《数学物理方法》第六章《解析函数的级数展开》习题

- 1. 将下列函数在指定点展开成泰勒级数,并给出其收敛半径:
 - (1) $\sin z$, 在 $z = n\pi$ 展开;
 - (2) $1-z^2$, 在z=1展开;
 - (3) $\frac{1}{1+z+z^2}$, 在z=0展开;
 - (4) $\ln z$, 在z = i展开; 规定:
 - (i) $0 \le \arg z < 2\pi$, (ii) $-\pi < \arg z \le \pi$, (iii) $(\ln z)_{z=i} = -\frac{3}{2}\pi i$;
 - (5) $\tan^{-1} z$ 的主值,在z = 0展开;
 - (6) $\frac{\sin z}{1-z}$, 在z=0展开;
 - (7) $e^{\frac{1}{1-z}}$, 在z = 0展开 (可只求前四项系数);
 - (8) $\ln \frac{1+z}{1-z}$, 在 $z = \infty$ 展开.
- 2. 求下列无穷级数之和:
 - (1) $\sum_{n=0}^{\infty} \frac{1}{2n+1} z^{2n+1}$, |z| < 1;
 - (2) $\sum_{n=0}^{\infty} \frac{1}{(2n)!} z^{2n}$, $|z| < \infty$.
- 3. 求下列函数的洛朗展开:
 - (1) $\frac{1}{z^2(z-1)}$, 在z=1附近展开;
 - (2) $\frac{1}{z^2-3z+2}$, 展开区域为: (i) 1 < |z| < 2, (ii) $2 < |z| < \infty$;
 - (3) $\frac{1}{z(z+1)}$, 展开区域为: (i) $1 < |z-i| < \sqrt{2}$, (ii) 0 < |z| < 1;
 - (4) $\frac{(z-1)(z-2)}{(z-3)(z-4)}$, 展开区域为: (i) 3 < |z| < 4, (ii) $4 < |z| < \infty$;
 - (5) $\frac{e^z}{z+2}$, 在|z| > 2处展开;
 - (6) $\frac{1}{1-\cos z}$, 在 $z=2n\pi$ 附近展开(可只求出不为0的前四项系数).