Отчет по лабораторной работе №6

Задача об эпидемии

Исаханян Эдуард Тигранович 2022 Feb 26th

Содержание

Список литературы		13
5	Выводы	12
4	Выполнение лабораторной работы	9
3	Теоретическое введение	7
2	Задание	6
1	Цель работы	5

List of Tables

List of Figures

1 Цель работы

Цель данной лабораторной работы научиться решать задачу об эпидемии.

2 Задание

- 1. Рассмотреть простейшую модель эпидемии;
- 2. Построить графики изменения числа особей в каждой из трех групп;
- 3. Рассмотреть, как будет протекать эпидемия.

3 Теоретическое введение

Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - S(t) — восприимчивые к болезни, но пока здоровые особи. Вторая - I(t) — это число инфицированных особей, которые также при этом являются распространителями инфекции. И третья - R(t) — это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I^* считаем, что все больные изолированы и не заражают здоровых. Когда $I(t) > I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$\frac{dS}{dt} = \begin{cases} -\alpha S, I(t) > I^* \\ 0, I(t) \le I^* \end{cases}$$

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится, т.е.:

$$\frac{dI}{dt} = \begin{cases} -\alpha S - \beta I, I(t) > I^* \\ -\beta I, I(t) \le I^* \end{cases}$$

А скорость изменения выздоравливающих особей (при этом приобретающие

иммунитет к болезни)

$$\frac{dR}{dt} = \beta I$$

Постоянные пропорциональности:

lpha — коэффициент заболеваемости

 β — коэффициент выздоровления

Для анализа картины протекания эпидемии необходимо рассмотреть два слу-

чая:
$$I(0) \leq I^*$$
 и $I(0) > I^*$

4 Выполнение лабораторной работы

1. Напишем код для решения задачи о эпидемии.

```
model lab6
parameter Real n = 14000;
 3 parameter Real i0 = 114;
 4 parameter Real r0 = 14;
 5 parameter Real s0 = n-i0-r0;
 6 parameter Real a = 0.01;
 7 parameter Real b = 0.02;
8
9 Real s1(start=s0);
10 Real i1(start=i0);
11 Real r1(start=r0);
12
13 Real s2(start=s0);
14 Real i2(start=i0);
15 Real r2(start=r0);
16 Real t = time;
17
   equation
18
19
   der(s1) = 0;
20
   der(i1) = -b*i1;
21
   der(r1) = b*i1;
22
23 der(s2) = -a*s2;
24
   der(i2) = a*s2-b*i2;
25
   der(r2) = b*i2;
26
27 end lab6;
```

2. График первого случая.

3. График второго случая.

5 Выводы

В ходе работы, мы построили графики изменения числа особей в каждой из трех групп, также рассмотрели, как будет протекать эпидемия в разных случаях.

Список литературы

1. Методические материалы к лабораторной работе, представленные на сайте "ТУИС РУДН" https://esystem.rudn.ru/

::: {#refs} :::