Bayesian Causal Inference for Uplift Modeling

Jeong In Lee ¹ Seong Il Jo ¹

¹Dept. of Statistics, Inha University

I. Abstract

- **Goal** estimate individual uplift under strong, feature-driven ad selection.
- **Issue** most flexible regularized models suffer from regularization-induced confounding (RIC) bias.
- **Approach** Include the estimated propensity score or re-parameterize the model(Bayesian Causal Forest).
- Practical Studies: Criteo data BCF allows reliable measurement of conversion uplift as a function of the targeting fraction.

II. Introduction

2.1 Motivation

- In the digital advertising environment, accurate target selection drives real advertising impact and maximizes ROI.
- Causal uplift refers to the expected difference in outcomes depending on whether an individual receives a treatment. Accurate target selection should be guided by this insight.
- Click attribution or simply estimating the Average Treatment Effect (ATE) is not sufficient.

ATE :=
$$\mathbb{E}(Y_i \mid Z_i = 1) - \mathbb{E}(Y_i \mid Z_i = 0)$$
, $Z = \text{treatment}$

 Estimating the Conditional Average Treatment Effect (CATE) is necessary to uncover true causal effects for each subgroup.

CATE :=
$$\mathbb{E}(Y_i \mid X_i = x, Z_i = 1) - \mathbb{E}(Y_i \mid X_i = x, Z_i = 0)$$

 Flexible models to estimate effect require regularization, but under strong confounding that regularization can itself introduce large and uncontrolled bias, so specialized methods are needed.

2.2 BART: Bayesian additive regression trees

- BART, widely used in causal inference, has proven practical strength[1, 2, 3]:
 - detecting complex interactions and sharp breaks
 - being invariant to monotone transformations of covariates
 - requiring minimal tuning, and repeatedly outperforming in causal-effect benchmarks
- BART expresses an unknown function f(x) as a sum of piecewise constant binary regression trees. each tree T_l cuts the covariate space into axis-aligned cells $A_b^{(l)}$; the induced step function is $g_l(x) = m_{lb}$ if $x \in A_b^{(l)}$.

Figure 1. An example binary tree

 $\begin{tabular}{ll} \bf Additive \ ensemble: \ unknown \ response \ surface \ as \ L \\ weak \ trees \end{tabular}$

$$f(x) = \sum_{l=1}^{L} g_l(x),$$
 $g_l(x) = m_{lb} \text{ if } x \in A_b^{(l)}.$

- Tree-structure prior: node at depth h splits with $\Pr(\operatorname{split}|h) = \eta(1+h)^{-\beta}$ (default $\eta=0.95,\ \beta=2$) \Rightarrow small, shallow trees preferred.
- Leaf-parameter prior: $m_{lb} \sim \mathcal{N}(0, \sigma_m^2), \ \sigma_m = \sigma_0/\sqrt{L}$ \Rightarrow 95 % of prior mass for f(x) lies in $\pm 2\sigma_0$ (pointwise).
- Causal target: individual treatment effect

$$\tau(x) = f(x, z = 1) - f(x, z = 0).$$

III. Methodology

3.1 Regularization Induced Confounding (RIC)

- under strong confounding that regularization can itself introduce large bias so specialized methods are needed.
- **Setting** : linear ridge example

$$Y_i = \tau Z_i + \beta^{\top} X_i + \varepsilon_i, \qquad Z_i = \gamma^{\top} X_i + \nu_i.$$

Gaussian ridge prior: $(\tau, \beta) \sim \mathcal{N}(0, M^{-1})$.

Bias of ridge/Bayes estimator

$$\operatorname{bias}(\hat{\tau}_{\mathsf{rr}}) = -\left[(Z^{\top} Z)^{-1} Z^{\top} X \right] \left(I + X^{\top} \left(X - \hat{X}_Z \right) \right)^{-1} \beta,$$
$$\hat{X}_Z = Z (Z^{\top} Z)^{-1} Z^{\top} X.$$

- Implications
 - Term $[(Z^{\top}Z)^{-1}Z^{\top}X] \neq 0$ if $Z \not \perp X$ (confounding).
 - Posterior variance of τ also shrinks \Rightarrow Credible-interval coverage <95%
- **Extension to BART** Trees prefer a single split on Z (cheap) over many splits on $X \to \text{variability of } \mu(X)$ falsely attributed to $Z \to RIC$ in nonlinear models.

3.2 PS-BART & BCF

Propensity-Score BART (PS-BART)

$$Y_i \sim \sum_{j=1}^m g_j(X_i, \hat{\pi}(X_i), T_i) + \varepsilon_i, \qquad \varepsilon_i \sim \mathcal{N}(0, \sigma^2)$$

Adding the estimated propensity score $\hat{\pi}(X)$ decorrelates Z and X; in linear models $\mathrm{bias}(\hat{\tau})=0$, sharply reducing RIC.

Bayesian Causal Forest (BCF)

$$Y_i = \mu(X_i, \hat{\pi}_i) + T_i \tau(X_i) + \varepsilon_i, \quad (\mu, \tau) \sim \mathsf{BART}$$

- $\mu(X, \hat{\pi})$: prognostic surface expected outcome under control.
- $\tau(X)$: treatment-effect function incremental uplift for covariates X.
- Independent priors let us shrink $\tau(X)$ strongly; when $\hat{\pi}$ is extreme the prior pulls $\tau \to 0$, eliminating RIC bias and restoring correct 95% coverage.

3.3 PS-BART & BCF can mitigate problems

• Add $\hat{\pi}(X)$ as a covariate ($\hat{e}(X)$:propensity score)

$$\tilde{X} = \begin{bmatrix} Z & \hat{\pi}(X) & X \end{bmatrix},$$

then $Z \perp X \mid \hat{\pi}(X) \Rightarrow \left[(\tilde{Z}^{\top} \tilde{Z})^{-1} \tilde{Z}^{\top} X \right]_{(Z)} = 0$ \Rightarrow Bias vanishes; tree-based models penalize splits on

- **BCF** re-parameterizes $Y = \mu(X, \hat{\pi}(X)) + Z \tau(X)$ with separate priors:
 - Stronger shrinkage on $\tau(X)$ (fewer trees, deeper penalty). And μ captures prognostic part; miss?allocation to Z discouraged.

III. Simulation Studies

3.1 Data-Generating Process

Z and $\hat{\pi}(X)$ equally.

- Covariates:
- $x_1, x_2, x_3 \stackrel{i.i.d}{\sim} \mathcal{N}(0, 1), \ x_4 \sim \mathsf{Ber}(0.5), \ x_5 \sim \mathsf{Unif}\{1, 2, 3\}.$
- Treatment effect(homoheneous): $\tau(x) = 3$.
- Treatment effect(heterogeneous): $\tau(x) = 1 + 2x_2x_5$.
- Prognostic surface (non-linear): $\mu(x) = -6 + g(x_5) + 6|x_3 1|$. Category map g: $g(1) = 2, \ g(2) = -1, \ g(3) = -4$.
- Propensity: $\pi(x) = 0.8 \Phi\left(\frac{3\mu(x)}{s} 0.5x_1\right) + 0.05 + \frac{u}{10}, \ u \sim \text{Unif}(0,1), \ s = \text{sd}\{\mu(x_i)\}_{i=1}^n$.
- Sample size: n=250 (single scenario, non-linear μ).

3.2 Simulation results

- Under strong confounding, feeding the estimated propensity score into the outcome model improves performance.
- In particular, BCF (Bayesian Causal Forest) is better when treatment effects are heterogeneous.

Table 1. CATE performance

	Homogeneous effect			Heterogeneous effect		
Method	rmse	cover	len	rmse	cover	len
BART PS-BART BCF	1.00	0.96	4.1 4.3 2.5	1.7	0.87 0.91 0.93	5.2 5.4 4.5

IV. Uplift Modeling under Strong Confounding

4.1 Data

- 5,000 users from Criteo incrementality tests (84% treated).
- Variables:
 - anonymized user features: $\{f_0, \ldots, f_{11}\}$ (dense floats)
 - treatment: random-assignment flag
 - exposure: ad shown
 - conversion: binary outcome
- Exposure is served mainly to treated users with high conversion propensity ⇒ strong confounding

Figure 2. Propensity score distribution

4.2 Results

Figure 3. BCF cumulative uplift (Qini) curve

- **Top-decile impact:** Targeting the top 10% yields an observed uplift of ≈8.9%, over three times the overall average (2.7%).
- **Diminishing returns:** As the targeted pool expands (20–80%), additional uplift contributions plateau around 2–4%.
- Prediction gap: A noticeable divergence between predicted and observed uplift at high deciles suggests room for model calibration.

VI. References

- [1] H. A. Chipman, E. I. George, and R. E. McCulloch, "Bart: Bayesian additive regression trees," *The Annals of Applied Statistics*, vol. 4, Mar. 2010.
- [2] V. Dorie, J. Hill, U. Shalit, M. Scott, and D. Cervone, "Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition," 2018.
- [3] P. R. Hahn, J. S. Murray, and C. Carvalho, "Bayesian regression tree models for causal inference: regularization, confounding, and heterogeneous effects," 2019.