Machine learning in outbreaks predictions (Łukasz Czekaj)

West Nile Virus

- "Every week from late spring through the fall, mosquitoes in traps across the city are tested for the virus."
- "Given weather, location, testing, and spraying data, this competition asks you to predict when and where different species of mosquitos will test positive for West Nile virus."
- https://www.kaggle.com/c/predict-west-nile-virus

West Nile Virus

- #mosquitoes, WNV test, species for trap, date
- Spray location and date
- Detailed weather information from 3 stations
- Predict WNV test result for given location nad date

Types of machine learning

- Unsupervised learning
- Supervised learning

Unsupervised learning

- Data summarization, data reduction
- Discover latent structure (clustering)

descriptive attributes

id	attr ₁	attr ₂	attr ₃
1	+	43	53
2	+	34	45
3	-	12	14
4	-	15	16

row describes an object

Unsupervised learning (clustering)

id	attr ₁	attr ₂	attr ₃	
1	+	43	53	model
2	+	34	45	1
3	-	12	14	
4	-	15	16	
				**
				•

id	attr ₁	attr ₂	attr ₃	class
1	+	43	53	Α
2	+	34	45	Α
3	-	12	14	В
4	-	15	16	В

Unsupervised learning (clustering)

Automatic clustering

Predict unknown attribute on the base of other attributes

attr₁, attr₂, attr₃ => attr₄

id	attr ₁	attr ₂	attr ₃	attr ₄	model	
1	+	43	53	Α		
2	+	34	45	Α		
3	-	12	14	В	*	★?
4	-	15	16	?		
					**	>

id	attr ₁	attr ₂	attr ₃	attr ₄
1	+	43	53	Α
2	+	34	45	Α
3	-	12	14	В
4	-	15	16	В

Logistic regression (glm)

Classification tree

Precision and accuracy

Accuracy Precision

Validation

Confusion matrix

Data\Predictions	Positive	Negative
Positive	True positive (sensitivity)	False negative
Negative	False positive (false alarm)	True negative (specificity)

Receiver Operating Characteristic (ROC) curve

• Overfit

ASF in Poland

ASF in Poland

- Training Data: 2015 Q2 2017 Q3 (10 quarters)
- Training Data: 2017 Q4 2018 Q3 (4 quarters)
- Predicted event: ASF positive dead pig in hex
- Descriptive attributes: hex history, hex neighbourhood history, human, forest and pigs density, season

ASF in Poland

Modeling approach comparison

	Machine Learning	Phenomenological
Moldel	Blackbox, nonparametric, easy to add new attributes with complicated interactions.	Fixed parametric equation inspired by "mechanics" of the process.
Goal	Provide accurate predictions	Understanding "mechanics", select from competative models
Quality	Validation	AIC, BIC, DIC, Bayes Factor