Beyond Stars – Generalized Topologies for Decoupled Search

Daniel Gnad, Álvaro Torralba, Daniel Fišer

Saarland University, Linköping University, Aalborg University, Czech Technical University

Context

- Classical planning with finite-domain variables.
- Problem decomposition by partitioning state variables.
- Prior work: enforce "star topology":

Definition: Star Factoring

A pair $\mathcal{F}_s = \langle C, \mathcal{L} \rangle$ is a star factoring, if $\{C\} \cup \mathcal{L}$ is a factoring and for all actions $a \in \mathcal{A}$ either there exists an $L \in \mathcal{L}$ such that $vars(pre(a)) \subseteq C \cup L$ and $vars(eff(a)) \subseteq L$, or $vars(eff(a)) \cap C \neq \emptyset$. C is called the **center factor** of \mathcal{F}_s , and \mathcal{L} are its **leaf factors**.

Why generalize Topologies?

 $eff() = \{B_i = b - 1, B_i = c + 1\}$

Generalized Factorings

Definition: Generalized Factoring

A pair $\mathcal{F}_g = \langle C, \mathcal{L} \rangle$ is a generalized factoring, if either \mathcal{L} is a factoring or $\{C\} \cup \mathcal{L}$ is a factoring.

No additional structural requirements! How to handle interactions?

Definition: Global Action

Let $\mathcal{F}_q = \langle C, \mathcal{L} \rangle$ be a generalized factoring.

An action $a \in \mathcal{A}$ is a **global action** iff there does not exist an $L \in \mathcal{L}$ such that $vars(pre(a)) \subseteq C \cup L$ and $vars(eff(a)) \subseteq L$.

Avoid structural requirements of star factorings by generalizing to arbitrary topologies.

Applicability in more domains.

Higher flexibility for factoring strategies.

Correspondence to Star Factorings

From generalized factoring $\mathcal{F}_g = \langle C_G, \mathcal{L}_G \rangle$ to star factoring $\mathcal{F}_s = \langle C_S, \mathcal{L}_S \rangle$:

- add new center variable x with $\mathcal{D}(x) = \{0\}$: $C_S = C_G \cup \{x\}$,
- for all global actions $a \in \mathcal{A}$, add effect $\{x = 0\}$,
- nothing changes for leaf-only actions.

Inherit all properties of star-decoupled search: soundness, completeness, optimality preservation.

Finding Generalized Factorings

- Factoring process as integer linear program (ILP).
- Any partition of the state variables is a factoring.
- Optimize important properties of the factoring:
- Number of leaves,
- Balanced mobility: # leaf-only actions (product),
- Mobility: number of leaf-only actions (sum),
- Flexibility: ratio of leaf-only actions (facts).
- Require minimum flexibility $\{0\%, 5\%, \dots 100\%\}$.
- Leaf candidates: action effect schemas vars(eff(a)) and SCCs of causal graph.

Coverage over minimum Flexibility

