Precalculus Trigonometric identities theory

Todor Miley

2019

Proof of a Trigonometric Identity

Let F and G be expressions that give a trigonometric identity: $F(\sin \theta, \cos \theta) = G(\sin \theta, \cos \theta)$.

- To prove a trigonometric identity means to show that the two sides of the equality sign are equivalent.
- There are two ways to do this (in the present course the first way will be preferred).
- First method: transform the left and right hand sides to an equal expression. In particular:
 - we can choose to transform the left hand side to the right;
 - we can choose to transform the right hand side to the left;
 - we can choose to transform both sides to a third equivalent expression.
- Second method: start with an already known identity and transform it, by a series of equivalent transformations, to the identity we desire to prove.
- The discussion here also applies for trigonometric identities in more than one variables.

Types of identites

- In the present course we deal with two basic types of trigonometric identities.
- First, identities that involve operations on the arguments of the trigonometric functions.
 - Example: $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ (this is one of the angle sum identities); $\sin \theta + \sin(-\theta) = 0$.
 - Such identities can be proved using the angle sum formulas and the even/odd function properties of sin, cos.
- Second, identities that involve trigonometric functions of one variable.
 - Example: $tan^2 \theta + 1 = sec^2 \theta$.
 - Such identities can be proved only using the already demonstrated Pythagorean identity $\sin^2 \theta + \cos^2 \theta = 1$.
- The Pythagorean identity follows from the angle sum formulas and the even/odd function properties of sin, cos, so all trigonometric identities follow from those properties alone.

Strategy for proving trigonometric identities

An expression is rational trigonometric if it is written using $\sin \theta, \cos \theta$ and the four arithmetic operations.

Question

Is there a general method for proving all rational trigonometric identities in one variable?

- Given a number of variables and relations between them, there is an algorithm to check whether (rational) expressions in those variables are equal under the given relations.
- Thus, if we pick two variables s and c, and a single relation $s^2 + c^2 = 1$ there is a standard method to verify whether two (rational) expressions in s and c are equal.
- The method is rather cumbersome for a human and is best suited for computers.

Strategy for proving trigonometric identities

An expression is rational trigonometric if it is written using $\sin\theta,\cos\theta$ and the four arithmetic operations.

Question

Is there a general method for proving all rational trigonometric identities in one variable?

- Yes.
- For expressions that depend only on $\sin \theta$ and $\cos \theta$, algebra tells us when two expressions in those are equal.
- Problems depending on $\cos\theta$, $\sin\theta$ alone will always be doable via easy ad-hoc tricks using

$$\sin^2\theta + \cos^2\theta = 1.$$

- The full method will not be needed in this course.
 - The full method: set $s = \sin \theta$, $c = \cos \theta$.
 - Check whether the two expressions in s, c are equal under the relation $s^2 + c^2 = 1$. (The method lies outside of present scope).

Strategy for proving trigonometric identities

An expression is rational trigonometric if it is written using $\sin\theta,\cos\theta$ and the four arithmetic operations.

Question

Is there a general method for proving all rational trigonometric identities in one variable?

- To prove a general trigonometric identity:
 - Use angle sum/double angle sum formulas to convert all formulas to trig expression depending only on $\sin \theta$, $\cos \theta$.
 - Use $\sin^2\theta + \cos^2\theta = 1$ to show the two formulas are equal (usage: ad-hoc).
 - You may need to use trig functions of angles smaller than θ , for example $\sin\left(\frac{\theta}{2}\right)$, $\cos\left(\frac{\theta}{2}\right)$.
 - A fraction of θ such that all appearing angles are integer multiples of it will always work.