Empirical Study of the Performance of Six Algorithms on Five Binary Classification Problems

Maximilian Siemers

SIEMERSM@GMAIL.COM

Department of Cognitive Science University of California, San Diego San Diego, CA 92117, USA

Class: COGS 118A: Introduction to Machine Learning I

Instructor: Prof. Zhuowen Tu

Abstract

Keywords:

1. Introduction

2. Method

2.1 Problems

Table 1: Original and limited sizes of data sets

Data set	Orig. Size	Lim. Size
COVTYPE INCOME LETTER IRIS	$\begin{array}{c} (581011 \times 55) \\ (32561 \times 109) \\ (20000 \times 16) \\ (150) \end{array}$	(2000 × 16) × 5) —
WDBC	(569)	× 31) —

- 3. Experiments
- 3.1 Hyperparameters and Performance
- 3.2 Train/Test split and Performance
- 3.3 Overall Classifier Performance
- 4. Conclusion
- 5. Bonus Points
- 6. References

Figure 1: Validation score by hyperparameter value for KNN (1a and 1b) and Decision Tree (1c and 1d), averaged over data, shuffles, and train split. 1a zooms in on a subset of the results shown in 1c for greater detail. 1c depicts results for varying levels of max_depth , averaged over $max_features$, wheres the opposite is done in 1c.

Appendix A.

Figure 2: Validation score by hyperparameter value for Logistic Regression (2a), Random Forest (2b), Bagged Decision Trees (2c), and Boosted Decision Trees (2d).

Figure 3: Training (3a) and testing (3b) accuracy by train split and classifier, averaged over problems and shuffles (rf: Random Forest, logreg: Logistic Regression, dt: Decision Tree, bagdt: Bagged Trees, bstdt: Boosted Trees)

Table 2: Best hyperparameter values after grid search by classifier and problem in each of three random shuffles (0.8 train split):

Classifier	Hyperparam.	COVTYPE	INCOME	Problem IRIS	LETTER	WDBC
bagdt	$n_estimators$	3,27,14	26,25,28	9,29,7	21,14,18	13,9,16
bstdt	$n_estimators$	24,19,12	28,18,18	5,29,24	29,28,24	21,29,10
J.L	max_depth	$3,\!5,\!4$	8,4,6	9,9,3	18,19,18	6,5,6
dt	$max_features$	18,24,19	18,24,26	3,4,4	10,15,6	7,11,15
knn	$n_neighbors$	4,5,9	8,6,17	12,9,1	1,1,1	9,7,7
logreg	C	$10^2,1,10$	1e-05,01,01	$10,10^3,10^2$	$10^2, 10^3, 10^2$	$10^30, 10, 10^3$
rf	$max_features$ $n_estimators$	$20,16,16 \\ 2^{10},2^{10},2^{10}$	$20,16,8 \\ 2^{10},2^{10},2^{10}$	$\substack{1,2,2\\2^{10},2^{10},2^{10}}$	$\substack{4,2,8\\2^{10},2^{10},2^{10}}$	$12,8,8 \\ 2^{10},2^{10},2^{10}$

Table 3: Classifier testing accuracy by problem, averaged over shuffles (0.8 train split):

Classifier	WDBC	INCOME	IRIS	COVTYPE	LETTER
Bagged Trees	.968	.833	.944	.971	.873
Boosted Trees	.968	.840	.956	.971	.771
Decision Tree	.953	.799	.956	.970	.820
KNN	.950	.757	.933	.967	.899
Logistic Regression	.968	.792	.967	.968	.721
Random Forest	.982	.848	.944	.976	.897

Table 4: Ranked classifiers by testing accuracy, averaged over problems and shuffles (0.8 train split):

Classifier	Accuracy
Random Forest	.930
Bagged Trees	.918
KNN	.901
Boosted Trees	.901
Decision Tree	.900
Logistic Regression	.883