

LOJİK DEVRELERİ 2. YILİÇİ SINAVI ÇÖZÜMLERİ

SORU 1 (35 PUAN):

a) (20 puan)

A, B ve C seçme girişleri olacak şekilde 8:1 bir VS ile tasarım yapılmıştır. Doğruluk tablosu yanda gösterilmiştir.

Şimdi indirgeme Karnaugh diyagramı yardımıyla yapılabilir.

	CD				
AB		00	01	11	10
	00		(1
	01			U_	\Box
	11				į)
	10	1			

ABCD	Z
0000	0
000 1	1
001 0	1
001 1	1
010 0	0
010 1	0
011 0	1
011 1	1
100 0	1
100 1	0
101 0	0
101 1	0
110 0	0
110 1	0
111 0	1
111 1	0
_	

Karnaugh diyagramından Z= a'c +a'b'd + bcd' +ab'c'd'

b) (15 puan)

Yukarıdaki devre 4 adet lojik bağlaç ve tek bir 4:1 VS ile tasarlanabilir. İki cevap da doğru kabul edilmiştir.

CEVAP 2(30 PUAN):

- a) Girişlere SR=11 uygulamanın iki sakıncası vardır:
- 1. Birbirinin tümleyeni olması beklenen Q ve Q_N çıkışlarının her ikisi de '0' olur.
- 2. Girişlere SR=11 uygulandığında devre kararlı haldedir ve her iki çıkış da '0'dır. Ancak bu durumdayken girişlere SR=00 uygulanırsa 1 ve 2 numaralı TVEYA kapılarının hızlarına bağlı olarak devrenin hangi kararlı duruma geçeceği belirsiz olur. SR=00 Q=0, $Q_N=1$ ya da SR=00 Q=1, $Q_N=0$ durumlarından birine geçecektir.

SORU 3 (35 PUAN):

$$J = s_3's_2s_1s_0 + s_3s_2's_1s_0$$

$$K = s_3's_2's_1's_0' + s_3's_2's_1s_0' = s_3's_2's_0'$$

$$Q_0^+ = J \cdot Q_0^+ + K' \cdot Q_0^-$$

$$s_3 = A$$
, $s_2 = B$, $s_1 = Q_1$, $s_0 = Q_0$ olduğuna göre gerekli düzenlemelerden sonra

$$\mathbf{Q_0}^+ = \mathbf{Q_0}$$
 bulunur.

$$Q_1^+ = D$$

$$Q_1^+ = D$$

 $Q_1^+ = A' \cdot B' \cdot Q_1' \cdot Q_0' + A' \cdot B \cdot Q_1' \cdot Q_0 + A \cdot B \cdot Q_1' \cdot Q_0'$

Z= Q₁⊕**Q**₀ (Devre Moore modeline göre tasarlanmıştır)

$Q_1^+Q_0^+$		АВ				
	$Q_1 Q_0$	00	01	10	11	
	00	10	00	00	10	

	AD					
$Q_1 Q_0$	00	01	10	11	Z	
00	10	00	00	10	0	
01	01	11	01	01	1	
10	00	00	00	00	1	
11	01	01	01	01	0	

	A B					
S	00	01	10	11	Ζ	
D1	D3	D1	D1	D3	0	
D2	D2	D4	D2	D2	1	
D3	D1	D1	D1	D1	1	
D4	D2	D2	D2	D2	0	

