Machine Learning

Recommender Systems

Problem formulation

Example: Predicting movie ratings

Recommender Systems

Content-based recommendations

1st approach to building a recommender system

Machine Learning

we have some ratings from users (content) available; content-based.

Content-based recommender systems

 \Rightarrow For each user j, learn a parameter $\underline{\theta^{(j)}} \in \mathbb{R}^3$. Predict user j as rating value $\underline{\theta^{(i)}}$ stars. $\underline{\ }$

$$\chi^{(3)} = \begin{bmatrix} 0.99 \\ 0.99 \end{bmatrix} \longrightarrow \begin{pmatrix} 0 \\ 5 \\ 0 \end{bmatrix}$$

$$(0^{(1)})^{T} \times^{(3)} = 5 \times 099$$
= 4.95

Problem formulation

- $\rightarrow r(i,j) = 1$ if user *j* has rated movie *(i)* (0 otherwise)
- $\rightarrow y^{(i,j)} = \frac{\text{rating by user}(j)}{\text{on movie}(i)}$ (if defined)
- $\rightarrow \theta^{(j)} =$ parameter vector for user j
- $\Rightarrow x^{(i)} =$ feature vector for movie i
- \rightarrow For user j, movie i, predicted rating: $(\theta^{(j)})^T(x^{(i)})$
- $\rightarrow \underline{m^{(j)}} = \text{no. of movies rated by user } j$

To learn $\theta^{(j)}$:

inear regression problem

Optimization objective:

To learn $\theta^{(j)}$ (parameter for user j):

$$\implies \min_{\theta^{(j)}} \frac{1}{2} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

To learn
$$heta^{(1)}, heta^{(2)}, \dots, heta^{(n_u)}$$
:

$$\min_{\theta^{(1)},...,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2$$

Optimization algorithm:

$$\min_{\theta^{(1)},...,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta^{(j)}_k)^2$$

$$5 \left(\theta^{(i)},...,\theta^{(n_u)} \right)$$

Gradient descent update:

Gradient descent algorithm $\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{k=0}^{k} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k = 0)$ i:r(i,j)=1 $\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i: r(i,j)=1} \underbrace{((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)}}_{\bullet} \right) \underbrace{(\text{for } k \neq 0)}_{\bullet}$

Machine Learning

Recommender Systems

Collaborative filtering Another recommender algorithm

Problem motivation

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Love at last	5	5	0	0	0.9	0
Romance forever	5	?	?	0	1.0	0.01
Cute puppies of love	?	4	0	?	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	?	0	0.9

Problem motivation

1 TODICITI IIIOCIVACIOII				\ \\ \\		X ₄ =	
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)	
X Love at last	⊅ 5	⊅ 5	<u> , 0</u>	为 0	11.0	A 0.0	,
Romance forever	5	?	?	0	?	Ş	x (1) = [1.6]
Cute puppies of love	?	4	0	?	Ş	?	(0-0)
Nonstop car chases	0	0	5	4	?	?	(1)
Swords vs. karate	0	0	5	?	?	?	17. × × 17.
\Rightarrow $\theta^{(1)} =$	$\theta^{(2)}$, $\theta^{(2)}$	$\mathbf{a} = \begin{bmatrix} 0 \\ \mathbf{b} \\ 0 \end{bmatrix},$	$\theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$	$\theta^{(4)} =$	$\begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$		(a))1×(1,5° © (a))1×(1,5° © (a)1,5° (a)5° © (b)1,5° (a)5° (a

Optimization algorithm

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, to learn $x^{(i)}$

feature for one specific movie

$$\min_{x^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2$$

Given
$$\theta^{(1)}, \ldots, \theta^{(n_u)}$$
, to learn $x^{(1)}, \ldots, x^{(n_m)}$:

$$\min_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Collaborative filtering

Given $\underline{x^{(1)},\dots,x^{(n_m)}}$ (and movie ratings), can estimate $\underline{\theta^{(1)},\dots,\theta^{(n_u)}}$

Machine Learning

Recommender Systems

Collaborative filtering algorithm

Collaborative filtering optimization objective

$$(1) \qquad (n \qquad) \qquad (1) \qquad o(n \qquad)$$

$$\Rightarrow$$
 Given $x^{(1)}$ $x^{(n_m)}$ estimate $heta^{(1)}$ $heta^{(n_u)}$.

$$\lambda \stackrel{n_u}{\smile} r$$

$$\rightarrow$$
 Given $x^{(1)}, \dots, x^{(n_m)}$, estimate $\theta^{(1)}, \dots, \theta^{(n_u)}$:
$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n_u} \sum_{j=1}^{n_u} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})$$

$$(i,j)$$
)² $+ \frac{\lambda}{2} \sum_{i=1}^{n} \frac{\lambda}{2}$

$$(x^{(i)} - y^{(i,j)})^2$$

$$(n_m)$$
 .

$$\sum_{i=1}^{n} (x_k^{(i)})^2$$

Collaborative filtering algorithm

- \rightarrow 1. Initialize $x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)}$ to small random values.
- ⇒ 2. Minimize $J(x^{(1)},...,x^{(n_m)},\theta^{(1)},...,\theta^{(n_u)})$ using gradient descent (or an advanced optimization algorithm). E.g. for every $j=1,...,n_u, i=1,...,n_m$:

$$x_k^{(i)} := x_k^{(i)} - \alpha \left(\sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \theta_k^{(j)} + \lambda x_k^{(i)} \right)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right)$$

3. For a user with parameters $\underline{\theta}$ and a movie with (learned) features \underline{x} , predict a star rating of $\underline{\theta}^T\underline{x}$.

Machine Learning

Recommender Systems

Vectorization:
Low rank matrix
factorization

Vectorization implementation of this algorithm!

Collaborative filtering

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	,	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?
	1	^	^	1

Collaborative filtering

$$(\mathcal{O}_{\partial J})_{\mathbf{d}}(\mathbf{x}_{(U)})$$

Predicted ratings:

Predicted ratings:
$$\begin{bmatrix} (\theta^{(1)})^T(x^{(1)}) & (\theta^{(2)})^T(x^{(1)}) & \dots & (\theta^{(n_u)})^T(x^{(1)}) \\ (\theta^{(1)})^T(x^{(2)}) & (\theta^{(2)})^T(x^{(2)}) & \dots & (\theta^{(n_u)})^T(x^{(2)}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (\theta^{(1)})^T(x^{(n_m)}) & (\theta^{(2)})^T(x^{(n_m)}) & \dots & (\theta^{(n_u)})^T(x^{(n_m)}) \end{bmatrix}$$

$$= \begin{bmatrix} -(x^{(1)})^{T} \\ -(x^{(2)})^{T} - \\ \vdots \\ -(x^{(n_m)})^{T} - \end{bmatrix}$$

Finding related movies

For each product i, we learn a feature vector $\underline{x^{(i)}} \in \mathbb{R}^n$.

How to find $\frac{\text{movies } j}{\text{related to }}$?

small
$$\| \chi^{(i)} - \chi^{(j)} \| \rightarrow \text{movie } j \text{ ord } i \text{ cre "similar"}$$

5 most similar movies to movie i:

Find the 5 movies j with the smallest $||x^{(i)} - x^{(j)}||$.

Machine Learning

Recommender Systems

Implementational detail: Mean normalization

one last implementation detail

Users who have not rated any movies

	1					<u> </u>		
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	Eve (5)	Г~	_	0
→ Love at last	_5	5	0	0	ن. 0	$\begin{array}{ c c c c }\hline & 5 \\ \hline 5 \\ \hline \end{array}$	5 2	$\frac{0}{2}$
Romance forever	5	,	?	0	5 <mark>(</mark>	$egin{array}{c c} oldsymbol{V} & oldsymbol{0} \ oldsymbol{V} & oldsymbol{0} \end{array}$: 1	
Cute puppies of love	?	4	0	?	S □	$I = \begin{bmatrix} \vdots \\ 0 \end{bmatrix}$	4	5
Nonstop car chases	0	0	5	4	ن م ذ	0	0	5
->> Swords vs. karate	0	0	5	?	Ş. □	Γo	U	9
			_		~			

$$\min_{\substack{x^{(1)}, \dots, x^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} \frac{1}{2} \sum_{(i,j): r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2}$$

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 & ? \\ 5 & ? & ? & 0 & ? \\ ? & 4 & 0 & ? & ? \\ 0 & 0 & 5 & 4 & ? \\ 0 & 0 & 5 & 0 & ? \end{bmatrix}$$

Mean Normalization:

For user j, on movie i predict:

$$\Rightarrow (\bigcirc^{(i)})^{T}(\times^{(i)}) + \mu_{i}$$

User 5 (Eve):

