Untuk menggambar grafik dari suatu fungsi, penting untuk mengumpulkan informasi yang lengkap mengenai fungsi tersebut sedapat mungkin. Informasi-informasi yang penting tersebut antara lain:

- a. Titik potong pada sumbu-x dan sumbu-y
- b. Titik dan garis simetris
- c. Asimtot
- d. Titik stationer
- e. Kurva naik dan kurva turun
- f. Titik maksimum dan minimum
- g. Titik belok
- h. Kecekungan
- a. Titik potong sumbu

Titik potong pada sumbu-y pada kurva y = f(x) adalah titik (0, f(0)). Titik potong sumbu-x adalah titik (x, 0) sedemikian sehingga f(x) = 0.

b. Simetris

Jika f(-x) = f(x) maka f adalah fungsi genap dan grafiknya simetris terhadap sumbuy.

Jika f(-x) = -f(x) maka f adalah fungsi ganjil dan grafiknya simetris terhadap titik asal (0,0).

Jika f salah satu dari kedua di atas, genap atau ganjil saja, cukup menggambar f pada $x \ge 0$ karena separuhnya dapat digambarkan simetris.

c. Asimtot

Jika terdapat konstanta "k" sedemikian sehingga $f(x) \to k$ dengan $x \to \infty$ atau $x \to -\infty$ maka garis y = k disebut horisontal asimtot dari kurva y = f(x).

Jika terdapat konstanta "a" sedemikian sehingga $f(x) \to \infty$ atau $-\infty$ dengan $x \to a$ maka garis x = a disebut vertikal asimtot dari kurva y = f(x).

Sebagai contoh, kurva $y = \frac{1}{x-1} + 2$ memiliki asimtot horisontal y = 2 karena $\frac{1}{x-1} + 2 \to 2 \text{ dengan } x \to \infty$

$$\frac{1}{x-1} + 2 \rightarrow 2 \text{ dengan } x \rightarrow -\infty$$

Dan juga kurva $y = \frac{1}{x-1} + 2$ memiliki asimtot vertikal x = 1 karena

$$\frac{1}{x-1} + 2 \to \infty \text{ dengan } x \to 1 \ (x > 1)$$

$$\frac{1}{x-1} + 2 \to -\infty \text{ dengan } x \to 1 \ (x < 1)$$

Contoh

Sketsalah grafik fungsi

$$f: x \to x^3 - 6x^2 + 9x + 2$$
 $(x \in R)$

Solusi:

(i) Titik potong sumbu

Ketika x = 0, y = f(0) = 2. Jadi titik (0, 2) terletak pada kurva.

(ii) Simetris

f bukan fungsi genap maupun ganjil. Jadi, kurva tidak simetris terhadap titik asal dan sumbu-y.

(iii) Asimtot

Tidak ada asimtot horisontal maupun vertikal.

Perhatikan

$$f'(x) = 3(x^2 - 4x + 3) = 3(x - 1)(x - 3)$$
$$f''(x) = 6(x - 2)$$

Maka, f'(x) = 0 ketika x = 1 atau x = 3. f''(x) = 0 ketika x = 2

Dari informasi poin (iv) – (viii) diberikan pada tabel berikut:

х	f'(x)	f''(x)	f(x)	
x < 1	+	-	Naik	†
x = 1	0	-	(1,6) titik maksimum	Cekung ke bawah
1 < x < 2	-	-	Ţ	↓
x = 2	-	0	Turun	(2,4) titik belok
2 < x < 3	-	+	\	1
x = 3	0	+	(3,2) titik minimum	Cekung ke atas
<i>x</i> > 3	+	+	Naik	↓

Dengan informasi di atas, digambarkan sketsa grafik y = f(x) seperti gambar berikut

