

Instituto Superior Técnico

Professor:

José Raul Carreira Azinheira Controlo de Voo Grupo 27

Gripen-2 Patrulha - LOS

Relatório intermédio RP1

Autores:

Francisco Alves, 95787 Tomás Nunes, 95855 Rodrigo Sequeira, 96480

29 de maio de 2022

1 Introdução

Este trabalho foi realizado no âmbito da cadeira de Controlo de Voo e teve como objetivo a familiarização e o desenvolvimento de uma análise crítica de problemas concretos da síntese de controladores de voo.

A aeronave em estudo é o modelo Gripen, sendo a condição de voo 2 atribuída pelo tema 41 (patrulha - LOS).

O primeiro ponto a ser abordado no design do controlador foi a determinação e análise do modelo estudado, sendo que neste trabalho apenas se analisou o modo lateral, tendo-se recorrido ao SciLab para tal.

2 Determinação e análise do modelo estudado

De modo a poder analisar-se a dinâmica da aeronave é necessário descrever o seu movimento usando a formulação em espaço de estados. Para o objetivo em vista, o movimento analisado é o lateral, considerando-se a separação do movimento longitudinal do movimento lateral, desacoplados (consequência do processo de linearização). Assim, as seguintes equações são as que determinam a evolução das variáveis de estado $x=\begin{bmatrix}\beta & p & r & \phi\end{bmatrix}^T$, controladas por $u=\begin{bmatrix}\delta_a & \delta_r\end{bmatrix}^T$: $\begin{cases} \dot{x}=Ax+Bu\\ y=Cx+Du \end{cases}$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$
 (2.1)

em que A é a matriz da dinâmica, B a matriz de entrada, C a matriz de saída e D a matriz de saída direta. β é o ângulo de derrapagem, p é velocidade de rolamento, r é a velocidade de guinada, ϕ é o ângulo de pranchamento, δ_a a deflexão dos ailerons e δ_r a deflexão do rudder.

Como já previamente referido, existe o desacoplamento dos dois movimentos e isso é resultado da linearização das equações da dinâmica realizada em torno de um ponto de equilíbrio em voo retilíneo nivelado na ausência de perturbações ou ruído, surgindo assim as matrizes abaixo.

$$A = \begin{bmatrix} Y_{\beta} & Y_{p} + \frac{W_{0}}{U_{0}} & Y_{r} - 1 & \frac{g}{U_{0}} cos(\theta_{0}) \\ L'_{\beta} & L'_{p} & L'_{r} & 0 \\ N'_{\beta} & N'_{p} & N'_{r} & 0 \\ 0 & 1 & tan(\theta_{0}) & 0 \end{bmatrix} \qquad B = \begin{bmatrix} Y_{\delta_{a}} & Y_{\delta_{r}} \\ L'_{\delta_{a}} & L'_{\delta_{r}} \\ N'_{\delta_{a}} & N'_{\delta_{r}} \\ 0 & 0 \end{bmatrix}$$

De realçar que, ao contrário do habitual, a primeira variável de estado é β em vez de v, de acordo com os dados no enunciado, que também informa que as derivadas já se encontram em função de β , não necessitando por isso que se divida por U_0 ($v \approx U_0 \beta$).

Com recurso à função "damp" no SciLab, calcularam-se os pólos em anel aberto do sistema, que correspondem aos valores próprios da matriz da dinâmica A, com vista a determinar e analisar as qualidades de voo. Os dados obtidos apresentam-se na seguinte tabela:

2021/20221

Modo	Pólo	Amortecimento	Frequência angular (rad/s)	Constante de tempo (s)
Rolamento	-0.84423	1	0.84423	1.18
Rolamento Holandês	$-0.05681 \pm 0.56525i$	0.10001	0.568096	17.6
Espiral	0.02147	-1	0.02147	46.6

Tabela 1: Pólos do sistema em anel aberto (valores próprios da matriz A) e respetivas características

De notar que os valores 1 e -1 dos coeficientes de amortecimento apresentados na tabela acima são atribuídos por defeito pela função utilizada no MatLab. Na realidade, os dois modos com esses valores de ζ não são oscilatórios, não fazendo sentido existir valor de amortecimento para os mesmos.

Analisando os valores, pode concluir-se que são distinguíveis três modos: modo espiral $\lambda_S = 0.02147$, pois é um pólo simples perto da origem, e neste caso particular será instável (está localizado no semi-plano complexo direito); modo de rolamento $\lambda_R = -0.84423$, pólo simples rápido, como se pode constatar na constante de tempo; modo de rolamento Holandês $\lambda_{DR} = -0.05681 \pm 0.56525i$, par de pólos complexos conjugados, rápido e pouco amortecido.

Com estes valores é possível agora analisar as qualidades de voo com base nos critérios estabelecidos para cada modo. Primeiramente é importante identificar a classe da aeronave e a categoria de voo, e neste caso temos um avião de classe IV e um voo de categoria A.

Para avaliar o nível da qualidade de voo do modo espiral calculou-se o tempo necessário para duplicar a amplitude, uma vez que é um modo instável, e o tempo obtido foi $t_2 = \frac{\ln 2}{|\lambda_S|} = 32.28059s > 12s$, portanto é **nível 1**.

Relativamente ao modo de rolamento é necessário observar a constante de tempo $\tau = 1.1845s$, $1s < \tau < 1.4s$, pelo que se atribui o **nível 2** a este modo.

Por fim, temos o rolamento holandês, modo em que é preciso analisar os limites mínimos das variáveis $\zeta = 0.10001$, $0.02 < \zeta < 0.19$, $\zeta \omega_n = 0.05681$, $0.05 < \zeta < 0.35$ e $\omega_n = 0.568096 rad/s$, $0.5 < \omega_n < 1$, pelo que se encontra dentro dos limites impostos pelo nível 2, portanto este modo é classificado como **nível 2**.

Globalmente, atribui-se o **nível 2** à aeronave. Esta classificação significa que as qualidades são adequadas à fase de voo em análise, mas é exigida alguma sobrecarga no piloto e possibilidade de limitação do cumprimento ideal da missão.

2021/2022