Report No.: 31352796.001 Page 1 of 25

Electromagnetic Compatibility Test Report

Prepared in accordance with

FCC Part 15C, RSS-210 Issue 8

On

Wireless Wall Switch

sPODMR WR

Family of Devices

Sensor Switch, Inc. 900 Northrop Road Wallingford, CT 06492 USA

Prepared by:

TUV Rheinland of North America, Inc.

Report No.: 31352796.001 Page 2 of 25

Manufacturer's statement - attestation

The manufacturer; Sensor Switch, Inc., as the responsible party for the equipment tested, hereby affirms:

- a) That he has reviewed and concurs that the test shown in this report are reflective of the operational characteristics of the device for which certification is sought;
- b) That the device in this test report will be representative of production units;
- c) That all changes (in hardware and software/firmware) to the subject device will be reviewed.
- d) That any changes impacting the attributes, functionality or operational characteristics documented in this report will be communicated to the body responsible for approving (certifying) the subject equipment.

William Fassbender	Wile Fassle
Printed name of official	Signature of official
900 Northrop Road Wallingford, CT 06492 USA	7 November 2013
Address	Date
203-265-2842	fozzy@sensorswitch.com
Telephone number	Email address of official

Report No.: 31352796.001 Page 3 of 25

Clie	1	•			illiam Fassbender 3-265-2842 / 203-269-9621 zzy@sensorswitch.com	
Identification:	Wireless Wall Switch		S	erial No.:	Production Prototype	
Test item:	sPODMR WR	sPODMR WR			5 Nov 2013	
Testing location:	TUV Rheinland of North America 762 Park Avenue Youngsville, NC 27596-9470 U.S.A.			Tel: (919) 554-3668 Fax: (919) 554-3542		
Test specification:	Emissions: FCC Part 15, Subpart C, RSS-210 Issue 8: FCC Parts 15.207(a) and RSS-GEN 7.2.4, FCC Parts 15.249(d), 15.209, 15.215(c) and RSS-210 A2.9, RSS-GEN 7.2.1 FCC Part 15.249 and RSS-210 Annex 2.9, FCC Parts 15.249(a), 15.249(c), RSS-210 A2.9(a), FCC Part 2.1093 and RSS-102, Issue 4,					
Test Result	The above product was for	und to be (Compl	iant to the	above test standard(s)	
tested by: Mark Ryar		revi	reviewed by: Michael Moranha			
8 November 2013 Date Other Aspects:	Signature	_	vember 2 Date None	2013	iha / Moranha Signature	
	pliant, Complies = passed bliant, Does Not Comply = failed licable					
-				**		

Industry Canada

90552 and 100881

Testing Cert #3331.05

2932H-1 and 2932H-2

Report No.: 31352796.001

Page 4 of 25

TABLE OF CONTENTS

1 G	GENERAL INFORMATION	5
1.1 1.2 1.3 1.4	SCOPE PURPOSE REVISION HISTORY SUMMARY OF TEST RESULTS	5
2 L	ABORATORY INFORMATION	7
2.1 2.2 2.3 2.4 2.5	MEASUREMENT EQUIPMENT USED	8 8 9
3.1 3.2	PRODUCT INFORMATION PRODUCT DESCRIPTION EQUIPMENT MODIFICATIONS	9
	RADIATED EMISSIONS IN TRANSMIT MODE	
4.1 4.2 4.3 4.4	RADIATED EMISSIONS - FCC PARTS 15.249, RSS-210 A2.9(A)	16
5 R	RF EXPOSURE	24
5.1	EXPOSURE REQUIREMENTS – FCC KDB # 447498 DO1 AND RSS-102 ISSUE 4	24

Report No.: 31352796.001 Page 5 of 25

1 General Information

1.1 Scope

This report is intended to document the status of conformance with the requirements of the FCC Part 15C, RSS-210 Issue 8 based on the results of testing performed on 5 Nov 2013 on the Wireless Wall Switch, Model No. sPODMR WR, manufactured by Sensor Switch, Inc. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT (Equipment Under Test) in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

1.3 Revision History

Revision	Date	Description of Revision
	8 Nov 2013	Initial Release

Report No.: 31352796.001 Page 6 of 25

	4 0		(T (D)						
1.	.4 Sum	ıma	ry of Test Results						
Annlicant	Sensor Swi	,		Tel	203-265-2842	2	Contact	William Fassbe	ender
Applicant	Applicant 900 Northrop Road Wallingford, CT 06492 USA			Fax	203-269-962	1	e-mail	fozzy@sensors	witch.com
Description		Wi	reless Wall Switch	Model		sPO	DMR WR		
Serial Num	ber	Pro	oduction Prototype	Test V	oltage/Freq.	120	VAC / 60Hz		
Test Date C	Completed:	5 N	Jov 2013	Test E	ngineer	Mar	k Ryan		
Sta	ndards		Description		Severity Leve	l or L	imit	Worst-case Values	Test Result
FCC Part 15 Standard	5, Subpart C		Radio Frequency Devices- Subpart C: Intentional Radiators	See cal	See called out parts below			See Below	Complies
RSS-210 Iss Standard	sue 8		Low-Power Licence-exempt Radiocommunication Devices Category I Equipment	See called out parts below			See Below	Complies	
FCC Part 15 RSS-210 Ar	,		Operation within the band 902 to 928 MHz	See cal	lled out parts b	elow		See Below	Complies
FCC Parts 1 15.249(c), R	5.249(a), RSS-210 A2.9	9(a)	Radiated Output Power for Fundamental and Harmonic Frequencies	Harmo	Shall not exceed nics: Shall not V/m) at 3m, (u	excee	d 500μV/m	46 mV/m 0 μV/m -	Complies
	5.249(d), 215(c) and RS SS-GEN 7.2		Out-of-Band Spurious Emissions (EUT in Transmit Mode)	Below	the applicable	limits		Not measureable	Complies
FCC Parts 1 RSS-GEN 7	` '	d Conducted Emissions on AC Mains		FCC Part 15.207, 150kHz - 30MHz			49.87 dBμV	Complies	
RSS-210 A1	1.1.3		Occupied Bandwidth	99% BW \leq 0.5% of center freq.			310 kHz	Complies	
FCC Part 2. RSS-102, Is			RF Exposure	SAR o	r MPE Require	ments		0.63 mW	Complies

Report No.: 31352796.001 Page 7 of 25

2 Laboratory Information

2.1 Accreditations and Endorsements

2.1.1 US Federal Communications Commission

TUV Rheinland of North America located at 762 Park Avenue, Youngsville, NC 27596-9470 is accredited by the commission for performing testing services for the general public on a fee basis. This laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (Registration No 90552 and 100881). The laboratory scope of accreditation includes: Title 47 CFR Part 15, and 18. The accreditation is updated every 3 years.

2.1.2 ILAC / A2LA

The laboratory has been assessed and accredited by A2LA in accordance with ISO Standard 17025:2005 (Certificate Number: 3331.05, Master Code: 134288). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 Industry Canada

Registration No.: 2932H-1 The OATS has been accepted by Industry Canada to perform testing to 3 and to 10 meters, based on the test procedures described in ANSI C63.4-2009.

Registration No.: 2932H-2 The 5 meter chamber has been accepted by Industry Canada to perform testing to 3 meters, based on the test procedures described in ANSI C63.4-2009.

2.1.4 Japan – VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from Information Technology Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland at the 762 Park Ave. Youngsville, N.C 27596 address has been assessed and approved in accordance with the Regulations for Voluntary Control Measures. (Laboratory Registration No: A-0034).

Report No.: 31352796.001 Page 8 of 25

2.1.5 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength
$$(dB\mu V/m) = RAW - AMP + CBL + ACF$$

Where: $RAW = Measured level before correction (dB<math>\mu$ V)

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

$$\mu V/m = 10^{\frac{dB\mu V/m}{20}}$$

Sample radiated emissions calculation @ 30 MHz

Measurement +Antenna Factor-Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)

$$25 dBuV/m + 17.5 dB - 20 dB + 1.0 dB = 23.5 dBuV/m$$

2.2 Expanded Measurement Uncertainty Emissions

Per CISPR 16-4-2:2011	$ m U_{lab}$	$ m U_{cispr}$								
Radiated Disturbance @ 3m,	Radiated Disturbance @ 3m, 10m									
30 MHz – 1,000 MHz	Horz. $3m = 4.52$, Horz. $10m = 4.51$	5.2 dB								
1.0 GHz – 6.0 GHz	3m = 4.25	5.2 dB								
6.0 GHz – 18.0 GHz	3m = 4.93	5.5 dB								
Conducted Disturbance @ M	ains Terminals									
9 kHz – 150 kHz	2.84 dB	4.0 dB								
150 kHz – 30 MHz	3.33 dB	3.6 dB								
The estimated combined standard uncertainty for harmonic current and flicker measurements; PM6000 is \pm 2.5%.										

2.3 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

TUV Rheinland of North America, Inc., 762 Park Avenue, Youngsville, NC 27596-9470, Tel: 919-554-3668, Fax: 919-554-3542

Report No.: 31352796.001 Page 9 of 25

2.4 Software Used

Manufacturer	Name	Version
Quantum Change/EMC Systems LLC.	Tile	3.2U
TUV	Alt "R"	1
TUV	Alt "C"	1

2.5 Measurement Equipment Used

Equipment	Manufacturer	Model #	Serial/Inst #	Last Cal dd/mm/yy	Next Cal dd/mm/yy
	Radiated Emi	ssions (5 Meter Chamber a	nd Bench top)		
Receiver, EMI	Rohde & Schwarz	ESIB40	100043	13-Aug-13	13-Aug-14
Amplifier, preamp	Agilent Technologies	8449B	3008A01480	14-Aug-13	14-Aug-15
Ant. BiconiLog	EMCO	3142	1006	14-Nov-12	14-Nov-14
Antenna Horn 1-18GHz	EMCO	3115	5770	26-Sep-12	26-Sep-14
Cable, Coax	MicroCaox	MKR300C-0-0-1200-500500	002	14-Aug-13	14-Aug-14
Cable, Coax	MicroCaox	MKR300C-0-1968-500310	005	14-Aug-13	14-Aug-14
Cable, Coax	MicroCaox	UFB29C-1-5905-50U-50U	009	14-Aug-13	14-Aug-14
	Conducte	d Emissions (AC/DC and S	ignal I/O)		
Receiver, EMI	Rohde & Schwarz	ESCI 7	100917	13-Aug-13	13-Aug-14
Cable, Coax	Pasternack	RG-223	051	14-Aug-13	14-Aug-14
LISN 15-18 (NSLK 8126)	Schwarzbeck Mess- Electronik	NSLK 8126	003885	13-Aug-13	13-Aug-15
Transient Limiter	Schaffner	CFL-9206	1649	13-Aug-13	13-Aug-15
	G	eneral Laboratory Equipme	ent		
Meter, Multi/ Clamp	Fluke	381	14250057	13-Aug-13	13-Aug-14
Meter, Temp/Humid/Barom	ExTech	SD700	Q677933	06-May-13	06-May-14

3 Product Information

3.1 Product Description

The EUT is a wireless wall switch that is paired with a companion wireless ceiling mount occupancy sensor. The sPODMR WR replaces an existing wall switch to allows the ceiling mount sensor to control the room lights.

3.2 **Equipment Modifications**

No modifications were needed to bring product into compliance.

Report No.: 31352796.001 Page 10 of 25

4 Radiated Emissions in Transmit mode

4.1 Radiated emissions - FCC Parts 15.249, RSS-210 A2.9(a)

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following limits:

Fundamental Frequency: $2400 \text{ to } 2483.5 \text{ MHz} - 50 \text{ mV/m} (94 \text{ dB } \mu\text{V/m}) \text{ at } 3\text{m}.$

Harmonic Frequencies $-500 \mu V/m$ (54 dB $\mu V/m$) at 3m.

4.1.1 Over View of Test

Results	Complies (as tested	l per this	Date	5 Novemb	er 2013				
Standard	· ·	FCC Parts 15.205, 15.209, 15.215(c), 15.249(a), 15.249(c), 15.249(d) RSS-210 A2.9, and RSS-GEN 7.2.1							
Product Model	sPODMR WR				Serial#	Produ	action Prototy	pe	
Test Set-up	Tested in a 5m Semi 80cm above the grou			•		a 1.0m x	1.5m non-co	nductive table	
EUT Powered By	120 VAC / 60Hz	Temp	72° F	Н	umidity	35%	Pressure	1015 mbar	
Perf. Criteria	(Below Limit)		Perf. V	erif	ication	Read	ings Under L	imit	
Mod. to EUT	None		Test Pe	rfo	rmed By	Mark	Ryan		

4.1.2 Test Procedure

Testing was performed in accordance with 47 CFR Part 15, ANSI C63.10:2009, RSS-GEN Issue 2.

These test methods are listed under the laboratory's A2LA Scope of Accreditation.

4.1.3 Deviations

Since all emissions outside the band are within the limits of FCC Part 15.209 and RSS-GEN 7.2.1, the emissions shown below are also compliant with FCC Parts 15.205, 15.209, 15.215(c), 15.249(d), RSS-210 A8.5, and RSS-GEN 7.2.1.

4.1.4 Final Test

All final radiated spurious emissions measurements were below (in compliance) the limits.

The worst –case emissions are shown below. All other emissions are on file at TUV Rheinland.

Report No.: 31352796.001 Page 11 of 25

4.1.4.1 Worst Case Emissions inside the Frequency Band

Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Equivalent	Spec	Margin
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	3m Field	Limit	to Limit
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(mV)	(mV)	(mV)
Orientati	ion 1										
902.88	Н	1.3	219	63.78	0.00	3.56	22.50	89.84	31.0	50.0	-19.00
902.88	V	1	54	67.20	0.00	3.56	22.50	93.26	46.0	50.0	-4.00
Orientati	ion 2										
902.88	Н	1.4	268	64.68	0.00	3.56	22.50	90.74	34.4	50.0	-15.60
902.88	V	1	141	60.45	0.00	3.56	22.50	86.51	21.1	50.0	-28.90
Orientati	ion 3										
902.88	Н	1.3	157	65.44	0.00	3.56	22.50	91.50	37.6	50.0	-12.40
902.88	V	1	271	66.96	0.00	3.56	22.50	93.02	44.8	50.0	-5.20
			–	E: 11\/ 1	E18.4.3.4.1		0 11				1

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor ± Uncertainty

Notes: This highlighted frequency and orientation was worst case

The above emissions are with the EUT set for continuous transmission, there are no duty cycle corrections. used on these measurements. This represents the absolute worst-case scenario.

4.1.4.1 Maximum Time-weighted Emission:

The Field strength of the EUT complies to the rules without the inclusion of a -20dB time-weighted averaging factor. This is considered to be absolute worst-case.

Report No.: 31352796.001 Page 12 of 25

4.1.4.2 Emissions Outside the Frequency Band:

Radiated Emissions - 30 MHz to 1000 MHz Horizontal

Emission Freq	ANT Polar	ANT Pos	Table Pos	FIM Value	Amp Gain	Cable Loss	ANT Factor	E-Field Value	Spec Limit	Spec Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
(2)	(1,,,,,		(4.09)	(4.24.1)	(0.2)	(0.2)	(02,)	(0.20.17.1.)	(0.20.17)	(5.2)
								-		

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty Combined Standard Uncertainty $u_c(y) = \pm 1.6$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes: All emissions were more that 20dB below the limit or below the noise floor of the instrumentation. The signals shown below 200 MHz are anomalies in the preamp of the measuring spectrum analyzer.

A tuned notch filter at the transmitter fundamental frequency (902.875MHz) was used.

Report No.: 31352796.001 Page 13 of 25

Radiated Emissions - 30 MHz to 1000 MHz

Vertical

Emission Freq (MHz)	ANT Polar (H/V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/m)	Spec Limit (dBuV/m)	Spec Margin (dB)
_										

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty

Combined Standard Uncertainty $U_c(y) = \pm 1.6$ dB Expanded Uncertainty $U = k U_c(y)$ k = 2 for 95% confidence

Notes: All emissions were more that 20dB below the limit or below the noise floor of the instrumentation. The signals shown below 200 MHz are anomalies in the preamp of the measuring spectrum analyzer.

A tuned notch filter at the transmitter fundamental frequency (902.875MHz) was used.

Report No.: 31352796.001 Page 14 of 25

Worst Case Radiated Emissions – 1 to 10 GHz Horizontal

Emission Freq (MHz)	ANT Polar (H/V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/m)	Spec Limit (dBuV/m)	Spec Margin (dB)
,				,					,	, ,

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty Combined Standard Uncertainty $u_c(y) = \pm 1.6$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes: A tuned notch filter was used for the fundamental frequency.

No measureable signals were noted. All emissions are below the noise floor of the spectrum analyzer

Report No.: 31352796.001 Page 15 of 25

Worst Case Radiated Emissions - 1 to 10 GHz

Vertical

Emission Freq (MHz)	ANT Polar (H/V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/m)	Spec Limit (dBuV/m)	Spec Margin (dB)
,				,				,	, ,	, ,

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor ± Uncertainty

Combined Standard Uncertainty $U_c(y) = \pm 1.6$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes: A tuned notch filter was used for the fundamental frequency.

No measureable signals were noted. All emissions are below the noise floor of the spectrum analyzer

Report No.: 31352796.001 Page 16 of 25

4.2 Band Edge requirements - FCC Part 15.249(d), RSS-210 2.2

4.2.1 Test Over View

Results	Complies (as tested per this report)						5 Nov	vember 2013		
Standard	FCC Part 15.249(d),	, RSS 210	2.2							
Product Model	sPODMR WR Serial#					Prod	Production Prototype			
Test Set-up	Direct Measurement	Direct Measurement from antenna port								
EUT Powered By	3.0 V DC Lithium battery	Temp	72° F	•			Pressure	1015 mbar		
Perf. Criteria	(Below Limit)	v Limit) Perf. Verif			ication	Read	Readings Under Limit			
Mod. to EUT	None		Test Performed By			Mark Ryan				

4.2.2 Test Procedure

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Sec. 15.209, whichever is the lesser attenuation.

4.2.3 Deviations

There were no deviations from the test methodology listed in the test plan.

4.2.4 Final Test

The EUT met the performance criteria requirement as specified in the standards.

Report No.: 31352796.001 Page 17 of 25

Notes: Measured using the Peak detector. Band Edge is at 902 MHz (Line F1 and Marker 2). The nearest restricted band (614MHz) which is 288 MHz below the band edge

The emissions at the band edge is more than -58dBc at 902 MHz.

Figure 1: Lower Band Edge Measurement (Radiated Emission)

Report No.: 31352796.001 Page 18 of 25

Notes: Measured using the Peak detector. Band Edge is at 928 MHz (Line F1 and Marker 2).

The nearest restricted band (960 MHz) which is 32 MHz above the band edge

The emission at the band edge is more than -57dBc at 928 MHz.

Figure 2: Upper Band Edge Measurement (Radiated Emission)

The EUT is compliant with the rules.

Report No.: 31352796.001 Page 19 of 25

4.3 Conducted Emissions on AC Mains – FCC 207(a) and RSS-GEN 7.2.4

This test measures the electromagnet levels of spurious signals generated by the EUT on the AC power line that may affect the performance of other nearby electronic equipment.

4.3.1 Over View of Test

Results	Complies (as tested per this report)						4 Noven	nber 2013		
Standard	FCC Parts 15.207(a)	FCC Parts 15.207(a) and RSS-GEN 7.2.4								
Product Model	sPODMR WR			Sei	rial#	Produ	Production Prototype			
Test Set-up	EUT placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane, 40cm from a vertical ground plane.									
EUT Powered By	120 VAC/60Hz	Temp	73° F	Humidity		31%	Pressure	1017 mbar		
Frequency Range	150 kHz – 30 MHz									
Perf. Criteria	(Below Limit)	Perf.	Perf. Verification			Readings Under Limit for L1 & Neutral				
Mod. to EUT	None	Test P	Test Performed By			Mark Ryan				

4.3.1 Test Procedure

Conducted and FCC emissions tests were performed using the procedures of ANSI C63.4:2009 including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration.

The frequency range from 150kHz - 30MHz was investigated for conducted emissions.

EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane, 40cm from a vertical ground plane, using procedures specified in the test plan and standard.

4.3.1 Deviations

There were no deviations from the test methodology listed in the test plan for the conducted emission test.

4.3.2 Final Test

All final conducted emissions measurements were below (in compliance) the limits.

Report No.: 31352796.001 Page 20 of 25

4.3.3 Final data and Graphs

Conducted Emissions @ 120VAC/60Hz

Line 1

Freq	ID	Quasi FIM	Ave FIM	Cable Loss	TL/LISN	Limit QP	Limit AVE	Margin QP	Margin AVE
(MHz)	(1,2,3,N)	(dBµV)	(dBµV)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)	(dB)
0.46	1	40.44	18.75	0.04	9.94	56.73	46.73	-6.31	-18.00
0.73	1	39.87	17.52	0.05	9.95	56.00	46.00	-6.12	-18.47
1.14	1	34.61	16.25	0.06	9.97	56.00	46.00	-11.35	-19.71
1.59	1	38.67	19.68	0.08	9.99	56.00	46.00	-7.26	-16.25
4.94	1	33.75	19.09	0.15	10.14	56.00	46.00	-11.97	-16.63
12.99	1	33.34	18.78	0.25	10.43	60.00	50.00	-15.98	-20.54

Quasi Spec Margin = Quasi FIM + Cable Loss + TL/LISN - QP Limit Ave Spec Margin = Ave FIM + Cable Loss + TL/LISN CF - Ave Limit

Notes: The highlighted emission is the worst case. The Quasi-Peak value is 49.87 dBµV at 730 kHz.

Report No.: 31352796.001 Page 21 of 25

Conducted Emissions @ 120VAC/60Hz

Neutral

Freq	ID	Quasi FIM	Ave FIM	Cable Loss	TL/LISN	Limit QP	Limit AVE	Margin QP	Margin AVE
(MHz)	(1,2,3,N)	(dBµV)	(dBµV)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)	(dB)
0.47	N	38.15	26.12	0.04	9.92	56.58	46.58	-8.47	-10.50
0.53	N	36.76	25.03	0.05	9.93	56.00	46.00	-9.26	-10.99
1.14	N	33.54	24.25	0.06	9.96	56.00	46.00	-12.43	-11.72
1.72	N	34.99	24.98	0.08	10.00	56.00	46.00	-10.93	-10.94
4.94	N	30.11	23.23	0.15	10.16	56.00	46.00	-15.59	-12.47
14.12	N	29.33	22.11	0.26	10.42	60.00	50.00	-19.99	-17.21

Quasi Spec Margin = Quasi FIM + Cable Loss + TL/LISN - QP Limit Ave Spec Margin = Ave FIM + Cable Loss + TL/LISN CF - Ave Limit

Notes:

Report No.: 31352796.001 Page 22 of 25

4.4 99% Power Bandwidth

For the purpose of Section A1.1, the 99% bandwidth shall be no wider than .25% of the center frequency for devices operating between 70-900MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency.

This device operates above 900 MHz.

4.4.1 Test Over View

Results	Complies (as tested	Date	Date 6 November 2013							
Standard	RSS-210 Section Al	RSS-210 Section A1.1.3								
Product Model	Wireless Wall Switch Serial#						Production Prototype			
Test Set-up	Direct Measurement	Direct Measurement from antenna port								
EUT Powered By	120VAC / 60Hz	Temp	72° F	•		35%	Pres	ssure	1015 mbar	
Perf. Criteria	(Below Limit)		Perf. Verification			Read	Readings Under Limit			
Mod. to EUT	None		Test Performed By			Mark	Mark Ryan			

4.4.2 Test Procedure

Using the procedures of RSS-GEN section 4.6.1, the 3 kHz resolution bandwidth is 1% of the 300 kHz span. The 10 kHz video bandwidth is >3 times that of the resolution bandwidth.

The limit of the bandwidth would be 0.5% of 902.875 MHz or 4.51 MHz.

4.4.3 Deviations

None.

4.4.4 Final Results

The measured 99% Power Bandwidth is 310 kHz, which is well below the 4.51 MHz bandwidth limit.

The EUT met the performance criteria requirement as specified in the standards.

Report No.: 31352796.001 Page 23 of 25

4.4.5 Final Data

Figure 3 – 99% Power Bandwidth = 310 kHz Span = 1MHz, RBW = 3 kHz, VBW = 10 KHz

The EUT is compliant to the requirements of RSS-210 A1.1.3

Report No.: 31352796.001 Page 24 of 25

5 RF Exposure

5.1 Exposure Requirements – FCC KDB # 447498 DO1 and RSS-102 Issue 4

FCC KDB # 447498 DO1 v05r01 - Mobile and Portable Device RF Exposure and Procedures and Equipment Authorization Policies, Appendix A illustrates a table of approximate SAR Test Exclusion Power Thresholds at Selected Frequencies and Test Separation Distances.

RSS-102 section 2.5.1 states that a device is exempt from SAR evaluation if the frequency is from 3 kHz up to 1 GHz inclusively, and with output power (i.e. the higher of the conducted or radiated (EIRP.) source-based, time-averaged output power) that is less than or equal to 200 mW for general public use...".

5.1.1 Test Procedure determination

If the antenna is located > 20cm from the user, then an MPE calculation is acceptable.

If the antenna is located < 20cm from the user, then a SAR evaluation is required.

5.1.2 Evaluation

The EUT is a wireless wall switch that will be in close proximity to a human hand, where the antenna can be located less than 20cm from the user, therefore a SAR evaluation is required.

5.1.2.1 Evaluation for FCC

FCC 447498 D01 Mobile Portable RF Exposure v05r01, Appendix A lists a SAR test exclusion threshold of 16mW at 900MHz for a worst-case separation distance of 5mm.

The minimum power that requires SAR testing is at 900 MHz at 5mm distance is 16 mW (Worst case).

The maximum EIRP peak power output of the EUT is: -2.0 dBm which is equivalent to 0.63 mW.

The EUT is well below the 16 mW power level required for SAR testing.

5.1.2.2 Evaluation for Industry Canada

The maximum EIRP peak power output of the EUT is: -2.0 dBm which is equivalent to 0.63 mW.

The EUT is well below the 200mW power level.

5.1.3 Conclusion

SAR testing is not required for either FCC or Industry Canada.

Note: the -2.0 dBm power level has not been time-averaged and it is considered the absolute worst case.

Report No.: 31352796.001 Page 25 of 25

5.1.4 Calculated EIRP Level

Notes: The EUT does not have a means to make direct measurements.

Using the maximum QP field of = $93.26 \text{ dB}\mu\text{V/m}$ at 3m (See page 11 of this report).

Per the equation in section 5.4.2 of FCC Document # 558074 D01 Meas Guidance v01;

EIRP = E + 20Log(d) - 104.8, where:

EIRP = the equivalent isotropic radiated power in dBm,

 $E = \text{electric field strength in } dB\mu V / m; E = 93.26 dB\mu V / m,$

d = measurement distance in meters; d = 3,

EIRP = 93.26 + 20Log(3) - 104.8 = 93.26 + 9.54 - 104.8 = -2.0 dBm which is equivalent to: <u>0.63 mW</u>.