$$S|_{2,Q} := Q \cdot e \oplus Q \cdot h \oplus Q \cdot f$$

$$[e,h] = 2e$$

$$[f,h] = -2f$$

$$[f,h] = -2f$$

$$(*)$$

V: \mathbb{Q} -v.space, $P: \mathcal{S}_2 \longrightarrow \text{End}(V)$:

e, f, h \in \text{End}(V) + (*)

St = Standard rep = \mathbb{Q}^2

e H (00) ht (101) ft (10)

Sym (St) not dim'l repr. irred.

this gives all irreps, dim < 00

$$h(w_{3i}) = j \cdot w_{3}$$

 $e(W_{-n+2i}) = (n-i) \cdot W_{-n+2i+2}$
 $f(W_{-n+ni}) = i \cdot W_{-n+2i-2}$

-3 f -1 1

primitive vector

$$X/h AV$$
, $din = g$
 $\theta: X \longrightarrow X^{t}$ polarization
 $\theta = \Psi_{L}$ Symmetric
 L ample
 $l := e_{l}(L) \in CH_{6}(X)$

$$\theta_{m}$$
 θ_{*} : $CH(X)_{Q} \sim CH(X^{t})_{Q}$

$$\lambda \in CH_{(0)}^{5-1}(X) \text{ unique class}$$

s.t.
$$\theta_*(\lambda) = \mathcal{F}(\ell)$$
.

Theorem: Op. on
$$CH(X)_{\alpha}$$
:

 $e(\alpha) = \ell \cdot \alpha$ inters. prod

 $h(\alpha) = (2i-s-g) \cdot \alpha$ if $\alpha \in CH_{(s)}^{i}$
 $f(\alpha) = \lambda \star \alpha$ Ponto. prod

Theorem: Op. on $CH(X)_{\alpha}$:

 $e(\alpha) = \ell \cdot \alpha$ inters. prod

 $f(\alpha) = (2i-s-g) \cdot \alpha$ if $\alpha \in CH_{(s)}^{i}$

Then e,h.f satisfy the comm. rels (**) & lherefore de line a repr. of 812 on CH(X)Q. For every 5, the subspace CH(5):= (1) CH(1) is Stable under 8/2 and: Fis ⊆ CH(s) $Ch_{(s)}(x) = \bigoplus P_{j,s} \otimes Sym'(st)$ $j=0,\dots,g-|s|$ j=g-s (2)

$$e(x) = \ell \cdot x$$

$$h(x) = (2i - s - g) \cdot x$$

$$f(x) = \lambda \star x$$

(intersection product with the class ℓ) if $x \in \mathrm{CH}^i_{(s)}(X)$ (Pontryagin product with the class ℓ)

0-cycles

/k=k, work integrally
CHO(X): ring for 4-prod.

deg: $CH_{\delta}(X) \stackrel{\longleftarrow}{\longrightarrow} Z$ $Z_{m_{i}}(P_{i}) \stackrel{\longleftarrow}{\longmapsto} \Sigma_{m_{i}}$ $m.(0) \stackrel{\longleftarrow}{\longleftarrow} m$

I:= dddlt Ker(deg) A-ideal

(as Zl-mod gen'd by all

(P)-(0).

CH, > I > I*3 > ... Summation map S: I - X(k): Zm; (Pi) I = ZmiPi law in X Prop. We have s.e.s. 0 ___ T*2 ___ T ___ X(h) __ 0 I*2 gend by all ((P)-(0))*((a)-(0) = (P+Q) - (P) - (Q) + (0)clear: $I^{42} \subseteq Ker(S)$.

((P)-(0))+((a)-(0))

 $\equiv (P+Q)-(0)) \mod I^{*2}$

m every class in I/I to is repr. d by some ((P)-(0)).

 \rightarrow $I^{+2} = Ker(s)$.

Rh: I = {a \in CHo | \alp o }

=) I is divisible

=) I* is divisible

Thm (Roitman) Summ. map S Induced Itors ~ X(h) tors Cr: I*2 torsion free + divisible

hence it is a Q-vector space:

also:

Exa 9=1: YP,Q & X:

$$(P+Q) + (0) + (P) + (Q) + (P)$$

$$P+Q$$

$$P+Q$$

Exa g=2PiqiR $\in X$ Par

PiqiR $\in X$ PiqiR $\in X$ PiqiR $\in X$

$$(P+Q+R)+(P)+(Q)+(R)$$

ret $(P+Q)+(P+R)$
 $+(Q+R)+(Q)$

General g : $I^{*}(g+1)$:

"hypercube" Statement

- brief sketch of pf:
- $\cdot I = \bigoplus_{S \geqslant 1} CH_{0,(S)}$
 - · Beauv. dec. Compatible w/ &-prod
 - $J^{Ar} \subseteq \oplus CH_{0,(s)}$ $s \geqslant r$
 - (enough for Corollary)

14

• $[n]_{*}$ induces mult. by n on $I/I^{*2} \cong X(k)$

Since $(I/I^{*2})^{\otimes r} \longrightarrow I^{*r}/I^{*r+1}$ get: [n], \(\Omega\) I*/I**
as mult by n'

· "weight arg" = (A) = (B)

X