Universidade Estadual de Maringá

Departamento de Informática

Relatório: N-PUZZLE

Aluna: Thais Aparecida Silva Camacho (93807)

Professor: Dr. Wagner Igarashi

Conteúdo

1	Res	umo	1
2	-	esentação Algoritmo A*	1
		N-Puzzle	
3		lise dos Resultados	2
	3.1	8-puzzle	2
	3.2	15-puzzle	3
	3.3	24-puzzle	4
	3.4	35-puzzle	4

1 Resumo

O presente relatório apresenta uma comparação entre dois algoritmos usados na resolução do n-puzzle. A comparação buscou encontrar os melhores resultados entre os algoritmos analisadas. Para a análise um conjunto de casos de teste é executado.

2 Apresentação

O jogo escolhido para o trabalho da disciplica foi o n-puzzle, Implementouse o A^* para a resolução do jogo junto com duas heurísticas h'1 e h'2. Onde

- 1. h'1(n) = número de peças fora de seu lugar na configuração final.
- 2. h'2(n) = para cada peça fora de seu lugar somar a distância Manhattan (quantidade de deslocamentos) para colocar em seu devido lugar. Neste caso considera-se que o caminho esteja livre para fazer o menor número de movimentos.

O objetivo do presente relatório é analisar o desempenho das duas heurísticas na resolução do n-puzzle.

2.1 Algoritmo A*

O algoritmo A*, proposto por Peter Hart, Nils Nilsson e Bertram Raphael, é um algoritmo de busca em grafos que utiliza uma função f(n) para estimar o custo do caminho mais curto entre origem e destino que passa pelo nó n. A função é definida por

$$f(n) = g(n) + h(n)$$

em que g(n) representa o custo exato do caminho entre o nó inicial e qualquer nó n e h(n) representa uma estimativa heurística. O algoritmo explora sempre o nó de menor f(n). Se a heurística escolhida h(n) é admissível, o A* retorna um caminho ideal.

2.2 N-Puzzle

O N-puzzle consiste de um tabuleiro com N+1 posições, onde uma posição é vazia e as outras N possuem uma peça numerada. O objetivo é movimentar as peças e chegar no tabuleiro final. O tabuleiro final do 8-puzzle, por exemplo, é dado por

1	2	3
4	5	6
7	8	0

3 Análise dos Resultados

Os critérios considerados na análise são: consumo de memória (quantidade de nós expandidos) e tempo de processamento (milisegundos). Realizou-se casos de teste para o 8-puzzle, 15-puzzle, 24-puzzle e 35-puzzle. Os resultados são expostos a seguir.

3.1 8-puzzle

Os testes considerados para o 8-puzzle foram

```
(define 8-inst-1 (list 6 4 2 1 5 3 7 0 8))
(define 8-inst-2 (list 0 2 5 1 8 3 7 4 6))
(define 8-inst-3 (list 8 0 7 6 5 4 3 2 1))
(define 8-inst-4 (list 8 3 2 5 1 0 7 4 6))
(define 8-inst-5 (list 6 4 7 8 5 0 3 2 1))
```

Figura 1: Casos de Teste para o 8-puzzle

E os resultados obtidos foram os apresentados a seguir:

Caso	Tempo		
Caso	h'1	h'2	
1	8.17	7.82	
2	110.88	20	
3	3769.73	19.8	
4	1578.57	263.84	
5	11084.59	621.97	

Caso	Memória		
Caso	h'1	h'2	
1	88	34	
2	2702	751	
3	98191	432	
4	48665	5942	
5	235150	12284	

3.2 15-puzzle

Os testes considerados para o 15-puzzle foram

```
(define 15-inst-1 (list 1 0 3 4 11 2 13 14 10 12 15 5 8 9 7 6))
(define 15-inst-2 (list 2 13 3 14 10 1 12 4 5 11 15 8 0 9 7 6))
(define 15-inst-3 (list 1 11 5 13 0 10 7 3 14 6 4 2 9 12 8 15))
(define 15-inst-4 (list 12 1 2 3 11 13 14 4 10 15 6 5 0 9 8 7))
(define 15-inst-5 (list 1 2 3 4 11 12 13 14 10 9 15 5 0 8 7 6))
```

Figura 2: Casos de Teste para o 15-puzzle

E os resultados obtidos foram os apresentados a seguir:

Caso	Tempo	
Caso	h'1	h'2
1	595.91	160.97
2	-	1076.33
3	-	8001.73
4	-	7866.44
5	-	38089.02

Caso	Memória	
Caso	h'1	h'2
1	17971	4339
2	-	24831
3	-	178484
4	-	136372
5	-	726085

3.3 24-puzzle

Os testes considerados para o 24-puzzle foram

```
(define 24-inst-1 (list 2 3 0 4 5 1 7 8 9 10 6 11 12 13 15 16 17 18 14 20 21 22 23 19 24))
(define 24-inst-2 (list 1 2 3 5 10 6 7 8 4 0 11 12 13 9 15 16 17 18 14 20 21 22 23 19 24))
(define 24-inst-3 (list 2 3 5 4 10 12 1 6 7 15 13 8 9 0 20 11 17 18 14 24 16 21 22 23 19))
(define 24-inst-4 (list 11 6 1 2 3 21 7 8 4 5 17 16 12 10 15 0 13 14 18 9 22 23 19 20 24))
(define 24-inst-5 (list 2 3 4 5 10 6 1 7 8 9 16 11 12 13 15 17 18 14 0 20 21 22 23 19 24))
```

Figura 3: Casos de Teste para o 24-puzzle

E os resultados obtidos foram os apresentados a seguir:

Caso	Tempo	
Caso	h'1	h'2
1	2.41	3.07
2	2.39	4.40
3	-	42.023
4	-	4097.83
5	-	12.05

Caso	Memória		
Caso	h'1	h'2	
1	24	24	
2	17	17	
3	-	657	
4	-	66212	
5	-	142	

3.4 35-puzzle

Os testes considerados para o 35-puzzle foram

```
(define 35-inst-1 (list 1 2 4 5 6 12 7 8 3 17 10 18 14 9 16 28 11 24 13 19 20 22 29 23 25 26 0 21 30 15 31 32 27 33 34 35)) (define 35-inst-2 (list 1 2 4 5 6 12 7 0 3 17 10 18 14 8 16 28 11 24 13 9 20 22 29 23 25 19 26 21 30 15 31 32 27 33 34 35)) (define 35-inst-3 (list 7 1 4 5 6 12 0 2 3 17 10 18 14 8 16 28 11 24 13 9 20 22 29 23 25 19 26 21 30 15 31 32 27 33 34 35))
```

Figura 4: Casos de Teste para o 35-puzzle

E os resultados obtidos foram os apresentados a seguir:

Caso	Tempo	
Caso	h'1	h'2
1	-	18918.41
2	-	40777.10
3	-	47531.65

Caso	Memória	
	h'1	h'2
1	-	191839
2	-	463531
3	-	444916

Os resultados com - obteve-se estouro de memória no Dr.Racket. Como ambas as heurísticas são admissíveis, todos os teste que não estouraram memória, obteram a quantidade mínima de movimentos, ou seja, todas deram a solução ótima. Contudo, tiveram uma diferença grande de desempenho.

A heurística com maior desempenho foi a h'2 que resolveu grande parte dos casos de teste de forma rápida e com quantidade de memória satisfazível. Diferente da h'1 que, quando não obtém estouro de memória, resolve utilizando-se uma quantidade muito maior do que a h'2, como pode se observar melhor na figura 5.

Figura 5: Comparação de consumo de memória entre $h^\prime 1$ e $h^\prime 2$ para os casos do 8-puzzle

Note ainda que, além de se ter uma diferença considerável no desempenho de acordo com a heurística utilizada, quanto maior o tamanho do problema, maior é o tempo de processamento e a memória utilizada, basta ver a grande diferença entre os resultado do 8-puzzle com o 35-puzzle.

Dessa forma, conclui-se que a h'2 obteve um melhor desempenho.