Programmed By : Rithik Tripathi

Connect with me on Linkedin (https://www.linkedin.com/in/rithik-tripathi-data-scientist/)

Regularisation Techniques : Lasso (L1) & Ridge(L2) ¶

```
As we have observed in our Linear Regressiion - Problems Notebook. How Increased Features cause problems with Model results.

Lets quickly demonstrate here as well.
```

In [1]:

```
#Importing libraries
import numpy as np
import pandas as pd
import random
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
%matplotlib inline
```

we will make a dataframe which could mimic a Sine curve

In [2]:

```
#Defining independent variable as angles from 60deg to 300deg converted to radians
x = np.array([i*np.pi/180 for i in range(10,360,3)])
```

In [3]:

```
1 #Setting seed for reproducability
2 np.random.seed(10)
```

In [4]:

```
#Defining the target/dependent variable as sine of the independent variable

# y = sin(x) + SOME NOISE BEING ADDED ON TOP OF IT

y_sin_noise = np.sin(x) + np.random.normal(0,0.15,len(x))

y_pure_sin = np.sin(x)

del_y = y_sin_noise - y_pure_sin
```

In [5]:

```
#Creating the dataframe using independent and dependent variable
sin_df = pd.DataFrame(np.column_stack([x,y_sin_noise]),columns=['x','y'])
sin_df.head()
```

Out[5]:

```
    0 0.174533 0.373386
    1 0.226893 0.332243
    2 0.279253 0.043827
    3 0.331613 0.324311
    4 0.383972 0.467807
```

```
In [6]:
```

```
# sine curve with noise added

#Plotting the dependent and independent variables
plt.figure(figsize=(12,4))
plt.plot(sin_df['x'],sin_df['y'],'.')
```

Out[6]:

[<matplotlib.lines.Line2D at 0x273a38238b0>]

In [7]:

```
# this is how the pure sine column plot appears : without noise

#Plotting the dependent and independent variables

plt.figure(figsize=(12,4))

plt.plot(sin_df['x'],y_pure_sin,'.')
```

Out[7]:

[<matplotlib.lines.Line2D at 0x273a5925580>]

In [8]:

```
# using polynomial regression from power 1 to 15
for i in range(2,16): #power of 1 is already there, hence starting with 2
    col_name = 'x_%d'%i # generating column name with the respective power
    sin_df[col_name] = sin_df['x']**i

sin_df.head()
```

Out[8]:

	x	у	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_10	x_11	x_12	x_13
0	0.174533	0.373386	0.030462	0.005317	0.000928	0.000162	0.000028	0.000005	8.610313e- 07	1.502783e- 07	2.622851e- 08	4.577739e- 09	7.989662e- 10	1.394459e- 10
1	0.226893	0.332243	0.051480	0.011681	0.002650	0.000601	0.000136	0.000031	7.023697e- 06	1.593626e- 06	3.615823e- 07	8.204043e- 08	1.861438e- 08	4.223469e- 09
2	0.279253	0.043827	0.077982	0.021777	0.006081	0.001698	0.000474	0.000132	3.698101e- 05	1.032705e- 05	2.883856e- 06	8.053244e- 07	2.248890e- 07	6.280085e- 08
3	0.331613	0.324311	0.109967	0.036466	0.012093	0.004010	0.001330	0.000441	1.462338e- 04	4.849296e- 05	1.608088e- 05	5.332620e- 06	1.768364e- 06	5.864117e- 07
4	0.383972	0.467807	0.147435	0.056611	0.021737	0.008346	0.003205	0.001231	4.724984e- 04	1.814264e- 04	6.966273e- 05	2.674857e- 05	1.027071e- 05	3.943671e- 06
4														•

Creating Train & Test set Randomly

```
In [9]:
```

```
sin_df['y_pure_sin'] = y_pure_sin

# allocating random int to each record and if it is <3 => train & >3 => test

# this is just a fancy way of doing train test split, nothing else

sin_df['randNumCol'] = np.random.randint(1, 6, sin_df.shape[0])

sin_df.head()

train=sin_df[sin_df['randNumCol']<=3]

test=sin_df[sin_df['randNumCol']>3]

train = train.drop('randNumCol', axis=1)

test = test.drop('randNumCol', axis=1)
```

Implementing Linear regression

In [10]:

```
from sklearn.linear_model import LinearRegression

##Separating the independent and dependent variables
X_train = train.drop('y', axis=1).values
y_train = train['y'].values
y_sin_train = train['y_pure_sin'].values

X_test = test.drop('y', axis=1).values
y_test = test['y'].values
y_sin_test = test['y'].values
```

In [11]:

```
1
   def check_features_vs_result(train_x, train_y, test_x, test_y, features, models_to_plot):
 2
 3
        Takes input train and test dataset, features and a dictionary with number of features to plot with respective plot location
 4
 5
        and returns train v/s test results plot to better understand the overfitting / underfitting results.
 6
 7
8
            train_x : training data
9
            train_y : training target feature
10
            test_x : testing data
11
            test_y : testing target feature
12
            features : (int) number of features to consider while plotting
13
            models_to_plot : dictionary : key -> number of features & value -> Plot location in subplot
14
15
        Respective train v/s test plot
16
17
18
19
20
       # fitting the model
21
        lr = LinearRegression(normalize=True)
       lr.fit(train_x, train_y)
train_y_pred = lr.predict(train_x)
22
23
       test_y_pred = lr.predict(test_x)
24
25
26
        # checking features for which plot is to be made:
27
        if features in models_to_plot :
            plt.subplot(models_to_plot[features])
28
29
            plt.tight layout()
            plt.plot(train_x[:, 0:1], train_y_pred)
30
            plt.plot(train_x[:, 0:1], train_y, '.')
plt.title('Number of Predictors: %d'%features)
31
32
33
        rss\_train = sum((train\_y\_pred-train\_y)**2)/train\_x.shape[0]
34
        return_list = [rss_train]
35
36
       rss_test = sum((test_y_pred-test_y)**2)/test_x.shape[0]
37
38
        return_list.extend([rss_test])
39
40
        return_list.extend([lr.intercept_])
41
       return_list.extend(lr.coef_)
42
43
       return return list
44
45
   # Making DataFrame to store the results
46
47 col = ['mrss_train','mrss_test','intercept'] + ['coef_Var_%d'%i for i in range(1,16)]
48
   ind = ['Number_of_variable_%d'%i for i in range(1,16)]
49
   coef_matrix_simple = pd.DataFrame(index=ind, columns=col)
50
    # defining a dictionary to store subpolot locations for respective number of features
51
52
    models_to_plot = {1:231,3:232,6:233,9:234,12:235,15:236}
53
```

```
In [12]:
```

```
# Iterating through all powers of polynomial reg and storing results in the dataframe made above
 2
   plt.figure(figsize=(12,8))
    for i in range(1,16):
 4
 5
        train_x = X_train[:,0:i]
        train_y = y_train
 6
        test_x = X_test[:,0:i]
 7
 8
        test_y = y_test
 9
10
        # row = i-1 because we need to start from 0th location
11
        \# column = i+3 because there are somdefault columns like x and y axis
12
        coef_matrix_simple.iloc[i-1, 0:i+3] = check_features_vs_result(
13
                                                     train_x, train_y, test_x, test_y,
14
                                                     features=i,
15
                                                     models_to_plot=models_to_plot
16
       )
```


when the features were given more & more, the model got Overfitted and Learned the noise present in data as well.

We can observe how the last plot is able to mimic the sine curve including noise perfectly

```
In [13]:
```

```
1 coef_matrix_simple[['mrss_train','mrss_test']].plot()
2 plt.xlabel('Features')
3 plt.ylabel('MRSS')
4 plt.title('Train vs Test Errors with gradually increased no. of features')
5 plt.legend(['train', 'test'])
```

Out[13]:

<matplotlib.legend.Legend at 0x273a6742430>

The solution to avoid this is Regularisation

Ridge Regularisation (L2)

in L2, We simply add Square of Coefficients to the regular Cost Function

```
In [14]:
```

```
1 # importing ridge from sklearn linear_model module
2 from sklearn.linear_model import Ridge
```

In [15]:

```
1 # list of various lambda/ Alpha i.e Learning Rates to try (to ensure the degree of control of Regularization)
2 learning_rate = [0, 1e-4, 1e-3, 1e-2, 1, 5]
```

In [16]:

```
1 # defining a function which will fit ridge regression model, plot the results, and return the coefficients
    def ridge_regression(train_x, train_y, test_x, test_y, alpha, models_to_plot={}):
        # Fit the model
 4
        ridge = Ridge(alpha= alpha, normalize= True)
        ridge.fit(train_x, train_y)
 5
        train_pred = ridge.predict(train_x)
 6
        test_pred = ridge.predict(test_x)
 8
 9
        # plotting results
10
        if alpha in models_to_plot:
            plt.subplot(models_to_plot[alpha])
11
12
            plt.tight_layout()
            plt.plot(train_x[:, 0:1], train_pred) # predicted values
13
            plt.plot(train_x[:,0:1],train_y,'.') # actual values plt.title('Plot for alpha: %.3g'%alpha)
14
15
16
17
        #Return the result in pre-defined format
18
        mrss_train = sum((train_pred-train_y)**2)/train_x.shape[0]
19
        ret = [mrss_train]
20
21
        mrss_test = sum((test_pred-test_y)**2)/test_x.shape[0]
22
        ret.extend([mrss_test])
23
24
        ret.extend([ridge.intercept_])
25
        ret.extend(ridge.coef_)
26
27
        return ret
28
29
```

In [17]:

```
1 #Initialize the dataframe for storing coefficients.
2 col = ['mrss_train', 'mrss_test', 'intercept'] + ['coef_Var_%d'%i for i in range(1,16)]
3 ind = ['alpha_%.2g'%learning_rate[i] for i in range(0,6)]
4 coef_matrix_ridge = pd.DataFrame(index=ind, columns=col)
6 #Define the alpha value for which a plot is required:
  models_to_plot = {0:231, 1e-4:232, 1e-3:233, 1e-2:234, 1:235, 5:236}
```

In [18]:

```
#Iterate over the 10 alpha values:
plt.figure(figsize=(12,8))
for i, alpha in enumerate(learning_rate):
    coef_matrix_ridge.iloc[i,] = ridge_regression(train_x, train_y, test_x, test_y, alpha, models_to_plot)
```


Ridge Regression Results

with learning rate = 0 : There is no change in model, its same overfitted model, capturing noises

with even a slight change in learning rate = 1e-4 : the model is no longer capturing the noises and has learned the underlying relation of a sine curve

with increased learning rate: model is gradually underfitting and eventually depecting a straight line

In [19]:

```
#Set the display format to be scientific for ease of analysis
pd.options.display.float_format = '{:,.2g}'.format
coef_matrix_ridge
```

Out[19]:

	mrss_train	mrss_test	intercept	coef_Var_1	coef_Var_2	coef_Var_3	coef_Var_4	coef_Var_5	coef_Var_6	coef_Var_7	coef_Var_8	coef_Var_
alpha_0	0.016	0.2	-25	2.7e+02	-1.3e+03	3.3e+03	-5.4e+03	5.9e+03	-4.5e+03	2.5e+03	-1e+03	3e+0
alpha_0.0001	0.02	0.026	-0.023	1.2	-0.36	-0.023	0.0016	0.00058	9e-05	9.4e-06	5.5e-07	-4.1e-0
alpha_0.001	0.028	0.034	0.28	0.72	-0.19	-0.021	-0.00068	0.00019	5.2e-05	9e-06	1.2e-06	1.4e-0
alpha_0.01	0.059	0.058	0.7	0.17	-0.075	-0.011	-0.00085	-1.7e-06	1.6e-05	4e-06	7.4e-07	1.1e-0
alpha_1	0.19	0.2	0.59	-0.093	-0.013	-0.0016	-0.00019	-2.1e-05	-1.9e-06	-1e-07	1.1e-08	5.6e-0
alpha_5	0.35	0.37	0.29	-0.036	-0.0049	-0.00066	-8.7e-05	-1.1e-05	-1.3e-06	-1.5e-07	-1.6e-08	-1.4e-0
4												•

- 1 we can note that with increased value of aplhas, the coefficients are decreasing
- 2 BUT NOTE : EVEN WITH ALPHA =5, THE VALUES ARE NOT ABSOLUTE ZERO => SOME NON ZERO ELEMENT IS PRESENT
- 3 this thing is improved with Lasso Regression and hence that is used for Feature selection while Ridge is frequently used to
- 4 AVOID OVERFITTING

In [20]:

```
coef_matrix_ridge[['mrss_train','mrss_test']].plot()
plt.xlabel('Alpha Values')
plt.ylabel('MRSS')
plt.legend(['train', 'test'])
```

Out[20]:

<matplotlib.legend.Legend at 0x273a69afc70>


```
in this plot, in left most area we can observe huge gap in train and test errors => overfitting
in middle region, the model is performing best => best fit model
in right most region, train and test both errors are too high => model is underfitted
```

Lasso Regularisation (L1)

In [21]:

```
1 #Importing Lasso model from sklearn's linear_model module
2 from sklearn.linear_model import Lasso
```

In [22]:

```
1 #Define the alpha values to test
2 alpha_lasso = [0, 1e-10, 1e-8, 1e-5,1e-4, 1e-3,1e-2, 1, 5, 10]
```

In [23]:

```
# defining a function which will fit lasso regression model, plot the results, and return the coefficients
 2
    def lasso_regression(train_x, train_y, test_x, test_y, alpha, models_to_plot={}):
        #Fit the model
 4
        # lasso model by default does NOT allows to train a model with 0 Learning rate, hence we use Linear Regression for that.
        if alpha == 0:
            lassoreg = LinearRegression(normalize=True)
            lassoreg.fit(train_x, train_y)
 8
            train_y_pred = lassoreg.predict(train_x)
            test_y_pred = lassoreg.predict(test_x)
10
11
12
13
            lassoreg = Lasso(alpha=alpha,normalize=True)
            lassoreg.fit(train_x,train_y)
14
15
            train y pred = lassoreg.predict(train x)
            test_y_pred = lassoreg.predict(test_x)
16
17
        #Check if a plot is to be made for the entered alpha
18
19
        if alpha in models_to_plot:
20
            plt.subplot(models_to_plot[alpha])
21
            plt.tight_layout()
22
            plt.plot(train_x[:,0:1],train_y_pred)
            plt.plot(train_x[:,0:1],train_y,'.')
plt.title('Plot for alpha: %.3g'%alpha)
23
24
25
26
        #Return the result in pre-defined format
27
        mrss_train = sum((train_y_pred-train_y)**2)/train_x.shape[0]
28
        ret = [mrss_train]
29
30
        mrss_test = sum((test_y_pred-test_y)**2)/test_x.shape[0]
31
        ret.extend([mrss_test])
32
33
        ret.extend([lassoreg.intercept_])
34
        ret.extend(lassoreg.coef_)
35
36
        return ret
```

In [24]:

```
1
    #Initialize the dataframe to store coefficients
   col = ['mrss_train','mrss_test','intercept'] + ['coef_Var_%d'%i for i in range(1,16)]
ind = ['alpha_%.2g'%alpha_lasso[i] for i in range(0,10)]
 2
 3
 4
    coef_matrix_lasso = pd.DataFrame(index=ind, columns=col)
    #Define the models to plot
 6
    models_to_plot = {0:231, 1e-5:232,1e-4:233, 1e-3:234, 1e-2:235, 1:236}
 8
    #Iterate over the 10 alpha values:
 9
10
    plt.figure(figsize=(12,8))
11
    for i in range(10):
12
        coef_matrix_lasso.iloc[i,] = lasso_regression(train_x, train_y, test_x, test_y, alpha_lasso[i], models_to_plot)
```

C:\Users\rkt7k\anaconda3\lib\site-packages\sklearn\linear_model_coordinate_descent.py:530: ConvergenceWarning: Objective d id not converge. You might want to increase the number of iterations. Duality gap: 0.7335671573239089, tolerance: 0.0039830 65126185541

model = cd_fast.enet_coordinate_descent(

C:\Users\rkt\(\bar{T}\anacond\(\aar{A}\) ib\site-packages\sklearn\linear_model_coordinate_descent.py:530: ConvergenceWarning: Objective d id not converge. You might want to increase the number of iterations. Duality gap: 0.7333330322072866, tolerance: 0.0039830 65126185541

model = cd_fast.enet_coordinate_descent(

C:\Users\rkt7k\anaconda3\lib\site-packages\sklearn\linear_model_coordinate_descent.py:530: ConvergenceWarning: Objective d id not converge. You might want to increase the number of iterations. Duality gap: 0.5377192887698238, tolerance: 0.0039830 65126185541

model = cd_fast.enet_coordinate_descent(

C:\Users\rkt7k\anaconda3\lib\site-packages\sklearn\linear_model_coordinate_descent.py:530: ConvergenceWarning: Objective d id not converge. You might want to increase the number of iterations. Duality gap: 0.1355348910790386, tolerance: 0.0039830 65126185541

model = cd_fast.enet_coordinate_descent(

Lasso Regression Results

with learning rate = 0 : There is no change in model, its same overfitted model, capturing noises

with even a slight change in learning rate = 1e-5 : the model is no longer capturing the noises and has learned the underlying relation of a sine curve

with increased learning rate: model is gradually underfitting and eventually depecting a straight line.

NOTE: with increase in learning, after sometime, the plot is a straight line signifying II variableshaven been reduced to absolute zero 0

In [25]:

```
#Set the display format to be scientific for ease of analysis
pd.options.display.float_format = '{:,.2g}'.format
coef_matrix_lasso
```

Out[25]:

	mrss_train	mrss_test	intercept	coef_Var_1	coef_Var_2	coef_Var_3	coef_Var_4	coef_Var_5	coef_Var_6	coef_Var_7	coef_Var_8	coef_Var_
alpha_0	0.016	0.2	-25	2.7e+02	-1.3e+03	3.3e+03	-5.4e+03	5.9e+03	-4.5e+03	2.5e+03	-1e+03	3e+0
alpha_1e-10	0.02	0.027	-0.054	1.4	-0.44	-0.0036	0.0023	0.00039	4.7e-05	5e-06	4.5e-07	2.9e-0
alpha_1e-08	0.02	0.027	-0.054	1.4	-0.44	-0.0036	0.0023	0.00039	4.7e-05	5e-06	4.5e-07	2.9e-0
alpha_1e-05	0.02	0.027	-0.041	1.3	-0.44	-0.0032	0.002	0.0004	4.8e-05	5e-06	4.3e-07	2.4e-0
alpha_0.0001	0.022	0.027	0.071	1.1	-0.38	-0	0	0.00042	5.9e-05	5.4e-06	3.1e-07	
alpha_0.001	0.08	0.072	0.81	0.11	-0.11	-0	-0	0	0	0	9.6e-07	7.1e-0
alpha_0.01	0.18	0.17	0.89	-0.25	-0.0088	-0	-0	-0	0	0	0	
alpha_1	0.55	0.56	-0.003	-0	-0	-0	-0	-0	-0	-0	-0	-
alpha_5	0.55	0.56	-0.003	-0	-0	-0	-0	-0	-0	-0	-0	-
alpha_10	0.55	0.56	-0.003	-0	-0	-0	-0	-0	-0	-0	-0	-
4)

In [26]:

```
coef_matrix_lasso[['mrss_train', 'mrss_test']].plot()
plt.xlabel('Alpha Values')
plt.ylabel('MRSS')
plt.legend(['train', 'test'])
```

Out[26]:

<matplotlib.legend.Legend at 0x273a6e08be0>


```
in this plot, in left most area we can observe huge gap in train and test errors => overfitting
in middle region, the model is performing best => best fit model
in right most region, train and test both errors are too high => model is underfitted
```

In [27]:

```
1 coef_matrix_lasso.apply(lambda x: sum(x.values==0),axis=1)
```

Out[27]:

```
alpha_0
                 0
alpha_1e-10
                 a
alpha_1e-08
                 0
alpha_1e-05
                 2
alpha_0.0001
                 7
                11
alpha_0.001
alpha_0.01
                12
alpha_1
                15
alpha_5
                15
alpha_10
                15
dtype: int32
```

1 we could cross validate that how with increased alpha, the amount of features reduced to absolute zero are increasing.