Supplementary Material

Yixuan Liang, Xiaoxian Tang* and Qian Zhang

School of Mathematical Sciences, Beihang University, Beijing 100191, P.R. China.

Abstract. This is the supplementary material for the article "Multistability of Bi-reaction Networks (arXiv:2405.05103)".

1 Proof of Lemmas 4.1–4.2

1.1 Proof of Lemma 4.1

In order to prove Lemma 4.1, we first provide two lemmas.

Lemma 1.1. Given a network G (3.1) with a one-dimensional stoichiometric subspace, suppose $cap_{pos}(G) < +\infty$. Let g(z) be the function defined as in (4.11). For any given $\{d_i\}_{i=1}^s$, κ_1 and κ_2 , x is a stable positive steady state of G iff the real point z satisfies $g(z) = \ln(-\frac{\lambda \kappa_2}{\kappa_1})$ and $\frac{dg}{dz}(z) < 0$, where x and z satisfy the equalities in (4.8).

Proof. By (4.3), we have

$$f_i = (\beta_{i1} - \alpha_{i1}) \cdot \ell(x_1, \dots, x_s)$$
, where $\ell(x_1, \dots, x_s) := \kappa_1 \prod_{i=1}^s x_i^{\alpha_{i1}} + \lambda \kappa_2 \prod_{i=1}^s x_i^{\alpha_{i2}}$. (1)

Since G has a one-dimensional stoichiometric subspace, rank(Jac_f) = 1. So, the only non-zero eigenvalue of Jac_f is $\rho := tr(\operatorname{Jac}_f) = (\beta_{11} - \alpha_{11}) \frac{\partial \ell}{\partial x_1} + \dots + (\beta_{s1} - \alpha_{s1}) \frac{\partial \ell}{\partial x_s}$. Notice that $x = (x_1, \dots, x_s)^\top \in \mathbb{R}^s_{>0}$ is a stable steady state if and only if

$$\ell(x_1, \dots, x_s) = 0, \text{ and}$$
 (2)

$$\rho = (\beta_{11} - \alpha_{11}) \frac{\partial \ell}{\partial x_1} + \dots + (\beta_{s1} - \alpha_{s1}) \frac{\partial \ell}{\partial x_s} < 0.$$
(3)

Let

$$\hat{\ell}(z) := \ell((\beta_{11} - \alpha_{11})(z + \mu_1), \cdots, (\beta_{s1} - \alpha_{s1})(z + \mu_s)). \tag{4}$$

^{*} Email address: xiaoxian@buaa.edu.cn (Xiaoxian Tang)

By (1), we have

$$\hat{\ell}(z) = \kappa_1 \prod_{i=1}^s ((\beta_{i1} - \alpha_{i1})(z + \mu_i))^{\alpha_{i1}} + \lambda \kappa_2 \prod_{i=1}^s ((\beta_{i1} - \alpha_{i1})(z + \mu_i))^{\alpha_{i2}}.$$

$$= \kappa_1 \prod_{i=1}^s ((\beta_{i1} - \alpha_{i1})(z + \mu_i))^{\alpha_{i2}} \left(\prod_{i=1}^s ((\beta_{i1} - \alpha_{i1})(z + \mu_i))^{\alpha_{i1} - \alpha_{i2}} + \frac{\lambda \kappa_2}{\kappa_1} \right).$$

By (4.10), we have

$$\prod_{i=1}^{s} ((\beta_{i1} - \alpha_{i1})(z + \mu_i))^{\alpha_{i1} - \alpha_{i2}} = e^{g(z)}.$$

So,

$$\hat{\ell}(z) = \kappa_1 \prod_{i=1}^{s} ((\beta_{i1} - \alpha_{i1})(z + \mu_i))^{\alpha_{i2}} \left(e^{g(z)} + \frac{\lambda \kappa_2}{\kappa_1} \right).$$
 (5)

Similarly, we have

$$\frac{d\hat{\ell}}{dz}(z) = (\beta_{11} - \alpha_{11}) \frac{\partial \ell}{\partial x_1} + \dots + (\beta_{s1} - \alpha_{s1}) \frac{\partial \ell}{\partial x_s} \Big|_{x_i = (\beta_{i1} - \alpha_{i1})(z + \mu_i)}$$

$$= \kappa_1 \prod_{i=1}^s ((\beta_{i1} - \alpha_{i1})(z + \mu_i))^{\alpha_{i2}} \left[e^{g(z)} \frac{dg}{dz}(z) + \left(e^{g(z)} + \frac{\lambda \kappa_2}{\kappa_1} \right) \sum_{i=1}^s \frac{\alpha_{i2}}{z + \mu_i} \right]. \tag{6}$$

Next, we prove the necessity and sufficiency. We assume that x and z satisfy the equalities in (4.8).

 \Rightarrow) If (2) holds, then by (5), we have $e^{g(z)} + \frac{\lambda \kappa_2}{\kappa_1} = 0$. So, $g(z) = \ln\left(-\frac{\lambda \kappa_2}{\kappa_1}\right)$. If (2)–(3) hold, then by (6), we have $e^{g(z)} \frac{dg}{dz}(z) < 0$. So, $\frac{dg}{dz}(z) < 0$.

 \Leftarrow) If $g(z) = \ln(-\frac{\lambda \kappa_2}{\kappa_1})$ and $\frac{dg}{dz}(z) < 0$, then by (5), we have $\hat{\ell}(z) = 0$, and by (6), we have $\frac{d\hat{\ell}}{dz}(z) < 0$. By (2)–(3), it indicates that x is a stable positive steady state.

Lemma 1.2. Given a network G (3.1) with a one-dimensional stoichiometric subspace, suppose $cap_{pos}(G) < +\infty$. Let g(z) be the function defined as in (4.11). Then, G admits multistability iff there exist $\{d_i\}_{i=1}^s \subseteq \mathbb{R}$ and $K \in \mathbb{R}$ such that the equation g(z) = K has at least 2 solutions z_1 and z_2 in I defined in (4.12) satisfying $\frac{dg}{dz}(z_1) < 0$ and $\frac{dg}{dz}(z_2) < 0$.

Proof. Note that G admits multistability iff there exist $\{d_i\}_{i=1}^s$, κ_1 and κ_2 such that G has at least 2 stable positive steady states. By Lemma 1.1, the above condition holds iff $g(z) = \ln(-\frac{\lambda \kappa_2}{\kappa_1})$ has at least 2 solutions z_1 and z_2 in I defined in (4.12) satisfying $\frac{dg}{dz}(z_1) < 0$ and $\frac{dg}{dz}(z_2) < 0$. Let $K = \ln(-\frac{\lambda \kappa_2}{\kappa_1})$ and we come to the conclusion.

Proof of Lemma 4.1:

Proof. By Lemma 1.2, *G* admits multistability iff there exist $\{d_i\}_{i=1}^s$ and *K* such that the equation g(z) = K has at least 2 solutions z_1 and z_2 in *I* defined in (4.12) satisfying $\frac{dg}{dz}(z_1) < 0$ and $\frac{dg}{dz}(z_2) < 0$. For i = 1, 2, let $\frac{dg}{dz}(z_i) = -t_i < 0$. According to the continuity of functions, for min $\{\frac{t_1}{2}, \frac{t_2}{2}\}$, there exists $\delta > 0$ such that $(z_1 - \delta, z_1 + \delta) \cap (z_2 - \delta, z_2 + \delta) = \emptyset$ and for any $z \in (z_i - \delta, z_i + \delta)$, we have $\frac{dg}{dz}(z) \in (-\frac{3}{2}t_i, -\frac{1}{2}t_i)$. For any fixed d_i , for any $n \in \mathbb{N}$, we define $g_n(z) := g(z)|_{\substack{d_i = d_i + n \\ d_i = n}} 1$. Notice that the sequence $\{\frac{dg_n}{dz}(z)\}_{n \in \mathbb{N}}$ uniformly converges to $\frac{dg}{dz}(z)$ in $(z_1 - \delta, z_1 + \delta) \cup (z_2 - \delta, z_2 + \delta)$. So, there exists an integer *N* such that for any n > N and for any $z \in (z_1 - \delta, z_1 + \delta) \cup (z_2 - \delta, z_2 + \delta)$, $\left|\frac{dg_n}{dz}(z) - \frac{dg}{dz}(z)\right| < \frac{1}{2} \min\{t_1, t_2\}$, and hence, $\frac{dg_n}{dz}(z) < 0$. Moreover, for i = 1, 2, we have $g_n(z_i - \delta) \to g(z_i - \delta)$ and $g_n(z_i + \delta) \to g(z_i + \delta)$ when $n \to \infty$, and we have $g(z_i - \delta) > K$ and $g(z_i + \delta) < K$. So, there exists n > N such that $g_n(z_i - \delta) > K$ and $g_n(z_i + \delta) < K$. Thus, $g_n(z) = K$ has a solution z_i^* in $(z_i - \delta, z_i + \delta)$ and $\frac{dg_n}{dz}(z_i^*) < 0$. For any d_i , we can perform the above actions to change d_i until d_i 's are distinct from each other. □

1.2 Proof of Lemma 4.2

Proof. (i) \Rightarrow) By Lemma 1.2, g(z) = K has at least 2 real solutions in I defined in (4.12). So, g(z) is not monotonic, and hence there exists $\widetilde{z} \in I$ such that $\frac{dg}{dz}(\widetilde{z}) > 0$.

 \Leftarrow) If there exists $\widetilde{z} \in I$ such that $\frac{dg}{dz}(\widetilde{z}) > 0$, then there exists a neighborhood $(\widetilde{z} - \delta, \widetilde{z} + \delta) \subseteq I$ such that g(z) is increasing in $(\widetilde{z} - \delta, \widetilde{z} + \delta)$. For any $K \in (g(\widetilde{z} - \delta), g(\widetilde{z} + \delta))$, since $g(\widetilde{z} + \delta) > K$ and $\lim_{z \to \mathcal{R}^-} g(z) = -\infty$, the equation g(z) = K has a solution in $(\widetilde{z} + \delta, \mathcal{R})$. Note that $\frac{dg}{dz}(z) = 0$ has finitely many solutions since it is rational. So, g(z) = K has finitely many solutions in I, and we can define

$$z_1 := \min\{z : g(z) = K, z > \widetilde{z} + \delta\},\tag{7}$$

Similarly, we can define

$$z_2 := \max\{z : g(z) = K, z < \widetilde{z} - \delta\}.$$

If $\frac{dg}{dz}(z_1) > 0$, then there exists $\delta_0 > 0$ such that $z_1 - \delta_0 \in (\widetilde{z} + \delta, z_1)$ and $g(z_1 - \delta_0) < K$. So, g(z) = K has a solution in $(\widetilde{z} + \delta, z_1)$, which is a contradiction to (8). So, $\frac{dg}{dz}(z_1) \le 0$. Similarly, we have $\frac{dg}{dz}(z_2) \le 0$. So, we have shown that for any $K \in (g(\widetilde{z} - \delta), g(\widetilde{z} + \delta))$, there exist

 $z_1,z_2\in I(z_1\neq z_2)$ such that $g(z_1)=g(z_2)=K$, $\frac{dg}{dz}(z_1)\leqslant 0$, and $\frac{dg}{dz}(z_2)\leqslant 0$. Consider $K,K^*\in (g(\widetilde{z}-\delta),g(\widetilde{z}+\delta))$ $(K\neq K^*)$. Since $g(z_1)=K$ and $g(z_1^*)=K^*$, then $z_1\neq z_1^*$. Similarly, $z_2\neq z_2^*$. If for every $K\in (g(\widetilde{z}-\delta),g(\widetilde{z}+\delta))$, $\frac{dg}{dz}(z_1)=0$ or $\frac{dg}{dz}(z_2)=0$, then $\frac{dg}{dz}(z)=0$ has infinitely many solutions, which is a contradiction to the fact that $\frac{dg}{dz}(z)$ is rational. So, there exists K such that $\frac{dg}{dz}(z_1)<0$ and $\frac{dg}{dz}(z_2)<0$. By Lemma 1.2, G admits multistability.

(ii) \Rightarrow) By Lemma 1.2, there exist $z_1, z_2(z_1 \neq z_2)$ satisfying $g(z_1) = K$, $g(z_2) = K$, $\frac{dg}{dz}(z_1) < 0$ and $\frac{dg}{dz}(z_2) < 0$. Assume that $z_1 < z_2$. Since $\frac{dg}{dz}(z_1) < 0$, there exists δ such that $z_1 + \delta < z_2$ and $g(z_1 + \delta) < K$. Since $g(z_2) = K$, there exists $\widetilde{z}_2 \in (z_1 + \delta, z_2)$ such that $\frac{dg}{dz}(\widetilde{z}_2) > 0$. Let $\widetilde{z}_1 := z_1$. Then, \widetilde{z}_1 and \widetilde{z}_2 meet the requirements.

 \Leftarrow) Assume that there exist $\widetilde{z_1}$, $\widetilde{z_2} \in I$ ($\widetilde{z_1} < \widetilde{z_2}$) such that

$$\frac{dg}{dz}(\widetilde{z_1}) < 0$$
, and $\frac{dg}{dz}(\widetilde{z_2}) > 0$,

then there exists $z^* \in (\widetilde{z_1}, \widetilde{z_2})$, such that $g(z^*) = \min_{z \in (z_1, z_2)} g(z)$. So, there exists $\delta > 0$, such that $\frac{dg}{dz}(z) < 0$ for any $z \in (z^* - \delta, z^*)$ and $\frac{dg}{dz}(z) > 0$ for any $z \in (z^*, z^* + \delta)$. For any $K \in (g(z^*), \min\{g(z^* - \delta), g(z^* + \delta)\})$, as $\lim_{z \to \mathcal{R}^-} g(z) = -\infty$ and $g(z^* + \delta) > K$, the equation g(z) = K has a solution in $(z^* + \delta, \mathcal{R})$. Since g(z) = K has finitely many solutions in I, we can define

$$z_m := \min\{z : g(z) = K, z > z^* + \delta\}.$$
 (8)

If $\frac{dg}{dz}(z_m) > 0$, then there exists $\delta_0 > 0$ such that $z_m - \delta_0 \in (z^* + \delta, z_m)$ and $g(z_m - \delta_0) < K$. So, g(z) = K has a solution in $(z^* + \delta, z_m)$, which is a contradiction to (8). So, $\frac{dg}{dz}(z_m) \le 0$. Note that if $K \ne K^*$, $g(z_m) = K$ and $g(z_m^*) = K^*$, then we have $z_m \ne z_m^*$. If for any $K \in \mathcal{C}$

Note that if $K \neq K^*$, $g(z_m) = K$ and $g(z_m^*) = K^*$, then we have $z_m \neq z_m^*$. If for any $K \in (g(z^*), \min\{(g(z^*-\delta), g(z^*+\delta))\})$, $\frac{dg}{dz}(z_m) = 0$. Then $\frac{dg}{dz}(z) = 0$ has infinitely many solutions, which is a contradiction to the fact that $\frac{dg}{dz}(z)$ is rational. So, there exists K such that $\frac{dg}{dz}(z_m) < 0$. Note that $K \in (g(z^*), \min\{(g(z^*-\delta), g(z^*+\delta))\})$, there exists $z_1 \in (z^*-\delta, z^*)$, such that

$$g(z_1) = K$$
, and $\frac{dg}{dz}(z_1) < 0$.

Let z_2 be z_m . So the conclusion holds.

(iii) By Lemma 1.2, there exist z_1 , z_2 ($z_1 \neq z_2$) satisfying $g(z_1) = K$, $g(z_2) = K$, $\frac{dg}{dz}(z_1) < 0$ and $\frac{dg}{dz}(z_2) < 0$. Assume that $z_1 < z_2$. Since $g(z_1) = g(z_2)$, it is impossible that $\frac{dg}{dz}(z) \le 0$

for any $z \in (z_1, z_2)$. So, there exists $\widetilde{z}_2 \in (z_1, z_2)$ such that $\frac{dg}{dz}(\widetilde{z}_2) > 0$. Let $\widetilde{z}_1 := z_1$ and $\widetilde{z}_3 := z_2$. Then, $\widetilde{z}_1, \widetilde{z}_2$ and \widetilde{z}_3 meet the requirements.

2 Proof of Lemmas 4.3–4.6

2.1 Proof of Lemma 4.3

Proof. Without loss of generality, assume that $e_1 < e_2$. Define $\gamma(y) := \frac{1}{(x_1+y)(x_2+y)(x_3+y)}$. Notice that we can eliminate b and c from (4.76) (note that there are three equalities in (4.76) since i = 1, 2, 3), and we get

$$a = \frac{(e_2 - e_1)^2 \beta_1 \beta_2 \gamma(e_1) \gamma(e_2)}{\beta_1 \gamma(e_1) + \beta_2 \gamma(e_2)} > 0.$$
 (1)

Similarly, we can eliminate a and c from (4.76), and we get

$$b = \frac{e_1 \beta_1 \gamma(e_1) + e_2 \beta_2 \gamma(e_2)}{\beta_1 \gamma(e_1) + \beta_2 \gamma(e_2)}.$$
 (2)

Note that

$$b - e_1 = \frac{(e_2 - e_1)\beta_2 \gamma(e_2)}{\beta_1 \gamma(e_1) + \beta_2 \gamma(e_2)} > 0.$$
(3)

So, we have $b > e_1$. Notice that we can eliminate a from the two equalities for i = 1,2 in (4.76), and we get

$$c = (x_1 + b)(x_2 + b)(\frac{\beta_1}{(x_1 + e_1)(x_2 + e_1)} + \frac{\beta_2}{(x_1 + e_2)(x_2 + e_2)})$$
(4)

Then, by the fact that $b > e_1$, we have

$$c > (x_1 + e_1)(x_2 + e_1)(\frac{\beta_1}{(x_1 + e_1)(x_2 + e_1)} + \frac{\beta_2}{(x_1 + e_2)(x_2 + e_2)})$$

$$= \beta_1 + \beta_2 \frac{(x_1 + e_1)(x_2 + e_1)}{(x_1 + e_2)(x_2 + e_2)}$$

$$> \beta_1$$

So, $c > \min\{\beta_1, \beta_2\}$. Below we show that

$$c < \beta_1 + \beta_2. \tag{5}$$

Г

Let

$$\mathcal{H} := \frac{(e_2 - e_1)^2 (x_1 + x_2 + x_3 + e_2 + 2e_1)}{(x_1 + e_1)(x_2 + e_1)(x_3 + e_1)(x_1 + e_2)(x_2 + e_2)(x_3 + e_2)},$$

and

$$\mathcal{G} := \frac{(e_2 - e_1)^2 (x_1 + x_2 + x_3 + e_1 + 2e_2)}{(x_1 + e_1)(x_2 + e_1)(x_3 + e_1)(x_1 + e_2)(x_2 + e_2)(x_3 + e_2)}.$$

Plugging (2) into (4), we have

$$\beta_1 + \beta_2 - c = \frac{\beta_1^2 \beta_2}{(x_1 + e_1)(x_2 + e_1)(x_3 + e_1)} \mathcal{H} + \frac{\beta_1 \beta_2^2}{(x_1 + e_2)(x_2 + e_2)(x_3 + e_2)} \mathcal{G}.$$
 (6)

Obviously, $\mathcal{H} > 0$ and $\mathcal{G} > 0$. So, $c < \beta_1 + \beta_2$.

2.2 Proof of Lemma 4.4

Proof. We prove the conclusion by induction. For n=1, let $A:=a_1$, $D:=d_1$, $\theta:=0$. Clearly, the conclusion holds. Assume for n=m, the conclusion holds. Note that for n=m+1, we have $G(z)=\sum\limits_{i=1}^m\frac{a_i}{z+d_i}+\frac{a_{m+1}}{z+d_{m+1}}$ and $M=\min_{i\in\{1,\cdots,m+1\}}d_i$. Let $G^*(z)=\sum_{i=1}^m\frac{a_i}{z+d_i}$ and $M^*=\min_{i\in\{1,\cdots,m\}}d_i$. Note here, for any $z_j>-M$, we have $z_j>-M^*$. By the inductive hypothesis, there exist A^* , D^* , $\theta\in R$ such that

$$G^*(z_j) = \frac{A^*}{z_j + D^*} + \theta^*(j = 1, 2, 3), \tag{7}$$

$$\min_{i \in \{1, \dots, m\}} a_i \le A^* \le \sum_{i=1}^m a_i, D^* > M^*, \theta^* \ge 0.$$
 (8)

Since $G(z) = G^*(z) + \frac{a_{m+1}}{z + d_{m+1}}$, we have

$$G(z_j) = \frac{a_{m+1}}{z_j + d_{m+1}} + \frac{A^*}{z_j + D^*} + \theta^*(j = 1, 2, 3).$$
(9)

Let $\beta_1 := a_{m+1}$, $\beta_2 := A^*$, $e_1 := d_{m+1}$, $e_2 := D^*$, $x_j := z_j$ (j = 1, 2, 3). Note that $\beta_1, \beta_2, e_1, e_2, x_j$ satisfy the conditions in (4.73) - (4.75). By Lemma 4.3, there exist $A, D, \theta \in R$ such that

$$\frac{a_{m+1}}{z_j + d_{m+1}} + \frac{A^*}{z_j + D^*} = \theta + \frac{A}{z_j + D} \text{ for } j = 1, 2, 3$$
(10)

$$\theta > 0, D > \min\{d_{m+1}, D^*\}, \text{ and } \min\{\alpha_{m+1}, A^*\} < A < \alpha_{m+1} + A^*.$$
 (11)

By (9) and (10), we have

$$G(z_j) = \frac{A}{z_j + D} + \theta + \theta^* \text{ for } j = 1, 2, 3.$$
 (12)

By (8) and (11), it is straightforward to check that $\min_{i \in \{1, \dots, m+1\}} a_i \le A \le \sum_{i=1}^{m+1} a_i, D \ge M$, and $\theta + \theta^* > 0$. Therefore, the conclusion holds.

2.3 Proof of Lemma 4.5

Proof. We prove the conclusion by deducing a contradiction. Assume that (4.81)–(4.83) hold simultaneously. Notice that by (4.80), we have $a_0 > 0$ and $e_0 > 0$. So, by (4.83), we have

$$\sum_{i \in S_2} \frac{a_i}{e_i^3} \ge 1. \tag{13}$$

Notice that by (4.80), for any $i \in \{1, 2, \dots, n\}$, we have $e_i > 1$. So,

$$\frac{a_i}{e_i^2} > \frac{a_i}{e_i^3}.\tag{14}$$

Then, by (13), we have

$$\sum_{i=1}^{n} \frac{a_i}{e_i^2} > 1 \tag{15}$$

Notice that by (4.81) and (4.82), we have

$$\sum_{i=1}^{n} \frac{a_i}{e_i^2} - 1 \le \frac{a}{e^2} = \frac{1}{a} \frac{a^2}{e^2} \le \frac{1}{a} (\sum_{i=1}^{n} \frac{a_i}{e_i} - 1)^2$$
 (16)

Then, by (4.80) and (16), we have

$$\sum_{i=1}^{n} \frac{a_i}{e_i^2} - 1 \le \frac{1}{\sum_{i=1}^{n} a_i} (\sum_{i=1}^{n} \frac{a_i}{e_i} - 1)^2.$$
 (17)

We multiply the both sides of (17) by $\sum_{i=1}^{n} a_i$, and we get

$$\sum_{i=1}^{n} \frac{a_i}{e_i^2} \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} a_i \le \left(\sum_{i=1}^{n} \frac{a_i}{e_i}\right)^2 - 2\sum_{i=1}^{n} \frac{a_i}{e_i} + 1,$$
(18)

which is equivalent to

$$\sum_{i,j\in\{1,2,\cdots,n\}, i\neq j} a_i a_j (\frac{1}{e_i} - \frac{1}{e_j})^2 \le \sum_{i=1}^n a_i - 2\sum_{i=1}^n \frac{a_i}{e_i} + 1.$$
(19)

By (19) and (15), we have

$$\sum_{i,j\in\{1,2,\cdots,n\},i\neq i} a_i a_j (\frac{1}{e_i} - \frac{1}{e_j})^2 < \sum_{i=1}^n a_i - 2\sum_{i=1}^n \frac{a_i}{e_i} + \sum_{i=1}^n \frac{a_i}{e_i^2} = \sum_{i=1}^n a_i (1 - \frac{1}{e_i})^2.$$
 (20)

On the other hand, by (4.81) and (4.83), we have

$$\left(\sum_{i=1}^{n} \frac{a_i}{e_i} - 1\right) \left(\sum_{i=1}^{n} \frac{a_i}{e_i^3} - 1\right) \ge \frac{a^2}{e^4}.$$
 (21)

By (4.82) and (15), we have

$$\frac{a^2}{e^4} \ge \left(\sum_{i=1}^n \frac{a_i}{e_i^2} - 1\right)^2. \tag{22}$$

So,

$$\left(\sum_{i=1}^{n} \frac{a_i}{e_i} - 1\right) \left(\sum_{i=1}^{n} \frac{a_i}{e_i^3} - 1\right) \ge \left(\sum_{i=1}^{n} \frac{a_i}{e_i^2} - 1\right)^2. \tag{23}$$

Note that (23) is equivalent to

$$\left(\sum_{i=1}^{n} \frac{a_i}{e_i}\right) \left(\sum_{i=1}^{n} \frac{a_i}{e_i^3}\right) - \left(\sum_{i=1}^{n} \frac{a_i}{e_i^2}\right)^2 \ge \sum_{i=1}^{n} \frac{a_i}{e_i} + \sum_{i=1}^{n} \frac{a_i}{e_i^3} - 2\sum_{i=1}^{n} \frac{a_i}{e_i^2} = \sum_{i=1}^{n} \frac{a_i}{e_i} (1 - \frac{1}{e_i})^2.$$
 (24)

Note that

$$\left(\sum_{i=1}^{n} \frac{a_i}{e_i}\right) \left(\sum_{i=1}^{n} \frac{a_i}{e_i^3}\right) - \left(\sum_{i=1}^{n} \frac{a_i}{e_i^2}\right)^2 = \sum_{i,j \in \{1,2,\dots,n\}, i \neq j} \frac{a_i a_j}{e_i e_j} \left(\frac{1}{e_i} - \frac{1}{e_j}\right)^2.$$
 (25)

So,

$$\sum_{\substack{i,j\in\{1,2,\cdots,n\},i\neq j\\e_i\neq j}} \frac{a_i a_j}{e_i e_j} (\frac{1}{e_i} - \frac{1}{e_j})^2 \ge \sum_{i=1}^n \frac{a_i}{e_i} (1 - \frac{1}{e_i})^2.$$
(26)

By (20) and (26), we have

$$\sum_{i,j\in\{1,2,\cdots,n\},i\neq j} a_i a_j (\frac{1}{e_i} - \frac{1}{e_j})^2 \sum_{i=1}^n \frac{a_i}{e_i} (1 - \frac{1}{e_i})^2 < \sum_{i,j\in\{1,2,\cdots,n\},i\neq j} \frac{a_i a_j}{e_i e_j} (\frac{1}{e_i} - \frac{1}{e_j})^2 \sum_{i=1}^n a_i (1 - \frac{1}{e_i})^2.$$
 (27)

Let

$$E_1(x,y) = (xy-x)(1-x)^2(x-y)^2,$$
(28)

$$E_2(x,y,z) = (1-x)^2(yz-x)(y-z)^2 + (1-y)^2(xz-y)(x-z)^2 + (1-z)^2(xy-z)(x-y)^2.$$
 (29)

Note that (27) is equivalent to

$$\sum_{i,j\in\{1,2,\cdots,n\},i\neq j} a_i^2 a_j E_1(\frac{1}{e_i},\frac{1}{e_j}) + \sum_{i,j,k\in\{1,2,\cdots,n\},i\neq j\neq k} a_i a_j a_k E_2(\frac{1}{e_i},\frac{1}{e_j},\frac{1}{e_k}) > 0.$$
 (30)

By (4.80), we have

$$\frac{1}{e_i e_j} - \frac{1}{e_i} = \frac{1}{e_i} (\frac{1}{e_j} - 1) < 0.$$
(31)

So, for any $i, j \in \{1, 2, \dots, n\}$ $(i \neq j)$, we have

$$E_1(\frac{1}{e_i}, \frac{1}{e_j}) = (\frac{1}{e_i e_j} - \frac{1}{e_i})(1 - \frac{1}{e_i})^2(\frac{1}{e_i} - \frac{1}{e_j}) < 0.$$
(32)

So,

$$\sum_{i,j\in\{1,2,\cdots,n\},i\neq j} a_i^2 a_j E_1(\frac{1}{e_i},\frac{1}{e_j}) < 0$$
(33)

By (4.80), we have

$$0 < \frac{1}{e_i} < 1 (i = 1, 2, \dots, n). \tag{34}$$

For any $i, j, k \in \{1, 2, \dots, n\}$ $(i \neq j \neq k)$, by Lemma 4.6, we have $E_2(\frac{1}{e_i}, \frac{1}{e_j}, \frac{1}{e_k}) < 0$. Therefore, for any $i, j, k \in \{1, 2, \dots, n\}$ $(i \neq j)$, we have

$$E_2(\frac{1}{e_i}, \frac{1}{e_i}, \frac{1}{e_k}) < 0. (35)$$

Then, by (4.80), we have

$$\sum_{i,j,k\in\{1,2,\cdots,n\},i\neq j\neq k} a_i a_j a_k E_2(\frac{1}{e_i},\frac{1}{e_j},\frac{1}{e_k}) < 0$$
(36)

So, by (33), we have

$$\sum_{i,j\in\{1,2,\cdots,n\},(i\neq j)} a_i^2 a_j E_1(\frac{1}{e_i},\frac{1}{e_j}) + \sum_{i,j,k\in\{1,2,\cdots,n\},(i\neq j\neq k} a_i a_j a_k E_2(\frac{1}{e_i},\frac{1}{e_j},\frac{1}{e_k}) < 0, \tag{37}$$

which contradicts to (30).

2.4 Proof of Lemma 4.6

Proof. Suppose that

$$x \le y \le z. \tag{38}$$

Below, we discuss two cases.

(1) Assume that

$$x \ge yz. \tag{39}$$

Note that

$$x, y, z \in (0, 1).$$
 (40)

By (38) and (40), we have

$$xz-y \le yz-y = y(z-1) < 0.$$
 (41)

Similarly, we have

$$xy - z < 0. (42)$$

By (39), we have

$$E_2(x,y,z) = (1-x)^2(yz-x)(y-z)^2 + (1-y)^2(xz-y)(x-z)^2 + (1-z)^2(xy-z)(x-y)^2 < 0.$$
(43)

(2) Assume that

$$x < yz$$
. (44)

Note that

$$\frac{\partial E_2}{\partial x} = 2(1-x)(x-yz)(y-z)^2 + 2(1-y)^2(y-xz)(z-x) + 2(1-z)^2(z-xy)(y-x) + (1-x)(1-yz)(y-z)^2 + (y+z^2-2xz)(z-x)(1-y)^2 + (z+y^2-2xy)(y-x)(1-z)^2.$$
(45)

Below, we first prove that for any $y, z \in (0, 1)$, $\frac{\partial E_2}{\partial x} > 0$. By (40), we have

$$(1-x)(1-yz)(y-z)^2 > 0. (46)$$

In fact, by (40) and (44), we have

$$y+z^2-2xz>y+z^2-2yz^2=y(1-z^2)+z^2(1-y)>0$$
, and (47)

$$x < yz < z. \tag{48}$$

So, we have

$$(y+z^2-2xz)(z-x)(1-y)^2 > 0.$$
 (49)

Similarly, we have

$$(z+y^2-2xy)(y-x)(1-z)^2 > 0. (50)$$

So, by (46)–(50), we have

$$\frac{\partial E_2}{\partial x} > 2(1-x)(x-yz)(y-z)^2 + 2(1-y)^2(y-xz)(z-x) + 2(1-z)^2(z-xy)(y-x). \tag{51}$$

Recall that by (48), we have x < z. Similarly, we have x < y. By (40), we have x+y>z(x+y), i.e. y-xz>yz-x. Similarly, we have z-xy>yz-x. So, by (51), we have

$$\frac{\partial E_2}{\partial x} > 2(yz - x)((1 - y)(z - x)^2 + (1 - z)(y - x)^2 - (1 - x)(y - z)^2)$$
 (52)

$$=2(yz-x)(y+z-2x)(1-y)(1-z). (53)$$

Note that by (40) and (44), we have

$$y+z-2x > y+z-2yz = y(1-z)+z(1-y) > 0.$$
 (54)

Then, we have $\frac{\partial E_2}{\partial x} > 0$. By (44), we have $E_2(x,y,z) < E_2(yz,y,z)$. Notice that by (29), we have

$$E_2(yz, y, z) = (1 - y)^2 y(z^2 - 1)(x - z)^2 + (1 - z)^2 z(y^2 - 1)(x - y)^2.$$
 (55)

By (40), we have $E_2(yz, y, z) < 0$. So, if $x, y, z \in (0, 1)$, then we have $E_2(x, y, z) < 0$.

3 Proof of Theorem 3.1 (c)

3.1 Proof of Theorem 3.1 (c) (1)

According to the hypothesis of Theorem 3.1 (c) (1), we assume that S_2 and S_3 are non-empty. By (4.11), we have

$$g(z) = -\sum_{i \in S_2} a_i \ln(-z + d_i) + \sum_{i \in S_3} a_i \ln(-z + d_i), \tag{1}$$

$$\frac{dg}{dz}(z) = \sum_{i \in S_2} \frac{a_i}{-z + d_i} - \sum_{i \in S_3} \frac{a_i}{-z + d_i}.$$
 (2)

 \Rightarrow) First, we prove the sufficiency. Assume that there exists a subset S_2^* of S_2 such that

$$\sum_{i \in S_3} a_i > \sum_{i \in S_2^*} a_i > \min_{i \in S_3} \{a_i\}. \tag{3}$$

The goal is to prove that G admits multistability. Assume that $a_p = \min_{i \in S_3} \{a_i\}$, where $p \in S_3$. First, we let $d_p := 1$. For any $i \in S_2^*$, we let $d_i := w_1$. For any $S_2 \setminus S_2^*$, we make all d_i 's the same, i.e. we let $d_i := w_2$ for any $i \in S_2 \setminus S_2^*$. Similarly, for any $S_3 \setminus \{p\}$, we also make all d_i 's the same, i.e. we let $d_i := w_3$ for any $i \in S_3 \setminus \{p\}$. We assume that $w_i > 1$ (i = 1, 2, 3). Then, by (2), we have

$$\frac{dg}{dz}(z) = \frac{\sum_{i \in S_2^*} a_i}{-z + w_1} + \frac{\sum_{i \in S_2 \setminus S_2^*} a_i}{-z + w_2} - \frac{a_p}{-z + 1} - \frac{\sum_{i \in S_3 \setminus \{p\}} a_i}{-z + w_3}.$$

Note that the interval I defined in (4.12) is $(-\infty,1)$. By (1) and (2), we have $\lim_{z\to 1^-} g(z) = -\infty$ and $\lim_{z\to 1^-} \frac{dg}{dz}(z) = -\infty$. Similar to the proof of Lemma 4.2 (ii), there exists $K \in \mathbb{R}$ such that the equation g(z) = K has at least 2 solutions z_1 and z_2 in I satisfying $\frac{dg}{dz}(z_1) < 0$ and $\frac{dg}{dz}(z_2) < 0$ iff there exist $\widetilde{z}_1, \widetilde{z}_2 \in I$ ($\widetilde{z}_1 < \widetilde{z}_2$) such that

$$\frac{dg}{dz}(\widetilde{z}_1) < 0$$
 and $\frac{dg}{dz}(\widetilde{z}_2) > 0$.

Then, by Lemma 4.1, we only need to choose proper numbers w_1 , w_2 , and w_3 such that there exist $\tilde{z}_1, \tilde{z}_2 \in I$ ($\tilde{z}_1 < \tilde{z}_2$) satisfying $\frac{dg}{dz}(\tilde{z}_1) < 0$ and $\frac{dg}{dz}(\tilde{z}_2) > 0$. Define

$$h(z) := \frac{\sum_{i \in S_2^*} a_i}{-z + w_1} - \frac{a_p}{-z + 1} - \frac{\sum_{i \in S_3 \setminus \{p\}} a_i}{-z + w_3}.$$
 (4)

We complete the proof by the following three steps.

(Step 1) In this step, we prove that there exist $w_3 > 1$ and $\tilde{z}_1 \in I = (-\infty, 1)$ such that for any $w_1 > 1$, we have $h(\tilde{z}_1) < 0$. In fact, for any $w_1 > 1$, we have

$$h(z) < \frac{\sum_{i \in S_2^*} a_i - a_p}{-z + 1} - \frac{\sum_{i \in S_3 \setminus \{p\}} a_i}{-z + w_3}.$$
 (5)

Let the RHS of (5) be H(z). We solve w_3 from H(z) < 0, and we get

$$w_3 < \frac{\mathcal{N}(z)}{\mathcal{D}(z)},\tag{6}$$

where $\mathcal{N}(z) := \sum_{i \in S_3 \setminus \{p\}} a_i(-z+1) + (\sum_{i \in S_2^*} a_i - a_p)z$ and $\mathcal{D}(z) := \sum_{i \in S_2^*} a_i - a_p$. Recall that $a_p = \min_{i \in S_3} \{a_i\}$.

Then, by (3), we have

$$\sum_{i \in S_3} a_i > \sum_{i \in S_2^*} a_i, \text{ and}$$
 (7)

$$\sum_{i \in S_2^*} a_i > a_p. \tag{8}$$

By (8), for any $z \in (0, 1)$, we have $\mathcal{N}(z) > 0$ and $\mathcal{D}(z) > 0$. Note that

$$\mathcal{N}(z) - \mathcal{D}(z)$$

$$= (\sum_{i \in S_3} a_i - \sum_{i \in S_2^*} a_i)(-z+1).$$

So, by (7), for any $z \in (0, 1)$, we have $\mathcal{N}(z) - \mathcal{D}(z) > 0$. Hence, let $\widetilde{z}_1 := \frac{1}{2}$. Then, we have

$$\frac{\mathcal{N}(z_1)}{\mathcal{D}(z_1)} > 1.$$

By (6), there exists $w_3 > 1$ such that $H(\widetilde{z}_1) < 0$. Recall that for any $w_1 > 1$, we have (5). So for any $w_1 > 1$, we have $h(\widetilde{z}_1) < 0$.

(Step 2) In this step, we prove that there exist $w_1 > 1$ and $\tilde{z}_2 \in (\tilde{z}_1, 1)$ such that $h(\tilde{z}_2) > 0$. In fact, we can solve w_1 from h(z) > 0, and we get

$$w_1 < \frac{\widetilde{\mathcal{N}}(z)}{\widetilde{\mathcal{D}}(z)},$$
 (9)

where

$$\widetilde{\mathcal{N}}(z) := \sum_{i \in S_2^*} a_i + a_p \frac{z}{-z+1} + (\sum_{i \in S_3 \setminus \{p\}} a_i) \frac{z}{-z+w_3}$$

and

$$\widetilde{\mathcal{D}}(z) := a_p \frac{1}{-z+1} + (\sum_{i \in S_3 \setminus \{p\}} a_i) \frac{1}{-z+w_3}.$$

For any $z \in (0, 1)$, we have $\widetilde{\mathcal{N}}(z) > 0$ and $\widetilde{\mathcal{D}}(z) > 0$. Note that

$$\widetilde{\mathcal{N}}(z) - \widetilde{\mathcal{D}}(z)$$

$$= \sum_{i \in S_2^*} a_i - a_p + (\sum_{i \in S_3 \setminus \{p\}} a_i) \frac{z - 1}{-z + w_3}.$$

Since $w_3 > 1$, we have

$$\lim_{z\to 1} (\widetilde{\mathcal{N}}(z) - \widetilde{\mathcal{D}}(z)) = \sum_{i\in S_2^*} a_i - a_p.$$

By (8), the above limit is positive. Therefore, we can choose $\widetilde{z}_2 \in (\widetilde{z}_1, 1)$ such that

$$\frac{\widetilde{\mathcal{N}}(z_2)}{\widetilde{\mathcal{D}}(z_2)} > 1.$$

So, by (9), we can choose appropriate $w_1 > 1$ such that $h(\tilde{z}_2) > 0$.

(Step 3) In this step, we prove that there exists $w_2 > 1$ such that $\frac{dg}{dz}(\widetilde{z}_1) < 0$ and $\frac{dg}{dz}(\widetilde{z}_2) > 0$. In fact, we let

$$w_2 = \max \left\{ \frac{2 \sum_{i \in S_2 \setminus S_2^*} a_i}{-h(\widetilde{z}_1)} + \widetilde{z}_1, 2 \right\}.$$

Therefore, we have

$$\frac{dg}{dz}(\widetilde{z}_1) = h(\widetilde{z}_1) + \frac{\sum\limits_{i \in S_2 \setminus S_2^*} a_i}{-\widetilde{z}_1 + w_2} \le \frac{h(\widetilde{z}_1)}{2} < 0, \text{ and}$$
(10)

$$\frac{dg}{dz}(\widetilde{z}_2) = h(\widetilde{z}_2) + \frac{\sum\limits_{i \in S_2 \setminus S_2^*} a_i}{-\widetilde{z}_2 + w_2} > h(\widetilde{z}_2) > 0.$$
(11)

 \Leftarrow) Next, we prove the necessity. Our goal is to prove that if there does not exist a subset S_2^* of S_2 such that

$$\sum_{i \in S_3} a_i > \sum_{i \in S_2^*} a_i > \min_{i \in S_3} \{a_i\},\tag{12}$$

then the network G does not admit multistability. Below, we prove the conclusion by deducing a contradiction. Assume that the network G admits multistability. By Lemma 4.1, G admits multistability iff there exist $\{d_i\}_{i=1}^s \subset \mathbb{R}$ and $K \in \mathbb{R}$ such that the equation g(z)=K has at least 2 solutions z_1 and z_2 in the interval $I=(\mathcal{L},\mathcal{R})$ defined in (4.12) satisfying $\frac{dg}{dz}(z_1)<0$ and $\frac{dg}{dz}(z_2)<0$, where these d_i 's are distinct from each other. Assume that $|S_i|=s_i$ (i=2,3), and assume that $S_2=\{1,\cdots,s_2\}$, and $S_3=\{s_2+1,\cdots,s_2+s_3\}$. Note that if there does not exist a subset S_2^* of S_2 such that $\sum\limits_{i\in S_3}a_i>\sum\limits_{i\in S_2^*}a_i>\min\limits_{i\in S_3}\{a_i\}$, then we have the following cases.

(Case 1) $s_3 = 1$.

(Case 2) $s_3 \ge 2$ and for any $i \in S_2$, we have $\sum_{i \in S_3} a_i \le a_i$.

(Case 3) Assume that $a_{s_1+1} \le a_{s_1+2} \le \cdots \le a_{s_1+s_2}$. There exists $k \in \{1, ..., s_2\}$, such that $\sum_{i=s_1+1}^{s_1+k} a_i \le \min_{i \in S_3} \{a_i\} < \sum_{i \in S_3} a_i \le a_{s_1+k+1} \le \cdots \le a_{s_1+s_2}$.

Below, we will prove the conclusion by discussing the three cases.

(Case 1) Assume that $s_3 = 1$. Then, $S_3 = \{s_2 + 1\}$. Suppose $d_1 < d_{s_1 + 2} < \cdots < d_{s_2}$.

- (Case 1.1) If $d_{s_2+1} < d_1$, then the interval I defined in (4.12) is $(-\infty, d_{s_2+1})$. Notice that by (2), for any $i \in \{1, ..., s_2-1\}$, $\lim_{z \to d_i^+} \frac{dg}{dz}(z) = -\infty$ and $\lim_{z \to d_{i+1}^-} \frac{dg}{dz}(z) = +\infty$. Note also that $\frac{dg}{dz}(z)$ is continuous in (d_i, d_{i+1}) . So, there exists $z_i \in (d_i, d_{i+1})$ such that $\frac{dg}{dz}(z_i) = 0$. Hence, $\frac{dg}{dz}(z) = 0$ has at least $s_2 1$ solutions in $(d_1, +\infty)$. Since the numerator of $\frac{dg}{dz}(z)$ is a polynomial with degree s_2 , $\frac{dg}{dz}(z) = 0$ has no more than s_2 real solutions. Hence, there is at most 1 real solution in $I = (-\infty, d_{s_2+1})$. On the other hand, by (1) and (2), we have $\lim_{z \to d_{s_2+1}^-} g(z) = -\infty$ and $\lim_{z \to d_{s_2+1}^-} \frac{dg}{dz}(z) = -\infty$. By Lemma 4.1, if G admits multistability, then g(z) = K has at least 2 solutions z_1 and z_2 in I satisfying $\frac{dg}{dz}(z_1) < 0$ and $\frac{dg}{dz}(z_2) < 0$. So, there exists a sufficiently small δ such that $g(z_1 + \delta) < K$ and $g(z_2 \delta) > K$. By Lagrange's Mean Value Theorem , there exists $z_3 \in (z_1, z_2)$ such that $\frac{dg}{dz}(z_3) > 0$. Since $\frac{dg}{dz}(z_1) < 0$ and $\frac{dg}{dz}(z_2) < 0$, $\frac{dg}{dz}(z_2) < 0$ has at least 2 solutions in I, which is a contradiction.
- (Case 1.2) If $d_{s_2+1}>d_1$, then the interval I defined in (4.12) is $(-\infty,d_1)$. Notice that by (2), for any $i\in\{1,...,s_2-1\}$, we have $\lim_{z\to d_1^+}\frac{dg}{dz}(z)=-\infty$ and $\lim_{z\to d_{i+1}^-}\frac{dg}{dz}(z)=+\infty$. So, for any $i\in\{1,...,s_2-1\}$ satisfying $d_{s_2+1}\notin(d_i,d_{i+1})$, there exists $z_i\in(d_i,d_{i+1})$ such that $\frac{dg}{dz}(z_i)=0$. Note that d_{s_2+1} is located in at most one of the s_2-1 intervals (d_i,d_{i+1}) ($i\in\{1,...,s_2-1\}$). Hence, $\frac{dg}{dz}(z)=0$ has at least s_2-2 real solutions in $(d_1,+\infty)$. Since the numerator of $\frac{dg}{dz}(z)$ is a polynomial with degree s_2 , $\frac{dg}{dz}(z)=0$ has no more than s_2 real solutions in $(-\infty,+\infty)$. Hence, $\frac{dg}{dz}(z)=0$ has no more than 2 real solutions in I. On the other hand, by (1) and (2), we have $\lim_{z\to d_1^-}g(z)=1$ has at least 2 solutions z_1 and z_2 in I satisfying $\frac{dg}{dz}(z_1)<0$ and $\frac{dg}{dz}(z_2)<0$. So, there exists a sufficiently small δ such that $g(z_1+\delta)<K$ and $g(z_2-\delta)>K$. By Lagrange's Mean Value Theorem , there exists $z_3\in(z_1,z_2)$ such that $\frac{dg}{dz}(z_3)>0$.

Note that $\frac{dg}{dz}(z_1) < 0$ and $\frac{dg}{dz}(z_2) < 0$. Since $\lim_{z \to d_1^-} \frac{dg}{dz}(z) = +\infty$, $\frac{dg}{dz}(z) = 0$ has at least 3 solutions in *I*, which is a contradiction.

(Case 2) Recall that the hypothesis of this case is that $s_3 \ge 2$ and for any $i \in S_2$, we have $\sum_{i \in S_3} a_i \le a_i$. Notice that the interval I defined in (4.12) is

$$I = (\mathcal{L}, \mathcal{R}), \tag{13}$$

where

$$\mathcal{L} = -\infty$$
, and (14)

$$\mathcal{R} = \min\{d_i\}_{i \in S_2 \cup S_3}.\tag{15}$$

By Lemma 4.1, if G admits multistability, then g(z)=K has at least 2 solutions z_1 and z_2 in I satisfying $\frac{dg}{dz}(z_1)<0$ and $\frac{dg}{dz}(z_2)<0$. So, there exists a sufficiently small δ such that $g(z_1+\delta)< K$ and $g(z_2-\delta)> K$. By Lagrange's Mean Value Theorem, there exists $z_3\in (z_1,z_2)$ such that $\frac{dg}{dz}(z_3)>0$. That means there exist $\widetilde{z}_1,\widetilde{z}_2,\widetilde{z}_3\in I$ $(\widetilde{z}_1<\widetilde{z}_2<\widetilde{z}_3)$, such that

$$\frac{dg}{dz}(\widetilde{z}_1) < 0, \frac{dg}{dz}(\widetilde{z}_2) > 0, \text{ and } \frac{dg}{dz}(\widetilde{z}_3) < 0.$$
 (16)

Similar to the proof of Theorem 3.1 (b) (3), if the hypothesis of this case holds, then we have

$$\sum_{i \in S_2} \frac{a_i^2}{(-z_0 + d_i)^2} > \left(\sum_{i \in S_2} \frac{a_i}{-z_0 + d_i}\right)^2,\tag{17}$$

which is a contradiction.

(Case 3) Assume there exists $k \in \{1, 2, ..., s_2\}$, such that

$$\sum_{i=1}^{k} a_i \le \min_{i \in S_3} a_i \le \sum_{i \in S_2} a_i \le a_{k+1} \le \dots \le a_n.$$
 (18)

As *G* admits multistability, the interval *I* defined in (4.12) is not an empty set. So, we have

$$I = (-\infty, \min\{d_i\}_{i \in S_2 \cup S_3}). \tag{19}$$

By Lemma 4.1, if *G* admits multistability, then g(z) = K has at least 2 solutions z_1 and z_2 in *I* satisfying $\frac{dg}{dz}(z_1) < 0$ and $\frac{dg}{dz}(z_2) < 0$. So, there exists a sufficiently

small δ such that $g(z_1+\delta) < K$ and $g(z_2-\delta) > K$. By Lagrange's Mean Value Theorem, there exists $z_3 \in (z_1, z_2)$ such that $\frac{dg}{dz}(z_3) > 0$. That means there exist $\widetilde{z}_1, \widetilde{z}_2, \widetilde{z}_3 \in I$ $(\widetilde{z}_1 < \widetilde{z}_2 < \widetilde{z}_3)$, such that

$$\frac{dg}{dz}(\widetilde{z}_1) < 0, \frac{dg}{dz}(\widetilde{z}_2) > 0, \text{ and } \frac{dg}{dz}(\widetilde{z}_3) < 0.$$
 (20)

Note that here, we rename z_1 , z_3 and z_2 as \tilde{z}_1 , \tilde{z}_2 and \tilde{z}_3 . Let

$$\mathcal{L}(z) := \frac{1}{z+d} + \sum_{i \in S_2} \frac{a_i}{-z+d_i} - \sum_{i \in S_2} \frac{a_i}{-z+d_i},$$
(21)

where

$$d := -\widetilde{z}_1 + \frac{1}{\min_{i=1,2,3} \{ \left| \frac{dg}{dz}(z_i) \right| \}}.$$
 (22)

Notice that by (20), we have

$$\mathcal{L}(\widetilde{z}_{1}) = \min_{i=1,2,3} \left\{ \left| \frac{dg}{dz}(z_{i}) \right| \right\} + \frac{dg}{dz}(\widetilde{z}_{1}) < 0,$$

$$\mathcal{L}(\widetilde{z}_{2}) = \frac{1}{\widetilde{z}_{2} + d} + \frac{dg}{dz}(\widetilde{z}_{2}) > 0, \text{ and}$$

$$\mathcal{L}(\widetilde{z}_{3}) = \frac{1}{\widetilde{z}_{3} - \widetilde{z}_{1} + \min_{i=1,2,3} \left\{ \left| \frac{dg}{dz}(z_{i}) \right| \right\} + \frac{dg}{dz}(\widetilde{z}_{3}) < \min_{i=1,2,3} \left\{ \left| \frac{dg}{dz}(z_{i}) \right| \right\} + \frac{dg}{dz}(\widetilde{z}_{3}) < 0.$$

Similarly to the proof of Theorem 3.1 (b) (3), if the hypothesis of this case holds, then the three inequalities $\mathcal{L}(\widetilde{z}_1) < 0$, $\mathcal{L}(\widetilde{z}_2) > 0$, and $\mathcal{L}(\widetilde{z}_3) < 0$ will lead to a contradiction. So, the conclusion holds.

3.2 Proof of Theorem 3.1 (c) (2)

According to Theorem 3.1 (c) (2), we assume that S_1 and S_4 are non-empty. So, by (4.11), we have

$$g(z) := \sum_{i \in S_1} a_i \ln(z + d_i) - \sum_{i \in S_4} a_i \ln(z + d_i).$$

Define

$$\widetilde{g}(z) := -g(-z) = -\sum_{i \in S_1} a_i \ln(-z + d_i) + \sum_{i \in S_4} a_i \ln(-z + d_i).$$

Notice that $\frac{d\widetilde{g}}{dz}(z) = \frac{dg}{dz}(-z)$. Let $I^* := \{-z|z \in I\}$. Then, there exist $z_1, z_2 \in I$ such that $g(z_i) = 0$ and $\frac{dg}{dz}(z_i) < 0$ (i = 1, 2) if and only if there exist $z_1^*, z_2^* \in I^*$ such that $\widetilde{g}(z_i^*) = 0$ and $\frac{d\widetilde{g}}{dz}(z_i^*) < 0$ (i = 1, 2). Note that by the proof of Theorem 3.1 (c) (1), there exist $z_1^*, z_2^* \in I^*$ such that $\widetilde{g}(z_i^*) = 0$ and $\frac{d\widetilde{g}}{dz}(z_i^*) < 0$ (i = 1, 2) if and only if there exists a subset S_2^* of S_2 such that $\sum_{i \in S_3} |a_i| > \sum_{i \in S_2^*} |a_i| > \min_{i \in S_3} \{|a_i|\}$. So, by Lemma 4.1, G admits multistability if and only if there exists a subset S_1^* of S_1 such that $\sum_{i \in S_4} |a_i| > \sum_{i \in S_1^*} |a_i| > \min_{i \in S_4} \{|a_i|\}$.