Graph-based embeddings in mOWL

Fernando Zhapa-Camacho

<2023-02-13 Mon>

Learning objectives

- Learn about different graph representation of ontologies
- Learn how to use graphs from ontologies in machine learning

Introduction

Ontologies axioms are divided into: ABox assertions of the world

- Father(John)
- hasChild(John, Mary)

Introduction

Ontologies axioms are divided into: RBox

- relationships between roles:
- is_part_of inverseOf has_part
- negatively_regulates subpPropertyOf regulates

Introduction

Ontologies axioms are divided into: TBox

- Concept descriptions
- Mother subClassOf Person

- ABox and RBox can be easily transformed into a Knowledge Graph
 - Father(John): (John, instanceof, Father)
 - hasChild(John, Mary): (John, hasChild, Mary)

- ABox and RBox can be easily transformed into a Knowledge Graph
 - Father(John): (John, instanceof, Father)
 - hasChild(John, Mary): (John, hasChild, Mary)
- What about the TBox?

- ABox and RBox can be easily transformed into a Knowledge Graph
 - Father(John): (John, instanceof, Father)
 - hasChild(John, Mary): (John, hasChild, Mary)
- What about the TBox?
- Multiple methods to project an ontology into a graph

- ABox and RBox can be easily transformed into a Knowledge Graph
 - Father(John): (John, instanceof, Father)
 - hasChild(John, Mary): (John, hasChild, Mary)
- What about the TBox?
- Multiple methods to project an ontology into a graph
- None of them is perfect, there is loss of information

Methods implemented in mOWL

Taxonomy

- Only parses axioms of the form $C \sqsubseteq D$
- *C*, *D* are atomic concepts
- Graphs represent the hierarchy of concepts

Figure: Family ontology representation

Methods implemented in mOWL

DL2Vec

Condition 1	Condition 2	Triple(s)
$A \sqsubseteq QR_0 \dots QR_mD$	$D:=B_1\sqcup\ldots\sqcup B_n B_1\sqcap\ldots\sqcap B_n$	$\langle A, (R_0 \dots R_m), B_i \rangle$ for $i \in 1 \dots n$
$A \equiv QR_0 \dots QR_m D$		
$A \sqsubseteq B$		$\langle A, SubClassOf, B \rangle$

Figure: DL2Vec projection rules

Methods implemented in mOWL

OWL2Vec*

Axiom of condition 1	Axiom or triple(s) of condition 2	Projected triple(s)
$A \sqsubseteq \Box r. D$	$D \equiv B \mid B_1 \sqcup \ldots \sqcup B_n \mid B_1 \sqcap \ldots \sqcap B_n$	$\langle A, r, B \rangle$ or
or		
$\Box r. D \sqsubseteq A$		
$\exists r. \top \sqsubseteq A \text{ (domain)}$	$\top \sqsubseteq \forall r. \ B \ (range)$	$\langle A, r, B_i \rangle$ for $i \in 1, \dots, n$
$A \sqsubseteq \exists r. \{b\}$	B(b)	
$r \sqsubseteq r'$	$\langle A, r', B \rangle$ has been projected	
$r' \equiv r^-$	$\langle B, r', A angle$ has been projected	
$s_1 \circ \ldots \circ s_n \sqsubseteq r$	$\langle A, s_1, C_1 \rangle \langle C_n, s_n, B \rangle$ have been projected	
$B \sqsubseteq A$	-	$\langle B, rdfs: subClassOf, A \rangle$
		$\langle A, rdfs:subClassOf^-, B \rangle$
A(a)	-	$\langle a, rdf: type, A \rangle$
		$\langle A, rdf:type^-, a \rangle$
r(a, b)	=	$\langle a, r, b \rangle$

 \square is one of: \geq , \leq , =, \exists , \forall . A, B, B_i and C_i are atomic concepts (classes), s_i , r and r' are roles (object properties), r^- is the inverse of a relation r, a and b are individuals (instances), T is the top concept (defined by owl:Thing)

Figure: OWL2Vec* projection rules

Limitations of projection methods

- Some are not complete (Taxonomical projection):
 - $(C \sqcap D) \sqsubseteq E \rightarrow undefined$

Limitations of projection methods

- Some are not complete (Taxonomical projection):
 - $(C \sqcap D) \sqsubseteq E \rightarrow undefined$
- Some are not invertible (OWL2Vec*):
 - $(C \sqsubseteq \exists R.D) \rightarrow (C, R, D)$
 - $(C \sqsubseteq \forall R.D) \rightarrow (C, R, D)$
 - Inverse of $(C, R, D) \rightarrow ??$

We have graphs. Next step?

- Ontology has been transformed into a graph
- Graphs as input for a machine learning model
- mOWL supports two ways to embed a graph:
 - Random-walk based embeddings
 - Translational models (and more)

Figure: Random walks

Figure: Sequences generated

- Generated sentences become input in a language processing model:
 - Word2Vec
 - Transformers

- Word2Vec embeddings preserve co-occurrence
- Generated embeddings can be used to compute similarity between entities E_1 and E_2
- Similarity can be computed using the dot product

$$|v(E_1)\cdot v(E_2)|=1 o similar$$
 $|v(E_1)\cdot v(E_2)|=0 o dissimilar$

- Word2Vec embeddings preserve co-occurrence
- Generated embeddings can be used to compute similarity between entities E_1 and E_2
- Similarity can be computed using the dot product

$$|v(E_1)\cdot v(E_2)|=1 o similar$$

 $|v(E_1)\cdot v(E_2)|=0 o dissimilar$

- Protein-protein interactions
- Gene-disease associations

Translational models

- Graphs are composed by triples head, relation, tail
- Translational models consider relation to be a translation operation between head and tail

$$||h+r-t||\approx 0$$

Figure: TransE

Translational models

- The *score* of a triple is given by d(h, r, t) = ||h + r t||, where the lower d is, the more plausible the triple to hold true.
- TransE is the most representative model.

$$\mathcal{L} = \left[\gamma + d(\mathbf{h} + \mathbf{r}, \mathbf{t}) - d(\mathbf{h} + \mathbf{r}, \mathbf{t}')\right]_{+}$$

- d(h + r, t) is the score of a *positive* triple
- $d(\mathbf{h} + \mathbf{r}, \mathbf{t}')$ is the score of a *negative* triple
- ullet γ is a margin parameter

Translational models

Other models have appeared by changing

$$h + r \approx t$$

into

$$f(h) + f(r) \approx f(t)$$

- Some variations of TransE are:
 - TransH
 - TransR
 - TransD

Translational Embeddings:

• We can use Translational models to predict new triples:

• Those triples can be transformed into axioms:

$$C \sqsubseteq \exists R.D$$