

Высшая математика – просто и доступно!

Интенсивный курс «Горячие интегралы»

Настоящая методичка позволит вам в кратчайшие сроки научиться решать основные и наиболее распространённые типы неопределённых интегралов. **Курс предназначен для студентов с начальным и даже нулевым** (в интегральном исчислении) **уровнем подготовки**.

Автор: Александр Емелин

Оглавление

 Понятие неопределённого интеграла 	3
2. Свойство линейности. Простейшие интегралы	6
3. Подведение функции под знак дифференциала	12
4. Метод замены переменной в неопределённом интеграле	16
5. Интегрирование по частям	22
6. «Тригонометрические» интегралы	29
7. Интегрирование некоторых дробей	
8. Универсальная тригонометрическая подстановка	43
9. Метод неопределённых коэффициентов	49
10. Интегрирование корней	60
11. Биномиальные интегралы	65
12. Решения и ответы	71

1. Понятие неопределённого интеграла

Добро пожаловать в удивительный мир интегрального исчисления!

Пожалуйста, откройте, а ещё лучше распечатайте *Приложение* **Правила интегрирования и таблица неопределенных интегралов**. Это наш рабочий материал, к которому придётся постоянно обращаться.

И давайте сразу пройдёмся по нему взглядом.... По аналогии с производными (см. соответствующее Приложение), после немногочисленных правил следует симпатичная таблица с записями вида:

$$\int f(x)dx = F(x) + C$$
, где $C = const$ (произвольное число)

Разбираемся в обозначениях и терминах:

– значок интеграла.

f(x) – *подынтегральная функция* (пишется с буквой «ы»).

dx – значок $\partial u \phi \phi e p e h u u a n a$. НЕ ТЕРЯЙТЕ этот значок! Заметный недочёт будет.

f(x)dx – подынтегральное выражение или «начинка» интеграла.

 $\int f(x)dx$ — собственно, **неопределённый интеграл** — прошу любить и жаловать! \odot

– Да, вот так вот просто и без комплексов! Справа:

F(x) – первообразная функция.

F(x)+C – множество первообразных функций. Не нужно сильно загружаться с терминами, самое важное, что в любом неопределенном интеграле к ответу приплюсовывается константа C.

А теперь **ещё раз посмотрим** на запись $\int f(x)dx = F(x) + C$

И посмотрим в Таблицу интегралов.

Что тут происходит?

Интегралы $\int f(x)dx$ превращаются в некоторые функции F(x) + C.

Решить неопределенный интеграл $\int f(x)dx$ (не обязательно табличный) — это значит ПРЕВРАТИТЬ его в определённое множество функций F(x)+C, пользуясь некоторыми правилами, приёмами и таблицей.

Сам процесс называется **интегрированием** функции f(x).

Возьмём, например, табличную запись $\int \sin x dx = -\cos x + C$. Что произошло? Интеграл $\int \sin x dx$ превратился в $-\cos x + C$. Иными словами, в результате интегрирования функции $f(x) = \sin x$ у нас получилось множество первообразных $F(x) = -\cos x + C$

Как и в случае с производными, для того, чтобы научиться находить интегралы, не обязательно быть в курсе, что такое интеграл и первообразная функция с теоретической точки зрения. Достаточно просто осуществлять превращения по некоторым формальным правилам. Так, в разобранном примере совсем не обязательно понимать, почему интеграл $\int \sin x dx$ превращается именно в $-\cos x + C$. В рамках данного курса мы будем принимать эту и другие формулы как данность.

И сейчас самое время вспомнить производные. Зачем?

Нахождение производных и нахождение неопределенных интегралов (дифференцирование и интегрирование) — это два взаимно обратных действия,

как, например, сложение / вычитание или умножение / деление. И поэтому для любой первообразной, которая найдена <u>правильно</u>, справедливо следующее:

$$(F(x) + C)' = F'(x) + 0 = f(x)$$

Иными словами, если продифференцировать правильный ответ, то обязательно должна получиться подынтегральная функция (или её «сестра»).

Вернемся к тому же табличному интегралу $\int \sin x dx = -\cos x + C$ и убедимся в справедливости данной формулы:

 $(-\cos x + C)' = -(\cos x)' + (C)' = -(-\sin x) + 0 = \sin x -$ в результате получена исходная подынтегральная функция.

Вот, кстати, стало понятно, почему к функции F(x) всегда приписывается константа C. При дифференцировании константа всегда превращается в ноль.

Повторюсь, что **решить неопределенный интеграл** — это значит найти множество ВСЕХ первообразных, а не какую-то одну функцию. Так, в нашем примере: $-\cos x + 5$, $-\cos x - \frac{4}{7}$, $-\cos x + \sin 2$, $-\cos x - e^3$ и т. д. — все эти функции являются решением интеграла $\int \sin x dx$. Их бесконечно много и поэтому решение записывают коротко: $-\cos x + C$, где C = const.

Разминочное задание для самостоятельного решения:

Используя правила дифференцирования и таблицу производных, проверить, что:

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)$$

$$\int \frac{dx}{x} = \ln|x| + C$$

$$\int a^x dx = \frac{a^x}{\ln a} + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \frac{dx}{\cos^2 x} = tgx + C$$

$$\int \frac{dx}{\sin^2 x} = -ctgx + C$$

На правило дифференцирования сложной функции:

$$\int \frac{dx}{a^2+x^2} = \frac{1}{a} arctg \frac{x}{a} + C \quad (a>0) \quad \dots$$
возникли трудности с трёхэтажной дробью?

Загляните в Приложение Полезные формулы.

$$\int \frac{dx}{\sqrt{x^2 + A}} = \ln \left| x + \sqrt{x^2 + A} \right| + C \quad (A \neq 0)$$

Решение в конце методички. Сверяйтесь!

Таким образом, в нашей сегодняшней теме есть отличный бонус:

многие неопределенные интегралы достаточно легко проверить!

В отличие от производных, где хорошую стопудовую проверку можно осуществить разве что с помощью математических программ.

Но, как вы догадываетесь, бонусов просто так не бывает ☺

Если в производных имеют место строго 5 правил дифференцирования, таблица производных и довольно чёткий алгоритм действий, то в интегралах всё иначе. Существуют десятки способов и приемов интегрирования. И, если способ интегрирования изначально подобран неверно (т.е. Вы не знаете, как решать), то интеграл можно «колоть» часами, как самый настоящий ребус, пытаясь применить различные приёмы и ухищрения. Кроме того, есть неберущиеся интегралы, которые нужно «знать в лицо» (см. Таблицу).

В этом и состоит основная трудность изучения неопределенных интегралов. Хотя на самом деле трудностей никаких нет, просто чтобы научить решать интегралы... их нужно немного порешать!

Вперёд:

2. Свойство линейности. Простейшие интегралы

Очевидно, что для интегралов справедливо *свойство линейности*, которое состоит в следующих правилах:

 $\int ku dx = k \int u dx$, где k - const — постоянный множитель можно вынести за знак интеграла. И нужно. Чтобы он «не мешался под ногами».

 $\int (u \pm v) dx = \int u dx \pm \int v dx$ — интеграл от алгебраической суммы двух функций равен алгебраической сумме двух интегралов от каждой функции в отдельности.

Данное правило справедливо для любого количества слагаемых, и мы сразу рассмотрим штук шесть, а то два – это как-то уныло:)

Пример 1

Найти неопределенный интеграл. Выполнить проверку.

$$\int \left(x + \sqrt{x} - 3x^5 + \frac{2}{x^3} - \frac{1}{\sin^2 x} + tg \, 5 \right) dx$$

Сначала полное решение, затем подробные комментарии:

$$\int \left(x + \sqrt{x} - 3x^5 + \frac{2}{x^3} - \frac{1}{\sin^2 x} + tg5\right) dx =$$

$$= \int x dx + \int \sqrt{x} dx - \int 3x^5 dx + \int \frac{2dx}{x^3} - \int \frac{dx}{\sin^2 x} + \int tg5 dx =$$

$$= \int x dx + \int x^{\frac{1}{2}} dx - 3 \int x^5 dx + 2 \int x^{-3} dx - \int \frac{dx}{\sin^2 x} + tg5 \int dx =$$

$$= \frac{1}{2}x^2 + \frac{1}{\frac{3}{2}} \cdot x^{\frac{3}{2}} - 3 \cdot \frac{1}{6}x^6 + 2 \cdot \frac{1}{(-2)} \cdot x^{-2} - (-ctgx) + tg5 \cdot x + C =$$

$$= \frac{x^2}{2} + \frac{2}{3}\sqrt{x^3} - \frac{x^6}{2} - \frac{1}{x^2} + ctgx + tg5 \cdot x + C, \text{ где } C = const$$

(1) Применяем правило $\int (u \pm v) dx = \int u dx \pm \int v dx$. На забываем записать значок дифференциала dx под каждым интегралом. Почему под каждым? dx — это полноценный множитель, и если расписывать совсем детально, то первый шаг следует записать так:

$$\int \left(x + \sqrt{x} - 3x^5 + \frac{2}{x^3} - \frac{1}{\sin^2 x} + tg 5 \right) dx =$$

$$= \int \left(x dx + \sqrt{x} dx - 3x^5 dx + \frac{2dx}{x^3} - \frac{dx}{\sin^2 x} + tg 5 dx \right) = \dots$$

(2) Согласно правилу $\int ku dx = k \int u dx$, выносим все константы за знаки интегралов. Обратите внимание, что в последнем слагаемом tg5 – это константа, её также выносим.

Кроме того, на данном шаге готовим корни и степени для интегрирования. **Точно** так же, как и при дифференцировании, корни надо представить в виде $x^{\frac{a}{b}}$. Корни и степени, которые располагаются в знаменателе – перенести вверх (см. Приложение Полезные формулы).

! Примечание: в отличие от производных, такое преобразование требуется далеко не всегда. Например, $\int \frac{dx}{\sqrt{x^2 + A}} - 3$ то готовый табличный интеграл, и всякие китайские хитрости вроде $\int \frac{dx}{\sqrt{x^2 + A}} = \int (x^2 + A)^{-\frac{1}{2}} dx$ совершенно не нужны. Аналогично: $\int \frac{dx}{x} -$ тоже табличный интеграл, нет никакого смысла представлять дробь в виде $\int \frac{dx}{x} = \int x^{-1} dx$. Внимательно изучите таблицу ещё раз!

(3) Все интегралы у нас табличные. Осуществляем превращение с помощью таблицы, используя формулы: $\int x^n dx = \frac{x^{n+1}}{n+1} + C \,, \, \int \frac{1}{\sin^2 x} dx = -ctgx + C \,.$ Особое внимание обращаю на формулу интегрирования степенной функции, она встречается **очень часто** и её лучше **НЕМЕДЛЕННО** запомнить.

Обратите внимание, что константу C достаточно приплюсовать один раз в конце выражения, а не ставить их после каждого интеграла. Ибо сумма шести констант — это всё равно константа.

(4) Записываем полученный результат в более компактном виде, все степени вида $x^{\frac{a}{b}}$ снова представляем в виде корней, степени с отрицательным показателем — сбрасываем обратно в знаменатель.

Проверим результат дифференцированием:

$$\left(\frac{x^2}{2} + \frac{2}{3}\sqrt{x^3} - \frac{x^6}{2} - \frac{1}{x^2} + ctgx + tg5 \cdot x + C\right)' =$$

$$= \frac{1}{2}(x^2)' + \frac{2}{3}\left(\frac{x^3}{x^2}\right)' - \frac{1}{2}(x^6)' - (x^{-2})' + (ctgx)' + tg5 \cdot (x)' + (C)' =$$

$$= \frac{1}{2} \cdot 2x + \frac{2}{3} \cdot \frac{3}{2}x^{\frac{1}{2}} - \frac{1}{2} \cdot 6x^5 - (-2) \cdot (x^{-3}) - \frac{1}{\sin^2 x} + tg5 \cdot 1 + 0 =$$

$$= x + \sqrt{x} - 3x^5 + \frac{2}{x^3} - \frac{1}{\sin^2 x} + tg5 - \text{получена исходная } nodынтегральная функция,}$$
значит, интеграл найден правильно. От чего плясали, к тому и вернулись.

И очень хорошо, когда приключение с интегралом заканчивается именно так.

Иногда встречается немного другой подход к проверке неопределенного интеграла, где от ответа берётся не производная, а *дифференциал*:

$$d\left(\frac{x^{2}}{2} + \frac{2}{3}\sqrt{x^{3}} - \frac{x^{6}}{2} - \frac{1}{x^{2}} + ctgx + tg5 \cdot x + C\right)$$

Не стоит пугаться понятия $\partial u \phi \phi$ еренциал. Потому что о нём я вам тоже не расскажу =) Сейчас важно понять, что с ним делать.

Дифференциал раскрывается следующим образом: d(u(x)) = u'(x)dx

То есть значок d убираем, справа над скобкой ставим штрих и в конце выражения приписываем множитель dx:

$$d\left(\frac{x^2}{2} + \frac{2}{3}\sqrt{x^3} - \frac{x^6}{2} - \frac{1}{x^2} + ctgx + tg \cdot x + C\right) =$$

$$= \left(\frac{x^2}{2} + \frac{2}{3}\sqrt{x^3} - \frac{x^6}{2} - \frac{1}{x^2} + ctgx + tg \cdot x + C\right)'dx =$$

$$= \left[\frac{1}{2}(x^2)' + \frac{2}{3}\left(\frac{x^3}{2}\right)' - \frac{1}{2}(x^6)' - (x^{-2})' + (ctgx)' + tg \cdot x + C\right]'dx =$$

$$= \left[\frac{1}{2} \cdot 2x + \frac{2}{3} \cdot \frac{3}{2}x^{\frac{1}{2}} - \frac{1}{2} \cdot 6x^5 - (-2) \cdot (x^{-3}) - \frac{1}{\sin^2 x} + tg \cdot x + C\right]'dx =$$

$$= \left(x + \sqrt{x} - 3x^5 + \frac{2}{x^3} - \frac{1}{\sin^2 x} + tg \cdot x + C\right)'dx - \text{получено исходное } nodы н meгральное$$

выражение, значит, интеграл найден правильно.

Второй способ проверки является более громоздким, и на самом деле я вообще мог о нём умолчать. Однако дело вовсе не в способе, а в том, что сейчас мы научились раскрывать дифференциал. **Ещё раз**:

- 1) значок d убираем;
- 2) справа над скобкой ставим штрих (обозначение производной);
- 3) в конце выражения приписываем множитель dx.

Например:
$$d(2x-1) = (2x-1)^t dx = (2-0) dx = 2dx$$

Запомните это. Рассмотренный приём потребуется нам очень скоро.

Пример 2

Найти неопределенный интеграл. Выполнить проверку.

$$\int \left(\frac{1}{x} + x^2 \ln 5 - \frac{4}{\sqrt{x}} + \frac{1}{3\sqrt[3]{x^4}} + \frac{7}{\sqrt{1 - x^2}} \right) dx$$

Разминаемся с таблицами! Решение и ответ в конце методички.

по возможности ВСЕГДА выполняйте проверку!

Даже если этого не требует условие – берём черновик и берём производную! Исключение можно сделать лишь тогда, когда дико не хватает времени (например, на зачете, экзамене) или когда ответ уж слишком «наворочен».

Пример 3

Найти неопределенный интеграл. Выполнить проверку.

$$\int x^2 (3+4x)^2 dx$$

Решение: к сожалению, на поприще интегральной битвы нет хороших и удобных формул для интегрирования произведения и частного:

$$\int uvdx = \int udx \cdot \int vdx$$

$$\int \frac{u}{v}dx = \int vdx$$

А поэтому, когда встречаются такие штуки, то **сначала** смысл посмотреть: а нельзя ли преобразовать подынтегральную функцию в сумму? Тот случай, когда можно:

$$\int x^2 (3+4x)^2 dx = \int x^2 (9+24x+16x^2) dx = \int (9x^2+24x^3+16x^4) dx =$$

$$= 9 \int x^2 dx + 24 \int x^3 dx + 16 \int x^4 dx = 9 \cdot \frac{1}{3} x^3 + 24 \cdot \frac{1}{4} x^4 + 16 \cdot \frac{1}{5} x^5 + C =$$

$$= 3x^3 + 6x^4 + \frac{16}{5} x^5 + C, \text{ где } C = const$$

- (1) Используем старую добрую формулу квадрата суммы $(a+b)^2 = a^2 + 2ab + b^2$, избавляясь тем самым от степени.
 - (2) Вносим x^2 в скобку, избавляясь от произведения.
 - (3) Используем свойство линейности (оба правила сразу).
 - (4) Превращаем интегралы по табличной формуле $\int x^n dx = \frac{x^{n+1}}{n+1} + C \ (n \neq -1)$.
- (5) Упрощаем ответ. Здесь следует обратить внимание на обыкновенную неправильную дробь $\frac{16}{5}$ она несократима и в ответ входит именно в таком виде. Не нужно делить на калькуляторе $\frac{16}{5}$ = 3,2 ! И не нужно представлять её в виде $\frac{16}{5}$ = $3\frac{1}{5}$!

Проверка:

$$\left(3x^3 + 6x^4 + \frac{16}{5}x^5 + C\right)' = 3(x^3)' + 6(x^4)' + \frac{16}{5}(x^5)' + (C)' =$$

$$= 3 \cdot 3x^2 + 6 \cdot 4x^3 + \frac{16}{5} \cdot 5x^4 + 0 = 9x^2 + 24x^3 + 16x^4 =$$

$$= x^2(9 + 24x + 16x^2) = x^2(3^2 + 2 \cdot 3 \cdot 4x + (4x)^2) = x^2(3 + 4x)^2$$

Получена исходная подынтегральная функция, значит, интеграл найден верно.

Самостоятельно:

Пример 4

Найти неопределенный интеграл. Выполнить проверку.

$$\int x(1-2x)^3 dx$$

Решение и ответ в конце методички.

Ещё одна типовая хитрость:

Пример 5

Найти неопределенный интеграл. Выполнить проверку.

$$\int \frac{2x^3 - \sqrt{x^5} + 1}{\sqrt{x}} dx$$

В данном примере подынтегральная функция представляет собой дробь. И когда мы видим в подынтегральном выражении дробь, то **первой мыслью** должен быть вопрос: А нельзя ли как-нибудь от этой дроби избавиться, или хотя бы упростить?

Замечаем, что в знаменателе находится одинокий корень из «икс». Один в поле – не воин, а значит, можно разделить *почленно* числитель на знаменатель:

$$\int \frac{2x^3 - \sqrt{x^5} + 1}{\sqrt{x}} dx = \int \left(\frac{2x^3 - x^{\frac{5}{2}} + 1}{x^{\frac{1}{2}}} \right) dx = \int \left(2x^{\frac{5}{2}} - x^2 + x^{-\frac{1}{2}} \right) dx =$$

$$= 2 \cdot \frac{1}{\frac{7}{2}} \cdot x^{\frac{7}{2}} - \frac{x^3}{3} + \frac{1}{\frac{1}{2}} \cdot x^{\frac{1}{2}} + C = \frac{4}{7} \sqrt{x^7} - \frac{x^3}{3} + 2\sqrt{x} + C, \text{ где } C = const$$

Обратите внимание, что в решении пропущен один шаг, а именно, применение линейности $\int ku dx = k \int u dx$, $\int (u \pm v) dx = \int u dx \pm \int v dx$. Обычно уже при начальном опыте решения интегралов данные правила считают само собой разумеющимися фактами и не расписывают подробно.

Проверка:

$$\left(\frac{4}{7}\sqrt{x^7} - \frac{x^3}{3} + 2\sqrt{x} + C\right)' = \frac{4}{7} \cdot (x^{\frac{7}{2}})' - \frac{1}{3} \cdot (x^3)' + 2 \cdot (x^{\frac{1}{2}})' + (C)' =$$

$$= \frac{4}{7} \cdot \frac{7}{2}x^{\frac{5}{2}} - \frac{1}{3} \cdot 3x^2 + 2 \cdot \frac{1}{2}x^{-\frac{1}{2}} + 0 = 2\sqrt{x^5} - x^2 + \frac{1}{\sqrt{x}} = \frac{2x^3 - x^2\sqrt{x} + 1}{\sqrt{x}}$$

Bcë OK.

Действия с дробными степенями я не комментирую, так как о них неоднократно шла речь в других темах. Однако если Вас всё-таки ставит в тупик такое действие, как $\frac{1}{3} - \frac{1}{4} = \frac{1}{12}$, то рекомендую обратиться к школьному учебнику или запросить в поисковике *«действия с обыкновенными дробями»*. Да, и у меня есть **скромный труд**.

Аналогичный пример для самостоятельного решения:

Пример 6

Найти неопределенный интеграл. Выполнить проверку.

$$\int \frac{2x^2 + 3\sqrt{x} - 1}{2x} dx$$

Решение и ответ в конце методички.

В рассмотренных примерах нам удалось избавиться от произведений и дробей, но это, конечно же, частные случаи. К обширному классу случаев «несчастных» мы вернёмся чуть позже — после изучения важнейшего и КЛЮЧЕВОГО метода интегрирования.

Технически он реализуется двумя способами:

- подведением функции под знак дифференциала;
- заменой переменной интегрирования.

По своей сути это одно и то же, и мы начинаем с более простой вариации:

3. Подведение функции под знак дифференциала

Не так давно мы научились раскрывать дифференциал, напомню пример, который я приводил выше:

$$d(2x-1) = (2x-1)^{\prime} dx = (2-0) dx = 2dx$$

И сейчас нам предстоит освоить обратное действие:

Пример 7

Найти неопределенный интеграл. Выполнить проверку.

$$\int \sin(3x+1)dx$$

В *Таблице интегралов* есть похожая формула: $\int \sin x dx = -\cos x + C$, но проблема заключается в том, что у нас под синусом не просто буковка «икс», а сложное выражение. Что делать?

Организуем или, как говорят, *подведём* функцию (3x+1) под знак дифференциала:

$$\int \sin(3x+1)dx = \frac{1}{3} \int \sin(3x+1)d(3x+1)$$

Легко видеть, что d(3x+1) = (3x+1)'dx = 3dx, и всё корректно.

Почему именно так и зачем это нужно?

Принцип: формула $\int \sin x dx = -\cos x + C$ (и все другие табличные формулы) справедливы и применимы НЕ ТОЛЬКО для переменной x, но и для любого сложного выражения – ЛИШЬ БЫ АРГУМЕНТ ФУНКЦИИ (3x+1 в нашем примере) И ВЫРАЖЕНИЕ ПОД ЗНАКОМ ДИФФЕРЕНЦИАЛА БЫЛИ <u>ОДИНАКОВЫМИ</u>.

Поэтому мысленное рассуждение при решении данного примера складывается следующим образом: «Мне нужно решить интеграл $\int \sin(3x+1)dx$. Я посмотрел в таблицу и нашел похожую формулу $\int \sin x dx = -\cos x + C$. Но у меня сложный аргумент (3x+1) и формулой я воспользоваться не могу. Однако если мне удастся получить (3x+1) и под знаком дифференциала, то всё будет нормально. Если я запишу d(3x+1), тогда d(3x+1)=(3x+1)'dx=3dx. Но в исходном интеграле $\int \sin(3x+1)dx$ множителятройки нет и для того, чтобы подынтегральная функция не изменилась, мне надо её домножить на $\frac{1}{3}$ ».

После чего и рождается запись:

$$\int \sin(3x+1)dx = \frac{1}{3} \int \sin(3x+1)d(3x+1)$$

Теперь можно пользоваться табличной формулой $\int \sin x dx = -\cos x + C$, единственное отличие, у нас здесь не буква «икс», а сложное выражение 3x+1:

$$\int \sin(3x+1)dx = \frac{1}{3}\int \sin(3x+1)d(3x+1) = -\frac{1}{3}\cos(3x+1) + C, \text{ где } C = const$$

Готово.

Выполним проверку:

$$\left(-\frac{1}{3}\cos(3x+1) + C\right)' = -\frac{1}{3}(\cos(3x+1))' + (C)' =$$

$$= -\frac{1}{3} \cdot (-\sin(3x+1)) \cdot (3x+1)' + 0 = \frac{1}{3}\sin(3x+1) \cdot (3+0) = \sin(3x+1)$$

Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Обратите внимание, что в ходе проверки мы использовали правило дифференцирования сложной функции $(u(v))' = u'(v) \cdot v'$, и это не случайность.

Подведение функции под знак дифференциала и $(u(v))' = u'(v) \cdot v' -$ это два взаимно обратных правила.

Пример 8

Найти неопределенный интеграл. Выполнить проверку.

$$\int \frac{dx}{5-2x}$$

Анализируем подынтегральную функцию. Здесь у нас дробь, причем в знаменателе линейная функция (с «иксом» в первой степени). Смотрим в *Таблицу интегралов* и находим наиболее похожую вещь: $\int \frac{dx}{x} = \ln |x| + C \ .$

Подводим функцию 5-2x под знак дифференциала:

$$\int \frac{dx}{5 - 2x} = -\frac{1}{2} \int \frac{d(5 - 2x)}{5 - 2x}$$

Те, кому трудно сразу сообразить, на какую дробь нужно домножать, могут быстренько на черновике раскрыть дифференциал:

$$d(5-2x)=(5-2x)'dx=(0-2)dx=-2dx$$
 . Ага, получается $-2dx$, значит, чтобы ничего не изменилось, надо домножить интеграл на $-\frac{1}{2}$.

Далее используем табличную формулу для сложного выражения (5-2x):

$$\int \frac{dx}{5-2x} = -\frac{1}{2} \int \frac{d(5-2x)}{5-2x} = -\frac{1}{2} \ln|5-2x| + C, \text{ где } C = const$$

Проверка:

$$\left(-\frac{1}{2}\ln|5-2x|+C\right)' = -\frac{1}{2}(\ln|5-2x|)' + (C)' =$$

$$= -\frac{1}{2} \cdot \frac{1}{(5-2x)} \cdot (5-2x)' + 0 = -\frac{1}{2(5-2x)} \cdot (0-2) = \frac{1}{(5-2x)}$$

Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Следующий пример для самостоятельного решения:

Пример 9

Найти неопределенные интегралы, ответы проверить дифференцированием.

a)
$$\int \cos \frac{x}{2} dx$$

б)
$$\int 4^{5x} dx$$

Решения и ответы в конце методички.

Довольно таки скоро подобные примеры будут казаться вам лёгкими, и щелкаться как орехи:

$$\int e^{7-x} dx = -\int e^{7-x} d(7-x) = -e^{7-x} + C, \text{ где } C = const$$

$$\int (2x+1)^5 dx = \frac{1}{2} \int (2x+1)^5 d(2x+1) =$$

$$= \frac{1}{2} \cdot \frac{1}{6} (2x+1)^6 + C = \frac{1}{12} (2x+1)^6 + C, \text{ где } C = const$$

$$\int \frac{dx}{\cos^2 \frac{x}{5}} = 5 \int \frac{d\left(\frac{x}{5}\right)}{\cos^2 \frac{x}{5}} = 5tg \frac{x}{5} + C, \text{ где } C = const$$

$$\int \frac{dx}{1+9x^2} = \int \frac{dx}{1+(3x)^2} = \frac{1}{3} \int \frac{d(3x)}{1+(3x)^2} = \frac{1}{3} \operatorname{arctg}(3x) + C, \text{ где } C = \operatorname{const}$$

$$\int \frac{dx}{\sqrt{4 - 2x^2}} = \int \frac{dx}{\sqrt{2^2 - (\sqrt{2}x)^2}} = \frac{1}{\sqrt{2}} \int \frac{d(\sqrt{2}x)}{\sqrt{2^2 - (\sqrt{2}x)^2}} = \frac{1}{\sqrt{2}} \arcsin\left(\frac{\sqrt{2}x}{2}\right) + C, \text{ где } C = const$$

И так далее.

Особо хочется остановиться на «халявном» случае, когда в линейной функции переменная x входит с единичным коэффициентом, например:

$$\int \frac{dx}{x+3}$$

Строго говоря, решение должно выглядеть так:

$$\int \frac{dx}{x+3} = \int \frac{d(x+3)}{x+3} = \ln|x+3| + C, \text{ где } C = const$$

Как видите, подведение функции x+3 под знак дифференциала прошло «безболезненно», без всяких домножений. Поэтому на практике таким длинным решением часто пренебрегают и сразу записывают, что $\int \frac{dx}{x+3} = \ln |x+3| + C$. Но будьте готовы при необходимости объяснить преподавателю, как Вы решали! Поскольку интеграла $\int \frac{dx}{x+3}$ в таблице вообще-то нет.

Разумеется, помимо линейной ax + b, под знак дифференциала подводИмы и другие функции. Рассмотрим классику жанра:

Пример 10

Найти неопределенный интеграл.

$$\int tgxdx$$

Решение:
$$\int tgx dx \stackrel{\text{(1)}}{=} \int \frac{\sin x dx}{\cos x} \stackrel{\text{(2)}}{=} - \int \frac{d(\cos x)}{\cos x} \stackrel{\text{(3)}}{=} - \ln|\cos x| + C$$
, где $C = const$

- (1) Используем тригонометрическую формулу $tg\, \alpha = \frac{\sin \alpha}{\cos \alpha}$ (см. Приложение Полезные формулы).
 - (2) Очевидно, что $d(\cos x) = (\cos x)'dx = -\sin xdx$ и статус-кво соблюдён.
 - (3) Используем табличный интеграл $\int \frac{dx}{x} = \ln|x| + C$ для косинуса «икс».

Проверка:
$$(-\ln|\cos x| + C)' = -\frac{1}{\cos x} \cdot (\cos x)' + 0 = -\frac{1}{\cos x} \cdot (-\sin x) = \frac{\sin x}{\cos x} = tgx$$

Чуть более занятный интеграл для самостоятельного решения:

Пример 11

$$\int ctg \, 2xdx$$

И, конечно, не забываем о проверке. Дерзайте!

4. Метод замены переменной в неопределённом интеграле

Переходим к рассмотрению второго, «академичного» способа решения, в котором осуществляется прямой переход к новой переменной. Вернёмся к нашему подопытному интегралу из предыдущего параграфа:

Пример 12

$$\int \sin(3x+1)dx$$

Как мы уже говорили, для решения этого интеграла нам приглянулась табличная формула $\int \sin x dx = -\cos x + C$, и всё дело хотелось бы свести к ней.

Идея метода замены состоит в том, чтобы сложное выражение заменить одной буквой. В данном случае напрашивается замена 3x+1=t:

$$\int \sin(3x+1)dx$$

Наверное, вы догадываетесь, что если осуществляется переход к новой переменной t, то в новом интеграле **BCË** должно быть выражено через букву t, то есть дифференциалу dx здесь совсем не место. Откуда следует логичный вывод, что dx нужно превратить в некоторое выражение, которое зависит только от t.

Действие следующее. Берём нашу замену 3x+1=t и «навешиваем» на обе части значки дифференциалов:

$$d(3x+1) = dt$$

Справа у нас получился «готовенький» дифференциал, а вот слева его нужно раскрыть:

$$(3x+1)'dx = dt$$
$$3dx = dt$$

Теперь по правилам пропорции сбрасываем «тройку» вниз правой части, выражая тем самым нужный нам dx:

$$dx = \frac{dt}{3}$$

Таким образом:

$$\int \sin(3x+1) dx$$

$$t \quad \frac{dt}{3}$$

и переход к новой переменной осуществлён:

$$\int \sin(3x+1)dx = \frac{1}{3} \int \sin t dt$$

А это уже самый что ни на есть табличный интеграл $\int \sin x dx = -\cos x + C$ с тем отличием, что вместо «икса» у нас буква «тэ», которая ничем не хуже:

$$\int \sin(3x+1)dx = \frac{1}{3}\int \sin tdt = -\frac{1}{3}\cos t + C$$

Осталось провести *обратную замену*. Вспоминаем, что t = 3x + 1:

$$\int \sin(3x+1)dx = \frac{1}{3}\int \sin t dt = -\frac{1}{3}\cos t + C = t^{-3x+1}$$
$$= -\frac{1}{3}\cos(3x+1) + C, \text{ где } C = const$$

Готово.

Чистовое оформление рассмотренного примера должно выглядеть примерно так:

$$\int \sin(3x+1)dx = (*)$$

Проведем замену: 3x + 1 = t

$$3dx = dt \Rightarrow dx = \frac{dt}{3}$$

$$(*) = \frac{1}{3} \int \sin t dt = -\frac{1}{3} \cos t + C = t^{-3x+1}$$
$$= -\frac{1}{3} \cos(3x+1) + C, \ \ \partial e \ C = const$$

Справка: \Rightarrow – это математический знак следования («из этого следует это»).

Значок (*) не несет никакого математического смысла, он обозначает, что мы прервали решение для промежуточных объяснений. При оформлении примера в тетради надстрочную пометку t=3x+1 обратной замены лучше выполнять простым карандашом.

А теперь самое время вспомнить первый способ решения:

$$\int \sin(3x+1)dx = \frac{1}{3}\int \sin(3x+1)d(3x+1) =$$

$$= -\frac{1}{3}\cos(3x+1) + C, \text{ где } C = const$$

В чем разница? При подведении под знак дифференциала нет фактической замены переменной (хотя МЫСЛЕННО мы можем считать 3x+1 одной буквой), поэтому этот способ короче, а значит, привлекательнее.

И возникает **вопрос**: если первый способ короче, то зачем тогда использовать метод замены? А дело в том, что во многих интегралах «подогнать» функцию под знак дифференциала бывает не так-то просто:

Пример 13

Найти неопределенный интеграл.

$$\int \frac{dx}{\sqrt[3]{(3-4x)^2}} = (*)$$

Проведем замену: 3-4x=t (другую здесь трудно придумать).

Навешиваем дифференциалы на обе части: d(3-4x) = dt

Откуда следует:

$$-4dx = dt \Rightarrow dx = -\frac{dt}{4}$$

$$(*) = -\frac{1}{4} \int \frac{dt}{\sqrt[3]{t^2}} = -\frac{1}{4} \int t^{-\frac{2}{3}} dt = -\frac{1}{4} \cdot 3t^{\frac{1}{3}} + C = t^{\frac{1}{3} - 4x}$$

$$=-\frac{3}{4}\cdot\sqrt[3]{3-4x}+C$$
, где $C=const$

Как видите, в результате замены исходный интеграл значительно упростился – свёлся к обычной степенной функции. **Это и есть цель замены – упростить интеграл**.

Ленивые продвинутые люди запросто решат данный интеграл методом подведения функции под знак дифференциала:

$$\int \frac{dx}{\sqrt[3]{(3-4x)^2}} = \int (3-4x)^{-\frac{2}{3}} dx = -\frac{1}{4} \int (3-4x)^{-\frac{2}{3}} d(3-4x) =$$

$$= -\frac{1}{4} \cdot 3 \cdot (3-4x)^{\frac{1}{3}} + C = -\frac{3 \cdot \sqrt[3]{3-4x}}{4} + C, \text{ где } C = const$$

Но такое решение очевидно далеко не для всех студентов. Кроме того, уже в этом примере использование «быстрого» способа **значительно повышает риск** допустить ошибку. Образно говоря, это плата за экономию времени. Как поступать в том или ином случае — решать вам:

Пример 14

Найти неопределенный интеграл и выполнить проверку.

$$\int \sqrt[5]{(1+x)^4} dx$$

Усложняем задание:

Пример 15

Найти неопределенный интеграл

$$\int \frac{xdx}{(3x+2)^7} = (*)$$

После напрашивающейся замены 3x + 2 = t, выясняем, во что превратится dx:

$$d(3x+2) = dt$$
$$3dx = dt \Rightarrow dx = \frac{dt}{3}$$

Хорошо, дифференциал мы выразили, но что делать с оставшимся в числителе «иксом»?! Знакомьтесь с типовым приёмом — «икс» выражается из той же замены:

$$3x + 2 = t \Rightarrow 3x = t - 2 \Rightarrow x = \frac{1}{3}t - \frac{2}{3}$$

$$(*) = \int \frac{\left(\frac{1}{3}t - \frac{2}{3}\right) \cdot \frac{dt}{3}}{t^7} = \frac{1}{9} \int \frac{(t - 2)dt}{t^7} = \frac{1}{9} \int \left(\frac{1}{t^6} - \frac{2}{t^7}\right) dt = \frac{1}{3}t - \frac{2}{3}t -$$

$$= \frac{1}{9} \int (t^{-6} - 2t^{-7}) dt = \frac{1}{9} \left(\frac{1}{(-5)} t^{-5} - 2 \cdot \frac{1}{(-6)} t^{-6} \right) = t^{-3x+2}$$
$$= \frac{1}{9} \left(-\frac{1}{5(3x+2)^5} + \frac{1}{3(3x+2)^6} \right) + C, \text{ где } C = const$$

Готово.

Не поленимся, проверим:

$$\left[\frac{1}{9}\left(-\frac{1}{5(3x+2)^5} + \frac{1}{3(3x+2)^6}\right) + C\right]' = \frac{1}{9}\left(-\frac{1}{5}((3x+2)^{-5})' + \frac{1}{3}((3x+2)^{-6})'\right) + (C)' =
= \frac{1}{9}\left(-\frac{1}{5}\cdot(-5)\cdot(3x+2)^{-6}\cdot(3x+2)' + \frac{1}{3}\cdot(-6)\cdot(3x+2)^{-7}\cdot(3x+2)'\right) + 0 =
= \frac{1}{9}\left(\frac{1}{(3x+2)^6}\cdot3 - \frac{2}{(3x+2)^7}\cdot3\right) = \frac{1}{3}\left(\frac{1}{(3x+2)^6} - \frac{2}{(3x+2)^7}\right) = \frac{1}{3}\cdot\frac{3x+2-2}{(3x+2)^7} = \frac{x}{(3x+2)^7}$$

Аналогичный пример для самостоятельного решения:

Пример 16

$$\int x(1-x)^5 dx$$

Возводить в 5-ю степень и раскрывать скобки тут, конечно, не разумно.

Настало время озвучить основную предпосылку для использования метода замены переменной: в подынтегральном выражении должна находиться некоторая функция $\varphi(x)$ и её производная $\varphi'(x)$: $\int \varphi(x) \cdot \varphi'(x) dx$ (функции $\varphi(x)$, $\varphi'(x)$ могут находиться и не в произведении).

В этой связи при анализе интегралов полезно заглядывать в Таблицу производных:

Пример 17

$$\int \frac{xdx}{4x^2 + 1} = (*)$$

Анализируя подынтегральную функцию, замечаем, что степень числителя на единицу меньше степени знаменателя. А в таблице производных как раз есть формула $(x^n)' = nx^{n-1}$, которая понижает степень на единицу. Значит, если обозначить за t знаменатель, то велики шансы, что числитель xdx превратится во что-нибудь хорошее.

Проведём замену $4x^2 + 1 = t$ и навесим дифференциалы на обе части:

$$d(4x^2+1) = dt$$

$$(4x^2 + 1)'dx = dt$$

8xdx = dt, откуда и выражаем нужное нам произведение: $xdx = \frac{dt}{8}$

$$(*) = \frac{1}{8} \int \frac{dt}{t} = \frac{1}{8} \ln|t| + C = t = 4x^2 + 1 = \frac{1}{8} \ln(4x^2 + 1) + C$$
, где $C = const$

Примечание: т.к. $4x^2 + 1 > 0$, то знак модуля можно заменить круглыми скобками

Кстати, здесь не так сложно подвести функцию под знак дифференциала:

$$\int \frac{xdx}{4x^2+1} = \frac{1}{8} \int \frac{d(4x^2+1)}{4x^2+1} = \frac{1}{8} \ln(4x^2+1) + C, \text{ где } C = const$$

И этот способ, в данном случае даже лучше, ибо он действительно прост.

Следует отметить, что для дробей вроде $\int \frac{xdx}{4x^2+2x+1}$, $\int \frac{(x-3)dx}{4x^2+1}$ такой фокус уже не пройдет (точнее говоря, применить нужно будет не только замену). Но об этом позже.

Пара типовых интегралов для самостоятельного решения:

Пример 18

a)
$$\int \frac{xdx}{\sqrt{9-8x^2}}$$

$$6) \int e^{2x^3-1} \cdot x^2 dx$$

И в заключение параграфа парочка более «упитанных» образцов:

Пример 19

$$\int \frac{\arccos 3x}{\sqrt{1 - 9x^2}} dx = (*)$$

Смотрим в *Таблицу производных* и находим там арккосинус: $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$.

У нас же в подынтегральном выражении находится арккосинус и нечто похожее на его производную. Многие уже поняли, что к чему, но я таки сформулирую

общее правило: за t обозначаем саму функцию (а не её производную).

В данном случае: $\arccos 3x = t$. Осталось выяснить, во что превратится оставшаяся часть подынтегрального выражения $\frac{dx}{\sqrt{1-9x^2}}$.

Здесь я распишу $d(\arccos 3x)$ подробно и в конце приравняю результат к dt – так будет компактнее:

$$d(\arccos 3x) = (\arccos 3x)'dx = -\frac{1}{\sqrt{1 - (3x)^2}} \cdot (3x)'dx = -\frac{3dx}{\sqrt{1 - 9x^2}} = dt$$

И из последнего равенства по правилу пропорции выражаем нужный нам кусок:

$$\frac{dx}{\sqrt{1-9x^2}} = -\frac{dt}{3}$$

Таким образом:

$$(*) = -\frac{1}{3} \int t dt = -\frac{1}{3} \cdot \frac{1}{2} t^2 + C \stackrel{t=\arccos 3x}{=} -\frac{\arccos^2 3x}{6} + C$$
, где $C = const$

Вот тут подвести функцию под знак дифференциала уже тяжеловато.

Контроль:

$$\left(-\frac{\arccos^{2} 3x}{6} + C\right)' = -\frac{1}{6}(\arccos^{2} 3x)' + (C)' = -\frac{1}{6} \cdot 2\arccos 3x \cdot (\arccos 3x)' + 0 =$$

$$= -\frac{1}{3}\arccos 3x \cdot \left(-\frac{1}{\sqrt{1 - (3x)^{2}}}\right) \cdot (3x)' = \frac{\arccos 3x}{3\sqrt{1 - 9x^{2}}} \cdot 3 = \frac{\arccos 3x}{\sqrt{1 - 9x^{2}}}, \text{ ч. т. п.}$$

Пример 20

$$\int \frac{\sqrt[3]{\ln(3x+1)}}{3x+1} dx$$

Разбираемся с «монстром» и продолжаем:

5. Интегрирование по частям

Этот метод представляет собой третий «столп» интегрального исчисления, без которого никуда. Он позволяет нам проинтегрировать некоторые функции, которых нет в таблице, многие произведения функций, а также некоторые дроби. И сразу список в студию. По частям берутся интегралы следующих видов — смотрим и запоминаем:

- 1) $\int \ln x dx$, $\int (x^2 + 3) \ln x dx$, $\int x \ln^2 x dx$ логарифм и логарифмы, умноженные на многочлены (логарифм не обязан быть натуральным);
- **2)** $\int xe^x dx$, $\int (x^2-2x+5)e^{-2x} dx$ экспоненциальная функция, умноженная на какойнибудь многочлен. Сюда же относится общий случай с показательной функцией, например: $\int x \cdot 4^x dx$, но на практике процентах так в 97 встречается экспонента;
- 3) $\int x \cos 6x dx$, $\int (x^2 + 3x) \sin 2x dx$, $\int x t g^2 x dx$ тригонометрические функции, умноженные на какой-нибудь многочлен;
- **4)** $\int \arcsin x dx$, $\int x^2 arctgx dx$ обратные тригонометрические функции («арки») и «арки», умноженные на многочлены.

Для всех перечисленных случаев существует один-единственный инструмент:

 $\int u dv = uv - \int v du - \phi$ ормула интегрирования по частям собственной персоной, прошу любить и жаловать. Идём прямо по списку:

1) Интегралы от логарифмов

Думаю, вы догадываетесь, с чего мы начнём:)

Пример 21

$$\int \ln x dx = (*)$$

Прерываем решение для применения формулы $\int u dv = uv - \int v du$ и смотрим на левую её часть: $\int u dv$. Очевидно, что в нашем интеграле $\int \ln x dx$ что-то нужно обозначить за u , а что-то за dv .

Общее правило: в интегралах рассматриваемого типа за u всегда обозначается логарифм.

Сначала слева в столбик записываются исходные данные:

$$u = \ln x$$

$$dv = dx$$

То есть за u мы обозначили логарифм, а за dv – **оставшуюся часть** *подынтегрального выражения*.

Теперь находим дифференциал du, распишу очень подробно:

$$u = \ln x \Rightarrow du = d(\ln x) = (\ln x)'dx = \frac{dx}{x}$$

 $dv = dx$

Далее находим функцию v. Для того чтобы это сделать, нужно проинтегрировать **правую часть** нижнего равенства, при этом нас устроит «голая» первообразная (без константы «цэ»):

$$u = \ln x \Rightarrow du = (\ln x)' dx = \frac{dx}{x}$$

 $dv = dx \Rightarrow v = \int dx = x$

И, наконец, открываем «звёздочкой» решение, чтобы сконструировать правую часть формулы: $uv - \int v du$. Вот образец чистового решения с цветными пометками:

$$\int \ln x dx = (*)$$

Интегрируем по частям:
$$\int u dv = uv - \int v du$$

$$u = \ln x \Rightarrow du = (\ln x)' dx = \frac{dx}{x}$$

$$dv = dx \Rightarrow v = \int dx = x$$

$$(*) = x \ln x - \int x \cdot \frac{dx}{x} = x \ln x - \int dx = x \ln x - x + C, \ \epsilon \partial \epsilon C = const$$

Единственный момент — в произведении uv я сразу переставил местами u и v, так как множитель x принято записывать перед логарифмом.

Как видите, применение формулы свело решение к двум простым интегралам.

Выполним проверку:

$$(x \ln x - x + C)' = (x \ln x)' - (x)' + (C)' = (x)' \ln x + x(\ln x)' - 1 + 0 =$$

= $1 \cdot \ln x + x \cdot \frac{1}{x} - 1 = \ln x + 1 - 1 = \ln x$ — получена исходная подынтегральная функция,

значит, интеграл решён правильно.

В ходе проверки мы использовали правило дифференцирования произведения: (uv)' = u'v + uv'. И это тоже не случайно.

Формула интегрирования по частям $\int u dv = uv - \int v du$ и формула (uv)' = u'v + uv' -это два взаимно обратных правила.

Пример 22

$$\int x \ln^2 x dx = (*)$$

Подынтегральная функция представляет собой произведение логарифма на многочлен, а значит, нужно использовать формулу $\int u dv = uv - \int v du$.

Как уже говорилось, за u следует обозначить логарифм (то, что он в степени – значения не имеет). За dv обозначаем **оставшуюся часть** подынтегрального выражения.

Ещё один раз распишу подробный порядок действий. Сначала слева записываем:

$$u = \ln^2 x$$

$$dv = xdx$$

Затем находим дифференциал du, здесь придётся использовать правило дифференцирования сложной функции:

$$u = \ln^2 x \Rightarrow du = d(\ln^2 x) = (\ln^2 x)'dx = 2\ln x \cdot (\ln x)'dx = \frac{2\ln x dx}{x}$$
$$dv = x dx$$

Далее находим функцию v, для этого интегрируем **правую часть** нижнего равенства:

$$u = \ln^2 x \Rightarrow du = (\ln^2 x)' dx = 2\ln x \cdot (\ln x)' dx = \frac{2\ln x dx}{x}$$
$$dv = x dx \Rightarrow v = \int x dx = \frac{x^2}{2}$$

Надеюсь, простейшие производные и интегралы уже «отлетают у вас от зубов».

Теперь открываем «звёздочкой» решение и «конструируем» правую часть формулы $\int u dv = uv - \int v du :$

$$(*) = \frac{x^2 \ln^2 x}{2} - \int \left(\frac{x^2}{2} \cdot \frac{2 \ln x dx}{x}\right) = \frac{x^2 \ln^2 x}{2} - \int x \ln x dx = (*)$$

Под интегралом у нас снова многочлен на логарифм! Поэтому решение опять прерывается и правило интегрирования по частям применяется второй раз. Не забываем, что за u в похожих ситуациях всегда обозначается логарифм:

$$u = \ln x \Rightarrow du = \frac{dx}{x}$$
$$dv = xdx \Rightarrow v = \frac{x^2}{2}$$

 $\int u dv = uv - \int v du$, и решение выходит на финишную прямую, где будут уместны некоторые технические комментарии:

$$(*) \stackrel{(1)}{=} \frac{x^2 \ln^2 x}{2} - \left(\frac{x^2 \ln x}{2} - \int \left(\frac{x^2}{2} \cdot \frac{dx}{x}\right)\right) \stackrel{(2)}{=} \frac{x^2 \ln^2 x}{2} - \frac{x^2 \ln x}{2} + \frac{1}{2} \int x dx \stackrel{(3)}{=}$$

$$= \frac{x^2 \ln^2 x}{2} - \frac{x^2 \ln x}{2} + \frac{1}{2} \cdot \frac{x^2}{2} + C \stackrel{(4)}{=} \frac{x^2 (2 \ln^2 x - 2 \ln x + 1)}{4} + C, \text{ где } C = const$$

- (1) Не путаемся в знаках! Очень часто здесь теряют минус, также обратите внимание, что минус относится ко всей скобке $\left(\frac{x^2 \ln x}{2} \int \left(\frac{x^2}{2} \cdot \frac{dx}{x}\right)\right)$, и эти скобки нужно корректно раскрыть.
 - (2) Раскрываем скобки. Последний интеграл упрощаем.
 - (3) Берём последний интеграл.
 - (4) «Причёсываем» ответ. Впрочем, этот шаг совсем не обязателен.

И не забываем о святая святых, по правилу (uv)' = u'v + uv':

$$\left(\frac{x^2(2\ln^2 x - 2\ln x + 1)}{4} + C\right)' = \frac{1}{4}(x^2)' \cdot (2\ln^2 x - 2\ln x + 1) + \frac{1}{4}x^2 \cdot (2\ln^2 x - 2\ln x + 1)' + (C)' =$$

$$= \frac{1}{4} \cdot 2x \cdot (2\ln^2 x - 2\ln x + 1) + \frac{1}{4}x^2 \cdot \left(2 \cdot \frac{2\ln x}{x} - 2 \cdot \frac{1}{x} + 0\right) + 0 =$$

$$= \frac{1}{4}(4x\ln^2 x - 4x\ln x + 2x) + \frac{1}{4}(4x\ln x - 2x) =$$

 $=\frac{1}{4}(4x\ln^2 x-4x\ln x+2x+4x\ln x-2x)=\frac{1}{4}\cdot 4x\ln^2 x=x\ln^2 x\,,$ что мы и хотели увидеть.

Надобность дважды (а то и трижды) применять правило интегрирования по частям возникает не так уж и редко.

Пример 23

a)
$$\int \frac{\ln x dx}{x}$$

$$6) \int \frac{\ln x dx}{x^2}$$

Обещанные дроби. Интегралы очень похожие, но...

этот пример ярко иллюстрирует основную трудность темы – если неправильно подобрать метод решения, то возиться с интегралом можно, как с самой настоящей головоломкой. Подумайте, порешайте ;)

Примерный образец чистового оформления задания в конце методички.

2) Интеграл от экспоненты, умноженной на многочлен

Общее правило: за и всегда обозначается многочлен

Пример 24

$$\int (x-2)e^{2x}dx = (*)$$

Используя знакомый алгоритм, интегрируем по частям:

$$u = x - 2 \Rightarrow du = (x - 2)'dx = dx$$

$$dv = e^{2x} dx \Rightarrow v = \int e^{2x} dx = \frac{1}{2} \int e^{2x} d(2x) = \frac{1}{2} e^{2x}$$

Заметьте, как ловко подключаются уже пройденные методы интегрирования. Впрочем, интеграл здесь настолько прост, что чаще сразу записывают, что $v=\frac{1}{2}e^{2x}$.

Таким образом, по формуле $\int u dv = uv - \int v du$:

$$(*) = \frac{(x-2)e^{2x}}{2} - \frac{1}{2} \int e^{2x} dx = \frac{(x-2)e^{2x}}{2} - \frac{1}{2} \cdot \frac{1}{2} e^{2x} + C =$$
$$= \frac{(x-2)e^{2x}}{2} - \frac{e^{2x}}{4} + C, \text{ где } C = const$$

В принципе, результат можно красиво упаковать:

... =
$$\frac{2(x-2)e^{2x}-e^{2x}}{4}+C=\frac{(2x-4-1)e^{2x}}{4}+C=\frac{(2x-5)e^{2x}}{4}+C$$
, где $C=const$

Но, повторюсь, это вовсе не обязательный шаг, то есть **пример считается решенным, когда взят последний интеграл**. И, кстати, важная вещь:

Многие первообразные можно представить не единственным способом!

Таким образом, если Ваш ответ не совпадает с заранее известным ответом задачника, то **это ещё не значит**, что Вы ошиблись. Проверка и ещё раз проверка:

$$\left(\frac{(2x-5)e^{2x}}{4}+C\right)=\frac{1}{4}\cdot((2x-5)e^{2x})'+(C)'=\frac{1}{4}(2x-5)'e^{2x}+\frac{1}{4}(2x-5)\cdot(e^{2x})'+0=$$

$$=\frac{1}{4}\cdot2e^{2x}+\frac{1}{4}(2x-5)\cdot2e^{2x}=\frac{1}{2}(1+2x-5)e^{2x}=\frac{1}{2}(2x-4)e^{2x}=(x-2)e^{2x}$$
, ну вот, теперь душа может быть спокойна.

Пример 25

$$\int (x^2 + x)e^{-x}dx$$

Самостоятельно. Особое внимание обратите на знаки — здесь легко в них запутаться; также помним, что e^{-x} — это сложная функция.

3) Интегралы от тригонометрических функций, умноженных на многочлен

Общее правило: за и всегда обозначается многочлен

Пример 26

$$\int x \cos 6x dx = (*)$$

Интегрируем по частям:

$$u = x \Longrightarrow du = dx$$

$$dv = \cos 6x dx \Rightarrow v = \int \cos 6x dx = \frac{1}{6} \int \cos 6x d(6x) = \frac{1}{6} \sin 6x$$
$$\int u dv = uv - \int v du$$

$$(*) = \frac{1}{6}x\sin 6x - \frac{1}{6}\int \sin 6x dx =$$

$$= \frac{1}{6}x\sin 6x - \frac{1}{6}\cdot \frac{1}{6}\int \sin 6x d(6x) =$$

$$= \frac{1}{6}x\sin 6x - \frac{1}{36}\cdot (-\cos 6x) + C = \frac{1}{6}x\sin 6x + \frac{1}{36}\cos 6x + C, \text{ где } C = const$$

Хммм, ... и комментировать особо нечего. Разве что подведение под знак дифференциала. Напоминаю, что 6x удобно МЫСЛЕННО считать одной буквой. Но можно и сразу записывать, что $\int \sin 6x dx = -\frac{1}{6}\cos 6x$.

Проверка:

$$\left(\frac{1}{6}x\sin 6x + \frac{1}{36}\cos 6x + C\right)' = \frac{1}{6}(x\sin 6x)' + \frac{1}{36}(\cos 6x)' + (C)' =$$

$$= \frac{1}{6}(x)'\sin 6x + \frac{1}{6}x(\sin 6x)' + \frac{1}{36}(-\sin 6x) \cdot (6x)' + 0 =$$

$$= \frac{1}{6}\sin 6x + \frac{1}{6}x \cdot 6\cos 6x - \frac{1}{36}\sin 6x \cdot 6 = \frac{1}{6}\sin 6x + x\cos 6x - \frac{1}{6}\sin 6x = x\cos 6x$$

ОК.

Теперь ваша очередь:

Пример 27

$$\int (x-6)\sin\frac{x}{2}dx$$

Решаем аккуратно, внимательно и с проверкой!

И ещё один интеграл с дробью:

Пример 28

$$\int \frac{x dx}{\sin^2 x} = (*)$$

Как и в двух предыдущих примерах, за и обозначается многочлен:

$$u = x \Longrightarrow du = dx$$

$$dv = \frac{dx}{\sin^2 x} \Rightarrow v = \int \frac{dx}{\sin^2 x} = -ctgx$$
 (интеграл почти табличный).

По формуле $\int u dv = uv - \int v du$:

$$(*) = -xctgx + \int ctgxdx = -xctgx + \int \frac{\cos x dx}{\sin x} =$$
$$= -xctgx + \int \frac{d(\sin x)}{\sin x} = -xctgx + \ln|\sin x| + C, \text{ где } C = const$$

После применения формулы нарисовался старый знакомый интеграл, который мы разобрали в *Примерах 10, 11*. Творческое задание для самостоятельного решения:

Пример 29

 $\int x \sin x \cos x dx$

Используем Приложение Полезные формулы;)

4) Интегралы с «арками»

То бишь с арксинусом, арккосинусом, арктангенсом или арккотангенсом.

Общее правило: за u обозначается обратная тригонометрическая функция.

Пример 30

$$\int arctg \, 2x dx = (*)$$

$$u = arctg \, 2x \Rightarrow du = (arctg \, 2x)'dx = \frac{1}{1 + (2x)^2} \cdot (2x)'dx = \frac{2dx}{1 + 4x^2}$$

$$dv = dx \Rightarrow v = x$$

$$\int u dv = uv - \int v du$$

(*) =
$$xarctg 2x - 2\int \frac{xdx}{1 + 4x^2} = xarctg 2x - \frac{1}{4}\int \frac{d(1 + 4x^2)}{1 + 4x^2} =$$

= $xarctg 2x - \frac{1}{4}\ln(1 + 4x^2) + C$, где $C = const$

Вот и всё! Последний интеграл можно решить и с помощью замены переменной (см. *Пример 17*), но «быстрый» аналог значительно сокращает путь.

Таким образом, помимо «чистого» интегрирования по частям часто требуется применять и другие методы решения. И мы ещё не раз увидим целые серии методов!

Самостоятельно:

Пример 31

Найти неопределенные интегралы:

- a) $\int \arcsin 3x dx$
- б) $\int xarctgxdx = (*)$

В пункте «бэ» встретится новый приём, и поэтому можно не мучиться – сразу посмотреть готовое решение.

Поздравляю вас с освоением интегралов «первой необходимости», теперь получить «двойку» по теме будет ОЧЕНЬ трудно!

Но лучше – чтобы стало ещё лучше!

6. «Тригонометрические» интегралы

Такое вот несколько условное название параграфа, где мы рассмотрим интегралы, «нашинкованные» синусами, косинусами, тангенсами и котангенсами в различных их комбинациях:

Пример 32

$$\int \sin 5x \sin 7x dx = (*)$$

Этот интеграл уже не берётся по частям, и здесь мы возвращаемся к старому мотиву – преобразовать произведение в сумму. Используем тригонометрическую формулу $\sin \alpha \sin \beta = \frac{\cos(\alpha-\beta)-\cos(\alpha+\beta)}{2}$ (см. Приложение **Полезные формулы**):

$$(*) = \int \frac{\cos(5x - 7x) - \cos(5x + 7x)}{2} dx = \frac{1}{2} \int (\cos(-2x) - \cos 12x) dx = \frac{1}{2} \int (\cos 2x - \cos 12x) dx = (*)$$

И тут я хочу снова остановиться, чтобы напомнить важный момент:

Косинус — это чётная функция, то есть $\cos(-\alpha) = \cos \alpha$, и минус исчезает без всяких последствий. В данном примере: $\cos(-2x) = \cos 2x$

Синус же – функция нечетная: $\sin(-\alpha) = -\sin \alpha$ – здесь минус, наоборот – не пропадает, а выносится.

Дальнейшее просто:

$$(*) = \frac{1}{2} \int \cos 2x dx - \frac{1}{2} \int \cos 12x dx = \frac{1}{2} \cdot \frac{1}{2} \int \cos 2x d(2x) - \frac{1}{2} \cdot \frac{1}{12} \int \cos 12x d(12x) = \frac{\sin 2x}{4} - \frac{\sin 12x}{24} + C, \text{ где } C = const$$

Готово.

Проверка:

$$\left(\frac{\sin 2x}{4} - \frac{\sin 12x}{24} + C\right)' = \frac{1}{4} \cdot 2\cos 2x - \frac{1}{24} \cdot 12\cos 12x + 0 = \frac{1}{2}\cos 2x - \frac{1}{2}\cos 12x$$
, после чего перепроверяем, правильно ли мы применили тригонометрическую формулу.

Пример 33

$$\int \sin \frac{x}{2} \cos \frac{x}{4} dx$$

Это пример для самостоятельного решения.

Во многих тематических интегралах тригонометрические функции находятся в различных степенях. На всякий пожарный напомню, что степень — это свёрнутая запись того же произведения:

$$a^n = \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ pas}}$$

и мы начинаем с интегралов, где синус и / или косинус находятся в **чётных** положительных степенях.

Такие интегралы решаются методом понижения степени. Для этого используют эпичные тригонометрические формулы $\sin^2\alpha = \frac{1-\cos 2\alpha}{2}$, $\cos^2\alpha = \frac{1+\cos 2\alpha}{2}$, а также формулу синуса двойного угла: $\sin\alpha\cos\alpha = \frac{1}{2}\sin 2\alpha$ (в обратном направлении).

Пример 34

$$\int \cos^2 x dx = \frac{1}{2} \int (1 + \cos 2x) dx = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) + C$$
, где $C = const$

Проверка:
$$\left(\frac{1}{2}\left(x + \frac{1}{2}\sin 2x\right) + C\right) = \frac{1}{2}\left(1 + \frac{1}{2}\cdot 2\cos 2x\right) + 0 = \frac{1}{2}(1 + \cos 2x) = \cos^2 x$$

Без комментариев.

По мере «набивки руки» **решение можно (и нужно) сокращать**, а именно не расписывать Свойство линейности и Подведение функции под знак дифференциала. Так, в рассмотренном примере интеграл от $\cos 2x$ легко взять и устно.

Разминаемся на втором «карлике»:

Пример 35

$$\int \sin^2 \frac{3x}{2} dx$$

Не ленимся и решаем! Потому что степени у нас будут потихоньку повышаться:)

Пример 36

$$\int \sin^4 x dx$$

Сначала полное решение, затем комментарии:

$$\int \sin^4 x dx = \int (\sin^2 x)^2 dx = \int \left(\frac{1 - \cos 2x}{2}\right)^2 dx = \frac{1}{4} \int (1 - \cos 2x)^2 dx = \frac{1}{4} \int (1 - 2\cos 2x + \cos^2 2x) dx = \frac{1}{4} \int (1 - 2\cos 2x + \cos^2 2x) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\sin 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\sin 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\sin 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\sin 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\sin 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\sin 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\sin 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\sin 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\sin 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\sin 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\sin 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\sin 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\sin 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\sin 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right) dx = \frac{1}{4} \int \left(\frac{$$

- (1) Готовим подынтегральную функцию для применения формулы $\sin^2\alpha = \frac{1-\cos2\alpha}{2} \,.$
 - (2) Собственно применяем формулу.
- (3) Возводим знаменатель в квадрат и выносим константу за знак интеграла. Можно было поступить несколько иначе, но, на мой взгляд, так удобнее.
 - (4) Используем формулу $(a-b)^2 = a^2 2ab + b^2$
- (5) В третьем слагаемом снова понижаем степень, но уже с помощью формулы $\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$.
- (6) Приводим подобные слагаемые (здесь я почленно разделил $\frac{1+\cos 4x}{2} = \frac{1}{2} + \frac{\cos 4x}{2} \ \ \text{и выполнил сложение} \ 1 + \frac{1}{2} = \frac{3}{2} \).$
- (7) Собственно берём интеграл, при этом свойство линейности и метод подведения функции под знак дифференциала выполняем устно.
 - (8) Причёсываем ответ.

Как уже отмечалось, зачастую ответ можно представить не единственным способом, и в задачнике, например, может быть такой вариант:

$$\frac{3}{8}x - \frac{1}{4}\sin 2x + \frac{\sin 4x}{32} + C$$
, где $C = const$

Для самостоятельного решения ещё более характерный в этом смысле пример:

Пример 37

$$\int \sin^2 x \cos^2 x dx$$

Этот интеграл раскручивается двумя способами, и у Вас могут получиться два разных ответа (точнее говоря, они будут выглядеть по-разному, но с математической точки зрения являться эквивалентными). Попробуйте увидеть наиболее рациональный способ;)

...Вам понравилось так же, как и мне? ☺ Ну тогда продолжаем! Что делать, если синус или косинус находится в нечётной степени?

Пример 38

$$\int \sin^3 x dx = (*)$$

Тут нужно «отщипнуть» один синус, «затолкать» его под дифференциал и воспользоваться *основным тригонометрическим тождеством* в виде $\sin^2 \alpha = 1 - \cos^2 \alpha$:

$$(*) = \int \sin^2 x \cdot \sin x dx = \int \sin^2 x \cdot (-d(\cos x)) = -\int (1 - \cos^2 x) \cdot d(\cos x) = (*)$$

Косинус для удобства заменим одной буквой: $\cos x = t$. Этот приём я называю «турбо»-заменой, поскольку здесь можно вообще не прерывать решение:

(*) =
$$-\int (1-t^2)dt = \int (t^2-1)dt = \frac{t^3}{3} - t + C = t^{-\cos x} = \frac{\cos^3 x}{3} - \cos x + C$$
, где $C = const$

Потренируйтесь самостоятельно:

Пример 39

a)
$$\int \frac{\cos^3 x dx}{\sqrt[3]{\sin^4 x}}$$
, 6) $\int \cos^5 x dx$, B) $\int \sin^3 x \cos^8 x dx$,

Итак, для рассмотренных интегралов справедливо следующее **правило:** от функции, которая находится в нечётной степени, «откусываем» один множитель, а за t – обозначаем другую функцию.

Следует отметить, что далеко не все «тригонометрические» интегралы являются берущимися, но в рамках данного курса я не буду останавливаться на подробной классификации и ограничусь лишь распространёнными примерами.

Замолвим слово о тангенсах и котангенсах:

Пример 40

$$\int ctg^2xdx$$

Тут всё просто:

$$\int ctg^2 x dx = \int \frac{\cos^2 x dx}{\sin^2 x} = \int \frac{(1 - \sin^2 x) dx}{\sin^2 x} = \int \left(\frac{1}{\sin^2 x} - 1\right) dx =$$

$$= \int \frac{dx}{\sin^2 x} - \int dx = -ctgx - x + C, \text{ где } C = const$$

- (1) Используем формулы $ctg \alpha = \frac{\cos \alpha}{\sin \alpha}$
- $(2) и \cos^2 \alpha = 1 \sin^2 \alpha.$
- (3) Почленно делим числитель на знаменатель. К слову, получился вывод формулы $ctg^2\alpha = \frac{1}{\sin^2\alpha} 1$. Так и надо изучать математику! Знаем минимум остальное выводим!
 - (4) Используем свойство линейности.
 - (5) Интегрируем с помощью таблицы.

Аналогичный интеграл для самостоятельного решения:

Пример 41

$$\int tg^2 \frac{x}{2} dx$$

Если тангенс / котангенс находятся в более высоких степенях (3- \ddot{u} , 4- \ddot{u} , 5- \ddot{u} u m. d.), то их «разваливают» на части с помощью формул $tg^2\alpha = \frac{1}{\cos^2\alpha} - 1$, $ctg^2\alpha = \frac{1}{\sin^2\alpha} - 1$. Посмотрим, как это происходит в простейшем случае:

Пример 42

$$\int tg^3x dx = \int tg^2x \cdot tgx dx = \int \left(\frac{1}{\cos^2 x} - 1\right) \cdot tgx dx = \int \left(\frac{tgx}{\cos^2 x} - tgx\right) dx =$$

$$= \int \frac{tgx dx}{\cos^2 x} - \int \frac{\sin x dx}{\cos x} = \int tgx d(tgx) + \int \frac{d(\cos x)}{\cos x} = \frac{tg^2x}{2} + \ln|\cos x| + C, \text{ где } C = const$$

То есть что? Отщипнули тангенс, воспользовались формулой $tg^2\alpha = \frac{1}{\cos^2\alpha} - 1$, свойством линейности и подведением функций под знак дифференциала. Заметьте, что первый интеграл настолько прост, что в нём можно обойтись даже без «турбо»-замены tgx = t.

«Быстрая» замена — это хорошо и удобно, но в более трудных случаях лучше использовать её «полноценный» вариант, дабы не запутаться:

Пример 43

$$\int \frac{\cos 2x dx}{\sin^3 2x}$$

Как мы помним, основной предпосылкой замены является наличие в nodынтегральном выражении некоторой функции и её производной. Но при дифференцировании косинус и синус взаимно превращаются друг в друга, и возникает вопрос: что же обозначать за t — синус или косинус?! Вопрос можно решить методом научного практического тыка, но делать этого мы не будем. Потому что есть

общий ориентир: за t часто (но не всегда!) нужно обозначить ту функцию, которая, образно говоря, находится в «неудобном положении».

$$\int \frac{\cos 2x dx}{\sin^3 2x} = (*)$$

В данном случае косинус «гуляет сам по себе», а вот синус «обременён» степенью. Его-то и обозначаем: $\sin 2x = t$. Далее можно «навесить» значки дифференциала на обе части: $d(\sin 2x) = dt$ и оформить преобразования «столбиком», но мы всё запишем компактнее:

 $d(\sin 2x) = (\sin 2x)'dx = 2\cos 2xdx = dt$, и из последнего равенства выражаем нужный нам кусок:

$$\cos 2x dx = \frac{dt}{2}$$

Такая вот красота:

$$\int \frac{\cos 2x dx}{\sin^3 2x} = \frac{dt}{2}$$

и можно продолжать:

$$(*) = \frac{1}{2} \int \frac{dt}{t^3} = \frac{1}{2} \int t^{-3} dt = \frac{1}{2} \cdot \frac{1}{(-2)} t^{-2} + C \quad \stackrel{t = \sin 2x}{=} \quad -\frac{1}{4 \sin^2 2x} + C, \text{ где } C = const$$

Готово.

Интеграл по Вашу душу:

Пример 44

$$\int \cos^7 2x \sin 2x dx$$

Решение и ответ в конце методички.

Следует отметить, что сформулированный выше ориентир является всего лишь ориентиром, а не каким-то абсолютным правилом. Так, если для интеграла $\int \frac{\sqrt[3]{tg \, 5x} \, dx}{\cos^2 5x}$ он ещё работает, то для $\int \frac{tg \, 5x dx}{\cos^2 5x}$ оказывается неверным. ...Да, кстати, а почему бы и нет? :=)

Пример 45

 $\int \frac{\sqrt[3]{tg\,5x}dx}{\cos^2 5x}$ — здесь можно рискнуть подвести функцию под знак дифференциала или использовать «турбо»-замену — каждый решает для себя сам. После чего сверяется.

7. Интегрирование некоторых дробей

Дроби нам уже встречались (не далее, как в предыдущем примере [⊚]), и в этом параграфе мы несколько систематизируем информацию, а также освоим специфические приёмы интегрирования дробей.

Начнём с заштатных случаев $\int \frac{dx}{ax^2+c}$, $\int \frac{dx}{ax^2-c}$, $\int \frac{dx}{\sqrt{ax^2\pm c}}$, $\int \frac{dx}{\sqrt{c-ax^2}}$ (коэффициенты a u c не равны нулю), которые «проскакивали» после Примера 9.

Такие интегралы проще решить подведением функции под знак дифференциала. Пожалуйста, возьмите в руки *Таблицу интегралов* и проследите, по каким формулам осуществляется интегрирование:

Пример 46

a)
$$\int \frac{dx}{\sqrt{9x^2+3}} = \int \frac{dx}{\sqrt{(3x)^2+3}} = \frac{1}{3} \int \frac{d(3x)}{\sqrt{(3x)^2+3}} = \frac{1}{3} \ln \left| 3x + \sqrt{9x^2+3} \right| + C$$
, где $C = const$

б)
$$\int \frac{dx}{2x^2 - 5} = \int \frac{dx}{(\sqrt{2}x)^2 - (\sqrt{5})^2} = \frac{1}{\sqrt{2}} \int \frac{d(\sqrt{2}x)}{(\sqrt{2}x)^2 - (\sqrt{5})^2} =$$
$$= \frac{1}{\sqrt{2}} \cdot \frac{1}{2\sqrt{5}} \ln \left| \frac{\sqrt{2}x - \sqrt{5}}{\sqrt{2}x + \sqrt{5}} \right| + C = \frac{1}{2\sqrt{10}} \ln \left| \frac{\sqrt{2}x - \sqrt{5}}{\sqrt{2}x + \sqrt{5}} \right| + C, \text{ где } C = const$$

Проанализируйте, **как и зачем** выделяются квадраты в данных примерах. Так, в пункте «бэ» сначала представляем знаменатель в виде $(\sqrt{2}x)^2-(\sqrt{5})^2$ и затем подводим $\sqrt{2}x$ под знак дифференциала. А сделать это всё нужно для того, чтобы воспользоваться стандартной табличной формулой $\int \frac{dx}{x^2-a^2} = \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right| + C$.

Второй способ состоит в предварительном выносе константы:

а)
$$\int \frac{dx}{\sqrt{9x^2+3}} = \int \frac{dx}{\sqrt{9\left(x^2+\frac{1}{3}\right)}} = \frac{1}{3} \int \frac{dx}{\sqrt{x^2+\frac{1}{3}}} = \frac{1}{3} \ln \left|x+\sqrt{x^2+\frac{1}{3}}\right| + C$$
, в результате чего

получается эквивалентный ответ. Можно и так. Но вот в пункте «бэ» придётся повозиться с четырёхэтажными дробями, и не факт, что для вас это окажется приятнее.

Да чего там смотреть, попробуйте решить самостоятельно:

Пример 47

a)
$$\int \frac{dx}{\sqrt{7x^2 - 3}}$$

$$6) \int \frac{dx}{7x^2 - 4}$$

И непременно проверочку – проверьте на прочность свои навыки!

«Родственные» интегралы $\int \frac{bxdx}{ax^2+c}$, $\int \frac{bxdx}{ax^2-c}$, $\int \frac{bxdx}{\sqrt{ax^2\pm c}}$, $\int \frac{bxdx}{\sqrt{c-ax^2}}$ решаются путём замены знаменателя или подкоренной суммы (см. *Примеры 17, 18a*), причём корни могут вообще любыми, например: $\int \frac{xdx}{\sqrt[3]{(2x^2+1)^4}}$ — заменили $2x^2+1=t$, и порядок.

Едем дальше. Интегралы вида $\int \frac{dx}{ax^2 + bx + c}$, $\int \frac{dx}{\sqrt{ax^2 + bx + c}}$ (коэффициенты a и b не равны нулю) сводятся к одному из четырех табличных интегралов, которые мы только что рассмотрели. А достигается это **методом выделения полного квадрата**. Его суть состоит в том, чтобы **искусственно** организовать конструкцию вида $a^2 + 2ab + b^2$ либо $a^2 - 2ab + b^2$ с целью её превращения в $(a+b)^2$ либо $(a-b)^2$ соответственно.

Как говорится, школа, и ничего ВУЗовского =) Давайте изучим сам процесс:

Пример 48

$$\int \frac{dx}{x^2 + 4x} = (*)$$

Легко видеть, что всё дело сведётся к применению формулы $a^2 + 2ab + b^2 = (a+b)^2$, и мы начинаем «подгонять» знаменатель под этот шаблон: $x^2 + 4x = x^2 + 2 \cdot 2x$. Очевидно, что b = 2, а значит, нам нужно прибавить 4. И, чтобы выражение не изменилось — эту же «четвёрку» следует сразу вычесть:

$$x^{2} + 4x = x^{2} + 2 \cdot 2x = x^{2} + 2 \cdot 2x + 4 - 4 = (x+2)^{2} - 4$$

Обязательно выполняем обратный ход:

 $(x+2)^2-4=x^2+4x+4-4=x^2+4x$, всё нормально, ошибок нет.

$$(*) = \int \frac{dx}{x^2 + 4x + 4 - 4} = \int \frac{dx}{(x+2)^2 - 4} = \int \frac{d(x+2)}{(x+2)^2 - 2^2} = \frac{1}{2 \cdot 2} \ln \left| \frac{x+2-2}{x+2+2} \right| + C = \frac{1}{4} \ln \left| \frac{x}{x+4} \right| + C, \text{ где } C = const$$

Готово. Подведением «халявной» сложной функции под знак дифференциала: d(x+2), в принципе, можно было пренебречь

Пример 49

Найти неопределенный интеграл:

$$\int \frac{dx}{x^2 - 2x + 10}$$

Это пример для самостоятельного решения.

В том случае, если перед x^2 находится «минус», используем такой приём:

Пример 50

$$\int \frac{dx}{\sqrt{2+2x-x^2}} = (*)$$

Выносим «минус» за скобки и располагаем слагаемые в нужном нам порядке: $2 + 2x - x^2 = 2 - (x^2 - 2x)$. **Константу** (*«двойку» в данном примере*) **не трогаем!**

Таким образом, у нас «прорисовались» контуры формулы $a^2-2ab+b^2=(a-b)^2$, где a=x,b=1

Поэтому ВНУТРИ скобок прибавляем единичку. И, анализируя это действие, приходим к выводу, что и ЗА скобкой единичку тоже нужно прибавить:

$$2+2x-x^2=2-(x^2-2x)=2-(x^2-2x+1)+1=3-(x-1)^2$$

Всегда, повторюсь, **ВСЕГДА** выполняем проверку. Используем ту же формулу в обратном направлении $(a-b)^2 = a^2 - 2ab + b^2$:

$$3-(x-1)^2 = 3-(x^2-2x+1) = 3-x^2+2x-1 = 2+2x-x^2$$
, OK.

Ну а зачем допускать ошибку там, где её можно 100%-но не допускать?

На чистовике решение следует оформить примерно так:

$$(*) = \int \frac{dx}{\sqrt{2 - (x^2 - 2x)}} = \int \frac{dx}{\sqrt{2 + 1 - (x^2 - 2x + 1)}} =$$

$$= \int \frac{dx}{\sqrt{3 - (x - 1)^2}} = \int \frac{d(x - 1)}{\sqrt{(\sqrt{3})^2 - (x - 1)^2}} = \arcsin\left(\frac{x - 1}{\sqrt{3}}\right) + C, \text{ где } C = const$$

Усложняем задачу:

Пример 51

$$\int \frac{dx}{\sqrt{5x^2 + 4x + 7}}$$

Здесь при x^2 уже не единичный коэффициент, а «пятёрка». И алгоритм решения таков:

$$\int \frac{dx}{\sqrt{5x^2 + 4x + 7}} \stackrel{\text{(1)}}{=} \int \frac{dx}{\sqrt{5 \cdot \left(x^2 + \frac{4}{5}x + \frac{7}{5}\right)}} \stackrel{\text{(2)}}{=} \frac{1}{\sqrt{5}} \int \frac{dx}{\sqrt{x^2 + \frac{4}{5}x + \frac{7}{5}}} \stackrel{\text{(3)}}{=}$$

$$= \frac{1}{\sqrt{5}} \int \frac{dx}{\sqrt{x^2 + 2 \cdot \frac{2}{5}x + \frac{7}{5}}} \stackrel{\text{(4)}}{=} \frac{1}{\sqrt{5}} \int \frac{dx}{\sqrt{x^2 + 2 \cdot \frac{2}{5}x + \frac{4}{25} + \frac{7}{5} - \frac{4}{25}}} \stackrel{\text{(5)}}{=}$$

$$= \frac{1}{\sqrt{5}} \int \frac{dx}{\sqrt{\left(x + \frac{2}{5}\right)^2 + \frac{7}{5} - \frac{4}{25}}} \stackrel{\text{(6)}}{=} \frac{1}{\sqrt{5}} \ln \left| x + \frac{2}{5} + \sqrt{\left(x + \frac{2}{5}\right)^2 + \frac{7}{5} - \frac{4}{25}} \right| + C =$$

$$= \frac{1}{\sqrt{5}} \ln \left| x + \frac{2}{5} + \sqrt{x^2 + \frac{4}{5}x + \frac{7}{5}} \right| + C, \text{ где } C = const$$

- (1) Если при x^2 находится константа, то её сразу выносим за скобки.
- (2) И вообще эту константу выносим за пределы интеграла, чтобы она «не путалась под ногами».
- (3) Очевидно, что всё сведется к формуле $a^2 + 2ab + b^2 = (a+b)^2$. Надо разобраться в слагаемом 2ab, а именно, выделить множитель-«двойку»
 - (4) Ага, $b = \frac{2}{5}$. Значит, прибавляем $\left(\frac{2}{5}\right)^2 = \frac{4}{25}$, и эту же дробь вычитаем.
- (5) Теперь выделяем полный квадрат. Поскольку у нас вырисовывается «длинный» логарифм $\int \frac{dx}{\sqrt{x^2+A}} = \ln \left| x + \sqrt{x^2+A} \right| + C$, то вычислять разность $\frac{7}{5} \frac{4}{25}$ не имеет смысла (скоро будет понятно, почему).
- (6) Собственно, применяем формулу $\int \frac{dx}{\sqrt{x^2+A}} = \ln \left| x + \sqrt{x^2+A} \right| + C$, только вместо «икс» у нас $x+\frac{2}{5}$. И, строго говоря, здесь пропущен один шаг перед интегрированием

функцию
$$x + \frac{2}{5}$$
 следовало подвести под знак дифференциала:
$$\frac{1}{\sqrt{5}} \int \frac{d\left(x + \frac{2}{5}\right)}{\sqrt{\left(x + \frac{2}{5}\right)^2 + \frac{7}{5} - \frac{4}{25}}},$$

но, как я уже неоднократно отмечал, этим часто пренебрегают.

(7) Под корнем всё желательно вернуть к первозданному виду:

$$\left(x+\frac{2}{5}\right)^2 + \frac{7}{5} - \frac{4}{25} = x^2 + \frac{4}{5}x + \frac{4}{25} + \frac{7}{5} - \frac{4}{25} = x^2 + \frac{4}{5}x + \frac{7}{5}$$

Готово.

Сложно? Как ни странно, математика тут школьная. Однако маньячить тоже не будем:

Пример 52

$$\int \frac{dx}{2x^2 + 2x + 1}$$

Это пример для самостоятельного решения.

Следующий метод можно назвать **частичным подведением числителя под знак дифференциала**. Он используется для интегралов вида: $\int \frac{(fx+g)dx}{ax^2+bx+c}$ или $\int \frac{(fx+g)dx}{\sqrt{ax^2+bx+c}}$ (коэффициенты a, b и f не равны нулю).

Пример 53

Я сразу запишу первый шаг, а потом объясню, что к чему:

$$\int \frac{(3x+2)dx}{x^2+x-1} = \int \frac{\frac{3}{2}d(x^2+x-1) + \frac{1}{2}dx}{x^2+x-1} = (*)$$

Такой подбор числителя выполняется устно либо на черновике. Сначала записываем под значком дифференциала весь знаменатель: $d(x^2+x-1)$. Теперь нужно подобрать множитель — ТАК, чтобы при раскрытии дифференциала получилось 3x (см. исходный интеграл). Нетрудно выяснить, что этому требованию удовлетворяет множитель $\frac{3}{2}$, ибо:

$$\frac{3}{2}d(x^2+x-1) = \frac{3}{2}(x^2+x-1)^2 dx = \frac{3}{2}(2x+1)dx = \left(\frac{3x}{2} + \frac{3}{2}\right)dx$$

Но в исходном интеграле у нас «двойка», а значит, к нашей конструкции нужно добавить $\frac{1}{2}dx$:

$$\frac{3}{2}d(x^2+x-1)+\frac{1}{2}dx$$

Примечание: в ряде примеров нужно наоборот, вычесть «излишек», это зависит от константы g.

И в самом деле, если упростить всё это безобразие:

$$\frac{3}{2}d(x^2+x-1)+\frac{1}{2}dx=\frac{3}{2}(2x+1)dx+\frac{1}{2}dx=$$

$$=\left(3x+\frac{3}{2}\right)dx+\frac{1}{2}dx=\left(3x+\frac{3}{2}+\frac{1}{2}\right)dx=(3x+2)dx$$
 — то получится в точности исхолный числитель.

Осталось распилить интеграл на две части и применить уже известные методы:

$$(*) \stackrel{(1)}{=} \int \left(\frac{\frac{3}{2}d(x^2 + x - 1)}{x^2 + x - 1} + \frac{\frac{1}{2}dx}{x^2 + x - 1} \right) \stackrel{(2)}{=} \frac{3}{2} \int \frac{d(x^2 + x - 1)}{x^2 + x - 1} + \frac{1}{2} \int \frac{dx}{x^2 + x - 1} \stackrel{(3)}{=}$$

$$= \frac{3}{2} \ln \left| x^2 + x - 1 \right| + \frac{1}{2} \int \frac{dx}{x^2 + 2 \cdot \frac{1}{2}x + \frac{1}{4} - \frac{1}{4} - 1} = \frac{3}{2} \ln \left| x^2 + x - 1 \right| + \frac{1}{2} \int \frac{dx}{\left(x + \frac{1}{2} \right)^2 - \frac{5}{4}} =$$

$$= \frac{3}{2} \ln \left| x^2 + x - 1 \right| + \frac{1}{2} \int \frac{d\left(x + \frac{1}{2} \right)}{\left(x + \frac{1}{2} \right)^2 - \left(\frac{\sqrt{5}}{2} \right)^2} = \frac{3}{2} \ln \left| x^2 + x - 1 \right| + \frac{1}{2} \cdot \frac{1}{2 \cdot \frac{\sqrt{5}}{2}} \ln \left| \frac{x + \frac{1}{2} - \frac{\sqrt{5}}{2}}{x + \frac{1}{2} + \frac{\sqrt{5}}{2}} \right| + C =$$

$$= \frac{3}{2} \ln \left| x^2 + x - 1 \right| + \frac{1}{2\sqrt{5}} \ln \left| \frac{2x + 1 - \sqrt{5}}{2x + 1 + \sqrt{5}} \right| + C, \text{ rge } C = const$$

- (1) Делим дробь на 2 части (на практике этот шаг можно опускать)
- (2) Используя свойство линейности.
- (3) Первый интеграл, по сути, табличный $\int \frac{dx}{x} = \ln|x|$; во втором интеграле выделяем полный квадрат (только что занимались).

Остальное дело техники, и я расписал все преобразования максимально подробно. Заметьте, что все эти «подробности» происходят только во втором интеграле, первое же слагаемое $\frac{3}{2}\ln \left|x^2+x-1\right|$ пришлось «тащить за собой» до конца решения.

И для закрепления материала пара интегралов для самостоятельного решения:

Пример 54

a)
$$\int \frac{8-13x}{\sqrt{x^2-1}} dx$$

$$6) \int \frac{(2x-10)dx}{\sqrt{1+x-x^2}}$$

Оба довольно простые. Здесь будет полезен частный случай интегрирования степенной функции, которого нет в таблице: $\int \frac{dx}{2\sqrt{x}} = \sqrt{x} + C$

Интегралы
$$\int \frac{dx}{x\sqrt{x^2+x+1}}$$
, $\int \frac{dx}{(x+1)\sqrt{x^2-1}}$ решаются путём замен $x = \frac{1}{t}$ и $x+1 = \frac{1}{t}$

соответственно, но подобные «кадры» проскакивают ой как редко, и поэтому я не счёл нужным включить их в настоящий курс. Более подробную информацию и соответствующие примеры можно найти на сайте, в статье Сложные интегралы.

И в заключение параграфа самое вкусное.

Внимание, важно! Следующие интегралы являются типовыми и встречаются особенно часто, в том числе, они возникают (и уже возникали – см. Пример 316) в ходе решения других интегралов.

Этот тот случай, когда в числителе и знаменателе находятся многочлены одинаковых степеней:

Пример 55

$$\int \frac{xdx}{x+3} = (*)$$

В принципе, здесь можно провести замену x+3=t, но есть более короткий и изящный путь. Идея состоит в том, чтобы **искусственно организовать в числителе такое же выражение, что и в знаменателе**. Для этого *прибавляем и сразу же вычитаем* «тройку», после чего делим числитель на знаменатель:

$$(*) = \int \frac{(x+3-3)dx}{x+3} = \int \left(1 - \frac{3}{x+3}\right) dx =$$

$$= \int dx - 3\int \frac{dx}{x+3} = x - 3\ln|x+3| + C, \text{ где } C = const$$

Аналогичный пример для самостоятельного решения:

Пример 56

$$\int \frac{x^2 dx}{x^2 - 5}$$

Кстати, замена $x^2 - 5 = t$ тут уже не проходит (убедитесь в этом самостоятельно).

Рассмотренный приём работает и в ситуации, если старшая степень числителя, больше старшей степени знаменателя:

Пример 57

$$\int \frac{x^2 dx}{2x - 1}$$

Мысль та же – искусственно организовать в числителе 2x-1. Для этого к скобке (2x-1) подбираем ТАКОЙ множитель, чтобы при их раскрытии получился x^2 :

$$\frac{1}{2}x(2x-1) = x^2 - \frac{1}{2}x$$

Однако у нас появился лишний кусок, и чтобы соблюсти равносильность, его же и прибавляем: $\frac{1}{2}x(2x-1)+\frac{1}{2}\mathbf{x}$

Теперь в последнем слагаемом снова вычленяем (2x-1), при этом перед скобкой получается следующий множитель:

$$\frac{1}{2}x(2x-1) + \frac{1}{4}(2x-1)$$

Но в результате этого действия у нас снова появился «побочный продукт»:

$$\frac{1}{4}(2x-1) = \frac{1}{2}x - \frac{1}{4}$$
, от которого следует избавиться:

$$\frac{1}{2}x(2x-1) + \frac{1}{4}(2x-1) + \frac{1}{4}$$

Если всё выполнено правильно, то при раскрытии всех скобок у нас должен получиться исходный числитель. **Проверяем**:

$$\frac{1}{2}x(2x-1)+\frac{1}{4}(2x-1)+\frac{1}{4}=x^2-\frac{1}{2}x+\frac{1}{2}x-\frac{1}{4}+\frac{1}{4}=x^2$$
, гуд.

Далее почленно делим числитель на знаменатель, распиливая интеграл на 3 части:

$$\int \frac{x^2 dx}{2x - 1} = \int \frac{\frac{1}{2}x(2x - 1) + \frac{1}{4}(2x - 1) + \frac{1}{4}}{2x - 1} dx =$$

$$= \int \left(\frac{1}{2}x + \frac{1}{4} + \frac{1}{4(2x - 1)}\right) dx = \frac{1}{2}\int x dx + \frac{1}{4}\int dx + \frac{1}{4}\int \frac{dx}{2x - 1} =$$

$$= \frac{1}{2} \cdot \frac{x^2}{2} + \frac{1}{4}x + \frac{1}{4} \cdot \frac{1}{2}\int \frac{d(2x - 1)}{2x - 1} = \frac{x^2}{4} + \frac{x}{4} + \frac{1}{8}\ln|2x - 1| + C, \text{ где } C = const$$

Проверим результат дифференцированием:

$$\left(\frac{x^2}{4} + \frac{x}{4} + \frac{1}{8}\ln|2x - 1| + C\right)' = \frac{1}{4} \cdot 2x + \frac{1}{4} \cdot 1 + \frac{1}{8(2x - 1)} \cdot (2x - 1)' + 0 =$$

$$= \frac{x}{2} + \frac{1}{4} + \frac{1}{4(2x - 1)} = \frac{x \cdot 2(2x - 1) + 1 \cdot (2x - 1) + 1}{4(2x - 1)} = \frac{4x^2 - 2x + 2x}{4(2x - 1)} = \frac{4x^2}{4(2x - 1)} = \frac{x^2}{2x - 1}$$

Надеюсь, у вас не возникло трудностей с приведением дробей к общему знаменателю (принцип: «домножаем вверху на то, чего не хватает внизу»).

Желающие могут решить интеграл с помощью замены 2x-1=t $\left(x=\frac{1}{2}(t+1)\right)$, но лично мне первый способ кажется удобнее. Главное, немного потренироваться:

Пример 58

$$\int \frac{(x^3 - 3)dx}{x - 1}$$

Это пример для самостоятельного решения. Здесь снова «прокатывает» замена: x-1=t, однако если вверху находится 4-я, 5-я и более высокие степени t, то менять переменную уже становится как-то совсем не весело. А посему рулит искусственное разложение. Вспоминаю рекорд, когда я раскладывал числитель с «тэ» в 11-й степени.

8. Универсальная тригонометрическая подстановка

Это «тяжёлая артиллерия» против «тригонометрических» интегралов, которая может помочь в тех случаях, когда не видно других способов решения. **Типичными интегралами**, где её нужно применить, являются следующие:

$$\int \frac{dx}{3+2\cos x-\sin x}$$
, $\int \frac{dx}{3-\sin x}$, $\int \frac{dx}{3+2\cos x}$, $\int \frac{(7+\cos x)dx}{3+2\cos x-\sin x}$ и некоторые другие.

С технической точки зрения, универсальная тригонометрическая подстановка (УТП) представляет собой обычную замену переменной, которая основана на

тригонометрических формулах
$$\sin\alpha = \frac{2tg\frac{\alpha}{2}}{1+tg^2\frac{\alpha}{2}}$$
, $\cos\alpha = \frac{1-tg^2\frac{\alpha}{2}}{1+tg^2\frac{\alpha}{2}}$.

И очевидно, что для перечисленных выше примеров замена будет такова:

$$tg\frac{x}{2} = z$$
 (для разнообразия я буду использовать букву «зет», а не «тэ»).

Таким образом, синус с косинусом становятся дробями: $\sin x = \frac{2z}{1+z^2}$, $\cos x = \frac{1-z^2}{1+z^2}$ и нам остаётся выяснить, во что превратится дифференциал dx. Для этого на обе части равенства $tg \frac{x}{2} = z$ «навешиваем» арктангенсы:

$$arctg\left(tg\frac{x}{2}\right) = arctgz$$
,

после чего арктангенс и тангенс взаимно уничтожаются:

$$\frac{x}{2} = arctgz$$

$$x = 2arctgz$$

и дифференциал вываливается прямо нам в руки:

$$dx = d(2arctgz) = (2arctgz)'dz = \frac{2dz}{1+z^2}$$

Пример 59

$$\int \frac{dx}{3 + 2\cos x - \sin x} = (*)$$

Проведем универсальную тригонометрическую подстановку: $z = tg \frac{x}{2}$. Тогда:

$$\sin x = \frac{2z}{1+z^2}, \quad \cos x = \frac{1-z^2}{1+z^2}$$

$$x = 2arctgz \Rightarrow dx = \frac{2dz}{1+z^2}$$

Сначала решение, затем комментарии:

$$(*) \stackrel{(1)}{=} \int \frac{\frac{2dz}{1+z^2}}{3+\frac{2(1-z^2)}{1+z^2}} \stackrel{(2)}{=} \int \frac{\frac{2dz}{1+z^2}}{\frac{3(1+z^2)+2(1-z^2)-2z}{1+z^2}} \stackrel{(3)}{=}$$

$$= \int \frac{2(1+z^2)dz}{(1+z^2)(3+3z^2+2-2z^2-2z)} \stackrel{(4)}{=} 2\int \frac{dz}{z^2-2z+5} \stackrel{(5)}{=} 2\int \frac{dz}{z^2-2z+1+4} \stackrel{(6)}{=}$$

$$= 2\int \frac{d(z-1)}{(z-1)^2+2^2} \stackrel{(7)}{=} \frac{2}{2} arctg\left(\frac{z-1}{2}\right) + C \stackrel{(8)}{=} arctg\left(\frac{tg}{2}\frac{x}{2}-1\right) + C, \text{ где } C = const$$

- (1) Собственно, проводим замену: $\sin x = \frac{2z}{1+z^2}$, $\cos x = \frac{1-z^2}{1+z^2}$, $dx = \frac{2dz}{1+z^2}$.
- (2) Приводим знаменатель к общему знаменателю.
- (3) Избавляемся от четырехэтажности дроби (см. Приложение **Полезные формулы**) и раскрываем скобки.
- (4) Двойку выносим за знак интеграла, сокращаем на $(1+z^2)$ и наводим порядок на нижнем этаже (приводим подобные слагаемые).
- (5) Не правда ли, знакомая картина? [©] Да, дроби будут преследовать нас до конца жизни темы. Выполняем подготовку для выделения полного квадрата.
- (6) Выделяем полный квадрат и в академичном стиле подводим «халявную» функцию под дифференциал.
 - (7) Интегрируем по табличной формуле $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} arctg \frac{x}{a} + C$.
 - (8) Проводим обратную замену $z = tg \frac{x}{2}$.

Готово. Надо сказать, проверка здесь не подарочная, и поэтому в подобных интегралах следует проявлять повышенное внимание!

Универсальная тригонометрическая подстановка применима и в том случае, если под синусом и косинусом находятся не «просто иксы», а аргумент вида $ax + b \ (a \neq 0)$. Рассмотрим похожий и простейший в этом смысле интеграл:

$$\int \frac{dx}{3 + 2\cos 2x - \sin 2x}$$

Согласно тем же формулам
$$\sin\alpha=\frac{2tg\,\frac{\alpha}{2}}{1+tg^{\,2}\frac{\alpha}{2}}$$
, $\cos\alpha=\frac{1-tg^{\,2}\,\frac{\alpha}{2}}{1+tg^{\,2}\,\frac{\alpha}{2}}$, здесь нужно

провести замену tgx = z и подстановки $\sin 2x = \frac{2z}{1+z^2}$, $\cos 2x = \frac{1-z^2}{1+z^2}$ у нас не меняются.

Но вот дифференциал будет немного другой, «навешиваем» арктангенсы:

$$arctg(tgx) = arctgz$$

$$x = arctgz \Rightarrow dx = \frac{dz}{1 + z^2}$$

и решение будет отличаться от разобранного выше примера только константой.

Аналогично обстоят дела с другими «родственными» интегралами:

 $\int \frac{dx}{3 + 2\cos 3x - \sin 3x}$ решается путем замены $z = tg \frac{3x}{2}$ — и всё точно так же, единственное, дифференциал и константа будут опять другими. И так далее.

Следующие два интеграла для самостоятельного решения:

Пример 60

a)
$$\int \frac{dx}{5-3\cos x}$$

$$6) \int \frac{dx}{4\sin^2 x - 5\cos^2 x}$$

Во втором случае перед применением УТП нужно понизить степени с помощью формул $\sin^2\alpha = \frac{1-\cos 2\alpha}{2}$, $\cos^2\alpha = \frac{1+\cos 2\alpha}{2}$.

Как вы только что убедились на собственном опыте, УТП – есть процесс трудоёмкий, и поэтому по возможности её стараются обойти. Таким образом, перед решением «подозрительного» интеграла, всегда анализируйте – а нет ли пути короче?

Так, например, вроде бы похожий интеграл $\int \frac{\cos x}{\sin x + 2} dx$ решается элементарно:

$$\int \frac{\cos x}{\sin x + 2} dx = \int \frac{d(\sin x + 2)}{\sin x + 2} = \ln |\sin x + 2| + C, \text{ где } C = const$$

Но можно использовать и УТП. Если такой возможности не заметить.

И сейчас мы рассмотрим типовые ситуации, когда лишней работы можно (и нужно) избегать:

Пример 61

$$\int \frac{dx}{\sin x}$$

Классика жанра. Справедливости ради, надо сказать, что здесь всё не так страшно, и УТП проходит без особых трудностей, но то лишь простейший случай.

Рассмотрим более традиционное решение:

$$\int \frac{dx}{\sin x} = \int \frac{dx}{2\sin \frac{x}{2}\cos \frac{x}{2}} = \int \frac{dx}{2\cdot \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} \cdot \cos^2 \frac{x}{2}} = \int \frac{dx}{2\cdot tg \frac{x}{2} \cdot \cos^2 \frac{x}{2}} = \int \frac{dx}{2\cdot tg \frac{x}{2}} = \int \frac{dx}{2\cdot tg \frac{x}{2}} = \int \frac{dx}{2\cdot tg \frac{x}{2}} =$$

$$= \int \frac{d\left(tg\frac{x}{2}\right)}{tg\frac{x}{2}} = \ln\left|tg\frac{x}{2}\right| + C, \text{ где } C = const$$

- (1) Используем тригонометрическую формулу $\sin 2\alpha = 2\sin \alpha \cos \alpha$, в данном случае $\alpha = \frac{x}{2}$.
 - (2) Искусственно делим и умножаем знаменатель на $\cos \frac{x}{2}$.
 - (3) По формуле $tg \alpha = \frac{\sin \alpha}{\cos \alpha}$ превращаем дробь в тангенс.
 - (4) Подводим функцию под знак дифференциала и дальше всё понятно.

Чтобы разделаться с «родственником» $\int \frac{dy}{\cos x}$ можно использовать так называемую формулу приведения $\cos \alpha = \sin \left(\frac{\pi}{2} + \alpha \right)$ и решение фактически продублируется:

$$\int \frac{dy}{\cos x} = \int \frac{dx}{\sin\left(\frac{\pi}{2} + x\right)} = \int \frac{dx}{\sin\left(2\left(\frac{\pi}{4} + \frac{x}{2}\right)\right)} = \dots = \ln\left|tg\left(\frac{\pi}{4} + \frac{x}{2}\right)\right| + C, \text{ где } C = const$$

Следует, однако, отметить, что это не единственный способ, и в других источниках информации вы можете встретить иной путь.

Для самостоятельного решения совсем простая вещь:

Пример 62

$$\int \frac{dx}{\sin x \cos x}$$

Думаю, теперь ни у кого не возникнет проблем с интегралами:

$$\int \frac{dx}{\sin 2x}$$
, $\int \frac{dx}{\cos 3x}$, $\int \frac{dx}{\sin 4x}$,... и т. п.

Как мы только что выяснили, идея состоит в том, чтобы с помощью преобразований, тригонометрических формул организовать в подынтегральной функции только тангенсы и его производную, после чего провести замену $tg\alpha = t$ (либо подвести тангенс под знак дифференциала).

Примечание: допустимо и «зеркальное» решение с заменой $ctg \alpha = t$

Кроме того, существует и формальная предпосылка для применения вышеуказанной замены: сумма степеней синуса и косинуса должно быть целым отрицательным и ЧЁТНЫМ числом, например:

$$\int \frac{dx}{\sin x \cos x}: \cos^{-1} x \cdot \sin^{-1} x -1 -1 = -2 -$$
 целое отрицательное и чётное число.

а если подынтегральная функция содержит ТОЛЬКО синус или ТОЛЬКО косинус, то интеграл берётся **и при нечётной степени**. Кстати, почему? По той причине, что есть формула $\sin 2\alpha = 2\sin \alpha\cos \alpha$, и всё дело сводится к озвученной предпосылке. Например:

$$\int \frac{dx}{\sin^3 2x} = \int \frac{dx}{(2\sin x \cos x)^3} = \int \frac{dx}{8\sin^3 x \cos^3 x}, \text{ здесь } \sin^{-3} x \cdot \cos^{-3} x : -3 - 3 = -6 - 6$$
 целое отрицательное и чётное число.

Ну а интегралы наподобие $\int \frac{dx}{\cos^3 2x}$ сводятся к синусу с помощью формулы приведения $\cos \alpha = \sin \left(\frac{\pi}{2} + \alpha \right)$.

Рассмотрим ещё пару примеров на это правило:

Пример 63

$$\int \frac{\sin^2 x dx}{\cos^6 x}$$

Сумма степеней синуса и косинуса $\sin^2 x \cdot \cos^{-6} x$: 2-6=-4 – целое отрицательное **и чётное** число, а значит, интеграл можно свести к тангенсам и его производной:

$$\int \frac{\sin^2 x dx}{\cos^6 x} \stackrel{\text{(1)}}{=} \int \frac{\sin^2 x dx}{\cos^2 x \cdot \cos^4 x} \stackrel{\text{(2)}}{=} \int \frac{tg^2 x dx}{\cos^4 x} \stackrel{\text{(3)}}{=} \int \frac{tg^2 x dx}{\cos^2 x \cdot \cos^2 x} \stackrel{\text{(4)}}{=}$$

$$= \int \frac{tg^2 x (tg^2 x + 1) dx}{\cos^2 x} \stackrel{\text{(5)}}{=} \int tg^2 x (tg^2 x + 1) d(tgx) \stackrel{\text{(6)}}{=} {}^{tgx = t}$$

$$= \int t^2 (t^2 + 1) dt = \int (t^4 + t^2) dt = \frac{t^5}{5} + \frac{t^3}{3} + C \stackrel{\text{(= tgx)}}{=} \frac{tg^5 x}{5} + \frac{tg^3 x}{3} + C, \text{ где } C = const$$

- (1) «Отщипываем» $\cos^2 x$
- (2) чтобы с помощью формулы $\frac{\sin \alpha}{\cos \alpha} = tg \alpha$ получить $tg^2 x$.
- (3) «Отщипываем» $\cos^2 x$ ещё раз
- (4) и используем формулу $\frac{1}{\cos^2 x} = tg^2 x + 1$.
- (5) Подводим под знак дифференциала.
- (6) Проводим «турбо»-замену tgx = t с дальнейшим интегрированием и обратной заменой.

Пример 64

$$\int \frac{dx}{\sin^3 x \cos^3 x}$$

Это пример для самостоятельного решения.

Нередко в подынтегральной функции находится «солянка»:

Пример 65

$$\int \frac{(2tgx+3)dx}{\sin^2 x + 2\cos^2 x}$$

В этом интеграле изначально присутствует тангенс, что сразу наталкивает на знакомую мысль:

$$\int \frac{(2tgx+3)dx}{\sin^2 x + 2\cos^2 x} = \int \frac{(2tgx+3)dx}{\left(\sin^2 x + 2\cos^2 x\right) \cdot \cos^2 x} = \int \frac{(2tgx+3)d(tgx)}{(tg^2x+2)} = {}^{tgx=t}$$

$$= \int \frac{(2t+3)dt}{t^2+2} = \int \frac{2tdt}{t^2+2} + 3\int \frac{dt}{t^2+2} = \int \frac{d(t^2+2)}{t^2+2} + 3\int \frac{dt}{t^2+(\sqrt{2})^2} =$$

$$= \ln(t^2+2) + \frac{3}{\sqrt{2}} \arctan \frac{t}{\sqrt{2}} + C = \ln(tg^2x+2) + \frac{3}{\sqrt{2}} \arctan \left(\frac{tgx}{\sqrt{2}}\right) + C, \text{ где } C = const$$

Искусственное преобразование в самом начале и остальные шаги оставлю без комментариев, поскольку обо всем уже говорилось выше.

И пара «чемпионских» интегралов для самостоятельного решения:

Пример 66

a)
$$\int \frac{dx}{\sin^2 x - 4\sin x \cos x + 5\cos^2 x}$$

$$6) \int \frac{\sin 2x dx}{\sin^4 x + 4\cos^4 x}$$

Да, в них, конечно, можно понизить степени синуса, косинуса, использовать универсальную тригонометрическую подстановку, но решение будет гораздо эффективнее и короче, если его провести через тангенсы с «турбо»-заменой.

Решения и ответы в конце методички.

9. Метод неопределённых коэффициентов

Данный метод используется в ходе интегрирования *дробно-рациональных функций*, с которыми мы уже имели дело. Что это за функции? Простыми словами, дробно-рациональная функция — это дробь, в числителе и знаменателе которой находятся многочлены. В частности, в числителе может быть константа:

Пример 67

$$\int \frac{dx}{x^2 - 4}$$

Да, совершенно верно, табличный интеграл «высокого» логарифма, строго говоря, не элементарен и подлежит доказательству. Чтобы не путаться с параметром, выведем частный случай формулы $\int \frac{dx}{x^2-a^2} = \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right| + C$ для a=2.

Разложим знаменатель на множители:

$$\int \frac{dx}{x^2 - 4} = \int \frac{dx}{x^2 - 2^2} = \int \frac{dx}{(x - 2)(x + 2)}$$

И здесь проскакивает интуитивная мысль, что неплохо бы нашу большую дробь превратить в две маленьких:

$$\frac{1}{(x-2)(x+2)} = \frac{A}{x-2} + \frac{B}{x+2}$$
, где A и B – $noka$ e и \ddot{e} неопределённые числовые коэффициенты. И что тут сказать... – их нужно определить! \odot

Для этого приводим сумму дробей к общему знаменателю. Для удобства дальнейших действий левую и правую часть лучше поменять местами:

$$\frac{A(x+2) + B(x-2)}{(x-2)(x+2)} = \frac{1}{(x-2)(x+2)}$$

Одинаковые знаменатели убираем и справа приписываем формальное слагаемое: $A(x+2) + B(x-2) = 0 \cdot x + 1$

Теперь приравниваем коэффициенты при «иксах»:

$$A + B = 0$$

и при константах:

$$2A - 2B = 1$$

В результате получена простейшая система линейных уравнений:

$$\begin{cases} A + B = 0 \\ 2A - 2B = 1 \end{cases}$$

Из 1-го уравнения выражаем B = -A и подставляем во 2-е уравнение:

$$2A-2(-A)=1$$
 \Rightarrow $4A=1$ \Rightarrow $A=\frac{1}{4}$, откуда: $B=-A=-\frac{1}{4}$.

Таким образом:
$$\frac{1}{(x-2)(x+2)} = \frac{A}{x-2} + \frac{B}{x+2} = \frac{\frac{1}{4}}{x-2} + \frac{-\frac{1}{4}}{x+2}$$

Само собой, проверочка:

$$\frac{1}{4(x-2)} - \frac{1}{4(x+2)} = \frac{1 \cdot (x+2) - 1 \cdot (x-2)}{4(x-2)(x+2)} = \frac{x+2-x+2}{4(x-2)(x+2)} = \frac{4}{4(x-2)(x+2)} = \frac{1}{x^2-4}$$

И теперь-то мы вряд ли ошибёмся:

$$\int \frac{dx}{x^2 - 4} = \int \frac{dx}{(x - 2)(x + 2)} = \int \left(\frac{\frac{1}{4}}{x - 2} + \frac{-\frac{1}{4}}{x + 2}\right) dx = \frac{1}{4} \int \frac{dx}{x - 2} - \frac{1}{4} \int \frac{dx}{x + 2} = \frac{1}{4} \ln|x - 2| - \frac{1}{4} \ln|x + 2| + C = \frac{1}{4} \ln\left|\frac{x - 2}{x + 2}\right| + C, \text{ где } C = const$$

Потренируйтесь самостоятельно:

Пример 68

$$\int \frac{dx}{x^2 + x}$$

Здесь можно выделить полный квадрат, но, коль скоро многочлен разложИм на множители, то работает и метод неопределённых коэффициентов. Кому как удобнее.

Но то были, конечно, шутки, и сейчас мы разберём более содержательный пример с **подробным алгоритмом** действий:

Пример 69

$$\int \frac{(x^2 - 19x + 6)dx}{(x - 1)(x^2 + 5x + 6)}$$

Шаг 1. Первое, что мы ВСЕГДА делаем при решении интеграла от дробнорациональной функции — это отвечаем на следующий вопрос: **является ли дробь правильной?** Данный шаг выполняется устно, и сейчас я объясню как:

Сначала смотрим на числитель и выясняем старшую степень многочлена:

$$\int \frac{(x^2 - 19x + 6)dx}{(x - 1)(x^2 + 5x + 6)}$$

Старшая степень числителя равна двум.

Теперь смотрим на знаменатель и выясняем *старшую степень* знаменателя. Напрашивающийся путь — это раскрыть скобки и привести подобные слагаемые, но можно поступить проще, в **каждой** скобке находим старшую степень

$$\int \frac{(x^2 - 19x + 6)dx}{(x - 1)(x^2 + 5x + 6)}$$

и мысленно умножаем соответствующие члены: $x \cdot x^2 = x^3$ – таким образом, старшая степень знаменателя равна трём. Совершенно понятно, что если реально раскрыть скобки, то мы не получим степени, больше трёх.

Вывод: старшая степень числителя (2) СТРОГО **меньше** старшей степени знаменателя (3), значит, дробь является правильной.

Если бы в числителе находился многочлен 3-й, 4-й, 5-й и т. д. степеней, то дробь была бы **неправильной**.

И сейчас мы будем рассматривать только правильные дробно-рациональные функции. Неправильные дроби разберём в конце параграфа.

Шаг 2. Раскладываем знаменатель на множители. Смотрим на наш знаменатель: $(x-1)(x^2+5x+6)$

Вообще говоря, здесь уже произведение множителей, но, тем не менее, зададимся вопросом: а нельзя ли что-нибудь разложить еще? Решаем квадратное уравнение (см. *Приложение Полезные формулы*):

$$x^2 + 5x + 6 = 0$$

 $D = 25 - 24 = 1 > 0$, значит, трехчлен раскладывается на множители.

Что мы незамедлительно и делаем:

$$\sqrt{D} = \sqrt{1} = 1$$

$$x_1 = \frac{-5 - 1}{2} = -3, \quad x_2 = \frac{-5 + 1}{2} = -2$$

$$x^2 + 5x + 6 = (x + 2)(x + 3)$$

Общее правило: ВСЁ, что в знаменателе МОЖНО разложить на множители – раскладываем на множители.

Шаг 3. Методом неопределенных коэффициентов раскладываем подынтегральную функцию в сумму простейших дробей. Такие дроби часто называют элементарными.

По мотивам предыдущих примеров:

$$\frac{x^2-19x+6}{(x-1)(x+2)(x+3)} = \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{x+3},$$
 где $A,B,C-$ пока ещё неизвестные коэффициенты.

И осталась одна маленькая проблемка – выяснить, чему они равны ©

Приводим конструкцию к общему знаменателю и приписываем справа исходную подынтегральную функцию:

$$\frac{A(x+2)(x+3) + B(x-1)(x+3) + C(x-1)(x+2)}{(x-1)(x+2)(x+3)} = \frac{x^2 - 19x + 6}{(x-1)(x+2)(x+3)}$$

Благополучно избавляемся от знаменателей (т. к. они одинаковы):

$$A(x+2)(x+3) + B(x-1)(x+3) + C(x-1)(x+2) = x^2 - 19x + 6$$

И вспоминаем знаменитое школьное правило: для того чтобы умножить многочлен на многочлен, нужно каждый член одного многочлена умножить на каждый член другого многочлена:

$$A(x^2 + 5x + 6) + B(x^2 + 2x - 3) + C(x^2 + x - 2) = x^2 - 19x + 6$$

На всякий пожарный: $(x+2)(x+3) = x \cdot x + 2 \cdot x + x \cdot 3 + 2 \cdot 3 = x^2 + 5x + 6$

Коэффициенты A, B, C я тоже затолкаю в скобки. Ради лучшего понимания:

$$(Ax^{2} + 5Ax + 6A) + (Bx^{2} + 2Bx - 3B) + (Cx^{2} + Cx - 2C) = x^{2} - 19x + 6$$

Теперь нужно составить систему линейных уравнений. Сначала разыскиваем старшие степени:

$$(Ax^{2}) + 5Ax + 6A + (Bx^{2}) + 2Bx - 3B + (Cx^{2}) + Cx - 2C = x^{2} - 19x + 6$$

и записываем первое уравнение:

$$\begin{cases} A+B+C=1\\ \dots\\ \dots \end{cases}$$

Ещё раз повторю следующий нюанс. Что было бы, если б в правой части вообще не было x^2 ? (то есть красовалось бы просто -19x+6 без всякого квадрата). В этом случае в уравнении нужно было бы поставить справа ноль: A+B+C=0. По той причине, что в правой части всегда можно приписать этот самый квадрат с нулём: $0 \cdot x^2 - 19x + 6$. **Итак, если в правой части отсутствует какие-нибудь переменные или (и) свободный член, то в правых частях соответствующих уравнений системы ставим нули**.

Далее процесс идет по снижающейся траектории, отмечаем все «иксы»:

$$(Ax^2 + 5Ax + 6A) + (Bx^2 + 2Bx - 3B) + (Cx^2 + Cx + 2C) = x^2 - 19x + 6$$

и записываем соответствующие коэффициенты во второе уравнение системы:

$$\begin{cases} A + B + C = 1 \\ 5A + 2B + C = -19 \\ \dots \end{cases}$$

И, наконец, в третье уравнение «собираем» свободные члены:

$$(Ax^{2} + 5Ax + 6A) + (Bx^{2} + 2Bx - 3B) + (Cx^{2} + Cx - 2C) = x^{2} - 19x + 6$$

$$\begin{cases} A+B+C=1\\ 5A+2B+C=-19\\ 6A-3B-2C=6 \end{cases}$$

Тут, конечно, не нужно извращаться с формулами Крамера, обратной матрицей или элементарными преобразованиями. Систему решаем «дедовским» методом:

$$\begin{cases} A+B+C=1 \\ 5A+2B+C=-19 \Rightarrow \\ 6A-3B-2C=6 \end{cases} \begin{cases} C=1-A-B \\ 5A+2B+1-A-B=-19 \Rightarrow \\ 6A-3B-2(1-A-B)=6 \end{cases} \begin{cases} C=1-A-B \\ 4A+B=-20 \Rightarrow \\ 8A-B=8 \end{cases} \Rightarrow 12A=-12 \Rightarrow A=-1$$

$$\Rightarrow B=-16$$

$$\Rightarrow C=18$$

- (1) Из первого уравнения выражаем C и подставляем его во 2-е и 3-е уравнения системы. Это сам рациональное решение.
 - (2) Приводим подобные слагаемые во 2-м и 3-м уравнениях.
- (3) Почленно складываем 2-е и 3-е уравнение, получая равенство 12A = -12, из которого следует, что A = -1
 - (4) Подставляем A = -1 во 2-е (или 3-е) уравнение, откуда находим, что B = -16
 - (5) Подставляем A = -1 и B = -16 в первое уравнение, получая C = 18.

После решения системы всегда полезно сделать **проверку** – подставить найденные значения *A*, *B*, *C* в каждое уравнение системы, в результате чего всё должно «сойтись».

Чистовое оформление задание должно выглядеть примерно так:

$$\int \frac{(x^2 - 19x + 6)dx}{(x - 1)(x^2 + 5x + 6)} = \int \frac{(x^2 - 19x + 6)dx}{(x - 1)(x + 2)(x + 3)} = (*)$$

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

$$\frac{x^2 - 19x + 6}{(x - 1)(x + 2)(x + 3)} = \frac{A}{x - 1} + \frac{B}{x + 2} + \frac{C}{x + 3}$$
$$A(x + 2)(x + 3) + B(x - 1)(x + 3) + C(x - 1)(x + 2) = x^2 - 19x + 6$$
$$A(x^2 + 5x + 6) + B(x^2 + 2x - 3) + C(x^2 + x - 2) = x^2 - 19x + 6$$

Приравняем коэффициенты при соответствующих степенях:

$$\begin{cases} A + B + C = 1 \\ 5A + 2B + C = -19 \Rightarrow \begin{cases} C = 1 - A - B \\ 4A + B = -20 \Rightarrow 12A = -12 \Rightarrow A = -1, B = -16, C = 18 \\ 8A - B = 8 \end{cases}$$

$$(*) = \int \left(-\frac{1}{x-1} - \frac{16}{x+2} + \frac{18}{x+3} \right) dx = -\int \frac{dx}{x-1} - 16 \int \frac{dx}{x+2} + 18 \int \frac{dx}{x+3} =$$

$$= -\ln|x-1| - 16\ln|x+2| + 18\ln|x+3| + C, \text{ где } C = const$$
"

Как видите, основная трудность задания состояла в том, чтобы составить (правильно!) и решить (правильно!) систему линейных уравнений.

Не позволяй душе лениться:

$$(-\ln|x-1|-16\ln|x+2|+18\ln|x+3|+C)' =$$

$$= -(\ln|x-1|)' - 16(\ln|x+2|)' + 18(\ln|x+3|)' + (C)' =$$

$$= -\frac{1}{(x-1)} \cdot (x-1)' - 16 \cdot \frac{1}{(x+2)} \cdot (x+2)' + 18 \cdot \frac{1}{(x+3)} \cdot (x+3)' + 0 =$$

$$= -\frac{1}{(x-1)} - \frac{16}{(x+2)} + \frac{18}{(x+3)} =$$

$$= \frac{-(x+2)(x+3) - 16(x-1)(x+3) + 18(x-1)(x+2)}{(x-1)(x+2)(x+3)} =$$

$$= \frac{-(x^2+5x+6) - 16(x^2+2x-3) + 18(x^2+x-2)}{(x-1)(x^2+5x+6)} =$$

$$= \frac{-x^2-5x-6-16x^2-32x+48+18x^2+18x-36}{(x-1)(x^2+5x+6)} = \frac{x^2-19x+6}{(x-1)(x^2+5x+6)}$$

Получена исходная подынтегральная функция, значит, интеграл найдем правильно.

В ходе проверки пришлось приводить выражение к общему знаменателю, и фактически *метод неопределённых коэффициентов* – есть обратное действие.

Отрабатываем навыки!

Пример 70

$$\int \frac{(43x-67)dx}{(x-1)(x^2-x-12)}$$

Решение и ответ в конце методички.

И снова вернёмся к дроби из «разжёванного» выше примера: $\frac{x^2-19x+6}{(x-1)(x+2)(x+3)}.$ Нетрудно заметить, что в знаменателе все множители РАЗНЫЕ. Возникает вопрос, а что делать, если дана, например, такая дробь: $\frac{x^2-19x+6}{x^3(x+2)(x+3)^2(x^2+2x+13)}?$

Здесь в знаменателе у нас степени, или, как говорят математики, *кратные* множители. Кроме того, есть неразложимый (здесь и далее – в поле действительных чисел) на множители квадратный трехчлен $x^2 + 2x + 13$. Легко убедиться, что дискриминант уравнения $x^2 + 2x + 13 = 0$ отрицателен, и трёхчлен не «развалить».

Что делать? Разложение в сумму будет выглядеть наподобие $\frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{x+3}$ с коэффициентами A, B, C вверху или может быть как-то по-другому? Ответим на этот вопрос следующим заданием:

Пример 71

Представить функцию $\frac{x^2-19x+6}{x^3(x+2)(x+3)^2(x^2+2x+13)}$ в виде суммы элементарных дробей с неизвестными коэффициентами.

Шаг 1. Проверяем, правильная ли у нас дробь

Старшая степень числителя: 2

Старшая степень знаменателя: 8

2 < 8, значит, дробь является правильной.

- **Шаг 2.** Можно ли что-нибудь разложить в знаменателе на множители? Очевидно, что нет, всё уже разложено. Квадратный трехчлен $x^2 + 2x + 13$ не раскладывается в произведение по указанным выше причинам. Это хорошо работы меньше.
- **Шаг 3.** Представим дробно-рациональную функцию в виде суммы элементарных дробей. В данном случае, разложение имеет следующий вид:

$$\frac{x^2 - 19x + 6}{x^3(x+2)(x+3)^2(x^2 + 2x + 13)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{D}{x+2} + \frac{E}{x+3} + \frac{F}{(x+3)^2} + \frac{Gx + H}{x^2 + 2x + 13}$$

И здесь можно выделить три принципиальных момента:

- 1) Если в исходном знаменателе находится «одинокий» множитель в первой степени (в нашем случае (x+2)), то вверху ставим неопределённый коэффициент (в нашем случае D). Примеры 67-70 только и состояли из таких «уникальных» множителей.
- 2) Если в знаменателе есть *кратный* множитель x^n , то раскладывать нужно так: $\frac{A_1}{x} + \frac{A_2}{x^2} + \frac{A_3}{x^3} + ... + \frac{A_n}{x^n}$ то есть последовательно перебрать все степени «икса» от первой до энной степени. В нашем примере два кратных множителя: x^3 и $(x+3)^2$ ещё раз взгляните на разложение выше и проследите, как работает это правило.
- 3) Если в знаменателе находится неразложимый многочлен второй степени (в нашем случае $x^2 + 2x + 13$), то в числителе нужно записать линейную функцию с неопределенными коэффициентами (в нашем случае Gx + H с неопределенными коэффициентами G и H).

Есть еще 4-й случай, но на практике он встречается крайне редко.

Потренируйтесь самостоятельно:

Пример 72

Представить функцию $\frac{x^6 + 25x^3 - 12}{x(x-2)^3(x^2-4)(x^2+4)}$ в виде суммы элементарных дробей с неизвестными коэффициентами.

Строго следуйте алгоритму!!

И после того, как мы разобрались в принципах разложения, можно смело переходить к «настоящим» примерам:)

Пример 73

$$\int \frac{(x^2 - 6x + 8)dx}{x^3 + 8}$$

Тем не менее, будем занудны, и ещё раз выдержим алгоритм:

Шаг 1. Очевидно, что дробь является правильной: 2 < 3

Шаг 2. Можно ли знаменатель разложить на множители? Можно. Здесь сумма кубов $x^3 + 8 = x^3 + 2^3$. Раскладываем знаменатель на множители, используя формулу сокращенного умножения $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$. Потихоньку начинаем оформлять решение:

$$\int \frac{(x^2 - 6x + 8)dx}{x^3 + 8} = \int \frac{(x^2 - 6x + 8)dx}{(x + 2)(x^2 - 2x + 4)} = (*)$$

Шаг 3. Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

$$\frac{x^2 - 6x + 8}{(x+2)(x^2 - 2x + 4)} = \frac{A}{x+2} + \frac{Bx + C}{x^2 - 2x + 4}$$

Обратите внимание, что многочлен $x^2 - 2x + 4$ неразложим на множители (проверьте, что дискриминант отрицательный), поэтому вверху мы ставим линейную функцию Bx + C с двумя неизвестными коэффициентами, а не просто одну буковку.

Приводим сумму к общему знаменателю и приписываем справа исходную дробь:

$$\frac{A(x^2 - 2x + 4) + (Bx + C)(x + 2)}{(x + 2)(x^2 - 2x + 4)} = \frac{x^2 - 6x + 8}{(x + 2)(x^2 - 2x + 4)}$$

Знаменатели аминь:

$$A(x^2 - 2x + 4) + B(x^2 + 2x) + C(x + 2) = x^2 - 6x + 8$$

Составим и решим систему:

$$\begin{cases} A + B = 1 \\ -2A + 2B + C = -6 \\ 4A + 2C = 8 \end{cases} \Rightarrow \begin{cases} B = 1 - A \\ -2A + 2(1 - A) + C = -6 \\ 4A + 2C = 8 \end{cases} \Rightarrow \begin{cases} B = 1 - A \\ -4A + C = -8 \\ 4A + 2C = 8 \end{cases} \Rightarrow 3C = 0$$

$$\Rightarrow A = 2, B = -1$$

- (1) Из 1-го уравнения выражаем B и подставляем во второе уравнение системы (это наиболее рациональный способ).
 - (2) Приводим подобные слагаемые во 2-м уравнении.
 - (3) Почленно складываем 2-е и 3-е уравнения, и дальше всё понятно.

Таким образом, наш интеграл разваливается на две – даже на три части:

$$(*) \stackrel{(1)}{=} \int \left(\frac{2}{x+2} - \frac{x}{x^2 - 2x + 4}\right) dx \stackrel{(2)}{=} 2 \int \frac{dx}{x+2} + \int \frac{-\frac{1}{2}d(x^2 - 2x + 4) - dx}{(x^2 - 2x + 4)} \stackrel{(3)}{=}$$

$$= 2\ln|x+2| - \frac{1}{2} \int \frac{d(x^2 - 2x + 4)}{(x^2 - 2x + 4)} - \int \frac{dx}{x^2 - 2x + 1 + 3} \stackrel{(4)}{=}$$

$$= 2\ln|x+2| - \frac{1}{2}\ln(x^2 - 2x + 4) - \int \frac{d(x-1)}{(x-1)^2 + (\sqrt{3})^2} \stackrel{(5)}{=}$$

$$= 2\ln|x+2| - \frac{1}{2}\ln(x^2 - 2x + 4) - \frac{1}{\sqrt{3}}\arctan\left(\frac{x-1}{\sqrt{3}}\right) + C, \text{ где } C = const$$

- (1) В соответствии с найденными коэффициентами $A=2,\ B=-1,\ C=0$ записываем сумму $\frac{A}{x+2}+\frac{Bx+C}{x^2-2x+4}$.
- (2) Используем свойство линейности. Во втором интеграле сразу выполняем частичное подведение функции под знак дифференциала. Проведённый искусственный подбор предварительно проверяем (устно либо на черновике):

$$-\frac{1}{2}d(x^2 - 2x + 4) - dx = -\frac{1}{2}(x^2 - 2x + 4)'dx - dx = -\frac{1}{2}(2x - 2)dx - dx =$$

$$= (-x + 1)dx - dx = (-x + 1 - 1)dx = -xdx$$
OK.

- (3) Еще раз используем свойство линейности. В последнем интеграле готовим знаменатель для выделения полного квадрата.
 - (4) Берём второй интеграл, в третьем выделяем полный квадрат.
 - (5) Берём третий интеграл.

Готово.

Пара интегралов для самостоятельного решения, один похожий, другой – труднее:

Пример 74

a)
$$\int \frac{(x^2 + 23)dx}{(x+1)(x^2 + 6x + 13)}$$

$$6) \int \frac{(2x^3 - 2x^2 + 5)dx}{(x-1)^2(x^2 + 4)}$$

Ни в коем случае не пропускаем – такие интегралы предлагают даже студентам заочных отделений.

И наша «мыльная опера» продолжается. Перейдем к рассмотрению случая, когда старшая степень числителя больше либо равна старшей степени знаменателя:

Интегрирование неправильной дробно-рациональной функции

Пример 75

$$\int \frac{(4x^4 + 8x^3 - 3x - 3)dx}{x^3 + 2x^2 + x}$$

Совершенно очевидно, что данная дробь является неправильной: 4 > 3

Основной метод решения интеграла с неправильной дробно-рациональной функций — это деление числителя на знаменатель. Да-да, делить будем столбиком, как самые обычные числа в школе.

Коротко о самом алгоритме. Сначала рисуем «заготовку» для деления:

$$4x^4 + 8x^3 + 0x^2 - 3x - 3$$
 $x^3 + 2x^2 + x + 0$

Обратите внимание: ВСЕ недостающие степени (и (или) свободные члены) без пропусков записываем с нулевыми коэффициентами в ОБОИХ многочленах!

Теперь маленькая задачка, на какой множитель нужно умножить x^3 , чтобы получить $4x^4$? Очевидно, что на 4x:

$$4x^4 + 8x^3 + 0x^2 - 3x - 3$$
 $\begin{vmatrix} x^3 + 2x^2 + x + 0 \\ 4x \end{vmatrix}$

Далее умножаем 4x сначала на x^3 , потом – на $2x^2$, потом – на x, потом – на 0 и записываем результаты слева:

Проводим черточку и из верхней строки вычитаем нижнюю, после чего сносим вниз свободный член (-3):

Старшая степень остатка $-4x^2-3x-3$ равна двум, старшая степень делителя x^3+2x^2+x+0 — больше, она равна трём, значит, больше разделить не удастся. Если бы в числителе, был многочлен, скажем, пятой степени, то пришлось бы делить еще раз.

Таким образом:
$$\frac{4x^4+8x^3-3x-3}{x^3+2x^2+x}=4x+\frac{-4x^2-3x-3}{x^3+2x^2+x},$$
 и немедленная проверка:
$$4x+\frac{-4x^2-3x-3}{x^3+2x^2+x}=\frac{4x(x^3+2x^2+x)-4x^2-3x-3}{x^3+2x^2+x}=\\ =\frac{4x^4+8x^3+4x^2-4x^2-3x-3}{x^3+2x^2+x}=\frac{4x^4+8x^3-3x-3}{x^3+2x^2+x},$$
 всё тип-топ.

Итак, наше чистовое решение принимает следующий вид:

$$\int \frac{(4x^4 + 8x^3 - 3x - 3)dx}{x^3 + 2x^2 + x} = (*)$$

Делим числитель на знаменатель:

$$(*) = \int \left(4x + \frac{(-4x^2 - 3x - 3)}{x(x^2 + 2x + 1)}\right) dx = 2x^2 + \int \frac{(-4x^2 - 3x - 3)}{x(x + 1)^2} dx = (*)$$

- (1) Что нам дало деление? Много хорошего: теперь у нас два слагаемых, первое интегрируется совсем просто, а второе представляет собой **правильную** д**робь**, которую мы решать уже умеем.
- (2) От первого слагаемого сразу берем интеграл. Знаменатель дроби раскладываем на множители

Дальше всё идет по отработанной схеме. Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

$$\frac{(-4x^2 - 3x - 3)}{x(x+1)^2} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$$
$$\frac{A(x+1)^2 + Bx(x+1) + Cx}{x(x+1)^2} = \frac{-4x^2 - 3x - 3}{x(x+1)^2}$$
$$A(x^2 + 2x + 1) + B(x^2 + x) + Cx = -4x^2 - 3x - 3$$

$$\begin{cases} A+B=-4\\ 2A+B+C=-3 \Rightarrow B=-1, C=4\\ A=-3 \end{cases}$$

...почти во всех задачах у нас получаются «хорошие» целые коэффициенты, но на практике это, конечно же, не всегда так. Поэтому ни в коем случае не тушуйтесь, если у вас начнут выскакивать дроби – проверка всё прояснит.

(*) =
$$2x^2 + \int \left(-\frac{3}{x} - \frac{1}{x+1} + \frac{4}{(x+1)^2}\right) dx = 2x^2 - 3\ln|x| - \ln|x+1| - \frac{4}{x+1} + C$$
, где $C = const$

Готово.

И крайне полезный пример для самостоятельного решения;)

Пример 76

$$\int \frac{(x^3 - 3)dx}{(x - 1)(x^2 - 1)}$$

10. Интегрирование корней

Интегралы с корнями (радикалами) мы уже решали, и этот параграф будет посвящён тем случаям, когда изученные методы не срабатывают. Как правило, в таких примерах корни находятся в загадочном положении, и зачастую их несколько штук.

Спешу вас обрадовать, что особой новизны не будет, поскольку основной приём решения подобных интегралов – это тоже замена переменной. Но замена особая – она должна избавить нас от ВСЕХ корней в подынтегральной функции.

Начнём с детского квадратного корня:

Пример 77

$$\int \frac{dx}{\sqrt{x}(x+3)}$$

Анализируя подынтегральную функцию, приходишь к печальному выводу, что она совсем не напоминает табличные интегралы. Вот если бы всё это добро находилось в числителе — было бы просто. Или бы корня внизу не было. Или многочлена. Никакие методы интегрирования дробей тоже не помогают. Что делать?

Всё гениальное просто – корень здесь один, и, не мудрствуя лукаво, мы обозначаем его новой буквой: $\sqrt{x} = t$.

Если бы в *подынтегральной функции* вместо квадратного корня находился $\sqrt[3]{x}$, то мы бы провели замену $\sqrt[3]{x} = t$. Если бы там был $\sqrt[4]{x}$, то $\sqrt[4]{x} = t$ и так далее.

Теперь нужно выразить через «тэ» оставшуюся часть *подынтегрального* выражения, а именно (x+3) в знаменателе и дифференциал dx. Для этого из замены $\sqrt{x} = t$ выражаем «икс» — возводим обе части в квадрат:

$$x = t^2 \quad (npu \ni mom \ t > 0)$$

И коль скоро
$$x = t^2$$
, то:
 $x + 3 = t^2 + 3$

Осталось выяснить, во что превратится дифференциал dx. Делается это по отработанной технологии — берём замену в виде $x=t^2$ и «навешиваем» значки дифференциала на обе части:

$$dx = d(t^2)$$

Слева получился готовый дифференциал, а вот справа его нужно раскрыть:

$$dx = (t^2)'dt$$

dx = 2tdt

Чистовое оформление решения должно выглядеть примерно так:

$$\int \frac{dx}{\sqrt{x}(x+3)} = (*)$$

Проведём замену $\sqrt{x}=t$, тогда: $x=t^2 \Rightarrow dx=2tdt$ $x+3=t^2+3$

$$(*) \stackrel{(1)}{=} \int \frac{2tdt}{t(t^2+3)} \stackrel{(2)}{=} 2\int \frac{dt}{t^2+3} \stackrel{(3)}{=} 2\int \frac{dt}{(\sqrt{3})^2+t^2} \stackrel{(5)}{=} \frac{2}{\sqrt{3}} \operatorname{arctg} \frac{t}{\sqrt{3}} + C \stackrel{(6)}{=} t = \sqrt{x}$$
$$= \frac{2}{\sqrt{3}} \operatorname{arctg} \sqrt{\frac{x}{3}} + C, \text{ где } C = \operatorname{const}$$

- (1) Проводим подстановку (как, что и куда, уже рассмотрено).
- (2) Выносим множитель за пределы интеграла. Числитель и знаменатель сокращаем на t.
 - (3) Получившийся интеграл является табличным, готовим его для интегрирования.
 - (4) Интегрируем по формуле арктангенса.
- (5) Проводим *обратную замену*. Как это делается? Вспоминаем, от чего плясали: если $\sqrt{x} = t$, то обратно: $t = \sqrt{x}$.

Ну а как иначе? Корни вернулись.

И нет нам от них избавления ©:

Пример 78

$$\int \frac{dx}{\sqrt{x}+3}$$

Это пример для самостоятельного решения.

Рассмотрим несколько другую вариацию по теме:

Пример 79

$$\int \frac{\sqrt{x+2}dx}{x-3} = (*)$$

Предварительный анализ *подынтегральной функции* опять показывает, что лёгкого пути нет. А поэтому нужно избавляться от корня. Радикал здесь один, и мы проводим замену «в лоб»:

$$\sqrt{x+2} = t$$

Чтобы выразить через «тэ» оставшуюся часть *подынтегрального выражения*, возведём обе части в квадрат, представляя замену в виде:

$$x + 2 = t^2$$

Навешиваем дифференциалы на обе части:

$$d(x+2) = d(t^2)$$

Тут нужно потрудиться уже в обеих частях (хоть слева и «халявная» функция):

$$(x+2)'dx = (t^2)'dt$$

$$dx = 2tdt$$

С числителем разобрались. Что делать с разностью (x-3) в знаменателе? Фокус прост. Из равенства $x+2=t^2$ выражаем $x=t^2-2$ и подставляем «икс» в разность:

$$x-3=t^2-2-3=t^2-5$$

Таким образом:

$$(*) \stackrel{(1)}{=} \int \frac{t \cdot 2t dt}{t^2 - 5} \stackrel{(2)}{=} \int \frac{2t^2 dt}{t^2 - 5} \stackrel{(3)}{=} \int \frac{2(t^2 - 5) + 10}{t^2 - 5} dt \stackrel{(4)}{=} \int \left(2 + \frac{10}{t^2 - 5}\right) dt \stackrel{(5)}{=} 2 \int dt + 10 \int \frac{dt}{t^2 - (\sqrt{5})^2} \stackrel{(6)}{=} 2t + \frac{10}{2\sqrt{5}} \ln \left| \frac{t - \sqrt{5}}{t + \sqrt{5}} \right| + C \stackrel{(7)}{=} 2\sqrt{x + 2} + \sqrt{5} \ln \left| \frac{\sqrt{x + 2} - \sqrt{5}}{\sqrt{x + 2} + \sqrt{5}} \right| + C, \text{ где } C = const$$

- (1) Проводим подстановку в соответствии с выполненной заменой.
- (2) Причёсываем числитель. Константу я предпочел не выносить за знак интеграла (можно делать и так, ошибкой не будет)
 - (3) Раскладываем числитель в нужную сумму.
 - (4) Почленно делим числитель на знаменатель.
- (5) Используем свойство линейности. Во втором интеграле выделяем квадрат $(\sqrt{5})^2$ для последующего интегрирования по таблице.
 - (6) Интегрируем по табличной формуле «высокого логарифма».
 - (7) Проводим обратную замену, если $\sqrt{x+2} = t$, то обратно: $t = \sqrt{x+2}$.

Готово.

Самостоятельно:

Пример 80

$$\int \frac{dx}{\sqrt[3]{5x+3}+1}$$

Проверьте, хорошо ли вы усвоили технику решения ;)

Принципиально так же решаются интегралы с несколькими одинаковыми корнями, например $\int \frac{\sqrt{x}dx}{\sqrt{x}+4}$, $\int \frac{(\sqrt[3]{x}+1)dx}{\sqrt[3]{x}(5-\sqrt[3]{x})}$ и т. п., единственное, в них будут получаться более сложные дробно-рациональные функции.

А что делать, если в подынтегральной функции корни разные?

Пример 81

$$\int \frac{(x+\sqrt{x}+\sqrt[3]{x^2})dx}{x(1+\sqrt[3]{x})}$$

Когда встречается подобный интеграл, обычно становится страшно. Но страхи напрасны – после проведения подходящей замены подынтегральная функция упрощается. Вспоминаем основной принцип: замена должна избавить нас сразу от ВСЕХ корней.

Когда даны разные корни, удобно придерживаться следующей схемы решения. Сначала выписываем на черновике подынтегральную функцию, при этом все радикалы

представляем в виде $x^{\frac{a}{b}}$: $\frac{x+x^{\frac{1}{2}}+x^{\frac{2}{3}}}{x(1+x^{\frac{1}{3}})}$. Нас будут интересовать **знаменатели** степеней:

$$\frac{x + x^{\frac{1}{2}} + x^{\frac{2}{3}}}{x(1 + x^{\frac{1}{3}})}$$

Записываем эти знаменатели: 2, 3, 3.

Теперь нужно найти наименьшее общее кратное чисел 2, 3, 3 – такое число, чтобы оно делилось и на 2 и на 3 (в данном случае), кроме того, это число должно быть как можно меньше. Очевидно, что наименьшим общим кратным является число 6. Оно делится и на 2 и на 3, и меньше «шестёрки» ничего нет.

Как многие уже догадались, замена в рассматриваемом интеграле будет следующей: $\sqrt[6]{x} = t$, причём удобнее сразу использовать эквивалентную замену, возведя обе части в 6-ю степень:

 $x = t^6$ и имея в виду, что t > 0 — так как корень чётный (при нечётном корне «тэ» может быть любого знака).

Такая замена гарантированно избавит нас от всех корней. Кстати, этот вариант можно применить и в предыдущих примерах параграфа.

Дифференциал элементарен:

$$dx = d(t^6) = 6t^5 dt$$

Оформляем решение:

$$\int \frac{(x+\sqrt{x}+\sqrt[3]{x^2})dx}{x(1+\sqrt[3]{x})} = (*)$$

Проведём замену $x = t^6 \Rightarrow dx = 6t^5 dt$

$$(*) \stackrel{(1)}{=} \int \frac{(t^6 + \sqrt{t^6} + \sqrt[3]{(t^6)^2}) \cdot 6t^5 dt}{t^6 (1 + \sqrt[3]{t^6})} \stackrel{(2)}{=} 6 \int \frac{(t^6 + t^3 + t^4) dt}{t (1 + t^2)} \stackrel{(3)}{=} 6 \int \frac{(t^5 + t^3 + t^2) dt}{t^2 + 1} \stackrel{(4)}{=}$$

$$= 6 \int \frac{t^3 (t^2 + 1) + (t^2 + 1) - 1}{t^2 + 1} dt \stackrel{(5)}{=} 6 \int \left(t^3 + 1 - \frac{1}{t^2 + 1}\right) dt \stackrel{(6)}{=}$$

$$= \frac{6}{4} t^4 + 6t - 6 \operatorname{arct} gt + C \stackrel{(7)}{=} \frac{3}{2} \sqrt[3]{x^2} + 6 \sqrt[6]{x} - 6 \operatorname{arct} g \sqrt[6]{x} + C, \text{ р.е. } C = \operatorname{const}$$

- (1) Проводим подстановку $x = t^6$ (что проще, нежели $\sqrt[6]{x} = t$).
- (2) Избавляемся от корней, при этом модуль тут ставить не нужно, ибо t>0. Выносим константу за знак интеграла. Сокращаем числитель и знаменатель на t^5 .
 - (3) Сокращаем числитель и знаменатель ещё на t.
 - (4) Используем знакомый метод.
 - (5) Почленно делим числитель на знаменатель.
- (6) Интегрируем по таблице. При этом константу я снова «прилепил» к каждому из трёх слагаемых (хотя, можно этого и не делать момент технический).
- (7) Проводим обратную замену. Если $x = t^6$, то $t = \sqrt[6]{x}$. При этом некоторые корни лучше сразу сократить (обычно это делается устно). В рассмотренном примере сокращение корней встретилось в первом слагаемом: $t^4 = \sqrt[6]{x^4} = \sqrt[3]{x^2}$

Как видите, особых сложностей нет, несмотря на то, что сначала интеграл показался трудным и страшным.

Пример 82

$$\int \frac{\sqrt{x}dx}{1-\sqrt[4]{x}}$$

Это пример для самостоятельного решения.

Иногда встречаются интегралы, где корень вложен в какую-нибудь другую функцию, например:

$$\int e^{\sqrt{x}} dx$$
, $\int \sin \sqrt{x} dx$

Тут нужно провести элементарную замену $\sqrt{x} = t$ (либо эквивалентную ей $x = t^2$, t > 0 - m. к. корень чётный) с дальнейшим интегрированием по частям.

 $\int arctg(\sqrt[3]{6x-1})dx$ - аналогичный мотив, замена $\sqrt[3]{6x-1} = t$, и корня, как ни бывало.

Решения этих и других примеров можно найти в статье Сложные интегралы.

И совсем редко встречается интеграл вида $\int_{0}^{\pi} \sqrt{\frac{ax+b}{cx+d}} dx$, который решается заменой $\int_{0}^{\pi} \sqrt{\frac{ax+b}{cx+d}} dx = t \implies \frac{ax+b}{cx+d} = t^n$. Конкретный пример тоже есть в указанном выше источнике.

11. Биномиальные интегралы

С некоторыми из них мы уже имели дело, и сейчас пришло время систематизировать информацию. Так называемый биномиальный интеграл имеет следующий вид: $\int x^m (a+bx^n)^p dx$. Он берётся в трёх случаях.

1) Случай первый. Самый лёгкий.

Если степень р – целое число.

Например:
$$\int \frac{\sqrt{x}dx}{(1+\sqrt[5]{x})^2}$$

Представим интеграл в стандартном виде (это лучше делать на черновике):

$$\int \frac{\sqrt{x} dx}{(1+\sqrt[5]{x})^2} = \int x^{\frac{1}{2}} (1+x^{\frac{1}{5}})^{-2} dx$$

Мы видим, что степень p=-2 – целая, а, значит, действительно имеет место первый случай. На самом деле биномиальный интеграл первого типа решается практически так же, как интегралы в только что рассмотренных *Примерах* 81, 82, поэтому приводить почти такие же решения особого смысла нет. Я просто покажу, какую замену здесь нужно провести.

Смотрим на знаменатели дробей:

$$\int x^{\frac{1}{2}} (1 + x^{\frac{1}{5}})^{-2} dx$$

Выписываем знаменатели: 2, 5. Находим *наименьшее общее кратное* этих чисел. Очевидно, это **10**: оно делится и на 2 и на 5, кроме того – десятка самая маленькая в этом смысле.

После замены $\sqrt[10]{x} = t$ либо $x = t^{10}$ (t > 0) (что технически проще) все корни гарантировано пропадут. Решать этот пример не нужно, поскольку я его придумал с ходу, и легко там не будет =)

2)
$$\int x^m (a+bx^n)^p dx$$
 – случай второй

Если $\frac{m+1}{n}$ — целое число, то проводим замену в виде $a+bx^n=t^N$, где N-1 знаменатель дроби p .

Спокойствие, только спокойствие, сейчас во всём разберемся.

Пример 83

$$\int \frac{\sqrt{x^2 - 1} dx}{x}$$

Во-первых, представим интеграл в стандартном виде $\int x^m (a + bx^n)^p dx$:

 $\int \frac{\sqrt{x^2-1} dx}{x} = \int x^{-1} (x^2-1)^{\frac{1}{2}} dx$. Вообще говоря, формально правильнее было записать $\int x^{-1} (-1+x^2)^{\frac{1}{2}} dx$, но перестановка слагаемых в скобках не играет никакой роли.

Выписываем степени:

$$m = -1, n = 2, p = \frac{1}{2}$$

И сразу проверяем, не относится ли наш интеграл к первому случаю?

$$p = \frac{1}{2}$$
 – целое? Нет.

Проверяем второй случай:

 $\frac{m+1}{n} = \frac{-1+1}{2} = \frac{0}{2} = 0$ — целое, значит у нас второй случай, и согласно правилу, нужно провести замену в виде $a+bx^n=t^N$, где N — знаменатель дроби p .

В рассматриваемом примере $p=\frac{1}{2}$, и знаменатель этой дроби равен «двойке». Таким образом, «наше всё» – это замена в виде: $x^2-1=t^2$.

! Обращаю внимание, что фактически мы проводим замену $\sqrt{x^2-1}=t$, которая прямо избавляет нас от корня. Но *в общем случае* проще работать с версией $x^2-1=t^2$ — во избежание путаницы и трудностей, имея в виду, что t>0 (*m. к. корень чётный*). И снова добавлю, что в случае нечётного корня, а-ля $\sqrt[3]{x^2-1}=t$, «тэ» может быть любого знака.

Поэтому «чайникам» (да и не только) я рекомендую придерживаться следующего алгоритма, оформляем решение:

$$\int \frac{\sqrt{x^2 - 1} dx}{x} = (*)$$

Проведём замену в виде $x^2-1=t^2$. В результате наш корень приятно упрощается: $\sqrt{x^2-1}=\sqrt{t^2}=t$ (модуль не нужен, т. к. t>0).

Теперь нужно выяснить, во что превратится **оставшаяся часть** *подынтегрального* выражения: $\frac{dx}{x}$. Берём замену $x^2-1=t^2$ и навешиваем на левую и правую часть значки дифференциала:

$$d(x^2-1) = d(t^2)$$

после чего оба дифференциала раскрываем:

$$(x^2-1)'dx = (t^2)'dt$$

$$2xdx = 2tdt$$

$$xdx = tdt$$

Но вот, незадача, тут получилось xdx, а нам-то нужно выразить $\frac{dx}{x}$. Да без проблем – умножаем обе части на $\frac{1}{x^2}$:

$$xdx \cdot \frac{1}{x^2} = tdt \cdot \frac{1}{x^2}$$

Таким образом: $\frac{dx}{x} = \frac{tdt}{x^2}$. Уже лучше, но нам надо выразить $\frac{dx}{x}$ только через t, а в правой части есть «икс» в квадрате. Что делать? Снова берём замену $x^2 - 1 = t^2$ и выражаем из неё нужный $x^2 = t^2 + 1$. Окончательно:

$$\frac{dx}{x} = \frac{tdt}{x^2} = \frac{tdt}{t^2 + 1} \,.$$

Несколько головоломно, но, увы, другие алгоритмы еще запутаннее. Собственно, продолжаем решение:

$$(*) \stackrel{(1)}{=} \int \frac{t \cdot t dt}{t^2 + 1} \stackrel{(2)}{=} \int \frac{t^2 dt}{t^2 + 1} \stackrel{(3)}{=} \int \frac{(t^2 + 1 - 1) dt}{t^2 + 1} \stackrel{(4)}{=} \int \left(1 - \frac{1}{t^2 + 1}\right) dt \stackrel{(5)}{=}$$
$$= t - arctgt + C \stackrel{(6)}{=} \sqrt{x^2 - 1} - arctg\sqrt{x^2 - 1} + C, \text{ где } C = const$$

- (1) Проводим подстановку согласно замене.
- (2) Записываем компактно числитель.
- (3) Уже без комментариев :)
- (4) Делим числитель на знаменатель.
- (5) Интегрируем по таблице.
- (6) Проводим *обратную замену*: если $x^2 1 = t^2$, то $t = \sqrt{x^2 1}$.

Пример 84

$$\int \frac{x^3 dx}{\sqrt{x^2 + 4}}$$

Это пример для самостоятельного решения.

3) $\int x^m (a+bx^n)^p dx$ – случай третий. Самый сложный.

Если $\frac{m+1}{n}+p$ — целое число, то проводим замену в виде $b+\frac{a}{x^n}=t^N$, где N- знаменатель дроби p .

Пример 85

$$\int \frac{\sqrt{x^2 + 4} dx}{x^2}$$

Представим интеграл в стандартном виде $\int x^{-2}(x^2+4)^{\frac{1}{2}}dx$ и выпишем степени и коэффициенты:

$$m = -2$$
, $n = 2$, $p = \frac{1}{2}$, $a = 4$, $b = 1$

1) Не относится ли наш интеграл к первому случаю?

$$p = \frac{1}{2}$$
 – целое? Нет.

2) Проверяем второй случай:

$$\frac{m+1}{n} = \frac{-2+1}{2} = -\frac{1}{2}$$
 – целое? Нет.

3)
$$\frac{m+1}{n} + p = \frac{-2+1}{2} + \frac{1}{2} = -\frac{1}{2} + \frac{1}{2} = 0$$
 – целое! Значит, у нас третий случай.

И, согласно правилу, здесь нужно провести замену **в виде** $b+\frac{a}{x^n}=t^N$, где N-1 знаменатель дроби p . В рассматриваемом примере $p=\frac{1}{2}$, и знаменатель этой дроби равен опять же «двойке». Коэффициенты (будьте внимательны) a=4 , b=1

Таким образом, используем замену **в виде**: $1 + \frac{4}{x^2} = t^2$. И вновь обращаю внимание, что фактически здесь проводится замена: $\sqrt{1 + \frac{4}{x^2}} = t \Rightarrow \frac{\sqrt{x^2 + 4}}{x} = t$, но работать с ней не всегда удобно. А посему я приведу более чёткий (хоть и громоздкий) алгоритм:

$$\int \frac{\sqrt{x^2 + 4}dx}{x^2} = (*)$$

Проведём замену в виде $1 + \frac{4}{x^2} = t^2$ и сразу разберёмся с корнем. Это труднее, чем в предыдущих случаях.

Сначала из выражения $1 + \frac{4}{x^2} = t^2$ нужно выразить «икс квадрат»:

$$\frac{4}{x^2} = t^2 - 1 \Longrightarrow x^2 = \frac{4}{t^2 - 1}$$

Теперь подставляем $x^2 = \frac{4}{t^2 - 1}$ под корень:

$$\sqrt{x^2+4}=\sqrt{rac{4}{t^2-1}+4}=\sqrt{rac{4+4t^2-4}{t^2-1}}=\sqrt{rac{4t^2}{t^2-1}}=rac{2t}{\sqrt{t^2-1}}$$
 — от корня мы пока не

избавились, по это только пока;)

На втором этапе выясняем, во что превратится **оставшаяся часть** *подынтегрального выражения*: $\frac{dx}{x^2}$. Берем нашу замену $1 + \frac{4}{x^2} = t^2$ и навешиваем дифференциалы на обе части:

$$d\left(1+\frac{4}{x^2}\right) = d(t^2)$$

вот тут-то уже не самая простая производная:

$$(1+4x^{-2})'dx = 2tdt$$

$$(0 + 4 \cdot (-2)x^{-3})dx = 2tdt$$

$$\frac{4dx}{x^3} = -tdt$$

теперь слева по правилу пропорции вычленяем нужный нам кусок:

$$\frac{dx}{x^3} = -\frac{1}{4}tdt$$

$$\frac{dx}{x^2} = -\frac{1}{4}txdt$$

Опять проблема, в правой части у нас есть x, а нам нужно всё выразить через t.

Берём ранее найденный
$$x^2 = \frac{4}{t^2 - 1}$$
 и выражаем $x = \sqrt{\frac{4}{t^2 - 1}} = \frac{2}{\sqrt{t^2 - 1}}$

Окончательно:

$$\frac{dx}{x^2} = -\frac{1}{4}txdt = -\frac{1}{4}t \cdot \frac{2}{\sqrt{t^2 - 1}} \cdot dt = -\frac{tdt}{2\sqrt{t^2 - 1}}$$

В итоге мы выразили $\sqrt{x^2+4} = \frac{2t}{\sqrt{t^2-1}}$ и $\frac{dx}{x^2} = -\frac{tdt}{2\sqrt{t^2-1}}$ (смотрим вверх на исходный интеграл!), и всё готово для продолжения решения:

$$(*) \stackrel{(1)}{=} \int \frac{2t}{\sqrt{t^2 - 1}} \cdot \left(-\frac{tdt}{2\sqrt{t^2 - 1}} \right) \stackrel{(2)}{=} - \int \frac{t^2 dt}{t^2 - 1} \stackrel{(3)}{=} - \int \frac{(t^2 - 1 + 1)dt}{t^2 - 1} = - \int \left(1 + \frac{1}{t^2 - 1} \right) dt =$$

$$= - \int dt - \int \frac{1}{t^2 - 1} = -t - \frac{1}{2} \ln \left| \frac{t - 1}{t + 1} \right| + C \stackrel{(4)}{=} - \frac{\sqrt{4 + x^2}}{x} - \frac{1}{2} \ln \left| \frac{\sqrt{4 + x^2}}{x} - 1 \right| + C \stackrel{(5)}{=}$$

$$= - \frac{\sqrt{4 + x^2}}{x} - \frac{1}{2} \ln \left| \frac{\sqrt{4 + x^2} - x}{\sqrt{4 + x^2} + x} \right| + C, \text{ где } C = const$$

- (1) Проводим подстановку согласно замене.
- (2) Упрощаем выражение и выносим «минус» за знак интеграла (так удобнее).
- (3) Разваливаем интеграл на 2 части и, понятно, интегрируем.
- (4) Проводим обратную замену. В третьем случае биномиального интеграла это тоже заковыристее. Если $1+\frac{4}{x^2}=t^2$, то $t^2=\frac{x^2+4}{x^2} \Rightarrow t=\sqrt{\frac{x^2+4}{x^2}}=\frac{\sqrt{x^2+4}}{x}$.
 - (5) Избавляемся от четырехэтажности в логарифме.

Пример 86

$$\int \frac{dx}{\sqrt{(x^2-1)^3}}$$

Это пример для самостоятельного решения (здесь m=0). Полное решение и ответ только для выживших читателей =)

Что делать, если биномиальный интеграл $\int x^m (a + bx^n)^p dx$ не подходит ни под один из рассмотренных случаев? Это грустный четвертый случай, когда интеграл не берётся.

Поздравляю! Теперь Вы сможете решить почти любой интеграл!

Почти. Студентам-технарям настоятельно рекомендую проработать неоднократно упоминавшуюся статью Сложные интегралы, в частности, метод сведения интеграла к самому себе. Я намеренно не включил в данный курс «раритеты», поскольку его целью была именно быстрая помощь, и надеюсь, что этой цели мне удалось достичь. Ловите бонус — ответ на ваш самый популярный вопрос!

Дополнительную информацию по теме однократных интегралов можно найти в соответствующем разделе портала mathprofi.ru (ссылка на аннотацию к разделу).

Из учебной литературы рекомендую: К.А. Бохан, 1-й том *(попроще)*, Г.М. Фихтенгольц, 2-й том *(посложнее)*, Н.С. Пискунов *(для ВТУЗов)*.

Желаю успехов!

12. Решения и ответы

Разминочное задание:

$$\left(\frac{x^{n+1}}{n+1} + C\right)' = \frac{1}{n+1} \cdot (x^{n+1})' + (C)' = \frac{1}{n+1} \cdot (n+1)x^{n+1-1} + 0 = x^n$$

$$(\ln|x| + C)' = (\ln|x|)' + (C)' = \frac{1}{x} + 0 = \frac{1}{x}$$

$$\left(\frac{a^{x}}{\ln a} + C\right)' = \frac{1}{\ln a} \cdot (a^{x})' + (C)' = \frac{1}{\ln a} \cdot a^{x} \ln a + 0 = a^{x}$$

$$(\sin x + C)' = (\sin x)' + (C)' = \cos x + 0 = \cos x$$

$$(tgx + C)' = (tgx)' + (C)' = \frac{1}{\cos^2 x} + 0 = \frac{1}{\cos^2 x}$$

$$(-ctgx + C)' = -(ctgx)' + (C)' = -\left(-\frac{1}{\sin^2 x}\right) + 0 = \frac{1}{\sin^2 x}$$

$$\left(\frac{1}{a}\arctan \frac{x}{a} + C\right)' = \frac{1}{a}\left(\arctan \frac{x}{a}\right)' + (C)' = \frac{1}{a} \cdot \frac{1}{1 + \left(\frac{x}{a}\right)^2} \cdot \left(\frac{x}{a}\right)' =$$

$$= \frac{1}{a} \cdot \frac{1}{1 + \frac{x^2}{a^2}} \cdot \frac{1}{a} \cdot (x)' = \frac{1}{a} \cdot \frac{1}{\frac{a^2 + x^2}{a^2}} \cdot \frac{1}{a} \cdot 1 = \frac{1}{a} \cdot \frac{a^2}{a^2 + x^2} \cdot \frac{1}{a} = \frac{a^2}{a^2 (a^2 + x^2)} = \frac{1}{a^2 + x^2}$$

$$\left(\ln\left|x + \sqrt{x^2 + A}\right| + C\right)' = \left(\ln\left|x + \sqrt{x^2 + A}\right|\right)' + (C)' =$$

$$= \frac{1}{x + \sqrt{x^2 + A}} \cdot (x + \sqrt{x^2 + A})' + 0 = \frac{1}{x + \sqrt{x^2 + A}} \cdot \left(1 + \frac{1}{2\sqrt{x^2 + A}} \cdot (x^2 + A)'\right) =$$

$$= \frac{1}{x + \sqrt{x^2 + A}} \cdot \left(1 + \frac{1}{2\sqrt{x^2 + A}} \cdot (2x + 0)\right) = \frac{1}{x + \sqrt{x^2 + A}} \cdot \left(1 + \frac{x}{\sqrt{x^2 + A}}\right) =$$

$$= \frac{1}{x + \sqrt{x^2 + A}} \cdot \frac{(\sqrt{x^2 + A} + x)}{\sqrt{x^2 + A}} = \frac{1}{\sqrt{x^2 + A}}$$

Пример 2. Решение:

$$\int \left(\frac{1}{x} + x^2 \ln 5 - \frac{4}{\sqrt{x}} + \frac{1}{3\sqrt[3]{x^4}} + \frac{7}{\sqrt{1 - x^2}}\right) dx =$$

$$= \int \frac{dx}{x} + \ln 5 \int x^2 dx - 4 \int x^{-\frac{1}{2}} dx + \frac{1}{3} \int x^{-\frac{4}{3}} dx + 7 \int \frac{dx}{\sqrt{1 - x^2}} =$$

$$= \ln|x| + \ln 5 \cdot \frac{1}{3} x^3 - 4 \cdot \frac{1}{1} x^{\frac{1}{2}} + \frac{1}{3} \cdot \frac{1}{\left(-\frac{1}{3}\right)} \cdot x^{-\frac{1}{3}} + 7 \arcsin x + C =$$

$$= \ln|x| + \frac{(\ln 5) \cdot x^3}{3} - 8\sqrt{x} - \frac{1}{\sqrt[3]{x}} + 7 \arcsin x + C, \ \partial \theta C = const$$

Проверка:

$$\left(\ln|x| + \frac{(\ln 5) \cdot x^3}{3} - 8\sqrt{x} - \frac{1}{\sqrt[3]{x}} + 7\arcsin x + C\right)' =$$

$$= (\ln|x|)' + \frac{(\ln 5)}{3} \cdot (x^3)' - 8(\sqrt{x})' - (x^{-\frac{1}{3}})' + 7(\arcsin x)' + (C)' =$$

$$= \frac{1}{x} + \frac{(\ln 5)}{3} \cdot 3x^2 - 8 \cdot \frac{1}{2\sqrt{x}} - \left(-\frac{1}{3}\right) \cdot x^{-\frac{4}{3}} + 7 \cdot \frac{1}{\sqrt{1 - x^2}} + 0 =$$

$$= \frac{1}{x} + x^2 \ln 5 - \frac{4}{\sqrt{x}} + \frac{1}{\sqrt[3]{x^4}} + \frac{7}{\sqrt{1 - x^2}}$$

Получена исходная подынтегральная функция, значит, интеграл найден верно.

Пример 4. Решение:

$$\int x(1-2x)^3 dx = \int x(1-6x+12x^2-8x^3) dx = \int (x-6x^2+12x^3-8x^4) dx =$$

$$= \frac{x^2}{2} - 6 \cdot \frac{x^3}{3} + 12 \cdot \frac{x^4}{4} - 8 \cdot \frac{x^5}{5} + C = \frac{x^2}{2} - 2x^3 + 3x^4 - \frac{8x^5}{5} + C, \ e \ \partial e \ C = const$$

B данном примере мы использовали формулу сокращенного умножения $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$ (см. Приложение **Полезные формулы**)

Проверка:

$$\left(\frac{x^2}{2} - 2x^3 + 3x^4 - \frac{8x^5}{5} + C\right)' = \frac{1}{2}(x^2)' - 2(x^3)' + 3(x^4)' - \frac{8}{5}(x^5)' + (C)' =$$

$$= \frac{1}{2} \cdot 2x - 2 \cdot 3x^2 + 3 \cdot 4x^3 - \frac{8}{5} \cdot 5x^4 + 0 = x - 6x^2 + 12x^3 - 8x^4 =$$

$$= x(1 - 6x + 12x^2 - 8x^3) = x(1 - 2x)^3$$

Получена исходная подынтегральная функция, значит, интеграл найден верно.

Пример 6. Решение:

$$\int \frac{2x^2 + 3\sqrt{x} - 1}{2x} dx = \int \left(x + \frac{3}{2} x^{-\frac{1}{2}} - \frac{1}{2x} \right) dx = \frac{x^2}{2} + \frac{3}{2} \cdot \frac{1}{\frac{1}{2}} \cdot x^{\frac{1}{2}} - \frac{1}{2} \ln|x| + C =$$

$$= \frac{x^2}{2} + 3\sqrt{x} - \frac{1}{2} \ln|x| + C, \ e \partial e C = const$$

Проверка.

$$\left(\frac{x^2}{2} + 3\sqrt{x} - \frac{1}{2}\ln|x| + C\right)' = \frac{1}{2}(x^2)' + 3(x^{\frac{1}{2}})' - \frac{1}{2}(\ln|x|)' + (C)' =$$

$$= \frac{1}{2} \cdot 2x + 3 \cdot \frac{1}{2}x^{-\frac{1}{2}} - \frac{1}{2} \cdot \frac{1}{x} + 0 = x + \frac{3}{2\sqrt{x}} - \frac{1}{2x} = \frac{2x^2 + 3\sqrt{x} - 1}{2x}$$

Получена исходная подынтегральная функция, что и требовалось проверить.

Пример 9. Решение:

a)
$$\int \cos \frac{x}{2} dx = 2 \int \cos \frac{x}{2} d\left(\frac{x}{2}\right) = 2 \sin \frac{x}{2} + C, \ \partial e C = const$$

$$\Pi posepka: \left(2 \sin \frac{x}{2} + C\right)' = 2 \left(\sin \frac{x}{2}\right)' + (C)' = 2 \cos \frac{x}{2} \cdot \left(\frac{x}{2}\right)' + 0 = 2 \cos \frac{x}{2} \cdot \frac{1}{2} = \cos \frac{x}{2}$$

б)
$$\int 4^{5x} dx = \frac{1}{5} \int 4^{5x} d(5x) = \frac{4^{5x}}{5\ln 4} + C$$
, где $C = const$

Проверка: $\left(\frac{4^{5x}}{5\ln 4} + C\right)' = \frac{1}{5\ln 4} \cdot (4^{5x})' + (C)' = \frac{1}{5\ln 4} \cdot 4^{5x} \ln 4 \cdot (5x)' + 0 = \frac{1}{5} \cdot 4^{5x} \cdot 5 = 4^{5x}$

Пример 11. Решение:

$$\int ctg \, 2x dx = \int \frac{\cos 2x dx}{\sin 2x} = \frac{1}{2} \int \frac{d(\sin 2x)}{\sin 2x} = \frac{1}{2} \ln |\sin 2x| + C, \ \partial e C = const$$
 Проверка:

$$\left(\frac{1}{2}\ln|\sin 2x| + C\right)' = \frac{1}{2}(\ln|\sin 2x|)' + (C)' = \frac{1}{2} \cdot \frac{1}{\sin 2x} \cdot (\sin 2x)' + 0 = \frac{1}{2\sin 2x} \cdot \cos 2x \cdot (2x)' = \frac{\cos 2x}{2\sin 2x} \cdot 2 = \frac{\cos 2x}{\sin 2x} = ctg \, 2x$$

Пример 14. Решение:

$$\int_{0}^{5} \sqrt{(1+x)^{4}} dx = \int_{0}^{4} (1+x)^{\frac{4}{5}} d(1+x) =$$

$$= \frac{5}{9} \cdot (1+x)^{\frac{9}{5}} + C = \frac{5}{9} \cdot \sqrt[5]{(1+x)^{9}} + C, \ \partial \theta C = const$$

$$\Pi posepka:$$

$$\left(\frac{5}{9} \cdot \sqrt[5]{(1+x)^{9}} + C\right)' = \frac{5}{9} ((1+x)^{\frac{9}{5}})' + (C)' = \frac{5}{9} \cdot \frac{9}{5} (1+x)^{\frac{4}{5}} \cdot (1+x)' + 0 = \sqrt[5]{(1+x)^{4}}$$

Пример 16. Решение:

$$\int x(1-x)^5 dx = (*)$$

Проведём замену: $1-x=t \Rightarrow -dx=dt \Rightarrow dx=-dt$ Из 1-x=t выразим x=1-t

$$(*) = \int (1-t)t^{5}(-dt) = -\int (t^{5} - t^{6})dt = \int (t^{6} - t^{5})dt =$$

$$= \frac{t^{7}}{7} - \frac{t^{6}}{6} + C = t^{-1-x} = \frac{(1-x)^{7}}{7} - \frac{(1-x)^{6}}{6} + C, \ \ \partial eC = const$$

Проверка:

$$\left(\frac{(1-x)^7}{7} - \frac{(1-x)^6}{6} + C\right)' = \frac{1}{7} \cdot 7(1-x)^6 \cdot (1-x)' - \frac{1}{6} \cdot 6(1-x)^5 \cdot (1-x)' + 0 =$$

$$= -(1-x)^6 + (1-x)^5 = (1-x)^5 \cdot [-(1-x) + 1] = (1-x)^5 \cdot [-1 + x + 1] = x(1-x)^5$$

Пример 18. Решение:

a)
$$\int \frac{xdx}{\sqrt{9-8x^2}} = (*)$$

Проведем замену:

$$9 - 8x^2 = t$$

$$d(9-8x^2) = (9-8x^2)'dx = -16xdx = dt$$

откуда выражаем: $xdx = -\frac{dt}{16}$

$$(*) = -\frac{1}{16} \int \frac{dt}{\sqrt{t}} = -\frac{1}{16} \int t^{-\frac{1}{2}} dt = -\frac{1}{16} \cdot 2t^{\frac{1}{2}} + C =$$

$$= -\frac{\sqrt{t}}{8} + C = t^{-9-8x^2} = -\frac{\sqrt{9-8x^2}}{8} + C, \ \varepsilon \partial \varepsilon C = const$$

$$6) \int x^2 e^{2x^3 - 1} dx = (*)$$

Проведем замену:

$$2x^3 - 1 = t$$

$$d(2x^3 - 1) = 6x^2 dx = dt \Rightarrow x^2 dx = \frac{dt}{6}$$

$$(*) = \frac{1}{6} \int e^t dt = \frac{1}{6} e^t + C = {}^{t=2x^3-1} = \frac{1}{6} e^{2x^3-1} + C, \ \ \partial eC = const$$

Проверка:
$$\left(\frac{1}{6}e^{2x^3-1}+C\right)'=\frac{1}{6}e^{2x^3-1}\cdot(2x^3-1)'+0=\frac{1}{6}e^{2x^3-1}\cdot6x^2=x^2e^{2x^3-1}$$

Пример 20. Решение:

$$\int \frac{\sqrt[3]{\ln(3x+1)}}{3x+1} dx = (*)$$

Проведем замену:

$$\ln(3x+1) = t$$

$$d(\ln(3x+1)) = (\ln(3x+1))'dx = \frac{3dx}{3x+1} = dt \Rightarrow \frac{dx}{3x+1} = \frac{dt}{3}$$

$$(*) = \frac{1}{3} \int_{0}^{3} \sqrt{t} dt = \frac{1}{3} \int_{0}^{1} t^{\frac{1}{3}} dt = \frac{1}{3} \cdot \frac{3}{4} t^{\frac{4}{3}} + C = t^{t = \ln(3x + 1)} = \frac{\sqrt[3]{\ln^4(3x + 1)}}{4} + C, \ \partial eC = const$$

Проверка:

$$\left(\frac{\sqrt[3]{\ln^4(3x+1)}}{4} + C\right)' = \frac{1}{4}(\ln^{\frac{4}{3}}(3x+1))' + (C)' = \frac{1}{4} \cdot \frac{4}{3}\ln^{\frac{1}{3}}(3x+1) \cdot (\ln(3x+1))' + 0 =$$

$$= \frac{1}{3}\sqrt[3]{\ln(3x+1)} \cdot \frac{1}{3x+1} \cdot (3x+1)' = \frac{\sqrt[3]{\ln(3x+1)}}{3(3x+1)} \cdot 3 = \frac{\sqrt[3]{\ln(3x+1)}}{3x+1}$$

Пример 23. Решение:

a)
$$\int \frac{\ln x dx}{x} = \int \ln x d(\ln x) = \frac{\ln^2 x}{2} + C, \ \partial e C = const$$

Проверка:
$$\left(\frac{\ln^2 x}{2} + C\right)' = \frac{1}{2} \cdot 2 \ln x \cdot (\ln x)' + 0 = \frac{\ln x}{x}$$

$$\delta) \int \frac{\ln x}{x^2} dx = (*)$$

Интегрируем по частям:

$$u = \ln x \Rightarrow du = \frac{dx}{x}$$
$$dv = \frac{dx}{x^2} \Rightarrow v = \int \frac{dx}{x^2} = -\frac{1}{x}$$
$$\int u dv = uv - \int v du$$

$$(*) = -\frac{\ln x}{x} + \int \frac{1}{x^2} dx = -\frac{\ln x}{x} - \frac{1}{x} + C = -\frac{(\ln x + 1)}{x} + C, \ \partial eC = const$$

Проверка:

$$\left(-\frac{(\ln x + 1)}{x} + C\right) = -\left(\frac{1}{x} \cdot (\ln x + 1)\right)' + (C)' = -\left(\left(\frac{1}{x}\right)' \cdot (\ln x + 1) + \frac{1}{x} \cdot (\ln x + 1)'\right) + 0 =$$

$$= -\left(-\frac{1}{x^2} \cdot (\ln x + 1) + \frac{1}{x} \cdot \left(\frac{1}{x} + 0\right)\right) = -\left(-\frac{\ln x}{x^2} - \frac{1}{x^2} + \frac{1}{x^2}\right) = \frac{\ln x}{x^2}$$

Пример 25. Решение:

$$\int (x^2 + x)e^{-x}dx = (*)$$

Дважды интегрируем по частям:

$$u = x^{2} + x \Rightarrow du = (x^{2} + x)'dx = (2x + 1)dx$$

$$dv = e^{-x}dx \Rightarrow v = \int e^{-x}dx = -\int e^{-x}d(-x) = -e^{-x}$$

$$\int udv = uv - \int vdu$$

$$(*) = -e^{-x}(x^2 + x) + \int (2x+1)e^{-x}dx = (*)$$

$$u = 2x + 1 \Rightarrow du = 2dx$$

 $dv = e^{-x}dx \Rightarrow v = -e^{-x}$

(*) =
$$-e^{-x}(x^2 + x) - e^{-x}(2x + 1) + 2\int e^{-x} dx =$$

= $-e^{-x}(x^2 + x) - e^{-x}(2x + 1) - 2e^{-x} + C = -e^{-x}(x^2 + x + 2x + 1 + 2) + C =$
= $-e^{-x}(x^2 + 3x + 3) + C$, $\partial e C = const$

Проверка:

$$(-e^{-x}(x^2+3x+3)+C)' = (-e^{-x})' \cdot (x^2+3x+3) - e^{-x}(x^2+3x+3)' + 0 =$$

$$= -e^{-x} \cdot (-1) \cdot (x^2+3x+3) - e^{-x}(2x+3+0) = (x^2+3x+3-2x-3)e^{-x} = (x^2+x)e^{-x}$$

Пример 27. Решение:

$$\int (x-6)\sin\frac{x}{2}dx = (*)$$

Интегрируем по частям:

$$u = x - 6 \Rightarrow du = dx$$

$$dv = \sin\frac{x}{2}dx \Rightarrow v = \int \sin\frac{x}{2}dx = -2\cos\frac{x}{2}$$
$$\int udv = uv - \int vdu$$

$$(*) = -2(x-6)\cos\frac{x}{2} + 2\int\cos\frac{x}{2}dx = -2(x-6)\cos\frac{x}{2} + 2\cdot 2\int\cos\frac{x}{2}d\left(\frac{x}{2}\right) =$$

$$= -2(x-6)\cos\frac{x}{2} + 4\sin\frac{x}{2} + C, \ \ \partial eC = const$$

Проверка:

$$\left(-2(x-6)\cos\frac{x}{2} + 4\sin\frac{x}{2} + C\right)' = -2(x-6)'\cos\frac{x}{2} - 2(x-6)\left(\cos\frac{x}{2}\right)' + 4\cos\frac{x}{2} \cdot \frac{1}{2} + 0 =$$

$$= -2\cos\frac{x}{2} - 2(x-6)\cdot\left(-\frac{1}{2}\sin\frac{x}{2}\right) + 2\cos\frac{x}{2} = -2\cos\frac{x}{2} + (x-6)\sin\frac{x}{2} + 2\cos\frac{x}{2} = (x-6)\sin\frac{x}{2}$$

Пример 29. **Решение**: используем тригонометрическую формулу $\sin \alpha \cos \alpha = \frac{1}{2} \sin 2\alpha$ и интегрируем по частям:

$$\int x \sin x \cos x dx = \frac{1}{2} \int x \sin 2x dx = (*)$$

$$u = x \Rightarrow du = dx$$

$$dv = \sin x \cos x dx = \frac{1}{2} \sin 2x dx \Rightarrow v = \frac{1}{2} \int \sin 2x dx = -\frac{1}{4} \cos 2x$$
$$\int u dv = uv - \int v du$$

$$(*) = -\frac{1}{4}x\cos 2x + \frac{1}{4}\int\cos 2x dx = -\frac{1}{4}x\cos 2x + \frac{1}{8}\sin 2x + C, \ \partial\theta C = const$$

Проверка.

$$\left(-\frac{1}{4}x\cos 2x + \frac{1}{8}\sin 2x + C\right) = -\frac{1}{4}(x)'\cos 2x - \frac{1}{4}x(\cos 2x)' + \frac{1}{8}\cdot 2\cos 2x + 0 =$$

$$= -\frac{1}{4}\cos 2x - \frac{1}{4}x(-2\sin 2x) + \frac{1}{4}\cos 2x = \frac{1}{2}x\sin 2x = \frac{1}{2}x\cdot 2\sin x\cos x = x\sin x\cos x$$

Примечание: Похожим способом также решаются интегралы вида $\int x \sin^2 x dx$, $\int x \cos^2 x dx$, где нужно понизить степень синуса / косинуса с помощью соответствующих тригонометрических формул.

Пример 31. Решение:

$$a) \int \arcsin 3x dx = (*)$$

Интегрируем по частям:

$$u = \arcsin 3x \Rightarrow du = \frac{3dx}{\sqrt{1 - 9x^2}}$$
$$dv = dx \Rightarrow v = x$$
$$\int u dv = uv - \int v du$$

(*) =
$$x \arcsin 3x - \int \frac{3x dx}{\sqrt{1 - 9x^2}} = x \arcsin 3x + \frac{1}{6} \int \frac{d(1 - 9x^2)}{\sqrt{1 - 9x^2}} =$$

= $x \arcsin 3x + \frac{1}{3} \sqrt{1 - 9x^2} + C$, $z \partial e C = const$

Проверка:

$$\left(x \arcsin 3x + \frac{1}{3}\sqrt{1 - 9x^2} + C\right)' = (x)' \arcsin 3x + x(\arcsin 3x)' + \frac{1}{3} \cdot \frac{1}{2\sqrt{1 - 9x^2}} \cdot (1 - 9x^2)' + 0 =$$

$$= \arcsin 3x + x \cdot \frac{1}{\sqrt{1 - (3x)^2}} \cdot 3 + \frac{1}{6\sqrt{1 - 9x^2}} \cdot (-18x) = \arcsin 3x$$

$$\delta) \int xarctgxdx = (*)$$

Интегрируем по частям:

$$u = arctgx \Rightarrow du = \frac{dx}{1 + x^2}$$
$$dv = xdx \Rightarrow v = \frac{x^2}{2}$$
$$\int udv = uv - \int vdu$$

$$(*) = \frac{x^2}{2} \arctan (x - \frac{1}{2} \int \frac{x^2 dx}{1 + x^2} = \frac{1}{2} \left(x^2 \arctan (x - \int \frac{(1 + x^2 - 1) dx}{1 + x^2} \right) =$$

$$= \frac{1}{2} \left(x^2 \arctan (x - \int \left(1 - \frac{1}{1 + x^2} \right) dx \right) = \frac{1}{2} \left(x^2 \arctan (x - \int dx + \int \frac{dx}{1 + x^2} \right) =$$

$$= \frac{1}{2} (x^2 \arctan (x - x + \arctan (x)) + C = \frac{1}{2} \left((x^2 + 1) \arctan (x - x) + C, \ 2 \partial e C = const$$

Проверка:

$$\left[\frac{1}{2}((x^2+1)arctgx - x) + C\right]' = \frac{1}{2}((x^2+1)'arctgx + (x^2+1) \cdot (arctgx)' - (x)') + 0 =$$

$$= \frac{1}{2}\left(2xarctgx + (x^2+1) \cdot \frac{1}{x^2+1} - 1\right) = \frac{1}{2}(2xarctgx + 1 - 1) = xarctgx$$

Пример 33. Решение:

$$\int \sin \frac{x}{2} \cos \frac{x}{4} dx = (*)$$

Используем формулу $\sin \alpha \cos \beta = \frac{\sin(\alpha+\beta) + \sin(\alpha-\beta)}{2}$:

$$(*) = \int \frac{\sin\left(\frac{x}{2} + \frac{x}{4}\right) + \sin\left(\frac{x}{2} - \frac{x}{4}\right)}{2} = \frac{1}{2} \int \sin\frac{3x}{4} dx + \frac{1}{2} \int \sin\frac{x}{4} dx =$$

$$= \frac{1}{2} \cdot \frac{4}{3} \int \sin\frac{3x}{4} d\left(\frac{3x}{4}\right) + \frac{1}{2} \cdot 4 \int \sin\frac{x}{4} d\left(\frac{x}{4}\right) =$$

$$= \frac{2}{3} \cdot \left(-\cos\frac{3x}{4}\right) + 2 \cdot \left(-\cos\frac{x}{4}\right) + C = -\frac{2}{3}\cos\frac{3x}{4} - 2\cos\frac{x}{4} + C, \ \partial \theta C = const$$

Примечание: здесь и далее я не всегда буду переписывать проверку со своих черновиков — надеюсь, у вас уже сложилась устойчивая привычка проверять результаты

Пример 35. Решение: используем формулу
$$\sin^2 \alpha = \frac{1-\cos 2\alpha}{2}$$
:

$$\int \sin^2 \frac{3x}{2} dx = \frac{1}{2} \int (1 - \cos 3x) dx = \frac{1}{2} \left(x - \frac{1}{3} \sin 3x \right) + C, \ \partial e C = const$$

Пример 37. Решение:

$$\int \sin^2 x \cos^2 x dx = \int (\sin x \cos x)^2 dx = \int \left(\frac{1}{2}\sin 2x\right)^2 dx =$$

$$= \frac{1}{4} \int \sin^2 2x dx = \frac{1}{4} \cdot \frac{1}{2} \int (1 - \cos 4x) dx = \frac{1}{8} \left(x - \frac{1}{4}\sin 4x\right) + C, \ \partial \theta C = const$$

Пример 39. Решение:

а) отделяем косинус и используем формулу $\cos^2 \alpha = 1 - \sin^2 \alpha$:

$$\int \frac{\cos^3 x dx}{\sqrt[3]{\sin^4 x}} = \int \frac{\cos^2 x \cdot \cos x dx}{\sqrt[3]{\sin^4 x}} = \int \frac{(1 - \sin^2 x) \cdot d(\sin x)}{\sqrt[3]{\sin^4 x}} = \int \frac{(1 - t^2) \cdot dt}{\sqrt[3]{t^4}} = \int \left(t^{-\frac{4}{3}} - t^{\frac{2}{3}}\right) dt = -3t^{-\frac{1}{3}} - \frac{3}{5}t^{\frac{5}{3}} + C = t^{-\sin x}$$

$$= -\frac{3}{\sqrt[3]{\sin x}} - \frac{3}{5}\sqrt[3]{\sin^5 x} + C, \text{ где } C = const$$

$$\begin{aligned}
&\delta) \\
&\int \cos^5 x dx = \int \cos^4 x \cdot \cos x dx = \int (\cos^2 x)^2 \cdot \cos x dx = \int (1 - \sin^2 x)^2 \cdot d(\sin x) = \sin^2 x dx \\
&= \int (1 - t^2)^2 dt = \int (1 - 2t^2 + t^4) dt = t - \frac{2}{3}t^3 + \frac{1}{5}t^5 + C = t - \sin x dx \\
&= \sin x - \frac{2}{3}\sin^3 x + \frac{1}{5}\sin^5 x + C, \ \partial \theta C = const
\end{aligned}$$

6)
$$\int \sin^3 x \cos^8 x dx = \int \sin^2 x \cos^8 x \sin x dx = \int (1 - \cos^2 x) \cos^8 x \cdot (-d(\cos x)) = \cos^{-1} x \cos^8 x + (-d(\cos x)) = \cos^{-1} x \cos^{-1}$$

Пример 41. Решение:

$$\int tg^{2} \frac{x}{2} dx = \int \frac{\sin^{2} \frac{x}{2} dx}{\cos^{2} \frac{x}{2}} = \int \frac{\left(1 - \cos^{2} \frac{x}{2}\right) dx}{\cos^{2} \frac{x}{2}} = \int \left(\frac{1}{\cos^{2} \frac{x}{2}} - 1\right) dx =$$

$$= 2\int \frac{d\left(\frac{x}{2}\right)}{\cos^{2} \frac{x}{2}} - \int dx = 2tg \frac{x}{2} - x + C, \ \partial \theta C = const$$

Пример 44. Решение:

$$\int \cos^7 2x \sin 2x dx = (*)$$

Проведем замену: $\cos 2x = t$

$$d(\cos 2x) = -2\sin 2x dx = dt \Rightarrow \sin 2x dx = -\frac{dt}{2}$$

$$(*) = -\frac{1}{2} \int t^7 dt = -\frac{1}{2} \cdot \frac{t^8}{8} + C = -\frac{\cos^8 2x}{16} + C, \ \epsilon \partial \epsilon C = const$$

Пример 45. Решение:

$$\int \frac{\sqrt[3]{tg5x}dx}{\cos^2 5x} = (*)$$

Проведём замену: tg5x = t

$$d(tg5x) = \frac{5dx}{\cos^2 5x} = dt \Rightarrow \frac{dx}{\cos^2 5x} = \frac{dt}{5}$$

$$(*) = \frac{1}{5} \int t^{\frac{1}{3}} dt = \frac{1}{5} \cdot \frac{3}{4} t^{\frac{4}{3}} + C = \frac{3 \cdot \sqrt[3]{tg^4 5x}}{20} + C, \ \partial eC = const$$

Пример 47. Решение:

a)
$$\int \frac{dx}{\sqrt{7x^2 - 3}} = \frac{1}{\sqrt{7}} \int \frac{d(\sqrt{7}x)}{\sqrt{(\sqrt{7}x)^2 - 3}} = \frac{1}{\sqrt{7}} \ln \left| \sqrt{7}x + \sqrt{7x^2 - 3} \right| + C, \ \partial eC = const$$

б)

$$\int \frac{dx}{7x^2 - 4} = \frac{1}{\sqrt{7}} \int \frac{d(\sqrt{7}x)}{(\sqrt{7}x)^2 - 2^2} = \frac{1}{\sqrt{7}} \cdot \frac{1}{2 \cdot 2} \ln \left| \frac{\sqrt{7}x - 2}{\sqrt{7}x + 2} \right| + C = \frac{1}{4\sqrt{7}} \ln \left| \frac{\sqrt{7}x - 2}{\sqrt{7}x + 2} \right| + C, \ \partial eC = const$$

Пример 49. Решение.

$$\int \frac{dx}{x^2 - 2x + 10} = \int \frac{dx}{x^2 - 2x + 1 + 9} = \int \frac{dx}{(x - 1)^2 + 9} = \int \frac{d(x - 1)}{(x - 1)^2 + 3^2} = \frac{1}{3} \operatorname{arctg}\left(\frac{x - 1}{3}\right) + C, \ \partial eC = const$$

Пример 52. Решение:

$$\int \frac{dx}{2x^{2} + 2x + 1} = \int \frac{dx}{2\left(x^{2} + x + \frac{1}{2}\right)} = \frac{1}{2} \int \frac{dx}{x^{2} + x + \frac{1}{2}} = \frac{1}{2} \int \frac{dx}{x^{2} + 2x + \frac{1}{2}} = \frac{1}{2} \int \frac{dx}{x^{2} + 2x + \frac{1}{2}} = \frac{1}{2} \int \frac{dx}{\left(x + \frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2}} = \frac{1}{2} \cdot \frac{1}{2} \operatorname{arctg} \left(\frac{x + \frac{1}{2}}{2}\right) + C =$$

$$= \operatorname{arctg} \left(2 \cdot \left(\frac{2x + 1}{2}\right)\right) + C = \operatorname{arctg}(2x + 1) + C, \ \text{2de } C = const$$

Пример 54. Решение:

a)
$$\int \frac{8-13x}{\sqrt{x^2-1}} dx = \int \frac{-\frac{13}{2}d(x^2-1) + 8dx}{\sqrt{x^2-1}} = -13\int \frac{d(x^2-1)}{2\sqrt{x^2-1}} + 8\int \frac{dx}{\sqrt{x^2-1}} = -13 \cdot \sqrt{x^2-1} + 8\ln\left|x + \sqrt{x^2-1}\right| + C, \ \partial eC = const$$

$$\begin{split} & \int \frac{(2x-10)dx}{\sqrt{1+x-x^2}} = \int \frac{-d(1+x-x^2)-9dx}{\sqrt{1+x-x^2}} = -2\int \frac{d(1+x-x^2)}{2\sqrt{1+x-x^2}} - 9\int \frac{dx}{\sqrt{1-\left(x^2-2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}}} = \\ & = -2\sqrt{1+x-x^2} - 9\int \frac{d\left(x-\frac{1}{2}\right)}{\sqrt{\left(\frac{\sqrt{5}}{2}\right)^2 - \left(x-\frac{1}{2}\right)^2}} = -2\sqrt{1+x-x^2} - 9\arcsin\left(\frac{2x-1}{\sqrt{5}}\right) + C, \ \ \partial eC = const \end{split}$$

Пример 56. Решение:

$$\int \frac{x^2 dx}{x^2 - 5} = \int \frac{(x^2 - 5 + 5)dx}{x^2 - 5} = \int \left(1 + \frac{5}{x^2 - 5}\right) dx =$$

$$= \int dx + 5 \int \frac{dx}{x^2 - (\sqrt{5})^2} = x + \frac{5}{2\sqrt{5}} \ln \left| \frac{x - \sqrt{5}}{x + \sqrt{5}} \right| + C, \ e \partial e C = const$$

Пример 58. Решение:

$$\int \frac{(x^3 - 3)dx}{x - 1} = \int \frac{x^2(x - 1) + x(x - 1) + (x - 1) - 2}{x - 1} dx =$$

$$= \int \left(x^2 + x + 1 - \frac{2}{x - 1}\right) dx = \frac{x^3}{3} + \frac{x^2}{2} + x - 2\ln|x - 1| + C, \ \partial eC = const$$

Пример 60. Решение:

$$a) \int \frac{dx}{5 - 3\cos x} = (*)$$

Проведем универсальную тригонометрическую подстановку:

$$tg\frac{x}{2} = z$$
, $\cos x = \frac{1-z^2}{1+z^2}$
 $x = 2arctgz \Rightarrow dx = \frac{2dz}{1+z^2}$

$$(*) = \int \frac{\frac{2dz}{1+z^2}}{5 - \frac{3(1-z^2)}{1+z^2}} = 2\int \frac{dz}{5+5z^2-3+3z^2} = 2\int \frac{dz}{8z^2+2} = \int \frac{dz}{4z^2+1} =$$

$$= \frac{1}{2} \int \frac{d(2z)}{(2z)^2 + 1} = \frac{1}{2} \arctan 2z + C = \frac{1}{2} \arctan 2z + C = \frac{1}{2} \arctan 2z + C, \ z \partial e C = const$$

б) Используем формулы
$$\sin^2\alpha = \frac{1-\cos 2\alpha}{2}$$
, $\cos^2\alpha = \frac{1+\cos 2\alpha}{2}$:
$$\int \frac{dx}{4\sin^2x - 5\cos^2x} = \int \frac{dx}{4 \cdot \frac{(1-\cos 2x)}{2} - 5 \cdot \frac{(1+\cos 2x)}{2}} = \int \frac{dx}{2-2\cos 2x - \frac{5}{2} - \frac{5\cos 2x}{2}} = \int \frac{dx}{4-4\cos 2x - 5 - 5\cos 2x} = \int \frac{2dx}{-1-9\cos 2x} = (*)$$

Проведём универсальную тригонометрическую подстановку:

$$tgx = z$$
, $\cos 2x = \frac{1 - z^2}{1 + z^2}$
 $x = arctgz \Rightarrow dx = \frac{dz}{1 + z^2}$

$$(*) = \int \frac{2 \cdot \frac{dz}{1 + z^2}}{-1 - \frac{9(1 - z^2)}{1 + z^2}} = 2\int \frac{dz}{-1 - z^2 - 9 + 9z^2} = 2\int \frac{dz}{8z^2 - 10} = \int \frac{dz}{4z^2 - 5} = \frac{1}{2}\int \frac{d(2z)}{(2z)^2 - (\sqrt{5})^2} = \frac{1}{2} \cdot \frac{1}{2\sqrt{5}} \ln \left| \frac{2z - \sqrt{5}}{2z + \sqrt{5}} \right| + C = \frac{1}{4\sqrt{5}} \ln \left| \frac{2tgx - \sqrt{5}}{2tgx + \sqrt{5}} \right| + C, \ z \ \partial e \ C = const$$

Пример 62. Решение:

$$\int \frac{dx}{\sin x \cos x} = \int \frac{dx}{\frac{\sin x}{\cos x} \cdot \cos^2 x} = \int \frac{dx}{tgx \cdot \cos^2 x} = \int \frac{d(tgx)}{tgx} = \ln|tgx| + C, \ \partial eC = const$$

Пример 64. Решение:

-3 - 3 = -6 - целое отрицательное и чётное число

$$\int \frac{dx}{\sin^3 x \cos^3 x} = \int \frac{dx}{\frac{\sin^3 x}{\cos^3 x} \cdot \cos^6 x} = \int \frac{dx}{tg^3 x \cdot (\cos^2 x)^2 \cdot \cos^2 x} = \int \frac{(tg^2 x + 1)^2 d(tgx)}{tg^3 x} = \frac{tg^2 x}{tg^3 x}$$

$$= \int \frac{(t^2 + 1)^2 dt}{t^3} = \int \frac{(t^4 + 2t^2 + 1) dt}{t^3} = \int \left(t + \frac{2}{t} + \frac{1}{t^3}\right) dt = \frac{t^2}{2} + 2\ln|t| - \frac{1}{2t^2} + C = t = tgx$$

$$= \frac{tg^2 x}{2} + 2\ln|tgx| - \frac{1}{2tg^2 x} + C, \ \partial eC = const$$

Пример 66. Решение: а)

$$\int \frac{dx}{\sin^2 x - 4\sin x \cos x + 5\cos^2 x} = \int \frac{dx}{\frac{(\sin^2 x - 4\sin x \cos x + 5\cos^2 x)}{\cos^2 x} \cdot \cos^2 x} =$$

$$= \int \frac{dx}{(tg^2 x - 4tgx + 5) \cdot \cos^2 x} = \int \frac{d(tgx)}{(tg^2 x - 4tgx + 5)} = ^{tgx = t}$$

$$= \int \frac{dt}{t^2 - 4t + 5} = \int \frac{dt}{(t - 2)^2 + 1} = arctg(t - 2) + C = ^{t = tgx}arctg(tgx - 2) + C, \ \partial \theta C = const$$

$$\int \frac{\sin 2x dx}{\sin^4 x + 4\cos^4 x} = \int \frac{2\sin x \cos x dx}{\sin^4 x + 4\cos^4 x} = \int \frac{2\sin x \cos x dx}{\frac{(\sin^4 x + 4\cos^4 x)}{\cos^4 x} \cdot \cos^4 x} = \\
= \int \frac{2\sin x dx}{(tg^4 x + 4) \cdot \cos^3 x} = \int \frac{2tgx dx}{(tg^4 x + 4) \cdot \cos^2 x} = \int \frac{2tgx d(tgx)}{tg^4 x + 4} = \int_{t=tgx}^{t=tgx} \frac{1}{2} arctg\left(\frac{tg^2 x}{2}\right) + C, \ \partial \theta C = const$$

Пример 68. Решение:

$$\int \frac{dx}{x^2 + x} = \int \frac{dx}{x(x+1)} = (*)$$

Методом неопределённых коэффициентов разложим подынтегральную функцию в сумму дробей:

$$\frac{1}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1}$$

$$A(x+1) + Bx = 1$$

$$\begin{cases} A+B=0 \\ A=1 \end{cases} \Rightarrow A=1, \ B=-A=-1$$

$$(*) = \int \left(\frac{1}{x} - \frac{1}{x+1}\right) dx = \ln|x| - \ln|x+1| = \ln\left|\frac{x}{x+1}\right| + C, \text{ где } C = const$$

Пример 70. Решение:

$$\int \frac{(43x - 67)dx}{(x - 1)(x^2 - x - 12)} = \int \frac{(43x - 67)dx}{(x - 1)(x - 4)(x + 3)} = (*)$$

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

$$\frac{(43x-67)}{(x-1)(x-4)(x+3)} = \frac{A}{x-1} + \frac{B}{x-4} + \frac{C}{x+3}$$

$$\frac{A(x-4)(x+3) + B(x-1)(x+3) + C(x-1)(x-4)}{(x-1)(x-4)(x+3)} = \frac{43x-67}{(x-1)(x-4)(x+3)}$$

$$A(x^2-x-12) + B(x^2+2x-3) + C(x^2-5x+4) = 43x-67$$

$$\begin{cases} A+B+C=0 \\ -A+2B-5C=43 \\ -12A-3B+4C=-67 \end{cases} \Rightarrow \begin{cases} C=-A-B \\ 4A+7B=43 \\ -16A-7B=-67 \end{cases} \Rightarrow -12A=-24$$

$$\Rightarrow A=2, B=5, C=-7$$

Примечание: в правой части у нас нет слагаемого с x^2 , поэтому в первом уравнении системы справа ставим ноль.

$$(*) = \int \left(\frac{2}{x-1} + \frac{5}{x-4} - \frac{7}{x+3}\right) dx = 2\ln|x-1| + 5\ln|x-4| - 7\ln|x+3| + C, \ \partial\theta C = const$$

Пример 72. Решение:

$$\frac{x^6 + 25x^3 - 12}{x(x-2)^3(x^2 - 4)(x^2 + 4)}$$

Шаг 1. Проверяем, правильная ли у нас дробь

Старшая степень числителя: 6

Старшая степень знаменателя: $8(x \cdot x^3 \cdot x^2 \cdot x^2)$

6 < 8, значит, дробь является правильной.

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Множитель $x^2 + 4$ разложить нельзя, а вот $x^2 - 4$ – можно:

$$\frac{x^6 + 25x^3 - 12}{x(x-2)^3(x^2 - 4)(x^2 + 4)} = \frac{x^6 + 25x^3 - 12}{x(x-2)^3(x-2)(x+2)(x^2 + 4)} = \frac{x^6 + 25x^3 - 12}{x(x-2)^4(x+2)(x^2 + 4)}$$

Шаг 3. Разложим подынтегральную функцию в сумму элементарных дробей:

$$\frac{x^6 + 25x^3 - 12}{x(x-2)^4(x+2)(x^2+4)} = \frac{A}{x} + \frac{B}{x-2} + \frac{C}{(x-2)^2} + \frac{D}{(x-2)^3} + \frac{E}{(x-2)^4} + \frac{F}{(x+2)} + \frac{Gx + H}{x^2 + 4}$$

Пример 74. Решение:

a)
$$\int \frac{(x^2 + 23)dx}{(x+1)(x^2 + 6x + 13)} = (*)$$

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

$$\frac{x^2 + 23}{(x+1)(x^2 + 6x + 13)} = \frac{A}{x+1} + \frac{Bx + C}{(x^2 + 6x + 13)}$$
$$\frac{A(x^2 + 6x + 13) + (Bx + C)(x+1)}{(x+1)(x^2 + 6x + 13)} = \frac{x^2 + 23}{(x+1)(x^2 + 6x + 13)}$$
$$A(x^2 + 6x + 13) + B(x^2 + x) + C(x+1) = x^2 + 23$$

$$\begin{cases} A+B=1\\ 6A+B+C=0 \Rightarrow \begin{cases} B=1-A\\ 5A+C=-1 \Rightarrow 8A=24 \Rightarrow \\ 13A+C=23 \end{cases}$$
$$\Rightarrow A=3, B=-2, C=-16$$

$$(*) = \int \left(\frac{3}{x+1} + \frac{-2x-16}{(x^2+6x+13)}\right) dx = 3\int \frac{dx}{x+1} + \int \frac{-d(x^2+6x+13)-10dx}{(x^2+6x+13)} =$$

$$= 3\ln|x+1| - \int \frac{d(x^2+6x+13)}{(x^2+6x+13)} - 10\int \frac{dx}{x^2+6x+9+4} =$$

$$= 3\ln|x+1| - \ln(x^2+6x+13) - 10\int \frac{d(x+3)}{(x+3)^2+2^2} =$$

$$= 3\ln|x+1| - \ln(x^2+6x+13) - 5arctg\left(\frac{x+3}{2}\right) + C, \ e \ de \ C = const$$

$$6) \int \frac{(2x^3 - 2x^2 + 5)dx}{(x-1)^2(x^2 + 4)} = (*)$$

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

$$\frac{(2x^3 - 2x^2 + 5)}{(x - 1)^2(x^2 + 4)} = \frac{A}{x - 1} + \frac{B}{(x - 1)^2} + \frac{Cx + D}{(x^2 + 4)}$$

$$\frac{A(x - 1)(x^2 + 4) + B(x^2 + 4) + (Cx + D)(x^2 - 2x + 1)}{(x - 1)^2(x^2 + 4)} = \frac{2x^3 - 2x^2 + 5}{(x - 1)^2(x^2 + 4)}$$

$$A(x^3 - x^2 + 4x - 4) + B(x^2 + 4) + C(x^3 - 2x^2 + x) + D(x^2 - 2x + 1) = 2x^3 - 2x^2 + 5$$

$$A(x^3 - x^2 + 4x - 4) + B(x^2 + 4) + C(x^3 - 2x^2 + x) + D(x^2 - 2x + 1) = 2x^3 - 2x^2 + 5$$

$$A(x^3 - x^2 + 4x - 4) + B(x^2 + 4) + C(x^3 - 2x^2 + x) + D(x^2 - 2x + 1) = 2x^3 - 2x^2 + 5$$

$$A(x^3 - x^2 + 4x - 4) + B(x^2 + 4) + C(x^3 - 2x^2 + x) + D(x^2 - 2x + 1) = 2x^3 - 2x^2 + 5$$

$$A(x^3 - x^2 + 4x - 4) + B(x^2 + 4) + C(x^3 - 2x^2 + x) + D(x^2 - 2x + 1) = 2x^3 - 2x^2 + 5$$

$$A(x^3 - x^2 + 4x - 4) + B(x^3 - 2x^2 + x) + D(x^3 - 2x^2 + x) + D(x^3 - 2x^2 + x)$$

$$\begin{cases} A+C=2 \\ -A+B-2C+D=-2 \\ 4A+C-2D=0 \\ -4A+4B+D=5 \end{cases} \Rightarrow \begin{cases} C=2-A \\ A+B+D=2 \\ 3A-2D=-2 \\ -4A+4B+D=5 \end{cases} \Rightarrow \begin{cases} C=2-A \\ D=2-A-B \\ 5A+2B=2 \\ -5A+3B=3 \end{cases} \Rightarrow 5B=5 \Rightarrow$$

$$\Rightarrow B=1, A=0, C=2, D=1$$

$$\Rightarrow$$
 B = 1, *A* = 0, *C* = 2, *D* = 1

$$(*) = \int \left(\frac{1}{(x-1)^2} + \frac{2x+1}{(x^2+4)}\right) dx = \int \frac{dx}{(x-1)^2} + \int \frac{d(x^2+4)}{x^2+4} + \int \frac{dx}{x^2+2^2} =$$

$$= -\frac{1}{x-1} + \ln(x^2+4) + \frac{1}{2} \arctan \frac{x}{2} + C, \ \partial eC = const$$

Пример 76. Решение:

$$\int \frac{(x^3 - 3)dx}{(x - 1)(x^2 - 1)} = \int \frac{(x^3 - 3)dx}{x^3 - x^2 - x + 1} = \int \frac{(x^3 - x^2 - x + 1) + x^2 + x - 4}{x^3 - x^2 - x + 1} dx =$$

$$= \int \left(1 + \frac{x^2 + x - 4}{x^3 - x^2 - x + 1}\right) dx = x + \int \frac{(x^2 + x - 4)dx}{(x - 1)^2(x + 1)} = (*)$$

- (1) Поскольку старшие степени числителя и знаменателя равны: 3 = 3, то мы имеем дело с неправильной дробью. Для того чтобы разделить числитель на знаменатель придётся временно раскрыть скобки в знаменателе.
- (2)-(3) Теперь можно разделить $x^3 + 0 \cdot x^2 + 0 \cdot x 3$ на $x^3 x^2 x + 1$, но делать этого... я не буду. Здесь удобно применить искусственный приём из Примеров 55-58. Запишем в числителе $x^3 - x^2 - x + 1$ и добавим ТАКИЕ слагаемые, чтобы при упрощении всей суммы получился исходный числитель x^3-3 .
- (4) От первого слагаемого сразу берем интеграл. Знаменатель оставшейся, уже правильной, дроби снова записываем в виде произведения множителей. Тут я немного подсократил разложение, надеюсь, всем понятно, что:

$$(x-1)(x^2-1) = (x-1)(x-1)(x+1) = (x-1)^2(x+1)$$

Далее решение идёт по накатанной колее:

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

$$\frac{x^2 + x - 4}{(x - 1)^2(x + 1)} = \frac{A}{x - 1} + \frac{B}{(x - 1)^2} + \frac{C}{x + 1}$$

$$\frac{A(x - 1)(x + 1) + B(x + 1) + C(x - 1)^2}{(x - 1)^2(x + 1)} = \frac{x^2 + x - 4}{(x - 1)^2(x + 1)}$$

$$A(x^2 - 1) + B(x + 1) + C(x^2 - 2x + 1) = x^2 + x - 4$$

$$\begin{cases} A+C=1 \\ B-2C=1 \\ -A+B+C=-4 \end{cases} \Rightarrow \begin{cases} C=1-A \\ 2A+B=3 \\ -2A+B=-5 \end{cases} \Rightarrow 2B=-2 \Rightarrow B=-1, A=2, C=-1$$

и главное, не забыть о первом слагаемом:

$$(*) = x + \int \left(\frac{2}{x-1} - \frac{1}{(x-1)^2} - \frac{1}{x+1}\right) dx = x + 2\ln|x-1| + \frac{1}{x-1} - \ln|x+1| + C, \ \partial\theta C = const$$

Пример 78. Решение:

$$\int \frac{dx}{\sqrt{x}+3} = (*)$$

Проведём замену $\sqrt{x} = t$, тогда: $x = t^2 \Rightarrow dx = 2tdt$

$$(*) = \int \frac{2tdt}{t+3} = 2\int \frac{tdt}{t+3} = 2\int \frac{(t+3-3)dt}{t+3} = 2\int \left(1 - \frac{3}{t+3}\right)dt = 2(t-3\ln|t+3|) + C = t = \sqrt{x}$$
$$= 2(\sqrt{x} - 3\ln|\sqrt{x} + 3|) + C, \ \partial\theta C = const$$

Пример 80. Решение:

$$\int \frac{dx}{\sqrt[3]{5x+3}+1} = (*)$$

Проведём замену $\sqrt[3]{5x+3} = t$. Чтобы выразить dx возведём обе части в куб: $5x+3=t^3$ и «навесим» дифференциалы:

$$d(5x+3) = d(t^3)$$

$$(5x+3)'dx = (t^3)'dt$$

$$5dx = 3t^2dt \Rightarrow dx = \frac{3}{5}t^2dt$$

! Примечание: вот почему дифференциалы нужно именно «навешивать» и добросовестно раскрывать. Дабы не допустить машинальную ошибку $dx = 3t^2 dt$.

$$(*) = \frac{3}{5} \int \frac{t^2 dt}{t+1} = \frac{3}{5} \int \frac{t(t+1) - (t+1) + 1}{t+1} dt = \frac{3}{5} \int \left(t - 1 + \frac{1}{t+1}\right) dt =$$

$$= \frac{3}{5} \left(\frac{t^2}{2} - t + \ln|t+1|\right) + C = \frac{3}{5} \left(\frac{\sqrt[3]{(5x+3)^2}}{2} - \sqrt[3]{5x+3} + \ln\left|\sqrt[3]{5x+3} + 1\right|\right) + C, \ \ \textit{edeC} = const$$

Пример 82. Решение:

$$\int \frac{\sqrt{x}dx}{1 - \sqrt[4]{x}} = (*)$$

Проведём замену $x = t^4$, тогда: $dx = 4t^3 dt$.

$$(*) = \int \frac{\sqrt{t^4} \cdot 4t^3 dt}{1 - \sqrt[4]{t^4}} = \int \frac{t^2 \cdot 4t^3 dt}{1 - t} = 4\int \frac{t^5 dt}{1 - t} = -4\int \frac{t^5 dt}{t - 1} = -4\int \frac{t^4 (t - 1) + t^3 (t - 1) + t^2 (t - 1) + t (t - 1) + (t - 1) + 1}{t - 1} dt = -4\int \left(t^4 + t^3 + t^2 + t + 1 + \frac{1}{t - 1} \right) dt = -4\left(\frac{t^5}{5} + \frac{t^4}{4} + \frac{t^3}{3} + \frac{t^2}{2} + t + \ln|t - 1| \right) + C = t^{-4\sqrt{x}}$$

$$= -4\left(\frac{\sqrt[4]{x^5}}{5} + \frac{x}{4} + \frac{\sqrt[4]{x^3}}{3} + \frac{\sqrt{x}}{2} + \sqrt[4]{x} + \ln\left|\sqrt[4]{x} - 1\right| \right) + C, \ \ \partial eC = const$$

Пример 84. Решение:

$$\int \frac{x^3 dx}{\sqrt{x^2 + 4}} = (*)$$

Представим интеграл в виде $\int x^3(x^2+4)^{-\frac{1}{2}}dx$ и выпишем коэффициенты:

$$m=3, n=2, p=-\frac{1}{2}.$$

1)
$$p = \frac{1}{2}$$
 – целое? Hem.

2)
$$\frac{m+1}{n} = \frac{3+1}{2} = \frac{4}{2} = 2$$
 – целое, значит у нас второй случай.

Проведём замену в виде $x^2 + 4 = t^2$. Тогда:

$$\sqrt{x^2 + 4} = \sqrt{t^2} = t$$

$$d(x^2+4) = d(t^2)$$

$$2xdx = 2tdt$$

$$xdx = tdt$$

Чтобы выразить x^3dx , домножим обе части на x^2 :

$$xdx \cdot x^2 = tdt \cdot x^2$$

$$x^3 dx = tx^2 dt$$

Если $x^2 + 4 = t^2$, то $x^2 = t^2 - 4$ и окончательно:

$$x^3 dx = tx^2 dt = t(t^2 - 4)dt$$

$$(*) = \int \frac{t(t^2 - 4)dt}{t} = \int (t^2 - 4)dt = \frac{t^3}{3} - 4t + C = t = \sqrt{x^2 + 4}$$
$$= \frac{\sqrt{(x^2 + 4)^3}}{3} - 4\sqrt{x^2 + 4} + C, \ \text{ede } C = const$$

Пример 86. Решение:

$$\int \frac{dx}{\sqrt{(x^2-1)^3}} = (*)$$

Представим интеграл в виде $\int x^0 (x^2 - 1)^{-\frac{3}{2}} dx$ и выпишем коэффициенты:

$$m=0$$
, $n=2$, $p=-\frac{3}{2}$, $a=-1$, $b=1$

1)
$$p = -\frac{3}{2}$$
 – целое? Нет.

2)
$$\frac{m+1}{n} = \frac{0+1}{2} = \frac{1}{2}$$
 – целое? Hem.

$$(3) \frac{m+1}{n} + p = \frac{0+1}{2} - \frac{3}{2} = \frac{1}{2} - \frac{3}{2} = -1 -$$
целое! Поэтому следует провести замену в

виде
$$b + \frac{a}{x^n} = t^N$$
, в данном случае: $1 - \frac{1}{x^2} = t^2$

Из замены выражаем $\frac{1}{x^2} = 1 - t^2 \Rightarrow x^2 = \frac{1}{1 - t^2}$ и подставляем под корень:

$$\sqrt{(x^2 - 1)^3} = \sqrt{\left(\frac{1}{1 - t^2} - 1\right)^3} = \sqrt{\left(\frac{1 - 1 + t^2}{1 - t^2}\right)^3} = \sqrt{\left(\frac{t^2}{1 - t^2}\right)^3} = \sqrt{\frac{t^6}{(1 - t^2)^3}} = \frac{t^3}{\sqrt{(1 - t^2)^3}}$$

Выразим оставшуюся часть подынтегрального выражения, т. е. dx:

$$d\left(1 - \frac{1}{x^2}\right) = d(t^2)$$

$$\frac{2dx}{x^3} = 2tdt$$

$$\frac{dx}{x^3} = tdt$$

$$dx = tx^3 dt$$

из
$$x^2 = \frac{1}{1-t^2}$$
 выражаем $x = \frac{1}{\sqrt{1-t^2}} \Rightarrow x^3 = \frac{1}{\sqrt{(1-t^2)^3}}$ и окончательно:

$$dx = tx^{3}dt = t \cdot \frac{1}{\sqrt{(1-t^{2})^{3}}} \cdot dt = \frac{tdt}{\sqrt{(1-t^{2})^{3}}}$$

$$(*) = \int \frac{\frac{tdt}{\sqrt{(1-t^2)^3}}}{\frac{t^3}{\sqrt{(1-t^2)^3}}} = \int \frac{t \cdot \sqrt{(1-t^2)^3} \cdot dt}{t^3 \cdot \sqrt{(1-t^2)^3}} = \int \frac{dt}{t^2} = -\frac{1}{t} + C = (*)$$

Обратная замена. Если
$$1 - \frac{1}{x^2} = t^2$$
, то $t^2 = \frac{x^2 - 1}{x^2} \Rightarrow t = \sqrt{\frac{x^2 - 1}{x^2}} = \frac{\sqrt{x^2 - 1}}{x}$

$$(*) = -\frac{1}{\frac{\sqrt{x^2 - 1}}{x}} + C = -\frac{x}{\sqrt{x^2 - 1}} + C, \ \partial eC = const$$