

**Threads and Concurrency 13** 

Nitin V Pujari Faculty, Computer Science Dean - IQAC, PES University

#### **Course Syllabus - Unit 2**



## UNIT 2: Threads and Concurrency

Introduction to Threads, types of threads, Multicore Programming, Multithreading Models, Thread creation, Thread Scheduling, PThreads and Windows Threads, Mutual Exclusion and Synchronization: software approaches, principles of concurrency, hardware support, Mutex Locks, Semaphores. Classic problems of Synchronization: Bounded-Buffer Problem, Readers -Writers problem, Dining Philosophers Problem concepts. Synchronization Examples - Synchronisation mechanisms provided by Linux/Windows/Pthreads. Deadlocks: principles of deadlock, tools for detection and Prevention.

#### **Course Outline - Unit 2**





#### **Topics Outline**



Examples : Deadlock
 Avoidance & Deadlock
 Detection

### **Deadlocks: Deadlock Avoidance & Detection - Examples**



### **Example 1 - Safety Algorithm**

Suppose we have 5 processes(P0, P1, P2, P3, P4) and 3 resource types(A, B, C) each having (10,5,7) instances. Suppose at time t1 if the snapshot of the system taken is as follows, iS THE SYSTEM SAFE?, after finding AND SATISFYING the need

| RMax  |   |   |  |  |  |  |
|-------|---|---|--|--|--|--|
| A B C |   |   |  |  |  |  |
| 10    | 5 | 7 |  |  |  |  |

| Available=>Rmax-Allocated |  |  |  |  |  |  |
|---------------------------|--|--|--|--|--|--|
| A B C                     |  |  |  |  |  |  |
| 3 3 2                     |  |  |  |  |  |  |

| Dunnan  |   | Allocation |   | Мах |    |    |
|---------|---|------------|---|-----|----|----|
| Process | Α | В          | С | А   | В  | С  |
| P0      | 0 | 1          | 0 | 7   | 5  | 3  |
| P1      | 2 | 0          | 0 | 3   | 2  | 2  |
| P2      | 3 | 0          | 2 | 9   | 0  | 2  |
| Р3      | 2 | 1          | 1 | 2   | 2  | 2  |
| P4      | 0 | 0          | 2 | 4   | 3  | 3  |
| Total   | 7 | 2          | 5 | 25  | 12 | 12 |

### **Deadlocks: Deadlock Avoidance & Detection - Examples**

# PES UNIVERSITY ONLINE

Not Initialised

### **Example 1 - Safety Algorithm**

Suppose we have 5 processes(P0, P1, P2, P3, P4) and 3 resource types(A, B, C) each having (10,5,7) instances. Suppose at time t1 if the snapshot of the system taken is as follows then find the system is in a safe state or not, after finding the need

|    | RMax |   | work<= A | wailable => (Rmax-A | Allocated) |
|----|------|---|----------|---------------------|------------|
| Α  | В    | С | Α        | В                   | С          |
| 10 | 5    | 7 | 3        | 3                   | 2          |

| Dunana  | Allocation |   |   | Max |    |    | Need=>Max-Allocated |    |   |
|---------|------------|---|---|-----|----|----|---------------------|----|---|
| Process | Α          | В | С | Α   | В  | С  | Α                   | В  | С |
| Р0      | 0          | 1 | 0 | 7   | 5  | 3  | 7                   | 4  | 3 |
| P1      | 2          | 0 | 0 | 3   | 2  | 2  | 1                   | 2  | 2 |
| P2      | 3          | 0 | 2 | 9   | 0  | 2  | 6                   | 0  | 0 |
| Р3      | 2          | 1 | 1 | 2   | 2  | 2  | 0                   | 1  | 1 |
| P4      | 0          | 0 | 2 | 4   | 3  | 3  | 4                   | 3  | 1 |
| Total   | 7          | 2 | 5 | 25  | 12 | 12 | 18                  | 10 | 7 |

### **Deadlocks: Deadlock Avoidance & Detection - Examples**



### **Example 1 - Safety Algorithm**

Suppose we have 5 processes(P0, P1, P2, P3, P4) and 3 resource types(A, B, C) each having (10,5,7) instances. Suppose at time t1 if the snapshot of the system taken is as follows then find the system is in a safe state or not, after finding the need

|    | RMax |   |   | Work |   |   |  |
|----|------|---|---|------|---|---|--|
| Α  | В    | С | Α | В    | С | i |  |
| 10 | 5    | 7 | 5 | 3    | 2 |   |  |

| 1       | Allocation |   |   |    |    |    | Need=>Max-Allocated |    |   |         |   |
|---------|------------|---|---|----|----|----|---------------------|----|---|---------|---|
| Process | Α          | В | С | А  | В  | С  | А                   | В  | С | Process |   |
| P0      | 0          | 1 | 0 | 7  | 5  | 3  | 7                   | 4  | 3 | P0      |   |
| P1      | 2          | 0 | 0 | 3  | 2  | 2  | 1                   | 2  | 2 | P1      |   |
| P2      | 3          | 0 | 2 | 9  | 0  | 2  | 6                   | 0  | 0 | P2      |   |
| Р3      | 2          | 1 | 1 | 2  | 2  | 2  | 0                   | 1  | 1 | Р3      |   |
| P4      | 0          | 0 | 2 | 4  | 3  | 3  | 4                   | 3  | 1 | P4      | T |
| Total   | 7          | 2 | 5 | 25 | 12 | 12 | 18                  | 10 | 7 |         |   |

| Work  |     |     |  |  |  |
|-------|-----|-----|--|--|--|
| A B C |     |     |  |  |  |
| 5+2   | 3+1 | 2+1 |  |  |  |

Flag

**False** 

**True** 

**False** 

**True** 

**False** 

| Safe Sequence |    |  |  |  |  |  |
|---------------|----|--|--|--|--|--|
| P1            | Р3 |  |  |  |  |  |

### **Deadlocks: Deadlock Avoidance & Detection - Examples**

# PES UNIVERSITY ONLINE

### **Example 1 - Safety Algorithm**

Suppose we have 5 processes(P0, P1, P2, P3, P4) and 3 resource types(A, B, C) each having (10,5,7) instances. Suppose at time t1 if the snapshot of the system taken is as follows then find the system is in a safe state or not, after finding the need

|    | RMax |   |   | Work |   |
|----|------|---|---|------|---|
| А  | В    | С | Α | В    | С |
| 10 | 5    | 7 | 3 | 3    | 2 |

| Dungana |   | Allocation |   |    | Max |    | Need: | =>Max-Allo | cated |
|---------|---|------------|---|----|-----|----|-------|------------|-------|
| Process | A | В          | С | А  | В   | С  | Α     | В          | С     |
| P0      | 0 | 1          | 0 | 7  | 5   | 3  | 7     | 4          | 3     |
| P1      | 2 | 0          | 0 | 3  | 2   | 2  | 1     | 2          | 2     |
| P2      | 3 | 0          | 2 | 9  | 0   | 2  | 6     | 0          | 0     |
| Р3      | 2 | 1          | 1 | 2  | 2   | 2  | 0     | 1          | 1     |
| P4      | 0 | 0          | 2 | 4  | 3   | 3  | 4     | 3          | 1     |
| Total   | 7 | 2          | 5 | 25 | 12  | 12 | 18    | 10         | 7     |

| Process | Flag  |    |  |  |  |
|---------|-------|----|--|--|--|
| P0      | False |    |  |  |  |
| P1      | False |    |  |  |  |
| P2      | False | se |  |  |  |
| Р3      | False |    |  |  |  |
| P4      | False |    |  |  |  |
|         | ence  |    |  |  |  |
|         |       |    |  |  |  |

Not Initialised

### **Deadlocks: Deadlock Avoidance & Detection - Examples**



### **Example 1 - Safety Algorithm**

| RMax |   |   | Work |   |   |   |   |
|------|---|---|------|---|---|---|---|
| А    | В | С | Α    | В | С | i | 1 |
| 10   | 5 | 7 | 3    | 3 | 2 |   |   |

| Process | Allocation |   |   | Max |    |    | Need=>Max-Allocated |    |   |
|---------|------------|---|---|-----|----|----|---------------------|----|---|
| Process | A          | В | С | А   | В  | С  | A                   | В  | С |
| P0      | 0          | 1 | 0 | 7   | 5  | 3  | 7                   | 4  | 3 |
| P1      | 2          | 0 | 0 | 3   | 2  | 2  | 1                   | 2  | 2 |
| P2      | 3          | 0 | 2 | 9   | 0  | 2  | 6                   | 0  | 0 |
| Р3      | 2          | 1 | 1 | 2   | 2  | 2  | 0                   | 1  | 1 |
| P4      | 0          | 0 | 2 | 4   | 3  | 3  | 4                   | 3  | 1 |
| Total   | 7          | 2 | 5 | 25  | 12 | 12 | 18                  | 10 | 7 |

| _ |               |       |  |  |  |  |
|---|---------------|-------|--|--|--|--|
|   | Process       | Flag  |  |  |  |  |
|   | P0            | False |  |  |  |  |
|   | P1            | True  |  |  |  |  |
|   | P2            | False |  |  |  |  |
|   | Р3            | False |  |  |  |  |
|   | P4            | False |  |  |  |  |
|   | Safe Sequence |       |  |  |  |  |
|   |               |       |  |  |  |  |

| Work |     |     |  |  |  |  |
|------|-----|-----|--|--|--|--|
| Α    | В   | С   |  |  |  |  |
| 3+2  | 3+0 | 2+0 |  |  |  |  |

### **Deadlocks: Deadlock Avoidance & Detection - Examples**



### **Example 1 - Safety Algorithm**

|    | RMax |   |   | Work |   |   |   |
|----|------|---|---|------|---|---|---|
| А  | В    | С | Α | В    | С | i | 2 |
| 10 | 5    | 7 | 3 | 3    | 2 |   |   |

| Process | Allocation |   |   | Max |    |    | Need=>Max-Allocated |    |   |
|---------|------------|---|---|-----|----|----|---------------------|----|---|
| Process | A          | В | С | А   | В  | С  | A                   | В  | С |
| P0      | 0          | 1 | 0 | 7   | 5  | 3  | 7                   | 4  | 3 |
| P1      | 2          | 0 | 0 | 3   | 2  | 2  | 1                   | 2  | 2 |
| P2      | 3          | 0 | 2 | 9   | 0  | 2  | 6                   | 0  | 0 |
| Р3      | 2          | 1 | 1 | 2   | 2  | 2  | 0                   | 1  | 1 |
| P4      | 0          | 0 | 2 | 4   | 3  | 3  | 4                   | 3  | 1 |
| Total   | 7          | 2 | 5 | 25  | 12 | 12 | 18                  | 10 | 7 |

| Process Flag  P0 False  P1 True  P2 False  P3 False  P4 False  Safe Sequence |               |       |  |  |  |  |
|------------------------------------------------------------------------------|---------------|-------|--|--|--|--|
| P1 True P2 False P3 False P4 False                                           | Process       | Flag  |  |  |  |  |
| P2 False P3 False P4 False                                                   | P0            | False |  |  |  |  |
| P3 False P4 False                                                            | P1            | True  |  |  |  |  |
| P4 False                                                                     | P2            | False |  |  |  |  |
|                                                                              | Р3            | False |  |  |  |  |
| Safe Sequence                                                                | P4            | False |  |  |  |  |
|                                                                              | Safe Sequence |       |  |  |  |  |

| Work |   |   |  |  |  |
|------|---|---|--|--|--|
| Α    | В | С |  |  |  |
| 5    | 3 | 2 |  |  |  |

### **Deadlocks: Deadlock Avoidance & Detection - Examples**



### **Example 1 - Safety Algorithm**

|    | RMax |   |       |   |   |     |
|----|------|---|-------|---|---|-----|
| А  | В    | С | A B C |   |   | i 4 |
| 10 | 5    | 7 | 7     | 4 | 3 |     |

| Proces | <b>D</b> |   | Allocation |   |    | Max |    | Need=>Max-Allocated |    |   |         |       |
|--------|----------|---|------------|---|----|-----|----|---------------------|----|---|---------|-------|
|        | Process  | Α | В          | С | Α  | В   | С  | А                   | В  | С | Process | Flag  |
|        | P0       | 0 | 1          | 0 | 7  | 5   | 3  | 7                   | 4  | 3 | P0      | False |
|        | P1       | 2 | 0          | 0 | 3  | 2   | 2  | 1                   | 2  | 2 | P1      | True  |
|        | P2       | 3 | 0          | 2 | 9  | 0   | 2  | 6                   | 0  | 0 | P2      | False |
|        | Р3       | 2 | 1          | 1 | 2  | 2   | 2  | 0                   | 1  | 1 | Р3      | True  |
|        | P4       | 0 | 0          | 2 | 4  | 3   | 3  | 4                   | 3  | 1 | P4      | True  |
|        | Total    | 7 | 2          | 5 | 25 | 12  | 12 | 18                  | 10 | 7 | •       |       |

| Work |     |     |  |  |  |  |
|------|-----|-----|--|--|--|--|
| Α    | В   | С   |  |  |  |  |
| 7+0  | 4+0 | 3+2 |  |  |  |  |

| Safe Sequence |    |    |  |  |  |  |
|---------------|----|----|--|--|--|--|
| P1            | Р3 | P4 |  |  |  |  |

### **Deadlocks: Deadlock Avoidance & Detection - Examples**



### **Example 1 - Safety Algorithm**

|    | RMax |   |   | Work |   |   |   |
|----|------|---|---|------|---|---|---|
| А  | В    | С | Α | В    | С | i | 2 |
| 10 | 5    | 7 | 7 | 4    | 5 |   |   |

| Process |   | Allocation |   |    | Max |    | Need: | =>Max-Allo | cated |  |  |  |
|---------|---|------------|---|----|-----|----|-------|------------|-------|--|--|--|
|         | A | В          | С | А  | В   | С  | A     | В          | С     |  |  |  |
| P0      | 0 | 1          | 0 | 7  | 5   | 3  | 7     | 4          | 3     |  |  |  |
| P1      | 2 | 0          | 0 | 3  | 2   | 2  | 1     | 2          | 2     |  |  |  |
| P2      | 3 | 0          | 2 | 9  | 0   | 2  | 6     | 0          | 0     |  |  |  |
| Р3      | 2 | 1          | 1 | 2  | 2   | 2  | 0     | 1          | 1     |  |  |  |
| P4      | 0 | 0          | 2 | 4  | 3   | 3  | 4     | 3          | 1     |  |  |  |
| Total   | 7 | 2          | 5 | 25 | 12  | 12 | 18    | 10         | 7     |  |  |  |

| Process | Flag  |
|---------|-------|
| P0      | False |
| P1      | True  |
| P2      | True  |
| Р3      | True  |
| P4      | True  |
|         |       |

| Work |     |       |  |  |  |
|------|-----|-------|--|--|--|
| Α    | В   | С     |  |  |  |
| 7+3  | 4+0 | 3+2+2 |  |  |  |

| Safe Sequence |    |    |    |  |  |  |  |
|---------------|----|----|----|--|--|--|--|
| P1            | Р3 | P4 | P2 |  |  |  |  |

### **Deadlocks: Deadlock Avoidance & Detection - Examples**



### **Example 1 - Safety Algorithm**

|    | RMax |   |    | Work |   |   |   |
|----|------|---|----|------|---|---|---|
| А  | В    | С | Α  | В    | С | i | 0 |
| 10 | 5    | 7 | 10 | 4    | 7 |   |   |

| Dunner  |   | Allocation |   |    | Max |    | Need: |    |   |         |  |
|---------|---|------------|---|----|-----|----|-------|----|---|---------|--|
| Process | Α | В          | С | Α  | В   | С  | А     | В  | С | Process |  |
| P0      | 0 | 1          | 0 | 7  | 5   | 3  | 7     | 4  | 3 | P0      |  |
| P1      | 2 | 0          | 0 | 3  | 2   | 2  | 1     | 2  | 2 | P1      |  |
| P2      | 3 | 0          | 2 | 9  | 0   | 2  | 6     | 0  | 0 | P2      |  |
| Р3      | 2 | 1          | 1 | 2  | 2   | 2  | 0     | 1  | 1 | Р3      |  |
| P4      | 0 | 0          | 2 | 4  | 3   | 3  | 4     | 3  | 1 | P4      |  |
| Total   | 7 | 2          | 5 | 25 | 12  | 12 | 18    | 10 | 7 |         |  |

| Process | Flag |  |
|---------|------|--|
| P0      | True |  |
| P1      | True |  |
| P2      | True |  |
| Р3      | True |  |
| P4      | True |  |

| Work |     |     |  |  |  |  |
|------|-----|-----|--|--|--|--|
| Α    | В   | С   |  |  |  |  |
| 10+0 | 4+1 | 7+0 |  |  |  |  |

| Safe Sequence |    |    |    |    |  |  |  |  |
|---------------|----|----|----|----|--|--|--|--|
| P1            | Р3 | P4 | P2 | P0 |  |  |  |  |

### **Deadlocks: Deadlock Avoidance & Detection - Examples**



### **Example 1 - Safety Algorithm**

Suppose we have 5 processes(P0, P1, P2, P3, P4) and 3 resource types(A, B, C) each having (10,5,7) instances. Suppose at time t1 if the snapshot of the system taken is as follows then find the system is in a safe state or not, after finding the need

|    | RMax |   |    | Work |   |   |   |
|----|------|---|----|------|---|---|---|
| А  | В    | С | А  | В    | С | i | 0 |
| 10 | 5    | 7 | 10 | 5    | 7 |   |   |

|  | D       |   | Allocation |   | Max Need=>Max-Allocated |    |    |    |    |   |         |  |
|--|---------|---|------------|---|-------------------------|----|----|----|----|---|---------|--|
|  | Process | Α | В          | С | Α                       | В  | С  | А  | В  | С | Process |  |
|  | P0      | 0 | 1          | 0 | 7                       | 5  | 3  | 7  | 4  | 3 | P0      |  |
|  | P1      | 2 | 0          | 0 | 3                       | 2  | 2  | 1  | 2  | 2 | P1      |  |
|  | P2      | 3 | 0          | 2 | 9                       | 0  | 2  | 6  | 0  | 0 | P2      |  |
|  | Р3      | 2 | 1          | 1 | 2                       | 2  | 2  | 0  | 1  | 1 | Р3      |  |
|  | P4      | 0 | 0          | 2 | 4                       | 3  | 3  | 4  | 3  | 1 | P4      |  |
|  | Total   | 7 | 2          | 5 | 25                      | 12 | 12 | 18 | 10 | 7 |         |  |

| Process | Flag |
|---------|------|
| P0      | True |
| P1      | True |
| P2      | True |
| Р3      | True |
| P4      | True |
|         |      |

| Work |   |   |
|------|---|---|
| Α    | В | С |
| 10   | 5 | 7 |

| Safe Sequence |    |    |    |    |  |
|---------------|----|----|----|----|--|
| P1            | Р3 | P4 | P2 | P0 |  |

#### **Deadlocks: Deadlock Avoidance & Detection**



#### Banker's Algorithm: Resource Request Algorithm

- Let Work and Finish be vectors of length m and n, respectively Initialize:
  - (a) Work = Available
  - (b) For i = 1,2, ..., n, if Allocation; ≠ 0, then Finish[i] = false; otherwise, Finish[i] = true
- Find an index i such that both:
  - (a) Finish[i] == false
  - (b)  $Request_i \leq Work$

If no such *i* exists, go to step 4

#### **Deadlocks: Deadlock Avoidance & Detection**



Banker's Algorithm: Safety Algorithm

4. If Finish[i] == false, for some i,  $1 \le i \le n$ , then the system is in deadlock state. Moreover, if Finish[i] == false, then  $P_i$  is deadlocked

Algorithm requires an order of  $O(m \times n^2)$  operations to detect whether the system is in deadlocked state

### **Deadlocks: Deadlock Avoidance & Detection**



### Banker's Algorithm: Safety Algorithm

Now, the algorithm assumes that the resources have been allocated and modifies the data structure accordingly.

```
Available = Available - Request(i)
```

Algorithm requires an order of  $O(m \times n^2)$  operations to detect whether the system is in deadlocked state

### **Deadlocks: Deadlock Avoidance & Detection - Examples**



C

#### **Example 1 - Resource Request Algorithm**

Suppose we have 5 processes(P0, P1, P2, P3, P4) and 3 resource types(A, B, C) each having (10,5,7) instances. a new request comes from P1 =>(1,0,2). Can the resource request be granted immediately and safely

| RMax |   |   |  |
|------|---|---|--|
| А    | В | С |  |
| 10   | 5 | 7 |  |

| Available=>Rmax-Allocated |   |   |  |
|---------------------------|---|---|--|
| А                         | В | С |  |
| 3                         | 3 | 2 |  |

| Work |   |   |  |  |
|------|---|---|--|--|
| 1    | 0 | 2 |  |  |
| A    | В | С |  |  |

Request by P1

| Dungana |   | Allocation |   |    | Max |    |
|---------|---|------------|---|----|-----|----|
| Process | Α | В          | С | Α  | В   | С  |
| P0      | 0 | 1          | 0 | 7  | 5   | 3  |
| P1      | 2 | 0          | 0 | 3  | 2   | 2  |
| P2      | 3 | 0          | 2 | 9  | 0   | 2  |
| Р3      | 2 | 1          | 1 | 2  | 2   | 2  |
| P4      | 0 | 0          | 2 | 4  | 3   | 3  |
| Total   | 7 | 2          | 5 | 25 | 12  | 12 |

| Need: | Need=>Max-Allocated |   |  |
|-------|---------------------|---|--|
| Α     | В                   | С |  |
| 7     | 4                   | 3 |  |
| 0     | 2                   | 0 |  |
| 6     | 0                   | 0 |  |
| 0     | 1                   | 1 |  |
| 4     | 3                   | 1 |  |
| 18    | 10                  | 7 |  |

| Process | Flag  |
|---------|-------|
| P0      | False |
| P1      | False |
| P2      | False |
| P3      | False |

18 of 20

Content / Slides adapted from Operating Systems Concepts 9/e

**Topics Uncovered in this Session** 



Examples : Deadlock
 Avoidance & Deadlock
 Detection



### **THANK YOU**

Nitin V Pujari Faculty, Computer Science Dean - IQAC, PES University

nitin.pujari@pes.edu

For Course Deliverables by the Anchor Faculty click on <a href="www.pesuacademy.com">www.pesuacademy.com</a>