Dimensionality Reduction and Principal Component Analysis

CISC 3225 Spring 2024 PDSH 45, DSFS 3

Question: If you had to remove a dimension in the figure to the right, which would you remove?

Question: If you had to remove a dimension in the figure to the right, which would you remove?

X axis removed

Principal Component Analysis

Question: If you had to remove a dimension in the figure to the right, which would you remove?

Question: If you had to remove a dimension in the figure to the right, which would you remove?

There is significantly more variance in the X axis than the Y axis

Principal Component Analysis

Question: If you had to remove a dimension in the figure to the right, which would you remove?

There is significantly more variance in the X axis than the Y axis

Principal Component Analysis

Question: If you had to remove a dimension in the figure to the right, which would you remove?

Question: If you had to remove a dimension in the figure to the right, which would you remove?

Goal: Preserve as much information about the distribution of the data as possible.

Did we really preserve as much information as we can?

Idea: Find the *direction* of the highest variance, not the *axis* with the highest variance.

Idea: Find the *direction* of the highest variance, not the *axis* with the highest variance.

Idea: Find the *direction* of the highest variance, not the *axis* with the highest variance.

The arrow:

- Is a principal axis of the data
- Shows how important the axis is (i.e., how much variance the axis contains)

Principal component analysis (PCA) algorithm:

- 1. Find the principal axis that contains the most variance.
- 2. Eliminate this axis from consideration
- 3. Go to 1 until the number of principal axes is equal to the dimensionality of the input data.

Principal component analysis (PCA) algorithm:

- 1. Find the principal axis that contains the most variance.
- 2. Eliminate this axis from consideration
- 3. Go to 1 until the number of principal axes is equal to the dimensionality of the input data.

Principal component: A projection of each data point on to the principal axis.

We can plot the principal components:

Demo: PCA and highly dimensional data

scikit-learn PCA documentation:

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

Uses of PCA

- Visualization
 - Visualize high-dimensional data that is otherwise unvisualizable
 - Automatically find and shows the most important principal axes
 - Demonstrate that there are groups of related instances in your data
 - Justify future clustering/k-NN/ML work
- Machine learning
 - Focuses model: Removes low-variance data
 - Memory constraints: Reduce the dimensionality of your data to train faster and save memory