Dear readers,

Eq.(10) can have a different version of the Kronecker product.

According to Theorem 2.2 in [1], the following should hold:

$$\frac{\partial vec(aA(x))}{\partial x} = (I \otimes a) \frac{\partial vec(A(x))}{\partial x}$$
 (1)

where a is a vector, A is a matrix depending on a vector x. In this case, the order of terms in the Kronecker product of Eq.(10) should be reversed.

We use eigenvalue-decomposition to reduce the computational burden when solving the large trust-region optimization problem via the python function 'def TRS_solver_Eigen' in the file 'Uav_mhe_SL_Hessian_trust_region_neural.py'. However, strictly following the definition in Theorem 2.2 can cause complex eigenvalues. Therefore, we opted to use the definition in Eq.(4) of [2] instead.

Our algorithm can still work with definition (1) by taking only the real parts of eigenvalues, although this requires re-tuning the hyperparameters of the trust-region method (TRM). Below is an example of mean loss obtained this way, showing performance comparable to that in our paper.

Fig. 1 Mean loss using real parts of eigenvalues and re-tuned TRM hyperparameters. The training time is 281 s, and ultimate loss is around 0.25, both of which are comparable to the performance in our paper.

This is an interesting phenomenon worth further investigation.

- [1]. Magnus, Jan R., and Heinz Neudecker. *Matrix differential calculus with applications in statistics and econometrics*. John Wiley & Sons, 2019.
- [2]. Dyro, Robert, Edward Schmerling, Nikos Arechiga, and Marco Pavone. "Second-Order Sensitivity Analysis for Bilevel Optimization." In *International Conference on Artificial Intelligence and Statistics*, pp. 9166-9181. PMLR, 2022.

