Circuitos lineales RC y RL: comportamiento transitorio

Resumen

Estudiaremos el comportamiento transitorio de circuitos RC y RL. Determinaremos sus constantes de tiempo e inferiremos los valores de capacidad o autoinducción utilizados.

1. Introducción

Figura 1: Circuito RC

Figura 2: Circuito RL

El comportamiento transistorio en un circuito RC o RL se produce al ser sometido el circuito a voltaje en forma de escalón.

La ecuación diferencial para la aplicación de este tipo de voltaje se obtiene a partir de la ley de Kirchhoff:

• Circuito RC:

$$V_o = R \cdot i + \frac{q}{C} = R \cdot i + \frac{1}{C} \int idt$$

• Circuito RL:

$$V_o = R \cdot i + L \frac{di}{dt}$$

En caso de cortocircuito, se pondrá $V_o=0$. Y obtendremos la corriente que circula resolviendo las ecuaciones con $i=\frac{dq}{dt}$.

Circuito RC (conexión)

Las condiciones iniciales son $t=0,\ q=0,\ i=V_o/R,$ la carga máxima es la carga para $t=\infty$: $Q_o=C\cdot V_o$:

$$q = Q_o \left(1 - \exp\left(-\frac{t}{RC}\right) \right)$$
$$i = \frac{V_o}{R} \exp\left(-\frac{t}{RC}\right)$$

Vemos que la intensidad que circula por el circuito durante la carga decae a 1/e para un tiempo $t = RC = \tau$.

Este tiempo se llama constante de tiempo o tiempo de relajación, y nos da idea de la rapidez con la que se carga el condensador.

Circuito RL (conexión)

Condiciones iniciales t = 0, i = 0:

$$i = \frac{V_o}{R} \left[1 - \exp\left(-\frac{R}{L}t\right) \right]$$

Circuito RC (cortocircuito)

Condiciones iniciales: t = 0, $q = Q_o = CV_o$, de modo que:

$$q = Q_o \exp\left(-\frac{t}{RC}\right)$$

$$i = -\frac{V_o}{R} \exp\left(-\frac{t}{RC}\right)$$

Circuito RL (cortocircuito)

Condiciones iniciales: $t=0,\,i=I_o=V_o/R$

$$i = \frac{V_o}{R} \exp\left(-\frac{R}{L}t\right)$$

La constante de tiempo es $\tau = L/R$

2. Material y Métodos

Utilizaremos un osciloscopio de doble canal, un generador de funciones, con opcion de onda cuadrada, un potenciómetro de $10k\Omega$, dos condensadores de $0,5\mu F$ y $0,3\mu F$ y dos autoinducciones de 0,3H y 0,15H.

Figura 3: Montaje del circuito

Circuito RC

Disponemos los aparatos como inica la figura 3, aplicamos el generador de funciones como fuente de voltaje en forma de onda rectangular o cuadrada, de modo que su periodo sea mucho mayor que la constante de tiempo del circuito, calculándola previamente.

Ajustamos el osciloscopio para visualizar el voltaje en bornes de R y medimos el intervalo de tiempos $\tau.$

Repetiremos esto para distintos valores de R, teniendo cuidado de que mantengamos la forma exponencial de la curva, ya que con resistencias elevadas no se visualiza bien la carga y descarga del condensador.

Realizaremos las mediciones con ambos condensadores.

Circuito RL

Repetiremos lo anterior cambiando el condensador por una autoinducción L. Mediremos para distintos valores de L.

3. Resultados y discusión

Circuito RC

Los resultados obtenidos para τ están representados, para el primer condensador, en la Tabla 1 y la Figura 4, y para el segundo condensador en la Tabla 2 y Figura 5.

Condensador 1: $C = 0, 5 \pm 0, 1 \mu F$					
$R(\Omega)$	$\tau_{teorico}$ (s)	$V_o(V)$	$\tau_{exp.}$ (s)		
2000±100	$0,001\pm0,0003$	$2,7\pm0,1$	$0,001\pm0,0001$		
2500±100	$0,0013\pm0,0003$	$2,7\pm0,1$	$0,0014 \pm 0,0001$		
3000±100	$0,0015\pm0,0004$	$2,7\pm0,1$	$0,0016 \pm 0,0001$		
3500±100	$0,0018\pm0,0004$	$2,7\pm0,1$	$0,0018 \pm 0,0001$		
Pendiente: $m = 0,52 \cdot 10^{-6}$					

Tabla 1: resultados para condensador 1

Figura 4: Tiempo en función de R para el condensador 1

Condensador 2: $C = 0, 3 \pm 0, 1 \mu F$					
$R(\Omega)$	$\tau_{teorico}$ (s)	$V_o(V)$	$ au_{exp.}$ (s)		
1000±100	$0,0003\pm0,0001$	$2,7\pm0,1$	$0,0004\pm0,0001$		
2000 ± 100	$0,0006\pm0,0002$	$2,7\pm0,1$	$0,0008\pm0,0001$		
3000±100	$0,0009\pm0,0003$	$2,7\pm0,1$	$0,0012\pm0,0001$		
4000±100	$0,0012\pm0,0004$	$2,7\pm0,1$	$0,0014 \pm 0,0001$		
Pendiente: $m = 0, 34 \cdot 10^{-6}$					

Tabla 2: resultados para condensador 2

Figura 5: Tiempo en función de R para el condensador 2

Circuito RL

De igual forma, se presentan los resultados en la Tabla 3 y Figura 6 para la bobina 1, y en la Tabla 4 y Figura 7 para la bobina 2.

Bobina 1: L = $0.3\pm0.01 \text{ H}$				
$R(\Omega)$	$\tau_{teorico}$ (s)	$V_o(V)$	$ au_{exp.}$ (s)	
400±100	$0,0008\pm0,0002$	$3\pm 0, 1$	$0,0008\pm0,0001$	
500±100	$0,0006\pm0,00014$	$3,2\pm0,1$	$0,0005\pm0,0001$	
1000±100	$0,0003\pm0,00004$	$3,3\pm0,1$	$0,0002\pm0,0001$	
1500 ± 100	$0,0002\pm0,00002$	$3,8\pm0,1$	$0,0001\pm0,0001$	
Pendiente $m = 0.36$				

Tabla 3: resultados para la bobina 1

Figura 6: Tiempo en función de $1/{\rm R}$ para la bobina 1

Bobina 1: $L = 0.15 \pm 0.01 \text{ H}$					
$R(\Omega)$	$\tau_{teorico}$ (s)	$V_o(V)$	$\tau_{exp.}$ (s)		
300±100	$0,0005\pm0,0002$	$2,7\pm0,1$	$0,0005\pm0,0001$		
400±100	$0,00038\pm0,00012$	$3\pm 0, 1$	$0,0004\pm0,0001$		
500±100	$0,0003\pm0,00008$	$3,4\pm0,1$	$0,0003\pm0,0001$		
600±100	$0,00025\pm0,00006$	$3,5\pm0,1$	$0,0002\pm0,0001$		
Pendiente $m = 0.17$					

Tabla 4: resultados para la bobina $2\,$

Figura 7: Tiempo en función de 1/R para la bobina 2

Conclusión

Hemos visto como los tiempos mantienen una relación con la resistencia en los circuitos RC y con la inversa de la resistencia en los RL. Se comprueba que la pendiente de la recta que ajusta esa relación coincide con el valor del condensador o la bobina empleada.

Referencias

[1] (varios) Guiones de prácticas- Técnicas Experimentales II. Grado en Física. Versión 2.1 UNED, 2022 https://2022.cursosvirtuales.uned.es/o/3754218