1~4节电池串联用电池保护IC (二级保护用)

S-8244系列

S-8244系列内置高精度电压检测电路和延迟电路,是用于锂离子可充电

电池的二级保护IC。

通过将各节电池之间加以短路,可适用于1~4节电池的串联连接。

■ 特点

(1) 内置高精度电压检测电路

• 过充电检测电压: 3.7 V~4.5 V : ±25 mV精度(+25°C)

(进阶单位为5 mV) ±50 mV精度(-40°C~+85°C)

• 滞后: 可选择5种中的任意一种

 $0.38 \pm 0.1 \, \text{V}$ 、 $0.25 \pm 0.07 \, \text{V}$ 、 $0.13 \pm 0.04 \, \text{V}$ 、 $0.045 \pm 0.02 \, \text{V}$ 、无

3.0 µA 最大值(+25°C)

(2) 耐高压元件: 绝对最大额定值 26 V

(3) 宽工作电压范围: 3.6 V~24 V (过电压检测后延迟电路正常工作的范围)

(4) 可通过外接电容来设置检测时的延迟时间

各节3.5 V时

各节2.3 V时 2.4 µA 最大值(+25°C)

(6) 输出方式、输出逻辑: 可选择4种中的任意一种

> CMOS输出动态"H" CMOS输出动态"L" Pch开路漏极输出动态"L" Nch开路漏极输出动态"H"

(但滞后为0.045 V的产品只有CMOS输出)

(7) 无铅产品

(5) 低消耗电流:

■ 用途

• 锂离子可充电电池组(二级保护用)

■ 裁装

封装名	图面号码					
封 表有	封装图面	i	卷带图面	带卷图面		焊盘图面
SNT-8A	PH008-A	i	PH008-A	PH008-A	i	PH008-A
8-Pin MSOP	FN008-A	-	FN008-A	FN008-A	-	_

■ 框图

备注 CO端子在Nch开路漏极输出的情况下,只有Nch晶体管与CO端子相连接。另外,在Pch 开路漏极输出的情况下,只有Pch晶体管与CO端子相连接。

图1

■ 产品型号的构成

1. 产品名

- *1. 请参阅卷带图。
- *2. 请参阅产品名目录。

2. 产品名目录

(1) SNT-8A

表1

产品名/项目	过充电检测电压 [V _{cu}]	过充电滞后电压 [V _{CD}]	输出方式
S-8244AAAPH-CEATFG	4.45 ± 0.025 V	0.38 ± 0.1 V	CMOS输出动态"H"
S-8244AABPH-CEBTFG	4.20 ± 0.025 V	0 V	Nch开路漏极动态"H"
S-8244AAFPH-CEFTFG	4.35 ± 0.025 V	0.045 ± 0.02 V	CMOS输出动态"H"
S-8244AAGPH-CEGTFG	4.45 ± 0.025 V	$0.045 \pm 0.02 \text{ V}$	CMOS输出动态"H"
S-8244AAVPH-CEVTFG	4.275 ± 0.025 V	$0.045 \pm 0.02 \text{ V}$	CMOS输出动态"H"
S-8244AAYPH-CEYTFG	4.300 ± 0.025 V	$0.25 \pm 0.07 \text{ V}$	CMOS输出动态"H"
S-8244AAZPH-CEZTFG	4.280 ± 0.025 V	0.25 ± 0.07 V	CMOS输出动态"H"

备注 需要上述检测电压值以外的产品时,请向本公司营业部咨询。

(2) 8-Pin MSOP

表2

	74.2		
产品名/项目	过充电检测电压 [V _{cu}]	过充电滞后电压 [V _{CD}]	输出方式
S-8244AAAFN-CEAT2G	4.45 ± 0.025 V	0.38 ± 0.1 V	CMOS输出动态"H"
S-8244AABFN-CEBT2G	4.20 ± 0.025 V	0 V	Nch开路漏极动态"H"
S-8244AACFN-CECT2G	4.115 ± 0.025 V	0.13 ± 0.04 V	CMOS输出动态"H"
S-8244AADFN-CEDT2G	4.20 ± 0.025 V	0 V	Pch开路漏极动态"L"
S-8244AAEFN-CEET2G	4.225 ± 0.025 V	0 V	Nch开路漏极动态"H"
S-8244AAFFN-CEFT2G	4.35 ± 0.025 V	0.045 ± 0.02 V	CMOS输出动态"H"
S-8244AAGFN-CEGT2G	4.45 ± 0.025 V	0.045 ± 0.02 V	CMOS输出动态"H"
S-8244AAHFN-CEHT2G	4.30 ± 0.025 V	0.25 ± 0.07 V	CMOS输出动态"H"
S-8244AAIFN-CEIT2G	4.40 ± 0.025 V	0.045 ± 0.02 V	CMOS输出动态"H"
S-8244AAJFN-CEJT2G	4.50 ± 0.025 V	0.38 ± 0.1 V	CMOS输出动态"H"
S-8244AAKFN-CEKT2G	4.475 ± 0.025 V	0.38 ± 0.1 V	CMOS输出动态"H"
S-8244AALFN-CELT2G	4.35 ± 0.025 V	$0.25 \pm 0.07 \text{ V}$	CMOS输出动态"H"
S-8244AAMFN-CEMT2G	4.30 ± 0.025 V	$0.25 \pm 0.07 \text{ V}$	CMOS输出动态"L"
S-8244AANFN-CENT2G	4.15 ± 0.025 V	$0.25 \pm 0.07 \text{ V}$	CMOS输出动态"H"
S-8244AAOFN-CEOT2G	$4.25 \pm 0.025 \text{ V}$	$0.25 \pm 0.07 \text{ V}$	CMOS输出动态"H"
S-8244AAPFN-CEPT2G	4.05 ± 0.025 V	$0.25 \pm 0.07 \text{ V}$	CMOS输出动态"H"
S-8244AAQFN-CEQT2G	4.15 ± 0.025 V	0 V	Nch开路漏极动态"H"
S-8244AARFN-CERT2G	$4.30 \pm 0.025 \text{ V}$	$0.25 \pm 0.07 \text{ V}$	Nch开路漏极动态"H"
S-8244AATFN-CETT2G	4.20 ± 0.025 V	0.25 ± 0.07 V	CMOS输出动态"H"
S-8244AAUFN-CEUT2G	3.825 ± 0.025 V	0.25 ± 0.07 V	CMOS输出动态"H"
S-8244AAWFN-CEWT2G	4.50 ± 0.025 V	0.38 ± 0.1 V	CMOS输出动态"L"
S-8244AAXFN-CEXT2G	4.025 ± 0.025 V	0.25 ± 0.07 V	CMOS输出动态"H"
S-8244ABAFN-CFAT2G	4.22 ± 0.025 V	$0.045 \pm 0.02 \text{V}$	CMOS输出动态"H"

备注 需要上述检测电压值以外的产品时,请向本公司营业部咨询。

■ 引脚排列图

图2

图3

表3

引脚号	符号	描述
1	СО	充电控制用FET门极连接端子
2	ICT	过充电检测延迟用的电容连接端子
3	VSS	负电源输入端子
3	V55	电池4的负电压连接端子
4	V/C2	电池3的负电压
4 VC3		电池4的正电压连接端子
E	VC2	电池2的负电压
5	VC2	电池3的正电压连接端子
6	V/C4	电池1的负电压
6	VC1	电池2的正电压连接端子
7	SENSE	电池1的正电压连接端子
8	VCC	正电源输入端子

表4

引脚号	符号	描述
1	VCC	正电源输入端子
2	SENSE	电池1的正电压连接端子
3	VC1	电池1的负电压
5	VOI	电池2的正电压连接端子
4	VC2	电池2的负电压
4 002		电池3的正电压连接端子
5	VC3	电池3的负电压
3	V C 3	电池4的正电压连接端子
6	VSS	负电源输入端子
0	V 33	电池4的负电压连接端子
7	ICT	过充电检测延迟用的电容连接端子
8	CO	充电控制用FET门极连接端子

■ 绝对最大额定值

表5

(除特殊注明以外: Ta = 25°C)

项目		记号	适用端子	额定值	单位
VCC-VSS间输入电	压	V_{DS}	VCC	V _{SS} -0.3~V _{SS} +26	V
延迟电容连接端子电	1压	V_{ICT}	ICT	V _{SS} -0.3~V _{CC} +0.3	V
输入端子电压		V _{IN}	SENSE, VC1, VC2, VC3	V _{SS} -0.3~V _{CC} +0.3	٧
	(CMOS输出)		СО	V _{SS} -0.3~V _{CC} +0.3	V
CO输出端子电压	(Nch开路漏极输出)	V_{CO}		V _{SS} -0.3~26	V
	(Pch开路漏极输出)			V _{CC} -26~V _{CC} +0.3	V
	SNT-8A			450 ^{*1}	mW
容许功耗	8-Pin MSOP	P_D	_	300 (基板未安装时)	mW
8-PIII WISOP				500 ^{*1}	mW
工作环境温度		T _{opr}	_	-40~+85	°C
保存温度		T _{stg}	_	−40~ +125	°C

*1. 基板安装时

[安装基板]

(1) 基板尺寸: 114.3 mm imes 76.2 mm imes t1.6 mm

(2) 名称: JEDEC STANDARD51-7

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性损伤。

图4 封装容许功耗 (基板安装时)

■ 电气特性

表6

(除特殊注明以外: Ta = 25°C)

项目	记号	条件	最小值	典型值	最大值	单位	测定条件	测定电路
检测电压								
过充电检测电压1 *1	V_{CU1}	3.7 V~4.5 V可调整	V _{CU1} -0.025	V _{CU1}	V _{CU1} +0.025	V	1	1
过充电检测电压2 *1	V_{CU2}	3.7 V~4.5 V可调整	V _{CU2} -0.025	V_{CU2}	V _{CU2} +0.025	V	2	1
过充电检测电压3 *1	V_{CU3}	3.7 V~4.5 V可调整	V _{CU3} -0.025	V_{CU3}	V _{CU3} +0.025	V	3	1
过充电检测电压4 *1	V_{CU4}	3.7 V~4.5 V可调整	V _{CU4} -0.025	V_{CU4}	V _{CU4} +0.025	V	4	1
过充电滞后电压1 ^{*2}	V_{CD1}	_	0.28	0.38	0.48	V	1	1
过充电滞后电压2 *2	V_{CD2}	_	0.28	0.38	0.48	V	2	1
过充电滞后电压3 *2	V_{CD3}	_	0.28	0.38	0.48	V	3	1
过充电滞后电压4 ^{*2}	V_{CD4}	_	0.28	0.38	0.48	V	4	1
检测电压温度系数 * ³	T_{COE}	$Ta = -40^{\circ}C \sim +85^{\circ}C^{*4}$	-0.4	0.0	+0.4	mV/°C	_	_
延迟时间			-	-			_	_
过充电检测延迟时间	t_{CU}	C = 0.1 µF	1.0	1.5	2.0	s	5	2
工作电压								
VCC-VSS间工作电压 *5	V_{DSOP}	_	3.6	_	24	V	_	_
消耗电流								
通常工作消耗电流	I _{OPE}	V1 = V2 = V3 = V4 = 3.5 V	_	1.5	3.0	μΑ	6	3
休眠时消耗电流	I_{PDN}	V1 = V2 = V3 = V4 = 2.3 V	_	1.2	2.4	μΑ	6	3
VC1流入电流	I _{VC1}	V1 = V2 = V3 = V4 = 3.5 V	-0.3	_	0.3	μΑ	6	3
VC2流入电流	I_{VC2}	V1 = V2 = V3 = V4 = 3.5 V	-0.3	_	0.3	μΑ	6	3
VC3流入电流	I_{VC3}	V1 = V2 = V3 = V4 = 3.5 V	-0.3	ı	0.3	μΑ	6	3
输出电压 *6								
CO"H"电压	$V_{CO(H)}$	I _{OUT} = 10 μA时	V _{CC} -0.05	-	-	V	7	4
CO"L"电压	$V_{CO(L)}$	I _{OUT} = 10 µA时	_	_	V _{SS} +0.05	V	7	4

^{*1.} Ta = -40°C~+85°C时为 ± 50 mV

^{*2.} $0.38 \text{ V以外的情况下为} 0.25 \pm 0.07 \text{ V} \times 0.13 \pm 0.04 \text{ V} \times 0.045 \pm 0.02 \text{ V}$

^{*3.} 电压温度系数表示过充电检测电压和过充电滞后电压。

^{*4.} 并没有在高温以及低温的条件下进行筛选,因此只保证在此温度范围下的设计规格。

^{*5.} 在工作电压范围内,在过充电检测之后,延迟电路会正常地工作。

^{*6.} 可选择输出逻辑以及CMOS输出或开路漏极输出。

■ 测定电路

(1) 测定条件1 测定电路1

CMOS输出产品的情况下,SW1与SW2同样设置为OFF。Nch开路漏极产品的情况下,SW1设置为ON,SW2设置为OFF。Pch开路漏极产品的情况下,SW1设置为OFF,SW2设置为ON。

在设置V1 = V2 = V3 = V4 = 3.5 V后,缓慢上升V1,在CMOS输出动态"H"或者是Nch开路漏极产品的情况下,CO变为"H",在CMOS输出动态"L"或者是Pch开路漏极产品的情况下,CO变为"L"时的V1的电压即为过充电检测电压 $1(V_{\text{CU1}})_{\circ}$ 之后,缓慢降低V1的电压,在CMOS输出动态"H"或者是Nch开路漏极产品的情况下,CO变为"L",在 CMOS输出动态"L"或者是Pch开路漏极产品的情况下,CO变为"H"时的V1的电压与 V_{CU1} 的差称为过充电滞后电压 $1(V_{\text{CD1}})_{\circ}$

(2) 测定条件2 测定电路1

CMOS输出产品的情况下,SW1与SW2同样设置为OFF。Nch开路漏极产品的情况下,SW1设置为ON,SW2设置为OFF。Pch开路漏极产品的情况下,SW1设置为OFF,SW2设置为ON。

在设置V1 = V2 = V3 = V4 = 3.5 V后,缓慢上升V2,在CMOS输出动态"H"或者是Nch开路漏极产品的情况下,CO变为"H",在CMOS输出动态"L"或者是Pch开路漏极产品的情况下,CO变为"L"时的V2的电压即为过充电检测电压 $2(V_{CU2})$ 。之后,缓慢降低V2的电压,在CMOS输出动态"H"或者是Nch开路漏极产品的情况下,CO变为"L",在CMOS输出动态"L"或者是Pch开路漏极产品的情况下,CO变为"H"时的V2的电压与 V_{CU2} 的差称为过充电滞后电压 $2(V_{CD2})$ 。

(3) 测定条件3 测定电路1

CMOS输出产品的情况下,SW1与SW2同样设置为OFF。Nch开路漏极产品的情况下,SW1设置为ON,SW2设置为OFF。Pch开路漏极产品的情况下,SW1设置为OFF,SW2设置为ON。

在设置V1 = V2 = V3 = V4 = 3.5 V后,缓慢上升V3,在CMOS输出动态"H"或者是Nch开路漏极产品的情况下,CO变为"H",在CMOS输出动态"L"或者是Pch开路漏极产品的情况下,CO变为"L"时的V3的电压即为过充电检测电压 $3(V_{CU3})$ 。之后,缓慢降低V3的电压,在CMOS输出动态"H"或者是Nch开路漏极产品的情况下,CO变为"L",在CMOS输出动态"L"或者是Pch开路漏极产品的情况下,CO变为"H"时的V3的电压与 V_{CU3} 的差称为过充电滞后电压 $3(V_{CD3})$ 。

(4) 测定条件4 测定电路1

CMOS输出产品的情况下,SW1与SW2同样设置为OFF。Nch开路漏极产品的情况下,SW1设置为ON,SW2设置为OFF。Pch开路漏极产品的情况下,SW1设置为OFF,SW2设置为ON。

在设置V1 = V2 = V3 = V4 = 3.5 V后,缓慢上升V4,在CMOS输出动态"H"或者是Nch开路漏极产品的情况下,CO变为"H",在CMOS输出动态"L"或者是Pch开路漏极产品的情况下,CO变为"L"时的V4的电压即为过充电检测电压4(V_{CU4})。之后,缓慢降低V4的电压,在CMOS输出动态"H"或者是Nch开路漏极产品的情况下,CO变为"L",在CMOS输出动态"L"或者是Pch开路漏极产品的情况下,CO变为"H"时的V4的电压与 V_{CU4} 的差称为过充电滞后电压4(V_{CD4})。

(5) 测定条件5 测定电路2

CMOS输出产品的情况下,SW1与SW2同样设置为OFF。Nch开路漏极产品的情况下,SW1设置为ON,SW2设置为OFF。Pch开路漏极产品的情况下,SW1设置为OFF,SW2设置为ON。

在设置V1 = V2 = V3 = V4 = 3.5 V后,V1在瞬间($10 \mu s$ 以内)提升到4.7 V为止,从V1变为4.7 V时开始,在CMOS输出动态"H"或者是Nch开路漏极产品的情况下,CO变为"H",在CMOS输出动态"L"或者是Pch开路漏极产品的情况下,CO变为"L"时的时间称为过充电检测延迟时间(t_{Cu})。

(6) 测定条件6 测定电路3

在V1 = V2 = V3 = V4 = 2.3 V设置后的状态,测量消耗电流。这时的I1即为休眠时消耗电流(I_{PDN})。 在V1 = V2 = V3 = V4 = 3.5 V设置后的状态,测量消耗电流。这时的I1即为通常工作消耗电流(I_{OPE})、I2即为VC1流入电流(I_{VC2})、I3即为VC2流入电流(I_{VC2})、I4即为VC3流入电流(I_{VC3})。

(7) 测定条件7 测定电路4

SW1设置为OFF,SW2设置为ON。CMOS输出动态"H"产品的情况下,设置V1 = V2 = V3 = V4 = 4.6 V。CMOS输出动态"L"产品或者是Pch开路漏极产品的情况下,设置V1 = V2 = V3 = V4 = 3.5 V之后,将V6从 V_{CC} 开始缓慢下降,当电流I2 = $-10~\mu$ A时的V6电压即为 $V_{CO~(H)}$ 电压。CMOS输出动态"L"产品的情况下,设置V1 = V2 = V3 = V4 = 4.6 V。CMOS输出动态"H"产品或者是Nch开路漏极产品的情况下,设置 V1 = V2 = V3 = V4 = 3.5 V之后,将V6从0 V 开始缓慢上升,当电流I2 = $10~\mu$ A时的V6电压即为 $V_{CO~(L)}$ 电压。

图5

■ 工作说明

过充电检测工作

在通常状态的充电中,任意一个电池的电压超过了过充电检测电压(V_{CU}),这种状态保持在过充电检测延迟时间(t_{CU}) 以上时,在CMOS输出动态"H"或者是Nch开路漏极产品的情况下,CO变为"H",在CMOS输出动态"L"或者是Pch开路漏极产品的情况下,CO变为"L"。这种状态称为过充电状态。通过在CO端子处连接FET,可以进行充电控制以及二级保护。

在这时,全部的电池从过充电检测电压(V_{CU})开始变为与过充电滞后电压(V_{CD})同样小的电压为止,保持为过充电状态。

有关延迟电路

延迟电路在任意一个电池的电压超过了过充电检测电压(V_{CU})时,对连接在延迟电容连接端子上的电容,到一定的电压为止进行快速地充电。之后,利用100 nA的电流缓慢地对电容进行放电,当延迟电容连接端子的电压下降到一定水平以下时,翻转输出CO。

过充电检测延迟时间(t_{CU})因外接电容的不同而产生变化。

各延迟时间依照如下的公式可以计算出。

最小值 典型值 最大值

t_{CU}[s] = 延迟系数 (10, 15, 20) ×C_{ICT} [μF]

延迟用电容因为快速充电的缘故,在容量变小时延迟电容端子(ICT端子)的最大电压与设置值之间的差距变大,导致 延迟时间的计算值与实际的延迟时间之间产生差额。

另外,本IC在延迟电容端子处的电压被充电的时候,设置了内部延迟时间不能输出。容量变得非常大的情况下,因为在内部延迟时间内不能进行充电,会有无延迟时间而被输出的情况发生。因此延迟电容端子(ICT端子)可连接的电容为1 μF为止。

■ 时序图

■ 电池保护IC的连接例

(1) 连接例1

图7

表7 外接元器件参数1

元器件	最小值	典型值	最大值	单位
R1~R4	0	1 k	10 k	Ω
C1~C4	0	0.1	1	μF
R _{vcc}	0	100	1 k	Ω
C _{VCC}	0	0.1	1	μF
C _{ICT}	0	0.1	1	μF

注意1. 上述参数有可能不经预告而作更改。

- 2. 对上述连接例以外的电路未作动作确认,而且上述电池保护IC的连接例以及参数并不作为保证电路工作的 依据,请在实际的应用电路上进行充分的实测后再设定参数。
- 3. 在Nch开路漏极输出的情况下,请通过外接电阻将CO端子上拉。

【有关SC PROTECTOR的咨询处】

Sony Chemical & Information Device Corporation, Electronic Device Marketing & Sales Dept.

Gate City Osaki East Tower 8F, 1-11-2

Osaki, Shinagawa-ku, Tokyo, 141-0032 Japan

TEL +81-3-5435-3943

Contact Us: http://www.sonycid.jp/en/

(2) 连接例2

图8

表8 外接元器件参数2

元器件	最小值	典型值	最大值	单位
R1~R4	0	1 k	10 k	Ω
C1~C4	0	0.1	1	μF
R _{VCC}	0	100	1 k	Ω
C _{VCC}	0	0.1	1	μF
C _{ICT}	0	0.1	1	μF

- 2. 对上述连接例以外的电路未作动作确认,而且上述电池保护IC的连接例以及参数并不作为保证电路工作的依据,请在实际的应用电路上进行充分的实测后再设定参数。
- 3. 在Nch开路漏极输出的情况下,请通过外接电阻将CO端子上拉。

(3) 连接例3 (3节用的情况下)

表9 外接元器件参数3

元器件	最小值	典型值	最大值	单位
R1~R3	0	1 k	10 k	Ω
C1~C3	0	0.1	1	μF
R _{VCC}	0	100	1 k	Ω
C _{VCC}	0	0.1	1	μF
C _{ICT}	0	0.1	1	μF

- 2. 对上述连接例以外的电路未作动作确认,而且上述电池保护IC的连接例以及参数并不作为保证电路工作的依据,请在实际的应用电路上进行充分的实测后再设定参数。
- 3. 在Nch开路漏极输出的情况下,请通过外接电阻将CO端子上拉。

(4) 连接例4 (2节用的情况下)

图10

表10 外接元器件参数4

元器件	最小值	典型值	最大值	单位
R1,R2	0	1 k	10 k	Ω
C1,C2	0	0.1	1	μF
R _{VCC}	0	100	1 k	Ω
C_{VCC}	0	0.1	1	μF
C_{ICT}	0	0.1	1	μF

- 2. 对上述连接例以外的电路未作动作确认,而且上述电池保护IC的连接例以及参数并不作为保证电路工作的依据,请在实际的应用电路上进行充分的实测后再设定参数。
- 3. 在Nch开路漏极输出的情况下,请通过外接电阻将CO端子上拉。

(5) 连接例5 (1节用的情况下)

图11

表11 外接元器件参数5

元器件	最小值	典型值	最大值	单位
R1	0	1 k	10 k	Ω
C1	0	0.1	1	μF
R _{VCC}	0	100	1 k	Ω
C _{VCC}	0	0.1	1	μF
C _{ICT}	0	0.1	1	μF

- 2. 对上述连接例以外的电路未作动作确认,而且上述电池保护IC的连接例以及参数并不作为保证电路工作的依据,请在实际的应用电路上进行充分的实测后再设定参数。
- 3. 在Nch开路漏极输出的情况下,请通过外接电阻将CO端子上拉。

■ 注意事项

• 本IC在V1~4为止的任意一个电池变为过充电电压的情况下,通过延迟电容端子(ICT端子)可以快速地对延迟电容进行充电。

因此,连接在VCC端子的电阻比推荐值大时,本IC的电源电压通过延迟电容的充电电流而降低电压。因为会导致误工作,请不要设置推荐值以上的电阻。

想改变电阻值的情况时,请与本公司相谈。

• 连接电池时,请不要与过充电电池相连接。只要包含了一个过充电电池,与这个电池相连接时会检测过充电,通过还未与电池相连接的端子间的寄生二极管,往延迟电容会流入充电电流,而导致误工作的发生。另外,有的应用电路,即使在不包含过充电电池的情况下,为了防止在连接电池时的过渡的CO检测脉冲的输出,有可能限制电池的连接顺序,请在使用时进行充分的评价。

- 本IC在ICT端子为V_{SS}短路、V_{DD}短路、Open的任何情况下变为过充电,内部延迟数ms后,CO端子会产生翻转。
- 本IC在使用1~3节的情况下,可以使用在V1~V4为止的任意的位置。但是,不使用的电池连接端子间 (SENSE–VC1、VC1–VC2、VC2–VC3、VC3–VSS)请加以短路。
- 请注意输入输出电压、负载电流的使用条件,使IC内的功耗不超过封装的容许功耗。
- 本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 使用本公司的IC生产产品时,如在其产品中对该IC的使用方法或产品的规格,或因与所进口国对包括本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

■ 各种特性数据(典型数据)

1. 检测电压的温度特性

过充电检测电压 温度依靠性

过充电解除电压 温度依靠性

2. 消耗电流的温度特性

通常工作消耗电流 温度依靠性

休眠时消耗电流 温度依靠性

3. 延迟时间的温度特性

过充电检测延迟时间 温度依靠性

注意 利用S-8244系列的应用电路时,请在充分考虑安全的基础上进行设计。

No. PH008-A-P-SD-2.0

TITLE	SNT-8A-A-PKG Dimensions	
No.	PH008-A-P-SD-2.0	
SCALE		
UNIT	mm	
Seiko Instruments Inc.		

No. PH008-A-C-SD-1.0

TITLE	SNT-8A-A-Carrier Tape		
No.	PH008-A-C-SD-1.0		
SCALE			
UNIT	mm		
Seiko Instruments Inc.			

No. PH008-A-R-SD-1.0

TITLE	SNT-8A-A-Reel			
No.	PH008-A-R-SD-1.0			
SCALE		QTY.	5,000	
UNIT	mm			
Seiko Instruments Inc.				

Caution Making the wire pattern under the package is possible. However, note that the package may be upraised due to the thickness made by the silk screen printing and of a solder resist on the pattern because this package does not have the standoff.

注意 パッケージ下への配線パターン形成は可能ですが、本パッケージはスタンドオフが無いので、パターン上のレジスト厚み、シルク印刷の厚みによってパッケージが持ち上がることがありますのでご配慮ください。

No. PH008-A-L-SD-3.0

TITLE	SNT-8A-A-Land Recommendation
No.	PH008-A-L-SD-3.0
SCALE	
UNIT	mm
S	eiko Instruments Inc.

No. FN008-A-P-SD-1.1

TITLE	MSOP8-A-PKG Dimensions
No.	FN008-A-P-SD-1.1
SCALE	
UNIT	mm
	Seiko Instruments Inc.

No. FN008-A-C-SD-1.1

TITLE	MSOP8-A-Carrier Tape
No.	FN008-A-C-SD-1.1
SCALE	
UNIT	mm
	Seiko Instruments Inc.

TITLE	MSOP8-A-Reel		
No.	FN008-A-R-SD-1.1		
SCALE		QTY.	3,000
UNIT	mm	-	
Seiko Instruments Inc.			

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料所记载产品,如属国外汇兑及外国贸易法中规定的限制货物(或劳务)时,基于该法律,需得到日本国政府之出口 许可。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。