Search, Applications of BFS &		
	DFS		
7.	Backtracking & Branch & Bound	05 Hours	12%
	Backtracking -The Knapsack Problem; The Eight queens		
	problem, General Template, Brach and Bound -The		
	Assignment Problem; The Knapsack Problem, The min-max		
	principle		
	FF		
8.	String Matching and Introduction to NP-Completeness	05 Hours	10%
8.		05 Hours	10%
8.	String Matching and Introduction to NP-Completeness	05 Hours	10%
8.	String Matching and Introduction to NP-Completeness The naïve string matching algorithm, The Rabin-Karp	05 Hours	10%

Course Outcome (COs):

At the end of the course, the students will be able to

CO1	Analyse the asymptotic performance of algorithms.
CO2	Derive time and space complexity of different sorting algorithms and compare
	them to choose application specific efficient algorithm.
CO3	Understand and analyse the problem to apply design technique from divide and
	conquer, dynamic programming, backtracking, branch and bound techniques and
	understand how the choice of algorithm design methods impact the performance
	of programs.
CO4	Understand and apply various graph algorithms for finding shorted path and
	minimum spanning tree.
CO5	Synthesize efficient algorithms in common engineering design situations.
CO6	Understand the notations of P, NP, NP-Complete and NP-Hard.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	-	-	-	-	-	-	-	-	-	-	1	-
CO2	2	2	-	-	-	-	-	-	-	-	-	2	2	-
CO3	3	3	3	3	2	-	-	-	-	-	-	2	2	-
CO4	2	3	3	1	-	-	-	-	-	-	-	-	2	-
CO5	1	-	1	-	-	-	-	-	-	-	-	2	1	1
CO6	3	1	-	-	-	-	-	-	-	-	-	-	1	-

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

Recommended Study Material:

***** Text book:

Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson,
 Ronald Rivest and Clifford Stein, MIT Press

A Reference book:

- 1. Fundamental of Algorithms by Gills Brassard, Paul Bratley, Pentice Hall of India.
- 2. Fundamental of Computer Algorithms by Ellis Horowitz, Sartazsahni and sanguthevar Rajasekarm, Computer Sci.P.
- 3. Design & Analysis of Algorithms by P H Dave & H B Dave, Pearson Education.

❖ Web material:

1. http://highered.mcgraw-hill.com/sites/0073523402/