Máster Universitario en Inteligencia Artificial

02MIAR: Matemáticas para la IA

Probabilidad - Ejercicios no evaluables

- 1. Calcule la probabilidad de obtener algún sello (cruz) tras lanzar cinco monedas equilibradas.
- 2. Sea $\Omega=\{00,01,02,03,\dots,98,99\}$ el espacio muestral, correspondiente a una urna con bolas numeradas del 00 al 99, A el suceso "obtener un número múltiplo de 7" y B el suceso "obtener un número cuya suma de sus cifras es múltiplo de 5". Obténganse las siguientes probabilidades:
 - a) P(A).
 - b) P(B).
 - c) $P(A \cap B)$.
 - d) $P(A \cup B)$.
 - e) P(A|B).
 - f) P(B|A).
- 3. Se propone el siguiente juego: se lanzan un dado y una moneda, ganándose éste si sale un 6 en el dado y una cara en la moneda, mientras que en caso contrario se pierde. Si la apuesta es de 10 euros por jugada y el premio por ganar son 100 euros más la devolución de los 10 euros apostados, calcule los beneficios esperados por jugada.
- 4. Calcule la varianza asociada al problema anterior.
- 5. Un experimento tiene una probabilidad de fracaso de un 10%. ¿Cuál es la probabilidad de fracasar menos de 3 veces tras realizar el experimento 25 veces?
- 6. La probabilidad de obtener un determinado producto defectuoso en una cadena de montaje es de un $0.005\,\%$. Calcule la probabilidad de obtener más de 2 productos defectuosos tras producir un total de 50000 unidades.
- 7. Se dispone de una moneda trucada, de tal forma que la probabilidad de obtener cara es de un $60\,\%$ y la de obtener cruz un $40\,\%$. Calcule la probabilidad de que tras lanzar la moneda 2000 veces se obtengan más de 850 cruces.
- 8. Demuestre mediante la definición de esperanza las siguientes propiedades para una variable aleatoria continua:
 - a) E[aX] = aE[X], $\forall a \in \mathbb{R}$.
 - b) E[X + Y] = E[X] + E[Y].
- 9. Demuestre mediante la definición de varianza las siguientes propiedades para una variable aleatoria continua:
 - a) $\operatorname{Var}(aX) = a^2\operatorname{Var}(X)$, $\forall a \in \mathbb{R}$.
 - b) Var(X + a) = Var(X), $\forall a \in \mathbb{R}$.

Máster Universitario en Inteligencia Artificial

02MIAR: Matemáticas para la IA

10. Sea X una variable aleatoria uniforme, es decir, $X \sim U([a,b])$. Obtenga razonadamente F_X , f_X , E[X] y ${\sf Var}[X]$.