End-to-End PPO-Based Reinforcement Learning Framework for Scalable 0/1 Knapsack Problem Solving

From Data Generation to Large-Scale Generalization

Gang Lin Student ID: 2874886

University of Birmingham

19/08/2025

NP Problems and the Knapsack Problem

Knapsack Problem Description:

- Given n items and a knapsack with capacity W.
- Each item i has a weight w_i and a value v_i .

Objective:

- Maximize the total value of selected items, subject to the total weight not exceeding W.
- Each item must either be taken (1) or left (0).

Mathematical Formulation:

maximize
$$\sum_{i=1}^n v_i x_i$$
 subject to $\sum_{i=1}^n w_i x_i \leq W$ $x_i \in \{0,1\}, \quad orall i$

Figure: Landscapes of computational complexity.

Related Work: A Comparative Overview

Work (Author, Year)	Architecture	Algorithm / Approach	Scalability / Generalization	Problem Domain
Foundational Pointer	r Network & RL Models (C	Often Lack Generalization)		
Vinyals et al. (2015)	Pointer Network	Supervised Learning (Constructive)	Fixed-scale (Train and test on same small sizes)	TSP, Convex Hull
Bello et al. (2017)	Pointer Network	RL (REINFORCE) (Constructive)	Fixed-scale (e.g., trained on N=50, tested on N=50)	TSP, **Knapsack**
GNN-based and Hyb	orid Models (Often General	ize Better)		
Dai et al. (2017)	GNN (structure2vec)	RL (DQN) (Constructive)	Generalizes to unseen & larger scale graphs due to graph-based nature	MVC, MAXCUT, TSP
Cappart et al. (2021)	DRL + CP (Hybrid)	DRL learns a heuristic for a Con- straint Programming (CP) solver (Improvement)	Generalizes well to new, unseen instances of various sizes	TSPTW, **Knapsack**
Advanced Transform	er-based Models (Mixed G	eneralization)		
Kool et al. (2019)	Transformer	RL (REINFORCE) (Constructive)	Generalizes to larger scales (e.g., train N=50, test N=100), but performance may degrade	TSP, CVRP
Yildiz (2022)	${\sf Transformer}/{\sf Attn}$	RL (DQN) (Constructive)	Fixed-scale (Performance degrades significantly on different sizes)	**Knapsack**
Que et al. (2023)	Transformer	RL (PPO) (Constructive)	Fixed-scale (Trained and tested on same N)	3D Packing
Zhang et al. (2025)	Dueling DQN	RL (Dueling DQN) with state modification (Constructive)	Fixed-scale (Trained and tested on specific small sizes)	0/1 Knapsack
My Work	Custom Arch. + PPO	RL (PPO) (Constructive)	Generalizes to larger scales (Train on N, Test on >N with 70% acc.)	0/1 Knapsack

My Contribution: My work addresses a key limitation of many prior models by building a generalizable framework. Unlike fixed-scale approaches, our model is trained to solve knapsack problems of varying sizes, including those larger than seen during training, and is supported by a powerful, integrated platform for research.

Scalability Limits of Traditional & Commercial Solvers

1. Space Complexity

Figure: Performance degradation due to memory constraints.

- Suffer from the "curse of dimensionality".
- Leads to a memory explosion, making them infeasible for large-scale problems.

2. Time Complexity

Figure: Performance comparison of various solvers.

Runtime of Commercial Solver like Gurobi still exhibits exponential growth, becoming a bottleneck for very large problems.

Key RL Components for 0/1 KP

- State (s_t): The set of available items and the current remaining knapsack capacity.
- Action (a_t): The selection of one item from the available set that fits the capacity.
- Policy (π_θ(a|s)): A neural network that maps the current state to a probability distribution over valid actions (items to select).
- **Reward** (R_{t+1}): The value (v_i) of the selected item.
- **Episode** (τ): A sequence of item selections, ending when no more items can be legally packed.

1. Bellman Expectation Equation (Policy-based)

Calculates the value function \mathbf{v}^{π} for a given policy π .

$$\mathbf{v}^{\pi} = \mathbf{r}^{\pi} + \gamma \mathbf{P}^{\pi} \mathbf{v}^{\pi}$$

This is the foundation for the **Critic** in Actor-Critic methods like PPO, which evaluates the current policy.

2. Bellman Optimality Equation (Value-based)

Defines the optimal value function \mathbf{v}^* by finding the best action at each state.

$$\mathbf{v}^* = \max_{a} (\mathbf{r}(a) + \gamma \mathbf{P}(a)\mathbf{v}^*)$$

This is the target for value-based methods like Q-Learning, which directly learn the optimal policy.

REINFORCE: Algorithm and Architecture

Figure: The REINFORCE training loop with an EMA baseline.

- The policy is updated based on the total return of the episode.
- A baseline is used to reduce gradient variance.

Figure: Pointer Network-based architecture for sequential item selection.

One Actor and no Critic.

PPO: Algorithm and Architecture

Training Algorithm start training Initialize Actor Network and Critic Network enough timesteps πθold (Actor) and Voold (Critic). For timesteps = 1, 2, Collect a set of partial trajectories for N steps using old policy POLLOUT BUILEED end training s t a t log m/a tis t) r t V/s t) Actor/Critic For each sten t, compute Advantage Estimate A 1 after K updatings For epoch = 1, 2,... K same minibatch in buffer Update Actor policy Update Critic value V(Φ) by maximizing the PPO by minimizing loss (e.g., MSE) objective L CLIP

Figure: The PPO training loop using an Actor-Critic framework.

■ Multiple optimization on the same minibatch.

Model Architecture

Figure: The model has two heads: one for the policy (Actor) and one for the value (Critic).

Actor and Critic share the same encoder.

Dataset Generation and Preprocessing

Dataset Specification

We generated three distinct datasets for training, validation, and testing to ensure a robust evaluation of the model's generalization capabilities.

Parameter	Training Set	Validation Set	Test Set
Item Count Range (n)	5 to 50	5 to 50	5 to 200
Step Size	5	5	5
Instances per Size	100	30	50
Total Instances	1,000	300	1,950

Item Properties

- Weights (w_i) and values (v_i) are integers sampled uniformly from U[1, 100].
- There is no correlation between an item's weight and its value.
- All inputs are normalized before being fed to the model

Problem Instance Constraints

- The knapsack capacity (C) is set relative to the total weight of all items ($\sum w_i$).
- The ratio $\sum_{C} \frac{w_i}{C}$ is randomly sampled from U[0.1, 0.9].

Results: Accuracy and Inference Time

(a) Mean Relative Error (MRE) vs. Problem Size.

Key Findings: Accuracy

- Our PPO model maintains a low Mean Relative Error (MRE), demonstrating high solution quality and strong generalization.
- Pointer Network shows a higher error rate.
- The pure MLP model fails to generalize effectively.

Solver Performance: Time vs. Problem Size

(b) Inference Time vs. Problem Size.

Key Findings: Inference Time

- PPO's inference time is practical for large instances.
- Pointer Network is faster but less accurate.
- MLP is the fastest but provides poor solutions.

Performance Summary

- PPO vs. Pointer Network (Accuracy):
 - Algorithmic Superiority: PPO's Actor-Critic (TD) method provides low-variance updates.
 - Architectural Advantage: The Transformer encoder captures the global, combinatorial nature of the problem more effectively than a sequential LSTM.
 - Framework Robustness: Leveraging Stable Baselines 3 provides key stabilizations like adaptive observation normalization ('VecNormalize').
- PPO vs. Pointer Network (Speed):
 - Core Architecture: Transformer is more computationally intensive than LSTM.
 - Model Components: Extra Critic Network requires extra computation.
 - Evaluation Method: Stable_baseline3 cannot support batch evaluation.

Effective Training Techniques

The success of the framework relies on several key techniques:

- Input Normalization:
 - Normalizing item attributes (w_i, v_i) and the knapsack capacity (C) is crucial.
- Observation & Reward Normalization:
 Using 'VecNormalize' for both observations and rewards stabilizes the learning process significantly.
- Heuristic Preprocessing: Sorting items by value-density (v_i/w_i) before feeding them to the model provides a strong inductive bias and improves performance.

Future Work & Open Questions

Architectural Exploration

- The "Simple Critic" Anomaly:
 - A simple MLP Critic achieved higher accuracy (70%) than a more complex attention-based head (60%). Future work should investigate if this is due to optimization challenges or a regularization effect.
- Global State Representation ('[CLS]' Token):
 Initial experiments with a '[CLS]' token for global state representation surprisingly decreased performance.
 This warrants further investigation.
- Hyperparameter Tuning:

While a 3-layer MLP Critic works well, its optimal width and the interplay with network depth remain open questions for further tuning.

Problem Formulation & Reward Shaping

- Explore Alternative Formulation: Our model uses a "Decision" formulation (select one from all remaining items). An alternative "Selection" formulation (decide 'take' or 'skip' for items sequentially) could be investigated.
- Advanced Reward Shaping: For the current "Decision" model, an initial attempt at adding a final shaping reward (to encourage a fuller knapsack) decreased accuracy. Further research into more advanced shaping techniques (e.g., potential-based rewards) is needed.