Statistics 305/605: Introduction to Biostatistical Methods for Health Sciences

R Demo for Chapters 2 & 3: Data presentations and summaries

Jinko Graham, Brad McNeney

Demo Slides

- ▶ This document shows and explains the R commands used to create the data summaries of the Chapters 2 & 3 lecture slides.
- ► This document should be read **after** reading the lecture slides for Chapters 2 & 3.

Data Presentation (Chapter 2)

Tables

- ► Tables can be used to display the frequency distribution of a categorical variable
- ► Example: Frequency distribution of gender among 21,737 bladder cancer patients. Data from Mungan et al. (2000)

uu <- url("http://people.stat.sfu.ca/~jgraham/Teaching/S305_17/Data/mung.csv")

```
Mungan <- read.csv(uu)
head(Mungan)

## Gender Cancer.Stage
## 1 Male I
## 2 Male I
## 3 Male I
## 4 Male I
## 5 Male I
## 6 Male I
with(Mungan,table(Gender))
```

```
## Gender
## Female Male
## 5536 16201
```

Software Notes: R objects

- ▶ When you start R you are starting a "session".
- ▶ Data that you read into R and the results of computations on data are stored as R "objects" within your "workspace" or "environment".
 - You can see a list of all objects in your environment in "Environment" tab of the the upper-right pane in RStudio, or you can type 1s() in the R console.
- We assign values to objects with the assignment operator <-</p>
 - ► For example uu <url("http://people.stat.sfu.ca/~jgraham/Teaching/S305_17 creates an object uu that contains the output of the function url().

Software Notes: Reading Data Into R

- ► read.csv() reads comma-separated-value (CSV) files into R.
 - ▶ By default this function reads files from the "working" directory in which R is running (e.g., the project directory of your RStudio project or the folder of your Jupyter notebook), but it can read files from URLs too.
 - ► The url() function takes a quoted URL as input and returns an object that other functions, such as read.csv(), can use to fetch the file from the internet.

- read.table() is a more flexible function than 'read.csv()' for reading data into R.
- It can easily read in comma-separated-value (CSV) files as well as files with values separated by other characters such as blank spaces or tabs.
- ► For example, the CSV file mung.csv can be read into R with read.table() as follows:

```
uu <- url("http://people.stat.sfu.ca/~jgraham/Teaching/S305_17/Data/mung.csv")
Mungan <- read.table(uu,header=TRUE,sep=",")</pre>
```

- read.table() options include the following:
 - header (default FALSE): Does the first line of the file contain the variable names?
 - ▶ sep (default "", for blank spaces)
- ➤ To get a full list of options for 'read.table()', type help("read.table") into R.

Software Notes: head(), with() and table()

- ► The head() function looks at the first few rows (default is six) of a dataset.
 - In the example, the dataset is called Mungan, and has variables Gender and Cancer.Stage.
 - Datasets have as many rows as there are sampled units (e.g., people) and as many columns as there are variables measured on the sampled units.
- ▶ The with() function takes a dataset as its first argument and the summary to compute as its second argument.
 - ▶ In the above example, the summary is a table of the values of the Gender variable in the Mungan dataset.
- ► The table() function tabulates the unique values of a variable, or, if given two variables, cross-tabulates the two variables (more on cross-tabulation in Chapter 15).

Tables, cont.

▶ Joint frequency distribution of two categorical variables:

```
with(Mungan,table(Gender,Cancer.Stage))
```

```
##
           Cancer.Stage
  Gender
                     ΤT
                                 ΙV
                          III
##
     Female 3926
                    402
                          356
                                852
    Male
            12418
                    995
                          883
                               1905
##
```

Example Histogram

▶ Data on the numbers of hysterectomies performed by 15 male Swiss doctors:

```
20 25 25 27 28 31 33 34 36 37 44 50 59 85 86
```


Software Notes: Data Frames

- We used the data.frame() function to create a data frame with a single variable numHyster.
 - ▶ Data frames are objects used to store datasets in R.
 - Typically a data frame consists of multiple variables, such as the Mungan data frame with variables Gender and Cancer. Stage.
 - ▶ Use names() to find the names of variables in a data frame:

```
names(Mungan)
## [1] "Gender" "Cancer.Stage"
```

Software Notes: Add-on Packages

- ► The code chunk that draws the histogram of the hysterectomy data loads an add-on package for R called ggplot2.
- ► R consists of a "base" distribution plus many add-on packages that contain useful functions.
 - ► For example, ggplot2 is a package that contains the graphics function ggplot().
- ➤ To use the functions in a package you must **first** load the package with library().
 - ► For example, library(ggplot2) loads ggplot2 and gives us access to ggplot().
- ▶ If you don't load a package, R can't find its functions.
 - ► For example, if you haven't yet loaded ggplot2 and you try to use ggplot() you will get an error message:

Error: could not find function "ggplot"

Software Notes: Installing Add-on Packages

- See this 2-minute Youtube video for a short backgrounder on R packages.
- RStudio users (RStudio Desktop or RStudio Cloud) will need to install packages before they can load them.
 - RStudio-Desktop users should consult the R Packages section of the R/Rstudio getting-started document (hover over preceding for link).
 - ▶ RStudio-Cloud users should consult step 5 of the RStudio-Cloud getting-started document (hover over preceding for link).
- ► The tidyverse packages are pre-installed for Jupyter users, but others, like gapminder, need to be installed every R session.

Software Notes: ggplot()

- ggplot2 is an add-on package for R that implements the graphics function ggplot().
 - ▶ We will use ggplot() throughout the course.
- ► To draw the histogram of the hysterectomy data, the call to ggplot() was

```
ggplot(hyst,aes(x=numHyster)) + geom_histogram(binwidth=10)
```

- ► This specifies the dataset (hyst) and the "aesthetic", which is a list of variables to plot as different features of the graph.
 - ► This example is a histogram of numHyster. We specify that numHyster is the x-axis variable with x=numHyster.
 - ► The function geom_histogram() adds the histogram; it takes the bin width as an optional argument.

Summary Statistics (Chapter 3)

Centre: The mean

- ▶ The population mean, μ , is the ordinary arithmetic average of a variable in the population.
- ▶ The corresponding statistic is the sample mean, \bar{x} .
- ► The sample mean is the ordinary arithmetic average of the observations in a random sample from the population.
- ► For example, the hysterectomy example data:

20 25 25 27 28 31 33 34 36 37 44 50 59 85 86 has sample mean

$$\bar{x} = \frac{20 + 25 + \ldots + 86}{n} = 41.3$$

```
library(dplyr)
summarize(hyst,mean(numHyster))
```

```
## mean(numHyster)
## 1 41.33333
```

Software Note

- dplyr is an add-on package for R that includes useful tools for manipulating datasets in R.
 - The summarize() function takes the dataset as its first argument, and the summaries to compute as additional arguments.
 - ▶ In this example we could have instead used with(hyst,mean(numHyster)), but we will eventually want to use summarize() together with other tools from dplyr to produce data summaries.

Centre: The Median

- ► The population median is the "middle value" of the variable in the population.
- ▶ The corresponding statistic is the sample median, *M*.
- ► The sample median is the middle value of the variable in a random sample from the population.
- The sample median of the hysterectomy data is:

```
20, 25, 25, 27, 28, 31, 33, 34, 36, 37, 44, 50, 59, 85, 86
```

▶ The centre observation is M = 34.

```
summarize(hyst,median(numHyster))
```

```
## median(numHyster)
## 1 34
```

Spread: The Standard Deviation (SD) and Variance

- ▶ The variance, σ^2 , is the average of squared deviations from the mean in the population
- ▶ The SD, σ , is the square-root of the variance and measures spread about the mean.
- As for the corresponding statistics:
 - ▶ The sample variance, s^2 , is (almost) an average of squared deviations from the sample mean in a random sample from the population.
 - ▶ The sample SD, *s*, is the square root of the sample mean.
- ▶ Hysterectomy example: s = 20.6

```
summarize(hyst,sd(numHyster))
```

```
## sd(numHyster)
## 1 20.60744
```

Spread: The Inter-Quartile Range (IQR)

- ► The first and third quartiles mark the first and third quarters of the observations, whether in a population or in a random sample from the population.
 - ▶ These are also called the 25th and 75th percentiles, respectively.

```
## Q1 Q3
## 1 27.5 47
```

- ▶ The middle half of the data lies between.
- ► The range of the middle half, or IQR, is 47-27.5=19.5.

```
summarize(hyst,IQR(numHyster))
```

```
## IQR(numHyster)
## 1 19.5
```

Boxplots

- ► The five number summary is the minimum, maximum, median, 1st and 3rd quartiles.
- Graphed with a boxplot in the hysterectomy data:

with(hyst,boxplot(numHyster))

Boxplots of Data from Multiple Groups

Augment the hysterectomy example by numbers of hysterectomies performed by female Swiss doctors.

```
uu <- url("http://people.stat.sfu.ca/~jgraham/Teaching/S305_18/Data/hyst.csv")
hyst <- read.csv(uu)
head(hyst)</pre>
```

```
## 1 numHyster sex
## 1 20 male
## 2 25 male
## 3 25 male
## 4 27 male
## 5 28 male
## 6 31 male
```

```
with(hyst,table(sex))
```

```
## sex
## female male
## 10 15
```

Boxplots with ggplot()

```
ggplot(hyst,aes(x=sex,y=numHyster)) + geom_boxplot()
```


- ► The aes() specification: sex (grouping variable) is on the x-axis and numHyster is on the y-axis.
- Use geom_boxplot() to add the boxplots.