# PRÁTICA 5 - TROCADOR DE CALOR, DIFERENTES CONFIGURAÇÕES

LUIZ AUGUSTO DEMBICKI FERNANDES<sup>1</sup>; PEDRO FRANCISCO DUARTE<sup>2</sup>; MANOELA SABRINE VIEIRA<sup>3</sup>, VICTOR GUSTAVO DURAU<sup>4</sup>; THIAGO ZAGONEL DE LINHARES<sup>5</sup>

Prof. Luis Ricarso S. Kanda

# Fenômenos de Transporte Experimental II – TQ084 Universidade Federal do Paraná

<sup>1</sup>Discentes do curso de Engenharia Química da UFPR Grupo F-2

#### Resumo

Este artigo diz respeito a análise de trocadores de calor, através de arranjos contracorrentes e paralelo. Foi feita a medição das temperaturas das correntes quente e fria em diferentes pontos experimentais em situação contracorrente e paralelo. Por meio dos dados coletados foi possível determinar o coeficiente global de troca térmica para os dois arranjos. Em arranjo contracorrente obteve-se uma maior eficiência de troca térmica.

Palavras-chave: Trocadores de calor; Troca de calor, Contracorrente, Paralelo.

#### **Abstract**

This article concerns the analysis of heat exchangers, through countercurrent and parallel arrangements. The temperature of the hot and cold streams was measured at different experimental points in a countercurrent and parallel situation. Through the data collected, it as possible to determine the global coefficient of thermal exchange for the two arrangements. In a countercurrent arrangement, a higher thermal exchange efficiency was obtaneid.

Keywords: Heat exchangers, Heat exchange, Countercurrent, Parallel flow.

## 1. Introdução

Trocadores de calor desempenham um papel crucial em uma ampla gama de aplicações industriais, haja vista que a sua função é realizam a troca térmica entre dois ou mais fluidos que possuam temperaturas distintas, ou seja, eles possuem a capacidade de alterar a temperatura de correntes, bem como o estado físico dos seus fluidos. Aliás, é justamente essa variação de temperatura entre os fluidos que é a força motriz desse fenômeno. Então, o estudo de trocadores arranjados em cocorrente e contracorrente é de suma importância para o entendimento e aprimoramento de transferência de calor, visando maximizar a eficiência energética e otimizar o desempenho dos equipamentos em processos químicos.

O rendimento energético de trocadores costuma ser bastante alto em razão da

espontaneidade da transferência de energia de fluidos quentes a fluidos frios, mas também, no caso dos arranjos em cocorrente e contracorrente, em razão do coeficiente convectivo que descreve a troca térmica em interfaces fluido-superfície ou fluido-fluido da linha serem muito superiores aos observados entre o sistema e o meio. Consequentemente, menos energia é perdida para o meio do que trocada entre os fluidos da linha. Ainda, como a diferença de temperatura é a força motriz desse fluxo energético, uma das preocupações e acentuar a diferença de temperatura entre os fluidos a fim de favorecer a troca térmica .

Como fora mencionado, os trocadores de calor podem ser classificados em função da configuração do escoamento e do tipo de construção. No trocador de calor mais simples, os fluidos quentes e frio se movem no mesmo sentido ou em sentidos opostos em uma construção com tubos concêntricos, ou bitubular, conforme ilustra a FIGURA 1, disposta abaixo. Na configuração

paralela da FIGURA 1 dada pelo arranjo em cocorrente, os fluidos quente e frio entram pela mesma extremidade e escoam no mesmo sentido. Já na configuração em contracorrente da FIGURA 1, os fluidos entram por extremidades opostas, escoam em sentidos opostos e deixam os equipamentos em extremidades opostas (SMITH, 2000).

FIGURA 1 – Trocadores bitubulares arranjados em cocorrente (a) e contracorrente (b)



FONTE: JANNA, W. S (2016).

Alternativamente, os fluidos podem se mover em escoamento cruzado (um fluido escoa perpendicularmente ao outro), como ilustrados pelos trocadores de calor tubulares com e sem aletas. (JANNA, W. S, 2016)

# 2. Objetivos

#### 2.1. Objetivo geral

Observar e avaliar o sistema de troca térmica do trocador de calor do tipo bitubular disposto em diferentes arranjos de fluxos corrente e contracorrente.

### 2.2. Objetivos específicos

Depois de coletar os dados de temperatura nos termopares apropriados e a vazão, determinar o coeficiente global de troca térmica na disposição cocorrente e contracorrente, utilizando água como fluido quente e frio.

#### 3. Materiais e métodos

#### 3.1. Material

Aquecedor de água, refrigerador, régua, manômetro, Computador para medir as temperaturas.

#### 3.2. Procedimento experimental

A prática teve início com o aquecimento da esfera soldada na ponta do termopar por meio da utilização de um soprador térmico. Em seguida, a esfera ficou em contato com o ar a fim de ser resfriada e, consecutivamente, limpa, haja vista que o procedimento precisou ser repetido também para a água e o óleo, nessa ordem. O resfriamento foi filmado com o celular e as medidas de tempo e temperatura foram extraídas do vídeo.

TABELA 1 – POSIÇÃO DAS VÁLVULAS

| N° | <i>Tag</i> da<br>válvula | Escoamento paralelo | Escoamento contracorrente |
|----|--------------------------|---------------------|---------------------------|
| 1  | F-X                      | aberta              | fechada                   |
| 2  | F-1                      | aberta              | aberta                    |
| 3  | F-2                      | aberta              | fechada                   |
| 4  | F-3                      | fechada             | aberta                    |
| 5  | F-4                      | fechada             | aberta                    |
| 6  | F-5                      | fechada             | aberta                    |
| 7  | Q-X                      | aberta              | aberta                    |
| 8  | Q-1                      | aberta              | aberta                    |
| 9  | Q-2                      | aberta              | aberta                    |
| 10 | Q-3                      | aberta              | aberta                    |
| 11 | Q-4                      | fechada             | fechada                   |
| 12 | Q-7                      | aberta              | aberta                    |
| 13 | Q-8                      | fechada             | aberta                    |
| 14 | Q-9                      | aberta              | fechada                   |

FONTE: Os autores (2023).

#### 4. Resultados

#### 4.1. Arranjo com corrente paralela

Primeiramente, a fim de determinar a temperatura de saída da corrente fria (Tf,s) no escoamento em cocorrente, foram igualados os calores sensíveis das correntes de água fria e quente, tendo em mente que o escoamento era estacionário e as demais temperaturas de entrada e saída foram aferidas pelos termopares e estão dispostas na TABELA 2 que segue, na qual Tf,e, Tq,e e T<sub>q,s</sub> são, nessa ordem, as temperaturas de entrada da corrente fria e entrada e saída da corrente quente. No entanto ao observar os dados da planilha com as temperaturas, observou-se que temperatura na saída da corrente, aferida pelo TI (1.3), era superior a temperatura da entrada, aferida pelo TI (1.2), o que não possui sentido portanto, optou-se por inverter físico,

temperaturas para realizar cálculos coerentes, apesar do resultado ser virtual.

TABELA 2 – Temperaturas aferidas pelos termopares

|          | Tf,e  | Tq,e  | Tq,s  |
|----------|-------|-------|-------|
| T (°C)   | 22,38 | 32,49 | 33,35 |
| Termopar | 1.1   | 1.2   | 1.5   |

FONTE: Os autores (2023).

Ainda, é importante mencionar que as capacidades caloríficas, viscosidades, coeficientes de troca térmica e o número adimensional de Prandl da água nas temperaturas de filme das correntes quente e fria foram aglomeram aglomerados na TABELA 3 a fim de que fosse realizado o cálculo do coeficiente global de troca térmica.

TABELA 3 – DADOS INTERPOLADOS DA TABELA A.6 PARA TEMPERATURA MÉDIA DE CADA FLUIDO

|                            | Cp<br>(J/kg) | Viscosidade<br>(N s/m2) | k (W/m<br>K) | Pr     |
|----------------------------|--------------|-------------------------|--------------|--------|
| Água<br>quente<br>(32,6°C) | 4069,2       | 0,00073581              | 0,62296      | 4,8064 |
| Água fria<br>(22,8°C)      | 4074,2       | 0,00091385              | 0,60902      | 6,1134 |

FONTE: Os autores (2023).

Foi utilizado aceleração da gravidade de 9,78 m/s² e densidades para a água e para o mercúrio correspondentes a 998 Kg/m³ e 13555 Kg/m³, respectivamente.

Assim, tendo que a taxa de calor sensível é calculada por meio da expressão

$$Q_i = m_i \cdot C p_i \cdot \left( T_{i,e} - T_{i,s} \right) \tag{1}$$

em que  $C_p$  é a capacidade calorífica da água,  $m_f$  e  $m_q$ , são as vazões mássicas das correntes fria e quente, respectivamente. Vale ressaltar que as vazões mássicas foram calculadas por meio da diferença de pressão proporcionada por uma placa de orifício, conforme segue. Foram utilizadas a altura 0,017 m para a parte quente e 0,014 m para a fria aferidas por manômetros de mercúrio.

$$m_i = 0.08788 \cdot \sqrt{\Delta P_i} + 1.969$$
 (2)

Em que i pode assumir q ou f, para correntes quente ou fria, respectivamente.

Foi obtido que a temperatura de saída foi definida por

$$T_{f,s} = T_{f,e} + \frac{m_q \cdot Cp_q}{m_f \cdot Cp_f}$$

$$\cdot (T_{q,e} - T_{q,s})$$
(3)

para a qual a temperatura de saída obtida é 30,84 °C.

Isto posto, o calor trocado pelos fluidos foi calculado pela expressão de calor sensível (1) para a corrente quente.

Consecutivamente, foi calculado o coeficiente global de troca térmica por meio da expressão

$$\frac{1}{UA} = \frac{1}{(hA)_f} + R_p + \frac{1}{(hA)_q}$$
 (4)

na qual, EXPLICAR TERMOS. Para o cálculo dos coeficientes convectivos foram os seguintes parâmetros.

Reynolds:

$$ReD = \frac{4 \cdot m_f}{\pi \cdot D_i \cdot \mu_f} \tag{5}$$

Nusselt:

$$Nu = 0.023 \cdot ReD^{(4/5)} \cdot Pr^{0.4}$$
 (6)

Outrossim, os diâmetros hidráulicos para os fluidos quente e frio foram calculados por meio das expressões  $D_h = D_i$  e  $D_h = D_i + D_e$ , respectivamente. Enfim, foi possível calcular o coeficiente convectivo por meio da expressão

| $h_f = Nu_f \frac{k_f}{D_i}$ | (7) |
|------------------------------|-----|
| $h_q = Nu_q \frac{k_q}{D_e}$ | (8) |

em que, o subscrito f indica que se trata de atributo do fluído frio, subscrito q indica fluído quente. Para o qual os  $D_h$  é igual ao  $D_i$  para o fluido quente e igual a  $D_e$  —  $D_i$  para o fluido frio.

Por fim, foi possível calcular o comprimento do trocador de calor por meio de um rearranjo da eq. (9).

| $Q = U \cdot \pi \cdot D_i \cdot \Delta T_{ml} \cdot L$ | (9) |
|---------------------------------------------------------|-----|
|                                                         | (9) |

$$L = \frac{Q}{U \cdot \pi \cdot D_i \cdot \Delta T_{ml}} \tag{10}$$

Na qual, a temperatura média logarítmica  $(\Delta T_{lm})$  foi calculada da seguinte forma.

$$= \frac{\left(T_{q,e} - T_{f,s}\right) - \left(T_{q,s} - T_{f,e}\right)}{\ln\left[\frac{\left(T_{q,e} - T_{f,s}\right)}{T_{q,s} - T_{f,e}}\right]}$$
(11)

Então L foi definido como 0,46 metros.

Para arranjos em contracorrente, a temperatura média logarítmica seria distinta, à medida que as temperaturas nas entradas e saídas do trocador seriam alteradas, mas não é possível fazer os cálculos para esse arranjo em razão de não ter sido

$$E(\%) = \frac{|Valor_{real} - Valor_{te\acute{o}rico}|}{Valor_{real} \times 100\%}$$
(12)

O erro obtido foi de 60%.

#### 5. Discussão

O experimento foi realizado de forma a isolar o efeito da direção da corrente, ou seja, a configuração de um trocador de calor, é perceptível que a configuração afeta diretamente na troca de calor, já que esta é movida por gradiente de temperatura, isto é exemplificado pelos valores de temperatura média logarítmica ( $\Delta T_{lm}$ ) de cada escoamento, sendo demonstrado um valor maior para contracorrente e por consequência uma força motriz de troca de calor maior.

E com uma eficiência de troca térmica maior o trocador pode ocupar uma área menor e finalmente um volume menor, economizando espaço na planta, principalmente em locais de processo.

No cálculo realizado para determinar o comprimento do tubo a partir do U obtido, chegouse a um valor de L de 0,46m, com um erro percentual de 60% para baixo. Isso provavelmente

se deve a um problema na obtenção dos dados. Na planilha de dados a T na entrada da corrente quente era inferior a T na saída desta. Esse dado pode ser resultado de um erro de medida do termopar 1.5, visto que termopares podem apresentar mal contato e marcar valores incorretos. Outra possibilidade seria um erro na leitura dos dados durante o experimento, tendo anotado incorretamente a posição dos termopares. Como não seria possível corrigir um erro de medida optou-se por inverter as duas medidas, para poder realizar o cálculo com os valores obtidos

#### 6. Conclusões

Nesta prática foi feita a análise de trocadores de calor e suas configurações, a limitação foi a quantidade de configurações (só foram testadas 2) e o tempo de prática não foi suficiente para que fossem obtidos os dados de ambas as configurações. Assim, não foi possível visualizar, na prática, a maior eficiência do arranjo em contracorrente. Contudo, foi possível notar a simplicidade no funcionamento do equipamento e os princípios de seu funcionamento.

#### Referências

CHASE M.W., Jr. NIST-JANAF Themochemical Tables, Fourth Edition, **J. Phys. Chem. Ref. Data.** 9 ed, 1998, p. 1-1951.

INCROPERA, F.P.; DEWITT, D. P.; BERGMAN, T. L.; LAVINE, A. S. **Fundamentos de transferência de calor e de massa**. 6 ed. Rio de Janeiro: LTC, 2008.

JANNA, W. S.; **Projetos de sistemas fluidotérmicos**. São Paulo: Cengage Learning, 4 ed. 2016.

SMITH, J.M.; VAN NESS, H.C.; ABBOTT, M.M. Introdução à termodinâmica da engenharia química. 5ª ed. Rio de Janeiro: LTC, 2000.

CALLISTER, W. D.; Ciência e engenharia de materiais: uma introdução. 8. ed. Rio de Janeiro: LTC, 2012.