Quiz 4

5

3

5

Full Name: _____

1. Consider the following 3×4 matrix:

$$A = \left[\begin{array}{rrrr} 1 & 4 & 0 & -1 \\ 3 & 12 & 1 & -1 \\ 2 & 8 & 1 & 0 \end{array} \right]$$

Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation defined as $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$.

- (a) What is the image of *T*? Write it as span of some linearly independent vectors. What kind of geometric object is it?
- (b) Find a basis of the kernel of T i.e. null space of A.
- (c) Is *T* one-to-one? Is *T* onto?
- 2. Suppose $\vec{\mathbf{v}}_1 = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$ and $\vec{\mathbf{v}}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ form a basis \mathscr{B} of a vector space V. Suppose you are given that $\vec{\mathbf{u}} = \begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix} \in V$. Find the coordinates of $\vec{\mathbf{u}}$ with respect to \mathscr{B} i.e. $[\vec{\mathbf{u}}]_{\mathscr{B}}$.