Test without Fault Model

- Introduction
- Boolean Tests without Fault Model
 - Toggle Test
 - Design Verification
 - Exhaustive Test
 - Pseudo Exhaustive Test (PET)
 - Individual Output Verification
 - Dependence Matrix
 - Minimum IOV test
 - Segment Verification
- Conclusions

Examples in this PPT are courtesy of McCluskey's lecture note at Stanford U.

Exhaustive Test

- Apply all possible input combination
 - Combinational circuits with n inputs
 - * Test length = 2^n
- Advantages of Exhaustive Test
 - No ATPG required
 - No fault simulation
 - Suitable for BIST (no storage needed)
 - Very high fault coverage
- Disadvantages
 - Long test length

But... Really Need 2ⁿ Patterns?

Pseudo Exhaustive Test (PET) [McCluskey 84]

- Idea
 - Do not need exhaustive test for whole circuit
 - Test each circuit partition exhaustively
- Two categories:
 - 1. Individual Output Verification (IOV)
 - Exhaustive test of each output
 - * This video

- 2. Segment Verification
 - Exhaustive test of each segment
 - * Next video

IOV Test, Circuit Classification

- Full Dependence Circuit FDC
 - Some Outputs Depend on All Inputs
 - IOV not effective
 - Exhaustive test length: 2ⁿ
 - * IOV test length: 2ⁿ

- Partial Dependence Circuit PDC
 - No output depends on all inputs
 - IOV effectively reduce test length

$$* 2^{n1+n2} >> (2^{n1} + 2^{n2})$$

IOV Test is Useful to PDC, not FDC

FDC Example - 74181 ALU

- 4-bit arithmetic logic unit (ALU)
 - First ALU on single chip
 - Used as arithmetic/logic core in CPUs of many historically significant mini-computers
- 14 inputs, 8 outputs
 - Some outputs depend on all inputs
 - ◆ IOV =2¹⁴=exhaustive

IOV not Useful to FDC

PDC Example – 74LS630

- 16-BIT parallel error detection and correction IC
- 24 inputs, 6 outputs
 - Each output depends on 10 inputs
 - Exhaustive test = 2²⁴
 - IOV test = 6 x 2¹⁰

Can Do Better than 6x2¹⁰?

We Can Share Test Signals!

- Share test signals to test each output simultaneously can further reduce TL
- If cones do NOT overlap
 - Can arbitrarily share test signals with inputs of different output
 - TL = $2^{n1} + 2^{n2} \rightarrow 2^{max(n1,n2)}$
 - * e.g. $n_1=2$, $n_2=3$; TL= 2^3
- If cones overlap
 - CANNOT share test signals with inputs of same output

Cannot Share Inputs of Same Cone

Test without Fault Model

- Introduction
- Boolean Tests without Fault Model
 - Toggle Test
 - Design Verification
 - Exhaustive Test
 - Pseudo Exhaustive Test (PET)
 - Individual Output Verification
 - Dependence Matrix
 - Minimum IOV test
 - Segment Verification
- Conclusions

How Many Test Signals We Can Share?

McCluskey and his collection of hats

Dependence Matrix

- Dependence matrix
 - Each row is an output; each column is an input
 - D_{ii} = 1 iff output i depends on input j
 - Row weight = sum of each row
 - Max Row Weight = w = Max number of inputs to an output
- Example
 - w=2

	I	Inp	uts		
Outputs	v	X	у	Z	Row weight
f (v, x)	1	1	0	0	2
g (x, y)	0	1	1	0	2
h (v, z)	1	0	0	1	2

Max row weight =2=w

Partitioned Dependence Matrix

- Partitioned dependence matrix
 - Each row of a partition has at most one 1 entry
 - Do not share test signals with inputs of same output
 - Number of partitions = p = Number of test signals needed
- Example

• p=3

		ņρι	ļts	
Outputs	٧	X	У	Z
f (v, x)	1	1	0	0
g (x, y)	0	1	1	0
h (v, z)	1	0	0	1

• p=2

		Inp	ụts	
Outputs	٧	у	Х	z
f (v, x)	1	0	1	0
g (x, y)	0	1	1	0
h (v, z)	1	0	0	1

 $p \ge w$, Why?

PDM is not unique. Smaller p is preferred

Minimum Test Length =?

- Example: *p*=2; *w*=2
 - Number of test signals required = p = 2
 - Shortest test length = 2^w =4
 - Each output is exhaustively tested

		Inpu	ļts	
Outputs	٧	у	X	Z
f (v, x)	1	0	1	0
g (x, y)	0	1	1	0
h (v, z)	1	0	0	1

DM of 74LS630

- 74LS630
 - 24 inputs, 6 outputs, *w*=10

																	i.							
	ı						D	AT	Ά	Βľ	TS						CI	HE	Ck	В	ITS	3		
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	0	1	2	3	4	5	S0.S1	
SB0	1	1	0	1	1	0	0	0	1	1	1	0	0	1	0	0	1	0	0	0	0	0	1	
SB1	1	0	1	1	0	1	1	0	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	
SB2	0	1	1	0	1	1	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	
SB3	1	1	1	0	0	0	1	1	0	0	1	1	1	0	0	0	0	0	0	1	0	0	1	
SB4	0	0	0	1	1	1	1	1	0	0	0	0	0	1	1	1	0	0	0	0	1	0	1	
SB5	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	1	1	
																								<u>L</u>

PDM of 74LS630

- *p=w*=10
- Minimum 10 test signals required
- Minimum test length = $6x2^{10} \rightarrow 2^{10}$

																							_	_
			D	ATA	В	ITS											CHECK BITS				S0			
	0	15	1	14	3	12	4	11	8	7	9	6	10	5	13	2	0	1	2	3	4	5	.S1	
SB0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	0	0	0	0	1	
SB1	1	0	0	1	1	0	0	1	1	0	0	1	0	1	0	1	0	1	0	0	0	0	1	
SB2	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	1	0	0	1	0	0	0	1	
SB3	1	0	1	0	0	1	0	1	0	1	0	1	1	0	0	1	0	0	0	1	0	0	1	
SB4	0	1	0	1	1	0	1	0	0	1	0	1	0	1	1	0	0	0	0	0	1	0	1	
SB5	0	1	0	1	0	1	0	1	1	0	1	0	1	0	1	0	0	0	0	0	0	1	1	
							<u> </u>	r	<u> </u>	10	\ <u>\</u>		<u> </u>											ļ

$$p = 10, w = 10$$

Quiz

Q: Find the partitioned dependence matrix for this circuit. p=? w=?

	W	X	Y	Z	J	٧	Row Weight
F1							
F2							

Test without Fault Model

- Introduction
- Boolean Tests without Fault Model
 - Toggle Test
 - Design Verification
 - Exhaustive Test
 - Pseudo Exhaustive Test (PET)
 - Individual Output Verification
 - Dependence Matrix
 - Minimum IOV Test
 - Segment Verification
- Conclusions

Now We Have *p* & *w*, What is Mini IOV Test?

McCluskey and his collection of hats

Minimum IOV Test Length

- Minimum IOV test length must ≥ 2^w
 - why?

- Three cases:
 - $\bigcirc p = w$
 - Minimum IOV test length = 2^w always possible
 - - * Minimum IOV test length = 2^w always possible
 - - * Minimum IOV test length ≥ 2^w
 - * 2^w may or may not achievable

Mini IOV TL Has 3 Cases

① Example: p=w

- Example: p=2, w=2
 - Minimum IOV test length = 2^w = 2² =4

DP(N)										
Inputs										
Outputs	V	У	X	Z						
f (v, x)	1	0	1	0						
g (x, y)	0	1	1	0						
h (v, z)	1	0	0	1						

① Minimum IOV TL = 2^w

② Example: *p*=*w*+1

- Given w test signals $t_1, t_2, ..., t_w$
 - XOR them to generate $t_{w+1} = t_1 \oplus t_2 \oplus \dots t_w$
- Example: p = 3, w = 2
 - \star $z = x \oplus y$
 - Any pair is exhaustive: (x,y) (y,z) (x,z). This is orthogonal array

dependency matrix

	x	У	z
f1	1	1	0
f2	0	1	1
f3	1	0	1

IOV Test Patterns

X	у	z=x⊕y
0	0	0
1	1	0
0	1	1
1	0	1

② Minimum IOV TL = 2^w

Orthogonal Array [Rao 1946]

- Entries are a finite symbol set, like {0,1}
- For every selection of p columns
 - All ordered w-tuples of symbols appear same number of times
 - w is called strength of orthogonal array
- Example: OA with symbol set {1,0}, strength w=2
 - (0,0)(1,0)(0,1)(1,1) appear exactly once for every 2 columns
 - OA is NOT unique

X	у	z
0	0	0
1	1	0
0	1	1
1	0	1

x	У	z
1	1	1
1	0	0
0	1	0
0	0	1

OA Provides IOV Test for p=w+1

③ Example: p>w+1

- Example: p=4, w=2
 - Minimum IOV test length = row = 5 > 2^w

How to Find IOV Test for Given p>w+1?

Universal IOV Test Table [McCluskey 84]

- This table provides general solution for p > w+1
- U[i,j] represents p-column matrix with
 - all possible weight i and all possible weight j rows

W	U[i, j]		Range	Number of Tests
2	U[0, p-1]	U[1, p]	p > 3	p+1
3	U[1, p-1]		p > 4	2p
4	U[1, p-2]	U[2, p-1]	p > 5	p(p+1)/2
5	U[2, p-2]		p > 6	p(p-1)
6	U[2, p-3]	U[3, p-2]	p > 8	B(p+1, 3)
6	U[1, 4, 7]		p = 8	p(p+1)/2
7	U[3, p-3]		p > 9	2 B(p, 3)
7	U[0, 3, 6, 9]		p = 9	170
8	U[3, p-4]	U[4, p-3]	p > 11	B(p+1, 4)
8	U[0, 3, 6, 9]	U[1, 4, 7, 10]	p = 10	341
8	U[0, 4, 8]	U[3, 7, 9]	p = 11	496
9	U[4, p-4]		p > 12	2 B(p, 4)
9	U[1, 4, 7, 10]		p = 11	682
9	U[0, 4, 8, 12]		p = 12	992
10	U[4, p-5]	U[5, p-4]	p > 14	B(p+1, 5)
10	U[1, 4, 7, 10]	U[2, 5, 8, 11]	p = 12	1365
10	U[0, 4, 8, 12]	U[1, 5, 9, 13]	p = 13	2016
10	U[0, 5, 10]	U[4, 9, 14]	p = 14	3004

B(*i*,*j*) is binomial coefficient, *i* things taken *j*

Example: *p*=4, *w*=2

W	U[i, j]		Range	Number of Tests
2	U[0, p-1]	U[1, p]	p > 3	p+1
3	U[1, p-1]		p > 4	2p
4	U[1, p-2]	U[2, p-1]	p > 5	p(p+1)/2
5	U[2, p-2]		p > 6	p(p-1)
6	U[2, p-3]	U[3, p-2]	p > 8	B(p+1, 3)
6	U[1, 4, 7]		p = 8	p(p+1)/2
7	U[3, p-3]		p > 9	2 B(p, 3)
7	U[0, 3, 6, 9]		p = 9	170
8	U[3, p-4]	U[4, p-3]	p > 11	B(p+1, 4)
8	U[0, 3, 6, 9]	U[1, 4, 7, 10]	p = 10	341
8	U[0, 4, 8]	U[3, 7, 9]	p = 11	496
9	U[4, p-4]		p > 12	2 B(p, 4)
9	U[1, 4, 7, 10]		p = 11	682
9	U[0, 4, 8, 12]		p = 12	992
10	U[4, p-5]	U[5, p-4]	p > 14	B(p+1, 5)
10	U[1, 4, 7, 10]	U[2, 5, 8, 11]	p = 12	1365
10	U[0, 4, 8, 12]	U[1, 5, 9, 13]	p = 13	2016
10	U[0, 5, 10]	U[4, 9, 14]	p = 14	3004

- Choice 1
- U[0, p-1]=U[0,3]

t ₁	t ₂	t ₃	t ₄	
0	0	0	0	← RW=0
1	1	1	0	
0	1	1	1	DW 0
1	1	0	1	⊢ RW=3
1	0	1	1	

- Choice 2
- U[1, p]=U[1,4]

③ Example: p > w + 1

- Universal IOV table may NOT be optimal solution
 - Sometimes, we can do better than universal IOV
- Example: p=5, w=3
 - Minimum IOV TL = 8 = 2^w < 2p</p>

	Dependence Matrix		
f ₁ (uvx) f ₂ (uvy) f ₃ (uxz) f ₄ (uyz) f ₅ (vxy) f ₆ (vxz)	uvXYz 11100 11010 10101 10011 01101		
	01101 01011 00111		

W	U[i, j]		Range	Number of Tests
2	U[0, p-1]	U[1, p]	p > 3	p+1
3	U[1, p-1]		p > 4	2p
4	U[1, p-2]	U[2, p-1]	p > 5	p(p+1)/2
5	U[2, p-2]		p > 6	p(p-1)
6	U[2, p-3]	U[3, p-2]	p > 8	B(p+1, 3)
6	U[1, 4, 7]		p = 8	p(p+1)/2

Mini I	Mini IOV Test		
Test Patterns	uvXYz 10000 00011 00101 10110 11001 01010 01110		

Quiz

Q1: (Cont'd) p=5 w=5. Which case is this?

Q2: What is minimum IOV test length?

Can We Do Better? See Next Video

Summary

- Individual Output Verification (IOV)
 - Test every output exhaustively
- Q1: How many test signals?
 - Partitioned dependence matrix
 - w = max row weight
 - p = partition
- Q2: What is minimum IOV TL?
 - p = w: $TL = 2^w$
 - p = w + 1: $TL = 2^w$
 - Orthogonal Array
 - $p > w + 1:TL \ge 2^w$
 - Universal IOV test table

McCluskey and his collection of hats

FFT

• Q: $p \ge w$, why?

Three cases:

- p = w
 - * Minimum IOV test length = 2^w
- p = w + 1
 - * Minimum IOV test length = 2^w
- p > w + 1
 - * Minimum IOV test length ≥ 2^w

Orthogonal Array [Rao 1946]

- N x k array
- Entries are a finite symbol set, {1,2,...,s}
- For every selection of t columns
 - All t-tuples of symbols (st) appear same number of times
 - t is called strength of orthogonal array
- Example: OA with symbol set {1,0}, strength =2
 - N=4, k=3, s=2, t =2
 - (0,0)(1,0)(0,1)(1,1) appear exactly once for every 2 columns

1	1	1
0	0	1
1	0	0
0	1	0

Individual Output Verification

Apply all possible input combination to each individual output

Reduce test length

Exhaustive test length: 2ⁿ¹⁺ⁿ²

• IOV test length: 2ⁿ¹ + 2 ⁿ²

