Trabajo Fin de Máster Máster en Ingeniería Electrónica, Robótica y Automática

Aerial co-workers: a task planning approach for multi-drone teams supporting inspection operations

Autor: Álvaro Calvo Matos

Tutor: Jesús Capitán Fernandez

Dpto. Ingeniería de Sistemas y Automática Escuela Técnica Superior de Ingeniería Universidad de Sevilla

Sevilla, 2021

Trabajo Fin de Máster Máster en Ingeniería Electrónica, Robótica y Automática

Aerial co-workers: a task planning approach for multi-drone teams supporting inspection operations

Autor:

Álvaro Calvo Matos

Tutor:

Jesús Capitán Fernandez

Associate Professor

Dpto. Ingeniería de Sistemas y Automática Escuela Técnica Superior de Ingeniería Universidad de Sevilla

Sevilla, 2021

Trabajo Fin de Máster:		Aerial co-workers: a task planning approach for multi-drone teams supporting inspection operations		
Autor: Tutor:		alvo Matos itán Fernandez		
El tribunal nom	ıbrado para ju	zgar el trabajo arriba indicado, compuesto por los siguientes profesores:		
	Presidente:			
	Vocal/es:			
	Secretario:			
acuerdan oto	organia la cali	ficación de:		
acucidan otc	ngane ia can	neación de.		
		El Secretario del Tribunal		
		Fecha:		

Agradecimientos

Lorem itsum

Álvaro Calvo Matos Máster en Ingeniería Electrónica, Robótica y Automática

Sevilla, 2021

Abstract

Lorem itsum

Short Outline

ΑŁ	straci	t	III		
Sł	ort O	Outline	V		
1	Introduction				
	1.1	Motivation	1		
	1.2	Objectives	1		
2	Prel	3			
	2.1	Current technology	3		
	2.2	Related work	3		
	2.3	Previous study	3		
3	Prob	blem Formulation	5		
	3.1	Description of tasks	5		
	3.2	Battery recharges	5		
	3.3	Connection losses	5		
	3.4	Task replanning situations	5		
4	Des	ign of the proposed solution	7		
	4.1	Node diagram	7		
	4.2	Centralized module: task planner	7		
	4.3	Distributed module: behavior manager	7		
	4.4	Lower and upper level modules faker	7		
5	Results				
	5.1	Task planning	9		
	5.2	Drone behaviour manager results	9		
	5.3	Simulations	9		
6	Con	clusions and future work	11		
	6.1	Conclusions	11		
	6.2	Future work	11		
Lis	st of F	igures	13		
Lis	st of T	ābles	15		

VI	Short Outline

List of Codes	17
Bibliography	19
Index	23
Glossary	23

Contents

	stract			III
Sh	ort O	utline		V
1	Intro	1		
	1.1	Motiva	ation	1
	1.2	Objec	ctives	1
2	Preliminaries			3
	2.1	Curre	ent technology	3
		2.1.1	UAVs	3
		2.1.2	Aerial co-workers	3
		2.1.3	Multi-drone teams	3
	2.2	Relate	ed work	3
		2.2.1	Inspection applications with UAVs	3
		2.2.2	Task planning in multi-drone teams	3
		2.2.3	Drone behavior management	3
	2.3	Previo	ous study	3
		2.3.1	ROS	3
		2.3.2	Gazebo	3
		2.3.3	Behaviour Trees	3
		2.3.4	Groot	3
		2.3.5	Rviz	3
3	Prob	olem Fo	ormulation	5
	3.1	Descr	5	
		3.1.1	Inspection tasks	5
		3.1.2	Monitoring tasks	5
		3.1.3	Tool delivery tasks	5
	3.2	2 Battery recharges		5
	3.3	Conne	ection losses	5
	3.4	Task r	replanning situations	5
4	Desi	gn of t	the proposed solution	7
	4.1	-	diagram	7
	4.2		ralized module: task planner	7
	4.3		buted module: behavior manager	7

VIII Contents

		4.3.1	Main tree	7
		4.3.2	Inspection task tree	7
		4.3.3	Monitoring task tree	7
		4.3.4	Tool delivery task tree	7
	4.4	Lower	and upper level modules faker	7
5	Res	ults		9
	5.1	Task p	olanning	9
		5.1.1	Battery	9
		5.1.2	Connection lost	9
		5.1.3	Replanning	9
	5.2	Drone	behaviour manager results	9
		5.2.1	Battery management	9
		5.2.2	Connection lost management	9
		5.2.3	Replanning management	9
	5.3	Simula	ations	9
		5.3.1	One drone simulations	9
		5.3.2	Multi-drone simulations	9
6	Con	clusion	ns and future work	11
	6.1	Conclu	usions	11
	6.2	Future	e work	11
		6.2.1	Augmented reality	11
Lis	st of F	igures		13
	st of Ta	-		15
Lis	st of C	odes		17
Bi	bliogra	aphy		19
	dex	-		23
Gl	lossar	V		23

1 Introduction

Lorem itsum

- 1.1 Motivation
- 1.2 Objectives

2 Preliminaries

T orem itsum

2.1 Current technology

- 2.1.1 UAVs
- 2.1.2 Aerial co-workers
- 2.1.3 Multi-drone teams

2.2 Related work

- 2.2.1 Inspection applications with UAVs
- 2.2.2 Task planning in multi-drone teams
- 2.2.3 Drone behavior management

2.3 Previous study

- 2.3.1 ROS
- 2.3.2 Gazebo
- 2.3.3 Behaviour Trees
- 2.3.4 Groot
- 2.3.5 Rviz

3 Problem Formulation

T orem itsum

- 3.1 Description of tasks
- 3.1.1 Inspection tasks
- 3.1.2 Monitoring tasks
- 3.1.3 Tool delivery tasks
- 3.2 Battery recharges
- 3.3 Connection losses
- 3.4 Task replanning situations

4 Design of the proposed solution

T orem itsum

- 4.1 Node diagram
- 4.2 Centralized module: task planner
- 4.3 Distributed module: behavior manager
- 4.3.1 Main tree
- 4.3.2 Inspection task tree
- 4.3.3 Monitoring task tree
- 4.3.4 Tool delivery task tree
- 4.4 Lower and upper level modules faker

5 Results

T orem itsum

5.1 Task planning

- 5.1.1 Battery
- 5.1.2 Connection lost
- 5.1.3 Replanning

5.2 Drone behaviour manager results

- 5.2.1 Battery management
- 5.2.2 Connection lost management
- 5.2.3 Replanning management

5.3 Simulations

- 5.3.1 One drone simulations
- 5.3.2 Multi-drone simulations

6 Conclusions and future work

- 6.1 Conclusions
- 6.2 Future work
- 6.2.1 Augmented reality

List of Figures

List of Tables

List of Codes

Bibliography

- [1] M. Santarini, "Cosmic radiation comes to asic and soc design," May 2005. [Online]. Available: https://www.edn.com/cosmic-radiation-comes-to-asic-and-soc-design/
- [2] H. G. Miranda, "Aportaciones a las técnicas de emulación y protección de sistemas microelectrónicos complejos bajo efectos de la radiación," Ph.D. dissertation, Universidad de Sevilla, May 2010.
- [3] J. M. Mogollón, J. Nápoles, H. Guzmán-Miranda, and M. A. Aguirre, "Real time seu detection and diagnosis for safety or mission-critical ics using hash library-based fault dictionaries," in 2011 12th European Conference on Radiation and Its Effects on Components and Systems, 2011, pp. 705–710.
- [4] M. G. Valderas, M. P. García, C. López, and L. Entrena, "Extensive seu impact analysis of a pic microprocessor for selective hardening," in 2009 European Conference on Radiation and Its Effects on Components and Systems, 2009, pp. 333–336.
- [5] C. Carmichael, "Triple module redundancy design techniques for virtex fpgas," *Xilinx Application Note XAPP197*, vol. 1, 2001.
- [6] Zhou Jing, Liu Zengrong, Chen Lei, Wang Shuo, Wen Zhiping, Chen Xun, and Qi Chang, "An accurate fault location method based on configuration bitstream analysis," in *NORCHIP* 2012, 2012, pp. 1–5.
- [7] W. Tao and W. Xingsong, "Fault diagnosis of a scara robot," in 2008 15th International Conference on Mechatronics and Machine Vision in Practice, 2008, pp. 352–356.
- [8] S. Jian, J. Jiang, K. Lu, and Y. Zhang, "Seu-tolerant restricted boltzmann machine learning on dsp-based fault detection," in 2014 12th International Conference on Signal Processing (ICSP), 2014, pp. 1503–1506.
- [9] R. Pettit and A. Pettit, "Detecting single event upsets in embedded software," in 2018 IEEE 21st International Symposium on Real-Time Distributed Computing (ISORC), 2018, pp. 142–145.
- [10] N. Naber, T. Getz, Y. Kim, and J. Petrosky, "Real-time fault detection and diagnostics using fpga-based architectures," in 2010 International Conference on Field Programmable Logic and Applications, 2010, pp. 346–351.
- [11] Su Wei, Fan Tongshun, and Du Mingfang, "Research for digital circuit fault testing and diagnosis techniques," in 2009 International Conference on Test and Measurement, vol. 1, 2009, pp. 330–333.

- [12] S. Wei, Z. Shide, and X. Lijun, "Research on digital circuit fault location procedure based on lasar," in 2008 ISECS International Colloquium on Computing, Communication, Control, and Management, vol. 2, 2008, pp. 322–326.
- [13] B. K. Sikdar, N. Ganguly, and P. P. Chaudhuri, "Fault diagnosis of vlsi circuits with cellular automata based pattern classifier," *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, vol. 24, no. 7, pp. 1115–1131, 2005.
- [14] S. S. Yau and Yu-Shan Tang, "An efficient algorithm for generating complete test sets for combinational logic circuits," *IEEE Transactions on Computers*, vol. C-20, no. 11, pp. 1245– 1251, 1971.
- [15] S. S. Yau and M. Orsic, "Fault diagnosis and repair of cutpoint cellular arrays," *IEEE Transactions on Computers*, vol. C-19, no. 3, pp. 259–262, 1970.
- [16] V. Amar and N. Condulmari, "Diagnosis of large combinational networks," *IEEE Transactions on Electronic Computers*, vol. EC-16, no. 5, pp. 675–680, 1967.
- [17] D. R. Schertz and G. Metze, "A new representation for faults in combinational digital circuits," *IEEE Transactions on Computers*, vol. C-21, no. 8, pp. 858–866, 1972.
- [18] J. P. Roth, W. G. Bouricius, and P. R. Schneider, "Programmed algorithms to compute tests to detect and distinguish between failures in logic circuits," *IEEE Transactions on Electronic Computers*, vol. EC-16, no. 5, pp. 567–580, 1967.
- [19] A. D. Friedman, "Fault detection in redundant circuits," *IEEE Transactions on Electronic Computers*, vol. EC-16, no. 1, pp. 99–100, 1967.
- [20] R. Zhang, L. Xiao, J. Li, X. Cao, C. Qi, and M. Wang, "A fast fault injection platform of multiple seus for sram-based fpgas," in 2017 Prognostics and System Health Management Conference (PHM-Harbin), 2017, pp. 1–5.
- [21] A. da Silva and S. Sanchez, "Leon3 vip: A virtual platform with fault injection capabilities," in 2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools, 2010, pp. 813–816.
- [22] J. M. Mogollon, H. Guzmán-Miranda, J. Nápoles, J. Barrientos, and M. A. Aguirre, "Ftunshades2: A novel platform for early evaluation of robustness against see," in 2011 12th European Conference on Radiation and Its Effects on Components and Systems, 2011, pp. 169–174.
- [23] Wikipedia, "Distancia de levenshtein wikipedia, la enciclopedia libre," 2020, [Internet; descargado 15-junio-2020]. [Online]. Available: https://es.wikipedia.org/w/index.php?title=Distancia_de_Levenshtein&oldid=125248609
- [24] M. Muñoz-Quijada, S. Sanchez-Barea, D. Vela-Calderon, and H. Guzman-Miranda, "Fine-grain circuit hardening through vhdl datatype substitution," *Electronics*, vol. 8, no. 1, p. 24, 2019.
- [25] "Vhdl implementation of fft algorithm(s)," Available online: https://github.com/thasti/fft, accessed on 17 June 2020.
- [26] "Vhdl standard fifo," Available online: http://www.deathbylogic.com/2013/07/vhdl-standard-fifo/, accessed on 17 June 2020.

- [27] "Fpga4student. a low pass fir filter for ecg denoising in vhdl," Available online: https://www.fpga4student.com/2017/01/a-low-pass-fir-filter-in-vhdl.html, accessed on 17 June 2020.
- [28] "I²s interface designed for the pcm3168 audio interface from texas instruments," Available online: https://github.com/wklimann/PCM3168, accessed on 17 June 2020.
- [29] "Simple uart controller for fpga written in vhdl," Available online: https://github.com/jakubcabal/uart-for-fpga, acceded on 17 June 2020.
- [30] Wikipedia, "Momentos de imagen wikipedia, la enciclopedia libre," 2020, [Internet; descargado 18-junio-2020]. [Online]. Available: https://es.wikipedia.org/w/index.php?title=Momentos_de_imagen&oldid=124767713
- [31] C. Wolf, J. Glaser, and J. Kepler, "Yosys-a free verilog synthesis suite," in *Proceedings of the 21st Austrian Workshop on Microelectronics (Austrochip)*, 2013.

Index 23