MODULE TigerHumanSheep

This module specifies what a man, accompanied by a sheep, some food and a tiger, can do in order to cross a river with a boat and according to the following rules:

- The boat can only fit for the man and one of the other elements (food, sheep, tiger).
- If the sheep is left alone on one side of the river with the food, the sheep will eat the man's food.
- If the tiger is left alone with the sheep, the tiger will eat the sheep.
- The puzzle is completed once the man, the sheep, the tiger and the food have crossed the river.
- The tiger does not eat the food the man caries since it's only vegs.

20 EXTENDS Integers

Variable bRSide represents the side of the river on which an animal of the BEINGS set stands on (the initial side is 0 and the other side is 1).

```
27 VARIABLES bRSide
```

28 CONSTANTS SHEEP, FOOD, TIGER, MAN, BEINGS

```
haveNotCrossed(being1, being2) \stackrel{\Delta}{=}
       \wedge bRSide[being1] = 0
31
       \wedge bRSide[being2] = 0
32
    haveCrossed(being1, being2) \stackrel{\Delta}{=}
       \land bRSide[being1] = 1
34
       \land bRSide[being2] = 1
35
    changeBeingsSide(being1, being2) \stackrel{\Delta}{=}
37
       \land bRSide[being1] = bRSide[being2]
38
       \land bRSide' = [bRSide \ EXCEPT \ ![being1] = 1 - bRSide[being1],
39
                                             ![being2] = 1 - bRSide[being2]]
40
```

For each the four elements of the enigma : -0 means that it has not yet crossed or has come back to the original

border of the river.

-1 means that it has crossed the river and is now on the other side.

```
48 \quad TypeOK \stackrel{\triangle}{=} bRSide \in [BEINGS \rightarrow 0 \dots 1]
```

First, all beings are on the same river side!

```
53 \quad Init \stackrel{\triangle}{=} bRSide = [b \in BEINGS \mapsto 0]
```

Some invariants:

- The sheep cannot be left with the food without man's presence.
- The tiger cannot be left with the sheep without man's presence.

```
60 SheepNotWithFood \triangleq
```

- 61 IF $bRSide[SHEEP] \neq bRSide[MAN]$ THEN $bRSide[SHEEP] \neq bRSide[FOOD]$ ELSE TRUE
- 62 $TigerNotWithSheep \stackrel{\triangle}{=}$
- IF $bRSide[TIGER] \neq bRSide[MAN]$ THEN $bRSide[TIGER] \neq bRSide[SHEEP]$ ELSE TRUE
- $Beings Invariants \stackrel{\Delta}{=}$

```
\vee Init
```

 $\lor \land SheepNotWithFood \land TigerNotWithSheep$

Man takes sheep over. Behind him, eventually, tiger and food could be left alone.

- 72 $TakeSheepOver \triangleq$
- $\land haveNotCrossed(MAN, SHEEP)$
- $\land changeBeingsSide(MAN, SHEEP)$

Man takes tiger over and takes care not to leave sheep and food alone!

- 79 $TakeTigerOver \triangleq$
- 80 $\land \neg (bRSide[SHEEP] = bRSide[TIGER] \land bRSide[FOOD] = bRSide[SHEEP])$
- $\wedge haveNotCrossed(MAN, TIGER)$
- $\land changeBeingsSide(MAN, TIGER)$

Man takes the food over and takes care not to leave sheep with tiger.

- 87 $TakeFoodOver \triangleq$
- 88 $\land \neg (bRSide[TIGER] = bRSide[FOOD] \land bRSide[SHEEP] = bRSide[TIGER])$
- 89 $\land haveNotCrossed(MAN, FOOD)$
- 90 \land changeBeingsSide(MAN, FOOD)

Man takes the sheep back, but tiger could stay with food.

- 95 $TakeSheepBack \triangleq$
- $\wedge haveCrossed(MAN, SHEEP)$
- 97 \land changeBeingsSide(MAN, SHEEP)

Man takes the tiger back and takes care not to leave the food with the sheep alone!

- 103 $TakeTigerBack \triangleq$
- $104 \wedge \neg (bRSide[SHEEP] = bRSide[TIGER] \wedge bRSide[FOOD] = bRSide[SHEEP])$
- $\wedge haveCrossed(MAN, TIGER)$
- $\wedge changeBeingsSide(MAN, TIGER)$

When the man takes the food back, he shall not let the tiger with the sheep behind him!

- 112 $TakeFoodBack \triangleq$
- $\land \neg (bRSide[TIGER] = bRSide[FOOD] \land bRSide[SHEEP] = bRSide[TIGER])$
- $\wedge haveCrossed(MAN, FOOD)$
- $\land changeBeingsSide(MAN, FOOD)$

When the man travels alone, he shall not let the tiger with the sheep or the sheep with the food behind him!

- 121 $ManTravelsAlone \stackrel{\Delta}{=}$
- $122 \wedge \neg (bRSide[MAN] = bRSide[SHEEP] \wedge bRSide[SHEEP] = bRSide[FOOD])$
- $123 \qquad \land \neg (bRSide[MAN] = bRSide[TIGER] \land bRSide[TIGER] = bRSide[SHEEP])$
- $\wedge bRSide' = [bRSide \text{ EXCEPT } ! [MAN] = 1 bRSide[MAN]]$
- 126 NotAllCrossed $\stackrel{\Delta}{=} \exists b \in BEINGS : bRSide[b] \neq 1$
- 127 $AllCrossed \stackrel{\Delta}{=} \forall b \in BEINGS : bRSide[b] = 1$

```
129 Next \stackrel{\triangle}{=}
         \lor \ \textit{TakeSheepOver}
130
         \lor TakeSheepBack
131
         \lor \ TakeTigerOver
132
         \lor \ \textit{TakeTigerBack}
133
         \lor \ \textit{TakeFoodOver}
134
         \lor \ TakeFoodBack
135
         \lor ManTravelsAlone
136
```

 $\backslash * \ {\it Modification History}$

138 L

^{*} Last modified Wed Sep 26 17:29:13 CEST 2018 by DavidRueda * Created Wed Sep 19 20:07:31 CEST 2018 by DavidRueda