第十部分: 误差反向传播算法(BP)

- 第十部分: 误差反向传播算法(BP)
 - 一、神经网络基本概念
 - 。 二、神经元模型
 - 1. 单个神经元
 - 1> 感知器模型
 - 2> 输入与输出
 - 3> 激活函数
 - 2. 单个神经元的学习
 - 1> 识别
 - 3. 多层神经元模型
 - 。 三、误差反向传播算法(BP)
 - 1. 算法的推导
 - 1> 输出层权重偏导
 - 2> 隐藏层权重偏导
 - 3. 训练
 - 1> 调整单个权重 w。我们追求误差减小,故,有以下公式:
 - 2> 随机梯度下降
 - 4. 编码
 - 。 四、一个学习示例
 - 1. 性别预测
 - 五、算法优化
 - 1. 指定网络结构
 - 2. 存储当前神经网络的训练数据
- 一、神经网络基本概念
- 二、神经元模型

神经元细胞示意图

二、神经元的结构

髓鞘是包裹在神经细胞轴突外面的一层膜

1. 单个神经元

1> 感知器模型

2> 输入与输出

3> 激活函数

$$Sigmoid(x) = rac{1}{1+e^{-x}}$$

$$Sigmoid'(x) = Sigmoid(x) * (1 - Sigmoid(x)) \\$$

2. 单个神经元的学习

1> 识别

拟合函数:

X1:[1, 0, 0] --> Y:-1

X2:[0, 1, 0] --> Y:-1

X3:[0, 0, 1] --> Y:1

Y = activate(Xr * Wr + Xy * Wy + Xg * Wg)

选择激活函数使用符号函数:sign(x)

Y = sign(Xr * Wr + Xy * Wy + Xg * Wg)

识别交通信号灯的一个解:W=[-1,-1,1]

3. 多层神经元模型

input

h_in --> h_out output_in --> output_out

- 三、误差反向传播算法(BP)
- 1. 算法的推导

h_in = h_w x X
h_out = Sigmoid(h_in)
output_in = output_w x h_out
output_out = Sigmoid(output_in)

Error = $D(Y) = 1/2*\Sigma(Y - Ypre)^2 = F(X, wij, Ytrue)$

input --[h_w]--> h_in --[sigmoid]--> h_out --[output_w]-->output_in --[sigmoid]--> output_out-->Error 符号说明:

• x:输入向量

• Y_{true} : 输入向量 \mathbf{x} 对应的真实结果 • Y_{med} : 根据输入向量 \mathbf{x} 预测的结果

Yi:向量的某个分量h_in:隐藏层输入

• h_out:隐藏层输出(经过激活函数处理)

h_w:隐藏层权重矩阵output in:输出层输入

• output_out:输出层输出(经过激活函数处理)

• output_w:输出层权重矩阵

1> 输出层权重偏导

已知对于某个训练样例 d 的误差函数:

$$Error = rac{1}{2} * \sum_{i \in output} (Yi_{true} - Yi_{pred})^2$$

可得,总误差函数对输出层权重 w_{35} 的偏导数:

$$\frac{\partial E}{\partial w_{35}} = \frac{\partial E}{\partial output5_out} * \frac{\partial output5_out}{\partial output5_in} * \frac{\partial output5_in}{\partial w_{35}}$$

各项展开得:

$$\begin{array}{l} \frac{\partial E}{\partial output5_out} = -(Y5_{true} - output5_out) \\ \frac{\partial output5_out}{\partial output5_in} = Sigmoid(output5_in) * (1 - Sigmoid(output5_in)) \\ output5_in = h3_out * w_{35} + h4_out * w_{45} \\ \frac{\partial output_in}{\partial w_{35}} = h3_out \end{array}$$

最终偏导为:

$$\frac{\partial E}{\partial w35} = -(Y5_{true} - output5_out) * Sigmoid(output5_in) * (1 - Sigmoid(output5_in)) * h3_output5_in) * h3_output5_in)$$

2> 隐藏层权重偏导

总体上,隐藏层权重偏导公式如下:

$$\frac{\partial E}{\partial w_{13}} = \frac{\partial E}{\partial h_{3}out} * \frac{\partial h_{3}out}{\partial h_{3}in} * \frac{\partial h_{3}in}{\partial w_{13}}$$

展开,得:

$$\frac{\partial E}{\partial w_{13}} = \frac{\partial E}{\partial h_{3_out}} * Sigmoid(h_{3_in}) * (1 - Sigmoid(h_{3_in})) * x_1$$

仔细分析, 我们只需对权重 w_{13} 直接影响的节点求导即可:

$$\frac{\partial E}{\partial h3_out} = \sum_{i \in Downstream(h3)} \frac{\partial E}{\partial outputi_out} * \frac{\partial outputi_out}{\partial outputi_in} * \frac{\partial outputi_in}{\partial h3_out}$$

各项展开得:

$$\frac{\partial E}{\partial h3_out} = \sum_{i \in Downstream(h3)} - (Yi_{true} - outputi_out) * Sigmoid(outputi_in) * (1 - Sigmoid(outputi_in)) * w_{3i} + (1 - Sigmoid(outputi_in))$$

3. 训练

1> 调整单个权重 w。我们追求误差减小,故,有以下公式:

$$w_{35} = w_{35} - \Delta w_{35}$$

定义学习速率: r

$$w_{35} = w_{35} - r * rac{\partial E}{\partial w_{35}}$$

输出层权重调整:

$$w_{35} = w_{35} + r*(Y5_{true} - output5_out)*Sigmoid(output5_in)*(1 - Sigmoid(output5_in))*h3_output5_in)$$

$$w_{45} = w_{45} + r*(Y5_{true} - output5_out)*Sigmoid(output5_in)*(1 - Sigmoid(output5_in))*h4_out$$

 $w_{36} = w_{36} + r*(Y6_{true} - output6_out)*Sigmoid(output6_in)*(1 - Sigmoid(output6_in))*h3_output6_in)$

$$w_{46} = w_{46} + r*(Y6_{true} - output6_out)*Sigmoid(output6_in)*(1 - Sigmoid(output6_in))*h4_out$$

利用矩阵运算简化

$$hw+=r*\left(egin{array}{c} Y5_{true}-Y5_{pred}\ Y6_{true}-Y6_{pred} \end{array}
ight)\cdot Sigmoid'\left(egin{array}{c} output5_in\ output6_in \end{array}
ight) imes\left(egin{array}{c} h3_out & h4_out \end{array}
ight)$$

继续化简(默认向量为列向量):

$$hw+=r*(Y_{true}-Y_{pred})\cdot Sigmoid'(output_in)\times h_out.T$$

令:

$$output_error = (Y_{true} - Y_{pred})$$

则:

$$hw+=r*(output_errors\cdot Sigmoid'(output_in)) imes h_out.T$$

隐藏层权重调整:

$$w_{13} = w_{13} + r * Sigmoid'(h3_in) * x_1 * \sum_{i \in Downstream(h3)} (Yi_{true} - outputi_out) * Sigmoid'(outputi_in) * w_{3i}$$
 $w_{23} = w_{23} + r * Sigmoid'(h3_in) * x_2 * \sum_{i \in Downstream(h3)} (Yi_{true} - outputi_out) * Sigmoid'(outputi_in) * w_{3i}$ $w_{14} = w_{14} + r * Sigmoid'(h4_in) * x_1 * \sum_{i \in Downstream(h4)} (Yi_{true} - outputi_out) * Sigmoid'(outputi_in) * w_{4i}$ $w_{24} = w_{24} + r * Sigmoid'(h4_in) * x_2 * \sum_{i \in Downstream(h4)} (Yi_{true} - outputi_out) * Sigmoid'(outputi_in) * w_{4i}$

利用矩阵简化:

$$hw_{ij} + = r * Sigmoid' \left(egin{array}{c} hj_in \ hj_in \end{array}
ight) \cdot \left(egin{array}{c} x_1 \ x_2 \end{array}
ight) imes \sum_{k \in Downstream(h_j)} (Yk_{true} - Yk_{pred}) \cdot Sigmoid'(outputk_in) imes w_{jk}$$

令(默认向量为列向量):

$$hidden_errors = output_w.T \times ((Yk_{true} - Yk_{pred}) \cdot Sigmoid'(output_in))$$

带入得(默认向量为列向量):

2> 随机梯度下降

- 1. 对训练样本中的每一个数据,进行一次训练
- 2. 对整个样本进行多次(例如: 100次)训练

4. 编码

四、一个学习示例

1. 性别预测

五、算法优化

1. 指定网络结构

可随意指定:输入层,隐藏层,输出层的神经元个数

2. 存储当前神经网络的训练数据

将神经网络结构,包括:学习速率,训练次数和所有权重矩阵存成文件,以便以后可以不必训练,加载数据后可直接进行预测。