06. TF 개념 익히기

AI ROBOT

Exported on 08/04/2021

Table of Contents

1	TF	3
1.1	Transformation	3
1.2	간단하지 않은 좌표의 해석	4
1.3	TF의 개념을 간단하게 실습을 해보자	5
1.4	roslaunch turtle_tf turtle_tf_demo.launch	5
1.5	teleop_key 실행	6
1.6	추적하는 turtlesim	6
1.7	현재 토픽의 흐름	7
1.8	현재 tf의 상황을 기록	7
1.9	evince frames.pdf	7
1.10	같은 역할로 rosrun rqt_tf_tree rqt_tf_tree	8
1.11	tf topic을 한 번만 보자	8
1.12	rosrun tf tf_echo turtle1 turtle2	9
1.13	turtle1에서본 turtle2의 좌표	9
1.14	rosrun rviz rviz	10
1.15	frame의 상황과 함께 관찰할 수 있다	10
2	TF - pub and sub	11
2.1	설치	11
2.2	jupyter notebook 실행	11
2.3	python2로 새문서를 열어서 rospy가 import 되면 OK	11
2.4	현재 turtle_tf_demo를 실행하고 Jupyter notebook을 실행해둠	12
2.5	간단히 원리만 확인하는 차원에서 import 모듈	12
2.6	turtle2에서 바라본 turtle1의 상대 좌표와 자세를 받고	12
2.7	거리를 계산해본다면	13
2.8	이렇게 해볼 수 있을듯	13
2.9	robot state publisher	13

1 TF

1.1 Transformation

• 로봇은 3D 좌표를 아주 많이 가지고 있는 경우가 많다

1.2 간단하지 않은 좌표의 해석

• laser가 읽은 정보를 base_link 입장에서 해석하려면?

1.3 TF의 개념을 간단하게 실습을 해보자

1.4 roslaunch turtle_tf turtle_tf_demo.launch

1.5 teleop_key 실행

```
pw@melodic:~$ rosrun turtlesim turtle_teleop_key
Reading from keyboard

Use arrow keys to move the turtle. 'q' to quit.
```

1.6 추적하는 turtlesim

1.7 현재 토픽의 흐름

1.8 현재 tf의 상황을 기록

```
pw@melodic:~$
pw@melodic:~$ rosrun tf view_frames
Listening to /tf for 5.0 seconds
Done Listening
dot - graphviz version 2.40.1 (20161225.0304)

Detected dot version 2.40
frames.pdf generated
```

1.9 evince frames.pdf

- /turtle1 및 /turtle2라는 두 개의 프레임이 브로드 캐스트
- 공통 부모는 / world 프레임

• Broadcaster: TF 데이터의 브로드 캐스터 이름

1.10 같은 역할로 rosrun rqt_tf_tree rqt_tf_tree

1.11 tf topic을 한 번만 보자

```
pw@melodic:~$ rostopic echo -n1 /tf
transforms:
    header: ackage xml
      seq: 0
      stamp:
         secs: 1590290388
    nsecs: 524173021
frame_id: "world"
child_frame_id: "turtle2"
    transform:
      translation:
         x: 6.00517559052
         y: 3.0319609642
         z: 0.0
       rotation:
         x: 0.0
         y: 0.0
         z: 0.953937220198
         w: 0.300006299801
```

1.12 rosrun tf tf_echo turtle1 turtle2

• 특정 frame간의 데이터만 볼 수 있다

1.13 turtle1에서본 turtle2의 좌표

1.14 rosrun rviz rviz

1.15 frame의 상황과 함께 관찰할 수 있다

2 TF - pub and sub

2.1 설치

```
sudo apt install python-pip
pip install --upgrade pip
pip install jupyter
pip install ipython
```

• 그리고 reboot

2.2 jupyter notebook 실행

2.3 python2로 새문서를 열어서 rospy가 import 되면 OK

2.4 현재 turtle_tf_demo를 실행하고 Jupyter notebook을 실행해둠

```
[W 14:51:30.579 NotebookApp] 404 GET /static/components/react/react-dom.production.min.js (127.0.0.1) 1.17ms referer=http://localhost:8888/notebooks/Documents/Untitled.ipynb?kernel_name=python2 [W 14:51:30.698 NotebookApp] 404 GET /static/components/react/react-dom.production.min.js (127.0.0.1) 0.96ms referer=http://localhost:8888/notebooks/Documents/Untitled.ipynb?kernel_name=python2 [I 14:51:31.191 NotebookApp] Kernel started: 5432a713-52cc-4826-bcee-a221f278c41a [W 14:51:31.202 NotebookApp] 404 GET /nbextensions/widgets/notebook/js/extension.js?v=20200524145106 (127.0.0.1) 1.51ms referer=http://localhost:8888/notebooks/Documents/Untitled.ipynb?kernel_name=python2 [I 14:51:31.504 NotebookApp] Adapting to protocol v5.1 for kernel 5432a713-52cc-4826-bcee-a221f278c41a tous [I 14:51:31.504 NotebookApp] Adapting to protocol v5.1 for kernel 5432a713-52cc-4826-bcee-a221f278c41a tous [I 14:51:31.504 NotebookApp] Adapting to protocol v5.1 for kernel 5432a713-52cc-4826-bcee-a221f278c41a tous [I 14:51:31.504 NotebookApp] Adapting to protocol v5.1 for kernel 5432a713-52cc-4826-bcee-a221f278c41a tous [I 14:51:31.504 NotebookApp] Adapting to protocol v5.1 for kernel 5432a713-52cc-4826-bcee-a221f278c41a tous [I 14:51:31.504 NotebookApp] Adapting to protocol v5.1 for kernel 5432a713-52cc-4826-bcee-a221f278c41a tous [I 14:51:31.504 NotebookApp] Adapting to protocol v5.1 for kernel 5432a713-52cc-4826-bcee-a221f278c41a tous [I 14:51:31.504 NotebookApp] Adapting to protocol v5.1 for kernel 5432a713-52cc-4826-bcee-a221f278c41a tous [I 14:51:31.504 NotebookApp] Adapting to protocol v5.1 for kernel 5432a713-52cc-4826-bcee-a221f278c41a tous [I 14:51:31.504 NotebookApp] Adapting to protocol v5.1 for kernel 5432a713-52cc-4826-bcee-a221f278c41a tous [I 14:51:31.504 NotebookApp] Adapting to protocol v5.1 for kernel 5432a713-52cc-4826-bcee-a221f278c41a tous [I 14:51:31.504 NotebookApp] Adapting to protocol v5.1 for kernel 5432a713-52cc-4826-bcee-a221f278c41a tous [I 14:51:31.504 NotebookApp] Adapting to protocol v5.1 for kernel 5432a713-
```

2.5 간단히 원리만 확인하는 차원에서 import 모듈

2.6 turtle2에서 바라본 turtle1의 상대 좌표와 자세를 받고

2.7 거리를 계산해본다면

2.8 이렇게 해볼 수 있을듯

2.9 robot state publisher

• URDF를 작성하면 자동으로 TF를 broadcasting 함