# 第十章机器语言程序设计

## 程序设计语言与ISA

- 指令集结构(ISA)是 计算机硬件和软件之间 的接口
  - 处理器设计的依据
  - 编写程序时所要注意的 全部信息



### 高级语言

- 与底层计算机指令集无关
- "独立于机器"
- 不能直接被计算机执行
- 被翻译为目标机器 I SA的二进制指令序列



### 低级语言

- 与执行程序的计算机指令集紧密相关
- 机器语言
  - 依据指令集使用二进制编码,直接在计算机上执行,不需要经过语言处理
- 汇编语言
  - 依据指令集的汇编语言格式编写,需经过语言处理,翻译 为机器语言才能在计算机上执行



### 结构化程序设计

(1) A 特分解 的任务

- 三种基本结构
  - 顺序
  - 选择
  - 循环



# 顺序



### 选择

| 31 | 76  | 25 21 | 20 16 | 15 0  |
|----|-----|-------|-------|-------|
|    | 操作码 | SR1   | 未用    | Imm16 |

- 一组指令序列生成条件
  - 将某个寄存器Rx设置为零(假)/非零 (真)
- · 地址B2 "条件分支指令"测试该寄存器
  - 条件为真(BNEZ Rx, Y)
    - PC<-C2+4
    - · 立即数Y:子任务2的指令数目加1后再乘以4
  - 条件为假
    - PC <- B2+4
    - \_ 子任务2
      - 终止于C2中的无条件跳转指令
      - PC <- D2+4
      - J指令中的立即数:子任务1的指令数目乘以4





### 循环

| <u>31</u> | 26  | 25 21 | 20 16 | 15 0  |
|-----------|-----|-------|-------|-------|
|           | 操作码 | SR1   | 未用    | Imm16 |

- 一组指令序列生成条件
  - 将某个寄存器Rx设置为零(假)/非零(真)
- · 地址B3 "条件分支指令"测试该寄存器
  - 条件为假(BEQZ Rx, Y)
    - PC <- D3+4
    - · 立即数Y: 子任务的指令数目加1后再乘以4
  - 条件为真
    - − PC <− B3+4</p>
    - 子任务
      - 结束于D3中的无条件跳转指令
      - PC <- A
    - · 问题: J指令中的立即数应为多少?



### 示例: 文档加密

- 根据键盘输入的数值n(0到9之间的整数),对 文档进行加密
- 加密算法:如果文档中的字符ASCII码值大于 "126-n",那么,将该字符减去"94-n",并 替换原来的字符;而其他字符则加上n,进行替 换;最后在显示器上显示字符"Y",表示加密 结束。假设文档中的字符ASCII码值在33~126范 围内。

### 系统分解过程

- 分解为由4个子任务组成的顺序结构
  - 初始化:得到数值n,将指针指向被检查文档中第一个字符的地址,然后从被检查文档中提取第一个字符。



## 分解C

- 循环结构: 只要该文档还有字符需要加密
  - 文档结束,标志为 EOT(传输结束, ASCII码为00000100)



## 分解C1

• 两个顺序的子任务C2和C3









## 循环结构



| 地址         | 31     | 26  | 25    | 21  | 20                   | 16      | 15                  | 11   | 10     | 6           | 5              | 0     |                |             |
|------------|--------|-----|-------|-----|----------------------|---------|---------------------|------|--------|-------------|----------------|-------|----------------|-------------|
| x0400 0000 | 1100   | 000 |       |     | 0000                 | 00 000  | 0 0000              | 0000 | 0000   | 0110        |                |       | TRAP x06/IN    | 1           |
| x0400 0004 | 000011 |     | 00100 |     | 00100                |         | 0000 0000 0011 0000 |      |        |             | SUBI R4, R4, x | 30    |                |             |
| x0400 0008 | 001100 |     | 00000 |     | 00011                |         | 0001 0000 0000 0000 |      |        |             |                |       | LHI R3, x100   | 0           |
| x0400 000C | 010110 |     | 00011 |     | 00001                |         | 0000 0000 0000 0000 |      |        |             |                |       | LB R1, 0(R3)   | )           |
| x0400 0010 | 010    | 100 | 000   | 01  | 00010                |         | 0000 0000 0000 0100 |      |        |             |                |       | SEQI R2, R1, # | # <b>4</b>  |
| x0400 0014 | 1010   | 001 | 000   | 10  | 00000 0000 0011 0000 |         |                     |      |        | BNEZ R2, x3 | 0              |       |                |             |
| x0400 0018 | 0000   | 001 | 000   | 00  | 001                  | 01      |                     | 0000 | 0000   | 0111        | 1111           |       | ADDI R5, R0, x | 7F          |
| x0400 001C | 0000   | 000 | 001   | .01 | 001                  | 00      | 001                 | 01   | 0000   | 000         | 00             | 00011 | SUB R5, R5, R  | ₹4          |
| x0400 0020 | 0000   | 000 | 000   | 01  | 001                  | 01      | 000                 | 10   | 0000   | 000         | 01             | 0000  | SLT R2, R1, R  | <b>k</b> 5  |
| x0400 0024 | 1010   | 001 | 000   | 10  |                      |         | 00000               | 0000 | 0000   | 1100        |                |       | BNEZ R2, x00   | C           |
| x0400 0028 | 000    | 011 | 001   | .01 | 001                  | 01      |                     | 0000 | 0000   | 0010        | 0001           |       | SUBI R5, R5, x | 21          |
| x0400 002C | 0000   | 000 | 000   | 01  | 001                  | 01      | 000                 | 01   | 0000   | 000         | 00             | 00011 | SUB R1, R1, R  | ₹5          |
| x0400 0030 | 1011   | 100 |       |     | 00000                | 00 000  | 0 0000              | 0000 | 0000   | 0100        |                |       | J x04          |             |
| x0400 0034 | 0000   | 000 | 000   | 01  | 001                  | 00      | 000                 | 01   | 0000   | 000         | 00             | 0001  | ADD R1, R1, F  | ₹4          |
| x0400 0038 | 010    | 111 | 000   | 11  | 000                  | 001     |                     | 0000 | 0000   | 0000        | 0000           |       | SB 0(R3), R1   |             |
| x0400 003C | 0000   | 001 | 000   | 11  | 000                  | )11     |                     | 0000 | 0000   | 0000        | 0001           |       | ADDI R3, R3,   | #1          |
| x0400 0040 | 010    | 110 | 000   | 11  | 000                  | 001     |                     | 0000 | 0000   | 0000        | 0000           |       | LB R1, 0(R3)   | )           |
| x0400 0044 | 1011   | 100 |       |     | 1111                 | 11 111  | 1 1111              | 1111 | 1100 1 | 000         |                |       | J #-56         |             |
| x0400 0048 | 0000   | 001 | 000   | 000 | 001                  | 00      |                     | 0000 | 0000   | 0101        | 1001           |       | ADDI R4, R0, x | <b>x</b> 59 |
| x0400 004C | 1100   | 000 |       |     | 00000                | 000 000 | 0000                | 0000 | 0000   | 0111        |                |       | TRAP x07/OU    | T           |
| x0400 0050 | 1100   | 000 |       |     | 00000                | 000 000 | 0000                | 0000 | 0000   | 0000        |                |       | TRAP x00/HA1   | LT          |



(7)
A
生成条件指令
B3
条件分支指令
子任务
D3
J指令

## C2选择结构



| 地址         | 31     | 26  | 25         | 21                              | 20                              | 16                   | 15                  | 11   | 10     | 6        | 5                | 0             |                  |
|------------|--------|-----|------------|---------------------------------|---------------------------------|----------------------|---------------------|------|--------|----------|------------------|---------------|------------------|
| x0400 0000 | 1100   | 000 |            |                                 | 000000 0000 0000 0000 0000 0110 |                      |                     |      |        |          |                  | TRAP x06/IN   |                  |
| x0400 0004 | 000011 |     | 00100      |                                 | 00100                           |                      | 0000 0000 0011 0000 |      |        |          | SUBI R4, R4, x30 |               |                  |
| x0400 0008 | 001100 |     | 00000      |                                 | 00011                           |                      | 0001 0000 0000 0000 |      |        |          |                  | LHI R3, x1000 |                  |
| x0400 000C | 010110 |     | 00011      |                                 | 00001                           |                      |                     | 0000 | 0000   | 0000     | 0000             | 1             | LB R1, 0(R3)     |
| x0400 0010 | 010100 |     | 00001 0001 |                                 | 110                             | 0000 0000 0000 0100  |                     |      |        |          | SEQI R2, R1, #4  |               |                  |
| x0400 0014 | 101    | 001 | 00010      |                                 |                                 | 00000 0000 0011 0000 |                     |      |        |          | BNEZ R2, x30     |               |                  |
| x0400 0018 | 000    | 001 | 000        | 000                             | 001                             | 01                   |                     | 0000 | 0000   | 0111     | 1111             |               | ADDI R5, R0, x7F |
| x0400 001C | 000    | 000 | 001        | 01                              | 001                             | 100                  | 001                 | 01   | 0000   | 000      | 00               | 00011         | SUB R5, R5, R4   |
| x0400 0020 | 000    | 000 | 000        | 01                              | 001                             | 01                   | 000                 | 10   | 0000   | 000      | 01               | 10000         | SLT R2, R1, R5   |
| x0400 0024 | 101    | 001 | 000        | 10                              |                                 |                      | 00000               | 0000 | 0000   | 1100     |                  |               | BNEZ R2, x0C     |
| x0400 0028 | 000    | 011 | 001        | 01                              | 001                             | 01                   |                     | 0000 | 0000   | 0010     | 0001             |               | SUBI R5, R5, x21 |
| x0400 002C | 000    | 000 | 000        | 01                              | 001                             | 01                   | 000                 | 01   | 0000   | 000      | 00               | 00011         | SUB R1, R1, R5   |
| x0400 0030 | 101    | 100 |            |                                 | 00000                           | 00 000               | 0 0000              | 0000 | 0000   | <u> </u> |                  |               | J x04            |
| x0400 0034 | 000    | 000 | 000        | 01                              | 001                             | 100                  | 000                 | 01   | 0000   | 000      | 00               | 00001         | ADD R1, R1, R4   |
| x0400 0038 | 010    | 111 | 000        | )11                             | 000                             | 001                  |                     | 0000 | 0000   | 0000     | 0000             | 1             | SB 0(R3), R1     |
| x0400 003C | 000    | 001 | 000        | )11                             | 000                             | )11                  |                     | 0000 | 0000   | 0000     | 0001             |               | ADDI R3, R3, #1  |
| x0400 0040 | 010    | 110 | 000        | )11                             | 000                             | 001                  |                     | 0000 | 0000   | 0000     | 0000             | 1             | LB R1, 0(R3)     |
| x0400 0044 | 101    | 100 |            | 111111 1111 1111 1111 1100 1000 |                                 |                      |                     |      | J #-56 |          |                  |               |                  |
| x0400 0048 | 000    | 001 | 000        | 000                             | 001                             | 100                  |                     | 0000 | 0000   | 0101     | 1001             |               | ADDI R4, R0, x59 |
| x0400 004C | 1100   | 000 |            |                                 | 0000                            | 00 000               | 0000                | 0000 | 0000   | 0111     |                  |               | TRAP x07/OUT     |
| x0400 0050 | 1100   | 000 |            |                                 | 00000                           | 00 000               | 0 0000              | 0000 | 0000   | 0000     |                  |               | TRAP x00/HALT    |





#### 示例: 判断连续存储单元内是否包含5

- 检查:
- 从地址x3000 0000开始存储的10个整数
  - 有5, R1设置为1
  - 没有5, R1为0

- 计数器控制的循环
  - R3, 计数器
- 子任务1
  - 选择结构



#### 测试条件 R3==0





- 不需要生成条件指令
- 条件分支指令
  - BEQZ R3, D3+4

### 测试条件 R2==5





- 生成条件指令
  - SEQ1 Rx, R2, #5
- 条件分支指令
  - BEQZ Rx, D2+4

## 机器语言程序



| 31 26  | 25 21 | 20 16      | 15 11 10 6 5            | 0 解释            |
|--------|-------|------------|-------------------------|-----------------|
| 001001 | 00001 | 00001      | 0000 0000 0000 0000     | ANDI R1,R1,#0   |
| 000001 | 00000 | 00011      | 0000 0000 0000 1010     | ADDI R3,R0, #10 |
| 001100 | 00000 | 00100      | 0011 0000 0000 0000     | LHI R4, x3000   |
| 011100 | 00100 | 00010      | 0000 0000 0000 0000     | LW R2, 0(R4)    |
| 101000 | 00011 | 00000      | 0000 0000 0010 0000     | BEQZ R3, #32    |
| 010100 | 00010 | 00101      | 0000 0000 0000 0101     | SEQI R5, R2, #5 |
| 101000 | 00101 | 00000      | 0000 0000 0000 1000     | BEQZ R5, #8     |
| 000001 | 00000 | 00001      | 0000 0000 0000 0001     | ADDI R1,R0,#1   |
| 101100 |       | 00 0000 00 | 000 0000 0000 0001 0000 | J #16           |
| 000001 | 00100 | 00100      | 0000 0000 0000 0100     | ADDI R4,R4, #4  |
| 011100 | 00100 | 00010      | 0000 0000 0000 0000     | LW R2, 0(R4)    |
| 000011 | 00011 | 00011      | 0000 0000 0000 0001     | SUBI R3,R3, #1  |
| 101100 |       | 11 1111 11 | 11 1111 1111 1101 1100  | J #-36          |
|        |       |            | ••                      |                 |

- 选择结构
  - 当R2为5时,设置R1为1
  - 使用J指令跳出循环

#### 示例:找到字中的第一个"1"

- 检查:
  - x3000 0000~x3000 0003中的字
  - 找出第一个"1" (从左到右)
    - 存储到R1中
  - 如果没有1
    - R1 <− −1
  - 例如
    - 0010 0000 0000 0000 0000 0000 0000, R1=29
    - 0000 0000 0000 0000 0000 0010 0000, R1=5

- 选择结构
- 子任务2
  - 标志控制的循环
  - 标志
    - R2<0: R2[31]=1
  - 循环子任务
    - R2=R2<<1</li>
      - R2[30], R2[29] ···==1?



#### 测试条件 R2==0





- 不需要生成条件指令
- 条件分支指令
  - BEQZ R2, C2+4

### 测试条件 R2<0





- 生成条件指令
  - SLTI Rx, R2, #0
- 条件分支指令
  - BNEZ Rx, D3+4

# 机器语言程序

| 31 26  | 25 21 | 20 16     | 15 11 10 6 5           | 0 解释            |
|--------|-------|-----------|------------------------|-----------------|
| 000001 | 00000 | 00001     | 0000 0000 0001 1111    | ADDI R1,R0, #31 |
| 001100 | 00000 | 00100     | 0011 0000 0000 0000    | LHI R4, x3000   |
| 011100 | 00100 | 00010     | 0000 0000 0000 0000    | LW R2, 0(R4)    |
| 101000 | 00010 | 00000     | 0000 0000 0001 0100    | BEQZ R2,#20     |
| 010000 | 00010 | 00011     | 0000 0000 0000 0000    | SLTI R3, R2, #0 |
| 101001 | 00011 | 00000     | 0000 0000 0001 0000    | BNEZ R3, #16    |
| 000011 | 00001 | 00001     | 0000 0000 0000 0001    | SUBI R1,R1, #1  |
| 001101 | 00010 | 00010     | 0000 0000 0000 0001    | SLLI R2,R2, #1  |
| 101100 |       | 111111 11 | 11 1111 1111 1110 1100 | J #-20          |
| 001010 | 00000 | 00001     | 1111 1111 1111 1111    | ORI R1,R0, #-1  |
|        |       |           |                        |                 |

### 测试和调试

• 在第十一章 DLX汇编语言编程后,再做介绍

# 书面作业

- 10. 1
- 10. 2