МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

Кафедра дифференциальных уравнений и системного анализа

БАЙЕСОВСКИЕ НЕЙРОННЫЕ СЕТИ

Курсовая работа

Афанасенко Григория Сергеевича студента 2-го курса специальности 1-31 03 09 «Компьютерная математика и системный анализ»

Научный руководитель: ст. преподаватель А. Э. Малевич

ОГЛАВЛЕНИЕ

1	Teo	ретические сведения.	3
	1.1	Байесовский подход	S
		1.1.1 Основы байесовской статистики	S
		1.1.2 Байесовский подход к оценке параметров	4
	1.2	Вариационный вывод	6
2	Вид	ы нейронных сетей.	7
	2.1	Детерминированные нейронные сети	7
		Байесовские нейронные сети	
		2.2.1 Вероятностные графы вычислений	Ć
		2.2.2 Байесовские нейронные сети	12

ГЛАВА 1

Теоретические сведения.

1.1 Байесовский подход.

1.1.1 Основы байесовской статистики.

Перед тем, как приступить к сетям, вспомним основы байесовской статистики.

Байесовская статистика противопоставляется частотной статистике, как альтернатива. Основное отличие в двух подходах состоит в том, что в байесовской статистике вероятность интерпретируется, как степень уверенности в истинности суждения. Другими словами, как мера незнания или неопределённости. В частотной статистике вероятность определяется как частота события. Байесовскую вероятность ещё иногда называют «логической» вероятностью, поскольку её проще применять в реальных задачах.

Байесовский подход же к оценке параметров заключается в утверждении, что априрорные знания влияют на апостериорные знания. Данное утверждение наиболее ярко видно в формуле Байеса:

$$P(H|D) = \frac{P(D|H)P(H)}{P(D)} = \frac{P(D|H)P(H)}{\int_{\mathcal{H}} P(D|\widetilde{H})P(\widetilde{H})d\widetilde{H}}$$
$$P(H|D) \propto P(D|H)P(H)$$

В данной формуле,

H — некоторая гипотеза, вероятность которой мы хотим узнать, при помощи известных данных D.

P(H|D) — апостериорная вероятность гипотезы после того, как мы пронаблюдали данные D.

P(H) — это априорная вероятность или априорные знания о нашей гипотезе, которые мы знаем до того, как пронаблюдали данные D.

P(D|H) — плотность распределения, которое называется правдоподобием наблюдаемых данных D, если гипотеза верна.

P(D) — можно проинтерпретировать, как шум в данных. Особенно хорошо это заметно, когда мы записываем его в интегральной форме, где, как-бы, перебираем возможную гипотезу \widetilde{H} , которая должна наилучшим образом объяснить наши данные.

Нижняя запись, опуская знаменатель, который не зависит от H, обозначает пропорциональную зависимость между апостериорной вероятностью и априорной вероятностью.

Байесовские статические методы использует Теорему Байеса для вычисления и обновления вероятности после получения новых данных.

1.1.2 Байесовский подход к оценке параметров.

Теперь перейдем к задаче оценке параметров статистических (вероятностных) моделей. К таким моделям можно отнести почти все модели машинного обучения, нейронные сети, марковские цепи и др.

В общем случае обозначим за $a_{\theta}(x)$ — статистическую модель из параметризованного семейства $\{a_{\theta}(x): \theta \in \Theta\}$, где θ — параметры модели. В случае линейной регрессии $y = w^T x + b$, $\theta = \{w, b\}$; для нейронных сетей θ — веса промежуточных слоёв; для марковских цепях θ — вероятности на рёбрах и т.д.

Когда мы занимаемся выбором модели $a_{\theta}(x)$, которая наилучшим образом(в некоторым смысле) описывают неизвестную закономерость в данных, то мы занимаемся подбором параметров θ . В классическом подходе мы хотим найти *ти точечную оценку* на параметры θ , то есть найти значения параметров $\widehat{\theta}$, при котором качество нашей статистической модели будет наилучшим, т.е. $\widehat{\theta} = \underset{\theta}{\operatorname{argmin}} loss_{D_y,D_x}(\theta)$. Тут важно отметить, что нас интересует единственное такое оптимальное значение, даже если их может быть несколько. В этом и заключается точечный подход к оценке параметров.

Однако такой подход ничего не говорит про устойчивость найденного решения или, на языке байесовской статистики, уровня уверенности в том, что найденные $\hat{\theta}$ является наилучшими. Чтобы лучше понять, рассмотрим пример с линейной регрессией $y=w^Tx+b$ на двух ситуациях(Рисунок 1.1, Рисунок 1.2).

Рисунок 1.1 Уверенная модель

Рисунок 1.2 Неуверенная модель

И в первом, и во втором случае мы нашли оптимальную оценки \widehat{w}, \widehat{b} , однако во втором случае в данных сильно больше шума, что увеличвает неуверенность модели в том, что найденные оценки является наилучшими. Для того, чтобы лучше понимать ситуацию рассмотрим распредление параметров, а не их значение. Например, для примеров выше распределения параметров могли быть следующими:

Рисунок 1.3 Уверенная модель

Рисунок 1.4 Неуверенная модель

Таким образом, одного лишь значения оценки параметров $\widehat{\theta}$ может быть недостаточно для того, чтобы правильно решить поставленную задачу. Гораздо больше информации даёт распределение параметров $p(\theta)$, поэтому в байесовском подходе оценивается не сами параметры, а их распределение.

Далее мы применим основную байесовскую парадигму и добавим априорные знания в нашу статическую модель. Вернёмся к точечной оценке параметров:

$$\widehat{\theta} = \operatorname*{argmin}_{a} loss_{D_{y},D_{x}}(\theta)$$

Чаще всего в качество $loss_{D_y,D_x}(\cdot)$ предполагается брать $-\log p(D_y|D_x,\theta)$ и получаем:

$$\widehat{\theta} = \underset{\theta}{\operatorname{argmin}}(-\log p(D_y|D_x, \theta)) = \underset{\theta}{\operatorname{argmax}} \log p(D_y|D_x, \theta)$$

Получившаяся оценка $\widehat{\theta}$ называется *оценкой максимума правдоподобия* (MLE). В данном случае θ рассматривается, как неизвестный, но неслучайный параметр.

Теперь будем рассматривать θ , как случайный параметр. Тогда будем искать значение θ , которое максимизирует апостериорное распределение $p(\theta|D_y, D_x)$ (или его логарифм, что тоже самое):

$$\widehat{\theta} = \underset{\theta}{\operatorname{argmax}} (\log p(\theta|D_x, D_y)) = \underset{\theta}{\operatorname{argmax}} (\log p(D_y|\theta, D_x) p(\theta) p(D_x) - \log p(D_y, D_x))$$

$$\widehat{\theta} = \underset{\theta}{\operatorname{argmax}} (\underbrace{\log p(D_y | \theta, D_x)}_{-\mathcal{L}_{D_y, D_x}(\theta)} + \underbrace{\log p(\theta)}_{-\mathcal{R}(\theta)})$$

Таким образом мы получили оценку апостериорного максимума (MAP). Стоит заметить, что разница между итоговым оптимизируемым функционалом в случае MLE и случае MAP заключется в добавлении функционала $\mathcal{R}(\theta)$, который выступает в роли регуляризатора весов.

Таким образом добавление априорных знаний или априрорного распределения параметров также добавляет естественный регуляризатор в функционал. Меняя подход на байесовский наша модель становится более устойчива к переобучению.

Замечание. В будущем мы ещё вернёмся к нашему оптимизируемому функционалу, добавляя в него дополнительные слагаемые и тем самым получая новые свойства.

1.2 Вариационный вывод.

dfsfds

ГЛАВА 2

Виды нейронных сетей.

2.1 Детерминированные нейронные сети.

Сначала напомним, что такое обычные (детерминированные) нейронные сети и как они обучаются.

Основная задача обычных искусственных нейронных сетей(ANN) в том, чтобы аппроксимировать некоторую зависимость выхода y от входа x: $y = \Phi(x)$. Зависимость $\Phi(x)$ аппроксимируем через композицию последовательных преобразований.

Для простоты будем рассматривать обычные *полносвязные* сети со входом x, скрытыми(промежуточными) состояниями слоёв h_i , функциями активации $a_i(\cdot)$ и выходом y:

$$egin{aligned} m{h_0} &= m{x} \ m{h_i} &= a_i (m{W_i} \cdot h_{i-1} + m{b_i}), i = \overline{1...n} \ m{h_n} &= \widehat{y} \ L &= \mathcal{L}(\widehat{y}, y), \end{aligned}$$

где $\mathcal{L}(\cdot,\cdot)$ - функция ошибки.

Обозначим параметры модели на i-ом слое $\theta_i = (W_i, b_i)$, а параметры всей модели через $\Theta = \{\theta_i : i = \overline{1...n}\}$. Чаще всего нейронные сети принято рассматривать, как вычислительный граф/граф вычислений. Такой подход удобен с инженерной точки зрения, поскольку позволяет воспользоваться инструментом автоматического дифференцирования, и используется во всех современных фреймоворках: PyTorch, TensorFlow и прочие. Граф вычислений является ациклическим ориентированным графом, составленным из вершин-переменных и вершин-операций(Рисунок 2.1).

Рисунок 2.1 Полносвязная сеть в виде графа вычислений

Далее будем называть модели, основанные на графах вычислений, — графовыми моделями. Графы вычислений могут разных типов: статическими/динамическими, детерминированными/вероятностными и т.д. Для обучения/настройки параметров детерминированных графовых моделей используется метод обратного распространения ошибки(back propagation), который широко используется в современном мире. Вкратце напомним алгоритм:

После прямого выполнения графа (forward pass), то есть в соответствии с направлениями рёбер на выходе мы получаем L -значение функции ошибки, которые в зависимости от задач мы хотим либо минимизировать, либо максимизировать. Для этого мы пользуемся градиентными методами оптимизации, что требует вычисление градиентов $\frac{dL}{dW_i}, \frac{dL}{db_i}$ по нашим параметрам модели, где $i=\overline{1,n}$. В общем случае это трудная задача, однако в случае детерминированных графовых моделей мы можем использовать цепное правило (chain rule) для того, чтобы последовательно проталкивать градиенты, начиная с концевой вершины, содержащей L.

Например, для подсчёта градиентов $\frac{dL}{dW_n}, \frac{dL}{db_n}$ мы представим его в виде

$$\frac{dL}{dW_n} = \frac{dL}{dh_n} \cdot \frac{dh_n}{dW_n}$$
$$\frac{dL}{db_n} = \frac{dL}{dh_n} \cdot \frac{dh_n}{db_n}$$

Аналогично для всех остальных параметров модели мы будем проталкивать накопленный с концевой вершины градиент до соответствующих вершин и с помощью этого градиента высчитывать градиент по параметрам модели. Схему работы алгоритма обратного распространения ошибки можно увидеть на Рису-

нок 2.2.

Рисунок 2.2 Обратное распространение ошибки по графу вычислений детерминированной полносвязной сети

Однако детерминированные нейронные сети обладают несколькими проблемами:

- Переобучение.
- Низкая интерпретируемость.
- Завышенная/заниженная уверенность модели в предсказаниях, даже если они неверные.
- Низкий уровень откалиброванности модели.

Указанные проблемы попытаемся решить с помощью байесовского подхода к нейронным сетям, который рассмотрим далее.

2.2 Байесовские нейронные сети.

2.2.1 Вероятностные графы вычислений.

Перед тем, как приступить к байесовским нейронным сетям, рассмотрим вероятностные графы вычислений, на которых основаны байесовские сети. В литературе также часто вместо названия вероятностные графы вычислений встречается вероятностные графические модели. Второе название является более общим, в то время как первое более специфично именно для байесовских нейронных сетей. Такие графы вычислений широко используются и известны достаточно давно. Они лежат в основе, например, Марковских цепей, которые

ранее активно использовались в различных задачах машинного предсказания, распознавания образов и т.п.

Основная мотивация в использовании вероятностного подхода состоит в том, что в реальном мире мы чаще имеем дело с неопределённостью в данных и знаниях и не можем детерминированно описать все приходящие переменные для решения задачи. Для решения проблем с неопределённостью можно попробовать собрать большие объёмы данных для того, чтобы попытаться "понять" эту неопределённость. С другой стороны мы можем использовать байесовский подход, который напрямую оперирует с неопределённостью.

Рассмотрим структуру вероятностных графовых моделей. В отличие от детерминированных моделей в граф добавляются вершины со случайными переменными. Таким образом в нашем совместно существуют детерминированные вершины и случайные (Рисунок 2.3). Стоит отметить, что после вступления в контакт детерминированных переменных и случайных, весь дальнейший результат будет случайным. При работе с такими моделями нужно различать наблюдаемые и скрытые/латентные переменные. Различия в этих двух понятиях естественны: в реальной жизни у нас есть некоторые известные данные и те, которые мы не может измерить явно, а лишь вычислить в результате работы модели.

Рисунок 2.3 Вероятностная графическая модель. Здесь круги с пунктирной границей являются сэмплируемыми случайными величинами. Зелёным цветом обозначены наблюдаемые случайные переменные.

Стоит сделать замечание, что детерминированные переменные также можно

представить, как случайные величины с δ -функцией плотности распределения $\delta(\cdot)$, где $\delta(\cdot)$ — δ -функция Дирака. Данный факт позволяет рассматривать все вершины в вероятностной графовой модели, как случайные.

Введём более строгое определение. Пусть $(x_1, x_2, ..., x_n)$ - множество случайных величин, представляющих вершины ориентированного графа. Тогда вероятностная графическая модель — это семейство условных распределений $p(x_1|...), p(x_2|...)$ и т.д. над данными случайными величинами $x_1, x_2, x_3, ..., x_n$.

В случае графовых моделей каждая случайная величина x_i зависит не от всех других случайных величин, а лишь от некоторого множество её предков $ancestors(x_i)$. Таким образом мы можем вычислить полную условную плотность величины x_i так:

$$p(x_i|x_n, x_{n-1}, ...x_1) = p(x_i|ancestors(x_i))$$

Используя *цепное правило* для совместного распределения $p(x_1, x_2, ..., x_n)$ мы можем расписать его через частные распределения и условные:

$$p(x_1, x_2, ..., x_n) = p(x_1)p(x_2|x_1)p(x_3|x_2, x_1)...p(x_n|x_{n-1}, ..., x_1)$$

Выбирая порядок множителей справа удобным образом мы можем вычислить совместное распределение.

Подобные вероятностные графические модели позволяют узнавать неочевидные взаимосвязи в данных, если в качестве вершин принять, например, признаки из какого-нибудь набора данных. При достаточном времени, потраченном на составлении связей в данном графе, аналитик данных способен в удобной форме отлавливать закономерности и проверять гипотезы о распределении данных. Также возможно их использование в системном или бизнес анализах, однако придётся потратить больше времени для дизайна нашего графа, поскольку мы можем столкнуться с не числовыми вершинами, а, например, событийными.

Другая полезная особенность таких моделей в том, что вместо какого-то конкретного значения интересующей нас величины мы получаем её распределение(Рисунок 2.4). Это даёт сильно больше информации, чем одно значение и позволяет оценивать *риски*, связанные с этой величиной. Существует много задач, где определение рисков важнее какого-то одного ответа. Примеры: задача

кредитного скоринга, большинство задач по работе с финансами(определение стоимости ценных бумаг, курса валют и т.д.), задачи в области медицины и здравоохранения, транспорт на автопилоте и т.п.

Рисунок 2.4 Та же графическая модель, но с видимыми распределениями значений в вершинах. Детерминированные вершины имеют δ -функцию распределения.

Существуют несколько инструментов для работы с такими моделями: Bayes Net Toolbox (MATLAB), pgmpy (Python) и др.

2.2.2 Байесовские нейронные сети.