Содержание

Ι	Ин	нтеграл по мере	3
1	Инт	геграл ступенчатой функции	4
	1.1	Свойства	4
2	Инт	геграл неотрицательной измеримой функции	5
	2.1	Свойства	5
3	Сум	ммируемая функция	6
	3.1	Определения интеграла функции	7
	3.2	Свойства интегралов	7
	3.3	Лемма	8
		3.3.1 Доказательство	8
	3.4	Теорема	8
		3.4.1 Доказательство	9
	3.5	Следствие	9
	3.6	Следствие 2	9
II	П	редельный переход под знаком интеграла	9
	3.7	Теорема	10
		3.7.1 Доказательство	10
	3.8	Теорема	10
		3.8.1 Локазательство	11

	3.8.2 Следствие	1.
3.9	Определение	1
3.10	Теорема об интегрировании положительных рядов	12
	3.10.1 Доказательство	12
	3.10.2 Спедствие	1:

Часть І

Интеграл по мере

1 Интеграл ступенчатой функции

 $f = \sum_{k=1}^{n} \lambda_k \cdot \chi_{E_k}, \ f \geqslant 0$, где $E_k \in \mathcal{A}$ — допустимое разбиение, тогда интеграл ступенчатой функции f на множестве X есть

$$\int_{X} f d\mu = \int_{X} f(x) d\mu(x) = \sum_{k=1}^{n} \lambda_{k} \mu E_{k}$$

Дополнительно будем считать, что $0 \cdot \infty = \infty \cdot 0 = 0$.

1.1 Свойства

• Интеграл не зависит от допустимого разбиения:

$$f=\sum lpha_j\chi_{F_j}=\sum_{k,\,j}\lambda_k\chi_{E_k\cap F_j},$$
 тогда $\int F=\sum \lambda_k\mu E_k=\sum_k\lambda_k\sum_j\mu(E_k\cap F_j)=\sum lpha_j\mu F_i=\int F;$

•
$$f \leqslant g$$
, to $\int\limits_X f d\mu \leqslant \int\limits_X g d\mu$.

2 Интеграл неотрицательной измеримой функции

 $f\geqslant 0,$ измерима, тогда интеграл неотрицательной измеримой функции fесть

$$\int\limits_X f d\mu = \sup_{\substack{g\text{ - cTyn.}\\0\leqslant g\leqslant f}} \left(\int\limits_X g d\mu\right).$$

2.1 Свойства

- Для ступенчатой функции f (при $f\geqslant 0$) это определение даёт тот же интеграл, что и для ступенчатой функции;
- $0 \leqslant \int_X f \leqslant +\infty;$
- $0\leqslant g\leqslant f,\,g$ ступенчатая, f измеримая, тогда $\int\limits_X g\leqslant \int\limits_X f.$

3 Суммируемая функция

f— измеримая, f_+ и f_- — срезки, тогда если $\int\limits_X f_+$ или $\int\limits_X f_-$ — конечен, тогда интеграл суммируемой функции есть

$$\int\limits_X f d\mu = \int\limits_X f_+ - \int\limits_X f_-.$$

Если
$$\int\limits_X f
eq \pm \infty$$
, то говорят, что $f c$ уммируемая, а также $\int |f|-$ конечен $(|f|=f_++f_-).$

 (X, A, μ) — произвольное пространство с мерой.

 $\mathcal{L}^0(X)$ — множество измеримых почти везде конечных функций.

3.1 Определения интеграла функции

1. Свойства:

 \bullet Если $f \geqslant 0$ — измерима, то это определение даёт тот же интеграл, что и предыдущее.

$$E\subset X$$
 — измеримое множество, f — измеримо на X , тогда $\int\limits_E fd\mu:=\int\limits_X f\chi_E d\mu.$ f — суммируема на E если $\int\limits_E f+-$ и $\int\limits_E f_-$ — оба конечны.

Замечание

(a)
$$f = \sum \lambda_k \chi_{E_k}$$
 if $\int_E f = \sum \lambda_k \mu\left(E_k \cap E\right)$;

(b)
$$f\geqslant 0$$
 — измерима, тогда $\int\limits_E f d\mu = \sup\limits_{\mathbf{g}\text{ - ctyr..}, 0\leqslant g\leqslant f} igg(\int Gigg).$

3.2 Свойства интегралов

1. Монотонность:
$$f \leqslant g \Rightarrow \int\limits_{\Gamma} f \leqslant \int\limits_{\Gamma} g$$
.

Доказательство

$$\bullet \ \ 0\leqslant f\leqslant g, \sum_{\widetilde{f}stup, 0\leqslant \widetilde{f}\leqslant f}\int \widetilde{f}\leqslant \sum_{\widetilde{g}stup, 0\leqslant \widetilde{g}\leqslant g}\int \widetilde{g};$$

• f и g — произвольные, то работает со срезками и $f_+ \leqslant g_+,$ а $f_- \geqslant g_-,$ тогда очевидно и для интегралов.

2.
$$\int_{E} 1d\mu = \mu E, \int_{E} 0d\mu = 0;$$

3.
$$\mu E=0,\,f$$
 — измерима, тогда $\int\limits_{E}f=0.$

Доказательство

- \bullet f ступенчатая, то очевидно;
- $f \geqslant 0$ измеримая, то очевидно;

• f — любая, то аналогично.

4.
$$\int -f = -\int f, \forall c > 0: \int cf = c \int f.$$

Доказательство

•
$$(-f)_+ = f_-$$
 и $(-f)_= f_+$.

•
$$f\geqslant 0$$
 — очевидно, $\sum_{gstup,0\leqslant g\leqslant cf}\left(\int G\right)=c\sup_{\widetilde{g}stup,0\leqslant \widetilde{g}\leqslant f}\left(\int g\right)$.

5. Пусть существует
$$\int\limits_E f d\mu$$
, тогда $\left|\int\limits_E f\right| \leqslant \int\limits_E |f|.$

Доказательство

$$-|f| \leqslant f \leqslant |f|$$

$$-\int |f| \leqslant \int f \leqslant \int |f|$$

6. f — измерима на $E,\,\mu E<+\infty,\,\forall x\in E\,\,a\leqslant f(x)\leqslant b.$ Тогда $a\mu E\leqslant \int\limits_E f\leqslant b\mu E.$

$$A = \bigsqcup A_i, \, A, \, A_i$$
 — измеримы, $g \leqslant 0$ — ступенчатые. Тогда

$$\int_{A} g d\mu = \sum_{i=1}^{+\infty} \int_{A_i} g d\mu.$$

3.3.1 Доказательство

$$g = \sum \lambda_k \chi_{E_k}.$$

$$\int_{A} g d\mu = \sum \lambda_k \mu(A \cap E_k) = \sum_k \lambda_k \sum_i \mu(A_i \cap E_k) = \sum_i \left(\sum_k \lambda_k \mu(A_i \cap E_k)\right) = \sum_i \int_{A_i} g.$$

3.4 Теорема

 $f:C \to \overline{R},\, f\geqslant 0$ — измеримая на $A,\, A$ — измерима, $A=\bigsqcup A_i,\,$ все A_i — измеримы. Тогда

$$\int\limits_A f d\mu = \sum\limits_i \int\limits_{A_i} f d\mu$$

3.4.1 Доказательство

•

g — ступенчатая, $0\leqslant g\leqslant f$, тогда $\int_A g=\sum\int_{A_i} g\leqslant \sum\int_{A_i} f.$ Осталось перейти к sup.

• >

$$A = A_1 \sqcup A_2, \sum \lambda_k \chi_{E_k} = g_1 \leqslant f \chi_{A_1}, \ g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2}$$

$$\int_{A_1} g_1 + \int_{A_2} g_2 = \int_{A_1} g_1 + g_2.$$
HODONOUM K. SUD g_1 H. g_2

$$\int\limits_{A_1} f + \int\limits_{A_2} f \leqslant \int\limits_{A} f$$

по индукции разобьём для $A=A_1\sqcup A_2\sqcup\ldots\sqcup A_n,\ A=\bigsqcup_{i=1}^{+\infty}A_i$ и $A=A_1\sqcup A_2\sqcup\ldots\sqcup A_n\sqcup B_n,$ где

$$B_n = \bigsqcup_{i\geqslant n+1} A_i$$
, тогда

$$\int\limits_{A}\geqslant\sum_{i=1}^{n}\int\limits_{A_{i}}f+\int\limits_{B}f\geqslant\sum_{i=1}^{n}f\Rightarrow\int\limits_{A}f\geqslant\sum_{i=1}^{+\infty}\int\limits_{A_{i}}f$$

3.5 Следствие

$$f\geqslant 0$$
 — измеримая, $u:\mathcal{A}
ightarrow\overline{\mathbb{R}}_+,\,
u E=\int\limits_E f d\mu.$ Тогда

 ν — мера.

3.6 Следствие 2

$$A = \bigsqcup_{i=1}^{+\infty} A_i, \ f$$
 — суммируема на A , тогда

$$\int_{A} f = \sum_{i} \int_{A} f.$$

Часть II

Предельный переход под знаком интеграла

3.7 Теорема

 $(X,\mathcal{A},\mu),\,f_n$ — измерима, $\forall n:0\leqslant f_n(x)\leqslant f_{n+1}(x)$ при почти всех x.

 $f(x) = \lim_{n \to +\infty} f_n(x)$ при почти всех x. Тогда

$$\lim_{X} \int_{X} f_n(x) d\mu = \int_{X} f d\mu.$$

3.7.1 Доказательство

f — измерима как предел, измерима.

- \leqslant $f_n(x)\leqslant f(x)$ почти везде, тогда $\forall n:\int\limits_V f_n(x)d\mu\leqslant\int\limits_V fd\mu$, откуда следует, что и предел не превосходит.
- >

Достаточно доказать, что для любой ступенчатой функции $g:0\leqslant g\leqslant f$ верно $\lim_{N\to\infty}\int_{N}f_{n}\geqslant\int_{N}g.$

Достаточно доказать, что $\forall c \in (0,1)$ верно $\lim_X \int_X f_n \geqslant c \int_X g$.

$$E_n := X (f_n \geqslant cg), E_n \subset E_{n+1} \subset \dots$$

 $\bigcup E_n = X$, т.е. c < 1, то cg(x) < f(x), $f_n(x) \to f(x) \Rightarrow f_n$ попадёт в с зазор cg(x) < f(x).

$$\int\limits_X f_n \geqslant \int\limits_{E_n} f_n \geqslant \int\limits_{E_n} cg = c \int\limits_{E_n} g,$$

 $\lim_{n\to +\infty}\int\limits_X f_n\geqslant \lim_{n\to +\infty}c\int\limits_{E_n}g=c\int\limits_X g, \text{ потому что это непрерывность снизу меры }A\mapsto \int\limits_A g.$

3.8 Теорема

Пусть $f,\,g$ — измеримы на $E,\,f\geqslant 0,\,g\geqslant 0.$ Тогда $\int\limits_E f+g=\int\limits_E f+\int\limits_E g.$

3.8.1 Доказательство

Если f, g — ступенчатые, то очевидно.

Разберём общий случай. Существуют ступенчатые функции $f_n:0\leqslant f_n\leqslant f_{n+1}\leqslant\ldots\leqslant f$, и $g_n:0\leqslant g_n\leqslant g_{n+1}\leqslant\ldots\leqslant g$, и $f_n(x)\to f(x)$ и $g_n(x)\to g(x)$. Тогда

$$\int\limits_E f_n+g_n=\int\limits_E f_n+\int\limits_E g_n,$$
 сделаем предельный переход, значит при $n\to +\infty$
$$\int\limits_E f+g=\int\limits_f +\int\limits_E g$$

3.8.2 Следствие

Пусть f, g — суммируемые на множестве E, тогда f+g тоже суммируема и $\int\limits_E f+g=\int\limits_E f+\int\limits_E g.$

Доказательство

$$(f+g)_{\pm} \le |f+g| \le |f| + |g|.$$

$$h := f + g$$
,

$$h_{+} - h_{-} = f_{+} - f_{-} + g_{+} - g_{-},$$

$$h_+ + f_- + g_- = h_- + f_+ + g_+,$$

$$\int h_{+} + \int f_{-} + \int g_{-} = \int h_{-} + \int f_{+} \int g_{+},$$

$$\int h_{+} - \int h_{-} = \int f_{+} - \int f_{-} + \int g_{+} - \int g_{-}, \text{ тогда}$$

$$\int h = \int f + \int g.$$

3.9 Определение

 $\mathcal{L}(X)$ — множество суммируемых функций. Это линейное пространство.

Интеграл: $\mathcal{L}(X) \to \mathbb{R}$ — это линейная функция, но красивее говорить линейный функционал.

$$f_1,\ldots,f_n\in\mathcal{L}(X),\ \alpha_1,\ldots,\alpha_n\in\mathbb{R},$$
 тогда $\alpha_1f_1+\ldots+\alpha_nf_n\in\mathcal{L}(x).$

$$\int_{X} f = I(f), \int_{X} \alpha_1 f_1 + \dots + \alpha_n f_n = \alpha_1 \int_{X} f_1 + \dots + \alpha_n \int_{X} f_n$$
$$I(\alpha_1 f_1 + \dots + \alpha_n f_n) = I(\alpha_1 f_1) + \dots + I(\alpha_n f_n).$$

3.10 Теорема об интегрировании положительных рядов

 $u_n \geqslant 0$ почти везде, измеримы на E. Тогда

$$\int_{E} \left(\sum_{i=1}^{+\infty} u_n \right) d\mu = \sum_{i \int =1}^{+\infty} \int_{E} u_n d\mu.$$

3.10.1 Доказательство

Очевидно по теореме Леви.

$$S(x)=\sum_{n=1}^{+\infty}u_n(x)$$
 и $p\leqslant S_N\leqslant S_{N+1}\leqslant\ldots$ и $S_N\to S(X).$

$$\lim_{n \to +\infty} \int_{E} S_N = \int_{E} S$$

$$\lim \sum_{k=1}^{n} \int_{\Gamma} u_k(x) = \int_{\Gamma} S(x) d\mu.$$

3.10.2 Следствие

$$u_n$$
 — измеримая функция, $\sum_{n=1}^{+\infty}\int\limits_{E}|u_n|<+\infty.$ Тогда

 $\sum u_n$ — абсолютно сходится почти везде на E.

Доказательство

$$S(x) = \sum_{n=1}^{+\infty} |u_n(x)|$$

$$\int\limits_E S(x) = \sum_{n=1}^{+\infty} \int |u_n(x)| < +\infty, \ \text{значит } S(x) \ \text{конечна почти всюду}.$$

$$S(x)=+\infty$$
 при $x\in B,\, \mu B>0,\, S(x)\geqslant n\cdot \chi_{B}\int\limits_{E}S(x)\geqslant n\cdot \mu B.$