MAS241 해석학 I Note

한승우

June 8, 2023

CONTENTS

CHAPTER	CONTINUITY	Page 2
1.1	Limit and Continuity	2
1.2	The Topological Description of Continuity	5
	The Composition of Continuous Functions — 6 • Limiting Behavior at Infinity —	7
1.3	The Algebra of Continuous Functions	8
1.4	Uniform Continuity	9
1.5	The Uniform Norm: Uniform Convergence	10
1.6	Vector-Valued Functions on \mathbb{R}^n	17

Chapter 1

Continuity

1.1 Limit and Continuity

Definition 1.1.1: Limit of a Function

Let $f: S \to \mathbb{R}$ where $S \subseteq \mathbb{R}^n$. Let $\mathbf{c} \in \overline{S}$. We say f has limit L as \mathbf{x} approaches \mathbf{c} provided that, for every neighborhood N(L), there exists a deleted neighborhood $N'(\mathbf{c})$ such that

$$S \cap N'(\mathbf{c}) \subseteq f^{-1}(N(L)).$$

We write $\lim_{x\to c} f(x) = L$.

Note:-

Limit is unique if it exists.

Note:-

Note that $S \cap N'(\mathbf{c}; \delta) = \emptyset$ for sufficiently small δ if \mathbf{c} is an isolated point of S. This implies any real number can be a limit of f as \mathbf{x} approaches \mathbf{c} . Somehow, Douglass defined that $\lim_{\mathbf{x} \to \mathbf{c}} f(\mathbf{x}) = f(\mathbf{c})$ (since $\mathbf{c} \in S$ in this case). Actually I do not think we should define limit for isolated points.

Note:-

This definition of limit is equivalent to the normal ε - δ definition of limit, except that it defines a limit for isolated points.

Definition 1.1.2: Continuity

Let $f: S \to \mathbb{R}$ where $S \subseteq \mathbb{R}^n$. Let $\mathbf{c} \in S$. We say f is continuous at \mathbf{c} if

$$\lim_{\mathbf{x}\to\mathbf{c}} f(\mathbf{x}) = f(\mathbf{c}).$$

In other words, for every neighborhood $N(f(\mathbf{c}))$, there exists a neighborhood $N(\mathbf{c})$ such that

$$S \cap N(\mathbf{c}) \subseteq f^{-1}(N(f(\mathbf{c}))).$$

If f is continuous at every $\mathbf{c} \in S$, then f is said to be *continuous*.

Theorem 1.1.1

Let $f: S \to \mathbb{R}$ where $S \subseteq \mathbb{R}^n$. Let $\mathbf{c} \in \overline{S}$ where $\lim_{\mathbf{x} \to \mathbf{c}} f(\mathbf{c}) = L$ exists and. Then, f is locally bounded on some deleted neighborhood of \mathbf{c} , that is, there are $M, \delta \in \mathbb{R}_+$ such that

$$\mathbf{x} \in S \cap N'(\mathbf{c}; \delta) \Longrightarrow |f(\mathbf{x})| \leq M.$$

Proof. There exists $\delta \in \mathbb{R}_+$ such that $S \cap N'(\mathbf{c}; \delta) \subseteq f^{-1}(N(L; 1))$. Then, $|f(\mathbf{x})| \le |L| + 1$ if $\mathbf{x} \in S \cap N'(\mathbf{x}; \delta)$.

Theorem 1.1.2

Let $f: S \to \mathbb{R}$ where $S \subseteq \mathbb{R}^n$. Let $\mathbf{c} \in \overline{S}$ where $\lim_{\mathbf{x} \to \mathbf{c}} f(\mathbf{c}) = L$ exists and $L \neq 0$. Then, f is locally bounded away from 0 on some deleted neighborhood of \mathbf{c} , that is, there are $m, \delta \in \mathbb{R}_+$ such that

$$\mathbf{x} \in S \cap N'(\mathbf{c}; \delta) \Longrightarrow |f(\mathbf{x})| \ge m.$$

Proof. There exists $\delta \in \mathbb{R}_+$ such that $S \cap N'(\mathbf{c}; \delta) \subseteq f^{-1}(N(L; |L|/2))$. Then, $|f(\mathbf{x})| \ge |L|/2$ if $\mathbf{x} \in S \cap N'(\mathbf{x}; \delta)$. □

Theorem 1.1.3

Let $f_1: S \to \mathbb{R}$ and $f_2: S \to \mathbb{R}$ where $S \subseteq \mathbb{R}^n$. Let $\mathbf{c} \in \overline{S}$, and suppose $\lim_{\mathbf{x} \to \mathbf{c}} f_1(\mathbf{x}) = L_1$ and $\lim_{\mathbf{x} \to \mathbf{c}} f_2(\mathbf{x}) = L_2$. Then

- (i) $\lim_{\mathbf{x}\to\mathbf{c}} (f_1(\mathbf{x}) + f_2(\mathbf{x})) = L_1 + L_2$.
- (ii) For any $a \in \mathbb{R}$, $\lim_{\mathbf{x} \to \mathbf{c}} af(\mathbf{x}) = aL_1$.
- (iii) $\lim_{\mathbf{x}\to\mathbf{c}} f_1(\mathbf{x}) f_2(\mathbf{x}) = L_1 L_2$.
- (iv) $\lim_{\mathbf{x}\to\mathbf{c}} f_1(\mathbf{x})/f_2(\mathbf{x}) = L_1/L_2$ provided that $L_2 \neq 0$.

Proof. Proved in MAS102 (Calculus II).

Theorem 1.1.4 The Squeeze Play

Let \underline{f} , g, and h be three real-valued functions sharing a common domain $S \subseteq \mathbb{R}^n$. Let $\mathbf{c} \in \overline{C}$ where $\lim_{\mathbf{x} \to \mathbf{c}} f(\mathbf{x}) = \lim_{\mathbf{x} \to \mathbf{c}} h(\mathbf{x}) = L$ exist. Suppose also that, for some $\delta_0 \in \mathbb{R}_+$,

$$\mathbf{x} \in S \cap N'(\mathbf{c}; \delta_0) \implies f(\mathbf{x}) \le g(\mathbf{x}) \le h(\mathbf{x})$$

Then, $\lim_{\mathbf{x}\to\mathbf{c}} g(\mathbf{x}) = L$.

Proof. Proved in MAS102 (Calculus II).

Theorem 1.1.5 Limit is Order Preserving

Let f and g be two real-valued functions sharing a common domain $S \subseteq \mathbb{R}^n$. Let $\mathbf{c} \in \overline{C}$ where $\lim_{\mathbf{x} \to \mathbf{c}} f(\mathbf{x}) = L_1$ and $\lim_{\mathbf{x} \to \mathbf{c}} g(\mathbf{x}) = L_2$ exist. Suppose also that, for some $\delta_0 \in \mathbb{R}_+$,

$$\mathbf{x} \in S \cap N'(\mathbf{c}; \delta_0) \Longrightarrow f(\mathbf{x}) \leq g(\mathbf{x})$$

Then, $L_1 \leq L_2$.

Proof. Proved in MAS102 (Calculus II).

Theorem 1.1.6

Let S be a nonempty subset of \mathbb{R}^n , $\mathbf{c} \in S'$, and $f: S \to \mathbb{R}$. $\lim_{\mathbf{x} \to \mathbf{c}} f(\mathbf{x}) = L$ if and only if, for every Cauchy sequence $\{x_k\}$ in $S\setminus \{c\}$ such that $\lim_{k\to\infty}x_k=c$, it follows that $\lim_{k\to\infty} f(\mathbf{x}_k) = L.$

Proof. (\Rightarrow) Let $\{\mathbf{x}_k\}$ be any of such Cauchy sequences. Take any $\varepsilon \in \mathbb{R}_+$. By continuity, there exists $\delta \in \mathbb{R}_+$ such that $S \cap N'(\mathbf{c}; \delta) \subseteq f^{-1}(N(L; \varepsilon))$. On the other hand, by convergence, there exists $k_0 \in \mathbb{N}$ such that $\forall k \in \mathbb{N}$, $(k \ge k_0 \implies \mathbf{x}_k \in N(\mathbf{c}; \delta))$. Since $\mathbf{x}_k \ne \mathbf{c}$ for each $k \in \mathbb{N}$, we may say

$$\forall k \in \mathbb{N}, (k \ge k_0 \implies \mathbf{x}_k \in N'(\mathbf{c}; \delta) \implies \mathbf{x}_k \in f^{-1}(N(L; \varepsilon)) \implies f(\mathbf{x}_k) \in N(L; \varepsilon)).$$

Thus, $\lim_{k\to\infty} f(\mathbf{x}_k) = L$ holds.

- (⇐) Suppose it is not $\lim_{x\to c} f(x) = L$. Then, it is equivalent to say that, there is some neighborhood $N(L; \varepsilon_0)$ such that $S \cap N'(\mathbf{c}; \delta) \not\subseteq f^{-1}(N(L; \varepsilon_0))$ for every deleted neighborhood $N'(\mathbf{x}; \delta)$. Construct a sequence $\{\mathbf{x}_k\}$ in $S \setminus \{\mathbf{c}\}$ as following.
 - $\mathbf{x}_1 \in S \setminus \{\mathbf{c}\} \setminus f^{-1}(N(L; \varepsilon_0)).$

• For each $k \in \mathbb{N}$, $\mathbf{x}_{k+1} \in S \cap N'(\mathbf{x}; |\mathbf{x}_k - \mathbf{c}|/2) \setminus f^{-1}(N(L; \varepsilon_0))$. Then, $\lim_{k \to \infty} \mathbf{x}_k = \mathbf{c}$ indeed holds, but it is not $\lim_{k \to \infty} f(\mathbf{x}_k) = L$ since $f(\mathbf{x}_k) \notin (N(L; \varepsilon_0))$ for each $k \in \mathbb{N}$.

Theorem 1.1.7

Let S be a nonempty subset of \mathbb{R}^n , $\mathbf{c} \in S$, and $f: S \to \mathbb{R}$. f is continuous at \mathbf{c} if and only if, for every Cauchy sequence $\{\mathbf{x}_k\}$ in S such that $\lim_{k\to\infty}\mathbf{x}_k=\mathbf{c}$, it follows that $\lim_{k\to\infty} f(\mathbf{x}_k) = f(\mathbf{c}).$

Proof. (\Rightarrow) If at most finitely many \mathbf{x}_k are distinct from \mathbf{c} , then $\exists k_0 \in \mathbb{N}, \ \forall k \in \mathbb{N}_{\geq k_0}, \ \mathbf{x}_k = \mathbf{c}$; $\lim_{k\to\infty} f(\mathbf{x}_k) = \mathbf{c}$ is evident.

If there are infinitely many \mathbf{x}_k are distinct from \mathbf{c} , then we may extract a subsequence $\{\mathbf{x}_{\mathbf{k}_i}\}_{i\in\mathbb{N}}$ such that each \mathbf{x}_{k_i} is in $S\setminus\{c\}$. By Theorem 1.1.6, $\lim_{j\to\infty}f(\mathbf{x}_{k_i})=\mathbf{c}$. This implies $\lim_{k\to\infty} f(\mathbf{x}_k) = \mathbf{c}$, regardless of the number of \mathbf{x}_k 's equal to \mathbf{c} .

(\Leftarrow) If **c** ∈ S', then we may directly apply Theorem 1.1.6 since every Cauchy sequence in $S \setminus \{c\}$ is a Cauchy sequence in S.

If $\mathbf{c} \notin S'$, then \mathbf{c} is an isolated point. Then, $\lim_{\mathbf{x} \to \mathbf{c}} f(\mathbf{x}) = f(\mathbf{c})$ by definition.

Theorem 1.1.8

Let $S \subseteq \mathbb{R}^n$ and $f: S \to \mathbb{R}$. Let $\mathbf{c} = (c_1, \dots, c_n) \in \mathring{S}$. For $j = 1, 2, \dots, n$, let

$$g_j(t) = f(c_1, c_2, \dots, c_{j-1}, t, c_{j+1}, \dots, c_n).$$

- (i) If $\lim_{\mathbf{x}\to\mathbf{c}} f(\mathbf{x}) = L$, then, for each $j \in [n]$, $\lim_{t\to c_j} g_j(t) = L$.
- (ii) If f is continuous at c, then, for each $j \in [n]$, g_i is continuous at c_i and $\lim_{t\to c_i}g_i(t)=f(\mathbf{c}).$

Proof.

(i) Take any $j \in [n]$ and $\varepsilon \in \mathbb{R}_+$. By convergence, there exists $\delta_1 \in \mathbb{R}_+$ such that $S \cap$ $N'(\mathbf{c}; \delta_1) \subseteq f^{-1}(N(L; \varepsilon))$. Since $\mathbf{x} \in \mathring{S}$, there exists $\delta_2 \in \mathbb{R}_+$ such that $N(\mathbf{c}; \delta_2) \subseteq S$. Let $\delta \triangleq \min\{\delta_1, \delta_2\}$. Then, $N'(\mathbf{c}; \delta) \subseteq f^{-1}(N(L; \varepsilon))$ and $N(\mathbf{c}; \delta) \subseteq S$ hold. Hence, for any $t \in N'(c_i; \delta),$

$$g_j(t) = f(c_1, \dots, c_{j-1}, t, c_{j+1}, \dots, c_n) \in N(L; \varepsilon)$$

as $||(c_1, \dots, c_{j-1}, t, c_{j+1}, \dots, c_n) - \mathbf{c}|| = |t - c_j| < \delta$.

(ii) Since $\lim_{\mathbf{x}\to\mathbf{c}} f(\mathbf{x}) = f(\mathbf{c})$, by (a), for each $j \in [n]$, $\lim_{t\to c_j} g(t) = f(\mathbf{c}) = g(c_j)$.

Note:-

The converse of Theorem 1.1.8 is not true.

1.2 The Topological Description of Continuity

Theorem 1.2.1

A surjective function $f: S \to T$ where $S \subseteq \mathbb{R}^n$ and $T \subseteq \mathbb{R}$ is continuous if and only if $f^{-1}(U)$ is relatively open in S for every relatively open set U in T.

Proof. (\Rightarrow) Let U be a relatively open set in T and $\mathbf{c} \in f^{-1}(U)$. Since U is open and $f(\mathbf{c}) \in U$, there is a neighborhood $N(f(\mathbf{c}))$ such that $T \cap N(f(\mathbf{c})) \subseteq U$. By continuity, there is a neighborhood $N(\mathbf{c})$ such that $S \cap N(\mathbf{c}) \subseteq f^{-1}(N(f(\mathbf{c}))) \subseteq f^{-1}(U)$. Therefore, \mathbf{c} is a relative interior point of $f^{-1}(U)$. Since \mathbf{c} was arbitrary, $f^{-1}(U)$ is relatively open in S.

(⇐) Take any $\mathbf{c} \in S$ and a neighborhood $N(f(\mathbf{c}))$. Then, $f^{-1}(T \cap N(f(\mathbf{c})))$ is relatively open in S. Since $\mathbf{c} \in f^{-1}(T \cap N(f(\mathbf{c})))$, there is a neighborhood $N(\mathbf{c})$ such that $S \cap N(\mathbf{c}) \subseteq f^{-1}(N(f(\mathbf{c})))$.

Theorem 1.2.2

If *S* is a connected subset of \mathbb{R}^n and $f: S \to \mathbb{R}$ is continuous on *S*, then T = f(S) is also connected.

Proof. Suppose T is disconnected for the sake of contradiction. There exists two disjoint open sets $U, V \subseteq \mathbb{R}$ such that $T \subseteq U \cup V$, $T \cap U \neq \emptyset$, and $T \cap V \neq \emptyset$. Since $T \cap U$ and $T \cap V$ are relatively open in T, $U_1 = f^{-1}(T \cap U)$ and $V_1 = f^{-1}(T \cap V)$ are relatively open in S. Then, $S \subseteq U_1 \cup V_1 = S$, $U_1 \cap V_1 = \emptyset$, $S \cap U_1 \neq \emptyset$, and $S \cap V_1 \neq \emptyset$, which contradicts S is connected, #.

Theorem 1.2.3

If *S* is a compact subset of \mathbb{R}^n and $f: S \to \mathbb{R}$ is continuous on *S*, then T = f(S) is also compact.

Proof. Let $\{U_{\alpha}\}_{{\alpha}\in J}$ be an open cover of T. Then, for each ${\alpha}\in J$, $f^{-1}(U_{\alpha})$ is relatively open in S since U_{α} is open and f is continuous. Because

$$S = f^{-1}(T) = f^{-1}\left(\bigcup_{\alpha \in J} U_{\alpha}\right) = \bigcup_{\alpha \in J} f^{-1}(U_{\alpha}),$$

 $\{f^{-1}(U_a)\}_{a\in J}$ is a relative open cover of S. Since S is compact, there is a finite subcover $\{f^{-1}(U_a) \mid i \in [p], \alpha_i \in J\}$ of S. Then,

$$T = f(S) = f\left(\bigcup_{i=1}^p f^{-1}(U_{\alpha_i})\right) = \bigcup_{i=1}^p f\left(f^{-1}(U_{\alpha_i})\right) \subseteq \bigcup_{i=1}^p U_{\alpha_i},$$

implying $\{U_{\alpha_i}\}_{i=1}^p$ is a finite subcover of T.

Theorem 1.2.4

If *S* is a compact subset of \mathbb{R}^n and $f: S \to \mathbb{R}$ is continous on *S*, then *f* has a minimum and a maximum value on *S*.

Proof. Theorem 1.2.3 implies $T = f(S) \subseteq \mathbb{R}$ is compact, and thus bounded and closed. Thus, $m = \inf T = \min T$ and $M = \sup T = \max T$ exist.

Theorem 1.2.5 The Intermediate Value Theorem

If $f : [a, b] \to \mathbb{R}$ is continuous and c is any number between f(a) and f(b), then there exists an $x \in [a, b]$ such that f(x) = c.

Proof. Since [a, b] is connected and compact, Theorem 1.2.2 and Theorem 1.2.3 imply that f([a, b]) is connected and compact. Thus, f([a, b]) = [m, M] where

$$m = \min f([a, b]) \le \min\{f(a), f(b)\}$$

and

$$M = \max f([a, b]) \ge \max\{f(a), f(b)\}.$$

This implies $c \in [m, M] = f([a, b])$, i.e., there exists $x \in [a, b]$ such that f(x) = c.

Theorem 1.2.6 The General Intermediate Value Theorem

If *S* is any connected and compact subset of \mathbb{R}^n and $f: S \to \mathbb{R}$ is continuous, if $f(\mathbf{x}_1)$ and $f(\mathbf{x}_2)$ are any two values of f on S, and if c is any number between them, then there exists a point $\mathbf{x} \in S$ such that $f(\mathbf{x}) = c$.

Proof. Since *S* is connected and compact, by Theorem 1.2.2 and Theorem 1.2.3, f(S) is an closed interval [m, M] as in the proof of Theorem 1.2.5. Since $m \le \min\{f(\mathbf{x}_1), f(\mathbf{x}_2)\}$ and $M \ge \max\{f(\mathbf{x}_1), f(\mathbf{x}_2)\}, c \in [m, M] = f(S)$, and thus $\exists \mathbf{x} \in S, f(\mathbf{x}) = c$.

1.2.1 The Composition of Continuous Functions

Theorem 1.2.7

Let $S \subseteq \mathbb{R}^n$, $f: S \to \mathbb{R}$, $f(S) \subseteq T \subseteq \mathbb{R}$, and $g: T \to \mathbb{R}$. If f is continuous at $\mathbf{c} \in S$ and if g is continuous at $f(\mathbf{c}) \in T$, then $g \circ f$ is continuous at \mathbf{c} .

Proof. Let $d = (g \circ f)(\mathbf{c})$. Take any neighborhood N(d) of d. By continuity of g at $f(\mathbf{c})$, there exists a neighborhood $N(f(\mathbf{c}))$ such that

$$T \cap N(f(\mathbf{c})) \subseteq g^{-1}(N(d)).$$

By the continuity of f at \mathbf{c} , there exists a neighborhood $N(\mathbf{c})$ such that

$$S \cap N(\mathbf{c}) \subseteq f^{-1}(N(f(\mathbf{c}))).$$

These imply $S \cap N(\mathbf{c}) \subseteq f^{-1}(g^{-1}(N(d))) = (g \circ f)^{-1}(N(d))$.

Corollary 1.2.1

Let $S \subseteq \mathbb{R}^n$, $f: S \to \mathbb{R}$, $f(S) \subseteq T \subseteq \mathbb{R}$, and $g: T \to \mathbb{R}$. If f and g are continuous, then

 $g \circ f$ is continuous.

Theorem 1.2.8

If $f : [a, b] \rightarrow [c, d]$ is strictly monotone, continuous function, then the inverse function f^{-1} is also strictly monotone, continuous, and bijective.

Proof. All are immediate except for the continuity. Denote f^{-1} by g. By Theorem 1.1.7, it suffices to prove that whenever a Cauchy sequence $\{y_k\}$ in f(S) converges to g(y) in S.

Choose any such sequence and let $x_k \triangleq g(y_k)$ for each $k \in \mathbb{N}$. Since g is bijective, $\{y_k \mid k \in \mathbb{N}\}$ is finite if and only if $\{x_k \mid k \in \mathbb{N}\}$ is finite. If they are finite, then $\{y_k\}$ is eventually g(y), and it is done.

If they are infinite, since domain and codomain are bounded and closed, by $\ref{eq:complex}$, $\{x_k \mid k \in \mathbb{N}\}$ has a limit point x. But since [a,b] is complete by $\ref{eq:complex}$, $x \in [a,b]$ by (ii) of $\ref{eq:complex}$. x is a cluster point of $\{x_k\}$, thus there is a subsequence $\{x_{k_j}\}$ of $\{x_k\}$ such that $\lim_{j\to\infty} x_{k_j} = x$ by $\ref{eq:complex}$??. Now the continuity of f guarantees that

$$\lim_{j\to\infty}f(x_{k_j})=f(x).$$

At the same time, since $f(x_{k_j}) = y_{k_j}$, $\{f(x_{k_j})\}$ is a subsequence of $\{y_k\}$. As $\{y_k\}$ converges to y, we get

$$\lim_{j\to\infty}f(x_{k_j})=y.$$

By **??**, f(x) = y, or x = g(y).

If there were another limit point x' of $\{x_k \mid k \in \mathbb{N}\}$, by the same procedure, we get x = g(y) = x'; x = x'; x is the unique limit point of the set. Thus, $\{x_k\}$ converges to x, i.e., $\{g(y_k)\}$ converges to g(y).

1.2.2 Limiting Behavior at Infinity

Definition 1.2.1: Function Space C(S) **and** $C_{\infty}(S)$

Let $S \neq \emptyset$ be a subset of \mathbb{R}^n .

- C(S) is the set of real-valued function on S which is continuous on S.
- $C_{\infty}(S)$ is the set of real-valued function on S which is bounded and continuous on S.

Note:-

In general, $C_{\infty}(S) \subseteq C(S)$. If $\emptyset \neq S \subseteq \mathbb{R}^n$ is compact, then $C(S) = C_{\infty}(S)$.

Definition 1.2.2: Neighborhood of ∞ **and** $-\infty$

In \mathbb{R} ,

- $N(\infty; M) \triangleq (M, \infty) = \{x \in \mathbb{R} \mid x > M\}$
- $N(-\infty, -M) \triangleq (-\infty, -M) = \{x \in \mathbb{R} \mid x < -M\}$

 $[n \mathbb{R}^n,$

• $N(\infty; M) \triangleq \{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}|| > M \}$

Definition 1.2.3: Limit at Infinity

- (i) Let *S* be an unbounded set in \mathbb{R} . Let $f: S \to \mathbb{R}$.
 - We say f has limit L at ∞ if, for all $\varepsilon \in \mathbb{R}_+$, there exists $M \in \mathbb{R}_+$ such that $S \cap N(\infty; M) \subseteq f^{-1}(N(L; \varepsilon))$. We write $\lim_{x \to \infty} f(x) = L$.
 - We say f has limit L at $-\infty$ if, for all $\varepsilon \in \mathbb{R}_+$, there exists $M \in \mathbb{R}_+$ such that $S \cap N(-\infty; -M) \subseteq f^{-1}(N(L; \varepsilon))$. We write $\lim_{x \to -\infty} f(x) = L$.
- (ii) Let S be an unbounded set in \mathbb{R}^n . Let $f: S \to \mathbb{R}$. We say that f has limit L at ∞ , if, for all $\varepsilon \in \mathbb{R}_+$, there exists $M \in \mathbb{R}_+$ such that $S \cap N(\infty; M) \subseteq f^{-1}(N(L; \varepsilon))$. We write $\lim_{\|\mathbf{x}\| \to \infty} f(\mathbf{x}) = L$.

Theorem 1.2.9 The Squeeze Play

Let f, g, and h be three real-valued functions sharing a common unbounded domain $S \subseteq \mathbb{R}^n$. Suppose $\lim_{\|\mathbf{x}\| \to \infty} f(\mathbf{x}) = \lim_{\|\mathbf{x}\| \to \infty} h(\mathbf{x}) = L$. Suppose also that, for some $M \in \mathbb{R}$.

$$\mathbf{x} \in S \cap N(\infty; M) \implies f(\mathbf{x}) \leq g(\mathbf{x}) \leq h(\mathbf{x})$$

Then, $\lim_{\|\mathbf{x}\|\to\infty} g(\mathbf{x}) = L$.

Theorem 1.2.10

Let *S* be a closed and unbounded set in \mathbb{R}^n and let $f \in C(S)$. Suppose $\lim_{\|\mathbf{x}\| \to \infty} f(\mathbf{x}) = L$ exists. Then $f \in C_{\infty}(S)$.

Proof. There exists $M \in \mathbb{R}_+$ such that, for $\mathbf{x} \in S \cap N(\infty; M)$, $|f(\mathbf{x}) - L| < 1$. Thus, for such \mathbf{x} , we have $|f(\mathbf{x})| < |L| + 1$.

Since $S \cap N(\mathbf{0}; M)$ is a closed, bounded set in \mathbb{R}^n , it is compact by \ref{Model} ??. Therefore the continuous f is bounded on $S \cap \overline{N(\mathbf{0}; M)}$ by Theorem 1.2.3. In other words, there is some $K \in \mathbb{R}_+$ such that, for $\mathbf{x} \in S \cap \overline{N(\mathbf{0}; M)}$, we have $|f(\mathbf{x})| \leq K$. Thus, $|f(\mathbf{x})| \leq \max\{K, |L| + 1\}$ for all $\mathbf{x} \in S$.

1.3 The Algebra of Continuous Functions

Note:-

Let $\emptyset \neq S \subseteq \mathbb{R}^n$. One can easily find that C(S) is a commutative ring and is a vector space.

Theorem 1.3.1

Let $\emptyset \neq S \subseteq \mathbb{R}^n$ and $f_1, f_2 \in C(S)$. Then, the following hold.

- (i) $f_1 + f_2 \in C(S)$.
- (ii) For any $a \in \mathbb{R}$, $af \in C(S)$.
- (iii) $f_1 f_2 \in C(S)$.
- (iv) $1/f_2 \in C(S)$, provided that $\forall \mathbf{x} \in S$, $f_2(\mathbf{x}) \neq 0$.
- (v) $f_1/f_2 \in C(S)$, provided that $\forall \mathbf{x} \in S$, $f_2(\mathbf{x}) \neq 0$.

Proof. Directly import Theorem 1.1.3.

Theorem 1.3.2

Suppose f is continuous at a point \mathbf{c} in \mathbb{R}^n . Then f is locally bounded at \mathbf{c} . that is, there are $M, \delta \in \mathbb{R}_+$ such that

$$\mathbf{x} \in S \cap N(\mathbf{c}; \delta) \Longrightarrow |f(\mathbf{x})| \leq M.$$

Theorem 1.3.3

Suppose f is continous at a point \mathbf{c} in \mathbb{R}^n and $f(\mathbf{c}) \neq 0$. Then f is locally bounded away from 0 at \mathbf{c} . that is, there are $m, \delta \in \mathbb{R}_+$ such that

$$\mathbf{x} \in S \cap N(\mathbf{c}; \delta) \Longrightarrow |f(\mathbf{x})| \ge m.$$

1.4 Uniform Continuity

Definition 1.4.1: Uniform Continuity

A function $f: S \to \mathbb{R}$ with $S \subseteq \mathbb{R}^n$ is said to be uniformly continuous on S if,

$$\forall \varepsilon \in \mathbb{R}_+, \exists \delta \in \mathbb{R}_+, \forall \mathbf{c} \in S, S \cap N(\mathbf{c}; \delta) \subseteq f^{-1}(N(f(\mathbf{c}); \varepsilon)).$$

Or, equivalently,

$$\forall \varepsilon \in \mathbb{R}_+, \ \exists \delta \in \mathbb{R}_+, \ \forall \mathbf{x}, \mathbf{y} \in S, \ (\|\mathbf{x} - \mathbf{y}\| < \delta \implies |f(\mathbf{x}) - f(\mathbf{y})| < \varepsilon).$$

Example 1.4.1

 $f:[0,b]\to\mathbb{R}$ defined by $f(x)=x^2$ is uniformly continuous on [0,b]. Given any $\varepsilon\in\mathbb{R}_+$, let $\delta\triangleq\varepsilon/2b$. Then, whenever $|x-y|<\delta$ where $x,y\in[0,b],\,|x^2-y^2|=|x-y|\,|x+y|<\delta\cdot2b=\varepsilon$.

Example 1.4.2

 $f:(0,M)\to\mathbb{R}$ defined by f(x)=1/x is not uniformly continuous on (0,M). Let any $\delta\in\mathbb{R}_+$ is given. Let $a\in(0,\min\{\delta,1/2,M/2\})$. Then, $|a-(2a)|=a<\delta$ but |f(a)-f(2a)|=|1/a-1/(2a)|=1/(2a)>1.

This is an example in which f is continuous but the domain is not compact.

Example 1.4.3

 $f: [-1,1] \to \mathbb{R}$ defined by $f(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$ is not uniformly continuous on

[-1, 1]. Let any $\delta \in \mathbb{R}_+$ is given. Let $a \in (0, \min\{\delta/2, 1\})$. Then, $|a - (-a)| = 2a < \delta$ but |f(a) - f(-a)| = 1 > 0.5.

This is an example in which the domain is compact but f is not continuous.

Theorem 1.4.1

Suppose that $f: S \to \mathbb{R}$ is continuous on a compact subset S of \mathbb{R}^n . Then f is uniformly

continuous on S.

Proof. Let $\varepsilon \in \mathbb{R}_+$ be given. Since f is continuous at each point of S, for each \mathbf{c} of S, we may choose $\delta(\mathbf{c}) \in \mathbb{R}_+$ such that

$$S \cap N(\mathbf{c}; \delta(\mathbf{c})) \subseteq f^{-1}\left(N\left(f(\mathbf{c}); \frac{\varepsilon}{2}\right)\right).$$

Then the set $C \triangleq \{N(\mathbf{c}; \delta(\mathbf{c})/2) \mid \mathbf{c} \in S\}$ is an open cover of the compact set S. Since S is compact, there is a finite subcover

$$C_1 = \left\{ N\left(\mathbf{c}_1; \frac{\delta(\mathbf{c}_1)}{2}\right), N\left(\mathbf{c}_2; \frac{\delta(\mathbf{c}_2)}{2}\right), \cdots, N\left(\mathbf{c}_k; \frac{\delta(\mathbf{c}_k)}{2}\right) \right\}.$$

Let $\delta_0 \triangleq \min_{i=1}^k \delta(\mathbf{c}_i)/2$.

Now, take any $\mathbf{c} \in S$. Since C_1 is an open cover,

$$\exists i \in [k], \mathbf{c} \in N\left(\mathbf{c}_i; \frac{\delta(\mathbf{c}_i)}{2}\right).$$

Then, for any $\mathbf{x} \in N(\mathbf{c}; \delta_0)$,

$$\|\mathbf{x} - \mathbf{c}_i\| \le \|\mathbf{x} - \mathbf{c}\| + \|\mathbf{c} - \mathbf{c}_i\| < \delta_0 + \frac{\delta(\mathbf{c}_i)}{2} \le \delta(\mathbf{c}_i).$$

Thus, $N(\mathbf{c}; \delta_0) \subseteq N(\mathbf{c}_i; \delta(\mathbf{c}_i))$; or

$$S \cap N(\mathbf{c}; \delta_0) \subseteq S \cap N(\mathbf{c}_i; \delta(\mathbf{c}_i)) \subseteq f^{-1}\left(N\left(f(\mathbf{c}_i); \frac{\varepsilon}{2}\right)\right).$$

Hence, for any $\mathbf{x} \in S \cap N(\mathbf{c}; \delta_0)$,

$$|f(\mathbf{x}) - f(\mathbf{c})| \le |f(\mathbf{x}) - f(\mathbf{c}_i)| + |f(\mathbf{c}_i) - f(\mathbf{c})| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

as $\mathbf{x}, \mathbf{c} \in S \cap N(\mathbf{c}_i; \delta(\mathbf{c}_i))$.

1.5 The Uniform Norm: Uniform Convergence

Definition 1.5.1: Function Space B(S)

Let $S \neq \emptyset$ be a subset of \mathbb{R}^n . B(S) denotes the vector space and ring of all bounded, real-valued functions on S.

Note:-

- For each $f \in B(S)$, $\sup\{|f(\mathbf{x})| | \mathbf{x} \in S\}$ exists.
- $C_{\infty}(S) = C(S) \cap B(S)$

Definition 1.5.2: Uniform Norm

The *uniform norm* of $f \in B(S)$ is defined to be

$$||f||_{\infty} = \sup\{|f(\mathbf{x})| \mid \mathbf{x} \in S\}.$$

Theorem 1.5.1

The uniform norm is a norm.

Proof. The positive definiteness and the absolute homogeneity is direct.

Take any $f, g \in f$. Then, for any $\mathbf{x} \in S$,

$$|(f+g)(\mathbf{x})| \le |f(\mathbf{x})| + |g(\mathbf{x})| \le ||f||_{\infty} + ||g||_{\infty}.$$

Thus, $||f + g||_{\infty} = \sup\{ |(f + g)(\mathbf{x})| \mid \mathbf{x} \in S \} \le ||f||_{\infty} + ||g||_{\infty}; ||\cdot||_{\infty}$ satisfies the subadditivity.

Definition 1.5.3: Uniform Metric

The uniform metric on B(S) is

$$d_{\infty}(f,g) = ||f - g||_{\infty}.$$

Note:-

The uniform metric is naturally a metric since the uniform norm is a norm.

Definition 1.5.4: (Deleted) Uniform Neighborhood

The (uniform) neighborhood N(f;r) of f with radius r is the set

$$N(f;r) \triangleq \{ g \in B(S) \mid d_{\infty}(f,g) < r \}.$$

The deleted (uniform) neighborhood N'(f;r) of f with radius r is the set

$$N'(f;r) \triangleq \{ g \in B(S) \mid 0 < d_{\infty}(f,g) < r \}.$$

Definition 1.5.5: Limit Point of a Set of Functions

A function $f_0 \in B(S)$ is said to be a *(uniform) limit point* of a set $F \subseteq B(S)$ if

$$\forall \varepsilon \in \mathbb{R}_+, F \cap N'(f_0; \varepsilon) \neq \emptyset.$$

Definition 1.5.6: Convergence of a Sequence of Functions

• A sequence $\{f_k\}_{k\in\mathbb{N}}$ in B(S) is said to converge uniformly to $f_0\in S\to\mathbb{R}$ on S if

$$\forall \varepsilon \in \mathbb{R}_+, \exists k_0 \in \mathbb{N}, \forall k \in \mathbb{N}, (k \ge k_0 \Longrightarrow f_k \in N(f_0; \varepsilon)).$$

We write

$$\lim_{k\to\infty} f_k = f_0 \text{ [uniformly]}.$$

• A sequence $\{f_k\}_{k\in\mathbb{N}}$ in B(S) is said to converge pointwise to $f_0: S \to \mathbb{R}$ on S if

$$\forall (\mathbf{c}, \varepsilon) \in S \times \mathbb{R}_+, \ \exists k_0 \in \mathbb{N}, \ \forall k \in \mathbb{N}, \ \left(k \ge k_0 \implies f_k(\mathbf{c}) \in N(f_0(\mathbf{c}); \varepsilon)\right).$$

We write

$$\lim_{k\to\infty} f_k = f_0 \text{ [pointwise]}.$$

• A sequence $\{f_k\}_{k\in\mathbb{N}}$ in B(S) is said to be (uniformly) Cauchy if

$$\forall \varepsilon \in \mathbb{R}_+, \exists k_0 \in \mathbb{N}, \forall k, m \in \mathbb{N}, (k, m \ge k_0 \Longrightarrow ||f_m - f_k||_{\infty} < \varepsilon).$$

Note:-

A pointwise convergent sequence in $C_{\infty}(S)$ may fail to have a limit that is in $C_{\infty}(S)$.

Note:-

If $\{f_k\}$ in B(S) converges uniformly, then it converges pointwise.

Theorem 1.5.2

Let $\emptyset \neq S \subseteq \mathbb{R}^n$. Suppose that $\{f_k\}$ is a sequence in C(S) and it converges uniformly to $f_0: S \to \mathbb{R}$ on S. Then $f_0 \in C(S)$.

Proof. Take any $\mathbf{c} \in S$ and $\varepsilon \in \mathbb{R}_+$. By uniform convergence, there exists $k \in \mathbb{N}$ such that

$$||f_k - f_0||_{\infty} < \frac{\varepsilon}{4}.$$

Since f_k is continuous, there exists $\delta \in \mathbb{R}_+$ such that

$$S \cap N(\mathbf{c}; \delta) \subseteq f_k^{-1} \left(N\left(f_k(\mathbf{c}); \frac{\varepsilon}{2}\right) \right).$$

Thus, for any $\mathbf{x} \in S \cap N(\mathbf{c}; \delta)$,

$$|f_0(\mathbf{x}) - f_0(\mathbf{c})| \le |f_0(\mathbf{x}) - f_k(\mathbf{x})| + |f_k(\mathbf{x}) - f_k(\mathbf{c})| + |f_k(\mathbf{c}) - f_0(\mathbf{c})|$$

$$< \frac{\varepsilon}{4} + \frac{\varepsilon}{2} + \frac{\varepsilon}{4} = \varepsilon.$$

This exactly means that f_0 is continuous at **c**. Since **c** is arbitrary, f_0 is continuous on S.

Theorem 1.5.3

Let $\emptyset \neq S \subseteq \mathbb{R}^n$. A Cauchy sequence $\{f_k\}$ in B(S) is bounded. That is, $\exists M \in \mathbb{R}_+, \ \forall k \in \mathbb{N}, \ \|f_k\|_{\infty} \leq M$.

Proof. Immitate the proof of ??.

Theorem 1.5.4

 $C_{\infty}(S)$ is complete. That is, given any Cauchy sequence $\{f_k\}$ in $C_{\infty}(S)$, there exists $f_0 \in C_{\infty}(S)$ such that $\lim_{k \to \infty} f_k = f_0$ [uniformly] on S.

Proof. Since, for each $\mathbf{c} \in S$, $\{f_k(\mathbf{c})\}_{k \in \mathbb{N}}$ is Cauchy, by $\mathbf{??}$, $\{f_k(\mathbf{c})\}_{k \in \mathbb{N}}$ converges in \mathbb{R} . Thus we may define $f_0 \colon S \to \mathbb{R}$ by

$$f_0(\mathbf{c}) = \lim_{k \to \infty} f_k(\mathbf{c}).$$

Now, we first claim that $\lim_{k\to\infty} f_k = f_0$ [uniformly]. Take any $\varepsilon \in \mathbb{R}_+$. Since $\{f_k\}$ is Cauchy,

$$\exists k_0 \in \mathbb{N}, \ \forall k, m \in \mathbb{N}, \ (k, m \ge k_0 \implies ||f_k - f_m||_{\infty} < \varepsilon/2).$$

Then, for each $k \in \mathbb{N}_{\geq k_0}$,

$$\forall \mathbf{c} \in S, |f_k(\mathbf{c}) - f_0(\mathbf{c})| = \lim_{m \to \infty} |f_k(\mathbf{c}) - f_m(\mathbf{c})| \le \varepsilon/2.$$

This means $||f_k - f_0||_{\infty} \le \varepsilon/2 < \varepsilon$; $\{f_k\}$ converges to f_0 uniformly on S. It directly follows from Theorem 1.5.2 that f_0 is continuous on S.

Now, we are left to show f_0 is bounded on S. Since $\{f_k\}$ uniformly converges to f_0 ,

$$\exists k_0 \in \mathbb{N}, \ \forall k \in \mathbb{N}, \ (k \ge k_0 \implies \|f_k - f_0\|_{\infty} < 1).$$

This implies $\forall \mathbf{c} \in S$, $|f_{k_0}(\mathbf{c}) - f_0(\mathbf{c})| < 1$. Hence, $\forall \mathbf{c} \in S$, $|f_0(\mathbf{c})| < |f_{k_0}(\mathbf{c})| + 1 \le ||f_{k_0}||_{\infty} + 1$. Thus, $\{|f_0(\mathbf{c})| \mid \mathbf{c} \in S\}$ is bounded above by $||f_{k_0}||_{\infty} + 1$.

Corollary 1.5.1

If $\emptyset \neq S \subseteq \mathbb{R}^n$ is compact, then C(S) is complete.

Definition 1.5.7: Unifrom Denseness

Let $\emptyset \neq S \subseteq \mathbb{R}^n$. A collection $F \subseteq C_{\infty}(S)$ is uniformly dense in $C_{\infty}(S)$ if, for all $f_0 \in C_{\infty}(S)$ and its neighborhood $N(f_0)$, $F \cap N(f_0) \neq \emptyset$.

Definition 1.5.8: Polynomial Space

Let $\emptyset \neq S \subseteq \mathbb{R}$. Let P(S) denote the set of polynomial functions $f: S \to \mathbb{R}$ in the single variable x.

Note:-

If $S \neq \emptyset$ is a compact subset of \mathbb{R} , then P(S) is certainly a subset of $C_{\infty}(S) = C(S)$.

Theorem 1.5.5 The Weierstrass Approximation Theorem

If *S* is a compact subset of \mathbb{R} , then P(S) is uniformly dense in C(S).

Definition 1.5.9: Bernstein Polynomial

Given a continuous function on [0,1], for each $k \in \mathbb{N}$, the k^{th} Bernstein polynomial for f, $B_k(x)$, is defined as follows.

$$B_k(x) \triangleq \sum_{j=0}^k {k \choose j} f\left(\frac{j}{k}\right) x^j (1-x)^{k-j}$$

where $\binom{k}{j}$ is the binomial coefficient $\frac{k!}{j!(k-j)!}$.

Note:-

The following lemmas are for the proof of Theorem 1.5.5.

Lemma 1.5.1

For any $k \in \mathbb{N}$, $\sum_{i=0}^{k} {k \choose j} x^{j} (1-x)^{k-j} = 1$.

Proof. Expand $1 = (x + (1 - x))^k$ via the binomial theorem.

Lemma 1.5.2

For any $k \in \mathbb{N}$, $\sum_{j=0}^{k} {k \choose j} \frac{j}{k} x^{j} (1-x)^{k-j} = x$.

Proof. Using Lemma 1.5.1, we get

$$\begin{split} x &= x \left[\sum_{j=0}^{k-1} \binom{k-1}{j} x^j (1-x)^{(k-1)-j} \right] \\ &= \sum_{j=0}^{k-1} \binom{k-1}{j} x^{j+1} (1-x)^{k-(j+1)} = \sum_{j=1}^{k} \binom{k-1}{j-1} x^j (1-x)^{k-j} \\ &= \sum_{j=1}^{k} \binom{k}{j} \frac{j}{k} x^j (1-x)^{k-j} = \sum_{j=0}^{k} \binom{k}{j} \frac{j}{k} x^j (1-x)^{k-j}. \end{split}$$

Lemma 1.5.3

For any $k \in \mathbb{N}$, $\sum_{j=0}^{k} {k \choose j} (j^2 - j) x^j (1 - x)^{k-j} = k(k-1)x^2$.

Proof. Note that, for each $j \in \{2, 3, \dots, k\}$,

$$\binom{k}{j}(j^2-j) = \binom{k-2}{j-2}k(k-1).$$

Therefore, using Lemma 1.5.1, we get

$$\sum_{j=0}^{k} {k \choose j} (j^2 - j) x^j (1 - x)^{k-j} = \sum_{j=2}^{k} {k \choose j} (j^2 - j) x^j (1 - x)^{k-j}$$

$$= x^2 \sum_{j=2}^{k} {k \choose j} (j^2 - j) x^{j-2} (1 - x)^{(k-2) - (j-2)}$$

$$= x^2 \sum_{j=2}^{k} {k-2 \choose j-2} k(k-1) x^{j-2} (1-x)^{(k-2) - (j-2)}$$

$$= k(k-1) x^2 \sum_{j=0}^{k-2} {k-2 \choose j} x^j (1-x)^{(k-2) - j}$$

$$= k(k-1) x^2$$

For any
$$k \in \mathbb{N}$$
, $\sum_{j=0}^{k} {k \choose j} \left(\frac{j}{k}\right)^2 x^j (1-x)^{k-j} = \left(1-\frac{1}{k}\right) x^2 + \frac{x}{k}$.

Proof. Using Lemma 1.5.2 and Lemma 1.5.3, we get

$$\left(1 - \frac{1}{k}\right)x^2 + \frac{x}{k} = \frac{k(k-1)x^2}{k^2} + \frac{x}{k}$$

$$= \frac{1}{k^2} \sum_{j=0}^k \binom{k}{j} (j^2 - j)x^j (1 - x)^{k-j} + \frac{1}{k} \sum_{j=0}^k \binom{k}{j} \frac{j}{k} x^j (1 - x)^{k-j}$$

$$= \sum_{j=0}^k \binom{k}{j} \left(\frac{j^2 - j}{k^2} + \frac{j}{k^2}\right) x^j (1 - x)^{k-j}$$

$$= \sum_{j=0}^k \binom{k}{j} \left(\frac{j}{k}\right)^2 x^j (1 - x)^{k-j}.$$

Lemma 1.5.5 For any
$$k \in \mathbb{N}$$
 and any $x \in [0,1]$, $\sum_{j=0}^{k} {k \choose j} \left(x - \frac{j}{k}\right)^2 x^j (1-x)^{k-j} = \frac{x(1-x)}{k} \le \frac{1}{4k}$.

Proof. Using Lemma 1.5.1, Lemma 1.5.2, and Lemma 1.5.4, we get

$$\sum_{j=0}^{k} {k \choose j} \left(x - \frac{j}{k} \right)^2 x^j (1 - x)^{k-j} = \sum_{j=0}^{k} {k \choose j} \left[x^2 - 2x \left(\frac{j}{k} \right) - \left(\frac{j}{k} \right)^2 \right] x^j (1 - x)^{k-j}$$

$$= x^2 \sum_{j=0}^{k} {k \choose j} x^j (1 - x)^{k-j} + 2x \sum_{j=0}^{k} {k \choose j} \left(\frac{j}{k} \right) x^j (1 - x)^{k-j}$$

$$+ \sum_{j=0}^{k} {k \choose j} \left(\frac{j}{k} \right)^2 x^j (1 - x)^{k-j}$$

$$= x^2 - 2x^2 + \left(1 - \frac{1}{k} \right) x^2 + \frac{x}{k} = \frac{x(1 - x)}{k}.$$

Theorem 1.5.6 Bernstein's Approximation Theorem

Let $f \in C([0,1])$. Then, for any $\varepsilon \in \mathbb{R}_+$, there exists $k_0 \in \mathbb{N}$ such that, for $k \geq k_0$, $||f - B_k||_{\infty} < \varepsilon$ where B_k is the k^{th} Bernstein polynomial for f.

Proof. Take any $\varepsilon \in \mathbb{R}_+$. Since f is continuous on a compact set [0, 1], then f is uniformly continuous on [0, 1] by Theorem 1.4.1. Therefore,

$$\exists \delta \in \mathbb{R}_+, \forall x, y \in [0, 1], (|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon/4).$$

Also, f is bounded on [0,1] by Theorem 1.2.3. Thus, by ??, there exists $k_0 \in \mathbb{N}$ such that

 $2\|f\|_{\infty} < \varepsilon \delta^2 k_0. \text{ Now, suppose } k \geq k_0.$ Fix some $x \in [0,1]$ and let $A_1 \triangleq \{j \in \mathbb{Z} \mid 0 \leq j \leq k \text{ and } |x-j/k| < \delta \}$ and $A_2 \triangleq \{j \in \mathbb{Z} \mid 0 \leq j \leq k \text{ and } |x-j/k| < \delta \}$ $0 \le j \le k$ and $|x - j/k| \ge \delta$ }. Now, we are ready to prove $||f - B_k||_{\infty} < \varepsilon$.

Using Lemma 1.5.1 at the first step, we get

$$|f(x) - B_k(x)| = \left| \sum_{j=0}^k {k \choose j} f(x) x^j (1 - x)^{k-j} - \sum_{j=0}^k {k \choose j} f\left(\frac{j}{k}\right) x^j (1 - x)^{k-j} \right|$$

$$= \left| \sum_{j=0}^k {k \choose j} \left[f(x) - f\left(\frac{j}{k}\right) \right] x^j (1 - x)^{k-j} \right|$$

$$\leq \sum_{j=0}^k {k \choose j} \left| f(x) - f\left(\frac{j}{k}\right) \right| x^j (1 - x)^{k-j}$$

$$= \sum_{j \in A_1} {k \choose j} \left| f(x) - f\left(\frac{j}{k}\right) \right| x^j (1 - x)^{k-j} + \sum_{j \in A_2} {k \choose j} \left| f(x) - f\left(\frac{j}{k}\right) \right| x^j (1 - x)^{k-j}$$

$$= S_1 + S_2$$

where S_1 and S_2 are the sums over A_1 and A_2 , respectively.

Since $\left|x - \frac{j}{k}\right| < \delta$ for $j \in A_1$, the following holds.

$$S_{1} \triangleq \sum_{j \in A_{1}} {k \choose j} \left| f(x) - f\left(\frac{j}{k}\right) \right| x^{j} (1 - x)^{k - j}$$

$$< \sum_{j \in A_{1}} {k \choose j} \left(\frac{\varepsilon}{4}\right) x^{j} (1 - x)^{k - j} \le \frac{\varepsilon}{4} \sum_{j = 0}^{k} {k \choose j} x^{j} (1 - x)^{k - j} = \frac{\varepsilon}{2}$$

We now investigate S_2 . Note that $\frac{1}{|x-j/k|} \le \frac{1}{\delta}$ for $j \in A_2$. Using Lemma 1.5.5, we get

$$\begin{split} S_2 &\triangleq \sum_{j \in A_2} \binom{k}{j} \left| f(x) - f\left(\frac{j}{k}\right) \right| x^j (1 - x)^{k - j} \\ &\leq 2 \|f\|_{\infty} \sum_{j \in A_2} \binom{k}{j} \left(x - \frac{j}{k}\right)^2 \frac{1}{\left(x - \frac{j}{k}\right)^2} x^j (1 - x)^{k - j} \\ &\leq \frac{2 \|f\|_{\infty}}{\delta^2} \sum_{j \in A_2} \binom{k}{j} \left(x - \frac{j}{k}\right)^2 x^j (1 - x)^{k - j} \\ &\leq \frac{2 \|f\|_{\infty}}{\delta^2} \sum_{j = 0}^k \binom{k}{j} \left(x - \frac{j}{k}\right)^2 x^j (1 - x)^{k - j} \\ &\leq \frac{2 \|f\|_{\infty}}{\delta^2} \sum_{j = 0}^k \binom{k}{j} \left(x - \frac{j}{k}\right)^2 x^j (1 - x)^{k - j} \\ &\leq \frac{2 \|f\|_{\infty}}{\delta^2} \frac{1}{4k} \leq \frac{\|f\|_{\infty}}{2k\delta^2} \leq \frac{\|f\|_{\infty}}{2k_0\delta^2} < \frac{\varepsilon}{4}. \end{split}$$

Thus, we have $|f(x)-B_k(x)| \le S_1+S_2 < \varepsilon/4+\varepsilon/4 = \varepsilon/2$. Since x is arbitrary, $||f-B_k||_{\infty} \le \varepsilon/2 < \varepsilon$.

1.6 Vector-Valued Functions on \mathbb{R}^n

Definition 1.6.1: Component Function

Let **f** be a function with domain $S \subseteq \mathbb{R}^n$ and codomain $T \subseteq \mathbb{R}^m$. For $\mathbf{x} \in S$, we write

$$f(x) = y = (y_1, y_2, \dots, y_m).$$

Then, for each $j \in [m]$, there is a real-valued function $f_i : S \to \mathbb{R}$ defined by $f_j(\mathbf{x}) = y_j$. The functions f_1, f_2, \dots, f_m are called *component functions* of **f**. We write

$$\mathbf{f} = (f_1, f_2, \cdots, f_m).$$

Definition 1.6.2: Limit and Continuity of Vector-Valued Functions

Let $\emptyset \neq S \subseteq \mathbb{R}^n$ and $\mathbf{f}: S \to \mathbb{R}^m$.

• Let $\mathbf{c} \in \overline{S}$. We say that \mathbf{f} has *limit* \mathbf{v} as \mathbf{x} approaches \mathbf{c} , and we write

$$\lim_{x\to c} f(x) = v$$

if, for every neighborhood $N(\mathbf{v})$, there exists a deleted neighborhood $N'(\mathbf{c})$ such that

$$S \cap N'(\mathbf{c}) \subseteq \mathbf{f}^{-1}(N(\mathbf{v})).$$

• Let $\mathbf{c} \in S$. We say that \mathbf{f} is continuous at \mathbf{c} if

$$\lim_{\mathbf{x}\to\mathbf{c}}\mathbf{f}(\mathbf{x})=\mathbf{f}(\mathbf{c}).$$

• We say that **f** is *continuous on S* if **f** is continuous at every point of *S*.

Theorem 1.6.1

- Let $\emptyset \neq S \subseteq \mathbb{R}^n$, $\mathbf{f}: S \to \mathbb{R}^m$, and $\mathbf{f} = (f_1, f_2, \dots, f_m)$. (i) Let $\mathbf{c} \in \overline{S}$. Then $\lim_{\mathbf{x} \to \mathbf{c}} \mathbf{f}(\mathbf{x}) = \mathbf{v} = (v_1, v_2, \dots, v_m)$ if and only if, for each $j \in [m]$, $\lim_{\mathbf{x}\to\mathbf{c}}f_j(\mathbf{x})=\nu_j.$
 - (ii) Let $\mathbf{c} \in S$. Then \mathbf{f} is continuous at \mathbf{c} if and only if, for each $j \in [m]$, f_j is continuous
- (iii) **f** is continuous on *S* if and only if, for each $j \in [m]$, f_j is continuous on *S*.

Proof. (ii) and (iii) directly follows from (i). So, we only need to prove (i).

(⇒) Take any $\varepsilon \in \mathbb{R}_+$. Then, there exists $\delta \in \mathbb{R}_+$ such that

$$\forall \mathbf{x} \in S, (0 < ||\mathbf{x} - \mathbf{c}|| < \delta \implies ||\mathbf{f}(\mathbf{x}) - \mathbf{v}|| < \varepsilon).$$

Then, for each $j \in [m]$, whenever $\mathbf{x} \in S \cap N'(\mathbf{c}; \delta)$,

$$|f_j(\mathbf{x}) - \nu_j|^2 \le \sum_{i=1}^m |f_j(\mathbf{x}) - \nu_i|^2 = ||\mathbf{f}(\mathbf{x}) - \mathbf{v}||^2 < \varepsilon^2,$$

which implies $S \cap N'(\mathbf{c}; \delta) \subseteq f_j^{-1}(N(\nu_j; \varepsilon))$; $\lim_{\mathbf{x} \to \mathbf{c}} f_j(\mathbf{x}) = \nu_j$. (\Leftarrow) Take any $\varepsilon \in \mathbb{R}_+$. Then, for each $j \in [m]$, there exists $\delta_j \in \mathbb{R}_+$ such that

$$\forall \mathbf{x} \in S, (0 < ||\mathbf{x} - \mathbf{c}|| < \delta_j \implies |f_j(\mathbf{x}) - v_j| < \varepsilon / \sqrt{m}).$$

Then, whenever $\mathbf{x} \in S \cap N'(\mathbf{c}; \delta_0)$ where $\delta_0 \triangleq \min_{i=1}^m \delta_i$,

$$\|\mathbf{f}(\mathbf{x}) - \mathbf{v}\|^2 = \sum_{i=1}^m |f_i(\mathbf{x}) - v_i|^2 < \sum_{i=1}^m \left(\frac{\varepsilon}{\sqrt{m}}\right)^2 = \varepsilon^2,$$

which implies $S \cap N'(\mathbf{c}; \delta_0) \subseteq \mathbf{f}^{-1}(N(\mathbf{v}; \varepsilon))$; $\lim_{\mathbf{x} \to \mathbf{c}} \mathbf{f}(\mathbf{x}) = \mathbf{v}$.

Theorem 1.6.2

Let $\emptyset \neq S \subseteq \mathbb{R}^n$ and $\mathbf{f}: S \to \mathbb{R}^m$.

- (i) Let **c** be a point in \overline{S} . Then $\lim_{x\to c} f(x) = v$ if and only if, for every sequence $\{x_k\}$ in $S \setminus \{c\}$ such that $\lim_{k \to \infty} \mathbf{x}_k = \mathbf{c}$, we have $\lim_{k \to \infty} \mathbf{f}(\mathbf{x}_k) = \mathbf{v}$.
- (ii) Let **c** be a point in S. Then **f** is continuous at **c** if and only if, for every sequence $\{\mathbf{x}_k\}$ in S such that $\lim_{k\to\infty}\mathbf{x}_k=\mathbf{c}$, we have $\lim_{k\to\infty}\mathbf{f}(\mathbf{x}_k)=\mathbf{f}(\mathbf{c})$.

Proof. By Theorem 1.6.1,

$$\lim_{\mathbf{x}\to\mathbf{c}}\mathbf{f}(\mathbf{x})=\mathbf{v}\iff\forall j\in[m],\lim_{\mathbf{x}\to\mathbf{c}}f_j(\mathbf{x})=v_j$$

where $\mathbf{v} = (v_1, v_2, \dots, v_m)$. By Theorem 1.1.6, for each $j \in [m]$,

$$\lim_{\mathbf{x}\to\mathbf{c}} f_j(\mathbf{x}) = v_j \iff \forall \{\mathbf{x}_k\} \in (S \setminus \{\mathbf{c}\})^{\omega}, \left(\lim_{k\to\infty} \mathbf{x}_k = \mathbf{c} \implies \lim_{k\to\infty} f_j(\mathbf{x}_k) = v_j\right).$$

By ??,

$$\lim_{k\to\infty} \mathbf{f}(\mathbf{x}_k) = \mathbf{v} \iff \forall j \in [m], \lim_{k\to\infty} f_j(\mathbf{x}_k) = v_j.$$

Thus, (i) is proven, and (ii) can be proven similarly with the aid of Theorem 1.1.7.

Theorem 1.6.3

Let $f: S \to T$ where $S \subseteq \mathbb{R}^n$ and $T \subseteq \mathbb{R}^m$. Suppose f is surjective. Then \mathbf{f} is continuous on S if and only if the inverse image of every relatively open set in T is relatively open in S.

Proof. Repeat the proof of Theorem 1.2.1 verbatim.

Theorem 1.6.4

If *S* is a connected subset of \mathbb{R}^n and $\mathbf{f} \colon S \to \mathbb{R}^m$ is continuous on *S*, then $T = \mathbf{f}(S)$ is also connected.

Proof. Repeat the proof of Theorem 1.2.2 verbatim.

Theorem 1.6.5

If *S* is a compact subset of \mathbb{R}^n and $\mathbf{f}: S \to \mathbb{R}^m$ is continuous on *S*, then $T = \mathbf{f}(S)$ is also compact.

Proof. Repeat the proof of Theorem 1.2.3 verbatim.

Theorem 1.6.6

Let $S \subseteq \mathbb{R}^n$, $f: S \to \mathbb{R}^m$, $f(S) \subseteq T \subseteq \mathbb{R}^m$, and $g: T \to \mathbb{R}^p$. If f is continuous at $\mathbf{c} \in S$ and if g is continuous at $f(\mathbf{c}) \in T$, then $g \circ f$ is continuous at \mathbf{c} .

Proof. Repeat the proof of Theorem 1.2.7 verbatim.

Theorem 1.6.7

Let $\emptyset \neq S \subseteq \mathbb{R}^n$ is compact and $\emptyset \neq T \subseteq \mathbb{R}^m$. Let $\mathbf{f}: S \to T$ is continuous on S and bijective. Then, \mathbf{f}^{-1} is also continuous on $\mathbf{f}(S)$.

Proof. Repeat the proof of Theorem 1.2.8 verbatim.

Definition 1.6.3: Uniform Continuity

A function $\mathbf{f}: S \to \mathbb{R}^m$ with $S \subseteq \mathbb{R}^n$ is said to be uniformly continuous on S if,

$$\forall \varepsilon \in \mathbb{R}_+, \exists \delta \in \mathbb{R}_+, \forall \mathbf{c} \in S, S \cap N(\mathbf{c}; \delta) \subseteq \mathbf{f}^{-1}(N(\mathbf{f}(\mathbf{c}); \varepsilon)).$$

Or, equivalently,

 $\forall \varepsilon \in \mathbb{R}_+, \ \exists \delta \in \mathbb{R}_+, \ \forall \mathbf{x}, \mathbf{y} \in S, \ \big(\|\mathbf{x} - \mathbf{y}\| < \delta \implies \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})\| < \varepsilon \big).$

Theorem 1.6.8

Let $\mathbf{f} = (f_1, f_2, \dots, f_m)$ be a function $\mathbf{f} : S \to \mathbb{R}^m$ where $S \subseteq \mathbb{R}^n$. Then, \mathbf{f} is uniformly continuous if and only if f_j is uniformly continuous on S for each $j \in [m]$.

Proof. (\Rightarrow) Take any $j \in [m]$ and $\varepsilon \in \mathbb{R}_+$. Then, there exist $\delta \in \mathbb{R}_+$ such that,

$$\forall \mathbf{x}, \mathbf{y} \in S, (\|\mathbf{x} - \mathbf{y}\| < \delta \implies \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})\| < \varepsilon).$$

Since $|f_j(\mathbf{x}) - f_j(\mathbf{y})| \le ||\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})||$, f_j is uniformly continuous. (\Leftarrow) Take any $\varepsilon \in \mathbb{R}_+$. Then, for each $j \in [m]$, there exists $\delta_j \in \mathbb{R}_+$ such that

$$\forall \mathbf{x}, \mathbf{y} \in S, (\|\mathbf{x} - \mathbf{y}\| < \delta_i \implies |f_i(\mathbf{x}) - f_i(\mathbf{y})| < \varepsilon / \sqrt{m}).$$

Let $\delta \triangleq \min_{j \in [m]} \delta_j$. Then,

$$\forall \mathbf{x}, \mathbf{y} \in S, (\|\mathbf{x} - \mathbf{y}\| < \delta \implies \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})\| < \varepsilon).$$

Theorem 1.6.9

Suppose that $f: S \to \mathbb{R}^m$ is continuous on a compact subset S of \mathbb{R}^n . Then f is uniformly continuous on S.

Proof. Repeat the proof of Theorem 1.4.1 verbatim.