This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT.
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

Probabilistic Automated Bidding in Alternative Auctions

Governatori, Arthur ter Hofstede, Nick Russel Marlon Dumas, Lachlan Aldred, Guido

Queensland University of Technology, Australia m.dumas@qut.edu.au

Goal

To obtain one unit of an item at the lowest price, given the following parameters:

M: The maximum bidding price

D: The deadline for obtaining the item

G: The eagerness to obtain the item

Goal

To obtain one unit of an item at the lowest price given the following parameters:

M: The maximum bidding price

D: The deadline for obtaining the item

G: The eagerness to obtain the item

Auctions are single-unit with fixed deadlines:

eBay-style auctions with or without proxy bids

FPSB and Vickrey auctions

Approach

A bidding agent operates in 4 phases:

Preparation: Probability estimation

Given the history of Winning Bids (W.B.) and the quote q of an auction, the probability of winning with a bid of r can be computed in two ways. Histogram method

$$v(r) = \frac{\text{\# of auctions with W.B. between q and r}}{\text{\# of auctions with W.B. greater than q}}$$

Preparation: Probability estimation

Given the history of Winning Bids (W.B.) and the quote q of an auction, the probability of winning with a bid of r can be computed in two ways.

Histogram method

$$w(r) = \frac{\text{\# of auctions with W.B. between q and r}}{\text{\# of auctions with W.B. greater than q}}$$

Normal distribution method

$$\sqrt{(\mathbf{r})} = \frac{\int_{\frac{z-\mu}{\sigma}}^{\frac{z-\mu}{\sigma}} e^{-x^2/2} dx}{\int_{\frac{q-\mu}{\sigma}}^{\frac{q-\mu}{\sigma}} e^{-x^2/2} dx}$$

$$\mu$$
 = average W.B. σ = std. dev. of W.B.

Planning: Problem statement

Given a set A_a of announced auctions, find:

A set of auctions $A_s \subseteq A_a$

A bidding price r < M

Given a set A_a of announced auctions, find:

A set of auctions $A_s \subseteq A_a$

A bidding price r < M

such that:

Auctions in A_s are mutually compatible

$$\forall a_1, a_2 \in A_s |end(a_2) - end(a_1)| \geq \delta_{a1} + \delta_{a2}$$

Probability of winning 1 auction is satisfactory

$$1 - \prod_{a \in A_s} (1 - w_a(r)) \ge G$$

r is minimal w.r.t. the previous constraints

Planning: Computing the best plan

best bidding plan using a *critical path algorithm*. For a given price r, it is possible to compute the

Prob. of winning in best plan = 1 - .004 = 99.6%Prob. of loosing in best plan = $.2^2 \times .1^2 = .004$

Planning: Minimising the bidding price

For each r between 1 and M

If the prob. of winning with this plan is \geq G, Compute the best bidding plan at price r; stop iterating

If no appropriate r is found, notify the user. Otherwise, take r as the bidding price. Note: Binary search can be used as optimisation

Plan execution

The agent places bids of amount *r*, using proxy bidding and sniping tools if applicable.

Plan execution

The agent places bids of amount *r*, using proxy bidding and sniping tools if applicable. The agent requests quotes of ongoing auctions and retrieves new auctions.

Plan execution

The agent places bids of amount r, using proxy bidding and sniping tools if applicable. The agent requests quotes of ongoing auctions and retrieves new auctions. A plan revision is triggered in the following cases:

A new auction for the required item appears

The quote of an auction in the plan rises above the bidding price

Heterogeneity between auctions

Alternative auctions are often heterogeneous:

- Different item characteristics
- Different settlement and shipping conditions

Different sellers

Heterogeneity between auctions

Alternative auctions are often heterogeneous:

Different item characteristics

Different settlement and shipping conditions

Different sellers

Two approaches to deal with heterogeneity:

 Price differentiation. The user sets a different maximum price for each auction

Utility differentiation. The user provides a multi-attribute scoring system

Auction simulation platform

Tested claims

1. The percentage of times that a probabilistic bidder wins is equal to its eagerness

Tested claims

- The percentage of times that a probabilistic bidder wins is equal to its eagerness
- 2. Probabilistic bidders pay less than local ones

Tested claims

- . The percentage of times that a probabilistic bidder wins is equal to its eagerness
- 2. Probabilistic bidders pay less than local ones
- 3. The welfare of the market increases with the number of probabilistic bidders

Validation of Claim 2

WWW'2002 - 8 May 2002 - p.14/15

Experimentation

Validation of Claim 3

Conclusion

Probabilistic bidding agents:

allow bidders to make tradeoffs between price and eagerness;

increase the payoff of their users and the welfare of the market

Future extensions:

Multiple units of an item / multi-unit auctions Interrelated items (all-or-none transactions)

