Funktionalanalysis

Übungsaufgaben zu:

"Lecture 38 – Ein Differentialoperator"

38 / 1:*Betrachte den Hilbertraum $L^2(0,1)$, seinen Teilraum

$$E := \{ h \in C^1(0,1) : h' \text{ absolut stetig}, h'' \in L^2(0,1), h(0) = h(1), h'(0) = h'(1) \},$$

und die lineare Abbildung $K: E \to L^2(0,1)$ die definiert ist als Kh := -h'' + h.

Zeige, dass K bijektiv ist, und dass K^{-1} kompakt und selbstadjungiert ist. Bestimme $\sigma(K^{-1})$ und die Eigenräume $\ker(K^{-1}-\lambda)$ für $\lambda\in\sigma_p(K^{-1})$.

(Man beachte den Unterschied im Verhalten dieses periodischen Problems zu dem Verhalten eines Sturm-Liouville Problems mit getrennten Randbedingungen)

Hinweis. Bemerke als erstes dass K injektiv ist. Dann betrachte den Operator Lh := -h'' auf dem durch die Randbedingungen h(0) = h(1) = 0 festgelegten Definitionsbereich D. Die Einschränkungen von L+1 bzw. K auf $D \cap E$ sind gleich. Verwende dies, um zu zeigen dass K surjektiv ist und dass $K^{-1} = L^{-1} + T$ gilt, wobei T ein Operator mit endlichdimensionalem Bild ist.