# Metaheurísticas (Curso 2021-2022)

# Grado en Ingeniería Informática Universidad de Granada



Práctica 1: Técnicas de Búsqueda Local y Algoritmos Greedy

Problema a: Mínima Dispersión Diferencial

Pedro Bedmar López - 75935296Z pedrobedmar@correo.ugr.es

Grupo de prácticas 3 - Martes 17:30-19:30

# Índice

| Ι                  | Formulación del problema                               | 3  |
|--------------------|--------------------------------------------------------|----|
| II                 | Descripción de la aplicación de los algoritmos         | 4  |
| 1. I               | Datos utilizados                                       | 4  |
| 2. I               | Representación de soluciones                           | 4  |
| 3. I               | Función objetivo                                       | 5  |
| III                | Pseudocódigo de los algoritmos                         | 6  |
| <b>4.</b> <i>A</i> | Algoritmo Greedy                                       | 6  |
| <b>5</b> . A       | Algoritmo Búsqueda Local                               | 8  |
| IV                 | Procedimiento considerado para desarrollar la práctica | 10 |
| $\mathbf{V}$       | Experimentos y análisis de resultados                  | 11 |
| <b>6.</b> A        | Algoritmo Greedy                                       | 11 |
| 7. /               | Algoritmo Búsqueda Local                               | 13 |

### Parte I

# Formulación del problema

Sea G = (V, E) un grafo completo no dirigido donde V, de tamaño n, es el conjunto de vértices que lo forman y E es el conjunto de las aristas que unen estos vértices. Este grafo es un grafo ponderado, ya que cada una de las aristas  $e_{u,v} \in E$  lleva asociada un peso que representa la distancia  $d_{u,v}$  entre dos vértices  $u, v \in V$ .

La dispersión es una medida que se puede aplicar en este dominio, donde dado un subconjunto  $S \subset V$  de tamaño m se mide cómo de homogéneas son las distancias entre los vértices que forman S. Una de las aplicaciones más importantes de las Ciencias de la Computación consiste en optimizar valores como éste, maximizando o minimizando el resultado que devuelve una **función objetivo**.

En esta práctica queremos minimizar su valor, obteniendo la mínima dispersión. Este problema tiene un gran paralelismo con problemas reales, como puede ser la organización del género en almacenes, donde minimizar la dispersión de la mercancía reduce los costes. Por tanto, si resolvemos este problema de forma teórica es trivial aplicar la solución en estos casos.

Anteriormente he definido la dispersión de una forma muy genérica, sin entrar en su formalización. Y es que se puede definir de diferentes formas, teniendo en cuenta la dispersión media de los elementos del conjunto S o utilizando los valores extremos (máximos y mínimos) en éste. Esta segunda opción se define formalmente como:

$$diff(S) = max_{i \in S} \{ \sum_{j \in S} d_{i,j} \} - min_{i \in S} \{ \sum_{j \in S} d_{i,j} \}$$

Utilizando esta definición de dispersión como función objetivo obtenemos lo que se conoce como **Problema de la Mínima Dispersión Diferencial (MDD)**, es decir:

$$S^* = argmin_{S \subset V} diff(S)$$

#### Parte II

# Descripción de la aplicación de los algoritmos

En esta primera práctica de la asignatura implementamos y comparamos el rendimiento de dos familias de algoritmos, **Greedy** y **Búsqueda Local primero el mejor**. Antes de describirlos, vamos a comentar información común a ambos.

#### 1. Datos utilizados

Los datos que necesitamos para analizar el comportamiento de los algoritmos en este problema no son muy complejos. En cada posible instancia se necesita conocer el valor n indicando el número de puntos que contiene el dataset, el valor m < n indicando cuantos puntos se quieren escoger de forma que se minimice la dispersión en esos m puntos y la matriz d con tamaño  $n \times n$ , simétrica y con valor 0 en su diagonal, que contiene las distancias entre cada uno de los n puntos del dataset. En definitiva, se necesita conocer el grafo G.

En total, en los experimentos utilizamos 50 instancias diferentes con datos extraídos del dataset **GKD**. Las instancias toman valores  $n \in \{25, 50, 100, 125, 150\}$  y  $m \in [2, 45]$ .

### 2. Representación de soluciones

El conjunto V descrito en la formulación del problema coincide con n en tamaño. S es una solución válida del problema si:

- $\bullet |S| = m$
- $S \subset V$

Y por tanto, m < n.

### 3. Función objetivo

Como hemos comentado al describir el problema, la función objetivo a minimizar se define como:

$$diff(S) = max_{i \in S} \{ \sum_{j \in S} d_{i,j} \} - min_{i \in S} \{ \sum_{j \in S} d_{i,j} \}$$

En pseudocódigo quedaría de la siguiente forma:

#### Algorithm 1 Función objetivo

```
max \leftarrow -\infty
min \leftarrow \infty

for s \in S do

distance \leftarrow \sum_{s2 \in S} d_{s,s2}
if distance > max then

max \leftarrow distance
end if
if distance < min then

min \leftarrow distance
end if
end for
return max - min
```

En los algoritmos que aparecen en esta práctica, no se utiliza directamente esta implementación de la función objetivo (excepto para inicializar la Búsqueda Local). Esto se debe a que es costosa, en concreto tiene una complejidad computacional de  $O(n^2)$ . Utilizamos versiones factorizadas de la función, que reutilizan cálculos previos de iteraciones anteriores para actualizar el valor de la dispersión. De esta forma, obtenemos una complejidad de O(n).

### Parte III

# Pseudocódigo de los algoritmos

### 4. Algoritmo Greedy

El primer algoritmo que implementamos para resolver el problema utiliza una estrategia Greedy, donde partiendo de una solución incompleta S con sólo dos vértices  $v_1, v_2 \in V$  elegidos aleatoriamente, llegamos a una solución completa añadiendo un nuevo vértice en cada iteración. En concreto, se añade el vértice que minimiza la dispersión con respecto a los ya existentes.

#### Algorithm 2 Algoritmo Greedy

```
1: s_1, s_2 \leftarrow \text{Rand}(V)
                                               ▷ Rand() devuelve dos vértices aleatorios de V
 2: S \leftarrow \{s_1, s_2\}
 3: \ U \leftarrow V \setminus \{s_1, s_2\}
 4:
 5: sum \leftarrow []
                                                 ▶ Array que contiene la distancia acumulada,
 6: for u \in U do
                                      ▷ necesario para la factorización de la función objetivo
        for s \in S do
 7:
            sum[u] += d_{u,s}
 8:
        end for
 9:
10: end for
11: for s \in S do
        for s2 \in S do
12:
            sum[s] += d_{s,s2}
13:
        end for
14:
15: end for
```

```
16: while |S| < m do
                                                    \triangleright Donde m es el tamaño que debe tener la solución
17:
          g_{min} \leftarrow \infty
          u\_g_{min} \leftarrow -1
18:
19:
          for u \in U do
20:
                \delta(v)_{max} \leftarrow -\infty
21:
               \delta(v)_{min} \leftarrow \infty
22:
23:
                for v \in S do
24:
                    \delta(v) \leftarrow sum[v] + d_{u,v}
25:
                     if \delta(v)_{max} < \delta(v) then
26:
                          \delta(v)_{max} \leftarrow \delta(v)
27:
                     end if
28:
                    if \delta(v)_{min} > \delta(v) then
29:
                          \delta(v)_{min} \leftarrow \delta(v)
30:
                     end if
31:
32:
                     \delta(u)_{max} \leftarrow max(sum[u], \delta(v)_{max})
33:
                    \delta(u)_{min} \leftarrow min(sum[u], \delta(v)_{min})
34:
                     g = \delta(u)_{max} - \delta(u)_{min}
35:
                    if g_{min} > g then
36:
37:
                          g_{min} \leftarrow g
                          u\_g_{min} \leftarrow -1
38:
                     end if
39:
                end for
40:
41:
               U \leftarrow U \setminus \{u\_g_{min}\}
42:
                S \leftarrow S + \{u\_g_{min}\}
43:
          end for
44:
45:
          for v \in V do
46:
               sum[v] \mathrel{+}= d_{v,u\_g_{min}}
47:
          end for
48:
49: end while
51: return S
```

# 5. Algoritmo Búsqueda Local

En esta segunda implementación utilizamos una búsqueda local. Para ello, se genera una solución inicial aleatoria (y válida) y se va explorando su entorno. Cuando se encuentra un vecino que reduce la dispersión, se actualiza como nueva solución. Así se procede hasta haber recorrido todo el vecindario sin encontrar una solución mejor o hasta llegar a las 100000 evaluaciones de la función objetivo. Cada vez que se reinicia la exploración del vecindario, se barajan el vector que contiene la solución y el que contiene los vértices que no pertenecen a esta, para asegurar que el orden en el que se visitan los nodos no es determinístico.

#### Algorithm 3 Algoritmo Búsqueda Local primero el mejor

```
1: U \leftarrow V
 2: U \leftarrow \text{Shuffle}(U)
 3: S \leftarrow []
 4: sum \leftarrow []
 6: for i = 0 to m - 1 do
         element \leftarrow U.last
 7:
         U \leftarrow U - \{element\}
         S \leftarrow S + \{element\}
 9:
10: end for
11:
12: S_{best} \leftarrow S
13: current\_cost \leftarrow dispersion(S)
14: best cost \leftarrow current cost
15:
16: eval \leftarrow 0
17: better solution \leftarrow true
18:
    while eval < 100000 and better solution do
19:
20:
         better\_solution \leftarrow false
21:
         for u \in S and while !better solution and eval < 100000 do
22:
             for v \in U and while !better_solution and eval < 100000 do
23:
                  eval \leftarrow eval + 1
24:
                  \delta \leftarrow []
                                                                               25:
                  \delta(w)_{max} \leftarrow -\infty
26:
                  \delta(w)_{min} \leftarrow \infty
27:
28:
```

```
for w \in S do
29:
                        if w! = u then
30:
                             \delta[w] \leftarrow sum[w] - d_{w,u} + d_{w,v}
31:
32:
                             \delta[v] += d_{w,v}
33:
                             if \delta[w] > \delta(w)_{max} then
34:
                                  \delta(w)_{max} \leftarrow \delta[w]
35:
                             end if
36:
                             if \delta[w] < \delta(w)_{min} then
37:
                                  \delta(w)_{min} \leftarrow \delta[w]
38:
                             end if
39:
                         end if
40:
                   end for
41:
42:
                   \delta_{max} \leftarrow max(\delta[v], \delta(w)_{max})
43:
                   \delta_{min} \leftarrow min(\delta[v], \delta(w)_{min})
44:
45:
                   new\_cost \leftarrow \delta_{max} - \delta_{min}
                   \mathbf{if} \ new\_cost < current\_cost \ \mathbf{then}
46:
                         best\_cost \leftarrow new\_cost
47:
                        current \ cost \leftarrow new \ cost
48:
49:
                                                                                 \triangleright intercambio u y v en S y U
                         swap \leftarrow u
50:
                         u \leftarrow v
51:
52:
                         v \leftarrow swap
53:
                         better\_solution = true
                         best \quad solution = S
54:
                    end if
55:
56:
               end for
57:
          end for
58:
59:
          shuffle(S)
60:
          shuffle(U)
61:
62: end while
63:
64: return S
```

### Parte IV

# Procedimiento considerado para desarrollar la práctica

La implementación de los algoritmos ha sido realizada en C++, concretamente en su versión de 2017. Para ello, hemos creado un proyecto con la siguiente estructura:

| BINarchivos ejecutable                                           |
|------------------------------------------------------------------|
| practica1                                                        |
| data ficheros .txt con los datos de entrac                       |
| data_index.txtíndice con los nombres de los archivos de date     |
|                                                                  |
| doc                                                              |
| FUENTES                                                          |
| DataLoader.cppclase encargada de cargar los datos de los fichere |
| DataLoader.h                                                     |
| functions.cpp funciones auxiliar                                 |
| functions.h                                                      |
| GreedyAlgorithm.cpp implementación del algoritmo Greed           |
| GreedyAlgorithm.h                                                |
| LocalSearchAlgorithm.cppimplementación del algoritmo B           |
| LocalSearchAlgorithm.h                                           |
| ∟ practica1.cpparchivo desde donde se inicia la ejecució         |
| objficheros obje                                                 |
| makefile                                                         |
| LEEME                                                            |

Se ha partido desde cero, sin utilizar ningún framework de metaheurísticas ni librería adicional a las que vienen incluídas en el propio C++. Para la generación de números aleatorios, se utiliza la librería < random > incluida en el lenguaje. La semilla utilizada en los experimentos es el número 1. El equipo donde se han realizado las pruebas es un MacBook Pro de 15 pulgadas del año 2015, con CPU Intel Core i7 2.5 GHz I7-4870HQ y 16 GB de RAM. Utiliza el sistema operativo macOS Big Sur 11.6.1.

Para ejecutar el código, nos situamos en la raíz del proyecto y ejecutamos make en la terminal. A continuación, ejecutamos:

```
./bin/practica1 <semilla> <algoritmo> <fichero_datos>
Donde <algoritmo> puede tomar como valor g (Greedy) o b (Búsqueda Local).
Ejemplo: ./bin/practica1 1 g data/GKD-b_50_n150_m45.txt
```

#### Parte V

# Experimentos y análisis de resultados

Para comprobar el funcionamiento de los algoritmos, realizamos experimentos de ejecución. Nuestros algoritmos son probabilísticos, ya que la aleatoriedad está presente en ellos. Por tanto, para que los resultados sean reproducibles es necesario fijar una semilla. Como mencionamos en el apartado anterior, fijamos su valor en 1.

Vamos a ejecutar el algoritmo con los 50 casos que tenemos, y cada caso 5 veces para promediar los resultados de tiempo de ejecución y coste. La semilla se volverá a fijar al ejecutar cada caso, pero no entre ejecuciones sobre el mismo conjunto de datos.

### 6. Algoritmo Greedy

Con este algoritmo se observan unos tiempos de ejecución bajos, ya que la solución se construye progresivamente, y una vez elegido un elemento no se vuelve atrás. Los costes obtenidos no son demasiado cercanos a los óptimos y por tanto su desviación es bastante alta.

También se puede observar cómo el peor y mejor coste entre ejecuciones varía en gran medida. Esto se debe a que el algoritmo se encuentra influenciado por los dos elementos aleatorios elegidos al inicio de la ejecución.

Como desviación y tiempo de ejecución medio entre todos los casos encontramos:

| Media Desv:   | 66.71    |  |  |
|---------------|----------|--|--|
| Media Tiempo: | 6.84E-05 |  |  |

Lo cuál es un valor de desviación bastante elevado. Como ventajas de este algoritmo, podemos destacar su bajo tiempo de ejecución. Aún así, el criterio heurístico que utiliza para elegir los candidatos no es bastante bueno en este problema.

| Algoritmo Greedy  |             |       |          |            |             |                  |  |
|-------------------|-------------|-------|----------|------------|-------------|------------------|--|
| Caso              | Coste medio | Desv  | Tiempo   | Peor coste | Mejor coste | Coste            |  |
|                   | obtenido    |       |          | obtenido   | obtenido    | óptimo           |  |
| GKD-b_1_n25_m2    | 0.0000      | 0.00  | 7.00E-06 | 0.0000     | 0.0000      | 0                |  |
| GKD-b_2_n25_m2    | 0.0000      | 0.00  | 6.00E-06 | 0.0000     | 0.0000      | 0                |  |
| GKD-b_3_n25_m2    | 0.0000      | 0.00  | 4.00E-06 | 0.0000     | 0.0000      | 0                |  |
| GKD-b_4_n25_m2    | 0.0000      | 0.00  | 7.00E-06 | 0.0000     | 0.0000      | 0                |  |
| GKD-b_5_n25_m2    | 0.0000      | 0.00  | 6.00E-06 | 0.0000     | 0.0000      | 0                |  |
| GKD-b 6 n25 m7    | 66.8184     | 80.97 | 1.00E-05 | 42.8698    | 91.3110     | 13               |  |
| GKD-b_7_n25_m7    | 61.5395     | 77.09 | 1.00E-05 | 29.2765    | 106.8920    | 14               |  |
| GKD-b_8_n25_m7    | 47.7101     | 64.87 | 1.10E-05 | 24.2035    | 61.4048     | 17               |  |
| GKD-b_9_n25_m7    | 56.4502     | 69.76 | 1.00E-05 | 28.6604    | 78.9821     | 17               |  |
| GKD-b_10_n25_m7   | 72.0830     | 67.72 | 1.10E-05 | 44.5938    | 121.6421    | 23               |  |
| GKD-b_11_n50_m5   | 22.4261     | 91.41 | 1.40E-05 | 10.7082    | 27.4908     |                  |  |
| GKD-b 12 n50 m5   | 35.0795     | 93.95 | 1.00E-05 | 16.4399    | 46.1466     | 2                |  |
| GKD-b_12_n50_m5   | 25.4011     | 90.70 | 8.00E-06 | 7.3063     | 32.7557     | 2                |  |
| GKD-b_13_n50_m5   | 27.2301     | 93.89 | 7.00E-06 | 12.8679    | 53.1448     | 2<br>2<br>2<br>2 |  |
| GKD-b_15_n50_m5   | 34.9795     | 91.84 | 8.00E-06 | 13.4118    | 60.1254     | 3                |  |
| GKD-b_16_n50_m15  | 186.2275    | 77.05 | 1.60E-05 | 139.2353   | 246.0371    | 43               |  |
| GKD-b_17_n50_m15  | 168.9353    | 71.52 | 1.60E-05 | 148.0619   | 195.2262    | 48               |  |
| GKD-b_18_n50_m15  | 133.2367    | 67.58 | 1.50E-05 | 93.0530    | 196.0516    | 43               |  |
| GKD-b_19_n50_m15  | 154.6660    | 69.99 | 1.50E-05 | 117.3899   | 188.4828    | 46               |  |
| GKD-b_20_n50_m15  | 195.3694    | 75.58 | 1.50E-05 | 130.9698   | 277.4382    | 48               |  |
| GKD-b_21_n100_m10 | 60.9593     | 77.31 | 2.10E-05 | 45.7342    | 81.9708     | 14               |  |
| GKD-b_22_n100_m10 | 70.8286     | 80.71 | 3.80E-05 | 47.9586    | 106.2160    | 14               |  |
| GKD-b_23_n100_m10 | 64.6286     | 76.26 | 3.60E-05 | 42.1474    | 88.5631     | 15               |  |
| GKD-b_24_n100_m10 | 53.7252     | 83.92 | 2.30E-05 | 44.4337    | 76.3345     | 9                |  |
| GKD-b_25_n100_m10 | 66.5061     | 74.14 | 2.20E-05 | 49.4304    | 98.4419     | 17               |  |
| GKD-b 26 n100 m30 | 405.3022    | 58.37 | 8.00E-05 | 298.4035   | 571.4217    | 169              |  |
| GKD-b 27_n100_m30 | 538.8505    | 76.41 | 1.16E-04 | 367.8878   | 719.2656    | 127              |  |
| GKD-b_28_n100_m30 | 434.2580    | 75.50 | 1.18E-04 | 288.0312   | 641.6096    | 106              |  |
| GKD-b_29_n100_m30 | 372.3980    | 63.09 | 1.00E-04 | 331.6536   | 406.6306    | 137              |  |
| GKD-b_30_n100_m30 | 398.3456    | 68.00 | 8.90E-05 | 298.7756   | 546.2969    | 127              |  |
| GKD-b_31_n125_m12 | 90.9331     | 87.08 | 5.00E-05 | 61.7402    | 120.4408    | 12               |  |
| GKD-b_32_n125_m12 | 115.6933    | 83.76 | 4.30E-05 | 72.9959    | 186.8720    | 19               |  |
| GKD-b_33_n125_m12 | 94.5057     | 80.39 | 5.60E-05 | 69.9862    | 143.3528    | 19               |  |
| GKD-b_34_n125_m12 | 110.8166    | 82.41 | 5.70E-05 | 64.7737    | 209.1679    | 19               |  |
| GKD-b_35_n125_m12 | 77.6650     | 76.68 | 4.40E-05 | 56.3537    | 109.9123    | 18               |  |
| GKD-b_36_n125_m37 | 571.5901    | 72.81 | 1.41E-04 | 431.7039   | 784.9058    | 155              |  |
| GKD-b_37_n125_m37 | 630.5293    | 68.46 | 1.66E-04 | 403.5947   | 853.7735    | 199              |  |
| GKD-b_38_n125_m37 | 492.7449    | 61.85 | 1.54E-04 | 350.9502   | 578.2679    | 188              |  |
| GKD-b_39_n125_m37 | 407.9256    | 58.67 | 1.41E-04 | 355.7441   | 487.7512    | 169              |  |
| GKD-b_40_n125_m37 | 454.0109    | 60.75 | 1.78E-04 | 408.5156   | 479.8117    | 178              |  |
| GKD-b_41_n150_m15 | 103.7056    | 77.49 | 5.10E-05 | 73.8288    | 175.8578    | 23               |  |
| GKD-b_42_n150_m15 | 141.9278    | 81.12 | 5.00E-05 | 135.4995   | 148.8573    | 27               |  |
| GKD-b_43_n150_m15 | 139.2934    | 80.79 | 4.90E-05 | 106.5678   | 174.6647    | 27               |  |
| GKD-b_44_n150_m15 | 140.8560    | 81.59 | 4.70E-05 | 77.1125    | 223.6438    | 26               |  |
| GKD-b_45_n150_m15 | 125.5488    | 77.88 | 5.10E-05 | 80.6669    | 173.7174    | 28               |  |
| GKD-b_46_n150_m45 | 650.1872    | 64.97 | 2.72E-04 | 416.0328   | 962.6625    | 228              |  |
| GKD-b_47_n150_m45 | 512.8350    | 55.42 | 2.70E-04 | 431.9668   | 668.6509    | 229              |  |
| GKD-b_48_n150_m45 | 632.2425    | 64.14 | 2.42E-04 | 503.0323   | 766.2350    | 227              |  |
| GKD-b_49_n150_m45 | 426.1721    | 46.87 | 2.55E-04 | 378.0599   | 478.7449    | 226              |  |
| GKD-b_50_n150_m45 | 551.5460    | 54.88 | 2.54E-04 | 388.4676   | 705.1301    | 249              |  |

# 7. Algoritmo Búsqueda Local

Utilizando esta técnica, los tiempos de ejecución aumentan con respecto a Greedy, aunque se siguen manteniendo en valores bajos. Los costes mejoran, aunque no en demasiada medida.

Ocurre la misma situación que en el otro algoritmo: los peores y mejores costes presentan gran variabilidad. En este caso, el no determinismo es incluso mayor que en Greedy, ya que se realiza un shuffle() cada vez que se encuentra una solución que mejora la actual y no se recorre todo el vecindario (ya que nos encontramos ante una búsqueda primero el mejor).

Como desviación y tiempo de ejecución medio entre todos los casos encontramos:

| Media Desv:   | 55.62    |  |  |
|---------------|----------|--|--|
| Media Tiempo: | 2.68E-02 |  |  |

Ninguno de los dos algoritmos que hemos estudiado se acerca demasiado a la solución óptima, ya que sus criterios heurísticos no son demasiado fuertes. En el caso de Greedy, una vez elegido un elemento no se puede volver atrás, y en el caso de la búsqueda local, sólo tenemos en cuenta los posibles cambios con el vecindario y no el resto.

Aún así, el hecho de poder utilizar factorización hace que los algoritmos presenten una baja complejidad y tiempos de ejecución, que con técnicas más avanzadas no se conseguirían.

| Algoritmo Búsqueda Local |                         |       |          |                        |                         |                 |
|--------------------------|-------------------------|-------|----------|------------------------|-------------------------|-----------------|
| Caso                     | Coste medio<br>obtenido | Desv  | Tiempo   | Peor coste<br>obtenido | Mejor coste<br>obtenido | Coste<br>óptimo |
| CKD h. 1. =35 ==3        | 0.0000                  | 0.00  | 1.58E-02 | 0.0000                 | 0.0000                  |                 |
| GKD-b_1_n25_m2           | 0.0000                  | 0.00  | 1.62E-02 | 0.0000                 | 0.0000                  | 0               |
| GKD-b_2_n25_m2           | 0.0000                  | 0.00  | 1.58E-02 | 0.0000                 | 0.0000                  | 0               |
| GKD-b_3_n25_m2           | 0.0000                  | 0.00  | 1.51E-02 | 0.0000                 | 0.0000                  | 0               |
| GKD-b_4_n25_m2           |                         |       |          |                        |                         | 0               |
| GKD-b_5_n25_m2           | 0.0000                  | 0.00  | 1.56E-02 | 0.0000                 | 0.0000                  | 0               |
| GKD-b_6_n25_m7           | 26.4899                 | 51.99 | 1.65E-02 | 15.2853                | 36.8636                 | 13              |
| GKD-b_7_n25_m7           | 29.5395                 | 52.27 | 1.33E-02 | 24.0961                | 35.7991                 | 14              |
| GKD-b_8_n25_m7           | 34.3999                 | 51.28 | 1.36E-02 | 24.9729                | 45.7449                 | 17              |
| GKD-b_9_n25_m7           | 39.7469                 | 57.06 | 1.35E-02 | 25.5400                | 51.9409                 | 17              |
| GKD-b_10_n25_m7          | 35.6030                 | 34.65 | 1.63E-02 | 30.2731                | 44.5938                 | 23              |
| GKD-b_11_n50_m5          | 16.0448                 | 88.00 | 2.22E-02 | 12.7062                | 19.2730                 | 2               |
| GKD-b_12_n50_m5          | 14.0267                 | 84.88 | 2.48E-02 | 7.0539                 | 18.2810                 | 2               |
| GKD-b_13_n50_m5          | 16.1494                 | 85.37 | 2.18E-02 | 13.2728                | 20.7124                 | 2               |
| GKD-b_14_n50_m5          | 11.0517                 | 84.95 | 3.00E-02 | 7.9148                 | 15.1537                 | 2               |
| GKD-b_15_n50_m5          | 16.2757                 | 82.47 | 2.87E-02 | 12.1132                | 22.7177                 | 3               |
| GKD-b_16_n50_m15         | 121.9782                | 64.96 | 4.24E-02 | 87.0772                | 159.1846                | 43              |
| GKD-b_17_n50_m15         | 109.6692                | 56.13 | 3.53E-02 | 83.2302                | 131.4499                | 48              |
| GKD-b_18_n50_m15         | 68.8174                 | 37.23 | 3.47E-02 | 57.3248                | 79.7628                 | 43              |
| GKD-b_19_n50_m15         | 143.7370                | 67.71 | 3.22E-02 | 92.7757                | 170.4828                | 46              |
| GKD-b_20_n50_m15         | 96.4486                 | 50.53 | 3.48E-02 | 85.1983                | 113.2540                | 48              |
| GKD-b_21_n100_m10        | 46.0147                 | 69.94 | 3.90E-02 | 30.2875                | 58.3638                 | 14              |
| GKD-b_22_n100_m10        | 42.0094                 | 67.47 | 3.19E-02 | 34.5064                | 49.2292                 | 14              |
| GKD-b_23_n100_m10        | 36.0227                 | 57.40 | 2.76E-02 | 25.7817                | 57.5326                 | 15              |
| GKD-b_24_n100_m10        | 37.7987                 | 77.14 | 2.82E-02 | 27.5898                | 51.9625                 | 9               |
| GKD-b_25_n100_m10        | 44.9021                 | 61.69 | 2.65E-02 | 27.6837                | 54.8968                 | 17              |
| GKD-b_26_n100_m30        | 387.6356                | 56.47 | 3.48E-02 | 280.4328               | 525.3839                | 169             |
| GKD-b_27_n100_m30        | 376.6248                | 66.25 | 3.15E-02 | 204.7102               | 519.3854                | 127             |
| GKD-b_28_n100_m30        | 379.9123                | 72.00 | 3.18E-02 | 292.3476               | 563.9683                | 106             |
| GKD-b_29_n100_m30        | 344.0501                | 60.05 | 3.03E-02 | 261.6596               | 453.5187                | 137             |
| GKD-b_30_n100_m30        | 304.0676                | 58.08 | 3.01E-02 | 225.7108               | 342.0634                | 127             |
| GKD-b_31_n125_m12        | 48.7661                 | 75.92 | 2.24E-02 | 27.6991                | 65.6209                 | 12              |
| GKD-b_32_n125_m12        | 49.8411                 | 62.30 | 2.29E-02 | 45.3354                | 57.1193                 | 19              |
| GKD-b_33_n125_m12        | 68.7881                 | 73.06 | 2.38E-02 | 50.3064                | 114.6981                | 19              |
| GKD-b_34_n125_m12        | 51.6503                 | 62.27 | 2.39E-02 | 34.1022                | 73.4153                 | 19              |
| GKD-b_35_n125_m12        | 61.8754                 | 70.73 | 2.34E-02 | 42.8567                | 83.1226                 | 18              |
| GKD-b_36_n125_m37        | 403.2151                | 61.45 | 3.25E-02 | 347.9359               | 471.0077                | 155             |
| GKD-b 37 n125 m37        | 418.0820                | 52.43 | 3.41E-02 | 284.9139               | 562.0131                | 199             |
| GKD-b 38 n125 m37        | 446.9816                | 57.95 | 3.34E-02 | 310.1741               | 575.8495                | 188             |
| GKD-b_39_n125_m37        | 411.6134                | 59.04 | 3.27E-02 | 310.7378               | 493.5993                | 169             |
| GKD-b_40_n125_m37        | 386.2099                | 53.86 | 3.34E-02 | 315.3312               | 454.0314                | 178             |
| GKD-b_41_n150_m15        | 69.7972                 | 66.55 | 1.99E-02 | 51.7237                | 91.5401                 | 23              |
| GKD-b_42_n150_m15        | 65.2854                 | 58.97 | 2.11E-02 | 46.2038                | 97.6911                 | 27              |
| GKD-b_43_n150_m15        | 65.6087                 | 59.22 | 2.06E-02 | 50.8017                | 74.0788                 | 27              |
| GKD-b_44_n150_m15        | 61.1381                 | 57.58 | 2.05E-02 | 50.7285                | 71.0724                 | 26              |
| GKD-b_45_n150_m15        | 56.5077                 | 50.85 | 1.99E-02 | 49.2566                | 76.3017                 | 28              |
| GKD-b_46_n150_m45        | 575.4527                | 60.42 | 3.52E-02 | 477.4060               | 637.9589                | 228             |
| GKD-b 47 n150 m45        | 399.5420                | 42.78 | 3.50E-02 | 310.0359               | 494.6895                | 229             |
| GKD-b_48_n150_m45        | 520.6545                | 56.45 | 4.16E-02 | 366.7828               | 889.9092                | 227             |
| GKD-b_49_n150_m45        | 457.3357                | 50.49 | 3.58E-02 | 358.8121               | 544.1437                | 226             |
| 2D D3_11130_11143        | 528.6708                | 52.93 | 3.49E-02 | 408.7418               | 741.4361                | 220             |