# Aprendizagem automática

KNN K vizinhos-mais-próximos - classificação e regressão

Luís Rato, Universidade de Évora, 2022/23

### Sumário

- Algoritmo
- Fronteira de decisão
- Vantagens, desvantagens e parâmetros
- Regressão
- Algoritmos de regressão
  - o KNN
  - Regressão linear, polinomial, SVM, Redes Neuronais, Árvores de decisão, etc...

# Algoritmo KNN

# K vizinhos-mais-próximos - classificação

- Construção do modelo
  - Guardar o conjunto de treino
- Previsão de um exemplo
  - Encontrar os K exemplos mais próximos no conjunto treino
  - Atribuir a etiqueta da maioria

Lazy learning

## Exemplo, K=1

- Conjunto de dados
  - 26 instâncias
  - 2 atributos (numéricos)
  - o 2 classes
- Construção do modelo
  - Guardar os pontos
- Classificação
  - A classe da nova instância é a classe da instância mais próxima



## Exemplo, K=3

- Conj dados
  - 26 instâncias
  - 2 atributos (numéricos)
  - o 2 classes
- Construção do modelo
  - Guardar os pontos
- Classificação
  - A classe da nova instância
     é a classe da maioria dos 3 vizinhos
     mais próximos



# Fronteira de decisão

### Fronteira de decisão

- É a fronteira que faz a divisão onde o algoritmo atribui uma classe ou outra
- É calculada através da previsão de todos os possíveis exemplos de teste

## Exemplo

#### 1 vizinho

- A fronteira de decisão segue aproximadamente o conjunto de treino
- Modelo mais complexo

#### Mais vizinhos

- A fronteira torna-se mais suave
- Modelo mais simples

#### Caso extremo

- N° de vizinhos igual o n° exemplos do conj de treino
- Cada exemplo de teste tem exatamente os mesmos vizinhos
- Todas as previsões são iguais
  - A classe mais frequente do conj de treino



### Exatidão como função do número de vizinhos

- Previsão sobre o conjunto de treino
  - 1 vizinho
    - Previsão perfeita
  - Mais vizinhos
    - O modelo torna-se mais simples e a exatidão decresce
- Previsão sobre conjunto de teste
  - o 1 vizinho
    - Menor quando comparada com modelos que usam mais vizinhos
    - O modelo é demasiado complexo
  - o 10 vizinhos
    - O modelo é demasiado simples
  - Melhor desempenho
    - 6 vizinhos



# Parâmetros e características

### **Parâmetros**

- Nº de vizinhos
- Peso dos vizinhos
  - Uniforme
  - o Inversamente proporcional à distância
- Função de distância
- Cálculo dos vizinhos mais próximos
  - Força bruta (calcula a distância com todos os pontos)
  - Cálculo otimizado (BallTree, KDTree)

### **Parâmetros**

### • Função de distância

- Minkowski, p
- Euclideana (p=2)
- Manhattan (p=1)
- Máximo (p=infinito)

$$D\left(X,Y
ight) = \left(\sum_{i=1}^{n}\left|x_{i}-y_{i}
ight|^{p}
ight)^{rac{1}{p}}$$

## Função de distância e similaridade

- **Distância e similaridade -** valores numéricos
  - Minkowski, p
  - Euclideana (p=2)
  - Manhattan (p=1)



- Distância e similaridade Valores lógicos
  - Simple Matching and Jaccard Coefficients
  - SMC = number of matches / number of attributes

$$= (f11 + f00) / (f01 + f10 + f11 + f00)$$

J = number of 11 matches / number of non-zero attributes

$$= (f11) / (f01 + f10 + f11)$$

## Funções de distância e similaridade

#### Similaridade do coseno

 $\circ$  Cos (d1, d2) = <d1,d2> / ( ||d1|| ||d2|| )

#### Outras

- Correlação
- Covariância
- Desvio padrão
- Informação mútua
- Etc ....

# Função de distância e similaridade

### Correlação

- Avalia relações lineares
- o Não avalia dependência estatística em geral





### Características KNN

#### Pontos fortes

- Fácil de perceber
- Muitas vezes dá bons resultados sem grandes ajustes

#### Pontos fracos

- A previsão é lenta (cálculo dos vizinhos)
- Não tem bom desempenho quando existem muitos atributos

#### Outras considerações

- É importante fazer o pré-processamento dos dados
- É um bom algoritmo baseline

# Regressão

### **Tarefa**

- Prever um valor numérico contínuo
- Exemplos
  - o prever rendimento anual a partir da educação, idade e onde vive
  - prever a colheita de milho uma plantação, a partir de colheitas anteriores,
     clima e número de funcionários

# Modelos lineares

### Modelo linear

- Combinação linear
  - $\circ$   $w_1 * x_1 + ... + w_n x_n + b$
  - $x_1, ..., x_n$  são atributos,  $w_1, ..., w_n$ , b são coeficientes
- Aprendizagem
  - encontrar pesos w<sub>1</sub>, ... w<sub>n</sub>, b que aproximam o conjunto de dados
- Modelo
  - o hiperplano, soma pesada dos atributos
- Comparado com KNN parece muito restritivo
  - o mas é poderoso para conjuntos com muitos atributos



### **Modelos lineares**

- Existe uma grande variedade de modelos lineares
- Diferenciam-se
  - na forma como os parâmetros são aprendidos
  - o como a complexidade é controlada
- Modelos populares
  - regressão linear
  - regressão Ridge
  - Lasso

### Regressão linear

- É o modelo de regressão mais clássico e simples
- Aprendizagem
  - Encontra os parâmetros w e b que minimizam o erro quadrático médio entre as previsões e os valores reais da regressão no conj de treino
- Erro quadrático médio (MSE Mean Square Error)
  - o soma dos quadrados das diferenças entre as previsões e os valores reais
- Características
  - Não tem parâmetros
  - Não é possível controlar a complexidade
- Também conhecido como Ordinary Least Squares (OLS)

### Regressão por K-vizinhos

### Algoritmo

- Construção do modelo
- Guardar o conjunto de treino

#### Previsão de um exemplo

- Encontrar os K exemplos mais próximos no conjunto de Treino
- Atribuir a média dos vizinhos

# K vizinhos-mais-próximos

#### 1 vizinho

o a previsão é o valor do vizinho mais próximo



#### k vizinhos

o a previsão é a média dos vizinhos relevantes



### Influência do nº de vizinhos

- 1 vizinho
  - previsão pouco estável
    - cada ponto do conjunto treino tem influência nas previsões
    - valores previstos percorrem todos os pontos do conjunto de treino

- Mais vizinhos
  - previsões mais suaves mas que não se ajustam tanto os dados de treino



### Regressão por K-vizinhos

- Algoritmo
- Coeficiente R<sup>2</sup> (R = coeficiente de correlação de Pearson)
  - o coeficiente de determinação
  - o medida estatística que indica quão bem as previsões se aproximam dos dados reais
  - o normalmente um valor entre 0 e 1
- 1 corresponde a uma previsão perfeita
  - o modelo explica completamente a variabilidade dos dados reais
- 0 corresponde a um modelo constante que prevê a média do conjunto de treino
  - o modelo não explica nenhuma variabilidade dos dados