Numerical optimization: theory and applications

Ammar Mian

Associate professor, LISTIC, Université Savoie Mont Blanc

Outline

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- 4. Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- 6. Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

1. Introduction to Constrained Optimization

- 2. Local and Global Solutions
- **3.** Smoothness
- Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Context and Motivation

- Unconstrained optimization: We could freely minimize f(x) over \mathbb{R}^n
- Real-world problems: Often have restrictions on variables
- Examples: Resource limits, physical constraints, design specifications

Goal: Characterize solutions when constraints are present, extending our knowledge from unconstrained optimization.

Problem Formulation

General Constrained Optimization Problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
 subject to $\begin{cases} c_i(\mathbf{x}) = 0, & i \in \mathcal{E} \\ c_i(\mathbf{x}) \geq 0, & i \in \mathcal{I} \end{cases}$

where:

- *f*: objective function
- c_i , $i \in \mathcal{E}$: equality constraints
- c_i , $i \in \mathcal{I}$: inequality constraints
- $\Omega = \{ \mathbf{x} \mid c_i(\mathbf{x}) = 0, i \in \mathcal{E}; c_i(\mathbf{x}) \geq 0, i \in \mathcal{I} \}$: feasible set

Introduction to Constrained Optimization

2. Local and Global Solutions

- 3. Smoothness
- Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- Derivation of First-Order Conditions
 - Feasible Sequence
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Impact of Constraints on Solutions

Constraints can:

- Simplify: Exclude many local minima ⇒ easier to find global minimum
- Complicate: Create infinitely many solutions

Example 1: min $\|\mathbf{x}\|_2^2$ subject to $\|\mathbf{x}\|_2^2 \ge 1$

- Unconstrained: unique solution x = 0
- Constrained: any **x** with $\|\mathbf{x}\|_2 = 1$ solves the problem

Solution Definitions

Definition (Local solution)

 \mathbf{x}^* is a **local solution** if $\mathbf{x}^* \in \Omega$ and there exists neighborhood \mathcal{N} of \mathbf{x}^* such that

$$f(\mathbf{x}) \geq f(\mathbf{x}^{\star})$$
 for all $\mathbf{x} \in \mathcal{N} \cap \Omega$

Definition (Strict local solution)

 \mathbf{x}^{\star} is a strict local solution if $\mathbf{x}^{\star} \in \Omega$ and there exists neighborhood \mathcal{N} of \mathbf{x}^{\star} such that

$$f(\mathbf{x}) > f(\mathbf{x}^*)$$
 for all $\mathbf{x} \in \mathcal{N} \cap \Omega$, $\mathbf{x} \neq \mathbf{x}^*$

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions

3. Smoothness

- Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Smoothness and Constraint Representation

Key insight: Nonsmooth boundaries can often be described by smooth constraint functions.

Diamond example: $\|\mathbf{x}\|_1 = |x_1| + |x_2| \le 1$

- Nonsmooth: Single constraint with absolute values
- Smooth equivalent: Four linear constraints:

$$x_1 + x_2 \le 1$$
, $x_1 - x_2 \le 1$, $-x_1 + x_2 \le 1$, $-x_1 - x_2 \le 1$

[Visualization: Diamond constraint representation]

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- 4. Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- **3.** Smoothness
- 4. Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Example 1: Single Equality Constraint

Problem

$$\min x_1 + x_2$$
 subject to $x_1^2 + x_2^2 - 2 = 0$

- Feasible set: Circle of radius $\sqrt{2}$
- Solution: $\mathbf{x}^* = (-1, -1)^T$ (by inspection)
- Key observation: At solution, $\nabla f(\mathbf{x}^*)$ and $\nabla c_1(\mathbf{x}^*)$ are parallel

$$x_1^2 + x_2^2 = 2$$

Optimality Condition for Equality Constraints

Necessary Condition

At solution \mathbf{x}^* , there exists λ_1^* such that:

$$\nabla f(\mathbf{x}^{\star}) = \lambda_1^{\star} \nabla c_1(\mathbf{x}^{\star})$$

Intuition:

- For feasible descent direction **d**: $\nabla c_1(\mathbf{x})^T \mathbf{d} = 0$ (stay on constraint)
- For improvement: $\nabla f(\mathbf{x})^T \mathbf{d} < 0$
- No such **d** exists when gradients are parallel

Lagrangian formulation:

$$\mathcal{L}(\mathbf{x}, \lambda_1) = f(\mathbf{x}) - \lambda_1 c_1(\mathbf{x})$$

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \lambda_1^*) = \mathbf{0}$$

- Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness

4. Examples

- A Single Equality Constraint
- A Single Inequality Constraint
- Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Example 2: Single Inequality Constraint

Problem

$$\min x_1 + x_2$$
 subject to $2 - x_1^2 - x_2^2 \ge 0$

- Feasible set: Disk of radius $\sqrt{2}$ (circle + interior)
- Solution: $\mathbf{x}^* = (-1, -1)^T$ (same as before)
- Key difference: Sign of Lagrange multiplier matters

Two Cases for Inequality Constraints

Case I: Interior point $(c_1(\mathbf{x}) > 0)$

- Constraint not restrictive
- Necessary condition: $\nabla f(\mathbf{x}) = \mathbf{0}$
- Lagrange multiplier: $\lambda_1 = 0$

Case II: Boundary point $(c_1(\mathbf{x}) = 0)$

- Constraint is active
- Feasible descent direction **d**: $\nabla c_1(\mathbf{x})^T \mathbf{d} \geq 0$
- No such direction when: $\nabla f(\mathbf{x}) = \lambda_1 \nabla c_1(\mathbf{x})$ with $\lambda_1 \geq 0$

Complementarity Condition

$$\lambda_1 c_1(\mathbf{x}) = 0$$

- Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness

4. Examples

- A Single Equality Constraint
- A Single Inequality Constraint
- Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Example 3: Two Inequality Constraints

Problem

$$\min x_1 + x_2$$
 subject to $2 - x_1^2 - x_2^2 \ge 0$, $x_2 \ge 0$

- Feasible set: Half-disk
- Solution: $\mathbf{x}^* = (-\sqrt{2}, 0)^T$
- Both constraints active at solution

Multiple Constraints: KKT Conditions Preview

Lagrangian:

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \lambda_1 c_1(\mathbf{x}) - \lambda_2 c_2(\mathbf{x})$$

Optimality conditions:

$$\nabla_{\mathsf{x}} \mathcal{L}(\mathsf{x}^{\star}, \boldsymbol{\lambda}^{\star}) = \mathbf{0} \tag{1}$$

$$\lambda_i^{\star} \ge 0 \quad \text{for all } i \in \mathcal{I}$$
 (2)

$$\lambda_i^* c_i(\mathbf{x}^*) = 0 \quad \text{for all } i \tag{3}$$

For Example 3:
$$\lambda^* = (1/(2\sqrt{2}), 1)^T$$

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- 6. Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multiplier
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Active Set and Constraint Qualification

Definition (Active Set)

$$\mathcal{A}(\mathbf{x}) = \mathcal{E} \cup \{i \in \mathcal{I} \mid c_i(\mathbf{x}) = 0\}$$

Definition (Linear Independence Constraint Qualification (LICQ))

At point \mathbf{x}^* , LICQ holds if the set of active constraint gradients $\{\nabla c_i(\mathbf{x}^*), i \in \mathcal{A}(\mathbf{x}^*)\}$ is linearly independent.

Purpose: Ensures constraint gradients are well-behaved and don't vanish inappropriately.

Karush-Kuhn-Tucker (KKT) Conditions

Theorem (First-Order Necessary Conditions)

If \mathbf{x}^* is a local solution and LICQ holds at \mathbf{x}^* , then there exists $\boldsymbol{\lambda}^*$ such that:

$$\begin{array}{ll} \nabla_{\mathbf{x}}\mathcal{L}(\mathbf{x}^{\star},\boldsymbol{\lambda}^{\star}) = \mathbf{0} & \text{(Stationarity)} \\ c_{i}(\mathbf{x}^{\star}) = 0, & i \in \mathcal{E} & \text{(Equality feasibility)} \\ c_{i}(\mathbf{x}^{\star}) \geq 0, & i \in \mathcal{I} & \text{(Inequality feasibility)} \\ \lambda_{i}^{\star} \geq 0, & i \in \mathcal{I} & \text{(Dual feasibility)} \\ \lambda_{i}^{\star}c_{i}(\mathbf{x}^{\star}) = 0, & i \in \mathcal{E} \cup \mathcal{I} & \text{(Complementarity)} \end{array}$$

General Lagrangian

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(\mathbf{x})$$

KKT Conditions: Interpretation

Stationarity:
$$\nabla f(\mathbf{x}^*) = \sum_{i \in \mathcal{A}(\mathbf{x}^*)} \lambda_i^* \nabla c_i(\mathbf{x}^*)$$

• Objective gradient is linear combination of active constraint gradients

Complementarity: $\lambda_i^* c_i(\mathbf{x}^*) = 0$

- Either constraint is active $(c_i = 0)$ or multiplier is zero $(\lambda_i = 0)$
- Cannot have both $c_i > 0$ and $\lambda_i > 0$

Dual feasibility: $\lambda_i^{\star} \geq 0$ for inequality constraints

- Sign restriction crucial for inequality constraints
- No sign restriction for equality constraint multipliers

- Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- 6. Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Economic Interpretation of Lagrange Multipliers

Sensitivity analysis: How does optimal value change when constraints are perturbed?

Consider perturbed constraint: $c_i(\mathbf{x}) \ge -\epsilon \|\nabla c_i(\mathbf{x}^*)\|$

Key Result

$$\frac{df(\mathbf{x}^{\star}(\epsilon))}{d\epsilon} = -\lambda_i^{\star} \|\nabla c_i(\mathbf{x}^{\star})\|$$

Interpretation:

- λ_i^{\star} measures sensitivity of optimal value to constraint i
- Large $\lambda_i^{\star} \Rightarrow$ constraint i is "tight" or "binding"
- $\lambda_i^{\star} = 0 \Rightarrow$ constraint *i* has little impact on optimal value

Strongly vs. Weakly Active Constraints

Definition (Strongly Active Constraints)

Inequality constraint c_i is strongly active if $i \in \mathcal{A}(\mathbf{x}^*)$ and $\lambda_i^* > 0$.

Definition (Weakly Active Constraints)

Inequality constraint c_i is weakly active if $i \in \mathcal{A}(\mathbf{x}^*)$ and $\lambda_i^* = 0$.

Economic interpretation:

- Strongly active: Relaxing constraint would improve objective
- Weakly active: Small constraint relaxation has no first-order effect

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- 6. Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- 6. Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Feasible Sequences Approach

Definition (Feasible Sequence)

Given feasible point \mathbf{x}^* , sequence $\{\mathbf{z}_k\}$ is feasible if:

- 1. $\mathbf{z}_k \neq \mathbf{x}^*$ for all k
- 2. $\lim_{k\to\infty} \mathbf{z}_k = \mathbf{x}^*$
- 3. \mathbf{z}_k is feasible for all k sufficiently large

Definition (Limiting Direction)

Vector **d** is a limiting direction if:

$$\lim_{k\to\infty}\frac{\mathbf{z}_k-\mathbf{x}^{\star}}{\|\mathbf{z}_k-\mathbf{x}^{\star}\|}=\mathbf{d}$$

for some feasible sequence $\{z_k\}$.

First-Order Necessary Condition via Feasible Sequences

Theorem (Feasible Sequence Necessary Condition)

If \mathbf{x}^* is a local solution, then for all feasible sequences $\{\mathbf{z}_k\}$ and their limiting directions \mathbf{d} :

$$\nabla f(\mathbf{x}^{\star})^{T}\mathbf{d} \geq 0$$

Proof idea:

• If $\nabla f(\mathbf{x}^*)^T \mathbf{d} < 0$, then by Taylor expansion:

$$f(\mathbf{z}_k) = f(\mathbf{x}^*) + \|\mathbf{z}_k - \mathbf{x}^*\|\mathbf{d}^T \nabla f(\mathbf{x}^*) + o(\|\mathbf{z}_k - \mathbf{x}^*\|)$$

• For large k: $f(\mathbf{z}_k) < f(\mathbf{x}^*)$ contradicting optimality

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- 6. Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Linearized Feasible Directions

Definition (Linearized Feasible Directions)

$$F_1 = \left\{ \alpha \mathbf{d} \mid \alpha > 0, \ \frac{\mathbf{d}^T \nabla c_i(\mathbf{x}^*) = 0, \quad i \in \mathcal{E}}{\mathbf{d}^T \nabla c_i(\mathbf{x}^*) \ge 0, \quad i \in \mathcal{A}(\mathbf{x}^*) \cap \mathcal{I}} \right\}$$

Lemma (Characterization of Limiting Directions)

When LICQ holds:

- 1. Every limiting direction satisfies the conditions defining F_1
- **2**. Every direction in F_1 is a limiting direction of some feasible sequence

Consequence: Under LICQ, optimality requires $\nabla f(\mathbf{x}^*)^T \mathbf{d} \geq 0$ for all $\mathbf{d} \in F_1$.

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- 6. Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

From Geometry to Algebra

Lemma (Lagrange Multiplier Characterization)

There is no direction $\mathbf{d} \in F_1$ with $\mathbf{d}^T \nabla f(\mathbf{x}^*) < 0$ if and only if there exists λ such that:

$$\nabla f(\mathbf{x}^{\star}) = \sum_{i \in \mathcal{A}(\mathbf{x}^{\star})} \lambda_i \nabla c_i(\mathbf{x}^{\star})$$

with $\lambda_i \geq 0$ for $i \in \mathcal{A}(\mathbf{x}^*) \cap \mathcal{I}$.

Geometric intuition:

- Objective gradient must lie in cone generated by active constraint gradients
- Farkas' lemma: Either system has solution or alternative system has solution

- Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Need for Second-Order Analysis

First-order conditions are not sufficient!

Consider directions **w** where first-order information is inconclusive:

$$\mathbf{w}^T \nabla f(\mathbf{x}^*) = 0$$

Question: Does moving along \mathbf{w} increase or decrease f?

Definition (Critical Cone)

$$F_2(\boldsymbol{\lambda}^{\star}) = \left\{ \mathbf{w} \in F_1 \mid \nabla c_i(\mathbf{x}^{\star})^T \mathbf{w} = 0, \text{ all } i \in \mathcal{A}(\mathbf{x}^{\star}) \cap \mathcal{I} \text{ with } \lambda_i^{\star} > 0 \right\}$$

Key property: For $\mathbf{w} \in F_2(\boldsymbol{\lambda}^*)$: $\mathbf{w}^T \nabla f(\mathbf{x}^*) = 0$

Second-Order Necessary Conditions

Theorem (Second-Order Necessary Conditions)

If \mathbf{x}^* is a local solution, LICQ holds, and $\boldsymbol{\lambda}^*$ satisfies KKT conditions, then:

$$\mathbf{w}^T \nabla_{\mathbf{x}\mathbf{x}} \mathcal{L}(\mathbf{x}^{\star}, \boldsymbol{\lambda}^{\star}) \mathbf{w} \geq 0$$
 for all $\mathbf{w} \in F_2(\boldsymbol{\lambda}^{\star})$

Theorem (Second-Order Sufficient Conditions)

If \mathbf{x}^* is feasible, KKT conditions hold, and:

$$\mathbf{w}^T \nabla_{\mathbf{x}\mathbf{x}} \mathcal{L}(\mathbf{x}^{\star}, \boldsymbol{\lambda}^{\star}) \mathbf{w} > 0$$
 for all $\mathbf{w} \in F_2(\boldsymbol{\lambda}^{\star})$, $\mathbf{w} \neq \mathbf{0}$

then \mathbf{x}^* is a strict local solution.

- Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Projected Hessian Matrices

When strict complementarity holds: $F_2(\lambda^*) = \text{Null}(\mathbf{A})$ where $\mathbf{A} = [\nabla c_i(\mathbf{x}^*)]_{i \in \mathcal{A}(\mathbf{x}^*)}^T$

Let **Z** be matrix whose columns span Null(**A**).

Projected Hessian Conditions

Necessary: $\mathbf{Z}^T \nabla_{\mathbf{x}\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) \mathbf{Z} \succeq 0$ Sufficient: $\mathbf{Z}^T \nabla_{\mathbf{x}\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) \mathbf{Z} \succ 0$

Computational approach: Use QR factorization of \mathbf{A}^T to find \mathbf{Z} .

Summary: Characterizing Optimal Solutions

Complete Characterization

Point \mathbf{x}^* is a local solution if:

- 1. First-order: KKT conditions hold
- 2. Second-order: $\mathbf{w}^T \nabla_{\mathbf{x}\mathbf{x}} \mathcal{L}(\mathbf{x}^{\star}, \boldsymbol{\lambda}^{\star}) \mathbf{w} \geq 0$ for $\mathbf{w} \in F_2(\boldsymbol{\lambda}^{\star})$

Practical verification:

- Check LICQ (linear independence of active constraint gradients)
- Solve KKT system for $(\mathbf{x}^*, \boldsymbol{\lambda}^*)$
- Verify projected Hessian conditions

Next: Algorithms to find points satisfying these conditions!