Assignment 2: Policy Gradient

Andrew ID: mukaiy

NOTE: Please do **NOT** change the sizes of the answer blocks or plots.

5 Small-Scale Experiments

5.1 Experiment 1 (Cartpole) – [25 points total]

5.1.1 Configurations

```
python rob831/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 1000 \
    -dsa --exp_name q1_sb_no_rtg_dsa

python rob831/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 1000 \
    -rtg -dsa --exp_name q1_sb_rtg_dsa

python rob831/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 1000 \
    -rtg --exp_name q1_sb_rtg_na

python rob831/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 5000 \
    -dsa --exp_name q1_lb_no_rtg_dsa

python rob831/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 5000 \
    -rtg -dsa --exp_name q1_lb_rtg_dsa

python rob831/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 5000 \
    -rtg -dsa --exp_name q1_lb_rtg_dsa

python rob831/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 5000 \
    -rtg --exp_name q1_lb_rtg_na
```

5.1.2 Plots

5.1.2.1 Small batch – [5 points]

5.1.2.2 Large batch – [5 points]

5.1.3 Analysis

5.1.3.1 Value estimator – [5 points]

Q5.1.3.1			

${\bf 5.1.3.2}\quad {\bf Advantage\ standardization}-[{\bf 5\ points}]$

Q5.1.3.2			

5.1.3.3 Batch size - [5 points]

Q5.1.3.3		

- $5.2 \quad Experiment \ 2 \ (InvertedPendulum) [15 \ points \ total]$
- 5.2.1 Configurations [5 points]

```
Q5.2.1

python rob831/scripts/run_hw2.py --env_name InvertedPendulum-v4 \
--ep_len 1000 --discount 0.9 -n 100 -l 2 -s 64 -b <br/>--exp_name q2_b<br/>--exp_name q2_b<b
```

5.2.2 smallest b^* and largest r^* (same run) – [5 points]

Q5.2.2		

5.2.3 Plot – [5 points]

7 More Complex Experiments

7.1 Experiment 3 (LunarLander) – [10 points total]

7.1.1 Configurations

```
python rob831/scripts/run_hw2.py \
    --env_name LunarLanderContinuous-v4 --ep_len 1000
    --discount 0.99 -n 100 -l 2 -s 64 -b 10000 -lr 0.005 \
    --reward_to_go --nn_baseline --exp_name q3_b10000_r0.005
```

7.1.2 Plot - [10 points]

7.2 Experiment 4 (HalfCheetah) – [30 points]

7.2.1 Configurations

```
Q7.2.1

python rob831/scripts/run_hw2.py --env_name HalfCheetah-v4 --ep_len 150 \
    --discount 0.95 -n 100 -1 2 -s 32 -b 10000 -lr 0.02 \
    --exp_name q4_search_b1000clr0.02

python rob831/scripts/run_hw2.py --env_name HalfCheetah-v4 --ep_len 150 \
    --discount 0.95 -n 100 -1 2 -s 32 -b 10000 -lr 0.02 -rtg \
    --exp_name q4_search_b1000clr0.02_rtg

python rob831/scripts/run_hw2.py --env_name HalfCheetah-v4 --ep_len 150 \
    --discount 0.95 -n 100 -1 2 -s 32 -b 10000 -lr 0.02 -rn_baseline \
    --exp_name q4_search_b1000clr0.02_nnbaseline

python rob831/scripts/run_hw2.py --env_name HalfCheetah-v4 --ep_len 150 \
    --discount 0.95 -n 100 -1 2 -s 32 -b 10000 -lr 0.02 -rtg --nn_baseline \
    --exp_name q4_search_b1000clr0.02_rtg_nnbaseline
```

7.2.2 Plot – [10 points]

7.2.3 (Optional) Optimal b^* and $r^* - [3 points]$

7.2.4 (Optional) Plot – [10 points]

7.2.5 (Optional) Describe how b^* and r^* affect task performance – [7 points]

7.2.6 (Optional) Configurations with optimal b* and r* - [3 points]

```
python rob831/scripts/run_hw2.py --env_name HalfCheetah-v4 --ep_len 150 \
    --discount 0.95 -n 100 -1 2 -s 32 -b <b*> -lr <r*> \
    --exp_name q4_b<b*>_r<r*>
python rob831/scripts/run_hw2.py --env_name HalfCheetah-v4 --ep_len 150 \
    --discount 0.95 -n 100 -1 2 -s 32 -b <b*> -lr <r*> -rtg \
    --exp_name q4_b<b*>_r<r*>_rtg

python rob831/scripts/run_hw2.py --env_name HalfCheetah-v4 --ep_len 150 \
    --discount 0.95 -n 100 -1 2 -s 32 -b <b*> -lr <r*> -rty --env_name q4_b<b*>_r<r*>_nnbaseline

python rob831/scripts/run_hw2.py --env_name HalfCheetah-v4 --ep_len 150 \
    --exp_name q4_b<b*>_r<r*>_nnbaseline

python rob831/scripts/run_hw2.py --env_name HalfCheetah-v4 --ep_len 150 \
    --discount 0.95 -n 100 -1 2 -s 32 -b <b*> -lr <r*> -rtg --nn_baseline \
    --exp_name q4_b<b*>_r<r*>_rtg_nnbaseline
```

7.2.7 (Optional) Plot for four runs with optimal b^* and $r^* - [7 \text{ points}]$

8 Implementing Generalized Advantage Estimation

8.1 Experiment 5 (Hopper) – [20 points]

8.1.1 Configurations

8.1.2 Plot - [13 points]

8.1.3 Describe how λ affects task performance – [7 points]

9 Bonus! (optional)

9.1 Parallelization – [15 points]

Q9.1	
Difference in training time:	
python rob831/scripts/run_hw2.py \	

9.2 Multiple gradient steps – [5 points]

