

Prof. Luciano L. Caimi lcaimi@uffs.edu.br

Adição Binária

Adição de números sem sinal

O maior número binário que podemos representar com 4 bits é 15

Adição Binária

Adição de números sem sinal

Adição Binária

Outro exemplo (8 bits)

```
0 1 1 0 1 1 0 0

0 1 1 0 1 1 0 1 (109) A

+ 0 1 1 0 0 1 1 0 (102) + B

1 1 0 1 0 0 1 1 (211) S
```


Adição Binária

Adição de números sem sinal

	0	1	1	0	1	1	0	0		
		0	1	1	0	1	1	0	1	(109)
+		0	1	1	0	0	1	1	0	(102)
		1	1	0	1	0	0	1	1	(211)

adição de 2 bits

resultado em 2 bits

Adição Binária

A partir do 2º bit

	0	1	1	0	1	1	0	0		
										(109)
+		0	1	1	0	0	1	1	0	(102)
		1	1	0	1	0	0	1	1	(211)

adição de 3 bits

resultado em 2 bits

Adição Binária

Generalizando, a partir do 2º bit

	0	1	1	0	1	1	0	0		
		0	1	1	0	1	1	0	1	(109)
+		0	1	1	0	0	1	1	0	(102)
		1	1	0	1	0	0	1	1	(211)

Adição Binária

Esquema para soma paralela

Observe:

- Existe um elemento para cada coluna da soma
- O sinal de overflow será o carry mais significativo

Adição Binária

Projetando o circuito para primeira coluna: Meio-Somador (Half-Adder)

Adição Binária

Projetando o circuito para primeira coluna:

Meio-Somador (Half-Adder)

$$s_0 = \overline{a_0} \cdot b_0 + a_0 \cdot \overline{b_0}$$
$$c_1 = a_0 \cdot b_0$$

Adição Binária

Meio-Somador (Half-Adder)

$$s_0 = \overline{a_0} \cdot b_0 + a_0 \cdot \overline{b_0}$$
$$c_0 = a_0 \cdot b_0$$

Adição Binária

Meio-Somador (Half-Adder)

...ou ainda

Adição Binária

Projetando as demais colunas:

Somador-Completo (Full-Adder)

	0	1	1	0	1	1	0	0	
		0	1	1	0	1	1	0	1
+		0	1	1	0	0	1	1	0
		1	1	0	1	0	0	1	1

adição de 3 bits

resultado em 2 bits

Adição Binária

Projetando as demais colunas:

Somador-Completo (Full-Adder)

entradas saídas

a _i	b _i	C _i	C _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
4	4	4	4	4

adição de 3 bits

resultado em 2 bits

Jniversidade Federal da Fronteira Sul – Circuitos Digitais

Adição Binária

Projetando as demais colunas:

Somador-Completo (Full-Adder)

entradas saídas

a _i	b _i	Ci	C _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0

Mapa de Karnaugh para c_{i+1}

Adição Binária

Projetando as demais colunas:

Somador-Completo (Full-Adder)

entradas saídas

a _i	b _i	C _i	C _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
4	4	4	4	4

Mapa de Karnaugh para s_i

Si		k	$\overline{\mathbf{b}}_{\mathbf{i}}$ $\mathbf{b}_{\mathbf{i}}$			
	ai	0	1	0	1	
	ai	1	0	1	O C _i	
		Ci	C) i	Ci	

Não é possível simplificar, logo:

$$s_i = \overline{a_i} \cdot \overline{b_i} \cdot c_i + \overline{a_i} \cdot b_i \cdot \overline{c_i} + a_i \cdot \overline{b_i} \cdot \overline{c_i} + a_i \cdot b_i \cdot c_i$$

Adição Binária

Projetando as demais colunas:

Somador-Completo (Full-Adder)

entradas saídas

a _i	b _i	C _i	C _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
4	1	1	4	4

Mapa de Karnaugh para s_i

Não é possível simplificar, logo:

$$s_i = \overline{a_i} \cdot \overline{b_i} \cdot c_i + \overline{a_i} \cdot b_i \cdot \overline{c_i} + a_i \cdot \overline{b_i} \cdot \overline{c_i} + a_i \cdot b_i \cdot \overline{c_i}$$

Jniversidade Federal da Fronteira Sul – Circuitos Digitais

Adição Binária

manipulando através da álgebra de boole:

$$\begin{split} s_i &= \overline{a_i} \cdot \overline{b_i} \cdot c_i + \overline{a_i} \cdot b_i \cdot \overline{c_i} + a_i \cdot \overline{b_i} \cdot \overline{c_i} + a_i \cdot b_i \cdot c_i \\ s_i &= \overline{a_i} \cdot (\overline{b_i} \cdot c_i + b_i \cdot \overline{c_i}) + a_i \cdot (\overline{b_i} \cdot \overline{c_i} + b_i \cdot c_i) \\ s_i &= \overline{a_i} \cdot (b_i \oplus c_i) + a_i \cdot (\overline{b_i} \oplus c_i) \\ s_i &= a_i \oplus (b_i \oplus c_i) \end{split}$$

a	b	xor	xor
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

Adição Binária

Somador-Completo (Full-Adder)

Adição Binária

Considerando dois números (A e B) de 4 bits cada

Chamado somador *ripple-carry*

Adição Binária

Versão utilizando somente somador-completo

usto é ligeiramente maior.

Subtração Binária

Subtração de números sem sinal

	A
-	В
	S

(borrow)		2	2	2	0	0	
	(12)	0	0	1	1		
	(5)	1	0	1	0		-
resultado	(7)	1	1	1	0		

Subtração Binária

Esquema para subtração paralela

Observe:

- Existe um elemento para cada coluna da soma
- O sinal de underflow será o borrow mais significativo

Subtração Binária

Projetando o circuito para primeira coluna:

Meio-Substrator (half-sub)

Subtração Binária

Projetando o circuito para primeira coluna:

Meio-Substrator (half-sub)

Subtração Binária

Projetando as demais colunas:

Subtrator-Completo (full-sub)
entradas saídas

a _i	b _i	C _i	bo _{i+1} S		
0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	0	0	
1	1	0	0	0	

subtração de 3 bits

resultado em 2 bits

Universidade Federal da Fronteira Sul – Circuitos Digitais

Subtração Binária

Projetando as demais colunas:

Subtrator-Completo (full-sub)
entradas saídas

subtração de 3 bits

resultado em 2 bits

Universidade Federal da Fronteira Sul – Circuitos Digitais

Subtração Binária

Subtrator-Completo (full-sub)

en	entradas			as —		
a _i	b _i	C _i	bo _{i+1} S _i			
0	0	0	0	0		
0	0	1	1	1		
0	1	0	1	1		
0	1	1	1	0		
1	0	0	0	1		
1	0	1	0	0		
1	1	0	0	0		
1	1	1	1	1		

Mapa de Karnaugh para bo_{i+1}

Jniversidade Federal da Fronteira Sul – Circuitos Digitais

Subtração Binária

Projetando as demais colunas:

Subtrator-Completo (full-sub)

entradas saídas

a _i	b _i	C _i	C _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
4	4	4	4	4

Mapa de Karnaugh para s_i

Si		k	- D _i	b) i
	a _i	0	1	0	1
_	ai	1	0	1	O C _i
		C _i	C) _i	Ci

Não é possível simplificar, logo:

$$s_i = \overline{a_i} \cdot \overline{b_i} \cdot c_i + \overline{a_i} \cdot b_i \cdot \overline{c_i} + a_i \cdot \overline{b_i} \cdot \overline{c_i} + a_i \cdot b_i \cdot \overline{c_i}$$

Subtração Binária

manipulando através da álgebra de boole:

$$\begin{split} s_i &= \overline{a_i} . \overline{b_i} . c_i + \overline{a_i} . b_i . \overline{c_i} + a_i . \overline{b_i} . \overline{c_i} + a_i . b_i . c_i \\ s_i &= \overline{a_i} . (\overline{b_i} . c_i + b_i . \overline{c_i}) + a_i . (\overline{b_i} . \overline{c_i} + b_i . c_i) \\ s_i &= \overline{a_i} . (b_i \oplus c_i) + a_i . (\overline{b_i} \oplus c_i) \\ s_i &= a_i \oplus (b_i \oplus c_i) \end{split}$$

a	b	xor	xor
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

Adição de números inteiros

E se quisermos realizar operações sobre números com sinal???

- Precisaremos considerar uma representação que sirva tanto para binários positivos quanto binários negativos
- A representação mais usada, neste caso, é complemento de 2
- Porque mesmo?!?!?!?

Adição de números inteiros Representação em complemento de 2

Sinal	Regra de formação	exemplo
positivo	igual a sinal-maginitude	+13 = 00001101
negativo	 toma-se a representação em sinal e magnitude faz-se o complemento de 1 (inverte o número bit a bit) soma-se 1 	+13 = 00001101 11110010 $+$

-128	64	32	16	8	4	2	1

-128	64	32	16	8	4	2	1
1	1	1	1	0	0	1	1

Adição de números inteiros

Adição de números em complemento de 2

Considere valor binários de 4 bits, portanto, com faixa de representação de [-8:+7]

Exemplo 1: números positivos com soma ≤ 7

```
0 0 0 0 Transporte (carry)
0 1 0 0 (+4)
0 0 1 0 (+2)
0 1 1 0 (+6) Resultado correto
```

Adição de números inteiros

Adição de números em complemento de 2

Exemplo 2: nros negativos com soma ≥ -8

Adição de números inteiros

Adição de números em complemento de 2

Exemplo 3: um número positivo e outro negativo com resultado positivo

Adição de números inteiros

Adição de números em complemento de 2

Exemplo 4: um número positivo e outro negativo com resultado negativo

Adição de números inteiros

Adição de números em complemento de 2

Exemplo 5: um número positivo e outro negativo iguais em módulo

```
1 1 1 1 Transporte (carry)

0 1 0 1 (+5)

1 0 1 1 (-5)

0 0 0 0 (-0) Resultado correto
```

Adição de números inteiros

Adição de números em complemento de 2

Exemplo 6: dois números positivos

Em complemento de 2 o resultado foi -7

Adição de números inteiros

Adição de números em complemento de 2

Exemplo 7: dois números negativos

Em complemento de 2 o resultado foi 7

บราง – บาเพยาร์เนสน์ย รายderal da Fronteira Sul – Circuitos Digitais

														9.1.5
		0	0	0	0		Resultados Corretos	S	1	1	0	0		
			0	1	0	0	(+4)			1	1	0	0	(-4)
	+		0	0	1	0	(+2)	+		1	1	1	0	(-2)
_			0	1	1	0	(+6)			1	0	1	0	(-6)
						l				_		_		
		0	0	1	0				1	1	1	1		
			0	0	1	1	(+3)			0	1	0	1	(+5)
	+		1	0	1	0	(-6)	+		1	0	1	1	(-5)
_			1	1	0	1	(-3)			0	0	0	0	(-0)
		0	1	0	0		Resultados Errad	os	1	0	0	0		
			0	1	0	1	(+5)			1	1	0	0	(-4)
	+		0	1	0	0	(+4)	+		1	0	1	1	(-5)
_			1	0	0	1	(+9)			0	1	1	1	(-9)

UFFS – Universidade Federal da Fronteira Sul – Circuitos Digitais

Adição de números inteiros

Adição de números inteiros

Adição de números em complemento de 2

Conclusões:

- Números binários em complemento de 2 podem ser adicionados como se fossem número binários sem sinal
- Neste caso, a detecção de overflow se dá comparando-se os dois últimos sinais de carry

Adição de números inteiros

Adição de números em complemento de 2

esquemático de blocos

Subtração Binária

Princípio Básico

$$A - B = A + (-B)$$

Onde -B é o número B com o sinal trocado

Em complemento de 2:

- a) faz o complemento do número
- b) soma 1 unidade

Subtração Binária

Subtração Binária

Considerando a operação completa

Subtração Binária

Mas com tanta semelhança entre os circuitos de adição e subtração não será possível "programar" as 2 operações com o "mesmo" hardware???

Sim, modificações necessárias:

- a) Substituir os inversores por "negadores controlados" (xors);
- b) Controlar o valor de c0 (0 para adição/1 para subtração)

Analisando o carry

Problema da propagação do carry

Sinal c₄ estabiliza somente depois de c₁, c₂ e c₃ estabilizarem:

Caminho de maior atraso de a₀ e b₀ ou c_i até c_{i+1}

Caminho de maior atraso de c até c UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais