Engineer new features and select relevant features for model training.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

data = pd.read_csv("/content/heart.csv")

data.head()

→		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca
	0	52	1	0	125	212	0	1	168	0	1.0	2	2
	1	53	1	0	140	203	1	О	155	1	3.1	0	О
	2	70	1	0	145	174	0	1	125	1	2.6	0	0
	3	61	1	0	148	203	0	1	161	0	0.0	2	1
	4	62	0	0	138	294	1	1	106	0	1.9	1	3

data.tail()

₹		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope
	1020	59	1	1	140	221	0	1	164	1	0.0	2
	1021	60	1	О	125	258	0	0	141	1	2.8	1
	1022	47	1	О	110	275	0	0	118	1	1.0	1
	1023	50	0	Ο	110	254	0	0	159	0	0.0	2
	1024	54	1	О	120	188	0	1	113	0	1.4	1

data.columns.values

data.isna().sum()

```
→ age
   sex
             0
             0
   ср
   trestbps 0
            0
   chol
             0
   fbs
            0
   restecg
   thalach
             0
             0
   exang
   oldpeak
             0
             0
   slope
             0
   ca
   thal
             0
   target
             0
   dtype: int64
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):

#	Column	Non-N	Null Count	Dtype
0	age	1025	non-null	int64
1	sex	1025	non-null	int64
2	ср	1025	non-null	int64
3	trestbps	1025	non-null	int64
4	chol	1025	non-null	int64
5	fbs	1025	non-null	int64
6	restecg	1025	non-null	int64
7	thalach	1025	non-null	int64
8	exang	1025	non-null	int64
9	oldpeak	1025	non-null	float64
10	slope	1025	non-null	int64
11	ca	1025	non-null	int64
12	thal	1025	non-null	int64
13	target	1025	non-null	int64
dtype	es: float64	1(1),	int64(13)	

dtypes: float64(1), int64(13) memory usage: 112.2 KB

memory asage: 11212 NS

data.hist(bins = 50, grid = False, figsize=(20,15));

data.describe()

→		age	sex	ср	trestbps	chol	fbs	restecg	thalach	ex
	count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.000000	1025.000000	1025.000
	mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.529756	149.114146	0.336
	std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.527878	23.005724	0.477
	min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.000000	71.000000	0.000
	25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	0.000000	132.000000	0.000
	50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.000000	152.000000	0.000
	75%	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.000000	166.000000	1.000
	max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	2.000000	202.000000	1.000

questions =["1. How many have heart disease and how many people doesn't have haert disease? ",

- "2. People of which sex has most heart disease?",
- "3. People of which sex has which type of chest pain most?",
- "4. People with chest pain are most pron to have heart disease?"]

questions

- ["1. How many have heart disease and how many people doesn't have haert disease? ",
 - '2. People of which sex has most heart disease?',
 - '3. People of which sex has which type of chest pain most?',
 - '4. People with chest pain are most pron to have heart disease?']
- # 1. How many have heart disease and how many people doesn't have haert disease?
 data.target.value_counts()
- → target 1 526 0 499

Name: count, dtype: int64

```
data.target.value_counts().plot(kind = "bar", color=["orchid","salmon"])
plt.title("Heart disease values")
plt.xlabel("1 = Heart disease, 0= No Heart disease")
plt.ylabel("Amount");
```


#2. People of which sex has most heart disease?
pd.crosstab(data.target,data.sex)

→	sex	0	1
	target		
	0	86	413
	1	226	300

sns.countplot(x= "target", data=data, hue= "sex")
plt.title("Heart disease frequency for sex")
plt.xlabel("0 = No heart disease, 1 = Heart disease");

#3. People of which sex has which type of chest pain most?
data.cp.value_counts()

```
    cp
    0     497
    2     284
    1     167
    3     77
```

Name: count, dtype: int64

data.cp.value_counts().plot(kind = "bar",color = ["salmon", "lightskyblue", "springgreen","khaki"]

pd.crosstab(data.sex,data.cp)

```
pd.crosstab(data.sex,data.cp).plot(kind= "bar", color = ["coral","lightskyblue","plum","khaki"])
plt.title("Type of chest pain for sex")
plt.xlabel("0 = Female, 1 = Male");
```


#4. People with chest pain are most pron to have heart disease?
pd.crosstab(data.cp,data.target)

→	target	0	1
	ср		
	0	375	122
	1	33	134
	2	65	219
	3	26	51

sns.countplot(x="cp", data = data, hue= "target");

sns.displot(x="age", data = data, bins = 30, kde= True);

sns.displot(x="thalach", data = data, bins = 30, kde = True, color = "chocolate");

