

INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS DE FLORIANÓPOLIS DEPARTAMENTO ACADÊMICO DE METAL-MECÂNICA

Técnicas de Automação Industrial

Prof. Valdir Noll (2021)

MÉTODO BINÁRIO

RESOLUÇÃO DE PROBLEMAS COMBINACIONAIS

PROJETOS COMBINACIONAIS COM MEMÓRIA

CONHECER O ESTADO ANTERIOR PARA PODER DAR UM CORRETO TRATAMENTO MATEMÁTICO AO PROBLEMA

Em problemas nos quais precisamos armazenar o estado de uma variável para que esse estado seja usado posteriormente. Em geral esse estado é perdido durante o processo, e por isso a necessidade de "memorizar".

Ex.:

Como posso memorizar que um sensor deu um pulso? Como posso memorizar que apertei e soltei um botão? Como saber que um cilindro já foi e voltou? Como saber se o tempo terminou?

MEMÓRIA ON ON ON 0 0 ? 0 1 1 0 1 0 OFF 1 1 ?

Prof. Valdir Noll, Dr. Eng.

La	OFF	ON	L
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	?
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	?

desligar dominante

La	OFF	ON	L	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	-
1	0	1	1	
1	1	0	0	
1	1	1	0	

L = La.OFF.ON + La.ON.OFF + La.OFF.ON

L = ON.OFF.(La + La) + La.ON.OFF

$$L = \underline{OFF}(ON + La.\underline{ON})$$

Realização de memorias

Flip-Flop Circuito intertravamento Variaveis em programas Variável M em CLPs Variável em um programa

Circuitos elétricos

L = <u>OFF</u>(ON + La)

Circuitos eletronicos

Circuitos eletrônicos

L = OFF(ON + La)

Circuitos microcontrolados

L = OFF(ON + La)

CLPs

L = <u>OFF</u>(ON + La)

Ligar dominante

La	OFF	ON	L	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	1	\vdash
1	0	0	1	┡─┤
1	0	1	1	
1	1	0	0	
1	1	1	1	

$$L = OFF(ON+La) + La.ON.OFF + La.ON.OFF$$

$$L = OFF(ON+La) + ON.OFF$$

$$L = OFF.ON + OFF.La + ON.OFF$$

$$L = ON(OFF + OFF) + OFF$$
.La

$$L = ON + La. OFF$$

PROBLEMAS

PROBLEMA 5 : SELEÇÃO DE PEÇAS (ALTAS, MEDIAS E BAIXAS)

- A) Mantém no estado que estava, caso não tenha peça na frente
- b) Em casos de erro, mantém no estado que estava

	S1a	E1	E2	E3	S1	S2
1:	0	0	0	0		
2:	0	0	0	1		
3:	0	0	1	0		
4:	0	0	1	1		
5:	0	1	0	0		
6:	0	1	0	1		
7:	0	1	1	0] [
8:	0	1	1	1] [
9:	1	0	0	0		
10:	1	0	0	1		
11:	1	0	1	0] [
12:	1	0	1	1] [
13:	1	1	0	0] [
14:	1	1	0	1		
15:	1	1	1	0		
16:	1	1	1	1		

Prof. Valdir Noll, Dr. Eng.

	S1a	E1	E2	E3	S1	S2
1:	0	0	0	0	0	0
2:	0	0	0	1	0	0
3:	0	0	1	0	0	0
4:	0	0	1	1	0	0
5:	0	1	0	0	0	0
6:	0	1	0	1	0	0
7:	0	1	1	0	0	1
8:	0	1	1	1	1	0
9:	1	0	0	0		
10:	1	0	0	1		
11:	1	0	1	0		
12:	1	0	1	1		
13:	1	1	0	0		
14:	1	1	0	1		
15:	1	1	1	0		
16:	1	1	1	1		

1: não tem peça

2: não é possível

3: não é possível

4: não é possível

5: peça baixa → recua cilindro

6: não é possível

7: peça media → soprador

8: peça alta → avança cilindro

	S1a	E1	E2	E3	S1	S2
1:	0	0	0	0	0	0
2:	0	0	0	1	0	0
3:	0	0	1	0	0	0
4:	0	0	1	1	0	0
5:	0	1	0	0	0	0
6:	0	1	0	1	0	0
7:	0	1	1	0	0	1
8:	0	1	1	1	1	0
9:	1	0	0	0	1	0
10:	1	0	0	1	1	0
11:	1	0	1	0	1	0
12:	1	0	1	1	1	0
13:	1	1	0	0	0	0
14:	1	1	0	1	1	0
15:	1	1	1	0	1	1
16:	1	1	1	1	1	0

09: não tem peça, mas mantém o avanço

10: não é possível, mas mantém o avanço

11: não é possível, mas mantém o avanço

12: não é possível, mas mantém o avanço

13: peça baixa → recua cilindro

14: não é possível, mas mantém o avanço

15: peça media → soprador e avanço

16: peça alta → avança cilindro

	S1a	E1	E2	E3	S1	S2
1:	0	0	0	0	0	0
2:	0	0	0	1	0	0
3:	0	0	1	0	0	0
4:	0	0	1	1	0	0
5:	0	1	0	0	0	0
6:	0	1	0	1	0	0
7:	0	1	1	0	0	1
8:	0	1	1	1	1	0
9:	1	0	0	0	1	0
10:	1	0	0	1	1	0
11:	1	0	1	0	1	0
12:	1	0	1	1	1	0
13:	1	1	0	0	0	0
14:	1	1	0	1	1	0
15:	1	1	1	0	1	1
16:	1	1	1	1	1	0

A equação final de S1 é:

$$S1 = S1a \cdot \overline{E1} + S1a \cdot E3 + S1a \cdot E2 + E1 \cdot E2 \cdot E3$$

$$S1=S1a \cdot (\overline{E1}+E2+E3)+E1 \cdot E2 \cdot E3$$

 $S2 = E1 \cdot E2 \cdot \overline{E3}$

→memória

CIRCUITO TESTE

SOLUÇÃO - REALIZAÇÃO POR UMA DAS 5 TECNOLOGIAS

Elétrica

Eletrônica

Microcontrolada

CLP

Pneumática

Implemente cada solução e depois compare os resultados ...

Problema 6 - Diagrama do sistema

de envase

Funcionamento:

- Controle nos motores usando histerese
- Sensores capacitivos de 24V@100mA
- Nenhum motor pode operar sem água nos canos (a vazio)
- Escolher os componentes elétricos e mecânicos de acordo com o que tem no mercado, usando suas especificações
- Calcular a fonte de alimentação, especificando a tensão de saída, o valor da corrente máxima de saída e a potencia
- No caso de Placa de Circuito Impresso, fazer um esboço
- Analisar a solução de vários ângulos: manutenção, facilidade de fabricação, expansibilidade das funções atuais, etc...
- Escolher uma tecnologia de controle

Problema 7- elevador biblioteca

Prof. Valdir Noll, Dr. Eng.

Exercício 3 – elevador biblioteca

Um elevador para livros (caixa de 1 m³) para uso em biblioteca de 2 pisos, possui uma porta frontal com sensor de fim-de-curso indicando se está aberta ou fechada (E3).

O elevador somente se movimenta se esta porta estiver fechada (E3=1)

O elevador é acionado por um cilindro hidráulico **A** cujo curso é projetado para levar o elevador até a parte superior da biblioteca.

Nesse cilindro tem sensores fim de curso para indicar se o cilindro está recuado (A_0) ou avançado (A_1) .

Em cada andar tem um botão sem trava que, quando pressionado, chama o elevador para aquele andar, caso esteja no outro andar, **OU**, se estiver no mesmo andar, tem a função de comandar o elevador para um andar diferente daquele que ele está.

Exercício 3 – elevador biblioteca

O cilindro, uma vez iniciado a ação de avançar ou de recuar, não aceita mais comandos dos andares, fazendo completamente o seu trabalho e parando no andar para onde foi mandado.

Caso os comandos aconteçam ao mesmo tempo, o cilindro permanece no andar onde estava.

Se ocorrer uma emergência, um botão com trava de emergência é acionado e mantém o cilindro na posição em que está (se estiver, por exemplo, a 1/3 do curso, fique naquela posição).

Faça o circuito elétrico de controle do cilindro usando lógica combinacional, reduzindo as equações por meio de postulados da lógica booleana, apresentando **duas** soluções para o mesmo problema e comparando-as, em termos de custo, dificuldade de realizar, segurança, rapidez, confiabilidade, praticidade de manutenção.

Observe os possíveis erros e tome a melhor decisão em termos de segurança.

DIVISÃO DE TAREFAS

GRUPO	PROBLEMA	TIPO DE SOLUÇÃO
1	5	Eletrônica
2	6	Elétrica
3	7	Microcontrolada
4	5	CLP
5	6	eletrônica
6	7	Eletrônica
7	5	Pneumática
8	6	Microcontrolada
9	7	Elétrica

Nome	Grupo
ARTUR SARTORI WEBER FILHO	1
BRUNO DA SILVA GUIMARAES	1
CARLOS EDUARDO ORGECOSKI	2
DANIEL RICHARTZ	2
DOUGLAS KLAFKE SCHEIBLER	3
ELLEN AMORIM DE CARVALHO	3
EVERTON JORGE BITTENCOURT DE VARGAS	4
HENRIQUE TERNES MORESCO	4
INGON LUIZ RODRIGUES JUNIOR	5
LEONARDO JOSE	5
LUCA ALFARO RAMPINELLI	6
LUCAS SCARABELOT DA LUZ	6
MARIA OLIVIA FRAGA	7
MATHEUS ESPINDOLA	7
PEDRO HENRIQUE BUNN SCHMITT	8
BRUNO JUNG GOENAGA	8
GUSTAVO BASTOS DE SOUZA	9
PAULO DE SOUZA	9

- Simular o funcionamento
- Apresentar dia 15/07
- Enviar no Whatsapp
- Projeto detalhado