

Fiche outil

Systèmes de coordonnées

Au programme _

Extraits des programmes officiels de PTSI et PT (disséminés aux quatre coins des programmes!).

Notions et contenus	Capacités exigibles
Vecteurs et systèmes de coordonnées.	Exprimer les coordonnées d'un vecteur dans une base orthonormée.
	Utiliser les systèmes de coordonnées cartésiennes, cylindriques et sphériques.
	Exprimer à partir d'un schéma le déplacement élémentaire dans les différents systèmes de coordonnées et construire le trièdre local associé.
	Exprimer une surface élémentaire dans un système de coordonnées adapté.

En gras, les points devant faire l'objet d'une approche expérimentale.

Tous les résultats de cette fiche sont à connaître parfaitement, ou à retrouver très vite.

En pratique, il suffit de connaître impeccablement l'expression du déplacement élémentaire et la façon dont elle permet de retrouver les autres.

I - Coordonnées cartésiennes _

- Coordonnées :
 - $\begin{array}{c} \triangleright \text{ du point } M : -\infty < x, y, z < +\infty \, ; \\ \triangleright \text{ du vecteur } \overrightarrow{OM} = x \, \overrightarrow{e}_x + y \, \overrightarrow{e}_y + z \, \overrightarrow{e}_z . \end{array}$
- Déplacement élémentaire :

$$\overrightarrow{dM} = dx \overrightarrow{e}_x + dy \overrightarrow{e}_y + dz \overrightarrow{e}_z$$

• Surfaces élémentaires : la surface $\mathrm{d}S_x$, de normale \overrightarrow{e}_x , s'obtient en multipliant les composantes selon \overrightarrow{e}_y et \overrightarrow{e}_z du vecteur $\overline{\mathrm{d}M}$, etc.

$$dS_x = dy dz$$
 $dS_y = dx dz$ $dS_z = dx dy$.

• Volume élémentaire : le volume $dV \xrightarrow{\text{est}} \text{le produit des trois composantes du vecteur } \overrightarrow{dM}$.

$$\mathrm{d}V = \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z.$$

II - Coordonnées cylindriques ou cylindro-polaires

Dans un plan z= cte, les coordonnées cylindriques coı̈ncident avec les coordonnées polaires planes, d'où la dénomination de coordonnées « cylindro-polaires ».

- Coordonnées :
 - $b \text{ du point } M: r \ge 0, \ 0 \le \theta < 2\pi \text{ (ou } -\pi < \theta \le \pi), \ -\infty < z < +\infty;$
 - \triangleright du vecteur $\overrightarrow{OM} = r \overrightarrow{e}_r + z \overrightarrow{e}_z$, pas de composante sur $\overrightarrow{e}_{\theta}$.
- Déplacement élémentaire :

$$\overrightarrow{dM} = dr \overrightarrow{e}_r + r d\theta \overrightarrow{e}_\theta + dz \overrightarrow{e}_z$$

• Surfaces élémentaires : la surface dS_r , de normale \overrightarrow{e}_r , s'obtient en multipliant les composantes selon $\overrightarrow{e}_\theta$ et \overrightarrow{e}_z du vecteur \overrightarrow{dM} , etc.

$$dS_r = r d\theta dz$$
 $dS_\theta = dr dz$ $dS_z = r dr d\theta$.

• Volume élémentaire : le volume $dV \xrightarrow{\text{est}} \text{le produit des trois composantes du vecteur } \overrightarrow{dM}$.

$$dV = r dr d\theta dz$$
.

III - Coordonnées sphériques _

Dans un plan φ = cte, les coordonnées cylindriques coïncident avec les coordonnées polaires planes, ce qui justifie le nom des coordonnées θ et φ . Bien qu'à première vue on puisse penser que le θ cylindrique corresponde au φ sphérique, c'est en fait faux.

- Coordonnées

 - \triangleright du vecteur $\overrightarrow{OM} = r\overrightarrow{e}_r$.
- Déplacement élémentaire :

$$\overrightarrow{dM} = dr \overrightarrow{e}_r + r d\theta \overrightarrow{e}_\theta + r \sin\theta d\varphi \overrightarrow{e}_\varphi.$$

• Surfaces élémentaires : la surface $\mathrm{d}S_r$, de normale \overrightarrow{e}_r , s'obtient en multipliant les composantes selon $\overrightarrow{e}_\theta$ et $\overrightarrow{e}_\varphi$ du vecteur $\overrightarrow{\mathrm{d}M}$, etc.

$$\mathrm{d}S_r = r^2 \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\varphi \qquad \mathrm{d}S_\theta = r \sin\theta \mathrm{d}r \, \mathrm{d}\varphi$$

$$\mathrm{d}S_\varphi = r \, \mathrm{d}r \, \mathrm{d}\theta \, .$$

• Volume élémentaire : le volume dV est le produit des trois composantes du vecteur \overrightarrow{dM} .

$$\mathrm{d}V = r^2 \sin\theta \, \mathrm{d}r \, \mathrm{d}\theta \, \mathrm{d}\varphi.$$