1 Einführung

Schwabl Kapitel 1.1

Makroskopische Systeme aus $N\gg 1$ Teilchen.

Mikrozustand und mikroskopische Gesetze

• Klassische Physik:

Punkt
$$(\vec{r}, \vec{p}) \in \text{Phasenraum} \simeq \mathbb{R}^{6N}$$

 $m_1 \ddot{\vec{r}} = \vec{F}_1$

• Quantenmechanik:

Wellenfunktion
$$\Psi(\vec{r},t)\in\mathcal{L}_2(\mathbb{R}^{3N})$$

$$i\hbar\frac{\partial\Psi}{\partial t}=H\Psi$$

Makrozustand und Makroskopische Gesetze

 \bullet Temperatur T, Volumen V, Druck P, \dots

• $PV = nk_BT$, U = RI

Mikroskopische Gesetze \implies makroskopische Gesetze.

 $Makrozustand \iff Zeitmittelung$

• Klassische Physik:

$$\bar{A}(t) = \frac{1}{\Delta t} \int_{t}^{\Delta t + t} dt' A(\vec{r}(t'), \vec{p}(t'))$$

• Quantenmechanik:

$$\bar{B}(t) = \frac{1}{\Delta t} \int_{t}^{\Delta t + t} dt' \left\langle \Psi(t) \left| \, \hat{B} \, \right| \Psi(t) \right\rangle$$

Mikroskopische Zeitskala $\ll \Delta t \ll$ makroskopische Zeitskala

Statistische Mittelung

• Klassische Physik

$$\bar{A} = \int d^3r \, d^3p \, A(\vec{r}, \vec{p}) P(\vec{r}, \vec{p}),$$
 Wahrscheinlichkeitsdichte $P(\vec{r}, \vec{p})$

• Quantenmechanik:

$$\bar{B} = \operatorname{tr}(\hat{B}\hat{\rho})$$
 Dichteoperator $\hat{\rho}$

1

Statistische Physik

- Bestimmung von P und $\hat{\rho}$
- Berechnung der Ensemblemittelung

• Anwendung auf physikalische Probleme

Reduktionismus

$$System = \{Einzelteile\}$$

Elementarteilchen
physik \to Festkörperphysik, Chemie \to Biologie \to Medizi
n \to Psychologie \to Soziologie

"More is different" P.W. Anderson

2 Wahrscheinlichkeitstheorie

Schwabl Kapitel 1.2, 1.5.1

Einige Definitionen

Zufallsvariable x Wert von x hängt von einem Zufallsereignis ab Beispiel Messung: $x = X_{\text{exakt}} + \text{Messfehler}$

Häufigkeit N identische Versuche, $N_x = \text{Anzahl der Werte } x \implies \frac{N_x}{N}$

Empirische Wahrscheinlichkeit $P_x = \lim_{N \to \infty} \frac{N_x}{N}$.

$$\sum_{x} P_x = 1, \quad 1 \ge P_x \ge 0$$

Wahrscheinlichkeitsdichte w(x) $x \in \mathbb{R}$.

 $w(x)\Delta x = \text{Wahrscheinlichkeit für einen Wert } \in [x, x + \Delta x]$

$$\int dx \, w(x) = 1, \quad w(x) \ge 0$$

Beziehung mit diskreter Warscheinlichkeit:

$$w(x) = \sum_{i} P_i \delta(x - x_i)$$

Mittelwert/Erwartungswert

$$\langle f(x) \rangle = \sum_{x} f(x) P_x$$
 beziehungsweise $\int dx \, w(x) f(x)$

Schwankungsquadrat

$$\Delta X^2 = \left\langle (x - \langle X \rangle)^2 \right\rangle = \left\langle X^2 \right\rangle - \left\langle X \right\rangle^2 \quad \Delta x \Delta p \geq \hbar/2$$

2.1 Zentraler Grenzwertsatz

Es gibt N unabhängige aber identische Zufallsvariablen $x_i, i = 1, \dots, N$.

$$P(x_1, \dots, x_N) = P(x_1)P(x_2)\dots P(x_N)$$

Außerdem existieren $\langle x \rangle$, Δx von P(x).

Mittelwert $Y = \frac{1}{N} \sum_{i=1}^{N} x_i$ ist eine Zufallsvariable mit Wahrscheinlichkeit $Q_N(Y)$

$$Q_N(Y) \xrightarrow{N \to \infty} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(Y-a)^2}{2\sigma^2}\right)$$

$$a = \langle x \rangle, \quad \sigma = \frac{\Delta x}{\sqrt{N}}$$

Abbildung 1: Normalverteilung,
$$Y = \langle X \rangle \pm \frac{\Delta X}{\sqrt{N}}$$

3 Klassische Physik

N Teilchen Mikrozustand $(q, P) \in$ Phasenraum $\simeq \mathbb{R}^{6n}$

Kanonische Gleichungen

$$\dot{q}_j = \frac{\partial H}{\partial P_j} \quad \dot{P}_j = \frac{\partial H}{\partial \dot{q}_j}, \quad j = 1, ..., 3N$$

Anfangsbedingung

$$(q_0, P_0) = (q_0(t_0), P(t_0)) \implies \text{Bahn } (q(t|q_0, P_0), P(t|q_0, P_0))$$

Kanonische Transformation

$$(q(t), P(t)) \iff (q(t'), P(t'))$$

Ziel

$$\bar{A} = \int d^{3N} q \, d^{3N} p \, A(q, P) P_G(q, P)$$

Gleichgewichtsverteilung $P_G(q, P) = ?$

Unscharfe Angangsbedingung

$$P(q, P, t_0) = P_0(q, P)$$

Scharfe Anfangsbedingung: $P_0(q, P) = \delta(q - q_0)\delta(P - P_0)$. Differentialgleichung für P(q, P, t): Liouville-Gleichung.

$$P(t) = P(q, P, t) d^{3N}q d^{3N}p = P(t') = P(q, P, t') d^{3N}q' d^{3N}p'$$

Liouville-Satz

$$d^{3N} q \, d^{3N} p = d^{3N} q' \, d^{3N} p' \quad \left[\text{ Jacobi-Matrix } \frac{d^{3N} q' \, d^{3N} p'}{d^{3N} q \, d^{3N} p} = 1 \right]$$

$$\implies P(q(t), P(t), t) = P(q(t'), P(t'), t'), \quad \text{Erhalungsgröße } \frac{dP}{dt} = 0$$

Kettenregel

$$\frac{dP(q(t), P(t), t)}{dt} = \frac{\partial P}{\partial t} + \{H, P\}$$

Liouville-Gleichung

$$\frac{\partial P}{\partial t} = \{P, H\}$$

Bedingungen für $P_G(q, P)$ (im Gleichgewicht)

- $\{P_G, H\} = 0$
- $P_G \ge 0$
- $\int d^{3N}q \, d^{3N}p \, P_G(q, P) = 1.$

Superpositionsprinzip: Lösungen $P_1, P_2 \implies P = a_1P_1 + a_2P_2$ mit $a_1, a_2 \ge 0$, $a_1 + a_2 = 1$. Makrozustand: $T, V, P, \dots \implies P_0$ oder P_g ?

4 Quantenmechanik

Schwabl Kapitel 1.4,1.5.2

N Teilchen, Mikrozustand $|\Psi\rangle \in \mathcal{H} \simeq \mathcal{L}_2(\mathbb{R}^{3N})$

$$i\hbar \frac{d}{dt} |\Psi(t)\rangle = H |\Psi(t)\rangle$$

Anfangsbedingung $|\Psi_0\rangle \rightarrow |\Psi(t)\rangle$ (eindeutig)

Erwartungswert
$$A(t) = \left\langle \Psi(t) \middle| \hat{A} \middle| \Psi(t) \right\rangle = \left\langle \hat{A} \right\rangle$$

Ziel:

Statistische Mittelung
$$\langle \hat{A} \rangle = \operatorname{tr}(\hat{A}\hat{\rho}_G), \quad \hat{\rho}_G = ?$$

Definition

Statistischer Operator, Dichteoperator, Dichtematrix, ...

$$\hat{\rho}: \mathcal{H} \to \mathcal{H}$$
, linear

$$\hat{\rho} = \hat{\rho}^{\dagger} \dagger$$

positiv-semidefinit $\langle \varphi \mid \hat{\rho} \mid \varphi \rangle \geq 0 \,\forall \, |\varphi\rangle \in \mathcal{H}$

$$\hat{\rho} = \sum_{n} p_n |n\rangle \langle n|$$
 tr $\hat{\rho} = 1$ Spektrale Zerlegung
$$= \int d\lambda |\lambda\rangle \langle \lambda| w(\lambda)$$

Dichteoperator
$$\Rightarrow \sum_{n} p_{n} = 1$$
 $p_{n} \in \mathbb{R}$ $w(\lambda) \geq 0$ $\int d\lambda w(\lambda) = 1$ $\psi(\lambda) \in \mathbb{R}$

$$\langle \hat{A} \rangle = \sum_{n} p_n \langle n \mid \hat{A} \mid n \rangle.$$

Reiner Zustand:

$$p_{n_0} = 1, p_n = 0 \,\forall \, n \neq n_0, \quad \hat{\rho} = |n_0\rangle \,\langle n_0| \implies \hat{\rho}^2 = \hat{\rho}$$

Gemisch : $p_n \neq 0$ für 2 oder mehr n.

- Verschränkte Zustände
- Statistisches Gemisch

Spektrale Zerlegung

$$\begin{split} \hat{A} &= \sum_{\alpha} a_{\alpha} \left| \alpha \right\rangle \left\langle \alpha \right| \\ \left\langle A \right\rangle &= \sum_{n} p_{n} \sum_{\alpha} a_{\alpha} \left| \left\langle n \mid \alpha \right\rangle \right|^{2} = \sum_{n} \sum_{\alpha} p_{n} \left| \left\langle n \mid \alpha \right\rangle \right|^{2} a_{\alpha} \\ \text{Gemisch: 2 Quellen: } I_{1}, \theta_{1}, \quad I_{2}, \theta_{2} \implies I' = I_{1} (\cos \theta_{1})^{2} + I_{2} (\cos \theta_{2})^{2} \\ p_{1} &= \frac{I_{1}}{I_{1} + I_{2}}, \quad p_{2} = \frac{I_{2}}{I_{1} + I_{2}} \end{split}$$

Von Neumann Gleichung

$$i\hbar \frac{d\hat{\rho}}{dt} = [H, \hat{\rho}]$$

- Anfangsbedingung $\hat{\rho}_0 \to \hat{\rho}(t)$
- Gleichgewicht:

$$\frac{d\hat{\rho}}{dt} = 0 \implies [H, \hat{\rho}] = 0$$

- Superpositionsprinzip $\rho = a_1\rho_1 + a_2\rho_2$ mit $a_1, a_2 \ge 0$, und $a_1 + a_2 = 1$
- Im Gleichgewicht:

$$\hat{\rho}_G = \sum_n p_n |E_n\rangle \langle E_n| = \int dE \, w(E) |E\rangle \langle E| \quad \text{mit } H |E\rangle = E |E\rangle$$

• Isoliertes System:

$$p_n = \frac{1}{Z_n}$$
 für $E_n = E_0$, $Z_n =$ Entartung des Niveaus E_0

• Geschlossenes System:

$$p_n = \frac{1}{Z}e^{-\beta E_n} \text{ mit } \beta = \frac{1}{k_B T}, \quad Z = \sum_n e^{-\beta E_n}$$

Entropie und Ensemble

Schwabl Kapitel 2.1-2.5

Definition Entropie (Quantenstatistik)

$$S = -k_B \operatorname{tr}(\hat{\rho} \ln \hat{\rho})$$
 $k_B = k = \text{Boltzmann-Konstante} \approx 1.38 \times 10^{-23} \,\text{J K}^{-1}$

Eigenschaften

$$\hat{\rho} = \sum_{n} p_n |n\rangle \langle n| \qquad p_n \ge 0 \qquad \sum_{n} p_n = 1$$

$$S(\{p_n\}) = -k_B \sum_{n} p_n \ln p_n$$

Hinweise:

$$\operatorname{tr} \hat{A} = \sum_{n} \left\langle n \mid \hat{A} \mid n \right\rangle \qquad f(\hat{\rho}) = \sum_{n} f(p_n) \mid n \rangle \left\langle n \mid e^{\hat{A}} = \sum_{n=0}^{\infty} \frac{1}{n!} \hat{A}^n \right\rangle$$

Die Entropie ist also über die Diagonalemente der Dichtematrix in diagonalisierter Form berechenbar. Dies ist wohldefiniert, da jede Dichtematrix diagonalisiert werden kann.

Extrema mit Nebenbedingung $\sum_{n} p_n = 1$

- Minimum S=0 für einen reinen Zustand $(p_{n_0}=1,p_n=0 \quad \forall n \neq n_0)$
- Maximum $S = k_B \ln M$ für $p_n = \frac{1}{M} \quad \forall 1, ..., M$.

Die Entropie ist maximal für Unkenntnis über den Zustand des Systems (Auch maß für Unordnung).

Extensivität

$$\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B, \quad \hat{\rho} = \hat{\rho}_A \otimes \hat{\rho}_B$$
$$\hat{\rho}_A \to \hat{\rho}_A \otimes \hat{I}_B$$
$$\hat{\rho}_{\hat{B}} \to \hat{I}_A \otimes \hat{\rho}_B$$
$$\Longrightarrow [\hat{\rho}_A, \hat{\rho}_B] = 0$$

$$S = -k_B \operatorname{tr}(\hat{\rho} \ln \hat{\rho})$$

$$= -k_B \operatorname{tr}\left[(\hat{\rho}_A \otimes \hat{\rho}_B) \ln (\hat{\rho}_A \otimes \hat{\rho}_B)\right]$$

$$= -k_B \operatorname{tr}(\hat{\rho}_A \ln \hat{\rho}_A) - k_B \operatorname{tr}(\hat{\rho}_B \ln \hat{\rho}_B) = S_A + S_B$$

Nebenbedingung

$$S \leq S_A + S_B$$

(z.B. verschränkte Systeme)

Beispiel System von N Spins S ($\vec{S}^2 = S(S+1)$). Hilbert-Raum für einen Spin = $\mathcal{H}_1 = \mathbb{C}^{2S+1}$. Gesamter Hilbert-Raum

$$\mathcal{H} = \bigotimes_{i=1}^{N} \mathcal{H}_{i}$$
$$\dim \mathcal{H} = (2S+1)^{N} = M$$

• Minimum
$$S = 0$$
 z.B. für $|\Psi\rangle = |\uparrow, \uparrow, \uparrow, \dots, \uparrow\rangle$.

- Maximum $S = k_B \ln M$ für $\hat{\rho} = \frac{1}{n} \hat{I} = k_B n \ln (2S + 1)$
- Gleichgewicht

$$0 = \frac{d\rho}{dt} \iff [H, \hat{\rho}] = 0 \implies \rho = \sum_{m} p_{n} |E_{n}\rangle \langle E_{n}|$$

$$\implies E = \langle \hat{H} \rangle = \operatorname{tr}(\hat{\rho}\hat{H}) = \sum_{n} p_{n} E_{n}$$

$$\rho |E_{n}\rangle = p_{n} |E_{n}\rangle$$

 $H|E_n\rangle = E_n|E_n\rangle$

Definition Statistisches Ensemble oder Gesamtheit

Sie ist eine Gewichtete Menge der Mikrozustände, die einen Makrozustand entsprechen.

$$\{(|N\rangle, p_n)\} \equiv \hat{\rho} = \sum_n p_n |n\rangle \langle n|$$

Zentrales Postulat der statistischen Physik

System mit $N \to \infty$ Freiheitsgraden im Gleichgewicht.

- S ist maximal für einen gegebenen Makrozustand. Das erlaubt uns eine eindeutige bestimmung des statistischen Operators $\hat{\rho}$.
- Statistische Mittelungen der Observablen erfüllen die Makroskopischen Gesetze der Thermodynamik.

$$S = -k_B \operatorname{tr} \hat{\rho}_B = -k_B \langle \ln \hat{\rho}_G \rangle$$

$$\left\langle \hat{\mathcal{O}} \right\rangle = \operatorname{tr}(\hat{\rho}_G \mathcal{O})$$
 $U = \left\langle \hat{H} \right\rangle$

Definition Entropie (Thermodynamik)

Wir betrachten ein System in einem Bad, mit welchem es Energie austauschen kann. Eine ideelle Situation, in welcher alle Prozesse die wir betrachten reversibel sind.

$$dS = \frac{\delta Q}{T}$$

Zustandsfunktion oder Thermodynaische Variable.

- Extensiv
- monoton steigend $\frac{\partial S}{\partial E} > 0$
- $\lim_{T\to 0} \frac{S}{N} = 0$.

Nebenbedingung Für bestimmte Modelle statistische Entropie nicht gleich der thermodynamischen Entropie, das bedeutet das Modell ist nicht physikalisch. Eigentlich hat man in den letzten 100 Jahren in denen man Forschung betreibt kein Problem gefunden, das man nicht lösen konnte. Es gibt verschiedene Situationen in derr Praxis, in denen man die Makrozustände beschreibt.

Mikrokanonisches Ensemble

Es beschreibt ein isoliertes System.

Freie thermodynamische Variablen

- \bullet Teilchenzahl N
- \bullet Volumen V
- \bullet Magnetisierung M
- \bullet Energie E

Zustandsfunktion Druck P(N, V, E)

Maximierung der Entropie

$$\hat{\rho} = \subset P_E P_N \dots$$

 $\hat{\rho} \ \delta(\hat{H} - E) \delta(\hat{N} - N)$

Kanonisches Ensemble

Beschreibt ein geschlossenes System.

Freie thermodynamische Variablen

- \bullet Temperatur T
- *N*, *V*, *M*

Zustandsfunktionen E(T, N, V)

Maximum der Entropie Für feste T, N, V, \dots

$$\hat{\rho} = \frac{1}{Z} e^{-\beta \hat{H}} \hat{P}_N \dots \qquad \beta = \frac{1}{k_B T}$$

Zustandsumme

$$Z = \operatorname{tr} e^{-\beta \hat{H}}$$

Großkanonisches Ensemble

Beschreibt ein offenes System

Freie Thermodynamische Variablen

- Chemisches Potential μ
- \bullet T, V, \dots

 ${\bf Zustandsfunktionen}\ N(T,\mu,V)$

Maximum der Entropie für feste T, μ, V falls

$$\hat{\rho}_G = \frac{1}{Z_{GK}} e^{-\beta(\hat{H} - \mu \hat{N})} P$$

Großkanonische Zustandssumme $Z_{GK}\operatorname{tr} e^{-\beta(\hat{H}-\mu\hat{N})}$

Viele weitere Ensembles

Zu jeder intensiven Variable gibt es eine Extensive Variable (Observable).

Äußeres Feld Intensive Variable	Observable Extensive Variable
y	x
$\hat{\rho}_G e^{-\beta y \hat{x}}$	$\hat{\rho}_G P_x \delta(\hat{x} - x)$
Beispiele	
M	N
P	V
H	M
Magnetfeld	${\bf Magnetisierung}$

Mikrokanonisches Ensemble

Wir betrachten ein isoliertes System. Zum beispiel ein Gas in einem Behälter welcher isoliert ist. Energie und Teilchenzahl sind fest. Genauso das Volumen. Eine Ähnliche Situation wäre auch ein magnetisches Material. Die isolation wäre hier ein Material welches keine magnetischen Felder durchlässt. Typisch für das isolierte System ist, dass die Energie eine kontrollierbare Variable ist. Es gibt also eine Freie thermodynamische Variable E. Die erlaubten Mikrozustände sind die Eigenzustände des Hamilton-Operators H zur Energie E. Das Ziel ist nun die mikrozustände zu beschreiben und die makroskopischen Variablen zu berechnen. Man braucht dazu den statistischen Operator.

Diskretes Eigenspektrum

$$\hat{\rho} = \sum_{n} p_{n} |n\rangle \langle n| : \mathcal{H} \to \mathcal{H}$$

$$p_{n} = 0 \quad \forall n \text{ mit } E_{n} \neq E$$

$$\hat{\rho} = \sum_{n=1}^{w(E)} p_{n} |n\rangle \langle n| \qquad w(E) = \text{ Entartung der Eigenergie } E$$

Wir verwenden das Postulat der maximierung der Entropie:

$$S(E) = -k_B \sum_{n=1}^{w(E)} p_n \ln p_n,$$

$$\sum_{n=1}^{w(E)} p_n = 1$$

$$0 = \frac{\partial S}{\partial p_n} - \lambda \frac{\partial}{\partial p_n} \left(\sum_{n=1}^{w(E)} p_m - 1 \right)$$

$$= -k_B (\ln p_n + 1) - \lambda \quad \forall 1, \dots, w(E)$$

Extrema für
$$\implies p_n = e^{-\frac{\lambda}{k_B}-1} \implies p_n = \frac{1}{w(E)}$$

 $\implies S(E) = k_B \ln (w(E))$ ist auch ein Maximum

Dichteoperator im Gleichgewicht

$$\hat{\rho}_G = \sum_{n=1}^{w(E)} \frac{1}{w(E)} |n\rangle \langle n| = \frac{1}{w(E)} P_E = \frac{1}{w(E)} \delta(H - E)$$

$$\operatorname{tr} \hat{\rho}_G = 1$$
 $\operatorname{tr} P_E = w(E)$

Kontinuierliches Spektrum

$$\hat{\rho} = \int d\lambda \ |\lambda\rangle \, \langle\lambda| \, p(\lambda)$$

$$N(E) = \text{ Anzahl der Zustände mit einer Eigenenergie} \ \leq E$$

Hinweis: Für ein diskretes System von Eigenzuständen für ein kontinuerliches Spektrum kann man die Anzahl der Eigenzustände kleiner Als w definieren.

$$w(E) = \frac{dN}{dE} = \text{Zustandsdichte}$$

$$\implies w(E)\Delta E = \text{Anzahl der Eigenzustände in } [E, E + \Delta E]$$
 $S(E) = k_B \ln{(w(E)\Delta E)}$

$$\hat{\rho} = \frac{1}{w(E)}\delta(H - E)$$

Thermodynamische Variablen

Man macht eine Statistische Mittelung

$$\langle \hat{\mathcal{O}} \rangle = \operatorname{tr}(\hat{\rho}_G \hat{\mathcal{O}})$$

Beispiele

Innere Energie:
$$U = \langle H \rangle = E$$

Magnetisierung: $M_z = \langle S_z \rangle$

Thermodynamischer Limes $(N \to \infty)$

Definition Temperatur

$$\frac{1}{T} = \left(\frac{\partial S}{\partial E}\right)_x$$

Definition Konjugierte Variablen

Beispiele:

$$x = \begin{cases} M &\longleftrightarrow H \\ N &\longleftrightarrow M \\ V &\longleftrightarrow P \end{cases} y$$

$$S(E, X) \qquad y = \pm T \left(\frac{\partial S}{\partial X} \right)_{F}$$

Statistische Physik

Extensive Observable
$$\hat{x}$$
, $[\hat{x}, \hat{H}] \xrightarrow{N \gg 1} N^0, n^{-1}$
 $\implies \langle \hat{x} \rangle = x$ $S(E, X) = k_B \ln w(E, X)$

Beispiel: System von nicht-wechselwirkenden Spins

N Spins
$$s = 1$$
, $H = \sum_{i=1}^{N} H_i = J \sum_{i=1}^{N} S_{iz}^z \quad (J > 0)$

Eigenzustände:

1 Teilchen
$$\begin{cases} H_{i} | M_{j} \rangle = J S_{jz}^{z} | m_{j} \rangle = J \hbar^{2} m_{j}^{2} \\ S_{zj} | m_{j} \rangle = \hbar m_{j} | m_{j} \rangle & m_{j} = -1, 0, 1 \end{cases}$$

$$N \text{ Teilchen } \begin{cases} \text{Dim } \mathcal{H} = 3^{N} \\ |\{m_{j}\}\rangle = |m_{j}\rangle \otimes |m_{j}\rangle \otimes \ldots \otimes |m_{N}\rangle \\ E(\{M_{j}\}) = J \sum_{j=1}^{N} m_{j}^{2} \\ S_{z} |\{m_{j}\}\rangle = \sum_{j} m_{j} & M = \sum_{j} m_{j} |\{m_{j}\}\rangle \\ H |\{m_{j}\}\rangle = E(\{m_{j}\}) |\{m_{j}\}\rangle \end{cases}$$

Problem Entartung w(E, M)

$$N_{+} = \text{Anzahl der Spins mit } m_{j} = +1 \text{ in } \{m_{j}\}$$

 $N_{0} = \text{Anzahl der Spins mit } m_{j} = +0 \text{ in } \{m_{j}\}$
 $N_{-} = \text{Anzahl der Spins mit } m_{j} = -1 \text{ in } \{m_{j}\}$

$$\implies \begin{cases} E = J(N_{+} + N_{-}) \\ M = N_{+} - N_{-} \\ N = N_{+} + N_{-} + N_{0} \end{cases} \implies \begin{cases} N_{+} = \frac{R + M}{L} = \frac{r + m}{L} N \\ N_{-} = \frac{R - M}{L} = \frac{r - m}{L} N \\ N_{0} = N - R = (1 - r) N \end{cases}$$

Energie pro Spin ist
$$r=\frac{R}{N}=\frac{E}{NJ}$$
 $\in [0,1]$ Magnetisierung pro Spin $m=\frac{M}{N}$ $\in [-1,1]$

Problem: N_+ unterscheidbare Zustände $m_j = +1$ auf N Spins verteilen.

$$\implies \binom{N}{N_+} = \frac{N!}{N_+!(N-N_+)!} \text{ M\"{o}glichkeiten}$$

Danach: N_- unterscheidbare Zustände auf $N-N_+$ Spins mit $m_j=-1$ verteilen.

$$\implies \binom{N-N_+}{N_-}$$
 Moeglichkeiten

Also insgesamt:

$$\begin{split} w(E,M) &= w(N_+,N_-) \\ &= \binom{N}{N_+} \binom{N-N_+}{N_-} \\ &= \frac{N!}{N_+!N_-!N_0!} \end{split}$$

Damit folgt die Entropie:

$$S(E, M) = S(N_+, N_-)$$

= $k_B \ln \left(\frac{N!}{N_+! N_-! N_0!} \right)$

Annahme: $N, N_+, N_0, N_- \gg 1$ aber

$$\begin{split} \frac{N_+}{N}, \frac{N_-}{N}, \frac{N_0}{N} \text{ fest und endlich} \\ &\iff m, n \text{ fest und endlich} \\ &\iff M, E \text{ sind extensiv } (M, E \propto N) \end{split}$$

Stirling Formel

$$\ln N! \approx N \ln N - N$$

$$\implies S(E, M) = k_B N f(r, m)$$

$$f(r, m) = -\left[\frac{r+m}{2} \ln (r+m) + \frac{r-m}{2} \ln \frac{(r-m)}{2} + (1-r) \ln (1-r)\right]$$

Temperatur

$$\frac{1}{T} = \left(\frac{\partial S}{\partial E}\right)_M = \frac{k_B}{J} \ln \left(\frac{2(1-r)}{\sqrt{r^2 - m^2}}\right)$$

Ohne Magnetisierung M = 0 genau dann, wenn m = 0.

$$S(E) = -kN[r \ln \frac{r}{2} + (1-r) \ln (1-r)]$$

$$\frac{1}{T} = \frac{k_B}{J} \ln \left(\frac{2(1-r)}{r} \right) \begin{cases} > 0 & \text{falls } 0 < r < \frac{2}{3} \\ < 0 & \text{falls } \frac{2}{3} < r < 1 \end{cases}$$

$$\implies r(T) = \frac{2}{e^{\beta J} + 2}, \quad \beta = \frac{1}{k_B T}$$

$$E(T) = NJ \frac{2}{e^{\beta J}} \frac{2}{e^{\beta J} + 2}$$

$$S(T) = kN \left[\frac{2}{e^{\beta J} + 2} \ln \left(e^{\beta J} + 2 \right) - \frac{1}{e^{-\beta J} + 2} \ln \left(1 + 2e^{-\beta J} \right) \right]$$

Diskussion

Tiefe Temperaturen

$$k_BT \ll J \iff \beta J \longrightarrow \infty \implies \begin{cases} E \longrightarrow 0 \\ S \longrightarrow 0 \end{cases}$$

Nebenbedingung für J < 0:

$$\implies \begin{cases} E = NJ \\ S = k_B N \ln{(z)} \end{cases}$$

Hohe Temperatur $k_B T \gg J$

$$\iff \beta J \longrightarrow 0 \implies \begin{cases} E = \frac{2}{3}NJ \\ S = \frac{1}{3}k_BN\ln(3) \end{cases}$$

Kanonisches Ensemble

Schwabl Kapitel 2.6

Schwabl nimmt an, dass man das gesamte System mikrokanonisch behandeln kann. $\hat{\rho} \propto \delta(\hat{H} - E)$. Das innere Teilsystem 2 ist viel kleiner als das äußere Teilsystem 1. Also ist auch die änderung der Energie des Systems 1 $\Delta E_1 \gg \Delta E_2$. Man benutzt dann das Prinzip der maximierung der Entropie S woraus folgt, dass

$$\hat{\rho}_2 = e^{-\hat{H}_2/(k_B T_2)}$$

Quantenmechanik Anmerkung:

$$\mathcal{H} = \mathcal{H}_{1} \otimes \mathcal{H}_{2} \qquad \text{Basis } \{|n_{1}\rangle \otimes |n_{2}\rangle\} \text{ von } H$$

$$\operatorname{tr} \hat{A} = \sum_{n} \left\langle n \, \middle| \, \hat{A} \, \middle| \, n \right\rangle = \sum_{n_{1}} \sum_{n_{2}} \left\langle n_{1} n_{2} \, \middle| \, \hat{A} \, \middle| \, n_{1} n_{2} \right\rangle$$

$$\hat{A}_{1} = \operatorname{tr}_{\mathcal{H}_{1}} \hat{A} = \sum_{n_{2}} \left\langle n_{2} \, \middle| \, \hat{A} \, \middle| \, n_{2} \right\rangle$$

$$= \sum_{n_{2}} \sum_{n_{1}} \sum_{n_{1}'} \left\langle n_{1} n_{2} \, \middle| \, \hat{A} \, \middle| \, n_{1}' n_{2} \right\rangle |n_{1}\rangle \left\langle n_{1}' \, \middle|$$

$$\hat{\rho}_{1} = \operatorname{tr}_{\mathcal{H}_{1}} \hat{\rho} \implies S_{1}(E_{1}) = \frac{1}{T_{1}} = \left(\frac{\partial S_{1}}{\partial E_{1}}\right) = \frac{1}{T}.$$

Wir betrachten ein geschlossenes System im Gleichgewicht mit Wärmebad der Temperatur T. Was ist der statistische Operator $\hat{\rho}$?

Definition Freie Energie (Thermodynamik, makroskopisch)

$$F(T) = U(S(T)) - TS(T)$$

Legendre-Transformation

$$\frac{1}{T} = \left(\frac{\partial S}{\partial E}\right)_X \iff T_X = \left(\frac{\partial E}{\partial S}\right)_X$$
$$\implies S = -\left(\frac{\partial F}{\partial T}\right)_X$$

Postulat Im thermischen Gleichgewicht ist die Entropie maximal. Dies gilt genau dann wenn die freie Energie minimal ist.

Definition Funktional der freien Energie In der mikroskopischen statistischen Physik.

$$\begin{split} F[\hat{\rho}] &= E[\hat{\rho}] - TS[\hat{\rho}] \\ &\text{mit } E[\hat{\rho}] = \left\langle \hat{\mathcal{H}} \right\rangle = \operatorname{tr}(\hat{\rho}\hat{\mathcal{H}}) \end{split}$$

Minimierung von $F[\hat{\rho}]$

Variationsrechnung $\delta F = 0 \quad \forall \, \delta \hat{\rho}$

1.

$$\begin{split} \delta F &= F \left(\hat{\rho} + \delta \hat{\rho} \right) - F \left(\hat{\rho} \right) \\ &= \operatorname{tr}(H \delta \hat{\rho}) + k_B T \operatorname{tr}(\delta \hat{\rho} \ln \hat{\rho}) + k_B T \operatorname{tr} \delta \hat{\rho} \\ &= \operatorname{tr}((H + k_B T \ln \hat{\rho}) \delta \hat{\rho}) \end{split}$$

Wir verwenden, dass man kompakte operatoren in der Spur vertauschen kann.

$$\operatorname{tr}(\hat{A}\hat{B}) = \operatorname{tr}(\hat{B}\hat{A})$$
$$\operatorname{tr}\hat{\rho} = 1 \implies \operatorname{tr}\delta\hat{\rho} = 0$$

2.

$$\delta F = 0 \quad \forall \, \delta \hat{\rho} \implies H + k_B \ln \hat{\rho} = c \iff \hat{\rho} = e^{\frac{\hat{H}}{k_B T}} e^{\frac{c}{k_B T}}$$

Die folgenden drei Formeln sollte man sich merken:

$$\implies \hat{\rho} = \frac{1}{Z} e^{-\beta \hat{H}} \qquad \beta = \frac{1}{k_B T}$$

 $Kanonische\ Zustandsumme$

$$Z = \operatorname{tr} e^{-\beta \hat{H}}$$

Minimum von $F[\hat{\rho}] \equiv$ Freie Energie.

$$F = -k_B T \ln Z$$

Bemerkung: $\hat{\rho} = e^{-\beta \hat{H}} P_N$

Weitere thermodynamische Variablen

$$x = \operatorname{tr}(\hat{\rho}\hat{x})$$
 z.B. M, N

Thermodynamik
$$y=\pm\left(\frac{\partial F}{\partial X}\right)_T$$
, z.B $P=-\left(\frac{\partial F}{\partial V}\right)_T$, $B=\left(\frac{\partial F}{\partial M}\right)_T$

Statistische Bedeutung der Wärme

$$dE = d \operatorname{tr} \left(\hat{\rho} \hat{H} \right) = \operatorname{tr} \left(d \hat{\rho} \hat{H} \right) + \operatorname{tr} \left(\hat{\rho} d \hat{H} \right)$$

$$dS = -k_B d \operatorname{tr} \left(\hat{\rho} \ln \hat{\rho} \right) = -k_B \operatorname{tr} \left(d \hat{\rho} \ln \hat{\rho} \right) - k_B \operatorname{tr} d \hat{\rho}$$

$$= \frac{1}{\hat{\rho} = \frac{1}{z} e^{-\beta \hat{H}}} \operatorname{Tr} \left(d \hat{\rho} \hat{H} \right)$$

$$\Longrightarrow dE = T dS + \operatorname{tr} \left(\hat{\rho} d \hat{H} \right).$$

1. Hauptsatz der Thermodynamik

$$dV = \delta Q + \delta A$$

• Reversibler Prozess

$$\delta Q = TdS = \operatorname{tr}\left(d\hat{\rho}\hat{H}\right)$$

$$\delta A = \operatorname{tr}\left(\hat{\rho}d\hat{H}\right) \Longrightarrow$$

 $\delta A = \operatorname{tr}\left(\hat{\rho}d\hat{H}\right) \implies$ Änderung der Wärme \equiv Änderung der Wahrscheinlichkeit der Mikrozustände

Energiefluktuationen

Wahrscheinlichkeit für Mikrozustand mit Energie E. Diskretes Spektrum

$$P(E) = \begin{cases} \frac{1}{Z}e^{-\beta E} & \text{Falls Eigenenergie } E \text{ existiert} \\ 0 & \text{Falls Eigenenergie } E \text{ nicht existiert} \end{cases}$$

Kontinuerliches Spektrum

$$P(E) = W(E)\Delta E$$

$$W(E) = w(E)\frac{1}{Z}e^{-\beta E}$$

Definition einiger Größen

• Mittelwert

$$\bar{E} = \int dE \, w(E) E = \left\langle \hat{H} \right\rangle = U$$

Nebenbedingung

$$\langle H \rangle = -\frac{\partial}{\partial \beta} \ln Z$$

• Schwankungsquadrat

$$\Delta E^{2} = \int dE W(E) (E - \bar{E})^{2} = \langle \hat{H}^{2} \rangle - \langle \hat{H} \rangle^{2}$$

Nebenbedingung

$$\Delta E^2 = -\frac{\partial \bar{E}}{\partial \beta} = -\frac{\partial \left\langle \hat{H} \right\rangle}{\partial \beta}$$

• Wärmekapazität

$$C_x = \left(\frac{dU}{dT}\right)_T = \frac{1}{k_B T^2} \Delta E^2 \qquad \beta = \frac{1}{k_B T}$$

3. Hauptsatz

$$\lim_{T \to 0} C_x = 0 \implies \lim_{T \to 0} \Delta E^2 = 0$$

Relation mit dem mikrokanonischen Ensemble

Experiment: U und C_x sind extensiv. Das bedeutete mathematisch, dass U und C_x proportional zur Teilchenzahl N sind. Das bedeutet auch, dass der Mittelwert \bar{E} und das Schwankungsquadrat ΔE proportional zur Teilchenzahl sind. Das bedeutet für die relative Breite:

$$\frac{\Delta E}{\bar{E}} \propto \frac{1}{\sqrt{N}} \xrightarrow{\text{Thermodynamischer Limes}} 0$$

$$P(\bar{E}) = W(\bar{E})\Delta E \xrightarrow{n\to\infty} 1$$

oder $W(E) \to \delta(E - \bar{E})$

Äquivalenz der mikrokanonischen und kanonischen Ensembles im thr
modynamischen Limes ($\frac{\Delta E}{N} \rightarrow 0$).

Beispiel: Spin System

$$\hat{H} = J \sum_{i=1}^{N} S_{iz}^{z} - B \sum_{i=1}^{N} S_{iz} = \sum_{i=1}^{N} H_{i}$$

$$\hat{\rho} = \frac{1}{z} e^{-\beta \hat{H}} \qquad [H_{j}, H_{l}] = 0 \quad \forall j, l = 1, \dots, N$$

$$Z = \operatorname{tr}_{\mathcal{H}} e^{-\beta \hat{H}} = \operatorname{tr}_{\mathcal{H}_{1}} e^{-\beta \hat{H}_{1}} \operatorname{tr} e^{-\beta \hat{H}_{2}} \dots \operatorname{tr}_{\mathcal{H}_{N}} e^{-\beta \hat{H}_{N}}$$

$$Z_{1} = \operatorname{tr}_{\mathcal{H}_{1}} e^{-\beta \hat{H}_{1}} = \sum_{m_{1}=1,0,1} \left\langle m_{1} \mid e^{-\beta \hat{H}_{1}} \mid m_{1} \right\rangle$$

$$\hat{H}_{1} \mid m_{1} \rangle = \left(J m_{1}^{2} - \beta m_{1} \right) \mid m_{1} \rangle$$

$$\Rightarrow Z_1 = 1 + e^{-\beta(J+B)} + e^{-\beta(J-B)}$$

$$\Rightarrow Z = \left(1 + e^{-\beta(J+B)} + e^{-\beta(J-B)}\right)^N = \left(1 + 2e^{-\beta J}\cosh(\beta B)\right)^N$$

$$Z = \left(1 + Ze^{-\beta J}\cosh(\beta B)\right)^N$$

Freie Energie

$$F(T,X) = -k_B T \ln Z(T,X) \qquad X = V, M$$

 $Freie\ Enthalpie$

$$G(T,Y) = -k_B T \ln Z(T,X) \qquad \qquad y = P, B$$

Legendre Transformation

$$G(T,B) = F(T, M(T,B)) - M(T,B)B$$

$$B = \left(\frac{\partial F}{\partial M}\right)_T \qquad \qquad M = -\left(\frac{\partial G}{\partial B}\right)_T$$

$$\implies G(T,B) = -k_B T N \ln \left(1 + 2e^{-\beta J} \cosh \beta B\right)$$

Magnetisierung

$$M = \langle S_z \rangle = \frac{1}{Z} \operatorname{tr}(e^{-\beta \hat{H}} \hat{S}_z)$$
$$= \frac{1}{\beta} \frac{\partial \ln Z}{\partial \beta}$$
$$= N \frac{2e^{-\beta J} \sinh(\beta B)}{1 + 2e^{-\beta J} \cosh(\beta B)}$$

anmerkung:

$$Z = \operatorname{tr} e^{-\beta H} \qquad H = J \sum_{i} \hat{S}_{iz}^{z} - B \sum_{i} S_{iz}$$

- Tiefe Temperatur $kT \ll J, |B|$ - Falls |B| < J so geht $M \to 0$
 - Falls |B| < J so geht $M \to \tanh(\beta B) \to N \operatorname{sign}(B)$ Im Grundzustand $|m_1 = \operatorname{sign} B\rangle$.
- Hohe Temperatur $kT \gg J, |B|$

Curie-Gesetz

$$M = N \frac{2}{3} \frac{B}{k_B T}$$

Großkanonisches Ensemble

Schwabl Kapitel 2.7

Wir haben einen offenen Behälter, in dem sich ein Untersystem befindet. Man kontrolliert nicht die Teilchenzahl und die Energie, sondern nur die TEmperatur und das chemische Potential. Es handelt sich also um ein offenses System im Gleichgewicht mit

- \bullet Einem Wärmebad bei Temperatur T.
- Einem Teilchenreservoir mit chemischem Potential μ .

Beispiel. Wasserspiegel

Definition. Großkanonisches Potential der Thermodynamik

$$\Phi(T, \mu) = U(S(T, \mu), N(T, \mu)) - TS(T, \mu) - \mu N(T, \mu)$$

$$T = \left(\frac{\partial U}{\partial S}\right)_{X,N} \qquad \qquad \mu = \left(\frac{\partial U}{\partial N}\right)_{X,T}$$

$$S = -\left(\frac{\partial F}{\partial T}\right)_{X,\mu} \qquad \qquad N = -\left(\frac{\partial \Phi}{\partial \mu}\right)_{X,T}$$

Postulat. Thermodynamisches Gleichgewicht besteht genau dann, wenn die Entropie S maximal ist. Oder Äquivalent, das großkanonische Potential Φ minimal ist.

Definition. Funktional des großkanonischen Potentials (Statistische Physik)

$$\Phi[\hat{\rho}] = E\left[\hat{\rho}\right] - TS[\hat{\rho}] - \mu N[\hat{\rho}]$$

wobei

$$N[\hat{\rho}]=\mathrm{tr}(\hat{\rho}\hat{N})$$

Wir minimieren nun $\Phi[\hat{\rho}]$ unter $\hat{\rho}$ mit tr $\hat{\rho} = 1$. Daraus folgt der statistische Operator.

Statistischer Operator	$\hat{\rho} = \frac{1}{Z} e^{-\beta(\hat{H} - \mu \hat{N})}$		
Zustandsumme	$Z = \operatorname{tr} e^{-\beta(\hat{H} - \mu \hat{N})}$		
Großkanonisches Potential	$\Phi(T,\mu) = -k_B T \ln Z$		

Kanonisch und Großkanonisch

• Kanonisch

Hilbert-Raum für N-Teilchen \mathcal{H}_N .

Hamilton-Operator $H_N: \mathcal{H}_N \to \mathcal{H}_N$.

Statistischer Operator $\hat{\rho}_{K,N} = \frac{1}{Z_K(N)} e^{-\beta \hat{H}_N} : \mathcal{H}_N \to \mathcal{H}_N$ Zustandsumme $Z_K(N) = \operatorname{tr}_{\mathcal{H}_N} e^{-\beta \hat{H}_N}$

• Großkanonisch

Hilbert-Raum für beliebige Teilchenzahl $\mathcal{H} = \bigoplus_{N=0}^{\infty} \mathcal{H}_N$ Projektor $\hat{P}_N : \mathcal{H} \to \mathcal{H}_N$ Hamilton-Operator $\hat{H} : \mathcal{H} \to \mathcal{H}, \quad \hat{H}_N = \hat{P}_N \hat{H} \hat{P}_N$ Statistischer-Operator $\hat{\rho}_{GK} = \frac{1}{Z_{GK}} e^{-\beta(\hat{H} - \mu \hat{N})} : \mathcal{H} \to \mathcal{H}$ Teilchenzahl-Operator $\hat{N} = \sum_{N=0}^{\infty} N \hat{P}_N \text{ oder } \hat{N} |\Psi\rangle = N |\Psi\rangle \quad \forall |\Psi\rangle \in \mathcal{H}_N$ Zustandsumme $Z_{GK} = \operatorname{tr}_{\mathcal{H}} e^{-\beta(\hat{H} - \mu \hat{N})}$

$$\hat{\rho}_{N,K} = \hat{P}_N \hat{\rho}_{GK} \hat{P}_N e^{-\beta \mu N} \frac{Z_{GK}}{Z_{K,N}}$$

$$\hat{\rho}_{GK} = \frac{1}{Z_{GK}} \sum_{N=0}^{\infty} Z_K(N) \hat{\rho}_{K,N} e^{\beta \mu N}$$

$$Z_{GK}(\mu) = \sum_{N=0}^{\infty} e^{\beta \mu N} Z_k(N) = \operatorname{tr}_{\mathcal{H}} \left(e^{-\beta(\hat{H} - \mu \hat{N})} \right)$$

$$= \sum_{N=0}^{\infty} \operatorname{tr}_{\mathcal{H}_N} \left(e^{-\beta(\hat{H} - \mu \hat{N})} \right)$$

$$= \sum_{N=0}^{\infty} \operatorname{tr}_{\mathcal{H}} \left(e^{-\beta \hat{H}_N} \right) e^{\beta \mu N}$$

$$Z_K(N)$$

Fluktuation der Teilchenzahl

Wahrscheinlichkeit dafür, dass das System sich in einem Mikrozustand mit N Teilchen befindet.

$$P(N) = \left\langle \hat{P}_N \right\rangle = \left\langle \delta(\hat{N} - N) \right\rangle = \frac{1}{Z_{\text{GK}}} \operatorname{tr}_{\mathcal{H}} = \hat{P}_N e^{-\beta(\hat{H} - \mu \hat{N})}$$
$$= \frac{Z_K(N)}{Z_{\text{GK}}} e^{\beta MN}$$

Mittlere Teilchenzahl

$$\bar{N} = \left\langle \hat{N} \right\rangle = \sum_{N=0}^{\infty} NP(N)$$

Nebenbedingung

$$\left\langle \hat{N} \right\rangle = \frac{1}{\beta} \frac{\partial \ln \hat{P}}{\partial \mu}$$

Fluktuationen

$$\Delta N^2 = \left\langle \left(\hat{N} - \left\langle \hat{N} \right\rangle \right)^2 \right\rangle$$
$$= \sum_{N=0}^{\infty} P(N)(N - \bar{N})^2 \propto \bar{N}$$

$$P(N) \xrightarrow{N\gg 1} \delta(N-\bar{N})$$

Das bedeutet die Äquivalenz zwischen kanonischem und großkanonischem Ensemble.

Ensemble	mikrokanonisch	ı	kanonisch		großkanonisch	
Physikalisches System	isoliert		geschlossen		offen	
Thermodynamische Varia-	N, E		T, N		T, μ	
blen						
Thermodynamische Funk-	T, μ		E, μ		E, N	
tionnen						
Zustandsumme	w(E,N)	=	$Z_K(T,N)$	=	$Z_{\text{GK}}(T,\mu)$ $\operatorname{tr}_{\mathcal{H}} e^{-\beta(\hat{H}-\mu\hat{N})}$	=
	$\begin{array}{c c} w(E,N) \\ \operatorname{tr}_{\mathcal{H}_{E,N}} \hat{I} \end{array}$	=	$\begin{array}{c} Z_K(T,N) \\ \operatorname{tr}_{\mathcal{H}_N} e^{-\beta \hat{H}} \end{array}$	=	$\operatorname{tr}_{\mathcal{H}} e^{-\beta(\hat{H}-\mu\hat{N})}$	
	$\operatorname{tr}_{\mathcal{H}} \hat{P}_E \hat{P}_N$		$\operatorname{tr}_{\mathcal{H}} e^{-\beta \hat{H}} \hat{P}_N$			
Statistischer Operator	$\hat{\rho} = \frac{1}{w}\hat{\rho}_E\hat{\rho}_N$		$\hat{ ho}_K$	=	$\frac{\hat{\rho}_{\text{GK}}}{\frac{1}{Z_{\text{GK}}}} e^{-\beta(\hat{H} - \mu \hat{N})}$	=
			$\frac{1}{Z_K}e^{-\beta \hat{H}_N}$	=	$\frac{1}{Z_{GK}}e^{-\beta(\hat{H}-\mu\hat{N})}$	
			$\begin{vmatrix} \frac{1}{Z_K} e^{-\beta \hat{H}_N} \\ \frac{1}{Z_K} \hat{\rho}_N e^{-\beta H} \hat{\rho}_N \end{vmatrix}$		-GK	
Thermodynamische Poten-	S(E,N)	=	F(T,N)	=	Φ	=
tiale	$k_B \ln w(E, N)$		$-k_BT \ln Z_K$		$-k_BT \ln Z_{\rm GK}$	

Tabelle 1: Übersicht der Ensembles der statistischen Physik

Klassische Statistische Physik

 $Schwabl\ Kapitel\ 2,\ Nolting\ Band\ 6\ Kapitel\ 1$ Das Problem besteht aus Mikrozuständen eines Systems von N-Teilchen.

Problem

Mikrozustände
$$(q,p)\in\mathbb{R}^{6\mathbb{N}}$$
 Zeitmittelung
$$A_z=\frac{1}{T_z}\int_0^{T_z}dt\,A(q(t),p(t))$$
 Ensemblemittelung
$$A_E=\int\,dq\,\,dp\,A(q,p)\rho(q,p)$$

Ergodenhypothese

$$A_E = \lim_{T_z \to \infty} \lim_{N \to \infty} A_Z$$

Klassische Physik und das Postulat der statistischen Physik bestimmen $\rho(q,p)$ nicht. Deshalb benutzt man die Quantentheorie und das Postulat der klassischen statistischen Physik. Auf diese Art und Weise erhält man die Quantenstatistik. Diese ergibt im klassischen Grenzfall wieder die klassische Statistische Physik.

Klassischer Grenzfall Beispiel: Fermi-Gas mit Fermi-Temperatur T_F

 $T < T_F$: Fermi-Dirac-Verteilung $f(\varepsilon) = \frac{1}{1 + e^{\beta(\varepsilon - \mu)}}$

 $T \gg T_F$: Maxwell-Boltzmann-Verteilung $f(\varepsilon) = ce^{-\beta \varepsilon}$

Elektronen im Metall: $T_F\approx 10\times 10^3\,\mathrm{K}$ bis $10\times 10^4\,\mathrm{K}$

$$H_e^3$$
 : $T_F \approx 3 \, \mathrm{K}$

Mikrokanonisches Ensemble $(q, p) \in \mathbb{R}^{6N}$

$$\begin{split} \rho(q,p) &= \frac{1}{w(E)} \delta \left(H(q,p) - E \right) \frac{1}{N!} \frac{1}{h^{3N}} \\ w(E,N) &= \frac{1}{N!} \frac{1}{h^{3N}} \int \, dq \, \, dp \, \delta(H(q,p) - E) \\ \text{Entropie } S(E,N) &= k_B \ln w(E,N) \end{split}$$

 $w(t)\Delta E$ entspricht dem Phasenraumvolumen der Mikrozustände mit Energie $m[E,E+\Delta E]$.

Kanonisches Ensemble

$$\rho(q,p) = \frac{1}{Z_K} e^{-\beta H(q,p)} \frac{1}{N!} \frac{1}{h^{3N}}$$

$$Z_K = \frac{1}{N!} \frac{1}{h^{3N}} \int dq \, dp \, e^{-\beta H(q,p)}$$

Die freie Energie Schreibt sich als

$$F(T, N) = -k_B T \ln Z_K(T, N)$$

Großkanonisches Ensemble

$$Z_{GK}(T,\mu) = \sum_{N=0}^{\infty} e^{\beta \mu} Z_K(T,N)$$

$$\implies \Phi(T,\mu) = -k_B T \ln Z_{GK}(T,\mu)$$

$$\rho(q, p) = \frac{1}{Z_{GK}} \sum_{N=0}^{\infty} e^{-\beta(H_N(q_N, p_N) - \mu N)} \frac{1}{Nh^{3N}} \delta(q - q_N) \delta(p - p_N)$$

$$0 = \{H, P\} = \{H, H\} \frac{dp}{dH}$$

• Entropie

$$S \neq -k_B \int dq \, dp \, \rho(q, p) \ln \rho(q, p)$$
$$= -k_B \int dq \, dp \, \rho(q, p) \ln \left(\rho(q, p) N! h^{3N} \right)$$

- Mit Z Zwangsbedingungen wird 6N zu 6N 2Z und 3N zu 3N Z.
- Vorfaktor h^{-3N}
- Erwartungswert

$$\langle A \rangle \propto \frac{h^{3N}}{h^{3N}} = 1$$

 \bullet Die Entropie S und die Freie Energie F sind von der Form

$$S(h) = S + cN \ln h$$
$$F(h) = F + c'N \ln h$$

Als Schlussfolgerung sind diese Werte nicht experimentell messbar. Bemerkung: die Konstante c' wiederspricht dem 3. Hauptsatz der Thermodynamik, aber das ist wegen des klassischen Limits kein Problem.

Vorfakor N! In der Quantentheorie gibt es austauschsymmetrie zwischen identischen Teilchen.

• Erwartungswert

$$\langle A \rangle \propto \frac{N!}{N!} = 1$$

• $S, F, \Phi \propto N$, also sind sie extensive Größen.

Gibbs-Paradoxon Wir haben zwei ursprünglich getrennte Systeme die addiert werden. Es gibt ein Gleichgewicht, also

$$T_1 = T_2 P_1 = P_2$$

Für eine Mischung von 2 Gasen

$$N! \rightarrow N_1! N_2!$$

Mit N unterscheidbare Teilchen.

Beispiel Klassisches ideales Gas.

N Teilchen im Potential V.

$$H(\vec{r}, \vec{p}) = \sum_{i=1}^{N} \frac{\vec{P}_i^2}{2m} + \sum_{j=1}^{N} V(\vec{r}_j)$$
$$V(\vec{r}) = \begin{cases} 0 & \text{für } \vec{r} \in V \\ \infty & \text{für } \vec{r} \notin V \end{cases}$$

Mikrokanonisches Ensemble

$$\Omega(E) = \frac{1}{N!} \frac{1}{h^{3N}} \int d^{3N}r \int d^{3N}p \quad \Theta(E - H(\vec{r}, \vec{p}))$$

Wobei

$$\Theta(x) = \begin{cases} 1 & x > 1 \\ 0 & x < 0 \end{cases}$$

Die Heaviside Theta Funktion ist. Die Integrale stellen ein Phasenraumvolumen der Energie < E dar. Wir werden nun diese Größe berechnen. In diesem Integral können wir anstatt über R^{3N} nur über das Volumen integrieren.

$$\Omega(E) = \frac{1}{N!} \frac{1}{h^{3N}} \underbrace{\int_{V^N} d^{3N} r}_{V^N} \int_{\mathbb{R}^{3N}} d^{3N} p \,\Theta(E - \sum_{i=1}^N \frac{\vec{P}_1}{2M})$$
$$= \frac{V^N}{N!h^{3N}} C_{3N} R^{3N}$$

 $_{
m mit}$

$$R = \sqrt{2mE}$$
 $C_{3N} = \frac{\pi^{\frac{3N}{2}}}{(\frac{3N}{2})!}$

Damit folgt

$$\Omega(E) = \frac{V^N}{N!h^{3N}} \frac{\pi^{\frac{3N}{2}}}{(\frac{3N}{2})!} (2mE)^{\frac{3N}{2}}$$

und

$$w(E) = \frac{d\Omega}{dE} = \frac{V^N}{N!h^{3N}} \frac{\pi^{3n/2}}{(\frac{3N}{2} - 1)!} (2m)^{3N/2} E^{3N/2 - 1}$$
$$S = -k_B \ln w(E) = k_B N \left[\ln V - \ln h^3 - \ln N + 1 + \frac{3}{2} \ln (\pi) + \frac{3}{2} \ln (2m) + \frac{3}{2} \ln E - \frac{3}{2} \ln (\frac{3}{2}N) + \frac{3}{2} \right]$$

Wobei die Stirling Formel benutzt wurde für

$$N \gg 1 \quad \left(\frac{E}{N}, \frac{V}{N} \text{ endlich}\right)$$

$$S(E, N, V) = k_B N \left\{ \ln \left[\frac{V}{N} \left(\frac{E}{N} \right)^{3/2} \left(\frac{4\pi m}{h^2 3} \right)^{3/2} \right] + \frac{5}{2} \right\}$$

Ideales klassisches Gas im kanonisches Ensemble

$$Z_K = \frac{1}{N!_{\bar{1}}} h^{3n} \int_{\mathbb{R}^{3n}} d^{3N} r \int_{\mathbb{R}^{3N}} d^{3N} r e^{-\beta H(\vec{r}, \vec{p})}$$

$$H(\vec{r}, \vec{p}) = \sum_{i=1}^{N} \frac{\vec{r}_{i}^{2}}{2m} + \sum_{i=1}^{N} V(\vec{r}_{1})$$

$$V(\vec{r}) = \begin{cases} 0 & \vec{r} \in V \\ \infty & \vec{r} \notin V \end{cases}$$

$$= \sum_{i=1}^{N} H(\vec{r}_{i}, \vec{r}_{2})$$

Also folgt

$$Z_{k} = \frac{1}{N!} \frac{1}{h^{3N}} \underbrace{\left(\int_{\mathbb{R}^{3N}} d^{3N} r \, e^{-\beta \sum_{i=1}^{N} V(\vec{r_{i}})} \right)}_{= \left(\int d^{3} r \cdot 1 \right)^{N}} \underbrace{\left(\int_{\mathbb{R}^{3N}} d^{3N} p \, e^{-\beta \sum_{i=1}^{N} \frac{\vec{p}_{i}^{2}}{2m}} \right)}_{= \left(\int_{\mathbb{R}} dp \, e^{-\beta \frac{p^{2}}{2m}} \right)^{3N}}_{= \left(\int_{\mathbb{R}} dp \, e^{-\beta \frac{p^{2}}{2m}} \right)^{3N}}$$

$$Z_K = \frac{1}{N!} \frac{1}{h^{3N}} V^N \left(\sqrt{2\pi} \sqrt{mkT} \right)^{3N}$$

$$F(T, N, V) = -k_B T \ln Z_K = -k_B T N \left\{ \ln \left[\frac{V}{N} \left(\frac{2\pi m k_B T}{h^2} \right)^{\frac{3}{2}} \right] + 1 \right\}$$

Wobei die Stirling-Formel benutzt wurde für $N \gg 1$.

$$S(T, N, V) = -\left(\frac{\partial F}{\partial T}\right)_{N,V}$$
$$= kNf(T, V, N) + \frac{3}{2}k_BN$$

Die Nebenbedingung lautet, dass

$$\lim_{T \to 0} S(T) \neq 0$$

Für die Innere Energie gilt

$$U(T, V, N) = F + TS = \frac{3}{2}Nk_BT \tag{1}$$

Der Druck ist

$$P = -\left(\frac{\partial F}{\partial V}\right)_{T,N} = k_B T N \frac{1}{V} \tag{2}$$

$$\iff PV = Nk_BT$$
 (3)

A und B sind Zustandsgleichungen des idealen Gases.

$$C_V = (\frac{\partial U}{\partial T}) = \frac{3}{2}Nk_B$$
 Gleichverteilungssatz

Maxwell-Geschwindigkeitsverteilung

$$dN = n(\vec{v}) \, d^3v$$

Dies ist die Anzahl der Teilchen mit Geschwindigkeiten \vec{v} in einem Volumen d^3v . $n(\vec{v})$ ist die Geschwindigkeitsverteilung.

$$\begin{split} n(\vec{v}) &= \left\langle \sum_{i=1}^{N} \delta(\vec{v} - \vec{v}_i) \right\rangle = \frac{1}{Z_K} \frac{1}{N!} \frac{1}{h^{3N}} \int_{\mathbb{R}^{3N}} d^{3N}r \int_{\mathbb{R}^{3N}} d^{3N}p \sum_{i=1}^{N} \delta(\vec{v} - \vec{v}_i) e^{-\beta H(\vec{r}, \vec{p})} \\ &= \frac{1}{Z_k} \frac{1}{N!} \frac{1}{h^{3N}} V^N \left(\sum_{i=1}^{N} \int_{\mathbb{R}^{3N}} d^{3N}v \, \delta(\vec{v} - \vec{v}_i) e^{-\beta \sum_{i=1}^{N}} \right) \\ &= \frac{1}{Z_k} \frac{1}{N!} \frac{1}{h^{3N}} V^N \left(\sum_{i=1}^{N} e^{-\beta \frac{m}{2} \vec{v}^2} \left(\sqrt{2\pi} \sqrt{\frac{kT}{M}} \right)^{3(N-1)} \delta(\vec{v} - \vec{v}_i) e^{-\beta \sum_{i=1}^{N}} \right) \\ &\implies N(\vec{v}) = \left(\frac{m}{2\pi kT} \right)^{3/2} e^{-\beta \frac{m}{2} \vec{v}^2} d^3v = \sum_{i=1}^{N} v^2 dv \, \frac{m}{2} \vec{v}_i^2 \end{split}$$

Wir schreiben für die Delta-Funktion $\delta(\vec{r}) = \delta(x)\delta(y)\delta(z)$.

Großkanonisches Ensemble

$$\begin{split} Z_{\text{GK}} &= \sum_{n=0}^{\infty} Z_k(N) e^{\beta MN} = \sum_{N=0}^{\infty} \frac{V^N}{N!} \left(\frac{2\pi m k_B T}{h^2} \right)^{3\frac{N}{2}} e^{\beta \mu N} \\ &= \exp \left[V e^{b\mu} \left(\frac{2\pi m k_B T}{h^2} \right)^{\frac{3}{2}} \right]. \end{split}$$

$$\Phi_{GK}(T,\mu,V) = -k_B T \ln Z_{GK} = -k_B T V e^{\beta \mu} \left(\frac{2\pi m k_B T}{h^2} \right)^{\frac{3}{2}}$$

Thermodynamik

$$N(T, \mu, V) = -\left(\frac{\partial \Phi}{\partial \mu}\right)_{T, V} = -\beta \Phi$$

$$P(T, \mu, V) = -\left(\frac{\partial F}{\partial V}\right)_{T, \mu} = -\frac{\Phi}{V}$$

$$\implies PV = Nk_B T$$

Die Teilchenzahlfluktuationen werden klein. In unserem Fall können wir die mittlere Teilchenzahl berechnen, das haben wir schon gemacht. Aber auch das Schwankungsquadrat.

Flukuationen der Teilchenzahl

$$\bar{N} = \sum_{N=1}^{\infty} P(N)N = \langle N \rangle = N(T, \mu, V) = -\beta \Phi$$

$$\Delta N^2 = \sum_{N=0}^{\infty} P(N) \left(N - \bar{N} \right)^2$$

$$= k_B T \frac{\partial N}{\partial \mu}$$

Die Relativen Fluktuationen sind von der Ordnung

$$\frac{\Delta N}{\bar{N}} \propto \frac{1}{\sqrt{N}} \xrightarrow{\text{Thermodynamischer Limes}} 0$$

$$\text{oder } P(N) \to \delta(N - \bar{N})$$

Thermodynamik I

Therie der Wärme. Sie ist eine rein Makroskopische Theorie. Das bedeutet die Theorie ist selbst dann gültig, wenn die Materie nicht aus Atome bestünde. Das ist zuerst einmal eine phaänomenologische Theorie, das bedeutet sie ist basiert auf beobachtungen. Man hat später auch versucht sie mathematisch kompakt zu beschreiben. Es geht hier um Systeme im Gleichgewicht und deren Quasi-Statische-Transformation. Was genau das bedeutet werden wir genauer auch in der nächsten Vorlesung diskutieren. Die Theorie der Systeme die sich schnell ändern ist nicht die Theorie der thermodynamik, sondern eine andere. Wir beginnen mit den Grundlagen, den 4 Hauptsätzen, oder auch die 3 Hauptsätze der Thermodynamik mit dem "nullten" Hauptsatz. Beginnen wir mit den Grundbegriffen.

Thermodynamische Variablen Temperatur, Druck Voumen, Magnetisierung und so weiter. Es gibt in dieser Theorie zwei größen, welche man variieren kann, die Temperatur und die Entropie. Wichtig ist auch der begriff:

Thermodynamischer Zustand (Makrozustand) Er ist eine charackterisierung des Makroskopischen Systems durch thermodynamische Variablen. Zum Beispiel Temperatur, Druck für ein ideales Gas.

Zustandsgleichungen

$$PV = Nk_BT M = \frac{\Theta}{T}B$$

Wir haben damit außerdem

Zustandsfunktionen

$$\rho(T, P) = \frac{N}{V} = \frac{P}{k_B T}$$

Sie können sehen, dass wir hier 4 Variablen haben, die Gleichungen eliminieren 2 Davon. Wir brauchen also noch eine Gleichung.

Keine Zustandsgrößen Dazu zählen die Wärme und Arbeit

 δQ

Zustandsgrößen Volumen V, Innere Energie U werden zu dV und dU. Physikalisch gesehen beschreiben die Zustandsgrößen den echten Zustand. In einem Gleichgewichtszustand sind die anderen größen fest gegeben.

In einem Gedankenexperiment haben wir zwei systeme mit einer undurchlässigen Wand. Es gibt dann Variablen der Folgenden Form

• Extensive Variablen

$$X_{AB} = X_A + X_B \iff X \propto N, V,$$

Zum Beispiel für X = V, N, M, U, F.

• Intensive Variablen

$$X_{AB} = X_A = X_B \qquad \iff \qquad X \propto N^0, V^0$$

zum Beispiel für X = T, P, B.

Die obigen Gleichungen gelten im Gleichgewicht. Wenn man nicht im Gleichgewicht ist, so kann es sein dass einer der VAriablen nicht mehr extensiv ist. Wir fangen nun mit dem nullten Hauptsatz an.

Der nullte Hauptsatz

Es gibt für jeden Hauptsatz formulierungen, welche äquivalent sind. Wir brauchen für die Temperatur ein zusätzliches Postulat, da wir die Temperatur nicht nur aus den mikroskopischen Postulaten ableiten können.

- I) Die Temperatur ist eine messbare charakteristische Eigenschaft eines thermodynamischen Systems.
- II) Im thermodynamischen Gleichgewicht ohne zeitliche änderung. Wir können dann eine Notation einführen $A \stackrel{T}{\simeq} B$

Satz.

$$A \stackrel{T}{\sim} B \text{ und } B \stackrel{T}{\sim} c \implies A \stackrel{T}{\sim} c$$

Der beweis bleibt dem Leser als Hausaufgabe überlassen. Mathematisch gesehen ist $\overset{T}{\simeq}$ eine Äquivalenzrelation

reflexiv
$$A \overset{T}{\simeq} A$$
 symmetrisch $A \overset{T}{\simeq} B \iff B \overset{T}{\simeq} A$ transitiv 0. Hauptsatz

- Die Äquivalenzklassen sind alle thermodynamischen Systeme, die miteinander im thermodynamischen Gleichgewicht stehen.
- Thermometer
 - Referenz System mit messbarer Eigenschaft Θ , die verschieden für jede Klasse ist.
- Empirische Temperatur Θ
- Schlussfolgerung: Alle Systeme in einer Klasse haben die gleiche Temperatur Θ. Zwei Systeme in vershiedenen Klassen haben immer zwei verschiedene Temperaturen. Sie müssen die Temperatur als eine Zahl mit index verstehen, die charakterisiert welche Systeme im Gleichgewicht sind.

Man kann dasselbe auch mit der Masse eines Körpers vergleichen. $A \stackrel{M}{\simeq} B$. Wir werden sehen, dass man die empirische Temperatur durch eine Absolute Temperatur ersetzen kann. Aber das muss man schritt für Schritt konstruieren.

Thermodynamik II

Schwabl Kapitel 3; Nolting Band 4 Teil 2 Wir wollen zuerst Änderung der Energie eines makroskopischen Systems diskutieren. Es gibt im wesentlichen 3 Arten von Energien in der analytischen Mechanik.

• Mechanische Energie (Arbeit)

$$\delta W = -P \, dV \text{ (Gas Expansion)}$$

= $-\vec{B} \, d\vec{M}$

Das Vorzeichen von P ist eine Konvention. Wenn d
s System Arbeit leistet, dann ist die Energie negativ. Es gibt keine Einheitliche bezeichnung der Energie. Man kann also W oder E schreiben.

• Chemische Energie. Dies ist die Energie die man gewinnt oder verliert wenn man die Anzahl der Teilchen ändert.

$$\delta C = \sum_{j} \mu_{j} \, dN_{j}$$

Wenn $dN_1 > 0$ dann wird Materie hinzugeführt.

• Wärme. In der Thermodynamik benutzt man die Mikrostruktur der Systeme nicht, deshalb die folgende Definition: Die Wärme ist die Energieänderung unter Änderung der Temperatur

$$dT > 0 \to \delta Q > 0$$
$$dT < 0 \to \delta Q < 0$$

1. Hauptsatz Es gibt eine Zustandsgröße U (Innere Energie).

$$dU = \delta Q + \delta W + \delta C$$

Dies bedeutet, dass Wärme eine Form der Energie darstellt, und dass die Energieerhaltung gilt.

Eine kurze Wiederholung über mathematische Konzepte der Differentiale.

Mathematische Grundlagen

Wir betrachten eine Funktion f mit mehreren Variablen und definieren die Differentialform df.

$$f: \mathbb{R}^n \to \mathbb{R},$$

$$df = \sum_{j=1}^{n} \frac{\partial f}{\partial x_j} dx_j \quad df(\vec{x})\vec{v} = \vec{\Delta}f(\vec{x}) \cdot \vec{v}$$

Definition. Eine Differentialform w ist geschlossen, wenn

$$\oint_{\gamma} w = 0$$

für alle geschlossenen Integrationswege γ gilt.

Geschlossene Differentialformen

Eine Differentialform ist geschlossen, genau dann wenn alle Integrale über einen Weg eindeutig sind.

$$w \ geschlossen \iff \int_A^B \omega \ ist \ eindeutig \ f\"ur \ alle \ Wege \ zwischen \ A \ und \ B$$

$$\iff \omega \ ist \ eine \ exakte(totale) \ Differential form$$

$$\iff Es \ existiert \ eine \ Stammfunktion \ f \ mit \ df = \omega$$

Umgekehrt, wenn eine Form nicht geschlossen ist, dann hängt das Integral vom Weg ab. Da bedeutet für uns in der Thermodynamik: Es gibt Größen, welche Zustandsgrößen sind

$$dV$$
, dS , dv

Sie sind Exakte differentialformen und U, S, V sind Zustandsgrößen. Allerdings sind

$$\delta Q, \delta W, \delta C$$

nicht geschlossen.

Wir betrachten ein System, in dem die thermodynamischen Variablen Temperatur und Volumen sind.

$$U = U(T, V)$$

$$\int_{\gamma_1} dU = \int_{\gamma_2} dV = \int_A^B dU = U(B) - U(A)$$

$$Q \neq Q(T, V)$$

$$\int_{\gamma_1} \delta Q \neq \int_{\gamma_2} \delta Q$$

Anmerkung:

Konvservative Kraft

$$\int_{\gamma} \vec{F} \, d\vec{r} = \int_{A}^{B} \vec{F} \cdot d\vec{r}$$

Dies bedeutet, es existiert eine potentielle Energie $V(\vec{r})$ und

$$\vec{F} = -\vec{\nabla}V(\vec{r})$$

Wir haben jetzt die Möglichkeit, eine erste theoretische Maschine zu definieren, die Carnotsche-Maschine. Wir werden die Maschine zuerst abstrakt einführen, und dann ein Beispiel für die Arbeit der Maschine für ein ideales Gas sehen.

Carnot-Maschine Sie ist eine theoretische Maschine, deren Arbeitssubstanz ein Thermodynamisches System ist. Es gibt zwei Wärmebäder mit Temperaturen $\Theta_{1,2}, \Theta_{3,4}$. Die Maschine durchläuft einen Kreisprozess mit 4 reversiblen thermodynamischen Transformationen. Reversibel bedeutet, dass das System Quasistatisch ist. Man nimmt also immer thermodynamisches Gleichgewicht an, trotzdem ändert sich der Zustand des Systems langsam. Das System ist Umkehrbar, falls $\delta Q = T \, dS$.

I) $1 \rightarrow 2$

Isotherme Absorption der Wärmemenge $Q_{1,2} > 0$ aus dem warmen Wärmebad. Dies ist Isotherm, also das Wärmebad hat immer diesselbe Temperatur.

II) $2 \rightarrow 3$

Adiabatische Abkühlung von $\Theta_{1,2}$ zu $\Theta_{3,4}$. Das bedeutet, dass arbeit geleistet wird $W_{2,3} < 0$.

III) $3 \rightarrow 4$

Isotherme Abgabe der Wärmemenge $Q_{3,4} < 0$ an das kalte Wärmebad.

IV) $4 \rightarrow 1$

Adiabatische Erwärmung von $\Theta_{3,4}$. Es wird arbeit am System geleistet $W_{4,1} > 0$.

Wir haben es hier mit einem Kreisprozess zu tun. Das bedeutet wenn man die totale Änderung der Energie übre einem Zyklus betrachtet, so sollte sich nichts ändern.

$$0 = \oint dU \qquad dU = \delta W + \delta Q$$

$$\Delta W = \oint \delta W = -\oint \delta Q$$

$$\begin{split} \Delta W &= \int_{1}^{2} \delta W + \int_{2}^{3} \delta W + \int_{3}^{4} \delta W + \int_{4}^{1} \delta W \\ &= W_{1,2} + W_{2,3} + W_{3,4} + W_{4,1} \\ \Delta Q &= Q_{1,2} + Q_{2,3} + Q_{3,4} + Q_{4,1} \end{split}$$

 $Q_{2,3}$ und $Q_{4,1}$ kann man hierbei vergessen. Die geleistete Arbeit ist $\Delta W < 0$. Wir können somit einen Wirkungsgrad definieren:

$$\eta = \frac{-\Delta W}{Q_{1,2}} = \frac{Q_{1,2} + Q_{3,4}}{Q_{1,2}} = 1 + \frac{Q_{3,4}}{Q_{1,2}} \le 1$$

Ideales Gas als Arbeitssubstanz

- I) Isotherme Expansion
- II) Adiabatische Expansion
- III) Isotherme Kompression. Wir wollen, dass das System Energie abgibt.
- IV) Adiabatische Kompression

Zustandsgleichungen des idealen Gases. Wir benutzen die empirische Temperatur θ .

$$PV = nk_B f(\theta)$$

$$V = \frac{3}{2}Nk_B f(\theta)$$

Wir haben als Variablen Druck und Volumen. Man kann also ein PV-Diagramm erstellen, um einen Zyklus zu visualisieren. Eine isotherme Transformation führt zu einem konstanten θ und damit auch zu konstanten dU sowie $\delta W = -\delta Q$.

$$Q_{1,2} = \int_{1}^{2} \delta Q = -\int_{1}^{2} \delta W = \int_{1}^{2} P \, dV = \int_{1}^{2} \frac{N k_B f(\theta_{1,2})}{V} \, dV = N k_B f(\theta_{1,2}) \ln\left(\frac{V_2}{V_1}\right)$$

$$Q_{3,4} = N k_B f(\theta_{3,4}) \ln\left(\frac{V_1}{V_2}\right)$$

Eine Adiabatische Transformation ist gleichbedeutend mit

$$dU = \delta W$$

$$\implies \frac{3}{2}Nk_B df = -P dV = -Nk_B f(\theta) \frac{1}{V} dV \implies \frac{3}{2} \frac{df}{df} = -\frac{dV}{V}$$

$$\implies f^{\frac{3}{2}}(\theta) \cdot V = \text{Konstant}$$

Dies bedeutet

$$f(\theta_{1,2})V_2 = f(\theta_{3,4})V_3$$

$$f(\theta_{3,4})V_4 = f(\theta_{1,2})V_1$$

Daraus folgt

$$\frac{V_2}{V_1} = \frac{V_3}{V_4}$$

Wir können nun den Wirkungsgrad ausschreiben als

$$\eta = 1 + \frac{Q_{3,4}}{Q_{1,2}} = 1 + \frac{Nk_B f(\theta_{3,4}) \ln\left(\frac{V_4}{V_3}\right)}{Nk_B f(\theta_{1,2}) \ln\left(\frac{V_2}{V_1}\right)} = 1 - \frac{f(\theta_{3,4})}{f(\theta_{1,2})}$$

Man kann damit eine absolute Temperaturskala definieren über

$$\eta = 1 - \frac{T_{3,4}}{T_{1,2}} \qquad \qquad \eta = 1 - \frac{T}{T_0}$$

Thermodynamik III

[2. Hauptsatz der Thermodynamik]

Wir Beobachten eine Brechung der Zeitumkehrsymmetrie in der makroskopischen Welt. Es gibt für den 2. Hauptsatz sehr viele verschiedene Formulierungen. Wir geben hier ein Paar Beispiele.

Kelvin Es gibt keine Maschine, dessen einziger Effekt ist, wärme aus einem Bad zu entnehmen und Arbeit zu Produzieren.

Clausius Es gibt keine Maschine, die

Carnot Es gibt keine Wärmemaschine, die einen höheren Wirkungsgrad als die Carnot-Maschine besitzt. Also $\eta \leq \eta_{\text{Carnot}}$.

Perpetuum mobile 2. Art Es gibt kein Perpetuum mobile 2. Art!

Absolute Temperatur

$$\eta = F(\theta_{1,2}, \theta_{3,4})$$

Ideales Gas:

$$\eta = 1 - \frac{f(\theta_{3,4})}{f(\theta_{1,2})}$$

Wir benutzen ein absolutes Thermometer, die Carnot-Maschine Die Temperatur T ist die Lösung von

$$\eta = \begin{cases} F(T_0, T) & T_0 > T \\ F(T, T_0), & T > T_0 \end{cases}$$

In der Wissenschaft benutzt man eigentlich nur eine Temperaturskala, die

Kelvin-Temperatur-Skala

$$T_0 = 273.16 \,\mathrm{K}$$

Dies ist der Gefrierpunkt von Wasser.

$$T = \begin{cases} (1 - \eta)T_0 & T < T_0 \\ \frac{T_0}{1 - \eta} & T > T_0 \end{cases}$$

Dies ist die theoretische Definition der Kelvin Temperaturskala.

Entropie

Wir können nun zeigen, dass die Entropie existiert. Wir betrachten einen Carnot-Prozess

$$\oint (\delta Q)/T = \frac{Q_{1,2}}{T_{1,2}} + \frac{Q_{3,4}}{T_{3,4}} = 0$$

Ein beliebiger reversibler Kreisprozess ist eine Folge von unendlich vielen Carnot-Prozessen. Es gilt

$$\oint \frac{\delta Q}{T} = 0$$

Für alle reversiblen Kreisprozesse. Wir finden also für die Größe

$$dS = \frac{\delta Q}{T}$$

,
dass sie eine geschlossene Differtialform ist. Die Stammfunktion
 S von $\frac{\delta Q}{T}$ nennt man die Entropie Eigenschaften der Entropie

• Zustandsgröße

$$S = S(U, X, N)$$

- Sie ist extensiv
- Bis auf eine Konstante eindeutig definiert

•
$$dU = T dS + \delta W (= -p dV) + \delta C (= \mu dN)$$

Es ist wichtig, die obige Formel zu verstehen, weil sie uns viele Beziehungen gibt, wenn man klassische Probleme untersucht.

$$\left(\frac{\partial U}{\partial S}\right)_{X,N} = T \qquad \qquad \left(\frac{\partial S}{\partial U}\right)_{X,N} = \frac{1}{T}$$

Dies gilt nur, wenn die Funktionen monoton sind.

$$\left(\frac{\partial S}{\partial V}\right)_{UN} = \frac{P}{T} \qquad T \, dS \, - p \, dV \, = 0$$

Fundamentalgleichung (Euler-Gleichung)

$$S(\lambda U, \lambda X, \lambda N) = \lambda S(U, X, N)$$

Diese gleichung beschreibt, dass die Entropie eine Lineare größe ist. Wir berechnen die Ableitung nach λ

$$\left(\frac{\partial S}{\partial U}\right)_{V,N} U + \left(\frac{\partial S}{\partial V}\right)_{U,N} + \left(\frac{\partial S}{\partial N}\right)_{V,U} N = S$$

$$\iff \frac{V}{T} + \frac{PV}{T} + \frac{MN}{T} = S$$

Euler-Gleichung:

$$U = ST - PV + \mu N$$

Man muss verstehen, dass diese Gleichung mehr information enthält als die Andere.

$$dU = T dS + S dT - p dV - V dP + \mu dN + N d\mu$$

Daraus folgt mit dem 1. Hauptsatz

$$0 = S dT - V dP + n du$$

Sie wird die Gibbs-Duhem-Gleichung gennant. Man hat immer die Struktur intensiven Variable, gepaart mit einer Extensiven Variable.

Irreversible Prozesse

$$\eta^{\text{Reell}} = 1 + \frac{Q_{3,4}}{Q_{1,2}} < \eta^{\text{Ideal}} = 1 - \frac{T_{3,4}}{T_{1,2}}$$

$$\implies \oint \frac{\delta \theta}{T} = \frac{Q_{1,2}}{T_{1,2}} + \frac{Q_{3,4}}{T_{3,4}} < 0$$

Das bedeutet, dass $\frac{\delta Q}{T}$ nicht exakt für irreversible Prozesse ist. Das bringt uns auch zur Formulierung des 2. Hauptsatzes

2. Hauptsatz

•

$$dS \, \geq \, \frac{\delta Q}{T}$$

• Irreversible Transformationen im isolierten System sind gleichbedeutend mit zunehmender Entropie.

Beispiel Streben ins Gleichgewicht.

$$S_B - S_A = \int_A^B dS = \int_{t_A}^{t_B} \frac{dS}{dt} dt > 0$$

• Ein isoliertes System im thermodynamischen ist im Gleichgewicht genau dann wenn die Entropie maximal ist. Um dies zu illustrieren berechnen wir ein Beispiel.

Anwendung Wir benutzen die Extensitivität

$$U = U_1 + U_2$$

$$V = V_1 + V_2$$

$$N = N_1 + N_2$$

$$S = S_1 + S_2$$

Diese Gleichungen beschreiben den Makrozustand.

$$S = S(U_1, U_2, V_1, V_2, N_1, N_2) = S_1(U_1, V_1, N_1) + S_2(U_2, V_2, N_2)$$

Allerdings gibt es für die Entropie mehrere Makrozustände $U_1, U_2, V_1, V_2, N_1, N_2$. Im Gleichgewicht ist die Entropie S maximal, mit der Nebenbedingung, dass $U = U_1 + U_2 V + V_1 + V_2$, $N = N_1 + N_2$. Wie berechnen wir das? Man kann Lagrange-Multiplikatoren benutzen, aber hier machen wir es einfacher. Da

$$S(U_1, V_1, N_1) = S(U_1, V_1, N_2) + S_2(U - U_1, V - V_1, N - N_1)$$

Wir maximieren nun diese Funktion

$$0 = \left(\frac{\partial S}{\partial U_1}\right)_{V_1, V_1} = \left(\frac{\partial S_1}{\partial U_1}\right)_{V_1, V_1} - \left(\frac{\partial S}{\partial U_1}\right)_{V_1, V_1} |_{U_2 = U - U_1} = \frac{1}{T_1} - \frac{1}{T_2} \implies T_1 = T_2$$

Wir können dasselbe auch mit den anderen Variablen machen

$$0 = \left(\frac{\partial S}{\partial V_1}\right)_{V_1, N_1} = \frac{P_1}{T_1} - \frac{P_2}{T_2} \implies P_1 = P_2$$

$$0 = \left(\frac{\partial S}{\partial N_1}\right)_{U_1,V_2} = -\frac{\mu_1}{T_1} + \frac{\mu_2}{T_2} \implies \mu_1 = \mu_2$$

3. Hauptsatz

•

$$\lim_{T \to 0} \frac{S}{N} = 0$$

•

$$\lim_{T \to 0} C_x = T \left(\frac{\partial S}{\partial T} \right)_T = 0$$

• Der absolute Nullpunkt ist nicht erreichbar

Thermodynamik IV

Thermodynamische Potentiale sind Energiefunktionen der thermodynamischen Variablen.

$$U(S, X, N)$$
 $F(T, X, N),$ $\Phi(T, X, \mu)$

Die äquivalenz der thermodynamischen Potentiale sind durch ihren ursprung aus der Legendre-Transformation gegeben.

Thermisch Isoliertes System (Mikrokanonisches Ensemble)

$$S, \{X\}, \{N\}$$

Die innere Energie ist

$$U(S, \{x\}, \{N\})$$

Der erste Hauptsatz besagt

$$dU = \delta Q + \sum_{j} y_j \, dx_j + \sum_{j} \mu_j \, dN_j$$

 Y_j ist eine intensive thermodynamische Variable konjugiert zu x_j . Ein Reversibler Prozess

$$dU_{\text{rev}} = T \, dS \, + \sum_{j} y_{j} \, dx_{j} + \sum_{j} \mu_{j} \, dN_{j}$$

Daraus folgt

$$T = \left(\frac{\partial U}{\partial S}\right)_{\{x\},\{N\}} = T\left(S,\{x\},\{N\}\right)$$

$$y_j = \left(\frac{\partial U}{\partial x_j}\right)_{T,\{x_j\},\{N\}} = T\left(S,\{x\},\{N\}\right)$$

$$\mu_j = \left(\frac{\partial U}{\partial N_j}\right)_{T,\{x\},\{N\};\neq j} = T\left(S,\{x\},\{N\}\right)$$

Maxwell-Relationen

$$\left(\frac{\partial T}{\partial X}\right)_{S,N} = \frac{\partial}{\partial x}\frac{\partial U}{\partial S} = \frac{\partial}{\partial S}\frac{\partial U}{\partial x} = \left(\frac{\partial y}{\partial S}\right)_{X,N}$$

Zum Beispiel

$$\left(\frac{\partial T}{\partial V}\right)_{S,N} = -\left(\frac{\partial P}{\partial S}\right)_{V,N}$$

$$\left(\frac{\partial P}{\partial N}\right)_{S,V} = -\left(\frac{\partial \mu}{\partial V}\right)_{S,N}$$

Irreversible Transformationen

$$\delta Q < T \, dS \implies dU_{\text{irreversibel}} < dU_{\text{reversibel}}$$

Bei festen $S, \{x\}, \{N\}$ und $dU_{\text{reversibel}} = 0$ ist $dU_{\text{irreversibel}} < 0$. Ein Makrozustand

$$S,\left\{ x\right\} ,\left\{ N\right\}$$

ist im Gleichgewicht, genau dann wenn U minimal wird.

Thermodynamisches isoliertes System mit intensiven mechanischen Variablen Die thermodynamischen Variablen sind

$$S, \{y\}, \{N\}$$

Wir verwenden eine Legendre-Transformation

$$x_j \to y_j = \frac{\partial U}{\partial x_i}$$

Man erhält damit die sogennante Enthalpie H

$$H(S, \{y\}, \{N\}) = U - \sum_{i} y_j x_j$$

Zum Beispiel ist

$$H(S, P, N) = U(S, V, N) + PV$$

Wir berechnen nun die Variation von H

$$dH = dU - \sum_{j} x_{j} dy_{j} - \sum_{j} y_{j} dx_{j} = \delta Q - \sum_{j} x_{j} dy_{j} + \sum_{j} \mu_{j} dN_{j}$$

Wir können nun ähnlich vorgehen wie bei der inneren Energie. Zuerst betrachten wir reversible Prozesse

$$dH_{\text{rev}} = T dS - \sum_{j} x_{j} dy_{j} + \sum_{j} \mu_{j} dN_{j}$$

Daraus können wir ablesen

$$T = \left(\frac{\partial H}{\partial S}\right)_{\{y\},\{N\}}, \qquad x_j = -\left(\frac{\partial H}{\partial y_j}\right)_{S,\{y_j\} i \neq j,\{N\}}$$

Man kann damit wieder die Maxwel Relationen ableiten

$$\left(\frac{\partial T}{\partial P}\right)_{S,N} = -\left(\frac{\partial V}{\partial S}\right)_{P,N}$$

Auch interessant ist was für irreversible Prozesse geschieht, im Prinzip ist das genau wie bei den vorigen Prozessen.

$$\delta Q < T \, dS \implies dH_{\rm irreversibel} < dH_{\rm reversibel}$$

Bei festen $S, \{y\}, \{N\}$ haben wir $dH_{\text{reversibel}} = 0$ und darum ist die Variation der Energie bei reversiblen Prozessen negativ $dH_{\text{reversibel}} < 0$. Ein Makrozustand $S, \{y\}, \{N\}$ ist im thermodynamischen Gleichgewicht genau dann wenn H minimal ist. Man kann dieses Spiel wiederholen für andere Kombinationen von Variablen. Statt nur intensive oder extensive Variablnen zu nutzen kann man sie auch Mischen. Es gibt eine Menge möglichkeiten diese zu variieren. Es gibt bestimmte Kombinationen die eigenen konventionelle Buchstaben erhalten haben.

Hier einige Beispiele

Geschlossenes System (Kanonisches Ensemble)

$$T, \{x\}, \{N\} \to \text{Helmholtz freie Energie } F$$

 $F(T, \{x\}, \{N\}) = U - TS$

Ein Makrozustand $T, \{x\}, \{N\}$ ist im thermodynamischen Gleichgewicht, genau dann wenn F minimal ist. Dies ist äquivalent zu der Idee der maximierung der Entropie.

Geschlossenes System mit intensiven mechanischen Variablen

$$T, \{y\}, \{N\},$$
 $G(T, \{y\}, \{N\}) = F - \sum_{j} x_{j} y_{j}$
$$= U - TS - \sum_{j} x_{j} y_{j} = H - TS$$

Ein Name für G ist (Gibbs'sche) Freie Energie

Antwortfunktionen

Antwort eines thermodynamischen Systems auf einen äußeren Einfluss. Wir nehmen an, dass dieser Einfluss sehr klein ist, und alle Vorgänge reversibel sind (Quasistatisch). Wir betrachten zuerst ein intensive Variable f welches eine von T, y, μ, B, P, \ldots Außerdem ein thermodynamisches Potential

$$\Phi = \Phi(f)$$

Und die konjugierte extensive Variable

$$F = \pm \frac{\partial \Phi}{\partial f}$$

Die Antwortfunktion ist gegeben durch die Variation der extensiven Variable bezüglich der intensiven Variable (Bis auf ein Vorzeichen), also die zweite Ableitung des Potentials

Antwortfunktion

$$A = \pm \frac{\partial F}{\partial f} = \pm \frac{\partial^2 \Phi}{\partial f^2}$$

Beispiel

Wärmekapazität

$$\delta Q = C \, dT$$

wobei $C \geq 0$. Es ist klar, dass die änderung dieser Variable auch von den anderen abhängt. Die isobare Wärmekapazität

$$C_P = \left(\frac{\delta Q}{dt}\right)_P = T\left(\frac{\partial S}{\partial T}\right)_P = -T\left(\frac{\partial^2 G}{\partial T^2}\right)_P$$

Isochore Wärmekapazität

$$C_v = \left(\frac{\delta Q}{dT}\right)_V = T\left(\frac{dS}{dT}\right)_V = -T\left(\frac{\partial^2 F}{\partial T^2}\right)_V$$

Anmerkungen

$$C \ge 0 \implies \left(\frac{\partial^2 F}{\partial T^2}\right) \le 0$$

Die spezifische Wärme ist

$$\frac{C}{N}, \frac{C}{V}, \frac{C}{\text{masse}}$$

$$C_V = \left(\frac{\partial U}{\partial T}\right)_{V,N}$$

$$C_P > C_V$$

Für Luft ist

$$\frac{C_P}{\text{Masse}} = 1005 \, \text{J kg}^{-1} \, \text{K} \frac{C_V}{\text{Masse}} = 717 \, \text{J kg}^{-1} \, \text{K}$$

Kompressibilität

$$(f = P) dV = -VK dP K \ge 0$$

Wenn man den Druck erhöht, soll das System kleiner werden , deswergen das minuszeichen. Die isotherme Kompressibilität ist

$$K_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T = -\frac{1}{V} \left(\frac{\partial^2 G}{\partial P^2} \right)_T$$
$$V = \left(\frac{\partial G}{\partial P} \right)_T$$

Die Adiabatische Kompressibilität ist

$$K_S = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_S = -\frac{1}{V} \left(\frac{\partial^2 H}{\partial P^2} \right)_S$$

Sie ist wiederrum eine Antwortfunktion.

$$K_T > K_S$$

Magnetische Suszeptibilität(f = B)

Isotherme Suszeptibilität

$$\chi_T = \left(\frac{\partial M}{\partial B}\right)_T = \left(\frac{\partial^2 G}{\partial B^2}\right)_T$$

Adiabatishe Suszeptibilität

$$\chi_S = \left(\frac{\partial M}{\partial B}\right)_S = \left(\frac{\partial^2 H}{\partial B^2}\right)_S$$

Thermischer Ausdehnungskoeffizient

Sie ist eine gemischte Antwortfunktion. Wir haben ein Objekt und wollen es aufwärmen. Sie führen das Experiment für einen festen Druck durch. Ausdehnungskoeffizient:

$$\rho_P = \left(\frac{\partial V}{\partial T}\right)_P = -\left(\frac{\partial^2 G}{\partial T, P}\right)$$

Ein einfaches Beispiel

$$\kappa_T - \kappa_S = \frac{TV\alpha_P^2}{C_P}$$

Anwendungen und Rechenmethoden

- Reale Gase und Flüssigkeiten
- Ideale Quantengase
- Magnetismus

Ideales Gas	Reales Gas
1 Art von Teilchen	Gemisch (Lösung)
Punktteilchen	Endliche Ausdehnung, Innere
	Struktur, Spaltung und Bin-
	dung
Keine Wechselwirkung	Wechselwirkung

Ideales Molekülgas

Ideal ist hier im sinne von "Keine Wechselwirkung" gemeint. Wir betrachten also ein verdünntes Gas.

$$\mathcal{H} = \bigotimes_{i=1}^{N} \mathcal{H}_{i}^{(1)} \qquad \qquad H = \sum_{i=1}^{N} H_{i}^{(1)} \qquad \qquad H_{i}^{(1)} = I_{1} \otimes I_{2} \otimes \ldots \otimes H_{i} \otimes I_{n-1} \otimes \ldots$$

$$[H_i^{(1)}, H_i^{(1)}] = 0$$

$$Z_N = \operatorname{tr}_{\mathcal{H}^{(N)}} e^{-\beta H(N)} = \operatorname{tr}_{\mathcal{H}^{(N)}} \prod_{i=1}^N e^{-\beta H_i^{(1)}}$$

$$= \operatorname{tr}_{\mathcal{H}_1^{(1)}} \operatorname{tr}_{\mathcal{H}_2^{(1)}} \dots \operatorname{tr}_{\mathcal{H}_N^{(1)}} \prod_{i=1}^N e^{-\beta H_i^{1}} = \prod_{i=1}^N \operatorname{tr}_{\mathcal{H}_i^{(1)}} = \left(\operatorname{tr}_{\mathcal{H}_i^{(1)}} e^{-\beta H^{(1)}}\right)^N$$

$$F = -k_B T \ln Z_N = -kT N \ln Z_1 \qquad \Longrightarrow \qquad \frac{F}{N} = -k_B \ln Z_1$$

Freiheitsgrade eines Moleküls

- Bewegung des Schwerpunkts
- Rotation
- Schwingung (Vibrationen)
- Elektronische Anregung

Wir nehmen an, dass die Freiheitsgrade sämtlich unabhängig sind.

$$\begin{split} H^{(1)} &= H_{\mathrm{SP}} + H_{\mathrm{rot}} + H_{\mathrm{vib}} + H_{\mathrm{Elek}} \\ \mathcal{H}^{(1)} &= \mathcal{H}_{\mathrm{sp}} \otimes \mathcal{H}_{\mathrm{rot}} \otimes \mathcal{H}_{\mathrm{vib}} \otimes \mathcal{H}_{\mathrm{El}} \\ Z_{1} &= \operatorname{tr} e^{-\beta H^{(1)}} = \left(\operatorname{tr}_{\mathcal{H}_{\mathrm{sp}}} e^{-\beta H_{\mathrm{sp}}} \right) \left(\operatorname{tr}_{\mathcal{H}_{\mathrm{rot}}} e^{-\beta H_{\mathrm{rot}}} \right) \left(\operatorname{tr}_{\mathcal{H}_{\mathrm{vib}}} e^{-\beta H_{\mathrm{vib}}} \right) \left(\operatorname{tr}_{\mathcal{H}_{\mathrm{el}}} e^{-\beta H_{\mathrm{el}}} \right) \end{split}$$

Damit ist

$$f = -k_B T \ln Z_{\rm sp} - k_B T \ln Z_{\rm rot} - k_B T \ln Z_{\rm vib} - k_B T \ln Z_{\rm el} = f_{\rm SP} + f_{\rm rot} + f_{\rm vib} + f_{\rm el}$$

Beispiel

$$\frac{C_{V,N}}{N} = \frac{1}{N} \frac{\delta Q}{dT} = -\frac{T}{N} \left(\frac{\partial^2 F}{\partial T^2} \right)_{V,N} = -T \left(\frac{\partial^2 f}{\partial T^2} \right)_{V,N}$$
$$= C_{\rm sp} + C_{\rm rot} + C_{\rm vib} + C_{\rm El}$$

$$P = -\left(\frac{\partial F}{\partial V}\right)_{T,N} \simeq -N\left(\frac{\partial f_{\rm sp}}{\partial V}\right)_{T,N}$$

$$T_0 = T_F$$
 (Fermi Temperatur)
= T_C (BEC kritische Temperatur)

$$T_0 < 5 \,\mathrm{K} \,\mathrm{für} \,\mathrm{He}^3,\mathrm{He}^4$$

Rotationsanteil

Für ein zweiatomiges Moekül aus 2 verschiedenen Atomen zb HCl aber nicht O2, N2

$$H_{\rm rot} = \frac{\vec{L}^2}{2I}$$

Mit dem Trägheitsmoment $I = m_{\text{reduziert}} R^2$

$$\epsilon_{lm} = \frac{\hbar^2}{2I}l(l+1), \quad \forall l \in \mathbb{N}, m = -l, -l+1, \dots, +l$$

$$\Theta_{\rm rot} = \frac{\hbar^2}{Ik_B}$$

Für $T \ll \Theta_{\text{rot}}$:

$$C_{\rm rot} \approx k_B 3 \left(\frac{\Theta_{\rm rot}}{T}\right)^2 e^{-\frac{\Theta_{\rm rot}}{T}} \xrightarrow{T \to 0} 0$$

Für hohe Temperaturen $T \gg \Theta_{\rm Rot}$ gilt dann

$$C_{\rm rot} \approx k_B \left[1 + \frac{1}{180} \left(\frac{\Theta_{\rm rot}}{T} \right)^2 + \dots \right] \xrightarrow{T \to \infty} k_B$$

Beispiel

$$\begin{array}{ll} \text{H\,Cl} & \Theta_{\rm rot} = 30\,\text{K} \\ \text{H}_2 & = 170\,\text{K} \\ \text{O}_2 & = 4\,\text{K} \end{array}$$

Vibrationsanteil

Beispiel: Harmonische Schwingungen eines zweiatomigen Moleküls. Aus der Eigenfrequenz ω kann man eine Temperaturskala definieren.

$$\Theta_{\rm vib} = \frac{\hbar W}{k_B}$$

Beispiele

H Cl
$$\Theta_{vib} = 4 \times 10^3 \text{ K}$$

$$H_2 = 6 \times 10^3 \text{ K}$$

$$\Theta_2 = 2 \times 10^3 \text{ K}$$

$$C_{\text{vib}} = k_B \left(\frac{\Theta_{\text{vib}}}{T}\right)^2 \frac{1}{\left[2\sinh\left(\frac{\Theta_{\text{vib}}}{2}\right)\right]} = \begin{cases} \left(\frac{\Theta_{\text{vib}}}{T}\right)^2 e^{\frac{\Theta_{\text{vib}}}{T}} \to 0 & T \ll \Theta_{\text{vib}} \\ 1 - \frac{1}{12}\left(\frac{\Theta_{\text{vib}}}{T}\right)^2 + \dots \to 1 & T \gg \Theta_{\text{vib}} \end{cases}$$

Elektronischer Anteil

Wasserstoffatom

$$\mathcal{E}_n = -\frac{13.6 \,\text{eV}}{n^2}$$

Die minimale Anregungsenergie ist

$$\mathcal{E}_2 - \mathcal{E}_1 = 10\,\mathrm{eV} \approx 1 \times 10^5\,\mathrm{K}$$

Reales Klassisches Gas Teil I

Schwabl Kapitel 5.3

Klassisch Verdünnt und hohe Temperaturen Real Wechselwirkende Teilchen (Atome oder Moleküle)

$$Z_K(N) = \frac{1}{h^{3N}} \frac{1}{N!} \int_{V^N} d^{3N} r \int_{\mathbb{R}^{3N}} e^{-\beta H(\vec{r}, \vec{p})}$$
$$H(\vec{r}, \vec{p}) = \sum_{i=1}^N \frac{\vec{P}_1^2}{2m} + \frac{1}{2} \sum_{i,j=1}^N w(|\vec{r}_1 - \vec{r}_2|)$$

Dabei ist w(r) ein Zentralpotential.

$$Z_K(N) = \frac{1}{N!h^{3N}} \left(\int_{\mathbb{R}^{3N}} d^{3N} p e^{-\beta \sum_i \frac{\vec{P}_i^2}{2m}} \right)$$

Der Konfigurationsanteil ist:

$$Q(T, V, N) = \int_{V^N} d^{3N} r \, e^{-\beta \sum_{i=1} w(|\vec{r}_i, \vec{p}_i|)}$$

Die thermische Wellenlänge ist:

$$\lambda_T = \frac{h}{\sqrt{2\pi m k_B T}}$$

Für w = 0 haben wir ein ideales Gas.

$$Q = V^N$$

Wenn $w \neq 0$ ist es ein reales Gas, wir können dann Q im allgemeinen nicht berechnen. Es gibt jedoch Näherungsverfahren

- Virialentwicklung
- Molekularfelfdnäherung
- Computersimulation
- Moleküldynamik
- Monte Carlo

Potentiale w(r) für neutrale Teilchen. Lennard-Jones-Potential

$$w(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right], \quad \forall \, \epsilon, \sigma > 0$$

Teilchen mit einem harten Kern, also harte Kugeln:

$$w(r) = \begin{cases} \infty & r < d \\ -w_r & d < r \\ 0r > l \end{cases}$$

Virialentwicklung

Die Großkanonische Zustandssumme

$$Z_{\rm GK} = \sum_{N=0}^{\infty} Z_K(N) e^{\beta \mu N}$$

$$Z_K(0) = 1,$$
 $Z_K(1) = \frac{V}{\lambda_T^3},$ $Z_K(2) = ?$

Klassisches Gas: Fugazität $e^{\beta\mu}=y\ll 1$, das bedeutet $-\mu\gg k_BT$. Mithilfe dieser Annahme können wir einfach eine Taylor-Entwicklung machen

$$Z_{GK} = Z_K(0) + Z_K(1)y + Z_K(2)y^2 + \mathcal{O}(y^3)$$

Das bedeutet

$$\Omega(T, V, \mu) = -k_B T \ln Z_{GK} = -k_B T \left[\frac{V}{\lambda_T^3} y + \left(Z_K(2) - \frac{V}{2\lambda_T^3} \right) y^2 + \mathcal{O}(y^3) \right]$$

So erhält man

$$PV = Nk_BT \left[1 + B\rho + \mathcal{O}(\rho^2)\right]$$
 $\rho = \frac{N}{V} \ll 1$

B ist der 2. Virialkoeffizient.

$$B = \frac{V}{2} - \frac{\lambda_T^6}{V} Z_K(2)$$

$$Z_K(2) = \frac{1}{\lambda_T^6} \frac{1}{2} \int_V d^3 r_1 \int_V d^3 r_2 e^{-\beta w(|\vec{r}_1 - \vec{r}_2|)}$$

Daraus folgt dann

$$B = -\frac{1}{2V} \int_{V} d^{3}r_{1} \int_{V} d^{3}r_{2} \left[e^{-\beta w(|\vec{r}_{1} - \vec{r}_{2}|)} - 1 \right] \left(\frac{V}{N} \right)^{\frac{1}{3}} \gg \sigma, l$$

$$W \simeq 0 \iff (e^{-\beta w} \approx 1) \quad \forall \vec{r_2} \notin V \text{ und } \vec{r_1} \in V$$

Wir können also das Integral auf den ganzen Raum erweitern und nicht nur über das Volumen.

$$\vec{r} = \vec{r}_2 - \vec{r}_1 \implies B = -\frac{1}{2V} \int_V d^3 r_1 \int_{\mathbb{R}^3} d^3 r \left[e^{-\beta w(r)} - 1 \right]$$

Wir haben einen Kugelsymmetrischen Integranden also verwenden wir Kugelkoordinaten.

$$B = -2\pi \int_0^\infty dr \, r^2 \left[e^{-\beta w(r)} - 1 \right]$$

$$B = 2\pi \int_0^d dr \left(r^2 e^{+\beta w_s} - 1 \right) + 0$$
$$= \frac{2\pi}{3} d^3 (l^3 - d^3) \left(e^{\beta w_s} - 1 \right) \simeq -\frac{a}{k_B T} + b$$

mit

$$a = \frac{2\pi}{3}(l^3 - d^3)w_s > 0 \text{ (Anziehende Wechselwirkung)}$$
$$b = \frac{4 \cdot 4\pi}{3} \left(\frac{d}{2}\right)^3 > 0$$

Man sieht, dass b eigentlich nur 4-mal das Volumen einer Kugel ist.

$$PV = Nk_BT \left[1 + \left(-\frac{a}{k_BT} + b \right) \frac{N}{V} \right] + \mathcal{O}\left(\left(\frac{N}{V} \right)^2 \right) \tag{*}$$

Van-der-Waals Zustandsgleichung

$$\left[P + a\left(\frac{N}{V}\right)^2\right](V - Nb) = Nk_BT$$

Für

$$\frac{N}{V} \ll \frac{1}{b} \iff \frac{V}{N} \gg b \implies (*)$$

Harte Kugeln

$$w(r) = \begin{cases} \infty & r < \sigma \\ 0 & r > \sigma \end{cases}$$

$$Q_{HK} = \int_{V'} d^{3N}r = = \sum_{N \gg 1} (V - Nb)^N$$

ist das Volumen von V'

$$V' = \{ \{\vec{r}_1\} \in V^N \subset \mathbb{R}^{3N} \text{ mit } |\vec{r}_1 - \vec{r}_j| > \sigma \quad \forall i \neq j = 1, \dots, N \}$$

b ist größer oder gleich dem Volumen des harten Kerns $\frac{\pi\sigma^3}{6}$. Dies ist kein mathematischer Beweis, aber

- Exakt in D=1
- Numerischer Beweis für D=2,3

Sie müssen das als ein asymptotishes Verhalten verstehen wenn N sehr größ ist. Wenn sie das mit der virialentwicklung vergleichen dann sehen sie, dass

$$b = 4 \cdot \left(\frac{\pi \sigma^3}{b}\right)$$

Das ist Physik, mann kann nicht immer alles mathematisch streng beweisen. Wir haben jetzt einen spezialfall diskutiert und werden uns nun allgemeineren probemen widmen. Wir nehmen an, dass die WEchselwirkung die folgende Struktur hat

$$w(\vec{r}) = \begin{cases} w_K(r) > 0 \text{ für } r < \sigma \\ w_K(r) \le 0 \text{ für } r > \sigma \end{cases}$$

Wir nehmen an, dass

$$w_K(r) \gg k_B T \gg |w_F(r)|$$

$$w(r) = w_K(r) + w_F(r)$$

 mit

$$w_K(r > \sigma) = 0$$
$$w_F(r \le \sigma) = 0$$

$$Q = Q_H \left(\frac{\int_{V^N} d^{3N} r \, e^{-\beta \sum_{i < j} w_K (\vec{r}_2 - \vec{r}_1)} e^{-\beta \sum_{i < j} w_F (\vec{r}_2 - \vec{r}_1)}}{\int_{V^N} d^{3N} r \, e^{-\beta \sum_{i = 1}^{w_K (\vec{r}_1 - \vec{r}_2)}}} = Q_{\rm HK} \left\langle e^{-\beta \sum_{i < j} w_F (\vec{r}_1 - \vec{r}_j)} \right\rangle_{HK}$$

 $\langle\ldots\rangle_{HK}$ ist der Erwartungswert im Gas harter Kueln

Definition Dichte

$$\rho(\vec{r}) = \sum_{i=1}^{N} \delta(\vec{r} - \vec{r}_i) \qquad \qquad \int_{\Delta V} \rho(\vec{r}) d^3 r = \sum_{\vec{r}_1 \in \Delta V} 1$$

Dies entspricht der Teilchenzahl in ΔV .

$$\sum_{i< j=1}^{N} w_F(|\vec{r}_i - \vec{r}_j|) = \frac{1}{2} \int_V d^3 R_1 \int_V d^3 R_2 w_F(\left|\vec{R}_1 - \vec{R}_2\right|) \rho(\vec{R}_1) \rho(\vec{R}_2)$$

$$Q = Q_{HK} \left\langle \exp\left[-\frac{\beta}{2} \int_{V} d^{3}R_{1} \int_{V} d^{3}R_{2} w_{F} \left(\left|\vec{R}_{1} - \vec{R}_{2}\right|\right) \rho(\vec{R}_{1}) \rho(\vec{R}_{2})\right] \right\rangle_{HK}$$

$$= Q_{HK} \exp\left[-\frac{\beta}{2} \int_{V} d^{3}R_{1} \int_{V} d^{3}R_{2} w_{F} \left(\left|\vec{R}_{1} - \vec{R}_{2}\right|\right) \rho_{MF}(\vec{R}_{1}) \rho_{MF}(\vec{R}_{2})\right]_{HK}$$

mit

$$\rho_{MF}(\vec{R}) = \left\langle \rho(\vec{R}) \right\rangle_{HK}$$