Differences between SI and Gaussian units

December 25, 2013

SI units 1

- Coulumb is a derived unit
- base unit involving charge is ampere (for current)
- Force/ meter on one wire when two parallel wires separated by 1 m carrying 1A current and force exerted = $2 \cdot 10^{-7}$
- Coulumb = $1 \text{ A} \cdot \text{s}$
- By using Coulumb's law, let $q_1 = q_2 = 1C$ and r=1m, so our F= 9.10^9 N ¹
- : we define k=9·10⁹ Nm^2/C^2 =1/4 $\pi\epsilon_0^2$
- : we defined current via the Lorentz force, the Coulumb force between two charges ends up being a number we just have to accept. We can only have nice numbers in one case or another, not both.
- : the SI system gives preference to Lorentz force : in historical experiments, galvanometer measures ampere much easier to measure than F exerted by point charges.

2 Gaussian units

- Gaussian unit of charge =esu \rightarrow very different from SI Coulumb
- esu is defined via the Coulumb force
- here, we define k=1 (dimensionless)
- : the Lorentz force involves a factor of c^2

3 Main differences between the systems

• units of $k_{Gaussian}$ is dimensionless

 $[\]begin{array}{c} ^{1}9\cdot 10^{9}=c^{2}/10^{7} \\ ^{2}\epsilon_{0}=8.85\cdot 10^{-12}A^{2}s^{4}kg^{-1}m^{-3} \end{array}$

• this allows us to solve for esu in terms of base units

$$F = k \cdot \frac{qq}{r^2}$$
 $[dynes] = [dimensionless] \cdot [\frac{esu^2}{cm^2}]$
 $\therefore esu = \sqrt{dynes \cdot cm^2} = \sqrt{g \cdot cm^3 \cdot s^{-2}}$

• : esu is not a fundamanetal unit ,whereas A is a fundamental unit in SI.

Three main difference between SI and Gaussian (least important \rightarrow most important)

- 1. cm-gram-second only differ with SI with powers of 10
- 2. Gaussian based on Coulumb's law SI based on Lorentz forces
- 3. $k_{gaussian}$ dimensionless ; k_{SI} is dimensionful \therefore can express esu in terms of other gaussian base units.

4 Three units versus four

• : there is less base units in Gaussian, doing dimensional analysis in gaussian gives us less insight into stuff.

 $^{^3}$ dynes= $g \cdot cm/s^2$