FunSearch & AlphaEvolve

Bartosz Piotrowski

August 21, 2025
The Reasoning Reading Group @ FAIR

Motivation

Preconditions:

- A problem of finding optimal heuristic / program / function.
- A pre-trained, coding-capable LLM.
- An automated evaluator returning a scalar score.

Motivation

Preconditions:

- A problem of finding optimal heuristic / program / function.
- A pre-trained, coding-capable LLM.
- An automated evaluator returning a scalar score.

The simplest strategy:

- generating multiple independent samples from the LLM with non-zero temperature,
- evaluating all of them,
- selecting the best one.

Motivation

Preconditions:

- A problem of finding optimal heuristic / program / function.
- A pre-trained, coding-capable LLM.
- An automated evaluator returning a scalar score.

The simplest strategy:

- generating multiple independent samples from the LLM with non-zero temperature,
- evaluating all of them,
- selecting the best one.

But instead of sampling independently, can we **incorporate the evaluator feedback** into subsequent generations?

FunSearch

Key ingredients:

- best-shot prompting,
- a growing database of programs,
- an evolutionary strategy acting on it.

FunSearch

Database of programs

- Several islands/subpopulations growing independently.
- Higher-scoring programs, but also shorter ones, are prioritized.
- Less good programs are eventually discarded.
- Different islands are mixed with each other to an extent.
- Why multiple islands? For diversity.

Best-shot prompting

- *k* good programs per prompt sampled, for each island.
- Information which one is better incorporated into the prompt (v0, v1, ...).
- In the actual experiments, k = 2.

Other details

- Model:
 - Codey, a PaLM2 model fine-tuned on code.
 - Smaller, faster-inference model chosen.
- Implementation with three asynchronous workers:
 - database,
 - generator,
 - evaluator.
- Prompting with templates / skeletons of programs.
 - The LLM asked to modify only the essential function.

Problems tackled

Two known combinatorics problems:

- Cap set problem.
- (Online) bin packing.

n	3	4	5	6	7	8
Best known	9	20	45	112	236	496
FunSearch	9	20	45	112	236	512

Cap set problem template

```
"""Finds large cap sets."""
import numpy as np
import utils capset
def main(n):
  """Runs `solve` on `n`-dimensional cap set and

→ evaluates the output."""

 solution = solve(n)
 return evaluate (solution, n)
def evaluate(candidate set, n):
  """Returns size of candidate set if it is a cap

→ set, None otherwise, """

 if utils capset is capset (candidate set, n):
   return len(candidate set)
 else:
   return None
def solve(n) .
  """Builds a cap set of dimension `n` using

→ `priority` function."""
 # Precompute all priority scores.
 elements = utils capset.get all elements(n)
 scores = [priority(el, n) for el in elements]
 # Sort elements according to the scores.
 elements = elements[np.argsort(scores,

        kind='stable')[::-1]]
 # Build `capset` greedily, using scores for
 → prioritization.
 capset = []
 for element in elements:
   if utils capset.can be added(element, capset):
     capset.append(element)
 return capset
# Function to be evolved by FunSearch.
def priority(element, n):
  """Returns the priority with which we want to add
 → `element` to the cap set."""
 return 0.0
```

Cap set solution – the priority function

```
def priority(el: tuple[int,...],

    n: int) → float:

 score = n
 in el = 0
 el count = el.count(0)
 if el count == 0:
   score += n**2
   if el[1] == el[-1]:
     score *= 1.5
   if el[2] == el[-2]:
     score *= 1.5
   if el[3] == el[-3]:
     score *= 1.5
 else:
   if el[1] == el[-1]:
     score *= 0.5
   if el[2] == el[-2]:
     score *= 0.5
  for e in el:
   if e == 0:
     if in el == 0:
       score *= n * 0.5
     elif in el == el count - 1:
       score *= 0.5
     else:
       score *= n * 0.5 ** in el
     in el += 1
   else:
     score += 1
  if el[1] == el[-1]:
   score *= 1.5
  if el[2] == el[-2]:
   score *= 1.5
 return score
```

AlphaEvolve

tldr: FunSearch scaled-up in multiple dimensions.

FunSearch [83]	AlphaEvolve		
evolves single function	evolves entire code file		
evolves up to 10-20 lines of code	evolves up to hundreds of lines of code		
evolves code in Python	evolves any language		
needs fast evaluation (≤ 20min on 1 CPU)	can evaluate for hours, in parallel, on accelerators		
millions of LLM samples used	thousands of LLM samples suffice		
small LLMs used; no benefit from larger	benefits from SOTA LLMs		
minimal context (only previous solutions)	rich context and feedback in prompts		
optimizes single metric	can simultaneously optimize multiple metrics		

AlphaEvolve – notable differences

- Larger base LLMs (Gemini 2.0 Flash, Gemini 2.0 Pro).
- Much richer prompts:
 - context for the problem provided,
 - detailed evaluation results included,
 - meta prompt evolution.
- Output format: a **diff** rather than a new program version.
- Evaluation:
 - many evaluators,
 - including LLM judges.
- Improved evolution strategy:
 - different islands (as before),
 - MAP elites algorithm.

Problems tackled

50 mathematical problems:

- Fast matrix multiplication, kissing number problem, ...
- For 75% problems AlphaEvolve matched the optimal known solution.
- For 20% problems AlphaEvolve found better solution.

Also practical problems related to computational infrastructure:

- Scheduling jobs on a cluster, optimizing JAX kernel, . . .
- Some of the solutions found by AlphaEvolve went into production at Google.

Optimizing matrix multiplications

- The simple algorithm for multiplying $n \times m$ and $m \times k$ matrices requires nmk scalar multiplications.
- But Volker Strassen in 1969 showed it can be done with fewer multiplications.
- The optimal algorithm in general not known.
- AlphaEvolve found improvements for multiple specific cases.

$\langle m, n, p \rangle$	best known [reference]	AlphaEvolve
$\langle 2, 4, 5 \rangle$	33 [42]	32
$\langle 2, 4, 7 \rangle$	46 [93]	45
$\langle 2, 4, 8 \rangle$	52 [93]	51
$\langle 2, 5, 6 \rangle$	48 [93]	47
$\langle 3, 3, 3 \rangle$	23 [52]	23
$\langle 3, 4, 6 \rangle$	56 [48]	54
$\langle 3, 4, 7 \rangle$	66 [91]	63
$\langle 3, 4, 8 \rangle$	75 [91]	74
$\langle 3, 5, 6 \rangle$	70 [48]	68
$\langle 3, 5, 7 \rangle$	82 [91]	80
$\langle 4, 4, 4 \rangle$	49 [95]	48
$\langle 4, 4, 5 \rangle$	62 [47]	61
$\langle 4, 4, 7 \rangle$	87 [93]	85
(4, 4, 8)	98 [95]	96
$\langle 4, 5, 6 \rangle$	93 [48]	90
$\langle 5, 5, 5 \rangle$	93 [72]	93

Ablations

Closing remarks

- FunSearch/AlphaEvolve can be seen as:
 - mechanizing effective interaction with the LLM,
 - complex meta-generation framework.¹
- An interesting trade-off:
 - smaller, less clever, but faster LLM = more samples (FunSearch) vs
 - larger, more clever, but slower LLM = higher-quality samples (AlphaEvolve).
- Can we adapt the AlphaEvolve to formal proving?
 - A notion of partial proof progress would be needed.
 - But isn't it similar to what Seed Proved does at test time?
- Is AlphaEvolve better than, say, GRPO fine-tuning?
- AlphaEvolve could be distilled into a better base LLM, which would result in meta-evolution.
- Open-source implementation: OpenEvolve.

Beyond Decoding: Meta-Generation Algorithms for Large Language Models

¹See a nice NeurIPS tutorial: