Weather Induced Airline Delays Prediction Using Machine Learning (Random Forests)

Aniruddha Humane

3321

STCL

Motivation

- Increase in volume of air travel from 450 billion passenger-miles in 1997 to 600 billion passenger-miles in 2014
- Challenging environment for National Airspace System (NAS).
- Scheduling parameters
- Average load factor of flight operations in 2012 was 83%
- Impact of Flight delays on passengers and government
- Why this area is important
- Work done in this area

Benefits

- Identify potential causes
- significant operational cost savings
- Better flight scheduling
- Better management of scheduled flights
- Improvement in quality of life
- Find ways to alleviate the impact

Why Machine learning

- Volume of historical flights and weather data are too large to analyse analytically.
- Correlation among factors are extremely complicated and highly non-linear.
- Machine learning is a clever method to analyse such data.

Analysis Process Flow

Data **Acquisition**

Data Exploration Predictive Models

Technologies and Libraries

- Python/ipython
- Numpy
- Matplotlib
- Scikit-Learn
- Scipy
- Pandas
- Imbalanced-Learn

Environment

• Processor : Intel i5-5200U 2.20GHz Dual core

• RAM : 8GB

• Operating System : Windows 10 Pro

• Language platform : iPython

Data Acquisition

- The **flight data**, also known as on-time performance data can be downloaded from the American Statistical Association.
- **Historical weather data** and flight demand data for 2008 is from the <u>FAA</u> Aviation Systems Performance Metrics (ASPM).

Features

	Name	Description	Name	Description
	Year	1987-2008	FlightNum	flight number
	Month	1-12	TailNum	plane tail number
			ActualElapsedTime	in minutes
	DayofMonth	1-31	CRSElapsedTime	in minutes
	DayOfWeek	1 (Monday) – 7 (Sunday)	AirTime	in minutes
	DepTime	actual departure time (local, hhmm)	ArrDelay	arrival delay, in minutes
	CRSDepTime	scheduled departure time (local, hhmm)	DepDelay	departure delay, in minutes
	ArrTime	actual arrival time (local, hhmm)	Origin	origin IATA airport code
			Dest	destination IATA airport code
	CRSArrTime	scheduled arrival time (local, hhmm)	Distance	in miles
	UniqueCarrier	unique carrier code	Carrier	Carrier identifier code assigned by
				IATA

Departure And Arrival Delay Distribution With Respect To Amount Of Delay

Departure and Arrival Delay Distribution With respect to Months

Departure and Arrival Delay Distribution With respect to Time of day

Departure and Arrival Delay Distribution With respect to Carrier

Departure and Arrival Delay Distribution With respect to Months for 4 major airports

- Chicago O'Hare (ORD)
- Boston Logan (BOS)
- San Francisco (SFO)
- New York LaGuardia(LGA)

Departure and Arrival Delay Distribution With respect to Time of day for 4 major airports

Departure and Arrival Delay Distribution With respect to Carrier for Chicago O'Hare (ORD)

Departure and Arrival Delay Distribution With respect to Carrier for Boston Logan (BOS)

Predictive Models for Flight Delays

- Model to predict flight departure delays from Chicago O'Hare International Airport (ORD)
- Model to predict departure delays using subset of weather and flight data from Chicago O'Hare International Airport (ORD)
- Model to predict Departure delays using weather and flight data from Chicago O'Hare International Airport (ORD)
- Model to predict Departure delays from Chicago O'Hare International Airport (ORD) using weather and flight data with sampling.

Random Forest

- Bagging i.e. bootstrap sampling
- Feature subsets
- Trains a number of decision trees
- Majority vote by decision trees decides the prediction
- Faster
- Better predictive performance
- Better Bias-Variance Trade-offs

Predicting flight departure delays from Chicago O'Hare International Airport (ORD)

- Data Clean-up, considering <u>random 20k samples</u>
- No if trees = 1 to 100
- Max features for best split = 2
- Creation of classifier and calculating OOB score
- Estimating feature importance
- Calculating accuracy and Confusion Matrix

On time	Delayed
6170	1000
1934	896
On time	Delayed
0.860530	0.353357
	6170 1934 On time

Precision 47%
Recall 32%
F1 38%
Accuracy 71%

Conclusion for first model

- Optimum number of trees : 70
- Cross validation score : { min= 69.97% , mean = 70.23%, max = 72.50%}
- Maximum Accuracy of model: 72%
- Classifier is guessing non-delayed flights more often than delayed
- Very less Precision and F1 score

Integrating 2008 weather data

- Total 84 features
- Important features are LOCID, Year, Month, DAYNUM, HR_LOCAL, ETMS_DEP, ETMS_ARR, MC, CEILING, VISIBLE, TEMP, WND_ANGL, WND_SPED
- Final dataset had 34 features with around 1.5 million records
- Exporting data

Predicting flight departure delays from Chicago airport with weather data

- Data Clean-up, considering <u>random 20k samples</u>
- No if trees = 70
- Max features for best split = 2
- Creation of classifier
- Calculating accuracy and confusion matrix
- Estimating feature importance
- Calculating Area Under Curve (AUC) for ROC curve

	On time	Delayed
On time	5929	663
Delayed	1706	1702
	On time	Delayed
On time	0.899424	0.194542
Delayed	0.258799	0.499413

 Precision
 72%

 Recall
 50%

 F1
 59%

 Accuracy
 76%

Conclusion for second model

- Significant improvement in prediction performance
- Cross validation score : { min= 74.90% , mean = 76.15%, max = 79.92%}
- Maximum Accuracy of model: 79%
- Increase in delayed flights predictions by 18%
- 25% improvement in precision along with 21% improvement in in F1 score
- Better AUC under ROC curve

Predicting flight departure delays from Chicago airport with weather data

- Data Clean-up, considering <u>all samples</u>
- No if trees = 70
- Max features for best split = 2
- Creation of classifier
- Calculating accuracy and confusion matrix
- Estimating feature importance
- Calculating Area Under Curve (AUC) for ROC curve

	On time	Delayed
On time	24085	3100
Delayed	6932	6360
	On time	Delayed
On time	0.885967	0.233223
Delayed	0.254994	0.478483

 Precision
 67%

 Recall
 48%

 F1
 56%

 Accuracy
 75%

Comparing Confusion Matrices

Conclusion for Third model

- Improved delay prediction performance
- Cross validation score : { min= 74.21% , mean = 74.86%, max = 75.52%}
- Maximum Accuracy of model: 75%
- Both accuracy and precision have decreased by 2%
- AUC have decreased
- Adding more number of samples did not help

Sampling (SMOTE)

- Need of sampling
 - Imbalanced data
 - Majority class has no of samples 3 to 4 times greater than minority class
 - Hence, 75% accuracy if every flight is classified as on time (Accuracy Paradox)
- Synthetic Minority Over-sampling Technique (SMOTE)
 - Oversampling as well as Undersampling
- But will sampling improve model performance?

Predicting flight departure delays from Chicago airport with weather data and Sampling

- Data Clean-up, considering all available samples
- No if trees = 70
- Max features for best split = 2
- Creation of classifier
- Calculating accuracy and confusion matrix
- Estimating feature importance
- Calculating Area Under Curve (AUC) for ROC curve

	On time	Delayed
On time	493780	32630
Delayed	103239	422192
	On time	Delayed
On time	0.938014	0.062101
Delayed	0.196119	0.803516

 Precision
 93%

 Recall
 80%

 F1
 86%

 Accuracy
 87%

Final results

- 80% of the time our model is predicting delayed flights
- Cross validation score : { min= 86.73% , mean = 86.87%, max = 87.02%}
- Maximum Accuracy of model: 87%
- Increase in delayed flights predictions by 33%
- 26% improvement in precision along with 30% improvement in in F1 score
- Much better AUC under ROC curve
- Sampling improved performance of model

How to further increase performance

- Number of trees
 - More the better
 - Diminishing results (once you go above a certain number of trees the predictive power to algorithm doesn't improve much)
 - Slower to construct with more no of trees
- Number of features
 - More features reduce bias
 - But increases the correlation of trees
- More samples

References

- BTS, US Passenger Miles Table
- Sun Choi, Young Jin Kim, Simon Briceno and Dimitri Mavris Prediction of Weather-induced Airline Delays Based on Machine Learning Algorithms Georgia 30332–0250
- L. Breiman, "Random forests," Machine Learning, vol. 45, no. 1, pp. 5–32, 2001
- N. V. Chawla, "C4.5 and imbalanced data sets: Investigating the effect of sampling method, probabilistic estimate, and decision tree structure," in *Proceedings of the ICML, Workshop on Learning from Imbalanced Datasets II*, Washington DC, 2003.
- S. S. P. Reshma C. Bhagat, "Enhanced smote algorithm for classification of imbalanced big-data using random forest," in Proceedings of the Advance Computing Conference (IACC), 2015.