WSI

Laboratorium 2

Bartosz Czerwiński - 331165

$31~\mathrm{marca}~2025$

Spis treści

1.	$\mathbf{Wstep} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	2
2.	Rozwiązania trywialne i losowe	2
3.	Rozwiązanie eksperckie	3
4.	Parametry działającego algorytmu	3
5.	Badanie wpływu wielkości populacji na działanie algorytmu	4
6.	Badanie wpływu prawdopodobieństwa mutacji na działanie algorytmu	5
7.	Badanie wpływu prawdopodobieństwa krzyżowania na działanie algorytmu	6
8.	Testy dla najlepszych wartości parametrów	7
9.	Wnioski	7

1. Wstęp

Celem laboratorium było zaimplementowanie algorytmu genetycznego, z wykorzystaniem mechanizmów selekcji ruletkowej, jednopunktowego krzyżowania, mutacji oraz sukcesji generacyjnej. Algorytm miał za zadanie optymalizować rozmieszczenie obiektów na planszy 20x20, aby zmaksymalizować liczbę punktów zgodnie z funkcją oceny.

2. Rozwiązania trywialne i losowe

Jako rozwiązanie trywialne zastosowano wstawianie obiektów na co drugim polu. Takie ułożenie pozwoliło na uzyskanie wyniku 200:

Rys. 1: Rozwiązanie trywialne

Dla rozwiązania losowego osiągnięto średni wynik w okolicach 185.

Ze względu na to, że na każdy obiekt mogą przypadać maksymalnie 4 pola punktowane, jako ograniczenie górne można przyjąć wartość: $\frac{4}{5}\cdot 400=320.$

3. Rozwiązanie eksperckie

Po krótkiej analizie problemu zostało stworzone rozwiązanie, którego celem jest jak najlepsze, regularne rozwięzanie obiektów i uzyskanie jak najlepszego wyniku. Takie rozwiązanie daje 290 punktów:

Rys. 2: Rozwiązanie eksperckie

4. Parametry działającego algorytmu

Prawidłowy wynik uzyskano dla hiperparametrów:

- $\bullet\,$ Wielkość populacji: 300
- Prawdopodobieństwo mutacji: 0.05
- Prawdopodobieństwo krzyżowania: 0.8
- FES (liczba ewaluacji funkcji celu) 4 000 000

Takie ustawienie początkowe algorytmu pozwoliło uzyskiwać wyniki w okolicach 250.

5. Badanie wpływu wielkości populacji na działanie algorytmu

Testy przeprowadzone zostały dla populacji o wielkościach: {2, 4, 6, 8, 10, 12, 20, 50, 80, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 4000, 8000, 10000}. Zaobserwowano, że najlepsze wyniki uzyskiwano dla mniejszych populacji. Najlepszy wynik, jaki udało się uzyskać, to 270 dla populacji dwóch osobników:

Rys. 3: Najlepszy wynik algorytmu ewolucyjnego dla testowanych wielkości populacji

Rys. 4: Wynik algorytmu w zależności od wielkości populacji

6. Badanie wpływu prawdopodobieństwa mutacji na działanie algorytmu

Testy przeprowadzone zostały dla prawdopodobieństw mutacji: {0.001, 0.003, 0.005, 0.008, 0.01, 0.03, 0.05, 0.08, 0.1, 0.2, 0.3, 0.5, 0.8, 0.9, 1}. Zaobserwowano, że najlepsze wyniki uzyskiwano dla małych prawdopodobieństw mutacji. Najlepszy wynik, jaki udało się uzyskać, to 283 dla prawdopodobieństwa mutacji 0.001:

Rys. 5: Najlepszy wynik algorytmu ewolucyjnego dla testowanych prawdopodobieństw mutacji

Rys. 6: Wynik algorytmu w zależności od prawdopodobieństwa mutacji

7. Badanie wpływu prawdopodobieństwa krzyżowania na działanie algorytmu

Testy przeprowadzone zostały dla prawdopodobieństw krzyżowania: {0.001, 0.003, 0.005, 0.008, 0.01, 0.03, 0.05, 0.08, 0.1, 0.2, 0.3, 0.5, 0.8, 0.9, 1}. Zaobserwowano, że najlepsze wyniki uzyskiwano dla małych prawdopodobieństw krzyżowania. Najlepszy wynik, jaki udało się uzyskać, to 257 dla prawdopodobieństw krzyżowania: {0.001, 0.005, 0.008}

Rys. 7: Najlepszy wynik algorytmu ewolucyjnego dla testowanych prawdopodobieństw mutacji

Rys. 8: Wynik algorytmu w zależności od prawdopodobieństwa krzyżowania

8. Testy dla najlepszych wartości parametrów

Na końcu przeprowadzono testy dla wszystkich kombinacji ze zbiorów: wielkość populacji - $\{2, 4, 6\}$; prawdopodobieństwo mutacji - $\{0.001, 0.003, 0.005\}$; prawdopodobieństwo krzyżowania - $\{0.1, 0.2, 0.3\}$. Wybrano inne prawdopodobieństwa krzyżowania, gdyż według przeprowadzonych eksperymentów są one niewiele gorsze od bardzo małych wartości, a zgodnie z teorią wartości te powinny być dość duże.

Najlepszy uzyskany wynik to 290, dla parametrów: wielkość populacji - 6; prawdopodobieństwo mutacji - 0.001; prawdopodobieństwo krzyżowania: 0.3:

Rys. 9: Najlepszy wynik algorytmu ewolucyjnego

9. Wnioski

Odpowiednie testy pozwoliły na dobranie najlepszych hiperparametrów i uzyskanie za pomocą algorytmu ewolucyjnego wyniku tak dobrego jak rozwiązanie eksperckie