MATH 2603, Fall 2015, Exam 2 Sample: Closed book, no calculators. Instructor: Esther Ezra.

Answer all questions on this sheet.

Name GT IDnumber Section Number

Problem 1. Let t_n be the number of ternary strings in which we never have "20" occurring as a substring.

a. Write a recurrence equation for t_n , as well as the initial conditions for n = 1, 2.

Initial conditions:

$$t(1) = 3, t(2) = 8.$$

Note that we also have t(0) = 1, as when n = 0 we have just the "empty string".

Recurrence equation:

$$t_n = 2t_{n-1} + (t_{n-1} - t_{n-2}) = 3t_{n-1} - t_{n-2},$$

as when the string end with a '0', we must not have '2' at the preceding location. Then the number of strings in this case is $t_{n-1} - t_{n-2}$.

b. Solve the equation you formed in part a, in order to have an explicit form for t_n .

The characteristic polynomial is

$$x^2 = 3x - 1.$$

The roots are thus $x = (3 \pm \sqrt{5})/2$. Thus we have

$$t_n = c_1 \left(\frac{3 + \sqrt{5}}{2} \right)^n + c_2 \left(\frac{3 - \sqrt{5}}{2} \right)^n.$$

Using the initial conditions we find c_1, c_2 :

$$t_n = \frac{\sqrt{5} + 3}{2\sqrt{5}} \left(\frac{3 + \sqrt{5}}{2} \right)^n + \frac{\sqrt{5} - 3}{2\sqrt{5}} \left(\frac{3 - \sqrt{5}}{2} \right)^n.$$

Problem 2. Consider the alphabet consisting of the ten digits $\{0, 1, ..., 9\}$ and the 26 capital letters $\{'A', 'B', ..., 'Z'\}$.

a. How many strings of length 10 can be generated if repetitions of symbols is permitted?

$$36^{10}$$
.

b. Same question when repetition of symbols is not permitted.

c. Same question where we are now restricting the string to consist of only two 'A's, three 'D's, four '3's and one '0'.

$$\binom{10}{2,3,4,1}.$$

d. Same question where we allow to have precisely four digits, and two of the remaining characters must be 'A's.

$$\binom{10}{4}10^4\binom{6}{4}25^4.$$

Problem 3. How many integer-valued solutions are there to each of the following equations and inequalities?

a. $x_1 + x_2 + x_3 + x_4 = 50$, s.t. $x_i > 0$, for all i = 1, ..., 4.

 $\binom{49}{3}$.

b. $x_1 + x_2 + x_3 + x_4 = 50$, s.t. $x_i \ge 0$, for all i = 1, ..., 4.

 $\binom{53}{3}$.

c. $x_1 + x_2 + x_3 + x_4 \le 50$, s.t. $x_i > 0$, for all i = 1, ..., 4.

 $\binom{50}{4}$.

d. $x_1 + x_2 + x_3 + x_4 \le 50$, s.t. $x_i \ge 0$, for all $i = 1, \dots, 4$.

 $\binom{54}{4}$.

e. $x_1 + x_2 + x_3 + x_4 = 50$, s.t. $x_i > 0$, for all i = 1, ..., 3, and $x_4 \ge 9$.

 $\binom{41}{3}$.

Problem 4. Use induction in order to show:

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$

(Show the base case and then the inductive step.)

For the case n = 1 we have:

$$1^2 = \frac{1 \cdot 2 \cdot 3}{6} = 1.$$

We now assume that the equation is correct for n, and we show that it still holds for n+1:

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} + (n+1)^{2} = \frac{n(n+1)(2n+1)}{6} + (n+1)^{2} = \frac{(n+1)(n(2n+1) + n + 1)}{6}$$

$$=\frac{(n+1)(2n^2+7n+6)}{6}=\frac{(n+1)((n+2)(2n+3))}{6},$$

and the last term is consistent with our induction hypothesis.

Problem 5. How many integers between 1 and 100 are divisible by 3, 4 or 5?

This is an application of the Exclusion-inclusion principle. Let A_i be the set of integers between 1 and 100 that are divisible by i. Then we have

$$|A_3| = |100/3| = 33, |A_4| = 100/4 = 25. |A_5| = 100/5 = 20.$$

Next let $A_{i,j}$ be the set of integers between 1 and 100 that are divisible by i and j, and $A_{i,j,k}$ be the set of integers between 1 and 100 that are divisible by i and j, and k. Since all pairs among 3,4,5 are relatively primes, we have

$$|A_{3,4}| = \lfloor 100/12 \rfloor = 8, |A_{3,5}| = \lfloor 100/15 \rfloor = 6, |A_{4,5}| = 100/20 = 5,$$

and we also have $|A_{3,4,5}| = \lfloor 100/60 \rfloor = 1$. Thus by inclusion-exclusion principle, the number of integers between 1 and 100 that are divisible by 3, 4 or 5 is:

$$33 + 25 + 20 - (8 + 6 + 5) + 1 = 60.$$

Problem 6. Order the following terms in increasing "big-O"-order (if two functions are of the same order of growth, you should state this fact):

$$n^{4/3}$$
, $\sqrt{n \log n}$, $n \log \log n$, $2^{n/2}$, $\log (n!)$, n^{-2} , 1 , $n^{1/\log n}$.

$$n^{-2} \ll 1 \approx n^{1/\log n} \ll \sqrt{n \log n} \ll n \log \log n \ll \log n! \ll n^{4/3} \ll 2^{n/2}$$
.

Due to Stirling's approximation $\log(n!)$ behaves as:

$$\log\left(\sqrt{2\pi n}(n/e)^n\right) = n\log\left(n/e\right) + \log\sqrt{2\pi n}.$$

Since $e \approx 2.71$ is a constant and $\log \sqrt{2\pi n}$ is negligible, we have that $n \log n$ is the leading term, and so $\log (n!)$ behaves as $n \log n$.

Next,

$$n^{1/\log n} = (2^{\log n})^{1/\log n} = 2.$$

Then $n^{1/\log n} = O(1)$.

Problem 7. Prove that for any natural number n, and any integer $1 \le k \le n$, we always have

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

This is the Pascal's triangle identity. The number of subsets of size k chosen among $\{1, 2, ..., n\}$ is $\binom{n}{k}$. We can classify each of these subsets as (i) the subset contains the (last) element n, (ii) the subset does not contain it.

The number of subsets of type (ii) is $\binom{n-1}{k}$ as we make the choice among $\{1,2,\dots,n-1\}$.

The number of subsets of type (i) is $\binom{n-1}{k-1}$ since we first isolate n and choose a subset of size k-1 from the remaining elements $\{1,2,\ldots,n-1\}$. Then we append n to each of these subsets.

Problem 8. True-False. Mark in the left Margin.

- 1. The system $x \equiv 2 \pmod{4}$, $x \equiv 6 \pmod{7}$ has a unique solution $x \equiv 6 \pmod{28}$.
- 2. The function $f(x) = x^2 1$ is one-to-one and onto **F**
- 3. The number of lattice paths from (0,0) to (n,n) is $\binom{2n}{n}$.
- 4. In a regular n-gon one can draw at most n-3 diagonals that do not cross. T
- 5. The MergeSort algorithm divides first the input sequence into two equal-size subsequences, sorts each of them recursively, and then merges the two sorted subsequences to form the answer. T
- 6. The InsertionSort algorithm uses at most $O(n \log n)$ comparisons on a sequence of n numbers.
- 7. The number of possibilities to distribute r distinct balls among n boxes, where every box can contain an arbitrary number of balls, is $\binom{n+r-1}{r}$. **F**
- 8. For all integers n > 0, $9^n 5^n$ is divisible by 4. T