0.1 H29 数学選択

 $\boxed{\mathbf{A}}$ $(1)\varphi(f+g)=f+g, \varphi(fg)=fg, \varphi(1)=1$ より部分環.

 $(2)\psi(f(s,t,u))=f(x^3,y^3,xy)$ とする. $\varphi(f(x^3,y^3,xy))=f(x^3,y^3,xy)$ より $\psi(f)\in R$ である. 準同型であることは明らか. R の任意の元は $g(x,y)=\sum\limits_{3|(i+2j)}a_{ij}x^iy^j$ と表される. $\sum\limits_{3|(i+2j)}a_{ij}x^iy^j=\sum\limits_{i\equiv 0\equiv j}a_{ij}x^iy^j+\sum\limits_{i\equiv 1,j\equiv -1}a_{ij}x^iy^j+\sum\limits_{i\equiv 2,j\equiv 2}a_{ij}x^iy^j=\sum\limits_{i\equiv 0\equiv j}a_{ij}x^iy^j+xy$ $\sum\limits_{i\equiv 1,j\equiv -1}a_{ij}x^{i-1}y^{j-1}+(xy)^2\sum\limits_{i\equiv 2,j\equiv 2}a_{ij}x^{i-2}y^{j-2}$ とできる. $k\leq \ell$ に対して $x^{3k}y^{3\ell}=(xy)^{3k}y^{3(\ell-k)}=u^{3\ell}t^{\ell-k}$ とできるから $\sum\limits_{i\equiv 0\equiv j}a_{ij}x^iy^j$ は ψ の像である. 他の項も同様であるから ψ は全射である.

 $(3)(st-u^3)$ \subset $\ker \psi$ は明らかである。 $f \in \ker \psi$ に対して $f(s,t,u) = (st-u^3)g(s,t,u) + u^2h_1(s,t) + uh_2(s,t) + h_3(s,t)$ である。 ψ で送れば $(xy)^2h_1(x^3,y^3) + xyh_2(x^3,y^3) + h_3(x^3,y^3) = 0$ である。x,y の次数について 3 の剰余に着目すれば $h_1(x^3,y^3) = h_2(x^3,y^3) = h_3(x^3,y^3) = 0$ より $h_i = h_2 = h_3 = 0$ がわかる。よって $\ker \psi = (st-u^3)$ である。

(2)f(T) の根は ζ_i $(i=1,2,\cdots,16)$ である. したがって $\mathbb{Q}(\zeta)/\mathbb{Q}$ は正規拡大であるから \mathbb{Q} が完全体であることより Galois 拡大である.

(3)Gal($\mathbb{Q}(\zeta)/\mathbb{Q}$) の任意の元は ζ の行き先で定まり、行き先の候補は ζ_i $(i=1,2,\cdots,16)$ のいずれかである. $\sigma(\zeta)=\zeta_i$ について $\varphi\colon \mathrm{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})\to (\mathbb{Z}/17\mathbb{Z})^\times; \sigma\mapsto [i]$ とする.

全射準同型であることは明らか. $\varphi(\sigma)=1$ は $\sigma(\zeta)=\zeta$ を意味するから φ は単射である. よって同型.

 $(4)\mathbb{Q}(\alpha)\subset\mathbb{R}$ である。よって $\mathbb{Q}(\alpha)$ は $\mathbb{Q}(\zeta)$ の真の部分体である。 $x^2-\alpha x+1$ とすれば根は ζ,ζ^{-1} である。よって $\mathbb{Q}(\zeta)/\mathbb{Q}(\alpha)$ は 2 次拡大である。 $\mathbb{Z}/17\mathbb{Z}$ が体であるから乗法群は巡回群となる。よって $(\mathbb{Z}/17\mathbb{Z})^\times\cong\mathbb{Z}/16\mathbb{Z}$ である。 $\mathbb{Z}/16\mathbb{Z}$ において位数 2 の元は [8] のみであるから, $\mathrm{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}(\alpha))\cong\{[0],[8]\}$ である。よって正規部分群であるから $\mathrm{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})\cong(\mathbb{Z}/16\mathbb{Z})/\{[0],[8]\}\cong\mathbb{Z}/8\mathbb{Z}$ である。