タイトル

2131701 齋藤悠希

1 Banach Space

定義 1 (線形空間の公理). 空でない集合 X が,係数体 \mathbb{K} 上の線形空間であるとは,任意の $u+v\in X$ とスカラー $\alpha\in\mathbb{K}$ に対して,加法 $u+v\in X$ とスカラー乗法 $\alpha u\in X$ が定義されていて,任意の $u,v,w\in X$ とスカラー $\alpha,\beta\in\mathbb{K}$ に対して次のことが成り立つことである.

- 1. (u+v) + w = u + (v+w)
- 2. u + v = v + u
- 3. u+0=u となる $0 \in X$ が一意に存在
- 4. u + (-u) = 0 となる $-u \in X$ が一意に存在
- 5. $\alpha(u+v) = \alpha u + \alpha v$
- 6. $(\alpha + \beta)u = \alpha u + \beta u$
- 7. $(\alpha\beta)u = \alpha(\beta u)$
- 8. $1u = u, 1 \in \mathbb{K}$

定義 2 (ノルムとノルム空間の定義). X を係数体 $\mathbb K$ 上の線形空間とする. X で定義された関数 $||\cdot||: X \to \mathbb K$ 上で定義された関数が X のノルムであるとは

- 1. ||u|| > 0, $u \in X$
- 2. $||u|| = 0 \Leftrightarrow u = 0$
- 3. $||\alpha u|| = |\alpha|||u||, \quad (\alpha \in \mathbb{K}, u \in X)$
- 4. $||u+v|| \le ||u|| + ||v||$

が成立することである. さらに X に 1 つのノルムが指定されているとき, X はノルム空間という.

定義 ${f 3}$ (ノルム空間の収束と極限). X をノルム空間とする. X の点列 $(u_n)\subset X$ は

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall N \geq N$$
 に対して $||u_n - u|| < \epsilon$

のとき, 点 $u \in X$ に収束するといい,

$$||u_n - u|| \to 0, \ (n \to \infty)$$

と表す. このとき, u を u_n の極限といい,

$$u_n - u, (n \to \infty)$$

と表す.

定義 4 (Cauchy 列). X をノルム空間とする. そのとき X が Cauchy 列であるとは

$$u_n - u_m \to 0, \ (n, m \to \infty)$$

が成立することである. 即ち

$$||u_n - u_m|| \to 0, \ (n, m \to \infty)$$

が成立することである.

定義 **5** (完備). X をノルム空間とする. X が完備であるとは、任意の Cauchy 列 (u_n) が X の中で極限をもつことである. すなわち、任意の Cauchy 列 $(u_n \subset X)$ が

$$||u_n - u|| \to 0 , (n \to 0)$$

となる極限uをX内に持つことである.

定義 $\mathbf{6}$ (Banach 空間). ノルム空間 X が Banach 空間であるとは、X が完備であることである.

定理 1 (逆三角不等式). X をノルム空間とする. 任意の $u,v \in X$ について次の不等式を満たす.

$$|||u|| - ||v||| \ge ||u - v||$$

証明. 任意の $u,v \in X$ について

$$||u|| = ||u - v + v|| \ge ||u - v|| + ||v||$$

 $||v|| = ||v - u + u|| \ge ||v - u|| + ||u|| = ||u - v|| + ||u||$

となる. よって

$$||u|| - ||v|| \ge ||u - v||$$

 $||v|| - ||u|| \ge ||u - v||$

となるため,

$$|||u|| - ||v||| \ge ||u - v||$$

を持つ.

定義 $\mathbf{7}$ (有界列). X をノルム空間とする. そのとき X の点列 (u_n) が有界列とは任意の $n\in\mathbb{N}$ に対して

$$||u_n|| \geq M$$

となる定数 M>0 が存在することである.

定理 2 (Cauchy 列ならば有界列). X をノルム空間とする. そのとき X の点列 (u_n) が Cauchy 列ならば有界列でもある.

証明. X の点列 (u_n) が Cauchy 列であるために, $\epsilon-N$ 論法を用いた表記で

$$\forall \epsilon > 0, \; \exists N \in \mathbb{N}, \; \forall n,m \geq N$$
 に対して $||u_n - u_m|| < \epsilon$

を満たす. $\epsilon=1$ としても、それに対応した N が存在し、任意の $n\geq N$ に対して