AuGPT: End-to-end dialogue modeling with Pre-trained Language Models and Data Augmentation

Jonáš Kulhánek, Vojtěch Hudeček, Tomáš Nekvinda & Ondřej Dušek

AuGPT – introduction

- model based on SOLOIST (Peng et al., 2020)
- auto-regressive language model used for decoding of (1) belief state and (2) response
- belief state also used as the query for the database
- finetuned GPT2 used as the language model

AuGPT – architecture overview

Belief state and response representations

- the active domain is determined by the order of domains in the belief state
- dropping domains in the delexicalized response

```
Belief state: train \{ leave at=15:30, arrive by=17:15 \}, hotel \{ price range = cheap \} DB: train 23 matches, hotel no match
```

Example 1: String format for AuGPT's belief state and database result count.

The phone number is [phone] and the postcode is [postcode].

Example 2: Delexicalized response.

Auxiliary tasks

- we corrupt 50% of the samples and train a binary classifier to detect them, this is called **consistency detection** auxiliary task
- the binary classifier is attached to the last hidden representation of GPT2
- when constructing a negative sample, one of more of the following changes are applied with the same probability:
 - a different belief state is randomly sampled from the dataset
 - a different response is randomly sampled from the dataset
 - values in the belief state are uniformly randomly resampled (new)
- we also tried user intent and system action classifiers, but that did not help performance

Training pipeline

Training pipeline

- pre-trained on combined Taskmaster and Schema-Guided
- MultiWOZ 2.1 dataset is used for fine-tuning
- we filter the dataset to choose only 'clean' samples consistent with the database, i.e., dialogues with MultiWOZ success rate 1.0
- paraphrases are generated using backtranslations
- backtranslations: in-house MT system, with 10 languages chosen empirically out of 40 (Edunov et al., 2018, Macháček et al., 2020)

AuGPT – summary

- massive data augmentation via backtranslation
- improved consistency detection auxiliary training task
- using unlikelihood loss for response to increase output diversity
- different decoding strategies for belief state and response
- training on 'clean' samples only

Results - MultiWOZ

	MultiWOZ 2.0		
method	inform	success	BLEU
Human	91.0	82.7	_
AuGPT	90.2	75.5	17.2
SOLOIST (Peng et al., 2020)	85.5	72.9	16.5
SimpleTOD (Hosseini-Asl et al., 2020)	84.4	70.1	15.1
DAMD (Zhang et al., 2020)	76.3	60.4	18.6
MD-Sequicity (Zhang et al., 2020)	86.6	71.6	16.8

Comparison with previous works on the MultiWOZ dataset

Results - ConvLab 2

method	complete	success	book	inform F1	# turns
AuGPT	89.4	60.1	85.7	70.3	14.6
DAMD (Zhang et al., 2020)	39.5	34.3	51.4	56.3	29.8
Sequicity (Lei et al., 2018)	23.1	9.8	4.1	29.9	32.6

ConvLab evaluation comparison with other works

Ablation study

	MultiWOZ			ConvLab 2		
method	inf	suc	BLEU	suc	book	inform F1
AuGPT	91.4	72.9	17.2	60.1	85.7	70.3
w/o. unlikelihood	90.8	70.4	16.9	59.3	90.8	69.5
w/o. clean	91.6	70.7	15.8	57.7	85.6	69.6
w/o. unlikelihood, clean	90.4	72.7	17.5	58.4	81.3	67.5
w/o. pre-training*	90.7	67.9	15.1	59.8	83.7	72.1
w/o. back-translations	89.1	67.9	15.2	58.2	87.4	72.2
w. old consistency	90.7	71.8	17.0	57.8	86.0	69.8
w/o. consistency	90.4	68.7	16.8	57.1	84.1	70.9

inf = inform, suc = success, book = book rate
 * picked for human evaluation

Results – human evaluation

method	suc.	suc. w/ DB	suc. w/o DB	turns
Baseline	69.6	56.8	82.4	18.5
Team1 (winner) Team2	74.8 74.8	70.2 68.8	79.4 80.8	18.5 19.4
Team7 (ours)	72.3	62.0	82.6	17.1
Team6	70.6	60.8	80.4	20.1
Team3	67.8	60.0	75.6	21

Human evaluation results on the DSTC9 Track 2. We show a shortened version of the table, the full version is published online at https://convlab.github.io.

Error analysis

- In addition our own detailed manual analysis
 - we followed MultiWOZ tasks and talked to the system ourselves
- 130 dialogues were evaluated in total.
- 50 erroneous dialogues, some errors recoverable
- 17 failed dialogues (i.e. 87 % success w/o DB grounding)
- Errors were categorized w.r.t. their cause

Error types

Type	Count	Source	Description
Hallucinated values	21	BS/Policy	Used a slot value in the reply that is not grounded in the DB nor in the context
Wrong lexicalization	6	Policy	Repeats the same value in a list of choices during lexicalization
Missing information	5	Policy	Makes booking while not all information is specified
Ignored input	5	BS	Keeps asking for information that was provided
Bad domain	4	BS	Fails to focus on the correct domain
False response	4	Policy	States a different value of a slot than the value stored in \ensuremath{DB}
Repeated output	3	Policy	Repeats the same slot twice on the output
Failed booking	3	DB/Policy	Booking was unsuccessful due to DB mismatch
Other	10	BS/DB/P/Oth	(Various rare errors that could not be categorized)

Table 1: Distribution of the most common error types

Bad domain & Hallucination example

```
user: I'm looking for a theatre in Cambridge
 belief: attraction {type = theatre}
system: There are 5 theatres in Cambridge. Is there an area of town you prefer?
  user: no I don't care
 belief: attraction {type = theatre}
system: I recommend Adc Theatre in the centre. Would you like more information?
  user: no. I'm also looking for some place to stay
 belief: attraction {type = theatre}
system: I have 5 theatres in the centre. Do you have a price range?
  user: I'm looking for a place to stav
 belief: attraction {type = theatre}
system: There are 5 theatres in the centre. Do you have a preference for area?
  user: I'm looking for a hotel
 belief: hotel {type = hotel}
        attraction {type = theatre}
system: There are 9 hotels in the north. Do you have a price range?
```

Conclusion & future work

Conclusion

- We achieve state-of-the-art performance for end-to-end models on the MultiWOZ 2.1 dataset w.r.t. *inform* and *success* metrics
- We placed 3rd at the DSTC 9 Track 2 in the final human evaluation
- We performed detailed error analysis that provides important insight into the model behavior.

Future Work

- We will use latent representation of the belief state and optimize it jointly with the language model
- We will replace the deterministic lexicalization with a trainable alternative

Thank you!

• Source code and pre-trained models: https://github.com/ufal/augpt

Vojtěch Hudeček hudecek@ufal.mff.cuni.cz ufal.mff.cuni.cz/vojtech-hudecek

Jonáš Kulhánek jonas.kulhanek@cvut.cz jkulhanek.github.io

References

- Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-translation at scale. In *Proceedings* of the 2018 EMNLP, pages 489–500, Brussels, Belgium, 2018.
- Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu, Semih Yavuz, and Richard Socher. A simple language model for task-oriented dialogue. arXiv preprint arXiv:2005.00796, 2020.
- Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren, Xiangnan He, and Dawei Yin. Sequicity: Simplifying task-oriented dialogue systems with single sequence-to-sequence architectures. In *ACL*, Melbourne, Australia, 2018.
- Dominik Macháček, Jonáš Kratochvíl, Sangeet Sagar, Matúš Žilinec, Ondřej Bojar, Thai-Son Nguyen, Felix Schneider, Philip Williams, and Yuekun Yao. Elitr non-native speech translation at iwslt 2020. In *Proceedings of the 17th International Conference on Spoken Language Translation (IWSLT)*, page 200–208, Online, 2020.
- Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayandeh, Lars Liden, and Jianfeng Gao. Soloist: Few-shot task-oriented dialog with a single pre-trained auto-regressive model. arXiv preprint arXiv:2005.05298, 2020.
- Yichi Zhang, Zhijian Ou, and Zhou Yu. Task-oriented dialog systems that consider multiple appropriate responses under the same context. In AAAI, New York, NY, USA, 2020.

Problem formulation

- r = response, b = belief state, c = context (past utterances), d = database results
- Query = the deterministic database lookup
- Prob. dist. over the responses given context can be factorized as:

$$p(r|c) = \sum_{d} p(r|d,c)p(d|c)$$

$$= \sum_{d} \sum_{b} p(r|d,b,c)p(d|b)p(b|c)$$

$$= \sum_{b} p(r|Query(b),b,c)p(b|c),$$
(1)

• Same model for belief state & response:

$$p(\bar{r}|d_c, b, c) \approx \hat{p}(\bar{r}|d_c, b, c, \theta)$$

$$p(b|c) \approx \hat{p}(b|\emptyset, \emptyset, c, \theta).$$
(2)

(3)

Missing information example

[...]

user: I want to make a booking at sitar tandoori

belief: restaurant {name = sitar tandoori}

train $\{arrive\ by=18:00,\ day=sunday,\ departure=cambridge,\ destination=london\ liverpool$

street, people = 1

system: What day would you like the booking for?

user: the same day, 13:30

belief: restaurant $\{day = sunday, name = sitar tandoori, people = 1, time = 13:30\}$

train {arrive by = 18:00, day = sunday, departure = cambridge, destination = london liverpool

 $\mathsf{street}, \, \mathsf{people} = 1 \}$

system: Booking was successful. The table will be reserved for 15 minutes. Reference number is:

00000200.