Bloque 2 Aprendizaje Automático

Práctica 2:

Sesión2

Aplicación del algoritmo del Perceptron a tareas de clasificación

DOCENCIA VIRTUAL

Responsable del Tratamiento: Universitat Politècnia de València (UPV)

Finalidad: Prestación del servicio público de educación superior en base al interés público de la UPV (Art. 6.1.e del RGPD).

Ejercicio de derechos y segunda capa informativa: Podrán ejercer los derechos reconocidos en el RGPD y la LOPDGDD de acceso, rectificación, oposición, supresión, etc., escribiendo al correo dpd@upv.es.

Para obtener más información sobre el tratamiento de sus datos puede visitar el siguiente enlace: https://www.upv.es/contenidos/DPD.

Propiedad Intelectual: Uso exclusivo en el entorno del aula virtual.

Queda prohibida la difusión, distribución o divulgación de la grabación de las clases y particularmente su compartición en redes sociales o servicios dedicados a compartir apuntes.

La infracción de esta prohibición puede generar responsabilidad disciplinaria, administrativa y/o civil.

Sesiones de la práctica 2

Sesión 1:

- Familiarizarse con el entorno de trabajo (Google Colab)
- Analizar conjuntos de datos (datasets): iris, digits, olivetti, openml

Sesión 2:

- Aplicación del algoritmo del Perceptron a tareas de clasificación: dataset iris.
- Ejercicio: Aplicar Perceptrón a digits y olivetti

Sesión 3:

• Aplicación de Regresión Logística a tareas de clasificación: dataset iris.

Ejemplo de examen:

• Aplicación de Perceptrón y Regresión Logística a un dataset de OpenML.

Sesión 4 (examen):

- Se pedirá la aplicación de Regresión Logística para una tarea diferente de OpenML
- Hay que subir también la solución del Ejercicio

- Un clasificador lineal toma una decisión de clasificación basándose en una combinación lineal de las características de entrada.
- Una función discriminante lineal se utiliza para dividir el espacio de características en regiones de decisión, clasificando los puntos de acuerdo con sus valores.

$$egin{align} g_c(x) &= w_c^T x + w_{c0} \ & \ g_c(x) &= w_{c1} x_1 + w_{c2} x_2 + \dots + w_{cn} x_n + w_{c0} \ & \ \end{array}$$

Donde x son los valores de una muestra, w son los pesos incluido el término independiente.

Ejemplo en el dataset Iris

Tenemos la muestra:

x_1 : Long. sépalo	x_2 : Ancho sépalo	x_3 : Long. pétalo	x_4 : Ancho pétalo
5.1	3.5	1.4	0.2

• La función lineal tiene la forma:

$$g_c(x) = w_{c0} + w_{c1}x_1 + w_{c2}x_2 + \cdots + w_{cn}x_n$$

Suponiendo los siguientes pesos:

w_{c0}	w_{c1}	w_{c2}	w_{c3}	w_{c4}
-2.0	0.6	-0.3	1.2	0.5

• El cálculo es:
$$g_c(x)=(-2.0)(1)+(0.6)(5.1)+(-0.3)(3.5)+(1.2)(1.4)+(0.5)(0.2)$$
 $g_c(x)=-2.0+3.06-1.05+1.68+0.1=1.79$

Clasificador lineal

Dado un conjunto de funciones lineales $g_c(x)$ para cada clase $c \in \{1, 2, \dots, C\}$, donde:

$$g_c(x) = w_c^T x + w_{c0}$$

El clasificador asigna una entrada x a la clase c tal que:

$$\hat{c} = rg \max_{c} g_c(x)$$

El clasificador selecciona la clase cuya función discriminante $g_c(x)$ tiene el valor más alto.

• Ejemplo Iris

Característica	Iris-setosa	Iris-versicolor	Iris-virginica
Término Independiente	-1.5	0.5	0.8
x₁ (Sepal Length)	0.5	-0.3	0.2
x ₂ (Sepal Width)	-0.2	0.7	0.4
x ₃ (Petal Length)	0.8	0.6	-0.5
x ₄ (Petal Width)	0.3	0.2	0.9

Un clasificador al final es una matriz de pesos

 $g_0(x)$

 $g_1(x)$

 $g_2(x)$

¿Cómo obtener la matriz? → ¿Como aprendemos los pesos? → Algoritmo Perceptron

Entrada:
$$\{(\mathbf{x}_n,c_n)\}_{n=1}^N$$
, $\{\mathbf{w}_c\}_{c=1}^C$, $\alpha\in\mathbb{R}^{>0}$ y $b\in\mathbb{R}$

Salida: $\{\mathbf{w}_c\}^*=\mathop{\arg\min}_{\{\mathbf{w}_c\}}\sum_n\left[\mathop{\max}_{c\neq c_n}\mathbf{w}_c^t\mathbf{x}_n+b>\mathbf{w}_{c_n}^t\mathbf{x}_n\right]$

Método: $[P]=\begin{cases} 1 & \text{si } P=\text{ verdadero} \\ 0 & \text{si } P=\text{ falso} \end{cases}$

repetir

para todo dato \mathbf{x}_n
 $err=\text{falso}$

para toda clase c distinta de c_n

si $\mathbf{w}_c^t\mathbf{x}_n+b>\mathbf{w}_{c_n}^t\mathbf{x}_n$: $\mathbf{w}_c=\mathbf{w}_c-\alpha\cdot\mathbf{x}_n$; $err=\text{verdadero}$

si err : $\mathbf{w}_{c_n}=\mathbf{w}_{c_n}+\alpha\cdot\mathbf{x}_n$

hasta que no queden muestras mal clasificadas (o se llegue a un máximo de iteraciones prefijado)

E: muestras mal clasificadas

• Cálculo del error: dividir el dataset en dos subconjuntos, uno para entrenamiento (training) y otro para pruebas (test)

• Cálculo del error: dividir el dataset en dos subconjuntos, uno para entrenamiento (training) y otro para pruebas (test)

• Cálculo del error: dividir el dataset en dos subconjuntos, uno para entrenamiento (training) y otro para pruebas (test)

Ajuste del modelo

- α: tasa de aprendizaje (Learning Rate): Es un escalar que determina cuánto se ajustan los pesos durante el proceso de aprendizaje.
 - Si α es demasiado grande, el algoritmo puede oscilar o divergir. Si es demasiado pequeño, el aprendizaje será lento.
 - Se puede probar con diferentes α : (.01, .1, 10, 100)

• b: margen

- Es un parámetro adicional que permite ajustar las fronteras de decisión
- Se puede probar con diferentes b: (.0, .01, .1, 10, 100)

Probar iris.ipynb

Ejercicio: Aplicar Perceptrón a digits y Olivetti. (entregar el dia del examen)