Module 7 - Damping Elements

ME3050 - Dynamics Modeling and Controls

Mechanical Engineering
Tennessee Technological University

Topic 2 - Mechanical Damping

Topic 2 - Mechanical Damping

- A Better Model
- Oscillation and Decay
- Sources of Damping
- Dampers Damp!

A Better Model

Equation of Motion:

$$m\ddot{x} + kx = 0$$
, $x(0)$, $\dot{x}(0)$

Free Response:

$$x(t) = A\cos\sqrt{\frac{k}{m}}t + B\sin\sqrt{\frac{k}{m}}t$$

Previously we derived the free response of the mass spring system.

A Better Model

$$x(t) = A\cos\sqrt{\frac{k}{m}}t + B\sin\sqrt{\frac{k}{m}}t$$

Is this valid? Do you believe it?

Oscillation and Decay

$$x(t) = e^{lpha t} \left[A cos \sqrt{rac{k}{m}} t + B sin \sqrt{rac{k}{m}} t
ight]$$

This is much more realistic.

Oscillation and Decay

How fast does the system response decay?

What is steady state value?

Sources of Damping

Damping is a natural phenomenon that cannot be avoided. However in some situations the its influence is significant and in others it is not.

- •
- •

The design of many machines depends on the concept of damping and often a mechanical damper is an intentional component of the design.

- •
- •

Dampers Damp!

Dampers Damp!

Rain Dampens...

Image: Wikimedia