Последняя лекция! Сжатие без учёта контекста. Арифметическое (интервальное) кодирование

Александра Игоревна Кононова

ТЄИМ

15 декабря 2022 г. — актуальную версию можно найти на https://gitlab.com/illinc/otik
Л/р по АК (необязательная) перенесена на конец семестра; соответствующие семинар и лекция — тоже

Идея арифметического кодирования

- **1** сообщение $C = c_1 c_2 \dots c_n$ соответствует вещественному числу (точке) $z \in [0; 1);$
- точка z представляется в двоичной системе счисления.

Сколько бит требуется для полной записи $z \in [0; 1)$?

Сжатие:

- z сохраняется ровно с той точностью, чтобы восстановить nсимволов C (цикл масштабирования);
- при задании z учитываются частоты символов C.

Арифметическое кодирование без сжатия

Строка
$$D$$
-ичного алфавита $C = c_1 c_2 c_3 ...$ — точка $z = \overline{0, c_1 c_2 c_3 ...}_D$.

Двоичные цифры (биты) $b_1b_2b_3...$ дробной части двоичной записи того же числа $z=0,b_1b_2b_3..._2=\overline{0,c_1c_2c_3..._D}$ — код строки C.

- Любое значение $z \in [0,1)$ имеет бесконечное число цифр (часть их может быть 0) в любой СС; даже для конечного числа D-ичных цифр $\overline{0, c_1 c_2 c_3 ... c_{n,D}}$ двоичное представление может быть бесконечно длинным ightarrow округление;
- округление к ближайшему требует для корректного округления вычислить на одну цифру больше, чем надо

$$oldsymbol{0}, c_1c_2c_3.... \cdot D = c_1 + \overline{0, c_2c_3...}, \qquad 0 \leqslant c_1 < D, \quad \overline{0, c_2c_3...} \in [0;1)$$
 $0,135 \cdot 2 = \mathbf{0},270 \quad 0,560 \cdot 2 = \mathbf{1},120 \quad 0,360 \cdot 2 = \mathbf{0},720$
 $0,270 \cdot 2 = \mathbf{0},540 \quad 0,120 \cdot 2 = \mathbf{0},240 \quad 0,720 \cdot 2 = \mathbf{1},440$
 $0,540 \cdot 2 = \mathbf{1},080 \quad 0,240 \cdot 2 = \mathbf{0},480 \quad 0,440 \cdot 2 = \mathbf{0},880$
 $oldsymbol{0},080 \cdot 2 = \mathbf{0},160 \quad 0,480 \cdot 2 = \mathbf{0},960 \quad 0,880 \cdot 2 = \mathbf{1},760$
 $0,160 \cdot 2 = \mathbf{0},320 \quad 0,960 \cdot 2 = \mathbf{1},920 \quad 0,760 \cdot 2 = \mathbf{1},520$
 $0,320 \cdot 2 = \mathbf{0},640 \quad 0,920 \cdot 2 = \mathbf{1},840 \quad 0,520 \cdot 2 = \mathbf{1},040$
 $0,640 \cdot 2 = \mathbf{1},280 \quad 0,840 \cdot 2 = \mathbf{1},680 \quad 0,040 \cdot 2 = \mathbf{0},080$
 $0,280 \cdot 2 = \mathbf{0},560 \quad 0,680 \cdot 2 = \mathbf{1},360 \quad 0,080 \cdot 2 = \mathbf{0},160$

Далее всё повторится: $0,135_{10} = 0,001(0001010001111011110)_2$

$$0,0010001010_2 = \frac{1}{2^3} + \frac{1}{2^7} + \frac{1}{2^9} = \frac{1}{8} + \frac{1}{128} + \frac{1}{512} = 0,134765625_{10} \neq 0,135_{10}$$

Перевод $10 \to 2$ (округление к нулю)

```
0.135_{10} \sim egin{cases} исходная длина (3 цифры) любое значение z из полуинтервала \left[0.135;0.136\right)
0.135 \cdot 2 = \mathbf{0},270 \quad 0.136 \cdot 2 = \mathbf{0},272
0,270 \cdot 2 = \mathbf{0},540 \quad 0,272 \cdot 2 = \mathbf{0},544
0.540 \cdot 2 = 1.080 \quad 0.544 \cdot 2 = 1.088
0.080 \cdot 2 = \mathbf{0}.160 \quad 0.088 \cdot 2 = \mathbf{0}.176
0.160 \cdot 2 = \mathbf{0}.320 \quad 0.176 \cdot 2 = \mathbf{0}.352
0.320 \cdot 2 = \mathbf{0}.640 \quad 0.352 \cdot 2 = \mathbf{0}.704
0.640 \cdot 2 = 1.280 \quad 0.704 \cdot 2 = 1.408
0.280 \cdot 2 = \mathbf{0.560} \quad 0.408 \cdot 2 = \mathbf{0.816}
0.560 \cdot 2 = 1.120 \quad 0.816 \cdot 2 = 1.632
0.120 \cdot 2 = 0.240 \quad 0.632 \cdot 2 = 1.264
```

 $0.135_{10} \approx 0.0010001011_2$ (до 3 десятичных знаков после запятой)

$$0,00100010110_2 = \frac{1}{2^3} + \frac{1}{2^7} + \frac{1}{2^9} + \frac{1}{2^{10}} = \frac{1}{8} + \frac{1}{128} + \frac{1}{512} + \frac{1}{1024} =$$

 $=0.1357421875_{10}\approx0.135_{10}$ (округление к нулю до 3 десятичных знаков)

Для перевода чисел описанным способом (как $10 \rightarrow 2$, так и $2 \rightarrow 10$), необходимо делать точные вычисления.

- ① Одинарная точность (float) 23 бита мантиссы (7–8 десятичных цифр)
- Двойная точность (double) 52 бита мантиссы (15–17 десятичных цифр)
- Расширенная двойная точность (long double в GCC, Extended в Паскале) 64 бита мантиссы (19–20 десятичных цифр)
- Вещественные типы не подходят для чисел сверхвысокой точности.
- Действия над длинными числами необходимо выполнять посимвольно:
 - посимвольные вычисления (от младшего разряда) абсолютно точны;
 - посимвольный перевод CC1→CC2 (от старшего разряда) неточен, если нет возможности работать с произвольными $\frac{n}{m}$, но погрешности перевода $CC1 \rightarrow CC2$ и $CC2 \rightarrow CC1$ в целых числах компенсируют друг друга (восстановится исходное число). < □ > < □ > < □ > < □ > < □ > □

Геометрическая интерпретация

Цифра D-ичного алфавита $c_1c_2c_3...$ — полуинтервал $\subseteq [0,1)$

Посимвольная обработка: $D \leftrightarrow 2$

$$\begin{split} \overline{0,&c_1c_2\dots c_{n_D}} & \left(c_i \in \{0,\dots,D-1\}\right) \approx z = \overline{0,b_1b_2b_3\dots b_{m_2}} & \left(b_i \in \{0,1\}\right) \\ \overline{0,&c_1c_2\dots c_{n_D}} \leqslant z < \overline{0,&c_1c_2\dots (c_n+1)_D} & \text{считаем } \overline{0,(9+1)_{10}} = 1,0 \\ [0,1) \supseteq & [l_1,t_1) \supseteq \dots \supseteq [l_n,t_n) \ni z & \overline{\begin{array}{ccc} i & l_i & t_i \\ \hline 0 & 0 & 1 \\ 1 & \overline{0,c_1D} & \underline{0,c_1c_1} \\ 2 & \overline{0,c_1c_2D} & \overline{0,c_1(c_2+1)_D} \\ \dots & n & \overline{0,c_1c_2\dots c_{n_D}} & \overline{0,c_1c_2\dots (c_n+1)_D} \\ \end{split}}$$

Накапливается погрешность

$$\underbrace{ \begin{bmatrix} [0,1) \supseteq [\lambda_1,\tau_1) \supseteq \ldots \supseteq [\lambda_m,\tau_m) \supseteq \ldots \ni z & \frac{k}{0} & \lambda_k & \tau_k \\ \lambda_k \leqslant z < \tau_k & 1 & \frac{0}{0,b_{1_2}} & \frac{1}{0,(b_1+1)_2} \\ \underbrace{0,c_1\ldots c_i\,\xi_D}_{l_i} \leqslant \lambda_k \text{ in } \tau_k \leqslant \underbrace{0,c_1\ldots c_i(\xi+1)_D}_{t_{i+1}} & \dots & \underbrace{m}_{t_{i+1}} & \frac{0,b_1\ldots b_{m_2}}{0,b_1\ldots b_{m_0}} & \frac{0,b_1\ldots (b_m+1)_2}{0,b_1\ldots b_{m_0}} \\ \underbrace{-1,c_1\ldots c_i\,\xi_D}_{l_{i+1}} & \downarrow & \dots & \underbrace{-1,c_i(\xi+1)_D}_{t_{i+1}} & \dots & \underbrace{-1,c_i(\xi+1)_D}_{m+1} & \underbrace{-1,c_i(\xi+1)_D}_{0,b_1\ldots b_m 0_2} & \underbrace{-1,c_i(\xi+1)_D}_{0,b_1\ldots b_m 0_2} \\ \underbrace{-1,c_1\ldots c_i\,\xi_D}_{l_{i+1}} & \downarrow & \dots & \underbrace{-1,c_i(\xi+1)_D}_{l_{i+1}} & \underbrace{-1,c_i(\xi+1)_D}_{l_{i+1}}$$

Целочисленная реализация

Некоторый фрагмент [a,b) вещественного полуинтервала (ПИ) [0,1) изображается в виде целочисленного ПИ [0, N)

$$[a,b) \to [0,N) \left([l_i,t_i) \subseteq [a,b) \subseteq [0,1) \right) \qquad N >> 4D^2, \ \frac{N}{4} \in \mathbb{N}$$

$$a \quad l_i \quad t_i \quad b \quad \in [0,1) \subset \mathbb{R}$$

Далее l и t — не настоящие l_i и t_i из [0,1), а их изображения на [0,N) (целые).

Вначале [a,b)=[0,1), потом каждый раз при возможности уменьшается вдвое, чтобы изображающий $[l_i,t_i)$ целочисленный ПИ [l,t) не стал короче $rac{N}{4}$.

Приближаем («микроскоп Ньютона») одну из половин $[a,b) \Longrightarrow$ новые изображения l и t масштабируются из старых изображений ($l_i, t_i \in \mathbb{R}$ недоступны).

 $D \neq 2^{\alpha} \Longrightarrow$ границы цифр $\frac{\Delta \cdot \xi}{D}$ / символов $\frac{\Delta \cdot \omega_j}{D}$ пересчитываются по новым l,t

 \Longrightarrow погрешность округления: для уменьшения $N\stackrel{.}{:}D^{\gamma}$ (также $N\stackrel{.}{:}2^{\alpha}, \ \alpha\gg\gamma\gg1$)

<ロ > → □

Масштабирование и биты двоичного представления

Вначале $[a,b) = [0,1) \Longrightarrow z \in [l_i,t_i) \subseteq [a,b)$ м. б. любым; приближаем часть ПИ $[L, L + \frac{N}{2}]$ — изображаемый ПИ [a, b) уменьшается вдвое, длины на изображении увеличиваются вдвое (масштабирование $x \to 2(x-L)$).

$$[a,b) = \left[0,\frac{1}{2}\right) = \left[0,0;0,1\right)_2 = \left[0,0;0,0(1)\right)_2 : \text{ первый бит } z \in [l_i,t_i) \subseteq [a,b) \text{ всегда } 0$$

$$L = 0$$

$$0$$

$$\frac{N}{2} - 2$$

$$\frac{N}{2} - 1$$

$$\frac{N}{2}$$

$$N - 3$$

$$N - 2$$

$$N - 1$$

$$[a,b) = \left[\frac{1}{2},1\right) = \left[0,1;1,0\right)_2 = \left[0,1;0,1(1)\right)_2 : \text{ первый бит } z \in [a,b) \text{ всегда } 1$$

$$L = \frac{N}{2}$$

$$0$$

$$1$$

$$2$$

$$N - 3$$

$$N - 2$$

$$N - 1$$

$$N - 3$$

$$N - 2$$

$$N - 1$$

$$N - 3$$

$$N - 2$$

$$N - 1$$

$$N - 3$$

$$N - 2$$

$$N - 1$$

$$N - 3$$

$$N - 3$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 1$$

$$N - 3$$

$$N - 4$$

$$N - 3$$

$$N - 4$$

$$N - 3$$

$$N - 4$$

$$N - 4$$

$$N - 3$$

$$N - 4$$

$$N - 4$$

$$N - 3$$

$$N - 4$$

$$N - 4$$

$$N - 4$$

$$N - 5$$

$$N - 6$$

$$N - 6$$

$$N - 6$$

$$N - 7$$

$$N - 1$$

$$N - 8$$

$$N$$

Позиционная запись [0;1) по основанию DПосимвольная обработка: $D \leftrightarrow 2$ Арифметическое сжатие

Полуинтервалы и отрезки

 $L = \frac{N}{4}$

Масштабирование и биты двоичного представления

Перевод $D \rightarrow 2 \diamondsuit 021$ ar samples/*: 135, 112 \hookrightarrow

Входной поток: цифры $C = c_1 c_2 \dots c_n$, выходной — биты $B = b_1 b_2 b_3 \dots b_m$ [l,t) соответствует текущей цифре c_i , текущий бит b_k — весь [0,N)

- 0 l = 0, t = N, бит зарезервировано $\beta = 0$, № цифры i = 0
- $oxed{1}$ чтение (++i) цифры $C o c_i$: $\Delta=t-l,\; egin{cases} l o l + rac{\Delta\cdot (c_i)}{D} \ t o l + rac{\Delta\cdot (c_i+1)}{D} \end{cases}$
- $oldsymbol{Q}$ масштабирование l,t и запись бита $b=rac{2L}{N}$, пока возможно (м.б.несколько раз): $\left[l,t\right)\subseteq\left[0,\tfrac{N}{2}\right)\quad\Longrightarrow\left[0,\tfrac{N}{2}\right)\rightarrow\left[0,N\right)\quad\text{if }0\rightarrow B\left(0\underbrace{11\ldots1}\rightarrow B,\,\beta\rightarrow0\right)$ $\left[l,t\right)\subseteq\left[\tfrac{N}{2},N\right) \implies \left[\tfrac{N}{2},N\right)\to\left[0,N\right) \ \text{ if } 1\to B \ \left(1\underbrace{00\ldots0}\to B,\,\beta\to0\right)$

$$[l,t)\subseteq \left[rac{N}{4},rac{3N}{4}
ight)\Longrightarrow \left[rac{N}{4},rac{3N}{4}
ight)
ightarrow [0,N)$$
 u $++eta$

f 3 если достигнуто i=n— запись 1 o B (фактически $1 \underbrace{00 \dots 0}_{n} o B,$

но завершающие нули подразумеваются) и завершение; иначе переход к шагу 🚺

Если $\frac{\Delta \cdot c_i}{D}$ и $\frac{\Delta \cdot (c_i+1)}{D}$ неточны — перевод неточен, но восстановление м. б. возможно ◆□ → ◆圖 → ◆臺 → ◆臺 → □

Перевод $2 \rightarrow D$

Точность n цифр, входной поток — биты $B = b_1 b_2 b_3 \dots b_m 000 \dots$ выходной поток — цифры $C = c_1 c_2 \dots c_n$. $[\lambda, \tau)$ соответствует текущему биту b_k , [l, t) — текущей цифре $c_i = \xi$, $[\lambda, \tau) \subseteq [l, t) \subseteq [0, N)$

- $lacksymbol{1}$ чтение (++k) бита $B o b_k$: $\delta= au-\lambda,\; egin{cases} \lambda o\lambda+rac{\delta\cdot b_k}{2} \ au o\lambda+rac{\delta\cdot (b_k+1)}{2} \end{cases}$
- $oldsymbol{2}$ получение и запись цифры, если возможно: $\Delta = t l, \; \xi \in \{0, \dots, D-1\}$

$$\exists \xi \colon [\lambda, \tau) \subseteq \left[l + \frac{\Delta \cdot \xi}{D}, \ l + \frac{\Delta \cdot (\xi + 1)}{D} \right) \qquad \Longrightarrow \qquad ++i, \ \xi \to C, \ \begin{cases} l \to l + \frac{\Delta \cdot \xi}{D} \\ t \to l + \frac{\Delta \cdot (\xi + 1)}{D} \end{cases}$$

- **3** масштабирование l, λ, τ, t , пока возможно (м. б. несколько раз): $[l,t)\subseteq [L,L+rac{N}{2})\implies [L,L+rac{N}{2}) o [0,N)$ (не влияет на выходной поток); когда уже невозможно — переход к шагу 2
- **4** если достигнуто i = n завершение, иначе переход к шагу **1**

Если $\frac{\delta \cdot b_k}{2}$ и $\frac{\delta \cdot (b_k+1)}{2}$ неточны — восстановление невозможно $\Longrightarrow N \stackrel{:}{:} 2^{\alpha}, \ \alpha \gg 1$

4□ > 4□ > 4□ > 4□ > 4□ > 90

Арифметическое сжатие

- **1** Цепочка символов T-ичного алфавита соответствует вещественному числу (точке) сверхвысокой точности в диапазоне [0,1). Соответствие аналогично позиционной системе счисления по основанию T,
 - Соответствие аналогично позиционной системе счисления по основанию T но диапазон разбивается на T неравных частей пропорционально частотам символов.
- Полученная точка представляется в двоичной системе счисления.

Сжимаем текст AABABA. Вероятность символа $A-\frac{2}{3}$, $B-\frac{1}{3}$ \Longrightarrow диапазон [0;1) делится 2:1.

Интервальное кодирование — целочисленное, $[a,b)\subseteq [0,1) \to [0,N)$

Геометрическая интерпретация

イロト (個) (注) (注)

Отличие от перевода между СС — неравные вероятности символов ξ_i .

Алфавит из T символов: $\xi_1, \xi_2, \dots \xi_T$, частоты $\nu_1, \nu_2, \dots \nu_T \in \mathbb{N} \cup \{0\}$, сортируются по убыванию $\nu_1 \geqslant \nu_2 \geqslant \ldots \geqslant \nu_T$.

Деление пропорционально
$$\nu_j$$
:
$$\begin{cases} \omega_0 &= 0, \\ \dots \\ \omega_j &= \omega_{j-1} + \nu_j, \\ \dots \\ \omega_T &= \omega_{T-1} + \nu_T. \end{cases}$$

$$D = \omega_T = \sum_j
u_j$$
 — делитель.

$$D=\omega_T=\sum_j
u_j$$
 — делитель.
$$\frac{\xi_1=A}{D}=0$$

$$\frac{N\cdot\omega_1}{D}=\frac{N\cdot\omega_1}{D}=N$$

Изменение отрезка при чтении символа $c_i=\xi_j$:

$$\Delta = t - l, \begin{cases} l \to l + \frac{\Delta \cdot \omega_{j-1}}{D} \\ t \to l + \frac{\Delta \cdot \omega_{j}}{D} \end{cases}$$

Выбор N: \bigcirc $N >> 4D^2$ (два деления $\Delta > \frac{N}{4}$ — достаточно большие ПИ);

- $2 N = 2^{\alpha}$, $\alpha \gg 1$ (перерасчёт λ и τ абсолютно точен);
- \bigcirc расчёты производятся без переполнения $(N \cdot D < \max(type))$.

Сжатие \diamondsuit octocat \hookrightarrow

Входной поток: символы $C=c_1c_2\dots c_n$, выходной — биты $B=b_1b_2b_3\dots b_m$

- $oldsymbol{0} \ l=0, t=N,$ бит зарезервировано eta=0, позиция символа i=0
- $lacksymbol{1}$ чтение (++i) символа $C o c_i=\xi_j$: $\Delta=t-l,\; egin{cases} l o l+rac{\Delta\cdot\omega_{j-1}}{D} \ t o l+rac{\Delta\cdot\omega_j}{D} \end{cases}$
- масштабирование l,t: $\begin{cases} l \to 2(l-L) \\ t \to 2(t-L) \end{cases}$ и запись бита b, пока возможно (м. б. неск.): $\left[\frac{b \cdot N}{2}, \frac{(b+1) \cdot N}{2} \right), b \in \{0,1\} \to [0,N) \text{ и запись } b \to B \ \left(b \, \overline{\underline{bb} \dots \overline{b}} \to B, \ \beta \to 0 \right) \right]$ $\left[\frac{N}{4}, \frac{3N}{4} \right] \to [0,N)$ и $++\beta$
- $oldsymbol{3}$ если достигнуто i=n- запись 1 o B $\left(1\underbrace{00\dots 0}_{eta} o B
 ight)$ и завершение; иначе переход к шагу $oldsymbol{4}$
- **1** Полученное $z \in [0,1)$ соответствует бесконечно длинной строке $c_1c_2 \ldots c_nc_{n+1}c_{n+2} \ldots \to$ необходимо сохранить исходную длину n.
- ② Поточный вариант ν_i и ω_i пересчитываются.

Символов — n, входной поток — биты $B=b_1b_2b_3\dots b_m000\dots$, выходной поток — символы $C=c_1c_2\dots c_n$.

- $oldsymbol{0}$ $l=\lambda=0, t= au=N,$ № бита k=0, № символа i=0
- $lacksymbol{1}$ чтение (++k) бита $B o b_k$: $\delta= au-\lambda, \ \begin{cases} \lambda o\lambda+rac{\delta\cdot b_k}{2} \\ au o\lambda+rac{\delta\cdot (b_k+1)}{2} \end{cases}$
- $m{Q}$ получение и запись символа, если возможно: $\Delta = t l, \ j \in \{1, \dots, T\}$

$$\exists j \colon [\lambda, \tau) \subseteq \left[l + \frac{\Delta \cdot \omega_{j-1}}{D}, \ l + \frac{\Delta \cdot \omega_{j}}{D} \right) \qquad \Longrightarrow \qquad ++i, \ \xi_{j} \to C, \ \begin{cases} l \to l + \frac{\Delta \cdot \omega_{j-1}}{D} \\ t \to l + \frac{\Delta \cdot \omega_{j}}{D} \end{cases}$$

- ③ масштабирование l,λ, au,t , пока возможно (м. б. несколько раз): $\left[l,t\right)\subseteq\left[L,L+rac{N}{2}\right)\Longrightarrow\left[L,L+rac{N}{2}\right)\to\left[0,N\right)$ (не влияет на выходной поток); когда уже невозможно переход к шагу ②
- $oldsymbol{4}$ если достигнуто i=n— завершение, иначе переход к шагу $oldsymbol{1}$

Сравнение с кодами Хаффмана

Степень сжатия на типичных данных на 1-10% лучше кода Хаффмана.

Не увеличивает размера исходных данных в худшем случае.

Полуинтервалы и отрезки

Выше в целочисленной реализации рабочий диапазон рассматривался как полуинтервал $[l,t),\ l\leqslant z< t,$ где t- невключаемая верхняя граница.

Тот же самый диапазон можно представить как отрезок $[l,h],\ l\leqslant z\leqslant h,$ где h=t-1—включаемая верхняя граница.

Реализовать кодирование и декодирование можно как для полуинтервалов $[l,t)/[\lambda, au)$, так и для отрезков $[l,h]/[\lambda,\chi]$, но все соотношения будут различаться (см. следующий лист)!

$$[l,t) = [l,h]$$
 \iff $h = t-1$ \iff $t = h+1$

Полуинтервал [l,t), $l \leq z < t$ Отрезок $[l,h], l \leq z \leq h$

Длина

$$\Delta = t - l$$
 $\delta = \tau - \lambda \mid \Delta = h - l + 1$ $\delta = \chi - \lambda + 1$

Чтение символа ξ_i или бита b

$$\begin{cases} l & \rightarrow & l + \frac{\Delta \cdot \omega_{j-1}}{D} \\ t & \rightarrow & l + \frac{\Delta \cdot \omega_{j}}{D} \end{cases}$$

$$\begin{cases} \lambda & \rightarrow & \lambda + \frac{\delta \cdot b}{2} \\ \tau & \rightarrow & \lambda + \frac{\delta \cdot (b+1)}{2} \end{cases}$$

$$\begin{cases} \lambda & \rightarrow & \lambda + \frac{\delta \cdot b}{2} \\ \chi & \rightarrow & \lambda + \frac{\delta \cdot (b+1)}{2} \end{cases}$$

$$\begin{cases} \lambda & \rightarrow & \lambda + \frac{\delta \cdot (b+1)}{2} \\ \chi & \rightarrow & \lambda + \frac{\delta \cdot (b+1)}{2} - 1 \end{cases}$$

Масштабирование $[L, L + \frac{N}{2}) \to [0, N), L \in \{0, \frac{N}{4}, \frac{N}{2}\}$

$$\begin{aligned} [l,t) &\subseteq \left[L,L+\frac{N}{2}\right) \Longleftrightarrow \begin{cases} L \leqslant l \\ t \leqslant L+\frac{N}{2} \end{cases} & \\ \begin{cases} l & \to & 2(l-L) \\ t & \to & 2(t-L) \end{cases} & \\ \begin{cases} l & \to & 2(l-L) \\ h & \to & 2(h-L) \end{cases} & \\ \begin{cases} l & \to & 2(l-L) \\ h & \to & 2(h-L) \end{cases} & \\ \end{cases}$$

$$\begin{vmatrix} [l,h] \subseteq [L,L+\frac{N}{2}) & \Longleftrightarrow \begin{cases} L \leqslant l \\ h < L+\frac{N}{2} \end{cases}$$

$$\begin{cases} l & \to & 2(l-L) \\ h & \to & 2(h-L)+1 \end{cases}$$

《□》《圖》《意》《意》。 意。

2t - 1 = 2(h + 1) - 1 = 2h + 1

Д. Ватолин, целочисленный цикл (отрезки)

```
1 \ 1[0] = 0; h[0] = 65535; i = 0; delitel = b[c \ last];
 2 First_qtr = (h[0] + 1)/4; Half = First_qtr*2; Third_qtr = First_qtr*3;
 3 bits_to_follow = 0; // масштабирований [First_qtr; Third_qtr)
   while (not DataFile.EOF()) {
 5
     c = DataFile.ReadSymbol(); i++; // Кодируемый символ
 6
     j = IndexForSymbol(c); // и его номер в алфавите
 7
     l[i] = l[i-1] + b[j-1]*(h[i-1] - l[i-1] + 1)/delitel;
 8
     h[i] = l[i-1] + b[j]*(h[i-1] - l[i-1] + 1)/delitel - 1;
 9
     for(;;) {
                            // Варианты масштабирования
       if (h[i] < Half) // [l; h] лежит в [0; Half)
10
11
         bits_plus_follow(0);
12
       else if (l[i] >= Half) { // [l; h] лежит в [Half, max)
13
         bits_plus_follow(1);
14
         1[i] -= Half; h[i] -= Half;
15
16
       else if ((l[i] >= First_qtr) && (h[i] < Third_qtr)) {</pre>
17
         bits to follow++:
18
         l[i] -= First_qtr; h[i] -= First_qtr;
19
       } else break;
20
       l[i] += l[i]; h[i] += h[i] + 1; // масштабирование *2
21
22 }
```

◆ロト ◆個ト ◆意ト ◆意ト ・意 ・ 夕久で

```
1 void bits_plus_follow (int bit)
2 {
3
    CompressedFile.WriteBit(bit);
    for(; bits_to_follow > 0; bits_to_follow--)
4
5
       CompressedFile.WriteBit(!bit);
6 }
  bits_to_follow = \beta — количество масштабирований из средней
  половины \left[\frac{1}{4}; \frac{3}{4}\right) \to \left[0; 1\right) подряд
```

Дмитрий Ватолин, МГУ, Media data compression. Сжатие без потерь

ТЕИМ

www.miet.ru

Александра Игоревна Кононова illinc@mail.ru gitlab.com/illinc/raspisanie

