CLAIMS

What is claimed is:

1	1.	A magnetic head, comprising:
2		a free layer;
3		an antiparallel (AP) pinned layer structure spaced apart from the free layer; and
4		a high coercivity structure positioned towards the AP pinned layer structure on an
5		opposite side thereof relative to the free layer, the high coercivity structure
6		pinning a magnetic orientation of the AP pinned layer structure.
1	2.	A head as recited in claim 1, wherein the AP pinned layer structure includes at
2		least two pinned layers having magnetic moments that are self-pinned antiparallel
3		to each other, the pinned layers being separated by an AP coupling layer.
1	3.	A head as recited in claim 2, wherein the pinned layers of the AP pinned layer
2		structure are formed of CoFe.
1	4.	A head as recited in claim 2, wherein a magnetic thickness of the high coercivity
2		structure and the pinned layer of the AP pinned layer structure positioned closest
3		thereto is about equal to a magnetic thickness of the pinned layer of the AP
4		pinned layer structure positioned farthest from the high coercivity structure.

1 5. A head as recited in claim 1, wherein the high coercivity structure includes a layer 2 of CoPtCr. 1 6. A head as recited in claim 5, wherein the high coercivity structure further includes 2 an amorphous layer positioned between the layer of CoPtCr and the AP pinned 3 layer structure. 1 7. A head as recited in claim 6, wherein the amorphous layer comprises CoFeX, 2 where X is selected from a group consisting of Nb, Zn and Hf. 1 8. A head as recited in claim 5, wherein the high coercivity structure further includes 2 a seed layer of magnetic material under the CoPtCr, the seed layer allowing 3 proper growth of the CoPtCr. 9. 1 A head as recited in claim 1, wherein the head forms part of a GMR head. 1 10. A head as recited in claim 1, wherein the head forms part of a CPP GMR sensor. 1 11. A head as recited in claim 1, wherein the head forms part of a CIP GMR sensor.

A head as recited in claim 1, wherein the head forms part of a tunnel valve sensor.

1 13. A magnetic head, comprising:

1

12.

2		a free layer;
3		an antiparallel (AP) pinned layer structure spaced apart from the free layer;
4		a layer of CoPtCr positioned towards the AP pinned layer structure on an opposite
5		side thereof relative to the free layer, layer of CoPtCt pinning a magnetic
6		orientation of the AP pinned layer structure; and
7		an amorphous layer positioned between the layer of CoPtCr and the AP pinned
8		layer structure.
1	14.	A head as recited in claim 13, wherein the AP pinned layer structure includes at
2		least two pinned layers having magnetic moments that are self-pinned antiparallel
3		to each other, the pinned layers being separated by an AP coupling layer.
1	15.	A head as recited in claim 14, wherein the pinned layers of the AP pinned layer
2		structure are formed of CoFe.
1	16.	A head as recited in claim 14, wherein a magnetic thickness of the layer of
2		CoPtCr, amorphous layer, and the pinned layer of the AP pinned layer structure
3		positioned closest to the amorphous layer is about equal to a magnetic thickness
4		of the pinned layer of the AP pinned layer structure positioned farthest from the
5		amorphous layer.
1	17.	A head as recited in claim 13, wherein the amorphous layer comprises CoFeX,
2		where X is selected from a group consisting of Nb, Zn and Hf.

1	18.	A head as recited in claim 13, further comprising a seed layer of magnetic
2		material upon which the CoPtCr is formed.
1	19.	A head as recited in claim 13, wherein the head forms part of a GMR head.
1	20.	A head as recited in claim 13, wherein the head forms part of a CPP GMR sensor
1	21.	A head as recited in claim 13, wherein the head forms part of a CIP GMR sensor.
1	22.	A head as recited in claim 13, wherein the head forms part of a tunnel valve
2		sensor.
1	23.	A magnetic storage system, comprising:
2		magnetic media;
3		at least one head for reading from and writing to the magnetic media, each head
4		having:
5		a sensor having the structure recited in claim 1;
6		a writer coupled to the sensor;
7		a slider for supporting the head; and
8		a control unit coupled to the head for controlling operation of the head.

HIT1P058/HSJ920030249US1

A magnetic storage system, comprising:

1

24.

2	magnetic media;
3	at least one head for reading from and writing to the magnetic media, each head
4	having:
5	a sensor having the structure recited in claim 13;
6	a writer coupled to the sensor;
7	a slider for supporting the head; and
8	a control unit coupled to the head for controlling operation of the head.