Genetic Architecture in Autism Spectrum Disorders

Danny Antaki, Sebat Lab Biomedical Sciences Graduate Program University of California, San Diego

Thesis Committee Meeting May 2, 2018

Mini CV

Publications

- Brandler, W. M.*, Antaki, D.*, Gujral, M.*, et al. Paternally inherited cis-regulatory structural variants are associated with autism. Science, 2018
- Antaki, D., Brandler, W. M., Sebat J. SV²: Accurate structural variation genotyping and de novo mutation detection from whole genomes. *Bioinformatics*, 2018
- Brandler, W. M.*, Antaki, D.*, Gujral, M.*, et al. Frequency and complexity of de novo structural mutation in autism. The American Journal of Human Genetics, 2016
- Breuss, M., Kleiber, M., George, R. D., Antaki, D., et al. Quantification of autism recurrence risk by direct assessment of paternal sperm mosaicism. bioRxiv, 2017

Consortium Publications

- Chaisson, M. J., et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. bioRxiv, 2017 (1000 Genomes)
- Marshall, C. R., et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 2017 (PGC)
- Sudmant, P. H., et al. "An integrated map of structural variation in 2,504 human genomes." *Nature*, 2015 (1000 Genomes)

Posters

- SV²: Accurate Structural Variation Genotyping and De Novo Mutation Detection for Whole Genomes. American Society of Human Genetics, Orlando FL 2017
- Whole Genome Sequencing Identifies Complex and Balanced De Novo Structural Variation in Autism. World Congress of Psychiatric Genetics, Toronto Canada 2015
- Whole Genome Sequencing Identifies Complex and Balanced De Novo Structural Variation in Autism. American Society of Human Genetics, Baltimore MD 2015
- Discovery, validation and genotyping of CNVs by analysis of genome sequence and microarray. American Society of Human Genetics, San Diego CA 2014

Training Programs

Genetics Training Program 2014-2017 NIH predoctoral training grant T32 GM008666

Aims

- Refine Structural Variant (SV) calling in whole genome sequences (WGS)
 - SV²: genotyping SVs with machine learning
- 2. Assay the burden of de novo SV in Autism Spectrum Disorders (ASD)
 - WGS offers optimal resolution compared to other methods
- 3. Interrogate the role of rare inherited variants in ASD
 - Identifying genetic risk stratified by parent of origin

Rationale for Structural Variants

SVs are more likely to elicit a functional change but detection carries the cost of a high FDR

Detecting genotyping errors with machine learning

copies

copies

copies

Features of SV in Next-Gen Sequencing

- Coverage: Number of reads spanning the SV
- Discordant Paired-Ends: abnormal insert sizes
- Split-Reads: reads that span SV breakpoints
- Heterozygous Allele Ratio:
 - Duplications only

Heterozygous Allele Ratio

Genotyping Performance

Orato begions industrium BisequilibriumgTest. • deviations from the

- Tase/Tookitavalidated geWotspSivigenotypes
- False positives in
- string

Comparing SV² to other probabilistic models

SVTyper and Manta utilize paired-end features and probabilistic models

SV² leverages paired-end, coverage, and heterozygous allele ratios and was trained on real data

SV² Overview

- Low FDR
 - 1.2% Deletions
 - 4.4% Duplications
- Low Genotyping Error rates
 - ~48% Transmission Rates
- Outperforms other methods
- Freely available on github
 - Python/Cython
 - github.com/dantaki/SV2

Aims

- Refine Structural Variant (SV) calling in whole genome sequences
 (WGS)
 - SV²: genotyping SVs with machine learning
- 2. Assay the burden of de novo SV in Autism Spectrum Disorders (ASD)
 - WGS offers optimal resolution compared to other methods
- 3. Interrogate the role of rare inherited variants in ASD
 - Identifying genetic risk stratified by parent of origin

- Autism is a heterogeneous neurodevelopmental disorder
 - Impaired social interaction and restricted behavior
 - 1% Prevalence, 4:1 Male:Female
- Sporadic or familial
 - Siblings have increased risk
- Genetic liability is significant
 - MZ twin concordance 30-99% (0.6-0.8 heritability)

Wikipedia Commons

WGS in 3,169 whole genomes

- 829 families
 - 880 ASD offspring
 - 630 Control siblings
- 2 Cohorts
 - REACH: local sources ASD patients (Rady Children's Hospital, 311 families)
 - Simons Simplex Consortium (518 families)
 - Screened negative for de novo LoF or large SV
- Illumina paired-end WGS (42x)
- SV calling: ForestSV, LUMPY, Manta
 - Genotype refinement: SV²
- Filters
 - 66% overlap to segmental duplications, STRs, unmappable loci, assembly gaps
 - SV² strict filters for de novo SVs

WGS better estimates the de novo SV rate

- Previous estimates of de novo SV were limited to microarrays
 - SV > 20kb
 - Copy Number Variants
- WGS better estimates the de novo rate in controls
 - SVs 100bp-10kb
 - Complex and Unbalanced SVs

n	CNVs de novo	Ratio	
118	12	0.102	
77	2	0.026	
195	14	0.072	
196	2	0.010	
	118 77 195	118 12 77 2 195 14	

Sebat J., et al. Science 2007

De novo SVs are enriched for exons in ASD

de novo Exon Burden Functional Constraint **Control Rate ASD Rate Pval** pLI 4.2 0.2 0 0.004 0.9 1.72 0.12 0.005 0.99 1.03

Probability of being loss of function intolerant (pLI)

Measure of haploinsufficiency from observed and expected LoFs in Exomes

Exome Studies

WGS resolves novel single gene hits

- 20 genes in cases were novel
 - Previously implicated:

MACROD2,DMD,CHD2_

Gene	GO Term	Description
CACNG2	GO:0005245	voltage-gated calcium channel activity
CANX	GO:0035255	ionotropic glutamate receptor binding
COL5A2	GO:1903225	negative regulation of endodermal cell differentiation
CSMD1	GO:0042593	glucose homeostasis
DDX43	GO:0004004	ATP-dependent RNA helicase activity
F2R	GO:0051928	positive regulation of calcium ion transport
FAF1	GO:0043130	ubiquitin binding
FGD6	GO:0043547	positive regulation of GTPase activity
HERC4	GO:0042787	protein ubiquitination
LNPEP	GO:0060395	SMAD protein signal transduction
PIGL	GO:0006506	GPI anchor biosynthetic process
PPP1R9A	GO:0060999	positive regulation of dendritic spine development
SAE1	GO:0016925	protein sumoylation
SH3TC1	-	-
SLC4A5	GO:0008509	anion transmembrane transporter activity
SNX24	GO:0030659	cytoplasmic vesicle membrane
TAOK1	GO:0004702	receptor signaling protein serine/threonine kinase activity
TESC	GO:0004860	protein kinase inhibitor activity
UBE3B	GO:0004842	ubiquitin-protein transferase activity
ZNF462	GO:0003677	DNA binding
2111 402	00.0003077	DIVA DITIONING

Identifying Complex and Unbalanced de novo SV

 WGS can identify Insertions, Inversions, and other complex

rearrangements

- 2 INV
- 8 Complex
- 32 INS

ABCD

Aim² Overview

- De novo SV rate is the same for ASD and control
- ASD de novo SV are enriched for haploinsufficient exons
- WGS can resolve SV better than previous methods

Brandler, W. M.*, Antaki, D.*, Gujral, M.*, et al. Frequency and complexity of de novo structural mutation in autism. *The American Journal of Human Genetics*, 2016

Aims

- Refine Structural Variant (SV) calling in whole genome sequences (WGS)
 - SV²: genotyping SVs with machine learning
- 2. Assay the burden of de novo SV in Autism Spectrum Disorders (ASD)
 - WGS offers the best resolution
- 3. Interrogate the role of rare inherited variants in ASD
 - Parent of origin effects

Explaining Missing Heritability in Autism

Method Class of Variant 15-25% of cases have a casual variant

~60-100 genes associated with ASD

Limitations

>10Mb

Mic

Cyt

What have previous studies missed?

Cis-Regulatory Elements

.0kb – 10Mb lot enough power for ommon association

Targeted Sequencing (Exomes)

Copy Number Variants
SNPs + INDELs

Limited to target.
Imprecise
breakpoints

Accounting for Missing Heritability

- Exome sequencing neglects cis-regulatory elements
 - Promoters
 - UTRs

*

• Trai Are Cis-Regulatory Structural Variants (CRE-SV) associated with Autism?

 Microarrays cannot resolve smaller structural variants (50bp-10kb) 80 -

37% of non-o
 within 10kb c

No de novo CRE-SV moderate effect

pLI: probability that a given gene is intolerant to loss of function mutations (ExAC).

90pc pLI

Ascertaining Rare Inherited CRE-SV risk

• Group-wise Additive model

Are Bin Fairly's transmitted to coses

Test the transmission rate for binned variants for all offspring in the cohort

• Transmission Disequilibrium Test (TDT)

ats: a ling error infour

Proband

Proband

The affected child (proband) inherits more damaging rare mutations (red), than the

Phenotype	Transmitted	Not Transmitted	Transmission Rate	nm et al. Nat Gen 2015
Autism	2	1	66%	
Control	1	2	33%	

Intolerant Functional Elements are Rarely Deleted

- Genes with strong negative selection (pLI >0.9)
- Limit to deletions, easier to interpret

Private Variants are Enriched for Risk

- Private variants (singletons) are young mutations
- Not enough time for natural selection

- Most variants are rare
 - More transmission events to test

Inheritance of private variants within functionally constrained genes

- SVs within introns did not
- exhibit transmission bias
 - Error bars are 95% CI (binomial proportion)
 - N = number of independent assortment events (transmitted + non-transmitted)
- SVs overlapping exons were over-transmitted to cases
 - Concordant with exome studies

CRE-SVs were slightly over-transmitted to cases

CRE-SVs exhibit a parent of origin effect

 No parent of origin effect with private SVs within introns

- Mothers over-transmit exonic SVs to cases
 - Females have higher tolerance for LoF mutations

Under-transmission to controls

Replicating the initial findings

- 9,274 whole genomes
 - 2,600 families
 - 2,859 cases
 - 1,214 controls
 - MSSNG cohort (Stephen Scherer): 3,769
 - SSC phase 2: 2,336
- Exonic SVs are over-transmitted to cases
- Rare CRE-SVs exhibit a paternal origin effect Cis-Regulatory -

Overview and future directions

- CRE-SVs exhibit a significant paternal origin effect
 - ~0.8% of cases have a paternally inherited CRE-SV
 - Rare inherited variants thought to contribute ~3-4% to ASD
- Autism is more complex than previously thought
 - Fathers also contribute inherited risk
- Bilineal two-hit model
 - Inherited maternal LoF of large effect
 - Inherited paternal CRE-SV of moderate effect

Brandler, W.M.*, Antaki, D.*, Gujral, M.*, et al. Paternally inherited cis-regulatory structural variants are associated with autism. *Science* 2018.

Exploring the Inherited Bilineal Model

- REACH + SSC1 + SSC2 + SCC3
 - SSC phase 4 to 6 processing
- Condition on maternal LoF
 - What is the remaining risk from father?
 - To sons or daughters?
 - Test inheritance of rare SNPs, INDELs, and SVs
 - Functional constraint
 - pLI (Coding)
 - CDTS + Ubiquitous Enhancers (Noncoding)

Methodology

- WGS in 7,716 individuals
 - 2,005 families
 - 2,059 ASD
 - 1,808 control
- Call SNPs, INDELs, SVs
 - Flag damaging de novo variants
 - Flag damaging inherited variants
- Perform TDT on conditioned trios to ascertain inherited risk
 - Group variants according to functional constraint

Variant QC

- 3.6M SNPs per individual
- 773k INDELs per individual
- 3.7k SV per individual

De novo SNP

- ForestDNM
- Filters
 - Common variants (>1% AF)1000 genomes phase 3
 - Segmental Duplications
 - 0% AF in parents

SSC samples are depleted for LoF de novo SNPs

De novo INDELs (Work in Progress)

- Developing a machine learning classifier for de novo INDELs
 - Similar to ForestDNM
- Training set: 11 pairs of MZ twins
 - True Positives: Inherited private variants genotyped in swapped parents
 - False Positives: Discordant de novos
- Test set: 98 offspring
 - True Positives: Inherited private variants in swapped parents
 - False Positives: Apparent de novos
- Validation set: 15 offspring
 - True Positives: Validated de novo INDELs in Single Molecule Reads
 - False Positives: WGS de novos not validated with long reads

Initial Performance Results

- 10x cross validation
- Parameter Sweeps
 - FDR below 2%
- Grid Search
 - selecting the best parameters
- Test set performance
 - Aojie Lian

CDTS (Di Iulio J. 2018)

- Functional constraint score of the genome
 - 10bp intervals
 - WGS SNP mutation
- Private deletions are depleted in constrained regions
- CDTS can help bin constrained cisregulatory elements

Prateek Tandon

Aim 3 Checklist

	SNP	INDEL	SV
Variant Calling			
De novo Annotation		Evaluating classifier	SSC2 + SSC3 need annotations
Private Variant Annotation			SSC2 + SSC3
TDT			Software framework only needs some adaptions
Conditioned TDT	Need to bin offspring by risk		

Acknowledgements

Sebat Lab

- William Brandler
- Madhu Gujral
- Prateek Tandon
- Oanh Hong
- Morgan Kleiber
- Tim Chapman
- Michelle Maile
- Omar Shanta
- Adam Koch
- Aojie Lian

Thesis Committee

- Jonathan Sebat: chair
- Joseph Gleeson
- Alysson Muotri
- Abraham Palmer
- Nicholas Schork

Stephen Scherer (MSSNG)
Rady Children's Hospital
REACH project
Human Longevity Institute
Simons Simplex Project
1000 Genomes Project

San Diego Supercomputer Center

Funding:

NIH predoctoral training grant T32 GM008666 (UCSD Genetics Training Program)

Amazon Web Services Research Grant

Sebat Lab funding:

NIH: MH076431, MH113715 Beyster Family Foundation

Recurrent CRE-SVs

Gene	Cytoband	Annotation	Syndrome / ASD finding		1
CNTN4	3p26.3-p26.2	Axon-assoc. cell adhesion molecule	3p deletion/ASD CNV	Cis-Regulatory -	N=107 N=113 p=1.46E-10
RAF1	3p25.2	Proto-oncogene, serine/threonine Kinase	Noonan/ASD CNV		
MEST	7q32.2	hydrolase activity, paternally expressed	Silver-Russell /7q ASD susceptibility locus	Exon -	10 ² 10 ³ 10 ⁴ 10 ⁵ 10 ⁶
LEO1	15q21.2	Comp. of PAF1 complex, assoc. w/ RNA pol II	./2 de novo LoF in ASD exome studies		CRE-SVs are significantly smaller than exonic SVs