Fiche d'exercices - Chapitre A.1 - Ecriture binaire

Exercice 1

Ecrire la représentation décimale des valeurs suivantes :

- $(1010)_2$
- $(1110)_2$
- $(0010)_2$
- $(0101)_2$

Exercice 2

Ecrire la représentation décimale des valeurs suivantes :

- $(11000011)_2$
- $(01011010)_2$
- $(11000110)_2$
- $(001111111)_2$

Exercice 3

Ecrire la représentation binaire des valeurs suivantes :

- $(10)_{10}$
- $(156)_{10}$
- $(235)_{10}$
- $(2047)_{10}$

Exercice 4

Compléter le tableau suivant :

Représentation en base 10 Représentation en base 2

1234	
	10100101
2424	
	11001010

Exercice 5

Determiner (sans faire la conversion) combien de bits et d'octets au minimum seront nécessaire à l'écriture en binaire de chacune des valeurs suivantes :

- 54
- 298
- 4035

Exercice 6

Faire les additions binaires suivantes :
• $(0100)_2 + (0110)_2$
• $(1000)_2 + (1010)_2$
• $(0100)_2 + (1011)_2$
• $(0111)_2 + (0001)_2$
Exercice 7
Faire les multiplications binaires suivantes :
• $(1100)_2 \times (0010)_2$
• $(1010)_2 \times (1010)_2$
• $(0010)_2 \times (0100)_2$
• $(1101)_2 \times (1111)_2$
Exercice 8
Cocher les bonne réponses, pour chacune des questions, il existe une unique bonne réponse :
1. Combien de bits au minimum faut-il pour représenter le nombre 45610 en base 2 ?
• 🗆 8
• □9
• □ 12
 ■ 456
2. Combien d'octets représente 45 Mo ?
• □ 45 octets
• □ 45 000 octets
• □ 45 000 000 octets
• □ 47 185 920 octets
3. Quel est la représentation binaire de 1092 ?
 □ 110 1100
 □ 110 1101
• □ 110 1001
 □ 1010 1100
4. Combien d'octets représente 1 kio ?
 □ 1 000
• □ 1 024
• \(\preceq 1 000 000 \)
 □ 1 048 576
5. Quelle est la représentation décimale de 1010 01102 ?
• □ 156
• 🗆 110
• 🗆 164
 □ 166

6. Quelle est le résultat de l'addition binaire de 10102 + 11002 ?

- □ 0110
 □ 1 0110
 □ 1110
 □ 1 0111
 - 7. Quelle est le résultat de la multiplication binaire de 11101×10011 ?
 - □ 110 1110
 - □ 111 0001
 - □ 110 1100
 - □ 1110 1100

Exercice 9

- 1. Convertir les valeurs suivantes en base 2 :
- $(145)_{10}$
- $(C1)_{16}$
- $(2567)_{10}$
- (65)₁₆
- 2. Convertir les valeurs suivantes en base 10 :
- $(10010010)_2$
- (A15)₁₆
- $(11011011)_2$
- (1101)₁₆
- 3. Convertir les valeurs suivantes en base 16 :
- $(4956)_{10}$
- $(1001110001111010)_2$
- (2456)₁₀
- (1111101110001101)₂

Exercice 10

Compléter le tableau suivant :

Base 2	Base 10	Base 16

1001 1100		
1101 0011		
	1234	
	4096	
		A3
		В7

Exercice 11:

- 1. Donner la représentation décimale des valeurs suivantes :
- (16)₇
- (1*A*)₁₁
- 2. Convertir les valeurs suivantes dans la base demandée :
- $(55)_{10}$ -> base 3
- $(125)_{10} \rightarrow 9$

Exercice 12:

Exercice de révision :

On considère l'entier suivant représenté en base 2.

- 10101100
- 1. Entourer en rouge le bit de poids fort.
- 2. Entourer en bleur le bit de poids faible.
- 3. Sur combien de bits est représenté cet entier ?
- 4. Sur combien d'octets est représenté cet entier ?
- 5. Donner la représentation en base 10 de cette valeur.

On considère l'entier suivant représenté en base 10.

- 12350
- 6. De combien de bits au minimum auront nous besoin pour représenter cette valeur en base 2 ?
- 7. Combien d'octet seront nécessaire à l'écriture de ce nombre en base 2 ?
- 8. Donner la représentation en base 10 de cette valeur.
- 9. Réaliser les calculs binaires suivants :
- 10101100 + 10000011
- 01000111 + 10011111
- 10011101 × 1011
- 00011101×1001