Esercizi di Informatica Teorica

Linguaggi regolari: espressioni regolari e grammatiche, proprietà decidibili e teorema di Myhill-Nerode

1

Teorema di Myhill-Nerode

richiami

<u>teorema</u> sia L un linguaggio sull'alfabeto Σ ; sia data la seguente relazione di equivalenza su Σ^* :

$$xR_Ly \Leftrightarrow (\forall z {\in} \sum^* \ xz {\in} L \Leftrightarrow yz {\in} L)$$

 R_L ha indice finito \Leftrightarrow L è regolare

osservazioni:

- si ricordi che <u>l'indice</u> di R_L è il <u>numero delle sue classi di equivalenza</u>, cioè il numero di elementi dell'insieme quoziente R_L/Σ^*
- il teorema di Myhill-Nerode fornisce una <u>caratterizzazione</u> dei linguaggi regolari, e può quindi essere <u>usato per provare sia la regolarità che la non regolarità di un linguaggio</u>

Teorema di Myhill-Nerode

esercizio 1

- <u>1.a</u> determinare tutte le classi di equivalenza della relazione R_L per il linguaggio L = a*ba*.
- 1.b mostrare qualche stringa per ogni classe di equivalenza

esercizio 2

determinare tutte le classi di equivalenza della relazione R_L per il linguaggio L riconosciuto dal'ASF qui a fianco. qual'è l'indice di R_L?

Teorema di Myhill-Nerode

esercizio 3

determinare le classi di equivalenza della relazione R_L di Myhill-Nerode per il seguente linguaggio regolare: $L = a(bb + c)a^*$

esercizio 4

dimostrare, utilizzando il teorema di Myhill-Nerode, che il linguaggio $L = \{a^nb^n : n \ge 0\}$ non è regolare quali sono le classi di equivalenza della relazione R_L ?

esercizio 5

dimostra tramite Myhill-Nerode che il linguaggio delle stringhe palindrome su $\Sigma = \{a,b\}$ non è regolare

(una stringa palindroma coincide con se stessa quando letta al contrario, esempio: aba, baab, bbaaabb, ecc)

Teorema di Myhill-Nerode

esercizio 6

dato il linguaggio $\hat{L} = ba^*(bb)^*a$, determinare tutte le classi di equivalenza della relazione R_L .

esercizio 7

dimostrare, utilizzando il teorema di Myhill-Nerode, che il linguaggio $L = \{a^n b^m c^n : n, m \ge 0\}$ non è regolare quali sono le classi di equivalenza della relazione R_I ?

esercizio 8

trova, tramite le classi di equivalenza di Myhill-Nerode, un ASF con il minimo numero di stati per il linguaggio su $\Sigma = \{0,1\}$ riconosciuto dall'ASF rappresentato qui sotto

5

Soluzioni

soluzione esercizio 1

(classi di equivalenza per $L = a^*ba^*$)

esistono tre distinte classi di equivalenza:

- $C_1 = \{a^n : n \ge 0\}$ (<u>nota</u>: comprende anche ϵ)
- $C_2 = \{a^n b a^m : n, m \ge 0\}$
- $C_3 = \{w \in \{a,b\}^* : \text{ non esiste z tale che } wz \in L\}$

Soluzioni

osservazione:

le classi di equivalenza di R_L rispetto ad un linguaggio regolare L sono <u>associabili agli stati di un opportuno ASF (minimo)</u> che riconosce L

esempio per $L = a^*ba^*$

- $C_1 = \{a^n : n \ge 0\} \leftrightarrow q_0$
- $C_2 = \{a^n b a^m : n, m \ge 0\} \leftrightarrow q_1$
- $C_3 = \{w \in \{a,b\}^* : \text{non esiste } z \text{ tale che } wz \in L\} \leftrightarrow q_2$

7

Soluzioni

soluzione esercizio 2

consideriamo la relazione di equivalenza $xR_My \Leftrightarrow \underline{\delta}(q_0,x) = \underline{\delta}(q_0,y);$ sappiamo che (vedi dimostrazione del teorema di Myhill-Nerode) se $xR_My \Rightarrow xR_Ly$, quindi R_M ha indice maggiore o uguale a quello di R_L (le classi di R_L sono ottenibili per unione di classi di R_M)

le classi di R_M si ottengono facilmente dall'ASF:

- $C_1 = \{\epsilon\} \leftrightarrow q_0$
- $C_2 = \{a\} \leftrightarrow q_1$
- $C_3 = \{bb^*\} \leftrightarrow q_2$
- $C_4 = \{bb*a\} \leftrightarrow q_3$
- $C_5 = \{b*abb*\} \leftrightarrow q_4$ (nota che $C_5 = L$)
- $C_6 = \{w \in \{a,b\}^* : \text{non esiste } z \text{ tale che } wz \in L\} \leftrightarrow q_P$

Soluzioni

- $C_6 = \{w \in \{a,b\}^* : \text{non esiste } z \text{ tale che } wz \in L\} \longleftrightarrow q_P$

per <u>ottenere le classi di equivalenza di R_L</u> si osserva che le classi C_2 e C_4 devono essere unite, in quanto $aR_L(bb^*a)$; inoltre risulta $\epsilon R_L(bb^*)$, quindi anche C_1 e C_3 debbono essere unite; le classi di equivalenza di R_L sono dunque le seguenti:

9

Soluzioni

- $C'_1 = \{b^*\} \leftrightarrow q'_0$ (unione di C_1 e C_3) • $C'_2 = \{b^*a\} \leftrightarrow q'_1$ (unione di C_2 e C_4)
- $C'_3 = \{b^*abb^*\} \leftrightarrow q'_3$ (equivale a C_5)
- $C'_4 = \{w \in \{a,b\}^* : \text{non esiste } z \text{ tale che } wz \in L\} \leftrightarrow q'_p$ (equivale a C_6)

si può in effetti costruire un ASF (minimo) con soli 4 stati che riconosce L

Soluzioni

soluzione esercizio 3 (classi di equivalenza per $L = a(bb + c)a^*$) consideriamo un ASF che riconosce L

le classi di R_M sono:

- $C_1 = \{\epsilon\} \leftrightarrow q_0$
- $C_2 = \{a\} \leftrightarrow q_1$
- $C_3 = \{ab\} \leftrightarrow q_2$
- $C_4 = \{abba^*, aca^*\} \leftrightarrow q_3$
- $C_5 = \{w \in \{a,b\}^* : \text{ non esiste z tale che } wz \in L\} \leftrightarrow q_p$

è facile osservare che non è possibile unire nessuna di queste classi nella relazione R_L (l'AFS ha il minimo numero di stati); quindi le classi di R_M coincidono con quelle di R_L .

Soluzioni

soluzione esercizio 4

(L= $\{a^nb^n: n \ge 0\}$ non è regolare)

- la relazione R_L ha una classe di equivalenza $\{a^k\}$ distinta per ogni naturale k; infatti, comunque scelti k > h, risulta che la stringa a^kb^k appartiene al linguaggio, mentre non vi appartiene la stringa a^hb^k ; dunque, R_L ha sicuramente un numero infinito di classi di equivalenza, e pertanto L non è regolare.
- le classi di equivalenza di R_L sono tutte le seguenti:
 - {**s**}
 - $\{a^k\} \ \forall k > 0$
 - $\{a^kb^h\}\ \forall k, h > 0, k \ge h$
 - $\{w \in \{a,b\}^* : \text{non esiste } z \text{ tale che } wz \in L\}$