Московский государственный технический университет им. Н.Э. Баумана Факультет «Радиоэлектроника и лазерная техника (РЛ)» Кафедра «Технология приборостроения (РЛ6)»

Домашнее задание №1 по дисциплине «Цифровые устройства и микропроцессоры»

Выполнил ст. группы РЛ6-69 Лобанов Д.Д.

Преподаватель Семеренко Д.А.

Оглавление

1. Реализовать шифратор для вывода знака на ССИ	3
1.1,1.2. Написать алгебраические уравнения в СДНФ Минимизировать с помощью: законов алгебры, карт Карно, мет	года Квайна.
	3
1.3 Привести полученные выражения к базису 2И-НЕ и 2ИЛИ-	HE 14
1.4 Начертить цифровую схему	19
2. Реализовать счётчик с коэффициентом счёта 6	29
Способ 1	29
Способ 2	30
3. Реализовать преобразователь кода, на выходе которого ф последовательность бинарных чисел, соответствующая цифрам ст билета	уденческого
4. Реализовать делитель частоты.	33
1 способ	33
2 способ	33
5. Итоговая схема.	34
6. Проверка итоговой схемы на ПЛИС	35

1. Реализовать шифратор для вывода знака на ССИ.

Рис. 1 – Обозначение сегментов индикатора.

Таблица истинности ССИ

	x_0	x_1	x_2	χ_3	a	b	С	d	e	f	g
«0»	0	0	0	0	1	1	1	1	1	1	0
«1»	1	0	0	0	0	1	1	0	0	0	0
«2»	0	1	0	0	1	1	0	1	1	0	1
«3»	1	1	0	0	1	1	1	1	0	0	1
«4»	0	0	1	0	0	1	1	0	0	1	1
«5»	1	0	1	0	1	0	1	1	0	1	1
«6»	0	1	1	0	1	0	1	1	1	1	1
«7»	1	1	1	0	1	1	1	0	0	0	0
«8»	0	0	0	1	1	1	1	1	1	1	1
«9»	1	0	0	1	1	1	1	1	0	1	1
«L»	0	1	0	1	0	0	0	1	1	1	0

1.1,1.2. Написать алгебраические уравнения в СДНФ и СКНФ. Минимизировать с помощью: законов алгебры, карт Карно, метода Квайна.

Минимизация:

1) С помощью основных законов алгебры логики. Склеивание 1-2, 2-3, 4-6, 5-6, 7-8:

$$y_a = \overline{x_0} \ \overline{x_2} \ \overline{x_3} \lor x_1 \overline{x_2} \ \overline{x_3} \lor x_0 x_2 \overline{x_3} \lor x_1 x_2 \overline{x_3} \lor \overline{x_1} \ \overline{x_2} x_3 = |\text{склеивание } 2-4| =$$
$$= \overline{x_0} \ \overline{x_2} \ \overline{x_3} \lor x_1 \overline{x_3} \lor x_0 x_2 \overline{x_3} \lor \overline{x_1} \ \overline{x_2} x_3$$

2) Карты Карно

<u> </u>				
	x_0x_1	$\overline{x_0}x_1$	$\overline{x_0} \overline{x_1}$	$x_0\overline{x_1}$
x_2x_3	0	0	0	0
$\overline{x_2}x_3$	0		1	1
$\overline{x_2} \overline{x_3}$	1		1	0
$x_2\overline{x_3}$	1	1	0	(1
	$\overline{}$			

$$y_a = x_1 \overline{x_3} \vee \overline{x_0} \overline{x_2} \overline{x_3} \vee \overline{x_1} \overline{x_2} x_3 \vee x_0 x_2 \overline{x_3}$$

3) Метод Квайна

1	$\overline{x_0} \overline{x_1} \overline{x_2} \overline{x_3}$	1-2: $\overline{x_0} \overline{x_2} \overline{x_3} (1')$	$\overline{x_0} \overline{x_2} \overline{x_3} (1")$
2	$\overline{x_0}x_1\overline{x_2}\ \overline{x_3}$	2-3: $x_1\overline{x_2} \overline{x_3}$ (2')	$x_0x_2\overline{x_3}$ (2")
3	$x_0 x_1 \overline{x_2} \overline{x_3}$	4-6: $x_0 x_2 \overline{x_3}$ (3')	$\overline{x_1} \overline{x_2} x_3 (3")$
4	$x_0\overline{x_1}x_2\overline{x_3}$	5-6: $x_1 x_2 \overline{x_3}$ (4')	$(2'-4'): x_1\overline{x_3}(4'')$
5	$\overline{x_0} x_1 x_2 \overline{x_3}$	7-8: $\overline{x_1} \overline{x_2} x_3$ (5')	
6	$x_0x_1x_2\overline{x_3}$		
7	$\overline{x_0} \overline{x_1} \overline{x_2} x_3$		
8	$x_0\overline{x_1}\overline{x_2}x_3$		

	$\overline{x_0} \overline{x_1} \overline{x_2} \overline{x_3}$	$\overline{x_0}x_1\overline{x_2}\ \overline{x_3}$	$x_0x_1\overline{x_2}\ \overline{x_3}$	$x_0\overline{x_1}x_2\overline{x_3}$	$\overline{x_0} x_1 x_2 \overline{x_3}$	$x_0x_1x_2\overline{x_3}$	$\overline{x_0} \overline{x_1} \overline{x_2} x_3$	$x_0\overline{x_1}\overline{x_2}x_3$
$\overline{x_0} \overline{x_2} \overline{x_3}$	X	X /			_			
$x_0x_2\overline{x_3}$				X		X/		
$\overline{x_1} \overline{x_2} x_3$							X	X
$x_1\overline{x_3}$		/ X \	X		/ X \	X		

$$y_a = \overline{x_0} \ \overline{x_2} \ \overline{x_3} \lor x_1 \overline{x_3} \lor x_0 x_2 \overline{x_3} \lor \overline{x_1} \ \overline{x_2} x_3$$

$$\bullet \quad y_{\mathbf{a}}^{\mathsf{CKH}\Phi} = (\overline{x_0} \vee x_1 \vee x_2 \vee x_3) \wedge (x_0 \vee x_1 \vee \overline{x_2} \vee x_3) \wedge (x_0 \vee \overline{x_1} \vee x_2 \vee \overline{x_3})$$

Минимизация:

1) С помощью основных законов алгебры логики не минимизируется.

2) Карты Карно

	$x_0 \vee x_1$	$\overline{x_0} \vee x_1$	$\overline{x_0} \vee \overline{x_1}$	$x_0 \vee \overline{x_1}$
$x_2 \vee x_3$		(0)	1	1
$\overline{x_2} \vee x_3$	(0)	\mathcal{A}	1	1
$\overline{x_2} \vee \overline{x_3}$	1	1	1	1
$x_2 \vee \overline{x_3}$	1	1	1	(0)

Нет нулей в соседних ячейках, получаем изначальное выражение:

$$y_a = (\overline{x_0} \vee x_1 \vee x_2 \vee x_3) \wedge (x_0 \vee x_1 \vee \overline{x_2} \vee x_3) \wedge (x_0 \vee \overline{x_1} \vee x_2 \vee \overline{x_3})$$

3) Метод Квайна

1	$\overline{x_0} \lor x_1 \lor x_2 \lor x_3$	
2	$x_0 \lor x_1 \lor \overline{x_2} \lor x_3$	
3	$x_0 \lor \overline{x_1} \lor x_2 \lor \overline{x_3}$	

	$\overline{x_0} \lor x_1 \lor x_2 \lor x_3$	$x_0 \lor x_1 \lor \overline{x_2} \lor x_3$	$x_0 \vee \overline{x_1} \vee x_2 \vee \overline{x_3}$
$\overline{x_0} \lor x_1 \lor x_2 \lor x_3$	X		
$x_0 \lor x_1 \lor \overline{x_2} \lor x_3$		X	
$x_0 \vee \overline{x_1} \vee x_2 \vee \overline{x_3}$			X

Не минимизируется, получаем изначальное выражение:

$$\begin{aligned} y_a &= (\overline{x_0} \vee x_1 \vee x_2 \vee x_3) \wedge (x_0 \vee x_1 \vee \overline{x_2} \vee x_3) \wedge (x_0 \vee \overline{x_1} \vee x_2 \vee \overline{x_3}) \\ \bullet & y_b^{\mathsf{CДH\Phi}} &= \overline{x_0} \, \overline{x_1} \, \overline{x_2} \, \overline{x_3} \vee x_0 \overline{x_1} \, \overline{x_2} \, \overline{x_3} \vee \overline{x_0} \overline{x_1} \overline{x_2} \, \overline{x_3} \vee x_0 \overline{x_1} \overline{x_2} \, \overline{x_3} \vee x_0 \overline{x_1} \overline{x_2} \overline{x_3} \vee \overline{x_0} \, \overline{x_1} \overline{x_2} \overline{x_3} \vee \overline{x_0} \, \overline{x_1} \overline{x_2} \overline{x_3} \vee \overline{x_0} \, \overline{x_1} \, \overline{x_2} \overline{x_3} \end{aligned}$$

Минимизация:

1) С помощью основных законов алгебры логики. Склеивание 1-2, 1-3, 1-5, 1-7, 3-4, 4-6, 7-8:

$$\begin{array}{c} y_b = \overline{x_1} \ \overline{x_2} \ \overline{x_3} \lor \overline{x_0} \ \overline{x_2} \ \overline{x_3} \lor \overline{x_0} \ \overline{x_1} \ \overline{x_3} \lor \overline{x_0} \ \overline{x_1} \ \overline{x_2} \lor x_1 \overline{x_2} \ \overline{x_3} \lor x_0 x_1 \overline{x_3} \lor \\ \lor \ \overline{x_1} \ \overline{x_2} x_3 = | \text{склеивание} \ 1 - 5, 1 - 7 | = \overline{x_2} \ \overline{x_3} \lor \overline{x_1} \ \overline{x_2} \lor \overline{x_0} \ \overline{x_2} \ \overline{x_3} \lor \\ \lor \ x_0 x_1 \overline{x_3} \lor \overline{x_0} \ \overline{x_1} \ \overline{x_3} \lor \overline{x_0} \ \overline{x_1} \ \overline{x_2} = | \text{склеиванe} \ 1 - 3, 2 - 6 | = \overline{x_2} \ \overline{x_3} \lor \overline{x_1} \ \overline{x_2} \lor \\ \lor \ x_0 x_1 \overline{x_3} \lor \overline{x_0} \ \overline{x_1} \ \overline{x_3} \\ \end{array}$$

2) Карты Карно

	x_0x_1	$\overline{x_0}x_1$	$\overline{x_0} \overline{x_1}$	$x_0\overline{x_1}$
x_2x_3	0	0	0	0
$\overline{x_2}x_3$	A	0	1	1
$\overline{x_2} \overline{x_3}$		1	1	
$x_2\overline{x_3}$	\ 1 /	0	1)	0

$$y_b = \overline{x_2} \ \overline{x_3} \lor x_0 x_1 \overline{x_3} \lor \overline{x_1} \ \overline{x_2} \lor \overline{x_0} \ \overline{x_1} \ \overline{x_3}$$

3) Метод Квайна

1	$\overline{x_0} \overline{x_1} \overline{x_2} \overline{x_3}$	$1-2: \overline{x_1} \overline{x_2} \overline{x_3} (1')$	1'-5': $\overline{x_2} \overline{x_3} (1'')$	1''-3'': $\overline{x_2} \overline{x_3}$
2	$x_0\overline{x_1}\overline{x_2}\overline{x_3}$	1-3: $\overline{x_0} \ \overline{x_2} \ \overline{x_3} \ (2')$	1'-7': $\overline{x_1} \overline{x_2} (2")$	$2"-5": \overline{x_1} \overline{x_2}$
3	$\overline{x_0}x_1\overline{x_2}\ \overline{x_3}$	$1-5: \overline{x_0} \ \overline{x_1} \ \overline{x_3} \ (3')$	$\overline{x_0} \overline{x_2} \overline{x_3} (3")$	$\overline{x_0} \overline{x_1} \overline{x_3}$
4	$x_0 x_1 \overline{x_2} \overline{x_3}$	1-7: $\overline{x_0} \ \overline{x_1} \ \overline{x_2} \ (4')$	$\overline{x_0} \overline{x_1} \overline{x_3} (4")$	$x_0x_1\overline{x_3}$
5	$\overline{x_0} \overline{x_1} x_2 \overline{x_3}$	$3-4: x_1\overline{x_2}\ \overline{x_3}\ (5')$	$\overline{x_0} \overline{x_1} \overline{x_2} (5")$	
6	$x_0x_1x_2\overline{x_3}$	4-6: $x_0 x_1 \overline{x_3}$ (6')	$x_0x_1\overline{x_3}$ (6'')	
7	$\overline{x_0} \overline{x_1} \overline{x_2} x_3$	7-8: $\overline{x_1} \overline{x_2} x_3 (7')$		
8	$x_0\overline{x_1}\overline{x_2}x_3$			

	$\overline{x_0} \overline{x_1} \overline{x_2} \overline{x_3}$	$x_0\overline{x_1}\overline{x_2}\overline{x_3}$	$\overline{x_0}x_1\overline{x_2}\ \overline{x_3}$	$x_0x_1\overline{x_2}\ \overline{x_3}$	$\overline{x_0} \overline{x_1} x_2 \overline{x_3}$	$x_0x_1x_2\overline{x_3}$	$\overline{x_0} \overline{x_1} \overline{x_2} x_3$	$x_0\overline{x_1}\overline{x_2}x_3$
$\overline{x_2} \overline{x_3}$	X /	\ X /	X	\ X /				
$\overline{x_1} \overline{x_2}$	X/	X/					X	X
$\overline{x_0} \overline{x_1} \overline{x_3}$	X				X			
$x_0x_1\overline{x_3}$				/ X \		X		

$$y_b = \overline{x_2} \, \overline{x_3} \vee \overline{x_1} \, \overline{x_2} \vee \overline{x_0} \, \overline{x_1} \, \overline{x_3} \vee x_0 x_1 \overline{x_3}$$

- $y_b^{\text{СКН}\Phi} = (\overline{x_0} \lor x_1 \lor \overline{x_2} \lor x_3) \land (x_0 \lor \overline{x_1} \lor \overline{x_2} \lor x_3) \land (x_0 \lor \overline{x_1} \lor x_2 \lor \overline{x_3})$ Минимизация:
- 1) С помощью основных законов алгебры логики не минимизируется.

2) Карты Карно

	$x_0 \vee x_1$	$\overline{x_0} \vee x_1$	$\overline{x_0} \vee \overline{x_1}$	$x_0 \vee \overline{x_1}$
$x_2 \vee x_3$	1	1	1	1
$\overline{x_2} \vee x_3$	1	(0)	1	(0)
$\overline{x_2} \vee \overline{x_3}$	1	\mathcal{C}	1	\mathcal{H}
$x_2 \vee \overline{x_3}$	1	1	1	(0)

Нет нулей в соседних ячейках, получаем изначальное выражение:

$$y_b = (\overline{x_0} \vee x_1 \vee \overline{x_2} \vee x_3) \wedge (x_0 \vee \overline{x_1} \vee \overline{x_2} \vee x_3) \wedge (x_0 \vee \overline{x_1} \vee x_2 \vee \overline{x_3})$$

3) Метод Квайна

1	$\overline{x_0} \lor x_1 \lor \overline{x_2} \lor x_3$	
2	$x_0 \vee \overline{x_1} \vee \overline{x_2} \vee x_3$	
3	$x_0 \vee \overline{x_1} \vee x_2 \vee \overline{x_3}$	

	$\overline{x_0} \lor x_1 \lor \overline{x_2} \lor x_3$	$x_0 \vee \overline{x_1} \vee \overline{x_2} \vee x_3$	$x_0 \lor \overline{x_1} \lor x_2 \lor \overline{x_3}$
$\overline{x_0} \lor x_1 \lor \overline{x_2} \lor x_3$	X		
$x_0 \vee \overline{x_1} \vee \overline{x_2} \vee x_3$		X	
$x_0 \lor \overline{x_1} \lor x_2 \lor \overline{x_3}$			X

Не минимизируется, получаем изначальное выражение:

$$\begin{aligned} y_b &= (\overline{x_0} \vee x_1 \vee \overline{x_2} \vee x_3) \wedge (x_0 \vee \overline{x_1} \vee \overline{x_2} \vee x_3) \wedge (x_0 \vee \overline{x_1} \vee x_2 \vee \overline{x_3}) \\ \bullet & y_c^{\text{CДН}\Phi} &= \overline{x_0} \, \overline{x_1} \, \overline{x_2} \, \overline{x_3} \vee x_0 \overline{x_1} \, \overline{x_2} \, \overline{x_3} \vee x_0 \overline{x_1} \overline{x_2} \, \overline{x_3} \vee \overline{x_0} \, \overline{x_1} \overline{x_2} \overline{x_3} \vee x_0 \overline{x_1} \overline{x_2} \overline{x_3} \end{aligned}$$

Минимизация:

1) С помощью основных законов алгебры логики. Склеивание 1-2, 1-4, 1-8, 2-3, 2-5, 2-9, 4-5, 5-7, 6-7, 8-9:

$$y_{c} = \overline{x_{1}} \ \overline{x_{2}} \ \overline{x_{3}} \lor \overline{x_{0}} \ \overline{x_{1}} \ \overline{x_{3}} \lor \overline{x_{0}} \ \overline{x_{1}} \ \overline{x_{2}} \lor x_{0} \overline{x_{2}} \ \overline{x_{3}} \lor x_{0} \overline{x_{1}} \ \overline{x_{3}} \lor x_{0} \overline{x_{1}} \ \overline{x_{2}} \lor \overline{x_{1}} x_{2} \overline{x_{3}} \lor V$$

$$\lor x_{0} x_{2} \overline{x_{3}} \lor x_{1} x_{2} \overline{x_{3}} \lor \overline{x_{1}} \ \overline{x_{2}} x_{3} = |\text{склеивание } 1 - 7, 1 - 10, 2 - 5, 3 - 6, 4 - 8, 7 - 9| =$$

$$= \overline{x_{1}} \ \overline{x_{3}} \lor \overline{x_{1}} \ \overline{x_{2}} \lor \overline{x_{1}} \ \overline{x_{2}} \lor \overline{x_{1}} \ \overline{x_{2}} \lor x_{0} \overline{x_{3}} \lor x_{2} \overline{x_{3}} = \overline{x_{1}} \ \overline{x_{2}} \lor \overline{x_{1}} \ \overline{x_{3}} \lor x_{0} \overline{x_{3}} \lor x_{2} \overline{x_{3}}$$

2) Карты Карно

	x_0x_1	$\overline{x_0}x_1$	$\overline{x_0} \overline{x_1}$	$x_0\overline{x_1}$
x_2x_3				
$\overline{x_2}x_3$				1
$\overline{x_2} \overline{x_3}$				
$x_2\overline{x_3}$		1	1	

$$y_c = x_2 \overline{x_3} \vee \overline{x_1} \, \overline{x_2} \vee x_0 \overline{x_3}$$

3) Метод Квайна

1	$\overline{x_0} \overline{x_1} \overline{x_2} \overline{x_3}$	1-2: $\overline{x_1} \overline{x_2} \overline{x_3} (1')$	1'-8': $\overline{x_1} \overline{x_3} (1'')$	$\overline{x_1} \overline{x_3}$
2	$x_0\overline{x_1}\overline{x_2}\overline{x_3}$	1-4: $\overline{x_0} \ \overline{x_1} \ \overline{x_3} \ (2')$	1'-12': $\overline{x_1} \overline{x_2}$ (2")	$\overline{x_1} \overline{x_2}$
3	$x_0x_1\overline{x_2}\ \overline{x_3}$	1-8: $\overline{x_0} \ \overline{x_1} \ \overline{x_2} \ (3')$	2 '- 5 ': $\overline{x_1}$ $\overline{x_3}$ $(3$ ")	$x_0\overline{x_3}$
4	$\overline{x_0} \overline{x_1} x_2 \overline{x_3}$	$2-3: x_0\overline{x_2} \overline{x_3} (4')$	$3'-6': \overline{x_1} \overline{x_2} (4'')$	$x_2\overline{x_3}$
5	$x_0\overline{x_1}x_2\overline{x_3}$	$2-5: x_0\overline{x_1} \ \overline{x_3} \ (5')$	4'-10': $x_0 \overline{x_3}$ (5")	
6	$\overline{x_0} x_1 x_2 \overline{x_3}$	2-9: $x_0\overline{x_1}\overline{x_2}$ (6')	5'-7': $x_0 \overline{x_3}$ (6")	
7	$x_0x_1x_2\overline{x_3}$	$3-7: x_0 x_1 \overline{x_3} (7')$	4'-10': $x_0 \overline{x_3}$ (7")	
8	$\overline{x_0} \overline{x_1} \overline{x_2} x_3$	$4-5: \overline{x_1}x_2\overline{x_3} (8')$	8'-11': $x_2\overline{x_3}$ (8")	
9	$x_0\overline{x_1}\overline{x_2}x_3$	$4-6: \overline{x_0}x_2\overline{x_3} (9')$		
		5-7: $x_0 x_2 \overline{x_3}$ (10')		
		$6-7:x_1x_2 \overline{x_3} (11')$		
		8-9: $\overline{x_1} \ \overline{x_2} x_3 \ (12')$		

	$\overline{x_0} \overline{x_1} \overline{x_2} \overline{x_3}$	$x_0\overline{x_1}\ \overline{x_2}\ \overline{x_3}$	$x_0x_1\overline{x_2}\ \overline{x_3}$	$\overline{x_0} \overline{x_1} x_2 \overline{x_3}$	$x_0\overline{x_1}x_2\overline{x_3}$	$\overline{x_0} x_1 x_2 \overline{x_3}$	$x_0x_1x_2\overline{x_3}$	$\overline{x_0} \overline{x_1} \overline{x_2} x_3$	$x_0\overline{x_1}\ \overline{x_2}x_3$
$\overline{x_1} \overline{x_3}$	\ X /	\ X /		$\setminus X$	\ X /				
$\overline{x_1} \overline{x_2}$	X	X						X	X
$x_0\overline{x_3}$		X	X		X		X		
$x_2\overline{x_3}$				/ X \	/ X	X	/ X \		

$$y_c = \overline{x_1} \, \overline{x_2} \vee x_0 \overline{x_3} \vee x_2 \overline{x_3}$$

$$\begin{aligned} y_c &= \overline{x_1} \ \overline{x_2} \lor x_0 \overline{x_3} \lor x_2 \overline{x_3} \\ \bullet \quad y_c^{\text{CKH}\Phi} &= (x_0 \lor \overline{x_1} \lor x_2 \lor x_3) \land (x_0 \lor \overline{x_1} \lor x_2 \lor \overline{x_3}) \end{aligned}$$

Минимизация:

1) С помощью основных законов алгебры логики:

$$y_c = (x_0 \vee \overline{x_1} \vee x_2 \vee x_3) \wedge (x_0 \vee \overline{x_1} \vee x_2 \vee \overline{x_3}) = x_0 \vee \overline{x_1} \vee x_2$$

2) Карты Карно

	$x_0 \vee x_1$	$\overline{x_0} \vee x_1$	$\overline{x_0} \vee \overline{x_1}$	$x_0 \vee \overline{x_1}$
$x_2 \vee x_3$	1	1	1	/ 0 \
$\overline{x_2} \vee x_3$	1	1	1	1
$\overline{x_2} \vee \overline{x_3}$	1	1	1	1
$x_2 \vee \overline{x_3}$	1	1	1	(0)

$$y_c = x_0 \vee \overline{x_1} \vee x_2$$

3) Метод Квайна

1	$x_0 \vee \overline{x_1} \vee x_2$	$1\text{-}2: x_0 \vee \overline{x_1} \vee x_2$
2	$x_0 \lor \overline{x_1} \lor x_2 \lor \overline{x_3}$	

	$\overline{x_0} \lor x_1 \lor \overline{x_2} \lor x_3$	$x_0 \lor \overline{x_1} \lor x_2 \lor \overline{x_3}$
$x_0 \vee \overline{x_1} \vee x_2$	X	X

$$y_C = x_0 \vee \overline{x_1} \vee x_2$$

$$\bullet \quad y_d^{\mathsf{CДH\Phi}} = \overline{x_0} \, \overline{x_1} \, \overline{x_2} \, \overline{x_3} \vee \overline{x_0} x_1 \overline{x_2} \, \overline{x_3} \vee x_0 x_1 \overline{x_2} \, \overline{x_3} \vee x_0 \overline{x_1} x_2 \overline{x_3} \vee \overline{x_0} x_1 x_2 \overline{x_3} \vee \overline{x_0} x_1 \overline{x_2} x_3 \vee \overline{x_0} x_1 \overline{x_2} x_3 \vee \overline{x_0} x_1 \overline{x_2} x_3$$

Минимизация:

1) С помощью основных законов алгебры логики. Склеивание 1-2, 1-6, 2-3, 2-5, 6-7, 6-8:

$$\begin{split} y_d &= \overline{x_0} \ \overline{x_2} \ \overline{x_3} \lor \overline{x_0} \ \overline{x_1} \ \overline{x_2} \lor x_1 \overline{x_2} \ \overline{x_3} \lor \overline{x_0} x_1 \overline{x_3} \lor \overline{x_1} \ \overline{x_2} x_3 \lor \overline{x_0} \ \overline{x_2} x_3 \lor x_0 \overline{x_1} x_2 \overline{x_3} = \\ &= |\mathsf{C} \mathsf{K} \mathsf{л} \mathsf{e} \mathsf{u} \mathsf{B} \mathsf{a} \mathsf{h} \mathsf{u} \mathsf{e} \ 1 - \mathsf{6}| = \overline{x_0} \ \overline{x_2} \lor \overline{x_0} \ \overline{x_1} \ \overline{x_2} \lor x_1 \overline{x_2} \ \overline{x_3} \lor \overline{x_0} x_1 \overline{x_3} \lor x_0 \overline{x_1} x_2 \overline{x_3} \end{split}$$

2) Карты Карно

	x_0x_1	$\overline{x_0}x_1$	$\overline{x_0} \overline{x_1}$	$x_0\overline{x_1}$
x_2x_3	0	0	0	0
$\overline{x_2}x_3$	0	A		1
$\overline{x_2} \overline{x_3}$	$\bigcirc 1$		1	0
$x_2\overline{x_3}$	0	1)	0	(1)

$$y_d = \overline{x_0} \ \overline{x_2} \lor x_1 \overline{x_2} \ \overline{x_3} \lor \overline{x_0} x_1 \overline{x_3} \lor \overline{x_1} \ \overline{x_2} x_3 \lor x_0 \overline{x_1} x_2 \overline{x_3}$$

3) Метод Квайна

1	$\overline{x_0} \overline{x_1} \overline{x_2} \overline{x_3}$	1-2: $\overline{x_0}$ $\overline{x_2}$ $\overline{x_3}$ (1')	1'-6': $\overline{x_0} \ \overline{x_2}$
2	$\overline{x_0}x_1\overline{x_2}\ \overline{x_3}$	1-6: $\overline{x_0} \ \overline{x_1} \ \overline{x_2} \ (2')$	$\overline{x_0} \overline{x_1} \overline{x_2}$
3	$x_0 x_1 \overline{x_2} \overline{x_3}$	2-3: $x_1\overline{x_2} \overline{x_3}$ (3')	$x_1\overline{x_2} \overline{x_3}$
4	$x_0\overline{x_1}x_2\overline{x_3}$	$2-5: \overline{x_0}x_1\overline{x_3} (4')$	$\overline{x_0}x_1\overline{x_3}$
5	$\overline{x_0}x_1x_2\overline{x_3}$	6-7: $\overline{x_1} \overline{x_2} x_3$ (5')	$\overline{x_1} \overline{x_2} x_3$
6	$\overline{x_0} \overline{x_1} \overline{x_2} x_3$	6-8: $\overline{x_0}$ $\overline{x_2}$ x_3 (6')	$x_0\overline{x_1}x_2\overline{x_3}$
7	$x_0\overline{x_1}\overline{x_2}x_3$	$x_0\overline{x_1}x_2\overline{x_3}$ (7')	
8	$\overline{x_0}x_1\overline{x_2}x_3$		

	$\overline{x_0} \overline{x_1} \overline{x_2} \overline{x_3}$	$\overline{x_0}x_1\overline{x_2}\ \overline{x_3}$	$x_0 x_1 \overline{x_2} \overline{x_3}$	$x_0\overline{x_1}x_2\overline{x_3}$	$\overline{x_0}x_1x_2\overline{x_3}$	$\overline{x_0} \overline{x_1} \overline{x_2} x_3$	$x_0\overline{x_1}\overline{x_2}x_3$	$\overline{x_0}x_1\overline{x_2}x_3$
$\overline{x_0} \overline{x_2}$	\ X /	X /				\ X /		X
$\overline{x_0} \overline{x_1} \overline{x_2}$	X					\ X /		
$x_1\overline{x_2} \overline{x_3}$		X	X					
$\overline{x_0}x_1\overline{x_3}$		X			X			
$\overline{x_1} \overline{x_2} x_3$						$X \setminus$	X	
$x_0\overline{x_1}x_2\overline{x_3}$				X				

$$y_d = \overline{x_0} \ \overline{x_2} \lor x_1 \overline{x_2} \ \overline{x_3} \lor \overline{x_0} x_1 \overline{x_3} \lor \overline{x_1} \ \overline{x_2} x_3 \lor x_0 \overline{x_1} x_2 \overline{x_3}$$

$$\bullet \quad y_d^{\mathsf{CKH}\Phi} = (\overline{x_0} \vee x_1 \vee x_2 \vee x_3) \wedge (x_0 \vee x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_0} \vee \overline{x_1} \vee \overline{x_2} \vee x_3)$$

Минимизация:

- 1) С помощью основных законов алгебры логики не минимизируется.
- 2) Карты Карно

	$x_0 \vee x_1$	$\overline{x_0} \vee x_1$	$\overline{x_0} \vee \overline{x_1}$	$x_0 \vee \overline{x_1}$
$x_2 \vee x_3$	1	(0)		1
$\overline{x_2} \vee x_3$	(0)	1	(0)	1
$\overline{x_2} \vee \overline{x_3}$	1	1	1	1
$x_2 \vee \overline{x_3}$	1	1	1	1

Нет нулей в соседних ячейках, получаем изначальное выражение:

$$y_d = (\overline{x_0} \vee x_1 \vee x_2 \vee x_3) \wedge (x_0 \vee x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_0} \vee \overline{x_1} \vee \overline{x_2} \vee x_3)$$

3) Метод Квайна

1	$\overline{x_0} \lor x_1 \lor x_2 \lor x_3$	
2	$x_0 \lor x_1 \lor \overline{x_2} \lor x_3$	
3	$\overline{x_0} \vee \overline{x_1} \vee \overline{x_2} \vee x_3$	

	$\overline{x_0} \lor x_1 \lor x_2 \lor x_3$	$x_0 \lor x_1 \lor \overline{x_2} \lor x_3$	$\overline{x_0} \lor \overline{x_1} \lor \overline{x_2} \lor x_3$
$\overline{x_0} \lor x_1 \lor x_2 \lor x_3$	X		
$x_0 \lor x_1 \lor \overline{x_2} \lor x_3$		X	
$\overline{x_0} \vee \overline{x_1} \vee \overline{x_2} \vee x_3$			X

Не минимизируется, получаем изначальное выражение:

$$y_d = (\overline{x_0} \vee x_1 \vee x_2 \vee x_3) \wedge (x_0 \vee x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_0} \vee \overline{x_1} \vee \overline{x_2} \vee x_3)$$

•
$$y_e^{\text{СДН}\Phi} = \overline{x_0} \, \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \vee \, \overline{x_0} x_1 \overline{x_2} \, \overline{x_3} \, \vee \, \overline{x_0} \, x_1 x_2 \overline{x_3} \, \vee \, \overline{x_0} \, \overline{x_1} \, \overline{x_2} x_3 \, \vee \, \overline{x_0} \, \overline{x_1} \, \overline{x_2} x_3$$
 Минимизация:

1) С помощью основных законов алгебры логики. Склеивание 1-2, 1-4, 2-3, 2-5,4-5:

$$y_e = \overline{x_0} \ \overline{x_2} \ \overline{x_3} \lor \overline{x_0} \ \overline{x_1} \ \overline{x_2} \lor \overline{x_0} x_1 \overline{x_3} \lor \overline{x_0} x_1 \overline{x_2} \lor \overline{x_0} \ \overline{x_2} x_3 =$$
$$= |\mathsf{C} \mathsf{к} \mathsf{л} \mathsf{e} \mathsf{u} \mathsf{B} \mathsf{a} \mathsf{h} \mathsf{u} \mathsf{e} \ 1 - \mathsf{5}, \mathsf{2} - \mathsf{4}| = \overline{x_0} \ \overline{x_2} \lor \overline{x_0} \ \overline{x_2} \lor \overline{x_0} \ \overline{x_2} \lor \overline{x_0} x_1 \overline{x_3} = \overline{x_0} \ \overline{x_2} \lor \overline{x_0} x_1 \overline{x_3}$$

2) Карты Карно

	x_0x_1	$\overline{x_0}x_1$	$\overline{x_0} \overline{x_1}$	$x_0\overline{x_1}$
x_2x_3	0	0	0	0
$\overline{x_2}x_3$	0	1	1	0
$\overline{\chi_2} \overline{\chi_3}$	0	$\sqrt{1}$	1	0
$x_2\overline{x_3}$	0	(1)	0	0

$$y_e = \overline{x_0} \, \overline{x_2} \vee \overline{x_0} x_1 \overline{x_3}$$

3) Метод Квайна

1	$\overline{x_0} \overline{x_1} \overline{x_2} \overline{x_3}$	1-2: $\overline{x_0}$ $\overline{x_2}$ $\overline{x_3}$ (1')	1'-5': $\overline{x_0} \ \overline{x_2}$
2	$\overline{x_0}x_1\overline{x_2}\ \overline{x_3}$	1-4: $\overline{x_0} \overline{x_1} \overline{x_2} (2')$	2 '-4': $\overline{x_0}$ $\overline{x_2}$
3	$\overline{x_0} x_1 x_2 \overline{x_3}$	$2-3: \overline{x_0}x_1\overline{x_3}$ (3')	$\overline{x_0}x_1\overline{x_3}$
4	$\overline{x_0} \overline{x_1} \overline{x_2} x_3$	$2-5: \overline{x_0}x_1\overline{x_2} (4')$	
5	$\overline{x_0}x_1\overline{x_2}x_3$	$4-5: \overline{x_0} \ \overline{x_2} x_3 \ (5')$	

	$\overline{x_0} \overline{x_1} \overline{x_2} \overline{x_3}$	$\overline{x_0}x_1\overline{x_2}\ \overline{x_3}$	$\overline{x_0} x_1 x_2 \overline{x_3}$	$\overline{x_0} \overline{x_1} \overline{x_2} x_3$	$\overline{x_0}x_1\overline{x_2}x_3$
$\overline{x_0} \overline{x_2}$	X	X		X	
$\overline{x_0}x_1\overline{x_3}$		X	X		

$$y_e = \overline{x_0} \, \overline{x_2} \vee \overline{x_0} x_1 \overline{x_3}$$

• $y_e^{\text{CKH}\Phi} = (\overline{x_0} \lor x_1 \lor x_2 \lor x_3) \land (\overline{x_0} \lor \overline{x_1} \lor x_2 \lor x_3) \land (x_0 \lor x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_0} \lor x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_0} \lor x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_0} \lor x_1 \lor x_2 \lor \overline{x_3})$

Минимизация:

1) С помощью основных законов алгебры логики, 1-2, 1-4, 1-6, 2-5, 3-4, 4-5:

$$\begin{aligned} y_e^{\mathsf{CKH}\Phi} &= (\overline{x_0} \vee x_2 \vee x_3) \wedge (\overline{x_0} \vee x_1 \vee x_3) \wedge (\overline{x_0} \vee x_1 \vee x_2) \wedge (\overline{x_0} \vee \overline{x_1} \vee x_3) \wedge \\ \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_0} \vee \overline{x_2} \vee x_3) &= |1 - 6,2 - 4| = (\overline{x_0} \vee x_3) \wedge (\overline{x_0} \vee x_3) \wedge \\ \wedge (\overline{x_0} \vee x_1 \vee x_2) \wedge (x_1 \vee \overline{x_2} \vee x_3) &= (\overline{x_0} \vee x_3) \wedge (\overline{x_0} \vee x_1 \vee x_2) \wedge (x_1 \vee \overline{x_2} \vee x_3) \end{aligned}$$

2) Карты Карно

	$x_0 \vee x_1$	$\overline{x_0} \vee x_1$	$\overline{x_0} \vee \overline{x_1}$	$x_0 \vee \overline{x_1}$
$x_2 \vee x_3$	1	0	9	1
$\overline{x_2} \vee x_3$	9		0	1
$\overline{x_2} \vee \overline{x_3}$	1	1,	1	1
$x_2 \vee \overline{x_3}$	1	0	1	1

$$y_e = (\overline{x_0} \lor x_3) \land (\overline{x_0} \lor x_1 \lor x_2) \land (x_1 \lor \overline{x_2} \lor x_3)$$

3) Метод Квайна

1	$\overline{x_0} \lor x_1 \lor x_2 \lor x_3$	$1-2: \overline{x_0} \vee x_2 \vee x_3 (1')$	1'-6': $\overline{x_0} \vee x_3$
2	$\overline{x_0} \lor \overline{x_1} \lor x_2 \lor x_3$	$1\text{-}4: \overline{x_0} \vee x_1 \vee x_3 (2')$	2 '-4': $\overline{x_0} \vee x_3$
3	$x_0 \lor x_1 \lor \overline{x_2} \lor x_3$	1-6: $\overline{x_0} \vee x_1 \vee x_2$ (3')	$\overline{x_0} \lor x_1 \lor x_2$
4	$\overline{x_0} \lor x_1 \lor \overline{x_2} \lor x_3$	2-5: $\overline{x_0} \vee \overline{x_1} \vee x_3$ (4')	$x_1 \vee \overline{x_2} \vee x_3$
5	$\overline{x_0} \lor \overline{x_1} \lor \overline{x_2} \lor x_3$	3-4: $x_1 \vee \overline{x_2} \vee x_3$ (5')	
6	$\overline{x_0} \lor x_1 \lor x_2 \lor \overline{x_3}$	$4-5: \overline{x_0} \vee \overline{x_2} \vee x_3 (6')$	

	$\overline{x_0}$	V <i>x</i> ₁ V <i>x</i> ₂	$\overline{x_0}$	$V \overline{x_1} V x_2$	$x_0 \vee x_1 \vee \overline{x_2}$	$\overline{x_0} \vee x_1 \vee \overline{x_2}$	$\overline{x_0} \vee \overline{x_1} \vee \overline{x_2}$	$\overline{x_0} \lor x_1 \lor x_2$
	Vχ	3	V X	3	V <i>x</i> ₃	V <i>x</i> ₃	V <i>x</i> ₃	$V \overline{x_3}$
$\overline{x_0} \vee x_3$	/	X		X /		X /	X	
$\overline{x_0} \lor x_1 \lor x_2$		X		\times		\sim		X
$x_1 \vee \overline{x_2} \vee x_3$					X	/ X		

$$y_e = (\overline{x_0} \vee x_3) \wedge (\overline{x_0} \vee x_1 \vee x_2) \wedge (x_1 \vee \overline{x_2} \vee x_3)$$

$$y_f^{\text{CДН}\Phi} = \overline{x_0} \, \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \vee \, \overline{x_0} \, \overline{x_1} x_2 \overline{x_3} \, \vee \, x_0 \overline{x_1} x_2 \overline{x_3} \, \vee \, \overline{x_0} x_1 x_2 \overline{x_3} \, \vee \, \overline{x_0} \, \overline{x_1} \, \overline{x_2} x_3 \, \vee \\ \vee \, x_0 \overline{x_1} \, \overline{x_2} x_3 \, \vee \, \overline{x_0} x_1 \overline{x_2} x_3$$

Минимизация:

1) С помощью основных законов алгебры логики. Склеивание 1-2, 1-5, 2-3, 2-4, 5-6, 5-7:

$$y_f = \overline{x_0} \ \overline{x_1} \ \overline{x_3} \lor \overline{x_0} \ \overline{x_1} \ \overline{x_2} \lor \overline{x_1} x_2 \overline{x_3} \lor \overline{x_0} x_2 \overline{x_3} \lor \overline{x_1} \ \overline{x_2} x_3 \lor \overline{x_0} \ \overline{x_2} x_3$$

2) Карты Карно

	x_0x_1	$\overline{x_0}x_1$	$\overline{x_0} \overline{x_1}$	$x_0\overline{x_1}$
x_2x_3	0	0	0	0
$\overline{x_2}x_3$	0	≤ 1	(1)	
$\overline{\chi_2} \overline{\chi_3}$	0	0	1)	0
$x_2\overline{x_3}$	0			1

$$y_f = \overline{x_0} \ \overline{x_2} x_3 \vee \overline{x_1} \ \overline{x_2} x_3 \vee \overline{x_0} x_2 \overline{x_3} \vee \overline{x_1} x_2 \overline{x_3} \vee \overline{x_0} \ \overline{x_1} \ \overline{x_2}$$

3) Метод Квайна

1	$\overline{x_0} \overline{x_1} \overline{x_2} \overline{x_3}$	$1-2: \overline{x_0} \ \overline{x_1} \ \overline{x_3} \ (1')$
2	$\overline{x_0} \overline{x_1} x_2 \overline{x_3}$	1-5: $\overline{x_0} \ \overline{x_1} \ \overline{x_2} \ (2')$
3	$x_0\overline{x_1}x_2\overline{x_3}$	$2-3: \overline{x_1}x_2\overline{x_3}$ (3')
4	$\overline{x_0}x_1x_2\overline{x_3}$	$2-4: \overline{x_0}x_2\overline{x_3} (4')$
5	$\overline{x_0} \overline{x_1} \overline{x_2} x_3$	5-6: $\overline{x_1} \overline{x_2} x_3$ (5')
6	$x_0\overline{x_1}\overline{x_2}x_3$	5-7: $\overline{x_0} \overline{x_2} x_3$ (6')
7	$\overline{x_0}x_1\overline{x_2}x_3$	

	$\overline{x_0} \overline{x_1} \overline{x_2} \overline{x_3}$	$\overline{x_0} \overline{x_1} x_2 \overline{x_3}$	$x_0\overline{x_1}x_2\overline{x_3}$	$\overline{x_0}x_1x_2\overline{x_3}$	$\overline{x_0} \overline{x_1} \overline{x_2} x_3$	$x_0\overline{x_1}\ \overline{x_2}x_3$	$\overline{x_0}x_1\overline{x_2}x_3$
$\overline{x_0} \overline{x_1} \overline{x_3}$	X	\ X /					
$\overline{x_0} \overline{x_1} \overline{x_2}$	X				X /		
$\overline{x_1}x_2\overline{x_3}$		X	X				
$\overline{x_0}x_2\overline{x_3}$		X		X			
$\overline{x_1} \overline{x_2} x_3$					$X \setminus$	X	
$\overline{x_0} \overline{x_2} x_3$					/ X \		X

$$y_f = \overline{x_0} \, \overline{x_2} x_3 \vee \overline{x_1} \, \overline{x_2} x_3 \vee \overline{x_0} x_2 \overline{x_3} \vee \overline{x_1} x_2 \overline{x_3} \vee \overline{x_0} \, \overline{x_1} \, \overline{x_2}$$

•
$$y_f^{\text{CKH}\Phi} = (\overline{x_0} \lor x_1 \lor x_2 \lor x_3) \land (x_0 \lor \overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_0} \lor \overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_0} \lor \overline{x_1} \lor \overline{x_2} \lor x_3)$$

Минимизация:

1) С помощью основных законов алгебры логики 1-3, 2-3, 3-4:

$$y_f = (\overline{x_0} \vee x_2 \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_3) \wedge (\overline{x_0} \vee \overline{x_1} \vee x_3)$$

2) Карты Карно

	$x_0 \vee x_1$	$\overline{x_0} \vee x_1$	$\overline{x_0} \vee \overline{x_1}$	$x_0 \vee \overline{x_1}$
$x_2 \vee x_3$	1	Θ	\bigcirc	
$\overline{x_2} \vee x_3$	1	1	(0)	1
$\overline{x_2} \vee \overline{x_3}$	1	1	Ĭ	1
$x_2 \vee \overline{x_3}$	1	1	1	1

$$y_f = (\overline{x_0} \vee x_2 \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_3) \wedge (\overline{x_0} \vee \overline{x_1} \vee x_3)$$

3) Метод Квайна

1	$\overline{x_0} \lor x_1 \lor x_2 \lor x_3$	1-3: $\overline{x_0} \vee x_2 \vee x_3$
2	$x_0 \lor \overline{x_1} \lor x_2 \lor x_3$	$2-3: \overline{x_1} \vee x_2 \vee x_3$
3	$\overline{x_0} \lor \overline{x_1} \lor x_2 \lor x_3$	$3-4: \overline{x_0} \vee \overline{x_1} \vee x_3$
4	$\overline{x_0} \vee \overline{x_1} \vee \overline{x_2} \vee x_3$	

	$\overline{x_0} \lor x_1 \lor x_2 \lor x_3$	$x_0 \lor \overline{x_1} \lor x_2 \lor x_3$	$\overline{x_0} \lor \overline{x_1} \lor x_2 \lor x_3$	$\overline{x_0} \vee \overline{x_1} \vee \overline{x_2} \vee x_3$
$\overline{x_0} \lor x_2 \lor x_3$	X		X /	
$\overline{x_1} \lor x_2 \lor x_3$		X	X	
$\overline{x_0} \vee \overline{x_1} \vee x_3$			X	X

$$y_f = (\overline{x_0} \vee x_2 \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_3) \wedge (\overline{x_0} \vee \overline{x_1} \vee x_3)$$

$$\bullet \quad y_g^{\mathrm{CДH\Phi}} = \overline{x_0} x_1 \overline{x_2} \, \overline{x_3} \vee x_0 x_1 \overline{x_2} \, \overline{x_3} \vee \overline{x_0} \, \overline{x_1} x_2 \overline{x_3} \vee x_0 \overline{x_1} x_2 \overline{x_3} \vee \overline{x_0} x_1 x_2 \overline{x_3} \vee \overline{x_0} x_1 x_2 \overline{x_3} \vee \overline{x_0} \overline{x_1} \, \overline{x_2} x_3 \vee x_0 \overline{x_1} \, \overline{x_2} x_3 \vee \overline{x_0} \, \overline{x_1} \, \overline{x_2} \, \overline{x_2} \, \overline{x_2} \, \overline{x_2} \, \overline{x_2} \, \overline{x_3} \vee \overline{x_0} \, \overline{x_1} \, \overline{x_2} \, \overline{x_$$

Минимизация:

1) С помощью основных законов алгебры логики. Склеивание 1-2, 1-5, 3-4, 3-5, 6-7:

$$y_g = x_1 \overline{x_2} \ \overline{x_3} \lor \overline{x_0} x_1 \overline{x_3} \lor \overline{x_1} x_2 \overline{x_3} \lor \overline{x_0} x_2 \overline{x_3} \lor \overline{x_1} \ \overline{x_2} x_3$$

2) Карты Карно

	x_0x_1	$\overline{x_0}x_1$	$\overline{x_0} \overline{x_1}$	$x_0\overline{x_1}$
x_2x_3	0	0	0	0
$\overline{x_2}x_3$	0	0	1	
$\overline{x_2} \overline{x_3}$		1	0	0
$x_2\overline{x_3}$	0	\bigcirc 1		

$$y_g = x_1 \overline{x_2} \, \overline{x_3} \vee \overline{x_0} x_2 \overline{x_3} \vee \overline{x_1} x_2 \overline{x_3} \vee \overline{x_1} \, \overline{x_2} x_3$$

3) Метод Квайна

1	$\overline{x_0}x_1\overline{x_2}\ \overline{x_3}$	$1-2: x_1\overline{x_2}\ \overline{x_3}$
2	$x_0 x_1 \overline{x_2} \overline{x_3}$	$1-5: \overline{x_0}x_1\overline{x_3}$
3	$\overline{x_0} \overline{x_1} x_2 \overline{x_3}$	$3-4: \overline{x_1}x_2\overline{x_3}$
4	$x_0\overline{x_1}x_2\overline{x_3}$	$3-5: \overline{x_0}x_2\overline{x_3}$
5	$\overline{x_0}x_1x_2\overline{x_3}$	$6-7: \overline{x_1} \ \overline{x_2} x_3$
6	$\overline{x_0} \overline{x_1} \overline{x_2} x_3$	
7	$x_0\overline{x_1} \overline{x_2}x_3$	

	$\overline{x_0}x_1\overline{x_2}\ \overline{x_3}$	$x_0 x_1 \overline{x_2} \overline{x_3}$	$\overline{x_0} \overline{x_1} x_2 \overline{x_3}$	$x_0\overline{x_1}x_2\overline{x_3}$	$\overline{x_0}x_1x_2\overline{x_3}$	$\overline{x_0} \overline{x_1} \overline{x_2} x_3$	$x_0\overline{x_1}\overline{x_2}x_3$
$x_1\overline{x_2} \overline{x_3}$	\ X /	X					
$\overline{x_0}x_1\overline{x_3}$	X				X		
$\overline{x_1}x_2\overline{x_3}$			X	X		X	
$\overline{x_0}x_2\overline{x_3}$			X		X		
$\overline{x_1} \overline{x_2} x_3$						/ X	X

$$y_g = x_1 \overline{x_2} \ \overline{x_3} \lor \overline{x_0} x_1 \overline{x_3} \lor \overline{x_1} x_2 \overline{x_3} \lor \overline{x_1} \ \overline{x_2} x_3$$

•
$$y_g^{\text{CKH}\Phi} = (x_0 \lor x_1 \lor x_2 \lor x_3)(\overline{x_0} \lor x_1 \lor x_2 \lor x_3) \land (\overline{x_0} \lor \overline{x_1} \lor \overline{x_2} \lor x_3) \land (x_0 \lor \overline{x_1} \lor x_2 \lor \overline{x_3})$$

Минимизация:

1) С помощью основных законов алгебры логики 1-2:

$$y_g = (x_1 \vee x_2 \vee x_3) \wedge (\overline{x_0} \vee \overline{x_1} \vee \overline{x_2} \vee x_3) \wedge (x_0 \vee \overline{x_1} \vee x_2 \vee \overline{x_3})$$

2) Карты Карно

	$x_0 \vee x_1$	$\overline{x_0} \vee x_1$	$\overline{x_0} \vee \overline{x_1}$	$x_0 \vee \overline{x_1}$
$x_2 \vee x_3$	Θ		1	1
$\overline{x_2} \vee x_3$	1	1	(0)	1
$\overline{x_2} \vee \overline{x_3}$	1	1	1	
$x_2 \vee \overline{x_3}$	1	1	1	(0)

$$y_q = (x_1 \lor x_2 \lor x_3) \land (\overline{x_0} \lor \overline{x_1} \lor \overline{x_2} \lor x_3) \land (x_0 \lor \overline{x_1} \lor x_2 \lor \overline{x_3})$$

3) Метод Квайна

1	$x_0 \lor x_1 \lor x_2 \lor x_3$	1-2: $x_1 \vee x_2 \vee x_3$
2	$\overline{x_0} \lor x_1 \lor x_2 \lor x_3$	$\overline{x_0} \vee \overline{x_1} \vee \overline{x_2} \vee x_3$
3	$\overline{x_0} \vee \overline{x_1} \vee \overline{x_2} \vee x_3$	$x_0 \vee \overline{x_1} \vee x_2 \vee \overline{x_3}$
4	$x_0 \lor \overline{x_1} \lor x_2 \lor \overline{x_3}$	

	$x_0 \lor x_1 \lor x_2 \lor x_3$	$\overline{x_0} \lor x_1 \lor x_2 \lor x_3$	$\overline{x_0} \vee \overline{x_1} \vee \overline{x_2} \vee x_3$	$x_0 \lor \overline{x_1} \lor x_2 \lor \overline{x_3}$
$x_1 \lor x_2 \lor x_3$	X	X		
$\overline{x_0} \lor \overline{x_1} \lor \overline{x_2} \lor x_3$			X	
$x_0 \vee \overline{x_1} \vee x_2 \vee \overline{x_3}$				X

$$y_g = (x_1 \vee x_2 \vee x_3) \wedge (\overline{x_0} \vee \overline{x_1} \vee \overline{x_2} \vee x_3) \wedge (x_0 \vee \overline{x_1} \vee x_2 \vee \overline{x_3})$$

1.3 Привести полученные выражения к базису 2И-НЕ и 2ИЛИ-НЕ

При переводе в базис к изначальному алгебраическому уравнению применяется двойное отрицание, после чего используются законы де Моргана:

$$\overline{a \wedge b} = \overline{a} \vee \overline{b}$$

$$\overline{a \vee b} = \overline{a} \wedge \overline{b}$$

Чтобы не загромождать запись двойными отрицаниями, они будут опускаться после того, как будет показано их применение, то есть:

$$\overline{\overline{A} \lor B \lor C \lor D} = \overline{\overline{A} \overline{B} \overline{C} \overline{D}} = \overline{\overline{A} \overline{B}} \overline{\overline{C} \overline{D}} = |\text{убрал из записи}| = \overline{\overline{A} \overline{B} \overline{C} \overline{D}}$$

$$A \lor B \lor C \lor D = \overline{\overline{\overline{A} \lor \overline{B}} \lor \overline{\overline{AC} \lor \overline{D}}} = |\text{убрал из записи}| = A \lor B \lor C \lor D$$

2И-НЕ:

$$y_{a}^{\text{ДНФ}} = \overline{\overline{x_{0}} \ \overline{x_{2}} \ \overline{x_{3}} \ \vee x_{1} \overline{x_{3}} \ \vee x_{0} x_{2} \overline{x_{3}} \ \vee \overline{x_{1}} \ \overline{x_{2}} x_{3}} = \overline{\overline{x_{0}} \ \overline{x_{2}} \ \overline{x_{3}}} \ \overline{x_{1}} \overline{x_{3}} \ \overline{x_{0}} \overline{x_{2}} \overline{x_{3}} \ \overline{\overline{x_{1}}} \overline{x_{2}} \overline{x_{3}}$$

$$= \overline{\overline{\overline{x_{0}}} \ \overline{\overline{x_{2}}} \ \overline{\overline{x_{3}}} \ \overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}} \ \overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}} = \overline{\overline{\overline{x_{0}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}} \ \overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}} \ \overline{\overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{x_{3}}} = \overline{\overline{\overline{x_{0}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}} \ \overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}} \ \overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}} = \overline{\overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}} \ \overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}} \ \overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}} = \overline{\overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}}} = \overline{\overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}}} \ \overline{\overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}}} = \overline{\overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}}} \ \overline{\overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}}} \ \overline{\overline{\overline{x_{1}}}} \overline{\overline{\overline{x_{2}}} \overline{\overline{x_{3}}}} = \overline{\overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}}} = \overline{\overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}}} \ \overline{\overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}}} \ \overline{\overline{\overline{x_{1}}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}}} = \overline{\overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}}} \ \overline{\overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}}} = \overline{\overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}}} \ \overline{\overline{\overline{x_{1}}} \overline{\overline{x_{2}}} \overline{\overline{x_{3}}}} = \overline{\overline{\overline{\overline{x_{1}}}} \overline{\overline{\overline{x_{2}}}} \overline{\overline{\overline{x_{1}}}} \overline{\overline{x_{2}}} \overline{\overline{\overline{x_{3}}}} = \overline{\overline{\overline{\overline{x_{1}}}} \overline{\overline{\overline{x_{2}}}} \overline{\overline{\overline{x_{2}}}} \overline{\overline{\overline{x_{1}}}} \overline{\overline{\overline{x_{2}}}} \overline{\overline{\overline{x_{2}}}} \overline{\overline{\overline{x_{1}}}} \overline{\overline{\overline{x_{2}}}} \overline{\overline{\overline{x_{2}}}} = \overline{\overline{\overline{\overline{x_{1}}}} \overline{\overline{\overline{x_{2}}}} \overline{\overline{\overline{x_{2$$

$$y_{a}^{\text{RH}\Phi} = \overline{(\overline{x_{0}} \vee x_{1} \vee x_{2} \vee x_{3})} \overline{(x_{0} \vee x_{1} \vee \overline{x_{2}} \vee x_{3})} \overline{(x_{0} \vee \overline{x_{1}} \vee x_{2} \vee \overline{x_{3}})} =$$

$$= \overline{(x_{0}} \vee x_{1} \vee x_{2} \vee x_{3})} \overline{(x_{0} \vee x_{1} \vee \overline{x_{2}} \vee x_{3})} \overline{(x_{0} \vee \overline{x_{1}} \vee x_{2} \vee \overline{x_{3}})} =$$

$$= \overline{x_{0}} \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{0}} \overline{x_{1}} x_{2} \overline{x_{3}} \overline{x_{0}} \overline{x_{1}} x_{2} x_{3}} = \overline{x_{0}} \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{0}} \overline{x_{1}} \overline{x_{2}} x_{3}} \overline{x_{0}} \overline{x_{1}} \overline{x_{2}} x_{3}$$

$$= \overline{x_{0}} \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{0}} \overline{x_{1}} x_{2} \overline{x_{3}} \overline{x_{0}} \overline{x_{1}} x_{2} x_{3} \overline{x_{0}} \overline{x_{1}} x_{2} x_{3}$$

$$= \overline{x_{0}} \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{0}} \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{0}} \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{0}} \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{0}} \overline{x_{1}} \overline{x_{2}} \overline{x_{3}}$$

$$= \overline{x_{2}} \overline{x_{3}} \overline{x_{1}} \overline{x_{2}} \overline{x_{0}} \overline{x_{1}} \overline{x_{3}} \overline{x_{0}} x_{1} \overline{x_{3}} \overline{x_{0}} \overline{x_{1}} \overline{x_{3}} \overline{x_{0}} \overline{x_{1}} \overline{x_{3}} \overline{x_{0}} \overline{x_{1}} \overline{x_{3}}$$

$$= \overline{x_{2}} \overline{x_{3}} \overline{x_{1}} \overline{x_{2}} \overline{x_{0}} \overline{x_{1}} \overline{x_{3}} \overline{x_{0}} \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{0}} \overline{x_{1}} \overline{x_{2}}$$

$$= \overline{(x_0 \vee x_1 \vee x_2 \vee x_3)} \overline{(x_0 \vee x_1 \vee \overline{x_2} \vee x_3)} \overline{(x_0 \vee \overline{x_1} \vee \overline{x_2} \vee x_3)} =$$

$$= \overline{x_0 \overline{x_1}} \overline{x_2} \overline{x_3} \overline{x_0} \overline{x_1 x_2 \overline{x_3}} \overline{x_0 x_1 x_2 \overline{x_3}} \overline{x_0 \overline{x_1} x_2 \overline{x_3}} \overline{x_0 x_1 x_2 \overline{x_3}} \overline{x_0 x_1 x_2 \overline{x_3}} \overline{x_0 x_1 x_2 \overline{x_3}} \overline{x_0 x_1 x_2 \overline{x_3}}$$

$$= \overline{x_0 \overline{x_1}} \overline{x_2} \overline{x_3} \overline{x_0} \overline{x_1 x_2 \overline{x_3}} \overline{x_0 x_1 x_2 \overline{x_3}} \overline{x_0 x_1 x_2 \overline{x_3}} \overline{x_0 x_1 x_2 \overline{x_3}}$$

$$= \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_3}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_3}}$$

$$= \overline{(x_0 \vee x_3)} \overline{(x_0 \vee x_1 \vee x_2)} \overline{(x_1 \vee \overline{x_2} \vee x_3)} = \overline{x_0 \overline{x_3}} \overline{x_0 x_1 \overline{x_2}} \overline{x_1 x_2 \overline{x_3}} = \overline{x_0 \overline{x_3}} \overline{x_0 x_1 \overline{x_2}} \overline{x_1 x_2 \overline{x_3}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_1 x_2 \overline{x_3}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_1 x_2 \overline{x_3}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_1 x_2 \overline{x_3}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_1 x_2 \overline{x_3}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_1 x_2 \overline{x_3}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_1 x_2 \overline{x_3}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_2} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} = \overline{x_0 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} \overline{x_0 x_1 \overline{x_2}} = \overline{x_0 \overline{x_2}}$$

$$= \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_0} x_1 x_2 \overline{x_3} \overline{x_0} x_1 \overline{x_2} x_3 = \overline{\overline{x_1}} \overline{x_2} \overline{x_3} \overline{x_3} \overline{\overline{x_0} x_1} \overline{\overline{x_2} x_3} \overline{\overline{x_0} x_1} \overline{\overline{x_2} x_3} = \overline{\overline{x_1}} \overline{x_2} \overline{x_3} \overline{x_0} x_1 x_2 \overline{x_3} \overline{x_0} x_1 \overline{x_2} x_3$$

2ИЛИ-НЕ:

$$y_{a}^{\text{JH}\Phi} = \frac{\overline{x_{0}} \, \overline{x_{2}} \, \overline{x_{3}} \, \vee \, x_{1} \, \overline{x_{3}} \, \vee \, x_{0} \, x_{2} \, \overline{x_{3}} \, \vee \, \overline{x_{1}} \, \overline{x_{2}} \, x_{3}}{\overline{x_{0}} \, \vee \, \overline{x_{2}} \, \overline{x_{3}} \, \vee \, \overline{x_{1}} \, \overline{x_{2}} \, x_{3}} = \frac{\overline{x_{0}} \, \overline{x_{2}} \, \overline{x_{3}} \, \vee \, \overline{x_{1}} \, \overline{x_{2}} \, x_{3}}{\overline{x_{0}} \, \vee \, \overline{x_{2}} \, \vee \, x_{3}} \, \vee \, \overline{x_{1}} \, \vee \, x_{2} \, \vee \, \overline{x_{3}}} = \frac{\overline{x_{0}} \, \vee \, x_{2} \, \vee \, x_{3}}{\overline{x_{0}} \, \vee \, \overline{x_{2}} \, \vee \, x_{3}} \, \vee \, \overline{x_{1}} \, \vee \, x_{2} \, \vee \, \overline{x_{3}}} = \frac{\overline{x_{0}} \, \vee \, x_{2} \, \vee \, x_{3}}{\overline{x_{0}} \, \vee \, \overline{x_{2}} \, \vee \, x_{3}} \, \vee \, \overline{x_{1}} \, \vee \, x_{2} \, \vee \, \overline{x_{3}}} = \frac{\overline{x_{0}} \, \vee \, x_{2} \, \vee \, x_{3}}{\overline{x_{0}} \, \vee \, \overline{x_{2}} \, \vee \, x_{3}} \, \vee \, \overline{x_{1}} \, \vee \, x_{2} \, \vee \, \overline{x_{3}}} = \frac{\overline{x_{0}} \, \vee \, x_{1} \, \vee \, x_{2} \, \vee \, x_{3}}{\overline{x_{0}} \, \vee \, \overline{x_{1}} \, \vee \, x_{2} \, \vee \, \overline{x_{3}}} \, \vee \, \overline{x_{1}} \, \vee \, x_{2} \, \vee \, \overline{x_{3}}} = \frac{\overline{x_{0}} \, \vee \, x_{1} \, \vee \, x_{2} \, \vee \, x_{3}}{\overline{x_{0}} \, \vee \, x_{1} \, \vee \, x_{2} \, \vee \, x_{3}} \, \vee \, \overline{x_{1}} \, \vee \, x_{2} \, \vee \, \overline{x_{3}}} = \frac{\overline{x_{0}} \, \vee \, x_{1} \, \vee \, x_{2} \, \vee \, x_{3}}{\overline{x_{0}} \, \vee \, x_{1} \, \vee \, x_{2} \, \vee \, x_{3}} \, \vee \, \overline{x_{0}} \, \vee \, \overline{x_{1}} \, \vee \, x_{2} \, \vee \, \overline{x_{3}}} = \frac{\overline{x_{0}} \, \vee \, x_{1} \, \vee \, x_{2} \, \vee \, x_{3}}{\overline{x_{0}} \, \vee \, x_{1} \, \vee \, x_{2} \, \vee \, x_{3}} \, \vee \, \overline{x_{0}} \, \vee \, \overline{x_{1}} \, \vee \, x_{2} \, \vee \, \overline{x_{3}}} = \frac{\overline{x_{0}} \, \vee \, x_{1} \, \vee \, x_{2} \, \vee \, x_{3}}{\overline{x_{0}} \, \vee \, x_{1} \, \vee \, x_{2} \, \vee \, x_{3}} = \frac{\overline{x_{0}} \, \vee \, x_{1} \, \vee \, x_{2} \, \vee \, x_{3}}{\overline{x_{0}} \, \vee \, x_{1} \, \vee \, x_{2} \, \vee \, x_{3}} = \frac{\overline{x_{0}} \, \vee \, x_{1} \, \vee \, x_{2} \, \vee \, x_{3}}{\overline{x_{0}} \, \vee \, x_{1} \, \vee \, x_{2} \, \vee \, x_{3}} = \frac{\overline{x_{0}} \, \vee \, x_{1} \, \vee \, x_{2} \, \vee \, x_{3}}{\overline{x_{0}} \, \vee \, x_{1} \, \vee \, x_{2} \, \vee \, x_{3}} = \frac{\overline{x_{0}} \, \vee \, x_{1} \, \vee \, x_{2} \, \vee \, x_{3}}{\overline{x_{0}} \, \vee \, x_{1} \, \vee \, x_{2} \, \vee \, x_{3}} \times \overline{x_{0}} \times \overline{x_{1}} \, \vee \, x_{2} \, \vee \, x_{3}} = \frac{\overline{x_{0}} \, \vee \, x_{1} \, \vee \, x_{2} \, \vee \, x_{3}}{\overline{x_{0}} \, \vee \, x_{1} \, \vee \, x_{2} \, \vee \, x_{3}} \times \overline{x_{0}} \, \vee \, \overline{x_{1}} \, \vee \, \overline{x_{0}} \, \vee \, \overline{x_{1}} \, \vee \, \overline{x_{0}} \, \vee \, \overline{x_{1}} \, \vee \, \overline{x_{0}} \, \times \overline{x_{1}} \,$$

$$= \overline{x_0} \, \overline{x_2} \, \overline{y} \, \overline{x_1 x_2} \, \overline{x_3} \, \overline{y_0 x_1 x_3} \, \overline{y_1} \, \overline{x_2 x_3} \, \overline{y_0 x_1 x_2 x_3} =$$

$$= \overline{x_0} \, \overline{y_2} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_3} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} =$$

$$= \overline{x_0} \, \overline{y_2} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} =$$

$$= \overline{x_0} \, \overline{y_2} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} =$$

$$= \overline{x_0} \, \overline{y_2} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} =$$

$$= \overline{x_0} \, \overline{y_2} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} =$$

$$= \overline{x_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} =$$

$$= \overline{x_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} =$$

$$= \overline{x_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} =$$

$$= \overline{x_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} =$$

$$= \overline{x_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} =$$

$$= \overline{x_0} \, \overline{y_1} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} =$$

$$= \overline{x_0} \, \overline{y_1} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} \, \overline{y_0} \, \overline{y_1} \, \overline{y_2} \, \overline{y_3} =$$

$$= \overline{x_0} \, \overline{y_1} \, \overline{y_1} \, \overline{y_1} \, \overline{y_1} \, \overline{y_2} \, \overline{y_1} \, \overline{y_2} \, \overline{y_1} \, \overline{y_2} \, \overline{y_2} \, \overline{y_1} \, \overline{y_2} \, \overline{y_2} \, \overline{y_2} =$$

$$= \overline{x_0} \, \overline{y_1} \, \overline{y_1} \, \overline{y_1} \, \overline{y_1} \, \overline{y_1} \, \overline{y_2} \, \overline{y_1} \, \overline{y_1} \, \overline{y_2} \, \overline{y_2} \, \overline{y_1} \, \overline{y_2} \, \overline{y_2} =$$

$$= \overline{x_0} \, \overline{y_1} \, \overline{y_1} \, \overline{y_1} \, \overline{y_1} \, \overline{y_1} \, \overline{y_1} \, \overline{y_2} \, \overline{y_1} \, \overline{y_2} \, \overline{y_2} \, \overline{y_1} \, \overline{y_2} \, \overline{y_2} \, \overline{y_2} \, \overline{y_1} \, \overline{y_2} \, \overline{y$$

1.4 Начертить цифровую схему. Цифровая схема для y_a

Все цифровые схемы приведены в базисе «2И-НЕ» для минимизированных ДНФ выражений.

$$y_{\rm a}^{\rm ДH\Phi} = \overline{\overline{x_0} \ \overline{x_2} \ \overline{x_3}} \ \overline{x_1 \overline{x_3}} \ \overline{x_0 x_2 \overline{x_3}} \ \overline{\overline{x_1} \ \overline{x_2} x_3}$$

Используя результат перевода алгебраического выражения y_a в базис «2И-НЕ», построим цифровую схему:

Рис. 2 — Цифровая схема y_a в базисе «2И-НЕ».

Проведём симуляцию схемы:

Рис. 3 — Результат симуляции цифровой схемы y_a .

Сверимся с таблицей истинности для y_a и убедимся, что схема собрана правильно:

	x_0	x_1	x_2	χ_3	a
«0»	0	0	0	0	1
«1»	1	0	0	0	0
«2»	0	1	0	0	1
«3»	1	1	0	0	1
«4»	0	0	1	0	0
«5»	1	0	1	0	1
«6»	0	1	1	0	1
«7»	1	1	1	0	1
«8»	0	0	0	1	1
«9»	1	0	0	1	1
«L»	0	1	0	1	0

Цифровая схема для y_b

$$y_b^{\text{ДН}\Phi} = \overline{\overline{x_2} \ \overline{x_3}} \ \overline{\overline{x_1} \ \overline{x_2}} \ \overline{\overline{x_0} \ \overline{x_1} \ \overline{x_3}} \ \overline{x_0 x_1 \overline{x_3}}$$

Используя результат перевода алгебраического выражения y_a в базис «2И-НЕ», построим цифровую схему:

Рис. 4 — Цифровая схема y_b в базисе «2И-НЕ».

Проведём симуляцию схемы:

Рис. 5 — Результат симуляции цифровой схемы y_b .

Сверимся с таблицей истинности для y_b и убедимся, что схема собрана правильно:

	x_0	x_1	x_2	χ_3	b
«0»	0	0	0	0	1
«1»	1	0	0	0	1
«2»	0	1	0	0	1
«3»	1	1	0	0	1
«4»	0	0	1	0	1
«5»	1	0	1	0	0
«6»	0	1	1	0	0
«7»	1	1	1	0	1
«8»	0	0	0	1	1
«9»	1	0	0	1	1

Цифровая схема для *у*_с

$$y_c^{\text{ДН}\Phi} = \overline{\overline{\overline{x_1}} \ \overline{x_2}} \ \overline{x_0} \ \overline{\overline{x_3}} \ \overline{x_2} \overline{\overline{x_3}}$$

Используя результат перевода алгебраического выражения y_c в базис «2И-НЕ», построим цифровую схему:

Рис. 6 – Цифровая схема y_c в базисе «2И-НЕ».

Проведём симуляцию схемы:

Рис. 7 — Результат симуляции цифровой схемы y_c .

Сверимся с таблицей истинности для y_c и убедимся, что схема собрана правильно:

	x_0	x_1	x_2	χ_3	c
«O»	0	0	0	0	1
«1»	1	0	0	0	1
«2»	0	1	0	0	0
«3»	1	1	0	0	1
« 4 »	0	0	1	0	1
«5»	1	0	1	0	1
«6»	0	1	1	0	1
«7»	1	1	1	0	1
«8»	0	0	0	1	1
«9»	1	0	0	1	1
«L»	0	1	0	1	0

Цифровая схема для y_d

$$y_d^{\text{ДН}\Phi} = \overline{\overline{x_0} \ \overline{x_2}} \ \overline{x_1} \overline{x_2} \overline{x_3} \ \overline{\overline{x_0}} \overline{x_1} \overline{x_3} \ \overline{\overline{x_1}} \overline{x_2} \overline{x_3} \ \overline{x_0} \overline{x_1} \overline{x_2} \overline{x_3}$$

Используя результат перевода алгебраического выражения y_d в базис «2И-НЕ», построим цифровую схему:

Рис. 8 — Цифровая схема y_d в базисе «2И-НЕ».

Проведём симуляцию схемы:

Рис. 9 — Результат симуляции цифровой схемы y_d .

Сверимся с таблицей истинности для y_d и убедимся, что схема собрана правильно:

	x_0	x_1	x_2	x_3	d
«0»	0	0	0	0	1
«1»	1	0	0	0	0
«2»	0	1	0	0	1
«3»	1	1	0	0	1
«4»	0	0	1	0	0
«5»	1	0	1	0	1
«6»	0	1	1	0	1
«7»	1	1	1	0	0
«8»	0	0	0	1	1
«9»	1	0	0	1	1
«L»	0	1	0	1	1

Цифровая схема для уе

$$y_e^{\text{ДН}\Phi} = \overline{\overline{\overline{x_0}} \ \overline{x_2}} \ \overline{\overline{x_0}} \overline{x_1} \overline{\overline{x_3}}$$

Используя результат перевода алгебраического выражения y_e в базис «2И-НЕ», построим цифровую схему:

Рис. 10 – Цифровая схема y_e в базисе «2И-НЕ».

Проведём симуляцию схемы:

Рис. 11 — Результат симуляции цифровой схемы y_e .

Сверимся с таблицей истинности для y_e и убедимся, что схема собрана правильно:

	x_0	x_1	x_2	x_3	e
«O»	0	0	0	0	1
«1»	1	0	0	0	0
«2»	0	1	0	0	1
«3»	1	1	0	0	0
«4»	0	0	1	0	0
«5»	1	0	1	0	0
«6»	0	1	1	0	1
«7»	1	1	1	0	0
«8»	0	0	0	1	1
«9»	1	0	0	1	0
«L»	0	1	0	1	1

Цифровая схема для y_f

$$y_f^{\text{ДН}\Phi} = \overline{\overline{\overline{x_0}} \, \overline{x_2} x_3} \ \overline{\overline{x_1}} \, \overline{\overline{x_2}} \overline{x_3} \ \overline{\overline{x_0}} \overline{x_2} \overline{x_3} \ \overline{\overline{x_1}} \overline{x_2} \overline{x_3} \ \overline{\overline{x_0}} \overline{x_1} \overline{x_2}$$

Используя результат перевода алгебраического выражения y_f в базис «2И-НЕ», построим цифровую схему:

Рис. 12 — Цифровая схема y_f в базисе «2И-НЕ».

Проведём симуляцию схемы:

Рис. 13 — Результат симуляции цифровой схемы y_f .

Сверимся с таблицей истинности для y_f и убедимся, что схема собрана правильно:

	x_0	x_1	x_2	χ_3	f
«O»	0	0	0	0	1
«1»	1	0	0	0	0
«2»	0	1	0	0	0
«3»	1	1	0	0	0
« 4 »	0	0	1	0	1
«5»	1	0	1	0	1
«6»	0	1	1	0	1
«7»	1	1	1	0	0
«8»	0	0	0	1	1
«9»	1	0	0	1	1
«L»	0	1	0	1	1

Цифровая схема для y_g

$$y_g^{\text{ДН}\Phi} = \overline{\overline{\overline{x_0}} \, \overline{x_2} x_3} \ \overline{\overline{x_1}} \, \overline{\overline{x_2}} \overline{x_3} \ \overline{\overline{x_0}} \overline{x_2} \overline{x_3} \ \overline{\overline{x_1}} \overline{x_2} \overline{x_3} \ \overline{\overline{x_0}} \overline{x_1} \overline{x_2}$$

Используя результат перевода ДНФ y_g в базис «2И-НЕ», построим цифровую схему:

Рис. 14 — Цифровая схема y_g в базисе «2И-НЕ».

Проведём симуляцию схемы:

Рис. 15 — Результат симуляции цифровой схемы y_g .

Сверимся с таблицей истинности для y_g и убедимся, что схема собрана правильно:

	x_0	x_1	x_2	χ_3	g
«0»	0	0	0	0	0
«1»	1	0	0	0	0
«2»	0	1	0	0	1
«3»	1	1	0	0	1
«4»	0	0	1	0	1
«5»	1	0	1	0	1
«6»	0	1	1	0	1
«7»	1	1	1	0	0
«8»	0	0	0	1	1
«9»	1	0	0	1	1
«L»	0	1	0	1	0

Итоговая схема шифратора

Рис. 16 – Итоговая схема шифратора.

Проведём симуляцию схемы и убедимся в правильности его работы:

Рис. 17 – Результат симуляции итоговой схемы шифратора.

2. Реализовать счётчик с коэффициентом счёта 6.

Способ 1

Реализуем асинхронный счётчик на D-триггерах для 3 разрядов. Так как DFF элемент в Quartus работает по переднему фронту импульса, необходимо инвертировать сигнал Q перед входом C, чтобы счётчик вёл счёт «вверх» по заднему фронту:

Рис. 18 – Асинхронный счётчик на D-триггерах.

Так как нам необходимо обеспечить счёт лишь до 6 (номер студенческого билета содержит 6 символов), то реализуем «Reset» для счётчика при достижении комбинации $110_2 = 6_{10}$:

Рис. 19 – Асинхронный счётчик на D-триггерах с коэффициентом счёта 6.

Проверим работу счётчика на временной диаграмме:

Рис. 20 — Временная диаграмма асинхронного счётчика на D-триггерах с коэффициентом счёта 6.

Способ 2

Реализуем счётчик на языке Verilog:

```
module counter verilog(clk, reset, out pos);
2
         input clk;
3
         input reset;
 4
         output reg [2:0]out_pos;
 5
 6
         always @(negedge clk)
 7
    begin
8
            if (reset == 0)
               out_pos = 0;
9
10
               out_pos <= out_pos + 1'dl;
11
12
13
      endmodule
```

Рис. 21 – Асинхронный счётчик на языке Verilog.

Аналогично реализуем сброс счётчика при достижении 6:

Рис. 22 – Асинхронный счётчик с коэффициентом счёта 6.

Проверим работу счётчика на временной диаграмме:

Рис. 23— Временная диаграмма асинхронного счётчика с коэффициентом счёта 6.

3. Реализовать преобразователь кода, на выходе которого формируется последовательность бинарных чисел, соответствующая цифрам студенческого билета.

	x_0	x_1	x_2	y_0	y_1	y_2	y_3
«2»	0	0	0	0	1	0	0
«0»	1	0	0	0	0	0	0
«L»	0	1	0	0	1	0	1
«0»	1	1	0	0	0	0	0
«2»	0	0	1	0	1	0	0
«4»	1	0	1	0	0	1	0

Запишем алгебраические выражения для «у» в СДНФ, минимизируем с помощью алгебры логики, если это возможно, а также переведём в базис «2И-HЕ»:

 y_0 :

На y_0 всегда подаём "0"

 y_1 :

$$y_1^{\mathrm{СДН\Phi}} = \overline{x_0} \, \overline{x_1} \, \overline{x_2} \, \vee \overline{x_0} x_1 \overline{x_2} \, \vee \overline{x_0} \, \overline{x_1} \, x_2$$

Минимизация y_1 (склеивание 1-2, 1-3): $y_1 = \overline{x_0} \ \overline{x_2} \ \lor \overline{x_0} \ \overline{x_1}$

Перевод в базис:
$$y_1 = \overline{\overline{x_0} \ \overline{x_2} \lor \overline{x_0} \ \overline{x_1}} = \overline{\overline{\overline{x_0}} \ \overline{x_2}} \ \overline{\overline{x_0}} \ \overline{\overline{x_1}}$$

 y_2 :

$$y_2^{\mathrm{CДH\Phi}} = x_0 \overline{x_1} x_2$$

Перевод в базис: $y_2=x_0\overline{x_1}x_2=\overline{\overline{\overline{x_0}\overline{x_1}}}\,\overline{x_2}$

*y*₃:

$$y_3^{\text{СДН}\Phi} = \overline{x_0} x_1 \overline{x_2}$$

Перевод в базис:
$$y_3 = \overline{x_0}x_1\overline{x_2} = \overline{\overline{\overline{x_0}}\overline{x_1}}\overline{\overline{x_2}}$$

Реализуем цифровую схему для преобразователя кода, используя перевод каждой составляющей в базис «2И-HE»:

Рис. 24 – Схема преобразователя кода.

4. Реализовать делитель частоты.

1 способ

Так как опорная частота микросхемы составляет 50 МГц, то нам нужно понизить её до видимых человеком значений. Для этого воспользуемся D-триггерами, у которых выход \bar{Q} подключён ко входу D, как в счётчике. На выходе Q такого включения частота сигнала будет понижаться в два раза. Следовательно, нам нужно включить в схему столько D-триггеров, чтобы частота понизилась до 50-100 Гц. Посчитаем количество D-триггеров, подобрав N исходя из формулы:

$$f = \frac{50 \cdot 10^6}{2^N} \Longrightarrow$$
 при $N = 19$ обеспечивается $f \approx 96$ Гц, что удовлетворяет условию.

Соберём схему делителя частоты на D-триггерах:

Рис. 25 – Схема делителя частоты.

2 способ

Реализуем делитель частоты, основываясь на аналогичных рассуждениях, на языке Verilog:

```
module Freq_divider(clk, out_pos);
input clk;

output reg [19:0]out_pos;

always @ (negedge clk)

begin

out_pos <= out_pos + 1'dl;
end
endmodule</pre>
```

Рис. 26 – Делитель частоты на языке Verilog.

Создадим «.bsf» файл для полученного делителя и возьмём значения с 19 провода шины:

Рис. 27 – Делитель частоты.

5. Итоговая схема.

Для начала соберём реализованные схемы вместе: опорная частота поступает на счётчик с коэффициентом 6; счётчик управляет работой преобразователя кода, который в свою очередь подаёт сигналы на входы шифратора для вывода сигналов на ССИ:

Рис. 28 – Итоговая схема без делителя частоты.

Построим временные диаграммы и убедимся в правильности работы итоговой схемы без делителя частоты:

Рис. 29 — Временная диаграмма итоговой схемы без делителя частоты.

Итоговая схема с делителем частоты имеет следующий вид:

Рис. 30 – Итоговая схема.

6. Проверка итоговой схемы на ПЛИС.

Учтём некоторые особенности работы схемы, связанные с выводом символов на ССИ ПЛИС:

1) ССИ подключены по схемы с общим анодом, поэтому необходимо подавать «0», чтобы зажечь индикатор. Таким образом, схема требует добавления отрицания на каждый выход шифратора:

Рис. 31 – Добавление отрицания на выходы шифратора.

2) Символы на ССИ ПЛИС выводятся справа налево, вследствие чего вместо «20L024» получаем «420L02». Исправить данную ситуацию можно несколькими способами. Приведём один из них: на языке Verilog напишем вычитающий счётчик с «5» до «0»:

```
module subtractor v(clk, count);
 2
         input clk;
 3
         output reg[2:0] count;
 4
         initial begin
          count[2] = 1'd1;
 5
 6
          count[1] = 0;
 7
          count[0] = 1'd1;
 8
 9
         always @(negedge clk)
10
         begin
11
             if(count == 0)
12
             begin
             count[2] = 1'd1;
13
14
             count[1] = 0;
15
             count[0] = 1'd1;
16
             end
17
18
                count <= count - 1;
19
          end
20
      endmodule
```

Рис. 32 - Вычитающий счётчик с <math>(5)» до (0)».

Таким образом, схема будет иметь следующий вид:

Рис. 33 — Итоговая схема с учётом особенностей работы ПЛИС. Результат работы ПЛИС:

Рис. 34 – Результат работы ПЛИС.