Operating System Course Report - First Half of the Semester

B class

October 1, 2024

Contents

1	Intr	oduction	3		
2	Cou	Course Overview			
	2.1	Objectives	3		
	2.2	Course Structure	3		
3	Topics Covered 4				
	3.1	Basic Concepts and Components of Computer Systems	4		
	3.2	System Performance and Metrics	4		
	3.3	System Architecture of Computer Systems	4		
	3.4	Process Description and Control	4		
	3.5	Scheduling Algorithms	5		
	3.6	Process Creation and Termination	5		
	3.7	Introduction to Threads	5		
	3.8	File Systems	5		
	3.9	Input and Output Management	6		
		3.9.1 Apa itu Manajemen I/O?	6		
		3.9.2 Fungsi Utama Modul I/O	6		
		3.9.3 Struktur Modul I/O	8		
		3.9.4 Control dan Timing	8		
	3.10	Deadlock Introduction and Prevention	9		
	3.11	User Interface Management	9		
	3.12	Virtualization in Operating Systems	10		
4	Assi	ignments and Practical Work	10		
	4.1	Assignment 1: Process Scheduling	10		
		4.1.1 Group 1	10		
	4.2	Assignment 2: Deadlock Handling	10		
	4.3	Assignment 3: Multithreading and Amdahl's Law	11		
	4.4	Assignment 4: Simple Command-Line Interface (CLI) for User			
		Interface Management	11		
	4.5	Assignment 5: File System Access	11		
5	Con	clusion	11		

1 Introduction

This report summarizes the topics covered during the first half of the Operating System course. It includes theoretical concepts, practical implementations, and assignments. The course focuses on the fundamentals of operating systems, including system architecture, process management, CPU scheduling, and deadlock handling.

2 Course Overview

2.1 Objectives

The main objectives of this course are:

- To understand the basic components and architecture of a computer system.
- To learn process management, scheduling, and inter-process communication.
- To explore file systems, input/output management, and virtualization.
- To study the prevention and handling of deadlocks in operating systems.

2.2 Course Structure

The course is divided into two halves. This report focuses on the first half, which covers:

- Basic Concepts and Components of Computer Systems
- System Performance and Metrics
- System Architecture of Computer Systems
- Process Description and Control
- Scheduling Algorithms
- Process Creation and Termination

- Introduction to Threads
- File Systems
- Input and Output Management
- Deadlock Introduction and Prevention
- User Interface Management
- Virtualization in Operating Systems

3 Topics Covered

3.1 Basic Concepts and Components of Computer Systems

This section explains the fundamental components that make up a computer system, including the CPU, memory, storage, and input/output devices.

3.2 System Performance and Metrics

This section introduces various system performance metrics used to measure the efficiency of a computer system, including throughput, response time, and utilization.

3.3 System Architecture of Computer Systems

Describes the architecture of modern computer systems, focusing on the interaction between hardware and the operating system.

3.4 Process Description and Control

Processes are a central concept in operating systems. This section covers:

- Process states and state transitions
- Process control block (PCB)
- Context switching

3.5 Scheduling Algorithms

This section covers:

- First-Come, First-Served (FCFS)
- Shortest Job Next (SJN)
- Round Robin (RR)

It explains how these algorithms are used to allocate CPU time to processes.

3.6 Process Creation and Termination

Details how processes are created and terminated by the operating system, including:

- Process spawning
- Process termination conditions

3.7 Introduction to Threads

This section introduces the concept of threads and their relation to processes, covering:

- Single-threaded vs. multi-threaded processes
- Benefits of multithreading

Seperti yang terlihat pada Gambar 1, inilah cara menambahkan gambar dengan keterangan.

3.8 File Systems

File systems provide a way for the operating system to store, retrieve, and manage data. This section explains:

- File system structure
- File access methods
- Directory management

Figure 1: Ini adalah gambar contoh dari multithreading.

3.9 Input and Output Management

3.9.1 Apa itu Manajemen I/O?

Manajemen I/O merupakan entitas yang bertanggungjawab mengontrol perangkat eksternal dan untuk pertukaran data antar perangkat tersebut dengan memori dan CPU. Perangkat eksternal itu seperti keyboard, mouse dan lain sebagainya.

3.9.2 Fungsi Utama Modul I/O

Fungsi utama modul I/O dikategorikan menjadi 5(lima), yaitu:

- Contol dan timing: Modul I/O berfungsi untuk mengatur aliran data antara sistem inti komputer (seperti CPU dan memori) dan perangkat eksternal. Fungsi ini membutuhkan control dan timing yang tepat, karena ada perbedaan kecepatan dan mekanisme antara CPU dan perangkat eksternal yang biasanya lebih lambat. Modul I/O harus memastikan bahwa data dikirim dan diterima sesuai dengan waktu yang tepat, tanpa menyebabkan konflik atau kerusakan data.
- Komunikasi CPU : Modul I/O harus mampu berkomunikasi baik dengan CPU maupun dengan perangkat eksternal. Komunikasi ini men-

cakup beberapa aspek:

- Command Decoding (Dekode Perintah): Modul I/O menerima perintah dari CPU, yang biasanya dikirim melalui sinyal pada bus kontrol. Contoh perintah untuk modul I/O pada disk adalah seperti READ SECTOR, WRITE SECTOR, SEEK nomor track, dan SCAN record ID. Beberapa perintah ini mungkin menyertakan parameter yang dikirim melalui bus data.
- Data: Data ditransfer antara CPU dan modul I/O melalui bus data. Ini adalah proses pertukaran data yang terjadi setelah perintah diterima dan diproses oleh modul I/O.
- Status Reporting (Laporan Status): Karena perangkat eksternal seringkali lebih lambat daripada CPU, modul I/O harus melaporkan statusnya kepada CPU, misalnya dengan sinyal status seperti BUSY (sibuk) atau READY (siap). Ini penting agar CPU tahu apakah modul I/O siap untuk melakukan operasi atau sedang sibuk dengan perintah lain.
- Address Recognition (Pengenalan Alamat): Sama seperti memori memiliki alamat unik, perangkat I/O juga memiliki alamat yang unik. Modul I/O harus mampu mengenali alamat unik dari perangkat-perangkat yang dikendalikannya untuk mengarahkan data ke perangkat yang benar.
- Komunikasi Perangkat : Modul I/O juga harus bisa berkomunikasi langsung dengan perangkat eksternal. Komunikasi ini meliputi:
 - Perintah (instruksi yang dikirim ke perangkat).
 - Informasi Status (kondisi perangkat, seperti siap atau sibuk).
 - Data (informasi yang ditransfer antara perangkat dan CPU).
- Data Buffering: Modul I/O bertugas untuk menyiapkan data dari atau untuk perangkat eksternal melalui buffering (penyimpanan sementara data) sehingga data dapat diproses dengan lebih efisien, mengatasi perbedaan kecepatan antara CPU dan perangkat eksternal.
- Deteksi Error : Modul I/O juga bertanggung jawab untuk mendeteksi dan melaporkan kesalahan yang terjadi saat komunikasi dengan perangkat eksternal. Kesalahan ini bisa berupa masalah mekanis

(seperti kertas yang menggulung pada printer) atau kesalahan elektris (seperti kesalahan bit saat mentransfer data). Modul I/O kemudian akan melaporkan kesalahan ini ke CPU agar dapat diatasi.

3.9.3 Struktur Modul I/O

Figure 2: Struktur Modul I/O

Penjelasan:

- Data, alamat, dan kontrol dikirim dari sistem komputer (bus system) ke modul I/O.
- I/O Logic mengelola aliran data, kontrol, dan alamat yang masuk.
- Data Register menyimpan data sementara, dan Status/Control Register mengatur status dan kontrol perangkat.
- Eksternal Device Interface Logic menjembatani data, status, dan kontrol ke perangkat eksternal.
- Data, status, dan kontrol diolah dan dikirim ke perangkat eksternal, dan informasi status kembali ke sistem komputer.

3.9.4 Control dan Timing

Control dan Timing berfungsi untuk mengatur agar kecepatan transfer, data yang berbeda-beda antar periferal dapat tersinkronisasi. Misalnya, kontrol

pemindahan data dari sebuah perangkat eksternal ke CPU. Contoh kontrol pemindahan data dari sebuah perangkat eksternal ke CPU meliputi langkahlangkah berikut:

- 1. CPU meminta modul I/O untuk memeriksa status perangkat yang terhubung.
- 2. Modul I/O memberikan jawabannya tentang status perangkat.
- 3. Bila perangkat sedang beroperasi dan berada dalam keadaan siap untuk mengirimkan, maka CPU meminta pemindahan data,dengan menggunakan perintah tertentu ke modul I/O..
- 4. Modul I/O akan memperoleh unit data (misalnya, 8 atau 16 bit) dari perangkat eksternal.
- 5. Data akan dipindahkan dari modul I/O ke CPU.

3.10 Deadlock Introduction and Prevention

Explores the concept of deadlocks and methods for preventing them:

- Deadlock conditions
- Deadlock prevention techniques

3.11 User Interface Management

This section discusses the role of the operating system in managing the user interface. Topics covered include:

- Graphical User Interface (GUI)
- Command-Line Interface (CLI)
- Interaction between the user and the operating system

3.12 Virtualization in Operating Systems

Virtualization allows multiple operating systems to run concurrently on a single physical machine. This section explores:

- Concept of virtualization
- Hypervisors and their types
- Benefits of virtualization in modern computing

4 Assignments and Practical Work

4.1 Assignment 1: Process Scheduling

Students were tasked with implementing various process scheduling algorithms (e.g., FCFS, SJN, and RR) and comparing their performance under different conditions.

4.1.1 Group 1

```
class Process:
def __init__(self, pid, arrival_time, burst_time):
    self.pid = pid
    self.arrival_time = arrival_time
    self.burst_time = burst_time
    self.completion_time = 0
    self.turnaround_time = 0
    self.waiting_time = 0
```

Header 1	Header 2	Header 3
Row 1, Column 1	Row 1, Column 2	Row 1, Column 3
Row 2, Column 1	Row 2, Column 2	Row 2, Column 3

Table 1: Your table caption

4.2 Assignment 2: Deadlock Handling

In this assignment, students were asked to simulate different deadlock scenarios and explore various prevention methods.

4.3 Assignment 3: Multithreading and Amdahl's Law

This assignment involved designing a multithreading scenario to solve a computationally intensive problem. Students then applied **Amdahl's Law** to calculate the theoretical speedup of the program as the number of threads increased.

4.4 Assignment 4: Simple Command-Line Interface (CLI) for User Interface Management

Students were tasked with creating a simple **CLI** for user interface management. The CLI should support basic commands such as file manipulation (creating, listing, and deleting files), process management, and system status reporting.

4.5 Assignment 5: File System Access

In this assignment, students implemented file system access routines, including:

- File creation and deletion
- Reading from and writing to files
- Navigating directories and managing file permissions

5 Conclusion

The first half of the course introduced core operating system concepts, including process management, scheduling, multithreading, and file system access. These topics provided a foundation for more advanced topics to be covered in the second half of the course.