A GAE Approach to Node Embedding applied to a Link Prediction problem

ALTEGRAD

Romy Beaute ¹ Kamil Akesbi ² Grégroire Dutot ³

¹ENS Paris-Saclay, France ²ENS Paris-Saclay, France ³Ecole Polytechnique, France

21/02/2022

Introduction Description of the citation problem State-of-the art: Link prediction architectures Graph Attention Network (GAT)

Our Pipeline Abstract Author embeddings Graph Autoencoder Final Classifier

Results

4 Conclusion and perspectives

Description of the citation problem

Goal: predict wheter a research paper cites another research paper

⇒ Consider this problem as a **link prediction problem** :

Link prediction problem : predicting the existence of a link (citation) between two entities (articles) in a network.

In practice: Compute edge information as a concatenation of node features and use it to train a classifier that predicts the probability of two nodes being linked.

Link prediction in other domains:

- Social Network (eg. predict common relations or interest)
- Biology (eg. predict the function of proteins)
- Recommender systems (eg. predict personal taste)

Graph Attention Network (GAT)

Idea:

- The messages from some specific neighbors may be more important than messages from others: The GAT layer expands the basic aggregation function of the GCN layer, assigning different importance to each edge.
- GAT applies self-attention on the nodes: the assignment of importance weights through the attention coefficients

Figure 1: Graph Attention Networks Layer.

GraphSAGE: framework for inductive node embedding.

- The model does not take into account all neighbors of a node, but uniformly samples a fixed-size set of neighbors
- GraphSAGE is used to generate low-dimensional vector representations for nodes
- Useful for graphs that have rich node attribute information
- Capable of predicting embedding of a new node, without requiring a re-training procedure (inductive algorithm)
- ⇒ GraphSAGE works by learning aggregator functions that can induce the embedding of a new node given its features and neighborhood

Figure 2: Neighborhood exploration and information sharing in GraphSAGE architecture. Extracted from http://snap.stanford.edu/graphsage/

- Introduction
 Description of the citation problem
 State-of-the art: Link prediction architectures
 Graph Attention Network (GAT)
 Graph SAGE
- Our Pipeline Abstract Author embeddings Graph Autoencoder Final Classifier
- Results
- 4 Conclusion and perspectives

Abstract - Authors and Graph Embeddings

Use of *Unsupervised learning* methods:

- Citation Graph: Node2Vec 50d embeddings
- Abstracts data : Doc2Vec 50d embeddings
- Authors datas: Node2Vec on 2 constructed graphs 32d embeddings
- \Rightarrow Methods based on skip-gram :

$$\min_{f} \frac{-1}{T} \sum_{i=1}^{T} \sum_{\substack{j=i-w \\ j \neq i}}^{i+w} \log P(v_j | f(v_i))$$

Difficulty to assess the quality of the embeddings.

Authors graph construction

We constructed two undirected graphs, learned 32-d and 64-d embeddings:

Co-authors graph

- nodes : Authors 174,961 nodes
- edges = number of common articles - 569,033 edges
- ⇒ Average authors features per article

Figure 3: 20 epochs training

Articles linked by commun authors

- nodes : articles 138,499 nodes
- *edges* : number of commun authors 2,570,106 edges

Figure 4: Embeddings visualisation using PCA

A GAE Approach

Figure 5: Our graph autoencoder approach

- Edge reconstruction : $\hat{p}_{i,j} = \sigma(Z_i^T Z_j)$;
- Similarity to Link prediction and useful embeddings;
- An undirected architecture : need for another classifier ;
- Node2vecGrover et al. 2016 initialization of the node features.

Message Passing and Neighborhood sampling

 Impossibility to train a classical GNN: we resorted to Message Passing and Neighbor sampling.

Figure 6: A [2,2]-Neighbor sampling strategy used for Message Passing¹

It gives us:

- More control on memory use ;
- More stochasticity.

We used this strategy for our GraphSAGE (Hamilton et al. 2017) and GAT (Veličković et al. 2018) Message-Passing NN.

¹https://www.dgl.ai/

Our GAE pipeline

GraphSAGE encoder

- 3 layers ;
- [7,15, all_{nodes}] Neighbor sampling strategy;
- Relu activation after the first two layers;
- 64 hidden features.

GAT encoder

- 2 layers and [3,3] Neighbor sampling strategy;
- $z^{(1)} = elu([GAT_1^{(1)}(x^{(0)})||...||GAT_4^{(1)}(x^{(0)}]);$
- $z^{(2)} = avg([GAT_1^{(2)}(z^{(1)})||...||GAT_4^{(2)}(z^{(1)}])$;
- 64 hidden features.

- Batches of 2048 positive edges and 2048 negative node pairs, from which we compute the message passing graph flows.
- 10 epochs, Adam optimizer on BCE loss.
- At the end of training, we retrieve the embeddings of the encoder for all nodes.

Final Classifier

We have as input features :

- A Doc2vec based representation of the paper's abstract (\mathbb{R}^{50}) ;
- The Node2vec based representation embedding the coauthoring links of the paper (\mathbb{R}^{32});
- A GAE based representation embedding each paper's structural role in the citation network (\mathbb{R}^{64}).

We use the concatenation of embeddings for each **directed** pair of node, giving $z_{s,d} = [z_s||z_d] \in \mathbb{R}^{2 \times 146}$.

- $z_h^{(1)} = ReLU(W_1z_{s,d})$, with $W_1 \in \mathbb{R}^{64 \times 292}$ & dropout with rate 0,5.
- $z_h^{(2)} = ReLU(W_2 z_h^{(1)})$, with $W_2 \in \mathbb{R}^{64 \times 64}$ & dropout with rate 0,5.
- Final layer : $l_p = W_3 z_h^{(2)}$, with $W_3 \in \mathbb{R}^{1 \times 64}$ which gives the log-probability of the v_s being connected to v_d .

Overall architecture

Figure 7: Our whole model pipeline

Introduction
 Description of the citation problem
 State-of-the art: Link prediction architecture
 Graph Attention Network (GAT)
 Graph SAGE

Our Pipeline Abstract Author embeddings Graph Autoencoder Final Classifier

Results

4 Conclusion and perspectives

Results and discussion

Approach	Train BCE	Val BCE	Test BCE	Time
Graph baseline			0.480	1 min
GraphSAGE based	0.135	0.136	0.212	18+4 min
GAT based (deterministic)	0.093	0.094	0.237	$40 + 4 \min$
GAT based [3, 3]	0.188	0.186	0.198	$8+4 \min$

Table 1: Scores and computation time for each approach

Figure 8: Cross entropy score during the GAE training process

Figure 9: Cross entropy score during the final classifier training process

- Introduction
 Description of the citation problem
 State-of-the art: Link prediction architectures
 Graph Attention Network (GAT)
 Graph SAGE
- Our Pipeline Abstract Author embeddings Graph Autoencoder Final Classifier
- Results
- 4 Conclusion and perspectives

Conclusion and perspectives

In this project:

- Unsupervised Embeddings on authors, abstracts and citation graphs
- GAE embeddings approach performed better for the link prediction task

Main difficulties

- Lack of transparency of the models
- Great difference between training and test score solved with random sampling strategies

Perspectives

Training the GAE with all the features

References

- Grover, Aditya et al. (2016). "node2vec: Scalable Feature Learning for Networks". In: CoRR abs/1607.00653. arXiv: 1607.00653. URL: http://arxiv.org/abs/1607.00653.
- Hamilton, William L. et al. (2017). "Inductive Representation Learning on Large Graphs". In: CoRR abs/1706.02216. arXiv: 1706.02216. URL: http://arxiv.org/abs/1706.02216.
- Veličković, Petar et al. (2018). *Graph Attention Networks*. arXiv: 1710.10903 [stat.ML].

Thank you!