Tabla II. Datos de altura y presión

No.	Altura (m)	Presión atmosférica (kPa)
1	753	92.6
2	754	92.5
3	755	92.5
4	756	92.5
5	757	92.5
6	758	92.5
7	759	92.5
8	760	92.5
9	761	92.5
10	762	92.4
11	763	92.4
12	764	92.4
13	765	92.4
14	766	92.4
15	767	92.4
16	768	92.4
17	769	92.4
18	770	92.4
19	771	92.3
20	772	92.3
21	773	92.3
22	774	92.3
23	775	92.3
24	776	92.3
25	777	92.3

Método de mínimos cuadrados (ajuste lineal):

No.	Altura (m)	Presión atmosférica (kPa)	h * P	h²	P^2
1	753	92.6	69727.8	567009	8574.76
2	754	92.5	69745	568516	8556.25
3	755	92.5	69837.5	570025	8556.25
4	756	92.5	69930	571536	8556.25
5	757	92.5	70022.5	573049	8556.25
6	758	92.5	70115	574564	8556.25
7	759	92.5	70207.5	576081	8556.25
8	760	92.5	70300	577600	8556.25
9	761	92.5	70392.5	579121	8556.25
10	762	92.4	70408.8	580644	8537.76
11	763	92.4	70501.2	582169	8537.76
12	764	92.4	70593.6	583696	8537.76
13	765	92.4	70686	585225	8537.76
14	766	92.4	70778.4	586756	8537.76
15	767	92.4	70870.8	588289	8537.76
16	768	92.4	70963.2	589824	8537.76
17	769	92.4	71055.6	591361	8537.76
18	770	92.4	71148	592900	8537.76
19	771	92.3	71163.3	594441	8519.29
20	772	92.3	71255.6	595984	8519.29
21	773	92.3	71347.9	597529	8519.29
22	774	92.3	71440.2	599076	8519.29
23	775	92.3	71532.5	600625	8519.29
24	776	92.3	71624.8	602176	8519.29
25	777	92.3	71717.1	603729	8519.29
Sumatoria	19125	2310.3	1767364.8	14631925	213499.63

Forma de la función: y = ax + b

Donde: y= presión atmosférica en kPa

x= altura en metros

a= constante de proporcionalidad

b= punto de corte con el eje y

Calculando a:

a= [25 (1767364.8) - (19125) (2310.3)] / [25 (14631925) - (19125)²]

a= -0.0113

Calculando b:

b= [(2310.3) (14631925) - (19125) (1767364.8)]/ (25(14631925) -(19125)²)

b= 101.0623846

Calculando r:

 $r = [25*(1767364.8) - (19125) (2310.3)]/raíz [(25*(14631925) - (19125)^2) (25(213499.63) - (2310.3)^2)]$

r= -0.944327647

r²= 0.891754705

Ecuación de la recta: $P/kPa = (-0.0113 \ kPa/m) \ h + 101.06 \ kPa$

Comprobación de la ecuación obtenida utilizando la herramienta GeoGebra:

Método de mínimos cuadrados (ajuste exponencial):

No.	Altura (m)	Presión atmosférica (kPa)	In P	h In P	h²	In p²
1	753	92.6	4.528289142	3409.801724	567009	20.5054026
2	754	92.5	4.527208645	3413.515318	568516	20.4956181
3	755	92.5	4.527208645	3418.042527	570025	20.4956181
4	756	92.5	4.527208645	3422.569735	571536	20.4956181
5	757	92.5	4.527208645	3427.096944	573049	20.4956181
6	758	92.5	4.527208645	3431.624153	574564	20.4956181
7	759	92.5	4.527208645	3436.151361	576081	20.4956181
8	760	92.5	4.527208645	3440.67857	577600	20.4956181
9	761	92.5	4.527208645	3445.205778	579121	20.4956181
10	762	92.4	4.526126979	3448.908758	580644	20.4858254
11	763	92.4	4.526126979	3453.434885	582169	20.4858254
12	764	92.4	4.526126979	3457.961012	583696	20.4858254
13	765	92.4	4.526126979	3462.487139	585225	20.4858254
14	766	92.4	4.526126979	3467.013266	586756	20.4858254
15	767	92.4	4.526126979	3471.539393	588289	20.4858254
16	768	92.4	4.526126979	3476.06552	589824	20.4858254
17	769	92.4	4.526126979	3480.591647	591361	20.4858254
18	770	92.4	4.526126979	3485.117774	592900	20.4858254
19	771	92.3	4.525044142	3488.809033	594441	20.4760245
20	772	92.3	4.525044142	3493.334077	595984	20.4760245
21	773	92.3	4.525044142	3497.859121	597529	20.4760245
22	774	92.3	4.525044142	3502.384166	599076	20.4760245
23	775	92.3	4.525044142	3506.90921	600625	20.4760245
24	776	92.3	4.525044142	3511.434254	602176	20.4760245
25	777	92.3	4.525044142	3515.959298	603729	20.4760245
Sumatori a	19125		113.1564101	86564.49466	1463192 5	512.17494 8

Fórmula: $y = c e^{-px}$

Donde: c = constante

p= potencia a la que se eleva e

e= número Euler

y= presión atmosférica en kPa

x= altura en metros

```
Encontrando p=
p= (25*86564.49-19125*113.15) / (25*14631925-(19125)<sup>2</sup>)
p= -0.000122357
```

Encontrando In c=

In c= (113.15*14631925-19125*86564.49)/(25*14631925-(19125)²)

In c= 4.62

Encontrando c=

 $c = e^{4.62}$

c= 101.4798068

Encontrando r=

r= 25(86564.49)-19125*113.15/raíz (25*14631925-19125²) (25*512.17-(113.15)²)

r= -0.944355295

r2= 0.891806924

Ecuación de la recta: $P/kPa = (101.479 \ kPa/m) \ e^{-0.000122 \ h}$

Comprobación de la ecuación utilizando GeoGebra:

Alejamiento del gráfico para visualizar la tendencia de la pendiente:

Cuestionario

3. Al llegar a la ecuación de la forma y=ae-bx, ¿qué valor tiene la constante a (para la toma 1, la 2 y la 3)? ¿qué magnitud representa? ¿los valores obtenidos eran los esperados?

```
Para la toma 1: con h= 753 m y P=92.6

92.6= (a) e^{-0.000122 (753)}

a= 92.6/ e^{-0.000122 (753)}

a=101.509

Para la toma 2: con h= 754 m y P=92.5

92.5= (a) e^{-0.000122 (754)}

a= 92.5/ e^{-0.000122 (754)}

a=101.413

Para la toma 3: con h= 755 m y P=92.5

92.5= (a) e^{-0.000122 (755)}
```

En todos los casos la magnitud resultante es la presión atmosférica medida en kPa por la altura medida en metros (kPa/m).

El resultado se acercó bastante al esperado, no varían los datos mas de 0.1 por lo que se intuye que la ecuación obtenida es correcta

4. Al llegar a la ecuación de la forma y=ae-bx ,¿qué valor tiene la constante b (para la toma 1, la 2 y la 3)? ¿qué magnitud representa? ¿el valor obtenido era el esperado?

Despejar b:

$$y/a = e^{-bx}$$

 $ln(y/a) = ln(e^{-bx})$

a= 92.5/ $e^{-0.000122(755)}$

a=101.424

$$(1/x)\ln(y/a) = -b$$

$$-b = (1/x)\ln(y/a)$$

$$b = -(1/x)\ln(y/a)$$

Para la toma 1: con h= 753 m y P=92.6

b=-(1/753)ln(92.6/101.479)

b=0.000121

Para la toma 2: con h= 754 m y P=92.5

b=-(1/754)ln(92.5/101.479)

b=0.000122

Para la toma 3: con h= 755 m y P=92.5

b=-(1/755)ln(92.5/101.479)

b=0.000122

La magnitud representada es la altura medida en metros (h/m).

Los valores esperados efectivamente son los esperados, los que se encontraron de la ecuación resultante del ajuste exponencial, varían luego de las tres cifras significativas tomadas, lo que significa que la ecuación esta correcta.

5. ¿Cuáles pueden ser las fuentes de error en este caso?

La posible fuente de error primaria puede ser el barómetro, ya que en varios lugares donde se tomaron las medidas de altura y presión atmosférica, estas variaban en un decimal a pesar de dejar completamente inmóvil el dispositivo.

Otra fuente de error puede ser las cifras significativas que se deben tomar al momento de graficar la ecuación, si por ejemplo se deja con una sola cifra significativa en la potencia la ecuación de la recta no toca ninguno de los puntos, pero al tomar tres de estas cifras la ecuación pasa por todos los puntos.