Übung zur Vorlesung Technische Grundlagen der Informatik

Prof. Dr. Andreas Koch Thorsten Wink

Wintersemester 09/10

Übungsblatt 3 - Lösungsvorschlag

Aufgabe 3.1 Minimierung mit Hilfe von K-Diagrammen

Minimieren Sie die folgenden Funktionen mit Hilfe von K-Diagrammen. Implementieren Sie die minimierten Funktionen mit Logikgattern.

a)
$$F = \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}\bar{C}D + BCD + ABD + \bar{A}BC\bar{D} + ABC\bar{D} + \bar{B}\bar{C}D$$

Die minimierte Funktion ist $F = BC + A\bar{C}D + \bar{A}\bar{B}\bar{C}$.

b)
$$F = \bar{A}\bar{B}\bar{C} + \bar{A}B + A\bar{B}\bar{C} + ABC$$

1

Die minimierte Funktion aus dem hier dargestelleten K-Diagramm ist $F = \bar{B}\bar{C} + BC + \bar{A}B$. Eine weitere Lösung ist $F = \bar{B}\bar{C} + BC + \bar{A}\bar{C}$.

Aufgabe 3.2 Gray-Codierung

Ein Code besteht aus verschiedenen Codewörtern, die mit einer bestimmten Zuordnungsvorschrift aus den Ursprungswörtern gebildet werden. In dieser Aufgabe betrachten wir den Gray-Code. Da sich bei der Gray-Codierung zwei benachbarte Codewörter nur in einem Bit unterscheiden, kann man Gray-Code beispielsweise benutzen, um Fehler bei der Übertragung von analogen Signalen zu erkennen.

	Bir	ıär		Graycode			
B_3	B_2	B_1	B_0	G_3	G_2	G_1	G_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0 0	1	0
		1	1	0			
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

Geben Sie für jede Stelle G_x , $x \in \{0, 1, 2, 3\}$ des Gray-Codes die Funktion an, um sie aus der Binärdarstellung zu generieren. Minimieren Sie die Funtionen.

Damit erhält man die folgenden Funktionen:

$$G_3 = B_3$$

$$G_2 = B_2\overline{B_3} + B_3\overline{B_2} = B_3 \oplus B_2$$

$$G_1 = B_1\overline{B_2} + B_2\overline{B_1} = B_2 \oplus B_1$$

$$G_0 = B_0\overline{B_1} + B_1\overline{B_0} = B_1 \oplus B_0$$

Aufgabe 3.3 Realisierungen mit NAND-Gattern

Stellen Sie die folgenden Funktionen nur mit NAND-Gattern dar. Als Eingänge stehen Ihnen die Variablen zur Verfügung, nicht jedoch ihre Komplemente.

a)
$$F = (A+B)C$$

 $F = \underline{AC+BC}$
 $F = \overline{AC+BC}$
 $F = (\overline{AC})(\overline{BC})$

b)
$$F = AB + CB + D$$

 $F = \overline{AB + CB + D}$
 $F = (\overline{AB})(\overline{CB})(\overline{D})$

Hausaufgabe 3.1 Minimierung

Stellen Sie die DNF der folgenden Funktion auf und minimieren sie mit Hilfe eines K-Diagramms.

A	В	С	D	F
0	0	0	0	1
0	0	0	1	0
0	0	1	1 0	0
0	0	1		1
0 0 0 0 0 0 0 0 1 1	1	1 1 0 0 1 1 0	1 0 1 0 1 0 1 0	1
0	1	0	1	1
0	1	1	0	1 0
0	1 1 1 1 0 0	1	1	1
1	0	0	0	1 1 0
1	0	0	1	0
1	0		0	1
1	0	1	1	0
1	0 1 1	1 1 0	0	1
1 1 1 1	1	0	1 0 1 0 1	1 0 1 0 0
1	1 1	1 1	0	0
1	1	1	1	1

$$F = \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}CD + \bar{A}B\bar{C}\bar{D} + \bar{A}B\bar{C}D + \bar{A}B\bar{C}D + \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{C}\bar{D} + \bar{A}\bar{C}\bar{D} + \bar{A}\bar{C}\bar{D} + \bar{A}\bar{C}\bar{D} + \bar{A}\bar{$$

 $F = \bar{C}\bar{D} + A\bar{B}\bar{D} + \bar{A}CD + BCD + \bar{A}B\bar{C}$. Eine weitere Lösung enthält den Term $\bar{A}BD$ statt $\bar{A}B\bar{C}$.

Hausaufgabe 3.2 Funktion gesucht

Gesucht ist eine Funktion, die bei drei Eingangsvariablen genau dann eine 1 ausgibt, wenn zwei der Eingänge 1 sind, ansonsten soll eine 0 ausgegeben werden.

Stellen Sie zunächst eine Wahrheitstabelle auf und leiten Sie daraus die KNF ab. Minimieren Sie die Funktion mit Hilfe

eines K-Diagramms.

		0		
Α	В	С	F	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	$F = (A+B+C)(A+B+\overline{C})(A+\overline{B}+C)(\overline{A}+B+C)(\overline{A}+\overline{B}+\overline{C})$
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	0	

Das stellt schon die minimale Form dar, es ist keine weitere Minimierung möglich.

Hausaufgabe 3.3 Realisierung mit NOR-Gattern

Stellen Sie die folgenden Funktionen nur mit NOR-Gattern dar. Als Eingänge stehen Ihnen die Variablen zur Verfügung, nicht jedoch ihre Komplemente.

a)
$$(A+B+\bar{C})(D+E)$$

= $(A+B+\bar{C})(D+E)$
= $(A+B+\bar{C})+(D+E)$

b)
$$AC + BD + AD + BC$$

$$= (A+B)(C+D)$$

$$= (A+B)(C+D)$$

$$= A+B+C+D$$

Hausaufgabe 3.4 Multiplexer

Welche boole'sche Funktion implementieren folgende Multiplexer-Schaltungen?

$$Y = \bar{A}\bar{B} + \bar{C}\bar{D}(A\bar{B} + \bar{A}B)$$

$$Y = (CD + \bar{C}\bar{D})\bar{A} + A$$

Plagiarismus

Der Fachbereich Informatik misst der Einhaltung der Grundregeln der wissenschaftlichen Ethik großen Wert bei. Zu diesen gehört auch die strikte Verfolgung von Plagiarismus. Weitere Infos unter www.informatik.tu-darmstadt.de/plagiarism