Robotika in računalniško zaznavanje (RRZ)

Osnove robotike

Danijel Skočaj Univerza v Ljubljani Fakulteta za računalništvo in informatiko

Literatura: Tadej Bajd (2006).

Osnove robotike, poglavje 1

v1.0

Robotski manipulator

Industrijski robotski manipulator po standardu ISO 8373:

Industrijski robotski manipulator je povratnozančno voden, reprogramibilen in večnamenski sistem. Lahko je fiksen ali mobilen. Programibilen je v treh ali več prostostnih stopnjah. Uporabljamo ga v procesih industrijske avtomatizacije.

Lastnosti

- Povratnozančno vodenje
 - Električni ali hidravlični motorji
 - Senzorji
 - Notranji: pretvorniki kota, razdalje, hitrosti
 - Zunanji: senzor sile dotika, strojni vid
- Reprogramibilnost
 - Enostavno reprogramiranje, prehod na drugo nalogo
- Večnamenskost
 - Uporaben za razične namene
- Fiksnost ali mobilnost
 - Ponavadi so robotski manipulatorji pritrjeni na podstavek
 - Na tleh ali na stropu
 - Lahko pa so tudi pritejeni na mobilne platforme
- Tri ali več prostostnih stopenj

Prostostne stopnje

- DOF Degrees Of Freedom
- 6 prostostnih stopenj za popoln opis položaja predmeta v prostoru
 - 3 translacije (pozicija)
 - 3 rotacije (orientacija)

Prostostne stopnje

Prostostne stopnje

Robotski manipulator

- Roka+zapestje+prijemalo
- 6DOF lahko postavi predmet v poljubno lego
 - Roka omogoči želeno pozicijo vrha robota
 - Zapestje pravilno orientira predmet
 - Prijemalo drži predmet

Robotska roka

- Serijska veriga treh segmentov robotskega mehanizma
- Robotski sklep med dvema segmentoma
- Rotacijski sklep

Translacijski sklep

Tipi robotskih rok

- Robotski sklepi
 - Rotacijski
 - Translacijski
- Osi dveh sosednih sklepov
 - Vzporedni
 - Pravokotni
- 3DOF
- V praksi pet različnih rok:
 - Antropomorfna
 - Sferična
 - SCARA
 - Cilindrična
 - Kartezična

Antropomorfna robotska roka

- Tri rotacijski sklepi (RRR)
- Delovni prostor: podoben krogli
- Podobna človekovi roki

Sferična robotska roka

Dva rotacijska, en translacijski sklep

Delovni prostor: podoben krogli (RRT)

SCARA robotska roka

- Selective Articulated Robot for Assembly
- Dva rotacijska, en translacijski sklep (RRT)
- Delovni prostor: podoben valju

Cilindrična robotska roka

En rotacijski, dva translacijska sklepa (RTT)

Delovni prostor: valj

Kartezična robotska roka

Robotsko zapestje

- Zasuka predmet v poljubno orieantacijo
- Trije rotacijski sklepi
 - V posebnih primerih zadostuje tudi eden ali dva
 - Segmenti morajo biti čim krajši

Robotsko prijemalo

- Zaključni segment robotskega manipulatorja
 - Prijemala s prsti
 - Z dvema prstoma
 - Z več prsti
 - Ostala prijemala
 - Vakuumska
 - Magnetna
 - Perforacijska
 - Namesto prijemala lahko tudi drugo orodja
 - Varilna glava
 - Pištola za razpršilno barvanje

Robotski delovni prostor

- Dosegljivi delovni prostor
 - Vrh manipulatorja lahko doseže vsako točko v tem prostoru
- Priročni delovni prostor
 - Lahko dosežemo vsako točko ob poljubni orientaciji prijemala

Kinematika

- Osnovni koordinatni sistem [X₁,Y₁,Z₁]
 - Ponavadi tudi zunanji oz. referenčni koordinatni sistem
 - V njem podamo robotsko nalogo
- Koordinatni sistem vrha robota [X_m,Y_m,Z_m]
- Pozicija manipulatorja
 - Vektor, ki povezuje izhodišči
- Orientacija telesa
 - Tri koti med posamerznimi pari osi
- Notranje spremenljivke robota
 - Stanja (koti zasukov) sklepov
 - Povsem opišejo lego robota
- Direktna kinematika
 - Iz notr. spremenljivk določiti lego
- Inverzna kinematika
 - Iz željene lege robota določiti vrednosti notranjih spremenljivk

