Лабораторная работа №11 модель СМО М/М/1

Ли Тимофей Александрович

Содержание

Цель работы	4
Выполнение лабораторной работы Ход работы	5 5
Выводы	9

Список иллюстраций

0.1	модель	5
0.2	брейкпоинт и мониторы	6
0.3	симуляция	7
0.4	логи	7
0.5	график задержки очереди	8
0.6	график превышения задержки	8

Цель работы

Изучить модель СМО $\mathrm{M}/\mathrm{M}/\mathrm{1},$ реализовать ее с помощью cpntools.

Выполнение лабораторной работы

Ход работы

Построил модель в cpntools: (рис. @fig:001):

Рис. 0.1: модель

Добавил брейкпоинт Ostanovka и мониторы Queue Delay, Queue Delay Real, Long Delay Time: (рис. @fig:002)

```
▼Monitors
  ▼Queue Delay
    ▶Type: Data collection
    ► Nodes ordered by pages
▼Predicate
         fun pred (bindelem) =
let
          fun predBindElem (Server'Start (1,
{job,jobs,proctime})) = true
| predBindElem _ = false
         predBindElem bindelem
end
     ▼Observer
         fun obs (bindelem) =
let
          fun obsBindElem (Server Start (1, {job,jobs,proctime})) =
         (intTime() - (#AT job))
| obsBindElem _ = ~1
         obsBindElem bindelem end
    ► Init function
    ▶ Stop
     ▼Long Delay Time
       ► Type: Data collection
► Nodes ordered by pages
        ▼ Predicate
            fun pred (bindelem) =
             fun predBindElem (Server'Start (1,
{job,jobs,proctime})) = true
| predBindElem _ = false
             predBindElem bindelem
       end
▼Observer
            fun obs (bindelem) =
if IntInf.toInt(Queue_Delay.last())>=(!longdelaytime)
            then 1
       ▶ Init function
       ▶ Stop
```

```
▼Ostanovka
Type: Break point

Nodes ordered by pages

▼Predicate
fun pred (bindelem) =
let
fun predBindElem (Server'Start (1,
{job,jobs,proctime})) =
Queue_Delay.count()=200
| predBindElem _ = false
in
predBindElem bindelem
end
```

Рис. 0.2: брейкпоинт и мониторы

Запустил симуляцию: (рис. @fig:003)

Рис. 0.3: симуляция

В результате создается директория output/logfiles с логами: (рис. @fig:004)

эт компьютер > Загрузки > mip > output > logfiles						
Λ	Дата изменения	Тип	Размер			
Long_Delay_Time	23.05.2021 20:45	Текстовый документ	0 K			
New_Monitor	23.05.2021 20:10	Текстовый документ	0 K			
Queue_Delay	23.05.2021 20:45	Текстовый документ	0 K			
Queue_Delay_Real	23.05.2021 20:45	Текстовый документ	0 KI			

Рис. 0.4: логи

Затем я запустил ВМ, чтобы построить график изменения задержки очереди и график, показывающий, в какое время задержки превышали заданное значение (200). Первый график в gnuplot: (рис. @fig:005)

Рис. 0.5: график задержки очереди

и второй: (рис. @fig:006)

Рис. 0.6: график превышения задержки

Выводы

Выполнил задание, изучил модель СМО $\mathrm{M}/\mathrm{M}/\mathrm{1}.$