无锡学院 试卷

2023—	_2024_学年	第	学期
高等	等数学Ⅰ(1)	-	课程试制

			高 等	等数学 I	(1)	课程	试卷	
试卷类	类型	<u>(</u> }	主明 A、B	卷)	考试类型	闭卷	(注明开、	闭卷)
注意: 1、	本课程	呈为_	<u>必修</u> (注	生明必修或选	走修), 学时	·为 <u>96</u>	_,学分为	6
2,	本试卷	*共_	<u>6</u> 页;考试	时间120_	分钟;	出卷时间:		l <u>2</u> 月
3,	姓名、	学与	号等必须写在	E指定地方;		考试时间:	_2024_年	<u>1</u> 月
4、本考卷适用专业年级: _23 级理工科各专业 任课教师:								
	题	号		<u> </u>	三	四	总分	
	得	分						
	阅券	, ,						

(以上内容为教师填写)

专业	年级	班级
学号	姓名	

请仔细阅读以下内容:

- 1、 考生必须遵守考试纪律。
- 2、 所有考试材料不得带离考场。
- 3、 考生进入考场后,须将学生证或身份证放在座位的左上角。
- 4、 考场内不许抽烟、吃食物、喝饮料。
- 5、 考生不得将书籍、作业、笔记、草稿纸带入考场, 主考教师允许带入的除外。
- 6、 考试过程中,不允许考生使用通讯工具。
- 7、 开考 15 分钟后不允许考生进入考场,考试进行 30 分钟后方可离场。
- 8、 考生之间不得进行任何形式的信息交流。
- 9、 除非被允许, 否则考生交卷后才能离开座位。
- 10、考试违纪或作弊的同学将被请出考场,其违纪或作弊行为将上报学院。

本人郑重承诺: 我已阅读上述 10 项规定,如果考试是违反了上述 10 项规定,本人将自愿接受学校按照有关规定所进行的处理。上面姓名栏所填姓名即表示本人已阅读本框的内容并签名。

- 一、填空题(每小题3分,共15分)
- 1. 函数 $y = \frac{x^2 3x + 1}{x^2 + 1}$ 的图形的水平渐近线的方程为_____
- 2. $\lim_{x \to 0} (1 + 2 \tan^2 x)^{\cot^2 x} = \underline{\hspace{1cm}}$
- 3. 曲线 $y = x^2 (\ln x \frac{3}{2})$ 的拐点为______.
- 4. 若反常积分 $\int_a^b \frac{1}{(x-q)^q} dx, (q>0)$ 是收敛的,则 q 的取值范围是_______
- 5. 微分方程 xy'-y=3 的通解为
- 二、选择题(每小题3分,共15分)
- 1. 下列各对函数中,表示同一个函数的是(

(A)
$$y = \frac{x^2 - 1}{x + 1}$$
 $\pi y = x - 1$ (B) $y = \ln(x^2)$ $\pi y = 2 \ln x$

(B)
$$y = \ln(x^2) \# y = 2 \ln x$$

(C)
$$y = \sqrt{1 - \cos^2 x}$$
 $\pi y = \sin x$ (D) $y = |x| \pi y = \sqrt{x^2}$

(D)
$$y = |x|$$
 $\pi y = \sqrt{x^2}$

- - (A) 不连续
- (B) 连续但不可导
- (C) 连续且可导 (D) 可导但不连续
- 3. 设函数 y = f(x) 在点 x_0 处可导,则 $\lim_{h\to 0} \frac{f(x_0 + 2h) f(x_0 h)}{2h} = ($

(A)
$$\frac{3}{2}f'(x_0)$$
 (B) $\frac{1}{2}f'(x_0)$ (C) $2f'(x_0)$ (D) $f'(x_0)$

(B)
$$\frac{1}{2}f'(x_0)$$

(C)
$$2f'(x_0)$$

(D)
$$f'(x_0)$$

- 4. 二阶常微分方程 y'' 3y' + 2y = 0 通解的形式正确的是(
 - (A) $y = c_1 e^{-t} + c_2 e^{-2t}$ (B) $y = c_1 e^t + c_2 e^{-2t}$

(B)
$$y = c_1 e^t + c_2 e^{-2t}$$

(C)
$$y = c_1 e^t + c_2 e^{2t}$$

(D)
$$y = c_1 e^{-t} + c_2 e^{2t}$$

- 5. 设 $I_1 = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} e^{\cos x} dx$, $I_2 = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} e^{\tan x} dx$, $I_3 = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} e^{\sin x} dx$,则 I_1, I_2, I_3 的大小关 系为(
 - (A) $I_1 > I_2 > I_3$ (B) $I_2 > I_3 > I_1$ (C) $I_3 > I_2 > I_1$ (D) $I_2 > I_1 > I_3$

三、计算题 (每小题 6 分, 共 30 分)

1. 求极限
$$\lim_{x\to 0} \left(\frac{1+x}{1-e^{-x}} - \frac{1}{x} \right)$$
.

2. 设函数
$$y = y(x)$$
 由方程 $e^y - xy = e$ 所确定,求 $\frac{dy}{dx}$.

3. 计算不定积分
$$\int \frac{1}{x^2 - 2x + 6} dx.$$

4. 计算定积分 $\int_0^1 \arctan \sqrt{x} dx$.

5. 已知 $y_1 = xe^x + e^x$, $y_2 = xe^x + e^{3x}$, $y_3 = xe^x + e^x + e^{3x}$ 是某二阶非齐次线性微分方程的 3 个特解,求此方程的通解,并写出此微分方程.

- 四、解答题(每小题8分,共40分)
- 1. 设参数方程为 $\begin{cases} x = a(t \sin t), & 求 \frac{dy}{dx} 和 \frac{d^2y}{dx^2}. \end{cases}$

2. 计算定积分 $\int_{-2}^{2} \left(\frac{x^2 \sin x}{1+x^4} + x^2 \sqrt{4-x^2} \right) dx$.

3. 求椭圆 $\frac{x^2}{4} + \frac{y^2}{5} = 1$ 绕 x 轴旋转而得到的旋转体的体积.

4. 设 $f(x) = \int_0^{x^2} (1 - \cos \sqrt{t}) dt, x \in (-\frac{\pi}{2}, \frac{\pi}{2})$,求此函数的极值点和极值.

5. 设函数 f(x) 在 [1,2] 上连续,在 (1,2) 内可导,且 f(2)=4f(1). 证明至少存在一点 $c\in(1,2)$,使得 cf'(c)=2f(c).