MATH 305 Homework 8

Xander Naumenko

21/03/22

1. Use Rouche's theorem to count the number of zeroes for $p(z)=4z^5+z^2+2z-1$ in $|z|\leq 1$. Let $g(z)=4z^5$. Then for |z|=1, we have

$$|p(z) - g(z)| = |z^2 + 2z - 1| = |z + 2 - z^{-1}| = |2 + 2i\sin\theta| \le 2\sqrt{2} < 4 \le |4z^5|.$$

Thus by Rouché's theorem there are 5 zeros inside $|z| \le 1$.

2. Use Rouche's theorem to count the number of zeroes for $p(z) = z^5 + 7z^2 + 2$ in $1 \le |z| \le 2$. Let $g(z) = z^5$. Then for |z| = 2, we have

$$|p(z) - g(z)| = |7z^2 + 2| \le 26 < 32 = |z^5|.$$

Let $h(z) = 7z^2$. Then for |z| = 1, we have

$$|p(z) - h(z)| = |z^5 + 2| \le 3 < 7 = |7z^2|.$$

Thus by Rouché's theorem, there are 5 zeros within $|z| \le 2$ and 2 in $|z| \le 1$, which means that there are 3 zeros with $1 \le |z| \le 2$.

3. Use Rouche's theorem to count the number of zeroes for $f(z) = z^2 - 4 + 3e^{-z}$ on the right half plane $\{Re(z) > 0\}$.

Let $g(z) = z^2 - 4$, and consider the right half circle with radius R and origin z = 0 as $R \to \infty$. Then we have for $Re(z) \ge 0$ and z = R:

$$|f(z) - g(z)| = |3e^{-z}| = 3e^{-Re(z)} \le 3 < |z^2 - 4| < R^2 \text{ as } R \to \infty.$$

Instead for $0 \le |z| \le R$, Re(z) = 0, we have:

$$|f(z) - g(z)| = |3e^{-z}| = 3 < 4 \le |z^2 - 4|.$$

Since the equality holds true on the contour as $R \to \infty$, we have that the number of zeros of g is the same as the number of zeros of f. In this case g has 1 zero on the right half plane, so f has one zero on the right half plane.

4. Use Nyquist criterion to find the number of zeroes of $p(z) = z^3 + 2z^2 + 4$ in the right half plane $\{Re(z) > 0\}$.

Using the Nyquist criterion:

$$N = \frac{1}{2\pi} \left(3\pi + 2[argp]_{\Gamma_{I_+}} \right).$$

1

Note that at $p(iy) = -iy^3 - 2y^2 + 4 = (4 - 2y^2) - iy^3 = p_r(y) + ip_i(y)$

$$\begin{array}{c|ccc}
\Gamma & p_r & p_i \\
\hline
\infty & < 0 & < 0 \\
2 & 0 & < 0 \\
0 & 4 & 0
\end{array}$$

Therefore

$$2[argp]_{\Gamma_{I_+}} = \frac{\pi}{2}.$$

Therefore by the Nyquist criteria listed above we have N=2

- 5. Use Nyquist criterion to find the number of zeroes of $p(z) = z^3 + 2z^2 + 4z + 2$ in the right half plane $\{Re(z) > 0\}$.
- 6. (20pts) (a) Use Nyquist criterion to show that there are no zeroes of $p(z) = z^3 + z^2 + 4z + 1$ in $\{Re(z) \ge 0\}$.
 - (b). Show that all the solutions y = y(t) to

$$y''' + y'' + 4y' + y = 0$$

must approach to zero as $t \to +\infty$.

- 7. (20pts) Find the Laurent series for the function $\frac{z}{(z+1)(z-2)}$ in each of the following domains (a) |z| < 1, (b) |z| > 2
- 8. Find the first three terms of Laurent series for $\frac{z}{\text{Log}(z)}$ in |z-1| < 1, where Log(z) is the principal branch.