数字逻辑设计

秦阳 School of Computer Science csyqin@hit.edu.cn

任意十进制数(Decimal Number) 5 可表示如下:第i位的权(Weight); r是计数制的基数(Base or Radix)

$$D = d_{p-1} d_{p-2} \dots d_1 d_0 \cdot d_{-1} d_{-2} \dots d_{-n}$$

$$= \sum_{i=-n}^{p-1} d_i \times \underline{r}^i$$

推广:
$$B = \sum b_i \times 2^i$$

$$H = \sum b_i \times 16^i$$

*按位计数制的特点

- 1) 采用基数 (Base or Radix), R进制的基数是R
- 2) 基数确定数符的个数。如十进制的数符为: 0、1、2、3、4、5、6、7、8、9, 个数为10; 二进制的数符为: 0、1, 个数为2
- 3) 逢基数进一

二进制、八进制与十六进制数

十进制	二进制	八进制	十六进制
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

二进制与八进制和十六进制之间的转换

转换方法:

位数替换法:保持小数点不变,每位八进制数对应3位二进制数;每位十六进制数对应4位二进制数;

- *二进制转换为八进制或十六进制数时,从小数点开始向左右分组,在MSB前面和LSB后面可以加0;
- * 八进制或十六进制转换为二进制数时,
- *MSB前面和LSB后面的0不写;
- ◆例: 10111000.11012=270.648=B8.D16

二进制加法运算(Binary Addition)

二进制加法真值表

输入			输出	
被加数X	加数Y	输入进位Cin	和S	进位输出Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

二进制减法运算(Binary Subtraction)

二进制减法真值表

输入			输出	
被减数X	减数Y	输入借位Bin	差 D	输出借位Bout
0	0	0	0	0
0	0	1	1	1
0	1	0	1 1	
0	1	1	0 1	
1	0	0	1 0	
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

原码表示法

- ◆最高有效位表示符号位(Sign bit)
- *0 = \mathbb{H} , 1 = \mathbb{H} (0 = plus, 1 = minus)
- *其余各位是该数的绝对值
- *011111111 = +127 00101110 = +46

$$111111111 = -127$$
 $10101110 = -46$

◆零有两种表示(+ 0、 - 0)]

$$00000000 = +0$$

$$10000000 = -0$$

- *8位二进制码能够表示的带符号十进制数中, 最大的数是+127,而最小的数是-127。
- * n位二进制整数表示的范围:

$$-(2n-1) \sim +(2n-1-1)$$

补码数制

- ◆基数补码 (Radix Complement)
- *从rn中减去该数
- *基数减1补码 (反码) (Diminished Radix Complement)
- *从rn-1 中减去该数

二进制反码表示法

*正数的二进制反码表示与原码相同

- *负数的二进制反码表示:
- ☀在n位系统中,等于 2n-1-A,即
- *符号位不变,其余各位在原码基础上按位取反

二进制补码表示法

*正数的二进制补码表示与原码相同

*负数的二进制补码如何求取?

反码(Ones' - Complement) + 1

(零只有一种表示)

 \bullet 0=0000000

*逐位取反 **1111111**

* <u>+1</u>

4位有符号二进制数的原码、反码、补码对照表

十 #		二进制数	Į.
制数	原码	反码	补码
-8	_		1000
-7	1111	1000	1001
-6	1110	1001	1010
-5	1101	1010	1011
-4	1100	1011	1100
-3	1011	1100	1101
-2	1010	1101	1110
-1	1001	1110	1111
-0	1000	1111	0000
+0	0000	0000	0000

十讲	二进制数			
制数	原码	反码	补码	
+1	0001	0001	0001	
+2	0010	0010	0010	
+3	0011	0011	0011	
+4	0100	0100	0100	
+5	0101	0101	0101	
+6	0110	0110	0110	
<u>+7</u>	0111	0111	0111	

两个数的补码之和等于两数之和的补码。

[X]补-[Y]补=[X]补+[-Y]补=[X-Y]补 (mod M) 两个数的补码之差等于两数之差的补码。

◆注意:

- > 参与运算的操作数均为补码,运算的结果仍然以补码表示。
- ▶运算时,符号位和数值位按同样的规则参加运算,结果的符号位由运算得出。
- ▶ 补码总是对确定的模而言,如果运算结果超过了模,则应将模(即进位)丢掉才能得到正确结果。

直接做减法运算

$$(15-13) = (15) + (13)$$

$$= (15) + (-13)$$

转换为补码做加法运算

◆注意:

- > 在进行二进制补码的加法运算时,被加数与加数的位数要相等,即让两个二进制数补码的符号位对齐。
- ▶ 两个二进制数的补码要采用相同的位数表示。

$$∴ (13-15) ∧ = (13) ∧ + (-15) ∧$$

$$\because$$
 (-13-15) \Rightarrow = (-13) \Rightarrow + (-15) \Rightarrow

▶ 求 125+58 = ? (用补码)

错误原因是:

- ▶ **8**位有符号数所能表示的补码 数的最大值为**127**.
- ▶ 这里, 183 > 127, 导致结果 错误。
- ▶ 我们把超出表示范围的这种 情况称为溢出(Overflow)。

▶ 求 -105-50 = ? (用补码)

因为 (-105-58) $\Rightarrow = (-105)$ $\Rightarrow + (-50)$

错误原因是:

- ▶ **8**位有符号数所能表示的补码 数的最小值为**-128**.
- ▶ 这里, -155< -128, 也产生 了溢出。
- ▶ 发生溢出的原因是因为和的 位数是固定的。

- > 溢出的判别对有符号数的运算是非常重要的,它表明结果是否超出范围。
- > 溢出仅发生在两个同符号的数 (两个正数或者两个负数) 相加的情况下。
 - 如果两个正数相加的结果大于机器所能表示的最大正数, 称为正溢出。
 - 如果两个负数相加的结果小于机器所能表示的最小负数, 称为负溢出。

- ▶ 出现溢出后,机器将无法正确地表示运算结果,因此,在计算机中,有专门的电路用来检测两个数相加时产生的溢出。
- > 这个检测单元将通知计算机的控制单元发生了溢出,运算结果是错误的。

编码

变色龙, 拱猪, 接龙

玩法很多,本质上,就是54张牌在不同 游戏规则下的组合而已

☀编码

- **⇔**BCD码
- **★** 余3码
- *格雷码

编法很多,本质上,就是 0和1在不同编码规则下的 组合而已。

BCD码

Decimal	8421BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

BCD 码(Binary-Coded Decimal)

- ★也叫二-十进制编码,用4位二进制数表示1位十进制数
- *4位二进制码共有2^4=16种码组, 在这16种代码中,可以任选10种来 表示10个十进制数码
- 每位二进制数都带有权值
 - 根据权值不同, 称其为:

8421BCD

2421BCD

4221BCD

BCD码

Decimal	8421code	2421code	4221code	5421code
0	0000	0000	0000	0000
1	0001	0001	0001	0001
2	0010	0010 (1000)	0010 (0100)	0010
3	0011	0011 (1001)	0011 (0101)	0011
4	0100	0100 (1010)	0110 (1000)	0100
5	0101	1011 (0101)	1001 (0111)	1000 (0101)
6	0110	1100 (0110)	1100 (1010)	1001 (0110)
7	0111	1101 (0111)	1101 (1011)	1010 (0111)
8	1000	1110	1110	1011
9	1001	1111	1111	1100

余3码

Decimal	8421 BCD	Excess-3
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

余3码(Excess-3 code)

- ☀ 无权码
- digit is not weighted
- Self-complementing
- * 8421code + "0011"

典型格雷码

Decimal	Binary	Gray code	典型格雷码(Gray code)				
0	0000	0000	★ 无权码 任何两位相邻编码				
1	0001	0001					
2	0010	0011	一				
3	0011	0010					
4	0100	0110					
5	0101	0111	Decimal Binary Gray code				
6	0110	0101	11 1011 1110				
7	0111	0100	12 1100 1010				
8	1000	1100	13 1101 1011				
9	1001	1101	14 1110 1001				
10	1010	1111	15 1111 1000				

怎样计算任意给定的二进制数对应的典型格雷码?

- *计算法
 - ◆复制最高位
 - ☀从最高位开始, 俩俩比较相邻位:
 - ▶ 二者相同取 0
 - ▶ 二者不同取 1
 - ◆ 转换前后数据的位宽不变

如何由n位典型格雷码写n+1位典型格雷码

*反射法

如何写n位典型格雷码

*图形法

2位格雷码

00、01、11、10

3位格雷码

000、001、011、 010、110、111、 101、100

Gray Code

4位格雷码

Gray Code

Example 十进制: 3→4

♣ Gray Code ——连续变化时,比较可靠

Gray Code

Binary Code

	8-4-2-1				
Decimal	Code	6-3-1-1	Excess-3	2-out-of-5	Gray
Digit	(BCD)	Code	Code	Code	Code
0	0000	0000	0011	00011	0000
1	0001	0001	0100	00101	0001
2	0010	0011	0101	00110	0011
3	0011	0100	0110	01001	0010
4	0100	0101	0111	01010	0110
5	0101	0111	1000	01100	1110
6	0110	1000	1001	10001	1010
7	0111	1001	1010	10010	1011
8	1000	1011	1011	10100	1001
9	1001	1100	1100	11000	1000

一种可靠性编码