PDE II: Problem Set I

Youngduck Choi *

Abstract

This work contains solutions for the problem set I.

Question 1-1.

Solution.

(a) Set $u = x^2$ and du = 2xdx. Then,

$$\int_{-\infty}^{\infty} e^{-x^2} = \int_{0}^{\infty} u^{-\frac{1}{2}} e^{-u} du = \Gamma(\frac{1}{2}).$$
 (1)

As

$$\Gamma(1-s)\Gamma(s) = \frac{\pi}{\sin(\pi s)}$$

for any $s\in\mathbb{C},$ setting $s=\frac{1}{2}$ in the above and substituting to (1) gives

$$\int_{-\infty}^{\infty} e^{-x^2} = \sqrt{\pi}.$$
 (2)

^{*}Department of Mathematics, Courant Institute of Mathematical Sciences, yc1104@nyu.edu; If you find an error and want to share with me, you can reach me via email.

We now compute

$$\hat{f}(\xi) = \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{-ix\cdot\xi} e^{-|x|^2}
= \frac{1}{(2\pi)^{\frac{d}{2}}} \prod_{k=1}^d \int_{\mathbb{R}} e^{-(x_k + \frac{i\xi_k}{2})^2 - \frac{\xi_k^2}{4}} dx_k
= \frac{1}{(2\pi)^{\frac{d}{2}}} (\sqrt{\pi})^d e^{-\frac{|\xi|^2}{4}}
= 2^{-\frac{d}{2}} e^{-\frac{|x_i|^2}{4}}$$
(3)

for any $\xi \in \mathbb{R}^d$, where (3) follows from (2).

(b) Firstly,

$$\hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ix\xi} \frac{1}{1+x^2} dx \tag{4}$$

for all $\xi \in \mathbb{R}$. Let $\xi < 0$. By Residue theroem,

$$\int_{H+C_R} \frac{e^{-iz\xi}}{1+z^2} dz = 2\pi i \text{Res}(\frac{e^{-iz\xi}}{1+z^2}; i) = \pi e^{\xi}$$

for all R > 0 sufficiently large, where C_R is the standard arc and H is the horizontal part of the upper half circle, oriented counter-clockwise. As

$$\left| \int_{C_R} \frac{e^{-iz\xi}}{1+z^2} dz \right| \leq \frac{R}{R^2 - 1} \int_0^{\pi} e^{R\xi \sin(\theta)} d\theta \leq \frac{\pi R}{R^2 - 1}$$

for all R > 0, taking $R \to \infty$ gives

$$\int_{\mathbb{D}} e^{-ix\xi} \frac{1}{1+x^2} dx = \pi e^{\xi}.$$

Similarly, for $\xi \geq 0$, considering the lower half circle containing -i gives

$$\int_{\mathbb{R}} e^{-ix\xi} \frac{1}{1+x^2} dx = \pi e^{-\xi}$$

and hence, by (6),

$$\hat{f}(\xi) = \sqrt{\frac{\pi}{2}}e^{-|\xi|}$$

for all $\xi \in \mathbb{R}$.

Question 1-2.

2) For
$$\chi \in \mathcal{E}^{\infty}(R)$$
, $\chi(\chi) = 1$ for $|\chi| \leq 1$, define, for $x > -1$, $f(\chi) = \chi(\chi)|\chi|^{\infty}$ for $x > -1$

a) For which $k \in IN$ & does $\partial_{\chi} f \in L^{2}? \in L^{2}?$

(ie: there exists a weak der., and it belongs to L' or L^{2})

b) Show that $\hat{f}(\xi) \sim C_{\chi}|\xi|^{-\chi-1} + O(|\xi|^{-N})$ for all N, as $|\xi| \to \infty$, if $\chi \in (-1, 0)$

c) What if $\chi > 0$?

Compare with the results of a): for which R does $\xi^{R}\hat{f} \in L^{2}?$

d) State an extension of a), b), c) to higher dimension, and prove it.

Solution.

Now, consider $\alpha \in \mathbb{Z}_+$. For α even, we see

$$f(x) = X(x)|x|^{\alpha} = X(x)x^{\alpha} \in C_0^{\infty}(\mathbb{R}).$$

Thus, $\partial_x^k f \in L^1 \cap L^2$ for all $k \in \mathbb{Z}_+$. For α odd, as $f \in C^{\alpha-1}$, and $f^{(\alpha-1)}$ has $\operatorname{sgn}(x)(\alpha-1)!$ on [-1,1] as weak-derivative, which we know does not have a weak derivative, $\partial_x^k f \in L^1 \cap L^2$ for any $k \leq \alpha$.

Now, let $-1 < \alpha < 0$. Then, if f has a weak-derivative, then, for any $\phi \in \mathscr{S}$, and $\epsilon > 0$,

$$\int_{\mathbb{R}} X(x)|x|^{\alpha} \phi'(x) dx = \int_{\epsilon}^{\infty} + \int_{0}^{\epsilon} + \int_{-\epsilon}^{0} + \int_{-\infty}^{-\epsilon} X(x)x^{\alpha} \phi'(x) dx$$

$$= \epsilon^{\alpha} (\phi(-\epsilon) - \phi(\epsilon)) + \int_{0}^{\epsilon} + \int_{-\epsilon}^{0} - \int_{|x| > \epsilon} g(x)\phi(x) dx \qquad (5)$$

where (6) holds by integration by parts, and

$$g(x) = X'(x)|X|^{\alpha} + \operatorname{sgn}(x)\alpha X(x)|x|^{\alpha - 1}.$$

Therefore, as $g \notin L^1_{\text{loc}}$, and $P.V_{|x|>\epsilon}g(x)$ is not a function, $\partial_x^k f \in L^1 \iff k=0$, and $\partial_x^k f \in L^2 \iff k=0$ and $\alpha > -\frac{1}{2}$.

Now, consider $\alpha \geq 0$ and $\alpha \notin \mathbb{Z}$. Observe that $X(x)|x|^{\alpha} \in C^{\lceil \alpha \rceil}$ and

$$(X(x)|x|^{\alpha})^{\lceil \alpha \rceil} = \begin{pmatrix} \alpha \\ \lfloor \alpha \rfloor \end{pmatrix} \lfloor \alpha \rfloor! (\operatorname{sgn}(x))^{\lfloor x \rfloor} |x|^{\alpha - \lfloor \alpha \rfloor} \text{ on } [0,1].$$

Now, for any $\phi \in \mathscr{S}$ and $\epsilon > 0$,

$$\int_{\mathbb{R}} f^{(\lfloor \alpha \rfloor)}(x) \phi'(x) dx = -f^{(\lfloor \alpha \rfloor)}(x) \phi(x)|_{\epsilon}^{-\epsilon} + \binom{\alpha}{\lfloor \alpha \rfloor} \lfloor \alpha \rfloor! (\operatorname{sgn}(x))^{\lfloor \alpha \rfloor}$$

$$\int_{-\epsilon}^{\epsilon} |x|^{\alpha - \lfloor \alpha \rfloor} \phi'](x) dx - \int_{|x| > \epsilon} \phi(x) g(x) \to \int_{\mathbb{R}} \phi(x) g(x) dx \text{ as } \epsilon \to 0^{+}$$

where $g(x)=h(x)|x|^{\alpha-\lfloor\alpha\rfloor-1}$ on [-1,1] for some h smooth and compactly supported. Therefore, by the above discussion, f only has weak derivative upto $\lfloor\alpha\rfloor$, and $\partial_x^k f\in L^1$ for $k=0,1...,\lfloor\alpha\rfloor$ and $\partial_x^k f\in L^2$ for $k=0,...,\lceil\alpha\rceil$ for $(\alpha)\leq\frac12$ and $k=0,...,\lfloor\alpha\rfloor$ for $(\alpha)>\frac12$.

(b) We compute

$$\widehat{|x|^{\alpha}}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} |x|^{\alpha} e^{-ix\xi} dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} |y|^{\alpha} |\xi|^{-\alpha - 1} e^{-iy} dy$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} |y|^{\alpha} e^{-iy} dy |\xi|^{-\alpha - 1} =: C_{\alpha} |\xi|^{-\alpha - 1}$$
(6)

where (6) holds by a change of variable of $y = x\xi$. Set $g(x) = f - |x|^{\alpha} = (X(x) - 1)|x|^{\alpha}$, so

$$\hat{g}(\xi) = \widehat{f - |x|^{\alpha}}(\xi) = \hat{f}(\xi) - C_{\alpha}|\xi|^{-\alpha - 1}.$$

Since

$$\partial_x^N g = \sum_{k=0}^N \binom{N}{k} (X(x) - 1)^{(N-k)} \binom{\alpha}{k} k! \operatorname{sgn}(x)^k |x|^{\alpha - k}$$

for any N, we have

$$|||\xi|^N \hat{g}||_{L^\infty} \le C||\partial_x^N g||_{L^1} < \infty$$

and hence

$$\hat{f}(\xi) \sim C_{\alpha}|\xi|^{-\alpha-1} + O(|\xi|^{-N})$$

for any N.

(c) Let $\alpha \notin \mathbb{Z}$. Then, f has weak derivative up to $\lceil \alpha \rceil$.

$$\partial_x^{\lceil \alpha \rceil} f(x) = \sum_{k=0}^{\lceil \alpha \rceil - 1} X(x)^{\lceil \alpha \rceil - k} (x) \binom{\alpha}{k} k! |x|^{\alpha - k} (\operatorname{sgn} x)^k \binom{\lceil \alpha \rceil}{k} + CX(x) |x|^{\alpha - \lceil x \rceil}.$$

Now, by (b),

$$\widehat{\partial_x^{\lceil \alpha \rceil}} f(\xi) \sim C_{\alpha} |\xi|^{-1\lceil \alpha \rceil - \alpha} + O(|\xi|^{-N})$$

so

$$\hat{f}(\xi) \sim C_{\alpha} |\xi|^{-1-\alpha} + O(|\xi|^{-N})$$

and hence $|\xi|^k \hat{f} \in L^2$ iff $k-1-\alpha < -\frac{1}{2}$. Now, for α even, if $f \in C_0^\infty(\mathbb{R})$, then $|||\xi|^N \hat{f}||_\infty \le C|||\partial_x^N f||_{L^1} < \infty$, so $\hat{f} \sim O(|\xi|^{-N})$ for all N, and $|\xi|^k \hat{f} \in L^2$ for all k.

For α even, if $f \in C_0^{\infty}(\mathbb{R})$, then $||\xi|^N \hat{f}||_{\infty} \leq C||\partial_x^N f||_{L^1} < \infty$, so $\hat{f} \sim O(|\xi|^{-N})$ for all N, and $|\xi|^k \hat{f} \in L^2$ for all k.

For α odd, we have that f has weak derivative only up to order α . So, $||\xi|^N \hat{f}||_{L^1} \leq C||\partial_x^N f||_{L^1} < \infty$, and $\hat{f}(\xi) \sim O(|\xi|^{-N})$ for $N \leq \alpha + 1$. Therefore, $|\xi|^k \hat{f} \in L^2$ for $k \leq \alpha$.

- (d) The proof does not change for higher dimension from the first parts.
- a) For α odd, $\partial_x^k f \in L^1 \cap L^2$ for all $k \leq \alpha$. For α even, $\partial_x^k f \in L^1 \cap L^2$ for all k. For $\alpha \notin \mathbb{Z}$, if $k < \alpha + \frac{d}{2}$, $|\xi|^k \hat{f} \in L^2 \implies \partial_x^k f \in L^2 \implies \partial_x^k f \in L^1$.
- b) $\alpha \in (-d, 0), \hat{f}(\xi) \sim C_{\alpha} |\xi|^{-\alpha d} + O(|\xi|^{-N})$ for all N.
- c) $\alpha \notin \mathbb{Z}$. If $\alpha + \frac{d}{2} > k$, then, $\hat{f}(\xi) \sim C_{\alpha} |\xi|^{-\alpha d} + O(|\xi|^{-N})$ and $|\xi|^{k} \hat{f} \in L^{2}$. α even is the same. For α odd, $\hat{f} \sim O(|\xi|^{-\alpha d})$ and $|\xi|^{k} \hat{f} \in L^{2}$ for $k < \alpha + \frac{d}{2}$.

Question 1-3.

(3) For
$$\chi$$
 as above, let $f(x) = \chi(n)e^{i\pi x}$ $x \in \mathbb{R}$ For which k does $g_k^2 f \in L^2$?

Solution.

By the same line of reasoning as above, for $\alpha \in \mathbb{Z}$, $\partial_x^k f \in L^2$ for all $k \in \mathbb{Z}_+$. Let $\alpha \notin \mathbb{Z}$. Integrating by parts, for any $\phi \in \mathscr{S}$, and $\epsilon > 0$,

$$\int_{\mathbb{R}} X(x) e^{ix^{\alpha}} \phi^{'}(x) dx \quad = \quad -X(x) e^{ix^{\alpha}} \phi(x)|_{-\epsilon}^{\epsilon} + \int_{-\epsilon}^{\epsilon} X(x) e^{ix^{\alpha}} \phi(x) dx - \int_{|x| > \epsilon} \phi(x) g(x) dx$$

where

$$g(x) = X'(x)e^{ix^{\alpha}} + \operatorname{sgn}(x)i\alpha X(x)x^{\alpha-1}e^{ix^{\alpha}}$$

for $x \in \mathbb{R}$. Taking $\epsilon \to 0^+$ $f' \sim x^{\alpha-1}$, and similarly $f^{(k)} \sim x^{\alpha-k}$. Therefore, $\partial_x^k f \in L^2 \iff 2\alpha - 2k > -1$ and $\alpha + \frac{1}{2} > k$.

Question 1-4.

Solution.

The key property in this problem is that smooth and compactly supported functions on \mathbb{R}^d are dense in $L^1(\mathbb{R}^d)$, and L^1 convergence gives uniform control on the Fourier domain.

Let $f \in L^1(\mathbb{R}^d), \xi \in \mathbb{R}^d$. Then,

$$|\hat{f}(\xi + \delta) - \hat{f}(\xi)| = \left| \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{-ix \cdot (\xi + \delta)} f(x) dx - \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{-ix \cdot \xi} f(x) dx \right|$$

$$\leq \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} |f(x)| |e^{-ix \cdot (\xi + \delta)} - e^{-ix \cdot \xi}| dx$$

$$\leq \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} 2|f(x)| dx \in L^1(\mathbb{R}^d)$$

for all $\delta \in \mathbb{R}^d$. As

$$|e^{-ix\cdot(\xi+\delta)} - e^{-ix\cdot\xi}| \to 0 \text{ as } \delta \to 0$$

for all $x \in \mathbb{R}^d$, by DCT,

$$\frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} |f(x)| |e^{-ix\cdot(\xi+\delta)} - e^{-ix\cdot\xi}| dx \to 0 \text{ as } \delta \to 0$$

and hence,

$$\lim_{\delta \to 0} \hat{f}(\xi + \delta) - \hat{f}(\xi) = 0,$$

which shows that \hat{f} is continuous.

Let $f \in C_0^{\infty}(\mathbb{R}^d)$ and $\xi \in \mathbb{R}^d$. Then,

$$|\hat{f}(\xi)| = \left| \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^{d}} e^{-ix \cdot \xi} f(x) dx \right| = \left| -\frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^{d}} \nabla f(x) \cdot \nabla \left(\frac{e^{ix \cdot \xi}}{-|\xi|^{2}} \right) \right|$$

$$\leq \frac{1}{(2\pi)^{\frac{d}{2}} |\xi|^{2}} \int_{\mathbb{R}^{d}} \left| \nabla f(x) \cdot \left(-i\xi e^{-ix \cdot \xi} \right) \right| dx \leq \frac{1}{(2\pi)^{\frac{d}{2}} |\xi|^{2}} \int_{\mathbb{R}^{d}} |\nabla f(x) \cdot \xi| dx$$

$$\leq \frac{1}{(2\pi)^{\frac{d}{2}} |\xi|^{2}} \sum_{i=1}^{d} |\xi_{i}| \int_{\mathbb{R}} |f_{i}(x)| dx \leq \frac{1}{(2\pi)^{\frac{d}{2}} |\xi|^{2}} \max_{i \leq d} |\xi_{i}| \sum_{i \leq d} \int_{\mathbb{R}^{d}} |f_{i}(x)| dx$$

$$\lesssim \frac{1}{|\xi|} \max_{i \leq d} ||f_{i}||_{L_{1}}$$

$$(8)$$

where (7) holds by integration by parts, and (8) holds by the topological equivalence of the norms in \mathbb{R}^d . By the compactness assumption, taking $|\xi| \to \infty$ sends RHS to 0. Therefore, the Riemann-Lebesgue lemma holds for $f \in C_0^{\infty}(\mathbb{R}^d)$. Now, suppose $f \in L^1(\mathbb{R}^d)$. Then, by density of $C_0^{\infty}(\mathbb{R}^d)$ in $L^1(\mathbb{R}^d)$, we can choose $\{f_n\}_{n\in\mathbb{N}} \subset C_0^{\infty}(\mathbb{R}^d)$ such that $f_n \to_{L^1} f$ as $n \to \infty$. Observe that there is some C > 0 such that for all $\xi \in \mathbb{R}^d$ and $n \in \mathbb{N}$,

$$|\hat{f}(\xi) - \hat{f}_n(\xi)| \leq C||f_n - f||$$

and hence \hat{f}_n converges uniformly to \hat{f} . Fix $\epsilon > 0$. Then, we can choose f_n such that $||\hat{f}_n - \hat{f}||_{\infty} < \frac{\epsilon}{2}$ and choose M large enough that $|\hat{f}_n(\xi)| < \frac{\epsilon}{2}$ for all ξ such that $|\xi| > M$. Therefore, for any ξ with $|\xi| > M$, $|\hat{f}(\xi)| < \epsilon$, so

$$\hat{f}(\xi) \to 0 \text{ as}|\xi| \to \infty,$$

as required.

Question 1-5.

Solution.

Consider an approximate identity $\{\phi_{\epsilon}\}_{\epsilon>0} \subset C_0^{\infty}$. Then,

$$(\phi_{\epsilon} * f)'(x) = \int_{\mathbb{R}} \phi_{\epsilon}'(x - y) = -(-1) \int_{\mathbb{R}} \phi_{\epsilon}(x - y) f'(y) dy = \phi_{\epsilon} * f'$$

for any $x \in \mathbb{R}$, $\epsilon > 0$, so $(\phi_{\epsilon} * f)' = \phi_{\epsilon} * f'$. Similarly, $(\phi_{\epsilon} * g)' = \phi_{\epsilon} * g'$. Furthermore, by a property of approximate identity

$$\phi_{\epsilon} * g' \to_{L^1} g'$$
 and $\phi_{\epsilon} * f' \to_{L^1} f'$.

Now, for any $\phi \in \mathcal{S}$, and $\epsilon > 0$,

$$\int_{\mathbb{R}} (\phi_{\epsilon} * f \phi_{\epsilon} * g) \phi' dx = \int_{\mathbb{R}} (\phi_{\epsilon} * f \phi_{\epsilon} * g)' \phi dx$$

$$= \int_{\mathbb{R}} (\phi_{\epsilon} * f' \phi_{\epsilon} * g + \phi_{\epsilon} * g' \phi_{\epsilon} * f) \phi dx$$

where (9) holds by $\phi_{\epsilon} * f, \phi_{\epsilon} * g \in C_0^{\infty}$. Taking $\epsilon \to 0$, by DCT,

$$\int_{\mathbb{R}} fg\phi' = \int_{\mathbb{R}} (f'g + g'f)\phi$$

for all $\phi \in \mathscr{S}$, so (fg)' = f'g + fg' as required.