第3回 Math-iine learning Learning Functions: When Is Deep Better Than Shallow

1/28

Contents

1 Introduction12 Previous Work23 Compositional functions24 Main results24.1 Deep and shallow neural netwokrs2

1 Introduction

この論文では,one-hidden layer のニューラルネットワークと deep network を比較する. この論文で定理とされているものを記載する.

Theorem 1.1. Let $\sigma: \mathbb{R} \to \mathbb{R}$ be infinitely differentiable, and not a polynomial on any subinterval of \mathbb{R} .

• For $f \in W_{r,d}^{NN}$

$$\operatorname{dist}(f, S_n) = O(n^{-r/d})$$

• For $f \in W_{H,r,2}^{NN}$

$$\operatorname{dist}(f, D_n) = O(n^{-2/d})$$

Theorem 1.2. There exists a constant c > 0 depending on d alone with the following property. Let $\{C_m\}$ be a sequence of finite subsets with $\{C_m\} \subset [-cm, cm]^d$ with

$$1/m \le \max_{y \in K} \min_{x \in C} |x - y| \le \eta(C_m)$$

If $\gamma > 0$ and $f \in W_{\gamma,d}$ then for integer $m \ge 1$ there exists $G \in N_{|Cm|,m}$ with centers at points in C_m such that

$$||f - G||_d \leq \frac{1}{m^{\gamma}} ||f||_{\gamma,d}$$

Moreover, the coefficients of G can be chosen as linear combinations of the data $\{f(x): x \in C_m\}$.

Theorem 1.3. For each vinV, let $\{C_{m,v}\}$ be a sequence of finite subsets as described in Theorem 2. Let $\gamma > 0$ and $f \in TW_{\gamma,2}$. Then for integer $m \geq 1$, there exists $G \in TN_{\max|C_{m,v}|m}(\mathbb{R}^2)$ with centers of the constituent network G_v at vertex v at points in $C_{m,v}$ such that

$$||f - G||_{\mathcal{T}} \le \frac{1}{m^{\gamma}} ||f||_{\mathcal{T}, \gamma, 2}$$

Moreover, the coefficients of each constituent G_v can be chosen as linear combinations of the data $\{f(x): x \in C_{m,v}\}$.

Theorem 1.4. (a) Let $\{C_m\}$ be a sequence of finite subsets of \mathbb{R}^d , such that for each integer $m \geq 1$, $C_m \subset C_{m+1}$, $|C_m| \leq \exp \exp(c_1 m^2)$, and $\eta(C_m) \geq 1/m$. Further, let $f \in C_0(\mathbb{R}^d)$, and for each $m \geq 1$, let G_m be a Gaussian network with centers among points in C_m , such that

$$\sup_{m>1} m^{\gamma} \|f - G_m\|_{\mathcal{T}} < \infty$$

Then $f \in W_{\gamma,d}$

(b) For each $v \in V$, let $\{C_{m,v}\}$ be a sequence of finite subsets of $\mathbb{R}^{d(v)}$, satisfying the conditions as described in part (a) above. Let $f \in \mathcal{T}C_0(\mathbb{R}^2)$, $\gamma > 0$, and $\{G_m \in \mathcal{T}N_{n,m}\}$ be a sequence where, for each $v \in V$, the centers of the constitutent networks $G_{m,v}$ are among points in $C_{m,v}$, and such that

$$\sup_{m>1} m^{\gamma} ||f - G_m||_{\mathcal{T}} \ge \infty$$

Then $f \in \mathcal{T}W_{\gamma,2}$.

2 Previous Work

以前の仕事自体には興味が無いので、自分が疑問に思う点をここに記載する。全体の主張としては誤差が小さいものが存在するといってるだけ、誤差が $O(n^{-r/2})$ まで落とせると言っている。

- ℚ, ℚ, 上でうまく定義できるか
- n や d の関係を明確にして、その状況で問題設定を解決したい。
- 計算量に関する考察は何かできないか

3 Compositional functions

4 Main results

この章では、shallow network,deep network の 2 つの場合に近似定理を述べる.2 つとは、ReLU による deep network と deep Gaussian network である.*degree of approximation* は以下で定義される.

$$\operatorname{dist}(f, V_n) = \inf_{P \in V_n} ||f - P|| \tag{1}$$

Remark. V_n は関数の集合、実際にははニューラルネットワークとして定義される関数の集合として、使われていた.

4.1 Deep and shallow neural netwokrs

 $I^d:=[-1,1]^d,\mathbb{X}=C(I^d,\mathbb{R})$ とし、 $||f||=\max_{x\in I^d}|f(x)|$ とする. S_n を n 個の unit を持つ shallow netowork のなす集合とする. すなわち、

$$S_n := \{f: \mathbb{R}^d \to \mathbb{R} |$$
ある $w_k^i n \mathbb{R}^d, b_k.a_k \in \mathbb{R}$ が存在し、 $f(x) = \sum_{k=1}^n a_k \sigma(w_k x + b_k) \}$

この時、訓練パラメータが (d+2)n 個存在する.(メタ的で数学的ではない). $W_{r,d}^{NN}$ で r 回連続偏微分可能であって、 $||f||+\sum_{1\leq |k|_1\leq r}||D^k f||\leq 1$ を満たすもの全体とする. また、 $W_{H,r,2}^{NN}$ を以下で定義する.

$$W_{H,r,2}^{NN} := \{h|h = f_{11} \circ \cdots \circ f_{k2^k} (f_{ij} \in W_{r,2}^{NN})\}$$

 \mathcal{D}_n を S_n に属する関数の合成で書けるもの全体とする。上の書き方、かなりまずいけど、 $f_11(f_21,f_22)$ で表せるもの?つまり,d が実質 2 のものということですかね。この時はパラメターの個数が $d=2^m$ とした時に, $(d+2)m(1+2+\cdots+2^{m-1})=(d+2)m(d-1)$ となる.

Theorem 4.1. $\sigma: \mathbb{R} \to \mathbb{R}$ を無限回微分可能であって, \mathbb{R} の任意の開区間上で,多項式でないとする. この時以下が成り立つ.

1. 任意の $f \in W_{r,d}^{NN}$ に対し,

$$dist(f, S_n) = O(n^{-r/d})$$
(2)

2. 任意の $f \in W_{H,r,d}^{NN}$ に対し,

$$\operatorname{dist}(f, \mathcal{D}_n) = O(n^{-r/2}) \tag{3}$$

Proof. 1 つめの主張は他の論文にて示した。2 つめの主張を示す。f が無限回微分可能な時,特にリプシッツ連続である。よって, $f(g_1,g_2)-f(P_1,P_2) \leq M|g_1-P_1||g_2-P_2|$ となる。これより,

$$|f(g_1, g_2) - P_0(P_1, P_2)| \le |f(g_1, g_2) - f(P_1, P_2)| + |f(P_1, P_2) - P_0(P_1, P_2)|$$

$$\le M|g_1 - P_1||g_2 - P_2| + \operatorname{dist}(f, S_n)$$

となる. $|g_1 - P_1||g_2 - P_2| \le O(n^{-r})$ となるので. $f(g_1, g_2) - P_0(P_1, P_2) = O(n^{-r/2})$ となる. これを inductive に続けていけばよい.

Remark. オーダとしてはこれが限界であることが示されている.