# Tutorial LAMMPS

# Dr. Caetano R. Miranda

# Sumário

| 1            | LA                            | LAB01: água 2                       |    |  |  |  |  |  |  |  |  |
|--------------|-------------------------------|-------------------------------------|----|--|--|--|--|--|--|--|--|
|              | 1.1                           | Objetivos                           | 2  |  |  |  |  |  |  |  |  |
|              | 1.2                           | Construção do sistema               | 2  |  |  |  |  |  |  |  |  |
|              | 1.3                           | Arquivo de entrada do Lammps        | 2  |  |  |  |  |  |  |  |  |
|              | 1.4                           | Simulação no ensamble NVE           | 3  |  |  |  |  |  |  |  |  |
|              | 1.5                           | Atividades                          | 3  |  |  |  |  |  |  |  |  |
|              | 1.6                           | Determinando o volume médio         | 4  |  |  |  |  |  |  |  |  |
|              |                               | 1.6.1 Atividades                    | 4  |  |  |  |  |  |  |  |  |
|              | 1.7                           | Distribuição radial de pares $g(r)$ | 5  |  |  |  |  |  |  |  |  |
|              | 1.8                           | Atividades                          | 5  |  |  |  |  |  |  |  |  |
|              | 1.9                           | Constante de auto-difusão           | 7  |  |  |  |  |  |  |  |  |
| <b>2</b>     | LAB02: heptano $(C_7H_{16})$  |                                     |    |  |  |  |  |  |  |  |  |
|              | 2.1                           | Objetivos                           | 9  |  |  |  |  |  |  |  |  |
|              | 2.2                           | Construção do sistema               | 9  |  |  |  |  |  |  |  |  |
|              | 2.3                           | Atividades                          | 9  |  |  |  |  |  |  |  |  |
| 3            | LAB03: interface água/heptano |                                     |    |  |  |  |  |  |  |  |  |
|              | 3.1                           | Objetivos                           | 10 |  |  |  |  |  |  |  |  |
|              | 3.2                           | Construção do sistema               | 10 |  |  |  |  |  |  |  |  |
|              | 3.3                           | Perfil de densidade                 | 11 |  |  |  |  |  |  |  |  |
|              | 3.4                           | Atividades                          | 11 |  |  |  |  |  |  |  |  |
|              | 3.5                           | Tensão interfacial                  | 12 |  |  |  |  |  |  |  |  |
| 4            | LAB04: dióxido de carbono     |                                     |    |  |  |  |  |  |  |  |  |
|              | 4.1                           | Objetivos                           | 13 |  |  |  |  |  |  |  |  |
|              | 4.2                           | Detalhes da simulação               | 13 |  |  |  |  |  |  |  |  |
|              | 4.3                           | Análise dos resultados              | 13 |  |  |  |  |  |  |  |  |
|              |                               | 4.3.1 Viscosidade                   | 14 |  |  |  |  |  |  |  |  |
| $\mathbf{R}$ | oforô                         | ncias                               | 15 |  |  |  |  |  |  |  |  |

## 1 LAB01: água

## 1.1 Objetivos

- 1. Criar a topologia do sistema utilizando o pacote PACKMOL[1] e o script topol.sh.
- 2. Realizar simulações de dinâmica molecular considerando diferentes ensembles termodinâmicos através do pacote LAMMPS[2].
- Determinar a distribuição radial de pares e o coeficiente de difusão em condições normais de temperatura e pressão.

## 1.2 Construção do sistema

Desejamos realizar simulações de dinâmica molecular da água na fase bulk a 300K e 1atm. Um bom ponto de partida é criar uma configuração molecular que possui a densidade experimental da água nessas condições  $(1.0g/cm^3)$ .

Usaremos o pacote PACKMOL[1] para gerar uma configuração inicial contendo 267 moléculas em uma caixa de volume  $8.0nm^3$ . Para isso, execute o seguinte comando no diretório **LAB01**<sup>1</sup>:

Podemos visualizar a configuração gerada com o programa *Visual Molecular Dynamics* (VMD):

A partir do arquivo bulk\_water.xyz podemos gerar o arquivo de topologia do sistema que deverá conter informações essenciais sobre o campo de força utilizado. Esse arquivo contém os parâmetros Lennard-Jones e as cargas do potencial de Coulomb, entre outros dados. O arquivo de topologia pode ser gerado através do script topol.sh:

O arquivo water\_bulk.top é gerado replicando as informações sobre uma única molecula contidas no documento water.top. Abra-os para visualizar e entender a sua estrutura.

#### 1.3 Arquivo de entrada do Lammps

Abra o arquivo de entrada do lammps *in.water\_nve*. Nele encontram-se anotações sobre o significado de cada linha de comando.

 $<sup>^{1}</sup>$ Em  $\sim$ /Documents/DISCIPLINA/TUTORIAL\_LAMMPS/LAB01/water

#### 1.4 Simulação no ensamble NVE

Execute a seguinte linha de comando para realizar a simulação no ensemble microcanônico:

\$ lammps < in.water\_nve

onde serão gerados os seguintes arquivos:

- log.lammps: arquivo com informações da simulação.
- bulk\_water.lammpstrj: arquivo das trajetórias.
- prod\_bulk\_water.top: arquivo de topologia que poderá ser utilizado em uma próxima simulação.

Utilize a seguinte linha de comando para salvar as informações de sua simulação em um novo arquivo:

\$ cat log.lammps > log.lammps\_nve

Abra o arquivo log.lammps\_nve:

\$ gedit log.lammps\_nve

e edite-o de forma a manter somente as informações termodinâmicas da fase de produção (semelhante ao mostrado na figura 1). Após isso, salve o arquivo.

| #5 | Step Temp | KinEng PotEn | g TotEng Pres | ss Volume Dens | ity        |            |       |            |
|----|-----------|--------------|---------------|----------------|------------|------------|-------|------------|
|    | 211       | 300          | 5737.4632     | -27654.911     | -21917.447 | 2380.1795  | 64000 | 0.99982451 |
|    | 300       | 184.47999    | 3528.1572     | -25439.502     | -21911.345 | 5298.338   | 64000 | 0.99982451 |
|    | 400       | 158.11493    | 3023.9287     | -24920.291     | -21896.363 | -3557.8494 | 64000 | 0.99982451 |
|    | 500       | 153.59646    | 2937.5134     | -24834.775     | -21897.262 | 1528.8845  | 64000 | 0.99982451 |
|    | 600       | 167.44978    | 3202.4564     | -25105.767     | -21903.31  | -3052.7684 | 64000 | 0.99982451 |
|    | 700       | 159.85611    | 3057.2286     | -24951.119     | -21893.891 | 1986.3739  | 64000 | 0.99982451 |
|    | 800       | 158.59483    | 3033.1067     | -24926.513     | -21893.406 | -3425.5712 | 64000 | 0.99982451 |
|    | 900       | 167.54349    | 3204.2488     | -25102.034     | -21897.786 | 1818.7137  | 64000 | 0.99982451 |
|    | 1000      | 165.12748    | 3158.0427     | -25053.379     | -21895.337 | -3475.4444 | 64000 | 0.99982451 |
|    | 1100      | 164.48132    | 3145.6851     | -25040.245     | -21894.56  | 1939.0182  | 64000 | 0.99982451 |
|    | 1200      | 162.73935    | 3112.3702     | -25005.221     | -21892.851 | -3769.6034 | 64000 | 0.99982451 |
|    | 1300      | 164.11451    | 3138.6699     | -25032.088     | -21893.418 | 1939.8692  | 64000 | 0.99982451 |
|    | 1400      | 169.79568    | 3247.3216     | -25144.204     | -21896.883 | -3637.5705 | 64000 | 0.99982451 |
|    | 1500      | 168.12223    | 3215.317      | -25110.197     | -21894.88  | 1595.7358  | 64000 | 0.99982451 |
|    | 1600      | 165.92181    | 3173.2342     | -25067.77      | -21894.536 | -3866.8815 | 64000 | 0.99982451 |
|    | 1700      | 169.72464    | 3245.963      | -25141.875     | -21895.912 | 1633.9681  | 64000 | 0.99982451 |
|    | 1800      | 168.20732    | 3216.9444     | -25112.07      | -21895.125 | -3555.2666 | 64000 | 0.99982451 |
|    | 1900      | 167.58111    | 3204.9681     | -25098.598     | -21893.63  | 1640.1773  | 64000 | 0.99982451 |
|    | 2000      | 169.80895    | 3247.5753     | -25142.277     | -21894.702 | -3436.0252 | 64000 | 0.99982451 |

Figura 1: Informações termodinâmicas da simulação no ensamble NVE

#### 1.5 Atividades

Abra o arquivo *log.lammps\_nve* no software **Qtiplot**.

\$ qtiplot log.lammps\_nve

- 1. Represente graficamente as colunas 1 e 5. Qual é o significado desse gráfico?
- 2. Represente graficamente as colunas 1 e 2. Qual é o significado desse gráfico? Por que a temperatura do sistema diminuiu?

#### 1.6 Determinando o volume médio

O arquivo de entrada  $in.ave\_vol\_bulk\_water$  permitirá determinar o volume médio da caixa a 300K e 1atm. Execute o seguinte comando para realizar a simulação de dinâmica molecular nessas condições:

\$ lammps < in.ave\_vol\_bulk\_water

onde serão gerados os seguintes arquivos:

- log.lammps: arquivo com informações da simulação.
- AverageBox.dat: arquivo com os valores médios das dimensões da caixa.
- prod\_npt\_bulk\_water.top: arquivo de topologia que poderá ser utilizado em uma próxima simulação.

Utilize a seguinte linha de comando para salvar em um novo arquivo as informações dessa simulação:

\$ cat log.lammps > log.lammps\_ave\_box

Abra o arquivo  $log.lammps\_ave\_box$  e edite a parte correspondente a fase de produção no ensemble NPT de forma a manter somente as informações termodinâmicas dessa etapa.

#### 1.6.1 Atividades

Abra o arquivo log.lammps\_ave\_box no software **Qtiplot**.

- Represente graficamente as colunas 1 e 2. Qual é o significado desse gráfico?
- Represente graficamente as colunas 1 e 6. Qual é o significado desse gráfico?
- Represente graficamente as colunas 1 e 8. Qual é a sua interpretação desse gráfico?
- Calcule a densidade média do sistema e compare com o valor experimental.

## 1.7 Distribuição radial de pares g(r)

Utilizando o arquivo de entrada in.properties\_bulk\_water determinaremos a função de distribuição radial de pares (rpdf) usando o volume médio a 300K e 1atm obtido na etapa anterior. Para isso, abra o arquivo prod\_npt\_bulk\_water.top e substitua os valores de xhi, yhi e zhi pelos valores contidos em AverageBox.dat. Através da linha de comando:

\$ lammps < in.properties\_bulk\_water

serão gerados os seguintes arquivos:

- log.lammps: arquivo com informações da simulação;
- bulk\_water\_nvt.lammpstrj: arquivo de trajetórias;
- bulk\_water\_msd.dat: arquivo com o deslocamento quadrático médio da água que será usado para determinar a constante de difusão (próxima etapa).

Abra o arquivo bulk\_water\_nvt.lammpstrj com o programa de visualização:

\$ vmd bulk\_water\_nvt.lammpstrj

Siga as seguintes instruções para determinar a função de distribuição radial de pares (veja figura 2):

- 1. Selecionar o arquivo de trajetórias *bulk\_water\_nvt.lammpstrj* (marcado em azul);
- Calcular a função de distribuição radial de pares dos átomos de oxigênio (tipo 1 - tipo 1);
- 3. Salve os resultados obtidos.

### 1.8 Atividades

Realize o mesmo procedimento para o cálculo da distribuição radial entre os elementos oxigênio-hidrogênio (tipo 1-tipo 2) e responda:

- Qual é o significado dos gráficos?
- Qual é o significado de ambos g(r) tenderem ao valor de 1 para distâncias longas?
- Qual é o significado do pico intenso observado no g(r) oxigênio-hidrogênio?



Figura 2: Etapas para a cálculo da distribuição radial de pares no código VMD.

sted Atoms

Trajectory Periodic

Material

Opaque

#### 1.9 Constante de auto-difusão

Abra o arquivo bulk\_water\_msd.dat gerado na etapa anterior e delete as 3 primeiras linhas. Em seguida, abra o arquivo no software **Qtiplot** conforme mostrado na figura 3, etapa 1.

A primeira coluna do arquivo  $bulk\_water\_msd.dat$  corresponde aos passos da simulação e não ao tempo físico. Assim, devemos multiplicar essa coluna pelo passo de tempo selecionado na simulação (0.5 fs) conforme mostrado na figura 3 (etapas  $\mathbf{2}$  e  $\mathbf{3}$ ). Agora, selecione os pontos a partir de 3000 fs(você) pode deletar as linhas anteriores), uma vez que eles correspondem ao regime auto-difusivo linear da água (etapa  $\mathbf{4}$ ). Represente graficamente esses pontos. Em seguida, faça um ajuste linear (etapa  $\mathbf{5}$ ) para determinar o coeficiente de auto-difusão (D) mediante a relação de Einstein, válida para intervalos de tempo longos  $(t \to \infty)$ :

$$D = \lim_{t \to \infty} \frac{\langle |r(t) - r(0)|^2 \rangle}{6t} \tag{1}$$

onde r(t) é o deslocamento da molécula em relação a posição inicial em t=0. Note que o valor do coeficente angular (destacado na etapa **6**, figura 3) deve ser divido pelo fator 6 (3D) conforme a equação 1. Esse coeficiente possui unidades  $[\mathring{A}^2fs^{-1}]$  equivalente a  $1\times 10^{-5}[m^2s^{-1}]$ .



Figura 3: Etapas para determinar o coeficiente de difusão através do software  $\mathbf{Qtiplot}$ .

## 2 LAB02: heptano $(C_7H_{16})$

## 2.1 Objetivos

- 1. Criar a topologia do sistema utilizando o pacote PACKMOL e o *script topol.sh*.
- 2. Realizar simulações nos diferentes ensembles termodinâmicos usando o pacote LAMMPS.
- 3. Determinar a estrutura do heptano e o coeficiente de difusão em condições ambientais (300K e 1atm).

## 2.2 Construção do sistema

Primeiro devem ser escolhidas as dimensões da caixa de simulação. Um tamanho razoável é  $(2.1 \times 2.1 \times 2.1)nm^3$  e 38 moléculas de heptano para obter a densidade experimental em condições normais de temperatura e pressão  $(0.684g/cm^3)[3]$ . Siga as instruções da subseção 1.2 para gerar o arquivo de topologia desse sistema.

#### 2.3 Atividades

Siga o procedimento realizado para a obtenção das propriedades da água bulk (LAB01).

- 1. Determine o volume médio da caixa;
- 2. Determine a distribuição radial de pares g(r) do Oxigênio-Oxigênio e Oxigênio-Hidrogênio;
- 3. Determine o coeficiente de auto-difusão.

## 3 LAB03: interface água/heptano

## 3.1 Objetivos

- 1. Criar a topologia da interface água/heptano utilizando o PACKMOL e o script topol.sh
- 2. Realizar simulações de dinâmica molecular usando o pacote LAMMPS.
- 3. Determinar o perfil de densidade da interface água/heptano e a tensão interfacial.

### 3.2 Construção do sistema

Queremos construir uma configuração molecular com parte do volume preenchida com água e o restante com o heptano em nosso modelo de interaface. Um bom ponto de partida é criar uma configuração que possui a densidade experimental da água e do heptano em seus respetivos volumes. Escolhemos uma caixa de dimensões  $(2.1 \times 2.1 \times 4.2)nm^3$  preenchida com 619 moléculas de água e 76 de heptano. O sistema é gerado com o PACKMOL utilizando o arquivo de entrada  $water\_heptane.inp$ . Abra o arquivo e veja os comentários.

Execute o seguinte comando para gerar a configuração da interface água/heptano:

\$ packmol < water\_heptane.inp</pre>

Podemos visualizar a configuração gerada usando o VMD:

\$ vmd water\_heptane.xyz

Agora gere o arquivo da topologia da interface:

Abra o arquivo de entrada do lammps *in.water\_heptane*. Nele você encontrará anotações do significado de cada linha de comando. Agora, realize a simulação da dinâmica molecular:

 $\$ mpirun —np $2\$ lammps <  ${\bf in}$  . water\_heptane onde serão gerados os seguintes arquivos:

- log.lammps: arquivo com informações da simulação.
- interface.lammpstrj: arquivo de trajetórias
- AverageBox.dat: arquivo com os valores médios da dimensão da caixa utilizada na simulação.
- prod\_npt\_water\_heptane.top: arquivo da topologia da interface que pode ser usado numa próxima simulação.

Visualize o arquivo de trajetórias:

\$ vmd interface.lammpstrj

Vá em *Graphics>Rpresentations>Drawing Method* e escolha a opção *CPK* para melhorar a visulização do sistema.

#### 3.3 Perfil de densidade

Nessa etapa iremos visualizar o perfil de densidade do sistema. Para isso, abra o arquivo density\_profile\_water.dat e delete as 4 primeiras linhas. Realize o mesmo procedimento no arquivo density\_profile\_heptane.dat. Abra os dois arquivos utilizando o **QtiPlot**.

Agora, copie a coluna 2 de um dos arquivos em uma nova tabela (correspondente a direção perpendicular a interface, no caso o eixo z). Ao lado dessa coluna, copie e cole a coluna 4 das tabelas com as densidades da água e do heptano. Selecione as 3 colunas da tabela recém criada e represente graficamente esses dados (veja figura 4).



Figura 4: Perfil de densidade da interface água/heptano mostrado através do software **Qtiplot**.

### 3.4 Atividades

Responda as questões:

- 1. Qual é a localização da interface?
- 2. Qual é a densidade da fase *bulk* desses fluidos? Esses valores correspondem àqueles achados em seus cálculos anteriores?

#### 3.5 Tensão interfacial

Nessa etapa vamos determinar a tensão interfacial da interface água/heptano. A tensão interfacial será calculada usando a formulação que envolve a diferença de pressão normal e tangencial a interface:

$$\gamma = \frac{1}{2} \int_{L_b}^{L_a} [p_{ab}(z) - p_T(z)] dz, \tag{2}$$

onde  $p_{ab}(z)$  e  $p_T(z)$  são a pressão normal e tangencial à interface em função da distância z à interface.

Para o cálculo da tensão interfacial siga os seguintes passos. Abra o arquivo AverageBox.dat:

para obter as informações das dimensões da caixa utilizadas na próxima etapa. Em seguida, execute o código que irá calcular a tensão interfacial a partir do arquivo stress\_profile.dat

Esse arquivo foi obtido considerando-se 8000 configurações instantâneas das posições atômicas (snapshots). O comando ./IFT irá criar o arquivo  $pressure\_profile.dat$  que contém o perfil da diferença entre a pressão normal e tangencial ao longo da direção z. Além disso, esse arquivo contém o valor da tensão interfacial calculado com base nesse perfil. Para ver o resultado, execute o comando:

\$ head pressure\_profile.dat

## 4 LAB04: dióxido de carbono

### 4.1 Objetivos

- 1. Simular a dinâmica molecular do  $CO_2$  no estado supercrítico (temperatura de 373.15K e 200atm de pressão);
- 2. Analisar a equilibração das quantidades termodinâmicas;
- Determinar o coeficiente de auto-difusão e a distribuição radial de pares;
- 4. Determinar a viscosidade do fluido.

#### 4.2 Detalhes da simulação

Abra o arquivo de entrada do lammps in.lammps. Esse script da simulação consiste em:

- 1. Ler a topologia[4] de uma molécula de  $CO_2$ , e replicar o sistema  $6 \times 6 \times 6$  vezes;
- 2. Equilibrar o sistema no ensemble NPT;
- Determina a distribuição radial de pares, o coeficiente de auto-difusão, e a viscosidade na fase de produção (NPT).

Para realizar a simulação de dinâmica molecular, execute o seguinte comando:

property p

#### 4.3 Análise dos resultados

Nesta seção iremos representar graficamente os dados da energia, temperatura e pressão em função do tempo de simulação. Estarão salvos os dados termodinâmicos da equilibração e produção nos seguintes arquivos: thermo-equil-ke.dat, thermo-equil-pe.dat, thermo-equil-press.dat, thermo-equil-temp.dat, thermo-prod-ke.dat, thermo-prod-pe.dat, thermo-prod-press.dat, thermo-prod-temp.dat. Execute os seguintes comandos para gerar os gráficos das quantidades termodinâmicas da equilibração:

- $$gnuplot\ thermo-equil-press.gps$
- \$ gnuplot thermo-equil-temp.gps

Cada um desses comandos gerará um arquivo com extenção .pdf. Analise se as quantidades estão equilibradas.

Agora, repita o processo considerando a etapa de produção da simulação. Para gerar os gráficos dessa etapa, execute os seguintes comandos:

\$ gnuplot thermo-prod-energies.gps

\$ gnuplot thermo-prod-press.gps

\$ gnuplot thermo-prod-temp.gps

Também podemos determinar o coeficiente de auto-difusão. Para obtê-lo, execute o seguinte comando:

\$ gnuplot msd.gps

e veja o resultado no arquivo msd.pdf.

Após isso, obtenha as funções de distribuição radial de pares com o seguinte comando:

\$ gnuplot gdr.gps

#### 4.3.1 Viscosidade

A viscosidade  $\eta$  é obtida a partir da formulação de Green-Kubo, como implementado no pacote LAMMPS:

$$\eta = \frac{V}{3k_B T} \int_0^\infty \left\langle \sum_{x < y} P_{xy}(t) P_{xy}(0) \right\rangle dt \tag{3}$$

onde V é o volume da caixa; T é a temperatura do ensemble;  $k_B$  a constante de Boltzman;  $P_{xy}$  são os termos não diagonais do tensor de stress, sendo que o termo dentro da integral representa a função de correlação do tensor de stress. O cálculo da viscosidade através da equação 3 foi incluido no arquivo de entrada do Lammps. Abra o arquivo in.lammps e veja como essa equação foi implementada.

Visualize a convergência da viscosidade em relação ao tempo. Para isso, representada graficamente a primeira e última coluna dos dados obtidos na fase de produção presentes no arquivo log.lammps. O valor final da viscosidade é escrito no arquivo log.lammps após a etapa de produção e pode ser acessado através do comando.

Compare o valor obtido com o experimental  $(3.77 \times 10^{-5} Pa.s)$  divulgado pelo National Institute of Standards and Technology (NIST) [5]. O sucesso de predição da viscosidade através de simulações de dinâmica molecular depende de diversos fatores, como o número de moléculas na caixa de simulação, o campo de força utilizado, e o tempo total de simulação [6].

## Referências

- [1] Leandro Martínez, Ricardo Andrade, Ernesto G Birgin, and José Mario Martínez. Packmol: a package for building initial configurations for molecular dynamics simulations. *Journal of computational chemistry*, 30(13):2157–2164, 2009.
- [2] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. *Journal of computational physics*, 117(1):1–19, 1995.
- [3] CAMEO Chemicals. Database of hazardous materials. *National Oceanic and Atmospheric Administration*, editor, 2013.
- [4] Jonathan G Harris and Kwong H Yung. Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. The Journal of Physical Chemistry, 99(31):12021–12024, 1995.
- [5] EW Lemmon. Thermophysical properties of fluid systems. NIST Chemistry WebBook, 1998.
- [6] D Nevins and FJ Spera. Accurate computation of shear viscosity from equilibrium molecular dynamics simulations. *Molecular Simula*tion, 33(15):1261–1266, 2007.