

Grundbegriffe der Informatik Tutorium 38

Kontextfreie Grammatiken, Relationen
Patrick Fetzer, uxkln@student.kit.edu | 29.11.2018

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Kontextfreie Grammatikei

Erinnerung: Anmeldung für Klausur und Übungsschein im Campus System nicht vergessen!

Relationen vol. 2

Häufige Fehler

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Kontextfreie Grammatiker

Relationen vol. 2

- $w \in \{0, 1\}^*$
- nicht $w \ge 0$, sondern $Num_2(w) \ge 0$ oder w(0) = 0
- $f: A \to A^*$ induziert den Homomorphismus $f^{**}: A^* \to A^*$, ist aber selbst keiner
- $h: A^* \to A^*$ mit $\forall w \in A^*: h(w) = 0$ ist kein Homomorphismus. Warum nicht?

Kontextfreie Grammatiken

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Kontextfreie Grammatiken

Zur Rekapitulation...

Relationen vol. 2

- Was ist ein Alphabet, was eine formale Sprache?
- Was kennen wir für Operationen auf formalen Sprachen?

Betrachte $L := \{a^n b a^n : n \in \mathbb{N}\}$. Wie kann man diese Sprache darstellen?

Kontextfreie Grammatiken

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Kontextfreie Grammatiken

Relationen vol. 2

Kontextfreie Grammatik

Ein Tupel G = (N, T, S, P) mit

- N Alphabet (Nichtterminalsymbole)
- T Alphabet mit $N \cap T = \emptyset$ (Terminalsymbole)
- $S \in N$ (Startsymbol)
- $P \subseteq N \times (N \cup T)^* \text{ mit } |P| \in \mathbb{N}_0$
- Was ist $N \times (N \cup T)^*$? Bei $T := \{a, b, c\}, N = \{S, A, B\}$: $N \times (N \cup T)^* = \{(S, abSAcB), (A, SSS), (B, BSabc), ...\}$.
- Andere Schreibweise: $P: N \rightarrow (N \cup T)^*$.
- Für $(X, w) \in P$ schreibt man $X \to w$
- Statt $\{X \to w_1, X \to w_2\}$ schreibt man auch $\{X \to w_1 | w_2\}$

Ableitungsschritt

Patrick Fetzer, uxkln@student.kit.edu

Erinnerung: N = Nichtterminalsymbole, T = Terminalsymbole.

Hinweise

Kontextfreie Grammatiken

Ableitungsschritt

 $v \in (N \cup T)^*$ ist in einem Schritt aus $u \in (N \cup T)^*$ ableitbar , wenn

- $u = w_1 X w_2$ und $v = w_1 w_X w_2$ für $w_1, w_2 \in (N \cup T)^*$
- und $X \rightarrow w_X$ in P

Relationen vol. 2

Notation

$$u \Rightarrow v$$

Beispiel

$$G := (\{S, B\}, \{a, b\}, S, \{S \rightarrow aBa | aSa, B \rightarrow b\})$$

- $S \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aaaBaaa \Rightarrow aaabaaa$. Fertig.
- "⇒" heißt eine Ableitung!

Ableitungsfolge

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Kontextfreie Grammatiken

Relationen vol. 2

Ableitungsfolge

Wir definieren \Rightarrow^i für $i \in \mathbb{N}_0$ folgendermaßen:

Für $u, v \in (N \cup T)^*$ gelte:

- $u \Rightarrow^0 v$ genau dann, wenn u = v gilt.
- $u \Rightarrow^{i+1} v$ genau dann, wenn ein $w \in (N \cup T)^*$ existiert, für das $u \Rightarrow w \Rightarrow^i v$ gilt. Für $u \Rightarrow^i v$ sagt man "v ist aus u in i Schritten ableitbar."

Beispiel

 $G := (\{S, B\}, \{a, b\}, S, \{S \rightarrow aBa | aSa, B \rightarrow b\})$ Dann gilt $aaaSaaa \Rightarrow^0 aaaSaaa$

und $aaaSaaa \Rightarrow aaaSaaa$

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Kontextfreie Grammatiken

Relationen vol. 2

Ableitbarkeit

Für $u, v \in (N \cup T)^*$ gelte $u \Rightarrow^* v$ genau dann, wenn ein $i \in \mathbb{N}_0$ existiert , mit $u \Rightarrow^i v$. Man sagt dann "v ist aus u ableitbar".

Beispiel

 $G:=(\{S,B\},\{a,b\},S,\{S\rightarrow aBa|aSa,B\rightarrow b\})$ Dann gilt $S\Rightarrow^*$ aaaSaaa und aSa \Rightarrow^* aaaabaaaa aber aSa $\not\Rightarrow$ abba.

Ableitungsbaum

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Kontextfreie Grammatiken

Relationen vol. 2

Startsymbol ist Wurzel

- Nichtterminale sind innere Knoten
- Für X ⇒ w sind die Zeichen von w die Kinder von X
- Terminale sind die Blätter

Beispiel

 $G:=(\{\mathcal{S},\mathcal{B}\},\{a,b\},\mathcal{S},\{\mathcal{S}
ightarrow aBa|aSa,\mathcal{B}
ightarrow b\})$ Dann gilt $\mathcal{S}\Rightarrow^*$ aaabaaa

Übung zu Kontextfreien Grammatiken

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Kontextfreie Grammatiken

Relationen vol. 2

Übung

Gegeben ist die Kontextfreie Grammatik (N, T, S, P) mit:

- Nichtterminalsymbolen $N := \{A, B, S\}$.
- $\bullet \quad \text{Terminal symbolen } T := \{a, b, c\}$
- Startsymbol S
- Produktionen $P := \{S \rightarrow aaS|bbS|SAS|\epsilon, A \rightarrow cB, B \rightarrow a|b|c|\epsilon\}.$

Aufgabe: Welche der folgenden Wörter sind ableitbar? Konstruiere den Ableitungsbaum und zeige, wie sie abgeleitet werden.

- ccbbcbbbbcbbaaaa?
- aabbaabbaabb?
- c?

Formale Sprachen erzeugen

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Erzeugte Sprache

Kontextfreie Grammatiken Sei G = (N, T, S, P) eine kontextfreie Grammatik. Dann nennen wir $L(G) := \{w \in T^* | S \Rightarrow^* w\}$ die von G erzeugte Sprache.

Relationen vol. 2

Kontextfreie Sprache

Eine formale Sprache L heißt genau dann kontextfrei, wenn eine kontextfreie Grammatik G existiert, mit L(G) = L.

$$G := (\{S, B\}, \{a, b\}, S, \{S \rightarrow aBa | aSa, B \rightarrow b\})$$

Dann ist
$$L(G) = \{a^nba^n | n \in \mathbb{N}_+\}$$

Verständnisfragen

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Kontextfreie Grammatiken

Relationen vol. 2

 $\bullet G = (\{X\}, \{a, b\}, X, \{X \rightarrow \varepsilon | aX | bX\})$

- Welche Wörter lassen sich in genau drei Schritten ableiten?
- \rightarrow {aa, ab, ba, bb}
- Was ist *L*(*G*)?
- $\rightarrow L(G) = \{a, b\}^*$
- Gibt es auch eine Grammatik G mit $L(G) = \{\}$?
- $\rightarrow G_1 := (\{X\}, \{a, b\}, X, \{X \rightarrow X\}) \text{ oder } G_2 := (\{X\}, \{a, b\}, X, \{\}))$
 - Wahr oder falsch? Wenn $w_1 \Rightarrow w_2$ gilt, dann gilt auch $w_1 \rightarrow w_2$
 - Was ist der Unterschied von \Rightarrow und \Rightarrow *?

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Kontextfreie Grammatiken

Relationen vol. 2

Aufgaben zu kontextfreien Grammatiken

- Sei $L_1 := \{wbaaw'|w, w' \in \{a, b\}^*\}$. Konstruiere eine Grammatik G_1 mit $L(G_1) = L_1$.
- $\rightarrow G_1 := (\{X,Y\}, \{a,b\}, X, \{X \rightarrow YbaaY, Y \rightarrow aY|bY|\epsilon\}).$
 - Welche Sprache erzeugt $G_2 = (\{S, X, Y\}, \{a, b\}, S, P_2)$ mit $P_2 = \{S \rightarrow X | Y, X \rightarrow aaXb | aab, Y \rightarrow aYbb | abb\}$?
- $\rightarrow L(G_2) = \{a^{2k}b^k | k \in \mathbb{N}_+\} \cup \{a^kb^{2k} | k \in \mathbb{N}_+\}$

Beispiel zu kontextfreien Grammatiken

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

$$G = (\{X\}, \{(,)\}, X, \{X \to XX | (X) | \varepsilon\})$$

Kontextfreie Grammatiken

- Welche Wörter sind ableitbar?
- ightarrow "wohlgeformte Klammerausdrücke"

Relationen vol. 2

- Welche Eigenschaften besitzen diese Wörter?
- $\rightarrow N_{(}(w) = N_{)}(w)$ Ist diese Eigenschaft hinreichend?
- \rightarrow Nein, es muss gelten: Für alle Präfixe ν von w gilt $N_{i}(\nu) \geq N_{j}(\nu)$
- Andere Grammatik möglich, die alle wohlgeformten Klammerausdrücke erzeugt?
- $\rightarrow G = (\{X\},\{(,)\},X,\{X\rightarrow(X)X|\varepsilon\})$

Grenze kontextfreier Grammatiken

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Kontextfreie Grammatiken

Es gibt auch Sprachen, die wir nicht mit einer kontextfreien Grammatik erzeugen können!

Relationen vol. 2

Beispiel aus der Vorlesung:

$$L_{vv} = \{vcv | v \in \{a, b\}^*\} \subseteq \{a, b, c\}^*$$

Relationen

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Kontextfreie Grammatiker

Relationen vol. 2

Erinnerung Relationen

Es seien A und B Mengen. Eine Teilmenge $R \subseteq A \times B$ heißt Relation.

Patrick Fetzer uxkln@student kit edu

Hinweise

Kontextfreie

Relationen vol. 2

Definition Produkt von Relationen

Es seinen A, B und C Mengen und $R \subseteq A \times B$, $S \subseteq B \times C$ Relationen. Dann ist

 $S \circ R := \{(a, c) \in A \times C | \exists b \in B \text{ mit } (a, b) \in R \land (b, c) \in S\}$ das Produkt der Relationen R und S.

Bemerkung

 $S \circ R$ ist eine Relation auf A und C, bildet also von A nach C ab.

Assoziativität des Produktes

Es seien A, B, C und D Mengen und $R \subseteq A \times B$, $S \subseteq B \times C$ sowie $T \subseteq C \times D$ Relationen. Dann gilt $(T \circ S) \circ R = T \circ (S \circ R).$

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Kontextfreie Grammatiker

Relationen vol. 2

Homogene Relation

Es seien A und B Mengen und $R\subseteq A\times B$ eine Relation. R heißt homogen, wenn A=B und heterogen, wenn $A\neq B$ gilt.

Identität

Sei M eine Menge. $I_M := \{(x, x) | x \in M\}$

Potenz von Relationen

Sei M eine Menge und $R\subseteq M\times M$ eine homogene Relation. Dann definieren wir R^i für $i\in\mathbb{N}_0$ folgendermaßen:

- $R^0 := I_M$
- Für alle $i \in \mathbb{N}_0 : R^{i+1} := R^i \circ R$

Also $R^4 = R \circ R \circ R \circ R$.

Reflexitivität

Patrick Fetzer, uxkln@student.kit.edu

Satz über das neutrale Element

Kontextfreie

Hinweise

Es seien A und B Mengen und $R \subseteq A \times B$ eine Relation. Dann gilt:

 $R \circ I_B = R = I_A \circ R$.

Reflexivität

Relationen vol. 2

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation. Wenn für alle $x \in M : (x, x) \in R$, nennt man R reflexiv.

Also jedes Element der Definitionsmenge der Relation wird auf sich selbst abgebildet (und vielleicht auch auf andere Elemente abgebildet).

Lemma

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation. R ist genau dann reflexiv, wenn $I_M \subseteq R$ gilt.

Transitivität

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Kontextfreie Grammatiker

Transitivität

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation.

R heißt transitiv, wenn:

Relationen vol. 2

 $\forall x, y, z \in M : (x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R$

Lemma

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation. R ist genau dann transitiv, wenn $R \circ R \subseteq R$.

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Kontextfreie Grammatiken

Relationen vol. 2

Aufgaben

Sei $M := \{1, 2, 3\}.$

- Ist $R := \{(1,1), (1,2), (2,3)\}$ transitiv? Nein!
- Ist R reflexiv? Nein!
- Wie müsste R aussehen, um transitiv zu sein?
- Ist $S := \{(1,1), (1,2), (1,3), (2,2), (2,3)\}$ reflexiv? Nein!
- Ist S transitiv? Ja!
- Wie müsste S aussehen, um reflexiv zu sein?

Reflexiv-transitive Hülle

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Kontextfreie Grammatiker

Relationen vol. 2

Definition

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation. Dann nennt man $R^* := \bigcup_{i=1}^{n} R^i$ die reflexiv-transitive Hülle von R.

 $i \in \mathbb{N}_0$

Satz

- R* ist reflexiv
- R* ist transitiv
- R^* ist die kleinste Relation, die reflexiv und transitiv ist und $R \subseteq R^*$ erfüllt.

Bemerkung

■ Sei M eine Menge und $R \subseteq M \times M$ eine homogene, reflexive und transitive Relation. Dann gilt $R^* = R$.

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Kontextfreie Grammatiker

Relationen vol. 2

Aufgaben

- Sei $M = \{1, 2, 3\}$ und $R := \{(1, 1), (1, 2), (2, 3)\}$ Was ist R^* ?
- $\rightarrow \ R^* = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$
 - Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation. Was ist $(R^*)^*$?
- $\rightarrow (R^*)^* = R^*$
- $M := \{1, 2, 3, 4\}$ und $R := \{(1, 2), (2, 3), (3, 4), (4, 1)\} \subseteq M \times M$. Ist R reflexiv? Ist R transitiv? Nein und nein!

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Kontextfreie Grammatiken

Relationen vol. 2

Die Relationen R und S über \mathbb{N}_0 seien gegeben durch:

- Für alle $a, b \in \mathbb{N}_0$: $aRb \Leftrightarrow a|b$ (a ist Teiler von b)
- Für alle $a, b \in \mathbb{N}_0$: $aSb \Leftrightarrow ggT(a, b) = 1$
- Prüfe auf Reflexivität und Transitivität!
 - → R ist transitiv, aber nicht reflexiv.
 - $\,\rightarrow\,$ S ist reflexiv, aber nicht transitiv.

Patrick Fetzer, uxkln@student.kit.edu

Hinweise

Kontextfreie Grammatiken

Relationen vol. 2

