Access Full Complete Solution Manual Here

https://www.book4me.xyz/solution-manual-cryptography-and-network-security-forouzan/

CHAPTER 2

Mathematics of Cryptography Part I

(Solution to Practice Set)

Review Questions

- 1. The set of integers is \mathbb{Z} . It contains all integral numbers from negative infinity to positive infinity. The set of residues modulo n is \mathbb{Z}_n . It contains integers from 0 to n-1. The set \mathbb{Z} has non-negative (positive and zero) and negative integers; the set \mathbb{Z}_n has only non-negative integers. To map a nonnegative integer from \mathbb{Z} to \mathbb{Z}_n , we need to divide the integer by n and use the remainder; to map a negative integer from \mathbb{Z} to \mathbb{Z}_n , we need to repeatedly add n to the integer to move it to the range 0 to n-1.
- **2.** We mentioned four properties: Property 1: if $a \mid 1$, then $a = \pm 1$.
 - **Property 2:** if $a \mid b$ and $b \mid a$, then $a = \pm b$.
 - **Property 3:** if $a \mid b$ and $b \mid c$, then $a \mid c$.
 - **Property 4:** if $a \mid b$ and $a \mid c$, then $a \mid (m \times b + n \times c)$, where m and n are arbitrary integers.
- **3.** The number 1 is an integer with only one divisor, itself. A prime has only two divisors: 1 and itself. For example, the prime 7 has only two divisor 7 and 1. A composite has more than two divisors. For example, the composite 42 has several divisors: 1, 2, 3, 6, 7, 14, 21, and 42.
- **4.** The greatest common divisor of two positive integers, gcd(a, b), is the largest positive integer that divides both a and b. The *Euclidean algorithm* can find the greatest common divisor of two positive integers.
- 5. A linear Diophantine equation of two variables is of the form ax + by = c. We need to find integer values for x and y that satisfy the equation. This type of equation has either no solution or an infinite number of solutions. Let $d = \gcd(a, b)$. If d does not divide c then the equation have no solitons. If d divides c, then we have an infinite number of solutions. One of them is called the particular solution; the rest, are called the general solutions.

- **6.** The modulo operator takes an integer a from the set \mathbf{Z} and a positive modulus n. The operator creates a nonnegative residue, which is the remainder of dividing a by n. We mentioned three properties for the modulo operator:
 - $\Box \quad \mathbf{First:} \ (a+b) \bmod n = [(a \bmod n) + (b \bmod n)] \bmod n$
 - Second: $(a b) \mod n = [(a \mod n) (b \mod n)] \mod n$
 - **Third:** $(a \times b) \mod n = [(a \mod n) \times (b \mod n)] \mod n$
- 7. A residue class [a] is the set of integers congruent modulo n. It is the set of all integers such that $x = a \pmod{n}$. In each set, there is one element called the least (nonnegative) residue. The set of all of these least residues is \mathbb{Z}_n .
- 8. The set \mathbb{Z}_n is the set of all positive integer between 0 and n-1. The set \mathbb{Z}_n^* is the set of all integers between 0 and n-1 that are relatively prime to n. Each element in \mathbb{Z}_n has an additive inverse; each element in \mathbb{Z}_n^* has a multiplicative inverse. The extended Euclidean algorithm is used to find the multiplicative inverses in \mathbb{Z}_n^* .
- 9. A matrix is a rectangular array of l × m elements, in which l is the number of rows and m is the number of columns. If a matrix has only one row (l = 1), it is called a row matrix; if it has only one column (m = 1), it is called a column matrix. A square matrix is a matrix with the same number of rows and columns (l = m). The determinant of a square matrix A is a scalar defined in linear algebra. The multiplicative inverse of a square matrix exists only if its determinant has a multiplicative inverse in the corresponding set.
- **10.** A linear equation is an equation in which the power of each variable is 1. A linear congruence equation is a linear equation in which calculations are done modulo n. An equation of type $ax = b \pmod{n}$ can be solved by finding the multiplicative inverse of a. A set of linear equations can be solved by finding the multiplicative inverse of a matrix.

Exercises

11.

- **a.** It is false because $26 = 2 \times 13$.
- **b.** It is true because $123 = 3 \times 41$.
- **c.** It is true because 127 is a prime.
- **d.** It is true because $21 = 3 \times 7$.
- e. It is false because $96 = 2^5 \times 3$.
- **f.** It is false because 8 is greater than 5.

12.

a. gcd(88, 220) = 44, as shown in the following table:

q	r_1	r_2	r
0	88	220	88
2	220	88	44
2	88	44	0
	44	0	

b. gcd(300, 42) = 6, as shown in the following table:

q	r_1	r_2	r
7	300	42	6
7	42	6	0
	6	0	

c. gcd(24, 320) = 8, as shown in the following table:

q	r_{I}	r_2	r
0	24	320	24
13	320	24	8
3	24	8	0
	8	0	

d. gcd(401, 700) = 1 (coprime), as shown in the following table:

q	r_1	r_2	r
0	401	700	401
1	700	401	299
1	401	299	102
2	299	102	95
1	102	95	7
13	95	7	4
1	7	4	3
1	4	3	1
3	3	1	0
	1	0	

13.

a. gcd(a, b, 16) = gcd(gcd(a, b), 16) = gcd(24, 16) = 8

b. gcd(a, b, c, 16) = gcd(gcd(a, b, c), 16) = gcd(12, 16) = 4

c. gcd(200, 180, 450) = gcd(gcd(200, 180), 450) = gcd(20, 450) = 10

d. gcd(200, 180, 450, 600) = gcd(gcd(200, 180, 450), 600) = gcd(10, 600) = 10

14.

a.
$$gcd(2n + 1, n) = gcd(n, 1) = 1$$

b.

$$gcd (201, 100) = gcd (2 \times 100 + 1, 100) = 1$$

 $gcd (81, 40) = gcd (2 \times 40 + 1, 40) = 1$
 $gcd (501, 250) = gcd (2 \times 250 + 1, 250) = 1$

15.

a.
$$gcd(3n+1, 2n+1) = gcd(2n+1, n) = 1$$

b.

$$gcd (301, 201) = gcd (3 \times 100 + 1, 2 \times 100 + 1) = 1$$

 $gcd (121, 81) = gcd (3 \times 40 + 1, 2 \times 40 + 1) = 1$

16.

a. We use the following table:

q	r_1	r_2	r	s_1	s_2	S	t_1	t_2	t
0	4	7	4	1	0	1	0	1	0
1	7	4	3	0	1	-1	1	0	1
1	4	3	1	1	-1	2	0	1	-1
3	3	1	0	-1	2	-7	1	-1	4
	1	0		2	-7		-1	4	
	↑			1			1	•	
	gcd			S			t		

$$gcd(4,7) = 1 \rightarrow (4)(2) + (7)(-1) = 1$$

b. We use the following table:

\boldsymbol{q}	r_1	r_2	r	s_I	s_2	S	t_I	t_2	t
6	291	42	39	1	0	1	0	1	-6
1	42	39	3	0	1	-1	1	-6	7
13	39	3	0	1	-1	14	-6	7	-97
	3	0		-1	14		7	-97	
	1			↑			1		
	gcd			S			t		

$$gcd(291, 42) = 3 \rightarrow (291)(-1) + (42)(7) = 3$$

c. V	Ve use	the	foll	owing	table:
------	--------	-----	------	-------	--------

q	r_1	r_2	r	s_1	s_2	S	t_1	t_2	t
0	84	320	84	1	0	1	0	1	0
3	320	84	68	0	1	-3	1	0	1
1	84	68	16	1	-3	-4	0	1	-1
4	68	16	4	-3	4	-19	1	-1	5
4	16	4	0	4	-19	80	-1	5	-21
	4	0		-19	80		5	-21	
	↑			↑			↑		
	gcd			S			t		

$$gcd(84, 320) = 4 \rightarrow (84)(-19) + (320)(5) = 4$$

d. We use the following table:

q	r_1	r_2	r	s_1	s_2	S	t_1	t_2	t
6	400	60	40	1	0	1	0	1	-6
1	60	40	20	0	1	-1	1	-6	7
2	40	20	0	1	-1	3	-6	7	-20
	20	0		-1	4		7	-20	
	1			^			↑		
	gcd			S			t		

$$gcd(400, 60) = 20 \rightarrow (400)(-1) + (60)(7) = 20$$

17.

- **a.** $22 \mod 7 = 1$
- **b.** $291 \mod 42 = 39$
- **c.** $84 \mod 320 = 84$
- **d.** $400 \mod 60 = 40$

18.

- **a.** (273 + 147) mod 10 = (273 mod 10 + 147 mod 10) mod 10 = (3 + 7) mod 10 = 0 mod 10
- **b.** (4223 + 17323) mod 10 = (4223 mod 10 + 17323 mod 10) mod 10 = (3 + 3) mod 10 = 6 mod 10
- **c.** (148 + 14432) mod 12 = (148 mod 12 + 14432 mod 12) mod 12 = (4 + 8) mod 12 = 0 mod 12
- **d.** (2467 + 461) mod 12 = (2467 mod 12 + 461 mod 12) mod 12 = (7 + 5) mod 12 = 0 mod 12

```
19.
```

- **a.** $(125 \times 45) \mod 10 = (125 \mod 10 \times 45 \mod 10) \mod 10 = (5 \times 5) \mod 10$ = 5 mod 10
- **b.** $(424 \times 32) \mod 10 = (424 \mod 10 \times 32 \mod 10) \mod 10 = (4 \times 2) \mod 10 = 8 \mod 10$
- **c.** $(144 \times 34) \mod 10 = (144 \mod 10 \times 34 \mod 10) \mod 10 = (4 \times 4) \mod 10$ = 6 mod 10
- **d.** $(221 \times 23) \mod 10 = (221 \mod 10 \times 23 \mod 10) \mod 10 = (1 \times 3) \mod 10 = 3 \mod 10$

20.

- **a.** $a \mod 10 = (a_n \times 10^n + ... + a_1 \times 10^1 + a_0) \mod 10$ = $[(a_n \times 10^n) \mod 10 + ... + (a_1 \times 10^1) \mod 10 + a_0 \mod 10] \mod 10$ = $[0 + ... + 0 + a_0 \mod 10] = a_0 \mod 10$
- **b.** $a \mod 100 = (a_n \times 10^n + ... + a_1 \times 10^1 + a_0) \mod 10$ = $[(a_n \times 10^n) \mod 100 + ... + (a_1 \times 10^1) \mod 100 + a_0 \mod 10] \mod 10$ = $[0 + ... + 0 + (a_1 \times 10^1) \mod 100 + a_0 \mod 100]$ = $(a_1 \times 10^1) \mod 100 + a_0 \mod 100 = [a_1 \times 10^1 + a_0] \mod 100$.
- c. Similarly $a \mod 1000 = [a_2 \times 10^2 + a_1 \times 10^1 + a_0] \mod 1000$.
- **21.** $a \mod 5 = (a_n \times 10^n + ... + a_1 \times 10^1 + a_0) \mod 5$ = $[(a_n \times 10^n) \mod 5 + ... + (a_1 \times 10^1) \mod 5 + a_0 \mod 5] \mod 5$ = $[0 + ... + 0 + a_0 \mod 5] = a_0 \mod 5$
- **22.** $a \mod 2 = (a_n \times 10^n + ... + a_1 \times 10^1 + a_0) \mod 2$ = $[(a_n \times 10^n) \mod 2 + ... + (a_1 \times 10^1) \mod 2 + a_0 \mod 2] \mod 2$ = $[0 + ... + 0 + a_0 \mod 2] = a_0 \mod 2$
- **23.** $a \mod 4 = (a_n \times 10^n + ... + a_1 \times 10^1 + a_0) \mod 4$ = $[(a_n \times 10^n) \mod 4 + ... + (a_1 \times 10^1) \mod 4 + a_0 \mod 4] \mod 4$ = $[0 + ... + 0 + (a_1 \times 10^1) \mod 4 + a_0 \mod 4] = (a_1 \times 10^1 + a_0) \mod 4$
- **24.** $a \mod 8 = (a_n \times 10^n + ... + a_2 \times 10^2 + a_1 \times 10^1 + a_0) \mod 8$ $= [(a_n \times 10^n) \mod 8 + ... + (a_2 \times 10^2) \mod 8 + (a_1 \times 10^1) \mod 8$ $+ a_0 \mod 8] \mod 8$ $= [0 + ... + 0 + (a_1 \times 10^2) \mod 8 + (a_1 \times 10^1) \mod 8 + a_0 \mod 8]$ $= (a_2 \times 10^2 + a_1 \times 10^1 + a_0) \mod 4$
- **25.** $a \mod 9 = (a_n \times 10^n + ... + a_1 \times 10^1 + a_0) \mod 9$ = $[(a_n \times 10^n) \mod 9 + ... + (a_1 \times 10^1) \mod 9 + a_0 \mod 9] \mod 9$ = $(a_n + ... + a_1 + a_0) \mod 9$
- **26.** $a \mod 7 = (a_n \times 10^n + ... + a_1 \times 10^1 + a_0) \mod 7$ $= [(a_n \times 10^n) \mod 7 + ... + (a_1 \times 10^1) \mod 7 + a_0 \mod 7] \mod 7$ $= ... + a_5 \times (-2) + a_4 \times (-3) + a_3 \times (-1) + a_2 \times (2) + a_1 \times (3) + a_0 \times (1)] \mod 7$ For example, 631453672 mod 13 = $[(-1)6 + (2)3 + (1)1 + (-2)4 + (-3)5 + (-1)3 + (2)6 + (3)7 + (1)2] \mod 7 = 3 \mod 7$

27.
$$a \mod 11 = (a_n \times 10^n + ... + a_1 \times 10^1 + a_0) \mod 11$$

= $[(a_n \times 10^n) \mod 11 + ... + (a_1 \times 10^1) \mod 11 + a_0 \mod 11] \mod 11$
= $... + a_3 \times (-1) + a_2 \times (1) + a_1 \times (-1) + a_0 \times (1)] \mod 11$

For example, $631453672 \mod 11 = [(1)6 + (-1)3 + (1)1 + (-1)4 + (1)5 + (-1)3 + (1)6 + (-1)7 + (1)2] \mod 11 = -8 \mod 11 = 5 \mod 11$

28.
$$a \mod 13 = (a_n \times 10^n + ... + a_1 \times 10^1 + a_0) \mod 13$$

= $[(a_n \times 10^n) \mod 13 + ... + (a_1 \times 10^1) \mod 13 + a_0 \mod 13] \mod 13$
= $... + a_5 \times (4) + a_4 \times (3) + a_3 \times (-1) + a_2 \times (-4) + a_1 \times (-3) + a_0 \times (1)] \mod 13$

For example,
$$631453672 \mod 13 = [(-4)6 + (-3)3 + (1)1 + (4)4 + (3)5 + (-1)3 + (-4)6 + (-3)7 + (1)2] \mod 13 = 3 \mod 13$$

29.

a.
$$(A + N) \mod 26 = (0 + 13) \mod 26 = 13 \mod 26 = N$$

b.
$$(A + 6) \mod 26 = (0 + 6) \mod 26 = 6 \mod 26 = G$$

c.
$$(Y-5) \mod 26 = (24-5) \mod 26 = 19 \mod 26 = T$$

d.
$$(C-10) \mod 26 = (2-10) \mod 26 = -8 \mod 26 = 18 \mod 26 =$$

32.

a. We use the following table:

q	r_1	r_2	r	t_1	t_2	t
4	180	38	28	0	1	-4
1	18	28	10	1	-4	5
2	28	10	8	-4	5	-14
1	10	8	2	5	-14	19
4	8	2	0	-14	19	90
	2	0		19		
	gcd			t		

gcd (180, 38) = $2 \neq 1$ \rightarrow 38 has no inverse in \mathbb{Z}_{180} .

b.	We	use	the	foll	owing	table:
----	----	-----	-----	------	-------	--------

q	r_1	r_2	r	t_1	t_2	t
25	180	7	5	0	1	
1	7	5	2	1	-25	
2	5	2	1	-25	26	
2	2	1	0	26	-77	
	1	0		-77	180	
	gcd			t	•	

$$gcd(180, 7) = 1 \rightarrow 7^{-1} \mod 180 = -77 \mod 180 = 103 \mod 180.$$

c. We use the following table:

q	r_1	r_2	r	t_{I}	t_2	t
1	180	132	48	0	1	-1
2	132	48	36	1	-1	3
1	48	36	12	-1	3	-4
3	36	12	0	3	-4	15
	12	0		-4	15	
gcd				t		

gcd (180, 132) =
$$12 \neq 1$$
 \rightarrow 132 has no inverse in \mathbb{Z}_{180} .

d. We use the following table:

q	r_1	r_2	r	t_1	t_2	t
7	180	24	12	0	1	-7
2	24	12	0	1	- 7	15
	12	0		-7	15	
	gcd			t		

e.
$$\gcd(180, 24) = 12 \neq 1$$
 \rightarrow 24 has no inverse in \mathbf{Z}_{180} .

33.

a. We have a = 25, b = 10 and c = 15. Since $d = \gcd(a, b) = 5$ divides c, there is an infinite number of solutions. The reduced equation is 5x + 2y = 3. We solve the equation 5s + 2t = 1 using the extended Euclidean algorithm to get s = 1 and t = -2. The particular and general solutions are

Particular:
$$x_0 = (c/d) \times s = 3$$
 $y_0 = (c/d) \times t = -6$
General: $x = 3 + 2 \times k$ $y = -6 - 5 \times k$ (k is an integer)

b. We have a = 19, b = 13 and c = 20. Since $d = \gcd(a, b) = 1$ and divides c, there is an infinite number of solutions. The reduced equation is 19x + 13y = 20. We

solve the equation 19s + 13t = 1 to get s = -2 and t = 3. The particular and general solutions are

Particular:
$$x_0 = (c/d) \times s = -40$$
 $y_0 = (c/d) \times t = 60$
General: $x = -40 + 13 \times k$ $y = 60 - 19 \times k$ (k is an integer)

c. We have a = 14, b = 21 and c = 77. Since $d = \gcd(a, b) = 7$ divides c, there is an infinite number of solutions. The reduced equation is 2x + 3y = 11. We solve the equation 2s + 3t = 1 to get s = -1 and t = 1. The particular and general solutions are

Particular:
$$x_0 = (c/d) \times s = -11$$
 $y_0 = (c/d) \times t = 11$
General: $x = -11 + 3 \times k$ $y = 11 - 2 \times k$ (k is an integer)

d. We have a = 40, b = 16 and c = 88. Since $d = \gcd(a, b) = 8$ divides c, there is an infinite number of solutions. The reduced equation is 5x + 2y = 11. We solve the equation 5s + 2t = 1 to get s = 1 and t = -2. The particular and general solutions are

Particular:
$$x_0 = (c/d) \times s = 11$$
 $y_0 = (c/d) \times t = -22$
General: $x = 11 + 2 \times k$ $y = -22 - 5 \times k$ (k is an integer)

34.

- **a.** Since gcd(15, 12) = 3 and 3 does not divide 13, there is no solution.
- **b.** Since gcd(18, 30) = 6 and 6 does not divide 20, there is no solution.
- **c.** Since gcd(15, 25) = 5 and 5 does not divide 69, there is no solution.
- **d.** Since gcd(40, 30) = 10 and 10 does not divide 98, there is no solution.
- **35.** We have the equation 39x + 15y = 270. We have a = 39, b = 15 and c = 270. Since $d = \gcd(a, b) = 3$ divides c, there is an infinite number of solutions. The reduced equation is 13x + 5y = 90. We solve the equation 13s + 5t = 1: s = 2 and t = -5. The particular and general solutions are

Particular:
$$x_0 = (c/d) \times s = 180$$
 $y_0 = (c/d) \times t = -450$
General: $x = 180 + 5 \times k$ $y = -450 - 13 \times k$

To find an acceptable solution (nonnegative values) for x and y, we need to start with negative values for k. Two acceptable solutions are

$$k = -35 \rightarrow x = 5 \text{ and } y = 5$$
 $k = -36 \rightarrow x = 0 \text{ and } y = 18$

36. In each case, we follow three steps discussed in Section 2.4 of the textbook.

a.

Step 1:
$$a = 3, b = 4, n = 5 \rightarrow d = \gcd(a, n) = 1$$

Since d divides b, there is only one solution.

Step 2: Reduction: $3x \equiv 4 \pmod{5}$

Step 3:
$$x_0 = (3^{-1} \times 4) \pmod{5} = 2$$

b.

Step 1:
$$a = 4, b = 4, n = 6 \rightarrow d = \gcd(a, n) = 2$$

Since d divides b, there are two solutions.

Step 2: Reduction: $2x \equiv 2 \pmod{3}$

Step 3:
$$x_0 = (2^{-1} \times 2) \pmod{3} = 1$$
 $x_1 = 1 + 6 / 2 = 4$

c.

Step 1:
$$a = 9, b = 12, n = 7 \rightarrow d = \gcd(a, n) = 1$$

Since d divides b, there is only one solution.

Step 2: Reduction: $9x \equiv 12 \pmod{7}$

Step 3:
$$x_0 = (9^{-1} \times 12) \pmod{7} = (2^{-1} \times 5) \pmod{7} = 4$$

d.

Step 1:
$$a = 256, b = 442, n = 60 \rightarrow d = \gcd(a, n) = 4$$

Since d does not divide b, there is no solution.

37.

a.

$$3x + 5 \equiv 4 \pmod{5} \rightarrow 3x \equiv (-5 + 4) \pmod{5} \rightarrow 3x \equiv 4 \pmod{5}$$

$$a = 3, b = 4, n = 5 \rightarrow d = \gcd(a, n) = 1$$

Since d divides b, there is only one solution.

Reduction: $3x \equiv 4 \pmod{5}$

$$x_0 = (3^{-1} \times 4) \pmod{5} = 2$$

b.

$$4x + 6 \equiv 4 \pmod{6} \rightarrow 4x \equiv (-6 + 4) \pmod{6} \rightarrow 4x \equiv 4 \pmod{6}$$

 $a = 4, b = 4, n = 6 \rightarrow d = \gcd{(a, n)} = 2$
Since d divides b , there are two solutions.
Reduction: $2x \equiv 2 \pmod{3}$
 $x_0 = (2^{-1} \times 2) \pmod{3} = 1$
 $x_1 = 1 + 6/2 = 4$

c.

$$9x + 4 \equiv 12 \pmod{7} \rightarrow 9x \equiv (-4 + 12) \pmod{7} \rightarrow 9x \equiv 1 \pmod{7}$$

 $a = 9, b = 1, n = 7 \rightarrow d = \gcd(a, n) = 1$
Since d divides b , there is only one solution.
Reduction: $9x \equiv 1 \pmod{7}$
 $x_0 = (9^{-1} \times 1) \pmod{7} = 4$

d.

$$232x + 42 \equiv 248 \pmod{50} \rightarrow 232x \equiv 206 \pmod{50}$$

 $a = 232, b = 206, n = 50 \rightarrow d = \gcd(a, n) = 2$
Since d divides b , there are two solutions.
Reduction: $116x \equiv 103 \pmod{25} \rightarrow 16x \equiv 3 \pmod{25}$
 $x_0 = (16^{-1} \times 3) \pmod{25} = 8$
 $x_1 = 8 + 50/2 = 33$

38.

a. The result of multiplying the first two matrices is a 1×1 matrix, as shown below:

$$\begin{bmatrix} 3 & 7 & 10 \end{bmatrix} \times \begin{bmatrix} 2 \\ 4 \\ 12 \end{bmatrix} = \begin{bmatrix} (3 \times 2 + 7 \times 4 + 10 \times 12) \mod 16 \end{bmatrix} = \begin{bmatrix} 10 \end{bmatrix}$$

b. The result of multiplying the second two matrices is a 3×3 matrix, as shown below:

$$\begin{bmatrix} 3 & 4 & 6 \\ 1 & 1 & 8 \\ 5 & 8 & 3 \end{bmatrix} \times \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 5 & 2 & 4 \end{bmatrix} = \begin{bmatrix} 8 & 0 & 11 \\ 11 & 1 & 1 \\ 1 & 14 & 1 \end{bmatrix}$$

39.

a. The determinant and the inverse of matrix A are shown below:

$$A = \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix} \longrightarrow \det(A) = 3 \mod 10 \longrightarrow (\det(A))^{-1} = 7 \mod 10$$

$$A^{-1} = 7 \times \begin{bmatrix} 1 & 0 \\ 9 & 3 \end{bmatrix} \longrightarrow A^{-1} = \begin{bmatrix} 7 & 0 \\ 3 & 1 \end{bmatrix}$$

$$\operatorname{adj}(A)$$

- **b.** Matrix B has no inverse because $det(B) = (4 \times 1 2 \times 1) \mod 2 \mod 10$, which has no inverse in \mathbb{Z}_{10} .
- **c.** The determinant and the inverse of matrix C are shown below:

$$C = \begin{bmatrix} 3 & 4 & 6 \\ 1 & 1 & 8 \\ 5 & 8 & 3 \end{bmatrix} \longrightarrow \det(C) = 3 \mod 10 \longrightarrow (\det(C))^{-1} = 7 \mod 10$$

$$C^{-1} = \begin{bmatrix} 3 & 2 & 2 \\ 9 & 3 & 4 \\ 1 & 2 & 3 \end{bmatrix}$$

In this case, $det(C) = 3 \mod 10$; its inverse in \mathbf{Z}_{10} is 7 mod 10. It can proved that $C \times C^{-1} = \mathbf{I}$ (identity matrix).

40. Although we give the general method for every case using matrix multiplication, in cases *a* and *c*, there is no need for matrix multiplication because the coefficient of *y* (in *a*) or *x* (in *c*) is actually 0 in these two cases. These cases can be solved much easier.

a. In this particular case, the answer can be found easier because the coefficient of *y* is 0 in the first equation. The solution is shown below:

$$\begin{bmatrix} 3 & 5 \\ 2 & 1 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \longrightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 2 & 1 \end{bmatrix} \times \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \longrightarrow \begin{bmatrix} x = 3 \mod 5 \\ y = 2 \mod 5 \end{bmatrix}$$

b. The solution is shown below:

$$\begin{bmatrix} 3 & 2 \\ 4 & 6 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix} \longrightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 4 & 6 \end{bmatrix} \times \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 5 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix} \longrightarrow \begin{bmatrix} x = 5 \mod 7 \\ y = 2 \mod 7 \end{bmatrix}$$

c. The solution is shown below:

$$\begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix} \longrightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix} \times \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 5 & 0 \end{bmatrix} \times \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \end{bmatrix} \longrightarrow \underbrace{\begin{bmatrix} x = 6 \mod 7 \\ y = 1 \mod 7 \end{bmatrix}}$$

d. The solution is shown below:

$$\begin{bmatrix} 2 & 3 \\ 1 & 6 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \end{bmatrix} \longrightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 1 & 6 \end{bmatrix} \times \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 6 & 5 \\ 7 & 2 \end{bmatrix} \times \begin{bmatrix} 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix} \longrightarrow \underbrace{\begin{bmatrix} x = 5 \mod 8 \\ y = 1 \mod 8 \end{bmatrix}}$$

