Total No	o. of Questions : 4]	SEAT No. :
P5049	9 [6187] ±450	[Total No. of Pages : 2
T.E. (Electronics and Telecommunication) (Insem)		
ELECTROMAGNETIC FIELD THEORY		
(2019 Pattern) (Semester - I) (304182)		
	(201) Matter II) (Seriester - 1)	(304102)
Time: 1 Instruct	Hour] ions to the candidates:	[Max. Marks : 30
1)	Answer Q1 or Q2, Q3 or Q4.	
2)	Neat diagrams must be drawn wherever necessary	<i>y</i> .
3)	Figures to the right indicate full marks.	
<i>4</i>)	Use of electronic packet calculator and smith cha	art is allowed.
5)	Assume suitable data, if necessary.	
Q1) a)	State and prove Divergence theorem applied	ed for Gauss law. [5]
b)	Three point charges in free space are lo	ocated as follows: 50 nC at
	(0, 0, 0) m; 40nC at (3, 0, 0) m; -60nC at (0,	4, 0) m. Find the electric field
	intensity E at (3, 4, 0) m	[7]
c)	Explain different types of charge distribution	on. [3]
	OR	
Q2) a)	Two point charges -4 µ C and 5 µ C are	
	(0, 4, -2) respectively. Find the potential potential at infinity.	1 at (1, 0, 1) assuming zero [6]
b)	The electric potential near the origin of	a system of co-ordinates is
	$V = 5x^2 + 8y^2 + 10z^2$. Find the electric fiel	d at a point $A(1, 2, 3)$. [6]
c)	State and explain Coulomb's law in vector	form. [3]
	- A.	P.T.O.

- Q3) a) Obtain an expression for the magnetic field intensity (H) due to straight infinite conductor carrying current I amperes along Z axis.
 [6]
 b) State and Prove Ampere's circuital law.
 - c) Define Biot-Savart's law. Enlist the applications employing the steady magnetic field. [3]

OR

- Q4) a) State Maxwell's equation for static field in integral and point form. [6]
 - b) i) Find H in rectangular components at P (2, 3, 4) if there is a current filament of infinite length on the z axis carrying 8 mA in the az direction.
 - ii) Repeat if the filament is located at x = -1, y = 2. [6]
 - c) Explain the physical significance of curl. [3]