CS3102 Theory of Computation

www.cs.virginia.edu/~njb2b/cstheory/s2020

Warm up:

Is it harder to TA a course, or to take it?

Logistics

- Quiz and exercise 8 released
- Quiz due Friday April 24 at 11:59pm
- Exercise due Tuesday April 28 11:59pm

Polynomial Time vs Exponential Time

- Polynomial Time: $P = \bigcup_{c \in \{1,2,3,...\}} n^c$
 - Shortest Path: linear in the size of the graph, if the graph is size n, then shortest path took $O(n^1)$
 - 2-SAT: if the formula is of size n, then 2-SAT takes time $O(n^3)$
 - P is a complexity class that means "any problem in $TIME(O(n^c))$ for a constant c"
- Exponential Time: $EXP = \bigcup_{c \in \{1,2,3,\dots\}} 2^{n^c}$
 - EXP is a complexity class that means "any problem in $TIME\left(O(2^{n^c})\right)$ for a constant c"
 - $P \subseteq EXP$
 - 3-SAT and longest path belong to EXP, but we don't know if they belong to P
- A strange pattern:
 - Most "natural" problems are either done in small-degree polynomial (e.g. n^2) or exponential time

Tractability

- Tractable:
 - Feasible to solve in the "real world"
- Intractable:
 - Infeasible to solve in the "real world"
- Whether a problem is considered "tractable" or "intractable" depends on the use case
 - For theory: Tractable = polynomial time, Intractable = Exponential time

P vs NP

- The class P:
 - Problems that can be solved in polynomial time by a "standard" Turing machine:
 - $P = \bigcup_{c \in \{1,2,3,\dots\}} TIME(n^c)$
- The class NP:
 - Problems that can be solved in polynomial time by a nondeterministic Turing machine:
 - Correctness of a solution can be verified in polynomial time given a "witness"

Nondeterminism

Driving to a friend's house Friend forgets to mention a fork in the directions Which way do you go?

$P \subseteq NP$

Why?

- Deterministic machines are a "special case" of non-deterministic machines that don't use their "power"
- Any Turing machine that is a polynomial-time deterministic machine is also a polynomial-time non-determinstic machine

Last class

- Shortest Path = "Linear time " O(|V| + |E|)
 - Belongs to P
 - Belongs to NP
- Longest Path = "exponential time" O(|V|!)
 - Belongs to NP
- 3-SAT = "exponential time" 2^n
 - Belong to NP
- 2-SAT = "polynomial time" n^3
 - Belongs to P
 - Belongs to NP

Longest Path $\in NP$?

- Longest Path: Given a graph G, start node s, end node t, and a number n, is there a simple path from s to t of length at least n?
- Solving with a non-deterministic Turing Machine:
 - At each node, non-deterministically go to each of its neighbors. If a path (explored in parallel using mondeterminism) reaches t and has length $\geq n$, return True.
 - Time: |*V*|

Longest Path $\in NP$?

- Longest Path: Given a graph G, start node s, end node t, and a number n, is there a simple path from s to t of length at least n?
- ^ Decision problem
 - Is there a path of length |V|?
- Verifying a witness:
 - Witness: an example path.
 - To verify: check that the path is a valid path from s to t, check that it is at least length n

$3-SAT \in NP$?

- Given a 3-CNF formula (logical AND of clauses, each an OR of 3 variables), Is there an assignment of true/false to each variable to make the formula true?
- Solving with a non-deterministic Turing Machine:
 - Try all assignments in parallel using non-determinism.
 Evaluate the formula for each assignment
 - Time:O(n) for n variables

$3-SAT \in NP$?

- Given a 3-CNF formula (logical AND of clauses, each an OR of 3 variables), Is there an assignment of true/false to each variable to make the formula true?
- Verifying a witness:
 - Witness: an example assignment
 - To verify: Check that all variables have a T/F value, check that the formula evaluates to True. O(n) for n variables.

Overview

Intuitive Restatement of P vs NP

- Are the problems that are easy to verify also easy to solve?
 - Cure cancer
 - Manufacture antibodies for COVID-19
 - Protein folding is in NP
- Most people believe: No...
- Why do we care?

How do we show it?

- To show $P \subset NP$
 - Show that there is at least one NP problem that has no polynomial time standard Turing machine
 - Why is this hard?
- To show P = NP
 - Show that EVERY NP problem will also have a polynomial time standard Turing machine
 - Why is this hard?
- Solution: Reductions!

Reductions so far

1) If This is impossible Opening a door

Solution for \boldsymbol{A} Keg cannon battering ram

2) And this is

Reductions so far

3) Then this is

Opening a door

Solution for AKeg cannon battering ram

2) And this is

Solution for **B** Alcohol, wood, matches

Polynomial Time Reductions

1) If this is slow

Opening a door

Solution for AKeg cannon battering ram

2) And this is fast

Aim duct at door, insert keg Put fire under the Keg Reduction

Solution for **B** Alcohol, wood, matches

Polynomial Time Reductions

3) Then this is fast

Solution for \boldsymbol{A} Keg cannon battering ram

2) And this is fast

How does this help?

- If we can show that problem A is slow, then anything A "efficiently" reduces to is also slow
- If we can show that problem B is fast, then anything that "efficiently" reduces to B is also fast
- If A "efficiently" reduces to B and B "efficiently" reduces to A, then they're either both fast or both slow
- Idea: Find a group a problems, all of which efficiently reduce to the others. If you can answer "is this efficiently solvable" for any of them, the answer is the same for all of them.

NP-Complete

- This class of "all are efficient or else none of them are" problems
- Problems that are within class NP
- Are also within class NP Hard
 - -NP-Hard: class of problems such that you can "efficiently" reduce ANY NP problem to them

P vs NP, Formally

- "Efficient" means "(deterministic)polynomial time"
- $A \ge_P B$ means "A polynomial-time reduces to B"
 - A polynomial time solver for B allows for a polynomial time solver for A
 - There is a polynomial time reduction from A to B (the pink box can be done in polynomial time)
- NP Hard = The set of all problems B such that for every problem $A \in NP$, $A \ge_P B$
 - All problems that are "at least as hard as any NP problem"
- $NP Complete = NP \cap NP Hard$
 - "The Hardest problems in NP"

NP-Hard

2) And this is anything in

Opening a door

Solution for \boldsymbol{A} Keg cannon battering ram

3) There's a way to do this

in polynomial time

Aim duct at door, insert keg

Put fire under the Keg

Reduction

1) If this is NP - Hard

Solution for **B** Alcohol, wood, matches

手

Why NP-Hard is helpful

4) Anything in *NP* can be done in polynomial time

Solution for \boldsymbol{A} Keg cannon battering ram

Aim duct at door, insert keg

Put fire under the Keg

Reduction

1) If this is NP - Hard

Solution for **B** Alcohol, wood, matches

NP-Completeness

- $NP Complete = NP \cap NP Hard$
 - "The Hardest problems in NP"
- If some NP Complete problem belongs to P:
 - Since it's NP-Hard, it is the only missing piece in a polynomial time solution to every NP problem
 - -P=NP
- If some NP Complete problem does not belong to P
 - Since it's NP, we have an example of an NP problem not in P
 - $-P \neq NP$ (and none of the NP-Complete problems have polynomial time solutions)

Showing NP — Completeness

- Show that the problem belongs to NP
 - Give a polynomial time verifier
- Show that the problem belongs to NP Hard
 - Show that EVERY NP problem polynomial-time reduces to it
 - Show that some known NP Hard problem reduces to it (why?)

"Chaining" Reductions

Showing NP-Hard

 $A \geq_P B$ and $B \geq_P C$ means $A \geq_P C$

Showing NP-Hardness

- To show C is NP-Hard, reduce a known NP-Hard problem to it.
- The one thing missing?
- An already-known NP-Hard problem

3-SAT is NP-Hard

- Cook-Levin Theorem:
 - Any non-deterministic polynomial time Turing machine, input pair can be converted to a 3-CNF formula such that the formula is satisfiable if and only if the Turing machine accepts the input
 - You can use a 3-CNF formula to simulate a nondeterministic Turing machine in polynomial time

Another NP-Complete Problem 4-SAT: given a 4-CNF formula, is it satisfiable?

Show 4-SAT belongs to NP.

2-SAT: Is this 2-CNF formula satisfiable?

3-SAT: Is this 3-CNF formula satisfiable?

4-SAT: is this 4-CNF forumla satisfiable?

Give a boolean formula in CNF with exactly 4 variables per clause, is that formula satisfiable?

Verifying a solution in polynomial time:

If I have some example assignment of T/F to each variable, determine whether that was a satisfying assignment.

How: Plug in T/F for each variable, evaluate the formula, check if it's True.

Another NP-Complete Problem 4-SAT: given a 4-CNF formula, is it satisfiable?

Show 4-SAT belongs to NP-Hard.

How do we show this? Show that some NP-Hard problem reduces to it (in polynomial time).

Reduce 3-SAT to 4-SAT in polynomial time.

We want to show that solving 4-SAT allows us to solve 3-SAT, use a 4-SAT solver to solve 3-SAT

Add a variable that can't be true to each clause

 $(f \lor x \lor y \lor z) \land (f \lor x \lor \overline{y} \lor y) \land (f \lor u \lor y \lor \overline{z}) \land (f \lor z \lor \overline{x} \lor u) \land (f \lor \overline{x} \lor \overline{y} \lor \overline{z}) \land (\overline{f} \lor \overline{f} \lor \overline{f})$

CAUTION

Tempting (but incorrect) argument: We know 2-SAT is P, 3-SAT is NP-Hard. More variables per clause makes the problem more difficult (since we need to solve 3-SAT in order to solve 4-SAT), so 4-SAT must also be NP-Hard

Problem? "we need to solve 3-SAT in order to solve 4-SAT" is hard to defend.

Instead use a reduction. "In the time it takes to solve 4-SAT, we could have solved 3-SAT"

Why "A is necessary for B" is dangerous

Map Coloring: Given a geographical map of states/countries, can I give each region a color so that no bordering regions share their colors?

1-colorable? Trivial (yes iff no bordering regions)

2-colorable? Easy (BFS works)

3-colorable? NP-Hard

4-colorable? Trivial (answer is always yes)

Procedure for showing $A \leq_{p} B$

- 1. Start with an instance x_a of problem A
- 2. Find an algorithm R to convert x_a into x_b and instance of B
- 3. Show that R takes polynomial time
- 4. Show that if $B(x_b) = 1$ then $A(x_a) = 1$
- 5. Show that if $B(x_b) = 0$ then $A(x_a) = 0$
 - 1. More often: if $A(x_a) = 1$ then $B(x_b) = 1$ (i.e. contrapositive)

3-SAT \leq_P Longest Path_{How long is the}

3-SAT

 $(x \lor y \lor z) \land (x \lor \bar{y} \lor y)$ $\land (u \lor y \lor \bar{z})$ $\land (z \lor \bar{x} \lor u) \land (\bar{x} \lor \bar{y}$ $\lor \bar{z})$

Solution for 3-SAT

Solution exists if and only if there is a "long enough" path

longest simple

Get the length of the longest path

Procedure for showing 3-SAT \leq_p Longest Path

- 1. Start with a 3-CNF formula F
- 2. Find an algorithm R to convert F into a graph, start node, end node, G, S, t
- 3. Show that R takes polynomial time
- 4. Show that if 3SAT(F) = 1 then $LP(G, s, t) \ge n \cdot m + n + 3 \cdot m$
- 5. Show that if $LP(G, s, t) \ge n \cdot m + n + 3 \cdot m$ then 3SAT(F) = 1

Converting 3-SAT to longest path

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$

Make one "red chain" for each variable and negation, chain length is number of clauses

Idea: To assign x = True, take the low path

Now we've visited each "False" node once

Assign Assign

We can't visit those again and have a simple path

Converting 3-SAT to longest path

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$

Make 2 nodes per clause. You can only get from the first to the second via a satisfying variable's node

That path will only be simple if that variable was True


```
n = \text{#variables}
m = \text{#clauses}
```

How Long Is the Longest Path?

- Start from the "assign x" node, end with "clause m done"
- If the formula is satisfiable:
 - Pick the chains to assign true/false to each variable in accordance with a satisfying assignment
 - m variables per chain, n chains, plus one more node per variable
 - $n \cdot m + n$ nodes total
 - Traverse through each clause, picking an unvisited node (meaning that variable was true)
 - *m* clauses, each with 3 nodes
 - $3 \cdot m$ nodes total

3-SAT \leq_P Longest Path_{How long is the}

3-SAT

 $(x \lor y \lor z) \land (x \lor \bar{y} \lor y)$ $\land (u \lor y \lor \bar{z})$ $\land (z \lor \bar{x} \lor u) \land (\bar{x} \lor \bar{y}$ $\lor \bar{z})$

Solution for 3-SAT

If it is, the formula was satisfiable

longest path

What can we conclude?

- If we found a polynomial time solution for Longest Path:
 - This procedure is a polynomial time solution for 3SAT

- If we somehow knew that it was impossible to find a polynomial time solution for 3SAT
 - We could never find a polynomial time solution for Longest Path