Ein Minimalbeispiel für ein \LaTeX Dokument

Ivo Blöchliger

 $1.~\mathrm{M\ddot{a}rz}~2024$

Inhaltsverzeichnis

L	\mathbf{Ein}	leitung
	1.1	Motivation
	1.2	Literatur
2	Bei	spiele
	2.1	Eine seltsame Funktion

Kapitel 1

Einleitung

1.1 Motivation

Ein kleines Beispieldokument. Im Abschnitt 2.1 auf Seite 3 wird eine spannende Funktion vorgestellt.

1.2 Literatur

Das gibt es schon vieles.

Kapitel 2

Beispiele

2.1 Eine seltsame Funktion

Gegeben ist die Funktion $f: \mathbb{R} \to \mathbb{R}$ definiert als

$$f(x) = \begin{cases} 0 & \text{für } x \in \mathbb{R} \\ \frac{1}{q} & \text{für } x \in \mathbb{Q} \text{ mit } x = \frac{p}{q}, \ q \in \mathbb{N}, \ p \in \mathbb{Z}, \ \text{ggT}(p, q) = 1. \end{cases}$$
 (2.1)

Theorem 1. Die Funktion f definiert in Gleichung 2.1 ist stetig für irrationale $x \in \mathbb{R} \setminus \mathbb{Q}$ und unstetig für rationale $x \in \mathbb{Q}$.

2.1.1 Beweis von Theorem 1

Lemma 1.1. Sei x_i eine Folge rationaler Zahlen, die gegen eine irrationale Zahl r konvergiert. Schreibt man $x_i = \frac{p_i}{q_i}$ mit $p_i \in \mathbb{Z}$ und $q_i \in \mathbb{N}$ gilt

$$\lim_{n \to \infty} q_i = \infty$$

Beweis von Lemma 1.1. Wir können annehmen, dass $ggT(p_i, q_i) = 1$, d.h. die Brüche sind vollständig gekürzt. Der Beweis wird durch Widerspruch geführt: Nehmen wir an

$$q_i < N \, \forall i$$
.

Für alle $x_i \neq x_j$ gilt $|x_i - x_j| \geq \frac{1}{N^2}$ weil

$$\left| \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd} \right| \ge \frac{1}{bd} \ge \frac{1}{N^2}$$

Da die Folge (x_i) gegen r konvergiert, gibt es für jedes $\epsilon > 0$ ein Index I, ab dem gilt:

$$|x_i - r| < \epsilon \quad \forall i > I$$

Wählt man $\epsilon < \frac{1}{3N^2}$ folgt aus $|x_i - x_j| \ge \frac{1}{N^2}$, dass

$$x_i = x_i \quad \forall i, j > I$$

Damit ist aber auch $r = x_i$ für i > I, was ein Widerspruch zur Annahme ist, dass r irrational ist.

Stetigkeit für irrationale Argumente

Beweis. Wie in Lemma 1.1 gezeigt, sind, um eine irrationale Zahlrmit Brüchen anzunähern, immer grössere Nenner q_i nötig:

$$\lim_{n\to\infty}q_i=\infty$$

und damit

$$\lim_{n \to \infty} \frac{1}{q_i} = 0,$$

was die Stetigkeit in irrationalen Argumenten r beweist.

Unstetigkeit für irrationale Argumente

Beweis. Für jede rationale Zahl q ist f(q) > 0. Für jedes $\epsilon > 0$ existiert eine irrationale Zahl r mit $|r - q| < \epsilon$. Weil f(r) = 0 ist f in q unstetig. \square