

® BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

① Offenlegungsschrift① DE 199 11 039 A 1

(2) Aktenzeichen: 199 11 039.5
 (2) Anmeldetag: 12. 3. 1999
 (3) Offenlegungstag: 14. 9. 2000

(5) Int. Cl.⁷: **C 07 D 401/04**

C 07 D 403/04 C 07 K 5/065 C 07 D 401/12 C 07 D 403/12 C 07 D 401/14 C 07 D 403/14 A 61 K 31/445 // C07D 521/00

71) Anmelder:

Boehringer Ingelheim Pharma KG, 55218 Ingelheim, DE

① Erfinder:

Eberlein, Wolfgang, Dipl.-Chem. Dr., 88400 Biberach, DE; Rudolf, Klaus, Dipl.-Chem. Dr., 88447 Warthausen, DE; Engel, Wolfhard, Dipl.-Chem. Dr., 88400 Biberach, DE; Doods, Henri, Dr., 88447 Warthausen, DE; Hallermayer, Gerhard, Dipl.-Chem. Dr., 88437 Maselheim, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Abgewandelte Aminosäureamide, diese Verbindungen enthaltende Arzneimittel und Verfahren zu ihrer Herstellung
- Die vorliegende Erfindung betrifft abgewandelte Aminosäureamide der allgemeinen Formel

$$X^{2}$$

$$X^{1}$$

$$X^{1}$$

$$X^{1}$$

$$X^{1}$$

$$X^{2}$$

$$X^{1}$$

$$X^{1}$$

$$X^{2}$$

$$X^{2}$$

$$X^{3}$$

$$X^{1}$$

$$X^{2}$$

$$X^{1}$$

$$X^{2}$$

$$X^{1}$$

$$X^{2}$$

$$X^{2}$$

$$X^{3}$$

$$X^{1}$$

$$X^{2}$$

$$X^{2}$$

$$X^{3}$$

$$X^{1}$$

$$X^{2}$$

$$X^{2}$$

$$X^{3}$$

$$X^{2}$$

$$X^{3}$$

$$X^{1}$$

$$X^{2}$$

$$X^{1}$$

$$X^{2}$$

$$X^{3}$$

$$X^{2}$$

$$X^{3}$$

$$X^{2}$$

$$X^{3}$$

$$X^{4}$$

$$X^{2}$$

$$X^{3}$$

$$X^{4}$$

$$X^{5}$$

$$X^{5$$

in der

A, R, R¹, R², X¹, X², X³ und Y wie im Anspruch 1 definiert sind, deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze, insbesondere deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren oder Basen, welche CGRP-antagonistische Wirkungen aufweisen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung sowie deren Verwendung zur Erzeugung und Reinigung von Antikörpern und als markierte Verbindungen in RIA- und ELISA-Assays und als diagnostische oder analytische Hilfsmittel in der Neutrotransmitter-Forschung.

Beschreibung

Gegenstand der vorliegenden Erfindung sind abgewandelte Aminosäureamide der allgemeinen Formel

deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze, insbesondere deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren oder Basen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung.

In der obigen allgemeinen Formel I bedeuten

R die 1-Piperidinylgruppe, die in 4-Stellung durch einen über ein Stickstoffatom gebundenen, einfach oder zweifach ungesättigten 5- bis 7-gliedrigen Aza-, Diaza- oder Triaza-Heterocyclus, der ein oder zwei mit einem Stickstoffatom verknüpfte Carbonylgruppen enthält, substituiert ist,

wobei die vorstehend erwähnten Heterocyclen an einem Kohlenstoffatom durch eine gegebenenfalls substituierte Phenylgruppe substituiert sein können,

eine olefinische Doppelbindung eines der vorstehend erwähnten ungesättigten Heterocyclen mit einem Benzol-, Pyridin-, Diazin-, 1,3-Oxazol-, Thiophen-, Furan-, Thiazol-, Pyrrol-, N-Methyl-pyrrol-, Chinolin-, Imidazol- oder N-Methyl-imidazol-Ring kondensiert sein kann oder zwei olefinische Doppelbindungen in einem der vorstehend erwähnten ungesättigten Heterocyclen benzokondensiert sein können,

und wobei die vorstehend erwähnte Phenylgruppe sowie die benzo-, thieno-, pyrido- und diazinokondensierten Heterocyclen im Kohlenstoffgerüst zusätzlich durch Fluor-, Chlor- oder Bromatome, durch Alkylgruppen, Cycloalkylgruppen mit 3 bis 8 Kohlenstoffatomen, Nitro-, Alkoxy-, Alkylthio-, Alkylsulfinyl-, Alkylsulfonyl-, Alkylsulfonyl-, Alkylsulfonyl-, Phenylalkoxy-, Trifluormethyl-, Alkoxycarbonyl-, Alkoxycarbonylalkyl-, Carboxy-, Carboxyalkyl-, Dialkylamino-alkyl-, Hydroxy-, Amino-, Acetylamino-, Propionylamino-, Benzoyl-, Benzoylamino-, Benzoylmethylamino-, Aminocarbonyl-, Alkylaminocarbonyl-, (1-Pyrrolidinyl)carbonyl-, (1-Pyrrolidinyl)carbonyl-, (1-Piperidinyl)carbonyl-, (Hexahydro-1-azepinyl)carbonyl-, (4-Methyl-1-piperazinyl)carbonyl-, Methylendioxy-, Aminocarbonylamino-, Aminocarbonylaminoalkyl-, Alkylaminocarbonylamino-, Alkanoyl-, Cyan-, Trifluormethylylinio-, Trifluormethylsulfinyl- oder Trifluormethylsulfonylgruppen mono-, di- oder trisubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

10 Y die zweiwertigen Reste

20

worin R⁹ einen Alkylrest mit 1 bis 4 Kohlenstoffatomen oder einen gegebenenfalls durch ein Halogenatom, eine Methyloder eine Methoxygruppe substituierten Phenylrest darstellt,

 X^1 , X^2 und X^3 , die gleich oder verschieden sein können, das Wasserstoffatom, das Fluor-, Chlor- oder Bromatom, eine verzweigte oder unverzweigte Alkylgruppe, eine Alkoxy-, Trifluormethyl-, Dialkylaminoalkyl-, Dialkylaminoalkoxy-, Nitro-, Hydroxy-, Amino-, Acetylamino-, Methylsulfonyloxy-, Aminocarbonyl-, Alkylaminocarbonyl-, Dialkylaminocarbonyl-, Alkanoyl-, Cyan-, Trifluormethoxy-, Trifluormethylthio-, Trifluormethylsulfinyl- oder Trifluormethylsulfonylgruppe,

A eine Bindung oder den über die -CO-Gruppe mit der NR¹R²-Gruppe der Formel I verknüpften zweiwertigen Rest

in dem

R⁷ das Wasserstoffatom oder die Methylgruppe,

R⁸ das Wasserstoffatom, die Methyl-, Methoxycarbonyl-, Ethoxycarbonyl-, n-Propoxycarbonyl-, Isopropoxycarbonyl-, tert.-Butoxycarbonyl- oder Acetylgruppe darstellt,

5

10

15

30

45

50

R¹ das Wasserstoffatom,

eine Alkylgruppe mit 1 bis 7 Kohlenstoffatomen, die in ω-Stellung durch eine Cyclohexyl-, Phenyl-, Pyridinyl-, Diazinyl-, Hydroxy-, Amino-, Alkylamino-, Dialkylamino-, Carboxy-, Aminocarbonyl-, Aminocarbonylamino-, Acetylamino-, 1-Pyrrolidinyl-, 1-Piperidinyl-, 4-(1-Piperidinyl)-1-piperidinyl-, 4-Morpholinyl-, Hexahydro-1H-1-azepinyl-, [Bis-(2-hydroxyethyl)]amino-, 4-Alkyl-1-piperazinyl- oder 4-(ω-Hydroxyalkyl)-1-piperazinyl Gruppe substituiert sein kann.

eine Phenyl- oder Pyridinylgruppe,

wobei die vorstehend erwähnten heterocyclischen Reste und Phenylgruppen zusätzlich im Kohlenstoffgerüst durch Fluor-, Chlor- oder Bromatome, durch Methyl-, Alkoxy-, Trifluormethyl-, Hydroxy-, Amino-, Acetylamino-, Aminocarbonyl-, Cyan-, Methylsulfonyloxy-, Trifluormethoxy-, Trifluormethylsulfinyl- oder Trifluormethylsulfonylgruppen mono-, di- oder trisubstituiert sein können und die Substituenten gleich oder verschieden sein können, R² das Wasserstoffatom oder eine gegebenenfalls durch eine Phenyl- oder Pyridinylgruppe substituierte Alkylgruppe mit 1 bis 3 Kohlenstoffatomen oder

R¹ und R² zusammen mit dem eingeschlossenen Stickstoffatom einen Rest der allgemeinen Formel III

$$\begin{array}{c|c}
R^4 \\
\hline
(CH_2)_m \\
\hline
(CH_2)_n \\
CR^5R^6
\end{array}$$
(III),

in der

 Y^1 das Kohlenstoffatom oder, wenn R^4 ein freies Elektronenpaar darstellt, auch das Stickstoffatom, m die Zahlen 0, 1 oder 2,

n die Zahlen 0, 1 oder 2,

R³ das Wasserstoffatom, eine Amino-, Alkylamino-, Dialkylamino-, Alkyl-, Cycloalkyl-, Aminoalkyl-, Alkylaminoalkyl-, Dialkylaminoalkyl-, Aminoiminomethyl-, Aminocarbonylamino-, Alkylaminocarbonylamino-, Cycloalkylaminocarbonylamino-, Phenylaminocarbonylamino-, Aminocarbonylalkyl-, Aminocarbonylaminoalkyl-, Alkoxycarbonyl-, Alkoxycarbonylalkyl-, Carboxyalkyl- oder Carboxy-Gruppe,

eine Phenyl-, Pyridinyl-, Diazinyl-, 1-Naphthyl-, 2-Naphthyl-, Pyridinylcarbonyl- oder Phenylcarbonyl-Gruppe, die jeweils im Kohlenstoffgerüst durch Fluor-, Chlor- oder Bromatome, durch Alkyl-, Alkoxy-, Methylsulfonyloxy-, Trifluormethyl-, Hydroxy-, Amino-, Acetylamino-, Aminocarbonyl-, Aminocarbonylamino-, Aminocarbonylamino-, Aminocarbonylamino-, Cyan-, Carboxy-, Carboxy-, Carboxyalkyl-, Carbalkoxyalkyl-, Alkanoyl-, ω -(Dialkylamino)alkanoyl-, ω -(Dialkylamino)hydroxyalkyl-, ω -(Carboxy)alkanoyl-, Trifluormethylsulfinyl- oder Trifluormethylsulfonylgruppen mono-, di- oder trisubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

eine 4- bis 10-gliedrige Azacycloalkylgruppe, eine 5- bis 10-gliedrige Oxaza-, Thiaza- oder Diazacycloalkylgruppe, oder eine 6- bis 10-gliedrige Azabicycloalkylgruppe,

wobei die vorstehend genannten mono- und bicyclischen Heterocyclen über ein Stickstoff- oder ein Kohlenstoffatom gebunden sind.

eine 1-Alkyl-4-piperidinylcarbonyl- oder 4-Alkyl-1-piperazinylcarbonylgruppe,

wobei die vorstehend genannten mono- und bicyclischen Heterocyclen sowie die 1-Alkyl-4-piperidinylcarbonyl- und 4-Alkyl-1-piperazinylcarbonylgruppe im Ring durch eine Alkylgruppe mit 1 bis 7 Kohlenstoffatomen, durch eine Alkanoyl-, Dialkylamino-, Phenylcarbonyl-, Pyridinylcarbonyl-, Carboxyalkanoyl-, Carboxyalkyl-, Alkoxycarbonylalkyl-, Alkoxycarbonyl-, Alkylaminocarbonyl-, Alkylsulfonyl-, Cycloalkyl- oder Cycloalkylalkylgruppe, durch eine im Ring gegebenenfalls alkylsubstituierte Cycloalkylcarbonyl-, Azacycloalkylcarbonyl-, Diazacycloalkylcarbonyl- oder Oxazacycloalkylcarbonylgruppe substituiert sein können,

wobei die in diesen Substituenten enthaltenen alicyclischen Teile 3 bis 10 Ringglieder und die heteroalicyclischen Teile jeweils 4 bis 10 Ringglieder umfassen und

die vorstehend genannten Phenyl- und Pyridinyl-Reste ihrerseits durch Fluor-, Chlor- oder Bromatome, durch Alkyl-, Alkoxy-, Methylsulfonyloxy-, Trifluormethyl-, Hydroxy-, Amino-, Acetylamino-, Aminocarbonylamino-, Aminocarbonylamino-, Aminocarbonylamino-, Carboxy-, Carboxy-, Carboxyalkyl-, Carbalkoxyalkyl-, Alkanoyl-, ω-(Dialkylamino)alkanoyl-, ω-(Carboxy)alkanoyl-, Trifluormethylsulfonylgruppen mono-, di- oder trisubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können, oder

 R^3 zusammen mit R^4 und Y^1 einen 4- bis 7-gliedrigen cycloaliphatischen Ring, in dem eine Methylengruppe durch eine Gruppe -NH- oder -N(Alkyl)- ersetzt sein kann,

wobei ein an ein Stickstoffatom innerhalb der Gruppe R³ gebundenes Wasserstoffatom durch einen Schutzrest ersetzt 65 sein kann.

R⁴ ein Wasserstoffatom,

einen Alkylrest mit 1 bis 4 Kohlenstoffatomen, wobei ein unverzweigter Alkylrest in ω-Stellung durch eine Phenyl-, Py-

ridinyl-, Diazinyl-, Amino-, Alkylamino-, Dialkylamino-, 1-Pyrrolidinyl-, 1-Piperidinyl-, 4-Methyl-1-piperazinyl-, 4-Morpholinyl- oder Hexahydro-1H-1-azepinyl-Gruppe substituiert sein kann,

eine Alkoxycarbonyl-, die Cyan- oder Aminocarbonylgruppe oder ein freies Elektronenpaar, wenn Y^1 ein Stickstoffatom darstellt, und R^5 und R^6 jeweils ein Wasserstoffatom oder,

sofern Y¹ ein Kohlenstoffatom ist, R⁴ zusammen mit R⁶ auch eine weitere Kohlenstoff-Kohlenstoff-Bindung, wobei R³ wie vorstehend erwähnt definiert ist und R⁵ ein Wasserstoffatom darstellt oder

sofern Y¹ ein Kohlenstoffatom ist, R⁴ zusammen mit R⁶ auch eine weitere Kohlenstoff-Kohlenstoff-Bindung und R³ zusammen mit R⁵ und der eingeschlossenen Doppelbindung einen partiell hydrierten oder aromatischen fünf- bis siebengliedrigen, mono- oder bicyclischen Carbocyclus oder Heterocyclus darstellen,

wobei alle vorstehend genannten Alkyl- und Alkoxygruppen sowie die innerhalb der anderen genannten Reste vorhandenen Alkylgruppen, sofern nichts anderes angegeben ist, 1 bis 7 Kohlenstoffatome umfassen können und alle vorstehend genannten Cycloalkylgruppen sowie die innerhalb der anderen genannten Reste vorhandenen Cycloal-

kylgruppen, sofern nichts anderes angegeben ist, 5 bis 10 Kohlenstoffatome umfassen können.

Beispielsweise kommen für R³ die 1-Pyrrolidinyl-, 1-Piperidinyl-, 4-(Dimethylamino)-1-piperidinyl-, 4-Piperidinyl- oder 4-Morpholinylgruppe, wobei das Stickstoffatom der 4-Piperidinylgruppe durch eine Alkanoyl- oder Alkylgruppe mit jeweils 1 bis 4 Kohlenstoffatomen oder durch eine Methylsulfonylgruppe substituiert sein kann, die Hexahydro-1H-1-azepinyl-, 8-Methyl-8-azabicyclo[3,2,1]oct-3-yl-, 4-Alkyl-1-piperazinyl-, Hexahydro-4-alkyl-1H-1,4-diazepin-1-yl-, 1-Alkyl-4-piperidinylcarbonyl- oder 4-Alkyl-1-piperazinylcarbonylgruppe in Betracht.

Beispielsweise kommt für R die

4-(1,3-Dihydro-2(2H)-oxobenzimidazol-1-yl)-1-piperidinyl-, 4-(1,3-Dihydro-2(2H)-oxobenzimidazol-1-yl)-1-piperidinyl-, 4-[2,4(1H,3H)-Dioxochinazolin-3-yl]-1-piperidinyl-, 4-(1,3-Dihydro-2(2H)-oxoimidazo[4,5-b]pyridin-3-yl-, 4-(3,4-Dihydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl-, 4-(7-Methoxy-2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl-, 4-(2,4-Dihydro-5-phenyl-3(3H)-oxo-1,2,4-triazol-2-yl)-1-piperidinyl-, 4-(1,3-Dihydro-2(2H)-oxoimidazo[4,5-c]chinolin-3-yl)-1-piperidinyl- oder 4-(5,7-Dihydro-6-oxo-dibenzo[d,f][1,3]diazepin-5-yl)-1-piperidinyl-gruppe in Betracht.

Unter den in den vor- und nachstehenden Definitionen genannten Schutzresten sind die aus der Peptidehemie geläufigen Schutzgruppen zu verstehen, insbesondere eine im Phenylkern gegebenenfalls durch ein Halogenatom, durch eine Nitro- oder Phenylgruppe, durch eine oder zwei Methoxygruppen substituierte Phenylalkoxycarbonylgruppe mit 1 bis 3 Kohlenstoffatomen im Alkoxyteil,

beispielsweise die Benzyloxycarbonyl-, 2-Nitro-benzyloxycarbonyl-, 4-Nitro-benzyloxycarbonyl-, 4-Methoxy-benzyloxycarbonyl-, 2-Chlor-benzyloxycarbonyl-, 3-Chlor-benzyloxycarbonyl-, 4-Chlor-benzyloxycarbonyl-, 4-Biphenylyl- α , α -dimethyl-benzyloxycarbonyl- oder 3,5-Dimethoxy- α , α -dimethyl-benzyloxycarbonylgruppe, eine Alkoxycarbonylgruppe mit insgesamt 1 bis 5 Kohlenstoffatomen im Alkylteil,

beispielsweise die Methoxycarbonyl-, Ethoxycarbonyl-, n-Propoxycarbonyl-, Isopropoxycarbonyl-, n-Butoxycarbonyl-, 1-Methylpropoxycarbonyl-, 2-Methylpropoxycarbonyl- oder tert.-Butyloxycarbonylgruppe, die Allyloxycarbonyl-, 2,2,2-Trichlorethoxycarbonyl- oder 9-Fluorenylmethoxycarbonyl-Gruppe oder

die Formyl-, Acetyl- oder Trifluoracetylgruppe.

Die vorliegende Erfindung betrifft Racemate, sofern die Verbindungen der allgemeinen Formel I nur ein Chiralitätselement besitzen. Die Anmeldung umfaßt jedoch auch die einzelnen diastereomeren Antipodenpaare oder deren Gemische, die dann vorliegen, wenn mehr als ein Chiralitätselement in den Verbindungen der allgemeinen Formel (I) vorhanden ist.

Besonders bevorzugt werden die unter die allgemeine Formel I fallenden Verbindungen, die hinsichtlich der Aminosäure-Partialstruktur der Formel

D- bzw. (R)-konfiguriert und hinsichtlich der im Rest A gegebenenfalls vorhandenen Aminosäure-Partialstruktur der Formel II L- bzw. (S)-konfiguriert sind.

Die Verbindungen der allgemeinen Formel I weisen wertvolle pharmakologische Eigenschaften auf, die auf ihre selektiven CGRP-antagonistischen Eigenschaften zurückgehen. Ein weiterer Gegenstand der Erfindung sind diese Verbindungen enthaltende Arzneimittel, deren Verwendung und deren Herstellung.

Bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

R die 1-Piperidinylgruppe, die in 4-Stellung durch einen über ein Stickstoffatom gebundenen, einfach oder zweifach ungesättigten 5- bis 7-gliedrigen Aza-, Diaza- oder Triaza-Heterocyclus, der ein oder zwei mit einem Stickstoffatom verknüpfte Carbonylgruppen enthält, substituiert ist,

wobei die vorstehend erwähnten Heterocyclen an einem Kohlenstoffatom durch eine Phenylgruppe substituiert sein können,

eine olefinische Doppelbindung eines der vorstehend erwähnten ungesättigten Heterocyclen mit einem Benzol-, Pyridinoder Chinolin-Ring kondensiert sein kann oder zwei olefinische Doppelbindungen in einem der vorstehend erwähnten ungesättigten Heterocyclen benzokondensiert sein können,

und wobei die vorstehend erwähnten kondensierten Heterocyclen im Kohlenstoffgerüst und/oder an den in diesen Gruppen enthaltenen Phenylgruppen durch Fluor-, Chlor- oder Bromatome, durch C_{1-3} -Alkyl-, Trifluormethyl-, C_{1-3} -Alkoxy-, Hydroxy-, Amino-, Nitro-, Phenyl-, Carboxy-, Methoxycarbonyl-, Ethoxycarbonyl-, Aminocarbonyl-, Methylaminocarbonyl-, Hydroxyethylaminocarbonyl-, (4-Morpholinyl)carbonyl-, (1-Piperidinyl)carbonyl- oder (4-Methyl-1-piperazinyl)carbonylgruppen mono-, di- oder trisubstituiert sein können,

wobei die Substituenten gleich oder verschieden sein können und eine Mehrfachsubstitution mit den drei letztgenannten Substituenten ausgeschlossen ist,

10

25

60

65

und wobei insbesondere die Monosubstitution und als Substituenten die C_{1-3} -Alkyl-, C_{1-3} -Alkoxy- und Phenylgruppe besonders bevorzugt sind,

Y die zweiwertigen Reste

worin R^9 einen C_{1-3} -Alkylrest oder einen gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, eine Methyl- oder eine Methoxygruppe substituierten Phenylrest darstellt,

 X^1 , X^2 und X^3 , die gleich oder verschieden sein können, das Wasserstoffatom, das Fluor-, Chlor- oder Bromatom, eine C_{1-3} -Al-kyl-, C_{1-3} -Alkoxy-, Trifluormethyl-, Hydroxy-, Amino- oder Acetylaminogruppe,

A eine Bindung oder den über die -CO-Gruppe mit der NR¹R²-Gruppe der Formel I verknüpften zweiwertigen Rest

in_dem 40

R⁷ und R⁸ unabhängig voneinander jeweils das Wasserstoffatom oder die Methylgruppe darstellen,

 R^1 das Wasserstoffatom oder eine in ω -Stellung gegebenenfalls durch eine Amino-, Methylamino-, Dimethylamino- oder 4-(1-Piperidinyl)-1-piperidinyl-Gruppe substituierte Alkylgruppe mit 1 bis 4 Kohlenstoffatomen,

R² das Wasserstoffatom, die Methyl- oder Ethylgruppe oder

R¹ und R² zusammen mit dem eingeschlossenen Stickstoffatom einen Rest der allgemeinen Formel 45

$$R^4$$
 $(CH_2)_m$
 $(CH_2)_m$
 $(CR_5R_6$
 (III) ,

in der

Y¹ das Kohlenstoffatom oder, wenn R⁴ ein freies Elektronenpaar darstellt, auch das Stickstoffatom,

m die Zahlen 0 oder 1,

n die Zahlen 1 oder 2,

R³ das Wasserstoffatom,

eine Phenyl-, Pyridinyl- oder Diazinylgruppe, die jeweils im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine Methyl- oder Methoxygruppe substituiert sein können,

eine 5- bis 7-gliedrige Azacycloalkylgruppe, eine 5- bis 7-gliedrige Oxaza- oder Diazacycloalkylgruppe oder eine 7-bis 9-gliedrige Azabicycloalkylgruppe,

wobei die vorstehend genannten mono- und bicyclischen Heterocyclen über ein Stickstoff- oder ein Kohlenstoffatom gebunden sind und

 $\label{eq:continuous} \mbox{durch eine Alkylgruppe mit 1 bis 3 Kohlenstoffatomen, durch eine C_{1_4}-Alkanoyl-, $Di-C_{1_3}$-alkylamino- oder C_{1_3}-Alkanoyl-, $Di-C_{1_3}$-Alkanoyl-, $Di-C_{1_3$

kylsulfonylgruppe substituiert sein können,

R⁴ ein Wasserstoffatom,

einen Alkylrest mit 1 bis 3 Kohlenstoffatomen, wobei ein unverzweigter Alkylrest in ω-Stellung durch eine Phenyl- oder Pyridinylgruppe substituiert sein kann,

oder ein freies Elektronenpaar, wenn Y1 ein Stickstoffatom darstellt, und

R⁵ und R⁶ jeweils ein Wasserstoffatom darstellen,

bedeuten,

deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.

Besonders bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

R die 1-Piperidinylgruppe bedeutet, die in 4-Stellung durch

eine 1,3-Dihydro-4-phenyl-2(2H)-oxoimidazol-1-yl-, 1,3-Dihydro-2(2H)-oxobenzimidazol-1-yl-, 2,4(1H,3H)-Dioxochinazolin-3-yl-, 1,3-Dihydro-2(2H)-oxoimidazo[4,5-b]pyridin-3-yl-, 3,4-Dihydro-2(1H)-oxochinazolin-3-yl-, 2,3,4,5-Tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl-, 2(1H)-Oxochinolin-3-yl-, 2,4-Dihydro-5-phenyl-3(3H)-oxo-1,2,4-triazol-2-yl-, 1,3-Dihydro-2(2H)-oxoimidazo[4,5-c]chinolin-3-yl- oder 5,7-Dihydro-6-oxo-dibenzo[d,f][1,3]diazepin-5-yl-

Gruppe substituiert ist,

wobei die vorstehend erwähnten bicyclischen Heterocyclen im Kohlenstoffgerüst und/oder an den in diesen Gruppen enthaltenen Phenylgruppen durch Fluor-, Chlor- oder Bromatome, durch Methyl-, Trifluormethyl-, Methoxy-, Hydroxy-, Amino-, Nitro-, Phenyl-, Phenylmethyl-, Carboxy-, Methoxycarbonyl-, Ethoxycarbonyl-, Aminocarbonyl-, Methylaminocarbonyl-, Hydroxyethylaminocarbonyl-, (4-Morpholinyl)carbonyl-, (1-Piperidinyl)carbonyl- oder (4-Methyl-1-piperazinyl)carbonylgruppen mono-, di- oder trisubstituiert sein können,

wobei die Substituenten gleich oder verschieden sein können und eine Mehrfachsubstitution mit den drei letztgenannten Substituenten ausgeschlossen ist,

und wobei insbesondere die Monosubstitution und als Substituenten die Methyl-, Methoxy- und Phenylgruppe besonders bevorzugt sind,

Y die zweiwertigen Reste

worin R⁹ die Methylgruppe oder den Phenylrest darstellt,

X¹ das Fluor- Chlor- oder Bromatom oder die Methylgruppe,

X² das Fluor- Chlor- oder Bromatom, die Methyl-, Methoxy-, Hydroxy- oder Aminogruppe,

X³ das Fluor- Chlor- oder Bromatom oder die Methylgruppe,

A eine Bindung oder den über die -CO-Gruppe mit der NR¹R²-Gruppe der Formel I verknüpften zweiwertigen Rest

R⁷ und R⁸ Wasserstoffatome darstellen, R¹ und R² zusammen mit dem eingeschlossenen Stickstoffatom einen Rest der allgemeinen Formel

Y¹ das Kohlenstoffatom oder, wenn R⁴ ein freies Elektronenpaar darstellt, auch das Stickstoffatom, m die Zahl 1,

n die Zahl 1,

R³ eine Phenyl- oder Pyridinylgruppe, die jeweils im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine Methyl- oder Methoxygruppe substituiert sein können, eine 1-Pyrrolidinyl-, 1-Piperidinyl-, 4-(Dimethylamino)-1-piperidinyl-, 4-Piperidinyl- oder 4-Morpholinylgruppe, wobei das Stickstoffatom der 4-Piperidinylgruppe durch eine Alkylgruppe mit jeweils 1 bis 2 Kohlenstoffatomen substituiert sein kann, eine Hexahydro-1H-1-azepinyl-, 4-Methyl-1-piperazinyl- oder 4-Ethyl-1-piperazinylgruppe, 5 R⁴ ein Wasserstoffatom, einen Alkylrest mit 1 oder 2 Kohlenstoffatomen oder ein freies Elektronenpaar, wenn Y¹ ein Stickstoffatom darstellt, und R⁵ und R⁶ jeweils ein Wasserstoffatom darstellen, bedeuten, deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze. 10 Als besonders bevorzugte Verbindungen seien beispielsweise folgende genannt: (1) 1-[4-Amino-3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]methylsulfonyliminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin, (2) 1-[4-Amino-3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-15 phenylalanyl]-4-(1-piperidinyl)-piperidin, (3) 1-[4-Amino-3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]phenylsulfonyliminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin, (4) 1-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-tyrosyl]-4-(1-piperidinyl)-piperidin, 20 (5) 1-[N²-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]methylsulfonyliminomethyl]-D-tyrosyl]-L-lysyl]-4-(4-pyridinyl)-piperazin, (6) 1-[N²-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]phenylsulfonyliminomethyl]-D-tyrosyl]-L-lysyl]-4-(4-pyridinyl)-piperazin, (7) 1-[4-Amino-3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-25 phenylalanyl]-4-(1-methyl-4-piperidinyl)-piperidin, (8) 1-[4-Brom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-3,5-dimethyl-D,Lphenylalanyl]-4-(1-piperidinyl)-piperidin, (9) 1-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-tyrosyl]-4-(4-pyridinyl)-piperazin, 30 (10) 1-|4-Amino-3,5-dibrom-N-||4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl|cyaniminomethyl|-Dphenylalanyl]-4-(4-pyridinyl)-piperazin, (11) 1-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-tyrosyl]-4-(1-methyl-4-piperidinyl)-piperidin, (12) 1-[3,5-Dibrom-N-[[4-[3,4-dihydro-2(1H)-oxochinazolin-3-yl]-1-piperidinyl]cyaniminomethyl]-D-tyrosyl]-4-(4-methyl-1-piperazinyl)piperidin, (13) 1-[4-Brom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-3,5-dimethyl-D,L-phenylalanyl]-4-(1-methyl-4-piperidinyl)-piperidin, (14) 1-[4-Amino-3,5-dibrom-N-[[4-[1,3-dihydro-4-phenyl-2(2H)-oxoimidazol-1-yl]-1-piperidinyl]cyaniminomethyl]-D-phenylalanyl]-4-(4-methyl-1-piperazinyl)-piperidin, 40 (15) 1-[4-Amino-3,5-dibrom-N-[[4-(2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-phenylalanyl]-4-(4-methyl-1-piperazinyl)-piperidin, (16) 1-[4-Amino-3,5-dibrom-N-[[4-(2,4-dihydro-5-phenyl-3(3H)-oxo-1,2,4-triazol-2-yl)-1-piperidinyl]cyaniminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin, (17) 1-[4-Amino-3,5-dibrom-N-[]4-(2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]cyani-45 minomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin, (18) 1-[3,5-Dibrom-N-[[4-(2,4-dihydro-5-phenyl-3(3H)-oxo-1,2,4-triazol-2-yl)-1-piperidinyl]cyaniminomethyl] D-tyrosyl]-4-(1-piperidinyl)-piperidin, (19) 1-[3,5-Dibrom-N-[[4-(2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-tyrosyl]-4-(1-piperidinyl)-piperidin, 50 (20) 1-[3,5-Dibrom-N-[[4-(2,4-dihydro-5-phenyl-3(3H)-oxo-1,2,4-triazol-2-yl)-1-piperidinyl]cyaniminomethyl] D-tyrosyl]-4-(1-methyl-4-piperidinyl)-piperazin, (21) 1-[3,5-Dibrom-N-[[4-(2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-tyrosyl]-4-(1-methyl-4-piperidinyl)-piperazin, (22) 1-[4-Amino-3,5-dibrom-N-[[4-(2,4-dihydro-5-phenyl-3(3H)-oxo-1,2,4-triazol-2-yl)-1-piperidinyl]cyanimi-55 nomethyl]-D-phenylalanyl]-4-(1-methyl-4-piperidinyl)-piperazin, (23) 1-[4-Amino-3,5-dibrom-N-[[4-(2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-phenylalanyl]-4-(1-methyl-4-piperidinyl)-piperazin, (24) 1-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-4-methyl-D,L-phenylalanyl]-4-(1-methyl-4-piperidinyl)-piperidin, 60 (25) 1-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-4-methyl-D,L-phenylalanyl]-4-(1-piperidinyl)-piperidin, (26) 1-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-4-methyl-D,L-phenylalanyl]-4-(4-pyridinyl)-piperazin, (27) 1-[4-Amino-3,5-dibrom-N-[[4-[1,3-dihydro-2(2H)-oxoimidazo[4,5-c]chinolin-3-yl]-1-piperidinyl]cyanimi-65 nomethyl]-D-phenylalanyl]-4-(1-piperidinyl)piperidin,

dinyl]cyaniminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin,

(28) 1-[4-Amino-3,5-dibrom-N-[[4-(7-methoxy-2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperi-

- (29) 1-[4-Amino-3,5-dibrom-N-[[4-(5,7-dihydro-6-oxodibenzo-[d,f][1,3]diazepin-5-yl)-1-piperidinyl]cyanimino-methyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin,
- (30) 1-[4-Amino-3,5-dibrom-N-[[4-(7-methoxy-2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]-yaniminomethyl]-D-phenylalanyl]-4-(1-methyl-4-piperidinyl)-piperazin,
- 5 (31) 1-[4-Amino-3,5-dibrom-N-[[4-[1,3-dihydro-2(2H)-oxoimidazo[4,5-c]chinolin-3-yl]-1-piperidinyl]cyaniminomethyl]-D-phenylalanyl]-4-(1-methyl-4-piperidinyl)piperazin,
 - (32) 1-[4-Amino-3,5-dibrom-N-[[4-(2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]sulfo-nyl]-D-phenylalanyl]-4-(1-methyl-4-piperidinyl)-piperazin,
 - (33) 1-[3,5-Dibrom-N-[]4-(7-methoxy-2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-tyrosyl]-4-(1-piperidinyl)-piperidin,
 - (34) 1-[3,5-Dibrom-N-[[4-(7-methoxy-2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-tyrosyl]-4-(1-methyl-4-piperidinyl)-piperazin,
 - (35) 1-[3,5-Dibrom-N-[[4-[1,3-dihydro-2(2H)-oxoimidazo[4,5-c]chinolin-3-yl]-1-piperidinyl]cyaniminomethyl]-D-tyrosyl]-4-(1-piperidinyl)piperidin,
 - (36) 1-[3,5-Dibrom-N-[[4-[1,3-dihydro-2(2H)-oxoimidazo[4,5-c]chinolin-3-yl]-1-piperidinyl]cyaniminomethyl]-D-tyrosyl]-4-(1-methyl-4-piperidinyl)piperazin,
 - (37) 1-[4-Amino-3,5-dibrom-N-[[4-(7-methoxy-2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-phenylalanyl]-4-(4-methyl-1-piperazinyl)-piperidin und
 - (38) 1-[4-Amino-3,5-dibrom-N-[[4-[1,3-dihydro-2(2H)-oxoimidazo[4,5-c]chinolin-3-yl]-1-piperidinyl]cyaniminomethyl]-D-phenylalanyl]-4-(4-methyl-1-piperazinyl)piperidin

und deren Salze.

10

15

20

45

50

60

65

Die Verbindungen der allgemeinen Formel I werden nach prinzipiell bekannten Methoden hergestellt, wobei auch aus der Peptidchemie (siehe z. B. Houben-Weyl, Methoden der Organischen Chemie, Bd. 15/2) abgeleitete Verfahren angewandt werden. Als Aminoschutzgruppen können die in Houben-Weyl, Methoden der Organischen Chemie, Bd. 15/1, beschriebenen verwendet werden, wobei Urethanschutzgruppen, wie z. B. die Fluorenylmethoxycarbonyl-, Phenylmethoxycarbonyl- oder tert.-Butyloxycarbonyl-gruppe bevorzugt werden. Eventuell im Rest A der Verbindungen der allgemeinen Formel I oder in deren Vorstufen vorhandene funktionelle Gruppen werden zur Verhinderung von Nebenreaktionen durch geeignete Schutzgruppen (siehe z. B.: G. B. Fields et al., Int. J. Peptide Protein Res. 35, 161 (1990); T. W. Greene, Protective Groups in Organic Synthesis) zusätzlich geschützt. Als derartige seitenkettengeschützte Aminosäuren seien besonders Lys(Boc), Lys(Cl-Z) und Lys(Teoc) erwähnt, die, eventuell in Form von Derivaten, in der Regel käuflich sind. Statt seitenkettenständige Aminogruppen zu schützen, können auch Präcursor-Funktionen tragende, in der Seitenkette

insbesondere durch Nitro oder Cyan substituierte Aminosäuren bzw. deren Derivate eingesetzt werden, beispielsweise 5-Cyannorvalin. Eventuelle in den Seitenketten von α -Aminosäurepartialstrukturen vorhandene Schutzgruppen werden nach Aufbau

des N- und C-terminal substituierten Aminosäurederivats abschließend mit geeigneten, im Prinzip gleichfalls literaturbekannten Reagenzien abgespalten, z. B. Arylmethoxycarbonylschutzgruppen hydrogenolytisch, beispielsweise mit Wasserstoff in Gegenwart von Palladiummohr und unter Verwendung vor Eisessig als Lösemittel.

In der Seitenkette der α-Aminosäure gegebenenfalls vorhandene Präcursor-Funktionen können gleichfalls abschließend durch Hydrogenolyse in die gewünschten Aminofunktionen übergeführt werden; Nitroalkylgruppen ergeben dabei unter dem Chemiker geläufigen Bedingungen Aminoalkylgruppen, die Cyangruppe geht in die Aminomethyl-Gruppe über.

Die folgenden Verfahren sind zur Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel I besonders geeignet:

a) Zur Herstellung von Verbindungen der allgemeinen Formel I, in der Y einen der zweiwertigen Iminomethylreste

oder O O O R

55 bedeutet, wobei R⁹ wie eingangs angegeben definiert ist: Umsetzung von Verbindungen der allgemeinen Formel

$$X^{2}$$
 X^{1}
 X^{1}
 X^{1}
 X^{2}
 X^{1}
 X^{1}
 X^{2}
 X^{2

5

15

20

in der A, R¹, R², X¹, X² und X³ wie eingangs definiert sind, Y' einen der beiden oben angegebenen Iminomethylreste darstellt und Nu eine Austrittsgruppe ist, beispielsweise eine Alkoxy-, Aryloxy-, Alkylthio-, Alkylsulfinyl- oder Alkylsulfonylgruppe mit jeweils bis zu 10 Kohlenstoffatomen, z. B. die Methoxy-, Ethoxy-, Phenyloxy-, Methylthio-, Ethylthio-, Methylsulfinyl-, Ethylsulfinyl-, Propylsulfinyl-, Isopropylsulfinyl-, Methylsulfonyl- oder Ethylsulfonylgruppe, das Chlor- oder Bromatom, die SO₂H-, SO₃H- oder OPOCl₂-Gruppe, vorzugsweise jedoch die Phenoxygruppe,

mit sekundären Aminen der allgemeinen Formel

R-H (VI),

in der R wie eingangs definiert ist.

Die Umsetzungen werden in Analogie zu literaturbekannten Verfahren (siehe G. B. L. Smith, J. Amer. Chem. Soc. EL, 476 [1929]; B. Rathke, Chem. Ber. 12, 297 [1884]; R. Phillips und H. T. Clarke, J. Amer. Chem. Soc. 4.5., 1755 [1923]; S. J. Angyal und W. K. Warburton, J. Amer. Chem. Soc. 22, 2492 [1951]; H. Lecher und F. Graf, Chem. Ber. 56, 1326 [1923]; J. Wityak, S. J. Gould, S. J. Hein und D. A. Keszler, J. Org. Chem. 52., 2179 [1987]; T. Teraji, Y. Nakai, G. J. Durant, WO-A-81/00 109, Chem. Abstr. 94, 192336z [1981]; C. A. Maryanoff, R. C. Stanzione, J. N. Plampin und J. E. Mills, J. Org. Chem. 51, 1882–1884 [1986]; A. E. Miller und J. J. Bischoff, Synthesis 1986, 777; R. A. B. Bannard, A. A. Casselman, W. F. Cockburn und G. M. Brown, Can. J. Chem. 36, 1541 [1958]; Aktieselskabet Grea, Kopenhagen, DE28 26 452-C2; K. Kim, Y. T. Lin und H. S. Mosher, Tetrah. Letters 29, 3183-3186 [1988]; H. B. Arzeno et al., Synth. Commun. 20, 3433-3437 [1990]; H. Bredereck und K. Bredereck, Chem. Ber. 94, 2278 [1961]; H. Eilingsfeld, G. Neubauer, M. Seefelder und H. Weidinger, Chem. Ber. 97, 1232 [1964]; P. Pruszynski, Can. J. Chem. 65, 626 [1987]; D. F. Gavin, W. J. Schnabel, E. Kober und M. A. Robinson, J. Org. Chem. 32, 2511 [1967]; N. K. Hart, S. R. Johns, J. A. Lamberton und R. I. Willing, Aust. J. Chem. 23, 1679 [1970]; CIBA Ltd., Belgisches Patent 655 403; Chem. Abstr. 64, 17 481 [1966]; J. P. Greenstein, J. Org. Chem. 2, 480 [1937]; F. L. Scott und J. Reilly, J. Amer. Chem. Soc. 74, 4562 [1952]; W. R. Roush und A. E. Walts, J. Amer. Chem. Soc. 106, 721 [1984]; M. S. Bernatowicz, Y. Wu und G. R. Matsueda, J. Org. Chem. 57, 2497–2502 [1992]; H. Tsunematsu, T. Imamura und S. Makisumi, J. Biochem. 94, 123-128 [1983]; R. Mohr, A. Buschauer und W. Schunack, Arch. Pharm. 321, 221–227 [1988]; K. Atwal, F. N. Ferrara und S. Z. Ahmed, Tetrah. Lett. 35, 8085–8088 [1994]; P. J. Garratt, C. J. Hobbs und R. Wrigglesworth, J. Org. Chem. 54, 1062–1069 [1989]; P. J. Garratt und S. N. Thorn, Tetrahedron 49, 6885–6898 [1993]) bei Temperaturen zwischen 0°C und +100°C, bevorzugt +40°C und +80°C, und unter Verwendung inerter Lösemittel, beispielsweise von Dichlormethan, Tetrahydrofuran, 1,4-Dioxan, Acetonitril, Dimethylformamid, 2-Pentanol, Dimethylacetamid, N-Methylpyrrolidon oder Gemischen davon und in der Regel in Gegenwart von Hilfsbasen, insbesondere von Alkalicarbonaten, wie Natrium- oder Kaliumcarbonat, oder von tertiären Aminen, bevorzugt N-Ethyldiisopropylamin oder Triethylamin, durchgeführt.

Umsetzung von Verbindungen der allgemeinen Formel 50 55 (VII), 60 0

b) Zur Herstellung von Verbindungen der allgemeinen Formel I, in der Y den zweiwertigen Rest -SO₂- bedeutet:

in der A, R¹, R², X¹, X² und X³ wie eingangs erwähnt definiert sind, Y" die SO₂-Gruppe bedeutet und Nu' eine Austrittsgruppe ist, beispielsweise ein Halogenatom, wie das Chlor-, Brom- oder Iodatom, eine Alkyl- oder Arylsulfonyloxygruppe oder eine Alkoxygruppe mit jeweils bis zu 10 Kohlenstoffatomen, z. B. die Methoxy- oder Ethoxygruppe, oder eine gegebenenfalls durch Chlor- oder Bromatome, durch Methyl-, Nitro- oder Hydroxygruppen mono-, di- oder trisubstituierte Phenoxy- oder Naphthoxygruppe, wobei die Substituenten gleich oder verschieden sein können, mit sekundären Aminen der allgemeinen Formel

R-H (VI),

5

20

40

in der R wie eingangs definiert ist, und, falls nötig, anschließende Abspaltung von Schutzgruppen oder Abwandlung von Präcursorfunktionen nach den vorstehend beschriebenen Verfahren.

Bedeutet in der allgemeinen Formel VII Nu' ein Halogenatom, eine Alkyl- oder Arylsulfonyloxygruppe, so wird die Umsetzung unter Schotten-Baumann- oder Einhorn-Bedingungen durchgeführt, das heißt, die Komponenten werden in Gegenwart von wenigstens einem Äquivalent einer Hilfsbase bei Temperaturen zwischen –50°C und +120°C, bevorzugt –10°C und +100°C, und gegebenenfalls in Gegenwart von Lösemitteln zur Reaktion gebracht. Als Hilfsbasen kommen bevorzugt Alkali- und Erdalkalihydroxide, beispielsweise Natriumhydroxid, Kaliumhydroxid, Alkalicarbonate, z. B. Natriumcarbonat, Kaliumcarbonat oder Cäsiumcarbonat, Alkaliacetate, z. B. Natrium- oder Kaliumacetat, sowie tertiäre Amine, beispielsweise Pyridin, 2,4,6-Trimethylpyridin, Chinolin, Triethylamin, N-Ethyldiisopropylamin, N-Ethyldicyclohexylamin, 1,4-Diazabicyclo[2, 2,2]octan oder 1,8-Diazabicyclo[5,4,0]undec-7-en, als Lösemittel beispielsweise Dichlormethan, Tetrahydrofuran, 1,4-Dioxan, Acetonitril, Dimethylformamid, Dimethylacetamid, N-Methylpyrrolidon oder Gemische davon in Betracht; werden als Hilfsbasen Alkali- oder Erdalkalihydroxide, Alkalicarbonate oder -acetate verwendet, kann dem Reaktionsgemisch auch Wasser als Cosolvens zugesetzt werden.

Als nucleofuge Gruppe Nu' in Verbindungen der allgemeinen Formel VII wird die 2-Hydroxyphenoxygruppe, als Lösemittel für die Umsetzung mit Aminen der allgemeinen Formel VI siedendes Dioxan bevorzugt.

Als Zwischenprodukte der Umsetzung sind die nicht isolierbaren Azasulfene der allgemeinen Formel

$$X^{2}$$

$$X^{1}$$

$$X^{2}$$

$$X^{3}$$

$$X^{1}$$

$$X^{3}$$

$$X^{1}$$

$$X^{1}$$

$$X^{2}$$

$$X^{2}$$

$$X^{1}$$

$$X^{2}$$

$$X^{2}$$

$$X^{3}$$

$$X^{1}$$

$$X^{2}$$

$$X^{2}$$

$$X^{3}$$

$$X^{1}$$

$$X^{2}$$

$$X^{2}$$

$$X^{3}$$

$$X^{2}$$

$$X^{1}$$

$$X^{2}$$

$$X^{2}$$

$$X^{3}$$

$$X^{2}$$

$$X^{3}$$

$$X^{2}$$

$$X^{3}$$

$$X^{1}$$

$$X^{2}$$

$$X^{2}$$

$$X^{3}$$

$$X^{2}$$

$$X^{3}$$

$$X^{2}$$

$$X^{3}$$

$$X^{1}$$

$$X^{2}$$

$$X^{2}$$

$$X^{3}$$

$$X^{2}$$

$$X^{3}$$

$$X^{4}$$

$$X^{2}$$

$$X^{2}$$

$$X^{3}$$

$$X^{4}$$

$$X^{5}$$

$$X^{5}$$

$$X^{7}$$

$$X^{7$$

anzunehmen.

Die erfindungsgemäßen abgewandelten Aminosäuren der allgemeinen Formel I enthalten wenigstens ein Chiralitätszentrum. Ist auch der Rest A chiral, dann können die Verbindungen in Form zweier diastereomerer Antipodenpaare auftreten. Die Erfindung umfaßt die einzelnen Isomeren ebenso wie ihre Gemische.

Die Trennung der jeweiligen Diastereomeren gelingt auf Grund ihrer unterschiedlichen physikochemischen Eigenschaften, z. B. durch fraktionierte Kristallisation aus geeigneten Lösemitteln, durch Hochdruckflüssigkeits- oder Säulenchromatographie unter Verwendung chiraler oder bevorzugt achiraler stationärer Phasen.

Die Trennung von unter die allgemeine Formel I fallenden Racematen gelingt beispielsweise durch HPLC an geeigneten chiralen stationären Phasen (z. B. Chiral AGP, Chiralpak AD). Racemate, die eine basische oder saure Funktion enthalten, lassen sich auch über die diastereomeren, optisch aktiven Salze trennen, die bei Umsetzung mit einer optisch aktiven Säure, beispielsweise (+)- oder (-)-Weinsäure, (+)- oder (-)-Diacetylweinsäure, (+)- oder (-)-Monomethyltartrat oder (+)-Camphersulfonsäure, bzw. optisch aktiven Base, beispielsweise mit (R)-(+)-1-Phenylethylamin, (S)-(-)-1-Phenylethylamin oder (5)-Brucin, entstehen.

Nach einem üblichen Verfahren zur Isomerentrennung wird das Racemat einer Verbindung der allgemeinen Formel I mit einer der vorstehend angegebenen optisch aktiven Säuren bzw. Basen in äquimolarer Menge in einem Lösemittel umgesetzt und die erhaltenen kristallinen, diastereomeren, optisch aktiven Salze unter Ausnutzung ihrer verschiedenen Löslichkeit getrennt. Diese Umsetzung kann in jeder Art von Lösungsmitteln durchgeführt werden, solange sie einen ausreichenden Unterschied hinsichtlich der Löslichkeit der Salze aufweisen. Vorzugsweise werden Methanol, Ethanol oder deren Gemische, beispielsweise im Volumenverhältnis 50:50, verwendet. Sodann wird jedes der optisch aktiven Salze in Wasser gelöst, mit einer Base, wie Natriumcarbonat oder Kaliumcarbonat, Natronlauge oder Kalilauge neutralisiert und dadurch die entsprechende freie Verbindung in der (+)- oder (-)-Form erhalten.

Jeweils nur das (R)-Enantiomer bzw. ein Gemisch zweier optisch aktiver, unter die allgemeine Formel I fallender diastereomerer Verbindungen wird auch dadurch erhalten, daß man die oben beschriebenen Synthesen mit jeweils einer geeigneten (R)-konfigurierten Reaktionskomponente durchführt.

Die zur Synthese der Verbindungen der allgemeinen Formel I erforderlichen Ausgangsmaterialien der allgemeinen Formeln V, VI und VII werden in Analogie zu literaturbekannten Verfahren hergestellt.

Ausgangsverbindungen der allgemeinen Formel V erhält man beispielsweise durch Umsetzung der bereits in der WO 98/11 128 beschriebenen Phenylalaninderivate der allgemeinen Formel

$$X^{2}$$

$$X^{1}$$

$$H$$

$$N$$

$$R^{1}$$

$$IIX)$$

$$IIX$$

worin A, R¹, R², X¹, X² und X³ wie vorstehend definiert sind, mit Iminocarbonaten der allgemeinen Formel

Nu-Y'-Nu'' (X),

in der Nu und Y' wie vorstehend unter a) definiert sind und Nu", das von Nu verschieden oder auch gleich wie Nu sein kann, die gleichen Bedeutungen wie Nu annehmen kann. Die Reaktionen werden in Analogie zu Angaben von R. Mohr, A. Buschauer und W. Schunack, Arch. Pharm. 321, 221–227 [1988] bzw. A. Buschauer, Arch. Pharm. 320, 377–380 [1987] bzw. P. J. Garratt und S. N. Thorn, Tetrahedron 49., 6885–6898 [1993] durchgeführt.

15

20

50

55

65

Verbindungen der allgemeinen Formel VI sind in der Regel bereits in der WO 98/11 128 beschrieben worden. Die unter die allgemeine Formel VI fallende, noch nicht vorbeschriebene Verbindung

läßt sich aus 2-Amino-2'-nitrobiphenyl durch reduktive Aminierung mit 1-(Phenylmethyl)-4-piperidon, anschließende Reduktion der Nitrogruppe, Cyclisierung unter Verwendung von N,N'-Carbonyldiimidazol und hydrogenolytische Entfernung der Benzylgruppe in Anlehnung an literaturbekannte Verfahren leicht herstellen.

Die als Ausgangsverbindungen benötigten Verbindungen der allgemeinen Formel VII lassen sich aus Phenylalaninderivaten der vorstehend definierten allgemeinen Formel IX durch Umsetzung mit Sulfaten der allgemeinen Formel

in der Nu' und Y" wie vorstehend unter b) definiert sind und Nu", das von Nu' verschieden oder auch gleich wie Nu' sein kann, die gleichen Bedeutungen wie Nu' annehmen kann. Als Sulfat wird die cyclische Verbindung

bevorzugt (siehe auch: G. E. DuBois und R. A. Stephenson, J. Org. Chem. 45, 5371-5373 [1980]).

Die erhaltenen Verbindungen der allgemeinen Formel I können, insbesondere für pharmazeutische Anwendungen, in ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, übergeführt werden. Als Säuren kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Phosphorsäure, Salpetersäure, Schwefelsäure, Methansulfonsäure, p-Toluolsulfonsäure, Essigsäure, Fumarsäure, Bernsteinsäure, Milchsäure, Mandelsäure, Äpfelsäure, Zitronensäure, Weinsäure oder Maleinsäure in Betracht.

Außerdem lassen sich die so erhaltenen neuen Verbindungen der Formel I, falls diese eine saure Funktion, beispielsweise eine Carboxygruppe enthalten, gewünschtenfalls in ihre Additionssalze mit anorganischen oder organischen Basen, insbesondere für die pharmazeutische Anwendung geeigneten physiologisch verträglichen Additionssalze, überführen. Als Basen kommen hierbei beispielsweise Natriumhydroxid, Kaliumhydroxid, Ammoniak, Cyclohexylamin, Dicyclohexylamin, Äthanolamin, Diäthanolamin und Triäthanolamin in Betracht.

Die neuen Verbindungen der allgemeinen Formel I und deren physiologisch verträglichen Salze besitzen CGRP-antagonistische Eigenschaften und zeigen gute Affinitäten in CGRP-Rezeptorbindungsstudien. Die Verbindungen weisen in den nachstehend beschriebenen pharmakologischen Testsystemen CGRP-antagonistische Eigenschaften auf.

Zum Nachweis der Affinität von Verbindungen der allgemeinen Formel I zu humanen CGRP-Rezeptoren und ihrer antagonistischen Eigenschaften wurden die folgenden Versuche durchgeführt:

A. Bindungsstudien mit (den humanen CGRP-Rezeptor exprimierenden) SK-N-MC-Zellen

SK-N-MC-Zellen werden in "Dulbecco's modified Eagle Medium" kultiviert. Das Medium konfluenter Kulturen wird entfernt. Die Zellen werden zweimal mit PBS-Puffer (Gibco 041-04 190 M) gewaschen, durch Zugabe von PBS-Puffer, versetzt mit 0.02% EDTA, abgelöst und durch Zentrifugation isoliert. Nach Resuspension in 20 ml "Balanced Salts Solution" [BSS (in mM): NaCl 120, KCl 5.4, NaHCO₃ 16.2, MgSO₄ 0.8, NaHPO₄ 1.0, CaCl₂ 1.8, D-Glucose 5.5, HEPES 30, pH7.40] werden die Zellen zweimal bei 100 × g zentrifugiert und in BSS resuspendiert. Nach Bestimmung der Zellzahl werden die Zellen mit Hilfe eines Ultra-Turrax homogenisiert und für 10 Minuten bei 3000 × g zentrifugiert. Der Überstand wird verworfen und das Pellet in Tris-Puffer (10 mM Tris, 50 mM NaCl, 5 mM MgCl₂, 1 mM EDTA, pH 7.40), angereichert mit 1% Rinderserum-Albumin und 0.1% Bacitracin, rezentrifugiert und resuspendiert (1 ml/1 000 000 Zellen). Das Homogenat wird bei –80°C eingefroren. Die Membranpräparationen sind bei diesen Bedingungen für mehr als 6 Wochen stabil.

Nach Auftauen wird das Homogenat 1:10 mit Assay-Puffer (50 mM Tris, 150 mM NaCl, 5 mM MgCl₂, 1 mM EDTA, pH 7.40) verdünnt und 30 Sekunden lang mit einem Ultra-Turrax homogenisiert. 230 μ l des Homogenats werden für 180 Minuten bei Raumtemperatur mit 50 pM 125 I-Iodotyrosyl-Calcitonin-Gene-Related Peptide (Amersham) und ansteigenden Konzentrationen der Testsubstanzen in einem Gesamtvolumen von 250 μ l inkubiert. Die Inkubation wird durch rasche Filtration durch mit Polyethylenimin (0.1%) behandelte GF/B-Glasfaserfilter mittels eines Zellharvesters beendet. Die an Protein gebundene Radioaktivität wird mit Hilfe eines Gammacounters bestimmt. Als nichtspezifische Bindung wird die gebundene Radioaktivität nach Gegenwart von 1 μ M humanem CGRP-alpha während der Inkubation definiert.

Die Analyse der Konzentrations-Bindungskurven erfolgt mit Hilfe einer computergestützten nichtlinearen Kurvenanpassung.

Die Verbindungen der allgemeinen Formel I zeigen in dem beschriebenen Test IC₅₀-Werte ≤ 10 000 nM.

25

B. CGRP-Antagonismus in SK-N-MC-Zellen

SK-N-MC-Zellen (1 Mio. Zellen) werden zweimal mit 250 μl Inkubationspuffer (Hanks HEPES, 1 mM 3-Isobutyl-1-methylxanthin, 1% BSA, pH 7.4) gewaschen und bei 37°C für 15 Minuten vorinkubiert. Nach Zugabe von CGRP (10 μl) als Agonist in steigenden Konzentrationen (10⁻¹¹ bis 10⁻⁶ M) bzw. zusätzlich von Substanz in 3 bis 4 verschiedenen Konzentrationen wird nochmals 15 Minuten inkubiert.

Intrazelluläres cAMP wird anschließend durch Zugabe von 20 µl 1 M HCl und Zentrifugation (2000 × g, 4°C für 15 Minuten) extrahiert. Die Überstände werden in flüssigem Stickstoff eingefroren und bei –20°C gelagert.

Die cAMP-Gehalte der Proben werden mittels Radioimmungssay (Fa. Amersham) bestimmt und die pA₂-Werte antagonistisch wirkender Substanzen graphisch ermittelt.

Die Verbindungen der allgemeinen Formel I zeigen in dem beschriebenen in-vitro-Testmodell CGRP-antagonistische Eigenschaften in einem Dosisbereich zwischen 10⁻¹¹ bis 10⁻⁵ M.

Auf Grund ihrer pharmakologischen Eigenschaften eignen sich die Verbindungen der allgemeinen Formel I und deren Salze mit physiologisch verträglichen Säuren bzw. Basen somit zur akuten und prophylaktischen Behandlung von Kopfschmerzen, insbesondere Migräne- bzw. Cluster-Kopfschmerz. Weiterhin beeinflussen die Verbindungen der allgemeinen Formel I auch die folgenden Erkrankungen positiv: Nicht-insulinabhängigen Diabetes mellitus ("NTDDM"), cardiovaskuläre Erkrankungen, Erkrankungen der Haut, insbesondere thermische und strahlenbedingte Hautschäden inclusive Sonnenbrand, entzündliche Erkrankungen, z. B. entzündliche Gelenkerkrankungen (Arthritis), entzündliche Lungenerkrankungen, allergische Rhinitis, Asthma, Erkrankungen, die mit einer überschießenden Gefäßerweiterung und dadurch bedingter verringerter Gewebedurchblutung einhergehen, z. B. Schock und Sepsis, sowie Morphintoleranz. Darüber hinaus zeigen die Verbindungen der allgemeinen Formel I eine lindernde Wirkung auf Schmerzzustände im allgemeinen und sind ferner geeignet zur Bekämpfung menopausaler Hitzewallungen.

Die zur Erzielung einer entsprechenden Wirkung erforderliche Dosierung beträgt bei intravenöser oder subcutaner Gabe zweckmäßig 0,0001 bis 3 mg/kg Körpergewicht, vorzugsweise 0,01 bis 1 mg/kg Körpergewicht, und bei oraler, nasaler oder inhalativer Gabe 0,01 bis 20 mg/kg Körpergewicht, vorzugsweise 0,1 bis 10 mg/kg Körpergewicht, jeweils 1 bis 3 × täglich.

Hierzu lassen sich die erfindungsgemäß hergestellten Verbindungen der allgemeinen Formel I, gegebenenfalls in Kombination mit anderen Wirksubstanzen, wie z. B. Antiemetica, Prokinetica, Neuroleptica, Antidepressiva, Neurokinin-Antagonisten, Anticonvulsiva, Histamin-H1-Rezeptorantagonisten, Antimuscarinica, β-Blockern, α-Agonisten und α-Antagonisten, Ergotalkaloiden, schwachen Analgetica, nichtsteroidalen Antiphlogistica, Corticosteroiden, Calcium-Antagonisten, 5-H T_{1D} -Agonisten, 5-H T_{1F} -Agonisten oder anderen Antimigränemitteln, zusammen mit einem oder mehreren üblichen Trägerstoffen und/oder Verdünnungsmitteln, z. B. mit Maisstärke, Milchzucker, Rohrzucker, mikrokristalliner Zellulose, Magnesiumstearat, Polyvinylpyrrolidon, Zitronensäure, Weinsäure, Wasser, Wasser/Äthanol, Wasser/Glycerin, Wasser/Sorbit, Wasser/Polyäthylenglykol, Propylenglykol, Cetylstearylalkohol, Carboxymethylcellulose oder fetthaltigen Substanzen wie Hartfett oder deren geeigneten Gemischen, in übliche galenische Zubereitungen wie Tabletten, Dragees, Kapseln, Pulver, Suspensionen, Lösungen, Dosieraerosole oder Zäpfchen einarbeiten.

Für die oben erwähnten Kombinationen kommen somit als weitere Wirksubstanzen beispielsweise Meloxicam, Ergotamin, Dihydroergotamin, Metoclopramid, Domperidon, Diphenhydramin, Cyclizin, Promethazin, Chlorpromazin, Dexamethason, Flunarizin, Dextropropoxyphen, Meperidin, Propranolol, Nadolol, Atenolol, Clonidin, Indoramin, Carbamazepin, Phenytoin, Valproat, Amitryptilin, Lidocain, Diltiazem oder Sumatriptan und andere 5-HT_{1D}-Agonisten wie z. B. Naratriptan, Zolmitriptan, Avitriptan, Rizatriptan und Eletriptan in Betracht. Die Dosis für diese Wirksubstanzen beträgt hierbei zweckmäßig 1/5 der üblicherweise empfohlenen niedrigsten Dosierung bis zu 1/1 der normalerweise empfohlenen Dosierung, also beispielsweise 20 bis 100 mg Sumatriptan.

Ein weiterer Gegenstand der Erfindung ist die Verwendung der Verbindungen der allgemeinen Formel I als wertvolle

Hilfsmittel zur Erzeugung und Reinigung (Affinitätschromatographie) von Antikörpern sowie, nach geeigneter radioaktiver Markierung, beispielsweise durch direkte Markierung mit ¹²⁵I oder ¹³¹I oder durch Tritiierung geeigneter Vorstufen, beispielsweise durch Ersatz von Halogenatomen durch Tritium, in RIA- und ELISA-Assays und als diagnostische bzw. analytische Hilfsmittel in der Neurotransmitter-Forschung.

Die nachfolgenden Beispiele sollen die Erfindung näher erläutern:

Vorbemerkungen

Für alle Verbindungen liegen befriedigende Elementaranalysen, IR-, UV-, 1 H-NMR und in der Regel auch Massenspektren vor. Wenn nicht anders angegeben, wurden R_f -Werte unter Verwendung von DC-Fertigplatten Kieselgel 60 F_{254} (E- Merck, Darmstadt, Artikel-Nr. 5729) ohne Kammersättigung bestimmt. Falls nähere Angaben zur Konfiguration fehlen, bleibt offen, ob es sich um reine Enantiomere handelt oder ob partielle oder gar völlige Racemisierung eingetreten ist. Zur Chromatographie wurden die folgenden Fließmittel bzw. Fließmittelgemische verwendet:

FM1 = Dichlormethan/Cyclohexan/Methanol/Ammoniak 7/1.5/1.5/0.2 (v/v/v/v)

FM2 = Dichlormethan/Methanol/Ammoniak 7.5/2.5/0.5 (v/v/v)

FM3 = Dichlormethan/Methanol 8/2 (v/v)

FM4 = Dichlormethan/Essigester/Methanol/Cyclohexan/konz. wässeriges Ammoniak = 59/25/7,5/1 (v/v/v/v)

FM5 = Essigester/Dichlormethan = 7/3 (v/v)

FM6 = Essigester/Petrolether = 1/1 (v/v)

FM7 = Dichlormethan/Methanol/konz. wässeriges Ammoniak = 80/20/1 (v/v/v).

In der Versuchsbeschreibung werden die folgenden Abkürzungen verwendet:

Fp.: Schmelzpunkt (Z): (Zersetzung)

DIEA: N,N-Diisopropyl-N-ethylamin

Boc: (1,1-Dimethylethoxy)carbonyl

TBTU: 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluroniumtetrafluoroborat

HOBt: 1-Hydroxybenzotriazol-hydrat CDT: 1,1'-Carbonyldi-(1,2,4-triazol)

THF: Tetrahydrofuran DMF: Dimethylformamid

Fmoc: (9-Fluorenylmethoxy)carbonyl

EE: Essigsäureethylester

PE: Petrolether LM: Lösemittel.

Beispiel 1

1-[4-Amino-3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]methylsulfonyliminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin

a) 1-[4-Amino-3,5-dibrom-N-[(phenoxy)methylsulfonyliminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin

Das Gemisch aus 0.5 g (1.716 mMol) N-Methansulfonylimino-diphenylcarbonat, 0.72 g (1.005 mMol) 1-(4-Amino-3,5-dibrom-D-phenylalanyl)-4-(1-piperidinyl)piperidin-bis-(trifluoracetat), 0.5 ml (3.0 mMol) DIEA und 50 ml Dichlormethan wurde 1 Stunde bei Zimmertemperatur gerührt, dann im Vakuum eingeengt, erneut in 50 ml Dichlormethan aufgenommen, nacheinander mit je 20 ml 0.5 N Natronlauge und Wasser gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingedampft. Das in einer Ausbeute von 0.67 g (97% der Theorie) erhaltene Rohprodukt wurde ohne weitere Reinigung in der folgenden Stufe verwendet.

b) 1-[4-Amino-3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]methylsulfonyliminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin

Das Gemisch aus $0.4\,\mathrm{g}$ ($0.584\,\mathrm{mMol}$) 1-[4-Amino-3,5-dibrom-N-[(phenoxy)methylsulfonyliminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin, $0.46\,\mathrm{g}$ ($1.989\,\mathrm{mMol}$) 3,4-Dihydro-3-(4-piperidinyl)-2(1H)-chinazolinon und $10\,\mathrm{ml}$ 2-Pentanol wurde $14\,\mathrm{Stunden}$ lang unter Rückfluß gekocht. Das Gemisch wurde im Vakuum eingeengt, der Rückstand an Kieselgel (MN-Kieselgel 60, Macherey-Nagel, $30-60\,\mu\mathrm{m}$) unter Verwendung von anfangs Dichlormethan, dann Methanol/konz. Ammoniak ($9/1\,\mathrm{v/v}$) zum Eluieren säulenchromatographisch gereinigt. Nach üblicher Aufarbeitung erhielt man $130\,\mathrm{mg}$ ($27\%\,\mathrm{der}$ Theorie) eines amorphen, farblosen Festproduktes.

IR (KBr): 1664 cm⁻¹ (C=O)

R_f: 0.53 (FM1)

ESI-MS: $(M+H)^+ = 821/823/825$ (BR₂)

65

5

10

15

20

25

30

35

40

45

Beispiel 2

1-[4-Amino-3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]eyaniminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin

5

a) 1-[4-Amino-3,5-dibrom-N-[(phenoxy)cyaniminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin

Hergestellt analog Beispiel 1a) aus N-Cyan-iminodiphenylcarbonat und 1-(4-Amino-3,5-dibrom-D-phenylalanyl)-4-(1-piperidinyl)piperidin-bis-(trifluoracetat) in quantitativer Ausbeute. Das erhaltene Rohprodukt wurde ohne weitere Reinigung in der folgenden Stufe verwendet.

- b) 1-[4-Amino-3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-phenyla-lanyl]-4-(1-piperidinyl)-piperidin
- Hergestellt analog Beispiel 1b) aus 3,4-Dihydro-3-(4-piperidinyl)-2(1H)-chinazolinon und 1-[4-Amino-3,5-dibrom-N-[(phenoxy)cyaniminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin in einer Ausbeute von 43% der Theorie. Farblose, amorphe Substanz.

IR (KBr): 1664 (C=O), 2173 (CN) cm⁻¹

R_f: 0.48 (FM1)

0 ESI-MS: $(M+H)^+ = 768/770/772$ (BR₂)

Beispiel 3

- 1-[4-Amino-3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]phenylsulfonyliminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin
 - a) 1-[4-Amino-3,5-dibrom-N-[(phenoxy)phenylsulfonyliminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin

Hergestellt analog Beispiel 1a) aus N-Benzensulfonyl-iminodiphenylcarbonat und 1-(4-Amino-3,5-dibrom-D-phenylalanyl)-4-(1-piperidinyl)piperidin-bis-(trifluoracetat) in einer Ausbeute von 60% der Theorie. Farblose, amorphe Substanz vom R_f 0.41 (Fließmittel: Dichlormethan/Methanol/konz, Ammoniak 9/1/0.1).

b) 1-[4-Amino-3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]phenylsulfonyliminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-pineridin

35

Hergestellt analog Beispiel 1b) aus 3,4-Dihydro-3-(4-piperidinyl)-2(1H)-chinazolinon und 1-[4-Amino-3,5-dibrom-N-[(phenoxy)phenylsulfonyliminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin in einer Ausbeute von 33% der Theorie.

Farblose, amorphe Substanz.

IR (KBr): 1664 cm⁻¹ (C=O)

 R_f : 0. 5 0 (FM1)

ESI-MS: $(M+H)^+ = 883/885/887$ (BR₂)

Beispiel 4

45

1-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-tyrosyl]-4-(1-piperidinyl)-piperidin

a) 1-[3,5-Dibrom-N-[(phenoxy)cyaniminomethyl]-D-tyrosyl]-4-(1-piperidinyl)-piperidin

50

55

Hergestellt analog Beispiel 1a) aus N-Cyanimino-diphenylcarbonat und 1-(3,5-Dibrom-D-tyrosyl)-4-(1-piperidinyl)piperidin-bis-(trifluoracetat) in einer Ausbeute von 23% der Theorie. Nach dem Verreiben mit t-Butylmethylether/Isopropanol (1/1 v/v): Farblose, kristalline Substanz.

b) 1-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-tyrosyl]-4-(1-pi-peridinyl)-piperidin

Hergestellt analog Beispiel 1b) aus 3,4-Dihydro-3-(4-piperidinyl)-2(1H)-chinazolinon und 1-[3,5-Dibrom-N-[(phenoxy)cyaniminomethyl]-D-tyrosyl]-4-(1-piperidinyl)-piperidin in einer Ausbeute von 20% der Theorie. Farblose, amorphe Substanz.

IR (KBr): 1658 (C=O), 2173 (CN) cm⁻¹

R_f: 0.28 (FM1)

ESI-MS: $(M+H)^+ = 769/771/773(BR_2)$

Beispiel 5

1-[N²-[3,5-Dibrom-N-([4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]methylsulfonyliminomethyl]-D-tyrosyl]-L-lysyl]-4-(4-pyridinyl)-piperazin

a) 1-[N²-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]methylsulfonyliminomethyl]-D-tyrosyl]-N^o-(1,1-dimethylethoxycarbonyl)-L-lysyl]-4-(4-pyridinyl)-piperazin

Zu der Lösung von 1.0 g (1.402 mMol) 1-[N²-[3,5-Dibrom-D-tyrosyl]-N⁶-(1,1-dimethylethoxycarbonyl)-L-lysyl]-4-(4-pyridinyl)-piperazin in 50 ml Dioxan gab man 0.4 g (1.373 mMol) N-(Methansulfonyl)-iminodiphenylcarbonat und rührte 2 Stunden bei Zimmertemperatur. Nach vollständiger Umsetzung (DC) setzte man 0.33 g (1.427 mMol) 3,4-Dihydro-3-(4-piperidinyl)-2(1H)-chinazolinon zu und kochte 6 Stunden unter Rückfluß. Das Reaktionsgemisch wurde im Vakuum eingedampft, der verbleibende Rückstand an Kieselgel (MN-Kieselgel 60, Macherey-Nagel, 30-60 μm) unter Verwendung von anfangs Dichlormethan, dann Methanol/konz. Ammoniak (9/1 v/v) zum Eluieren säulenchromatographisch gereinigt. Nach üblicher Aufarbeitung erhielt man 590 mg (41% der Theorie) eines amorphen, farblosen Festpro-

IR (KBr): 1655 cm⁻¹ (C=O)

ESI-MS: $(M+H)^+ = 1045/1047/1049$ (BR₂)

b) 1-[N²-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]methylsulfonyliminomethyl]-D-tyrosyl]-L-lysyl]-4-(4-pyridinyl)-piperazin

Zu einer Mischung aus 0.58 g (0.554 mmol) 1-[N²-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]methylsulfonyliminomethyl]-D-tyrosyl]-N⁶-(1,1-dimethylethoxycarbonyl)-L-lysyl]-4-(4-pyridinyl)-piperazin in 20 ml Methylenchlorid wurden 10 ml Trifluoressigsäure zugegeben. Das Reaktionsgemisch wurde 3 Stunden bei Raumtemperatur gerührt und anschließend im Vakuum eingeengt. Der verbleibende Rückstand wurde in 50 ml Wasser aufgenommen, mit festem Natriumhydrogencarbonat vorsichtig alkalisch gestellt. Der ausgefallene Niederschlag wurde abgenutscht, mit Wasser und dann mit t-Butylmethylether gut gewaschen, schließlich an der Luft getrocknet. Man erhielt 0.36 g (69% der Theorie) eines farblosen, amorphen Feststoffs.

IR (KBr): 1649 cm⁻¹ (C=O)

R_f: 0.07 (FM1)

ESI-MS: $(M+H)^+ = 945/947/949$ (BR₂)

Beispiel 6

1-[N²-[3,5-Dibrom-N-[[4-(3,4-dihvdro-2(1H)-oxochinazolin-3-vl)-1-piperidinvl]phenylsulfonyliminomethyl]-D-tyrosyl]-L-lysyl]-4-(4-pyrirdinyl)-piperazin

a) 1-[N²-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]phenylsulfonyliminomethyl]-D-tyrosyl]-N⁶-(1,1-dimethylethoxycarbonyl)-L-lysyl]-4-(4-pyridinyl)-piperazin

perazin in einer Ausbeute von 43% der Theorie. Farblose, amorphe Substanz.

IR (KBr): 1657 cm⁻¹ (C=O)

ESI-MS: $(M+H)^+ = 1107/1109/1111 (BR_2)$

 $(M+H+Na)^++=565/566/567$ (BR₂)

b) 1-[N²-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]phenylsulfonyliminomethyl]-D-tyrosyl]-L-lysyl]-4-(4-pyridinyl)-piperazin

Hergestellt analog Beispiel 5b) aus I-[N²-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]phenylsulfonyliminomethyl]-D-tyrosyl]-N⁶-(1,1-dimethylethoxycarbonyl)-L-lysyl]-4-(4-pyridinyl)-piperazin und Trifluoressigsäure in einer Ausbeute von 91% der Theorie. Farblose, amorphe Substanz.

IR (KBr) 1649 (C=O) cm⁻¹

R_f: 0.13 (FM1)

ESI-MS: $(M+H)^+ = 1007/1009/1111$ (BR₂)

Beispiel 7

1-[4-Amino-3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-phenylalanyl]-4-(1-methyl-4-piperidinyl)-piperidin

Die Mischung aus 0.35 g (1.469 mMol) N-Cyan-iminodiphenylcarbonat, 0.75 g (1.493 mMol) 1-[4-Amino-3,5-dibrom-D-phenylalanyl]-4-(1-methyl-4-piperidinyl)-piperidin und 30 ml wasserfreiem Dichlormethan wurde 14 Stunden bei Zimmertemperatur gerührt. Das Reaktionsgemisch wurde, zuletzt im Vakuum, vom Lösemittel befreit, der Rückstand mit 0.35 g (1.513 mMol) 3,4-Dihydro-3-(4-piperidinyl)-2(1H)-chinazolinon und 20 ml 2-Pentanol versetzt und 24 Stunden unter Rückfluß gekocht. Das Gemisch wurde im Vakuum eingeengt, der Rückstand an Kieselgel (MN-Kieselgel

15

5

10

2.0

30

35

40

45

50

55

60, Macherey-Nagel, 30–60 µm) unter Verwendung von anfangs Dichlormethan, dann Methanol/konz. Ammoniak (9/1 v/v) zum Eluieren säulenchromatographisch gereinigt. Nach üblicher Aufarbeitung erhielt man 700 mg (61% der Theorie) eines amorphen, farblosen Festproduktes.

IR (KBr): 1668 (C=O), 2173 (CN) cm⁻¹

 R_f : 0.87 (Fließmittel: Dichlormethan/Methanol/konz. Ammoniak 80/20/2 v/v/v) ESI-MS: (M+H)⁺ = 782/784/786 (BR₂)

Beispiel 8

- 1-[4-Brom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-3,5-dimethyl-D,L-phenyla-lanyl]-4-(1-piperidinyl)-piperidin
 - a) 1-[4-Brom-N-[(phenoxy)cyaniminomethyl]-3,5-dimethyl-D,L-phenylalanyl]-4-(1-piperidinyl)-piperidin
- Hergestellt analog Beispiel 1a), jedoch unter Verwendung von Dioxan als Lösemittel, aus N-Cyan-iminodiphenylcarbonat und 1-(4-Brom-3,5-dimethyl-D,L-phenylalanyl)-4-(1-piperidinyl)-piperidin-bis-(trifluoracetat) in einer Ausbeute von 51% der Theorie. Farblose, amorphe Substanz.
 - b) 1-[4-Brom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-3,5-dimethyl-D,L-phe-nylalanyl]-4-(1-piperidinyl)-piperidin

Hergestellt analog Beispiel 1b) aus 3,4-Dihydro-3-(4-piperidinyl)-2(1H)-chinazolinon und 1-[4-Brom-N-[(phenoxy)cyaniminomethyl]-3,5-dimethyl-D,L-phenylalanyl]-4-(1-piperidinyl)-piperidin in einer Ausbeute von 45% der Theorie. Farblose, amorphe Substanz.

5 IR (KBr): 1664 (C=O), 2173 (CN) cm⁻¹

 R_f : 0.37 (Fließmittel: Dichlormethan/Ethylacetat/Cyclohexan/Methanol/konz. Ammoniak 60/16/5/5/0.6 v/v/v/v/v) MS: = 702/704 (BR₂)

Beispiel 9

30

20

1-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-tyrosyl]-4-(4-pyridinyl)-piperazin

Hergestellt analog Beispiel 1b) aus 3,4-Dihydro-3-(4-piperidinyl)-2(1H)-chinazolinon und 1-[3,5-Dibrom-N-[(phenoxy)cyaniminomethyl]-D-tyrosyl)-4-(4-pyridinyl)-piperazin in einer Ausbeute von 10% der Theorie. Farblose, amorphe Substanz.

IR (KBr): 1657 (C=O), 2171 (CN) cm⁻¹

R_f: 0.68 (Fließmittel: Methanol)

ESI-MS: $(M+H)^+ = 764/766/768$ (BR₂)

40

Beispiel 10

1-[4-Amino-3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-phenylala-nyl]-4-(4-pyridinyl)-piperazin

45

Hergestellt analog Beispiel 7 aus N-Cyano-iminodiphenylcarbonat, 3,4-Dihydro-3-(4-piperidinyl)-2(1H)-chinazolinon und 1-[4-Amino-3,5-dibrom-D-phenylalanyl]-4-(4-pyridinyl)-piperazin in einer Ausbeute von 43% der Theorie. Farblose, amorphe Substanz.

IR (KBr): 1660 (C=O), 2171 (CN) cm⁻¹

0 R_f: 0.27 (Fließmittel: Dichlormethan/Methanol/konz. Ammoniak 9/1/0.1 v/v/v)

ESI-MS: $(M+H)^+ = 763/765/767$ (BR₂)

Beispiel 11

55 1-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-tyrosyl]-4-(1-me-thyl-4-piperidinyl)-piperidin

Hergestellt analog Beispiel 7 aus N-Cyano-iminodiphenylcarbonat, 3,4-Dihydro-3-(4-piperidinyl)-2(1H)-chinazolinon und 1-[3,5-Dibrom-D-tyrosyl]-4-(4-pyridinyl)-piperazin in einer Ausbeute von 12% der Theorie. Farblose, amorphe Substanz.

IR (KBr): 2175 (CN) cm⁻¹

R_f: 0.22 (Fließmittel Dichlormethan/Methanol/konz, Ammoniak 8/2/0.2 v/v/v)

ESI-MS: $(M+H)^+ = 783/785/787$ (BR₂)

Beispiel 12

1-[3,3-Dibrom-N-[[4-[3,4-dinydro-2(1H)-oxochinazolin-3-yl]-1-piperidinyl]cyaniminometnyl]-D-tyrosyl]-4-(4-me- thyl-1-piperazinyl)-piperidin	
Hergestellt analog Beispiel 7 aus N-Cyano-iminodiphenylcarbonat, 3,4-Dihydro-3-(4-piperidinyl)-2(1H)-chinazolinon und 1-[3,5-Dibrom-D-tyrosyl]-4-(4-methyl-1-piperazinyl)-piperidin in einer Ausbeute von 13% der Theorie. Farblose, amorphe Substanz. IR (KBr): 1674 (C=O), 2173 (CN) cm ⁻¹	
R _f : 0.30 (Flieβmittel Dichlormethan/Methanol/konz. Ammoniak 8/2/0.2 v/v/v) ESI-MS: (M+H) ⁺ = 784/786/788 (BR ₂)	10
Beispiel 13	
1-[4-Brom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl] cyaniminomethyl]-3,5-dimethyl-D,L-phenylalanyl]-4-(1-methyl-4-piperidinyl)-piperidin	15
Hergestellt analog Beispiel 7 aus N-Cyano-iminodiphenylcarbonat, 3,4-Dihydro-3-(4-piperidinyl)-2(1H)-chinazolinon und 1-[4-Brom-3,5-dimethyl-D-phenylalanyl]-4-(1-methyl-4-piperidinyl)-piperidin in einer Ausbeute von 44% der Theorie. Farblose, amorphe Substanz. IR (KBr) 1666 (C=O), 2173 (CN) cm $^{-1}$ $R_{\rm f}$: 0.63 (Fließmittel: Dichlormethan/Cyclohexan/Methanol/konz. Ammoniak 70/15/15/2 v/v/v/v) MS: M^+ = 716/718 (BR $_2$)	20
Beispiel 14	25
1-[4-Amino-3,5-dibrom-N-[[4-[1,3-dihydro-4-phenyl-2(2H)-oxoimidazol-1-yl]-1-piperidinyl]cyaniminomethyl]-D-phenylalanyl]-4-(4-methyl-1-piperazinyl)-piperidin	
a) 1-[4-Amino-3,5-dibrom-N-[(phenoxy)cyaniminomethyl]-D-phenylalanyl]-4-(4-methyl-1-piperazinyl)-piperidin	30
Hergestellt analog Beispiel 1a) aus N-Cyan-iminodiphenylcarbonat und 1-(4-Amino-3,5-dibrom-D-phenylalanyl)-4-(4-methyl-1-piperazinyl)piperidin-bis-(trifluoracetat) in einer Ausbeute von 82% der Theorie. Farblose, kristalline Substanz vom R_f 0.56 (FM1). IR (KBr): 1610 (C=O), 2195 (CN) cm ⁻¹	35
ESI-MS: $(M+H)^+ = 646/648/650 \text{ (BR}_2)$	
b) 1-[4-Amino-3,5-dibrom-N-[[4-[1,3-dihydro-4-phenyl-2(2H)-oxoimidazol-1-yl]-1-piperidinyl]cyaniminomethyl]-D-phenylalanyl]-4-(4-methyl-1-piperazinyl)-piperidin	4(
Hergestellt analog Beispiel 1b) aus 1,3-Dihydro-1-(4-piperidinyl)-4-phenyl-2(2H)-imidazolon und 1-[4-Amino-3,5-dibrom-N-[(phenoxy)cyaniminomethyl]-D-phenylalanyl]-4-(4-methyl-1-piperazinyl)-piperidin in einer Ausbeute von 19% der Theorie. Farblose, amorphe Substanz. IR (KBr): 1699 (C=O), 2173 (CN) cm ⁻¹	4(
R_f : 0.15 (Fließmittel: Dichlormethan/Methanol/konz. Ammoniak 9/1/0.1 v/v/v)) ESI-MS: (M+H) ⁺ = 796/798/800 (BR ₂)	4:
Beispiel 15	
1-[4-Amino-3,5-dibrom-N-[(4-(2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-phenylalanyl]-4-(4-methyl-1-piperazinyl)-piperidin	50
Hergestellt analog Beispiel 1b) aus 3-(1-Piperidinyl)-2,3,4,5-tetrahydro-1,3-benzodiazepin-2(1H)-on und 1-[4-Amino-3,5-dibrom-N-[(phenoxy)cyaniminomethyl]-D-phenylalanyl]-4-(4-methyl-1-piperazinyl)-piperidin in einer Ausbeute von 5% der Theorie. Farblose, amorphe Substanz. IR (KBr): 1653 (C=O), 2173 (CN) cm ⁻¹ R _f : 0.27 (Fließmittel: Dichlormethan/Methanol/konz. Ammoniak 9/1/0.1 v/v/v))	55
ESI-MS: $(M+H)^+ = 797/799/801$ (BR ₂)	
Beispiel 16	60
1-[4-Amino-3,5-dibrom-N-[[4-(2,4-dihydro-5-phenyl-3(3H)-oxo-1,2,4-triazol-2-yl)-1-piperidinyl]cyaniminomethyl)- D-phenylalanyl)-4-(1-piperidinyl)-piperidin	
a) 1-[4-Amino-3,5-dibrom-N-[(phenoxy)cyaniminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin	6:
Hergestellt analog Beispiel 1a) aus N-Cyan-iminodiphenylcarbonat und 1-(4-Amino-3,5-dibrom-D-phenylalanyl)-4-(1-piperidinyl)piperidin in einer Ausbeute von 93% der Theorie.	

 $Farblose, \, kristalline \,\, Substanz \,\, vom \,\, R_f \,\, 0.25 \,\, (Fließmittel: \,\, Dichlormethan/Methanol \,\, 9/1 \,\, v/v).$

IR (KBr): 1616 (C=O), 2197 (CN) cm⁻¹ ESI-MS: (M+H)⁺ = 631/633/635 (BR₂)

b) 1-[4-Amino-3,5-dibrom-N-[[4-(2,4-dihydro-5-phenyl-3(3H)-oxo-1,2,4-triazol-2-yl)-1-piperidinyl]cyaniminome-thyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin

Hergestellt analog Beispiel 1b) aus 2,4-Dihydro-2-(4-piperidinyl)-5-phenyl-1,2,4-triazol-3(3H)-on und 1-[4-Amino-3,5-dibrom-N-[(phenoxy)cyaniminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)piperidin in einer Ausbeute von 31% der Theorie. Farblose, amorphe Substanz.

IR (KBr): 1695 (C=O), 2173 (CN) cm⁻¹

R_f: 0.26 (Fließmittel: Dichlormethan/Methanol/konz. Ammoniak 9/1/0.1 v/v/v)

EST-MS: $(M+H)^+ = 781/783/785$ (BR₂)

Beispiel 17

1-[4-Amino-3,5-dibrom-N-[[4-(2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin

Hergestellt analog Beispiel 1b) aus 3-(4-Piperidinyl)-2,3,4,5-tetrahydro-1,3-benzodiazepin-2(1H)-on und 1-[4-Amino-3,5-dibrom-N-[(phenoxy)cyaniminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)piperidin in einer Ausbeute von 22% der Theorie. Farblose, kristalline Substanz.

IR (KBr): 1658 (C=O), 2171 (CN) cm⁻¹

R_f: 0.33 (Fließmittel: Dichlormethan/Methanol/konz, Ammoniak 9/1/0.1 v/v/v)

ESI-MS: $(M+H)^+ = 782/784/786$ (BR₂)

Beispiel 18

1-[3,5-Dibrom-N-[[4-(2,4-dihydro-5-phenyl-3(3H)-oxo-1,2,4-triazol-2-yl)-1-piperidinyl]cyaniminomethyl]-D-tyrosyl]-30 4-(1-piperidinyl)-piperidin

a) 1-[3,5-Dibrom-N-[(phenoxy)cyaniminomethyl]-D-tyrosyl]-4-(-piparidinyl)-piperidin

Hergestellt analog Beispiel 1a) aus N-Cyan-iminodiphenylcarbonat und 1-(3,5-Dibrom-D-tyrosyl)-4-(1-piperidinyl)piperidin in einer Ausbeute von 51% der Theorie. Farblose, kristalline Substanz vom 0.86 (Fließmittel: Dichlormethan/Methanol/konz. Ammoniak 75/25/5 v/v/v).

ESI-MS:

 $(M+H)^+ = 632/634/636 (BR_2)$

(M-H) = 630/632/634 (BR₂)

b) 1-[3,5-Dibrom-N-[[4-(2,4-dihydro-5-phenyl-3(3H)-oxo-1,2,4-triazol-2-yl)-1-piperidinyl]cyaniminomethyl]-D-tyro-syll-4-(1-piperidinyl)-piperidin

Hergestellt analog Beispiel 1b) aus 2,4-Dihydro-2-(4-piperidinyl)-5-phenyl-1,2,4-triazol-3(3H)-on und 1-[3,5-Di-brom-N-[(phenoxy)cyaniminomethyl]-D-tyrosyl]-4-(1-piperidinyl)piperidin in einer Ausbeute von 32% der Theorie. Farblose, amorphe Substanz.

IR (KBr): 1695 (C=O), 2173 (CN) cm⁻¹

R_f: 0.33 (FM1)

ESI-MS: $(M+H)^+ = 782/784/786$ (BR₂)

50

55

40

15

Beispiel 19

1-[3,5-Dibrom-N-[[4-(2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-tyro-syl]-4-(1-pineridinyl)-piperidin

Hergestellt analog Beispiel 1b) aus 3-(4-Piperidinyl)-2,3,4,5-tetrahydro-1,3-benzodiazepin-2(1H)-an und 1-[4-3,5-Dibrom-N-[(phenoxy)cyaniminomethyl]-D-tyrosyl]-4-(1-piperidinyl)piperidin in einer Ausbeute von 40% der Theorie. Farblose, amorphe Substanz.

IR (KBr): 1653 (C=O), 2171 (CN) cm⁻¹

50 R_f: 0.44 (FM1)

ESI-MS: $(M+H)^+ = 783/785/787$ (BR₂)

Beispiel 20

1-[3,5-Dibrom-N-[[4-(2,4-dihydro-5-phenyl-3(3H)-oxo-1,2,4-triazol-2-yl)-1-piperidinyl] cyaniminomethyl]-D-tyrosyl]-4-(1-methyl-4-piperidinyl)-piperazin	
a) 1-[3,5-Dibrom-N-[(phenoxy)cyaniminomethyl]-D-tyrosyl]-4-(1-methyl-4-piperidinyl)-piperazin	5
Hergestellt analog Beispiel 1a) aus N-Cyan-iminodiphenylcarbonat und 1-(3,5-Dibrom-D-tyrosyl)-4-(1-methyl-4-piperidinyl)piperazin in einer Ausbeute von 44% der Theorie. Farblose, kristalline Substanz vom 0.50 (Fließmittel: Dichlormethan/Methanol/konz. Ammoniak 75/25/5 v/v/v). IR (KBr): 1622 (C=O) cm ⁻¹ ESI-MS: (M+H) ⁺ = $647/649/651$ (BR ₂) (M-H) = $645/647/649$ (BR ₂)	10
b) 1-[3,5-Dibrom-N-[[4-(2,4-dihydro-5-phenyl-3(3H)-oxo-1,2,4-triazol-2-yl)-1-piperidinyl] cyaniminomethyl]-D-tyrosyl]-4-(1-methyl-4-piperidinyl)-piperazin	15
Hergestellt analog Beispiel 1b) aus 2,4-Dihydro-2-(4-piperidinyl)-5-phenyl-1,2,4-triazol-3(3H)-on und 1-[3,5-Dibrom-N-[(phenoxy)cyaniminomethyl]-D-tyrosyl]-4-(1-methyl-4-piperidinyl)piperazin in einer Ausbeute von 20% der Theorie. Farblose, amorphe Substanz. IR (KBr): 1701 (C=O), 2173 (CN) cm $^{-1}$ R _f : 0.18 (Fließmittel Dichlormethan/Methanol/konz. Ammoniak 8/2/0.2 v/v/v)	20
ESI-MS: $(M+H)^+ = 797/799/801$ (BR ₂)	
Beispiel 21	25
1-[3,5-Dibrom-N-[[4-(2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl] cyaniminomethyl]-D-tyrosyl]-4-(1-methyl-4-piperidinyl)-piperazin	30
Hergestellt analog Beispiel 1b) aus 3-(4-Piperidinyl)-2,3,4,5-tetrahydro-1,3-benzodiazepin-2(1H)-on und 1-[3,5-Dibrom-N-[(phenoxy)cyaniminomethyl]-D-tyrosyl]-4-(1-methyl-4-piperidinyl)piperazin in einer Ausbeute von 32% der Theorie. Farblose, amorphe Substanz. IR (KBr): 1653 (C=O), 2171 (CN) cm ⁻¹ R_f : 0.19 (Fließmittel Dichlormethan/Methanol/konz. Ammoniak 8/2/0.2 v/v/v) ESI-MS: (M+H)+ = 798/800/802 (BR ₂) (M-H)-=796/798/800 (BR ₂)	35
Beispiel 22	
1-[4-Amino-3,5-dibrom-N-[[4-(2,4-dihydro-5-phenyl-3(3H)-oxo-1,2,4-triazol-2-yl)-1-piperidinyl]cyaniminomethyl]-D-phenylalanyl]-4-(1-methyl-4-piperidinyl)-piperazin	40
a) 1-[4-Amino-3,5-dibrom-N-[(phenoxy)cyaniminomethyl]-D-phenylalanyl]-4-(1-methyl-4-piperidinyl)-piperazin	
Hergestellt analog Beispiel 1a) aus N-Cyan-iminodiphenylcarbonat und 1-(4-Amino-3,5-dibrom-D-phenylalanyl)-4-(1-methyl-4-piperidinyl)piperazin in einer Ausbeute von 38% der Theorie. Farblose, kristalline Substanz vom 1% 0.57 (FM1). IR (KBr): 1689 (C=O) cm ⁻¹	45
ESI-MS: $(M+H)^+ = 646/648/650 (BR_2)$	50
b) 1-[4-Amino-3,5-dibrom-N-[[4-(2,4-dihydro-5-phenyl-3(3H)-oxo-1,2,4-triazol-2-yl)-1-piperidinyl]cyaniminomethyl]-D-phenylalanyl]-4-(1-methyl-4-piperdinyl)-piperazin	50
Hergestellt analog Beispiel 1b) aus 2,4-Dihydro-2-(4-piperidinyl)-5-phenyl-1,2,4-triazol-3(3H)-on und 1-[4-Amino-3,5-dibrom-N-[(phenoxy)cyaniminomethyl]-D-phenylalanyl]-4-(1-methyl-4-piperidinyl)piperazin in einer Ausbeute von 9% der Theorie. Farblose, amorphe Substanz. IR (KBr): 1701 (C=O), 2171 (CN) cm ⁻¹	55
R_f : 0.33 (FM1) ESI-MS: $(M+H)^+ = 796/798/800$ (BR ₂)	60
Beispiel 23	
1-[4-Amino-3,5-dibrom-N-[[4-(2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]cyaniminome-thyl]-D-phenylalanyl]-4-(1-methyl-4-piperidinyl)-piperazin	65
Hergestellt analog Beispiel 1b) aus 3-(4-Piperidinyl)-2,3,4,5-tetrahydro-1,3-benzodiazepin-2(1H)-on und 1-[4-Amino-3,5-dibrom-N-[(phenoxy)cyaniminomethyl]-D-phenylalanyl]-4-(1-methyl-4-piperidinyl)piperazin in einer Aus-	

10

15

20

35

45

50

60

von 51% der Theorie. Farblose Kristalle (aus Aceton).

IR (KBr): 1658 (C=O), 2173 (CN) cm⁻¹

R_f: 0.65 (FM1)

```
beute von 15% der Theorie. Farblose, amorphe Substanz.
 IR (KBr) 2173 (CN) cm<sup>-1</sup>
 R<sub>f</sub>: 0.19 (FM1)
 ESI-MS: (M+H)^+ = 797/799/801 (BR<sub>2</sub>)
                                                        Beispiel 24
  1-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-4-methyl-D,L-phenyla-
                                        lanyl]-4-(1-methyl4-piperidinyl)-piperidin
    Hergestellt analog Beispiel 7 aus N-Cyano-iminodiphenylcarbonat, 3,4-Dihydro-3-(4-piperidinyl)-2(1H)-chinazoli-
 non und 1-[3,5-Dibrom-4-methyl-D,L-phenylalanyl]-4-(1-methyl-4-piperidinyl)-piperidin in einer Ausbeute von 49%
 der Theorie. Farblose, kristalline Substanz.
 IR (KBr): 1668 (C=O), 2175 (CN) cm<sup>-1</sup>
R<sub>f</sub>: 0.5 (FM1)
 ESI-MS:
 (M+H)^+ = 781/783/785 (BR_2)
 (M-H)- = 779/781/783 (BR<sub>2</sub>)
                                                        Beispiel 25
  1-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-4-methyl-D,L-phenyla-
                                             lanyl]-4-(1-piperldinyl)-piperidin
   Hergestellt analog Beispiel 7 aus N-Cyano-iminodiphenylcarbonat, 3,4-Dihydro-3-(4-piperidinyl)-2(1H)-chinazoli-
 non und 1-[3,5-Dibrom-4-methyl-D,L-phenylalanyl]-4-(1-piperidinyl)-piperidin in einer Ausbeute von 34% der Theo-
 rie. Farblose, kristalline Substanz.
 IR (KBr): 1664 (C=O), 2175 (CN) cm<sup>-1</sup>
 R<sub>f</sub>: 0.55 (FM1)
 ESI-MS:
 (M+H)^+ = 767/769/771 (BR<sub>2</sub>)
 (M-H) = 765/767/769 (BR<sub>2</sub>)
                                                        Beispiel 26
 1-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]cyaniminomethyl]-4-methyl-D,L-phenyla-
                                             lanyl]-4-(4-pyridinyl)-piperazin
    Hergestellt analog Beispiel 7 aus N-Cyano-iminodiphenylcarbonat, 3,4-Dihydro-3-(4-piperidinyl)-2(1H)-chinazoli-
 non und 1-[3,5-Dibrom-4-methyl-D,L-phenylalanyl]-4-(4-pyridinyl)-piperazin in einer Ausbeute von 6% der Theorie.
 Farblose, kristalline Substanz.
 IR (KBr): 2171 (CN) cm<sup>-1</sup>
 R<sub>f</sub>: 0.60 (FM1)
 EST-MS: (M+H)^+ = 762/764/766 (BR<sub>2</sub>)
                                                        Beispiel 27
  1-[4-Amino-3,5-dibrom-N-[[4-[1,3-dihydro-2(2H)-oxoimidazo-[4,5-c]chinolin-3-yl]-1-piperidinyl]cyaniminomethyl]-
                                        D-phenylalanyl]-4-(1-piperidinyl)piperidin
    Hergestellt analog Beispiel 1b) aus 1,3-Dihydro-3-(4-piperidinyl)-imidazo[4,5-c]chinolin-2(2H)-on und 1-[4-Amino-
 3,5-dibrom-N-[(phenoxy)cyaniminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)piperidin in einer Ausbeute von 9% der
 Theorie.
 Farblose, amorphe Substanz.
IR (KBr): 1712 (C=O), 2173 (CN) cm<sup>-1</sup>
 R<sub>f</sub>: 0.45 (FM1)
 ESI-MS: (M+H)^+ = 805/807/809 (BR<sub>2</sub>)
                                                        Beispiel 28
  1-[4-Amino-3,5-dibrom-N-[[4-(7-methoxy-2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]cyani-
                                 minomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin
```

20

Hergestellt analog Beispiel 1b) aus 7-Methoxy-3-(4-piperidinyl)-2,3,4,5-tetrahydro-1,3-benzodiazepin-2(1H)-on und 1-[4-Amino-3,5-dibrom-N-[(phenoxy)cyaniminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)piperidin in einer Ausbeute

ESI-MS: $(M+H)^+ = 812/814/816$ (BR₂)

Beispiel 29

1-[4-Amino-3,5-dibrom-N-[[4-(5,7-dihydro-6-oxodibenzo[d,f]-[1,3]diazepin-5-yl)-1-piperidinyl]cyaniminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperizin

2-Nitro-2'-[[1-(phenylmethyl)-4-piperidinyl]amino]-biphenyl

Zu der Lösung von 30.0 g (0.140 Mol) 2-Amino-2'-nitrobiphenyl und 111.5 g (0.630 Mol) 1-(Phenylmethyl)-4-piperidon in 1200 ml Dichlormethan gab man unter Einhaltung einer Reaktionstemperatur von 0°C portionsweise insgesamt 140.5 g (0.630 Mol) Natriumtriacetoxyborhydrid und rührte anschließend 14 Stunden lang bei Zimmertemperatur. Man stellte die Mischung natronalkalisch, trennte die Dichlormethanphase ab, trocknete sie über Natriumsulfat und dampfte sie ein. Der Rückstand wurde mit Methanol digeriert, worauf man filtrierte. Das Filtrat wurde eingedampft, der verbleibende Rückstand an Aluminiumoxid (Aktivitätsstufe 3) unter Verwendung von PE/EE 9/1 (v/v) als Eluens chromatographisch gereinigt. Entsprechende Fraktionen wurden vereinigt, vom Lösemittel befreit und ohne weitere Reinigung in der nächsten Stufe verwendet. Ausbeute: 40.0 g (74% der Theorie).

2-Amino-2'-[[1-(phenylmethyl)-4-piperidinyl]amino]-biphenyl

Die Lösung von 40.0 g (0.103 Mol) 2-Nitro-2'-[[1-(phenylmethyl)-4-piperidinyl]amino]-biphenyl in 500 ml Methanol wurde in Gegenwart von Sproz. wasserfeuchtem Rhodium auf Kohle 2 Stunden lang hydriert. Der Katalysator wurde abfiltriert, die erhaltene Lösung eingedampft und das so erhaltene Rohprodukt ohne weitere Reinigung in der nächsten Stufe verwendet.

Ausbeute: 36.0 g (98% der Theorie).

c) 5,7-Dihydro-5-[1-(phenylmethyl)-4-piperidinyl]-dibenzo-[d,f][1.3]diazepin-6-on

Zu der Lösung von 36.0 g (0.101 Mol) 2-Amino-2'-[[1-(phenylmethyl)-4-piperidinyl]amino]-biphenyl in 200 ml Dimethylformamid gab man 40.5 g (0.250 Mol) N,N'-Carbonyldiimidazol, rührte anschließend das Gemisch 2 Stunden lang bei 100°C, wonach das Lösemittel im Vakuum entfernt wurde. Der Rückstand wurde mit Wasser verrührt, danach mit Dichlormethan erschöpfend extrahiert. Die vereinigten organischen Extrakte wurden über Natriumsulfat getrocknet, mit Aktivkohle geklärt und eingedampft. Der Rückstand (60 g) wurde an Aluminiumoxid der Aktivitätsstufe 3 unter Verwendung von PE/EE 2/1 (v/v) chromatographisch gereinigt. Aus den entsprechenden Fraktionen erhielt man die gesuchte Verbindung in einer Ausbeute von 6.2 g (16% der Theorie). IR (KBr): 1676 (C=O) cm⁻¹

 R_f : 0.35 (Fließmittel: Dichlormethan/Methanol = 9.5/0.5 v/v)

MS: M+ = 383

d) 5,7-Dihydro-5-(4-piperidinyl)-dibenzo[d,f][1,3]diazepin-6-on

Die Lösung von 6.0 g (0.016 Mol) 5,7-Dihydro-5-[1-(phenylmethyl)-4-piperidinyl]-dibenzo[d,f][1,3]diazepin-6-on in 200 ml Methanol wurde in Gegenwart von 1.5 g 10-proz. Palladiumkohle bis zur Beendigung der Wasserstoffaufnahme bei 50°C hydriert. Nach Entfernung des Katalysators und des Lösemittels erhielt man 3.5 g (76% der Theorie) der gesuchten Verbindung, die ohne weitere Reinigung in die nächste Stufe eingesetzt wurde.

IR (KBr): 1678 (C=O) cml

 R_f : 0.15 (FM1) MS: M^+ = 293

e) 1-[4-Amino-3,5-dibrom-N-[[4-(5,7-dihydro-6-oxodibenzo-[d,f][1,3]diazepin-5-yl)-1-piperidinyl]cyaniminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)-piperidin

Hergestellt analog Beispiel 1b) aus 5,7-Dihydro-5-(4-piperidinyl)-dibenzo[d,f][1,3]diazepin-6-on und 1-[4-Amino-3,5-dibrom-N-[(phenoxy)cyaniminomethyl]-D-phenylalanyl]-4-(1-piperidinyl)piperidin in einer Ausbeute von 25% der Theorie. Farblose Kristalle.

IR (KBr): 1684 (C=O), 2173 (CN) cm⁻¹

R_f: 0.65 (FM1)

ESI-MS: $(M+H)^+ = 830/832/834$ (BR₂)

Beispiel 30 60

15

20

30

35

40

45

55

1-[4-Amino-3,5-dibrom-N-[[4-(7-methoxy-2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]cyani-minomethyl]-D-phenylalanylalanal9-4-(1-methyl-4-piperidinyl)-piperazin

Hergestellt analog Beispiel 1b) aus 7-Methoxy-3-(4-piperidinyl)-2,3,4,5-tetrahydro-1,3-benzodiazepin-2(1H)-on und 1-[4-Amino-3,5-dibrom-N-[(phenoxy)cyaniminomethyl]-D-phenylalanyl]-4-(1-methyl-4-piperidinyl)piperazin in einer Ausbeute von 53% der Theorie. Farblose Kristalle (Diisopropylether). IR (KBr): 1647 (C=O) cm⁻¹

 $R_f{:}\ 0.75$ (Fließmittel: Dichlormethan/Methanol/konz. Ammoniak 70/25/5 v/v/v) ESI-MS:

 $(M+H)^+ = 827/829/831 (BR_2)$

(M-H)-=825/827/829 (BR₂)

10

25

50

65

Beispiel 31

1-[4-Amino-3,5-dibrom-N-[[4-[1,3-dihydro-2(2H)-oxoimidazo-[4,5-c]chinolin-3-yl]-1-piperidinyl]cyaniminomethyl]-D-phenylalanyl]-4-(1-methyl-4-piperidinyl)-piperazin

Hergestellt analog Beispiel 1b) aus 1,3-Dihydro-3-(4-piperidinyl)-imidazo[4,5-c]chinolin-2(2H)-on und 1-[4-Amino-3,5-dibrom-N-[(phenoxy)cyaniminomethyl]-D-phenylalanyl]-4-(1-methyl-4-piperidinyl)piperazin in einer Ausbeute von 13% der Theorie. Farblose, kristalline Substanz.

IR (KBr): 1711 (C=O) cm⁻¹

5 R_f: 0.70 (Flieβmittel: Dichlormethan/Methanol/konz. Ammoniak 70/25/5 v/v/v) ESI-MS:

 $(M+H)^+ = 820/822/824 (BR_2)$

(M-H) = 818/820/822 (BR₂)

Beispiel 32

1-[4-Amino-3,5-dibrom-N-[[4-(2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]-D-phenylalanyl]-4-(1-methyl-4-piperidinyl)-piperazin

a) 1-[4-Amino-3,5-dibrom-N-(2-hydroxyphenoxysulfonyl)-D-phenylalanyl9-4-(1-methyl-4-piperidinyl)-piperazin

Unter äußerer Kühlung mit Eis gab man zu der Lösung von 2.000 g (3.974 mMol) 1-(4-Amino-3,5-dibrom-D-pheny-lalanyl)-4-(1-methyl-4-piperidinyl)-piperazin und 0.61 ml (0.004 mMol) Triethylamin in 50 ml Dimethylformamid 1.377 g (7.998 mMol) Brenzkatechinsulfat und rührte anschließend 1 Stunde unter weiterer Eiskühlung und 2 Stunden lang bei Zimmertemperatur. Das Reaktionsgemisch wurde bei einer maximalen Badtemperatur von $+40^{\circ}$ C im Vakuum eingeengt, der Rückstand mit Diethylether verrieben, an der Luft getrocknet und ohne weitere Reinigung in der nächsten Stufe verwendet. Ausbeute: 2.68 g (100% der Theorie). $R_{\rm f}$: 0.30 (FM1).

b) 1-[4-Amino-3,5-dibrom-N-[[4-(2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]sulfonyl]-D-phenylalanyl]-4-(1-methyl-4-piperidinyl)-piperazin

Das Gemisch aus 2.680 g (3.968 mMol) 1-[4-Amino-3,5-dibrom-N-(2-hydroxyphenoxysulfonyl)-D-phenylalanyl]-4-(1-methyl-4-piperidinyl)-piperazin, 1.472 g (6.00 mMol) 3-(4-Piperidinyl)-2,3,4,5-tetrahydro-1,3-benzodiazepin-2(1H)-on und 100 ml Dioxan wurde 1 Stunde unter Rückfluß gekocht, dann im Vakuum eingedampft, der Rückstand in 200 ml 10-proz. wässerige Ammoniaklösung eingerührt. Die so erhaltene Mischung wurde erschöpfend mit Essigsäure-ethylester extrahiert. Die vereinigten organischen Extrakte wurden über Natriumsulfat getrocknet und vom Lösemittel befreit. Der Rückstand wurde an Kieselgel (MN-Kieselgel 60, Macherey-Nagel, 30–60 µm) unter Verwendung von FM1 als Eluens chromatographisch gereinigt. Die geeigneten Fraktionen wurden vereinigt, eingedampft, der Rückstand mit Diethylether verrieben, abgenutscht und im Vakuum getrocknet. Man erhielt 0.1 g (3.1% der Theorie) der gesuchten Verbindung in Form farbloser Kristalle vom R_f 0.65 (FM1).

IR (KBr) 1657 (C=O) cm⁻¹

ESI-MS: $(M+H)^+ = 809/811/813$ (BR₂)

Beispiel 33

1-[3,5-Dibrom-N-[[4-(7-methoxy-2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]-cyaniminomethyl]-D-tyrosyl]-4-(1-piperidinyl)-piperidin

Hergestellt analog Beispiel 1b) aus 7-Methoxy-3-(4-piperidinyl)-2,3,4,5-tetrahydro-1,3-benzodiazepin-2(1H)-on und 1-[3,5-Dibrom-N-[(phenoxy)cyaniminomethyl]-D-tyrosyl]-4-(1-piperidinyl)piperidin in einer Ausbeute von 24% der Theorie. Farblose Kristalle (Diethylether).

IR (KBr): 1653 (C=O) cm⁻¹

 R_f : 0.31 (FM1)

60 ESI-MS: $(M+H)^+ = 813/815/817$ (BR₂)

Beispiel 34

1-[3,5-Dibrom-N-[[4-(7-methoxy-2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]cyaniminomethyl]-D-tyrosyl]-4-(1-methyl-4-piperidinyl)-piperazin

Hergestellt analog Beispiel 1b) aus 7-Methoxy-3-(4-piperidinyl)-2,3,4,5-tetrahydro-1,3-benzodiazepin-2(1H)-on und 1-[3,5-Dibrom-N-[(phenoxy)cyaniminomethyl]-D-tyrosyl]-4-(1-methyl-4-piperidinyl)piperazin in einer Ausbeute von

5

65

23% der Theorie. Farblose Kristalle (Diethylether). IR (KBr) 1647 (C=O) cm⁻¹ R_f: 0.42 (Fließmittel: Dichlormethan/Methanol/konz. Ammoniak 75/25/5 v/v/v) ESI-MS: (M-H) = 826/828/830 (BR₂) Beispiel 35 1-[3,5-Dibrom-N-[[4-[1,3-dihydro-2(2H)-oxoimidazo[4,5-c]chinolin-3-yl]-1-piperidinyl]cyaniminomethyl]-D-tyrosyl]-4-(1-piperidinyl)-piperidin 10 Hergestellt analog Beispiel 1b) aus 1,3-Dihydro-3-(4-piperidinyl)-imidazo[4,5-c]chinolin-2(2H)-on und 1-[3,5-Dibrom-N-[(phenoxy)cyaniminomethyl]-D-tyrosyl]-4-(1-piperidinyl)piperidin in einer Ausbeute von 10% der Theorie. Farblose, kristalline Substanz. IR (KBr): 1709 (C=O) cm⁻¹ R_f: 0.21 (FM1) 15 ESI-MS: $(M+H)^+ = 806/808/810 (BR_2)$ (M-H) = 804/806/808 (BR₂)Beispiel 36 20 1-[3,5-Dibrom-N-[[4-[1,3-dihydro-2(2H)-oxoimidazo[4,5-c]chinolin-3-yl]-1-piperidinyl]eyaniminomethyl]-D-tyrosyl]-4-(1-methyl-4-piperidinyl)-piperazin Hergestellt analog Beispiel 1b) aus 1,3-Dihydro-3-(4-piperidinyl)-imidazo[4,5-c]chinolin-2(2H)-on und 1-[3,5-Dibrom-N-[(phenoxy)cyaniminomethyl]-D-tyrosyl]-4-(1-methyl-4-piperidinyl)piperazin in einer Ausbeute von 31% der Theorie. Farblose, kristalline Substanz. IR (KBr): 1635, 1705 (C=O) cm⁻¹ R_f : 0.07 (Fließmittel: Dichlormethan/Methanol/konz. Ammoniak 80/20/2 v/v/v) ESI-MS: 30 $(M+H)^+ = 821/823/825 (BR₂)$ (M-H) = 819/821/823 (BR₂) Beispiel 37 35 1-[4-Amino-3,5-dibrom-N-[4-(7-methoxy-2,3,4,5-tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl)-1-piperidinyl]cyanimino-methyl]-D-phenylalanyl]-4-(4-methyl-1-piperazinyl)-piperidin Hergestellt analog Beispiel 1b) aus 7-Methoxy-3-(4-piperidinyl)-2,3,4,5-tetrahydro-1,3-benzodiazepin-2(1H)-an und 1-[4-Amino-3,5-dibrom-N-[(phenoxy)cyaniminomethyl]-D-phenylalanyl]-4-(4-methyl-1-piperazinyl)piperidin in einer Ausbeute von 21% der Theorie. Farblose Kristalle (Diethylether). R_f: 0.53 (Fließmittel: Dichlormethan/Methanol/konz. Ammoniak 80/20/2 v/v/y) ESI-MS: $(M+H)^+ = 827/829/831 (BR_2)$ (M-H)- = 825/827/829 (BR₂)45 $(M+Na)^+ = 849/851/853 (BR₂)$ Beispiel 38 1-[4-Amino-3,5-dibrom-N-[]4-[1,3-dihydro-2(2H)-oxoimidazo[4,5-c]chinolin-3-yl]-1-piperidinyl]cyaniminomethyl]-D-phenylalanyl]-4-(4-methyl-1-piperazinyl)-piperidin Hergestellt analog Beispiel 1b) aus 1,3-Dihydro-3-(4-piperidinyl)-imidazo[4,5-c]chinolin-2(2H)-an und 1-[4-Amino-3,5-dibrom-N-[(phenoxy)cyaniminomethyl]-D-phenylalanyl]-4-(4-methyl-1-piperazinyl)piperidin in einer Ausbeute von 8% der Theorie. 55 Farblose, kristalline Substanz (Diisopropylether). IR (KBr): 1714 (C=O) cm⁻¹ R_f: 0.43 (Fließmittel: Dichlormethan/Methanol/konz. Ammoniak 80/20/2 v/v/v) ESI-MS: $(M+H)^+ = 820/822/824 (BR₂)$ 60 (M-H) = 818/820/822 (BR₂) Die nachfolgenden Beispiele beschreiben die Herstellung pharmazeutischer Anwendungsformen, die als Wirkstoff eine beliebige Verbindung der allgemeinen Formel I enthalten:

Beispiel I

Kapseln zur Pulverinhalation mit 1 mg Wirkstoff

5	Zusammensetzung			
	1 Kapsel zur Pulverinhalation enthält:			
10	$\begin{array}{ll} \text{Wirkstoff} & 1.0 \text{ mg} \\ \text{Milchzucker} & 20.0 \text{ mg} \\ \text{Hartgelatinekapseln} & \frac{50.0 \text{ mg}}{71.0 \text{ mg}} \end{array}$			
15	Herstellungsverfahren			
	Der Wirkstoff wird auf die für Inhalativa erforderliche Korngröße gemahlen. Der gemahlene Wirkstoff wird mit dem Milchzucker homogen gemischt. Die Mischung wird in Hartgelatinekapseln abgefüllt.			
20	Beispiel II			
	Inhalationslösung für Respimat® mit 1 mg Wirkstoff			
25	Zusammensetzung			
20	1 Hub enthält:			
30	Wirkstoff 1.0 mg Benzalkoniumchlorid 0.002 mg Dinatriumedetat 0.0075 mg Wasser gereinigt ad 15.0 µl			
	Herstellungsverfahren			
35	Der Wirkstoff und Benzalkoniumchlorid werden in Wasser gelöst und in Respimat®-Kartuschen abgefüllt.			
	Herstellungsverfahren			
40	Inhalationslösung für Vernebler mit 1 mg Wirkstoff			
	Zusammensetzung			
45	1 Fläschehen enthält:			
	Wirkstoff 0.1 g Natriumchlorid 0.18 g			
	Benzalkoniumchlorid 0.002 g Wasser gereinigt ad 20.0 ml			
50	Wasser gereinigt act			
	Herstellungsverfahren			
55	Wirkstoff. Natriumchlorid und Benzalkoniumchlorid werden in Wasser gelöst.			
	Beispiel IV			
	Treibgas-Dosieraerosol mit 1 mg Wirkstoff			
60	Zusammensetzung			
	1 Hub enthält:			
65	Wirkstoff 1.0 mg Lecithin 0.1% Treibgas ad $50.0 \mu l$			

Herstellungsverfahren

Der mikronisierte Wirkstoff wird in dem Gemisch aus Lecithin und Treibgas homogen suspendiert. Die Suspension wird in einen Druckbehälter mit Dosierventil abgefüllt.

wird in einen Druckbehälter mit Dosierventil abgefüllt.		
Beispi	el V	5
Nasalspray mit	mg Wirkstoff	
Zusamme	nsetzung 10	0
Wirkstoff Natriumchlorid Benzalkoniumchlorid Dinatriumedetat Wasser gereinigt ad	1.0 mg 0.9 mg 0.025 mg 0.05 mg 0.1 ml	5
Herstellung	sverfahren	
Der Wirkstoff und die Hilfsstoffe werden in Wasser gelöst	und in ein entsprechendes Behältnis abgefüllt.)
Beispi	el VI	
Injektionslösung mit 5 mg	Wirksubstanz pro 5 ml 25	5
Zusamme	nsetzung	
Glucose 25 Human-Serum-Albumin 10 Glykofurol 25	mg 10 mg 2 mg 10 mg mg mg 10 mg ml	D
Herste	35 Illung	5
Glykofurol und Glucose in Wasser für Injektionszwecke a unter Erwärmen auflösen; mit WfI auf Ansatzvolumen auffü		
Beispiel VII		
Injektionslösung mit 100 mg Wirksubstanz pro 20 ml		
Zusamme	nsetzung 45	5
Monokaliumdihydrogenphosphat = KH_2PO_4 12 Dinatriumhydrogenphosphat = $Na_2HPO_4 \cdot 2H_2O$ 2 Natriumchlorid 13 Human-Serum-Albumin 50 Polysorbat 80 20	00 mg 2 mg mg 80 mg 50 mg 0 mg	0
Herste	55	5
Polysorbat 80, Natriumchlorid, Monokaliumdihydrogenpl jektionszwecke (WfI) auflösen; Human-Serum-Albumin zug satzvolumen auffüllen; in Ampullen abfüllen.	nosphat und Dinatriumhydrogenphosphat in Wasser für In- eben; Wirkstoff unter Erwärmen auflösen; mit WfI auf An- 60	0

Beispiel VIII

Lyophilisat mit 10 mg Wirksubstanz

Zusammensetzung

Wirksubstanz	10 mg
Mannit	300 mg
Human-Serum-Albumin	20 mg

Herstellung

Mannit in Wasser für Injektionszwecke (WfI) auflösen; Human-Serum-Albumin zugeben; Wirkstoff unter Erwärmen auflösen; mit WfI auf Ansatzvolumen auffüllen; in Vials abfüllen; gefriertrocknen.

Lösungsmittel für Lyophilisat

	Polysorbat 80 = Tween 80	$20 \mathrm{mg}$
20	Mannit	200 mg
	Wasser für Injektionszwecke ad	10 ml

Herstellung

Polysorbat 80 und Mannit in Wasser für Injektionszwecke (WfI) auflösen; in Ampullen abfüllen.

Beispiel IX

Tabletten mit 20 mg Wirksubstanz

Zusammensetzung

Wirksubstanz	20 mg
Lactose	120 mg
Maisstärke	40 mg
Magnesiumstearat	2 mg
Povidon K 25	18 mg
	Lactose Maisstärke Magnesiumstearat

Herstellung

Wirksubstanz, Lactose und Maisstärke homogen mischen; mit einer wässerigen Lösung von Povidon granulieren; mit Magnesiumstearat mischen; auf einer Tablettenpresse abpressen; Tablettengewicht 200 mg.

Beispiel X

Kapseln mit 20 mg Wirksubstanz

50 Zusammensetzung

Wirksubstanz	20 mg
Maisstärke	80 mg
Kieselsäure, hochdispers	5 mg
Magnesiumstearat	2.5 mg

Herstellung

Wirksubstanz, Maisstärke und Kieselsäure homogen mischen; mit Magnesiumstearat mischen; Mischung auf einer Kapselfüllmaschine in Hartgelatine-Kapseln Größe 3 abfüllen.

65

55

10

25

30

40

Beispiel XI

Zäpfehen mit 50 mg Wiksubstanz

Zusammensetzung		
Wirksubstanz Hartfett (Adeps solidus) q.s. ad	50 mg 170 mg	
Her	estellung	10
Hartfett bei ca. 38°C aufschmelzen; gemahlene Wirksul Abkühlen auf ca. 35°C in vorgekühlte Formen ausgießen.	bstanz im geschmolzenen Hartfett homogen dispergieren; nach	
Beis	spiel XII	15
Wäßrige Lösung für die nasale A	Applikation mit 10 mg Wirksubstanz	
Zusamı	mensetzung	20
Wirksubstanz Salzsäure in der zur Bildung eines neutralen Salzes erforderlichen Menge Parahydroxybenzoesäuremethylester (PHB) Parahydroxybenzoesäurepropylester (PHB)	10.0 mg 0.01 mg 0.005 mg	25
Wasser gereinigt ad	1.0 ml	
Her	estellung	30
Der Wirkstoff wird in gereinigtem Wasser aufgelöst; Salzsäure wird zugegeben, bis die Lösung klar wird; PHB-Methyl- und Propylester werden zugegeben; die Lösung wird mit gereinigtem Wasser auf Ansatzvolumen aufgefüllt; die Lösung wird sterilfiltriert und in ein entsprechendes Behältnis abgefüllt.		35
Beispiel XIII		
	Applikation mit 5 mg Wirksubstanz	
Zusammensetzung 40		
Wirksubstanz 1,2-Propandiol Hydroxyethylcellulose Sorbinsäure Wasser gereinigt ad	5 mg 300 mg 5 mg 1 mg 1 ml	45
Herstellung Der Wirkstoff wird in 1,2-Propandiol gelöst; eine Hydroxyethyl-cellulose-Lösung in gereinigtem Wasser enthaltend Sorbinsäure wird hergestellt und zur Wirkstoff-Lösung gegeben; die Lösung wird sterilfiltriert und in ein entsprechendes Behältnis abgefüllt.		50
Beis	piel XIV	55
Wäßrige Lösung für die intravenöse Applikation mit 5 mg Wirksubstanz		
Zusammensetzung		
Wirksubstanz 1,2-Propandiol	5 mg 300 mg	60
Mannit Wasser für Injektionszwecke (WfI) ad	50 mg 1 ml	65

Herstellung

Der Wirkstoff wird in 1,2-Propandiol gelöst; die Lösung wird mit WfI auf annähernd Ansatzvolumen aufgefüllt; das Mannit wird zugegeben und mit WfI auf Ansatzvolumen aufgefüllt; die Lösung wird sterilfiltriert, in Einzelbehältnisse abgefüllt und autoklaviert.

Beispiel XV

Liposomale Formulierung für die intravenöse Injektion mit 7.5 mg Wirksubstanz

10

Zusammensetzung

	Wirksubstanz	7.5 mg
	Ei-lecithin, z. B. Lipoid E 80	100.0 mg
15	Cholesterol	50.0 mg
	Glycerin	50.0 mg
	Wasser für Injektionszwecke ad	1.0 ml

20

Herstellung

Der Wirkstoff wird in einer Mischung aus Lecithin und Cholesterol gelöst; die Lösung wird zu einer Mischung aus Glycerin und WfI gegeben und mittels Hochdruck-Homogenisation oder Microfluidizer-Technik homogenisiert; die so erhaltene liposomale Formulierung wird unter aseptischen Bedingungen in ein entsprechendes Behältnis abgefüllt.

25

Beispiel XVI

Suspension für die nasale Applikation mit 20 mg Wirksubstanz

30

Zusammensetzung

	Wirksubstanz	20.0 mg
	Carboxymethylcellulose (CMC)	20.0 mg
	Natriummonohydrogenphosphat/Natriumdihydro-	q.s.
35	genphosphat-Puffer pH 6.8	
	Natriumchlorid	$8.0~\mathrm{mg}$
	Parahydroxybenzoesäuremethylester	0.01 mg
	Parahydroxybenzoesäurepropylester	0.003 mg
	Wasser gereinigt ad	1.0 ml
40		

Herstellung

Der Wirkstoff wird in einer wässrigen CMC-Lösung suspendiert; die anderen Bestandteile werden nacheinander zur Suspension gegeben und die Suspension mit gereinigtem Wasser auf Ansatzvolumen aufgefüllt.

Beispiel XVII

Wässrige Lösung für die subcutane Applikation mit 10 mg Wirksubstanz

50

Zusammensetzung

55	Wirksubstanz	10.0 mg
	Natriummonohydrogenphosphat/Natriumdihydro-	7.0
	genphosphat-Puffer q.s. ad pH	
	Natriumchlorid	$4.0 \mathrm{mg}$
	Wasser für Injektionszwecke ad	0.5 ml

60

Herstellung

Der Wirkstoff wird in der Phosphatpufferlösung gelöst, nach Zugabe des Kochsalz wird mit Wasser auf Ansatzvolumen aufgefüllt. Die Lösung wird sterilfiltriert und nach Abfüllung in ein entsprechendes Behältnis autoklaviert.

Beispiel XVIII

Wässrige Suspension für die subcutane Applikation mit 5 mg Wirksubstanz

Zusammensetzung

Wirksubstanz5.0 mgPolysorbat 800.5 mgWasser für Injektionszwecke0.5 ml

10

5

Herstellung

Der Wirkstoff wird in der Polysorbat 80-Lösung suspendiert und mittels geeigneter Dispergiertechnik (z. B. Naßmahlung, Hochdruckhomogenisation, Mikrofluidisierung etc.) auf eine Teilchengröße von ca. 1 µm zerkleinert. Die Suspension wird unter aseptischen Bedingungen in ein entsprechendes Behältnis abgefüllt.

15

Patentansprüche

1. Abgewandelte Aminosäureamide der allgemeinen Formel

2.0

25

30

40

50

65

in der

R die 1-Piperidinylgruppe, die in 4-Stellung durch einen über ein Stickstoffatom gebundenen, einfach oder zweifach ungesättigten 5- bis 7-gliedrigen Aza-, Diaza- oder Triaza-Heterocyclus, der ein oder zwei mit einem Stickstoffatom verknüpfte Carbonylgruppen enthält, substituiert ist,

wobei die vorstehend erwähnten Heterocyclen an einem Kohlenstoffatom durch eine gegebenenfalls substituierte Phenylgruppe substituiert sein können,

eine olefinische Doppelbindung eines der vorstehend erwähnten ungesättigten Heterocyclen mit einem Benzol-, Pyridin-, Diazin-, 1,3-Oxazol-, Thiophen-, Furan-, Thiazol-, Pyrrol-, N-Methyl-pyrrol-, Chinolin-, Imidazol- oder N-Methyl-imidazol-Ring kondensiert sein kann oder zwei olefinische Doppelbindungen in einem der vorstehend erwähnten ungesättigten Heterocyclen benzokondensiert sein können,

und wobei die vorstehend erwähnte Phenylgruppe sowie die benzo-, thieno-, pyrido- und diazinokondensierten Heterocyclen im Kohlenstoffgerüst zusätzlich durch Fluor-, Chlor- oder Bromatome, durch Alkylgruppen, Cycloalkylgruppen mit 3 bis 8 Kohlenstoffatomen, Nitro-, Alkoxy-, Alkylsulfinyl-, Alkylsulfonyl-, Alkylsulfonyl-, Phenylalkoxy-, Trifluormethyl-, Alkoxycarbonyl-, Alkoxycarbonylalkyl-, Carboxy-, Carboxyalkyl-, Dialkylaminoalkyl-, Hydroxy-, Amino-, Acetylamino-, Propionylamino-, Benzoyl-, Benzoylamino-, Benzoyl-methylamino-, Aminocarbonyl-, Alkylaminocarbonyl-, (1-Piperidinyl)carbonyl-, (1-Piperidinyl)carbonyl-, (Hexahydro-1-azepinyl)carbonyl-, (4-Methyl-1-piperazinyl)carbonyl-, Methylendioxy-, Aminocarbonylamino-, Aminocarbonylaminoalkyl-, Alkylaminocarbonylamino-, Alkanoyl-, Cyan-, Trifluormethoxy-, Trifluormethylthio-, Trifluormethylsulfinyl- oder Trifluormethylsulfonylgruppen mono-, di- oder trisubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

Y die zweiwertigen Reste 55

N_C=N

N_S=0

N S R

60

worin R^9 einen Alkylrest mit 1 bis 4 Kohlenstoffatomen oder einen gegebenenfalls durch ein Halogenatom, eine Methyl- oder eine Methoxygruppe substituierten Phenylrest darstellt,

X¹, X² und X³, die gleich oder verschieden sein können, das Wasserstoffatom, das Fluor-, Chlor- oder Bromatom, eine verzweigte oder unverzweigte Alkylgruppe, eine Alkoxy-, Trifluormethyl-, Dialkylaminoalkyl-, Dialkylaminoalkoxy-, Nitro-, Hydroxy-, Amino-, Acetylamino-, Methylsulfonyloxy-, Aminocarbonyl-, Alkylaminocarbonyl-,

Dialkylaminocarbonyl-, Alkanoyl-, Cyan-, Trifluormethoxy-, Trifluormethylthio-, Trifluormethylsulfinyl- oder Trifluormethylsulfonylgruppe,

A eine Bindung oder den über die -CO-Gruppe mit der NR¹R²-Gruppe der Formel I verknüpften zweiwertigen Rest

(II),

5

10

15

2.0

25

30

35

40

55

60

R⁷ das Wasserstoffatom oder die Methylgruppe,

R⁸ das Wasserstoffatom, die Methyl-, Methoxycarbonyl-, Ethoxycarbonyl-, n-Propoxycarbonyl-, Isopropoxycarbonyl-, tert.-Butoxycarbonyl- oder Acetylgruppe darstellt,

R¹ das Wasserstoffatom,

eine Alkylgruppe mit 1 bis 7 Kohlenstoffatomen, die in ω-Stellung durch eine Cyclohexyl-, Phenyl-, Pyridinyl-, Diazinyl-, Hydroxy-, Amino-, Alkylamino-, Dialkylamino-, Carboxy-, Aminocarbonyl-, Aminocarbonylamino-, Acetylamino-, 1-Pyrrolidinyl-, 1-Piperidinyl-, 4-(1-Piperidinyl)-1-piperidinyl-, 4-Morpholinyl-, Hexahydro-1H-1azepinyl-, [Bis-(2-hydroxyethyl)]amino-, 4-Alkyl-1-piperazinyl- oder 4-(ω-Hydroxyalkyl)-1-piperazinyl Gruppe substituiert sein kann,

eine Phenyl- oder Pyridinylgruppe,

wobei die vorstehend erwähnten heterocyclischen Reste und Phenylgruppen zusätzlich im Kohlenstoffgerüst durch Fluor-, Chlor- oder Bromatome, durch Methyl-, Alkoxy-, Trifluormethyl-, Hydroxy-, Amino-, Acetylamino-, Aminocarbonyl-, Cyan-, Methylsulfonyloxy-, Trifluormethoxy-, Trifluormethylthio-, Trifluormethylsulfinyl- oder Trifluormethylsulfonylgruppen mono-, di- oder trisubstituiert sein können und die Substituenten gleich oder verschie-

R² das Wasserstoffatom oder eine gegebenenfalls durch eine Phenyl- oder Pyridinylgruppe substituierte Alkylgruppe mit 1 bis 3 Kohlenstoffatomen oder

R¹ und R² zusammen mit dem eingeschlossenen Stickstoffatom einen Rest der allgemeinen Formel

(III),

in der 45

Y¹ das Kohlenstoffatom oder, wenn R⁴ ein freies Elektronenpaar darstellt, auch das Stickstoffatom, m die Zahlen 0, 1 oder 2,

n die Zahlen 0, 1 oder 2, 50

R³ das Wasserstoffatom, eine Amino-, Alkylamino-, Dialkylamino-, Alkyl-, Cycloalkyl-, Aminoalkyl-, Alkylaminoalkyl-, Dialkylaminoalkyl-, Aminoiminomethyl-, Aminocarbonylamino-, Alkylaminocarbonylamino-, Cycloalkylaminocarbonylamino-, Phenylaminocarbonylamino-, Aminocarbonylalkyl-, Aminocarbonylaminoalkyl-, Alkoxycarbonyl-, Alkoxycarbonylalkyl-, Carboxyalkyl- oder Carboxy-Gruppe,

eine Phenyl-, Pyridinyl-, Diazinyl-, 1-Naphthyl-, 2-Naphthyl-, Pyridinylcarbonyl- oder Phenylcarbonyl-Gruppe, die jeweils im Kohlenstoffgerüst durch Fluor-, Chlor- oder Bromatome, durch Alkyl-, Alkoxy-, Methylsulfonyloxy-, Trifluormethyl-, Hydroxy-, Amino-, Acetylamino-, Aminocarbonyl-, Aminocarbonylamino-, Aminocarbonylaminonomethyl-, Cyan-, Carboxy-, Carbalkoxy-, Carboxyalkyl-, Carbalkoxyalkyl-, Alkanoyl-, ω-(Dialkylamino)alkanoyl-, ω-(Dialkylamino)alkyl-, ω-(Dialkylamino)hydroxyalkyl-, ω-(Carboxy)alkanoyl-, Trifluormethoxy-, ormethylthio-, Trifluormethylsulfinyl- oder Trifluormethylsulfonylgruppen mono-, di- oder trisubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

eine 4- bis 10-gliedrige Azacycloalkylgruppe, eine 5- bis 10-gliedrige Oxaza-, Thiaza- oder Diazacycloalkylgruppe, oder eine 6- bis 10-gliedrige Azabicycloalkylgruppe,

wobei die vorstehend genannten mono- und bicyclischen Heterocyclen über ein Stickstoff- oder ein Kohlenstoffatom gebunden sind,

eine 1-Alkyl-4-piperidinylcarbonyl- oder 4-Alkyl-1-piperazinylcarbonylgruppe,

wobei die vorstehend genannten mono- und bicyclischen Heterocyclen sowie die 1-Alkyl-4-piperidinylcarbonyl – 65 und 4-Alkyl-1-piperazinylcarbonylgruppe im Ring durch eine Alkylgruppe mit 1 bis 7 Kohlenstoffatomen, durch eine Alkanoyl-, Dialkylamino-, Phenylcarbonyl-, Pyridinylcarbonyl-, Carboxyalkanoyl-, Carboxyalkyl-, Alkoxycarbonylalkyl-, Alkoxycarbonyl-, Aminocarbonyl-, Alkylaminocarbonyl-, Alkylsulfonyl-, Cycloalkyl- oder Cy-

cloalkylalkylgruppe, durch eine im Ring gegebenenfalls alkylsubstituierte Cycloalkylcarbonyl-, Azacycloalkylcarbonyl-, Diazacycloalkylcarbonyl- oder Oxazacycloalkylcarbonylgruppe substituiert sein können,

wobei die in diesen Substituenten enthaltenen alicyclischen Teile 3 bis 10 Ringglieder und die heteroalicyclischen Teile jeweils 4 bis 10 Ringglieder umfassen und

die vorstehend genannten Phenyl- und Pyridinyl-Reste ihrerseits durch Fluor-, Chlor- oder Bromatome, durch Alkyl-, Alkoxy-, Methylsulfonyloxy-, Trifluormethyl-, Hydroxy-, Amino-, Acetylamino-, Aminocarbonyl-, Aminocarbonylamino-, Aminocarbonylaminomethyl-, Cyan-, Carboxy-, Carbalkoxy-, Carbaxy-, Car Alkanoyl-, ω-(Dialkylamino)alkanoyl-, ω-(Carboxy)alkanoyl-, Trifluormethoxy-, Trifluormethylthio-, Trifluormethylsulfinyl- oder Trifluormethylsulfonylgruppen mono-, di- oder trisubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können, oder

 \mathbb{R}^3 zusammen mit \mathbb{R}^4 und \mathbb{Y}^1 einen 4- bis 7-gliedrigen cycloaliphatischen Ring, in dem eine Methylengruppe durch eine Gruppe -NH- oder -N(Alkyl)- ersetzt sein kann,

10

15

20

wobei ein an ein Stickstoffatom innerhalb der Gruppe R3 gebundenes Wasserstoffatom durch einen Schutzrest ersetzt sein kann,

R⁴ ein Wasserstoffatom,

einen Alkylrest mit 1 bis 4 Kohlenstoffatomen, wobei ein unverzweigter Alkylrest in ω-Stellung durch eine Phenyl-, Pyridinyl-, Diazinyl-, Amino-, Alkylamino-, Dialkylamino-, 1-Pyrrolidinyl-, 1-Piperidinyl-, 4-Methyl-1-piperazinyl-, 4-Morpholinyl- oder Hexahydro-1H-1-azepinyl-Gruppe substituiert sein kann,

eine Alkoxycarbonyl-, die Cyan- oder Aminocarbonylgruppe oder ein freies Elektronenpaar, wenn Y^1 ein Stickstoffatom darstellt, und

 R^5 und R^6 jeweils ein Wasserstoffatom oder, sofern Y^1 ein Kohlenstoffatom ist, R^4 zusammen mit R^6 auch eine weitere Kohlenstoff-Kohlenstoff-Bindung, wobei R³ wie vorstehend erwähnt definiert ist und R⁵ ein Wasserstoffatom darstellt oder

sofern Y1 ein Kohlenstoffatom ist, R4 zusammen mit R6 auch eine weitere Kohlenstoff-Kohlenstoff-Bindung und R³ zusammen mit R⁵ und der eingeschlossenen Doppelbindung einen partiell hydrierten oder aromatischen fünf- bis siebengliedrigen, mono- oder bicyclischen Carbocyclus oder Heterocyclus darstellen,

wobei alle vorstehend genannten Alkyl- und Alkoxygruppen sowie die innerhalb der anderen genannten Reste vorhandenen Alkylgruppen, sofern nichts anderes angegeben ist, 1 bis 7 Kohlenstoffatome umfassen können und alle vorstehend genannten Cycloalkylgruppen sowie die innerhalb der anderen genannten Reste vorhandenen Cycloalkylgruppen, sofern nichts anderes angegeben ist, 5 bis 10 Kohlenstoffatome umfassen können, deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.

2. Abgewandelte Aminosäureamide der allgemeinen Formel I gemäß Anspruch 1, in denen die Aminosäure-Partialstruktur der Formel

35 40 (IV) 45

D- bzw. (R)-konfiguriert und hinsichtlich der im Rest A gegebenenfalls vorhandenen Aminosäure-Partialstruktur der Formel

50 55 (II) 60

L- bzw. (S)-konfiguriert ist.

3. Abgewandelte Aminosäureamide der allgemeinen Formel I nach mindestens einem der Ansprüche 1 oder 2, in

R die 1-Piperidinylgruppe, die in 4-Stellung durch einen über ein Stickstoffatom gebundenen, einfach oder zweifach ungesättigten 5- bis 7-gliedrigen Aza-, Diaza- oder Triaza-Heterocyclus, der ein oder zwei mit einem Stickstoffatom verknüpfte Carbonylgruppen enthält, substituiert ist,

wobei die vorstehend erwähnten Heterocyclen an einem Kohlenstoffatom durch eine Phenylgruppe substituiert sein

können,

5

10

15

2.0

25

30

35

40

45

50

55

60

eine olefinische Doppelbindung eines der vorstehend erwähnten ungesättigten Heterocyclen mit einem Benzol-, Pyridin- oder Chinolin-Ring kondensiert sein kann oder zwei olefinische Doppelbindungen in einem der vorstehend erwähnten ungesättigten Heterocyclen benzokondensiert sein können,

und wobei die vorstehend erwähnten kondensierten Heterocyclen im Kohlenstoffgerüst und/oder an den in diesen Gruppen enthaltenen Phenylgruppen durch Fluor-, Chlor- oder Bromatome, durch C_{1-3} -Alkyl-, Trifluormethyl-, C_{1-3} -Alkoxy-, Hydroxy-, Amino-, Nitro-, Phenyl-, Carboxy-, Methoxycarbonyl-, Ethoxycarbonyl-, Aminocarbonyl-, Methylaminocarbonyl-, Hydroxyethylaminocarbonyl-, (4-Morpholinyl)carbonyl-, (1-Piperidinyl)carbonyl-oder (4-Methyl-1-piperazinyl)carbonylgruppen mono-, di- oder trisubstituiert sein können,

wobei die Substituenten gleich oder verschieden sein können und eine Mehrfachsubstitution mit den drei letztgenannten Substituenten ausgeschlossen ist,

Y die zweiwertigen Reste

worin R^9 einen C_{1-3} -Alkylrest oder einen gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, eine Methyloder eine Methoxygruppe substituierten Phenylrest darstellt,

 X^1 , X^2 und X^3 , die gleich oder verschieden sein können, das Wasserstoffatom, das Fluor-, Chlor- oder Bromatom, eine C_{1-3} -Alkyl-, C_{1-3} -Alkoxy-, Trifluormethyl-, Hydroxy-, Amino- oder Acetylaminogruppe,

A eine Bindung oder den über die -CO-Gruppe mit der NR¹R²-Gruppe der Formel I verknüpften zweiwertigen Rest

in dem

R⁷ und R⁸ unabhängig voneinander jeweils das Wasserstoffatom oder die Methylgruppe darstellen,

R¹ das Wasserstoffatom oder

eine in ω-Stellung gegebenenfalls durch eine Amino-, Methylamino-, Dimethylamino- oder 4-(1-Piperidinyl)-1-piperidinyl-Gruppe substituierte Alkylgruppe mit 1 bis 4 Kohlenstoffatomen,

R² das Wasserstoffatom, die Methyl- oder Ethylgruppe oder

R¹ und R² zusammen mit dem eingeschlossenen Stickstoffatom einen Rest der allgemeinen Formel

in d

 Y^1 das Kohlenstoffatom oder, wenn R^4 ein freies Elektronenpaar darstellt, auch das Stickstoffatom, m die Zahlen 0 oder 1,

n die Zahlen 1 oder 2,

R³ das Wasserstoffatom,

eine Phenyl-, Pyridinyl- oder Diazinylgruppe, die jeweils im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine Methyl- oder Methoxygruppe substituiert sein können,

eine 5- bis 7-gliedrige Azacycloalkylgruppe, eine 5- bis 7-gliedrige Oxaza- oder Diazacycloalkylgruppe oder eine 7-bis 9-gliedrige Azabicycloalkylgruppe,

wobei die vorstehend genannten mono- und bicyclischen Heterocyclen über ein Stickstoff- oder ein Kohlenstoffatom gebunden sind und

durch eine Alkylgruppe mit 1 bis 3 Kohlenstoffatomen, durch eine C_{1-4} -Alkanoyl-, Di- C_{1-3} -alkylamino- oder C_{1-3} -Alkylsulfonylgruppe substituiert sein können,

R⁴ ein Wasserstoffatom,

einen Alkylrest mit 1 bis 3 Kohlenstoffatomen, wobei ein unverzweigter Alkylrest in ω-Stellung durch eine Phenyloder Pyridinylgruppe substituiert sein kann,

oder ein freies Elektronenpaar, wenn 4 ein Stickstoffatom darstellt, und

R⁵ und R⁶ jeweils ein Wasserstoffatom darstellen,

bedeuten

deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.

4. Abgewandelte Aminosäureamide der allgemeinen Formel I nach mindestens einem der Ansprüche 1 oder 2, in der

5

10

15

20

35

50

65

R die 1-Piperidinylgruppe bedeutet, die in 4-Stellung durch

eine 1,3-Dihydro-4-phenyl-2(2H)-oxoimidazol-1-yl-, 1,3-Dihydro-2(2H)-oxobenzimidazol-1-yl-, 2,4(1H,3H)-Dioxochinazolin-3-yl-, 1,3-Dihydro-2(2H)-oxoimidazol4,5-b]pyridin-3-yl-, 3,4-Dihydro-2(1H)-oxochinazolin-3-yl-, 2,3,4,5-Tetrahydro-2(1H)-oxo-1,3-benzodiazepin-3-yl-, 2(1H)-Oxochinolin-3-yl-, 2,4-Dihydro-5-phenyl-3(3H)-oxo-1,2,4-triazol-2-yl-, 1,3-Dihydro-2(2H)-oxoimidazol4,5-c]chinolin-3-yl- oder 5,7-Dihydro-6-oxo-dibenzold,f][1,3]diazepin-5-yl-Gruppe substituiert ist,

wobei die vorstehend erwähnten bicyclischen Heterocyclen im Kohlenstoffgerüst und/oder an den in diesen Gruppen enthaltenen Phenylgruppen durch Fluor-, Chlor- oder Bromatome, durch Methyl-, Trifluormethyl-, Methoxy-, Hydroxy-, Amino-, Nitro-, Phenyl-, Phenylmethyl-, Carboxy-, Methoxycarbonyl-, Ethoxycarbonyl-, Aminocarbonyl-, Methylaminocarbonyl-, Hydroxyethylaminocarbonyl-, (4-Morpholinyl)carbonyl-, (1-Piperidinyl)carbonyl-oder (4-Methyl-1-piperazinyl)carbonylgruppen mono-, di- oder trisubstituiert sein können,

wobei die Substituenten gleich oder verschieden sein können und eine Mehrfachsubstitution mit den drei letztgenannten Substituenten ausgeschlossen ist,

Y die zweiwertigen Reste

worin R⁹ die Methylgruppe oder den Phenylrest darstellt,

X¹ das Fluor- Chlor- oder Bromatom oder die Methylgruppe,

X² das Fluor- Chlor- oder Bromatom, die Methyl-, Methoxy-, Hydroxy- oder Aminogruppe,

X³ das Fluor- Chlor- oder Bromatom oder die Methylgruppe,

A eine Hindung oder den über die -CO-Gruppe mit der NR¹R²-Gruppe der Formel I verknüpften zweiwertigen Rest

$$\mathbb{R}^7$$
 \mathbb{R}^8

$$(II),$$

$$45$$

in dem

R⁷ und R⁸ Wasserstoffatome darstellen,

R¹ und R² zusammen mit dem eingeschlossenen Stickstoffatom einen Rest der allgemeinen Formel

in der

 Y^1 das Kohlenstoffatom oder, wenn \mathbb{R}^4 ein freies Elektronenpaar darstellt, auch das Stickstoffatom, m die Zahl 1,

n die Zahl 1, R³ eine Phenyl- oder Pyridinylgruppe, die jeweils im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine Methyl- oder Methoxygruppe substituiert sein können,

eine 1-Pyrrolidinyl-, 1-Piperidinyl-, 4-(Dimethylamino)-1-piperidinyl-, 4-Piperidinyl- oder 4-Morpholinylgruppe,

wobei das Stickstoffatom der 4-Piperidinylgruppe durch eine Alkylgruppe mit jeweils 1 bis 2 Kohlenstoffatomen substituiert sein kann, eine Hexahydro-1H-1-azepinyl-, 4-Methyl-1-piperazinyl- oder 4-Ethyl-1-piperazinylgruppe, R⁴ ein Wasserstoffatom, einen Alkylrest mit 1 oder 2 Kohlenstoffatomen oder ein freies Elektronenpaar, wenn Y¹ ein Stickstoffatom darstellt, und

R⁵ und R⁶ jeweils ein Wasserstoffatom darstellen,

5

10

15

2.0

25

30

35

40

45

50

55

60

65

deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.

- 5. Physiologisch verträgliche Salze der Verbindungen nach mindestens einem der Ansprüche 1 oder 2 mit anorganischen oder organischen Säuren oder Basen.
- 6. Arzneimittel, enthaltend eine Verbindung nach mindestens einem der Ansprüche 1 bis 4 oder ein physiologisch verträgliches Salz gemäß Anspruch 5 neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.
 - 7. Verwendung einer Verbindung nach mindestens einem der Ansprüche 1 bis 5 zur Herstellung eines Arzneimittels, das zur akuten und prophylaktischen Behandlung von Kopfschmerzen, zur Behandlung des nicht-insulinabhängigen Diabetes mellitus, von cardiovaskulären Erkrankungen, Erkrankungen der Haut, von entzündlichen Erkrankungen, der allergischen Rhinitis, von Asthma, von Erkrankungen, die mit einer überschießenden Gefäßerweiterung und dadurch bedingter verringerter Gewebedurchblutung einhergehen, der Morphintoleranz oder zur Bekämpfung menopausaler Hitzewallungen geeignet ist.
 - 8. Verfahren zur Herstellung eines Arzneimittels gemäß Anspruch 6, dadurch gekennzeichnet, daß auf nichtchemischem Wege eine Verbindung nach mindestens einem der Ansprüche 1 bis 5 in einen oder mehrere inerte Trägerstoffe und/oder Verdünnungsmittel eingearbeitet wird.
 - 9. Verfahren zur Herstellung der Verbindungen der allgemeinen Formel I nach mindestens einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß
 - a) zur Herstellung von Verbindungen der allgemeinen Formel I, in der Y einen der zweiwertigen Iminomethylreste

bedeutet, wobei R⁹ wie in den Ansprüchen 1 bis 5 definiert ist, eine Verbindung der allgemeinen Formel

$$X^{2}$$
 X^{1}
 X^{1}
 X^{1}
 X^{2}
 X^{3}
 X^{2}
 X^{1}
 X^{2}
 X^{1}
 X^{2}
 X^{2}
 X^{3}
 X^{3

in der A, R¹, R², X¹, X² und X³ wie in den Ansprüchen 1 bis 5 definiert sind, Y' einen der beiden oben angegebenen Iminomethylreste darstellt und Nu eine Austrittsgruppe ist, mit einem sekundären Aminen der allgemeinen Formel

R-H (VI),

in der R wie in den Ansprüchen 1 bis 5 definiert ist, umgesetzt wird oder

b) zur Herstellung von Verbindungen der allgemeinen Formel I, in der Y den zweiwertigen Rest -SO₂- bedeutet.

eine Verbindung der allgemeinen Formel

$$X^{2}$$
 X^{1}
 X^{1}
 X^{2}
 X^{2}
 X^{1}
 X^{2}
 X^{1}
 X^{2}
 X^{2}
 X^{2}
 X^{2}
 X^{3}
 X^{3}
 X^{2}
 X^{3}
 X^{2}
 X^{3}
 X^{3

in der A, R¹, R², X¹, X² und X³ wie in den Ansprüchen 1 bis 5 definiert sind, Y " die SO₂-Gruppe bedeutet und Nu' eine Austrittsgruppe ist,

15

20

30

35

40

45

50

55

60

65

mit einem sekundären Amin der allgemeinen Formel

R-H (VI),

in der R wie in den Ansprüchen 1 bis 5 definiert ist, umgesetzt wird und erforderlichenfalls ein bei den vorstehend beschriebenen Umsetzungen verwendeter Schutzrest wieder abgespalten wird und/oder

gegebenenfalls verwendete Präcursorfunktionen in einer so erhaltenen Verbindung abgewandelt werden und/oder

gewünschtenfalls eine so erhaltene Verbindung der allgemeinen Formel I in ihre Stereoisomere aufgetrennt 25 wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze übergeführt wird.

10. Verwendung der Verbindungen der allgemeinen Formel I nach mindestens einem der Ansprüche 1 oder 2 zur Erzeugung und Reinigung von Antikörpern.

11. Verwendung markierter Verbindungen der allgemeinen Formel I nach mindestens einem der Ansprüche 1 oder 2 in RIA- und ELISA-Assays und als diagnostische oder analytische Hilfsmittel in der Neurotransmitter-Forschung.

- Leerseite -