MATH	1502	TEST	4,	PAGE	1,	FALL	2013,	GRODZINSKY
14-22-2-2-2			-7		_ ,		,	

Print Your Name	Key-)		
-----------------	-------	--	--

1. The augmented matrix for a system of equations is given by:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & -7 & | & 5 \\ 0 & 1 & 0 & -1 & 0 & | & 4 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

(a) (6 points) Is the matrix above in RREF? If not, use row operations to obtain a matrix in reduced row echelon form.

in reduced row echelon form.

Abt in RRER:
$$x_3$$
 x_3 x_4 x_5
 $R = R_1 + 7R_3$
 $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$

T.A. or Section Number:

(b) (6 points) Write out the solution to the system (you may label the variables however

you wish).
$$\begin{cases} X_1 = 5 \\ X_2 = 4 + t \\ X_3 = 5 \end{cases}$$

$$\begin{cases} X_4 = t \\ X_5 = 0 \end{cases}$$

(c) (6 points) Describe the solution to part (b) geometrically (i.e., is it a point, line, plane, hyperplane, etc.).

(d) (6 points) Which columns from the matrix form a linearly independent set? Explain how you obtained your answer.

(e) (6 points) Describe the **span** of the columns geometrically (i.e., is the span a point, line, plane, hyperplane, etc.).

Since there are 3 protal columns and the columns are vectors in
$$\mathbb{R}^3$$
, the span B all of \mathbb{R}^3 .

2. (10 points) Compute A^TB for the matrices A and B below.

$$A = \begin{bmatrix} 6 & -6 & 1 \\ 1 & -5 & -4 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & -1 \\ 5 & -5 & 4 \end{bmatrix}$$

$$ATB = \begin{bmatrix} 6 & 1 \\ 1 & -5 & -4 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ -6 & -5 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ -5 & -5 & 4 \end{bmatrix} = \begin{bmatrix} 11 & -5 & -2 \\ -31 & 25 & -14 \\ -19 & 20 & -17 \end{bmatrix}.$$

3. Let
$$\vec{v_1} = \begin{bmatrix} 4 \\ 1 \\ -6 \end{bmatrix}$$
, $\vec{v_2} = \begin{bmatrix} -4 \\ 1 \\ 1 \end{bmatrix}$, and $\vec{v_3} = \begin{bmatrix} -20 \\ 1 \\ 15 \end{bmatrix}$.

(a) (10 points) Do the three vectors $\{v_1, v_2, v_3\}$ above form a linearly independent set? If so, explain why. If not, write $\vec{v_3}$ as a linear combination of $\vec{v_1}$ and $\vec{v_2}$.

so, explain why. If not, write
$$v_3$$
 as a linear combination of v_1 and v_2 .

$$\begin{pmatrix}
4 & -4 & -20 \\
-6 & 1 & 15
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
-6 & 1 & 15
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
-6 & 1 & 15
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
-6 & 1 & 15
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
-6 & 1 & 15
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
-6 & 1 & 15
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
-6 & 1 & 15
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
-6 & 1 & 15
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
-6 & 1 & 15
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 \\
0$$

(b) (10 points) Describe the span of the vectors in part (a). Write a "formula" to find any vector in the span.

MATH 1502 TEST 4, PAGE 2, FALL 2013, GRODZINSKY

Print Your Name: Key-)

T.A. or Section Number: ____

4. (15 points) (a) Solve the following system of equations using the Gauss-Jordan elimination method. If the solution is not unique, write your answer as a **vector equation**. You should continue your row operations until you obtain a matrix in reduced row-echelon form (RREF). (b) Then describe your solution geometrically (i.e., is it a line, plane, hyperplane, etc.).

$$\begin{cases} 3x_1 + 3x_2 + 6x_3 &= 12 \\ -9x_1 - 9x_2 - 18x_3 &= -36 \end{cases}$$

$$\begin{cases} 3 & 6 & 12 \\ -4x_2 + 8x_3 &= 8 \end{cases}$$

$$\begin{cases} 3 & 6 & 12 \\ -4x_2 + 8x_3 &= 8 \end{cases}$$

$$\begin{cases} 1 & 1 & 2 & 4 \\ 0 & -4 & 8 & 8 \end{cases}$$

$$\begin{cases} -1/9Ra & 0 & 1 - 2 & -2 \\ 0 & 0 & 0 & 0 \end{cases}$$

$$\begin{cases} 1 & 1 & 2 & 4 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 1 & 2 & 4 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 & 6 \\ 0 & 1 - 2 & -2 \end{cases}$$

$$\begin{cases} 1 & 0 & 4 &$$

5. (5 points each) Given the points P=(2,-1,-1) and Q=(0,2,3) and the vector $\vec{v} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ in \Re^3 , calculate each of the following expressions, or explain why the expression

(b)
$$\vec{PQ} \cdot \vec{v}$$
 $\vec{PQ} = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$ So $\vec{PQ} \cdot \vec{v} = (-2)(-2) + (3)(0) + (4)(4)$
= $4 + 16 = 20$

(d)
$$\operatorname{proj}_{\vec{v}}PQ = \frac{\vec{p}_{\vec{Q}} \cdot \vec{V}}{||\vec{V}||^2} \vec{V} = \frac{20}{4+16} \vec{V} = \vec{V} = \begin{bmatrix} -2\\0\\4 \end{bmatrix}$$

$$(e) \frac{\vec{v}}{\|\vec{v}\|} = \frac{1}{\sqrt{20}} \vec{\nabla} = \begin{bmatrix} -2/\sqrt{20} \\ 0 \\ 4/\sqrt{20} \end{bmatrix}$$

BONUS: (5 points) Prove the following vector property. Let \vec{a} , \vec{b} be vectors in \Re^n and

BONUS: (5 points) Prove the following vector property. Let
$$\vec{a}$$
, \vec{b} be vectors in \Re^n and let \vec{k} be any real number. Then $(k\vec{a}) \cdot \vec{b} = k(\vec{a} \cdot \vec{b})$.

Let $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} ka_1 \\ ka_2 \end{pmatrix} + \dots + (ka_n)(k_n) + (ka_n)(k$

MATH 1502 TEST 4, PAGE 1, FALL 2013, GRODZINSKY

Print Your Name: Key-2

T.A. or Section Number:

1. (15 points) (a) Solve the following system of equations using the Gauss-Jordan elimination method. If the solution is not unique, write your answer as a **vector equation**. You should continue your row operations until you obtain a matrix in reduced row-echelon form (RREF). (b) Then describe your solution geometrically (i.e., is it a line, plane, hyperplane, etc.).

$$\begin{cases} 2x_1 + 2x_2 + 4x_3 &= 8 \\ -6x_1 - 6x_2 - 12x_3 &= -24 \\ -5x_2 - 15x_3 &= 15 \end{cases}$$

$$\begin{cases} 2 & 2 & 4 & | & 8 \\ -6 & -6 & -| & 2 & 4 \\ 0 & -5 & -| & 5 & | & 15 \end{cases} \begin{cases} 1 & 1 & 2 & | & 4 \\ 1 & 1 & 2 & | & 4 \\ 0 & 1 & 3 & | & -3 \\ 0 & 0 & 0 & | & 0 \end{cases}$$

$$R_3 - R_1 = \begin{cases} 1 & 1 & 2 & | & 4 \\ 0 & 1 & 3 & | & -3 \\ 0 & 0 & 0 & | & 0 \\ 0 & 1 & 3 & | & -3 \\ 0 & 0 & 0 & | & 0 \end{cases}$$

$$R_1 - R_2 = \begin{cases} 1 & 0 & -1 & | & 7 \\ 0 & 1 & 3 & | & -3 \\ 0 & 0 & 0 & | & 0 \\ 0 & 1 & 3 & | & -3 \\ 0 & 0 & 0 & | & 0 \end{cases}$$

$$R_1 - R_2 = \begin{cases} 1 & 0 & -1 & | & 7 \\ 0 & 1 & 3 & | & -3 \\ 0 & 0 & 0 & | & 0 \\ 0 & 1 & 3 & | & -3 \\ 0 & 0 & 0 & | & 0 \end{cases}$$

$$X_1 - X_3 = 7 \Rightarrow X_2 - 3 + 3 \times 3$$

$$X_3 = X_3$$

$$X_3 = X_3$$

$$X_3 = X_3$$

$$X_3 = X_3$$

2. Let
$$\vec{v_1} = \begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix}$$
, $\vec{v_2} \begin{bmatrix} -2 \\ 4 \\ 5 \end{bmatrix}$, and $\vec{v_3} = \begin{bmatrix} 2 \\ -16 \\ -3 \end{bmatrix}$.

(a) (10 points) Do the three vectors $\{v_1, v_2, v_3\}$ above form a linearly independent set? If

so, explain why. If not, write
$$\vec{v_3}$$
 as a linear combination of $\vec{v_1}$ and $\vec{v_2}$.

$$\begin{bmatrix}
1 & -2 & 2 \\
1 & 4 & -16 \\
-3 & 5 & -3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & 6 & -18 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & 1 & -3 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & 1 & -3 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & 1 & -3 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & 1 & -3 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & 1 & -3 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & 1 & -3 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
0 & -1$$

(b) (10 points) Describe the span of the vectors in part (a). Write a "formula" to find any vector in the span.

vector in the span.

There are 2 protal columns =) span is a plane in \mathbb{R}^3 There are 2 protal columns =) span is a plane in \mathbb{R}^3 There are 2 protal columns =) span is a plane in \mathbb{R}^3 $\overrightarrow{U} = a \begin{bmatrix} 1 \\ -3 \end{bmatrix} + b \begin{bmatrix} -2 \\ 5 \end{bmatrix} = \begin{bmatrix} a-2b \\ a+4b \end{bmatrix}$ $\overrightarrow{U} = a \begin{bmatrix} 1 \\ -3 \end{bmatrix} + b \begin{bmatrix} -2 \\ 5 \end{bmatrix} = \begin{bmatrix} a+4b \\ -2a+5b \end{bmatrix}$ $\overrightarrow{U} = a \begin{bmatrix} 1 \\ -3 \end{bmatrix} + b \begin{bmatrix} -2 \\ 5 \end{bmatrix} = \begin{bmatrix} a+4b \\ -2a+5b \end{bmatrix}$

3. (10 points) Compute A^TB for the matrices A and B below.

$$A = \begin{bmatrix} 2 & 1 & 4 \\ 0 & 6 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 6 & -1 & 0 \\ -8 & 0 & 3 \end{bmatrix}$$

$$A^{T}B = \begin{bmatrix} 2 & 0 \\ 1 & 6 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 6 & -1 & 0 \\ -8 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 12 & -2 & 0 \\ -42 & -1 & 18 \\ 16 & -4 & 3 \end{bmatrix}$$

MATH 1502 TEST 4, PAGE 2, FALL 2013, GRODZINSKY
Print Your Name: Key-2
T.A. or Section Number:
4. The augmented matrix for a system of equations is given by:
$\begin{bmatrix} 1 & 0 & 0 & 0 & -4 & & 3 \\ 0 & 1 & 0 & -1 & 0 & & 6 \\ 0 & 0 & 0 & 0 & 1 & & 0 \end{bmatrix}$
(a) (6 points) Is the matrix above in RREF? If not, use row operations to obtain a matrix in reduced row echelon form.
Not yet in RREP: $R = R_1 + 4R_3$ $\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 1 & 0 & 0 & 0 & 0 & 3 \\ 0 & 1 & 0 & -1 & 0 & 6 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$
(b) (6 points) Write out the solution to the system (you may label the variables however you wish). $ \begin{array}{c} X_1 = 3 \\ X_2 = 6 + t \end{array} $ (c) (6 points) Describe the solution to part (b) geometrically (i.e., is it a point, line, plane, hyperplane, etc.). Since there
(d) (6 points) Which columns from the matrix form a linearly independent set? Explain how you obtained your answer. (d) (6 points) Which columns from the matrix form a linearly independent set? Explain how you obtained your answer.
because they are the protal Columns. (e) (6 points) Describe the span of the columns geometrically (i.e., is the span a point,

there are 3 pivotal columns and each column Ba vector in R3, so the span of the columns is all of R3.

5. (5 points each) Given the points P = (1, -2, -4) and Q = (4, 3, -1) and the vector $\vec{v} = \begin{bmatrix} 3 \\ 5 \\ 0 \end{bmatrix}$ in \Re^3 , calculate each of the following expressions, or explain why the expression is undefined.

(b)
$$\vec{PQ} \cdot \vec{v}$$
 $\vec{PQ} = (3,5,3)$, so $\vec{PQ} \cdot \vec{v} = (3)(3) + (5)(5) + (3)(6) = 9 + 25 = \boxed{34}$

(c)
$$||\vec{v}|| \cdot \vec{v}$$
 undefined (Scalar - vector carnot

(d)
$$proj_{\vec{v}}\vec{PQ} = \frac{\vec{PQ} \cdot \vec{v}}{||\vec{v}||^2} \vec{v} = \frac{34}{9+25} \vec{v} = \vec{v} = \begin{bmatrix} 3\\ 5 \end{bmatrix}$$

(e)
$$\frac{\vec{v}}{\|\vec{v}\|} = \frac{1}{\sqrt{34}} \vec{v} = \frac{1}{\sqrt{34}} \begin{pmatrix} 3 \\ 5 \\ 0 \end{pmatrix} = \begin{pmatrix} 3/34 \\ 5/\sqrt{34} \\ 0 \end{pmatrix}$$

BONUS: (5 points) Prove the following vector property. Let \vec{a} , \vec{b} be vectors in \Re^n and let k be any real number. Then $(k\vec{a}) \cdot \vec{b} = k(\vec{a} \cdot \vec{b})$.

See Form 1.