## Chapter 5 - Handout 1

## Consider the following Hidden Markov Model (HMM)



| $X_1$ | $\Pr(X_1)$ |
|-------|------------|
| 0     | 0.3        |
| 1     | 0.7        |

| $X_t$ | $X_{t+1}$ | $\Pr(X_{t+1} X_t)$ |
|-------|-----------|--------------------|
| 0     | 0         | 0.4                |
| 0     | 1         | 0.6                |
| 1     | 0         | 0.8                |
| 1     | 1         | 0.2                |

| $X_t$ | $O_t$ | $\Pr(O_t X_t)$ |
|-------|-------|----------------|
| 0     | A     | 0.9            |
| 0     | B     | 0.1            |
| 1     | A     | 0.5            |
| 1     | B     | 0.5            |

Suppose that  $O_1 = A$  and  $O_2 = B$  is observed

a) Use the Forward algorithm to compute the probability distribution  $P(X_2, O_1 = A, O_2 = B)$ . Show your work

b) Use the Viterbi algorithm to compute the maximum probability sequence  $X_1$ ,  $X_2$ . Show your work

## Chapter 5 - Handout 2

You have been put in charge of a Jabberwock for your friend Lewis. The Jabberwock is kept in a large tugley wood which is conveniently divided into an  $N \times N$  grid. It wanders freely around the  $N^2$  possible cells. At each time step  $t = 1, 2, 3, \ldots$ , the Jabberwock is in some cell

 $X_t \in \{1, 2, ..., N\}^2$ , and it moves to cell  $X_{t+1}$  randomly as follows:

- with probability  $1-\epsilon$ , it chooses one of the (up to 4) valid neighboring cells uniformly at random;
- with probability  $\epsilon$ , it uses its magical powers to teleport to a random cell uniformly at random among the N<sup>2</sup> possibilities (it might teleport to the same cell)

Suppose  $\epsilon = 0.5$ , N = 10 and that the Jabberwock always starts in  $X_1 = (1, 1)$ .

a) Compute the probability that the Jabberwock will be in  $X_2 = (2, 1)$  at time step 2. What about  $P(X_2 = (4, 4))$ ?

$$P(X_2 = (2, 1)) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2$$

$$P(X_2 = (4, 4)) = \frac{1}{2} \times \frac{1}{106} = \frac{1}{206}$$

b) At each time step t, you don't see  $X_t$  but see  $E_t$ , which is the row that the Jabberwock is in; that is, if  $X_t = (r, c)$ , then  $E_t = r$ . You still know that  $X_1 = (1, 1)$ .

Suppose we see that  $E_1 = 1$ ,  $E_2 = 2$ ,  $E_3 = 10$ . Fill in the following table with the distribution over  $X_t$  after each time step, taking into consideration the evidence.

| t | P(X <sub>t</sub> , e <sub>1:t-1</sub> )                           | $P(X_t, e_{1:t})$       | $P(X_t e_{1:t})$              |
|---|-------------------------------------------------------------------|-------------------------|-------------------------------|
| 1 | (1,1): 1.0<br>offull: 0.0                                         | (1,1): 1.0<br>0+hu1:0.0 | (1,1): 1.0<br>offus: 0.0      |
| 2 | $C(1,2), (2,1): \frac{51}{200}$ $0 \text{ full } : \frac{1}{200}$ | 1. 600                  | (2,1/: 51/60<br>(2,210): 1/60 |