Série d'exercices

Exercice 1

lacktriangle Compléter le tableau des classifications suivant en mettant une croix (X) dans la case convenable

Situation		De contact ponctuel	De contact réparti	À distance
	Action de la pointe d'une punaise sur le morceau du bois			
	Action de l'eau sur les parois du barrage			
	Action du vent sur les ails d'une éolienne			
	Action de l'attraction du Soleil sur la Terre			
	Action d'un livre sur une table			

Série d'exercices

Exercice 2

On suspend un corps solide à l'extrémité A du fil d'un dynamomètre

- Faire l'inventaire des forces exercées sur la solide .
- 2 Déterminer les caractéristiques de chacune de ces forces.
- **3** Représenter ces forces en utilisant l'échelle $1cm \leftrightarrow 1N$

☐ La masse du ressort est négligeable

Exercice 3

On suspend une boule fer à l'extrémité A d'un fil et on fix l'autre extrémité à un support fix. On approche de la boule un aimant droit comme l'indique la figure ci-contre .

Données

- \square L'intensité de pesanteur est : g = 10N/Kg
- \square Masse de la boule est : m = 400g
- \Box L'intensité de la force exercée par le fil sur la boule :T = 18N
- \square L'intensité de la force exercée l'aimant sur la boule : F = 12N
- Faire l'inventaire des forces exercées sur la boule, puis les classer .
- 2 Déterminer les caractéristiques de chacune de ces forces.
- 3 Représenter ces forces en utilisant une échelle adéquate.

Exercice 4

Le pneu d'une roue d'automobile exerce sur le sol une force pressante d'intensité F = 4kN; la largeur de la semelle du pneu est l = 205mm.

- Le pneumatique étant gonflé à la pression recommandé P_N , on mesure la longueur de son empreinte au sol : L = 10cm.
 - a Calculer la valeur de la surface pressée?
 - **b** Calculer la valeur de la pression P_N .
- 2 Le pneu est maintenant est surgonflé ; on mesure sa pression : P = 2.7Bars.
 - a Comment la surface de contact avec le sol a-t-elle varié?
 - b −Quelle est la longueur de la nouvelle empreinte au sol .

