HW 6.3-6.5

1. Let
$$y = \begin{bmatrix} 7 \\ 9 \end{bmatrix}$$
, $u_1 = \begin{bmatrix} 1/\sqrt{10} \\ -3/\sqrt{10} \end{bmatrix}$, $W = Span\{u_1\}$

a. Let U be the 2×1 matrix whose only column is u_1 .Compute U^TU and UU^T .

b. Compute $Proj_w y$ and $(UU^T)y$.

2. True or false

- A. If ${m W}$ is a subspace of ${f R}^{n}$ and if vector ${m v}$ is in both W and ${m W}^{\perp}$, then ${m v}$ must be the zero vector.
- B. In the Orthogonal Decomposition Theorem, each term in formula (2) for \hat{y} is itself an orthogonal projection of y onto a subspace of W.
- C. If $y=z_1+z_2$, where z_1 is in a subspace W and z_2 is in W^{\perp} , then z_1 must be the orthogonal projection of y onto W.
- D. The best approximation to y by elements of a subspace W is given by the vector. $y \text{Proj}_{\mathbf{w}} y$
- E. If an $n \times p$ matrix U has orthonormal columns, then $UU^Tx = x$ for all x in \mathbb{R}^n .

3. Find the
$$QR$$
 factorization for matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$

- 4. Suppose A=QR, where R is an invertible matrix. Show that A and Q have the same column space.
- 5. Find the orthogonal projection of b onto Col A and a least-squares solution of Ax = b.

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \\ 1 & 2 \end{bmatrix}, b = \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix}$$

6. Prove that the matrix $\,A^TA\,$ is invertible if and only if the columns of $\,A\,$ are linearly inpendent.

课本 6.3 节习题: 第 23, 24 题

课本 6.4 节习题: 第 16 题

课本 6.4 节习题: 第 22 题