Package 'sda1'

January 22, 2023

Title R-paket för kursen Statistik och dataanalys I vid SU		
Version 0.0.1		
Description Funktioner för grundläggande statistik, inkl regression.		
License MIT		
Encoding UTF-8		
Roxygen list(markdown = TRUE)		
RoxygenNote 7.2.3		
Imports glmnet, mvtnorm, manipulate, RColorBrewer, SUdatasets, ggplot2, cowplot		
Remotes StatisticsSU/SUdatasets		
Depends R (>= 2.10)		
LazyData true		
Suggests rmarkdown, knitr		
VignetteBuilder knitr		
R topics documented: bike		
reg_crossval 3 reg_predict 4		
reg_simulate		
reg_summary		
residuals4in1		
Index		

2 corr_matrix

bike

Number of daily rides for a bike share company in Washington D.C.

Description

A dataset containing the number of rides per day and other attributes over the course of 2 years

Usage

bike

Format

```
dteday date in YYYY-MM-DD format
season categorical variable (1="winter", 2 = "spring", 3 = "summer", 4 = "fall")
yr year (0="2011", 1 = "2012")
mnth month from 1-12 where 1 = "January"
holiday binary variable for public holidays
weekday day of the week 0-6, 0 = "Sunday"
workingday binary variable for working days (=1)
weathersit categorical variable (1="clear", 2 = "mist", 3 = "light snow")
temp continuous temperature variable, normalized between 0,1
```

A data frame with 731 rows and 12 variables:

Source

```
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
```

windspeed continuous windspeed variable, normalized between 0,1 ...

hum continuous humidity variable, normalized between 0,1

corr_matrix

Compute pair-wise correlations and hypothesis test

Description

Computes pair-wise correlations between variables in a dataframe df Uses p-values to test:

```
H0: rho = 0
H1: rho != 0
```

Usage

```
corr_matrix(df)
```

reg_crossval 3

Arguments

df dataframe

Value

list with two tables: corrs (correlations), pvals (p-values)

Examples

```
library(sda1)
corr_matrix(mtcars[,c("mpg","hp","drat","wt")])
```

reg_crossval

K-fold cross-validation of regression models estimated with lm()

Description

K-fold cross-validation of regression models estimated with lm()

Usage

```
reg_crossval(formula, data, nfolds, obs_order = "random")
```

Arguments

formula an object of class "formula": a symbolic description of the model to be fitted.

data a data frame with the data used for fitting the models.

nfolds the number of folds in the cross-validation.

obs_order order of the observations when splitting the data. obs_order = "random" gives a

random order.

Value

RMSE Root mean squared prediction error on test data

Examples

```
library(sda1)
RMSE_CV = reg_crossval(mpg ~ hp, data = mtcars, nfolds = 4, obs_order = 1:32)
print(RMSE_CV)
```

4 reg_simulate

reg_predict

Plot confidence and prediction intervals for simple linear regression

Description

Plot confidence and prediction intervals for simple linear regression

Usage

```
reg_predict(formula, data, level = 0.95, conf_int_line = T, pred_interval = T)
```

Arguments

formula an object of class "formula": a symbolic description of the model to be fitted.

data a data frame with the data.

level confidence level, default is level = 0.95

conf_int_line if TRUE, then conf intervals for regression line are plotted.

pred_interval if TRUE, then prediction intervals are plotted.

Value

plot of data with overlayed intervals

Examples

```
library(sda1)
reg_predict(mpg ~ hp, data = mtcars)
```

reg_simulate

Simulate from a linear regression model

Description

Simulates a dataset with n observation from the linear regression model

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \epsilon, \epsilon \sim N(0, \sigma_{\epsilon}^2)$$

with covariates (x) simulated from a normal distribution with the same correlation rho_x between all pairs of covariates. Covariate x_j has standard deviation sigma_x[j]. Alternatively the covariate can follow a uniform distribution.

reg_summary 5

Usage

```
reg_simulate(
    n,
    betavect,
    sigma_eps,
    intercept = TRUE,
    covdist = "normal",
    rho_x = 0,
    sigma_x = rep(1, length(betavect) - intercept)
)
```

Arguments

n	the number of observations in the simulated dataset.
betavect	a vector with regression coefficients $c(beta_0,beta_1,beta_k)$. First element is intercept if intercept = TRUE
sigma_eps	standard deviation of the error terms, epsilon.
intercept	if TRUE an intercept is added to the model.
covdist	distribution of the covariates. Options: 'normal' or 'uniform'.
rho_x	correlation among the covariates. Same for all covariate pairs.
sigma_x	vector with standard deviation of the covariates.

Value

dataframe with simulated data (y, X1, X2, ..., XK) (no intercept included).

Examples

```
library(sda1) simdata <- reg_simulate(n = 500, betavect = c(1, -2, 1, 0), sigma_eps = 2) lmfit <- lm(y \sim X1 + X2 + X3, data = simdata) reg_summary(lmfit, anova = F)
```

reg_summary

Summarize the results from a regression analysis

Description

Alternative to summary. Im to summarize a regression from 1m. Prints a table similar to the one generated by SAS and Minitab.

6 residuals4in1

Usage

```
reg_summary(
  lmobject,
  anova = T,
  fit_measures = T,
  param = T,
  conf_intervals = F,
  vif_factors = F
```

Arguments

a fitted regression model from 1m.

TRUE if an ANOVA table is computed.

fit_measures

TRUE if measures of fit (R² etc) is computed.

TRUE if parameter estimates, standard errors etc is computed.

Conf_intervals

TRUE if confidence intervals for parameters.

Vif_factors

TRUE if variance inflation factors are to be printed.

Value

list with three tables: param, anova and fit_measures

Examples

```
library(sda1)
lmfit = lm(nRides ~ temp + hum + windspeed, data = bike)
regsumm = reg_summary(lmfit, anova = T, conf_intervals = T, vif_factors = T)
regsumm$param
regsumm$anova
regsumm$fit_measures
```

residuals4in1

Residual analysis mimicing the 4-in-1 plots from Minitab

Description

Plots:

- 1. Normal QQ-plot
- 2. Residuals vs fitted values
- 3. Histogram and normal density fit
- 4. Residuals vs order.

titanic 7

Usage

```
residuals4in1(lm_object)
```

Arguments

lm_object a fitted regression model from lm.

Examples

```
library(sda1)
fit = lm(mpg ~ hp, data = mtcars)
residuals4in1(fit)
```

titanic

Survival of passengers on the Titanic

Description

This data set provides information on the fate of passengers on the fatal maiden voyage of the ocean liner 'Titanic', summarized according to economic status (class), sex, age and survival.

NOTE: this is not the same as the dataset Titanic (note capital T) which has more observations, but also missing values.

Usage

titanic

Format

A data frame with 887 rows and 8 variables:

```
name passenger name
survived 0 = no, 1 = yes
sex male/female
age age of passenger
fare ticket cost
firstclass first class ticket ...
```

8 titanic

Details

The sinking of the Titanic is a famous event, and new books are still being published about it. Many well-known facts—from the proportions of first-class passengers to the 'women and children first' policy, and the fact that that policy was not entirely successful in saving the women and children in the third class—are reflected in the survival rates for various classes of passenger.

These data were originally collected by the British Board of Trade in their investigation of the sinking. Note that there is not complete agreement among primary sources as to the exact numbers on board, rescued, or lost.

Due in particular to the very successful film 'Titanic', the last years saw a rise in public interest in the Titanic. Very detailed data about the passengers is now available on the Internet, at sites such as Encyclopedia Titanica (https://www.encyclopedia-titanica.org/).

Source

Dawson, Robert J. MacG. (1995), The 'Unusual Episode' Data Revisited. Journal of Statistics Education, 3. doi: 10.1080/10691898.1995.11910499.

Index

```
* datasets
bike, 2
titanic, 7
0,1, 2
bike, 2
corr_matrix, 2
reg_crossval, 3
reg_predict, 4
reg_simulate, 4
reg_summary, 5
residuals4in1, 6
titanic, 7
```