GAN Image Denoising

Tiansheng Wang

'Introduction to Scientific Computing'

Introduction

Where does the image noise come from?

Sensor limitations (cannot obtain enough light)

Environmental Factors (dust on the lens)

• Denoising -- Break the sensor limitations to gain better image quality

Background

- Traditional methods using filters:
 - mean, median, biliteral, wavelet filtering
 - Non-local-mean, BM3D(2010)
- Neural network methods:
 - CNNs: Deep Denoising CNN(DnCNN)
 - GANs: Noise2Noise (N2N) / CycleGAN
 - Newer... Transformers

DnCNN Network

https://www.topazlabs.com/denoise-ai

Network Structure

Overall Network Structure

- 3 components
- Train end-to-end

Denoiser & Generator

Training

- Datasets
 - ✓ SIDD: Smartphone Image Denoising Dataset(2018)
 - ✓ Images captured by 5 different smartphones
 - ✓ Aligned noisy / ground-truth image pairs(use image sequences to obtain high-quality gt)
- Data Augmentation
 - ✓ Random Crop / Flip / Rotate(90/180/270)
 - ✓ No arbitrary rotation and global color or light adjustment augmentation
- Training progress
 - ✓ Trained on a local desktop with GPU/CUDA acceleration(i7 12700k + RTX 4090)
 - ✓ 50 epochs / AdamW Optimizer / batch size 16
 - ✓ Cost about 6.5 hours
 - ✓ Loss on validation set during training

Results

• Results on validation datasets

Noise has been removed.

Results

• Results on validation datasets

Noise has been removed.

Results

• Results on validation datasets

Noise has been removed.

Discussions

- Better metrics on image quality
 - Cleaner, better?

Thank you for listening