Wilson's theorem

Monika rathore

February 2018

1 Introduction

1.1 Proofs

Suppose first that p is composite. Then p has a factor d > 1 that is less than or equal to p - 1. Then d divides (p - 1)!, so d does not divide (p - 1)! + 1. Therefore p does not divide (p - 1)! + 1.

Two proofs of the converse are provided: an elementary one that rests close to basic principles of modular arithmetic, and an elegant method that relies on more powerful algebraic tools.

1.2 Elementry proof

Suppose p is a prime. Then each of the integers $1, \ldots, p-1$ has an inverse modulo p. (Indeed, if one such integer a does not have an inverse, then for some distinct b and c modulo p, $ab \equiv ac \pmod{p}$, so that a(b-c) is a multiple of p, when p does not divide a or b-c—a contradiction.) This inverse is unique, and each number is the inverse of its inverse.

If one integer a is its own inverse, then

$$0 \equiv a^2 - 1 \equiv (a - 1)(a + 1) \pmod{p},\tag{1}$$

so that $a \equiv 1$ or $a \equiv p-1$. Thus we can partition the set $\{2, \ldots, p-2\}$ into pairs $\{a,b\}$ such that $ab \equiv 1 \pmod{p}$. It follows that (p-1) is the product of these pairs times $1 \cdot (-1)$. Since the product of each pair is conguent to 1 modulo p, we have

$$(p-1)! \equiv 1 \cdot 1 \cdot (-1) \equiv -1 \pmod{p},\tag{2}$$

Figure 1: Confused

1.3 Algebric Proof

Let p be a prime. Consider the field of integers modulo p. By Fermat's Little Theorem, every nonzero element of this field is a root of the

polynomial

$$P(x) = x^{p-1} - 1 (3)$$

. Since this field has only p-1 nonzero elements, it follows that

$$x^{p-1} - 1 = \prod_{r=1}^{p-1} (x - r).$$
(4)

Now, either p=2, in which case $a\equiv -a\pmod 2$ for any integer a, or p-1 is even. In either case, $(-1)^{p-1}\equiv 1\pmod p$, so that

$$x^{p-1} - 1 = \prod_{r=1}^{p-1} (x - r) = \prod_{r=1}^{p-1} (-x + r).$$
 (5)