Predicting Player Spending in Brutal Age

Yunhan Liu(yl3287); Jiawei Gao(jg2352)

Introduction

Introduction

- Dataset resource: the second Intelligent China Cup (ICC) data competition
- Goal: estimate the total payment amount for players in the mobile game "Brutal Age" within the first 45 days of gameplay.
- Shape of Dataset: 2288007 rows, 109 columns, last column is our target variabel, payment_45
- Missing Value: No missing value
- Type of feature: 107 numeric features and 1 categorical feature(register_date)

Data Exploration

Data Exploration

Histogram of payment in 45 days V.S Top 30 payment in 45 days

Rate of payment after trial: 2.010% Number of people who had paid: 45988 Total payment of the player: 4102730.110

ARPU: 1.793 ARPPU: 89.213

Proportion of the amount spent by the top 500 paying users: 51.618% Proportion of the amount spent by the top 1000 paying users: 64.878% Proportion of the amount spent by the top 5000 paying users: 89.375%

Data Exploration

The data is unbalanced distributed based on different month, then we guess the month feature may matter

	Number of User	Paid User	Rate of payment	Total payment	Max_Payment
Month 1	390420	9220	2.362%	735105.930	24726.51
Month 2	1632463	30359	1.860%	2855919.480	32977.81
Month 3	265124	6409	2.417%	511704.700	18811.66

Feature Engineering

Feature Engineering

- Convert the "register_time" column to datetime format
- Add a new column called "month" with categorical data (values 1, 2, and 3 representing the month of registration)
- Delete the original column "register_time"

Modeling Work

Linear regression model

Mean squared error: 3913.130483320636

Random Forest

Model	Split	n_estimator	max_depth	MSE	R ² on train	R² on test
m1	80%, 20%	100(default)	6(default)	4076.5398	0.8966	0.3149
m2	70%, 30%	10	6(default)	3873.5419	0.8981	0.3733
m3	70%, 30%	10	5	3424.0279	0.7576	0.4461
m4	70%, 30%	10	4	3189.5639	0.7163	0.4840
m5	70%, 30%	10	3	3176.2768	0.6514	0.4861
m6	70%, 30%	8	3	3188.3149	0.6475	0.4842

XGBoost

Model	Split	n_estimator	max_depth	MSE	R² on train	R² on test
m1	80%, 20%	10	6(default)	3975.6570	0.8813	0.3319
m2	70%, 30%	10	6(default)	4045.7498	0.8877	0.3454
m3	70%, 30%	10	3	3024.4583	0.7528	0.5107
m4	70%, 30%	10	2	3098.5843	0.6452	0.4987
m5	70%, 30%	8	3	3005.7318	0.7306	0.5137
m6	70%, 30%	7	3	2965.5106	0.7154	0.5202

XGBoost Visualization

Conclusion

In conclusion, based on the evaluation metrics, the XGBoost model performed the best among the models we built. This model can be used to predict the likelihood of a customer paying within 45 days, and the feature importances can provide insights to the business about which factors are most important for predicting customer payment behavior.

Improvement: build models with most important features