Module 13: The phyloseq package

For microbial dataset analysis

Learning Outcomes

- Be able to create phyloseq objects
- Filter taxa and samples from phyloseq objects
- Rarefy ASV tables in a phyloseq object
- Be able to re-create taxa summary plots, alpha diversity boxplots, and beta diversity PCoA plots with phyloseq

The 'phyloseq' package

- Enables analysis of microbial community data
- Integrates analysis, and creating graphics using a 'phyloseq' object

Phyloseq: reconciling all the outputs

Taxonomy

Var2

Var

Samp1

Samp2

Samp3

Samp4

Phyloseq objects allow you to filter, analyze, and plot data from multiple data frames/matrices together

Step one: re-format tables

Step two: Convert to phyloseq objects and load into phyloseq()

- sample_data() → metadata
- → otu_table() → features table
- → tax_table() → taxonomy table
- > phyloseq() -> combine all elements

Step three: Filter and rarefy as needed

- •Filter out any mitochondria, chloroplasts, eukaryotes, archaea
 - subset_taxa()
- Filter low-abundance taxa
 - filter_taxa() or prune_taxa()
- •Remove any "bad samples"
 - subset_samples() or prune_samples()
- Rarefy at appropriate depth
 - rarefy_even_depth()

subset vs prune

- Subset functions use the same table to filter
 - e.g. to subset samples, we use filtering criteria from the sample data table

	Rank1	Rank2	:
ASV1	Bacteria	Proteo	
ASV2	Bacteria	Cyano	
ASV3	Bacteria	Bacter	
ASV4	Bacteria	Planct	

subset vs prune

 Prune functions are more general; they use a vector of logicals or characters to choose what to keep

Recommend saving at this point

- ·Having a "final, clean, master dataset" is useful
- Can come back to this point to do many different analyses
- •Ensure your data for all analyses is the same version

How to produce figures for microbial community analysis

- Alpha diversity plots
 - plot_richness()
- Beta diversity ordinations
 - dist(), ordinate() then plot_ordination()
- Taxonomic summaries
 - plot_bar(), taxa_glom() to combine taxa

Using phyloseq objects for other applications

- Can export data into regular data.frames
- •Can export data into DESeq using the command phyloseq_to_deseq2()
- Can use phyloseq objects in "microbiome" package