Problem 3

Let $\{X_n\}$ be a sequence of identically distributed random variables and let $M_n = \max\{|X_1|, |X_2|, \dots, |X_n|\}.$

- (a) If $\mathbb{E}[|X_1|] < \infty$, then show that M_n/n converges to zero almost surely.
- (b) Generalization of part (a): If $\mathbb{E}[|X_1|^{\alpha}] < \infty$ for some $\alpha \in (0, \infty)$, then show that $M_n/n^{1/\alpha}$ converges to zero almost surely.
- (c) Show that if the sequence $\{X_n\}$ is also independent, then $M_n/n^{1/\alpha}$ converges to zero almost surely implies that $\mathbb{E}[|X_1|^{\alpha}] < \infty$.

 $[Hint : M_n \ge |X_n| \cdot]$

Solution: We shall use the following lemma:

Lemma 1. If $a_n/n \to 0$ then $\max_{1 \le i \le n} a_i/n \to 0$

Proof. Take any $\epsilon > 0$. There exists N such that for n > N $|an/N| < \epsilon$. Let $M = \max_{1 \le i \le n} a_i$. If $M \ge \sup_{n > N} a_n$ then $\max_{1 \le i \le n} a_i / n \le M / n$ and we are done. Else, there exists N' such that for n > N', $\max_{1 \le i \le n} a_i = a_j$ where j > N. But then we have $\max_{1 \le i \le n} a_i / n = a_j / n = (a_n/j)(j/n) \le \epsilon(j/n) \le \epsilon$. Therefore, we conclude that $\max_{1 \le i \le n} a_i / n$ converges to 0. \square

(a) By problem 2(a)[Note that in 2a we don't need independence assumptions], $E[|X_1| < \infty \Rightarrow X_n/n \to 0$ almost surely. Consider the set:

$$\mathcal{X} = \left\{ \omega | \frac{|X_n(\alpha)|}{n} \to 0 \right\}$$

We know that $P(\mathcal{X}) = 1$. For $\alpha \in \mathcal{X}$, $X_n(\alpha)/n \to 0$. We use the lemma above to conclude that $M_n(\alpha)/n \to 0$. Therefore, $\{\omega | M_n(\omega)/n \to 0\} \subset \mathcal{X}$ and thus $P(M_n/n \to 0) \geq P(|X_n|/n \to 0) = 1$ or $M_n \to 0$ almost surely.

(b) Note that:

$$\max\{|X_1|^{\alpha}, |X_2|^{\alpha}, |X_3|^{\alpha}...|X_n|^{\alpha}\} = M_n^{\alpha}$$

By (a) we conclude that $M_n^{\alpha}/n \to 0$ almost surely. Note $f(x) = x^{\frac{1}{\alpha}}$ is a continuous map. Therefore, by the continuous mapping theorem, $M_n/n^{1/\alpha} \to 0$ almost surely.

(c) If $M_n/n^{1/\alpha} \to 0$ almost surely, then by continuous mapping theorem $M_n^{\alpha}/m \to 0$ almost surely. As $X_n^{\alpha}(\omega) > \epsilon n \Rightarrow M_n(\omega)^{\alpha} > \epsilon n$, $P(M_n^{\alpha} > \epsilon n) \ge P(|X_n|^{\alpha} > \epsilon n)$. Therefore, $\sum_{n=1}^{\infty} P(X_n/n^{\alpha} < \epsilon) \le \sum_{n=1}^{\infty} P(M_n/n^{\alpha} < \epsilon) < \infty$, and so we can conclude