Exercice 00

1) On considère la suite numérique $\left(U_{_{n}}
ight)$ définie par :

$$(\forall n \in \mathbb{N}); U_n = (n+2)(3-n)$$

- 1) Calculer $U_0; U_1; U_2; U_3; U_4$
- 2) Exprimer en fonction de n les termes suivants : $U_{n+1}; U_{n^2}; U_{n+2}; U_{3n}$
- 3) Exprimer U_{n+1} en fonction de U_n et n

Exercice 01

2) On considère la suite numérique (U_n) définie par :

$$U_0=6 \text{ et } \left(\forall n \in \mathbb{N} \right); U_{n+1}=\sqrt{U_n+6}$$

- a) calculer U_1
- b) Montrer que $(\forall n \in \mathbb{N}); U_n \geq 3$
- 3) on considère la suite numérique $(V_n)_{n\geq 1}$ définie par :

$$V_{\scriptscriptstyle \rm I}=2$$
 et $\left(\forall n\in\mathbb{N}^*\right);V_{\scriptscriptstyle n+1}=1+rac{1}{V_{\scriptscriptstyle n}}$

- a) calculer V_2 et V_3
- b) Montrer que $(\forall n \in \mathbb{N}^*); \frac{3}{2} \le V_n \le 2$

Exercice 02

On considère la suite numérique $\left(U_{_{n}}\right)$ définie par :

$$\boldsymbol{U}_0 = \frac{3}{2} \text{ et } \left(\forall n \in \mathbb{N} \right) ; \boldsymbol{U}_{n+1} = \frac{\boldsymbol{U}_n^2 + \boldsymbol{U}_n}{\boldsymbol{U}_n^2 + 1}$$

- 1) Montrer que $(\forall n \in \mathbb{N}); U_n > 1$
- 2) Etudier la monotonie de la suite $\left(U_{\scriptscriptstyle n}\right)$
- 3) Montrer que $(\forall n \in \mathbb{N}); U_{n+1} 1 \le \frac{1}{2}(U_n 1)$

Exercice 03

On considère la suite numérique (U_n) définie par :

$$U_0 = 2$$
 et $(\forall n \in \mathbb{N})$; $U_{n+1} = \frac{5U_n - 4}{U_n}$

- 1) Montrer que $(\forall n \in \mathbb{N})$; $2 \le U_n \le 4$
- 2) Etudier la monotonie de la suite $\left(U_{n}\right)$
- 3) Montrer que $(\forall n \in \mathbb{N})$; $\mathbf{4} U_{n+1} \leq \frac{1}{2} (\mathbf{4} \mathbf{U}_n)$
- 4) Déduire que $(\forall n \in \mathbb{N}); 0 \le 4 U_n \le \left(\frac{1}{2}\right)^{n-1}$

Exercice 04

On considère la suite numérique $\left(U_{_{n}}
ight)$ définie par :

$$U_0 = 5$$
 et $(\forall n \in \mathbb{N})$; $U_{n+1} = \frac{4U_n - 9}{U_n - 2}$

1) Montrer que $U_n > 3$

- 2) on pose $(\forall n \in \mathbb{N}); W_n = \frac{1}{U_n 3}$
- a) Montrer que (W_n) est une suite arithmétique en précisant sa raison
- b) En déduire W_n et U_n en fonction de n .
- c) Calculer en fonction de n la somme suivante :

$$S_n = W_0 + W_1 + \cdots + W_n$$

b) Montrer que la suite (U_n) est décroissante.

Exercice 05

- 1) soit $\left(U_{\scriptscriptstyle n}\right)$ une suite arithmétique de raison 2 et de premier terme $U_{\scriptscriptstyle 0}=-5$
 - a- Calculer $\,U_{10}\,\,$ et $\,U_{30}\,.$
 - b- Calculer la somme $S = U_0 + U_1 + \cdots + U_{30}$.
 - 2) soit $(V_n)_{n\geq 1}$ une suite arithmétique telles que :

$$V_5 = -12$$
 et $V_{11} = -30$

- a) Calculer la raison de la suite $\left(V_{_n}
 ight)_{n\geq 1}$, et son premier terme.
- b) Calculer la somme $S = \sum_{k=5}^{11} V_k$

Exercice 06

Soit $(U_{\scriptscriptstyle n})$ une suite numérique définie par :

$$\begin{cases} \boldsymbol{U}_0 = 2 \\ (\forall \boldsymbol{n} \in \mathbb{N}); \boldsymbol{U}_{n+1} = \frac{3}{2} \boldsymbol{U}_n + 1 \end{cases}$$

- On pose $(\forall n \in \mathbb{N}); V_n = U_n + 2$
- 1) Calculer $oldsymbol{U}_1$ et $oldsymbol{V}_0$.
- 2) Démontrer que (V_n) est une suite géométrique.
- 3) Exprimer $\,V_{\scriptscriptstyle n}\,$ en fonction de $\,n\,$ et en déduire $\,U_{\scriptscriptstyle n}\,$ en fonction de $\,n\,$
- 4) On pose $(\forall n \in \mathbb{N}^*); S = V_0 + V_1 + \dots + V_n$

Calculer S_n en fonction de n .

Exercice 07

1) Soit $\left(U_n\right)$ une suite géométrique de raison q=3 et de premier terme $U_1=-2$

Calculer la somme $S = U_1 + U_2 + \cdots + U_{10}$

2) Soit (V_n) une suite géométrique de raison $q=\frac{1}{2}$ telle que $V_3=5$

Calculer la somme $S' = V_3 + V_4 + \cdots + V_{15}$

Exercice 08

Soit (U_n) une suite numérique définie par :

$$\begin{cases} U_0 = 0 \\ (\forall n \in \mathbb{N}); U_{n+1} = \frac{U_n - 3}{U_n + 5} \end{cases}$$

- 1) Calculer U_1
- 2) Montrer que $(\forall n \in \mathbb{N}); U_n > -1$.
- 3) a) Vérifier que pour tout $n \in \mathbb{N}$:

$$U_{n+1} - U_n = -\frac{(U_n + 1)(U_n + 3)}{U_n + 5}$$

4) on considère la suite (V_n) définie par :

$$(\forall n \in \mathbb{N}); V_n = \frac{U_n + 1}{U_n + 3}$$

- a) Montrer que $\left(V_n\right)$ est une suite géométrique de raison $q=\frac{1}{2} \text{ ,puis calculer } V_0 \text{ .}$
- b) Exprimer V_n en fonction de n .
- c) Déduire que : $(\forall n \in \mathbb{N})$; $U_n = \frac{1 \left(\frac{1}{2}\right)^n}{\frac{1}{3} \times \left(\frac{1}{2}\right)^n 1}$
- 4)
- a) Montrer que $(\forall n \in \mathbb{N})$; $U_{n+1} + 1 \le \frac{1}{2} (U_n + 1)$
- b) Déduire que $(\forall n \in \mathbb{N}); U_n + 1 \le \left(\frac{1}{2}\right)^n$

Exercice 09

Soit $\left(U_{n}\right)$ une suite numérique définie par :

$$\begin{cases} U_0 = 5 \\ (\forall n \in \mathbb{N}); U_{n+1} = \frac{5U_n - 4}{U_n} \end{cases}$$

- 1) a) Calculer U_1 .
 - b) Montrer que $(\forall n \in \mathbb{N}); U_n > 4$
- 2) a) Vérifier que pour tout n de $\mathbb N$

$$U_{n+1} - U_n = \frac{(U_n - 1)(4 - U_n)}{U_n}$$

- b) Montrer que la suite (U_n) est décroissante.
- 3) on considère la suite (V_n) définie par

$$(\forall n \in \mathbb{N}); V_n = \frac{U_n - 4}{U_n - 1}$$

- a) Montrer que $(V_{_n})$ est une suite géométrique de raison $q=\frac{1}{4}$; puis calculer son premier terme V_0 .
- b) Exprimer V_n en fonction de n
- c) Déduire que : $(\forall n \in \mathbb{N})$; $U_n = \frac{1-4^{n+2}}{1-4^{n+1}}$
- 4) on pose $(\forall n \in \mathbb{N}^*)$ $S_n = V_0 + V_1 + \cdots + V_{n-1}$.

Montrer que $(\forall n \in \mathbb{N}^*); S_n = \frac{1}{3} \left(1 - \left(\frac{1}{4}\right)^n\right)$