1^{ère} Année Informatique Module: Analyse 1 Année: 2022/2023

Série d'exercices n° 2: Suites numériques

Généralités

Exercice 1. Indiquer en justifiant vos réponses, si les propositions suivantes sont vraies ou fausses:

- 1. Toute suite bornée est convergente.
- 2. La somme de deux suites divergentes est une suite divergente.
- 3. Le produit de deux suites divergentes est une suite divergente.
- 4. $Si \lim_{n \to +\infty} u_n^2 = l^2$, $alors \lim_{n \to +\infty} u_n = l$.
- 5. $Si \lim_{n \to +\infty} |u_n| = |l|$, $alors \lim_{n \to +\infty} u_n = l$.

Nature d'une suite par définition

Exercice 2.

1. Soit la suite numérique réelle définie par:

$$u_n = \frac{3n+1}{5n+2}.$$

- i) En utilisant la définition de la limite montrer que: $\lim_{n\to+\infty} u_n = \frac{3}{5}$.
- ii) À partir de quel rang a-t-on: $|u_n \frac{3}{5}| < 10^{-4}$?
- iii) Combien de termes de la suite $(u_n)_{n\in\mathbb{N}}$ n'appartiennent pas à l'intervalle: $\left]\frac{3}{5}-10^{-4};\frac{3}{5}+10^{-4}\right[$.
- 2. En utilisant la définition de la limite d'une suite montrer que: $\lim_{n\to +\infty} 2^n = +\infty$

Nature d'une suite par diférents critères

Exercice 3. Etudier la nature des suites suivantes:

1)
$$u_n = \frac{\sin(n)}{n}$$
,

2)
$$u_n = \frac{E(n^2 sin(\frac{1}{n}))}{2n}$$
, **3)** $u_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}}$

3)
$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}}$$

4)
$$u_n = \frac{1+2+\cdots+n}{n^3}$$
, **5)** $u_n = \sum_{k=1}^n \frac{1}{a^k} \ (a>1)$, **6)** $u_n = \frac{3^n-7^n}{3^n+7^n}$,

5)
$$u_n = \sum_{k=1}^n \frac{1}{a^k} \ (a > 1),$$

6)
$$u_n = \frac{3^n - 7^n}{3^n + 7^n}$$

7)
$$u_n = \sqrt{1+n} - \sqrt{n}$$
,

8)
$$u_n = \sqrt[3]{1+n} - \sqrt[3]{n}$$
,

7)
$$u_n = \sqrt{1+n} - \sqrt{n}$$
, 8) $u_n = \sqrt[3]{1+n} - \sqrt[3]{n}$, 9) $u_n = (-1)^n + \frac{1}{n}$,

10)
$$u_n = \left(1 + \frac{x}{n}\right)^n, \ x \in \mathbb{R}$$

11)
$$u_n = \left(\frac{n^2 - n + 3}{n^2 + 3n - 1}\right)^n$$

10)
$$u_n = \left(1 + \frac{x}{n}\right)^n$$
, $x \in \mathbb{R}$, **11)** $u_n = \left(\frac{n^2 - n + 3}{n^2 + 3n - 1}\right)^n$, **12)** $u_n = \frac{5 \times 7 \times 9 \cdots (2n + 5)}{4 \times 7 \times 10 \cdots (3n + 4)}$.

Suites adjacentes

Exercice 4.

1. Les suites $(u_n)_n$ et $(v_n)_n$ suivantes sont-elles adjacentes?

$$u_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$
 et $v_n = u_n + \frac{1}{n!}$.

2. Soit la suite de terme général : $v_n = 1 - \frac{1}{2} + \frac{1}{3} + \dots + \frac{(-1)^n}{n}$. Montrer que les deux sous suites (v_{2n}) et (v_{2n+1}) sont adjacentes, puis en déduire la nature de (v_n) .

Suites extraites (sous suites)

Exercice 5.

1. En utilisant des sous-suites convenables, montrer que les suites de terme général:

$$u_n = \cos\left(\frac{n\pi}{4}\right);$$
 $v_n = \frac{n + (-1)^n n}{n - (-1)^n \frac{n}{2}}.$

sont divergentes.

2. Soit (u_n) une suite numrique. Montrer que: Si les sous suites $(u_{2n})_n$, $(u_{2n+1})_n$ et $(u_{3n})_n$ sont convergentes, alors $(u_n)_n$ est convergente.

Suites de Cauchy

Exercice 6. En utilisant le critère de Cauchy, déterminer la nature des suites $(u_n)_n$ défines par:

1)
$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}},$$

2)
$$u_n = \sum_{k=1}^n \frac{\sin k}{2^k}$$
.

Suites récurrentes

Exercice 7. On considère la suite $(u_n)_n$ définie par:

$$\begin{cases} u_0 \in \mathbb{R}, \\ u_{n+1} = \frac{u_n}{(u_n)^2 + 1}, & n \in \mathbb{N}. \end{cases}$$

1. On pose: $u_0 = \alpha$.

a). Déterminer α pour que la suite $(u_n)_n$ soit nulle.

2. Pour: $u_0 > 0$.

a). Montrer que: $\forall n \in \mathbb{N}, u_n > 0$.

b). Montrer que $(u_n)_n$ est strictement décroissante.

c). Déduire qu'elle est convergente et calculer sa limite.

3. Pour: $u_0 < 0$.

a). Montrer que: $\forall n \in \mathbb{N}, u_n < 0$.

b). Montrer que $(u_n)_n$ est strictement croissante.

c). Déduire qu'elle est convergente et calculer sa limite.

4. Déterminer sup, inf, max et min s'ils existent de l'ensemble

$$E = \{ |u_n| \,, \ n \in \mathbb{N} \} \,.$$

* * * * * * * * * * * * * * * *