Въведение

WWW, HTTP, браузъри, инструменти за разработка.

Владислав Илиев / SAP Labs Bulgaria 3-ти Октомври 2017

Public

Съдържание

Интернет и WWW

Моделът клиент-сървър

Web Browser

HTTP

Инструменти

Интернет и WWW

The Internet vs World Wide Web (WWW)

Интернет и WWW

#Уебсайтове

Съдържание

Интернет и WWW

Моделът "клиент-сървър"

Web Browser

HTTP

Инструменти

Архитектурни модели

• Клиент-сървър е разпределен изчислителен модел, при който част от задачите се разпределят между доставчиците на ресурси или услуги, наречени сървъри и консуматорите на услуги, наречени клиенти.

Реет-to-peer е разпределен архитектурен модел на приложение, при който задачите се разпределят по еднакъв начин между всички участници (peer, node). Всеки участник е едновременно и клиент и сървър.

Клиент-сървър – Клиенти

Според наличната функционалност в клиента:

- Rich клиенти.
- **Thin** клиенти.

Според семантиката (протокол):

- Web клиенти Браузери (Chrome, Firefox, IE).
- Mail клиенти POP/SMTP клиенти (MS Outlook, Lotus notes).
- FTP клиенти Total Commander, Filezilla, WinSCP.

• ...

Клиент-сървър - Сървъри

Файл сървър (Windows, Samba, UNIX NFS, OpenAFS).

DB сървър (MySQL, PostgreSQL, Oracle, MS SQL Server, Mongo DB, HANA).

Mail сървър (MS Exchange, GMail, Lotus Notes).

Name сървър (DNS).

FTP сървър (ftpd, IIS).

Print сървър.

Game сървър.

Web сървър (Apache, GWS, MS IIS, nginx).

Application сървър (SAP NetWeaver, Tomcat, GlassFish, JBoss, BEA, Oracle).

. . .

Предимства и недостатъци

Клиент-сървър

- Single Point Of Failure (SPOF).
- Увеличаването на броя на клиентите води до намаляване на производителността.
- 70-95% от времето, през което работи сървъра е idle.

Peer-to-peer

- + Няма SPOF.
- Няма намаляване на производителността при увеличаване на клиентите.
- Проблеми със сигурността.
- Риск от умишлена промяна на съдържание.
- Липса на контрол върху съдържанието и възможност за загуба на съдържание.
- Труден процес на поддръжка.

Съдържание

Интернет и WWW

Моделът "клиент-сървър"

Web Browser

HTTP

Инструменти

KAKBO E

УЕБ БРАУЗЕР?

/Web Browser/

Развитие

Последни версии

Източник: https://browsehappy.com

Архитектура

Browser and Rendering Engines

Съдържание

Интернет и WWW

Моделът "клиент-сървър"

Web Browser

HTTP

Инструменти

Протоколи

ЩО Е ТО **МРЕЖОВИ ПРОТОКОЛ?**

Протоколи според OSI (Open Systems Interconnection) модел

Nº	Слой	Описание	Протоколи
7	Application	Позволява на потребителските приложения да заявяват услуги или информация, а на сървър приложенията — да се регистрират и предоставят услуги в мрежата.	DNS, FTP, HTTP, NFS, NTP, DHCP, SMTP, Telnet
6	Presentation	Конвертиране, компресиране и криптиране на данни.	TLS/SSL
5	Session	Създаването, поддържането и терминирането на сесии. Сигурност. Логически портове.	Sockets
4	Transport	Грижи се за целостта на съобщенията, за пристигането им в точна последователност, потвърждаване за пристигане, проверка за загуби и дублиращи се съобщения.	TCP, UDP
3	Network	Управлява на пакетите в мрежата. Рутиране. Фрагментация на данните. Логически адреси.	IPv4, IPv6, IPX, ICMP
2	Data Link	Предаване на фреймове от един възел на друг. Управление на последователността на фреймовете. Потвърждения. Проверка за грешки. МАС.	ATM, X.25, DSL, IEEE 802.11
1	Physical	Отговаря за предаването и приемането на неструктурирани потоци от данни по физическият носител. Кодиране/декодиране на данните. Свързване на физическият носител.	IEEE 802.11, IEEE 1394, Bluetooth

Характеристики на НТТР

- Приложен протокол като транспортен протокол, почти винаги се ползва TCP/IP, в редки случай и UDP. По подразбиране слуша на порт 80.
- Модел "Заявка-Отговор" ("Request-Response") служи за комуникационен канал в "Клиент-Сървър" архитектура, като следва строги правила за ред и формат на съобщенията между участниците.
- **Не пази състояние (Stateless)** всяка клиентска заявка е независима сама по себе си. Сървърът не обвързва логически серия заявки от определен клиент. Това води до липса на вграден в протокола механизъм за поддържане на сесии.
- НТТР Транзакция /опростен модел без преизползване на конекцията/
 - 1. Клиентът отваря комуникационен канал (ТСР сокет)
 - 2. Изпращане на заявка от клиента към сървъра
 - 3. Сървърът връща отговор на клиента
 - 4. Затваряне на сокет-а от сървъра.

Видове НТТР съобщения

- Заявка инициатор е клиентът подава информация на сървъра, достъп до кой ресурс иска да получи и каква операция иска да извърши с него (и евентуални входни параметри). Клиент (условно наречен User-Agent в HTTP) може да бъде всяко софтуерно приложение, спазващо правилата на протокола на комуникация.
- **Отговор** изпраща се от уеб сървъра, като резултат от изпълнението на клиентска заявка. Под **уеб сървър** разбираме софтуерно приложение, служещо като доставчик на дадени услуги върху определени негови ресурси.

HTTP HTTP Заявка

• Начален ред

HTTP Метод (Глагол) – указва типът операция, която клиентът иска да извърши със заявеният ресурс.

URL – уникален локатор на заявеният ресурс

Версия на НТТР – версията на протокола, която ще се позлва за комуникация

GET en.wikipedia.org/w/index.php HTTP/1.1

• **Хедъри** - опционални (HTTP 1.1 задължава специфицирането на хедър HOST в заявката). Възможно е да дефинира множество хедъри, като всеки от тях заема точно един ред и следва форматът: "Име на хедър: Стойност на хедър"

Connection: Keep-Alive

Host: en.wikipedia.org

• **Данни (Тяло)** – опционални, може да съдържат множество редове, включително и празни

НТТР Заявка / Пример

GET /w/index.php?search=Students&title=Special%3ASearch HTTP/1.1

```
Accept: application/x-ms-application, image/jpeg, application/xaml+xml, image/gif, image/pjpeg, application/x-ms-xbap, */*
Referer: http://en.wikipedia.org/wiki/Main_Page
Accept-Language: en-US
User-Agent: Mozilla/4.0
Accept-Encoding: gzip, deflate
Host: en.wikipedia.org
Connection: Keep-Alive
```

<Празен ред>

<GET заявките нямат тяло!>

HTTP HTTP Ресурси

Унифициран локатор на ресурси (URL) - стандартизиран адрес на даден мрежов ресурс (документ или страница). Всяка уеб страница е идентифицирана уникално чрез URL

Видове HTTP методи

- **GET** за зареждане на ресурс от сървъра
- **POST** изпраща данни (например от HTML форма) за обработка от сървъра. Данните се съдържат в тялото на заявката
- **HEAD** идентичен с GET, с разликата, че отговорът няма да върне тяло, а само хедъри
- **PUT** ъплоудва специфичен ресурс
- **DELETE** трие специфичен ресурс
- TRACE указва на сървъра да върне низа на заявката в тялото на отговора
- OPTIONS казва на сървъра да му върне всички позволени методи за даден ресурс
- CONNECT за работа с проксита
- РАТСН за подмяна на части от ресурса

HTTP HTTP Отговор

• **Начален ред –** съдържа 3 елемента, разделени с празно пространство помежду си:

Версия на НТТР

Статус код – обяснява резултата на изпълнието на заявката

Причина – кратко обяснение на статус-кода

HTTP/1.1 200 OK

• Хедъри

Date: Sat, 06 Oct 2015 15:08:15 GMT

Server: Apache

• **Данни (Тяло)** – отговорите обикновено връщат данни, като тук най-често се съдържа **HTML документът**, получен на базата на клиентската заявка.

НТТР Отговор / Пример

HTTP/1.1 200 OK

```
Date: Sat, 17 Nov 2012 15:08:15 GMT
Server: Apache
X-Content-Type-Options: nosniff
Cache-Control: private, s-maxage=0, max-age=0, must-revalidate
Content-Language: en
Vary: Accept-Encoding, Cookie
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Encoding: gzip
Content-Length: 8582
```

<Празен ред>

<hTML>Пропускаме документа за простота!</hTML>

НТТР Статус Кодове / 1

Трицифрени кодове, идентифициращи какъв е резултът от обработката на клиентската заявка

Групирани са в 5 категории, на базата на цифрата на стотиците

1. Група 100 – те са чисто информационни, не дават индикация дали заявката е била успешна или не. Служат за "временни" кодове, т.е. заявката е пристигнала, но сървърът не е готов с резултата все още:

100 Continue101 Switching protocols

2. Група 200 – сървърът е обработил успешно клиентската заявка

200 OK 206 Partial content

НТТР Статус Кодове / 2

3. Група 300 – ресурсът е наличен, но е разположен на друго място

301 Moved permanently 307 Temporary redirect

304 Not Modified

4. Група 400 - клиентска грешка

400 Bad Request 401 Not Authorized 404 Not Found 408 Request Timeout

5. Група 500 - сървърна грешка

500 Internal Server Error 503 Service Unavailable **501 Not Implemented**

HTTP HTTP Хедъри / 1

• Основни (General headers) – могат да се ползват едновременно и в заявки, и в отговори. Съдържат информация (мета-данни) за самото съобщение или за метода на комуникация

Connection: keep-alive

Date: Sat, 17 Nov 2015 16:08:15 GMT

• Заявка (Request headers) – специфични са само за заявките и могат да съдържат данни за самата заявка или за клиента

Accept: text/html

Accept-Charset: utf-8

Accept-Language: en-US

User-Agent: Mozilla/4.0

НТТР Хедъри / 2

• Отговор (Response headers) - съдържат информация (мета-данни) за сървъра и формата на съобщението

Server: Apache

Allow: GET, HEAD

• Същински (Entity headers) – информация за самото съдържание на данни (тяло) и/или за ресурса, заявен от клиента:

Content-Language: en

Content-Encoding: gzip

Content-Length: 8582

Last-Modified: Tue, 15 Nov 2012 12:45:26 GMT

HTTP Хедъри / User Agent

User Agent е софтуер, който извършва действие от името на потребителя:

- Е-mail клиенти.
- Web Browser-и.
- Месинджъри: Skype, WhatsApp.

• ...

Примерен низ за Google Chrome Web Browser:

Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.101 Safari/537.36

Кеширане

- **Браузър кеш** механизъм за временно съхранение на ресурси, с цел по-бързият им достъп.
- Срок на годност ("expiration period") целта е да се елиминират HTTP заявки, които биха получили еднакъв документ като отговор. За целта браузър кешът трябва да знае за колко дълго може да се "довери" на кешираният документ.

Cache-Control: max-age=3600

Expires: Wed, 21 Sep2017 16:00:00 GMT

• **Актуалност на данните ("validation") –** сървърът предоставя възможност на клиента да провери дали кешираните му ресурси са били променяни.

Last-Modified: 01 Oct 2017 16:00:00

If-Modified-Since: 01 Oct 2017 16:00:00

HTTP HTTP Сесии

Сесията е концепция, която позволява да се поддържа връзка (състояние) между 2 или повече http requests, изпратени към даден сървър в Internet.

НТТР Сесии / Механизми

• Бисквитки (Cookies)

Hidden fields forms

HTML страницата трябва да съдържа скрита (hidden) форма:

URL Rewriting (презаписване)

Може да добавите в края на всяко URL данни, които да унифицират сесията, за да може сървъра да прочете тези данни и да намери вашата сесия.

http://<my_java_site>?jsessionid=I_am_unique_session_identifier

Cookies

Cookies (Бисквитки)

Cookie-тата са малки текстови файлове генерирани от сървъра и изпратени на клиента в header-ите.

Как работят бисквитките ©

- 1. Клиентът изпраща request към сървъра.
- Сървърът отговоря и в header-ите на response-а праща към клиента cookie-тата, които ще се ползват за проследяване на сесията

Примерен отговор (response) на apache tomcat web container-а съдържа header:

Set-Cookie: JSESSIONID=ACFF1B473DAB71CD27AA16049D61265E; Path=/SessionTest

3. Всеки следващ request, изпратен от клиента, трябва да съдържа Cookie header-а, за да може сървърът да намери сесията на клиента

Cookie: JSESSIONID=ACFF1B473DAB71CD27AA16049D61265E

Cookies / Атрибути

Cookie-тата са дефинирани в RFC 2109.

Атрибути:

- **Comment** обикновено се използва от програмистите, за да обсноват нуждата от ползването на cookie-то.
- Domain определя домейна, за който cookie-то е валидно и ще бъде изпращано.
- Max-age задава lifetime-а на соокіе-то в секунди. След като изтече валидността на соокіе-то, клиентът не трябва да го праща повече.
- **Path** специфицира subset от URL-та, където cookie-то може да бъда изпращано.
- **Secure** този атрибут указва, че cookie-то може да бъде трансферирано само по https протокола.
- **HttpOnly** когато този атрибут е добавен, cookie-то не може да бъде четено или променяно от JavaScript
- Version цяло число, което определя на коя версия на RFC-то отговоря cookie-то.

HTTP HTTP2

Защо е нужен?

HTTP/2.0 или HTTP/2?

- Какви са разликите с HTTP/1.x?
 - двоичен;
 - напълно multiplexed;
 - паралелизъм само с една ТСР връзка за всеки origin;
 - компресия на хедъри;
 - Разрешава "push" от сървъра обратно към клиента без предхождаща заявка.
- Кои браузери поддържат HTTP2 към момента (2017??
 - Firefox, Chrome. Opera, Safari, Internet Explored 11, Microsoft Edge.

Съдържание

Интернет и WWW

Моделът "клиент-сървър"

Web Browser

 HTTP

Инструменти

Инструменти

В браузер-а

Инструменти За разработка

Text Editors/IDE:

- Notepad++
- Sublime Text Editor
- Atom
- WebStorm (30 days trial | students license)
- Visual Code (free)

HTTP Servers:

- Node.js
- Apache

- - -

Благодаря за вниманието!

За контакти: Владислав Илиев e-mail: vladislav.lliev@sap.com