# Mechatronics Engineering

Lab 4

**Practice Lab** 



#### **In Lab Project:**

It is required to build a circuit with one push button and two LEDs.

#### **Circuit Operation:**

- When the user presses the push button, the first LED turns on.
- LED two should blink every 200ms and this never changes during operation.

#### **Design Requirements:**

- Use the AVR embedded board.
- Use Embedded C for programming.
- The push button is connected to PB0 and the two LEDs are connected to PD1:PD0.
- Include a reset push button in your hardware implementation.



## **In Lab Project:**





Here is the pseudo-code of the software approach to be used.

- 1. Input-Output Configuration:
  - a) Configure PD1-PD0 as outputs and PB0 as input.
  - b) Clear PD1-PD0.
  - c) Initialize global variables.
- 2. Configure Timer0 control registers and enable global interrupt.
- 3. Operation 1:
  - a) Check if push button is pressed from PINB, turn on LED 1.
  - b) Else push button is not pressed, turn off LED 1.
  - c) Go to step 3.
- 4. Operation 2:
  - a) Check if overflow time passed then clear overflow variable toggle output.
  - b) Else overflow time didn't pass then increase overflow variable.



TCCR0A (Timer/Counter 0 Control Register A):

| Bit           | 7      | 6      | 5      | 4      | 3 | 2 | 1     | 0     |       |
|---------------|--------|--------|--------|--------|---|---|-------|-------|-------|
| 0x24 (0x44)   | COM0A1 | COM0A0 | COM0B1 | COM0B0 | - | - | WGM01 | WGM00 | CCR0A |
| Read/Write    | R/W    | R/W    | R/W    | R/W    | R | R | R/W   | R/W   |       |
| Initial Value | 0      | 0      | 0      | 0      | 0 | 0 | 0     | 0     |       |

• Bits 1:0 - WGM01:0: Waveform Generation Mode

Combined with the WGM02 bit found in the TCCR0B register, these bits control the counting sequence of the counter, the source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 14-8. Modes of operation supported by the Timer/Counter unit are: Normal mode (counter), clear timer on compare match (CTC) mode, and two types of pulse width modulation (PWM) modes (see Section 14.7 "Modes of Operation" on page 78).

Table 14-8. Waveform Generation Mode Bit Description

| Mode | WGM02 | WGM01 | WGM00 | Timer/Counter<br>Mode of Operation | ТОР  | Update of<br>OCRx at | TOV Flag<br>Set on <sup>(1)(2)</sup> |
|------|-------|-------|-------|------------------------------------|------|----------------------|--------------------------------------|
| 0    | 0     | 0     | 0     | Normal                             | 0xFF | Immediate            | MAX                                  |
| 1    | 0     | 0     | 1     | PWM, phase correct                 | 0xFF | TOP                  | BOTTOM                               |
| 2    | 0     | 1     | 0     | СТС                                | OCRA | Immediate            | MAX                                  |
| 3    | 0     | 1     | 1     | Fast PWM                           | 0xFF | BOTTOM               | MAX                                  |
| 4    | 1     | 0     | 0     | Reserved                           | _    | _                    | _                                    |
| 5    | 1     | 0     | 1     | PWM, phase correct                 | OCRA | TOP                  | BOTTOM                               |
| 6    | 1     | 1     | 0     | Reserved                           | _    | _                    | _                                    |
| 7    | 1     | 1     | 1     | Fast PWM                           | OCRA | BOTTOM               | TOP                                  |

Notes: 1. MAX = 0xFF

2. BOTTOM = 0x00



Prof. Ayman A. El-Badawy

Department of Mechatronics Engineering

Faculty of Engineering and Material Science

# • TCCR0B (Timer/Counter 0 Control Register B):

| Bit           | 7     | 6     | 5 | 4 | 3     | 2    | 1    | 0    |        |
|---------------|-------|-------|---|---|-------|------|------|------|--------|
| 0x25 (0x45)   | FOC0A | FOC0B | - | - | WGM02 | CS02 | CS01 | CS00 | TCCR0B |
| Read/Write    | W     | W     | R | R | R/W   | R/W  | R/W  | R/W  |        |
| Initial Value | 0     | 0     | 0 | 0 | U     | 0    | 0    | 0    |        |

Bits 2:0 – CS02:0: Clock Select

The three clock select bits select the clock source to be used by the Timer/Counter.

Table 14-9. Clock Select Bit Description

| CS02 | CS01 | CS00 | Description                                             |
|------|------|------|---------------------------------------------------------|
| 0    | 0    | 0    | No clock source (Timer/Counter stopped)                 |
| 0    | 0    | 1    | clk <sub>I/O</sub> /(no prescaling)                     |
| 0    | 1    | 0    | clk <sub>I/O</sub> /8 (from prescaler)                  |
| 0    | 1    | 1    | clk <sub>I/O</sub> /64 (from prescaler)                 |
| 1    | 0    | 0    | clk <sub>I/O</sub> /256 (from prescaler)                |
| 1    | 0    | 1    | clk <sub>I/O</sub> /1024 (from prescaler)               |
| 1    | 1    | 0    | External clock source on T0 pin. Clock on falling edge. |
| 1    | 1    | 1    | External clock source on T0 pin. Clock on rising edge.  |



The AVR status register – SREG – is defined as:

| Bit           | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   | _    |
|---------------|-----|-----|-----|-----|-----|-----|-----|-----|------|
| 0x3F (0x5F)   | I   | Т   | Н   | S   | V   | N   | Z   | С   | SREG |
| Read/Write    | R/W | •    |
| Initial Value | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |      |

#### • Bit 7 – I: Global Interrupt Enable

The global interrupt enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the global interrupt enable register is cleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and CLI instructions, as described in the instruction set reference.

#### TIMSK0 – Timer/Counter Interrupt Mask Register

| Bit           | 7 | 6 | 5 | 4 | 3 | 2      | 1      | 0     | _      |
|---------------|---|---|---|---|---|--------|--------|-------|--------|
| (0x6E)        | _ | _ | _ | _ | _ | OCIE0B | OCIE0A | TOIE0 | TIMSK0 |
| Read/Write    | R | R | R | R | R | R/W    | R/W    | R/W   |        |
| Initial Value | 0 | 0 | 0 | 0 | 0 | 0      | 0      | 0     |        |

#### Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is written to one, and the I-bit in the status register is set, the Timer/Counter0 overflow interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in the Timer/Counter 0 interrupt flag register – TIFR0.



#### • TIFR0 (Timer/Counter 0 Interrupt Flag Register):

| Bit           | 7 | 6 | 5 | 4 | 3 | 2     | 1     | 0    |       |
|---------------|---|---|---|---|---|-------|-------|------|-------|
| 0x15 (0x35)   | - | - | - | - | - | OCF0B | OCF0A | TOV0 | TIFR0 |
| Read/Write    | R | R | R | R | R | RW    | R/W   | R/W  |       |
| Initial Value | 0 | 0 | 0 | 0 | 0 | 0     | 0     |      |       |

#### Bit 0 – TOV0: Timer/Counter0 Overflow Flag

The bit TOV0 is set when an overflow occurs in Timer/Counter0. TOV0 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared by writing a logic one to the flag. When the SREG I-bit, TOIE0 (Timer/Counter0 overflow interrupt enable), and TOV0 are set, the Timer/Counter0 overflow interrupt is executed.



| Interrupt                     | Vector Name in WinAVR |
|-------------------------------|-----------------------|
| External Interrupt request 0  | INT0_vect             |
| External Interrupt request 1  | INT1_vect             |
| External Interrupt request 2  | INT2_vect             |
| Time/Counter2 Compare Match   | TIMER2_COMP_vect      |
| Time/Counter2 Overflow        | TIMER2_OVF_vect       |
| Time/Counter1 Capture Event   | TIMER1_CAPT_vect      |
| Time/Counter1 Compare Match A | TIMER1_COMPA_vect     |
| Time/Counter1 Compare Match B | TIMER1_COMPB_vect     |
| Time/Counter1 Overflow        | TIMER1_OVF_vect       |
| Time/Counter0 Compare Match   | TIMER0_COMP_vect      |
| Time/Counter0 Overflow        | TIMER0_OVF_vect       |
| SPI Transfer complete         | SPI_STC_vect          |
| USART, Receive complete       | USART0_RX_vect        |
| USART, Data Register Empty    | USART0_UDRE_vect      |
| USART, Transmit Complete      | USART0_TX_vect        |
| ADC Conversion complete       | ADC_vect              |
| EEPROM ready                  | EE_RDY_vect           |
| Analog Comparator             | ANALOG_COMP_vect      |
| Two-wire Serial Interface     | TWI_vect              |
| Store Program Memory Ready    | SPM_RDY_vect          |



Prof. Ayman A. El-Badawy
Department of Mechatronics Engineering
Faculty of Engineering and Material Science



