(1) Evaluate $\int_{1}^{4} f(x) dx$ using the graph below. The two parts of the graph are semicircles.

QUESTION	#2
Q C L C I I C I I	

TEAM NAME: _____

$$\int x^{-1/5} \sec(x^{4/5}) \tan(x^{4/5}) \, dx$$

ANSWER:

(3) Evaluate the limit $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$.

Answer: _____

QUESTION	#4
Q C L C I I C I I	

TEAM NAME: _____

(4) Compute the definite integral:

$$\int_{1}^{2} x \ln x \, dx.$$

ANSWER:

(5) Determine the radius of convergence for $\sum_{n=0}^{\infty} \frac{x^{3n+1}}{64}$

QUESTION #6	TEAM NAME:	_

(6) Determine a reduced fraction that has this repeating decimal: 0.217217217...

(7) Use the shell method to calculate the volume obtained by rotating the region under the graph of $f(x) = 8 - x^3$ from $0 \le x \le 2$ about the x axis.

TEAM NAME: _____

(8) Calculate the derivative:

$$\frac{d}{dx} \int_1^{1/x} \cos^3(t) \, dt.$$

(9) Evaluate the integral using trigonometric substitution: $\int \frac{x^2}{\sqrt{9-x^2}} dx$.

(10) Find the volume of liquid needed to fill a sphere of radius R to height h.

