Visualizing data structures using R:

Applied Biclustering Methods for Big and High Dimensional Data Using R

Ziv Shkedy

Hasselt University, Belgium

Hasselt University February-April, 2022

Research Team

UHasselt:

Ewoud De Troyer Rudradev Sengupta Nolen Joy Perualila Ziv Shkedy Adetayo Kasim

and many others.....

Reference & R packages

R packages:

biclust (CRAN) biclustGUI (CRAN)

PDF file with the first 9 chapters.

Part 1

Introduction

Big data

- Everything is measurable.....
- We can collect a lot of data (and usually very quick).....
- How can we identify patterns in the data?

Big data

- Today:
- Data analysis tool to discover local patterns in big data matrices.
- Case studies:
 - Sport.
 - Tourism
 - Drug discovery.

Part 2

Biclustering: local versus global patterns

Data structure

Observations, samples, conditions

Global patterns

• Find variables (observations) that can be grouped together due to a pattern in the data matrix.

Examples:

- All costumers in a supermarkets that have a tendency to buy the same products.
- Genes with the same expression profiles in an expression matrix.

Clusters of observations

Example: three clusters of one variable

Clusters of observations

Example: three cluster in two variables

Example: how many clusters?

Clustering and similarity measures

0 5 10 15 20 25 30 conditions

response level

A data matrix with three clusters (of variables, rows).

Correlation between rows across all columns

Clustering and similarity measures

The observe data matrix. Clustering features.

How similar are the features across the samples (conditions).

Eample:correlation across samples of two features:

$$\rho(x_i, x_i)$$

feature

Example of three clusters.

Hierarchical clustering

- Group variables according to their correlation (with each other).
- Variables are correlated across all observations.

Global pattern

Hierarchical clustering

Example of three clusters.

(b) Example 2.

- We are looking for:
 - A subset of features with the same characteristic across a subset of conditions.
 - Example:
 - A group of genes with the same expression patterns across a subset of samples.
 - A group of costumers that buy the same products in a supermarket.
 - A group of students with the same results patters across a group of subjects.
 -

Local patterns in a data matrix

Example of a subset of features with high response level on a subset of conditions.

A bicluster

$$\mathbf{X} = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1m} \\ X_{21} & X_{22} & \dots & X_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{nm} \end{pmatrix}.$$

A subset of features in a data matrix that have a similar response patterns across a subset of samples.

Example: a group of genes with a similar expression profiles across a group of samples

A bicluster: signal and noise

Within a bicluster: additive or multiplicative structures

$$Y = signal + noise$$

Signal structure: multiplicative or additive.

Outside a bicluster:

$$Y = noise$$

A bicluster: rows and columns effects

Dominant effects:

- Rows?
- Columns?
- Rows and columns?

A bicluster: correlation

Conditions outside the BC Conditions within the BC

Structure within and outside the biclsuter:

Not always different levels (i.e. significant different signal)

Signal structure

$$Y = R + Erorr$$

$$Y = C + Erorr$$

$$Y = R + C + Erorr$$

R: rows.

C: columns.

$$Y = R \times C \times Erorr$$

$$Y = R \times C^{Error}$$

$$Y = R \times C + Erorr$$

$$\log(Y) = \log(R) + \log(C) + Error$$

$$\log(Y) = Error \times (\log(R) + \log(C))$$

Multiplicative BCs

Signal structure

Additive BC: Y = R + C

$$Y = R + C$$

Multiplicative BC: $Y = R \times C$

$$Y = R \times C$$

Signal structure

Additive BC: Y = R + C

$$Y = R + C$$

Multiplicative BC: $Y = R \times C$

$$Y = R \times C$$

Signal + noise

Additive BC: Y = R + C + Erorr

Multiplicative BC: $Y = R \times C + Erorr$

 $R_i \sim N(0,0.25)$ $C_i \sim N(0,0.25)$

$$E_{ij} \sim N(0,0.0625)$$

Types of biclusters

- Constant BC.
- Rows effects.
- Columns.
- Rows and columns effects (a).
- Coherent values (b).
- Coherent evolution (c).

Configurations of biclusters in the data matrix

Which structure we observed in the data matrix?

Piet Mondrian

Theo van Doesburg

Configurations of biclusters in the data matrix

Overlapping Non overlapping

•

•

- Why local?
- In a supermarket, if we know that a group of costumers have a tendency to buy: pizza, wine and ice cream we can help them to buy these products.
- In a holiday resort, if we know that costumers like to go to the sea and to have BBQ there....

- In a supermarket, if we know that a group of costumers have a tendency to buy: pizza, wine and ice cream we can help them to buy these products.
- Why this is a biclsuter?

Many local patterns....

Exempels of BC

One bicluster

Three biclusters

Overlaping biclusters

Piet Mondrian

Overlapping only in one dimension (rows or columns).

Examples of overlapping biclusters

Many Overlaping biclusters

Theo van Doesburg

Overlapping only in one dimension (rows or columns).

Overlaping biclusters

Theo van Doesburg

Other examples

Jean Arp

Paul Klee

Sonia Delaunay

Not everybody understood the concept of biclustering so good...

Part 3

Selection of Biclustering methods

- Computer science methods:
 - Bimax.
- Statistical methods:
 - The plaid model.
 - FABIA.

Part 3.1

Bimax

Chapter 5

Paper:

Prelic, A., Bleuler, S., Zimmermann, P., Wil, A. Buhlmann, P., Gruissem, W., Hennig, L., Thiele, L. and Zitzler, E. (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. *Bioinformatics*, 22(9), 1122–1129.

Prelic el al. 2006

- Bimax (binary inclusion-maximal biclustering algorithm).
- The Bimax is a biclustering algorithm introduced by Prelic 2006 as a reference biclustering method for a comparison with different biclustering methods.

Data structure: binary data

Data matrix

conditions

$$Z_{ij} = egin{cases} 1 & ext{feature i is active} \ on \ condition j \ 0 & otherwise \end{cases}$$

Examples:

- In the supermarket: subject i buy product j
- In football: player i scores a goal in the last 10 minutes of the game.

Data structure: binary data

The original data is continuous.

Examples

Gene i is expressed under condition j

$$Z_{ij} = \begin{cases} 1 & X_{ij} > \theta \\ 0 & X_{ij} \le \theta \end{cases}$$

Dichotomize the red subject

Data structure: binary data

We are looking for subset of active features.

$$Z_{ij} = \begin{cases} 1 & \text{feature i expressed (active) in condition j} \\ 0 & \text{otherwise,} \end{cases}$$

Can we find a sequence of 1s of features across the same conditions?

The Bimax algorithm

Divide the columns in two sets, C_U and C_V , based on the first row (in the first row, C_U contains only ones, while C_V contains only zeroes.

The Bimax algorithm

Step 1:

- Re arrange the data matrix.
- Exclude all rows/columns combinations with only zeros.

Step 2:

Search for rows/columns combinations with ones.

The Bimax algorithm: parameter setting

How many biclsuters we are looking for ?

What is the minimum size of the biclsuter (i.e. number of rows and columns)?

The Bimax algorithm: an illustration

Example

A 100 X 50 matrix with two BCs. Before dichotomization (X).

After dichotomization (Z).

The same example: the input data

Results

```
> image(c(1:dim(test)[2]),c(1:dim(test)[1]),t(test.b1),ylab="features",xlab="conditions")
> bimaxbic<-biclust(test.b1,method=BCBimax(),minr=10,minc=5,number=2)
> summary(bimaxbic)
An object of class Biclust
call:
    biclust(x = test.b1, method = BCBimax(), minr = 10, minc = 5,
      number = 2)
                                                                                            1:length(bicRows)
Number of Clusters found: 2
Cluster sizes:
           BC 1 BC 2
Number of Rows: 31 15
Number of Columns: 5 6
                                                                                            1:length(bicRows)
```

> test.b1<-binarize(test2, threshold=1.5)

features

Solutions

Part 3.2

The plaid model

Chapter 6

Paper:

Turner, H., Bailey, T. and Krzanowski, W. (2005) Improved biclustering of microarray data demonstrated through systsystem performance tests. *Computational Statistics and Data Analysis*, 48, 235–254.

Additive biclusters: the signal structure

Continuous data.

The signal structure inside a bicluster:

$$Y = signal + noise$$

$$Y = con. + row + column + noise$$

The plaid model

The plaid model: mean structure

$$Y_{ijk} = \mu_0 + \sum_{k=1}^{K} \theta_{ijk} \rho_{ik} \kappa_{jk} + \varepsilon_{ijk}$$

$$heta_{ijk} = egin{cases} \mu_k & & \text{Constant bicIsuter} \ \mu_k + lpha_{ik} & & \text{Constant rows} \ \mu_k + eta_{jk} & & \text{Constant cols.} \ \mu_k + eta_{jk} + lpha_{ik} + eta_{jk} & & \text{Rows and cols. efects} \end{cases}$$

The plaid model: membership

$$Y_{ijk} = \mu_0 + \sum_{k=1}^{K} \theta_{ijk} \rho_{ik} \kappa_{jk} + \varepsilon_{ijk}$$

$$\kappa_{jk} = \begin{cases} 1 & \text{condition } j \text{ belongs to bicluster } k, \\ 0 & \text{otherwise.} \end{cases}$$

$$\rho_{ik} = \begin{cases} 1 & \text{gene } i \text{ belongs to bicluster } k, \\ 0 & \text{otherwise,} \end{cases}$$

Estimation the BC parameters

Given the membership in the k'th BC

$$Y_{ijk} = \mu_0 + \sum_{k=1}^{K} \theta_{ijk} \rho_{ik} \kappa_{jk} + \varepsilon_{ijk}$$

$$Y_{ijk} = (\mu_k + \alpha_{ik} + \beta_{jk} + \varepsilon_{ijk}) \rho_{ik} \times \kappa_{jk} + \varepsilon_{ijk}$$

$$\rho_{ik} = \kappa_{jk} = 1$$

$$Y_{ijk} = \mu_k + \alpha_{ik} + \beta_{jk} + \varepsilon_{ijk}$$

A two way ANOVA with one observation per cell.

Estimation the BC parameters

Minimize the sum of squares for the k'th BC

$$Q_k = \sum_{ij} (Y_{ijk} - \mu_k + \alpha_{ik} + \beta_{jk})^2$$

For all BCs

$$Q = \sum_{k=1}^{K} \sum_{ij} (Y_{ijk} - \mu_k + \alpha_{ik} + \beta_{jk})^2$$

In practice, per BC, two-way ANOVA with one observation per cell.

For detailed information, see Chapter 6 in the biclustering book !!!

Estimation the membership parameters (rows)

Given the rows and columns effects and the membership for the columns.

$$Y_{ijk} = (\mu_k + \alpha_{ik} + \beta_{jk})\rho_{ik} \times \kappa_{jk} + \varepsilon_{ijk}$$

$$\kappa_{ik} = 1$$

$$Y_{ijk} = \rho_{ik} \left[\left(\mu_k + \alpha_{ik} + \beta_{jk} \right) \times \kappa_{jk} \right] + \varepsilon_{ijk}$$
"Known"

The only unknown is the row membership.

Condition on the parameter Estimates for BC effects and membership (columns).

$$Y_{ijk} = \rho_{ik} \left[\left(\hat{\mu}_k + \hat{\alpha}_{ik} + \hat{\beta}_{jk} \right) \times \hat{\kappa}_{jk} \right] + \varepsilon_{ijk}$$

Minimize the residuals sum of squares:

$$Q = \sum \left(Y_{ijk} - \rho_{ik} \left[\left(\hat{\mu}_k + \hat{\alpha}_{ik} + \hat{\beta}_{jk} \right) \times \hat{\kappa}_{jk} \right] \right)^2$$

Estimation the membership parameters (rows)

Condition on the parameter estimates, linear regression model with one parameter

$$Y_{ijk} = \rho_{ik} \left[\left(\hat{\mu}_k + \hat{\alpha}_{ik} + \hat{\beta}_{jk} \right) \times \hat{\kappa}_{jk} \right] + \varepsilon_{ijk}$$

$$Q = \sum \left(Y_{ijk} - \rho_{ik} \left[\left(\hat{\mu}_k + \hat{\alpha}_{ik} + \hat{\beta}_{jk} \right) \times \hat{\kappa}_{jk} \right]^2 \right)^2$$

See later

Estimation the membership parameters (columns)

Given the rows and columns effects and the membership for the rows

$$Y_{ijk} = (\mu_k + \alpha_{ik} + \beta_{jk} + \varepsilon_{ijk}) \rho_{ik} \times \kappa_{jk} + \varepsilon_{ijk}$$

$$\rho_{ik} = 1$$

$$Y_{ijk} = \kappa_{jk} \left[\left(\mu_k + \alpha_{ik} + \beta_{jk} \right) \times \rho_{ik} \right] + \varepsilon_{ijk}$$
"Known"

The only unknown is the columns membership

Condition on the parameter estimates and membership (rows):

$$Y_{ijk} = \kappa_{ik} \left[\left(\hat{\mu}_k + \hat{\alpha}_{ik} + \hat{\beta}_{jk} \right) \times \hat{\rho}_{jk} \right] + \varepsilon_{ijk}$$

Estimation the membership parameters (columns)

Condition on the parameter estimates, linear regression model with one parameter

$$Y_{ijk} = \kappa_{ik} \left[\left(\hat{\mu}_k + \hat{\alpha}_{ik} + \hat{\beta}_{jk} \right) \times \hat{\rho}_{jk} \right] + \varepsilon_{ijk}$$

$$Q = \sum \left(Y_{ijk} - \kappa_{ik} \left[\left(\hat{\mu}_k + \hat{\alpha}_{ik} + \hat{\beta}_{jk} \right) \times \hat{\rho}_{jk} \right] \right)^2$$

Data structure for K BCs

$$Y_{ijk} = \mu_0 + \sum_{k=1}^K \theta_{ijk} \rho_{ik} \kappa_{jk} + \varepsilon_{ijk}$$

Residuals

Let us assume that L-1 BCs were found and we are looking for the L'th BC

$$Y_{ijk} = \mu_0 + \sum_{k=1}^{L-1} \theta_{ijk} \rho_{ik} \kappa_{jk} + \varepsilon_{ijk}$$

Residuals:

$$\hat{Z}_{ijk} = Y_{ijk} - \left(\mu_0 + \sum_{k=1}^{L-1} \theta_{ijk} \rho_{ik} \kappa_{jk}\right)$$

Residuals matrix:

 \hat{Z} The input matrix for the next BC (the L'th BC)

Input for the analysis of the L'th BC \hat{Z}

- Compute Z: matrix of residuals from the current model.
- 2. Compute starting values or initial memberships $\hat{\rho}_i^0$ and $\hat{\kappa}_i^0$.
- Set s=1.
- Update the layer effects using Z*: submatrix of Z indicated by ρ̂_i^(s-1) and κ̂_i^(s-1): μ̂^s, α̂_i^s and β̂_i^s.
- 5. Update cluster membership parameters: $\hat{\rho}_i^s$ and $\hat{\kappa}_j^s$
- Repeat steps 4 and 5 for s = 2,..., S iterations.
- 7. Compute $\hat{\mu}^{s+1}$, $\hat{\alpha}^{s+1}$, and $\hat{\beta}^{s+1}$ as in step 4.
- Prune the bicluster to remove poor fitting rows and columns (see below).
- Calculate layer sum of squares (LSS)
- Permute Z B times and follow steps 2 to 9 for each permutation.
- Accept the bicluster if its LSS is greater than all permuted runs, otherwise stop.
- sequentially, refit all layers in the model R times, then search for the next layer.

Input for the analysis of the L'th BC \hat{Z}

4. Update the layer effects using \mathbf{Z}^* : submatrix of $\hat{\mathbf{Z}}$ indicated by $\hat{\rho}_i^{(s-1)}$ and $\hat{\kappa}_j^{(s-1)}$: $\hat{\mu}^s$, $\hat{\alpha}_i^s$ and $\hat{\beta}_j^s$.

Input for the analysis of the L'th BC \hat{Z}

5. Update cluster membership parameters: $\hat{\rho}_i^s$ and $\hat{\kappa}_j^s$

BC parameters are fixed form step 4

$$\hat{\mu}, \hat{\alpha}_i, \hat{\beta}_i$$

Estimation the membership parameters: least squares (rows)

For the current BC:

$$Z_{ijk} = \rho_{ik} \left[\left(\hat{\mu}_k + \hat{\alpha}_{ik} + \hat{\beta}_{jk} \right) \times \hat{\kappa}_{jk} \right] + \varepsilon_{ijk}$$

$$\hat{\theta}_{ijk} \quad \text{fixed form step 4}$$

$$Z_{ijk} = \rho_{ik} \left[\hat{\theta}_{ijk} \times \hat{\kappa}_{jk} \right] + \varepsilon_{ijk}$$

$$Q = \sum \left(Z_{ijk} - \rho_{ik} \left[\hat{\theta}_{ijk} \times \hat{\kappa}_{jk} \right] \right)^2$$

Assume that k_i is known.

Least squares solution

$$Q = \sum \left(Z_{ijk} - \rho_{ik} \left[\hat{\theta}_{ijk} \times \hat{\kappa}_{jk} \right] \right)^2$$

$$\rho_i = \frac{\sum_j \kappa_j \theta_{ij} Z_{ij}}{\sum_j \kappa_j^2 \theta_{ij}^2},$$

Estimation the membership parameters: least squares

rows

$$Q = \sum \left(Z_{ijk} - \rho_{ik} \left[\hat{\theta}_{ijk} \times \hat{\kappa}_{jk} \right] \right)^2$$

Assume that k_i is known.

$$\rho_i = \frac{\sum_j \kappa_j \theta_{ij} Z_{ij}}{\sum_j \kappa_j^2 \theta_{ij}^2}.$$

columns

$$Q = \sum \left(Z_{ijk} - \kappa_{ik} \left[\hat{\theta}_{ijk} \times \hat{\rho}_{jk} \right] \right)^2$$

Assume that rho_i is known.

$$\kappa_j = \frac{\sum_i \rho_i \theta_{ij} Z_{ij}}{\sum_i \rho_i^2 \theta_{ij}^2}$$

- 9. Calculate layer sum of squares (LSS)
- 10. Permute $\hat{\mathbf{Z}}$ B times and follow steps 2 to 9 for each permutation.
- 11. Accept the bicluster if its LSS is greater than all permuted runs, otherwise stop.

8. Prune the bicluster to remove poor fitting rows and columns

$$\hat{\rho}_i^s = \begin{cases} 1 & \text{if } \Sigma_j [Z_{ij} - \hat{\kappa}_j^{(s-1)} (\hat{\mu}^s + \hat{\alpha}_i^s + \hat{\beta}_j^s)]^2 < (1 - \tau_1) \Sigma_j Z_{ij}^2, \\ 0 & \text{otherwise.} \end{cases}$$

$$0 \le \tau_1 \le 1$$

This means: a row is included is it leads to a reduction of τ_1 in the residuals sum of squares.

Example: the test data

A 100 X 50 data matrix with 3 BCs.

A group of rows are members in two BCs.

Response profiles in the three BCs

The plaid model in R (I)

Constant BC

$$\theta_{ijk} = \mu_k$$

The plaid model in R (II)

Rows and columns effects

$$Y_{ijk} = \mu_0 + \sum_{k=1}^{K} \theta_{ijk} \rho_{ik} \kappa_{jk} + \varepsilon_{ijk}$$
 $\theta_{ijk} = \mu_k + \alpha_{ik} + \beta_{jk}$

The mean structure within a BC (I)

The mean structure within a BC (II)

Only rows effects

$$Y_{ij1} = \mu_1 + \alpha_{i1} + \beta_{j1} + \varepsilon_{ij1}$$

Columns effects are zero, the model can be reduced to

$$Y_{ij1} = \mu_1 + \alpha_{i1} + \varepsilon_{ij1}$$

Part 3.3

FABIA

Chapter 8

Paper:

Hochreiter, S., Bodenhofer, U., Heusel, M., Mayr, A., Mitterecker, A., Kasim, A., Khamiakova, T., Van Sanden, S., Lin, D., Talloen, W., Bijnens, L., G"ohlmann, H. W. H., Shkedy, Z. and Clevert, D.-A. (2010a) Fabia: factor analysis for bicluster acquisition. *Bioinformatics*, 26, 1520–1527.

Multiplicative versus additive biclusters

 \mathcal{L}_{i} Row effect

$$Y_{ij} = \mu + \alpha_i + \beta_j + error$$

$$Y_{ij} = \mu \times \alpha_i \times \beta_j + error$$

$$Y_{ij} = \alpha_i \times \beta_j + error$$

Multiplicative bicluster: signal structure

$$\beta_{j} = \begin{cases} \beta_{j} & C_{j} \in BC \\ 0 & C_{j} \notin BC \end{cases}$$

$$\alpha_i = \begin{cases} \alpha_i & R_i \in BC \\ 0 & R_i \notin BC \end{cases}$$

$$signal_{ij} = \alpha_i \times \beta_j$$

Examples

Multiplicative model

 $Y_{ij} = signal_{ij} + error = \alpha_i \times \beta_j + error$

A factor analysis model in which a BC is a factor.

Signal structure:

$$Y = BC_1 + BC_2 + \dots + BC_K + error$$

A factor analysis model with K factors.

FABIA: model formulation

Model formulation of a factor analysis model with K factors.

Multiplicative signal.

For FABIA, priors for factor loadings and scores:

$$P(\alpha_k)$$
 Laplace distribution

FABIA: model formulation

 $P(\alpha_k)$ $P(\beta_k)$ $N(0,\sigma^2)$

Laplace distribution

A factor analysis model:

Rows scores (membership vector for rows): factor loadings.

Columns scores (membership vector for columns): factor scores.

FABIA: example – a data matrix with one BC

Rows scores C

Columns scores

error

FABIA: example – a data matrix with three BCs

Example: one BC

Example: one BC – rows and columns

Example: signal, and signal+noise

Data analysis

A factor analysis model with one factor:

$$Y = \alpha_1 \times \beta_2^T + Z$$

> fabRes <- fabia(mdat,p=1)</pre>

Results: factor scores (columns)

Results: factor loadings (rows)

Observed and predicted data

$$Y = \sum_{k=1}^{K} \alpha_k \beta_K^T + Z$$

$$\hat{Y} = \sum_{k=1}^{K} \hat{\alpha}_k \hat{\beta}_K^T$$

Short summary: methods

- Many other methods were developed.
- Local patterns.
- Trying to discover the signal in a noisy data.
- Best method? No, completely data dependent.
- For all method: subjective selection of parameter settings!
- For most of the methods, multiple runs leads to multiple results!!
- Robust analysis should be performed !!!

Short summary: software

- Method specific (many methods and packages are avilable).
- Genreal:
 - biclust.
 - biclsutGUI.
 - biclust shiny App.
 - online and cloud products.

Part 4

Case Studies

Part 4.1

Biclustering for Market segmentation

Market segmentation

- Market segmentation is essential for marketing success.
- The most successful firms drive their businesses based on segmentation.
- In tourism:
 - identify groups of tourists who share common characteristics.
 - Make it possible to develop a tailored marketing mix to most successfully attract such subgroups of the market.
 - Focusing on subgroups increases the chances of success within the subgroup.

Dimensionality problem

- One of the typical methodological challenge:
 - large amount of information (responses to many survey questions) is available from tourists....
 - But typically the sample sizes are too low given the number of variables used to conduct segmentation analysis.
- Solution: collect large samples that allow segmentation with a large number of variables.

The tourism survey

- The data set used for this illustration is a tourism survey of adult Australians (internet based survey).
- Participants were asked questions about their general travel behavior, their travel behavior on their last Australian vacation, benefits they perceive of undertaking travel, and image perceptions of their ideal tourism destination.
- Information was also collected about the participants age, gender, annual household income, marital status, education level, occupation, family structure, and media consumption.

Data structure

A biclsuter: A group of tourists that share the same

vacation activities.

Holiday items = vacation activities

Consumption of holiday activities

- In the present data set 1,003 respondents were asked to state for 44 vacation activities whether they engaged in them during their last vacation.
- Activities includes: relaxing, eating in reasonably priced eateries, shopping, sightseeing, visiting industrial attractions (such as wineries, breweries, mines, etc.), going to markets, scenic walks, visiting museums and monuments, botanic and public gardens, and the countryside/farms.

Consumption of holiday activities

Distribution per item gives information how popular is an item among the costumers but...

..we do not know which items are consumed together.

Bicluster configuration: market segmentation

vacation activities

costumers

Π	1	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0
1	1	1	0	0	1	0	0	0	0
1	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	1
0	0	1	0	0	0	0	1	1	1
0	0	0	0	1	1	0	1	1	1
0	0	0	0	1	1	0	0	0	0
0	0	0	0	1	1	0	0	0	0
	1	0	0	0	1	0	0	0	0

Observed data

A 1003X45 binary data.

Observed patterns?

Data analysis using Bimax

Find group od subjects with the same sequence of 1s.

Minimal size of BC?

Results: first BC

- Number of rows: 74.
- Number of columns: 11
- 7% of the sample:
 - relaxing
 - eating in reasonably priced eateries
 - 3. shopping
 - 4. sightseeing
 - 5. visiting industrial attractions (such as wineries, breweries, mines, etc.)
 - 6. going to markets
 - 7. scenic walks
 - 8. visiting museums
 - 9. visiting monuments
 - 10. visiting public and botanic gardens
 - 11. visiting countryside/farms.

Results: first BC

- Number of rows: 74.Number of columns: 11
- 7% of the sample:
 - 1. relaxing
 - 2. eating in <u>reasonably priced</u> eateries
 - 3. shopping
 - 4. sightseeing
 - 5. visiting industrial attractions (such as wineries, breweries, mines, etc.)
 - 6. going to markets
 - 7. scenic walks
 - 8. visiting museums
 - 9. visiting monuments
 - 10. visiting public and botanic gardens
 - 11. visiting countryside/farms.

Shopping

$\sqrt{}$

Results: second BC

- Number of rows: 87.
- Number of columns: 9
- 8.6% of the sample:
 - relaxing
 - 2. eating in reasonably priced eateries
 - 3. Shopping
 - 4. BBQ
 - 5. sightseeing
 - 6. going to markets
 - 7. scenic walks
 - 8. Swimming
 - 9. Beach

Software

R packages:

- biclust (CRAN)
- biclustGUI (CRAN)

Website:

https://ewouddt.github.io/RcmdrPlugin.BiclustGUI/2016/09/27/biclustGUI/

Part 4.2

Drug Discovery (I): Biclustering methods for chemoinformatics

Molecular BioSystems

PAPER View Article Online
View Journal | View Issue

Cite this: *Mol. BioSyst.*, 2015, 11, 86

Connecting gene expression data from connectivity map and in silico target predictions for small molecule mechanism-of-action analysis†

Aakash Chavan Ravindranath,;^a Nolen Perualila-Tan,;^b Adetayo Kasim,^c Georgios Drakakis,^a Sonia Liggi,^a Suzanne C. Brewerton,^d Daniel Mason,^a Michael J. Bodkin,^d David A. Evans,^d Aditya Bhagwat,^e Willem Talloen,^f Hinrich W. H. Göhlmann,^f QSTAR Consortium,§ Ziv Shkedy*^b and Andreas Bender*^a

Quantifying S-Transcription-A-R

Understanding New Molecules

Relating gene expression profiles to Protein targets via compounds

Protein Targets and Target prediction

- Many candidate molecules
 - With unknown mechanism of action
- One drug many targets
- One target many active sites (for binding)
- Difficult (expensive) to measure activity of a molecule in all assays
- Predict if drugs will bind to a target given its chemical structure and already known drug-target associations?
- Target prediction

e.g. Histone deacetylase enzyme

Target Prediction Score

 Likelihood of binding of a compound to every protein target (Koutsoukas, 2011)

Protein Targets and Target prediction

 Predict if drugs will bind to a target given its chemical structure and already known drug-target associations?

Target prediction

$$P(TARGET_i) = f(FP_1, FP_2, ..., FP_K)$$

The setting

Mechanism of Action of compound

 Drugs regulating similar protein targets (similar structure) affects similar set of genes

Genes and protein targets pathway overlap

Gene expression profiles

- Connectivity map data:
 - 4 cell lines(MCF7,PC3,HL60 and SKMEL5)
 - ❖ After pre-processing ~2400 genes
 - ❖ 1309 drug like compounds
 - Similar concentration and time of compound exposure

X = Gene Expression
 J = 2340 genes
 I = 36 compounds
 (MCF7 cell line, 6 hours,
 10micromolars)

Target prediction: binary scores

- Biosar (Naïve Bayes) used to predict targets
- Individual cut off used for each target

$$t_{ip} = \begin{cases} 1 & \text{Comp i hit on target p} \\ 0 \end{cases}$$

$$T_{C_i} = (0,1,1,0,0,0,\dots,1,0)$$

Target scores matrix

Pathways

- Specific group of compounds
- A group of genes and targets that share:
 - a biological pathway
 - > a statistical pathway

Biological pathways

- KEGG (Koyoto Encyclopedia of Genes and Genomes)- is a freely available information repository of the network of genes and molecules for practical analysis of the gene functions
- GO (Gene Ontology)- is a bioinformatics project that is the largest repository for catalogue gene function that unifies the representation of gene and gene product attribute across all the species.
- KEGG and Go pathways were annotated to proteins and genes.

Part II Data analysis

Data analysis steps

- Target based clustering.
 - similarity matrix based on target prediction scores.
- Gene expression profiling.
- Enrichment of the gene set.
- Pathway identification.

Correlation between compounds

Target scores matrix

- N_{c1} and N_{c2} are the number of fingerprint features present in compound 1 and compound 2.
- N_{c12} is the number of features common to both compounds.

Tanimoto scores

$$TC = \frac{N_{C12}}{N_{C1} + N_{C2} - N_{C12}}$$

$$TC = 0$$
 2 compounds do not share any chemical structure

Target similarity matrix

Similarity matrix based on Tanimoto scores

$$TC = \frac{N_{C12}}{N_{C1} + N_{C2} - N_{C12}}$$

Cluster compound based on similarity scores

Hierarchical clustering

- Input: Similarity matrix
- Start: each compound is a cluster
- Merge compounds according to a criterion
- Ward's distance
- End: single cluster of all compounds

Target prediction based clustering

For each cluster, identify target scores in common for all compounds in the cluster.

Target prediction based clustering

Identification of target prediction scores which are in common for the compounds in a cluster.

cluster 1

The targets in the pathway 128

Target-based clustering

Identify genes which have different expression profile between a cluster of interest and the rest of the compounds.

Differentially expressed genes

Profiles plots for top 8 genes by cluster

Genes and protein targets pathway overlap

Biological pathways: cluster 1

Use:

top K genes.

Target scores which are in common among compounds in cluster 1 (search in KEGG, GO)

Gene set analysis with MLP was done as well (to discover more genes).

Identify:

biological pathways

Compound Clusters	Compound Names	Targets	Genes	Pathways
antipsychotic	"clozapine" "thioridazine" "chlorpromazine" "trifluoperazine" "prochlorperazine" "fluphenazine"	CytochromeP 4502D6		GO:0008202; P:steroid metabolic process; IMP:BHF-UCL
		Dual specificity mitogen: activated protein kinase kinase1		hsa04010: MAPKsignalingpathway
		Fibroblast growth f actor receptor1		
		Dual specificity mitogen: activated protein kinase kinase1	LAMA3	hsa04510: Focal adhesion
		Dual specificity mitogen: activated protein kinase kinase1	TUBA1A	hsa04540: Gapjunction

MLP: cluster 1

MLP: cluster 1

Effect of the treatment on GOBP gene sets

Why this is a bicluster?

Applying FABIA: data structure + model

$$\mathbf{X} = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ X_{G1} & X_{G2} & \dots & X_{Gn} \end{pmatrix}.$$

$$\mathbf{X} = \sum_{i=1}^{p} \lambda_i \gamma_i^T + \Upsilon,$$

Software: biclustering using FABIA

Results: biclustering using FABIA- compound scores

- Bicluster 1 is similar to cluster
 1 compound set
- With 3 extra compounds

```
> str(bicList[[1]])
List of 2
$ compounds: chr [1:9] "trifluoperazine" "fluphenazine" .
$ genes : chr [1:13] "MSMO1" "INSIG1" "IDI1" "SQLE" ...
```

Factor scores (compounds) and factor loadings (genes)

(a) FABIA BC1: Compound scores.

(b) FABIA BC1: Gene Loadings.

A bicluster (FABIA)

Discussion

- An exploratory tool for discovering subgroups with aligned multiple properties
- Could be applicable in other research fields
- One of the integrative clustering approaches included in the package IntClust.

Part 4.3

Sport:

Using biclustering method to detection of local patterns in NBA data

NBA

- 30 teams
- Regular season : 82 games per team
- 16 teams go to the Play-offs
- Performance Statistics (teams and individuals) is well developed

Our aim: to develop a multivariate performance indicator

Success rate of NBA teams in the regular season of 2014/2015

$$%W = \frac{\# games \quad won}{\# games}$$

Commonly used performance indicators in NBA

- 2-pt / 3-pt Successful
- 2-pt / 3-pt Unsuccessful
- Free Throw Successful / Unsuccessful
- Defensive / Offensive Rebounds
- Assists
- Turnovers
- Steals
- Dunks
- Blocks Committed / Received
- Fouls Committed / Received

Garcia et al (2013) showed that these variables are good performance indicators for Regular Season as well as for Playoff Games

Data Structure

- 7 online databases in the NBA website:
 - Traditional Stats
 - Advanced Stats
 - Four Factors
 - Misc. Stats
 - Scoring
 - Opponent
 - Shooting

Updated after each game

Data structure

$$X = [X_1, X_2, X_3, X_4, X_5, X_6, X_7]$$

- 1. Advanced Stat
- 2. Four Factors
- 3. Misc. Stats
- 4. Scoring
- 5. Opponent
- 6. Shooting

Each matrix is a $30 \times n_i$ Example :

Traditional Stats

- 2-pt / 3-pt Successful
- 2-pt / 3-pt Unsuccessful
- Free Throw Successful / Unsuccessful
- Defensive / Offensive Rebounds
- Assists
- Turnovers
- Steals
- Dunks
- Blocks Committed / Received
- Fouls Committed / Received

Analysis plan

- Step 1: PCA for the Traditional Stats:
 - 2-pt / 3-pt Successful
 - 2-pt / 3-pt Unsuccessful
 - Free Throw Successful / Unsuccessful
 - Defensive / Offensive Rebounds
 - Assists
 - Turnovers
 - Steals
 - Dunks
 - Blocks Committed / Received
 - Fouls Committed / Received
- Step 2: Multiple factor analysis

Can we find patterns among these indicators ??

Example: traditional performance indicator in NBA

What do we want to do?

- Develop a performance score that will tell us who are the "best teams" (in terms of performance, i.e % Win).
- 2. Multivariate performance score.
- 3. Analysis in two steps:
 - 1. First step: PCA for Traditional Stats
 - 2. Second step: multiple factor analysis for all data (data integration).

MFA: data structure

$$X = \left[X_1 \mid X_2 X_3 X_4 X_5 X_6 X_7\right]$$

Set of the traditional stats indicators

- 3-pt Percentage
- Free Throws Percentage
- Defensive Rebounds
- Offensive Rebounds
- Assists
- Turnovers
- Steals
- Field Goals Percentage
- Blocks Committed / Received
- Fouls Committed / Received

- Advanced Stats
- Four Factors
- Misc. Stats
- Scoring
- Opponent
- Shooting

Multiple factor analysis

- All variables standardized
- Normalize each data matrix
- Concatenate all normalized datasets and perform PCA on the combined weighted data
 - Factor scores describe compounds
 - Factor loadings describe variables

Step 1:

PCA for the leading performance indicator

Leading Performance Indicators:

- 3-pt Percentage
- Free Throws Percentage
- Defensive Rebounds
- Offensive Rebounds
- Assists
- Turnovers
- Steals
- Field Goals Percentage
- Blocks Committed / Received
- Fouls Committed / Received

PCA:

To convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables

PCA for the leading performance indicator

- Clear cluster of teams based on PC1
- Similar pattern was detected by Hierarchical clustering
- Indicators:
 - AST
 - X3PP
 - FGP

Hierarchical clustering

Cluster Dendrogram

hclust (*, "average")

PCA for the leading performance indicator

Performance score

First PC versus % win.

Correlation.

Performance score:

$$PC_1 = \sum \ell_j X_j$$

Data integration: MFA

$$X = \left[X_1 \mid X_2 X_3 X_4 X_5 X_6 X_7\right]$$

traditional stats indicators

- Advanced Stats
- Four Factors
- Misc. Stats
- Scoring
- Opponent
- Shooting

MFA: factor loadings (variables)

- Traditional Stats with high loadings
- Some new indicators were discovered

MFA: factor scores (teams)

 Similar set of teams with high factor scores

Multivariate performance score

$$MPS(team_k) = \sum_{i} \ell_{ij} X_{ij}$$

Biclustering using FABIA

FABIA with one factor (BC)

Applying FABIA: data structure + model

Aim:

- 1. Find a group of teams that share patterns in performance indicators.
- 2. Correlation to overall performance.

Data

$$\mathbf{X} = \left(egin{array}{ccccc} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ & & & \ddots & & \ddots \\ & & & \ddots & & \ddots \\ & & & \ddots & & \ddots \\ X_{G1} & X_{G2} & \dots & X_{Gn} \end{array}
ight) .$$

Performance indicators

The model

$$\mathbf{X} = \sum_{i=1}^{p} \lambda_i \gamma_i^T + \Upsilon,$$

BC1 FABIA: factor loadings

BC1 FABIA: factor scores

Overall performance score

FABIA and MFA

Software

Part 4.4

Enrichment of Gene Expression Modules using Multiple Factor Analysis and Biclustering

Motivation

- A bicluster contains
 - genes that are
 - coordinately regulated
 - under a subset of conditions

Gene module

- Summarized expression profiles of these genes
- Many biclusters -> many possible gene modules

Motivation

A bicluster contains

genes that are not only

coordinately regulated

under a subset of conditions

but are also mostly functionally coherent.

Gene module

 Summarized expression profiles of these genes that act in concert to carry out a specific function

Motivation

- A bicluster contains
 - genes that are not only
 coordinately regulated
 under a subset of conditions
 but are also mostly functionally coherent.
- Availability of a subset of "lead" genes/compounds
 - Genes related to a phenotype of interest
 - Genes that are known to be part of a biological pathway
 - Some hypothesis generated from previous experiments

Aim

To enrich this set of M "lead" genes

$$\mathbf{X}_{M} = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ & & & \ddots & & \\ X_{M1} & X_{M2} & \dots & X_{Mn} \end{pmatrix}$$

Idea

- Run biclustering algorithm
 - Search for the bicluster that contains most of the genes in the list of "lead" genes
 - Not necessarily the first (ranking) bicluster
 - Dependent on the sparsity parameter, etc.

- MFA
 - find links between datasets (presence of common

```
> install.packages("FactoMineR")
> library(FactoMineR)
```

MFA

- All variables standardized
- Normalize each data matrix
- Concatenate all normalized datasets and perform PCA on the combined weighted data
 - Factor scores describe compounds
 - Factor loadings describe variables

MFA

- All variables standardized
- Normalize each data matrix
- Concatenate all normalized datasets and perform PCA on the combined weighted data
 - Compound scores
 - Gene loadings

> loadings1 <- resMFA\$quanti.var\$coord[,1]</pre>

> scores1 <- resMFA\$ind\$coord[,1]</pre>

MFA

$PCA(X_M)$

 a one factor solution in a factor analysis model will capture a substantial proportion from the total variability of the genes

Motivating Data: mGlu2 project

- n= 62 compounds
- G = 566 genes
- M=4 genes that are known to be biologically related and are linked to the phenotype of interest.

Scree plots

- One known structure in X_M
- Escoufier's Rv coefficient = 26%

(a) scree plot for \mathbf{X}_M

(b) scree plot for $\mathbf{X}_{\bar{M}}$

Data Contribution to the main factors

Data	Factor 1	Factor 2
\mathbf{X}_{M}	76.48	0.68
$\mathbf{X}_{ar{M}}$	23.52	99.32

MFA 1 Gene loadings

Fabia Bicluster 2

- Absence of lead genes
- Fabia searches only for correlated profiles across a subset of samples
- MFA uses the similarity of gene profiles across all compounds.
- As a result, some genes discovered by MFA are not part of the fabia bicluster and vice versa

MFA 1 Compound Scores

Gene Module Summarization – one

Fabia Bicluster 2

FABIA BC 2 genes

- Absence of lead genes
- Run biclustering
- explore interesting biclusters
- Lead genes are in Fabia bicluster 2

Fabia Bicluster 2

FABIA BC 2 genes

- Absence of lead genes
- Fabia → correlated profiles across a subset of samples
- MFA → similarity of gene profiles across all compounds
 - some genes discovered by MFA are not part of the fabia bicluster and vice versa

MFA 1

MFA 1 genes

- Absence of lead genes
- Fabia → correlated profiles across a subset of samples
- MFA → similarity of gene profiles across all compounds
 - some genes discovered by MFA are not part of the fabia bicluster and vice versa

Gene loadings and compound scores

Gene Module

MFA 1 genes

- Absence of lead genes
- Fabia → correlated profiles across a subset of samples
- MFA → similarity of gene profiles across all compounds
 - some genes discovered by MFA are not part of the fabia bicluster and vice versa

 The underlying latent structure is almost identical

Part 4.5

Drug Discovery (II)
Ranking of BCs

Motivation

- how to determine which biclusters are most informative and rank them on the basis of their importance?
 - Data-driven, statistical measure (information content (FABIA))
 - biological context gene ontology annotations or other literature-based enrichment analysis

Idea for early drug discovery

- rank based on another source of information, (e.g. the chemical structure, target predictions, HCS, etc)
- investigate whether compounds in a bicluster are also structurally similar
- Similar activity and similar structure → desirable compound set!

Biclustering Results

	nCompounds	nGenes
1	1	63
2	4	50
3	18	41
4	6	53
5	11	28
6	2	12
7	5	26
8	4	10
9	10	2
10	21	1

Spearman correlation of similarity scores

Ranking statistics

BC Ranking based on median similarity scores (C)

Boxplot of Compound Similarity Scores

other statistics

BC	mean	median	sd	range	$\overline{\text{CV}}$
2	0.52	0.50	0.17	0.49	0.33
3	0.17	0.14	0.16	0.85	0.91
4	0.45	0.44	0.14	0.49	0.32
5	0.17	0.15	0.12	0.60	0.74
6	0.10	0.10		0.00	
7	0.39	0.37	0.13	0.42	0.33
8	0.24	0.22	0.15	0.34	0.62
9	0.31	0.33	0.19	0.65	0.61

Similarity Scores of BC2 and BC4

Similarity Scores of BC7 and BC8

Discussion

 Not ranking per se but to prioritize more interesting biclusters using extra information available

• Software: bcRank

Summary

Piet Mondrian, Tate modern.

Perualila et al, 2016

Biclustering: local patterns to understand the big picture. Many areas of applications.

Many methods.

Software.