Maintenance Scheduling System

Christian Brunbjerg Jespersen

Technical University of Denmark

January 1, 1980

Agenda

- ► Introduction to Maintenance Scheduling
- ► Architecture of a Scheduling System
- Possible Contributions to Operation Research

$\underset{a}{\mathsf{Mathematical}} \ \mathsf{Notation} \colon \mathsf{Sets}$

 $A_{b,c}^m(t,x,y)$

▶ a: set element

A: set itself

b: set element from set B

c: set element from set C

m: model formulation m

t: time

x: value of decision variable from a different model

y: value of decision variable from a different model

Mathematical Notation: Parameters

 $name_of_parameter_{a,b}(t, x, y)$

- parameters are functions of set elements and input parameters
- ▶ a: set element from A
- b: set element from B
- t: time
- x: value of decision variable from another model
- y: value of decision variable from another model

Mathematical Notation: Variables

$x_{a,b}^m(t)$

- variables are functions of set elements, specified model, and time
- x: decision variable
- a: set element from A
- b: set element from B
- m: specifying the model
- t: time
- Notice: decision variables cannot depend on other decision variables as it would make them belong to the same model.

Strategic

Meta variables:

$$s \in S$$
 (1) $\alpha(\tau)$ (2)

$$\tau \in [0, \infty]$$
 (3)

Minimize

$$+ \sum_{o \in O(\tau, \alpha(\tau))} \sum_{d \in D(\tau)} tactical_value_{do}(\tau) \cdot \beta_{do}(\tau)$$

$$+\sum_{r \in R(\tau)} \sum_{d \in D(\tau)} tactical_penalty \cdot \mu_{rd}(\tau)$$

Subject to:

$$\sum_{o \in O(\tau, \alpha(\tau))} work_o(\tau) \cdot \beta_{do}(\tau) \leq \Psi_{drt}(\tau) + \mu_{rd}(\tau) \quad \forall d \in D(\tau) \quad \forall r \in R(\tau)$$
(5)

$$\sum_{r \in R(\tau)} \Psi_{drr}(\tau) \leq tactical_resource_{dr}(\tau) \quad \forall d \in D(\tau) \quad \forall t \in T(\tau)$$
(6)

$$\sum_{r \in \mathcal{F}} \Psi_{drt}(\tau) \leq technician_skills_{rt}(\tau) \quad \forall r \in R(\tau) \quad \forall t \in T(\tau)$$

$$\beta_{do}(\tau) \leq number_{o}(\tau) \cdot operating_time_{o} \cdot \sigma_{do}(\tau) \quad \forall d \in D(\tau) \quad \forall o \in O(\tau, \alpha(\tau))$$

$$\tag{8}$$

$$\sum_{lates_{\tau}, finish_{\tau}(\tau)}^{lates_{\tau}, finish_{\tau}(\tau)} \sigma_{do}(\tau) = duration_{o}(\tau) \quad \forall o \in O(\tau, \alpha(\tau))$$
(9)

$$\sum_{\sigma^* \in D_{hormon,r(\tau)}(\tau)} \sigma_{\sigma^* \circ}(\tau) = duration_o(\tau) \cdot \eta_{do}(\tau) \quad \forall o \in O(\tau, \alpha(\tau)) \quad \forall d \in D(\tau)$$
(10)

$$f' \in D_{duration_0(\tau)}(\tau)$$

$$\sum_{o \in O(\tau, \alpha(\tau))} \eta_{do}(\tau) = 1, \quad \forall d \in D(\tau)$$

$$\sum_{d \in D(\tau)} d \cdot \sigma_{do1}(\tau) + \Delta_o(\tau) = \sum_{d \in D(\tau)} d \cdot \sigma_{do2}(\tau) \quad \forall (o1, o2) \in finish_start_{o1,o2}$$

$$d \in D(\tau) \qquad d \cdot \sigma_{dO1}(\tau) = \sum_{d \in D(\tau)} d \cdot \sigma_{dO1}(\tau) \qquad \forall (o1, o2) \in start_start_{o1, o2}$$
(12)

$$d \in D(\tau)$$
 $d \in D(\tau)$
 $\beta_{do}(\tau) \in \mathbb{R} \quad \forall d \in D(\tau) \quad \forall o \in O(\tau, \alpha(\tau))$ (13)

$$\beta_{do}(\tau) \in \mathbb{K} \quad \forall d \in D(\tau) \quad \forall o \in U(\tau, \alpha(\tau))$$

$$(13)$$

$$\mu_{rd}(\tau) \in \mathbb{R} \qquad \forall r \in R(\tau) \quad \forall d \in D(\tau)$$
 (14)

$$\sigma_{do}(\tau) \in \{0, 1\} \qquad \forall d \in D(\tau) \quad \forall o \in O(\tau, \alpha(\tau))$$

$$\tag{15}$$

$$\eta_{do}(\tau) \in \{0,1\} \quad \forall d \in D(\tau) \quad \forall o \in O(\tau, \alpha(\tau))$$

$$(16)$$

$$\Delta_o(\tau) \in \{0,1\} \quad \forall o \in O(\tau, \alpha(\tau))$$
(17)

(4)

(11)

Supervisor

Meta variables:	
$z \in Z$	(18)
$\alpha(\tau)$	(19)
heta(au)	(20)
$ au \in [0,\infty]$	(21)
Maximize:	
$\underset{z \in A(\tau, \alpha(\tau))}{\underset{z \in I(\tau)}{\sum}} \underset{t \in I(\tau)}{\textit{supervisor_value}_{z}(\tau, \lambda_{t}(\tau), \Lambda_{t}(\tau)) \cdot \gamma_{zt}(\tau)$	(22)
Subject to:	
$\sum \rho_{a}(\tau) = work_{o}(\tau) \forall o \in O(\tau, \alpha(\tau))$	(23)
$a \in A_o(\tau, \alpha(\tau))$	
$\sum \qquad \gamma_{at}(\tau) = \phi_{o}(\tau) \cdot number_{o}(\tau) \forall o \in O(\tau, \alpha(\tau))$	(24)
$t \in T(\tau)$ $a \in A_0(\tau, \alpha(\tau))$	
$\sum_{o \in O_w(\tau, \alpha(\tau))} \phi_o(\tau) = O_w(\tau, \alpha(\tau)) \cdot \Phi_w(\tau) \forall w \in W(\tau, \alpha(\tau))$	(25)
$\sum_{\sigma \in O_{ut}(\tau, \alpha(\tau))} \gamma_{at}(\tau) \le 1 \forall o \in O(\tau, \alpha(\tau)) \forall t \in T(\tau)$	(26)
$\sum_{a \in A_0(\tau,\alpha(\tau))} a \in A_0(\tau,\alpha(\tau)) \forall t \in I(T)$	(20)
$\gamma_{st}(\tau) \leq feasible_{st}(\theta(\tau)) \forall s \in A_o(\tau, \beta) (\tau) \forall o \in O(\tau, \alpha(\tau)) \forall t \in T(\tau)$	(27)
$\gamma_{st}(\tau) \in \{0, 1\} \forall o \in O(\tau, \alpha(\tau)) \forall t \in T(\tau)$	(28)
$\phi_o(\tau) \in \{0, 1\} \forall o \in O(\tau, \alpha(\tau))$	(29)
$\Phi_{\mathbf{w}}(\tau) \in \{0,1\} \forall \mathbf{w} \in \mathbf{W}(\tau, \alpha(\tau))$	(30)
$\rho_a(\tau) \in [lower \ activity \ work_a(\tau), work_a(\tau)] \forall a \in A(\tau, \alpha(\tau))$	(31)

Operational

Meta variables:	
$t \in T(au)$	(32)
$\alpha(\tau)$	(33)
$\gamma(\tau)$ $\tau \in [0, \infty]$	(34)
	(35)
Maximize:	
$\sum_{a \in A(\tau, \gamma_{t}(\tau))} \sum_{k \in K(\gamma(\tau))} \delta_{ak}(\tau)$	(36)
Subject to:	
$\sum_{k \in K(\gamma(\tau))} \delta_{ak}(\tau) \cdot \pi_{ak}(\tau) = activity_work_{a}(\tau, \rho(\tau)) \cdot \theta_{a}(\tau) \forall a \in A(\tau, \gamma_{t}(\tau))$	(37)
$\lambda_{a21}(\tau) \ge \Lambda_{a1 last(a1)}(\tau) + preparation_{a1, a2} \forall a1 \in A(\tau, \gamma_t(\tau)) \forall a2 \in A(\tau, \gamma_t(\tau))$	(38)
$\lambda_{ak}(\tau) \ge \Lambda_{ak-1}(\tau) - constraint_limit \cdot (2 - \pi_{ak}(\tau) + \pi_{ak-1}(\tau))$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(39)
$\delta_{ak}(\tau) = \Lambda_{ak}(\tau) - \lambda_{ak}(\tau) \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(40)
$\lambda_{ak}(\tau) \ge event_{ie} + duration_{ie} - constraint_limit \cdot (1 - \omega_{akie}(\tau))$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \forall i \in I(\tau) \forall e \in E(\tau)$	(41)
$\Lambda_{ak}(au) \leq event_{ie} + constraint_limit \cdot \omega_{akie}(au)$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \forall i \in I(\tau) \forall e \in E(\tau)$	(42)
$\lambda_{a1}(\tau) \ge time_window_start_a(\beta(\tau)) \forall a \in A(\tau, \gamma_t(\tau))$	(43)
$\Lambda_{alast(a)}(\tau) \le time_window_finish_a(\beta(\tau)) \forall a \in A(\tau, \gamma_t(\tau))$	(44)
$\pi_{ak}(\tau) \in \{0,1\} \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(45)
$\lambda_{ak}(\tau) \in [availability_start(\tau), availability_finish(\tau)]$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(46)
$\Lambda_{ak}(\tau) \in [availability_start(\tau), availability_finish(\tau)]$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(47)
$\delta_{ak}(\tau) \in [0, work_{a_to_o(a)}(\tau)] \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(48)
$\omega_{\mathit{akie}}(\tau) \in \{0,1\} \forall \mathit{a} \in \mathit{A}(\tau,\gamma_\mathit{t}(\tau)) \forall \mathit{k} \in \mathit{K}(\gamma(\tau)) \forall \mathit{i} \in \mathit{I}(\tau) \forall \mathit{e} \in \mathit{E}(\tau)$	(49)
$\theta_{\mathbf{J}}(\tau) \in \{0, 1\} \forall \mathbf{a} \in A(\tau, \gamma_t(\tau))$	(50)

Architecture

Architecture

- 1. Reactive Versus Static Constraints
- 2. Dynamic
- 3. Business
- 4. Technical
- 5. Academic

Dynamic versus Static Models

- Mathematical models guide direction but does not provide direct solutions.
- ► Static solutions are rarely fully executable.
- Dynamic models are less constrained and ensure a contained optimal solution.
- Remember: The real optimal solution is ever knowable at time

The Story of Zaabalawi

Quality of Solutions

Atomic Pointer Swapping Atomic Pointer Swapper Thread/Metaheuristic 1 Thread/Metaheuristic 2 Thread/Metaheuristic 3

Thread one finds a better solution and swaps it in
Atomic Pointer Swapper
Thread/Metaheuristic 1

Shared Solution 2

Thread/Metaheuristic 2

Thread/Metaheuristic 3

Thread two and three loads the new Shared Solution at the top of their optimization loop

Shared Solution 1 is dropped from memory when is it no longer referenced by any threads

Include the many different ways that metaheuristics can be understood.

Chinese literature.

Decision Problems versus Process Problems.

► Chinese literature.

Ordinator Architecture
ordinator-configuration

ordinator-api-server

ordinator-scheduling-environment
ordinator-imperium