6/4/2021 8:50:43 AM

二十二、項目分析	2
22.1 從 Excel 數值檔案轉入 SPSS 軟體	2
22.2 極端組檢核法	2
22.3 SPSS 結果數值轉換到 Microsoft Word 的方法	13
22.3.1 方法一	13
22.3.2 方法二	16

二十二、項目分析

(Item analysis)

22.1 從 Excel 數值檔案轉入 SPSS 軟體

- 1.從原始問卷輸入的 Microsoft Excel 軟體數值檔案轉入 SPSS 軟體·在 Excel 檔案中先去除儲存格內的運算公式·可以利用複製→選擇性貼上→貼上→勾選「值」→確定操作指令·將 Excel 檔案中全部數值化。
- 2.去除 Excel 檔案中工作表下端初步進行敘述性統計的公式與數值,此部分數值在 SPSS 中沒有需要,若在 SPSS 中需要敘述性統計值時,可以直接透過 SPSS 軟體運算獲得。
- 3.執行 Excel 檔案降存程序,檔案(\underline{F})→另存新檔(\underline{A})…→「存檔類型(\underline{T}):」或「檔案類型(\underline{T}):」選擇『Microsoft Excel 5.0/95 活頁簿』或『Microsoft Excel 2.1 工作表』→「檔案名稱(\underline{N}):」輸入一個暫時的檔案名稱,此名稱與原始檔案名稱需不一樣,以免覆蓋原始檔案→儲存(\underline{S})→您所選用的檔案格式只容許一張工作表→確定→您要保持此活頁簿為這種格式嗎?→是(\underline{Y})→關閉 Excel 軟體→您是否要儲存檔案?→否(\underline{N})。以方便 SPSS 軟體可以順利讀取數值資料,不用重新輸入問卷數值。
- 4.打開 SPSS 軟體檔案 File → 開啟 Open → 資料 Data... , 「檔案類型」選擇 『Excel(*.xls)』, 在指定位置上點選前一步驟 Excel 軟體所降存的檔案名稱→開啟 (O)→Opening File Options 勾選 Read variable names→OK。所降轉的 Excel 檔案應 放置在比較簡單的磁碟路徑中(D:\)或位置(桌面)。
- 5.點選在 SPSS Data Editor 視窗中的 Variable View 工作表,「變數檢視」檢視每一個變數(variable)的 Measure 變數型態(數值型態)是否正確,若有錯誤時先行導正 (ordinal→scale);視窗中的欄或列不能有隱藏的設定;在 Variable View 工作表的每一個變數的 Name (代碼)修改成半形英文名稱,執行 SPSS 分析程序時比較不會產生錯誤訊息。

22.2 極端組檢核法

- 1.屬於 Likert Scale 性質的量表才能進行項目分析與信度分析,問卷中若有一個以上的 Likert Scale 量表,應該每一個 Likert Scale 量表均個別跑一次項目分析與信度分析。 請將一個 Likert Scale 量表的整個項目分析程序跑完再跑另一個 Likert Scale 量表。
- 2.反向問題(項目)數值導正程序

李克特(Likert)五點量表,正向問題的分數與反向問題的分述如下:

	非常同意	同意	沒意見	不同意	非常不同意
第一種					
正向問題	5	4	3	2	1
反向問題	1	2	3	4	5
第二種					
正向問題	1	2	3	4	5
反向問題	5	4	3	2	1
第三種					
正向問題	2	1	0	-1	-2
反向問題	-2	-1	0	1	2
第四種					
正向問題	-2	-1	0	1	2
反向問題	2	1	0	-1	-2

- ■在問卷數值輸入時,為減少輸入過程錯誤的機率,而將所有的問題項目均視為正向問題的數值方式輸入,故進行項目分析時,必須先進行導正程序。
- ■Transform(轉換) / 重新編碼成同一變數(S) Recode(重新編碼) / Into Same Variables...(成相同變數...)

■在 Recode into Same Variables(重新編碼成同一變數)對話視窗中,將左邊的項目清單中所謂的反向問題,選入右邊的 Numeric Variables(數值變數)的小視窗中,按 Old and New Values..(舊值與新值)按鈕,出現下圖的對話方塊

Recode into Same Va	riables: Old and New Values		×
Old Value	New Value		
⊙ <u>V</u> alue:	⊙ Va <u>l</u> ue:	OSystem-missing Old->New:	

OSystem- or <u>u</u> ser-missing	Add	1->5 2->4		
○Ra <u>ng</u> e:		2-24		
through	<u>C</u> hange Remove			
ORange:	2101110 0			
Lowest through				
○Range:				
through highest	Continue	Cancel	Help	
OAll other values	Continue	Cancer	пстр	

- ■在左邊的 Old Value(舊值)分塊中,選取 Value(數值),在後面空格輸入 1
- ■在右邊的 New Value(新值)分塊中,選取 Value(數值),在後面空格輸入 5
- ■然後按 Add (新增)鈕。之後在右下方 Old -->New (舊值 -->新值)的方塊中會出現數字轉換的配對 1 --> 5。重複此動作,完成其他的數值轉換。按 Continue (繼續)鈕,回到 Recode into Same Variables(重新編碼成同一變數)對話視窗後,再按 OK 鈕。
- ■即完成 反向問題數值導正作業
- 3.分別計算每一張問卷每一部份 Likert 量表項目的總分,若問卷內有多個 Likert 量表, 請每一部份計算一次總分。
 - Transform (轉換) / 計算變數(C)... Computer... (計算...) 出現 Computer Variable (計算 變數)的對話視窗

- ■在左上角的 Target Variable:(目標變數)下面的空格中輸入新變數名稱 Total(若問卷內 有數個 Likert Scale 量表欲進行項目分析時,新變數名稱建議使用不同的名稱)。
- ■在右上角的 Numeric Expression:(數值運算式)下面的空格中輸入要加總函數及變項 名稱 · 例:選取 sum 函數 · sum 函數的表示法為 sum(numexpr,numexpr,...) · 在右邊

的 Numeric Expression:(數值運算式)下面的空格中輸入欲進行項目分析的變數名稱 與函數表示法為

sum(item1,item2,item3,item4,item5,item6,item7,item8,item9,item10)

■亦可以用傳統的數學計算法表示在右邊的 Numeric Expression:(數值運算式)下面的空格中輸入欲進行項目分析的變數名稱與數學計算式表示

■按 OK(確定)鈕,資料視窗(SPSS Data Editor)中會多出一的 total 的變項。

SPSS Da	ita Editor										
id	item1	item2	item3	item4	item5	item6	item7	item8	item9	item10	total
1	3	4	2	3	4	1	3	4	4	5	33
2	3	2	2	2	5	3	2	3	3	4	29
3	5	3	2	2	3	2	2	3	2	3	27
4	1	2	2	3	3	3	3	4	2	1	24
5	1	1	4	3	4	1	4	2	2	2	24
6	3	2	3	3	2	2	3	2	2	2	24
7	4	3	1	2	3	1	2	2	2	4	24
8	3	2	1	3	2	1	2	2	2	3	21
9	3	1	1	3	1	1	3	3	2	3	21
10	2	1	2	3	2	1	3	2	1	4	21
11	2	2	2	1	2	1	2	3	2	3	20
12	2	1	4	2	2	1	3	2	1	2	20
13	3	1	1	4	1	2	1	3	1	3	20
14	2	1	2	3	2	1	3	2	1	3	20
15	2	3	2	3	2	1	2	3	2	1	21
16	3	3	2	2	1	1	3	2	1	1	19
17	3	1	2	3	2	1	3	3	2	4	24
18	3	3	2	4	2	1	2	2	2	2	23
19	3	1	3	2	1	1	3	2	3	3	22
20	1	2	3	2	4	1	4	2	2	1	22
21	2	3	1	2	1	2	4	1	1	2	19
22	3	1	1	1	2	1	2	3	1	1	16
23	2	1	2	2	1	1	2	5	2	1	19
24	1	2	3	1	1	1	2	1	1	3	16
25	2	1	3	3	1	1	1	1	1	1	15
26	2	1	1	2	1	1	1	1	3	2	15
27	1	1	1	1	1	1	3	1	1	1	12
28	2	1	3	2	4	4	4	3	2	4	29
29	3	3	3	4	3	1	3	3	1	4	28

SPSS Da	SPSS Data Editor										
id	item1	item2	item3	item4	item5	item6	item7	item8	item9	item10	total
30	3	3	3	4	4	1	4	2	1	2	27
31	3	3	3	5	3	1	3	3	2	3	29
32	3	3	2	4	2	1	2	3	2	4	26

- 4.依據每一 Likert Scale 量表全部項目總分,將問卷由低至高(或由高至低)次序排列。
 - ■Data(資料)/Sort Cases...(觀察值排序...),出現Sort Cases (觀察值排序)對話視窗

■在 Sort Cases (觀察值排序)對話視窗,將左邊選項中的 total 變項選入右邊 Sort By: (依..排序)下面的空格中,在 Sort Order(排序順序)下的次選項中選取排序方式,在此先選取 Descending(遞減-由大至小排序),按 OK 鈕

SPSS Da	ta Editor										
id	item1	item2	item3	item4	item5	item6	item7	item8	item9	item10	total
1	3	4	2	3	4	1	3	4	4	5	33
2	3	2	2	2	5	3	2	3	3	4	29
28	2	1	3	2	4	4	4	3	2	4	29
31	3	3	3	5	3	1	3	3	2	3	29
29	3	3	3	4	3	1	3	3	1	4	28
3	5	3	2	2	3	2	2	3	2	3	27
30	3	3	3	4	4	1	4	2	1	2	27
32	3	3	2	4	2	1	2	3	2	4	26
4	1	2	2	3	3	3	3	4	2	1	24
5	1	1	4	3	4	1	4	2	2	2	24
6	3	2	3	3	2	2	3	2	2	2	24
7	4	3	1	2	3	1	2	2	2	4	24
17	3	1	2	3	2	1	3	3	2	4	24
18	3	3	2	4	2	1	2	2	2	2	23
19	3	1	3	2	1	1	3	2	3	3	22
20	1	2	3	2	4	1	4	2	2	1	22
8	3	2	1	3	2	1	2	2	2	3	21
9	3	1	1	3	1	1	3	3	2	3	21
10	2	1	2	3	2	1	3	2	1	4	21
15	2	3	2	3	2	1	2	3	2	1	21
11	2	2	2	1	2	1	2	3	2	3	20
12	2	1	4	2	2	1	3	2	1	2	20
13	3	1	1	4	1	2	1	3	1	3	20
14	2	1	2	3	2	1	3	2	1	3	20
16	3	3	2	2	1	1	3	2	1	1	19
21	2	3	1	2	1	2	4	1	1	2	19
23	2	1	2	2	1	1	2	5	2	1	19
22	3	1	1	1	2	1	2	3	1	1	16
24	1	2	3	1	1	1	2	1	1	3	16
25	2	1	3	3	1	1	1	1	1	1	15

SPSS Da	ıta Editor										
id	item1	item2	item3	item4	item5	item6	item7	item8	item9	item10	total
26	2	1	1	2	1	1	1	1	3	2	15
27	1	1	1	1	1	1	3	1	1	1	12

- 5.依據上述每一個 Likert Scale 量表總分區分高分組(25 %)與低分組(25 %)。在區分高、低分組的 25 %數值時,若沒有剛好符合 25 %,請以最接近 25 %的數值為區分點,進行區分高、低分組。
 - ■在區分高、低分組時,亦有學者提出應以 27 %作為分組的依據,其試題分析鑑別力最高。低於 27 %時,結果的可靠性較低,高於 27 %時,會影響題目的鑑別作用。合理的分組百分比應介於 25 到 33 %之間。
 - ■在受訪者全部人數乘以 0.25 獲得 25 %的人數。例:受訪者 32 人乘以 0.25 獲得 8 人,即獲得高分組為總分 26 分(含)以上的 8 人,低分組為總分 19 分(含)以下的 8 人。
 - ■Transform(轉換) / Recode(重新編碼) / Into Different Variables...(成不相同變數...)
 - ■在 Into Different Variables...(成不相同變數...)對話視窗中,將左邊清單中的 total 選項 選入右邊 Numeric Variables --> Output (數值變數 --> 輸出變數)的空格中,在最右邊 的 Output variable (輸出之新變數)的對話方塊中,Name: (名稱)下面的空格中輸入分 組新變數名稱 group (當分析兩個以上的 Likert Scale 量表時,應使用不同的新變數 名稱)。
 - ■按 Change (變更)鈕,則原來 Numeric Variables --> Output (數值變數 --> 輸出變數)的 空格中的變數名稱會由 total --> ? 轉變成 total --> group
 - ■按 Old and New Values... (舊值與新值...)鈕
 - ■出現 Recode into Different Variables: Old and New Values (重新編碼成不同變數:舊值與新值)的次對話方塊

Old Value

○ Value: ○ System-missing

○Value:	○Copy old value(s)
OSystem- or user-missing	Ol <u>d</u> ->New: Add 26 thru Highest->1
○Ra <u>ng</u> e:	Change Lowest thru 19->2
through	Remove
⊙Range:	
Lowest through	□Output variables are strings Width:
ORange:	□Convert numeric strings to numbers['5'->5]
through highest	Continue Cancel Help
OAll other values	

- ■在左邊 Old Value (舊值)方塊中,勾選第三個 Range: (範圍)選項,在 through highest (到最高值)前面空格內輸入高分組的低標分數 26 (本示範案例的數值)。
- ■在右邊 New Value (新值)方塊中,勾選 Value: (數值)選項,在 Value: (數值)選項後面的空格中輸入高分組的代碼 1。
- ■按 Add 鈕,就會在 Old --> New: (舊值 --> 新值)的對話方塊中出現 26 thru Highest --> > 1。
- ■在左邊 Old Value(舊值)方塊中,勾選第二個 Range: (範圍)選項,在 Lowest through(從最低值到)後面空格內輸入高低組的高標分數 19 (本示範案例的數值)。
- ■在右邊 New Value(新值)方塊中,勾選 Value: (數值)選項,在 Value: (數值)選項後面的空格中輸入低分組的代碼 2。
- ■按 Add 鈕, 就會在 Old --> New: (舊值 --> 新值)的對話方塊中出現 Lowest thru 19 --> 2。
- ■按 Continue(繼續)鈕,就會回到 Recode into Different Variables(重新編碼成不同變數) 的對話方塊,按 OK(確定)鈕。
- ■資料檔案中視窗新增一個 group 的變項,變項的數值內容為 1(高分組)或 2(低分組)。

SPSS Da	ta Editor											
Id	item1	item2	item3	item4	item5	item6	item7	item8	item9	item10	total	group
1	3	4	2	3	4	1	3	4	4	5	33	1
2	3	2	2	2	5	3	2	3	3	4	29	1
28	2	1	3	2	4	4	4	3	2	4	29	1
31	3	3	3	5	3	1	3	3	2	3	29	1
29	3	3	3	4	3	1	3	3	1	4	28	1
3	5	3	2	2	3	2	2	3	2	3	27	1
30	3	3	3	4	4	1	4	2	1	2	27	1
32	3	3	2	4	2	1	2	3	2	4	26	1
4	1	2	2	3	3	3	3	4	2	1	24	
5	1	1	4	3	4	1	4	2	2	2	24	
6	3	2	3	3	2	2	3	2	2	2	24	
7	4	3	1	2	3	1	2	2	2	4	24	

SPSS Da	ta Editor											
Id	item1	item2	item3	item4	item5	item6	item7	item8	item9	item10	total	group
17	3	1	2	3	2	1	3	3	2	4	24	
18	3	3	2	4	2	1	2	2	2	2	23	
19	3	1	3	2	1	1	3	2	3	3	22	
20	1	2	3	2	4	1	4	2	2	1	22	
8	3	2	1	3	2	1	2	2	2	3	21	
9	3	1	1	3	1	1	3	3	2	3	21	
10	2	1	2	3	2	1	3	2	1	4	21	
15	2	3	2	3	2	1	2	3	2	1	21	
11	2	2	2	1	2	1	2	3	2	3	20	
12	2	1	4	2	2	1	3	2	1	2	20	
13	3	1	1	4	1	2	1	3	1	3	20	
14	2	1	2	3	2	1	3	2	1	3	20	
16	3	3	2	2	1	1	3	2	1	1	19	2
21	2	3	1	2	1	2	4	1	1	2	19	2
23	2	1	2	2	1	1	2	5	2	1	19	2
22	3	1	1	1	2	1	2	3	1	1	16	2
24	1	2	3	1	1	1	2	1	1	3	16	2
25	2	1	3	3	1	1	1	1	1	1	15	2
26	2	1	1	2	1	1	1	1	3	2	15	2
27	1	1	1	1	1	1	3	1	1	1	12	2

6. 進行 independent-sample t-test

■Analyze Statistics (統計分析) / Compare Means (比較平均數法) / Independent-Samples T Test... (獨立樣本 t 檢定...)

- ■出現 Independent-Samples T Test (獨立樣本 T 檢定)的對話視窗。
- ■將左邊視窗中欲進行項目分析的變數,選入右邊 Test Variable(s): (檢定變數)下面的方塊中,將左邊視窗中 group 的變數,選入右邊 Grouping Variable: (分組變項)下面的方塊中。
- ■按 Define Groups...(定義自變項的劃分組別)鈕。
- ■出現 Define Groups(定義組別)次對話方塊。
- ■在 Group 1: 後面的空格內輸入高分組的代碼 1·在 Group 2:後面的空格內輸入低分組的代碼 2·

■按 Continue (繼續)鈕,回到 $Independent-Samples\ t\ Test\ (獨立樣本\ t\ 檢定)的對話視窗,按 <math>OK$ (確定)鈕。

Define Groups	×
 OUse specified values Group 1:1 Group 2:2 OCut point: 	Continue Cancel Help

Group Statistics

	Group Statistics									
	high and	N	Mean	Std.	Std. Error					
	low level	11	Mean	Deviation	Mean					
ITEM1	1.00	8	3.13	.83	.30					
	2.00	8	2.00	.76	.27					
ITEM2	1.00	8	2.75	.89	.31					
	2.00	8	1.63	.92	.32					
ITEM3	1.00	8	2.50	.53	.19					
11EWI3	2.00	8	1.75	.89	.31					
ITEM4	1.00	8	3.25	1.16	.41					
11 EW14	2.00	8	1.75	.71	.25					
ITEM5	1.00	8	3.50	.93	.33					
	2.00	8	1.13	.35	.13					
ITEM6	1.00	8	1.75	1.16	.41					
	2.00	8	1.13	.35	.13					
ITEM7	1.00	8	2.88	.83	.30					
1112101/	2.00	8	2.25	1.04	.37					
ITEM8	1.00	8	3.00	.53	.19					
11121110	2.00	8	1.88	1.46	.52					
ITEM9	1.00	8	2.13	.99	.35					
11121119	2.00	8	1.38	.74	.26					
ITEM10	1.00	8	3.63	.92	.32					
TIENTIU	2.00	8	1.50	.76	.27					

Independent Samples Test

	for Equ	e's Test nality of ances		t-test for Equality of Means										
	F	Sig.	t	df	Sig. (2- tailed)	Mean Differen ce	Std. Error Differen ce	95 Confi Interva Diffe Lower	dence					
Equal variances ITEM assumed		0.919	2.826	14	0.013	1.13	.40	.27	1.98					
1 Equal variances not assumed	S	0.919	2.826	13.865	0.014	1.13	.40	.27	1.98					

		_	e's Test ality of ances		t	-test fo	r Equality	of Means	S	
		F	Sig.	t	df	Sig. (2- tailed)	Mean Differen ce	Std. Error Differen ce	95 Confid Interval Differ Lower	dence l of the rence
ITEM Eq	ual variances assumed			2.496	14	0.026	1.13	.45	.16	2.09
	ual variances not assumed	0.406	0.534	2.496	13.985	0.026	1.13	.45	.16	2.09
ITEM Eq	ual variances assumed	2.500	0.002	2.049	14	0.060	.75		-3.49E- 02	1.53
	ual variances not assumed	3.500	0.082	2.049	11.496	0.064	.75	.37	-5.13E- 02	1.55
ITEM Eq	ual variances assumed	4 2 4 2	0.056	3.113	14	0.008	1.50	.48	.47	2.53
4 Eq	ual variances not assumed	4.342	0.056	3.113	11.541	0.009	1.50	.48	.45	2.55
Eq ITEM	ual variances assumed	7.933	0.014	6.778	14	0.000	2.38	.35	1.62	3.13
5 Eq	ual variances not assumed	1.933	0.014	6.778	8.999	0.000	2.38	.35	1.58	3.17
Eq ITEM	ual variances assumed		0.00=	1.452	14	0.169	.63	.43	30	1.55
€ Eq	ual variances not assumed	9.770	0.007	1.452	8.279	0.183	.63	.43	36	1.61
Eq ITEM	ual variances assumed	0.275	0.550	1.330	14	0.205	.63	.47	38	1.63
∓ Eq	ual variances not assumed	0.375	0.550	1.330	13.397	0.206	.63	.47	39	1.64
Eq ITEM	ual variances assumed	<i>5</i> 050	0.020	2.049	14	0.060	1.13	.55	-5.24E- 02	2.30
8 Eq	ual variances not assumed	5.859	0.030	2.049	8.849	0.071	1.13	.55	12	2.37
Eq ITEM	ual variances assumed	0.107	0.664	1.712	14	0.109	.75	.44	19	1.69
9 Eq	ual variances not assumed	0.197	0.664	1.712	12.988	0.111	.75	.44	20	1.70
ITEM Eq	ual variances assumed	0.199	0.671	5.060	14	0.000	2.13	.42	1.22	3.03
10 Eq	ual variances not assumed	0.188	0.671	5.060	13.513	0.000	2.13	.42	1.22	3.03

[■]在結果中先觀察每題項組別群體變異數相等性(Levene's Test for Equality of Variances)的 F 值考驗·如果顯著(Sig.的值小於 0.05)·表示兩個組別群體變異數不相等,此時看 Equal variances not assumed(假定變異數不相等)所列之 t-檢定機率

- (Sig.),若 t-檢定機率(Sig.)顯著(Sig.)數值小於 0.05),則此題項(item)具有鑑別度。若 t-檢定機率(Sig.)不顯著(Sig.)的數值大於 0.05),則此題項(item)不具有鑑別度。
- ■組別群體變異數相等性(Levene's Test for Equality of Variances)的 F 值考驗,若 F 值不顯著(Sig.值大於 0.05),表示兩個組別群體變異數相等(同質),則查 Equal variance assumed(假定變異數相等)之 t-檢定機率,此時 t-檢定機率(Sig.)如果顯著(Sig.的值小於 0.05),表示此題項(item)具有鑑別度。若 t-檢定機率(Sig.)不顯著(Sig.的數值大於 0.05),則此題項(item)不具有鑑別度。
- ■判別兩組平均值差異檢定之 t 是否顯著,除參考機率值 p 外,亦可判別差異值之 95%的信賴區間(95%, Confidence Interval of the Difference),如果 95%的信賴區間未包含 0 在內,表示兩者的差異顯著。
- ■SPSS 統計軟體獲得的數值,若是『.123』代表的真正數值是『0.123』,統計軟體 將個位數的『0』省略,將此數值納入正式報告中時,請以真正數值『0.123』呈 現。同理,『-.234』代表的真正數值是『-0.234』。當出現『.000』的數值時,其 代表實際數值小於 0.0004,故最後納入正式報告時請以『0.000』呈現。
- ■SPSS 統計軟體獲得的數值,『-5.24E-02』代表的真正數值是-5.24×10⁻⁰² 即『-0.0524』,當該列的有效數值小數點後面兩位時,則在納入正式報告時請以『-0.05』呈現。
- ■上述表中的 t 值即為臨界比(critical ratio, CR 值)或決斷值。

$$\blacksquare CR = \frac{\overline{X}_{H25\%} - \overline{X}_{L25\%}}{\sqrt{\frac{S_H^2 + S_L^2}{n - 1}}}$$

- 7.去除未達顯著水準的項目(items)
 - ■請將信度分析與項目分析所獲得的結果數值合併後,納入研究報告中的研究結果與 討論中,成為單獨的一節。放在敘述性統計學中探討研究中的 Likert Scale 量表之 前。

22.3 SPSS 結果數值轉換到 Microsoft Word 的方法

22.3.1 方法一

a.在 SPSS 軟體的 Output 視窗中點選要進行數值轉換的表格內容,利用滑鼠右鍵,選擇 Copy 指令,到 Word 軟體中選擇貼上指令,則原先 SPSS 之 Output 視窗表格數值會以空格的方式轉到 Word 文件。

Item-total Statistics

	Scale	Scale	Corrected	
	Mean	Variance	Item-	Alpha
	if Item	if Item	Total	if Item
	Deleted	Deleted	Correlation	Deleted
我在植物	48. 4583	34. 3561	. 3763	. 8415
在植物園	48. 0625	36. 1434	. 2345	. 8475
未來我願	49. 3333	30.8140	. 6096	. 8260
看到其他	48. 8125	31. 5855	. 6139	. 8264
我樂意幫	48. 9063	31.6227	. 5789	. 8286
我不購買	48. 5625	32. 9013	. 5666	. 8309
此次旅遊	48. 7917	31.7246	. 4811	. 8363
我無法忍	48. 4688	33. 1990	. 5073	. 8341
我投票的	48. 9167	33. 8456	. 1680	. 8718
我會對周	48. 6354	32. 0867	. 6517	. 8254
我主動參	48. 9479	30.6183	. 7484	. 8172
我贊成嚴	48. 4375	33. 3855	. 5022	. 8345
發現生態	48. 7917	31. 1772	. 7052	. 8208

RELIABILITY ANALYSIS - SCALE (ALPHA)

Reliability Coefficients

N of Cases = 96.0

N of Items = 13

Alpha = .8451

b.再將 Word 當中文字形式的數值圈選,表格(A)→轉換(V)→文字轉表格(X)...。則會出現**文字轉換成表格**對話視窗,勾選分隔文字在⊙**其他(Q)**,並於**其他(Q)**後面方塊之內輸入半形空白鍵『』,則表格大小的欄數(C)會自動變成 34,按確定鈕。

我			4	48. 4583				34. 3561				. 376	3					. 8415
在																		
植																		
物																		
在			4	48. 0625				36. 1434				. 234	5					. 8475

6/4/2021 8:	30.43 AW			
植				
物				
園				
未	49. 3333	30. 8140	. 6096	. 8260
來				
我				
願				
看	48. 8125	31. 5855	. 6139	. 8264
到				
其				
他				
我	48. 9063	31.6227	. 5789	. 8286
樂				
意				
幇帛				
我	48. 5625	32. 9013	. 5666	. 8309
不				
購				
買				
此	48. 7917	31.7246	. 4811	. 8363
次				
旅				
遊				
我	48. 4688	33. 1990	. 5073	. 8341
無				
法				
忍				
我	48. 9167	33. 8456	. 1680	. 8718
投				
票				
的				
我	48. 6354	32. 0867	. 6517	. 8254
會				
對				
周				
我	48. 9479	30. 6183	. 7484	. 8172
主				
動				
參				
我	48. 4375	33. 3855	. 5022	. 8345

贊																
成																
嚴																
發			48. 7917				31. 1772				. 7052					. 8208
現																
生																
態																

c.刪除表格中的空白欄位。刪除空白欄位時,特別注意有負值和不同整數位數的數值,是否會在儲存格自動判別中走位。若發生走位時,利用剪貼的方式將其儲存格對齊。

我在植物	48. 4583	34. 3561	. 3763	. 8415
在植物園	48. 0625	36. 1434	. 2345	. 8475
未來我願	49. 3333	30. 8140	. 6096	. 8260
看到其他	48. 8125	31. 5855	. 6139	. 8264
我樂意幫	48. 9063	31.6227	. 5789	. 8286
我不購買	48. 5625	32. 9013	. 5666	. 8309
此次旅遊	48. 7917	31. 7246	. 4811	. 8363
我無法忍	48. 4688	33. 1990	. 5073	. 8341
我投票的	48. 9167	33. 8456	. 1680	. 8718
我會對周	48. 6354	32. 0867	. 6517	. 8254
我主動參	48. 9479	30. 6183	. 7484	. 8172
我贊成嚴	48. 4375	33. 3855	. 5022	. 8345
發現生態	48. 7917	31. 1772	. 7052	. 8208

- d.為了求小數點的設定一致性。將上述表格剪貼到 Excel 工作視窗中。利用游標圈選小數點設定相同的儲存格·格式(Q)→儲存格(E)...或游標右鍵儲存格格式(F)...,則會出現儲存格格式對話視窗·在數值中的類別(C):選擇數值·設定小數位數(D): 0, 1, 2, 3, 4(請依據講義範例設定小數點位數)·按確定按鈕。即會利用四捨五入的方式統一改變小數點位數。
- e.從 Excel 軟體視窗中複製上述表格, 貼回到 Word 軟體中, 即可進行報告正式格式 之編撰。

我在植物	48.46	34.36	0.3763	0.8415
在植物園	48.06	36.14	0.2345	0.8475
未來我願	49.33	30.81	0.6096	0.8260
看到其他	48.81	31.59	0.6139	0.8264
我樂意幫	48.91	31.62	0.5789	0.8286

我不購買	48.56	32.90	0.5666	0.8309
此次旅遊	48.79	31.72	0.4811	0.8363
我無法忍	48.47	33.20	0.5073	0.8341
我投票的	48.92	33.85	0.1680	0.8718
我會對周	48.64	32.09	0.6517	0.8254
我主動參	48.95	30.62	0.7484	0.8172
我贊成嚴	48.44	33.39	0.5022	0.8345
發現生態	48.79	31.18	0.7052	0.8208

22.3.2 方法二

- a.在 SPSS 檔案中點選要進行數值轉換的表格,利用滑鼠右鍵,選擇 Copy 指令,到 Word 軟體中選擇貼上指令,則表格中數值會沒有任何誤差的轉換到 Word 的表格中,但數值結構是文字結構,非呈現數值模式,故有些數值會出現科學符號(e),或缺少個位數的『0』數值。『中文文字』在此轉換的過程中,無法辨識,故會出現亂碼。
- b.再將 Word 當中的表格複製,編輯→選擇性貼上→勾選文字貼到 Excel 檔案中,則可在檔案中將數值模式設定成所想要的小數位數,與去除科學符號(e)。從 Word 貼到 Excel 時,有時會出現數字格子辨識出現移位現象,請仔細檢查,若發現移位時,利用剪貼的方式,進行調整即可回覆正確位置。
- c.原先的中文文字在轉換過程中,出現亂碼。可從新從 SPSS 軟體的結果視窗中複製一次表格,直接貼到 Excel 另一個工作表(Sheet)中,則中文文字會直接呈現,不會產生亂碼,唯數值在此轉換過程中,會產生錯亂,故數值無法採信。
- d.中和兩次轉換過程中,第一次的數值模式,第二次的中文文字(題目標題)。成為與 SPSS 一致的表格。
- e.在 Excel 進行修改表格成為最後想要的表格數值形式。
- f.再將 Excel 檔案中的表格,複製到 Word 軟體中進行正式表格的編撰。

6/4/2021 8:50:43 AM

Pearson 積差相關分析

- ■去除高低分組中間 50%的資料
- ■將各項目與總分進行 Pearson 積差相關分析
- ■獲得 CR(critical ratio)值
- ■去除未達顯著水準的項目

建議閱讀文獻

Murphy, K. R., & Davidshofer, C. O. (1998). *Psychological testing: Principles and applications* (4th ed.). Upper Saddle River, NJ: Prentice-Hall.