

<u>Help</u>

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Course Notes</u>

☆ Course / 8. Design Tradeoffs / Lecture Videos (37:03)

()

Next >

LE8.1

□ Bookmark this page

■ Calculator

LE8.1.1 Asymptotic Latency and Throughput

1/1 point (ungraded)

If we account for fan in limitations but ignore wire delays, what is the asymptotic latency of the fastest combinational N-input AND circuit we can build?

combinational N-input AND circuit we can build?	
Asymptotic latency of N-input AND:	
log(N) ✓ Answer: log(N)	
You entered:	
$\log{(N)}$	
Explanation Accounting for the fan in limitations means that if we have a gate with N inputs, we can't just assume that its propagation delay is the same as a 2-input gate. The way we model this is by turning an N-input gate into a tree of 2-input gates. The equivalent tree of 2-input AND gates would have log(N) levels in the tree in order to arrive at enough 2-input AND gates to allow for N inputs. Each level of the tree must complete its propagation delay before the next level can begin its computation, therefore the latency of the tree is log(N).	
Submit	
Answers are displayed within the problem	
LE8.1.2 Asymptotic Latency and Throughput 1/1 point (ungraded) Is $\Theta\left(log_2N\right)$ the same as $\Theta\left(log_{10}N\right)$	
○ No	
Only for some N	
✓	
Explanation According to the base-change formula for logarithms, $Log_a(n)=\frac{Log_b(n)}{Log_b(a)}$. In other words, any base can be converted to any other base by multiplying by a constant. Since we ignore constant multiplicative factors in asymptotic notation, we can also ignore bases of logarithms.	
Submit	
Answers are displayed within the problem	
LE8.1.3 Asymptotic Latency and Throughput 2 points possible (ungraded)	

A combinational multiplier is pipelined for maximum throughput. If the multiplier accepts two N-bit operands, what is the appropriate "order of" notation for its throughput and latency?

Throughput $\Theta(\ldots)$:	

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Previous

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2024 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>