Aman Kumar Pandey RA1911003010685 Autificial Intelligence Lab Lab-7

edim - Implementation of unification and resolution in real world application

(1) Implementation of unification (Battern Matching),

Problem Formulation

To find mapping between two enpression that may both contain variables. Bind the variables to their values in the given enpression tentil no bound variables bemain.

Initial state enpression 1=1(x,h(x), y,g(y)) enpression 2=1(g(z), w, z, x)

Final state
-x:g(z)
w=h(x)

enpr 1 = j(g(z), h(g(z)), z, g(z))enpr 2 = j(g(z), h(g(z)), z, g(z))

Privilet meldary + unify f(x, h(x), y, g(x)) and f(g(z), w, z,x) - It would loop through each orgument -) unify (x,g(z)) is involved x is a variable, therefore substitute X=9(2) -) unify (h(x), w) is invoked is a variable. '. substitute W=h(x) - The substitutions are mapped to a python dictionary and it empands as $2 \times = q(z), W = h(x)$ - unify (Y, Z) is invoked Both Y and Z we variable hence are added directly to the dictionary ?x=q(z),w=h(x), y=zy# Z=Yon Y=z is equivalent -> unify (g(Y), X) is invoked in the distinary

; ,	the unitered as
	the unify would be on the substituted value y'it is not a variable i.e. if the substituted value is not a variable unify (g(x), g(z))
	us not a variable i.e. if the substitute d'value is
	not a variable unity (2(x) a(z))
	MANTH AND ARMY
	unity Yand Z
	and 2
	It is abready present is map
	•
	All variables are bounded, unification is completed successfully.
	Duce Mully
	- Company of the comp
11	
	Final result is $\{x = g(z), W = h(x), Y = Zy\}$
	•
	•
	Q 17 1
,	
.11	

AMAN KUMAR PANDEY RA1911003010685 ARTIFICIAL INTELLIGENCE LAB EXPERIMENT NO: 7

IMPLEMENTATION OF UNIFICATION AND RESOLUTION IN REAL-WORLD PROBLEMS

Unification (Pattern matching):

<u>Algorithm:</u>

Step-1: Start

Step-2: Declare a Python dict mapping variable names to terms

Step-3: When either side is a variable, it calls unify variable.

Step-4: Otherwise, if both sides are function applications, it ensures they apply the same function (otherwise there's no match) and then unifies their arguments one by one, carefully carrying the updated substitution throughout the process.

Step-5: If v is bound in the substitution, we try to unify its definition with x to guarantee consistency throughout the unification process (and vice versa when x is a variable).

Step-6: occurs_chec, is to guarantee that we don't have self-referential variable bindings k like that would lead to potentially infinite unifiers.

X=f(X)

Step-7: Stop

Source code:

```
# Python 3.6
import lexer
class Term:
  pass
# In App, function names are always considered to be constants, not
variables.
# This simplifies things and doesn't affect expressivity. We can always
model
# variable functions by envisioning an apply(FUNCNAME, ... args ...).
class App(Term):
  def __init__(self, fname, args=()):
    self.fname = fname
    self.args = args
  def __str__(self):
     return '{0}({1})'.format(self.fname, ','.join(map(str, self.args)))
  def __eq__(self, other):
     return (type(self) == type(other) and
          self.fname == other.fname and
          all(self.args[i] == other.args[i] for i in range(len(self.args))))
   __repr__ = __str__
class Var(Term):
  def __init__(self, name):
     self.name = name
  def __str__(self):
     return self.name
  def \underline{\hspace{0.1cm}} eq \underline{\hspace{0.1cm}} (self, other):
     return\ type(self) == type(other)\ and\ self.name == other.name
```

```
_repr__ = __str__
class Const(Term):
  def __init__(self, value):
     self.value = value
  def __str__(self):
     return self.value
  def __eq__(self, other):
     return\ type(self) == type(other)\ and\ self.value == other.value
   \underline{\phantom{a}} repr\underline{\phantom{a}} = \underline{\phantom{a}} str\underline{\phantom{a}}
class ParseError(Exception): pass
def parse_term(s):
   """Parses a term from string s, returns a Term."""
  parser = TermParser(s)
   return parser.parse_term()
class TermParser:
   """Term parser.
   Use the top-level parse_term() instead of instantiating this class directly.
  def __init__(self, text):
     self.text = text
     self.cur\_token = None
     lexrules = (
        (' d+',
                         'NUMBER'),
        ('[a-zA-Z_J]w^*', 'ID'),
        (',',
                      'COMMA'),
        ('\(',
                       'LP'),
        ('\)',
                       'RP'),
     self.lexer = lexer.Lexer(lexrules, skip_whitespace=True)
     self.lexer.input(text)
     self._get_next_token()
  def _get_next_token(self):
     try:
```

```
self.cur_token = self.lexer.token()
       if self.cur_token is None:
          self.cur_token = lexer.Token(None, None, None)
     except lexer.LexerError as e:
       self._error('Lexer error at position %d' % e.pos)
  def _error(self, msg):
     raise ParseError(msg)
  def parse_term(self):
     if self.cur_token.type == 'NUMBER':
       term = Const(self.cur_token.val)
       # Consume the current token and return the Const term.
       self._get_next_token()
       return term
     elif self.cur_token.type == 'ID':
       # We have to look at the next token to distinguish between App and
       # Var.
       idtok = self.cur_token
       self._get_next_token()
       if self.cur\_token.type == 'LP':
          if idtok.val.isupper():
            self._error("Function names should be constant")
          self._get_next_token()
          args = []
          while True:
            args.append(self.parse_term())
            if self.cur\_token.type == 'RP':
               break
            elif self.cur_token.type == 'COMMA':
               # Consume the comma and continue to the next arg
               self._get_next_token()
            else:
               self._error("Expected ',' or ')' in application")
          # Consume the ')'
          self._get_next_token()
          return App(fname=idtok.val, args=args)
       else:
          if idtok.val.isupper():
            return Var(idtok.val)
          else:
            return Const(idtok.val)
def occurs_check(v, term, subst):
```

```
"""Does the variable v occur anywhere inside term?
  Variables in term are looked up in subst and the check is applied
  recursively.
   ,,,,,,
  assert isinstance(v, Var)
  if v == term:
     return True
  elif isinstance(term, Var) and term.name in subst:
     return occurs_check(v, subst[term.name], subst)
  elif isinstance(term, App):
     return any(occurs_check(v, arg, subst) for arg in term.args)
  else:
     return False
def unify(x, y, subst):
   """Unifies term x and y with initial subst.
  Returns a subst (map of name->term) that unifies x and y, or None if
  they can't be unified. Pass subst={} if no subst are initially
  known. Note that {} means valid (but empty) subst.
  if subst is None:
     return None
  elif x == y:
     return subst
  elif isinstance(x, Var):
     return unify_variable(x, y, subst)
  elif isinstance(y, Var):
     return unify_variable(y, x, subst)
  elif isinstance(x, App) and isinstance(y, App):
     if x.fname != y.fname or len(x.args) != len(y.args):
       return None
     else:
       for i in range(len(x.args)):
          subst = unify(x.args[i], y.args[i], subst)
       return subst
  else:
     return None
def apply_unifier(x, subst):
   """Applies the unifier subst to term x.
```

Returns a term where all occurrences of variables bound in subst

```
were replaced (recursively); on failure returns None.
  if subst is None:
     return None
  elif len(subst) == 0:
     return x
  elif isinstance(x, Const):
     return x
  elifisinstance(x, Var):
     if x.name in subst:
       return apply_unifier(subst[x.name], subst)
     else:
       return x
  elif is instance(x, App):
     newargs = [apply_unifier(arg, subst) for arg in x.args]
     return App(x.fname, newargs)
  else:
     return None
def unify_variable(v, x, subst):
   """Unifies variable v with term x, using subst.
  Returns updated subst or None on failure.
  assert isinstance(v, Var)
  if v.name in subst:
     return unify(subst[v.name], x, subst)
  elif isinstance(x, Var) and x.name in subst:
     return unify(v, subst[x.name], subst)
  elif occurs_check(v, x, subst):
     return None
  else:
     # v is not yet in subst and can't simplify x. Extend subst.
     return {**subst, v.name: x}
if __name__ == '__main__':
  s1 = f(X,h(X),Y,g(Y))'
  s2 = f(g(Z), W, Z, X)'
  subst = unify(parse\_term(s1), parse\_term(s2), \{\})
  print(subst)
  print(apply_unifier(parse_term(s1), subst))
  print(apply_unifier(parse_term(s2), subst))
```

Output:

Result:

Hence, the Implementation of the unification algorithm for Pattern Matching is done successfully.

ii)	Implementation of Resolution (Rudicale logic)
	Rroblem Formulation
	By Building reputation proofs ie, proofs by contradiction proue a conclusion of those given statements based on the conjuctive normal form or clausal form.
	Initial state . Final state
b) 	John likes all kind of food. 'TRUE' Apple L vegetable are food. (prooved) Anything aryone eats and not killed is food. Aniled is food. Aniled so fearuts and still alive Marry lats Everything that Anileats.
J	Prous by resolution Tohn likes peanuts.
	Broblem dalung
•	Conversion of Jacks into first order logic
a) b) c) d) e)	Vn: food (n) → likes (John, x) food (Apple) ^ food (vegetable) Vn: eats(n,y) ^ 7 killed (n) → food (y) eats (Anil, peanuts) ^ alive (Anil) Vn: eats (Anil, x.) → eats (Harry, n) Vn: 7 killed (n) → alive (n)

g) $\forall n : allue(n) \rightarrow 7 \text{ Killed (n)}$
g) $\forall n : alive (n) \rightarrow 7 \text{ Killed (n)}$ h) Likes (John, Reanuts)
· Elimination of implication, moving negation inwards and renaming variables:
V
a) In - food (n) vlikel (John, n)
o) joua (Apple) > jood (vigetables)
b) foud (Apple) ~ food (vigetables) c) $\forall y \forall z = \text{eats}(y, z) \vee \text{killed}(y) \vee \text{food}(z)$ d) eats (Aril Peanuts) ~ allue (Aril)
e) Yw 7 eats (bril, w) veats (Karry, w)
1) $\forall g \ \tau \text{ Killed}(g) \ \text{Valive}(g)$
g) Vg 7 Killed(g). Valine(g) g) VK 7 aline (K) v Killed(K) H) likes (John, Reanuts)
M) likes (John, Reanuts)
Ouch of Land of Linux
· Prof enistential quantifiers
a) food (n) vlikes (John, n)
a) food (n) vlikes (John, n) b) food (Apple)
c) food (Vegetables)
c) food (Vegetables) d) reats(y,z).v killed(y) v food(z) e) eats(Anil, Peanuts)
1) alive (Aril)
g) Teats (Anil w) veats (Marry, w)
h) killed (g) value (g).
i) raliuer) v r Killed (k)
1) likes (John, Reanuts)
· Negate the statement to be proved
j) Tikes (John, Peanuts)
-

7/00d(n) V. Likes (John,x) 7 Likes (John, Peanuts) 7 eats(yz) vkilled(y) v

Jood (z)

(peanuts/z) 7 food (Peanuts) eats (Anil, Peanuts)
- { Anil / y y reats(y, Peanuts) v Killed (y) 7 alive (K) v7 Killed (K) Killed (bril) · ¿ Anil IKy alive (bril 7 alive (Bril)

* Resolution (Predicate logic):

Algorithm:

Step-1: Start

Step-2: if L1 or L2 is an atom part of same thing do

(a) if L1 or L2 are identical then return NIL

(b) else if L1 is a variable then do

(i) if L1 occurs in L2 then return F else return (L2/L1)

else if L2 is a variable then do

(i) if L2 occurs in L1 then return F else return (L1/L2)

else return F.

Step-3: If length (L!) is not equal to length (L2) then return F.

Step-4: Set SUBST to NIL

(at the end of this procedure , SUBST will contain all the substitutions used to unify L1 and L2).

Step-5: For I = 1 to number of elements in L1 do

- i) call UNIFY with the i th element of L1 and I'th element of L2, putting the result in S
- ii) if S = F then return F
- iii) if S is not equal to NIL then do
- (A) apply S to the remainder of both L1 and L2
- (B) SUBST := APPEND (S, SUBST) return SUBST.

Step-6: Stop.

Source code:

```
import copy
import time
class Parameter:
  variable\_count = 1
  def __init__(self, name=None):
    if name:
       self.type = "Constant"
       self.name = name
    else:
       self.type = "Variable"
       self.name = "v" + str(Parameter.variable\_count)
       Parameter.variable_count += 1
  def isConstant(self):
    return self.type == "Constant"
  def unify(self, type_, name):
    self.type = type\_
    self.name = name
  def __eq__(self, other):
    return self.name == other.name
  def __str__(self):
    return self.name
class Predicate:
  def __init__(self, name, params):
    self.name = name
    self.params = params
```

```
def __eq__(self, other):
     return self.name == other.name and all(a == b for a, b in zip(self.params,
other.params))
  def __str__(self):
     return\ self.name + "(" + ",".join(str(x)\ for\ x\ in\ self.params) + ")"
  def getNegatedPredicate(self):
     return Predicate(negatePredicate(self.name), self.params)
class Sentence:
  sentence\_count = 0
  def __init__(self, string):
     self.sentence_index = Sentence.sentence_count
     Sentence\_count += 1
     self.predicates = []
     self.variable_map = {}
     local = \{\}
    for predicate in string.split("/"):
       name = predicate[:predicate.find("(")]
       params = []
       for param in predicate[predicate.find("(") + 1:
predicate.find(")")].split(","):
         if param[0].islower():
            if param not in local: # Variable
              local[param] = Parameter()
              self.variable_map[local[param].name] = local[param]
            new\_param = local[param]
         else:
            new\_param = Parameter(param)
            self.variable_map[param] = new_param
         params.append(new_param)
```

```
self.predicates.append(Predicate(name, params))
  def getPredicates(self):
     return [predicate.name for predicate in self.predicates]
  def findPredicates(self, name):
     return [predicate for predicate in self.predicates if predicate.name ==
name]
  def removePredicate(self, predicate):
     self.predicates.remove(predicate)
    for key, val in self.variable_map.items():
       if not val:
          self.variable_map.pop(key)
  def containsVariable(self):
     return any(not param.isConstant() for param in
self.variable_map.values())
  def __eq__(self, other):
     if len(self.predicates) == 1 and self.predicates[0] == other:
       return True
     return False
  def __str__(self):
    return "".join([str(predicate) for predicate in self.predicates])
class KB:
  def __init__(self, inputSentences):
    self.inputSentences = [x.replace(" ", "") for x in inputSentences]
     self.sentences = []
     self.sentence_map = {}
  def prepareKB(self):
     self.convertSentencesToCNF()
    for sentence_string in self.inputSentences:
       sentence = Sentence(sentence_string)
       for predicate in sentence.getPredicates():
```

```
self.sentence_map[predicate] = self.sentence_map.get(
         predicate, []) + [sentence]
def convertSentencesToCNF(self):
  for sentenceIdx in range(len(self.inputSentences)):
    # Do negation of the Premise and add them as literal
    if "=>" in self.inputSentences[sentenceIdx]:
       self.inputSentences[sentenceIdx] = negateAntecedent(
         self.inputSentences[sentenceIdx])
def askQueries(self, queryList):
  results = []
  for query in queryList:
    negatedQuery = Sentence(negatePredicate(query.replace(" ", "")))
    negatedPredicate = negatedQuery.predicates[0]
    prev\_sentence\_map = copy.deepcopy(self.sentence\_map)
    self.sentence_map[negatedPredicate.name] = self.sentence_map.get(
       negatedPredicate.name, []) + [negatedQuery]
    self.timeLimit = time.time() + 40
    try:
       result = self.resolve([negatedPredicate], [
                    False]*(len(self.inputSentences) + 1))
    except:
       result = False
    self.sentence_map = prev_sentence_map
    if result:
       results.append("TRUE")
    else:
       results.append("FALSE")
  return results
def resolve(self, queryStack, visited, depth=0):
  if time.time() > self.timeLimit:
    raise Exception
```

```
if queryStack:
       query = queryStack.pop(-1)
       negatedQuery = query.getNegatedPredicate()
       queryPredicateName = negatedQuery.name
       if queryPredicateName not in self.sentence_map:
         return False
       else:
         queryPredicate = negatedQuery
         for kb_sentence in self.sentence_map[queryPredicateName]:
           if not visited[kb_sentence.sentence_index]:
             for kbPredicate in
kb_sentence.findPredicates(queryPredicateName):
                canUnify, substitution = performUnification(
                   copy.deepcopy(queryPredicate),
copy.deepcopy(kbPredicate))
                if canUnify:
                  newSentence = copy.deepcopy(kb\_sentence)
                  newSentence.removePredicate(kbPredicate)
                  newQueryStack = copy.deepcopy(queryStack)
                   if substitution:
                     for old, new in substitution.items():
                       if old in newSentence.variable_map:
                          parameter = newSentence.variable_map[old]
                          newSentence.variable_map.pop(old)
                          parameter.unify(
                            "Variable" if new[0].islower() else "Constant",
new)
                          newSentence.variable_map[new] = parameter
                     for predicate in newQueryStack:
                       for index, param in enumerate(predicate.params):
                          if param.name in substitution:
                            new = substitution[param.name]
                            predicate.params[index].unify(
                               "Variable" if new[0].islower() else "Constant",
new)
```

```
for predicate in newSentence.predicates:
                      newQueryStack.append(predicate)
                   new_visited = copy.deepcopy(visited)
                   if kb_sentence.containsVariable() and
len(kb\_sentence.predicates) > 1:
                      new_visited[kb_sentence.sentence_index] = True
                   if self.resolve(newQueryStack, new_visited, depth + 1):
                      return True
         return False
    return True
def performUnification(queryPredicate, kbPredicate):
  substitution = \{\}
  if\ queryPredicate == kbPredicate:
    return True, {}
  else:
    for query, kb in zip(queryPredicate.params, kbPredicate.params):
       if query == kb:
         continue
       if kb.isConstant():
         if not query.isConstant():
            if query.name not in substitution:
              substitution[query.name] = kb.name
            elif substitution[query.name] != kb.name:
              return False, {}
            query.unify("Constant", kb.name)
         else:
            return False, {}
       else:
         if not query.isConstant():
            if kb.name not in substitution:
              substitution[kb.name] = query.name
            elif substitution[kb.name] != query.name:
              return False, {}
            kb.unify("Variable", query.name)
```

```
else:
            if kb.name not in substitution:
               substitution[kb.name] = query.name
            elif substitution[kb.name] != query.name:
               return False, {}
  return True, substitution
def negatePredicate(predicate):
  return predicate[1:] if predicate[0] == "~" else "~" + predicate
def negateAntecedent(sentence):
  antecedent = sentence[:sentence.find("=>")]
  premise = []
  for predicate in antecedent.split("&"):
     premise.append(negatePredicate(predicate))
  premise.append(sentence[sentence.find("=>") + 2:])
  return "/".join(premise)
def getInput(filename):
  with open(filename, "r") as file:
     noOfQueries = int(file.readline().strip())
     inputQueries = [file.readline().strip() for _ in range(noOfQueries)]
     noOfSentences = int(file.readline().strip())
     inputSentences = [file.readline().strip()
               for _ in range(noOfSentences)]
     return inputQueries, inputSentences
def printOutput(filename, results):
  print(results)
  with open(filename, "w") as file:
    for line in results:
       file.write(line)
       file.write("\n")
```

```
file.close()

if __name__ == '__main__':
    inputQueries_, inputSentences_ = getInput('685/input1.txt')
    knowledgeBase = KB(inputSentences_)
    knowledgeBase.prepareKB()
    results_ = knowledgeBase.askQueries(inputQueries_)
    printOutput("output.txt", results_)
```

Output:

Result:

Hence, the Implementation of the resolution algorithm for Predicate logic is done successfully.