🛩 Développements Limités Usuels 🔊

Formule de Taylor–Young : Si $f \in \mathcal{C}^n(I,\mathbb{R})$, alors : $f(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k + \underset{x \to 0}{\mathcal{O}}(x^n)$

Fonction	développement limité au au voisinage de 0	Méthode
e^x	$1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!} + \underset{x \to 0}{\circ} (x^n)$	Taylor-Young
$(1+x)^{\alpha}$	$1 + \alpha x + \frac{\alpha(\alpha - 1)}{2}x^2 + \dots + \frac{\alpha(\alpha - 1)\dots(\alpha - n + 1)}{n!}x^n + \underset{x \to 0}{\sigma}(x^n)$	Taylor-Young
$\frac{1}{1+x}$	$1 - x + x^{2} - \dots + (-1)^{n} x^{n} + \underset{x \to 0}{\circ} (x^{n})$	$\alpha = -1$
$\frac{1}{1-x}$	$1 + x + x^2 + \dots + x^n + \underset{x \to 0}{\circ} (x^n)$	$\alpha = -1, \ x \to -x$
$\sqrt{1+x}$	$1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots + (-1)^{n+1} \frac{(2n)!}{2^{2n}(n!)^2(2n-1)} x^n + \underset{x \to 0}{\circ} (x^n)$	$\alpha = \frac{1}{2}$
$\frac{1}{\sqrt{1+x}}$	$1 - \frac{1}{2}x + \frac{3}{8}x^2 - \dots + (-1)^n \frac{(2n)!}{2^{2n}(n!)^2} x^n + \underset{x \to 0}{\mathcal{O}}(x^n)$	$\alpha = -\frac{1}{2}$
$\frac{1}{(1-x)^2}$	$1 + 2x + 3x^{2} + \dots + (n+1)x^{n} + \underset{x \to 0}{\circ}(x^{n})$	dérivation de $\frac{1}{1-x}$
	$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^{n+1}}{n+1} + \underset{x \to 0}{\mathcal{O}}(x^{n+1})$	primitivation de $\frac{1}{1+x}$
	$-x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^{n+1}}{n+1} + \mathop{\mathcal{O}}_{x\to 0}(x^{n+1})$	primitivation de $\frac{1}{1-x}$
$\cos x$	$1 - \frac{x^2}{2} + \frac{x^4}{24} - \dots + (-1)^p \frac{x^{2p}}{(2p)!} + \underset{x \to 0}{\mathcal{O}}(x^{2p})$	Taylor-Young
$\sin x$	$x - \frac{x^3}{6} + \frac{x^5}{120} - \dots + (-1)^p \frac{x^{2p+1}}{(2p+1)!} + \underset{x \to 0}{\circ} (x^{2p+1})$	Taylor-Young
$\tan x$	$x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \underset{x \to 0}{\circ}(x^8)$	$\frac{\sin}{\cos}$
Arctan x	$x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \mathcal{O}_{x \to 0}(x^{2n+1})$	primitivation de $\frac{1}{1+x^2}$
Arcsin x	$x + \frac{x^3}{6} + \frac{3x^5}{40} + \dots + \frac{(2n)!}{2^{2n}(n!)^2} \frac{x^{2n+1}}{2n+1} + \underset{x \to 0}{\circ} (x^{2n+1})$	primitivation de $\frac{1}{\sqrt{1-x^2}}$
$\operatorname{ch} x$	$1 + \frac{x^2}{2} + \frac{x^4}{24} + \dots + \frac{x^{2p}}{(2p)!} + \mathcal{O}(x^{2p})$	CL d'exponentielle
$\operatorname{sh} x$	$x + \frac{x^3}{6} + \frac{x^5}{120} + \dots + \frac{x^{2p+1}}{(2p+1)!} + \underset{x \to 0}{\mathcal{O}}(x^{2p+1})$	CL d'exponentielle
th x	$x - \frac{x^3}{3} + \frac{2x^5}{15} - \frac{17x^7}{315} + \mathop{\circ}_{x \to 0}(x^8)$	$\frac{\mathrm{sh}}{\mathrm{ch}}$
Argth x	$x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \underset{x \to 0}{\mathcal{O}}(x^{2n+1})$	primitivation de $\frac{1}{1-x^2}$
Argsh x	$x - \frac{x^3}{6} + \frac{3x^5}{40} - \dots + (-1)^n \frac{(2n)!}{2^{2n}(n!)^2} \frac{x^{2n+1}}{2n+1} + \mathcal{O}(x^{2n+1})$	primitivation de $\frac{1}{\sqrt{1+x^2}}$