Arrays Bidimensionales

TEMARIO

- ☐ Conceptos básicos
- ☐ Operaciones y análisis de complejidad.
- ☐ Matrices poco densas y sus representaciones.

¿Juegas sudoku?

5	3			7			
6			1	9	5		
	9	8				6	
8				6			3
4			8		3		1
7				2			6
	6						
			4	1	9		5
				8		7	9

En Sudoku cada fila debe contener los números del 1 al 9

En Sudoku cada columna debe contener los números del 1 al 9

En Sudoku cada recuadro de 3X3 debe contener los números del 1 al 9

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	<u>7</u>
8	<u>5</u>	9	7	6	1	4	2	3
4	2	<u>6</u>	8	<u>5</u>	3	7	9	1
7	1	3	9	2	4	8	<u>5</u>	6
9	6	<u></u>	5	<u>3</u>	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	<u>5</u>	2	8	6	1	7	9

Verifique si la solución es correcta

5	3			7			
6			1	9	5		
	9	8				6	
8				6			3
4			8		3		1
7				2			6
	6						
			4	1	9		5
				8		7	9

5	3	4	<u>6</u>	7	8	<mark>9</mark>	1	2
6	7	2	1	9	5	<u>3</u>	4	8
<u> </u>	9	8	<mark>ვ</mark>	4	2	<u>5</u>	6	7
8	<u>5</u>	9	<u>7</u>	6	<u>1</u>	<mark>4</mark>	2	3
4	2	<u>6</u>	8	<u>5</u>	3	7	9	1
7	<u>1</u>	3	9	2	4	8	<u>5</u>	6
9	6	<u> </u>	<u>5</u>	<u>3</u>	7	2	<mark>8</mark>	<u>4</u>
2	8	7	4	1	9	<u>6</u>	<u>3</u>	5
3	4	<u>5</u>	<mark>2</mark>	8	<u>6</u>	<u>1</u>	7	9

Array Bidimensional

- Un array bidimensional es un conjunto de datos homogéneo, finito y ordenado, donde se hace referencia a cada elemento por medio de dos índices.
- El primero se utiliza para indicar el renglón o fila y el segundo para indicar la columna.
- · También puede definirse como un vector de vectores.

Matriz M(n x m)

nombre de la Matriz

	0	1	2	••••	m
0	M[0][0]	M[0][1]	M[0][2]		M[0][m]
1	M[1][0]	M[1][1]	M[1][2]		M[1][m]
2	M[2][0]	M[2][1]	M[2][2]		M[2][m]
:					
n	M[n][0]	M[n][1]	M[n][2]		M[n][m]

Matriz M(n x m)

Declaración/Creación array bidimensional

```
// Declarar una matriz
dataType[][] matrix;
// Crear una matriz
matrix = new dataType[10][10];
// Combinar la declaración y creación de una matriz
dataType[][] matrix1 = new dataType[10][10];
// Otra alternativa
dataType matrix2[][] = new dataType[10][10];
```


Ejemplo de declaración y creación de matriz

```
int[][] matrix = new int[10][10];
// Asignar un valor a una celda de la matriz
matrix[0][0] = 3;
// Crear una matriz con valores aleatorios
for (int i = 0; i < matrix.length; i++)
    for (int j = 0; j < matrix[i].length; j++)
        matrix[i][j] = (int) (Math.random() * 1000);
// Declarar una matriz de tipo double
double[][] x;</pre>
```


Ejemplo de declaración y creación de matriz


```
matrix = new int[5][5];
```

[0][1][2][3][4]								
[0]	0	0	0	0	0			
[1]	0	0	0	0	0			
[2]	0	7	0	0	0			
[3]	0	0	0	0	0			
[4]	0	0	0	0	0			

```
matrix[2][1] = 7;
```

```
matrix.length?
5
matrix[0].length?
5
```

```
array.length?
4
array[0].length?
3
```

```
[0] [1] [2]

[0] 1 2 3

[1] 4 5 6

[2] 7 8 9

[3] 10 11 12
```

```
int[][] array = {
    {1, 2, 3},
    {4, 5, 6},
    {7, 8, 9},
    {10, 11, 12}
};
```


Declarar, crear e inicializar usando notaciones abreviadas

También puede usar un inicializador de matriz para declarar, crear e inicializar una matriz bidimensional. Por ejemplo,

```
int[][] array = {
    {1, 2, 3},
    {4, 5, 6},
    {7, 8, 9},
    {10, 11, 12}
};
```

Similares

```
int[][] array = new int[4][3];

array[0][0] = 1; array[0][1] = 2; array[0][2] = 3;

array[1][0] = 4; array[1][1] = 5; array[1][2] = 6;

array[2][0] = 7; array[2][1] = 8; array[2][2] = 9;

array[3][0] = 10; array[3][1] = 11; array[3][2] = 12;
```


Longitud de los arrays bidimensionales

int[][] x = new int[3][4];

Longitud de los arrays bidimensionales - Continua..

array[4].length ArrayIndexOutOfBoundsException

Operaciones con matrices

- ☐ Imprimir una Matriz
- ☐ Sumar todos los elementos de la matriz
- Sumando todos los elementos por columna

Operaciones propuestas:

- ☐ Qué fila tiene la suma más grande
- ☐ Encontrar el índice más pequeño del elemento más grande

Imprimir una Matriz

```
for (int row = 0; fila < matrix.length; row++) {
   for (int column = 0; column < matrix[row].length; column++) {
      System.out.print(matrix[row][column] + " ");
   }
   System.out.println();
}</pre>
```


Sumar todos los elementos del array

```
int total = 0;
for (int row = 0; row < matrix.length; row++) {
  for (int column = 0; column < matrix[row].length; column++) {</pre>
    total += matrix[row][column];
```


Sumar de los elementos por columna

```
for (int column = 0; column < matrix[0].length; column++) {
   int total = 0;

for (int row = 0; row < matrix.length; row++) {
     total += matrix[row][column];
     System.out.println("Suma col. " + columna + " es " + total);
   }
}</pre>
```


Matriz poco densa (sparse matrix)

Definición

Es aquella matriz con muy pocos elementos diferentes de cero. Sus características hacen que podamos desarrollar algoritmos para operar con ellas de forma eficiente.

Matriz poco densa (sparse matrix)

Especificaciones

Objetivo: Almacenar los elementos de una matriz poco densa en un array lineal.

Entrada: matriz A, filas, columnas

Precondición: matriz A no vacía

Salida: ans (array), idx

Postcondición: idx representa la cantidad de elementos del array respuesta

Matriz poco densa (sparse matrix)

```
int idx = 0;
int[] ans = new int[1000];
for(int i = 0; i < rows; i++){</pre>
    for (int j = 0; j < columns; j++) {
        if(A[i][j] != 0){
            ans[idx] = i;
            ans[idx + 1] = j;
            ans[idx + 2] = A[i][j];
            idx += 3;
```


Referencias

- 1. Paul S. Wang, Java con programación orientada a objetos y aplicaciones en la WWW, México, 2000.
- 2. Sun microsystem, Fundamentals of the Java™ Programming Language SL-110-SE6
- 3. A.M. Vozmediano, Java para novatos, 2017.
- 4. BEGOÑA MOROS VALLE, http://dis.um.es/~bmoros/
- 5. http://lml.ls.fi.upm.es/ijava/ Angel Lucas González Martínez

