GAN-based Finger Vein (FV) Image Augmentation for Biometric Authentication

Samuel Dubuis
IVRL - IC - EPFL & Global ID

Supervised by Hak Gu Kim

Midterm presentation Master semester project October 28th 2020

Presentation

- Global ID is a Swiss startup specialized in cyber-security through:
 - High level of security and confidentiality
 - Fighting against identity thief
 - Developing the technology: Scanner for 3D Finger Vein (FV)
- Advantages of FV biometrics [1]
 - o **Uniqueness** of each person's FVs
 - Resistant to forgery and replication
 - FVs are inside the human body and invisible to human eyes
 - Untraceable in the future
 - Due to the absence of physical contact between customers and sensor devices.
 - End-to-end encryption (E2EE)

Finger vein (FV) for biometric authentication system

3D FV scanner

FV-based Biometric Authentication System

Problem & Motivation

- Importance of Diverse Training Dataset in DL for Biometric Authentication
 - Deep learning (DL) methods demonstrate state-of-the-art results for biometric authentication.
 - However, their performance and robustness depend upon the availability of a diverse training dataset to learn different users' attributes and capturing conditions such as shape and luminance characteristics.
- Difficulty of Large Scale Data Collection for Biometric Authentication
 - Large scale dataset collection for biometrics requires a variety of biometric patterns from each person in various conditions, which is time consuming and labor intensive.
- The Necessity of Data Augmentation in FV Authentication
 - In the FV image acquisition, there are uncontrollable factors such as environmental illumination, light scattering, and different finger positions in imaging finger tissues, necessitating data augmentation.

Related Work

- DL-based FV authentication
 - There are several existing works for FV image feature representation based on DL [2, 3].
 - However, their experiments were conducted with the limited number of FV images.
- Data augmentation for FV authentication
 - A simple data augmentation such as pre-defined scale and translation was employed in [4, 5].
 - However, there is no research on the data augmentation to improve FV authentication.

Data petitioning and training data construction in [2]

^[2] H Qin and MA El-Yacoubi, Deep representation-based feature extraction and recovering for FV verification, IEEE TIFS 2017

^[3] W Yang et al., FV-GAN: Finger vein representation using GANs, IEEE TIFS 2019

^[4] KJ Noh et al., Finger-vein recognition based on densely connected CNN using score-level fusion with shape and texture images, IEEE Access 2020

Contribution

- 1) Generation of a large number of finger veins images from a small starting dataset using Generative Adversarial Network (GAN)
- 2) Designing of a GAN-based FV image data augmentation considering the spatial variation and illumination variation in FV image acquisition
- 3) Integration of our algorithm in the startup pipeline in order to have consistent and effective information

Public Databases Survey and Collection

- VERA Finger Vein Database for Finger Veins recognition
 - Produced by IDIAP Research Institute, used by the Global ID startup
 - Total of 440 images from 110 subjects (4 FV images for each subject)
- Finger Vein USM (FV-USM) Database
 - Produced by Universiti Sains Malaysia for FV recognition
 - 2 sessions, 123 subjects, 4 fingers and 6 pictures taken
 - Total of 5,904 images from 123 subjects (48 FV images for each subject)
- Tsinghua University Finger Vein and Finger Dorsal Texture Database (THU-FVFDT)
 - Produced by Tsinghua Univ. for FV representation and authentication
 - 3 database but only 1 of interest
 - Total of 1,220 images from 610 subjects (2 FV images for each subject)

Examples of FV image 7

Proposed FV Image Data Augmentation

Proposed FV Image Data Augmentation

Experiments: FV Images Augmented by STN

STN output on raw data FV image

FV Classification when training network with:

Only original images	Training acc Validation acc Testing acc	1.0 1.0 0.788
Original images + STN output	Training acc Validation acc Testing acc	1.0 1.0 0.867

STN output on extracted FV image

Future Work

Questions?

Thank you!