

**JP-8 SERVICE NOTES**

*Second Edition*  
December.1982

This Notes makes First Edition obsolete and consists of two parts:

**Part 1 Previous First Edition . . . . pp.1–31**

**Part 2 Mainly applicable to JP-8 units with Serial Numbers**

**171700 and above . . . . pp.32–46**

**Parts List Change . . . . p.47**

**Appendix . . . . pp.48–50**

**BEFORE READING**

**PLEASE CHECK FOR CHANGE INFORMATION**

**AND CONTENTS AT PAGES 32 AND 33**

**OF THIS NOTES.**

**SPECIFICATIONS**

|                        |                      |                         |                                 |
|------------------------|----------------------|-------------------------|---------------------------------|
| Keyboard:              | 61 Note, 5 Octaves   | Arpeggio Rate:          | 1 – 20Hz                        |
| VCO                    |                      | Audio Outputs Upper:    | 0dBm, 600 Ohm, Balanced         |
| VCO-2 Fine Tune Range: | ±50 Cents            | Lower:                  | 0dBm/-20dBm, 1k Ohm, Unbalanced |
| VCF                    |                      | Highest Note Output CV: | 0 – 5V                          |
| Slope:                 | 12/Octave, 24/Octave | Gate:                   | Off – 0V, On – +15V             |
| Key Follow:            | 0 – 120%             | Dimensions:             | 1063(W) x 485(D) x 120(H)mm     |
| ENV                    |                      | Weight:                 | 22kg                            |
| ENV-1, 2               |                      | Power Consumption:      | 90W                             |
| Attack Time:           | 1ms – 5s             |                         |                                 |
| Decay Time:            | 1ms – 10s            |                         |                                 |
| Sustain Level:         | 0 – 100%             |                         |                                 |
| Release Time:          | 1ms – 10s            |                         |                                 |
| LFO                    |                      |                         |                                 |
| Rate:                  | 0.05 – 40Hz          |                         |                                 |
| Delay Time:            | 0 – 4s               |                         |                                 |
| Master Tunable Range:  | ±50%                 |                         |                                 |

Top panel  
Panel H78  
(072H078)



Power switch  
2Wi x II (13149103) 115V  
2Wi II (13149104) 220V

Slide switch  
SSB-022-12RN (13159118)

**JP-8 PANEL PARTS LIST**

|                    |                                                                               |                                     |
|--------------------|-------------------------------------------------------------------------------|-------------------------------------|
| 1                  | Pot.                                                                          | GM70R-K20B54 (50KB x 2) (13219812)  |
| 2                  | Pot.                                                                          | GM70R-K20AC54 (50KA, C) (13219811)  |
| 3                  | Pot.                                                                          | LFE9R-C16A55 (500KA) (13339414)     |
| 4                  | Switch                                                                        | SRM1034-K15 (13119301)              |
| 5                  | Switch                                                                        | SLE622-18PS (13139137)              |
| 6                  | Pot.                                                                          | VM10R-K20B14 (10KB) (13219225)      |
| 7                  | Pot.                                                                          | LFE9R-C16B14 (10KB) (13339415)      |
| 8                  | Switch                                                                        | SQPR-24-12P (13159503)              |
| 9                  | Pot.                                                                          | LFE9R-C16B54 (50KB) (13339413)      |
| 10                 | Pot.                                                                          | MFE9R-C16B54 (50KB x 2) (13359302)  |
| 11                 | Pot.                                                                          | VM10R-K20A55 (500KA) (13219231)     |
| 12                 | Pot.                                                                          | VM10R-K20C54 (50KC) (13219243)      |
| 13                 | Switch                                                                        | SLE623-18P (13139135)               |
| 14                 | Switch w/key top KEH10003 (13129717)<br>See Parts List for Key top and Switch |                                     |
| 15                 | Bender assy                                                                   | PB-4 (029-022)                      |
| 16                 | Cover LED                                                                     | H80 (065H080)<br>LN526RA (15029404) |
| 17                 | Switch                                                                        | KHC11901 (13169601)                 |
|                    | Buttons                                                                       |                                     |
| No.1, 38           |                                                                               | RED (016H018)                       |
| No.2-5, No.34-37   |                                                                               | ORANGE (016H012)                    |
| No.6-9, No.30-33   |                                                                               | YELLOW (016H017)                    |
| No.10-13, No.21-28 |                                                                               | WHITE (016H010)                     |
| No.14, 15, 29      |                                                                               | GREEN (016H014)                     |
| No.16-18, No.39-41 |                                                                               | BLUE (016H013)                      |
| No.19, 20          |                                                                               | DARK BLUE (016H011)                 |
| 18                 | Pot.                                                                          | VM10A-K15B54 (50KB CT) (13229131)   |
| 19                 | Switch                                                                        | SLE-622-18P (13139136)              |
|                    | All rotary knobs                                                              | No.68 (016-078)                     |
|                    | All slider knobs                                                              | H4 (016H004)                        |

**DISASSEMBLY**

Remove screws ①, ② and ③.



**NOTE:**  
Preparation of a stay and a prop is recommended for a stable top panel rest.

**PRECAUTIONS**

1. Do not pinch flat cables in the PCBs when closing panel assemblies. Prongs on PCBs will pierce humped cable, causing circuits to malfunction. Stretch rolling cable out.
2. Do not expose your workbench directly to fans, heaters, air-conditioners, etc. especially after disassembling, PCBs are temperature-sensitive.



OCT.10, 1981

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

A  
B  
C  
D  
E  
F  
G  
H  
I  
J  
K  
L  
M  
N  
O  
P  
Q  
R  
S  
T  
U  
V**PANEL A****PANEL C****PANEL D****PANEL E****PANEL F****PANEL G****INTERFACE**



1 2 3 4 5 6 7 8 9 10 11 12 13

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V



## WIRING DATA TABLE

| CONNECTOR | PINS | P C B     |              |
|-----------|------|-----------|--------------|
|           |      | from      | to           |
| AB        | 8    | PANEL A   | PANEL B      |
| AC1       | 9    | "         | PANEL C      |
| AC2       | 12   | "         | "            |
| AC3       | 6    | "         | "            |
| AD1       | 8    | "         | PANEL D      |
| AD2       | 8    | "         | "            |
| AD3       | 10   | "         | "            |
| AE1       | 12   | "         | PANEL E      |
| AE2       | 6    | "         | "            |
| AF1       | 8    | "         | PANEL F      |
| AF2       | 5    | "         | "            |
| AG1       | 14   | "         | PANEL G      |
| AG2       | 4    | "         | "            |
| AI        | 40J  | "         | INTERFACE    |
| AJ1       | 10   | "         | EXT JACK     |
| AJ2       | 9    | "         | "            |
| AL1       | 10   | "         | MOD CON U    |
| AL2       | 10   | "         | MOD CON L    |
| AN        | 14   | "         | BENDER       |
| AP        | 6    | "         | POWER        |
| BJ1       | 8    | PANEL B   | EXT JACK     |
| BJ2       | 6    | "         | "            |
| BM12      | 8    | PANEL B   | MODULE AB    |
| BM2       | 4    | "         | CD           |
| BM34      | 8    | PANEL B   | EF           |
| BM3       | 4    | "         | GH           |
| BM4       | 4    | "         | "            |
| BP        | 6    | PANEL B   | PANEL A      |
| HI        | 50J  | CPU       | INTERFACE    |
| HL        | 20J  | "         | MOD CON      |
| HM12      | 12   | CPU       | MODULE AB    |
| HM2       | 6    | "         | CD           |
| HM34      | 12   | CPU       | EF           |
| HM3       | 6    | "         | GH           |
| HM4       | 6    | "         | "            |
| HP        | 8    | CPU       | POWER        |
| IK1       | 8    | INTERFACE | KEYBOARD     |
| IK2       | 8    | "         | "            |
| IM        | 40J  | INTERFACE | MODULE AB    |
| IM1       | 10J  | "         | CD           |
| IM2       | 10J  | "         | EF           |
| IM3       | 10J  | "         | GH           |
| IM4       | 10J  | "         | "            |
| IP        | 8    | INTERFACE | POWER        |
| LM1       | 50J  | MOD CON U | MODULE ABCD  |
| LM2       | 50J  | "         | MODULE EFGH  |
| LP1       | 8    | "         | U POWER      |
| LP2       | 8    | "         | L "          |
| MP1       | 6    | MODULE AB | MOD CON U    |
| MP2       | 6    | "         | CD "         |
| MP3       | 6    | "         | EF MOD CON L |
| MP4       | 6    | "         | GH "         |
| NP        | 6    | BENDER    | PANEL A      |
| AT        | 4    | PANEL A   | TUNE VR      |

**JP-8**  
**JP-8 FUNCTIONAL DIAGRAM**



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

A  
B  
C  
D  
E  
F  
G  
H  
I  
J  
K  
L  
M  
N  
O  
P  
Q  
R  
S  
T  
U  
V  
W  
X  
Y  
Z



CPU BOARD BLOCK DIAGRAM



MODULE BOARD BLOCK DIAGRAM



MOD-CON BOARD BLOCK DIAGRAM

ALL ARROWS HAVING NO DESTINATION IDENTIFIER CONNECT TO MODULE BOARD.



INTERFACE BOARD BLOCK DIAGRAM



PANEL BOARD BLOCK DIAGRAM



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24. 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

CPU BOARD OPH121(149H121)(pcb 052H267)



 R 25 J

2SC1815-GR

LC-2

SR 19R

- ० - IS 247

**RMB-103A**

Refer to Page 38 for

## CPU CHANGE INFORMATION

## CAUTIONS ON MODULE CONTROLLER BOARD REPLACEMENT

RAM (MOD CON BOARD) REPLACEMENT

CPU BOARD WILL BE AFFECTED BY THESE REPLACEMENTS

## MODULE CONTROLLER

OPH123(149H123) (pcb 052H269)

**SN 090600-192099**

**REFER TO PAGES**

49-50 for SN up to 090599

36–37 for SN 202100-up

37-38 for PCB or RAM REPLACEMENT



 selected on current leakage  
 white dot

-  R 50J
-  1/4W carbon R25
-  1/4W metal film CRB25FX
-  Poister ERS-C33 G561
-  1S2473
-  zener diode
-  5R19R
-  ET-6P
-  2SA1015 - GR
-  2SC1815 - GR
-  2SC945 selected for Noise
-  2SK30A - GR
-  2SK117 - GR
-  2SB605
-  2SD571
-  BA662
-  Resistor array
-  BA662A selected on offset
-  bi-polar
-  8 test point LC-2-S

A  
B  
C  
D  
E  
F  
G  
H  
I  
J  
K  
L  
M  
N  
O  
P  
Q  
R  
S  
T  
U  
V  
W  
X  
Y  
Z



**MODULE BOARD CIRCUIT DIAGRAM  
MODULE BOARD**

A  
B  
C  
D  
E  
F  
G  
H  
I  
J  
K  
L  
M  
N  
O  
P  
Q  
R  
S  
T  
U  
V  
W  
X  
Y  
Z


IC7A,1B,5,9A,9B,19,21,30,33,37,40 : 4558  
 IC2,10 : RC3046  
 IC3A,3B,4A,4B,11A,11B,12A,12B,35A,35B,38A,38B : TL080  
 IC6A,6B,13A,13B,24 : TL082  
 IC7,14 : 4052  
 IC8A,8B,15A,15B,18A,18B,20A,20B,22A,22B,25A,  
 25B,26A,26B,28A,28B,31A,31B,32A,32B,34A,34B : BA662  
 IC16,17,23 : 4053  
 IC27A,27B : IR3109 or NJM4659D  
 IC29 : TL4558 or NJM4659D  
 IC36A,36B,39A,39B : IR3R01

A1 PNP TR : 2SA1015-GR  
 TR 4A,4B,9A,9B,11A,11B : 2SC1552-Y  
 Other NPN TR : 2SC1815-GR  
 TR 2A,2B,9A,9B : NF510  
 Other FET : 2SK30A-GR  
 All Diode : 1S2473

There are two different GND lines. "||" is not connected to "||" on this PCB.  
 Highest Ref. Des. are IC 40, TR2A, D34B, C60, R229B, VR 23B  
 30B 21B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

A B C D E F G H I J K L M N O P Q R S T U V



# MODULE BOARD

## OPH124(149H124)

### (pcb 052H270)

**SEE PAGE 48**  
**For SN up to 090599**

 R25G  
 selected on slew rate  
 TLO80 8pcs  
 C82 5pcs

 carbon R25

 metal film RB25FX

 posistatERS-C33G561

 posistorTSP102

 2SA1015-GR

 2SC815-GR

 2SC152-Y

 2SK30A-GR

 NF510

 IS2473

 BA662

 ET-6P

 A or B  
 selected on VF (gm)  
 replacement should be  
 if the existing

 Selected on offset  
 10 pcs  
 white dot

 SR19

 test point LC-2S (TP-Φ : GND)

 polystyrene film

 bi-polar

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

A  
B  
C  
D  
E  
F  
G  
H  
I  
J  
K  
L  
M  
N  
O  
P  
Q  
R  
S  
T  
U  
V

INTERFACE BOARD OPH122(149H122)(pcb 052H268)



See pp. 34-35 for  
SN171700 and up

**CAUTION**

When replacing Interface board bearing edition no. 052H268 (and below) with PCB of 052H268 (and above), refer to pp. 34 and 35 for PROMs versions of CPU board.

- (□) R25J
- (□) CRB 25 FX
- (P) Posister ERS-C33G561
- (—) R50J
- (△) ET-6P
- (■) TL082 Selected on cement leakage
- (○) 2SC1815-GR
- (○) 2SA1015-GR
- (○) 2SK30A-GR
- (—) IS2473
- (—) 15252
- (R) LED GL-3ARI



A  
B  
C  
D  
E  
F  
G  
H  
I  
J  
K  
L  
M  
N  
O  
P  
Q  
R  
S  
T  
U  
V  
W  
X  
Y  
Z



A  
B  
C  
D  
E  
F  
G  
H  
I  
J  
K  
L  
M  
N  
O  
P  
Q  
R  
S  
T  
U  
V  
W  
X  
Y  
Z

OCT.10,1981

JP-8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

PANEL BOARD A OPH125(149H125) (pcb 052H271)

- (a) A1015 Y or GR
- (b) C1815 Y or GR
- (c) C1815 GR
- (d) B605 KA
- (e) D571KA
- (f) K30AGR
- (g) 152473
- (h) R25J
- (i) CR825FX
- (j) Resistor array

Component side



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

A  
B  
C  
D  
E  
F  
G  
H  
I  
J  
K  
L  
M  
N  
O  
P  
Q  
R  
S  
T  
U  
V



- (1) ZSA733 Q, P, K
- (1) ZSK30A-GR, Y
- (1) 2SA798G
- (1) 1S2473
- (1) SR19R
- (1) R25-J



Note: IC 1,3 TL082 IC 2,4,5 4558  
 TR1,4~7 2SA1015-GR  
 TR 2,3 2SA798G  
 TR 8 2SK30A-GR

Highest Ref. Des : IC5, TR8, D1, C5, R43, VR8, SW7

**BENDER BOARD**  
**OPH132(149H132)**  
**(pcb 052H278)**

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24. 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

A B C D E F G H I J K L M N O P Q R S T U V



**PANEL BOARD B**  
**OPH126(149H126)**  
**(pcb 052H272)**

R25J  
1S2473  
2SK30A  
2SC1815 GR



# LEVEL SELECT BOARD

## OPH139(149H139)

### (pcb 052H330)



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

**PANEL BOARD C** OPH127(149H127)(pcb 052H273) View from foil side



All sliders: LFE9RC16B14 All rotary pots: VM10RK20B14 All rotary switches: SRM1034-K15



**PANEL BOARD D**  
OPH128(149H128)  
(pcb 052H274)  
View from foil side

All sliders: LFE9RC16B14 All lever switches: SLE622-18PS



**PANEL BOARD E**  
OPH129(149H129)  
(pcb 052H275)  
View from foil side



**PANEL BOARD G**  
OPH131(149H131)  
(pcb 052H277)  
View from foil side

OCT.10, 1981

JP-8



POWER SUPPLY BOARD A  
PSH059(146H059)(pcb 052H279)



POWER TRANSFORMER SECONDARY RATINGS  
 $\pm 20.5\text{VDC}$  @ 1.3A 4700mfd IN  
 $\pm 8.5\text{VDC}$  @ 1.3A 4700mfd IN

POWER SUPPLY BOARD B  
PSH061(146H061) 100/117V  
PSH062(146H062) 220/240V



100/117V 220/240V  
F1 MGP0003 (3.0A) CEE Tl.6A  
F2 none CEE T5.0A  
F3 F4



A  
B  
C  
D  
E  
F  
G  
H  
I  
J  
K  
L  
M  
N  
O  
P  
Q  
R  
S  
T  
U  
V

This is an 8 bit parallel CPU and is compatible with Z-80A and LH0080A.

- \* Instruction sets: 158
- \* Instruction cycle: 1.0us (4.0MHz)
- \* Internal registers: 17
- \* Address bus 16 bit
- \* Data bus: 8 bit

#### PIN FUNCTIONS

**ADDRESS BUS** Transfers 16 bits to memory address decoders (CPU board - IC21, 22 and 23) for controlling the followings:  
on CPU board - ROM, CMOS, RAM, N-ch RAM, TAPE and TUNE reading.  
on MOD CON board - RAM, UP, LO and VCO select.  
Lower 8 bits are transferred to I/O Address decoders (Interface board - IC1, 2, 3, 4 and 8) for controlling the followings:  
IN - Function sws, Digital IN (1, 2 and 3), Key IN, A/D.  
OUT - Dot LED, Num LED, Matrix, Analog sel, Key out, D/A Up/Lo, KCV sel, Gate out, EXT synth, Tune.

**DATA BUS** Used to transfer 8 bit instructions and data between CPU and memories or I/O device.

**Ø** Square wave, 4 MHz. Derived from X-tal oscillator's 8 MHz, divided-by-two through frequency divider.

**MREQ (Memory Request)** Indicates that Address bus holds a valid memory address for a memory read and memory write.

**IORQ (I/O Request)** Indicates the presence of I/O Device number at pins A0-A7 during I/O write/read cycle.

**RD (Memory read)** Indicates that CPU wants to read data from memory or I/O device. The addressed memory or I/O device outputs data onto the CPU data bus at positive transition of RD.

**WR (Memory write)** Indicates that the CPU data bus holds valid data to be stored in the addressed memory or I/O device which latches the data off of the bus at positive transition of WR.

**INT (Interrupt Request)** Whenever INT (Ø, frequency divided by Counter-2, IC40) is fed to CPU every 1ms via IC26, it accepts INT upon finishing processing job then starts executing Panel LED lighting program, generating INT Acknowledge as an IORQ in M1 cycle.

**WAIT** Lengthens read or write cycle until data on the data bus becomes valid during the presence of address signal for timing CPU access time to memory or I/O device.

**RESET** Initializes CPU circuits upon power on for the JP-8 or when DC voltages drop below specified value.

**μPD780 C/D-1**

#### 8 BIT MICROPROCESSOR

##### (Top View)



#### REGISTERS

| MAIN REG SET  |         | ALTERNATE REG SET |         |
|---------------|---------|-------------------|---------|
| ACCUMULATOR A | FLAGS F | ACCUMULATOR A     | FLAGS F |
| B             | C       | B                 | C       |
| D             | E       | D                 | E       |
| H             | L       | H                 | L       |

GENERAL PURPOSE REGISTERS

|                    |                  |
|--------------------|------------------|
| INTERRUPT VECTOR I | MEMORY REFRESH R |
| INDEX REGISTER IX  |                  |
| INDEX REGISTER IY  |                  |
| STACK POINTER SP   |                  |
| PROGRAM COUNTER PC |                  |

SPECIAL PURPOSE REGISTERS



OCT.10,1981

 $\mu$ PD444C

1024 X 4 BIT STATIC RAM CMOS RAM

 $\mu$ PD2716D

16K (2K x 8) UV ERASABLE PROM

(Top View)

(Top View)



BLOCK DIAGRAM



FUNCTIONAL DIAGRAM



Am6012

12-Bit High-Speed Multiplying D/A Converter

CONNECTION DIAGRAM - Top View



IR3R01

 $\mu$ PD2101ALC

1024 BIT (256x4) STATIC MOS RAM



BLOCK DIAGRAM

A<sub>0</sub>-A<sub>7</sub> : ADDRESS  
D<sub>1</sub>-D<sub>4</sub> : DATA INPUT  
D<sub>0</sub>-D<sub>4</sub> : DATA OUTPUT  
R/W : READ/WRITE  
(WRITE "0")  
CE<sub>1</sub> : CHIP ENABLE 1  
CE<sub>2</sub> : CHIP ENABLE 2  
OD : OUTPUT DISABLE

 $\mu$ PD2114LC/D

1024 X 4 BIT STATIC RAM

BLOCK DIAGRAM



(Top View)



TC40H000P QUAD 2-INPUT NAND GATE



## ADJUSTMENTS

### DISASSEMBLY

Follow procedure on page 2. Preparation of a STAY (chain or string) and prop is advisable for a stable top panel rest.

### PRECAUTIONS

Do not expose your workbench directly to fans, heaters, air-conditioners, etc. especially after disassembling, most circuits are temperature-sensitive.

The adjustments on the JP-8 should not be done more than necessary. Adjustments merely attempted on a particular module (VOICE) might cause sound balance away from entire VOICES and can, in an extreme case, require the same procedures to be done fifteen times for the remainder.

### DESIGNATION – TEST POINT, TRIMMER, PCB –

For PCBs that are identical in circuit configuration, most adjustment steps, test points and trimmers do not refer to a particular PCB or module (VOICE), they may be read as ones on a PCB to be adjusted.



Four module boards, each consisting of two voices, are identical in all aspects, having the same designators with A or B suffix for the same components of two VOICES, e.g. VR1A (VOICE A) and VR1B (VOICE B). Note that each voice contains two VCOs, VCO-1 and VCO-2.

### ADJUSTING ORDER

The adjustments proceed from paragraph 1, DC Supply assuming that the JP-8 is completely unadjusted. When adjusting a specific section, begin with lower numbered para. in the relative adjustment section, e.g. first No. 7 BAL, then, No. 8 DEPTH, as directed.

### TEST MODES

Adjustments on the JP-8 proceed in TEST MODEs. Although three TEST MODEs are available for the adjustments, TEST MODE (3) is chosen in this manual unless otherwise specified. (For more details refer to TEST MODE in Circuit Description – separate copy.)



Below confines description to the point inevitably necessary for performing the adjustments.

### To put the JP-8 into TEST MODE 3

See figure above 3. With power off, throw SW-1-2 on Interface board from OPEN to TEST-1 or -2 (on some early models the switch is oriented opposite, so are labels TEST-1/2 on PCB, left hand one is always SW-1-2 and OPEN position is at label "OPEN" on the SW).

### In the TEST MODE 3

The JP-8 has the following functions that are different from those in NORMAL MODE:

All VCOs are uncompu-tuned, i.e. their pitches are left deviated slightly until "TUNE" is pressed.

\* Among key assignments, POLY-1 only changes assigning order — tapping single key (same key) will assign modules from A to H one by one, repeating the order. This is convenient in comparing 8 modules sounds (timbre, pitch, etc.) sequentially at a note.

\* Computer provides FSK adjustment (para. 26) program and outputs test signal at SAVE (DUMP) jack when VERIFY is pressed.

\* Integrated PATCH NUMBER LEDs serve as module (VCO) indicator for visible checking, identifying VCO(s) being directed by key(s) has been depressed or being held down.

SW-1-1, LED switch, in close position, allows LEDs (TEST LED) located right to it to be energized regardless of MODE (NORMAL or TEST) when gate signals are fed to them individually. The LEDs function as assignment indicator just as Patch Number LEDs do. Test LEDs find extended application for learning and checking the assignments varying to MODEs (KEY, PANEL and ASSIGN) in Normal mode.

Patch Number LEDs are lit automatically in sequence immediately after TUNE is touched, representing module A VCO-1 (leftmost LED), A VCO-2 (No.2 LED) and so on; the first cycle for Upper modules' and the second for Lower. Their lighting period is proportional to degree of VCO detune from standard pitches. An LED staying on and won't pass illumination to the next one claims checking of its mated VCO having been far out of computer controllable range.

TEST MODEs 2 and 3 are identical to each other in function, but any panel disassembly is required for mode 2 if the purpose is only to check Key Assignment or VCO detune.

### FOR SATISFACTORY SERVICE WORK

1. Dump user's preset memory on tape before attempting adjustments and troubleshooting.
2. If TUNE was pressed in previous adjustments, be sure to power off and on the JP-8 before making adjustment which must be done without compu-tune.
3. Plural keying and miskeying will disorder key assignment sequence. Push HOLD or ASSIGN MODE to off and again to on, as appropriate, to restore the order. Use monitor amp to detect erroneous key assignmanet that LED does not distinguish.
4. Make a practice of pushing MANUAL after changing PANEL MODEs.
5. Restore SW-1-1 and SW-1-2 to OPEN and load back the data on tape before return the unit to the customer.

## BEFORE STARTING ADJUSTMENTS

ALLOW AT LEAST 30 MINUTES FOR WARUP PERIOD

## 1. DC SUPPLY

## POWER SUPPLY BOARD

1. Connect Digital voltmeter (DVM) to  $-15V$  (terminal 9, 10, 11).
2. Adjust VR1 for  $-15V \pm 10mV$  reading.
3.  $+15V$  should be  $+15V \pm 500mV$ .
4.  $+5V$  should be  $5V \pm 400mV$ .



## 2. DC SUPPLY (VCO)

## MODULE. MODULE CONTROLLER

See appendices for adjustment locations and glossary.

## MODs A, B, C and D

1. Connect DVM to MOD AB IC1 pin 4 ( $-VDD$ ).
2. Adjust upper CON VR4 for  $-13V \pm 5mV$ .
3. IC1 pin 8 should read  $+13V \pm 200mV$ .

## 3. PANEL POTs VOLTAGES

## INTERFACE (INT) PANEL BOARD A

See appendices for locations and glossary.

1. Connect DVM to INT TP-3 or R83 (10k) lead facing outside. (See Fig. below right.)
2. Depress MANUAL.
3. Turn all the pots on the panel illustrated fully cw, or to 10. Incomplete settings result in a fluctuating reading or dips on a screen if observed with scope.
4. Set VR1 (Panel board A) for  $+5V \pm 2mV$ .

## 4. DAC

## INTERFACE (INT)

See appendix for glossary.

1. Connect DVM to OUTPUT CV jack.
2. Press KEY MODE WHOLE.
3. Press C0 key, adjust VR2 for 0.000V reading.
4. Press C5 key, adjust VR1 for 5.000V reading.
5. Check C0-C5 keys for scaling, that those voltages are 1V/oct increments  $\pm 2mV$ .



## 5. VCO MOD BAL

## MODULE (MOD)



See appendices for adjustment locations and glossary.

1. Connect DVM to MOD TP-3 or R107 lead.
2. Adjust MOD VR7 for 0.000V reading.

## 6. VCO TUNE

## MODULE (MOD)



See appendices for adjustment locations and glossary.

Compu-tuned VCO needs to be re-calibrated only if it or associated components have been replaced. If a VCO is excessively out of tune right after compu-tune, first check MOD BAL, para. 5 and KCV OUT (INT terminals IM-1, IM-3, etc.) for voltage. Seconds, isolate possible causes before attempting VCO adjustments.

As is usual with tuning, several instruments may be used for determining frequency. The calibration proceeds by Lissajous figures with A-442 reference fed to scope's horizontal input.

1. Connect scope to MOD TP-4 or R130 lead.
2. Turn SOURCE MIX fully to VCO-1 or 2 accordingly.

## NOTE:

Make sure that the JP-8 is in the test mode without initially compu-tuned upon power on. To ensure this, turn power off and on. Then, push UNISON, etc. See "TEST MODE" on the first page of this section.

3. Press A3 key, adjust trimpot T for 884Hz.
4. Press A1 key, adjust trimpot W for 221Hz.
5. Repeat steps 3-4 until waveforms are stationary on both keys.
6. With RANGE set in 2', press A3 key and adjust L for 3536Hz.
7. These trims interact to each other, repeat steps 3-6 until three notes are on the right frequency.

## 7-1. ENV-1 S OFFSET

MODULE CONTROLLER (CON)

Applicable to the PCB equipped with VR9



This adjustment must be followed by para. 7. See appendices for adjustment locations and glossary.

1. Connect scope to CON TP-7.

Set scope V to 20mV/div.

2. Adjust CON VR9 for 0V reading.

## 7. VCO ENV MOD BAL

MODULE (MOD)

On JP-8 mounting CON with VR9, this adjustment must follow para. 7-1.



See appendices for adjustment locations and glossary.

1. Push TUNE.
2. Connect scope to MOD TP-4 with A-442 reference fed to H IN.
3. Press A2 key, adjust MASTER TUNE for still Lissajous.
4. Slide MOD ENV up to 10. Without additional keying, adjust MOD VR8 for still Lissajous. (Frequency is same as in step 3.)

## 8. VCO ENV MOD DEPTH

MODULE (MOD)

This adjustment must follow para. 7. See appendices for adjustment locations and glossary.

Change from para. 7 setup: ENV-1 S to 10; VCO-1 to 2'; VCO MOD ENV to 0.

The adjustment sets maximum voltage of modulating waveform to the value by which VCO's can be shifted within a 3-octave range.

1. Press A0 key, adjust MASTER TUNE for motionless Lissajous.
2. Set VCO-1 to 16'; VCO MOD ENV to 10. Leaving A0 key open, adjust MOD VR9 for the same waveform as in step 1.

## 9. VCO CROSS MOD BALANCE (X-MOD)

MODULE (MOD) MODULE CONTROLLER (CON)



This adjustment must be followed by para. 10. See appendices for adjustment locations and glossary.

1. Connect scope to MOD TP-4 with A-442 reference fed to H IN. Place a ground to CON TP-4 or D-20. Push TUNE.
2. Press A2 key, adjust MASTER TUNE for still Lissajous.
3. Leaving A2 key open, set VCO-1 CROSS MOD to 10. Adjust MOD VR10 for the same Lissajous displayed in step 2.

## 10. VCO CROSS MOD DEPTH (X-MOD LEVEL)

MODULE (MOD) MODULE CONTROLLER (CON)

This adjustment must follow para. 9. See appendices for adjustment locations and glossary.

The adjustment sets modulating voltage to the value by which VCO-1 frequency is shifted by 3 octaves when CROSS MOD is set at 5, and VCO-1 RANGE at 2'.

Change from para. 9 setup: VCO-1 CROSS MOD to 5; VCO-2 SYNC to on; VCO-2 RANGE to LOW FREQ.

1. Press A0 key, adjust MASTER TUNE so that Lissajous is 1:1.
2. Switch VCO-2 WAVE to square; VCO-1 to 16'. Adjust MOD VR11 to display Lissajous observed in step 1.

## 11. PULSE WIDTH MOD LEVEL (P.W.M.)

MODULE (MOD)



On JP-8's S/N \*\*0600 and subsequent, waveform is up side down.

See appendices for adjustment locations and glossary.

1. Connect scope to MOD TP-4 or R130 lead. Trigger on the negative edge (positive S/N \*\*0600).
2. Press C2 key, adjust MOD VR12 for 30μs space width.

NOTE:

VR12's interact to each other. Check other voices for mark/space ratio. Readjust as necessary.



OCT.10, 1981

**12. VCO LEVEL  
MODULE (MOD)**

**JUPITER-8**

See appendices for adjustment locations and glossary.

1. Connect scope to MOD TP-4.
2. Press A2 key, adjust VR13 for 10V p-p reading.
3. Rotate SOURCE MIX to VCO-2 and adjust VR15 for 10V p-p.

CAUTION On early product, legends for some VR's are incorrect. Refer to PCB layout in appendix.

**13. VCF KEY FOLLOWER  
MODULE (MOD) MODULE CONTROLLER (MOD CON)**

**JUPITER-8**

See appendices for adjustment locations and glossary.

This adjustment must be followed by para. 14-17.

CAUTION

On early product, legends for some VR's are incorrect. Refer to PCB layout in appendix.

1. Place ground to CON TP-4 or D20 cathode.
2. Connect scope to MOD TP-6 or R166 lead.
3. Turn MOD VR14 fully clockwise. The VCFs resonate.
4. Press C2 key, adjust scope timebase and VCF FREQ to display one complete cycle. (across the graticules, same for the rest para.) MOD VR20 may be used for fine adjustment.

5. Press C4 key, adjust VR16 to display 4 complete cycles.

NOTE:

VR14 and VR20 will be readjusted in later para.

**14. VCF WIDTH  
MODULE (MOD) MODULE CONTROLLER (CON)**

**JUPITER-8**

Para. 13-17 must be performed in sequence.

On JP-8's S/N \*\*0600 and subsequent, read figures in parentheses.

1. With scope to MOD TP-6 set timebase to 1ms (2ms)/div.
2. press C2 key, adjust VCF ENV MOD and MOD VR20 to display one complete cycle.
3. Set CO FREQ to 10, scope timebase to 5μs/div (20μs/div). Adjust VR19 to display one complete cycle (5 cycles).

Steps 2 and 3 interact, repeat steps as required.

**15. VCF ENV MOD  
MODULE (MOD) MODULE CONTROLLER (CON)**

Para. 13-17 must be performed in sequence.  
Change para. 14 setup: VCF ENV MOD to 0, scope timebase to 0.2ms/div.

1. Press C2 key, adjust CO FREQ and MOD VR20 to display exactly one complete cycle.
2. Reset VCF ENV MOD to 10, timebase to 50μs/div. Adjust VR21 to display 16 complete cycles.

**16. VCF TUNE  
MODULE (MOD) MODULE CONTROLLER (CON)**

Para. 13-17 must be performed in sequence.  
Change setup in para. 15 step 2: ENV MODE to 0; CO FREQ to 5 (S/N \*\*0600 – 4); scope to MOD TP-6 with A-442 reference fed to H IN.

1. Press a key, adjust VR20 for 1:1 Lissajous.

**17. RESONANCE LEVEL  
MODULE (MOD)**

Para. 13-17 must be performed in sequence.  
Change setup in para. 16: SOURCE MIX to VCO-1; CO FREQ to 10; Scope to INT TRIG.

1. Press A2 key (S/N \*\*0600 – E3 key), adjust VR14 for the figure:



## 18. VCA LEVEL

MODULE (MOD) MODULE CONTROLLER (CON) (early JP-8)



See appendices for adjustment locations and glossary.

Although CON VR5 is included in part 1, the trimpot is replaced by 10k resistor on later products.

When adjusting MOD replacement, ignore VR5 trimming, following Part 2.

Connect scope to TP-6 or R166 lead.

## PART 1

1. Set MOD VR18 wiper to midpoint.
2. Press C2 key and adjust CON VR5 for 3V p-p.
3. Adjust VR18 of the remainder Voices for 3V p-p.

## PART 2

1. Press C2 key and adjust VR18 for 3V p-p.

## 19. VCA BALANCE

MODULE (MOD) MODULE CONTROLLER (CON)



See appendices for adjustment locations and glossary.

1. Place ground to CON TP-4 or D20 cathode.
2. Connect scope to MOD TP-6 or R166. Switch scope to DC coupling, vertical range to 20mV/div.
3. While tapping a key, adjust VR17 so that DC variations are minimized.

## 20. ENVELOPE TOTAL TIME

MODULE (MOD)



See appendices for adjustment locations and glossary.

This adjustment proceeds on the assumption that all VOICES' ENVs are unadjusted. When adjusting particular module, start from step 3 with scope V IN connected to TP-8 of well calibrated module.

## ENV-1

1. Connect scope to MOD GH R183B lead or TP-8B.
2. While holding a key, time Attack period on scope. Adjust MOD H VR22 for 6-sec attack period.
3. Switch scope timebase to 20ms/div. Trigger scope from TR16 collector of any module.
4. Press and hold a key repeatedly, adjust both ENV-1 ATTACK (around 4-5) and timebase VARI or vernier so that envelope's falling edge is centered on the screen.
5. Shift V lead to TP-8 of the module to be adjusted. Adjust the VR22 for centered falling edge.



## ENV-2

The procedure is similar to those in ENV-1, but connect scope to R189 lead or TP-7 and adjust ENV-2 ATTACK and VR23.

## 21. LFO MODULATION

MODULE (MOD) MODULE CONTROLLER (CON)



See appendices for adjustment locations and glossary.

1. Connect scope to CON TP-5 Or R59 lead. Set timebase to 10ms/div.
2. Adjust CON VR3 to display exactly 3 complete cycles on the scope.
3. Adjust CON VR2 for slope straightness as shown in Fig. right.
4. Shift scope to TP-4 of (Upper – MOD A; Lower – MOD E).

Repeatedly holding a key, adjust CON VR8 so that VCO becomes being modulated approx. 4 sec after the key first depressed.



## 22. VCO LEO MODULATION

MODULE (MOD) MODULE CONTROLLER (CON)



See appendices for adjustment locations and glossary.

1. Connect scope (with A-442 into H IN) to TP-4 of (Upper-MOD A; Lower – MOD E).
2. Press A2 key, adjust MASTER TUNE for 1:1 Lissajous.
3. Set VCO LFO MOD to 10. Lissajous ratio is now changing up and down in sympathy with LFO rate. Adjust CON VR6 so that Lissajous becomes 2:1 at the highest pitch. Note that LFO modulated VCO swing equals 2 oct's.

## 23. VCF LFO MOD LEVEL

MODULE CONTROLLER (CON)



See appendices for adjustment locations and glossary.

1. Connect scope to TP-6 of (Upper – MOD A; Lower – MOD E).
2. Press C2 key (S/N \*\*0600— C4 key), adjust CON VR7 for 50 percentage modulation.



## 24. NOISE

MODULE CONTROLLER (CON)

See appendices for adjustment locations and glossary.

1. Switch VCO-2 RANGE to NORMAL. Connect scope to CON TP-4.
2. Adjust CON VR1 so that dense signal peaks are approx. 5V p-p.
3. Switch RANGE to LOW FREQ, check peaks for clip.



## JUPITER-8

BENDER MODULE (MOD)



See appendices for adjustment locations and glossary.

1. Connect scope to TP-4 of (Upper – MOD A; Lower – MOD E) with A-442 reference to H IN.
2. Press A2 key, adjust MASTER TUNE for stationary Lissajous.
3. Set VCO MOD switch to on, adjust VR1 (Upper) or VR2 (Lower) for stationary Lissajous.

NOTE: On JP-8 S/N \*\*0700—, next comes para. 25-1, BENDER LEVEL.

## 25-1. BENDER LEVEL

BENDER MODULE (MOD)

APPLICABLE S/N with \*\*0700 and SUBSEQUENT



## VR3 BENDER ADJ

1. Connect scope to TP-4 of any MOD. Press A2 key, adjust timebase and vernier (VARI) to display one complete cycle.
2. Press A3 key. Sway and hold BENDER Lever at extreme left, adjust VCO BEND to display 1 cycle.
3. Press A1 key. Sway and hold BENDER at extreme right, set VR3 for complete 1 cycle.

## 26. FSK

CPU

See appendices for glossary.

1. Join TAPE MEMORY LOAD and DUMP jacks via cable.

NOTE: DUMP is renamed as SAVE on later products.

2. Connect scope to CPU TP-7.
3. Push VERIFY. Be sure that the JP-8 is in test mode, this is displayed in PATCH NUMBER window as —I—I—I—.
4. Set CPU VR1 for 50% duty cycle.
5. Push VERIFY again at the end of adjustment.



**APPENDIX I**

CIRCLED NUMBERS AROUND  
PCB LAYOUT CORRESPOND  
TO PARAGRAPH NUMBERS

**MODULE CONTROLLER BOARD**

## PARTS LIST

| CHASSIS         | PCB                            |                      | 15189117                              | TL081CP    | OP amp                           | POTENTIOMETER                                  |                                   | POSITOR                                    |
|-----------------|--------------------------------|----------------------|---------------------------------------|------------|----------------------------------|------------------------------------------------|-----------------------------------|--------------------------------------------|
| 061H117         | Chassis H117 (main)            | 149H121              | CPU board OPH121                      | 151891180A | TL082CP<br>(selected)            | OP amp                                         | SLIDER                            | 560 ERS-B33G561                            |
| 061H118         | Chassis H118 (power trans)     |                      | (etch mask 052H267)                   |            |                                  |                                                | 15229909                          | 1.2K ERS-B33G122                           |
| 061H116         | Chassis H116 (jack)            | 149H122              | INTERFACE board OPH122                | 15229801   | IR3109                           | VCF                                            | 13339414 LFE9R-C16A55 (500KA)     | 15229910 1K TSP102J                        |
| 063H040         | Plate (side panel) H40 (right) |                      | (etch mask 052H268)                   | 15229807   | IR3R01                           | ADSR                                           | 13339415 LFE9R-C16B14 (10KB)      | ARRAY                                      |
| 063H041         | Plate (side panel) H41 (left)  | 149H123              | MODULE CONTROLLER OPH123              | 15229802   | BA662A or B                      | VCA                                            | 13339413 LFE9R-C16B54 (50KB)      | 13910106 10K x 6 RM6-103K                  |
|                 |                                |                      | (etch mask 052H269)                   | 152298020A | BA662A (VF selected)             | white dot only                                 | 13359302 MFE9R-C16B54 (50KB x 2)  | 13829821 10K x 8 RM8-103K                  |
| PANEL           |                                | 149H124              | MODULE board OPH124                   | 152298020B | BA662A (Offset selected)         | color dot                                      |                                   | 13910105 22K x 8 RM8-223K                  |
| 072H078         | Panel H78 (upper)              |                      | (etch mask 052H270)                   | 15169301HO | 74LS00                           | Quadruple 2-input NAND gates                   | ROTARY                            |                                            |
| 072H079         | Panel H79 (bender)             | 149H125              | PANEL board A OPH125                  | 15169303HO | 74LS02                           | Quadruple 2-input NOR gates                    | 13219811 GM70R-K20AC54P (50KAC)   | CAPASITOR                                  |
| 072H080         | Panel H80 (right end block)    | 149H126              | PANEL board B OPH126                  | 15169304HO | 74LS04                           | Hex inverters                                  | 13219812 GM70R-K20B54P (50KB x 2) | 13639942MO ECEA-1HN010S 1μ 50V bi-polar    |
| HOLDER          |                                | 149H127              | PANEL board C OPH127                  | 15169311HO | 74LS14                           | Hex schmitt-trigger inverters                  | 13219225 VM10R-K20B14 (10KB)      | 13569575FO CQ09S-1H-10000-J5 1000PF styrol |
| 064H055B        | Holder H55B (pot-pcb)          |                      | (etch mask 052H273)                   | 15169313HO | 74LS74                           | Dual D-type flip-flops                         | 13219243 VM10R-K20C54 (50KC)      |                                            |
| 064H092         | Holder H92 (key sw)            | 149H128              | PANEL board D OPH128                  | 15169318HO | 74LS86                           | Quadruple 2-input exclusive-OR gates           | 13219231 VM10R-K20A55 (500KA)     |                                            |
| 064H100         | Holder H100                    |                      | (etch mask 052H274)                   |            |                                  |                                                | 13229131 VM10A-K15B54 (50KB CT)   |                                            |
| 064H101         | Holder H101                    | 149H129              | PANEL board E OPH129                  | 15169321HO | 74LS161                          | Synchronous 4 bit binary counters              |                                   | POWER TRANSFORMER                          |
| 064H094         | Holder H94                     |                      | (etch mask 052H275)                   |            |                                  |                                                | 022H039J 100V                     |                                            |
| KEYBOARD        |                                | 149H130              | PANEL board F OPH130                  | 15169322HO | 74LS174                          | 3-line to 8-line decoders                      | 022H039C-A 117V                   |                                            |
| 004H008         | SK-361C                        | 149H131              | PANEL board G OPH131                  | 15169319HO | 74LS139                          | Dual 2-line to 4-line decoders                 | 022H039D 220/240V                 |                                            |
| KNOB            |                                | 149H132              | BENDER board OPH132                   | 15169342   | 74LS156                          | Dual 2-line to 4-line decoders                 |                                   |                                            |
| 016-078         | Knob NO. 78                    |                      | (etch mask 052H277)                   | 15169321HO | 74LS161                          | Synchronous 4 bit binary counters              |                                   |                                            |
| 016H004         | Knob H4                        | 149H139              | LEVEL SELECT board OPH139             | 15169318HO | 74LS138                          | 3-line to 8-line decoders                      |                                   |                                            |
| 12479703        | KT3-2 (key top) (ivory)        |                      | (etch mask 052H330)                   | 15169319HO | 74LS139                          | Dual 2-line to 4-line decoders                 |                                   |                                            |
| SWITCH          |                                | 146H059              | POWER SUPPLY board A PSH059           | 15169323HO | 74LS175                          | Hex D-type flop-flops                          |                                   | TRIMMER                                    |
| 13149103        | 2Wi XII (115V) power sw        | 146H061              | POWER SUPPLY board B (100/117) PSH061 | 15169323HO | 74LS174                          | Quadruple D-type flop-flops                    | 13299114 10K                      |                                            |
| 13149104        | 2Wi II (220V) power sw         | 146H062              | POWER SUPPLY board B (220/240) PSH062 | 15169343   | 74LS240                          | Octalbuffers/line drivers with 3-state outputs | 13299116 47K                      |                                            |
| SLIDE SWITCH    |                                | 146H060              | POWER SUPPLY board C PSH060           | 15169331XO | 74LS244                          | Octalbuffers/line drivers with 3-state outputs | 13299117 100K                     |                                            |
| 13159118        | SSB 022-12RN                   |                      | (etch mask 052H302)                   | 15169324CO | 74LS245                          | Octal bus transceivers with 3-state outputs    |                                   | COIL                                       |
| 13159117        | SSB 023-12RN                   |                      |                                       | 15169325CO | 74LS273                          | Octal D-type flip-flop                         | 244021500 SN8D500                 |                                            |
| 13159116        | SSB 042-12PN                   |                      |                                       | 15169327HO | 74LS367                          | Hex bus drivers                                |                                   |                                            |
| 13159503        | SQPR-24-12P                    | JACK                 |                                       | 15169329HO | 74LS393                          | Dual 4-bit binary counters                     |                                   |                                            |
| DIP SWITCH      |                                | 13449107             | S-G7630 (mono)                        | 15169101XO | 7400                             | Quadruple 2-input NAND gates                   |                                   |                                            |
| 13169606        | J-S8719-02                     | 13449123             | S-G7716 (stereo)                      | 15169116   | 7474                             | Dual D-type flop-flops                         | 13299102 100K                     |                                            |
| LEVER SWITCH    |                                | FUSE                 |                                       | 15169102XO | 7406                             | Hex inverters with open-collector              |                                   |                                            |
| 13139136        | SLE-622-18P                    |                      |                                       | 15169117   | 7407                             | Hex buffers/drivers with open-collector        | 029-022 PB-4                      | BENDER UNIT                                |
| 13139137        | SLE-622-18PS                   |                      |                                       | 15219109HO | HA-17555C                        | Precision timer                                |                                   |                                            |
| 13139135        | SLE-623-18P                    | JACK                 |                                       | 15159503   | * TC40H000P                      | Quad 2-input NAND gate                         |                                   |                                            |
|                 |                                |                      |                                       | 15219105   | LM565                            | Phase locked loop                              |                                   | RESISTOR                                   |
| DIP SWITCH      |                                |                      |                                       | 15219118   | Am6012A                          | 12-bit multiplying D/A converter               |                                   |                                            |
| 13119301        | SRM1034-K15                    | IC (* CMOS)          |                                       | 15119113   | 2SA1015-GR                       |                                                | CRB25FX (1%)                      |                                            |
|                 |                                | GHS 1/4A (CPU board) |                                       | 15119108   | 2SA798-G                         |                                                | 390 Ohm                           |                                            |
| 12559137        | MGP0003 (3.0A) prim. 100/117V  |                      |                                       | 15119105   | 2SA733-Q or P, K                 |                                                | 1.2K                              |                                            |
| 12559521        | CEE T1.6A prim. 220/240V       |                      |                                       | 15119601   | 2SB605-L                         |                                                | 1.5K                              |                                            |
| 12559518        | CEE T5.0A sec. 220/240V        |                      |                                       | 017-163    | 2SB605-KA                        |                                                | 2.4K                              |                                            |
| ROTARY SWITCH   |                                | SEMICONDUCTOR        |                                       | 15119813   | 2SB754-Y                         |                                                | 2.5K                              |                                            |
| 13119301        | SRM1034-K15                    | IC (* CMOS)          |                                       | 15129114   | 2SC1815-GR                       |                                                | 2.7K                              |                                            |
|                 |                                | GHS 1/4A (CPU board) |                                       | 15129128   | 2SC752-Y                         |                                                | 3K                                |                                            |
| 12559137        | MGP0003 (3.0A) prim. 100/117V  |                      |                                       | 15129108   | 2SC945-P                         |                                                | 3.3K                              |                                            |
| 12559521        | CEE T1.6A prim. 220/240V       |                      |                                       | 15129108A  | 2SC945 (Selected)                |                                                | 3.9K                              |                                            |
| 12559518        | CEE T5.0A sec. 220/240V        |                      |                                       | 15129600   | 2SD571-L                         |                                                | 4.7K                              |                                            |
|                 |                                |                      |                                       | 017-163    | 2SD571-KA                        |                                                | 5.6K                              |                                            |
| LEVER SWITCH    |                                |                      |                                       | 15129128   | 2SC945-P                         |                                                | 590 Ohm                           |                                            |
| 13139136        | SLE-622-18P                    |                      |                                       | 15129108   | 2SC945-P                         |                                                | 1.2K                              |                                            |
| 13139137        | SLE-622-18PS                   |                      |                                       | 15129600   | 2SD571-L                         |                                                | 1.5K                              |                                            |
| 13139135        | SLE-623-18P                    | JACK                 |                                       | 017-164    | 2SD571-KA                        |                                                | 2.4K                              |                                            |
|                 |                                |                      |                                       | 15129816   | 2SD844-Y                         |                                                | 2.7K                              |                                            |
| PUSH SWITCH     |                                |                      |                                       | 15139106   | 2SD880-Y                         |                                                | 3K                                |                                            |
| 13169601        | KHC 11901 w/LED                |                      |                                       | 15139103   | 2SK117-GR                        |                                                | 3.3K                              |                                            |
| KEY SWITCH UNIT |                                |                      |                                       | 15139110   | 2SK30A-GR                        |                                                | 4.7K                              |                                            |
| 13129717        | KEH 10003 w/key top KT3-2      |                      |                                       | 15179308   | uPD2101ALC                       | 1024 bit static RAM                            | 13769182DO 24K                    | NOISE FILTER                               |
| 13129714        | KEH10903 switch proper         |                      |                                       | 15179111   | uPD780C-1                        | CPU                                            | 13769183DO 27K                    |                                            |
| 13129719        | Guide pin CHC32801A            |                      |                                       | 15179605NO | uPD2716D                         | 16384 bit erasable PROM                        | 13769189DO 47K                    |                                            |
| 2226920800      | Cushion rubber CK42602A        |                      |                                       | 15179305   | uPD444C                          | 4096 bit static RAM                            | 13769191DO 56K                    | NOTE:                                      |
| BUTTON          |                                |                      |                                       | 15179309   | uPD2114C                         | 4096 bit static RAM                            | 13769194DO 75K                    | Although Roland has employed               |
|                 |                                |                      |                                       | 15179110NO | uPD8253C                         | Triple programmable interval timers            | 13769197DO 100K                   | digit coding, old ones (6 digit and        |
| 016H010         | white                          |                      |                                       | 15019103   | 1S2473                           |                                                | 13769201DO 150K                   | with H) are still applied to some          |
| 016H011         | dark blue                      |                      |                                       | 15019628   | 05Z-5.6U                         |                                                | 13769205DO 220K                   |                                            |
| 016H012         | orange                         |                      |                                       | 15019629   | 05Z-6.2L                         |                                                | 13769213DO 470K                   |                                            |
| 016H013         | blue                           |                      |                                       | 15012626   | 05Z-11U                          |                                                | 13769219DO 820K                   |                                            |
| 016H014         | green                          |                      |                                       | 15019624   | 1S2-52                           |                                                | 13769221DO 1M                     |                                            |
| 016H017         | yellow                         |                      |                                       | 15029110   | GL-3AR1 or TLR124, SLP-135 (LED) |                                                | 13769253DO 2.2M                   |                                            |
| 016H018         | red                            |                      |                                       | 15029103   | TLR124 (LED)                     |                                                | 13839143FO 0.33 3W                |                                            |
|                 |                                |                      |                                       | 15029404   | LN526RA (LED)                    |                                                | 13839144FO 0.15 3W                |                                            |
|                 |                                |                      |                                       | 15019248   | 6D4B41 (6A 200V)                 |                                                | 13839188FO 0.5 5W                 |                                            |
|                 |                                |                      |                                       | 15019247   | GP-30G (Hi-Fi special)           |                                                |                                   |                                            |



| NO | PART NO   | DESCRIPTION     |        |
|----|-----------|-----------------|--------|
| 1  | 106H026   | Natural key     | C F    |
| 1  | 106H027   | Natural key     | D      |
| 1  | 106H028   | Natural key     | E B    |
| 1  | 106H029   | Natural key     | G      |
| 1  | 106H030   | Natural key     | A      |
| 1  | 106H031   | Natural key     | C' F'  |
| 2  | 106H032   | Sharp key       | black  |
| 3  | 070H029   | Key spring      | H29    |
| 4  | 061H086A  | Chassis         | H86A   |
| 5  | 068H004   | Guide bushing   | H4     |
| 6  | 101H141   | Level felt      | H141   |
| 7  | 071H044   | Contact leaf    | H44    |
| 8  | 071H051   | Busbar 8P       | H51    |
|    | 071H054   | Busbar 5P       | H54    |
| 9  | 043H007   | Switch unit 12P | H7     |
|    | 043H008   | Switch unit 13P | H8     |
| 10 | 104H029   | Busbar holder   | H29    |
| 11 | 062H024   | Chassis bracket | H24    |
| 12 | 098H006   | Key stopper     | H6     |
| 13 | 052H283-5 | Matrix board    | H283-5 |
| 14 | 107H059   | Cushion         | H59    |

**NOTE:**  
Although Roland has employed 8-10 digit coding, old ones (6 digit and 6 digit with H) are still applied to some parts.

# JP-8 SERVICE NOTES

## PART 2

The following pages cover the information of Engineering changes and various aspects of JP-8 affected by the changes.

### DESIGNE CHANGES THAT CHANGE FEATURE OF THE JP-8

#### DAC

To have JP-8 more stable in pitch, DAC for KCVs is changed from 12-bit to 14-bit version.

#### KEY SPLIT POINT

To make JP-8 more convenient for the user to play on, key split point becomes under the control of the player.

#### DIGITAL COMMUNICATION INTERFACE OC-8 & DCB

To have JP-8 externally controlled through Digital Data Bus connecting either to digitally operating "musical instrument" or to Analog/Digital Interface Unit (e.g. OP-8 that accepts analog CVs in parallel), Digital Communication Interface Board (DCIB) is built in.

**OC-8:** First, DCIB is named OC-8 and sold as an optional kit.

**DCB:** Second, another version of DCIB, called DCB is incorporated in the later JP-8 as a standard feature.

The above-mentioned changes and other significant changes not found on the First Edition of JP-8 Service Notes are listed on the table right.

### PARTS LIST CHANGE

SEE P. 47

### APPENDIX

SEE PP. 48~50

#### PCB LAYOUTS FOR EARLY 500 JP-8's

#### MODULE BOARD

#### MODULE CONTROLLER BOARD

Not published previously, these drawings will help to trace signal paths on old PCBs.

### CHANGE INFORMATION

| EFFECTIVE SERIAL NUMBER | MAJOR CHANGE                                                                         | PART INVOLVED                                                                                                                                                     | REMARKS                                                                                                                                            |
|-------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Below 171700            | OC-8 (OPTION): TEST PRODUCTION built into JP-8 with programmable KEY SPLIT feature   | PROM Program (CUP board): IC34—IC36 Version from 1.0 to 2.1                                                                                                       | made only on a few JP-8's see table on the next page                                                                                               |
| 171700<br>181899        | D/A CONVERTER... from 12-bit to 14-bit format                                        | INTERFACE BOARD: PCB 052H268 to 052H268<br>DAC (IC14) from Am6012 to ITS80141<br>Some ICs and circuits<br>CPU BOARD: PROM programs (IC34—IC36) Version 1.0 to 3.1 | 14-bit INTERFACE BOARD is compatible with the 12-bit PCB only when PROMs of CPU BOARD are replaced with of version 3.1 or 3.2 see P. 34 for detail |
|                         | OC-8 (OPTION): made as a commercially available kit for both 12- and 14-bit versions | ROMs IC34—IC36 of CPU BOARD to be replaced upon installing OC-8                                                                                                   | IC34—IC36 must be 3.2 version and are supplied in an OC-8 kit together with PROM IC33 containing communication program                             |
| 181900                  | PROMs PROGRAM... revised to be compatible with those stored in OC-8 kit PROMs        | CPU BOARD: IC34—IC36 from 3.1 to 3.2 version                                                                                                                      | additional PROM 3.4D (IC33) only is necessary upon installing OC-8 see table on the next page for detail                                           |
| 202100                  | MODULATION CIRCUITS: To have U and L sounds kept balanced                            | MODULE CONTROLLER BOARD: PCB from 052H269 to 052H269 some circuits                                                                                                | when U or L board is replaced with new one, the remainder should be slightly modified. see pp. 36—38 for detail                                    |
| 202210                  | RAM (MODULE CONTROLLER BOARD IC 49): make equivalent RAM usable                      | CPU BOARD: IC23                                                                                                                                                   | short pin 5 of IC23 to ground see p. 38 for modification                                                                                           |
| 242750                  | LED DISPLAY: adopt brighter LED                                                      | PANEL BOARD F: from LN526RA to LN562OA                                                                                                                            | new and old LEDs are different in color and brightness mix use should be avoided for uniformity                                                    |
| 272850                  | FUNCTION SWITCH: LED to diffusive, brighter type                                     | PANEL BOARD E: PANEL BOARD G: function switch from KHC11901 to KHC11026 (LED from AR3432S to SEL2210R)                                                            |                                                                                                                                                    |
| 282880                  | DCB BOARD (similar to OC-8): built into JP-8 as a standard feature                   | CPU BOARD<br>MODULE CONTROLLER BOARD<br>PANEL BOARD A                                                                                                             | drawings related to this change begin at p. 40                                                                                                     |

**HOW TO IDENTIFY PROM VERSION****CPU BOARD**

Version is indicated by hand written number or marking on the label as shown below.

Version can be displayed in PATCH NUMBER window (LOWER). Turn the JP-8 on while pressing PATCH NUMBER buttons 1 and 3.

**NOTES:**

In 0.7 or 1.0 version, displayed number will change quickly from 07 (10) to 13.

In 3.2 (A, B, C) and 3.3D (3.4) arrangement, number 33 (34) will change to 32 if PROM D is removed.

**PROM VERSION      PROGRAM**

|             |                                        |
|-------------|----------------------------------------|
| 0.7 1.0     | 12-BIT DAC<br>FIXED KEY SPLIT POINT    |
| 2.0         | 12-BIT DAC<br>VARIABLE KEY SPLIT POINT |
| 2.1D        | DIGITAL COMMUNICATION INTERFACE        |
| 3.1         | 14-BIT DAC<br>VARIABLE KEY SPLIT POINT |
| 3.2 2)      | 14-BIT DAC<br>VARIABLE KEY SPLIT POINT |
| 3.3D (3.4D) | DIGITAL COMMUNICATION INTERFACE        |

1) This is a special version. Replace each with the same one, or replace all four with a set of 3.2 and 3.4D version.  
 2) Co-operates with 3.3D or 3.4D for Digital Communication Interface.

When need arises to modify the JP-8 or to replace parts:  
 First consult the table below, then refer to the right as necessary.

**PROM REPLACEMENT**

When replacing PROMs A, B and C with different version, replace them in a set.

Version 3.2 can replace 3.1, 1.0 and 0.7

Version 3.1 can replace 1.0 and 0.7

The reverse does not hold true.

ROM 3.4 can replace 3.3D and vice versa.

**NOTES:**

PROM D is required only when OC-8 or DCB BOARD is present.

PROM D must be used together with A, B, C of 3.2 version and up.

PROM D contains diagnostic programs.

Refer to P.46 for test procedure.

Difference between 3.3D and 3.4D is that the latter has debugged diagnostic program.

|                                            |                           |
|--------------------------------------------|---------------------------|
| INTERFACE BOARD .....                      | p. 34                     |
| MODULE CONTROLLER BOARD .....              | pp. 37, 38                |
| RAM IC49 of MOD CON BOARD .....            | p. 38                     |
| CPU BOARD (in relation to RAM IC 49) ..... | p. 38                     |
| OC-8 .....                                 | OP-8 (OC-8) Service Notes |

| SERIAL NUMBER    | PROM VERSION |              |                    |     | DISPLAY       | The JP-8 may be or may have         | Features of the JP-8                                                           | Addable new feature                                                  | PROM        | VERSION      | INTERFACE BOARD w/14-bit DAC | by-product           |
|------------------|--------------|--------------|--------------------|-----|---------------|-------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------|--------------|------------------------------|----------------------|
|                  | A            | B            | C                  | D   |               |                                     |                                                                                |                                                                      | A, B, C 3.2 | D 3.3 or 3.4 |                              |                      |
| PROTOTYPE        | 0.7          |              |                    |     | □ □           | as produced                         | DAC ..... 12-bit<br>KEY SPLIT POINT .... Fix<br>OC-8 ..... less                | DA ..... 14-bit<br>SPLIT POINT ..... Valiable<br>OC-8 ..... built in | ●           |              | ●                            | Variable Split point |
| 030100           | 1.0          | 123          | 123                | 456 | 1 1           | as produced                         | DAC ..... 12-bit<br>KEY SPLIT POINT .... Variable<br>OC-8 ..... built in       | DA ..... 14-bit                                                      | ●           | ●            | ●                            | Variable Split point |
| 171699           | 123<br>456   | JP-8<br>2.1D |                    |     | 2 1           | OC-8: installed at the factory      | DAC ..... 12-bit<br>KEY SPLIT POINT .... Variable<br>OC-8 ..... built in       | DA ..... 14-bit                                                      | ●           |              | ●                            |                      |
| 171700<br>181899 | 123<br>456   | (3.2)        | 3.3D<br>or<br>3.4D |     | 3 3 3 4<br>or | OC-8: built in as option            | DAC ..... 14-bit<br>KEY SPLIT POINT .... Variable<br>OC-8 ..... less           | OC-8 ..... built in                                                  | ●           | ●            |                              |                      |
| 181900<br>282879 | 123<br>456   |              |                    |     | 3 3           | as produced                         | DAC ..... 14-bit<br>KEY SPLIT POINT .... Variable<br>OC-8 ..... less           | OC-8 ..... built in                                                  |             | ●            |                              |                      |
| 171700-272829    | 123<br>456   | (3.2)        | 3.4D               |     | 3 4           | OC-8: built in as option            | DAC ..... 14-bit<br>KEY SPLIT POINT .... Variable<br>OC-8 (DCB) ..... built in |                                                                      |             |              |                              |                      |
| 2828800          | 123<br>456   |              |                    |     |               | DCB: built in as a standard feature |                                                                                |                                                                      |             |              |                              |                      |

When new feature is required, replace existing part(s) with the one indicated by ●.

## **INTERFACE BOARD OPH122A**

(149H122A) (pcb 052H268)

## **SN 171700 and higher**

## **MAJOR CHANGES**

## D/A CONVERTER ..... 14BIT

## **KEY SPLIT POINT ..... PROGRAMMABLE**



This board can replace 12-bit INTERFACE BOARD when PROMs of CPU board are of correct version. See right below.

Besides suffix (A, B, etc.), the PCBs occasionally bear marks “●” and/or “○” above its code number to show the edition.

- stands for 1, and ○ for 5.

Example: ○--- = 8th edition

The D/A Converter IC14 is changed from 12-bit Am6012 to 14-bit ITS80141 with this PCB version. Along with the change the following parts are also changed.

| PART        | From              | To                              |
|-------------|-------------------|---------------------------------|
| Latch       | LS273 (TTL, IC13) | 40H273 (CMOS, IC15)             |
|             | LS175 (TTL, IC15) | 40H174 (CMOS, IC13)             |
| Multiplexer | LS175 (TTL, IC11) | 40H175 (CMOS)                   |
| Multiplexer | 4051 (IC25, IC26) | HD14051 (Hitachi only)          |
| Flip-flop   | 74LS74 (IC9)      | TC4013<br>(SN212330-UP TC40H74) |
| Gate        | LS02 (IC22)       | TC4001                          |

Prepare PROMs for CPU board:

A, B, C

### 3.1 version

or  
3.2 version (inevitable when OC-8 exists)  
for IC34-IC36

D (when OC-8 is built in)

3.3 or 3.4 version for IC33

Replace existing PROMs with these PROMs.

Adjust DAC circuit, referring to "4. DAC" on p.25 of this book.

## NOTES:

This interchange does not affect adjustment procedures except that the letter "PLL" are displayed in PATCH NUMBER window after —— during FSK adjustment steps.

At the end of Computune cycle(s), defective VCO that has not "tuned-in" is indicated in MANUAL and PATCH- NUMBER or PRESET buttons.

See p.39 for indicators and difference in computuning between 12-bit and 14-bit systems.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z



MODULE CONTROLLER BOARD SN 202100 and UP  
 OPH123A (149H123A) (pcb 052H269)



## IMPORTANT

When replacing MOD CON BOARD or RAM IC49,  
 SEE PAGE 38 (P.48 for early 500 units).

## CHANGE INFORMATION

(Each heading is followed by address to the circuit diagram.)

## 1. NOISE GENERATOR (D-H, 18-27)

IC3: from TL082 to BA662 having AGC.  
 NOISE LEVEL VR1: omitted

## SAMPLING SIGNAL

Previous circuit:

Only white noise is routed to S/H circuit regardless of VCO-2 RANGE position.

New circuit:

Pink noise is selected for S/H when RANGE is in LOW position.

## 2. D/A CONVERTER (O-R, 23)

Ladder Resistors: from discrete to resistor array

## 3. NOISE KILLER SWITCH (D-E, 28)

Newly attached for cutting off noise signals. Used in particular adjustments. Close this switch when step states "Place a ground to MOD CON TP-4".

## 4. RESONANCE SWITCH (M, 33)

To emphasize regeneration to the point of oscillation. Used for factory adjustment only.

## 5. LFO DELAY CONTROL (R, 33)

From TR25 and TR26 to single paired-transistor TR25 to have U and L delay times synchronize with each other.

## 6. LFO RATE (V, 33)

From TR11 and TR12 to single paired-transistor TR11. To minimize speed difference between U and L LFOs.

7. Add D29 and C95 to +B pin of IC7 (S, 36)  
 to stabilize the supply voltage8. Add RC filters on EXT CV lines (L, 43; S, 41;  
 E, 35; D, 33)

To filter out noise induced into EXT CV.

## 9. VCO LEVEL (J, 33-34)

Apply a ground to pin 5 of IC2 through R21, previously -15V. Change resistors values in this section

To set VCO-1 and VCO-2 audio levels to an equal amount when SOURCE MIX is set at 12 o'clock position.

To have the same volume changes in VCO-1 and VCO-2 sounds, that is, the change in volume of VCO-1 when SOURCE MIX is being rotated toward VCO-1 is the same as that of VCO-2 when S.M. being toward VCO2.

## 10. VCA MOD (O, 38-39)

Add C97 across pins 1 and 2 of IC13

To eliminate click noises at positive or negative going transient.

## 11. Add TP-8 (Q, 36-37)

For factory adjustment only.

## IC49, RAM 2101 and 5101

SN 202210-UP

Often, RAM 2101 is substituted by 5101 upon manufacturing or shipping replacement because of procurement problem.

RAMs of these models have different characteristics in timing response.

To make both RAMs compatible, factory modification on CPU board started with above Serial number. (See p.38 for detail.)

## NOTE:

Beside suffix (A, B, etc.), the PCBs occasionally bear marks "o" and/or "o" above its code number to show the edition o stands for 1, and o for 5. example: o... 8th edition.

# GUIDES ON REPLACEMENT

## MODULE CONTROLLER BOARD

(For early 500 units, see p.48)

When replacing OPH123 with OPH123A, be sure to proceed the following.

Check IC49 on the both PCBs (being replaced and replacement) for name. If 2101 is on the existing PCB and 5101 on the replacement, take the modification illustrated below.

When replacing Upper board or Lower only:

Adjust VR1 (NOISE LEVEL) of unchanged MOD CON board to match the noise level of new board which omits the adjustment. Reconnect R21 of unchanged MOD CON, referring to drawing to the right. This will eliminate possible loudness differences between U and L voices.



Disconnect R21 lead at negative end and solder it to the nearest ground foil.



## IC49 OF MOD CON BOARD (MODIFICATION ON CPU BOARD)

(RAMs 2101 and 5101)

Below, two minor modifications (independent of RAM change) are also indicated:

Reconnection of IC37 and addition of 10UF at IC30  
pin 8

Insertion of 5101 into a place previously occupied by 2101 requires pin 5 of IC23 on CPU board to be grounded. This reconnection as illustrated is to protect the data on panel control from garbled — while a control is being reset, some of other controls

are also detected as moving; in extreme case no voice would sound. This is due to the fact that two RAMs differently respond to the same timing signal.

This modification has no adverse effect on 2101.



**CIRCUIT DESCRIPTION**

This circuit description applies to the JP-8 with serial numbers 171700 and up where DAC changed from 12- to 14-bit version, and concentrates on computune program which is revised in line with the change.

This description makes reference to pages 6 and 7 "WIDTH" and "KCV" of the Circuit Description of First Edition issued separately.

**WIDTH**

P. 6 Change title to WIDTH & TUNE

The coverage of the JP-8 keyboard is expandable to 96 keys using footage selector (RANGE SWITCH). In the following, KCV and key designation are defined as below.



In this mutual arrangement any KCV (VKnx) at a key (Knx) is obtained from the equations:

$$\begin{aligned} \text{VKnx} &= \text{VKno} + W(\text{WIDTH}) \times \text{Knx} \quad (1) \\ \text{or} \quad \text{VKnx} &= T(\text{TUNE}) - W(84 - \text{Knx}) \quad (2) \end{aligned}$$

where,  $W = 1/12(V)$

— voltage steps per half tone

$$T = \text{VKn}84$$



In the following computuning, T is a reference voltage in calculating every KCVs to the equation (2) above.

Upon power on for the JP-8, computune program starts frequency measurements at two points with MOD.A VCO-1 by applying KCV of Kn24(3V) and VCO Freq. to it. If the VCO output is 20 cents higher than expected pitch at 3V KCV, and 30 cents lower at 8V as shown in the figure right, the factor W is given by:

$$\frac{8 - 3(V)}{9570 - 3620(\text{cent})} = 0.084$$



Substituting 0.084 for W in equation (2) above would provide the VCO with KCVs for every keys, and the VCO will oscillate in 1V/oct steps with most of pitches slightly out of tune.

To bring each note in tune, the program first adds fine tune voltage (bias) ...  $0.084 \times \frac{30}{100}$  (cent) = 0.0252V — to T. Then, finds KCVs for every notes by applying equation (2).

$$\text{Example: } \text{VKn}24 = 8.025(T) - 0.084(W) \times (84 - 24) = 2.985\text{V.}$$

When compare this WIDTH with the WIDTH determined by previous 12-bit system, the new system provides more precise resultant because of wider measurement range.

**INITIAL TUNING UPON POWER ON**

When the power is first turned on for the JP-8, thermally unstalbe VCO tends to oscillate on frequencies which are greatly deviating from the expected frequency so that computune circuitry will not be able to determine exact pitch error at a time. If a program encounters such a VCO, the program ceases measurement for that VCO but retains the data, then proceeds to the next VCO. After all the VCOs have been measured, the program resumes operation from the first VCO, depending on the previous data. However, the process is repeated only two times per oscillator, regardless of the frequency deviation. Properly functioning VCOs will be brought into tolerance at the second time.

Most VCOs outside tolerances after completion of the second execution might be brought closer and closer to desired pitches if the computune program is forced to repeat the operation by manual triggering of TUNE button. (See next paragraph.)

Tuning sequence is visually confirmed on flashing LEDs in the PATCH buttons.

**VCO BEING MEASURED**

| PATCH NO. | 1st cycle |     | 2nd cycle |     |
|-----------|-----------|-----|-----------|-----|
|           | MODULE    | VCO | MODULE    | VCO |
| 1         | A         | 1   | E         | 1   |
| 2         | A         | 2   | E         | 2   |
| 3         | B         | 1   | F         | 1   |
| .         | .         | .   | .         | .   |
| .         | .         | .   | .         | .   |
| 8         | D         | 2   | H         | 2   |

However, when one PATCH LED stays on while MANUAL LED is flashing, they are indicating failure in that VCO. The computune program cannot correct such a VCO as is indicated by a PATCH button as below, and does not proceed to the next VCO unless one of function switches is touched.

MODULE  
VCO

**COMPUTUNE WITH TUNE BUTTON**

When the computune program is triggered manually with TUNE button (after power-on-tune), it runs only once for each VCO since the program already had data on fine tune, and drastical change in VCO frequencies is likely to occur. If the program fails to compensate frequency drift, iterative tapping of "TUNE" will bring VCO closer to correct pitch. Relying on this method is preferable only in an emergency; the cause of out of tune must be eliminated as early as possible.

**KCV (INTERFACE BOARD)**

P. 7 Lines 9 and 10: Delete

Lines 11-17: Reads as follows.

Each KCV data is represented in 14-bit format and is divided into two pieces—MS (most significant) 8-bit is latched by IC15 followed by LS 6-bit into IC13. DAC output has a range of 0-10V against 14 bits, thus resolution is  $10V \div 2^{14}$  (bit) = 0.6mV, nearly equals 0.7 cents in pitch. During I/V conversion in 1/IC24, CV for EXT. jack is scaled 1V/oct.

**CORRECTION****CIRCUIT DESCRIPTION****P. 11: PUSH SWITCH SCANNING**

Push switches (function switches with LED) are read every approximately 25ms (not 1ms). See timing chart on page 3 of the Circuit Description. LEDs are lit every 1ms when INT signal is applied from IC26 which in turn is timed by the signal generated at pin 17 of IC40. Failure of INT signal causes no LED driving signal, but has no relation to the switch reading performance.



## CHANGES, MODIFICATIONS, ADDITIONS

INVOLVED IN IMPLEMENTING DCB  
(Digital Communication Bus) BOARD  
pp.40-47









CPU BOARD BLOCK DIAGRAM



DCB BOARD

8251  
(Top View)

MOD-CON BOARD BLOCK DIAGRAM



|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>8251</b> | Data Bus (8 bits)<br>Control or Data is to be Written or Read<br>Read Data Command<br>Write Data or Control Command<br>Chip Enable<br>Clock Pulse (TTL)<br>Reset<br>Transmitter Clock<br>Transmitter Data<br>Recover Clock<br>Receiver Data<br>Receiver Ready (has character for 8080)<br>Transmitter Ready (ready for char. from 8080)<br>Data Set Ready<br>Data Terminal Ready<br>Sync Detect/Break Detect<br>Request to Send Data<br>Clear to Send Data<br>Transmitter Empty<br>+5 Volt Supply<br>Ground |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



**DCB BOARD**

OPH220 (149H220) (pcb 052H380B)

FCN724PC50-AU/L

**DCB BOARD**

| PIN | DESCRIPTION | PIN | DESCRIPTION |
|-----|-------------|-----|-------------|
| 1   | RX BUSY     | 8   | NC          |
| 2   | " DATA      | 9   | VCA UPPER   |
| 3   | " CLOCK     | 10  | LOWER       |
| 4   | GND         | 11  | VCF UPPER   |
| 5   | TX BUSY     | 12  | LOWER       |
| 6   | " DATA      | 13  | VCO-2       |
| 7   | " CLOCK     | 74  | VCO-1       |

DCB (Digital Communication Bus)

**DCB CONNECTOR ASS'Y****MODULE CONTROLLER BOARD**

Additional connector is designated as LX2, without renaming existing LX.



## Circuits Changes related to DCB Board Installation



CPU BOARD



Foil Side



Component Side



## PANEL BOARD A



## DIAGNOSTIC PROGRAM IN PROM D

On the CPU board (of JP-8 furnished with the OC-8 or DCB board) located is IC33 (3.3D or 3.4D) which contains not only digital communication program, but also diagnostic program. The program, when executed in the TEST mode, simplifies testing and fault isolation of some of the ICs and their associated circuits listing to the right. For this program to run, the remaining PROMs (IC34-IC36) of CPU board must be of 3.2 version.

### PRECAUTIONS

Allow plenty of time for warm-up (approx. 30 minutes).

If the CPU, PROMs or other circuits fail to perform their basic functions, the program will not start.

### STEPS

1. Turn the JP-8 OFF.
2. To put the JP-8 into the TEST mode, either;
  - a) Turn the power ON while pressing PATCH NUMBER buttons 1 and 3.
  - or
  - b) Set SI-1 and SI-2 of the Interface board to TEST, then turn the power ON.

The test program is executed in the order listed and is stopped wherever it encounters a defective IC (or a problem pertaining to a particular IC), and displays the suspected IC number in the window.

To resume the program, press any touch button. (For example, MANUAL.)

At the end of program, the window displays both the PROM D version and the DAC's bit format, for example;

33 12 -- 3.3D, 12-bit DAC  
34 14 -- 3.4D, 14-bit DAC

|         |                             |         |
|---------|-----------------------------|---------|
| IC 35   | IC 36                       | PROM A  |
| IC 35   | IC 35                       | PROM B  |
| IC 34   | IC 34                       | PROM C  |
| IC 33   | IC 33                       | PROM D  |
| ① IC 05 | IC 6                        | RAM     |
| ② IC 05 | IC 5                        | RAM     |
| IC 20   | IC 20                       | RAM     |
| ③ IC 19 | IC 19                       | RAM     |
| IC 04   | IC 4                        | RAM     |
| IC 18   | IC 18                       | RAM     |
| ④ dA 00 | Module A VCO-1, KCV=0, etc. |         |
| dA 01   | IC14, IC15                  | D/A MSB |
| dA 02   | IC14, IC15                  | D/A B2  |
| dA 03   | IC14, IC15                  | D/A B3  |
| dA 04   | IC14, IC15                  | D/A B4  |
| dA 05   | IC14, IC15                  | D/A B5  |
| dA 05   | IC14, IC15                  | D/A B6  |
| dA 07   | IC14, IC15                  | D/A B7  |
| dA 08   | IC14, IC15                  | D/A B8  |
| dA 09   | IC14, IC13                  | D/A B9  |
| dA 10   | IC14, IC13                  | D/A B10 |
| dA 11   | IC14, IC13                  | D/A B11 |
| dA 12   | IC14, IC13                  | D/A B12 |
| dA 13   | IC14, IC13                  | D/A B13 |
| ⑤ dA 14 | IC14, IC13                  | D/A LSB |

### NOTES FOR TABLE

1. 3.3D doesn't check IC5 and IC6.
2. Because of misprogramming, 3.3D will display these IC numbers in reverse order. If displayed, read; IC20 as IC19, and IC19 as IC20.
3. Output from Module A VCO-1 is applied to the DAC Check. Consequently, if this VCO fails, all the remaining tests will not be performed.
4. Push any button, and the version with 00 is displayed.
5. IC13 and IC15 on the 12-bit interface board are inversely numbered.
6. Read; IC13 as IC15, and IC15 as IC13.
7. If the 13-bit line malfunctions in the 14-bit D/A, the CPU concludes that the D/A is 12-bit, and skips the 13th and 14th bits.

## DESCRIPTION OF CONNECTION CABLES

In the below, SN refers to Serial Number of OP-8.

- For serial numbers up to and including SN220269, the OP-8 was provided with Flat Cable H146 for connecting the OP-8 to the JP-8.

- Effective from serial number SN230270, the OP-8 unit can be connected to the JP-8 through the Flat Cable H146 provided with the OC-8 unit, or to the JUNO-60 through the DCB Cable H165 provided with the OP-8 unit.

- Roland provides not only DCB Cable H165 but also DCB Cable H172 for interconnecting JP-8 or JUNO-60 as shown here.

- DCB Cable H172 is uni-directional, with the signal-flow direction shown by the arrow on the connector.

When connecting two JUNO-60 or JP-8 units, be sure to connect the cable so that the arrow points away from the JUNO-60 or JP-8 unit to be played, and towards the JUNO-60 or JP-8 unit to be controlled.

Also, when controlling the JUNO-60 with the OP-8, DCB Cable H172 can be used to connect the OP-8 to the JUNO-60.

Be sure to connect the cable so that the arrow points away from the OP-8 and towards the JUNO-60. Otherwise, the JUNO-60 may operate incorrectly.

On the other hand, DCB Cable H165 is a bi-directional cable in which sent from the TX-terminal on a unit returns to the RX-terminal on the unit, causing regeneration.



DCB Pin Configurations



(View from Rear Panel)

**PARTS LIST CHANGE**

| PART. SERIAL NO.       | FROM    | TO                               | PART NO.   |
|------------------------|---------|----------------------------------|------------|
| <b>INTERFACE BOARD</b> |         |                                  |            |
| SN 171700              |         | OPH122                           | 149H122A   |
| PCB Ass'y              | OPH122  | OPH122A                          |            |
| PCB                    | 052H268 | 052H268                          |            |
| D/A Converter (IC14)   | Am6012  | ITS80141                         | 15219127   |
| Latches                | LS273   | TC40H273 (IC15, CMOS)            | 15159507   |
| IC25, IC26             | LS175   | TC40H174 (IC13, CMOS)            | 15159511   |
|                        | LS175   | TC40H175 (IC11, CMOS)            | 15159512   |
| IC22                   | TC4051  | HD14051 (CMOS)<br>(Hitachi only) | 15159113H0 |
| IC9                    | LS02    | TC4001                           | 15159101T0 |
| SN 212330              | 74LS74  | 4013BP (CMOS)                    | 15159105T1 |
| IC9                    | 4013    | TC40H74P                         | 15159510   |
| ICs: ALL INCOMPATIBLE  |         |                                  |            |

| <b>CPU BOARD</b> |                               |                                                                                     |                                                                                                          |
|------------------|-------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| SN 171700        | $\mu$ PD2716<br>(version 1.0) | $\mu$ PD2716-JP8-A (IC36)<br>$\mu$ PD2716-JP8-B (IC35)<br>$\mu$ PD2716-JP8-C (IC34) | 15179609 (version 3.x)<br>15179610 (version 3.x)<br>15179611 (version 3.x)<br>(version 3.x = 3.1 or 3.2) |

| <b>MODULE CONTROLLER BOARD</b> |                                                       |                   |          |
|--------------------------------|-------------------------------------------------------|-------------------|----------|
| SN 202100                      | OPH123                                                | OPH123A           | 149H123A |
| PCB Ass'y                      | 052H269                                               | 052H269           |          |
| PCB                            | TL082                                                 | BA662A            | 15229802 |
| IC3                            | Discrete                                              | R601611 (RA6)     |          |
| Ladder Resistor                | 2SA1015                                               | 2SA798-G (TR11)   | 15119108 |
| TRs, 11, 12, 25                | 2SC1815                                               | 2SA798-G (TR25)   | 15119108 |
| TR26                           | .....                                                 | SSB212 (SWs 1, 2) | 13159123 |
| SN 202210                      | 2101 only                                             | 2101 or 5101      | 15179303 |
| IC49 RAM                       | (Compatible with minor modification. See pp. 37, 38.) |                   |          |

| <b>PANEL BOARD F</b>       |         |         |          |
|----------------------------|---------|---------|----------|
| LED (display)<br>SN 242750 | LN526RA | LN5260A | 15029409 |

(Compatible but different in brightness and color; mix use should be avoided.)

| <b>PANEL BOARD E</b> |                       |                        |          |
|----------------------|-----------------------|------------------------|----------|
| <b>PANEL BOARD G</b> |                       |                        |          |
| SN 272850            | KHC11901<br>(AR3432S) | KHC11026<br>(SEL2210R) | 13169610 |

(Switch proper remains unchanged. The new LED has better off-axis luminous density. Mix use should be avoided.)

**SN 282880-UP JP-8 WITH DCB BOARD**

| PART NAME                                       | FROM                                                                | TO                                                                                          | PART NO.                                                             |
|-------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Top Panel<br>Chassis (jack)<br>Holder (rear)    | Panel H78B<br>Chassis H116<br>.....                                 | Panel H78C<br>Chassis H116A<br>Holder H184                                                  | 072H078C<br>061H116A<br>064H184                                      |
| <b>DCB BOARD</b>                                |                                                                     |                                                                                             |                                                                      |
| PCB Ass'y<br>Holder<br>IC1<br>IC3<br>Flat Cable | .....<br>.....<br>.....<br>.....<br>Flat Cable H126<br>(INTFCE-CPU) | OPH220<br>Holder H185<br>74LS21<br>$\mu$ PD8251AC<br>Flat Cable H213<br>(INTERFACE-CPU-DCB) | 149H220 (pcb 052H380B)<br>064H185<br>15169350<br>15179112<br>053H213 |
| DCB Connector<br>Holder<br>Slide Switch         | .....<br>.....<br>.....                                             | 57-40140R<br>Holder H153<br>SSB-022-12RN                                                    | 13429611<br>064H153<br>13159118                                      |

**CPU BOARD**

|      |       |                    |                        |
|------|-------|--------------------|------------------------|
| IC33 | ..... | $\mu$ PD2716-JP8-D | 15179612 (version 3.4) |
|------|-------|--------------------|------------------------|

In order to expedite delivery of products or because of procurement problem, the factory is occasionally forced to make minor substitution of ICs.

Such substitutions will work satisfactorily and compatible with the initial IC unless otherwise noted in related sections (circuit diagram, parts list, etc.).

**PART NUMBER**

Usually, equivalent semiconductors are assigned to the same part number as initial component with two-letter suffix identifying the manufacturer. For example, TO - Toshiba, ZO - Motorola. In ordering such ICs, uncertain suffix can be omitted from the part number, and the factory will supply suitable ones with notes or cautions, as necessary.

| Parts on the PARTS LIST    | Equivalent                                   |
|----------------------------|----------------------------------------------|
| TC4052BP                   | HD14052BP                                    |
| TC4051BP                   | HD14051BP                                    |
| TC40175BP                  | $\mu$ PD4175BC                               |
| $\mu$ PD2101ALC            | M5L2101AP-4<br>$\mu$ PD5101LC<br>M5L5101LP-1 |
| $\mu$ PD780C-1             | LH0080A                                      |
| $\mu$ PD2716D              | M5L2716K<br>MB8516                           |
| $\mu$ PD444C               | M58981P-45                                   |
| $\mu$ PD2114C              | M5L2114LP                                    |
| $\mu$ PD8253C              | M5L8253P-5                                   |
| TL082CP                    | NJM082DR<br>$\mu$ PC4082C                    |
| 74LS Series                | M74LS series                                 |
| 74.. Series<br>(exp. 7406) | M532.. series<br>M53206)                     |

## APPENDIX

## PCB EDITION

Dot and circle above PCB code are indicative of edition; "●" stands for 1, and "○" for 5. Example: ○● = 6th edition.

Illustrated on pp. 48-50 is information on MODULE and MODULE CONRTROLLER Boards mounted on the JP-8 models with serial numbers up to 090599. For circuit diagram, refer to p.11 or p.12 although some small discrepancies may exist.

## CAUTION ON REPLACEMENT OF PCBs IN THIS SECTION

Although terminal for terminal compatible, when mix used, new and old PCBs process signals in slightly different way, reproducing voices that are distinguishable from each other. Therefore, when replacing MODULE or MOD CON board in this section, use a set of PCBs of the same edition group as described below.

**NOTE:** Replacement of MODULE board can be made independently of MOD CON board, and vice versa.

## MODULE CONTROLLER BOARD

group A

○● 052H269 or ○● 052H269

group B

○●● 052H269-up ○● 052H270-up

## MODULE BOAD

When replacements for MOD CON are of group B, check IC49 (RAM) for name. If it is 5101, see p.38 for necessary modification.

Listing below are descriptions of surface mounting, jumper wire, and conductive foil cut made on the MOD COM boards up to the abovementioned serial numbers, shown on the next page.

## ABBREVIATIONS

C-pattern cut Di-diode R-resistor J-jumper M-mylar cap

Serial numbers

1B-050199 2A-050200 2B-060299 3A-060300 4A-070400 5A-080500 5B-090599

| No. | Part | SN       | No. | Part  | SN    |
|-----|------|----------|-----|-------|-------|
| 1   | C    | up to 2B | 10  | R     | 5A-up |
| 2   | C    | 3A-5B    | 11  | R     | 3A-5B |
| 3   | C    |          |     |       |       |
| 4   | D    | up to 1B | 12  | D 2xC | 3A-5B |
| 5   | R    | 3A-5B    | 13  | M.R.C | 2A-up |
| 6   | J    | up to 2B | 14  | J.C   | 4A-5B |
| 7   | J.C  | 4A-5B    | 15  | M     | 4A-5B |
| 8   | J    | 5A-up    | 16  | J.C   | 2A-5B |
| 9   | R    | up to 2B | 17  | M     | 3A-5B |

## MODULE CONTROLLER BOARD

(PCB ○● 052H269, ○● 052H269, ○● 052H269, ○● 052H269)



PATTERN-CUTS ON MOD CON

PATTERN-CUTS & SURFACE-MOUNTINGS  
ON MOD CON

## MODULE BOARD OPH124

SN 030100-090599 (pcb 052H270 or 052H270)

