Radiative seesaw and baryogenesis

with gauged Lepton number

Diego Restrepo

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co

Focus on
arXiv:xxxxxxxxx
In collaboration with
W. Novelo, L. Leite, O. Peres (UNICAMP)

Model building

Figure 1: Grupos de Lie

Considere el generador 1×1

$$K = -i, (1)$$

que genera el elemento del grupo dilaton, SO(1), [?] $R(\xi)$

$$\lambda(\xi) = e^{\xi}, \tag{2}$$

que corresponde simplemente al grupo de las exponenciales reales. Un número real puede sufrir una transformación

$$x \to x' = e^{\xi} x, \tag{3}$$

que corresponde a su vez a un boost por la cantidad e^{ξ} . Podemos definir un producto escalar invariante como la división de números reales tal que

$$x \cdot y \to x' \cdot y' \equiv \frac{x'}{y'} = \frac{e^{\xi} x}{e^{\xi} y} = \frac{x}{y} = x \cdot y. \tag{4}$$

Queremos obtener una representación 2×2 del álgebra

$$K^2 = -1, (5)$$

donde K es el único generador. Para hallar una representación de esta álgebra en términos de matrices 2×2 considere el generador

$$K = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}. \tag{6}$$

que genera un elemento del grupo $\mathsf{SO}(1,1)$ con parámetro ξ

$$\Lambda = \exp\left(i\xi K\right). \tag{7}$$

Para realizar la expansión de Taylor, considere

$$\textit{K}^0 = \mathbf{1}_{2\times 2}\,,$$

$$K = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} -i & 0 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$K = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}, \quad K^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad K^3 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \dots$$

$$\mathcal{K}^{2n+1} = (-1)^n \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}.$$

$$K^{2n} = (-1)^n \mathbf{1}_{2 \times 2} \,,$$

Entonces,

$$\Lambda = \exp\left(i\xi K\right) = \sum_{n=0}^{\infty} \frac{(i\xi K)^n}{n!} \\
= \sum_{n=0}^{\infty} (i)^{2n} \frac{(\xi K)^{2n}}{2n!} + \sum_{n=0}^{\infty} (i)^{2n+1} \frac{(\xi K)^{2n+1}}{(2n+1)!} \\
= \sum_{n=0}^{\infty} (-1)^n \frac{\xi^{2n}}{2n!} (-1)^n \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sum_{n=0}^{\infty} i(-1)^n \frac{\xi^{2n+1}}{(2n+1)!} (-1)^n \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} \\
= \sum_{n=0}^{\infty} \frac{\xi^{2n}}{2n!} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sum_{n=0}^{\infty} \frac{\xi^{2n+1}}{(2n+1)!} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\
= \begin{pmatrix} \cosh \xi & 0 \\ 0 & \cosh \xi \end{pmatrix} + \begin{pmatrix} 0 & \sinh \xi \\ \sinh \xi & 0 \end{pmatrix} \\
= \begin{pmatrix} \cosh \xi & \sinh \xi \\ \sinh \xi & \cosh \xi \end{pmatrix}, \tag{8}$$

Podemos entonces definir el grupo SO(1,1) como el grupo de las matrices 2×2 que satisfacen la condición

$$\Lambda^T g \Lambda = g \,, \tag{9}$$

donde

$$g = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \tag{10}$$

Bajo una transformación de Lorentz.

$$x^{\mu} \to x^{\prime \mu} = \Lambda^{\mu}{}_{\nu} x^{\nu}. \tag{11}$$

Introducimos ahora un cuadrivector que lleva intrínsicamente el índice abajo

$$\partial_{\mu} = \frac{\partial}{\partial x^{\mu}} = \left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) = (\partial_{0}, \nabla). \tag{12}$$

Las propiedades de transformación para ∂_{μ}

$$(\Lambda^{-1})^{\mu}_{\alpha} \chi^{\alpha} = (\Lambda^{-1})^{\mu}_{\alpha} \Lambda^{\alpha}_{\nu} \chi^{\nu}$$

$$= \delta^{\mu}_{\nu} \chi^{\nu}$$

$$= \chi^{\mu}, \qquad (13)$$

$$\frac{1}{\chi'^{\nu}} = \left(\Lambda^{-1}\right)^{\mu}_{\ \nu} \frac{1}{\chi^{\mu}} \,, \tag{14}$$

0

$$\frac{1}{\varkappa'^{\mu}} = \left(\Lambda^{-1}\right)^{\nu} \frac{1}{\mu \varkappa^{\nu}} \,, \tag{15}$$

de modo que la transformación de Lorentz para $\partial_{\mu}=\partial/\partial x^{\mu}$, es

$$\frac{\partial}{\partial x'^{\mu}} = (\Lambda^{-1})^{\nu}_{\mu} \frac{\partial}{\partial x^{\nu}}
\partial'_{\mu} = (\Lambda^{-1})^{\nu}_{\mu} \partial_{\nu}.$$
(16)

De esta manera, un producto escalar invariante entre la cuadriderivada y un cuadrivector de Lorentz $A^{\mu}(x)$ es

$$\partial_{\mu}A^{\mu} \to \partial'_{\mu}A'^{\mu} \to \partial_{\mu}A^{\mu}$$
 (17)

Nombre		Símbolo		SU(N)
<i>N</i> -plete escalar		Ψ		UΨ
anti- <i>N</i> -plete escalar			†	$\Psi^\dagger U^\dagger$
Nombre	Símbo	lo	Lorent	Z
fotón	${\cal A}^{\mu}$		$\Lambda^{\mu}{}_{\nu}A^{\nu}$	
derivada	∂_{μ}		$\partial_{\nu} (\Lambda^{-}$	$^{1})^{ u}_{\mu}$

Table 1: Productos escalares: $\Psi^{\dagger}\Psi$,

$$\partial_{\mu}A^{\mu}$$
, $A^{\nu}A_{\nu}$, $\partial_{\mu}\partial^{\mu}$

donde,
$$g_{\alpha\beta} = \Lambda^{\mu}{}_{\alpha} g_{\mu\nu} \Lambda^{\nu}{}_{\beta}$$
, $g^{\mu\nu} = \left(\Lambda^{-1}\right)^{\mu}{}_{\alpha} g^{\alpha\beta} \left(\Lambda^{-1}\right)^{\nu}{}_{\beta}$.

Nombre	Símbolo	Lorentz	<i>U</i> (1)
e _L : electrón izquierdo	ξ_{α}	$\mathcal{S}_{lpha}{}^{eta} \xi_{eta}$	$e^{i heta}\xi_lpha$
$\left(e_{R}\right)^{\dagger}$: positrón izquierdo	η^{lpha}	$\eta^{eta}ig[\mathit{S}^{-1}ig]_{eta}^{lpha}$	$\eta^{lpha}~{ m e}^{-{\it i} heta}$
$(e_L)^{\dagger}$: positrón derecho	$(\xi_lpha)^\dagger=\xi^\dagger_{\dotlpha}$	$\xi^{\dagger}_{\dot{eta}} ig[\mathcal{S}^{\dagger} ig]^{\dot{eta}}_{}\dot{lpha}}$	$\xi^{\dagger}_{\dot{lpha}}e^{-i heta}$
<i>e_R</i> : electrón derecho	$(\eta^{\alpha})^{\dagger} = \eta^{\dagger \; \dot{\alpha}}$	$\left[\left(S^{-1}\right)^{\dagger}\right]^{\dot{lpha}}_{}\dot{eta}}\eta^{\dagger\dot{eta}}$	$\mathrm{e}^{\mathrm{i} heta}\eta^{\dagger\dot{lpha}}$

Table 2: Definición de transformaciones de Lorentz

Productos escalares

- Escalares de Majorana: $\xi^{\alpha}\xi_{\alpha}+\xi_{\dot{\alpha}}^{\dagger}\xi^{\dagger\dot{\alpha}}$, $\eta^{\alpha}\eta_{\alpha}+\eta_{\dot{\alpha}}^{\dagger}\eta^{\dagger\dot{\alpha}}$.
- Escalar de Dirac: $\eta^{\alpha}\xi_{\alpha} + \xi^{\dagger}_{\dot{\alpha}}\eta^{\dagger\dot{\alpha}}$.
- Escalar subgrupo SL(2, C) pero vector bajo SO(1, 3): $S^{\dagger} \overline{\sigma}^{\mu} S = \Lambda^{\mu}{}_{\nu} \overline{\sigma}^{\nu}$

Campos	Lorentz	SU(3) _C	SU(2) _L	$U(1)_Y$
Q	ξ^1_{α}	3	2	1/6
L	ξ_{lpha}^2	1	2	-1/2
$(u_R^-)^\dagger$	η_1^{lpha}	3	1	-2/3
$\left(d_R^-\right)^\dagger$	η_2^{lpha}	3	1	1/3
$\left(e_R^- ight)^\dagger$	η_3^{lpha}	1	1	1
Н	-	1	2	1/2

Table 3: Campos fundamentales del modelo estándar

como por ejemplo,

$$(u_R)^{\dagger} Q \cdot H, \tag{18}$$

Que se puede representar con la Ley De Kircchoff:

Dark sectors

 $\mathcal{L} = -\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + i\sum_{i}\chi_{i}^{\dagger}\mathcal{D}\chi_{i}$

$$-h(\chi_1\chi_2\Phi + h.c)$$

Anomalons: SM-singlet Dirac fermion dark matter $m_{\Psi} = h \langle \Phi \rangle$

LHC productio

Gauged Symmetry: $\mathcal{X} \to B$: $q\overline{q} \to Z' \to \text{jets}$

Gauged Symmetry: $\mathcal{X} \to L$:

$$\overline{\Psi}\Psi = \chi_1\chi_2 + \chi_1^{\dagger}\chi_2^{\dagger} \to \chi_\alpha\chi_\beta\Phi^{(*)},$$

Local $U(1)_{\mathcal{X}}$ $\mathcal{L} = -rac{1}{4}V_{\mu
u}V^{\mu
u} + i\sum_{i}\chi_{i}^{\dagger}\mathcal{D}\chi_{i}$

$$-h(\chi_1\chi_2\Phi + h.c)$$

Anomalons: SM-singlet Dirac fermion

dark matter $m_{\Psi} = h \langle \Phi \rangle$

Gauged Symmetry: $\mathcal{X} \to B$: $q\overline{q} \to Z' \to \text{jets}$

Gauged Symmetry:
$$\mathcal{X} \rightarrow \mathcal{L}$$
:

multi-component dark matter

 $\alpha = 1, \dots N' \rightarrow N' > 4$

Local $U(1)_{\mathcal{X}}$ $\mathcal{L} = -rac{1}{4}V_{\mu
u}V^{\mu
u} + i\sum_{i}\chi_{i}^{\dagger}\mathcal{D}\chi_{i}$

$$-h(\chi_1\chi_2\Phi + h.c)$$

Anomalons: SM-singlet Dirac fermion

dark matter $m_{\Psi} = h \langle \Phi \rangle$

Gauged Symmetry: $\mathcal{X} \to B$: $q\overline{q} \to Z' \to \text{jets}$

Gauged Symmetry:
$$\mathcal{X} \rightarrow \mathcal{L}$$
:

multi-component dark matter

 $\alpha = 1, \dots N' \rightarrow N' > 4$

 $\mathcal{L} = -rac{1}{4}V_{\mu
u}V^{\mu
u} + i\sum_{i}\chi_{i}^{\dagger}\mathcal{D}\chi_{i}$

$$-y(\chi_1\chi_2S + h.c)$$

Anomalons: SM-singlet Dirac fermion

CP violation Yukawa y

LHC production

Gauged Symmetry: $\mathcal{X} \to B$: $q\overline{q} \to Z' \to \text{jets}$

Gauged Symmetry:
$$\mathcal{X} \rightarrow \mathcal{L}$$
:

multi-component dark matter

 $\alpha = 1, \dots, N' \rightarrow N' > 4$

Standard model extended with $U(1)_{\mathcal{X}=L \text{ or } \mathbf{B}}$ gauge symmetry

Fields	$SU(2)_L$	$U(1)_Y$	$U(1)_{\mathcal{X}=\mathbf{B} \text{ or } \mathbf{L}}$
Q_i^{\dagger}	2	-1/6	Q
d_{Ri}	1	-1/2	d
u_{Ri}	1	+2/3	и
L_i^{\dagger}	2	+1/2	L
e_{Ri}	1	-1	e
Н	2	1/2	h = 0
χ_{α}	1	0	z_{α}
$(L'_L)^{\dagger}$	2	1/2	-x'
$L_R^{\prime\prime}$	2	-1/2	x''
e_R'	1	-1	×′
$(e_L^{\prime\prime})^\dagger$	1	1	-x''
Ф	1	0	ϕ
S	1	0	5

Table 4: A minimal set of new fermion content: L = e = 0 for $\mathcal{X} = B$. Or Q = u = d = 0 for $\mathcal{X} = L$.

 $i = 1, 2, 3, \ \alpha = 1, 2, \dots, N'$

Effective Dirac neutrino mass operator

$$\chi_1 \to \nu_{R1}, \cdots, \chi_{N_{\nu}} \to \nu_{RN_{\nu}}, \qquad 2 \le N_{\nu} \le 3,$$
(19)

$$\mathcal{L}_{\mathsf{eff}} = h_{
u}^{lpha i} \left(
u_{Rlpha}
ight)^{\dagger} \, \epsilon_{\mathsf{a}\mathsf{b}} \, \mathsf{L}_{i}^{\mathsf{a}} \, \mathsf{H}^{\mathsf{b}} \left(rac{\Phi^{*}}{\Lambda}
ight)^{\delta} + \mathsf{H.c.}, \qquad \mathsf{with} \, \, i = 1, 2, 3 \, ,$$

S is the complex singlet scalar responsible for the SSB of the anomaly-free gauge symmetry with D or X-charge

$$\phi = -(\nu + \mathbf{L})/\delta \,, \tag{20}$$

Anomaly cancellation I

The anomaly-cancellation conditions on $[SU(3)_c]^2 U(1)_X$, $[SU(2)_L]^2 U(1)_X$, $[U(1)_Y]^2 U(1)_X$, allow us to express three of the X-charges in terms of the others

$$\mathbf{u} = -\mathbf{e} - \frac{2}{3}\mathbf{L} - \frac{1}{9}\left(x' - x''\right) , \quad \mathbf{d} = \mathbf{e} + \frac{4}{3}\mathbf{L} - \frac{1}{9}\left(x' - x''\right) , \quad \mathbf{Q} = -\frac{1}{3}\mathbf{L} + \frac{1}{9}\left(x' - x''\right) , \quad (21)$$

while the $[U(1)_X]^2 U(1)_Y$ anomaly condition reduces to

$$(e+L)(x'-x'')=0.$$
 (22)

- Previously: x' = x''
- We choose instead (h = 0):

$$e = -L, (23)$$

so that (L is still a free parameter)

$$Q = -u = -d = -\frac{1}{3}L + \frac{1}{9}(x' - x'').$$
 (24)

If
$$B = 0 \rightarrow U(1)_L$$

Anomaly cancellation II

The gravitational anomaly, $[SO(1,3)]^2 U(1)_Y$, and the cubic anomaly, $[U(1)_X]^3$, can be written as the following system of Diophantine equations, respectively,

$$\sum_{\alpha=1}^{N} z_{\alpha} = 0, \qquad \sum_{\alpha=1}^{N} z_{\alpha}^{3} = 0, \qquad (25)$$

where N = N' + 5 and

$$z_{N'+1} = -x',$$
 $z_{N'+2+i} = L, \quad i = 1, 2, 3$ (26)

$$9Q = -\sum_{\alpha=N'+1}^{N'+5} z_{\alpha} = -x' + x'' + L + L + L, \qquad (27)$$

$$Q = 0 \gg U(1)_L$$

390074 solutions with $5 \le N \le 12$ integers until '1321' [JSON]

Creative Commons Attribution 4.0 International

License (for files):

$U(1)_L$ selection

•
$$B = 0 \rightarrow L = -3 (-x' + x'' + 3L = 0)$$

$$(-3, -3, -3, -6, -6, -6, 2, 7, 4, 4, 5, 5)$$

$U(1)_{L}$ selection

•
$$B = 0 \rightarrow L = -3 (-x' + x'' + 3L = 0)$$

• Effective neutrino mass $\nu = -6$:

$$\phi = -(\nu + L) = 9$$

$$(-3, -3, -3, -6, -6, -6, 2, 7, 4, 4, 5, 5)$$

$U(1)_L$ selection

•
$$B = 0 \rightarrow L = -3 (-x' + x'' + 3L = 0)$$

• Effective neutrino mass $\nu = -6$: $\phi = -(\nu + L) = 9$

■ Electroweak-scale vector-like fermions: $(L'_L)^{\dagger} L''_P \Phi^* \rightarrow x' = -2, \ x'' = 7$

$$(-3, -3, -3, -6, -6, -6, 2, 7, 4, 4, 5, 5)$$

$U(1)_L$ selection

- $B = 0 \rightarrow L = -3 (-x' + x'' + 3L = 0)$
- Effective neutrino mass $\nu = -6$: $\phi = -(\nu + L) = 9$
- Electroweak-scale vector-like fermions:

$$(L'_L)^{\dagger} L''_R \Phi^* \to x' = -2, \ x'' = 7$$

At least two generations of heavy Dirac-fermionic DM:

$$(\chi_{Li})^{\dagger} \chi_{Ri} \Phi^* \rightarrow z_3 = 4, \ z_4 = 5$$

Unique solution from $\sim 400,000!$

Full $U(1)_L$ model

Field	SU(2) _L	$U(1)_Y$	U(1) _B
u_{Ri}	1	2/3	u = 0
d_{Ri}	1	-1/3	d = 0
$(Q_i)^\dagger$	2	-1/6	Q = 0
$(L_i)^\dagger$	2	1/2	L = 1
e_R	1	-1	e = -1
$(L'_L)^{\dagger}$	2	1/2	-x' = -2/3
e'_R	1	-1	x' = 2/3
$L_R^{\prime\prime}$	2	-1/2	x'' = -7/3
$(e_I^{\prime\prime})^\dagger$	1	1	-x'' = 7/3
$\nu_{R,i}$	1	0	2
χ_R	1	0	-5/3
$(\chi_L)^{\dagger}$	1	0	-4/3
Н	2	1/2	0
Φ	1	0	-3
η	2	1/2	2/3
σ	1	0	2/3

Table 5: i = 1, 2, 3 normalized Lepton number charges with a global factor -1/3.

Electroweak baryogenesis

Problems

- Standard model (SM) $m_h \sim$ 40 GeV. \odot
- Beyond the SM: Source of CP contains fields charged under SM
 - ightarrow too large electric dipole moments 😩

Dark sectors

- Inert SM-singlet complex scalar field which acquires vev with temperature to have strong electroweak phase transition
- CP violation (CPV) triggered in dark sectors through SM gauge singlets
 - → CPV Yukawa between SM-singlet complex scalar and SM-singlet quiral fermions \(\to\)

Anomalons:

DM

Method to find $\Sigma n=0$, $\Sigma n^3=0$ solutions 1905.13729 [PRL] Costa...

Anomalons:

Multicomponent DM

Scotogenic neutrino masses

hep-ph/0601225 [PRL→PRD] Ma

Scotogenic realization

Any realization which does not affect anomaly cancellation is allowed

Dark sector baryogenesis

Baryogenesis

CP violation occurs in the dark sector and is transmitted to SM sector by the new Z' gauge boson.

- $\bullet \ \ \, \text{High scale fields: } \Phi \,, \qquad \big(\langle \Phi \rangle \to \mathcal{L}'_L, \mathcal{L}''_R, e'_L, e''_R \text{: EW-scale vector-like anomalons} \big)$
- Electroweak scale (EW) fields: $Z'_{\mu}, S, \chi_L, \chi_R$
- CP-violation

$$\mathcal{L}_{\mathsf{Dirac}\;\mathsf{DM}} = h(\chi_L)^{\dagger} \chi_R \Phi^* + y(\chi_L)^{\dagger} \chi_R S^* + \mathsf{h.c}\,, \qquad y \in \mathbb{C}$$
$$\supset \left(m_{\chi} + |y| \,\mathrm{e}^{i\theta} \,|S| \right) (\chi_L)^{\dagger} \chi_R + \mathsf{h.c}\,.$$

CP-violation Portal

$$\mathcal{L}_{\text{anomalous}} \supset g' Z'_{\mu} \left[3\bar{\chi}_{L} \gamma^{\mu} \chi_{L} - 2\bar{\chi}_{R} \gamma^{\mu} \chi_{R} + \bar{Q}_{i} \gamma^{\mu} Q_{i} + \bar{q}_{Ri} \gamma^{\mu} q_{Ri} \right]$$

Strong electroweak phase transition (EWPT) portal

$$\mathcal{L}_{\mathsf{first}\ \mathsf{order}\ \mathsf{EWPT}} \supset -\lambda_{\mathsf{SH}} H^\dagger H S^* S$$
 .

$$h = H/\sqrt{2}$$
, $s = |S|$ with vevs: $v(T)$ and $w(T)$ such that $v(T_c) = w(T_c)$

$$V_T(h,s) = \frac{\lambda_H v_c^4}{4} \left(\frac{h^2}{v_c^2} + \frac{s^2}{w_c^2} - 1 \right)^2 + \frac{\lambda_H v_c^2}{m_{s,c}^2 w_{0,c}^4} h^2 s^2 + (T^2 - T_c^2) (c_h h^2 + c_s s^2),$$
 (28)

$$c_h = \frac{1}{48} \left(9g_2^2 + 3g_1^2 + 12y_t^2 + 24\lambda_H + \lambda_{HS} \right) , \quad c_s = \frac{1}{12} \left(3\lambda_S + 2\lambda_{HS} \right) .$$
 (29)

$$h = H/\sqrt{2}$$
, $s = |S|$ with vevs: $v(T)$ and $w(T)$ such that $v(T_c) = w(T_c)$

$$V_T(h,s) = \frac{\lambda_H v_c^4}{4} \left(\frac{h^2}{v_c^2} + \frac{s^2}{w_c^2} - 1 \right)^2 + \frac{\lambda_H v_c^2}{m_{s,c}^2 w_{0,c}^4} h^2 s^2 + (T^2 - T_c^2)(c_h h^2 + c_s s^2),$$
 (28)

$$c_h = \frac{1}{48} \left(9g_2^2 + 3g_1^2 + 12y_t^2 + 24\lambda_H + \lambda_{HS} \right) , \quad c_s = \frac{1}{12} \left(3\lambda_S + 2\lambda_{HS} \right) . \tag{29}$$

$$h = H/\sqrt{2}$$
, $s = |S|$ with vevs: $v(T)$ and $w(T)$ such that $v(T_c) = w(T_c)$

$$V_T(h,s) = \frac{\lambda_H v_c^4}{4} \left(\frac{h^2}{v_c^2} + \frac{s^2}{w_c^2} - 1 \right)^2 + \frac{\lambda_H v_c^2}{m_{s,c}^2 w_{0,c}^4} h^2 s^2 + (T^2 - T_c^2)(c_h h^2 + c_s s^2),$$
 (28)

$$c_h = \frac{1}{48} \left(9g_2^2 + 3g_1^2 + 12y_t^2 + 24\lambda_H + \lambda_{HS} \right) , \quad c_s = \frac{1}{12} \left(3\lambda_S + 2\lambda_{HS} \right) . \tag{29}$$

$$h = H/\sqrt{2}$$
, $s = |S|$ with vevs: $v(T)$ and $w(T)$ such that $v(T_c) = w(T_c)$

$$V_T(h,s) = \frac{\lambda_H v_c^4}{4} \left(\frac{h^2}{v_c^2} + \frac{s^2}{w_c^2} - 1 \right)^2 + \frac{\lambda_H v_c^2}{m_{s,c}^2 w_{0,c}^4} h^2 s^2 + (T^2 - T_c^2) (c_h h^2 + c_s s^2),$$
 (28)

$$c_h = \frac{1}{48} \left(9g_2^2 + 3g_1^2 + 12y_t^2 + 24\lambda_H + \lambda_{HS} \right) , \quad c_s = \frac{1}{12} \left(3\lambda_S + 2\lambda_{HS} \right) . \tag{29}$$

CP assymetry generation i

Using the thin wall approximantion for the nucleation bubbles, we use the ansatz in which the space dependence of the fields is given by

$$h(z) = \frac{1}{2}v(T_n)(1-\tanh(z/L_w)), \qquad s(z) = \frac{1}{2}w_0(T_n)(1+\tanh(z/L_w)),$$

where z is the direction normal to the wall and L_w is the wall width.

CP assymetry generation ii

The nucleation temperature, T_n , is defined by the condition

$$\exp(-S_3/T_n) = \frac{3}{4\pi} \left(\frac{H(T_n)}{T_n}\right)^4 \left(\frac{2\pi T_n}{S_3}\right)^{\frac{3}{2}},$$

where S_3 is the Euclidean action of the bubble and H(T) is the Hubble rate.

The *CP* violating phase, θ , from

$$M_{\chi}(z) = m_{\chi}(z) + |y| e^{i\theta} |S(z)|, \qquad (30)$$

Boltzmann equation i

$$\xi_i(z) \equiv \mu_i(z)/T = 6\left(n_i - \overline{n}_i\right)/T^3,$$

$$-D_L \xi_{YL}'' - \nu_w \xi_{YL}' + \Gamma_L(\xi_{YL} - \xi_{YR}) = S_{CP},$$

where D_L is the diffusion constant for χ_L , which is related to the scattering rate Γ_L by

$$D_{L} = \frac{3x+2}{x^{2}+3x+2} \frac{1}{3\Gamma_{L}}, \qquad x \equiv m_{\chi}/T$$
 (31)

and

$$S_{\mathcal{CP}} = -\frac{\lambda}{2} \frac{v_w D_L}{\frac{3x+2}{x^2+3x+2} T} \frac{(1-x)e^{-x} + x^2 E_1(x)}{4m_\chi^2 K_2(x)} \frac{m_\chi w_0(T_n) \lambda \left(-2 + \cosh\left(\frac{2z}{L_w}\right)\right) \sin\theta}{L_w^3 \cosh^4\left(\frac{z}{L_w}\right)}, \quad (32)$$

where v_w is the wall's velocity $E_1(x)$ is the error function and $K_2(x)$ is the modified Bessel function of the second kind.

Transfer DM assymetry to SM quarks

The chiral particle give rise to a non-zero $U(1)_B$ charge density in the proximity of the wall. This results in a Z' background that couples to the SM fields with $U(1)_B$ charge,

$$\langle Z_0'(z) \rangle = \frac{g_B (q_{\chi_L} - q_{\chi_R}) T_n^3}{6 M_{Z'}} \int_{-\infty}^{\infty} dz_1 \, \xi_{\chi_L}(z_1) \, e^{-M_{Z'}|z-z_1|} \,,$$

which generates a chemical potential for the SM quarks,

$$\mu_Q(z) = \mu_{d_R,u_R}(z) = 3 \times \frac{5}{9} \times g_B \langle Z'_0(z) \rangle.$$

This chemical potential sources a thermal-equilibrium asymmetry in the quarks,

$$\Delta n_Q^{\text{EQ}}(z) \sim T_n^2 \mu_Q(z).$$

From [1]

If the Z' is sufficiently light, it mediates a long range force that extends into the region outside the bubble wall with unbroken electroweak symmetry.

Finally, the baryon-number asymmetry is then given by

$$n_B = \frac{\Gamma_{\mathrm{sph}}}{v_w} \int_0^\infty \mathrm{d}\,z\, n_Q^{\mathrm{EQ}}(z) \, \exp\left(-\frac{\Gamma_{\mathrm{sph}}}{v_w}\,z\right) \,,$$

where $\Gamma_{\rm sph}$ is the sphaleron rate. The baryon-to-photon-number ratio is then obtained by

$$\eta_B = \frac{n_B}{s(T_n)}, \quad s(T) \equiv \frac{2\pi^2}{45} g_{*S}(T) T^3,$$

where $g_{*S}(T)$ is the effective number of relativistic degrees of freedom.

Our goal is to find what regions of the parameter space yield

$$0.82 \times 10^{-10} < \eta_B < 0.92 \times 10^{-10} \,. \tag{33}$$

https://github.com/anferivera/DarkBariogenesis

- \blacksquare SARAH \rightarrow SPheno \rightarrow MicroMegas
- η_B calculation code
- Python notebook with the scan

arXiv:1810.08055

Ten Simple Rules for Reproducible Research in Jupyter Notebook Fernando Pérez, et al

[...] In this paper, we address several questions about reproducibility [...] Combined with software repositories and open source licensing, notebooks are powerful tools for transparent, collaborative, reproducible, and reusable data analyses.

Results

We vary the typical Dirac-fermion DM parameter space and for each point that satisfy neutrino oscillation data, relic density and DM direct detection constraints. For each point we ...

Parameter	Range
θ	$(-\pi/2,\pi/2)$
$w_0(T_n)/{\rm GeV}$	100 - 500
$T_n/{ m GeV}$	100 - 200
$L_w/{ m GeV^{-1}}$	$1/T_n - 10/T_n$
V_W	0.05 - 0.5

Table 6: Scan ranges for the free parameters that are involved in the baryogenesis mechanism.

Black points: Dirac neutrinos with proper DM and baryon assymetry

Conclusions

A $U(1)_B$ is presented as an example of models where all new fermions required to cancel out the anomalies are used to solve phenomenological problems of the standard model (SM):

- EW-scale fermion vector-like doublets and iso-singlet charged singlets, in conjunction
 with right-handed neutrinos with repeated Abelian charges, participate in the generation
 of small neutrino masses through the Dirac-dark Zee mechanism
- The other SM-singlets are used to explain the dark matter in the universe, while their coupling to an inert singlet scalar is the source of the CP violation.

In the presence of a strong first-order electroweak phase transition, this "dark" CP violation allows for successful electroweak baryogenesis by using long range force mediated by a sufficiently light Z' which transfers the assymmetry from the Dark sector into the SM.