ECE374 SP23 HW3

Contributors

Zhirong Chen (zhirong4)

Ziyuan Chen (ziyuanc3)

Problem 2

For each of the following languages over the alphabet $\Sigma=\{0,1\}$, either prove that the language is regular (by constructing a DFA or regular expression) or prove that the language is not regular (using fooling sets). Recall that Σ^+ denotes the set of all nonempty strings over Σ .

- (a) $L_{2a}=\{0^n1^nw\mid w\in\Sigma^* ext{ and } n\geq 0\}$
- (b) $L_{2b} = \{w0^n w \mid w \in \Sigma^* \text{ and } n > 0\}$
- (c) $L_{2c} = \{xwwy \mid w, x, y \in \Sigma^+\}$
- (d) $L_{2d}=\{xwwx\mid w,x\in\Sigma^+\}$

Solution

(a) Non-regular. Let the fooling set be

$$F = \{0^n \mid n \ge 0\}$$

Let $a,b\in F, a=0^i, b=0^j$, where i
eq j . Also let $c=1^i$.

(b) Non-regular. Let the fooling set be

$$F = \{0^n 1^n \mid n \ge 0\}$$

Let $a,b\in F, a=0^i1^i, b=0^j1^j$, where i
eq j . Also let $c=0^{i+1}1^i$.

(c) Non-regular. Let the fooling set be

$$F = \{0^{n+1}1^n \mid n > 0\}$$

Let $a,b\in F, a=0^{i+1}1^i, b=0^{j+1}1^j$, where i
eq j . Also let $c=1^i0^{i+1}$.

(d) Non-regular. Let the fooling set be

$$F = \{0^n 1^n \mid n > 0\}$$

Let $a,b\in F, a=0^i1^i, b=0^j1^j$, where i
eq j . Also let $c=1^i0^i$.

In each case, $ac \in A$ and $bc \notin A$. Considering that F is an infinite set and each of its elements belongs to a distinct state, the corresponding language is non-regular.