Analysis of Massive Data Sets

http://www.fer.hr/predmet/avsp

Prof.dr.sc. Siniša Srbljić

Doc.dr.sc. Dejan Škvorc

Doc.dr.sc. Ante Đerek

Faculty of Electrical Engineering and Computing
Consumer Computing Laboratory

Analysis of Massive Data Sets

Detection of near-duplicate documents using locality sensitive hashing

Otkrivanje sličnih dokumenata koristeći sažimanje neosjetljivo na lokalne promjene

Klemo Vladimir

Outline

- Motivation
- Fingerprinting
 - Simhash algorithm
 - Rabin's rolling hash function
- Scalable queries
 - MapReduce sketch
- Literature

Motivation

- Near-duplicate documents
 - Versioning
 - Different versions of single document
 - Revisions, different file formats, ...
 - Mirroring
 - published in more than one location
 - Plagiarism
 - Exact or "processed" copy
 - Malware
 - Viruses, spam, ...
- Scalability
 - Documents and document respositories are large

Exact copy analysis

- Checksumming
 - Cryptographic hash functions
 - MD5, SHA1, SHA2, ...

- Catches the smallest edit
 - Great for detection of exact copies
 - Not so good for near-duplicate detection
 - Even the smallest change will result in totally different digest

Near-duplicate detection

- Two families of methods
 - 1. Fingerprinting
 - Document hashing *1
 - Dimensionality reduction
 - 2. Ranking
 - Information retrieval techniques *2
 - High-dimensional vectors manipulation

Fingerprinting

Similarity preserving hashing

- X, set of inputs
- $-d_x$, distance function on X
 - x₁, x₂ elements of X
- similarity preserving hash function
 - h: X → Y
 - |Y| < |X|
- d_y, distance function on Y

Fingerprinting

- Similarity preserving hashing
 - Similar inputs have similar hashes

if
$$d_x(x_1, x_2) < \varepsilon_x$$
, then
$$d_y(h(x_1), h(x_2)) < \varepsilon_y$$

Illustrative example

```
-h("1234") = 0xaaaf h("5678") = 0xb115
-h("1234") = 0xaaaf h("1235") = 0xaaae
```

Fingerprinting

- Simhash algorithm *3
 - Author: M. Charikar, 2002
 - Fingerprinting technique
 - Fingerprints of near-duplicates differ in a small number of bit positions (hamming distance)
 - Dimensionality reduction
 - Maps high-dimensional vectors to small-sized fingerprints (f-bits)
 - Input
 - High-dimensional vector (strings, numbers, ...)
 - Output
 - f-bit fingerprint
 - Fingerprint size (f-bits)
 - f is small and arbitrary
 - eg. f=64 for web sites

• Simhash computation, f=4

Input vector simhash, sh Hash each item h_n h_0 h_1 h_2 h_3 h_{y2} h_{y3} For each bit h_{vx} in h_{v} , y=0..n if $h_{vx} == 1$: $sh_{x} += 1$ sh₃ sh₂ sh₁ sh₀ n steps if $h_{vx} == 0$: $sh_x -= 1$ $-n < sh_x < +n$ if $sh_x >= 0$: $sh_x = 1$ b_0 if $sh_x < 0$: $sh_x = 0$

Simhash example, f=4

final simhash:

-1	1	-1	3
0	1	0	1

0x5

- Weighted Simhash computation
 - Assign weight factor to each feature

Input vector
$$\begin{bmatrix} \mathbf{i}_0 & \mathbf{i}_1 & \mathbf{i}_2 & \mathbf{i}_3 & \dots & \mathbf{i}_n \\ \mathbf{W}_0 & \mathbf{W}_1 & \mathbf{W}_2 & \mathbf{W}_3 & \mathbf{W}_n \end{bmatrix}$$

if
$$h_{yx} == 1$$
: $sh_{x} += w_{y}$
if $h_{yx} == 0$: $sh_{x} -= w_{y}$

- Choice of hash function h
 - Uniform distribution
 - Fast
 - Candidates
 - Cryptographic hash functions
 - MD5 (128-bit), SHA-1 (256-bit)
 - Problem: cryptographic hashing is slow
 - Rolling hash functions
 - Input is hashed by moving window element by element

- Choice of hash function h
 - Rabin rolling hash
 - Used in Rabin-Karp string searching algorithm
 - Input: string
 - h(k) = kmodq, q is some large prime number
 - Computation
 - substring coded as a number with base d
 - d = total number of possible characters
 - Coded string at position i:

$$x_i = s[i]d^{k-1} + s[i+1]d^{k-2} + ... + s[i+k-1]$$

- Choice of hash function h
 - Rabin rolling hash
 - Example: k=4, d=32
 - i=0
 0 1 2 3 4 5 6 7 8 9
 1 0 r e m i p s u m
 1 0 r e

h("lore") = h(
$$x_o$$
) = x_o mod q
 x_o = int('l')32³ + int('o')32² + int('r')32 + int('e')
 x_{i+1} =?

- Choice of hash function h
 - Rabin rolling hash
 - Example: k=4, d=32
 - i=1
 0 1 2 3 4 5 6 7 8 9

 I o r e m i p s u m

 o r e m

h("orem") = h(x₁) = x₁ mod q

$$x_1 = (x_0 - int('l')d^3)d + int('m')$$

 $x_{i+1} = (x_i - s[i]d^{k-1})d + s[i+k]$

- Choice of hash function h
 - Rabin rolling hash
 - Fingerprints represented using polynomials
 - Computes hash value of the next string from the previous one
 - Constant number of operations
 - Independent of string length

- Input vector
 - Focus on raw text documents
 - Convert document to a feature vector
 - Feature extraction
 - Tokenization
 - Unigram, 2-gram, 3-gram, ...
 - Stemming
 - Stopword removal
 - Phrase detection

Tokenization examples

```
"lorem ipsum dolor sit amet"
```

1. word tokens

```
"lorem", "ipsum", "dolor", "sit", "amet"
```

2. 2-word tokens

```
"lorem ipsum", "ipsum dolor", "dolor sit", "sit amet"
```

3. character 3-grams

```
"lor", "ore", "rem", "em ", "m i", ...
```

- Shingle
 - hash of k-gram
 - k-grams
 - Characters, words, phrases, sentences (or combination)
 - k = ?
 - Small k: dissimilar documents appear similar
 - Large k: similar documents appear dissimilar
 - Feature vector from IR output
 - Weighted (TF) with IDF (inverse document frequency)
 - Might change when collection changes!

- **F**, collection of f-bit fingerprints
- **Q**, query
 - single or set of fingerprints

- Task
 - identify whether Q differs from any of the fingerprints in F in at most k bits

- Google numbers
 - 8B 64-bit fingerprints = 64GB
 - Online query
 - Q = single fingerprint
 - Restriction: few milliseconds
 - Batch query
 - Q = set of fingerprints
 - e.g. |Q| = 1M
 - Restriction: ~100seconds
 - 1B queries per day

- Distribution of fingerprints
 - 8B 64-bit fingerprints

- 1. approach
 - Build sorted table of F
 - Build list Q' with all fingerprints whose Hamming distance from Q is at most k

Q'	
0	0
0	1
1	0
0	0
	0 0 1

- 8B 64-bit fingerprints (k=3)
 - $|Q'| = {64 \choose 3} = 41664$

	F	
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

- 2. approach
 - 1. Build sorted table of F
 - 2. Find set of fingerprints (F') that have equal most significant part (p bits)
 - Sorted table binary search O(p)
 - 3. Check Hamming distance for each fingerprint in F'
 - This approach will locate all fingerprints in F that differ in at most k bits
 - Restricted to least significant f-p bits!

Illustration

Binary search (Exact match)

Since p < f: some true positives are missed!

- Increasing precision/recall
 - Generate additional table
 - Reversed positions

- Solution
 - Build additional tables
 - Each with different permutation of bits
 - Every table has different set of significant bits
- Algorithm for fast (online) queries
 - Build t sorted tables of fingerprints: T₁, T₂, ..., T_t
 - Each table T_i also contains
 - p_i number of significant bits
 - Π_i random permutation
 - Every fingerprint in T_i is permuted with permutation Π_i

- Illustration
 - Build tables
 - Query in parallel

- For given Q and k
 - Read each table (in parallel)
 - 1. Get fingerprints in T_i whose significant p_i bits match the significant p_i bits of $\Pi_i(Q)$
 - T',
 - O(p_i) steps (binary search)
 - 2. For each fingerprint in T', check if it's Hamming distance is at most k bits from Π_i(Q)

- Example with t=20, f=64, k=3, $|F| = 8B (2^{34})$
 - Split f into 6 blocks (4x11 + 2x10 bits)
 - Select 3 out of 6 blocks $\binom{6}{3}$ = 20 ways
 - Arrange those blocks as significant bits
 - p = sum of those bits
 - 31, 32, or 33
 - On average query returns 2³⁴⁻³¹=8 fingerprints

- t and p parameters
 - t ~ p
 - Query time ~ 1/p
 - Storage requirements ~ p
 - Space/time tradeoff
 - Analytical solution for t *1

- Batch queries using MapReduce and GFS
 - F and Q are files in the GFS (with replication)
 - F ~ 64GB, Q ~ 8MB
 - F is stored in GFS chunks
 - Number of mappers = number of F chunks
 - Map:
 - Solves Hamming distance for chunk (64MB) and emits list of near-duplicates
 - Reduce
 - Remove duplicates

Experimental results

- Detecting near-duplicate web pages
 - Web-crawling in Google
- Database
 - 8B fingerprints, k=1..10
- Manually tag experimental data set
 - True/false positive/negative
- Precision/recall graph
 - Precision: #tp / # returned results
 - Recall: #tp / # expected results

Experimental results

Papers

- [1] Manku, Gurmeet Singh, Arvind Jain, and Anish Das Sarma. "*Detecting near-duplicates for web crawling.*" In Proceedings of the 16th international conference on World Wide Web, pp. 141-150. ACM, 2007.
- [2] Hoad, Timothy C., and Justin Zobel. "Methods for identifying versioned and plagiarized documents." Journal of the American society for information science and technology 54, no. 3 (2003): 203-215.
- [3] Charikar, Moses S. "Similarity estimation techniques from rounding algorithms." In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pp. 380-388. ACM, 2002.
- [4] Henzinger, Monika. "Finding near-duplicate web pages: a large-scale evaluation of algorithms." Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 2006.