Legame Chimico

Le proprietà di una sostanza dipendono dagli atomi componenti e dai legami che li uniscono.

Un legame chimico si forma stabilmente se il sistema legato è nettamente più stabile degli atomi separati.

$$-\Delta E \ge 100 \text{ kJ mol}^{-1}$$

$$E_A + E_B = E_1$$
 $E_{(AB)} = E_2$
 $E_{legame(A-B)} = E_1 - E_2 = -\Delta E$

$$E_{legame(A-B)} = -\Delta E = energia di legame A-B$$

E necessaria a spezzare il legame A-B

Tipi di legami chimici

- · Legame covalente
- · Legame ionico
- · Legame metallico

$$E_{legame} \ge 100 \text{ k J mol}^{-1}$$

Legame a idrogeno

energia intermedia

- · Interazioni dipolo-dipolo
- Interazioni di Van der Waals (a dist. ≈ r_{VdW(A)} + r_{VdW(B)})

interazioni deboli tra molecole

 $E_{interaz.} \leq 10 \text{ k J mol}^{-1}$

Elettronegatività e tipo di legame chimico

Triangolo di Ketelaar per composti binari $A_n B_m$

Elettronegatività di Pauling

Distanza di equilibrio r_0 del legame: \Rightarrow Bilancio attrazione-repulsione

Legame ionico

Attrazione elettrostatica fra ioni di carica opposta

Analisi strutturale ai raggi X di NaCl (densità elettronica)

In prima approssimazione:

$$E_{legame\ ionico} = E_{Coulomb} = \frac{(z^+e)(z^-e)}{4\pi\varepsilon_0 d_0}$$

adirezionale!

simmetria sferica

Z⁺ = carica ione + in unità di carica elettronica

 Z^- = carica ione - in u.e.

Il legame ionico

Na: [Ne]3s²3p⁵
CI: [Ne]3s²3p⁶
CI: [Ne]3s²3p⁶ = [Ar]

Configurazione: livello completo (o sottolivello p completo)

Requisiti per la formazione del legame ionico

M bassa energia di ionizzazione X elevata affinità elettronica

Il più basso EI₁ (Cs 376 kJ mol⁻¹) è più grande della più elevata A.E. (Cl 349 kJ mol⁻¹)!

Affinità elettroniche*

*)-energia di cattura elettronica

Il legame ionico L'energia reticolare

> Na+_(g) + Cl⁻_(g) → NaCl_(s)

La formazione di coppie di ioni gassosi isolati richiede sempre energia.

Questa può essere più che compensata dalla energia reticolare = energia che si libera al passaggio degli ioni isolati allo stato gassoso agli ioni organizzati nel reticolo ionico (solido).

Energia interazione coppie vs. Energia reticolare

Energia d'interazione per coppia di ioni a distanza
$$d_0$$
 e cariche z' e z':
$$E = E_{Coulomb} = \frac{(z^+e)(z^-e)}{4\pi\varepsilon_0 d_0} = \frac{z^+z^-e^2}{4\pi\varepsilon_0 d_0}$$

Per reticolo ionico monodimensionale supponendo una mole, ad es., di NaCl:

> (o di ioni di carica z uguale e opposta)

$$E_{Coulomb} = -\frac{N_A z^2 e^2}{4\pi\varepsilon_0} \left(\frac{2}{d_0} \right) \left(\frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots \right)$$

$$= -\frac{N_A z^2 e^2}{4\pi\varepsilon_0 d_0} 2 \ln 2 = -\frac{N_A z^2 e^2}{4\pi\varepsilon_0 d_0} A \qquad \begin{array}{l} A = \text{costante di Madelung} \\ \text{(monodim.)= 1.386} \end{array}$$

Per reticoli A>1.0 sempre: una mole di coppie di ioni in reticolo è sempre più stabile per un fattore A di una mole di coppie di coppie di ioni alla stessa distanza d_0 .

Energia reticolare

LA STRUTTURA CRISTALLINA DI NaCl

Na⁺

Cl-

6 primi vicini

$$E_{ret} = \frac{N_A z^2 e^2}{4\pi \varepsilon_0 d_0} A$$

Valore assoluto dell'energia che si libera nella formazione del reticolo a partire dagli ioni in stato gassoso. A dipende dalla stechiometria e dalla geometria del reticolo

 $d_0 \approx \text{somma r(+)} + \text{r(-)}$, dipende anche da coordinazione = nr di primi vicini

Costanti di Madelung

Reticolo		\boldsymbol{A}
Salgemma		1,7476
CsCl Blenda cubica	· (7 _n ¢)	1,7627 1,6381
Fluorite	(CaF_2)	2,5194

CsCl

8 primi vicin

Cicli di Born-Haber: usati per determinare E_{ret} sperimentale

Per $E_{ret}(KCl_{(s)})$:

E_{ret} =-x può essere stimata bene da dati "sperimentali" nel ciclo:

$$E_{ret} = -\Delta E_f(KCI)_{sol} + E_{subl}(K) + EI_1(K) + \frac{1}{2} E_{Cl-Cl} - AE(Cl) =$$
= (438+89+425+122-355)=
= 719 kJ mol⁻¹

K⁺(g) + e⁻(g) + Cl(g)

122

K⁺(g) + e⁻(g) -355

+
$$\frac{1}{2}$$
Cl₂(g)

425

K(g) + $\frac{1}{2}$ Cl₂(g)

89

K(s) + $\frac{1}{2}$ Cl₂(g)

438

KCl(s)

Figure 3-44

Shriver & Atkins Inorganic Chemistry, Fourth Edition

© 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Formazione di ioni a carica multipla ha un bilancio di energia molto sfavorevole:

 $Ca_{(s)}^{+} + \frac{1}{2} O_{2(g)} \rightarrow CaO_{(s)}$ si ha solo perché la difficile formazione degli ioni è più che compensata dalla E_{ret} molto grande

Energia Reticolare in kJ/mol

LiF	1046	LiCl	861	LiBr	818
NaF	929	NaCl	787	NaBr	751
KF	826	KCl	717	KBr	689
CsF	723				
$MgCl_2$	2524	CaCl ₂	2260		
MgF ₂	2961	CaBr ₂	1984		
MgO	3850	MgS	3406		
CaO	3461	CaS	3119		
BaO	3114	BaS	2832		

Per reticoli di ioni a carica multipla E_{ret} molto più grande che per ioni a carica singola. Dipende da z^{+} , z^{-} e da d_{0}

In prima approssimazione:

$$E_{ret} \cong \frac{N_A z^2 e^2}{4\pi \varepsilon_0 d_0} A$$

La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Proprietà di composti ionici

Formano solidi cristallini a causa della natura elettrostatica, a simmetria sferica, del legame

punti di fusione e di ebollizione elevati.

Composto	pf (°C)	pe (° <i>C</i>)
CsBr	636	1300
NaI	661	1304
MgCl ₂	714	1412
KBr	734	1435
CaCl ₂	782	>1600
NaCl	801	1413
LiF	845	1676
KF	858	1505
MgO	2852	3600

Proprietà dei composti ionici: solubilità in H₂O

Sono *generalmente* solubili in acqua: tale caratteristica è legata alla natura elettrostatica del legame ed alla elevata *costante dielettrica dell'acqua* ($\varepsilon = 78.5 \text{ a } 25^{\circ}\text{C}$).

Insolubili in solventi apolari (e.g. olio, benzina)

Proprietà di composti ionici: frattura

Presentano elevata durezza e fragilità

Proprietà di composti ionici: conducibilità

- Allo stato fuso conducono la corrente.
- Prendono conduttori solventi non conduttori in cui si sciolgono

Modello più accurato:

La distanza r_0 di equilibrio tra ioni risulta da bilancio tra attrazione-repulsione: se sono troppo vicini è repulsiva anche l'interazione tra ioni di carica opposta

Termine repulsivo non elettrostatico, ad esempio:

$$E_R = \frac{B}{r^n}$$

E_{ret-0} per un reticolo ionico, nel punto r_0 (di minimo) calcolata in modo ≈ preciso partendo dalla:

$$E = E_{Coul} + E_R = \frac{N_A z^+ z^- e^2}{4\pi \varepsilon_0 r} A + \frac{N_A B}{r^n} \qquad \qquad ^{Z^+ = +2 \text{ per catione con carica +2}}{r^n}$$

Da derivata parziale rispetto ad r ponendo:

$$\frac{dE}{dr} = 0 = -\frac{N_A z^+ z^- e^2}{4\pi \varepsilon_0 r^2} A - \frac{nN_A B}{r^{n+1}}$$
 da cui

$$B = -\frac{z^{+}z^{-}e^{2}r^{n-1}}{4\pi\varepsilon_{0}n}A$$
n dipende dal tipo di ione: 5

$$E_0 = -E_{\rm Ret} = \frac{N_A z^+ z^- e^2}{4\pi \varepsilon_0 r_0} A \left(1 - \frac{1}{n}\right) \begin{array}{c} \text{Configur.} & \text{n} \\ \text{elettr. ione} \\ \text{He (Li+, Be}^2 \cdot ...) \end{array}$$

Equazione di Born-Landé: sottostima Ne (Na⁺, Be²⁺, F⁻, O²⁻) 7 di E_{ret} del 3-4%

⇒ polarizzazione tra primi e secondi vicini

IUPAC Periodic Table of the Elements

1 1 H																	18 2 H (
hydrogen 1.007 94(7)	2		Key:									13	14	15	16	17	heliu 4.002 6
3	4		atomic num									5	6	7	8	9	10
lithium 6.941(2)	Be beryllium 9.012 182(3)		Symb name standard atomic									B boron 10.811(7)	C carbon 12.0107(8)	N nitrogen 14.0067(2)	O oxygen 15.9994(3)	fluorine 18.998 4032(5)	No. ned
11	12											13	14	15	16	17	18
Na sodium 22.989 770(2)	Mg magnesium 24,3050(6)	3	4	5	6	7	8	9	10	11	12	AI aluminium	Si silicon	P phosphorus	S sulfur	CI chlorine	A
19	20	21	22	23	24	25	26	27	28	29	30	26.981 538(2)	28.0855(3)	30.973 761(2)	32.065(5)	35.453(2)	39.94
K potassium 39.0983(1)	Ca calcium 40.078(4)	Sc scandium 44.955 910(8)	Ti titanium 47.867(1)	vanadium 50.9415(1)	Cr chromium 51.9961(6)	Mn manganese 54.938 049(9)	Fe iron 55.845(2)	Co cobalt	Ni nickel	Cu copper	Zn zinc	Ga gallium	Ge germanium	As arsenic	34 Se selenium	35 Br bromine	Kryp
37	38	39	40	41	42	43	44	58.933 200(9) 45	58.6934(2)	63.546(3)	65.409(4)	69.723(1)	72.64(1)	74.921 60(2) 51	78.96(3) 52	79.904(1) 53	83.79 54
Rb rubidium 85.4678(3)	Sr strontium 87.62(1)	Y yttrium 88.905 85(2)	Zr zirconium 91.224(2)	Nb niobium 92.906 38(2)	Mo molybdenum 95.94(2)	Tc technetium	Ru ruthenium 101.07(2)	Rh rhodium 102.905 50(2)	Pd palladium	Ag silver	Cd cadmium	In indium	Sn tin 118.710(7)	Sb antimony	Te tellurium	iodine	X xen
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs caesium 132.905 45(2) 87	Ba barium 137.327(7) 88	lanthanoids	Hf hafnium 178.49(2)	Ta tantalum 180.9479(1) 105	tungsten 183.84(1)	Re rhenium 186.207(1)	Os osmium 190.23(3)	iridium 192.217(3)	Pt platinum 195.078(2)	Au gold 196.966 55(2)	Hg mercury 200.59(2)	TI thallium 204.3833(2)	Pb lead 207.2(1)	Bi bismuth 208.980 38(2)	Po polonium [209]	At astatine [210]	Ri rado [222
Fr francium [223]	Ra radium	actinoids	Rf rutherfordium	Db dubnium	Sg seaborgium	Bh bohrium	HS hassium	109 Mt meitnerium [268]	Ds darmstadtium	Rg roentgenium							
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		La lanthanum 138.9055(2)	Ce cerium 140.116(1)	Pr praseodymium 140.907 65(2)	Nd neodymium 144.24(3)	Pm promethium [145]	Sm samarium 150.36(3)	Eu europium 151.964(1)	Gd gadolinium 157.25(3)	Tb terbium 158.925 34(2)	Dy dysprosium 162.500(1)	Ho holmium 164.930 32(2)	Er erbium 167.259(3)	Tm thulium 168.934 21(2)	Yb ytterbium 173.04(3)	Lu lutetium 174.967(1)	
	T	89 Ac actinium	90 Th	91 Pa	92 U uranium	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf	99 Es einsteinium	100 Fm fermium	101 Md	102 No	103 Lr	
		[227]	232.0381(1)	231.035 88(2)	238.028 91(3)	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	(258)	12591	12621	

Note:

- "Aluminum" and "cesium" are commonly used alternative spellings for "aluminium" and "caesium."
- IUPAC 2001 standard atomic weights [mean relative atomic masses] are listed with uncertainties in the last figure in parentheses [R. D. Loss, Pure Appl. Chem. 75, 1107-1122 (2003)]. These values correspond to current best knowledge of the elements in natural terrestrial sources. For elements that have no stable or long-lived nuclides, the mass number of the nuclide with the longest confirmed half-life is listed between square brackets.
- Elements with atomic numbers 112 and above have been reported but not fully authenticated.

Ottengo risultati analoghi con l'equazione di Born-Mayer:

$$E_0 = rac{N_A z^+ z^- e^2}{4\pi arepsilon_0 r_0} A \left(1 - rac{d}{r_0}^*
ight)$$
 $Z^+ = +2$ per catione con carica +2 $Z^- = -2$ per anione con carica -2

ricavata in modo simile alla Born-Landé ma con il termine repulsivo:

$$E_R = e^{-\frac{r}{d^*}}$$
 dove d* vale ~ 34.5 pm

L'equazione di Kapustinskii è una versione semplificata empirica:

$$E_0 = \frac{1.202 \cdot 10^5 \, z^+ z^- v}{r_0} \left(1 - \frac{34.5}{r_0} \right) (kJ \, mol^{-1})$$

 $r_0 = (r^+ + r^-)$ in pm e v = nr ioni in unità formula; non serve A

Confronto legame KF: ionico vs. covalente

