(1 point) Find the value(s) of a making $\vec{v} = 2a\vec{i} - 3\vec{j}$ parallel to $\vec{w} = a^2\vec{i} + 9\vec{j}$. a = 0,-6(If there is more than one value of a, enter the values as a comma-separated list.) (1 point) Find the area of the parallelogram defined by the vectors sqrt(10*18)*2sqrt(55)/15 (1 point) (a) Find a unit vector from the point P = (3,3) and toward the point Q = (11,18). $\vec{u} = \langle 8/17, 15/17 \rangle$ (b) Find a vector of length 34 pointing in the same direction. $\vec{v} = \langle 8*34/17, 15*34/17 \rangle$ (1 point) Let \vec{a} , \vec{b} , \vec{c} and \vec{v} be the three dimensional vectors $\vec{a} = 2\vec{j} + 2\vec{k}, \quad \vec{b} = -3\vec{i} + \vec{j} + 3\vec{k}, \quad \vec{c} = 2\vec{i} - 8\vec{j}, \quad \vec{y} = -\vec{i} + 7\vec{j}$ Perform the following operations on these vectors: (a) $\vec{c} \cdot \vec{a} + \vec{a} \cdot \vec{y} = -2$ **(b)** $(\vec{a} \cdot \vec{b}) \vec{a} = 16j+16k$ (c) $((\vec{c} \cdot \vec{c}) \vec{a}) \cdot \vec{a} = 68*8$ (1 point) Let $\mathbf{a} = (6, 1, 8)$ and $\mathbf{b} = (2, 3, 8)$ be vectors. Compute the cross product $\mathbf{a} \times \mathbf{b}$. $\mathbf{a} \times \mathbf{b} = (-16)$, -32 , 16 (1 point) For each of the following, perform the indicated operations on the vectors $\vec{a} = 5\vec{i} + 5\vec{k}$, $\vec{b} = 4\vec{i} + 5\vec{i} + 5\vec{k}$, $\vec{z} = 4\vec{i} + 2\vec{i}$. (a) $5\vec{a} + 2\vec{b} = 8i + 35j + 35k$ **(b)** $7\vec{a} + 4\vec{b} - 3\vec{z} = 4i + 49i + 55k$ (1 point) Find a representation of the vector $\overrightarrow{AB} = \langle -3, 16, 11 \rangle$ in \mathbb{R}^3 by giving appropriate values for the points A and Bsuch that neither A nor B is the origin. A = (1,0,1)help (points) (-2,16,12) help (points) (1 point) Find two vectors \overline{v}_1 and \overline{v}_2 whose sum is $\langle 4, -3, -2 \rangle$, where \overline{v}_1 is parallel to $\langle 1, 3, 0 \rangle$ while \overline{v}_2 is perpendicular to $\langle 1, 3, 0 \rangle$. $\overline{v}_1 = \langle -1/2, -3/2, 0 \rangle$ and

 $\overline{v}_2 = \langle 9/2, -3/2, -2 \rangle$