Machine Learning para Inteligencia Artificial

Modelos Lineales: Regresión Lineal

Universidad ORT Uruguay

28 de Mayo, 2025

Modelo lineal univariado

Consiste en aproximar la relación entre x e y mediante una recta

$$\widehat{y} = h(x; \boldsymbol{\theta}) = b + wx, \qquad \boldsymbol{\theta} = \begin{bmatrix} b \\ w \end{bmatrix} \in \mathbb{R}^2$$

Modelo lineal univariado

El sesgo inductivo es entonces

$$\mathcal{H} = \{h_{\boldsymbol{\theta}} : \boldsymbol{x} \mapsto \boldsymbol{b} + \boldsymbol{w}\boldsymbol{x}\}$$

■ El riesgo empírico se llama MSE (Mean Squared Error):

$$J_{T}(\theta) = \frac{1}{N} \sum_{i=1}^{N} (y_{i} - h(x_{i}; \theta))^{2} = \frac{1}{N} \sum_{i=1}^{N} (y_{i} - b - wx_{i})^{2}$$

Lo usamos para elegir los mejores parámetros:

$$\widehat{oldsymbol{ heta}} = \left[egin{array}{c} \widehat{b} \ \widehat{w} \end{array}
ight] = rgmin_{oldsymbol{ heta}=[b,w]^ op} \left\{J_T(b,w)
ight\}$$

Cálculo de los coeficientes

■ Observación general: dados números reales A_1, \ldots, A_N

$$\arg\min_{a} \left\{ \sum_{i=1}^{N} (A_i - a)^2 \right\} = \bar{A}$$

en donde \bar{A} es el promedio $\frac{1}{N} \sum_{i=1}^{N} A_i$.

Por la observación, si fijamos w, el mejor b es

$$\arg\min_{b} \left\{ \frac{1}{N} \sum_{i=1}^{N} (\underbrace{y_i - wx_i}_{A_i} - b)^2 \right\} = \bar{y} - w\bar{x}$$

Cálculo de los coeficientes

Luego basta encontrar \widehat{w} :

$$J_{T}(w) := J_{T}(\bar{y} - w\bar{x}, w) = \frac{1}{N} \sum_{i=1}^{N} (y_{i} - wx_{i} - \bar{y} + w\bar{x})^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} ((y_{i} - \bar{y}) - w(x_{i} - \bar{x}))^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (y_{i} - \bar{y})^{2} - 2w \underbrace{\frac{1}{N} \sum_{i=1}^{N} (y_{i} - \bar{y}) (x_{i} - \bar{x})}_{\text{cov}(x,y)} + w^{2} \underbrace{\frac{1}{N} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2}}_{\text{var}(x)}$$

$$= \text{var}(y) - 2 \operatorname{cov}(x, y)w + \operatorname{var}(x)w^{2} \quad \text{(polinomio de grado 2 en } w\text{)}$$

Cálculo de los coeficientes

■ Si derivamos e igualamos a cero vemos que el mínimo se alcanza en

$$\widehat{w} = \frac{\operatorname{cov}(x, y)}{\operatorname{var}(x)} = r \frac{\operatorname{var}(y)^{1/2}}{\operatorname{var}(x)^{1/2}}$$

en donde
$$r:=$$
 (coeficiente de correlación) $=\frac{\text{cov}(x,y)}{\text{var}(x)^{1/2}\,\text{var}(y)^{1/2}}\in[-1,1]$

Sean $\hat{\epsilon}_i = y_i - (\hat{b} + \hat{w}x_i)$ los residuos, entonces obtenemos:

$$\mathsf{MSE} = \frac{1}{N} \sum_{i=1}^{N} \widehat{\epsilon}_i^2 = \mathsf{var}(y)(1-r^2)$$

En estadística se usa r^2 como medida de ajuste en lugar de la MSE.

Modelo lineal univariado en notación matricial

La función lineal puede escribirse como un producto de matrices

$$b + wx_i = [1, x_i] \begin{bmatrix} b \\ w \end{bmatrix} = \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\theta} = [b, w] \begin{bmatrix} 1 \\ x_i \end{bmatrix} = \boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}_i$$

Podemos juntar todos los valores de $\{b + wx_i\}_{i=1}^N$ en un solo producto matricial:

$$oldsymbol{\mathcal{X}} = \left[egin{array}{ccc} 1 & x_1 \ 1 & x_2 \ 1 & x_3 \ dots & dots \ 1 & x_N \end{array}
ight]$$

Modelo lineal univariado en notación matricial

- Con el vector de targets o etiquetas dado por $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$
- El riesgo empírico (MSE) queda

$$J_T(\boldsymbol{\theta}) = \frac{1}{N} \underbrace{\sum_{i=1}^{N} (y_i - b - wx_i)^2}_{\text{(Norma-2)}^2} = \frac{1}{N} \| \boldsymbol{X} \boldsymbol{\theta} - \boldsymbol{y} \|^2$$

Y el vector de parámetros óptimo se puede calcular como

$$\widehat{\boldsymbol{\theta}} = \left(\boldsymbol{X}^{\top} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$

Modelo lineal multivariado

- El setting para el modelo multivariado es análogo salvo que Espacio de atributos: $\mathcal{X} \subset \mathbb{R}^D$ pues disponemos de D atributos.
- Ahora el modelo es

$$\widehat{y} = h(\mathbf{x}; \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{x}$$

en donde los vectores θ y x están dados por

$$oldsymbol{ heta} = egin{bmatrix} b \ w_1 \ dots \ w_D \end{bmatrix} \qquad \qquad oldsymbol{x} = egin{bmatrix} 1 \ x^{(1)} \ dots \ x^{(D)} \end{bmatrix}$$

Modelo lineal multivariado

El producto matricial representa

$$\widehat{y} = \begin{bmatrix} b & w_1 & \dots & w_D \end{bmatrix} \begin{bmatrix} 1 \\ x^{(1)} \\ \vdots \\ x^{(D)} \end{bmatrix} = b + \sum_{j=1}^D w_j x^{(j)}$$

Por lo que el sesgo inductivo es entonces

$$\mathcal{H} = \left\{h_{\boldsymbol{\theta}}: \left[x^{(1)}, \ldots, x^{(D)}\right] \mapsto b + \sum_{j=1}^{D} w_j x^{(j)}\right\}$$

Modelo lineal multivariado

Considerando la matriz de diseño y el vector de etiquetas (o targets):

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_N^\top \end{bmatrix} = \begin{bmatrix} 1 & x_1^{(1)} & \cdots & x_1^{(D)} \\ 1 & x_2^{(1)} & \cdots & x_2^{(D)} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_N^{(1)} & \cdots & x_N^{(D)} \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

La MSE y el vector de parámetros óptimo quedan

$$J_{\mathcal{T}}(\boldsymbol{\theta}) = \frac{1}{N} \| \boldsymbol{X} \boldsymbol{\theta} - \boldsymbol{y} \|^2 \qquad \widehat{\boldsymbol{\theta}} = \left(\boldsymbol{X}^{\top} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$

Los cálculos son idénticos y la solución es la misma.

Regresión lineal con funciones base

- Permite modelar relaciones no lineales $x \rightsquigarrow y$
- El sesgo inductivo es

$$\mathcal{H} = \{h_{\theta} : x \mapsto b + w_1 h_1(x) + w_2 h_2(x) + \dots + w_D h_D(x)\}\$$

- Casos particulares son:
 - Regresión polinomial: cuando $h_i(x) = x^j$
 - Regresión trigonométrica: cuando $h_j(x) = \cos(jx)$ o $h_j(x) = \sin(jx)$
- La relación entre y y los coeficientes $\theta = (b, w)$ sigue siendo lineal
- Mismo procedimiento al caso multivariado considerando la matriz de diseño:

$$oldsymbol{\mathcal{X}} = \left[egin{array}{cccc} 1 & h_1\left(x_1
ight) & \cdots & h_D\left(x_1
ight) \ dots & dots & dots & dots \ 1 & h_1\left(x_N
ight) & \cdots & h_D\left(x_N
ight) \end{array}
ight]$$

x = Lluvia (mm)	y = Rendimiento (ton/ha)
206	29
188	25
219	31
372	25
345	29
231	30
203	26
170	23
55	12
91	15
292	28
141	24
129	23
170	22
324	30

El siguiente gráfico muestra varios polinomios con grados que van desde 1 a 8:

Coeficientes para los distintos grados tienden a crecer rápidamente:

Coeficiente	Grado 1	Grado 2	Grado 3	Grado 4	Grado 5	Grado 6	Grado 7	Grado 8
w_1	3.85	18.08	10.79	15.02	12.71	76.59	-1533.75	-5491.59
w_2		-14.56	3.56	-13.02	-0.23	-453.11	13365.95	52990.47
<i>W</i> ₃			-11.13	10.75	-16.30	1318.39	-50622.38	-231805.88
W_4				-9.49	15.63	-1950.95	102868.06	571182.95
<i>W</i> ₅					-8.56	1419.35	-116379.46	-841240.02
w_6						-406.93	69088.87	735492.68
W ₇							-16787.07	-352547.47
<i>w</i> ₈								71414.21

Mejor ajuste en entrenamiento a costo de coeficientes gigantes

Regularización Ridge

Idea de regularización

Modificación a un algoritmo de aprendizaje que pretende reducir el error verdadero (en \mathcal{D}) pero no su error empírico (en \mathcal{T}).

■ Ridge consiste en penalizar con la norma-2 los coeficientes:

$$J_{\alpha}(\mathbf{w}) = J(\mathbf{w}) + \alpha \|\mathbf{w}\|^2 = J(\mathbf{w}) + \alpha \sum_{j=1}^{D} w_j^2$$

- En este caso, el objetivo es evitar los coeficientes gigantes.
- Notar que **b** no interviene en la penalización.

Curva del riesgo (LOOCV) para varios valores de α :

Evolución de los coeficientes en función de α :

Efecto de la regularización en los coeficientes:

Coef	Original	Ridge			
x^1	-5491.591405	9.290364281			
x^2	52990.4687	1.239116016			
x^3	-231805.8798	-2.013422183			
x^4	571182.9466	-2.683297203			
x^5	-841240.0155	-2.179430752			
x^6	735492.6833	-1.218635966			
x^7	-352547.4682	-0.16433541			
<i>x</i> ⁸	71414.20573	0.79483848			

Gráfico de la regresión regularizada:

Regularización Lasso

- Lasso (Least Absolute Shrinkage and Selection Operator)
- Consiste en penalizar con la norma-1 los coeficientes:

$$J_{\alpha}(\mathbf{w}) = J(\mathbf{w}) + \alpha \|\mathbf{w}\|_{1} = J(\mathbf{w}) + \alpha \sum_{j=1}^{D} |w_{j}|_{1}$$

- También el objetivo es evitar los coeficientes gigantes.
- Tiene el efecto de seleccionar atributos

Ejemplo: regresión bivariada

Datos sobre 20 personas con presión arterial alta:

- \blacksquare presión arterial (y = BP, en mm Hg)
- \blacksquare edad ($x_1 = Age, en años)$
- \blacksquare peso (x_2 = Weight, en kg)
- \blacksquare superficie corporal ($x_3 = BSA$, en m2)
- duración de la hipertensión ($x_4 = Dur$, en años)
- \blacksquare pulso basal (x_5 = Pulse, en latidos por minuto)
- \blacksquare índice de estrés ($x_6 = Stress$)

Queremos determinar la relación entre **BP** y (**Weight**, **BSA**) (r = 0.875).

Ejemplo: regresión bivariada

Regularización Ridge

Ejemplo: regresión bivariada

Regularización Lasso

Bibliografía

An introduction to statistical learning with applications in Python. Cap 3 y 6.2.

Machine Learning - A First Course for Engineers and Scientists. Capítulo 5.3.