Signals and Systems Using MATLAB

Luis F. Chaparro

Chapter 1 --- Continuoustime Signals

What is in this chapter?

- *Classification of time-dependent signals
- * Continuous-time signals
- * Basic operations -- even and odd signals
- * Periodic signals
- * Finite-energy, finite-power signals
- Signal representation using basic signals

3

Classification of Time-dependent Signals

- ullet Predictability: random or deterministic
- ullet Variation of time and amplitude: continuous-time, discrete-time, digital
- Energy: finite or infinite energy
- Repetitive behavior: periodic or aperiodic
- Symmetry with respect to the time origin: even or odd
- Support: finite or infinite l of the signal outside of which the signal is always zero.

.

Analog to Digital and Digital to Analog Conversion

- Analog to digital converter (ADC): converts analog signal into a digital signal
- digital to analog converter (DAC): convert digital signal into an analog signal

Figure 1. Discretization in time and in amplitude of an analog signal. The parameters are the sampling period T_s and the quantization level Δ . In time, samples are taken at uniform times $\{nT_s\}$, and in amplitude the range of amplitudes is divided into finite number of levels so that each sample value is approximated by them.

Continuous-time Signals

A continuous-time signal:

$$x(.): \mathcal{R} \to \mathcal{R} \quad (\mathcal{C})$$
 $t \quad x(t)$

Independent variable is time t $x(t_0)$, is a real (or a complex) value t and x(t) vary continuously, if needed, from $-\infty$ to ∞ .

7

Basic Signal Operations

- Signal addition: z(t) = x(t) + y(t) using adder
- $\bullet \ \ \textit{Time/frequency shifted:}$
 - -x(t) delayed by τ : $x(t-\tau)$
 - -x(t) advanced by τ : $x(t+\tau)$
 - x(t) shifted in frequency or frequency modulated: $x(t)e^{j\Omega_0t}$
- - $-\alpha = -1, x(-t)$, reversed in time or reflected
 - $\alpha \neq 1,$ signal compressed/expanded
- $\bullet \ \textit{Time windowed:} \ z(t) = x(t) \\ \mathbf{w}(t), \ \textit{window signal} \ \\ \mathbf{w}(t)$

Figure 3. Diagrams of basic signal operations: (a) adder, (b) constant multiplier, (c) delay, and (d) time-windowing or modulation.

9

Example Consider an analog pulse

$$x(t) = \begin{cases} 1 & 0 \le t \le 1 \\ 0 & \text{otherwise.} \end{cases}$$

Find x(t-2), x(t+2), and x(-t).

Solution

$$x(t-2) = \left\{ \begin{array}{ll} 1 & 0 \leq t-2 \leq 1 \ \text{or} \ 2 \leq t \leq 3 \\ 0 & \text{otherwise} \end{array} \right.$$

x(0) (in x(t) occurs at t=0) in x(t-2) occurs when t=2, so signal has been shifted to the right 2, x(t-2) is "delayed" by 2 with respect to x(t)

$$x(t+2) = \left\{ \begin{array}{ll} 1 & 0 \leq t+2 \leq 1 \ \text{or} \ -2 \leq t \leq -1 \\ 0 & \text{otherwise} \end{array} \right.$$

x(0) for x(t+2) occurs at t=-2 which is ahead of t=0

$$x(-t) = \left\{ \begin{array}{ll} 1 & 0 \leq -t \leq 1 \text{ or } -1 \leq t \leq 0 \\ 0 & \text{otherwise} \end{array} \right.$$

or mirror image of the original, e.g., x(1) occurs when t = -1.

Example Compare x(-t+2) to x(t) above Solution

x(-t+2) is reflected, but advanced or delayed by 2?

$$t \qquad x(-t+2)$$

$$2 x(0) = 1$$

1.5
$$x(0.5) = 1$$

$$1 x(1) = 1$$

$$0 \qquad x(2) = 0$$

$$-1 \qquad x(3) = 0$$

then x(-t+2) reflected and "delayed" by 2

11

Even and Odd Signals

Even and odd signals are defined as follows:

$$x(t)$$
 even: $x(t) = x(-t)$

$$x(t)$$
 odd: $x(t) = -x(-t)$

Even and odd decomposition: Any signal y(t) is representable as a sum of an even component $y_e(t)$ and an odd component $y_o(t)$

$$y(t) = y_e(t) + y_o(t)$$

where

$$y_e(t) = 0.5[y(t) + y(-t)]$$

$$y_o(t) = 0.5[y(t) - y(-t)]$$

Example Consider

$$x(t) = \cos(2\pi t + \theta)$$
 $-\infty < t < \infty$

- What θ makes x(t) even, odd?
- For $\theta = \pi/4$ is x(t) even or odd?

Solution

Reflection $x(-t) = \cos(-2\pi t + \theta)$, then:

(i) x(t) even if x(t) = x(-t) or

$$cos(2\pi t + \theta) = cos(-2\pi t + \theta)$$
$$= cos(2\pi t - \theta)$$

or $\theta = -\theta$ or $\theta = 0$, π

 $x_1(t) = \cos(2\pi t)$ and $x_2(t) = \cos(2\pi t + \pi) = -\cos(2\pi t)$ are even

(ii) x(t) odd if x(t) = -x(-t) or

$$\cos(2\pi t + \theta) = -\cos(-2\pi t + \theta) = \cos(-2\pi t + \theta \pm \pi) = \cos(2\pi t - \theta \mp \pi)$$

or $\theta = -\theta \mp \pi$ or $\theta = \mp \pi/2$

 $\cos(2\pi t - \pi/2) = \sin(2\pi t)$ and $\cos(2\pi t + \pi/2) = -\sin(2\pi t)$ are odd

 $\theta = \pi/4$, $x(t) = \cos(2\pi t + \pi/4)$ is neither even nor odd

13

Example Consider

$$x(t) = \begin{cases} 2\cos(4t) & t > 0\\ 0 & \text{otherwise} \end{cases}$$

- \bullet Find its even and odd decomposition
- What would happen if x(0) = 2 instead of 0, i.e., when we define the sinusoid at t = 0? Explain.

Solution

x(t) is neither even nor odd because x(t) = 0 for $t \le 0$

$$x_e(t) = 0.5[x(t) + x(-t)] = \begin{cases} \cos(4t) & t > 0\\ \cos(4t) & t < 0\\ 0 & t = 0 \end{cases}$$

$$x_o(t) = 0.5[x(t) - x(-t)] = \begin{cases} \cos(4t) & t > 0 \\ -\cos(4t) & t < 0 \\ 0 & t = 0 \end{cases}$$

adding them gives x(t)

For x(0) = 2,

$$x_e(t) = 0.5[x(t) + x(-t)] = \begin{cases} \cos(4t) & t > 0\\ \cos(4t) & t < 0\\ 2 & t = 0 \end{cases}$$

odd component is the same

even component has a discontinuity at t=0.

Periodic and Aperiodic Signals

An analog signal x(t) is periodic if

- it is defined for all possible values of t, $-\infty < t < \infty$, and
- there is a positive real value T_0 , the **period** of x(t), such that

$$x(t + kT_0) = x(t)$$

for any integer k.

The period of x(t) is the smallest possible value of $T_0 > 0$ that makes the periodicity possible. Thus, although NT_0 for an integer N > 1 is also a period of x(t) it should not be considered the period.

15

Example Periodic signal x(t) of period T_0 , are following signals periodic? if so their periods

- 1. y(t) = A + x(t),
- 2. z(t) = x(t) + v(t), v(t) periodic of period $T_1 = NT_0$, where N > 0 integer,
- 3. w(t) = x(t) + u(t), u(t) periodic of period T_1 , not multiple of T_0 , conditions for w(t) periodic

Solution

(a) y(t) periodic of period T_0 , i.e., integer k, $y(t+kT_0) = A+x(t+kT_0) = A+x(t)$ since x(t) is periodic of period T_0 .

- (b) $T_1 = NT_0$ period of x(t)
- z(t) periodic of period T_1 , integer k

$$z(t + kT_1) = x(t + kT_1) + v(t + kT_1) = x(t + kNT_0) + v(t) = x(t) + v(t)$$

(d) w(t) periodic if

$$\frac{T_1}{T_0} = \frac{N}{M}$$

where N > 0 and M > 0 integers not divisible by each other

$$w(t+MT_1) = x(t+MT_1) + u(t+MT_1) = x(t+NT_0) + u(t+MT_1) = x(t) + u(t)$$

Example $x(t) = e^{j2t}$, $y(t) = e^{j\pi t}$

- z(t) = x(t) + y(t), periodic?
- w(t) = x(t)y(t), periodic?
- p(t) = (1 + x(t))(1 + y(t)) periodic?

Solution

$$x(t) = \cos(2t) + j\sin(2t)$$
 periodic, $T_0 = \pi$
 $y(t) = \cos(\pi t) + j\sin(\pi t)$ periodic, $T_1 = 2$

- (1) z(t) periodic if $T_1/T_0=2/\pi$ is rational, which is not (2) $w(t)=x(t)y(t)=e^{j(2+\pi)t}=\cos(\Omega_2 t)+j\sin(\Omega_2 t)$ periodic
- $\Omega_2 = 2 + \pi = 2\pi/T_2$ so $T_2 = 2\pi/(2 + \pi)$
- (3) 1 + x(t), periodic, $T_0 = \pi$
- 1+y(t), periodic, $T_1=2$

$$p(t) = 1 + x(t) + y(t) + x(t)y(t)$$

x(t) + y(t) not periodic, then p(t) is not periodic

- Analog sinusoids of frequency $\Omega_0 > 0$ are periodic of period $T_0 = 2\pi/\Omega_0$. If $\Omega_0 = 0$ the period is not well defined.
- 2. The sum of two periodic signals x(t) and y(t), of periods T_1 and T_2 , is periodic if the ratio of the periods T_1/T_2 is a rational number N/M, with N and M non-divisible. The period of the sum is $MT_1 = NT_2$.
- 3. The product of two sinusoids is periodic. The product of two periodic signals is not necessarily periodic.

17

Finite Energy and Finite Power Signals

The energy and the power of an analog signal x(t) are defined for either finite or infinite support signals as:

$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

$$\begin{split} E_x &= \int_{-\infty}^{\infty} |x(t)|^2 dt \\ P_x &= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt \end{split}$$

The signal x(t) is then said to be finite energy, or square integrable, whenever

$$E_x < \infty$$

The signal is said to have finite power if

$$P_x < \infty$$

Example Energy and power of

(a)
$$x(t) = \cos(\pi t/2 + \pi/4), -\infty < t < \infty$$

(a)
$$x(t) = \cos(\pi t/2 + \pi/4), -\infty < t < \infty,$$

(b) $y(t) = (1+j)e^{j\pi t/2}, 0 \le t \le 10$, zero otherwise,

(c)
$$z(t) = 1$$
, for $0 \le t \le 10$ and zero otherwise.

Finite energy, finite power or both?

Solution

Energy

$$\begin{split} E_x &= \int_{-\infty}^{\infty} \cos^2(\pi t/2 + \pi/4) dt \to \infty \quad \text{infinite energy} \\ E_y &= \int_0^{10} |(1+j)e^{j\pi t/2}|^2 dt = 2 \int_0^{10} dt = 20 \quad \text{finite energy} \\ E_z &= \int_0^{10} dt = 10 \quad \text{infinite energy} \end{split}$$

Power:

$$P_y, P_z = 0, \ y(t), z(t)$$
 finite energy

For x(t), let $T = NT_0$:

$$\begin{split} P_x &= \lim_{T \to \infty} \frac{2}{2T} \int_0^T \cos^2(\pi t/2 + \pi/4) dt = \lim_{N \to \infty} \frac{1}{NT_0} \int_0^{NT_0} \cos^2(\pi t/2 + \pi/4) dt \\ &= \lim_{N \to \infty} \frac{1}{NT_0} \left[N \int_0^{T_0} \cos^2(\pi t/2 + \pi/4) dt \right] = \frac{1}{T_0} \int_0^{T_0} \cos^2(\pi t/2 + \pi/4) dt \\ &= \frac{1}{8} \int_0^4 \cos(\pi t + \pi/2) dt + \frac{1}{8} \int_0^4 dt = 0 + 0.5 = 0.5 \\ \cos^2(\theta) &= 0.5 + 0.5 \cos(2\theta) \end{split}$$

Example Consider

$$x(t) = \cos(2\pi t) + \cos(4\pi t), -\infty < t < \infty$$

$$y(t) = \cos(2\pi t) + \cos(2t), -\infty < t < \infty$$

Periodic? Power?

Solution

 $\cos(2\pi t)$, $\cos(4\pi t)$ periods $T_1=1$ and $T_2=1/2 \Rightarrow x(t)$ periodic $(T_1/T_2=2)$ with period $T_1=2T_2=1$, and harmonically related frequencies $\cos(2t)$, period $T_3=\pi\Rightarrow y(t)$ not periodic ($T_1/T_3=1/\pi$ not rational), frequencies 2π and 2 not harmonically related

$$x^{2}(t) = \cos^{2}(2\pi t) + \cos^{2}(4\pi t) + 2\cos(2\pi t)\cos(4\pi t)$$

$$= 1 + \frac{1}{2}\cos(4\pi t) + \frac{1}{2}\cos(8\pi t) + \cos(6\pi t) + \cos(2\pi t)$$

$$P_{x} = \frac{1}{T_{0}} \int_{0}^{T_{0}} x^{2}(t)dt = 1$$

$$\begin{split} y^2(t) &= \cos^2(2\pi t) + \cos^2(2t) + 2\cos(2\pi t)\cos(2t) \\ &= 1 + \frac{1}{2}\cos(4\pi t) + \frac{1}{2}\cos(4t) + \cos(2(\pi + 1)t) + \cos(2(\pi - 1)t) \\ P_y &= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T y^2(t)dt \\ &= 1 + \frac{1}{2T_4} \int_0^{T_4} \cos(4\pi t)dt + \frac{1}{2T_5} \int_0^{T_5} \cos(4t)dt \\ &+ \frac{1}{T_6} \int_0^{T_6} \cos(2(\pi + 1)t)dt + \frac{1}{T_7} \int_0^{T_7} \cos(2(\pi - 1)t)dt = 1 \end{split}$$

If

$$x(t) = \cos(2\pi t) + \cos(4\pi t) = x_1(t) + x_2(t)$$

$$y(t) = \cos(2\pi t) + \cos(2t) = y_1(t) + y_2(t)$$
 then $P_1 = P_2 = P_3 = P_4 = 0.5$ so that

then
$$P_{x_1} = P_{x_2} = P_{y_1} = P_{y_2} = 0.5$$
 so that

$$P_x = P_{x_1} + P_{x_2} = 1$$

$$P_y = P_{y_1} + P_{y_2} = 1$$

The power of a sum of sinusoids,

$$x(t) = \sum_{k} A_k \cos(\Omega_k t) = \sum_{k} x_k(t)$$

with harmonically or non harmonically related frequencies $\{\Omega_k\}$, is the sum of the power of each of the sinusoidal components,

$$P_x = \sum_k P_{x_k}$$

21

Representation using Basic Signals

Complex Exponentials

A complex exponential is a signal of the form

$$x(t) = Ae^{at}$$

$$= |A|e^{rt} \left[\cos(\Omega_0 t + \theta) + j\sin(\Omega_0 t + \theta)\right] - \infty < t < \infty$$

where $A = |A|e^{j\theta}$, and $a = r + j\Omega_0$ are complex numbers.

- \bullet A and a are real, $x(t) = Ae^{at}$ $-\infty < t < \infty$, decaying exponential (a < 0), growing exponential (a > 0)
- A is real, $a = j\Omega_0$,

$$x(t) = Ae^{j\Omega_0t} = \underbrace{A\cos(\Omega_0t)}_{\mathcal{R}e[x(t)]} + j\underbrace{A\sin(\Omega_0t)}_{\mathcal{I}m[x(t)]}$$

Analog exponentials: decaying exponential (top left), growing exponential (top right), modulated exponential decaying and growing (bottom left and right).

23

Sinusoids

Sinusoids are of the general form

$$A\cos(\Omega_0 t + \theta) = A\sin(\Omega_0 t + \theta + \pi/2)$$
 $-\infty < t < \infty$

where A is the amplitude of the sinusoid, $\Omega_0=2\pi f_0$ (rad/sec) is the frequency, and θ is a phase shift. The frequency and time variables are inversely related,

$$\Omega_0 = 2\pi f_0 = \frac{2\pi}{T_0}$$

$$\begin{split} \cos(\Omega_0 t) &=& \frac{1}{2} (e^{j\Omega_0 t} + e^{-j\Omega_0 t}) \\ \sin(\Omega_0 t) &=& \frac{1}{2j} (e^{j\Omega_0 t} - e^{-j\Omega_0 t}) \end{split}$$

Modulation systems in communications

$$A(t)\cos(\Omega(t)t + \theta(t))$$

- Amplitude modulation or AM: A(t) changes according to the message, frequency and phase constant,
- Frequency/Phase modulation or FM: $\Omega(t)/\theta(t)$ changes according to the message, amplitude and phase constant,

Unit-step, Unit-impulse and Ramp Signals

The impulse signal $\delta(t)$ is:

- zero everywhere except at the origin where its value is not well defined, i.e., $\delta(t) = 0$, $t \neq 0$, undefined at t = 0,
- its area is unity, i.e.,

$$\int_{-\infty}^{t} \delta(\tau) d\tau = \begin{cases} 1 & t > 0 \\ 0 & t < 0. \end{cases}$$

The $unit-step \ signal \ is$

$$u(t) = \left\{ \begin{array}{ll} 1 & t > 0 \\ 0 & t < 0 \end{array} \right.$$

2

The $\delta(t)$ and u(t) are related as follows:

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$
$$\delta(t) = \frac{du(t)}{t}$$

Calculus: $\Delta \to 0$, relation between u(t) and $\delta(t)$

$$\begin{array}{rcl} u_{\Delta}(t) & = & \displaystyle \int_{-\infty}^{t} p_{\Delta}(\tau) d\tau \\ \\ p_{\Delta}(t) & = & \displaystyle \frac{du_{\Delta}(t)}{dt} \end{array}$$

The ramp signal is defined as

$$r(t) = t \ u(t)$$

Its relation to the unit-step and the unit-impulse signals is

$$\frac{dr(t)}{dt} = u(t)$$
$$\frac{d^2r(t)}{dt^2} = \delta(t)$$

 $\underline{\mathbf{Example}} \ \mathrm{For}$

$$x_1(t) = \cos(2\pi t)[u(t) - u(t-1)]$$

$$x_2(t) = u(t) - 2u(t-1) + u(t-2)$$

represent them as the sum of a continuous signal and unit step signals, and find their derivatives. Solution $\,$

$$x_1(t) = \underbrace{(\cos(2\pi t) - 1)[u(t) - u(t-1)]}_{continuous} + \underbrace{[u(t) - u(t-1)]}_{discontinuous}$$

$$\begin{array}{lll} \frac{dx_1(t)}{dt} & = & -2\pi\sin(2\pi t)[u(t)-u(t-1)] + (\cos(2\pi t)-1)[\delta(t)-\delta(t-1)] + \delta(t) - \delta(t-1) \\ & = & -2\pi\sin(2\pi t)[u(t)-u(t-1)] + \delta(t) - \delta(t-1) \end{array}$$

 $x_2(t),$ jump discontinuities at $t=0,\,t=1$ and t=2 so discontinuous, continuous component 0

$$\frac{dx_2(t)}{dt} = \delta(t) - 2\delta(t-1) + \delta(t-2)$$

${\bf Example-MATLAB}$

$$y(t) = 3r(t+3) - 6r(t+1) + 3r(t) - 3u(t-3)$$

plot it and verify analytically that the obtained figure is correct.

Analytically,

- y(t)=0 for t<-3 and for t>3, signal in support $-5\leq t\leq 5$
- $-3 \le t \le -1$, y(t) is 3r(t+3) = 3(t+3) which is y(-3) = 0, y(-1) = 6
- $-1 \le t \le 0$, y(t) is 3r(t+3) 6r(t+1) = 3(t+3) 6(t+1) = -3t+3, y(-1) = 6, y(0) = 3,
- $0 \le t \le 3$, y(t) is 3r(t+3) 6r(t+1) + 3r(t) = -3t + 3 + 3t = 3,
- $t \ge 3$, y(t) is 3r(t+3) 6r(t+1) + 3r(t) 3u(t-3) = 3 3 = 0.

Example Use r(t) and u(t) to represent the triangular signal $\Lambda(t)$ and its

$$\Lambda(t) = \begin{cases} t & 0 \le t \le 1\\ -t + 2 & 1 < t \le 2\\ 0 & \text{otherwise} \end{cases}$$

Solution

$$\Lambda(t) = r(t) - 2r(t-1) + r(t-2)$$

In fact,

$$\begin{array}{lcl} \Lambda(t) & = & r(t) = t & \text{for } 0 \leq t \leq 1 \\ & = & r(t) - 2r(t-1) = t - 2(t-1) = -t + 2 & \text{for } \leq t \leq 2 \\ & = & r(t) - 2r(t-1) + r(t-2) = t - 2(t-1) + (t-2) = 0 & t > 2 \end{array}$$

Derivative:

$$\frac{d\Lambda(t)}{dt} = u(t) - 2u(t-1) + u(t-2) = \begin{cases} 1 & 0 \le t \le 1\\ -1 & 1 < t \le 2\\ 0 & \text{otherwise} \end{cases}$$

Example Full-wave rectified signal

$$x(t) = |\cos(2\pi t)|$$
 $-\infty < t < \infty$

Representation for a period, and represent $\boldsymbol{x}(t)$ in terms of shifted versions of it

Solution

Period, $0 \le t \le T_0 = 0.5$:

$$p(t) = x(t)[u(t) - u(t-0.5)] = |\cos(2\pi t)|[u(t) - u(t-0.5)]$$

$$x(t) = \sum_{k=-\infty}^{\infty} p(t - kT_0)$$

31

 $\underline{\textbf{Example}} \text{ Generate causal train of pulses, repeating every 2 units of time using } \underline{\textbf{first period}}. \text{ Find its derivative.}$

$$s(t) = u(t) - 2u(t-1) + u(t-2)$$

Solution

$$\rho(t) = \sum_{k=0}^{\infty} s(t - 2k)$$

Generic Representation of Signals

$$\begin{split} \int_{-\infty}^{\infty} f(t) \delta(t-\tau) dt &= \int_{-\infty}^{\infty} f(\tau) \delta(t-\tau) dt = f(\tau) \int_{-\infty}^{\infty} \delta(t-\tau) dt \\ &= f(\tau) \qquad \text{for any } \tau \end{split}$$

By the sifting property of the impulse function $\delta(t)$ any signal x(t) can be represented by the following generic representation:

$$x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau.$$

What have we accomplished?

- * Signal classification
- * Symmetry, periodicity, energy/power for continuous-time signals
- Signal representation using basic signals (unit-step, impulse, ramp, exponent

Where do we go from here?

- * Connect signals and systems
- * Develop theory that approximates behavior of most systems
- * Time and frequency analysis