

Informe de Riesgos de Mercado

Tarea 3

Administración de Riesgos Financieros

Alumnos:

Cruz Estrada, Valeria Lucero García Tapia, Jesús Eduardo Hernández Acosta, Juan Manuel Ramírez Maciel, José Antonio Reyes López, Arath Alejandro

Profesor:

Christian Gabriel Miranda Ruíz

Ayudante:

Miguel Ángel Parra Ramírez

2022

Índice

1.	Met	odología	4
	1.1.	Simulación Histórica	5
	1.2.	Delta-Gamma Delta-Normal	6
	1.3.	Simulación Monte Carlo	LC
2.	Equ	rity 1	3
	_	· ·	L3
		2.1.1. Sin Alisado	13
		2.1.2. Con Alisado	13
	2.2.	Delta-Gamma/Delta-Normal	L4
		2.2.1. Delta-Normal	L4
		2.2.2. Delta-Gamma-Normal	L4
		2.2.3. Delta-Gamma Cornish-Fisher	4
	2.3.	Simulación Monte Carlo	L5
		2.3.1. Cholesky Normal	L5
		2.3.2. Cholesky Empírico	L5
		2.3.3. Componentes Principales Normal	L5
		2.3.4. Componentes Principales Empírico	15
			_
3.		8	7
	3.1.		L7
			17
	0.0		17
	3.2.		8
			8
			8
	0.0		8
	3.3.		8
		·	8
		v 1	19
			19
		3.3.4. Componentes Principales Empírico	L9
4.	Fixe	ed Income	20
	4.1.	Simulación Histórica	20
		4.1.1. Sin Alisado	20
		4.1.2. Con Alisado	21
	4.2.		21
		4.2.1. Delta-Normal	21
		4.2.2. Delta-Gamma-Normal	22
			23
	4.3.		24
			24
		·	25

		4.3.3.	Componentes Principales Normal	27
		4.3.4.	Componentes Principales Empirico	28
5.	For	ward/l	Future	30
	5.1.	Simul	ación Histórica	30
		5.1.1.	Sin Alisado	30
		5.1.2.	Con Alisado	30
	5.2.		-Gamma/Delta-Normal	31
			Delta-Normal	31
			Delta-Gamma-Normal	32
			Delta-Gamma Cornish-Fisher	33
	5.3		ación Montecarlo	35
	0.0.		Cholesky Normal	35
			Cholesky Empírico	36
			Componentes Principales Normal	36
			Componentes Principales Empírico	37
		0.0.4.	Componentes Frincipales Empirico	31
6.	Inte	erest R	Rate Swap	39
	6.1.	Simul	ación Histórica	39
		6.1.1.	Sin Alisado	39
		6.1.2.	Con Alisado	39
	6.2.	Delta-	-Gamma/Delta-Normal	40
		6.2.1.	Delta-Normal	40
		6.2.2.	Delta-Gamma-Normal	41
		6.2.3.	Delta-Gamma Cornish-Fisher	42
	6.3.	Simul	acion Monte Carlo	43
			Cholesky Normal	43
			Cholesky Empírico	43
			Componentes Principales Normal	43
			Componentes Principales Empírico	44
		0.0.1.	Componentes Timespaies Empirico	
7.	_	ions		45
	7.1.		ación Histórica	45
		7.1.1.	Sin Alisado	45
		7.1.2.	Con Alisado	45
	7.2.	Delta-	-Gamma/Delta-Normal	46
		7.2.1.	Delta-Normal	46
		7.2.2.	Delta-Gamma-Normal	46
		7.2.3.	Delta-Gamma Cornish-Fisher	47
	7.3.	Simul	ación Monte Carlo	47
		7.3.1.	Cholesky Normal	47
			Cholesky Empírico	48
			Componentes Principales Normal	48
			Componentes Principales Empírico	49
8.	Cro		rency Swap	50

1. Metodología

Valor en Riesgo (Value at Risk, VaR)

Se trata de un método para cuantificar la exposición al riesgo de mercado. El Valor en Riesgo vendría a medir la pérdida que se podría sufrir en condiciones normales de mercado en un intervalo de tiempo y con un cierto nivel de confianza.

Este método fue desarrollado por matemáticos y estadísticos de JP Morgan a principios de los 90, y fue adoptado rápidamente por el resto de las firmas financieras de Wall Street gracias al gran éxito inicial y a su simplicidad de concepto.

El VaR es el nivel de pérdidas en la cartera que será excedido sólo el $(1-\alpha)\%$ de las veces en promedio en un horizonte de tiempo para un nivel de confianza α . El VaR está dado en unidades monetarias. Formalmente, si se conoce la distribución de pérdidas de la cartera, el VaR se define como

$$V\alpha R_{\alpha} = \inf\{l \in \mathbf{R} : P(L > l) \le 1 - \alpha\} = \inf\{l \in \mathbf{R} : F_L(l) \ge \alpha\}$$

donde $F_L(\cdot)$ es la función de distribución de probabilidad acumulada de las pérdidas de la cartera.

En términos probabilísticos, el VaR es un cuantil de la distribución de pérdidas y puede ser obtenido con la llamada función cuantil según se trate de que se tenga una distribución de probabilidad continua o discreta.

Valor en Riesgo Condicional (Conditional Value at Risk, CVaR)

Es la media de las observaciones en la cola de la distribución, es decir, por debajo del VaR al nivel de confianza especificado. Por ello el CVaR se conoce también como déficit esperado (Expected Shortfall, ES), AVaR (Average Value at Risk) o ETL (Expected Tail Loss).

Indica el valor esperado de la pérdida, condicionada a que ésta sea mayor que el VaR. Para una distribución de pérdidas de L con $E(|L|) < \infty$ y función de distribución F_L el CVaR a un nivel de confianza $\alpha \in (0,1)$ se define como

$$\mathrm{CVaR}_{\alpha}(L) = \frac{1}{1-\alpha} \int_{\alpha}^{1} q_{u}(F_{L}) du = \frac{1}{1-\alpha} \int_{\alpha}^{1} \mathrm{VaR}_{u}(F_{L}) du = E(L \mid L \geq \mathrm{VaR}_{\alpha})$$

El CVaR se utiliza para la optimización de los portfolios porque cuantifica las pérdidas que exceden el VaR y actúa como una cota superior para el VaR. El CVaR destaca por ser una medida coherente del riesgo.

¿Cuál elegir?

Por lo general, el uso del CVaR en lugar de solo el VaR tiende a conducir a un enfoque más conservador en términos de exposición al riesgo. Por un lado tenemos que el VaR representa una pérdida máxima asociada con una probabilidad y un horizonte de tiempo definidos, mientras que el CVaR es la pérdida esperada si se cruza ese umbral del peor de los casos.

Si una inversión ha mostrado estabilidad en el tiempo, entonces el valor en riesgo puede ser suficiente para la gestión del riesgo en una cartera que contiene esa inversión. Sin embargo, debemos tener en cuenta que cuanto menos estable sea la inversión, mayores serán las posibilidades de que VaR no ofrezca una imagen completa del riesgo.

1.1. Simulación Histórica

Las metodologías para el cálculo del Valor en Riesgo y Valor en Riesgo Condicional en este trabajo serán simulación histórica sin alisado y simulación histórica con alisado, en las cuales se construye la distribución de probabilidad a partir de la generación de escenarios y la reevaluación de la transacción en cada uno de ellos.

Sin alisado

Este método consiste en analizar los cambios reales que existieron en las condiciones de mercado que se produjeron entre dos pares de datos en fechas específicas en el pasado. Se realiza mediante el cálculo de la distribución de pérdidas y ganancias durante un periodo determinado. Con estos datos se calcula la función percentil con un nivel de confianza.

Tenemos los siguientes supuestos:

- Una matriz $X_{(n+1)\times m}$ de m factores de riesgo y n+1 observaciones.
- Denotemos el vector de precios actual como $X_{00} := (x_{0,1}, x_{0,2}, \dots, x_{0,m})$.
- Sea r el número de instrumentos de un portafolio, entonces cada instrumento tiene una función de valuación $f_i: A_i \to R$ para todo $x \in X$, i = 1, ..., r, donde $A_i \subset X_i$ con $\#(A_i) \leq \#(X_i)$.
- Sea $M_{1\times r} = (m_1, ..., m_r)$ el vector de posiciones nominales de cada instrumento, es decir, el número de contratos que se tienen por instrumento $m_i \in R(i=1,...,r)$.

La distribución de pérdidas y ganancias histórica del portafolio basada en los r instrumentos, con m factores de riesgo y n+1 observaciones se obtiene de la siguiente manera:

1. Construir $\Delta X_{n \times m}$ que es la matriz de diferencias basados en el operador T_j , es decir

$$\Delta X_t = \left[T_j \left(\frac{x_{t,1}}{x_{t+1,1}} \right), T_j \left(\frac{x_{t,2}}{x_{t+1,2}} \right), \dots, T_j \left(\frac{x_{t,m}}{x_{t+1,m}} \right) \right] \quad t = 0, 1, \dots, n-1.$$

2. Construir $X^*n \times m$ que es la matriz de factores de riesgo simulada basada en el vector de precios actual X_{00}

$$X_{t}^{*} = \left[x_{0,1}T_{j}^{-1}\left(\Delta x_{t,1}\right), x_{0,2}T_{j}^{-1}\left(\Delta x_{t,2}\right), \dots, x_{0,m}T_{j}^{-1}\left(\Delta x_{t,m}\right)\right] \quad (t = 1, \dots, n \quad j = 1, 2),$$

donde $T_1(x) = \ln(x), T_2(x) = x - 1.$

3. Construcción de la matriz de reevaluación del portafolio basada en los escenarios históricos $Y_{n\times r}$ de todos los instrumentos financieros, es decir

$$Y_t = [m_1 f_1(X_t^*), m_2 f_2(X_t^*), \dots, m_r f_r(X_t^*)]$$
 $(t = 1, \dots, n).$

4. Construcción de la matriz de pérdidas y ganancias del portafolio basada en los escenarios históricos $\Delta Y_{n\times r}$ de todos los instrumentos financieros, es decir

$$\Delta Y_t = Y_0 - Y_t = \left[m_1 \left(f_1(X_{00}) - f_1(X_t^*) \right), m_2 \left(f_2(X_{00}) - f_2(X_t^*) \right), \dots, m_r \left(f_r(X_{00}) - f_r(X_t^*) \right) \right],$$

para $(t=1,\ldots,n)$. Se puede obtener el vector de pérdidas totales $\Delta Y T_{n\times m}$ muy fácilmente, esto es $\Delta Y T = \sum_{k=1}^{r} Y_{kt} (t=1,\ldots,n)$, incluso se puede hacer lo mismo por tipo de riesgo.

5. Obtener la medida de riesgo basado en un nivel de confianza de la matriz $\Delta Y \cdot k$ (k = 1, ..., r) y $\Delta Y T$.

El resultado del VaR y CVaR depende únicamente de la generación de escenarios a partir de la información histórica de los facoteres de riesgo. Además, cada escenario es equiprobable, es decir cada escenario tiene la misma probabilidad de ocurrencia de $\frac{1}{n}$.

Con alisado

El método de simulación histórica con alisado sigue los mismos pasos que el método sin alisado, la diferencia radica en que el peso de los escenarios no es el mismo para cada uno. Bajo esta metodología se le da más probabilidad de ocurrencia a los hechos más recientes y menos a los viejos. Con ello, se garantiza que los hechos actuales son más relevantes para el modelo.

Utilizando la siguiente función se garantiza la ponderación antes mencionada:

$$w_i = \lambda^{i-1} w_1$$
 $(i = 1, ..., n),$

donde se tienen que estimar las constantes $\lambda \in (0,1)$ y $w_1 \in (0,1)$ tal que $\sum_{i=1}^n \lambda^i w_1 = 1$.

Donde w_i representa la probabilidad del escenario más reciente, y λ la constante que indica que tanto decrece la probabilidad inicial con respecto al escenario i, si λ tiende a 1 no existe decrecimiento, si λ tiende a cero, el decrecimiento es casi inmediato.

Ya que se tiene los valores w_i se ordena la matriz ΔY de menor a mayor y se obtiene el percentil que se desee basado en la distribución w_i .

Para resolver el valor de λ , sabemos de inicio que $0 < \lambda < 1$ entonces la expresión $\sum_{i=1}^n \lambda^i w_1 = 1$ es una serie geométrica por lo que al resolverla tenemos que $w_1 \left(1 - \lambda^{n-1}\right) / (1 - \lambda) = 1$ por lo que finalmente tenemos que encontrar una: λ que cumpla que $w_1 \left(1 - \lambda^{n-1}\right) / (1 - \lambda) - 1 = 0$ dado un w_1 fijo.

1.2. Delta-Gamma | Delta-Normal

Delta-Normal

Una de las formas más sencillas de calcular el VaR es hacer lo que se conoce como supuestos deltanormales. Para cualquier activo subyacente, asumimos que los rendimientos logarítmicos se distribuyen normalmente y aproximamos los rendimientos de cualquier opción en función de su exposición ajustada por delta. Para las carteras, el modelo delta-normal asume que las relaciones entre valores pueden describirse completamente por su correlación.

Los supuestos delta-normales hacen que sea muy fácil calcular el VaR. Esto hizo que los modelos delta normales fueran una opción popular cuando se introdujeron por primera vez los modelos VaR . Como era de esperar, los resultados de un modelo tan simple a menudo fueron decepcionantes. Los modelos delta normales rara vez se usan en la práctica hoy en día, pero siguen siendo un excelente punto de partida para aprender sobre los modelos VaR . Al comprender los pros y los contras del modelo delta-normal, podremos comprender mejor los pros y los contras de modelos más complejos. Lamentablemente, muchas personas ajenas a la gestión de riesgos creen que los modelos delta-normales todavía se usan ampliamente en la práctica, o creen que las deficiencias de estos modelos simples son de alguna manera inherentes a todos los modelos de riesgo.

El modelo analítico, de portafolio o de varianza - covarianza parte de la teoría del portafolio de Markowitz. De acuerdo con este modelo, si una cartera de inversión

- Se conforma de "r" instrumentos financieros, f_1, \ldots, f_r .
- Con *m* factores de riesgo $x = \{x_1, \dots, x_m\}$.
- Supongamos que las variaciones de los factores de riesgo x en un periodo determinado de tiempo Δt , $\frac{x_{t+1}-x_t}{x_t} \sim N_m(0,\Omega)$ con matriz de varianza-covarianza constante para todo $t=0,1,\ldots,n$. Si definimos al vector $\Delta x_t = x_{t+\Delta t} x_t$ $x_t \in R^m$, entonces $\Delta x_t \sim N_m(0,x_t^*\Omega x_t^*)$ donde $x^* = \text{Diag}(x)$.
- Además supongamos que YT(t,x) tiene una derivada con respecto a cada uno de sus argumentos, denotamos YT_t y g donde $YT_t = \frac{\partial YT(t,x)}{\partial t}$ es un escalar y $g = [\frac{\partial YT(t,x)}{\partial x_1}, \frac{\partial YT(t,x)}{\partial x_2}, \dots, \frac{\partial YT(t,x)}{\partial x_m}]$ es un vector, derivadas superiores son iguales a cero.

Obtendremos el del modelo delta-normal, es decir, $\P[\Delta Y T(\Delta t, \Delta x) \leq V a R_{\alpha}] = \alpha$. Primero obtendremos la distribución de $\Delta Y T$ bajo las hipótesis anteriores y luego derivaremos el VaR.

• Utilizando el Teorema de Taylor YT(t,x) se aproxima en la vecindad (t_0,x_0) como

$$YT(t,x) = YT(t_0,x_0) + YT_t(t-t_0) + g[x-x_0]^\top + R_2 = YT(t_0,x_0) + YT_t(\Delta t) + g[\Delta x]^\top + R_2,$$

donde $YT(t_0,x_0)$ es el valor actual del portafolio, g es el que se definió anteriormente, $\Delta x = (x-x_0)$ es un vector cambios en la variable, $\Delta t = (t-t_0)$ es el horizonte de tiempo y R_2 es el error que incluye derivadas de segundo orden o más y $R_2 = 0$.

- Entonces $\Delta \tilde{YT}(\Delta t, \Delta x) \equiv YT(t, x) YT(t_0, x_0) = YT_t\Delta t + g^{\top}\Delta x$.
- Ahora se probará que $\Delta \tilde{YT}(\Delta t, \Delta x) \sim N(YT_t\Delta t, gx^*\Omega(x^*g)^\top),$
 - $E[\Delta Y T(\Delta t, \Delta x)] = E[Y T_t \Delta t + g^{\top} \Delta x] = Y_t \Delta t$,
 - $\operatorname{Var}(Y T_t \Delta t + g^{\top} \Delta x) = g^{\top} \operatorname{Var}(\Delta x) g = g x^* \Omega (x^* g)^{\top}.$
 - Por homocedasticidad. $\Delta \tilde{YT}$ es normal ya que la familia normal es cerrada bajo transformaciones lineales y combinaciones (ver el teorema multinormal de Tong (1990)).

Para calcular el

$$\begin{split} P\Big[\frac{\Delta \tilde{Y}T - YT_t\Delta t}{\sqrt{gx^*\Omega(gx^*)^\top}} &\leq \frac{\alpha - YT_t\Delta t}{\sqrt{gx^*\Omega(gx^*)^\top}}\Big] = \alpha, \qquad P\Big[Z \leq \frac{\alpha - YT_t\Delta t}{\sqrt{gx^*\Omega(gx^*)^\top}}\Big] = \alpha \\ Z(\alpha) &= \frac{\alpha - YT_t\Delta t}{\sqrt{gx^*\Omega(gx^*)^\top}} \implies \quad \alpha = YT_t\Delta t + Z(\alpha)\sqrt{gx^*\Omega(gx^*)^\top}, \end{split}$$

donde $Z(\alpha)$ es el percentil al nivel α de una distribución normal estándar.

El CVaR o VaR condicional de este método se calcula de la siguiente forma $_{\alpha}(\Delta \tilde{YT})$ con $\mu_{\Delta \tilde{YT}} = YT_t\Delta t$ y $\sigma_{\Lambda \tilde{YT}} = \sqrt{gx^*\Omega(gx^*)^{\top}}$.

$$\begin{split} E[\Delta \tilde{Y}T|\Delta \tilde{Y}T \geq_{\alpha} (\Delta \tilde{Y}T)] &= \mu_{\Delta \tilde{Y}T} + E[\Delta \tilde{Y}T - \mu_{\Delta \tilde{Y}T}|\Delta \tilde{Y}T \geq \mu_{\Delta \tilde{Y}T} + \sigma_{\Delta \tilde{Y}T}\Phi^{-1}(\alpha)] \\ &= \mu_{\Delta \tilde{Y}T} + \sigma_{\Delta \tilde{Y}T}E\Big[\frac{\Delta \tilde{Y}T - \mu_{\Delta \tilde{Y}T}}{\sigma_{\Delta \tilde{Y}T}}\Big|\frac{\Delta \tilde{Y}T - \mu_{\Delta \tilde{Y}T}}{\sigma_{\Delta \tilde{Y}T}} \geq \Phi^{-1}(\alpha)\Big] \\ &= \mu_{\Delta \tilde{Y}T} + \sigma_{\Delta \tilde{Y}T}\int_{\Phi^{-1}(\alpha)}^{\infty} y\phi(y)dy \\ &= \mu_{\Delta \tilde{Y}T} + \frac{\sigma_{\Delta \tilde{Y}T}}{1 - \alpha}[-\phi(y)]_{\Phi^{-1}(\alpha)}^{\infty} \\ &= \mu_{\Delta \tilde{Y}T} + \frac{\sigma_{\Delta \tilde{Y}T}\phi(\Phi^{-1}(\alpha))}{1 - \alpha}. \end{split}$$

donde $y = (\Delta \tilde{YT} - \mu_{\Lambda \tilde{YT}})/\sigma_{\Lambda \tilde{YT}}$, ϕ es la función de densidad de una normal estándar.

Delta-Gamma

Este método se refiere a una de las aplicaciones cuantitativas más fundamentales en las finanzas de riesgo, que es la expansión de la Serie de Taylor . Es un patrón que se aplica a opciones (delta-gamma), bonos (duración-convexidad) e incluso VaR de cartera (VaR marginal). En lugar de cambiar el precio de las posiciones complejas, usamos la primera (y la segunda, si es necesario) derivadas parciales para aproximar la pérdida potencial dado un shock a los factores de riesgo primitivos.

El objetivo del modelo delta-gamma consiste en incorporar la no linealidad de los instrumentos en la estimación del valor en riesgo. Las hipótesis de este modelo son:

- $YT(t,x) \in \mathscr{C}^2$, i.e. tiene primera y segunda derivada, que se denotan como YT_t , YT_{tt} , $g = YT_x$, YT_{tx} , $y \Gamma = YT_{xx}$. Donde $YT_t = \frac{\partial^P}{\partial t}$, $YT_{tt} = \frac{\partial^2 P}{\partial t^2}$ son escalares, $g = \frac{\partial P}{\partial x}$ y $YT_{tx} = \frac{\partial^2 P}{\partial t \partial x}$ son vectores de $n \times 1$ y $\Gamma = \frac{\partial^2 P}{\partial x^2}$ es una matriz de $n \times n$. Cada elemento de Γ , Γ_{ij} se calcula como $\Gamma_{ij} = \frac{\partial^2 P}{\partial x_i \partial x_j}$. Derivadas de orden mayor son iguales a cero.
- $\Delta X \sim N(0,\Omega)$ donde $\Delta x_t = x_{t+\Delta t} x_t \ x_t \in R^m$, entonces $\Delta x_t \sim N_m(0,x_t^*\Omega x_t^*)$ donde $x^* = \text{Diag}(x)$ (matriz diagonal de x).
- Ω_m es homocedástica.

Una manera de estimar las variaciones en el valor del portafolio derivados de los cambios en los factores de riesgo $x_1,...,x_n$ y al mismo tiempo incorporar las relaciones no lineales y las relaciones cruzadas de los factores de riesgo, consiste en aproximar los cambios en el valor de la cartera mediante una expansión de Taylor de segundo orden.

Comenzaremos expandiendo YT(t,x) alrededor de $YT(t_0,x_0)$ (donde $\Delta x = x - x_0$ y $\Delta t = t - t_0$), esto es:

$$YT(t,x) \simeq YT(t_0,x_0) + YT_t\Delta t + g^{\top}\Delta x + \frac{1}{2}\{\Delta x^{\top}\Gamma\Delta x + 2YT_{tx}\Delta x\Delta t + YT_{tt}(\Delta t)^2\} + R_3$$

Dado que por hipótesis R_3 es igual a cero tenemos que:

$$\Delta Y T_2(\Delta t, \Delta x) \equiv Y(t, x) - Y(t_0, x_0) = Y T_t \Delta t + g^{\top} \Delta x + \frac{1}{2} \{ \Delta x^{\top} \Gamma \Delta x + 2Y T_{tx} \Delta x \Delta t + Y T_{tt} (\Delta t)^2 \}$$

donde con ΔYT_2 nos referimos al cambio aproximado en la función de portafolios bajo la hipótesis de Delta-Gamma. ΔYT_2 es una simple función cuadrática de un vector normal multivariado, Δx . Esta es una función de densidad bien conocida.

Sabemos que dado un vector $y \sim N_p(\mu, \Sigma)$, con $Q(y) = y^\top A y + a^\top y + d$, $A = A^\top$, el r-ésimo momento de Q(y) está dado por:

$$\begin{split} E(Q(y))^r &= \Big[\sum_{r_1=0}^{r-1} \binom{r-1}{r_1} g^{r-1-r_1} \sum_{r_2=0}^{r_1-1} \binom{r_1-1}{r_2} g^{r_1-1-r_2} \cdots \Big] \\ \text{donde} \quad g^{(k)} &= \frac{1}{2} k! \sum_{j=1}^{p} (2\lambda_j)^{k+1} + \frac{(k+1)!}{2} \sum_{j=1}^{p} b_j^2 (2\lambda_j)^{k-1}, \qquad k \geq 1 \\ g^{(k)} &= \frac{1}{2} k! \sum_{j=1}^{p} (2\lambda_j) + (d+a^\top \mu + \mu^\top A \mu), \qquad k = 0 \quad \text{con} \end{split}$$

 $P^{\top}\Sigma^{1/2}A\Sigma^{1/2}P = diag(\lambda_1,\dots,\lambda_p) = \Lambda, PP^{\top} = I, P^{\top}(\Sigma^{1/2}a + 2\Sigma^{1/2}A\mu) = b = (b_1,\dots,b_p)^{\top}.$ Una versión *más entendible* de la fórmula anterior para los primeros momentos es:

$$E[Q(y)] = \mu_1 = g^{(0)}$$

$$E[Q(y)]^2 = \mu_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} g^{(1)} \mu_0 + \begin{pmatrix} 1 \\ 1 \end{pmatrix} g^{(0)} \mu_1$$

$$E[Q(y)]^3 = \mu_3 = \begin{pmatrix} 2 \\ 0 \end{pmatrix} g^{(2)} \mu_0 + \begin{pmatrix} 2 \\ 1 \end{pmatrix} g^{(1)} \mu_1 + \begin{pmatrix} 2 \\ 2 \end{pmatrix} g^{(0)} \mu_2$$

$$E[Q(y)]^4 = \mu_4 = \begin{pmatrix} 3 \\ 0 \end{pmatrix} g^{(3)} \mu_0 + \begin{pmatrix} 3 \\ 1 \end{pmatrix} g^{(2)} \mu_1 + \begin{pmatrix} 3 \\ 2 \end{pmatrix} g^{(1)} \mu_2 + \begin{pmatrix} 3 \\ 3 \end{pmatrix} g^{(0)} \mu_3$$

donde μ_0 se toma como 1. Estos resultados provienen de Mathai y Provost (1992). Para calcular los momentos de la forma cuadrática $\Delta Y T_2$ utilizamos

- $y \sim N(0, \Sigma)$,
- $A = \frac{1}{2}\Gamma,$
- $a = (g + YT_{tx}\Delta t)$, y
- $d = YT_t\Delta t + YT_{tt}(\Delta t)^2.$

Estudios preliminares indican que la omisión en los términos YT_{tx} y YT_{tt} no afectan significativamente los resultados, por lo que no utilizaremos estos términos en los cálculos. Entonces

- $\mu_{\Delta Y T_2} = \frac{1}{2} \operatorname{tr} (x^{\top} \Gamma x \Omega) + Y T_t \Delta t.$
- $\bullet \ \sigma_{\Delta Y T_2}^2 = \frac{1}{2} \mathrm{tr} \left((x^\top \Gamma x \Omega)^2 \right) + (g x^*)^\top \Omega g x^*$
- $\mu_3 = \operatorname{tr} (x^{\top} \Gamma x \Omega)^3 + 3(gx^*)^{\top} x^{\top} \Gamma x \Omega gx^*$

Son la media, la varianza y el tercer momento de ΔYT_2 , respectivamente, Ω es la matriz de varianza covarianza de Δx , x es el vector de precios actual.

Ahora está el tema de encontrar la función de distribución de la forma cuadrática, $F_{\Delta YT_2}$. No existe una forma cerrada para $F_{\Delta YT_2}$, dado el número tan grande de parámetros involucrados. Para aproximar esta función utilizamos el método de expansión para calcular cuantiles de Cornish-Fisher, éste expresa los cuantiles de una distribución en términos de las acumulativas de una normal estándar $\Phi(\alpha)$:

$$F_{\Delta Y T_2,\alpha} = \Phi^{-1}(\alpha) + \frac{1}{6}(\Phi^{-1}(\alpha)^2 - 1)\mu_3 + \frac{1}{24}(\Phi^{-1}(\alpha)^3 - 3\Phi^{-1}(\alpha))\mu_4 - \frac{1}{36}(2\Phi^{-1}(\alpha)^3 - 5\Phi^{-1}(\alpha))\mu_3^2$$

donde k_3 y k_4 son el tercer y cuarto valor acumulativo de $\Delta Y T_2$. La expresión anterior asume que $\Delta Y T_2$ ha sido estandarizado.

La forma cerrada del valor en riesgo de método Delta-Gamma es:

$$_{\alpha}(\Delta Y T_2) = \mu_{\Delta Y T_2} + \sigma_{\Delta Y T_2} F_{\Delta Y T_2, \alpha}$$

Donde utilizamos $F_{\Delta Y T_2,\alpha}$ se trunca hasta el segundo término $F_{\Delta Y T_2,\alpha} = \Phi^{-1}(\alpha) + \frac{1}{6}(\Phi^{-1}(\alpha)^2 - 1)\mu_3$ Encontrar una forma cerrada de α es un esfuerzo mayor, para este curso utilizaremos la forma cerrada:

$$_{\alpha}(\Delta Y T_2) = \mu_{\Delta Y T_2} + \frac{\sigma_{\Delta Y T_2} \phi(F_{\Delta Y T_2,\alpha})}{1 - \Phi(F_{\Delta Y T_2,\alpha})}$$

Con ϕ la función de densidad de la normal estándar.

1.3. Simulación Monte Carlo

La simulación Montecarlo consiste en aproximar el comportamiento de los precios de activos financieros, utilizando simulaciones en computadora para generar caminatas aleatorias de los precios. El Montecarlo estructurado se utiliza para simular varios escenarios sobre el valor que podría tomar el portafolio en una fecha objetivo. Este es el método analítico más completo para medir los riesgos financieros.

Para estimar la distribución de pérdidas y ganancias mediante este modelo es necesario:

- 1. Definir el modelo estocástico que permita simular la distribución de frecuencia de los cambios en los factores de riesgo.
 - El modelo teórico para simular el comportamiento de los factores de riesgo.
 - El método para generar, de manera eficiente, números aleatorios.
 - El procedimiento para transformar números aleatorios independientes en cambios correlacionados de los factores de riesgo (cholesky o componentes principales).
- 2. Determinar el modelo de valuación de los instrumentos. El portafolio debe revaluarse con cada uno de los escenarios que se generen con el modelo de precios estocástico. Eso significa que éste es un modelo de revaluación completa, al igual que el modelo de simulación histórica.
- 3. Construir la distribución de probabilidad de pérdidas y ganancias del portafolio.

4. Calcular las medidas de riesgo necesarias.

Existen dos algoritmos principales para simular los factores de riesgo, los cuales son: **Cholesky**

1. Construir $\Delta X_{n \times m}$ que es la matriz de diferencias basados en el operador T_j (donde $T_1(x) = \ln(x)$ ó $T_2(x) = x - 1$), es decir

$$\Delta X_{\tau} = \left[T_{j}(\frac{x_{t,1}}{x_{t+\tau,1}}), T_{j}(\frac{x_{t,2}}{x_{t+\tau,2}}), \dots, T_{j}(\frac{x_{t,m}}{x_{t+\tau,m}}) \right] \quad t = 0, 1, \dots, n-1.$$

- 2. Calcular la matriz de correlación de ΔX_{τ} , i.e. $\Omega = (\Delta X_{\tau})$.
- 3. Factorizar $\Omega = AA^{\top}$.
- 4. Analizar la distribución individual de las variaciones de los factores de riesgo $\Delta X_{\tau,k}$ $(k=1,\ldots,m)$ para ajustar a una función de distribución paramétrica conocida ó utilizar la función empírica tal cual.
- 5. Calcular matriz S de $N \times m$ valores con

$$S_{i\cdot} = \left[F_{\Delta X_{\tau,1}}^{-1}(\alpha_{i1}), \dots, F_{\Delta X_{\tau,m}}^{-1}(\alpha_{im})\right]$$

donde $\alpha_{i\cdot} \sim U(0,1)$ con $N \times m$ valores a.i.i.d. simulados, y $F_{\Delta X_{\tau,k}}^{-1}$ es la inversa de la distribución empírica o paramétrica (seleccionada en el paso anterior) de las variaciones del factor de riesgo k, i.e. de $\Delta X_{\tau,k}$ ($k=1,\ldots,m$).

- 6. Calcular matriz $\Delta X_{s_{\tau}}$ como $\Delta X_{s_{\tau}} = S \cdot A^{\top}$.
- 7. Construir $X_{s_{N\times m}}$ que es la matriz de factores de riesgo simulada basada en el vector de precios actual X_{00}

$$X_{s_{i\cdot}} = \left[x_{0,1}T_j^{-1}(\Delta x_{s_{i1}}), \dots, x_{0,m}T_j^{-1}(\Delta x_{s_{im}})\right] \quad (i = 1, \dots, N \quad j = 162),$$

8. Construcción de la matriz de reevaluación del portafolio basada en los escenarios simulados $Y_{N\times r}$ de todos los instrumentos financieros, es decir

$$Y_z = [m_1 f_1(X_{s_z}), m_2 f_2(X_{s_z}), \dots, m_r f_r(X_{s_z})] \quad (z = 1, \dots, N).$$

9. Construcción de la matriz de pérdidas y ganancias del portafolio basada en los escenarios simulados $\Delta Y_{N\times r}$ de todos los instrumentos financieros, es decir

$$\Delta Y_z = Y_0 - Y_z = [m_1(f_1(X_{00}) - f_1(X_{s_z})), \dots, m_r(f_r(X_{00}) - f_r(X_{s_z}))],$$

para (z=1,...,N). Se puede obtener el vector de pérdidas totales ΔYT_N muy fácilmente, esto es $\Delta YT=\sum_{k=1}^r Y_z$. (z=1,...,N), incluso se puede hacer lo mismo por tipo de riesgo, ya que para cada tipo de riesgo pueden existir diferentes instrumentos, lo único que se tiene que hacer es sumar los instrumentos de un mismo tipo de riesgo por escenario.

10. Obtener las medidas de riesgo deseada de la matriz $\Delta Y_{\cdot k}$ $(k=1,\ldots,r)$ y ΔYT , ejemplo se puede calcular $_{\alpha}(\Delta Y_{\cdot k}), _{\alpha}(\Delta Y$

Componentes principales

1. Construir $\Delta X_{n \times m}$ que es la matriz de diferencias basados en el operador T_j (donde $T_1(x) = \ln(x)$ ó $T_2(x) = x - 1$), es decir

$$\Delta X_{\tau} = \left[T_{j}(\frac{x_{t,1}}{x_{t+\tau,1}}), T_{j}(\frac{x_{t,2}}{x_{t+\tau,2}}), \dots, T_{j}(\frac{x_{t,m}}{x_{t+\tau,m}}) \right] \quad t = 0, 1, \dots, n-1.$$

- 2. Calcular la matriz de varianza-covarianza de ΔX_{τ} , i.e. $\Omega = \text{Cov}(\Delta X_{\tau})$.
- 3. Obtener los eigenvalores y eigenvectores de Ω y definir tolerancia $\eta \in (0,1)$.
- 4. Obtener la matriz de eigenvectores $\Gamma_{m \times k}$ de los primeros k eigenvalores, donde k es el mínimo valor que cumple que $\sum_{i=1}^k \lambda_i / \sum_{i=1}^m \lambda_i > \eta$ y λ_i $(i=1,\ldots,m)$ son los eigenvalores de Ω .
- 5. Calcular los primeros k componentes principales

$$\mathscr{Y} = \Gamma^{\top}(\Delta X_{\tau} - \mu_{\Delta X_{\tau}}) \quad i = 1, \dots, k.$$

- 6. Analizar la distribución individual de cada componente principal \mathcal{Y}_i (i = 1, ..., k) para ajustar a una función de distribución paramétrica conocida ó utilizar la función empírica tal cual.
- 7. Obtener la matriz S de $N \times k$ valores con

$$S_{i\cdot} = \left[F_{\mathscr{Y}_1}^{-1}(\alpha_{i1}), \dots, F_{\mathscr{Y}_k}^{-1}(\alpha_{ik})\right]$$

donde α_i . ~ U(0,1) con $N \times k$ valores a.i.i.d. simulados, y $F_{\mathscr{Y}_h}^{-1}$ es la inversa de la distribución empírica o paramétrica (seleccionada en el paso anterior) del componente principal h, i.e. de \mathscr{Y}_h $(h=1,\ldots,k)$.

- 8. Calcular matriz $\Delta X_{s_{\tau}}$ como $\Delta X_{s_{\tau}} = S \cdot \Gamma^{\top}$.
- 9. Construir $X_{s_{N\times m}}$ que es la matriz de factores de riesgo simulada basada en el vector de precios actual X_{00}

$$X_{s_{i\cdot}} = \left[x_{0,1} T_j^{-1}(\Delta x_{s_{i1}}), \dots, x_{0,m} T_j^{-1}(\Delta x_{s_{im}}) \right] \quad (i = 1, \dots, N \quad j = 1 \, 6 \, 2),$$

10. Construcción de la matriz de reevaluación del portafolio basada en los escenarios simulados $Y_{N\times r}$ de todos los instrumentos financieros, es decir

$$Y_{z} = [m_1 f_1(X_{sz}), m_2 f_2(X_{sz}), \dots, m_r f_r(X_{sz})] \quad (z = 1, \dots, N).$$

11. Construcción de la matriz de pérdidas y ganancias del portafolio basada en los escenarios simulados $\Delta Y_{N\times r}$ de todos los instrumentos financieros, es decir

$$\Delta Y_{z} = Y_0 - Y_z = [m_1(f_1(X_{00}) - f_1(X_{sz})), \dots, m_r(f_r(X_{00}) - f_r(X_{sz}))],$$

para $(z=1,\ldots,N)$. Se puede obtener el vector de pérdidas totales ΔYT_N muy fácilmente, esto es $\Delta YT=\sum_{k=1}^r Y_z$. $(z=1,\ldots,N)$, incluso se puede hacer lo mismo por tipo de riesgo, ya que para cada tipo de riesgo pueden existir diferentes instrumentos, lo único que se tiene que hacer es sumar los instrumentos de un mismo tipo de riesgo por escenario.

12. Obtener las medidas de riesgo deseada de la matriz $\Delta Y_{\cdot k}$ (k = 1, ..., r) y ΔYT , ejemplo se puede calcular $_{\alpha}(\Delta Y_{\cdot k}), _{\alpha}(\Delta Y_{\cdot k}), _{$

2. Equity

Nuestro portafolio está conformado de la siguiente manera:

Conformado por:

Accion	Simbolo	Posición
GCarso	GCARSOA1.MX	1,000
America Móvil	AMXL.MX	-5,000
WalMart	WALMEX.MX	1,200

2.1. Simulación Histórica

2.1.1. Sin Alisado

Accion	VaR	CVaR
GCarso	3738.489192	5984.995992
America Móvil	3400.988285	5062.952403
WalMart	3499.560577	4735.782821
Total	5103.179485	7352.605977

Esto nos dice que la pérdida máxima con un 98% de confianza será igual o menor a 5,103.1794 invirtiendo en 1,000 acciones de Grupo Carso, -5,000 de America Móvil y 1,200 WalMart. Pero si la pérdida es mayor que el VaR, aquí es donde entra en juego el valor condicional en riesgo (CVaR), el cual nos dice que la pérdida media esperada condicionada es 7,352.60 si se pierde más que el VaR.

2.1.2. Con Alisado

Accion	VaR	CVaR
GCarso	5539.929989	9177.546391
America Móvil	2642.280502	4169.360632
WalMart	3284.635536	4396.233888
Total	7852.417797	9890.805131

Ahora, considerando una mayor probabilidad de ocurrencia a los hechos más recientes y menos a los viejos, obtenemos que la pérdida máxima con un 98% de confianza será igual o menor a 7852.417797 invirtiendo en 1,000 acciones de Grupo Carso, -5,000 de America Móvil y 1,200 WalMart. Pero si la pérdida es mayor que el VaR, la pérdida media esperada condicionada es 9890.805 si se pierde más que el VaR.

2.2. Delta-Gamma/Delta-Normal

2.2.1. Delta-Normal

Accion	VaR	CVaR
GCarso	-3468.902	-4089.053
America Móvil	-2864.347	-3376.419
WalMart	-2978.942	-3511.501
Total	-4824.416	-5686.899

2.2.2. Delta-Gamma-Normal

Accion	VaR	CVaR
GCarso	-3468.902	-4089.053
America Móvil	-2864.347	-3376.419
WalMart	-2978.942	-3511.501
Total	-4824.416	-5686.899

2.2.3. Delta-Gamma Cornish-Fisher

Accion	VaR	CVaR
GCarso	-3468.902	-4089.053
America Móvil	-2864.347	-3376.419
WalMart	-2978.942	-3511.501
Total	-4824.416	-5686.899

En efecto, podemos observar que las tres métodologías presentan los mismos valores en cuanto al VaR y CVaR por accion y a nivel portafolio, esto se debe a que nuestro instrumento, es decir las acciones, son un instrumento lineal. Dicho lo anterior, note que, con un 98% de confianza, el activo que aporta mayor nivel de riesgo es la acción de Grupo Carso con un VaR de -3,468.902 y un CVaR de -4,089.053 bajo una posición larga de 1,000 acciones. Además, observe que el portafolio aquí presentado tiene una exposción al riesgo de mercado de -4,824.416 y de -5,686.899 según el VaR y CVaR a un nivel del 98% de confianza. Lo anterior implica que en nuestro peor escenario podríamos estar expuestos a una pérdida de -5,686.899.

2.3. Simulación Monte Carlo

2.3.1. Cholesky Normal

Accion	VaR	CVaR
GCarso	-3403.509	-3962.794
America Móvil	-3063.87	-3612.221
WalMart	-2988.97	-3521.817
Total	-5495.829	-6464.323

2.3.2. Cholesky Empírico

Accion	VaR	CVaR
GCarso	-3018.995	-3373.889
America Móvil	-2931.966	-3872.336
WalMart	-3017.035	-3189.559
Total	-5333.58	-6325.789

2.3.3. Componentes Principales Normal

Accion	VaR	CVaR
GCarso	-640.2524	-748.6829
America Móvil	-489.22	-578.4565
WalMart	-564.278	-671.0955
Total	-879.7472	-1033.08

2.3.4. Componentes Principales Empírico

Accion	VaR	CVaR
GCarso	-686.0694	-1107.853
America Móvil	-602.866	-827.7345
WalMart	-496.7318	-588.1252
Total	-952.4726	-1484.746

En lo general, podemos observar que con una varianza explicada del 85%, el método de Monte Carlo vía Componentes Principales, presenta un menor nivel de riesgo en comparación su símil del método Cholesky en ambas modalidades, esto se debe a la pérdida de información presentada mediante la reducción de dimensionalidad. Podemos notar que el VaR la acción de Grupo Carso es la más alta en todas las presentaciones el método de Monte Carlo, respecto al CVaR podríamos decir lo mismo, sin embargo, la regla falla al momento de observar Cholesky Empírico donde el CVaR de America Móvil superá al de Grupo Carso. Hablando a nivel portafolio, en todos los escenarios la discrepancia entre VaR y CVaR parece razonable, aunque bajo el método de Componentes Principales Empírico la discrepancia aumenta, pasando de un VaR del -952.4726 a un CVaR del -1484.746 bajo un nivel de confianza del 98%, sí sólo observaramos este datos uno podría pensar que la distribución de pérdidas de este portafolio presenta colas pesadas, dado que la discrepancia entre el riesgo asumido mediante el VaR difiere cerca de un 50% respecto a las pérdidas más severas.

Ahora si consideramos como benchmark a los resultados obtenidos mediante el método Cholesky vía distribución empírica, esto justificado mediante la naturaleza del método y de la dinámica de estos instrumentos, podemos afirmar que el método de Componentes Principales no es la mejor opción para medir el riesgo de este tipo de instrumentos; recordemos que Componentes Principales busca la reducción de la dimensión de las covariables de estudio con el próposito de realizar inferencia y entender la dinámica de los mismos, por lo que con lo anterior podemos notar que este metodo debe reservarse para instrumentos como los Interest Rate Swaps, Cross Currency Swaps o inclusive Bondes D.

3. Foreign Exchange

Nuestro portafolio está conformado de la siguiente manera:

Conformado por:

Divisa	Posición
USDMXN	1,500
EURMXN	700
GBPMXN	-600

3.1. Simulación Histórica

3.1.1. Sin Alisado

Divisa	VaR	CVaR
USDMXN	522.472213	810.954398
EURMXN	340.495057	496.210646
GBPMXN	258.491300	343.248047
Total	560.178287	859.623803

Esto nos dice que la pérdida máxima con un 98% de confianza será igual o menor a 560.178287 invirtiendo en 1,500 dólares, 700 euros, y -600 libras esterlinas. Pero si la pérdida es mayor que el VaR, aquí es donde entra en juego el valor condicional en riesgo (CVaR), el cual nos dice que la pérdida media esperada condicionada es 859.62 si se pierde más que el VaR.

3.1.2. Con Alisado

Divisa	VaR	CVaR
USDMXN	477.903111	756.701452
EURMXN	237.947621	371.561014
GBPMXN	234.184983	317.695184
Total	528.583737	807.496274

Ahora, considerando una mayor probabilidad de ocurrencia a los hechos más recientes y menos a los viejos, obtenemos que la pérdida máxima con un 98% de confianza será igual o menor a 528.58 invirtiendo en 1,500 dólares, 700 euros, y -600 libras esterlinas. Pero si la pérdida es mayor que el VaR, la pérdida media esperada condicionada es 807.49 si se pierde más que el VaR.

3.2. Delta-Gamma/Delta-Normal

3.2.1. Delta-Normal

Divisa	VaR	CVaR
USDMXN	-357.3584	-421.2449
EURMXN	-157.1863	-185.2872
GBPMXN	-159.9017	-188.488
Total	-376.8845	-444.2619

3.2.2. Delta-Gamma-Normal

Divisa	VaR	CVaR
USDMXN	-357.3584	-421.2449
EURMXN	-157.1863	-185.2872
GBPMXN	-159.9017	-188.488
Total	-376.8845	-444.2619

3.2.3. Delta-Gamma Cornish-Fisher

Divisa	VaR	CVaR
USDMXN	-357.3584	-421.2449
EURMXN	-157.1863	-185.2872
GBPMXN	-159.9017	-188.488
Total	-376.8845	-444.2619

Nuevamente, podemos observar que las tres métodologías presentan los mismos valores en cuanto al VaR y CVaR por accion y a nivel portafolio, esto se debe a que nuestro instrumento, es decir las divisas, son un instrumento lineal. Dicho lo anterior, note que, con un 98% de confianza, el activo que aporta mayor nivel de riesgo es la paridad Dollar-Peso (USDMXN) con un VaR de -357.3584 y un CVaR de -421.2449 bajo una posición larga de 1,500. Además, observe que el portafolio aquí presentado tiene una exposción al riesgo de mercado de -376.8845 y de -444.2619 según el VaR y CVaR a un nivel del 98% de confianza. Lo anterior implica que en nuestro peor escenario podríamos estar expuestos a una pérdida de -444.2619.

3.3. Simulación Monte Carlo

3.3.1. Cholesky Normal

Divisa	VaR	CVaR
USDMXN	-365.1137	-436.0636
EURMXN	-163.1553	-190.4158
GBPMXN	-158.408	-191.5246
Total	-345.8845	-433.2619

3.3.2. Cholesky Empírico

Divisa	VaR	CVaR
USDMXN	-323.6167	-424.2718
EURMXN	-149.8454	-183.114
GBPMXN	-149.5527	-172.8434
Total	-301.4543	-398.1996

3.3.3. Componentes Principales Normal

Divisa	VaR	CVaR
USDMXN	-45.37387	-54.63622
EURMXN	-7.144366	-8.298002
GBPMXN	-13.42349	-15.85853
Total	-33.3567	-39.7853

3.3.4. Componentes Principales Empírico

Divisa	VaR	CVaR
USDMXN	-48.41125	-59.40413
EURMXN	-7.115259	-9.08902
GBPMXN	-12.39771	-15.79334
Total	-36.6745	-42.5344

Observe que en todos los escenarios, él método de Componentes Principales, tanto empírico como normal, presentan menor severidad que por el método de Cholesky, esto se debe al hecho de que PCA sólo replica una fracción de la información de los datos. Lo anterior nos reitera que este método es menos eficiente para este tipo de instrumentos, ya que la reducción de dimensionalidad nos podría llevar a escenarios donde se subestime el riesgo, por ello debemos reservar el método de Componentes Principales para instrumentos como Swaps o Bondes D.

Nuevamente podemos notar que la paridad Dollar-Peso (USDMXN) es la que mayor riesgo representa en nuestro portafolio, lo cual es consistente con nuestra experiencia empírica acerca de este activo. Observe que el VaR y CVaR a nivel portafolio es mayor con el método de Cholesky Normal en comparación con sus sinónimos, siendo que el VaR es de -345.8845 y el CVaR es de -433.2619. Al mismo tiempo, considero importante hacer la observación de que bajo el método de Cholesky Empírico el VaR de las paridades Euro-Peso y Libra-Peso son casi iguales, siendo de -149.8454 y -149.5527, respectivamente, lo cual podría ser explicado gracias a que ambas divisas pertenecen a la zona Euro y gracias a la existente relación entre Europa y el Reino Unido.

4. Fixed Income

Nuestro portafolio está conformado de la siguiente manera:

Conformado por:

Bono	Nocional	Vencimiento
Cupón cero de cetes	1,500	180 días
Bono M	1,000	3,600 días
Bondes	1,000	707 días

4.1. Simulación Histórica

Primero, conozcamos la valuación de los bonos

Bono	Valuación
Cupón cero de cetes	14,423.89
Bono M	97,392.83
Bondes	-102,800.5

Lo cual es la valuación del bono en una fecha en específica. Ahora veamos VaR y CVaR Con y Sin alisado. **Nota:** Los valores de VaR y CVaR tienen que ser los mismos Con y Sin Alisado.

4.1.1. Sin Alisado

Bono	VaR	CVaR
Cupón cero de cetes	8.229372	12.13667
Bono M	-	-
Bondes	?	?
Total	8.229372	12.13667

Nota: En este caso hacemos la valoración del bono M con tasa fija y tasa cupon, (Dado que en el problema se nos está dando las tasas), la cual tenemos desde el momento en el que adquirimos el bono M. Por lo tanto, no se tiene riesgo, dado que desde el inicio ya sabemos como es que va evolucionando en cada periodo de tiempo.

Por otro lado, tuvimos problemas con el VaR y CVaR de Bondes, por lo cual es una análisis a medias. Esto nos dice que la pérdida máxima con un 98% de confianza será igual o menor a 8.229372 invirtiendo en 1500 nocionales de compra de cetes y 1000 nocionales de Bondes d. Pero si la pérdida es mayor, es donde entra en juego el CVaR, que nos dice que la pérdida media esperada condicionada es 12.13667 si se pierde más que el VaR

4.1.2. Con Alisado

Bono	VaR	CVaR
Cupón cero de cetes	0	-2.073684
Bono M	-	-
Bondes	?	?
Total	0	-2.073684

Nota: En este caso hacemos la valoración del bono M con tasa fija y tasa cupon, (Dado que en el problema se nos está dando las tasas), la cual tenemos desde el momento en el que adquirimos el bono M. Por lo tanto, no se tiene riesgo, dado que desde el inicio ya sabemos como es que va evolucionando en cada periodo de tiempo.

Por otro lado, tuvimos problemas con el VaR y CVaR de Bondes, por lo cual es una análisis a medias. Esto nos dice que la pérdida máxima con un 98% de confianza será igual o menor a 0? invirtiendo en 1500 nocionales de compra de cetes y 1000 nocionales de Bondes d. Pero si la pérdida es mayor, es donde entra en juego el CVaR, que nos dice que la pérdida media esperada condicionada es -2.073684 si se pierde más que el VaR

4.2. Delta-Gamma/Delta-Normal

4.2.1. Delta-Normal

CETE

VaR	CVaR
-10.18972	2 -11.4639

BONO M

Observe que nuestra exposición al riesgo de mercado es nula, esto se debe al hecho de que la tasa bajo la cual está pactada el Bono M es fija, esto implica que no se verá afectada por las fluctuaciones de mercado. En efecto de lo anterior, el riesgo de mercado asumido presentado por el VaR y CVaR es cero. Sin embargo, no podemos afirmar en lo general que nuestra exposición al riesgo sea nula, dado que si bien el riesgo de mercado se nulifica al dejar la tasa fija, no podemos decir lo mismo del riesgo de crédito

BONDES D

Por contrato

VaR	CVaR
-442.7493	-526.1521

De forma general podemos ver que el intrumento de Bondes D presenta un VaR y CVaR mucho mayor al CETE, es lógico esperar estos resultados debido a las naturalezas de los intrumentos y a los factores de riesgo que intervienen en cada uno.

Por contrato Factor de riesgo Total

Factor de riesgo	1	2	3
VaR	-421.5042	-371.7574	-300.5735
CVaR	-496.8584	-438.2181	-354.3083

Si tomamos en cuenta el VaR de cada uno de los factores de riesgo, podemos ver que el primero es mayor pen comparación con los demás factores, con un VaR al 98% de confianza de -421.5042 y un CVaR de -496.8584, lo que nos indicaría que es el factor con mayor posibilidad de afectar el portafolio.

Contrato Factor de riesgo marginal

Factor de riesgo	1	2	3
VaR	-341.54676	-196.99378	-56.02897
CVaR	-406.85707	-236.46171	-70.29599

Total

VaR	CVaR
-442.7493	-526.1521

Teniendo en cuenta lo anterior por el método de Delta-Normal, nos dice que la pérdida máxima con un 98% de confianza será igual o menor a -442.7493 invirtiendoen 1500 nocionales de compra de CETES y 1000 nocionales de Bondes D. Pero si la pérdida es mayor, es donde entra en juego el CVaR, que nos dice que la pérdida media esperada condicionada es -526.15215

4.2.2. Delta-Gamma-Normal

CETE

VaR	CVaR
-10.18972	-11.4639

BONO M

Observe que nuestra exposición al riesgo de mercado es nula, esto se debe al hecho de que la tasa bajo la cual está pactada el Bono M es fija, esto implica que no se verá afectada por las fluctuaciones de mercado. En efecto de lo anterior, el riesgo de mercado asumido presentado por el VaR y CVaR es cero. Sin embargo, no podemos afirmar en lo general que nuestra exposición al riesgo sea nula, dado que si bien el riesgo de mercado se nulifica al dejar la tasa fija, no podemos decir lo mismo del riesgo de crédito

BONDES D

Por contrato

VaR	CVaR
-175.5683	-206.9554

Por contrato factor de riesgo

VaR	CVaR
-144.5551	-174.6483

Contrato Factor de riesgo Total

Factor de riesgo	1	2	3
VaR	-367.5774	-220.7697	-79.80457
CVaR	-433.2909	-260.2377	-94.07159

Si tomamos en cuenta el VaR de cada uno de los factores de riesgo, al igual que el método anterior, podemos ver que el primero es mayor en comparación con los demás factores, con un VaR al 98% de confianza de -367.5774 y un CVaR de -433.2909, lo que nos indicaría que es el factor con mayor posibilidad de afectar el portafolio.

Cabe resaltar que en general en este caso, el metodo el VaR y CVaR fueron menores que los generador por el método de Delta-Normal.

Total

VaR	CVaR
-468.2529	-551.9645

Teniendo en cuenta lo atenterior por el metodo de Delta-Gamma, nos dice que la pérdida máxima con un 98% de confianza será igual o menor a -468.2529 invirtiendo en 1500 nocionales de compra de CETES y 1000 nocionales de Bondes D. Pero si la pérdida es mayor, es donde entra en juego el CVaR, que nos dice que la pérdida media esperada condicionada es -551.9645

4.2.3. Delta-Gamma Cornish-Fisher

CETE

VaR	CVaR
-63.71016	-63.90746

BONO M

Observe que nuestra exposición al riesgo de mercado es nula, esto se debe al hecho de que la tasa bajo la cual está pactada el Bono M es fija, esto implica que no se verá afectada por las fluctuaciones de mercado. En efecto de lo anterior, el riesgo de mercado asumido presentado por el VaR y CVaR es cero. Sin embargo, no podemos afirmar en lo general que nuestra exposición al riesgo sea nula, dado que si bien el riesgo de mercado se nulifica al dejar la tasa fija, no podemos decir lo mismo del riesgo de crédito

BONDES D

Por contrato

VaR	CVaR
-175.5677	-206.9549

Por contrato factor de riesgo

VaR	CVaR
-168.3306	-198.4239

Contrato Factor de riesgo Total

Factor de riesgo	1	2	3
VaR	-367.5774	-221.197	-79.86047
CVaR	-433.2909	-260.6175	-94.12128

Si tomamos en cuenta el VaR de cada uno de los factores de riesgo, al igual que el método anterior, podemos ver que el primero es mayor pen comparación con los demás factores, con un VaR al 98% de confianza de -367.5774 y un CVaR de -433.2909, lo que nos indicaría que es el factor con mayor posibilidad de afectar el portafolio.

Cabe resaltar que los valores de VaR y CVaR fueron muy parecidos a los valores generador por el método de Gamma-Normal.

Total

VaR	CVaR
-468.4329	-552.1246

Teniendo en cuenta lo atenterior por le metodo de Cornish-Fisher, nos dice que la pérdida máxima con un 98% de confianza será igual o menor a -468.4329 invirtiendo en 1500 nocionales de compra de CETES y 1000 nocionales de Bondes D. Pero si la pérdida es mayor, es donde entra en juego el CVaR, que nos dice que la pérdida media esperada condicionada es -552.1246

4.3. Simulación Montecarlo

4.3.1. Cholesky Normal

CETES

VaR	CVaR
-69.91216	-70.10646

BONO M

Observe que nuestra exposición al riesgo de mercado es nula, esto se debe al hecho de que la tasa bajo la cual está pactada el Bono M es fija, esto implica que no se verá afectada por las fluctuaciones de mercado. En efecto de lo anterior, el riesgo de mercado asumido presentado por el VaR y CVaR es cero. Sin embargo, no podemos afirmar en lo general que nuestra exposición al riesgo sea nula, dado que si bien el riesgo de mercado se nulifica al dejar la tasa fija, no podemos decir lo mismo del riesgo de crédito

BONDES D

A nivel contrato

	1	2
VaR	-357.9143	0
CVaR	-441.7355	0

De forma general podemos ver que el intrumento de Bondes D presenta un VaR y CVaR mucho mayor al CETE, es lógico esperar estos resultados debido a las naturalezas de los intrumentos y a los factores de riesgo que intervienen en cada uno.

A nivel contrato factor de riesgos

Factor de riesgo	1	2
VaR	-317.3158	-81.88405
CVaR	-383.9668	-104.3489

A nivel contrato factor de riesgos Total

Factor de riesgo	1	2	3
VaR	-317.3158	-81.88405	-55.84761
CVaR	-383.9668	-104.3489	-82.35663

Si tomamos en cuenta el VaR de cada uno de los factores de riesgo, podemos ver que el primero es mayor pen comparación con los demás factores, con un VaR al 95% de confianza de -317.3158 y un CVaR de -383.9668, lo que nos indicaría que es el factor con mayor posibilidad de afectar el portafolio.

Total

Medida	Total
VaR	-357.9143
CVaR	-441.7355

Teniendo en cuenta lo anterior por el método de Cholesky Normal simulación MOnte Carlo , nos dice que la pérdida máxima con un 95% de confianza será igual o menor a -357.9143 invirtiendoen 1500 nocionales de compra de CETES y 1000 nocionales de Bondes D. Pero si la pérdida es mayor, es donde entra en juego el CVaR, que nos dice que la pérdida media esperada condicionada es -441.7355

4.3.2. Cholesky Empírico

CETES

VaR	CVaR	
-67.61116	-69.10746	

BONO M

Observe que nuestra exposición al riesgo de mercado es nula, esto se debe al hecho de que la tasa bajo la cual está pactada el Bono M es fija, esto implica que no se verá afectada por las fluctuaciones de mercado. En efecto de lo anterior, el riesgo de mercado asumido presentado por el VaR y CVaR es cero. Sin embargo, no podemos afirmar en lo general que nuestra exposición al riesgo sea nula, dado que si bien el riesgo de mercado se nulifica al dejar la tasa fija, no podemos decir lo mismo del riesgo de crédito

BONDES D

A nivel contrato

•	1	2
VaR	-621.4712	0
CVaR	-852.1915	0

De forma general podemos ver que el intrumento de Bondes D presenta un VaR y CVaR mucho mayor al CETE, es lógico esperar estos resultados debido a las naturalezas de los intrumentos y a los factores de riesgo que intervienen en cada uno.

A nivel contrato factor de riesgos

Factor de riesgo	1	2	3
VaR	-555.815	-114.6059	-67.5136
CVaR	-827.191	-171.9932	-89.98965

A nivel contrato factor de riesgos Total

Factor de riesgo	1	2	3
VaR	-555.815	-114.6059	-68.67182
CVaR	-827.191	-171.9932	69.57454

Si tomamos en cuenta el VaR de cada uno de los factores de riesgo, podemos ver que el primero es mayor pen comparación con los demás factores, con un VaR al 95% de confianza de -555.815 y un CVaR de -827.191, lo que nos indicaría que es el factor con mayor posibilidad de afectar el portafolio.

Total

Medida	Total
VaR	-621.4712
CVaR	-852.1915

Teniendo en cuenta lo anterior por el método de Cholesky Normal simulación MOnte Carlo , nos dice que la pérdida máxima con un 95% de confianza será igual o menor a -621.4712 invirtiendoen 1500 nocionales de compra de CETES y 1000 nocionales de Bondes D. Pero si la pérdida es mayor, es donde entra en juego el CVaR, que nos dice que la pérdida media esperada condicionada es -852.1915

4.3.3. Componentes Principales Normal

CETES

VaR	CVaR	
-71.686	-73.0796	

BONO M

Observe que nuestra exposición al riesgo de mercado es nula, esto se debe al hecho de que la tasa bajo la cual está pactada el Bono M es fija, esto implica que no se verá afectada por las fluctuaciones de mercado. En efecto de lo anterior, el riesgo de mercado asumido presentado por el VaR y CVaR es cero. Sin embargo, no podemos afirmar en lo general que nuestra exposición al riesgo sea nula, dado que si bien el riesgo de mercado se nulifica al dejar la tasa fija, no podemos decir lo mismo del riesgo de crédito

BONDES D

A nivel contrato

	1	2
VaR	-409.1564	0
CVaR	-483.2046	0

De forma general podemos ver que el intrumento de Bondes D presenta un VaR y CVaR mucho mayor al CETE, es lógico esperar estos resultados debido a las naturalezas de los intrumentos y a los factores de riesgo que intervienen en cada uno.

A nivel contrato factor de riesgos

Factor de riesgo	1	2	3
VaR	-290.1868	-114.6059	-6.901716
CVaR	-827.191	-171.9932	-19.93092

A nivel contrato factor de riesgos Total

Factor de riesgo	1	2	3
VaR	-290.1868	-145.8109	-6.901716
CVaR	-354.8755	-182.0675	-19.93073

Si tomamos en cuenta el VaR de cada uno de los factores de riesgo, podemos ver que el primero es mayor pen comparación con los demás factores, con un VaR al 95% de confianza de -290.1868 y un CVaR de -354.8755, lo que nos indicaría que es el factor con mayor posibilidad de afectar el portafolio.

Total

Medida	Total
VaR	-409.1564
CVaR	-483.2046

Teniendo en cuenta lo anterior por el método de Cholesky Normal simulación MOnte Carlo , nos dice que la pérdida máxima con un 95% de confianza será igual o menor a -409.1564 invirtiendoen 1500 nocionales de compra de CETES y 1000 nocionales de Bondes D. Pero si la pérdida es mayor, es donde entra en juego el CVaR, que nos dice que la pérdida media esperada condicionada es -483.2046

4.3.4. Componentes Principales Empirico

CETES

VaR	CVaR	
-68.8586	-70.5956	

BONO M

Observe que nuestra exposición al riesgo de mercado es nula, esto se debe al hecho de que la tasa bajo la cual está pactada el Bono M es fija, esto implica que no se verá afectada por las fluctuaciones de mercado. En efecto de lo anterior, el riesgo de mercado asumido presentado por el VaR y CVaR es cero. Sin embargo, no podemos afirmar en lo general que nuestra exposición al riesgo sea nula, dado que si bien el riesgo de mercado se nulifica al dejar la tasa fija, no podemos decir lo mismo del riesgo de crédito

BONDES D

A nivel contrato

	1	2
VaR	-587.9521	0
CVaR	-851.9765	0

De forma general podemos ver que el intrumento de Bondes D presenta un VaR y CVaR mucho mayor al CETE, es lógico esperar estos resultados debido a las naturalezas de los intrumentos y a los factores de riesgo que intervienen en cada uno.

A nivel contrato factor de riesgos

Factor de riesgo	1	2	3
VaR	-479.4288	-165.9804	-14.06808
CVaR	-781.5742	-244.5033	-42.32705

A nivel contrato factor de riesgos Total

Factor de riesgo	1	2	3
VaR	-479.4288	-165.9804	-14.06808
CVaR	-781.5742	-244.5033	-42.32705

Si tomamos en cuenta el VaR de cada uno de los factores de riesgo, podemos ver que el primero es mayor pen comparación con los demás factores, con un VaR al 95% de confianza de -479.4288 y un CVaR de -781.57428, lo que nos indicaría que es el factor con mayor posibilidad de afectar el portafolio.

Total

Medida	Total
VaR	-587.9521
CVaR	-851.9765

Teniendo en cuenta lo anterior por el método de Cholesky Normal simulación MOnte Carlo , nos dice que la pérdida máxima con un 95% de confianza será igual o menor a -587.9521 invirtiendoen 1500 nocionales de compra de CETES y 1000 nocionales de Bondes D. Pero si la pérdida es mayor, es donde entra en juego el CVaR, que nos dice que la pérdida media esperada condicionada es -851.9765

5. Forward/Future

Nuestro portafolio está conformado de la siguiente manera:

Conformado por:

Futuro Contratos		Strike	Vencimiento
Peso-dólar	100 de compra	20.83	5 días
IPC	50 de venta	49,525	53 días

5.1. Simulación Histórica

5.1.1. Sin Alisado

Futuro	VaR	CVaR
Peso-dólar	25.369191	29.786689
IPC	88164.951628	93259.892609
Total	88173.680071	93247.377205

Esto nos dice que la pérdida máxima con un 98% de confianza será igual o menor a 88,173.680071 invirtiendo en 100 contratos de compra de futuros de peso dólar y 50 contratos de venta de futuros del IPC. Pero si la pérdida es mayor que el VaR, aquí es donde entra en juego el valor condicional en riesgo (CVaR), el cual nos dice que la pérdida media esperada condicionada es 93,247.377205 si se pierde más que el VaR.

5.1.2. Con Alisado

Futuro	VaR	CVaR	
Peso-dólar	38.663957	38.663957	
IPC	89946.279137	94717.346106	
Total	89904.565330	94699.404000	

Ahora, considerando una mayor probabilidad de ocurrencia a los hechos más recientes y menos a los viejos, obtenemos que la pérdida máxima con un 98% de confianza será igual o menor a 89,904.565330 100 contratos de compra de futuros de peso dólar y 50 contratos de venta de futuros del IPC. Pero si la pérdida es mayor que el VaR, la pérdida media esperada condicionada es 94,699.404 si se pierde más que el VaR.

5.2. Delta-Gamma/Delta-Normal

5.2.1. Delta-Normal

Forwards de tipo de cambio

Por Contrato

Valor a nivel contrato	VaR a nivel contrato	CVaR a nivel contrato
-85.6141	-23.8591	-28.1245

Por Factores de Riesgo

Factor de riesgo	1	2	3
VaR a nivel contrato	-23.8583	-0.0089	-0.03908
CVaR a nivel contrato	-28.1236	-0.0106	-0.0460

Por Riesgo Total

Valor a nivel contrato	ontrato VaR total Delta Normal CVaR total Delt	
-85.6141	-23.8591	-28.1245

Por Total de Factores de Riesgo

Factor de riesgo	1	2	3
VaR total Delta Normal por factor de riesgo	-23.8583	-0.0089	-0.0390
CVaR total Delta Normal por factor de riesgo	-28.1236	-0.0106	-0.0460

Notemos que para el tipo de cambio tenemos los mismos valores tanto por contrato como por total, donde considerando una mayor probabilidad de ocurrencia a los hechos más recientes y menos a los viejos, obtenemos que la pérdida máxima con un 98% de confianza será igual o menor a -23.8591 100 contratos de compra de futuros de peso dólar, Pero si la pérdida es mayor que el VaR, la pérdida media esperada condicionada es -28.1245 si se pierde más que el VaR.

Forwards IPC

Por Contrato

Valor a nivel contrato	VaR a nivel contrato	CVaR a nivel contrato
342308.9	-51116.04	-60110.45

Por Factor de Riesgo

Factor de riesgo	1	2	3
VaR a nivel contrato	-5.10e+04	-9.43e-03	-4.89e+02
CVaR a nivel contrato	-6.01e+04	-1.11e-02	-5.77e+02

Por Riesgo Total

Valor a nivel contrato	VaR a nivel contrato	CVaR a nivel contrato
342308.9	-51116.04	-60110.45

Por Riesgo Total Factores de Riesgo

Factor de riesgo	1	2	3
VaR total Delta Normal por factor de riesgo	-51013.7	0	-489.7291
CVaR total Delta Normal por factor de riesgo	-60133.64	0	-577.2802

Notemos que en la parte de IPC tenemos valores muy similares, pero tenemos que bajo el factor de riesgo numero 2 tanto el Var y CVar total Delta-Normal el valor es igual a 0

Futuros

Total Forward

VaR forward Total Delta Normal	CVaR forward Total Delta Normal
-33442.04	-39408.82

5.2.2. Delta-Gamma-Normal

Forwards Tipo de Cambio

Riesgo a Nivel Contrato

Valor a nivel contrato	VaR a nivel contrato	CVaR a nivel contrato
-85.61414	-23.85918	-28.12459

Riesgo a Nivel Contrato-Factor de Riesgo

Factor de riesgo	1	2	3
Valor a nivel contrato	-23.8583	-0.0089	-0.0390
VaR a nivel contrato	-28.1236	-0.0106	-0.0460

Riesgo a Nivel Total

VaR Total Delta Gamma Normal	CVaR Total Delta Gamma Normal
-23.85918	-28.12459

Riesgo a Nivel Total Factor de Riesgo

Factor de riesgo	1	2	3
VaR Total Delta Gamma Normal por factor de riesgo	-23.8583	-0.0089	-0.0390
CVaR Total Delta Gamma Normal por factor de riesgo	-28.1236	-0.0106	-0.0460

Veamos una vez más, que para el tipo de cambio tenemos los mismos valores tanto por contrato como por total, donde considerando una mayor probabilidad de ocurrencia a los hechos más recientes y menos a los viejos, obtenemos que la pérdida máxima con un 98% de confianza será igual o menor a -23.8591 100 contratos de compra de futuros de peso dólar, Pero si la pérdida es mayor que el VaR, la pérdida media esperada condicionada es -28.1245 si se pierde más que el VaR.

Forwards IPC

Riesgo a Nivel Contrato

Valor a nivel contrato	VaR a nivel contrato	CVaR a nivel contrato
342308.9	-51116.04	-60110.45

Riesgo a nivel contrato-factor de riesgo

Factor de riesgo	1	2	3
VaR a nivel contrato	-5.10e+04	-9.43e-03	-4.89e+02
CVaR a nivel contrato	-6.01e+04	-1.11e-02	-5.77e+02

Riesgo a Nivel Total

Valor a nivel contrato	VaR Total Delta Gamma Normal	CVaR Total Delta Gamma Normal
342308.9	-51116.04	-60110.45

Riesgo a nivel total factor de riesgo

Factor de riesgo	1	2	3
VaR Total Delta Gamma Normal por factor de riesgo	-51013.7	0	-489.7291
CVaR Total Delta Gamma Normal por factor de riesgo	-60133.64	0	-577.2802

Total Futuro

VaR forwards Total Delta Gamma Normal	CVaR forward Total Delta Normal
-33442.04	-39408.82

Ahora que ya observamos los valores tanto en Delta Normal y Delta-Gamma-Normal, se puede llegar a la conclusion que para los forwards y para los futuros anteriormente enunciados nos seria indiferente usar Delta-Normal o Delta Gamma.

5.2.3. Delta-Gamma Cornish-Fisher

Forwards Tipo de Cambio

Riesgo a Nivel Contrato

Valor a nivel contrato	VaR a nivel contrato CF	CVaR a nivel contrato CF
-85.61414	-23.85918	-28.12459

Riesgo a Nivel Contrato-Factor de Riesgo

Factor de riesgo	1	2	3
Valor a nivel contrato	-23.8583	-0.0089	-0.0390
VaR a nivel contrato	-28.1236	-0.0106	-0.0460

Riesgo a Nivel Total

VaR Total Delta Gamma Normal CF	CVaR Total Delta Gamma Normal CF
-23.8591	-28.1245

Riesgo a Nivel Total Factor de Riesgo

Factor de riesgo	1	2	3
VaR Total Delta Gamma Normal CF por factor de riesgo	-23.8583	-0.0089	-0.0390
CVaR Total Delta Gamma Normal CF por factor de riesgo	-28.1236	-0.0106	-0.0460

Forwards IPC

Riesgo a Nivel Contrato

Valor a nivel contrato	VaR a nivel contrato CF	CVaR a nivel contrato CF
342308.9	-51116.04	-60110.45

Riesgo a nivel contrato-factor de riesgo

Factor de riesgo	1	2	3
VaR a nivel contrato CF	-5.10e+04	-2.46e-03	-4.89e+02
CVaR a nivel contrato CF	-6.01e+04	-5.36e-03	-5.77e+02

Riesgo a nivel total

Valor a nivel contrato	VaR Total Delta Gamma Normal CF	CVaR Total Delta Gamma Normal CF
342308.9	-51116.04	-60110.45

Riesgo a nivel total factor de riesgo

Factor de riesgo	1	2	3
VaR a nivel contrato CF	-51013.7	-	-489.7187
CVaR a nivel contrato CF	-60133.64	-	-577.2709

Futuros

Total Futuro

VaR forwards Total Delta Gamma CF	CVaR forwards Total Delta Gamma CF
-33442.04	-39408.82

En efecto, podemos observar que las tres métodologías presentan los mismos valores en cuanto al VaR y CVaR por Forward, esto se debe a que nuestro instrumento, es decir los Forwards y futuros, son un instrumento lineal. Dicho lo anterior, note que, con un 98% de confianza, el forward que aporta mayor nivel de riesgo son los forwards IPC con un VaR -51116.04 y un CVaR de -60110.45 bajo una posición larga de 50 contratos de venta. Además, observe que el portafolio aquí presentado tiene una exposción al riesgo de mercado de -33442.04 y de -39408.82 según el VaR y CVaR a un nivel del 98% de confianza. Lo anterior implica que en nuestro peor escenario podríamos estar expuestos a una pérdida de -39408.82.

5.3. Simulación Montecarlo

5.3.1. Cholesky Normal

Futuros Tipo de Cambio

A nivel contrato

VaR	-65.17889
CVaR	-76.40755

A nivel contrato por Factor de Riesgo

Factor de riesgo	1	2
VaR	-0.035619	-0.06177421
CVaR	-0.04162861	-0.0724165

Total

Medida	Total
VaR	-65.17889
CVaR	-76.40755

Para los datos de simulación Monte Carlo, nos dice que la pérdida máxima con un 98% de confianza será igual o menor a -65.17889 en el futuro del peso-dolar con nocional de 100 contratos con strike de 20.83, pero si la pérdida es mayor que el VaR, entra el CVaR, el cual nos dice que la pérdida esperada condicionada es de -76.40755 si se pierde más que el VaR, la misma logica se sigue en los proximos 3 metodos.

Futuros IPC

A nivel contrato

VaR	-92013.26
CVaR	-107864.5

A nivel contrato por Factor de Riesgo

Factor de riesgo	1	2
VaR	0	-898.0857
CVaR	0	-1052.874

Total

Medida	Total
VaR	-92013.26
CVaR	-107864.5

Pasa lo mismo para el IPC en simulación Monte Carlo, nos dice que la pérdida máxima con un 98% de confianza será igual o menor a -92013.26 en el futuro del IPC con nocional de 50 contratos con strike de 49.59, con un CVaR de -107864.5 si se pierde más que el VaR, la misma logica se aplica en los siguientes 3 metodos.

5.3.2. Cholesky Empírico

Futuros Tipo de Cambio

A nivel contrato

VaR	-72.37787
CVaR	-82.96225

A nivel contrato por Factor de Riesgo

Factor de riesgo	1	2
VaR	-0.04070032	-0.06859724
CVaR	-0.0484312	-0.07862891

Total

Medida	Total
VaR	-72.37787
CVaR	-82.96225

Futuros IPC

A nivel contrato

VaR	-102175.9
CVaR	-117117.6

A nivel contrato por Factor de Riesgo

Factor de riesgo	1	2
VaR	0	-997.3174
CVaR	0	-1143.233

Total

Medida	Total
VaR	-102175.9
CVaR	-117117.6

5.3.3. Componentes Principales Normal

Futuros Tipo de Cambio

A nivel contrato

VaR	-3.001766
CVaR	-3.525267

A nivel contrato por Factor de Riesgo

Factor de riesgo	1	2	
VaR	-0.003369984	-0.03440807	
CVaR	-0.003928192	-0.04040183	

Total

Medida	Total
VaR	-3.001766
CVaR	-3.525267

Futuros IPC

A nivel contrato

VaR	-6759.531
CVaR	-8059.121

A nivel contrato por Factor de Riesgo

Factor de riesgo	1	2
VaR	0	-447.7237
CVaR	0	-518.2608

Total

Medida	Total	
VaR	-6759.531	
CVaR	-8059.121	

5.3.4. Componentes Principales Empírico

Futuros tipo de cambio

A nivel contrato

VaR	-3.172165	
CVaR	-3.949201	

A nivel contrato por Factor de Riesgo

Factor de riesgo	1	2	
VaR	-0.002557788	-0.02634075	
CVaR	-0.002845037	-0.02951547	

Total

Medida	Total
VaR	-3.172165
CVaR	-3.949201

Futuros IPC

A nivel contrato

VaR	-6077.988
CVaR	-7501.872

A nivel contrato por Factor de Riesgo

Factor de riesgo	1	2
VaR	0	-442.9947
CVaR	0	-537.7494

Total

Medida	Total	
VaR	-6077.988	
CVaR	-7501.872	

En lo general, podemos observar que con una varianza explicada del 85%, el método de Monte Carlo vía Componentes Principales, presenta un menor nivel de riesgo en comparación su símil del método Cholesky en ambas modalidades, esto se debe a la pérdida de información presentada mediante la reducción de dimensionalidad. Podemos notar que el VaR del futuro del IPC es el más alto en todas las presentaciones el método de Monte Carlo, respecto al CVaR podríamos decir lo mismo.

Finalmente Notemos que para este metodo de Cholesky Empirico tanto el VaR como el CVaR son más grandes que para los otros metodos.

6. Interest Rate Swap

Nuestro portafolio está conformado de la siguiente manera:

Conformado por:

	Swap	Nocional	Pagando tasa	Recibiendo tasa	Vencimiento
Ì	Largo	16 millones	fija de 6.6% (cada 28 días)	flotante de la TIIE	588 días
	Corto	12 millones	variable de la TIIE	fija de 5.9%	270 días

6.1. Simulación Histórica

6.1.1. Sin Alisado

Swap	VaR	CVaR
Largo	1,026,279,303,247.7683	1,630,746,189,540.6914
Corto	266,087,958,170.9121	403,477,302,711.9559
Total	1,279,875,932,354.1323	2,031,745,053,946.1892

Esto nos dice que la pérdida máxima con un 98% de confianza será igual o menor a 1,279,875,932,354 invirtiendo en un swap largo con nocional de 16 millones y en un swap corto con nocional de 12 millones. Pero si la pérdida es mayor que el VaR, aquí es donde entra en juego el valor condicional en riesgo (CVaR), el cual nos dice que la pérdida media esperada condicionada es 2,031,745,053,946 si se pierde más que el VaR.

6.1.2. Con Alisado

Swap	VaR	CVaR
Largo	1,644,886,487,438.3872	2,065,415,885,761.8145
Corto	421,444,968,548.5081	510,399,996,726.7153
Total	2,066,331,455,986.8953	2,575,815,882,488.53

Ahora, considerando una mayor probabilidad de ocurrencia a los hechos más recientes y menos a los viejos, obtenemos que la pérdida máxima con un 98% de confianza será igual o menor a 2,066,331,455,986 invirtiendo un swap largo con nocional de 16 millones y en un swap corto con nocional de 12 millones. Pero si la pérdida es mayor que el VaR, la pérdida media esperada condicionada es 2,575,815,882,488 si se pierde más que el VaR.

6.2. Delta-Gamma/Delta-Normal

6.2.1. Delta-Normal

Por Contrato

Swap	VaR	CVaR
Largo	-42,621.66	-50,249.14
Corto	-15,081.31	-17,744.28
Total	-55,864.55	-65,849.62

Por Contrato Factor de Riesgo Total

Factor de Riesgo	VaR	CVaR
1	-55,827.97	-65,808.59
2	-45.7393	-53.91632

Contrato Factor de Riesgo Marginal VaR

Factor de Riesgo	Largo	Corto
1	-42,553.16166	-15,126.08903
2	-88.46422	-66.63725

Contrato Factor de Riesgo Marginal CVaR

Factor de Riesgo	Largo	Corto
1	-50161.2224	-17827.52483
2	-104.9209	-75.82748

Interpretación

En la parte de Delta-Normal, por contrato, nos dice que la pérdida máxima con un 98% de confianza será igual o menor a -55,864.55 invirtiendo en un swap largo con nocional de 16 millones y un swap corto con nocional de 12 millones. Pero si la pérdida es mayor que el VaR, entra el CVaR, el cual nos dice que la pérdida esperada condicionada es de -65,849.62 si se pierde más que el VaR. Ahora bien, analizando por contrato de riesgo total vemos que en ambos casos el Factor de riesgo 1 es mayor para el VaR y CVaR (-55,827.97 y -65.808.59 respectivamente) contra el factor 2. Viendo los contratos por factor de riesgo marginal VaR, el factor de riesgo 1 es mayor para un nocional largo de 16 millones y un nocional corto de 12 millones (-42,553.16166 y -15,126.08903 respectivamente). Finalmente, revisando el contrato por Factor de Riesgo Marginal CVaR, el factor de riesgo 1 es mayor para un nocional largo de 16 millones y un nocional corto de 12 millones (-50,161.2224 y -17,827.52483 respectivamente).

Por lo que, en los 3 casos el factor de riesgo 1 es mayor que el de riesgo 2.

6.2.2. Delta-Gamma-Normal

Por Contrato

Swap	VaR	CVaR
Largo	-41,952.79	-48,872.72
Corto	-14,800.33	-17,192.6
Total	-55,864.55	-65,826.34

Por Contrato Factor de Riesgo Total

Factor de Riesgo	VaR	CVaR
1	-55,827.97	-65,808.59
2	-45.7393	-53.91632

Contrato Factor de Riesgo Marginal VaR

Factor de Riesgo	Largo	Corto
1	-41,620.24402	-14,727.24312
2	-90.32768	-50.11239

Contrato Factor de Riesgo Marginal CVaR

Factor de Riesgo	Largo	Corto
1	-49,060.881	-17,360.0983
2	-106.476	-59.0712

Interpretación

En la parte de Delta-Gamma-Normal, por contrato, nos dice que la pérdida máxima con un 98% de confianza será igual o menor a -55,864.55 invirtiendo en un swap largo con nocional de 16 millones y un swap corto con nocional de 12 millones. Pero si la pérdida es mayor que el VaR, entra el CVaR, el cual nos dice que la pérdida esperada condicionada es de -65,826.34 si se pierde más que el VaR. Ahora bien, analizando por contrato de riesgo total vemos que en ambos casos el Factor de riesgo 1 es mayor para el VaR y CVaR (-55,827.97 y -65.808.59 respectivamente) contra el factor 2. Viendo los contratos por factor de riesgo marginal VaR, el factor de riesgo 1 es mayor para un nocional largo de 16 millones y un nocional corto de 12 millones (-41,620.24402 y -14,727.24312 respectivamente). Finalmente, revisando el contrato por Factor de Riesgo Marginal CVaR, el factor de riesgo 1 es mayor para un nocional largo de 16 millones y un nocional corto de 12 millones (-49,060.8813 y -17,360.0983 respectivamente). Por lo que, en los 3 casos el factor de riesgo 1 es mayor que el de riesgo 2.

6.2.3. Delta-Gamma Cornish-Fisher

Por Contrato

Swap	VaR	CVaR
Largo	-41,987.28	-48,903.38
Corto	-14,800.33	-17,192.6
Total	-55,864.55	-65,826.34

Por Contrato Factor de Riesgo Total

Factor de Riesgo	VaR	CVaR
1	-55,827.97	-65,808.59
2	-45.7393	-53.91632

Contrato Factor de Riesgo Marginal VaR

Factor de Riesgo	Largo	Corto
1	-41,620.2440	-14,727.24312
2	-90.5101	-50.11239

Contrato Factor de Riesgo Marginal CVaR

Factor de Riesgo	Largo	Corto
1	-49,060.8813	-17,360.0983
2	-106.6381	-59.0712

Interpretación

En la parte de Delta-Gamma-Cornish-Fisher, por contrato, nos dice que la pérdida máxima con un 98% de confianza será igual o menor a -55,864.55 invirtiendo en un swap largo con nocional de 16 millones y un swap corto con nocional de 12 millones. Pero si la pérdida es mayor que el VaR, entra el CVaR, el cual nos dice que la pérdida esperada condicionada es de -65,826.34 si se pierde más que el VaR. Ahora bien, analizando por contrato de riesgo total vemos que en ambos casos el Factor de riesgo 1 es mayor para el VaR y CVaR (-55,827.97 y -65.808.59 respectivamente) contra el factor 2. Viendo los contratos por factor de riesgo marginal VaR, el factor de riesgo 1 es mayor para un nocional largo de 16 millones y un nocional corto de 12 millones (-41,620.24402 y -14,727.24312 respectivamente). Finalmente, revisando el contrato por Factor de Riesgo Marginal CVaR, el factor de riesgo 1 es mayor para un nocional largo de 16 millones y un nocional corto de 12 millones (-49,060.8813 y -17,360.0983 respectivamente). Por lo que, en los 3 casos el factor de riesgo 1 es mayor que el de riesgo 2.

6.3. Simulacion Monte Carlo

6.3.1. Cholesky Normal

Observación: Para este método, omitimos Cholesky normal, esto debido a que la dimensión de los datos en grandísima, por lo que, hacemos uso del PCA (que mostraremos más adelante) para obtener los valores del factor de riesgo.

6.3.2. Cholesky Empírico

Observación: Para este método, omitimos Cholesky normal, esto debido a que la dimensión de los datos en grandísima, por lo que, hacemos uso del PCA (que mostraremos más adelante) para obtener los valores del factor de riesgo.

6.3.3. Componentes Principales Normal

A nivel contrato

Swap	VaR	CVaR
Largo	-40,935.87	-48,556.94
Corto	-13,803.92	-16,266.77
Total	-54,647.16	-64,554.76

A nivel contrato factor de Riesgo VaR

Factor de Riesgo	Largo	Corto
1	-40,801.35	-13,844.8
2	-86.31795	-52.6602

A nivel contrato factor de Riesgo CVaR

Factor de Riesgo	Largo	Corto
1	-48,414.54	-16,308.99
2	-101.9726	-62.05785

Interpretación

Para los datos de simulación Monte Carlo, nos dice que la pérdida máxima con un 98% de confianza será igual o menor a -54,647.16 invirtiendo en un swap largo con nocional de 16 millones y un swap corto con nocional de 12 millones. Pero si la pérdida es mayor que el VaR, entra el CVaR, el cual nos dice que la pérdida esperada condicionada es de -64,554.76 si se pierde más que el VaR. Ahora bien, analizando por contrato factor de riesgo VaR vemos que en ambos casos el Factor de riesgo 1 es mayor para el VaR y CVaR (-40,801.35 y -13,844.8 respectivamente) contra el factor 2. Viendo los contratos por factor de riesgo CVaR, el factor de riesgo 1 es mayor para un nocional largo de 16 millones y un nocional corto de 12 millones (-48,414.54 y -16,308.99 respectivamente).

Por lo que, en los 2 casos el factor de riesgo 1 es mayor que el de riesgo 2.

6.3.4. Componentes Principales Empírico

A nivel contrato

Swap	VaR	CVaR
Largo	-30,661.65	-35,519.97
Corto	-10,322.03	-11,627.32
Total	-40,916.29	-46,914.41

A nivel contrato factor de Riesgo VaR

Factor de Riesgo	Largo	Corto
1	-30,577.1	-10,349.06
2	-63.47543	-81.75214

A nivel contrato factor de Riesgo CVaR

Factor de Riesgo	Largo	Corto
1	-35,438.47	-11,658.72
2	-75.055	-116.8672

Interpretación

Para los datos de simulación Monte Carlo, nos dice que la pérdida máxima con un 98% de confianza será igual o menor a -40,916.29 invirtiendo en un swap largo con nocional de 16 millones y un swap corto con nocional de 12 millones. Pero si la pérdida es mayor que el VaR, entra el CVaR, el cual nos dice que la pérdida esperada condicionada es de -46,914.41 si se pierde más que el VaR. Ahora bien, analizando por contrato factor de riesgo VaR vemos que en ambos casos el Factor de riesgo 1 es mayor para el VaR y CVaR (-30,577.1y -10,349.06 respectivamente) contra el factor 2. Viendo los contratos por factor de riesgo CVaR, el factor de riesgo 1 es mayor para un nocional largo de 16 millones y un nocional corto de 12 millones (-35,4338.47 y -11,658.72 respectivamente).

Por lo que, en los 2 casos el factor de riesgo 1 es mayor que el de riesgo 2.

7. Options

Nuestro portafolio está conformado de la siguiente manera:

Conformado por:

Option	Contratos	Strike	Vencimiento
Call largo	1,000	5.8%	1,700 días
Put largo	500	6.0%	700 días

7.1. Simulación Histórica

7.1.1. Sin Alisado

Option	VaR	CVaR
Call largo	0.08501818	0.1202261
Put largo	0.04814948	0.06374884
Total	0.07045077	0.1338457

Esto nos dice que la pérdida máxima con un 98% de confianza será igual o menor a 0.07045077 invirtiendo en dos opciones europeas, un call y un put largos. Pero si la pérdida es mayor que el VaR, aquí es donde entra en juego el valor condicional en riesgo (CVaR), el cual nos dice que la pérdida media esperada condicionada es 0.1338457 si se pierde más que el VaR.

7.1.2. Con Alisado

Option	VaR	CVaR
Call largo	0.05407477	0.08712214
Put largo	0.02072792	0.0354581
Total	0.05894055	0.08674274

Ahora, considerando una mayor probabilidad de ocurrencia a los hechos más recientes y menos a los viejos, obtenemos que la pérdida máxima con un 98% de confianza será igual o menor a 0.05894055 invirtiendo en dos opciones europeas, un call y un put largos. Pero si la pérdida es mayor que el VaR, la pérdida media esperada condicionada es 0.08674274 si se pierde más que el VaR.

7.2. Delta-Gamma/Delta-Normal

7.2.1. Delta-Normal

A nivel contrato

Option	VaR	CVaR
Call largo	-0.0875751	-0.1032314
Put largo	-0.04730174	-0.05575808
Total	-0.1182985	-0.1394473

A nivel contrato por factor de riesgo

Option	VaR	CVaR
Call largo f1	-0.01154799	-0.01361248
Call largo f2	-0.06765790	-0.07975340
Call largo f3	-0.05238481	-0.06174988
Put largo f1	-0.0009612343	-0.001133078
Put largo f2	-0.0365505436	-0.043084848
Put largo f3	-0.0327790120	-0.038639063
Total f1	-0.01243336	-0.01465613
Total f2	-0.08778916	-0.1034836
Total f3	-0.07886968	-0.09296956

7.2.2. Delta-Gamma-Normal

A nivel contrato

Option	VaR	CVaR
Call largo	-0.08757567	-0.103232
Put largo	-0.04730179	-0.05575814
Total	-0.118298	-0.1394467

A nivel contrato por factor de riesgo

Option	VaR	CVaR
Call largo f1	-0.01154790	-0.01361237
Call largo f2	-0.06765790	-0.07975340
Call largo f3	-0.05238478	-0.06174984
Put largo f1	-0.0009612335	-0.001133077
Put largo f2	-0.0365505436	-0.043084848
Put largo f3	-0.0327790004	-0.038639049
Total f1	-0.01243328	-0.01465603
Total f2	-0.08778916	-0.1034836
Total f3	-0.07886964	-0.09296952

7.2.3. Delta-Gamma Cornish-Fisher

A nivel contrato

Option	VaR	CVaR
Call largo	-0.08758235	-0.1032379
Put largo	-0.04733113	-0.05578423
Total	-0.118298	-0.1394467

A nivel contrato por factor de riesgo

Option	VaR	CVaR
Call largo f1	-0.01149724	-0.01356738
Call largo f2	-0.06765575	-0.07975149
Call largo f3	-0.05245282	-0.06181034
Put largo f1	-0.0009598131	-0.001131815
Put largo f2	-0.0365489009	-0.043083388
Put largo f3	-0.0328095636	-0.038666220
Total f1	-0.01238144	-0.01460999
Total f2	-0.08778654	-0.1034813
Total f3	-0.07895535	-0.09304572

Podemos observar que los valores de VaR y CVaR fueron muy parecidos en las tres metodologías. Sin embargo, notamos que el método *Delta-Normal* presentamos mayores pérdidas. Por lo que podemos considerar este escenario como el más conservador.

También notemos que, con un 98% de confianza, el activo que aporta mayor nivel de riesgo es el Call largo; a nivel contrato, por el método Delta-Normal, obtuvimos un VaR y CVaR de -0.0875751 y 0.1032314, respectivamente. Mientras que para el Put largo obtuvimos un VaR y CVaR 0.04730174 y 0.05575808, respectivamente. Además, observe que el portafolio aquí presentado tiene una exposción al riesgo de mercado de -0.1182985 y de -0.1394473 según el VaR y CVaR a un nivel del 98% de confianza. Lo anterior implica que en nuestro peor escenario podríamos estar expuestos a una pérdida de -0.1394473.

Por otro lado, vemos que el factor más riesgoso tanto para el Call como para el Put es el segundo factor, ya que obtuvimos valores más negativos tanto para el VaR como para el CVaR.

7.3. Simulación Monte Carlo

7.3.1. Cholesky Normal

A nivel contrato

Option	VaR	CVaR
Call largo	-0.02782619	-0.03251755
Put largo	-0.02202064	-0.02589175
Total	-0.02927379	-0.03380472

A nivel contrato por factor de riesgo

Option	VaR	CVaR
Call largo f1	-0.00911176	-0.01077216
Call largo f2	-0.04348754	-0.05126735
Call largo f3	-0.02365716	-0.02805496
Put largo f1	-0.001040013	-0.001230784
Put largo f2	-0.020517698	-0.024601643
Put largo f3	-0.009316489	-0.011047633
Total f1	-0.01015177	-0.01200295
Total f2	-0.04814088	-0.05676035
Total f3	-0.03297365	-0.03555347

7.3.2. Cholesky Empírico

A nivel contrato

Option	VaR	CVaR
Call largo	-0.03129698	-0.03694404
Put largo	-0.01709314	-0.02052572
Total	-0.02647511	-0.03171057

A nivel contrato por factor de riesgo

Option	VaR	CVaR
Call largo f1	-0.01032580	-0.01238966
Call largo f2	-0.04919200	-0.05878794
Call largo f3	-0.02536625	-0.02944379
Put largo f1	-0.001179359	-0.001417132
Put largo f2	-0.015779307	-0.018881630
Put largo f3	-0.009989303	-0.011594347
Total f1	-0.01150516	-0.01380680
Total f2	-0.05162302	-0.06250597
Total f3	-0.03535556	-0.04382607

7.3.3. Componentes Principales Normal

A nivel contrato

Option	VaR	CVaR
Call largo	-0.05291046	-0.06131309
Put largo	-0.04056252	-0.04800619
Total	-0.06437445	-0.07662241

A nivel contrato por factor de riesgo

Option	VaR	CVaR
Call largo f1	-0.007673964	-0.00896325
Call largo f2	-0.037344185	-0.04382209
Call largo f3	-0.040017835	-0.04840742
Put largo f1	-0.0008543506	-0.000996993
Put largo f2	-0.0307498915	-0.036051153
Put largo f3	-0.0306710986	-0.036837668
Total f1	-0.008527558	-0.009957323
Total f2	-0.009348422	-0.010858653
Total f3	-0.070633165	-0.069712442

7.3.4. Componentes Principales Empírico

A nivel contrato

Option	VaR	CVaR
Call largo	-0.06322798	-0.08820877
Put largo	-0.03504481	-0.05013744
Total	-0.05646707	-0.09296537

A nivel contrato por factor de riesgo

Option	VaR	CVaR
Call largo f1	-0.01108630	-0.01637219
Call largo f2	-0.04243960	-0.06143342
Call largo f3	-0.03517273	-0.05881620
Put largo f1	-0.00128373	-0.001873257
Put largo f2	-0.02706579	-0.032201827
Put largo f3	-0.02749123	-0.045172205
Total f1	-0.012389212	-0.01824489
Total f2	-0.009727767	-0.01267441
Total f3	-0.062566156	-0.11283813

A nivel contrato podemos observar que el método de Cholesky presenta menores pérdidas a comparación con el método de Componentes Principales. Sin embargo, por factor de riesgo podemos ver que Cholesky presenta mayores pérdidas. Además, comparando el método normal con el empírico notamos que para el Call largo el VaR y y CVaR es mayor por el método empírico, pero para el Put largo por el método normal el VaR y CVaR es mayor, tanto para Cholesky como para Componentes Principales.

Por otro lado, támbien notamos que el Call Largo sigue siendo nuestro instrumento más riesgoso, ya que para Cholesky Normal obtuvimos un VaR y CVar de -0.02782619 y -0.03251755, respectivamente; mientras que para el Put Largo obtuvimo un VaR y CVaR de -0.02202064 y -0.02589175, respectivamente.

Finalmente, observamos que el factor más riesgoso tanto para el Call como para el Put es el segundo factor, ya que obtuvimos valores más negativos para ambas medidas de riesgo.

8. Cross Currency Swap

Los Cross Currency Swaps (CCS) son un derivado extrabursátil (OTC) en forma de acuerdo entre dos partes para intercambiar pagos de intereses y principal denominados en dos monedas diferentes. En un CCS, los pagos de intereses y el principal en una moneda se intercambian por pagos de principal e intereses en una moneda diferente. Los pagos de intereses se intercambian a intervalos fijos durante la vigencia del acuerdo. Los CCS son altamente personalizables y pueden incluir tasas de interés variables, fijas o ambas.

En los CCS por un lado se puede pagar tasa fija o variable en una moneda extranjera y por otro se recibe tasa fija o variable en otros términos monetarios (por lo general locales), utilizando dos curvas para cada flujo: una para traer a valor presente los flujos y otra para calcular el cupón de la tasa variable cada una en los términos de la moneda en que se paga o recibe. La fórmula de valoración de un contrato CCS (Ejemplo tasa variable vs tasa variable):

$$CCS = (-1)^{z} \cdot \left(\sum_{i=1}^{n} \frac{\mathbf{M}_{l} \cdot \mathbf{t}_{cl_{p_{i}}} \cdot p_{c_{i}} / 360}{\left(1 + \mathbf{t}_{vpl_{p_{i}}} \cdot p_{i} / 360\right)} - \sum_{i=1}^{n} \frac{\mathbf{M}_{e} \cdot S \cdot \mathbf{t}_{ce} p_{i} \cdot p_{c_{i}} / 360}{\left(1 + \mathbf{t}_{vpe_{i}} \cdot p_{i} / 360\right)} \right)$$

Donde:

CCS: Es el valor del CCS de tasa de interes.

 M_{ρ} : Es el valor a pagar del flujo en moneda extranjera.

 M_l : Es el valor a pagar del flujo en moneda local.

z: Valor dummy "0"si paga flujo local "1"si paga flujo en moneda extranjera.

 $t_{ce}p_i$: Tasa cupón variable de moneda extranjera a al plazo p_i .

 $\mathbf{t}_{cl} p_i$: Tasa cupón variable de moneda local a al plazo p_i .

 p_{c_i} : Plazo del i-ésimo cupón (para el curso $p_{c_i} = p_{c_i}$ para todo i, j = 1, ..., n.).

 \mathbf{t}_{vpl_n} : Tasa valor presente al plazo p_i de moneda local.

 \mathbf{t}_{vpp_n} : Tasa valor presente al plazo p de moneda extranjera.

p_i : Plazo en dias del i-ésimo eupún.; n: Número de eupones a pagar.

S: Es el tipo de cambio spot de la moneda extranjera con respecto a la local a la fecha de valoración.

Las tasas cupones se calculan con tasa forward, cualquiera de estas puede ser tasa fija. Se tienen hasta 5 factores de riesgo subyacentes con 4n + 1 factores de riesgo totales.

Disclaimer: Desarrollamos el código para la valuación del Cross Currency Swap, así como una clase de valoración de riesgos, sin embargo, nos fue implosible realizar el ejemplo dado que careciamos de las curvas necesarias para la valoración de riesgo. Dicho lo anterior, sospechamos que dicho código está correcto dado que es una modificación de lo realizado en el Interst Rate Swap, el cual ya fue verificado tanto en clase como fuera de la misma en pláticas con Miguel, en efecto de lo anterior, se verificaron los precios arrojados por el IRS así como la valoración de riesgos.