Statistiques inférentielles

CY-Tech ING2-GI

Année universitaire 2021-2022

A. BOURHATTAS

Chapitre 0

Rappels sur les probabilités et les Convergences de v.a.

0.1 Espaces probabilisés

0.1.1 Cas général

En probabilités, on travaille dans un espace probabilisé (Ω, \mathcal{A}, P) . Pour celà, on commence par :

- 1. définir l'ensemble de tous les évènements élémentaires, appelé espace fondamental ou univers. Il est généralement noté Ω .
- 2. définir, parmi les parties de Ω , l'ensemble \mathcal{A} des évènements dont on pourra calculer la probabilité. Il s'agit d'une tribu ou σ -algèbre. Autrement dit elle contient \emptyset , Ω , est stable par complémentaire et par union dénombrable.
- 3. définir une mesure de probabilités, càd une application

$$P: \mathcal{A} \longrightarrow [0,1]$$
 avec $P(\Omega) = 1$ et $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ pour toute famille $(A_i)_{i \in \mathbb{N}}$ d'évènements disjoints 2 à 2.

0.1.2 Cas discret

Lorsque l'espace fondamental Ω est discret, càd fini ou dénombrable, on prend :

- 1. $\mathcal{A} = \mathcal{P}(\Omega)$, toutes les parties de Ω sont des évènements.
- 2. La mesure de probabilité est définie par la donnée des $P(\omega), \omega \in \Omega$ avec $\sum_{\omega \in \Omega} P(\omega) = 1$.

0.1.3 Cas continu

Lorsque l'espace fondamental Ω est continu, càd $\Omega = \mathbb{R}$ ou un intervalle de \mathbb{R} , muni de la mesure de Lebesgue (μ) , on prend :

- 1. $A = \mathcal{B}_{\mathbb{R}}$, ensemble des boréliens = plus petite tribu engendrée par les intervalles.
- 2. La probabilité est définie par la donnée d'une fonction de densité $f:\Omega \longrightarrow \mathbb{R}^+$ positive, μ mesurable et qui vérifie $\int_{\Omega} f(x) d\mu = 1$. Ainsi la probabilité d'un évènement $A \in \mathcal{A}$ est obtenue par : $P(A) = \int_{A} f d\mu$.

0.2 Variable aléatoire

0.2.1 Définition

Etant donné un espace probabilisé (Ω, \mathcal{A}, P) , on appelle variable aléatoire, toute application : $X : \Omega \longrightarrow \mathbb{R}$ qui vérifie : $\forall B \in \mathcal{B}_{\mathbb{R}}, X^{-1}(B) \in \mathcal{A}$.

Une variable aléatoire permet de "transporter" la structure probabiliste définie sur Ω vers \mathbb{R} . On obtient ainsi une mesure de probabilité P_X sur \mathbb{R} définie par : $\forall B \in \mathcal{B}_{\mathbb{R}}, \ P_X(B) = P(X^{-1}(B))$. Une v.a. est discrète ou continue selon que $X(\Omega)$ est discret ou continu.

0.2.2 Loi de probabilités, fonction de répartition

- 1. Lorsque la v.a. est discrète, sa loi de probabilité est définie à l'aide la fonction masse $p_X(x_k) = P(X = x_k) = P(\{\omega \in \Omega, X(\omega) = x_k\})$ pour les valeurs x_k du support de X.
- 2. Dans le cas continu, cette loi est définie grâce à une densité de probabilité $f_X : \mathbb{R} \longrightarrow \mathbb{R}$, fonction à valeurs positives, continue presque partout et vérifiant : $\int_{-\infty}^{+\infty} f(x)dx = 1.$
- 3. La fonction de répartition est par définition : $F_X : \mathbb{R} \longrightarrow [0,1]$ avec : $\forall x \in \mathbb{R}, F_X(x) = P(X \le x) = P_X(]-\infty, x]$). Dans le cas discret : $F_X(x) = \sum_{\substack{k, x_k \le x \\ f}} P(X = x_k) = \sum_{\substack{k, x_k \le x \\ f}} p_X(x_k)$.

Dans le cas continu : $F_X(x) = \int_{-\infty}^x f_X(t)dt$.

La fonction de répartition est toujours *croissante*, partout *continue à droite* avec une limite égale à 0 en $-\infty$ et égale à 1 en $+\infty$.

0.2.3 Espérance, variance

1. Pour X v.a. discrète, l'espérance ou moyenne de X est : $F(X) = \mu - \sum_{x \in P} x \cdot P(X = x) - \sum_{x \in P} x \cdot p_{x}(x)$

 $E(X) = \mu = \sum_{k} x_k P(X = x_k) = \sum_{k} x_k p_X(x_k).$ La variance (carré de l'écart-type) est donnée par :

 $V(X) = E((X - E(X))^2) = E((X - \mu)^2)$, et donc:

$$V(X) = \sigma^2 = \sum_{k} (x_k - \mu)^2 P(X = x_k) = \left[\sum_{k} x_k^2 P(X = x_k) \right] - \mu^2.$$

2. Pour X v.a. discrète, l'espérance ou moyenne de X est :

 $E(X) = \mu = \int_{-\infty}^{+\infty} x f(x) dx$. La variance est :

$$V(X) = \sigma^2 = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx = \int_{-\infty}^{+\infty} x^2 f(x) dx - \mu^2.$$

- 3. L'espérance est linéaire, c à d : $E(\lambda X + \mu Y) = \lambda E(X) + \mu E(Y)$.
- 4. Quant varoiance, on a : $V(\lambda X) = \lambda^2 V(X)$, et si X et Y sont indépendantes, V(X+Y) = V(X) + V(Y).

0.3 Les principales lois de probabilité usuelles

0.3.1 Lois discrètes usuelles

Nom	Notation	Loi de probabilité	Espérance	Variance
			$\sum_{k=1}^{n} x_k$	$V(X) = \frac{\sum_{k=1}^{n} x_k^2}{n} - E(X)^2$
Uniforme		Valeurs prises $x_k, 1 \le k \le n$	$E(X) = \frac{k=1}{n}$	$V(X) = \frac{k=1}{n} - E(X)^2$
		$P(X = x_k) = \frac{1}{n}$	70	
Bernouilli	$\mathcal{B}(p)$	X = 1 (succès) ou $X = 0$	E(X) = p	V(X) = p(1-p) = pq
		P(X=1) = p		
		P(X=0) = 1 - p = q		
Binomiale	$\mathcal{B}(n,p)$	pour $0 \le k \le n$	E(X) = np	V(X) = np(1-p) = npq
		$P(X=k) = C_n^k p^k q^{n-k}$		
Poisson	$\mathcal{P}(\lambda)$	pour tout $k \in \mathbb{N}$	$E(X) = \lambda$	$V(X) = \lambda$
		$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$		

0.3.2 Loi continues usuelles

Nom	Notation	Loi de probabilité	Espérance	Variance
		(densité)		
Uniforme	$\mathcal{U}\left[a,b ight]$	$f_X(x) = \frac{1}{b-a} \text{ sur } [a, b]$ $f_X(x) = 0 \text{ ailleurs}$	$E(X) = \frac{a+b}{2}$	$V(X) = \frac{(b-a)^2}{12}$
	- (-)		- (-) 1	()
Exponentielle	$\mathcal{E}xp(\theta)$	$f_X(x) = \theta e^{-\theta x} \text{ sur } [0, +\infty]$	$E(X) = \frac{1}{\theta}$	$V(X) = \frac{1}{\theta^2}$
		$f_X(x) = 0$ ailleurs	Ů	Ů
Normale				
Centrée	$\mathcal{N}(0,1)$	$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$	E(X) = 0	V(X) = 1
Réduite		V = //		
Normale	$\mathcal{N}(\mu,\sigma^2)$	$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	$E(X) = \mu$	$V(X) = \sigma^2$
	$\chi^2(n)$	$\chi^2(n) = \sum_{i=1}^n X_i^2$		
Khi deux	n dégrés de liberté	$X_i \sim \mathcal{N}(0,1)$	E(X) = n	V(X) = 2n
		$X_i \sim \mathcal{N}(0, 1)$ $T(n) = \frac{U}{\sqrt{\frac{V}{n}}}$		
Student	T(n)	$U \sim \mathcal{N}(0,1)$	$E(T_n) = 0$	$V(T_n) = \frac{n}{n-2}$ si $n > 2$
		$V \sim \chi^2(n)$	$\sin n > 0$	$\sin n > 2$

0.4 Convergence de suites de v.a.

0.4.1 Inégalités importantes

1. Inégalité de Markov Si X est une v.a. qui vérifie : $E(|X|) < +\infty$.

$$\forall a > 0 , P(|X| \ge a) \le \frac{E(|X|)}{a}$$

2. Inégalité de Bienaymé - Tchebychev Si X est une v.a. qui vérifie : $E(X^2) < +\infty$.

$$\forall a > 0 , P(|X - E(X)| \ge a) \le \frac{V(X)}{a^2}$$

0.4.2 Types de convergence

Soit $(X_n)_{n\geq 0}$ une suite de v.a. et X une autre v.a. donnée.

1. Convergence presque sûre

On dit que $(X_n)_{n\geq 0}$ converge presque sûrement vers X, si et ssi :

$$P(X_n \to X) = 1 \iff P\left(\left\{\omega \in \Omega, \lim_{n \to \infty} X_n(\omega) = X\right\}\right) = 1$$

On note

$$X_n \xrightarrow{p.s.} X$$

2. Convergence en moyenne quadratique

On dit que $(X_n)_{n>0}$ converge en moyenne quadratique vers X, si et ssi :

$$\lim_{n \to \infty} E\left((X_n - X)^2\right) = 0$$

On note

$$X_n \stackrel{m.q.}{\longrightarrow} X$$

3. Convergence en probabilité

On dit que $(X_n)_{n\geq 0}$ converge en probabilité vers X, si et ssi :

$$\forall \varepsilon > 0$$
, $\lim_{n \to \infty} P(|X_n - X| \ge \varepsilon) = 0$ ou bien $\forall \varepsilon > 0$, $\lim_{n \to \infty} P(|X_n - X| < \varepsilon) = 1$

On note

$$X_n \stackrel{P}{\longrightarrow} X$$

4. Convergence en loi

Si on note F_n et F les fonctions de répartition de X_n et de X, on dit que $(X_n)_{n\geq 0}$ converge en loi vers X, si et ssi :

$$\lim_{n\to\infty} F_n(x) = F(x)$$
 partout où F est continue

On note

$$X_n \xrightarrow{\mathcal{L}} X$$

0.4.3 Relations entre les types de convergence

Entre ces différents types de convergence, on a les relations d'implication suivantes :

0.5 Théorèmes limites

0.5.1 Loi des grands nombres

1. Loi faible des grands nombres

Si $(X_n)_{n\geq 0}$ est une suite de v.a. non corrélées (qui ne suivent pas forcément la même loi) de même variance finie σ^2 , et de moyenne commune μ , alors

la moyenne empirique : $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$ converge en probabilité vers μ . Autrement dit :

$$\forall \varepsilon > 0, \quad \lim_{n \to \infty} P(|X_n - \mu| \ge \varepsilon) = 0$$

2. Loi forte des grands nombres

Si $(X_n)_{n\geq 0}$ est une suite de v.a.i.i.d (indépendantes et qui suivent la même loi), intégrables $(E(|X_i|) < \infty)$, de moyenne commune μ , alors

la moyenne empirique : $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$ converge presque sûrement vers μ . Autrement dit :

$$P(X_n \to \mu) = 1 \iff P\left(\left\{\omega \in \Omega, \lim_{n \to \infty} X_n(\omega) = \mu\right\}\right) = 1$$

Théorème de la limite centrale T.C.L.

Soit
$$(X_n)_{n\geq 0}$$
 une suite de v.a.i.i.d de variance commune finie σ^2 et de moyenne commune μ , alors la suite de v.a. $\frac{\overline{X_n} - \mu}{\sigma} \sqrt{n} = \frac{\sum\limits_{i=1}^n X_i - n\mu}{\sigma \sqrt{n}}$ converge en loi vers $\mathcal{N}(0,1)$.

En pratique, due
$$n > 30$$
, on consid que $\frac{\overline{X_n} - \mu}{\sigma} \sqrt{n} = \frac{\sum_{i=1}^n X_i - n\mu}{\sigma \sqrt{n}}$ suit la loi normale centri rite.