

Quantization

Multimedia Computing, Universität Augsburg Rainer.Lienhart@informatik.uni-augsburg.de www.multimedia-computing.de

- Brendan J. Frey and Delbert Dueck.
 Clustering by Passing Messages
 Between Data Points. Science 315, pp. 972–976, February 2007
- Delbert Dueck. Affinity Propagation: Clustering Data by Passing Messages. University of Toronto Ph.D. thesis, June 2009.

Quantization

Quantization is the mapping of a set of values to a smaller set of values.

Loss of information

Examples:

- A/D Conversion
- Lossy Compression (JPEG, MP3)
- Clustering
 - := discovering meaningful partitions of data based on a measure of similarity
- General goal: Minimize quantization error

- 1. K-Means clustering
- 2. K-Medoids clustering
- 3. Affinity propagation

Orderless description

- 2017_Deep TEN Texture Encoding Network_CVPR2017
- 2. Histogramm

"Examplars" can be found by

- 1. Randomly choosing an initial subset of data points as exemplars and then iteratively refining it.
 - → works only if initial choice is close to a good solution
 - K-Means Clustering
 - K-Medoids Clustering
- 2. Simultaneously considering all data points as potential exemplars through exchanging real-valued messages between data point until a high-quality set of exemplars and corresponding clusters gradually emerge.
 - → works as we will see better
 - Affinity Propagation

Definitions

- Clustering := discovering meaningful partitions of data based on a measure of similarity
- Exemplar-based clustering := Identify a subset of the N data points as exemplars and assign every other point to one of those exemplars.

The only input are

- 1. a set of real-valued pairwise similarities between data points $\{s(i,k)\}$ and
- 2. the number *K* of exemplars to find or a real-valued exemplar cost to balance against similarities.

Clustering Example

K-Means Clustering

S. Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–137, 1982. 3

K-Means Clustering - Idea (1)

Given N vector data points $\mathbf{X} = \{\mathbf{x}_i\}_{i=1}^N, \mathbf{x}_i \in \mathbb{R}^D$ find K cluster centers $\{\boldsymbol{\mu}_j\}_{j=1}^K, \boldsymbol{\mu}_j \in \mathbb{R}^D$ such that the sum of the distance between the data points and their associated closest cluster center is minimized. Each data point is assigned to the closest cluster center.

Assignments are denoted by $Z = \{z_i\}_{i=1}^N, z_i \in \{1, 2, ..., K\}$.

$$(\mu_1, \mu_2, ..., \mu_K) = \underset{(\mathbf{c}_1, \mathbf{c}_2, ..., \mathbf{c}_K), \mathbf{c}_j \in \mathbb{R}^D}{\operatorname{argmin}} \sum_{i=1}^N \underset{j \in \{1, 2, ..., K\}}{\min} \|\mathbf{x}_i - \mathbf{c}_j\|$$

K-Means Clustering - Idea (2)

But: Problem is known to be NP hard!

One Solution: Replace global optimal solution by

- Starting with randomly chosen cluster centers
- (2) Incrementally & monotonically improve cluster centers by gradient ascent
- → Local optimum only

K - Means – Clustering (1)

Gebe gewünschte
 Anzahl der
 Repräsentanten
 (Cluster) vor (e.g., k=5).

K - Means - Clustering (2)

- Gebe gewünschte
 Anzahl der
 Repräsentanten
 (Cluster) vor (e.g., k=5).
- 2. Wähle zufällig k Cluster-Mittelpunkte.

K - Means - Clustering (3)

- Gebe gewünschte
 Anzahl der
 Repräsentanten
 (Cluster) vor (e.g., k=5).
- 2. Wähle zufällig k Cluster-Mittelpunkte.
- 3. Ordne jeden Punkt dem nächsten Clusterpunkt zu.

K - Means - Clustering (4)

- Gebe gewünschte
 Anzahl der
 Repräsentanten
 (Cluster) vor (e.g., k=5).
- 2. Wähle zufällig k Cluster-Mittelpunkte.
- 3. Ordne jeden Punkt dem räumlich nächsten Cluster-Mittelpunkt zu.
- Berechne für jeden Cluster einen neuen Cluster-Mittelpunkt

K - Means – Clustering (4)

- 1. Gebe gewünschte Anzahl der Repräsentanten (Cluster) vor (e.g., k=5).
- 2. Wähle zufällig k Cluster-Mittelpunkte.
- Ordne jeden Punkt dem räumlich nächsten Cluster-Mittelpunkt zu.
- Berechne für jeden Cluster einen neuen Cluster-Mittelpunkt
- 5. ... und gehe dort hin
- 6. ... und wiederhole ab 3.

K-Means Clustering Algorithm

<u>INPUT</u>: $\{\mathbf{x}_i\}_{i=1}^N$, $\mathbf{x}_i \in \mathbb{R}^D$ (data), K (number of clusters)

INITIALIZE: Set each μ_k to a random data point

REPEAT UNITL CONVERGENCE:

$$\forall i: z_i \leftarrow \underset{k \in \{1, \dots, K\}}{\operatorname{arg \, min}} \|\mathbf{x}_i - \mathbf{\mu}_k\| = \underset{k \in \{1, \dots, K\}}{\operatorname{arg \, max}} \, \mathcal{N}(\mathbf{x}_i; \mathbf{\mu}_k, \mathbf{I}_D)$$

$$\forall k: \mathbf{\mu}_k \leftarrow \operatorname{mean}\{\mathbf{x}_i\}_{i:z_i=k} = \frac{\sum_{i=1}^N [z_i = k] \mathbf{x}_i}{\sum_{i=1}^N [z_i = k]}$$

$$\underline{\text{OUPUT:}} \{z_i\}_{i=1}^N \text{ (cluster assignment)},$$

$$\{\mathbf{\mu}_k\}_{k=1}^K$$
, $\mathbf{\mu}_k \in \mathbb{R}^D$ (cluster centers)

Latent (hidden) class variable

[true] = 1[false] = 0

K-Means Clustering Model (1)

The N vector data points $\{\mathbf{x}_i\}_{i=1}^N, \mathbf{x}_i \in \mathbb{R}^D$ are created by K multivariate unit-covariance spherical Gaussian processes $\mathcal{N}(\mathbf{\mu}_k, \mathbf{I}_D)$ of equal probability:

- \rightarrow Gaussian parameters: $\theta = (\mu_1, \mathbf{I}_D, \mu_2, \mathbf{I}_D, ..., \mu_K, \mathbf{I}_D)$
- → Probability of chosing *k*-th Gaussian: $P(z_i = k) = \frac{1}{K}$
- \rightarrow Probability of data vector \mathbf{x}_i given parameters θ and hidden variable z_i :

$$P(\mathbf{x}_i|z_i=k,\theta) = \mathcal{N}(\mathbf{x}_i;\boldsymbol{\mu}_k,\mathbf{I}_D) = \frac{1}{\sqrt{(2\pi)^D}}e^{-\frac{1}{2}(\mathbf{x}_i-\boldsymbol{\mu}_k)^T(\mathbf{x}_i-\boldsymbol{\mu}_k)}$$

Using the EM-Algorithm the *K*-means clustering algorithm is the solution.

K-Means Clustering Model (2)

Likelihood of data vector x_i given current parameters:

$$P(\mathbf{x}_i|\theta) = \sum_{k=1}^K P(\mathbf{x}_i, z_i = k|\theta)$$

$$= \sum_{k=1}^K P(\mathbf{x}_i|z_i = k, \theta) \cdot P(z_i|\theta)$$

$$= \sum_{k=1}^K \mathcal{N}(\mathbf{x}_i; \boldsymbol{\mu}_k, \boldsymbol{I}_D) \cdot \frac{1}{K}$$

Data Likelihood given current parameters and current cluster assignments:

$$P(X|Z,\theta) = \prod_{i=1}^{N} \mathcal{N}(x_i; \boldsymbol{\mu}_{z_i}, \boldsymbol{I}_D)$$

Using the EM-Algorithm the *K*-means clustering algorithm is the solution.

E-Step: Class assignment for data point x_i given current parameters θ :

$$\forall i: \ z_i \leftarrow \underset{k \in \{1, \dots, K\}}{\operatorname{argmax}} P(z_i = k | \boldsymbol{x}_i, \theta)$$

M-Step: Maximizing parameters θ given class assignments:

$$\theta \leftarrow \underset{\hat{\theta}}{\operatorname{argmax}} \left\{ P(\boldsymbol{X}|Z, \hat{\theta}) \right\}$$

$$= \underset{\hat{\theta}}{\operatorname{argmax}} \left\{ log[P(\boldsymbol{X}|Z, \hat{\theta})] \right\}$$

$$= \underset{\hat{\theta}}{\operatorname{argmax}} \left\{ \sum_{i=1}^{N} log[\mathcal{N}(\boldsymbol{x}_{i}; \hat{\boldsymbol{\mu}}_{z_{i}}, \boldsymbol{I}_{D})] \right\}$$

Derivation

See chalkboard

EM Algorithm for Mixtures of Gaussians (GM-Model=GMM)

- K-means makes all-or-nothing assignments of data points to clusters (hard decisions)
- Learn covariances Σ_k , instead of setting $\forall k \colon \Sigma_k = I$
- Learn mixture weights π_k , instead of setting $\forall k : \pi_k = \frac{1}{K}$

EM ALGORITHM FOR A MIXTURE OF GAUSSIANS

INPUT: $\{\mathbf{x}_i\}_{i=1}^N$ (data), K (number of clusters)

INITIALIZE: set $\{\mu_k\}$ to random data points, $\forall k : \pi_k \leftarrow \frac{1}{K}$ and $\Sigma_k \leftarrow \text{var}(\{\mathbf{x}_i\})$

REPEAT UNTIL CONVERGENCE:

$$\forall i, k : q_{ik} \leftarrow \frac{\pi_k \cdot \mathcal{N}(\mathbf{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k'=1}^K \pi_{k'} \cdot \mathcal{N}(\mathbf{x}_i; \boldsymbol{\mu}_{k'}, \boldsymbol{\Sigma}_{k'})}$$

$$\forall k : \pi_k \leftarrow \frac{\sum_{i=1}^N q_{ik}}{N}, \ \boldsymbol{\mu}_k \leftarrow \frac{\sum_{i=1}^N q_{ik} \mathbf{x}_i}{\sum_{i=1}^N q_{ik}}, \ \boldsymbol{\Sigma}_k \leftarrow \frac{\sum_{i=1}^N q_{ik} (\mathbf{x}_i - \boldsymbol{\mu}_k) (\mathbf{x}_i - \boldsymbol{\mu}_k)^\top}{\sum_{i=1}^N q_{ik}}$$
(2.6)

$$\underline{\text{OUTPUT}}: \{z_i \leftarrow \underset{k \in \{1, \dots, K\}}{\operatorname{argmax}} \ q_{ik}\}_{i=1}^N \text{ (assignments)}, \{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K \text{ (Gaussians)}$$

K-Medoids Clustering

K-Medoids Clustering – Idea (1)

Given N vector data points $\mathbf{X} = \{\mathbf{x}_i\}_{i=1}^N, \mathbf{x}_i \in \mathbb{R}^D$ find K exemplars $\{m_i\}_{i=1}^K, m_i \in \{\mathbf{x}_i\}_{i=1}^N$ such that the sum of the distance between the data points and their associated closest exemplars is minimized. Each data point is assigned to the closest cluster center.

Assignments are denoted by $\{z_i\}_{i=1}^N, z_i \in \{1, 2, ..., K\}$.

$$(\mathbf{m}_1, \mathbf{m}_2, ..., \mathbf{m}_K) = \underset{(\mathbf{m}_1, \mathbf{m}_2, ..., \mathbf{m}_K), \mathbf{m}_i \in \mathbf{X}}{\operatorname{arg min}} \sum_{i=1}^{N} \underset{j \in \{1, 2, ..., K\}}{\min} \|\mathbf{x}_i - \mathbf{m}_j\|$$

before it was \mathbb{R}^D

K-Medoids Clustering – Idea (2)

But: Problem is known to be NP hard!

One Solution: Replace global optimal solution by

- (1) Starting with randomly chosen exemplars
- (2) Incrementally & monotonically improve exemplars
- → Local optimum only

K-Medoids Clustering Algorithm

<u>INPUT</u>: $\{\mathbf{x}_i\}_{i=1}^N$, $\mathbf{x}_i \in \mathbb{R}^D$ (data), K (number of clusters)

<u>INITIALIZE</u>: Set each $m_k \in \{1, ..., N\}$ to the index of a random data point

REPEAT UNITL CONVERGENCE:

$$\forall i: z_i \leftarrow \underset{k \in \{1, \dots, K\}}{\operatorname{arg min}} \|\mathbf{x}_i - \mathbf{x}_{m_k}\|$$

$$\forall k: m_k \leftarrow \underset{n:z_n=k}{\operatorname{arg min}} \sum_{l:z_l=k} ||\mathbf{x}_l - \mathbf{x}_n||$$

OUPUT: $\{z_i\}_{i=1}^N$ (cluster assignments), $\{m_k\}_{k=1}^K, m_k \in \{1, ..., N\}$ (index set of exemplars)

K-Medoids

Squared error achieved by 1 million runs of *k*-medians clustering on 400 Olivetti face images

Affinity Propagation

Slide takes from Frey Toronto University

Brendan J. Frey and Delbert Dueck.
 Clustering by Passing Messages
 Between Data Points. Science 315, pp. 972–976, February 2007

Code, data software:

http://www.psi.toronto.edu/affinitypropagation

Input to AP

- A set of pair-wise similarities {s(i,k)}:
 s(i,k) is a real number indicating how well-suited data point k is as an exemplar for point i
 - E.g: $s(i,k) = -\|x_i x_k\|^2$, $i \neq k$ Need not be metric
- For each data point k, a real number s(k, k):
 s(k, k) is a real number indicating the a priori
 preference that it be chosen as an exemplar
 - $E.g.: s(k,k) = median \{s(i,j)\}\$

Core Idea (1)

All data points are simultaneously considered as exemplars, but exchange deterministic messages until a good set of exemplars gradually emerges

Sending responsibilities

Sending availabilities

Core Idea (2)

Sending responsibilities

$$r(i,k) \leftarrow s(i,k) - \max_{k' \neq k} \{a(i,k') + s(i,k')\}$$

Sending availabilities

$$a(i,k) \leftarrow \min \left\{ 0 , r(k,k) + \sum_{i' \neq i,k} \max\{0, r(i',k)\} \right\}$$

$$a(k,k) \leftarrow \sum_{i' \neq k} \max\{0, r(i',k)\}$$

Making decisions:

$$\operatorname{argmax}_{k}\{a(i,k) + r(i,k)\}$$

AP Algorithm

AFFINITY PROPAGATION

INPUT: $\{s(i,j)\}_{i,j\in\{1,\dots,N\}}$ (data similarities and preferences)

INITIALIZE: set 'availabilities' to zero i.e. $\forall i, k : a(i, k) = 0$

REPEAT: responsibility and availability updates until convergence

$$\forall i, k \colon r(i, k) = s(i, k) - \max_{k' : k' \neq k} [s(i, k') + a(i, k')]$$

$$\forall i, k \colon a(i, k) = \begin{cases} \sum_{i' : i' \neq i} \max[0, r(i', k)], \text{ for } k = i \\ \min[0, r(k, k) + \sum_{i' : i' \notin \{i, k\}} \max[0, r(i', k)]], \text{ for } k \neq i \end{cases}$$
(3.15)

OUTPUT: cluster assignments $\hat{\mathbf{c}} = (\hat{c}_1, \dots, \hat{c}_N), \hat{c}_i = \operatorname{argmax}_k [a(i, k) + r(i, k)]$

ITERATION 1 of 72

Squared error achieved by affinity propagation on 400 Olivetti face images

Affinity Propagation can close the gap

Example: Unsupervised Categorization

D. Dueck, B. J. Frey. Nonmetric affinity propagation for unsupervised image categorization. Proceedings IEEE International Conference on Computer Vision, January 2007. IEEE Computer Society Press, Los Alamitos, CA, 8 pages.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.3411&rep=rep1&type=pdf

Given: Caltech 101

8677 images of objects from 101 categories

Features for estimating similarity between images:

- Sparse SIFT (according to Lowe)
- Compute similarity between all possible image pairings

Figure 5. A sample category of images learned by affinity propagation. The central "Snoopy" image is the exemplar; the 17 other category members are shew 20 yith 20 19; Prof. 51. R. fatternamental by the computing the Computin

achieves consistently better classification rates than the best of 100 k-centers runs for a dataset of 20 ima@e2011s2019 Prof. Dr. R. Lienhart, Head of Multimedia Computing & Computer Vision, Institut für Informatik, Universität tion's classification rate is also shown for a different subset of the

data containing 7 image classes.