Introducción a las matrices

Luis Eduardo Amaya B. Sede Guanacaste, Universidad de Costa Rica.

> MA-0320 - Matemáticas Discretas Setiembre 2020

Contents

- Introducción
 - Justificación
 - Un poco de historia
 - Aplicaciones
- Conceptos básicos
 - Definiciones
 - Matrices en Mathematica
 - Tipos de matrices
 - Matrices booleanas
- Operaciones entre matrices booleanas

Matrices booleanas

No es de nuestro interés profundizar en el tema general de las matrices, para ello existe el curso de *álgebra lineal*, a nosotros nos interesa concentrarnos en el caso particular de las matrices booleanas.

Definición

Una matriz de tamaño $m \times n$ se llama booleana si sus entradas pueden ser solamente 0 o 1.

Estas serán de suma utilidad para representar los gráficos de las relaciones definidas sobre conjuntos finitos, tema que se estudiará en el capítulo de Relaciones.

Transpuesta de una matriz

Definición

Se define la matriz traspuesta de M como la matriz cuyas columnas son las filas de M y las filas son las columnas de M. Esta nueva matriz se denota por M^t .

Si la matriz M, posee tamaño $m \times n$, entonces M^t posee tamaño $n \times m$.

Simbólicamente, si $M = (m_{ij})$ se tiene que

$$M^t = (m_{ii})$$

.

Transpuesta de una matriz

Ejemplo

Ejemplo 4: para la matriz $M = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ determinar su transpuesta.

$$M^{t} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 3 \times 2 \end{pmatrix}$$

$$dim M = 12131$$

$$T(3)6$$

Transpuesta: implementación en Mathematica

```
TranspuestaMatrices [A_] := Module [\{dimA = 0, x = 0\}]
                             módulo
   dimA = Dimensions[A];
          dimensiones
   (*El estudiante podría leer un poco mas sobre la estructura del comando Dimens
   T = ConstantArray[0, {dimA[[2]], dimA[[1]]}];
       arreglo constante
   For [i = 1, i \le dimA[[1]], i++,
   para cada
    For [j = 1, j \le dimA[[2]], j++,
    para cada
      T[[i, j]] = A[[j, i]];
     ];
   ];
   Print["La transpuesta de la matriz ", MatrixForm[A], " es:", MatrixForm[T]];
                                                                       forma de matriz
                                             forma de matriz
   escribe
  ];
```

Disyunción

Si $A = (a_{ij})$ y $B = (b_{ij})$ son dos matrices booleanas de $m \times n$, se define la disyunción de A y B como la nueva matriz $A \vee B = D$, donde las entradas son:

$$D_{ij} = \begin{cases} 1 & si & a_{ij} = 1 \lor b_{ij} = 1 \\ 0 & si & a_{ij} = 0 \land b_{ij} = 0 \end{cases}$$

Disyunción

Ejemplo

Ejemplo 5: dadas las matrices $A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

$$B = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \text{ determinar } A \lor B.$$

$$A \vee B = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Disyunción: implementación en Mathematica

```
DisjuncionMatrices[A_, B_] := Module[{dimA = 0, dimB = 0},
                               módulo
   dimA = Dimensions[A];
          dimensiones
   dimB = Dimensions[B];
         dimensiones
   (*El estudiante podría leer un poco mas sobre la estructura del comando Dimensions*)
   If[dimA ≠ dimB,
    Print["Los tamaños de las matrices son diferentes, y no se puede realizar la disjunción"],
    escribe
    (*Necesitamos crea una matriz "vacía" de ceros, en la cual se va a almacenar el resultado de la suma*)
    T = ConstantArray[0, {dimA[[1]], dimA[[2]]}];
       arreglo constante
    For [i = 1, i \le dimA[[1]], i++,
    para cada
     For [j = 1, j \le dimA[[2]], j++,
     para cada
       If [(A[[i,j]] = 1) | | (B[[i,j]] = 1),
         T[[i, j]] = 1;
        ];
      ];
    ];
    Print["El resultado de realizar la disjunción de la matriz ", MatrixForm[A], " con la matriz ", MatrixForm[B], " es: ", MatrixForm[T]];
                                                                      forma de matriz
                                                                                                         forma de matriz
                                                                                                                                 forma de matriz
   ];
 ];
```

Conjunción

Definición

Si $A = (a_{ij})$ y $B = (b_{ij})$ son dos matrices booleanas de $m \times n$, se define la conjunción de A y B como la nueva matriz $A \wedge B = D$, donde las entradas son:

$$D_{ij} = \begin{cases} 1 & si & a_{ij} = 1 \land b_{ij} = 1 \\ 0 & si & a_{ij} = 0 \lor b_{ij} = 0 \end{cases}$$

Conjunción

Ejemplo

Ejemplo 6: dadas las matrices $A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

$$B = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} determinar A \wedge B.$$

$$A^{A}B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Definición

Considere las matrices $A = (a_{ij})$ de tamaño $m \times n$ y $B = (b_{ij})$ de tamaño $n \times p$. La multiplicación booleana de A y B es la nueva matriz de tamaño $m \times p$ que se denota por $A \odot B$, de manera que:

- (A ⊙ B) [i,j] = 1, si existe un 1 en la misma posición en la fila i de A y en la columna j de B.
- $(A \odot B)[i,j] = 0$ si no hay coincidencia.

Multiplicación

Ejemplo

Ejemplo 7: Si tenemos las matrices $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$ determinar $A \odot B$. ¿ Se puede calcular $B \odot A$?

Multiplicación: implementación en Mathematica

```
ProductoMatrices [A_{,}B_{,}] := Module[\{dimA = 0, dimB = 0, x = 0\},
                              módulo
   dimA = Dimensions[A];
          dimensiones
   dimB = Dimensions[B];
          dimensiones
   If[dimA[[2]] # dimB[[1]],
    Print["Los tamaños de las matrices no permiten realizar la multiplicación"],
    escribe
    (*Necesitamos crea una matriz "vacía" de ceros, en la cual se va a almacenar el resultado de la suma∗)
    T = ConstantArray[0, {dimA[[1]], dimB[[2]]}];
        arreglo constante
    For [i = 1, i \le dimA[[1]], i++,
    para cada
     For [j = 1, j \le dimB[[2]], j++,
     para cada
        For [k = 1, k \le dimA[[2]], k++,
        para cada
          If[A[[i,k]] == B[[k,j]],
            T[[i, j]] = 1;
            Break;
            finaliza iteración
           ];
         ];
      ];
    ];
    Print("El resultado de multiplicar la matriz ", MatrixForm(A), " con la matriz ", MatrixForm(B), " es:", MatrixForm(T)];
    escribe
                                                        forma de matriz
                                                                                             forma de matriz
                                                                                                                     forma de matriz
   ];
```


.

Operaciones combinadas

Ejemplo

Ejemplo 8: Si tenemos las matrices $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{pmatrix}$ determinar $[[(A \odot B) \land I_2] \lor 0_{2\times 2}]^t$

$$AOB_{2x2} = \begin{pmatrix} 1 & 0 \end{pmatrix}$$

$$AOB_$$

Ejemplo 8

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \vee \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$|V| = |V| = |V|$$

Operaciones combinadas

Ejemplo

Ejemplo 9: Si tenemos las matrices
$$A = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$ determinar $\begin{bmatrix} (A \odot B)^t \wedge 1_{3\times 3} \end{bmatrix} \vee I_3$