CE 468GEOTECHNICAL DESIGN

PILE FOUNDATION DESIGN OF A VIADUCT PIER

Soil investigations revealed the following data for the foundation soil profile at the site of the viaduct pier:

Depth interval 0 – 15m : Stiff clay

Undrained shear strength c_u = 90 kPa Poisson's ratio μ = 0.35 Pressuremeter net limit pressure P_L^* = 400 kPa Pressuremeter Modulus E_P = 5500 kN/m² Rheological factor α = 0.67 Deformation modulus E_S = ~ 0.75* (E_P / α) K_h = 120 c_u / B; k_h = 120 c_u

<u>Depth interval > 15m : Hard clay</u>

Undrained shear strength c_u = 200 kPa Poisson's ratio μ = 0.35 Pressuremeter net limit pressure P_L^* = 3000 kPa Pressuremeter Modulus E_P = 32000 kN/m² Rheological factor α = 0.67 Deformation modulus E_S = ~ 0.75* (E_P / α) K_h = 120 c_u / B; k_h = 120 c_u

No ground water table is encountered in the site.

Loading Conditions:

Static loads

Bridge slab: 7500 kN Column: 8000 kN Pile cap:: 9500 kN

Earthquake loads:

Total horizontal load: 6800 kN

Moment at the base of the pile cap: 44 000 kN-m.

Design Spesifications:

Static loads FS = 3.0 Earthquake loads FS = 1.1 Allowable settlement :40mm

Allowable horizontal deflection at pile head: 20mm

Design recommendations:

- * You may use square pattern of piles with 2.5 to 4.0 diameter spacing.
- * You may use bored piles with 0.65m, 0.80m or 1.00m diameters.
- * Dynamic modulus of subgrade reaction may be assumed equal to the static modulus of subgrade reaction.
- * The behavior of the pile group under the lateral loads shall be governed by the upper 15m thick clay layer.
- * Moment capacity of the piles may be taken as:

- * Uplift friction capacity of the piles may be assumed as 85% of the frictional resistance under compression.
- * $E_{concrete} = 2*10^7 \text{ kPa}$
- * Try your best not to overdesign the foundation.
- * Make any assumptions if necessary, provided that you clearly state and justify your assumption.

The pile load test performed on the site reveals the following data:

Load (kN)	Pile displacement (mm)
0	0
625	1.10
1250	2.55
1875	3.82
2500	6.15
3125	8.08
3750	10.63

4375	15.08
5000	22.48
3750	20.63
2500	17.50
1250	13.75
0	10.04

Plot the load – settlement curve, and evaluate the ultimate bearing capacity of the pile using: Mazurkiewitch's, Davisson's and Hirany & Khulhawy's methods. Conclude your pile capacity and compare your results with static formula predictions.