Computer Systems Architecture Homework 3

(Note TAs are still making a key, so they may make slight changes to this document.)

Memory Hierarchy

For all problems assume the address is 32bits.

Problem 1

a) What are the sizes of tag, index, and offset fields (in bits) for a cache of size 1MB.

a block size of 32 bytes, and 2-way associativity?

Index size: 1MB = 2*32*S

 $S = 2^14$

lg(S) = 14 bits

Offset: lg(32) = 5 bits

Tag: 32 - 5 - 14 = 13 bits

Tag sizes: 13bits Index sizes: 14bits

Offset sizes: 5bits

b) A 32KB cache has 16 byte blocks. What is the associativity of this cache if

the cache tag size is 19 bits?

Offset: lg(16) = 4 bitsIndex: 32 - 4 - 19 = 9 bits

32KB=n*2^9*16

2^5*2^10=2^9*2^4*n

n=2^2

n=4

4 way associative

Problem 2

What is the L2 hit time at which adding an L2 cache to the hierarchy is not profitable,

given that an average L2 miss rate is 10%?

L1 miss penalty: m1

L2 hit time: h2

L2 miss penalty: m2

L2 miss rate is 10%

To show that add an L2 cache to the hierarchy is not profitable means:

L1 miss penalty <= L2 hit time + (L2 miss penalty)*(L2 miss rate)

m1 <= h2 + m2*0.1

h2 >= m1 - m2*0.1

Problem 3

Draw a detailed block diagram of a 24KB, 3-way set-associative cache with 32B blocks. Show the size and widths of all the fields in the SRAM.

Index sizes:

24KB = 3*32*S

 $S = 2^8$

 $lg(2^8) = 8 bits$

Offset sizes:

lg(32) = 5 bits

Tag sizes:

32 - 5 - 8 = 19 bits

			3 Ways		
	Index num: 0	Record	Record	Record	
Total # of index: 256					
	Index num: 255				
		_			
		Record			
Valid bit	Dirty bit	Tag		Index	Offset
1 bit	1 bit	19 bits		8 bits	5 bits

Figure 1 : Representation of 24KB, 3-way set-associative cache with 32B blocks

Problem 4

a) X% of the lines in a write-back, write-allocate L1 cache are modified. What is the average memory latency (AMLAT) in this case assuming a one level of cache? A write-back has to be completed before a miss service can start. The average miss MR rate is over both reads and writes in this case.

Assume

L1 hit time: h1

L1 Miss penalty: m1

Average memory latency means:

With write back situation:

(L1 hit time) + 2*(L1 Miss penalty)*(L1 Miss ratio)

When write back failed to find in cache, it should write the data back to the memory and load the data from memory to L1 cache.

Without write back situation:

(L1 hit time) + L1 Miss penalty)*(L1 Miss ratio)

That is, the AMLAT is (h1 + 2*m1*MR)*X% + (h1 + m1*MR)*(1-X%) h1 + m1*MR + m1*MR*X% b) What is the effect of this cache on the CPI?The CPI increase the amount of the miss in cache.Assume Miss penalty cycles is m1

Without X% write back:

h1 + m1*MR

h1 + m1*MR + m1*MR*X% - h1 + m1*MR = m1*MR*X%

The amount of increase in CPI is m1*MR*X%