rls_dual_mkl: A PFBS-based Implementation for Multiple Kernel Learning

(Jeremiah) Zhe Liu

 ${\it ZHL}112@{\it MAIL.HARVARD.EDU}$

Department of Biostatistics Harvard School of Public Health Boston, MA, 02115

Contents

1	Intr	oduct	ion	
	1.1	Multij	ple Kernel Learning Problem	
	1.2	Iterati	ive PFBS Algorithm	
	1.3	Imple	mentation Detail	
		1.3.1	Block-wise Update	
		1.3.2	Choice of Stepsize	
		1.3.3	Effect of μ and τ	

1. Introduction

1.1. Multiple Kernel Learning Problem

Multiple kernel learning (MKL) (Bach et al. (2004)) is the process of finding an optimal kernel from a prescribed (convex) set \mathcal{K} of basis kernels, for learning a real-valued function by regularization. In this work, we consider a RKHS $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \cdots \oplus \mathcal{H}_M$ with reproducting kernel $\mathbf{k} \in \mathcal{K} = \{\sum_{i=1}^M c_i \mathbf{k}_i | (c_i \geq 0 \forall i) \land \sum_{i=1} c_i = 1\}$ such that $f = \sum_{i=1}^M f_i, f_i \in \mathcal{H}_i$. By Micchelli and Pontil (2005), the problem of multiple kernel learning corresponds to find f^* such that:

$$\arg\min_{f\in\mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} Q(\sum_{j=1}^{M} f_j(\mathbf{x}), \mathbf{y}) + \tau g\left(\left(\sum_{j=1}^{M} ||f_j||_{\mathcal{H}}\right)^2\right) \right\}$$

Rosasco et al. (2009) generalized above problem by taking Q to be square loss, $g(.) = \sqrt{.}$ and also impose L1 regularization, leading to the elastic-net-regulated problem:

$$\arg\min_{f\in\mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{M} f_j(x_i) - y_i \right)^2 + \mu \sum_{j=1}^{M} ||f_j||_{\mathcal{H}}^2 + 2\tau \sum_{j=1}^{M} ||f_j||_{\mathcal{H}} \right\}$$
 (1)

1.2. Iterative PFBS Algorithm

By Theorem 1 of Rosasco et al. (2009), since the penalty function is lower semicontinuous, coercive, convex and one-homogenous, solution to problem 1 f^* is the unique fixed point of the the contractive mapping with step size σ :

$$\mathcal{T}_{\sigma}(f) = (\mathbf{I} - \pi_{\frac{\tau}{\sigma}K}) \left(f - \frac{1}{2\sigma} \nabla_f \left[\frac{1}{n} ||f - y||^2 \right] \right)$$

where $\pi_{\frac{\tau}{\sigma}K}(g)$ is a project operator which project g to $\mathcal{H}' = \{f \in \mathcal{H} | ||f_j||_{\mathcal{H}_j} \leq \frac{1}{\tau/\sigma} \,\forall j\}$, or more rigorously:

$$\pi_{\frac{\tau}{\sigma}K}(g) = \frac{\tau}{\sigma}v, \quad \text{where } v = \arg\min_{v \in \mathcal{H}, ||v_i|| \le 1} ||\frac{\tau}{\sigma}v - g||_{\mathcal{H}}^2$$

Above mapping can also be written in terms of Kernel matrices by generalizing representer theorem and write $f_j^*(x) = \sum_{i=1}^n \alpha_{ji}^T k_j(x_i, x) = \alpha_j^T \mathbf{k}_j(x)$, where α_j and $\mathbf{k}_j(x)$ are $n \times 1$ vectors. Further, if denote:

$$\mathbf{\alpha}_{Mn\times 1} = (\mathbf{\alpha}_1, \dots, \mathbf{\alpha}_M)^T$$

$$\mathbf{k}(x)_{Mn\times 1} = (\mathbf{k}_1(x)^T, \dots, \mathbf{k}_M(x)^T)^T$$

$$\mathbf{K}_{Mn\times Mn} = \begin{bmatrix} \mathbf{K}_1 & \dots & \mathbf{K}_M \\ \vdots & \ddots & \vdots \\ \mathbf{K}_1 & \dots & \mathbf{K}_M \end{bmatrix}, \text{ where } \mathbf{K}_i = \mathbf{k}_i(.)\mathbf{k}_i(.)^T$$

$$\mathbf{y}_{Mn\times 1} = (y_{n\times 1}^T, \dots, y_{n\times 1}^T)^T$$

The contraction mapping can be written as:

$$\mathcal{T}_{\sigma}(f) = (\mathbf{I} - \pi_{\frac{\tau}{\sigma}K}) \left(\left[(1 - \frac{\mu}{\sigma}) \boldsymbol{\alpha} - \frac{1}{\sigma n} (\mathbf{K} \boldsymbol{\alpha} - \mathbf{y}) \right]^{T} \mathbf{k} \right) \quad \text{where}$$

$$\pi_{\frac{\tau}{\sigma}K}(g)_{j} = \min\{1, \frac{||g_{j}||_{\mathcal{H}_{j}}}{\tau/\sigma}\} * \frac{g_{j}}{||g_{j}||_{\mathcal{H}_{j}}} = \min\{1, \frac{\sqrt{\boldsymbol{\alpha}_{j}^{T} \mathbf{K}_{j} \boldsymbol{\alpha}_{j}}}{\tau/\sigma}\} * \frac{\boldsymbol{\alpha}_{j}^{T} \mathbf{k}_{j}}{\sqrt{\boldsymbol{\alpha}_{j}^{T} \mathbf{K}_{j} \boldsymbol{\alpha}_{j}}}$$

$$(2)$$

Thus the projection $\mathbf{I} - \pi_{\frac{\tau}{\sigma}K}$ corresponds to the soft-thresholding operator for α_j :

$$\mathbf{S}_{\frac{\tau}{\sigma}}(K, \boldsymbol{\alpha})_j = \frac{\boldsymbol{\alpha}_j^T}{\sqrt{\boldsymbol{\alpha}_j^T \mathbf{K}_j \boldsymbol{\alpha}_j}} (\sqrt{\boldsymbol{\alpha}_j^T \mathbf{K}_j \boldsymbol{\alpha}_j} - \frac{\tau}{\sigma})_+$$

Above discussions lead to below algorithm:

Algorithm 1: MKL Algorithm

set
$$\alpha^0 = \mathbf{0}$$

for p = 1 to MAX_ITER do

$$\boldsymbol{\alpha}_0^p = (1 - \frac{\mu}{\sigma})\boldsymbol{\alpha}^{p-1} - \frac{1}{\sigma n}(\mathbf{K}\boldsymbol{\alpha}^{p-1} - \mathbf{y})$$
$$\boldsymbol{\alpha}^p = \mathbf{S}_{\frac{\tau}{\sigma}}(K, \boldsymbol{\alpha}_0^p)$$

end for

$$\mathbf{return} \ f^{\mathtt{MAX_ITER}} = (\boldsymbol{\alpha}^{\mathtt{MAX_ITER}})^T \mathbf{k}$$

1.3. Implementation Detail

1.3.1. BLOCK-WISE UPDATE

Notice that in (2), \mathcal{T}_{σ} updates $\boldsymbol{\alpha}$ by group, it is thus possible to write \mathcal{T} at p^{th} step as:

$$\mathcal{T}_{\sigma}^{p} = [\mathcal{T}_{\sigma,1}^{p}, \mathcal{T}_{\sigma,2}^{p}, \dots, \mathcal{T}_{\sigma,M}^{p}] \quad \text{with} \quad \mathcal{T}_{\sigma,j}^{p} = \mathbf{S}_{\frac{\tau}{\sigma}} \Big(K, \boldsymbol{\alpha}_{0} \Big)_{j}$$
$$\boldsymbol{\alpha}_{0} = (1 - \frac{\mu}{\sigma}) \boldsymbol{\alpha}_{j}^{p-1} - \frac{1}{n\sigma} * \boldsymbol{\epsilon}^{p-1} \quad \text{where } \boldsymbol{\epsilon}^{p-1} = (\sum_{j=1}^{M} \mathbf{K}_{j} \boldsymbol{\alpha}_{j}^{p-1} - y)$$

by using above method we are able to avoid working directly with the $Mn \times Mn$ matrix **K** (as defined earlier in section 1.2), which led to reduced memory cost ¹ and reduced difficulty in selecting stepsize and regularization parameters.

^{1.} $O(Mn^2)$ instead of $O(M^2n^2)$

1.3.2. Choice of Stepsize

Based on Bach et al. (2004), it can be shown that a suitable choice of σ is $\sigma = \frac{1}{4}(a*L_{min} + b*L_{max}) + \mu$, where (b,a) denotes the lower/upper bound on the eigenvalue of \mathbf{K} , and (L_{min}, L_{max}) denotes the lower/upper bound of $\nabla^2 Q(\mathbf{f}, \mathbf{y})$.

In the context where Q is square loss (i.e. $\nabla^2_{\mathbf{f}}Q(\mathbf{f},\mathbf{y})=2$), we have:

$$\sigma = \frac{1}{2}(a+b) + \mu$$

A naive choice of a would be the largest eigenvalue of $\mathbf{K}_{nM\times nM}$, which not only is computationally expensive but also leads to overly slow convergence. In pactice, if denote the maximum eigenvalue of each kernel matrix K_j to be a_j , it is found that setting a to be $\max_{j\in\{1,\dots,M\}}(a_j)$ is suffice to guarantee convergence. This is because the mapping $\boldsymbol{\alpha}^{p-1}\mapsto \boldsymbol{\alpha}_0^p$ can be written as:

$$\boldsymbol{\alpha}_0 = (1 - \frac{\mu}{\sigma})\boldsymbol{\alpha}_j^{p-1} - \frac{1}{n} * \sum_{j=1}^M \frac{1}{\sigma} (\mathbf{K}_j \boldsymbol{\alpha}_j^{p-1} - \frac{y}{n})$$

As shown, in $\alpha^{p-1} \mapsto \alpha_0^p$ we actually updated α^{p-1} M times, with step size $\frac{1}{\sigma}(\mathbf{K}_j \alpha_j^{p-1} - \frac{y}{n})$ in each step. It is thus sufficient to find a a that properly scale the magnitude of all $||\mathbf{K}||$, leading natually to the choice $a = \max_{j \in \{1,..,M\}} (a_j)$.

1.3.3. Effect of μ and τ

The convergence of the aforementioned procedure is guaranteed by Banach Fixed Point theorem, given proper choice of σ .

Zou and Hastie (2005)

Rosasco et al. (2009)

Contraction mapping

$$||(1-\frac{\mu}{\sigma})\mathbf{I}-\frac{1}{\sigma n}\mathbf{K}||$$

Continuation strategy.

$$\frac{\tau}{\sigma_{max}} = \frac{||y||^2}{||\mathbf{K}||}$$

2. Software Structure and Usage

- 1. Parameter Specification
 - util/gurls_defopt_mkl
- 2. Kernel Generation
 - kernel/kernel_mkl
- 3. Parameter Selection
 - kernel/paramsel_homkl
 - util/paramsel_L1ratioguesses
- 4. Optimization
 - optimizers/rls_dual_mkl
 - optimizers/rls_dual_mkl_pfbs
 - util/ConsoleProgressBar
 - summary/plot_mkl_L1path
- 5. Prediction
 - kernel/predkernel_traintest
 - optimizers/pred_dual_mkl
- 6. Performance assessment
 - perf/perf_rmsestd
 - 3. Example

2

^{2.} LIBSVM Data Repository: 'https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html'

References

- F Bach, G Lanckriet, and M Jordan. Multiple kernel learning, conic duality, and the smo algorithm. ACM International Conference Proceeding Series, 69, 2004.
- C Micchelli and M Pontil. Learning the kernel function via regularization. *Journal of Machine Learning Research*, 6:10991125, 2005.
- L Rosasco, S Mosci, M Santoro, A Verri, and S Villa. Iterative projection methods for structured sparsity regularization. Technical report, MIT, 2009.
- H Zou and T Hastie. Regularization and variable selection via the elastic net. J. R. Statist. Soc. B, 67, Part 2:301320, 2005.