Pig Science - Breeding

Peter von Rohr

2022-04-27

Program

Program

Datum	Day	Room	Time	Dozent	Topic	
23.02.2022	Wednesday	LFW B2	8-10	SN	Introd. Genetics	
25.02.2022	Friday	AgroVet Strickhof	9-12	SN	Pig housing, constitution	
02.03.2022	Wednesday	LFW B2	8-10	GB	Feeding and meat quality	
09.03.2022	Wednesday	LFW B2	8-10	GB	Feeding and meat quality	
16.03.2022	Wednesday	LFW B2	8-10	SN	Genetics	
23.03.2022	Wednesday	LFW B2	8-10	SN/GB	Student presentations 1	
30.03.2022	Wednesday	LFW B2	8-10	SN/GB	Student presentations 2	
06.04.2022	Wednesday	LFW B2	8-10	SN	Genetics	
13.04.2022	Wednesday	LFW B2	8-10	GB	Feeding and meat quality	
20.04.2022 Easter break						

27.04.2022	Wednesday	LFW B2	8-10	PvR	Breeding		
04.05.2022	Wednesday	LFW B2	8-10	PvR	Breeding		
11.05.2022	Wednesday	LFW B2	8-10	PvR	Breeding		
18.05.2022	Wednesday	LFW B2	8-10	СК	Sustainable pigs		
25.05.2022 no lecture							
01.06.2022	Wednesday	LFW B2	8-10	SN	Exam		

Lecturers:

SN Stefan Neuenschwander

GB Giuseppe Bee PvR Peter von Rohr CK Claudia Kasper

Program - Breeding

Week	Date	Topic
1	27.04	Extension of Breeding Programs
2	04.05	Genomic Selection in Pig Breeding
3	11.05	Breeding Program via Aggregate Genotype

Course Objectives

The students

- understand the theoretical background and the practical application of the prediction of breeding values in a livestock breeding
- know how to interpret predicted breeding values.
- \rightarrow What is the meaning of a predicted aggregate genotype -9 index points
- \rightarrow What is the difference between production and breeding

Further Reading

- Willam und Simianer: Tierzucht Grundwissen Bachelor (Ulmer, UTB 3526 2011). This book gives an introduction into evolution, livestock production and breeding programs.
- ► Falconer and Mackay: Introduction to Quantitative Genetics (Longman). The de-facto standard in the area of quantitative genetics uses many examples from experimental research to illustrate the concepts of quantitative genetics.
- Mrode: Linear Models for the Prediction of Animal Breeding Values (CABI Publishing, 2005). The main focus is on prediction of breeding values using different models.

Terminology

Created by Eucalyp

https://www.ted.com/talks/christien_meindertsma_how_pig_parts_make_the_world_turn

Scientific Definition

"Selection and Mating of parents are used such that offspring generations are closer to a defined goal."

- Distinction between
 - livestock breeding and production
 - cattle breeding and milk or beef production
 - pig breeding and pork production and
 - chicken breeding and egg producers

History

- ► Formations of breeding organisation (BO)
- ► Tasks of BO: herdbooks and certification
- ► Crisis at beginning of 20th century lead to federal regulations
- ► Focus on increasing production after 1945
- Developments of technologies
 - Reproduction
 - Molecular biology
 - Computer science

Breeding Organisations

Breeding Programs

Parts of Breeding Program

- Applied prediction of breeding values is a part of the breeding program
- Design and planning of a breeding program requires to answer the questions
 - What goal do we want to achieve
 - What measures do we want to use to achieve the goal

Types of Breeding Programs

Two types of breeding programs

- 1. Focus on selection response
 - countries with limited resources
 - big farms or big companies
- 2. Focus on clients and services
 - cattle and pig breeding of developed countries
 - economic interest of companies and farms

Breeding Goals

Types of breeding goals

- economic
- biological
- tactical
- ethical

Breeding goals might be formulated in different ways

- political: description of idealized image of future animal. Often conflicting and not verifiable
- scientific: mathematical description of direction of desired change. Measurable via selection response

Performance Testing

- Basic question: What trait is measured when for which animals
- Breeding should be based on data
- Quality of derived parameters (heritability, predicted breeding values) depend on accuracy of collected data
- Data collection used for performance testing often started for different reasons
 - milk sample testing: quality of product
 - station testing in pigs: correction of environment

Classification of Performance Tests

- Place
 - Station
 - ► Field
- ▶ Relationship between selection candidate and tested animal
 - own performance record
 - ► full-sib
 - progeny
- ▶ Traits
 - should have genetic variation
 - economic importance
 - measurable better than subjectively observed

Examples: Pigs

Examples: Cattle

Prediction Of Breeding Values

- ▶ Done in most breeding programs
- ► Federal regulation
- ▶ Performance tests much more expensive
- Different intervals
 - cattle: three times per year
 - pigs: nightly or weekly

Progress In Technologies

- Reproduction AI
 - disease prevention
 - number of progeny per sire increased
 - better comparisons between herds
 - ► Future: more development on female side
- Molecular Biology
 - cheap and efficient large-scale genotyping
 - sequencing with more accuracy
- Computer Science
 - efficient evaluation of large amounts of data
 - big data technologies continuous monitoring

Differences Of BP Between Species

Breeding programs (BP) for different species have different structure

▶ hierarchical: pigs and chicken

flat: cattle and horse

Hierarchical Structure

Monolithic Structure

Example of Implementation

- Assume: pig breeding organisation
- ► Improvement of animal at production level with respect to economic profitability
- Implementation of scientific breeding program
- Start to design and to develop economic breeding goal
- Combine economically important traits into an aggregate genotype (H)
- Use hierarchical structure

Hierarchical Breeding Program Breeding Multiplication Production Selling animal products market

Three Steps To Design Economic Breeding Goal

The following steps are needed to implement a breeding program

- 1. description of production system
- 2. modelling profit of a typical herd
- 3. derive economic values

Production System

What is a Production System

- Simulation of production herd
- ► Collect input parameters (costs, biological parameters, labor, ...) from literature
- Use collected input parameters for simulation
- Run simulation
- Record output quantities (revenue, animals sold)

Why Production System

- Profit is computed based on revenue and costs
- Characteristics and traits of animals with impact on profitability are found
- Impact of traits on profitability detected by changing input parameters
- Progeny must meet needs of production farms
- Breeders must select parents such that optimal progeny produced for production farms

Structure of Production System

- Assume a hierarchical structure of the breeding program
- Alternatively: mixed farms in monolithic structure
- Breeding (and possibly multiplier) farms are selling their progeny to production farms

Example Of Typical Production Farm

Traits Of Interest

Profit (P) of production farm determined by revenues (R) and costs (C)

$$P = R - C$$

- Traits of economic interest influence P
- Restrict ourselves to output
 - age corrected carcass weight (CW)
 - carcass confirmation (CC)
 - carcass fat (CF)
- Above traits will be included in aggregate genotype (H)

$$H = a^T \cdot u$$

Economic Evaluation

Economic Values

- ... also known as economic weights
- ▶ Change of profit (P) due to small change of trait mean (μ_{x})
- For trait x with mean μ_x , the economic value a_x is defined as

$$a_{\mathsf{x}} = \frac{\partial P}{\partial \mu_{\mathsf{x}}}$$

Genetic Evaluation

- Statistical modelling
- Stochastic relationship between genetic background and phenotypic expression
- ► Contrast: deterministic modelling in physics, e.g. law of gravity

Statistical Modelling

- In most cases, two steps plus preparation
- ► Given: dataset on breeding animals containing traits of interest as response variables and predictor variables
- Preparation: do model selection to eliminate unimportant predictor variables
- ► Steps:
 - 1. variance components estimation
 - 2. prediction of breeding values