MITX SDS MICROMASTERS

Course Notes

6.431x: Probability - The Science of Uncertainty and Data

Author: Yolanda Huitian DIAO

February 26, 2023

Contents

1	Prol	ability	models and axioms
	1.1	Math (<mark>Overview</mark>
		1.1.1	Sets and De Morgan's Laws
		1.1.2	Sequences and their limits
		1.1.3	Infinite series
		1.1.4	Geometric series
		1.1.5	Sums with multiple indices
		1.1.6	Countable and uncountable sets
	1.2	Lectur	re 1: Probability models and axioms
		1.2.1	Sample space
		1.2.2	Probability laws
		1.2.3	Some simple consequences of the axioms
		1.2.4	More consequences of the axioms
		1.2.5	Discrete uniform law
		1.2.6	Uniform probability law
		1.2.7	Probability calculation steps
		1.2.8	Countable additivity axiom
		1.2.9	Interpretations of probabilities
		1.2.10	The role of probability theory
2	Con	ditioni	ng and independence
-	2.1		re 2: Conditioning an Baye's rule
		2.1.1	Conditional Probability
		2.1.2	Three important tools: Multiplication rule; Total probability
		2.1.2	theorem; Baye's rule
	2.2	Lectur	re 3: Independence
	2.2	2.2.1	Independence of two events
		2.2.2	Conditional independence
		2.2.3	Independence of a collection of events
		2.2.4	Pairwise independence
		2.2.5	Reliability
		2.2.6	The king's sibling puzzle
2	Con	nting	11
J	3.1	_	re 4: Counting
	5.1	3.1.1	Discrete uniform law
		3.1.1	Basic counting principle
		3.1.2	Combinations
	T.		
A			Asked Questions do I change the colors of links?

List of Figures

List of Tables

List of Abbreviations

LAH List Abbreviations HereWSF What (it) Stands For

List of Symbols

- R Real numbers
- Natural numbers
- Ω Universal set
- Ø Empty set

Chapter 1

Probability models and axioms

1.1 Math Overview

1.1.1 Sets and De Morgan's Laws

Sets

- A collection of distinct element
- Can be finite or infinite

Unions and intersections

- $S \cup T$: $x \in S \cup T \Leftrightarrow x \in S \text{ or } x \in T$
- $S \cap T$: $x \in S \cap T \Leftrightarrow x \in S$ and $x \in T$
- $x \in \bigcup_{n} S_n \Leftrightarrow x \in S_n$, for some n
- $x \in \bigcap_{n} S_n \Leftrightarrow x \in S_n$, for all n

Set properties

- $S \cup T = T \cup S$
- $S \cap (T \cup U) = (S \cap T) \cup (S \cap U)$
- $(S^c)^c = S$
- $S \cup \Omega = \Omega$
- $S \cup (T \cup U) = (S \cup T) \cup U$
- $S \cup (T \cap U) = (S \cup T) \cap (S \cup U)$
- $S \cap S^c = \emptyset$
- $S \cap \Omega = S$

De Morgan's laws

- $(\bigcap_{n} S_n)^c = \bigcup_{n} S_n^c$
- $\bullet \ (\bigcup_n S_n)^c = \bigcap_n S_n^c$

Sequences and their limits

• Definition of Sequence

- function
$$f : \mathbb{N} \to S$$
, $f(i) = a_i$

• Convergence of Sequence

$$-a_i \underset{i \to \infty}{\to} a, \lim_{i \to \infty} a_i = a$$

– For any $\epsilon > 0$, there exists i_0 , such that if $i \geq i_0$, then $|a_i - a| < \epsilon$

1.1.2 Sequences and their limits

- If $a_i \ge a_{i+1}$, for all i, then either:
 - the sequence "converges to ∞"
 - the sequence converges to some real number a
- If $|a_i a| \le b_i$, for all i, and $b_i \to 0$, then $a_i \to a$
- Properties of convergent sequences

- If
$$a_i \rightarrow a$$
 and $b_i \rightarrow b$, then

*
$$a_i + b_i \rightarrow a + b$$

*
$$a_ib_i \rightarrow ab$$

– If $a_i \rightarrow a$ and g is a continuous function, then

*
$$g(a_i) \rightarrow g(a)$$

1.1.3 Infinite series

Provided limit exists: $\sum_{i=1}^{\infty} a_i = \lim_{n \to \infty} \sum_{i=1}^{n} a_i$

- If $a_i \ge 0$: limit exists
- If term a_i do not all have the same sign:
 - limit need not exist
 - limit may exist but be different if we sum in a different order
 - **Fact:** limit exists and independent of order of summation if $\sum_{i=1}^{\infty} |a_i| < \infty$

1.1.4 Geometric series

$$\sum_{i=0}^{\infty} \alpha^{i} = 1 + \alpha + \alpha^{2} + ... + = \frac{1}{1-\alpha} |\alpha| < 1$$

1.1.5 Sums with multiple indices

$$\sum_{i\geq 1, j\geq 1} a_{ij}$$

- If the sum converges, this double series will be well defined.
- If $\sum |a_{ij}| < \infty$, then order of summation does not matter.

1.1.6 Countable and uncountable sets

- Countable: can put in 1-1 correspondence with positive integers
 - positive integers
 - integers
 - pairs of positive integers
 - rational number q, with 0 < q < 1
 - * 1/2,1/2,2/3,1/4,2/4,3/4,1/5,2/5...
- Uncountable: not countable
 - the interval [0, 1]
 - the reals, the plane, ...
- The reals are uncountable
 - Cantor's diagonalization argument

1.2 Lecture 1: Probability models and axioms

1.2.1 Sample space

- Two steps:
 - Describe possible outcomes
 - Describe beliefs about likelihood of outcomes
- List (set) of possible outcomes, Ω
 - Mutually exclusive
 - Collectively exhaustive
 - At the "right" granularity
- Examples
 - Discrete / finite
 - * Two rolls of a tetrahedral die
 - * Sequential description (decision tree)
 - Continuous
 - * (x, y) such that $0 \le x, y \le 1$

1.2.2 Probability laws

- Event: a subset of the sample space
 - Probability is assigned to events
- Axioms:
 - Nonnegativity: $P(A) \ge 0$
 - Normalization: $P(\Omega) = 1$
 - (Finite) additivity: (to be strengthened later)
 - * If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$

1.2.3 Some simple consequences of the axioms

- $P(A) \le 1$
- $P(\emptyset) = 0$
- $P(A) + P(A^C) = 1$
- $P(A \cup B \cup C) = P(A) + P(B) + P(C)$ and similarly for k disjoint events $P(s_1, s_2, ...s_k) = P(s_1) + ... + P(s_k)$
- $A \cup A^C = \Omega$
- $A \cap A^C = \emptyset$

1.2.4 More consequences of the axioms

- If $A \subset B$, then $P(A) \leq P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A \cup B) \leq P(A) + P(Bs)$
- $P(A \cup B \cup C) = P(A) + P(A^C \cap B) + P(A^C \cap B^C \cap C)$

Examples

- Discrete / finite example: Two rolls of a tetrahedral die
 - X = Firstroll, Y = Secondroll, Z = min(X, Y)
 - -P(X=1) = 4/16 = 1/4, P(Z=2) = 5/16

1.2.5 Discrete uniform law

- Assume Ω consists of n equally likely elements
- Assume *A* consists of *k* elements
- $P(A) = k \cdot \frac{1}{n}$

1.2.6 Uniform probability law

• Probabiliy = Area

1.2.7 Probability calculation steps

- Specify the sample space
- Specify a probability law
- Identify an event of interest
- Calculate ...

1.2.8 Countable additivity axiom

- If $A_1, A_2, A_3, ...$ is an infinite sequence of disjoint events,
 - Then $P(A_1 \cup A_2 \cup A_3 \cup ...) = P(A_1) + P(A_2) + P(A_3) + ...$

1.2.9 Interpretations of probabilities

- A narrow view: a branch of math
 - Axioms \Rightarrow theorems
- Are probabilities frequencies?
 - P(coin toss yields heads) = 1/2
 - P(the president of ... will be reelected) = 0.7
- Probabilities are often interpreted as:
 - Description of beliefs
 - Betting preferences

1.2.10 The role of probability theory

- A framework for analyzing phenomena with uncertain outcomes
 - Rules for consistent reasoning
 - Used for predictions and decisions
- Diagram
 - Real world \Rightarrow data \Rightarrow Inference/Statistics
 - Inference/Statistics ⇒ Models ⇒ Probability theory (Analysis)
 - **Probability theory (Analysis)** \Rightarrow Predictions \neq **Real world**

Chapter 2

Conditioning and independence

2.1 Lecture 2: Conditioning an Baye's rule

The idea of conditioning: Use new information to revise a model

2.1.1 Conditional Probability

The idea of conditioning: Use new information to revise a model

Definition of conditional probability

- P(A|B) = "probability of A, given that B occurred"
- $P(A|B) = \frac{P(A \cap B)}{P(B)}$ defined only when P(B) > 0

Two rolls of a 4-sided die

- Let *B* be the event: min(X, Y) = 2. Let M = max(X, Y)
 - -P(M=1|B)=0
 - $-P(M=3|B) = \frac{P(M=3andB)}{P(B)} = \frac{2/16}{5/16} = 2/5$

Conditional probabilities hsare properties of ordinary probabilities

- $P(A|B) \ge 0$, assuming P(B) > 0
- $P(\Omega|B) = \frac{P(\Omega \ capB)}{P(B)} = 1$
- P(B|B) = 1
- If $A \ cap C = \emptyset$, then $P(A \cup C|B) = P(A|B) + P(C|B)$

2.1.2 Three important tools: Multiplication rule; Total probability theorem; Baye's rule

- Multiplication rule
 - $P(A|B) = \frac{P(A \cap B)}{P(B)}$ - $P(A \cap B) = P(B)P(A|B) = P(A)P(B|A)$
- Total probability theorem
 - Partition of sample space into $A_1, A_2, A_3, ...$
 - Have $P(A_i)$, for every i

- Have
$$P(B|A_i)$$
, for every i

$$-P(B) = \sum_{i} P(A_i) P(B|A_i)$$

Bayes' rule and inference

- Thomas Bayes, presbyterian minister (c. 1701 1761)
- "Bayes' theorem", published pothumously
- systematic approach for incorporatin new evidence
- Bayesian inference
 - initial beliefs $P(A_i)$ on possible causes of an observed event B
 - model of the world under each A_i : $P(B|A_i)$

*
$$A_i \xrightarrow{P(B|A_i)} B$$

- draw conclusions about causes

*
$$B \xrightarrow{P(A_i|B)} A_i$$

2.2 Lecture 3: Independence

2.2.1 Independence of two events

- **Intuitive "definition"**: P(B|A) = P(B)
 - occurrence of *A* provides no new information about *B*
- Definition of independence: $P(A \cap B) = P(A) \cdot P(B)$
 - Symmetric with respect to *A* and *B*
 - implies P(A|B) = P(A)
 - applies even if P(A) = 0
- If A and B are independent, then A and B^C are independent.

2.2.2 Conditional independence

• Conditional independence, given C, is defined as independence under the probability law $P(\cdot|C)$

Conditioning may affect independence

- Two unfair coins, A and B: P(H|coin A) = 0.9, P(H|coin B) = 0.1
- Choose either coin with equal probability
 - P(toss11 = H) = 0.5
 - P(toss11 = H|first 10 tosses are heads) = 0.9

2.2.3 Independence of a collection of events

- **Intuitive "definition":** Information on some of the events does not change probability related to the remaining events
- **Definition:** Events $A_1, A_2, ..., A_n$ are called **independent** if $(A_i \cap A_j \cap ... \cap A_m) = P(A_i)P(A_j)P(A_m)$ for any distinct indices i, j, ...m

2.2.4 Pairwise independence

- Two independent fair coin tosses
 - H_1 : First toss is H
 - H_2 : Second toss is H
 - C: the two tosses had the same result
- Independence between H_1 , H_2 and C
 - $P(H_1 \cap C) = P(H_1 \cap H_2) = 1/4$, $P(H_1)P(C) = 1/2 \cdot 1/2 = 1/4$
 - * *H*₁ and *C*: independent, *H*₂ and *C*: independent
 - $P(H_1 \cap H_2 \cap C) = P(HH) = 1/4, P(H_1)P(H_2)P(C) = 1/8$
 - * H_1 , H_2 and C: not independent
- Conclusion: H_1 , H_2 , C are pairwise independent, but not independent

2.2.5 Reliability

- Independent units:
 - p_1 and p_2 and p_3 (series)
 - * $P(\text{system up}) = p_1 p_2 p_3$
 - p_1 or p_2 or p_3 (parallel)
 - * $P(\text{system up}) = 1 (1 p_1)(1 p_2)(1 p_3)$

2.2.6 The king's sibling puzzle

- The king comes from a family of two children what is the probability that his sibling is female? (boy have precedence)
- Combinations: BB, BG, GB, GG
- P(sibling is female|king) = 2/3

Chapter 3

Counting

3.1 Lecture 4: Counting

3.1.1 Discrete uniform law

- Assume Ω consists of n equally likely elements
- Assume *A* consists of *k* elements
- Then: $P(A) = \frac{\text{number of elements of } A}{\text{number of elements of } \Omega} = \frac{k}{n}$
- Applications
 - Permutations, combinations
 - Partitions
 - Number of subsets
 - Binomial probabilities

3.1.2 Basic counting principle

Example

- 4 shirts, 3 ties, 2 jackets: number of possible attires?
 - r selection stages
 - n_i choices at stage i
- Number of choices is: $n_1 \cdot n_2 \cdot n_3 \dots \cdot n_r$

More examples

- Number of license plates with 2 letters followed by 3 digits:
 - $-26 \cdot 26 \cdot 10 \cdot 10 \cdot 10$
- **Permutations:** Number of ways of ordering *n* elements:

$$-n \cdot (n-1) \cdot (n-2) \dots \cdot 1 = n!$$

• Number of subsets of 1, ..., n:

$$-2 \cdot 2 \cdot \dots \cdot 2 = 2^n$$

3.1.3 Combinations

- Definition: $\binom{n}{k}$: number of *k*-element subsets of a given *n*-element set = $\frac{n!}{k!(n-k)!}$
- Two ways of constructing an **ordered** sequence of *k* **distinct** items:
 - Choose the *k* items one at a time
 - Choose *k* items, then order them

3.1.4 Partitions

- $n \ge 1$ distinct items; $r \ge 1$ persons, given n_i items to person i
 - here $n_1, ..., n_r$ are given nonnegative integers
 - with $n_1 + ... n_r = n$
- Ordering *n* items: *n*!
 - Deal n_i to each persons i, and then order
- Number of partitions = $\frac{n!}{n_1!n_2!...n_r!}$ (multinomial effect)

Appendix A

Frequently Asked Questions

A.1 How do I change the colors of links?

The color of links can be changed to your liking using:

\hypersetup{urlcolor=red}, or

\hypersetup{citecolor=green}, or

\hypersetup{allcolor=blue}.

If you want to completely hide the links, you can use:

\hypersetup{allcolors=.}, or even better:

\hypersetup{hidelinks}.

If you want to have obvious links in the PDF but not the printed text, use:

\hypersetup{colorlinks=false}.