

BCC760 Turmas 2 e 6

Estado dirigido 1 - Página 2 de 8 Gabriel Ferrondes Davin - 9913

1. 2 pontos Vários candidatos prestaram concurso para preenchimento de finas vagas nums empresa. Somente quatro dentre eles conseguiram aprovação. A classificação, com as respectivas notas e médias, foi divulgada através da seguinte tabela:

Notas/Candidatos	Português	Matemática	11			
A	8.0		The same of the sa	Legislação	Media	Classificação
B C	8,1 8,9	7,7	8,5 8,2 7,8	9,3 8,2 8,6	8.58 8.28	10
	8,0	7,5	7.6	8,1	7.80	39

Evidentemente, a empresa convocón os candidatos A e B para as vagas. Inconformado conv o resultado, o candidato C procurou o gerente da firma para se informar de como as módiase tinham sido calculadas, já que pode verificar que não se tratava de média aviemética, pose, se assim o fosse, sua média seria 8,15 e não 8,22. Receben, então, como resposta, que o crictora utilizado fora o da média ponderada. Baseado nesta informação, o candidado C sequeses a Justiça a anulação do concurso, pois as médias não haviam sido calculadas corretamente.

Qual o veredito do juiz designado para o caso? Utiliza o método de Canas com procesção para

By
$$x + 7, 7, 9 + 8,52 + 7,7 \alpha = 8,68$$
 $3,0 \times + 7,7 + 8,12 \times + 8,2 \alpha = 8,68$
 $3,1 \times + 7,7 + 1,12 \times + 8,2 \alpha = 9,29$
 $3,7 \times + 7,3 + 7,8 \times + 8,6 \alpha = 9,22$
 $3,9 \times + 7,5 + 7,6 \times + 8,1 \alpha = 7,86$

2 pontos Vários candidatos prestaram concurso para preenchimento de duas vagas numa em-presa. Somente quatro deutre eles conseguiram aprovação. A classificação, com as respectivas notas e médias, foi divulgada através da seguinte tabela:

Notas/Candidatos	Português	Matemática	Informática	Legislação	Média	Classificação
A	8,0	9,2	8,5	9.3	8,58	10
В	8,1	7.7	8,2	8,2	8.28	20
C	8.9	7.3	7.8	8.6	8,22	30
D	8,0	7,5	7,6	8,1	7,80	40

				1 +
linha	mult		Termid	1/415
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m ₂₁ = 0,4101 m ₃₁ = 0,8989 m ₄₁ = 0,8984	8,9 7,3 7,8 8,6 8,1 7,7 8,1 8,1 8,0 9,1 8,5 9,3 8,0 7,5 7,6 1,1	8,22 8,28 9,58 7,88	L' L 1 L 1
L ₁ , L ₃ , L ₇		0 1 63/0 14 31 69 0 1 63/0 14 31 69	15 1,191042	Lz=12-0,900/L1 Lz=1-0,9999 L1 Ly=1-1,9959 L1
1 L L L L L L L L L L L L L L L L L L L	m32=0,4003	0 1,6380 1,586 1,566 0,36	15 1,1910	L? L1 L4
L 4,		0 0 0,5063 -0,24	352 0,3221 96 -0,0125	14=14-104112
- 5	m43=0,1174	0 0 0 -0,1	-0,0503	L4=14-194123
2-0,1586 a = -0,		= 1,1410 2=	-0164 -0,181	(40 = [0.0764 64 0,7476

BCC760 Turmas 2 e 6 Estudo dirigido 1 - Página 3 de 8 Currol Fernando Vigurin - 9 14113

2. 2 pontos Descubra os pesos utilizados pelos jogadores para calcular a pontuação de cada dupla em um torneio de truco¹. Para isso, utilize as informações destacadas na Tabela a seguir:

Dupla	Vitórias	Empates	Derrotas	Pontuação
1	3	2	5	27
2	1	1	1	18
3	4	1	5	31

Apresente os resultados utilizando o método de Gauss.
$$3 \times + 29 + 52 = 27$$
 $1 \times + 19 + 12 = 19$
 $1 \times + 19 + 52 = 31$

linha	mult	Coef	Term id.	Trans.
L ₁ (1) L ₂ L ₃	$m_{21} = \frac{1}{3}$ $m_{31} = \frac{1}{3}$	3 2 5 1 1 1 4 1 5	27 18 31	
L2 (2)		0 -1/3 +2/3 0 -5/3 -5/3	4 - 5	L3=L3-1931-1 L3=L3-1931-1
L2 (3)	$m_{31} = 5$	0 0 5/3	- 50	13= 13- mys 12

$$\begin{cases}
35/3 & z = -50 \\
1/3 & y - 2/3 & z = 9 \\
3x + 3y + 5z = 27 \\
z = -\frac{80.3}{3} - 2z = 30
\end{cases}$$

$$4 = 4 - (2/3.(70)) , 3 -> 9 = -33$$

$$x = 23 - (-66 - 150) -> x = 27 ... 216 -> x = 243 -> x = 9$$
*Intere//pt.wikipedia.org/wiki/Truco
$$5010600 = [81 -33 -30]$$

https://pt.wikipedia.org/wiki/Truco

3. 2 pontos Suponha M o dígito do seu último número de matrícula. Por exemplo, M=4 para o número de matrícula 20,2,1234. Resolver o sistema a seguir utilizando o método iterativo de Gauss-Seidel. Utilizar precisão de 0,050, no máximo 3 iterações e $X^0 = [0;0;0]^{\ell}$. Sistema $\begin{cases} x_1 - x_2 - 8x_3 &= M & \text{Yh} \subset \mathcal{I} \\ 4x_1 - x_2 - x_3 &= 2 \\ x_1 - 8x_2 - x_3 &= 3 \end{cases} \qquad \text{Yh} \subset \mathcal{I} \qquad \text{Yh} \subset \mathcal{I}$ Sumário:

k	x_1^k	x_2^k	x_3^k	$\max_{1 \le i \le 3} x_i^k - x_i^{k-1} $
0	0	0	0	
1	0,5	-0,3125	-0,2734	0,40
2	0,3535	-012966	-0,2937	0, 1965
3	0,3524	-0,294)	-0,2942	0,024

X= 1/(2+4+Z) $\begin{vmatrix} y = 1 \\ y = 1 \\ (3 - 8 + 0) \end{vmatrix} = \begin{vmatrix} z = 1$ (1) X=1(2+0+0)

(1) $x = \frac{1}{4} \Rightarrow x = 0,5$ $y = \frac{3}{6} \Rightarrow y = 0,518$ $z = -\frac{1}{6}(2,18,74) \Rightarrow z = -0,2734$ (2) $x = \frac{1}{1}(2 \cdot (-0,7) \times (-1, -1) \times (-1, -1)$ (2) x=\frac{1}{5}(1,414)]=0,3544=\frac{1}{5}(2,374)=-0,2966 Z=\frac{1}{5}(2,3499)=-0,2937

(3) = 4(2-0,2460-0,243-1) 4= (3-0,3624-0,244-1) Z= = (3-0,3624-0,2441)

(3) | x=1 (1,4096)=0,3524 | y=1/8 (2,3534)=0,2942 | ==-1/8 (2,3534)=0,2942)

Sologão = [0,3624 -0,2942 -0,2942]


```
7 de 8 Pubriel Fernander Nigumi - 19 1 4113
       rmport java util. Scompr;

public static void marm (String[] args);

int n;
                 Int n;
Scanner ler = new Scanner(System.in); n = ler. next Int();
double maion = 0;
double atual;
int linha Maion;
double[][] A = New double [n] [n];
double[][] [] L = new double [n][[h];
             double[][I] L = new double[n][n];

double[] C] U = new double[n][n];

double[] C] m = new double[n][n];

double[] douxTroca = new double[n];

for (int i = 0; i < n; i + 1)}

for (int j = 0; j < n; j + 1)}

A[i] [j] = ler. net Double();

U[i] [j] = A[i] [j];
          forlint k=0; K < n-1; K++){
                 linha Major = K;
                  major = UEHJERJ;
                 for(int r = K+1; r <= n-1; r++)}
atual = U[r][K];
                         if (major < atual) if major = atual;
                                    linha Maion = r;
if (linhallaion 1= k)}
       aux Froca = UIN];
```

```
Gabriel Fernandes Niguini
19.1.4113
     UTlinha Major 7 = OVX Troca;
                                                  7 0 0

7 1,9 -5,8

1,9408 1,2010 2,1566

0 4,3016 3,2245

0 5,2245
```

