Παραδοτέα Εργασία Εξάμηνου στο μάθημα Ψηφιακή Σχεδίαση Εαρινό Εξάμηνο 2021

Ονοματεπώνυμο: Kristi Cami

AEM: 3882

Email: tsamikristi@csd.auth.gr

Έτος: 1ο

Αριθμητική λογική μονάδα (ALU)

Η αριθμητική λογική μονάδα (ALU) δέχεται ως είσοδο A,B των δυο bit και βγάζει ως έξοδο F1,F2. Η πράξεις που υλοποιεί είναι η NOT_A (αντιστρέφει την είσοδο του A), η ADD που προσθετοί δυο bit σε κάθε πολυπλεκτη και ανάλογα βγάζει 0/1 ως έξοδο(αν έχουμε υπερχειλίσει το Cout γίνετε 1), η XOR που ενεργοποιται όταν ως είσοδο έχουμε διαφορετικές τιμές (0/1), η NAND που κάνει το αντίθετο της AND και τέλος η ALU υλοποιεί την πράξει A+1. Για να υπολογιστή σωστά η έξοδος στην τελευταία πράξει αρκεί να βάλουμε ως είσοδο στον πρώτο αθροιστή το A1 + 0 και στον δεύτερο A0 + 1 ώστε να έχουμε (A1A0 + 01). Με τον τρόπο αυτόν καταφέρνουμε να αντικαταστήσουμε το B με το 1 ώστε να γίνει η πράξει που επιθυμούμε. Τέλος να σημειωθεί ότι επειδή ο πολυπλεκτης που χρισιμοποιται στο κύκλωμα είναι για παραπάνω bit (0...7) στην συγκεκριμένη περίπτωση χρησιμοποιούνται μόνο τα πρώτα 4 bit.

(Το κυκλωμα βρισκετε στο ιδιο αρχειο με το pdf και εχει μορφη .png και .circ)

Count-up non-binary 4-bit (mod-9)

Για να καταφέρουμε να υλοποιήσουμε το παραπάνω κύκλωμα χρειάζεται να χρησιμοποιήσουμε χάρτες Karnaugh.

	Προηγούμενη Κατάσταση				Επόμενη Κατάσταση											
$(Q_3Q_2Q_1Q_0)_{10}$	Q_3	Q_2	Q_1	Q_0	Q_3	Q_2	Q_1	Q_0	J_3	K ₃	J_2	K_2	J_1	K ₁	J_0	Κ ₀
$0 \rightarrow 1$	0	0	0	0	0	0	0	1	0	Χ	0	Χ	0	Χ	1	Χ
1 → 2	0	0	0	1	0	0	1	0	0	Χ	0	Χ	1	Χ	Χ	1
$2 \rightarrow 3$	0	0	1	0	0	0	1	1	0	Χ	0	Χ	Χ	0	1	Χ
3 → 4	0	0	1	1	0	1	0	0	0	Χ	1	Χ	Χ	1	Χ	1
4 → 5	0	1	0	0	0	1	0	1	0	Χ	Χ	0	0	Χ	1	Χ
5 → 6	0	1	0	1	0	1	1	0	0	Χ	Χ	0	1	Χ	Χ	1
6 → 7	0	1	1	0	0	1	1	1	0	Χ	Χ	0	Χ	0	1	Χ
7 → 8	0	1	1	1	1	0	0	0	1	Χ	Χ	1	Χ	1	Χ	1
$8 \rightarrow 0$	1	0	0	0	0	0	0	0	Χ	1	0	Χ	0	Χ	0	Χ

Συνέχεια...

Τελικο αποτέλεσμα

Μετα από της παραπάνω πράξεις καταφέρνουμε τελικά να φταίξουμε το τελικό κοίλωμα που ζητούσε η άσκηση. Το συγκεκριμένο κύκλωμα είναι υλοποιημένο με JK flip-flop και μετράει από το 0...8 (mod 9).

