Homework 4

Due on September 25(Prof. Zhang and Wu)/September 26(Prof. Weintraub, Coll and Recio-Mitter), before class

Problem 1

Let
$$S = \left\{ \mathbf{x} \in \mathbb{R}^2 : \mathbf{x} = \begin{pmatrix} 2k \\ -3k \end{pmatrix}, k \in \mathbb{R} \right\}$$
. Show that S is a subspace of \mathbb{R}^2 .

Problem 2

Let $S=\left\{\begin{pmatrix}x\\y\end{pmatrix}\in\mathbb{R}^2:x^2=y^2\right\}$. Determine whether S is a subspace of \mathbb{R}^2 and explain your answer.

Problem 3

Find the null space of $A = \begin{bmatrix} 2 & 2 & 4 \\ 1 & 2 & 3 \end{bmatrix}$.

Problem 4

Show that
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$ span \mathbb{R}^2 , and express the vector $\mathbf{v} = \begin{pmatrix} 3 \\ 18 \end{pmatrix}$ as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 .

Problem 5

Prove that e^x does not belong to $P_1(\mathbb{R})$.

Problem 6

Determine whether the following set of vectors are linearly independent or lin-

early dependent in
$$\mathbb{R}^3$$
: $\left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$.

Problem 7

Show that the vectors $p_1(x) = a + bx$ and $p_2(x) = c + dx$ are linearly independent in $P_1(\mathbb{R})$ if and only if the constants satisfy $ad - bc \neq 0$.

Problem 8

Determine whether
$$S = \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ -2 \end{pmatrix}, \begin{pmatrix} 3 \\ 11 \\ -5 \end{pmatrix} \right\}$$
 is a basis of \mathbb{R}^3 .

Problem 9

Find the dimension of the null space of
$$A = \begin{bmatrix} 1 & 3 \\ -2 & 6 \end{bmatrix}$$
.

Problem 10

Find a vector
$$\mathbf{v} \in \mathbb{R}^3$$
 such that $\left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \mathbf{v} \right\}$ constitutes a basis of \mathbb{R}^3 .