JAYPEE INSTITUTE OF INFORMATION TECHNOLOGY

Electronics and Communication Engineering

Electrical Science-2 (15B11EC211) - 2016 EVEN SEM

TUTORIAL -1 First order circuit response to DC and Non-constant input

(b) The switch in the circuit shown below has been closed since dinosaurs last walked the earth. If the switch is opened at t=0, Find i_L (0+) and V(0+), the instant after the switch changes.

Ans. $l_L(o^+) = 2A$ $V(o^+) = 4oV$

 $_{\rm Q.2}$ Determine $V_{c}(t)$ for the circuit shown Below.

Q.3 Find V(t) across capacitor. $\begin{array}{c|c}
\hline
10 A & 7 \\
\hline
10 A & 7
\end{array}$ $\begin{array}{c|c}
\hline
2 & 7 \\
\hline
4 & 7
\end{array}$ $\begin{array}{c|c}
\hline
4 & 7 \\
\hline
4 & 7
\end{array}$ $\begin{array}{c|c}
\hline
4 & 7 \\
\hline
4 & 7
\end{array}$ $\begin{array}{c|c}
\hline
4 & 7 \\
\hline
4 & 7
\end{array}$ $\begin{array}{c|c}
\hline
4 & 7 \\
\hline
4 & 7
\end{array}$ $\begin{array}{c|c}
\hline
4 & 7 \\
\hline
4 & 7
\end{array}$ $\begin{array}{c|c}
\hline
4 & 7 \\
\hline
4 & 7
\end{array}$ $\begin{array}{c|c}
\hline
4 & 7 \\
\hline
4 & 7
\end{array}$ $\begin{array}{c|c}
\hline
4 & 7 \\
\hline
4 & 7
\end{array}$ $\begin{array}{c|c}
\hline
4 & 7 \\
\hline
4 & 7
\end{array}$ $\begin{array}{c|c}
\hline
4 & 7 \\
\hline
4 & 7
\end{array}$ $\begin{array}{c|c}
\hline
4 & 7 \\
\hline
4 & 7
\end{array}$ $\begin{array}{c|c}
\hline
4 & 7 \\
\hline
4 & 7
\end{array}$ $\begin{array}{c|c}
\hline
4 & 7 \\
\hline
4 & 7
\end{array}$ $\begin{array}{c|c}
\hline
4 & 7 \\
\hline
4 & 7
\end{array}$ $\begin{array}{c|c}
\hline
4 & 7 \\
\hline
4 & 7
\end{array}$ $\begin{array}{c|c}
\hline
4 & 7 \\
\hline
4 & 7
\end{array}$ $\begin{array}{c|c}
\hline
4 & 7 \\
\hline
4 & 7
\end{array}$ $\begin{array}{c|c}
\hline
4 & 7 \\
\hline
4 & 7
\end{array}$ $\begin{array}{c|c}
\hline
4 & 7 \\
\hline
4 & 7
\end{array}$

Q.4 Find i(t) for t>0.

Q.5. Find i(t) for t > 0.

- Q.6. After having been closed for a long time, the switch in opened at t=0.
- (a) Find $i_L(t)$ for t>0 (b) Find t_1 if $i_L(t_1)=0.5$ $i_L(0)$.

$$200$$
 $\frac{500}{100}$ $\frac{1}{100}$ $\frac{1}{100$

Q.7 The input to the circuit shown in figure is the voltage of the voltage source Vs(t). The output is the current across the inductor $i_o(t)$. Determine the output of this circuit when the input is Vs(t) = -7 + 13 U(t) V.

Ans. io(t)=
$$\{-1.4 \text{ A}$$
 $t <= 0$
 $1.2 - 2.6 \text{ e}^{-1.85t} \text{ A}$ $t > 0$

Q.8. Find Vc(t) for t > 0 for the circuit shown in fig. when $i_s = [2\cos 2t] u(t)$ mA.

Ans.
$$V_c(t) = -5 e^{-2t} + 5 \cos 2t + 5 \sin 2t V$$