REPLUG: Retrieval-Augmented Black-Box Language Models

- Weijia Shi,1 * Sewon Min,1 Michihiro Yasunaga,2 Minjoon Seo,3 Rich James,
 4 Mike Lewis,4 Luke Zettlemoyer1 4 Wen-tau Yih 4
 - NAACL 2024

발표자: 안도형

Background & Related Work

Background & Related Work

Black-box language Models

- GPT-3와 같은 LLM 모델들은 API로만 풀려 있고, 모델 내부 parameter 같은 요소에는 접근 할 수 없음
- 논문에서는 이렇게 모델 내부 파라미터에 접근 할 수 없는 모델을 black-box language Model 이라고 말함

Dual Encoder

- 두 개의 인코더를 사용하여 쿼리와 문서를 각각 독립적으로 임베딩 벡터로 변환 한 후 각 벡터 간의 유사성을 계산하여 검색하기 위한 구조
- Single Encoder 방식을 사용하면 쿼리와 문서를 함께 인코딩 해야 해서 새로운 쿼리가 들어올 때마다 문서를 다시 인코딩 해야 해서 비효율적

Background & Related Work

- Retrieval augmented Language Models(RALM)
 - Retrieval이 외부 코퍼스에서 문서(지식)들을 검색하고 LM은 검색된 문서(지식)들을 활용하여 최종 output을 만들어냄
 - RALM 방식은 retriever 뿐만 아니라 LM의 parameter도 업데이트 해야 해서 black-box LM에 적용할 수 없음

Introduction

Introduction

• 기존 LLM들의 한계

- GPT-3, Codex와 같은 LLM들은 hallucination이 발생하는 문제가 있음
- Hallucination 문제를 해결하기 위해 Retrieval-augmented language models을 사용
- RALM은 필요한 정보를 외부 데이터셋에서 검색해서 가져와 hallucination을 줄이고 LM이 다루는 정보의 범위를 넓힘

• 기존 Retrieval Augmented Language Models의 한계

- RALM은 필요한 정보를 외부 데이터셋에서 검색해 가져와 hallucination을 줄이는 결과를 가져옴
- 그러나 기존 RALM은 LM의 내부 파라미터에 접근해서 업데이트를 진행해야 함
- 최근 GPT-3 같이 API로만 제공되어 내부 파라미터에 접근이 불가능한 LM에는 RALM을 적용하기 힘들다는 한계가 존재

>> 논문의 연구에서는 retrieval을 통해 black-box LLM을 개선하는 방법을 찾으려 함

Introduction

- REPLUG(Retrieve and Plug)
 - LM을 black-box로 두고 Retrieval을 활용하여 black-box language model의 성능을 향상 시키는 retrieval-augmented LM **framework**
 - 기존 RALM은 LM 내부 파라미터를 업데이트
 - LM을 black-box로 두기 때문에 REPLUG는 이러한 과정이 필요하지 않음

Figure 1. Different from previous retrieval-augmented approaches (Borgeaud et al., 2022) that enhance a language model with retrieval by updating the LM's parameters, REPLUG treats the language model as a black box and augments it with a frozen or tunable retriever. This black-box assumption makes REPLUG applicable to large LMs (i.e., >100B parameters), which are often served via APIs.

Methods

REPLUG

REPLUG: Retrieval-Augmented Black-Box Language Models

Figure 2. **REPLUG at inference** (§3). Given an input context, REPLUG first retrieves a small set of relevant documents from an external corpus using a retriever (§3.1 *Document Retrieval*). Then it prepends each document separately to the input context and ensembles output probabilities from different passes (§3.2 *Input Reformulation*).

REPLUG

- Input context가 주어지면 REPLUG는 먼저 외부 코퍼스에서 관련 문서들을 검색
- 각 문서들을 input context 앞에 붙이고 병렬로 입력 후 나온 각각의 출력 확률들을 앙상블

- Document Retrieval
 - input context가 주어졌을 때 외부 코퍼스에서 문서를 검색하는 과정

- D: external corpus $\{d1, ... dm\}$
- d: document
- x: input context
- *E*(*d*): 문서에 대한 embedding vector
- E(x): input에 대한 embedding vector

- 1. Input context가 주어지면 retriever는 D중에서 x와 관련 있는 documents을 가져옴
- 2. dual encoder에 기반한 dense retriever을 사용하게 되고, x와 문서 d를 각각 encode
 - Dual encoder는 입력과 문서를 따로 encode함
 - Encoder가 문서 d에 대해 encode를 진행하고, 문서 d의 각 token 별 hidden representation을 mean pooling하여 embedding vector E(d)를 만듬
 - 입력 x에 대해서도 동일한 방법으로 E(x)를 만듬
 - E(d)와 E(x) 사이의 유사성을 구하여 top-k개의 문서가 선택되고, 이때 유사성은 코사인 유사도를 사용

$$s(d, x) = \cos(\mathbf{E}(d), \mathbf{E}(x))$$

- 또한 효율적인 retrieval을 위해, 모델은 각 문서 별 embedding E(d)를 미리 계산해놓고, 해당 embedding들에 대한 FAISS index를 구축 해놓음
- 논문에서는 훈련 시 쿼리 x가 주어지면 FAISS 인덱스로 부터 top-20개의 문서를 검색

- Input Reformulation
 - input context에 top-k개의 문서들을 병렬로 붙여서 LM의 입력으로 주고 앙상블 기법을 사용 Why?
 - top-k개의 문서들은 LM이 더 좋은 output을 나오게끔 함
 - 모든 top-k개의 문서들을 input context x 앞에 붙여서 LM의 input으로 제공해주기에는 LM의 context size 제한으로 실행 불가능
- 1. Top-k개 만큼의 문서가 retrieve 됨
- 2. 각각 문서에 대해 개별적으로 input context x 앞에 붙임
- 3. input representation을 LM에 개별적으로 통과시키면 3개의 개별적인 output probabilities가 나옴

4. D'에 대한 output probabilities는 다음과 같이 구함

$$p(y \mid x, \mathcal{D}') = \sum_{d \in \mathcal{D}'} p(y \mid d \circ x) \cdot \lambda(d, x),$$

- D'는 retrieve 된 k개의 문서들의 집합, $d \cdot x 는 x$ 앞에 문서 d를 추가함을 의미
- $\lambda(d,x)$ 는 문서 d와 input context x 사이의 코사인 유사도를 기반으로 한 가중치

$$\lambda(d, x) = \frac{e^{s(d, x)}}{\sum_{d \in \mathcal{D}'} e^{s(d, x)}}$$

• 해당 가중치는 retrieve된 k개의 문서들에 대해, softmax를 취해준 값

D': retrieve된 k개의 문서들의 집합

x: input context

d: document

 $d \cdot x : x 앞에 d(문서)를 추가$

>> 각 문서 별 산출된 output probabilities을 해당 문서와 input의 유사도를 기반으로 한 가중치와 곱한 뒤,

각 문서별 probabilities들을 앙상블 하여 최종 output probabilities를 구하게 되는 것

Language Modeling MMLU Open Domain QA

Language Modeling

Datasets

• Pile: 웹페이지, 코드, 학술 논문 등의 다양한 도메인으로 구성된 text source를 포함한 데이터셋

Result

- BPB는 텍스트의 각 바이트를 예측하는데 필요한 평균 비트 수를 나타내는 지표
- BPB가 낮을수록 모델이 텍스트를 예측하기 위해 필요한 정보를 더 효율적으로 압축하거나 인코딩한다는 것을 의미하며, 이는 더 높은 정확도와 더 나은 모델 성능을 의미

Model		# Parameters	Original	+ RePlug	Gain %	+ REPLUG LSR	Gain %
GPT-2	Small Medium Large XL	117M 345M 774M 1.5B	1.33 1.20 1.19 1.16	1.26 1.14 1.15 1.09	5.3 5.0 3.4 6.0	1.21 1.11 1.09 1.07	9.0 7.5 8.4 7.8
GPT-3 (black-box)	Ada Babbage Curie Davinci	350M 1.3B 6.7B 175B	1.05 0.95 0.88 0.80	0.98 0.90 0.85 0.77	6.7 5.3 3.4 3.8	0.96 0.88 0.82 0.75	8.6 7.4 6.8 6.3

Table 1. Both REPLUG and REPLUG LSR consistently enhanced the performance of different language models. Bits per byte (BPB) of the Pile using GPT-3 and GPT-2 family models (Original) and their retrieval-augmented versions (+REPLUG and +REPLUG LSR. The gain % shows the relative improvement of our models compared to the original language model.

MMLU(Massive Multi-task Language Understanding)

Datasets

• MMLU는 57개 task들의 시험 문제(수학,컴퓨터과학,법,역사 등등)를 다루는 다중 QA 데이터셋

Results

- Codex < Codex + REPLUG < Codex + REPLUG LSR 순으로 성능이 향상 되는 것을 확인할 수 있음
- parameter 수에서 3배 정도 차이를 보이는 PaLM 모델과도 비슷한 성능을 보인 것을 확인 할 수 있음
- Atlas에서 낮은 성능이 나옴으로써 black box를 사용하는 REPLUG의 효과가 있음을 보여주고 있음

Model	# Parameters	Humanities	Social.	STEM	Other All
Codex PaLM Flan-PaLM	175B 540B 540B	74.2 77.0	76.9 81.0	57.8 55.6	70.1 68.3 69.6 69.3 - 72.2
Atlas	11B	46.1	54.6	38.8	52.8 47.9
Codex + REPLUG Codex + REPLUG LSR	175B 175B	76.0 76.5	79.7 79.9	58.8 58.9	72.1 71.4 73.2 71.8

Table 2. REPLUG and REPLUG LSR improves Codex by 4.5% and 5.1% respectively. Performance on MMLU broken down into 4 categories. The last column averages the performance over these categories. All models are evaluated based on 5-shot in-context learning with direct prompting.

Open Domain QA

Datasets

• NQ와 TriviaQA는 Wikipedia와 웹으로 부터 수집된 질문,답변들을 포함하는 Open-domain QA 데이터셋

Results

- REPLUG LSR은 NQ에서 Codex의 성능을 40.6 -> 45.5, TQA에서 73.6 -> 77.3 향상시킴
- 64개 훈련 예제로 fine tuning된 이전의 SOTA 모델인 Atlas를 능가하여 few-shot 세팅에서 새로운 SOTA를 달성
- 여전히 전체 훈련 데이터로 fine-tuning된 retrieval augmented language model의 성능에는 못 미침
- 훈련 dataset에 중복된 테스트 질문이 다수 존재하기 때문일 가 능성이 높다고 예측함

	NQ		TQA		
Model	Few-shot	Full	Few-shot	Full	
Chinchilla	35.5	-	64.6	-	
<u>PaLM</u>	39.6	-	-	-	
Codex	40.6	-	73.6	-	
RETRO [†]	-	45.5	-	-	
R2-D2 [†]	-	55.9	-	69.9	
Atlas [†]	42.4	60.4	74.5	79.8	
$Codex + Contriever_{cc}^2$	44.2	-	76.0	-	
Codex + REPLUG	44.7	-	76.8	-	
Codex + REPLUG LSR	45.5	-	77.3	-	

Table 3. Performance on NQ and TQA. We report results for both few-shot (64 shots for Chinchilla, PaLM, and Atlas; 16 shots for Codex-based models) and full training data settings. REPLUG LSR improves Codex by 12.0% on NQ and 5.0% on TQA, making it the best-performing model in the few-shot setting. Note that models with † are finetuned using training examples, while other models use in-context learning.

Conclusion

Conclusion

• 요약 및 의의

- 논문의 저자는 LM을 black box 취급하고 조정 가능한 retrieval model을 추가하는 retrieval-augmented language modeling framework인 REPLUG와 훈련 방법 REPLUG-LSR을 소개
- 논문의 평가에 따르면 REPLUG는 기존 LM에서 언어 모델링이나 downstream task의 성능을 향상 시킬 수 있었음
- GPT-3, Codex 같이 API로만 접근이 가능한 LLM 모델들에 대해 LM에 접근 없이 성능 향상을 불러온 방법이라는 점에서 향후 개 발될 다양한 LLM에도 적용이 가능할 수 있다는 것이 의미가 있어 보임

• 한계점 및 향후 연구 방향

- REPLUG는 모델이 검색된 지식에 의존하는지, parametric 지식에 의존하는지 명확하지 않음
- 특정 작업에서 여전히 완전한 성능을 보장하지 못하는 경우가 있음
- 향후 연구는 REPLUG의 적용 범위를 확장 시키고 검색된 정보와 모델의 내부지식을 구분할 수 있는 방법을 개발하는 방향이 될 예정
- REPLUG(LSR)을 추가하는 기준이 되는 모델이 Codex인데 이는 코드를 fine-tuning한 모델이라서 GPT-3 기반이긴 하지만 실험에 서 사용한 Task의 카테고리가 조금 다른게 아쉬운 부분으로 느껴짐

PPL(Perplexity)

PPL

- PPL은 텍스트 생성 언어 모델의 성능 평가지표 중 하나로 모델이 주어진 텍스트를 얼마나 잘 예측하는지 나타내는 지표
- PPL은 언어 모델의 성능 평가 시 이전 단어로 다음 단어를 예측할 때 몇 개의 단어 후보를 고려하는지를 의미
 - 여기서 고려해야 할 단어 후보가 많다는 것은 그 만큼 언어 모델이 쉽게 정답을 못 내고 있다고 해석할 수 있음
 - 즉 PPL 값이 낮을수록 언어 모델이 쉽게 정답을 찾아내는 것이므로 성능이 우수하다고 평가

$$Perplexity = \sqrt[N]{rac{1}{P(w_1,w_2,w_3,\ldots,w_N)}} = \sqrt[N]{rac{1}{\prod_{i=1}^N P(w_i|w_1,w_2,\ldots,w_{i-1})}}$$

- 단어 개수가 N인 문장 W의 수식
- P(wi|w1,w2,...,wi-1)는 각 단어 wi가 주어진 이전 단어들 w1,w2,...,wi-1 에 기반하여 나타날 확률
- Product 값이 작으면 각 단어가 나올 조건부 확률이 낮다는 것을 나타내고, 따라서 선택의 폭이 넓어짐 = 모델의 불확실성이 높음 = PPL 값이 높음
- 이전 단어들을 기반으로 다음 단어를 예측할 때 마다 평균적으로 N개의 단어 후보 중 정답을 찾는다고 해석 가능

KL-Divergence

- KL-Divergence
- KL-Divergence은 두 확률 분포 간의 차이를 측정하는 지표

$$D_{KL}(P||Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$$

$$\mathcal{L} = \frac{1}{|\mathcal{B}|} \sum_{x \in \mathcal{B}} KL\Big(P_R(d \mid x) \parallel Q_{LM}(d \mid x, y)\Big),$$

- REPLUG에서는 KL-Divergence를 사용하여 검색 모델을 언어 모델의 필요에 맞추어 조정
 - LM은 매개변수를 업데이트 할 수 없는 Black-box 상태이기 때문
 - 그래서 수식 상에서 **P**(Retrieval Likelihood)와 **Q**(LM Retriever)의 위치가 바뀔 수 없음
- KL-Divergence를 최소화하여 검색 모델이 언어 모델이 필요로 하는 문서를 더 잘 반환하게 하여 언어모델이 예측을 더 잘하도록 학습
- ${f B}$ 는 input context의 집합, 전체 입력에 대한 Loss 값을 표준화 하고 일관된 평가가 되도록 함

BPB (Bits-per-byte)

- BPB
 - 언어 모델의 성능을 평가하는 데 사용되는 지표
 - 모델이 텍스트 데이터를 얼마나 효율적으로 표현할 수 있는지를 나타냄
 - BPB 값이 낮을수록 모델이 예측을 더 효율적으로 수행할 수 있음을 의미 = 다음 토큰을 예측하는데 더 적은 비트가 필요하므로 성능이 더 좋음
- BPB은 시퀀스에서 다음 토큰(일반적으로 바이트)을 예측하는 데 필요한 평균 비트 수를 측정

$$BPB = \frac{L}{\log_2(e)}$$