Problem 1

Find the phasor form of the following functions:

a.
$$v(t) = 155\cos(377t - 25^{\circ}) \text{ V}$$

b.
$$v(t) = 5\sin(1000t - 40^{\circ}) \text{ V}$$

c.
$$i(t) = 10\cos(10t + 63^{\circ}) + 15\cos(10t - 42^{\circ})$$
 A

d.
$$i(t) = 460\cos(500\pi t - 25^{\circ}) - 220\sin(500\pi t + 15^{\circ})$$
 A

Problem 2

Convert the following complex numbers to polar form:

a.
$$4 + j4$$

b.
$$-3 + j4$$

c.
$$j + 2 - j4 - 3$$

Problem 3

Convert the following to polar form and compute the product. Compare the result with that obtained using rectangular form.

a.
$$(50 + j10)(4 + j8)$$

b.
$$(j2-2)(4+j5)(2+j7)$$

Problem 4

Determine the equivalent impedance in the circuit shown below.

$$v_s(t) = 7\cos\left(3,000t + \frac{\pi}{6}\right)V$$

$$R_1 = 2.3 \text{ k}\Omega$$
, $R_2 = 1.1 \text{ k}\Omega$, $L = 190 \text{ mH}$, and $C = 55 \text{ nF}$.

Problem 5

Determine the current through Z_3 in the circuit below.

$$v_{s1} = v_{s2} = 170\cos(377t) \text{ V}$$

$$Z_1 = 5.9 \angle 0.122 \ \Omega$$

$$Z_2 = 2.3 \angle 0 \Omega$$

$$Z_3 = 17 \angle 0.192 \Omega$$

Problem 6

Determine the frequency so that the current I_i and voltage V_o in the circuit below are in phase.

$$Z_s = 13,000 + j\omega 3 \Omega$$

$$R = 120 \Omega$$
, $L = 19$ mH, and $C = 220$ pF

Problem 7

Use phasor techniques, solve for the current in the circuit below.

Problem 8

Use phasor techniques, solve for v in the circuit below

Problem 9

Use the phasor techniques, solve for i in the circuit below.

