Введение в Kerberos

Аутентификация — это процесс подтверждения личности. Люди могут легко различать друг друга через различные физические характеристики и поведенческие особенности, но для компьютеров этот процесс требует использования формальных методов. В современном мире наиболее распространённым методом аутентификации для компьютеров являются пароли, которые представляют собой "разделённые секреты". Однако такой подход имеет два ключевых недостатка.

Проблема с человеческим фактором

Людям сложно запоминать сложные и безопасные пароли. Они стремятся использовать упрощённые варианты, такие как простые слова или легко предсказуемые данные (имя, дата рождения и т.п.), что делает их уязвимыми для атак. Более того, с ростом числа сервисов и систем, требующих разные пароли, пользователи либо используют одинаковые пароли, либо снижают их сложность, что значительно увеличивает риск компрометации.

Техническая проблема

Когда пароль вводится в систему, он должен быть передан по сети для проверки на сервере. В большинстве случаев пароли передаются в открытом виде (без шифрования), что делает их доступными для перехвата в сетях, особенно в многопользовательских или общих сетевых средах. Передача пароля в открытом виде по сути аналогична тому, как если бы пользователь громко объявил свой пароль в комнате, полной людей.

Решение от Kerberos

Кегbегоз был разработан для решения этих проблем. Система позволяет пользователю запоминать один пароль, который обеспечивает доступ ко всей сети. Кегbегоз использует шифрование и механизмы обеспечения целостности сообщений, что защищает данные аутентификации при передаче по сети. Таким образом, Kerberos не только снижает количество паролей, которые пользователь должен помнить, но и предотвращает утечки конфиденциальной информации, решая проблему передачи паролей в незашифрованном виде.

Заключение

Kerberos становится важной частью общей стратегии сетевой безопасности, обеспечивая надёжную аутентификацию и защиту как для конечных пользователей, так и для администраторов. # Определение Kerberos

Полное определение того, что предоставляет Kerberos, — это безопасная, единая аутентификация с доверием третьей стороны, основанная на взаимной

аутентификации.

Безопасность

Kerberos безопасен, поскольку никогда не передаёт пароли по сети в открытом виде. Уникальность Kerberos заключается в его использовании билетов — временных криптографических сообщений, которые подтверждают личность пользователя на определённом сервере без передачи паролей по сети или кэширования паролей на локальном жёстком диске пользователя.

Единая аутентификация

Единая аутентификация означает, что конечным пользователям нужно войти в систему только один раз для доступа ко всем сетевым ресурсам, которые поддерживают Kerberos. После того как пользователь аутентифицируется в Kerberos в начале своей сессии, его учётные данные автоматически передаются ко всем остальным ресурсам, к которым он обращается в течение дня.

Доверенная третья сторона

Доверенная третья сторона относится к тому, что Kerberos работает через централизованный сервер аутентификации, которому все системы в сети по умолчанию доверяют. Все запросы на аутентификацию направляются через централизованный сервер Kerberos.

Взаимная аутентификация

Взаимная аутентификация обеспечивает не только то, что человек за клавиатурой — это именно тот, за кого он себя выдаёт, но и подтверждает, что сервер, с которым он взаимодействует, — это именно тот, за кого он себя выдаёт. Взаимная аутентификация защищает конфиденциальность чувствительной информации, гарантируя, что служба, с которой общается пользователь, является подлинной.

Эти три концепции описывают основы службы сетевой аутентификации Kerberos. В следующей главе мы более подробно рассмотрим эти концепции и связанную с ними терминологию.

История Kerberos

Эволюция

Современный протокол Kerberos прошел через несколько значительных изменений с момента своего первоначального создания в рамках проекта Athena. Каждая новая версия приносила улучшения в удобстве использования, расширяемости и безопасности.

Paнние версии Kerberos (v1, v2, v3)

Первые версии Kerberos (до версии 4) разрабатывались и использовались в МІТ исключительно для тестирования. Эти реализации имели серьезные ограничения и служили лишь для исследования новых концепций и выявления практических проблем, возникающих в процессе разработки и тестирования.

Kerberos 4

Первая версия Kerberos, которая была выпущена за пределы МІТ, называется Kerberos 4. Она стала доступна для общественности 24 января 1989 года и была принята несколькими производителями, которые внедрили ее в свои операционные системы. Кроме того, крупные распределенные программные проекты, такие как Andrew File System, переняли идеи Kerberos 4 для своих собственных механизмов аутентификации.

Основы протокола Kerberos 4 были описаны в Техническом плане Athena, а детали протокола были зафиксированы в исходном коде эталонной реализации, опубликованной MIT.

Однако, из-за ограничений на экспорт шифровального программного обеспечения, установленных правительством США, Kerberos 4 не мог быть экспортирован за пределы страны. Поскольку Kerberos 4 использует шифрование DES, организации за пределами США не могли легально скачать это программное обеспечение в его первоначальном виде.

В ответ команда МІТ убрала весь код шифрования из Kerberos 4, создав специализированную версию, которая могла быть экспортирована. Эррол Янг из Университета Бонда в Австралии адаптировал эту облегчённую версию Kerberos 4 и добавил свою собственную реализацию DES, получившую название "eBones". Поскольку eBones включал шифровальное программное обеспечение, разработанное вне США, он не подпадал под ограничения на экспорт и мог использоваться легально по всему миру.

На сегодняшний день несколько реализаций Kerberos 4 все еще существуют. Оригинальная реализация от МІТ находится в режиме обслуживания и считается "мертвой". Распределение kth-krb, разработанное в Швеции, по-прежнему активно разрабатывается, но для новых установок рекомендуется использовать более современную версию Kerberos 5.

Kerberos 5

Kerberos 5 был разработан для внедрения новых функций и повышения безопасности, отсутствовавших в версии 4 протокола. Это последняя версия протокола Kerberos, которая задокументирована в RFC 1510.

Основные компоненты Kerberos

1. KDC (Key Distribution Center)

KDC, или Центр Распределения Ключей, является одним из ключевых компонентов системы Kerberos и выполняет две основные функции: аутентификация пользователей и распределение сеансовых ключей. KDC состоит из двух основных частей:

- Аутентификационный сервер (AS): Этот компонент отвечает за проверку личности пользователей. Когда пользователь пытается получить доступ к сети, он отправляет запрос на аутентификацию в AS. После проверки его учетных данных (обычно это пароль) AS выдает пользователю Ticket Granting Ticket (TGT). ТGT используется для получения дополнительных билетиков на доступ к сервисам.
- Сервер выдачи билетиков (TGS): TGS отвечает за выдачу билетиков на доступ к конкретным сервисам в сети. Когда пользователь хочет подключиться к какому-либо сервису, он использует TGT, чтобы запросить билет для этого сервиса. TGS проверяет действительность TGT и, если все в порядке, выдает билет на доступ к запрашиваемому сервису.

КDС хранит базу данных учетных записей пользователей и сервисов, а также связанные с ними ключи шифрования. Централизованное управление аутентификацией упрощает администрирование и повышает безопасность, так как ключи хранятся в одном месте и защищены от несанкционированного доступа.