1. مقایسه کنترلرهای P

	Z	R	F
RiseTime	0.2965	0.2981	0.3196
SettlingTime	5.2455	5.2464	4.0657
SettlingMin	0.3587	0.3601	0.3667
SettlingMax	0.8503	0.8408	0.7228
Overshoot	55.5211	54.9105	47.522
Peak	0.8503	0.8408	0.7228
PeakTime	0.8578	0.8676	0.9003
essp	0.4513	0.456	0.5087
Gmp	2	2.0324	2.5112
Pmp	52.3169	54.3132	101.8681
IEp	7.668e+06	7.48E+06	5.48E+06

با مقایسه ی نمودار ها و جدول کاملا مشخص است که دو روش زیگلر و مکان هندسی نتایجی مشابه دارند . هر چند این دو زمان پاسخ کوتاه تری دارند اما کنترلر طراحی شده با روش فرکانسی انرژی کمتری مصرف می کند ، فراجهش کمتری دارد و پایدار تر است .در مجموع کنترلر مکان هندسی از بین سه کنترلر بهینه تر است و مزیت های بیشتری دارد.

۲. مقایسه کنترلر های Pl

نمودار های پاسخ این سه کنترلر را میتوان به صورت زیر با هم مقایسه کرد:

	Z	R	F
RiseTime	0.6186	0.92	0.8477
SettlingTime	3.5687	3.3682	3.7304
SettlingMin	0.8828	0.9103	0.9083
SettlingMax	1.1101	1.0451	1.1255
Overshoot	11.0064	4.5083	12.5537
Peak	1.1101	1.0451	1.1255
PeakTime	1.3657	1.9482	1.9706
essp	-0.0011	-0.0034	9.60E-04
Gmp	2.3402	2.9342	2.5113
Pmp	64.345	64.4961	58.6499
IEp	1.36E+07	1.14E+07	1.51E+07

با مقایسه ی نمودار ها و جدول مشخص مشاهده می کنیم که سیستم مکان هندسی بیشترین پایداری را دارد و بیشترین مقاومت را در برابر تغییر پارامتر و نویز نشان میدهد همچنین بیشینه فراجهش آن نیز بسیار کمتر از دو سیستم دیگر است و انرژی کمتری نیز مصرف می کند. از طرفی سیستم های زیگلر و فرکانسی سریعتر بوده و به خصوص سیستم زیگلر نیکلز زودتر به شرایط پایدار می رسند. به دلیل مقاوم بودن و دقت خوب کنترلر مکان هندسی مزیت آن نسبت به بقیه کنترل ها باعث انتخاب آن می شود.

7. مقایسه کنترلر های PID

نمودار های پاسخ این سه کنترلر را میتوان به صورت زیر با هم مقایسه کرد:

	Z	R	F
RiseTime	0.2562	0.617	1.8252
SettlingTime	1.7429	3.3578	6.2839
SettlingMin	0.8713	0.9094	0.902
SettlingMax	1.1117	1.0985	1.1174
Overshoot	11.166	9.8549	11.743
Peak	1.1117	1.0985	1.1174
PeakTime	0.5478	1.3127	3.1824
essp	0.0038	-3.73E-04	-0.005
Gmp	3.461	3.0217	6.4671
Pmp	53.053	63.1522	67.6

سه کنترلر طراحی شده در این قسمت نمایانگر سه مزیت کنترلر ها هستند. در واقع هر کنترلر یک ویژگی خاص دارد؛کنترلر زیگلر نیکولز سریع است، کنترلر مکان هندسی دقیق است و کنترلر فرکانسی سرعت بهتر مقاوم است. در نگاهی دقیق تر درمیابیم که کنترلر مکان هندسی نسبت به کنترلر فرکانسی سرعت بهتر اما مقاوم بودن کمتری دارد و در مقایسه با کنترلر زیگلر نیکولز دارای دقت بیشتر و سرعت کمتری است.در نهایت با توجه به قابل قبول بودن سرعت ، مقاوم بودن و دقت بالا در می یابیم که کنترلر مکان هندسی یک میانگین است لذا استفاده از آن بهتر به نظر می رسد. البته انتخاب کنترلر مناسب وابسته به اهمیت کدام مزیت است.

4. انتخاب نهایی کنترلر

	P	PI	PID
RiseTime	0.2981	0.92	0.617
SettlingTime	5.2464	3.3682	3.3578
SettlingMin	0.3601	0.9103	0.9094
SettlingMax	0.8408	1.0451	1.0985
Overshoot	54.9105	4.5083	9.8549
Peak	0.8408	1.0451	1.0985
PeakTime	0.8676	1.9482	1.3127
essp	0.456	-0.0034	-3.73E-04
Gmp	2.0324	2.9342	3.0217
Pmp	54.3132	64.4961	63.1522
IEp	7.48E+06	1.14E+07	زیاد

از بین کنترلر ها ی بالا کنترلر P دارای فراجهش بالا ارتعاشات زیاد و حساسیت زیاد به اغتشاش است. پس مگر در شرایطی که ساده بودن و ارزان بودن و استفاده کمتر از انرژی مد نظر باشد به کلی کنار میرود.

سرعت کنترلر PID بیشتر از PI است اما تفاوت قابل توجهی در این پارامتر ندارد. این تفاوت کم را در تفاوت کم در تفاوت کم در زمان نشست دو کنترلر می توان دید. اما درصد بیشینه فراجهش کنترلر PID تقریباً دو برابر کنترلر PI است که یک عیب قابل توجه به شمار می آید. همچنین با توجه به بیشتر بودن درجه صورت تابع تبدیل از مخرج آن در حساب کردن مقدار انرژی این کنترلر در میابیم که انرژی مصرفی آن، می بایست به صورت نمایی افزایش یابد و مقدار قابل توجهی داشته باشد.

با این حال مقاومت سیستم های PID در برابر اغتشاشات و تغییر پارامتر ها و دقت بی نظیر آنها (که ده برابر کنترلر PI است.) دور از نظر نمی ماند.

در نهایت هرچند برای سیستم های پیچیده و کار های آزمایشگاهی کنترلر PID دقیقتر به نظر می آید اما در سیستم های پر کاربرد صنعتی که تحمل کمی دارند (درصد فراجهش پایین نیاز است) و به دقت بالایی نیاز ندارند کنترلر PI بهینه تر به نظر می رسد.

کنترل نهایی : کنترلر PI-Action با روش مکان هندسی ریشه ها