



# Deep Recursive Network Embedding with Regular Equivalence

Ke Tu Isinghua U Peng Cui

Xiao Wang Tsinghua H Philip S. Yu

Wenwu Zhu

Tsinghua U Tsinghua U

Tsinghua U

UIC&Tsinghua

Tsinghua U

#### **Network Analytics**





Social Networks

**Biology Networks** 

Networks are widely used to represent the rich pairwise relationships of data objects

#### Network Embedding



Networks Embedding aims to learn a low-dimensional representation for each node

#### Existing Embedding Methods



- By direct links(first-order) or common neighborhoods (second-order) between nodes
- They can only preserve local proximity (Structural equivalence), can not get the global position

#### Motivation

- Vertexes in different parts of the network may have similar roles(global position)
- Example:
  - Managers in the social network of a company
  - Outliers in a network in the task of anomaly detection





How to preserve the role or importance of a vertex in embedding space?

# Regular Equivalence

Two vertexes are defined to be regularly equivalent if they have network neighbors which are themselves regularly equivalent.



- Structural equivalence s
  - N(u) = N(v)
  - Direct way
  - Common neighbors

- Regular equivalence r
  - $\{r(i)|i \in N(u)\} = \{r(j)|j \in N(u)\}$
  - Recursive way
  - Similar global position

We need to preserve Regular equivalence instead of Structural equivalence

# Regular Equivalence

Basis: two regularly equivalent nodes should have similar embeddings

- 1. Explicitly calculate the regular equivalence of all vertex pairs
  - infeasible for large-scale networks
- 2. Replace regular equivalence into simpler graph theoretic metrics
  - Such as centrality measures
    - Only capture a specific aspect of network role
  - Some centrality measures also bear high computational complexity
    - Such as between centrality, closeness centrality

How to effectively and efficiently preserve regular equivalence in network embedding

#### Deep Recursive Network Embedding

- The definition of regular equivalence is recursive
  - Preserve the regular equivalence by aggregating neighbors' information in a recursive way

$$\mathcal{L}_1 = \sum_{v \in V} ||\mathbf{X}_v - Agg(\{\mathbf{X}_u | u \in \mathcal{N}(v)\})||_F^2,$$

- How to design the aggregating function
  - Variable length of neighbors
  - Highly nonlinear
  - → Agg = Layer-normalized LSTM

#### Deep Recursive Network Embedding

- Heavy-tailed distribution

  - Consider sample node by their degree
  - $P(v) \propto dv$
- The trivial solution
  - Regularization
  - Use node degree as the weakly guided information

$$\mathcal{L}_{reg} = \sum_{v \in V} \|\log(d_v + 1) - MLP(Agg(\{X_u | u \in \mathcal{N}(v)\}))\|_F^2,$$

### Deep Recursive Network Embedding



- (a) Sampling neighborhoods
- (b) Sorting neighborhoods by their degree
- (c) Aggregate neighbors
- (d) A Weakly guided regularizer

#### Theoretical Analysis

Theorem 3.5. If the centrality C(v) of node v satisfies that  $C(v) = \sum_{u \in \mathcal{N}(v)} F(u)C(u)$  and  $F(v) = f(\{F(u), u \in \mathcal{N}(v)\})$  where f is any computable function, then C(v) is one of the optimal solutions of our model.



| Centrality  | Definition $C(v)$                              | $F(v) \mid f(\{x_i\})$       |
|-------------|------------------------------------------------|------------------------------|
| Degree      | $d_v = \sum_{u \in \mathcal{N}(v)} I(d_u)$     | $1/d_v \mid 1/(\sum I(x_i))$ |
| Eigenvector | $1/\lambda * \sum_{u \in \mathcal{N}(v)} C(u)$ | 1/λ mean                     |
| PageRank    | $\int u \in \mathcal{N}(v) \ 1/d_u * C(u)$     | $1/d_v \mid 1/(\sum I(x_i))$ |

#### **Complexity Analysis**

- The time complexity of training process is  $O(NSk^2I)$ 
  - N is the number of nodes
  - S is the limited sample number.
  - k is the length of embedding, set as 32, 64, 128
  - I is the number of iterations(epochs)
- Conclusion: the complexity of training process is linear to the number of nodes n.

#### **Experiment --- Network Visualization**



#### Experiment --- Network Visualization



Color: k-core

# Experiment --- predict centrality

| centrality | closeness | betweenness | eignvector | k-core  |
|------------|-----------|-------------|------------|---------|
| DeepWalk   | 0.6016    | 3.7188      | 2.1543     | 13.2755 |
| LINE       | 0.5153    | 4.3919      | 1.5072     | 15.8179 |
| node2vec   | 1.0489    | 3.4065      | 3.9436     | 39.2156 |
| struc2vec  | 0.2365    | 0.25371     | 1.0544     | 9.0858  |
| DRNE       | 0.1909    | 0.1261      | 0.5267     | 5.5683  |

The MSE value of predicting centralities on Jazz dataset (\*10-2)

| centrality | closeness | betweenness | eignvector | k-core  |
|------------|-----------|-------------|------------|---------|
| DeepWalk   | 0.2982    | 1.7836      | 1.1194     | 19.7016 |
| LINE       | 0.3979    | 1.8425      | 1.5167     | 34.9079 |
| node2vec   | 0.3573    | 1.6958      | 1.1432     | 24.1704 |
| struc2vec  | 0.2947    | 1.6018      | 1.0445     | 25.3047 |
| DRNE       | 0.1101    | 0.6676      | 0.3108     | 7.7210  |

The MSE value of predicting centralities on BlogCatalog dataset (\*10-2)

#### Experiment --- Regular Equivalence Prediction



Figure 5: Kendall rank correlation coefficient by fitting regular equivalence on Jazz and BlogCatalog dataset.

#### Experiment --- Structural Role Classification



### **Experiment --- Training Time**



Linear training time

#### Summary

- Investigate a novel problem of learning node representations with regular equivalence
- Propose a novel deep model DRNE
  - Learn node representations by aggregating neighbors' representations recursively in a non-linear way
  - Theoretically prove that the learned representations can well reflect several popular and typical node centralities
  - Linear time complexity to the number of node
- Extensive experiments



#### Thanks!

Ke Tu, Tsinghua University tuke1993@gmail.com

Deep Recursive Network Embedding with Regular Equivalence