КОМИТЕТ ПО ОБРАЗОВАНИЮ ПРАВИТЕЛЬСТВА САНКТ-

ПЕТЕРБУРГА

Санкт-Петербургское государственное бюджетное профессиональное образовательное учреждение «Колледж информационных технологий»

«МДК.07.01 Управление и автоматизация баз данных»

ОТЧЁТ

по лабораторной работе № 2

«Проектирование базы данных»

Работу выполнил студент 325гр.:

Шлычков И. Д.

Преподаватель: Фомин А.В.

Санкт-Петербург 2025

Введение

В данной лабораторной я представил собой базу данных для хранения информации о регионах, странах, городах, среднесуточных измерениях температуры и координатах береговых линий.

В базе данных реализованы следующие связи:

- Один регион включает несколько стран.
- Одна страна включает несколько городов.
- В одном городе проводится множество измерений температуры.
- Береговая линия состоит из множества координатных точек

Описание таблиц

Таблица Region

Таблица Region содержит список регионов мира. Она необходима для группировки стран по регионам, что упрощает анализ данных по разным частям света. Таблица Region и также структура таблицы представлена на рисунке 1-2.

- region.identifier используется в таблице country как внешний ключ.

		_	-	_	_		_		
1	Region								
2	№ field	Name	Data type	PK	Default	Null	Unique	FK	Описание
3	1	idenitifier	INT	yes	-	no	yes	-	Уникальный код региона
4	2	description	varchar(50)	no	-	no	no	-	Название регион
5									

Рис 1 – таблица Region

Рис 2 – структура таблицы Region

Таблица Country

Таблица Country содержит список стран и связывает их с регионами. Это позволяет определить, к какому региону принадлежит каждая страна. Таблица Country и также структура таблицы представлена на рисунке 3-4.

- country.region ссылается на region.identifier.
- country.identifier используется в таблице city как внешний ключ.

6	Country								
7	№ поля	Name	Data type	PK	Default	Null	Unique	FK	Описание
8	1	idenitifier	INT	yes	-	no	yes	-	Уикальный номер страны
9	2	region	INT	no	-	no	no	region(idenifier)	Код региона
0	3	description	varchar(50)	no	-	no	no	-	Название страны
1									

Рис 3 – таблица Country

Рис 4 – структура таблицы Country

Таблица City

Таблица City хранит список городов, их местоположение (широта, долгота) и принадлежность к стране. Таблица City и также структура таблицы представлена на рисунке 5-6.

- city.country ссылается на country.identifier.
- city.identifier используется в таблице measurement как внешний ключ.

2	City								
3	№ поля	Name	Data type	PK	Default	Null	Unique	FK	Описание
4	1	idenitifier	INT	yes	-	no	yes	-	Уникальный номер говорода
5	2	country	INT	no	-	no	no	region(idenifier)	Код страны
6	3	description	varchar(50)	no	-	no	no	-	Название города
7	4	latitude	double precision	no	-	yes	no	-	Географическая широта
8	5	longitude	double precision	no	-	yes	no	-	Географическая долгода
9	6	dataset	varchar(20)	no	-	yes	no	-	Имя файла с данными о температуре
20									

Рис 5 – таблица City

Рис 6 – структура таблицы City

Таблица Measurement

Таблица measurement содержит информацию о среднесуточных измерениях температуры в разных городах. Таблица Measurement и также структура таблицы представлена на рисунке 7-8.

- measurement.city ссылается на city.identifier.

21	M	leasurment								
22	N9	о поля	Name	Data type	PK	Default	Null	Unique	FK	Описание
23		1	city	INT	no	-	no	no	city(idenifier)	Код города
24		2	mark	Time whithout time zone	no	-	yes	no	•	Временная метка измерения
2		3	temperature	double precision	no	-	yes	no	-	Изменение среднесуточного темпрература
0.0										

Рис 7 – таблица Measurement

Рис 8 – структура таблицы City

Таблица Coastline

Таблица Coastline хранит информацию о координатах точек, из которых состоит береговая линия. Таблица Coastline и также структура таблицы представлена на рисунке 9-10.

Coastline								
№ поля	Name	Data type	PK	Default	Null	Unique	FK	Описание
1	shape	INT	no	-	no	no	-	Номер ломанной линии
2	segment	INT	no	-	no	no	-	Номер точки внутри линии
3	latitude	double precision	no	-	no	no	-	Широта координаты
4	longitude	double precision	no	-	no	no	-	Долгота координаты

Рис 9 – таблица Coastline

Рис 10 – структура таблицы Coastline

Здесь представлена модель ER диаграммы в приложении Dia, а также в PgAdmin4. Они представлены на рисунках 11-12

Рис 11 – ER диаграмма в Dia

Рис 12 – ER диаграмма в PgAdnin4

Тут представлен код сценария (создание таблиц, ключей, индексы, значения по умолчанию и связи выделите отдельно командами ALTER TABLE).

```
create schema data;
DROP TABLE IF EXISTS data.region;
DROP TABLE IF EXISTS data.country;
DROP TABLE IF EXISTS data.city;
DROP TABLE IF EXISTS data.measurement;
DROP TABLE IF EXISTS data.coastline;
CREATE TABLE data.region (
    identifier INTEGER PRIMARY KEY,
    description VARCHAR(50) NOT NULL
);
CREATE TABLE data.country (
    identifier INTEGER PRIMARY KEY,
    region INTEGER NOT NULL,
    description VARCHAR(50) NOT NULL
);
CREATE TABLE data.city (
    identifier INTEGER PRIMARY KEY,
    country INTEGER NOT NULL,
```

```
description VARCHAR(50) NOT NULL,
    latitude DOUBLE PRECISION,
    longitude DOUBLE PRECISION,
    dataset VARCHAR(20)
);
CREATE TABLE data.measurement (
    city INTEGER NOT NULL,
    mark TIMESTAMP WITHOUT TIME ZONE NOT NULL,
    temperature DOUBLE PRECISION NOT NULL
);
CREATE TABLE data.coastline (
    shape INTEGER NOT NULL,
    segment INTEGER NOT NULL,
    latitude DOUBLE PRECISION NOT NULL,
    longitude DOUBLE PRECISION NOT NULL
);
ALTER TABLE data.country
    ADD CONSTRAINT fk country region
    FOREIGN KEY (region) REFERENCES data.region(identifier);
```

ALTER TABLE data.city

```
ADD CONSTRAINT fk_city_country

FOREIGN KEY (country) REFERENCES data.country(identifier);

ALTER TABLE data.measurement

ADD CONSTRAINT fk_measurement_city
```

FOREIGN KEY (city) REFERENCES data.city(identifier);