Lecture Notes 1.3 Page 1 of 2 CS 210 Spring 2017

Propositional Logic

Definitions

Propositions

A proposition in logical is a statement that is either true or false, and it cannot be both.

Propositional Variables

In mathematical logic, a propositional variable (also called a sentential variable or sentential letter) is a variable which can either be true or false. Propositional variables are the basic building-blocks of propositional formulas, used in propositional logic and higher logics.

Logical Connectives

We use symbols called **logical connectives** to build a proposition...:

- $\neg = NOT$ (Negation)
 - Highest precedence
- $\Lambda = AND$ (Conjugation)
 - Second highest precedence
- V = OR (Compound)
 - Third highest precedence

Example, having some propositional variable represent a true/false (or yes/no) question, similar to a boolean variable in programming...

- p: Is x > 10?
- q: Is x < 100?
- r: Is password more than 6 characters?

Given a boolean, each of these have only two states: True or False. But, if we combine them with ANDs and ORs, the amount of resulting states from the combination is 2^n , where n is the amount of propositional variables in the statement.

If
$$(x > 10 \&\& x < 100)$$
 = $(p \land q)$

Spring 2017

Examples:

a. Create a variable for "class is full", create a variable for "prerequisites are met", write out different combinations and what they translate to, using AND and OR and NOT.

Diagramming it out with a truth table...

Examples:

b.
$$(p \land \neg q)$$

c.
$$p \vee \neg q$$

c.
$$p \lor \neg q$$

d. $(p \land q) \lor (p \land \neg q)$

Otherwise, maybe diagram "p or q, but not both".

Multiple variables... when is the result true? False?

e.
$$p \wedge q \wedge r$$

f.
$$p \lor q \lor r$$

Negation

•
$$\neg (p \land q) \equiv \neg p \lor \neg q$$

•
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Prove via truth table, showing logical equivalence.