Wi-Fi기반의 자율군집형 네트워크에 관한 연구

김동민, 임지용, 오암석 동명대학교 컴퓨터미디어공학과 e-mail: asoh@tu.ac.kr

A Study on Wi-Fi-Based Autonomous Clustered Network

Dong-min Kim, Ji-yong Lim, Am-suk Oh Department of Computer Media Engineering, Dongmyong University

요 약

엣지 컴퓨팅과 클라우드 컴퓨팅의 데이터 전송은 데이터를 수집하는 장치나 센서들이 네트워크를 통해 데이터 처리가 가능한 곳으로 보내진다. 우리나라 도시와 같은 경우 네트워크구축 환경이 좋기 때문에 데이터 수집 장치들을 네트워크로 쉽게 묶을 수 있지만, 고속도로나 지하 깊숙한 곳은 다소 무리가 있다. 제안하는 Wi-Fi기반의 자율 군집형 네트워크는 구축환경이 좋지 않은 곳에서 데이터 수집 장치들이 스스로 네트워크를 구축해나가는 방식이다.

1. 서론

엣지 컴퓨팅은 클라우드 컴퓨팅의 중앙 집중처리 방식 에서 벗어나 전체 시스템의 가장자리 부분에서 데이터를 처리하는 형태로 발전해 왔다. 또한 엣지 컴퓨팅은 데이터 를 수집하는 디바이스들이(IoT 디바이스) 네트워크를 통 해 데이터를 수집하는 곳 근처 처리기의 도움을 받아 1차 적으로 처리하는 컴퓨팅 방식이다. 엣지 컴퓨팅은 근처의 처리가 가능한 곳으로 데이터를 전송하기 위해 데이터를 수집하는 기기를 하나로 묶는 네트워킹이 중요하다. 이러 한 네트워킹은 유선 또는 무선 방식이 있다. 우리나라 도 시의 경우 유/무선의 네트워크를 쉽게 구성할 수 있는 인 프라가 잘 마련되어있어 클라우드 컴퓨팅이나 엣지 컴퓨 팅을 사용하는데 무리가 없지만, 고속도로나 깊은 지하 같 은 곳은 네트워크 인프라가 마땅하지 않아 유/무선의 네 트워크 구성은 다소 무리가 있다. 제안하는 wifi 기반의 자율군집형 네트워크 구축 방법은 인프라가 없는 환경에 서 Wi-Fi 모듈을 사용하여 스스로 AP의 RSSI(수신신호 세기)값을 바탕으로 AP 영역과 Station 영역을 나누고, 나 뉜 영역에 따라 유동적으로 AP 또는 Station으로 변환하 여 Ap-Station형태의 로컬네트워크를 점진적으로 확장해 나가며 네트워크를 구축한다.

2. 네트워크 구축 방식

네트워크 구축은 확장형 스타(Extended Star) 토폴로지 형태이며, wifi모듈의 AP모드와 Station모드를 사용하여 AP에 Station이 연결되는 형태로 네트워크를 구축한다. 디바이스의 모드 자동설정은 처음으로 네트워크를 구축할 AP(Root AP)의 SSID를 탐색한 뒤 AP의 RSSI(수신신호세기)에 따라 영역을 나누어 특정한 값보다 클 경우 AP 와의 통신에 문제가 없는 안정권에 있다고 판단하여 자동으로 AP 모드로 설정되고 작을 경우 AP의 불안정권에 있다고 판단하여 Station 모드로 설정된다. 또한 근처의 Wi-Fi 탐색을 완료했지만, 네트워크를 구축 할 원하는 AP의 SSID가 없다고 판단되면 해당 디바이스 자체가 네트워킹을 시작할 첫 AP로 설정된다. 다음 그림1은 Wi-Fi 탐색 후 주변에 AP가 존재하지 않을 경우 AP모드로 설정되어 해당 디바이스의 안정/불안정 영역을 나눈 그림이다

그림 1. RSSI에 따른 AP와 Station영역

다음은 AP가 나눈 영역 따른 다른 디바이스의 설정 변경 방식이다. 네트워크를 구성할 첫 AP의 영역 중 안정권에 속하는 디바이스들은 스스로 Station 모드가 되어 해당 AP에 접속을 하게 되며 그림 2와 같다.

2019년도 한국멀티미디어학회 춘계학술발표대회 논문집 제22권 1호

그림 2. 안정영역의 Station 모드 설정

또 기준이 되는 AP의 불안정권에 속하는 디바이스는 자신이 AP가 되어 또다른 안정영역과 불안정영역을 나눠 근처의 디바이스들이 Station 모드로 접속할 수 있게 설정되며 그림 3과 같다.

그림 3. 불안정영역의 AP 모드 설정

이처럼 네트워크 구축 상황을 3가지로 정의할 수 있고 그에 따른 절차는 다음 표 1과 같이 정리 할 수 있고 네트워크의 확장구조를 확장형 스타 토폴로지(Extended Star Topology)인 다음 그림 4와 같이 표현 할 수 있다.

그림 4. 네트워크의 확장 구조

표 1. 네트워크 구축 상황

구 분	네트워크 상황	시나리오
시나리오 1	초기 네트워크 구축 시 AP가 존재하지 않을 경우	
시나리오 2	디바이스의 안정 영역에 속하는 경우	Station 설정으로 해 당 AP 접속
시나리오 3	불안정 영역에 속하는 경우	AP 설정으로 네트워 크 확장

다음 그림 5는 서로 다른 디바이스가 Wi-Fi 탐색 유효범위를 벗어난 경우 서로의 SSID를 찾지 못해 각각 로컬네트워크 1 로컬네트워크 2를 구축한 상황에서 하나의 네트워크로 통합되는 과정이다. 이 경우 두 로컬 네트워크 사이에 디바이스를 추가함으로써 하나의 네트워크로 합쳐질수 있다.

그림 5. 네트워크 통합 과정

또한 한번 로컬 네트워크를 구성한 뒤 장애 상황으로 네트워크가 단절되는 경우 Station에서 주기적으로 인접 노드의 상태정보를 확인하여 연결 불가능 상황을 인식하고 스스로 AP모드로 변경한 뒤 네트워크를 복구한다. 다음그림 6은 장애로 인한 네트워크 단절 시 복구하는 과정이다.

그림 6. 네트워크 복구 과정

3. 결론

본 논문은 네트워크 인프라가 없는 환경에서 Wi-Fi 모듈을 사용하여 스스로 RSSI(수신신호세기)에 따라 군집을 이루며 네트워크를 확장해 나가는 형태이다. 초기 구축 시나리오는 3가지 정도로 나눌 수 있으며, 초기 네트워크 구축 시 AP가 존재하지 않을 경우, 안정 영역에 속하는 경우, 불안정 영역에 속하는 경우로 나눌 수 있고 각 경우에따라 AP와 Station이 디바이스 스스로 판단하여 자동으로설정 된다. 구축되는 네트워크는 Extended Star 형태의토폴로지로 확장이 편리한 구조이다. Star Topology는 중앙 집중식으로 관리가 되어 중앙 노드의 장애는 전체 시스템에 영향을 줄 수 있지만, 제안하는 Extended Star 형태의자율 군집형 네트워크 구성방식은 장애 복구 시나리오를 수행함으로써 주변의 Station이 장애 노드를 대신하여 AP가 되어 네트워크의 단절 상황을 피할 수 있다. 이러한 자율 군집형 네트워크 구축 시나리오는 네트워크 인

2019년도 한국멀티미디어학회 춘계학술발표대회 논문집 제22권 1호

프라가 없는 고속도로나 지하 깊은 곳에서도 자체적으로 네트워크를 구성하여 엣지 컴퓨팅을 위한 네트워크 구축 시 자율성이 높아질 것으로 기대한다.

Acknowledgement

이 논문은 2017년도 정부(교육부)의 재원으로 한국연구재 단의 지원을 받아 수행된 기초연구사업임(No. NRF-2017R1D1A3B03034438

참고문헌

- [1] 반명희, "지그비 네트워크에서 신호세기에 따른 토폴로지 제어 및 관리", 한양대학교 대학원, 2009.
- [2] 이광선, "다중 무선 네트워크 환경에서 최전화된 AP 추천 시스템 설계 및 구현", 한양대학교 대학원, 2014.
- [3] 김정구, "스마트스쿨 무선네트워크 인프라 설계에 관한 연구", 한밭대학교 정보통신전문대학원, 2013.
- [4] 심규철, "네트워크 토폴로지 자동 구성 및 원격 장애 진단 시스템", 한밭대학교 정보통신전문대학원, 2018.