Assignment Probability

P PAVAN KUMAR

padmanabhunipavan0@gmail.com IITH Future Wireless Communication (FWC)

probability

FWC22088 IITH Future

December 23, 2022

1 Problem

by using binomial distribution

1. Q:12,13.4,4

1.1 Problem

Find the probability distribution of

- (i) number of heads in two tosses of a coin.
- (ii) number of tails in the simultaneous tosses of three coins.
- (iii) number of heads in four tosses of a coin.

$$P(X) = {}^{n}C_{X}p^{X}q^{n-X}$$

Thus, the required probility distribution is

Х	0	1	2	3	4
P(X)	$\frac{1}{16}$	$\frac{4}{16}$	$\frac{6}{16}$	$\frac{4}{16}$	$\frac{1}{16}$

solution:

(i) number of heads in two tosses of a coin.

Given, number of trails = n = 2 probability of getting head for one coin $= p = \frac{1}{2}$ probability of not getting a head = q = 1- $p = \frac{1}{2}$ let X represent the number of heads in two tosses of a coin \therefore the values of $X = \{0,1,2\}$ by using binomial distribution

$$P(X) = {}^{n}C_{X}p^{X}q^{n-X}$$

Thus, the required probility distribution is

X	0	1	2
P(X)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

(ii) number of tails in the simultaneous tosses of three coins.

Given, number of trails= n = 3 probability of getting tail for one coin = p = $\frac{1}{2}$ probability of not getting tail = q = 1-p = $\frac{1}{2}$ let X represents the number of tails in simultaneous tosses of three coins : the values of X = {0,1,2,3} by using binomial distribution

$$P(X) = {^nC_X}p^Xq^{n-X}$$

Thus, the required probility distribution is

X	0	1	2	3
P(X)	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

(iii) number of heads in four tosses of a coin.

given, number of trails n=4 probability of getting a head for one $coin=p=\frac{1}{2}$ probability of not getting a head =q=1- $p=\frac{1}{2}$ let X represents the number of tails in simultaneous tosses of three coins: the values of $X=\{0,1,2,3,4\}$