Теория вероятности

Основные сведения из теории вероятности

Введение

Термин информация в курсе будет пониматься в узком научном смысле.

- **Теория информации** специальная математическая дисциплина. Её содержанием является абстрактно формулируемые теоремы и модели. ТИ имеет обширное применение к теории передачи сообщений, записывающих устройств, матлингвистике, компьютерной технике.
- В самом общем виде теория информации понимается как теория передачи сигналов по линиям связи. Наиболее важное понятие ТИ сама информация. В нашей жизни большую роль играет информация и связанные с ней операции: передача, получение, обработка, хранение.
- Информация имеет две стороны: количественную и качественную. Иногда важно получение общего количества информации (количественная сторона), иногда важно конкретное содержание самой ИИ. Отметим, что переработка ИИ является технически сложной процедурой, которая усложняет разработку общей теории информации.
- Важнейшим этапом в открытии основных закономерностей ТИ были работы американского инженера-связиста, математика Клода Шеннона (1947-49гг).
- Для вычисления количества информации была предложена т.н. логарифмическая мера. Понятие количества информации тесно связано с понятием энтропии как меры степени неопределённости. Приобретение информации сопровождается уменьшением неопределённости, следовательно, количество информации можно измерять количеством "исчезнувшей неопределённости" (энтропии).

Теория информации является математической теорией, использующей понятия и методы теории вероятности.

Вероятность. Случайные события и величины

- Пусть производится серия из N опытов, причём некоторое событие A происходит в $N_a < N+1$. Тогда $h_n(A) = N_a/N$ называется частотой появления события A в серии из N опытов. Известный факт: с ростом $N-h_n(A) \to p$ (постоянная p вероятность появления случайного события A).
- Наука, изучающая свойства вероятности и применение этого понятия называется **тео- рия вероятности**.
- Событие, которое при выполнении некоторого комплекса условий обязательно выполняется называется достоверным событием.
- Событие, которое при выполнении некоторого комплекса условий не выполняется называется невозможным событием.

Пример: Выпадение определённого числа очков на грани игральной кости - достоверное событие.

Выпадение семи очков на грани игральной кости - невозможное событие.

Случайное событие – событие, которое может произойти, а может и не произойти.

Задача: В урне 10 шаров: 5 белых, 3 чёрных и 2 красных. Найти вероятность выпадения шара определённого цвета (шары одинаковы).

Решение: Выписать случайные события:

A — {вынутый шар белый} P(A) = 5/10 = 1/2;

B — {вынутый шар чёрный} P(B) = 3/10;

C — {вынутый шар красный} P(C) = 2/10 = 1/5.

Задача: Какова вероятность, что при бросании кости выпадет число очков, кратное 3?

Решение:

Кратны $3 \{3, 6\}$. N исходов = 6. P(A) = 2/6 = 1/3.

Общий принцип решения задач сводится к понятию равновероятности или равновозможности. (например, все грани кости одинаковы, и вероятность выпадения той или иной грани равна 1/6).

Классическое определение вероятности

Пусть из N возможных исходов опыта случайное событие A появляется M раз. Тогда вероятность случайного события A в модели с равновероятными исходами вычисляется по формуле P(A)=M/N

Каждому опыту отвечает своя таблица вероятности. К примеру, в задаче с урнами и шарами таблица вероятности имеет вид:

События	A	В	С
Вероятности	P(A) = 1/2	P(B) = 3/10	P(C) = 1/5

Можно сказать, что в опыте с бросанием кости число очков, выпадающих на грани является случайной величиной, которая может принимать одно из возможных 6 числовых значений в зависимости от случая.

Итак, случайная величина — числовая функция, принимающая то или иное числовое значение в зависимости от случая.

Например, количество рождений в городе за год - случайная величина.

Свойства вероятности. Сложение и умножение случайных событий.

Несовместные и независимые случайные события.

Из определения вероятности вытекают основные свойства вероятности случайного события A:

- $0 \leqslant P(A) \leqslant 1$.
 - P(A) = 1 достоверное событие;
 - P(A) = 0 невозможное событие.
- Пусть опыт приводит к двум взаимоисключающим событиям или исходам A или B. В этом случае В называют противоположным A событием $(B=\bar{A})$

Пусть
$$P(A) = \frac{m}{n}$$
;

Тогда
$$P(\bar{A}) = \frac{(n-m)}{n} = 1 - \frac{m}{n} = 1 - P(A) \Rightarrow P(A) = 1 - P(\bar{A}).$$

Пусть случайное событие $A_1 \subset A$ влечёт появление события $A \Rightarrow P(A1) < P(A)$

• Правило сложения вероятностей для двух событий:

 \circ Пусть A и B – несовместны.

Тогда
$$A \cap B = \emptyset$$
;

$$P(A) = \frac{m_1}{n}$$
;

$$P(B) = \frac{m_2}{n}$$
;

$$P(A+B) = \frac{(m_1+m_2)}{n} = \frac{m_1}{n} + \frac{m_2}{n} = P(A) + P(B).$$

Таким образом, P(A + B) = P(A) + P(B).

В примере с урной вероятность извлечь чёрный или белый шар равна

$$P(A+B) = P(A) + P(B) = \frac{1}{2} + \frac{3}{10} = \frac{4}{5};$$

Замечание: Пусть некоторый опыт проиводит к появлению K различных (взаимоисключающих) исходов:

Исходы	A1	A2	 An
Вероятности	P1	P2	 Pn

Заметим, что бывают случаи, когда

$$\sum_{i=1}^{k} P(A_i) = P(A_1 + A_2 + \dots + A_n) = 1$$

В этом случае говорят, что события A_1,A_2,\ldots,A_n составляют **полную группу** случайных событий, то есть A_1,A_2,\ldots,A_n попарно несовместны.

 $A_1,A_2,\ldots,A_n:A_i\cap A_j=arnothing \ \forall\,i,j:i
eg j;$ если $A_1+A_2+\ldots+A_n$ - достоверное событие.

 $\circ~$ Пусть A и B совместны. P(A+B)=P(A)+P(B)-P(AB), где P(AB) — вероятность одновременного происхождения двух случайных событий A и B.

Теорема сложения вероятности для совместных случайных событий. (диаграмма Венна: $A=m_1; B=m_2, A\cap B=l$).

$$P(AB) = \frac{l}{n}$$

$$P(A+B)=rac{(m_1+m_2-l)}{n}=$$
 (в m_1 и m_2 входит l) $=rac{m_1}{n}+rac{m_2}{n}-rac{l}{n}$

События A и B называются **независимыми**, если результат выполнения события A не связан с результатом события B. (извлечение двух чёрных шаров из разных урн — независимые события)

• Теорема умножения вероятности для двух независимых событий:

Если
$$A$$
 и B независимы, то $P(AB) = P(A) \ast P(B)$

Пример 1: Какова вероятность при двух бросках монеты оба раза выпадет орёл?

$$P(AB)=?$$
 $A\{{
m op} ar{
m a}\}$ $P(A)=rac{1}{2};$ $P(B)=rac{1}{2};$ $P(AB)=rac{1}{4}.$

Пример 2: В колоде 52 карты, 4 масти, 2 козыря. Какова вероятность того, что взятая наугад карта 2 является тузом или козырем?

$$A\{$$
туз $\}$ $P(A)=1/13;$ $B\{$ козырь $\}$ $P(B)=1/4;$ $P(AB)=1/52;$

A и B совместны, независимы.

$$P(A+B) = P(A) + P(B) - P(AB) = 1/13 + 1/4 - 1/52 = 4/13$$
.

Условная вероятность.

Рассмотрим пример: В урне M чёрных шаров и N-M белых. Случайное событие

A {извлечение чёрного шара} и

B {извлечение чёрного шара из той-же урны после того, как из неё уже вынут один шар}

$$P(B|A) = \frac{(m-1)}{(n-1)}$$

Поскольку, если событие A имело место, то в урне осталось M-1 чёрных шаров.

$$P(B|\bar{A}) = \frac{m}{(n-1)}$$

 $ar{A}:\{$ первый вынутый шар - белый $\}$

Вероятность события B здесь разная. Вероятность, которую имеет событие B в том, случае, когда известно, что событие A имело место называется **условной вероятностью** события B при условии выполнения события A.

$$P(B/A) = P(B|A) = P_A(B)$$

Условные вероятности можно вычислять аналогично вычислению безусловных вероятностей.

В случае если A и B независимы, P(A|B) = P(A) * P(B).

В случае зависимости P(AB) = P(A) * P(B|A) = P(B) * P(A|B).

В обоих случаях мы имеем правило умножения вероятностей. В одном случае для независимых событий, в другом для зависимых. Последнее соотношение часто кладут в определение условной вероятности.

$$P(B|A) = \frac{P(AB)}{P(A)}$$
 $P(A|B) = \frac{P(AB)}{P(B)}$

Из предыдущей формулы можем составить пропорцию:

$$\frac{P(B|A)}{P(B)} = \frac{P(A|B)}{P(A)}$$

Из определения условной вероятности вытекают ее основные свойства:

1. $0\leqslant P(B|A)\leqslant 1$, причём P(B|A)=1 когда $A\subset B$; B - достоверное случайное событие.

 $P(B|A)=0 \Longleftrightarrow A,B$ несовместны, или известно, что B — невозможное событие.

- **2**. Пусть $B_1 \subset B$ (появление B_1 вызывает событие B). $P(B1|A) \leqslant P(B|A)$ /
- 3. Если B и C несовместны P(B+C|A) = P(B|A) + P(C|A) (теорема сложения вероятностей для несовместных событий)
- 4. $P(\bar{B}|A) = 1 P(B|A)$

Замечание: Пусть имеется K (и только K) попарно несовместных исходов некоторого опыта A_1,A_2,\ldots,A_k , называемых гипотезами. Пусть некоторое случайное событие B может произойти при выполнении одной из гипотез. Тогда очевидно, что $B=A_1B+A_2B+\ldots+A_kB$ (все события A_iB несовместны, поэтому можно воспользоваться теоремой сложения вероятностей)

$$P(B) = P\left(\sum_{i=1}^{k} A_i B\right) = \sum_{i=1}^{k} P(A_i B) = \sum_{i=1}^{k} (P(A_i) * P(B|A_i))$$

Формула носит название формулы полной вероятности

$$P(B) = \sum_{i=1}^{k} P(A_i) * P(B|A_i)$$

Задача: Имеется 5 урн : в двух по одному белому и пять чёрных шаров; в одной — 2 белых, 5 чёрных; в двух — 3 белых, 5 чёрных шаров. Наудачу выбирается одна урна. Из неё извлекается один шар. Какова вероятность того, что шар белый?

Решение: Выберем в качестве гипотез 3 способа

$$A_1$$
 : {Выбрана урна с 1 б.ш}
$$A_2$$
 : {Выбрана урна с 2 б.ш}
$$P(A_1) = 2/5 \qquad P(B|A_1) = 1/6$$

$$P(A_2) = 1/5 \qquad P(B|A_2) = 2/7$$

$$P(B|A_2) = 2/5 \qquad P(B|A_2) = 2/7$$

$$P(A_3) = 2/5 \qquad P(B|A_3) = 3/8$$

$$P(B) = \frac{1}{6} * \frac{2}{5} + \frac{2}{7} * \frac{1}{5} + \frac{3}{8} * \frac{2}{5} = \frac{23}{84}$$

Математическое ожидание случайной величины. Основные свойства математического ожидания

Введение.

Важнейшей числовой характеристикой ξ является её математическое ожидание или среднее значение, вычисляемое по правилу $M\xi=\sum_{i=1}^n x_i p_i$), где x_i – принимаемые ξ значения, p_i – вероятности их выпадения.

С помощью математического ожидания мы можем сравнивать между собой две случайные величины (например, из двух стрелков лучший тот, кто выбивает в среднем наибольшее число очков), однако встречаются задачи, в которых знание одного лишь $M\xi$ недостаточно.

Пример: Пушка ведёт прицельный огонь по мишени, удалённой от пушки на расстояние a. Обозначим дальность полёта снаряда через ξ километров; $M\xi=a$

Отклонение $M\xi$ от a свидетельствует о наличии систематической ошибки (производственный дефект, неправильный угол наклона). Ликвидация систематической ошибки достигается изменением угла наклона орудия.

Вместе с тем, отсутствие систематической ошибки ещё не гарантирует высокую точность стрельбы. Чтобы оценить точность надо знать, насколько близко ложатся снаряды к цели.

Как определить точность стрельбы и сравнить между собой качество стрельбы двух орудий?

Отклонение снаряда от цели - $\xi-a$

$$M(\xi - a) = M\xi - a = a - a = 0$$

В среднем, положительные и отрицательные значения $M\xi$ сокращаются. Поэтому принято характеризовать разброс значений случайной величины математическим ожиданием квадрата её отклонения от своего математического ожидания. Полученное таким образом число называется дисперсией случайной величины ξ .

$$D\xi = M(\xi - a)^2 = M[\xi - M\xi]^2$$

Ясно, что в случае орудий, ведущих стрельбу, лучшим следует считать орудие, у которого $D\xi$ будет наименьшей.

Пусть ξ характеризуется таблицей вероятностей

$$M\xi = \sum_{i=1}^{n} x_i p_i;$$
 $D\xi = M(\xi - M\xi)^2 = \sum_{i=1}^{n} (x_i - M\xi)^2 * p_i$

Определение математического ожидания

Пусть есть некоторое пространство, в котором имеется некоторое $\xi = \xi(\omega_i)$.

 $\omega_i, (i=1,\bar{n}).\ \omega_i$ – неразделимое событие (пример: исходы броска монеты)

Совокупность ω_i образует пространство элементарных событий $\Omega = \{\omega_1, \omega_2, \ldots, \omega_n\}$

Математическим ожиданием случайной величины ξ называется число, обозначаемое $M\xi$ и равное

$$M\xi=\sum_{\omega_i\in\Omega}\{(\omega_i)*P(\omega_i)\}=\sum_{i=1}^n\xi(\omega_i)*p(\omega_i)$$
, где p_i - элементарные вероятности.

Из определения математического ожидания вытекают следующие свойства:

- 1. Аддитивность. $M(\xi + \eta) = M\xi + M\eta$. Следствие $M\left(\sum_{k=1}^{n} \xi_{k}\right) = \sum_{k=1}^{n} (M\xi_{k})$.
- 2. $\forall C = const: M(C*\xi) = C*M\xi$. Совокупность свойств 1 и 2 даёт нам свойство линейности математического ожидания:

$$M(C_1\xi_1 + C_2\xi_2 + \dots + C_n\xi_n) = C_1M(\xi_1) + C_2M(\xi_2) + \dots + C_nM(\xi_n)$$

3. Математическое ожидание индикатора случайного события равно вероятности этого случайного события.

Индикатор $[\chi]$: $M\chi_A(\omega)=P(A)$ - случайная величина, принимающая 2 значения: $\chi_A(\omega)=\{1,\omega\in A\,|\,0,\omega\not\in A\}$

$$\sum_{\omega \in A} P(\omega) = P(A)$$

$$M\chi_A(\omega) = \sum_{\omega \in A} 1 * p(\omega) + \sum_{\omega \notin A} 0 * p(\omega) = \sum_{\omega \in A} 1 * p(\omega) = P(A).$$

4. Свойство монотонности $\xi \geqslant \eta \Rightarrow M\xi \geqslant M\eta$.

Докажем вначале, что имеет место следующее свойство $\xi \geqslant 0 \Rightarrow M\xi \geqslant 0$ (при разложении по определению неотрицательны).

$$M\xi = \sum_{\omega} \xi(\omega)p(\omega) \geqslant 0.$$

Применим полученное свойство:

$$\xi - \eta \geqslant 0 \Rightarrow M(\xi - \eta) \geqslant 0 \Rightarrow M\xi - M\eta \geqslant 0 \Rightarrow M\xi \geqslant M\eta$$
.

Формулы вычисления математического ожидания

Пусть x_1, x_2, \ldots, x_n — значения случайной величины ξ , принимаемые с вероятностями p_1, \ldots, p_i . Тогда имеет место следующая формула для вычисления математического ожидания :

$$M\xi = \sum_{i=1}^{n} x_i * P(\xi = x_i)$$

Чтобы доказать формулу будем исходить из того, что ξ может быть представлена в виде линейной комбинации индикаторов случайных событий

$$\xi = \sum_{i=1}^{n} x_i * \chi_{A_i}(\omega)$$

$$A_i\{\omega_i:\xi=x_i\}$$

Левые и правые части соотношения совпадают. Применим к написанному равенству операцию математического ожидания:

$$M\left(\sum_{i=1}^{n} x_i \chi_{A_i}(\omega)\right) = \sum_{i=1}^{n} M\left(x_i \chi_{A_i}(\omega)\right) = \sum_{i=1}^{n} x_i M\left(\chi_{A_i}(\omega)\right) = \sum_{i=1}^{n} x_i P(\xi = x_i)$$

Рассуждая аналогично, нетрудно получить формулы вычисления математического ожидания от величин, представляющих собой функции случайных величин.

Пусть заданы $f(\xi), g(\xi, \eta)$.

В этом случае

$$M(f(\xi)) = \sum_{i=1}^{n} (f(x_i) * P(\xi = x_i))$$

$$M(g(\xi, \eta)) = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} g(x_i, y_j) * P(\xi = x_i, \eta = y_i) \right)$$

,где $P(\xi,\eta)$ – совместная вероятность.

5 Мультипликативное свойство математического ожидания Пусть ξ,η - независимые случайные величины, то $M(\xi,\eta)=M\xi*M\eta$ Доказательство:

$$M(\xi, \eta) = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} x_i * y_j * P(\xi = x_i, \eta = y_j) \right)$$

Если ξ,η независимы, то для них применима теорема умножения вероятности.

$$P(\xi=x_i,\eta=y_j)=(\xi,\eta$$
 независимы $)=P(\xi=x_i)*P(\eta=y_j)$
$$\sum_{i=1}^n \left(\sum_{j=1}^m x_i*y_j*P(\xi=x_i)*P(\eta=y_j)\right)=$$

$$=\sum_{i=1}^n x_i*P(\xi=x_i)*\sum_{j=1}^m y_i*P(\eta=y_j)=M\xi*M\eta$$

Замечание: Все написанные формулы имеют место, если вероятностное пространство конечно, т.е. число элементарных событий конечно $\omega_i = (1, \bar{n}).$

В случае, если вероятностное пространство счётно, количество элементарных сообщений бесконечно, тогда для случайной величины

$$\xi(\omega), \omega \in$$
 (счетное вероятностное пространство)

имеют место следующие формулы:

$$\omega_i, i = [\overline{1, \infty}]$$

$$M\xi = \sum_{i=1}^{\infty} (x_i * P(\xi = x_i))$$

$$Mf(\xi) = \sum_{i=1}^{\infty} (f(xi) * P(\xi = x_i))$$

В формулах справа стоят ряды. Чтобы математические ожидания существовали надо, чтобы эти ряды сходились. Ряд сходится, если он имеет конечную сумму.

Задача: Вычислить $M\xi$, распределённой по закону Пуассона. $P(\xi=k)=(a^k/k!)e^{-a}$, где $k=\{0,1,2,3,4,\ldots,\infty\}; \quad a>0$ — заданный заранее характер распределения.

Решение:

$$M\xi = \sum_{k=0}^{\infty} k*\frac{(a^k*e^{-a})}{k!} = e^{-a}\sum_{k=0}^{\infty} (k*\frac{(ka^k)}{k!} =$$

$$= e^{-a}\sum_{k=0}^{\infty} \frac{(k*a^{k-1}a)}{(k-1)!} = e^{-a}a\sum_{s=0}^{\infty} \frac{a^s}{s!} \quad \text{(формула Маклорена)} = e^{-a}ae^a = a$$

Математическое ожидание случайной величины, распределённой по закону Пуассона с параметром распределения a равно этому параметру распределения.

Если ξ непрерывна, её закон распределения определяется плотностью распределения $f_{\xi}(x)\geqslant 0 \Rightarrow M\xi=\int\limits_{-\infty}^{\infty}xf_{\xi}(x)dx.$ Если имеется функция $g(\xi),\ g(\xi,\eta)$, то математическое ожидание вычисляется по формулам:

$$M_{g_{\xi}} = \int_{-\infty}^{\infty} g(x) f_{\xi}(x) dx$$

$$M(\xi, \eta) = \iint_{-\infty}^{\infty} g(x, y) f_{\xi\eta}(x, y) dx dy$$

где $f(\xi, \eta)$ - плотность совместных случайных величин.

Эти математические ожидания существуют, если все написанные несобственные интегралы сходятся.

Пример: вычислить математическое ожидание ξ , равномерно распределённое \sim

Решение:

$$f_{\xi}(x) = rac{1}{b-a}, a \leqslant x \leqslant b \mid 0, x \in {
m B}$$
 остальных случаях

$$M_{\xi} = \int_{-\infty}^{\infty} x f_{\xi}(x) dx = \frac{1}{b-a} \int_{a}^{b} x dx = \frac{x^2}{2(b-a)} \Big|_{a}^{b} = \frac{a+b}{2}$$

Пример 2: вычислить математическое ожидание случайной величины ξ , распределённой нормально (по закону распределения Гаусса)

$$f_{\xi}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-a)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (x-a)e^{-\frac{(x-a)^2}{2\sigma^2}} dx +$$

$$+rac{a}{\sqrt{2\pi}\sigma}\int\limits_{-\infty}^{\infty}(x-a)e^{-rac{(x-a)^2}{2\sigma^2}}dx$$
 (интеграл Лапласа) $=0+rac{a}{\sqrt{2\pi}\sigma}\sqrt{2\pi}\sigma=a$

Вывод: Распределение случайной величины, распределённой нормально, равно параметру распределения.

Дисперсия случайной величины. Основные свойства дисперсии.

Дисперсия $D\xi$ - число, определяемое формулой $D\xi=M(\xi-M\xi)^2$ (1), т.е. дисперсия представляет собой квадрат разности случайной величины и её математического ожидания. Другое название - квадрат среднеквадратического отклонения.

Часто в прикладных задачах вместо D рассматривают величину \sqrt{D} , называемую среднеквадратическим отклонением

Формулу (1) можно продолжить, тогда мы получим $D_\xi=M\left(\xi^2-2\xi M\xi+(M\xi)^2\right)=M^2\xi-2M\xi+2M\xi+(M\xi)^2=M^2\xi-(M_\xi)^2$, и получим формулу (2) $D\xi=M^2\xi+(M\xi)^2$

1. Пусть ξ - дискретная величина, принимающая значения x_1, \ldots, x_n с вероятностями p_1, \ldots, p_n

$$D\xi = \sum_{k=1}^{n} (x_k M \xi)^2 * p_k = (2) = \sum_{k=1}^{n} (x_k^2 * p_k)^2 - (M\xi)^2$$

2. Пусть ξ - непрерывная случайная величина, значит может быть определена функция $f_{\xi}(x)$.

$$D\xi = (1) = \int_{-\infty}^{\infty} x^2 f_{\xi}(x) dx - (M\xi)^2$$

Дадим механическую интерпретацию математического ожидания и дисперсии случайной величины. Будем представлять закон распределения вероятностей $p_k = P(\xi = x_k), \sum_{k=1}^n p_k = 1$ случайной величины ξ , как закон распределения единичной массы на прямой: в точках x_k сосредоточены массы p_k :

$$---\frac{x_1}{p_1}---\frac{x_2}{p_2}-\ldots-\frac{x_n}{x_n}--->x$$

Тогда

$$M\xi = \sum_{k=1}^n x_k P(\xi = x_k)$$
 - центр тяжести СМАТ

$$D\xi = \sum_{k=1}^n (x_k - M_\xi)^2 * p_k$$
 - момент инерции относительно начала координат

Пример: $D\xi = ?, f_{\xi}(x) = e^{-\frac{(x-a)^2}{2\sigma^2}}$

Решение:

$$D\xi = \int_{-\infty}^{\infty} (x - M\xi)^2 f_{\xi}(x) dx = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (x - a)^2 e^{-\frac{(x - a)^2}{2\sigma^2}} dx =$$

Произведём замену переменной в интеграле по формуле $y=\frac{x-a}{\sigma},\;x-a=\sigma y,\;dx=\sigma dy$

$$= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} \sigma^2 e^{-\frac{y^2}{2}} \sigma dy = \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (-y) de^{-\frac{y^2}{2}} =$$

$$= \frac{\sigma^2}{\sqrt{2\pi}} \left(-ye^{-\frac{y^2}{2}} \Big|_{-\infty}^{+\infty} + \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy \right) = \sigma^2$$

Вывод: дисперсия нормального распределения случайной величины равна второму параметру распределения (σ^2) .

$$M_{\xi} = a; \ D_{\xi} = \sigma^2$$

Свойства дисперсии

- 1. Дисперсия неотрицательна: $D_\xi\geqslant 0.$ $D_\xi=0\Longleftrightarrow \xi=const.$ Доказательство: $D\xi=M(\xi-M\xi)^2\geqslant 0-$ по свойству монотонности. Пусть $\xi=c=const.$
 - Тогда $D_c = M(c M_c)^2 = (c c)^2 = 0.$
- 2. Если a=const, то дисперсия $D(a\xi)=a^2D\xi$. Доказательство: $D(a\xi)=M(a\xi-Ma\xi)^2=M(a\xi-aM\xi)^2=M[a^2(\xi-M\xi)^2]=a^2M(\xi-M\xi)=a^2D\xi$
- 3. Если ξ,η независимы, то

$$D(\xi + \eta) = M (\xi + \eta - M(\xi + \eta))^{2} = M ((\xi - M\xi) + (\eta - M\eta))^{2} =$$

$$= M(\xi - M\xi)^{2} + 2(\xi - M\xi)(\eta - M\eta) + M(\eta - M\eta)^{2} =$$

$$= M(\xi - M\xi)^{2} + 2M ((\xi - M\xi) * (\eta - M\eta)) + M(\eta - M\eta)^{2} = D\xi + D_{\eta}$$

Энтропия и информация

Энтропия как мера неопределённости

Для практики важно уметь численно оценивать степень неопределённости самых разнообразных опытов, чтобы иметь возможность их сравнивать.

Начнём с рассмотрения опытов имеющих K равновероятных исходов. Степень неопределённости каждого такого опыта определяется числом K. При K=1 исход опыта не является случайным. При большом значении K предсказание результата опыта становится затруднительным.

Таким образом, искомая численная характеристика степени неопределённости должна зависть от K, т.е быть функцией $f(k);\ f(1)=0;$ при возрастании аргумента, функция должна возрастать. Для более полного определения функции f(k) необходимо предъявить к ней дополнительные требования.

Рассмотрим сложный опыт $\alpha\beta$, состоящий в одновременном выполнении опытов α и β . Неопределённость выполнения сложного опыта больше неопределённости опыта α , т.к. к его неопределённости надо добавить неопределённость опыта β . Поэтому естественно считать, что **степень неопределённости** опыта $\alpha\beta$ равна сумме неопределённостей, характеризующих α и β .

Пусть $\alpha\beta$ имеет k*l равновероятных исходов, $k\alpha,\ l\beta.$ Приходим к следующему условию, которму должна удовлетворять функция f(kl)=f(k)+f(l). Последнее условие наталкивает на мысль принять за меру неопределённости опыта, имеющего К равновероятных исходов число $\log k: \log(kl) = \log k + \log l.$ Такое определение меры неопределённости согласуется с первоначальными условиями, что $f(1) = \log 1 = 0; f(k)$ - возрастающая функция. Можно доказать, что логарифмическая функция является единственной, удовлетворяющей этим условиям.

Замечание: отметим, что выбор основания логарифма большой роли не играет, поскольку в силу известной формулы перехода можем написать $\log_b a = \log_c a/\log_c b \Rightarrow \log_b k = \log_b a * \log_a k$ сводится к домножению на константу, т.е. равносилен простому изменению **единицы измерения** степени неопределённости. Обычно за меру степени неопределённости берут логарифмы при основании $2:log_2k = logk$, причём основание 2 не фиксируют. Т.е. за единицу измерения степени неопределённости принимают неопределённость опыта, имеющего 2 равновероятных исхода: $\log_2 2 = 1$ бит. Везде далее будем пользоваться двоичными единицами измерения.

Таблица вероятности для опыта, имеющего K равновероятных исходов:

α			
Исходы	A_1	A_2	 A_k
Вероятности	$\frac{1}{k}$	$\frac{1}{k}$	 $\frac{1}{k}$

Поскольку при наших допущениях неопределённость равна $f(k) = \log k$. В этом случае каждый отдельный исход вносит неопределённость $\frac{1}{k}$. $\frac{\log k}{k} = \frac{1}{k} \log k = -\frac{1}{k} \log \frac{1}{k}$.

В самом общем случае опыт имеет следующую таблицу вероятности:

α			
Исходы	A_1	A_2	 A_k
Вероятности	$P(A_1)$	$P(A_2)$	 $P(A_k)$

Для опыта общая мера неопределённости равна $-p(A_1)\log p(A_1)-p(A_2)\log p(A_2)-\dots-p(A_k)\log p(A_k)=H(\alpha)$ - энтропия опыта α

Рассмотрим некоторые свойства энтропии $H(\alpha)$:

1. $H(\alpha) \geqslant 0$

Доказательство
$$-p(A)\log p(A)\geqslant 0$$
 (множители \in промежутку $(0\leqslant p(A)\leqslant 1)$) $-p(A)\log p(A)=0\Longleftrightarrow \{p=0;p=1\}$

В случае, если опыт имеет K попарно несовместных исходов, то $H(\alpha)=0$ равносильно тому, что один исход - достоверное событие, а все другие - невозможны $(p(A_1)+\ldots+p(A_k)=1)$.

Это обстоятельство хорошо согласуются с величиной $H(\alpha)$ - только в этом случае опыт вообще не содержит неопределённости.

2. Из всех опытов с K исходами самым неопределённым является опыт опыт с K равновероятными исходами. Можно показать, что имеет место неравенство

$$H(\alpha) = -p(A_1)\log p(A_1) - \dots - p(A_k)\log p(A_k) \leqslant H(\alpha_0) = \log k = -\frac{1}{k} - \dots - \frac{1}{k}.$$

Равенство достигается при равных вероятностях $P(A_i);\ i=[\overline{1,k}]$

Пример: Имеется две урны с 20-ю шарами каждая. Первая - 10 белых, 5 чёрных, 5 красных. Вторая - 8 белых, 8 чёрных, 4 красных.

Из каждой урну вынимают по 1 шару. Исход какого из двух опытов следует считать более неопределённым?

Решение: Обозначим опыты как А1 и А2.

Α1

Исходы	Бел	Чёр	Крас
Вероятности	1/2	1/4	1/4

A2

Исходы	Бел	Чёр	Крас
Вероятность	2/5	2/5	1/5

Энтропия опыта А1: $H(\alpha_1)=-\frac12\log\frac12-\frac14\log\frac14-\frac14\log\frac14=-\frac12*1-\frac12*(-2)=-\frac12+1=1,5$ бита.

Энтропия опыта A2:
$$H(\alpha_2)=-\frac{2}{5}\log\frac{2}{5}-\frac{2}{5}\log\frac{2}{5}-\frac{1}{5}\log\frac{1}{5}=-\frac{4}{5}(\log 2-\log 5)-\frac{1}{5}(\log 1-\log 5)=-0.8+-\frac{4}{5}\log 5+\frac{1}{5}\log 5=-0.8+\log 5=1,52$$
 бита.

Вывод: Если оценивать степень неопределённости опыта его энтропией, то исход второго опыта более неопределённый, нежели первого.

Историческая справка

Исторически первые шаги к введению понятия энтропии были сделаны в 1928 году американским инженером-связистом Хартли, предложившим характеризовать степень неопределённости опыта с К различными исходами числом $\log k$. Предложенная им мера степени неопределённости иногда бывает удобна в некоторых практических задачах, но часто оказывается малопоказательной, поскольку полностью игнорирует различие между характером имеющихся исходов. Поэтому почти невероятному исходу у Хартли придаётся такое-же значение, как и исходу весьма вероятному. Однако, он считал, что различия между отдельными исходами определяются в первую очередь "психологическими факторами" и должны учитываться лишь психологами, но не инженерами или математиками.

Ошибочность точки зрения Хартли была показана другим американским инженером - математиком К. Шенноном. Он предложил принять в качестве меры неопределённости опыта с K различными исходами A_1, \ldots, A_k величину $H(\alpha) = -p(A_1)\log p(A_1) - \ldots - p(A_k\log p(A_k)$.

Иначе говоря, исходу A_i следует приписать неопределённость, равную $-\log p(A_i)$. В качестве неопределённости всего опыта $H(\alpha)$ принимается среднее значение случайной величины (математическое ожидание), равное $H(\alpha)\xi$, ξ принимают значения $-\log p(A_i)$ с вероятностями $p(A_i)$.

Таким образом, загадочные "психологические факторы" учитываются с помощью использования понятия вероятности, имеющего чисто математический, а точнее статистический характер.

Использование величины $H(\alpha)$ в качестве меры неопределённости опыта A оказалось полезным во многих областях, а особенно в теории передачи сообщений по линиям связи.

Энтропия сложных событий

Условная энтропия. Пусть имеются два независимых опыта A, B с таблицей вероятностей $A_1, p(A_1); \ldots; A_k, p(A_k); B_1, p(B_1); \ldots; B_l, p(B_l).$

Рассмотрим сложный опыт $\alpha\beta$, когда осуществляются оба опыта одновременно, имеющий k*l исходов ($A \times B$ - декартово произведение).

$$A_1B_1: \alpha = A_1; \beta = B_1$$

Очевидно, что неопределённость опыта $\alpha\beta$ больше неопределённости каждого из опытов, из-за осуществления обоих опытов. Поэтому имеет место соотношение $H(\alpha\beta)=H(\alpha)+H(\beta)$. Написанное равенство называется правилом сложения энтропии для опытов α и β .

Для доказательства этого равенства рассмотрим выражение

$$H(\alpha\beta) = -p(A_1B_1)\log p(A_1B_1) - \dots - p(A_kB_l)\log p(A_kB_l)$$

$$lpha,eta$$
 - независимы, следовательно $p(A_iB_j)=p(A_i)*p(B_j)\Rightarrow$

$$\log p(A_i B_i) = \log p(A_i) p(B_i) = \log p(A_i) + \log p(B_i).$$