

人員排班問題

第十組

10957260 蘇慧誼、11024303 許家騰、

11024333 邱寶樟、11024360 陳倬恩、11039104 張如葳

目錄

- 1 人員排班問題
- 2 三種人員排班問題
- 3 階段一排班
- 4 階段二排班
- 5 心得與感想
- 6 参考文獻

人員排班問題

定義

特定的時間內,如何有效安排人力來滿足問題的需求

限制

工作時間的安排、人員班次的分配

目的

以確保企業或是組織能有效運用人力資源

三種人員排班問題

醫護人員

排班問題

- 指派工作班別或休假給予護理人員
- 滿足各班別人員需求及限制

目標式

- 考量護理人員與病床的關係,不考慮病人的狀況
- 考量病人的住院狀況後決定是否調整第一階段所求出的月班表

- 硬限制為必須滿足的
- 軟限制為盡可能滿足

三種人員排班問題

銀行人員

排班問題

- 符合勞動法規的基本工時及加班要求
- 考量每位員工所長安排部門及執勤內容,否則為無效排班

目標式

• 最小化成本

- 指派工作是否符合人員專長、顧客等待之時間、員工無法如願休假之人力成本
- 執勤人數加上可休假人數必須等於員工總數

三種人員排班問題

警察人員

排班問題

- 目前仍以人工方式排班
- 雖然可以確保正確性,但可能有失系統性及公平性

目標式

• 以工作負荷量及休息時間為主,最小化工作負荷差異

- 滿足上班員警之數量限制
- 每人每一時段至多一種勤務、不可排連續兩個時段的班,跨時段上 班都須滿足休息時段。

數學符號說明

參數定義

d:排班天數

b:班别代碼

n:人員代碼

 $Y_{dn}=1$:代表第 d 天、第 n 位人員值班;若無則為0。

 $I_{dn}=1$:代表第 d 天(星期六)、第 n 位人員值 I 班;若無則為0。

決策變數

 $w_{dbn} = 1$:代表第 d 天、第 b 班,由第 n 位人員值該班;若無則為0。

 $r_{dn}=1$:代表第 d 天、第 n 位人員休息;若無則為0。

階段一排班

目標式

最小化一週排班人員

$$Min \sum_{d=1}^{7} \sum_{b=1}^{9} \sum_{n=1}^{7} w_{dbn}$$

(1.1)

限制式

限制式(1.2):每人週六值班或休息

$$I_{6n} + r_{6n} = 1$$

 $\forall n$

(1.2)

限制式(1.3):週六上I班的人員。

$$w_{69n} = I_{6n}$$

 $\forall n$

(1.3)

限制式(1.4):週六沒有人員上除了 I 班以外的班別。

$$w_{6bn} = 0$$

$$\forall b, b \neq 9, \forall n$$

(1.4)

限制式(1.5):週日所有人員都休息。

$$r_{7n} = 1$$

$$\forall n$$

(1.5)

限制式(1.6):週日沒有人員上班。

$$w_{7bn} = 0$$

$$\forall b, n$$

(1.6)

限制式(1.7): 週一至週五, 每人每天只會上一種班別。

$$\sum_{1}^{\prime} w_{dbn} = 1$$

$$\forall d, d \neq 6, 7, \forall b, b \neq 3, 6, 9$$
 (1.7)

限制式(1.8):週一至週五,沒有人上I班。

$$\sum_{m=1}^{7} w_{d9n} = 0$$

$$\forall d, d \neq 6, 7$$

(1.8)

限制式(1.9): 週一至週五,每天有一人休息。

$$\sum_{m=1}^{7} r_{dn} = 1$$

$$\forall d, d \neq 6, 7$$

(1.9)

限制式(1.10): 週一至週五,每人每天上班或休假。

$$\left(\sum_{\substack{b=1\\b\neq 3,6,9}}^{9} w_{dbn}\right) + r_{dn} = 1$$

$$\forall d, d \neq 6, 7, \forall n$$

(1.10)

限制式(1.11):週一至週四,值班隔天則需上N班。

$$w_{d+1,7n} = Y_{dn}$$

$$\forall d$$
, $d \neq 5, 6, 7, \forall n$

(1.11)

限制式(1.12): 週一至週五,人員7只上M3班。

$$w_{d87} + r_{d7} = 1$$

$$\forall d, d \neq 6, 7$$

(1.12)

限制式(1.13): 週一至週五,人員2皆為休假。

$$r_{d2} = 1$$

$$\forall d, d \neq 6, 7$$

(1.13)

限制式(1.14): 週一人員 5 上 N 班。

$$w_{175} = 1$$

(1.14)

限制式(1.15):每天人員 1 若不休假或不上 N 班,則上 A 班。

$$w_{d11} + w_{d71} + r_{d1} = 1$$

$$\forall d, d \neq 6, 7$$

(1.15)

限制式(1.16):每天人員2若不休假或不上N班,則上MI班。

$$w_{d22} + w_{d72} + r_{d2} = 1$$

$$\forall d, d \neq 6, 7$$

(1.16)

限制式(1.17):每天人員 4 若不休假或不上 N班,則上 H班。

$$w_{d44} + w_{d74} + r_{d4} = 1$$

$$\forall d, d \neq 6, 7$$

(1.17)

限制式(1.18):每天人員5若不休假或不上N班,則上G班。

$$w_{d55} + w_{d75} + r_{d5} = 1$$

$$\forall d, d \neq 6, 7$$

(1.18)

限制式(1.19)至(1.22)代表人員 6 上 C2 班,代替當週上N 班該人之班別。

$$w_{175} = w_{156} \tag{1.19}$$

$$w_{271} = w_{216} \tag{1.20}$$

$$w_{373} = w_{326} \tag{1.21}$$

$$w_{573} = w_{526} \tag{1.22}$$

求解結果

Gurobi Optimizer version 10.0.2 build v10.0.2rc0 (mac64[arm])

CPU model: Apple M1

Thread count: 8 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 278 rows, 490 columns and 777 nonzeros

Model fingerprint: 0x0a96426f

Variable types: 0 continuous, 490 integer (490 binary)

Coefficient statistics:

Matrix range [1e+00, 1e+00] Objective range [1e+00, 1e+00] Bounds range [1e+00, 1e+00] RHS range [1e+00, 1e+00]

Presolve removed 278 rows and 490 columns

Presolve time: 0.00s

Presolve: All rows and columns removed

Explored 0 nodes (0 simplex iterations) in 0.01 seconds (0.00 work units)

Thread count was 1 (of 8 available processors)

Solution count 1: 32

Optimal solution found (tolerance 1.00e-04)

Best objective 3.20000000000e+01, best bound 3.20000000000e+01, gap 0.0000%

Optimal solution found! Numbers of variables: 490 Numbers of constraints: 278 Objective value: 32.0 電腦規格

CPU: Apple M1

Memory: 8GB

作業環境:macOS Sonoma 14.0

Gurobi版本: 10.0.2

排班結果

# 印出班表的數值設定 On_Duty = model.getAttr("x", w) Day_Off = model.getAttr("x", r) days_of_week = ["Mon.", "Tue.", "Wed.", "Thu.", "Fri.", "Sat.", "Sun."] shift_names = ["A", "M1", "C1", "H", "G", "C2", "N", "M3", "I"]									
# 印出星期的欄位	Mon.	Tue.	Wed.	Thu.	Fri.	Sat.	Sun.		
<pre>for day in days_of_week: print(day.ljust(8), end=" ")</pre>	Α	N	Α	Α	Α	X	х		
print("\n")	Χ	X	Х	Х	Х	X	Х		
# 印出班表 for n in range(N):	M1	M1	N	M1	N	Х	Х		
<pre>for d in range(D): for b in range(B):</pre>	Н	Н	Н	Н	Н	I	Х		
<pre>for i, shift_name in enumerate(shift_names): if b == i and On_Duty[d, b, n] == 1:</pre>	N	G	G	G	G	Χ	Х		
<pre>print(shift_name.ljust(8), end=" ") if Day_Off[d, n] == 1:</pre>	G	Α	M1	N	M1	Χ	Х		
<pre>print("X".ljust(8), end=" ") print("\n")</pre>	М3	М3	М3	М3	М3	I	X		

階段二排班

目標式

最小化兩週排班人員

- 修改:每週一至週五、每週六、日限制式天數
- 新增:第二週排班條件
 - > 休假
 - ▶ 輪班
 - > 代班

求解結果

Gurobi Optimizer version 10.0.2 build v10.0.2rc0 (mac64[arm]) CPU model: Apple M1 Thread count: 8 physical cores, 8 logical processors, using up to 8 threads Optimize a model with 562 rows, 980 columns and 1560 nonzeros Model fingerprint: 0x9d763c14 Variable types: 0 continuous, 980 integer (980 binary) Coefficient statistics: [1e+00, 1e+00] Matrix range Objective range [1e+00, 1e+00] Bounds range [1e+00, 1e+00] RHS range [1e+00, 1e+00] Presolve removed 562 rows and 980 columns Presolve time: 0.00s Presolve: All rows and columns removed Explored 0 nodes (0 simplex iterations) in 0.01 seconds (0.00 work units) Thread count was 1 (of 8 available processors) Solution count 1: 64 Optimal solution found (tolerance 1.00e-04)

Best objective 6.400000000000e+01, best bound 6.40000000000e+01, gap 0.0000%

Optimal solution found!

Numbers of variables: 980

Numbers of constraints: 562

Objective value: 64.0

排班結果

Week 1							Week 2						
Mon.	Tue.	Wed.	Thu.	Fri.	Sat.	Sun.	Mon.	Tue.	Wed.	Thu.	Fri.	Sat.	Sun.
Α	N	Α	Α	Α	Х	Х	M1	M1	M1	N	N	I	Х
Χ	X	Χ	Χ	Χ	Χ	Х	Н	М3	N	G	Α	Χ	Х
M1	M1	N	M1	N	Χ	Х	Χ	Н	Н	Н	Н	I	Х
Н	Н	Н	Н	Н	I	Х	N	G	G	Х	G	Χ	Х
N	G	G	G	G	Χ	Х	G	N	М3	M1	M1	Χ	Х
G	Α	M1	N	M1	Χ	Х	Α	Α	Α	Α	Х	X	Х
МЗ	M3	МЗ	M3	M3	I	Х	МЗ	Χ	Χ	МЗ	МЗ	Χ	x 18

心得

- 排班問題的複雜性
- 陣列的便捷性

工作分配

組員	查找文獻	撰寫程式	程式驗證	文書製作	簡報製作	口頭報告
蘇慧誼 10957260	•			•		
許家騰 11024303	•				•	•
邱寶樟 11024333		•	•	•	•	•
陳倬恩 11024360				•	•	•
張如葳 11039104	•			•		

多考文獻

[1] 林釗如. (2016). 考慮連續性照護之加護病房護理人員排班問題研究.

https://hdl.handle.net/11296/wsy5fn

[2] 張婉婷. (2016). 銀行業人員排班問題之研究.

https://hdl.handle.net/11296/5399rj

[3] 范筱曼. (2016). 考慮勤務負荷量下警察人員排班問題最佳化.

https://hdl.handle.net/11296/wb5tp

感謝聆聽

班別代號

班別	$oldsymbol{A}$	M1	<i>C1</i>	H	G	<i>C</i> 2	N	<i>M3</i>	I
代碼	1	2	3	4	5	6	7	8	9

第一週輪班順序

班別	A	M1	<i>C1</i>	H	\boldsymbol{G}	C2
人員	1	2	3	4	5	6

第二週輪班順序

班別	$oldsymbol{A}$	M1	<i>C1</i>	H	G	<i>C</i> 2
人員	6	1	2	3	4	5

目標式(2.1):最小化兩週所需的排班人員數。

$$Min \sum_{d=1}^{14} \sum_{b=1}^{9} \sum_{n=1}^{7} w_{dbn}$$
 (2.1)

限制式(2.2):每週每人週六值班或休息。

$$I_{dn} + r_{dn} = 1$$
 $\forall d = 6, 13, \forall n$ (2.2)

限制式(2.3):每週週六上I班的人員。

$$w_{d9n} = I_{dn} \tag{2.3}$$

限制式(2.4):每週週六沒有人員上除了 I 班以外的班別。

$$w_{dbn} = 0$$

$$\forall d = 6, 13, \forall b, b \neq 9, \forall n$$

(2.4)

限制式(2.5):每週週日所有人員都休息。

$$r_{dn} = 1$$

$$\forall d = 7, 14, \forall n$$

(2.5)

限制式(2.6):每週週日沒有人員上班。

$$w_{dbn} = 0$$

$$\forall d = 7, 14, \forall b, n$$

(2.6)

限制式(2.7):每週週一至週五,每人每天只會上一種班別。

$$\sum_{dbn} w_{dbn} = 1$$

$$\forall d, d \neq 6, 7, 13, 14, \forall b, b \neq 3, 6, 9$$
 (

(2.7)

限制式(2.8):每週週一至週五,沒有人上 I班。

$$\sum_{n=1}^{\prime} w_{d9n} = 0$$

$$\forall d, d \neq 6, 7, 13, 14$$

(2.8)

限制式(2.9):每週週一至週五,每天有一人休息。

$$\sum_{n=1}^{7} r_{dn} = 1$$

$$\forall d, d \neq 6, 7, 13, 14$$

(2.9)

限制式(2.10):每週週一至週五,每人每天上班或休假。

$$\left(\sum_{\substack{b=1\\b\neq 3\,6\,9}}^{9} w_{dbn}\right) + r_{dn} = 1$$

$$\forall d, d \neq 6, 7, 13, 14, \forall n$$

(2.10)

限制式(2.11):每週週一至週四,值班隔天則需上N班。

$$w_{d+1,7n} = Y_{dn}$$

$$\forall d$$
, $d \neq 5, 6, 12, 13, 14, $\forall n$$

(2.11)

限制式(2.12):每週週一至週五,人員7只上M3班。

$$w_{d87} + r_{d7} = 1$$

$$\forall d, d \neq 6, 7, 13, 14$$

(2.12)

限制式(2.13):第一週週一至週五,人員2皆為休假。

$$r_{d2} = 1$$

$$\forall d = 1, 2, ..., 5$$

(2.13)

限制式(2.14):第二週週一,人員3休假。

$$r_{d3} = 1$$

$$\forall d = 8$$

(2.14)

限制式(2.15):第二週週二,人員7休假。

$$r_{d7} = 1$$

$$\forall d = 9$$

(2.15)

限制式(2.16):第二週週三,人員7休假。

$$r_{d7} = 1$$

$$\forall d = 10$$

(2.16)

限制式(2.17):第二週週四,人員4休假。

$$r_{d4} = 1$$

$$\forall d = 11$$

(2.17)

限制式(2.18):第二週週五,人員6休假。

$$r_{d6} = 1$$

$$\forall d = 12$$

(2.18)

限制式(2.19):第一週週一人員5上N班。

$$w_{175} = 1 (2.19)$$

限制式(2.20):第一週,人員1每天若不休假或不上N班,則上A班。

$$w_{d11} + w_{d71} + r_{d1} = 1 \forall d = 1, 2, ..., 5 (2.20)$$

限制式(2.21):第一週,人員 2 每天若不休假或不上 N 班,則上 M1 班。

$$w_{d22} + w_{d72} + r_{d2} = 1$$
 $\forall d = 1, 2, ..., 5$ (2.21)

限制式(2.22):第一週,人員 4 每天若不休假或不上 N 班,則上 H 班。

$$w_{d44} + w_{d74} + r_{d4} = 1 \forall d = 1, 2, ..., 5 (2.22)$$

限制式(2.23):第一週,人員 5 每天若不休假或不上 N 班,則上 G 班。

$$w_{d55} + w_{d75} + r_{d5} = 1$$

$$\forall d = 1, 2, ..., 5$$

(2.23)

限制式(2.24):第二週,人員1每天若不休假或不上N班,則上M1班。

$$w_{d21} + w_{d71} + r_{d1} = 1$$

$$\forall d = 8, 9, ..., 12$$

(2.24)

限制式(2.25):第二週,人員3每天若不休假或不上N班,則上H班。

$$w_{d43} + w_{d73} + r_{d3} = 1$$

$$\forall d = 8, 9, ..., 12$$

(2.25)

限制式(2.26):第二週,人員 4 每天若不休假或不上 N 班,則上 G 班。

$$w_{d54} + w_{d74} + r_{d4} = 1$$

$$\forall d = 8, 9, ..., 12$$

(2.26)

限制式(2.27):第二週,人員6每天若不休假或不上N班,則上A班。

$$w_{d16} + w_{d76} + r_{d6} = 1$$

$$\forall d = 8, 9, ..., 12$$

(2.27)

限制式(2.28)至(2.31):第一週人員 6 上 C2 班,代替當週上 N 班該人之班別。

$$w_{175} = w_{156}$$

(2.28)

$$w_{271} = w_{216}$$

(2.29)

$$w_{373} = w_{326}$$

(2.30)

$$w_{573} = w_{526}$$

(2.31)

限制式(2.32)至(2.35):第二週人員 5上 C2班,代替當週上N班該人之班別。

$$w_{874} = w_{855} \tag{2.32}$$

$$w_{10,72} = w_{10,85} \tag{2.33}$$

$$w_{11,71} = w_{11,25} \tag{2.34}$$

$$w_{12,71} = w_{12,25} (2.35)$$