Package 'tswge'

January 31, 2023

Type Package

Title Time Series for Data Science

Version 2.1.0
Date 2023-1-30
Author Wayne Woodward
Maintainer Bivin Sadler dler@smu.edu>
Description Accompanies the texts Time Series for Data Science with R by Woodward, Sadler and Robertson & Applied Time Series Analysis with R, 2nd edition by Woodward, Gray, and Elliott. It is helpful for data analysis and for time series instruction.
Imports signal,PolynomF,MASS,waveslim,astsa,tidyverse,zoo,plotrix, dplyr, ggplot2, magrittr,nnfor,forecast
License GPL-2
NeedsCompilation no
LazyData TRUE
Repository CRAN
Date/Publication 2023-01-31 13:10:02 UTC
Duto! ubilitation 2023 01 31 13.10.02 010
R topics documented:
tswge-package
aic.ar.wge
aic.burg.wge
aic.wge
aic5.ar.wge
aic5.wge
airline
airlog
ample.spec.wge
appy
artrans.wge

 backcast.wge
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

bitcoin	 16
Bsales	 16
bumps16	 17
bumps256	17
butterworth.wge	18
cardiac	19
cement	19
chirp	20
co.wge	21
dfw.2011	22
dfw.mon	22
dfw.yr	23
doppler	24
doppler2	24
dow.annual	25
dow.rate	25
dow1000	26
dow1985	27
dowjones2014	27
eco.cd6	28
eco.corp.bond	28
eco.mort30	29
est.ar.wge	30
est.arma.wge	31
est.farma.wge	
est.garma.wge	
est.glambda.wge	34
expsmooth.wge	35
factor.comp.wge	36
factor.wge	37
fig1.10a	38
fig1.10b	38
fig1.10c	39
fig1.10d	40
fig1.16a	40
fig1.21a	41
fig1.22a	42
fig1.5	42
fig10.11x	43
fig10.11y	44
fig10.1bond	44
	44
e	45
fig10.1mort	
fig10.3x1	46
C	47
fig11.12	48
fig11.4a	48
fig12.1a	 49

$fig 12.1b \ldots \ldots$	50
$fig 13.18a \dots $	50
$fig 13.2c \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	51
$fig 3.10d \ldots \ldots$	52
fig3.16a	52
fig3.18a	53
fig3.24a	54
fig3.29a	54
fig4.8a	55
fig5.3c	56
fig6.11a	56
fig6.1nf	57
fig6.2nf	58
fig6.5nf	58
fig6.6nf	59
fig6.7nf	60
fig6.8nf	60
fig8.11a	61
fig8.4a	62
fig8.6a	62
fig8.8a	63
flu	64
fore.arima.wge	64
fore.arma.wge	66
fore.aruma.wge	67
fore.farma.wge	68
fore.garma.wge	69
fore.glambda.wge	70
fore.sigplusnoise.wge	71
freeze	72
freight	73
gegenb.wge	73
gen.arch.wge	74
	75
gen.arima.wge	76
gen.arma.wge	77
gen.aruma.wge	78
gen.garch.wge	
gen.garma.wge	79
gen.geg.wge	80
gen.glambda.wge	81
gen.sigplusnoise.wge	82
global.temp	83
global2020	83
hadley	84
hilbert.wge	85
is.glambda.wge	85
is.sample.wge	86
kalman.miss.wge	87

kalman.wge						 						 			. 88
kingkong						 						 			. 89
lavon						 						 			. 90
lavon15				 		 						 			. 90
linearchirp				 		 						 			. 91
ljung.wge															
llynx															
lynx															
ma.pred.wge															
ma.smooth.wge .															
ma2.table7.1															
macoef.geg.wge .															
mass.mountain .															
MedDays															
mm.eq															
mult.wge															99
NAICS															. 100
nbumps256															100
nile.min															
noctula															
NSA															
ozona															
pacfts.wge															
parzen.wge															
patemp															
period.wge															
pi.weights.wge															
plotts.dwt.wge															
plotts.mra.wge															
plotts.parzen.wge															
plotts.sample.wge plotts.true.wge															
plotts.wge															
prob10.4															
prob10.4															
1															
prob10.6y															
prob10.7x															
prob10.7y															
prob11.5															
prob12.1c															
prob12.3a															
prob12.3b															
prob12.6c															
prob13.2															
prob8.1a															
prob8.1b															
prob8.1c															
prob8.1d				 		 						 			. 123

tswge-package 5

t.swg	e-package Time Series package for Woodward, Gray, and Elliott text
Index	151
	yenoweau.precitation
	wv.wge
	wtcrude2020
	wtcrude
	whale
	wbg.boot.wge
	wages
	uspop
	us.retail
	unit.circle.wge
	tx.unemp.unadj
	tx.unemp.adj
	true.garma.aut.wge
	true.farma.aut.wge
	true.arma.spec.wge
	true.arma.aut.wge
	trans.to.original.wge
	trans.to.dual.wge
	tesla
	table 7.1
	table 10.1 moise
	sunspot2.0.month
	sunspot2.0
	sunspot.classic
	starwort.ex
	ss08.1850
	ss08
	slr.wge
	roll.win.rmse.wge
	roll.win.rmse.nn.wge
	rate
	psi.weights.wge
	prob9.6c4
	prob9.6c3
	prob9.6c2
	prob9.6c1

Description

These functions and data sets accompany the book "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

6 aic.ar.wge

Author(s)

Wayne Woodward <waynew@smu.edu>

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(wages)
plotts.wge(wages)
```

aic.ar.wge

AR Model Identification for AR models

Description

AR model identification using either AIC, AICC, or BIC and MLE, Burg or YW

Usage

```
aic.ar.wge(x, p = 1:5, type = "aic", method='mle')
```

Arguments

x Realization to be analyzed

p Range of p values to be considered

type Type of model identification criterion: aic, aicc, or bic method Method used for estimation: MLE, Burg, or YW

Value

type Criterion used: aic (default), aicc, or bic method Estimation method used: MLE, Burg, or YW

min_value Value of the minimized criterion
p AR order for selected model

phi AR parameter estimates for selected model

vara White noise variance estimate for selected model

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

aic.burg.wge 7

Examples

aic.burg.wge

AR Model Identification using Burg Estimates

Description

AR model identification using either AIC, AICC, or BIC

Usage

```
aic.burg.wge(x, p = 1:5, type = "aic")
```

Arguments

X	Realization to	be analyzed

p Range of p values to be considered

type Type of model identification criterion: aic, aicc, or bic

Value

type Criterion used: aic (default), aicc, or bic

min_value Value of the minimized criterion

p AR order for selected model

phi AR parameter estimates for selected model

vara White noise variance estimate for selected model

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

8 aic.wge

aıc.	MQD
uic.	116

ARMA Model Identification

Description

ARMA model identification using either AIC, AICC, or BIC

Usage

```
aic.wge(x, p = 0:5, q = 0:2, type = "aic")
```

Arguments

X	Realization to be analyzed
р	Range of p values to be considered
q	Range of q values to be considered
type	Type of model identification criterion: aic, aicc, or bic

Value

type	Criterion used: aic (default), aicc, or bic
min_value	Value of the minimized criterion
р	AR order for selected model
phi	AR parameter estimates for selected model
q	MA order for selected model
theta	MA parameter estimates for selected model
vara	White noise variance estimate for selected model

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

aic5.ar.wge

aic5.ar.wge	Return top 5 AIC, AICC, or BIC	picks for AR model fits

Description

You may select either AIC, AICC, or BIC to use model identification. You can also used ML, Burg, or Yule-Walker estimates. Given a range of values for p and q, the program returns the top 5 candidate models.

Usage

```
aic5.ar.wge(x, p = 0:5, type = "aic", method='mle')
```

Arguments

X	Realization t	o model

p Range of AR orders to be considered
type Either 'aic' (default), 'aicc', or 'bic'
method Either 'MLE' (default), 'Burg', or 'YW'

Value

A list of p, selected criterion for the top 5 models. The identification type and estimation method are printed on the output.

Note

If some model order combinations give explosively nonstationary models, then the program may stop prematurely. You may need to adjust the range of p and q to avoid these models.

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

10 aic5.wge

aic5.wge

Return top 5 AIC, AICC, or BIC picks

Description

You may select either AIC, AICC, or BIC to use model identification. Given a range of values for p and q, the program returns the top 5 candidate models.

Usage

```
aic5.wge(x, p = 0.5, q = 0.2, type = "aic")
```

Arguments

X	Realization to model
p	Range of AR orders to be considered
q	Range of MA orders to be considered
type	Either 'aic' (default, 'aicc', or 'bic')

Value

A list of p,q, and selected criterion for the top 5 models

Note

If some model order combinations give explosively nonstationary models, then the program may stop prematurely. You may need to adjust the range of p and q to avoid these models.

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

airline 11

airline

Classical Airline Passenger Data

Description

Monthly international airline passengers (in 1000s) from January 1949-December 1960. Series G in Box, Jenkings, and Reinsel text

Usage

```
data("airline")
```

Format

The format is: num [1:144] 112 118 132 129 121 135 148 148 136 119 ...

Source

"Time Series Analysis: Forecasting and Control" by Box, Jenkins, and Reinsel

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(airline)
```

airlog

Natural log of airline data

Description

Natural log of monthly international airline passengers (in 1000s) from January 1949-December 1960. Series G in Box, Jenkings, and Reinsel text

Usage

```
data("airlog")
```

Format

```
The format is: num [1:144] 4.72 4.77 4.88 4.86 4.8 ...
```

Source

"Time Series Analysis: Forecasting and Control" by Box, Jenkins, and Reinsel

12 ample.spec.wge

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(airlog)
```

ample.spec.wge

Smoothed Periodogram using Parzen Window

Description

This function calculates and optionally plots the smoothed periodogram using the Parzen window. The truncation point may be chosen by the user

Usage

```
sample.spec.wge(x, dbcalc = "TRUE", plot = "TRUE")
```

Arguments

	T 7 .			. •		1.
Y	Vector	contair	າາກorth	e fime	certec	realization
^	* CCtOI	Contain	யாதயா	C tillic	SCIICS	1 Cull Lation

dbcalc If dbcalc=TRUE, the calculation is in the log (dB) scale. If FALSE, then non-log

calculations are made

plot If PLOT=TRUE then the smoothed spectral estimate is plotted. If FALSE then

no plot is created

Value

freq The frequencies at which the smoothed periodogram is calculated

pzgram The smoothed periodogram using the Parzen window

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
sample.spec.wge(rnorm(100))
```

арру 13

арру	Non-perforated appendicitis data shown in Figure 10.8 (solid line) in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Annual non-perforated appendicitis rates for years 1970-2005

Usage

```
data("appy")
```

Format

The format is: num [1:36] 14.8 13.7 14.3 14.2 13 ...

Source

Alder, et al. (2010) Archives of Surgery 145, 63-71

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(appy)

artrans.wge

Perform Ar transformations

Description

Given a time series in the vector x, and AR coefs phi1 and phi2, for example, artrans.wge computes y(t)=x(t)-phi1X(t-1)-phi2x(t-2), for t=3, ..., n

Usage

```
artrans.wge(x,phi.tr, lag.max=25, plottr = "TRUE")
```

Arguments

X	Vector containing original realization
phi.tr	Coefficients of the transformation
lag.max	Max lag (k) for sample autocorrelations
plottr	If plottr=TRUE then plots of the data, transformed data, and sample autocorela-
	tions of original and transformed data

14 backcast.wge

Value

Transformed data

Note

For a difference, use phi.tr=1

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott"

Examples

```
data(wtcrude)
difdata=artrans.wge(wtcrude,phi.tr=1,lag.max=30,plottr=TRUE)
```

backcast.wge

Calculate backcast residuals

Description

This function takes either a fitted (or true) model for the realization x and calculates the residuals using the backcasting procedure

Usage

```
backcast.wge(x, phi = 0, theta = 0, n.back = 50)
```

Arguments

x realization
phi AR coefficients
theta MA coefficients

n.back Backcast to X(-n.back)

Value

The n backcast residuals are returned

Author(s)

Wayne Woodward

bat 15

References

Chapter 7 of Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

bat

Bat echolocation signal shown in Figure 13.11a in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Bat echolocation signal of a big brown bat

Usage

```
data("bat")
```

Format

The format is: num [1:381] -0.0049 -0.0083 0.0127 0.0068 -0.0259 0.0059 0.0386 -0.0405 -0.0269 0.0474 ...

Source

Al Feng, Beckman Center of the University of Illinois

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

```
data(bat)
```

16 Bsales

bitcoin

Daily Bitcoin Prices From May 1, 2020 to April 30, 2021

Description

This dataset contains the daily price of bitcoin from May 1, 2021 to April 30, 2021. The data was gathered from Yahoo Finance on April 30, 2020 and included missing values on October 9, 12 and 13 of 2020. Yahoo Finance has since filled in the correct values which can be compared with the imputed values described in the book.

Usage

```
data("bitcoin")
```

Format

The format is: num [1:461] 7200.174 6985.470 7344.884 ...

Source

Yahoo Finance

References

"Practical Time Series for Data Scientiests by Woodward, Sadler and Robertson"

Examples

data(bitcoin)

Bsales

Toy Data Set of Business Sales Data

Description

100 weeks of sales data with sales, TV advertising budget, Online advertising budget and the abount of a discount if any.

Usage

```
data("Bsales")
```

References

The Time Series Toolkit

bumps16 17

Examples

data(Bsales)

bumps16

16 point bumps signal

Description

Bumps signal from Donoho and Johnstone (1994) Biometrika 81,425-455

Usage

```
data("bumps16")
```

Format

The format is: num [1:16] 0.1 0.4 5.5 0.2 1.4 0.5 0.3 0.7 0.1 2.5 ...

Source

Donoho and Johnstone (1994) Biometrika 81,425-455

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(bumps16)

bumps256

256 point bumps signal

Description

Bumps signal from Donoho and Johnstone (1994) Biometrika 81,425-455

Usage

```
data("bumps256")
```

Format

The format is: num [1:256] 0.00016 0.00017 0.000182 0.000195 0.000211 ...

butterworth.wge

Source

Donoho and Johnstone (1994) Biometrika 81,425-455

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(bumps256)

butterworth.wge

Perform Butterworth Filter

Description

The user can specify the order of the filter, and whether it is low pass ("low"), high pass ("high"), band stop ("stop"), or band pass ("pass") filter. Requires the CRAN package 'signal'.

Usage

```
butterworth.wge(x, order, type, cutoff,plot=TRUE)
```

Arguments

X	Realization to be filtered
order	Order of the Butterworth filter

type Either "low", "high", "stop", or "pass" as dissussed in Descriptions

cutoff For "low" and "high": cutoff is a real number. For "stop" and "band": cutoff is a

2-component vector

plot If plot=TRUE then plots of the original and filtered data are produced.

Value

The filtered data

Note

Requires CRAN package 'signal'

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

cardiac 19

Examples

```
data(wages)
butterworth.wge(wages,order=4,type="low",cutoff=.05)
```

cardiac

Weekly Cardiac Mortality Data

Description

Weekly cardiac mortality, temperatures, and pollution measures for the years 1970-1978

Usage

```
data("cardiac")
```

Format

ts object consisting of weekly data

Source

Shumway and Stoffer, 1999)

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

```
data(cardiac)
```

cement

Cement data shown in Figure 3.30a in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Quarterly usage of metric tons (in thousands) of Portland cement used from the first quarter of 1973 through the fourth quarter of 1993 in Australia

Usage

```
data("cement")
```

Format

The format is: num [1:84] 1148 1305 1342 1452 1184 ...

20 chirp

Source

Australian Bureau of Statistics

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(cement)
```

chirp

Chirp data shown in Figure 12.2a in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

256 point linear chirp data

Usage

```
data("chirp")
```

Format

The format is: List of 2 \$ x : num [1:256] 1 1 0.98 0.95 0.91 0.86 0.8 0.72 0.63 0.53 ... \$ spec: num [1:256] 0.511 0.568 0.733 0.991 1.32 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

```
data(chirp)
```

co.wge 21

co	W۶	ζЕ

Cochrane-Orcutt test for trend

Description

Performs the Cochrane-Orcutt to test for a linear trend in a time series realization.)

Usage

```
co.wge(x,maxp=5)
```

Arguments

X	Realization
maxp	Maximum AR order allowed for AR model fit to residuals from least squares
	line

Value

Z	Residuals from the fitted line
b0hat	Estimated y-intercept of the fitted line using the CO method
b1hat	Estimated slope of the fitted line using the CO method
z.order	Order, p, fit to the residuals
z.phi	Coefficients of the AR model fit to the residuals
pvalue	P-value of the CO test for the significance of the slope
tco	Cochrane-Orcutt test statistic.

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

22 dfw.mon

dfw.2011	DFW Monthly Temperatures from January 2011 through December 2020

Description

Monthly average temperatures at Dallas Ft. Worth (in Fahrenheit) from January 2011 through December 2020

Usage

```
data("dfw.2011")
```

Format

ts object consisting of monthly data from January 1900 trough December 2020

Source

https://www.weather.gov/fwd/dmotemp

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

```
data(dfw.2011)
```

dfw	mon

DFW Monthly Temperatures

Description

Monthly average temperatures at Dallas Ft. Worth (in Fahrenheit) from January 1900 through December 2020

Usage

```
data("dfw.mon")
```

Format

ts object consisting of monthly data from January 1900 through December 2020

dfw.yr 23

Source

https://www.weather.gov/fwd/dmotemp

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

```
data(dfw.mon)
```

dfw.yr

DFW Annual Temperatures

Description

Annual average temperatures at Dallas Ft. Worth (in Fahrenheit) from January 1900 through December 2020

Usage

```
data("dfw.yr")
```

Format

ts object consisting of annual data from 1900 through 2020

Source

https://www.weather.gov/fwd/dmotemp

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

```
data(dfw.yr)
```

24 doppler2

doppler

Doppler Data

Description

Generated Doppler data

Usage

```
data("doppler")
```

Format

The format is: num [1:2000] -0.00644 -0.01739 -0.02961 -0.04091 -0.04952 ...

Source

Simulated

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(doppler)
```

doppler2

Doppler signal in Figure 13.10 in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Doppler signal with two time-varying frequencies

Usage

```
data("doppler2")
```

Format

The format is: num [1:200] -0.372 1.246 -1.163 0.261 -0.698 ...

Source

Simulated data

dow.annual 25

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(doppler2)
```

dow.annual

DOW Annual Closing Averages

Description

DOW Annual closing averages from 1915 through 2020

Usage

```
data("dow.annual")
```

Format

ts object consisting of DOW Annual closing averages from 19155 through 2020

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

```
data(dow.annual)
```

dow.rate

DOW Daily Rate of Return Data

Description

DOW daily rate of return data from October 1, 1928 to December 31, 2010

Usage

```
data("dow.rate")
```

Format

The format is: num [1:20656] 240 238 238 240 240 ...

26 dow1000

Source

Public access

References

"Applied Statistics and Data Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(dow.rate)
```

dow1000

Dow Jones daily rate of return data for 1000 days

Description

Dow Jones daily rate of return for the 1000 trading days before December 31, 2010.

Usage

```
data("dow1000")
```

Format

The format is: num [1:1001] 240 238 238 240 240 ...

Source

Internet and shown in Figure 4.9, "Applied Time Series Analysis with R, 2nd edition", by Woodward, Gray and Elliott

Examples

data(dow1000)

dow1985 27

dow1985

Daily DOW Closing Prices 1985 through 2020

Description

Daily DOW Closing Prices 1985 through 2020

Usage

```
data("dow1985")
```

Format

ts object consisting of daily dow closing prices from 1985 through 2020

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(dow1985)

dowjones2014

Dow Jones daily averages for 2014

Description

Daily Dow Jones averages for 2014

Usage

```
data("dowjones2014")
```

Format

The format is: num [1:252] 16441 16470 16425 16531 16463 ...

Source

Economic Data: Federal Reserve Bank of St. Louis. Website: https://research.stlouisfed.org/fred2/series/DJIA/downloaddata

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(dowjones2014)

28 eco.corp.bond

eco.cd6

6-month rates

Description

6-month rates 1/1/1991 through 4/1/2010

Usage

```
data("eco.cd6")
```

Format

The format is: num [1:469] 7.25 7.53 7.64 7.64 7.59 7.44 7.39 7.26 7.25 7.19 ...

Source

Internet

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(eco.cd6)
```

eco.corp.bond

Corporate bond rates

Description

Corporate bond rates 1/1/1991 through 4/1/2010

Usage

```
data("eco.corp.bond")
```

Format

The format is: num [1:469] 4.61 5.22 5.69 6.04 6.06 5.91 5.43 5.04 4.89 4.26 ...

Source

Internet

eco.mort30 29

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(eco.corp.bond)
```

eco.mort30

30 year mortgage rates

Description

30-year mortgage rates 1/1/1991 through 4/1/2010

Usage

```
data("eco.mort30")
```

Format

The format is: num [1:469] 7.31 7.43 7.53 7.6 7.7 7.69 7.63 7.55 7.48 7.44 ...

Source

Internet

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
data(eco.mort30)
```

30 est.ar.wge

est.	ar.	wge
------	-----	-----

Estimate parameters of an AR(p) model

Description

Estimate parameters of an AR(p) with p assumed known. Outputs residuals (backcast0 and white noise variance estimate.)

Usage

```
est.ar.wge(x, p = 2, factor = TRUE, method = "mle")
```

Arguments

Χ	Realization
p	AR order
factor	If TRUE (default) a factor table is printed for the estimated model
method	Either "mle" (default), "burg", or "yw"

Details

The 'type' arument is added for backwards compatabililty and if specified will replace the value specified in the 'method' argument.

Value

method	Estimation method used: MLE, Burg, or YW
phi.est	Estimates of the AR parameters
res	Estimated residuals (using backcasting) based on estimated model
avar	Estimated white noise variance (based on backcast residuals)
xbar	Sample mean of data in x
aic	AIC for estimated model
aicc	AICC for estimated model
bic	BIC for estimated model

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

est.arma.wge

est.arma.wge	Function to calculate ML estimates of parameters of stationary ARMA models	
	V I	

Description

This function calculates ML estimates, computes residuals (using backcasting), estimates white noise variance for a stationary ARMA model

Usage

```
est.arma.wge(x, p = 0, q = 0, factor = TRUE)
```

Arguments

X	The realization.
р	The autoregressive order
q	the moving average order
factor	Logical variable. factor=TRUE (default) plots a factor table for estimated ARpart of model

Details

This function uses arima from base SAS and is written similarly to itsmr function arma

Value

phi	ML estimates of autoregressive parameters
theta	ML estimates of moving average parameters
res	Residuals (calculated using backcasting)
avar	Estimate of white noise variance based on backcast residuals
se.phi	Standard errors of the AR parameter estimates
se.theta	Standard errors of the MA parameter estimates
aic	AIC for estimated model
aicc	AICC for estimated model
bic	BIC for estimated model

Note

Requires CRAN package 'itsmr'. The program is based on arima from base R and arma from 'itsmr'

Author(s)

Wayne Woodward

32 est.farma.wge

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

est.farma.wge

Estimate the parameters of a FARMA model.

Description

This function uses the grid search algorithm discussed in Section 11.5 of Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Usage

```
est.farma.wge(x, low.d, high.d, inc.d, p.max, nback = 500)
```

Arguments

X	Realization to be analyzed
low.d	The lower limit for d in the grid search
high.d	The upper limit for d in the grid search
inc.d	The increment, e.g01, .001, etc. in the grid search
p.max	Maximum value of p allowed for the AR component of the model
nback	Number of backcasts to be used (see section 11.5 in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Details

We assume q=0 and do not allow moving average terms in the model.

Value

d	Estimate of d
phi	Estimates of the pth order AR component of the model where p is some integer from 0 to p.max $$
vara	The estimnated white noise variance
aic	The aic value associated with the final model

Author(s)

Wayne Woodward

est.garma.wge

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott. See also Hosking (1984)

Examples

```
est.farma.wge(Nile,low.d=.1,high.d=.5,inc.d=.01,p.max=3)
```

est.garma.wge

Estimate the parameters of a GARMA model.

Description

This function uses the grid search algorithm discussed in Section 11.5 of Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Usage

```
est.garma.wge(x,low.u,low.lambda,high.u,high.lambda,inc.u,inc.lambda,p.max,nback=500)
```

Arguments

x	Realization to be analyzed
low.u	The lower limit for u in the grid search
low.lambda	The lower limit for lambda in the grid search
high.u	The upper limit for u in the grid search
high.lambda	The upper limit for lambda in the grid search
inc.u	The increment, e.g01, .001, etc. in the grid search on possible u values
inc.lambda	The increment, e.g01, .001, etc. in the grid search on possible lambda values
p.max	Maximum value of p allowed for the AR component of the model
nback	Number of backcasts to be used (see section 11.5 in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Details

We assume q=0 and do not allow moving average terms in the model.

Value

u	Estimate of u
lambda	Estimate of lambda
phi	Estimates of the pth order AR component of the model where p is some integer from 0 to p.max $$
vara	The estimated white noise variance
aic	The aic value associated with the final model

34 est.glambda.wge

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott. See also Hosking (1984), Gray, Zhang, and Woodward(1989), and Woodward, Cheng, and Gray(1998)

Examples

```
data(llynx)
est.garma.wge(llynx,low.u=.4,high.u=.9,low.lambda=.2,high.lambda=.4,inc.u=.01,inc.lambda=.1,p.max=1)
```

est.glambda.wge

Estimate the value of lambda and offset to produce a stationary dual.

Description

This function uses the technique discussed in Section 13.3.3 of Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott to find the g(lambda) time transformation that most nearly transforms the data to a stationary dual.

Usage

```
est.glambda.wge(data, lambda.range = c(0, 1), offset.range = c(0, 100))
```

Arguments

data	Vector containing the TVF realization to be analyzed
lambda.range	Range of lambda values considered in the search
offset.range	Range of offset values considered in the search

Value

Q A listing of lambda values within the range and offsets for each lambda that

provided the best dual. Also a listing of the test statistic, Q, to be minimized

best.lambda See description of best.offset below

best.offset best.lambda and best.offset are the lambda-offset pair that produced the most

stationary dual according to the Q criterion

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott and Jiang, Gray, and Woodward(2006)

expsmooth.wge 35

Examples

```
data(ss08)
```

est.glambda.wge(ss08,lambda.range=c(-1,1),offset.range=c(0,100))

expsmooth.wge

Exponential Smoothing

Description

Performs exponential smoothing on the data in vector x

Usage

```
expsmooth.wge(x,alpha=NULL,n.ahead=0,plot=TRUE)
```

Arguments

x Vector containing realization

alpha Alpha value

n.ahead Number of steps ahead to forecast

plot If plot=TRUE then plots of the data along with forecasts

Value

alpha alpha value used in the smoothing

u forecasts

Author(s)

Wayne Woodward

References

"Time Series for Data Science" by Woodward, Sadler, and Robertson

```
data(wtcrude2020)
expsmooth.wge(wtcrude2020)
```

36 factor.comp.wge

factor.comp.wge

Create a factor table and AR components for an AR realization

Description

This program finds the ML estimates of a specified order, then prints a factor table for the estimated model and prints and plots the additive components

Usage

```
factor.comp.wge(x, aic = FALSE, p, ncomp)
```

Arguments

Х	Realization
aic	The program calls basic R function phi.burg to calculate burg estimates of an AR fit to the data. Aic is turned off and the user specifies the order
р	Order of AR to fit to data
ncomp	Number of additive components to calculate and plot

Value

ncomp	The number of additive components
x.comp	Matrix (i,j) where i designates the component and j denotes time, i.e. (i,j) denotes the ith component at time j

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Elliott, and Gray

```
data(ss08)
    factor.comp.wge(ss08,p=9,ncomp=4)
```

factor.wge 37

factor.wge	Produce factor table for a kth order AR or MA model

Description

This program produces a factor table that reduces a kth order factor into its first and irreducible second order factors as described in Section 3.2.11 of "Applied Time Series Analysis" by Woodward, Gray, and Elliott

Usage

```
factor.wge(phi=0, theta=0)
```

Arguments

phi	Vector containing the coefficients of the kth order AR factor which is to be

factored

theta Vector containing the coefficients of the kth order MA factor which is to be

factored

Value

The only output is the factor table, written by default to the console

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis, 2nd edition" by Woodward, Gray, and Elliott

```
factor.wge(phi=c(-.3,.44,.29,-.378,-.648))
```

38 fig1.10b

fig1.10a

Simulated data shown in Figure 1.10a in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

This is the sum of the three signals in fig1.10b, fig1.10c, and fig1.10d

Usage

```
data("fig1.10a")
```

Format

The format is: num [1:1000] 0.0217 -0.1528 -0.3141 -0.4613 -0.5934 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(fig1.10a)
```

fig1.10b

Simulated data shown in Figure 1.10b in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Low frequency component of Figure 1.10a

Usage

```
data("fig1.10b")
```

Format

The format is: num [1:1000] 1 1 0.999 0.998 0.997 ...

Source

Simulated data

fig1.10c 39

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(fig1.10b)
```

fig1.10c

Simulated data in Figure 1.10c in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Middle frequencies component in Figure 1.10a

Usage

```
data("fig1.10c")
```

Format

The format is: num [1:1000] 0.73 0.646 0.56 0.471 0.381 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

```
data(fig1.10c)
```

fig1.16a

fig1.10d

Simulated data in Figure 1.10d in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

High frequency component of Figure 1.10a

Usage

```
data("fig1.10d")
```

Format

The format is: num [1:1000] -1.71 -1.8 -1.87 -1.93 -1.97 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(fig1.10d)
```

fig1.16a

Simulated data for Figure 1.16a in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Data containing two dominant frequencies

Usage

```
data("fig1.16a")
```

Format

The format is: num [1:250] -0.89 -3.209 0.929 -0.763 -1.972 ...

Source

Simulated data

fig1.21a 41

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(fig1.16a)
```

fig1.21a

Simulated shown in Figure 1.21a of Woodward, Gray, and Elliott text

Description

Simulated shown in Figure 1.21a of Woodward, Gray, and Elliott text. It illustrates the fact that frequency information is displayed better in the spectrum than the autocorrelations.

Usage

```
data("fig1.21a")
```

Format

The format is: num [1:250] -0.89 -3.209 0.929 -0.763 -1.972 ...

Source

Simulated by the authors of the Woodward, Gray, and Elliott text

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
data(fig1.21a)
```

42 fig1.5

fig1.22a

White noise data

Description

Realization of length n=250 of white noise data, Figure 1.22a in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

```
data("fig1.22a")
```

Format

The format is: num [1:250] 0.302 -0.691 -0.477 0.814 -0.267 ...

Source

Simulated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(fig1.22a)
```

fig1.5

Simulated data shown in Figure 1.5 in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Simulated data from an ergodic AR(1) process

Usage

```
data("fig1.5")
```

Format

The format is: num [1:100] 0.739 -0.39 0.15 -0.627 0.262 ...

Source

Simulated data

fig10.11x 43

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(fig1.5)
```

fig10.11x

Simulated data shown in Figure 10.11 (solid line) in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Simulated unobservable AR(1) data in Example 10.11

Usage

```
data("fig10.11x")
```

Format

The format is: num [1:75] -0.2497 -0.0812 -0.6463 -1.7653 -2.719 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

```
data(fig10.11x)
```

fig10.1bond

fig10.11y

Simulated data shown in Figure 10.11 (dashed line) in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Simulated observed AR(1) plus noise data in Example 10.11

Usage

```
data("fig10.11y")
```

Format

The format is: num [1:75] -0.74 0.045 -0.775 -2.944 -2.278 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(fig10.11y)
```

fig10.1bond

Data for Figure 10.1b in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Moody's seasoned Aaa corporate bond rate, January 1, 1991-April1, 2010

Usage

```
data("fig10.1bond")
```

Format

The format is: num [1:232] 7.17 6.51 6.5 6.16 6.03 6.26 6.25 5.79 5.6 5.32 ...

Source

Internet

fig10.1cd 45

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(fig10.1bond)
```

fig10.1cd

Data shown in Figure 10.1a in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

```
6 month CD rate for January 1, 1991 - April 1, 2010
```

Usage

```
data("fig10.1cd")
```

Format

The format is: num [1:232] 9.04 8.83 8.93 8.86 8.86 9.01 9 8.75 8.61 8.55 ...

Source

Internet

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

```
data(fig10.1cd)
```

46 fig10.3x1

fig10.1mort

Data shown in Figure 10.1c in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

30 year conventional mortgage rates: January 1, 1991-April1, 2010

Usage

```
data("fig10.1mort")
```

Format

The format is: num [1:232] 9.64 9.37 9.5 9.49 9.47 9.62 9.58 9.24 9.01 8.86 ...

Source

Internet

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(fig10.1mort)
```

fig10.3x1

Variable X1 for the bivariate realization shown in Figure 10.3"

Description

Variable X1 for the bivariate Var1) realization in Figure 10.3 of "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

```
data("fig10.3x1")
```

Format

The format is: num [1:75] -0.0757 -0.2728 -0.8089 -2.4747 -5.9256 ...

Source

Simulated Var(1) data

fig10.3x2

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(fig10.3x1)
```

fig10.3x2

Variable X2 for the bivariate realization shown in Figure 10.3"

Description

Variable X2 for the bivariate Var1) realization in Figure 10.3 of "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

```
data("fig10.3x2")
```

Format

The format is: num [1:75] 0.646 -1.313 -0.191 -2.61 -4.925 ...

Source

Simulated Var(1) data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
data(fig10.3x2)
```

48 fig11.4a

fig11.12

Data shown in Figure 11.12a in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Simulated GATMA(1,0) data

Usage

```
data("fig11.12")
```

Format

The format is: num [1:500] 2.18 -1.17 -3.13 -1.32 1.69 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(fig11.12)
```

fig11.4a

Data shown in Figure 11.4a in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Simulated FARMA(2,0) data

Usage

```
data("fig11.4a")
```

Format

The format is: num [1:100] 1.361 -0.369 0.881 2.362 0.236 ...

Source

simulated data

fig12.1a 49

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(fig11.4a)
```

fig12.1a

Simulated data with two frequencies shown in Figure 12.1a in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Simulated two-frequency data in which the two frequencies are separated in time

Usage

```
data("fig12.1a")
```

Format

The format is: num [1:200] -1.22 -6.06 -9.66 -10.14 -8.58 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

```
data(fig12.1a)
```

fig13.18a

fig12.1b	Simulated data with two frequencies shown in Figure 12.1b in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott
	Litton

Description

Simulated two-frequency AR(4) data

Usage

```
data("fig12.1b")
```

Format

The format is: num [1:256] 10.081 10.835 0.532 -5.495 1.294 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(fig12.1b)
```

C: 10 10	
fig13.18a	Simulated data shown in Figure 3.18a in Applied Time Series Analysis
	with R, second edition by Woodward, Gray, and Elliott

Description

Simulated AR(4) data

Usage

```
data("fig13.18a")
```

Format

The format is: num [1:400] 1.251 1.0019 -0.0317 -1.0167 -1.4222 ...

fig13.2c 51

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(fig13.18a)
```

fig13.2c

TVF data shown in Figure 13.2c in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Realization from an Euler(2) model

Usage

```
data("fig13.2c")
```

Format

The format is: num [1:200] -13.14 -11.03 22.06 -8.92 -16.67 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

```
data(fig13.2c)
```

52 fig3.16a

fig3.10d

AR(2) Realization $(1-.95)^2X(t)=a(t)$

Description

AR(2) Realization (1-.95) $^2X(t)$ =a(t) plotted in Figure 3.10d in "Applied Time series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

```
data("fig3.10d")
```

Format

The format is: num [1:100] 15.3 16.3 18.6 21.2 22.8 ...

Details

This realization is also used in Chapter 7 of text above for testing estimation techniques

Source

Simulated realization

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(fig3.10d)
```

fig3.16a

Figure 3.16a in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Description

Realization from the AR(3) model in Figure 3.16a

Usage

```
data("fig3.16a")
```

Format

The format is: num [1:200] -0.0686 0.4304 0.4786 0.9899 3.4047 ...

fig3.18a

Source

Simulated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(fig3.16a)
```

fig3.18a

Figure 3.18a in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Description

Realization from the AR(3) model in Figure 3.18a

Usage

```
data("fig3.18a")
```

Format

The format is: num [1:200] -0.573 -0.837 -1.16 1.078 -0.561 ...

Source

Simulated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
data(fig3.18a)
```

fig3.29a

fig3.24a

ARMA(2,1) realization

Description

ARMA(2,1) realization of length n=200 phi(1)=1.6,phi(2)=-.9,theta(1)=.8 (using Box-Jenkins-Reinsel notation)

Usage

```
data("fig3.24a")
```

Format

The format is: num [1:200] 0.685 -1.234 -0.714 0.796 -0.96 ...

Source

Simulated data

References

Fig3.24a in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(fig3.24a)

fig3.29a

Simulated data shown in Figure 3.29a in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Simulated data from stationary seasonal model

Usage

```
data("fig3.29a")
```

Format

The format is: num [1:20] -7.23 -6.99 -6.9 -6.26 -3.79 ...

Source

Simulated data

fig4.8a 55

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(fig3.29a)
```

fig4.8a

Gaussian White Noise

Description

Gaussian White Noise, n=1000 shown in Figure 4.8a in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

```
data("fig4.8a")
```

Format

The format is: num [1:1000] -0.585 0.177 0.284 -0.271 0.126 ...

Source

Simulated data

References

Plotted in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
data(fig4.8a)
```

56 fig6.11a

fig5.3c

Data from Figure 5.3c in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Description

Realization of length 200 from the AR(3) model $(1-.995B)(1-1.2B+.8B^2)X(t)=a(t)$

Usage

```
data("fig5.3c")
```

Format

The format is: num [1:200] -0.503 -0.811 -0.188 1.34 2.982 ...

Source

Simulated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(fig5.3c)
```

fig6.11a

Cyclical Data

Description

First 50 points of data in Figure 6.11a, Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Usage

```
data("fig6.11a")
```

Format

The format is: num [1:50] -0.682 0.15 2.262 3.079 4.122 ...

Source

Simulated

fig6.1nf

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(fig6.11a)
```

fig6.1nf

Data in Figure 6.1 without the forecasts

Description

Realization from the AR(1) model (1-.8B)(X(t)-25)=a(t) in Figure 6.2 and also shown in Table 6.1 of "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

```
data("fig6.1nf")
```

Format

The format is: num [1:80] 25.1 27.1 27.3 25.7 23.9 ...

Source

Generated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
data(fig6.1nf)
```

58 fig6.5nf

fig6.2nf

Data in Figure 6.2 without the forecasts

Description

Realization from the ARMA(2,1) model $(1-1.2B+.6B^2)(X(t)-50)=(1-.5B)a(t)$ in Figure 6.2 and also shown in Table 6.1 of "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

```
data("fig6.2nf")
```

Format

The format is: num [1:25] 49.5 51.1 50 49.7 50.4 ...

Source

Generated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(fig6.2nf)
```

fig6.5nf

Data in Figure 6.5 without the forecasts

Description

Realization from the ARIMA(0,1,0) model for realization in Figure 6.5 of "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

```
data("fig6.5nf")
```

Format

The format is: num [1:50] 105 104 103 102 102 ...

fig6.6nf

Source

Generated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(fig6.5nf)
```

fig6.6nf

Data in Figure 6.6 without the forecasts

Description

Realization from the ARIMA(1,1,0) model (1-.8B)(1-B)X(t)=a(t) for realization in Figure 6.6 of "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

```
data("fig6.6nf")
```

Format

The format is: num [1:50] 139 138 138 140 141 ...

Source

Generated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
data(fig6.6nf)
```

fig6.8nf

fig6.7nf

Data in Figure 6.2 without the forecasts

Description

Realization from the ARIMA(0,2,0) model for realization in Figure 6.7 of "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

```
data("fig6.7nf")
```

Format

The format is: num [1:50] -582 -579 -578 -578 -579 ...

Source

Generated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(fig6.7nf)
```

fig6.8nf

Simulated seasonal data with s=12

Description

Simulated seasonal data designed for showing seasonal forecasts

Usage

```
data("fig6.8nf")
```

Format

The format is: num [1:48] 5.8 13.66 9.83 7.33 6.96 ...

Source

Simulated Data

fig8.11a 61

References

"Applied Time series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(fig6.8nf)
```

fig8.11a

Data for Figure 8.11a in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Realization of length n=200 from the model $(1-B)(1-1.79B+1.75B^2-1.61B^3+.765B^4)X(t)=a(t)$

Usage

```
data("fig8.11a")
```

Format

The format is: num [1:200] 83.2 80.9 78.9 80.4 85.4 ...

Source

Simulated data

References

Applied time series Analysis with R, second edition by Woodward, Gray, and Elliott

```
data(fig8.11a)
```

62 fig8.6a

fig8.4a

Data for Figure 8.4a in Applied time series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Realization of length n=200 from the model $(1-.8B)(1-1.6B+.995B^2)X(t)=a(t)$

Usage

```
data("fig8.4a")
```

Format

The format is: num [1:200] 13.45 -5.52 -19 -21.26 -13.63 ...

Source

simulated data

References

Applied time series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(fig8.4a)
```

fig8.6a

Data for Figure 8.6a in Applied time series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

The realization of length n=200 is from the model $(1-B)^2(1-1.2B+.6B^2)X(t)=a(t)$

Usage

```
data("fig8.6a")
```

Format

The format is: num [1:200] 354 368 383 399 417 ...

Source

Simulated data

fig8.8a

References

Applied time series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(fig8.6a)
```

fig8.8a

Data for Figure 8.8a in Applied time series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Realization of length n=200 from the model $(1-B^12)(1-1.25B+.9B^2)(X(t)-50)=a(t)$

Usage

```
data("fig8.8a")
```

Format

The format is: num [1:200] 48.9 42.9 49.3 57.3 55.5 ...

Source

Simulated data

References

Applied time series Analysis with R, second edition by Woodward, Gray, and Elliott

```
data(fig8.8a)
```

64 fore.arima.wge

flu

Influenza data shown in Figure 10.8 (dotted line)

Description

Annual influenza rate for years 1970-2005

Usage

```
data("flu")
```

Format

The format is: num [1:36] 9.75 5.82 10.99 10.41 8.42 ...

Source

Alder, et al. (2010) Archives of Surgery 145, 63-71

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(flu)

fore.arima.wge

Function for forecasting from known model which may have (1-B)^d and/or seasonal factors

Description

This function calculates forecasts from a known model that may have stationary ARMA components as well as (1-B)^dand/or seasonal factors

Usage

fore.arima.wge(x,phi=0,theta=0,d=0,s=0,n.ahead=5,lastn=FALSE,plot=TRUE,alpha=.05,limits)

fore.arima.wge 65

Arguments

X	Realization to be forecast from
phi	Vector containing stationary AR parameters
theta	Vector containing MA parameters
d	Order of difference
s	Seasonal order
n.ahead	Number of steps ahead to forecast
lastn	Logical, lastn=TRUE plots forecasts for the last n.ahead values in the realization
plot	Logical, plot=TRUE plots forecasts
alpha	Significance level for prediction limits
limits	Logical, limits=TRUE plots prediction limits

Value

f	Vector of forecasts
11	Lower limits
ul	Upper limits
resid	Residuals
wnv	White noise variance estimate
xbar	Sample mean of data in x
se	Se for each forecast
psi	Psi weights
ptot	Total order of all AR components, phi, d, and s
phtot	Coefficients after multiplying all stationary and nonstationary coponents on the AR side of the equation

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
data(airline)
    x=log(airline)
    phi12=c(-.36,-.05,-.14,-.11,.04,.09,-.02,.02,.17,.03,-.1,-.38)
    s=12
    d=1
    fore.arima.wge(x,phi=phi12,d=1,s=12,n.ahead=12,limits=FALSE)
```

fore.arma.wge

Description

Forecasts and associated plots for an ARMA model

Usage

fore.arma.wge(x,phi=0,theta=0,n.ahead=5,lastn=FALSE,plot=TRUE,alpha=.05,limits=TRUE)

Arguments

X	Realization
phi	AR vector
theta	MA vector
n.ahead	Number of steps ahead
lastn	Logical variable, TRUE means plot forecast for last n.ahead values of realization
plot	Logical variable, TRUE means plot forecasts
alpha	Significance level for prediction limits
limits	Logical variable, TRUE means plot limits

Value

f

11	Lower limits
ul	Upper limits
resid	Residuals
wnv	White noise variance estimate
xbar	Sample mean of data in x
se	Se for each forecast
psi	psi weights
rmse	RMSE is output if lastn=TRUE
mad	MAD is output if lastn=TRUE

Vector of forecasts

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

fore.aruma.wge 67

Examples

```
data(fig6.1nf)
fore.arma.wge(fig6.1nf,phi=.8,n.ahead=20)
```

fore.aruma.wge Function for forecasting from known model which may have (1-B)^d, seasonal, and/or other nonstationary factors

Description

This function calculates forecasts from a known model that may have stationary ARMA components as well as (1-B)^d, seasonal, and/or other nonstationary factors

Usage

```
fore.aruma.wge(x,phi=0,theta=0,d=0,s=0,lambda=0,n.ahead=5,
lastn=FALSE,plot=TRUE,alpha=.05,limits=TRUE)
```

Arguments

x	Realization to be forecast from
phi	Vector containing stationary AR parameters
theta	Vector containing MA parameters
d	Order of difference
S	Seasonal order
lambda	Vector containing coefficients of nonstationary factors not covered by the difference or the seasonal factors
n.ahead	Number of steps ahead to forecast
lastn	Logical, lastn=TRUE plots forecasts for the last n.ahead values in the realization
plot	Logical, plot=TRUE plots forecasts
alpha	Alpha for prediction limits
limits	Logical, limits=TRUE plots prediction limits

Value

f	Vector of forecasts
11	Lower limits
ul	Upper limits
resid	Residuals
wnv	White noise variance estimate
xbar	Sample mean of data in x
SP	Se for each forecast

68 fore.farma.wge

psi Psi weights

ptot. fore Total order of all AR components, phi, d, s, and lambda

phtot.fore Coefficients after multiplying all stationary and nonstationary coponents on the

AR side of the equation

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(airline)
    x=log(airline)
    phi12=c(-.36,-.05,-.14,-.11,.04,.09,-.02,.02,.17,.03,-.1,-.38)
    s=12
    d=1
    fore.aruma.wge(x,phi=phi12,d=1,s=12,n.ahead=12,limits=FALSE)
```

fore.farma.wge

Forecast using a FARMA model

Description

Find forecasts using a specified FARMA model

Usage

```
fore.farma.wge(x, d, phi, theta = 0, n.ahead = 10, lastn = TRUE, plot = TRUE)
```

Arguments

x	Realization to be analyzed
d	Parameter d in FARMA model
phi	Coefficients of the AR component of the FARMA model
theta	Coefficients of the MA component of the FARMA model
n.ahead	Number of values to forecast
lastn	If lastn=TRUE then the last n.ahead values are forecast. Otherwise, if lastn=FALSE the next n.ahead values are forecast

If plot=TRUE then plots of the data and forecasts are plotted

Details

plot

Forecasts for an AR model fit to the data are also calculated and optionally plotted

fore.garma.wge 69

Value

ar.fit.order Order of the AR model fit to the data
ar.fore Forecasts based on the AR model
farma.fore Forecasts based on the FARMA model

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
fore.farma.wge(Nile, d=.37, phi=0, theta = 0, n.ahead = 30, lastn = TRUE, plot = TRUE)
```

fore.garma.wge Forecast using a GARMA model

Description

Find forecasts using a specified GARMA model

Usage

```
fore.garma.wge(x,u,lambda,phi,theta=0,n.ahead=10,lastn=TRUE,plot=TRUE)
```

Arguments

x Realization to be analyzed
u Parameter u in GARMA model
lambda Parameter lambda in GARMA model
phi Coefficients of the AR component of the GA

phi Coefficients of the AR component of the GARMA model theta Coefficients of the MA component of the GARMA model

n. ahead Number of values to forecast

lastn If lastn=TRUE then the last n.ahead values are forecast. Otherwise, if lastn=FALSE

the next n.ahead values are forecast

plot If plot=TRUE then plots of the data and forecasts are plotted

Details

Forecasts for an AR model fit to the data are also calculated and optionally plotted

70 fore.glambda.wge

Value

ar.fit.order Order of the AR model fit to the data
ar.fore Forecasts based on the AR model
garma.fore Forecasts based on the GARMA model

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(llynx)
fore.garma.wge(llynx,u=.796,lambda=.4,phi=.51,theta=0,n.ahead=30,lastn=TRUE,plot=TRUE)
```

fore.glambda.wge Forecast using a G(lambda) model

Description

Find forecasts using a specified G(lambda) model

Usage

fore.glambda.wge(data.orig,lambda=0,offset=60,phi=0,h=0,n.ahead=10,lastn=TRUE,plot=TRUE)

Arguments

data.orig	Time series data in the original time scale
lambda	The value of lambda under the Box-Cox time transformation with parameter lambda.
offset	Offset (or shift) value in the G(lambda) model.
phi	Coefficients of the AR component of the AR model fit to the dual data
h	Value of h which will be calculated to produce the desired number of forecasts in the original time scale
n.ahead	Number of values to forecast
lastn	If lastn=TRUE then the last n.ahead values are forecast. Otherwise, if lastn=FALSE the next n.ahead values are forecast
plot	If plot=TRUE then plots of the data and forecasts are plotted

fore.sigplusnoise.wge 71

Details

Forecasts for an AR model fit to the data in the original time scale are also calculated and optionally plotted

Value

f.ar	Forecasts using AR model fit to data in original time

f.glam Forecasts using AR model fit to the dual and then reinterpolated

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

fore.sigplusnoise.wge Forecasting signal plus noise models

Description

Forecast models of the form line plus AR noise or cosine plus AR noise with known frequency

Usage

```
fore.sigplusnoise.wge(x,linear=TRUE,method="mle",freq=0,max.p=5,
n.ahead=10,lastn=FALSE,plot=TRUE,alpha=.05,limits=TRUE)
```

Arguments

x	The variable containing the realization to be analyzed
linear	If TRUE then the program forecasts a line plus noise model. If FALSE the model is cosine plus noise
method	Estimation method
freq	Frequency of the cosine term. freq is ignored when using line plus noise
max.p	Max value of p for the ARp model fit to the noise
n.ahead	The number of steps ahead to forecast
lastn	If TRUE then the function forecasts the last n.ahead values of the realization. If FALSE the the forecasts are for n.ahead steps beyond the end of the realization
plot	If TRUE then the forecasts and realization are plotted
alpha	Significance level
limits	If TRUE the forecast limits calculated and plotted

72 freeze

Va	lue
va.	ıuc

f	The n.ahead forecasts
11	The lower limits for the forecasts. zeros are returned if limits were not requested
ul	The upper limits for the forecasts. zeros are returned if limits were not requested
res	Residuals
wnv	The estimated white noise variance based on the residuals
se	se is the estimated standard error of the k step ahead forecast. zeros are returned if limits were not requested
xi	xi is the kth psi weight associated with the fitted AR model and used to calculate the se above. Note that psi0 is1, zeros are returned if limits were not requested

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(llynx)
llynx.for=fore.sigplusnoise.wge(llynx,linear=FALSE,freq=.1,max.p=5,n.ahead=20)
```

freeze

Minimum temperature data

Description

Each data value represents the minimum temperature over 10-day period at a location in South America

Usage

```
data("freeze")
```

Format

The format is: num [1:500] 8.2 12.3 9.2 8.4 10 8.8 6.8 4.8 5.2 1.7 ...

Source

Unknown

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

freight 73

Examples

```
data(freeze)
```

freight

Freight data

Description

9 years of monthly freight shipment data

Usage

```
data("freight")
```

Format

The format is: num [1:120] 1299 1148 1345 1363 1374 ...

Source

Unknown

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(freight)
```

gegenb.wge

Calculates Gegenbauer polynomials

Description

Calculates Gegenbauer polynomials of order n with parameters u and lambda - see (11.9) in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Usage

```
gegenb.wge(u, d, n)
```

74 gen.arch.wge

Arguments

u	Parameter u in (11.9) Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott
d	Parameter lambda in (11.9) Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott
n	Order of Gegenbauer polynomial in (11.9)

Details

This function is called by gen.garma.wge

Value

The coefficients of the nth order Gegenbauer polynomial

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
gegenb.wge(u=.8,d=.3,n=6)
```

gen.arch.wge Generate a realization from an ARCH(qU) model	gen.arch.wge	Generate a realization from an ARCH(q0) model
--	--------------	---

Description

Generates a realization of length n from the GARCH(q0) model (4.23) in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

```
gen.arch.wge(n, alpha0, alpha, plot = TRUE, sn=0)
```

Arguments

n	Length of realization to be generated
alpha0	The constant alpha0 in model (4.23)
alpha	A vector of length q0 containing alpha1 through alphaq0
plot	If plot=TRUE (default) the generated realization is plotted
sn	determines the seed used in the simulation. sn=0 produces new/random realiza-
	tion each time. sn=positive integer produces same realization each time

gen.arima.wge 75

Value

returns the generated realization

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
gen.arch.wge(n=200,alpha0=.1,alpha=c(.36,.27,.18,.09))
```

gen.arima.wge

Function to generate an ARIMA (or ARMA) realization

Description

This function calls arima.sim but with more simple parameter structure for stationary ARIMA (or ARMA) models

Usage

```
gen.arima.wge(n, phi=0, theta=0, d=0,s=0,mu=0,vara=1,plot=TRUE,sn=0)
```

Arguments

n	Length of realization to be generated
phi	Vector of AR coefficients
theta	Vector of MA coefficients
d	Order of the difference
S	Seasonal order
vara	White noise variance, default=1
mu	Theoretical mean of data in x, default=0
plot	Logical: TRUE=plot, FALSE=no plot
sn	determines the seed used in the simulation. sn=0 produces new/random realization each time. sn=positive integer produces same realization each time

Value

This function simply generates and (optionally plots) an ARIMA (or ARMA) realization

76 gen.arma.wge

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
gen.arima.wge(n=100, phi=c(1.6,-.9), theta=.8, d=1, vara=1, plot=TRUE)
```

gen.arma.wge

Function to generate an ARMA realization

Description

This function calls arima.sim but with more simple parameter structure for stationary ARMA models

Usage

```
gen.arma.wge(n, phi=0, theta=0, mu=0, vara = 1,plot = TRUE, sn=0)
```

Arguments

n	Length of realization to be generated
phi	Vector of AR coefficients
theta	Vector of MA coefficients
vara	White noise variance, default=1
mu	Theoretical mean, default=0
plot	Logical: TRUE=plot, FALSE=no plot
sn	determines the seed used in the simulation. sn=0 produces new/random realiza-

tion each time. sn=positive integer produces same realization each time

Value

This function simply generates and (optionally plots) an ARMA realization

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

gen.aruma.wge 77

Examples

```
gen.arma.wge(n=100, phi=c(1.6,-.9), theta=.8, mu=50, vara=1, plot=TRUE)
```

gen.aruma.wge

Function to generate an ARUMA (or ARMA or ARIMA) realization

Description

This function calls arima.sim but an a similar manner to gen.ns.arma.wge and gen.ns.arima.wge but allows for generation of realizations from ARUMA models (see Chapter 5 of "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

```
gen.aruma.wge(n,phi=0,theta=0,d=0,s=0,lambda=0,vara=1,plot=TRUE,sn=0)
```

Arguments

n	Length of realization to be generated
phi	Vector of AR coefficients
theta	Vector of MA coefficients
d	Order of the difference
S	Order of seasonal operator
lambda	Vector of nonstaionary coefficients not associated with d or s (see Def. 5.1(b) in Woodward, Gray, and Elliott text)
vara	White noise variance, default=1
plot	Logical: TRUE=plot, FALSE=no plot
sn	determines the seed used in the simulation. sn=0 produces new/random realization each time. sn=positive integer produces same realization each time

Value

This function generates and (optionally plots) an ARMA or ARIMA or ARUMA realization

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
gen.aruma.wge(n=100,phi=.7,theta=0,\ d=1,\ s=4,lambda=c(1.8,-1),vara=1,\ plot=TRUE)
```

78 gen.garch.wge

gen.garch.wge	Generate a realization from a GARCH(p0,q0) model	

Description

Generates a realization of length n from the GARCH(p0,q0) model (4.26) in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

```
gen.garch.wge(n,alpha0,alpha,beta,plot=TRUE,sn=0)
```

Arguments

n	Length of realization to be generated
alpha0	The constant alpha0 in model (4.23)
alpha	A vector of length q0 containing alpha1 through alphaq0
beta	A vector of length p0 containing beta1 through betap0
plot	If plot=TRUE (default) the generated realization is plotted
sn	determines the seed used in the simulation. sn=0 produces new/random realization each time. sn=positive integer produces same realization each time

Value

returns the generated realization

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
gen.garch.wge(n=200,alpha0=.1,alpha=.45,beta=.45)
```

gen.garma.wge 79

gen.garma.wge	Function to generate a GARMA realization	
---------------	--	--

Description

This function calls gen.geg.wge and arima.sim

Usage

```
gen.garma.wge(n,u,lambda,phi = 0,theta=0,trun=300000,burn_in=600,vara=1,plot=TRUE,sn=0)
```

Arguments

n	the realization length to be generated
u	Parameter u in the GARMA model given in (11.16) of Woodward, Gray, and Elliott text
lambda	Parameter lambda in the GARMA model given in (11.16) of Woodward, Gray, and Elliott text
phi	vector of AR parameters of ARMA part of GARMA model
theta	vector of MA parameters of ARMA part of GARMA model using signs as given ijn the Woodward, Grayu, and Elliott text
trun	the truncation point of the infinite GLP form
burn_in	is the burning-in period for the simulation
vara	White noise variance, default=1
plot	Logical: TRUE=plot, FALSE=no plot
sn	determines the seed used in the simulation. sn=0 produces new/random realization each time. sn=positive integer produces same realization each time

Value

This function generates and (optionally plots) an GARMA realization

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
gen.garma.wge(n=100, u=.8,lambda=.4,phi=.9)
```

gen.geg.wge

gen.geg.v	wge	Function to generate a Gegenbauer realization

Description

This function calls macoef.wge

Usage

```
gen.geg.wge(n, u, lambda, trun = 300000, vara=1 ,sn = 0)
```

Arguments

n	the realization length to be generated
u	Parameter u in the Gegenbauer model given in (11.12) of Woodward, Gray, and Elliott text
lambda	Parameter lambda in the Gegenbauer model given in (11.12) of Woodward, Gray, and Elliott text
trun	the truncation point of the infinite GLP form
vara	White noise variance, default=1
sn	determines the seed used in the simulation. sn=0 produces new/random realization each time. sn=positive integer produces same realization each time

Details

This function is called by gen.garma.wge and does not have a burn-in time. Thus, we recommend using est.garma.wge for generating realizations from a Gegenbauer model.

Value

This function generates a Gegenbauer realization

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
gen.geg.wge(n=100, u=.8,lambda=.4)
```

gen.glambda.wge 81

gen.glambda.wge	Function to generate a g(lambda) realization

Description

This function generates a g(lambda) TVF realization as discussed in Chapter 13 of Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Usage

```
gen.glambda.wge(n, lambda, phi =0, offset = 20, vara = 1, plot = TRUE, sn = 0)
```

Arguments

n	Length of realization to be generated
lambda	The lambda involved in the g(lambda) time transformation - see Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott
phi	Vector of AR coefficients
vara	White noise variance, default=1
offset	The offset parameter in a g(lambda) process. See section 13.2 in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott
plot	Logical: TRUE=plot, FALSE=no plot
sn	determines the seed used in the simulation. sn=0 produces new/random realization each time. sn=positive integer produces same realization each time

Value

This function simply generates and (optionally plots) an ARMA realization

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
\tt gen.glambda.wge(n=500, \ lambda=0.5, phi=c(1.9, -.99), \ vara=1, \ plot=TRUE, sn=0)
```

82 gen.sigplusnoise.wge

gen.sigplusnoise.wge Generate data from a signal-plus-noise model

Description

 $Generate\ a\ realization\ from\ the\ model\ x(t) = coef[1]*cos(2*pi*freq[1]*t + psi[1]) + coef[2]*cos(2*pi*freq[2]*t + psi[2]) + a(t)$

Usage

```
gen.sigplusnoise.wge(n,b0,b1=0,coef,freq,psi,phi=0,vara=1,plot=TRUE,sn=0)
```

Arguments

n	length of realization to be generated
b0	y intercept of the linear component
b1	slope of the linear component
coef	a 2-component vector specifying the coefficients (if only one cosine term is desired define coef[2]=0)
freq	a 2-component vector specifying the frequency components (0 to .5)
psi	a 2-component vector specifying the phase shift (0 to 2pi)
phi	a vector of coefficients of the coefficients of the AR noise
vara	vara is the variance of the noise. NOTE: $a(t)$ is a vector of $N(0,WNV)$ noise generated within the function (default=1)
plot	if TRUE then plot the data generated (default=TRUE)
sn	determines the seed used in the simulation (default=0 indicating new realization each time). sn=positve integer, then the same realization is generated each time

Value

x realization generated

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

```
x = \texttt{gen.sigplusnoise.wge(n=100,coef=c(3,1),freq=c(.1,.4),psi=c(0,0),vara=2)}
```

global.temp 83

global.temp

Global Temperature Data: 1850-2009

Description

Annual temperature anomalies from the average for the years 1850-2009

Usage

```
data("global.temp")
```

Format

The format is: List of 2 \$ year : num [1:160] 1850 1851 1852 1853 1854 ... \$ annual: num [1:160] -0.447 -0.292 -0.294 -0.337 -0.307 -0.321 -0.406 -0.503 -0.513 -0.349 ...

Source

Climatic Research Unit at East Anglia, England, in conjunction with the Met Office Hadley Centre

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(global.temp)
```

global2020

Global Temperature Data: 1880-2009

Description

Annual temperature anomalies from the average for the years 1850-2009

Usage

```
data("global.temp")
```

Format

The format is: ts file containing annual temperatures from 1880 through 2020

Source

ncdc.noaa.gov

84 hadley

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

```
data(global2020)
```

hadley

Global temperature data

Description

Global temperature data for 1850-2009. The data are temperature anomalies, i.e. departures from the average for 1850-2009

Usage

```
data("hadley")
```

Format

The format is: num [1:160] -0.447 -0.292 -0.294 -0.337 -0.307 -0.321 -0.406 -0.503 -0.513 -0.349 ...

Source

Met Office Hadley Centre

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
data(hadley)
```

hilbert.wge 85

hilbert.wge

Function to calculate the Hilbert transformation of a given real valued signal (even length)

Description

Function is used with the tswge function wv.wge

Usage

```
hilbert.wge(input)
```

Arguments

input

realization to be analyzed

Value

ans

Hilbert transformation of the input

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(airline)
hilbert.wge(airline)
```

 $\verb"is.glambda.wge"$

Instantaneous spectrum

Description

Calculates instantaneous spectrum (in dB) based on a G(lambda) time transformation

Usage

```
is.glambda.wge(n, phi = 0, sigma2 = 1, lambda, offset)
```

is.sample.wge

Arguments

n Length of realization.

phi Coefficients of AR model fit to dual data.

sigma2 White noise variance

lambda Lambda in the G(lambda) time transformnation used offset Offset in the G(lambda) time transformnation used

Value

Simply a plot of the realization

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
is.glambda.wge(n=200,phi=c(.93,-.32,-.15,-.15,-.17),lambda=-.4,offset=63)
```

is.sample.wge

Sample instantaneous spectrum based on periodogram

Description

Calculates sample instantaneous spectrum (in dB) based on a G(lambda) time transformation

Usage

```
is.sample.wge(data, lambda, offset)
```

Arguments

data Realization to be analyzed.

lambda Lambda in the G(lambda) time transformation used offset Offset in the G(lambda) time transformation used

Value

Simply a plot of the realization

Author(s)

Wayne Woodward

kalman.miss.wge 87

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(ss08)
is.sample.wge(data=ss08,lambda=-.4,offset=63)
```

kalman.miss.wge

Kalman filter for simple signal plus noise model with missing data

Description

Kalman function to predict, filter, and smooth in the presence of missing data; see Section 10.64 in Applied Time Series Analysis with R

Usage

```
kalman.miss.wge(y,start, gam0, F, gamV, Gtmiss, gamW)
```

Arguments

У	the univariate data set to be analyzed
start	the scalar version of $X(0)$ in item (c) following the state equation (10.47) of the text
gam0	the scalar version of $Gamma(0)$ discussed in item (c) following the state equation
F	scalar version of the matrix F in the state equation
gamV	the value Gamma(v) specified in item (b) following the state equation
Gtmiss	specifies which items that are missing
gamW	the variance of the (univariate) white noise denoted by Gamma(w) in item (c) following (10.48)

Value

pfs a table giving results such as those in Table 10.1 in Woodward, Gray, and Elliott book

Note

Calls Ksmooth1 in CRAN package 'astsa'

Author(s)

Wayne Woodward

88 kalman.wge

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(table10.1.signal)
data(table10.1.noise)
spn=table10.1.signal+table10.1.noise
n=75
Gtmiss=array(1,dim=c(1,1,n))
Gtmiss[1,1,2]=0
Gtmiss[1,1,5]=0
kalman.miss.wge(y=spn,start=0,gam0=1,F=.9,gamV=1,Gtmiss,gamW=.75)
```

kalman.wge

Kalman filter for simple signal plus noise model

Description

Kalman filter program to predict, filter, and smooth related to the material in Section 10.6 4 in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Usage

```
kalman.wge(y, start, gam0, F, gamV, G, gamW)
```

Arguments

у	the univariate data set to be analyzed
start	the scalar version of Xo in item (c) following the state equation (10.47) of the text
gam0	the scalar version of Gamma(0) discussed in item (c) following the state equation
F	scalar version of the matrix F in the state equation
gamV	the value Gamma(v) specified in item (b) following the state equation
G	the scalar observation matrix specified in the observation equation as G(t)
gamW	the variance of the (univariate) white noise denoted by Gamma(w) in item (c) following (10.48)

Value

pfs a table giving results such as those in Table 10.1 in Woodward, Gray, and Elliott book

Note

Requires CRAN package 'astsa'

kingkong 89

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(table10.1.signal)
data(table10.1.noise)
spn=table10.1.signal+table10.1.noise
kalman.wge(y=spn,start=0,gam0=1,F=.9,gamV=1,G=1,gamW=.75)
```

kingkong

King Kong Eats Grass

Description

Digitized record taken at 8,000 Hz of voltage readings obtained from the acoustical energy generated by Wayne Woodward speaking the words "King Kong eats grass" while a fan was blowing in the background

Usage

```
data("kingkong")
```

Format

The format is: num [1:15418] -0.001831 -0.000916 -0.003357 -0.002716 -0.000977 ...

Source

See description above

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
data(kingkong)
```

90 lavon15

lavon

Lavon lake water levels

Description

Data given in feet above sea level. Quarterly data, 1982-2009

Usage

```
data("lavon")
```

Format

The format is: num [1:112] 495 492 500 491 492 ...

Source

http://lavon.uslakes.info/levelcal.asp

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(lavon)

lavon15

Lavon Lake Levels to September 30, 2015

Description

Feet above sea level for Lavon Lake, quarterly data through September 2015. An extension of data lavon

Usage

```
data("lavon15")
```

Format

The format is: num [1:135] 495 492 500 491 492 ...

Source

Lake Data internet

linearchirp 91

Examples

data(lavon15)

linearchirp

Linear chirp data.

Description

256 point linear chirp data, the first 150 points of which are shown in Figure 3.16(a) Time Series Analysis for Data Science: Analysis and Forecasting by Woodward, Sadler, and Robertson

Usage

```
data("linearchirp")
```

Format

The format is: List of 2 \$ x : num [1:256] 1 1 0.98 0.95 0.91 0.86 0.8 0.72 0.63 0.53 ... \$ spec: num [1:256] 0.511 0.568 0.733 0.991 1.32 ...

Source

Simulated data

References

Time Series Analysis for Data Science: Analysis and Forecasting by Woodward, Sadler, and Robertson

Examples

data(linearchirp)

ljung.wge

Ljung-Box Test

Description

Performs Ljung-Box Test for white noise

Usage

```
ljung.wge(x, K = 24, p = 0, q = 0)
```

92 Ilynx

Arguments

Χ	Realization to assess for white noise
K	Maximum lag for sample autocorrelations to be used in test
р	If x is a realization of residuals from an $ARMA(p,q)$ fit then $p=AR$ order. Otherwise, $p=0$
q	If x is a realization of residuals from an ARMA(p,q) fit then q=MA order. Otherwise, q =0

Value

test Name of test for output: Ljung-Box Test
K Maximum lag: same as input value

chi.square Value of chi-square statistic

df Degrees of freedom = K-p-q

pvalue pvalue for testing null hypothesis of white noise

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(fig1.22a)
ljung.wge(fig1.22a, K=24,p=0,q=0)
```

11ynx

Log (base 10) of lynx data

Description

The log (base 10) of the annual number of lynx trapped in the Mackenzie River district of the North-West Canada (dataset lynx in this package)

Usage

```
data("llynx")
```

Format

The format is: Time-Series [1:114] from 1821 to 1934: 2.43 2.51 2.77 2.94 3.17 ...

lynx 93

Source

Tong (1977). Journal of the Royal Statistical Society A, 432-436.

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(llynx)
```

lynx

Lynx data

Description

The lynx data are the annual number of lynx trapped in the Mackenzie River district of Canada

Usage

```
data("lynx")
```

Format

The format is: Time-Series [1:114] from 1821 to 1934: 269 321 585 871 1475 ...

Source

Tong (1977). Journal of the Royal Statistical Society A, 432-436.

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

```
data(lynx)
```

94 ma.pred.wge

ma.pred.wge	Predictive or rolling moving average

Description

Given a time series in the vector x and order (either an odd or even integer) ma.pred.wge computes a predictive moving average giving 1-step ahead predictions through x(n+1). Optionally, you can specify k-step ahead forecasts beyond the end of the data.

Usage

```
ma.pred.wge(x,order=3,n.ahead=1,plot=TRUE)
```

Arguments

X	Vector containing original realization
order	Order (odd or even integer) of moving average predictor (default=3)
n.ahead	Number of steps ahead to forecast beyond the end of the data (default=1)
plot	If plot=TRUE then plots of the data and moving average predictors are plotted

Value

X	Original data
pred	Data file showing 1-step ahead predictors up to x(k.ahead)
order	Order (odd or even integer) of the moving average predictor

Author(s)

Wayne Woodward

References

"Practical Time Series Analysis with R" by Woodward, Sadler, and Robertson"

```
data(wtcrude)
sm=ma.pred.wge(x=wtcrude,order=5,n.ahead=10)
```

ma.smooth.wge

Description

Given a time series in the vector x and order (either an odd or even integer) ma.smooth.wge computes a centered moving average smoother and optionally plots the data and smoothed data

Usage

```
ma.smooth.wge(x,order=3,plot=TRUE)
```

Arguments

x	Vector containing original realization
order	Order (odd or even integer) of moving average smoother
plot	If plot=TRUE then plots of the data and smoothed data are plotted

Value

smooth Data after application of centered average filter.l order Order (odd or even integer) of the smoother

Author(s)

Wayne Woodward

References

"Practical Time Series Analysis with R" by Woodward, Sadler, and Robertson"

```
data(wtcrude)
sm=ma.smooth.wge(x=wtcrude,order=5)
```

96 macoef.geg.wge

ma2.table7.1

Simulated MA(2) data

Description

This realization is used to obtain the innovations estimates shown in Table 7.1

Usage

```
data("ma2.table7.1")
```

Format

The format is: num [1:400] 1.299 1.831 -0.162 -0.648 1.243 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(ma2.table7.1)
```

macoef.geg.wge

Calculate coefficients of the general linear process form of a Gegenbauer process

Description

Calculate coefficients of the general linear process form of a Gegenbauer process based on formula (8), page 6 of Ferrara and Guegan(2001).

Usage

```
macoef.geg.wge(u, lambda, trun = 300000)
```

Arguments

u The value of u in the Gegenbauer model

1ambda The value of lambda in the Gegenbauer model trun The truncation point of the infinite GLP form

mass.mountain 97

Details

This function is called by gen.geg.wge

Value

A vector of length trun containing the GLP coefficients

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott and Ferrara and Guegan(2001)

Examples

```
mageg=macoef.geg.wge(u=.8,lambda=.3)
```

mass.mountain

Massachusettts Mountain Earthquake Data

Description

Lg wave from from an earthquake known as Massachusetts Mountain Earthquake(5 August 1971), which was recorded at the Mina Nevada station

Usage

```
data("mass.mountain")
```

Format

The format is: num [1:454] -0.03655 -0.01774 0.00218 0.01193 0.00915 ...

Source

Gupta, Chan, and Wagner (2005). Regional sources discrimination of small events based on the use of Lg wavetrain, Bulletin of the Seismological Society of America 95, 341-346.

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
data(mass.mountain)
```

98 mm.eq

MedDays

Median days a house stayed on the market

Description

Median days a house stayed on the market between July 2016 and April 2020

Usage

```
data("MedDays")
```

Format

ts object consisting of monthly data from July 2016 through April 2020

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

```
data(MedDays)
```

mm.eq

Massachusetts Mountain Earthquake data shown in Figure 13.13a in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Lg wave for Massachusetts Mountain Earthquake

Usage

```
data("mm.eq")
```

Format

The format is: num [1:454] -0.03655 -0.01774 0.00218 0.01193 0.00915 ...

Source

Gupta, et al. (2005) Bulletin of the Seismological Society of America 95, 341-346.

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

mult.wge 99

Examples

```
data(mm.eq)
```

mult.wge

Multiply Factors

Description

The function multiplies the AR (or MA) factors of a model to produce the model in unfactored form. Requires the CRAN package 'PolynomF'.

Usage

```
mult.wge(fac1 = 0, fac2 = 0, fac3 = 0, fac4 = 0, fac5 = 0, fac6 = 0)
```

Arguments

fac1	First factor to be multiplied
fac2	Second factor to be multiplied
fac3	Third factor to be multiplied (you may use a maximum of 6 factors)
fac4	Fourth factor to be multiplied (you may use a maximum of 6 factors)
fac5	Fifth factor to be multiplied (you may use a maximum of 6 factors)
fac6	Sixth factor to be multiplied (you may use a maximum of 6 factors)

Value

char.poly	The characteristics polynomial of the full model
model.coef	Model coefficients of the full model using notation in "Applied Time Series
	Analysis 2nd edition" by Woodward Gray and Elliott

Note

Requires CRAN package 'PolynomF'

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
fac1=c(1.6,-.9)
fac2=.8
mult.wge(fac1,fac2)
```

100 nbumps256

NAICS

Monthly Retail Sales Data

Description

Monthly sales for the North American Industry Classification System (NAICS) code 44X72: Retail Trade and Food Services: 1992-2019

Usage

```
data("NAICS")
```

Format

ts object consisting of monthly data from January 1992- December 2019

Source

https://www.weather.gov/fwd/dmotemp

References

"Kaggle" and "US Census Bureau" websites

Examples

data(NAICS)

nbumps256

256 noisy bumps signal

Description

Noisy bumps signal shown in Figure 12.11(a) in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Usage

```
data("nbumps256")
```

Format

The format is: num [1:256] -0.234 0.123 0.303 0.134 -0.513 ...

Source

Donoho and Johnstone (1994) Biometrika 81,425-455

nile.min

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(nbumps256)
```

nile.min

Annual minimal water levels of Nile river

Description

Water levels for 622 through 1284 measured at Roda gauge near Cairo (Tousson, 1925)

Usage

```
data("nile.min")
```

Format

The format is: Time-Series [1:663] from 622 to 1284: 1157 1088 1169 1169 984 ...

Source

Tousson, O. (1925) M\'emoire sur l'Histoire du Nil, Volume 18 in M\'emoires a l'Institut d'Egypte, pp. 366-404.

References

Beran, J. (1994) Statistics for Long-Memory Processes, Chapman Hall: Englewood, NJ.

```
data(nile.min)
```

NSA

noctula

Nyctalus noctula echolocation data

Description

Echolocation signal for the Nyctalus noctula hunting bat

Usage

```
data("noctula")
```

Format

The format is: num [1:96] -18 16 -5 -17 21 -6 -17 20 -6 -16 ...

Source

Internet

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

NSA

Monthly Total Vehicle Sales

Description

Monthly Total Vehicle Sales (TOTALNSA) in the United States from January 1976 - December 2019

Usage

```
data("NSA")
```

Format

ts object consisting of monthly data from January 1976- December 2019

Source

https://www.weather.gov/fwd/dmotemp

References

"Kaggle" and "US Census Bureau" websites

ozona 103

Examples

data(NSA)

ozona

Daily Number of Chicken-Fried Steaks Sold

Description

Daily number of chicken-fried steaks sold at Ozona Bar and Grill during June and July 2019

Usage

```
data("ozona")
```

Format

ts object consisting of number of chicken fried steaks sold daily during June and July, 2019

Source

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(ozona)

pacfts.wge

Compute partial autocorrelations

Description

Compute partial autocorrelations using either YW (default and the classical method), Burg, or ML estimates.)

Usage

```
pacfts.wge(x,lag.max=5, plot=TRUE,na.action,limits=FALSE,method ='yw')
```

104 parzen.wge

Arguments

x Realizationlag.max Max lag

plot Logical variable

na.action Not used

limits Logical variable

method Either "mle" (default), "burg", or "yw"

Value

method Estimation method used: MLE, Burg, or YW
pacf PACF estimates using estimation method specified

Author(s)

Wayne Woodward

References

"Time Series for Data Science: Analysis and Forecasting with R" by Woodward, Sadler, and Gray

Examples

```
data(sunspot2.0)
    pacfts.wge(sunspot2.0,lag.max=10,method='burg')
```

parzen.wge

Smoothed Periodogram using Parzen Window

Description

This function calculates and optionally plots the smoothed periodogram using the Parzen window. The truncation point may be chosen by the user

Usage

```
parzen.wge(x, dbcalc = "TRUE", trunc = 0, plot = "TRUE")
```

Arguments

X	Vector	contair	ning the	time	series	realization
^	, cctor	Contain	mig the	tillit	SCIICS	reamzamon

dbcalc If dbcalc=TRUE, the calculation is in the log (dB) scale. If FALSE, then non-log

calculations are made

trunc if M=0 (default) then the function uses the truncation point 2*sqrt(n). If M>0,

then the function uses the given value of M as the truncation point

plot If PLOT=TRUE then the smoothed spectral estimate is plotted. If FALSE then

no plot is created

patemp 105

Value

freq The frequencies at which the smoothed periodogram is calculated

pzgram The smoothed periodogram using the Parzen window

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
parzen.wge(rnorm(100))
```

patemp

Pennsylvania average monthly temperatures

Description

Pennsylvania average monthly temperatures

Usage

```
data("patemp")
```

Format

The format is: num [1:180] 38.1 38.3 44.5 52.3 59.2 70.6 73.9 71.3 63.9 57.3 ...

Source

Internet

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and elliott

Examples

data(patemp)

106 period.wge

Description

Given a realization contained in a vector, this function calculates and optionally plots the periodogram in either log or non-log scale

Usage

```
period.wge(x, dbcalc = "TRUE", plot = "TRUE")
```

Arguments

X	The vector containing the time series realization
dbcalc	if dbcalc=TRUE (default) then the periodogram is calculated in log scale (in dB). If dbcalc is FALSE then the non-log periodogram is calculated
plot	if plot=TRUE (default) the periodogram is plotted. If plot=FALSE no plot is created

Value

freq	Frequencies at which the periodogram is calculated
pgram	Periodogram values evaluated at the frequencies in freq

Author(s)

Wayne Woodward

References

"Applied Time series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
period.wge(rnorm(100))
```

pi.weights.wge

pi.weights.wge	Calculate pi weights for an ARMA model	

Description

Given the coefficients of the AR and MA parts of an ARMA model, this function calculates the pi weights

Usage

```
pi.weights.wge(phi = 0, theta = 0, lag.max =5)
```

Arguments

ohi	Vector of AR	coefficients ((ac in	"Applied"	Time Series	Analycic	with P 2	nd
2111	vector of AR	. coefficients ((as III	Appnea	Time Series	Anarysis	WILLI K, Z	Hu

edition" by Woodward, Gray, and Elliott (uses Box and Jenkins notation))

theta Vector of MA coefficients (as in ATSA and Box Jenkins texts)

lag.max The function will calculates psi weights pi(1), pi(2), ..., pi(lag.max). Note that

psi(0)=1.

Value

```
A vector containing pi(1), ..., pi(lag.max)
```

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
\label{eq:pi.weights.wge} pi.weights.wge(phi=c(1.2,-.6), theta=.5, lag.max=5)
```

108 plotts.dwt.wge

r	٦1	٥t	ts		dw	t	,	MO	-ρ
- 1	ノエ	υı	ιs	• '	uw	L		₩ĸ	C

Plots Discrete Wavelet Transform (DWT)

Description

Plots DWT obtained using functiond dwt from waveslim

Usage

```
plotts.dwt.wge(x, n.levels, type='S8')
```

Arguments

x Realization (must be of length 2^k for some integer k between 2 and 14

n.levels Maximum order of discrete wavelet transforms to be calculated. n.levels must

be less than or equal to k where n=2^k

type Discrete wavelet to use: options include 'haar', 'S8','D4','D6',D8'

Details

The wavelsim dwt function names these :'haar', 'la8','d4','d6',and 'd8' respectively and the conversion is done transparently within the R code. This is done transparently within the R code.

Value

The output is a plot of the DWT.

Note

Requires CRAN package 'waveslim'

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

plotts.mra.wge

Plots MRA plot)

Description

Plots MAR ;plot associated with a multiresolution analysis using function mra from waveslim

Usage

```
plotts.mra.wge(x, n.levels, type='S8')
```

Arguments

x Realization (must be of length 2^k for some integer k between 2 and 14

n.levels Maximum order of discrete wavelet transforms to be calculated. n.levels must

be less than or equal to k where n=2^k

type Discrete wavelet to use: options include 'haar', 'S8','D4','D6',D8'

Details

The wavelsim mra function names these :'haar', 'la8','d4','d6',and 'd8' respectively and the conversion is done transparently within the R code. This is done transparently within the R code.

Value

The output is a plot of the MRA.

Note

Requires CRAN package 'waveslim'

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

plotts.parzen.wge

plotts.parzen.wge Calculate and plot the periodogram and Parzen window estimates with differing trunctaion points	m and Parzen window estimates wit	with
---	-----------------------------------	------

Description

Given a time series contained in the vector x, plotsp.parzen.wge calculates and plots the periodogram and Parzen window estimates at the default truncation point M=2*sqrt(n) and up to 2 additional user specified trunctaion points.

Usage

```
plotts.parzen.wge(x, m2=c(0,0))
```

Arguments

X	The vector containing the time series realization	
m2	A 2-component vector specifying up to 2 additional truncation points	

Details

m2=c(10,24) indicates that in addition to the default truncation point, the smoothed spectral estimator is to be calculated using truncation points 10 and 24, m2=c(0,0) indicates that no additional truncation points are to be used, and m2=c(10,0) indicates the use of one additional truncation point (10)

Value

freq	Frequencies at which the periodogram and parzen widow estimates are calculated
db	Periodogram (in dB) calculated at the frequencies in freq
dbz	Parzen window estimate (in dB) calculated at the frequencies in freq using truncation point $2*sqrt(n)$
dbz1	Parzen window estimate (in dB) calculated at the frequencies in freq using truncation point m2[1]
dbz2	Parzen window estimate (in dB) calculated at the frequencies in freq using truncation point m2[2]

Author(s)

Wayne Woodward

References

"Applied Time series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

plotts.sample.wge 111

Examples

```
data(ss08)
    m2=c(10,50)
    plotts.parzen.wge(ss08,m2)
```

plotts.sample.wge

Plot Data, Sample Autocorrelations, Periodogram, and Parzen Spec-

 $tral\ Estimate$

Description

For a given realization, this function plots the data, and calculates and plots the sample autocorrelations, periodogram, and Parzen window spectral estimator in a 2x2 array of plots.

Usage

```
plotts.sample.wge(x, lag.max = 25, trunc = 0, arlimits=FALSE, speclimits=c(0,0), periodogram=FALSE)
```

Arguments

x	A vector containing the realization
lag.max	The maximum lag at which to calculate the sample autocorrelations
trunc	The truncation point M for the Parzen spectral estimator. If $M=0$ the NM=2sqrt(n). If $M>0$ then M is the value entered
arlimits	Logical variable. TRUE plots 95 percent limit lines on sample autocorrelation plots
periodogram	Logical variable. TRUE plots periodogram, default=FALSE
speclimits	User supplied limits for Parzen spectral density and periodogram, default=function decides limits

Value

xbar	The sample mean of the realization
autplt	A vector containing sample autocorrelations from 0, 1,, aut.lag
freq	A vector containing the frequencies at which the periodogram and window estimate are calculated
db	Periodogram (in dB) calculated at the frequecies in freq
freq	Parzen spectral estimate (in dB) calculated at the frequecies in freq

Author(s)

Wayne Woodward

plotts.true.wge

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(wages)
plotts.sample.wge(wages,trunc=0)
```

plotts.true.wge

Plot of generated data, true autocorrelations and true spectral density for ARMA model

Description

For a given ARMA model, this function plots a realization, the true autocorrelations, and the true spectral density. This plot is typical of many plots in Applied Time Series Analysis by Woodward, Gray, and Elliott. For example, see Figure 1.21 and Figure 3.23.

Usage

```
plotts.true.wge(n=100, phi=0, theta=0, lag.max=25, mu=0, vara = 1, sn=0, plot.data=TRUE)
```

Arguments

n	Length of time series realization to be generated. Default is 100
phi	Vector containing AR parameters
theta	Vector containing MA parameters
lag.max	Maximum lag for calculating and plotting autocorrelations
mu	True mean
vara	White noise variance: default=1
sn	determines the seed used in the simulation of plotted realization. $sn=0$ produces new/random realization each time. $sn=positive$ integer produces same realization each time
plot.data	Logical variable: If TRUE a simulated realization is plotted

Value

data	Realization of length n that is generated from the ARMA model
aut1	True autocorrelations from the ARMA model for lags 0 to lag.max
acv	True autocovariances from the ARMA model for lags 0 to lag.max
spec	Spectral density (in dB) for the ARMA model calculated at frequencies f=0, .002, .004,, .5

plotts.wge

Note

```
gvar=g[1], i.e. autocovariance at lag 0
```

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
plotts.true.wge(n=100, phi=c(1.6,-.9), theta=.8, lag.max=25, vara = 1)
```

plotts.wge	Plot a time series realization	
------------	--------------------------------	--

Description

Given a realization contained in a vector, this function plots it as a time series realization

Usage

```
plotts.wge(x,style = 0, xlab = "Time", ylab = "",main="",col='black',text_size=12,
lwd=0.75,cex=0.5,cex.lab=0.75,cex.axis=0.75,xlim=NULL,ylim=NULL)
```

Arguments

X	The vector containing the time series realization to be plotted
style	If style is 0 then a simple plot of the realization is rendered. If style is 1 then a ggplot is rendered.
xlab	A string that represents the x-axis label.
ylab	A string that represents the y-axis label.
main	A string that represents the main title.
col	Color of plot.
text_size	Text size.
lwd	Line width.
cex	See R documentation.
cex.lab	See R documentation.
cex.axis	See R documentation.
xlim	String giving x-axis plot limits.
ylim	String giving y-axis plot limits.

114 prob10.4

Value

Simply a plot of the realization

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(sunspot2.0);plotts.wge(sunspot2.0)
```

prob10.4

Data matrix for Problem 10.4 in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Description

Matrix containing a bivariate VAR data set

Usage

```
data("prob10.4")
```

Format

```
The format is: num [1:100, 1:2] 0 0.7184 -0.3448 -2.1638 -0.0342 ... - attr(*, "dimnames")=List of 2 ...$ : NULL ...$ : chr [1:2] "X1" "X2"
```

Source

Simulated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
data(prob10.4)
```

prob10.6x

prob10.6x	Data for Problem 10.6 in Applied Time Series Analysis with R, second
	edition by Woodward, Gray, and Elliott

Description

This realization is the unobservable data associated with the observed data in prob10.6y

Usage

```
data("prob10.6x")
```

Format

The format is: num [1:9] 2.61 0.69 0.64 0.37 -0.79 -1.63 -1.14 -1.2 -3.13

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(prob10.6x)
```

prob10.6y

Simulated observed data for Problem 10.6 in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Kalman filter example data

Usage

```
data("prob10.6y")
```

Format

The format is: num [1:9] 3.28 -0.05 0.64 0.31 -0.9 -2.4 -1.83 -1.93 -3.52

Source

Simulated data

prob10.7x

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(prob10.6y)
```

prob10.7x

Data for Problem 10.7 in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

This realization is the same unobservable data as in prob10.6x

Usage

```
data("prob10.7x")
```

Format

The format is: num [1:9] 2.61 0.69 0.64 0.37 -0.79 -1.63 -1.14 -1.2 -3.13

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

```
data(prob10.7x)
```

prob10.7y

prob10.7y

Simulated observed data for Problem 10.6 in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Kalman filter example data

Usage

```
data("prob10.7y")
```

Format

The format is: num [1:9] 3.28 -0.05 0.64 0.31 -0.9 -2.4 -1.83 -1.93 -3.52

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(prob10.7y)
```

prob11.5

Data for Problem 11.5 in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Simulated fractional long memory data

Usage

```
data("prob11.5")
```

Format

The format is: num [1:10] 4.2 -2.5 8.4 14.6 7 9.6 19.8 4.8 6.5 8.3

Source

Simulated data

118 prob12.1c

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(prob11.5)
```

prob12.1c

Data for Problem 12.1c and 12.3c in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Data from a problem set in the wavelet chapter

Usage

```
data("prob12.1c")
```

Format

The format is: num [1:200] 9.49 8.01 3.43 -1.85 -4.99 -7.21 -5.61 -2.34 2.16 3.88 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

```
data(prob12.1c)
```

prob12.3a 119

prob12.3a

Data for Problem 12.3a in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Data from a problem set in the wavelet chapter

Usage

```
data("prob12.3a")
```

Format

The format is: num [1:512] -3.09 8.43 -9.74 8.44 -3.46 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(prob12.3a)
```

prob12.3b

Data for Problem 12.3b in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Data from a problem set in the wavelet chapter

Usage

```
data("prob12.3b")
```

Format

The format is: num [1:256] 1 1 1 1 1 ...

Source

Simulated data

120 prob12.6c

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(prob12.3b)
```

prob12.6c

Data set for Problem 12.6(C) in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Simulated TVF data set

Usage

```
data("prob12.6c")
```

Format

The format is: num [1:512] -0.482 -0.569 -0.656 -0.743 -0.83 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

```
data(prob12.6c)
```

prob13.2

prob13.2

Data for Problem 13.2 in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Simulated data from cosine-plus-noise model

Usage

```
data("prob13.2")
```

Format

The format is: num [1:256] 1.524 5.886 5.939 4.319 0.573 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(prob13.2)
```

prob8.1a

Data for Problem 8.1 in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Description

See title above

Usage

```
data("prob8.1a")
```

Format

The format is: num [1:200] 2.19 0.48 0.06 3.86 3.6 -3.38 6.23 1.95 1.4 -5.35 ...

Source

Simulated data

prob8.1b

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(prob8.1a)
```

prob8.1b

Data for Problem 8.1 in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Description

See title above

Usage

```
data("prob8.1b")
```

Format

The format is: num [1:200] 1.54 -0.13 1.93 0.29 -0.13 -0.23 1.27 1.01 -0.65 1.68 ...

Source

Simulated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
data(prob8.1b)
```

prob8.1c 123

prob8.1c

Data for Problem 8.1 in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Description

See title above

Usage

```
data("prob8.1c")
```

Format

The format is: num [1:200] 0.33 -0.53 -2.36 2.48 -0.36 -2.02 1.87 -0.73 0.41 2.41 ...

Source

Simulated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(prob8.1c)
```

prob8.1d

Data for Problem 8.1 in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Description

See title above

Usage

```
data("prob8.1d")
```

Format

The format is: num [1:200] -0.07 -1.74 -1.37 -0.52 0.14 0.07 -1.5 1.88 -0.03 -1.81 ...

Source

Simulated data

124 prob9.6c1

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(prob8.1d)
```

prob9.6c1

Data set 1 for Problem 6.1c

Description

Data set 1 for Problem 6.1c in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott. It is either from line plus noise or random walk with drift.

Usage

```
data("prob9.6c1")
```

Format

The format is: num [1:100] -0.2924 0.0206 0.6595 0.3819 0.0269 \dots

Source

Simulated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
data(prob9.6c1)
```

prob9.6c2 125

prob9.6c2

Data set 2 for Problem 6.1c

Description

Data set 2 for Problem 6.1c in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott. It is either from line plus noise or random walk with drift.

Usage

```
data("prob9.6c2")
```

Format

The format is: num [1:100] -0.925 -2.679 -2.378 -3.03 -2.157 ...

Source

Simulated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott.

Examples

data(prob9.6c2)

prob9.6c3

Data set 3 for Problem 6.1c

Description

Data set 3 for Problem 6.1c in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott. It is either from line plus noise or random walk with drift.

Usage

```
data("prob9.6c3")
```

Format

The format is: num [1:100] -2.79 -3.32 -3.51 -5.13 -3.51 ...

Source

Simulated data

126 prob9.6c4

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(prob9.6c3)
```

prob9.6c4

Data set 4 for Problem 6.1c

Description

Data set 4 for Problem 6.1c in "Applied Time Series and Data Analysis with R, 2nd edition" by Woodward, Gray, and Elliott. It is either from line plus noise or random walk with drift.

Usage

```
data("prob9.6c4")
```

Format

The format is: num [1:100] -0.0599 -0.0214 0.6589 -0.151 0.4043 ...

Source

Simulated data

References

"Applied Time Series and Data Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
data(prob9.6c4)
```

psi.weights.wge

psi.weights.wge Caiculate psi weights for an ANMA model	psi.weights.wge	Calculate psi weights for an ARMA model
---	-----------------	---

Description

Given the coefficients of the AR and MA parts of an ARMA model, this function calculates the psi weights

Usage

```
psi.weights.wge(phi = 0, theta = 0, lag.max = 5)
```

Arguments

ohi	Vector of AR	coefficients ((ac in	"Applied"	Time Series	Analycic	with P 2	nd
2111	vector of AR	. coefficients ((as III	Appnea	Time Series	Allalysis	WILLI K, Z	Hu

edition" by Woodward, Gray, and Elliott (uses Box and Jenkins notation))

theta Vector of MA coefficients (as in ATSA and Box Jenkins texts)

lag.max The function will calculates psi weights psi(1), psi(2), ..., psi(lag.max). Note

that psi(0)=1.

Value

A vector containing psi(1), ..., psi(lag.max)

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
psi.weights.wge(phi=c(1.2,-.6),\ theta=.5,\ lag.max=5)
```

128 roll.win.rmse.nn.wge

rate

Daily DOW rate of Return

Description

Daily DOW rate of return from 1971 through 2020

Usage

```
data("rate")
```

Format

ts object consisting of daily dow rate of return from 1971 through 2020

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(rate)

roll.win.rmse.nn.wge Function to Calculate the Rolling Window RMSE

Description

This function creates as many "windows" as is possible with the data and calculates an RMSE for each window. The resulting "rolling window RMSE" is the average of the individual RMSEs from each window.

Usage

```
roll.win.rmse.nn.wge(series, horizon = 1, fit_model)
```

Arguments

series The data

horizon The number of observations ahead to be forecasted.

fit_model The mlp object (model) to be evaluated. This model will have been fit before

the call to this function.

roll.win.rmse.wge

Value

rwRMSE The average of the individual RMSEs of each window

numwindows The number of windows

horizon The number of observations ahead to be forecasted.

Author(s)

Bivin Sadler

References

"The Time Series Tool Kit"

roll.win.rmse.wge

Function to Calculate the Rolling Window RMSE

Description

This function creates as many "windows" as is possible with the data and calculates an RMSE for each window. The resulting "rolling window RMSE" is the average of the individual RMSEs from each window.

Usage

```
roll.win.rmse.wge(series, horizon = 2, s = 0, d = 0, phi = 0, theta = 0)
```

Arguments

series	The data
horizon	The number of observations ahead to be forecasted.
S	Order of the seasonal difference, default=1
d	Order of the difference
nhi	Vector of AR coefficients

phi Vector of AR coefficients theta Vector of MA coefficients

Value

rwRMSE	The average of the individual RMSEs of each window
--------	--

numwindows The number of windows

horizon The number of observations ahead to be forecasted.

s Order of the seasonal difference, default=1

d Order of the difference
phis Vector of AR coefficients
thetas Vector of MA coefficients

RMSEs Vector of RMSEs ... one for each windwow

slr.wge

Author(s)

Bivin Sadler

References

"The Time Series Tool Kit"

slr.wge

Simple Linear Regression

Description

Uses Base R routine lm to simplify call for SLR where independent variable is automatocally t=1:n

Usage

```
slr.wge(x)
```

Arguments

x The TVF data set

Value

res Residuals

b0hat Estimate b0 in model y=b0+b1*t+Z

b1hat Estimate b1

pvalue pvalue for test:slope=0

tstatistic tstatistic associated with test:slope=0

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

ss08

ss08 Sunspot Data

Description

Annual average sunspot numbers for the years 1749-2008

Usage

```
data("ss08")
```

Format

The format is: num [1:260] 80.9 83.4 47.7 47.8 30.7 ...

Source

Internet-open source

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(ss08)

Sunspot data from 1850 through 2008 for matching with global temperature data (hadley)

Description

Sunspot data from 1850 through 2008 for matching with global temperature data (hadley) for purposes of testing for association in Example 10.5 of "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

```
data("ss08.1850")
```

Format

The format is: num [1:160] 66.6 64.5 54.1 39 20.6 ...

132 starwort.ex

Source

Internet

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(ss08.1850)
```

starwort.ex

Starwort Explosion data shown in Figure 13.13a in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Lg wave for Starwort explosion data

Usage

```
data("starwort.ex")
```

Format

The format is: num [1:420] 43245 48408 47565 7372 -62277 ...

Source

Gupta, et al. (2005) Bulletin of the Seismological Society of America 95, 341-346.

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

```
data(starwort.ex)
```

sunspot.classic 133

sunspot.classic

Classic Sunspot Data: 1749-1924

Description

The classic 176 point sunspot data from 1749-1924 that has been widely modeled

Usage

```
data("sunspot.classic")
```

Format

The format is: num [1:176] 80.9 83.4 47.7 47.8 30.7 12.2 9.6 10.2 32.4 47.6 ...

Source

Internet

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(sunspot.classic)
```

sunspot2.0

Annual Sunspot2.0 Numbers

Description

Annual sunspot2.0 numbers from 1700 through 2020

Usage

```
data("sunspot2.0")
```

Format

ts object consisting of annual data from 1700 through 2020

Source

https://www.sidc.oma.be/silso

sunspot2.0.month

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

```
data(sunspot2.0)
```

sunspot2.0.month

Monthly Sunspot2.0 Numbers

Description

Monthly sunspot2.0 numbers from January 1749 through December 2020

Usage

```
data("sunspot2.0.month")
```

Format

ts object consisting of monthly data from January 1749 through December 2020

Source

https://www.sidc.oma.be/silso

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

```
data(sunspot2.0.month)
```

table 10.1.noise

table10.1.noise	Noise related to data set, the first 5 points of which are shown in Table 10.1 in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott
	wara, Gray, and Ettion

Description

The data in Table 10.1 are of the form Y(t)=X(t)+n(t). This data set contains the values for n(t).

Usage

```
data("table10.1.noise")
```

Format

The format is: num [1:75] -0.49 0.126 -0.129 -1.179 0.441 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(table10.1.noise)
```

Underlying, unobservable signal (X(t), the first 5 points of which are shown in Table 10.1 in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

The X(t) data is unobservable, and is a realization from an AR(1) model

Usage

```
data("table10.1.signal")
```

Format

The format is: num [1:75] -0.2497 -0.0812 -0.6463 -1.7653 -2.719 ...

136 table7.1

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(table10.1.signal)
```

table7.1

MA(2) data for Table 7.1

Description

MA(2) data for Table 7.1 in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott. Uses function ia in package itsmr to show steps in the innovations algorithm for estimating the MA parameters and white noise variance

Usage

```
data("table7.1")
```

Format

The format is: num [1:400] 0.4481 0.5497 -1.6586 -3.1653 -0.0314 ...

Source

Generated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
data(table7.1)
```

tesla 137

tesla Tesla Stock Prices

Description

Teslas daily stock prices from January 1, 2020 through April 30, 2021

Usage

```
data("tesla")
```

Format

ts object consisting of daily adjusted close price for TSLA from January 1, 2020 through April 30, 2021

Source

https://finance.yahoo.com

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(tesla)

trans.to.dual.wge

Transforms TVF data set to a dual data set

Description

Using the specified values for lambda and offset, this function transforms a TVF data set to a dual data set based on a Glambda time transformation.

Usage

```
trans.to.dual.wge(x, lambda, offset = 60, h = 0, plot = TRUE)
```

Arguments

X	The TVF data set
lambda	The value of lambda in the Glambda time transformation
offset	The value of offset in the Glambda time transformation
h	Scaling variable, initialized at zero, which assures that the dual data set has the same number of points as the original TVF data set
plot	Logical: TRUE=plot, FALSE=no plot

138 trans.to.original.wge

Value

intX See intY description

intY The input realization x is of length n, and the values of x are available at the

time points t=1 to n. The values intY are n interpolated values of the original time series at the values of intX in the original time scale. The dual data set is

obtained by associating the n values of intY with t = 1 to n respectively

h The output value of the scaling parameter that assures that the dual realization

and the original realization are of the same length

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

trans.to.original.wge Transforms dual data set back to original time scale

Description

Using the specified values for lambda and offset, this function transforms a dual data set, based on a Glambda time transformation, back to the original time scale

Usage

```
trans.to.original.wge(xd, lambda, offset, h, plot = TRUE)
```

Arguments

xd	The dual data set

1 ambda The value of lambda in the Glambda time transformation offset The value of offset in the Glambda time transformation

h Scaling variable obtained as output from transform.to.dual.wge that assures that

the dual data set has the same number of points as the original TVF data set

plot Logical: TRUE=plot, FALSE=no plot

Value

Returns the y values to be plotted at time points t=1 to n that approximate the original TVF data set

true.arma.aut.wge

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

true.arma.aut.wge

True ARMA autocorrelations

Description

R function to calculate the autocovariances and autocorrelations and optionally plot the true autocorrelations of a stationary ARMA model

Usage

```
true.arma.aut.wge(phi = 0, theta = 0, lag.max = 25, vara = 1,plot=TRUE)
```

Arguments

phi	Vector containing AR coefficients
theta	Vector containing MA coefficients
lag.max	Maximum lag at which to calculate the true autocorrelations
vara	White noise variance of the ARMA model
plot	Logical: TRUE=plot, FALSE=no plot

Value

acf	Vector of length max.lag+1 containing true autocorrelations at lags 0, 1,, lag.max
acv	Vector of length max.lag+1 containing true autocovariances at lags 0, 1,, lag.max

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

true.arma.spec.wge

Examples

```
true.arma.aut.wge(phi=c(1.6,-.9),theta=-.8,lag.max=15,vara=1)\\
```

true.arma.spec.wge

True ARMA Spectral Density

Description

R function to calculate and optionally plot the spectral density of a stationary ARMA model

Usage

```
true.arma.spec.wge(phi=0,theta=0, vara=1,plot=TRUE)
```

Arguments

phi	Vector containing AR coefficients
theta	Vector containing MA coefficients

vara White noise variance of the ARMA model plot Logical: TRUE=plot, FALSE=no plot

Value

f Frequencies at which true spectral density is evaluated: 0, 1/500, 2/500, ..., .5

spec True spectral density calculated at the frequencies in f

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
true.arma.spec.wge(phi=c(1.6,-.9), theta=.7)
```

true.farma.aut.wge

trup	farma.	2114	WαΔ
ti ue.	, i ai illa i	.auι.	. WKE

True FARMA autocorrelations

Description

Calculate the autocovariances and autocorrelations and optionally plot the true autocorrlations of a FARMA model

Usage

```
true.farma.aut.wge(d,phi=0,theta=0,lag.max=50,trunc=1000,vara=1,plot=TRUE)
```

Arguments

d	Fractional difference parameter
phi	vector of AR parameters of ARMA part of FARMA model
theta	vector of MA parameters of ARMA part of FARMA model using signs as given in the Woodward, Gray, and Elliott text
lag.max	Maximum lag at which the autocorrelations and autocovariances will be calculated
trunc	Number of terms used in sum
vara	White noise variance
plot	Logical: TRUE=plot, FALSE=no plot

Details

For fractional model use phi=theta=0

Value

acf	Vector of length max.lag+1 containing true autocorrelations at lags 0, 1,, lag.max
acv	Vector of length max.lag+1 containing true autocovariances at lags 0, 1,, lag.max

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, second editon" by Woodward, Gray, and Elliott

```
y=true.farma.aut.wge(d=.4,phi=c(0,-.8))
```

true.garma.aut.wge

true.garma.aut.wge

True GARMA autocorrelations

Description

Calculate the autocovariances and autocorrelations and optionally plot the true autocorrelations of a 1-factor based on formula(11.25) of "Applied Time Series Analysis with R, second editon" Woodward, Gray, and Elliott

Usage

true.garma.aut.wge(u,lambda,phi=0,theta=0,lag.max=50,vara=1,plot=TRUE)

Arguments

u	Parameter u in the GARMA model given in (11.16) of Woodward, Gray, and Elliott text
lambda	Parameter lambda in the GARMA model given in (11.16) of Woodward, Gray, and Elliott text
phi	vector of AR parameters of ARMA part of GARMA model
theta	vector of MA parameters of ARMA part of GARMA model using signs as given in the Woodward, Gray, and Elliott text
lag.max	Maximum lag at which the autocorrelations and autocovariances will be calculated
vara	White noise variance
plot	Logical: TRUE=plot, FALSE=no plot

Details

For Gegenbauer model use phi=theta=0

Value

acf	Vector of length max.lag+1 containing true autocorrelations at lags 0, 1,, lag.max
acv	Vector of length max.lag+1 containing true autocovariances at lags 0, 1,, lag.max

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, second editon" by Woodward, Gray, and Elliott

tx.unemp.adj 143

Examples

```
y=true.garma.aut.wge(u=.8,lambda=.4,phi=.8)
```

tx.unemp.adj

Texas Seasonally Adjusted Unnemployment Rates

Description

Monthly seasonally adjusted unemployment rate in Texas for the years 2000-2019

Usage

```
data("tx.unemp.adj")
```

Format

ts object consisting of monthly seasonally adjusted unemployment rate from January 2000 through December 2019

Source

https://twc.texas.gov

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

```
data(tx.unemp.adj)
```

tx.unemp.unadj

Texas Unadjusted Unnemployment Rates

Description

Monthly unemployment rate in Texas for the years 2000-2019

Usage

```
data("tx.unemp.unadj")
```

Format

ts object consisting of monthly unadjusted unemployment rate from January 2000 through December 2019

144 unit.circle.wge

Source

https://twc.texas.gov

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

```
data(tx.unemp.unadj)
```

unit.circle.wge

Plot the roots of the characteristic equation on the complex plain.

Description

This function plots the roots of the characteristic equation on the complex plain and super imposes the Unit Circle to show if a root is inside, outside or on the Unit Circle. The modulus and absolule reciprical are also displayed.

Usage

```
unit.circle.wge(real = 0, imaginary = 0)
```

Arguments

real the real part of the root

imaginary the imaginary part of the root

Value

returns a plot of the root with respect to the unit circle

Author(s)

Bivin Sadler

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

```
unit.circle.wge = function(real = .9, imaginary = .95)
```

us.retail 145

us.retail

Quarterly US Retail Sales

Description

Quarterly US retail sales (in \$millions) from the fourth quarter of 1999 through the second quarter of 2021

Usage

```
data("us.retail")
```

Format

ts object consisting of quarterly US retail sales (in \$millions) from the fourth quarter of 1999 through the second quarter of 2021

Source

https://www.fred.stlouis.org

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

```
data(us.retail)
```

uspop

US population

Description

US estimated annual population from 1900 through 2020.

Usage

```
data("uspop")
```

Format

ts object consisting of annual data from 1700 through 2020

Source

Internet

146 wbg.boot.wge

References

"Time Series for Data Science: Analysis and Forecasting" by Woodward, Sadler, and Robertson

wages

Daily wages in Pounds from 1260 to 1944 for England

Description

This data set contains the average English daily wages in pounds for each year from 1260 to 1944, inclusive.

Usage

```
data("wages")
```

Format

The format is: num [1:735] 4.41 4.63 4.38 4.52 4.42 4.64 4.44 5.15 5.23 4.42 ...

Source

Data Market Time Series Data Library (citing: Makridakis, Wheelwright and Hyndman (1998))

Examples

```
data(wages)
```

wbg.boot.wge

Woodward-Bottone-Gray test for trend

Description

Performs the Woodward-Bottone-Gray (WBG) bootstrap-based test for a linear trend in a time series realization.)

Usage

```
wbg.boot.wge(x,nb=399,alpha=.05,pvalue=TRUE,sn=0)
```

Arguments

X	Realization
nb	The number of Bootstrap replications (default is 399)
alpha	The significance level of the test (default is .05)
pvalue	Logical variable. TRUE(default) prints out the p-value of the test.
sn	Sets the seed for the simulations (default $= 0$)

whale 147

Value

p AR order used for the bootstrap simulations
phi The AR coefficients of the AR model fit to data
pv The p-value of the test

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

whale

Whale click data

Description

256 point whale click echolocation signal

Usage

```
data("whale")
```

Format

The format is: num [1:286] 0.0014 -0.008 0.01126 0.00412 0.0069 ...

Source

Stan Kuczaj from University of Southern Mississippi

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(whale)
```

148 wtcrude2020

wtcrude

West Texas Intermediate Crude Oil Prices

Description

Monthly West Texas intermediate crude oil prices from January 2000 through October 2009.

Usage

```
data("wtcrude")
```

Format

The format is: num [1:118] 27.2 29.4 29.9 25.7 28.8 ...

Source

Internet

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

wtcrude2020

Monthly WTI Crude Oil Prices

Description

Monthly WTI crude oil prices from January 1990 through December 2020

Usage

```
data("wtcrude2020")
```

Format

ts object consisting of monthly data from January 1990 through December 2020

Source

https://fred.stlouis.org

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(wtcrude2020)

149 wv.wge

wv.wge

Function to calculate Wigner Ville spectrum

Description

Calculates and plots Wigner-Ville spectrum for a realization

Usage

```
wv.wge(x)
```

Arguments

Х

Realization to be analyzed

Value

Plots Wigner-Ville spectrum

Author(s)

Wayne Woodward

References

Boashash (2003). Time Frequency Analysis

Examples

```
data(doppler)
wv.dop=wv.wge(doppler)
```

yellowcab.precleaned Precleaned Yellow Cab data

Description

The number of Yellow Cab Trips in NYC before and during the COVID outbreak: January 2019 through February 2021

Usage

```
data("yellowcab.precleaned")
```

Format

The format is: Time-Series [1:26] from 2019 to 2021: 247315 250654 252634 247742 ...

Source

NYC Taxi and Limousine website

References

Time Series for Data Science Woodward, Sadler, and Robertson

Examples

data(yellowcab.precleaned)

Index

* AICC	factor.comp.wge, 36
aic.ar.wge, 6	* BIC
aic.burg.wge,7	aic.ar.wge,6
aic.wge, 8	aic.burg.wge, 7
aic5.ar.wge,9	aic.wge, 8
aic5.wge, 10	aic5.ar.wge,9
* AIC	aic5.wge, 10
aic.ar.wge,6	* Backcasting
aic.burg.wge,7	est.arma.wge,31
aic.wge, 8	* Bootstrap
aic5.ar.wge,9	wbg.boot.wge, 146
aic5.wge, 10	* Burg
* AR Model Identification	aic.ar.wge,6
aic.ar.wge,6	aic5.ar.wge,9
aic5.ar.wge,9	est.ar.wge,30
* ARCH	pacfts.wge, 103
gen.arch.wge,74	* Butterworth
* ARIMA	butterworth.wge, 18
fore.arima.wge,64	* Centered
fore.aruma.wge,67	ma.smooth.wge, 95
gen.arima.wge,75	* Cochrane-Orcutt
* ARMA	co.wge, 21
fore.arma.wge,66	* Conditional variance
gen.arma.wge,76	gen.arch.wge,74
plotts.true.wge, 112	gen.garch.wge,78
true.arma.aut.wge, 139	* DWT
true.arma.spec.wge, 140	plotts.dwt.wge, 108
* ARUMA	* FARMA
fore.aruma.wge,67	est.farma.wge, 32
gen.aruma.wge,77	fore.farma.wge, 68
* Additive components	true.farma.aut.wge, 141
factor.comp.wge, 36	* Factor table
* Autocorrelations	factor.wge, 37
plotts.true.wge, 112	* Factors
true.arma.aut.wge, 139	mult.wge, 99
* Autoregressive	* Forecasts
aic.ar.wge,6	fore.arima.wge, 64
aic5.ar.wge,9	fore.arma.wge,66
est.ar.wge, 30	fore.aruma.wge,67

est.arma.wge,31
* Model Identification
aic.burg.wge,7
aic.wge, 8
aic5.wge, 10
* Moving Average Predictor
ma.pred.wge,94
* Moving Average Smoother
ma.smooth.wge, 95
* Nonstationary
gen.aruma.wge,77
* One-sided Moving Average
ma.pred.wge, 94
* PACF
pacfts.wge, 103
* Parzen
ample.spec.wge, 12
parzen.wge, 104
plotts.sample.wge, 111
* Periodogram
plotts.sample.wge, 111
* Pi weights
pi.weights.wge, 107
* Plot
ample.spec.wge, 12
parzen.wge, 104
plotts.sample.wge, 111
plotts.wge, 113
* Psi weights
psi.weights.wge, 127
* RMSE
roll.win.rmse.nn.wge, 128
roll.win.rmse.wge, 129
* Realization
gen.arima.wge,75
gen.arma.wge,76
gen.aruma.wge,77
gen.garma.wge,79
gen.geg.wge, 80
gen.glambda.wge,81
plotts.wge, 113
* Regression
co.wge, 21
slr.wge, 130
wbg.boot.wge, 146
* Rolling Moving Average
ma.pred.wge,94
* Root

	unit.circle.wge, 144	Bsales, 16
* §	Seasonal	bumps16, 17
	fore.arima.wge,64	bumps256, 17
	fore.aruma.wge,67	cardiac, 19
* S	Spectral density	cement, 19
	plotts.true.wge, 112	chirp, 20
* §	Stationary	dfw.2011, 22
	unit.circle.wge, 144	dfw.mon, 22
*]	ΓVF data	dfw.yr, 23
	is.glambda.wge, 85	doppler, 24
	is.sample.wge,86	doppler2, 24
*]	ΓVF	dow.annual, 25
	est.glambda.wge,34	dow.rate, 25
	fore.glambda.wge,70	dow1000, 26
	gen.glambda.wge, 81	dow1985, 27
	trans.to.dual.wge, 137	dowjones2014, 27
	trans.to.original.wge, 138	eco.cd6, 28
	wv.wge, 149	eco.corp.bond, 28
*]	Trend Test	eco.mort30, 29
	co.wge, 21	fig1.10a, 38
	wbg.boot.wge, 146	fig1.10b, 38
* [Unit Circle	fig1.10c, 39
	unit.circle.wge, 144	fig1.10d, 40
* 1	Wigner-Ville spectrum	fig1.16a,40
	wv.wge, 149	fig1.21a,41
* \	Wigner-Ville	fig1.22a,42
	hilbert.wge, 85	fig1.5,42
* \	Woodward-Bottone-Gray	fig10.11x,43
	wbg.boot.wge, 146	fig10.11y,44
* \	YW	fig10.1bond, 44
	aic.ar.wge, 6	fig10.1cd, 45
	aic5.ar.wge, 9	fig10.1mort,46
* \	Yule Walker	fig10.3x1,46
	est.ar.wge, 30	fig10.3x2,47
	pacfts.wge, 103	fig11.12,48
* a	nutocorrelations	fig11.4a,48
	true.farma.aut.wge, 141	fig12.1a, 49
	true.garma.aut.wge, 142	fig12.1b, <u>50</u>
* l	packcasting	fig13.18a, <u>50</u>
	backcast.wge, 14	fig13.2c, 51
* C	IB	fig3.10d, <u>52</u>
	period.wge, 106	fig3.16a, <u>52</u>
* C	latasets	fig3.18a, <u>53</u>
	airline, 11	fig3.24a, 54
	airlog, 11	fig3.29a, <u>54</u>
	appy, 13	fig4.8a, <u>55</u>
	bat, 15	fig5.3c, 56
	bitcoin, 16	fig6.11a, <mark>56</mark>

fig6.1nf,57	prob9.6c1, 124
fig6.2nf,58	prob9.6c2, <u>125</u>
fig6.5nf,58	prob9.6c3, 125
fig6.6nf,59	prob9.6c4, 126
fig6.7nf,60	rate, 128
fig6.8nf,60	ss08, 131
fig8.11a,61	ss08.1850, 131
fig8.4a,62	starwort.ex, 132
fig8.6a,62	sunspot.classic, 133
fig8.8a,63	sunspot2.0, 133
flu, 64	sunspot2.0.month, 134
freeze, 72	table10.1.noise, 135
freight, 73	table10.1.signal, 135
global.temp, 83	table7.1, 136
global2020, 83	tesla, 137
hadley, 84	tx.unemp.adj, 143
kingkong, 89	tx.unemp.unadj, 143
lavon, 90	us.retail, 145
lavon15, 90	uspop, 145
linearchirp, 91	wages, 146
11ynx, 92	whale, 147
lynx, 93	wtcrude, 148
ma2.table7.1,96	wtcrude2020, 148
mass.mountain, 97	yellowcab.precleaned, 149
MedDays, 98	* difference
mm.eq, 98	artrans.wge, 13
NAICS, 100	* discrete wavelet transform
nbumps256, 100	plotts.dwt.wge, 108
nile.min, 101	* dual
noctula, 102	trans.to.dual.wge, 137
NSA, 102	trans.to.original.wge, 138
ozona, 103	* estimation
patemp, 105	est.farma.wge,32
prob10.4, 114	est.garma.wge,33
prob10.6x, 115	* filtering
prob10.6y, 115	butterworth.wge, 18
prob10.7x, 116	kalman.miss.wge, 87
prob10.7y, 117	kalman.wge,88
prob11.5, 117	* forecasting
prob12.1c, 118	expsmooth.wge, 35
prob12.3a, 119	* forecasts
prob12.3b, 119	fore.farma.wge,68
prob12.6c, 120	fore.garma.wge,69
prob13.2, 121	fore.glambda.wge,70
prob8.1a, <u>121</u>	* forecast
prob8.1b, 122	fore.sigplusnoise.wge,71
prob8.1c, 123	* fractional
prob8.1d, 123	true.farma.aut.wge, 141

* g(lambda) process	* window
gen.glambda.wge,81	plotts.parzen.wge, 110
* g(lambda)	roll.win.rmse.nn.wge, 128
est.glambda.wge, 34	roll.win.rmse.wge, 129
* generate	
gen.sigplusnoise.wge, 82	aic.ar.wge,6
* instantaneous spectrum	aic.burg.wge, 7
is.glambda.wge, 85	aic.wge, 8
is.sample.wge, 86	aic5.ar.wge,9
* missing	aic5.wge, 10
kalman.miss.wge,87	airline, 11
* multiresolution analysis	airlog, 11
plotts.mra.wge, 109	ample.spec.wge, 12
* partial autocorrelations	арру, 13
pacfts.wge, 103	artrans.wge, 13
* periodogram	
period.wge, 106	backcast.wge, 14
plotts.parzen.wge, 110	bat, 15
* plot	bitcoin, 16
plotts.dwt.wge, 108	Bsales, 16
plotts.mra.wge, 109	bumps16, 17
* predicting	bumps256, 17
kalman.miss.wge, 87	butterworth.wge, 18
kalman.wge, 88	
* residuals	cardiac, 19
	cement, 19
backcast.wge, 14	chirp, 20
* rolling	co.wge, 21
roll.win.rmse.nn.wge, 128	
roll.win.rmse.wge, 129	dfw.2011,22
* signal plus noise	dfw.mon, 22
fore.sigplusnoise.wge, 71	dfw.yr, 23
* signal-plus-noise	doppler, 24
gen.sigplusnoise.wge, 82	doppler2,24
* smoothing	dow.annual, 25
expsmooth.wge, 35	dow.rate,25
kalman.miss.wge, 87	dow1000, 26
kalman.wge, 88	dow1985, 27
* spectral density	dowjones2014,27
true.arma.spec.wge, 140	
* spectrum	eco.cd6, 28
plotts.parzen.wge, 110	eco.corp.bond, 28
* time varying spectrum	eco.mort30, 29
is.glambda.wge, 85	est.ar.wge, 30
is.sample.wge, 86	est.arma.wge,31
* transformation	est.farma.wge,32
artrans.wge, 13	est.garma.wge,33
* white noise	est.glambda.wge, 34
ljung.wge, 91	expsmooth.wge, 35

factor.comp.wge, 36	fore.sigplusnoise.wge,71
factor.wge, 37	freeze, 72
fig1.10a, 38	freight, 73
fig1.10b, 38	
fig1.10c, 39	gegenb.wge, 73
fig1.10d,40	gen.arch.wge,74
fig1.16a, 40	gen.arima.wge,75
fig1.21a,41	gen.arma.wge,76
fig1.22a,42	gen.aruma.wge,77
fig1.5, 42	gen.garch.wge, 78
fig10.11x, 43	gen.garma.wge,79
fig10.11y, 44	gen.geg.wge, 80
fig10.1bond, 44	gen.glambda.wge, 81
fig10.1cd, 45	gen.sigplusnoise.wge, 82
fig10.1mort, 46	global.temp, 83
fig10.3x1,46	global2020,83
fig10.3x2, 47	
fig11.12, 48	hadley, 84
fig11.4a, 48	hilbert.wge,85
fig12.1a, 49	
_	is.glambda.wge, 85
fig12.1b, 50	is.sample.wge,86
fig13.18a, 50	
fig13.2c, 51	kalman.miss.wge, 87
fig3.10d, 52	kalman.wge,88
fig3.16a, 52	kingkong, 89
fig3.18a, 53	1 00
fig3.24a,54	lavon, 90
fig3.29a, 54	lavon15, 90
fig4.8a, 55	linearchirp, 91
fig5.3c,56	ljung.wge, 91
fig6.11a, <u>56</u>	11ynx, 92
fig6.1nf, 57	lynx, 93
fig6.2nf,58	ma nand was 04
fig6.5nf, 58	ma.pred.wge, 94
fig6.6nf,59	ma.smooth.wge, 95
fig6.7nf, 60	ma2.table7.1,96
fig6.8nf, 60	macoef.geg.wge, 96
fig8.11a, 61	mass.mountain, 97
fig8.4a, 62	MedDays, 98
fig8.6a, 62	mm. eq, 98
fig8.8a, 63	mult.wge,99
flu, 64	NATCC 100
fore.arima.wge, 64	NAICS, 100
fore.arma.wge, 66	nbumps256, 100
fore.aruma.wge, 67	nile.min, 101
fore.farma.wge, 68	noctula, 102
fore.garma.wge, 69	NSA, 102
	ozona 103
fore.glambda.wge, 70	ozona, 103

pacfts.wge, 103	trans.to.dual.wge, 137
parzen.wge, 104	trans.to.original.wge, 138
patemp, 105	true.arma.aut.wge, 139
period.wge, 106	true.arma.spec.wge, 140
pi.weights.wge, 107	true.farma.aut.wge, 141
plotts.dwt.wge, 108	true.garma.aut.wge, 142
plotts.mra.wge, 109	tswge (tswge-package), 5
plotts.parzen.wge, 110	tswge-package, 5
plotts.sample.wge, 111	tx.unemp.adj, 143
plotts.true.wge, 112	tx.unemp.unadj, 143
plotts.wge, 113	
prob10.4, 114	unit.circle.wge, 144
prob10.6x, 115	us.retail, 145
prob10.6y, 115	uspop, 145
prob10.7x, 116	
prob10.7y, 117	wages, 146
prob11.5, 117	wbg.boot.wge, 146
prob12.1c, 118	whale, 147
prob12.3a, 119	wtcrude, 148
prob12.3b, 119	wtcrude2020, 148
prob12.6c, 120	wv.wge, 149
prob13.2, 121	
prob8.1a, 121	yellowcab.precleaned, 149
prob8.1b, 122	
prob8.1c, 123	
prob8.1d, 123	
prob9.6c1, 124	
prob9.6c2, 125	
prob9.6c3, 125	
prob9.6c4, 126	
psi.weights.wge, 127	
po	
rate, 128	
roll.win.rmse.nn.wge, 128	
roll.win.rmse.wge, 129	
<pre>sample.spec.wge (ample.spec.wge), 12</pre>	
slr.wge, 130	
ss08, 131	
ss08.1850, <u>131</u>	
starwort.ex, 132	
sunspot.classic, 133	
sunspot2.0, 133	
sunspot2.0.month, 134	
table10.1.noise, 135	
table10.1.signal, 135	
table7.1, 136	
tesla, 137	