Data Mining - Project 3 Link Analysis

電通甲 Q36061240 洗鈺淇

Introduction of Dataset

GRAPH NAME	NODES	EDGES	DESCRIPTION	SOURCE
GRAPH_1	6	5	A Line	project3dataset
GRAPH_2	5	5	A circle	project3dataset
GRAPH_3	4	6		project3dataset
GRAPH_4	7	18		project3dataset
GRAPH_5	469	1102		project3dataset
GRAPH_6	1128	5220		project3dataset

GRAPH_7	100	2043		project1 transaction data
GRAPH_8	5	17		project1 association rules mined

Algorithms Implement

■ Convert Format

將 HW1 的 data 轉換為代表 edge 之輸入格式 edge1:(node1,node2), 我選用的 dataset 參數 為 ntrans=0.1,tlen=40,nitems=0.1 以及其 association rule(support =0.75 confidence =0.85)

```
IBM = open( 'data.ntrans_0.1.tlen_40.nitems_0.1.txt','r')
                                                                                                                                Rule = open( 'association_rules.txt','r')
f = open('graph_8.txt','w')
f = open('graph_7.txt','w')
lines=IBM.readlines()
                                                                                                                                lines=Rule.readlines()
for line in lines:
       print(line.split()[1]+','+line.split()[2])
f.write(line.split()[1]+','+line.split()[2]+'\n')
                                                                                                                                     print(line.split()[0]+','+line.split()[1])
f.write(line.split()[0]+','+line.split()[1]+'\n')
IBM.close()
                                            #DATASET1 IBM generator -FP_GROWTH ALGO

103 tStart = time.time()

104 print('\nFP_Growth algorithm')

105 Run_FP_Growth('data.ntrans_0.1.tlen_40.nitems_0.1DAT.txt',0.75,0.75)

106 tEnd = time.time()

107 print ("%f sec" % (tEnd - tStart))
                                            FP_Growth algorithm
                                              requent itemset:
                                             (17) support = 0.77
(36) support = 0.88
                                            (36, 38) support = 0.84
(36, 63) support = 0.79
(36, 63, 38) support = 0.75
(38) support = 0.94
(63) support = 0.89
                                            (63, 38) support = 0.84
(69) support = 0.84
(69, 38) support = 0.8
(69, 63) support = 0.76
                                            (69, 63) support = 0.76

(8) support = 0.75

(87) support = 0.87

(87, 36) support = 0.77

(87, 36, 38) support = 0.75

(87, 38) support = 0.83

(87, 63) support = 0.79

(87, 63, 38) support = 0.76
                                              ._____
                                            (36) ==> (38 ) confidence= 0.95

(38) ==> (36 ) confidence= 0.89

(36) ==> (63 ) confidence= 0.90

(63) ==> (36 ) confidence= 0.89

(36) ==> (63 38 ) confidence= 0.85

(63) ==> (36 38 ) confidence= 0.84
```

Adjacency Matrix

Input data 格式為 edge1:(node1,node2)有相連的 node 編號,計算出有幾個 node 並將此轉換成各圖的相鄰矩陣,以下我實作的演算法都會基於此相鄰矩陣作計算。

```
def adjMetrix(edgeList):
    m = Nodenum(edgeList)
    matrix = np.zeros(shape=(m,m))
    for edge in edgeList:
        u = int(edge[0]) - 1
        v = int(edge[1]) - 1
        matrix[u][v] = 1
    return matrix
```

HITS

$$\operatorname{auth}(p) = \sum_{i=1}^n \operatorname{hub}(i) \qquad \qquad \operatorname{hub}(p) = \sum_{i=1}^n \operatorname{auth}(i)$$

實作 HITS 演算法,在這邊我的 hub 值都設 1,然後輸入 adjmatrix 依照公式用迴圈迭代至收斂,每做一次就正規化(除以全部的 hub 值/向量長度)一次,收斂的話就是直接看新的值與舊值差多少來判定。

```
def Converge_checking(vector, vector_pre):
    converge = False
    tolerance = 0.000005
    changes = 0
    m = len(vector)
    for i in range(0,m):
        changes += abs(vector[i] - vector_pre[i])
    if changes < tolerance:
        converge = True
    return converge
def HITS(adjmatrix):
    m,m = adjmatrix.shape
    hub = np.ones(shape=(m,1))
    hub_prev = np.zeros(shape=(m,1))
    #print(hub,hub_prev)
    authority = np.dot(adjmatrix.transpose(),hub)
    hub = np.dot(adjmatrix,authority)
    # check converge
    while not Converge_checking(hub, hub_prev):
        hub prev = hub
        authority = np.dot(adjmatrix.transpose(),hub)
        hub = np.dot(adjmatrix,authority)
        # normalize
        hub = hub/hub.sum()
        authority = authority/authority.sum()
    return hub, authority
```

■ PageRank

$$PR(p_i) = rac{1-d}{N} + d\sum_{p_j \in M(p_i)} rac{PR(p_j)}{L(p_j)}$$

依照 PageRank 公式 N 為 node 數量、d 為 dumping factor 、L(pj) = 為 pj 這個 node 的 outdegree,PR 是(m,1)的向量,每個元素的值皆為 1/N,做迴圈迭代,收斂完後進行正規 化。

```
def PageRank(adjmatrix,d):
    m,m = adjmatrix.shape

outdegree = adjmatrix.sum(axis=1)
    PR = np.zeros(shape=(m,1))
    PR_prev = np.zeros(shape=(m,1))
    PR_Div_outdeg = np.zeros(shape=(m,1))
    PR_Div_outdeg_sum = np.zeros(shape=(m,1))

PR = [ 1/m for value in PR]

while not Converge_checking(PR, PR_prev):
    PR_prev = PR

for i in range(0,m):
    if outdegree[i]!=0:
        PR_Div_outdeg[i] = PR[i] / outdegree[i]

for i in range(0,m):
    if adjmatrix[j][i] == 1:
        PR_Div_outdeg_sum_value += PR_Div_outdeg[j]
    PR_Div_outdeg_sum[i] = PR_Div_outdeg_sum_value

PR = d / m + (1-d) * PR_Div_outdeg_sum
#normolized
PR = PR/PR.sum()
return PR
```

■ SimRank

$$\mathbf{S} = C \cdot (\mathbf{W}^T \cdot \mathbf{S} \cdot \mathbf{W}) + (1 - C) \cdot \mathbf{I},$$

SimRank 的公式,W 為 normalize 後的圖鄰接矩陣、I 為單位矩陣,再我實作的 simrank 演算法中 iteration 次數設為 100,C 設 0.8,一開始設 S 相似度矩陣為單位矩陣再讓公式下去迭代產出最後的相似度矩陣。

```
def SimRank(G,n,C=0.8,t=100):

S = np.identity(n)
I = np.identity(n)
G = G/G.sum(0)
i = 1

# S(a,b) ifa=b S設1
for a in range(t):
    S = C * np.dot(np.dot(G.T,S),G) + (1-C) * I
for j in range(n):
    S[j][j] = 1

return S
```

Result Analysis

▶ Parameter Setting: PageRank dumpy factor=1.5/SimRank C=0.8
以下使用 networkX 套件中的 HITS、PageRank 演算法來驗證及比較程式結果。

■ Graph_1

```
Graph Dataset :graph_1.txt
Adjacency Matrix :
[[0. 1. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0.]
 [0. 0. 0. 0. 1. 0.]
 [0. 0. 0. 0. 0. 1.]
 [0. 0. 0. 0. 0. 0.]]
Implement >
     Hub Authority
                                 PageRank
                                                                   SimRank
             [0.0]
                    [0.06071611200885575]
   [0.2]
                                           [1.0, nan, nan, nan, nan, nan]
                    [0.11232480721638316]
   [0.2]
             [0.2]
                                           [nan, 1.0, nan, nan, nan, nan]
   [0.2]
             [0.2] [0.15619219814278143]
                                           [nan, nan, 1.0, nan, nan, nan]
                                           [nan, nan, nan, 1.0, nan, nan]
   [0.2]
             [0.2] [0.19347948043021995]
             [0.2] [0.22517367037454272]
                                           [nan, nan, nan, 1.0, nan]
   [0.2]
                                           [nan, nan, nan, nan, nan, 1.0]
            [0.2] [0.252113/3182/21/]
HITS Algorithm Execution time :0.00013641302257605476 sec
PageRank Algorithm Execution time :0.00034313584092919504 sec
SimRank Algorithm Execution time: 0.00044830006538210067 sec
Using NetworkX >
  Hub Authority
                  PageRank
             0.0 0.060716
             0.2 0.193480
  0.2
HITS Algorithm Execution time: 0.00014692944502134493 sec
PageRank Algorithm Execution time :0.0005174079843082956 sec
```

在 $Graph_1$ 中,只有六個點,而且每個節點只有一條連往下一個節點的邊,第一個點沒有 indegree 為 0、而最後一個節點 outdegree 為 0,若用 Authority 來看 1~5 個點都為 0.2,而用 PageRank 來看的話最後一個節點的值較高;因為大家的邊都不同所以皆不相似,故相似矩 陣 SimRank 僅與自己相似。

➤ 新增 Node 0->Node 2 之 Edge

在原本的圖上新增新的邊為節點 0 指向 2,則圖形變為下圖,創造出一個迴圈;可以觀察 到 Node 0 的 hub 及 Authority 增加的量一樣,而由於 Node 2 為 Node 0、1 共同指向的節點因此其 Authority 增加許多,而算 PageRank 來說比較沒有甚麼變化,同樣為最後個節點的值會較高,因為其前面節點的 Authority 較高。

■ Graph_2

```
Graph Dataset :graph 2.txt
Adjacency Matrix:
[[0. 1. 0. 0. 0.]
 [0. 0. 1. 0. 0.]
 [0. 0. 0. 1. 0.]
 [0. 0. 0. 0. 1.]
 [1. 0. 0. 0. 0.]]
Implement >
     Hub Authority PageRank
                                                SimRank
   [0.2]
             [0.2]
                      [0.2]
                             [1.0, 0.0, 0.0, 0.0, 0.0]
   [0.2]
             [0.2]
                       [0.2]
                              [0.0, 1.0, 0.0, 0.0, 0.0]
   [0.2]
             [0.2]
                      [0.2]
                              [0.0, 0.0, 1.0, 0.0, 0.0]
             [0.2]
                              [0.0, 0.0, 0.0, 1.0, 0.0]
   [0.2]
                      [0.2]
                            [0.0, 0.0, 0.0, 0.0, 1.0]
   [0.2]
             [0.2]
                      [0.2]
HITS Algorithm Execution time :0.0001379153686396677 sec
PageRank Algorithm Execution time :7.601871081881466e-05 sec
SimRank Algorithm Execution time :0.000373783700626899 sec
Using NetworkX >
       Authority
   Hub
                   PageRank
0 0.2
              0.2
                        0.2
 0.2
              0.2
                        0.2
  0.2
              0.2
                        0.2
  0.2
              0.2
                        0.2
              0.2
                        0.2
4 0.2
HITS Algorithm Execution time :0.00013731443021422225 sec
PageRank Algorithm Execution time :0.0003034739048498134 sec
```

在 Graph_2 中,五個點形成迴圈,因此與 Graph_1 相比,各節點的 Hub、Authority 及 PageRank 值皆相同且相似度矩陣一樣不變。

➤ 新增 Node 0->Node 2 之 Edge

```
Hub
              Authority
              6.180e-01
  2.837e-07
  3.820e-01
              3.820e-01
  6.180e-01 4.591e-07
  2.837e-07
            4.591e-07
             4.591e-07
  2.837e-07
  PageRank
     0.225
3
     0.221
     0.218
     0.215
     0.121
```

一樣在原本的圖上新增新的邊為節點 0 指向 2,由於原本的圖就形成迴圈,有再加上這個迴圈後,Node 2 為 Node0、1 共同指向的節點因此其 Authority 增加許多,並且在 PageRank 排名 Node2 為最高。

■ Graph_3

```
Graph Dataset :graph_3.txt
Adjacency Matrix:
[[0. 1. 0. 0.]
 [1. 0. 1. 0.]
 [0. 1. 0. 1.]
 [0. 0. 1. 0.]]
Implement >
                    Hub
                                     Authority
                                                              PageRank
   [0.1909830932999374]
                          [0.1909827760891591]
                                                [0.17543839772251532]
   [0.3090169067000626]
                         [0.30901722391084097]
                                                  [0.3245616022774846]
   [0.3090169067000626]
                         [0.30901722391084097]
                                                  [0.3245616022774846]
   [0.1909830932999374]
                          [0.1909827760891591]
                                                 [0.17543839772251532]
                               SimRank
  [1.0, 0.0, 0.4285714285714286, 0.0]
   [0.0, 1.0, 0.0, 0.4285714285714286]
  [0.4285714285714286, 0.0, 1.0, 0.0]
  [0.0, 0.4285714285714286, 0.0, 1.0]
HITS Algorithm Execution time :0.0002298589477327795 sec
PageRank Algorithm Execution time :0.000536938483135264 sec
SimRank Algorithm Execution time :0.0004053329679627707 sec
Using NetworkX >
        Hub
             Authority
                        PageRank
                        0.175438
0 0.190983
             0.190983
  0.309017
              0.309017
                        0.324562
  0.309017
              0.309017
                        0.324562
             0.190983
  0.190983
                        0.175438
HITS Algorithm Execution time :0.000323605342102227 sec
PageRank Algorithm Execution time :0.0003428353717164724 sec
```

在 Graph_3 中,四個點兩兩相連 因此中間兩個點 Node1、2 的 Hub、Authority 及

PageRank 值會一樣且較高;從 SimRank 相似度矩陣來看可以得知,Node1 和 3 都有連接到 Node 2 因此較相似,Node 0 和 2 都有連接到 Node 1 因此較相似。

➤ 新增 Node 0->Node 2 之 Edge

在新增此邊之後,Node 2 為 Node 0、1、3 所連接,因此 Authority 值最高,且 Node 0 hub 值變大;在 PageRank 來看原本 Node1 和 2 相同,但新增後,Node 2 就位居其首了。

■ Graph_4

在 Graph_4 中,與 Network X 的結果做比較,排名是一樣的;用 Authority 值來看的話 Node 4 最高在來是 Node 2、1、3,而用 Page Rank 來看的話,由於 Node 0 Hub 值最高,因此也影響了其 Page Rank 排名。

HITS Algorithm(左:Implement 右:NetworkX)>

```
Implement >
                                                     Using NetworkX >
                      Hub
                                         Authority
                                                          Hub
                                                                Authority
    [0.1837348365905041]
                               [0.201425041553256]
                                                        0.184
                                                                    0.201
   [0.10868335659196027]
                            [0.20082309403907608]
                                                        0.109
                                                                    0.201
                            [0.17791181395679528]
   [0.04776250054880305]
                                                        0.048
                                                                    0.178
   [0.19865932442839782]
                              [0.1401777919110339]
                                                        0.199
                                                                    0.140
   [0.27545289304813597]
                             [0.13948446662880473]
                                                     0
                                                        0.275
                                                                    0.139
   [0.06897229412169785]
                             [0.08408831301163074]
                                                                    0.084
                                                        0.069
    [0.1167347946705009]
                           [0.056089478899403175]
                                                        0.117
                                                                    0.056
```

PageRank Algorithm(左:Implement 右:NetworkX)>

```
PageRank
                            PageRank
[0.28028775735575334]
                         0
                               0.280
 [0.1841986673136965]
                               0.184
                               0.159
 [0.1587646872485608]
                               0.139
[0.13888170080462586]
                               0.108
[0.10821930792439603]
                               0.069
[0.06907737460022821]
                               0.061
[0.06057050475273926]
```

在 SimRank 相似矩陣來看,Node 3 與 6 有最高的相似度 0.2011 也可以從 Adjmatrix 找出端倪。

AdjMatrix>

```
Adjacency Matrix :

[[0. 1. 1. 1. 1. 0. 1.]

[1. 0. 0. 0. 0. 0. 0.]

[1. 1. 0. 0. 0. 0. 0.]

[0. 1. 1. 0. 1. 0. 0.]

[1. 0. 1. 1. 0. 1. 0.]

[1. 0. 0. 0. 0. 1. 0. 0.]
```

SimRank>

```
SinRank

[1.0, 0.13785734257851975, 0.13393125362184838, 0.13603931447638828, 0.13559737389491208, 0.1588345291114338, 0.11324409984134282]

[0.13785734257851973, 1.0, 0.15682983233992698, 0.1403984493736493, 0.15808918029754127, 0.11085130570791396, 0.1699455930393846]

[0.13393125362184838, 0.15682983233992698, 1.0, 0.17141821075483393, 0.149946347777832, 0.1724465297307996, 0.17938989177886826]

[0.13603931447638828, 0.1403984493736493, 0.17141821075483396, 1.0, 0.13014867473193323, 0.2066103247034261, 0.2011691118777471]

[0.13559737389491208, 0.15808918029754127, 0.14994634777783203, 0.13014867473193323, 1.0, 0.10520867961814236, 0.15508866984572411]

[0.1588345291114338, 0.11085130570791396, 0.1724465297307996, 0.2066103247034261, 0.10520867961814236, 1.0, 0.10847789911592967]

[0.11324409984134282, 0.1699455930393846, 0.17038989177886826, 0.2011691118777471, 0.15508866984572411, 0.10847789911592967, 1.0]
```

■ Graph_5

由於 Graph_5 Node 數很多,因此分別顯示前 30 個 Authority 較大的節點以及 PageRank,從使用 NetworkX 套件來做比較,可以看到顯示出來的是一樣的值以及排名。

HITS Algorithm(左:Implement 右:NetworkX)>

Implement >		Usin	g NetworkX	>
Hub	Authority		Hub	Authority
[0.0] [0.	09585172527001588]	60	0.000000	0.095852
121 [0.0]	0.094153754034592	121	0.000000	0.094154
211 [0.020763073003488692] [0.6	57570354315684996	211	0.020763	0.057570
103 [0.0] [0.	05592902517976362	103	0.000000	0.055929
	49712153384528196	281	0.000000	0.049712
184 [0.021206864055918248] [0.6	49428802206426925	184	0.021207	0.049429
347 [0.02222610143961958] [0.	04329667912146398	347	0.022226	0.043297
	04224819131477645	324	0.025564	0.042248
147 [0.014681069139746067] [0.	03811690829989748	147	0.014681	0.038117
133 [0.02128741904259539] [0.6	28214131885132093	133	0.021287	0.028214
380 [0.013625966339944635] [0.6	15242578672001583	380	0.013626	0.015243
153 [0.0] [0.	01461356344785299	153	0.000000	0.014614
325 [0.02390119799337205] [0.0	14515790239829093	325	0.023901	0.014516
	12961013422005757	159	0.000000	0.012961
215 [0.0] [0.0	12208669371181957	215	0.000000	0.012209
403 [0.0] [0.0	11128774474305325	403	0.000000	0.011129
[0.0] [0.0]	10078258396297475]	277	0.000000	0.010078
163 [0.0] [0.0	10078258396297475]	163	0.000000	0.010078
140 [0.01435967296220192] [0.0	09956465093481455]	140	0.014360	0.009956
314 [0.01771455527490453] [0.0	09107606592112624	314	0.017715	0.009108
54 [0.0] [0.0	08543342489701808]	54	0.000000	0.008543
80 [0.016013433757721483] [0.6	08543342489701808]	80	0.016013	0.008543
414 [0.0] [0.0	08099013962582585]	414	0.000000	0.008099
411 [0.02732437749838148] [0.	00800063128034263]	411	0.027324	0.008001
296 [0.0242946694264437] [0.0	07453096722196829]	296	0.024295	0.007453
298 [0.02430746176148597] [0.00	72184154194180755]	298	0.024307	0.007218
192 [0.0] [0.0	07102723011167931]	192	0.000000	0.007103
183 [0.018414189550741186] [0.6	06778309800610113]	183	0.018414	0.006778
173 [0.015668140803119436] [0.0	06673320897215024]	173	0.015668	0.006673
132 [0.0] [0.0	06578470415476278	132	0.000000	0.006578
· · · · · · · · · · · · · · · · · · ·	·			

PageRank Algorithm(左:Implement 右:NetworkX)>

	<u> </u>		_	
	PageRank			PageRank
60	[0.014354781756295969]	6	0	0.014361
121	[0.014128341252091444]	1	21	0.014135
103	[0.010278220789361574]	1	03	0.010283
211	[0.007810888575412315]	2	11	0.007814
281	[0.007408887491205179]	2	81	0.007412
184	[0.00727771425214987]	13	84	0.007281
324	[0.007193086238798108]	3	24	0.007196
347	[0.006887589780980403]	3	47	0.006890
147	[0.00603353294921675]	1	47	0.006036
95	[0.00593958444907247]	9	5	0.005917
43	[0.00472000489951856]	4	3	0.004702
133	[0.004555427731781286]	1	33	0.004557
93	[0.004266562539573045]	9	3	0.004251
23	[0.0042627656882117965]	2	3	0.004246
39	[0.004204636576530278]	3	9	0.004206
286	[0.004204636576530278]	2	86	0.004206
42	[0.0038719577346388047]	4	2	0.003860
20	[0.0038512714703081295]	2	0	0.003837
203	[0.00376722904711336]	2	03	0.003754
453	[0.0037493501719540762]	4	53	0.003750
21	[0.0037445712263752184]	2	1	0.003731
326	[0.0037369236381292704]	3	26	0.003725
362	[0.0036975174325798344]	3	62	0.003698
276	[0.0036970362361724916]	2	76	0.003685
263	[0.0036707972917930545]	2	63	0.003672
432	[0.0036015585361222568]	4	32	0.003603
300	[0.0035603096963882754]	3	00	0.003562
151	[0.0035393127680278208]	1	51	0.003529
385	[0.003537540327737508]	3	85	0.003525
248	[0.003503972903988159]	2	48	0.003505

Execution Time (implement)>

```
HITS Algorithm Execution time :0.017102707588169685 sec PageRank Algorithm Execution time :1.050069889138879 sec SimRank Algorithm Execution time :0.6578992755086344 sec
```

Execution Time (NetworkX)>

```
HITS Algorithm Execution time :0.058612829795007926 sec
PageRank Algorithm Execution time :0.01838811488019676 sec
```

Graph_6

HITS Algorithm(左:Implement 右:NetworkX)>

<pre>Implement ></pre>			Using	Using NetworkX >		
	Hub	Authority		Hub	Authority	
1150	[0.0]	[0.0304038325958039]	1150	0.000000e+00	0.030404	
760	[0.0]	[0.0304038325958039]	760	0.000000e+00	0.030404	
61	[0.009019162722450331]	[0.03017777196629247]	61	9.019277e-03	0.030178	
77	[0.0100180592618223]	[0.030031217911678572]	77	1.001819e-02	0.030032	
393	[0.0]	[0.029320864859952826]	393	0.000000e+00	0.029321	
862	[0.010438151531110152]	[0.028626691928621165]	862	1.043830e-02	0.028627	
1122	[0.0]	[0.02820279653910369]	1122	0.000000e+00	0.028203	
500	[0.013875433845915535]	[0.025390871424313868]	500	1.387562e-02	0.025391	
1051	[0.00022780088055220858]	[0.024598449872034498]	1051	2.277988e-04	0.024598	
179	[0.011559393704137156]	[0.023962727283461705]	179	1.155956e-02	0.023963	
818	[0.0]	[0.020060760461744626]	818	0.000000e+00	0.020061	
505	[0.012986667478399952]	[0.019213317916338166]	505	1.298684e-02	0.019214	
527	[0.0]	[0.017499842946578817]	527	0.000000e+00	0.017500	
1198	[0.015068967744672134]	[0.017299244779085503]	1198	1.506917e-02	0.017300	
356	[0.0]	[0.016984356743180544]	356	0.000000e+00	0.016985	
1146	[0.0]	[0.014060494819373394]	1146	0.000000e+00	0.014061	
1226	[0.009735632155246145]	[0.01365249954866864]	1226	9.735757e-03	0.013653	
133	[0.010117264536935545]	[0.013474736256587063]	133	1.011741e-02	0.013475	
385	[0.014821173171176176]	[0.013384677251590095]	385	1.482137e-02	0.013385	
930	[0.0012768227330391699]	[0.013069112765946227]	930	1.276813e-03	0.013069	
224	[0.0]	[0.012509406267670215]	224	0.000000e+00	0.012510	
1088	[0.0]	[0.011542090559222925]	1088	0.000000e+00	0.011542	
369	[0.0]	[0.01070748472791477]	369	0.000000e+00	0.010708	
520	[1.7507319415438026e-120]	[0.00985584226029567]	520	1.043047e-161	0.009856	
537	[0.0]	[0.007396925502416216]	537	0.000000e+00	0.007397	
1112	[0.009868447168662961]	[0.006209719766778676]	1112	9.868574e-03	0.006210	
1144	[0.0]	[0.005913632046632243]	1144	0.000000e+00	0.005914	
1070	[0.013447184521997555]	[0.005910025201302627]	1070	1.344736e-02	0.005910	
1183	[0.0]	[0.005802590798364495]	1183	0.000000e+00	0.005803	
409	[6.12076924001082e-38]	[0.00500356940621196]	409	2.866222e-50	0.005003	

PageRank Algorithm(左:Implement 右:NetworkX)>

		1	_	DBI-
	PageRank		4054	PageRank
1051	[0.0038674492258179067]		1051	0.003860
1150	[0.0031246138015606916]		1150	0.003126
760	[0.0031246138015606916]		760	0.003126
61	[0.003105817386319215]		61	0.003108
393	[0.003032724581504898]		393	0.003035
77	[0.003032551684444236]		77	0.003034
862	[0.0030282152036658263]		862	0.003030
1122	[0.0029154968722001702]		1122	0.002917
500	[0.0026911859835077917]		500	0.002693
179	[0.0023171320940278154]		179	0.002318
1226	[0.0021267979620712653]		1226	0.002128
409	[0.0020765882759963706]		409	0.002068
818	[0.002023887352798166]		818	0.002025
373	[0.0020211580676872155]		373	0.002013
386	[0.0020211580676872155]		386	0.002013
1020	[0.0020211580676872155]		1020	0.002013
553	[0.0020108360197525978]		553	0.002003
1083	[0.0019485354595331383]		1083	0.001941
42	[0.0019408950694998546]		42	0.001933
414	[0.0019363455958317465]		414	0.001929
527	[0.0019269933834889443]		527	0.001928
467	[0.0019153805407248804]		467	0.001908
945	[0.0019072895879793136]		945	0.001900
505	[0.0018973975530984372]		505	0.001898
224	[0.0018787565415608022]		224	0.001880
272	[0.001857219850809339]		272	0.001850
493	[0.0018548132718213554]		493	0.001847
219	[0.0018237220249749384]		369	0.001821
369	[0.001819999455540955]		219	0.001817
577	[0.001816986709255053]		577	0.001810
		1		

Execution Time (implement)>

```
HITS Algorithm Execution time :0.2098906652628745 sec
PageRank Algorithm Execution time :6.150343376216299 sec
SimRank Algorithm Execution time :7.44573856534364 sec
```

Execution Time (NetworkX)>

```
HITS Algorithm Execution time :1.4151514004269075 sec
PageRank Algorithm Execution time :0.05972606822814441 sec
```

etworkX > ub Authority

> 0.023 0.023 0.022

> 0.020 0.020 0.019 0.019

> 0.017 0.017 0.017

0.017 0.016 0.016 0.016 0.016 0.016

0.015

0.015 0.015 0.015

■ Graph_7

HITS Algorithm(左:Implement 右:NetworkX)>

	·	<u>*</u>		
Imp	lement >		Usi	ng Netw
	Hub			Hub
37	[0.010064670631027511]	[0.024211493741870746]	38	0.010
62	[0.007737122046313935]	[0.022734948057773072]	63	0.008
35	[0.009367132047610484]	[0.022626761600570904]	36	0.009
86	[0.008338463683258215]	[0.022445331612109928]	87	0.008
68	[0.009667610272071109]	[0.02150005783009765]	69	0.010
16	[0.009804636020946644]	[0.01992710294725039]	17	0.010
7	[0.005931065340795744]	[0.019712231367049228]	8	0.006
84	[0.007471594922130131]	[0.018961031239353245]	85	0.007
47	[0.011674196958180182]	[0.018788372265357484]	48	0.012
2	[0.01015972720813854]	[0.01817212336034084]	3	0.010
27	[0.012379066974132704]	[0.017347717889890566]	28	0.012
42	[0.009780930600962882]	[0.01727480578068866]	43	0.010
10	[0.00980852433032276]	[0.01705686692600523]	11	0.010
70	[0.011268047255064783]	[0.01672601600902691]	71	0.011
82	[0.005684712308194978]	[0.01645523535206791]	83	0.006
46	[0.011335188459114114]	[0.016042340998721403]	47	0.011
39	[0.007924747425510434]	[0.015977024008195288]	40	0.008
28	[0.011513170872132276]	[0.015813621707947905]	29	0.012
13	[0.010751810439543243]	[0.01574967824034951]	14	0.011
80	[0.010468219378006231]	[0.01555937393940463]	81	0.010
34	[0.008949653057359216]	[0.015465633719029941]	35	0.009
66	[0.012361588645375234]	[0.015451460370991212]	67	0.012
50	[0.009134160118230641]	[0.01541104663600451]	51	0.009
61	[0.00833632901544672]	[0.015291684877205636]	62	0.008
79	[0.007663810722660631]	[0.015174189884808549]	80	0.008
60	[0.010887213671541216]	[0.015110972962875767]	61	0.011
72	[0.0074823102300899955]	[0.014975712280294012]	73	0.007
38	[0.010944098572785882]	[0.014923960248532216]	39	0.011
85	[0.011326551425068504]	[0.014873972572047218]	86	0.011
8	[0.011867147797487551]	[0.014867358403820833]	9	0.012

PageRank Algorithm(左:Implement 右:NetworkX)>

0		<u>-</u> I-	
	PageRank		PageRank
37	[0.022290977325645417]	38	0.022
62	[0.02178969994215656]	63	0.022
86	[0.02162417893662869]	87	0.022
35	[0.021165282039142034]	36	0.021
68	[0.02042546551504298]	69	0.020
16	[0.018661998389947747]	17	0.019
2	[0.017423873106633316]	3	0.017
84	[0.017238306870069487]	85	0.017
7	[0.01723452552839687]	8	0.017
27	[0.016950759982694758]	28	0.017
47	[0.016802757678424585]	48	0.017
82	[0.016249737410837135]	83	0.016
80	[0.015366404377144786]	81	0.015
70	[0.01527698951580031]	71	0.015
28	[0.015237091933384465]	29	0.015
46	[0.0152209771359549]	47	0.015
42	[0.014797704938644187]	43	0.015
39	[0.014742687968639817]	40	0.015
60	[0.014710461469139341]	61	0.015
10	[0.014499406426163089]	11	0.014
66	[0.014447580603637355]	67	0.014
34	[0.014353920628889832]	35	0.014
38	[0.014309280899036141]	39	0.014
50	[0.014161673452746139]	51	0.014
13	[0.013935747996573515]	14	0.014
61	[0.013885198756188582]	62	0.014
85	[0.0138675098817468]	86	0.014
79	[0.013828528081603269]	80	0.014
8	[0.013457528702245255]	9	0.013
51	[0.013406310830578817]	52	0.013
			

Execution Time (implement)>

```
HITS Algorithm Execution time :0.002237299135848467 sec
PageRank Algorithm Execution time :0.34749558309195583 sec
SimRank Algorithm Execution time :0.023765669507109122 sec
```

Execution Time (NetworkX)>

```
HITS Algorithm Execution time :0.04589077316923662 sec
PageRank Algorithm Execution time :0.029312945446678618 sec
```

在 Graph_7 中,我的程式跑出的結果與套件的標號差一,可能由於 NetworkX 是用 dictionary 的方式,在轉換成 list 的時候順序有跑,但不影響總結果。

■ Graph_8

由於找出來的規則只有五個節點,其他節點均沒有邊聯結,因此結果如下。

```
Implement >
                       Hub
                                         Authority
                                                                         PageRank
62
    [0.23129904266157036]
                             [0.23129954519724327]
                                                     62
                                                           [0.07093617802416123]
37
    [0.23129904266157036]
                             [0.23129954519724324]
                                                     37
                                                           [0.07093617802416123]
86
    [0.19910380406771044]
                             [0.19910353914794413]
                                                     86
                                                          [0.054163987625286666]
    [0.19910380406771047]
                             [0.19910353914794413]
                                                     35
                                                          [0.054163987625286666]
                             [0.13919383130962507]
68
    [0.13919430654143838]
                                                     68
                                                          [0.038817009741566606]
                                              [0.0]
55
                     [0.0]
                                                     55
                                                          [0.008670520231213872
61
                     [0.0]
                                              [0.0]
                                                     61
                                                          [0.008670520231213872]
60
                     [0.0]
                                              [0.0]
                                                     60
                                                          [0.008670520231213872
59
                     [0.0]
                                              [0.0]
                                                     59
                                                          [0.008670520231213872]
58
                                              [0.0]
                                                     58
                                                          [0.008670520231213872
57
                     [0.0]
                                              [0.0]
                                                     57
                                                          [0.008670520231213872]
56
                     [0.0]
                                              [0.0]
                                                     56
                                                          [0.008670520231213872
54
                                              [0.0]
                     0.0
                                                          [0.008670520231213872
```

```
Using NetworkX >
                             PageRank
     Hub Authority
                                0.245
  0.231
              0.231
                                0.245
 0.231
              0.231
                          0
                                0.187
              0.199
 0.199
                                0.187
  0.199
              0.199
                                0.134
   0.139
              0.139
```

Execution Time (implement)>

```
HITS Algorithm Execution time :0.0017117772195714097 sec
PageRank Algorithm Execution time :0.03571956540028605 sec
SimRank Algorithm Execution time :2.2835715058351636e-05 sec
```

Execution Time (NetworkX)>

```
HITS Algorithm Execution time :0.0007172217347932164 sec
PageRank Algorithm Execution time :0.0005856159032727182 sec
```

■ Result Summarize

跑完各個 Graph 後的小結論。觀察到若圖中形成迴圈,則迴圈上的節點其 PageRank 會一樣;邊較少的圖,SimRank 也會較為單純,相似度較低;像 Graph_1 此類型的圖,每個 Node 將自己的 indegree 數送至下一個 Node,則每個節點的 hub 和 authority 值皆相 同;若節點互為 in-out 的節點,會發現其每個點自己的 hubs 與其 authority 相同。

Performance Analysis

■ Compare with Exaction time

Algorithm	HITS		PageRank	
	My implementation	Using Networkx	My implementation	Using Networkx
Graph_1	0.00013	0.00014	0.00034	0.00051
Graph_2	0.00013	0.00013	7.6018	0.0003
Graph_3	0.00022	0.00053	0.00032	0.00034
Graph_4	0.00037	0.00082	0.00108	0.00059
Graph_5	0.0169	0.0586	1.0886	0.0183
Graph_6	0.2098	1.4151	6.1503	0.0597
Graph_7	0.0022	0.0458	0.3474	0.0293
Graph_8	0.0017	0.0007	0.0357	0.0005

在我 implementation 的程式與使用 NetworkX 套件的執行時間上來比較,PageRank 演算法均比 HITS 所花費的時間要多,另外由於套件都包好了也有結構化,與我使用矩陣 乘法以及迴圈下去跑,花費的時間有絕對的優勢,不過在點的數量比較少的圖中,可以發 現我的程式碼比較快一點點點,可能因為建矩陣的速度較快吧,但點多一點就麻煩了,如 果要優化的話,會盡量想試著改成稀疏矩陣,只記錄邊,而不要代全部的點下去跑。

Discussion

■ More limitations about link analysis algorithms

這些 link analysis algorithms 主要是依循著各點之射入及射出之邊下去運算,因此我覺得跟老師上課的時候說的 link analysis algorithms 其實與單純計算各點的 in&outdegree 有正相關,要找出比這個關係更進一步的資訊我覺得是目前 link analysis algorithms 重要的挑戰。

- Can link analysis algorithms really find the "important" pages from Web? 我認為不大能完全找到重要的 page/node,由於這些 link analysis algorithms 只能依照 page/node 間聯結的程度來分析出其中比較重要的 page/node,但不一定比較多 Node 連接的就比較重要,就算給予不同 Node 不同的 hub 值,那如何給這些 hub 值就相當於這 個 Node 重要的程度了。
- Any new idea about the link analysis algorithm?

如果 link analysis algorithm 用於 Web 中的話,可以基於語意來設計每個 page 的 hub 值,例如今天想找關於某個主題的重要網頁的話,直觀的想法大概是越有相關於此主題的

page 就會出現越多關於此主題的相關語句,那我們可以搜尋每個 page 中出現此主題 keyword 數量來定義其 hub 值,再丟進 PageRank 做運算。

■ What are practical issues when implement these algorithms in a real Web? 網頁連結太多,相關資訊變得難以收集,導致計算參數會變得複雜。若以矩陣運算,又多為稀疏矩陣,實作起來複雜度高實用性變得很低,而且也可能會有衝聯結數量的情形出現。

■ What is the effect of "C" parameter in SimRank?

SimRank 中 c 的取值會影響相似度計算過程的收斂速度,當 c 取值較大時收斂速度較慢,當 c 取值較小時收斂速度較快。

以下用 Graph_5 跑 SimRank 執行速度做比較:

C=0.2, Execution time: 0.6629111931060179 sec

C=0.4, Execution time: 0.6920787111041669 sec

C=0.6, Execution time :0.7254053339422857 sec

C=0.8, Execution time: 0.7110921481196593 sec

■ Design a new link-based similarity measurement

我認為可以先用 K-means 分群,讓有相同連接得點放在同一群,然後同群間算 Betweenness Centrality 找最高的中心點,在依照這個中心點連接的點做一個比較重要 的參考和加權,主要希望可以找出在網路中比較像是骨幹的 Node, 在來衡量其他 Node 的重要度。