Prova 1 - Otimização Combinatória e Programação Linear

Nome: matrícula: curso:

- (1) Apresente a formulação dos Problemas de Programação Linear abaixo: (3 pontos)
- (a) Uma empresa produz dois tipos de bolsas de plástico (B1, B2) cujos mercados absorvem respectivamente 80 e 60 unidades diárias. O processo de produção consome dois tipos de matéria prima: folhas de plástico e fechos. Cada unidade de B1 consome duas folhas de plástico e quatro fechos. Cada unidade de B2 consome três folhas de plástico e três fechos. São disponíveis diariamente 200 folhas de plástico e 240 fechos. Os lucros unitários pelas vendas dos produtos são, respectivamente, R\$20 e R\$25.
- (b) Um sitiante está planejando sua estratégia de plantio para o próximo ano. Por informações obtidas nos órgãos governamentais, sabe que as culturas de trigo, arroz e milho ser as mais rentáveis na próxima safra. Por experiência, sabe que a produtividade de sua terra para as culturas desejadas é a constante na tabela abaixo:

Cultura	Produtividade em kg por m2 (experiência)	Lucro por kg de produção (Informações do Governo)
Trigo	0,2	10,8 centavos
Arroz	0,3	4,2 centavos
Milho	0,4	2,03 centavos

Por falta de um local de armazenamento próprio, a produção máxima, em toneladas, está limitada a 60. A área cultivável do sítio é de 200.000 m2. Para atender às demandas de seu próprio sítio, é imperativo que se plante 400 m2 de trigo, 800 m2 de arroz e 10.000 m2 de milho.

(2) Esboce a região viável e resolva geometricamente os problemas os itens abaixo. (4 pontos)

(3) Considere o PPL abaixo:

Maximizar
$$z = -8x + y$$

Sujeito a:
 $3x + y = 3$
 $4x + 3y >= 6$
 $x + 2y <= 4$
 $x, y >= 0$

- (a) Reformule o PPL acima introduzindo variáveis de folga / artificiais. Monte a tabela Simplex para o mesmo. (1 pontos)
 - *(b) Resolva o PPL formulado em (a) através do Simplex em duas etapas. (2 pontos)