Course Name:

Complete DSA in Python

Course About:

A comprehensive chase to excel any intreview for the Data Structures and Algorithms. This course has been specifically designed to provide resources that would assist you in cracking problem-solving interviews. The presented problems in the course would suffice to look on to positive outcomes in the interviews.

What you'll learn:
-Introduction to Algorithms
-Analysis in Algorithms
-Array Data Structure
-Heap Data Structure
-Recursion
-Divide and Conquer
-Linked List Data Structure
-Stack and Queue
-Hashing Data Structure
-Tree Data Structure
-Binary Search Tree
-Graph Traversal Algorithms
-Application of greedy algorithm
-Dynamic Programming
-Research Area- P, NP, NP-Hard and NP-Complete Problems
Course Curriculum:
Introduction to Algorithms:
*Complete DSA Roadmap
*Why DSA required
*Algorithms Introduction
*Steps to construct an algo

Analysis in Algorithms:

- *Types of Analysis
- *Asymptotic Notation Big O Time Complexity
- *Asymptotic Notation Omega Time Complexity
- *Asymptotic Notation Theta Time Complexity
- *Apriori Analysis Time Complexity Analysis Part1
- *Apriori Analysis Time Complexity Analysis Part2
- *Apriori Analysis Time Complexity Analysis Part3
- *Practice Set Asymptotic Notations
- *Complexity Classes
- *Recurrence Relation Introduction
- *Substitution Method Problem 1
- *Substitution Method Problem 2
- *Substitution Method Problem 3
- *Recursive Tree Approach Problem 1
- *Recursive Tree Approach Problem 2
- *Recursive Tree Approach Problem 3
- *Practice Set Substitution and Recursive Tree Approach
- *Masters Theorem Case 1
- *Masters Theorem Case 2
- *Masters Theorem Case 3
- *Practice Set Masters Theorem

Array Data Structure:

- *Introduction to Array Data Structure
- *Array Data Structure Implementation
- *Address of an element in 1D array

- *Address of an element in 2D array
- *Searching of an element Linear Search
- *Searching of an element Binary Search
- *Recurrence Relation of Binary Search
- *Implementation of Binary Search
- *Binary Search Interview Problem
- *Search a 2D Matrix
- *Searching of an element Ternary Search
- *Recurrence Relation of Ternary Search
- *Implementation of Ternary Search
- *Sorting in an array Comparison and Non-Comparison
- *Stable and Unstable sorting algorithms
- *Inplace and Outplace Sorting algorithms
- *Comparison Sort Bubble Sort
- *Comparison Sort Bubble Sort Implementation
- *Comparison Sort Selection Sort
- *Comparison Sort Selection Sort Implementation
- *Comparison Sort Insertion Sort
- *Comparison Sort Insertion Sort Implementation
- *FAANG Interview Question on Arrays Best Time to Buy and Sell Stock
- *FAANG Interview Question on Arrays Collinear Points
- *FAANG Interview Question on Arrays Majority Element
- *FAANG Interview Question on Arrays Sort Colors

Heap Data Structure:

- *Basics of Heap Sort Full Binary Tree vs Complete Binary Tree vs Almost Complete Binary Tree
- *Concept of Minheap and Maxheap Tree

- *Insertion in Minheap or Maxheap Tree
- *Deletion in Minheap or Maxheap Tree
- *Creation of Minheap or Maxheap Tree
- *Time Complexity Derivation to build minheap or maxheap
- *Comparison Sort Heap Sort
- *FAANG Interview Question on Heap Top K frequent elements
- *FAANG Interview Question on Heap K Closest Points to Origin

Recursion:

- *Introduction to Recursion
- *Factorial Finding using Recursion with its Implementation
- *Fibonacci Series using Recursion with its Implementation
- *Count Of number of ways to reach upstairs

Divide and Conquer:

- *Introduction to Divide and Conquer
- *Applications of Divide and Conquer Finding of maxima and minima
- *Applications of Divide and Conquer Implementation of finding of maxima and minima
- *Applications of Divide and Conquer Finding of power of an element with its Implementation
- *Applications of Divide and Conquer Binary Search
- *Applications of Divide and Conquer Recurrence relation of Binary Search
- *Applications of Divide and Conquer Implementation of Binary Search
- *FAANG Interview Question- Two Pointers Problem
- *Applications of Divide and Conquer Merge Sort
- *Applications of Divide and Conquer Implementation of Merge Sort
- *FAANG Interview Question on MergeSort Finding of single sorted array complexity
- *Applications of Divide and Conquer Quick Sort
- *Applications of Divide and Conquer Implementation of Quick Sort

- *FAANG Interview Scenario Based Question on QuickSort complexity
- *Applications of Divide and Conquer Randomized QuickSort
- *Applications of Divide and Conquer Selection Procedure
- *Applications of Divide and Conquer Implementation of Selection Procedure
- *Applications of Divide and Conquer Count Of number of an inversions
- *Applications of Divide and Conquer Strassen's Matrix Multiplication

Linked List Data Structure:

- *Introduction to Linked List
- *Insertion of a node in Linked List Front
- *Insertion of a node in Linked List After a given node
- *Insertion of a node in Linked List End
- *Deletion of a node in Linked List
- *Searching of a node in Linked List
- *FAANG Interview Question Reversal of a node in Linked List
- *FAANG Interview Question Count of all nodes in Linked List
- *FAANG Interview Question Floyd's Cycle Detection Algorithm
- *FAANG Interview Question Merge Of two Sorted Linked List

Skip List Data Structure:

*Skip List- Motivation, Build-in, Search, Insertion and Deletion skip list

Stack and Queue:

- *Introduction to Stack Data Structure and Push Operation in depth
- *Stack- Pop operation
- *Implementation of Stack using array and linked list
- *Queue- Insertion and Deletion operation
- *Implementation of Queue using array and linked list
- *FAANG Interview Question Valid Parenthesis

Hashing Data Structure:

*Introduction to Hashing Data Structure

*Hash Function and its types

*Implementation of Hash Functions

*Open addressing - Linear Probing and Primary Clustering

*Open addressing - Quadratic Probing and Secondary Clustering

*Open addressing - Double Hashing

*Chaining

*Load Factor and Rehashing

Tree Data Structure:

*Basics of Tree - Full Binary Tree vs Complete Binary Tree vs Almost Complete Binary Tree

Tree Traversal Algorithms:

*Tree Traversal Algorithms- Inorder, Preorder and PostOrder

*FAANG Interview Questions on Tree Traversal Algorithm

Binary Search Tree:

*Introduction to Binary Search Tree

*Insertion and Inorder Traversal in BST

*FAANG Interview Question- Minimum value in BST

*FAANG Interview Question- Find unique possible BST's

*Searching in Binary Search Tree

*Deletion in Binary Search Tree

Graph Traversal Algorithms:

*Basics Of Graph- Simple vs Multigraph, Null vs Complete Graph, Relationship between edges and vertices in Simple Graph

*Introduction to Graph Traversal Algorithms

*Introduction to Depth First Search

*DFS Psuedocode and illustration using an example *DFS Coding Implementation *BFS Intro, Psuedocode and illustration using an example *BFS Coding Implementation Greedy Algorithm: *Introduction to greedy algorithm Application of greedy algorithm: *Fractional Knapsack Problem *Implementation of Fractional Knapsack Problem *Basics Of Graph- Simple vs Multigraph, Null vs Complete Graph, Relationship between edges and vertices in Simple Graph *Introduction to Spanning Tree and Minimum Spanning Tree *Minimum Spanning Tree- Kruskal 's Algorithm *Minimum Spanning Tree- Prim's Algorithm *Single Source Shortest Path- Dijkstra's algorithm *Single Source Shortest Path- Dijkstra's algorithm Implementation *Huffman Coding *Optimal Merge Pattern *Job Sequencing with Deadline Dynamic Programming: *Introduction to Dynamic Programming

Application of Dynamic Programming:

Some ending tips for all students:

*0-1 Knapsack Problem

*Fibonacci Series using Dynamic Programming

Research Area- P, NP, NP-Hard and NP-Complete Problems:

*Research Area- P, NP, NP-Hard and NP-Complete Problems

*Some ending tips for all students

Detailed Interview Process to crack FAANG Companies(SDE Roles):

*Detailed Interview Process to crack FAANG Companies

Mentors:

Priya Bhatia

Expertise in data structure competitive programing and solving an analytical problems and implementing data structure algorithm in multiple programing language. I have done my M.Tech in Artificial Intelligence at IIT Hyderabad and have an experience of implementation in multiple projects.