	Q ₂
	insertion Sort;
	, lo, 5, 7, 9, 8. 3
	5, 6, 7, 9, 8, 3
	5, 7, 10, 9 8, 3
	0, 1, 10, 11 8, 3
	5,7,9,10,3,3
	5, 7, 8, 9, 10,3
	3, 5, 7, 8, 9, 10 done
	0h a+ (mill d.)
	Quick sort: (method) { lo, 5, 7, 9 8, 33 partition around 9
	(10, 5, 1, 1) or sy purction around /
	{5, (7), 8, 33 postition around 7 { (0}
{5,(3) partition [83]
[}	T
()	<u> </u>
	3, 5, 7, 8, 9, 6,
	3, 5, 1, 8, 1, 10, done

Q3

1.
$$n+3 \in \Omega(n)$$
 True

 $0 \le Cn \le \Omega$
 $\Omega_0 = 0$

2.
$$n+3 \in O(n^2)$$
 True
$$0 \le n \le (n^2)$$

$$(n \ge 3)$$

$$0 = \frac{3}{6}$$

3.
$$n+3 \in O(n^2)$$
 False
 $O \le C_1 n^2 \le n \le C_2 n^2$
 $O \le C_1 n \le 1 \le C_2 n$
 $C_2 \le n \le \frac{1}{C_1}$

$$2^{n+1} \in O(n+1) \quad \text{False}$$

$$2^{n+1} \leq C(n+1)$$

$$2^{n+1} \leq Cn$$

$$2^{n} \leq C$$

5.
$$2^{n+1} \in \theta (2^n)$$
 True
$$0 \leq C_1 2^n \leq 2^{n+1} \leq C_2 2^n$$

$$C_1 \leq 2 \leq C_2$$

$$\Lambda_0 = 2$$

$$f(n) = 0 = 0 = 0 = 0$$

$$\Rightarrow case : T(n) = 0 = 0 = 0$$

$$2. T(n) = 8T(\frac{n}{2}) + n^2$$

$$0=8$$
, $b=2$, $f(n)=n^2$ $n^{\frac{|a|}{2}b^4}=n^3 \Rightarrow \text{Case } 1$;
$$T(n)=\theta(n^3)$$

3.
$$T(n) = 8 + (\frac{n}{2}) + n^3$$

$$a=8 \cdot b=2$$

$$=8. b=2$$

4. $T(n) = 8T(\frac{n}{2}) + n^4$

$$= 8 + (\frac{5}{2})$$

$$T(n) = 8 + (\frac{n}{2}) + n^3$$

 $0 = 8 \cdot b = 2$, $f(n) = n^3$ $n^{\log_2 a} = n^3 \Rightarrow \cos a \cdot 2$:

 $\alpha=8$, b=2, $f(n)=n^4$ $n^{\log_b a}=n^3\Rightarrow \cos 3$

 $T(n) = \theta (n^3 \cdot (9n))$

 $T(n) = \theta(n^4)$

Qs