Local Constant Approximation for Dominating Set on Graphs Excluding Large Minors

Marthe Bonamy ¹ Cyril Gavoille ¹ <u>Timothé Picavet</u> ¹ Alexandra Wesolek ²

¹LaBRI, U. Bordeaux

²TU Berlin

Distributed algorithms

Centralized view

Distributed view

Distributed algorithms

Centralized view

Focused on computing

Distributed view

The LOCAL model

The LOCAL model

The LOCAL model

The network is also the input graph!

Equivalence with number of rounds T

Each vertex sees its distance-*T* neighborhood and decides its return value.

Equivalence with number of rounds T

Each vertex sees its distance-*T* neighborhood and decides its return value.

 $\mathsf{Algo} = \mathcal{A} : \underset{\mathsf{neighborhood}}{\mathsf{distance-T}} \mapsto \underset{\mathsf{return}}{\mathsf{local}}$

An example: MINIMUM DOMINATING SET

An example: MINIMUM DOMINATING SET

Small diameter allows bruteforcing

MINIMUM DOMINATING SET when ∃ universal vertex

Easy in LOCAL Hard in centralized

Is all hope lost?

Theorem (Kuhn, Moscibroda, and Wattenhofer, 2016)

It is **impossible** to approximate MINIMUM DOMINATING SET with a constant number of rounds and constant approximation ratio on **general graphs**.

Is all hope lost?

Theorem (Kuhn, Moscibroda, and Wattenhofer, 2016)

It is **impossible** to approximate MINIMUM DOMINATING SET with a constant number of rounds and constant approximation ratio on **general graphs**.

Graph minors

H is a minor of G

State of the art for MDS with $\mathcal{O}(1)$ LOCAL rounds

MINOR-FREE GRAPHS	lower	PPROX. RATIO upper	#rounds
trees (K ₃)	3 ^[2]	3 ^[2]	2
outerplanar (K_4 , $K_{2,3}$)	5 ^[3]	5 ^[3]	2
planar (<i>K</i> ₅ , <i>K</i> _{3,3})	7 ^[1]	$11 + \varepsilon^{[4]}$	$\mathcal{O}_{arepsilon}(1)$
K _{2,t} -minor-free	5 ^[3]	2t — 1	3
	5 ^[3]	50	\mathcal{O}_t (1)
K _{3,t} -minor-free	7 ^[1]	$(2+\varepsilon)\cdot(t+4)^{[4]}$	$\mathcal{O}_{arepsilon,t}(1)$
K _{s,t} -minor-free	7 ^[1]	$t^{\mathcal{O}(st\sqrt{\log s})}$ [4]	$\mathcal{O}_t(1)$

- [1] M. Hilke, C. Lenzen, and J. Suomela. Brief announcement: local approximability of minimum dominating set on planar graphs. PODC 2014. [2] Folklore
- [3] M. Bonamy, L. Cook, C. Groenland, and A. Wesolek. A tight local algorithm for the minimum dominating set problem in outerplanar graphs. DISC 2021.
- [4] O. Heydt, S. Kublenz, P. Ossona de Mendez, S. Siebertz, and A. Vigny. Distributed domination on sparse graph classes. European Journal of Combinatorics, 2025.

Example 1: trees

Example 1: trees

Theorem (folklore)

 $\#cutvertices = |\{v \in V(T) \mid deg(v) \ge 2\}| \le 3 \cdot MDS(T)$

Reusing the algorithm of trees?

Reusing the algorithm of trees?

 \cdot Every vertex is in a bag (\Longrightarrow covering)

Reusing the algorithm of trees?

- \cdot Every vertex is in a bag (\Longrightarrow covering)
- \cdot Diameter \leq girth/2 (\Longrightarrow to see a tree)

Reusing the algorithm of trees?

- Every vertex is in a bag (\implies covering)
- Diameter \leq girth/2 (\Longrightarrow to see a tree)
- \cdot Spacing clusters of same color (\Longrightarrow no overcounting for fixed color)

Reusing the algorithm of trees?

- Every vertex is in a bag (\implies covering)
- Diameter \leq girth/2 (\Longrightarrow to see a tree)
- \cdot Spacing clusters of same color (\Longrightarrow no overcounting for fixed color)
- Few colors (\Longrightarrow to limit overcounting)

Asymptotic dimension of C is d if $\exists f : \mathbb{N} \to \mathbb{N}, \forall G \in C, \forall r \in \mathbb{N}, \exists B_1, B_2, \dots \subseteq V(G)$, such that

Asymptotic dimension of C is d if $\exists f : \mathbb{N} \to \mathbb{N}, \forall G \in C, \forall r \in \mathbb{N}, \exists B_1, B_2, \dots \subseteq V(G)$, such that

• Cover: V(G) is partitionned by the B_i 's

Asymptotic dimension of C is d if $\exists f : \mathbb{N} \to \mathbb{N}, \forall G \in C, \forall r \in \mathbb{N}, \exists B_1, B_2, \dots \subseteq V(G)$, such that

• Cover: V(G) is partitionned by the B_i 's

• Colors: each B_i 's receive a color $\alpha(B_i) \in \{0, 1, \dots, d\}$

Asymptotic dimension of C is d if $\exists f : \mathbb{N} \to \mathbb{N}, \forall G \in C, \forall r \in \mathbb{N}, \exists B_1, B_2, \dots \subseteq V(G)$, such that

• Cover: V(G) is partitionned by the B_i 's

- Colors: each B_i 's receive a color $\alpha(B_i) \in \{0, 1, \dots, d\}$
- **Disjointness:** if $c(B_i) = c(B_j)$, then $dist(B_i, B_j) > r$

Asymptotic dimension of C is d if $\exists f : \mathbb{N} \to \mathbb{N}, \forall G \in C, \forall r \in \mathbb{N}, \exists B_1, B_2, \dots \subseteq V(G)$, such that

• Cover: V(G) is partitionned by the B_i 's

- Colors: each B_i 's receive a color $\alpha(B_i) \in \{0, 1, \dots, d\}$
- **Disjointness:** if $c(B_i) = c(B_j)$, then $dist(B_i, B_j) > r$

• Boundedness: $\forall i$, diam_G(B_i) $\leq f(r)$

Example 1: the path

Dimension = 1 (2 colors)
with
$$f(r) = r - 2$$

Example 2: the grid – attempt 1 (r = 2)

Dimension ≤ 3

Example 2: the grid – attempt 2 (r = 2)

Dimension = 2!

Asymptotic dimension and graph minors

Theorem (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, Scott, 2020) Every class excluding a fixed minor has asymptotic dimension ≤ 2 .

Application: distributed algorithms

How to use graph theory in distributed algorithms?

Application: distributed algorithms

How to use graph theory in distributed algorithms?

Global concept

Local concept

Application: distributed algorithms

How to use graph theory in distributed algorithms?

Global concept

Local concept

Definition

v is a r-local cutvertex if v is a cutvertex of $G[N^r[v]]$.

Applications: MDS in LOCAL model

Theorem (main)

On graphs excluding $K_{2,t}$ as a minor, there exists a constant-approximation (where the constant is **independent of t**) of MINIMUM DOMINATING SET in the LOCAL model, in f(t) rounds.

Applications: MDS in LOCAL model

Theorem (main)

On graphs excluding $K_{2,t}$ as a minor, there exists a constant-approximation (where the constant is **independent of t**) of MINIMUM DOMINATING SET in the LOCAL model, in f(t) rounds.

Previous bound on H-minor-free graphs had $\Omega(|V(H)|)$ in g(H) rounds (Heydt, Kublenz, Ossona de Mendez, Siebertz, Vigny 2022).

Applications: MDS in LOCAL model

Theorem (main)

On graphs excluding $K_{2,t}$ as a minor, there exists a constant-approximation (where the constant is **independent of t**) of MINIMUM DOMINATING SET in the LOCAL model, in f(t) rounds.

Previous bound on H-minor-free graphs had $\Omega(|V(H)|)$ in g(H) rounds (Heydt, Kublenz, Ossona de Mendez, Siebertz, Vigny 2022).

Asymptotic dimension only used in the analysis!

The algorithm

$$Y_t(G) = \bigcup \{18t\text{-local cuts of size } \le 2\} \setminus \{\text{non-interesting vertices}\}\$$

Algorithm = $Y_t(G) \cup [\text{brute-force on } G - Y_t(G)]$

Lemma 1

 $|Y_t(G)| = \mathcal{O}(d) \cdot \mathsf{MDS}(G).$

Lemma 2

If G is $K_{2,t}$ -minor-free, every connected component of $G - Y_t(G)$ has diameter $\mathcal{O}_t(1)$.

Local cutvertices

Lemma 1a (folklore)

For every graph G, #cutvertices $\leq 3 \text{ MDS}(G)$.

Theorem 1

Let C be of asymptotic dimension d.

Then $\forall r \geq r_0, \#r\text{-local}$ cutvertices $\leq 3(d+1) \text{ MDS}(G)$.

Local cutvertices

Lemma 1a (folklore)

For every graph G, #cutvertices $\leq 3 \text{ MDS}(G)$.

Lemma 1b

For every graph G and $S \subseteq V(G)$, #cutvertices $\in S \le 3 \text{ MDS}(G, N[S])$.

Theorem 1

Let C be of asymptotic dimension d.

Then $\forall r \geq r_0, \#r\text{-local}$ cutvertices $\leq 3(d+1) \text{ MDS}(G)$.

Dimension d, function f: sets B_1, B_2, \ldots for r = 5.

Proof of Lemma 1b \implies Theorem 1

Dimension d, function f: sets $B_1, B_2, ...$ for r = 5. Let S be of weak-diameter f(5).

Dimension d, function f: sets $B_1, B_2, ...$ for r = 5. Let S be of weak-diameter f(5). $v \in S$ a (f(5) + 2)-local cutvertex.

Dimension d, function f: sets $B_1, B_2, ...$ for r = 5. Let S be of weak-diameter f(5).

 $\mathbf{v} \in \mathbf{S}$ a (f(5) + 2)-local cutvertex.

Proof of Lemma 1b \implies Theorem 1

Dimension d, function f: sets $B_1, B_2, ...$ for r = 5. Let S be of weak-diameter f(5).

 $\mathbf{v} \in \mathbf{S}$ a (f(5) + 2)-local cutvertex.

Claim: $N^2[S] \subseteq N^{f(5)+2}[v]$.

Proof of Lemma 1b \implies Theorem 1

Dimension d, function f: sets B_1, B_2, \ldots for r = 5.

Let S be of weak-diameter f(5).

 $\mathbf{v} \in \mathbf{S}$ a (f(5) + 2)-local cutvertex.

Claim: $N^2[S] \subseteq N^{f(5)+2}[v]$.

Claim: \mathbf{v} is a cutvertex of $G[N^2[S]]$ (separates \mathbf{a} and \mathbf{b}).

Dimension d, function f: sets B_1, B_2, \ldots for r = 5.

Let **S** be of weak-diameter f(5).

 $\mathbf{v} \in \mathbf{S}$ a (f(5) + 2)-local cutvertex.

Claim: $N^2[S] \subseteq N^{f(5)+2}[v]$.

Claim: \mathbf{v} is a cutvertex of $G[N^2[S]]$ (separates \mathbf{a} and \mathbf{b}).

Claim: #cutvertex in $S \le 3 \text{ MDS}(G[N^2[S]], N[S]) \le$

3 MDS(G, N[S]).

Dimension d, function f: sets B_1, B_2, \ldots for r = 5.

Let S be of weak-diameter f(5).

 $\mathbf{v} \in \mathbf{S}$ a (f(5) + 2)-local cutvertex.

Claim: $N^2[S] \subseteq N^{f(5)+2}[v]$.

Claim: \mathbf{v} is a cutvertex of $G[N^2[S]]$ (separates \mathbf{a} and \mathbf{b}).

Claim: #cutvertex in $S \le 3$ MDS($G[N^2[S]], N[S]$) \le

3 MDS(G, N[S]).

#(f(5)+2)-local cutvertex $\leq \sum_{c=1}^{d+1} \sum_{\substack{i, \ c(B)=c}} 3 \cdot \mathsf{MDS}(G, N[B_i])$

End of the proof

$$\#(f(5) + 2)$$
-local cutvertex $\leq \sum_{c=1}^{d+1} \sum_{\substack{i, \\ \alpha(B_i) = c}} 3 \cdot \text{MDS}(G, \underbrace{N[B_i]}_{\text{at distance } 3})$

End of the proof

$$\#(f(5) + 2)$$
-local cutvertex $\leq \sum_{c=1}^{d+1} \sum_{\substack{i, \\ \alpha(B_i) = c}} 3 \cdot \mathsf{MDS}(G, \underbrace{N[B_i]}_{\mathsf{at \ distance \ 3}})$

 $(N^2[B_i]$'s are disjoint)

$$\#(f(5) + 2)$$
-local cutvertex $\leq \sum_{i=1}^{G-1} 3 \cdot MDS(G) = 3(d+1) \cdot MDS(G)$.

What about local 2-cuts?

Theorem

Let C of asymptotic dimension d.

Then $\forall r \geq r_0, \# vertices \in r\text{-local 2-cut} \leq 8(d+1) \, \mathsf{MVC}(G)$.

Conclusion and perspectives

Follow-up works:

- H-minor-free graphs admit a 50-approximation if pathwidth(H) = 2.
- · Constant factor approximations in locally-nice graphs, e.g. bounded genus.
- Transform algorithms from a class ${\mathcal C}$ to a locally- {\mathcal C} class.

Conclusion and perspectives

Follow-up works:

- H-minor-free graphs admit a 50-approximation if pathwidth(H) = 2.
- · Constant factor approximations in locally-nice graphs, e.g. bounded genus.
- Transform algorithms from a class $\mathcal C$ to a locally- $\mathcal C$ class.

? Without minor $H \to \text{LOCAL } \mathcal{O}(\text{pathwidth}(H))$ -approximation in constant time ?

Conclusion and perspectives

Follow-up works:

- H-minor-free graphs admit a 50-approximation if pathwidth(H) = 2.
- · Constant factor approximations in locally-nice graphs, e.g. bounded genus.
- Transform algorithms from a class $\mathcal C$ to a locally- $\mathcal C$ class.
- **?** Without minor $H \to \text{LOCAL } \mathcal{O}(\text{pathwidth}(H))$ -approximation in constant time ?

