西南交通大学 2018-2019 学年第(二)学期考试试卷

课程代码_6041929_ 课程名称 拓扑学基础(A 卷) **考试时间** 120 分钟

题号	1	2	3	4	5	6	7	总成绩
分数								

阅卷教师签字:

考试说明: (1) 所有解答中用到的结论,如课程没有涉及,引用时需给出证明. (2) 部分题目后标有"数学"或"统计",仅限选了该班课程的同学解答。

- 1. (15 分) 设 \mathbb{R} 是实数集, \mathbb{Q} 是有理数集, $(0,1] = \{x \in \mathbb{R} | 0 < x \le 1\}$.
- (1). 证明集族 $\mathcal{T}_c = \{A \subset \mathbb{R} \mid A$ 的补集是可数集 $\} \cup \{\emptyset\}$ 是 \mathbb{R} 上的一个拓扑.
- (2). 在拓扑空间 $(\mathbb{R}, \mathcal{T}_c)$ 中,求 $\overline{(0,1]}$ 和 $d(\mathbb{Q})$.

证明: (1) 只需验证 c 满足开集公理的三个条件:

- (i) $\mathbb{R}^C = \emptyset$ 是可数集,所以 $\mathbb{R} \in c$. 而由定义知 $\emptyset \in c$;
- (ii) 设 $A_{\lambda} \in c, \lambda \in \Lambda(\Lambda)$ 是任意指标集). 不妨设每个 $A_{\lambda} \neq$ 都非空 (空集对并运算没有影响), 则 A_{λ}^{C} 是可数集。从而由 De Morgan 规律知,

$$\left(\bigcup_{\lambda\in\Lambda}A\right)^C=\bigcap_{\lambda\in\Lambda}A_\lambda^C$$

上面等式右边是任意多个可数集的交集,从而也是可数集。所以 $\bigcup_{\lambda \in \Lambda} A_{\lambda} \in c$.

(iii) 设 $A, B \in c$, 若 A, B 有一个是空集,则 $A \cap B = \emptyset \in c$. 若 A, B 都不是空集,则 A^C, B^C 都是可数集,从而

$$(A \cap B)^C = A^C \cup B^C.$$

上面等式右端是两个可数集的并集,从而也是可数集。所以 $A \cap B \in c$.

(2) 对任意的 $x \in \mathbb{R}$ 以及 x 的任何一个开邻域 U 有 $U \cap (0,1] \neq \emptyset$. 否则, 若 $u \cap (0,1] = \emptyset$, 则 $(0,1] \subset U^C$, 而 U^C 是可数集, 这与 (0,1] 不可数矛盾。故有 $x \in \overline{(0,1]}$, 从而 $\overline{(0,1]} = \mathbb{R}$.

对任意的 $x \in \mathbb{R}$, 令 $U = (\mathbb{R} - \mathbb{Q}) \cup \{x\}$. 则 $U^C = \mathbb{Q} \cap \{x\}^C$ 是可数集,从而 $U \neq x$ 的一个开邻域。但是 $U \cap (\mathbb{Q} - \{x\}) = \emptyset$. 由聚点的定义知, $x \notin d(\mathbb{Q})$,从而 $d(\mathbb{Q}) = \emptyset$. \square

2. (15 分) 设 Y 是 Hausdorff 空间, $f: X \to Y$ 连续, 则 f 的图像 $G = \{(x, f(x)) | x \in X\}$ 是积空间 $X \times Y$ 的闭子集.

证明: 只需证 G^C 是 $X \times Y$ 的开子集。设 $(x,y) \notin G$, 则 $y \neq f(x)$. 因为 Y 是一个 Hausdorff 空间,所以存在 y 的开邻域 V_1 和 f(x) 的开邻域 V_2 使得 $V_1 \cap V_2 = \emptyset$. 因为 f 连续,所以 $U_i = f^{-1}(V_i)$ (i = 1, 2) 是 X 中的两个开集. 因为 $f(x) \in V_2$,所以 $x \in f^{-1}(V_2)$,故 $f^{-1}(V_2) = U_2$ 是 x 的一个开邻域。所以 $U_2 \times V_1$ 是 (x,y) 的一个开邻域。下面说明 $(U_2 \times V_1) \cap G = \emptyset$,即说明:任意 $z \in U_2$ 有 $f(z) \notin V_1$. 这是因为

$$z \in U_2 = f^{-1}(V_2) \Longrightarrow f(z) \in V_2 = \stackrel{V_1 \cap V_2 = \emptyset}{\Longrightarrow} f(z) \notin V_1.$$

从而 $U_2 \times V_1 \subset G^C$, 所以 G^C 是开子集。 \square

3. (10 分) 设集合

$$A = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0\} \cup \{(x, y) \in \mathbb{R}^2 \mid y = 0\}$$

= $([0, +\infty) \times \mathbb{R}) \cup (\mathbb{R} \times \{0\})$.

定义映射:

$$f: A \to \mathbb{R}, \quad f((x,y)) = x, \ \ \forall (x,y) \in A.$$

证明: f 是一个商映射, 但它既不是开映射也不是闭映射.

证明: 首先验证 f 是一个商映射。 f 是满射是显然成立的。接下来验证

$$U$$
是 \mathbb{R} 中的开集 $\iff f^{-1}(U)$ 是 A 中的开集.

若 U 是 \mathbb{R} 中的开集,则 $f^{-1}(U) = (U \times \mathbb{R}) \cap A$ 是 A 中的开集。反之,若 $f^{-1}(U)$ 是 A 中的开集。设 $x \in U$,则存在 $y \in \mathbb{R}$,使得 $(x,y) \in f^{-1}(U)$.所以存在 \mathbb{R} 中的开集 V,W 使得 $(x,y) \in (V \times W) \cap A \subset f^{-1}(U)$.所以

$$x = f((x,y)) \in f((V \times W) \cap A) \subset f(f^{-1}(U)) \stackrel{f \neq h}{=} U.$$

而由 f 的定义知 $f((V \times W) \cap A) = V$. 从而 $x \in V \subset U$,即 U 是 \mathbb{R} 中的开集。 所以 f 是一个商映射。

下面说明 f 既不是开映射也不是闭映射。

- f 不是开映射 \iff 存在 A 中的开集 U, 但 f(U) 不是 \mathbb{R} 中的开集。取 $U = [0,1) \times (1,2)$,则 $U = (-1,1) \times (1,2) \cap A$ 是 A 中开集,但 f(U) = [0,1) 不是 \mathbb{R} 中开集。
- f 不是闭映射 \iff 存在 A 中的闭集 B, 但 f(B) 不是 \mathbb{R} 中的闭集。取

$$B = \left\{ (x, y) \in \mathbb{R}^2 \mid y = \frac{1}{x}, x > 0 \right\}.$$

则 $B \subset A$ 是 A 的闭集, 但 $f(B) = (0, +\infty)$ 不是 \mathbb{R} 的闭集。 \square

4. (15 分) 设 X 满足 T_4 公理的连通空间,并且 X 中至少有两个点. 证明: X 是不可数的.

证明: 设 $x, y \in X$ 且 $x \neq y$. 则由 X 是 T_4 空间以及 Uryshon 引理知,对于 $\{x\}$ 和 $\{y\}$ 这两个不相交的闭集,存在连续映射 $f: X \to [0,1]$ 满足 f(x) = 0 , f(y) = 1. 因为 X 是连通空间且 f 是连续映射,所以 f(X) 是 [0,1] 中的连通子集。而 [0,1] 中的连通子集都是区间,又因为 [0,1] 只因为 [0,1] ,所以 [0,1] ,从而 [0,1] ,从而 [0,1] ,不可数。

5. (15 分) 证明: 紧致的度量空间是可分的, 也是第二可数的。

证明:设 X 是一个紧致的度量空间。对每个 $n \in \mathbb{Z}_+$,集族 $\mathcal{U}_n = \left\{ B\left(x, \frac{1}{n}\right) \middle| x \in X \right\}$ 是 X 的一个开覆盖。由 X 的紧致性知,存在有限子覆盖,设为 \mathcal{B}_n . 令 $\mathcal{B} = \bigcup_{n \in \mathbb{Z}_+} \mathcal{B}_n$,则 \mathcal{B} 是可数个有限集族的并,从而是可数集族。首先说明 \mathcal{B} 是 X 的一个拓扑基。对任意的 $x \in X$ 以及 x 的任意开邻域 U,由度量拓扑的定义知,存在 $\varepsilon > 0$ 使得 $B(x,\varepsilon) \subset U$. 固定 $n > 2/\varepsilon$,因为 \mathcal{B}_n 是 X 的开覆盖,从而存在 $B\left(x_n, \frac{1}{n}\right) \in \mathcal{B}_n \subset \mathcal{B}$,使得 $x \in B\left(x_n, \frac{1}{n}\right)$. 而对任意的 $y \in B\left(x_n, \frac{1}{n}\right)$ 有

$$\rho(x,y) \le \rho(x,x_n) + \rho(x_n,y) < \frac{1}{n} + \frac{1}{n} = \frac{2}{n} < \varepsilon.$$

所以 $x \in B\left(x_n, \frac{1}{n}\right) \subset B\left(x, \varepsilon\right) \subset U$. 这说明 \mathscr{B} 是 X 的拓扑基。从而由 \mathscr{B} 的可数性知 X 是第二可数的。

每个满足第二可数公理的空间都是可分空间(定理). □

注: 也可以参考第十次作业第四题的答案. 直接构造出一个可数稠密子集, 再由可分的度量空间是 A₂

6. (15 分) 设 X 是一个第一可数空间. 证明:

X是 Hausdorff 空间 \iff X中每个收敛序列都只有一个极限点.

证明: \Longrightarrow) Hausdorff 空间中的收敛序列极限点唯一。(定理 6.1.5)

$$U'_{n} = \bigcap_{k=1}^{n} U_{k}, \quad V'_{m} = \bigcap_{k=1}^{m} V_{k}.$$

则 $\{U'_n\}_{n\in\mathbb{Z}_+}$ 和 $\{V'_m\}_{m\in\mathbb{Z}_+}$ 也是 x 和 y 的邻域族,且满足 $U'_i\supset U'_j(\forall i\leq j), V'_i\supset V'_j(\forall i\leq j)$. 对每个 $i\in\mathbb{Z}_+, U'_i\cap V'_i\neq\emptyset(x,y)$ 的任意两个邻域交集都非空),故可取 $z_i\in U'_i\cap V'_i$. 下面说明序列 $\{z_i\}_{i\in\mathbb{Z}_+}$ 既收敛到 x 又收敛到 y,从而和假设矛盾。事实上对 x 的任意邻域 U,由邻域基的定义知,存在 $N\in\mathbb{Z}_+$,使得 $x\in U_N\subset U$. 从而对所有的 n>N,有

$$U'_n \subset U'_N \subset U_N \subset U$$
.

故对所有的 n > N, 有 $z_n \in U'_n \subset U$, 即 $\lim_{n \to \infty} z_n = x$. 同理可以说明 $\lim_{n \to \infty} z_n = y$. 但是 $x \neq y$, 这与假设序列收敛则极限点唯一矛盾。

7. $(15 \, \mathcal{A})$ (a) (\mathbb{R} , \mathcal{I}_c) 是否是道路连通的? 证明你的结论.(**统计**)

(b). 设闭曲面 M 有多边形表示: $abca^{-1}cdeb^{-1}fedf$. 求 M 的曲面类型. (**数学**) **证明**: (a) (\mathbb{R} , c) 不是道路连通空间。反证法: 对于 $a,b \in \mathbb{R} (a \neq b)$,假设存在连续映射 $f: [0,1] \to \mathbb{R}$ 使得 f(0) = a, f(1) = b. 令 D 是 [0,1] 中所有有理数的集合,

则 D 是可数集。故 f(D) 是可数集,从而是 (\mathbb{R}, c) 中的闭集。故有

$$f([0,1]) = f(\overline{D}) \subset \overline{f(D)} = f(D).$$

所以 f([0,1]) = f(D). 因为 [0,1] 连通,f 连续,所以 f(D) = f([0,1]) 连通。但是因为 f(D) 是至少含有两个点($f(0) = a \neq b = f(1)$)的可数集,

 $A := f(D) - \{f(0)\} = (\mathbb{R} - \{f(0)\}) \cap f(D), \quad B := \{f(0)\} = (\mathbb{R} - (f(D) - \{f(0)\})) \cap f(D)$ 是 f(D) 中两个不相交的非空开集,且 $f(D) = A \cup B$,所以 f(D) 不连通,矛盾。

(b) 由于 M 有多边形表示: $abca^{-1}cdeb^{-1}fedf$. 中有同向对,所以曲面不可定向,从而曲面类型应为: $m\mathbb{R}P^2$. 现在确定 m 的值,只需要确定 M 的欧拉示性数。由 M 的多边形表示,易见 $\chi(M)$ = 顶点数 – 边数 + 面数 = $1-6+1=2-m\Longrightarrow m=6$,故该曲面为 $6\mathbb{R}P^2$.