Multi-Class Learning using Unlabeled Samples: Theory and Algorithm

Jian Li, Yong Liu*, Rong Yin, and Weiping Wang {lijian9026, liuyong, yinrong, wangweiping}@iie.ac.cn

中國科学院信息工程研究所 INSTITUTE OF INFORMATION ENGINEERING, CAS

Introduction

In this paper, we investigate the generalization performance of multi-class classification (MC), for which we obtain a shaper error bound by using the notion of local Rademacher complexity (LRC) and additional unlabeled samples (SSL), substantially improving the state-of-the-art bounds in existing multiclass learning methods. The statistical learning motivates us to devise an efficient multi-class learning framework with the local Rademacher complexity and Laplacian regularization. Coinciding with the theoretical analysis, experimental results demonstrate that the stated approach achieves better performance.

- 1. Core Idea: Linear-MC + LRC + SSL.
- 2. Theory
- Label-dependent complexity \Rightarrow Labelindependent complexity (use both label and unlabeled samples): $\mathcal{R}_n(\mathcal{L}_r) \Rightarrow \mathcal{R}(\mathcal{H}_r)$
- (2) Shaper generalization error bounds with convergence rate: $\mathcal{O}\left(\frac{K}{\sqrt{n+u}} + \frac{1}{n}\right)$ or $\mathcal{O}\left(\frac{1}{n}\right)$.
- 3. Algorithm
- (1) Multi-penalty minimization

$$\underset{h \in \mathcal{H}_r}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} \ell(h(\mathbf{x}_i), y_i) + \tau_A \|\mathbf{W}\|_F^2 + \tau_I \operatorname{trace}(\mathbf{W}^T \mathbf{X} \mathbf{L} \mathbf{X}^T \mathbf{W}) + \tau_S \sum_{j > \theta} \lambda_j(\mathbf{W})$$

A. $trace(\mathbf{W}^T \mathbf{X} \mathbf{L} \mathbf{X}^T \mathbf{W})$: Laplacian regularization to make use of unlabeled examples.

- B. $\sum_{j>\theta} \lambda_j(\mathbf{W})$: the tail sum of singular values to bound LRC.
- (2) Optimization algorithm: SGD and partly singular values thresholding (SVT).

Problem Definition

To evaluate the label of \mathbf{x} , we wish to learn a scoring rule from the hypothesis space \mathcal{H}

$$h(\mathbf{x}) = \mathbf{W}^T \mathbf{x},$$

where $h \in \mathcal{H}, \mathbf{W} \in \mathbb{R}^{d \times K}$ and $\mathbf{x} \in \mathbb{R}^d$, thus h is a vector-valued function with mapping $\mathcal{X} \rightarrow$ \mathbb{R}^K . The predictor uses the following mapping to predict labels $\mathbf{x} \to \arg\max_y h(\mathbf{x}, y)$, where $h(\mathbf{x}, y) = [\mathbf{W}^T \mathbf{x}]_y$ means the y-th value in vector $\mathbf{W}^T\mathbf{x}$. For any hypothesis $h \in \mathcal{H}$, the margin of a labeled example (\mathbf{x}, y) is defined as

$$\rho_h(\mathbf{x}, y) = h(\mathbf{x}, y) - \max_{y \neq y'} h(\mathbf{x}, y').$$

The loss space associated with \mathcal{H} is defined as $\mathcal{L} = \{\ell(\rho_h(\mathbf{x}, y)) | h \in \mathcal{H}\}$. Under assumptions: (1) The loss function is continuous and bounded.

(2) ℓ is L-Lipschitz continuous w.r.t. $\rho_h(\mathbf{x}, y)$.

Definition 1. The empirical Rademacher complexity of loss space and hypotheses space

$$\widehat{\mathcal{R}}_n(\mathcal{L}_r) = \mathbb{E}_{\sigma} \sup_{\ell \in \mathcal{L}_r} \frac{1}{n} \sum_{i=1}^n \sigma_i \ell(h(\mathbf{x}_i, y_i)),$$

$$\widehat{\mathcal{R}}(\mathcal{H}_r) = \mathbb{E}_{\sigma} \sup_{h \in \mathcal{H}_r} \frac{1}{n+u} \sum_{i=1}^{n+u} \sigma_i h(\mathbf{x}_i, y_i^{\circ}),$$

where $\sigma_1, \sigma_2, \cdots, \sigma_{n+u}$ are $\{\pm 1\}$ -valued independent Rademacher random variables.

Theory

Theorem 1. For any $\ell \in \mathcal{L}_r : \mathcal{X} \times \mathcal{Y} \to [0,1]$, consider a sub-root function $\psi(r)$ with fixed point r^* and such that $\forall r > r^*$, $KL\mathcal{R}(\mathcal{H}_r) \leq \psi(r)$, then $\forall \ell \in \mathcal{L}_r$ and $\forall k > 1$, with probability at least $1 - \delta$

$$L(\ell) \le \max\left\{\frac{k}{k-1}\widehat{L}(\ell), \widehat{L}(\ell) + c_4r^* + \frac{c_1}{n}\right\},\,$$

where $c_1 = (3 + 4k) \log(1/\delta), c_4 = 32k$.

Theorem 2. Let $W = U\Sigma V$ be SVD decomposition of W,U and V are unitary matrices with size of $d \times d$ and $K \times K$ respectively, and Σ is $a \ d \times K \ matrix \ with \ singular \ values \{\lambda_j\} \ on \ the$ diagonal in descending order.

$$\mathcal{R}(\mathcal{H}_r) \le \frac{1}{KL} \sqrt{\frac{r\theta}{n+u}} + \frac{\sum_{j>\theta} \lambda_j}{\sqrt{n+u}}.$$

Theorem 3. For any $\ell \in \mathcal{L}_r : \mathcal{X} \times \mathcal{Y} \to [0, 1]$, $\forall k > 1, \|\mathbf{W}\| \leq 1 \text{ and } \forall \delta \in (0, 1), \text{ the following}$ holds with probability at least $1 - \delta$,

$$L(\ell) \le \max \left\{ \frac{k}{k-1} \widehat{L}(\ell), \right.$$

$$\widehat{L}(\ell) + \frac{c_1}{n} + \frac{c_2}{n+u} + \frac{c_3 K \sum_{j>\theta} \lambda_j(\mathbf{W})}{\sqrt{n+u}} \right\},$$

where $c_1 = (3 + 4k) \log(1/\delta)$, $c_2 = 32k\theta$ and $c_3 = 64kL, \lambda_i(\mathbf{W})$ is the j largest singular value of matrix **W**.

Bounds	Common Case	Special Case
[Allwein et al. 2000]	$\mathcal{O}\!\left(rac{\sqrt{V}\log K}{\sqrt{n}} ight)$	
[Cortes et al. 2013]	$\mathcal{O}\!\left(rac{K}{\sqrt{n}} ight)$	
[Maximov et al. 2018]†	$\mathcal{O}(\sqrt{\frac{K}{n}} + K\sqrt{\frac{K}{u}})$	
[Li et al. 2018]	$\mathcal{O}((c_1+c_2)\frac{\log^2 K}{n})$	
Theorem 3 [†]	$\mathcal{O}\left(\frac{K}{\sqrt{n+u}} + \frac{1}{n}\right)$	$\mathcal{O}\left(\frac{c_1}{n}\right)$

Table 1: Comparison of multi-class classification error bounds, including one VC-dimension bound, two global Rademacher complexity bounds, and two local Rademacher complexity bounds. Here $n \ll$ $u, K \ll n$ and † represents using unlabeled data.

Algorithm

For the sake of simplification, we rewrite the optimization as

$$\underset{h \in \mathcal{H}_r}{\operatorname{arg\,min}} \ \tau_S \sum_{j>\theta} \lambda_j(\mathbf{W}) + g(\mathbf{W}) \quad \text{where}$$

$$L(\ell) \leq \max \left\{ \frac{k}{k-1} \widehat{L}(\ell), \widehat{L}(\ell) + c_4 r^* + \frac{c_1}{n} \right\},$$

$$where c_1 = (3+4k) \log(1/\delta), c_4 = 32k$$

$$= 32k$$

$$g(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} (1 - ([\mathbf{W}^T \mathbf{x}_i]_{y_i} - \max_{y' \neq y_i} [\mathbf{W}^T \mathbf{x}_i]_{y'})|_{+} + \tau_A ||\mathbf{W}||_F^2 + \tau_I \operatorname{trace}(\mathbf{W}^T \mathbf{X} \mathbf{L} \mathbf{X}^T \mathbf{W}).$$

1. Stochastic Gradient Descent (SGD)

$$\nabla \omega(\mathbf{W}, \mathbf{x}_i) = \begin{cases} \mathbf{0}, & [\mathbf{W}^T \mathbf{x}_i]_{y_i} - \max_{y' \neq y_i} [\mathbf{W}^T \mathbf{x}_i]_{y'} \geq 1, \\ [0, \dots, \underbrace{\mathbf{x}_i}_{y_i}, \dots, \underbrace{\mathbf{x}_i}_{y'}, \dots, 0]_{d \times K}, \text{ else.} \end{cases}$$

GD update gradients on the entire dataset

$$\nabla g(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} \nabla \omega(\mathbf{W}, \mathbf{x}_i) + 2\tau_A \mathbf{W} + 2\tau_I \mathbf{X} \mathbf{L} \mathbf{X}^T \mathbf{W}.$$

SGD update gradients on a random sample \mathbf{x}'

$$\nabla g(\mathbf{W}, \mathbf{x}') = \nabla \omega(\mathbf{W}, \mathbf{x}') + 2\tau_A \mathbf{W} + 2\tau_I \mathbf{X} \mathbf{L} \mathbf{X}^T \mathbf{W}.$$

2. Partly Singular Value Thresholding Compute SVD decomposition

$$\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T = \mathbf{W}^t - \frac{1}{\mu}\nabla g(\mathbf{W}^t, \mathbf{x}_{i_t})$$

Update \mathbf{W}^{t+1} using Proposition 1

$$\mathbf{W}^{t+1} = \mathbf{U} \mathbf{\Sigma}^{ heta}_{ extstyle t} \mathbf{V}^T.$$

Proposition 1 (Theorem 6 of [Xu et al. 2016). Let $\mathbf{Q} \in \mathbb{R}^{d \times K}$ with rank r and its SVD decomposition is $\mathbf{Q} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, where $\mathbf{U} \in \mathbb{R}^{d \times r}$ and $\mathbf{V} \in \mathbb{R}^{K \times r}$ are orthogonal, $\mathbf{\Sigma}$ is diagonal. Then,

$$\mathcal{D}_{\tau}^{\theta}(\mathbf{Q}) = \arg\min_{\mathbf{W}} \left\{ \frac{1}{2} \|\mathbf{W} - \mathbf{Q}\|_{F}^{2} + \tau \sum_{j>\theta} \lambda_{j}(\mathbf{W}) \right\},$$

is given by $\mathcal{D}_{\tau}^{\theta} = \mathbf{U} \mathbf{\Sigma}_{\tau}^{\theta} \mathbf{V}^{T}$, where $\mathbf{\Sigma}_{\tau}^{\theta}$ is diagonal

$$(\mathbf{\Sigma}_{ au}^{ heta})_{jj} = egin{cases} \max(0, \Sigma_{jj} - au), & i \leq \theta, \\ \mathbf{\Sigma}_{jj}, & i > \theta. \end{cases}$$

Experimental Results

Approaches	Linear-MC	LRC-MC	SS-MC	PS3VT
iris	27.12 ± 5.36	24.57 ± 6.13	$23.53{\pm}5.04$	23.71 ± 5.22
wine	8.77 ± 3.22	$8.33{\pm}5.22$	$8.20{\pm}4.12$	$\overline{\textbf{7.63} {\pm} \textbf{3.88}}$
glass	$48.68{\pm}5.32$	$47.46{\pm}5.40$	$46.68 {\pm} 4.83$	$\bf 46.28 {\pm} 5.18$
svmguide2	23.31 ± 3.86	$22.42 {\pm} 3.68$	22.33 ± 3.99	${\bf 21.37 {\pm} 3.46}$
vowel	47.40 ± 3.73	47.05 ± 2.89	46.66 ± 3.36	$\bf 45.74 {\pm} 3.15$
vehicle	33.78 ± 2.17	29.74 ± 2.41	29.67 ± 2.73	${\bf 28.53 {\pm} 2.48}$
dna	8.83 ± 0.94	8.69 ± 0.86	8.56 ± 0.78	$8.56{\pm}0.78$
segment	26.69 ± 2.20	$26.84 {\pm} 2.37$	26.28 ± 2.30	${\bf 26.09 {\pm} 2.20}$
satimage	15.94 ± 0.83	$15.88 {\pm} 0.83$	15.92 ± 0.87	15.89 ± 0.82
pendigits	10.22 ± 0.89	$8.37 {\pm} 0.53$	$7.24 {\pm} 0.44$	$\bf 6.46 {\pm} 0.37$
usps	7.19 ± 0.42	$7.09 {\pm} 0.41$	$7.10 {\pm} 0.41$	$\textbf{7.06} {\pm} \textbf{0.45}$
shuttle	23.25 ± 0.32	21.61 ± 0.31	$21.55 {\pm} 0.28$	$21.48{\pm}0.28$
letter	$28.31 {\pm} 0.54$	$26.98 {\pm} 0.49$	26.92 ± 0.52	$26.91 {\pm} 0.48$
poker	52.34 ± 0.50	50.30 ± 0.38	50.22 ± 0.40	$50.11 \!\pm\! 0.45$
Sensorless	54.71 ± 1.26	54.04 ± 1.46	53.15 ± 1.43	${\bf 52.50 \!\pm\! 1.22}$

Table 2: Comparison of test err (%) among our proposed PS3VT and other linear Multi-class classification methods. For each dataset, we bold the optimal test error and underline results in other methods which show no significant difference from the optimal one.