Problem 7.15. Show that P is closed under the star operation.

Proof Idea. For any language $A \in P$, a string $y = y_1 \cdots y_n \in A^*$, when one of following is true:

- 1. $y = \varepsilon$.
- $2. y \in A.$
- 3. Both sub-strings of one of possible splits of y are in A^* .

Tree of sub-problems for a string of length 4. Non-shaded sub-problems are unique, whereas shaded are duplicate.

First, we give a recurive algorithm C that tests if A^* contains a string y. Secondly, we use Dynamic Programming (recursion + memoinzation) to obtain a polynomial time algorithm D.

Proof. Let A be any language in P and T be the TM that decides A in polynomial time.

C = "On input $\langle y, i, j \rangle$, where y is a string and i, j are integers:

- 1. If $y = \varepsilon$, then accept.
- 2. Use T to check if $y_i \cdots y_j \in A$. If T accepts, then accept.
- 3. Repeat for each k between i + 1 and j.
- 4. Run C on $\langle y, i, k-1 \rangle$.
- 5. Run C on $\langle y, k, j \rangle$.
- 6. Accept, if C accepts in both cases.
- 7. Reject."

Then decide A^* by starting with i=1 and j=|y|. D= "On input $\langle y,i,j\rangle$, where y is a string and i,j are integers:

- 1. If $y = \varepsilon$, then accept.
- 2. If previously solved then answer same, else continue.
- 3. Use T to check if $y_i \cdots y_j \in A$. If T accepts, then accept.
- 4. Repeat for each k between i + 1 and j.
- 5. Run C on $\langle y, i, k-1 \rangle$.
- 6. Run C on $\langle y, k, j \rangle$.
- 7. Accept, if C accepts in both cases.
- 8. Reject."

Then decide A^* by starting with i = 1 and j = |y|.

Tree of sub-problems for a string $y = y_i \cdots y_j$. Shaded sub-problems are duplicate.