

Einführung in die Programmierung

Organisation und Inhalt

Kontakt

■Anja Feldmann

- ➤ Professorin für Internet Network Architectures an der TU (ab 1.1.2018 am Max Planck Institut für Informatik in SB, hat keinen Einfluss auf den Lehrbetrieb im WS17/18.)
- Siehe auch http://www.inet.tu-berlin.de
- > Sprechstunde: Di. 12.00 12.30
- Bitte mit Voranmeldung per E-mail oder über das Sekretariat
- Sekretariat MAR 4-4
 - secretary@inet.tu-berlin.de

Wichtige Kontakte

- Damien Foucard (Zuständig für die Organisation)
- ☐ Florian Streibelt (Zuständig für die Osiris/SVN Infrastruktur)
- Franziska Lichtblau
- Theresa Enghardt
- Thorben Krüger
- Mirko Palmer
- Infos: via ISIS

Einführung in die Programmierung

- Kontakt: introprog-team@inet.tu-berlin.de
- □ Kontakt nur über obige E-mail-Adresse, <u>nicht</u> individuell!

Kontakt für ausländische Studierende

□ Sahar Ben Hassine Maria Kornienko Nesrine Ouanes May Said Ernest Valverde Laks

http://www.betreuung-int-stud.tu-berlin.de/menue/home/

☐ Hilfe bei sprachlichen und kulturellen Problemen

Zielgruppe

- Studierende der Studiengänge
 - > Informatik
 - > Technische Informatik
 - Medieninformatik
 - Lehramt

Anja Feldmann, TU Berlin, 2017

Lernziele

Anja Feldmann, TU Berlin, 2017

Grundlegende Datenstrukturen

- Kenntnis
 - > Elementarer Datenstrukturen
 - Such- und Sortierverfahren

- □ Fähigkeit
 - > Probleme und Strukturen (wieder)zuerkennen
 - Für ein gegebenes Anwendungsproblem die geeignete Datenstruktur zu wählen

Einführung in die Programmierung

- ☐ Beherrschung der Sprachelemente von C
- Verständnis des Paradigmas: Iterativen Programmierung
- □Fähigkeit
 - > Einfache Programme in C zu schreiben
 - Lesbare und verständliche Programme zu schreiben
 - ➤ Den Aufwand eines Algorithmus bzw. eines C-Programms abzuschätzen

- ☐ Einführung in eine Programmiersprache
 - > Elementare Datentypen und Operatoren
 - > Kontrollstrukturen: Verzweigungen, Schleifen
 - > Funktionen
 - Dynamische Datenstrukturen
- Datenstrukturen
 - Listen
 - Queue, Stack und Heap
 - Bäume

Inhalte

- ☐ Elementare Algorithmen
 - > Suchen
 - Sortieren

- Algorithmen
 - Aufwandsabschätzung
 - > Korrektheit

Schwerpunkte

- Zwei Schwerpunkte entsprechend der Werkzeugklassen
 - > Erlernen der Sprache C
 - > Umgang mit Datenstrukturen und algorithmischen Aspekten
- ☐ Entsprechend zwei Vorlesungsteile
 - C-Kurs (erste zwei Vorlesungswochen)
 - > Einführung in die imperative Programmierung (IntroProg)

Vorbemerkungen - C

- Beispielsprache C
 - > Weit verbreitet, etabliert
 - Auf allen Plattformen verfügbar
 - Grundlage für viele weitere Vorlesungen, u.a. Rechnerorganisation
- Hier: Programmierung "im Kleinen", algorithmisches Handwerkszeug
- Programmbeispiele auf Deutsch und/oder Englisch

Ablauf

Anja Feldmann, TU Berlin, 2017

Veranstaltungskomponenten

- Vorlesung:
 - Vorstellung der Konzepte
 - Beispiel Programme
- Tutorien:
 - Q&A (Fragen und Antworten)
 - Besprechung der Hausaufgaben
 - Codebeispiele inklusive Fehlersuche!
- Betreute Rechnerzeiten:
 - ➤ Hilfestellung beim Programmieren vor Ort
- Hausaufgaben:
 - Eigenständiges Auseinandersetzen mit den Konzepten
 - Sowohl als Einzel- als auch als Gruppenabgaben (wie auf Blatt angegeben)

Veranstaltungsgliederung

- C-Kurs:
 - Vorstellung der Konzepte
 - Beispiel Programme
 - Dauer: Zwei Wochen
 - > Folgende Vorlesungen finden in diesen zwei Wochen nicht statt:
 - Rechnerorganisation
 - Formale Sprachen und Algorithmen
 - Informatik Propädeutikum
- ☐ Einführung in die imperative Programmierung (IntroProg):
 - Grundlegende Datenstrukturen
 - Algorithmen Am Beispiel von Listen, Bäumen, und Sortieren
 - Dauer: Rest des Semesters

C-Kurs Vorlesungen

- Dienstag
- Mittwoch
- Donnerstag
- □ Freitag
- Montag
- Dienstag
- Mittwoch
- Donnerstag

- 17.10.2017 12 Uhr ct in HE 101
- 18.10.2017 10 Uhr ct in HE 101
- 19.10.2017 12 Uhr ct in H 0105
- 20.10.2017 10 Uhr ct in HE 101
- 23.10.2017 08 Uhr ct in H 0105
- 24.10.2017 12 Uhr ct in HE 101
- 25.10.2017 10 Uhr ct in HE 101
- 26.10.2017 12 Uhr ct in H 0105

IntroProg Vorlesung

Ab dem 3.11.2017

☐ Freitag: 10.15 – 11.45 Uhr in HE 101

- Diese Vorlesungen starten in der Woche vom 30.10!
 - > Rechnerorganisation
 - ➤ Formale Sprachen und Algorithmen
 - ➤ Informatik Propädeutikum

Prüfungsmodalitäten

- ☐ Portfolio Prüfung Komponenten
 - ➤ Einzelaufgaben: 15 Portfoliopunkte
 - C-Kurs Aufgaben
 - Größere Programmieraufgabe über Weihnachten (Wiederholungsmöglichkeit)
 - ➤ Gruppenhausaufgaben: IntroPROG: 35 Portfoliopunkte
 - ➤ Schriftlicher Test: **50 Portfoliopunkte**
 - Am Ende des Semesters: Mittwoch, der 21.2.2018, von 9 bis 11 Uhr
 - Am Anfang des Sommersemesters (Wiederholungsmöglichkeit):
 Dienstag, der 3.4.2018, von 9 bis 11 Uhr

- ☐ ISIS für Vorlesungsmaterial am besten sofort
- OSIRIS für Übungsbetrieb am besten sofort

■Anmeldefrist IntroProg Tutorien via Moses:

18.10.2017 18:00

■ Modulanmeldefrist via QISPOS oder Prüfungsamt

10.11.2017 18:00

C-Kurs - Blockveranstaltung

Organisation

Anja Feldmann, TU Berlin, 2017

C-Kurs – Tagesablauf

1. Vorlesung:

Vorstellung der Konzepte

2. Tutorien:

Q&A (Fragen und Antworten) zu Vorlesungsinhalten

3. Abgaben:

- Selbständig zu bearbeitende Programmieraufgaben
- Einzelabgaben

C-Kurs – Tagesablauf

☐ Zusätzlich:

- Betreute Rechnerzeiten in TEL 1. und 2. Stock
 - Hilfestellung beim Programmieren vor Ort
 - Genaue Zeiten und Orte: siehe ISIS
 - Generell von 10-18 Uhr jeden Werktag außer während der Vorlesung
- Arbeitsräume
 - Genaue Zeiten und Orte: siehe ISIS
 - Unterstützung per ISIS Forum
- > Helpdesk im TEL 109
 - Nur für organisatorische Probleme!

Tagesablauf - Dienstag/Mittwoch

1. Vorlesung Di: 12:15 – ca. 13:45

2. Freischaltung der Aufgabe Di: ca. 14 Uhr

3. Betreute Rechnerzeit Di: 14 – 18 Uhr

4. Tutorien

1. Möglichkeit Mi: 12:00 – ca. 12:55

2. Möglichkeit Mi: 13:00 – ca. 13:55

3. Möglichkeit Mi: 14:00 – ca. 14:55

. . .

Details: siehe ISIS

5. Vorlesung Mi: 10:15 – ca. 11:45

6. Betreute Rechnerzeit Mi: 12 – 18 Uhr

7. Abgabe der 1. Aufgabe Do: 21:59

Abgaben

- Ausgabe:
 - ➤ Ab Dienstag 17.10 nach der jeweiligen Vorlesung (ISIS)
- ■Abgaben:

➤ 1. Blatt: Abgabefrist 19.10.2017 21:59 CET

> 2. Blatt: Abgabefrist 20.10.2017 21:59 CET

> ...

➤ 6. Blatt: Abgabefrist 26.10.2017 21:59 CET

> 7. Blatt: Abgabefrist 30.10.2017 09:59 CET

Tutorien Einteilung

- Tutorien:
 - > Zum Teil mehr als 10 Tutorien parallel
 - > Thema: Aktuelle Vorlesung und Aufgabenblatt
 - Pro Thema gibt es mehrere Zeitwahlmöglichkeiten
 - Teilnahme an jedem Thema ist sinnvoll
 - > Ziel: ca. 30 Teilnehmer pro Tutorium

Tutorien Einteilung

- ☐ Verteilungsalgorithmus für die Teilnehmer auf die Tutorien:
 - Verfahren:
 - Ausgabe der Tutorienplätze nach Zeit
 - Es gibt begrenzte Plätze und Zeitfenster!
 - Nur belegte Tutorien finden statt!
 - Überblick über die Angebote gibt es in ISIS
 - First come, first served!!! Wie im Kino....
 - > Jeweils im Anschluss an die Vorlesung! (ca. 30 Minuten)
 - ➤ Danach bis 18 Uhr bzw. von 10 11 Uhr im Tel 109 beim Helpdesk
- ☐ Bei Problemen am Helpdesk im TEL 109 melden

Abgaben – Wie?

- Mittels Versionsverwaltungssystem
 - > System zur Erfassung von Änderungen an Dokumenten oder Dateien
 - > Alle Versionen werden mit Zeitstempel und Benutzerkennung gesichert
 - Versionen können später wiederhergestellt werden
 - Versionsverwaltungssysteme werden u.a. in der Softwareentwicklung zur Quelltextverwaltung eingesetzt
- Wir verwenden:
 - Subversion (SVN) (u.a. weil GIT keine detaillierte Rechteverwaltung unterstützt)
- Details zur Benutzung von SVN in den Tutorien und auf ISIS

Einzelabgabe – Hinweise

Einzelabgabe

- Jede/r Studierende erarbeitet eine eigene Lösung und gibt diese ab!
- Diskussionen von Lösungswegen, Herangehensweisen, Hilfestellung sind erlaubt und sogar erwünscht!
- ➤ Aber Weitergabe von Lösungsteilen ist keine Hilfestellung, da das nicht dazu führt, ein eigenes Verständnis der Herangehensweise zu entwickeln!

Regeln

- Zwei identische Abgabeteile
 - ⇒ Eine ist ein Plagiat!
 - ⇒ Das ist ein Täuschungsversuch
 - ⇒ Beide Abgaben gelten als nicht bearbeitet, da generell der/die Originalautor/in nicht ermittelbar ist.
- Wiederholungsfall => Nicht bestehen wegen Täuschung

Identische Abgabeteile

- Abgaben werden als identisch betrachtet, wenn sie sich, u.a. nur in den
 - Variablennamen
 - Kommentaren
 - Einrückungen

unterscheiden.

Hinweis: Wir benutzen Plagiatcheckertools! Zusammen mit manueller Überprüfung

Acknowledgement

- □ Dank an:
 - > Randal E. Bryant und David R. Hallaron, CMU
 - > Christian Sohler, TU Dortmund

Literatur – Beispiele

- - > Kernighan, Programmieren in C, 1990
- Algorithmen und Datenstrukturen
 - ➤ Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C.: Introduction to Algorithms, 3. Aufl. MIT Press Cambridge, 2009
 - Sedgewick, R.: Algorithms in C, Addison-Wesley, 2005
 - Goodrich, M. Tamassia, R.: Data Structures and Algorithms in C++, John Wiley
- Systemsoftware
 - Randal E. Bryant, David R. Hallaron "Computer Systems: A Programmer's Perspective", Prentice Hall