Chapter 1

2024-04-21 - Cyclotomic Polynomials

1.1 Polynomials and power series with integer coefficients

Definition 1.1.1. Consider the set $\mathbb{Z}[\![X]\!] = \{\sum_{i \geq 0} c_i X^i \mid c_i \in \mathbb{Z} \}$ of not necessarily finite sums in the monomials X^i with multiplication defined by $(f(X)g(X))_i = \sum_k f_k g_{i-k}$ for each coefficient index $i \geq 0$. It is a commutative ring with unit $1 \in \mathbb{Z} \subset \mathbb{Z}[\![X]\!]$.

It naturally includes the ring of integral polynomials $\mathbb{Z}[X] \subset \mathbb{Z}[\![X]\!]$, which are integral power series with only finitely many non-zero coefficients and the multiplication as induced from power series. In particular $1 \in \mathbb{Z} \subset \mathbb{Z}[X] \subset \mathbb{Z}[\![X]\!]$ each have the same unit considered along the canonical subset inclusions.

It is confusing to assemble all the facts about units and primes $\mathbb{Z} \subset \mathbb{Z}[X] \subset \mathbb{Z}[X]$ from the literature, so I summarise and prove them here as far as elementarily possible and conveniently enlightening.

Proposition 1.1.2. The, multiplicative invertible elements, in short: units of \mathbb{Z} are plain the signs $\mathbb{Z}^{\times} = \{\pm 1\}$. The units in integral power series are given by $\mathbb{Z}[X]^{\times} = \{\sum_{i \geq 0} c_i X^i \mid c_i \in \mathbb{Z} \land c_0 \in \{\pm 1\}\}$. Since each non-constant power series which is a unit in power series is either not a polynomial itself, or its inverse is a properly infinite power series, get $\mathbb{Z}[X]^{\times} = \mathbb{Z}^{\times} = \{\pm 1\}$.

Proof. Clearly the units in \mathbb{Z} are exactly the non-zero elements n, which can be inverted in \mathbb{Z} , i.e. where $\frac{1}{n} \in \mathbb{Q} \cap \mathbb{Z}$. So $|n| \geq 2$ is clearly not invertible in \mathbb{Z} , 0 is not invertible anywhere, but -1, 1 clearly are each their own multiplicative inverse in any unital ring.

Let $p = \sum c_i X^i$ be an integral power series which is a unit, i.e. for which there is a unique $q = \sum d_i X^i$, such that:

$$p \cdot q = \sum_{i,j} c_i \cdot d_j X^{i+j} = 1.$$

In degree 0 it follows:

$$c_0 d_0 = 1$$
,

since the units of \mathbb{Z} are $\{\pm 1\}$ without loss of generality we can assume $c_0 = d_0 = 1$ by multiplying p, q each by -1. In particular the subset inclusion follows

$$\mathbb{Z}[\![X]\!]^{\times} \subset \{ \sum_{i \geq 0} c_i X^i \mid c_i \in \mathbb{Z} \land c_0 \in \{\pm 1\} \}$$

For the \supset -inclusion consider without loss of generality a $p=1+\sum_{i\geq 1}c_iX^i$ by multiplying with -1 if necessary. As above we find necessarily an inverse power series has to start with the same constant term $d_0=1$. Hence we get in degree 1:

$$d_1 = -c_1$$
.

It follows in degree 2:

$$c_0 d_2 + c_1 d_1 + c_2 d_0 = 0$$

giving

$$d_2 = c_1^2 - c_2.$$

Inductively assume d_i determined up to n-1 and consider degree n:

$$0 = \sum_{i=0,\dots,n} c_i d_{n-i} = d_n + \sum_{i=0,\dots,n-1} c_i d_{n-i}$$

which gives

$$d_n = -\sum_{i=0,\dots,n-1} c_i d_{n-i}.$$

Then $q(X) = \sum_n d_n X^n$ satisfies pq = 1 by the inductive construction of its coefficients, so p is a unit in integral power series.

Finally consider $p \in \mathbb{Z}[X]^{\times}$. On non-zero polynomials with integral coefficients we have a well-defined degree, i.e. a map $\nu \colon \mathbb{Z}[X] \to \mathbb{N}$ which satisfies $\nu(f \cdot g) = \nu(f) + \nu(g)$, given by assigning to each polynomial the highest index such that its coefficient is non-zero.

In particular it follows for $k \in \mathbb{Z}$ and $p \in \mathbb{Z}[X] \setminus \{0\}$ arbitary, 0 = deg(k) and deg(kf) = deg(f) > 0. For a unit we hence get 0 = deg(1) = deg(pq) = deg(p) + deg(q), hence follows deg(p) = deg(q) = 0 in natural numbers, so $p \in \{\pm 1\}$ with no non-trivial higher terms. If p is an integral polynomial invertible considered as a power series, then follows " $deg(q) = \infty$ ". I.e. if there were a highest non-trivial coefficient for q, then pq = 1 forces p and q to be constant and in the units of \mathbb{Z} .

Remark 1.1.3. Do note how that describes the units in the integral power series ring which are themselves polynomials. Since there is not a well-defined degree map like on polynomials anymore, a q inverting a polynomial p multiplicatively can escape to "infinite degree", i.e. the inductive process describing the d_n does not stop to produce non-trivial coefficients. Thus no non-constant polynomial can have a multiplicative inverse in integral polynomials.

Proposition 1.1.4. Let f = gh in integral polynomials with $f = \sum_i f_i X^i$, $g = \sum_i g_i X^i$, $h = \sum_i h_i X^i$ each finite sums with integer coefficients. Assume $f_0 = 1$ and without loss of generality $g_0 = h_0 = 1$. It follows $f, g, h \in \mathbb{Z}[\![X]\!]^\times$, and $f^{-1} = h^{-1}g^{-1}$ with each factor a properly infinite power series, each having constant term 1 as well.

Corollary 1.1.5. The units of integral power series decompose as

$$\mathbb{Z}[X]^{\times} \cong \{\pm 1\} \oplus X\mathbb{Z}[X].$$

Proof. Let p be a unit in integral power series, i.e. $p = \pm 1 + \sum_{i \geq 1} c_i X^i = \pm 1 + X \sum_i c_i X^{i-1}$ by our proposition above. The decomposition as indicated defines a map into the product, which is evidently injective and surjective. It is also just regarding a formal sum as a sum in a polynomial ring for the inverse map, one could regard the isomorphism as formal nonsense.

1.2 Explicit construction

Definition 1.2.1. Call a polynomial $f = \sum_i a_i X^i \in \mathbb{Z}[X]$ irreducible if f = gh for $g, h \in \mathbb{Z}[X]$ implies $g = \pm 1$ or $h \pm 1$.

Proposition 1.2.2. A polynomial $f = \sum_i a_i X^i \in \mathbb{Z}[X]$ is irreducible if and only if any and hence all of its translates $f_z(X) := f(X - z)$ $z \in \mathbb{Z}$ are irreducible.

Proof. If $f_z(X)$ were decomposable non-trivially as $f_z(X) = g(X)h(X)$, then get f(X-z) = g(X)h(X), hence f(X) = g(X+z)h(X+z) decomposes f. \square

Proposition 1.2.3. If $f = \sum_i a_i X^i$ is irreducible with $a_0 = 1$, then so is each of the polynomials given by inserting a power of X: $f_n(X) := f(X^n)$ with $n \ge 2$.

Proof. Assume we had a decomposition in $\mathbb{Z}[X]$ of f_n : $\sum_i a_i X^{ni} = f(X^n) = f_n(X) = g(X)h(X)$. Show that g, h each area also of the form $\bar{g}(X^n)$ and $\bar{h}(X^n)$, hence $Z = X^n$ gives a decomposition f(Z) = g(Z)h(Z).

Assume to contradiction for g and then necessarily h a coefficient g_i and h_{kn-i} both not equal to zero and g_i the i-minimal coefficient in g, such that i is not a multiple of n.

By multiplying g,h each with a sign, we can assume $1=a_0=1\cdot 1=g_0\cdot h_0$ with $g_0=h_0=1$. It follows $g=1+g_iX^i+\sum_{j>i}g_jX^j$ and $h=1+\sum_{j\geq 1}h_jX^j$.

For the cyclotomic polynomials there is always a coefficient which is exactly $1 \in \mathbb{Z}$ and maps to the relevant $1 \in R$ for any commutative unital zero-divisor-free factorial ring over which we consider the cyclotomic polynomial. Hence recall the famous Eisenstein's criterion to look up in your favourite algebra reference, with simplification to \mathbb{Z} and \mathbb{Q} .

Proposition 1.2.4. Let $f = \sum_i a_i X^i \in \mathbb{Z}[X]$ be a polynomial with coefficients in \mathbb{Z} of degree N which is monic, i.e. a polynomial of degree N such that $a_N = 1$. Assume $a_0 = \pm p$ for $p \in \mathbb{N}$ a prime number, and assume in addition $p|a_i$ for each a_i with $i = 1, \ldots, N-1$. Then f is irreducible in $\mathbb{Z}[X]$ and $\mathbb{Q}[X]$.

Proof. Let f = gh in $\mathbb{Q}[X]$. In fact the factors can be chosen as $g, h \in \mathbb{Z}[X]$ with both degrees strictly smaller than f's.

For $p \in \mathbb{Z}$ prime the ideal $(p) \subset \mathbb{Z}$ is a prime ideal, with quotient $\mathbb{Z}/(p) = \mathbb{F}_p$. On coefficients this induces a reduction ring homomorphism:

$$\pi \colon \mathbb{Z}[X] \to \mathbb{Z}/p[X].$$

By the assumptions on f get $\pi(f)=X^N$, but also $\pi(g)\pi(h)=X^N$ because f=gh by the assumption before. Since $\mathbb{F}_p[X]$ is a euclidean domain it is also factorial, so $\pi(g)=a_iX^i$ and $\pi(h)=b_jX^j$ such that i+j=N and $a_ib_j=1\in\mathbb{Z}/p$.

Hence we get for the integral g, h: $p|g_0$ and $p|h_0$, hence follows $p^2|a_0$, but we assumed $a_0 = p$ prime, which is a contradiction. So f was in fact irreducible in $\mathbb{Z}[X]$ and $\mathbb{Q}[X]$.