## Fundamentals of Physics (2020-2021)

## Task 8: Electrostatics

- This exercise reviews the basics of electrostatics. Read the statement calmly and you will see that it is simpler than it seems.
- You will need some basic knowledge on topics of the beginning of the course. The goal is for you to be able to relate concepts from different topics.



A proton (charge q=e) is attached to a spring with elastic constant k. There is in an homogeneous horizontal electric field  $\vec{E}=-E\hat{i}$ , as can be seen in the picture.  $\Delta x$  is the elongation of the proton-spring system. Determine if the following sentences are **true** or **false** and **justify your answer**.

- 1. The potential created by the uniform electrical field  $\vec{E}$  is larger at the position  $x_a$  than in the position  $x_b$ .
- 2. The work exerted by the electrical field  $\vec{E}$  to move the proton from  $x_a$  to  $x_b$  is  $W_e = -eE(x_b x_a)$ .
- 3. If  $x_b = 2x_a$ , the magnitude of the electric potential generated by the proton at  $x_b$ ,  $V_b$ , is twice the magnitude of the electric potential generated by the proton at  $x_a$ ,  $V_a$ . In other words,  $V_b = 2V_a$ .
- 4. At equilibrium, the spring elongation will be  $\Delta x = -\frac{eE}{k}$  (where k is the elastic constant of the spring).