Planche 1.

Question de cours. Déterminer si la fonction suivante est injective et/ou surjective : $f(x) = x^2$ définie de \mathbb{R} dans \mathbb{R} . Si f n'est pas injective, trouver une partie \mathbb{R} telle que la restriction de f à cette partie le soit. Déterminer l'image réciproque de [-1,4] et de [1,4] par f.

Exercice 1. Soient E un ensemble et $f: E \to E$ telle que $f \circ f \circ f = f$. Montrer que f est injective si et seulement si f est surjective.

Exercice 2. Soient E un ensemble, $f: \mathcal{P}(E) \to \mathcal{P}(E)$ une application telle que :

$$\forall A,B \in \mathcal{P}(E), (A \subset B \Rightarrow f(A) \subset f(B))$$

Montrer qu'il existe $X \in \mathcal{P}(E)$ tel que f(X) = X. [Attention le X a trouvé est assez chaud à trouver ...]

Planche 2.

Question de cours. Soit n un entier. Étudier l'injectivité, la surjectivité et la bijectivité éventuelle de la fonction suivante :

$$f: \{0, \dots, n\} \longrightarrow \{0, \dots, n\}$$

$$a \longmapsto \begin{cases} a+1 & \text{si } a < n \\ 0 & \text{si } a = n \end{cases}$$

Exercise 1. Soit une application $f: E \to F$. Montrer que f est bijective si et seulement si :

$$\forall A \in \mathcal{P}(E), f(E \setminus A) = F \setminus f(A)$$

Exercice 2. Quelles sont les fonctions injectives de \mathbb{N} dans \mathbb{N} qui vérifient $f(n) \leq n, \forall n \in \mathbb{N}$? Quelles sont les fonctions surjectives de \mathbb{N} dans \mathbb{N} qui vérifient $f(n) \geq n, \forall n \in \mathbb{N}$?

Planche 3.

Question de cours. On pose la fonction suivante :

$$f: [0,4] \longrightarrow [0,2]$$

$$x \longmapsto \begin{cases} x & \text{si } x < 2 \\ 3 - x & \text{si } x \in [2,3] \\ 2 & \text{si } x > 3 \end{cases}$$

Est ce que f est injective, surjective, bijective ? La restriction à [0,2] est elle injective, surjective, bijective ? Calculer $f^{-1}([1,2])$.

Exercice 1. Soit une applicaiton $f: E \to F$. Montrer que pour toute partie A de E, et toute partie B de F, on a :

$$A \subset f^{-1}(f(A))$$
 et $f(f^{-1}(B)) \subset B$

Quid de l'autre inclusion?

Exercice 2. Soit f une fonction de X dans Y. On pose

$$\begin{array}{cccc} \tilde{f}: & \mathcal{P}(X) & \longrightarrow & \mathcal{P}(Y) \\ & A & \longmapsto & f(A) \end{array}$$

Donner une condition nécessaire et suffisante sur f pour que \tilde{f} soit injective. Ainsi qu'une CNS sur f pour \tilde{f} soit surjective.

Solutions - Planche 1.

Question de cours. Comme f(1) = f(-1) alors f n'est pas injective. Comme $f(x) \ge 0$ pour tout $x \in \mathbb{R}$ alors -1 n'est pas atteint par f. Donc f n'est pas surjective. On considère la restriction g de f à \mathbb{R}^+ . La fonction g est alors injective. En effet soient x et y dans \mathbb{R}^+ tels que $x^2 = y^2$. Alors on a x = y ou x = -y. Le deuxième cas est impossible à moins que x = y = 0 car x et y sont positifs.

Remarque : $g: \mathbb{R}^+ \to \mathbb{R}^+$ est surjective. Car pour tout $y \in \mathbb{R}^+$, on peut poser $x = \sqrt{y}$ et on alors $g(x) = x^2 = y$.

$$f^{-1}([-1,4]) = [-2,2]$$

$$f^{-1}([1,4]) = [-2,-1] \bigcup [1,2]$$

Cela se voit sur le graphe de la fonction et cela suffit en général comme démonstration.

Néanmoins cette démonstration n'est pas formelle ... Une vraie démonstration consiste à écrire pour le premier cas que

$$x \in f^{-1}([-1,4]) \iff f(x) \in [-1,4]$$

$$\iff x^2 \in [-1,4]$$

$$\iff -1 \le x^2 \le 4$$

$$\iff x^2 \le 4 \iff -2 \le x \le 2$$

La dernière équivalence se démontre ainsi. Supposons que $x^2 \le 4$. Alors si on a pas $-2 \le x \le 2$ c'est que soit x > 2 et dans ce cas $x^2 > 4$ soit x < -2 et dans ce cas $x^2 > 4$. Dans les deux cas c'est impossible. D'où $-2 \le x \le 2$.

L'autre sens se fait ainsi. Supposons que $-2 \le x \le 2$. Si x est positif alors $x^2 \le 4$ (par croissance de la fonction carré). Sinon x est négatif et on a alors $-x \le 2$. D'où $(-x)^2 \le 4$ et $x^2 \le 4$.

Exercice 1. Supposons f injective. Soit $y \in E$. Comme f(y) = f(f(f(y))). Alors y = f(f(y)) car f est injective. On pose x = f(y). On a alors f(x) = f(f(y)) = y. Donc y a un antécédent par f. Donc f est surjective.

Supposons f surjective. Soient $x, y \in E$ tels que f(x) = f(y). Comme f est surjective, $f \circ f$ est aussi surjective donc il existe x' et y' tel que x = f(f(x')) et y = f(f(y')). Donc f(f(f(x'))) = f(f(f(y'))). Ainsi f(x') = f(y'). En appliquant f, on en déduit que f(f(x')) = f(f(y')). Ce qui se traduit en x = y. Donc f est injective.

Finalement, f est une bijection.

Remarque : autre méthode pour la deuxième implication. On va montrer que $f \circ f = id_E$. Pour ce faire, on prend $y \in E$, il existe $x \in E$ tel que y = f(x). Or f(f(f(x))) = f(x). Donc $f \circ f = id_E$. On en déduit maintenant l'injectivité de f: soient x et x' dans E tels que f(x) = f(x'). On a donc f(f(x)) = f(f(x')). D'où x = x'.

Exercice 2. On pose $A = \{X \in \mathcal{P}(E) : X \subseteq f(X)\}\ \text{et } F = \bigcup_{X \in A} X.$

On va montrer, par double inclusion, que F est fixé par f. Montrons d'abord que $F \subseteq f(F)$. Soit $X \in A$. $X \subseteq F$. Donc par la propriété vérifiée par f, on a $f(X) \subseteq f(F)$. Or $X \subseteq f(X)$. Donc $X \subseteq f(F)$. On en déduit que

$$F = \bigcup_{X \in A} X \subseteq f(F)$$

Montrons maintenant que $f(F)\subseteq F$. Comme $F\subseteq f(F)$ alors $f(F)\subseteq f(f(F))$ par croissance de f. Donc $f(F)\in A$. Donc $f(F)\subseteq \bigcup_{X\in A}X=F$ D'où

$$F = f(F)$$

Solutions - Planche 2.

Question de cours. Vérifions l'injectivité : soit $a, b \in \{0, ..., n\}$ tel que f(a) = f(b). Il faut différencier les différents cas. 1er cas : $a \neq n$ et $b \neq n$. On a alors a+1=b+1. D'où a=b. 2ème cas : a=n et b=n alors a=b. 3ème cas : a=n et $b\neq n$. Donc 0=b+1 c'est impossible. Le 4ème cas $a\neq n$ et b=n est symétrique au 3ème. Finalement, a=b dans tous les cas. Donc f est injective.

Vérifions la surjectivité. Soit $b \in \{0, ..., n\}$. Si b = 0 alors b = f(n). Si $b \neq 0$ alors b = f(b - 1). Donc f est bijective et sa réciproque est donnée par :

$$f^{-1}: \{0,\dots,n\} \longrightarrow \{0,\dots,n\}$$

$$a \longmapsto \begin{cases} n \text{ si } a = 0 \\ a - 1 \text{ si } a > 0 \end{cases}$$

Exercice 1. On procède par double implication.

 \Rightarrow Soit A une partie de E. On procède par double inclusion.

Soit $y \in f(E \setminus A)$, il existe $x \in E \setminus A$ tel que y = f(x).

Supposons que $y \in f(A)$. Il existe alors $x' \in A$ tel que y = f(x') = f(x). Par injectivité, cela implique que x = x'. Or $x \notin A$ et $x' \in A$. C'est impossible. Donc on a l'inclusion :

$$f(E \setminus A) \subseteq F \setminus f(A)$$

Montrons l'autre inclusion. Soit $y \in F \setminus f(A)$. Comme f est surjective, il existe $x \in E$ tel que f(x) = y. Or $y \notin f(A)$, donc $x \notin A$. D'où $y \in f(E \setminus A)$. D'où la seconde inclusion. On conclut :

$$f(E \setminus A) = F \setminus f(A)$$

 \Leftarrow Montrons d'abord l'injectivité de f. Soient $x, x' \in E$ tels que f(x) = f(x'). Supposons que $x \neq x'$. On pose alors $A = \{x\}$, de telle sorte que $x' \notin A$. Comme $f(x') \in f(E \setminus A) = F \setminus f(A)$, on en déduit que $f(x') \neq f(x)$. Ce qui est contradictoire. Donc x = x'. Donc f est injective.

Montrons maintenant la surjectivité. On pose A = E. Comme $f(E \setminus E) = f(\emptyset) = \emptyset = F \setminus f(E)$, on en déduit que f(E) = F. D'où la surjectivité.

Finalement, f est bijective.

Exercice 2. Soit $f: \mathbb{N} \to \mathbb{N}$ vérifiant $f(n) \leq n, \forall n \in \mathbb{N}$ et étant injective. On a f(0) = 0. Montrons par récurrence que $f = id_{\mathbb{N}}$.

L'hypothèse pour le rang 0 est vraie.

Supposons alors que $f(m) = m, \forall m \in \{0, ..., n\}$. On sait que $f(n+1) \leq n+1$. Or f(n+1) < n+1 est impossible car f est injective (les valeurs en dessous de n+1 on déjà été atteintes). Donc f(n+1) = n+1. L'hypothèse est donc encore vraie au rang n+1. Par récurence, on a montré que $f = id_{\mathbb{N}}$.

Réciproquement, l'identité convient pour cette propriété. Donc l'identité est la seule fonction de $\mathbb N$ dans $\mathbb N$ vérifiant cette propriété.

Soit $f: \mathbb{N} \to \mathbb{N}$ vérifiant $f(n) \geq n, \forall n \in \mathbb{N}$ et étant surjective. Montrons de même par récurence que $f = id_{\mathbb{N}}$. Comme f est surjective, alors il existe $m \in \mathbb{N}$ tel que f(m) = 0. Or $f(m) \geq m$. Donc m = 0. L'hypothèse de récurence est donc vraie au rang 0.

Supposons alors que $f(m) = m, \forall m \in [|0,n|]$. Par surjectivité, il existe $m \in \mathbb{N}$ tel que f(m) = n+1. Or $f(m) \geq m$. Donc $m \leq n+1$. Or m < n+1 est impossible car sinon on aurait f(m) = m < n+1 par hypothèse de récurrence. Donc f(n+1) = n+1. L'hypothèse est donc encore vraie au rang n+1. Par récurrence, on a montré que $f = id_{\mathbb{N}}$.

Réciproquement, l'identité convient. Donc l'identité est la seule fonction de $\mathbb N$ dans $\mathbb N$ vérifiant cette propriété.

Solutions - Planche 3.

Question de cours. Voici le graphe de la fonction :

Figure 1: Graphe de la fonction f.

Comme on le voit sur le graphe, f(0) = f(3) = 0. Donc f n'est pas injective. f est surjective. En effet : soit $y \in [0,2]$. Si y = 2 alors y admet 4 pour antécedent. Sinon y < 2 et y admet y pour antécedent (donné par la première partie de la fonction).

La restriction à [0,2] n'est pas injective car f(1) = f(2) = 1. De plus la restriction n'est pas surjective car 2 n'est pas atteint.

$$f^{-1}([1,2]) = [1,2] \bigcup]3,4]$$

Exercice 1. Soit $x \in A$. Alors $f(x) \in f(A)$ et $x \in f^{-1}(f(A))$. Ainsi $A \subseteq f^{-1}(f(A))$. Soit $y \in f(f^{-1}(B))$. Il existe $x \in f^{-1}(B)$ tel que y = f(x). Or $f(x) \in B$, donc $y \in B$. D'où $f(f^{-1}(B)) \subseteq B$. De manière générale les inclusions réciproques de ces deux propriété n'est pas vraie. On peut par exemple définir la fonction f sur $\{1, 2\}$ définie par f(1) = f(2) = 1. On considère $A = \{1\}$. Alors $f(A) = \{1\}$. Mais

définir la fonction f sur $\{1,2\}$ définie par f(1) = f(2) = 1. On const $f^{-1}(f(A)) = \{1,2\}$. Donc on a pas $f^{-1}(f(A)) \subseteq A$.

Exercice 2.

1. Montrons que f est injective si et seulement si \tilde{f} est injective.

Supposons f injective. Montrons que \tilde{f} est injective. Soient A, B des parties de X telles que $\tilde{f}(A) = \tilde{f}(B)$, c'est-à-dire f(A) = f(B). Soit alors $x \in A$. Comme $f(x) \in f(B)$, il existe $y \in B$ tel que f(x) = f(y). Or f est injective, donc $x = y \in B$. Donc $A \subseteq B$. On procède de manière symétrique pour montrer que $B \subseteq A$. D'où A = B et \tilde{f} est injective.

Supposons que \tilde{f} est injective. Soient $x, y \in X$ tels que f(x) = f(y). On pose alors $A = \{x\}$ et $B = \{y\}$. Donc f(A) = f(B). Or \tilde{f} est injective donc A = B, donc x = y. Donc f est injective.

2. Montrons que f est surjective si et seulement si \tilde{f} est surjective.

Supposons f surjective. Montrons que \tilde{f} est surjective. Soit $B \subseteq Y$. On pose $A = f^{-1}(B)$. Alors f(A) = B. En effet, soit $y \in B$. Par surjectivité de f, il existe $x \in X$ tel que f(x) = y. D'où $x \in f^{-1}(B) = A$. Donc $y = f(x) \in f(A)$ et $B \subseteq f(A)$. Soit $y \in f(A)$. Alors il existe $x \in A$ tel que f(x) = y. Or $x \in A = f^{-1}(B)$ d'où $f(x) \in B$. D'où $y = f(x) \in B$. Ainsi on l'autre inclusion $f(A) \subseteq B$ qui nous assure que f(A) = B. On en conclut que f est \tilde{f} est surjective.

Supposons \tilde{f} surjective. Montrons que f est surjective. Soit $y \in Y$. On pose $B = \{y\}$, comme \tilde{f} est surjective, il existe $A \subset X$ tel que f(A) = B. A n'est pas vide car B n'est pas vide. Donc il existe $x \in A$ tel que f(x) = y. Donc f est surjective.