Stability of Stochastic Optimal Growth Models: A New Approach

Kazuo Nishimura and John Stachurski

March 24, 2005

Structure of Talk

- 1. Introduction to the Problem
- 2. Discrete Time Markov Chains
- 3. The Model
- 4. Results
- 5. Discussion of Proofs

Recall *deterministic* optimal growth: save to max sum of discounted utilities.

Recall *deterministic* optimal growth: save to max sum of discounted utilities.

Under Inada conditions $f'(\infty) = 0$, $f'(0) > 1/\varrho$, optimal savings implies

1. \exists steady state for income $y^* > 0$.

Recall *deterministic* optimal growth: save to max sum of discounted utilities.

Under Inada conditions $f'(\infty) = 0$, $f'(0) > 1/\varrho$, optimal savings implies

- 1. \exists steady state for income $y^* > 0$.
- 2. Stability: $y_t \to y^*$ independent of y_0 .

Recall *deterministic* optimal growth: save to max sum of discounted utilities.

Under Inada conditions $f'(\infty) = 0$, $f'(0) > 1/\varrho$, optimal savings implies

- 1. \exists steady state for income $y^* > 0$.
- 2. Stability: $y_t \rightarrow y^*$ independent of y_0 .

In the stochastic OGM, steady state is a distribution ψ^* .

Recall *deterministic* optimal growth: save to max sum of discounted utilities.

Under Inada conditions $f'(\infty) = 0$, $f'(0) > 1/\varrho$, optimal savings implies

- 1. \exists steady state for income $y^* > 0$.
- 2. Stability: $y_t \rightarrow y^*$ independent of y_0 .

In the stochastic OGM, steady state is a distribution ψ^* .

Stability means that the distribution of y_t converges to ψ^* .

Ergodicity in the convex model

Ergodicity in the convex model

But with some problematic assumptions:

But with some problematic assumptions:

 \star Productivity shock $\varepsilon_t \in [a,b] \subset (0,\infty)$.

But with some problematic assumptions:

- * Productivity shock $\varepsilon_t \in [a,b] \subset (0,\infty)$.
- \star Production function f is concave.

But with some problematic assumptions:

- * Productivity shock $\varepsilon_t \in [a,b] \subset (0,\infty)$.
- \star Production function f is concave.
- \star Inada condition $f'(0) = \infty$.

But with some problematic assumptions:

- \star Productivity shock $\varepsilon_t \in [a,b] \subset (0,\infty)$.
- \star Production function f is concave.
- \star Inada condition $f'(0) = \infty$.

SLP 89, HP 92, Amir 97 etc: not much progress weakening these assumptions. . .

If distribution of y_t converges to ψ^* , then maybe

$$\frac{1}{T} \sum_{t=0}^{T} y_t \to \mathbb{E}_{\psi^*}[y_t] := \int y \psi^*(dy). \tag{1}$$

If distribution of y_t converges to ψ^* , then maybe

$$\frac{1}{T} \sum_{t=0}^{T} y_t \to \mathbb{E}_{\psi^*}[y_t] := \int y \psi^*(dy). \tag{1}$$

And maybe

$$\frac{1}{\sqrt{T}} \sum_{t=0}^{T} (y_t - \mathbb{E}_{\psi^*}[y_t]) \to N(0, \sigma^2) \text{ in distribution.}$$
 (2)

If distribution of y_t converges to ψ^* , then maybe

$$\frac{1}{T} \sum_{t=0}^{T} y_t \to \mathbb{E}_{\psi^*}[y_t] := \int y \psi^*(dy). \tag{1}$$

And maybe

$$\frac{1}{\sqrt{T}} \sum_{t=0}^{T} (y_t - \mathbb{E}_{\psi^*}[y_t]) \to N(0, \sigma^2) \text{ in distribution.}$$
 (2)

Previously no studies connected these to Inada conditions and stability. . .

Use a "Lyapunov function" approach with drift condition.

Use a "Lyapunov function" approach with drift condition.

Our trick is to use marginal utility of consumption as the Lyap function.

Use a "Lyapunov function" approach with drift condition.

Our trick is to use marginal utility of consumption as the Lyap function.

Then the Euler equation gives us the drift in a very direct way.

Use a "Lyapunov function" approach with drift condition.

Our trick is to use marginal utility of consumption as the Lyap function.

Then the Euler equation gives us the drift in a very direct way.

Leads to tighter conditions.

Use a "Lyapunov function" approach with drift condition.

Our trick is to use marginal utility of consumption as the Lyap function.

Then the Euler equation gives us the drift in a very direct way.

Leads to tighter conditions.

Moreover, get stability in a strong sense, which then leads to LLN and CLT.

Discrete Time Markov Chains

Construction of a MC usually begins with a *Markov kernel* P:

for all
$$x \in S$$
, $P(x, dy) \in \mathcal{P}(S)$.

Construction of a MC usually begins with a Markov kernel P:

for all
$$x \in S$$
, $P(x, dy) \in \mathcal{P}(S)$.

Heuristically, P(x, dy) is distribution of X_{t+1} given $X_t = x$.

Construction of a MC usually begins with a *Markov kernel* P:

for all
$$x \in S$$
, $P(x, dy) \in \mathcal{P}(S)$.

Heuristically, P(x, dy) is distribution of X_{t+1} given $X_t = x$.

Example

$$S = \mathbb{R}, \quad X_{t+1} = \alpha X_t + W_{t+1}, \quad W_t \sim \text{IID } N(0, \sigma^2).$$
 (3)

Construction of a MC usually begins with a *Markov kernel* P:

for all
$$x \in S$$
, $P(x, dy) \in \mathcal{P}(S)$.

Heuristically, P(x, dy) is distribution of X_{t+1} given $X_t = x$.

Example

$$S = \mathbb{R}, \quad X_{t+1} = \alpha X_t + W_{t+1}, \quad W_t \sim \text{IID } N(0, \sigma^2).$$
 (3)

Then set

$$P(x, dy) =$$

Construction of a MC usually begins with a *Markov kernel* P:

for all
$$x \in S$$
, $P(x, dy) \in \mathcal{P}(S)$.

Heuristically, P(x, dy) is distribution of X_{t+1} given $X_t = x$.

Example

$$S = \mathbb{R}, \quad X_{t+1} = \alpha X_t + W_{t+1}, \quad W_t \sim \text{IID } N(0, \sigma^2).$$
 (3)

Then set

$$P(x, dy) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(y - \alpha x)^2}{2\sigma^2}\right) dy.$$

$$X_0$$
 given, $X_1 \sim P(X_0, dy), \quad X_2 \sim P(X_1, dy), \text{ etc., etc.}$ (4)

$$X_0$$
 given, $X_1 \sim P(X_0, dy), \quad X_2 \sim P(X_1, dy), \text{ etc., etc.}$ (4)

Let $P^{j}(x, dy) :=$ distribution of X_{t+j} given $X_{t} = x$.

$$X_0$$
 given, $X_1 \sim P(X_0, dy), \quad X_2 \sim P(X_1, dy), \text{ etc., etc.}$ (4)

Let $P^j(x, dy) :=$ distribution of X_{t+j} given $X_t = x$. Note that $P^t(x, \cdot)$ is the distrib of X_t when $X_0 \equiv x$.

$$X_0$$
 given, $X_1 \sim P(X_0, dy), \quad X_2 \sim P(X_1, dy), \text{ etc., etc.}$ (4)

Let $P^j(x, dy) :=$ distribution of X_{t+j} given $X_t = x$. Note that $P^t(x, \cdot)$ is the distrib of X_t when $X_0 \equiv x$.

$$\psi^* \in \mathcal{P}(S)$$
 stationary $\iff \psi^*(dy) = \int P(x, dy) \psi^*(dx).$

Construct the chain from P as follows:

$$X_0$$
 given, $X_1 \sim P(X_0, dy), \quad X_2 \sim P(X_1, dy), \text{ etc., etc.}$ (4)

Let $P^j(x, dy) :=$ distribution of X_{t+j} given $X_t = x$. Note that $P^t(x, \cdot)$ is the distrib of X_t when $X_0 \equiv x$.

$$\psi^* \in \mathcal{P}(S)$$
 stationary $\iff \psi^*(dy) = \int P(x, dy) \psi^*(dx).$

The process $(X_t)_{t=0}^{\infty}$ generated by P is called ergodic if

$$\exists$$
 unique P -stationary $\psi^* \in \mathcal{P}(S)$ and $\lim_{t \to \infty} P^t(x, \cdot) = \psi^*, \ \forall x \in S.$ (5)

Here we use the TV distance $||P^t(x,\cdot)-\psi^*||=\sup_B|P^t(x,B)-\psi^*(B)|$.

Here we use the TV distance $||P^t(x,\cdot)-\psi^*||=\sup_B|P^t(x,B)-\psi^*(B)|$.

Stronger than the "weak star" notion used in SLP, BM, HP, etc.

Here we use the TV distance $||P^t(x,\cdot)-\psi^*||=\sup_B|P^t(x,B)-\psi^*(B)|$.

Stronger than the "weak star" notion used in SLP, BM, HP, etc.

Advantages:

1. Useful quantitative interpretation.

Here we use the TV distance $||P^t(x,\cdot) - \psi^*|| = \sup_B |P^t(x,B) - \psi^*(B)|$.

Stronger than the "weak star" notion used in SLP, BM, HP, etc.

Advantages:

- 1. Useful quantitative interpretation.
- 2. Connections to α -mixing and hence LLN, CLT.

Huge progress in last 30 years.

Huge progress in last 30 years.

Start two P-MCs $(X_t)_{t=0}^{\infty}$ and $(\hat{X}_t)_{t=0}^{\infty}$ with $X_0 \equiv x$, $\hat{X}_0 \sim \psi^*$.

Huge progress in last 30 years.

Start two $P ext{-MCs } (X_t)_{t=0}^{\infty}$ and $(\hat{X}_t)_{t=0}^{\infty}$ with $X_0\equiv x$, $\hat{X}_0\sim \psi^*$.

Define $\tau = \inf\{t : X_t = \hat{X}_t\}.$

Huge progress in last 30 years.

Start two $P ext{-MCs}(X_t)_{t=0}^\infty$ and $(\hat{X}_t)_{t=0}^\infty$ with $X_0\equiv x$, $\hat{X}_0\sim \psi^*$.

Define $\tau = \inf\{t : X_t = \hat{X}_t\}.$

The the coupling inequality says that $||P^t(x,\cdot) - \psi^*|| \leq \mathbb{P}\{\tau > t\}$.

Huge progress in last 30 years.

Start two $P ext{-MCs } (X_t)_{t=0}^{\infty}$ and $(\hat{X}_t)_{t=0}^{\infty}$ with $X_0 \equiv x$, $\hat{X}_0 \sim \psi^*$.

Define $\tau = \inf\{t : X_t = \hat{X}_t\}.$

The the coupling inequality says that $||P^t(x,\cdot) - \psi^*|| \leq \mathbb{P}\{\tau > t\}$.

Big progress in learning how to bound $\mathbb{P}\{\tau > t\}$ for general state chains.

Huge progress in last 30 years.

Start two P-MCs $(X_t)_{t=0}^{\infty}$ and $(\hat{X}_t)_{t=0}^{\infty}$ with $X_0 \equiv x$, $\hat{X}_0 \sim \psi^*$.

Define $\tau = \inf\{t : X_t = \hat{X}_t\}.$

The the coupling inequality says that $||P^t(x,\cdot) - \psi^*|| \leq \mathbb{P}\{\tau > t\}$.

Big progress in learning how to bound $\mathbb{P}\{\tau > t\}$ for general state chains.

Technique used here: show that compact sets have lots of mixing (C-sets), and that \exists norm-like $w \colon S \to [0, \infty)$ and $\lambda < 1$, $b < \infty$ with

$$\mathbb{E}[w(X_{t+1}) \mid X_t] \le \lambda w(X_t) + b.$$

In fact geometric ergodicity: $||P^t(x,\cdot) - \psi^*|| = O(\alpha^t)$ for $\alpha < 1$.

In fact geometric ergodicity: $||P^t(x,\cdot) - \psi^*|| = O(\alpha^t)$ for $\alpha < 1$.

And α -mixing: $\mathbb{P}\{X_t \in A, X_{t+j} \in B\} \to \mathbb{P}\{X_t \in A\} \mathbb{P}\{X_{t+j} \in B\}.$

In fact geometric ergodicity: $||P^t(x,\cdot) - \psi^*|| = O(\alpha^t)$ for $\alpha < 1$.

And α -mixing: $\mathbb{P}\{X_t \in A, X_{t+j} \in B\} \to \mathbb{P}\{X_t \in A\} \mathbb{P}\{X_{t+j} \in B\}.$

Which in turn implies LLN and CLT.

In fact geometric ergodicity: $||P^t(x,\cdot) - \psi^*|| = O(\alpha^t)$ for $\alpha < 1$.

And α -mixing: $\mathbb{P}\{X_t \in A, X_{t+j} \in B\} \to \mathbb{P}\{X_t \in A\} \mathbb{P}\{X_{t+j} \in B\}.$

Which in turn implies LLN and CLT.

Note: Don't need compactness of S.

In fact geometric ergodicity: $||P^t(x,\cdot) - \psi^*|| = O(\alpha^t)$ for $\alpha < 1$.

And α -mixing: $\mathbb{P}\{X_t \in A, X_{t+j} \in B\} \to \mathbb{P}\{X_t \in A\} \mathbb{P}\{X_{t+j} \in B\}.$

Which in turn implies LLN and CLT.

Note: Don't need compactness of S.

Not critical to have continuity, monotonicity.

The economy produces a single good, representative agent.

The economy produces a single good, representative agent.

At the start of time t, the agent observes income y_t , which is then divided between savings and consumption.

The economy produces a single good, representative agent.

At the start of time t, the agent observes income y_t , which is then divided between savings and consumption.

Savings is added one-for-one to existing capital stock and depreciation total: current savings $= k_t$.

The economy produces a single good, representative agent.

At the start of time t, the agent observes income y_t , which is then divided between savings and consumption.

Savings is added one-for-one to existing capital stock and depreciation total: current savings $= k_t$.

Production then takes place, yielding at the start of next period output

$$y_{t+1} = f(k_t) \,\varepsilon_t,\tag{6}$$

Assumption 1. The function $f: \mathbb{R}_+ \to \mathbb{R}_+$ is strictly increasing, continuously differentiable and satisfies

Inada condition 1: $f'(\infty) = 0$.

Assumption 1. The function $f: \mathbb{R}_+ \to \mathbb{R}_+$ is strictly increasing, continuously differentiable and satisfies

Inada condition 1:
$$f'(\infty) = 0$$
.

Classic example:

 \star Brock-Mirman: f concave, $f'(0) = \infty$

Assumption 2. The shock ε is distributed according to φ , a density on \mathbb{R}_+ .

Assumption 2. The shock ε is distributed according to φ , a density on \mathbb{R}_+ . Density φ is continuous, strictly positive.

Assumption 2. The shock ε is distributed according to φ , a density on \mathbb{R}_+ . Density φ is continuous, strictly positive. Also, the moments $\mathbb{E}(\varepsilon^p)$ and $\mathbb{E}(1/\varepsilon)$ both finite for some $p \in \mathbb{N}$.

Assumption 2. The shock ε is distributed according to φ , a density on \mathbb{R}_+ . Density φ is continuous, strictly positive. Also, the moments $\mathbb{E}(\varepsilon^p)$ and $\mathbb{E}(1/\varepsilon)$ both finite for some $p \in \mathbb{N}$.

For example, the class of lognormal distributions satisfies Assumption 2 for every $p \in \mathbb{N}$.

Assumption 2. The shock ε is distributed according to φ , a density on \mathbb{R}_+ . Density φ is continuous, strictly positive. Also, the moments $\mathbb{E}(\varepsilon^p)$ and $\mathbb{E}(1/\varepsilon)$ both finite for some $p \in \mathbb{N}$.

For example, the class of lognormal distributions satisfies Assumption 2 for every $p \in \mathbb{N}$.

Restrictions $\mathbb{E}(\varepsilon^p)<\infty$ and $\mathbb{E}(1/\varepsilon)<\infty$ to be thought of as bounds on right and left hand tails of φ respectively.

Assumption 3 The function $u \colon \mathbb{R}_+ \to \mathbb{R}_+$ satisfies "usual conditions."

Assumption 3 The function $u: \mathbb{R}_+ \to \mathbb{R}_+$ satisfies "usual conditions."

A **feasible savings policy** is a (Borel) function π from \mathbb{R}_+ to itself such that $0 \le \pi(y) \le y$ for all y.

Assumption 3 The function $u: \mathbb{R}_+ \to \mathbb{R}_+$ satisfies "usual conditions."

A **feasible savings policy** is a (Borel) function π from \mathbb{R}_+ to itself such that $0 \le \pi(y) \le y$ for all y.

Each feasible π defines a Markov process for income via the recursion

$$y_{t+1} = f(\pi(y_t)) \,\varepsilon_t. \tag{7}$$

Agent solves

$$\max_{\pi} \mathbb{E} \left[\sum_{t=0}^{\infty} \varrho^t u(c^{\pi}(y_t)) \right], \quad c^{\pi}(y) := y - \pi(y), \quad y_{t+1} = f(\pi(y_t))\varepsilon_t. \quad (8)$$

Agent solves

$$\max_{\pi} \mathbb{E}\left[\sum_{t=0}^{\infty} \varrho^t u(c^{\pi}(y_t))\right], \quad c^{\pi}(y) := y - \pi(y), \quad y_{t+1} = f(\pi(y_t))\varepsilon_t. \quad (8)$$

A policy π is called **optimal** if it is feasible and attains maximum in (8).

Agent solves

$$\max_{\pi} \mathbb{E}\left[\sum_{t=0}^{\infty} \varrho^t u(c^{\pi}(y_t))\right], \quad c^{\pi}(y) := y - \pi(y), \quad y_{t+1} = f(\pi(y_t))\varepsilon_t. \quad (8)$$

A policy π is called **optimal** if it is feasible and attains maximum in (8).

Theorem 1. Under Assumptions 1–3 there is at least one optimal policy for (8).

Ideally every optimal policy satisfies an Euler equation...

Ideally every optimal policy satisfies an Euler equation...

Assumption 4. Some more technical stuff to get interiority.

Ideally every optimal policy satisfies an Euler equation...

Assumption 4. Some more technical stuff to get interiority.

If in addition Assumption 4 holds, then every optimal policy π interior, satisfies for each y>0 the Euler equation

$$u' \circ c^{\pi}(y) = \varrho \int u' \circ c^{\pi}[f(\pi(y))z]f'(\pi(y))z\varphi(z)dz.$$

We study the dynamics of the MC generated by

$$y_{t+1} = f(\pi(y_t))\,\varepsilon_t. \tag{9}$$

We study the dynamics of the MC generated by

$$y_{t+1} = f(\pi(y_t))\,\varepsilon_t. \tag{9}$$

Implies a Markov kernel $P(y,B)=\int \mathbf{1}\{f(\pi(y))z\in B\}\varphi(z)dz$.

We study the dynamics of the MC generated by

$$y_{t+1} = f(\pi(y_t))\,\varepsilon_t. \tag{9}$$

Implies a Markov kernel $P(y,B)=\int \mathbf{1}\{f(\pi(y))z\in B\}\overline{\varphi(z)dz}$.

Each y_t is a random variable taking values in $(0, \infty)$, has distribution $P^t(y_0, \cdot)$ on same.

Results

Theorem 2. If the inequality

$$f'(0) > \frac{\mathbb{E}(1/\varepsilon)}{\varrho} \tag{10}$$

holds, then $(y_t)_{t=0}^{\infty}$ has a unique stationary distribution ψ^* ,

Results

Theorem 2. If the inequality

$$f'(0) > \frac{\mathbb{E}(1/\varepsilon)}{\varrho} \tag{10}$$

holds, then $(y_t)_{t=0}^{\infty}$ has a unique stationary distribution ψ^* , and, moreover, there is a constant $\alpha \in (0,1)$ and function $y \mapsto K(y) < \infty$ such that

$$||P^t(y_0,\cdot) - \psi^*|| \le \alpha^t K(y_0), \quad \forall y_0 > 0, \quad \forall t \in \{0\} \cup \mathbb{N}.$$
 (11)

What about models with nonconvexities?

What about models with nonconvexities?

Dechert-Nishimura shows that global stability can fail. . .

Theorem 3. Let (10) hold, and let ψ^* be the unique stationary distribution for the optimal process $(y_t)_{t=0}^{\infty}$.

Theorem 3. Let (10) hold, and let ψ^* be the unique stationary distribution for the optimal process $(y_t)_{t=0}^{\infty}$. If $h:(0,\infty)\to\mathbb{R}$ is any Borel function satisfying $|h|\leq V$, then the Law of Large Numbers holds for h.

Theorem 3. Let (10) hold, and let ψ^* be the unique stationary distribution for the optimal process $(y_t)_{t=0}^{\infty}$. If $h:(0,\infty)\to\mathbb{R}$ is any Borel function satisfying $|h|\leq V$, then the Law of Large Numbers holds for h. That is,

$$\mathbb{E}_{\psi^*}(h):=\int h\,d\psi^*<\infty, \ \ ext{and} \ \ \lim_{n o\infty}rac{S_n(h)}{n}=\mathbb{E}_{\psi^*}(h) \ \ \mathbb{P} ext{-a.s.}$$

Theorem 3. Let (10) hold, and let ψ^* be the unique stationary distribution for the optimal process $(y_t)_{t=0}^{\infty}$. If $h:(0,\infty)\to\mathbb{R}$ is any Borel function satisfying $|h|\leq V$, then the Law of Large Numbers holds for h. That is,

$$\mathbb{E}_{\psi^*}(h) := \int h \, d\psi^* < \infty, \ \ \mathsf{and} \ \ \lim_{n o \infty} rac{S_n(h)}{n} = \mathbb{E}_{\psi^*}(h) \ \ \mathbb{P} ext{-a.s.}$$

If in addition $h^2 \leq V$, then the Central Limit Theorem also holds for h.

Theorem 3. Let (10) hold, and let ψ^* be the unique stationary distribution for the optimal process $(y_t)_{t=0}^{\infty}$. If $h:(0,\infty)\to\mathbb{R}$ is any Borel function satisfying $|h|\leq V$, then the Law of Large Numbers holds for h. That is,

$$\mathbb{E}_{\psi^*}(h) := \int h \, d\psi^* < \infty, \ \ \mathsf{and} \ \ \lim_{n o \infty} rac{S_n(h)}{n} = \mathbb{E}_{\psi^*}(h) \ \ \mathbb{P}$$
-a.s. (12)

If in addition $h^2 \leq V$, then the Central Limit Theorem also holds for h. Precisely, there is a constant $\sigma^2 \in \mathbb{R}_+$ such that

$$\frac{S_n(h - \mathbb{E}_{\psi^*}(h))}{\sqrt{n}} \stackrel{d}{\to} N(0, \sigma^2). \tag{13}$$

We use mixing on compacts and drift conditions for stability.

We use mixing on compacts and drift conditions for stability.

Need a norm-like function and a certain "expected contraction" condition.

We use mixing on compacts and drift conditions for stability.

Need a norm-like function and a certain "expected contraction" condition.

Marginal utility of consumption will be the norm-like function.

We use mixing on compacts and drift conditions for stability.

Need a norm-like function and a certain "expected contraction" condition.

Marginal utility of consumption will be the norm-like function.

Establish this expected contraction using Euler-equation.

We use mixing on compacts and drift conditions for stability.

Need a norm-like function and a certain "expected contraction" condition.

Marginal utility of consumption will be the norm-like function.

Establish this expected contraction using Euler-equation.

Equating marginal rate of substitution with marginal returns to investment implies a contraction condition on the norm-like function.

Recall the condition \exists norm-like $w \colon S \to [0, \infty)$ and $\lambda < 1$, $b < \infty$ with

$$\mathbb{E}[w(X_{t+1}) \mid X_t] \le \lambda w(X_t) + b.$$

Recall the condition \exists norm-like $w \colon S \to [0, \infty)$ and $\lambda < 1$, $b < \infty$ with

$$\mathbb{E}[w(X_{t+1}) \mid X_t] \le \lambda w(X_t) + b.$$

Present Case: There is a norm-like function w on $(0,\infty)$ and constants $\lambda < 1$ and a $b < \infty$ such that

$$\int w[f(\pi(y))z]\varphi(z)dz \le \lambda w(y) + b, \quad \forall y \in (0, \infty).$$
 (14)

Our construction of norm-like function:

Find (i) a w_1 with $\lim_{x\downarrow 0} w_1(x) = \infty$ and a $\lambda_1 < 1$ such that

$$\int w_1[f(\pi(y))z]\varphi(z)dz \le \lambda_1 w_1(y), \quad \forall \text{ small } y, \tag{15}$$

Our construction of norm-like function:

Find (i) a w_1 with $\lim_{x\downarrow 0} w_1(x) = \infty$ and a $\lambda_1 < 1$ such that

$$\int w_1[f(\pi(y))z]\varphi(z)dz \le \lambda_1 w_1(y), \quad \forall \text{ small } y, \tag{15}$$

and (ii) a w_2 with $\lim_{x\uparrow\infty} w_2(x) = \infty$ and a $\lambda_2 < 1$ such that

$$\int w_2[f(\pi(y))z]\varphi(z)dz \le \lambda_2 w_2(y), \quad \forall \text{ large } y.$$
(16)

Our construction of norm-like function:

Find (i) a w_1 with $\lim_{x\downarrow 0} w_1(x) = \infty$ and a $\lambda_1 < 1$ such that

$$\int w_1[f(\pi(y))z]\varphi(z)dz \le \lambda_1 w_1(y), \quad \forall \text{ small } y, \tag{15}$$

and (ii) a w_2 with $\lim_{x\uparrow\infty} w_2(x) = \infty$ and a $\lambda_2 < 1$ such that

$$\int w_2[f(\pi(y))z]\varphi(z)dz \le \lambda_2 w_2(y), \quad \forall \text{ large } y.$$
(16)

Then $w := w_1 + w_2$ satisfies (14).

The hard part is to show there is a w_1 with $\lim_{x\downarrow 0} w_1(x) = \infty$ and a $\lambda_1 < 1$ such that

$$\int w_1[f(\pi(y))z]\varphi(z)dz \le \lambda_1 w_1(y), \quad \forall \text{ small } y, \tag{17}$$

The hard part is to show there is a w_1 with $\lim_{x\downarrow 0} w_1(x) = \infty$ and a $\lambda_1 < 1$ such that

$$\int w_1[f(\pi(y))z]\varphi(z)dz \le \lambda_1 w_1(y), \quad \forall \text{ small } y, \tag{17}$$

Proof will use the Euler equation

$$u' \circ c^{\pi}(y) = \varrho f'(\pi(y)) \int u' \circ c^{\pi}[f(\pi(y))z]z\varphi(dz). \tag{18}$$

Some manipulation of Euler equation gives

$$\int \sqrt{u' \circ c^{\pi}} [f(\pi(y))z] \varphi(dz) \le \left[\frac{\mathbb{E}(1/\varepsilon)}{\varrho f'(\pi(y))} \right]^{1/2} \sqrt{u' \circ c^{\pi}}(y). \tag{19}$$

Some manipulation of Euler equation gives

$$\int \sqrt{u' \circ c^{\pi}} [f(\pi(y))z] \varphi(dz) \le \left[\frac{\mathbb{E}(1/\varepsilon)}{\varrho f'(\pi(y))} \right]^{1/2} \sqrt{u' \circ c^{\pi}}(y). \tag{19}$$

Provided $\varrho f'(0) > \mathbb{E}(1/\varepsilon)$, we get

$$\int \sqrt{u' \circ c^{\pi}} [f(\pi(y))z] \varphi(dz) \le \lambda_1 \sqrt{u' \circ c^{\pi}}(y), \quad \forall \text{ small } y.$$
 (20)

Other Projects

- * Other stochastic growth problems
- ⋆ Density forecasting
- * Simulated moments estimator
- * Estimation with piecewise linear functions
- * Development and corruption
- * Numerical dynamic programming