Cell Growth Model - v0.8

Table of Contents

Model Overview	2
Features	2
Version Modifications	2
Processes Models	3
Transcription	3
mRNA degradation	5
Translation Initiation Complex formation	6
Translation Elongation Complex formation	7
Translation Protein Synthesis	9
Ribosome Assembly	10
Energy production	11
Energy consumption	12
Phenotypes	14
Cell size	14
Growth rate	15

Model Overview

Features

Phenotypes

- Cell partition in 3 biomolecular species classes:
 - Metabolic
 - o Ribosome-associated
 - Housekeeping
- Cell mass
 - o Phenomenological model/Logistic function shaped
 - o Variable mass dependent on intracellular energy levels
- Growth rate
 - o Function of protein mass growth rate & cell mass size

Cell processes

- Translation models:
 - Initiation Complex formation
 - o Elongation Complex maturation
 - o Protein Synthesis
- Elongation complex maturation model:
 - Allows polysomes formation implicitly
 - Maturation dependent on cell energy levels
- Energy production & utilisation models
 - Simple one-step energy production model
 - o Energy Utilised by Protein Synthesis & Elongation Complex Maturation
- Ribosome Assembly model
 - o Ribosome formation from ribosome-associated proteins
 - No rRNA species involved
 - o Allows for realistic numbers of ribosomes in cell

Version Modifications

- Derived from model v0.7
- Ribosome Assembly model
- Removed rRNA species

Processes Models

Transcription

Assumptions

- Transcription is an energy dependent process, but it is not made to consume any energy as its consumption rate is small compared to the translation processes (Weiße et al., 2015)
- The threshold value for half-maximal activation of transcription occurs at higher intracellular energy levels for ribosomal protein gene expression, as it has been demonstrated that intracellular effector molecules inhibit transcription of ribosomeassociated genes at poor intracellular metabolic environment (Barker et al., 2001; Lemke et al., 2011).

Reaction			
Forward rate	wx*mod_fcn_a		
	-	→ m x	
Reverse rate		_	
Energy modulating function	$mod_fnc_a = \left(\frac{a}{theta + a}\right)$		
	theta for hsk & met = thetax		
	theta for rib = thetar		
Species			
m_x	RBS of class x = {rib, met, hsk}		
a	Intracellular energy molecule		
Parameters	Description	Value	Units
wx	transcription rate		molecules/minutes

Modifications to basic Model

- For hsk class:
 - For rbs/mRNA of housekeeping class, the transcription rate is inhibited by a
 modulation function based on the number of hsk proteins in the cell, as previous
 research suggests the existence of an autoregulation mechanism so that their
 relative proteome abundance is maintained across different growth conditions
 (Hwa et al., 2010)

Modulating function (hsk class)	mod_fnc_txhsk =	$\left(\frac{1}{1 + \left(\frac{p_rik}{Krep}\right)}\right)$	$\left(\frac{r}{r}\right)$
Parameters/Species	Description	Value	Units
p_rib	ribosomal proteins		molecules
Krepr	repression threshold		molecules
Fluxes			
d(m_rib)/dt = +wr*mod_fcn_a			

```
d(m_met)/dt = +wr* mod_fcn_a* mod_fnc_txhsk

d(m_hsk)/dt = +wr*mod_fcn_a
```

mRNA degradation

- Only the free form of the mRNA is degraded (RBS)
- Degradation rate is the same for all mRNA classes

5			
Reaction			
Forward rate		dm	
		$m_x \rightarrow null$	
Reverse rate			
Species			
m_x	RBS of class x = {rib, met, hsk}		
Parameters	Description	Value	Units
dm	mRNA degradation rate		1/minute
Fluxes			
$d(m_rib)/dt = -$	dm* m_rib		
d(m_met)/dt = -dm* m_met			
d(m_hsk)/dt = -	dm* m_hsk		

Translation Initiation Complex formation

Assumptions

• The association rate constant between ribosomes and rbs_mRNAs is variable, while all classes exhibit the same dissociation kinetics. This simplification does not represent reality as experimental observation show both constant values can vary within an interval of 3 orders of magnitude (Gualerzi & Pon, 2015) but its implementation was necessary to reduce the search space and the number of dimensions in parameter fitting.

Reaction			
Forward rate		kb_x	
	m_x + ribo	←→ ic_x	
Reverse rate		ku	
Species			
m_x	RBS of class x = {rib, met, hsk}		
ribo	Ribosomes		
ic_x	Translation Initiation complex of class	$x = \{rib, met,$	hsk}
Parameters	Description	Value	Units
kb_x	RBS/ribosome association rate		1/(molecules*minutes)
ku	Initiation Complex dissociation rate		1/minute

Modifications to basic Model

- For rib class:
 - The association rate of rbs_mRNA with ribosome for the formation of ic_rib is inhibited by a modulating function based on the amount of free ribosomal protein molecules in the cell, as negative feedback regulation at translation initiation stage is well established for the control of ribosomal protein expression (Nomura et al., 1980)

Modulating function (rib class)	$mod_fnc = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$	$\frac{1}{1 + \left(\frac{p_rib}{Krepr}\right)}$	
Parameters/Species	Description	Value	Units
p_rib	ribosomal proteins		molecules
Krepr	repression threshold		molecules
Eluvos	·		_

Translation Elongation Complex formation

- The maturation rate of IC to EC is energy dependent with an activating modulating function that depends on the cell energy levels. The modulating function half-activation threshold is set at the same value as that of translation elongation process. This parameter value can be independently modified but only towards a higher value to prevent ribosome overcrowding on the mRNA molecule.
- 1 energy molecule is consumed per maturation event a GTP molecule is utilised by IF2 in the pathway for 70SIC formation (Gualerzi & Pon, 2015).

Reaction				
Forward rate				
Davis us a ust s		ic_x + a →	ec_x + m_x	(
Reverse rate	tina		<u> </u> (а	\
Energy modula function	ung	mod_fnc_gamma =	$= \left(\frac{\alpha}{K_{gamma}} \right)$	${\perp a}$
Tuttetion			Myuninu	ι ω/
Species				
ic_x		initiation complex of class x = {rib, me	t, hsk}	
ec_x		elongation complex of class x = {rib, n	net, hsk}	
m_x		RBS of class x = {rib, met, hsk}		
a		Intracellular energy molecule		
Parameters		Description Value Units		
kc		rate constant of IC maturation		1/minutes
V		Thursday of half manifesal		
Kgamma		Threshold of half-maximal transpeptidation rate (based on		molecules
		energy levels)		
Fluxes		chergy levelsy		
	= -ic ı	rib * kc * mod_fcn_gamma		
d(ic_met)/dt	= -ic_	met * kc * mod_fcn_gamma		
d(ic_hsk)/dt	= -ic_l	hsk * kc * mod_fcn_gamma		
d(a)/dt	-ic_	rib * kc * mod_fcn_gamma met * kc *mod_fcn_gamma hsk * kc *mod_fcn_gamma		
d(ec_rib)/dt	= +ic_	_rib * kc * mod_fcn_gamma		
d(ec_met)/dt	= +ic_	_met * kc *mod_fcn_gamma		

```
d(ec_hsk)/dt = +ic_hsk * kc * mod_fcn_gamma

d(m_rib)/dt = +ic_rib * kc *mod_fcn_gamma

d(m_met)/dt = +ic_met * kc * mod_fcn_gamma

d(m_hsk)/dt = +ic_hsk * kc *mod_fcn_gamma
```

Translation Protein Synthesis

Assumptions

• Simplified translation elongation model developed in (Weiße et al., 2015). In short, the net rate is dependent on the amino acid length of the protein molecule and is controlled by a modulating function that is activated by increased cellular energy levels.

Reaction			
Forward rate	0 = =0		
_	ec_x + a*lenX	→ p)_X
Reverse rate		/ a	\
Energy modulating function	mod_fnc_gamma =	$=\left(\frac{\alpha}{K_{aamma}}\right)$	$\frac{1}{\sqrt{2}}$
Turiction		Myuninu	ι ω,
Species			
ec_x	elongation complex of class x = {rib, m	et, hsk}	
а	Intracellular energy mollecule		
p_x	protein of class x = {rib, met, hsk}		
Parameters	Description	Value	Units
lenX	Protein length {p_hsk, p_rib, p_met}		amino acids
{lenO,lenR,lenC}			
Kgamma	Threshold of half-maximal		molecules
0.	transpeptidation rate (based on		
	energy levels)		
Fluxes			
d(ec_rib)/dt = -ec	_rib * gmax / lenR *mod_fcn_gamma		
d(ec_met)/dt = -ec	_met * gmax / lenC *mod_fcn_gamma		
d(ec_hsk)/dt = -ec	_hsk * gmax / lenO *mod_fcn_gamma		
d(a)/dt = -ec	_rib * gmax *mod_fcn_gamma		
	_met * gmax *mod_fcn_gamma		
	_hsk * gmax *mod_fcn_gamma		
d(p_rib)/dt = + ec_rib * gmax /lenR *mod_fcn_gamma			
a(p_no)/ac = 1 cc_no gmax/icim mod_icn_gamma			
d(p_met)/dt = + ec_met * gmax /lenC *mod_fcn_gamma			
d(p_hsk)/dt = +ec_hsk * gmax /lenO *mod_fcn_gamma			

Ribosome Assembly

- Ribosomal proteins instantaneously form sets of ribosomal proteins of size equal to the total amino acid mass of an assembled ribosome
- Ribosome Assembly is a single association event where a ribosomal proteins set forms an assembled ribosome

Reaction			
Forward rate	k_form		
	p_rib_set	→ ribo	
Reverse rate			
Species			
p_rib	Free ribosomal proteins		
p_rib_set	<pre>p_rib_set = ribosomal proteins / (lenRibo/lenR)</pre>		
ribo	Ribosomes		
Parameters	Description	Value	Units
lenRibo	Size of ribosome with all its		aa
	ribosomal proteins		
lenR	Size of ribosomal protein		aa
k_form	Rate constant for ribosome		molecules/minute
	assembly		
Fluxes			
d(rib)/dt = -k_form * [p_rib_set] * (lenRibo/lenR)			
$d(Ribo)/dt = + k_f$	orm * [p_rib_set]		

Energy production

- Energy production is limited by a single bottleneck enzyme in the metabolic pathway and is modelled based on Michaelis-Menten reaction rate model
- Efficiency of energy generation is dictate by the quality of the media (ns). The ns variable linearly scales the effectiveness by which energy molecules are produced by the metabolic sector. This simplification has also been used by others (Weiße et al., 2015) and is necessary as the true relationship between media composition/quality and energy molecules production would be very hard to calculate
- The production rate flux is determine by protein molecules that are able to carry out a
 series of chemical reactions that facilitate the conversion of an extracellular nutrient
 molecule to an intracellular energy molecule. Thus, the Vmax, Km, and ns values are not
 meant to represent any "real" values but adjustable quantities that facilitates the
 devotion of amino acid mass to the metabolic proteome sector for the needs of resources
 allocations

Reaction				
Forward rate	ns* ((Vmax	ns* ((Vmax *s0)/(Km + s0))		
	p_ met	\rightarrow a + met		
Reverse rate				
Species				
а	Intracellular energy			
p_met Proteins metabolic class				
Parameters	Description	Value	Units	
ns	Nutrient quality		No units	
Vmax	Catalytic rate of nutrient utilisation		1/minute	
s0	Extracellular concentration of nutrients		molecules	
Km	Half-maximal threshold of nutrient levels utilisation		molecules	
Fluxes				
d(a)/dt = +p_met * ns* ((Vmax *s0)/(Km + s0))				

Energy consumption

- One energy molecule is consumed by each Elongation Complex maturation event
- One energy molecule is consumed by each transpeptidation event in protein synthesis, where the consumption of each protein synthesis event is determined by the aa length of the synthesized protein

	Process 1			
Forward rate	kc * mod_f			
	ic_x + a →	ec_x + m_x		
Reverse rate				
Energy modulating	mod_fnc_gamma =	$=\left(\frac{a}{a}\right)$)	
function		\Kgamma -	+ a/	
Species				
ic_x	initiation complex of class x = {rib, me	t hsk}		
IC_X	initiation complex of class x = (116, 111c	c, 113Kj		
ec_x	elongation complex of class x = {rib, m	et, hsk}		
_				
m_x	RBS of class x = {rib, met, hsk}			
a	Intracellular energy molecule			
		T .	Ι .	
Parameters	Description	Value	Units	
kc	rate constant of EC formation		1/minute	
	from IC			
Kgamma	transpeptidation elongation rate		molecules	
	threshold for translation based			
	on energy levels			
_				
Process 2				
Forward rate		_	d_fcn_gamma	
Poverce rate	ec_x + a*lenX	→ p	_x	
Reverse rate				
Energy modulating		(a)	
function	mod_fnc_gamma =	$\frac{1}{Kgamma}$	$\frac{\overline{a}}{a}$	
		. J		
Species	Species			
ec_x	elongation complex of class x = {rib, m	et, hsk}		
а	Intracellular energy mollecule			
	mustain of along v fails and the little			
p_x	protein of class x = {rib, met, hsk}			

Parameters	Description	Value	Units
lenX {lenO,lenR,lenC}	Protein length {p_hsk, p_rib, p_met}		1/minute
Kgamma	Threshold of half-maximal transpeptidation rate (based on energy levels)		molecules

Fluxes

tinitrate = - (ic_rib + ic_met + ic_hsk) * kc * mod_fcn_gamma

ttrate = - (ec_rib + ec_met + ec_hsk) * gmax * mod_fcn_gamma

d(a)/dt = - tinitrate - ttrate

Phenotypes

Cell size

- Phenomenological model based on a logistic function
- Cell size is increases with increasing availability of intracellular energy (metabolic precursors)
- Cell size is equal to an intracellular amino acid count, while other biomolecules are not considered (ex. Lipids, carbohydrates, DNA, RNA etc). This is because the model here aims to describe the competition between various cellular processes for proteome space and protein based biomolecules.
- facilitates the dilution of intracellular species and redistribution of cellular content according to the reaction fluxes.

Phenotype Equation					
cell size	minimal_mass + (max_inf / (1 + exp(- inlation_gradient * (a – mid_inf))))				
Species					
а	Intracellular energy molecule				
Parameters	Description	Value	Units		
min_mass	Minimal cell mass that is allowed for the cell to assume even in the absence of intracellular energy		amino acids		
max_inf	Maximum inflation of cell size upon high levels of cell energy		amino acids		
mid_inf	Energy levels inflection point of half maximal cell size inflation		molecules		

Growth rate

- Growth of the system is defined as the number of transpeptidation (amino acid incorporation in protein molecules) events per unit of time.
- Normalised to 1 cell unit set by cell mass variable.
- facilitates the dilution of intracellular species and redistribution of cellular content according to the reaction fluxes.

Phenotype Equation					
Cell growth rate	lam = ttrate / cell size				
	where: ttrate = (ec_rib + ec_met + ec_hsk) * gmax * mod_fcn_gamma				
Species					
ec_x	Elongation complexes of class x = {rib, met, hsk}				
Parameters	Description	Value	Units		
Kgamma	Threshold of half-maximal transpeptidation rate (based on energy levels)		molecules		