WECHSELRICHTER 1-PH

Laborbericht

Projekt	Wechselrichter einphasig			
Dokument Laborbericht				
Schule Hochschule Luzern Technik & Architektur				
Modul	Elektrische Antriebstechnik (TA.BA_EAT.H15)			
Team Lukas Helfenstein, Gabriel Vonwyl, Reto Mahler				
Dozenten Adrian Omlin				
Version 1.0				

Inhalt

1	Ein	leitung	. 4	
	1.1	Laboreinrichtung		. 4
	1.2	Ziele		. 4
2	Mes	ssungen	. 5	

Abbildungsverzeichnis

Abbildung 1: Versuchsaufbau
Abbildung 2: Messfeld
Abbildung 3: Stromform (CH3)
Abbildung 4: Leistungen in Abhängigkeit von 9
Abbildung 5: Leistungen in Abhängigkeit von Udc
Abbildung 6: Stromform bei geschlossener Rechteck-Taktung
Abbildung 7: Stromform bei optimiertem Pulsmuster mit eliminierter 3. und 5. Oberschwingung
Abbildung 8: Stromform bei optimiertem Pulsmuster mit eliminierter 3. bis 21. Oberschwingung 10
Abbildung 9: Stromform bei Trägerverfahren Sinusbewertet fein
Abbildung 10: Leistungen in Abhängigkeit von θ bei optimiertem Pulsmuster mit eliminierter 3. und 5. Oberschwingung
Abbildung 11: Leistungen in Abhängigkeit von Udc bei optimiertem Pulsmuster mit eliminierter 3. und 5. Oberschwingung
Abbildung 12: Leistungen in Abhängigkeit von 9 bei optimiertem Pulsmuster mit eliminierter 3. bis 21. Oberschwingung
Abbildung 13: Leistungen in Abhängigkeit von Udc bei optimiertem Pulsmuster mit eliminierter 3. bis 21. Oberschwingung
Abbildung 14 Leistungen in Abhängigkeit von θ bei Trägerverfahren Sinusbewertet fein
Abbildung 15: Leistungen in Abhängigkeit von Udc bei Trägerverfahren Sinusbewertet fein
Abbildung 16: Optimiert auf cos\phi 1 bei optimiertem Pulsmuster mit eliminierter 3. und 5. Oberschwingung
Abbildung 17: Optimiert auf cos\phi 1 bei optimiertem Pulsmuster mit eliminierter 3. bis 21. Oberschwingung
Abbildung 18: Optimiert auf cos\phi 1 bei Sinusbewertung mit feiner Auflösung 6.3 Spannungsbelastung Halbleiter
Abbildung 19: CH3 zeigt den Strom bei geringer Belastung

Tabellenverzeichnis

Tabelle 1: Aufgabe 6.1.1 Oberschwingungen	. 6
Tabelle 2: Messwerte Aufgabe 6.2.1	. 8
Tabelle 3: Messwerte Aufgabe 6.2.2	16

1 Einleitung

Wegen deutlichen Vorteilen werden kommen immer häufiger selbstgeführte Schaltungen zum Einsatz. In diesem Versuch soll das Funktionsprinzip und die typischen Strom- und Spannungsverläufe beim einphasigen Wechselrichter praktisch untersucht werden.

Dabei soll untersucht werden wie sich Wirk- und Blindleistung einstellen lassen und wie sich die harmonischen beeinflussen lassen.

1.1 Laboreinrichtung

- Mit dem Netz synchronisierbarer einphasiger Wechselrichter
- Einphasentransformator, 400V / 230V, 25A
- Entkopplungsinduktivität 70mH, 30A
- Maschinensatz zur DC-seitigen Speisung des Wechselrichters.

•

1.2 Ziele

- Theoretisch behandeltes Verhalten des selbstgeführten einphasigen Wechselrichters überprüfen
- Einstellen der Wirkleistung
- Einstellen der Blindleistung
- Auswirkungen verschiedener Pulsmuster auf die Oberschwingungen verstehen
- Sicherheit bei der Interpretation von Spannungs- und Stromverläufen bei selbstgeführten Stromrichtern erlangen

Abbildung 1: Versuchsaufbau

2 Messungen

Abbildung 2: Messfeld

Verwendete Messgeräte

1.	Strom Kopplungsinduktivität: PR30	Inv. No. 542
2.	Spannung WR: DA 1000VN	Inv. No. 187
3.	Netzspannung: DA 1000VN	Inv. No. 179
4.	Spannung Induktivität: DA 1000VN	Inv. No. 171
5.	Oszilloskop Tektronixs TPS 2014	Inv. No. 523
6.	PM3000A	Inv. No.120
7.	Multimeter Metra Hit 18s:	Inv. No. 167

Kanalbelegung

Wenn nicht anders vermerkt ist die Channelbelegung auf den KO-Printscreens immer wie folgt:

CH1: WR Ausgangsspannung

CH2: Spannung über Kopplungsinduktivität

CH3: Strom am Ausgang der Kopplungsinduktivität

CH4: Netzspannung

Aufgabe 6.1.1. Stromform

Nehmen Sie den Laboraufbau in Betrieb und Überprüfen Sie den von Ihnen als Vorbereitung gezeichneten Stromverlauf.

Welche Harmonischen erwarten Sie in der Wechselrichter-Ausgangsspannung und im Netzstrom? Wie gross sind sie?

Bemerkungen zum Messaufbau:

- PM3000A Referenzspannung auf WR umgestellt.
- Winkel auf WR auf 5° eingestellt \rightarrow WR und Netz in Phase (Fehler WR)
- DC-Spannung: 275.5 V

Abbildung 3: Stromform (CH3)

Tabelle 1: Aufgabe 6.1.1 Oberschwingungen

	Wert	Einheit	Wert	Einheit	
Uwr eff.	275	V	I tot	1.5	Α
Uwr 01	247.8	V	101	0.41	Α
Uwr 03	33.3	%	103	280	%
Uwr 05	20	%	105	97	%
Uwr 07	14.3	%	107	57	%
Uwr 09	11.2	%	109	33	%
Uwr 11	9.1	%	I 11	20	%
Uwr 13	7.7	%	I 13	14	%
Uwr 15	6.6	%	I 15	11.5	%
Uwr 17	5.9	%	I 17	9.5	%
Uwr 19	5.3	%	I 19	7.5	%
Uwr 21	4.8	%	I 21	6	%
Uwr 23	4.4	%	I 23	5	%

Aufgabe 6.1.2. Einstellen von Wirk- und Blindleistung

Verändern Sie den Winkel θ zwischen Wechselrichter-Ausgangsspannung und Netzspannung und stellen Sie $P(\theta)$ und $Q(\theta)$ sowie $P_1(\theta)$ und $Q_1(\theta)$ graphisch dar (der Index 1 bezeichnet die Grundschwingung).

Verändern Sie die dc-Spannung U_{dc} und stellen Sie $P(U_{dc})$ und $Q(U_{dc})$ sowie $P_1(U_{dc})$ und $Q_1(U_{dc})$ graphisch dar.

Abbildung 4: Leistungen in Abhängigkeit von &

Abbildung 5: Leistungen in Abhängigkeit von Udc

Feststellung: Bei einem Betriebsfall ist Grundschwingung höher als die gesamte Leistung.

Da am Leistungsmessgerät (PM 3000) mit U_WR gemessen wird, ist diese Spannung kein Sinus und hat auch Harmonische enthalten. Somit hat sowohl der Strom als auch die Spannung harmonische enthalten und es gibt irgendwelche harmonischen die zusammen auch Wirkleistung erzeugen.

Q ist jeweils positiv, da es übers Quadrat gerechnet wird im Messgerät.

Aufgabe 6.2.1. Stromform

Wie verändert sich die Stromform bei den verschiedenen Pulsmustern? Welche Oberschwingungen sind vorhanden und wie gross sind sie? Am einfachsten Vergleichen sie die verschiedenen Pulsmuster für einen bestimmten Lastpunkt z.B. P = 1.5 kW und $Q_I = 0$.

 $Wahl\ P=1250W\ Q_1=0var$

Tabelle 2: Messwerte Aufgabe 6.2.1

	Geschlossene	3-5	3-21		
	Rechteckschwingung	eliminiert	eliminiert	Sinus fein	Einheit
ϑ	48.3	47.6	46.6	48.4	۰
U_DC:	182	222	237	235	V
P	1250	1263	1246	1270	W
P1	1250	1266	1250	1270	W
Q	641	1100	1176	1210	var
Q1	1	0	6	-5	var
Oberschwing	gungen				
Ueff	186	222.8	236	233	V
U 1	168	170	173	170	V
U 3	33	0.8	0.8	0.2	%
U 5	19.9	0.5	0.4	1	%
U 7	14.2	27.9	0.6	1	%
U 9	11	47.5	0.7	2.2	%
U 11	9	36.8	1	2.5	%
U 13	7.6	5.2	0.4	3.8	%
U 15	6.6	18.8	0.2	4.3	%
U 17	5.8	16.8	0.5	5.2	%
U 19	5.2	4.4	0.3	7.6	%
U 21	4.7	22.8	0.6	8.6	%
U 23	4.3	23	24	13.8	%
U 25			50	28.2	%

Abbildung 6: Stromform bei geschlossener Rechteck-Taktung

Abbildung 7: Stromform bei optimiertem Pulsmuster mit eliminierter 3. und 5. Oberschwingung

Abbildung 8: Stromform bei optimiertem Pulsmuster mit eliminierter 3. bis 21. Oberschwingung

Abbildung 9: Stromform bei Trägerverfahren Sinusbewertet fein

Aufgabe 6.2.2 Einstellen Wirk und Blindleistung

Funktioniert das Einstellen von Wirk- und Blindleistung immer noch wie bei Grundfrequenztaktung? Stellen Sie $P(\theta)$ und $Q(\theta)$ sowie P(Udc) und Q(Udc) für das Pulsmuster mit den tiefsten Harmonischen graphisch dar.

Bemerkungen zum Messaufbau:

- Leistungen in Abhängigkeit von 9 wurden jeweils bei U_{dc}:184V gemessen.
- Leistungen in Abhängigkeit von U_{dc} wurden jeweils bei θ:20° (entspricht real 15°) gemessen

Abbildung 10: Leistungen in Abhängigkeit von & bei optimiertem Pulsmuster mit eliminierter 3. und 5. Oberschwingung

Abbildung 11: Leistungen in Abhängigkeit von Udc bei optimiertem Pulsmuster mit eliminierter 3. und 5. Oberschwingung

Abbildung 12: Leistungen in Abhängigkeit von ϑ bei optimiertem Pulsmuster mit eliminierter 3. bis 21. Oberschwingung

Abbildung 13: Leistungen in Abhängigkeit von Udc bei optimiertem Pulsmuster mit eliminierter 3. bis 21. Oberschwingung

Abbildung 14 Leistungen in Abhängigkeit von ϑ bei Trägerverfahren Sinusbewertet fein

Abbildung 15: Leistungen in Abhängigkeit von Udc bei Trägerverfahren Sinusbewertet fein

Auf welchen Wert lässt sich der $\cos \varphi$ und der Leistungsfaktor λ bei einer Wirkleistung von P=1.5 kW optimieren.

Bei optimiertem Pulsmuster mit eliminierter 3. und 5. Oberschwingung

Cos-phi lässt sich auf 1 optimieren. (Auf 3-5. Oberschwingung eliminiert.)

Theta 25.9° (30.9° eingestellt) und U_DC 337

Lambda 0.977

Lambda lässt sich nicht auf 1 bringen wegen den Oberschwingungen.

Leistung 1.25 kw

Abbildung 16: Optimiert auf $cos\phi$ 1 bei optimiertem Pulsmuster mit eliminierter 3. und 5. Oberschwingung

Bei optimiertem Pulsmuster mit eliminierter 3. bis 21. Oberschwingung

Auch hier lässt sich Cos-phi optimieren auf 1.

Lambda ist dabei auf 0.993 wegen Oberschwingungen.

Theta 32.1° (eingestellt, effektiv 27.1) U-DC = 359

Abbildung 17: Optimiert auf cos p 1 bei optimiertem Pulsmuster mit eliminierter 3. bis 21. Oberschwingung

Bei Sinusbewertung mit feiner Auflösung

Cos auf 1 optimiert mit:

Theta 31.2 (eingestellt, effektiv 27.1)

U-DC = 362.6

Lambda= 0.992

Abbildung 18: Optimiert auf cosφ 1 bei Sinusbewertung mit feiner Auflösung6.3 Spannungsbelastung Halbleiter

Aufgabe 6.2.2 Stromeffektivwert

Wie gross ist der Effektivwert des Netzstromes bei den verschiedenen Pulsmustern?

Tabelle 3: Messwerte Aufgabe 6.2.2

	Geschlossene	3-5 elimi-	3-21 elimi-		
	Rechteckschwingung	niert	niert	Sinus fein	Einheit
Teta:	48.3	47.6	46.6	48.4	0
U_DC:	182	222	237	235	V
P	1250	1263	1246	1270	W
P1	1250	1266	1250	1270	W
Q	641	1100	1176	1210	var
Q1	1	0	6	-5	var
I_Netz_effektiv	N/A	7.5	7.26	7.5	Α

Aufgabe 6.3 Spannungsbelastung der Halbleiter

Wie sieht der zeitliche Verlauf der Spannung über einem Halbleiter aus?

Wie sieht der zeitliche Verlauf des Stromes durch einen Halbleiter aus?

Skizzieren Sie die Kurvenverläufe.

Der Zeitliche Verlauf der Spannung über einem Halbleiter konnte gemessen werden, der Strom nur als gesamtstrom:

Bemerkungen zum Messaufbau:

- Gemessen mit Differential Amplifier Inv.No 170, immer auf Halbleiter oben rechts auf Schema
- Channel 1 Spannung über Wechselrichter
- Channel 4 Spannung über Halbleiter

Rechteck-Bewertet:

Bemerkungen zum Messaufbau:

- Theta = 0° (eingestellt, effektiv -5°)
- U-DC = 252V (Default)

1-3 Oberschwingung eliminiert:

Bemerkungen zum Messaufbau:

- Theta = 0° (eingestellt, effektiv - 5°)
- U-DC = 319V (Default)

1-21 Oberschwingung eliminiert:

Bemerkungen zum Messaufbau:

- Theta = 0° (eingestellt, effektiv -5°)
- U-DC = 335V (Default)

Sinusbewertet fein:

Bemerkungen zum Messaufbau:

- Theta = 0° (eingestellt, effektiv -5°)
- U-DC = 339V (Default)

Abbildung 19: CH3 zeigt den Strom bei geringer Belastung.