

Algorithmen und Datenstrukturen II

Vorlesung do1spre2ece

Leipzig, 18.06.2024

Peter F. Stadler & Thomas Gatter & Ronny Lorenz

ZAHLENTHEORIE

Zahlentheorie und Kryptographie

Public-Key Kryptographie mittels RSA (Rivest, Shamir, Adleman)

- Verschlüsseln von Nachrichten zwischen zwei Parteien
 - Geheime Schlüssel zum Entschlüsseln
 - Öffentliche Schlüssel zum Verschlüsseln
- Signaturen für Nachrichten
 - leicht zu verifizieren
 - nicht fälschbar
 - kleinste Änderungen in Nachricht erkennbar

Lustige Warnung: es gibt keinen Beweis, dass dieses Verfahren sicher ist

Zahlentheorie und Kryptographie

Ein Kommentar vorweg:

Krypto ist kompliziert wenn man sie korrekt implementieren möchte. Nutzen sie bestehende, aktuelle Libraries.

Diese VL folgt dem Kapitel im Cormen:

Introduction to Algorithms, Cormen et al, Number-Theoretic Algorithms

Grundlagen

- große Eingaben für diese VL-Einheit sind groß im Bezug zur Anzahl an Bit die nötig sind, um die Eingabe zu kodieren
- wir reden typischerweise über eine Integer-zahl, jedoch hat diese 512 oder mehr Bit

Die Anzahl der *Bit* gibt die Schlüssellänge an. Es wird zwischen **symmetrischen** und **asymmetrischen Verfahren** unterschieden.

- → Symmetrische Verfahren haben nur einen Schlüssel (AES, Blowfish, etc).
- → Asymmetrische Verfahren haben getrennte Schlüssel zum ver- und entschlüsseln.

Der Teil zum verschlüsseln kann öffentlich verfügbar sein.

Grundlagen I

- eine Zahl $p \in \mathbb{N} = \{0, 1, \dots\}$ ist eine **Primzahl**, wenn 1 und p die einzigen Teiler von p sind
- $\mathbb{P} = \{2,3,5,7,11,13\dots\} \subset \mathbb{N}$ ist die Menge aller Primzahlen
- wir schreiben d|a ("d teilt a"), falls $\exists k \in \mathbb{Z} : a = kd$ Bsp: 4|8 da $2 \in \mathbb{Z}$ und 8=2*4 gilt
- Equivalenzklasse Modulo n: $[a]_n = \{a + kn : k \in \mathbb{Z}\}$ Bsp: n = 3: $[1, 4, 7, d \dots]_3 = \{1 + k * 3\} = \{1 + 0 * 3, 1 + 1 * 3, 1 + 2 * 3, \dots\}$
- wir schreiben $a \equiv b \mod n$ falls a = qn + r und b = q'n + rBsp: $4 \equiv 7 \mod 3$, da 4 = 1 * 3 + 1 und 7 = 2 * 3 + 1

Grundlagen II

- jede Natürliche Zahl hat eine Einzigartige Faktorisierung:
 - $orall \pmb{a} \in \mathbb{N}: \pmb{a} = \pmb{p}_1^{\pmb{e}_1} \cdot \ldots \cdot \pmb{p}_k^{\pmb{e}_k}, \, \pmb{p}_i \in \mathbb{P}$
- RSA basiert auf der Faktorisierung von Primzahlen
- wir benötigen eine Möglichkeit einen gemeinsamen Faktor zweier Zahlen zu finden: **g**rößter **g**emeinsamer **T**eiler d = ggT(a, b) = ax + by.
- ggT kann mit dem Algorithmus von Euklid effizient bestimmt werden

Grundlagen III

Erweiterter Euklidischer-Algorithmus

```
Euklid(a,b):

if b = 0 then

| Return (a,1,0)

(d,y',x) = Euklid(b, a \mod b)

(d,x,y) = (d, x, y' - \lfloor a/b \rfloor x)

Return (d,x,y)
```

- Der erweiterte Algorithmus bestimmt nicht nur den größten gemeinsamen Teiler d, sondern auch x und y, so dass d = ggT(a, b) = ax + by.

Grundlagen IV

Euklid wird so lange rekursiv aufgerufen bis b = 0. Beachten Sie die Rekursion in Zeile 3. Deren Ergebnis wird in Zeile 4 benutzt.

- mit $a > b \ge 1$ und $b < F_{k+1}$ werden < k rekursive Aufrufe durchgeführt
- Laufzeit: $O(\beta)$ arithmetische Operationen, $O(\beta^3)$ Bitoperationen für zwei β -Bit enkodierte Zahlen
 - Multiplikation benötigt $O(\beta^2)$ Bitoperationen
 - Geht das auch schneller?
- Korrektheit beruht auf den folgenden zwei Eigenschaften:
 - (i) $ggT(a,b) = ggT(b,a \mod b)$ für $a \neq 0$
 - (ii) ggT(a, 0) = a

Beispiel: Euklid

Beispiel: Euklid										
	а	b	[a/b]	d	Х	у				
	99	78	1	3	-11	14				
	78	21	3	3	3	-11				
	21	15	1	3	-2	3				
	15	6	2	3	1	-2				
	6	3	2	3	0	1				
	3	0	-	3	1	0				

Nehmen sie die Werte a = 99 und b = 78 und rechnen sie Euklid auf Papier nach!

Teilerfremde Zahlen

- Erinnerung: Euklid(a,b).d gibt den ggT zurück
- a und b sind teilerfremd falls Euklid(a,b).d = 1
- wir sagen auch a und b sind relativ Prim
- falls a, b teilerfremd zu p, dann ist a * b teilerfremd zu p
- Beispiel: 8 hat Teiler 1,2,4,8 und 15 hat Teiler 1,3,5,15.
- Falls a, b teilerfremd zu p, dann ist $a \times b$ teilerfremd zu p.
 - Warum?

Uhren- oder Modulo Arithmetik

Gruppe:

- − Gruppe (S, \oplus) mit Menge S und binärer Operation \oplus auf S.
- Abgeschlossen: $\forall a, b \in S$: $a \oplus b \in S$
- Id: \exists e ∈ S : e \oplus a = a \oplus e = a
- Assoziativ: $\forall a, b, c \in S$: $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
- *Inverses:* $\forall a \in S$: \exists (ein) $b \in S$: $a \oplus b = b \oplus a = e$

Beispiel: $(\mathbb{Z}, +)$, ganze Zahlen mit Addition, e = 0, Inverses: -a.

Modulo Arithmetik

Endliche Gruppe:

- Sei n eine natürliche Zahl
- − \mathbb{Z}_n sei die Menge der Zahlen $\{0 \dots n-1\}$
- Darauf lassen sich zwei nützliche Gruppen definieren:
 - $-\oplus = +$: $(\mathbb{Z}_n, +_n)$ $-\oplus = \times$: (\mathbb{Z}_n, \times_n)
- Sei $a \equiv a' \mod n$, $b \equiv b' \mod n$. In der jeweiligen Gruppe gilt:
 - \rightarrow $a+b \equiv a'+b' \mod n$
 - \rightarrow $ab \equiv a'b' \mod n$
- − Multiplikative Gruppe modulo n: $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n : ggT(a, n) = 1\}$

Beispiel: Gruppen Modulo n

$$a+b \mod 3$$

$$a*b \mod 3$$

Sehen sie die neutralen Elemente und die inversen Elemente?

Eulers Φ (Phi)

 $\Phi(n)$ zählt die natürlichen Zahlen $\leq n$, die teilerfremd zu n sind

$$\Phi(n) = n \prod_{p: p \in \mathbb{P} \wedge p \mid n} \left(1 - \frac{1}{p}\right)$$

- Falls $p \in \mathbb{P}$ dann $\mathbb{Z}_p^* = \{1, 2, \dots, p-1\}$
- und $\Phi(p) = p 1$
- Falls $p \notin \mathbb{P}$ dann $\Phi(n) < n 1$

Euler's Φ liefert die Größe von Z_n^* für ein gebenes n. Konkreter: Von $\{1, \ldots, n\}$ behalten Sie nur die Primzahlen die Teiler von n sind. Dann rechnen sie das Produkt aus mit den Faktoren (1-1/p) und multiplizieren sie mit n.

PUBLIC KEY INFRASTRUCTURE

Ein paar Begriffe und Definitionen

- Alice und Bob wollen kommunizieren.
- Eve ("Eavesdropper") möchte lauschen (Eve arbeitet für die NSA)
- Öffentlicher Schlüssel: P (Alice: P_A , Bob: P_B)
- Geheimer Schlüssel: S (Alice: S_A , Bob: S_B)
- $-P_A(\cdot)$ (etc.) seien die entsprechenden Funktionen
- Sei $M \in \mathcal{D}$ die zu sendende Nachricht
- Es gelte:
 - $M = S_A(P_A(M))$
 - $M = P_A(S_A(M))$
- Wir hoffen: S₄ kann nur von Alice in vertretbarer Zeit berechnet werden!

PKI Kryptographie

Es gibt keine bekannte schnelle Funktion NSA die C in M, ohne Kenntnis von S_A , umwandelt

Das RSA Kryptosystem

In sechs Schritten zu sicherer Kommunikation:

- 1. Wähle zufällige Primzahlen p, q, $p \neq q$, beide $\geq 512-2048$ bit p = 11, q = 13
- 2. Berechne n = pqn = 143
- 3. Wähle e, ungerade und klein (z.B. mit 16 bit: $2^{16} + 1 = 65537$), relativ prim zu $(p-1)(q-1) = \Phi(n)$ e = 23 (rel. prim zu 120)

- 4. Berechne d mit $de \equiv 1$ mod $(p-1)(q-1) = \Phi(n)$ $d = 47, 47 * 23 \mod 120 = 1$ Euklid ...
- 5. Öffentlicher Schlüssel: P = (e, n)P = (23, 143)
- 6. Geheimer Schlüssel: S = (d, n)S = (47, 143)

Beispiel

Beispiel

- 1. **Verschlüsseln** von m = 7
- 2. $c \equiv m^e \mod n$ $2 \equiv 7^{23} \mod 143$
- 3. Entschlüsseln von c = 2
- 4. $m \equiv c^d \mod n$ $7 \equiv 2^{47} \mod 143$

Es gibt nicht so viele kleine Primzahlen, dass sich viele Beispiele finden ließen.

Die Sicherheit von RSA baut darauf, dass n (hier 143) nicht einfach in die beiden Primzahlen p, q zerlegt werden kann. Dafür existiert kein Beweis! (Link1) (Link2)

Korrektheit von RSA

Beweis

Wir können *nicht* **zeigen**, dass RSA sicher ist. Aber es ist zu zeigen das RSA korrekt arbeitet. Also Ver- und Entschlüsselung zusammen die originale Antwort geben.

- für alle $m \in \mathcal{D}$ gilt:
- $-P(S(m))=S(P(m))=m^{ed}\mod n$
- ed = 1 + k(p-1)(q-1)
- $m^{ed} = m^{ed-1}m = m^{k(p-1)(q-1)}m = (m^{p-1})^{k(q-1)}m$ $\equiv 1^{k(q-1)}m \equiv m \mod p$
- analog für mod q
- damit auch für mod pq = n

RSA und Primzahlen

- RSA basiert darauf, dass es schwer ist n in p, q zu faktorisieren (mit p, q zwei sehr großen (> 512 Bit) Primzahlen)
- um aber RSA nutzen zu können, müssen wir p, q haben, und niemand sonst darf diese Zahlen kennen

Das heißt aber, wir müssen testen, dass p, q Primzahlen sind ...indem wir versuchen p, q zu faktorisieren?

- → Nicht nötig: Wir können einfach zufällige Zahlen auf "prim sein" testen. Haben wir zwei, sind wir fertig.
- und diese Prozedur hilft nicht beim Faktorisierungsproblem von n!

Finden von Primzahlen

Primzahltheorem:

- π(n) = (Anzahl der Primzahlen ≤ n)
- man kann zeigen, dass $\lim_{n\to\infty} \frac{\pi(n)}{n/\ln n} = 1$
- die Wahrscheinlichkeit, dass ein zufäliges $k \in \mathbb{N}$ prim ist: $1/\ln n$
- falls k prim, dann: $a^{k-1} \equiv 1 \mod k \quad (\forall a \in \{1 \dots k-1\})$
- -a=2 allein reicht als Test fast aus: die Fehlerrate ist 10^{-20} bei 512-bit Zahlen!
- allerdings gibt es sog. Carmichael-Zahlen bei denen der Test immer versagt (also falsch "prim" ausgibt)
- dort hilft z.B. der Miller-Rabin Test weiter
- \rightarrow Wir können also sehr leicht große Primzahlen finden (durch zufällige Wahl eines k und dann Primzahltest)

Beispiel

- -a=2 k=47 $2^{46} \equiv 1 \mod 47$
- -a=2 k=49=7*7 $2^{48}\equiv 15 \mod 49$
- $a \in \{2 \dots 48\}$: [15, 43, 29, 43, 8, 0, 43, 36, 8, 15, 22, 15, 0, 36, 8, 22, 1, 1, 22, 0, 29, 29, 36, 36, 29, 29, 0, 22, 1, 1, 22, 8, 36, 0, 15, 22, 15, 8, 36, 43, 0, 8, 43, 29, 43, 15, 1]

Wir müssen allerdings nur für a=2 testen um mit großer Sicherheit k als Prim bestimmen zu können

Faktorisierungsalgorithmen

- es gibt Algorithmen zur Primfaktorzerlegung, die effizienter arbeiten als brute force
- der benötigte Hauptspeicher ist gering
- Wenn $n = p_i \times \cdots \times p_k$, dann ist die Laufzeit proportional zu $\sqrt{\min p}$ (also zur Wurzel des kleinsten Primfaktors)
- deshalb sollten die Primfaktoren p, q für RSA nicht zu unterschiedlich gross sein

(Algorithmus auf Wikipedia)

Faktorisierung von n = pq: Pollard-Rho

Pollard-Rho Algorithmus

```
i := 1 x_1 := \text{Rand}(0, n-1) y := x_1 k := 2;
while True do
   i := i + 1:
   x_i := x_{i-1}^2 - 1 \mod n;
   d := \operatorname{\mathsf{qqT}}(x_i - y, n);
   if d \neq 1 und d \neq n then
       return d:
       /* Wenn alle Primfaktoren gewünscht sind, sollte hier print d
           stehen, dann ''terminiert'' diese Variante allerdings nicht
                                                                                        */
   if i = k then
       V := X_i;
       k := 2k:
```

erwartete Zeit: $O(n^{1/4})$... und damit *exponentiell* in β da $\beta = \lceil \log_2 n \rceil$

Beispiel: Pollard-Rho

Beispiel

Sei n = 323 = 19 * 17

i	$x_{i+1} = (x_i^2 - 1)$	X_{i+1}	mod 323	d	У
1	-		2	-	2
2	3		3	1	3
3	8		8	1	3
4	63		63	1	63
5	3968		92	1	63
6	8463		65	1	63
7	4224		25	19	63

Zusammenfassung

- Das RSA-Kryptosystem basiert auf einfacher Zahlentheorie
- Das Finden von zufälligen Primzahlen ist einfach
- Es gibt keine bekannte, schnelle Methode n = pq zu faktorisieren
- Es gibt aber auch keinen Beweis der Sicherheit (!)
- RSA wird typischerweise benutzt um einen asymmetrischen Session-Key zu verschlüsseln
- "Basis"-RSA hat einige Schwachpunkte, die allerdings in guten Implementationen nicht zum Tragen kommen:
 Es gilt aber: Bauen Sie sich RSA nicht selbst!