Коллаборативная фильтрация

План занятия

- 1 Что такое коллаборативная фильтрация
- (2) Item-based коллаборативная фильтрация
- ③ User-based коллаборативная фильтрация
- (4) Пакет Surprise

Что такое коллаборативная фильтрация

Фильтрация по содержанию

Коллаборативная фильтрация

Коллаборативная фильтрация

Используются только результаты взаимодействий (рейтинг, покупка и др.)

	item_1	item_2	 item_m
user_1	2	0	 1
user_n	5	2	 0

Плюсы

- Не нужно налаживать процесс извлечения фичей
- Мало зависит от предметной области
- Предсказываем поведение и обучаемся на нём же

Минусы

- Проблема холодного старта (новый юзер/айтем не ясно, что рекомендовать)
- Много данных нужно

Предсказания

Предсказать значения потенциального взаимодействия

	item_1	item_2	 item_m
user_1	2	?	 1
user_n	5	2	 ?

Item-to-item collaborative filtering

Как кодируются объекты

Айтемы описываются результатами взаимодействия со всеми пользователями

$$i_1 = (r_{u_1}(i_1), r_{u_2}(i_1), \dots, r_{u_N}(i_1))$$

$$i_2 = (r_{u_1}(i_2), r_{u_2}(i_2), \dots, r_{u_N}(i_2))$$

Расстояние между объектами

Ищем похожести айтемов по метрике расстояния

$$d^{2}(i_{1}, i_{2}) = \sum_{u} (r_{u}(i_{1}) - r_{u}(i_{2}))^{2}$$

Какие бывают расстояния

- Евклидово расстояние
- Косинусное расстояние
- Манхэттенское расстояние

Какие бывают расстояния

Могут использоваться и семантические метрики (взаимодействие рассматривается как последовательность)

- Расстояние Хэмминга
- Расстояние Левенштейна
- Коэффициент Жаккара

Практика

Item-to-item

Гипотеза: показывать под фильмами похожие на них другие фильмы.

Что делать

- 1. Найдем векторы фильмов
- 2. Найдем 10 похожих на него

User-based collaborative filtering

Есть матрица оценок, выставленных пользователями продуктам

	1	2	3	4	5	6	7	8	9
alex	5.0000	3.0000			4.0000				
ivan	4.0000					1.0000	3	2.0000	3.0000
bob		5.0000	5.0000						
david			4.0000	3.0000	9	2.0000	1.0000		97

- Выбрать К пользователей, предпочтения которых больше всего похожи на вкусы рассматриваемого юзера
- Похожесть измеряем стандартными метриками
- Для каждого юзера умножаем его оценки на вычисленную величину меры
- Получаем взвешенные оценки по айтемам для рассматриваемого юзера

	alex	bob	david	sum
ivan	0.5164	0.0000	0.0667	0.5831

- Для каждого айтема считаем сумму калиброванных оценок
- Полученное значение делим на сумму мер близких пользователей
- К примеру, для alex 5*0.5164=2.582, 3*0.5164=1.5492 и т.д.
- result_2 = 1.5492/0.5831

	1	2	3	4	5	6	7	8	9
alex	2.5820	1.5492	0.0000	0.0000	2.0656	0.0000	0.0000	0.0000	0.0000
bob	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000	0,0000	0.0000
david	0.0000	0.0000	0.2668	0.2001	0.0000	0,1334	0.0667	0.0000	0.0000
sum	2,5820	1.5492	0.2668	0.2001	2.0656	0.1334	0.0667	0,0000	0,0000
result	4.4281	2.6568	0.4576	0.3432	3.5424	0,2288	0.1144	0.0000	0.0000

Особенности

• Лучше работает, когда объектов больше, чем пользователей

Item-based collaborative filtering

Есть матрица оценок, выставленных юзерами фильмам

	Вася	Петр	Валера	Жанна	Петрович
Трактористы	?	3	5	5	2
Свинарка и пастух	3	5	3	5	3
Once upon a Tractor	4	2		5	
Tractor, Love, pigeon	5	2	4		2
Babe	2	5	3	4	2

- Люди ведут себя по-разному
- В этом случае вычтем из каждого вектора оценок среднюю оценку каждого пользователя

К примеру, у Васи средняя оценка (3+4+5+2)/4=3.5

	Вася	Петр	Валера	Жанна	Петрович
Трактористы	?	3	5	5	2
Свинарка и пастух	3	5	3	5	3
Once upon a Tractor	4	2		5	
Tractor, Love, pigeon	5	2	4		2
Babe	2	5	3	4	2
Среднее	3,5	3,4	3,75	4,75	2,25

- Люди ведут себя по-разному
- В этом случае вычтем из каждого вектора оценок среднюю оценку каждого пользователя

К примеру, у Васи средняя оценка (3+4+5+2)/4=3.5

	Вася	Петр	Валера	Жанна	Петрович
Трактористы	?	-0,4	1,25	0,25	-0,25
Свинарка и пастух	-0,5	1,6	-0,75	0,25	0,75
Once upon a Tractor	0,5	-1,4		0,25	
Tractor, Love, pigeon	1,5	-1,4	0,25	\(\rac{1}{2}\)	-0,25
Babe	-1,5	1,6	-0,75	-0,75	-0,25

^{*}Этот подход могли применить и к User-based

Для фильма *«Трактористы»* считаем любую метрику похожести к выбранному фильму

	Item-Based корреляция
Свинарка и пастух	-0,9545
Once upon a Tractor	1
Tractor, Love, pigeon	0,787
Babe	-0,6689
Сумма по модулю	3,4104

- Так же как и в случае с user-based, считаем взвешенное среднее, но для уже оценённых юзерами фильмов
- И делим на сумму похожестей (3.1611/3.4101)
- На нашем примере подход item-based предполагает, что Вася поставит «Трактористам» оценку 4.4 (3.5 + 0.92)

	Вася
Трактористы	?
Свинарка и пастух	-0,5
Once upon a Tractor	0,5
Tractor, Love, pigeon	1,5
Babe	-1,5

	Item-Based корреляция
Свинарка и пастух	-0,9545
Once upon a Tractor	1
Tractor, Love, pigeon	0,787
Babe	-0,6689
Сумма по модулю	3,4104

	Вася
Трактористы	?
Свинарка и пастух	0,47725
Once upon a Tractor	0,5
Tractor, Love, pigeon	1,1805
Babe	1,00335
Сумма	3,1611
Результат	0,9269000704
Оценка	4,42690007

Особенности

• Лучше работает, когда пользователей больше, чем объектов

Практика

User-based и Item-based

Задача: рекомендации на главной странице сервиса в разделе «Персональная подборка».

Что делать

- 1. Использовать алгоритмы из Surprise, основанные на kNN
- 2. Взять любого пользователя и посмотреть на результаты предсказаний

Коллаборативная фильтрация

