Formes algébrique et exponentielle

Exercice 1.

- 1. Déterminer la forme trigonométrique du nombre complexe $4\sqrt{2}(-1+i)$.
- 2. Trois nombres complexes ont pour produit $4\sqrt{2}(-1+i)$. Leurs modules sont en progression géométrique de raison 2 et leurs arguments sont en progression arithmétique de raison $\frac{\pi}{4}$. On note z_1 , z_2 et z_3 ces trois nombres, où la numérotation respecte l'ordre des modules. Sachant que z_1 a un argument compris entre $\frac{\pi}{2}$ et $\pi,$ déterminer le module et un argument de chacun des trois nombres z_1 , z_2 et z_3 .
- 3. Construire les images M_1 , M_2 et M_3 des nombres complexes z_1 , z_2 et z_3 dans le plan

EXERCICE 2.

Déterminer des racines carrées de $\sqrt{3} + i$ sous forme algébrique et sous forme trigonométrique. En déduire la valeur de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

EXERCICE 3.

- 1. Déterminer les racines carrées complexes de 1+i sous forme exponentielle.
- 2. Déterminer les racines carrées complexes de 1+i sous forme algébrique.
- 3. En déduire que $\cos \frac{\pi}{8} = \frac{1}{2}\sqrt{2 + \sqrt{2}}$ et $\sin \frac{\pi}{8} = \frac{1}{2}\sqrt{2 \sqrt{2}}$.
- 4. Montrer que tan $\frac{\pi}{8} = \sqrt{2} 1$.
- 5. Déterminer les valeurs de

$$\begin{array}{cccc}
\cos\frac{3\pi}{8} & \sin\frac{3\pi}{8} & \tan\frac{3\pi}{8} \\
\cos\frac{5\pi}{8} & \sin\frac{5\pi}{8} & \tan\frac{5\pi}{8} \\
\cos\frac{7\pi}{8} & \sin\frac{7\pi}{8} & \tan\frac{7\pi}{8}
\end{array}$$

EXERCICE 4.

On note $i = e^{2i\pi/3}$.

- **1.** Calculer j^3 , $1+j+j^2$, $1+j^2+j^4$, j^{-1} et \overline{j} en fonction de j.
- 2. Simplifier l'expression

$$\frac{1+j}{(1-i)^2} + \frac{1-j}{(1+i)^2}.$$

Exercice 5.

Voici quelques calculs pour se délier les doigts...

1. Représenter sous forme cartésienne les nombres complexes suivants :

$$\frac{2-\sqrt{3}i}{\sqrt{3}-2i}, \quad \frac{(2+i)(3+2i)}{2-i}, \quad \frac{3+4i}{(2+3i)(4+i)}.$$

2. On considère les nombres complexes

$$z_1 = \frac{1 + i\sqrt{3}}{1 - i\sqrt{3}}$$
 et $z_2 = \frac{1}{\sqrt{3} + i}$.

Représenter sous forme cartésienne les nombres complexes suivants :

a.
$$z_1 + z_2$$

b. $z_1 z_2$

c.
$$z_1/z_2$$

c.
$$z_1/z_2$$

d. $z_1^2 + z_2^2$

EXERCICE 6.

Voici un peu d'entraînement...

- 1. On pose $z_1 = \frac{\sqrt{6} + i\sqrt{2}}{2}$ et $z_2 = 1 + i$.
 - a. Représenter le quotient z_1/z_2 sous forme polaire.
 - **b.** En déduire les valeurs de $\cos(7\pi/12)$ et de $\sin(7\pi/12)$.
- 2. En précisant pour quelles valeurs des réels x et y, elles ont un sens, mettre sous forme polaire les expressions suivantes :

a.
$$1 + \sin x - i \cos x$$

b. $\frac{1}{1 + i \tan x}$
 $1 + \cos x + i \sin x$

d.
$$\frac{e^{ix} + e^{iy}}{1 + e^{i(x+y)}}$$

c.
$$\frac{1 + \cos x + i \sin x}{1 - \cos x - i \sin x}$$

e.
$$\frac{(1-i\sqrt{3})(\cos x + i\sin x)}{\cos x + \sin x + i(\cos x - \sin x)}$$

e. $z_1^3 + z_2^3$

Exercice 7.★

Voici quelques calculs de puissances.

1. Pour tout entier naturel n, simplifier les expressions suivantes :

$$\mathbf{a.} \left(\frac{1 + i\sqrt{3}}{1 + i} \right)^n$$

c.
$$\left(\frac{\sqrt{3}+i}{1+i}\right)^n$$

b.
$$\frac{(1-i)^n - \sqrt{2}^n}{(1+i)^n - \sqrt{2}^n}$$

d.
$$(1+\cos\theta+i\sin\theta)^n$$

e.
$$\frac{(1+i)^n-(1-i)^n}{i}$$

2. Pour quelles valeurs de l'entier relatif n le nombre complexe $(\sqrt{3} + i)^n$ appartient-il à \mathbb{R}_+ ? Pour quelles valeurs est-il imaginaire pur?

Exercice 8.★

Soit $\theta \in \mathbb{R}$ et $z_{\theta} = -\sin(2\theta) + 2i\cos^2(\theta)$.

- 1. Déterminer le module et un argument de z_{θ} . On discutera en fonction des valeurs de θ .
- 2. Déterminer l'ensemble des nombres réels θ tels que $|z_{\theta}| = |z_{\theta} 1|$.

EXERCICE 9.

Soit

$$v = \frac{\sqrt{3} + i}{i - 1}.$$

Ecrire v^{2002} sous forme polaire puis sous forme algébrique.

Exercice 10.

On pose $\omega = \sqrt{3} + i$. Déterminer $n \in \mathbb{Z}$ tel que $\omega^n \in \mathbb{R}$. Même question avec $\omega^n \in i\mathbb{R}$.

Exercice 11.

Résoudre dans $\mathbb C$ les équations suivantes.

1.
$$2z + 3\overline{z} = 4 - 3i$$

2.
$$3z - 2\overline{z} = -5 + i$$

Réels et imaginaires purs

Exercice 12.

Soit $z \in \mathbb{C} \setminus \{1\}$.

- **1.** Montrer que $\frac{z+1}{z-1}$ est imaginaire pur *si et seulement si z* \in \mathbb{U} .
- 2. Montrer que $\frac{z+1}{z-1} \in \mathbb{U}$ si et seulement si z est imaginaire pur.

Exercice 13.★

Soient a et b de module 1 tels que $a \neq \pm b$.

- 1. Prouver que $\frac{1+ab}{a+b} \in \mathbb{R}$.
- **2.** Montrer que pour tout $z \in \mathbb{C}$,

$$\frac{z+ab\bar{z}-(a+b)}{a-b}\in i\mathbb{R}.$$

Module et argument

Exercice 14.

On pose $\varphi(z) = |z^3 - z + 2|$ pour $z \in \mathbb{C}$. On souhaite déterminer la valeur maximale de $\varphi(z)$ lorsque z décrit \mathbb{U} .

- **1.** Soit $\theta \in \mathbb{R}$. Exprimer $\cos(3\theta)$ en fonction de $\cos \theta$.
- **2.** Soit $z \in \mathbb{U}$ et θ un de ses arguments. Exprimer $|z^3 z + 2|^2$ uniquement en fonction de $\cos \theta$.
- 3. Soit f la fonction définie par

$$\forall x \in \mathbb{R}, f(x) = 4x^3 - x^2 - 4x + 2$$

Déterminer les variations de f sur $\mathbb R$ ainsi que ses limites en $+\infty$ et $-\infty$. On regroupera ces informations dans un tableau de variations.

4. Répondre à la question initialement posée. On précisera pour quelle(s) valeur(s) de $z \in \mathbb{U}$ cette valeur maximale est atteinte.

EXERCICE 15.

On définit une suite de complexes (z_n) par son premier terme $z_0 \in \mathbb{C}$ et par la relation de Soient z et z' deux nombres complexes. Montrer que récurrence

$$\forall n \in \mathbb{N}, \ z_{n+1} = \frac{1}{2}(z_n + |z_n|)$$

- **1.** Que peut-on dire de la suite (z_n) si $z_0 \in \mathbb{R}_+$? si $z_0 \in \mathbb{R}_-$?
- 2. On suppose que $z_0 \notin \mathbb{R}_-$ jusqu'à la fin de l'énoncé. Montrer que pour tout $n \in \mathbb{N}$, $z_n \notin \mathbb{R}_-$.
- 3. On admet que tout complexe non nul admet un unique argument dans $]-\pi,\pi]$ appelé argument principal. Que peut-on dire de cet argument si ce complexe n'appartient pas à ℝ_?
- **4.** Pour tout $n \in \mathbb{N}$, on note r_n le module et θ_n l'argument principal de z_n . Montrer que pour tout $n \in \mathbb{N}$, $r_{n+1} = r_n \cos\left(\frac{\theta_n}{2}\right)$ et $\theta_{n+1} = \frac{\theta_n}{2}$.
- **5.** Exprimer θ_n en fonction de θ_0 . Quelle est la limite de la suite (θ_n) ?
- **6.** Montrer que pour tout $n \in \mathbb{N}$

$$r_n = r_0 \prod_{k=1}^n \cos\left(\frac{\theta_0}{2^k}\right)$$

- 7. Montrer que $cos(x) = \frac{sin(2x)}{2sin x}$ (on précisera pour quels réels x cette égalité a un sens).
- **8.** On suppose maintenant que $z_0 \notin \mathbb{R}$ jusqu'à la fin de l'énoncé. En déduire une expression de r_n en fonction de n, θ_0 et r_0 sans le symbole
- **9.** Déterminer la limite de la suite (r_n) et en déduire celle de la suite (z_n) .

Exercice 16.★

Soient $a, b, c \in \mathbb{C}$ de module 1. Montrer que

$$|a+b+c| = |ab+bc+ac|.$$

Exercice 17.★

Déterminer les nombres complexes z tels que z, 1/z et 1+z soient de même module.

Exercice 18.★

Soient a, b et c trois nombres complexes de module 1 tels que $a \neq c$. Montrer que

$$\frac{a(c-b)^2}{b(c-a)^2} \in \mathbb{R}_+.$$

EXERCICE 19.

$$|z+z'|^2 + |z-z'|^2 = 2(|z|^2 + |z'|^2)$$

Exercice 20.

Résoudre dans C les équations suivantes :

1.
$$z^2 = \overline{z}$$

4.
$$z^2 = -\overline{z^2}$$

6.
$$z^2 = \frac{1}{z^2}$$

2.
$$z^3 = \overline{z}$$

$$3. \ z^2 = 2\overline{z}$$

5.
$$z^4 = \frac{32}{\overline{z}}$$
.

7.
$$z^3 = -\frac{1}{\overline{z^3}}$$

Equations dans \mathbb{C}

Exercice 21.

Résoudre les équations suivantes dans \mathbb{C} :

1.
$$z^2 + (5-2i)z + 5-5i = 0$$
;

5.
$$z^6 + (2i-1)z^3 - 1 - i = 0$$
;

2.
$$z^2 + (-3+i)z + 4 - 3i = 0$$
;

6.
$$z^4 - z^3 - z + 1 = 0$$
;

3.
$$z^2 - (9 - 2i)z + 26 = 0$$
;
4. $z^4 + (3 - 6i)z^2 + 2(16 - 63i) = 0$:

7.
$$z^4 + 2 - i\sqrt{12} = 0$$
.

Exercice 22.★

Résoudre dans C l'équation

$$z^2 + 8|z| - 3 = 0.$$

EXERCICE 23.

Résoudre dans \mathbb{C} les équations suivantes :

1.
$$(3+i)z^2 - (8+6i)z + 25+5i = 0$$
;

4.
$$(1-5i)z^2-(20+4i)z+61+7i=0$$
;

2.
$$iz^2 + (4i - 3)z + i - 5 = 0$$
;

3.
$$z^2 - 5z + 4 + 10i = 0$$
;

5.
$$z^6 - 2\cos(\theta)z^3 + 1 = 0$$
, où $\theta \in \mathbb{R}$.

Exercice 24.

Résoudre dans $\mathbb C$ les équations suivantes

1.
$$(z+i)^3+iz^3=0$$
;

2.
$$z^4 - z^3 + z^2 - z + 1 = 0$$
.

Exercice 25.

Pour $z \in \mathbb{C}$, on pose $f(z) = z^3 - (16 - i)z^2 + (89 - 16i)z + 89i$.

- **1.** Montrer que l'équation f(z) = 0 a une unique solution imaginaire pure que l'on déterminera.
- **2.** Résoudre dans \mathbb{C} l'équation f(z) = 0.
- **3.** Etudier dans le plan complexe la nature du triangle ayant pour sommets les images des trois racines de cette équation.

Exercice 26.

- **1.** Soit $\theta \in \mathbb{R}$ tel que $\theta \not\equiv 0[2\pi]$. Montrer que $\frac{1+e^{i\theta}}{1-e^{i\theta}} = i\cot n\frac{\theta}{2}$ où $\cot n = \frac{\cos}{\sin}$.
- 2. Résoudre l'équation $(z-1)^5 = (z+1)^5$. On exprimera les solutions à l'aide de la fonction cotan.

Exercice 27.

- **1.** Soit $\theta \in \mathbb{R}$ tel que $\theta \not\equiv 0[2\pi]$. Montrer que $\frac{1+e^{i\theta}}{1-e^{i\theta}}=i\cot n\frac{\theta}{2}$ où $\cot n=\frac{\cos}{\sin}$.
- 2. Résoudre de deux façons l'équation $(z-1)^5 = (z+1)^5$. En déduire les valeurs de cotan $\frac{\pi}{5}$, cotan $\frac{2\pi}{5}$, cotan $\frac{3\pi}{5}$ et cotan $\frac{4\pi}{5}$.

EXERCICE 28.

Résoudre dans $\mathbb C$ les équations suivantes :

- 1. $\left(\frac{z-i}{z+i}\right)^3 + \left(\frac{z-i}{z+i}\right)^2 + \left(\frac{z-i}{z+i}\right) + 1 = 0$;
- 2. $\left(\frac{z+1}{z-1}\right)^3 + \left(\frac{z-1}{z+1}\right)^3 = 0$ (exprimer les solutions à l'aide de la fonction cot);
- 3. $(1+iz)^n + (1-iz)^n = 0$ (distinguer les cas n pair et n impair et exprimer les solutions à l'aide de la fonction tan).

Exercice 29.★

Dans tout l'énoncé, *n* désigne un entier naturel non nul.

1. Résoudre dans ℂ l'équation

$$\left(\frac{z+1}{z-1}\right)^n = 1$$

2. En déduire les solutions dans $\mathbb C$ de l'équation

$$\left(\frac{z+i}{z-i}\right)^n = 1$$

3. Soit $\theta \in \mathbb{R}$ tel que $\theta \not\equiv 0 \left[\frac{2\pi}{n} \right]$. Résoudre dans \mathbb{C} l'équation

$$\left(\frac{z+1}{z-1}\right)^n = e^{in\theta}$$

4. En déduire les solutions dans $\mathbb C$ de l'équation

$$\left(\frac{z+1}{z-1}\right)^n + \left(\frac{z-1}{z+1}\right)^n = 2\cos(n\theta)$$

On traitera le cas général, $\theta \in \mathbb{R}$ sans aucune restriction.

Exercice 30.

Soient $\theta \in \mathbb{R}$ et $n \in \mathbb{N}^*$.

1. Résoudre sur l'équation d'inconnue $z \in \mathbb{C}$

$$z^2 - 2z\cos\theta + 1 = 0$$

On précisera le nombre de solutions suivant la valeur de θ .

2. En déduire la résolution sur $\mathbb C$ de l'équation

$$z^{2n} - 2z^n \cos(n\theta) + 1 = 0$$

On précisera le nombre de solutions suivant la valeur de θ .

Exercice 31.

Soit n un entier naturel supérieur ou égal à 2. Résoudre l'équation

$$(z+i)^n = (z-i)^n$$

d'inconnue $z \in \mathbb{C}$. On vérifiera en particulier que les solutions sont réelles et on précisera leur nombre.

Applications à la trigonométrie

EXERCICE 32.

On pose $\omega = e^{\frac{2i\pi}{5}}$, $\alpha = \omega + \omega^4$ et $\beta = \omega^2 + \omega^3$.

- **1.** Déterminer une équation du second degré dont les racines sont α et β .
- 2. En déduire $\cos \frac{2\pi}{5}$ et $\cos \frac{4\pi}{5}$.
- 3. En déduire $\cos \frac{\pi}{5}$ et $\sin \frac{\pi}{5}$.

EXERCICE 33.

On pose $\omega = e^{\frac{2i\pi}{11}}$ ainsi que

$$S = \omega + \omega^{3} + \omega^{4} + \omega^{5} + \omega^{9}$$
 $T = \omega^{2} + \omega^{6} + \omega^{7} + \omega^{8} + \omega^{10}$

$$T = \omega^2 + \omega^6 + \omega^7 + \omega^8 + \omega^{10}$$

- 1. a. Montrer que $\sin \frac{6\pi}{11} + \sin \frac{18\pi}{11} > 0$. En déduire que Im(S) > 0.
 - **b.** Montrer que S + T = -1 et ST = 3
 - c. En déduire une équation du second degré dont sont solutions S et T puis les valeurs de S et T.
- 2. a. Montrer que $\omega \omega^{10} = 2i \sin \frac{2\pi}{11}$.
 - **b.** Montrer que $\frac{1-\omega^3}{1+\omega^3} = -i \tan \frac{3\pi}{11}$.
 - c. Montrer que $\sum_{k=0}^{10} (-\omega^3)^k = \frac{1-\omega^3}{1+\omega^3}.$
 - **d.** En déduire que $\tan \frac{3\pi}{11} + 4\sin \frac{2\pi}{11} = i(T S) = \sqrt{11}$.

EXERCICE 34.

Soit $\omega = e^{\frac{2i\pi}{5}}$. On pose $A = \omega + \omega^4$ et $B = \omega^2 + \omega^3$.

- 1. Montrer que A = $2\cos\frac{2\pi}{5}$ et B = $2\cos\frac{4\pi}{5}$.
- 2. Calculer A+B et AB. En déduire les valeurs exactes de A et B.
- 3. En déduire les valeurs de $\cos \frac{\pi}{5}$, $\cos \frac{2\pi}{5}$, $\cos \frac{3\pi}{5}$ et $\cos \frac{4\pi}{5}$.

Exercice 35.★

En linéarisant $\sin^4 x$, calculer une expression simple de la somme

$$\sin^4\left(\frac{\pi}{8}\right) + \sin^4\left(\frac{3\pi}{8}\right) + \sin^4\left(\frac{5\pi}{8}\right) + \sin^4\left(\frac{7\pi}{8}\right)$$

Racines de l'unité

Exercice 36.

On pose $\omega = e^{\frac{2i\pi}{5}}$ et $\alpha = \omega + \frac{1}{2}$.

- 1. Montrer que $\frac{1}{\omega^2} + \frac{1}{\omega} + 1 + \omega + \omega^2 = 0$.
- 2. En déduire que α est solution d'une équation du second degré que l'on précisera.
- 3. En déduire la valeur de $\cos\left(\frac{2\pi}{5}\right)$ puis de $\sin\left(\frac{2\pi}{5}\right)$

EXERCICE 37.

Soient $n \ge 1$ et $\omega = e^{\frac{2i\pi}{n}}$

- **1.** Soit $m \in \mathbb{N}$. Calculer $\sum_{k=0}^{n-1} \omega^{km}$. On distinguera suivant que m est ou non multiple de n.
- **2.** Pour $z \in \mathbb{C}$, on pose

$$S(z) = \sum_{k=0}^{n-1} (z + \omega^k)^n$$

Montrer que pour tout $z \in \mathbb{C}$, $S(z) = n(z^n + 1)$.

3. Calculer $S(e^{\frac{i\pi}{n}})$. En déduire que

$$\sum_{k=0}^{n-1} (-1)^k \cos^n \left(\frac{(2k-1)\pi}{2n} \right) = 0$$

Exercice 38.★

Soit ω une racine septième de l'unité distincte de 1. Simplifier le nombre

$$\alpha = \frac{\omega}{1 + \omega^2} + \frac{\omega^2}{1 + \omega^4} + \frac{\omega^3}{1 + \omega^6}.$$

Inégalites

EXERCICE 39.

Déterminer les parties bornées non vides de $\mathbb C$ stables par $z\mapsto z^2+z+1$ et $z\mapsto z^2-z+1$.

Exercice 40.

Etablir par un calcul que $\text{Re}(z) < \frac{1}{2}$ équivaut à

$$\left| \frac{z}{z-1} \right| < 1.$$

Donner une interprétation géométrique de ce résultat.

Exercice 41.★

Soit λ un nombre réel irrationnel. Montrer que, pour tout entier naturel $n \ge 1$, on a

$$\left| \sum_{k=0}^{n-1} e^{2ik\lambda\pi} \right| \leq \frac{1}{|\sin(\lambda\pi)|}.$$

EXERCICE 42.

Soient $n \in \mathbb{N}^*$ et $z \in \mathbb{C}$ tels que

$$1 + z + \dots + z^{n-1} - nz^n = 0.$$

Montrer que $|z| \le 1$.

Exercice 43.

Soient $n \in \mathbb{N}^*$ et $z \in \mathbb{C} \setminus \mathbb{U}$. Montrer que

$$\left| \frac{1 - z^{n+1}}{1 - z} \right| \le \frac{1 - |z|^{n+1}}{1 - |z|}.$$

Exercice 44.★

Prouver que

$$\forall a, b \in \mathbb{C}, |a| + |b| \leq |a+b| + |a-b|.$$

étudier les cas d'égalité.

EXERCICE 45.★

Soient $n \ge 2$ et $z_1, z_2, ..., z_n$ appartenant à \mathbb{C}^* . Prouver que

$$|z_1 + \ldots + z_n| \le |z_1| + |z_2| + \ldots + |z_n|$$

avec égalité si et seulement si

$$arg(z_1) \equiv arg(z_2) \equiv ... \equiv arg(z_n)[2\pi]$$

Géométrie

Exercice 46.★

Résoudre dans $\mathbb C$ les équations suivantes

$$1. \operatorname{Re}\left(\frac{z-1}{z-i}\right) = 0$$

$$2. \operatorname{Im}\left(\frac{z-1}{z-i}\right) = 0$$

3.
$$Re(z^3) = Im(z^3)$$

Exercice 47.

Soient A, B, C, D quatre points du plan distincts deux à deux. On suppose de plus A, B, C non alignés et on introduit le cercle $\mathscr C$ de centre O circonscrit au triangle ABC.

On choisit un repère orthonormé du plan de centre O tel que $\mathscr C$ ait pour rayon 1. On note a,b,c,d les affixes respectifs de A, B, C, D.

On pose enfin
$$Z = \frac{d-a}{c-a} \frac{c-b}{d-b}$$
.

1. Dans cette question, on suppose que D appartient à \mathscr{C} .

a. Justifier que
$$\overline{a} = \frac{1}{a}$$
, $\overline{b} = \frac{1}{b}$, $\overline{c} = \frac{1}{c}$, $\overline{d} = \frac{1}{d}$.

b. Montrer que Z est un réel.

c. En déduire que $(\overrightarrow{AC}, \overrightarrow{AD}) \equiv (\overrightarrow{BC}, \overrightarrow{BD})[\pi]$.

2. Réciproquement, on suppose que $(\overrightarrow{AC}, \overrightarrow{AD}) \equiv (\overrightarrow{BC}, \overrightarrow{BD})[\pi]$ et on veut montrer que D appartient à \mathscr{C} .

a. Que peut-on dire de Z?

b. Exprimer d en fonction de a, b, c, Z.

c. Calculer \overline{d} et en déduire que D appartient à \mathscr{C} .

Exercice 48.

Soit z un nombre complexe. On note A, B, C, D les points d'affixes respectifs $1, z, z^2, z^3$ dans un repère orthonormé du plan.

- 1. Pour quelles valeurs de z les points A, B, C, D sont-il deux à deux distincts ? On suppose cette cette condition remplie dans la suite de l'énoncé.
- **2.** Déterminer les valeurs de z tels que ABCD soit un parallélogramme. Préciser la nature de ce parallélogramme.
- 3. Déterminer les valeurs de z tels que le triangle ABC soit rectangle isocèle en A.
- 4. Déterminer les valeurs de z tels que ABD soit rectangle isocèle en A.

Exercice 49.

On pose $j = e^{\frac{2i\pi}{3}}$ et on considère l'application

$$P: \left\{ \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & z^3 + \alpha z^2 + \beta z \end{array} \right.$$

où $(\alpha, \beta) \in \mathbb{C}^2$.

- **1.** Que vaut $1 + j + j^2$?
- 2. Montrer que $P(1) + P(j) + P(j^2) = 3$.
- 3. On note A_0 , A_1 et A_2 les points du plan d'affixes respectifs 1, j et j^2 . On se donne également B_1 et B_2 deux points du plan.

Montrer qu'il existe $k \in \{0,1,2\}$ tel que $A_k B_1 \cdot A_k B_2 \ge 1$.

On pourra utiliser le fait que le module d'une somme de complexes est toujours inférieur ou égal à la somme des modules de ces complexes (inégalité triangulaire).

Exercice 50.

Soient a, b et c trois nombres complexes non nuls de même module et deux à deux distincts. On note A, B, C et H les points d'affixes respectifs a, b, c et a+b+c.

- **1.** On pose $w = \overline{b}c b\overline{c}$. Calculer \overline{w} et en déduire que w est imaginaire pur.
- 2. Montrer que $(b+c)(\overline{b}-\overline{c})$ est également imaginaires pur.
- 3. Montrer que si \vec{u} et \vec{v} sont deux vecteurs d'affixes respectifs z_1 et z_2 , alors leur produit scalaire est la partie réelle de $z_1\overline{z_2}$.
- **4.** Montrer que les droites (AH) est (BC) sont perpendiculaires.
- 5. En déduire que H est l'orthocentre du triangle ABC.

Exercice 51.★

Déterminer l'ensemble des points du plan d'affixe z tels que les points d'affixes 1, z et z^3 soient alignés.

Exercice 52.★

Déterminer l'ensemble des nombres complexes z tels que les points d'affixes respectives z,iz et z^2 soient alignés.

EXERCICE 53.★

Le plan \mathscr{P} est muni d'un repère orthonormé direct \mathscr{R} . Déterminer l'ensemble des points M(z) du plan \mathscr{P} tels que les points d'affixes respectives $1, z^2$ et z^4 soient alignés.

Exercice 54.★★

Déterminer les points M(z) du plan \mathscr{P} tels que $\left(\frac{z}{z-1}\right)^4 \in \mathbb{R}$.

Exercice 55.★★

Soient A, B, C trois points deux à deux distincts d'affixes a, b, c.

1. Prouver que ABC est un triangle équilatéral direct si et seulement si

$$a+jb+j^2c=0,$$

et équilatéral indirect si et seulement si

$$a + jc + j^2b = 0.$$

2. Prouver que ABC est un triangle équilatéral si et seulement si

$$a^2 + b^2 + c^2 = ab + ac + bc$$
.

Exercice 56.★

On se place dans le plan complexe rapporté à un repère orthonormé direct $\mathcal{R} = (O, \overrightarrow{u}, \overrightarrow{v})$. Soit $M_1 M_2 M_3$ un triangle inscrit dans un cercle de centre O. On note z_k l'affixe de M_k .

1. Montrer que l'orthocentre H du triangle M₁M₂M₃ a pour affixe

$$h = z_1 + z_2 + z_3$$
.

2. En déduire que le centre de gravité, le centre du cercle circonscrit et l'orthocentre d'un vrai triangle sont alignés.

Exercice 57.★

Soient $\mathscr{E} = \mathbb{C} \setminus \{2i\}$ et $f : \mathscr{E} \to \mathbb{C}$ l'application définie par

$$\forall z \in \mathcal{E}, \ f(z) = \frac{z+i}{z-2i}.$$

Déterminer les ensembles suivants :

- 1. $\mathscr{E}_1 = \{ z \in \mathbb{C} \mid f(z) \in \mathbb{R} \};$
- 2. $\mathscr{E}_2 = \{ z \in \mathbb{C} \mid f(z) \in i\mathbb{R} \};$
- 3. $\mathscr{E}_3 = \{ z \in \mathbb{C} \mid \arg(f(z)) \equiv \pi/2[2\pi] \}.$

EXERCICE 58.

Dans tout l'exercice, le plan affine euclidien est rapporté à un repère orthonormé direct \mathcal{R} .

- **1.** Déterminer les nombres complexes z non nuls tels que les nombres complexes z, 1/z et 1+z aient même module.
- 2. Déterminer les nombres complexes tels que

$$|z-1| = |\overline{z}+1|.$$

Interprétation géométrique?

3. Déterminer le lieu des points du plan dont l'affixe z vérifie

$$|(1+i)\overline{z}-2i|=2.$$

Calcul de sommes

EXERCICE 59.

Soient (x_n) et (y_n) deux suites réelles définies par $x_0=1,\ y_0=0$ et par $\forall n\in\mathbb{N}, \begin{cases} x_{n+1}=x_n+y_n\\ y_{n+1}=y_n-x_n \end{cases}$. On pose $z_n=x_n+i\,y_n$ pour tout $n\in\mathbb{N}$.

- **1.** Calculer z_0, z_1, z_2 et z_3 .
- **2.** Montrer que (z_n) est une suite géométrique. On donnera sa raison sous formes algébrique et exponentielle.
- 3. Exprimer $A_n = \sum_{k=0}^n z_k$, $B_n = \sum_{k=0}^n x_k$, $C_n = \sum_{k=0}^n y_k$ en fonction de n à l'aide des fonctions cos et sin.

EXERCICE 60.

Soit $\alpha \in \mathbb{R}$ tel que $\alpha \not\equiv 0[2\pi]$. Pour $n \in \mathbb{N}$, on pose

$$S_n = \sum_{k=0}^{n} k \cos(k\alpha)$$
 et $T_n = \sum_{k=0}^{n} k \sin(k\alpha)$

Montrer que

$$S_n = \frac{n\cos(n+1)\alpha - (n+1)\cos(n\alpha) + 1}{2(\cos\alpha - 1)}$$

$$T_n = \frac{n\sin(n+1)\alpha - (n+1)\sin(n\alpha)}{2(\cos\alpha - 1)}$$

Exercice 61.

Soit $n \in \mathbb{N}^*$. Calculer de deux manières $(1+i)^{2n}$ et en déduire $S_n = \sum_{k=0}^n (-1)^k \binom{2n}{2k}$ et $T_n = \sum_{k=0}^n (-1)^k \binom{2n}{2k}$

$$\sum_{k=0}^{n-1} (-1)^k \binom{2n}{2k+1}.$$

EXERCICE 62.

Soit *n* un entier naturel supérieur ou égal à 2. On pose $z = e^{\frac{2i\pi}{n}}$.

- **1.** Soit $k \in [1, n-1]$. Déterminer le module et un argument de $z^k 1$.
- 2. On pose $S = \sum_{k=0}^{n-1} |z^k 1|$. Montrer que $S = \frac{2}{\tan \frac{\pi}{2n}}$.

Exercice 63.

Soit *n* un entier naturel non nul. On pose $\omega = e^{\frac{i\pi}{n}}$.

- **1.** Justifier que $\omega \neq 1$.
- 2. On pose $A_n = \sum_{k=0}^{n-1} \omega^k$. Montrer que $A_n = \frac{2}{1-\omega}$.
- 3. On pose $C_n = \sum_{k=0}^{n-1} \cos \frac{k\pi}{n}$ et $S_n = \sum_{k=0}^{n-1} \sin \frac{k\pi}{n}$. Montrer que $C_n = 1$ et $S_n = \frac{\cos \frac{\pi}{2n}}{\sin \frac{\pi}{2n}}$.
- 4. Calculer $B_n = \sum_{k=0}^{n-1} |\omega^{2k} 1|$.

Exercice 64.

Soit $n \in \mathbb{N}$. Calculer de deux manières $(1+i)^n$ et en déduire les sommes suivantes

$$S_n = \sum_{0 \le 2k \le n}^{n} (-1)^k \binom{n}{2k}$$

$$T_n = \sum_{0 \le 2k+1 \le n} (-1)^k \binom{n}{2k+1}$$

EXERCICE 65.

Pour $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$, on pose $D_n(\theta) = \sum_{k=-n}^n e^{ki\theta}$ et $F_n(\theta) = \sum_{k=0}^n D_k(\theta)$.

- 1. Montrer que si $\theta \neq 0[2\pi]$, $D_n(\theta) = \frac{\sin((n+\frac{1}{2})\theta)}{\sin(\frac{\theta}{2})}$. Préciser également la valeur de $D_n(\theta)$ lorsque $\theta \equiv 0[2\pi]$.
- 2. Montrer que si $\theta \neq 0[2\pi]$, $F_n(\theta) = \frac{\sin^2\left(\frac{(n+1)\theta}{2}\right)}{\sin^2\left(\frac{\theta}{2}\right)}$. Préciser également la valeur de $F_n(\theta)$ lorsque $\theta \equiv 0[2\pi]$.

Exercice 66.★

Simplifier la somme

$$S_n = \sum_{0 \le 2k \le n} (-3)^k \binom{n}{2k}.$$

Exercice 67.★

Pour tout entier naturel n, on pose

$$S_{1} = \sum_{k=0}^{n} {3n \choose 3k}, \quad S_{2} = \sum_{k=0}^{n-1} {3n \choose 3k+1},$$
 et
$$S_{3} = \sum_{k=0}^{n-1} {3n \choose 3k+2}.$$

- 1. Calculer $S_1 + S_2 + S_3$, puis $S_1 + jS_2 + j^2S_3$ et $S_1 + j^2S_2 + j^4S_3$.
- **2.** En déduire les valeurs de S_1 , S_2 et S_3 .

Exercice 68.★

Soient α et β , deux nombres réels. Simplifier les sommes

$$S_n = \sum_{k=0}^n \binom{n}{k} \cos(\alpha + k\beta),$$

$$S'_n = \sum_{k=0}^n \binom{n}{k} \sin(\alpha + k\beta),$$

$$S''_n = \sum_{k=0}^n (-1)^k \cos(\alpha + k\beta).$$

Exercice 69.★

Soit α , un nombre réel tel que $\cos \alpha \neq 0$. On pose

$$R_n = \sum_{k=0}^n \frac{\cos k\alpha}{\cos^k \alpha}$$
 et $I_n = \sum_{k=0}^n \frac{\sin k\alpha}{\cos^k \alpha}$.

Calculer $R_n + iI_n$ et en déduire des expressions simplifiées de R_n et de I_n .

Exercice 70.

Simplifier, pour tout $n \in \mathbb{N}$,

$$F_n = \frac{\cos(x) + \cos(3x) + \cos(5x) + \dots + \cos((2n+1)x)}{\sin(x) + \sin(3x) + \sin(5x) + \dots + \sin((2n+1)x)}.$$

Exponentielle d'un nombre complexe

Exercice 71.

Résolvons dans $\mathbb C$ les équations suivantes :

1.
$$e^z = -7$$
;

2.
$$e^z = -2i$$
;

3.
$$e^z = 1 + i$$
.

Exercice 72.★

Résoudre dans $\mathbb C$ les équations suivantes :

1.
$$e^z + e^{-z} = 1$$
;

2.
$$e^z + e^{-z} = 2i$$
.