MC304 Theory of Computation

Assignment-III

- 1. Find context-free grammars for the following languages (with $n \ge 0, m \ge 0$).
 - (a) $L = \{a^n b^m : n \neq m1\}$
 - (b) $L = \{a^n b^m : 2n \le m \le 3n\}$
 - (c) $L = \{w \in \{a, b\}^* : n_a(w) = 2n_b(w) + 1\}$
- 2. Reduce the following grammars to Chomsky Normal Form.
 - (a) $S \to 1A|0B, A \to 1AA|0S|0, B \to 0BB|1S|1$
 - (b) $S \rightarrow a|b|cSS$
- 3. Reduce the following grammars to Greibach Normal Form.
 - (a) $S \to SS|0S1|01$
 - (b) $S \to AB, A \to BSB|BB|b, B \to aAb|a$
- 4. Show that the following grammars are ambiguous.
 - (a) $S \to a|abSb|aAb, A \to bS|aAAb$
 - (b) $S \to aB|ab, A \to aAB|a|, B \to ABb|b|$
- 5. Use Pumping lemma to show that following are not context free languages:
 - (a) $\{a^{n^2}|n\geq 1\}$
 - (b) $\{a^m b^m c^n | m \le n \le 2m\}$
- 6. Construct pda's that accept the following languages on $\Sigma = \{a, b, c\}$.
 - (a) $\{w : n_a(w) = 2n_b(w)\}$
 - (b) $\{wcw^R : w \in \{a, b\}^*\}$
 - (c) $\{a^n b^{n+m} c^m : n \ge 0, m \ge 1\}$
- 7. If the initial ID of the pda A is $(q_0, aacaa, Z_0)$, what is the ID after processing of aacaa? If the input string is (i)abcba, (ii)abcb, (iii)acba, (iv)abac, (v)abab, will A process the entire string? If, so what will be the final ID?

$$A = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{a, b, Z_0\}, \delta, q_0, Z_0, F)$$

where δ is defined as:

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\} \qquad \delta(q_0, b, Z_0) = \{(q_0, bZ_0)\}$$

$$\delta(q_0, a, a) = \{(q_0, aa)\} \qquad \delta(q_0, b, b) = \{(q_0, bb)\}$$

$$\delta(q_0, a, b) = \{(q_0, ab)\} \qquad \delta(q_0, b, a) = \{(q_0, ba)\}$$

$$\delta(q_0, c, a) = \{(q_1, a)\} \qquad \delta(q_0, c, b) = \{(q_1, b)\}$$

$$\delta(q_0, c, Z_0) = \{(q_1, Z_0)\} \qquad \delta(q_1, \wedge, Z_0) = \{(q_1, Z_0)\}$$

$$\delta(q_1, a, a) = \delta(q_1, b, b) = \{(q_1, \wedge)\}$$

Present State	Tape Symbol				
	b	0	1		
$\rightarrow q_1$	$1Lq_2$	$0Rq_1$			
q_2	$ \begin{vmatrix} 1Lq_2 \\ bRq_3 \end{vmatrix} $	$0Lq_2$	$1Lq_2$		
q_3		bRq_4	$ \begin{array}{c c} 1Lq_2 \\ bRq_5 \end{array} $		
q_4	$0Rq_5$	$0Rq_4$	$1Rq_4$		
Q 5	$ \begin{vmatrix} 0Rq_5 \\ 0Lq_2 \end{vmatrix} $				

- 8. Draw the transition diagram for Turing machine given below:
- 9. Construct a Context-free grammar G accepting $\mathcal{N}(M)$ for the pda M given below:

$$A = (\{q_0, q_1, q_f\}, \{a, b\}, \{a, Z_0\}, \delta, q_0, Z_0, q_f)$$

where δ is defined as:

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\} \qquad \delta(q_1, b, a) = \{(q_1, \wedge)\}$$

$$\delta(q_0, a, a) = \{(q_0, aa)\} \qquad \delta(q_1, \wedge, Z_0) = \{(q_1, \wedge)\}$$

$$\delta(q_0, b, a) = \{(q_1, \wedge)\}$$

10. Construct the computation sequence for strings 1213, 2133, 312 for the Turing machine given below:

Present State	Input Tape Symbol				
	1	2	3	b	
$\rightarrow q_1$	bRq_2			bRq_1	
q_2	$1Rq_2$	$bRq_3 \\ 2Rq_3$		bRq_2	
q_3		$2Rq_3$	$\begin{array}{c c} bRq_4 \\ 3Lq_5 \end{array}$	bRq_3	
q_4			$3Lq_5$	bLq_7	
q_5	$ \begin{array}{c c} 1Lq_6 \\ 1Lq_6 \end{array} $	$2Lq_5$		$bLq_5 \\ bRq_1$	
q_6	$1Lq_6$			bRq_1	
@					