- 1) Problém převedeme na hledání maximálního párování v bipartitním grafu.
 - (1) Graf utvoříme ze dvou skupin vrcholů první budou účastníci (dále "skupina A"), bez našeho favorita a druhý vrcholy budou místa (dále "skupina B"), kde vynecháme první místo, které pochopitelně ponecháme našemu favoritovi.
 - (2) Mezi těmito vrcholy vytvoříme hrany tak, aby každý vrchol ze skupiny A měl za sousedy všechny vrcholy ze skupiny B, kteří mají trestné body za předchozí dysciplýny vynásobené ještě hodnotou daného vrcholu ze skupiny B nižší než jsou trestné body našeho favorita.
- 2) V tomto grafu najdeme maximální párování.
- 3) Spočítáme počet párů a to je počet lidí před naším favoritem.
- 4) Časová složitost = $O(n^2 * \sqrt{n})$
 - (1) Musíme si přidat vrcholy a přečíst vstup = O(n)
 - (2) Vytvoření hran musíme projít až $n*\bar{konstanta}$ dvojic $(n*konstanta)^2 \Rightarrow O(n^2)$
 - (3) Nalezení maximálního párování = $O(n^2 * \sqrt{n})$
 - (4) Spočítání součtu párů = O(n)
- 5) Paměťová složitost = $O(n^2)$
 - (1) Musíme si pamatovať vstup a graf $= O(n^2)$, protože můžeme mít až n^2 hran.