RAJSHAHI UNIVERSITY OF ENGINEERING AND TECHNOLOGY LAB REPORT - 06

COURSE NAME: SESSIONAL BASED ON CSE 2103 COURSE CODE: CSE 2104

SUBMITTED TO-

Prof. Dr. Boshir Ahmed

Professor

Department of Computer Science & Engineering Rajshahi University of Engineering & Technology

Md. Zahirul Islam

Lecturer

Department of Computer Science & Engineering Rajshahi University of Engineering & Technology

SUBMITTED BY-

Srabonti Deb Roll-1803163

Section - C

Department of Computer Science & Engineering

SUBMISSION DATE -7 AUGUST, 2021

7.1) Experiment Name: Verify SR Flip-Flop by using NOR & NAND Latch.

Objectives:

- To know the characteristics of SR flip-flop.
- To know how to draw SR flip-flop using NOR and NAND latch.
- To generate the truth table of SR flip-flop using of NOR & NAND latch.
- To verify the output of SR flip-flop.

Theory: SR flip-flop is the simplest possible memory element which is formed by two NAND gates or two NOR gates. The inputs S and R are known as the SET and RESET inputs. The outputs Q and Q' are complements of each other. They are referred to as the normal and complementary outputs.

Usually, SR flip-flop is formed by NOR gates.

Summary of the NORlatch:

- 1. SET = 0, RESET = 0—Normal resting state, outputs remain in state they were in prior to input.
- 2. SET = 1, RESET = 0—Output will go to Q= 1 and remains there, even after SET returns HIGH.
- 3. SET = 0, RESET = 1—Will produce = 0 LOW and remains there, even after RESET returns HIGH.
- 4. SET = 1, RESET = 1—Tries to set and clear the latchat the same time, and produces $O=\overline{O}=1$.

Output is unpredictable, and this input condition should not be used.

Experimental Analysis:

• Circuit Diagram:

7.1.1- Verifying SR Flip-Flop by using NOR Latch:

7.1.1: SR FF using NOR Latch

7.1.2- Verifying SR Flip-Flop by using NAND Latch:

7.1.2: SR FF using NAND Latch

• Truth Table:

S	R	Q
0	0	Unchanged
0	1	0
1	0	1
1	1	Invalid

<u>Conclusion:</u> In this experiment, we discussed about SR Flip-Flop by using NOR & NAND Latch. The main drawback of SR flip flop is invalid output when both inputs are high.

7.2) Experiment Name: Verify JK Flip-Flop by using NOR & NAND Latch.

Objectives:

- To know the characteristics of JK flip-flop.
- To know how to draw JK flip-flop using NOR and NAND latch.
- To generate the truth table of JK flip-flop using of NOR & NAND latch.
- To verify the output of JK flip-flop.

Theory: J-K flip-flop is the most versatile of the basic flip-flops which is formed by two NAND gates or two NOR Gates. It has two data inputs J and K & clock pulse input. It has no undefined state.

Usually, JK flip-flop is formed by NOR gates.

Summary of the NORlatch:

- 1. SET = 0, RESET = 0—Normal resting state, outputs remain in state they were in prior to input.
- 2. SET = 1, RESET = 0—Output will go to Q = 1 and remains there, even after SET returns HIGH.
- 3. SET = 0, RESET = 1—Will produce = 0 LOW and remains there, even after RESET returns HIGH.

4. SET = 1, RESET = 1—Output is toggled to the opposite state.

Experimental Analysis:

• Circuit Diagram:

7.2.1- Verifying JK Flip-Flop by using NOR Latch:

7.2.1: JK FF using NOR Latch

7.2.2- Verifying JK Flip-Flop by using NAND Latch:

7.2.2: JK FF using NAND Latch

• Truth Table:

J	K	Q
0	0	Unchanged
0	1	0
1	0	1
1	1	Toggled

<u>Conclusion:</u> In this experiment, we discussed about JK Flip-Flop by using NOR & NAND Latch. In JK flip-flop, there is no ambiguous output & all outputs are valid.

7.3) Experiment Name: Verify D Flip-Flop by using NOR & NAND Latch.

Objectives:

- To know the characteristics of D flip-flop.
- To know how to draw D flip-flop using NOR and NAND latch.
- To generate the truth table of D flip-flop using of NOR & NAND latch.
- To verify the output of D flip-flop.

Theory: The D-type flip-flop is a modified Set-Reset flip-flop with the addition of an inverter to prevent the S and R inputs from being at the same logic level.

Output changes to the value of the input at either the positive-or negative-going clock trigger.

Experimental Analysis:

• Circuit Diagram:

7.3.1- Verifying D Flip-Flop by using NOR Latch:

7.3.1: D FF using NOR Latch

7.3.2- Verifying D Flip-Flop by using NAND Latch:

7.3.2: D FF using NAND Latch

• Truth Table:

D	Q
0	0
1	1

Conclusion: In this experiment, we discussed about D Flip-Flop by using NOR & NAND Latch. Whenever the clock signal is LOW, the input is never going to affect the output state. The clock has to be high for the inputs to get active.

7.4) Experiment Name: Verify T Flip-Flop by using NOR & NAND Latch.

Objectives:

- To know the characteristics of T flip-flop.
- To know how to draw T flip-flop using NOR and NAND latch.
- To generate the truth table of T flip-flop using of NOR & NAND latch.
- To verify the output of T flip-flop.

Theory: T flip flop is modified form of JK flip-flop making it to operate in toggling region. A T flip flop is constructed by connecting J and K inputs, creating a single input called T. Hence why a T flip flop is also known as a single input JK flip flop..

Experimental Analysis:

• Circuit Diagram:

7.4.1- Verifying T Flip-Flop by using NOR Latch:

7.4.1: T FF using NOR Latch

7.4.2- Verifying T Flip-Flop by using NAND Latch:

7.4.2: T FF using NAND Latch

• Truth Table:

T	Q
0	Unchanged
1	Toggled

<u>Conclusion:</u> In this experiment, we discussed about T Flip-Flop by using NOR & NAND Latch. Whenever the clock signal is LOW, the input is never going to affect the output state. The clock has to be high for the inputs to get active.