

10/509773

DT04 Rec'd PCT/PTO 28 SEP 2004

WO 03/083102

PCT/CA03/00393

SEQUENCE LISTING

<110> Delaney, Allen

<120> Cancer Associated Protein Phosphatases and their
uses

<130> KINE-040PRV

<140> unknown

<141>

<160> 12

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1520

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (0)...(0)

<223> MKPX polynucleotide

<400> 1

ggcacgaggc cgagccctgt gcctcccacg cccggcgccc gcgagccggg gtccgcgagg	60
gccccgggtggg gcgccggcagc cagaaccgg actacgaatc ccaggggtcg ggcggggcgga	120
gccccgggggg acgctggggcc tgcggcgtgc gcacgggggc ggggaccggc aaggcgggac	180
catttccccgg cataggotcc ggtgccccctg cccggctccc gccgggaagt tctaggccgc	240
cgcacagaaa gcccgtccct ccacgcccggg tctctggagc gcccctgggtt gccccggccgg	300
tccctgcggc tgacttggtg acactgcgag cactcagtcc ctcccgcccg ctcctccccc	360
gccccggcccg ccgctctcc tcctgtaaatc atgcctaatg ggcgcctgcga ccacacggcc	420
ggggcgttag cgttgcgttt cagccaccat ggggaatggg atgaacaaga tccctggccgg	480
cctgtacatc ggcacacttca aagatgccag agacgcggaa caatttgcgca agaacaaggt	540
gacacatatt ctgtctgtcc atgatagtgc caggcctatg ttggaggggag taaaatacct	600
gtgcattcca gcagcggatt caccatctca aaacctgcaca agacatttca aagaaaagtat	660
taaatttattt caccatctca ggctccgggg tgagagctgc cttgtacact gcctggccgg	720
ggtctccagg agcgtgacac tggtgatgc atacatcatg accgtactg actttggctg	780
ggaggatggcc ctgcacacccg tgccgtctgg gagatctgt gccaacccca acgtggctt	840
ccagagacag ctccaggagt ttgagaagca tgaggccat cagtatcgcc agtggctgaa	900
ggaagaatatt ggagagagcc ctttgcggg tgccagaagaa gccaaaaaca ttctggccgc	960
tccaggattt ctgaagtttcc gggcccttot cagaagactg taatgtacct gaagtttctg	1020
aaatatttgc aacccacaga gttttagctg gtgtgcggaa aaagaaaagc aacatagagt	1080
ttaagtatcc agtagtgatt tgtaaacttg tttttcattt gaagctgaat atatacgtag	1140
tcatgttat gttgagaact aaggatattc tttagcaaga gaaaatattt tccctttatc	1200
cccaactgtg tggaggtttc tgtaacctgc ttggatgc gtaaggatcc cgggagccctt	1260
gccgcactgc ctgtgggtt gcttggcgct cgtgattgct tcctgtgaac gcctcccaag	1320
gacgagccca gtgtagttgt gtggcgtaa ctctggccgt gtgttctcaa attccccagc	1380
ttggggaaaata gcccctgggtg tgggtttat ctctggtttgc ttctcccggt ggtggaaattt	1440
accgaaaagct ctatgttttc gttataataag ggcaacttag ccaagttaa aaaaaaaaaaa	1500
aaaaaaaaaaaa aaaaaaaaaaaa	1520

<210> 2

<211> 184

<212> PRT
 <213> Homo sapiens

<220>
 <221> UNSURE
 <222> (0)...(0)
 <223> MKPX polypeptide

<400> 2
 Met Gly Asn Gly Met Asn Lys Ile Leu Pro Gly Leu Tyr Ile Gly Asn
 1 5 10 15
 Phe Lys Asp Ala Arg Asp Ala Glu Gln Leu Ser Lys Asn Lys Val Thr
 20 25 30
 His Ile Leu Ser Val His Asp Ser Ala Arg Pro Met Leu Glu Gly Val
 35 40 45
 Lys Tyr Leu Cys Ile Pro Ala Ala Asp Ser Pro Ser Gln Asn Leu Thr
 50 55 60
 Arg His Phe Lys Glu Ser Ile Lys Phe Ile His Glu Cys Arg Leu Arg
 65 70 75 80
 Gly Glu Ser Cys Leu Val His Cys Leu Ala Gly Val Ser Arg Ser Val
 85 90 95
 Thr Leu Val Ile Ala Tyr Ile Met Thr Val Thr Asp Phe Gly Trp Glu
 100 105 110
 Asp Ala Leu His Thr Val Arg Ala Gly Arg Ser Cys Ala Asn Pro Asn
 115 120 125
 Val Gly Phe Gln Arg Gln Leu Gln Glu Phe Glu Lys His Glu Val His
 130 135 140
 Gln Tyr Arg Gln Trp Leu Lys Glu Glu Tyr Gly Glu Ser Pro Leu Gln
 145 150 155 160
 Asp Ala Glu Glu Ala Lys Asn Ile Leu Ala Ala Pro Gly Ile Leu Lys
 165 170 175
 Phe Trp Ala Phe Leu Arg Arg Leu
 180

<210> 3
 <211> 2916
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (0)...(0)
 <223> PTP4A1 polynucleotide

<400> 3
 aaggccgcct cggcgcgtgt attggctct tgggtcgccc gccggctcgc ctacgcgctc 60
 tgctccgagc cgctcaactgc atggtagagt ctggtgcccc cgccgcggcc tgcatcgccg 120
 ccaccgcgc tcgcacacga ccaccgcgc ctcctgtcc tgcagccaco gccaccgcct 180
 gtgtccgcgc cgctcgggac cggctgtatg attagccac aatcttcaat gagtaaacat 240
 attcctaatt tctgtggtgt tcttggtcac acatttatgg agtttctgaa gggcagtgg 300
 gattactgcc aggcacagca cgacctctat gcagacaatg gaactgtaga aactgattac 360
 tgctccacca agaagccccataaagatgg ttatcttggaa cacagaatgt ttgaaatcca 420
 cagacattt tacaagatgtt ctgaccttggaa tgggtaaac ctcagtcac ttctttctg 480
 ttggcctcag tattacttggaa ttgaagaatt gctgcttctt gttagggatgt tcatttcaact 540
 tatcattact tacaacttca tactcaaagc actgagaatt tcaagtggag tatattgaag 600
 tagacttcag tttctttggaa tcatttctgtt attcaattttt ttaatttattt tcataaccct 660

attgagtgtt ttttaactaa attaacatgg ctcgaatgaa ccgcccagct cctgtggaaag 720
 tcacatacaa gaacatgaga tttcttatta cacacaatcc aaccaatgcg accttaaaca 780
 aatttataga ggaacttaag aagtatggag ttaccacaat agtaagagta tgtgaagcaa 840
 cttatgacac tactcttgcg gagaaagaag gtatccatgt tcttattgg ccttttgatg 900
 atgggtcacc accatccaac cagattgtt atgactgtt aagtcttgcg aaaattaagt 960
 ttctgtgaaga acctgggtgt tttattgtt ttcattgcgt tgccaggcctt gggagagctc 1020
 cagtaacttgt tgcccttagca ttaattgaag gtggaatgaa atacaagat gcagtaaat 1080
 tcataagaca aaagccgcgt ggagcttta acagcaagca acttctgtat ttggagaagt 1140
 atcgccctaa aatggccgt cggttcaaaag attccaaacgg tcatagaaac aactgttgc 1200
 ttcaataaaaa ttgggggtgcc taatgtact ggaagtggaa cttgagatag ggcctaattt 1260
 gttatacata ttagccaaca ttttgcgtt gtaagtctaa tgaagcttcc ataggagtat 1320
 tggaaaggcag ttttaccagg cctcaagcta gacagattt gcaacctctg tatttgggtt 1380
 acagtcaacc tatttggata ctggcaaaa gattcttgcgt gtcagcatat aaaatgtgct 1440
 ttttttttttgcgtt atcaatttgc ttttttttttcaatttgcgtt atcatgcgtt attgagttt gacttgcgtt 1500
 atctattcccc atgcceagaat ttatcaata cataagaat tttaggaagat taggtgc 1560
 aatacccccaca acaatacttg tatatttttta gtaccatata gaagaaaaat ccaggaaact 1620
 atgaacacta gacccatgtt gtttttttttcc ttcaagtcc tcaaaacattt aagtagggc 1680
 ctacatggttt atttggctgc tcaattttatgt ttttttttcc ttttttttacc aagtttttaca gtgattttt 1740
 gtcagggttgcgtt gttaccattt gtttttttttcc ttttttttacc aagtttttaca gtgattttt 1800
 tacgtgtttt catgtatctc acctttgtt gtttttttttcc ttttttttacc aacccatccatt ttggaaatct 1860
 acgttgttaca gaagccatgt ttttttttttcc ttttttttacc aacccatccatt ttggaaatct 1920
 atgtttgcac ttttttttttcc ttttttttacc aacccatccatt ttggaaatct 1980
 tatttttttttcc ttttttttacc aacccatccatt ttggaaatct 2040
 ttaattttttcc ttttttttacc aacccatccatt ttggaaatct 2100
 ttttttttttcc ttttttttacc aacccatccatt ttggaaatct 2160
 ttgttttttttcc ttttttttacc aacccatccatt ttggaaatct 2220
 ttttttttttcc ttttttttacc aacccatccatt ttggaaatct 2280
 ttaatatttttcc ttttttttacc aacccatccatt ttggaaatct 2340
 ttaatgttag ttcaaccata ttttttttcc ttttttttacc aacccatccatt ttggaaatct 2400
 gagaataat ttttttttcc ttttttttacc aacccatccatt ttggaaatct 2460
 ctaaataaat aatgcacatgc ttttttttcc ttttttttacc aacccatccatt ttggaaatct 2520
 ttttttttttcc ttttttttacc aacccatccatt ttggaaatct 2580
 taaatgttagg attataaatg atgtcagcat ttttttttcc ttttttttacc aacccatccatt ttggaaatct 2640
 ggttccatcat gaaaacttta atactaaaag cactttccat ttttttttcc ttttttttacc aacccatccatt ttggaaatct 2700
 agataattttt gaaaccatattt attatttttttcc ttttttttacc aacccatccatt ttggaaatct 2760
 agcccttgggtt ttttttttcc ttttttttacc aacccatccatt ttggaaatct 2820
 agtttttttcc ttttttttacc aacccatccatt ttggaaatct 2880
 atatttttttcc ttttttttacc aacccatccatt ttggaaatct 2916

<210> 4
 <211> 173
 <212> PRT
 <213> Homo sapiens

<220>
 <221> UNSURE
 <222> (0)...(0)
 <223> PTP4A1 polypeptide sequence

<400> 4
 Met ala Arg Met Asn Arg Pro Ala Pro Val Glu Val Thr Tyr Lys Asn
 1 5 10 15
 Met Arg Phe Leu Ile Thr His Asn Pro Thr Asn Ala Thr Leu Asn Lys
 20 25 30
 Phe Ile Glu Glu Leu Lys Lys Tyr Gly Val Thr Thr Ile Val Arg Val
 35 40 45

Cys Glu Ala Thr Tyr Asp Thr Thr Leu Val Glu Lys Glu Gly Ile His
 50 55 60
 Val Leu Asp Trp Pro Phe Asp Asp Gly Ala Pro Pro Ser Asn Gln Ile
 65 70 75 80
 Val Asp Asp Trp Leu Ser Leu Val Lys Ile Lys Phe Arg Glu Glu Pro
 85 90 95
 Gly Cys Cys Ile Ala Val His Cys Val Ala Gly Leu Gly Arg Ala Pro
 100 105 110
 Val Leu Val Ala Leu Ala Leu Ile Glu Gly Gly Met Lys Tyr Glu Asp
 115 120 125
 Ala Val Gln Phe Ile Arg Gln Lys Arg Arg Gly Ala Phe Asn Ser Lys
 130 135 140
 Gln Leu Leu Tyr Leu Glu Lys Tyr Arg Pro Lys Met Arg Leu Arg Phe
 145 150 155 160
 Lys Asp Ser Asn Gly His Arg Asn Asn Cys Cys Ile Gln
 165 170

<210> 5
 <211> 2759
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (0)...(0)
 <223> PTPN7 polynucleotide sequence

<400> 5
 ggcacgagggc aagaggcagc ctggggggcca cagctgcttc agcagaccc tc atggctgagt 60
 gagcctcccc tggggccccc acccccaccc tc agcatggtcc aagccatggg gggcgctcca 120
 gaggcacaggg cttgacccttgc tctttggggg cagccatgac ccagctccg cctgaaaaaaaa 180
 cgccagccaa gaagcatgtg cgactgcagg agaggcgaaaa ctccaatgtg gctctgtatgc 240
 tggacgttcg gtccctgggg gccgttagaac ccatactgtc tgtgaacaca ccccgaaaagg 300
 tcaccctaca ctttctgcgc actgctggac acccccttac ccgctggggcc .cttcagcgcc 360
 agccacccag ccccaagcaa ctggaaagaag aattcttggaa gatcccttca aactttgtca 420
 gccccgaaga cctggacatc cctggccacg cctccaaaggcc cccgatatacg accatcttgc 480
 caaatcccca gagccgtgtc tgtctaggcc gggcacagag ccaggaggac ggagattaca 540
 tcaatgccaa ctacatccga ggctatgacg ggaaggagaa ggtctacatt gccacccagg 600
 gccccatgcc caacactgtg tggacttct gggagatgtt gtggcaagag gaagtgtccc 660
 tcattgtcat gctcaactcg cttcgagagg gcaaggagaa atgtgtccac tactggggcca 720
 cagaagagga aacctatggc cccttccaga tccgcatcca ggacatgaaa gagtggcccg 780
 aatacactgt gccggcacgtc accatccagt accaggaaga gcgcgggtca gtaaaggcaca 840
 tcctcttttc ggcctggcca gaccatcaga caccagaatc agctggggcc ctgctgcgcc 900
 tagtggcaga ggtggaggag agccccggaga cagccggccca ccccgccct atctgttgtcc 960
 actgcagtgc agggattggc cggacgggtc gtttcatcgcc cacggcaatt ggctgtcaac 1020
 agctgaaagc cccgaggagaa gtggacattc tgggtattgt gtgcctactg cggcttagaca 1080
 gaggggggat gatccagacg gcagagcgtt accaggatcc tcaaccactt ttggccctgt 1140
 atgcaggcca gctgcttgag gaacccagcc cctgaccctt gccaccctcc ggtggcccg 1200
 gtgcctactt ccctcaagcc tggttgggtt ggttggggaa aagtggccg agtgtatctgg 1260
 gggtacccctt ggggttgggtt gggggaggag tgcccttca gtgggtctt acagtcacag 1320
 gaagcagcag cagtaaggac aaggggccgg attcaggatcc tcaaccactg gccactccctc 1380
 ttgccttctt ctgttggggcc cagatggaca gtaaggggaa cctccaaatgt ctctctgaac 1440
 ttaaagacag gagctggcat ttatgacaga caaagaaga agccccagggtg tcctgggttt 1500
 ctctgagaca ctctttgttga tcttcagttt cctgttctat aacatgaaca taagtgttta 1560
 gctgccatga gggaaaagta atgagagaag ttctagaagc cactccagcc actcccttctt 1620
 ggggctgaca aaagggttatca tccttcaccc gagttctgc ccaagcacag 1680

gccagatgca agaatgggaa aaagtctggt cctgatctcc aagtctcaac atccttatcag 1740
 tgactctgcc tccctgacca cacatcgaa gggcctggat gacccaatca aaagaaaagaa 1800
 caaggactct ggtaaccctt gcctccaccc atgtgtcata agagtaggct acagaggtga 1860
 ccaggcctgg cagttaaaat ctctggaaga gggAACATGT ggggactact cagaggcaaa 1920
 gaggagctgc tcctgcctcc atgggtgctg gccactccca ccaactactc tttagggaggc 1980
 taaggactct ctgtttgac cttccatggc tcaataatac ctggatgcag gaccactata 2040
 ccttcattt gctgagtgaca ccttagagagc ttggctgtt caaaaaacaa tcagggtcat 2100
 aaccatccat gcagacatgg aggctcggt gaaccaggac tccteactgt ctacctgaga 2160
 gaatgagcac ccctcatcca ttcagcatc aacacattt ccaggggacc tcaggtctac 2220
 ctcaggactg aaccggccaca cctcaggatt ctccttcctt gaatctgaga ctggctgccc 2280
 attctgagat ggggatgaag gtaagatgcc gcatcaccag cacggcccc ctgacagctg 2340
 ccttgatacc agctctctgt gaaaaccccc gaggagtgg atctggagaa cagctggcc 2400
 tcctcactca ggactctct cctgaagaac acgcagtgtc aaaactgagg atgatttccc 2460
 taatgcttct gcttgagtc tcttatggag gagctgtcc ttcccttacag cttggggatg 2520
 gacttccac acctccacct cccctgagcc ctgagccctg tgagaggacg actgtctatg 2580
 caatgaggtc cggtgggggg ctctcaagtg cctgatctg cctggctcag aggccagccag 2640
 agggaaagcaa ctgacagccc cacaggccct ccctggcact gtccccatct cagagctcag 2700
 gagggtacaa gctccagaac agtaaccaag tggaaaata aagacttctt ggatgactg 2759

<210> 6
 <211> 339
 <212> PRT
 <213> Homo sapiens

<220>
 <221> UNSURE
 <222> (0)...(0)
 <223> PTPN7 polypeptide sequence

<400> 6
 Met Thr Gln Pro Pro Pro Glu Lys Thr Pro Ala Lys Lys His Val Arg
 1 5 10 15
 Leu Gln Glu Arg Arg Gly Ser Asn Val Ala Leu Met Leu Asp Val Arg
 20 25 30
 Ser Leu Gly Ala Val Glu Pro Ile Cys Ser Val Asn Thr Pro Arg Glu
 35 40 45
 Val Thr Leu His Phe Leu Arg Thr Ala Gly His Pro Leu Thr Arg Trp
 50 55 60
 Ala Leu Gln Arg Gln Pro Pro Ser Pro Lys Gln Leu Glu Glu Phe
 65 70 75 80
 Leu Lys Ile Pro Ser Asn Phe Val Ser Pro Glu Asp Leu Asp Ile Pro
 85 90 95
 Gly His Ala Ser Lys Asp Arg Tyr Lys Thr Ile Leu Pro Asn Pro Gln
 100 105 110
 Ser Arg Val Cys Leu Gly Arg Ala Gln Ser Gln Glu Asp Gly Asp Tyr
 115 120 125
 Ile Asn Ala Asn Tyr Ile Arg Gly Tyr Asp Gly Lys Val Tyr
 130 135 140
 Ile Ala Thr Gln Gly Pro Met Pro Asn Thr Val Ser Asp Phe Trp Glu
 145 150 155 160
 Met Val Trp Gln Glu Glu Val Ser Leu Ile Val Met Leu Thr Gln Leu
 165 170 175
 Arg Glu Gly Lys Glu Lys Cys Val His Tyr Trp Pro Thr Glu Glu Glu
 180 185 190
 Thr Tyr Gly Pro Phe Gln Ile Arg Ile Gln Asp Met Lys Glu Cys Pro
 195 200 205

Glu Tyr Thr Val Arg His Val Thr Ile Gln Tyr Gln Glu Glu Arg Arg
 210 215 220
 Ser Val Lys His Ile Leu Phe Ser Ala Trp Pro Asp His Gln Thr Pro
 225 230 235 240
 Glu Ser Ala Gly Pro Leu Leu Arg Leu Val Ala Glu Val Glu Glu Ser
 245 250 255
 Pro Glu Thr Ala Ala His Pro Gly Pro Ile Val Val His Cys Ser Ala
 260 265 270
 Gly Ile Gly Arg Thr Gly Cys Phe Ile Ala Thr Arg Ile Gly Cys Gln
 275 280 285
 Gln Leu Lys Ala Arg Gly Glu Val Asp Ile Leu Gly Ile Val Cys Gln
 290 295 300
 Leu Arg Leu Asp Arg Gly Gly Met Ile Gln Thr Ala Glu Gln Tyr Gln
 305 310 315 320
 Phe Leu His His Thr Leu Ala Leu Tyr Ala Gly Gln Leu Pro Glu Glu
 325 330 335
 Pro Ser Pro

<210> 7
 <211> 3960
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (0)...(0)
 <223> FEM-2 polynucleotide

<400> 7
 ggacacggag ccgcgaggag acagctgagg cccgcggaga ccaggggggt aagcctggag 60
 acccttgc cctggcttag ctgcaggccc cgggatgct ttgggcattgt cctctggagc 120
 cccacagaag agcagccaa tggccagtgg agctgaggag accccaggct tcctggacac 180
 gtcctgcaa gacttcccaag ccctgctgaa cccagaggac cctctgcccatt ggaaggcccc 240
 agggacggtg ctcagccagg aggaggtgg aggcggagctg gctgagctgg ccatgggctt 300
 tctggcagc aggaaggccc cgccaccact tgctgctgct ctggcccacg aagcaggttc 360
 acagctgcta cagacagacc tttccgaatt caggaagttt cccagggagg aagaagaaga 420
 ggaggaggac gatgacgagg aggaaaaggc ccctgtgacc ttgctggatg cccaaaggct 480
 ggcacagagt ttcttaacc gcctttggga agtgcggcgc cagtggcaga agcaggtgcc 540
 attggctgcc cgggcctcac agcggeactg gctggcttcc atccacgcca tccggaaacac 600
 tcgcccgaag atggaggaccc ggcacgtgtc cctcccttcc ttcaaccagc tctteggctt 660
 gtctgaccct gtgaaccgcg cctacttgc tggatgttgc ggtcacggag gctgtggatgc 720
 tgcgaggtac gccgtgtcc acgtgcacac caacgctgcc cgccagccag agctgcccac 780
 agaccctgag ggacccctca gagaaggctt cggcgcacc gaccagatgt ttctcaggaa 840
 agccaagcga gagcggcgtgc agagcggcac cacagggtgtc tgtgcgtca ttgcaggagc 900
 gaccctgcac gtgccttgc tcgggattc ccaggcttcc ttgttacagc agggacagg 960
 ggtgaagctg atggagccac acagaccaga acggcaggat gagaaggcgc gcattgaagc 1020
 attgggtggc ttgtgtctc acatggactg ctggagatc aacggjaccg tggccgtctc 1080
 cagagccatc ggggatgttot tccagaagcc ctacgtgtct ggggaggccg atgcagcttc 1140
 ccggggctg acgggctccg aggactacct gctgtttgc tggatgttgc tctttgacgt 1200
 cgtacccac caggaagttt ttggccgtt ccagagccac ctgaccaggc agcaggccag 1260
 cgggctccgt gtgcggcggagg agctgggtgc tgccggccgg gagcggggct cccacgacaa 1320
 catcacggtc atgggtgtct tccctcaggaa ccccaagag ctgctggagg gcggaaacca 1380
 gggagaaggg gaccccccagg cagaaggagg gagcaggac ttgccttcca gccttccaga 1440
 acctgagacc caggctccac caagaagcta ggtgtttcc agggccctgc cctcccttc 1500
 etccccatctt tgccttctc tccctcaggaa gcctcaggac ccaacaggtg gcaggcagt 1560

gacagggtgc ccgccccaca gtgctttccc cagcacccca gagccagtgc ggacacccccc 1620
 cgcagcccggt cctgggtggc gtggaactgc actgggtggc gggcagatgg tggaaaggcag 1680
 cttaggagac ctcaccaaag agaagatggc cggctcttgc ctccccagtc ctattaggcc 1740
 cgggggtggga ccagaggtca taggtgccc acggcagccaa aaccaaagac actgggtgtc 1800
 atggggcagc atgggtgtc acgtgggacc ctggggcggg cccaggagcc aaactcttgc 1860
 agcacccctt gggcaggcc cagcagcggg gtggccagcc ccagttccc attgtcttc 1920
 tctgcccgc gggccagggt gttcatatt tacagatatg cccagccagt cctggtcggc 1980
 cacaccagtgc tcccaaagag gagagcgcag cagagccagg ggtctgttgc gtacgcggca 2040
 ccccccctggc cccactcccg ggcagccatg atgtgttgc cccaccaggc cttccgggc 2100
 tgctctcttc cctgagcccg gaaccggcga cgcacatgtc tttttgttg gtgtgttgt 2160
 tttttccag ggaggctaa ttccgaagca gtattccagg ttttctctt ttttatcag 2220
 tgccaagatg acctgttgc tcataattta taagcagac ttagcattta ttttattctt 2280
 tagaaaaactt aagtatttac ttttttaaag ctattttca aggaaccttt ttttgcagta 2340
 ttattgaatt tatttctaa atcaggattg aaacaggaac ttttccagggt ggtgttaata 2400
 agccattcaa gtgccttaca cagctttgaa gaaactagga ctgcagtgcc ctcggatagg 2460
 cccatttggg tttttagaaa agcaggattt gttttgttag ggaggcatga ttttggtgag 2520
 atctttctgg aagaggtttc cgcctctttg tgatgtgaa caccccaag gtttccccc 2580
 ccccccgcgtc cccaggtgc tggcaggagc tgcgcactgc acgttagtgg gcctggggcc 2640
 gacagcgggg ctctggcat cccgggtgac cttggccat ctgcctgcatttccacccccc 2700
 ttggggcctgg ctggatccca ggcagaggga ctttgcgtgt gtgtgttgg aacattttca 2760
 aatatctttt gaatttgtaa tcaaatttggt ctcatggaa aagactctta attaagaggc 2820
 tcaggcaagc acagaggcag cccgtgggtc tctgtctcag tctggaggca gcagggtatgc 2880
 tgctggaggt ccatggcaca ggcacacggc ctcacatggc cgcgggtggc tggcagcacg 2940
 cctgccttgc tctgccttgc gcccctgaaca ggcacatggc ctccacgttcc cctagtgcac 3000
 cctgagagggg ggctcacaag tgaccgatcc tgggtgcctc agggagctca ctgagggcgt 3060
 gcaaaaggta aagtggcaag gctgggggag ggtgtcggtt agagggaaaga gggcagggggg 3120
 ctaggggagg actcagaggc catctgcagg gccaagccac aggaagggtc gagctggagg 3180
 tgggcaggggc tgctccaggc agtgcaggagc agtgcagggg gaggagagga gaaaggagg 3240
 aagctgggtc gtgtgtccc catgaaggca ttcaagatcc acctgcacac agcggagagcc 3300
 ccaggaaggt ttgcacagct gtgccttcaag caccctggcc tctctcagc tcgcccggag 3360
 ggcacgctag agccgccttc cccgtggggag ccctctgtcc cacaggggc ggggagccag 3420
 ctttgcgtggg gcccctacctg catgcccagc cttacccttc attctcacag cacagatgag 3480
 gttgagacca tgcaaatgcattgtcta aggtcttta tttacaaaaaaa aaaaccttaa 3540
 acatagtgc tgtcattcag acattcagag aatgggtggc cacaacaaat gaccaagtat 3600
 tgcttggctt aacttgaagg cctgtctgtc ctttctgggg gtcaggagc cagctccacc 3660
 ctcaccacta gcccacccctg cccgtggggca taaccttgc acagagagag aatgattggc 3720
 atctgcattt ctctttttt tctaataat tctgttctgt gctggcggaga gtgaagtttc 3780
 accatgtgga ggtttggcctt ctatcacctg gtggtctgtat tcataccctt gctgaggct 3840
 ccactggaaag atctcgccagc ctcagttgtat gggaaacctt ttccccaggc ttgtcccaggc 3900
 actgcccgtc cccacccctg agccaggacc ccagaggatg gccatggccc gtgcctggca 3960

<210> 8
 <211> 454
 <212> PRT
 <213> Homo sapiens

<220>
 <221> UNSURE
 <222> (0)...(0)
 <223> FEM-2 polypeptide sequence

<400> 8
 Met Ser Ser Gly Ala Pro Gln Lys Ser Ser Pro Met ala Ser Gly Ala
 1 5 10 15
 Glu Glu Thr Pro Gly Phe Leu Asp Thr Leu Leu Gln Asp Phe Pro Ala
 20 25 30

Leu Leu Asn Pro Glu Asp Pro Leu Pro Trp Lys Ala Pro Gly Thr Val
 35 40 45
 Leu Ser Gln Glu Glu Val Glu Gly Glu Leu Ala Glu Leu Ala Met Gly
 50 55 60
 Phe Leu Gly Ser Arg Lys Ala Pro Pro Pro Leu Ala Ala Ala Leu Ala
 65 70 75 80
 His Glu Ala Val Ser Gln Leu Leu Gln Thr Asp Leu Ser Glu Phe Arg
 85 90 95
 Lys Leu Pro Arg Glu Glu Glu Glu Glu Asp Asp Asp Glu Glu-
 100 105 110
 Glu Lys Ala Pro Val Thr Leu Leu Asp Ala Gln Ser Leu Ala Gln Ser
 115 120 125
 Phe Phe Asn Arg Leu Trp Glu Val Ala Gly Gln Trp Gln Lys Gln Val
 130 135 140
 Pro Leu Ala Ala Arg Ala Ser Gln Arg Gln Trp Leu Val Ser Ile His
 145 150 155 160
 Ala Ile Arg Asn Thr Arg Arg Lys Met Glu Asp Arg His Val Ser Leu
 165 170 175
 Pro Ser Phe Asn Gln Leu Phe Gly Leu Ser Asp Pro Val Asn Arg Ala
 180 185 190
 Tyr Phe Ala Val Phe Asp Gly His Gly Gly Val Asp Ala Ala Arg Tyr
 195 200 205
 Ala Ala Val His Val His Thr Asn Ala Ala Arg Gln Pro Glu Leu Pro
 210 215 220
 Thr Asp Pro Glu Gly Ala Leu Arg Glu Ala Phe Arg Arg Thr Asp Gln
 225 230 235 240
 Met Phe Leu Arg Lys Ala Lys Arg Glu Arg Leu Gln Ser Gly Thr Thr
 245 250 255
 Gly Val Cys Ala Leu Ile Ala Gly Ala Thr Leu His Val Ala Trp Leu
 260 265 270
 Gly Asp Ser Gln Val Ile Leu Val Gln Gln Gly Gln Val Val Lys Leu
 275 280 285
 Met Glu Pro His Arg Pro Glu Arg Gln Asp Glu Lys Ala Arg Ile Glu
 290 295 300
 Ala Leu Gly Gly Phe Val Ser His Met Asp Cys Trp Arg Val Asn Gly
 305 310 315 320
 Thr Leu Ala Val Ser Arg Ala Ile Gly Asp Val Phe Gln Lys Pro Tyr
 325 330 335
 Val Ser Gly Glu Ala Asp Ala Ala Ser Arg Ala Leu Thr Gly Ser Glu
 340 345 350
 Asp Tyr Leu Leu Ala Cys Asp Gly Phe Phe Asp Val Val Pro His
 355 360 365
 Gln Glu Val Val Gly Leu Val Gln Ser His Leu Thr Arg Gln Gln Gly
 370 375 380
 Ser Gly Leu Arg Val Ala Glu Glu Leu Val Ala Ala Ala Arg Glu Arg
 385 390 395 400
 Gly Ser His Asp Asn Ile Thr Val Met Val Val Phe Leu Arg Asp Pro
 405 410 415
 Gln Glu Leu Leu Glu Gly Gly Asn Gln Gly Glu Gly Asp Pro Gln Ala
 420 425 430
 Glu Gly Arg Arg Gln Asp Leu Pro Ser Ser Leu Pro Glu Pro Glu Thr
 435 440 445
 Gln Ala Pro Pro Arg Ser
 450

<211> 2786
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (0)...(0)
<223> DKFZP566K0524 polynucleotide

<400> 9

tggacccaac tggcgaggct gctgggggtt cagcgggaca gttggggccgg ccccgccaggc 60
ccaggtttt gaaaataaaag ttaattcaga gaaggtaaaa ctcttccttc gaaatttccc 120
acataatgtat tatgaggatg ttttgaaga gccttcagaa agtgcagtgc atccccagcat 180
gtggacagcc agaggccctc tcagaagaga caggtggagc agtgaggatg aggaggctgc 240
agggccatca caggctctct ccctctact ttctgatacg cgcaaaattt tttctgaagg 300
agaactagat cagttggctc agattccggcc attaatatttc aattttcatg agcagacagc 360
catcaaggat tgtttggaaa tcccttggagaaaaaacacgc gctgtatgata tcatgcggg 420
atttatggct ttagaactta agaatctgcc tggtgaggatc tactctggga atcaaccaag 480
caacagagaa aaaaacagat accggatatact tcttccatattt gattcaacac gcgttccctct 540
tggaaaaggc aaggactaca tcaatgctat ttatattttaga atatgtcaattt gtggagaaga 600
gtatttttt atcgctactc aaggaccact gctgagcacc atatgtactt tttggcaat 660
ggtgttggaa aataattcaa atgttattgc catgataacc agagagatgg aaggtggat 720
tatcaaattgc taccattact ggcccatattc tctgaagaag ccatttggaaat tggaaacactt 780
ccgtgtatttc ctggagaactt accagataact tcaatatttc atcatttgc ttttcaagt 840
tggggagaag tccacgggaa ctatgtactc tgtaaaacag ttgcagttca ccaagtggcc 900
agaccatggc actcttcgcct cagcagatag cttcataaaaa tatatttcgtt atgcaaggaa 960
gagccaccc acaggaccca tgggtgttca ctgcagtgc ggcataaggcc ggacaggggt 1020
gttccatgtgtt gttgtatgtcg ttttctgtgc catcgtaaag gactgttcat tcaacatcat 1080
ggatatagtg gcccaaatatg gagaacaacg ttctggcatg gttcaaaacga aggagcagta 1140
tcacttttttgc ttcgtatattt tgcttgaagt ttttggaaa ctctgactt tggattaaga 1200
aagacttcgtt ttcgttctca ctttggaaat tcaatgttgc ttttccatcc ttttccatcc 1260
catgttttgc ttcgttgc ttttggaaat tcaatgttgc ttttccatcc ttttccatcc 1320
gtttattttc ttttggaaat ttcgttgc ttttggaaat tcaatgttgc ttttccatcc 1380
gtttacttat ttttggaaat ttcgttgc ttttggaaat tcaatgttgc ttttccatcc 1440
agatgttaca taaaacgtt gcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 1500
aaaggattta aaatataatttca ttttggaaat tcaatgttgc ttttccatcc 1560
gatttccagg actttgttgc ttttggaaat tcaatgttgc ttttccatcc 1620
cttccaggca ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 1680
tgctggcatt ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 1740
acaaaatttgc ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 1800
agacctgttgc ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 1860
aaaactaaaaat ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 1920
cttccatcc ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 1980
ttacccatcc ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 2040
cattattata taatttgc ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 2100
taagatctt ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 2160
ctcaccttc ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 2220
tcatagtc ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 2280
cagtaattttt ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 2340
ttctgggtgc aagctatacc ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 2400
agtttaactc aatggagatc agaatatttc ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 2460
ataaaatctt ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 2520
ttgggttgc ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 2580
tgtttaaatca aatagatgtat ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 2640
ttcatttttgc ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 2700
gtaaaataat ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 2760
aataaaaat ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttggaaat tcaatgttgc ttttccatcc 2786

<210> 10
<211> 398
<212> PRT
<213> Homo sapiens

<220>
<221> UNSURE
<222> (0)...(0)
<223> DKFZP566K0524 polypeptide

<400> 10
Gly Pro Asn Trp Arg Gly Cys Trp Gly Cys Ser Gly Thr Val Gly Ala
1 5 10 15
Ala Pro Gln Ala Gln Val Phe Glu Asn Lys Val Asn Ser Glu Lys Val
20 25 30
Lys Leu Ser Leu Arg Asn Phe Pro His Asn Asp Tyr Glu Asp Val Phe
35 40 45
Glu Glu Pro Ser Glu Ser Gly Ser Asp Pro Ser Met Trp Thr Ala Arg
50 55 60
Gly Pro Phe Arg Arg Asp Arg Trp Ser Ser Glu Asp Glu Glu Ala Ala
65 70 75 80
Gly Pro Ser Gln Ala Leu Ser Pro Leu Leu Ser Asp Thr Arg Lys Ile
85 90 95
Val Ser Glu Gly Glu Leu Asp Gln Leu Ala Gln Ile Arg Pro Leu Ile
100 105 110
Phe Asn Phe His Glu Gln Thr Ala Ile Lys Asp Cys Leu Lys Ile Leu
115 120 125
Glu Glu Lys Thr Ala Ala Tyr Asp Ile Met Gln Glu Phe Met Ala Leu
130 135 140
Glu Leu Lys Asn Leu Pro Gly Glu Phe Tyr Ser Gly Asn Gln Pro Ser
145 150 155 160
Asn Arg Glu Lys Asn Arg Tyr Arg Asp Ile Leu Pro Tyr Asp Ser Thr
165 170 175
Arg Val Pro Leu Gly Lys Ser Lys Asp Tyr Ile Asn Ala Ser Tyr Ile
180 185 190
Arg Ile Val Asn Cys Gly Glu Tyr Phe Tyr Ile Ala Thr Gln Gly
195 200 205
Pro Leu Leu Ser Thr Ile Asp Asp Phe Trp Gln Met Val Leu Glu Asn
210 215 220
Asn Ser Asn Val Ile Ala Met Ile Thr Arg Glu Met Glu Gly Ile
225 230 235 240
Ile Lys Cys Tyr His Tyr Trp Pro Ile Ser Leu Lys Lys Pro Leu Glu
245 250 255
Leu Lys His Phe Arg Val Phe Leu Glu Asn Tyr Gln Ile Leu Gln Tyr
260 265 270
Phe Ile Ile Arg Met Phe Gln Val Val Glu Lys Ser Thr Gly Thr Ser
275 280 285
His Ser Val Lys Gln Leu Gln Phe Thr Lys Trp Pro Asp His Gly Thr
290 295 300
Pro Ala Ser Ala Asp Ser Phe Ile Lys Tyr Ile Arg Tyr Ala Arg Lys
305 310 315 320
Ser His Leu Thr Gly Pro Met Val Val His Cys Ser Ala Gly Ile Gly
325 330 335
Arg Thr Gly Val Phe Leu Cys Val Asp Val Val Phe Cys Ala Ile Val
340 345 350
Lys Asp Cys Ser Phe Asn Ile Met Asp Ile Val Ala Gln Met Arg Glu
355 360 365

Gln	Arg	Ser	Gly	Met	Val	Gln	Thr	Lys	Glu	Gln	Tyr	His	Phe	Cys	Tyr
370						375					380				
Asp	Ile	Val	Leu	Glu	Val	Leu	Arg	Lys	Leu	Leu	Thr	Leu	Asp		
385						390					395				

<210> 11
<211> 2226
<212> DNA
<213> Homo sapiens

```
<220>
<221> misc_feature
<222> (0)...(0)
<223> FLJ20313 nucleotide sequence
```

aaaagt
<210> 12
<211> 451

<212> PRT
 <213> Homo sapiens

<220>
 <221> UNSURE
 <222> (0)...(0)
 <223> FLJ20313 polypeptide sequence

<400> 12
 Met Pro Leu Gln Lys Phe His Tyr Arg Asn Leu Leu Leu Gly Glu His
 1 5 10 15
 Asp Val Pro Leu Thr Cys Ile Glu Gln Ile Val Thr Val Asn Asp His
 20 25 30
 Lys Arg Lys Gln Lys Val Leu Gly Pro Asn Gln Lys Leu Lys Phe Asn
 35 40 45
 Pro Thr Glu Leu Ile Ile Tyr Cys Lys Asp Phe Arg Ile Val Arg Phe
 50 55 60
 Arg Phe Asp Glu Ser Gly Pro Glu Ser Ala Lys Lys Val Cys Leu Ala
 65 70 75 80
 Ile Ala His Tyr Ser Gln Pro Thr Asp Leu Gln Leu Leu Phe Ala Phe
 85 90 95
 Glu Tyr Val Gly Lys Lys Tyr His Asn Ser Ala Asn Lys Ile Asn Gly
 100 105 110
 Ile Pro Ser Gly Asp Gly Gly Gly Gly Gly Asn Gly Ala
 115 120 125
 Gly Gly Ser Ser Gln Lys Thr Pro Leu Phe Glu Thr Tyr Ser Asp
 130 135 140
 Trp Asp Arg Glu Ile Lys Arg Thr Gly Ala Ser Gly Trp Arg Val Cys
 145 150 155 160
 Ser Ile Asn Glu Gly Tyr Met Ile Ser Thr Cys Leu Pro Glu Tyr Ile
 165 170 175
 Val Val Pro Ser Ser Leu Ala Asp Gln Asp Leu Lys Ile Phe Ser His
 180 185 190
 Ser Phe Val Gly Arg Arg Met Pro Leu Trp Cys Trp Ser His Ser Asn
 195 200 205
 Gly Ser Ala Leu Val Arg Met Ala Leu Ile Lys Asp Val Leu Gln Gln
 210 215 220
 Arg Lys Ile Asp Gln Arg Ile Cys Asn Ala Ile Thr Lys Ser His Pro
 225 230 235 240
 Gln Arg Ser Asp Val Tyr Lys Ser Asp Leu Asp Lys Thr Leu Pro Asn
 245 250 255
 Ile Gln Glu Val Gln Ala Ala Phe Val Lys Leu Lys Gln Leu Cys Val
 260 265 270
 Asn Glu Pro Phe Glu Glu Thr Glu Lys Trp Leu Ser Ser Leu Glu
 275 280 285
 Asn Thr Arg Trp Leu Glu Tyr Val Arg Ala Phe Leu Lys His Ser Ala
 290 295 300
 Glu Leu Val Tyr Met Leu Glu Ser Lys His Leu Ser Val Val Leu Gln
 305 310 315 320
 Glu Glu Glu Gly Arg Asp Leu Ser Cys Cys Val Ala Ser Leu Val Gln
 325 330 335
 Val Met Leu Asp Pro Tyr Phe Arg Thr Ile Thr Gly Phe Gln Ser Leu
 340 345 350
 Ile Gln Lys Glu Trp Val Met Ala Gly Tyr Gln Phe Leu Asp Arg Cys
 355 360 365
 Asn His Leu Lys Arg Ser Glu Lys Glu Ser Pro Leu Phe Leu Leu Phe
 370 375 380

Leu Asp Ala Thr Trp Gln Leu Leu Glu Gln Tyr Pro Ala Ala Phe Glu
385 390 395 400
Phe Ser Glu Thr Tyr Leu Ala Val Leu Tyr Asp Ser Thr Arg Ile Ser
405 410 415
Leu Phe Gly Thr Phe Leu Phe Asn Ser Pro His Gln Arg Val Lys Gln
420 425 430
Ser Thr Val Ser Arg Ile Lys Ser Cys Thr Lys Gln Asp Tyr Phe Pro
435 440 445
Ser Arg Val
450