1. Let's consider $g: u \to \log(1+e^u)$. g is non-decreasing and convexe because $g'(u) = \frac{e^u}{1+e^u} = \frac{1}{1+e^{-u}}$ is increasing.

We notice that $f(x_1, x_2) = g(x_1 - x_2) + x_2$.

- $x_2 \to x_2$ is linear
- $x_2 \to x_1 x_2$ is linear, g convexe and non-decreasing, so $g(x_1 x_2)$ is convexe

c/c: f is convexe.

2. The following transformation is a bijection from $(2,3) \times (0,\infty) \times (0,\infty)$ to $(\frac{\log 2}{2}, \frac{\log 3}{2}) \times \mathbb{R} \times \mathbb{R}$

$$x_1 = 2 \log x$$

$$x_2 = \log y - \log z$$

$$x_3 = \log y$$

 $\frac{x}{y} = z^2 = e^{2\log z} = e^{2\log y - 2x_2} = e^{2x_3 - 2x_2}$ Minimizing $\frac{x}{y}$ is the same as minimizing $a(x_1, x_2, x_3) := e^{2x_3 - 2x_2}$ which is convexe as the composition of a linear function and a convexe and increasing one exp.

- $\frac{x}{y} = z \iff \log x \log y = \log z \iff \frac{1}{2}x_1 x_3 = x_3 x_2 \iff \frac{1}{2}x_1 + x_2 2x_3 = 0$ and $b(x_1, x_2, x_3) := \frac{1}{2}x_1 + x_2 2x_3$ is linear.
- $x^2 + \frac{y}{z} \le \sqrt{y} \iff e^{x_1} + e^{x_2} \le \sqrt{e^{x_3}} \iff \log(e^{x_1} + e^{x_2}) \le \frac{1}{2}x_3 \iff f(x_1, x_2) \frac{1}{2}x_3 \le 0$ and $c(x_1, x_2, x_2) := f(x_1, x_2) \frac{1}{2}x_3$ is convexe as the sum of two convexe functions

c/c: the optimization problem is equivalent to:

$$\max a(x_1, x_2, x_2) \text{ s.t. } b(x_1, x_2, x_2) = 0, c(x_1, x_2, x_2) \le 0, (x_1, x_2, x_2) \in (\frac{\log 2}{2}, \frac{\log 3}{2}) \times \mathbb{R} \times \mathbb{R}$$

which is a convexe problem.

Problem 2

 \Rightarrow) Let's suppose f convexe.

$$\nabla f^{T}(x)(y-x) = \lim_{\alpha 0} \frac{f(x+\alpha(y-x)) - f(x)}{\alpha}$$

$$= \lim_{\alpha 0} \frac{f((1-\alpha)x + \alpha y) - f(x)}{\alpha}$$

$$\leq \lim_{\alpha 0} \frac{(1-\alpha)f(x) + \alpha f(y) - f(x)}{\alpha}$$

$$\leq f(x) - f(y)$$
 (because f convexe)

 \Leftarrow) Let's suppose $\forall x, y \nabla f^T(y-x) \leq f(y) - f(x)$ Let $\alpha \in (0,1)$, and $u = (1-\alpha)x + \alpha y$

$$f(x) - f(u) \ge \nabla f(u)(x - u)$$

$$f(y) - f(u) \ge \nabla f(u)(y - u)$$

By multiplying the first inequality by $1-\alpha$ and the second one by α and summing, we get: $(1-\alpha)f(x) + \alpha f(y) - f(u) \ge 0$

Which proves that f convexe.

1. D being definite positive, It can be written as a diagonal matrix in an orthonormal basis. Since rotations are isometries, witout loss of generality we can assume that $D = \text{diag}(d_1, ...d_n)$ is diagonal in the canonical basis. Let's call λ the biggest of the eigen values of D, and β the smallest.

let's define the norm $||u||_D^2 := u^T D^{-1} u = ||\sqrt{D^{-1}} u||_2^2$ and the associated scalar product $< ., . >_D$ We have that: $\frac{||u||_2^2}{\lambda} \le ||u||_D^2 \le \frac{||u||_2^2}{\beta}$

We assume that the projection $[.]^+$ is done with respect to the norm $|| ||_D$ rather than the euclidian norm. Let $y_{k+1} := x_k - \alpha D \nabla f(x_k)$ such that $x_k = [y_k]^+$

$$f(x_k) - f(x^*) \le \nabla f(x_k)(x_k - x^*)$$

$$= \frac{1}{\alpha} (D^{-1}(x_k - y_{k+1}))^T (x_k - x^*)$$

$$= \frac{1}{2\alpha} (||x_k - y_{k+1}||_D^2 + ||x_k - x^*||_D^2 - ||y_{k+1} - x^*||_D^2)$$

Since $\nabla^2 f$ is uniformly bounded by ||H||, we have that ∇f is L-Lipschiz. We assume that

$$\nabla f$$

is uniformly bounded by a constant L.

And By non expansiveness of the projection $[.]^+$: $||y_{k+1} - x^*||_D \ge ||x_{k+1} - x^*||$ So:

$$f(x_k) - f(x^*) \le \frac{1}{2\alpha} (\alpha^2 L + ||x_k - x^*||_D^2 - ||x_{k+1} - x^*||_D^2)$$

By summing over k:

$$\sum_{i \le k} (f(x_i) - f(x^*)) \le \frac{k}{2} \alpha L + \frac{1}{2\alpha} ||x_0 - x^*||_D^2$$

Let's show that $f(x_i)$ is non-increasing. Indeed, We have that

• By non expansiveness of the projection:

$$\nabla f(x_k)(x_{k+1} - x_k) = -\frac{1}{\alpha}(y_{k+1} - x_k)'D^{-1}(x_{k+1} - x_k) = -\frac{1}{\alpha} \langle y_{k+1} - x_k, x_{k+1} - x_k \rangle_D \le -\frac{1}{\alpha}||x_{k+1} - x_k||_D^2$$

• By Cauchy Schwartz and the non expansiveness of the projection:

$$||x_{k+1} - x_k||_2^2 \le \lambda ||x_{k+1} - x_k||_D^2$$

$$\le \lambda ||y_{k+1} - x_k||_D^2$$

$$\le \alpha^2 \lambda \nabla f(x_k)' D \nabla f(x_k)$$

$$\le \alpha^2 \lambda^2 ||\nabla f(x_k)||_2^2 = \alpha^2 \lambda^2 L^2$$

• Taylor approximation:

$$f(x_{k+1}) - f(x_k) \le \nabla f(x_k)(x_{k+1} - x_k) + \frac{1}{2}||H||^2||x_{k+1} - x_k||_2^2$$
$$\le -\frac{1}{\alpha}||x_{k+1} - x_k||_D^2 + \alpha^2 \frac{\lambda^2 L^2||H||^2}{2}$$

Which is smaller than 0 when α is small enough. Therefore: $f(x_k) - f(x^*) \leq \frac{1}{k} \sum_{i \leq k} (f(x_i) - f(x^*)) \leq \frac{\alpha L}{2} + \frac{1}{2\alpha k} ||x_0 - x^*||_D^2$

As a result:

$$f(x_k) - f(x^*) = \min_{i \le k} f(x_i) - f(x^*) \le \frac{1}{k} \sum_{i \le k} (f(x_i) - f(x^*)) \le \frac{\alpha L}{2} + \frac{||x_0 - x^*||_D^2}{2\alpha k}$$

2. Let $g: \alpha \to \frac{\alpha L}{2} + \frac{||x_0 - x^*||_D^2}{2\alpha k} := a\alpha + \frac{b}{\alpha}$ so that $g'(\alpha) = a - \frac{b}{\alpha^2}$, $g''(\alpha) = \frac{2b}{\alpha^3} > 0$ g is convexe, so it is minimal when $g'(\alpha) = 0$, ie $\alpha = \sqrt{\frac{b}{a}} = \sqrt{\frac{||x_0 - x^*||_D^2}{Lk}}$, $\min g = g(\alpha) = 2\sqrt{\frac{b}{a}} = 2\sqrt{\frac{||x_0 - x^*||_D^2}{Lk}}$

Therefore the optimal bound is:

$$f(x_k) - f(x^*) \le \sqrt{\frac{||x_0 - x^*||_D^2}{Lk}} = O(k^{-\frac{1}{2}})$$

3. Since ∇f is Lipshiz: $||\nabla f(x_k) - \nabla f(x^*)||_2 \le ||H|||||x_k - x^*||_2^2$ We will also need the inequality: $||Du||_D \le \frac{||Du||_2}{\beta} \le \frac{\lambda}{\beta} ||u||_2$ And the fact that $x^* = [x^* - \alpha D \nabla f(x^*)]^+$

$$\begin{split} ||x^{k+1} - x^*||_D^2 &\leq ||[x_k - \alpha D \nabla f(x_k)]^+ - [x^* - \alpha D \nabla f(x^*)]^+||_D^2 \\ &\leq ||x_k - x^* - \alpha D(\nabla f(x_k) - \nabla f(x^*))||_D^2 \\ &\leq ||x_k - x^*||_D^2 - 2\alpha < D(\nabla f(x_k) - \nabla f(x^*)), (x_k - x^*) >_D + \alpha^2 ||D(\nabla f(x_k) - \nabla f(x^*))||_D^2 \\ &\leq ||x_k - x^*||_D^2 - 2\alpha (\nabla f(x_k) - \nabla f(x^*))'(x_k - x^*) + \alpha^2 \lambda^2 ||\nabla f(x_k) - \nabla f(x^*)||_2^2 \\ &\leq ||x_k - x^*||_D^2 - 2\alpha \sigma ||x_k - x^*||_2^2 + \alpha^2 \frac{\lambda^2}{\beta^2} ||H||||x_k - x^*||_2^2 \\ &\leq ||x_k - x^*||_D^2 - 2\alpha \frac{\sigma}{\beta^2} ||x_k - x^*||_D^2 + \alpha^2 \frac{\lambda^2}{\beta^4} ||H||||x_k - x^*||_D^2 \\ &\leq (1 - 2\frac{\sigma}{\beta^2} \alpha + \frac{||H||\lambda^2}{\beta^4} \alpha^2) ||x_k - x^*||_D^2 \\ &\leq \rho ||x_k - x^*||_D^2 \\ &(\rho = 1 - 2\frac{\sigma}{\beta^2} \alpha + \frac{||H||\lambda^2}{\beta^4} \alpha^2) \\ &\leq \rho^{k+1} ||x_0 - x^*||_D^2 \\ &\text{By reccurence} \end{split}$$

4. ρ is quadratic in α , so it is minimal when $\frac{\partial \rho}{\partial \alpha} = 0$, ie $\alpha = \frac{\beta^2 \sigma}{||H||\lambda^2}$, $\min \rho = 1 - \frac{\sigma^2}{||H||\lambda^2}$

Problem 4

1. For $y \in \mathbb{R}^n \sup_y L(x,y) \ge L(x,u)$ By taking the \inf_x : $\inf_x \sup_y L(x,y) \ge \inf_x L(x,u)$ By taking the \sup_y : $\inf_x \sup_y L(x,y) \ge \sup_y \inf_x L(x,u)$

2. Let $f(x) := \max_y L(x, y)$ We know that $x^* \in \arg\min f$ and f is convexe, so $\partial f(x^*) = 0$. L is continuous the Danskin's theorem, we have that: $0 \in \{\nabla_x L(x^*, y) | y \in \arg\min L(x^*, y^*)\} = \{\nabla_x L(x^*, y^*)\}$, which means that $\nabla_x L(x^*, y^*) = 0$, and symmetrically, $\nabla_y L(x^*, y^*) = 0$.

$$x^* = x^* - \alpha \nabla_x L(x^*, y^*)$$
$$y^* = y^* - \alpha \nabla_y L(x^*, y^*)$$

- 1. Let's call S_t the price of the stock at time t, and $V_t(S_t)$ the price of the corresponding american action (with strike K)
 - State $x_t = S_t$, t = 1..T
 - Action:

$$u_t = \left\{ \begin{array}{ll} \text{EXEC} & \text{meaning we exercise the option} \\ \text{HOLD} & \text{meaning we don't} \end{array} \right.$$

- Randomness: The change in the stock price $w_t = \frac{S_{t+1}}{S_t}$ s.t $x_{t+1} = w_t x_t$, $P(w_t = u) = 1 P(w_t = d) = p$
- Transitional cost: $g(x_k, u_k = \text{HOLD}, w_t) = 0$ $g(x_k, u_k = \text{EXEC}, w_t) = x_t K$ $g(x_T) = (x_T K)^+$: We exercise the option at time T only if $x_T > K$

The price problem:

$$V_k(x) = \max_{\mu} E[g(x_T) + \sum_{t=k}^{T-1} g(x_k, \mu_k(x_k), w_t) | x_k = x]$$

2. Bellman equation:

$$V_k(x) = \max \{x - K, pV_{k+1}(ux) + (1-p)V_{k+1}(dx)\}$$
$$V_T(x) = (x - K)^+$$

Result for $K = S_0 = 1$, $P(w_t = \text{down}) = 0.45$, up = 1.1, down = 0.9, T = 100 days, time step = 10:

3. LP: Let J(t,S) be the price of the option at time t is $S_t = S$, and we decide to adopt the strategy J verifies: $J(t,S) = \max\{E[J(t+1,S_{t+1})|S_t = S], S-K\} = [\max_{\mu}(P_{\mu}J + g_{\mu})](t,S)$ where:

$$\mu(t,S) \in \{\text{HOLD, EXEC}\}$$

$$(P_{\mu}J)(t,S) = \begin{cases} pJ(t+1,uS) + (1-p)J(t+1,dS) & \text{if } \mu(t,S) = \text{HOLD} \\ 0 & \text{otherwise} \end{cases}$$

$$g_{\mu}(t,S) = \begin{cases} 0 & \text{if } \mu(t,S) = \text{HOLD} \\ S-K & \text{otherwise} \end{cases}$$

The LP problem is:

$$\min e^T J \text{ s.t } \forall \mu J \geq P_{\mu} J + g_{\mu}$$

At time t, S can take the following values $\{u^k d^{t-k} S_0, k \leq t\}$. Let's denote by $\tilde{J}(t,k) := J(t, u^k d^{t-k} S_0)$

when $k \leq t$ and L otherwise where $L >> S_0$ is a very big constant. The problem can be written as:

$$\min \sum_{t,k} \tilde{J}(t,k)$$

$$\text{s.t } \forall t, k \in \{1...T-1\}$$

$$\tilde{J}(t,k) \ge p\tilde{J}(t+1,k) + (1-p)\tilde{J}(t+1,k+1)$$

$$\tilde{J}(t,k) \ge u^k d^{t-k}S_0 - K$$

$$\tilde{J}(T,k) = u^k d^{t-k}S_0 - K$$

$$\tilde{J}(t,k) = L \text{ when } k > t$$

Let $x_{t*T+k} = \tilde{J}(t,k)$, and define $A \in \mathcal{M}_{T^2,T^2}$, $B \in \mathcal{M}_{\frac{T(T-1)}{2},T^2}$ $U \in \mathbb{R}^{T^2}$ such that:

 $U \in R^{T^2}$ such that : $U_{tT+k} := u^k d^{t-k} S_0 - K$

The LP problem is equivalent to:

$$\min^{T} x$$
s.t
$$x \ge Ax$$

$$x \ge U$$

$$Bx = L1_{\frac{T(T-1)}{2}}$$

Result for the same parameters as before:

• We choose a discrete random walk model for generating S_t : $S_t = Y + \sum_{i \leq t} X_i$ where the X_i are iid $\mathcal{N}(\mu, sigma)$ and Y uniform on $\{-10, ..., 10\}$ and independent from the X_i

Sample trajectories:

• By generating the paths $(S_t^{(i)})_i$, we simulate the transitions $(t, S_t) \to (t+1, S_{t+1})$ We adopt the same notation as in lecture 23 slide 36. At step $i \in \{0, ..., M-1\}$:

$$Q_{i+1}((t, S_t)) = (1 - \gamma)Q_i((t, S_t)) + \gamma \max(S_{t+1} - K, Q_i((t+1, S_{t+1})))$$

$$J((t, S_t)) = \max\{S_t - K, Q_M((t, S_t))\}\$$

