Analysis of Student Performance in Mathematics Courses

Jeremy Meyer

STAT 651 Project

December 13, 2019

Overview

- Introduction
 - Background
 - EDA
- The Model
 - Construction
 - Proposed Model
- Computations
 - Algorithm
 - Computational Results
- Results
 - Significant Factors
 - Outlier Differences
 - Frequentist methods comparison
- Conclusion

Background

- Media is full of explanations on what makes students excel
- Student math performance was collected from Portuguese school questionnaires
- Analysis can be used by school to find areas of improvement
- DISCLAIMER:
 - Correlation does not imply causation.
 - These are results collected from ONE school.

The Data

- 349 secondary students aged 15-22
- Response is final score in math courses (0 to 20)
- Goal: Interest is in what factors contributes to a high final grade
 - Socioeconomic factors like study time, family relations, etc.

Socioeconomic variables of interest

All 10 are discrete

- Mother's Education level (0 None 4 College level)
- Father's Education level (0 None 4 College level)
- Study time (1: 2 hours 4: > 10 hours)
- Extra-Carriculars? (Yes / No)
- Somantic relationship (Yes / No)
- Family relations (1 Very Bad 5 Excellent)
- Free Time after school (1 Very Low 5 Very High)
- Time out with friends (1 Very Low 5 Very High)
- Weekend Alchohol consumption (1 Very Low 5 Very High)
- Health (1 Very Poor 5 Excellent)

Some Covariates

Scores - Outliers

- 13 Students scored zeros. Dropouts?
- These actually greatly affect results (more later)
- Will throw them out for interest in students who finished

Correlations

Model Construction

- Scale response to $(0,1) \rightarrow y_i \sim \mathsf{Beta}$
- ullet Evaluate significant covariates o regression
- Logit link function so $0 < \mu_i < 1$
- Noninformative priors

Beta reparameterization

Why not in terms of mean and variance?

$$s^{2} = \frac{\alpha \left[\frac{\alpha(1-\overline{x})}{\overline{x}}\right]}{(\alpha + \left[\frac{\alpha(1-\overline{x})}{\overline{x}}\right])^{2} \left(\alpha + \left[\frac{\alpha(1-\overline{x})}{\overline{x}}\right] + 1\right)} = \frac{\alpha^{2}\overline{x}^{2}(1-\overline{x})}{(\alpha\overline{x} + \alpha(1-\overline{x}))^{2}(\alpha\overline{x} + \alpha(1-\overline{x}) + \overline{x})}$$
$$= \frac{\alpha^{2}\overline{x}^{2}(1-\overline{x})}{\alpha^{2}(\alpha + \overline{x})} = \frac{\overline{x}^{2}(1-\overline{x})}{\alpha + \overline{x}}$$

$$\beta = \frac{\alpha(1-\bar{x})}{\bar{x}} \qquad \alpha = \frac{\bar{x}^2(1-\bar{x})-s^2\bar{x}}{s^2} = \bar{x}\left[\frac{\bar{x}(1-\bar{x})}{s^2}-1\right]$$

- Beta variance has upper bound: $\frac{\mu(1-\mu)}{1+\alpha+\beta} < \mu(1-\mu) < 0.25$
- For a fixed μ and variance, MME for α , β may be outside support.
- ullet ex. If $\mu=.9$, var $=.15
 ightarrow \hat{lpha}=-.2$, $\hat{eta}=-.04$
- Makes proposals difficult for MCMC.

Beta reparameterization

Instead let $\phi = \alpha + \beta$

- ullet ϕ is unconstrained for a given μ
- Variance at a given μ becomes $\frac{\mu(1-\mu)}{1+\phi}$
- ullet ϕ is a "dispersion parameter"

Thus if $\mu = \frac{\alpha}{\alpha + \beta} \ \phi = \alpha + \beta \rightarrow$

- $\alpha = \phi \mu$
- $\beta = \phi(1-\mu)$

Proposed Model

$$y_i | \phi, \mu_i \sim \text{Beta}(\phi \mu_i, \phi(1 - \mu_i)), \text{ where}$$

$$\mu_i = \text{logit}^{-1}(\beta_0 + \beta_1(x_{1i}) + \beta_2(x_{2i}) + ... + \beta_9(x_{9i}) + \beta_{10}(x_{10i})) \quad (1)$$

$$\phi \sim \text{Gamma}(.1, .1), \quad \text{each } \beta_j \sim t_4$$

Where

- y_i is the scaled i^{th} student score
- x_{ki} is the k^{th} covariate for student i
- β_k represents the effect of the k^{th} covariate on score.

$$E(y_i) = \mu_i$$
 $V(y_i) = \frac{\mu_i(1 - \mu_i)}{1 + \phi}$ (2)

Prior Choice

ϕ Prior	DIC	β_j prior	DIC
G(.1, .1)	-288.32	t ₄	-288.32
G(.1, 1)	-286.62	t_2	-287.86
G(1,1)	-286.48	N(0,1)	-287.15
Unif(0, 100)	-287.59	N(0, 100)	-286.74

Note: Top row is baseline level.

- In Beta regression, the coefficients are very small
- \bullet Uninformative prior with positive support on ϕ

Computational Approach (MCMC)

- Gibbs sampler had problems mixing
 - For 20,000 draws $\rightarrow \beta_0$ had effective sample size 190
- Idea: Sample correlated betas jointly, uncorrelated β s univariately
 - Use Metropolis Algorithim
- Use correlations from Gibbs sampler to determine groupings
- Many variables were negatively correlated with β_0
- β_1 and β_2 correlated.

Sampling algorithm: Multivariate Updates

- **1** Choose starting values. $(0 \rightarrow \beta_i, 10 \rightarrow \phi)$
- ② We sample $(\beta_0, \beta_3, \beta_6, \beta_7, \beta_8, \beta_9, \beta_{10})$ together and (β_1, β_2) together.
 - Use a MVN proposal distribution, centered on the current state.
 - Let $n_1 = 7$ and $n_2 = 2$ be the dimension of update
 - Conditioning on all other parameters, use the inverse hessian normal approximation to generate a covariance matrix $\hat{\Sigma}$
 - \bullet Variance of the proposal is a scaled version of $\hat{\Sigma}$
 - Thus, only 1 tuning parameter per group.
 - Don't regenerate a new $\hat{\Sigma}$ each iteration, just generate once at start or infrequently.
 - Update first group and current state, (β_1, β_2)

Sampling Algorithim: Univariate updates

- **①** For β_4 , β_5 , and ϕ , use a univariate Metropolis update. For these betas:
 - Use a normal proposal.
 - Update current state with draws from multivariate updates
- 2 Iterate back and forth between all multivariate and univariate updates until we obtain 20,000 draws.

Acceptance rates / Effective Sample size / \hat{R}

	Acc Rate	Eff Size	Ŕ
β_0	.258	697	1.0029
β_1	.369	748	1.0056
β_2	.369	1192	1.0015
eta_3	.258	899	1.0023
eta_{4}	.277	910	1.0011
β_5	.258	1861	1.0014
β_6	.258	971	1.0010
β_7	.258	817	1.0012
β_8	.258	856	1.0017
eta_{9}	.258	861	1.0013
β_{10}	.258	850	1.0007
ϕ	.439	3848	1.0002

- Eased some mixing problems
- Used 5 different starting locations (see slide 19)

ACF plots

Arranged from left to right in increasing order of β_i (ϕ last)

Traceplots in various locations

Recall (0,0,0,0,0,0,0,0,0,0,0,0) (BLACK) was the starting value. Suppose we started

- (-.25, -.25, ..., 9) RED
- (.25, .25, .25, ..., 11) CYAN
- (.5, .5, ..., -.5, -.5, ... 7) BLUE
- (-.5, -.5, ..., +.5, +.5, ... 12) GREEN

Trace Plots

All traceplots show strong signs of convergence!

Results: Significant coefficients

	2.5%	mean	97.5%
Intercept	-0.52	-0.08	0.35
Medu(+)	0.03	0.11	0.19
Fedu	-0.04	0.04	0.12
studytime	-0.03	0.05	0.13
activities	-0.09	0.05	0.19
romantic	-0.27	-0.12	0.02
famrel	-0.04	0.04	0.11
freetime	-0.02	0.05	0.12
goout(-)	-0.18	-0.10	-0.03
Walc	-0.09	-0.03	0.03
health	-0.07	-0.02	0.03
phi	7.64	8.93	10.24

Note: This does NOT change with other priors

What if we had left the zeros in?

	2.5%	mean	97.5%
Intercept	-0.45	0.11	0.67
Medu(+)	0.04	0.15	0.27
Fedu	-0.11	-0.00	0.11
studytime(+)	0.04	0.15	0.26
activities	-0.08	0.11	0.30
romantic(-)	-0.57	-0.37	-0.17
famrel	-0.14	-0.03	0.07
freetime	-0.05	0.06	0.16
goout(-)	-0.34	-0.24	-0.14
Walc(+)	0.02	0.11	0.19
health(-)	-0.16	-0.09	-0.02
phi	3.33	3.81	4.35

Worse health and weekends out on alcohol are correleted with better grades!

Why did this happen?

Table: Group Means

	Zeros	Not Zeros	diff
Medu	2.62	2.81	-0.19
Fedu	2.54	2.55	-0.01
studytime	1.77	2.07	-0.30
activities	0.46	0.53	×0.9
romantic	0.61	0.31	×2.0
famrel	4.38	3.94	0.44
freetime	3.46	3.21	0.25
goout	3.77	3.09	0.68
Walc	1.77	2.28	-0.51
health	4.31	3.55	0.76

The 13 students who scored 0 on average have much better health and drink less alcohol.

These differences had a high influence on the β s.

Comparison to Frequentist methods

betareg package in R does ML frequentist beta regression

- Parameterization is the same. Same conclusions.
- Estimates are almost identical

Covariate	P-value	Coef.F	Coef.B	Width.F	Width.B
(Intercept)	0.666	-0.11	-0.08	1.00	0.87
Medu	0.007*	0.11	0.11	0.16	0.15
Fedu	0.315	0.04	0.04	0.16	0.16
studytime	0.212	0.05	0.05	0.17	0.16
activities	0.478	0.05	0.05	0.28	0.28
romantic	0.082	-0.13	-0.12	0.29	0.29
famrel	0.348	0.04	0.04	0.16	0.15
freetime	0.165	0.05	0.05	0.14	0.14
goout	0.004*	-0.10	-0.10	0.14	0.15
Walc	0.360	-0.03	-0.03	0.12	0.12
health	0.419	-0.02	-0.02	0.10	0.10
ϕ		9.19	8.93	2.64	2.59

Conclusions

- Educated mothers tend to have kids do well in math class.
- Spending too much time out with friends can be detrimental to grades
- Future work:
 - 1 Find out why some students scored 0
 - Trends across schools / subjects
 - Causal analysis