Deadline: 2024/6/3, 17:00.

In this homework, "measurable" means Lebesgue measurable.

- 1. Let $u(x,y) = \frac{x^4 + y^4}{x}$, $v(x,y) = \sin x + \cos y$ and f be a function that maps (x,y) to (u,v). Find the point (x,y) where we can solve for x,y in terms of u,v. Also, find $\frac{\partial x}{\partial u}$, $\frac{\partial x}{\partial v}$, $\frac{\partial y}{\partial u}$, $\frac{\partial y}{\partial v}$ at $f\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- 2. Let $f: \mathbb{R}^4 \to \mathbb{R}^2$ be given by $f(x, y, u, v) = (xu + yv^2, xv^3 + y^2u^6)$.
 - (a) Show that x, y can be solved in terms of u, v for (u, v) near (1, -1) and (x, y) near (1, -1).
 - (b) From (a), If we write $x = g_1(u, v)$, $y = g_2(u, v)$ for (u, v) near (1, -1) and let $g = (g_1, g_2)$, Find Dg(u, v). (You don't need to calculate explicitly.)
- 3. Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be given by $f(x, y, z) = (xe^y + ye^z, xe^z + ze^y)$.
 - (a) Show that y, z can be solved in terms of x for x near -1 and (y, z) near (1, 1).
 - (b) From (a), If we write (y, z) = g(x) for x near -1, Find g'(x). (You don't need to calculate explicitly.)
- 4. Suppose $f: \mathbb{R} \to \mathbb{R}^n$ is differentiable, such that |f(t)| = 1 for every $t \in \mathbb{R}$.
 - (a) Prove that $f'(t) \cdot f(t) = 0$. (Here "\cdot" is the standard inner product in \mathbb{R}^n)
 - (b) In fact, this result has a geometric interpretation. For example, in \mathbb{R}^2 , the function $f(t) = (\cos t, \sin t)$ satisfies |f(t)| = 1. Draw the graph of f(t) and f'(t) on \mathbb{R}^2 , what do you discover?
- 5. (Second Derivative Test) Let V be an open subset of \mathbb{R}^2 and $(a, b) \in V$, and suppose that $f: V \to \mathbb{R}$ satisfy $\nabla f(a, b) = 0$. Suppose also that $f \in \mathcal{C}^2(V)$, and set $D = f_{xx}(a, b) f_{yy}(a, b) f_{xy}(a, b)^2$. Prove the following statements:
 - (a) If D > 0 and $f_{xx}(a, b) > 0$, then f admits a local minimum at (a, b).
 - (b) If D > 0 and $f_{xx}(a, b) < 0$, then f admits a local maximum at (a, b).
 - (c) If D < 0, then f is a saddle point at (a, b).

Remark. In fact D is the determinant of **Hessian** at (a, b).

$$\operatorname{Hess}(f) := \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}$$

The geometric meaning of Hessian matrix is to represent the **curvature** at (a, b). The eigenvalues of $\operatorname{Hess}(f)$ is, in fact, the maximal and minimal value of all second directional derivatives at (a, b).¹ From this we can see that when $D = \det \operatorname{Hess}(f) = \lambda_1 \lambda_2 > 0$, there're two cases: either $\lambda_1, \lambda_2 > 0$ or $\lambda_1, \lambda_2 < 0$. In the first case, the maximal and minimal value of second directional derivative are both positive, so the second directional derivative at (a, b) is always positive. In particular, $f_{xx}(a, b) > 0$. This is why we need to check " $f_{xx}(a, b) > 0$ ". Or, if you want, you can check $f_{yy}(a, b) > 0$ instead.

6. Let f be a nonnegative and measurable function on E. Prove that

$$\int_{E} f(x) dx = \sup \left[\sum_{j} \left(\inf_{x \in E_{j}} f(x) \right) |E_{j}| \right]$$

where the supremum is taken over all decompositions $E = \bigcup_j E_j$ of E into the union of a finite number of disjoint measurable sets E_j .

7. If $\{f_k\}_{k\in\mathbb{N}}$ is a sequence of nonnegative and measurable functions on E, prove that

$$\int_{E} \left(\sum_{k=1}^{\infty} f_k(x) \right) dx = \sum_{k=1}^{\infty} \left(\int_{E} f_k(x) dx \right)$$

8. Let f be nonnegative and measurable on E, prove that

$$\int_{E} f(x) dx = 0 \iff \exists Z \subset E \text{ such that } |Z| = 0 \text{ and } f(x) = 0 \text{ on } E \setminus Z$$

¹When $f \in C^2(V)$, $f_{xy} = f_{yx}$, so Hess(f) is a symmetric matrix. A real symmetric matrix can always be diagonalized with two real eigenvalues.

²We also say f(x) = 0 almost everywhere on E.

9. Let
$$g(x) = \begin{cases} 0, & 0 \le x \le 1/2 \\ 1, & 1/2 < x \le 1 \end{cases}$$
 and $f_{2k}(x) = g(x), f_{2k-1}(x) = g(1-x), x \in [0, 1],$ $k \in \mathbb{N}$. Show that

$$\liminf_{n \to \infty} f_n(x) = 0 \text{ on } [0, 1]$$

but
$$\int_0^1 f_n(x) dx = \frac{1}{2}$$
. (This gives an example of strict inequality in **Fatou lemma**)

10. Let $f(x) = \begin{cases} 1/n &, |x| \leq n \\ 0 &, |x| > n \end{cases}$. Show that $f_n(x)$ uniformly converges to 0 on \mathbb{R} but $\int_{-\infty}^{\infty} f_n(x) dx = 2 \text{ for all } n \in \mathbb{N}.$

Remark. This problem tells you that uniform convergence doesn't imply dominate convergence, i.e. $\lim_{n\to\infty}\int_E f_n(x)\,dx=\int_E f(x)\,dx$. However, if E is of finite measure, then uniformly convergent sequence of bounded functions implies dominate convergence.