PROVA (PARTE 1)

Universidade Federal de Goiás (UFG) - Regional Jataí Bacharelado em Ciência da Computação Teoria dos Grafos Esdras Lins Bispo Jr.

16 de agosto de 2016

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 05 (cinco) componentes que formarão a média final da disciplina: dois testes, duas provas e exercícios;
- $\bullet\,$ A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

 $S = (\sum_{i=1}^{4} 0, 2.T_i) + 0, 2.P + EB$

em que

- -S é o somatório da pontuação de todas as avaliações,
- $-T_i$ é a pontuação obtida no teste i,
- P é a pontuação obtida na prova, e
- $-\ EB$ é a pontuação total dos exercícios-bônus.
- O conteúdo exigido compreende os seguintes pontos apresentados no Plano de Ensino da disciplina: (1) Noções Básicas de Grafos, (2) Caminhos e Circuitos, (3) Subgrafos e (4) Grafos conexos e componentes.

Nome:	
Assinatura:	

Primeiro Teste

- 1. (5,0 pt) No vídeo do Prof. Paulo Cezar, é utilizado o conceito de circuito euleriano. Apresente todas as condições necessárias para um determinado grafo conexo conter um circuito euleriano.
 - R Um grafo conexo contém um circuito euleriano se todos os vértices deste grafo têm grau par.
- 2. (5,0 pt) [E 1.68] É verdade que todo grafo 2-regular é um circuito? Justifique a sua resposta.
 - **R** Não é verdade. Podemos construir o grafo G, com dois componentes C_1 e C_2 , de forma que C_1 seja um circuito de comprimento 4 e C_2 seja um K_3 . G é 2-regular, mas não é conexo. Logo não é um circuito.

Segundo Teste

3. (5,0 pt) [E 1.143] Sejam P e Q dois caminhos tais que $V_P \cap V_Q \neq \emptyset$. Mostre que o grafo $P \cup Q$ é conexo.

R - Se $V_P \cap V_Q \neq \emptyset$, então existe ao menos um vértice x em comum aos dois caminhos. Logo, a partir de dois vértices quaisquer v e w de $P \cup Q$, temos:

- $\frac{\text{se } v, w \in V_P:}{v \text{ liga-se a } w}$ por um caminho que é um subcaminho de P;
- $\underbrace{\text{se } v, w \in V_Q}_{v \text{ liga-se a } w}$ por um caminho que é um subcaminho de Q;
- $\sec v \in V_P \in w \in V_Q$: v liga-se a x por um caminho que 'e um subcaminho de P, e v liga-se a w por um caminho que 'e um subcaminho de Q; v liga-se a w;
- $\underbrace{\text{se } v \in V_Q \text{ e } w \in V_P}$: $\underbrace{v \text{ liga-se a } x \text{ por um caminho que \'e um subcaminho de } Q$, e $\underbrace{x \text{ liga-se a } w \text{ por um caminho que \'e um subcaminho de } P$; $\underbrace{\text{logo } v \text{ liga-se a } w}$;

Como sempre existe um caminho que liga v a w, então $P \cup Q$ é conexo

- 4. (5,0 pt) [E 1.177] Seja Gum grafo tal que $\Delta(G) \leq 2.$ Descreva os componentes de G.
 - **R** Podemos listar os três possíveis casos em relação ao valor de $\Delta(G)$:
 - $\Delta(G) = 0$: neste caso, cada componente de G é um K_1 ; e G tem n componentes;
 - $\underline{\Delta(G) = 1}$:
 neste caso, cada componente de G ou é um K_1 , ou é um K_2 ;
 e G tem no mínimo $\lceil n/2 \rceil$ componentes e,
 no máximo, n-1 componentes;
 - $\Delta(G) = 2$: neste caso, cada componente de G é
 - um K_1 ,
 - um caminho, ou
 - um circuito;
 - e G tem no mínimo um componente e, no máximo, n-2 componentes.