Medical Image Analysis

Jayant Mahawar
PhD Scholar
Department of Computer Science & Engineering

X-ray Image Analysis

X-ray Images

Wrist X-ray

Spine X-ray

Pediatric X-ray

Abdominal X-ray

^{*} https://vindr.ai/datasets/bodypartxr

X-ray Images

Anteroposterior (AP) supine view

Anteroposterior (AP) erect view

Lateral view

Posteroanterior (PA) view

* https://doi.org/10.53347/rID-14511

Spine X-ray - Osteophytes

^{*} https://www.spinalbackrack.com/what-is-a-bone-spur/

Spine X-ray - Disc Space Narrowing

^{*} https://www.radiologymasterclass.co.uk/tutorials/musculoskeletal/imaging-joints-bones/degenerative-disc-disease

Spine X-ray - Foraminal Stenosis

^{*} https://texasspinecare.com/conditions/foraminal-stenosis/

AC-Faster R-CNN

^{*} https://doi.org/10.1088/1361-6560/acf7a8

AC-Faster R-CNN - Deformable Convolution

^{*} https://doi.org/10.1088/1361-6560/acf7a8

AC-Faster R-CNN - AC- Head

^{*} https://doi.org/10.1088/1361-6560/acf7a8

AC-Faster R-CNN - Spatial Attention

^{*} https://doi.org/10.1088/1361-6560/acf7a8

Ground Truth: 3 objects AC-Faster-RCNN: 3 TP Faster R-CNN: 3 TP, 1FP Sparse R-CN

(a) Detection results of three models on X-ray image containing Foraminal steosis and Osteophytes

(b) Detection results of three models on X-ray image containing Spondylolysthesis, Disc space narrowing and Osteophytes

^{*} https://doi.org/10.1088/1361-6560/acf7a8

Chest X-ray Datasets

- Large-Scale Datasets
 - o NIH
 - Chexpert
- Contains Images, Text Report, Bounding Box annotations, etc.
- Erroneous labelling
- Inconsistency across datasets
- Small-Scale Datasets
 - JSRT
 - Pneumonia dataset
- Mostly contains data from 2-3 classes

Pediatric X-ray - Pediatric Lung Disorders

Surfactant Deficiency Syndrome

Transient Tachypnea

Meconium Aspiration

^{*} https://www.ncbi.nlm.nih.gov/books/NBK553873/

Pediatric X-ray - Large Airway Disorders

Subglottic Hemangioma

Endobronchial Carcinoid

Foreign Body Aspiration

^{*} https://www.ncbi.nlm.nih.gov/books/NBK553873/

Pediatric X-ray Analysis - DL model

^{*} https://arxiv.org/pdf/2301.13786v1.pdf

$$I_{\mathrm{soft}_{C}}\left(x,y
ight)=I\left(x,y
ight)-I_{\mathrm{bone}_{C}}\left(x,y
ight).$$

$$T_C:(x,y)\mapsto (s,t)$$

$$T_C^{-1}:(s,t)\mapsto (x,y)$$

^{*} https://link.springer.com/article/10.1007/s11548-015-1278-y

$$I_{st_{C}}\left(s,t
ight) =I\left(T_{C}^{-1}\left(s,t
ight)
ight)$$

$$I_{d_{C}}\left(s,t
ight) =\partial sI_{st_{C}}\left(s,t
ight)$$

$$I_{r_{C}}\left(s,t
ight)=\int\limits_{s_{0}}^{s}I_{s_{C}}I\left(i,t
ight)di+I_{st_{C}}\left(s_{0},t
ight).$$

^{*} https://link.springer.com/article/10.1007/s11548-015-1278-y

$$egin{aligned} I_{r_C}^i\left(s,t
ight) = &I_{r_C}\left(s,t
ight) + rac{I_{r_C}\left(\mathbf{p_c}
ight) - I_{r_C}\left(\mathbf{p_i}
ight)}{2} \ & imes \left(1 - rac{s - c(t)}{\left(s_{ ext{max}} - c(t)
ight)}
ight) \end{aligned}$$

$$I_{\mathrm{bone}_{C}}\left(x,y
ight)=\max\left(I_{r_{C}}\left(T_{C}\left(x,y
ight)
ight),0
ight).$$

^{*} https://link.springer.com/article/10.1007/s11548-015-1278-y

^{*} https://link.springer.com/article/10.1007/s11548-015-1278-y

Fig. Bone-suppressed CXR images predicted by the proposed models using a CXR sample from the cross-institutional NIH–CC DES test set. (a) Original CXR; (b) AE–BS model; (c) ConvNet–BS model; (d) RL–BS model; (e) ResNet–BS model; and (f) Ground truth.

^{*} https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151767/

Lung field Segmentation - Active Shape Model

- Training Phase
 - control points
 - scaling and alignment
- Shape Modeling
 - build a statistical shape model
 - Can use Principal Component Analysis

^{*} https://doi.org/10.1007/978-3-642-15711-0_77

Lung field Segmentation - Active Shape Model

- Image Analysis
 - o iteratively refines the model's shape
 - Energy function includes terms for shape regularization
- Optimization
 - Converges to produce segmented outline or boundary of the object of interest.

^{*} https://doi.org/10.1007/978-3-642-15711-0_77

Lung field Segmentation - Intensity-based Model

$$H(x) = \sum_{y=1}^N f(x,y)$$

$$V_r(y) \ = \ \sum_{x=x_r}^{x_c} f(x,y)$$

$$V_l(y) \ = \ \sum_{x=x_{r+1}}^{x_l} f(x,y)$$

^{*} https://ui.adsabs.harvard.edu/link_gateway/1988SPIE.1001..261C/doi:10.1117/12.968961

Lung field Segmentation - Intensity-based Model

$$p(G_i) = rac{HI(G_i)}{A} \ M = \sum_{i=1}^N G_i \, p(G_i) \ M_1 = rac{\sum_{i=1}^G G_i \, p(G_i)}{\sum_{i=1}^G p(G_i)} \qquad M_2 = rac{\sum_{i=G+1}^N G_i \, p(G_i)}{\sum_{i=G+1}^N p(G_i)} \ S_1 = \sum_{i=1}^G \left(M_1 - G_i
ight)^2 imes p(G_i) \qquad S_2 = \sum_{i=G+1}^N \left(M_2 - G_i
ight)^2 imes p(G_i) \ W = \left(M - M_1
ight)^2 + \left(M - M_2
ight)^2 \ T = \min(H) = \min\left(rac{(S_1 + S_2)}{W}
ight)$$

^{*} https://ui.adsabs.harvard.edu/link_gateway/1988SPIE.1001..261C/doi:10.1117/12.968961

Lung field Segmentation - Intensity-based Model

$$egin{aligned} Y &= a + bX + cX^2 \ ar{Y} &= a + bar{X} + car{X}^2 \ ar{X}ar{Y} &= aar{X} + bar{X}^2 + car{X}^3 \ ar{X}^2ar{Y} &= aar{X}^2 + bar{X}^3 + car{X}^4 \ ar{X}^{\bar{k}} &= rac{1}{n}\sum_{i=1}^k X_i^k \ ar{X}^{\bar{k}}ar{Y} &= rac{1}{n}\sum_{i=1}^k X_i^k Y_i \end{aligned}$$

^{*} https://ui.adsabs.harvard.edu/link_gateway/1988SPIE.1001..261C/doi:10.1117/12.968961

Lung field Segmentation - DL Method

- a) Original U-Net
- b) All-Dropout
- c) All-Convolutional
- d) InvertedNet.

F@AxB; s=s₀ d=d₀

F@AxB; s=s₀

pooling: AxB: s=s₀

upsampling: AxB

F@AxB; s=s₀

upsampling: AxB

F@AxB; s=s₀

convolutional layer with F feature maps, filter size AxB, stride s₀

pooling: AxB: s=s₀

upsampling: AxB

F@AxB; s=s₀

convolutional layer with pooling size AxB, stride s₀

upsampling: AxB

single deconvolutional layer with F feature maps, filter size AxB, stride s₀

concantenation operation of two layers

^{*} https://ieeexplore.ieee.org/document/8302848

Data Driven Estimation of Covid-19 Prognosis

^{*} https://ieeexplore.ieee.org/iel7/9761376/9761399/09761406.pdf

Data Driven Estimation of Covid-19 Prognosis

^{*} https://ieeexplore.ieee.org/iel7/9761376/9761399/09761406.pdf

Additional Information - Image + Text

^{*} https://doi.org/10.3389%2Ffdata.2020.00019

Additional Information - Image + Text

^{*} https://doi.org/10.3389%2Ffdata.2020.00019

Additional Information - Image + Text

^{*} https://doi.org/10.3389%2Ffdata.2020.00019

Additional Information -TIENET

^{*} https://ieeexplore.ieee.org/iel7/8576498/8578098/08579041.pdf

Additional Information - X-ray + ECG

Overview of the deep learning architecture. (A) For the primary output, 206 ECGs were loaded into the convolutional neural network model and classified into four classifications (Group A, Group B, Group C, and Group N [normal class]). (B) For the secondary output, chest X-ray images from 1519 patients were used for pretraining, and the original chest X-ray images were compressed into a one-dimensional vector using the pretrained midlayer weights. The combined ECG and chest X-ray data were finally trained to classify the outputs. 2D-CNN indicates a two-dimensional convolutional neural network, and 1D-CNN indicates a one-dimensional convolutional neural network.

^{*} https://www.nature.com/articles/s41598-021-87631-y

Chest X-ray Decomposition

^{*} https://www.sciencedirect.com/science/article/pii/S1361841520302036

Chest X-ray Decomposition

^{*} https://www.sciencedirect.com/science/article/pii/S1361841520302036