第3章

対角行列と三角行列

☎ def - 対角行列

対角成分以外の成分がすべて O である正方行列を<mark>対角行列</mark>と呼ぶ

 $a_{ii} = c_i$ $(1 \le i \le n)$ である対角行列を次のように表す

$$\operatorname{diag}(c_1, c_2, \dots, c_n) = \begin{pmatrix} c_1 & 0 & \cdots & 0 \\ 0 & c_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & c_n \end{pmatrix}$$

対角行列の特別な場合として、すべての対角成分が同じ値である行列はスカラー行列と呼ばれる

★ def - スカラー行列

c をスカラーとするとき、cE の形の行列をスカラー行列という

$$cE = \begin{pmatrix} c & 0 & \cdots & 0 \\ 0 & c & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & c \end{pmatrix}$$

対角行列とスカラー倍

行列 A にスカラー行列をかけることは、

$$(cE)A = A(cE) = cA$$

のように、スカラーcをかけるのと同じである

発展して、対角行列の場合には次のことがいえる

♣ theorem - 対角行列と列ベクトルのスカラー倍

右から対角行列をかけると、各列ベクトルがスカラー倍になる

$$tan b$$
, $A = (\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n) \ b$

$$A \cdot \operatorname{diag}(c_1, c_2, \dots, c_n) = (c_1 \boldsymbol{a}_1, c_2 \boldsymbol{a}_2, \dots, c_n \boldsymbol{a}_n)$$

が成り立つ

証明

[Todo 1: book: 行列と行列式の基礎 p63 (問 2.8)]

ブロック対角行列

対角行列の概念は、行列の各成分が数ではなく行列の場合にも拡張できる

★ def - ブロック対角行列

対角線上のブロックがすべて正方行列で、それ以外のブロックが零行列であるもの をブロック対角行列という

$$\operatorname{diag}(A_1, A_2, \dots, A_k) = \begin{pmatrix} A_1 & O & \cdots & O \\ O & A_2 & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & A_k \end{pmatrix}$$

ここで、対角成分に対応する行列 A_1, A_2, \ldots, A_k を対角ブロックという

対角行列の嬉しさ:入出力の視点

ベクトルと行列を使うことで、入力 \boldsymbol{x} と出力 \boldsymbol{y} の関係を多次元の場合でも簡潔に表すことができる

$$\boldsymbol{y} = A\boldsymbol{x}$$

一般の行列による入出力

たとえば \boldsymbol{x} と \boldsymbol{y} をともに 3 次元ベクトルとすると、 $\boldsymbol{y} = A\boldsymbol{x}$ は、

$$egin{pmatrix} y_1 \ y_2 \ y_3 \end{pmatrix} = egin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{pmatrix} egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} = egin{pmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 \end{pmatrix}$$

ここで、たとえば2行目に注目すると、

$$y_2 = a_{21}x_1 + a_{22}x_2 + a_{23}x_3$$

となり、 y_2 の計算に $oldsymbol{x}$ のすべての成分 x_1, x_2, x_3 が使われていることがわかる

各行に対応する出力 y_i は、入力 $oldsymbol{x}$ のすべての成分に依存している

この依存関係を、次のようなダイアグラムで表すことにする

対角行列による入出力

A が対角行列の場合、 $\boldsymbol{u} = A\boldsymbol{x}$ は次のような形になる

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
$$= \begin{pmatrix} a_{11}x_1 \\ a_{22}x_2 \\ a_{33}x_3 \end{pmatrix}$$

ベクトルの各行に注目すると、各出力 y_i は、入力 $oldsymbol{x}$ の対応する成分 x_i のみに依存していることがわかる

このように、A が対角行列の場合、y = Ax は独立な n 本のサブシステム

$$y_1 = a_{11}x_1$$

 \vdots
 $y_n = a_{nn}x_n$

に分割されている

つまり、対角行列を使って関係を表現できれば、

見た目は n 次元問題でも、実質は 1 次元問題が n 本あるだけ

という状況になり、問題を大きく単純化できる

ブロック対角行列による入出力

ブロック対角行列は、

各ブロックごとに独立に変換される

という形の写像を表している

たとえば、

$$egin{pmatrix} egin{pmatrix} y_1 \ y_2 \ y_3 \ y_4 \end{pmatrix} = egin{pmatrix} a_{11} & a_{12} & 0 & 0 \ a_{21} & a_{22} & 0 & 0 \ 0 & 0 & a_{33} & a_{34} \ 0 & 0 & a_{43} & a_{44} \end{pmatrix} egin{pmatrix} x_1 \ x_2 \ x_3 \ x_4 \end{pmatrix}$$

というブロック対角行列は、次のように分けて考えることができる

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$\begin{pmatrix} y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} a_{33} & a_{34} \\ a_{43} & a_{44} \end{pmatrix} \begin{pmatrix} x_3 \\ x_4 \end{pmatrix}$$

ダイアグラムで表すと、2つの独立なサブシステムに分解されている様子が見える

対角行列の嬉しさ:冪乗の計算

A が対角行列の場合、y = Ax は、行ごとのサブシステムとして各行を独立に計算できた

$$y_1 = a_{11}x_1$$

 \vdots
 $y_n = a_{nn}x_n$

このように各行に分けて「1 次元問題が n 本あるだけ」と考えると、対角行列どうしの積や 冪乗も、簡単に計算できることがわかる

$$egin{pmatrix} a_1 & & & & \\ & \ddots & & \\ & & a_n \end{pmatrix} egin{pmatrix} b_1 & & & \\ & \ddots & \\ & & a_n \end{pmatrix} = egin{pmatrix} a_1 b_1 & & \\ & \ddots & \\ & & a_n b_n \end{pmatrix}$$

三角行列

♣ theorem 3.1 - 上三角行列の積

上三角行列どうしの積は上三角行列となる

証明

[Todo 2:]

.....

Zebra Notes

Туре	Number
todo	2