AlgoRemix

algorithmically remixing songs using neural networks and my own voice

Charles Coppieters '23

Advisor: Dr. Robert Fish

Motivation

Where is the AI generated music?

Background

- Beats and measures
- Notes
 - Pitch, duration, offset
- Key and harmonic context

Background

• Audio files

MIDI

Related Work

• Alan Turing (1951)

Lejaren Hiller and Leonardo Isaacson's "Illiac Suite" (1957)

Goal

Work around long term structure issue

Goal and Approach

- The Wub Machine
- ML model to generate remixes of existing songs
 - o 5 genres: bossa nova, techno, disco, polka, bluegrass
 - Analyzes musical features of input song
 - BPM
 - Beat Grid
 - Key
 - Chord Progression
 - Generates new bassline and chords
 - Generates lyrics using model of my own voice

Song Analysis – Preprocessing

Spectrogram

Song Analysis – Preprocessing

Chromagram

- 1. Spectrogram -> Mel-scale spectrogram
- 2. Mel-scale spectrogram -> Log amplitude scaling
- 3. Log amplitude scaling -> Onset strength envelope
- 4. BPM estimation

1. Spectrogram -> Mel-scale spectrogram

1. Spectrogram -> Mel-scale spectrogram

2. Mel-scale spectrogram -> Log amplitude scaling

3. Log amplitude scaling -> Onset strength envelope

4. Onset strength envelope -> BPM Estimation

Song Analysis – Key

- 1. Mean chroma values from chromagram
- 2. Krumhansl-Schmuckler Algorithm

Major Key Profiles

Key	С	C#	D	D#	Е	F	F#	G	G#	A	A #	В
Freq	6.35	2.23	3.48	2.33	4.38	4.09	2.52	5.19	2.39	3.66	2.29	2.88

Minor Key Profiles

Key	С	C#	D	D#	Е	F	F#	G	G#	A	A #	В
Freq	6.33	2.68	3.52	5.38	2.60	3.53	2.54	4.75	3.98	2.69	3.34	3.17

Song Analysis – Key

1. Mean chroma values from chromagram

Song Analysis – Key

2. Krumhansl-Schmuckler Algorithm

Song Analysis – Chord Progression

- 1. Sync avg chroma values with beat grid
- 2. Estimate root note by calculating highest chroma value for each measure
- 3. Estimate chord quality based on key
- 4. Repeat for every measure

Song Analysis – Chord Progression

Remix Generation

Data

- MIDI files recorded by me
 - Labeled by relevant chord ("cmaj.midi")
- Numerical encoding
 - Label: 0-35 (for each chord)
 - Notes: tuple of normalized start time, end time, pitch, velocity

Bassline Data

Notes and rhythms

Chord Data

- Rhythms
- Extrapolation of full chords after generation

Model - LSTM

Model - LSTM

```
model = Sequential([
    Embedding(input_dim=num_classes, output_dim=128, input_length=1),
    LSTM(128, return_sequences=True),
    LSTM(128, return_sequences=False),
    Dense(max_len * 4, activation='relu')
])
```

Vocal Generation

Data

- Audio files recorded by me
 - Harvard Sentences
 - 10 second chunks
- Preprocess files into spectrograms

Model - SoftVC VITS Voice Conversion

Results

https://github.com/cwallant/AlgoRemix/tree/main/Output Examples

Evaluation

- 1. Genre Classification Evaluation
- 2. Subjective Listening Evaluation

Evaluation - Genre Classification

Evaluation - Genre Classification

Song	Original	Bossa Nova	Techno	Disco	Polka	Bluegrass
Type	Song	Remix	Remix	Remix	Remix	Remix
Estimated Genre	Pop	Bossa Nova	Techno	Disco	Polka	Polka

Evaluation - Subjective Listening

Conclusion

- Trade off between long term structure and repetitiveness
- Vocal limitations
- Altering music as the future of music