ខំពុង ១ ស៊ីខេនិចគីមី

ទេរៀលខ្លី ១ ល្បឿលម្រង្ងងនឹង

ល្បឿនមធ្យមកំណអង្គធាតុកកើត ល្បឿនខណៈកំណអង្គធាតុកកើត

១. ស្បឿនអំណអខ្ពុនាតុអូអេតិត

១.១ ល្បឿនមធ្យមកំណអង្គធាតុកកើត

<u>និយមន័យ</u>ៈ ល្បឿនមធ្យមកំណអង្គធាតុកកើត(P) ចន្លោះពេល t_1 និង t_2 គឺជាផលធៀបរវាងបម្រែបប្រួល កំហាប់អង្គធាតុកកើត(P)និងបម្រែបប្រួលរយៈពេល។

គេសរសេរ:
$$V_{\scriptscriptstyle m}(P)_{\scriptscriptstyle t_1,t_2} = \frac{[P]_{\scriptscriptstyle 2} - [P]_{\scriptscriptstyle 1}}{t_{\scriptscriptstyle 2} - t_{\scriptscriptstyle 1}} = \frac{\Delta[P]}{\Delta t}$$

<u>បំណកស្រាយតាមក្រាប</u>ៈ ល្បឿនមធ្យមកំណអង្គធាតុកកើត(P)

ចន្លោះពេល t_1 និង t_2 មានតំលៃស្មើនឹងមេគុណប្រាប់ទិសនៃខ្នាត់ M_1M_2 នៅលើខ្សែកោង [P]=f(t)

ត្រង់អាប់ស៊ីស
$$t_1$$
និង t_2 ។ គេសរសេរៈ $V_{\scriptscriptstyle m}(P)_{\scriptscriptstyle t_1,t_2} = \frac{\Delta[P]}{\Delta t} = \tan\alpha = \frac{M_2 H}{M_1 H}$

 $\underline{\pmb{\delta k}}$ គាល់z ខ្នាតល្បឿនអាចគិតជា $mol.L^{-1}.h^{-1}$, $mol.L^{-1}.min^{-1}$, $mol.L^{-1}.s^{-1}$

ប្រតិបត្តិ ១ គេឲ្យ $E^0(H_2O_2/H_2O) = 1.76V$ និង $E^0(I_2/I^-) = 0.62V$

២.គេតាមដានការវិវត្តន៍នៃកំហាប់ I_2 ដែលកើត ឡើងអនុគមន៍នឹងពេល គេបានខ្សែកោង

$$[I_2] = f(t)$$
 ដូចរូបខាងស្ដាំ។

- ក. តើប្រតិកម្មប្រព្រិត្តទៅក្នុងរយៈពេលប៉ុន្មាន? ហើយកំហាប់ I_2 ពេលអានន្តមានប៉ុន្មាន?
- ខ. គណនាល្បឿនមធ្យមកំណ I_2 ចន្លោះពេល $t_1 = 15s$ និង $t_2 = 35s$

ដំណោះស្រាយ

១.សមីការតុល្យការតាងប្រតិកម្ម

២.ក. តាមក្រាបប្រតិកម្មប្រព្រឹត្តទៅក្នុងរយៈពេល 60s ហើយពេលអានន្ត $[I_2]_{\scriptscriptstyle \infty} = 9 \times 10^{-2} \, mol. L^{-1} \, {\rm T}$

ខ. គណនាល្បឿនមធ្យមកំណ I_2 ចន្លោះពេល $t_1 = 15s$ និង $t_2 = 35s$

តាមក្រាប:
$$t_1 = 15s$$
 ត្រូវនឹង $[I_2]_1 = 5.5 \times 10^{-2} \, mol.L^{-1}$
$$t_2 = 35s$$
 ត្រូវនឹង $[I_2]_2 = 8 \times 10^{-2} \, mol.L^{-1}$
$$Vm(I_2)_{t_2,t_1} = \frac{[I_2]_2 - [I_2]_1}{t_2 - t_1} = \frac{(8 - 5.5) \times 10^{-2}}{35 - 15} = 1.25 \times 10^{-3} \, mol.L^{-1}.s^{-1}$$

១.២ ល្បឿនខណៈកំណអង្គធាតុកកើត

និយមន័យ: ល្បឿនខណៈកំណអង្គធាតុកកើត នៅខណៈពេល t គឺជាលីមីតនៃល្បឿនមធ្យមកាលណា Δt ខិតទៅរកសូន្យ។ គេសរសេរៈ $V(P)_t = \lim_{\Delta t \to 0} \frac{\Delta[P]}{\Delta t}$ ល្បឿនខណៈកំណអង្គធាតុកកើតមានតំលៃស្មើនឹងដេរីវេ

នៃអនុគមន៏ [P] = f(t) ត្រង់ចំនុច M មានអាប់ស៊ីស t។ គេសរសេរៈ $V(P)_t = \lim_{\Delta t \to 0} \frac{\Delta[P]}{\Delta t} = \left(\frac{d[P]}{dt}\right)_t$

 $\underline{\mathring{v}}$ $\underline{\mathring{u}}$ $\underline{\mathring{u}$ $\underline{\mathring{u}}$ $\underline{\mathring{$

គូសបន្ទាត់ប៉ះខ្សែកោងត្រង់ចំនុច t=20s កំណត់ចំនុច T_1 និង T_2 នៅលើបន្ទាត់ប៉ះនិង កំណត់កូអរដោនេនៃចំនុចទាំងពីរ

$$V(I_2)_t = \frac{HT_1}{T_2H} = \frac{(10-4)\times10^{-2}}{45-5}$$
$$= 1.5\times10^{-3} \text{mol.} L^{-1}.\text{s}^{-1}$$

២. **ស្បឿនមំខាត់អខ្ពួនាគុទ្រតិភះ**(R)

២.១ ល្បឿនមធ្យមបំបាត់អង្គធាតុប្រតិករ

និយមន័យ ល្បឿនមធ្យមបំបាត់អង្គជាតុប្រតិករ(R) ចន្លោះពេល t_1 និង t_2 គឺជាតំលៃផ្ទុយនឹងផលធៀបបម្រែបម្រួល កំហាប់អង្គជាតុប្រតិករ(R)និងបម្រែបម្រួលរយៈពេល។

គេសរសេរ:
$$V_m(R)_{t_1,t_2} = -\frac{[R]_2 - [R]_1}{t_2 - t_1} = -\frac{\Delta[R]}{\Delta t} = \frac{[R]_1 - [R]_2}{t_2 - t_1}$$

<u>បំណកស្រាយតាមក្រាប</u>ៈល្បឿនមធ្យមបំបាត់អង្គធាតុប្រតិករ(R)មានតំលៃផ្ទុំយនឹងមេគុំណៃប្រាប់ទឹសនៃខ្នាត់ M_1M_2 នៅលើខ្សែកោង [R]=f(t) ត្រង់អាប់ស៊ីស t_1 និង t_2 ម

$$H_2O_2 + 2H^+ + 2I^- \rightarrow I_2 + 2H_2O$$

គេតាមដានការបាត់បង់នៃកំហាប់ I^- អនុគមន័នឹង ពេលបានខ្សែកោង $[I^-]=f(t)$ ដូចរូបខាងស្ដាំនេះ

- ១. តើកំហាប់ I^- ខណ t=0 មានប៉ុន្មាន?
- ២.តើប្រតិកម្មប្រព្រិត្តទៅក្នុងរយៈពេលប៉ុន្មាន? ហើយកំហាប់ I^- ពេលអានន្តមានប៉ុន្មាន?
- ៣.គណនាល្បឿនមធ្យមបំបាត់ I^- ចន្លោះពេល $t_1 = 10s$ និង $t_2 = 35s$
- ៤.គណនាល្បឿនមធ្យមបំបាត់ H_2O_2 និងកំណ I_2 ចន្លោះពេលដូចខាងលើ

<u>ដំណោះស្រាយ</u>

- ១.កំហាប់ I^- ខណ t=0គឺ $\left[I^-\right]_0=9\times 10^{-3} M$ ។
- ២. តាមក្រាបប្រតិកម្មប្រព្រឹត្តទៅក្នុងរយៈពេល 55s ហើយពេលអានន្ត $[I^-]_{\scriptscriptstyle \infty}=1 \times 10^{-3} \, mol. L^{-1}$ ។
- ៣. គណនាល្បឿនមធ្យមបំបាត់ \dot{I}^- ចន្លោះពេល $t_1=10s$ និង $t_2=35s$

តាមក្រាបៈ
$$t_1=10s$$
 ត្រូវនឹង $[I^-]=4\times 10^{-3}M$
$$t_2=35s$$
 ត្រូវនឹង $[I^-]=1.5\times 10^{-3}M$
$$V_m(I^-)_{t_1,t_2}=-\frac{[I^-]_2-[I^-]_1}{t_2-t_1}=-\frac{(1.5-4)\times 10^{-3}}{35-10}=4\times 10^{-3}mol.L^-.s^{-1}$$

៤. គណនាល្បឿនមធ្យមបំបាត់ H_2O_2 និងកំណ I_2 ចន្លោះពេលដូចខាងលើ

តាមសមីការ:
$$n_{H_2O_2} = \frac{1}{2}n_{I^-} \Rightarrow V_m(H_2O_2) = \frac{1}{2}V_m(I^-) = 2 \times 10^{-3} mol.L^{-1}.s^{-1}$$
 $n_{I_2} = \frac{1}{2}n_{I^-} \Rightarrow V_m(I_2) = \frac{1}{2}V_m(I^-) = 2 \times 10^{-3} mol.L^{-1}.s^{-1}$

២.២ ល្បឿនខណៈបំបាត់អង្គធាតុប្រតិករ

[R]

ខិតទៅរកសូន្យ។ គេសរសេរៈ $V(R)_{t} = \lim_{\Delta t \to 0} -\frac{\Delta[R]}{\Delta t} = -\lim_{\Delta t \to 0} \frac{\Delta[R]}{\Delta t}$

ល្បឿនខណៈបំបាត់អង្គជាតុប្រតិករមានតំលៃផ្ទុយនឹងដេរីវេ នៃអនុគមន៍ [R]=f(t)ត្រង់ខណៈអាប់ស៊ីស t ។

គេហនៈ
$$V(R)_t = -\lim_{\Delta t \to 0} \frac{[R]}{\Delta t} = -\left(\frac{d[R]}{dt}\right)_t$$

<u>បំណាកស្រាយតាមក្រាប</u> ល្បឿនខណៈបំបាត់អង្គធាតុប្រតិករមានតំលៃផ្ទុយនឹងមេគុណប្រាប់ទិសនៃបន្ទាត់ ប៉ះខ្សែកោង[R]=f(t)ត្រង់អាប់ស៊ីសt ។

 ${\it [\underline{v}\bar{h}v\bar{g}]}\,{\it \underline{G}}$ តាមរយៈខ្សែកោង ${\it [I^-]}=f(t)$ ក្នុងរូបទី៣ ចូរគណនាល្បឿនខណៈបំបាត់ ${\it I}^-$ ត្រង់ខណៈ t=15s

និងទាញរកល្បឿនកំណ I_2 ត្រង់ខណៈនេះ។ $^{'}$

ដំណោះស្រាយ

គណនាល្បឿនខណៈបំបាត់ I^- ត្រង់ខណៈ t=15s

តាមក្រាបគេបាន:
$$V(I^{-})_{t} = \frac{T_{1}H}{T_{2}H} = \frac{(4.5-1)\times10^{-3}}{30-5}$$

$$= 4\times10^{-3} \, mol.L^{-1}.s^{-1}$$

ត្រាមសមីការ:
$$n_{I_2} = \frac{1}{2}n_{I^-}$$

$$\Rightarrow V(I_2)_t = \frac{1}{2}V(I^-)_t$$

$$= 2 \times 10^{-3} mol. L^{-1}.s^{-1}$$

- 🕝 <u>សង្ខេបៈ</u> ល្បឿនប្រតិកម្មត្រូវបានគេអោយនិយមន័យដូចខាងក្រោម៖
 - \checkmark ល្បឿនមធ្យមកំណអង្គធាតុកកើត(P)គឺ $V_m(P)_{t_1,t_2} = \frac{\Delta[P]}{\Delta t}$
 - \checkmark ល្បឿនខណៈកំណអង្គធាតុកកើត(P)គឺ $V(P)_t = \lim_{\Delta t \to 0} \frac{\Delta[P]}{\Delta t} = \left(\frac{d[P]}{dt}\right)_t$
 - \checkmark ល្បឿនមធ្យមបំបាត់អង្គធាតុប្រតិករ(R)គឺ $V_{\scriptscriptstyle m}(R)_{\scriptscriptstyle t_1,t_2} = -\frac{\Delta[R]}{\Delta t}$
 - \checkmark ល្បឿនខណៈបំបាត់អង្គធាតុប្រតិករ(R)គឺ $V(R)_{t} = -\lim_{\Delta t \to 0} \frac{[R]}{\Delta t} = -\left(\frac{d[R]}{dt}\right)_{t}$

ចម់មេរៀលសច្ចេមនី០១

សូខាឌុំនេះទ្រិនខ្លួ០៦

- ២. ថ្មកំបោរមានអំពើជាមួយអាស៊ីតក្លូរីឌ្រីចតាមសមីការតុល្យការ $CaCO_3^{(s)} + 2H^+_{(aq)} \rightarrow Ca^{2+}_{(aq)} + CO_2^{(g)} + H_2^{}O_{(l)}$ នៅខណៈ t=0 កំហាប់អ៊ីយ៉ុង Ca^{2+} មានតម្លៃស្នើសូន្យ ។នៅខណៈ t=15s កំហាប់អ៊ីយ៉ុង Ca^{2+} មានតម្លៃស្នើ $1.8 \times 10^{-3}M$ និងនៅខណៈ t=30s កំហាប់អ៊ីយ៉ុង Ca^{2+} មានតម្លៃស្នើ $3.13 \times 10^{-3}M$ ។M ចូរគណនាល្បឿនមធ្យមកំណអ៊ីយ៉ុង Ca^{2+} ទោចន្លោះពេល 15s និង 30s ទាញរកល្បឿនមធ្យមបំបាត់អ៊ីយ៉ុង H^+

0

5

៣. អាស៊ីតក្លូរីឌ្រីចមានអំពើជាមួយម៉ាញ៉េស្យូម តាងដោយសមីការ $Mg(s) + 2H^+(aq) \to Mg^{2+}(aq) + H_2(g)$ ការវិវត្តនៃកំហាប់អ៊ីយ៉ុង Mg^{2+} នៅក្នុងសូ.ជាអនុគមន៍នៃពេល តាងដោយខ្សែកោងខាងស្តាំនេះ។

ក)គណនាល្បឿនមធ្យមកំណអ៊ីយ៉ុង

 Mg^{2+} នៅចន្លោះ $t_1=1{
m mn}$ និង $t_2=4{
m mn}$ ខ)កំណត់ល្បឿនខណៈកំណអ៊ីយ៉ុង Mg^{2+} នៅខណៈ $t=2{
m mn}$

 $[I_2].10^{-2}M$

៤. គេមានសមីការតុល្យការ ៖ $S_2O_8^{2-}(aq) + 2I^-(aq) \rightarrow I_2(aq) + 2SO_4^{2-}$ ក)ចូរកគូរេដុកដែលមានក្នុងសមីការតុល្យការ និងសរសេរកន្លះសមីការនៃគូនីមួយៗ ខ)តើកំហាប់ I_2 នៅពេលអានន្នមានប៉ុន្មាន? គ)កំណត់ពេលពាក់កណ្ដាលប្រតិកម្ម($t_{\frac{1}{2}}$) ឃ)កំណត់ល្បឿនមធ្យមកំណ I_2 នៅ នៅចន្លោះ $t_1 = 1$ mn និង $t_2 = 4$ mn

๒๐๑๗-๒๐๑๗

ខ្សែកោងខាងក្រោមតាងឲ្យ ភាពបំរ៉ៃបំរួល កំហាប់ទឹកអុកស៊ីសែន តាមសមីការ $2H_2O_2 \ o \ 2H_2O + \ O_2$ 섆. ក)ចូររកគូរេដុកដែលមានក្នុងសមីការ ខ) តើកំហាប់ H₂O₂ នៅពេលអានន្នមានប៉ុន្មាន? គ)កំណត់ពេលពាក់កណ្ដាលប្រតិកម្ម $(t_{\frac{1}{2}})$ ឃ)គណនាល្បឿនខណៈបំបាត់H₂O₂នៅ ខណៈដើម។ទាញរកល្បឿនខណៈកំណ០2

$$.H_{2}O_{2}.10^{-2}M$$

គេឲ្យប៉ូតង់ស្យែលស្តង់ដាគុរេដុក ៦.

> $I_2/I^-E^\circ = 0.54V$, H_2O_2/H_2O $E^\circ = 1.77V$ ក)សរសេរកន្លះសមីការនិងសម៊ីការតុល្យ៉ាការនៃគុរេដុំកទាំងពីរ។ ខ)ខ្សែកោងខាងស្តាំតាងឲ្យភាពបំរែបំរូលកំហាប់ H_2O_2 ជាអនុគមន៍នឹងពេល ១-តើកំហាប់H₂O₂នៅខណៈ t=0មានប៉ុន្មាន?និងខណៈ t=∞ មានប៉ុន្មាន? ២-គណនាល្បឿនខណៈបំបាត់កំហាប់H₂O₂ នៅ t=3 ៣-គណនាល្បឿនមធ្យមបំបាត់កំហាប់H₂O₂ នៅ ចន្លោះពេលពី0-4mn

- គេឲ្យប៉ូតងស្យែលស្តង់ដាអុកស៊ីដូរេដុកម្មនៅ នៃគូរេដុកដូចតទៅ៖ $S_2O_3^{2-}/S$ $E^\circ=0.50V$, $SO_2/S_2O_3^{2-}$ $E^\circ=0.40V$ ៧. ក.តើប្រតិកម្មកើតឯងរវាងគូទាំងពីរនេះដូចម្ដេច?សរសេរកន្លះសមីការអេឡិចត្រូនិច និង សមីការតុល្យការ ។
 - ខ.តើប្រតិកម្មនេះបង្ហាញលក្ខណៈពិសេសដូចម្ដេចចំពោះ?
 - ១. ទិដ្ឋភាពអុកស៊ីដូរេដុកម្ម ? ២. ទិដ្ឋភាពស៊ីនេទិច?
- គេឲ្យប៉ូតងស្យែលស្តង់ដាអុកស៊ីដូរេដុកម្មនៅ នៃគួរេដុកដូច តទៅ G.

$$E^{\circ}(Cr_2O_7^{2-}/Cr^{3+}) = 1{,}33V \quad E^{\circ}(H_3O^+/H_2) = 0{,}00V$$

- ក.ចូរសរសេរកន្លះសមីការអេឡិចត្រូនិចនៃគូទាំងពីរ ។
- ខ. តើគេអាចធ្វើរដុកម្មអ៊ីយ៉ុងឌីក្រូម៉ាត ដោយចរន្តឧស័ន្ទអ៊ីដ្រូសែន បានដែរ រឺទេ ? ព្រោះអ្វី ? បើបានចូរសមីការតុល្យការនៃប្រតិកម ។
- គេសិក្សាស៊ីនេទិចនៃប្រតិកម្មអុកស៊ីដូរេដុកម្ម Zn^{2+} / $ZnE^{\circ}=-0.75V$, H_3O^+ / $H_2E^{\circ}=0.0V$ දී. ក)សរសេរសមីការតុល្បការនៃគូរេដុកទាំងពីរ ខ)គេតាមដានមាឌ H₂ ដែលកកើត ជាអនុគមន៍នឹងពេល។ នៅខណៈ t=6mn $_{\mathrm{H_2}}$ កាយបាន 26,88 $_{\mathrm{mL}}$ ។ ១-គណនាចំនួន ម៉ូល $_{\mathrm{H_2}}$ នៅខណៈពេល t=6mn ។

6

២០១៧-២០១៧

 $V_{m}=22,4l/mol$ ២)គណនាល្បឿនមធ្យមកំណ $_{2}$ គិតជា $mol\,mn^{-1}$ នៅចន្លោះពេលទៅពី 0 - 6mn ។ ទាញរកល្បឿនមធ្យមបំបាត់ $H_{3}O^{+}$

90. ប្រតិកម្មមួយតាងដោយសមីការ 2NO (g) + Br₂ (g) →2NOBr(g) នៅពេលប្រតិកម្មកំហាប់ប្រួមថយចុះ 5,3.10⁻³ M ក្នុងចន្លោះពេល△t = 38s។

ក.គណនាល្បឿនមធ្យមបំបាត់ Br₂ និងNO

- ខ.គណនាល្បឿនមធ្យមកំណ NOBr
- 99. ក. ចូរសរសេរស៍មីការតុល្យការ ប្រតិកម្មអុកស៊ីដូវេដុកម្មរវាង លោហៈ z_n ជាមួយសូ.អាស៊ីតក្លីវីឌ្វីច (HCL) ។ ខ.គេសិក្សាស៊ីនេទិចនៃប្រតិកម្មខាងលើ $V_{H_2}=f(t)$ តាមគេទទួលបាន លទ្ធផលដូចខាងក្រោម ៖ នៅខណៈ t=3mn គេទទួលបាន $_{H_2}=12m$ នៅខណៈ t=5mn គេទទួលបាន $_{H_2}=14.2m$ ។ ១.គណនាម៉ាស $_{H_2}$ ដែលទទួលបាននៅខណៈពេលទាំងពីរនៅ ល.ខ ធ
 - ២. កំនត់ល្បឿនមធ្យមកំនអ₂គិតជា g/min នៅចន្លោះពេលពី 3ទៅ 5mn
 - ៣.កំនត់ល្បឿនមធ្យមបំបាត់លោហៈ zn នៅចន្លោះពេលខាងលើ
- ១២. គេសិក្សាស៊ីនេទិចនៃប្រតិកម្មអុកស៊ីដូរេដុកម្ម រវាង លោហៈ Mg ជាមួយសូ.អាស៊ីតក្លរីឌ្រីច (HCL)។ គេដាក់ ទៅក្នុងកែវបាឡុងមួយនូវ 33 mg នៃដុំ លោហៈ Mg និង 10 mL សូ.អាស៊ីតក្លរីឌ្រីច (HCL) ដែលមាន កំហាប់ 1 mol/L ។ ក.សរសេរសមីការតុល្យការគេអោយគូ ៖ Mg^{2+} / Mg $E^{\circ}=-2,37V$, H_3O^+ / H_2 $E^{\circ}=0,00V$ ខ.នៅខណៈ t=4mn គេទទួលអ $_2$ កាយចំនួន 8.2 mL(គេដឹងថាមាឌឧស្ម័ន នៅ ល.ខ.ពិ គឺ 23.3L/moL) ១.តើក្រោយប្រតិកម្មអង្គធាតុណាមួយដែលនៅសល់ ២.គណនាល្បឿនមធ្យមកំណ H_2 នៅចន្លោះពេលពី 0 ទៅ 4 min ទាញរកល្បឿនមធ្យមបំបាត់ H_3O^+

9៣. គេមានសមីការតុល្យការដូចខាក្រោម $2Br^{-}(aq) + H_2O_2(aq) + 2H_3O^+ \rightarrow Br_2(aq) + 4H_2O(l)$

រយៈពេលt(s)	$[H_3O^+]. M$ $[Br_2]. M$		
85	0,0298	0,0101	
95	0,028	0,011	

ចូរប្រ៊េរិធី 2 យ៉ាងដើម្បីគណនាល្បឿនមធ្យមបំបាត់អ៊ីយ៉ុង H_3O^+ និង កំណ Br_2 នៅចន្លោះពេល t=85s និងt=95s ។

- ១៤. គេអោយគូរេដុកដូចតទៅ $S_2 O_8^{2-}/S O_4^{2-} E^\circ = 2.01 V$, $I_2/I^- E^\circ = 0.54 V$
 - ក.ចូរសរសេរកន្លះសមីការអេឡិចត្រូនិច នៃគូទាំងពីរនេះនិងសមីការ កុល្យការ ។ ខ.នៅខណៈ t=0mn គេទង្វើល្បាយសូ. 1L ដែលបានមកពី ការលាយសូ.KI = 0,5L កំហាប់0,4mol/L ជាមួយសូ $K_2S_2O_8$ = 0,5 Lកំហាប់ 0,2 mol/L ។ គេតាមដានការកកើត \mathbf{I}_2 ជា អនុគមន៍នឹងរយៈពេល។ នៅខណៈ t=30mn គេទទួលបាន $[I_2]=5,58.10^{-2}moll^{-1}$ ១.គណនាកំហាប់ \mathbf{I}_2 នៅខណៈ $\mathbf{t}=0$ mn

២)គណនាកំហាប់ $[I^-]$ និង $[S_2O_8^{2-}]$ នៅខណៈ $t=0\,\,\mathrm{mn}$ ៣)គណនាល្បឿនមធ្យមកំណ I_2 នៅចន្លោះ $t_0=0$ ទៅ $t_1=30\,\mathrm{mn}$ ទាញរកល្បឿនមធ្យមបំបាត់ I^- ។

- ១៥. គេអោយប៉ូតង់ស្យែលនៃគូរេដុក $E^0 S_4 O_6^{2-}/S_2 O_3^{2-} = 0.09V$ និង $E^0 I_2/\Gamma = 0.62V$ ។
 - ក / សរសេរកន្លះសមីការ និងសមីការតុល្យការនៃប្រតិកម្មដែលកើតមានរវាងគូទាំងពីរ?
 - ខ)នៅខណៈ t=0 គេយក 10 mL នៃឌីអ៊ីយ៉ូតដែលមានកំហាប់០,3Mទៅលាយជាមួយ25 mLនៃប៉ូតាស្យូមត្យូស៊ុលជាតដែល មានកំហាប់ $0,5 mol.L^{-1}$ គេទទួលបាន [Γ] = f(t) ដូចតារាងខាងក្រោម៖

7 ๒๐๑๗-๒๐๑๗

t (min)	0	2	4	8
[I ⁻].10 ⁻³ M	0	2.8	4,9	7,3

១)កំនត់កំហាប់ដើម [I_2] $_0$ និង [$S_2O_3^{2-}$] $_0$ ដែលមានក្នុងល្បាយនៅខណៈ t=0min?

- 9៦. ប្រតិកម្មមួយតាងដោយសមីការតុល្យការ $$5Br^-(aq) + BrO_3^-(aq) + 6H^+(aq) \rightarrow 3Br_2(aq) + 3H_2O(l)$
 - ក)តើប្រភេទគីមីណាមួយជារេដុករនិងណាមួយជាងុកស៊ីតករ?ព្រោះអ្វី
 - តើប្រតិកម្មខាងលើនេះអាចចាត់ទុកជាប្រតិកម្មឌីស្មុតកម្មបានដែរឫទេព្រោះអ្វី?
 - ខ)ចូរសរសេរគុរេដុកដែលចូលរួមក្នុងសមីការតុល្យការ គ)នៅខណៈ៖ មួយល្បឿនកំណឌីប្រួមស្មើនឹង 3,9.10⁻²mol/l.s នៅខណៈៈដូចគ្នាចូរគណនា ៖
 - ១-ល្បឿនកំណទឹក ២) ល្បឿនអុកស៊ីតកម្មអ៊ីយ៉ុងប្រួម ។
- ១៧. គេធ្វើវេដុកម្មអ៊ីយ៉ុងពែម៉ង់កាណាតដោយទឹកអុកស៊ីសែនគេទទួល បានឧស្ម័នអុកស៊ីសែនចំនួន 4,48L គិតក្នុងលក្ខណ្ឌស្តង់ដា ក្នុងរយៈ ពេល244mn។
 - ក)ចូរសរសេរសមីការតុល្យការតាមលំនាំរដុកម្ម MnO_4 គេឲ្យគូរេដុក O_2 / H_2O_2 និង MnO_4 / MnO_2
 - ខ) គណនាល្បឿនមធ្យមកំណ $_{0\,2}$ នៅចន្លោះពេលពី០ទៅ 244នាទី គិត ជាmol/h ។
 - គ)បង្ហាញទំនាក់ទំនងរវាងល្បឿនកំណ O2 និងបំបាត់ MnO4 រួចគណនាតម្លៃរបស់វា ។
- ១៨. ក-ចូរសរសេរសមីការតុល្យការនៃប្រតិកម្មអុកស៊ីតកម្មនៃលោហះ Zn ដោយអាស៊ីតក្លរីឌ្រិច ខ-គេសិក្សាស៊ីនេទិចនៃប្រតិកម្ម។លទ្ធផលដែលទទួលបានដូច ទិន្នន័យ ខាងក្រោម៖

$t(\min)$	0	1	2	3	4	5
$V_{H_2}(mL)$	0	6,3	9,9	12,0	13,5	14,2

១)គណនាចំនួនម៉ូលឌីអ៊ីដ្រូសែនដែលទទួលបាននៅខណះពេល t=2mn និង t=4mn។ មាឌឧស្ម័នគឺ $V_{\scriptscriptstyle m}=24Lmol^{-1}$

- ២)គណនាល្បឿនមធ្យមកំននៃឌីអ៊ីដ្រូសែននៅចន្លោះពេល t=2mn និង t=4mn គិតជា*mol.mn*⁻¹ ។
- ៣)- គណនាល្បឿនបំបាត់នៃលោហះ Zn នៅខណះពេលដូចគ្នា៕
- ១៩. ចំហេះនៃអាម៉ូញាក់ $(N\!H_3)$ ទៅក្នុងឌីអុកស៊ីសែនឲ្យផលជាឌីអាសូតនិង ទឹក ។ នៅខណៈពេលកំនត់ល្បឿនមធ្យមកំននៃឌី អាសូតគឺ $V_{m(N_2)}=0.27\,molL^{-1}s^{-1}$ ៕

ក)ចូរសរសេរសមីការតាងប្រតិកម្មដែលកើតមានឡើង។ ខ)ចុគណនាល្បឿនមធ្យមកំននៃទឹកនៅខណះពេលនេះ។ គ)ចូរគណនាល្បឿនមធ្យមបំបាត់នៃអាម៉ូញាក់នៅខណះពេលនេះ ។

- ២០. អាស៊ីតក្លូរីឌ្រិចមានប្រតិកម្មទៅលើលោហៈស័ង្កសីអោយផលជា ឌីអ៊ីដ្រូសែនហើយនិងសូលុយស្យុងទឹកនៃស័ង្កសីក្លរួតាមសមីការ $2H_3O^+ + 2Cl^- + Zn \to H_2 + Zn^{2+} + 2Cl^- + 2H_2O \, \P$
 - ១- នៅខណះ t=0 គេចាក់ម៉ាស $m=1,0\,g$ នៃម្សៅស័ង្កសីទៅក្នុងបាឡុង មួយដែលផ្ទុកដោយសូលុយស្យុង អាស៊ីតក្លរីឌ្រិចដែលមាឌ ${
 m V}=40{
 m mL}$ និងកំហាប់ 0.5M ទទួលមួយរយៈពេលក្រោយមកគេទទួលបានឧស្ម័ន ${
 m H}_2$ ចំនួន 0.103L ក-គណនាកំហាប់ $[{f Zn}^{2+}]$ ដែលទទួលបានបើ $V_m=24Lmol^{-1}$ ៕

ខ-តើក្រោយប្រតិកម្មអង្គធាតុប្រតិករណាមួយនៅសល់ ?ចូរបញ្ជាក់ ។និងគណនាចំនួនម៉ូលដែលនៅសល់ ។

8 ๒๐๑๗-๒๐๑๗

២១. គេទំលាក់គ្រាប់ស័ង្កសីបរិមាណលើសទៅក្នុង500mlនៃសូលុយស្យុង អាស៊ីតក្លរីឌ្រីចកំហាប់ $9 \times 10^{-2} M$ ។គេកត់ត្រាការវិវត្តន៍ $[H_3 0^+]$ ដូចខាងក្រោម ៖

t(mn)	0	1	3	5
$[H_3O^+] \times 10^{-2}M$	9	5	2,5	1

ក)ចូរសរសេរសមីការតុល្យការតាងប្រតិកម្ម ។

ខ)ចូរគណនាមាឌឧស្ម័ននៅខណៈពេល t=1mn និង t=5mn

គ)គណនាល្បឿនមធ្យមបំបាត់ $[H_30^+]$ នៅពេល t=1mn និង t=5mn

ឃ)ក្នុងការសិក្សាខាងលើតើគេអាចប្រើស្. HNO_3 បានដែររឺទេ ? ព្រោះអ្វី?គេឲ្យ $E^0_{Zn^{2+}/Zn}=-0.76V$ $E^0_{H^+/H_2}=0.00V$ $E^0_{NO_3^-/NO}=0.96V$

$$\underline{ rac{ rac{ rac{ }{ rac{ rac{ }{ rac{ }{
acht }}} }{ rac{ }{ rac{ }{ rac{ }{ rac{ }{
acht }}} } } } } } = 2.01V}}}} } } } } } }
ight. } } }
ight. }
ight. }
ight. }
ight. }
ight. }
ho = 0.54V$$

១.សរសេរកន្លះសមីការអេឡិចត្រូនិចនៃគូរេដុកនិមួយៗ

២.សរសេរសមីការតុល្យការតាងប្រតិកម្មដែលកើតមានរវាងគូរទាំងពីរ

៣.គេតាមដានបំរែបំរួលកំហាប់ I_2 កកើតអនុគមន៍នឹងពេល គេបានខ្សែកោង $[I_2] = f(t)$ ដូចរូបខាងក្រោម

ក. គណនា $[I_2]_{\scriptscriptstyle \infty}$

ខ. គណនារយៈពេលពាក់កណ្ដាលប្រតិកម្ម

គ. គណនាល្បឿនមធ្យមកំណ I_2 ចន្លោះពេល

$$t_1 = 3 \min$$
 និង $t_2 = 7 \min$

ឃ.គណនាល្បឿនមធ្យមបំបាត់ I^- ចន្លោះពេលដូចខាងលើ

ង. គណនាល្បឿនកំណ I_2 ខណៈ t=0 និង t=4 min

រូចសន្និដ្ឋានថាតើល្បឿនខណៈកំណ I_2 ប្រែប្រួលដូចម្ដេចទៅតាមពេល

១.សរសេរកន្លះសមីការអេឡិចត្រូនិចនៃគូរេដុកនិមួយៗ

២.សរសេរសមីការតុល្យការតាងប្រតិកម្មដែលកើតមានរវាងគូរទាំងពីរ

៣.គេតាមដានបំរែបំរួលកំហាប់ H_2O_2 បាត់បង់អនុគមន៍នឹ ពេលគេបានខ្សែកោង $[H_2O_2]=f(t)$ ដូចរូបខាងស្ដាំ

ក. កំណត់កំហាប់ H_2O_2 ខណៈដើមប្រតិកម្ម

ខ. គណនារយៈពេលពាក់កណ្ដាលប្រតិកម្ម

គ. គណនាល្បឿនមធ្យមបំបាត់ H_2O_2 ចន្លោះពេល $t_1=5\min$ និង $t_2=20\min$

ឃ. គណនាល្បឿនបំបាត់ H_2O_2 ត្រង់ខណៈ $t=10\,\mathrm{min}$

១. សរសេរសមីការតុល្យការតាងប្រតិកម្មដែលកើតមានរវាងគូរទាំងពីរ

9

๒๐๑๗-๒๐๑๗

២៧.

- ២.គេតាមដានបំរែបំរួលកំហាប់ I_2 កកើតអនុគមន៍នឹងពេល គេបានខ្សែកោង $[I_2] = f(t)$ ដូចរូបខាងស្ដាំ
 - ក. គណនាល្បឿនកំណ I_2 នៅខណៈ t=0
 - ខ. គណនាល្បឿនកំណ I_2 នៅខណៈ $t=10\,\mathrm{min}$
 - គ. ចូរធ្វើសេចក្តីសន្និដ្ឋាន តើល្បឿនប្រតិកម្មប្រែប្រួលដូចម្តេច អនុគមន៍នឹងពេល។

<u>២៥.</u> ខ្សែកោងខាងស្ដាំនេះ តាងឲ្យបម្រែបម្រួល $[I^-] = f(t)$

- ក្នុងប្រតិកម្ម: $S_2O_8^{\ 2-} + 2I^- \rightarrow 2SO_4^{\ 2-} + I_2$
 - ១. ចូរសរសេរគូរេដុកដែលចូលរួមប្រតិកម្ម
 - ២.តាមរយៈខ្សែកោង ចូរគណនាៈ
 - ក. តើ $[I^-]_{\infty}$ មានតំលៃប៉ុន្មាន ?
 - ខ. តើរយៈពេលប៉ុន្មានដែល $[I^-] = 5 \times 10^{-3} mol.L^{-1}$
 - គ. កំនត់រយៈពេលពាក់កណ្ដាលប្រតិកម្ម $(t_{\scriptscriptstyle \downarrow})$
 - ឃ.កណត់ល្បឿនបំបាត់ I^- ត្រង់ខណៈ $t_{rac{1}{2}}$

- ង. គណនាល្បឿនមធ្យមកំណ I_2 នៅចន្លោះពេល $t_1 = 5 \min$ និង $t_2 = 20 \min$
- <u>២៦.</u> ក្នុងកែវបេស៊ែមួយមានលាយមាន $V_1 = 50mL$ នៃសូ. $(K^+ + I^-)$ កំហាប់ $C_1 = 8 \times 10^{-2} mol.L^{-1}$ ជាមួយមាន $V_2 = 500mL$ នៃសូ. $(2K^+ + S_2O_8^{\ 2-})$ កំហាប់ $C_2 = 4 \times 10^{-2} mol.L^{-1}$ ។
 - ក. គណនាកំហាប់អ៊ីយ៉ុង I^- និង $S_2 O_8^{2-}$ ក្នុងល្វាយសូ.ខណៈដើមប្រតិកម្ម
 - 2. ចូរសរសេរសមីការតុល្យការតាងប្រតិកម្មដែលកើតមាន។($E^0_{S_2O_8^{2-}/SO_4^{2-}}=2.01V$ និង $E^0_{I_2/I^-}=0.54V$)
 - គ. នៅខណៈ t=600s កំហាប់ $[I_2]$ កកើតស្មើនឹង $17\times 10^{-3} mol.L^{-1}$ ។ រកកំហាប់ $[I^-]$ និង $[S_2O_8^{\ 2^-}]$ ដែលមាន ក្នុងសូ.នៅខណៈពេលនេះ ហើយគណនាល្បឿនមធ្យមបំបាត់ I^- និង $S_2O_8^{\ 2^-}$ គិតជា $mol.L^{-1}.min^{-1}$ ។ ក្នុងកែវបេស៊ែមួយគេលាយមាឌ $V_1=800mL$ នៃសូ. H_2O_2 (ម.ជ អាស៊ីត) កំហាប់ $C_1=2\times 10^{-2} mol.L^{-1}$

ជាមួយមាឌ $V_2 = 200mL$ នៃសូ.ពណ៌ស្វាយ $(K^+ + MnO_4^-)$ កំហាប់ $C_2 = 2 \times 10^{-2} moi.L^{-1}$ ។ នៅខណៈ t = 180s គេត្រង់បាន ឧស្ម័ន $O_2 = 122Cm^3$ នៅលក្ខខណ្ឌធម្មតា ហើយនៅខណៈ t = 300s គេសង្កេតឃើញ ពណ៍ស្វាយនៃអ៊ីយ៉ុង MnO_4^- បាត់អស់ពីសូ. ប្រតិកម្ម។

- ក. សរសេរសមីការតុល្យការតាងប្រតិកម្មដែលកើតមាន
- ខ. គណនា $[MnO_4^-]$ និង $[H_2O_2]$ នៅខណៈដើមប្រតិកម្ម
- គ. គណនាល្បឿនបំបាត់ MnO_4^- នៅចន្លោះពេល $t_o = 0$ និង $t_1 = 180s$
- ឃ. គណនាល្បឿនបំបាត់ MnO_4^- នៅចន្លោះពេល $t_1=180s$ និង $t_2=300s$ និងល្បឿនបំបាត់ H_2O_2 ក្នុងចន្លោះ ពេលដូចគ្នានេះដែរ។
- ង. កេមា ខឧស្ម័ន O_2 ដែលទទួលបាននៅខណៈ t=300s នៅលក្ខខណ្ឌធម្មតា

- <u>២៨.</u> ក្នុងកែវបេស៊ែមួយគេលាយ $V_1=50mL$ សូ. $H_2C_2O_4$ ជាមួយមាឌ $V_2=50mL$ កំហាប់ $10^{-1}M$ ដូចគ្នា។
 - ក. សរសេរសមីការតុល្យការតាងប្រតិកម្មដែលកើតមាន
 - ខ. តើសមមូលរេដុកកើតមានដែរឬទេ ?ចូរបង្ហាញ។
 - គ. ចូរឲ្យនិយមន័យល្បឿនបំបាត់ MnO_4^- នៅខណៈ t ។ ប្រាប់ពីទំនាក់ទំនងរវាងល្បឿនបំបាត់ $H_2C_2O_4$ និង MnO_4^- នៅខណៈ t និមួយៗ។
 - ឃ. ឧបមាថារយៈពេល ៣០នាទីក្រោយពេលលាយ ប្រតិកម្មប្រព្រឹត្តទៅចប់។ ចូរគណនាល្បឿន មធ្យមបំបាត់ $H_2C_2O_4$ និងល្បឿនមធ្យមកំណ Mn^{2+} ។
- <u>២៩.</u> គេលាយ $V_1 = 50mL$ នៃសូ. KI កំហាប់ $C_1 = 10^{-1}M$ ជាមួយមាឌ $V_2 = 50mL$ សូ. $K_2S_2O_8$ កំហា $C_2 = 3 \times 10^{-2}M$ ក. គណនាកំហាប់ជាម៉ូលនៃអ៊ីយ៉ុង I^- និង $S_2O_8^{2-}$ នៅខណៈ t=0
 - ខ. គេទុកល្បាយប្រតិកម្មអស់រយៈពេល $50 \min$ គេសង្កេតឃើញសូ.ជាពណ៌ត្នោត។ ដើម្បីបំបាត់ ពណ៌ត្នោត គេចាក់សូ. Na_2SO_3 កំហាប់ $C_3=10^{-1}M$ ចូលទៅក្នុងល្បាយអស់មាឌ $V_3=30mL$ ។
 - ១. ចូរសរសេរសមីការតាងប្រតិកម្មទាំងអស់ដែលកើតមាន។ គេឲ្យគូរេដុក $I_2/I^-, S_2O_8^{2-}/SO_4^{2-}$ និង $S_4O_6^{2-}/S_2O_3^{2-}$ ។
 - ២. គណនាកំហាប់ជាម៉ូលនៃប្រភេទគីមីផ្សេងៗក្រោយរយៈពេល 50min
 - ៣. ក្រោយរយៈពេល 50min តើប្រតិកម្មប្រព្រឹត្តទៅទាំងស្រុងឬទេ?
 - ៤. គណនាល្បឿនមធ្យមបំបាត់ I^- និងកំណ I_2 ។
- - ក. ចូរសរសេរគូរេដុកដែលចូលរួមប្រតិកម្ម និងកន្លះសមីការអេឡិចត្រូនិចនៃគូរេដុកនីមួយៗ រួចបង្ហាញថាប្រតិកម្មខាងលើជាប្រតិកម្មអុកស៊ីដូរេដុកម្ម។
 - ខ. គេបញ្ចូលឧស្ម័ន SO_2 ទៅក្នុង 200mLសូ. ដែលមាន $[I_2]=5 imes 10^{-2}M$ ។ នៅខណៈ t=300s ពណ៌ ត្នោតនៃ I_2 បានបាត់អស់ពីសូ.ប្រតិកម្ម។
 - ១. គណនាល្បឿនមធ្យមបំបាត់ I_2 និងល្បឿនមធ្យមកំណ I^- គិតជា $mol.L^{-1}$
 - ២. រកមាឌ SO_2 ដែលចូលធ្វើប្រតិកម្មនៅលក្ខខណ៍ធម្មតា
- <u>៣១.</u> ក្នុងកែវមួយគេលាយសូ. KMnO_4 មាឌ $V_1 = 50 \mathit{mL}$ កំហាប់ $C_1 = 10^{-2} \mathit{M}$ ក្នុងម.ជ អាស៊ីត ជាមួយសូ. $H_2 C_2 O_4$ មាឌ V_2 កំហាប់ $C_2 = 10^{-1} \mathit{M}$ ។
 - ក. ចូរសរសេរកន្លះសមីការអេឡិចត្រូនិចនៃគូរេដុក និងសមីការតុល្យការតាងប្រតិកម្ម។
 - ខ. គណនាមាឌសូ. $H_2C_2O_4$ ដែលត្រូវប្រើដើម្បីបំបាត់ពណ៍ស្វាយ
 - គ. គេដឹងថាពណ៍ស្វាយបាត់អស់ក្នុងរយៈពេល $20 \min$ ។ ចូរគណនាល្បឿនមធ្យមបំបាត់អ៊ីយ៉ុង MnO_4^- និងកំណ Mn^{2+} ។
- <u>៣២</u>. គេលាយសូ. $K_2S_2O_8$ កំហាប់ $C_1=10^{-2}M$ មាឱ $V_1=50mL$ ជាមួយសូ. $K\!I$ កំហាប់ $C_2=2\times 10^{-2}M$ មាឱ $V_2=30mL$ មាឱ $V_2=30mL$ មា
 - ក. សរសេរសមីការតុល្យការតាងប្រតិកម្មដែលកើតមាន

11 ของ๗-ของ๗

- ខ. តើសមមូលរេដុកកើតមានដែរឫទេ ?ចូរបង្ហាញ។
- គ. គណនាមាឌសូ. ណាមួយដែលត្រូវបន្ថែមដើម្បីបានសមមូលរេដុក
- ឃ.ឧបមាថាប្រតិកម្មប្រព្រឹត្តទៅក្នុងរយៈពេល $10 \min$ ទើបដល់សមមូល។ គណនាល្បឿនមធ្យម បំបាត់អ៊ីយ៉ុង $S_2 O_8^{2-}$ និង I^-
- $\underline{\mathsf{mm}}$. គេសិក្សាស៊ីនេទិចនៃប្រតិកម្មបំបាត់ពណ័ស្វាយរបស់អ៊ីយ៉ុង MnO_4^- ដោយ I^- តាមសមីការតុល្យការៈ

$$2MnO_4^- + 10I^- + 16H^+ \rightarrow 2Mn^{2+} + 5I_2 + 8H_2O$$

- ក. សរសេរគូរេដុកដែលចូលរួមប្រតិកម្ម និងធ្វើចំនែកថ្នាក់គូរេដុកតាមអំណាចអុកស៊ីតករ រេដុករ។
- ខ. នៅខណៈ t=0 ក្នុងល្វាយប្រតិកម្មមាន $[MnO_4^-]=8 imes 10^{-4}M$ នៅខណៈ t=480s មាន $[I_2]=15 imes 10^{-4}M$
 - 9. រក $[MnO_4^-]$ ខណៈ t=480s និងកំណត់ល្បឿនមធ្យមបំបាត់ពណ៍ស្វាយគិតជា $mol.L^{-1}.min^{-1}$
 - ២. រកល្បឿនមធ្យមបំបាត់ I^- និង H^+ ក្នុងចន្លោះពេលដូចខាងលើ។
- <u>៣៤.</u> គេលាយមាឌ $V_1 = 100mL$ នៃសូ. $KMnO_4$ កំហាប់ $C_1 = 5 \times 10^{-2} M$ ជាមួយមាឌ $V_2 = 100mL$ នៃសូ. H_2O_2 កំហាប់ $C_2 = 10^{-1} M$ ។ រយៈពេល $20 \min$ ក្រោយមកគេទទួលបានឧស្ម័នកាយ 0.12Lនៅល.ខធម្មតា។
 - ក. គណនាកំហាប់ជាម៉ូលនៃប្រភេទគីមីនៅខណៈដំបូងនិងខណៈ 20min
 - ខ. គណនាល្បឿនមធ្យមបំបាត់ $\mathit{MnO}_{\!\scriptscriptstyle 4}^{\scriptscriptstyle -}$ និងល្បឿនមធ្យមកំណ $\mathit{O}_{\!\scriptscriptstyle 2}$
 - គ. តើនៅខណៈ 20min ប្រតិកម្មប្រព្រឹត្តទៅស្រុងឫទេ
 - ឃ. គណនាមាឌសូ.ណាមួយដែលត្រូវបន្ថែមដើម្បីបានសមមូល
- <u>៣៥</u>. គេលយមាឌ $V_1=20mL$ នៃសូ. H_2O_2 កំហាប់ $C_1=10^{-1}M$ ជាមួយមាឌ V_2 នៃសូ. $K\!I$ កំហាប់ $C_2=10^{-1}M$
 - ក. គណនាមាឌ V_2 ដែលត្រូវប្រើដើម្បីបានសមមូលរេដុក
 - ខ. គណនាកំហាប់ប្រភេទគីមីនៅខណៈដំបូងនិងនៅពេលសមមូល
 - គ. ដើម្បីដល់ចំណុចសមមូលនៃប្រតិកម្ម ត្រូវប្រើរយៈពេល $5 \min$ ។ គណនាល្បឿនមធ្យមបំបាត់ H_2O_2 និង កំណ I_2 ។
- <u>៣៦.</u> គេលាយ $V_1=20mL$ នៃសូ. $K\!I$ កំហាប់ $C_1=4\times 10^{-2}M$ ជាមួយ $V_2=20mL$ នៃសូ. H_2O_2 កំហាប់ $C_2=0.8M$
 - ក. រក $[I^-]$ ក្នុងល្បាយប្រតិកម្មខណt=0
 - ខ. សរសេរសមីការតុល្យការតាងប្រតិកម្មដែលកើតមាន
 - គ. ចូរបង្ហាញថានៅខណៈពេលនិមួយៗ កំហាប់ I^- ក្នុងសូ.មានទំនាក់ទំនងនឹងកំហាប់ I_2 គឺ[I^-], $=[I^-]_0-2[I_2]$,
 - ឃ. នៅខណៈ t=360s ក្នុងសូ. មាន $[I_2]=10\times 10^{-3}M$ ។ រកកំហាប់ I^- ដែលមានក្នុងសូ.នៅខណៈនេះ
 - ច. គណនាល្បឿនមធ្យមបំបាត់ I^- និង H_2O_2 គិតជា $mol.L^{-1}.min^{-1}$ ។
- <u>៣៧</u>. អ៊ីយ៉ុងពែម៉ង់កាណាត MnO_4^- រងការបាត់ពណ័ស្វាយដោយអាស៊ីតអុកសាលិច $(H_2C_2O_4)$ ក្នុងម.ជអាស៊ីត តាមសមីការតុល្យការៈ $2MnO_4^- + 5H_2C_2O_4 + 6H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$
 - ក. សរសេរគូរេដុកដែលចូលរួមប្រតិកម្ម និងកន្លះសមីការអេឡិចត្រូនិចនៃគូរេដុកនិមួយៗ

12 ของ๗-๒๐๑๗

- ខ. នៅខណៈ t=0 គេលាយ 50mLនៃសូ. $KMnO_4$ កំហាប់ $4\times 10^{-2}M$ ជាមួយសូ. $H_2C_2O_4$ គេបានល្បាយ សូ.ដែលមានមាឌ 100mL។ ល្បាយសូ.នេះបាត់ពណ័អស់ក្នុងរយៈពេល $1\min 40s$ ។
 - ១. រកកំហាប់ MnO_4^- ដែលមានក្នុងល្បាយនៅខណៈ t=0
 - ២. កំណត់ល្បឿនមធ្យមបំបាត់ពណ៌ស្វាយនៃ $\mathit{MnO_4^-}$ គិតជា $\mathit{mol.L^{-1}.s^{-1}}$
 - ៣. ដោយដឹងថា ក្នុងរយៈពេលខាងលើសមមូលរេដុកកើតមាន ចូរគណនាកំហាប់ $H_2C_2O_4$ ដែលប្រើ
 - ៤. កេមាឌឧស្ម័ន CO_2 ដែលទទួលបាន។ $V_{\scriptscriptstyle m}=24Lmol^{-1}$
- $\underline{\text{mG}}$. គេលយ $V_1 = 50mL$ នៃសូ. KI កំហាប់ $C_1 = 0.6mol.L^{-1}$ ជាមួយ $V_2 = 50mL$ នៃសូ. $K_2S_2O_8$ កំហា

 $C_2 = 0.2 mol. L^{-1}$

- ក. គណនាកំហាប់ I^- និង $S_2O_8^{2-}$ ខណៈt=0
- ខ. សរសេរសមីការតុល្យការតាងប្រតិកម្មដែលកើតមាន
- គ. តើសមមូលរេដុកកើតមានរឺទេ ?ចូរបង្ហាញ។
- ឃ. គណនាកំហាប់ប្រភេទគីមីផ្សេងៗពេលប្រតិកម្មចប់
- ង. ឧបថាប្រតិកម្មប្រព្រឹត្តទៅក្នុងរយៈពេល $20 \min$ ចប់។ចូរគណនាល្បឿនមធ្យមបំបាត់ $\it I^-$ និង $\it S_2O_8^{2-}$ ។
- $\underline{\text{m}\,\mathcal{E}}$. នៅខណៈ t=0 គេទំលាក់ Zn=1g ទៅក្នុងសូ. អាស៊ីតក្លរីឌ្រិចកំហាប់ $C_1=10^{-1}M$ មានមាឌ $V_s=200mL$ ។
 - ក. សរសេរសមីការតុល្យការតាងប្រតិកម្មដែលកើតមាន
 - ខ. គេវាស់មាឌ2ស្ម័ន H_2 អនុគមន៍នឹងពេល គេទទួលបានលទ្ធផលក្នុងតារាង

t(min)	0	1	2	3	4	5
$V_{H_2}(mL)$	0	6.3	9.9	12	13.5	14.2

- ១. គណនាម៉ាស H_2 នៅខណៈនីមួយៗ។ $V_m = 22.4 Lmol^{-1}$
- ២. គណនាល្បឿនមធ្យមកំណ H_2 នៅចន្លោះពេល 0 និង $1 \min$ និងចន្លោះពេល $2 \min$ និង $5 \min$
- ៣. គណនាល្បឿនមធ្យមបំបាត់ Zn ក្នុងចន្លោះពេលដូចខាងលើដែរ
- ៤. តើក្នុងរយៈពេល 5min ប្រតិកម្មប្រព្រឹត្តទាំងស្រុងឬទេ ?ចូរបង្ហាញ។
- <u>៤០</u>. គេសិក្សាពីល្បឿនកំណ Mg^{2+} តាមពិសោធន៍ដូចខាងក្រោម៖ នៅខណៈ t=0 គេទំលាក់ Mg=1g ទៅក្នុង សូ. អាស៊ីតក្លូរីឌ្រិច 30mL កំហាប់ 0.1M ។ ការវិវត្តន៍នៃកំហាប់ H^+ ទៅតាមពេលគេទទួលបានតារាង លទ្ធផលខាងក្រោម៖

t(min)	0	1	2	3	4	5
$[H^+] \times 10^{-2} M$	10	5	3.55	2.5	1.6	1

- ក. ចូរឲ្យសមីការតុល្យការតាងប្រតិកម្មដែលបានសិក្សា
- ខ. កំណត់កន្សោមកំហាប់ Mg^{2+} នៅខណៈ t ជាអនុគមន៍នឹងកំហាប់ H^+ នៅខណៈជាមួយគ្នា រូបគណនា កំហាប់ Mg^{2+} នៅខណៈ $t_2=2\min$ និង $t_4=4\min$
- គ. គណនាល្បឿនមធ្យមកំណ Mg^{2+} ចន្លោះពេល t_2 និង t_4

- $\underline{{\it C9}}$. គេមានសមីការអុកស៊ីតកម្ម I^- ដោយ $S_2O_8^{2-}$ ក្នុងម.ជំអាស៊ីត តាមសមីការ ៖ $S_2O_8^{2-}+2I^- o SO_4^{2-}+I_2$
 - ក. សរសេរគូររេដុកចូលរួមប្រតិម្ម និងថ្លឹងសមីការ
 - ខ. គេវាស់ $\left[I_{2}\right]$ អនុគមន៍នឹងពេលគេបានតារាងលទ្ធផលដូចខាងក្រោម៖

t(min)	0	2	5	8	11	14
$[I_2] \times 10^{-3} M$	0	1.5	2	3.6	5	5.5
$[I^-] \times 10^{-3} M$	13					

- ១. ចូរបំពេញតារាងខាងលើ
- ២. គណនាល្បឿនមធ្យមកំណ I_2 ចន្លោះពេល $t_1 = 2 \min$ និង $t_2 = 8 \min$
- ៣. គណនាល្បឿនមធ្យមបំបាត់ $S_2O_8^{2-}$ និងល្បឿនមធ្យមកំណ SO_4^{2-} ចន្លោះពេលដូចខាងលើ។
- $\underline{\mathsf{GD}}$. គេសិក្សាស៊ីនេទិចនៃប្រតិកម្មអុកស៊ីតកម្ម $H_2C_2O_4$ ដោយ MnO_4^- ក្នុងម.ជអាស៊ីតតាមសមីការេះ

$$H_2C_2O_4 + MnO_4^- + H^+ \rightarrow CO_2 + Mn^{2+} + H_2O$$

- ក. សរសេរគូរេដុកដែលចូលរួមប្រតិកម្ម និងថ្លឹងសមីការខាងលើ
- ខ. នៅខណៈ t=0 គេលាយមាឌ $V_1=400mL$ នៃសូ. $H_2C_2O_4$ (ម. ជ អាស៊ីត)កំហាប់ $C_1=0.5M$ ជាមួយ មាឌ $V_2=400mL$ នៃសូ. $KMnO_4$ កំហាប់ $C_2=0.2M$ ។ គណនាកំហាប់ MnO_4^- និង $H_2C_2O_4$ ដែលមានក្នុងល្បាយនៅ ខណៈ t=0 ។
- គ. នៅខណៈនីមួយៗ គេវាស់កំហាប់ MnO_4^- ដែលមានក្នុងសូ. គេបានលទ្ធផលដូចក្នុងតារាង

t(min)	10	20	30	40	50	60	70	80
$[MnO_4^-] \times 10^{-3} M$	96	93	60	30	12	5	3	2

- ១. រកកំហាប់ Mn^{2+} លកើតនៅខណៈ t នីមួយៗ និងគណនាល្បឿនមធ្យមកំណរបស់វានៅចន្លោះ ពេល $t_1 = 10 \min$ និង $t_2 = 30 \min$ ។
- ២. រកកំហាប់ $H_2C_2O_4$ ដែលមានក្នុងសូ. នៅខណៈ $t_3=40\,\mathrm{min}$ និង $t_4=60\,\mathrm{min}$ និងគណនាល្បឿន មធ្យមបំបាត់របស់វា។
- $\underline{\underline{c}}$ ៣. ក្នុងកែវមួយមានផ្ទុក 2.38g នៃអំបិល $Na_2S_2O_8$ ។ គេចាក់ទឹកទៅក្នុងកែវនោះ គេទទួលបានសូ. A ដែលមាន មានមាឌ 400mL។
 - ក. គណនាកំហាប់ជាម៉ូលនៃសូ. A
 - ខ. គេយក $V_{\scriptscriptstyle A}=160mL$ បន្ថែម $V_{\scriptscriptstyle B}=40mL$ នៃសូ. $K\!I$ កំហាប់ $C_{\scriptscriptstyle B}=5\times 10^{-2}M$ ។
 - ១. គណនាកំហាប់អ៊ីយ៉ុង I^- និង $S_2 O_8^{2-}$ ដែលមានក្នុងល្បាយសូ.នៅខណៈ t=0 ។
 - ២. សរសេរសមីកាតុល្យការតាងប្រតិកម្ម
 - ៣. ឧបមាថាប្រតិកម្មប្រព្រឹត្តទៅរយៈពេល $20 \min$ ទើបចប់។ គណនាល្បឿនមធ្យមបំបាត់ I^- និង $S_2O_8^{2-}$ គិតជា $mol.L^{-1}.min^{-1}$
 - ៤. គណនាកំហាប់ប្រភេទគីមីដែលមានក្នុងសូ. ពេលប្រតិកម្មចប់។

14

- <u>៤៤</u>. គេលាយមាឌ $V_1 = 80mL$ នៃសូ. $KMnO_4$ (ម. ជ អាស៊ីត) កំហាប់ $C_1 = 2 \times 10^{-2} M$ ជាមួយមាឌ $V_2 = 120mL$ នៃសូ. $K\!I$ កំហាប់ $C_2 = 5 \times 10^{-2} M$ ។
 - ក. គណនាកំហាប់ I^- និង MnO_4^- ដែលមានក្នុងល្បាយខណៈ t=0
 - ខ. សរសេរសមីការតុល្យការតាងប្រតិកម្មដែលកើតមាន
 - គ. ប្រតិកម្មប្រព្រឹត្តទៅបានតែ $20 \min$ គេឃើញពណ័នៃសូ.លែងប្រែប្រួល។ គណនាល្បឿនមធ្យមបំបាត់ MnO_4^- និង I^- គិតជា $mol.L^-$. min^{-1} ។
- <u>៤៥</u>. គេឲ្យ $E^0_{(MnO_4^-/Mn^{2+})} = 1.5V$ និង $E^0_{(I_7/I^-)} = 0.54V$ ។
 - ក. តើគេអាចធ្វើអុកស៊ីតកម្ម I^- ដោយ MnO_4^- បានដែរឬទេ ? តើគេចាំបាច់ត្រូវធ្វើសូ. ឲ្យមានម. ជអាស៊ីតឬទេ
 - ខ. ចូរឲ្យសមីការតុល្យការតាងប្រតិកម្មកើតឯងរវាងគូរេដុកទាំងពីរ
 - គ. ចូរឲ្យកន្សោមល្បឿនបំបាត់ MnO_4^- និង I^- ខណៈ $_t$ ។ តើល្បឿនទាំងពីរមានទំនាក់ទំនងគ្នាដូចម្ដេច ?
 - ឃ. នៅខណៈ tមួយ ល្បឿនបំបាត់ MnO_4^- ស្មើ $5 \times 10^{-3} mol.L^{-1}.s^{-1}$ ។ គណនាល្បឿនបំបាត់ I^- ។
- ថ្នា. ក. គេរៀបចំ 2L នៃសូ. A ដោយរំលាយក្រាម $Na_2S_2O_8$ ក្នុងទឹក។ តើគេចាំបាច់ត្រូវប្រើម៉ាសក្រាម $Na_2S_2O_8$ ប៉ុន្មានក្រាមដើម្បីបានសូ. A ដែលមានកំហាប់ $2.5 \times 10^{-2} M$ ។
 - 2. គេយក $V_{\scriptscriptstyle A}=160mL$ នៃសូ. A ខាងលើដាក់ក្នុងកេវបេស៊ែ បន្ទាប់មកគេចាក់ $V_{\scriptscriptstyle B}=40mL$ នៃសូ. $H_{\scriptscriptstyle 2}O_{\scriptscriptstyle 2}$ (ម. ជអាស៊ីត)កំហាប់ $C_{\scriptscriptstyle B}=5\times 10^{-2}M$ ។
 - ១. គណនាកំហាប់ $S_2 O_8^{2-}$ និង $H_2 O_2$ ដែលមានក្នុងល្បាយខណៈ t=0
 - ២. ចូរសរសេរសមីការតុល្យការតាងប្រតិកម្មដែលកើតមាន
 - ៣. នៅខណៈ t=300s គេត្រង់បានឧស្ម័ន $O_2=33.6Cm^3$ នៅល.ខធម្មតា។ គណនាកំហាប់ $S_2O_8^{2-1}$ នៅខណៈពេលនេះ និងគណនាល្បឿនមធ្យមបំបាត់របស់វាគិតជា $mol.L^{-1}.min^{-1}$
- $\underline{\mathfrak{CN}}$. គេឲ្យ $E^0_{(MnO_4^-/Mn^{2+})}=1.5V$ និង $E^0_{(I_2/I^-)}=0.54V$ ។
 - ក. សរសេរសមីការតុល្យការតាងប្រតិកម្មដែលកើតមានរវាងគូទាំងពីរ
 - ខ. គេលាយសូ. $K_2S_2O_8$ ជាមួយនឹងសូ. $K\!I$ កំហាប់ $3{ imes}10^{-2}M$ ដូចគ្នា។
 - ១. កំណត់សមាមាត្រមាឌសូ. ទាំងពីរដែលត្រូវលាយបញ្ចូលគ្នាដើម្បីទទួលបានសមមូលរេដុក
 - ២. កំណត់កំហាប់ប្រភេទគីមីដែលមានក្នុងសូ. នៅពេលសមមូល
 - ៣.គេដឹងថាប្រតិកម្មប្រព្រឹត្តទៅរយៈពេល $20 \min$ ទើបដល់សមមូល។ គណនាល្បឿនមធ្យមបំបាត់ អ៊ីយ៉ុង $S_2 O_8^{2-}$ និង I^- គិតជា $mol.L^{-1}.min^{-1}$ ។
- $\underline{\mathsf{GG}}$. ក. សរសេរសមីការតុល្យការតាងប្រតិកម្មអុកស៊ីតកម្ម $H_2C_2O_4$ ដោយអ៊ីយ៉ុង MnO_4^- ក្នុងម.ជអាស៊ីត។
 - ខ. ចូរឲ្យកន្សោមល្បឿនបំបាត់ $H_2C_2O_4$ និង MnO_4^- ខណៈ t ។ តើល្បឿនទាំងពីរនេះមានទំនាក់ទំនងគ្នា ដូចម្ដេច?
 - គ. សូ.ទាំងពីរមានកំហាប់ $2 \times 10^{-2} M$ ដូចគ្នា។ តើគេត្រូវលាយសូ. ទាំងដូចម្ដេចដើម្បីបានសមមូល
 - ឃ. គណនាកំហាប់ប្រភេទគីមីនៅចំណុចសមមូល

- ង. ប្រតិកម្មប្រព្រឹត្តទៅរយៈពេល $30 \min$ ទើបដល់សមមូល។គណនាល្បឿនមធ្យមបំបាត់ $H_2 C_2 O_4$ និង MnO_4^-
- <u>៤៩</u>. ដើម្បីទង្វើសូ. អ៊ីយ៉ុងអ៊ីយ៉ូដួ គេយក 500mL នៃសូ. ឌីអ៊ីយ៉ូតដែលមានពណ័ត្នោតកំហាប់ 4×10⁻⁴M ឲ្យឆ្លងកាត់ដោយឧស្ម័នស្ពាន់ជ័រឌីអុកស៊ីត។ ប្រតិកម្មកើតមានតាមសមីការតុល្យការ៖

 $I_2 + H_2O + SO_2 \rightarrow I^- + H^+ + SO_4^{2-}$

នៅខណៈ t=500s គេឃើញពណ៍ត្នោតនៃ I_2 បានបាត់អស់ពីសូ.ប្រតិកម្ម។

- ក. សរសេរគូរេដុកចូលរួមប្រតិកម្ម និងថ្លឹងសមីការ
- ខ. គណនាល្បឿនមធ្យមកំណ I^- ចន្លោះពេល 0 និង 500s
- គ. គណនាមាឌឧស្ម័ន SO_2 ដែលត្រូវប្រើគីតជា Cm^3 ។ ($V_m = 24L.mol^{-1}$)
- $\underline{\mathcal{C}0}$. គេយក $V_1=50mL$ នៃសូ. H_2O_2 ដែលមានកំហាប់ $C_1=0.056M$ (ម. ជអាស៊ីត)ទៅលាយជាមួយ $V_2=50mL$ នៃសូ. $K\!I$ កំហាប់ $C_2=0.2M$ ។
 - ក. គណនាកំហាប់ I^- និង H_2O_2 ដែលមានក្នុងសូ. ខណៈដើមប្រតិកម្ម(t=0)
 - ខ. សរសេរសមីការតុល្យការតាងប្រតិកម្មដែលកើតមាន
 - គ. នៅខណៈ t=60s គេយកល្បាយខាងលើទៅត្រាំទឹកកក រូចគេរំលែកយក 10mLនៃល្បាយសូ.នេះ ទៅធ្វើអត្រាជាមួយសូ. $Na_2S_2O_3$ ដែលមានកំហាប់ 0.04M ។ ដើម្បីដល់ចំណុចសមមូល គេប្រើ សូ.នេះអស់ចំនូន 2.2mL។
 - ១. សរសេរសមីការតុល្យការតាងប្រតិកម្មក្នុងលំនាំអត្រាកម្ម
 - ២. ហេតុអ្វីគេចាំបាច់ត្រាំល្បាយសូ.ក្នុងទឹកកកមុននឹងធ្វើអត្រា
 - ៣. ទាញរក $[I_2]$ នៅខណៈ t=60s និងគណនាល្បឿនមធ្យមកំណរបស់វា។
 - ៤. តើក្នុងរយៈពេល t=60s ប្រតិកម្មប្រព្រឹត្តទៅទាំងស្រុងឬទេ
- <u>៥១</u>. គេលាយមាឌ $V_1 = 100mL$ នៃសូ. $KMnO_4$ កំហាប់ $C_1 = 5 \times 10^{-2} M$ ជាមួយមាឌ $V_2 = 100mL$ សូ. H_2O_2 កំហាប់ $C_2 = 10^{-1} M$ ។ រយៈពេល $20 \min$ ក្រោយមកគេត្រង់បានឧស្ម័ន 0.12L នៅល.ខសីតុណ្ហភាពបន្ទប់។
 - ក. គណនាកំហាប់ជាម៉ូលនៃ MnO_4^- និង H_2O_2 ខណៈដំបូង
 - ខ. សរសេរសមីការតុល្យការតាងប្រតិកម្មដែលកើតមាន
 - គ. គណនាកំហាប់ជាម៉ូលនៃ $20 \min$ នៅខណៈពេល $20 \min$ និងគណនាល្បឿនមធ្យមបំបាត់ MnO_4^- និងកំណ O_2
 - ឃ. តើសមមូលរេដុកកើតមានឫទេ
 - ង. គណនាមាឌសូ. ណាមួយដែលត្រូវបន្ថែមដើម្បីបានសមមូលរដុក។

ឧតុខេរៀសថ្ន

16 ของ๗-ของ๗