GEOMETRIA ANALÍTICA - SEMANA 5 PRODUTO VETORIAL

Professor: Victor M. Cunha

Instituto de Matemática e Estatística (IME) - UFBA

ABRIL 2022

- 1 Definição do Produto Vetorial
- 2 Cálculo do Produto Vetorial
- 3 Interpretação Geométrica
- 4 Propriedades
- 5 Produto Misto

- 1 Definição do Produto Vetorial
- 2 Cálculo do Produto Vetorial
- 3 Interpretação Geométrica
- 4 Propriedades
- 5 Produto Misto

■ Vimos que, dados os vetores $\vec{u}, \vec{v} \in \mathbb{R}^3$, o funcional $\ell \colon \mathbb{R}^3 \to \mathbb{R}$ definido por:

$$\ell(\vec{w}) = \det(\vec{u}, \vec{v}, \vec{w})$$

é um funcional linear.

■ Ora, dada a dualidade entre funcionais lineares e vetores, deve existir um vetor $\vec{n} \in \mathbb{R}^3$ tal que

$$\ell(\vec{w}) = \det(\vec{u}, \vec{v}, \vec{w}) = \vec{n} \cdot \vec{w}, \quad \forall \vec{w} \in \mathbb{R}^3$$

- Note que este vetor não pode depender de \vec{w} , dado que a igualdade deve valer para todo $\vec{w} \in \mathbb{R}^3$. O vetor \vec{n} , portanto, depende apenas de \vec{u} e \vec{v} .
- Este vetor \vec{n} é denominado *produto vetorial* de \vec{u} e \vec{v} , e representado por:

$$\vec{n} = \vec{u} \times \vec{v}$$

Exercícios

- Considere os vetores $\vec{u} = (1, 1, 0)$ e $\vec{v} = (-1, 2, -2)$.
 - ► Calcule $det(\vec{u}, \vec{v}, \vec{w})$, onde $\vec{w} = (3, 0, -1)$.
 - ightharpoonup Calcule $det(\vec{u}, \vec{v}, \vec{w})$, onde $\vec{w} = (w_1, w_2, w_3)$.
 - ightharpoonup Calcule $\vec{u} \times \vec{v}$.
 - ► Calcule $det(\vec{u}, \vec{v}, \vec{w})$, onde $\vec{w} = (-2, 1, -1)$.
- Considere os vetores $\vec{u} = (u_1, u_2, 0)$ e $\vec{v} = (v_1, v_2, 0)$. Mostre que $\vec{u} \times \vec{v} = \begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} \vec{k}$.
- Dados $\vec{u}, \vec{v} \in \mathbb{R}^3$ dois vetores colineares. Mostre que $\vec{u} \times \vec{v} = \vec{0}$.
- Dados $\vec{u}, \vec{v} \in \mathbb{R}^3$, mostre que que $(\vec{u} \times \vec{v}) \cdot \vec{u} = (\vec{u} \times \vec{v}) \cdot \vec{v} = 0$.
- Dados $\vec{u}, \vec{v} \in \mathbb{R}^3$, mostre que $\vec{v} \times \vec{u} = -\vec{u} \times \vec{v}$
- Dados $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$ e $\alpha \in \mathbb{R}$, mostre que $\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$ e $\vec{u} \times (\alpha \vec{v}) = \alpha (\vec{u} \times \vec{v})$.

- 1 Definição do Produto Vetorial
- 2 Cálculo do Produto Vetorial
- 3 Interpretação Geométrica
- 4 Propriedades
- 5 Produto Misto

Cálculo do Produto Vetorial

■ Dados \vec{u} , \vec{v} e \vec{w} , sabemos que o funcional linear $\ell(\vec{w}) = det(\vec{u}, \vec{v}, \vec{w}) = det(\vec{w}, \vec{u}, \vec{v})$ pode ser calculado por:

$$\ell(\vec{w}) = \begin{vmatrix} w_1 & u_1 & v_1 \\ w_2 & u_2 & v_2 \\ w_3 & u_3 & v_3 \end{vmatrix} = w_1 \begin{vmatrix} u_2 & v_2 \\ u_3 & v_3 \end{vmatrix} - w_2 \begin{vmatrix} u_1 & v_1 \\ u_3 & v_3 \end{vmatrix} + w_3 \begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix}$$

■ Logo, sendo $\vec{n} = \vec{u} \times \vec{v}$, como $\ell(\vec{w}) = \vec{n} \times \vec{w}$, para todo $\vec{w} \in \mathbb{R}^3$, devemos ter:

$$n_1 = \begin{vmatrix} u_2 & v_2 \\ u_3 & v_3 \end{vmatrix}$$
 $n_2 = - \begin{vmatrix} u_1 & v_1 \\ u_3 & v_3 \end{vmatrix}$ $n_3 = \begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix}$

■ Temos então uma fórmula para encontrar as componentes de \vec{n} a partir das componentes de \vec{u} e \vec{v} .

Cálculo do Produto Vetorial

■ Como cada componente n_i do produto vetorial corresponde ao que multiplica w_i na expressão $det(\vec{w}, \vec{u}, \vec{v})$, a seguinte fórmula é comumente utilizada para o cálculo de \vec{n} :

$$\vec{n} = \begin{vmatrix} \vec{i} & u_1 & v_1 \\ \vec{j} & u_2 & v_2 \\ \vec{k} & u_3 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & v_2 \\ u_3 & v_3 \end{vmatrix} \vec{i} - \begin{vmatrix} u_1 & v_1 \\ u_3 & v_3 \end{vmatrix} \vec{j} + \begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} \vec{k}$$

- Note que não faz sentido colocar vetores como coeficientes de uma matriz. \vec{i} , \vec{j} e \vec{k} neste determinante agem apenas como símbolos, para identificarem cada componente de \vec{n} .
- Esta expressão deve ser interpretada apenas como um método prático para calcular o produto vetorial $\vec{n} = \vec{u} \times \vec{v}$.
- Como o determinante de uma matriz é igual ao determinante de sua transposta, é comum encontrar também esta expressão da seguinte forma:

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

- Dados $\vec{u} = (1, 2, 1)$ e $\vec{v} = (-2, 0, -1)$.
 - ► Calcule $det(\vec{u}, \vec{v}, \vec{w})$, onde $\vec{w} = (0, -1, 3)$.
 - ightharpoonup Calcule $\vec{u} \times \vec{v}$.
 - ► Calcule $det(\vec{u}, \vec{v}, \vec{w})$, onde $\vec{w} = (2, 3, -4)$.
- Dados $\vec{u} = (2, -1, 3)$ e $\vec{v} = (1, 1, -1)$, calcule $\vec{u} \times \vec{v}$ e $\vec{v} \times \vec{u}$.
- Dados $\vec{u}=(1,0,-1)$, $\vec{v}=(0,-2,1)$ e $\vec{w}=(3,1,0)$, calcule $(\vec{u}\times\vec{v})\times\vec{w}$ e $\vec{u}\times(\vec{v}\times\vec{w})$.
- Dados $\vec{u}=(1,0,-1)$ e $\vec{n}=(2,-1,2)$, encontre $\vec{v}\in\mathbb{R}^3$ perpendicular à \vec{u} tal que $\vec{u}\times\vec{v}=\vec{n}$.
- Sejam \vec{u} e \vec{v} dois vetores do plano yz. Mostre que $\vec{u} \times \vec{v}$ é paralelo ao eixo x.

- 1 Definição do Produto Vetorial
- 2 Cálculo do Produto Vetorial
- 3 Interpretação Geométrica
- 4 Propriedades
- 5 Produto Misto

Interpretação Geométrica

- Veremos agora como interpretar geometricamente o produto vetorial $\vec{n} = \vec{u} \times \vec{v}$.
- Vimos que caso \vec{u} e \vec{v} sejam colineares, $det(\vec{u}, \vec{v}, \vec{w}) = 0$ para todo $\vec{w} \in \mathbb{R}^3$ e portanto $\vec{n} = \vec{u} \times \vec{v} = \vec{0}$.
- Consideremos agora o caso de \vec{u} e \vec{v} Linearmente Independentes:
- Como $det(\vec{u}, \vec{v}, \vec{u}) = det(\vec{u}, \vec{v}, \vec{v}) = 0$, temos $\vec{n} \cdot \vec{u} = \vec{n} \cdot \vec{v} = 0$.
- Deste modo, o produto vetorial $\vec{n} = \vec{u} \times \vec{v}$ é perpendicular à \vec{u} e à \vec{v} .
- Note que, como \vec{u} e \vec{v} não são colineares, a partir deste perpendicularismo a direção de \vec{n} fica definida.
- Para o sentido, note que $det(\vec{u}, \vec{v}, \vec{n}) = \vec{n} \cdot \vec{n} = ||\vec{n}||^2 > 0$. Logo, $\{\vec{u}, \vec{v}, \vec{n}\}$ formam uma base de orientação positiva.
- \blacksquare O sentido de \vec{n} pode então ser obtido a partir de \vec{u} e \vec{v} pela regra da mão-direita.

Interpretação Geométrica

1

Interpretação Geométrica

■ Finalmente, para a norma de \vec{n} , comparamos as expressões para os módulos de $det(\vec{u}, \vec{v}, \vec{w})$ e $\vec{n} \cdot \vec{w}$:

$$|\det(\vec{u}, \vec{v}, \vec{w})| = ||\vec{u}|| \, ||\vec{v}|| \, ||\vec{w}|| \, sen \, \theta |cos \, \psi| \qquad |\vec{n} \cdot \vec{w}| = ||\vec{n}|| \, ||\vec{w}|| \, |cos \, \varphi|$$

- Como \vec{n} é perpendicular à \vec{u} e \vec{v} , o ângulo formado entre \vec{w} e a direção perpendicular à \vec{u} e \vec{v} é igual (ou suplementar) ao formado entre \vec{w} e \vec{n} , e $\cos \psi = |\cos \varphi|$.
- Logo, a partir de $|det(\vec{u}, \vec{v}, \vec{w})| = |\vec{n} \cdot \vec{w}|$, temos:

$$\|\vec{n}\| = \|\vec{u}\| \, \|\vec{v}\| \operatorname{sen} \theta$$

- Ou seja, $\|\vec{u} \times \vec{v}\|$ é igual à área do paralelogramo formado por \vec{u} e \vec{v} .
- Podemos interpretar $|det(\vec{u}, \vec{v}, \vec{w})| = |\vec{n} \cdot \vec{w}|$ como o volume de um paralelepípedo sendo igual ao produto da área da base, dada por $||\vec{n}||$, pela altura, dada pela projeção de \vec{w} sobre \vec{n} : $|proj_{\vec{n}} \vec{w}| = \frac{|\vec{n} \cdot \vec{w}|}{||\vec{w}||}$.

13

- Calcule a área do triângulo ABC, onde A(1,2,1), B(-2,1,-1) e C(1,-1,1).
- Sejam $\vec{u} = (-1, 2, 2)$ e v = (0, -1, -2), encontre um vetor unitário \vec{w} perpendicular à \vec{u} e à \vec{v} .
- Dados $\vec{u}, \vec{v} \in \mathbb{R}^3$ vetores não-colineares. Mostre que $E = \{\vec{u}, \vec{u} \times \vec{v}, \vec{u} \times (\vec{u} \times \vec{v})\}$ é uma base ortogonal de orientação positiva do \mathbb{R}^3 .
- Seja $E = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ uma base ortonormal de orientação positiva. Mostre que $\vec{e}_1 \times \vec{e}_2 = \vec{e}_3, \ \vec{e}_2 \times \vec{e}_3 = \vec{e}_1 \ e \ \vec{e}_3 \times \vec{e}_1 = \vec{e}_2.$
- Seja $E=\{\vec{e}_1,\vec{e}_2,\vec{e}_3\}$ uma base ortogonal de orientação positiva, com $\|\vec{e}_1\|=2$, $\|\vec{e}_2\|=1$ e $\|\vec{e}_3\|=4$. Calcule:
 - $ightharpoonup \vec{e}_1 imes \vec{e}_2, \ \vec{e}_2 imes \vec{e}_3 \ \mathbf{e} \ \vec{e}_3 imes \vec{e}_1$
 - $\blacktriangleright (2\vec{e}_1 + \vec{e}_2) \times (\vec{e}_1 2\vec{e}_2 + \vec{e}_3).$

- 1 Definição do Produto Vetorial

- 4 Propriedades

Propriedades do Produto Vetorial

Anti-Comutatividade $\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$. Bilinearidade

$$\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}, \qquad \vec{u} \times (\alpha \vec{v}) = \alpha (\vec{u} \times \vec{v})$$
$$(\vec{u} + \vec{v}) \times \vec{w} = \vec{u} \times \vec{w} + \vec{v} \times \vec{w}, \qquad (\alpha \vec{u}) \times \vec{v} = \alpha (\vec{u} \times \vec{v})$$

Perpendicularismo $(\vec{u} \times \vec{v}) \cdot \vec{u} = (\vec{u} \times \vec{v}) \cdot \vec{v} = 0.$

Módulo e Sentido Dados $\vec{u}, \vec{v} \in \mathbb{R}^3$ não-colineares, $\{\vec{u}, \vec{v}, \vec{u} \times \vec{v}\}$ apresenta orientação positiva e temos

$$\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \cdot \|\vec{v}\| \cdot \operatorname{sen} \theta$$

onde θ é o ângulo formado entre \vec{u} e \vec{v} . Caso \vec{u} e \vec{v} sejam colineares, $\vec{u} \times \vec{v} = \vec{0}$.

- 1 Definição do Produto Vetorial

- 5 Produto Misto

18

■ O produto misto dos vetores $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$ é definido a partir da combinação do produto vetorial com o escalar, ou seja:

$$p_m = (\vec{u} \times \vec{v}) \cdot \vec{w}$$

■ Note que, a partir da definição do produto vetorial, temos

$$p_m = (\vec{u} \times \vec{v}) \cdot \vec{w} = det(\vec{u}, \vec{v}, \vec{w})$$

■ Logo, o produto misto nada mais é do que uma outra forma de representar o determinante $det(\vec{u}, \vec{v}, \vec{w})$, que já estudamos.