Logistic Regression

$$y = X\beta$$

our link function is

$$g(x) = \log \frac{x}{1 - x}$$

which has the inverse

$$g^{-1}(x) = \frac{e^x}{1 + e^x}$$

$$y = g^{-1}(X\beta)$$
 general case

specific case

Common distributions with typical uses and canonical link functions

Distribution	Support of distribution	Typical uses	Link name	Link function, $\mathbf{X} oldsymbol{eta} = g(\mu)$	Mean function
Normal	real: $(-\infty, +\infty)$	Linear-response data	Identity	$\mathbf{X}oldsymbol{eta}=\mu$	$\mu = \mathbf{X}oldsymbol{eta}$
Exponential Gamma	real: $(0,+\infty)$	Exponential- response data, scale	Negative inverse	$\mathbf{X}oldsymbol{eta} = -\mu^{-1}$	$\mu = -(\mathbf{X}oldsymbol{eta})^{-1}$
Inverse Gaussian	real: $(0,+\infty)$	parameters	Inverse squared	$\mathbf{X}oldsymbol{eta}=\mu^{-2}$	$\mu = (\mathbf{X}oldsymbol{eta})^{-1/2}$
Poisson	integer: $0,1,2,\ldots$	count of occurrences in fixed amount of time/space	Log	$\mathbf{X}oldsymbol{eta} = \ln(\mu)$	$\mu = \exp(\mathbf{X}oldsymbol{eta})$
Bernoulli	integer: $\{0,1\}$	outcome of single yes/no occurrence		$\mathbf{X}\boldsymbol{eta} = \ln\!\left(rac{\mu}{1-\mu} ight)$	
Binomial	integer: $0,1,\ldots,N$	count of # of "yes" occurrences out of N yes/no occurrences	Logit	$\mathbf{X}\boldsymbol{\beta} = \ln\left(\frac{\mu}{n-\mu}\right)$	
Categorical	integer: $[0, K)$ K-vector of integer: $[0, 1]$, where exactly one element in the vector has the value 1	outcome of single <i>K</i> -way occurrence		$\mathbf{X}oldsymbol{eta}=\ln\!\left(rac{\mu}{1-\mu} ight)$	$\mu = \frac{\exp(\mathbf{X}\boldsymbol{\beta})}{1 + \exp(\mathbf{X}\boldsymbol{\beta})} = \frac{1}{1 + \exp(-\mathbf{X}\boldsymbol{\beta})}$
Multinomial	\emph{K} -vector of integer: $[0,N]$	count of occurrences of different types (1,, K) out of N total K-way occurrences			

https://en.wikipedia.org/wiki/Generalized_linear_model#Link_function