

Previsão de Insuficiência Cardíaca

Thiago Borsoni e Daniel Lloyd

CONTEÚDO

Introdução

Apresentando o dataset

Préprocessamento

Análise exploratória

Testes de normalidade

Shapiro-Wilk

Regressão Linear

Predição

Regressão Logística

Classificação

Conclusão

Conclusão do trabalho

INTRODUÇÃO

O dataset foi escolhido por conter dados clínicos relevantes, como idade, tipo de dor no peito, colesterol e presença de doença cardíaca. Ele se destaca por atender aos requisitos do trabalho com variáveis contínuas e categóricas bem estruturadas. Além disso, aborda um tema de grande impacto social, permitindo a aplicação de machine learning em um contexto real e significativo.

Número de registros: 1190 observações

Variáveis

- Age (Idade)
- Sex (Sexo)
- ChestPainType (Tipo de dor de peito)
- RestingBP (Pressão arterial em repouso)
- Cholesterol (Colesterol sérico)
- FastingBS (Glicemia em jejum)
- RestingECG (Resultados de eletrocardiograma em repouso)
- MaxHR (Frequência cardiáca máxima atingida [entre 60 e 202])
- ExerciseAngina (Angina induzida por exercício)
- Oldpeak (Medida de depressão do segmento ST)
- ST_Slope: (Inclinação do segmento ST no pico do exercício
- HeartDisease (Variável Alvo)

Link: https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction

Preprocessamento

PREPROCESSAMENTO E ANÁLISE EXPLORATÓRIA

ESTATÍSTICAS

Tipos

```
> str(heart)
'data.frame': 918 obs. of 12 variables:
$ Age
                : int 40 49 37 48 54 39 45 54 37 48 ...
$ Sex
              : chr "M" "F" "M" "F" ...
$ ChestPainType : Factor w/ 4 levels "ASY","ATA","NAP",..: 2 3 2 1 3 3 2 2 1 2 .
$ RestingBP
               : int 140 160 130 138 150 120 130 110 140 120 ...
$ Cholesterol : int 289 180 283 214 195 339 237 208 207 284 ...
$ FastingBS
              : int 00000000000...
$ RestingECG
               : chr "Normal" "Normal" "ST" "Normal" ...
$ MaxHR
                : int 172 156 98 108 122 170 170 142 130 120 ...
$ ExerciseAnging: chr "N" "N" "N" "Y" ...
$ Oldpeak
               : num 0 1 0 1.5 0 0 0 0 1.5 0 ...
$ ST_Slope
               : chr "Up" "Flat" "Up" "Flat" ...
$ HeartDisease : int 0 1 0 1 0 0 0 0 1 0 ...
```

Medidas Estatísticas

> summary(heart)							
Age Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	
Min. :28.00 Length:918	ASY:496	Min. : 0.0	Min. : 0.0	Min. :0.0000	Length:918	Min. : 60.0	
1st Qu.:47.00 Class :char	acter ATA:173	1st Qu.:120.0	1st Qu.:173.2	1st Qu.:0.0000	Class :character	1st Qu.:120.0	
Median :54.00 Mode :char	acter NAP:203	Median :130.0	Median :223.0	Median :0.0000	Mode :character	Median :138.0	
Mean :53.51	TA: 46	Mean :132.4	Mean :198.8	Mean :0.2331		Mean :136.8	
3rd Qu.:60.00		3rd Qu.:140.0	3rd Qu.:267.0	3rd Qu.:0.0000		3rd Qu.:156.0	
Max. :77.00		Max. :200.0	Max. :603.0	Max. :1.0000		Max. :202.0	
ExerciseAngina Oldpe	ak ST_Slope	HeartD	isease				
Length:918 Min. :	-2.6000 Length:918	Min.	:0.0000				
Class :character 1st Qu.:	0.0000 Class :chard	acter 1st Qu.	:0.0000				
Mode :character Median :	0.6000 Mode :char	acter Median	:1.0000				
Mean :	0.8874	Mean	:0.5534				
3rd Qu.:	1.5000	3rd Qu.	:1.0000				
Max. :	6.2000	Max.	:1.0000				

A distribuição de idade é **assimétrica à esquerda** (levemente), com maioria dos pacientes entre **45 e 65 anos**. Essa faixa etária é coerente com o grupo de risco de doenças cardíacas, o que **torna o dataset bem contextualizado**.

A tendência (linha azul) é **levemente negativa**, sugerindo que **quanto maior a idade**, **menor tende a ser o colesterol**.

MATRIZ DE CORRELAÇÃO

MaxHR vs Age: -0.38 → Correlação negativa moderada (esperado fisiologicamente)

MaxHR vs HeartDisease: `→ Leve relação positiva (pode indicar esforço cardíaco)

FastingBS vs HeartDisease: +0.27 → Glicemia em jejum elevada aparece como um fator de risco leve.

RestingBP → Correlações fracas com todas as variáveis, inclusive com HeartDisease.

Testes de Normalidade

Shapiro-Wilk

```
> # Teste de normalidade para Age
> shapiro.test(heart$Age)

Shapiro-Wilk normality test

data: heart$Age
W = 0.99101, p-value = 2.165e-05
```

Escolhemos esse em vez do Kolmogorov pelo tamanho do banco.

O teste de normalidade escolhido foi o Shapiro-Wilk que indicou que a variável Age não segue distribuição normal (p < 0.05). No entanto, como a regressão linear não exige normalidade da variável independente, apenas dos resíduos, o modelo pode ser aplicado normalmente.

Coeficiente de Correlação

Pearson

Direção da correlação

- A correlação é **negativa**: -0.095
- Isso indica que, à medida que a idade aumenta, os níveis de colesterol tendem a diminuir levemente.

Força da correlação

- •O valor de -0.095 indica uma correlação muito fraca.
- Correlações abaixo de |0.1| geralmente são consideradas desprezíveis.
- Ou seja, idade praticamente não influencia o colesterol neste conjunto de dados de forma relevante.

Escolhendo variáveis para os modelos

Regressão Linear – Previsão de Cholesterol

Variável	Correlação com Cholesterol	Comentário
Age	-0.10	Correlação muito fraca, mas mantemos.
MaxHR	+0.24	Correlação fraca positiva — mantemos.
ChestPainType	Categórica	Pode capturar padrões clínicos importantes.
RestingBP	+0.10	Correlação fraca, muito dispersa — não usar.
FastingBS	-0.26	Leve correlação negativa, mas variável binária e com possível viés — não usar.
Oldpeak	+0.05	Correlação quase nula — não usar.
HeartDisease	-0.23	Pode enviesar o modelo — não usar como preditora.

Regressão Logística – Previsão de HeartDisease

Variável	Correlação com HeartDisease	Comentário
Age	+0.28	Correlação fraca positiva — mantemos.
MaxHR	-0.40	Correlação negativa moderada — ótima variável.
Cholesterol	-0.23	Fraca, mas útil como variável complementar.
ChestPainType	Categórica	Fortemente associada clinicamente — mantemos.
FastingBS	+0.27	Binária, possível viés por medição — não usar.
RestingBP	+0.11	Muito fraca — não usar.
Oldpeak	+0.40	Boa correlação — mas foi deixada de fora por simplificação do modelo.

Regressão Linear

Objetivo:

Prever o nível de colesterol com base em:

- Idade (Age)
- Frequência cardíaca máxima (MaxHR)
- Tipo de dor no peito (ChestPainType)

Gráfico de dispersão com linha de regressão:

Avaliação do Modelo:

```
> # Avaliação
> pred_lm <- predict(modelo_lm)
> residuos <- heart$Cholesterol - pred_lm
> mae <- mean(abs(residuos))
> rmse <- sqrt(mean(residuos^2))
> r2 <- summary(modelo_lm)$r.squared
> cat("MAE:", mae, "\nRMSE:", rmse, "\nR²:", r2)
MAE: 81.30562
RMSE: 105.7309
R²: 0.06466154>
```

Retorno:

O valor de colesterol previsto e classificação do valor retornado

Abaixo de 200 = Desejável

200 a 239 = Limítrofe

240 ou mais = Alto

Regressão Logística

Objetivo:

Classificar se o paciente possui doença cardíaca com base em:

- Idade (Age)
- Frequência cardíaca máxima (MaxHR)
- Tipo de dor no peito (ChestPainType)
- Colesterol (Cholesterol)

Retorno:

O valor de risco e probabilidade estimada de risco em % pelo modelo

Risco = 1 (Modelo prevê que o paciente **tem risco** de doença cardíaca)

Risco = 0 (Modelo prevê **sem risco** de doença cardíaca)

Probabilidade = Probabilidade estimada de risco (em %) pelo modelo

Avaliação do modelo:

> # Exibir matriz e métricas
> print(matriz)
Confusion Matrix and Statistics

Reference Prediction 0 1

0 294 821 116 426

Accuracy : 0.7843

95% CI: (0.7563, 0.8105)

No Information Rate : 0.5534 P-Value [Acc > NIR] : < 2e-16

Kappa : 0.5601

Mcnemar's Test P-Value : 0.01902

Sensitivity: 0.8386 Specificity: 0.7171 Pos Pred Value: 0.7860 Neg Pred Value: 0.7819 Prevalence: 0.5534 Detection Rate: 0.4641

Detection Prevalence : 0.5904 Balanced Accuracy : 0.7778

'Positive' Class : 1

Conclusão

Conclusão

Foram deixadas de fora variáveis com baixa correlação, risco de redundância ou que não acrescentam poder preditivo significativo.

Com isso o projeto aplicou com sucesso técnicas de regressão linear e logística para prever o colesterol e o risco de doença cardíaca com base em dados clínicos. Os modelos apresentaram bom desempenho e foram integrados a uma API REST, permitindo previsões em tempo real. A abordagem demonstrou a aplicabilidade do machine learning em um tema de grande relevância social, unindo teoria estatística à prática em um cenário real.