Math 255B Lecture 6 Notes

Daniel Raban

January 17, 2020

1 Consequences of Analytic Fredholm Theory

1.1 Analytic Fredholm theory

Last time, we were proving the analytic Fredholm theory.

Theorem 1.1 (analytic Fredholm theory). Let $\Omega \subseteq \mathbb{C}$ be open and connected, and let $T(z) \in \mathcal{L}(B_1, B_2)$ for $z \in \Omega$ be a holomorphic family of Fredholm operators. Assume that there exists a $z_0 \in \Omega$ such that $T(z_0) : B_1 \to B_2$ is bijective. Then the set

$$\Sigma = \{z \in \Omega : T(z) \text{ is not bijective}\}$$

is discrete.

Proof. Let $z_1 \in \Omega$. Then there is a neighborhood $N(z_1)$ of z_1 such that for every $z \in N(z_1)$, the Grushin operator

$$\mathcal{P}_{z_1}(z) = \begin{bmatrix} T(z) & R_{-}(z) \\ R_{+}(z) & 0 \end{bmatrix}$$

is bijective with the inverse

$$\mathcal{E}_{z_1}(z) = \begin{bmatrix} E(z) & E_+(z) \\ E_-(z) & E_{-+}(z) \end{bmatrix} : B_2 \oplus \mathbb{C}^{n_0} \to B_1 \oplus \mathbb{C}^{n_0}.$$

We claim that for $z \in N(z_1)$, $T(z): B_1 \to B_2$ is bijective $\iff E_{-+}(z): \mathbb{C}^{n_0} \to \mathbb{C}^{n_0}$ is bijective. 1 Check:

$$\begin{bmatrix} T & R_- \\ R_+ & 0 \end{bmatrix} \begin{bmatrix} E & E_+ \\ E_- & E_{-+} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies TE + R_-E_- = 1, TE_+ + R_-E_{-+} = 0.$$

¹What we lose from this reduction is that if T(z) has some simple dependence of z (e.g. polynomial), $E_{-+}(z)$ may not have a simple dependence. In some contexts, the operator E_{-+} is called the effective Hamiltonian.

If E_{-+}^{-1} exists, then $R_{-} = -TE_{+}E_{-+}^{-1}$, so

$$T(E - E_{-}E_{-}^{-1}E_{-}) = 1.$$

So T^{-1} exists and

$$T^{-1}(z) = E(z) - E_{+}(z)E_{-+}(z)^{-1}E_{-}(z).$$

Using that $\mathcal{EP} = 1$, so $E_-R_- = 1$ and $E_-T + E_{-+}R_+ = 0$, we get T^{-1} exists $\implies E_{-+}$ exists.

We get for $z \in N(z_1)$ that T(z) is invertible if and only if $\det E_{-+}(z) \neq 0$. The function $\det E_{-+}(z)$ is holomorphic on $N(z_1)$. So either $\det E_{-+}(z) \equiv 0$, or $\det E_{-+}(z) \neq 0$ in a punctured neighborhood of z_1 . Let $\Omega_1 = \{z \in \Omega : T(z') \text{ is invertible } \forall z' \neq z \text{ near } z\}$ and $\Omega_2 = \{z \in \Omega : T(z') \text{ is not invertible } \forall z' \neq z \text{ near } z\}$. Then each Ω_j is open, $\Omega_1 \cup \Omega_2 = \Omega$, and $\Omega_1 \neq \emptyset$ (as $z_0 \in \Omega_1$). Since Ω is connected, $\Omega_1 = \Omega$ and thus, $\Sigma = \{z \in \Omega : T(z) \text{ is not invertible}\}$ is discrete.

Remark 1.1. The map $\Omega \setminus \Sigma \to \mathcal{L}(B_2, B_1)$ sending $z \mapsto T(z)^{-1}$ is holomorphic. Consider $T(z)^{-1}$ for z in a punctured neighborhood of $w \in \Sigma$: We have

$$T^{-1}(z) = E(z) - E_{+}(z)E_{-+}(z)^{-1}E_{-}(z),$$

where E, E_+, E_- are all holomorphic in a neighborhood of w. We have that

$$E_{-+}(z)^{-1} = \frac{\text{holomorphic near } w}{\det E_{-+}(z)},$$

so we have a Laurent expansion

$$E_{-+}(z)^{-1} = \frac{R_{-N_0}}{(z-w)^{N_0}} + \dots + \frac{R_{-1}}{z-w} + \text{Hol}(z),$$

where $1 \leq N_0 < \infty$ and the R_j are of finite rank. Combining these formulas, we get that $z \mapsto T(z)^{-1}$ has a pole of order N_0 at z = w:

$$T(z)^{-1} = \frac{A_{-N_0}}{(z-w)^{N_0}} + \dots + \frac{A_{-1}}{z-w} + Q(z),$$
 $Q(z)$ holomorphic near w ,

where for $1 \leq j \leq N_0$, the $A_{-j} \in \mathcal{L}(B_2, B_1)$ n be expressed in terms of R_{-N_0}, \ldots, R_{-1} and are therefore of finite rank.

1.2 Application: the residue of the resolvent

Here is an example/special case of the analytic Fredholm theory.

Assume that $B_1 \subseteq B_2$ with continuous inclusion, and let T(z) = T - z for $z \in \Omega$, where T is some operator. Assume that T(z) is Fredholm for each z and that $T(z_0)^{-1}$ exists for some $z_0 \in \Omega$. We get a Laurent expansion for the resolvent $(T - z)^{-1}$ at $w \in \Sigma$:

$$(z-T)^{-1} = \frac{A_{-N_0}}{(z-z_0)^{N_0}} + \dots + \frac{A_{-1}}{z-w} + Q(z),$$
 $Q(z)$ holomorphic near w .

for $0 < |z - w| \ll 1$.

Proposition 1.1. The operator $\Pi := A_{-1}$ projection² on B_2 which commutes with T (on B_1).

Proof. Integrate the Laurent expansion along $\gamma_r = \partial D(w,r)$ for $0 < r \ll 1$. Then

$$\Pi = \frac{1}{2\pi i} \int_{\gamma_r} (z - T)^{-1} dz.$$

We claim that $\Pi^2 = \Pi$: Let $0 < r_1 < r_2 \ll 1$, and write

$$\Pi^{2} = \int_{\gamma_{r_{2}}} \int_{\gamma_{r_{1}}} (z - T)^{-1} (\widetilde{z} - T)^{-1} \frac{dz}{2\pi i} \frac{d\widetilde{z}}{2\pi i}$$

and use $|(\widetilde{z}-T)^{-1}-(z-T)^{-1}=(\widetilde{z}=T)^{-1}(z-T)^{-1}(z-\widetilde{z})$ to finish the calculation (we will do this next time). We have $\Pi Tu=T\Pi u$ for $u\in B$, so $T(\operatorname{Ran}\Pi)\subseteq \operatorname{Ran}T$. $(T-w)|_{\operatorname{Ran}\Pi}$ is nilpotent, so $(T-w)^{N_0}\Pi=0$.

²This is sometimes called the Riesz projection.