Université Laval	Examen final informatique
Faculté des Sciences et de Génie	Hiver 2017
École d'actuariat	Date: 23 avril 2017

Act-2001 Introduction à l'actuariat 2 Professeur: Etienne Marceau

Nom de famille de l'étudiant	Prénom de l'étudiant	Matricule

Instructions:

- L'examen contient 5 questions à développement.
- Le total des points est de **117 points**.
- La durée est de 180 minutes.
- Veuillez écrire votre nom sur le questionnaire.
- Veuillez écrire vos réponses dans le présent cahier seulement.
- Veuillez faire vos brouillons sur les documents prévus à cet effet.
- Veuillez retourner le présent cahier, les annexes et le papier brouillon à la fin de l'examen.

Questions	Points obtenus	Points
1		30
2		20
3		30
4		22
5		15
Total		117

© Etienne Marceau, 2017.

1. (30 points). Les coûts pour les 3 lignes d'affaires d'un portefeuille d'une société d'assurance sont représentés par les v.a. indépendantes X_1, X_2 et X_3 avec

$$F_{X_1}(x) = \exp\left(-\left(\frac{x}{1000}\right)^{-2}\right)$$
, $F_{X_2}(x) = \frac{1}{1 + \left(\frac{x}{1000}\right)^{-2}}$ et $F_{X_3}(x) = 1 + \frac{\ln\left(1 - \frac{1}{2}e^{-\frac{x}{2000}}\right)}{\ln 2}$, $x \ge 0$.

Les coûts pour le portefeuille sont définis par la v.a. S où

$$S = X_1 + X_2 + X_3$$
.

On a recours au générateur par défaut de R pour produire m = 100000 (cent mille) réalisations de (U_1, U_2, U_3) où U_1, U_2, U_3 sont des v.a. i.i.d. de loi uniforme standard. On fixe set.seed(20160419).

On produit dans l'ordre $\left(U_1^{(1)},U_2^{(1)},U_3^{(1)}\right),$ $\left(U_1^{(2)},U_2^{(2)},U_3^{(2)}\right),$..., $\left(U_1^{(m)},U_2^{(m)},U_3^{(m)}\right)$:

j	$U_1^{(j)}$	$U_2^{(j)}$	$U_3^{(j)}$
1	0.7401186	0.8075052	0.1863795
2	0.0482047	0.3257164	0.7577736
m	0.4432184	0.3596678	0.2250111

Questions:

- (a) (9 points). Développer l'expression de la fonction quantile de X_i , notée par $F_{X_i}^{-1}$, à partir de la fonction de répartition, pour i = 1, 2, 3.

 - i. (3 points). Développer $F_{X_1}^{-1}$. ii. (3 points). Développer $F_{X_2}^{-1}$. iii. (3 points). Développer $F_{X_3}^{-1}$.
- (b) (4 points). Utiliser la méthode inverse pour produire m réalisations $\left(X_1^{(j)}, X_2^{(j)}, X_3^{(j)}\right)$ $\operatorname{de}\left(X_1^{(j)},X_2^{(j)},X_3^{(j)}\right). \text{ On utilise } U_i^{(j)} \text{ pour calculer } X_i^{(j)} \text{ pour } j=1,...,m \text{ et } i=1,2,3.$
 - i. (1 points). Fournir l'expression de $X_i^{(j)}$ en fonction de $F_{X_i}^{-1}$ et $U_i^{(j)}$, i=1,2,3.
 - ii. (3 points). Indiquer la réalisation #3 de $(X_1^{(j)}, X_2^{(j)}, X_3^{(j)})$.

Les valeurs de vérification sont les suivantes :

j	$X_1^{(j)}$	$X_2^{(j)}$	$X_3^{(j)}$
1	1822.8736	2048.1564	296.7785
2	574.2671	695.0219	2348.0466
\overline{m}	1108.5870	749.4593	369.7366

(c) (4 points). Avec les résultats de l'item (1b), calculer une approximation $\widetilde{\varphi}$ de

$$\varphi = \Pr\left(S > 20000\right).$$

(Vérification : $Pr(S > 40000) \simeq 0.00163$)

- i. Indiquer l'expression de l'approximation $\widetilde{\varphi}$ de φ .
- ii. Indiquer la valeur de l'approximation $\widetilde{\varphi}$ de φ .
- iii. Calculer un intervalle de confiance avec un niveau de confiance de 95 % pour l'approximation $\tilde{\varphi}$ de φ .
- (d) (3 points). Avec les résultats de l'item (1b), calculer une approximation $\widetilde{\varphi}$ de

$$\varphi = TVaR_{\kappa}(S)$$

pour $\kappa = 0 \text{ et } 0.9999.$

- i. Indiquer l'expression de l'approximation $\widetilde{\varphi}$ de φ .
- ii. Indiquer la valeur $\widetilde{\varphi}$ pour $\kappa = 0$ et 0.9999.
- (e) (4 points). Avec les résultats de l'item (1b), calculer une approximation $\widetilde{\varphi}_i$ de la contribution φ_i pour X_i , i=1,2,3, selon la méthode d'Euler à $TVaR_{\kappa}(S)$ pour $\kappa=0.9999$.
 - Indiquer l'expression de l'approximation $\widetilde{\varphi}_i$ de φ_i , i = 1, 2, 3.
 - Indiquer les valeurs de $\widetilde{\varphi}_1$, $\widetilde{\varphi}_2$, $\widetilde{\varphi}_3$.
- (f) (3 points). Avec les résultats de l'item (1b), calculer une approximation $\widetilde{\varphi}$ de

$$\varphi = E \left[X_2 \times 1_{\{(X_1 + X_3 < 1500) \cup (X_1 + X_3 > 150000)\}} \right].$$

- i. Indiquer l'expression de l'approximation $\widetilde{\varphi}$ de φ .
- ii. Indiquer la valeur de l'approximation $\widetilde{\varphi}$ de φ .

Solution:

(a) (9 points). Développer l'expression de la fonction quantile de X_i , notée par $F_{X_i}^{-1}$, à partir de la fonction de répartition, pour i = 1, 2, 3.

Les fonctions de répartition sont continues. L'expression $F_{X_i}^{-1}$ est la solution de

$$F_{X_i}\left(x\right) = u$$

pour $u \in (0, 1)$.

i. (3 points). Développer $F_{X_1}^{-1}$.

$$F_{X_1}^{-1}(u) = 1000 \left(-\ln\{u\}\right)^{-\frac{1}{2}}$$

ii. (3 points). Développer $F_{X_2}^{-1}$.

$$F_{X_2}^{-1}(u) = 1000 \left(\frac{1}{u} - 1\right)^{-\frac{1}{2}}$$

iii. (3 points). Développer $F_{X_3}^{-1}$.

$$F_{X_1}^{-1}(u) = -2000 \ln \left\{ 2 \times \left(1 - \frac{1}{2^{1-u}} \right) \right\}$$

(b) **(4 points).** Utiliser la méthode inverse pour produire m réalisations $\left(X_1^{(j)}, X_2^{(j)}, X_3^{(j)}\right)$ de $\left(X_1^{(j)}, X_2^{(j)}, X_3^{(j)}\right)$. On utilise $U_i^{(j)}$ pour calculer $X_i^{(j)}$ pour j = 1, ..., m et i = 1, 2, 3.

i. (1 points). Fournir l'expression de $X_i^{(j)}$ en fonction de $F_{X_i}^{-1}$ et $U_i^{(j)}$, i=1,2,3.

ii. (3 points). Indiquer la réalisation #3 de $\left(X_1^{(j)}, X_2^{(j)}, X_3^{(j)}\right)$.

Rép: 793.4509; 1405.0905; 1596.6941

Les valeurs de vérification sont les suivantes :

j	$X_1^{(j)}$	$X_2^{(j)}$	$X_3^{(j)}$
1	1822.8736	2048.1564	296.7785
2	574.2671	695.0219	2348.0466
\overline{m}	1108.5870	749.4593	369.7366

(c) (4 points). Avec les résultats de l'item (1b), calculer une approximation $\widetilde{\varphi}$ de

$$\varphi = \Pr\left(S > 20000\right).$$

(Vérification : $Pr(S > 40000) \simeq 0.00163$)

i. Indiquer l'expression de l'approximation $\widetilde{\varphi}$ de φ .

$$\widetilde{\varphi} = \frac{1}{m} \sum_{j=1}^{m} 1_{\{S^{(j)} > 20000\}}$$

ii. Indiquer la valeur de l'approximation $\widetilde{\varphi}$ de φ .

$$\widetilde{\varphi} = 0.0077$$

iii. Calculer un intervalle de confiance avec un niveau de confiance de 95 % pour l'approximation $\widetilde{\varphi}$ de φ .

$$IC = (0.007158 ; 0.008242)$$

(d) (3 points). Avec les résultats de l'item (1b), calculer une approximation $\widetilde{\varphi}$ de

$$\varphi = TVaR_{\kappa}(S)$$

pour $\kappa = 0$ et 0.9999.

- i. Indiquer l'expression de l'approximation $\widetilde{\varphi}$ de φ .
- ii. Indiquer la valeur $\widetilde{\varphi}$ pour $\kappa = 0$ et 0.9999.

$$TVaR_0(S) = E[S] \simeq 5015.504$$

$$TVaR_{0.99}(S) \simeq 260216.9$$

- (e) (4 points). Avec les résultats de l'item (1b), calculer une approximation $\widetilde{\varphi}_i$ de la contribution φ_i pour X_i , i=1,2,3, selon la méthode d'Euler à $TVaR_{\kappa}(S)$ pour $\kappa=0.9999$.
 - Indiquer l'expression de l'approximation $\widetilde{\varphi}_i$ de $\varphi_i, i=1,2,3.$
 - Indiquer les valeurs de $\widetilde{\varphi}_1$, $\widetilde{\varphi}_2$, $\widetilde{\varphi}_3$.

(f) (3 points). Avec les résultats de l'item (1b), calculer une approximation $\widetilde{\varphi}$ de

$$\varphi = E\left[X_2 \times 1_{\{(X_1 + X_3 \le 1500) \cup (X_1 + X_3 > 150000)\}}\right].$$

i. Indiquer l'expression de l'approximation $\widetilde{\varphi}$ de φ .

$$\widetilde{\varphi} = \frac{1}{m} \sum_{j=1}^{m} \left(X_2^{(j)} \times 1_{\left\{ \left(X_1^{(j)} + X_3^{(j)} \le 1500 \right) \cup \left(X_1^{(j)} + X_3^{(j)} > 150000 \right) \right\}} \right).$$

ii. Indiquer la valeur de l'approximation $\widetilde{\varphi}$ de $\varphi.$

$$\widetilde{\varphi} = 295.932$$

2. (20 points). On considère un individu d'âge x dont la durée de vie est définie par la v.a. T_x . La distribution de la durée de vie de l'individu est modélisée à partir de la loi de Makeham avec les paramètres

$$(\alpha = 0.001, \beta = 0.00004, \gamma = \ln(1.09))$$
.

Un contrat d'assurance continue vie-entière avec une prestation de décès b = 1000 est émis à un assuré d'âge x = 30.

La valeur présente des coûts pour le contrat est définie par la v.a. Z où

$$Z = bv^{T_x}$$
,

οù

$$v = e^{-0.03}$$

Soit les v.a. indépendantes

$$W \sim Exp(\alpha)$$
 (cause accidentelle)

et

$$Y_x \sim Gompertz(\beta e^{\gamma x}, \gamma)$$
 (cause "biologique").

On a recours au générateur par défaut de R pour produire m = 100000 (cent mille) réalisations de (U_1, U_2) où U_1, U_2 sont des v.a. i.i.d. de loi uniforme standard.

La v.a. U_1 est utilisée pour simuler la v.a. W et la v.a. U_2 est utilisée pour simuler Y_x . On fixe set.seed(20160419).

On produit dans l'ordre $\left(U_1^{(1)}, U_2^{(1)}\right), \left(U_1^{(2)}, U_2^{(2)}\right), ..., \left(U_1^{(m)}, U_2^{(m)}\right)$:

j	$U_1^{(j)}$	$U_2^{(j)}$
1	0.7401186	0.8075052
2	0.1863795	0.0482047
m	0.8665470	0.46552745

Questions:

- (a) (3 points). Loi de Makeham.
 - i. (2 points). Développer l'expression de la fonction de survie de min $(W; Y_x)$ pour démontrer que

$$T_x = \min(W; Y_x) \sim Makeham(\alpha, \beta e^{\gamma x}, \gamma).$$

ii. (1 point). Utiliser cette représentation pour fournir une interprétation de la loi de Makeham.

- (b) (3 points). Utiliser la méthode inverse pour produire m réalisations $\left(W^{(j)}, Y_x^{(j)}, T_x^{(j)}\right)$ de (W, Y_x, T_x) .
 - i. (0.5 point). Fournir l'expression de $W^{(j)}$ en fonction de F_W^{-1} et $U_1^{(j)}$.
 - ii. (0.5 point). Fournir l'expression de $Y_x^{(j)}$ en fonction de $F_{Y_x}^{(i)}$ et $U_2^{(j)}$.
 - iii. (2 points). Indiquer la réalisation $(W^{(j)}, Y_x^{(j)}, T_x^{(j)})$ pour j = 3 de (W, Y_x, T_x) . Les valeurs de vérification sont les suivantes :

j	$W^{(j)}$	$Y_x^{(j)}$	$T_x^{(j)}$
1	1347.5299	64.90147	64.90147
2	206.2612	25.52550	25.52550
\overline{m}	2014.0058	53.75047	53.75047

- (c) (3 points). Avec les résultats de l'item (2b), calculer une approximation $\widetilde{\varphi}$ de l'espérance de vie future φ de l'assuré.
 - i. (0.5 point). Indiquer l'expression de φ .
 - ii. (0.5 point). Indiquer l'expression de l'approximation $\widetilde{\varphi}$ de φ .
 - iii. (2 points). Indiquer la valeur de l'approximation $\widetilde{\varphi}$ de φ .
- (d) (4 points). Avec les résultats de l'item (2b), calculer une approximation $\widetilde{\varphi}$ de la probabilité φ que le décès de l'assuré soit de cause accidentelle.
 - i. (1 points). Indiquer l'expression de φ .
 - ii. (1 points). Indiquer l'expression de l'approximation $\widetilde{\varphi}$ de φ .
 - iii. (2 points). Indiquer la valeur de l'approximation $\widetilde{\varphi}$ de φ .
- (e) (2 points). Avec les résultats de l'item (2b), produire m réalisations $Z^{(j)}$ de Z:
 - i. Indiquer la méthode pour y parvenir.
 - ii. Indiquer la réalisation $Z^{(j)}$, pour j=1.
- (f) (5 points). Avec les résultats de l'item (2e), calculer une approximation $\widetilde{\varphi}$ de φ = espérance de Z, i.e. la prime pure du contrat.
 - i. (0.5 point). Indiquer l'expression de φ .
 - ii. (0.5 point). Indiquer l'expression de l'approximation $\widetilde{\varphi}$ de φ .
 - iii. (2 points). Indiquer la valeur de l'approximation $\widetilde{\varphi}$ de φ .
 - iv. (2 points). Calculer un intervalle de confiance avec un niveau de confiance de 95 % pour l'approximation $\widetilde{\varphi}$ de φ .

Questions:

- (a) (3 points). Loi de Makeham.
 - i. (2 points). Développer l'expression de la fonction de survie de min $(W; Y_x)$ pour démontrer que

$$T_x = \min(W; Y_x) \sim Makeham(\alpha, \beta e^{\gamma x}, \gamma).$$

ii. (1 point). Utiliser cette représentation pour fournir une interprétation de la loi de Makeham.

Standard

- (b) (3 points). Utiliser la méthode inverse pour produire m réalisations $\left(W^{(j)}, Y_x^{(j)}, T_x^{(j)}\right)$ de (W, Y_x, T_x) .
 - i. (0.5 point). Fournir l'expression de $W^{(j)}$ en fonction de F_W^{-1} et $U_1^{(j)}$. Standard
 - ii. (0.5 point). Fournir l'expression de $Y_x^{(j)}$ en fonction de $F_{Y_x}^{-1}$ et $U_2^{(j)}$. Standard
 - iii. (2 points). Indiquer la réalisation $(W^{(j)}, Y_x^{(j)}, T_x^{(j)})$ pour j = 3 de (W, Y_x, T_x) .

Les valeurs de vérification sont les suivantes :

	j	$W^{(j)} = Y_x^{(j)}$		$T_x^{(j)}$	
	1	1347.5299	64.90147	64.90147	
	2	206.2612	25.52550	25.52550	
Ì	m	2014.0058	53.75047	53.75047	

- (c) (3 points). Avec les résultats de l'item (2b), calculer une approximation $\widetilde{\varphi}$ de l'espérance de vie future φ de l'assuré.
 - i. (0.5 point). Indiquer l'expression de φ .

$$\varphi = E\left[T_x\right]$$

ii. (0.5 point). Indiquer l'expression de l'approximation $\widetilde{\varphi}$ de φ .

$$\widetilde{\varphi} = \sum_{j=1}^{m} T_x^{(j)}$$

iii. (2 points). Indiquer la valeur de l'approximation $\widetilde{\varphi}$ de φ .

54.18588

(d) (4 points). Avec les résultats de l'item (2b), calculer une approximation $\widetilde{\varphi}$ de la probabilité φ que le décès de l'assuré soit de cause accidentelle.

i. (1 points). Indiquer l'expression de φ .

$$\varphi = E \left[1_{\{W < Y_x\}} \right]$$

ii. (1 points). Indiquer l'expression de l'approximation $\widetilde{\varphi}$ de φ .

$$\widetilde{\varphi} = \sum_{j=1}^{m} 1\left\{ W^{(j)} < Y_x^{(j)} \right\}$$

iii. (2 points). Indiquer la valeur de l'approximation $\widetilde{\varphi}$ de φ .

$$\widetilde{\varphi} = 0.05103$$

- (e) (2 points). Avec les résultats de l'item (2b), produire m réalisations $Z^{(j)}$ de Z :
 - i. Indiquer la méthode pour y parvenir.
 - ii. Indiquer la réalisation $Z^{(j)}$, pour j=1.

$$Z^{(1)} = 142.6953$$

- (f) (5 points). Avec les résultats de l'item (2e), calculer une approximation $\widetilde{\varphi}$ de φ = espérance de Z, i.e. la prime pure du contrat.
 - i. (0.5 point). Indiquer l'expression de φ .

$$\varphi = E\left[Z\right] = E\left[bv^{T_x}\right]$$

ii. (0.5 point). Indiquer l'expression de l'approximation $\widetilde{\varphi}$ de φ .

$$\widetilde{\varphi} = \frac{1}{m} \sum_{j=1}^{m} Z^{(j)} = \frac{1}{m} \sum_{j=1}^{m} b v^{T_x^{(j)}}$$

iii. (2 points). Indiquer la valeur de l'approximation $\widetilde{\varphi}$ de φ .

$$\widetilde{\varphi}=242.8877$$

iv. (2 points). Calculer un intervalle de confiance avec un niveau de confiance de 95 % pour l'approximation $\widetilde{\varphi}$ de φ .

$$IC = (242.0085 ; 243.7668)$$

3. (30 points). Soit la v.a. $\Theta = Binom$ (5, 0.3) représentant les conditions environnementales. Ces dernières ont un impact sur les nombres de sinistres (v.a. $M_1, ..., M_n$) des contrats d'un portefeuille.

Sachant que $\Theta = \theta$, les v.a. $(M_1|\Theta = k)$, ..., $(M_n|\Theta = k)$ sont conditionnellement indépendantes avec

$$(M_i|\Theta = k) \sim Pois(0.1 \times (k+1)), \quad i = 1, 2, ..., n.$$

On définit

$$X_1 = 1000M_1$$
 ,..., $X_n = 1000M_n$ et $W_n = \frac{1}{n}(X_1 + ... + X_n)$.

Questions:

- (a) **(6 points).** Calculer $E[X_1]$, $VaR_{0.9}(X_1)$ et $TVaR_{0.9}(X_1)$.
- (b) **(6 points).** Calculer $E[W_n]$, $VaR_{0.9}(W_n)$ et $TVaR_{0.9}(W_n)$, pour n = 100.
- (c) (5 points). Soit ρ_{κ} une mesure avec $\kappa \in (0,1)$. Pour $\kappa \in (0,1)$, l'Index du Bénéfice de Mutualisation est défini par

$$IBM_{\kappa} = 1 - \frac{\rho_{\kappa}(W_n) - E[W_n]}{\rho_{\kappa}(X_1) - E[X_1]} = \frac{\varphi_1}{\varphi_2}.$$

- i. Quelle propriété ρ_k doit-elle satisfaire pour que $\varphi_1 \geq 0$?
- ii. Quelle propriété ρ_k doit-elle satisfaire pour que $IBM_{\kappa} \in [0,1]$?
- iii. Choisir la seule mesure parmi la VaR et la TVaR qui satisfait (i) et (ii); puis, calculer $IBM_{0.9}$ avec n=100.
- (d) (13 points). Comportement limite de la part allouée W_n .
 - i. (1 point). Est-ce que l'on peut appliquer la loi classique des grand nombres pour identifier le comportment limite de W_n ? Pourquoi?
 - ii. (5 points). Utiliser les transformées de Laplace-Stieltjes pour démontrer que

$$\lim_{n \to \infty} F_{W_n}(x) = F_Z(x) \tag{1}$$

- où Z est une v.a. discrète prenant les valeurs $\{z_1,...,z_m\}$.
- iii. (2 points). Indiquer les valeurs $z_1 < ... < z_m$ (et la valeur de m) en mentionnant clairement leur signification.
- iv. (2 points). Indiquer les valeurs de $Pr(Z = z_j)$, j = 1, 2, ..., m, en mentionnant clairement à partir de la loi de quelle v.a. ces valeurs sont calculées.
- v. (2 points). Calculer $VaR_{0.9}(Z)$ et comparer avec $VaR_{0.9}(W_n)$ pour n=100.
- vi. (1 point). Interpréter le résultat en (1).

Questions:

(a) **(6 points).** Calculer $E[X_1]$, $VaR_{0.9}(X_1)$ et $TVaR_{0.9}(X_1)$. On a

$$E[X_1] = 1000 \times E[M_1]$$

= $1000 \times E[0.1 \times (\Theta + 1)]$
= 250

En raison de la propriété d'homogénéité de la VaR, on a

$$VaR_{0.9}(X_1) = 1000 \times VaR_{0.9}(M_1)$$
 et $TVaR_{0.9}(X_1) = 1000 \times TVaR_{0.9}(M_1)$

On a

$$F_M(x) = \sum_{j=0}^{5} \Pr(\Theta = j) \Pr(M_1 \le x | \Theta = j)$$

On obtient

$$VaR_{0.9}\left(M_{1}\right) = 1$$

On a

$$TVaR_{0.9}(M_1) = \frac{E\left[M_1 \times 1_{\{M_1 > 1\}}\right] + 1 \times (F_{M_1}(1) - 0.9)}{1 - 0.9}$$

(b) **(6 points).** Calculer $E[W_n]$, $VaR_{0.9}(W_n)$ et $TVaR_{0.9}(W_n)$, pour n = 100.

$$E[W_n] = E[X_1] = 250$$

$$VaR_{0.9}(W_n) = 400$$

$$TVaR_{0.9}(W_n) = 470.0714$$

(c) (5 points). Soit ρ_{κ} une mesure avec $\kappa \in (0,1)$. Pour $\kappa \in (0,1)$, l'Index du Bénéfice de Mutualisation est défini par

$$IBM_{\kappa} = 1 - \frac{\rho_{\kappa}(W_n) - E[W_n]}{\rho_{\kappa}(X_1) - E[X_1]} = \frac{\varphi_1}{\varphi_2}.$$

i. Quelle propriété ρ_k doit-elle satisfaire pour que $\varphi_1 \geq 0$?

Propriété : ρ_k doit être supérieure à l'espérance

ii. Quelle propriété ρ_k doit-elle satisfaire pour que $IBM_{\kappa} \in [0,1]$?

Propriété : ρ_k doit être sous-additive

iii. Choisir la seule mesure parmi la VaR et la TVaR qui satisfait (i) et (ii); puis, calculer $IBM_{0.9}$ avec n=100.

On choisit la TVaR car elle satisfait aux deux propriétés. La VaR ne satisfait pas aux deux propriétés.

On obtient

$$IBM_{0.9} = 0.7959365$$

- (d) (13 points). Comportement limite de la part allouée W_n .
 - i. (1 point). Est-ce que l'on peut appliquer la loi classique des grand nombres pour identifier le comportment limite de W_n ? Pourquoi? Non
 - ii. (5 points). Utiliser les transformées de Laplace-Stieltjes pour démontrer que

$$\lim_{n \to \infty} F_{W_n}(x) = F_Z(x)$$

où Z est une v.a. discrète prenant les valeurs $\{z_1,...,z_m\}$. Convention

$$\mathcal{L}_{X}(t) = \sum_{j=0}^{5} \Pr(\Theta = j) \mathcal{L}_{X|\Theta=j}(t)$$
$$= \sum_{j=0}^{5} \Pr(\Theta = j) \mathcal{L}_{Y^{(j)}}(t)$$

avec

$$\mathcal{L}_{Y^{(j)}}(t) = E\left[\exp\left(-tY^{(j)}\right)\right]$$
$$= E\left[\exp\left(-t \times X\right) |\Theta = j\right]$$

On utilise l'approximation

$$\mathcal{L}_{Y^{(j)}}(t) \simeq (1 - t \times E[Y^{(j)}])$$

$$= (1 - t \times (100 \times (1 + j)))$$

$$= (1 - t \times z_{i+1})$$

On a

$$\mathcal{L}_{W_n}(t) = \mathcal{L}_{S_n}\left(\frac{t}{n}\right)$$

$$= \sum_{j=0}^{5} \Pr\left(\Theta = j\right) \mathcal{L}_{S_n|\Theta = j}\left(\frac{t}{n}\right)$$

$$= \sum_{j=0}^{5} \Pr\left(\Theta = j\right) \mathcal{L}_{X_1 + \dots + X_n|\Theta = j}\left(\frac{t}{n}\right)$$

$$= \sum_{j=0}^{5} \Pr\left(\Theta = j\right) \left(\mathcal{L}_{Y^{(j)}}\left(\frac{t}{n}\right)\right)^n$$

On applique l'approximation

$$\mathcal{L}_{W_n}(t) = \mathcal{L}_{S_n}\left(\frac{t}{n}\right)$$

$$= \sum_{j=0}^{5} \Pr\left(\Theta = j\right) \left(\mathcal{L}_{Y^{(j)}}\left(\frac{t}{n}\right)\right)^n$$

$$\simeq \sum_{j=0}^{5} \Pr\left(\Theta = j\right) \left(1 - \frac{t}{n} \times E\left[Y^{(j)}\right]\right)^n$$

Ensuite, on prend la limite et on obtient

$$\lim_{n \to \infty} \mathcal{L}_{W_n}(t) = \sum_{j=0}^{5} \Pr(\Theta = j) \exp(-t \times E[Y^{(j)}])$$
$$= \mathcal{L}_{Z}(t)$$

ce qui signifie que la v.a. Z est discrète prenant les valeurs dans l'ensemble

$$\{z_1, ..., z_m\}$$

iii. (2 points). Indiquer les valeurs $z_1 < ... < z_m$ (et la valeur de m) en mentionnant clairement leur signification.

On a

$$z_k = 100 \times k$$

pour k = 1, 2, ..., 6

iv. (2 points). Indiquer les valeurs de $Pr(Z = z_j)$, j = 1, 2, ..., m, en mentionnant clairement à partir de la loi de quelle v.a. ces valeurs sont calculées.

0.167807	0.36015	0.30870	0.13230	0.02835	0.00243

v. (2 points). Calculer $VaR_{0.9}\left(Z\right)$ et comparer avec $VaR_{0.9}\left(W_{n}\right)$ pour n=100. On a

$$VaR_{0.9}\left(Z\right) = 400$$

vi. (1 point). Interpréter le résultat en (1). On obtient des valeurs identiques, confirmant le résultat asymptotique. 4. (22 points). On considère un contrat de rente discrète temporaire n=35 ans, émis à un individu d'âge x=45.

La v.a. T_x représente la durée de vie de l'individu d'âge x=45.

La distribution de v.a. T_x est modélisée à partir d'une table de mortalité où

$$\ln\left(\frac{q_y}{1-q_y}\right) = -9.9 + 0.09 \times y$$
, pour les âges entiers $y = 40, 41, ..., 90$. (2)

La rente annuelle g=200 est versée au début de l'année et elle cesse au décès s'il advient avant la durée n.

On utilise une force d'intérêt de 3% pour les calculs.

La v.a. discrète Z correspond à la valeur présente des coûts pour le contrat.

La v.a. Z peut être définie selon les deux approches équivalentes comme suit :

approche #1 :
$$Z = \sum_{k=0}^{n-1} gv^k \times 1_{\{T_x > k\}}$$
;

ou

approche #2:
$$Z = g \times \ddot{a}_{\overline{\min([T_x]+1;n)|}} = \begin{cases} g \times \ddot{a}_{\overline{[T_x]+1|}}, & T_x \leq n \\ g \times \ddot{a}_{\overline{[T_x]+1|}}, & T_x > n \end{cases}$$
.

Questions:

(a) (1 point). Isoler l'expression de q_y , pour y = 40, 41, ..., 90.

$$q_y = \frac{\exp(-9.9 + 0.09 \times y)}{1 + \exp(-9.9 + 0.09 \times y)}$$

(b) (2 points). À partir de (2), calculer les valeurs de $\overline{F}_{T_x}(k)$, pour k=10 et 20. (Vérification : $\overline{F}_{T_x}(5)=0.9833238$; $\overline{F}_{T_x}(15)=0.9210745$).

$$0.9564423$$
 et 0.8575481

- (c) (4 points). Calculer E[Z].
 - i. (2 points). Développer l'expression de E[Z].

Approche #1:

$$E[Z^{2}] = \sum_{k=0}^{n-1} gv^{k} (1 - F_{T_{x}}(k)).$$

Approche #2:

$$EZ = \sum_{k=0}^{n-1} \left(g\ddot{a}_{\overline{k+1|}} \right) \left(F_{T_x} \left(k+1 \right) - F_{T_x} \left(k \right) \right) + \left(g\ddot{a}_{\overline{n|}} \right) \left(1 - F_{T_x} \left(n \right) \right).$$

ii. (2 points). Indiquer la valeur de E[Z].

3906.751

- (d) (4 points). Calculer $\sqrt{Var(Z)}$.
 - i. (2 points). Développer l'expression de $E[Z^2]$. Approche #2 :

$$E[Z^{2}] = \sum_{k=0}^{n-1} \left(g\ddot{a}_{\overline{k+1|}} \right)^{2} \left(F_{T_{x}}(k+1) - F_{T_{x}}(k) \right) + \left(g\ddot{a}_{\overline{n|}} \right)^{2} \left(1 - F_{T_{x}}(n) \right).$$

ii. (2 points). Indiquer les valeurs de $E[Z^2]$ et de $\sqrt{Var(Z)}$.

$$15965775$$
 et 838.4953

(e) (9pts). La v.a. discrète Z prend des valeurs dans l'ensemble fini

$$\{z_1, ..., z_m\}$$

οù

$$0 < z_1 < \dots < z_m$$
.

i. (2 points). Indiquer les valeurs de m, z_1, z_{10}, z_m .

$$m = 35$$
 $z_1 = g = 200$
 $z_{10} = g\ddot{a}_{\overline{10}|} = 1753.926$
 $z_{35} = g\ddot{a}_{\overline{35}|} = 4399.08$

ii. (1 point). Le montant z_j représente la valeur présente de combien de paiements de rente g?

j paiements

iii. (1 point). Calculer $Pr(Z = z_{10})$.

... =
$$(F_{T_x}(10) - F_{T_x}(9)) = 0.0061917$$

iv. (1 point). Calculer la probabilité que le titulaire reçoive tous les paiements de rentes en vertu du contrat.

... =
$$Pr(T_x > n) = 0.5107199$$

v. (2 points). Calculer la probabilité que la valeur présente des paiements versés au titulaire du contrat excèdent la prime pure payée par ce titulaire

... =
$$\Pr\left(Z > 3906.751\right) = \Pr\left(Z > g\ddot{a}_{\overline{28|}}\right) = \Pr\left(Z > z_{28}\right) = 0.6828492$$

vi. (2 points). Calculer le mode de la distribution de Z.

$$mode = z_{35} = 4399.08$$

(f) (2 points). Calculer $VaR_{\kappa}(Z)$ pour $\kappa = 0.95$.

$$VaR_{0.95}(Z) = g\ddot{a}_{\overline{n|}} = z_{35} = 4399.08$$

5. (10 points). Soit le couple de v.a. discrètes (M_1, M_2) dont les valeurs de $\Pr(M_1 = m_1, M_2 = m_2)$ sont fournies ci-dessous:

Hypothèse A				
$m_1 m_2$	0	1	2	
0	0	$\frac{1}{4}$	0	
1	$\frac{1}{4}$	0	$\frac{1}{4}$	
2	0	$\frac{1}{4}$	0	

Soit le couple de v.a. (X_1, X_2) avec

$$X_1 = \begin{cases} \sum_{k=1}^{M_1} B_{1,k} &, M_1 > 0 \\ 0 &, M_1 = 0 \end{cases} \text{ et } X_2 = \begin{cases} \sum_{k=1}^{M_2} B_{2,k} &, M_2 > 0 \\ 0 &, M_2 = 0 \end{cases}$$

avec

- $\begin{array}{ll} (1) & B_{1,1} \sim Gamma\left(1.5,\frac{1}{100}\right) & B_{1,2} \sim Gamma\left(1.5,\frac{1}{100}\right) & \text{sont des v.a. indépendantes} \\ (2) & B_{2,1} \sim Gamma\left(1.5,\frac{1}{100}\right) & B_{2,2} \sim Gamma\left(1.5,\frac{1}{100}\right) & \text{sont des v.a. indépendantes} \end{array}$

De plus, $B_{1,1}$, $B_{1,2}$, $B_{2,1}$, $B_{2,2}$ et (M_1, M_2) sont indépendants. On définit

$$S = X_1 + X_2$$
.

Questions:

- (a) (2 points). Développer l'expression de F_S .
- (b) (3 points). Calculer $VaR_{0.9}(S)$. Expliquer la démarche et fournir la valeur.
- (c) (2 points). Développer l'expression de $TVaR_{0.9}(S)$.
- (d) (3 points). Calculer $TVaR_{0.9}(S)$.

Solution:

(a) (2 points). Développer l'expression de F_S .

On a

$$F_{S}(x) = \Pr(X_{1} + X_{2} \leq x)$$

$$= \Pr(M_{1} = 0, M_{2} = 0) + \Pr(M_{1} = 0, M_{2} = 1) H\left(x; 1.5, \frac{1}{100}\right)$$

$$+ \Pr(M_{1} = 0, M_{2} = 2) H\left(x; 3, \frac{1}{100}\right)$$

$$+ \Pr(M_{1} = 1, M_{2} = 0) H\left(x; 1.5, \frac{1}{100}\right) + \Pr(M_{1} = 1, M_{2} = 1) H\left(x; 3, \frac{1}{100}\right)$$

$$+ \Pr(M_{1} = 1, M_{2} = 2) H\left(x; 4.5, \frac{1}{100}\right)$$

$$+ \Pr(M_{1} = 2, M_{2} = 0) H\left(x; 3, \frac{1}{100}\right) + \Pr(M_{1} = 2, M_{2} = 1) H\left(x; 4.5, \frac{1}{100}\right)$$

$$+ \Pr(M_{1} = 2, M_{2} = 2) H\left(x; 6, \frac{1}{100}\right)$$

qui devient

$$F_S(x) = \Pr(X_1 + X_2 \le x)$$

= $\frac{2}{4}H\left(x; 1.5, \frac{1}{100}\right) + \frac{2}{4}H\left(x; 4.5, \frac{1}{100}\right)$

(b) (3 points). Calculer $VaR_{0.9}(S)$. Expliquer la démarche et fournir la valeur.

$$VaR_{0.9}(S) = 618.0117$$

(c) (2 points). Développer l'expression de $TVaR_{0.9}(S)$.

$$F_{S}(x) = \Pr(X_{1} + X_{2} \leq x)$$

$$= \Pr(M_{1} = 0, M_{2} = 0) + \Pr(M_{1} = 0, M_{2} = 1) H\left(x; 1.5, \frac{1}{100}\right)$$

$$+ \Pr(M_{1} = 0, M_{2} = 2) H\left(x; 3, \frac{1}{100}\right)$$

$$+ \Pr(M_{1} = 1, M_{2} = 0) H\left(x; 1.5, \frac{1}{100}\right) + \Pr(M_{1} = 1, M_{2} = 1) H\left(x; 3, \frac{1}{100}\right)$$

$$+ \Pr(M_{1} = 1, M_{2} = 2) H\left(x; 4.5, \frac{1}{100}\right)$$

$$+ \Pr(M_{1} = 2, M_{2} = 0) H\left(x; 3, \frac{1}{100}\right) + \Pr(M_{1} = 2, M_{2} = 1) H\left(x; 4.5, \frac{1}{100}\right)$$

$$+ \Pr(M_{1} = 2, M_{2} = 2) H\left(x; 6, \frac{1}{100}\right)$$

(d) (3 points). Calculer $TVaR_{0.9}(S)$.

$$TVaR_{0.9}(S) = 781.2916$$