WHAT IS CLAIMED IS:

1. A method for preparing an imidazolyl compound corresponding to formula (I)

wherein:

 R_a and R_b are each individually selected from the group consisting of (C₁-C₆)alkyl, (C₁-C₆)alkoxyalkyl, and optionally substituted aryl and heteroaryl; or

R_a and R_b together form a further homocyclic or heterocyclic system comprising one or more rings;

 $R_{a'}$ and $R_{b'}$ are each hydrogen or together form a carbon-carbon double bond, said carbon-carbon double bond optionally being part of an aromatic system;

 R_c is hydrogen, $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_6)$ alkoxyalkyl or halogen;

R_d is hydrogen or (C₁-C₄)alkyl;

Re is hydrogen or (C1-C4)alkyl;

m is 1 or 2; and

 R_1 is hydrogen or (C_1-C_4) alkyl;

or an acid addition salt thereof;

said method comprising:

a) reacting a compound corresponding to formula (II)

$$R_{a'}$$
 $R_{b'}$
 R_{c}
 R_{c}
 R_{c}

wherein R_a , $R_{a'}$, R_b and $R_{b'}$ have the meanings defined above; with a compound corresponding to formula (III)

wherein:

R is a hydrogen, a (C₁-C₄)alkyl optionally substituted with a hydroxyl group, or an optionally substituted aryl group, and

R', R'', R''' and R'''' are each individually a hydrogen or a $(C_1\text{-}C_4)$ alkyl group;

and then

b) reacting a product of step a) with a compound corresponding to formula (IV)

wherein R_1 , R_d and R_e have the meanings defined above; and

- c) optionally reacting a product of step b) with an acid to obtain an acid addition salt.
- 2. A method according to claim 1, wherein R_c is hydrogen or (C_1 - C_6)alkyl, and R_1 is hydrogen, methyl or ethyl.
- 3. A method according to claim 1, for preparing an imidazolyl compound corresponding to the formula (Ia)

$$\bigcap_{R_6} \bigcap_{R_5} \bigcap_{(CH_2)_m} \bigcap_{R_1} \bigcap_{(CH_2)_m} \bigcap_{(C$$

wherein:

m is 1 or 2;

R₁ is hydrogen, methyl or ethyl;

 R_5 is (C_1-C_4) alkyl, and

R₆ is hydrogen or (C₁-C₄)alkyl, or

R₅ and R₆ together with the intermediate atoms form a 5, 6, or 7 member ring, optionally substituted with one or two substituents selected from the group consisting of halogen, hydroxyl, (C₁-C₄)alkyl,

 (C_1-C_4) alkoxyalkyl and (C_1-C_4) alkoxy;

or a pharmaceutically acceptable acid addition salt thereof; said method comprising:

a) reacting a compound corresponding to the formula (IIa)

$$(CH_2)_m$$

wherein R_5 , R_6 and m have the meanings defined above; with a compound corresponding to the formula (III)

and then

b) reacting a product of a) with a compound corresponding to the formula (IVa)

wherein R1 has the meaning given above.

- 4. A method according to claim 1, wherein R is a 2-hydroxyethyl group, and R', R", R" and R" are each hydrogen.
- 5. A method according to claim 1, wherein m=1, and R_5 and R_6 together with the intermediate atoms form a 6-member ring.
- 6. A method according to claim 1, wherein m=1; R_5 is methyl, and R_6 is hydrogen.
- 7. A method according to claim 1, wherein the reaction is carried out in an alcoholic solvent.
- 8. A method according to claim 7, wherein the alcoholic solvent is 1-butanol.
- 9. A method according to claim 1, wherein the reaction is carried out in a mixture of an alcoholic solvent and an aromatic hydrocarbon
- 10. A method according to claim 9, wherein said mixture is a mixture of methanol and chlorobenzene.