Homework 9

Problem 1. Show that, for constant $p \in (0, 1)$, almost no graph in G(n, p) has a separating complete subgraph.

Solution. This is a simple application of the 'almost always true of property $P_{i,j}$ '.

Problem 2. What is the expected number of trees with k vertices in $G \in \mathcal{G}(n, p)$?

Solution. By Cayley's formula and the linearity of expectation, it is $\binom{n}{k}k^{k-2}p^{k-1}$

Problem 3. Show that if almost all $G \in \mathcal{G}(n, p)$ have a graph property \mathcal{P}_1 and almost all $G \in \mathcal{G}(n, p)$ have a graph property \mathcal{P}_2 , then almost all $G \in \mathcal{G}(n, p)$ have both properties.

Solution. The portion of the graphs have both properties equals 1 minus the portion of the graphs which does not have property \mathcal{P}_1 or \mathcal{P}_2 . However the portion of the graph does not have property \mathcal{P}_1 or \mathcal{P}_2 is bounded by the sum of the portion of the graphs does not have property \mathcal{P}_1 and the portion of the graphs does not have property \mathcal{P}_2 , which both tend to 0 as n approaches ∞ . The claim in the question then follows.

Problem 4. (Optional)

- 1. Prove that the threshold for the existence of cycles in $\mathcal{G}(n,p)$ is $p=\frac{1}{n}$.
- 2. Search the World Wide Web to find some real world graphs in machine readable form or data bases that could automatically be converted to graphs.
 - (a) Plot the degree distribution of each graph.
 - (b) Compute the average degree of each graph.
 - (c) Count the number of connected components of each size in each graph.
 - (d) Describe what you find.
- 3. Create a simulation (an animation) to show the evolution of the $\mathcal{G}(n,p)$ (Erdös-Rényi) random graph as its density p is gradually increased. Observe the phase transitions for trees of increasing orders, followed by the emergence of the giant component, etc.