随机变量的数字特征 第四章

- 1. 数学期望
- 2. 随机变量的方差
- 3. 协方差、相关系数和矩
- 4. 多维正态随机变量

第4章2节 随机变量的方差

-.随机变量的方差

定义 设X是随机变量,若 $E\{[X-E(X)]^2\}$ 存在, $\pi D(X) = E\{[X - E(X)]^2\}$ 为X的方差,

▶ D(X)是随机变量X的函数的数学期望:

当X为离散型时 $D(X) = \sum_{i=1}^{\infty} [x_i - E(X)]^i P\{X = x_i\}$ 当 X 为连续型时 $D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f_X(x) dx$

第4章2节 随机变量的方差

-.随机变量的方差

 $\triangleright D(X) \ge 0$

常用公式: $D(X) = E(X^2) - E(X)^2$

1, $X \sim P(\lambda)$ \bigcup $E(X) = \lambda$, $D(X) = \lambda$

泊松分布的方差

见 例4.2.5

3. $X \sim N(\mu, \sigma^2)$ D $E(X) = \mu$, $D(X) = \sigma^2$

正态分布的方差

第4章2节 随机变量的方差

一.随机变量的方差

1. $X \sim P(\lambda)$ $\bigvee E(X) = \lambda$ $D(X) = \lambda$

2. $X \sim B(n,p)$ \bigvee \bigcup E(X) = np \bigcup D(X) = np(1-p)

3. $X \sim N(\mu, \sigma^2)$ $\square E(X) = \mu$ $D(X) = \sigma^2$

4. $X \sim U(a,b)$ $\bigvee E(X) = \frac{a+b}{2}$ $D(X) = \frac{(b-a)^2}{12}$

5. $X \sim E(\lambda)$ 则 $E(X) = \frac{1}{2}$ $D(X) = \frac{1}{2^2}$

随机变量函数的方差 | |X - Y|的方差 | 练 习

第4章2节 随机变量的方差

-.方差的性质

设 X, X_1, X_2, \dots, X_n 是随机变量, c, b 是常数

1)
$$E(c) = c$$
 $D(c) = 0$

2)
$$E(cX) = cE(X) D(cX) = c^2D(X)$$

3)
$$E\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} E(X_{i})$$
 $D(cX + b) = c^{2}D(X)$

$$D\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} D(X_{i}) + 2\sum_{\substack{i=1\\j>i}}^{n} E\left\{X_{i} - E(X_{i})\right\} X_{j} - E(X_{j})$$

第4章2节 随机变量的方差

-.方差的性质

设 $X_1, X_1, X_2, \cdots, X_n$ 是随机变量, c, b 是常数。

若 X_1, X_2, \cdots, X_n 相互独立,则

$$D\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} D(X_{i})$$

若 X_1, X_2, \cdots, X_n 相互独立,则

$$E\left(\prod_{i=1}^{n} X_{i}\right) = \prod_{i=1}^{n} E\left(X_{i}\right)$$

