ECON 422: International Economics

Lecture 3: Gains From Trade and Comparative Advantage Theory

Pablo Fajgelbaum

UCLA

Winter 2018

This Lecture

• Gains from trade and comparative advantage

Assumptions from Neoclassical Theory

- Neoclassical Assumptions
 - Perfect competition
 - Constant Returns to Scale (CRS)
 - Note: DRS can be allowed
 - IRS change the nature of the model
 - Identical, homothetic preferences (implies representative agent)
 - No distortions
- Small Open Economy
 - Price-taker in world markets
 - (In a large open economy, world price depends on how much the country trades)

Basic Ingredients

- Production Possibility Frontier
 - Market Allocates Resources to maximize value of production
- Budget Constraint
 - Country faces budget constrained determined by international prices
- Indifference Curves
 - Representative agent chooses consumption bundle to maximize utility

The Basic Ingredients in a Graph

Autarky vs. Free Trade

- Many of the central questions in trade mentioned above are answered by comparing two extreme scenarios:
 - Autarky vs. Free trade
- Intermediate questions
 - How does good market integration affect prices?
 - What is the effect of prices on the outcome of interest?

Three General Results from Neoclassical Trade Theory

- Gains from trade
- 2 Comparative advantages:
- Terms of trade

Gains From Trade

Gains From Trade: Intuition

- Producing X^A and consuming C^A is feasible at any relative price
 - Relative price change vs. autarky expands consumption possibilities
 - ullet o Consumption gains
- Producing X^F raises revenue
 - Reallocation of production vs. autarky increases revenue
 - $\bullet \ \to Production \ gains$
- In a small open economy, trading is like any other productive activity
 - Not trading is always feasible
 - First welfare theorem implies that free trade is preferred to any other allocation

GFT: General Result

- $(c^F, x^F, m^F) = \text{(column)}$ vectors of consumption, production, imports
 - under (row) vector of free-trade prices p^F
 - leads to utility u^F
- $(c^A, x^A, m^A) = \text{(column)}$ vectors of consumption, production, imports
 - under (row) vector of autarky prices p^A
 - leads to utility u^A
- Note: exports are equal to -m
- e(p, u)= minimum expenditure needed to attain utility u and prices p

GFT: General Result

• Free-trade:

$$e\left(p^{F}, u^{F}\right) = p^{F}c^{F} = p^{F}x^{F}$$

and p^F given

• Autarky:

$$e\left(p^A,u^A\right)=p^Ac^A$$

and
$$c^A = x^A$$

$$e\left(p^{F},u^{A}\right)\leq p^{F}c^{A}$$

Proof

$$e\left(p^{F}, u^{A}\right) \leq p^{F} c^{A}$$

= $p^{F}\left(x^{A} + m^{A}\right)$

Proof

$$e\left(p^{F}, u^{A}\right) \leq p^{F} c^{A}$$
$$= p^{F} \left(x^{A} + m^{A}\right)$$
$$\leq p^{F} x^{F}$$

$$e\left(p^{F}, u^{A}\right) \leq p^{F} c^{A}$$

$$= p^{F} \left(x^{A} + m^{A}\right)$$

$$\leq p^{F} x^{F}$$

$$= e\left(p^{F}, u^{F}\right)$$

$$e\left(p^{F}, u^{A}\right) \leq p^{F} c^{A}$$

$$= p^{F} \left(x^{A} + m^{A}\right)$$

$$\leq p^{F} x^{F}$$

$$= e\left(p^{F}, u^{F}\right)$$

$$\to u^{A} \leq u^{F}$$

$$e\left(p^{F}, u^{A}\right) \leq p^{F} c^{A}$$

$$= p^{F} \left(x^{A} + m^{A}\right)$$

$$\leq p^{F} x^{F}$$

$$= e\left(p^{F}, u^{F}\right)$$

$$\to u^{A} \leq u^{F}$$

- Notes
 - Holds for any free-trade price
 - First inequality = consumption gains; Second inequality = production gains
- Inequalities are weak. When does the theorem fail?
 - No substitution on consumption or production
 - Identical countries

- In small open economy: No
- Distorted allocation with consumption taxes and production subsidies
 - Consumers face $p^F + \tau^c$, choose c^B , get utility u^B
 - Producers face $p^F + \tau^p$, choose y^B
 - Tax rebated lump sum $\rightarrow p^F c^F = p^F x^F$

- In small open economy: No
- Distorted allocation with consumption taxes and production subsidies
 - Consumers face $p^F + \tau^c$, choose c^B , get utility u^B
 - Producers face $p^F + \tau^p$, choose y^B
 - Tax rebated lump sum $\rightarrow p^F c^F = p^F x^F$
- Same reasoning as before applies:

$$e\left(p^{F}, u^{B}\right) \leq p^{F} c^{B}$$

$$= p^{F} \left(x^{B} + m^{B}\right)$$

$$\leq p^{F} x^{F}$$

$$= e\left(p^{F}, u^{F}\right)$$

$$\to u^{B} \leq u^{F}$$

• Free trade is preferred to any feasible allocation

- In large economy: Yes
- Distorted allocation with consumption taxes and production subsidies
 - Now, world price is $p^{FB} \neq p^F$
 - I.e., world price depends on the policy

- In large economy: Yes
- Distorted allocation with consumption taxes and production subsidies
 - Now, world price is $p^{FB} \neq p^F$
 - I.e., world price depends on the policy
- Free trade (p^F) preferred to distorted trade (p^{FB}) if it improves terms of trade:
 - I.e., if

$$p^{F}m^{B} = \left(p^{F} - p^{FB}\right)m^{B} \leq 0$$

then $u^F \geq u^B$

• Otherwise, distorted trade could be preferred

- In large economy: Yes
- Distorted allocation with consumption taxes and production subsidies
 - Now, world price is $p^{FB} \neq p^F$
 - I.e., world price depends on the policy
- Free trade (p^F) preferred to distorted trade (p^{FB}) if it improves terms of trade:
 - I.e., if

$$p^{F}m^{B} = \left(p^{F} - p^{FB}\right)m^{B} \leq 0$$

then $u^F \geq u^B$

Why?

$$\begin{split} e\left(p^{F}, u^{B}\right) &\leq p^{F} c^{B} \\ &= p^{F} \left(x^{B} + m^{B}\right) \\ &\leq p^{F} x^{F} + p^{F} m^{B} \\ &= e\left(p^{F}, u^{F}\right) + p^{F} m^{B} \end{split}$$

2. Comparative Advantages

- What determines the pattern of trade?
- In neoclassical models, the pattern of trade depends on exogenous variables:
 - Technologies, endowments, tastes, institutions
 - No role for multiple equilibria or agglomeration
- The gains-from-trade theorem implies a general correlation result without introducing details of specific models
 - However, the trade pattern cannot be predicted for specific goods, except in special cases

2. Comparative Advantages

CA: General Result

Suppose gains from trade theorem holds. Then

$$\left(p^{A}-p^{F}\right) m^{F}\geq 0$$

- I.e., import the good that is more expensive under autarky
- Why?
 - We have $p^A c^F \ge p^A c^A$
 - In addition: $p^A x^F \leq p^A x^A$
 - Subtracting the second line from the firs and using $p^F m^F = 0$
- With 2 goods and 2 countries
 - Import goods which are more expensive under autarky at home than abroad

CA: 2 by 2 Case

- With 2 goods and 2 countries (home and foreign=*)
 - Home imports=Foreign exports: $m_1^F=-m_1^{F*}$ and $m_2^F=-m_2^{F*}$
 - Import goods which are more expensive under autarky at home than abroad

• I.e.,
$$m_1^F > 0$$
 if $\frac{p_1^A}{p_2^A} > \frac{p_1^{A*}}{p_2^{A*}}$

- Key implication
 - Export the goods that are more or less abundant?
 - Export the goods that are in higher or lower supply?

CA: 2 by 2 Case

3. Terms of Trade

(a) Production and Consumption

(b) Relative Supply and Demand

ToT: General Result

• To a first order approximation, the equivalent variation to a change in prices Δp is:

$$(x-c)\Delta p$$

- Welfare gain if % increase in price is larger in sectors with larger trade surplus
- GFT increase with $p^F p^A$
- Intuition: to a first order approximation, no quantity effects from price changes
 - so welfare effect = net revenue effect
 - so if p_g^F changes net revenue effect is $y_g^F c_g^F$

ToT: Implications

- When the price of exports increases due to international shocks
 - Quantity and value exported increases (in units of imported goods)
 - Quantity imported will...?
 - Country's welfare increases
- To a first order approximation, GFT are zero at autarky
 - Perceived benefits of globalization are lower in less open economies
- Distributional effects?

Redistribution

- So far, only aggregate gains
- Assume heterogeneous households in terms of factor ownership and preferences
 - Household h earns e^h s.t. $\sum e^h = px$ Consumes c^h such that $\sum c^h = c$

 - Indirect utility: $v^h(p, e^h)$
- Trade creates winners and losers:
 - Through income=expenditure
 - Through individual price indexes

Redistribution: General Result

- Result: there are lump-sum transfers such that free trade is Pareto superior to autarky
- Proof
 - Transfers to household h: $T^h = p^F c^{hA} e^{hF}$

Redistribution: General Result

- Result: there are lump-sum transfers such that free trade is Pareto superior to autarky
- Proof
 - Transfers to household h: $T^h = p^F c^{hA} e^{hF}$
 - Household h can afford c^{hA}
 - Yet scheme is self-financing: $\sum_h T^h = p^F c^A p^F x^F = p^F \left(x^A x^F \right) \leq 0$
- Notes:
 - Only domestic transfers are needed
 - Informationally very intensive
 - Less informationally intensive: taxes on goods and factors

Summary of Neoclassical Trade

- Gains from trade
 - If free-trade prices differ from autarky prices, representative consumer gains from trade
 - For a small economy, there is no better allocation than undistorted free trade
 - But for a large economy there may be, if it leads to terms-of-trade improvements
- 2 Comparative advantages:
 - Countries export goods whose relative price is relatively lower under autarky than under trade
- Terms of trade
 - Welfare is increasing in the relative price of exports
- Redistribution with heterogeneous consumers and workers
 - There is always a redistribution policy that leaves everyone at least as well off as before a trade liberalization

Application: Effects of Economic Growth

- Is economic growth in China good for the standard of living in the U.S.?
- Is growth in a country more or less valuable when it is integrated in the world economy?
- Key distinction: export-biased growth versus import-biased growth

Biased Growth

(a) Growth biased toward cloth

(b) Growth biased toward food

Biased Growth and ToT

Relative price of cloth, P_C/P_F

Relative quantity of cloth, Q_C/Q_F

(c) Effects of biased growth on relative supply

ToT of U.S. and China

Source: World Development Indicators, World Bank.