

Licenciatura em Engenharia Biomédica

MATEMÁTICA 1 (2023/2024) 1ª PROVA DE AVALIAÇÃO

10 de novembro de 2023

Aluno no:

- Não é permitida a consulta de dispositivos eletrónicos (máquina de calcular, telemóvel, etc.).
- Só poderá consultar os formulários validados no início da prova.

Nome:

- Todos os cálculos que efetuar e todas as conclusões que obtiver terão de ser devidamente justicados.
- Boa sorte!

Duração: 75 minutos

Cotações:	1.1 (15)	$1.2 \\ (20)$	$1.3 \\ (40)$	2.1 (15)	$2.2 \\ (15)$	$2.3 \\ (20)$	3. (15)	4.1 (30)	4.2 (30)	Total) (200)
Cotações.										

- 1. Considere a seguinte função real de variável real, $f(x) = \log_2\left(\frac{1}{\sqrt[3]{x-3}}\right)$.
 - 1.1 Determine o domínio e o contradomínio da função g(x) = -2|f(x)|.
 - $1.2 \ \text{Resolva a equação:} \quad \left(\cot g^2 \left(\arctan \left(\frac{1}{3}\right)\right)\right)^{-3f(x)} = \arctan \left(\frac{1}{5}f^{-1} \left(-\frac{1}{3}\right)\right).$
 - 1.3 Aplicando o método de integração por partes, determine a família de primitivas da função $f(\sqrt{x})$. Sugestão: Após a aplicação da regra de integração por partes, use a substituição $\sqrt{x} = t$, para resolver o integral resultante.
- 2. Considere a seguinte função real de variável real, $g(x) = -\frac{\pi}{6} 5\arccos\left(\frac{\sqrt[5]{x}}{2}\right)$.
 - 2.1 Determine o dominio e o contradomínio de g.
 - 2.2 Caracterize a função inversa de g.
 - 2.3 Escreva uma equação da reta tangente ao gráfico de g, no ponto de ordenada $y = -\frac{11\pi}{6}$.

1

- 3. Aplicando o conceito de diferencial, determine o valor aproximado de arctg(1.01).
- 4. Resolva os integrais:

$$4.1 \int \frac{e^x \left(\operatorname{sen}\left(2e^x\right) + 1\right)}{\cos^2\left(e^x\right)} \, dx.$$

$$4.2 \int \frac{2x}{x^2 - x - 2} \, dx.$$

	0	π/6	$\frac{\pi}{4}$	<i>π</i> / ₃	$\frac{\pi}{2}$
sen α	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1
cos α	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0
tg α	0	$\sqrt{3}/3$	1	√3	±∞
cotg α	±∞	√3	1	$\sqrt{3}/3$	0