Discrete Math 3.1 Functions day 3

Review Exercise pg 131 #13-19 ALL - see back of book

Exercises: pg 133-134 # 39-47 odd, 51, 63, 65, 91, 93, 95

39.
$$f(n) = 2n+1$$
 $g(n) = 3n-1$
 $f \circ f = 2(2n+1)+1 = 4n+2+1 = 4n+3$
 $g \circ g = 3(3n-1)-1 = 9n-3-1 = 9n-4$
 $f \circ g = 2(3n-1)+1 = 6n-2+1 = 6n-1$
 $g \circ f = 3(2n+1)-1 = 6n+3-1 = 6n+2$

(41)
$$f(x) = \lfloor 2x \rfloor$$
 $g(x) = x^2$ # In back of book
 $f \circ f = \lfloor 2\lfloor 2x \rfloor \rfloor = 2\lfloor 2x \rfloor$
 $g \circ g = (x^2)^2 = x^4$
 $f \circ g = \lfloor 2x^2 \rfloor$
 $g \circ f = \lfloor 2x \rfloor^2$

(43)
$$f(x) = \frac{1}{x} g(x) = 2x^2$$

(51)
$$f(x) = 4x \mod 5$$
 $f(0) = 0$ $f(1) = 4$ $f(2) = 3$ $f(3) = 2$ ordered pairs $\{(0,0), (1,4), (2,3), (3,2), (4,1)\}$

acrow diagram

X 60 1 2 3 4

Y 0 1 2 3 4

fis both one to one

63 If f is onto, then fog is onto. False

counter example

$$X = \{13\}$$
 $Y = \{a,b\}$ $Z = \{a,b\}$
 $Z = \{(a,a)\}$ $Z = \{(a,a),(b,b)\}$ which is onto

fog = $\{(1,a)\}$ - not into, no arrow pointing to (a,a)

- (65) If fand g are onto, then fog is onto. True

 Let z E Z. Sinie f is onto, I a y E Y such that fixi= Z \frac{1}{2} \in Z

 And g onto, I x E X such that g(x) = y \frac{1}{2} \in Y

 i. fog= f(g(x)) = f(y) = Z and fog is onto buck at

 I x E X such that f(g(x)) = Z \frac{1}{2} \in Z

 book

 I x E X such that f(g(x)) = Z
- (91) f(x,y)= x-y, X= {1,2,...3 Not a binary operator f(1,2)= 1-2=-1 € X.
- (93) $f(x,y) = \frac{x}{y}$, $x = \{0,1,2,...$ Not a binary operator f(x,0) -not defined $f(1,2) = \frac{1}{2}$ not in x
- Buck at book says g(x) = -xDoes ① g(x) = x (som Integer) also work?② $g(x) = \lfloor x/2 \rfloor$ also work