Integral equations cheat sheet

June 2024

1 Green's functions

PDE	Equation	Dimension	G
Poisson/Laplace	$\Delta G(r) = -\delta(r)$	2	$\frac{1}{2\pi}\log\frac{1}{r}$
		3	$\frac{1}{4\pi r}$
Helmholtz	$(\Delta + k^2)G(r) = -\delta(r)$	2	$\frac{i}{4}H_0^{(1)}(kr)$
		3	$rac{e^{ikr}}{4\pi r}$
Yukawa/Klein-Gordon/ Screened Poisson	$(\Delta - k^2)G(r) = -\delta(r)$	2	$\frac{1}{4\pi}K_0(kr)$
		3	$\frac{e^{-kr}}{4\pi r}$
Stokes	$\Delta G - \nabla p = -\delta I$ $\Delta \cdot G = 0$	2	$\frac{1}{4\pi} \left(-I \log(r) + \frac{\vec{r} \otimes \vec{r}}{r^2} \right)$
		3	$\frac{1}{8\pi} \left(I \frac{1}{r} + \frac{\vec{r} \otimes \vec{r}}{r^3} \right)$
Vector wave	$\nabla \times \nabla \times G(r) - k^2 G(r) = I\delta(r)$	3	$\left(I + \frac{1}{k^2} \nabla \nabla\right) \frac{e^{ikr}}{4\pi r}$

2 Layer potentials in 2D

In the following, we adopt the notation that a subscript s denotes that the variable is associated with the source location (i.e. n_s is the normal at the source location) and t denotes that the variable is associated with the target location. We use $\vec{r}_{s,t}$ to denote the locations of the source and target, and r to denote their distance. We always assume that the normal vectors n are normalized, and denote unit tangent vectors by τ . Singularity here refers to the nature of the singularity of the on surface kernel on a smooth surface. The +/- limits refer to the limits from above and below (with orientation determined locally by the normal - + is in the direction of the normal).

2.1 Laplace

Potential	On surface	Singularity type	Limits $(+/-)$
Single/ S	$\frac{1}{2\pi}\log\frac{1}{r}$	Weak	N.A.
Double / D	$rac{(ec{r}_t \!-\! ec{r}_s) \!\cdot\! n_s}{2\pi r^2}$	Smooth	$\tfrac{1}{2}, -\tfrac{1}{2}$
$S' / n \cdot \nabla S$	$-\frac{(\vec{r}_t\!-\!\vec{r}_s)\!\cdot\!n_t}{2\pi r^2}$	Smooth	$-\frac{1}{2},\frac{1}{2}$
$D' / n \cdot \nabla D$	$\frac{n_t \cdot n_s}{2\pi r^2} - 2 \frac{((\vec{r_t} - \vec{r_s}) \cdot n_s)((\vec{r_t} - \vec{r_s}) \cdot n_t)}{2\pi r^4}$	Hypersingular	-

2.2 Helmholtz

Potential	On surface	Singularity type	Limits $(+/-)$
Single / S_k	$rac{i}{4}H_0^{(1)}(kr)$	Weak	N.A.
Double / D_k	$rac{(ec{r_t}-ec{r_s})\cdot n_s}{r}rac{ik}{4}H_1^{(1)}(kr)$	Weak	$\frac{1}{2},-\frac{1}{2}$
$S'_k / n \cdot \nabla S_k$	$rac{(ec{r}_s-ec{r}_t)\cdot n_t}{r}rac{ik}{4}H_1^{(1)}(kr)$	Weak	$-\frac{1}{2},\frac{1}{2}$
$D_k' / n \cdot \nabla D_k$	$\frac{ik}{4} \frac{n_t \cdot n_s}{r} H_1^{(0)}(kr) - \frac{ik^2}{4} \frac{((\vec{r_t} - \vec{r_s}) \cdot n_s)((\vec{r_t} - \vec{r_s}) \cdot n_t)}{r^2} H_2^{(0)}(kr)$	Hypersingular	-

2.3 Yukawa

Potential	On surface	Singularity type	Limits $(+/-)$
Single / S_{ik}	$\frac{1}{2\pi}K_0(kr)$	Weak	N.A.
Double / D_{ik}	$rac{(ec{r}_t - ec{r}_s) \cdot n_s}{r} rac{k}{2\pi} K_1(kr)$	Weak	$\frac{1}{2},-\frac{1}{2}$
$S'_{ik} / n \cdot \nabla S_{ik}$	$\frac{(\vec{r}_s - \vec{r}_t) \cdot n_t}{r} \frac{k}{2\pi} K_1(kr)$	Weak	$-\frac{1}{2},\frac{1}{2}$
$D'_{ik} / n \cdot \nabla D_{ik}$	$\frac{k}{2\pi} \frac{n_t \cdot n_s}{r} K_1(kr) - \frac{k^2}{2\pi} \frac{((\vec{r}_t - \vec{r}_s) \cdot n_s)((\vec{r}_t - \vec{r}_s) \cdot n_t)}{r^2} K_2^{(0)}(kr)$	Hypersingular	-

2.4 Stokes

Potential	On surface	Singularity type	Limits $(+/-)$
Single (Stokeslet) / $S_{\rm stok}$	$\frac{1}{4\pi} \left(-I \log(r) + \frac{(\vec{r_t} - \vec{r_s}) \otimes (\vec{r_t} - \vec{r_s})}{r^2} \right)$	Weak	N.A.
Double (Stresslet) / $D_{\rm stok}$	$\frac{(\vec{r}_t - \vec{r}_s) \otimes (\vec{r}_t - \vec{r}_s)}{r^2} \frac{n_s \cdot (\vec{r}_t - \vec{r}_s)}{\pi r^2}$	Smooth	$\frac{1}{2},-\frac{1}{2}$
Stokeslet pressure Π_S	$rac{(ec{r}_t \! - \! ec{r}_s)}{2\pi r^2}$	Singular	$(\frac{1}{2}n\otimes n),(-\frac{1}{2}n\otimes n)$
Stokeslet traction S'_{stok}	$-\frac{(\vec{r_t}\!-\!\vec{r_s}) \otimes (\vec{r_t}\!-\!\vec{r_s})}{r^2} \frac{n_t \!\cdot\! (\vec{r_t}\!-\!\vec{r_s})}{\pi r^2}$	Smooth	$-\frac{1}{2},\frac{1}{2}$
$n \cdot (\Pi_S + 0.5(\nabla S + (\nabla S)^T))$			
Stresslet Pressure Π_D	$-\frac{n_s}{2\pi r^2} + \frac{(\vec{r}_t - \vec{r}_s)(\vec{r}_t - \vec{r}_s) \cdot n_s}{r^4}$	Hypersingular	-

3 Layer potentials in 3D

In the following, we adopt the notation that a subscript s denotes that the variable is associated with the source location (i.e. n_s is the normal at the source location) and t denotes that the variable is associated with the target location. We use $\vec{r}_{s,t}$ to denote the locations of the source and target, and r to denote their distance. We always assume that the normal vectors n are normalized, and denote orthonormal tangent vectors by $\tau_{u/v}$. Singularity here refers to the nature of the singularity of the on surface kernel on a smooth surface. The +/- limits refer to the limits from above and below (with orientation determined locally by the normal - + is in the direction of the normal).

3.1 Laplace

Potential	On surface	Singularity type	Limits $(+/-)$
Single / S	$\frac{1}{4\pi r}$	Weak	N.A.
Double / D	$rac{(ec{r}_t \!-\! ec{r}_s) \!\cdot\! n_s}{4\pi r^3}$	Weak	$\tfrac{1}{2}, -\tfrac{1}{2}$
$S' / n \cdot \nabla S$	$-\frac{(\vec{r_t}\!-\!\vec{r_s})\!\cdot\!n_t}{4\pi r^3}$	Weak	$-rac{1}{2},rac{1}{2}$
$D' / n \cdot \nabla D$	$\frac{n_t \cdot n_s}{4\pi r^3} - 3 \frac{((\vec{r_t} - \vec{r_s}) \cdot n_s)((\vec{r_t} - \vec{r_s}) \cdot n_t)}{4\pi r^5}$	Hypersingular	-

3.2 Helmholtz

Potential	On surface	Singularity type	Limits $(+/-)$
Single / S_k	$rac{e^{ikr}}{4\pi r}$	Weak	N.A.
Double / D_k	$rac{(ec{r}_t-ec{r}_s)\cdot n_s(1-ikr)}{4\pi r^3}e^{ikr}$	Weak	$\tfrac{1}{2}, -\tfrac{1}{2}$
$S'_k / n \cdot \nabla S_k$	$-rac{(ec{r_t}-ec{r_s})\cdot n_t(1-ikr)}{4\pi r^3}e^{ikr}$	Weak	$-\frac{1}{2},\frac{1}{2}$
$ D_k' / n \cdot \nabla D_k $	$\frac{e^{ikr}}{4\pi r^5} \left[r^2 (n_s \cdot n_t)(1 - ikr) - (r \cdot n_s)(r \cdot n_t)(r^2 k^2 + 3kir - 3) \right]$	Hypersingular	-

3.3 Yukawa

Potential	On surface	Singularity type	Limits (+/-)
Single / S_k	$rac{e^{-kr}}{4\pi r}$	Weak	N.A.
Double / D_k	$\frac{(\vec{r_t} - \vec{r_s}) \cdot n_s (1+kr)}{4\pi r^3} e^{-kr}$	Weak	$\frac{1}{2},-\frac{1}{2}$
$S'_k / n \cdot \nabla S_k$	$-rac{(ec{r_t} - ec{r_s}) \cdot n_t (1 + kr)}{4\pi r^3} e^{-kr}$	Weak	$-\frac{1}{2},\frac{1}{2}$
$ D_k' / n \cdot \nabla D_k $	$\frac{e^{-kr}}{4\pi r^5} \left[r^2 (n_s \cdot n_t)(1+kr) + (r \cdot n_s)(r \cdot n_t)(r^2k^2 + 3kr + 3) \right]$	Hypersingular	-

3.4 Stokes

Potential	On surface	Singularity type	Limits $(+/-)$
Single (Stokeslet) / S_{stok}	$\frac{1}{8\pi}\left(I\frac{1}{r} + \frac{(\vec{r_t} - \vec{r_s})\otimes(\vec{r_t} - \vec{r_s})}{r^3}\right)$	Weak	N.A.
Double (Stresslet) / D_{stok}	$\frac{3(\vec{r}_{t} - \vec{r}_{s}) \otimes (\vec{r}_{t} - \vec{r}_{s})}{r^{2}} \frac{n_{s} \cdot (\vec{r}_{t} - \vec{r}_{s})}{4\pi r^{3}}$	Weak	$\frac{1}{2},-\frac{1}{2}$
Stokeslet pressure Π_S	$rac{(ec{r}_t \! - \! ec{r}_s)}{4\pi r^3}$	Singular	$(\frac{1}{2}n\otimes n), (-\frac{1}{2}n\otimes n)$
Stokeslet traction S'_{stok}	$-\frac{3(\vec{r}_t - \vec{r}_s) \otimes (\vec{r}_t - \vec{r}_s)}{r^2} \frac{n_t \cdot (\vec{r}_t - \vec{r}_s)}{4\pi r^3}$	Weak	$-rac{1}{2},rac{1}{2}$
$n \cdot (\Pi_S + 0.5(\nabla S + (\nabla S)^T))$			
Stresslet Pressure Π_D	$-\frac{n_s}{2\pi r^3} + \frac{6(\vec{r_t} - \vec{r_s})(\vec{r_t} - \vec{r_s}) \cdot n_s}{r^5}$	Hypersingular	-

3.5 Maxwell

In this section, ρ is a scalar density and J is a vector tangential density

Potential	On surface	Singularity type (Tangential/normal)	Limits (+/-)
$\nabla S_k[\rho]$	$-rac{(ec{r_t}-ec{r_s})(1-ikr)}{4\pi r^3}e^{ikr} ho$	Singular, Weak	$-\frac{1}{2}n_t\rho,\frac{1}{2}n_t\rho$
	$-\frac{(1-ikr)}{4\pi r^3}e^{ikr}\begin{bmatrix} (y_t-y_s)J_z - (z_t-z_s)J_y\\ (z_t-z_s)J_x - (x_t-x_s)J_z\\ (x_t-x_s)J_y - (y_t-y_s)J_x \end{bmatrix} -\frac{((\vec{r}_t-\vec{r}_s)\cdot J_y)(1-ikr)}{2}e^{ikr}$	Weak, Singular	$\frac{n \times J}{2}, -\frac{n \times J}{2}$
$\nabla \cdot S_k[J]$	$-\frac{((\vec{r}_t - \vec{r}_s) \cdot J)(1 - ikr)}{4\pi r^3}e^{ikr}$	Singular, Singular	-

4 Boundary value problems in 2D

In the following we adopt the convention that normals point outwards.

4.1 Laplace

Boundary condition	Interior/Exterior/Transmission	Representation	Integral Equation	Known null space
Dirichlet	Interior	D	$-\frac{1}{2}I + D$	-
Dirichlet	Exterior	D	$\frac{1}{2}I + D$	1 per connected component
Neumann	Interior	S	$\frac{1}{2}I + S'$	1 per connected component
Neumann	Exterior	S	$-\frac{1}{2}I + S'$	-

4.2 Helmholtz

Boundary condition	Interior / Exterior / Transmission	Representation	Integral Equation	Known null space
Dirichlet	Interior	D_k	$-\frac{1}{2}I + D_k$	some k (Lap. eigs.)
Dirichlet	Exterior	D_k	$\frac{1}{2}I + D_k$	some k (spur. resonances)
Dirichlet	Exterior	$D_k - i\alpha S_k$	$\frac{1}{2}I + D_k - i\alpha S_k$	-
Neumann	Interior	$S_{m{k}}$	$\frac{1}{2}I + S_k'$	some k (Lap. eigs.)
Neumann	Exterior	S_{k}	$-rac{1}{2}I+S_k'$	some k (spur. resonances)
Neumann	Exterior	Combined $\beta[S_k + i\alpha D_k S_{ik}],$ $\beta = -\frac{1}{\frac{1}{2} + \frac{i}{4}\alpha}$	$I + \beta S_k' + i\beta \alpha (D_k' - D_{ik}')(S_{ik}) + i\beta \alpha (S_{ik}')^2$	-
$\alpha u_{e} - \beta u_{i} = f$ $\mu \partial_{n} u_{e} - \nu \partial_{n} u_{i} = g$	Transmission	Ext: $\frac{1}{\nu}D_{k_{\mathbf{e}}}[\rho] + \frac{1}{\alpha}S_{k_{\mathbf{e}}}[\sigma],$ Int: $\frac{1}{\mu}D_{k_{\mathbf{i}}}[\rho] + \frac{1}{\beta}S_{k_{\mathbf{i}}}[\sigma]$	$\begin{bmatrix} I + \frac{1}{\nu} D_{k_e} - \frac{1}{\mu} D_{k_i} & \frac{1}{\alpha} S_{k_e} - \frac{1}{\beta} S_{k_i} \\ \frac{1}{\nu} D'_{k_e} - \frac{1}{\mu} D'_{k_i} & -I + \frac{1}{\alpha} S'_{k_e} - \frac{1}{\beta} S'_{k_i} \end{bmatrix} \begin{bmatrix} \rho \\ \sigma \end{bmatrix}$	-

4.3 Yukawa

Boundary condition	Interior / Exterior / Transmission	Representation	Integral Equation	Known null space
Dirichlet	Interior	D_{ik}	$-\frac{1}{2}I + D_{ik}$	-
Dirichlet	Exterior	D_{ik}	$\frac{1}{2}I + D_{ik}$	-
Neumann	Interior	S_{ik}	$\frac{1}{2}I + S'_{ik}$	-
Neumann	Exterior	S_{ik}	$-\frac{1}{2}I + S'_{ik}$	-

4.4 Stokes

Boundary condition	Interior/Exterior	Representation	Integral Equation	Known null space
Velocity/Resistance	Interior	$D_{ m stok}$	$-\frac{1}{2}I + D_{\text{stok}}$	1 (Fixable by $n_t \int_{\Gamma} n_s \cdot$)
Velocity/Resistance	Interior	$\alpha D_{\rm stok} + \beta S_{\rm stok}$	$-\frac{1}{2}\alpha + \alpha D_{\rm stok} + \beta S_{\rm stok}$	1 (Fixable by $n_t \int_{\Gamma} n_s \cdot$)
Velocity/Resistance	Exterior	$D_{ m stok}$	$\frac{1}{2}I + D_{\mathrm{stok}}$	2 per connected component
Velocity/Resistance	Exterior	$\alpha D_{\rm stok} + \beta S_{\rm stok}$	$\frac{1}{2}\alpha + \alpha D_{\text{stok}} + \beta S_{\text{stok}}$	Density must be zero mean, 2 (fixable by constants)

5 Boundary value problems in 3D

In the following we adopt the convention that normals point outwards. The tangent vectors τ_u and τ_v are defined so that $\tau_u \times \tau_v = n$.

5.1 Laplace

Boundary condition	Interior/Exterior/Transmission	Representation	Integral Equation	Known null space
Dirichlet	Interior	D	$-\frac{1}{2}I + D$	-
Dirichlet	Exterior	D	$\frac{1}{2}I + D$	1 per connected component
Neumann	Interior	S	$\frac{1}{2}I + S'$	1 per connected component
Neumann	Exterior	S	$-\frac{1}{2}I + S'$	-

5.2 Helmholtz

Boundary condition	Interior / Exterior / Transmission	Representation	Integral Equation	Known null space
Dirichlet	Interior	D_k	$-\frac{1}{2}I + D_k$	some k (Lap. eigs.)
Dirichlet	Exterior	D_k	$\frac{1}{2}I + D_k$	some k (spur. resonances)
Dirichlet	Exterior	$D_k - i\alpha S_k$	$\frac{1}{2}I + D_k - i\alpha S_k$	-
Neumann	Interior	S_{k}	$\frac{1}{2}I + S_k'$	some k (Lap. eigs.)
Neumann	Exterior	S_k	$-rac{1}{2}I+S_k'$	some k (spur. resonances)
Neumann	Exterior	Combined $\beta[S_k + i\alpha D_k S_{ik}],$ $\beta = -\frac{1}{\frac{1}{2} + \frac{i}{4}\alpha}$	$I + \beta S_k' + i\beta \alpha (D_k' - D_{ik}')(S_{ik}) + i\beta \alpha (S_{ik}')^2$	-
$\alpha u_{e} - \beta u_{i} = f$ $\mu \partial_{n} u_{e} - \nu \partial_{n} u_{i} = g$	Transmission	Ext: $\frac{1}{\nu}D_{k_{\mathbf{e}}}[\rho] + \frac{1}{\alpha}S_{k_{\mathbf{e}}}[\sigma],$ Int: $\frac{1}{\mu}D_{k_{\mathbf{i}}}[\rho] + \frac{1}{\beta}S_{k_{\mathbf{i}}}[\sigma]$	$\begin{bmatrix} I + \frac{1}{\nu} D_{k_e} - \frac{1}{\mu} D_{k_i} & \frac{1}{\alpha} S_{k_e} - \frac{1}{\beta} S_{k_i} \\ \frac{1}{\nu} D'_{k_e} - \frac{1}{\mu} D'_{k_i} & -I + \frac{1}{\alpha} S'_{k_e} - \frac{1}{\beta} S'_{k_i} \end{bmatrix} \begin{bmatrix} \rho \\ \sigma \end{bmatrix}$	-

5.3 Yukawa

Boundary condition	Interior / Exterior / Transmission	Representation	Integral Equation	Known null space
Dirichlet	Interior	D_{ik}	$-\frac{1}{2}I + D_{ik}$	-
Dirichlet	Exterior	D_{ik}	$\frac{1}{2}I + D_{ik}$	-
Neumann	Interior	S_{ik}	$\frac{1}{2}I + S'_{ik}$	-
Neumann	Exterior	S_{ik}	$-\frac{1}{2}I + S'_{ik}$	-

5.4 Stokes

Boundary condition	Interior/Exterior	Representation	Integral Equation	Known null space
Velocity/Resistance	Interior	$D_{ m stok}$	$-\frac{1}{2}I + D_{\text{stok}}$	1 (Fixable by $n_t \int_{\Gamma} n_s \cdot$)
Velocity/Resistance	Interior	$\alpha D_{\rm stok} + \beta S_{\rm stok}$	$-\frac{1}{2}\alpha + \alpha D_{\rm stok} + \beta S_{\rm stok}$	1 (Fixable by $n_t \int_{\Gamma} n_s \cdot$)
Velocity/Resistance	Exterior	$D_{ m stok}$	$\frac{1}{2}I + D_{\mathrm{stok}}$	3 per connected component
Velocity/Resistance	Exterior	$\alpha D_{\rm stok} + \beta S_{\rm stok}$	$\frac{1}{2}\alpha + \alpha D_{\rm stok} + \beta S_{\rm stok}$	-

5.5 Maxwell

In this section, all perfect electric boundary (pec) value problems are for the exterior only. As before, J, K, M are surface vector fields, ρ, q, r are scalar functions defined on the surface.

BC	Representation	Conditions Imposed	Integral Equation	Known null space/ Failure mode
pec	$H = \nabla \times S_k[J]$ $E = ikS_k[J] - \nabla S_k[\rho]$	α	$\frac{J}{2} - n \times \nabla \times S_k[J] + \alpha n \times n \times (ikS_k[J] - \nabla S_k \rho)$ $\frac{\rho}{2} + S_k'[\rho] - ikn \cdot S_k[J] + \alpha(\nabla \cdot S_k[J] - ikS_k[\rho])$	Topological low frequency break- down Not second kind