Algorithm selection and hyperparameter optimization based quantification of error contribution in image classification pipelines

### Introduction

- Quantification of contribution in terms of classification error from different components of image classification pipeline - steps, algorithms, hyper-parameters.
- Provides data scientists and domain experts with insights about the pipeline in terms of which components are important for the performance of the pipeline.
- Hyper-parameter optimization methods and algorithms to quantify error contributions - grid search, random search, Bayesian optimization.
- Random search of configurations is able to efficiently compute the error contributions.

# Data analytic pipeline

Representation of a machine learning pipeline. This is represented as a generalized directed acyclic graph.  $S_i$  represents the *i*-th computational step in the pipeline and  $A_{ij}$  represents the *j*-th algorithm in the *i*-th step. X is the input dataset and Y is the evaluation metric.



# Image classification pipeline used in problem

Representation of the image classification pipeline as a directed acyclic graph used in this work. This is an instantiation of the generalized data analytic pipeline



# Hyper-parameter optimization (HPO)

Let the *n* hyperparameters in a path be denoted as  $\theta_1, \theta_2, ..., \theta_n$ , and let  $\Theta_1, \Theta_2, ..., \Theta_n$  be their respective domains. The hyperparameter space of the path is  $\Theta = \Theta_1 \times \Theta_2 \times ... \times \Theta_n$ .

When trained with  $\theta \in \Theta$  on data  $D_{train}$ , the validation error is denoted as  $\mathcal{L}(\theta, D_{train}, D_{valid})$ . Using k-fold cross-validation, the hyperparameter optimization problem for a dataset D is to minimize:

$$f^{D}(\theta) = \frac{1}{k} \sum_{i=1}^{k} \mathcal{L}(\theta, D_{train}^{(i)}, D_{valid}^{(i)})$$



# Combined algorithm selection and hyperparameter optimization (CASH)

Let there be n computational steps in the pipeline. Each step i in the pipeline consists of algorithms  $A_i(\Theta_i)$ , where  $A_i(\Theta_i) = \{A_{i1}(\theta_{i1}), ..., A_{im_i}(\theta_{im_i})\}$ ,  $m_i$  is the number of algorithms in step i,  $A_{ij}$  represents the j-th algorithm in step i, and  $\theta_{ij}$  represents the set of hyperparameters corresponding to  $A_{ij}$ . The entire space of algorithms and hyperparameters is therefore given by  $\mathcal{A} = A_1(\Theta_1) \times A_2(\Theta_2) \times ... \times A_n(\Theta_n)$ . The objective function to be minimized for CASH is given by

$$f^{D}(A) = \frac{1}{k} \sum_{i=1}^{k} \mathcal{L}(A, D_{train}^{(i)}, D_{valid}^{(i)})$$



# **Experimental settings**

## **Pipeline**

| Step                   | $A_{ij}(\theta_{ij})$ | Definition                                        |
|------------------------|-----------------------|---------------------------------------------------|
|                        | $A_{11}(\theta_{11})$ | Haralick texture features (distance)              |
| Feature extraction     | $A_{12}(\theta_{12})$ | Pre-trained CNN trained on ImageNet database with |
|                        |                       | VGG16 network                                     |
|                        | $A_{13}(\theta_{13})$ | Pre-trained CNN trained on ImageNet database with |
|                        |                       | Inception network                                 |
|                        | $A_{21}(\theta_{21})$ | PCA (whitening)                                   |
| Feature transformation | $A_{22}(\theta_{22})$ | ISOMAP (number of neighbors, number of compo-     |
|                        |                       | nents)                                            |
|                        | $A_{31}(\theta_{31})$ | Random forests (number of trees, maximum fea-     |
| I coming algorithms    |                       | tures)                                            |
| Learning algorithms    | $A_{32}(\theta_{32})$ | $\text{SVM}\left(C,\gamma\right)$                 |

#### **Datasets**

| Dataset (notation)          | Distribution of classes                     |
|-----------------------------|---------------------------------------------|
| Breast cancer (breast)      | benign: 151, in-situ: 93, invasive: 202     |
| Brain cancer (brain)        | glioma: 16, healthy: 210, inflammation: 107 |
| Material science 1 (matsc1) | dendrites: 441, non-dendrites: 132          |
| Material science 2 (matsc2) | transverse: 393, longitudinal: 48           |

# Methods and algorithms for HPO and CASH

• Grid-search

Random search

Bayesian optimization (Sequential model agnostic configurations)

# Error contribution

## Agnostic methodology for quantification of error contributions

 Agnostic means to randomly select configurations from a particular component (algorithms, hyper-parameters) of the pipeline (CASH) or path (HPO) and optimize everything else.

• The difference between the *agnostic* error and the optimum (minimum) error provides an estimate of the error contribution from each component.

## Error contribution from computational steps

Let n be the number of steps in the pipeline. Each step in the pipeline is denoted as  $S_i$ .  $|S_i|$  is the number of algorithms in step i.  $A_{ij}$  denotes the j-th algorithm in the i-th step.  $E^*$  represents the minimum validation error found after optimization of the entire pipeline (using the CASH framework).  $E_{A_{ij}}^*$  is the minimum validation error found with  $A_{ij}$  as the only algorithm in step i. For  $i = 1, ..., n, j = 1, ..., |S_i|$ ,

$$EC_{S_i}^* = \frac{1}{|S_i|} \sum_{z=1}^{|S_i|} E_{A_{ij}}^* - E^*,$$



## Error contribution from algorithms

For,  $i = 1, ..., n, j = 1, ..., |\theta_{ij}|$ ,  $|\theta_{ij}|$  represents the number of hyperparametric configurations of  $A_{ij}$ ,  $E_{A_{ij}}^z$  is the minimum error obtained with the z-th configuration of  $\theta_{ij}$  and  $E_{A_{ij}}^*$  is the minimum error found over the path p that consists of algorithm  $A_{ij}$ .

$$EC_{A_{ij}}^* = \frac{1}{|\theta_{ij}|} \sum_{z=1}^{|\theta_{ij}|} E_{A_{ij}}^z * - E_{A_{ij}}^*,$$



## Error contribution from hyperparameters

For,  $i = 1, ..., n, j = 1, ..., |\theta_{ij}|$ ,  $k = \text{number of hyper-parameters of algorithm } A_{ij}$ .  $|\theta_{ijk}|$  represents the number of configurations of  $\theta_{ijk}$ ,  $E^z_{\theta_{ijk}}$  is the minimum error obtained with the z-th configuration of  $\theta_{ijk}$  and  $E^*_{A^p_{ij}}$  is the minimum error found over the path p that consists of algorithm  $A_{ij}$ .

$$EC_{\theta_{ijk}}^* = \frac{1}{|\theta_{ijk}|} \sum_{z=1}^{|\theta_{ijk}|} E_{\theta_{ijk}}^{z}^* - E_{A_{ij}}^*,$$



#### Results



### **Discussion**

- We propose a method to quantify the contributions of components in an image classification pipeline in terms of the error.
- HPO and CASH methods (grid search, random search and Bayesian optimization) maybe used to quantify error contribution and importance of components (steps, algorithms and hyper-parameters)
- Random search is able to quantify the contributions accurately and efficiently based on the results.