MATH 307

Chapter 5

SECTION 5.5: SIMILAR MATRICES, DIAGONALIZATION, AND JORDAN CANONICAL FORM

Contents

milar Matrices
Motivation
Definition
ordan Canonical Form
Jordan blocks
Reduction to Jordan Blocks

Created by: Pierre-Olivier Parisé Summer 2022

Motivation

EXAMPLE 1. Let A be the 3×3 matrix

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}.$$

Then, (a) compute A^5 (b) find the eigenvalues of A (c) find a basis for each eigenspace.

(a)
$$A \cdot A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 2^2 & 0 & 0 \\ 0 & 3^2 & 0 \\ 0 & 0 & 4^2 \end{bmatrix}$$

$$A^5 = A \cdot A \cdot A \cdot A \cdot A = \begin{bmatrix} 2^5 & 0 & 0 \\ 0 & 3^5 & 0 \\ 0 & 0 & 4^5 \end{bmatrix}$$

(b)
$$\det(\lambda I - A) = 0$$
 $d \rightarrow \begin{cases} \lambda - 2 & 0 & 0 \\ 0 & \lambda - 3 & 0 \\ 0 & 0 & \lambda - 4 \end{cases} = 0 \iff (\lambda - 2)(\lambda - 3)(\lambda - 4)$

(c)
$$E_2(\lambda=2)$$
 $V = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. $\rightarrow AI - A$ $\begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$. bound for $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -2 & 0 \end{bmatrix}$ $\rightarrow X$ free $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Eq. $(\lambda=3)$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \xrightarrow{\chi = 0} \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{-16} \xrightarrow{\chi = 0} \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{-16} \xrightarrow{\chi = 0} \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{-16} \xrightarrow{\chi = 0} \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{-16} \xrightarrow{\chi = 0} \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{-16} \xrightarrow{\chi = 0} \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{-16} \xrightarrow{\chi = 0} \xrightarrow{\chi = 0} \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{-16} \xrightarrow{\chi = 0} \xrightarrow$$

$$-5\left(\frac{2}{3}\right)=2\left(0\right)$$

$$-6\left(\frac{2}{3}\right)=2\left(0\right)$$

$$-6\left(\frac{2}{3}\right)=2\left(0\right)$$

$$-6\left(\frac{2}{3}\right)=2\left(0\right)$$

- It is pretty easy to deal with diagonal matrices.
- Our goal is to try to transform a general matrix into a diagonal matrix.

EXAMPLE 2. Let A be the following 3×3 matrix

$$A = \begin{bmatrix} 6 & -4 & -2 \\ 1 & 2 & -1 \\ 1 & 0 & 1 \end{bmatrix}.$$

Find (a) the eigenvalues of A (b) a basis for each eigenspace (c) compute A^5 .

(a)
$$\det(\lambda I - A) = \lambda^3 - 9\lambda^2 + 26\lambda - 24 = (\lambda - 2)(\lambda - 3)(\lambda - 4) = 0$$

 $- \Delta \lambda = 2, \lambda = 3, \text{ or } \lambda = 4.$

(b)
$$E_{Z}(\lambda=z)$$
 $2I-A = \begin{bmatrix} -4 & 42 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$, solve $(2I-A) = 0$
 $V = \begin{bmatrix} x \\ y \end{bmatrix}$.

$$V = \begin{bmatrix} x \\ y \end{bmatrix}$$

Because eigenvectors associated to different eigenvalues, we have that winner, we are lin. independent -> winwe, we fin a basis for 1K3!

(c) (hange of basis from
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$
 to $\begin{bmatrix} \omega_{11}\omega_{21}\omega_{3} \end{bmatrix}$:
$$P = \begin{bmatrix} 1 & 2 & 3 \\ 1/2 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad P^{-1} = \begin{bmatrix} 0 & -2 & 2 \\ -1 & 4 & -1 \\ 1 & -2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} A \\ B \end{bmatrix}_{B}^{B} = P^{-1}AP = \begin{bmatrix} 0 & -2 & 2 \\ -1 & 4 & -1 \\ 1 & -2 & 0 \end{bmatrix} \begin{bmatrix} 4 & -4 & 2 \\ -1 & 2 & -1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 1/2 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \\
 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} \quad \text{deag. matrix!}$$

-D
$$A^{5} = P[A]_{\beta}P^{1})(P[A]_{\beta}P^{1})(P[A]_{\beta}P^{1})$$

$$= P[A]_{\beta}P[A]_{\beta}P[A]_{\beta}P[A]_{\beta}P[A]_{\beta}P^{1}$$

$$= P[A]_{\beta}P[A]$$

Definition

Diagonalizable Matrices:

diagonal nature.

An $n \times n$ matrix A is diagonalizable if there is a matrix $\stackrel{\bullet}{D}$ and an invertible matrix P such that

$$A = P^{T}BP$$

$$P D P^{-1}$$

Facts:

- Let A be an $n \times n$ matrix.
- Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be the eigenvalues of A.
- Let $E_{\lambda_1}, E_{\lambda_2}, ..., E_{\lambda_k}$ be the eigenspaces associated to each eigenvalue.

If $\dim(E_{\lambda_1}) + \dim(E_{\lambda_2}) + \cdots + \dim(E_{\lambda_k}) = n$, then A is diagonalizable.

EXAMPLE 3. Is the matrix from Example 2 diagonalizable?

A: was a 3×3 matrix -1 n=3 $\lambda_1 = 2$, $\lambda_2 = 3$, $\lambda_3 = 4$.

Also, $\begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$ basin for E_2 -1 dim $(E_2) = 1$ $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ basis for E_3 -1 dim $(E_3) = 1$ $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ basis for E_4 -1 dim $(E_4) = 1$

So, dim (E)+ dim (Ez) + dim (Ez) = 3= n

-D A is diagonalizable.

$$A = \begin{bmatrix} 1 & -2 & -6 \\ -2 & 2 & -5 \\ 2 & 1 & 8 \end{bmatrix}$$

diagonalizable? If so, determine the invertible matrix P such that $P \Rightarrow P$ is a diagonal matrix.

1) Eigen value.

$$\det(\lambda I - A) = \lambda^3 - 11\lambda^2 + 39\lambda - 45 = (\lambda - 5)(\lambda - 3)^2$$

$$-0 \ \lambda = 5 , \ \lambda = 3 \ (\text{muet. is 2})$$

2) Eigen Spaces.

$$\frac{E_5(\lambda=5)}{E_5(\lambda=5)} \text{ Solve } (5I-A) v = 0 \quad v = \begin{bmatrix} 20 \\ 2 \\ 2 \end{bmatrix}.$$

$$-0 \quad v = 2 \begin{bmatrix} -1 \\ -1 \end{bmatrix} \quad -0 \quad \begin{bmatrix} -1 \\ -1 \end{bmatrix} \quad \text{bean } \text{ for } E_5.$$

$$-0 \quad \text{dim}(E_5) = 1$$

$$\frac{E_5(\lambda=3)}{-b} \quad \text{Solve} \quad (3I-A)_{V=0}, \quad V = \begin{bmatrix} x \\ y \end{bmatrix}.$$

$$-b \quad v = z \begin{bmatrix} -2 \\ -1 \end{bmatrix} \quad -b \quad \begin{bmatrix} -2 \\ -1 \end{bmatrix} \quad bcain \quad fn \quad E_3$$

$$-b \quad dim(E_5) = 1$$

50, dim (E5) + dim (E3) = 2 ≠ 3(=n)

-D A is not diagonalizable

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
1+0:

diagonalizable? If so, determine the invertible matrix P such that P is a diagonal matrix.

1) Etgenvalues.

$$\frac{\lambda_1 = 1 + i}{\det(\lambda I - A)} = \lambda^2 - 2x + 2 \quad -0 \quad \lambda_2 = 1 - i \quad \left(\frac{E_{x}}{r_{x}}, \frac{7}{r_{x}}\right)$$

$$\lambda_1 = 1 + i \cdot (Ex.$$

2) Eigenspaus. (Ex.7).

$$\frac{E_{1+i}}{f}$$
 $v = x \begin{bmatrix} 1 \\ -i \end{bmatrix}$
 $-o \begin{bmatrix} 1 \\ i \end{bmatrix}$
boon for E_{1+i} .

is complex
$$\frac{E_{1-i}}{v} = x \begin{bmatrix} i \\ i \end{bmatrix} - v = x \begin{bmatrix} i \\ i \end{bmatrix}$$
is complex.

$$\frac{E_{1-i}}{f}$$
 $v = x \left[i\right]$
is complex.

$$dim(E_{1+i}) + dim(E_{1-i}) = 1 + 1 = 2 = n$$

-p A is diagonalizable.

3) Change of borsis.
$$P = \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix} \quad A \quad P^{-1} = \begin{bmatrix} 1/z & 1/z \\ i/z & -i/z \end{bmatrix}$$

$$\mathcal{D} = [A]_{\beta}^{\beta} = \mathcal{P}^{-1}A\mathcal{P} = \begin{bmatrix} 1+i & 0 \\ 0 & 1-i \end{bmatrix}.$$

In general:

An $n \times n$ matrix A is *similar* to an $n \times n$ matrix B if there is an invertible $n \times n$ matrix P such that

$$B = P^{-1}AP$$
.

Notation: $A \sim B$ means that A is similar to B.

Facts:

- If A is similar to B and B is similar to C, then A is similar to C.
- If P is the change of bases matrix from α to β and T is a linear transformation, then $[T]^{\beta}_{\beta} = P^{-1}[T]^{\alpha}_{\alpha}P$. So $[T]^{\beta}_{\beta} \sim [T]^{\alpha}_{\alpha}$.

Question:

For non-diagonalizable matrices, can we reduce them to a simple form?

In other words, can we find a matrix B, as simple as possible, such that $B \sim A$?

Answer: Yes! We will replace the diagonal form by the Jordan canonical form.

Jordan blocks

A Jordan block is a square matrix A taking the following shape:

$$A = \begin{bmatrix} \mu & 1 & 0 & \cdots & 0 & 0 \\ 0 & \mu & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \mu & 1 \\ 0 & 0 & 0 & \cdots & 0 & \mu \end{bmatrix}.$$

$$A = \begin{bmatrix} \mu & 1 & 0 & \cdots & 0 & 0 \\ 0 & \mu & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \mu & 1 \\ 0 & 0 & 0 & \cdots & 0 & \mu \end{bmatrix}.$$

$$A = \begin{bmatrix} \mu & 1 & 0 & \cdots & 0 & 0 \\ 0 & \mu & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \mu & 1 \\ 0 & 0 & 0 & \cdots & 0 & \mu \end{bmatrix}.$$

Why are these type of matrices important?

EXAMPLE 6. Let A be the matrix

$$A = \begin{bmatrix} \mu & 1 & 0 \\ 0 & \mu & 1 \\ 0 & 0 & \mu \end{bmatrix}.$$

(a) Compute $\det(\lambda I - A)$. (b) Find the dimension of the eigenspaces.

(a)
$$\det(\lambda I - A) = |\lambda - \mu|^{-1} = (\lambda - \mu)^{3} = 0$$

$$-0 \quad \lambda = \mu \quad (alg. mult. = 3)$$
(b) E_{μ} . $(\mu I - A)_{\nu} = 0$, $\nu = \begin{bmatrix} \chi \\ 2 \end{bmatrix}$

$$\mu I - A = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \quad -\nu \quad \begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad -\nu \quad Z = 0$$

$$-\nu \quad \nabla = \chi \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad -\nu \quad \dim(E_{\mu}) = 1.$$

Remark:

- a $n \times n$ Jordan block associated to a number μ has only one eigenvalue.
- The algebraic multiplicity of this eigenvalue is necessarily equal to n. We always have $\dim(E_{\mu}) = 1$ for an $n \times n$ Jordan block.

• Jordan blocks are the building blocks for the set of matrices that can't be diagonalizable.

Reduction to Jordan Blocks

EXAMPLE 7. We know that the matrix

$$A = \begin{bmatrix} 1 & -2 & -6 \\ -2 & 2 & -5 \\ 2 & 1 & 8 \end{bmatrix} \quad \setminus$$

is not diagonalizable. Find a matrix B, not necessarily a diagonal matrix, such that A is similar to B.

1) Figer valus.

From Ex.4, we know
$$\lambda_1=5$$
 (alg. muet=1) $\lambda_2=3$ (alg. muet=2)

2) Eigenspaus.

$$E_5$$
 ($\lambda = 5$) $dim(E_5) = 1$ (geo.mut=1)
 E_3 ($\lambda = 5$) $clim(E_3) = 1$, (geo.mut=1)

$$73 = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & * \\ 0 & 0 & 3 \end{bmatrix}$$

Jz: two choius.

$$(1)$$
 geo, mult. = 1 -b $J_3 = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$

z) geo. mult= 2 ->
$$J_3 = \begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}$$

so, we take the 2nd option

$$\Rightarrow B = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}.$$

General Procedure: Suppose A is an $n \times n$ matrix.

• Express $\det(\lambda I - A)$ as

$$\det(\lambda I - A) = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \cdots (\lambda - \lambda_k)^{m_k}$$

where m_1 is the multiplicity of λ_1 , m_2 is the multiplicity of λ_2 , ..., m_k is the multiplicity of λ_k .

• For each λ_i , write

$$\mathbf{A_{j}} = \begin{bmatrix} J_{m_{j-1}+1} & 0 & \cdots & 0 \\ 0 & J_{m_{j-1}+2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{m_{j}} \\ \mathbf{n_{j-1}} + 1, \dots m_{j}, \text{ is a Jordan block} \\ & \begin{bmatrix} \lambda_{j} & 1 & 0 & \cdots & 0 & 0 \end{bmatrix} & \mathbf{A_{j}} = \begin{bmatrix} \mathbf{J_{j}} & \mathbf{0} \\ \mathbf{0} & \mathbf{J_{z}} \end{bmatrix}$$

$$\mathbf{A_{z}} = \begin{bmatrix} \mathbf{J_{3}} & \mathbf{0} \\ \mathbf{0} & \mathbf{J_{4}} \end{bmatrix}$$

where each J_p , for $p = m_{j-1} + 1, \dots m_j$, is a Jordan block

$$J_p = \begin{bmatrix} \lambda_j & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda_j & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_j & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda_j \end{bmatrix}.$$

• Then the Jordan Canonical Form (JCF) is

$$B = \begin{bmatrix} A_1 & 0 & 0 & \cdots & 0 \\ 0 & A_2 & 0 & \cdots & 0 \\ 0 & 0 & A_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A_k \end{bmatrix}$$

• The invertible matrix P such that $B = P^{-1}AP$ is more complicated to find. In theory, the method to find P uses the notion of a **generalized eigenvector**. In our situation, we will use Python to find this matrix P.

If you want to know more on the generalized eigenvectors and the Jordan Canonical Form, I suggest to take a look at the following references:

- A more math article: Down With Determinants! by Sheldon Axler, https://www.maa. org/sites/default/files/pdf/awards/Axler-Ford-1996.pdf.
- A Youtube video: https://www.youtube.com/watch?v=GVixvieNnyc.

EXAMPLE 8. Let A be an 7×7 matrix with the following eigenvalues:

$$\{1,1,1,1,2,2,3\}. \quad \text{det}(x_1-x_1) = (x-1)^4 (x-2)^2 (x-3)$$

Give the possible Jordan canonical form B of the matrix A.

Write
$$\lambda_1=1$$
, $\lambda_2=2$, $\lambda_3=3$.

shape of A,

aly muet = 4.

$$A_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2) geom. mult=2.
$$A_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

4)
$$\frac{1}{1}$$
 $\frac{1}{1}$ $\frac{1}{1}$

shape of Az.

alg. mut=2
$$Az = \begin{bmatrix} 2 & * \\ 0 & 2 \end{bmatrix}$$

$$Az = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$

$$2) \text{ geom. mult} = 2 \qquad Az = \begin{bmatrix} 2 & 0 \\ 0 & z \end{bmatrix}$$

$$Az=\begin{bmatrix} z & 0 \\ 0 & z \end{bmatrix}$$

First possible B is:

$$B = \begin{bmatrix} A_1 & 0 & 0 \\ 0 & A_2 & 0 \\ 0 & 0 & A_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

In total, there are $4 \times 2 \times 1 = 8$ possible Jordan Canonical Forms: