北京工业大学 2013 — 2014 学年第二学期 《普通物理 | -2》考试试卷

得分 一、 填空题 (共 32 分)
1. (本题 2 分) 半径为 R 的半球面置于场强为 Ē的均匀电场中,其对称轴与场强方向一致,如图所示.则通过该半球面的电场强度通量为
2. (本题 2 分) 两块面积均为 S 的金属平板 A 和 B 彼此平行 q_1 q_2
放置, 板间距离为 d(d 远小于板的线度), 设 A 板带有电荷 q ₁ ,
B 板带有电荷 q_2 ,则 AB 两板间的电势差 U_{AB} 为 S d d A B
3. (本题 4 分) 一平行板电容器, 充电后与电源断开, 然后使两极板间充满
对介电常量为& 的各向同性均匀电介质,这时两极板之间的电场强度是原来的
4. (本题 4 分) 如图,均匀磁场中放一均匀带正电荷的圆环, 其线电荷密度为 λ ,圆环可绕通过环心 O 与环面垂直的转轴旋 转. 当圆环以角速度 ω 转动时,圆环受到的磁力矩为 ,其方向。
5. (本题 4分) 一个绕有 500 匝导线的平均周长 50 cm 的细环,载有 0.3 A F
流时,铁芯的相对磁导率为600,则
(1) 铁芯中的磁感强度 B 为;
(2) 铁芯中的磁场强度 H 为。 ($\mu_0 = 4\pi \times 10^{-7} \text{T} \cdot \text{m} \cdot \text{A}^{-1}$

6. (本题 2 分) 在圆柱形空间内有一磁感强度为 \bar{B} 的均匀磁场,

如图所示, \vec{B} 的大小以速率 dB/dt 变化. 有一长度为 l_0 的金属棒 先后放在磁场的两个不同位置 1(ab)和 2(a'b'),则金属棒在这 两个位置时棒内的感应电动势的大小关系为

- (A) $\Box_2 = \Box_1 \neq 0$; (B) $\Box_2 > \Box_1$;
- (C) $\square_2 < \square_1$; (D) $\square_2 = \square_1 = 0$.
- 7. (本题 2 分) 在康普顿散射中,若入射光子与散射光子的波长分别为 λ 和 λ' , 则反冲电子获得的动能 $E_K = ____$
- 8. (本题 2 分) (本题 2 分)根据量子力学理论, 氢原子中电子的动量矩在 外磁场方向上的投影为 $L_z = m_t \hbar$, 当角量子数 l = 2 时, L_z 的可能取值为
- 9. (本题 2 分)根据量子力学理论,原子内电子的量子态由 (n, l, m_l, m_s) 四个 量子数表征. 那么, 处于基态的氦原子内两个电子的量子态可由 和 两组量子数表征。
- 10. (本题 2 分) 与绝缘体相比较, 半导体的导电性能高, 其能带结构的特点是
- 11. (本题 2 分) 太阳能电池中,本征半导体锗的禁带宽度是 0.67 eV,它能吸收 的辐射的最大波长是____。

(普朗克常量 $h = 6.63 \times 10^{-34} \,\text{J} \cdot \text{s}$, $1 \,\text{eV} = 1.60 \times 10^{-19} \,\text{J}$)

12. **(本题 4 分)** 若硅用锑(5 价元素)掺杂,则成为型 半导体. 请在所附的能带图中定性画出施主能级或受主能级。

二、计算题(共68分)

1. (本题 10 分) 带电细线弯成半径为 R 的半圆形,电荷线密度为 $\lambda=\lambda_0\sin\phi$,式中 λ_0 为一常数, ϕ 为半径 R 与 x 轴所成的夹角,如图所示。试求环心 O 处的电场强 度。

2. (本题 10 分) 在一个半径为 R 的金属球之外, 有一与金属球同心的均匀各向同性的电介质球壳, 其外半径为 R', 球壳外面为真空。电介质的相对电容率为 ϵ_r , 金属球所带电荷为 Q。 试求其空间各部分的(1) 电场强度的分布; (2)电势分布。

3. (本题 10 分) 在真空中,电流由长直导线 1 沿垂直于底边bc方向经a点流入一由电阻均匀的导线构成的正三角形金属线框,再由b点从三角形框流出,经长直导线 2 沿cb 延长线方向返回电源(如图)。已知长直导线上的电流强度为I,三角框的每一边长为I,求正三角形的中心点O处的磁感强度 \bar{B} 。

4. (本题 10 分) 金属杆 AB 以匀速 v=2 m/s 平行于长直载流导线运动,导线与 AB 共面且相互垂直,如图所示。已知导线载有电流 I=40 A,求此金属杆中的感应电动势 \Box 的大小与方向。($\ln 2=0.69$)

- **5.** (本题 10 分)已知氢原子光谱的某一线系的极限波长为 364.7nm,其中有一谱线波长为 656.5nm,试求与该波长相应的始态与终态能级的能量。(普朗克常量 $h=6.63\times10^{-34}\,\mathrm{J}\cdot\mathrm{s}$,1 eV =1.60 $\times10^{-19}\,\mathrm{J}$)。
- **6.** (本题 6 分) 考虑到相对论效应,试求实物粒子的德布罗意波长的表达式,设 E_K 为粒子的动能, m_0 为粒子的静止质量。
- 7. (本题 6 分) 波长为 350.0nm 的光子照射某种材料的表面,实验发现,从该表面发出的能量最大的光电子在 $B=1.5\times10^{-5}\,\mathrm{T}$ 的磁场中偏转而成的圆轨道半径 $R=18\,\mathrm{cm}$,求该材料的逸出功 A 是多少电子伏特? (基本电荷 $e=1.60\times10^{-19}\,\mathrm{C}$,电子质量 $m=9.11\times10^{-31}\,\mathrm{kg}$,普朗克常量 $h=6.63\times10^{-34}\,\mathrm{J}$ · s, $1\mathrm{eV}=1.60\times10^{-19}\,\mathrm{J}$)
- **8.** (本题 6 分)已知粒子在无限深势阱中运动,其波函数为 $\psi(x) = \sqrt{2/a}\sin(3\pi x/a)$ (0 $\leq x \leq a$) 求发现粒子的概率密度为最大的位置。

资料由公众号【工大喵】收集整理并免费分享

参考答案

一、填空题:

1.
$$\pi R^2 E$$
 2. $\frac{q_1 - q_2}{2\varepsilon_0 S} d$ 3. $\frac{1}{\varepsilon_r}; \frac{1}{\varepsilon_r}$

4. $\pi R^3 \lambda B \omega$ 在图面中向上

5. 0.226 T ; 300 A/m

7.
$$hc \frac{\lambda' - \lambda}{\lambda \lambda'}$$

根据能量守恒定律有

$$m_e c^2 + h v = mc^2 + h v'$$

 $E_K = mc^2 - m_e c^2 = h v - h v' = \frac{hc}{\lambda} - \frac{hc}{\lambda'} = \frac{hc(\lambda' - \lambda)}{\lambda \lambda'}$ 则

8. $0, \hbar, -\hbar, 2\hbar, -2\hbar$

9.
$$(1, 0, 0, \frac{1}{2})$$
 1 $\%$

$$(1, 0, 0, -\frac{1}{2})$$

10.半导体的禁带宽度较绝缘体窄。

 $11.1.85 \times 10^4 \text{ Å} = 1.85 \times 10^3 \text{ nm}$

$$11.1.85 \times 10^4 \text{ A} = 1.85 \times 10^3 \text{ nm}$$

12. n 答案见图

2分 2分

二、计算题

1.解: 在 炒取电荷元, 其电荷为

 $dq = \lambda dl = \lambda_0 R \sin \phi \, d\phi$

它在 0 点产生的场强为

$$dE = \frac{dq}{4\pi\varepsilon_0 R^2} = \frac{\lambda_0 \sin \phi d\phi}{4\pi\varepsilon_0 R}$$

在x、y轴上的二个分量

$$dE_x = -dE\cos\phi$$
 1分

$$dE_y = -dE\sin\phi$$
 1分

对各分量分别求和
$$E_x = \frac{\lambda_0}{4\pi\varepsilon_0 R} \int_0^{\pi} \sin\phi \cos\phi \, d\phi = 0$$
 2分

$$E_{y} = \frac{\lambda_{0}}{4\pi\varepsilon_{0}R} \int_{0}^{\pi} \sin^{2}\phi \, d\phi = -\frac{\lambda_{0}}{8\varepsilon_{0}R}$$
 2 \(\frac{\partial}{2}\)

$$\vec{E} = E_x \vec{i} + E_y \vec{j} = -\frac{\lambda_0}{8\varepsilon_0 R} \vec{j}$$
 1分

2 解: (1) 由
$$\iint_s \vec{D} \cdot d\vec{S} = \sum q_i$$
 得 $D = \frac{Q}{4\pi r^2}$

所以
$$E = 0$$
 $(r < R)$ 15

$$E = \frac{Q}{4\pi\varepsilon_0\varepsilon_r r^2} \qquad (R < r < R') \qquad 2 \, \%$$

$$E = \frac{Q}{4\pi\varepsilon_0 r^2} \qquad (r > R')$$
 1 \(\frac{1}{2}\)

(2)
$$\varphi_{I} = \int_{R}^{R'} \frac{Q}{4\pi\varepsilon_{0}\varepsilon_{r}r^{2}} dr + \int_{R'}^{\infty} \frac{Q}{4\pi\varepsilon_{0}\varepsilon_{r}r^{2}} dr$$

$$= \frac{Q}{4\pi\varepsilon_{0}\varepsilon_{r}R} + \frac{Q}{4\pi\varepsilon_{0}R'} (1 - \frac{1}{\varepsilon_{r}}) \qquad (r < R)$$

$$\varphi_{2} = \int_{r}^{R'} \frac{Q}{4\pi\varepsilon_{0}\varepsilon_{r}r^{2}} dr + \int_{R'}^{\infty} \frac{Q}{4\pi\varepsilon_{0}\varepsilon_{r}r^{2}} dr$$

$$= \frac{Q}{4\pi\varepsilon_{0}\varepsilon_{r}r} + \frac{Q}{4\pi\varepsilon_{0}R'} (1 - \frac{1}{\varepsilon_{r}}) \qquad (R < r < R')$$

$$\varphi_3 = \int_r^\infty \frac{Q}{4\pi\varepsilon_0 r^2} dr = \frac{Q}{4\pi\varepsilon_0 r} \qquad (r > R')$$

3. 解:令 \vec{B}_1 、 \vec{B}_2 、 \vec{B}_{acb} 和 \vec{B}_{ab} 分别代表长直导线 1、2 和三角形框 ac、cb 边和 ab 边中的电流在 o 点产生的磁感强度.则 $\vec{B} = \vec{B}_1 + \vec{B}_2 + \vec{B}_{acb} + \vec{B}_{ab}$

$$\vec{B}_1$$
: 由于 O 点在导线 1 的延长线上,所以 \vec{B}_1 = 0.

 \bar{B}_2 : 由毕奥一萨伐尔定律,有 $B_2 = \frac{\mu_0 I}{4\pi d} (\sin 90^\circ - \sin 60^\circ)$

式中

$$d = \overline{Oe} = \frac{1}{2}l \cdot \tan 30^\circ = \sqrt{3}l/6$$

$$B_2 = \frac{6\mu_0 I}{4\pi \cdot \sqrt{3}I} (1 - \frac{\sqrt{3}}{2}) = \frac{\mu_0 I}{4\pi I} (2\sqrt{3} - 3)$$
 2 \(\frac{\frac{1}}{2}\)

$$\vec{B}_{acb}$$
和 \vec{B}_{ab} : 由于 ab 和 acb 并联,有 $I_{ab} \cdot R_{ab} = I_{acb} \cdot R_{acb}$ 2 分

又由于电阻在三角框上均匀分布,有 $\frac{R_{ab}}{R_{acb}} = \frac{\overline{ab}}{\overline{ac} + \overline{cb}} = \frac{1}{2}$

 $I_{ab} = 2I_{ac}$

由毕奥一萨伐尔定律,有
$$B_{acb}=B_{ab}$$
且方向相反. 1分

$$\therefore B = B_2 = \frac{\mu_0 I}{4\pi l} (2\sqrt{3} - 3), \ \vec{B} \text{ 的方向垂直纸面向里}.$$
 2 分

4.解:如图选取坐标

对于 **x-x+dx** 线元,有
$$d\varepsilon_i = (\vec{v} \times \vec{B}) \cdot d\vec{l} = -vBdx = -\frac{\mu_0 I v dx}{2\pi x}$$
 3 分

于是:
$$\varepsilon_i = \int d\varepsilon_i = -\frac{\mu_0 I v}{2\pi} \int_1^2 \frac{dx}{x} = -\frac{\mu_0 I v}{2\pi} \ln 2$$
 4分

 $\begin{array}{c|c}
I & \overline{v} \\
\hline
A & B \\
\hline
1 m & 1 m & X
\end{array}$

动生电动势: $\left| \varepsilon_i \right| = \frac{\mu_0 I v}{2\pi} \ln 2 = 1.1 \times 10^{-5} \ V$ 1 分电动势方向从 B 到 A 2 分

5. 解:极限波数 $\tilde{v}=1/\lambda_{\infty}=R/k^2$ 可求出该线系的共同终态. 1分

$$k = \sqrt{R\lambda_{\infty}} = 2$$

$$\approx 1 \quad \text{a.s.} \quad 1$$

$$\widetilde{v} = \frac{1}{\lambda} = R(\frac{1}{k^2} - \frac{1}{n^2})$$
2 \(\frac{1}{\gamma}\)

由
$$\lambda$$
 =6565 Å 可得始态 $n = \sqrt{\frac{R\lambda\lambda_{\infty}}{\lambda - \lambda_{\infty}}} = 3$ 2分

曲 $E_n = \frac{E_1}{n^2} = -\frac{13.6}{n^2}$ eV 1分

可知终态 $n=2, E_2=-3.4 \text{ eV}$ 1分

始态 n=3, $E_3=-1.51$ eV 1分

资料由公众号【工大喵】收集整理并免费分享

6. 解:据
$$E_K = mc^2 - m_0c^2 = (m_0c^2/\sqrt{1 - (v/c)^2}) - m_0c^2$$
 2 分 得 $m = (E_K + m_0c^2)/c^2$ 1 分 $v = c\sqrt{E_K^2 + 2E_K m_0c^2}/(E_K + m_0c^2)$ 2 分 将 m , v 代入德布罗意公式得 $\lambda = h/mv = hc/\sqrt{E_K^2 + 2E_K m_0c^2}$ 2 分 2 分 3 $x = h/mv = hc/\sqrt{E_K^2 + 2E_K m_0c^2}$ 2 分 3 $x = h/mv = hc/\sqrt{E_K^2 + 2E_K m_0c^2}$ 2 分 3 $x = h/mv = hc/\sqrt{E_K^2 + 2E_K m_0c^2}$ 2 分 3 $x = h/mv = hc/\sqrt{E_K^2 + 2E_K m_0c^2}$ 2 分 3 $x = h/mv = hc/\sqrt{E_K^2 + 2E_K m_0c^2}$ 2 分 3 分 4 $x = 0 \le x \le a$ 范围内可得 3 $x = (2k+1)\frac{\pi}{2}$ 3 分 4 $x = 0 \le x \le a$ 范围内可得 3 $x = (2k+1)\frac{\pi}{2}$ 3 分 4 $x = \frac{1}{4}a; \frac{1}{2}a; \frac{3}{4}a$ 2 2 分 2 分 由① $v = (eBR)/m$ 1 分 代入② $x = hv - \frac{1}{2}mv^2 = \frac{hc}{\lambda} - \frac{(eBR)^2}{2m}$

2分

代入②