Math 412. Quotient rings

DEFINITION: Let I be an ideal of a ring R. Consider arbitrary $x, y \in R$. We say that x is **congruent** to y **modulo** I if $x - y \in I$. In this case, we write $x \equiv y \pmod{I}$.

DEFINITION: The **congruence class of** y **modulo** I is the set $\{y+z \mid z \in I\}$ of all elements of R congruent to y modulo I, which we by y+I.

The set of all congruence classes of R modulo I is denoted R/I.

CAUTION: The elements of R/I are sets.

DEFINITION: Let I be an ideal of a ring R. The **Quotient Ring** of R by I is the set R/I of all congruence classes modulo I in R, together with binary operations + and \cdot defined by

$$(x+I) + (y+I) := (x+y) + I$$
 $(x+I) \cdot (y+I) := (x \cdot y) + I.$

Part 1: Getting acquainted.

A. IDEALS IN SOME FAMILIAR RINGS. It turns out that we can classify ALL ideals in some special rings!

- (1) Let \mathbb{F} be a field. Show that the only two ideals in \mathbb{F} are \mathbb{F} and $\{0\}$.
- (2) Let I be an ideal in \mathbb{Z} , and suppose that $I \neq \{0\}$. Prove that I = (c), where c is the smallest positive integer in I. Conclude that every ideal in \mathbb{Z} is a principal ideal.
- (3) Let \mathbb{F} be a field, and $R = \mathbb{F}[x]$. Let I be an ideal in R, and suppose that $I \neq \{0\}$. Prove that I = (f(x)), where f(x) is the monic polynomial of smallest degree in I. Conclude that every ideal in R is a principal ideal.
- (4) Is every ideal in every ring a principal ideal?

Solution.

- (1) Let $I \neq \{0\}$ be an ideal in \mathbb{F} . There exists some nonzero $c \in I$, and since \mathbb{F} is a field, c is invertible. Then $1 = c^{-1}c \in I$, and that implies $I = \mathbb{F}$.
- (2) Note first that I contains a positive integer, since it contains some nonzero integer, and it is closed under "negatives." We need to show that if $x \in I$, then c|x. Use the division algorithm to write x = cq + r, with $0 \le r < c$. Since $c \in I$, $cq \in I$. Since $cq \in I$, $cq \in I$. Since $cq \in I$, $cq \in I$. Since $cq \in I$, $cq \in I$. By definition of c, we must have $cq \in I$, so c|x.
- (3) The proof is analogous to the previous part, just using the division algorithm for polynomials instead!
- (4) No see problem D(5) of worksheet 10 for an example.

B. THE QUOTIENT RING R/I. Fix any ring R and any ideal $I \subseteq R$.

- (1) Explain what needs to be checked in order to verify that the addition and multiplication defined above on the set R/I are **well-defined**. Now check it for at least one of the operations.
- (2) Explain briefly why the ring axioms (for example, associativity) for each operation on R/I follow easily from those for R.
- (3) What are the additive and multiplicative identity elements in R/I?

- (4) What is the additive inverse of y + I in R/I?
- (5) Explain why R/I is commutative whenever R is commutative.
- (6) Prove that the **canonical map** $R \to R/I$ sending $r \mapsto r + I$ is a *surjective homomorphism*. Find its kernel.

Solution.

- (1) Check that given any $f, g, f', g' \in R$, if $f \equiv f'$ and $g \equiv g'$, then $f + g \equiv f' + g'$ and $fg \equiv f'g'$.
- (2) Whatever the statement, we can use the definitions of the operations in R/I to convert the statement we need to prove into a statement in R: for example, to prove associativity of the addition, we note that

$$((f+I)+(g+I))+(h+I)=((f+g)+h)+I,$$

use that the sum is associate in R, and then finally use the definition of addition in R/I again to rewrite this as (f+I)+((g+I)+(h+I)).

- (3) 0 + I and 1 + I.
- (4) -y + I.
- (5) The multiplication operation in R/I is induced by the multiplication in R. Given any f + I, $g + I \in R/I$,

$$(f+I) \cdot (g+I) = fg + I = gf + I = (g+I) \cdot (f+I).$$

(6) It's clear this is a surjective map, so all we need to check is that it is indeed a homomorphism. Clearly, $1 \mapsto 1 + I$. The remaining properties follow by definition of the operations on R:

$$(f+I) + (g+I) = ((f+g)+I)$$
 and $(f+I) \cdot (g+I) = ((f \cdot g)+I)$.

The kernel of the canonical homomorphism is I.

Part 2: Understanding examples.

- C. Review: Quotients of \mathbb{Z} .
 - (1) Consider the ring $R = \mathbb{Z}$ and the ideal I = (n). What is the quotient ring R/I?
 - (2) Let I = (8). Cacluate $(2+I) \cdot (5+I)$ in \mathbb{Z}/I .
 - (3) Let $n \in \mathbb{Z}$ with n > 1. For which n is the quotient ring $\mathbb{Z}/(n)$ a field?

Solution.

- (1) Our old friend \mathbb{Z}_n .
- (2) $(2+I) \cdot (5+I) = 10 + I = 2+I$
- (3) $\mathbb{Z}/(n) = \mathbb{Z}_n$ is a field if and only if n is prime.
- D. Let $R = \mathbb{Z}_6$. Consider the subset $I = \{[0]_6, [2]_6, [4]_6\}$.
 - (1) Prove that I is an ideal of \mathbb{Z}_6 .
 - (2) List out all elements of \mathbb{Z}_6 in the congruence classes of $[0]_6$, $[2]_6$, and $[1]_6$ modulo I.
 - (3) Write out the subset $[0]_6 + I$ of \mathbb{Z}_6 in set notation. Ditto for $[1]_6 + I$.
 - (4) Remember that the elements of R/I are *subsets* of the ring R. The ring \mathbb{Z}_6/I has **two** elements, both are subsets of \mathbb{Z}_6 . What are these two elements in this case? What is the standard "quotient ring" notation for these elements of \mathbb{Z}_6/I ? What is the simplest possible notation for these two elements of \mathbb{Z}_6/I , allowing "abuses" of notation?

(5) Prove that $\mathbb{Z}_6/I \cong \mathbb{Z}_2$ by describing an explicit isomorphism. Think about how the corresponding elements of \mathbb{Z}_2 and \mathbb{Z}_6/I under the isomorphism are "the same" or different.

Solution.

- (1) This is a non-empty subset of \mathbb{Z}_6 . It's closed for additive inverses because $-[2]_6 = [4]_6$, closed for addition because [2] + [2] = [4], [2] + [4] = [0] and [4] + [4] = [2], and closed for multiplication by any elements because as a subset of \mathbb{Z} , the union of all these classes corresponds precisely to all the even integers.
- (2) $[0]_6 + I = [2]_6 + I = \{[0]_6, [2]_6, [4]_6\}$ and $[1]_6 + I = \{[1]_6, [3]_6, [5]_6\}$. There are only two elements in \mathbb{Z}_6/I .
- (3) Same answer as the previous question.
- (4) The two elements we already described. We could simplify our notation and writing them as just 0 + I and 1 + I, or even just 0 and 1.
- (5) Check that the map $[0]_6 + I \mapsto [0]_2$ and $[1]_6 + I \mapsto [1]_2$ is a ring homomorphism. This is also easily a bijection.

E. QUOTIENTS OF POLYNOMIAL RINGS.

- (1) Let $R = \mathbb{Z}_2[x]$. Let $I = (x^2) = \{g(x)x^2 \mid g(x) \in R\}$ be an ideal. Find an element of $x^5 + x^3 + x^2 + x + I$ of degree 1.
- (2) Find an element in $(x + I) \cdot (x + 1 + I)$ of degree 1.
- (3) Show that every element $h(x) + I \in R/I$ contains exactly one polynomial t(x) such that t(x) = 0 or deg(t(x)) < 2.
- (4) How many elements are in $\mathbb{Z}_2[x]/(x^2)$?
- (5) Write out addition and multiplication tables for the quotient ring $\mathbb{Z}_2[x]/(x^2)$. Is it a domain? Is it a field? What is its characteristic?
- (6) Does your proof for c work if $I = (x^2 + x + 1)$? How many elements are in $\mathbb{Z}_2[x]/(x^2 + x + 1)$?
- (7) Write out addition and multiplication tables for the quotient ring $\mathbb{Z}_2[x]/(x^2+x+1)$. Is it a domain? Is it a field? What is its characteristic?
- (8) Let I = (g(x)). Show that gcd(f(x), g(x)) = 1 if and only if f(x) + I is a unit in $\mathbb{F}[x]/I$ (remember the analog of Bézout's identity for polynomial rings).
- (9) Make a conjecture: if \mathbb{F} is a field, $R = \mathbb{F}[x]$ then R/(f(x)) is a field if f(x) is . . .

Solution.

- (1) $x^5 + x^3 + x^2 + x + I = x + I$, because $x^5 + x^3 + x^2 \in I$.
- (2) First we see that $(x+I) \cdot (x+1+I) = x^2 + x + I$. Since $x^2 \in I$, $x^2 + x + I = x + I$.
- (3) We've done this before on the polynomial ring worksheet! By the division algorithm on polynomials, we can write

$$h(x) = q(x)x^2 + t(x)$$

where t(x) is 0 or a polynomial of degree strictly less than 2. Thus $h(x) - t(x) = q(x)x^2$, so h(x) + I = t(x) + I.

Furthermore, to show uniqueness, suppose that $t_1(x), t_2(x)$ are both polynomials such that $t_i(x) = 0$ or $\deg(t_i(x)) < 2$, and suppose that $t_1(x) \in h(x) + I$ and $t_2(x) \in h(x) + I$. Then $t_1(x) + I = t_2(x) + I$, so $t_1(x) - t_2(x) \in I$. Thus $t_1(x) - t_2(x) = g(x) \cdot x^2$. If $g(x)x^2$ is not zero, then $g(x)x^2$ has degree at least

- 2. But since both $t_1(x)$ and $t_2(x)$ are degree less than 2, their difference is as well. Thus it must be that $g(x)x^2 = 0 = t_1(x) t_2(x)$.
- (4) There are 4 elements in $\mathbb{Z}_2/(x^2)$.

(5)

+	0	1	x	x+1
0	0	1	x	x+1
1	1	0	x+1	x
x	x	x+1	0	1
x+1	x+1	x	1	0

•	0	1	x	x+1
0	0	0	0	0
1	0	1	x	x+1
\boldsymbol{x}	0	x	0	x
x+1	0	x+1	x	1

It is not a domain, nor is it a field. Its characteristic is 2.

- (6) Yes, the proof works exactly the same! There are still four elements.
- (7) There is a class for each polynomial of degree strictly less than 2, and there are 4 such polynomials: 0, 1, x, x + 1.
- (8) A field, since $x^2 + x + 1$ is irreducible, and of characteristic 2.

	+	0	1	x	x+1
	0	0	1	x	x+1
ĺ	1	1	0	0 x+1	
ĺ	x	x	x+1	0	1
	x+1	x+1	x	1	x

•	0	1	x	x+1
0	0	0	0	0
1	0	1	x	x+1
x	0	x	x+1	1
x+1	0	x+1	1	x

(9) Suppose that $\gcd(f(x),g(x))=1$. Then there exists $u(x),v(x)\in\mathbb{F}[x]$ such that

$$u(x)f(x) + v(x)g(x) = 1.$$

Thus u(x)f(x)-1=v(x)g(x), so $u(x)f(x)-1\in I$. Thus (u(x))f(x)+I=1+I, so

$$(u(x) + I)(f(x) + I) = 1 + I.$$

Now suppose that f(x) + I is a unit in $\mathbb{F}[x]/I$. Then there is a h(x) + I such that

$$1 + I = (f(x) + I)(h(x) + I)$$

= $f(x)h(x) + I$.

Thus $1 - f(x)h(x) \in I$, so there exists some p(x) such that 1 - f(x)h(x) = p(x)g(x), which implies that

$$1 = f(x)h(x) + p(x)g(x).$$

The $\gcd(f(x),g(x))$ divides f(x) and g(x), so it must divide any combination of the two. Thus $\gcd(f(x),g(x))$ must be some constant, and since we define the greatest common divisor to be MONIC, we can conclude that $\gcd(f(x),g(x))=1$.

(10) R/(f(x)) is a field if f(x) is irreducible.

F. MORE EXAMPLES

- (1) TRUE OR FALSE: If R is a domain and I is an ideal in R, then R/I is a domain.
- (2) Let R and S be rings. Recall from worksheet 10G, the set $\{(r, 0_S)|r \in R\}$ is an ideal of $R \times S$. Describe the quotient ring, $(R \times S)/I$.
- (3) Generate an example of a ring T and an ideal I such that T/I is a domain, but T is not a domain.
- (4) TRUE OR FALSE: If r is a unit in R and $I \neq R$, then r + I is a unit in R.

Solution.

- (1) False! Consider $R=\mathbb{Z}$ and I=(4), or any ideal generated by an integer that is not prime.
- (2) $(R \times S)/I \cong S$
- (3) $\mathbb{Z}_4 \times \mathbb{Z}$ is one example. If R is not a domain and S is a domain and I is the ideal described in part (2), then $(R \times S)/I \cong S$ is a domain.
- (4) True! Suppose r is a unit in R. Then there exists some $u \in R$ such that $ru = 1_R$. Thus (r+I)(u+I) = (1+I), which is the multiplicative identity in R/I.