Given

Slew Attitude $([\phi, \theta, \psi]^T)$

Property	Value
Initial Slew Attitude	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{\circ}$
Desired Slew Attitude	$\begin{bmatrix} 30 & 50 & 70 \end{bmatrix}^{\circ}$

Rate $\left([\dot{\phi},\dot{\theta},\dot{\psi}]^T\right)$

Property	Value
Initial Rate	
Desired Rate	$\begin{bmatrix} 0.2 & 0.2 & 0.2 \end{bmatrix}^{\circ} / s$

Results SIL Test Plan

$\ \, \textbf{Moment of Inertia} \; (I) \\$

Property	Value
MOI of the Reaction Wheel	$0.00042 kgm^2$
	2.10 0.00 0.01
MOI of the satellite	$\begin{bmatrix} 2.10 & 0.00 & 0.01 \\ 0.00 & 2.30 & -0.03 \\ 0.01 & -0.03 & 1.72 \end{bmatrix} kgm^2$

Torque (τ) and Angular Momentum (H)

Property	Value
Disturbance Torque act- ing on the satellite (sinu- soidal in ECI Frame)	$[10^{-6} 10^{-6} 10^{-6}] Nm$
Maximum Torque gen- erated by the Reaction Wheel	0.015 Nm
Angular Momentum generated by the Reaction wheel	0.035 Nms

Approach

Problem Approach

- ► Using a PD control
- Propagating attitude using quaternions
- Computing attitude error through quaternion error matrix
- Computing rate error through angular velocity error vector

Assumptions

- Satellite behaves as a rigid body.
- ▶ Moments of inertia are constant over time.
- ► Reaction wheels are ideal, with no friction losses, misalignments, significant delays, or backlashes.
- Reaction wheel dynamics are fast enough to be considered instantaneous, with no motor dynamics modeled.
- Reaction wheels' spin axes are aligned with the satellite's body frame axes.

Assumptions (Contd.)

- No external disturbances other than the specified sinusoidal torque.
- ► Rotation sequence is 3-2-1 (Yaw-Pitch-Roll or Z-Y-X).
- Angles and rates given are related to roll, pitch, and yaw in that order.
- Satellite's orbit and orbital perturbations are not considered, as the focus is on attitude control.
- ► No sensor modeling, since assuming all parameters are perfectly measured in an ideal system.

References

- Optimization of Pyramidal Reaction Wheel Configuration for Minimizing Angular Momentum by Ali Kasiri, Farhad Fani Saberi, and Mehdi Kashkul
- Spacecraft Dynamics and Control: A Practical Engineering Approach by Marcel J. Sidi

Equations

Quaternion Error

$$\boldsymbol{q}_{e} = \frac{1}{2} \begin{bmatrix} q_{d_{4}} & q_{d_{3}} & -q_{d_{2}} & q_{d_{1}} \\ -q_{d_{3}} & q_{d_{4}} & q_{d_{1}} & q_{d_{2}} \\ q_{d_{2}} & -q_{d_{1}} & q_{d_{4}} & q_{d_{3}} \\ -q_{d_{1}} & -q_{d_{2}} & -q_{d_{3}} & q_{d_{4}} \end{bmatrix} \begin{bmatrix} -q_{1} \\ -q_{2} \\ -q_{3} \\ q_{4} \end{bmatrix}$$

where,

- $ightharpoonup q_e$ is the error quaternion
- $ightharpoonup q_d = [q_{d_1}, q_{d_2}, q_{d_3}, q_{d_4}]^T$ is the desired quaternion
- ▶ $q = [q_1, q_2, q_3, q_4]^T$ is the current quaternion

Angular Velocity Error

$$\omega_e = \omega_d - \omega$$

where.

- $\triangleright \omega_e$ is the angular velocity error
- $\triangleright \omega_d$ is the desired angular velocity
- $\triangleright \omega$ is the current angular velocity

Approach Equations SIL Test Plan

PD Control

$$T_{pd_x} = 2k_{p_x}q_{e_1}q_{e_4} + k_{d_x}\omega_{x_e}$$

$$T_{pd_y} = 2k_{p_y}q_{e_2}q_{e_4} + k_{d_y}\omega_{y_e}$$

$$T_{pd_z} = 2k_{p_z}q_{e_3}q_{e_4} + k_{d_z}\omega_{z_e}$$

where,

- $ightharpoonup T_{pd} = [T_{pd_x}, T_{pd_y}, T_{pd_z}]^T$ are the control torques
- $ightharpoonup k_p = [k_{p_x}, k_{p_y}, k_{p_z}]^T$ are the proportional gains
- $lacktriangledown k_d = [k_{d_x}, k_{d_y}, k_{d_z}]^T$ are the derivative gains

Disturbance Torque

$$\begin{split} \tau_{d_{SBF}} &= R_{ECItoSBF} \tau_{d_{ECI}} \\ &= \begin{bmatrix} 1 - 2(q_3^2 + q_4^2) & 2(q_2q_3 - q_1q_4) & 2(q_2q_4 + q_1q_3) \\ 2(q_2q_3 + q_1q_4) & 1 - 2(q_2^2 + q_4^2) & 2(q_3q_4 - q_1q_2) \\ 2(q_2q_4 - q_1q_3) & 2(q_3q_4 + q_1q_2) & 1 - 2(q_2^2 + q_3^2) \end{bmatrix} \begin{bmatrix} 10^{-6} \sin(t) \\ 10^{-6} \sin(t) \\ 10^{-6} \sin(t) \end{bmatrix} \end{split}$$

where,

- $ightharpoonup au_{d_{ECI}}$ is the external disturbance vector in Earth-Centered Inertial frame
- $m{ au}_{d_{SBF}}$ is the external disturbance vector in Satellite Body-Fixed frame
- R_{ECItoSBF} is the rotation matrix from ECI to SBF frame

Reaction Wheel Configuration Matrix

$$\begin{aligned} \boldsymbol{\tau}_{rw} &= \boldsymbol{A}^{\dagger} \boldsymbol{\tau}_{pd} \\ \boldsymbol{\tau}_{c} &= \boldsymbol{A} \boldsymbol{\tau}_{rw} \\ &= \begin{bmatrix} \cos(\beta) & 0 & -\cos(\beta) & 0 \\ 0 & \cos(\beta) & 0 & -\cos(\beta) \\ \sin(\beta) & \sin(\beta) & \sin(\beta) & \sin(\beta) \end{bmatrix} \boldsymbol{\tau}_{rw} \end{aligned}$$

where,

- $ightharpoonup au_{rw}$ is a vector of torques generated by the 4 reaction wheels
- ightharpoonup A, A^{\dagger} is the reaction wheel distribution matrix and its pseduoinverse
- ightharpoonup au_c is a vector of the final three axes torque output

Dynamics Equation of Motion

$$egin{aligned} oldsymbol{ au_{c}} + oldsymbol{ au_{d_{SBF}}} &= I \dot{oldsymbol{\omega}} + A I_{rw} \dot{oldsymbol{\omega}}_{rw} + oldsymbol{\omega} imes (I oldsymbol{\omega} + A I_{rw} oldsymbol{\omega}_{rw}) \ \dot{oldsymbol{\omega}}_{rw} &= rac{oldsymbol{ au_{rw}}}{I_{rw}} \end{aligned}$$

where,

- ▶ I is the satellite moment of inertia matrix
- ► I_{rm} is the reaction wheel moment of inertia
- $\triangleright \omega$ is the angular velocity of the satellite
- $\triangleright \omega_{rw}$ is the angular velocity of the reaction wheel

Equations

Ouaternion Kinematics

$$\dot{q} = \frac{1}{2}\Omega q$$

$$= \frac{1}{2} \begin{bmatrix} 0 & \omega_z & -\omega_y & \omega_x \\ -\omega_z & 0 & \omega_x & \omega_y \\ \omega_y & -\omega_x & 0 & \omega_z \\ -\omega_x & -\omega_y & -\omega_z & 0 \end{bmatrix} q$$

where.

- \triangleright \dot{q} is the quaternion rate
- $ightharpoonup \Omega$ is an angular velocity skew symmetric matrix

Equations

Euler Angles to Quaternion for ZYX Rotation Sequence

$$\begin{split} q_1 &= \sin\left(\frac{\psi}{2}\right) \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{\phi}{2}\right) + \cos\left(\frac{\psi}{2}\right) \cos\left(\frac{\theta}{2}\right) \cos\left(\frac{\phi}{2}\right) \\ q_2 &= -\sin\left(\frac{\psi}{2}\right) \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\phi}{2}\right) + \cos\left(\frac{\psi}{2}\right) \cos\left(\frac{\theta}{2}\right) \sin\left(\frac{\phi}{2}\right) \\ q_3 &= \sin\left(\frac{\psi}{2}\right) \cos\left(\frac{\theta}{2}\right) \sin\left(\frac{\phi}{2}\right) + \cos\left(\frac{\psi}{2}\right) \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\phi}{2}\right) \\ q_4 &= \sin\left(\frac{\psi}{2}\right) \cos\left(\frac{\theta}{2}\right) \cos\left(\frac{\phi}{2}\right) - \cos\left(\frac{\psi}{2}\right) \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{\phi}{2}\right) \end{split}$$

where,

- $ightharpoonup \phi$ is the satellite's longitudinal axis (Roll) rotation
- ightharpoonup heta is the satellite's transverse axis (Pitch) rotation
- \blacktriangleright ψ is the satellite's normal axis (Yaw) rotation

Quaternion to Euler Angles for ZYX Rotation Sequence

$$\phi = \tan^{-1} \left(\frac{2(q_1q_2 + q_3q_4)}{q_1^2 - q_2^2 - q_3^2 + q_4^2} \right)$$

$$\theta = -\sin^{-1} \left(2(q_2q_4 - q_1q_3) \right)$$

$$\psi = \tan^{-1} \left(\frac{2(q_1q_4 + q_2q_3)}{q_1^2 + q_2^2 - q_3^2 - q_4^2} \right)$$