

FRACCIONES CONTINUAS

ALAN REYES-FIGUEROA TEORÍA DE NÚMEROS

(AULA 24A) 03.0CTUBRE.2023

Proposición

Vale

$$x - \frac{p_n}{q_n} = \frac{(-1)^n}{(\alpha_{n+1} + \beta_{n+1}) q_n^2},$$

donde $\beta_{n+1} = \frac{q_{n-1}}{q_n} = [0; a_n, a_{n-1}, a_{n-2}, \dots, a_1]$. En particular

$$\frac{1}{(a_{n+1}+2)q_n^2} < \left| x - \frac{p_n}{q_n} \right| = \frac{1}{(\alpha_{n+1}+\beta_{n+1})q_n^2} < \frac{1}{a_{n+1}q_n^2}.$$

Obs!

• Como $\lim_{n\to\infty}q_n=+\infty$, ya que la secuencia es estrictamente creciente, entonces podemos recuperar x como el límite

$$\lim_{n\to\infty}\frac{p_n}{q_n},$$

lo que da sentido a la expresión $x = [a_0; a_1, a_2, \ldots]$.

- La proposición anterior implica que para todo α irracional, la desigualdad $|\alpha-\frac{p}{q}|<\frac{1}{q^2}$ posee infinitas soluciones racionales. Esto se conoce como el Teorema de Dirichlet
- Si $\alpha = \frac{r}{s} \in \mathbb{Q}$ es racional, la desigualdad $|\alpha \frac{p}{q}| < \frac{1}{q^2}$ sólo tiene un número finito de soluciones racionales $\frac{p}{q}$.

De hecho, en este caso

$$|\tfrac{r}{s} - \tfrac{p}{q}| < \tfrac{1}{q^2} \qquad \Longrightarrow \qquad |rq - ps| < \tfrac{s}{q} \qquad \Longrightarrow \qquad q \le s.$$

La siguiente proposición muestra que los convergentes pares de una fracción continua forman una secuencia creciente, mientras que los convergentes impares forman una secuencia decreciente. Además, los convergentes impares son siempre mayores que los pares.

Proposición

Para todo $k \ge 0$, vale

$$\frac{p_{2k}}{q_{2k}} \leq \frac{p_{2k+2}}{q_{2k+2}} \leq x \leq \frac{p_{2k+3}}{q_{2k+3}} \leq \frac{p_{2k+1}}{q_{2k+1}}.$$

<u>Prueba</u>: El resultado de sigue de los siguientes hechos generales. Para todo $n \geq o$ tenemos

$$\frac{p_{2n+2}}{q_{2n+2}} - \frac{p_n}{q_n} = \frac{a_{n+2}p_{n+1} + p_n}{a_{n+2}q_{n+1} + q_n} - \frac{p_n}{q_n} = \frac{a_{n+2}(p_{n+1}q_n - p_nq_{n+1})}{(a_{n+2}q_{n+1} + q_n)q_n} = \frac{(-1)^n a_{n+2}}{q_{n+2}q_n},$$

y este término es positivo para n par (\Rightarrow las convergentes pares son crecientes), y es negativo cuando n es impar (\Rightarrow las convergentes impares son decrecientes).

Por otro lado, para todo $n \ge 0$, se tiene que $x - \frac{p_n}{q_n} = \frac{(-1)^n}{(\alpha_{n+1} + \beta_{n+1}) \, q_n^2}$, y este término es positivo para n par (\Rightarrow las convergentes pares son menores a x), y es negativo cuando n es impar (\Rightarrow las convergentes impares son mayores a x). \square

Proposición

Sean $a_0, a_1, \ldots, a_n \in \mathbb{Z}$, con $a_k > 0$ para $k \ge 1$, y sea $\{\frac{p_n}{q_n}\}$ la secuencia de convergentes de la fracción continua $x = [a_0; a_1, a_2, \ldots, a_n]$. Entonces, el conjunto de los números reales cuya representación por fracciones continuas comienza con $a_0, a_1, a_2, \ldots, a_n$ es el intervalo

$$I(a_0; a_1, a_2, \dots, a_n) = \left\{\frac{p_n}{q_n}\right\} \cup \left\{[a_0; a_1, a_2, \dots, a_n, \alpha] : \alpha > 1\right\} = \begin{cases} \left[\frac{p_n}{q_n}, \frac{p_n + p_{n-1}}{q_n + q_{n-1}}, \frac{p_n}{q_n}\right] & n \text{ impar.} \end{cases}$$

Además, la función $G:(1,\infty)\to I(a_0;a_1,\ldots,a_n)$, dada por $G(\alpha)=[a_0;a_1,a_2,\ldots,a_n,\alpha]$ es monótona, siendo creciente para n impar y decreciente para n par.

<u>Prueba</u>: Basta notar que, de los corolarios de la clase anterior, se tiene

$$G(\alpha) = [a_0; a_1, a_2, \ldots, a_n, \alpha] = \frac{\alpha p_n + p_{n-1}}{\alpha q_n + q_{n-1}} = \frac{p_n}{q_n} + \frac{(-1)^n}{(\alpha q_n + q_{n-1}) q_n}.$$

Luego, G es creciente para n impar, y es decreciente para n par.

Así, como
$$G(1)=rac{p_n+p_{n-1}}{q_n+q_{n-1}}$$
 y $\lim_{lpha o\infty}G(lpha)=rac{p_n}{q_n}$, entonces
$$Gig((1,\infty)ig)=\begin{cases} (rac{p_n}{q_n},rac{p_n+p_{n-1}}{q_n+q_{n-1}}), & n \text{ par;} \\ (rac{p_n+p_{n-1}}{q_n+q_{n-1}},rac{p_n}{q_n}) & n \text{ impar.} \end{cases}$$

De ahí que

$$I(a_{0}; a_{1}, a_{2}, ..., a_{n}) = \left\{\frac{p_{n}}{q_{n}}\right\} \cup \left\{[a_{0}; a_{1}, a_{2}, ..., a_{n}, \alpha] : \alpha > 1\right\} = \left\{\frac{p_{n}}{q_{n}}\right\} \cup G((1, \infty))$$

$$= \left\{\frac{\left[\frac{p_{n}}{q_{n}}, \frac{p_{n} + p_{n-1}}{q_{n} + q_{n-1}}\right], \quad n \text{ par;}}{\left(\frac{p_{n} + p_{n-1}}{q_{n} + q_{n-1}}, \frac{p_{n}}{q_{n}}\right]} \quad n \text{ impar.} \quad \square$$

Proposición

Dados enteros a_0, a_1, a_2, \ldots con $a_k > 0$ para $k \ge 1$, existe un único número irracional α , cuya representación en fracciones continuas es $[a_0; a_1, a_2, \ldots]$.

<u>Prueba</u>: Considere las secuencias $\{p_n\}$ y $\{q_n\}$ definidas por las recurrencias

$$p_{n+2} = a_{n+2}p_{n+1} + p_n, \qquad q_{n+2} = a_{n+2}q_{n+1} + q_n, \qquad \text{para } n \ge 0,$$

con
$$p_0=a_0$$
, $p_1=a_0a_1+1$, $q_0=1$, $q_1=a_1$.

De la propiedad

$$\frac{p_{2k}}{q_{2k}} \leq \frac{p_{2k+2}}{q_{2k+2}} \leq \ldots \leq \frac{p_{2k+3}}{q_{2k+3}} \leq \frac{p_{2k+1}}{q_{2k+1}}, \quad k \geq 0,$$

consideramos los intervalos cerrados

$$I_k = \left[\frac{p_{2k}}{q_{2k}}, \ \frac{p_{2k+1}}{q_{2k+1}}\right].$$

En particular, $I_0 \subset I_1 \subset I_2 \subset \ldots$, de modo que los I_k forman una secuencia anidada de intervalos cerrados.

Por el Teorema de Intersección de Cantor, tal secuencia tiene intersección no vacía (de hecho la intersección es un intervalo cerrado). Además, como

$$|I_k| = \frac{p_{2k+1}}{q_{2k+1}} - \frac{p_{2k}}{q_{2k}} = \frac{p_{2k+1}q_{2k} - p_{2k}q_{2k+1}}{q_{2k+1}q_{2k}} = \frac{(-1)^{2k}}{q_{2k+1}q_{2k}} = \frac{1}{q_{2k+1}q_{2k}},$$

entonces $\lim_{k \to \infty} |I_k| = \mathsf{o}$. Así, existe $\alpha \in \mathbb{R}$ tal que

$$\bigcap_{k>0}I_k=\{\alpha\}.$$

Como
$$[a_0;a_1,\ldots,a_{2k}]=rac{p_{2k}}{q_{2k}}\leq lpha\leq rac{p_{2k+1}}{q_{2k+1}}=[a_0;a_1,,a_{2k+1}],\quad \forall k\geq 0.$$
 De la proposición anterior, $[a_0;a_1,\ldots,a_{2k}]$ y $[a_0;a_1,\ldots,a_{2k+1}]$ pertenecen al intervalo

De la proposición anterior, $[a_0; a_1, \ldots, a_{2k}]$ y $[a_0; a_1, \ldots, a_{2k+1}]$ pertenecen al intervalo $I(a_0; a_1, \ldots, a_{2k})$. Portanto $\alpha \in I(a_0; a_1, \ldots, a_{2k})$, de modo que la fracción continua de α , comienza con $[a_0; a_1, \ldots, a_{2k}]$, $\forall k \geq 0$.

Esto muestra que $\alpha = [a_0; a_1, a_2, \ldots]$.

Ejemplos

Ejemplos:

- $\pi = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, \ldots]$ Portanto $\frac{p_0}{q_0} = 3, \quad \frac{p_1}{q_1} = \frac{22}{7}, \quad \frac{p_2}{q_2} = \frac{333}{106}, \quad \frac{p_3}{q_3} = \frac{355}{113}, \ldots$
- $e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, \dots, 1, 1, 2m, \dots].$
- $\sqrt{2} = [1; 2, 2, 2, 2, 2, \ldots].$
- $\varphi = \frac{1+\sqrt{5}}{2} = [1; 1, 1, 1, 1, \dots].$

Teorema

Para todo $n \in \mathbb{N}$

$$\left|x-\frac{p_n}{q_n}\right|\leq \frac{1}{q_nq_{n+1}}<\frac{1}{q_n^2}.$$

Además,

$$\left|x-\frac{p_n}{q_n}\right|<\frac{1}{2q_n^2}\qquad \acute{o}\qquad \left|x-\frac{p_{n+1}}{q_{n+1}}\right|<\frac{1}{2q_{n+1}^2}.$$

<u>Prueba</u>: x siempre pertenece al intervalo con extremos $\frac{p_n}{q_n}$ y $\frac{p_{n+1}}{q_{n+1}}$, cuya longitud es

$$\left| \frac{p_{n+1}}{q_{n+1}} - \frac{p_n}{q_n} \right| = \left| \frac{p_{n+1}q_n - p_nq_{n+1}}{q_{n+1}q_n} \right| = \left| \frac{(-1)^n}{q_{n+1}q_n} \right| \implies \left| x - \frac{p_n}{q_n} \right| \le \frac{1}{q_{n+1}q_n} < \frac{1}{q_n^2}.$$

Además, si $|x - \frac{p_n}{q_n}| \ge \frac{1}{2q_n^2} \ y \ |x - \frac{p_{n+1}}{q_{n+1}}| \ge \frac{1}{2q_{n+1}^2}$, entonces

$$\frac{1}{q_n q_{n+1}} = \left| x - \frac{p_n}{q_n} \right| + \left| x - \frac{p_{n+1}}{q_{n+1}} \right| \ge \frac{1}{2q_n^2} + \frac{1}{2q_{n+1}^2} \implies 1 \ge \frac{1}{2} \left(\frac{q_{n+1}}{q_n} + \frac{q_n}{q_{n+1}} \right)$$

Pero de AM-GM, ésta última es $1 \ge \frac{1}{2}(\frac{q_{n+1}}{q_n} + \frac{q_n}{q_{n+1}}) \ge \sqrt{\frac{q_{n+1}q_n}{q_{n+1}q_n}} = 1 \implies q_n = q_{n+1}$, absurdo. \Box

Observación: Note que

$$\left|x-\frac{p_n}{q_n}\right|\leq \frac{1}{q_nq_{n+1}}<\frac{1}{a_{n+1}q_n^2}.$$

De esto se desprende que cuando mayor es a_{n+1} , mejor será la aproximación $\frac{p_n}{a_n}$ de x.

Ejemplo: De $\pi=[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,\ldots]$ podemos observar que $a_4=292$ implica que

$$\frac{p_3}{q_3} = \frac{355}{113} \approx 3.1415929204\dots$$

es una buena aproximación de π .

Corolario (Teorema de Dirichlet)

Para todo $x \notin \mathbb{Q}$ irracional, la ecuación $\left|x - \frac{p}{q}\right| < \frac{1}{q^2}$ posee infinitas soluciones racionales $\frac{p}{q}$.

Teorema (Hurwitz-Markov)

Para todo $\alpha \notin \mathbb{Q}$ irracional y todo entero $n \geq 1$, tenemos

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{\sqrt{5}q^2}$$

para al menos un racional

$$\frac{p}{q} \in \left\{ \frac{p_{n-1}}{q_{n-1}}, \frac{p_n}{q_n}, \frac{p_{n+1}}{q_{n+1}} \right\}.$$

En particular, la desigualdad arriba tiene infinitas soluciones racionales $\frac{p}{q}$.

Prueba: Suponga que el resultado es falso. De la proposición de la clase anterior

$$x-\frac{p_n}{q_n}=\frac{(-1)^n}{(\alpha_{n+1}+\beta_{n+1})\,q_n^2},$$

entonces existe α irracional tal que $\alpha_n + \beta_n \leq \sqrt{5}$, $\alpha_{n+1} + \beta_{n+1} \leq \sqrt{5}$ y $\alpha_{n+2} + \beta_{n+2} \leq \sqrt{5}$.

De
$$\alpha_n + \beta_n \le \sqrt{5}$$
, $\alpha_{n+1} + \beta_{n+1} \le \sqrt{5}$ y $\alpha_{n+2} + \beta_{n+2} \le \sqrt{5}$, se deduce que $a_n = \lfloor \alpha_n \rfloor \le 2$, $a_{n+1} = \lfloor \alpha_{n+1} \rfloor \le 2$, $a_{n+2} = \lfloor \alpha_{n+2} \rfloor \le 2$.

Si algún a_k , con $k \in \{n+1, n+2\}$ fuese exactamente 2, tendríamos $\alpha_k + \beta_k \ge 2 + \frac{1}{3} > \sqrt{5}$, un absurdo.

(recordar que $\beta_k = [0, a_{k-1}, \dots, a_1]$ implica que $\beta_k \ge \frac{1}{a_n} \ge \frac{1}{2} > \frac{1}{3}$). De ahí que $a_{n+1} = a_{n+2} = 1$.

Sean
$$x=rac{1}{lpha_{n+2}}$$
, $y=eta_{n+1}$. Las desigualdades arriba se traducen en
$$rac{1}{1+x}+rac{1}{y}\leq \sqrt{5}, \qquad 1+x+y\leq \sqrt{5}, \qquad rac{1}{x}+rac{1}{1+y}\leq \sqrt{5}.$$

Tenemos

$$1+x+y \le \sqrt{5} \implies 1+x \le \sqrt{5}-y \implies \frac{1}{1+x}+\frac{1}{y} \ge 1\sqrt{5}-y+\frac{1}{y}=\frac{\sqrt{5}}{y(\sqrt{5}-y)}$$
$$\implies y(\sqrt{5}-y) \ge 1 \implies y \ge \frac{\sqrt{5}-1}{2}.$$

$$\begin{aligned} 1+x+y & \leq \sqrt{5} & \implies & x \leq \sqrt{5}-y-1 \\ & \implies & \frac{1}{x}+\frac{1}{1+y} \geq 1\sqrt{5}-y-1+\frac{1}{1+y} = \frac{\sqrt{5}}{(1+y)(\sqrt{5}-y)-1} \\ & \implies & (1+y)(\sqrt{5}-y-1) \geq 1 & \implies & y \leq \frac{\sqrt{5}-1}{2}. \end{aligned}$$

Portanto, debemos tener $y=\frac{\sqrt{5}-1}{2}$, pero esto es un absurdo, pues $y=\beta_{n+1}=\frac{q_{n-1}}{q_n}\in\mathbb{Q}.$

Obs! Acabamos de mostrar en particular que la ecuación $|\alpha - \frac{p}{q}| < \frac{1}{\sqrt{5}q^2}$ posee infinitas soluciones racionales $\frac{p}{a}$, para todo número irracional α .

El número $\sqrt{5}$ es el mayor con esta propiedad. De hecho, para todo $\varepsilon >$ 0, la ecuación

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{(\sqrt{5} + \varepsilon)q^2}$$

sólo posee un número finito de soluciones racionales $rac{p}{q}\in\mathbb{Q}$.

