2021-2022 (二) 浙江工业大学高等数学 IIB 考试试卷

学院: _____ 班级: ____ 姓名: ____ 学号: _____

任课教师:_____

题 号	1	11	11]	四	五	六	总 分
得 分							

一、填空选择题(每小题3分,共36分)

1. 设有直线
$$L_1$$
: $\frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+8}{1}$, L_2 : $\begin{cases} x-y=6, \\ 2y+z=3, \end{cases}$ 则 L_1 与 L_2 的夹角为 ______

2. 向量 $\vec{a} = -4\vec{i} + 3\vec{j} + 8\vec{k}$,向量 \vec{b} 是三个方向角均相等且为锐角的单位向量,则 $\vec{a} \cdot \vec{b} = -----$

4.
$$\lim_{\substack{x \to 6 \\ y \to +\infty}} \frac{xy-2}{3y+1} = \underline{\hspace{1cm}}$$

5. 设
$$z = e^{\sin(xy)}$$
,则 $dz =$ _____.

7. 设
$$D: x^2 + y^2 \le a^2$$
,若 $\iint_D \sqrt{a^2 - x^2 - y^2} dx dy = \pi$,则 a 为______.

8. 级数
$$\sum_{n=1}^{\infty} n(x+1)^n$$
 的收敛域(含端点)为______.

- 9. 下列说法正确的是()
- (A) 两向量 \vec{a} 与 \vec{b} 平行的充要条件是存在唯一的实数 λ , 使得 $\vec{a} = \lambda \vec{b}$.
- (B) 函数 z = f(x, y) 的两个二阶偏导数 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial y^2}$ 在区域 D 内连续,则在该区域内两个二阶混合偏导数必相等.
- (C) 函数 z = f(x, y) 的两个偏导数在点 (x_0, y_0) 处连续是函数在该点可微的充分条件.
- (D) 函数 z = f(x, y) 的两个偏导数在点 (x_0, y_0) 处存在是函数在该点可微的充分条件.

10. 设a 为常数,级数 $\sum_{n=1}^{\infty} \left[\frac{\sin(na)}{n^2} - \frac{1}{\sqrt{n}} \right]$ 的敛散情况是(

- (A) 条件收敛 (B) 绝对收敛 (C) 发散 (D) 敛散性与a 的取值有关

- (A) 绝对收敛 (B) 条件收敛
- (C)发散 (D) 敛散性不能确定

12. 对函数 $f(x, y) = x^2 + xy + y^2 - 3x - 6y$, 点(0,3) (

- - (A) 不是驻点 (B) 是驻点但非极值点 (C) 是极大值点 (D) 是极小值点

二、试解下列各题(每小题5分,共25分)

1. 求过点 M (4,-3,1) 且与两直线: $\frac{x}{6} = \frac{y}{2} = \frac{z}{-3}$ 和 $\frac{x+1}{-2} = \frac{y}{-1} = \frac{z}{-4}$ 都平行的平面方程.

2. 求直线 $l: \frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1}$ 在平面 π : x-y+2z-1=0 上的投影直线的方程.

3. 求曲线 $\begin{cases} x - y + z = 2 \\ z = x^2 + y^2 \end{cases}$ 在点(1, 1, 2)处的切线方程和法平面方程.

4. 求曲面 $z = x^2 + y^2$ 与平面 2x + 4y - z = 0 平行的切平面方程。

5. 将 $f(x) = \frac{1}{x-1}$ 展开为 x-4 的幂级数,并指出其收敛域(含端点)。

三、试解下列各题(每小题6分,共18分)

1.计算
$$\iint_D y^2 e^{xy} dx dy$$
, 其中 D 由直线 $y = x, y$ 轴, $y = 1$ 围成的平面区域.

2. 计算
$$\iint_D (x^2 - y) dx dy$$
, 其中 $D = \{(x, y) | x^2 + y^2 \le 1\}$.

3. 求曲面 $z = 8 - x^2 - y^2$ 和 $z = x^2 + y^2$ 所围立体的体积.

四、(7 分) 求抛物面 $z = x^2 + y^2$ 到平面 x + y + z + 1 = 0的最短距离.

五、(8分) 求幂级数 $\sum_{n=1}^{\infty} \frac{n}{2^n} x^{n-1}$ 的收敛域(含端点)、和函数以及数项级数 $\sum_{n=1}^{\infty} \frac{n}{2^n}$ 的和.

六、(6分)证明题.

1. 试证: 曲面 f(x-ay,z-by)=0 的任一切平面恒与某一直线相平行(其中 f 为可微函数,a,b 为常数)

2. 试证: 如果级数 $\sum_{n=1}^{\infty} u_n$ 绝对收敛,则级数 $\sum_{n=1}^{\infty} u_n$ 必定收敛。