2018~2019学年北京西城区北京市第四中学高一上学期 期中物理试卷

一、选择题

•				
(2	本大题共15小题,每小题	③分,共45分。)		
1.	下列物理量中都属于矢	量的是()		
	A. 质量、时间	B. 速度、速率	C. 位移、路程	D. 力、加速度
2.	一个物体的加速度大,	则这个物体 ()		
	A. 速度一定大	B. 速度变化大	C. 速度变化快	D. 做加速运动
3.		性限度内,当它悬挂4.01	N的物体保持静止时,弹	簧伸长了 2.0cm ,则该弹
	簧的劲度系数为()			
	A. 200N/m		B. 50N/m	
	C. 20N/m		D. 5.0N/m	
4.	把一个竖直向下的 <i>F</i> = 120N ,则另一个分力的		分力,一个分力在水平方	向上,并且大小等于
	A. 200N	B. 100N	C. 80N	D. 40N
5.	如图所示,质量为1kg的	的物块在垂真于墙壁 F 的的	作用下紧压墙壁保持静止	, <i>F</i> 的大小为 50N , 物块
	与墙面间的动摩擦因数	$\mu=0.3$,则物块所受摩护	察力的大小为(\emph{g} 取 $10N/1$	rg)
				F
	A. 3.0N	B. 10N	C. 15N	D. 50N

汽车沿平直的道路运动,速度从 v_1 变为 v_2 ,如图所示.下列关于汽车速度的变化、加速度方向,表示正确的是()

7. a、b两物体同时从同一地点出发向同一方向做直线运动时的速度—时间图像如图所示.下列说法中正确的是()

- A. a的初速度比b的初速度大
- C. 前10s内a的位移等于b的位移
- B. a的加速度比b的加速度大
- D. t = 10s时, a的速度等于b的速度
- 8. 城市地下铁道某电气列车,以15m/s的速度行驶.快进站时司机刹车使列车作匀减速运动,加速度大小为 $0.5m/s^2$.那么从刹车开始经40s列车所走过的位移大小是()
 - A. **300m**
- B. **225m**
- C. 200m
- D. 500m
- 9. 如图所示,一物体在五个共点力的作用下保持平衡(五个力在同一平面)。如果撤去力 F_3 ,而保持其余四个力不变,下列关于这四个力的合力的大小和方向正确的是()

A. 合力的大小可能等于0

B. 合力的大小等于撤去的 F_3

10. 质量为m的球置于倾角为 θ 的光滑斜面上,被与斜面垂直的光滑挡板挡,球保持静止,如图所示。 当挡板从图示位置缓慢逆时针转动至水平位置的过程中,挡板对球的弹力N1和斜面对球的弹力 N_2 的变化情况是()

- A. N_1 先减小后增大 B. N_1 不断增大 C. N_2 不断增大
- D. N₂不断减小
- **11**. 如图所示,一个半球形的碗放在桌面上,碗口水平,*O*点为其球心,碗的内表面及碗口均光滑。 一根细线跨在碗口上,线的两端分别系有质量为 m_1 和 m_2 的小球. 当它们处于平衡状态时,质量 为 m_1 的小球与O点的连线与水平线的夹角为 $\alpha = 60^\circ$.则两小球的质量比 $m_2: m_1$ 为()

- A. $\sqrt{3} : 3$
- B. $\sqrt{2}:3$
- C. $\sqrt{3}:2$
- **12**. 如图所示,物体A和B的重力分别为6.0N和10.0N,弹簧秤保持静止,不计弹簧秤和细线的重力及 一切摩擦,关于弹簧秤受到的合力和弹簧秤的示数正确的是(

- A. 弹簧秤受到的合力为0N
- C. 弹簧秤的示数为6.0N

- B. 弹簧秤受到的合力为4.0N
- D. 弹簧秤的示数为10.0N
- 13. 如图所示, 乘坐轨道交通的乘客及物品需要进行安全检查. 物品被轻放在以恒定速度运动的水平 传送带上,只考虑物品和传送带之间的作用,物品将先作加速运动,然后和传送带一起作匀速运 动,关于此过程物品受到的摩擦力,下列说法正确的是()

- A. 物品被轻放在传送带上的瞬间,物品受到滑动摩擦力的作用
- B. 当物品的速度与传送带的速度相同时,物品受到静摩擦力的作用
- C. 当物品的速度与传送带的速度相同时,物品受到滑动摩擦力的作用
- D. 在整个传送过程中,物品始终运动,物品一直受滑动摩擦力的作用
- **14**. 如图所示,在水平地面上放着斜面体B,物体A置于斜面体B上,二者均保持静止。一平行于斜面 向上的力F作用于物体A, 地面对斜面体B的支持力和摩擦力分别用 N_1 、 f_1 表示。B对A的支持力 和摩擦力分别用 N_2 、 f_2 表示 . 若F逐渐增大 , A、B始终静止 , 则此过程中 ()

A. N_1 一定不变 B. N_2 一定不变

C. **f**1一定变大

D. f₂一定变大

15. 如图所示,质量为m的木块放置在质量为2m的长木板上,在水平向右的拉力F的作用下,木块和 木板一起以相等的速度做匀速直线运动,木块与木板之间的动摩擦因数为 μ_1 ,木板与地面间的动 摩擦因数为 μ_2 ; (取最大静摩擦力等于滑动摩擦力)则()

A. $\mu_1 = 2\mu_2$

C. $\mu_1 < 3\mu_2$

D. $\mu_1 > 3\mu_2$

填空题

(本大题共4小题,共13分)

16.

如图,从高出地面6m的位置竖直向上抛出一个小球,它上升5m后回落,最后到达地面,如图所 示.以抛出点为原点、向上为正方向建立坐标系,则小球落地时的坐标为 _____m;从抛出到落 地的过程中, 小球运动的路程为 _____ m, 小球运动的位移为 _____ m.

- 17. 一个物体受到3个共点力的作用,这三个力的大小分别是4N、8N、15N,则这三个力的合力的最 大值是 _____ N, 合力的最小值是 _____ N.
- **18**. 如图是将实际大小画出的一条纸带,则D、G两点之间的时间间隔是 $_{-----$ s , 点迹密集的地方表 示小车运动的速度 _____(填"较大"或"较小").用 $\frac{\Delta x}{\Delta t}$ 可以表示D、G间的平均速度,也 可以粗略地代表E点的瞬时速度,为了更加精确的表示E点的瞬时速度,理论上讲应把包含E点在 内的时间间隔 Δt 取得 _____ (填 "小一些"或"大一些").

- 19. 关于"验证力的平行四边形定则",请回答以下问题:
 - (1)实验中,除了木板、白纸、图钉、绳套、两个弹簧秤、刻度尺、量角器外,在下列器材 中,还必须使用的两种器材是()

D. 不同质量的钩码

- (2)请将下面实验的步骤补充完整.
 - ①将橡皮筋的一端固定在木板上的A点,另一端拴上两根绳套,每根绳套分别连着一个弹簧测力计;
 - ②沿着两个方向拉弹簧测力计,将橡皮筋的活动端拉到某一位置,将此位置标记为*O*点,然后标记两根绳子的方向,记录______;
 - ③再用一个弹簧测力计将橡皮筋的活动端也拉至*O*点,标记绳子的方向,记录拉力的大小.
- (3)如图所示,是某同学根据实验数据按照一定的标度画出的力的图示(标度、刻度均未画出). F、F'中,不是由弹簧测力计直接测得的力是 _____(填字母).

- (4)在"验证力的平行四边形定则"的实验中,下列操作正确的是()
 - A. 实验过程中,应尽量保持绳子与纸面平行
 - B. 为使合力大小合适, F_1 和 F_2 的夹角越小越好
 - C. 确定力方向的两个点的间距应尽量远一些
 - D. 为便于计算,拉力 F_1 和 F_2 必须相互垂直

三、简答题

(本大题共4小题,共42分)

- 20. 物体在水平地面上做匀加速直线运动,初速度 $v_0 = 4\text{m/s}$,加速度 $a = 2\text{m/s}^2$,经过6s,求:
 - (1)物体的速度大小为多少.
 - (2)物体运动的位移大小为多少.
- 21. 如图所示,质量为m=11.0kg的木块在拉力F=50N的作用下,沿水平面作匀速直线运动,F与水平面的夹角 $\theta=37^\circ$.求物体与地面间的动摩擦因数 μ 的大小.(g=10N/kg, $\cos 37^\circ=0.8$, $\sin 37^\circ=0.6$)

.....

22. 某同学的家住在一栋楼的顶层,他每天乘电梯上下楼.电梯从一层启动以 $2m/s^2$ 的加速度匀加速运动2s,然后匀速运动10s,最后匀减速运动了4s停在顶层,求:

- (1)请画出此过程中电梯运动的v t图像.
- (2)该同学家所在顶层的高度.
- (3) 若电梯在加速和减速阶段的加速度大小不变,试画出电梯从一层到顶层运动时间最短的 (运动过程的) v-t示意图.
- 23. 在竖直墙壁的左侧水平地面上,放置一个边长为a,质量为M的正方体ABCD,在墙壁和正方体之间放置一半径为R、质量为m的光滑球,正方体和球均保持静止,如图所示.球的球心为O,OB与竖直方向的夹角为 θ ,正方体的边长a>R,正方体与水平地面的动摩擦因数为 $\mu=\frac{\sqrt{3}}{3}$.(a已知,并取最大静摩擦力等于滑动摩擦力)求:

- (1)正方体和墙壁对球的支持力 N_1 、 N_2 分别是多大.
- (2) $\theta = 45^\circ$,保持球的半径不变,只增大球的质量,为了不让正方体出现滑动,质量的最大值为多少.($\tan 45^\circ = 1$).
- (3)改变正方体的墙壁之间的距离,球和正方体都处于静止状态,且球没掉落地面.若不让正方体出现滑动,讨论以下情况:
 - ① 若球的质量 $m = \frac{1}{2}M$,则正方体的右侧面AB到墙壁的最大距离是多少.
 - ② 当正方体的右侧面*AB*到墙壁的距离小于某个值时,则无论球的质量是多少,正方体都不会滑动,则这个距离的值是多少。