Trabajo Práctico: AFD y AFN Integrantes del Grupo I: Gregorio Meloni, Moises Yordan, Aylen Córdoba y Enzo Mattalia

Punto 1:

a) q1

b) q2

c) de q1 a q2, de q2 a q3, de q3 a q1 y de q1 a q1.

d)

K: q1,q2,q3

 Σ : a,b

 $s \in K$: q1 Cuando son conjuntos deben ir entre llaves

 $F \subseteq K: q2$ $\delta: K \times \Sigma \rightarrow K:$ Para las transiciones se deberian utilizar otro tipo de notacion, como las que se presentan en el

estado saliente	transición	ro
q1	а	q2
q1	b	q1
q2	а	q3
q2	b	q3
q3	а	q2
q3	b	q1

Punto 2:

Punto 3:

Parte 1:

a) .

b) .

c) .

d) .

g) .

No se ve el i, pero es opcional.

Falta el ejercicio J que es obligatorio!!

Punto 4

 $\begin{array}{ll} Q=& \{q1,q2,q3,q4\} \\ \Sigma=& \{0,1\} \\ q0=& q1 \\ F=& \{q4\} \\ \delta: Q \times \Sigma\epsilon \rightarrow P(Q) \end{array}$

	0	1	ε
q1	{q1}	{q1,q2}	Ø
q2	{q3}	Ø	{q3}
q3	Ø	{q4}	Ø
q4	{q4}	{q4}	Ø

 $\{w|w \Sigma^*(101)u(11)\Sigma^*\} \Sigma=\{0,1,\epsilon\}$

CADENAS QUE RECONOCE EL AUTÓMATA: {010110} {0101100} CADENAS QUE NO RECONOCE EL AUTÓMATA: {0100110} {01}

Punto 5:

Punto 6:

Autómata A

a)Es no determinístico.

b)L= {w|w contiene una sola "b" o comienza con una "a" seguido por una cantidad X de "b" o comienza por una cantidad X de "a" y finaliza por "b" } Σ ={a,b}

Autómata B

- a) Es no determinístico.
- b) L= {w|w tiene un par de "a" o "b"} Σ ={a,b}

Autómata C

a) Es no determinístico.

y siempre se concaena con ab (no puede haber algo distinto)

b) L = {w|w | a cadena contiene una sola "a" o al menos un par "ab" } Σ ={a,b}

Punto 7:

a) .

Estado inicial: {q1} Estado final: {q5} Alfabeto {a,b} b)

Ejemplos de cadenas para el autómata: {"abaa", "abbaa", "ababaa"}

Lenguaje que reconoce: L = { w/w comienza siempre con "ab" y termina con "baa"}

Punto 8:

a)

Punto 9:

AFN

AFD

la cadena 1000 (al igual que otras) no es reconocida por el AFD pero si por el AFN $\,$

=0p	{A}u{C}
q1=	{A,B}u{C}
q2=	{B,D}u{B}
q3=	{A,B,D}u{C,B}
q4=	{C,D}u{B}
q5=	{A,B,C,D}u{B,C}
q6=	{B,C,D}u{B}

q7=	{A,C,D}u{B,C}
=8p	{B,C,D}u{B,C}
q9=	{A,B,C}u{C}

Punto B) AFN

AFD

Q0= {A}u{C,B}

Q1=	{B,A}u{C,B}	
Q2=	{D,A}u{B,C}	
Q3=	{B,A,D}u{C,B}	
Q4=	{D,A}u{B}	
Q5=	{C,B,D,A}u{C,B}	
Q6=	{C,D,A}u{B}	
Q7=	{D,C,B}u{B}	
Q8=	{D,C,A}u{C,B}	
Q9=	{C,D}u{B}	
Q10=	{C,A,B}u{B,C}	

Punto 10:

1)

2)

Punto 11:

