Espacios vectoriales Tema 3

Ultano Kindelán Marco Antonio Fontelos

Titulaciones de grado. ETSIME(UPM)

Álgebra Lineal

ÍNDICE

- Introducción
- Definición de espacio vectorial
- Subespacios vectoriales
- Bases y dimensión de un espacio vectorial
- Cambio de base
- Ecuaciones paramétricas e implícitas de un subespacio vectorial
- Intersección y suma de subespacios. Suma directa

3.1 Introducción

- A menudo, conjuntos de objetos matemáticos como los polinomios o las matrices que se usan constantemente en las aplicaciones de las matemáticas a la ciencia y a la ingeniería admiten un tratamiento análogo a los vectores geométricos.
- Cuando en varios conjuntos distintos aparecen estructuras similares es conveniente extraer las propiedades comunes y dar un nombre a la estructura resultante (espacio vectorial en el caso que nos ocupa).
- La principal ventaja que se obtiene es que estudiando esta estructura, quedan estudiadas todas las estructuras particulares que en ella se encuadran.
- De este modo los distintos resultados que se deducen de la definición de espacio vectorial y que se estudiarán (algunos de ellos) en este capítulo se pueden aplicar a cualquier conjunto de objetos que cumpla la definición de espacio vectorial.

3.2 Definición de espacio vectorial

Definición 3.1

Sea V un conjunto no vacío, + una **ley de composición interna** definida sobre los elementos de V y · una **ley de composición externa** definida entre los elementos de V y los de un **cuerpo** de escalares K. Se dice que la estructura (V,+, \cdot) es un **espacio vectorial** sobre el cuerpo de esc. K (o K-espacio vectorial) si + y · verifican:

$$2 \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}, \qquad \forall \mathbf{u}, \mathbf{v} \in V$$

3
$$\exists$$
0 ∈ *V t.q.* **u** + **0** = **u**, \forall **u** ∈ *V*

4
$$\forall$$
 u ∈ *V* \exists − **u** ∈ **V** *t.q.* **u** + (−**u**) = **0**

6
$$(\lambda + \mu) \cdot \mathbf{u} = \lambda \cdot \mathbf{u} + \mu \cdot \mathbf{u}, \quad \forall \mathbf{u} \in V, \forall \lambda, \mu \in K$$

3
$$\exists$$
1 ∈ K $t.q.$ 1 · $\mathbf{u} = \mathbf{u}$, \forall $\mathbf{u} \in V$

Observación 3.1

Los elementos de V se denominan vectores.

Observación 3.2

En la mayoría de los casos con los que se trabajará en esta asignatura el cuerpo K será el cuerpo de los reales. En los casos restantes consideraremos que K es $\mathbb C$. Por ello si al lector le resulta más sencillo, puede considerar en todo cuanto sigue que el cuerpo al que nos referimos es alguno de los dos anteriores y todo cuanto se diga podrá extenderse a otros cuerpos.

Algunos ejemplos de espacios vectoriales son los siguientes:

- El conjunto de los vectores geométricos con la l.c.i. suma geométrica de vectores y la l.c.e. producto de vector por real es un espacio vectorial (e.v.) sobre R.
- El conjunto de las matrices de dimensión $m \times n$ con la l.c.i. suma de matrices y la l.c.e. producto de escalar por matriz es un e. v. que se representa por $M_{m,n}(K)$. Este espacio vectorial, en los casos en que la matriz sea cuadrada, también se podrá representar como $M_n(K)$.
- El conjunto de todos los polinomios en la variable x con coeficientes reales (P(x)) con la l.c.i. suma de polinomios y la l.c.e. producto de polinomio por real es un e. v. sobre R.

Ejemplo 3.1 (cont.)

- El conjunto de todos los polinomios de grado menor o igual que n $(P_n(x))$ con las mismas operaciones que en el caso anterior también es un e.v. sobre \mathbf{R} . Sin embargo el conjunto de todos los polinomios de grado n $(\overline{P}_n(x))$ también con las mismas operaciones no es un espacio vectorial.
- El conjunto de todas las soluciones de un sistema lineal homogéneo de ecuaciones con coeficientes en K con la l.c.i. suma de soluciones y la l.c.e. producto de escalar por solución es un e.v. sobre K.

Observación 3.3

En lo que sigue, y salvo casos en los que puedan existir ambigüedades, el producto de escalar por vector se representará por $\lambda \mathbf{u}$ en vez de $\lambda \cdot \mathbf{u}$.

Proposición 3.1

Sea V un espacio vectorial sobre un cuerpo K, \mathbf{u} un vector de V y k un escalar de K. Entonces:

- 0 u = 0
- **2** k**0** = **0**
- $(-1)\mathbf{u} = -\mathbf{u}$
- 4 Si $k\mathbf{u} = \mathbf{0}$ entonces k = 0 ó $\mathbf{u} = \mathbf{0}$.

3.3 Subespacios vectoriales

Tal como se vio en el último ejemplo del apartado anterior, los conjuntos $P_n(x)$ y P(x) dotados de las mismas operaciones tienen ambos estructura de e.v.. Como $P_n(x)$ es además un subconjunto de P(x), se dice que $P_n(x)$ es un subespacio vectorial de P(x). Es evidente que esto no ocurre para cualquier subconjunto de P(x), por ejemplo $\overline{P}_n(x)$ no es un subespacio vectorial de P(x).

Definición 3.2

Sea V un e.v. y W un subconjunto no vacío de V. Se dice que W es un subespacio vectorial (s.e.v.) de V si W dotado de las mismas operaciones definidas sobre V es a su vez un e.v..

Caracterización de un subespacio vectorial

Para que *W* sea un s.e.v. tiene que verificarse:

a)
$$\mathbf{u}, \mathbf{v} \in \mathcal{W} \Rightarrow \mathbf{u} + \mathbf{v} \in \mathcal{W}$$

b) $\lambda \in \mathcal{K}, \ \mathbf{u} \in \mathcal{W} \Rightarrow \lambda \mathbf{u} \in \mathcal{W}$ ó $\lambda \mathbf{u} + \mu \mathbf{v} \in \mathcal{W}$ $\lambda, \mu \in \mathcal{K}; \ \mathbf{u}, \mathbf{v} \in \mathcal{W}$

Observación 3.4

Dado un e.v. V, existen dos subconjuntos de V que trivialmente son s.e.v. de V:

- V,
- **•** {**0**}.

Observación 3.5

El vector nulo pertenece a todos los s.e.v. de V.

A continuación se muestran algunos casos particulares de subespacios vectoriales:

El conjunto $U = \left\{ (x, y, z) \in \mathbb{R}^3 / 3x - 2y + 4z = 0 \right\}$ es un s.e.v. del espacio \mathbb{R}^3 $\mathbf{u} \in U \Rightarrow \mathbf{u} = \left(\frac{2}{3}u_2 - \frac{4}{3}u_3, u_2, u_3\right)$ $\mathbf{v} \in U \Rightarrow \mathbf{v} = \left(\frac{2}{3}v_2 - \frac{4}{3}v_3, v_2, v_3\right)$ \Rightarrow $\alpha \mathbf{u} + \beta \mathbf{v} = \left(\frac{2}{3}(\alpha u_2 + \beta v_2) - \frac{4}{3}(\alpha u_3 + \beta v_3), \alpha u_2 + \beta v_2, \alpha u_3 + \beta v_3\right)$ $= \left(\frac{2}{3}\lambda_2 - \frac{4}{3}\lambda_3, \lambda_2, \lambda_3\right) \in U.$

Ejemplo 3.2 (cont.)

$$P_{5} = \{\text{polinomios de grado} \leq 5\}$$

$$p(x) \in P_{5} \Rightarrow p(x) = a_{0} + a_{1}x + \dots + a_{5}x^{5}$$

$$q(x) \in P_{5} \Rightarrow q(x) = b_{0} + b_{1}x + \dots + b_{5}x^{5} \} \Rightarrow$$

$$\lambda p(x) + \mu q(x) = (\lambda a_{0} + \mu b_{0}) + (\lambda a_{1} + \mu b_{1})x + \dots + (\lambda a_{5} + \mu b_{5})x^{5} \in P_{5}$$

§ El conjunto formado por las soluciones de un sistema homogéneo de m ecuaciones con n incógnitas y coeficientes reales es un s.e.v. de \mathbf{R}^n . Dado el sistema

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = 0 \end{vmatrix} \Leftrightarrow A\mathbf{x} = \mathbf{0}, \text{ si } \mathbf{u} \text{ y } \mathbf{v} \text{ son }$$
 soluciones del sistema anterior $A\mathbf{u} = \mathbf{0}$ y $A\mathbf{v} = \mathbf{0}$, entonces es

evidente que el vector $\alpha \mathbf{u} + \beta \mathbf{v}$ también lo es.

Ejemplo 3.2 (cont.)

El conjunto de las matrices simétricas de orden n es un s.e.v. de las matrices cuadradas de orden n.

Proposición 3.2

La intersección de cualesquiera subespacios de un e.v. V es, a su vez, un s.e.v. de V.

Observación 3.6

Por el contrario la unión de subespacios de un e.v. V, en general, no es un subespacio de V.

Por ejemplo si se consideran los subespacios

$$U_1 = \{(x,0) \in \mathbb{R}^2 / x \in \mathbb{R}\} \text{ y } U_2 = \{(0,y) \in \mathbb{R}^2 / y \in \mathbb{R}\}$$

El conjunto $U_1 \cup U_2$ no es un s.e.v. ya que $(1,0) \in U_1 \cup U_2$ y $(0,1) \in U_1 \cup U_2$ y sin embargo $(1,0) + (0,1) = (1,1) \notin U_1 \cup U_2$.

3.4 Bases y dimensión de un espacio vectorial

3.4.1 Sistema generador

Así como es posible obtener cualquier color visible a partir de tres colores básicos (rojo, verde y azul, (RGB)) mezclándolos en distintas proporciones, las operaciones suma de vectores y producto de escalar por vector definidas en un e.v. V, permiten calcular cualquier vector de V a partir de un cierto número de vectores "básicos" de V.

Definición 3.3

Sea $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_m\}$ un conjunto de m vectores de un e.v. V y sea W un s.e.v. de V. Si $S \subset W$ y todos los vectores de W se pueden escribir como combinación lineal de $\{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_m\}$ se dice que $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_m\}$ es un **sistema generador** de W.

Proposición 3.3

El conjunto de todos los vectores que se pueden expresar como combinación lineal de los vectores de *S* tiene estructura de espacio vectorial y recibe el nombre de **subespacio generado** (o engendrado) por *S*. Se representa por

$$\langle S \rangle$$
 ó $\langle \mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_m \rangle$

Proposición 3.4

 $W = \langle \mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_m \rangle$ es el subespacio más pequeño que contiene a $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_m\}$, en el sentido de que cualquier otro s.e.v. que contenga a S debe contener a W.

Observación 3.7

 $\{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p\}$ es un sistema generador de $W \Leftrightarrow W$ es el s.e.v. engendrado por $\{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_p\}$.

Casos particulares de conjuntos de vectores que constituyen sistemas generadores de subespacios.

- **1** Dado $W_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \text{ t.q. } x_1 x_2 = 0\}$ el conjunto de vectores $\{\mathbf{v} = (1, 1, 0), \mathbf{u} = (0, 0, 1)\}$ es un sistema generador de W_2 . W_2 es el s.e.v. engendrado por \mathbf{u} y \mathbf{v} . W_2 es el subespacio más pequeño que contiene a \mathbf{u} y \mathbf{v} .
- 2 El conjunto de polinomios $\{1, x, x^2, x^3, x^4, x^5\}$ es un sistema generador del s.e.v. P_5 .

Ejemplo 3.3 (cont.)

3 ¿Es el conjunto $\{\mathbf{v}_1=(1,1,2),\ \mathbf{v}_2=(1,0,1),\ \mathbf{v}_3=(2,1,3)\}$ un sistema generador de \mathbf{R}^3 ? Para contestar a la pregunta hay que determinar si cualquier vector de \mathbf{R}^3 se puede expresar como combinación lineal de $\mathbf{v}_1,\mathbf{v}_2$ y \mathbf{v}_3 .

Por lo tanto un vector cualquiera de \mathbf{R}^3 , $\mathbf{u}=(u_1,u_2,u_3)$, se podrá expresar como c.l. de \mathbf{v}_1 , \mathbf{v}_2 y \mathbf{v}_3 si el sistema (1) es compatible. Para que (1) sea compatible para cualquier vector \mathbf{u} es necesario y suficiente que el rango de la matriz de coeficientes que llamaremos A sea 3,

Ejemplo 3.3 (cont.)

(cont.)

$$A = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 3 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & 1 & 2 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{array}\right)$$

el rango de A es 2, el sistema (1) no será siempre compatible, existirán vectores \mathbf{u} para los que no existen k_1 , k_2 y k_3 que satisfagan (1) y por lo tanto el conjunto $\{\mathbf{v}_1, \ \mathbf{v}_2, \ \mathbf{v}_3\}$ no es un sistema generador de \mathbf{R}^3 .

1 Por el contrario $\{\mathbf{v}_1 = (1,1,2), \ \mathbf{v}_2 = (1,0,1), \mathbf{v}_3 = (2,1,3), \ \mathbf{v}_4 = (0,0,1)\}$ sí es un sistema generador de \mathbf{R}^3 pues el sistema

$$\left. \begin{array}{c} k_1 + k_2 + 2k_3 = u_1 \\ k_1 + k_3 = u_2 \\ 2k_1 + k_2 + 3k_3 + k_4 = u_3 \end{array} \right\}$$

es siempre compatible indeterminado independientemente de cuál sea el vector \mathbf{u} . Obsérvese que la forma de expresar \mathbf{u} en función de \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 y \mathbf{v}_4 no es única.

3.4.2 Base de un espacio vectorial

Definición 3.4

Sea V un espacio vectorial y $S = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ un conjunto de vectores de V. Se dice que S es una **base** de V si:

- S es linealmente independiente,
- S es un sistema generador de V.

Teorema 3.1

Si $B = \{v_1, ..., v_n\}$ es una base de un espacio vectorial V, entonces cualquier vector de V se puede expresar de forma **única** como combinación lineal de vectores de B:

$$\mathbf{u} = \sum_{i=1}^{n} \lambda_i \mathbf{v}_i$$

Demostración. Queda claro, a partir de la definición de sistema generador, que cualquier vector de V se puede expresar de la forma anterior. Falta por demostrar que existe una única forma de hacerlo. Supóngase que hubiera dos formas

$$\mathbf{u} = \sum_{i=1}^{n} \lambda_i \mathbf{v}_i \, \mathbf{y} \, \mathbf{u} = \sum_{i=1}^{n} \mu_i \mathbf{v}_i$$

$$\mathbf{u} - \mathbf{u} = \mathbf{0} = \sum_{i=1}^{n} (\lambda_i - \mu_i) \mathbf{v}_i \Rightarrow \text{(debido a que } \mathbf{v}_1, \dots, \mathbf{v}_n \text{ son lin.}$$

indptes.) $\lambda_i - \mu_i = 0 \ (i = 1, \dots, n) \Rightarrow \mu_i = \lambda_i \ (i = 1, \dots, n). \square$

Definición 3.5

Si $B = \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ es una base de un espacio vectorial V y $\mathbf{u} = \sum_{i=1}^n \lambda_i \mathbf{v}_i$ es la expresión de \mathbf{u} en función de la base B, entonces los escalares $\lambda_1, \ldots, \lambda_n$ se llaman **coordenadas (o componentes)** de \mathbf{v} respecto a la base B.

Observación 3.8

Dada una base, B, de V a cada vector de V se le puede asociar uno y sólo un vector de K^n formado por las n coordenadas de \mathbf{v} en la base B, que se designará por \mathbf{v}_B .

Observación 3.9

Dos bases que contengan los mismos vectores pero en órdenes distintos son distintas.

Ejemplo 3.4

Casos particulares de conjuntos de vectores que constituyen bases de espacios vectoriales.

- ① Dados $\mathbf{e}_1 = (1,0,0)$, $\mathbf{e}_2 = (0,1,0)$ y $\mathbf{e}_3 = (0,0,1)$, $B = \{\mathbf{e}_1, \ \mathbf{e}_2, \ \mathbf{e}_3\}$ es una base de \mathbf{R}^3 .
- **2** $\{\mathbf{e}_1 = (1,0,\ldots,0), \mathbf{e}_2 = (0,1,\ldots,0),\ldots, \mathbf{e}_n = (0,\ldots,0,1)\}$ es una base de \mathbf{R}^n .

Ejemplo 3.4 (cont.)

3
$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $A_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $A_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ constituyen una base de $M_2(R)$ (conjunto de las matrices cuadradas de dimensión 2 con coeficientes reales). $\forall C \in M_2(R)$

$$\left(\begin{smallmatrix}c_{11} & c_{12} \\ c_{21} & c_{22}\end{smallmatrix}\right) = c_{11} \left(\begin{smallmatrix}1 & 0 \\ 0 & 0\end{smallmatrix}\right) + c_{12} \left(\begin{smallmatrix}0 & 1 \\ 0 & 0\end{smallmatrix}\right) + c_{21} \left(\begin{smallmatrix}0 & 0 \\ 1 & 0\end{smallmatrix}\right) + c_{22} \left(\begin{smallmatrix}0 & 0 \\ 0 & 1\end{smallmatrix}\right)$$

Dada la base $B = \{A_1, A_2, A_3, A_4\}$, a cada matriz C de $M_2(\mathbf{R})$ se le puede asociar un vector de \mathbf{R}^4 :

$$\left(egin{array}{cc} c_{11} & c_{12} \ c_{21} & c_{22} \ \end{array}
ight) = \mathbf{C}_B = (c_{11}, c_{12}, c_{21}, c_{22})_B^t$$

③ El conjunto $B = \{1, x, x^2, \dots, x^n\}$ es una base del espacio vectorial P_n de los polinomios de grado ≤ n en la variable x. En esta base se le puede asociar a cada polinomio de P_n un vector de \mathbb{R}^n :

$$p(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n, \ \mathbf{p}_B = (a_0, a_1, \ldots, a_n)$$

5 El conjunto $\{\mathbf{v}_1 = (1,2,1), \mathbf{v}_2 = (2,9,0), \mathbf{v}_3 = (3,3,4)\}$ es una base de \mathbf{R}^3 . Para comprobar que esta afirmación es cierta basta con demostrar que el sistema

$$\begin{cases}
k_1 + 2k_2 + 3k_3 = u_1 \\
2k_1 + 9k_2 + 3k_3 = u_2 \\
k_1 + 0k_2 + 4k_3 = u_3
\end{cases}$$

es **compatible determ.** para cualesquiera valores de u_1 , u_2 y u_3 .

3.4.3 Espacios vectoriales de dimensión finita

Proposición 3.5

Sea $G = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m\}$ un sistema generador de un espacio vectorial V ($V \neq \{\mathbf{0}\}$). Se verifica que:

- **③** Si G es un conjunto de vectores linealmente dependiente entonces existe al menos un subconjunto $G' \subset G$ ($G' \neq G$) tal que G' es un sistema generador de V.
- ② Si G es un conjunto de vectores linealmente independiente, no existe ningún subconjunto de G ($G' \neq G$) que sea sistema generador de V.

Teorema 3.2

Todas las bases de un espacio vectorial engendrado por un número finito de vectores tienen el mismo número de elementos.

Definición 3.6

Al número de vectores que forman parte de una base cualquiera de un espacio vectorial, V ($V \neq \{0\}$), engendrado por un número finito de vectores se le llama **dimensión** de V.

Observación 3.10

La dimensión de un espacio vectorial, V, es el número máximo de vectores linealmente indeptes. entre si que se pueden extraer de V.

Observación 3.11

La dimensión de un espacio vectorial es el número mínimo de vectores que contiene un sistema generador de V.

Observación 3.12

Los espacios vectoriales engendrados por un número finito de vectores reciben el nombre de espacios vectoriales de **dimensión finita**.

- \bigcirc dim $(M_{n,m}(\mathbb{R})) = n \cdot m$
- **3** $\dim(P_n) = n + 1$

Observación 3.13

Si V es un espacio vectorial y $W \subset V$ es un s.e.v. de V, entonces:

$$\dim(W) \leq \dim(V)$$
.

Teorema 3.3 (De la base incompleta)

Sea V un e.v. de dimensión finita n y $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ un sistema linealmente independiente de p vectores de V con p < n. Entonces es posible encontrar un conjunto S' de n-p vectores tales que $S \cup S'$ sea una base de V. Es más, los vectores de S' se pueden tomar de entre los de una base cualquiera $B = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$.

Obtener una base de \mathbb{R}^3 que contenga a $\mathbf{a} = (1, -1, 2)$ y $\mathbf{b} = (0, 1, -2)$.

Solución: los vectores **a** y **b** son linealmente independientes. El teorema anterior asegura que existe otro vector de \mathbb{R}^3 (al que llamaremos **c**) tal que $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ constituye una base de \mathbb{R}^3 . El vector **c**, que se puede elegir de muchas maneras, puede ser, en particular, el vector **e**₂. (un vector de la base canónica de \mathbb{R}^3 linealmente independiente con respecto a **b** y **a**).

3.5 Cambio de base

Observación 3.14

A partir de ahora los vectores de n componentes se van a representar como vectores columna

$$\mathbf{v}=(x_1,\ldots,x_n)^t=\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}$$

Ejemplo introductorio

Sea V un espacio vectorial de dimensión 3, $B = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ y $B' = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ dos bases de V. Si se conocen las coordenadas de un vector \mathbf{v} respecto a la base B', $\mathbf{v} = y_1\mathbf{u}_1 + y_2\mathbf{u}_2 + y_3\mathbf{u}_3$, y las coordenadas de los tres vectores de B' con respecto a la base B:

$$\mathbf{u}_{1} = a_{11}\mathbf{e}_{1} + a_{21}\mathbf{e}_{2} + a_{31}\mathbf{e}_{3}$$

$$\mathbf{u}_{2} = a_{12}\mathbf{e}_{1} + a_{22}\mathbf{e}_{2} + a_{32}\mathbf{e}_{3}$$

$$\mathbf{u}_{3} = a_{13}\mathbf{e}_{1} + a_{23}\mathbf{e}_{2} + a_{33}\mathbf{e}_{3}$$
(2)

¿Cuáles son las coordenadas de **v** respecto de la base *B*? Para resolver el problema se parte de la igualdad

$$\mathbf{v} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3 = y_1 \mathbf{u}_1 + y_2 \mathbf{u}_2 + y_3 \mathbf{u}_3$$

Si en la igualdad anterior se sustituyen los valores de $\mathbf{u}_1, \mathbf{u}_2$ y \mathbf{u}_3 en función de $\mathbf{e}_1, \mathbf{e}_2$ y \mathbf{e}_3 según las relaciones (2) se obtiene:

$$x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + x_3\mathbf{e}_3 = y_1(a_{11}\mathbf{e}_1 + a_{21}\mathbf{e}_2 + a_{31}\mathbf{e}_3) + y_2(a_{12}\mathbf{e}_1 + a_{22}\mathbf{e}_2 + a_{32}\mathbf{e}_3) + y_3(a_{13}\mathbf{e}_1 + a_{23}\mathbf{e}_2 + a_{33}\mathbf{e}_3)$$
(3)

Si se tiene en cuenta que un vector se descompone de forma única en función de los vectores de una base, la igualdad (3) implica que los coeficientes que multiplican a \mathbf{e}_1 , \mathbf{e}_2 y \mathbf{e}_3 a ambos lados de la igualdad deben ser iguales:

$$\begin{array}{l} x_1 = a_{11}y_1 + a_{12}y_2 + a_{13}y_3 \\ x_2 = a_{21}y_1 + a_{22}y_2 + a_{23}y_3 \\ x_3 = a_{31}y_1 + a_{32}y_2 + a_{33}y_3 \end{array} \Leftrightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = A \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

donde
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{pmatrix}_{\{\mathbf{e}_i\}}$$
 recibe el nombre

de matriz de cambio de base (de la base B' a la base B). Obsérvese que las columnas de A son las coordenadas de los vectores \mathbf{u}_i en la base \mathbf{e}_i .

Teorema 3.4

Sean $B = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ y $B' = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ dos bases de un espacio vectorial, V, de dimensión n. Si se conoce la expresión de los vectores de la base B' en función de la base B :

$$\mathbf{u}_{i} = \sum_{i=1}^{n} a_{ji} \mathbf{e}_{j} = a_{1i} \mathbf{e}_{1} + \ldots + a_{ni} \mathbf{e}_{n} \ (i = 1, \ldots, n),$$

la matriz
$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$
 se llama matriz de **cambio de base** (de B' a B) y posee las siguientes propiedades:

Teorema 3.4 (cont.)

 Las columnas de A representan las coordenadas de los vectores de B' respecto de la base B.

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} = \begin{pmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_n \end{pmatrix}_{\{\mathbf{e}_i\}}$$

- \bigcirc det(A) \neq 0.
- Si $(x_1, ..., x_n)^t$ y $(y_1, ..., y_n)^t$ son las coordenadas de un vector \mathbf{v} en las bases B y B', respectivamente, entonces:

$$\left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right) = A \left(\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array}\right)$$

 $oldsymbol{4}$ A⁻¹ es la matriz de cambio de base de B a B'.

Observación 3.15

La relación entre los vectores de B y B' también se puede expresar matricialmente

$$\begin{pmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_n \end{pmatrix}_{\{\mathbf{c}_i\}} = \begin{pmatrix} \mathbf{e}_1 & \dots & \mathbf{e}_n \end{pmatrix}_{\{\mathbf{c}_i\}} A$$

$$\begin{pmatrix} \mathbf{e}_1 & \dots & \mathbf{e}_n \end{pmatrix}_{\{\mathbf{c}_i\}} = \begin{pmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_n \end{pmatrix}_{\{\mathbf{c}_i\}} A^{-1}$$

donde $(\mathbf{u}_1 \ldots \mathbf{u}_n)_{\{\mathbf{c}_i\}}$ es una matriz cuadrada de dimensión n cuyas columnas son las coordenadas de los vectores \mathbf{u}_i en función de una cierta base \mathbf{c}_i . Si se hace coincidir \mathbf{c}_i con \mathbf{e}_i ,

$$(\mathbf{e}_1 \ldots \mathbf{e}_n)_{\{\mathbf{e}_i\}} = I_n \mathbf{y} (\mathbf{u}_1 \ldots \mathbf{u}_n)_{\{\mathbf{e}_i\}} = A.$$

Se conoce la relación entre dos bases de un *R*- espacio vectorial de dimensión 3

$$\begin{array}{lll} \textbf{u}_1 = & -3\textbf{e}_1 + 0\textbf{e}_2 + \textbf{e}_3 \\ \textbf{u}_2 = & -3\textbf{e}_1 + 2\textbf{e}_2 - \textbf{e}_3 \\ \textbf{u}_3 = & \textbf{e}_1 + 6\textbf{e}_2 - \textbf{e}_3 \end{array}$$

Dado el vector $\mathbf{v} = 4\mathbf{e}_1 + \mathbf{e}_2 - \mathbf{e}_3 = (4, 1, -1)_{\{\mathbf{e}_i\}}^t$ determinar cuál es su expresión en la base \mathbf{u}_i .

Solución: De acuerdo con lo dicho anteriormente, las coordenadas y_1 , y_2 , y_3 del vector \mathbf{v} en la base $\{\mathbf{u}_i\}$ estarán relacionadas con las coordenadas en la base $\{\mathbf{e}_i\}$ a través de la relación matricial

$$\begin{pmatrix} 4 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -3 & -3 & 1 \\ 0 & 2 & 6 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} .$$

Ejemplo 3.7 (cont.)

Por tanto,

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} -3 & -3 & 1 \\ 0 & 2 & 6 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \\ -1 \end{pmatrix}$$
$$= \begin{pmatrix} -1/8 & 1/8 & 5/8 \\ -3/16 & -1/16 & -9/16 \\ 1/16 & 3/16 & 3/16 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ -1/4 \\ 1/4 \end{pmatrix}.$$

Es decir, $\mathbf{v} = -\mathbf{u}_1 - \frac{1}{4}\mathbf{u}_2 + \frac{1}{4}\mathbf{u}_3$.

Considérense las bases $B = \{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$ y $B' = \{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}\}$ cuyas coordenadas respecto de una base $B'' = \{\mathbf{w_1}, \mathbf{w_2}, \mathbf{w_3}\}$ son las siguientes:

$$\boldsymbol{e}_1 = \left(\begin{array}{c} 3 \\ 1 \\ -5 \end{array} \right), \boldsymbol{e}_2 = \left(\begin{array}{c} 1 \\ 1 \\ -3 \end{array} \right), \boldsymbol{e}_3 = \left(\begin{array}{c} -1 \\ 0 \\ 2 \end{array} \right)$$

$$\boldsymbol{u}_1 = \left(\begin{array}{c} 2\\1\\1 \end{array}\right), \boldsymbol{u}_2 = \left(\begin{array}{c} 2\\-1\\1 \end{array}\right), \boldsymbol{u}_3 = \left(\begin{array}{c} 1\\2\\1 \end{array}\right),$$

se pide:

- ① Determinar la matriz de cambio de base de B a B'.
- Expresar el vector $\mathbf{v}_{\{\mathbf{w}_i\}} = (-5, 8, -5)^t$ en la base B y utilizar la matriz de cambio de base obtenida en 1 para hallar $\mathbf{v}_{\{\mathbf{u}_i\}}$.

Ejemplo 3.8 (cont.)

Solución:

① Las matrices de cambio de base de B a B'' y de B' a B'' son, respectivamente,

$$A_1 = \left(\begin{array}{ccc} 3 & 1 & -1 \\ 1 & 1 & 0 \\ -5 & -3 & 2 \end{array} \right), \quad A_2 = \left(\begin{array}{ccc} 2 & 2 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 1 \end{array} \right).$$

Por tanto, la matriz de cambio de base de B a B' será

$$A = A_2^{-1} A_1 = \begin{pmatrix} 2 & 2 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 3 & 1 & -1 \\ 1 & 1 & 0 \\ -5 & -3 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 35/2 & 19/2 & -13/2 \\ -19/2 & -11/2 & 7/2 \\ -13 & -7 & 5 \end{pmatrix}.$$

Ejemplo 3.8 (cont.)

$$\mathbf{v}_{\{\mathbf{e}_i\}} = A_1^{-1} \begin{pmatrix} -5 \\ 8 \\ -5 \end{pmatrix} = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 1 & 0 \\ -5 & -3 & 2 \end{pmatrix}^{-1} \begin{pmatrix} -5 \\ 8 \\ -5 \end{pmatrix} = \begin{pmatrix} -7/2 \\ 23/2 \\ 6 \end{pmatrix}$$

y para expresar \mathbf{v} en la base $\{\mathbf{u}_i\}$ podemos usar $\mathbf{v}_{\{\mathbf{e}_i\}}$ hallado arriba y aplicar la matriz de cambio de base de B a B' (matriz A):

$$\boldsymbol{v}_{\{\boldsymbol{u}_i\}} = A \left(\begin{smallmatrix} -7/2 \\ 23/2 \\ 6 \end{smallmatrix} \right) = \left(\begin{smallmatrix} 35/2 & 19/2 & -13/2 \\ -19/2 & -11/2 & 7/2 \\ -13 & -7 & 5 \end{smallmatrix} \right) \left(\begin{smallmatrix} -7/2 \\ 23/2 \\ 6 \end{smallmatrix} \right) = \left(\begin{smallmatrix} 9 \\ -9 \\ -5 \end{smallmatrix} \right).$$

Por tanto, $\mathbf{v}_{\{\mathbf{u}_i\}} = (9, -9, -5)^t$.

3.6 Ecuaciones paramétricas e implícitas de un subespacio vectorial

Ecuaciones paramétricas

Sea W un s.e.v. de dimensión p de un espacio vectorial, V, de dimensión n. Cualquier vector de W se puede expresar de forma única como c.l. de los vectores de una base, $B = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$, de W

$$\mathbf{v} \in W \Rightarrow \mathbf{v} = t_{1}\mathbf{u}_{1} + \dots + t_{p}\mathbf{u}_{p} \Rightarrow (x_{1}, \dots, x_{n})_{\{\mathbf{e}_{i}\}}^{t} = t_{1}\mathbf{u}_{1} + \dots + t_{p}\mathbf{u}_{p} \Rightarrow$$

$$\begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}_{\{\mathbf{e}_{i}\}} = t_{1}\begin{pmatrix} u_{11} \\ \vdots \\ u_{n1} \end{pmatrix}_{\{\mathbf{e}_{i}\}} + t_{2}\begin{pmatrix} u_{12} \\ \vdots \\ u_{n2} \end{pmatrix}_{\{\mathbf{e}_{i}\}} + \dots + t_{p}\begin{pmatrix} u_{1p} \\ \vdots \\ u_{np} \end{pmatrix}_{\{\mathbf{e}_{i}\}} \Rightarrow$$

$$x_{1} = t_{1}u_{11} + t_{2}u_{12} + \dots + t_{p}u_{1p}$$

$$x_{2} = t_{1}u_{21} + t_{2}u_{22} + \dots + t_{p}u_{2p}$$

$$\vdots$$

$$x_{n} = t_{1}u_{n1} + t_{2}u_{n2} + \dots + t_{p}u_{np}$$

$$(1)$$

donde $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ es una base cualquiera de V.

Definición 3.7

Al sistema de ecuaciones (1) se le llama sistema de ecuaciones paramétricas de W.

Ejemplo 3.9

Unas ecuaciones paramétricas del subespacio vectorial de \mathbb{R}^3 , $W_2 = <(1,1,0)^t, (0,0,1)^t > \text{son}$:

$$x_1 = \lambda$$

$$x_2 = \lambda$$

$$X_3 = \mu$$

Ecuaciones implícitas

Definición 3.8

Si en el sistema (1) se eliminan los parámetros t_1, \ldots, t_p se obtiene un sistema homogéneo de n-p ecuaciones que reciben el nombre de **ecuaciones implícitas** de W.

El sistema (1) es un sistema compatible determinado por ser $\left\{\mathbf{u}_1,\ldots,\mathbf{u}_p\right\}$ una base de W, y por ello habrá únicamente p ecuaciones linealmente independientes. Para eliminar los p parámetros t_i ($i=1,\ldots,p$) éstos se despejan en función de las x_i ($i=1,\ldots,n$) utilizando las ecuaciones linealmente independientes y se sustituyen en las n-p restantes, obteniéndose un sistema homogéneo de n-p ecuaciones que son las ecuaciones implícitas de W.

Observación 3.16

Para obtener las ecuaciones paramétricas y por lo tanto una base a partir de las ecuaciones implícitas basta con resolver el sistema homogéneo. Las incógnitas libres serán los parámetros.

Ejemplo 3.10

En R^6 determinar unas ecuaciones paramétricas e implícitas del s.e.v.

$$S = \left\langle (1,1,0,1,0,1)_{\{\textbf{e}_i\}}^t, (0,2,0,2,0,1)_{\{\textbf{e}_i\}}^t, (0,0,0,1,0,1)_{\{\textbf{e}_i\}}^t \right\rangle$$

referido a la base $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4, \mathbf{e}_5, \mathbf{e}_6\}$.

Solución: para obtener unas ecuaciones paramétricas de S se busca en primer lugar una base de S. Como $(1,1,0,1,0,1)_{\{e_i\}}^t$, $(0,2,0,2,0,1)_{\{e_i\}}^t$ y $(0,0,0,1,0,1)_{\{e_i\}}^t$ constituyen un sistema generador de S y además son linealmente independientes forman también una base de S.

Ejemplo 3.10 (cont.)

Una vez obtenida una base, las ecuaciones paramétricas se obtienen imponiendo que cualquier vector del subespacio S se puede expresar como combinación lineal de los tres vectores de la base:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 1 \end{pmatrix} + \gamma \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

La ecuación vectorial anterior da lugar a seis ecuaciones escalares que constituyen unas ecuaciones paramétricas de *S*:

Ejemplo 3.10 (cont.)

$$S = \begin{cases} x_1 = \alpha \\ x_2 = \alpha + 2\beta \\ x_3 = 0 \\ x_4 = \alpha + 2\beta + \gamma \\ x_5 = 0 \\ x_6 = \alpha + \beta + \gamma \end{cases},$$

Si se despeja α de la primera ecuación, β de la segunda, γ de la cuarta y se introducen sus expresiones en función de x_1, x_2 y x_4 en las restantes tres ecuaciones se obtienen unas ecuaciones implícitas de S:

$$S = \begin{cases} \frac{1}{2}x_1 - \frac{1}{2}x_2 + x_4 - x_6 = 0\\ x_3 = 0\\ x_5 = 0 \end{cases}$$

Proposición 3.6

Sea W un subespacio vectorial de un espacio vectorial, V, de dimensión n. Si el número de ecuaciones implícitas linealmente independientes de W es r, la dimensión de W es n-r.

Observación 3.17

(Casos extremos)

- r = n, n ecuaciones linealmente independientes \rightarrow El sistema homogéneo únicamente admite la solución nula, $W = \{0\}$.
- 2 r = 1, 1 ecuación linealmente independiente $\rightarrow \dim W = n 1$.

3.7 Intersección y suma de subespacios. Suma directa

Definición 3.9

Sean U_1 y U_2 dos subespacios vectoriales de un espacio vectorial V. Se denomina **suma** de U_1 y U_2 al conjunto

$$U_1 + U_2 = \{\mathbf{u}_1 + \mathbf{u}_2 / \mathbf{u}_1 \in U_1, \mathbf{u}_2 \in U_2\}$$

Proposición 3.7

El conjunto definido en la anterior definición es un s.e.v. de V, es más, se trata del menor de todos los s.e.v. de V que contiene a U_1 y U_2 .

Ejemplo 3.11

En el e.v. \mathbb{R}^4 se consideran los subespacios

$$U_1 = \{(\alpha, \beta, 0, 0) / \alpha, \beta \in \mathbb{R}\}\$$
y $U_2 = \{(0, \lambda, \mu, 0) / \lambda, \mu \in \mathbb{R}\}.$ Entonces:

$$U_1 + U_2 = \{(\gamma, \delta, \varepsilon, 0) / \gamma, \delta, \varepsilon \in \mathbb{R}\}$$

Definición 3.10

Sean U_1 y U_2 dos subespacios vectoriales de un espacio vectorial V. Se dice que $U_1 + U_2$ es una **suma directa** de subespacios vectoriales y se escribe $U_1 \oplus U_2$ si cualquier vector de dicha suma de subespacios puede expresarse de una única forma como suma de vectores de U_1 y U_2 .

Definición 3.11

Si $U_1 + U_2$ es una suma directa $(U_1 + U_2 = U_1 \oplus U_2)$ se dice que U_1 y U_2 son subespacios **independientes**.

Proposición 3.8

Los s.e.v. U_1 y U_2 son independientes Ssi su intersección es nula.

Definición 3.12

En un espacio vectorial V, dos subespacios U_1 y U_2 se dicen **suplementarios** en V si cualquier vector $\mathbf{v} \in V$ se puede expresar de forma única como suma de un vector de U_1 más un vector de U_2 .

Observación 3.18

Según la definición de suma directa se verifica:

$$U_1$$
 y U_2 son suplementarios en $V \Leftrightarrow U_1 \oplus U_2 = V \Leftrightarrow \left(\begin{array}{c} U_1 + U_2 = V \\ U_1 \cap U_2 = \{\mathbf{0}\} \end{array} \right)$

Proposición 3.9

En un espacio vectorial V de dimensión finita se verifica:

② U_1 y U_2 son suplementarios en $V \Rightarrow \dim U_1 + \dim U_2 = \dim V$.

$$\begin{cases} B = \{\mathbf{e}_1, \dots, \mathbf{e}_s, \mathbf{e}_{s+1}, \dots, \mathbf{e}_n\} \text{ base de } V \\ U_1 = \langle \mathbf{e}_1, \dots, \mathbf{e}_s \rangle \\ U_2 = \langle \mathbf{e}_{s+1}, \dots, \mathbf{e}_n \rangle \\ \begin{pmatrix} U_1 \text{ y } U_2 \text{ son suplementarios en } V \end{pmatrix}.$$

Todos los s.e.v. de V tienen algún s.e.v. suplementario en V.

Proposición 3.10 (Fórmula de Grassmann)

Si U_1 y U_2 son dos s.e.v. de un e.v., V, de dimensión finita, se verifica:

$$\dim(U_1+U_2)=\dim U_1+\dim U_2-\dim(U_1\cap U_2)$$

Ejercicios

- Comprobar que el conjunto $\mathcal{C}(R,R)$, de las funciones continuas de R en R, es un espacio vectorial real respecto de las operaciones usuales (suma de funciones y producto de escalar por función).
- ② Se consideran las siguientes funciones de $\mathcal{C}(R,R)$: $\{\operatorname{sen}(x),1,x,x^2,\ldots,x^n\}$, estudiar si la primera de ellas es una combinación lineal de las demás.
 - Solución: No es una combinación lineal.
- Indicar si los siguientes subconjuntos son o no subespacios vectoriales de los espacios vectoriales que se indican en cada apartado:
 - **1** $W_1 = \{(x, y, z) \in \mathbb{R}^3 / x = z\} \text{ de } \mathbb{R}^3$
 - 2 $W_2 = \{(x, y, z, t) \in \mathbb{R}^4 / x = 1\} \text{ de } \mathbb{R}^4$
 - **3** $W_3 = \{(x, y) \in \mathbb{R}^2 / x \ge 0 \text{ e } y \ge 0\} \text{ de } \mathbb{R}^2$
 - **4** $W_4 = \{(x, y, z) \in \mathbb{R}^3 / x = z, 2x + z = 0\} \text{ de } \mathbb{R}^3$

- **6** $W_5 = \{(x,y) \in \mathbb{R}^2 / x = 0 \text{ ó } y = 0\} \text{ de } \mathbb{R}^2$
- **6** $W_6 = \{(x,y) \in \mathbb{R}^2 / e^x + y = 0\} \text{ de } \mathbb{R}^2$

Solución:

- Si
- No
- No
- Si
- No
- No
- **1** Escribir el vector $\mathbf{u} = (1,3)^t \in \mathbf{R}^2$ como combinación lineal de los vectores de \mathbf{R}^2
 - $(1,1)^t,(1,0)^t$
 - $(3,1)^t, (-1,1)^t, (2,3)^t$

Nota: se supondrá que todos los vectores que aparecen en el enunciado están referidos a la misma base de \mathbb{R}^2

Solución:

- **2** $\mathbf{u} = (1 \frac{5}{4}\alpha)(3,1)^t + (2 \frac{7}{4}\alpha)(-1,1)^t + \alpha(2,3)^t$ (Existen infinitas opciones)
- **5** Escribir, si es posible, el vector $\mathbf{u} = (1, -1, 4)^t \in \mathbb{R}^3$ como combinación lineal de los siguientes vectores de \mathbb{R}^3 .
 - $(1,1,2)^t,(0,0,1)^t$
 - $(2,-2,0)^{t},(-1,1,2)^{t}$
 - $(1,0,1)^t, (0,1,1)^t, (1,1,0)^t$

Nota: se supondrá que todos los vectores que aparecen en el enunciado están referidos a la misma base de \mathbb{R}^3 .

Solución:

- No es posible expresar u como combinación lineal de (1,1,2)^t y (0,0,1)^t
- **2** $\mathbf{u} = \frac{3}{2}(2, -2, 0)^t + 2(-1, 1, 2)^t$
- 3 $\mathbf{u} = 3(1,0,1)^t + (0,1,1)^t 2(1,1,0)^t$

6 Considérese el e.v. $V = M_{2,2}(R)$, de las matrices cuadradas de tamaño 2×2 , y sea $S = \{M_1, M_2, M_3, M_4\}$ el sistema formado por las matrices:

$$M_1=\left(egin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}
ight), M_2=\left(egin{array}{cc} 0 & 1 \\ 0 & 1 \end{array}
ight), M_3=\left(egin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}
ight), M_4=\left(egin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}
ight)$$

Se pide:

- \odot comprobar que S es una base de V,
- 2 hallar las coordenadas x_1, x_2, x_3, x_4 en la base S de una matriz genérica, M, de V.

$$M = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

Solución:

(2)
$$x_1 = a - b - c + d$$
, $x_2 = -a + b + c$, $x_3 = a - c$, $x_4 = c$

Studiar si son base de \mathbb{R}^3 los siguientes conjuntos de vectores (todos ellos referidos a la base canónica de \mathbb{R}^3):

- $B_2 = \{(1,1,1)^t, (2,0,1)^t, (4,2,3)^t\}$

- **6** $B_5 = \{(1,1,1)^t, (0,0,1)^t, (0,-1,0)^t, (3,0,1)^t\}$

Solución:

- \bullet B_1 es una base de \mathbb{R}^3
- 2 B_2 no es una base de \mathbb{R}^3
- 3 B_3 es una base de \mathbb{R}^3
- 4 B₄ no es una base de \mathbb{R}^3
- **6** B_5 no es una base de \mathbb{R}^3

En el e.v. de los polinomios de grado menor o igual que 4, se consideran los polinomios:

$$p_1(x) = 3 - 2x + x^2 + 4x^3 + x^4$$

$$p_2(x) = 4 - x + x^2 + 6x^3 - 2x^4$$

$$p_3(x) = 7 - 8x + 3x^2 + ax^3 + bx^4$$

hallar a y b para que el subespacio que engendran p_1, p_2 y p_3 sea de dimensión 2. Hallar una base de este subespacio y determinar las coordenadas en ella de los tres polinomios dados.

Solución: a = 8, b = 9. Base del s.e.v.: $B = \{p_1, p_2\}$. Coordenadas de los tres polinomios en la base $B: p_1 = (1,0)_B^t$, $p_2 = (0,1)_B^t$, $p_3 = (5,-2)_B^t$

- **9** Dados los vectores $\mathbf{a}_1 = (1, 2, 0, 0)^t$, $\mathbf{a}_2 = (1, 2, 3, 4)^t$ y $\mathbf{a}_3 = (3, 6, 0, 0)^t$ de \mathbf{R}^4 , se pide:
 - determinar una base del subespacio vectorial $\langle \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \rangle$ e indicar cual es su dimensión.
 - 2 hallar unas ecuaciones paramétricas de $\langle \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \rangle$,
 - **3** determinar unas ecuaciones implícitas de $\langle \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \rangle$.

Nota: los tres vectores del enunciado están referidos a la base canónica de \mathbb{R}^4 .

Solución:

1 Base de
$$\langle \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \rangle = \{(1, 2, 0, 0)^t, (0, 0, 3, 4)^t\}$$

$$\langle \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \rangle = \left\{ (x_1, x_2, x_3, x_4)^t \in \mathbf{R}^4 \middle/ \begin{array}{c} x_1 = \alpha \\ x_2 = 2\alpha \\ x_3 = 3\beta \\ x_4 = 4\beta \end{array} \right\}, \forall \alpha, \beta \in \mathbf{R}$$

- Sea $W = \{(x, y, z)^t \in \mathbb{R}^3 / x + y + z = 0\}$ y sea $\mathbf{v} = (2, -1, -1)_{\{\mathbf{e}_i\}}^t \in W$. Se pide:
 - comprobar que $B_W = \{(-1,0,1)_{\{\mathbf{e}_i\}}^t, (-1,3,-2)_{\{\mathbf{e}_i\}}^t\}$ es una base de W.
 - 2 hallar las coordenadas de \mathbf{v} respecto de B_W ,
 - **1** hallar las coordenadas de **v** respecto de la base *B* de \mathbb{R}^3 dada por $B = \{(1, 1, 0)_{\{\mathbf{e}_i\}}^t, (0, 1, 1)_{\{\mathbf{e}_i\}}^t, (2, 0, 1)_{\{\mathbf{e}_i\}}^t\}.$

Solución:

(2)
$$\mathbf{v} = -\frac{5}{3}(-1,0,1)_{\{\mathbf{e}_i\}}^t - \frac{1}{3}(-1,3,-2)_{\{\mathbf{e}_i\}}^t = (-\frac{5}{3},-\frac{1}{3})_{B_W}^t$$

(3) $\mathbf{v} = (\frac{2}{3},-\frac{5}{3},\frac{2}{3})_B^t$

Ocnsidérense los conjuntos de polinomios $S = \{p_1, p_2, p_3\}$ y $T = \{q_1, q_2, q_3\}$, donde:

$$p_1(x) = 1 + 2x + 5x^2 + 3x^3 + 2x^4$$

$$p_2(x) = 3 + x + 5x^2 - 6x^3 + 6x^4$$

$$p_3(x) = 1 + x + 3x^2 + 2x^4$$

$$q_1(x) = 2 + x + 4x^2 - 3x^3 + 4x^4$$

$$q_2(x) = 3 + x + 3x^2 - 2x^3 + 2x^4$$

$$q_3(x) = 9 + 2x + 3x^2 - x^3 - 2x^4$$

Si U y V son los subespacios de P_4 engendrados por S y T respectivamente, hallar la dimensión y una base de los subespacios U + V y $U \cap V$.

Nota 1: la unión de una base de U con una base de V forma un sistema generador de U+V, por lo tanto para hallar una base de

U + V basta con extraer de la unión anterior aquellos vectores linealmente independientes.

Nota 2: un vector que pertenezca a $U \cap V$ debe verificar, a la vez, las ecuaciones implícitas de U y de V, por lo tanto para hallar las ecuaciones implícitas de $U \cap V$ basta con agrupar las de U y V y eliminar aquellas que sean combinación lineal del resto.

Nota 3: Igualando las ecuaciones paramétricas de U y V se obtiene un sistema homogéneo de $\dim(P_4)$ ecuaciones y $\dim(U) + \dim(V)$ incógnitas (los parámetros de las dos ecuaciones) cuya solución proporciona los valores de los parámetros que hacen que un polinomio de P_4 pertenezca a los dos subespacios.

Solución: la dimensión de U + V es 3 y una base de U + V es, por ejemplo,

$$\{r_1(x) = p_1(x), r_2(x) = x + 2x^2 + 3x^3, r_3(x) = x^2 - 2x^3 + 2x^4\}$$
. La dimensión de $U \cap V$ es 1 y una base de $U \cap V$ es, por ejemplo, $\{q_1\}$.

Dados los subespacios vectoriales de R⁴:

$$W_1 = \{(x, y, z, t) \in \mathbf{R}^4 / 2x = y, 2z = t\},\$$

 $W_2 = \{(x, y, z, t) \in \mathbf{R}^4 / x + y + z + t = 0\},\$
 $W_3 = \{(x, y, z, t) \in \mathbf{R}^4 / x = y = z = t\},\$

- halle unas ecuaciones paramétricas y unas ecuaciones implícitas de los subespacios vectoriales $W_1 + W_2$, $W_1 + W_3$, $W_2 + W_3$.
- **2** Halle unas ecuaciones paramétricas y unas ecuaciones implícitas de los subespacios vectoriales $W_1 \cap W_2$, $W_1 \cap W_3$, $W_2 \cap W_3$.
- 3 ¿Son suplementarios en \mathbb{R}^4 los subespacios W_1 y W_2 ? ¿Y los subespacios W_2 y W_3 ?

Solución:

- $W_1 + W_2 = \mathbf{F}^4; W_1 + W_3 = \{(x, y, z, t) \in \mathbf{F}^4 / y = 2x 2z + t\};$ $W_2 + W_3 = \mathbf{F}^4$
- ② $W_1 \cap W_2 = \{(x, y, z, t) \in \mathbb{R}^4 / 2x = y, 2z = t, x + y + z + t = 0\}; W_1 \cap W_3 = \{\mathbf{0}\}; W_2 \cap W_3 = \{\mathbf{0}\}$
- **3** W_1 y W_2 no son subespacios suplementarios. W_2 y W_3 si son subespacios suplementarios.

La red cristalina del titanio tiene estructura hexagonal. Los vectores

$$\boldsymbol{u}_1 = \left(\begin{array}{c} 2.6 \\ -1.5 \\ 0 \end{array}\right), \boldsymbol{u}_2 = \left(\begin{array}{c} 0 \\ 3 \\ 0 \end{array}\right), \boldsymbol{u}_3 = \left(\begin{array}{c} 0 \\ 0 \\ 4.8 \end{array}\right)$$

forman una base para la celda unitaria, en donde las coordenadas de los tres vectores están referidas a la base canónica de \mathbb{R}^3 y representan distancias en $(1=10^{-8} \text{ cm})$. En aleaciones de titanio puede haber algunos átomos adicionales en la celda unitaria en los sitios octaédricos y tetraédricos (así llamados por los objetos geométricos que forman los átomos en esos lugares). Una de las posiciones octaédricas es

$$\boldsymbol{a}_0 = \left(\begin{array}{c} 1/2 \\ 1/4 \\ 1/6 \end{array} \right),$$

respecto de la base de la red. Se pide determinar las coordenadas de este sitio relativas a la base canónica de \mathbb{R}^3 . Solución: $\mathbf{a}_0 = (1.3, 0, 0.8)_{\{\mathbf{e}_i\}}^t$.

Siguiendo con la red cristalina del titanio y sabiendo que una de las posiciones tetraédricas es

$$\mathbf{a}_t = \left(egin{array}{c} 1/2 \\ 1/2 \\ 1/3 \end{array}
ight),$$

respecto de la base de la red. Se pide determinar las coordenadas de este sitio relativas a la base canónica de \mathbb{R}^3 . **Solución**: $\mathbf{a}_t = (1.3, 0.75, 1.6)_{\{\mathbf{e}_i\}}^t$.