

Indian Institute of Technology Palakkad

Department of Computer Science and Engineering CS5616 Computational Complexity

January – May 2024

Problem Set – 3

Total Points – 50

Name: Neeraj Krishna N

Given on 29 Feb

Roll no: 112101033

Due on 11 Mar

Instructions

• Use of resources other than class notes and references is forbidden.

• Collaboration is not allowed. Credit will be given for attempts and partial answers.

1. (10 points) (**RE vs co-RE**) Show that the set

 $\{M \mid M \text{ halts on all inputs of length less than } 42\}$

is recursively enumerable, but is its complement is not.

Solution:

 $L = \{M \mid M \text{ halts on all inputs of less than 42}\}$

 $L = \{M | \forall x \in \Sigma^*(|x| < 42 \implies M \text{ halts on } x)\}$

 $L = \{M | \forall x \in \Sigma^*(|x| < 42 \implies \exists t \in \mathbb{N}, t > 0M \text{ halts in } t \text{ steps})\}$

 $L = \{M | \forall x \in \Sigma^*, \exists t \in \mathbb{N}, t > 0 (|x| < 42 \implies M \text{ halts in } t \text{ steps})\}$

The decidable predicate R here is $\{(M, x, t) \mid M \text{ halts on } x \text{ in } t \text{ steps}\}$

By the characterisation of arithmetic hierarchy, we can conclude that $L \in \Sigma_1$, Hence L is recursively enumerable.

- 2. (10 points) (Alternate definition for Δ_i) Let A be any language. Define \mathcal{D}^A be the class of all languages L such that L is decidable in A. Similarly, \mathcal{SD}^A be the class of all L such that L is semi-decidable in A and $\mathsf{co}\mathcal{SD}^A$ be the class of all languages whose complement is in \mathcal{SD}^A .
 - (a) (5 points) Show that $\mathcal{D}^A = \mathcal{S}\mathcal{D}^A \cap \mathsf{co}\mathcal{S}\mathcal{D}^A$.
 - (b) (5 points) For any $i \geq 1$, by definition, $\Delta_i = \Sigma_i \cap \Pi_i$. Show that

 $\Delta_i = \{L \mid \text{ there exists } A \in \Sigma_{i-1} \text{ such that } L \text{ is decidable in A} \}.$

Solution:			
(a)			
(b)			
(b)			

3. (10 points) (Closure properties of Σ_n, Π_n). Fix any $i \geq 1$. Show that Σ_i as well as Π_i are closed under intersection and union.

Solution:			

- 4. (20 points) (**Rice's theorem**) Identify if the following are (0) properties of SD languages, (1) non-trivial properties and (2) non-monotone properties. If (1) / (2) is true, apply Rice's theorems suitably and give your conclusions. A direct use of diagonalisation or reductions does not fetch any credit.
 - (a) (4 points) given a Turing machine M, L(M) is not regular?
 - (b) (4 points) given a Turing machine M, does there exist a non-empty regular set L' such that $L' \subseteq L(M)$?
 - (c) (4 points) given M, does M represent a DFA that accepts some string with equal number of 0s and 1s?
 - (d) (4 points) given a Turing machine M, is $L(M) \in \Pi_{42}$?

Solution:			
(a)			

(b)			
(c)			
(d)			