Proving The Contrapositive

In the chapter: If ... Then, we showed that $p \Rightarrow q$ is the same as $q' \Rightarrow p'$

So:

to prove $p \Rightarrow q$ we can prove $q' \Rightarrow p'$ instead.

Note:

 $q' \Rightarrow p'$ is called the contrapositive of $p \Rightarrow q$

Theorem

$$n^2$$
 is even \Rightarrow n is even

We are going to prove:

$$n$$
 is odd \Rightarrow n^2 is odd

Proof

$$n$$
 is odd \Rightarrow $n=(2k+1)$ for some integer k

So:

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

So:

$$n^2$$
 is odd

End of proof