Homework M13: Graphs

Due May 16 at 11:59pmPoints 100Questions 24Available until May 30 at 11:59pmTime Limit None

Instructions

Review the **Homework FAQ** page for details about submitting homework. In this homework, you will:

- evaluate characteristics of graphs
- trace breadth-first and depth-first traversals
- specify adjacency matrices and lists
- draw graphs based on matrices and lists

Image File Submission

- For the questions that ask you to draw a graph, you can create your answer in whatever way is easiest, but only submit an image file, word processing file, or PDF.
 - Accepted file types: gif, jpg, jpeg, png, doc, docx, rtf, and pdf
 - Do not submit a .txt, .xml, or .heic file
 - You can draw the answer on paper and then scan the answer or take a picture of it with a phone- however you can capture it is fine!
 - Just make sure the picture is clear enough for us to grade.
- If you want to submit digital answers, I recommend a free program called draw
 - io: https://www.draw.io/ (https://www.draw.io/) .
 - This is the program I use to create the trees for the online notes. I find it very user-friendly.
 - If you do use this site, be sure to submit an exported image file or pdf of your results.
 Do not submit a .xml file.

This quiz was locked May 30 at 11:59pm.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	1,559 minutes	97 out of 100

Score for this quiz: 97 out of 100

Submitted May 10 at 1:19pm

This attempt took 1,559 minutes.

Short Answer Questions

Question 1 23 / 25 pts

Find the following traversals/orderings.

- Use alphabetic ordering for the order in which neighbors are visited.
 For example, if the choices of neighbors are A and E, you would visit A first.
- To write your answer, write the vertices in the traversal order separated by a single space (e.g., A B C D E F G). Include no other characters.

orrect Answer	ABCEDFG
orrect Answer	ABCEDGF
orrect Answer	ACBDEFG
orrect Answer	ACBDEGF
orrect Answer	ACBEDFG
orrect Answer	ACBEDGF
	Answer 2:
Correct!	HCFG
orrect Answer	HFCG
	Answer 3:
Correct!	ABDFGEC
orrect Answer	ABEDFGC
orrect Answer	ABEDGFC
orrect Answer	ABDGFEC
orrect Answer	ACBEDFG
orrect Answer	ACBEDGF
orrect Answer	ACBDFGE
orrect Answer	ACBDGFE
	Answer 4:
Correct!	HCFG
orrect Answer	HFGC
	Answer 5:

ou Answered	CGFHDEBA
orrect Answer	AHBCDEFG
orrect Answer	AHBCEDFG
orrect Answer	AHCBDEFG
orrect Answer	AHCBEDFG
orrect Answer	HABCDEFG
orrect Answer	HABCEDFG
orrect Answer	HACBDEFG
orrect Answer	HACBEDFG
orrect Answer	ABHCDEFG
orrect Answer	ABHCEDFG
orrect Answer	AHCBDEFG
orrect Answer	AHCBEDFG
orrect Answer	HABDFGEC
orrect Answer	ABDEHCFG
orrect Answer	ABHCDFGE
orrect Answer	HABDFGEC
orrect Answer	HABDFCEG
orrect Answer	ABDEHCFG
orrect Answer	ABEDHCFG
orrect Answer	ABHDFGEC
orrect Answer	ABDHFCGE

• yes, this is the only correct traversal/ordering

Question 4 6 / 6 pts

What is the **adjacency list** that represents the graph?

List the vertices in alphabetic order.

Your Answer:

A -> C

B -> C E

C -> A B E

D ->

E -> B C

Question 5 6 / 6 pts

What is the adjacency matrix that represents the graph?

Question 6	6 / 6 pts

Draw the undirected graph represented by the following adjacency list.

A -> B, R

B -> A, K

E ->

K -> B, R

R -> A, K

<u>hw13Question6.PNG (https://ccsf.instructure.com/files/7823966/download)</u>

Question 7 6 / 6 pts

Draw the **directed graph** represented by the following adjacency matrix.

	Α	E	M	Υ
Α		4		3
E			2	
M		2		5
Υ	3			

<u>hw13Question7.PNG (https://ccsf.instructure.com/files/7823906/download)</u>

Multiple Choice Questions

	How many vertices are in the graph above?	
Correct!	6	
orrect Answer	rs 6 (with margin: 0)	

Question 14 5 / 5 pts

Describe the characteristics of the graph below.

Note: Canvas mixes up the order of a and b in the drop-down. Check your answers carefully.

Question 15	1 / 1 pts
How many vertices are in the graph above?	

	Question 18	1 / 1 pts
	How many vertices are in the graph above?	
Correct!	4	
orrect Answe	rs 4 (with margin: 0)	

orrect Answers

4 (with margin: 0)

Review the Shortest Path in a Weighted Graph algorithm (from the notes/videos and in Section 21 of the textbook). Use the graph below to find the cost of the cheapest path (meaning the smallest edge-weight sum) between two vertices.

	Question 20	1 / 1 pts
	What is the cost of the cheapest path from vertex D to	K?
Correct!	6	
orrect Answe	rs 6 (with margin: 0)	

	Question 21	1 / 1 pts
	What is the cost of the cheapest path from vertex G to D?	
Correct!	2	
orrect Answer	s 2 (with margin: 0)	

	Question 22	6 / 6 pts
	For all graphs, is each of the following	ng true or false?
Correct!	There is always only one possible depth-first traversal for each origin vertex.	false
Correct!	There is always only one possible breadth-first traversal for each origin vertex.	false
Correct!	There is only one depth- first traversal for every graph.	false
Correct!	There is only one breadth- first traversal for every graph.	false
Correct!	Every directed, acyclic	

	Question 23	3 / 3 pts
	Is every vertex of a graph included	I in each of the following?
Correct!	depth first traversal	no- some vertices might ı ∨
Correct!	breadth first traversal	no- some vertices might ι ∨
Correct!	topological ordering	yes- ALL vertices are in '∨

Question 24 1/1 pts

Assume you were creating a directed graph to represent data in the real world. In this graph, the vertices represent cities in the United States. The edges represent **direct** flights between cities. In other words, if there is an edge from Vertex A to Vertex B, that means there is a **direct** flight that goes from City A to City B. If there is no direct edge from Vertex M to Vertex N, that means there is no **direct** flight that goes from

City M to City N.
Think about what this graph would look like if it used real-world data. Would the graph be complete?
O Yes, the graph would be complete.
No, the graph would NOT be complete.
The graph could be connected- there might be a <i>path</i> between every two cities, but the graph is not complete- there is not a direct flight between every two cities.

Quiz Score: 97 out of 100