Tutorial Business Analytics

Homework 3

Exercise 3.3

Install the "AER" (Applied Econometrics with R) package and open the "CPS1988" data set.

- a) Briefly describe the data set:
 - i. Name the dependent variable and the independent variables.
 - ii. Which scales of measurement do the variables belong to (e.g. nominal, ordinal, interval or ratio)?
 - iii. Does the data set consist of cross-sectional, time-series or panel data?
- b) Plot the dependent variable against each independent variable and transform the variables if necessary. Which transformations would you carry out and why?

Estimate the following model (mr_1):

$$ln(wage_i) = \beta_0 + \beta_1 \cdot education_i + \beta_2 \cdot ethnicity_i + \beta_3 \cdot experience_i + \beta_4 \cdot experience_i^2$$

- c) Interpret the above model (mr_1):
 - i. Which variables are statistically significant?
 - ii. Is the entire model statistically significant?
 - iii. What is the explanatory power of the model and why?
 - iv. Interpret each regression coefficient.

Now, estimate the following model (mr_2):

```
ln(wage_i) = \beta_0 + \beta_1 \cdot education_i + \beta_2 \cdot ethnicity_i + \beta_3 \cdot education_i * ethnicity_i + \beta_4 \cdot experience_i + \beta_5 \cdot experience_i^2
```

- d) What is the difference between both models from above (mr_1 and mr_2)?
- e) Repeat c) with model mr_2.

Note: Use R to solve this exercise (exercise 3.3_R-template.R). Be aware that the natural logarithm "In" corresponds to "log" in R.

Exercise 3.4

Install the "AER" (Applied Econometrics with R) and the "plm" (Panel Data Econometrics in R) packages and open the "Grunfeld" data set. See the R-Script from the lecture Multiple Regression & Panel Data (3.Regression.R) to solve this exercise.

- a) Briefly describe the data set:
 - i. Name the dependent variable and the independent variables.
 - ii. Which scales of measurement do the variables belong to (e.g. nominal, ordinal, interval or ratio)?
 - iii. Does the data set consist of cross-sectional, time-series or panel data?
- b) Plot the dependent variable against each independent variable and transform the variables if necessary. Which transformations would you carry out and why?

Consider the following model:

$$invest_{it} = \beta_0 + \beta_1 \cdot value_{it} + \beta_2 \cdot capital_{it}$$

- c) How can you test the presence of unobserved individual specific effects in the above model? Do so.
- d) Should you use a Random Effects Regression or a Fixed Effects Regression to take into account the unobserved individual specific effects?

Note: Use R to solve this exercise (exercise 3.4_R-template.R).