EE5630 Digital Signal Processing

HW#5

Lecturer: Yi-Wen Liu

Due Sunday April 12, 2020

1. (**Ambiguity in down-sampling, 20%**) In the video "Sampling rate conversion", around 37:45, we are on the topic of *decimation* for down-sampling by a factor of two. I said, after lowpass filtering, we are "skipping all the odd-number samples." How about skipping all the even-number samples instead? I.e., would there be a problem if we choose $\tilde{x}_d[n] = \tilde{x}[2n-1]$? If it is OK to do so, how come both $\tilde{x}_d[n] = \tilde{x}[2n-1]$ and $\tilde{x}_d[n] = \tilde{x}[2n]$ are both correct? Note that $\tilde{x}[2n-1] \neq \tilde{x}[2n]$ in general.

<u>Remarks:</u> The word *decimation*, I recently learned, has a cruel meaning in history. Check it out at Wikipedia. *Deci* means ten. The word meant "to remove one out of every ten", originally.

- 2. **(All-pass minimum-phase decomposition. 40%)**. Please do Problems 5.12, 5.18(a)(b).
- 5.12. A discrete-time causal LTI system has the system function

$$H(z) = \frac{(1 + 0.2z^{-1})(1 - 9z^{-2})}{(1 + 0.81z^{-2})}.$$

- (a) Is the system stable?
- **(b)** Determine expressions for a minimum-phase system $H_1(z)$ and an all-pass system $H_{ap}(z)$ such that

$$H(z) = H_1(z)H_{ap}(z).$$

5.18. For each of the following system functions $H_k(z)$, specify a minimum-phase system function $H_{\min}(z)$ such that the frequency-response magnitudes of the two systems are equal, i.e., $|H_k(e^{j\omega})| = |H_{\min}(e^{j\omega})|$.

(a)

$$H_1(z) = \frac{1 - 2z^{-1}}{1 + \frac{1}{3}z^{-1}}$$

(b)

$$H_2(z) = \frac{(1+3z^{-1})\left(1-\frac{1}{2}z^{-1}\right)}{z^{-1}\left(1+\frac{1}{3}z^{-1}\right)}$$

3.(Meaning of group delay, 40%) Please work on Problem 5.63.

5.63. In the system shown in Figure P5.63-1, assume that the input can be expressed in the form

$$x[n] = s[n] \cos(\omega_0 n).$$

Assume also that s[n] is lowpass and relatively narrowband; i.e., $S(e^{j\omega}) = 0$ for $|\omega| > \Delta$, with Δ very small and $\Delta \ll \omega_0$, so that $X(e^{j\omega})$ is narrowband around $\omega = \pm \omega_0$.

(a) If $|H(e^{j\omega})| = 1$ and $\angle H(e^{j\omega})$ is as illustrated in Figure P5.63-2, show that $y[n] = s[n]\cos(\omega_0 n - \phi_0)$.

Figure P5.63-2

(b) If $|H(e^{j\omega})| = 1$ and $\angle H(e^{j\omega})$ is as illustrated in Figure P5.63-3, show that y[n] can be expressed in the form

$$y[n] = s[n - n_d] \cos(\omega_0 n - \phi_0 - \omega_0 n_d).$$

Show also that y[n] can be equivalently expressed as

$$y[n] = s[n - n_d] \cos(\omega_0 n - \phi_1),$$

where $-\phi_1$ is the phase of $H(e^{j\omega})$ at $\omega = \omega_0$.

Figure P5.63-3

(c) The group delay associated with $H(e^{j\omega})$ is defined as

$$\tau_{gr}(\omega) = -\frac{d}{d\omega} \arg[H(e^{j\omega})],$$

and the phase delay is defined as $\tau_{\rm ph}(\omega) = -(1/\omega) \angle H(e^{j\omega})$. Assume that $|H(e^{j\omega})|$ is unity over the bandwidth of x[n]. Based on your results in parts (a) and (b) and on the assumption that x[n] is narrowband, show that if $\tau_{\rm gr}(\omega_0)$ and $\tau_{\rm ph}(\omega_0)$ are both integers, then

$$y[n] = s[n - \tau_{gr}(\omega_0)] \cos{\{\omega_0[n - \tau_{ph}(\omega_0)]\}}.$$

This equation shows that, for a narrowband signal x[n], $\angle H(e^{j\omega})$ effectively applies a delay of $\tau_{gr}(\omega_0)$ to the envelope s[n] of x[n] and adelay of $\tau_{gh}(\omega_0)$ to the carrier cos $\omega_0 n$.

(d) Referring to the discussion in Section 4.5 associated with noninteger delays of a sequence, how would you interpret the effect of group delay and phase delay if $\tau_{gr}(\omega_0)$ or $\tau_{ph}(\omega_0)$ (or both) is not an integer?