

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

This follows because

$$\sec\left(\frac{2r-1}{4m}\pi\pm\theta\right)=\csc\left(\frac{2m-2r+1}{4m}\pi\mp\theta\right).$$

PROBLEMS FOR SOLUTION.

GEOMETRY.

333. Proposed by J. B. MORRELL, Boulder, Colorado.

Exhibit the fallacious argument to prove that a right-angle is equal to an angle which is less than a right-angle.

334. Proposed by J. O. MAHONEY, B. E., M. Sc., Central High School, Dallas, Texas.

Through any point P in the plane of the triangle ABC, draw a line that shall divide the perimeter of the triangle into two equal parts.

NUMBER THEORY AND DIOPHANTINE ANALYSIS.

152. Proposed by H. S. VANDIVER, Bala, Pa.

Prove geometrically:
$$\sum_{n=1}^{\frac{1}{2}(p-1)} \left[\frac{n^2}{p} \right] = \frac{p-3}{4} \cdot \frac{p-1}{2} - \sum_{n=1}^{\frac{1}{2}(p-4)} \left[\sqrt{np} \right], \text{ where } p \equiv 3 \pmod{4} \text{ and } \left[\frac{k}{p} \right]$$
 represents the greatest integer in k/p .

AVERAGE AND PROBABILITY.

196. Proposed by R. D. CARMICHAEL, Anniston, Ala.

A circle is inscribed in a square. Find the chance that the distance between two points within the square and without the circle shall not exceed a side of the square.

197. Proposed by HENRY HEATON, Belfield, N. D.

Solve No. 188 on the supposition that all lines having the same direction are equally distributed in space, and lines passing through the same point are distributed as the radii of a sphere drawn to points equally distributed.

MISCELLANEOUS.

177. Proposed by R. D. CARMICHAEL, Anniston, Ala.

Sum the infinite series:

(a)
$$\sin x + nx \cos x - \frac{n^2 x^2}{2!} \sin x - \frac{n^3 x^3}{3!} \cos x + \frac{n^4 x^4}{4!} \sin x + \dots$$

(b)
$$\cos x - nx \sin x - \frac{n^2 x^2}{2!} \cos x + \frac{n^3 x^3}{3!} \sin x + \frac{n^4 x^4}{4!} \cos x...$$