Intégration et Probabilités

ENS Paris, 2024/2025

Benoît Laslier laslier@dma.ens.fr

 $TD6 : Espaces L^p$

Exercice 1. [Comparaison de convergences]

- 1. Soit $(f_n)_{n\geq 0}$ une suite de $L^p(E,\mathcal{E},\mu)\cap L^q(E,\mathcal{E},\mu)$ avec $p,q\in [1,+\infty[$ et $p\neq q.$ On suppose que $f_n\to 0$ dans L^p quand $n\to\infty$ et que $(f_n)_{n\geq 0}$ est une suite de Cauchy dans L^q . Montrer que $f_n\to 0$ dans L^q quand $n\to\infty$.
- 2. Soit $(f_n)_{n\geq 0}$ une suite de $L^p(E,\mathcal{E},\mu)$ qui converge dans L^p vers f et qui converge également μ -p.p. vers g. Montrer que $g\in L^p$ et que f=g μ -p.p.

Solution de l'exercice 1.

- 1. Par complétude de L^q , la suite $(f_n)_n$ converge vers une limite f dans L^q . En extrayant successivement deux sous-suites, on voit qu'il existe une sous-suite le long de laquelle f_{n_k} converge μ -p.p. vers 0 et vers f. Donc f = 0 μ -p.p.
- 2. Par Fatou

$$\int |g|^p d\mu = \int \liminf |f_n|^p d\mu \le \liminf \int |f_n|^p d\mu = \int |f|^p d\mu.$$

On sait que $(f_n)_n$ converge μ -p.p. vers g. Comme elle converge vers f dans L^p , elle converge vers f μ -p.p. le long d'une sous-suite. Ainsi f = g μ -p.p.

Exercice 2. [Uniforme intégrabilité] Soit (E, \mathcal{E}, μ) un espace mesuré tel que $\mu(E) < \infty$. On considère une suite $(f_n)_{n\geq 0}$ de $L^p(E, \mathcal{E}, \mu)$, $p\in]1,\infty]$, que l'on suppose bornée dans L^p , c'est-à-dire $\sup_{n\geq 1} \|f_n\|_p < \infty$. On considère aussi une fonction mesurable f sur (E, \mathcal{E}, μ) telles que $f_n \to f$ μ -p.p. quand $n \to \infty$.

- 1. Montrer que $f \in L^p(E, \mathcal{E}, \mu)$.
- 2. Montrer que pour tout $\epsilon > 0$, $\mu(|f_n f| \ge \epsilon) \to 0$.
- 3. En déduire que $f_n \to f$ dans L^r pour tout $r \in [1, p[$.

Solution de l'exercice 2. On étudie séparément les cas $p=+\infty$ et $p<+\infty$. Cas $p=+\infty$.

1. On a l'existence d'une constante $M < \infty$ telle que $\mu(|f_n| > M) = 0$ pour tout $n \ge 0$. Or

$$\{f>M\}\subset\bigcup_{n\geq 0}\{|f_n|>M\}.$$

Donc $\mu(|f| > M) = 0$ et $f \in L^{\infty}$.

2. On fixe $r \in [1, +\infty[$, $\epsilon > 0$ et un ensemble A_{ϵ} donné par le théorème d'Egoroff. Soit $n_0 \ge 0$ tel que pour tout $n \ge n_0$ on a

$$\sup_{x \in E \setminus A_{\epsilon}} |f_n(x) - f(x)| \le \epsilon.$$

Alors pour tout $n \ge n_0$ on a

$$\int_{E} |f_n - f|^r d\mu = \int_{E \setminus A_{\epsilon}} |f_n - f|^r d\mu + \int_{A_{\epsilon}} |f_n - f|^r d\mu$$
$$\leq \epsilon^r \mu(E) + \epsilon (2M)^r.$$

Cas $p < +\infty$.

1. D'après le lemme de Fatou on a

$$\int_{E} |f_n|^p d\mu \le \liminf_{n \to \infty} \int_{E} |f_n|^p d\mu \le \sup_{n \ge 0} ||f_n||_p^p < \infty ,$$

et donc $f \in L^p$.

2. On fixe $r \in [1, p[$, $\epsilon > 0$ et un ensemble A_{ϵ} donné par le théorème d'Egoroff. Soit $n_0 \ge 0$ tel que pour tout $n \ge n_0$ on a

$$\sup_{x \in E \setminus A_{\epsilon}} |f_n(x) - f(x)| \le \epsilon.$$

Alors pour tout $n \ge n_0$ on a d'après l'inégalité de Hölder

$$\int_{E} |f_{n} - f|^{r} d\mu = \int_{E \setminus A_{\epsilon}} |f_{n} - f|^{r} d\mu + \int_{A_{\epsilon}} |f_{n} - f|^{r} d\mu
\leq \epsilon^{r} \mu(E) + \epsilon^{1 - r/p} \left(\int_{A_{\epsilon}} |f_{n} - f|^{p} d\mu \right)^{r/p}
\leq \epsilon^{r} \mu(E) + 2^{r} \epsilon^{1 - r/p} \left(\|f\|_{p}^{p} + \sup_{n > 0} \|f_{n}\|_{p}^{p} \right)^{r/p}$$

Exercice 3. Soit (E, \mathcal{E}, μ) un espace mesuré et soit $p \in [1; +\infty[$.

- 1. Montrer que les fonctions étagées h vérifiant $\mu(h \neq 0) < +\infty$ sont denses dans $L^p(E, \mathcal{E}, \mu)$.
- 2. Soit K un compact et soit U un ouvert de \mathbb{R}^d vérifiant $K \subset U$. Montrer qu'il existe φ continue à support compact vérifiant $\mathbf{1}_K \leq \varphi \leq \mathbf{1}_U$.
- 3. Montrer que les fonctions continues à support compact sont denses dans $L^p(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \lambda)$, en notant λ la mesure de Lebesgue sur \mathbb{R}^d .

Solution de l'exercice 3.

1. Soit $f \in L^p$. Quitte à travailler séparément avec f_+ et f_- , on peut supposer $f \ge 0$. Pour tout $n \ge 1$, on pose

$$A_{k,n} := \left\{ \frac{k}{2^n} \le f < \frac{k+1}{2^n} \right\}, \quad 1 \le k \le (n-1)2^n,$$

ainsi que $A_{n2^n,n}:=\{n\leq f\}$. On pose $f_n:=\sum_{k=1}^{n2^n}\frac{k}{2^n}1_{A_{k,n}}$. Chaque f_n est étagée et l'on a

$$\mu(\{f_n \neq 0\}) = \mu(\{f \geq 2^{-n}\}) \leq 2^{np} ||f||_p^p < \infty.$$

On remarque que $f_n \uparrow f$ μ -p.p., et $|f - f_n|^p \le |f|^p$ donc par le théorème de convergence dominée, on a $||f - f_n||_p \to 0$.

2. On définit le fermé $F = \mathbb{R}^d \setminus U$. Commençons par montrer qu'il existe $\epsilon > 0$ tel que $K^{\epsilon} \cap F = \emptyset$ (ici K^{ϵ} est l' ϵ -voisinage de K). Par l'absurde : supposons que pour tout $\epsilon > 0$, il existe $x_{\epsilon} \in K$ et $y_{\epsilon} \in F$ tels que $|x_{\epsilon} - y_{\epsilon}| < \epsilon$. On note que y_{ϵ} appartient nécessairement à l'adhérence de $K^{2\epsilon}$ qui est compacte. On peut donc extraire des sous-suites telles que pour tout $k \geq 1$

$$x_{\epsilon_k} \to x \in K$$
, $y_{\epsilon_k} \to y \in F$,

et $|x_{\epsilon_k} - y_{\epsilon_k}| < \epsilon_k$. Nécessairement x = y, donc $K \cap F \neq \emptyset$ ce qui contredit $K \subset U$. On pose alors

$$\varphi(x) := (1 - \frac{d(x, K)}{\epsilon})_+, \quad x \in \mathbb{R}^d.$$

On voit que $\varphi=1$ sur K et $\varphi=0$ sur F. Comme $0\leq\varphi\leq 1,$ on en déduit que $1_K\leq\varphi\leq 1_U.$

3. Par la question (a), il suffit d'approximer les fonctions étagées dont le support est de mesure finie. Par linéarité, il suffit d'approximer 1_A avec $\lambda(A) < \infty$. On rappelle la propriété de régularité de la mesure de Lebesgue

$$\lambda(A) = \sup\{\lambda(K) : K \text{ compact }, K \subset A\}, \quad \lambda(A) = \inf\{\lambda(U) : U \text{ ouvert }, U \supset A\}.$$

Soit un borélien A tel que $\lambda(A) < \infty$. Pour tout $\epsilon > 0$ il existe un compact K et un ouvert U tels que $K \subset A \subset U$ et $\mu(U \setminus K) \leq \epsilon$. Par la question précédente, il existe φ continue à support compact telle que $1_K \leq \varphi \leq 1_U$. Ainsi

$$\|\varphi - 1_A\|_p \le \|1_U - 1_K\|_p \le \mu(U \setminus K)^{1/p} \le \epsilon^{1/p}$$
.

Exercice 4. [CS] Soit (E, \mathcal{A}, μ) un espace mesuré et $f : E \to]0, \infty[$ une fonction mesurable telle que f et 1/f sont intégrables, montrer que μ est finie.

Solution de l'exercice 4. Cauchy-Schwartz

Exercice D. Soit f une fonction mesurable sur (E, \mathcal{A}, μ) .

1. On suppose dans cette question que $\mu(E) < \infty$, montrer que

$$\lim_{p \to \infty} ||f||_p = ||f||_{\infty}.$$

- 2. On suppose dans cette question que $f \in L^p$ pour un certain $p \in \mathbb{R}$. Montrer que la même propriété reste vraie.
- 3. On suppose que μ est une mesure de probabilité. Calculer $\lim_{p\to 0} \|f\|_p$.

Exercice 5. [Inégalité de Young pour la convolution] On note λ la mesure de Lebesgue, soient $1 \leq p, q, r \leq \infty$ tels que $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$. Soient $f \in L^p(\mathbb{R}, \lambda)$ et $g \in L^q(\mathbb{R}, \lambda)$ on définit la convolution de f et g par $f * g : x \in \mathbb{R} \mapsto \int f(x-y)g(y)\lambda(\mathrm{d}y)$.

- 1. On suppose d'abord $r = \infty$. Montrer que $||f * g||_r \le ||f||_p ||g||_q$.
- 2. On suppose maintenant $r < \infty$. Posons $q' = \frac{q}{q-1}$ et $h(x,y) = |f(x-y)|^{1-p/q'}|g(y)|$. Montrer que

$$|f * g(x)| \le ||h(x, \cdot)||_q ||f||_p^{p/q'}.$$

3. Démontrer l'inégalité de Minkovski généralisée : pour tout $s \ge 1$,

$$\int \left(\int h(x,y)^s dx\right)^{1/s} dy \ge \left(\int \left(\int h(x,y) dy\right)^s dx\right)^{1/s}$$

4. Montrer que

$$\left(\int \left(\int h(x,y)^q dy\right)^{r/q} dx\right)^{q/r} \le \|f\|_p^{pq/r} \|g\|_q^q.$$

5. En déduire $||f * g||_r \le ||f||_p ||g||_q$.

Solution de l'exercice 5.

1. On observe immédiatement que pour tout $x \in \mathbb{R}$, on a

$$|f * g(x)| \le \left| \int f(y)g(x-y) dy \right| \le ||f||_p ||g(x-\cdot)||_q = ||f||_p ||g||_q$$

par inégalité de Hölder, car $\frac{1}{p} + \frac{1}{q} = 1$.

2. Remarquons que q' est l'exposant conjugué de q. Cette inégalité est une conséquence immédiate de l'inégalité de Hölder, en effet :

$$|f * g(x)| \le \int |f(x-y)||g(y)| dy \le \int h(x,y)|f(x-y)|^{p/q'} dy$$

$$\le ||h(x,\cdot)||_q ||f^{p/q'}||_{q'} = ||h(x,\cdot)||_q ||f||_p^{p/q'}.$$

3. On pose $F(x) = \int h(x,y) dy$ et $M = \int ||h(\cdot,y)|| p dy$ et s' tel que $\frac{1}{s} + \frac{1}{s'} = 1$. On souhaite donc montrer que $||F||_s \leq M$. Or, par inégalité de Hölder, pour tout $\phi \in L^{s'}$, on a

$$\int |F(x)\phi(x)| dx = \int \int h(x,y) |\phi(x)| dx dy \le \|\phi\|_{s'} \int \|h(x,\cdot)\|_{s} dx = M\|\phi\|_{s'}.$$

Or, par dualité, on a $||F||_s \le \sup_{\phi \in L^{s'}} ||F\phi||_1 / ||\phi||_{s'} \le M$, ce qui conclut le résultat.

4. Par inégalité de Minkovski généralisée, on a

$$\left(\int \left(\int h(x,y)^{q} dy \right)^{r/q} dx \right)^{q/r} \leq \int \left(\int (h(x,y)^{q})^{r/q} dx \right)^{q/r} dy
= \int \left(\int |f(x-y)|^{r(1-p/q')} |g(y)|^{r} dx \right)^{q/r} dy
= ||f||_{r(1-p/q')}^{q(1-p/q')} ||g||_{q}^{q}.$$

Or
$$r(1 - p/q') = r(1 - p(1 - 1/q)) = r(1 - p(1/p - 1/r)) = p$$
, donc

$$\left(\int \left(\int h(x,y)^q dy\right)^{r/q} dx\right)^{q/r} \le \|f\|_p^{pq/r} \|g\|_q^q.$$

5. On a alors

$$||f * g||_r \le \left(\int |f * g(x)|^r dx \right)^{1/r} \le \left(\int ||h(x, \cdot)||_q^r ||f||_p^{rp/q'} dx \right)^{1/r}$$

$$\le ||f||_p^{p/q'} ||f||_p^{p/r} ||g||_q = ||f||_p ||g||_q.$$

Exercice 6. [Continuité de l'opérateur de translation] Soient $f:(\mathbb{R},\mathcal{B}(\mathbb{R})) \to (\mathbb{R},\mathcal{B}(\mathbb{R}))$ une fonction mesurable et $h \in \mathbb{R}$. On définit $\tau_h f$ par $\tau_h f: x \in \mathbb{R} \mapsto f(x-h)$.

- 1. Vérifier que l'opérateur de translation τ_h est une isométrie de l'espace $L^p(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ pour $p \in [1, +\infty]$.
- 2. On suppose $p < \infty$. Montrer que si $f \in L^p(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ alors,

$$\lim_{h \to 0} \|\tau_h f - f\|_p = 0 \text{ et } \lim_{|h| \to +\infty} \|\tau_h f - f\|_p = 2^{1/p} \|f\|_p$$

Indication: on pourra traiter tout d'abord le cas où f est continue à support compact.

- 3. Que deviennent les résultats de la question précédente si $p = \infty$?
- 4. (Lemme de Riemann-Lebesgue). Soit $f \in L^1(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Montrer que quand $t \to \infty$ on a $\int_{\mathbb{R}} e^{ixt} f(x) dx \to 0$.
- 5. Déduire des questions précédentes que si $\lambda(A) > 0$, alors l'ensemble A A (l'ensemble des x y pour $x \in A$ et $y \in A$) contient un voisinage de 0.

Solution de l'exercice 6.

1. L'opérateur τ_h est linéaire et satisfait, quand $p < \infty$,

$$\|\tau_h f\|_{L^p}^p = \int_{\mathbb{R}} |f(x-h)|^p dx = \int_{\mathbb{R}} |f(x)|^p dx = \|f\|_{L^p}^p.$$

Quand $p = \infty$, l'égalité des normes est immédiate.

2. On suppose que f est continue à support compact. Alors par uniforme continuité de f, on voit que

$$\|\tau_h f - f\|_p^p = \int_{\mathbb{R}^d} |f(x - h) - f(x)|^p dx \to 0 , \quad h \downarrow 0 .$$

Pour la deuxième limite, on observe que pour tout h > 0 assez grand, les supports de f et $\tau_h f$ sont disjoints. Ainsi

$$\|\tau_h f - f\|_p^p = \|\tau_h f\|_p^p + \|f\|_p^p = 2\|f\|_p^p$$
.

Dans le cas général, on considère une suite $(f_n)_n$ de fonctions continues à support compact qui converge dans L^p vers f. Soit $\epsilon > 0$. Il existe $n_0 \ge 1$ tel que

$$||f_{n_0} - f||_p \le \epsilon .$$

Par la propriété d'isométrie, on a également pour tout h > 0

$$\|\tau_h(f_{n_0}-f)\|_p \le \epsilon .$$

Par ailleurs,

$$\|\tau_h(f_{n_0})-f_{n_0}\|_p\to 0$$
, $h\downarrow 0$,

et

$$\|\tau_h(f_{n_0}) - f_{n_0}\|_p \to 2^{1/p} \|f_{n_0}\|_p , \quad h \to \infty .$$

En combinant ces estimées, on voit que $\limsup_{h\downarrow 0} \|\tau_h f - f\|_p \le 2\epsilon$. On voit également que

$$\limsup_{h \to \infty} \|\tau_h f - f\|_p \le 2\epsilon + 2^{1/p} \|f_{n_0}\|_p \le 2\epsilon + 2^{1/p} (\|f\|_p + \epsilon) ,$$

et

$$\liminf_{h \to \infty} \|\tau_h f - f\|_p \ge -2\epsilon + 2^{1/p} \|f_{n_0}\|_p \ge -2\epsilon + 2^{1/p} (\|f\|_p - \epsilon).$$

On peut alors conclure.

- 3. Quand $p = \infty$, les résultats ne sont plus vrais. Par exemple si l'on prend $f = 1_{[0,1]}$ on voit que $\|\tau_h f f\|_{\infty} = 1$ pour tout h > 0. De même, on voit que pour f = 1, on a $\|\tau_h f f\|_{\infty} = 0$ pour tout h > 0.
- 4. Posons $\hat{f}(t):=\int_{\mathbb{R}}e^{ixt}f(x)dx$ et notons que $\int_{\mathbb{R}}\cos(xt)f(x)dx=\text{Re}\left(\hat{f}(t)\right)$. On remarque alors que

$$\widehat{\tau_h f} = \int_{\mathbb{R}} e^{ixt} f(x-h) dx = e^{iht} \int_{\mathbb{R}} e^{ixt} f(x) dx$$
.

En prenant $h = \pi/t$, on voit alors que $2\hat{f}(t) = \hat{f}(t) - \widehat{\tau_{\pi/t}f}(t) = \widehat{f-\tau_{\pi/t}f}(t)$. Or quand $t \to \infty$, on a $||f - \tau_{\pi/t}f||_{L^1} \to 0$. Par ailleurs pour toute fonction $g \in L^1$ et pour tout $t \in \mathbb{R}$ on a la borne

$$|\hat{g}(t)| \leq ||g||_{L^1}$$
.

On en déduit donc que

$$\widehat{f-\tau_{\pi/t}}f(t)\to 0$$
.

5. Notons $A_n = A \cap B(0, n)$. Alors $\lambda(A) = \lim_{n \to \infty} \lambda(A_n)$. Il existe donc $n \ge 0$ tel que $\lambda(A_n) > 0$. On peut donc supposer que A est borné, de mesure strictement positive, de sorte que $f = 1_A$ est dans L^1 . On a

$$\tau_h f - f = 1_{A\Delta(A+h)},$$

donc

$$||1_{A\Delta(A+h)}||_1 \to_{h\downarrow 0} 0$$
 i.e. $\lambda(A\Delta(A+h)) \to_{h\downarrow 0} 0$.

En particulier, $\lambda(A \cap (A+h)^c) \to 0$ donc $\lambda(A \cap (A+h)) \to \lambda(A)$. On peut donc trouver h_0 tel que $\lambda(A \cap (A+h)) > 0$ pour tout $h \leq h_0$. En particulier, $A \cap (A+h) \neq \emptyset$. Donc il existe $x, y \in A$ tels que x = y + h ie h = x - y. On a donc montré que $|-h_0, h_0| \subset A - A$.

Exercice 7. [Lemme de Scheffé] Soient $p \in [1, \infty[$ et $(f_n)_{n\geq 0}$ une suite de $L^p(E, \mathcal{E}, \mu)$ qui converge μ -p.p. vers une fonction f de $L^p(E, \mathcal{E}, \mu)$. Montrer l'équivalence suivante :

$$\lim_{n \to \infty} ||f_n - f||_p = 0 \quad \iff \quad \lim_{n \to \infty} ||f_n||_p = ||f||_p.$$

Indication: considérer $g_n = 2^{p-1}(|f_n|^p + |f|^p) - |f_n - f|^p$.

Solution de l'exercice 7. Commençons par le sens direct. Supposons $\lim_{n\to\infty} ||f_n - f||_p = 0$. Par l'inégalité triangulaire on a

$$||f||_p - ||f - f_n||_p \le ||f_n||_p \le ||f||_p + ||f - f_n||_p$$
.

En passant à la limite, on voit que $\lim_{n\to\infty} ||f_n||_p = ||f||_p$.

Pour le sens réciproque, on suppose que $\lim_{n\to\infty} ||f_n||_p = ||f||_p$. On pose alors $g_n = 2^{p-1}(|f_n|^p + |f|^p) - |f_n - f|^p$. Cette fonction est positive car

$$|a+b|^p \le 2^{p-1}(|a|^p + |b|^p)$$
.

(Cette inégalité est une conséquence de la convexité de $x \mapsto |x|^p$). Par le Lemme de Fatou

$$\int \liminf g_n d\mu \le \liminf \int g_n d\mu .$$

Le terme de gauche est égal à $2^p ||f||_p^p$. Par ailleurs, par linéarité et du fait que toutes les fonctions sont dans L^p par hypothèse, on a

$$\int g_n d\mu = 2^{p-1} \left(\int |f_n|^p d\mu + \int |f|^p d\mu - \int |f_n - f|^p d\mu \right).$$

De par l'hypothèse de convergence $\lim_{n\to\infty} \|f_n\|_p = \|f\|_p$ et par propriété de la liminf on obtient

$$\liminf \int g_n d\mu = 2^p ||f||_p^p - 2^{p-1} \limsup \int |f_n - f|^p d\mu.$$

D'où

$$2^p ||f||_p^p \le 2^p ||f||_p^p - 2^{p-1} \limsup \int |f_n - f|^p d\mu$$
,

et l'on peut conclure.

Exercice 8.

1. Soient $p \in [1, +\infty[$ et $f \in L^p(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+), \lambda)$. On pose $F(x) = \int_0^x f(t) dt$. Montrer que F est bien définie et que si q est l'exposant conjugué de p, alors

$$\lim_{h \to 0} \frac{\sup_{x \in \mathbb{R}} |F(x+h) - F(x)|}{|h|^{1/q}} = 0.$$

2. En déduire que si g est une fonction sur \mathbb{R}_+ de classe \mathcal{C}^1 intégrable telle que $g' \in L^p(\mathbb{R}_+)$ pour un $p \in [1, +\infty[$, alors $g(x) \to 0$ quand $x \to +\infty$.

Solution de l'exercice 8.

1. Pour tout $x \in \mathbb{R}_+$, $f \in L^p([0,x]) \subset L^1([0,x])$ donc F est bien définie. Soit $x \in \mathbb{R}_+$. On a, d'après l'inégalité de Hölder,

$$|F(x+h) - F(x)| = \left| \int_E f 1_{[x,x+h]} d\mu \right| \le \left(\int_E |f|^p 1_{[x,x+h]} d\mu \right)^{1/p} |h|^{1/q}.$$

Donc, en posant $G(x) = \int_0^x |f|^p d\mu$, on a

$$\frac{\sup_{x \in \mathbb{R}} |F(x+h) - F(x)|}{|h|^{1/q}} \le \sup_{x \in \mathbb{R}} (|G(x+h) - G(x)|)^{1/p} \to_{h \to 0} 0,$$

car G est uniformément continue.

2. La fonction g est de classe \mathcal{C}^1 donc $g(x)=g(0)+\int_0^x g'(t)\,dt$. D'après la question 1.,

$$\lim_{h \to 0} \frac{\sup_{x \in \mathbb{R}} |g(x+h) - g(x)|}{|h|^{1/q}} = 0.$$

Supposons qu'il existe $\epsilon > 0$ tel que pour tout $n \in \mathbb{N}$, il existe $x_n \geq n$ tel que $g(x_n) > \epsilon$. On peut trouver $h_0 \in]0, 1[$ tel que pour tout $h \leq h_0$,

$$\sup_{x \in \mathbb{R}} |g(x+h) - g(x)| \le \frac{\epsilon |h|^{1/q}}{2} \le \frac{\epsilon}{2}.$$

Donc, pour tout $n \in \mathbb{N}$, pour tout $t \in [x_n, x_n + h_0]$, on a $g(t) \ge \epsilon/2$. La suite $(x_n)_{n \ge 0}$ peut-être choisie de sorte que les intervalles $[x_n, x_n + h_0]$ soient disjoints. Ainsi,

$$\int_{\mathbb{R}_+} |g(t)| dt \ge \sum_{n \in \mathbb{N}} \int_{x_n}^{x_n + h_0} |g(t)| dt \ge \sum_{n \in \mathbb{N}} \frac{\epsilon h_0}{2} = +\infty,$$

ce qui contredit l'intégrabilité de g.

Exercice 9. Soient (E, \mathcal{E}, μ) un espace mesuré σ -fini et $p \in [1, \infty[$. Soit $g : E \to \mathbb{R}$ une fonction mesurable telle que, pour toute fonction $f \in L^p$, on a $fg \in L^p$. Montrer que $g \in L^\infty$.

Solution de l'exercice 9. Pour simplifier, prenons $\mu(E) < \infty$ et supposons $g \geq 0$ (on peut aisément adapter la preuve au cas général). On pose

$$A_n := \{2^n < g \le 2^{n+1}\}$$
.

Nécessairement $\mu(A_n) < \mu(E) < \infty$. Soit $I = \{n \ge 0 : \mu(A_n) > 0\}$. On pose alors

$$f = \sum_{n \in I} 2^{-n} (\mu(A_n))^{-1/p} 1_{A_n} .$$

Alors

$$\int f^p d\mu = \sum_{n \in I} 2^{-np} \mu(A_n)^{-1} 1_{A_n} d\mu = \sum_{n \in I} 2^{-np} < \infty.$$

Par ailleurs

$$\int (fg)^p d\mu \ge \sum_{n \in I} 2^{-np} 2^{np} \mu(A_n)^{-1} 1_{A_n} d\mu = \sum_{n \in I} 1.$$

Ainsi cette somme converge si et seulement si I est un ensemble fini. Or I est fini si et seulement si g est dans L^{∞} .

Exercice 10. [Absolue continuité] Soient μ et ν deux mesures positives sur (E, \mathcal{A}) .

1. On suppose que pour tout $\epsilon > 0$ il existe $\eta > 0$ tel que pour tout $A \in \mathcal{A}$

$$\mu(A) \le \eta \Longrightarrow \nu(A) \le \epsilon$$
.

Montrer que ν est absolument continue par rapport à μ .

2. Montrer que la réciproque est vraie dans le cas où la mesure ν est finie. Donner un contre-exemple dans le cas où ν est infinie.

Solution de l'exercice 10.

- 1. Soit $A \in \mathcal{A}$ tel que $\mu(A) = 0$. Alors on voit que $\nu(A) < \epsilon$ pour tout ϵ . Donc $\nu(A) = 0$.
- 2. Supposons ν finie. Si jamais μ était σ -finie alors par le théorème de Radon-Nikodym il existe $f \in L^1(\mu)$ tel que $\nu = f\mu$. Alors par l'uniforme continuité de l'intégrale de f contre μ on déduit la propriété voulue.

Si maintenant μ est quelconque on peut raisonner par contradiction. Supposons qu'il existe $\epsilon > 0$ et une suite $A_n \in \mathcal{A}$ tels que

$$\mu(A_n) \le 2^{-n} , \quad \nu(A_n) \ge \epsilon .$$

Alors par Borel-Cantelli $\mu(B) = 0$ avec $B = \limsup A_n$. Par absolue continuité cela implique que $\nu(B) = 0$. En revanche si l'on pose $B_n = \bigcup_{k \ge n} A_k$ on voit que

$$\nu(B_n) \ge \nu(A_n) \ge \epsilon$$
.

Or ν étant finie, on voit que

$$\mu(B) = \lim \mu(B_n) \ge \epsilon$$
,

d'où une contradiction.

Pour le contre-exemple, on peut prendre μ la mesure de Lebesgue et $\nu(dx) = |x|\mu(dx)$. On voit alors que

$$\mu([n, n + \eta]) \le \eta$$
, $\nu([n, n + \eta]) \ge n\eta \to \infty$.