Straubing, 07 December 2006

TEST-REPORT

No. 51971-060823-1 (Edition 1)

for

WaveNET Router Node

Transceiver for Electronic Lock

Applicant: SimonsVoss Technologies AG

Test Specifications: FCC Code of Federal Regulations,

CFR 47, Part 15,

Sections 15.107, 15.109, 15.205, 15.207,

15.215 and 15.249

Industry Canada Radio Standards

Specifications

RSS-Gen Issue 1, Sections 7.2.2, 7.2.3 and

RSS-210 Issue 6, Sections 2.2, A2.9

(Category I Equipment)

Note:

The test data of this report is related only to the individual item which has been tested. This report shall not be reproduced except in full extent without the written approval of the testing laboratory.

Table of Contents

1	De	escription of the Equipment Under Test (EUT)	3
2	Ad	dministrative Data	4
3	ld	entification of the Test Laboratory	5
4	Sı	ımmary	6
5	O	peration Mode and Configuration of EUT	7
6	M	easurement Procedures	8
	6.1	Conducted Output Power	8
	6.2	Bandwidth Measurements	10
	6.3	Conducted AC Powerline Emission	12
	6.4	Radiated Emission in Fully or Semi Anechoic Room	14
	6.5	Radiated Emission at Open Field Test Site	16
7	Pł	notographs Taken During Testing	17
8	Τe	est Results for Transmitter	22
	8.1	Conducted Output Power	24
	8.2	Occupied Bandwidth	25
	8.3	Bandwidth of the Emission	29
	8.4	Designation of Emissions	31
	8.5	Restricted Bands of Operation	32
	8.6	Conducted Powerline Emission Measurement 150 kHz to 30 MHz	33
	8.7	Radiated Emission Measurement 30 MHz to 10 GHz	34
	8.8	Exposure of Humans to RF Fields	36
9	Τe	est Results for Receiver	38
	9.1	Radiated Emission Measurement 30 MHz to 5 GHz	39
1() Re	eferenced Regulations	40
1 ·	1 CI	parts taken during testing	41

1 Description of the Equipment Under Test (EUT)

General data of EUT

Type designation¹: WaveNET Router Node

Parts²:
Serial number(s): US-Band
Manufacturer: SimonsVoss Technologies AG

Type of equipment: Transceiver for Electronic Lock

Version: As delivered

FCC ID:
Additional parts/accessories:

echnical data of EUT			
Application frequency range:	902 - 928 MHz		
Frequency range:	915 MHz		
Operating frequency:	915 MHz		
Type of modulation:	GFSK		
Pulse train:			
Pulse width:			
Number of RF-channels:	1		
Channel spacing:	Not applicable		
Designation of emissions ³ :	158kF1D		
Type of antenna:	Monopole		
Size/length of antenna:	105 mm		
Connection of antenna:	⊠ detachable	not detachable	
Type of power supply:	DC supply		
Specifications for power supply:	nominal voltage:	6.0 V	
	minimum voltage: maximum voltage:	5.4 V 6.6 V	

¹ Type designation of the system if EUT consists of more than one part.

² Type designations of the parts of the system, if applicable.

³ Also known as "Class of Emission".

Application details

2 Administrative Data

Applicant (full address): SimonsVoss Technologies AG

Feringastraße 4 85774 Unterföhring

Germany

Contact person: Mr. Ludger Voss

Contract identification: --

Receipt of EUT: 19 September 2006

Date(s) of test: September - November 2006

Note(s):

Report details

Report number: 51971-060823-1

Edition:

Issue date: 07 December 2006

3 Identification of the Test Laboratory

Details of the Test Laboratory

Company name: Senton GmbH EMI/EMC Test Center

Address: Aeussere Fruehlingstrasse 45

D-94315 Straubing

Germany

Laboratory accreditation: DAR-Registration No. DAT-P-171/94-02

FCC test site registration number 90926 Industry Canada test site registration: IC 3050

Contact person: Mr. Johann Roidt

Phone: (+49) (0)9421 5522-0 Fax: (+49) (0)9421 5522-99

4 Summary

Summary of test results

The tested sample complies with the requirements set forth in the

Code of Federal Regulations CFR 47, Part 15, Sections 15.109, 15.205, 15.207, 15.215 and 15.249 of the Federal Communication Commission (FCC) and the

Radio Standards Specifications RSS-Gen Issue 1, Sections 7.2.2, 7.2.3 and RSS-210 Issue 6, Sections 2.2, 2.6, A2.9 (Category I Equipment)

of Industry Canada (IC).

Personnel involved in this report			
Laboratory Manager:			
	He Col		
	Mr. Johann Roidt		
Responsible for testing:			
	Skinell Martin		
	Mr. Martin Steindl		
Responsible for test report:	Mr. Martin Steindl		

5 Operation Mode and Configuration of EUT

Operation Modes

Tests were perfored for receive mode and transmitting with normal modulation.

Configuration(s) of EUT

The EUT was configured as stand alone device.

List	List of ports and cables				
Port	Description	Classification ⁴	Cable type	Cable length	
1	DC power supply	dc power	Unshielded		

List of devices connected to EUT				
Item Description Not applicable	Type Designation	Serial no. or ID	Manufacturer	

List of support devices				
Item Description Not applicable	Type Designation	Serial no. or ID	Manufacturer	

_

⁴ Ports shall be classified as ac power, dc power or signal/control port

6 Measurement Procedures

6.1 Conducted Output Power

Measurement Procedure:		
Rules and specifications:	CFR 47 Part 2, section 2.1046(a) IC RSS-Gen Issue 1, section 4.6	
Guide:	CFR 47 Part 2, section 2.1046 / IC RSS-Gen Issue 1	

Conducted output power is measured at the RF output terminals (e.g. antenna connector if antenna is detachable) when the transmitter is adjusted in accordance with the tune-up procedure, if applicable. The RF output terminals are connected to a spectrum analyzer and/or a power meter with appropriate sensor. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as dc block and appropriate attenuators (50 Ohms). The electrical characteristics of the radio frequency load attached to the output terminals shall be stated, if applicable.

If a spectrum analyzer is used and no other settings are specified resolution bandwidth shall be selected according to the carrier frequency f_c and set to 10 kHz (150 kHz \leq f_c < 30 MHz), 100 kHz (30 MHz \leq f_c < 1 GHz) or 1 MHz ($f_c \geq$ 1 GHz). The video bandwidth shall be at least three times greater than the resolution bandwidth. The settings used have to be indicated within the appropriate test record(s).

Test instruments used:

Used	Туре	Model	Serial No. or ID	Manufacturer
	Spectrum Analyzer	FSP 30	100063	Rohde & Schwarz
	EMI test receiver	ESPI7	836914/0002	Rohde & Schwarz
	EMI test receiver	ESMI	839379/013 839587/006	Rohde & Schwarz
\boxtimes	Power meter	NRVS	836856/015	Rohde & Schwarz
\boxtimes	Peak power sensor	NRV-Z31	8579604.03	Rohde & Schwarz
	Power sensor	NRV-Z52	837901/030	Rohde & Schwarz
\boxtimes	Power sensor	NRV-Z4	863828/015	Rohde & Schwarz
	DC-block	7006	A2798	Weinschel
	Attenuator	4776-10	9412	Narda
	Attenuator	4776-20	9503	Narda

6.2 Bandwidth Measurements

Measurement Procedure:				
Rules and specifications:	CFR 47 Part 2, section 2.202(a) CFR 47 Part 15, section 15.215(c) IC RSS-Gen Issue 1, sections 4.4.1 and 4.4.2 IC RSS-210 Issue 6, section A1.1.3 ANSI C63.4, annex H.6			
Guide:	ANSI C63.4 / IC RSS-Gen Issue 1, sections 4.4.1 and 4.4.2			
Measurement setup:	☑ Conducted: See below☐ Radiated: Radiated Emission in Fully or Semi Anechoic Room (6.			

If antenna is detachable bandwidth measurements shall be performed at the antenna connector (conducted measurement) when the transmitter is adjusted in accordance with the tune-up procedure, if applicable. The RF output terminals are connected to a spectrum analyzer. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as dc block and appropriate attenuators (50 Ohms). The electrical characteristics of the radio frequency load attached to the output terminals shall be stated, if applicable.

If radiated measurements are performed the same test setups and instruments are used as with radiated emission measurements for the appropriate frequency range.

The analyzer settings are specified by the test description of the appropriate test record(s).

Test instruments used for conducted measurements:

Used	Туре	Model	Serial No. or ID	Manufacturer
	Spectrum Analyzer	FSP 30	100063	Rohde & Schwarz
\boxtimes	EMI test receiver	ESPI7	836914/0002	Rohde & Schwarz
	EMI test receiver	ESMI	839379/013 839587/006	Rohde & Schwarz
	Power meter	NRVS	836856/015	Rohde & Schwarz
	Peak power sensor	NRV-Z31	8579604.03	Rohde & Schwarz
	Power sensor	NRV-Z52	837901/030	Rohde & Schwarz
	Power sensor	NRV-Z4	863828/015	Rohde & Schwarz
	DC-block	7006	A2798	Weinschel
	Attenuator	4776-10	9412	Narda
	Attenuator	4776-20	9503	Narda

6.3 Conducted AC Powerline Emission

Measurement Procedure:		
Rules and specifications:	CFR 47 Part 15, sections 15.107 and 15.207 IC RSS-Gen Issue 1, section 7.2.2	
Guide:	ANSI C63.4 (CISPR 22)	

Conducted emission tests in the frequency range 150 kHz to 30 MHz are performed using Line Impedance Stabilization Networks (LISNs). To simplify testing with quasi-peak and average detector the following procedure is used:

First the whole spectrum of emission caused by the equipment under test (EUT) is recorded with detector set to peak using CISPR bandwidth of 10 kHz. After that all emission levels having less margin than 10 dB to or exceeding the average limit are retested with detector set to quasi-peak.

If average limit is kept with quasi-peak levels no additional scan with average detector is necessary. In cases of emission levels between quasi-peak and average limit an additional scan with detector set to average is performed.

According to ANSI C63.4, section 13.1.3.1, testing of intentional radiators with detachable antenna shall be performed using a suitable dummy load connected to the antenna output terminals. Otherwise, the tests shall be made with the antenna connected and, if adjustable, fully extended.

Testing with dummy load may be necessary to distinguish (unintentional) conducted emissions on the supply lines from (intentional) emissions radiated by the antenna and coupling directly to supply lines and/or LISN. Usage of dummy load has to be stated in the appropriate test record(s) and notes should be added to clarify the test setup.

Test instruments used:

Used	Туре	Model	Serial No. or ID	Manufacturer
\boxtimes	EMI receiver	ESHS 10	860043/016	Rohde & Schwarz
\boxtimes	LISN	ESH3-Z5	862770/021	Rohde & Schwarz
	LISN	ESH3-Z5	830952/025	Rohde & Schwarz
	Artificial mains network	ESH 2-Z5	842966/004	Rohde & Schwarz
	Shielded room	No. 1	1451	Albatross Projects
\square	Shielded room	No. 4	3FD-100 544	Euroshield

Note: Performed as conducted DC line emissions

6.4 Radiated Emission in Fully or Semi Anechoic Room

Measurement Procedure:		
Rules and specifications:	CFR 47 Part 15, sections 15.109, 15.215(b) and 15.249 IC RSS-Gen Issue 1, sections 6(a), 7.2.3.2 IC RSS-210 Issue 6, section A2.9	
Guide:	ANSI C63.4	

Radiated emission in fully or semi anechoic room is measured in the frequency range from 30 MHz to the maximum frequency as specified in CFR 47 Part 15 section 15.33.

Measurements are made in both the horizontal and vertical planes of polarization in a fully anechoic room using a spectrum analyzer with the detector function set to peak and resolution as well as video bandwidth set to 100 kHz (below 1 GHz) or 1 MHz (above 1 GHz).

Testing up to 1 GHz is performed with a linear polarized logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna"). For testing above 1 GHz horn antennas are used.

All tests below 18 GHz are performed at a test distance D of 3 meters. For higher frequencies the test distance is reduced (e.g. to 1 meter) due to the sensitivity of the measuring instrument(s) and the test results are calculated according to CFR 47 Part 15 section 15.31(f)(1) using an extrapolation factor of 20 dB/decade. If required, preamplifiers are used for the whole frequency range. Special care is taken to avoid overload, using appropriate attenuators and filters, if necessary.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing.

During testing the EUT is rotated all around to find the maximum levels of emissions. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

For final testing below 1 GHz an open field test-site is used and the plots recorded in the fully or semi anechoic room are indicated as prescans.

Fully or semi anechoic room

Test instruments used:

Used	Туре	Model	Serial No. or ID	Manufacturer
	Spectrum Analyzer	FSP 30	100063	Rohde & Schwarz
	Spectrum analyzer	R 3271	05050023	Advantest
	EMI test receiver	ESMI	839379/013 839587/006	Rohde & Schwarz
\boxtimes	Preamplifier	CPA9231A	3393	Schaffner
	Preamplifier	R14601		Advantest
\boxtimes	Preamplifier 1-8 GHz	AFS3-00100800-32-LN	847743	Miteq
	Preamplifier 0.5-8 GHz	AMF-4D-005080-25-13P	860149	Miteq
\boxtimes	Preamplifier 8-18 GHz	ACO/180-3530	32641	CTT
	External Mixer	WM782A	845881/005	Tektronix
	Harmonic Mixer	FS-Z30	843389/007	Rohde & Schwarz
	Accessories			
\boxtimes	Trilog broadband antenna	VULB 9163	9163-188	Schwarzbeck
\boxtimes	Horn antenna	3115	9508-4553	EMCO
	Horn antenna	3160-03	9112-1003	EMCO
	Horn antenna	3160-04	9112-1001	EMCO
\boxtimes	Horn antenna	3160-05	9112-1001	EMCO
\boxtimes	Horn antenna	3160-06	9112-1001	EMCO
\boxtimes	Horn antenna	3160-07	9112-1008	EMCO
	Horn antenna	3160-08	9112-1002	EMCO
	Horn antenna	3160-09	9403-1025	EMCO
	Horn antenna	3160-10	399185	EMCO
\boxtimes	Fully anechoic room	No. 2	1452	Albatross Projects
	Semi-anechoic room	No. 3	1453	Siemens

6.5 Radiated Emission at Open Field Test Site

Measurement Procedure:			
Rules and specifications:	CFR 47 Part 15, sections 15.109, 15.215(b) and 15.249 IC RSS-Gen Issue 1, sections 6(a), 7.2.3.2 IC RSS-210 Issue 6, section A2.9		
Guide:	ANSI C63.4		

Radiated emission at open field test site is measured in the frequency range 30 MHz to 1 GHz using a biconical antenna up to 300 MHz and a logarithmic periodic antenna above. The measurement bandwidth of the test receiver is set to 120 kHz with quasi-peak detector selected.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train. including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value. Hand-held or body-worn devices are tested in the position producing the highest emission relative to the limit as verified by prescans in the fully anechoic room. EUT is rotated all around and receiving antenna is raised and lowered within 1 meter to 4 meters to find the maximum levels of emission. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

For measuring emissions of intentional radiators and receivers a test distance D of 3 meters is selected. Testing of unintentional radiators is performed at a distance of 10 meters. If limits specified for 3 meters shall be used for measurements performed at 10 meters distance the limits are calculated according to CFR 47 Part 15 section 15.31(d) and (f)(1) using an inverse linear-distance extrapolation factor of 20 dB/decade.

Test instruments used:

Used	Туре		Model	Serial No. or ID	Manufacturer
\boxtimes	EMI receiver		ESVP	881120/024	Rohde & Schwarz
\boxtimes	Biconical antenna	EG 1	HK 116	842204/001	Rohde & Schwarz
\boxtimes	Log. per. antenna	EG 1	HL 223	841516/023	Rohde & Schwarz
\boxtimes	Open field test site		EG 1	1450	Senton

7 Photographs Taken During Testing

Test setup for conducted DC powerline emission measurement

Test setup for radiated emission measurement (fully anechoic room)

Test setup for radiated emission measurement (open field test site)

Test setup for radiated emission measurement (open field test site) - continued -

8 Test Results for Transmitter

FCC CFR 47 P	FCC CFR 47 Parts 2 and 15					
Section(s)	Test	Page	Result			
2.1046(a)	Conducted output power	24	Recorded			
2.202(a)	Occupied bandwidth	25	Recorded			
15.215(c)	Bandwidth of the emission	29	Test passed			
2.201, 2.202	Class of emission	31	Calculated			
15.35(c)	Pulse train measurement for pulsed operation		Not applicable			
15.205(a)	Restricted bands of operation	32	Test passed			
15.207	Conducted DC powerline emission 150 kHz to 30 MHz	33	Test passed			
15.205(b) 15.249	Radiated emission 9 kHz to 30 MHz		Not applicable according to CFR 47 Part 15, section 15.33(a)			
15.205(b) 15.215(b) 15.249	Radiated emission 30 MHz to 10 GHz	34	Test passed			

IC RSS-Gen Is	IC RSS-Gen Issue 1				
Section(s)	Test	Page	Result		
4.6	Transmitter output power (conducted)	24	Recorded		
4.4.1	Occupied Bandwidth	25	Recorded		
3.2(h), 8	Designation of emissions	31	Calculated		
4.3	Pulsed operation		Not applicable		
7.2.2	Transmitter DC power lines conducted emissions 150 kHz to 30 MHz	33	Test passed		
5.5	Exposure of Humans to RF Fields	36	Exempted from SAR and RF evaluation		

IC RSS-210 Issue 6					
Section(s)	Test	Page	Result		
2.2(a)	Restricted bands and unwanted emission frequencies	32	Test passed		
2.2(b)(c), 2.6 A2.9	Unwanted emissions 9 kHz to 30 MHz		Not applicable according to IC RSS-Gen Issue 1, section 4.7		
2.2(b)(c), 2.6 A2.9	Unwanted emissions 30 MHz to 10 GHz	34	Test passed		

8.1 Conducted Output Power

Rules and specifications:	CFR 47 Part 2, section 2.1046(a) IC RSS-Gen Issue 1, section 4.6
Guide:	CFR 47 Part 2, section 2.1046 / IC RSS-Gen Issue 1
Description:	Conducted output power shall be measured at the RF output terminals (e.g. antenna connector if antenna is detachable) when the transmitter is adjusted in accordance with the tune-up procedure, if applicable. The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.
Measurement procedure:	Conducted Output Power (6.1)

Co	mment:	
Dat	te of test:	07 December 2006
Tes	st site:	Unshielded room

Antenna gain:	dBi						
Mode	Frequency	Power Type	Reading	Correction	Output Power	Limit	Margin
	(MHz)		(dBm)	(dB)	(dBm)	(dBm)	(dB)
	916.0	Peak	5.6	0.0	5.6		

- Note 1: If applicable, PEP (peak envelope power) and RMS values are measured using a power meter with appropriate sensor.
- Note 2: If applicable, peak or average values are measured using a spectrum analyzer with resolution and video bandwidth set to: RBW =, VBW =
- Note 3: If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power limit is reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

8.2 Occupied Bandwidth

Rules and specifications:	CFR 47 Part 2, section 2.202(a) ANSI C63.4, annex H.6			
Guide:	ANSI C63.4			
Description:	The occupied bandwidth according to CFR 47 Part 2, section 2.202(a), is measured as the 99% emission bandwidth, i.e. below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5% of the total mean power radiated by a given emission.			
	The occupied bandwidth according to ANSI C63.4, annex H.6; is me as the frequency range defined by the points that are 26 dB down rel the maximum level of the modulated carrier.			
	The resolution bandwidth of the spectrum analyzer shall be set to a value greater than 5.0% of the allowed bandwidth. If no bandwidth specifications are given, the following guidelines are used:			
	Fundamental frequency	Minimum resolution bandwidth		
	9 kHz to 30 MHz	1 kHz		
	30 MHz to 1000 MHz	10 kHz		
	1000 MHz to 40 GHz 100 kHz			
	The video bandwidth shall be at least three times greater than the resolution bandwidth.			
Measurement procedure:	Bandwidth Measurements (6.2)			

Comment:	
Date of test:	7 December 2006
Test site:	Fully anechoic room, cabin no. 2

Occupied Bandwidth (99 %):

Comment: 060822: Occupied Bandwidth Date: 7.DEC.2006 17:24:52

Occupied Bandwidth (99 %): 86 kHz

Occupied Bandwidth (continued)

Rules and specifications:	IC RSS-Gen Issue 1, section 4.4.1
Guide:	IC RSS-Gen Issue 1, section 4.4.1
Description:	If not specified in the applicable RSS the occupied bandwidth is measuredas the 99% emission bandwidth. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is also recorded. The span between the two recorded frequencies is the occupied bandwidth.
Measurement procedure:	Bandwidth Measurements (6.2)

Comment:	
Date of test:	7 December 2006
Test site:	Fully anechoic room, cabin no. 2

Occupied Bandwidth (99 %):

Comment: 060822: Occupied Bandwidth Date: 7.DEC.2006 17:24:52

Occupied Bandwidth (99 %): 86 kHz

8.3 Bandwidth of the Emission

Rules and specifications:	CFR 47 Part 15, section 15.215(c)	
Guide:	ANSI C63.4	
Description:	The 20 dB bandwidth of the emission is measured as the frequency range defined by the points that are 20 dB down relative to the maximum level of the modulated carrier. For intentional radiators operating under the alternative provisions to the general emission limits the requirement to contain the 20 dB bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation. The resolution bandwidth of the spectrum analyzer shall be set to a	
	The resolution bandwidth of the spec value greater than 5.0% of the allow specifications are given, the following	ed bandwidth. If no bandwidth
	Fundamental frequency	Minimum resolution bandwidth
	9 kHz to 30 MHz	1 kHz
	30 MHz to 1000 MHz	10 kHz
	1000 MHz to 40 GHz	100 kHz
	The video bandwidth shall be at leas resolution bandwidth.	t three times greater than the
Measurement procedure:	Bandwidth Measurements (6.2)	

Comment:	
Date of test:	7 December 2007
Test site:	Fully anechoic room, cabin no. 2

Comment: 060822: Bandwidth of Emission Date: 7.DEC.2006 17:25:44

Permitted frequency band:	902 - 928 MHz	
20 dB bandwidth:	102 kHz	
Carrier frequency stability:	specified	⊠ not specified
Maximum frequency tolerances:	+ kHz kHz	
Bandwidth of the emission:	kHz	within permitted frequency band ⁵ : ☑ yes ☐ no

Test Result: Test passed	Test Result:	Test passed
--------------------------	--------------	-------------

⁵ If a frequency stability is not specified, it is recommended that the fundamental emission is kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

8.4 Designation of Emissions

Rules and specifications:	CFR 47 Part 2, sections 2.201 and 2.202 IC RSS-Gen Issue 1, sections 3.2(h) and 8
Guide:	ANSI C63.4 / TRC-43

Type of modulation:	Frequency Modulation
---------------------	----------------------

B _n = Necessary Bandwidth	$B_n = 2M + 2DK$
M = Modulation frequency	M = 19.2 kHz
D = Peak deviation	D = 60 kHz
K = Overall numerical factor	K = 1
Calculation:	$B_n = 2 \cdot (19.2 \text{ kHz}) + 2 \cdot (30 \text{ kHz}) \cdot 1 = 158 \text{ kHz}$

Designation of Emissions:	158kF1D	
---------------------------	---------	--

8.5 Restricted Bands of Operation

Rules and specifications:	CFR 47 Part 15, section 15.205(a) IC RSS-210 Issue 6, section 2.2(a)
Guide:	ANSI C63.4
Limit:	Only spurious emissions are permitted in any of the frequency bands listed in CFR 47 Part 15, section 15.205(a) or IC RSS-210 Issue 6, section 2.2(a).
Measurement procedure:	Radiated Emission in Fully or Semi Anechoic Room (6.4)

Comment:	
Date of test:	7 December 2007
Test site:	Fully anechoic room, cabin no. 2
Test distance:	3 meters

Comment: 060822: Restricted Bands of Operation Date: 7.DEC.2006 17:00:02

Test Result:

8.6 Conducted Powerline Emission Measurement 150 kHz to 30 MHz

Rules and specifications:	CFR 47 Part 15, section 15.207 IC RSS-Gen Issue 1, section 7.2.2				
Guide:	ANSI C63.4 / CISPR 22				
Limit:	Frequency of Emission	Conducted Limit (dBµV)			
	(MHz)	Quasi-peak	Average		
	0.15 - 0.5	66 to 56	56 to 46		
	0.5 - 5	56	46		
	5 - 30	60	50		
Measurement procedure:	Conducted AC Powerline Emission (6.3)				

Comment:	
Date of test:	13 October 2007
Test site:	Shielded room, cabin no. 1

Test Result:	Test passed

Tested on: plus	
-----------------	--

All emissions show more than 20 dB margin to the limit

Tested on:	minus
------------	-------

All emissions show more than 20 dB margin to the limit

Sample calculation of final values:

Final Value ($dB\mu V$) = Reading Value ($dB\mu V$) + Correction Factor (dB)

8.7 Radiated Emission Measurement 30 MHz to 10 GHz

Rules and specifications:	CFR 47 Part 15, sections 15.215(b) and 15.249 IC RSS-210 Issue 6, section A2.9						
Guide:	ANSI C63.4	ANSI C63.4					
Limit:	Frequency of Emission (MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)				
	30 - 88	100	40.0				
	88 - 216	150	43.5				
	216 - 960	216 - 960 200					
	Above 960	Above 960 500					
	Additionally, the level of any unwanted emissions shall not exceed of the fundamental emission.						
Measurement procedures:	Radiated Emission in Fully or Semi Anechoic Room (6.4) Radiated Emission at Open Field Test Site (6.5)						

Comment:	
Date of test:	26 September 2006 / 9 October 2006
Test site:	Frequencies ≤ 1 GHz: Open field test site Frequencies > 1 GHz: Fully anechoic room, cabin no. 2
Test distance:	Frequencies ≤ 8.2 GHz: 3 m Frequencies > 8.2 GHz: 1 m

Test Result:	Test passed
	·

Frequency	Antenna	Detector	Receiver	Correction	Pulse Train	Final	Limit	Margin
	Polarization		Reading	Factor	Correction	Value		
(MHz)			(dBµV)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
603.030	vertical	Quasi-Peak	20.4	22.1		42.5	46.0	3.5
655.030	vertical	Quasi-Peak	21.5	23.3		44.8	46.0	1.2
694.030	vertical	Quasi-Peak	20.5	24.0		44.5	46.0	1.5
785.030	vertical	Quasi-Peak	21.4	24.4		45.8	46.0	0.2
798.030	vertical	Quasi-Peak	18.7	24.7		43.4	46.0	2.6
863.030	vertical	Quasi-Peak	18.4	26.2		44.6	46.0	1.4
915.030	vertical	Quasi-Peak	67.2	26.3		93.5	94.0	0.5
967.030	horizontal	Quasi-Peak	17.7	27.7		45.4	54.0	8.6
1829.972	vertical	Average	21.8	31.4		53.2	54.0	8.0
2744.940	vertical	Average	17.9	34.8		52.7	54.0	1.4
5492.800	horizontal	Peak	12.1	34.9		47.0	54.0	7.0
6404.600	vertical	Peak	13.8	38.3		52.1	54.0	1.9
9150.400	horizontal	Peak	14.3	43.8		58.1	63.5	5.4

Sample calculation of final values:

Final Value (dB μ V/m) = Reading Value (dB μ V) + Correction Factor (dB/m) + Pulse Train Correction (dB)

8.8 Exposure of Humans to RF Fields

Rules and specifications:	IC RSS-Gen Issue 1, section 5.5
Guide:	IC RSS-102 Issue 2, section 2.5

Exposure of Humans to RF Fields	Applicable	Declared by applicant	Measured	Exemption
The antenna is				
⊠ detachable				
The conducted output power (CP in watts) is measured at the antenna connector:				
CP = 3.6 mW			\boxtimes	
The effective isotropic radiated power (EIRP in watts) is calculated using				
the numerical antenna gain: $G = 1$ $EIRP = G \cdot CP \Rightarrow EIRP = \textbf{3.6 mW}$				
\square the field strength ⁶ in V/m: $FS = 48.9 \text{ mV/m}$			\boxtimes	
$EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP = 719.6 \text{ mW}$				
with:				
Distance between the antennas in m: $D = 3 \text{ m}$			\boxtimes	
not detachable				
A field strength measurement is used to determine the effective isotropic radiated power (EIRP in watts) given by ⁶ :				
$EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP = \dots $				
with:				
Field strength in V/m: $FS = \dots V/m$				
Distance between the two antennas in m: $D = \dots m$				
Selection of output power				
The output power TP is the higher of the conducted or effective isotropic radiated power (e.i.r.p.):				
TP = 3.6 mW				

⁶ The conversion formula is valid only for properly matched antennas. In other cases the transmitter output power may have to be measured by a terminated measurement when applying the exemption clauses. If an open area test site is used for field strength measurement, the effect due to the metal ground reflecting plane should be subtracted from the maximum field strength value in order to reference it to free space, before calculating TP.

Test Report No. 51971-060823-1 (Edition 1)

Exposure of Humans to RF Fields (continued)	Applicable	Declared by applicant	Measured	Exemption		
Separation distance between the user and the transmitting device is						
☐ less than or equal to 20 cm ☐ greater than 20 cm		\boxtimes				
Transmitting device is						
☐ in the vicinity of the human head ☐ body-worn		\boxtimes				
SAR evaluation						
SAR evaluation is required if the separation distance between the user and the device is less than or equal to 20 cm.						
The device operates from 3 kHz up to 1 GHz inclusively and its source-based time-averaged output power is less than, or equal to 200 mW for General Public Use and 1000 mW for Controlled Use.						
☐ The device operates above 1 GHz up to 2.2 GHz inclusively and its source-based time-averaged output power is less than, or equal to 100 mW for General Public Use and 500 mW for Controlled Use.						
☐ The device operates above 2.2 GHz up to 3 GHz inclusively and its source-based time-averaged output power is less than, or equal to 20 mW for General Public Use and 100 mW for Controlled Use.						
☐ The device operates above 3 GHz up to 6 GHz inclusively and its source-based time-averaged output power) is less than, or equal to 10 mW for General Public Use and 50 mW for Controlled Use.						
☐ SAR evaluation is documented in test report no						
RF exposure evaluation						
RF exposure evaluation is required if the separation distance between the user and the device is greater than 20 cm.						
☐ The device operates below 1.5 GHz and its e.i.r.p. is equal to or less than 2.5 W.						
☐ The device operates at or above 1.5 GHz and the e.i.r.p. of the device is equal to or less than 5 W.						
☐ RF exposure evaluation is documented in test report no						

9 Test Results for Receiver

FCC CFR 47 Part 15			
Section(s)	Test	Page	Result
15.107	Conducted DC powerline emission 150 kHz to 30 MHz		Not applicable
15.109	Radiated emission 30 MHz to 5 GHz	39	Test passed
15.111(a)	Antenna power conduction emission of receivers 9 kHz to 5 GHz		Not applicable

IC RSS-Gen Issue 1			
Section(s)	Test	Page	Result
7.2.2	Transmitter DC power lines conducted emissions 150 kHz to 30 MHz		Not applicable
6(a), 7.2.3.2	Receiver spurious emissions (radiated) 30 MHz to 5 GHz	39	Test passed
6(b), 7.2.3.1	Receiver spurious emissions (antenna conducted) 9 kHz to 5 GHz		Not applicable

9.1 Radiated Emission Measurement 30 MHz to 5 GHz

Rules and specifications:	CFR 47 Part 15, section 15.109 (Class B) IC RSS-Gen Issue 1, sections 6(a) and 7.2.3.2			
Guide:	ANSI C63.4			
Limit:	Frequency of Emission (MHz) Field Strength (µV/m) Field Strength (dBµV/m)			
	30 - 88 100 40.0			
	88 - 216 150 43.5			
	216 - 960 200 46.0			
	Above 960 500 54.0			
Measurement procedures:	Radiated Emission in Fully or Semi Anechoic Room (6.4) Radiated Emission at Open Field Test Site (6.5)			

Comment:	
Date of test:	9 October 2006
Test site:	Frequencies ≤ 1 GHz: Open field test site Frequencies > 1 GHz: Fully anechoic room, cabin no. 2
Test distance:	3 meters

Test Result:	Test passed
--------------	-------------

Frequency	Antenna	Detector	Receiver	Correction	Final	Limit	Margin
	Polarization		Reading	Factor	Value		
(MHz)			(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)
688.990	vertical	Quasi-Peak	6.8	24.0	30.8	46.0	15.2

Sample calculation of field final values:

Final Value ($dB\mu V/m$) = Reading Value ($dB\mu V$) + Correction Factor (dB/m)

10 Referenced Regulations

All tests were performed with reference to the following regulations and standards:

CFR 47 Part 2	Code of Federal Regulations Part 2 (Frequency allocation and radio treaty matters; General rules and regulations) of the Federal Communication Commission (FCC)	October 10, 2004
CFR 47 Part 15	Code of Federal Regulations Part 15 (Radio Frequency Devices) of the Federal Communication Commission (FCC)	September 19, 2005
ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	December 11, 2003 (published on January 30, 2004)
RSS-Gen	Radio Standards Specification RSS-Gen Issue 1 containing General Requirements and Information for the Certification of Radiocommunication Equimpment, published by Industry Canada	September 2005
RSS-210	Radio Standards Specification RSS-210 Issue 6 for Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment, published by Industry Canada	September 2005
RSS-310	Radio Standards Specification RSS-310 Issue 1 for Low Power Licence-Ecempt Radiocommunication Devices (All Frequency Bands): Category II Equipment, published by Industry Canada	September 2005
RSS-102	Radio Standards Specification RSS-102 Issue 2: Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)	November 2005
ICES-003	Interference-Causing Equipment Standard ICES-003 Issue 4 for Digital Apparatus, published by Industry Canada	February 7, 2004
CISPR 22	Third Edition of the International Special Committee on Radio Interference (CISPR), Pub. 22, "Information Technology Equipment – Radio Disturbance Characteristics – Limits and Methods of Measurement"	1997
CAN/CSA- CEI/IEC CISPR 22	Limits and Methods of Measurement of Radio Disturbance Characteristics of Information Technology Equipment	2002
TRC-43	Notes Regarding Designation of Emission (Including Necessary Bandwidth and Classification), Class of Station and Nature of Service, published by Industry Canada	October 9, 1982

11 Charts taken during testing

Conducted Emission Test 150 kHz - 30 MHz according to FCC Part 15 Subpart C

Model: WaveNET Router Node Serial no.: FCC sample Applicant: SimonsVoss Technologies AG Test site: Shielded room, cabin no. 4 Tested on: Linecord DC supply plus Date of test: Operator: 10/13/2006 M. Steindl Test performed: File name: semi automatically

Mode:

- DC 6 V power supply
- TX continuously with modulation

Detector:
Peak / Final Results: QP

But Detector:
Peak / Final Results: QP

Limit1: FCC C / QP

Limit2: FCC C / AV

Result: Limit kept Project file: 51971-060823

Conducted Emission Test 150 kHz - 30 MHz according to FCC Part 15 Subpart C

Model: WaveNET Router Node Serial no.: FCC sample Applicant: SimonsVoss Technologies AG Test site: Shielded room, cabin no. 4 Tested on: Linecord DC supply minus Date of test: Operator: 10/13/2006 M. Steindl Test performed: File name: semi automatically

Mode:

- DC 6 V power supply
- TX continuously with modulation

Detector:
Peak / Final Results: QP

Detector:
20 dB Margin

25 Subranges

Detector:
20 dB Margin

Limit1: FCC C / QP Limit2: FCC C / AV

Result: Limit kept Project file: 51971-060823

Radiated Emission Test 30 MHz - 1 GHz acc. to FCC Part 15 (Fully Anechoic Chamber)

Model: WaveNET Router Node		
Serial no.:		
Applicant: SimonsVoss Technologies	a AG	
Test site: Fully anechoic room, cabin no. 2		
Tested on: Test distance 3 metres Horizontal Polarization		
Date of test: 09/26/2006	Operator: M. Steindl	
Test performed: automatically	File name: default.emi	

Comment:

- DC 6 V power supply
- TX with modulation

Detector:

Peak

List of values:
Selected by hand

Result: Project file: 51971-60823-2

Radiated Emission Test 30 MHz - 1 GHz acc. to FCC Part 15 (Fully Anechoic Chamber)

Model: WaveNET Router Node		
Serial no.:		
Applicant:		
SimonsVoss Technologies	AG	
Test site: Fully anechoic room, cabin no. 2		
Tested on: Test distance 3 metres Vertical Polarization		
Date of test: 09/26/2006	Operator: M. Steindl	
Test performed: automatically	File name: default.emi	

Comment:

- DC 6 V power supply
- TX with modulation

Detector:

Peak

List of values:
Selected by hand

Result: Prescan Project file: 51971-60823-2

Radiated Emission Test 1 GHz - 3.95 GHz acc. to FCC Part 15 (EMCO 3115)

Model: WaveNET Router Node	
Serial no.:	
Applicant:	
SimonsVoss Technologies	s AG
Test site:	
Fully anechoic room, cabi	n no. 2
Tested on:	
Test distance 3 metres Horizontal Polarization	
Date of test:	Operator:
09/26/2006	M. Steindl
Test performed:	File name:
automatically	default.emi
_	

Comment:

- DC 6 V power supply
- TX with modulation

Detector:

Peak

List of values:
Selected by hand

 Result:
 Project file:

 Prescan
 51971-60823-2

Radiated Emission Test 1 GHz - 3.95 GHz acc. to FCC Part 15 (EMCO 3115)

Model: WaveNET Router No	ode	Comment: - DC 6 V power supply
Serial no.:		- TX with modulation
Applicant: SimonsVoss Technol	logies AG	
Test site: Fully anechoic room,	cabin no. 2	
Tested on: Test distance 3 metre Vertical Polarization	es	
Date of test: 09/26/2006	Operator: M. Steindl	
Test performed: automatically	File name: default.emi	
Detector:		List of values:

Peak

Project file: Result: Prescan 51971-60823-2

Radiated Emission Test 1 GHz - 3.95 GHz acc. to FCC Part 15 (EMCO 3115)

NA - d - L	
Model:	
WaveNET Router Node	
Serial no.:	
Applicant:	
SimonsVoss Technologies	s AG
Test site:	
Fully anechoic room, cabir	n no. 2
Tested on:	
Test distance 3 metres	
Vertical Polarization	
Date of test:	Operator:
09/26/2006	M. Steindl
Test performed:	File name:
by hand	default.emi

Comment:

- DC 6 V power supply
- TX with modulation
- RBW = 1 MHz VBW = 1 kHz

Detector:

Average

List of values:
Selected by hand

Result: Project file: 51971-60823-2

Radiated Emission Test 3.95 GHz - 5.85 GHz acc. to FCC Part 15 (EMCO 3160)

Model: Wavel	NET Router Node		Comment: - DC 6 V	power supply		
Serial no.:				modulation		
Applicar Simon	nt: sVoss Technologies A	G				
Test site	e: Inechoic room, cabin no	o. 2				
Tested of						
	istance 3 metres ntal Polarization					
Date of 1		Operator: M. Steindl				
Test per		File name: default.emi				
Detector Peak			List of value		50 Subranges	
dBµV/m	1	Limit1: FCC Part 15		part 15 class A	Transducer: EMCO 316	 30
80	·	Limiti. 1 GGT art 13	Lilling. 1 OC	part 15 class A	Transducer. Livioo 310	
75				-		
70				 		
65				 		
60						_
55						_
50				· - 		
45				 		
40		war	My Mart V - ay		when my man was a second	₩
35				· - 		
30				· - 		
25				· - 		
20				· - 		
15				· - 		
10				· -		
5				· - 		
0 39	950			5000		 5850 MHz
Result:			Project file:			vii 12
Presca	an		51971-60	823-2		

Radiated Emission Test 3.95 GHz - 5.85 GHz acc. to FCC Part 15 (EMCO 3160)

Model: WaveNET Router No	ode	
Serial no.:		
Applicant:		
SimonsVoss Techno	logies AG	
Test site:		
Fully anechoic room,	cabin no. 2	
Tested on:		
Test distance 3 metre Vertical Polarization	es	
Date of test:	Operator:	
09/26/2006	M. Steindl	
Test performed:	File name:	
automatically	default.emi	

- DC 6 V power supply
- TX with modulation

List of values:

Result: Project file: Prescan 51971-60823-2

Radiated Emission Test 5.85 GHz - 8.2 GHz acc. to FCC Part 15 (EMCO 3160)

		,
Model:		Comment:
WaveNET Router No	ode	- DC 6 V power supply
Serial no.:		
		- TX with modulation
Applicant:		
SimonsVoss Techno	logies AG	
Test site:		
Fully anechoic room,	cabin no. 2	
Tested on:		
Test distance 3 metre		
Horizontal Polarization	on	
Date of test:	Operator:	
09/26/2006	M. Steindl	
Test performed:	File name:	
automatically	default.emi	
Detector:		List of values:
Peak		Selected by hand

 Result:
 Project file:

 Limit kept
 51971-60823-2

Radiated Emission Test 5 85 GHz - 8 2 GHz

	acc. to FCC Par	t 15 (EMCO 3160)	12
Model: WaveNET Router Node	3	Comment: - DC 6 V power supply	
Serial no.:		- TX with modulation	
Applicant: SimonsVoss Technolog	gies AG		
Test site: Fully anechoic room, ca	abin no. 2		
Tested on: Test distance 3 metres Vertical Polarization			
Date of test: 09/26/2006	Operator: M. Steindl		
Test performed: automatically	File name: default.emi		
Detector: Peak		List of values: Selected by hand	
dBµV/m 80	Limit1: FCC Part 15	Limit2: FCC part 15 class A	Transducer: EMCO 3160
75			
70			
65			
60			
55			
50	*		
45	www.ww.me.	Amarian Imaka	Lernen Atronomien March
40			

Result: Project file: Limit kept 51971-60823-2

Radiated Emission Test 8.2 GHz - 10 GHz acc. to FCC Part 15 (EMCO 3160)

		(
Model:	NET Router Node	Comment:
Serial no		- DC 6 V power supply
Applican	nt·	- TX with modulation
1	sVoss Technologies AG	
Test site	e: nechoic room, cabin no. 2	
Tested o		
	istance 1 meter ntal Polarization	
Date of t	·	
Test per		
	atically default.emi	
Detector	.	List of values: 10 dB Margin 50 Subranges
dBµV/m		Limit1: FCC Part 15 (1 m) Transducer: EMCO 3160
80		
75		
70		
65		
60		*
55		
50	My man for the the the that was four full man for	Manta bythaman an Montana Arana Mana and an and an and an and an an and an and an and an and an and an an and an and an an and an an an and an an an and an and an
45		
40		
35		
30		
25		
20		
15		
10		
5		
0 82	200	1000
		MHz
Result: Limit k	ept	Project file: 51971-60823-2

Radiated Emission Test 8.2 GHz - 10 GHz acc. to FCC Part 15 (EMCO 3160)

		· · · · · · · · · · · · · · · · · · ·
Model: WaveN	NET Router Node	Comment: - DC 6 V power supply
Serial no).:	- TX with modulation
Applican Simons	sVoss Technologies AG	
Test site Fully a	nechoic room, cabin no. 2	
Tested o	on:	
	istance 1 meter al Polarization	
Date of t 09/26/2	•	
Test per		
automa	atically default.emi	
Detector Peak	:	List of values: 10 dB Margin 50 Subranges
dBµV/m		Limit1: FCC Part 15 (1 m) Transducer: EMCO 3160
75		
70		
65		
60		
55		*
50	Mayor Marine Marker Mar	AN-L-LAMMANAMANAMANAMANAMANAMANAMANAMANAMANAM
	Machar Lawred Cara and and any back and an a sale Dis	1 4
45 40		
35		
30		
25		
20		
15		
10		
5		
0		
	200	10000 MHz
Result:	an	Project file: 51971-60823-2
	A. I	0.01 000E0 E

Radiated Emission Test 30 MHz - 1 GHz acc. to FCC Part 15 (Fully Anechoic Chamber)

Model: WaveNET Router N	Node		Comment: - DC 6 V power supply	
Serial no.:				
Applicant:			- RX	
Applicant: SimonsVoss Techr	nologies AG			
Test site: Fully anechoic roor	m, cabin no. 2			
Tested on: Test distance 3 me Horizontal Polariza				
Date of test: 09/26/2006	Operator: M. Steindl			
Test performed: automatically	File name: default.emi			
Detector: Peak	deladit.emi		List of values: 10 dB Margin 50 Subranges	
dBμV/m			Limit1: FCC Part 15 Transducer: VUL	B 9163
60				
55				
55				
50				-1+
45				
40		; ; ; ;		
35				
30	·	 		
25				
			all the land of th	
20	Myym	JAMAMIN, .	Aller Andrew Mark Sport of the Angle of the	1
15			- I - I - I - I - I - I - I - I - I - I	
10				
5				<u> </u>
0				
30 40	50 70	100	200 300 400 500 700	1000 MHz
Result: Prescan			Project file: 51971-60823-2	
i icocali			J 197 1-00020-2	

Radiated Emission Test 30 MHz - 1 GHz acc. to FCC Part 15 (Fully Anechoic Chamber)

Model: WaveNET Router Node		Comment: - DC 6 V power supply
Serial no.:		
		RX
Applicant: SimonsVoss Technologies	AG	
Test site:		
Fully anechoic room, cabin	no. 2	
Tested on: Test distance 3 metres Vertical Polarization		
Date of test: 09/26/2006	Operator: M. Steindl	
Test performed: automatically	File name: default.emi	
Detector: Peak		List of values: Selected by hand
dBμV/m		Limit1: FCC Part 15 Transducer: VULB 9163
55	-	
50		
50	-+	
45		
40		
35		
30		· · · · · · · · · · · · · · · · · · ·
25	- 	
20	- - - - - - - - -	
15		
10	-	**
5		
0 30 40 50	70 100	200 300 400 500 700 1000
Result: Prescan		Project file: 51971-60823-2

Radiated Emission Test 1 GHz - 3.95 GHz acc. to FCC Part 15 (EMCO 3115)

Model:	NET Router Node		Comment: - DC 6 V po	wer supply		
Serial no			_	wei suppiy		
Applican	nt·		- 100			
Simon	sVoss Technologies	s AG				
Test site Fully a	e: Inechoic room, cabil	n no. 2				
	on: istance 3 metres ntal Polarization					
Date of t	test:	Operator: M. Steindl				
Test per automa		File name: default.emi				
Detector Peak	r:		List of values: Selected by	hand		
dBμV/m 80	1	Limit1: FCC Part 15	Limit2: FCC p	art 15 class A	Transducer: EN	/ICO 3115
75			 		 	
70			-		 	
65			- 1			
60						
55						
50			 			
45			 +			
40					1	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
35			My M	·	rwww.ww	
30	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		 		 	
25			1		 	
20					 	
15						
10			 			
5						
0	200		2002		2002	2052
10	000		2000		3000	3950 MHz
Result: Presca	an		Project file: 51971-6082	:3-2		

Radiated Emission Test 1 GHz - 3.95 GHz acc. to FCC Part 15 (EMCO 3115)

Serial no Applican Simons Test site	t: sVoss Technologies AG	Comment: - DC 6 V power supply - RX	/	
	stance 3 metres al Polarization est: Operator:			
Test perf	formed: File name:			
Detector Peak		List of values: Selected by hand		
dBμV/m 80	Limit1: FCC Part 15	Limit2: FCC part 15 clas	s A Transducer: EMC	O 3115
75				
70		!		
65		 		
60				
55				
50		 		
45				Mmmmm M
40		mummmmm,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
35		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
30				
25		 		
20				
15			 	
10		 		
5				
0 10	00	2000	3000	3950 MHz
Result: Limit ke	ept	Project file: 51971-60823-2		

Radiated Emission Test 3.95 GHz - 5 GHz acc. to FCC Part 15 (EMCO 3160)

Model: Wavel	NET F	Router Node	Comment: - DC 6 V power supply	
Serial no	0.:		- RX	
Applicar				
Simon Test site		s Technologies AG		
		pic room, cabin no. 2		
	istand	ee 3 metres Polarization		
Date of 09/26/		Operator: M. Steindl		
Test per autom				
Detecto	r:		List of values:	
Peak dBµV/m		Limit1: FCC Part 15	10 dB Margin Limit2: FCC part 15 class A	50 Subranges Transducer: EMCO 3160
80		Lilling 1. FOO Fait 13	Limitz. POC part 15 class A	Transducer. Elvico 3100
75		 		
70		; +		
65		 		
60				
55		 		
50		 		
45		i + 1		
40		mmy turning was the self was	www.dw.mh.m.m.m.m.m.m.m.	howard and produced and a second
35		 		
30		 		
25		 		
20				
15		 		
10		 		
5		 		
0 39	950	1		5000
				MHz

Project file:

51971-60823-2

Result:

Prescan

Radiated Emission Test 3.95 GHz - 5 GHz acc. to FCC Part 15 (EMCO 3160)

Model:		Comment:		
WaveNET Router Node		- DC 6 V power supp	- DC 6 V power supply	
Serial no.:		574		
		- RX		
Applicant:				
SimonsVoss Technologies AG				
Test site:				
Fully anechoic room, cabin no. 2				
Tested on:				
Test distance 3 metres				
Vertical Polarization				
Date of test:	Operator:			
09/26/2006	M. Steindl			
Test performed:	File name:			
automatically	default.emi			
Detector:	·	List of values:	·	
Peak		10 dB Margin	50 Subranges	

 Result:
 Project file:

 Limit kept
 51971-60823-2