Armazenamento não volátil

Definição

Definição

Vantagens

Segurança de dados

Os dados não são perdidos em caso de falha de energia ou desligamento do dispositivo.

Confiabilidade

Diferente da memória volátil, essa é menos suscetível a danos causados por mau uso ou desgaste físico.

Capacidade de armazenamento

Esses dispositivos têm uma capacidade de armazenamento significativamente maior, permitindo o armazenamento de grandes quantidades de dados.

Desvantagens

Velocidade

É mais lenta no acesso e na gravação de dados quando comparada com a memória volátil.

Tecnologia em constante evolução

pode haver uma necessidade de atualização frequente dos dispositivos de armazenamento para manter-se atualizado com os avanços tecnológicos.

- Fita de papel perfurado
 - O Muito popular na década de 1950 e 1960.
 - Consiste em um rolo de papel perfurado que armazena dados através de furos e ausência de furos.
 - O Embora atualmente esteja obsoleta, foi uma importante ferramenta para o início da computação.

- O Disquete de 8 polegadas (1971)
 - O Um dos primeiros utilizados, tinha capacidade de 80 KB. Grande e volumoso, foi rapidamente substituído por formatos menores e mais eficientes.
- 5,25 polegadas (1976)
 - O Popular nos computadores pessoais da década de 1980. Capacidade inicial de 160 KB, posteriormente aumentada para 1,2 MB.
- 3,5 polegadas (1984)
 - O Rapidamente se tornou o formato de disquete mais popular. Capacidade inicial de 720 KB posteriormente aumentada para 1,44 MB.

	HD	SSD	SSD NVMe
Velocidade média de leitura e escrita	30 a 150MB/s	500MB/s	3.000MB/s
Conexões	SATA III	SATA III ou M.2	M.2
Custo médio por GB em um modelo de 500GB*	R\$ 0,31	R\$ 1,56	R\$ 2,33

Dispositivos de Armazenamento

Dispositivos de Armazenamento

Dispositivos de Armazenamento

Maior Velocidade de Acesso aos dados*

Maior Custo de Armazenamento por byte

^{*}Vários dispositivos de memória flash ainda possuem taxas de transferência de dados menores do que as taxas de transferência de muitos discos magnéticos.

Voltando ao HD

O Desafios

- Ler do disco o menor número de vezes possível, ou seja, ler blocos de informação de uma vez
- Ir direto ao ponto (acesso direto, ou quase)

Estrutura do HD

- Conjunto de pratos empilhados
- Dados são gravados nas superfícies desses pratos

Estrutura do HD

- Superfícies são organizadas em trilhas
- Trilhas são organizadas em setores
- Setores são a menor unidade de acesso ao disco
- Cilindro é um conjunto de trilhas superpostas, ao longo dos diversos pratos

Medidas de desempenho do HD

- Capacidade de armazenamento (gigabytes? terabytes?)
- Tempo de acesso: é influenciado pelas partes mecânicas (aproximadamente 8,5 milissegundos)
- O Confiabilidade: tempo médio para a falha, vida útil

Capacidade de armazenamento

- Capacidade do setor
 - Ex. 512 bytes
- Capacidade da trilha
 - O Número de setores por trilha x capacidade do setor
- Capacidade do cilindro
 - O Número de trilhas por cilindro x capacidade da trilha
- Capacidade do disco
 - O Número de cilindros x capacidade do cilindro

Tempo de acesso

- Tempo de Busca (seek)
 - O Tempo para posicionar a cabeça de leitura / gravação no cilindro correto.
- Latência rotacional
 - O Tempo para aguardar o disco girar até chegar no setor correto
- Taxa de transferência de dados
 - Tempo para transferir os dados para memória primária

Tempo de acesso

- Tempo de Busca (seek)
 - É o movimento mais lento
 - O Deve ser minimizado
 - Torna a leitura aleatória muito mais lenta do que a leitura sequencial
- Leitura x escrita
 - É possível ler todo um cilindro em um único seek

Organizando o HD

- Formatação Física
 - O Divide o disco em trilhas, setores, cilindros
 - Pode identificar setores defeituosos
 - O Já vem "de fábrica"
- Formatação lógica
 - O Coloca o sistema de arquivos (SO) para trabalhar no disco
 - Organiza o disco em regiões endereçáveis
 - O Começa a armazenar algumas informações de controle

Organizando o HD

- Organização em blocos de setores (ou páginas, ou clusters)
- Arquivo = sequência de bytes / sequência lógica de Blocos
- O Bloco é uma abstração que permite independência de hardware
 - O Permite ao SO trabalhar uniformemente com dispositivos com diversos tamanhos de setores (512k, 1024k, etc.).
 - O É também uma medida de otimização.
- Exemplo de tamanho de bloco: 4k

- Sistema de arquivos mais antigo utilizado em dispositivos de armazenamento
- O Desenvolvido pela Microsoft em 1977
 - O Ainda utilizado em dispositivos removíveis como cartões SD e pendrives
- O É baseado em uma tabela de alocação de arquivos (File Allocation Table)

- A tabela FAT armazena informações sobre a localização dos arquivos no dispositivo de armazenamento
- O Cada arquivo é dividido em clusters (conjunto de setores do disco)
- A tabela FAT registra quais clusters estão livres e quais estão ocupados pelos arquivos

- O Cada arquivo é representado como uma lista ligada de blocos
- Cada bloco é indexado em uma tabela, que informa se o bloco está livre (ou não) e o próximo na sequência (se existir)
- O A tabela indica os blocos que formam um arquivo, mas não o início do arquivo. Isso é feito pela tabela de diretórios, que armazena a hierarquia das pastas e permissões.

Vantagens

- Compatível com uma grande variedade de sistemas operacionais
- Simples e fácil de implementar, o que o torna popular em dispositivos de armazenamento com recursos limitados
- Eficiente em dispositivos de armazenamento pequenos, pois usa menos espaço para armazenar informações sobre a localização dos arquivos

Limitações

- O sistema FAT tem uma limitação no tamanho máximo do arquivo que pode ser armazenado. No caso do sistema FAT32, o tamanho máximo do arquivo é de 4 GB
- Tende a fragmentar arquivos grandes em vários clusters, o que pode causar lentidão no acesso aos arquivos
- Não oferece recursos de segurança avançados, como criptografia de arquivos e pastas

Página de disco

- O É uma unidade básica de armazenamento.
 - O Ela é geralmente definida como um bloco de dados consecutivos de um tamanho fixo.
 - O É o menor bloco de dados que pode ser lido ou gravado em um dispositivo de armazenamento.
 - O É geralmente usada como uma unidade de transferência de dados entre o dispositivo de armazenamento e a memória do sistema.
- Pode levar a perda de espaço
 - O Suponha que temos uma página de disco de 4kb
 - O Se meu arquivo tiver 4kb + 1 byte , quantas páginas de disco vou alocar para meu arquivo?

Devemos aumentar o tamanho da página?

Vantagens

- Redução do overhead: o número total de páginas necessárias para armazenar um arquivo é reduzido, melhorando desempenho do sistema.
- Redução da fragmentação: um único arquivo pode ser armazenado em menos páginas, melhorando o desempenho de leitura e gravação de arquivos.
- Aproveitamento mais eficiente do espaço em disco
- Redução do tempo de acesso, já que menos operações de leitura e gravação.

Desvantagens

- Maior tempo de busca: cada página contém mais dados e pode ser mais difícil de localizar.
- Maior tempo de resposta: operações de E/S maiores.
- Possível aumento da fragmentação e desperdício de espaço em disco: um único arquivo pode ocupar um espaço maior em disco (devido ao espaço não utilizado no final de cada página) e deixar espaços vazios menores que não podem ser usados para armazenar outros arquivos.

- O Buffer
 - O buffer é uma região de memória principal que armazena temporariamente os dados do disco.
- Por que utilizar um buffer?
 - A resposta é eficiência!
 - O Para ler e escrever dados no disco temos que posicionar a cabeça de gravação em um ponto específico do disco.
 - O Se tivéssemos que fazer isso para cada byte, a leitura/escrita seria uma operação muita lenta.

- Exemplo: solicitação de leitura de 1 byte
 - O Se já não estiver no buffer, carrega a página que contém o byte. Como a leitura é em bloco, já lê uma boa porção do arquivo de uma só vez, diminuindo a chance de necessidade de um novo acesso ao disco para a leitura de uma nova porção do mesmo arquivo.
 - O Se já não estiver no buffer, carrega a página que contém o byte.
 - O Altera a página no buffer, mas não envia de imediato, necessariamente, para o disco. Aguarda um conjunto de alterações na página e/ou um momento oportuno e/ou a necessidade de espaço no buffer, ou uma operação de fechar arquivo.

- Organização por blocos de setores.
- Armazenamento temporário / redundante em buffers.
- O Extents, alocação de blocos sequencialmente para um arquivo, quando possível.
- Leitura antecipada.
- Desfragmentação

- O Algoritmos de escalonamento cabeça de leitura
 - Ordenam acessos pendentes a trilha de modo a minimizar o movimento da cabeça de leitura.
 - O Algoritmo do elevador: move o braço em uma única direção, processando a próxima requisição nessa direção enquanto houverem requisições nessa direção, então reverte a direção e repete.

- O Tabela de Descritores de Arquivos Abertos TDAA
 - O acesso a um arquivo é feito através do seu descritor
 - O Para evitar a pesquisa frequente ao disco, o SO mantém na memória uma **Tabela de Descritores** de Arquivos Abertos
 - O arquivo é aberto quando ele começa a ser utilizado. Desse modo, todas as informações sobre os arquivos em uso são mantidas na memória principal

- Um mesmo arquivo pode ser utilizado simultaneamente por vários processos
 - O Vários processos usando a mesma entrada da TDAA
 - O mesmo arquivo pode ser acessado por diferentes processos em pontos diferentes e com direitos de acesso diferentes
- Cada entrada da TDAA tem uma indicação de quantos processos estão usando o arquivo
- Assim, cada processo contém uma tabela extra com informações apenas sobre os arquivos abertos por esse processo.
- Essa tabela é denominada Tabela de Arquivos Abertos por Processo (TAAP)

- O No mínimo, a TAAP contém em cada entrada as seguintes informações:
 - O Posição corrente no arquivo
 - O Tipo de acesso (apenas leitura ou leitura e escrita)
 - O Apontador para a entrada correspondente na TDAA

Tanto a TDAA como as TAAP devem ficar na memória do sistema operacional, fora do acesso dos processos de usuário

- O RAID é a sigla para "Redundant Array of Independent Disks" (conjunto redundante de discos independentes).
- O É uma tecnologia de armazenamento que utiliza vários discos para melhorar o desempenho e a confiabilidade do sistema.
- Existem vários tipos de RAID, cada um com suas próprias vantagens e desvantagens.

O RAID 0

- Também conhecido como "striping".
- O Divide os dados entre vários discos para melhorar o desempenho de leitura e gravação.
- O Não oferece redundância de dados, ou seja, se um disco falhar, todos os dados serão perdidos.
- O Possui alto desempenho, mas baixa confiabilidade.

O RAID 1

- Também conhecido como "mirroring".
- O Cria uma cópia exata dos dados em dois discos diferentes.
- O Se um disco falhar, os dados ainda estão disponíveis no outro disco.
- O Possui alta confiabilidade, mas baixa capacidade de armazenamento (50% do total dos discos é usado para a redundância).

O RAID 5

- O Usa distribuição de paridade para fornecer redundância de dados.
- Os dados são divididos entre vários discos, e a paridade é calculada e armazenada em um disco separado.
- O Se um disco falhar, os dados ainda podem ser reconstruídos a partir da paridade.
- O Possui alta confiabilidade e bom desempenho de leitura, mas seu desempenho de gravação é mais lento e possui maior complexidade de implementação.

O RAID 6

- O Semelhante ao RAID 5, mas usa duas funções de paridade para a redundância de dados.
- Pode tolerar a falha de dois discos simultaneamente.
- O Possui alta confiabilidade, mas ainda mais complexidade de implementação e desempenho de gravação mais lento.

- RAID 10 (ou RAID 1+0)
 - O Combina os benefícios do RAID 1 e do RAID 0.
 - Os dados são divididos entre vários pares de discos, e cada par é espelhado em outro par.
 - O Isso fornece redundância de dados e alto desempenho.
 - O Possui alta confiabilidade e alto desempenho, mas um alto custo de implementação.