

A

Express Mail Label No. El162119949US

File No.: 97-52

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE <u>APPLICATION FEE TRANSMITTAL</u>

Assistant Commissioner for Patents Box Patent Application Washington, D.C. 20231

Sir:						
Transmitted herewith for filing is the patent application of Applicants: Si Lok, Robyn L. Adams, Anna C. Jelmberg, Theodore E. Whitmore, Theresa M. Farrah Title: MAMMALIAN ZCYTOR11 [X] 43 pages of specification [] sheets of drawings [X] 9 pages of sequence listing [] An assignment of the invention to [X] 2 sheets of [] signed [X] unsigned Declaration and Power of Attorney [X] ASCII Computer Disk Sequence pursuant to 37 C.F.R. 1.821(f). It is believed that the content of the paper sequence listing and the computer readable sequence listing are the same. CALCULATION OF APPLICATION FEE						
Claim	Туре	No. Filed	Less	Extra	Extra Rate	Fee
Total		27	-20	7	\$22.00	\$154.00
Indep	endent	7	-3	4	\$80.00	\$320.00
Basic Fee Multiple Dependency Fee If Applicable (\$260.00) Total Filing Fee						\$770.00 \$000.00 \$1244.00
[]	Priority of application Serial No filed on in is claimed under 35 U.S.C. 119. A certified copy thereof is submitted herewith.					
[]	The benefit of application Serial No filed on in is claimed under 35 U.S.C. 120.					
Please charge ZymoGenetics, Inc., Deposit Account No. 26-0290 as follows: [X] Filing fee, estimated to be \$1244.00 [] Assignment recording fee [X] Any additional fees associated with this paper or during the pendency of this application. [] The issue fee set in 37 C.F.R. 1.18 at or before mailing of the Notice of Allowance, pursuant to 37 C.F.R. 1.311(b).						
A copy of this sheet is enclosed.						

Respectfully submitted

Si Lok et al.

Paul G. Lunn

Registration No. 32,743

File Number: 97-52
Filing Date: August 5, 1997

Express Mail Label No. EI162119949US

UNITED STATES PATENT APPLICATION

OF

Si Lok, Robyn L. Adams, Anna C. Jelmberg, Theodore E.

Whitmore, Theresa M. Farrah

FOR

MAMMALIAN ZCYTOR11

15

20

MAMMALIAN ZCYTOR 11

BACKGROUND OF THE INVENTION

Cytokines are soluble proteins that influence the growth and differentiation of many cell types. Their receptors are composed of one or more integral membrane proteins that bind the cytokine with high affinity and transduce this binding event to the cell through the cytoplasmic portions of the certain receptor subunits. Cytokine receptors have been grouped into several classes on the basis of similarities in their extracellular liqand binding domains. For example, the receptor chains responsible for binding and/or transducing the effect of interferons (IFNs) are members of the type II cytokine receptor family (CRF2), based upon a characteristic 200 residue extracellular domain. The demonstrated in vivo activities of these interferons illustrate the enormous clinical potential of, and need for, other cytokines, cytokine agonists, and cytokine antagonists.

25

SUMMARY OF THE INVENTION

The present invention fills this need by providing novel cytokine receptors and related compositions and methods. In particular, the present invention provides for an extracellular ligand-binding region of a mammalian Zcytor11 receptor, alternatively also containing either a transmembrane domain or both an intracellular domain and a transmembrane domain.

35

30

Within one aspect, the present invention provides an isolated polynucleotide encoding a ligand-

binding receptor polypeptide. The polypeptide comprises a sequence of amino acids selected from the group consisting of (a) residues 18 to 228 of SEQ ID NO:2; (b) allelic variants of (a); and (c) sequences that are at least 80% identical to (a) or (b). Within one embodiment, the polypeptide comprises residues 18 to 228 of SEQ ID NO:2. Within another embodiment, the polypeptide encoded by the isolated polynucleotide further comprises a transmembrane The transmembrane domain may comprise residues 229 to 251 of SEQ ID NO:2, or an allelic variant thereof. 10 Within another embodiment, the polypeptide encoded by the isolated polynucleotide further comprises an intracellular domain, such as an intracellular domain comprising residues 252 to 574 of SEQ ID NO:2, or an allelic variant thereof. Within further embodiments, the polynucleotide 15 encodes a polypeptide that comprises residues 1 to 574, 1 to 251, 1 to 228, 18 to 251 or 18 to 574 of SEQ ID NO:2. Within an additional embodiment, the polypeptide further comprises an affinity taq. Within a further embodiment, the polynucleotide is DNA. 20

Within a second aspect of the invention there is provided an expression vector comprising (a) a transcription promoter; (b) a DNA segment encoding a ligand-binding receptor polypeptide, wherein the ligand-25 binding receptor polypeptide comprises a sequence of amino acids selected from the group consisting of: residues 18-228 or any one of the residues described above of SEQ ID NO:2; (ii) allelic variants of (i); and (iii) 30 sequences that are at least 80% identical to (i) or (ii); and (c) a transcription terminator, wherein the promoter, DNA segment, and terminator are operably linked. ligand-binding receptor polypeptide may further comprise a secretory peptide, a transmembrane domain, a transmembrane domain and an intracellular domain, or a secretory 35 peptide, a transmembrane domain and an intracellular domain.

15

20

25

30

Within a third aspect of the invention there is provided a cultured eukaryotic cell into which has been introduced an expression vector as disclosed above, wherein said cell expresses a receptor polypeptide encoded by the DNA segment. Within one embodiment, the cell further expresses a necessary receptor subunit which forms a functional receptor complex. Within another embodiment, the cell is dependent upon an exogenously supplied hematopoietic growth factor for proliferation.

Within a fourth aspect of the invention there is provided an isolated polypeptide comprising a segment selected from the group consisting of (a) residues 18 to 228 of SEQ ID NO:2; (b) allelic variants of (a); and (c) sequences that are at least 80% identical to (a) or (b), wherein said polypeptide is substantially free of transmembrane and intracellular domains ordinarily associated with hematopoietic receptors. Additional polypeptides of the present invention include Within one embodiment, the polypeptide comprises residues 18 to 228 of SEQ ID NO:2. Within another embodiment, the polypeptide further comprises a transmembrane domain. transmembrane domain may comprise residues 229 to 251 of SEQ ID NO:2, or an allelic variant thereof. Within another embodiment, the polypeptide further comprises an intracellular domain, such as an intracellular domain comprising residues 252 to 574 of SEQ ID NO:2, or an allelic variant thereof. Within further embodiments the polypeptide that comprises residues 1 to 574, 1 to 251, 1 to 228, 18 to 251 or 18 to 574 of SEQ ID NO:2.

Within one embodiment, the polypeptide further comprises an immunoglobulin $F_{\rm C}$ polypeptide. Within a another embodiment, the polypeptide further comprises an affinity tag, such as polyhistidine, protein A,

glutathione S transferase, or an immunoglobulin heavy chain constant region.

Within a further aspect of the invention there is provided a chimeric polypeptide consisting essentially of a first portion and a second portion joined by a peptide bond. The first portion of the chimeric polypeptide consists essentially of a ligand binding domain of a receptor polypeptide selected from the group consisting of (a) a receptor polypeptide as shown in SEQ 10 ID NO:2; (b) allelic variants of SEQ ID NO:2; and (c) receptor polypeptides that are at least 80% identical to (a) or (b). The second portion of the chimeric polypeptide consists essentially of an affinity tag. Within one embodiment the affinity tag is an 15 immunoglobulin F_C polypeptide. The invention also provides expression vectors encoding the chimeric polypeptides and host cells transfected to produce the chimeric polypeptides.

20

25

5

The present invention also provides for an isolated polynucleotide encoding a polypeptide selected from a group defined SEQ ID NO:2 consisting of residues 1 to 228, residues 1 to 251, residues 1 to 574, residues 2 to 228, residues 2 to 251 and residues 2 to 574. Also claimed are the isolated polypeptide expressed by these polynucleotides.

The invention also provides a method for detecting a ligand within a test sample, comprising 30 contacting a test sample with a polypeptide as disclosed above, and detecting binding of the polypeptide to ligand in the sample. Within one embodiment the polypeptide further comprises transmembrane and intracellular domains. The polypeptide can be membrane bound within a cultured 35 cell, wherein the detecting step comprises measuring a biological response in the cultured cell. Within another

embodiment, the polypeptide is immobilized on a solid support.

Within an additional aspect of the invention

there is provided an antibody that specifically binds to a
polypeptide as disclosed above, as well as an antiidiotypic antibody which binds to the antigen-binding
region of an antibody to Zcytor11.

In still another aspect of the present invention, polynucleotide primers and probes are provided which can detect mutations in the Zcytor11 gene. The polynucleotide probe should at least be 20-25 bases in length, preferably at least 50 bases in length and most preferably about 80 to 100 bases in length. In addition to the detection of mutations, these probes can be used to discover the Zcytor11 gene in other mammalian species. The probes can either be positive strand or anti-sense strands, and they can be comprised of DNA or RNA.

20

10

15

These and other aspects of the invention will become evident upon reference to the following detailed description and the attached drawing.

25

30

35

DETAILED DESCRIPTION OF THE INVENTION

The term "allelic variant" is used herein to denote any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in phenotypic polymorphism within populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequence. The term allelic variant is also used herein to denote a protein encoded by an allelic variant of a gene.

15

20

35

The term "expression vector" is used to denote a DNA molecule, linear or circular, that comprises a segment encoding a polypeptide of interest operably linked to additional segments that provide for its transcription. Such additional segments include promoter and terminator sequences, and may also include one or more origins of replication, one or more selectable markers, an enhancer, a polyadenylation signal, etc. Expression vectors are generally derived from plasmid or viral DNA, or may contain elements of both.

The term "isolated", when applied to a polynucleotide, denotes that the polynucleotide has been removed from its natural genetic milieu and is thus free of other extraneous or unwanted coding sequences, and is in a form suitable for use within genetically engineered protein production systems.

"Operably linked", when referring to DNA segments, indicates that the segments are arranged so that they function in concert for their intended purposes, e.g. transcription initiates in the promoter and proceeds through the coding segment to the terminator.

A "polynucleotide" is a single- or doublestranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5' to the 3' end. Polynucleotides include RNA and DNA, and may be isolated from natural sources, synthesized *in vitro*, or prepared from a combination of natural and synthetic molecules.

The term "promoter" is used herein for its artrecognized meaning to denote a portion of a gene
containing DNA sequences that provide for the binding of
RNA polymerase and initiation of transcription. Promoter
sequences are commonly, but not always, found in the 5'
non-coding regions of genes.

The term "receptor" is used herein to denote a cell-associated protein, or a polypeptide subunit of such a protein, that binds to a bioactive molecule (the "ligand") and mediates the effect of the ligand on the Binding of ligand to receptor results in a conformational change in the receptor (and, in some cases, receptor multimerization, i.e., association of identical or different receptor subunits) that causes interactions between the effector domain(s) and other molecule(s) in 10 the cell. These interactions in turn lead to alterations in the metabolism of the cell. Metabolic events that are linked to receptor-ligand interactions include gene transcription, phosphorylation, dephosphorylation, cell 15 proliferation, increases in cyclic AMP production, mobilization of cellular calcium, mobilization of membrane lipids, cell adhesion, hydrolysis of inositol lipids and hydrolysis of phospholipids. The term "receptor polypeptide" is used to denote complete receptor polypeptide chains and portions thereof, including 20 isolated functional domains (e.g., ligand-binding domains).

A "secretory signal sequence" is a DNA sequence
that encodes a polypeptide (a "secretory peptide") that,
as a component of a larger polypeptide, directs the larger
polypeptide through a secretory pathway of a cell in which
it is synthesized. The larger polypeptide is commonly
cleaved to remove the secretory peptide during transit
through the secretory pathway.

A "soluble receptor" is a receptor polypeptide that is not bound to a cell membrane. Soluble receptors are most commonly ligand-binding receptor polypeptides that lack transmembrane and cytoplasmic domains. Soluble receptors can comprise additional amino acid residues, such as affinity tags that provide for purification of the

15

polypeptide or provide sites for attachment of the polypeptide to a substrate, or immunoglobulin constant region sequences. Many cell-surface receptors have naturally occurring, soluble counterparts that are produced by proteolysis or translated from alternatively spliced mRNAs. Receptor polypeptides are said to be substantially free of transmembrane and intracellular polypeptide segments when they lack sufficient portions of these segments to provide membrane anchoring or signal transduction, respectively.

Analysis of the tissue distribution of the mRNA corresponding to this novel DNA showed that mRNA level was highest in pancreas, followed by a much lower levels in thymus, colon and small intestine. The receptor has been designated "Zcytor11".

Cytokine receptors subunits are characterized by a multi-domain structure comprising a ligand-binding domain and an effector domain that is typically involved 20 in signal transduction. Multimeric cytokine receptors include homodimers (e.g., PDGF receptor $\alpha\alpha$ and $\beta\beta$ isoforms, erythropoietin receptor, MPL [thrombopoietin receptor], and G-CSF receptor), heterodimers whose subunits each have ligand-binding and effector domains 25 (e.g., PDGF receptor $\alpha\beta$ isoform), and multimers having component subunits with disparate functions (e.g., IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, and GM-CSF receptors). receptor subunits are common to a plurality of receptors. For example, the AIC2B subunit, which cannot bind ligand 30 on its own but includes an intracellular signal transduction domain, is a component of IL-3 and GM-CSF receptors. Many cytokine receptors can be placed into one of four related families on the basis of their structures and functions. Class I hematopoietic receptors, for 35 example, are characterized by the presence of a domain containing conserved cysteine residues and the WSXWS

motif. Additional domains, including protein kinase domains; fibronectin type III domains; and immunoglobulin domains, which are characterized by disulfide-bonded loops, are present in certain hematopoietic receptors. Cytokine receptor structure has been reviewed by Urdal, Ann. Reports Med. Chem. 26:221-228, 1991 and Cosman, Cytokine 5:95-106, 1993. It is generally believed that under selective pressure for organisms to acquire new biological functions, new receptor family members arose from duplication of existing receptor genes leading to the existence of multi-gene families. Family members thus contain vestiges of the ancestral gene, and these characteristic features can be exploited in the isolation and identification of additional family members.

Cell-surface cytokine receptors are further characterized by the presence of additional domains. These receptors are anchored in the cell membrane by a transmembrane domain characterized by a sequence of hydrophobic amino acid residues (typically about 21-25 residues), which is commonly flanked by positively charged residues (Lys or Arg). On the opposite end of the protein from the extracellular domain and separated from it by the transmembrane domain is an intracellular domain.

The novel receptor of the present invention, Zcytor11, is a class II cytokine receptor. These receptors usually bind to four-helix-bundle cytokines. Interleukin-10 and the interferons have receptors in this class (e.g., interferon-gamma alpha and beta chains and the interferon-alpha/beta receptor alpha and beta chains). Class II cytokine receptors are characterized by the presence of one or more cytokine receptor modules (CRM) in their extracellular domains. The CRMs of class II cytokine receptors are somewhat different than the better known CRMs of class I cytokine receptors. While the class II

20

25

30

35

CRMs contain two type-III fibronectin-like domains, they differ in organization.

Zcytor11, like all known class II receptors

except interferon-alpha/beta receptor alpha chain, has only a single class II CRM in its extracellular domain.

Zcytor11 appears to be a receptor for a helical cytokine of the interferon/IL-10 class. Using the Zcytor11 receptor we can identify ligands and additional compounds which would be of significant therapeutic value.

As was stated above, Zcytor11 is similar to the interferon α receptor α chain. Uze et al. Cell 60 255-264 (1996) Analysis of a human cDNA clone encoding Zcytor11 (SEQ ID NO:1) revealed an open reading frame encoding 574 amino acids (SEQ ID NO:2) comprising an extracellular ligand-binding domain of approximately 211 amino acid residues (residues 18-228 of SEQ ID NO:2), a transmembrane domain of approximately 23 amino acid residues (residues 229-251 of SEQ ID NO:2), and an intracellular domain of approximately 313 amino acid residues (residues 252 to 574 of SEQ ID NO:2). Those skilled in the art will recognize that these domain boundaries are approximate and are based on alignments with known proteins and predictions of protein folding. Deletion of residues from the ends of the domains is possible.

Within preferred embodiments of the invention the isolated polynucleotides will hybridize to similar sized regions of SEQ ID NO:1 or a sequence complementary thereto, under stringent conditions. In general, stringent conditions are selected to be about 5°C lower than the thermal melting point $(T_{\rm m})$ for the specific sequence at a defined ionic strength and pH. The $T_{\rm m}$ is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typical stringent conditions are those in

which the salt concentration is at least about 0.02 M at pH 7 and the temperature is at least about 60°C. As previously noted, the isolated polynucleotides of the present invention include DNA and RNA. Methods for isolating DNA and RNA are well known in the art. It is generally preferred to isolate RNA from pancreas or prostate tissues although cDNA can also be prepared using RNA from other tissues or isolated as genomic DNA. RNA can be prepared using guanidine HCl extraction followed by isolation by centrifugation in a CsCl gradient 10 [Chirqwin et al., Biochemistry 18:52-94, (1979)]. (A) + RNA is prepared from total RNA using the method of Aviv and Leder Proc. Natl. Acad. Sci. USA 69:1408-1412, (1972). Complementary DNA (cDNA) is prepared from poly(A) + RNA using known methods. Polynucleotides 15 encoding Zcytor11 polypeptides are then identified and isolated by, for example, hybridization or PCR.

Those skilled in the art will recognize that the sequences disclosed in SEQ ID NOS:1 and 2 represent single alleles of the human Zcytor11 receptor. Allelic variants of these sequences can be cloned by probing cDNA or genomic libraries from different individuals according to standard procedures.

25

30

35

20

The present invention further provides counterpart receptors and polynucleotides from other species ("species orthologs"). Of particular interest are Zcytorl1 receptors from other mammalian species, including murine, porcine, ovine, bovine, canine, feline, equine, and non-human primates. Species orthologs of the human Zcytorl1 receptor can be cloned using information and compositions provided by the present invention in combination with conventional cloning techniques. For example, a cDNA can be cloned using mRNA obtained from a tissue or cell type that expresses the receptor. Suitable sources of mRNA can be identified by probing Northern

15

blots with probes designed from the sequences disclosed herein. A library is then prepared from mRNA of a positive tissue or cell line. A receptor-encoding cDNA can then be isolated by a variety of methods, such as by probing with a complete or partial cDNA of human and other primates or with one or more sets of degenerate probes based on the disclosed sequences. A cDNA can also be cloned using the polymerase chain reaction, or PCR (Mullis, U.S. Patent No. 4,683,202), using primers designed from the sequences disclosed herein. Within an additional method, the cDNA library can be used to transform or transfect host cells, and expression of the cDNA of interest can be detected with an antibody to the receptor. Similar techniques can also be applied to the isolation of genomic clones.

The present invention also provides isolated receptor polypeptides that are substantially homologous to the receptor polypeptide of SEQ ID NO: 2. By "isolated" is meant a protein or polypeptide that is found in a 20 condition other than its native environment, such as apart from blood and animal tissue. In a preferred form, the isolated polypeptide is substantially free of other polypeptides, particularly other polypeptides of animal origin. It is preferred to provide the polypeptides in a 25 highly purified form, i.e. greater than 95% pure, more preferably greater than 99% pure. The term "substantially homologous" is used herein to denote polypeptides having 50%, preferably 60%, more preferably at least 80%, sequence identity to the sequences shown in SEQ ID NO:2,. 30 Such polypeptides will more preferably be at least 90% identical, and most preferably 95% or more identical to SEQ ID NO:2. Percent sequence identity is determined by conventional methods. See, for example, Altschul et al., Bull. Math. Bio. 48: 603-616, (1986) and Henikoff and 35 Henikoff, Proc. Natl. Acad. Sci. USA 89:10915-10919, (1992). Briefly, two amino acid sequences are aligned to

optimize the alignment scores using a gap opening penalty of 10, a gap extension penalty of 1, and the "blossom 62" scoring matrix of Henikoff and Henikoff (id.) as shown in Table 2 (amino acids are indicated by the standard oneletter codes). The percent identity is then calculated as:

Total number of identical matches

___ x 100

10 [length of the longer sequence plus the number of gaps introduced into the longer sequence in order to align the two

sequences]

Table 2

Ŋ

 \gt _ ⊱ $^{\circ}$ ⋈ 11 12 5 2 ₽ 3 7 4 4 Ø -4 Д 4 2 2 \sim \vdash \leftarrow 7 -⋈ 1 0 1 3 × 4 2 $^{\circ}$ 0 1 1 2 7 - 7 П 2 4 6 0 N N N -2 7 \vdash \mathbb{H} 1 2 m 7 0 7 m -4 -4 \mathcal{Q} 9 7 ٣ 1 0 1 3 2 1 1 0 E 3 团 0 1 10 0 1 0 0 6 1 0 1 7 α $^{-}$ $\frac{2}{2}$ \vdash - 3 ٦-.3 -4 3 3 \dashv 3 - \mathcal{O} -4 $^{\circ}$ -4 $\frac{1}{1}$ ۳ $^{\circ}$ ٦, \Box \sim 0 0 \dashv 1-0 3 m 0 7 6 7 -4 2 Z 0 0 0 Н 7 2 -3 7 2 4 吆 0 7 -3 1 0 0 2 3 7 U ഥ Ŋ HH Д ¥ Σ ഥ \circ

10

4

 \mathcal{C}_{1}

0

2

2

7

 \mathcal{C}_{1}

Ϋ́

0

20

Sequence identity of polynucleotide molecules is determined by similar methods using a ratio as disclosed above.

Substantially homologous proteins and polypeptides are characterized as having one or more amino acid substitutions, deletions or additions. These changes are preferably of a minor nature, that is conservative amino acid substitutions (see Table 3) and other substitutions 10 that do not significantly affect the folding or activity of the protein or polypeptide; small deletions, typically of one to about 30 amino acids; and small amino- or carboxyl-terminal extensions, such as an amino-terminal methionine residue, a small linker peptide of up to about 20-25 residues, or a small extension that facilitates 15 purification (an affinity tag), such as a poly-histidine tract, protein A [Nilsson et al., EMBO J. 4:1075, (1985); Nilsson et al., Methods Enzymol. 198:3, (1991)], glutathione S transferase [Smith and Johnson, Gene 67:31, 20 1988), or other antigenic epitope or binding domain. in general Ford et al., Protein Expression and Purification 2: 95-107, (1991. DNAs encoding affinity tags are available from commercial suppliers (e.g., Pharmacia Biotech, Piscataway, NJ).

25

5

Table 3

Conservative amino acid substitutions

Basic: arginine

lysine

histidine 30

> glutamic acid Acidic:

> > aspartic acid

glutamine Polar:

asparagine

Table 3, continued

Hydrophobic: leucine

isoleucine

valine

5

Aromatic: phenylalanine

tryptophan

tyrosine

Small:

glycine

10

alanine serine

threonine

methionine

15 Essential amino acids in the receptor polypeptides of the present invention can be identified according to procedures known in the art, such as sitedirected mutagenesis or alanine-scanning mutagenesis [Cunningham and Wells, Science 244, 1081-1085, (1989); 20 Bass et al., Proc. Natl. Acad. Sci. USA 88:4498-4502, (1991)]. In the latter technique, single alanine mutations are introduced at every residue in the molecule, and the resultant mutant molecules are tested for biological activity (e.g., ligand binding and signal transduction) to identify amino acid residues that are 25 critical to the activity of the molecule. Sites of ligand-receptor interaction can also be determined by analysis of crystal structure as determined by such techniques as nuclear magnetic resonance, crystallography 30 or photoaffinity labeling. See, for example, de Vos et al., Science 255:306-312, (1992); Smith et al., J. Mol. Biol. 224:899-904, (1992); Wlodaver et al., FEBS Lett.

309:59-64, (1992)]. The identities of essential amino acids can also be inferred from analysis of homologies

35 with related receptors.

Multiple amino acid substitutions can be made and tested using known methods of mutagenesis and screening, such as those disclosed by Reidhaar-Olson and Sauer Science 241:53-57, (1988) or Bowie and Sauer Proc. Natl. Acad. Sci. USA 86:2152-2156, (1989). Briefly, these authors disclose methods for simultaneously randomizing two or more positions in a polypeptide, selecting for functional polypeptide, and then sequencing the mutagenized polypeptides to determine the spectrum of allowable substitutions at each position. Other methods 10 that can be used include phage display e.g., Lowman et al., Biochem. 30:10832-10837, (1991); Ladner et al., U.S. Patent No. 5,223,409; Huse, WIPO Publication WO 92/06204) and region-directed mutagenesis [Derbyshire et al., Gene 46:145, (1986); Ner et al., DNA 7:127, (1988)].

Mutagenesis methods as disclosed above can be combined with high-throughput screening methods to detect activity of cloned, mutagenized receptors in host cells. 20 Preferred assays in this regard include cell proliferation assays and biosensor-based ligand-binding assays, which are described below. Mutagenized DNA molecules that encode active receptors or portions thereof (e.g., ligand-binding fragments) can be recovered from the host cells and rapidly sequenced using modern equipment. These methods allow the rapid determination of the importance of individual amino acid residues in a polypeptide of interest, and can be applied to polypeptides of unknown structure.

30

35

15

Using the methods discussed above, one of ordinary skill in the art can prepare a variety of polypeptides that are substantially homologous to residues 18 to 228 of SEQ ID NO:2 or allelic variants thereof and retain the ligand-binding properties of the wild-type receptor. Such polypeptides may include additional amino acids from an extracellular ligand-binding domain of a

Zcytor11 receptor as well as part or all of the transmembrane and intracellular domains. polypeptides may also include additional polypeptide segments as generally disclosed above.

5

10

The receptor polypeptides of the present invention, including full-length receptors, receptor fragments (e.g. ligand-binding fragments), and fusion polypeptides can be produced in genetically engineered host cells according to conventional techniques. host cells are those cell types that can be transformed or transfected with exogenous DNA and grown in culture, and include bacteria, fungal cells, and cultured higher eukaryotic cells. Eukaryotic cells, particularly cultured 15 cells of multicellular organisms, are preferred. Techniques for manipulating cloned DNA molecules and introducing exogenous DNA into a variety of host cells are disclosed by Sambrook et al., Molecular Cloning: Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory 20 Press, Cold Spring Harbor, NY, (1989), and Ausubel et al., ibid., which are incorporated herein by reference.

In general, a DNA sequence encoding a Zcytor11 receptor polypeptide is operably linked to other genetic elements required for its expression, generally including 25 a transcription promoter and terminator, within an The vector will also commonly contain expression vector. one or more selectable markers and one or more origins of replication, although those skilled in the art will recognize that within certain systems selectable markers 30 may be provided on separate vectors, and replication of the exogenous DNA may be provided by integration into the host cell genome. Selection of promoters, terminators, selectable markers, vectors and other elements is a matter 35 of routine design within the level of ordinary skill in the art. Many such elements are described in the literature and are available through commercial suppliers.

To direct a Zcytor11 receptor polypeptide into the secretory pathway of a host cell, a secretory signal sequence (also known as a leader sequence, prepro sequence or pre sequence) is provided in the expression vector. The secretory signal sequence may be that of the receptor, or may be derived from another secreted protein (e.g., t-PA) or synthesized de novo. The secretory signal sequence is joined to the Zcytor11 DNA sequence in the correct reading frame. Secretory signal sequences are commonly positioned 5' to the DNA sequence encoding the polypeptide of interest, although certain signal sequences may be positioned elsewhere in the DNA sequence of interest (see, e.g., Welch et al., U.S. Patent No. 5,037,743; Holland et al., U.S. Patent No. 5,143,830).

Cultured mammalian cells are preferred hosts within the present invention. Methods for introducing exogenous DNA into mammalian host cells include calcium 20 phosphate-mediated transfection [Wigler et al., Cell 14:725, (1978); Corsaro and Pearson, Somatic Cell Genetics 7:603, (1981): Graham and Van der Eb, Virology 52:456, (1973)], electroporation [Neumann et al., EMBO J. 1:841-845, (1982)], DEAE-dextran mediated transfection [Ausubel 25 et al., eds., Current Protocols in Molecular Biology, (John Wiley and Sons, Inc., NY, 1987), and liposomemediated transfection (Hawley-Nelson et al., Focus 15:73, (1993); Ciccarone et al., Focus 15:80, (1993)], which are incorporated herein by reference. The production of recombinant polypeptides in cultured mammalian cells is disclosed, for example, by Levinson et al., U.S. Patent No. 4,713,339; Hagen et al., U.S. Patent No. 4,784,950; Palmiter et al., U.S. Patent No. 4,579,821; and Ringold, U.S. Patent No. 4,656,134. Suitable cultured mammalian cells include the COS-1 (ATCC No. CRL 1650), COS-7 (ATCC No. CRL 1651), BHK (ATCC No. CRL 1632), BHK 570 (ATCC No. CRL 10314), 293 (ATCC No. CRL 1573; Graham et al., J. Gen.

Virol. 36:59-72, 1977) and Chinese hamster ovary (e.g.
CHO-K1; ATCC No. CCL 61) cell lines. Additional suitable
cell lines are known in the art and available from public
depositories such as the American Type Culture Collection,
5 Rockville, Maryland. In general, strong transcription
promoters are preferred, such as promoters from SV-40 or
cytomegalovirus. See, e.g., U.S. Patent No. 4,956,288.
Other suitable promoters include those from
metallothionein genes (U.S. Patent Nos. 4,579,821 and
4,601,978) and the adenovirus major late promoter.

Drug selection is generally used to select for cultured mammalian cells into which foreign DNA has been inserted. Such cells are commonly referred to as "transfectants". Cells that have been cultured in the 15 presence of the selective agent and are able to pass the gene of interest to their progeny are referred to as "stable transfectants." A preferred selectable marker is a gene encoding resistance to the antibiotic neomycin. 20 Selection is carried out in the presence of a neomycintype drug, such as G-418 or the like. Selection systems may also be used to increase the expression level of the gene of interest, a process referred to as "amplification." Amplification is carried out by culturing transfectants in the presence of a low level of the selective agent and then increasing the amount of selective agent to select for cells that produce high levels of the products of the introduced genes. preferred amplifiable selectable marker is dihydrofolate reductase, which confers resistance to methotrexate. 30 Other drug resistance genes (e.g. hygromycin resistance, multi-drug resistance, puromycin acetyltransferase) can also be used.

35 Other higher eukaryotic cells can also be used as hosts, including insect cells, plant cells and avian cells. Transformation of insect cells and production of

foreign polypeptides therein is disclosed by Guarino et al., U.S. Patent No. 5,162,222; Bang et al., U.S. Patent No. 4,775,624; and WIPO publication WO 94/06463, which are incorporated herein by reference. The use of Agrobacterium rhizogenes as a vector for expressing genes in plant cells has been reviewed by Sinkar et al., J. Biosci. (Bangalore) 11:47-58, (1987).

Fungal cells, including yeast cells, and particularly cells of the genus Saccharomyces, can also be 10 used within the present invention, such as for producing receptor fragments or polypeptide fusions. Methods for transforming yeast cells with exogenous DNA and producing recombinant polypeptides therefrom are disclosed by, for 15 example, Kawasaki, U.S. Patent No. 4,599,311; Kawasaki et al., U.S. Patent No. 4,931,373; Brake, U.S. Patent No. 4,870,008; Welch et al., U.S. Patent No. 5,037,743; and Murray et al., U.S. Patent No. 4,845,075. Transformed cells are selected by phenotype determined by the 20 selectable marker, commonly drug resistance or the ability to grow in the absence of a particular nutrient (e.g., leucine). A preferred vector system for use in yeast is the POT1 vector system disclosed by Kawasaki et al. (U.S. Patent No. 4,931,373), which allows transformed cells to 25 be selected by growth in glucose-containing media. Suitable promoters and terminators for use in yeast include those from glycolytic enzyme genes (see, e.g., Kawasaki, U.S. Patent No. 4,599,311; Kingsman et al., U.S. Patent No. 4,615,974; and Bitter, U.S. Patent No. 30 4,977,092) and alcohol dehydrogenase genes. See also U.S. Patents Nos. 4,990,446; 5,063,154; 5,139,936 and 4,661,454. Transformation systems for other yeasts, including Hansenula polymorpha, Schizosaccharomyces pombe, Kluyveromyces lactis, Kluyveromyces fragilis, Ustilago 35 maydis, Pichia pastoris, Pichia methanolica, Pichia quillermondii and Candida maltosa are known in the art.

See, for example, Gleeson et al., J. Gen. Microbiol.

132:3459-3465, (1986) and Cregg, U.S. Patent No. 4,882,279. Aspergillus cells may be utilized according to the methods of McKnight et al., U.S. Patent No. 4,935,349. Methods for transforming Acremonium chrysogenum are disclosed by Sumino et al., U.S. Patent No. 5,162,228. Methods for transforming Neurospora are disclosed by Lambowitz, U.S. Patent No. 4,486,533.

Transformed or transfected host cells are cultured according to conventional procedures in a culture 10 medium containing nutrients and other components required for the growth of the chosen host cells. A variety of suitable media, including defined media and complex media, are known in the art and generally include a carbon source, a nitrogen source, essential amino acids, vitamins 15 Media may also contain such components as and minerals. growth factors or serum, as required. The growth medium will generally select for cells containing the exogenously added DNA by, for example, drug selection or deficiency in 20 an essential nutrient which is complemented by the selectable marker carried on the expression vector or cotransfected into the host cell.

Within one aspect of the present invention, a

25 novel receptor is produced by a cultured cell, and the
cell is used to screen for ligands for the receptor,
including the natural ligand, as well as agonists and
antagonists of the natural ligand. To summarize this
approach, a cDNA or gene encoding the receptor is combined

30 with other genetic elements required for its expression
(e.g., a transcription promoter), and the resulting
expression vector is inserted into a host cell. Cells
that express the DNA and produce functional receptor are
selected and used within a variety of screening systems.

35

Mammalian cells suitable for use in expressing Zcytor11 receptors and transducing a receptor-mediated

signal include cells that express other receptor subunits which may form a functional complex with Zcytor11. These subunits may include those of the interferon receptor family or of other class II or class I cytokine receptors. It is also preferred to use a cell from the same species as the receptor to be expressed. Within a preferred embodiment, the cell is dependent upon an exogenously supplied hematopoietic growth factor for its proliferation. Preferred cell lines of this type are the human TF-1 cell line (ATCC number CRL-2003) and the AML-10 193 cell line (ATCC number CRL-9589), which are GM-CSFdependent human leukemic cell lines and BaF3 [Palacios and Steinmetz, Cell 41: 727-734, (1985)] which is an IL-3 dependent murine pre-B cell line. Other cell lines include BHK, COS-1 and CHO cells. 15

Suitable host cells can be engineered to produce the necessary receptor subunits or other cellular component needed for the desired cellular response. This approach is advantageous because cell lines can be engineered to express receptor subunits from any species, thereby overcoming potential limitations arising from species specificity. Species orthologs of the human receptor cDNA can be cloned and used within cell lines from the same species, such as a mouse cDNA in the BaF3 cell line. Cell lines that are dependent upon one hematopoietic growth factor, such as GM-CSF or IL-3, can thus be engineered to become dependent upon a Zcytor11 ligand.

30

20

Cells expressing functional receptor are used within screening assays. A variety of suitable assays are known in the art. These assays are based on the detection of a biological response in a target cell. One such assay is a cell proliferation assay. Cells are cultured in the presence or absence of a test compound, and cell proliferation is detected by, for example, measuring

incorporation of tritiated thymidine or by colorimetric assay based on the metabolic breakdown of 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) [Mosman, J. Immunol. Meth. 65: 55-63, (1983)]. 5 alternative assay format uses cells that are further engineered to express a reporter gene. The reporter gene is linked to a promoter element that is responsive to the receptor-linked pathway, and the assay detects activation of transcription of the reporter gene. A preferred promoter element in this regard is a serum response 10 element, or SRE. See, e.g., Shaw et al., Cell 56:563-572, (1989). A preferred such reporter gene is a luciferase gene [de Wet et al., Mol. Cell. Biol. 7:725, (1987)]. Expression of the luciferase gene is detected by luminescence using methods known in the art [e.g., 15 Baumgartner et al., J. Biol. Chem. 269:29094-29101, (1994); Schenborn and Goiffin, Promega_Notes 41:11, 1993). Luciferase activity assay kits are commercially available from, for example, Promega Corp., Madison, WI. cell lines of this type can be used to screen libraries of chemicals, cell-conditioned culture media, fungal broths, soil samples, water samples, and the like. For example, a bank of cell-conditioned media samples can be assayed on a target cell to identify cells that produce ligand. 25 Positive cells are then used to produce a cDNA library in a mammalian expression vector, which is divided into

subsequent division of pools, re-transfection, 30 subculturing, and re-assay of positive cells to isolate a cloned cDNA encoding the ligand.

samples from the transfected cells are then assayed, with

pools, transfected into host cells, and expressed.

A natural ligand for the Zcytor11 receptor can also be identified by mutagenizing a cell line expressing the receptor and culturing it under conditions that select for autocrine growth. See WIPO publication WO 95/21930. Within a typical procedure, IL-3 dependent BaF3 cells

expressing Zcytor11 and the necessary additional subunits are mutagenized, such as with 2-ethylmethanesulfonate The cells are then allowed to recover in the presence of IL-3, then transferred to a culture medium lacking IL-3 and IL-4. Surviving cells are screened for the production of a Zcytor11 ligand, such as by adding soluble receptor to the culture medium or by assaying conditioned media on wild-type BaF3 cells and BaF3 cells expressing the receptor.

10

25

35

An additional screening approach provided by the present invention includes the use of hybrid receptor polypeptides. These hybrid polypeptides fall into two general classes. Within the first class, the 15 intracellular domain of Zcytor11, comprising approximately residues 252 to 574 of SEQ ID NO:2, is joined to the ligand-binding domain of a second receptor. preferred that the second receptor be a hematopoietic cytokine receptor, such as mpl receptor [Souyri et al., 20 Cell 63: 1137-1147, (1990)]. The hybrid receptor will further comprise a transmembrane domain, which may be derived from either receptor. A DNA construct encoding the hybrid receptor is then inserted into a host cell. Cells expressing the hybrid receptor are cultured in the presence of a ligand for the binding domain and assayed This system provides a means for for a response. analyzing signal transduction mediated by Zcytor11 while using readily available ligands. This system can also be used to determine if particular cell lines are capable of responding to signals transduced by Zcytor11. A second class of hybrid receptor polypeptides comprise the extracellular (ligand-binding) domain of Zcytor11 (approximately residues 18 to 228 of SEQ ID NO:2) with an intracellular domain of a second receptor, preferably a hematopoietic cytokine receptor, and a transmembrane Hybrid receptors of this second class are expressed in cells known to be capable of responding to

signals transduced by the second receptor. these two classes of hybrid receptors enable the identification of a responsive cell type for the development of an assay for detecting a Zcytor11 ligand.

5

10

15

Cells found to express the ligand are then used to prepare a cDNA library from which the ligand-encoding cDNA can be isolated as disclosed above. The present invention thus provides, in addition to novel receptor polypeptides, methods for cloning polypeptide ligands for the receptors.

The tissue specificity of Zcytor11 expression suggests a role in the development of the pancreas, small intestine, colon and the thymus. In view of the tissue specificity observed for this receptor, agonists (including the natural ligand) and antagonists have enormous potential in both in vitro and in vivo applications. Compounds identified as receptor agonists 20 are useful for stimulating proliferation and development of target cells in vitro and in vivo. For example, agonist compounds are useful as components of defined cell culture media, and may be used alone or in combination with other cytokines and hormones to replace serum that is 25 commonly used in cell culture. Agonists or antagonist may be useful in specifically regulating the growth and/or development of pancreatic, gasto-intestinal or thymicderived cells in culture. These compounds are useful as research reagents for characterizing sites of ligand-In vivo, receptor agonists or 30 receptor interaction. antagonists may find application in the treatment pancreatic, gastro-intestinal or thymic diseases.

Agonists or antagonists to Zcytor11 may include small families of peptides. These peptides may be identified employing affinity selection conditions that are known in the art, from a population of candidates

15

present in a peptide library. Peptide libraries include combinatory libraries chemically synthesized and presented on solid support [Lam et al., Nature 354: 82-84 (1991)] or are in solution [Houghten et al., BioTechniques 13: 412-421, (1992)], expressed then linked to plasmid DNA [Cull et al., Proc. Natl. Acad. Sci. USA 89: 1865-1869 (1992)] or expressed and subsequently displayed on the surfaces of viruses or cells [Boder and Wittrup, Nature Biotechnology 15: 553-557(1997); Cwirla et al. Science 276: 1696-1699 (1997)].

Zcytor11 may also be used within diagnostic systems for the detection of circulating levels of ligand. Within a related embodiment, antibodies or other agents that specifically bind to Zcytor11 can be used to detect circulating receptor polypeptides. Elevated or depressed levels of ligand or receptor polypeptides may be indicative of pathological conditions, including cancer.

Zcytor11 receptor polypeptides can be prepared 20 by expressing a truncated DNA encoding the extracellular domain, for example, a polypeptide which contains residues 18 through 228 of a human Zcytor11 receptor (SEQ ID NO:2 or the corresponding region of a non-human receptor. is preferred that the extracellular domain polypeptides be 25 prepared in a form substantially free of transmembrane and intracellular polypeptide segments. For example, the Cterminus of the receptor polypeptide may be at residue 228 of SEQ ID NO:2 or the corresponding region of an allelic 30 variant or a non-human receptor. To direct the export of the receptor domain from the host cell, the receptor DNA is linked to a second DNA segment encoding a secretory peptide, such as a t-PA secretory peptide. To facilitate purification of the secreted receptor domain, a C-terminal extension, such as a poly-histidine tag, substance P, Flag 35 TM peptide [Hopp et al., Biotechnology 6:1204-1210, (1988); available from Eastman Kodak Co., New Haven, CT] or

another polypeptide or protein for which an antibody or other specific binding agent is available, can be fused to the receptor polypeptide.

In an alternative approach, a receptor 5 extracellular domain can be expressed as a fusion with immunoglobulin heavy chain constant regions, typically an F_C fragment, which contains two constant region domains and a hinge region but lacks the variable region. fusions are typically secreted as multimeric molecules 10 wherein the Fc portions are disulfide bonded to each other and two receptor polypeptides are arrayed in closed proximity to each other. Fusions of this type can be used to affinity purify the cognate ligand from solution, as an in vitro assay tool, to block signals in vitro by 15 specifically titrating out ligand, and as antagonists in vivo by administering them parenterally to bind circulating ligand and clear it from the circulation. purify ligand, a Zcytor11-Ig chimera is added to a sample 20 containing the ligand (e.g., cell-conditioned culture media or tissue extracts) under conditions that facilitate receptor-ligand binding (typically near-physiological temperature, pH, and ionic strength). The chimera-ligand complex is then separated by the mixture using protein A, 25 which is immobilized on a solid support (e.g., insoluble resin beads). The ligand is then eluted using conventional chemical techniques, such as with a salt or pH gradient. In the alternative, the chimera itself can be bound to a solid support, with binding and elution 30 carried out as above. The chimeras may be used in vivo to regulate gastrointestinal, pancreatic or thymic functions. Chimeras with high binding affinity are administered parenterally (e.g., by intramuscular, subcutaneous or intravenous injection). Circulating molecules bind ligand 35 and are cleared from circulation by normal physiological processes. For use in assays, the chimeras are bound to a support via the F_{C} region and used in an ELISA format.

A preferred assay system employing a ligandbinding receptor fragment uses a commercially available biosensor instrument (BIAcore TM , Pharmacia Biosensor, Piscataway, NJ), wherein the receptor fragment is immobilized onto the surface of a receptor chip. Use of this instrument is disclosed by Karlsson, J. Immunol. Methods 145:229-240, (1991) and Cunningham and Wells, J. Mol. Biol. 234:554-563, (1993). A receptor fragment is 10 covalently attached, using amine or sulfhydryl chemistry, to dextran fibers that are attached to gold film within the flow cell. A test sample is passed through the cell. If ligand is present in the sample, it will bind to the immobilized receptor polypeptide, causing a change in the refractive index of the medium, which is detected as a 15 change in surface plasmon resonance of the gold film. This system allows the determination of on- and off-rates, from which binding affinity can be calculated, and assessment of stoichiometry of binding.

Ligand-binding receptor polypeptides can also be used within other assay systems known in the art. Such systems include Scatchard analysis for determination of binding affinity. See, Scatchard, Ann. NY Acad. Sci. 51: 660-672, (1949) and calorimetric assays [Cunningham et al., Science 253:545-548, (1991); Cunningham et al., Science 254:821-825, (1991)].

A receptor ligand-binding polypeptide can also

be used for purification of ligand. The receptor

polypeptide is immobilized on a solid support, such as

beads of agarose, cross-linked agarose, glass, cellulosic

resins, silica-based resins, polystyrene, cross-linked

polyacrylamide, or like materials that are stable under

the conditions of use. Methods for linking polypeptides

to solid supports are known in the art, and include amine

chemistry, cyanogen bromide activation, N-

hydroxysuccinimide activation, epoxide activation, sulfhydryl activation, and hydrazide activation. The resulting media will generally be configured in the form of a column, and fluids containing ligand are passed through the column one or more times to allow ligand to bind to the receptor polypeptide. The ligand is then eluted using changes in salt concentration or pH to disrupt ligand-receptor binding.

prepare antibodies that specifically bind to Zcytor11 polypeptides. As used herein, the term "antibodies" includes polyclonal antibodies, monoclonal antibodies, single-chain antibodies and antigen-binding fragments thereof such as F(ab')₂ and Fab fragments, and the like, including genetically engineered antibodies. Antibodies are defined to be specifically binding if they bind to a Zcytor11 polypeptide with a K_a of greater than or equal to 10⁷/M. The affinity of a monoclonal antibody can be readily determined by one of ordinary skill in the art (see, for example, Scatchard, ibid.).

Methods for preparing polyclonal and monoclonal antibodies are well known in the art. See for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, 25 Second Edition, Cold Spring Harbor, NY, (1989); and Hurrell, J. G. R., Ed., Monoclonal Hybridoma Antibodies: Techniques and Applications, CRC Press, Inc., Boca Raton, FL, (1982), which are incorporated herein by reference. 30 As would be evident to one of ordinary skill in the art, polyclonal antibodies can be generated from a variety of warm-blooded animals such as horses, cows, goats, sheep, dogs, chickens, rabbits, mice, and rats. immunogenicity of a Zcytor11 polypeptide may be increased 35 through the use of an adjuvant such as Freund's complete or incomplete adjuvant. A variety of assays known to those skilled in the art can be utilized to detect

antibodies which specifically bind to Zcytor11 polypeptides. Exemplary assays are described in detail in Antibodies: A Laboratory Manual, Harlow and Lane (Eds.), Cold Spring Harbor Laboratory Press, (1988).

5 Representative examples of such assays include: concurrent immunoelectrophoresis, radio-immunoassays, radio-immunoprecipitations, enzyme-linked immunosorbent assays (ELISA), dot blot assays, inhibition or competition assays, and sandwich assays.

10

15

Antibodies to Zcytor11 may be used for tagging cells that express the receptor, for affinity purification, within diagnostic assays for determining circulating levels of soluble receptor polypeptides, and as antagonists to block ligand binding and signal transduction in vitro and in vivo.

Anti-idiotypic antibodies which bind to the antigenic binding site of antibodies to Zcytor11 are also considered part of the present invention. The antigenic binding region of the anti-idiotypic antibody thus will mimic the ligand binding region of Zcytor11. An anti-idiotypic antibody thus could be used to screen for possible ligands of the Zcytor11 receptor. Thus neutralizing antibodies to Zcytor11 can be used to produce anti-idiotypic antibodies by methods well known in the art as is described in, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, (Cold Spring Harbor, NY, 1989); and Hurrell, J. G. R., Ed., Monoclonal Hybridoma Antibodies: Techniques and Applications, (CRC Press, Inc., Boca Raton, FL, 1982).

Zcytor11 maps 84.62 cR from the top of the human chromosome a linkage group on the WICGR radiation hybrid map. The use of surrounding markers positioned Zcytor11 in the 1p35.2 to 35.1 region.

Thus Zcytor11 could be used to generate a probe that could allow detection of an aberration of the Zcytor11 gene in the 1p chromosome which may indicate the presence of a cancerous cells or a predisposition to cancerous cell 5 development. This region of chromosome 1 is frequently involved in visible deletions or loss of heterozygosity in tumors derived from the neural crest cells particularly neuroblastomas and melanomas. For further discussions on developing polynucleotide probes and hybridization see Current Protocols in Molecular Biology Ausubel, F. et al. Eds. (John Wiley & Sons Inc. 1991).

The invention is further illustrated by the following non-limiting examples.

15

10

Example 1

Production a Pancreatic Islet Cell cDNA Library

Zcytor11 was cloned from a pancreatic islet cell cDNA library produced according to the following 20 procedure. RNA extracted from pancreatic islet cells was reversed transcribed in the following manner. The first strand cDNA reaction contained 10 μl of human pancreatic poly d(T)-selected poly (A) + mRNA (Clontech, islet cell 25 Palo Alto, CA) at a concentration of 1.0 mg/ml, and 2 μl of 20 pmole/ μ l first strand primer ZC6171 (SEQ ID NO: 6) containing an Xho I restriction site. The mixture was heated at 70°C for 2.5 minutes and cooled by chilling on ice. First strand cDNA synthesis was initiated by the 30 addition of 8 μl of first strand buffer (5x SUPERSCRIPT® buffer; Life Technologies, Gaithersburg, MD), 4 μl of 100 mM dithiothreitol, and 3 μl of a deoxynucleotide triphosphate (dNTP) solution containing 10 mM each of dTTP, dATP, dGTP and 5-methyl-dCTP (Pharmacia LKB 35 Biotechnology, Piscataway, NJ) to the RNA-primer mixture. The reaction mixture was incubated at 40° C for 2 minutes, followed by the addition of 10 μl of 200 $U/\mu l$ RNase H^-

electrophoresis.

reverse transcriptase (SUPERSCRIPT II®; Life Technologies). The efficiency of the first strand synthesis was analyzed in a parallel reaction by the addition of 10 μ Ci of $^{32}P-\alpha d$ CTP to a 5 μ l aliquot from one 5 of the reaction mixtures to label the reaction for analysis. The reactions were incubated at 40°C for 5 minutes, 45°C for 50 minutes, then incubated at 50°C for 10 minutes. Unincorporated $^{32}P-\alpha dCTP$ in the labeled reaction was removed by chromatography on a 400 pore size gel 10 filtration column (Clontech Laboratories, Palo Alto, CA). The unincorporated nucleotides and primers in the unlabeled first strand reactions were removed by chromatography on 400 pore size gel filtration column (Clontech Laboratories, Palo Alto, CA). The length of 15 labeled first strand cDNA was determined by agarose gel

The second strand reaction contained 102 μl of the unlabeled first strand cDNA, 30 µl of 5x polymerase I 20 buffer (125 mM Tris: HCl, pH 7.5, 500 mM KCl, 25 mM MgCl₂, 50mM (NH₄) $_2$ SO₄)), 2.0 μ l of 100 mM dithiothreitol, 3.0 μ l of a solution containing 10 mM of each deoxynucleotide triphosphate, 7 μ l of 5 mM β -NAD, 2.0 μ l of 10 U/ μ l E. coli DNA ligase (New England Biolabs; Beverly, MA), 5 μ l 25 of 10 $U/\mu l$ E. coli DNA polymerase I (New England Biolabs, Beverly, MA), and 1.5 µl of 2 U/µl RNase H (Life Technologies, Gaithersburg, MD). A 10 µl aliquot from one of the second strand synthesis reactions was labeled by the addition of 10 μCi ³²P- αdCTP to monitor the 30 efficiency of second strand synthesis. The reactions were incubated at 16° C for two hours, followed by the addition of 1 μ l of a 10 mM dNTP solution and 6.0 μ l T4 DNA polymerase (10 U/μl, Boehringer Mannheim, Indianapolis, IN) and incubated for an additional 10 minutes at 16°C. 35 Unincorporated $^{32}P-\alpha dCTP$ in the labeled reaction was removed by chromatography through a 400 pore size gel filtration column (Clontech Laboratories, Palo Alto, CA)

before analysis by agarose gel electrophoresis. The reaction was terminated by the addition of 10.0 μ l 0.5 M EDTA and extraction with phenol/chloroform and chloroform followed by ethanol precipitation in the presence of 3.0 M Na acetate and 2 μ l of Pellet Paint carrier (Novagen, Madison, WI). The yield of cDNA was estimated to be approximately 2 μ g from starting mRNA template of 10 μ g.

Eco RI adapters were ligated onto the 5' ends of the cDNA described above to enable cloning into an expression vector. A 12.5 μl aliquot of cDNA (~2.0 μg) and 3 μl of 69 pmole/μl of Eco RI adapter (Pharmacia LKB Biotechnology Inc., Piscataway, NJ) were mixed with 2.5 μl 10x ligase buffer (660 mM Tris-HCl pH 7.5, 100 mM MgCl₂), 2.5 μl of 10 mM ATP, 3.5 μl 0.1 M DTT and 1 μl of 15 U/μl T4 DNA ligase (Promega Corp., Madison, WI). The reaction was incubated 1 hour at 5°C, 2 hours at 7.5°C, 2 hours at 10°C, 2 hours at 12.5°C and 16 hours at 10°C. The reaction was terminated by the addition of 65 μl H₂O and 10 μl 10X H buffer (Boehringer Mannheim, Indianapolis, IN) and incubation at 70°C for 20 minutes.

To facilitate the directional cloning of the cDNA into an expression vector, the cDNA was digested with Xho I, resulting in a cDNA having a 5' Eco RI cohesive end and a 3' Xho I cohesive end. The Xho I restriction site at the 3' end of the cDNA had been previously introduced. Restriction enzyme digestion was carried out in a reaction mixture by the addition of 1.0 µl of 40 U/µl Xho I

30 (Boehringer Mannheim, Indianapolis, IN). Digestion was carried out at 37°C for 45 minutes. The reaction was terminated by incubation at 70°C for 20 minutes and chromatography through a 400 pore size gel filtration column (Clontech Laboratories, Palo Alto, CA).

35

The cDNA was ethanol precipitated, washed with 70% ethanol, air dried and resuspended in 10.0 μ l water, 2

20

25

μl of 10X kinase buffer (660 mM Tris-HCl, pH 7.5, 100 mM $MgCl_{2}$), 0.5 μ l 0.1 M DTT, 2 μ l 10 mM ATP, 2 μ l T4 polynucleotide kinase (10 U/µl, Life Technologies, Gaithersburg, MD). Following incubation at 37° C for 30 5 minutes, the cDNA was ethanol precipitated in the presence of 2.5 M Ammonium Acetate, and electrophoresed on a 0.8% low melt agarose gel. The contaminating adapters and cDNA below 0.6 Kb in length were excised from the gel. electrodes were reversed, and the cDNA was electrophoresed 10 until concentrated near the lane origin. The area of the gel containing the concentrated cDNA was excised and placed in a microfuge tube, and the approximate volume of the gel slice was determined. An aliquot of water approximately three times the volume of the gel slice (300 15 μ l) and 35 μ l 10x β -agarose I buffer (New England Biolabs) was added to the tube, and the agarose was melted by heating to 65°C for 15 minutes. Following equilibration of the sample to 45°C, 3 μl of 1 U/ $\!\mu l$ $\beta\text{-agarose}$ I (New England Biolabs, Beverly, MA) was added, and the mixture was incubated for 60 minutes at 45°C to digest the agarose. After incubation, 40 μl of 3 M Na acetate was added to the sample, and the mixture was incubated on ice for 15 minutes. The sample was centrifuged at 14,000 x g for 15 minutes at room temperature to remove undigested agarose. The cDNA was ethanol precipitated, washed in 70% ethanol, air-dried and resuspended in 40 µl water.

Following recovery from low-melt agarose gel, the cDNA was cloned into the Eco RI and Xho I sites of pBLUESCRIPT SK+ vector (Gibco/BRL, Gaithersburg, MD) and 30 electroporated into DH10B cells. Bacterial colonies containing ESTs of known genes were identified and eliminated from sequence analysis by reiterative cycles of probe hybridization to hi-density colony filter arrays (Genome Systems, St. Louis, MI). cDNAs of known genes were 35 pooled in groups of 50 - 100 inserts and were labeled with 32 P- α dCTP using a MEGAPRIME labeling kit (Amersham,

10

15

Arlington Heights, IL). Colonies which did not hybridize to the probe mixture were selected for sequencing. Sequencing was done using an ABI 377 sequencer using either the T3 or the reverse primer. The resulting data were analyzed which resulted in the identification of EST LISF104376 (SEQ ID NO: 3).

Example 2.

Cloning of Zcytor11

Expressed sequence tag (EST) LISF104376 (SEQ ID NO:3) contained in plasmid pSLIS4376 was isolated from a human pancreatic islet cell cDNA library. Following sequencing of the entire pSLIS4376 cDNA insert, it was determined not to encode a full-length Zcytor11 polypeptide.

A full length Zcytorl1 encoding cDNA was isolated by screening a human islet cDNA library using a 20 probe that was generated by PCR primers ZC14,295 (SEQ ID NO:4) and ZC14294 (SEQ ID NO:5) and the pSLIS4376 template. (For details on the construction of the pancreatic islet cell cDNA library, see Example 2 below.) The resulting probe of 276 bp containing nucleotides 142 25 to 417 of SEQ ID NO:1 was purified by chromatography through a 100 pore size spin column (Clontech, Palo Alto, CA). The purified probe was labeled with $^{32}\text{P-}\alpha\text{CTP}$ using a MEGAPRIME® labeling kit (Amersham Corp., Arlington Heights, IL). The labeled probe was purified on a NUCTRAP® 30 purification column (Stratagene Cloning Systems, La Jolla, CA) for library screening.

Following recovery of the islet cDNA from a lowmelt agarose gel from Example 1, the cDNA was cloned into
the Eco RI and Xho I sites; of pBLUESCRIPT SK+ (Gibco/BRL,
Gaithersburg, MD) and electroporated into DH10B cells.
Bacterial clones from resulting cDNA library were

individually placed on a grid of a high-density colony filter arrays (Genome Systems, St. Louis, MI) and were probed with the labeled Zyctorll probe described above. A glycerol stock of each clone on each grid was also made to expedite the isolation of positive clones. The filters were first pre-washed in an aqueous solution containing 0.25% standard sodium citrate (SSC), 0.25% sodium dodecyl sulfate (SDS) and 1 mM EDTA to remove cellular debris and then prehybridized in a hybridization solution (5% SSC, 5% Denhardt's solution, 0.2% SDS and 1 mM EDTA) containing 100 $\mu g/ml$ heat-denature, sheared salmon sperm DNA).

Fifty nanograms of the PCR-derived Zcytor11 probe was radiolabeled with 32P- α dCTP by random priming using the MEGAPRIME® DNA labeling system (Amersham, Arlington Heights, IL). The prehybridization solution was replaced with fresh hybridization containing 1 x 10 6 cpm/ml probe and allowed to hybridize at 65 $^\circ$ C overnight. The filters were washed in a wash buffer containing 0.25X SSC, 0.25% SDS and 1 mM EDTA at 65 $^\circ$ C.

Following autoradiography, three signals were detected among 40,000 clones on the grids of the filter array. From the grid coordinates of the positive signals, the corresponding clones, pSLR11-1, pSLR11-2 and pSLR11-3 were retrieved from the glycerol stock and their inserts sequenced. The insert in pSLR11-1 was determined to be 2831 base pairs (bp) and encoded full-length Zcytor11 polypeptide.

30

25

5

10

15

20

Example 3

Expression of Human Zcytorll mRNA in Human Tissues

Poly(A) * RNAs isolated brain, colon, heart, kidney, liver, lung, ovary, pancreas, prostate, placenta, peripheral blood leukocytes, stomach, spleen, skeletal

muscle, small intestine, testis, thymus, thyroid, spinal cord, lymph node, trachea, adrenal gland and bone marrow were hybridized under high stringency conditions with a radiolabeled DNA probe containing nucleotides 181-456 of (SEQ ID NO:1). Membranes were purchased from Clontech. The membrane were washed with 0.1% SSC, 0.1% SDS at 50°C and autoradiographed for 24 hours. The mRNA levels were highest in pancreas with low levels in colon, small intestine and thymus. The receptor mRNA localization 10 suggests that Zcytor11 may regulate gastrointestinal, pancreatic or thymic functions.

Example 4

Chromosomal Assignment and Placement of Zcytor11

Zcytor11 was mapped to chromosome 1 using the commercially available version of the Whitehead Institute/MIT Center for Genome Research's "GeneBridge 4 Radiation Hybrid Panel" (Research Genetics, Inc., Huntsville, AL). The GeneBridge 4 Radiation Hybrid Panel contains PCRable DNAs from each of 93 radiation hybrid clones, plus two control DNAs (the HFL donor and the A23 recipient). A publicly available WWW server (http://www-25 genome.wi.mit.edu/cgi-bin/contig/rhmapper.pl) allows mapping relative to the Whitehead Institute/MIT Center for Genome Research's radiation hybrid map of the human genome (the "WICGR" radiation hybrid map) which was constructed with the GeneBridge 4 Radiation Hybrid Panel.

15

20

CLAIMS

We claim:

- 1. An isolated polynucleotide encoding a ligand-binding receptor polypeptide, said polypeptide being defined by amino acid residues 18 to 228 of SEQ ID NO:2.
- 2. An isolated polynucleotide according to claim 1 wherein said polypeptide further comprises a transmembrane domain.
- 3. An isolated polynucleotide according to claim 2 wherein said transmembrane domain comprises residues 229 to 251 of SEQ ID NO:2.
- 4. An isolated polynucleotide according to claim 2 wherein said polypeptide further comprises an intracellular domain.
- 5. An isolated polynucleotide according to claim 4 wherein said intracellular domain comprises residues 252 to 574 of SEQ ID NO:2.
- 6. An isolated polynucleotide according to claim 1 which is a DNA as shown in SEQ ID NO:1 from nucleotide 34 to nucleotide 1755.
- 7. An isolated polynucleotide according to claim 1 wherein said polypeptide further comprises an affinity tag.
- 8. An isolated polynucleotide according to claim 7 wherein said affinity tag is polyhistidine, protein A, glutathione S transferase, substance P, or an immunoglobulin heavy chain constant region.

- 9. An isolated polynucleotide according to claim 1 wherein said polynucleotide is DNA.
- 10. An isolated polynucleotide encoding a polypeptide selected from a group defined SEQ ID NO:2 consisting of residues 1 to 228, residues 1 to 251, residues 1 to 574, residues 2 to 228, residues 2 to 251, residues 2 to 574, residues 229 to 251, residues 229 to 574 and residues 252 to 574.
- 11. An expression vector comprising the following operably linked elements:
 - a transcription promoter;
- a DNA segment encoding a ligand-binding receptor polypeptide, said polypeptide being defined by amino residues 18 to 228 of SEQ ID NO:2; and
 - a transcription terminator.
- 12. An expression vector according to claim 11 wherein said polypeptide further comprises a signal sequence.
- 13. An expression vector according to claim 11 wherein said polypeptide further comprises a transmembrane domain.
- 14. An expression vector according to claim 11 wherein said transmembrane domain comprises residues 229 to 251 of SEQ ID NO:2.
- 15. An expression vector according to claim 13 wherein said polypeptide further comprises an intracellular domain.
- 16. An expression vector according to claim 15 wherein said intracellular domain comprises residues 252 to 574 of SEQ ID NO:2.

- 17. An expression vector according to claim 11 wherein further comprising a DNA sequence encoding an affinity tag.
- 18. An expression vector according to claim 17 wherein the affinity tag is an immunoglobulin $F_{\rm C}$ polypeptide.
- 19. A transformed or transfected cell into which has been introduced an expression vector according to claim 11, wherein said cell expresses a receptor polypeptide encoded by the DNA segment.
- 20. An isolated polypeptide defined by residues 18-228 of SEQ ID NO: 2.
- 21. The isolated polypeptide of claim 20 further containing either a sequence which defines a transmembrane domain or a sequence which defines an intracellular domain or both.
- 22. The isolated polypeptide of claim 23 wherein the transmembrane domain is defined by amino acid residues 229-251 of SEQ ID NO: 2 and the intracellular domain is defined by amino acid residues 252-574 of SEQ ID NO: 2.
- 23. An isolated polypeptide according to claim 20 further containing a sequence which defines an affinity tag.
- 24. A method for detecting a ligand within a test sample, comprising contacting a test sample with a polypeptide comprising residues 18 to 228 of SEQ ID NO:2; and detecting binding of said polypeptide to a ligand in the sample.

- 25. An antibody that specifically binds to a polypeptide of claim 20.
- 26. An anti-idiotypic antibody which binds to an antigenic binding site of an antibody of claim 25.
- 27. An isolated polypeptide selected from the group consisting of residues 1 to 228, residues 1 to 251, residues 1 to 574 residues 2 to 228, residues 2 to 551, and residues 2 to 574 of SEQ ID NO: 2.

CYTOKINE RECEPTOR

ABSTRACT OF THE DISCLOSURE

Novel receptor polypeptides, polynucleotides encoding the polypeptides, and related compositions and methods are disclosed. The polypeptides comprise an extracellular domain of a cell-surface receptor that is expressed in pancreas, small intestine, colon and thymus. The polypeptides may be used within methods for detecting ligands that promote the proliferation and/or differentiation of these organs.

5	
	-
1.5	
i de la companya de l	7
11	1421
70.7	2
	-
ist.	
1	
100	-
	-
: 5	:
-	-
1	

COMBINED DECLARATIO	N FOR PATENT A	AND POWER O	F ATTORNEY		File No. 9	97-52
(Includes Reference to PCT	International Appl	ications)				
As a below named inventor, My residence, post office ac first and sole inventor (if onlibelow) of the subject matter	ldress and citizens v one name is liste	ship are as state ed below) or an	original, first and joir	it inventor (it p	iurai names a	e original, are listed
MAMMALIAN ZCYTOR11						
the specification of which (c	heck only one item	n below):				
$oldsymbol{arDelta}$ is attached hereto \Box	was filed as United	d States applica	ation Serial No. on	August 5, 199	97	
and was amended on						
☐ was filed as PCT inter I hereby state that I have re						
claims, as amended by any material to the examination claim foreign priority benefit inventor's certificate(s) or o States of America listed be certificate(s) or any PCT in America filed by me on the claimed:	of this application is under Title 35, Lef any PCT internatiow and have also ternational applicational same subject mati	in accordance of Jnited States Co- ional application identified below tion(s) designat ter having a filin	with Title 37, Code on ode, 119 of any forein (s) designating at least any foreign applicating at least one cour ing date before that of	f Federal Regi gn application east one counti tion(s) for pate htry other than f the applicatio	(s) for patent ry other than ant or inventor the United Sin(s) of which	or the United 's tates of
PRIOR FOREIGN/PCT A	PPLICATION(S)	AND ANY PRIO	RITY CLAIMS UND	ER 35 U.S.C.	119:	A 13.455
COUNTRY	APPLICATION	ON NUMBER	DATE OF FILING	j <u> </u>	PRIORITY CL	_AIMED
					YES YES	□NO
					J YES	□NO
					YES	□ NO
					YES	□NO
I hereby claim the benefinternational application(s) matter of each of the claim by the first paragraph of T defined in Title 37, Code of and the national or PCT into	designating the Uns of this application itle 35, United State of Federal Regulational filing da	Inited States of on is not disclos ites Code, 112, ions, 1.56 which ite of this applic	America that is/are sed in that/those prid I acknowledge the n occurred between ation:	nsted below a or application(s duty to disclos the filing date	nd, insolar ass) in the man se material in of the prior a	ner provided formation as application(s)
PRIOR U.S, APPLICATIO	NS OR PCT INTER	RNATIONAL AF	PPLICATIONS DESI	GNATING TH	E U.S. FOR E	BENEFII
	U.S. APPLICA	TIONS _		STATUS (C	neck one)	Abandoned
U.S. APPLICATION N	IUMBER	U.S. FIL	ING DATE	Patented	Pending	Abandoned
	NONATING THE	1.0				
PCT APPLICATIONS DES	FILING DATE	U.S. SE	RIAL NUMBERS NED (if any)			
	-	, , , , , ,	· · · · · · · · · · · · · · · · · · ·			

Date

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith. Susan E. Lingenfelter Roberta A. Picard Paul G. Lunn Debra K. Leith Deborah A. Sawislak Gary E. Parker Reg. No. P-41,156 Reg. No. 32,743 Reg. No. 32,619 Reg. No. 32,625 Reg. No. 37,438 Reg. No. 31,648 **Direct Telephone Calls To:** Paul G. Lunn **Send Correspondence To:** Paul G. Lunn ZymoGenetics, Inc. (206) 442-6627 1201 Eastlake Avenue East Seattle, WA 98102 Second Given Name First Given Name Family Name Full Name Lok Country of Citizenship State or Foreign Country Residence City WA Seattle State & Zip Code/Country Post Office Address City Post Office WA 98107/US Seattle 806 NW 52nd St Address Second Given Name First Given Name Full Name Family Name 2 Robyn Adams Country of Citizenship State or Foreign Country City Residence Bellevue State & Zip Code/Country Post Office Address City Post Office WA 98007/US Bellevue 14426 SE 15th St. Address Second Given Name First Given Name Full Name Family Name 3 Jelmberg Anna Country of Citizenship State or Foreign Country Residence WA Issaquah State & Zip Code/Country Citv Post Office Post Office Address WA 98027/US 170 2nd Ave NW #203 Issaguah Address First Given Name Second Given Name Family Name Full Name 4 Whitmore Theodore Country of Citizenship State or Foreign Country Residence City US WA Redmond State & Zip Code/Country Post Office Address Post Office City WA 98052/US 6916 152nd Ave NE Redmond Address Second Given Name First Given Name Family Name 5 Full Name Theresa M. Farrah Country of Citizenship State or Foreign Country City Residence WA Seattle State & Zip Code/Country Post Office Address City Post Office WA 98122/US Seattle 718 16th Ave. Address Second Given Name First Given Name Family Name Full Name Country of Citizenship State or Foreign Country Residence City State & Zip Code/Country City Post Office Post Office Address Address I hereby declare that all statement made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application any patent issuing thereon. Signature of Inventor 3 Signature of Inventor 2 Signature of Inventor 1 Date Date Date Signature of Inventor 6 Signature of Inventor 5 Signature of Inventor 4

Date

Date

SEQUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT: Lok, Si

Adams, Robyn L.
Jelmberg, Anna C.
Whitmore, Theodore E.
Farrah, Theresa M.

- (ji) TITLE OF THE INVENTION: MAMMALIAN ZCYTOR11
- (iii) NUMBER OF SEQUENCES: 6
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Zymogenetics
 - (B) STREET: 1201 Eastlake Ave East
 - (C) CITY: Seattle
 - (D) STATE: WA
 - (E) COUNTRY: USA
 - (F) ZIP: 98102
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: DOS
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Lunn, Paul G
 - (B) REGISTRATION NUMBER: 32,743

(C) REFERENCE/DOCKET NUMBER: 97-52

	((A) 7 (B) 7	ELECC TELEF TELEF	PHONE Fax :	E: 20)6-44	12-66	527	ΓΙΟN:							
		(2)	INF	ORMA ⁻	ΓΙΟΝ	FOR	SEQ	ID I	NO:1	:						
		(A) I (B) (C) :	QUENG _ENG TYPE STRAI TOPO	TH: : : nu NDEDI	2831 clei NESS	base c act	e pa id									
			OLEC EATU		TYPE	: cD	NA									
		(B)	NAM LOC OTH	ATI0	N: 3	4	1755	quen	ce							
	(×	i) S	EQUE	NCE	DESC	RIPT	ION:	SEC) ID	NO:1	:					
TAGA	GGCC	:AA G	iGGAG	GGCT	C TG	TGCC	AGCC	CCG	ATG Met	AGG Arg	ACG Thr	CTG Leu	CTG Leu 5	ACC Thr	: ATC : Ile	54
TTG Leu	ACT Thr	GTG Val 10	GGA Gly	TCC Ser	CTG Leu	GCT Ala	GCT Ala 15	CAC His	GCC Ala	CCT Pro	GAG Glu	GAC Asp 20	CCC Pro	TCG Ser	GAT Asp	102
CTG Leu	CTC Leu 25	CAG Gln	CAC His	GTG Val	AAA Lys	TTC Phe 30	CAG Gln	TCC Ser	AGC Ser	AAC Asn	TTT Phe 35	GAA Glu	AAC Asn	ATC Ile	CTG Leu	150
ACG Thr 40	TGG Trp	GAC Asp	AGC Ser	GGG Gly	CCA Pro 45	GAG Glu	GGC Gly	ACC Thr	CCA Pro	GAC Asp 50	ACG Thr	GTC Val	TAC Tyr	AGC Ser	ATC Ile 55	198
GAG Glu	TAT Tyr	AAG Lys	ACG Thr	TAC Tyr 60	GGA Gly	GAG Glu	AGG Arg	GAC Asp	TGG Trp 65	GTG Val	GCA Ala	AAG Lys	AAG Lys	GGC Gly 70	TGT Cys	246

CAG Gln	CGG Arg	ATC Ile	ACC Thr 75	CGG Arg	AAG Lys	TCC Ser	TGC Cys	AAC Asn 80	CTG Leu	ACG Thr	GTG Val	GAG Glu	ACG Thr 85	GGC Gly	AAC Asn	2	94
CTC Leu	ACG Thr	GAG Glu 90	CTC Leu	TAC Tyr	TAT Tyr	GCC Ala	AGG Arg 95	GTC Val	ACC Thr	GCT Ala	GTC Val	AGT Ser 100	GCG Ala	GGA Gly	GGC Gly	3	342
CGG Arg	TCA Ser 105	GCC Ala	ACC Thr	AAG Lys	ATG Met	ACT Thr 110	GAC Asp	AGG Arg	TTC Phe	AGC Ser	TCT Ser 115	CTG Leu	CAG Gln	CAC His	ACT Thr	3	390
ACC Thr 120	CTC Leu	AAG Lys	CCA Pro	CCT Pro	GAT Asp 125	GTG Val	ACC Thr	TGT Cys	ATC Ile	TCC Ser 130	AAA Lys	GTG Val	AGA Arg	TCG Ser	ATT Ile 135	2	138
CAG Gln	ATG Met	ATT Ile	GTT Val	CAT His 140	CCT Pro	ACC Thr	CCC Pro	ACG Thr	CCA Pro 145	ATC Ile	CGT Arg	GCA Ala	GGC Gly	GAT Asp 150	GGC Gly	2	186
CAC His	CGG Arg	CTA Leu	ACC Thr 155	Leu	GAA Glu	GAC Asp	ATC Ile	TTC Phe 160	CAT His	GAC Asp	CTG Leu	TTC Phe	TAC Tyr 165	His	TTA Leu	į	534
GAG G1u	CTC Leu	CAG Gln 170	۷a٦	AAC Asn	CGC Arg	ACC Thr	TAC Tyr 175	Gln	ATG Met	CAC His	CTT Leu	GGA Gly 180	Gly	AAG Lys	CAG Gln		582
AGA Arg	GAA Glu 185	Tyr	GAG Glu	TTC Phe	TTC Phe	GGC Gly 190	Leu	ACC Thr	CCT Pro	GAC Asp	ACA Thr 195	Glu	TTC Phe	CTT Leu	GGC Gly		630
ACC Thr 200	Ile	: ATG Met	ATT : Ile	TGC Cys	GTT Val 205	Pro	ACC Thr	: TGG : Trp	GCC Ala	AAG Lys 210	G]ı	AGT Ser	GCC Ala	CCC Pro	TAC Tyr 215		678
ATG Met	TGC Cys	CGA S Arg	GTG Val	AAG Lys 220	Thr	CTG Leu	CCA Pro	GAC Asp	CGG Arg 225	_I Thr	TGG Trp	ACC Thr	TAC Tyr	TCC Ser 230	TTC Phe		726
TC0 Ser	C GG∕ CGly	A GC0 / Ala	235	e Lei	TT(Phe	C TCC e Ser	: ATG : Met	G GG(C Gl) 24(∕ Ph∈	CT(Lei	C GT(u Va	C GCA I Ala	A GT/ a Va [*] 249	l Leu	TGC Cys		774

TAC CTG Tyr Leu	AGC Ser 250	TAC Tyr	AGA Arg	TAT Tyr	GTC Val	ACC Thr 255	AAG Lys	CCG Pro	CCT Pro	GCA Ala	CCT Pro 260	CCC Pro	AAC Asn	TCC Ser	822
CTG AAC Leu Asr 265	ı Val	CAG Gln	CGA Arg	GTC Val	CTG Leu 270	ACT Thr	TTC Phe	CAG Gln	CCG Pro	CTG Leu 275	CGC Arg	TTC Phe	ATC Ile	CAG Gln	870
GAG CAC Glu His 280	GTC Val	CTG Leu	ATC Ile	CCT Pro 285	GTC Val	TTT Phe	GAC Asp	CTC Leu	AGC Ser 290	GGC Gly	CCC Pro	AGC Ser	AGT Ser	CTG Leu 295	918
GCC CA(Ala Glr	G CCT n Pro	GTC Val	CAG Gln 300	TAC Tyr	TCC Ser	CAG Gln	ATC Ile	AGG Arg 305	GTG Val	TCT Ser	GGA Gly	CCC Pro	AGG Arg 310	GAG Glu	966
CCC GCA Pro Ala	A GGA a Gly	GCT Ala 315	CCA Pro	CAG Gln	CGG Arg	CAT His	AGC Ser 320	CTG Leu	TCC Ser	GAG Glu	ATC Ile	ACC Thr 325	TAC Tyr	TTA Leu	1014
GGG CA Gly Gl		Asp													1062
CAG AT Gln Il 34	e Leu	TCC Ser	CCA Pro	CTG Leu	TCC Ser 350	TAT Tyr	GCC Ala	CCA Pro	AAC Asn	GCT Ala 355	Ala	CCT Pro	GAG Glu	GTC Val	1110
GGG CC Gly Pr 360	C CCA o Pro	TCC Ser	TAT Tyr	GCA Ala 365	Pro	CAG Gln	GTG Val	ACC Thr	CCC Pro 370	Glu	GCT Ala	CAA Gln	TTC Phe	CCA Pro 375	1158
TTC TA Phe Ty	c GCC r Ala	CCA Pro	CAG Gln 380	Ala	ATC Ile	TCT Ser	AAG Lys	GTC Val 385	Glr	CCT Pro	TÇC Ser	TCC Ser	TAT Tyr 390	Ala	1206
CCT CA Pro Gl	A GCC n Ala	C ACT a Thr 395	Pro	GAC Asp	: AGC : Ser	TGG Trp	CCT Pro 400	Pro	C TCC Ser	TAT Tyr	GGG Gly	GTA Val 405	Cys	: ATG : Met	1254
GAA GG Glu Gl		^ Gly					Thr					` Ser			1302

CAC CT His Le															1350
TGC ATCYS MG	TG TT/ et Lei	A GGT u Gly	GGC Gly	CTT Leu 445	TCT Ser	CTG Leu	CAG Gln	GAG Glu	GTG Val 450	ACC Thr	TCC Ser	TTG Leu	GCT Ala	ATG Met 455	1398
GAG GAG GAG	AA TC(lu Sei	C CAA Gln	GAA G1u 460	GCA Ala	AAA Lys	TCA Ser	TTG Leu	CAC His 465	CAG Gln	CCC Pro	CTG Leu	GGG Gly	ATT Ile 470	TGC Cys	1446
ACA GA Thr A															1494
ACA C	CA CA ro G1 49	n Tyr													1542
	AG GG Glu Gl GO5										Pro				1590
	CC CC Ser Pr									Gly					1638
	GTG TG /al Cy			Asp					Pro					Ser	1686
	CTG GA _eu G1		n Pro					Ser					Leu		1734
	ACT GT Thr Va 57	ıl Glr					(GGGG	AAT	GGGA	VAAG0	GCT T	GGTG	iCTTC	CC TCCC	1789
CTGCC CCTGC GCTCT	GATCTO CCATGO TGGGGA	GCCT GGTG(GCA(TCAGA CGCT(GCTT(ACG C CCT C GTG T	GTGC CACCG TAGAC	CCTT GAAC CAAGC	TG AG CA AA CG CG	GAGAA AGCAG GTGCT	AGCA(GCAT(TCGC	G AGO G ATA F GAO	GGAGT NAGGA GCCCT	TGGC ACTG TGCA	ATGO CAGO AGGO	ACACACT CAGGGCC CGGGGGA CAGAAAT CTAACAC	1849 1909 1969 2029 2089

CATGGATTCA	AAGTGCTCAG	GGAATTTGCC	TCTCCTTGCC	CCATTCCTGG	CCAGTTTCAC	2149
			CCTCTTCTGT			2209
			GAACCAGAAG			2269
			GCAGGACGGC			2329
GGCCTGCAGC	TCATTCCCAG	CCAGGGCAAC	TGCCTGACGT	TGCACGATTT	CAGCTTCATT	2389
CCTCTGATAG	AACAAAGCGA	AATGCAGGTC	CACCAGGGAG	GGAGACACAC	AAGCCTTTTC	2449
TGCAGGCAGG	AGTTTCAGAC	CCTATCCTGA	GAATGGGGTT	TGAAAGGAAG	GTGAGGGCTG	2509
TGGCCCCTGG	ACGGGTACAA	TAACACACTG	TACTGATGTC	ACAACTTTGC	AAGCTCTGCC	2569
TTGGGTTCAG	CCCATCTGGG	CTCAAATTCC	AGCCTCACCA	CTCACAAGCT	GTGTGACTTC	2629
			GTTTCCTCAT			2689
			AAATGAAGTC			2749
AGTGCCTGGT	ACATGGGCAG	TGCCCAATAA	ACGGTAGCTA	TTTAAAAAAA	AAAAAAAAA	2809
AAAAAAATAG	CGGCCGCCTC	GA				2831

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 574 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met 1	Arg	Thr	Leu	Leu 5	Thr	Ile	Leu	Thr	Val 10	Gly	Ser	Leu	Ala	Ala 15	His
	Pro	Glu	Asp 20	Pro	Ser	Asp	Leu	Leu 25	Gln	His	Val	Lys	Phe 30	Gln	Ser
Ser	Asn	Phe 35	Glu	Asn	Ile	Leu		Trp		Ser	Gly	Pro 45	Glu	Gly	Thr
Pro	Asp 50	Thr	Val	Tyr	Ser	Ile 55		Tyr	Lys	Thr	Tyr 60	Gly	Glu	Arg	Asp
Trp 65		Ala	Lys	Lys			Gln			Thr 75	Arg	Lys	Ser	Cys	Asn 80
Leu	Thr	Val	Glu	Thr 85	Gly	Asn	Leu	Thr	Glu 90	Leu	Tyr	Tyr	Ala	Arg 95	Val
Thr	Ala	Val	Ser 100	Ala	Gly	Gly	Arg	Ser 105		Thr	Lys	Met	Thr 110	Asp	Arg
Phe	Ser	Ser	Leu	G1n	His	Thr	Thr 120	Leu	Lys	Pro	Pro	Asp 125	۷a٦	Thr	Cys
Ile	Ser 130		Val	Arg	Ser	Ile 135		Met	Ile	Val	His 140	Pro	Thr	Pro	Thr

Pro 145	Ile	Arg	Ala	Gly	Asp 150	Gly	His	Arg	Leu	Thr 155	Leu	G1u	Asp	Ile	Phe 160
His	Asp	Leu	Phe	Tyr 165	His	Leu	G1u	Leu	Gln 170	Val	Asn	Arg	Thr	Tyr 175	Gln
Met	His	Leu	Gly 180	Gly	Lys	Gln		Glu 185	Tyr	Glu	Phe	Phe	Gly 190	Leu	Thr
		195	Glu	Phe			200					205			
	210	Glu		Ala		215					220				
225	Thr			Tyr	230					235					240
				Val 245					250					255	
			260	Pro				265					2/0		
		275		Phe			280					285			
	290			Ser		295					300				
305				Pro	310					315					320
				Thr 325					330					335	
			340	Pro				345					350		
		355	1	Pro			360					365	r.		
	370			G]n		375)				380				
385)			Ser	390)				395	· >				400
				/ Val 405)				410)				415)
			420	Ser				425)				430)	
		435	5	Ala			440)				445)		
	450)		Let		455)				460)			
465	5			u Gly	470)				47	5				480
Leu	ı His	s Sei	^ GI	y Glu 484		J GIJ	y Ihr	r Pr(5 GII 490	n Tyl	r Lei	и цу:	s ulj	495 495	1 LEU

Pro	Leu	Leu	Ser	Ser	Val	Gln	Пе	Glu	Gly	His	Pro	Met	Ser	Leu	Pro
			500					505					510		
Leu	Gln	Pro	Pro	Ser	Gly	Pro	Cys	Ser	Pro	Ser	Asp	G1n	Gly	Pro	Ser
		515					520					525			
Pro	Trp	Gly	Leu	Leu	Glu	Ser	Leu	Val	Cys	Pro	Lys	Asp	Glu	Ala	Lys
	530	Ū				535					540				
Ser		Ala	Pro	Glu	Thr	Ser	Asp	Leu	Glu	Gln	Pro	Thr	Glu	Leu	Asp
545					550		•			555					560
	Leu	Phe	Arq	Gly	Leu	Ala	Leu	Thr	Val	Gln	Trp	Glu	Ser		
			,	565					570						

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 354 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GCAACTTTGA AAACATCCTG ACG	TGGGACA GCGGGCCAGA	GGGCACCCCA	GACACGGTCT	60
ACAGCATCGA GTATAANACG TAC				120
GGATCACCCG GAAGTCCTGC AAC				180
ATGCCAGGGT CACCGCTGTC AGT				240
TCAGCTCTCT GCAGCACACT ACC				300
GATCGATTCN GATGATTGTT CAT				354

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

AACATCCTGA CGTGGGACAG CGGGCCAGAG

(2) INFORMATION FOR SEQ ID NO:5:

30

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (iv) ANTISENSE: YES	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
ACAGGTCACA TCAGGTGGCT TGAGGGTAGT	30
(2) INFORMATION FOR SEQ ID NO:6:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 48 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
GTCTGGGTTC GCTACTCGAG GCGGCCGCTA TTTTTTTTT TTTTTTTT	48