

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт информационных технологий Кафедра вычислительной техники

Отчет по лабораторной работе №2

по дисциплине

«Архитектура процессоров и микропроцессоров»

Выполнил: студент группы ИВБО-02-19

Принял: старший преподаватель ка-

федры ВТ

К. Ю. Денисов

Ю. М.Скрябин

Москва 2021

1 Цель работы

Исследовать работу с массивом и арифметические операции процессора CPU580.

2 Индивидуальный вариант №9

Задание 1

Составить программу вычисления выражения:

n

$$N = \sum ai = a1 + a2 + a3 + ... + an$$

 $i=1$

где аі – число натурального ряда, начиная с "1".

n — количество чисел, при n = 90

Задание 2

Составить программу деления однобайтных двоичных чисел.

3 Выполнение работы

3.1 Задание 1

Описание используемых регистров (табл. 1):

Таблица 1. Назначения регистров

Регистр	Назначение
A	Аккумулятор, где происходят все действия и результат
В	Число для сравнения
С	Прибавляемое число, выполняющее роль X_i в исходной формуле

Программа (табл. 2):

Таблица 2. Код программы

No	Команда	Описание
0	JMP 1	Прыжок по адресу 1
1	MVI A,01	Занесение значения 1 в регистр А (аккумулятор)
2	MVI C,01	Занесение значения 1 в регистр С
3	MVI B,5A	Занесение значения 90 в регистр В
4	INR C	Инкремент регистра С
5	ADD C	Сложение значения регистра С с аккумулятором(A)
6	CMP B	Сравнение аккумулятора с В (через вычитание А из В)
7	JNZ 4	Если флаг нуля после сравнения не обнулился - прыгаем по адресу 4 в начало цикла
8	HLT	Задержка

Описание алгоритма:

Записываем в аккумулятор и в переменную, которую будем прибавлять, число 1 (1-2). В регистр для сравнения, по заданию, записываем число 90 (3).

Увеличиваем X_i (4) и прибавляем к аккумулятору (5). Если $X_i = 90$, конец программы, иначе перейти на шаг 4.

3.2 Задание 2

Описание используемых регистров (табл. 3):

Таблица 3. Назначения регистров

Регистр	Назначение
В	Делитель
С	Делимое
D	Остаток
	Счетчик
Е	цикла
Н	Результат

Программа (табл. 4):

Таблица 4. Код программы

0	MVI E 07	Счетчик цикла
1	LXIB, N1,	Загружаем из памяти делимое - число N1,
	N2	делитель - число N2
2	MOV A, C	
3	RAL	Сдвиг делимого
4	MOV C, A	
5	MOV A, D	Carry and an analysis of a station
6	RAL	Сдвигаем значение частичного остатка
7	SUB B	Вычитаем делитель
8	JNC 10	Если происходит переполнение -
9	ADD B	восстанавливаем значение частичного остатка
10	MOV D, A	Возвращаем ЧО в регистр
11	СМС	Инвертируем перенос, так как если он произошел, то произошло переполнение, а значит вычитание делителя из ЧО нельзя производить
12	MOV A, H	
13	RAL	Запоминаем перенос
14	MOV H, A	
15	DCR E	Уменьшаем счетчик циклов
16	JNZ 2	Цикл - пока счетчик не равен 0
17	HLT	Иначе, конец программы

Описание алгоритма:

В данном алгоритме деление происходит практически также как при делении в столбик. Мы берем число с разрядностью вдвое больше исходного делимого и начинаем вычитать делитель, начиная со старшего разряда и каждый раз сдвигаясь к младшим. При вычитании, если мы получаем отрицательный

результат, значит частичный остаток все ещё больше делителя, поэтому необходимо восстановить его до прежнего значения и продолжить выполнение (шаг 8-9). Подробное описание шагов приведено в табл. 4.

Вывод

В ходе данной практической работы мы научились реализовывать простые алгоритмы при помощи языка ассемблера CPU580. Алгоритм деления не является оптимальным, но при этом является более наглядным и простым для понимания, что важно, учитывая ознакомительных характер работы.