© SBL

Today: Implement a digital, discrete-time feedback loop using the R31JP:

Here's the problem: The plant is often described by CT (continuous time) differential equations. The R31JP lives in a DT (discrete time) world with signal values that are measured or computed at fixed time intervals:

How do we connect the DT and CT worlds, and how do we make a model for the "whole" system?

1

$$v_c[n+1] + \left[\frac{\Delta t}{RC} - 1\right] v_c[n] = \frac{\Delta t}{RC} v_{in}[n]$$

assume unit step input, zero initial conditions

A= -1 to match initial condition

So
$$v_c[n] = 1 - \left[1 - \frac{\Delta t}{RC}\right]^n$$
 (DT)

(In CT, the actual capacitor voltage is: $v_c(t) = \left[1 - e^{-t/\tau}\right] u(t)$)

For stability we must have |z| < 1!

Example: "Simulate" a CT circuit with DT computer equations

But suppose we didn't know the answer and wanted the computer to find it for us. One (poor ②) approach is a DT approximation with Forward Euler.

$$\frac{dv_c}{dt} \approx \frac{v_c(t + \Delta t) - v_c(t)}{\Delta t} = \frac{v_c[n+1] - v_c[n]}{\Delta t}$$
where $v_c[n] = v_c(n\Delta t)$

so
$$\frac{v_c[n+1] - v_c[n]}{\Delta t} = \frac{v_{in}[n] - v_c[n]}{RC}$$

or
$$v_c[n+1] = \left[1 - \frac{\Delta t}{RC}\right] v_c[n] + \frac{\Delta t}{RC} v_m[n]$$

or
$$v_c[n+1] + \left[\frac{\Delta t}{RC} - 1\right] v_c[n] = \frac{\Delta t}{RC} v_{in}[n]$$

Solve this difference equation by finding homogeneous and particular solutions, as for differential equations.

2

Aside:

Notice that transfer fxns. Still work in DT.

Before,
$$s \Leftrightarrow \frac{d}{dt}$$

Now, $z \Leftrightarrow$ a shift!

Example:
$$v_c[n+1] + \left[\frac{\Delta t}{RC} - 1\right] v_c[n] = \frac{\Delta t}{RC} v_{in}[n]$$

z-shift!
$$\left[z + \left(\frac{\Delta t}{RC} - 1\right)\right] v_c(z) = \frac{\Delta t}{RC} v_{in}(z)$$

Transfer fxn:
$$\frac{v_c(z)}{v_{in}(z)} = \frac{\frac{\Delta t}{RC}}{z + \left(\frac{\Delta t}{RC} - 1\right)} = H(z)$$

and:
$$z = \left(1 - \frac{\Delta t}{RC}\right)$$

The z "pole" is the solution of the homogeneous response. Must be inside the unit circle for stability.

Back to the R31JP: Problem → feedback loop is mixed DT & CT! Example:

Or as a feedback loop:

Strange!

 $v_c(t) \& v_m(t)$ could be transferred and related by a "Laplace" style s-type transfer fxn.

 $v_c[n] \& v_m[n]$ could be related by z-transform transfer fxn.

Neat! 1 common representation, all in DT or all in CT, to describe feedback loop.

5

Now, the whole loop is in "DT"

People have tabulated how $P(s) \Leftrightarrow H(z)$!
Makes life easy!

Now:

$$\frac{C}{R}(z) = \frac{\frac{Kz^{-1}(1-\lambda)}{1-\lambda z^{-1}}}{1+\frac{Kz^{-1}(1-\lambda)}{1-\lambda z^{-1}}} = \frac{Kz^{-1}(1-\lambda)}{1-\lambda z^{-1}+K(1-\lambda)z^{-1}}$$
$$= \frac{Kz^{-1}(1-\lambda)}{1+\left[K(1-\lambda)-\lambda\right]z^{-1}}$$

Design K to give desired performance!

How is H(z) related to P(s)?

Step invariant transformation! Sample the CT step response!

A unit step (DT) in $v_m[n]$ gives a unit step (CT) in $v_m(t)$. Find H(z):

1. First, compute CT step response:

$$v_{in}(t) = u(t) \Rightarrow v_c(t) = \left(1 - e^{-t/\tau}\right)u(t)$$

2. Sample the CT step response:

$$v_c(nT) = \left(1 - e^{-nT/\tau}\right) u(nT)$$
or
$$v_c[n] = \left[1 - \lambda^n\right] u[n] \text{ where } \lambda = e^{-T/\tau}$$

3. Find a difference equation whose unit step response is the same as in step 2.

If you know 6.003, take z-transform:

$$v_{c}(z) = \frac{1}{1 - z^{-1}} - \frac{1}{1 - \lambda z^{-1}} = \frac{(1 - \lambda)z^{-1}}{(1 - z^{-1})(1 - \lambda z^{-1})}$$
so
$$\frac{v_{c}(z)}{u(z)} = \frac{v_{c}(z)}{v_{in}(z)} = \frac{z^{-1}(1 - \lambda)}{(1 - \lambda z^{-1})} = H(z)$$
or
$$v_{c}[n] - \lambda v_{c}[n - 1] = (1 - \lambda)v_{in}[n - 1]$$

4. If you haven't already done so, take z-transform!

6

TABLE 3.1 Sampling of a continuous time system, G(s).

The table gives the zero-order-hold equivalent of the continuous time system, G(s), preceded by a zero-order hold. The sampled system is described by its pulse transfer operator. For second-order systems the pulse-transfer operator is given in terms of the coefficients of

$$H(q) = \frac{b_1 q + b_2}{q^2 + a_1 q + a_2}$$

q⇔Z Q⇔Z h⇔ dt (T) Somple Intural

$q^2 + a_1 q + a_2$		
G(s)	H(q) or the coefficients in $H(q)$	
$\frac{1}{s}$	$\frac{h}{a-1}$	
	4 -	
$\frac{1}{s^2}$	$\frac{h^2(q+1)}{2(q-1)^2}$	
e-sh	q^{-1}	
$\frac{a}{s+a}$	$\frac{1-\exp{(-ah)}}{q-\exp{(-ah)}}$	
$\frac{a}{s(s+a)}$		$b_2 = \frac{1}{a}(1 - e^{-ah} - ahe^{-ah})$
	$a_1 = -(1 + e^{-ah})$	a ₂ == e ^{-ah}
$\frac{a^2}{(s+a)^2}$	$b_1 = 1 - e^{-ah}(1 + ah)$ $a_1 = -2e^{-ah}$	$b_2 = e^{-ah}(e^{-ah} + ah - 1)$ $a_2 = e^{-2ah}$
$\frac{ab}{(s+a)(s+b)}$	$b_1 = \frac{b(1 - e^{-ah}) - a(1 - e^{-ah})}{b - a}$	- e ^{-bh})
	$b_2 = \frac{a(1 - e^{-bh})e^{-ah} - b(1 - e^{-ah})e^{-bh}}{b - a}$	
	$a_1=-(e^{-ah}+e^{-bh})$	
	$a_2 = e^{-(a+b)h}$	
$\frac{(s+c)}{(s+a)(s+b)}$	$b_1 = \frac{e^{-bh} - e^{-ah} + (1 - e^{-bh})c/b - (1 - e^{-ah})c/a}{b - a}$	
	$b_2 = \frac{c}{ab}e^{-(a+b)h} + \frac{b-c}{b(a-b)}e^{-ah} + \frac{c-a}{a(a-b)}e^{-bh}$	
52	$a_1 = -e^{-ah} - e^{-bh}$ $a_2 = e^{-(a+b)h}$	
$\frac{\omega_{\delta}^2}{s^2+2\zeta\omega_0s+\omega_{\delta}^2}$	$b_1 = 1 - \alpha \Big(\beta + \frac{\zeta \omega_0}{\omega} \gamma\Big)$	$\omega = \omega_0 \sqrt{1 - \zeta^2} \qquad \zeta < 1$
	$b_2 = \alpha^2 + \alpha \Big(\frac{\zeta \omega_0}{\omega} \gamma - \beta \Big)$	$\alpha = e^{-\zeta\omega_0 h}$
	$a_1 = -2\alpha\beta$	$\beta = \cos(\omega h)$
	$a_2 = \alpha^2$	$\gamma = \sin(\omega h)$
$\frac{s}{s^2+2\zeta\omega_0s+\omega_0^2}$		$b_2 = -b_1 \qquad \omega = \omega_0 \sqrt{1 - \zeta^2}$
	$a_1 = -2e^{-\zeta\omega_c h}\cos(\omega h)$	$a_2 = e^{-2(\omega_0 h)}$