# ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING DAY – 13 9 July 2025

# **Linear Regression in Machine Learning**

Linear regression is a supervised machine learning algorithm used to predict values by finding the best-fitting straight line through the data. It assumes a linear relationship between the input (independent variable) and the output (dependent variable). This means as the input increases or decreases, the output does so at a constant rate.

#### Example:

If we want to predict a student's exam score based on hours studied:

- Input (Independent Variable): Hours studied
- Output (Dependent Variable): Exam score

As study hours increase, exam scores generally increase too. Linear regression learns this pattern from past data and uses it to make future predictions.

# Why Linear Regression Is Important:

- Simple and Easy to Understand
- Good for Predictions when there's a clear trend
- Foundation for Advanced Models like logistic regression
- Helps Analyze the relationship between variables

#### **Best Fit Line:**

In linear regression, the model finds a straight line (called the **best-fit line**) that represents the relationship between input and output. The line is chosen so that the differences between actual and predicted values are as small as possible.

#### **Assumptions of the Linear Regression**

1. Linearity: The relationship between inputs (X) and the output (Y) is a straight line.



- 2. Independence of Errors: The errors in predictions should not affect each other.
- 3. Constant Variance (Homoscedasticity): The errors should have equal spread across all values of the input. If the spread changes (like fans out or shrinks), it's called heteroscedasticity and it's a problem for the model.



- 4. Normality of Errors: The errors should follow a normal (bell-shaped) distribution.
- 5. No Multicollinearity (for multiple regression): Input variables shouldn't be too closely related to each other.
- 6. No Autocorrelation: Errors shouldn't show repeating patterns, especially in time-based data.
- 7. Additivity: The total effect on Y is just the sum of effects from each X, no mixing or interaction between them.

## **Types of Linear Regression**

Linear regression comes in two main types based on the number of input features (independent variables):

#### 1. Simple Linear Regression

• Used when there is **only one input feature**.

• Assumes a straight-line relationship between the input (x) and output (y).

$$\hat{y} = \theta_0 + \theta_1 x$$

Where:

Formula:

- $\hat{y}$  = predicted value
- x = input (independent variable)
- $heta_0$  = intercept (value when x=0)
- $\theta_1$  = slope (how much y changes when x increases by 1)

**Example:** Predicting salary based on years of experience.

### 2. Multiple Linear Regression

- Used when there are **two or more input features**.
- Still predicts one output, but considers multiple inputs.

Formula:

$$\hat{y} = heta_0 + heta_1 x_1 + heta_2 x_2 + \dots + heta_n x_n$$

Where:

- ullet  $x_1,x_2,...,x_n$  = input features
- $\theta_1, \theta_2, ..., \theta_n$  = corresponding weights
- $\theta_0$  = intercept
- $\hat{y}$  = predicted value

**Example:** Predicting house price based on size, location, and number of rooms.

#### **How It Works**

In both types, the model learns from existing data (X and Y) to find the best-fit line. Once trained, this line (or function) can be used to predict Y for new unseen values of X.