

linear combinations

Geometrically,

linear combinations

We say that \vec{v} is a linear combination of $\vec{v_1}, \vec{v_2}, ..., \vec{v_n}$, if there exist scalars $x_1, x_2, ..., x_n$ such that $\vec{v} = x_1 \vec{v_1} + x_2 \vec{v_2} + ... + x_n \vec{v_n}$.

- A linear combination means we add (or subtract) scalar multiples of vectors to get a new vector
- Because of the rules of vector addition, any such linear combination will be in the vector space
- **Geometrically**, the linear combinations of a nonzero vector form a line. The linear combinations of two nonzero vectors form a plane, unless the two vectors are collinear, in which case they form a line.

The set of all linear combinations of vectors $\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n}$ is denoted by $span(\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n})$ and called the linear span of these vectors.

linear combinations: planes and lines

