IC62LV12816L IC62LV12816LL

128K x 16 LOW VOLTAGE, ULTRA LOW POWER CMOS STATIC RAM

FEATURES

- · High-speed access times: 55, 70, 100 ns
- · CMOS low power operation
 - -- 60 mW (typical) operating
 - -- 3 μW (typical) CMOS standby
- · TTL compatible interface levels
- Single 2.7V-3.6V Vcc power supply
- Fully static operation: no clock or refresh required
- · Three state outputs
- · Data control for upper and lower bytes
- · Industrial temperature available
- Available in the 44-pin TSOP-2 and 48-pin 6*8mm TF-BGA

DESCRIPTION

The *ICSI*IC62LV12816L and IC62LV12816LL are high-speed, 2.097,152-bit static RAMs organized as 131,072 words by 16 bits. They are fabricated using *ICSI*s high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields high-performance and low power consumption devices.

When $\overline{\text{CE}}$ is HIGH (deselected) or when $\overline{\text{CE}}$ is low and both $\overline{\text{LB}}$ and $\overline{\text{UB}}$ are HIGH, the device assumes a standby mode at which the power dissipation can be reduced by using CMOS input levels.

Easy memory expansion is provided by using Chip Enable Output and Enable inputs, $\overline{\text{CE}}$ and $\overline{\text{OE}}$. The active LOW Write Enable ($\overline{\text{WE}}$) controls both writing and reading of the memory. A data byte allows Upper Byte ($\overline{\text{UB}}$) and Lower Byte ($\overline{\text{LB}}$) access.

The IC62LV12816L and IC62LV12816LL are packaged in the JEDEC standare 44-pin 400mil TSOP-2 and 48-pin 6*8mm TF-BGA.

FUNCTIONAL BLOCK DIAGRAM

ICSI reserves the right to make changes to its products at any time without notice in order to improve design and supply the best possible product. We assume no responsibility for any errors which may appear in this publication. © Copyright 2000, Integrated Circuit Solution Inc.

PIN CONFIGURATIONS

44-Pin TSOP-2

48-Pin TF-BGA

PIN DESCRIPTIONS

A0-A16	Address Inputs
I/O0-I/O15	Data Input/Output
CE	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input

ĪB	Lower-byte Control (I/O0-I/O7)
ŪB	Upper-byte Control (I/O8-I/O15)
NC	No Connection
Vcc	Power
GND	Ground

TRUTH TABLE

						I/O PIN		
Mode	WE	CE	ŌĒ	<u>ГВ</u>	UB	1/00/-1/07	I/O8-I/O15	Vcc Current
Not Selected	Х	Н	Χ	Χ	Х	High-Z	High-Z	ISB1, ISB2
	Χ	L	Χ	Н	Н	High-Z	High-Z	Isb1, Isb2
Output Disable	d H	L	Н	Χ	Χ	High-Z	High-Z	Icc
	Χ	L	Χ	Н	Н	High-Z	High-Z	lsв
Read	Н	L	L	L	Н	D оит	High-Z	Icc
	Н	L	L	Н	L	High-Z	D ouт	
	Н	L	L	L	L	D оит	D оит	
Write	L	L	Χ	L	Н	Din	High-Z	Icc
	L	L	Χ	Н	L	High-Z	DIN	
	L	L	Χ	L	L	DIN	DIN	

OPERATING RANGE

Range	Ambient Temperature	Vcc
Commercial	0°C to +70°C	2.7V - 3.6V
Industrial	-40°C to +85°C	2.7V - 3.6V

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit	
VTERM	Terminal Voltage with Respect to GND	-0.5 to Vcc + 0.5	V	
TBIAS	Temperature Under Bias	-40 to +85	°C	
Vcc	Vcc related to GND	-0.3 to +4.0	V	
Тѕтс	Storage Temperature	-65 to +150	°C	
Рт	Power Dissipation	1.0	W	

Notes:

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min., Ioн = -1 mA	2.0	_	V
Vol	Output LOW Voltage	Vcc = Min., loL = 2.1 mA	_	0.4	V
VIH	Input HIGH Voltage		2.2	Vcc + 0.2	V
$V_{IL^{(1)}}$	Input LOW Voltage(1)		-0.2	0.4	V
ILI	Input Leakage	$GND \leq Vin \leq Vcc$	–1	1	μΑ
ILO	Output Leakage	$GND \leq V \text{out} \leq V \text{cc}, \ O \text{utputs Disabled}$	-1	1	μΑ

Notes:

CAPACITANCE(1)

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 0V	6	pF
Соит	Output Capacitance	Vout = $0V$	8	pF

Notes

Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at these or any other conditions above
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.

^{1.} $V_{IL}(min.) = -2.0V$ for pulse width less than 10 ns.

^{1.} Tested initially and after any design or process changes that may affect these parameters.

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0.4V to 2.2V
Input Rise and Fall Times	5 ns
Input and Output Timing	1.3V
and Reference Level	
Output Load	See Figures 1 and 2

AC TEST LOADS

Figure 2

IC62LV12816L POWER SUPPLY CHARACTERISTICS(1) (Over Operating Range)

Symbol	Parameter	Test Conditions		۔ Min.	55 Max.		70 Max.		00 Max.	Unit	
Icc	Vcc Dynamic Operating Supply Current	Vcc = Max., lout = 0 mA, f = fmax	Com. Ind.	_	40 45	_ _	30 35	_	20 25	mA	
ISB1	TTL Standby Current (TTL Inputs) OR	$\begin{aligned} &\text{Vcc} = \text{Max.,} \\ &\text{Vin} = \text{ViH or Vil,} \\ &\overline{\text{CE}} \leq \text{ViH, f} = 0 \end{aligned}$	Com. Ind.	_	0.5 1.0	_	0.5 1.0	_	0.5 1.0	mA	
	ULB Control	$\frac{V_{CC} = Max., V_{IN} = V_{IH} \text{ or } V_{I}}{\overline{CE}} = V_{IL}, f = 0, \overline{UB} = V_{IH}, \overline{I}$		1							
ISB2	CMOS Standby Current (CMOS Inputs)	$\label{eq:controller} \begin{split} & \frac{\text{Vcc} = \text{Max.,}}{\text{CE}} \geq \text{Vcc} - 0.2\text{V,} \\ & \text{Vin} \geq \text{Vcc} - 0.2\text{V, or} \\ & \text{Vin} \leq 0.2\text{V, f} = 0 \end{split}$	Com. Ind.	_	35 50	_	35 50	_	35 50	μΑ	
	ULB Control	$\begin{aligned} &\text{Vcc = Max., } \overline{\text{CE}} = \text{V}\text{\tiny{IL}} \\ &\text{Vin} \leq 0.2\text{V, f} = 0, \overline{\text{UB}} / \overline{\text{LB}} \end{aligned}$	= Vcc -	0.2V							

1. At $f = f_{MAX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

IC62LV12816LL POWER SUPPLY CHARACTERISTICS(1) (Over Operating Range)

Symbol	Parameter	Test Conditions			55 Max.		70 Max.		00 Max.	Unit	
Icc	Vcc Dynamic Operating Supply Current	Vcc = Max., lout = 0 mA, f = fmax	Com. Ind.	_	40 45	_	30 35	_	20 25	mA	
ISB1	TTL Standby Current (TTL Inputs) OR	$\label{eq:Vcc} \begin{aligned} &\text{Vcc} = \text{Max.,} \\ &\text{Vin} = \text{ViH or Vil.,} \\ &\text{CE} \geq \text{ViH, f} = 0 \end{aligned}$	Com. Ind.	_	0.5 1.0	_	0.5 1.0	_	0.5 1.0	mA	
	ULB Control	$\frac{V_{CC}}{CE} = Max., V_{IN} = V_{IH} \text{ or } V_{I}$ $\frac{V_{CE}}{CE} = V_{IL}, f = 0, \overline{UB} = V_{IH},$		Н							
ISB2	CMOS Standby Current (CMOS Inputs)	$\begin{aligned} & \text{Vcc} = \text{Max., f} = 0 \\ & \overline{\text{CE}} \geq \text{Vcc} - 0.2\text{V,} \\ & \text{Vin} \geq \text{Vcc} - 0.2\text{V, or} \\ & \text{Vin} \leq 0.2\text{V, f} = 0 \end{aligned}$	Com. Ind.	_	10 15	_	10 15	_	10 15	μΑ	
	OR										
	ULB Control	$\begin{aligned} &V_{CC} = Max., \overline{CE} = V_{IL} \\ &V_{IN} \leq 0.2V, f = 0, \overline{UB} / \overline{LB} \end{aligned}$	= Vcc -	0.2V							

Note:

READ CYCLE SWITCHING CHARACTERISTICS(1) (Over Operating Range)

		-5	-55		-70		-100	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t RC	Read Cycle Time	55	-	70	_	100	_	ns
t AA	Address Access Time	_	55	_	70	_	100	ns
tона	Output Hold Time	10	_	10	_	15	_	ns
t ACE	CE Access Time	_	55	_	70	_	100	ns
t DOE	OE Access Time	_	30	_	35	_	50	ns
thzoe(2)	OE to High-Z Output	_	20	_	25	_	30	ns
tLZOE ⁽²⁾	OE to Low-Z Output	5	-	5	-	5	-	ns
thzce(2)	CE to High-Z Output	0	20	0	25	0	30	ns
tLZCE ⁽²⁾	CE to Low-Z Output	10	_	10	_	10	_	ns
t BA	LB, UB Access Time	_	55	_	70	_	100	ns
t HZB	LB, UB o High-Z Output	0	25	0	25	0	35	ns
tLZB	LB. UB to Low-Z Output	0	_	0	_	0	_	ns

Notes

^{1.} At f = fmax, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

^{1.} Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.3V, input pulse levels of 0.4V to 2.2V and output loading specified in Figure 1.

^{2.} Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

AC TEST LOADS

READ CYCLE NO.1^(1,2) (Address Controlled) ($\overline{CE} = \overline{OE} = V_{IL}$, \overline{UB} or $\overline{LB} = V_{IL}$)

AC WAVEFORMS

READ CYCLE NO. 2^(1,3) (\overline{CS} , \overline{OE} , AND $\overline{UB}/\overline{LB}$ Controlled)

Notes:

- WE is HIGH for a Read Cycle.
 The device is continuously selected. OE, CE, UB, or LB = VIL.
 Address is valid prior to or coincident with CE LOW transitions.

WRITE CYCLE SWITCHING CHARACTERISTICS(1,2) (Over Operating Range)

		-!	55	-7	70	-10	00		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max	Unit	
twc	Write Cycle Time	55	_	70	_	100	-	ns	
tsce	CE to Write End	50	_	65	_	80	_	ns	
taw	Address Setup Time to Write End	50	_	65	-	80	_	ns	
t HA	Address Hold from Write End	0	_	0	_	0	_	ns	
t sa	Address Setup Time	0	_	0	-	0	_	ns	
t PWB	LB, UB Valid to End of Write	45	_	60	_	80	_	ns	
tPWE ⁽⁴⁾	WE Pulse Width	40	_	40	_	80	_	ns	
tsp	Data Setup to Write End	25	_	30	-	40	_	ns	
thd	Data Hold from Write End	0	_	0	_	0	_	ns	
thzwe ⁽³⁾	WE LOW to High-Z Output	_	30	_	30	_	40	ns	
tLZWE ⁽³⁾	WE HIGH to Low-Z Output	5	_	5	_	5	_	ns	

Notes:

- 1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.3V, input pulse levels of 0.4V to 2.2V and output loading specified in Figure 1.
- 2. The internal write time is defined by the overlap of $\overline{\text{CE}}$ LOW, and $\overline{\text{UB}}$ or $\overline{\text{LB}}$, and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 3. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 4. Tested with $\overline{\text{OE}}$ HIGH

AC WAVEFORMS

WRITE CYCLE NO. $1^{(1,2)}$ (\overline{CS} , Controlled, \overline{OE} = HIGH or LOW)

Notes

- 1. WRITE is an internally generated signal asserted during an overlap of the LOW states on the $\overline{\text{CS}}$ and $\overline{\text{WE}}$ inputs and at least one of the $\overline{\text{LB}}$ and $\overline{\text{UB}}$ inputs being in the LOW state.
- 2. WRITE = (\overline{CS}) [(\overline{LB}) = (\overline{UB})] (\overline{WE}) .

WRITE CYCLE NO. 2 (WE Controlled; OE is HIGH During Write Cycle)

WRITE CYCLE NO. 3 (WE Controlled; OE is LOW During Write Cycle)

WRITE CYCLE NO. 4 (UB / LB Controlled)

DATA RETENTION SWITCHING CHARACTERISTICS (L/LL)

Symbol	Parameter	Test Condition		Min.	Max.	Unit	
V DR	Vcc for Data Retention	See Data Retention Waveform		1.5	3.6	V	
Idr	Data Retention Current	$Vcc = 2.0V, \overline{CE} \ge Vcc - 0.2V$	Com. (-L)	_	20	μΑ	
			Com. (-LL)	_	5	μA	
			Ind. (-L)	_	25	μA	
			Ind. (-LL)	_	7	μA	
tsdr	Data Retention Setup Time	See Data Retention Waveform		0	-	ns	
t RDR	Recovery Time	See Data Retention Waveform		trc	_	ns	

DATA RETENTION WAVEFORM (CE Controlled)

ORDERING INFORMATION

Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
55	IC62LV12816L-55T IC62LV12816L-55B	400mil TSOP-2 6*8mm TF-BGA
70	IC62LV12816L-70T IC62LV12816L-70B	400mil TSOP-2 6*8mm TF-BGA
100	IC62LV12816L-100T IC62LV12816L-100B	400mil TSOP-2 6*8mm TF-BGA

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
55	IC62LV12816L-55TI IC62LV12816L-55BI	400mil TSOP-2 6*8mm TF-BGA
70	IC62LV12816L-70TI IC62LV12816L-70BI	400mil TSOP-2 6*8mm TF-BGA
100	IC62LV12816L-100TI IC62LV12816L-100BI	400mil TSOP-2 6*8mm TF-BGA

ORDERING INFORMATION

Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
55	IC62LV12816LL-55T IC62LV12816LL-55B	400mil TSOP-2 6*8mm TF-BGA
70	IC62LV12816LL-70T IC62LV12816LL-70B	400mil TSOP-2 6*8mm TF-BGA
100	IC62LV12816LL-100T IC62LV12816LL-100B	400mil TSOP-2 6*8mm TF-BGA

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
55	IC62LV12816LL-55TI IC62LV12816LL-55BI	400mil TSOP-2 6*8mm TF-BGA
70	IC62LV12816LL-70TI IC62LV12816LL-70BI	400mil TSOP-2 6*8mm TF-BGA
100	IC62LV12816LL-100TI IC62LV12816LL-100BI	400mil TSOP-2 6*8mm TF-BGA

Integrated Circuit Solution Inc.

HEADQUARTER:

NO.2, TECHNOLOGY RD. V, SCIENCE-BASED INDUSTRIAL PARK,

HSIN-CHU, TAIWAN, R.O.C.

TEL: 886-3-5780333 Fax: 886-3-5783000

BRANCH OFFICE:

7F, NO. 106, SEC. 1, HSIN-TAI 5TH ROAD, HSICHIH TAIPEI COUNTY, TAIWAN, R.O.C.

TEL: 886-2-26962140 FAX: 886-2-26962252 http://www.icsi.com.tw