DM bis nº11

Sous-groupes compacts du groupe linéaire

Soit E un espace vectoriel euclidien de dimension n > 0 dont le produit scalaire est noté (.|.) et la norme euclidienne est notée ||.||. On note L(E) l'espace vectoriel des endomorphismes de E et GL(E) le groupe des automorphismes de E. Pour tout endomorphisme u de E, on note u^i l'endomorphisme $u \circ u \circ \cdots \circ u$ (i fois) avec la convention $u^0 = \operatorname{Id}_E$ (identité). L'ensemble vide est noté \emptyset .

On rappelle qu'un sous-ensemble C de E est convexe si pour tous x, y dans C et tout $\lambda \in [0, 1]$, on a $\lambda x + (1 - \lambda)y \in C$. De plus, pour toute famille a_1, \ldots, a_p d'éléments de C convexe et tous nombres réels positifs ou nuls $\lambda_1, \ldots, \lambda_p$ dont la somme est égale à 1, on a $\sum_{i=1}^{p} \lambda_i a_i \in C$.

Si F est un sous-ensemble quelconque de E, on appelle enveloppe convexe de F, et on note Conv(F), le plus petit sous-ensemble convexe de E (au sens de l'inclusion) contenant F. On note \mathcal{H} l'ensemble des $(\lambda_1, \dots, \lambda_{n+1}) \in (\mathbb{R}^+)^{n+1}$ tels que $\sum_{i=1}^{n+1} \lambda_i = 1$ et on admet que Conv(F) est l'ensemble des combinaisons linéaires de la forme $\sum_{i=1}^{n+1} \lambda_i x_i$ où $x_1, \dots, x_{n+1} \in F$ et $(\lambda_1, \dots, \lambda_{n+1}) \in \mathcal{H}$.

L'espace vectoriel des matrices à coefficients réels ayant n lignes et m colonnes est noté $M_{n,m}(\mathbb{R})$. On notera en particulier $M_n(\mathbb{R}) = M_{n,n}(\mathbb{R})$. La matrice transposée d'une matrice A est notée A^T . La trace de A est notée Tr(A).

On note $\mathrm{GL}_n(\mathbb{R})$ le groupe linéaire des matrices de $\mathrm{M}_n(\mathbb{R})$ inversibles et $\mathrm{O}_n(\mathbb{R})$ le groupe orthogonal d'ordre n.

Les parties A, B et C sont indépendantes

A. Préliminaires sur les matrices symétriques

On note $S_n(\mathbb{R})$ le sous-espace vectoriel de $M_n(\mathbb{R})$ formé des matrices symétriques. Une matrice $S \in S_n(\mathbb{R})$ est dite définie positive si et seulement si pour tout $X \in M_{n,1}(\mathbb{R})$ non nul, on a $X^TSX > 0$. On note $S_n^{++}(\mathbb{R})$ l'ensemble des matrices symétriques définies positives.

- 1. Montrer qu'une matrice symétrique $S \in S_n(\mathbb{R})$ est définie positive si et seulement si son spectre est contenu dans \mathbb{R}^{+*} .
- 2. En déduire que pour tout $S \in S_n^{++}(\mathbb{R})$, il existe $R \in GL_n(\mathbb{R})$ tel que $S = R^TR$. Réciproquement montrer que pour tout $R \in GL_n(\mathbb{R})$, $R^TR \in S_n^{++}(\mathbb{R})$.
- 3. Montrer que l'ensemble $S_n^{++}(\mathbb{R})$ est convexe.

B. Autres préliminaires

Les trois questions de cette partie sont mutuellement indépendantes.

4. Soit K un sous-ensemble compact de E et Conv(K) son enveloppe convexe. On rappelle que \mathcal{H} est l'ensemble des $(\lambda_1,\ldots,\lambda_{n+1})\in(\mathbb{R}^+)^{n+1}$ tels que $\sum_{i=1}^n\lambda_i=1$. Définir une application Φ de $\mathbb{R}^{n+1}\times\mathbb{E}^{n+1}$ dans E telle que $\mathrm{Conv}(\mathrm{K})=\Phi(\mathcal{H}\times\mathrm{K}^{n+1})$. En déduire que $\mathrm{Conv}(\mathrm{K})$ est un sous-ensemble compact de E.

- 5. On désigne par g un endomorphisme de E tel que pour tous x, y dans E, (x|y) = 0 implique (g(x)|g(y)) = 0. Montrer qu'il existe un nombre réel positif k tel que pour tout $x \in E$, ||g(x)|| = k||x||. (On pourra utiliser une base orthonormée (e_1, \ldots, e_n) et considérer les vecteurs $e_1 + e_i$ et $e_1 e_i$ pour $i \in \{2, \ldots, n\}$.) En déduire que g est la composée d'une homothétie et d'un endomorphisme orthogonal.
- 6. On se place dans l'espace vectoriel euclidien $M_n(\mathbb{R})$ muni du produit scalaire canonique défini par $(A|B) = Tr(A^TB)$. (On ne demande pas de vérifier que c'est bien un produit scalaire). Montrer que le groupe orthogonal $O_n(\mathbb{R})$ est un sous-groupe compact du groupe linéaire $GL_n(\mathbb{R})$.

C. Quelques propriétés de la compacité

Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de E pour laquelle il existe un réel $\varepsilon > 0$ tel que pour tous entiers naturels $n \neq p$, on ait $||x_n - x_p|| \geqslant \varepsilon$.

7. Montrer que cette suite n'admet aucune suite extraite convergente.

Soit K un sous-ensemble compact de E. On note B(x,r) la boule ouverte de centre $x \in E$ et de rayon r.

8. Montrer que pour tout réel $\varepsilon > 0$, il existe un entier p > 0 et x_1, \ldots, x_p éléments de E tels que $K \subseteq \bigcup_{i=1}^p B(x_i, \varepsilon)$.

(On pourra raisonner par l'absurde.)

On considère une famille $(\Omega_i)_{i\in I}$ de sous-ensembles ouverts de E, I étant un ensemble quelconque, telle que $K\subseteq \bigcup_{i\in I}\Omega_i$.

9. Montrer qu'il existe un réel $\alpha > 0$ tel que pour tout $x \in K$, il existe $i \in I$ tel que $B(x, \alpha)$ soit contenue dans l'ouvert Ω_i . (On pourra raisonner par l'absurde pour construire une suite d'éléments de K n'ayant aucune suite extraite convergente.) En déduire qu'il existe une sous-famille finie $(\Omega_{i_1}, \ldots, \Omega_{i_p})$ de la famille $(\Omega_i)_{i \in I}$ telle que $K \subseteq \bigcup_{k=1}^p \Omega_{i_k}$.

Soit $(F_i)_{i\in I}$ une famille de fermés de E contenus dans K et d'intersection vide : $\bigcap_{i\in I} F_i = \emptyset$.

10. Montrer qu'il existe une sous famille finie $(F_{i_1}, \dots, F_{i_p})$ de la famille $(F_i)_{i \in I}$ telle que $\bigcap_{k=1}^p F_{i_k} = \emptyset$.

D. Théorème du point fixe de Markov-Kakutani

Soit G un sous-groupe compact de GL(E) et K un sous-ensemble non vide, compact et convexe de E. Pour tout $x \in E$, on note $N_G(x) = \sup_{u \in G} \|u(x)\|$.

- 11. Montrer que N_G est bien définie et que c'est une norme sur E.
- 12. Montrer en outre que N_G vérifie les deux propriétés suivantes :
 - pour tous $u \in G$ et $x \in E$, $N_G(u(x)) = N_G(x)$;
 - pour tous $x, y \in E$ avec x non nul, $N_G(x+y) = N_G(x) + N_G(y)$ si et seulement si $\lambda x = y$ où $\lambda \in \mathbb{R}^+$.

Pour la deuxième propriété, on pourra utiliser le fait que si $z \in E$, l'application qui à $u \in G$ associe ||u(z)|| est continue.

On considère un élément $u \in L(E)$, et on suppose que K est stable par u, c'est à dire que u(K) est inclus dans K.

Pour tout $x \in K$ et $n \in \mathbb{N}^*$, on pose $x_n = \frac{1}{n} \sum_{i=0}^{n-1} u^i(x)$. Enfin, on appelle diamètre de K le réel $\delta(K) = \sup_{x,y \in K} \|x - y\|$ qui est bien défini car K est borné.

13. Montrer que la suite $(x_n)_{n\in\mathbb{N}^*}$ est à valeurs dans K et en déduire qu'il en existe une suite extraite convergente vers un élément a de K. Montrer par ailleurs que pour tout $n\in\mathbb{N}^*$, $||u(x_n)-x_n||\leqslant \frac{\delta(K)}{n}$. En déduire que l'élément a de K est un point fixe de u.

On suppose maintenant que le compact non vide convexe K est stable par tous les éléments de G. Soit $r \geqslant 1$ un entier, u_1, u_2, \ldots, u_r des éléments de G et $u = \frac{1}{r} \sum_{i=1}^r u_i$.

- 14. Montrer que K est stable par u et en déduire l'existence de $a \in K$ tel que u(a) = a.
- 15. Montrer que $N_G\left(\frac{1}{r}\sum_{i=1}^r u_i(a)\right) = \frac{1}{r}\sum_{i=1}^r N_G(u_i(a))$. En déduire que pour tout $j \in \{1, \dots, r\}$, on a

$$N_{G}\left(u_{j}(a) + \sum_{\substack{i=1\\i\neq j}}^{r} u_{i}(a)\right) = N_{G}(u_{j}(a)) + N_{G}\left(\sum_{\substack{i=1\\i\neq j}}^{r} u_{i}(a)\right)$$

- 16. En déduire, pour tout $j \in \{1, ..., r\}$, l'existence d'un nombre réel $\lambda_j \geqslant 0$ tel que $u(a) = \frac{\lambda_j + 1}{r} u_j(a)$.
- 17. Déduire de la question précédente que a est un point fixe de tous les endomorphismes u_i où $i \in \{1, \ldots, r\}$.
- 18. En utilisant le résultat de la question 10, montrer qu'il existe $a \in K$ tel que pour tout $u \in G$, u(a) = a.

E. Sous-groupes compacts de $GL_n(\mathbb{R})$

On se place à nouveau dans l'espace vectoriel euclidien $M_n(\mathbb{R})$ muni du produit scalaire défini par $(A|B) = Tr(A^TB)$. On rappelle que $GL_n(\mathbb{R})$ désigne le groupe linéaire et $O_n(\mathbb{R})$ le groupe orthogonal d'ordre n.

Soit G un sous groupe compact de $GL_n(\mathbb{R})$. Si $A \in G$, on définit l'application ρ_A de $M_n(\mathbb{R})$ dans lui même par la formule $\rho_A(M) = A^TMA$. On vérifie facilement, et on l'admet, que pour tout $M \in M_n(\mathbb{R})$, l'application qui à $A \in G$ associe $\rho_A(M)$ est continue.

On note $H = \{ \rho_A / A \in G \}, \Delta = \{ A^T A / A \in G \}$ et $K = Conv(\Delta)$.

- 19. Montrer que $\rho_A \in GL(M_n(\mathbb{R}))$ et que H est un sous-groupe compact de $GL(M_n(\mathbb{R}))$.
- 20. Montrer que Δ est un compact contenu dans $S_n^{++}(\mathbb{R})$ et que K est un sous-ensemble compact de $S_n^{++}(\mathbb{R})$ qui est stable par tous les éléments de H.
- 21. Montrer qu'il existe $M \in K$ tel que pour tout $A \in G$, $\rho_A(M) = M$. En déduire l'existence de $N \in GL_n(\mathbb{R})$ tel que pour tout $A \in G$, $NAN^{-1} \in O_n(\mathbb{R})$. En déduire enfin qu'il existe un sous-groupe G_1 de $O_n(\mathbb{R})$ tel que $G = N^{-1}G_1N = \{N^{-1}BN/B \in G_1\}$.

Soit K un sous-groupe compact de $GL_n(\mathbb{R})$ qui contient $O_n(\mathbb{R})$, et $N \in GL_n(\mathbb{R})$ tel que $NKN^{-1} \subseteq O_n(\mathbb{R})$. On désigne par g l'automorphisme de \mathbb{R}^n de matrice N dans la base canonique de \mathbb{R}^n , par P un hyperplan de \mathbb{R}^n et par σ_P la symétrie orthogonale par rapport à P.

22. Montrer que $g \circ \sigma_{P} \circ g^{-1}$ est une symétrie, puis que c'est un endomorphisme orthogonal de \mathbb{R}^{n} . En déduire que $g \circ \sigma_{P} \circ g^{-1} = \sigma_{g(P)}$. Montrer que g conserve l'orthogonalité et en déduire K.