Recommender Systems lecture 8: counterfactual evaluation

Alexey Grishanov

Moscow Institute of Physics and Technology

Spring 2025

Today's outline

Problem

Don't our recommendations change how customers click or purchase? If customers can only interact with items shown to them, why do we perform offline evaluation on static historical data?

Objective

What would have happened if we show users our new recommendations instead of the existing strategy?

Recap: offline evaluation

image source

Off-policy evaluation (OPE)

Given:

logged dataset \mathcal{D} obtained from policy $\pi_0 = \pi_0(a|x)$

$$\mathcal{D} = \{(x_i, a_i, r_i)\}_{i=1}^n \sim \prod_{i=1}^n p(x_i) \ \pi_0(a_i|x_i) \ p(r_i|x_i, a_i)$$

- x_i sample state from states X
- a_i sample action from π_0 on x_i (what we can control)
- r_i sample reward when the state is x_i and action is a_i

Estimate:

value of policy $\pi_{\textit{test}}$ given data \mathcal{D}

$$\hat{V}(\pi_{test}, \mathcal{D})$$

close to true policy value

$$V(\pi_{test}) = \mathbb{E}_{p(x) \mid \pi_{test}(a|x) \mid p(r|x,a)}[r]$$

A/B testing

Deploy policy $\pi_{\textit{test}}$ in production to get an online estimation of performance

$$\mathcal{D}_{test} \sim \prod_{i=1}^{n} p(x_i) \; \pi_{test}(a_i|x_i) \; p(r_i|x_i,a_i)$$

Estimate

$$\hat{V}_{A/B}(\pi_{test}, \mathcal{D}_{test}) = \frac{1}{n} \sum_{i=1}^{n} r_i$$

Straightforward but takes time and risks

Direct Method (simulators)

Learn reward (response) model using $\{(x_i, a_i, r_i)\}_{i=1}^n$

$$r(x,a) = \mathbb{E}(r|x,a) \approx \hat{r}(x,a)$$

Use modeled rewards for actions selected by $\pi_{\textit{test}}$

$$\hat{V}_{DM}(\pi_{test}, \mathcal{D}, \hat{r}(x, a)) = \frac{1}{n} \sum_{i=1}^{n} \sum_{a \in \mathcal{A}} \pi_{test}(a|x_i) \ \hat{r}(x_i, a)$$

Simulators typically has low variance, but building response function $\hat{r}(x,a)$ with low bias is hard (active research direction)

image source

Importance sampling example (towards lower bias)

	Probability(Red)	Probability(Green)
π_0 (policy used when data were collected) New policy π_{Test}	80%	20% 80%
π_0	Clicks on Red	Clicks on Green
π_{Test} x 0.25	?	? X4

Number of clicks for π_{test}

$$\mathsf{Clicks}_{\mathsf{green}} \cdot \frac{\pi_{\mathsf{test}}(\mathsf{green})}{\pi_{\mathsf{0}}(\mathsf{green})} + \mathsf{Clicks}_{\mathsf{red}} \cdot \frac{\pi_{\mathsf{test}}(\mathsf{red})}{\pi_{\mathsf{0}}(\mathsf{red})} = 300 \cdot \frac{0.8}{0.2} + 1000 \cdot \frac{0.2}{0.8} = 1450$$

IPS

$$\hat{V}_{IPS}(\pi_{test}, \mathcal{D}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\pi_{test}(a_i, x_i)}{\pi_0(a_i, x_i)} \cdot r_i$$

Exersize

Prove that IPS is unbiased

Issues

- ullet problems when π_{test} recommend a which π_0 didn't make
- high varience when π_{test} far from π_0 , e.g. $p_0 = 0.001, p_{test} = 0.1$

CIPS

One solution is to ensure that the new recommenders being evaluated don't differ too much from the production recommender

$$\hat{V}_{\text{CIPS}}\left(\pi_{test}, \mathcal{D}_{0}, \lambda\right) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{\min\left\{\frac{\pi_{test}\left(a_{i} \mid x_{i}\right)}{\pi_{0}\left(a_{i} \mid x_{i}\right)}, \lambda\right\}}_{\text{upper bounded by } \lambda} \cdot r_{i}$$

Issues

- lower variance than IPS but neigher biased nor consistent
- ullet requires tuning λ

SNIPS

Avoid unstable estimation by rescaling:

$$\hat{V}_{\mathrm{SNIPS}}\left(\pi_{test}, \mathcal{D}_{0}\right) = \frac{\sum_{i=1}^{n} \frac{\pi_{test}\left(a_{i} \mid x_{i}\right)}{\pi_{0}\left(a_{i} \mid x_{i}\right)} \cdot r_{i}}{\sum_{i=1}^{n} \frac{\pi_{test}\left(a_{i} \mid x_{i}\right)}{\pi_{0}\left(a_{i} \mid x_{i}\right)}}$$
empirical mean of weights

Issue

consistent but not unbiased

Doubly robust estimator

Combine DM and SNIPS:

$$\hat{V}_{\mathrm{DR}}\left(\pi_{test}, \mathcal{D}_{0}, \hat{r}\right) = \hat{V}_{\mathrm{DM}}\left(\pi_{test}, \mathcal{D}_{0}, \hat{r}\right) + \frac{1}{n} \sum_{i=1}^{n} \frac{\pi_{test}\left(a_{i} \mid x_{i}\right)}{\pi_{0}\left(a_{i} \mid x_{i}\right)} \left(r_{i} - \hat{r}\left(x_{i}, a_{i}\right)\right)$$

Review

- unbiased and consistent
- potential to reach optimal varience (informal)
- useful when using estimated propensities $\hat{p}_i \approx \pi_0(a_i|x_i)$
- default in Vowpal Wabbit

Comparing OPE

number of samples in the log data

Similar vs far policies

- left: max importance weight: 18.60
- right: max importance weight: 451.13

Preparing for off-policy evaluation

Log everything:

$$\langle x_i, a_i, r_i, p_i \rangle$$
,

where $p_i = \pi_0(a_i, x_i)$ — propensities

If impossible to get p_i , log enough to estimate \hat{p}_i :

- candidate set of actions
- features for each candidate
- exploration parameters
- etc.

Lecture summary

Approach 0: «A/B test»

Estimation via model deployment

- ullet Pro: unbiased $\mathbb{E}_{\mathcal{D}}\left[\hat{V}_{A/B}(\pi,\mathcal{D})
 ight]=V\left(\pi
 ight)$
- Con: costly to obtain

Approach 1: «Model the world»

Estimation via reward prediction

- Pro: low variance
- Con: model mismatch can lead to high bias

Approach 2: «Model the bias»

Counterfactual model

- Pro: unbiased for known propensities
- Con: suffer when the recommendation policy to be evaluated is far from the logging policy

Literature

- P. Rosenbaum et al. (1983) The Central Role of Propensity in Observational Studies for Causal Effects (IPS)
- Adith Swaminathan, Thorsten Joachims (2015) Batch Learning from Logged Bandit Feedback through Counterfactual Risk Minimization (CIPS)
- Adith Swaminathan, Thorsten Joachims (NIPS 2015) The Self-Normalized Estimator for Counterfactual Learning (SNIPS)
- RecSys 2021 tutorial
- SIGIR 2016 tutorial
- Y. Saito et al. (NeurIPS'21) Open Bandit Dataset and Pipeline: Towards Realistic and Reproducible Off-Policy Evaluation

Course summary: organic and bandit data

Figure 1: Markov Chain of the organic and bandit user sessions

image source