Computerphysik Hausarbeit 2

Friedrich Hübner 2897111 Fiona Paulus 2909625

6. Juni 2017

Allgemeine Hinweise

Das Programm wurde unter Windows 10 mit "g++ -o abgabe2.exe -Wall -Wextra -std=c++0x -O2 -static abgabe2.cpp" kompiliert.

Aufgabe 1

Da $z=q\cdot a$ und sowohl $q\geq 0$ als auch a>0 folgt: $z\geq 0$. Weiterhin wird q maximal bei E=0 mit $z_{max}=aq_{max}=a\frac{\sqrt{2m_eV_0}}{\hbar}=\xi$. Also ist $0\leq z\leq \xi$.

Aufgabe 2

Da $\frac{\sqrt{\xi^2-z^2}}{z} \geq 0$ müssen auch tan z bzw. $-\cot z$ positiv sein. Der Tangens ist nicht-negativ auf den Intervallen $[k\pi, k\pi + \frac{\pi}{2})$, der negative Cotangens auf $[k\pi + \frac{\pi}{2}, (k+1)\pi), k \in \mathbb{Z}$. Auf den angegebenen Intervallen sind beide Funktionen auch stetig und streng monoton steigend: $\tan' z = \frac{1}{\cos^2 z} > 0$, $-\cot' z = \frac{1}{\sin^2 z} > 0$.

steigend: $\tan' z = \frac{1}{\cos^2 z} > 0$, $-\cot' z = \frac{1}{\sin^2 z} > 0$.

Weiterhin ist $\frac{\sqrt{\xi^2 - z^2}}{z}' = -\frac{z\sqrt{\xi^2 - z^2} + \frac{z}{\sqrt{\xi^2 - z^2}}}{\xi^2 - z^2} < 0$ und somit ist $\frac{\sqrt{\xi^2 - z^2}}{z}$ streng monoton fallend.

gerader Fall: $g(z) = \tan z - \frac{\sqrt{\xi^2 - z^2}}{z}$

Abbildung 1: Gerader Fall $\xi = 10$

In dem Diagramm wurden sowohl tan z als auch $\frac{\sqrt{\xi^2-z^2}}{z}$ eingezeichnet. Jeder Schnittpunkt entspricht einer Lösung. Wie man gut erkennen kann, gibt es auf jedem Arm des Tangens einen Schnittpunkt.

Betrachte also ein Intervall $I_k = [k\pi, k\pi + \frac{\pi}{2})$ auf dem die Funktion definiert ist, also $0 \le k\pi + \frac{\pi}{2} < \xi$.

Es gilt
$$\lim_{z \to k\pi^+} g(z) = \lim_{z \to k\pi^+} 0 - \frac{\sqrt{\xi^2 - (k\pi)^2}}{k\pi} < 0$$
 und $\lim_{z \to k\pi^+} g(z) = \infty > 0$. Da g(z)

stetig und streng monoton steigend ist und an den Rändern verschiedene Vorzeichen hat, besitzt g(z) in dem Intervall I_k genau eine Nullstelle.

Betrachte nun das letzte Intervall $I = [k\pi, \xi)$, mit $z \leq \xi < k\pi + \frac{\pi}{2}$. Die linke Intervallgrenze hat wieder einen negativen Funktionswert, die rechte einen positiven: $\lim_{z\to\xi^-} g(z) = \tan\xi - 0 > 0$. Also gibt es auch in diesem Intervall eine Nullstelle.

Insgesamt gibt es somit also $n = \lfloor \frac{\xi}{\pi} \rfloor + 1$ Nullstellen.

ungerader Fall: $h(z) = -\cot z - \frac{\sqrt{\xi^2 - z^2}}{z}$

Abbildung 2: Gerader Fall $\xi = 10$

In dem Diagramm wurden sowohl – cot z als auch $\frac{\sqrt{\xi^2-z^2}}{z}$ eingezeichnet. Jeder Schnittpunkt entspricht einer Lösung. Wie man gut erkennen kann, gibt es auf jedem Arm des negativen Cotangens einen Schnittpunkt.

Betrachte also ein Intervall $J_k = [k\pi + \frac{\pi}{2}, (k+1)\pi)$ auf dem die Funktion definiert ist, also $0 \le (k+1)\pi < \xi$.

Es gilt
$$\lim_{z \to k\pi + \frac{\pi}{2}^+} h(z) = \lim_{z \to k\pi^+} 0 - \frac{\sqrt{\xi^2 - (k\pi + \frac{\pi}{2})^2}}{k\pi + \frac{\pi}{2}} < 0$$
 und $\lim_{z \to (k+1)\pi^-} h(z) = \infty > 0$. Da

h(z) stetig und streng monoton steigend ist und an den Rändern verschiedene Vorzeichen hat, besitzt h(z) in dem Intervall J_k genau eine Nullstelle.

Betrachte nun das letzte Intervall $J=[k\pi+\frac{\pi}{2},\xi)$, mit $z\leq \xi<(k+1)\pi$. Die linke Intervallgrenze hat wieder einen negativen Funktionswert, die rechte einen positiven: $\lim_{z\to\xi-}h(z)=-\cot\xi-0>0$. Also gibt es auch in diesem Intervall eine Nullstelle.

Insgesamt gibt es somit also $n = \lfloor \frac{\xi}{\pi} - \frac{1}{2} \rfloor + 1$ Nullstellen.

Sonstige Abgegebene Dateien

output.txt

Ausgabedatei der Simulation, die für das Plotten verwendet wurde.