# COMS W4701: Artificial Intelligence

Lecture 17: Inference in Bayes Nets

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

## Today

Inference in Bayes nets

Inference by enumeration

Variable elimination

#### Inference in Bayes Nets

- We are interested in computing probabilities of query variables X
- General strategy: Apply the chain rule to the CPT parameters

$$P(+b,-e,+a) = P(+b)P(-e)P(+a|+b,-e)$$
$$= (.001)(.998)(.01) = 9.98 \times 10^{-6}$$

 May have to first include, then marginalize out, hidden variables Y (ancestors of X)





#### **Evidence Variables**

Posterior probabilities condition on observed evidence variables E

е

• Hidden variables must now include ancestors of both X and E

$$P(-b|+a) = \frac{\sum_{e} P(-b, e, +a)}{P(+a)} = \frac{\sum_{e} P(-b)P(e)P(+a|-b, e)}{P(+a)}$$
$$= ((.999)(.002)(.7) + (.999)(.998)(.01))/.01138 = .999$$

 Can exploit conditional independences to simplify calculations



Burglary

P(E=true)

Earthquake

$$P(+j,+m|-a,+e,+b) = P(+j,+m|-a) = P(+j|-a)P(+m|-a) = (0.05)(0.01) = 0.0005$$

### Inference by Enumeration

General task: Find the posterior distribution of a set of query variables X given a set of observed evidence e

- Enumeration strategy: Compute joint probabilities using chain rule
- We may have to include **hidden** variables Y from ancestors of X and E

$$P(X \mid e) \propto P(X, e) = \sum_{y} P(X, y, e)$$

After computing joint probs, we can simply normalize to obtain posterior

### Inference by Enumeration

 Computational complexity of enumeration is generally exponential in number of query and hidden variables

$$P(R|+s) \propto P(R,+s) = \sum_{t,d} P(R,t,d,+s)$$
$$= \sum_{t,d} P(R)P(t|R)P(d|R)P(+s|t,d)$$

- Each term in the product is a subset of a Bayes net CPT
- Size of each term depends on how many non-evidence variables it depends on



#### Factor Representation

• Think of each term as a **factor**  $f_i$  indexed by the input variables:

$$P(R|+s) \propto \sum_{t,d} P(R)P(t|R)P(d|R)P(+s|t,d)$$
 s不在input里 因为s是fixed的 
$$= \sum_{t,d} f_R(R)f_T(R,t)f_D(R,d)f_S(t,d)$$
 这些是factor representation

 Multiplying factors means elementwise multiplication over common variables, producing new factor in union of all variables

$$f_1(X,Y) \times f_2(Y,Z) = f_3(X,Y,Z)$$

 $f_1(X,Y)\times f_2(Y,Z)=f_3(X,Y,Z)$  • Summing over a factor is the same as marginalization of a joint distribution  $\sum_y f_3(X,y,Z)=f_4(X,Z)$ 

$$\sum_{y} f_3(X, y, Z) = f_4(X, Z)$$

### Example

$$P(R|+s) \propto P(R,+s) = \sum_{t,d} P(R)P(t|R)P(d|R)P(+s|t,d)$$

Bayes net CPT parameters:

| R  | P(R) |
|----|------|
| +r | 0.5  |
| -r | 0.5  |

| Т  | R  | P(T R) |
|----|----|--------|
| +t | +r | 0.7    |
| +t | -r | 0.6    |
| -t | +r | 0.3    |
| -t | -r | 0.4    |

| D  | R  | P(D R) |
|----|----|--------|
| +d | +r | 0.7    |
| +d | -r | 0.6    |
| -d | +r | 0.3    |
| -d | -r | 0.4    |

|    |    |            | -        |
|----|----|------------|----------|
| Т  | D  | S          | P(S T,D) |
| +t | +d | +s         | 0.1      |
| +t | -d | +s         | 0.4      |
| -t | +d | +s         | 0.2      |
| -t | -d | +s         | 0.9      |
| +t | +d | -S         | 0.9      |
| +t | -d | -S         | 0.6      |
| -t | +d | -S         | 0.8      |
| -t | -d | <b>-</b> S | 0.1      |



#### Example

$$P(R|+s) \propto P(R,+s) = \sum_{t,d} P(R)P(t|R)P(d|R)P(+s|t,d)$$

- Joint probabilities via factor multiplication
- Marginalize over T and D and normalize to obtain P(R|+s):

| R  | P(R +s) |
|----|---------|
| +r | 0.441   |
| -r | 0.559   |



| R  | Т  | D              | P(R,T,D,+s)          |
|----|----|----------------|----------------------|
| +r | +t | +d             | (0.5)(0.7)(0.7)(0.1) |
| +r | +  | ٦              | (0.5)(0.7)(0.3)(0.4) |
| +r | 부  | <del>'</del> d | (0.5)(0.3)(0.7)(0.2) |
| +r | ť  | -d             | (0.5)(0.3)(0.3)(0.9) |
| -r | +  | +d             | (0.5)(0.6)(0.6)(0.1) |
| -r | +t | -d             | (0.5)(0.6)(0.4)(0.4) |
| -r | ť  | +d             | (0.5)(0.4)(0.6)(0.2) |
| -r | -t | -d             | (0.5)(0.4)(0.4)(0.9) |

Joint CPT size:  $2^3 = 8$  rows



#### Example: Markov Blanket

- What if we want the posterior of X conditioned on all other variables?
- Observing Markov blanket of X makes it independent of other variables
- We simply compute a product of factors over X and its children nodes

$$P(X|mb(X)) \propto P(X|parents(X)) \times \prod_{Y_j} P(y_j|parents(Y_j))$$

$$P(parents(X)|...)$$

- Can exclude factors over parents(X), since they are completely observed and just constants
- Factors over X and children(X) all just have a single input variable in X



#### Example: Markov Blanket

| С  | P(+s C) |
|----|---------|
| +C | 0.1     |
| -C | 0.5     |

| С  | P(C) |
|----|------|
| +C | 0.5  |
| +C | 0.5  |



| С  | P(+r C) |
|----|---------|
| +C | 0.8     |
| -C | 0.2     |

$$P(C \mid mb(C)) = P(C \mid s,r) \propto P(C)P(s|C)P(r|C)$$

$$P(S \mid mb(S)) = P(S \mid c,r,w) \propto P(S|c)P(w|S,r)$$

$$P(R \mid mb(R)) = P(R|c,s,w) \propto P(R|c)P(w|s,R)$$

$$P(W \mid mb(W)) = P(W \mid s,r)$$

| С  | P(C,+s,+r) |
|----|------------|
| +C | 0.04       |
| -C | 0.05       |





| С  | P(+s C) |
|----|---------|
| +  | 0.1     |
| -C | 0.5     |

| ı |     |
|---|-----|
| 1 |     |
|   | > < |
| ı |     |

|   | С  | P(+r C) |
|---|----|---------|
| 3 | +C | 0.8     |
| • | -C | 0.2     |

$$P(C|mb(C)) = \left(\frac{4}{9}, \frac{5}{9}\right)$$

#### Inference Complexity

- Inference complexity depends on the size of the joint distribution
- But we do not have to wait to sum over all variables at the end!
- Better idea: Perform summation over each variable independently
- Factors not dependent on X can be taken out of a summation over X
- Ex: uwy + uwz + uxy + uxz + vwy + vwz + vxy + vxz has 16 multiplies and 7 adds
- (u+v)(wy+wz+xy+xz) has 5 multiplies and 4 adds
- (u+v)(w+x)(y+z) has 2 multiplies and 3 adds



#### Variable Elimination

- Idea: Move summations as far inwards as possible
- Marginalization is done starting inside and moving outward

$$P(S|r) \propto P(S,r) = \sum_{t,d} P(r)P(t|r)P(d|r)P(S|t,d)$$
$$= P(r)\sum_{t} P(t|r)\sum_{d} P(d|r)P(S|t,d)$$

$$P(S|c) \propto P(S,c) = \sum_{r,t,d} P(r)P(t|r)P(d|r)P(S|t,d)P(c|S)$$
$$= P(c|S) \sum_{t,d} P(S|t,d) \sum_{r} P(r)P(t|r)P(d|r)$$



#### Example: Variable Elimination

$$P(S,c) = P(c|S) \sum_{t,d} P(S|t,d) \sum_{r} P(r)P(t|r)P(d|r) = f_C(S) \sum_{t,d} f_S(S,t,d) \sum_{r} f_R(r)f_T(t,r)f_D(d,r)$$

c is observed 是constant fixed的



| S   | $f_5(S)$ |  |
|-----|----------|--|
| +\$ | 0.116    |  |
| -S  | 0.497    |  |









| S   | P(S c) |  |
|-----|--------|--|
| +\$ | 0.189  |  |
| -S  | 0.811  |  |



| Т  | D                                | $f_3(S,T,D)$                                                |
|----|----------------------------------|-------------------------------------------------------------|
| +t | +d                               | 0.0425                                                      |
| +t | -d                               | 0.3825                                                      |
| -t | +d                               | 0.09                                                        |
| -t | -d                               | 0.135                                                       |
| +t | +d                               | 0.045                                                       |
| +t | -d                               | 0.18                                                        |
| -t | +d                               | 0.1125                                                      |
| -t | -d                               | 0.0125                                                      |
|    | +t<br>+t<br>-t<br>-t<br>+t<br>+t | +t +d<br>+t -d<br>-t +d<br>-t -d<br>+t +d<br>+t -d<br>-t +d |

| H  | D            | $f_2(T,D)$ |
|----|--------------|------------|
| +t | +d           | 0.425      |
| +t | <del>-</del> | 0.225      |
| -t | +d           | 0.225      |
| -t | -d           | 0.125      |







 $\sum_{r}$ 

| R  | Т  | D  | $f_1(R,T,D)$ |
|----|----|----|--------------|
| +r | +t | +d | 0.245        |
| +r | +t | -d | 0.105        |
| +r | -t | +d | 0.105        |
| +r | -t | -d | 0.045        |
| -r | +t | +d | 0.180        |
| -r | +t | -d | 0.120        |
| -r | -t | +d | 0.120        |
| -r | -t | -d | 0.080        |

#### Variable Ordering

• Elimination ordering does not affect correctness of inference, but does greatly affect computational efficiency!

$$P(S,c) = \sum_{r,t,d} f_1(R) f_2(T,R) f_3(D,R) f_4(S,T,D) f_5(S)$$

orders 影响计算的复杂度

- *R* then *T* then *D*:  $f_5(S) \sum_d \sum_t f_4(S, T, D) \sum_r f_1(R) f_2(T, R) f_3(D, R)$
- 26 multiplies, 10 adds

8 rows

- T then D then  $R: f_5(S) \sum_r f_1(R) \sum_d f_3(D, R) \sum_t f_2(T, R) f_4(S, T, D)$
- 30 multiplies, 14 adds

16 rows

### **Improving Complexity**

- Elimination complexity depends on size of the largest constructed CPT
- NP-hard in the worst case, as this can reduce to a satisfiability problem

- Greedy variable ordering can be a good heuristic: Select the next variable that minimizes the size of the constructed CPT
- Still no guarantee of optimal variable ordering
- If Bayes net is a polytree (replace all directed edges with undirected edges), elimination can be linear if we eliminate leaves first, then root

#### Summary

 Inference in Bayesian networks: Computing distributions over query variables given evidence variables (and marginalizing hidden variables)

 Inference by enumeration: Compute full joint distribution of all relevant variables using chain rule, then marginalize hidden variables

- Variable elimination: Alternate between building up and summing out
   CPTs to reduce computational complexity
- Overall still a NP-hard problem