

Yahboom Tiny:bit MicroPython API

Input this code to import Yahboom Tiny:bit Micropython library: import tinybit

1 Car advance tinybit.car_HeadRGB(a, b, c)

Description of Parameter:

a is red value, range is 0-255.

b is green value, range is 0-255.

c is blue value, range is 0-255.

Eg: tinybit.car HeadRGB(255, 255, 255) //The RGB search light will become white

2 Car advance

method1: tinybit.car_run(s)
method2: tinybit.car_run(a, b)

Function: Control the car advance

One parameter:

A single parameter s, set the speed of the two motors of the car, range: 0 ~ 255

Two parameters:

a is left motor speed, range is 0-255. b is right motor speed, range is 0-255.

Eg1: tinybit.car_run(255) // The car will run with 255 speed
Eg2: tinybit.car_run(255, 255) // The car will run with 255 speed

3 Car back

method1: tinybit.car_back(a)
method2: tinybit.car back(a, b)

Function: Control the car back

One parameter:

A single parameter s is the speed of the two motors of the car, range: 0 $^{\sim}$ 255

Two parameters:

a is left motor speed, range is 0-255. b is right motor speed, range is 0-255.

Eg1: tinybit.car_back(255) // The car will back with 255 speed Eg2: tinybit.car_back(255, 255) //The car will back with 255 speed

4 Car turn left tinybit.car_left(a)

Function: Control the car turn left

Parameter:

a is the speed of right motor of the car, range: 0 ~ 255

!Note: car turn left is left wheel stop and right wheel advance,so we only input right

speed.

Eg: tinybit.car_left(255) // The car will turn left with 255 speed

5 Car turn right tinybit.car_right(a)

Function: Control the car turn right

Parameter:

a is the speed of left motor of the car, range: $0 \sim 255$

!Note: car turn left is right wheel stop and left wheel advance, so we only input left speed.

Eg: tinybit.car_right(255) // The car will turn right with 255 speed

6 Car spin left

method1: tinybit.car_spinleft(s)
method2: tinybit.car_spinleft(a,b)

Function: Control the car spin left

One parameter:

A single parameter s is the speed of the two motors of the car, range: $0 \sim 255$

Two parameters:

a is left motor speed, range is 0-255. b is right motor speed, range is 0-255.

Eg1: tinybit.car_spinleft(255) // The car will spin left with 255 speed

Eg2: tinybit.car_spinleft(255, 255) //The car will spin right with 255 speed

7. Car spin right

method1: tinybit.car_spinright(s)
method2: tinybit.car_spinright(a,b)

Function: Control the car spin right

One parameter:

A single parameter s is the speed of the two motors of the car, range: $0 \sim 255$ Two parameters:

a is left motor speed, range is 0-255. b is right motor speed, range is 0-255.

Eg1: tinybit.car_spinright(255) // The car will spin right with 255 speed Eg2: tinybit.car_spinright(255, 255) //The car will spin right with 255 speed

8 Car stop tinybit.car_stop()

Function: Control the car stop

9、RGB search light tinybit.setMotorPWM(a, b, c)

Function: Set motor PWM value

Parameters:

a: the left motor speed (-255 $^{\sim}$ 255), positive number is forward, negative number is backward, zero is stop

b: the right motor speed (-255 $^{\sim}$ 255), positive number is forward, negative number is backward, zero is stop

c: delay time (ms)

Eg: tinybit.car_setMotorPWM(255, -255, 1000) //Left motor rotates forward, right motor rotates reverse 1000ms with 255 speed.

10 \ Ultrasonic module return distance tinybit.ultrasonic()

Function: returns the current distance detected by the ultrasonic module(cm).

11, Left tracking sensor tinybit.traking sensor L()

Return value: if black lines are detected returns true, if white lines are detected return false.

12 Right tracking sensor tinybit.traking_sensor_R()

Return value: if black lines are detected returns true, if white lines are detected return false.

13. Voice sensor tinybit.getVoicedata()

Function: Get the value of the sound sensor

14 \ IR control tinybit.init_IR(a)

Function: Initialize infrared remote receiver

Parameter:

a is pin of the infrared receiver

!Note: For building:bit, we need to select pin8

Eg: tinybit.init_IR(pin8)

15 Return button value of IR controller tinybit.get_IR(IR_pin)

Parameter:

a is pin of the infrared receiver

!Note: For building:bit, we need to select pin8

Eg: tinybit.get IR(pin8)

16. Input this code to import Yahboom Tiny:bit Micropython library: import ghandle

ghandle.B1 is pressed()

Function: Key B1 (red), press to return to True, release to return to False

ghandle.B2_is_pressed()

Function: Key B2 (green), press to return to True, release to return to False

ghandle.B3_is_pressed()

Function: Key B3 (blue), press to return to True, release to return to False

ghandle.B4_is_pressed()

Function: Key B4 (yellow), press to return to True, release to return to False

ghandle.rocker(state)

Function: Detect the joystick direction, if it is consistent with the parameter return

True , if it is inconsistent with the parameter return False

Parameters: state indicates the status of the rocker

```
ghandle.up --- rocker up
ghandle.down --- rocker down
ghandle.left --- rocker left
ghandle.right --- rocker right
ghandle.pressed --- rocker be pressed
ghandle.noState --- no any operation
```

ghandle.get_value_x()

Function: Returns the analog value of the X channel of the rocker. The value will change when moving left and right. It increases to the left and decreases to the right.

ghandle.get_value_y()

Function: Returns the analog value of the Y channel of the rocker. The value will change when moving up and down. It increases to the down and decreases to the up.