Çoklu Doğrusal Regresyon Modeli: Tahmin Ekonometri I

Dr. Ömer Kara¹

¹İktisat Bölümü Eskişehir Osmangazi Üniversitesi

16 Aralık 2020

Taslak

- Motivasyon
 - ÇDR Modeli: Örnekler
 - Çoklu Doğrusal Regresyon Modeli
 - k Bağımsız Değişkenli ÇDR Modeli
 - Gauss-Markov Varsayımları
 - Anakütle Regresyon Fonksiyonu
- Soklu Doğrusal Regresyon Modeli Tahmini
 - Örneklem Regresyon Fonksiyonu
 - Tahmin Yöntemleri
 - Parametre Tahmincileri
 - Yorumlama ve Örnekler
 - Tahmin Edilen Değerler ve Kalıntılar
 - Model Tahminlerinin Karsılastırılması
 - Kareler Toplamları ve Uyum İyiliği
 - Parametre Tahmincilerinin Varyansları
- Parametre Tahmincilerinin Özellikleri
 - SEKK Parametre Tahmincilerinin Sapmasızlığı
 - SEKK Parametre Tahmincilerinin Etkinliği
 - Gauss-Markov Teoremi
- Modelleme Sorunları
 - Modele Gereksiz Bağımsız Değişkenlerin Eklenmesi
 - Gerekli Bağımsız Değişkenlerin Model Dışında Bırakılması

 Basit Doğrusal Regresyon (BDR) analizinde kilit varsayım olan BDR.5 varsayımı çoğu zaman gerçekçi olmayan bir varsayımdır.

BDR.5: Sıfır Koşullu Ortalama Varsayımı

$$E(u|X) = 0$$

• Daha önce gördüğümüz Yinelenen Beklentiler Kanunu'nu hatırlayalım.

Yinelenen Beklentiler Kanunu

$$E[E(u|X)] = E(u)$$

• Yinelenen Beklentiler Kanunu kullanılarak BDR.5 varsayımı yeniden tanımlanabilir.

$$E[E(u|X)] = E(u)$$

$$E[\underbrace{E(u|X)}_{=0}] = E(u)$$

$$E[0] = E(u)$$

$$0 = E(u)$$

BDR.5: Sıfır Koşullu Ortalama Varsayımı

$$E(u|X) = E(u) = 0$$

• Koşullu beklenen değerin 6. özelliğini kullanarak *u* ve *x* arasındaki ilişki hakkında daha fazla yorumda bulunabiliriz.

Kosullu Beklenen Değer: Özellik 6

Eğer
$$E(u|X) = E(u)$$
 ise $Cov(x, u) = 0$ ve $Corr(x, u) = 0$

• Korelasyondan farklı olarak, koşullu beklenen değer u ve x arasındaki non-lineer ilişkiyi de kapsadığından BDR.5 varsayımı yeniden tanımlanabilir.

BDR.5: Sıfır Koşullu Ortalama Varsayımı

$$E(u|X) = E(u) = 0$$

$$Cov(x, u) = 0, \quad Corr(x, u) = 0 \quad \text{ve} \quad E(xu) = 0$$

Sonuç: *u* ve *x* bağımsızdır. Yani *u* ve *x* hem lineer hem de non-lineer olarak ilişkisizdir.

- BDR.5 varsayımı ile, y'yi etkileyen diğer tüm faktörler (gözlemlenemeyen hata terimi u) x ile ilişkisizdir (ceteris paribus).
- Bu faktörler spesifik (kesin) olarak kontrol edilemez. Sadece, bu faktörlerin ortalama olarak değişmediği varsayılır ($\Delta u = 0$).
- İktisadi değişkenlerin bir çoğu birbiriyle ilişkili olduğundan bağımsız bir değişken x'in bağımlı değişken y üzerindeki yalın etkisini bulmak için bazı faktörlerin spesifik olarak kontrol edilmesi gerekir.
- BDR analizinde spesifik kontrol mümkün olmadığından dolayı ceteris paribus varsayımını uygulamak çok zordur.
- Bu nedenle BDR analizinde çoğu zaman BDR.5 varsayımı ihlal edilir ve parametre tahmincileri (β_0 ve β_1) sapmalı olur.
- Çoklu Doğrusal Regresyon analizinde ise açıkça diğer birçok faktör spesifik olarak kontrol edildiğinden ceteris paribus varsayımına uygundur.

Motivasyon - Fonksiyonel Form

- Çoklu Doğrusal Regresyon (ÇDR) analizinde bağımlı değişkeni (y) eşanlı olarak etkileyen pek çok etkeni (x) kontrol edebiliriz. Kısacası, çok sayıda bağımsız değişkeni (x) kullanabiliriz.
- Modele yeni bağımsız değişkenler ekleyerek y'deki değişimin daha büyük bir kısmını açıklayabiliriz. Yani, *y*'nin tahmini için daha üstün/iyi modeller geliştirebiliriz.
- CDR analizinde regresyonun biçimini, yani fonksiyonel formunu, belirlemede çok daha geniş olanaklara sahip oluruz.
- Kısacası, ÇDR modeli bize daha zengin bir analiz imkanı sunar.

2 Bağımsız Değişkenli ÇDR Modeli

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

Ücret Modeli

$$wage = \beta_0 + \beta_1 educ + \beta_2 exper + u$$

wage: Saatlik ücret (dolar); educ: Eğitim düzeyi (yıl); exper: Tecrübe düzeyi (yıl)

- β_1 , ücretleri etkileyen diğer tüm faktörler sabit tuttuğumuzda ($\Delta exper$ ve $\Delta u = 0$), eğitimin ücretler üzerindeki etkisini ölçer.
- β_2 , ücretleri etkileyen diğer tüm faktörler sabit tuttuğumuzda ($\Delta e duc$ ve $\Delta u = 0$), tecrübenin ücretler üzerindeki etkisini ölcer.
- Yukarıdaki regresyonda tecrübeyi sabit tutarak eğitimin ücretlere etkisini ölçebiliyoruz. Basit regresyonda bu olanak yoktu. Sadece educ ile u ilişkisizdir diye varsayıyorduk. Yani sadece $\Delta u = 0$ diyebiliyorduk.

Sınav Başarı Modeli

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

$$avgscore = \beta_0 + \beta_1 expend + \beta_2 avginc + u$$

avgscore: Ortalama sınav sonucu; expend: Öğrencinin eğitim harcaması; avqinc: Ortalama aile geliri

• Eğer ortalama aile gelirini (avqinc) modele doğrudan sokmazsak (yanlış modeli kullanırsak), onu *u*'nun içinde almış oluruz.

Doğru Model
$$\longrightarrow y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

Yanlış Model $\longrightarrow y = \delta_0 + \delta_1 x_1 + u^*$
 $u^* = \beta_2 x_2 + u$ (Yanlış Model Hata Terimi)

Doğru Model
$$\longrightarrow y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

Yanlış Model $\longrightarrow y = \delta_0 + \delta_1 x_1 + u^*$
$$u^* = \beta_2 x_2 + u \qquad \qquad \text{(Yanlış Model Hata Terimi)}$$

- Ortalama aile geliri (avginc), öğrencinin harcaması (expend) ile yakından ilişkili olduğundan:
 - x_1 ile u^* iliskili olacaktır $\longrightarrow Cov(x_1, u^*) \neq 0$
 - BDR.5 varsayımı ihlal edilecektir $\longrightarrow E(u^*|X) \neq 0$
 - Sonuç olarak $\hat{\delta}_1$ sapmalı tahmin edilecektir $\longrightarrow E(\hat{\delta}_1|X) \neq \delta_1$
- Eğer doğru modeli (avginc değişkenini modele ekleyerek) kullanırsak hem avginc'i doğrudan kontrol etme olanağına kavuşmuş olacağız hem de sapmasız parametre tahmincileri elde edeceğiz.

Tüketim Modeli: Karesel (Quadratic) Fonksiyonel Form

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \longrightarrow y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + u$$
$$cons = \beta_0 + \beta_1 inc + \beta_2 inc^2 + u$$

cons: Tüketim; inc: Gelir; $x_1 = inc$; $x_2 = inc^2$; $x_2 = x_1^2$

- Bu modelde β_1 'in yorumu farklı olacaktır. Geliri (*inc*) değiştirirken, gelirin karesini (inc^2) sabit $(\Delta inc^2 = 0)$ tutamayız. Çünkü, gelir değişirse karesi de değişir.
- Burada, gelirdeki bir birim değişmenin tüketim üzerindeki etkisi, yani marjinal tüketim eğilimi (marginal propensity to consume) şu şekilde hesaplanabilir:

$$\frac{\Delta y}{\Delta x_1} \approx \beta_1 + 2\beta_2 x_1 \longrightarrow \frac{\Delta cons}{\Delta inc} \approx \beta_1 + 2\beta_2 inc$$

k Bağımsız Değişkenli CDR Modeli

Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$
 (İndekssiz)

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + u_i$$
 (İndeksli)

- k: bağımsız değişken sayısı $\longrightarrow j = 1, 2, ..., k$
- k + 1: bilinmeyen sabit β parametre sayısı $\longrightarrow \beta_0, \beta_1, \dots, \beta_k$
- n: gözlem (veri) sayısı $\longrightarrow i = 1, 2, ..., n$ ve s = 1, 2, ..., n, $i \neq s$
- *y*: bağımlı değişken
- x_i : j'inci bağımsız değişken $\longrightarrow x_1, x_2, \dots, x_k$
- *u*: Hata terimi. *x*'ler dışında modele dahil edilmemiş tüm faktörlerin ortak etkisi
- β_0 : Kesim parametresi (1 tane var)
- β_i : x_i bağımsız değişkeni için eğim parametresi (k tane var)
- X: Tüm bağımsız değişkenlerin bütün olarak temsili $\longrightarrow X_i \equiv \{x_{i1}, x_{i2}, \dots, x_{ik}\}$

k Bağımsız Değişkenli CDR Modeli

Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$
 (İndekssiz)

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + u_i$$
 (İndeksli)

- β_i : y'yi etkileyen diğer tüm faktörler sabit tutulduğunda x_i' deki değişmenin y'de yaratacağı etkiyi/değişmeyi gösterir.
- β_1 : u'vi etkileyen diğer tüm faktörler, yani diğer x'ler ve u'da içerilen faktörler, sabitken ($\Delta x_2 = \Delta x_3 = \cdots = \Delta x_k = \Delta u = 0$), x_1 'deki değişmenin u'de yaratacağı etkiyi/değişmeyi gösterir.
 - Parametreleri yorumlarken fonksiyonel forma dikkat edilmelidir.
 - Düzey-Düzey, Log-Log, Log-Düzey ve Düzey-Log fonksiyonel formlarındaki yorumlama farklarını hatırlayın!
- Modele ne kadar çok x bağımsız değişkeni eklenirse eklensin dışarıda bırakılmış ya da gözlemlenemeyen faktörler her zaman olacaktır.

ÇDR.1: Gözlem Sayısı

Gözlem sayısı n tahmin edilecek anakütle parametre sayısından büyük ya da en azından esit olmalıdır.

$$n \ge k + 1$$

CDR.2: Parametrelerde Doğrusallık

Model parametrelerde doğrusaldır.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u \checkmark$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \checkmark$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + u \checkmark$$

$$y = \beta_0 + \beta_1^2 x_1 + \beta_2 x_2 + u \checkmark$$

$$y = \beta_0 + \beta_1 x_1 + \sqrt{\beta_2} x_2 + u \checkmark$$

CDR.3: Rassallık

Tahminde kullanılan n tane gözlem ilgili anakütleden rassal örnekleme yoluyla seçilmiştir. Yani gözlemler stokhastiktir (rassal), deterministik (kesin) değil.

$$\{(x_{i1}, x_{i2}, \dots, x_{ik}, y_i) : i = 1, 2, \dots, n\}$$

CDR.4: Tam Çoklu Doğrusal Bağıntının Olmaması

Örneklemde (ve bu nedenle anakütlede) bağımsız değişkenlerin hiçbiri kendi içinde sabit değildir (yeterli değişenlik vardır) ve bağımsız değişkenler arasında tam çoklu doğrusal bağıntı (TÇDB) yoktur.

$$\sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2 > 0, \quad \forall j = 1, 2, \dots, k$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \quad \longrightarrow \quad x_2 = 2x_1 \quad \text{TCDB VAR } \bigstar$$

$$\longrightarrow \quad x_2 = x_1^2 \quad \text{TCDB YOK } \bigstar$$

CDR.5: Sıfır Koşullu Ortalama

u hata teriminin bağımsız değişkenlerin herhangi bir değeri verildiğinde beklenen değeri sıfıra eşittir.

$$E(u|x_1,x_2,\ldots,x_k)=E(u|X)=0$$

• Yinelenen Beklentiler Kanunu (Slayt 4) ve Koşullu beklenen değerin 6. özelliği (Slayt 5) kullanılarak Sıfır Koşullu Ortalama varsayımı yeniden tanımlanabilir.

CDR.5: Sıfır Kosullu Ortalama

$$E(u|X) = E(u) = 0$$

$$Cov(x_i, u) = 0$$
, $Corr(x_i, u) = 0$ ve $E(x_i u) = 0$, $\forall j = 1, 2, ..., k$

Sonuç: u ve x_i bağımsızdır. Yani u ve x_i hem lineer hem de non-lineer olarak ilişkisizdir.

CDR.6: Otokorelasyon Olmaması

Hata terimleri arasında otokorelasyon yoktur.

$$Corr(u_i,u_s|x_1,x_2,\ldots,x_k)=0,\quad i\neq s$$

$$Corr(u_i,u_s|X)=0,\quad i\neq s$$

$$Corr(u_i,u_s)=0,\quad i\neq s$$
 (u ve x 'ler bağımsız olduğundan)

- ÇDR.6 varsayımı, yatay-kesit verilerindeki rassallık varsayımı (ÇDR.3) nedeniyle aslında otomatik olarak sağlanır. Fakat çok ekstrem durumlarda gereklidir ve bu nedenle diğer birçok kaynaktan farklı olarak eklenmiştir.
- ÇDR.6 varsayımı aşağıdaki eşitlikleri de sağlar.

ÇDR.6: Otokorelasyon Olmaması

$$Cov(u_i, u_s | X) = 0$$
 ve $Cov(u_i, u_s) = 0$, $i \neq s$
 $E(u_i u_s | X) = 0$ ve $E(u_i u_s) = 0$, $i \neq s$

CDR.7: Sabit Varyans Varsayımı (Homoscedasticity)

u hata teriminin bağımsız değişken x'lere göre koşullu varyansı sabittir.

$$Var(u|x_1,x_2,\ldots,x_k)=\sigma^2$$

$$Var(u|X)=\sigma^2$$

$$Var(u)=\sigma^2$$
 (u ve x 'ler bağımsız olduğundan)

CDR.7 varsayımı aşağıdaki eşitlikleri de sağlar.

CDR.7: Sabit Varyans Varsayımı (Homoscedasticity)

$$E(u^2|X) = \sigma^2$$
 ve $E(u^2) = \sigma^2$

• σ regression standart sapmasıdır (bilinmiyor, bu nedenle tahmin edilecek).

- Yukarida verilen Gauss-Markov varsayımları yatay-kesit verisi ile yapılan regresyon için geçerli varsayımlardır.
- Zaman serileri ile yapılan regresyonlarda bu varsayımların değiştirilmesi gerekir.
- Gauss-Markov Varsayımları, ÇDR Varsayımları olarak da anılır.
- Bazı ÇDR varsayımlarının detayı ilerleyen slatlarda konu akışı içinde verilmiştir.
- Gauss-Markov Varsayımları daha sonra Gauss-Markov Teoremi'ni oluşturmada kullanılacaktır.
- Gauss-Markov Teoremi ise ÇDR modelinin Sıradan En Küçük Kareler Yöntemi ya da Momentler Yöntemi ile tahmini için teorik dayanak sağlamada kullanılacaktır. Bakınız Slayt 81.

Anakütle Regresyon Fonksiyonu

• CDR.5 ve CDR.7 varsayımları altında bağımlı değişken y'nin x'e göre koşullu dağılımı aşağıdaki gibi ifade edilebilir.

y'nin x'e Göre Koşullu Dağılımı $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + u$ (Model) $E(y|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k$ (ARF) $Var(u|X) = \sigma^2$ $y|X \sim (\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k, \sigma^2)$ (y'nin dağılımı) Varyans Ortalama

Anakütle Regresyon Fonksiyonu

• Anakütle Regresyon Fonksiyonu (ARF) bağımlı değişken y'nin x'e göre koşullu ortalamasıdır.

Anakütle Regresyon Fonksiyonu (ARF)

$$E(y|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$
 (İndekssiz)

$$E(y_i|X_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik}$$
 (İndeksli)

Orneklem Regresyon Fonksiyonu: Amaç

- CDR tahminindeki asıl amacımız:
 - Öncelikle, iktisat teorisine göre model oluşturmak.
 - Sonra, Gauss-Markov varsayımları kullanarak ARF'yi oluşturmak.
 - Son olarak, ARF'yi rassal örnekleme yoluyla seçtiğimiz belli sayıdaki veriyi kullanarak tahmin etmektir.
- ARF'nin tahmini ise Örneklem Regresyon Fonksiyonu'dur ve bu tahmin örneklemden örnekleme değişir.

Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$

Anakütle Regresyon Fonksiyonu (ARF)

$$E(y|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

Örneklem Regresyon Fonksiyonu (ÖRF)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k$$

Örneklem Regresyon Fonksiyonu: Amaç

Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + u$$

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + u_i$$

(İndekssiz) (İndeksli)

Anakütle Regresyon Fonksiyonu (ARF)

$$E(y|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

$$E(y_i|X_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik}$$

(İndekssiz) (İndeksli)

Örneklem Regresyon Fonksiyonu (ÖRF)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k$$

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \dots + \hat{\beta}_k x_{ik}$$

(İndekssiz) (İndeksli)

Örneklem Regresyon Fonksiyonu

Örneklem Regresyon Fonksiyonu (ÖRF)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k \qquad \text{(İndekssiz)}$$

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \dots + \hat{\beta}_k x_{ik} \qquad \text{(İndeksli)}$$

$$y_i = \hat{y}_i + \hat{u}_i$$
Gözlemlenen Değer Tahmin Edilen Değer Kalıntı (Artık)
Rassal Değil (Deterministik)

- \hat{y}_i : y_i bağımlı değişkenin tahmini
- Paramete tahmincileri/tahmin edicileri örneklemden örnekleme değişir, yani rassaldır.
 - $\hat{\beta}_0$: β_0 kesim parametresinin tahmini (1 tane var)
 - $\hat{\beta}_i$: β_i eğim parametresinin tahmini (k tane var)
- \hat{u}_i : Kalıntı (artık). Rassal değildir, tahmin sırasında hesaplanır. Hata terimi u_i 'nun örneklem analoğu olarak yorumlanabilir fakat kesinlikle aynı şeyler değildir.

Örneklem Regresyon Fonksiyonu

• Model, ARF ve ÖRF denklemleri arasında dikkat edilmesi gereken farklar vardır.

Model, ARF ve ÖRF

$$\underbrace{y_i}_{\text{G\"{o}zlemlenen De\'{g}er}} = \underbrace{\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik}}_{E(y_i|X_i)} + \underbrace{u_i}_{\text{Rassal Hata Terimi}}$$
(Model)

(Sistemetik Kısım)

(Sistematik Olmayan Kısım)

$$E(y_i|X_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik}$$

Sistemetik Kısım

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \dots + \hat{\beta}_k x_{ik}$$
 (ÖRF)

Tahmin Edilen Değer

Sistemetik Kısmın Tahmini

$$y_i$$
 = \hat{y}_i + \hat{u}_i

Gözlemlenen Değer Tahmin Edilen Değer

Kalıntı (Artık)

Rassal Değil (Deterministik)

(ARF)

Orneklem Regresyon Fonksiyonu: Tahmin Yöntemleri

Model, ARF ve ÖRF

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$
 (Model)

$$E(y|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$
 (ARF)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k \tag{ÖRF}$$

- Örneklem Regresyon Fonksiyonu (ÖRF), iki yöntemle tahmin edilebilir.
 - Sıradan En Küçük Kareler (SEKK) Yöntemi
 - Momentler Yöntemi
- İki yöntem de aynı tahmin sonuçlarını verir.

Sıradan En Küçük Kareler Yöntemi

 Sıradan En Küçük Kareler (SEKK) Yöntemi, kalıntı kareleri toplamını (SSR) en küçük yapan parametre tahmincilerini hesaplamaya çalışır.

Örneklem Regresyon Fonksiyonu (ÖRF)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k$$

Gözlemlenen Değer, Tahmin Edilen Değer ve Artık

$$y_i = \hat{y}_i + \hat{u}_i \longrightarrow \hat{u}_i = y_i - \hat{y}_i$$

SEKK Amaç Fonksiyonu

$$\min_{\hat{\beta}_0, \, \hat{\beta}_j} SSR = \min_{\hat{\beta}_0, \, \hat{\beta}_j} \sum_{i=1}^n \hat{u}_i^2 = \min_{\hat{\beta}_0, \, \hat{\beta}_j} \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_k x_{ik})^2$$

Sıradan En Küçük Kareler Yöntemi

SEKK Birinci Sıra Koşulları

$$\frac{\partial SSR}{\partial \hat{\beta}_{0}} = -2\sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \hat{\beta}_{2}x_{i2} - \dots - \hat{\beta}_{k}x_{ik}) = 0$$

$$\frac{\partial SSR}{\partial \hat{\beta}_{1}} = -2\sum_{i=1}^{n} x_{i1}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \hat{\beta}_{2}x_{i2} - \dots - \hat{\beta}_{k}x_{ik}) = 0$$

$$\frac{\partial SSR}{\partial \hat{\beta}_{2}} = -2\sum_{i=1}^{n} x_{i2}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \hat{\beta}_{2}x_{i2} - \dots - \hat{\beta}_{k}x_{ik}) = 0$$

$$\vdots = \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\frac{\partial SSR}{\partial \hat{\beta}_{k}} = -2\sum_{i=1}^{n} x_{ik}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \hat{\beta}_{2}x_{i2} - \dots - \hat{\beta}_{k}x_{ik}) = 0$$

Sıradan En Küçük Kareler Yöntemi

SEKK Birinci Sıra Koşulları

$$\sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \hat{\beta}_{2}x_{i2} - \dots - \hat{\beta}_{k}x_{ik}) = 0 \longrightarrow \sum_{i=1}^{n} \hat{u}_{i} = 0$$

$$\sum_{i=1}^{n} x_{i1}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \hat{\beta}_{2}x_{i2} - \dots - \hat{\beta}_{k}x_{ik}) = 0 \longrightarrow \sum_{i=1}^{n} x_{i1}\hat{u}_{i} = 0$$

$$\sum_{i=1}^{n} x_{i2}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \hat{\beta}_{2}x_{i2} - \dots - \hat{\beta}_{k}x_{ik}) = 0 \longrightarrow \sum_{i=1}^{n} x_{i2}\hat{u}_{i} = 0$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad 0 \longrightarrow \vdots \qquad = 0$$

$$\sum_{i=1}^{n} x_{ik}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \hat{\beta}_{2}x_{i2} - \dots - \hat{\beta}_{k}x_{ik}) = 0 \longrightarrow \sum_{i=1}^{n} x_{ik}\hat{u}_{i} = 0$$

• Birinci sıra koşullarından elde edilen k+1 tane denklemin çözümünden SEKK parametre tahmin edicileri $\hat{\beta}_0$ ve $\hat{\beta}_i$ 'ler (toplamda k+1 tane) bulunur.

Momentler Yöntemi

- Anakütle moment koşulları ÇDR.5 varsayımı kullanılarak yazılabilir.
- Daha sonra anakütle moment koşullarını kullanarak örneklem moment koşulları elde edilebilir.

CDR.5: Sıfır Koşullu Ortalama

$$E(u|X) = E(u) = 0$$

$$Cov(x_j, u) = 0$$
, $Corr(x_j, u) = 0$ ve $E(x_j u) = 0$, $\forall j = 1, 2, ..., k$

Sonuç: u ve x_i bağımsızdır. Yani u ve x_i hem lineer hem de non-lineer olarak ilişkisizdir.

Momentler Yöntemi

Anakütle Moment Koşulları ve Örneklem Moment Koşulları

Anakütle Örneklem
$$E(u) = 0 \longrightarrow \sum_{i=1}^{n} \hat{u}_i = 0$$

$$E(x_1 u) = 0 \longrightarrow \sum_{i=1}^{n} x_{i1} \hat{u}_i = 0$$

$$E(x_2 u) = 0 \longrightarrow \sum_{i=1}^{n} x_{i2} \hat{u}_i = 0$$

$$\vdots = 0 \longrightarrow \vdots = 0$$

$$E(x_k u) = 0 \longrightarrow \sum_{i=1}^{n} x_{ik} \hat{u}_i = 0$$

Momentler Yöntemi

- Örneklem moment koşullarından elde edilen k + 1 tane denklemin çözümünden parametre tahmin edicileri $\hat{\beta}_0$ ve $\hat{\beta}_i$ 'ler (toplamda k+1 tane) bulunur.
- SEKK birinci sıra koşulları ve örneklem moment koşulları aslında aynı denklemler kümesini verir.
- Bu nedenle, SEKK Yöntemi ve Momentler Yöntemi ile ÇDR modeli tahmin edildiğinde aynı sonuçlara ulaşılır.
- Genellikle kullanılan yöntem SEKK'dır.
- Bu yöntemlerin tek çözüm vermesi için ÇDR.4 (Tam Çoklu Doğrusal Bağıntının Olmaması) varsayımının sağlanması gereklidir. Bakınız Slayt 15.

Ana Model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + u_i$$
 (Model - İndeksli)
$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2}$$
 (ÖRF - İndeksli)

• β_0 kesim parametresinin tahmini $\hat{\beta}_0$:

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}_1 - \hat{\beta}_2 \bar{x}_2$$

• β_1 eğim parametresinin tahmini, ya da x_1 'nin eğim parametresinin tahmincisi, $\hat{\beta}_1$:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \hat{r}_{i1} y_i}{\sum_{i=1}^n \hat{r}_{i1}^2}$$

• β_1 eğim parametresinin tahmini, ya da x_1 'in eğim parametresinin tahmincisi, $\hat{\beta}_1$:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \hat{r}_{i1} y_i}{\sum_{i=1}^n \hat{r}_{i1}^2}$$

• Burada \hat{r}_{i1} , x_1 'in x_2 üzerine uygulanan regresyondan (1. yardımcı regresyon) elde edilen kalıntılardır.

1. Yardımcı Regresyon Tahmini

$$x_{i1} = \hat{\alpha}_0 + \hat{\alpha}_1 x_{i2} + \hat{r}_{i1}$$

(İndeksli)

- 1. yardımcı regresyondan elde edilen kalıntı \hat{r}_1 , x_1 içindeki x_2 'nin etkisi çıkarıldıktan sonraki x_1 'i ifade eder.
- Bu işlemdeki amaç bağımlı değişken y üzerinde bağımsız değişkenler x_1 ve x_2 arasındaki doğrusal bağıntı nedeniyle oluşabilecek dolaylı etkiyi kaldırmaktır.

- Amacımız x_1 'in y'yi yalın/kısmi olarak ne kadar etkilediğini yani $\hat{\beta}_1$ 'yı bulmaktı.
- Öyleyse $\hat{\beta}_1$, y'nin \hat{r}_1 üzerine uygulanan regresyondan (2. yardımcı regresyon) elde edilen eğim parametresinin tahminidir.

2. Yardımcı Regresyon Tahmini

$$y_i = \hat{\delta}_0 + \hat{\beta}_1 \hat{r}_{i1} + \hat{\epsilon}_i$$
 (İndeksli)

- $\hat{\epsilon}_i$ ve $\hat{\delta}_0$, sırasıyla 2. yardımcı regresyondaki kalıntıları ve kesim parametresi tahminini ifade eder. Bu değerler bizim ilgi alanımızda değildir.
- 2. yardımcı regresyon basit doğrusal regresyon olduğundan, daha önceden bildiğimiz eğim parametresi tahmicisinin formülünü kullanabiliriz.

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})y_i}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

• \hat{r}_j , 2. yardımcı regresyonda bağımsız değişken olarak görev yaptığı için formüldeki x'ler yerine konulabilir.

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})y_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \longrightarrow \hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (\hat{r}_{i1} - \bar{\hat{r}}_{1})y_{i}}{\sum_{i=1}^{n} (\hat{r}_{i1} - \bar{\hat{r}}_{1})^{2}}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (\hat{r}_{i1} - \bar{\hat{r}}_{1})y_{i}}{\sum_{i=1}^{n} (\hat{r}_{i1} - \bar{\hat{r}}_{1})^{2}} \longrightarrow \hat{\beta}_{1} = \frac{\sum_{i=1}^{n} \hat{r}_{i1}y_{i}}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}} \quad (1. \text{ Yardımcı Regresyondan})$$

• Kısacası $\hat{\beta}_1$, x_1 içindeki x_2 'nin etkisi çıkarıldıktan sonraki x_1 'nin bağımlı değişken y'yi etkileyen yalın/kısmi yani ceteris paribus etkisini ifade eder.

Ana Model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + u_i$$
 (Model - İndeksli)
$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \dots + \hat{\beta}_k x_{ik}$$
 (ÖRF - İndeksli)

• β_0 kesim parametresinin tahmini $\hat{\beta}_0$ (1 tane var):

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}_1 - \hat{\beta}_2 \bar{x}_2 - \dots - \hat{\beta}_k \bar{x}_k$$

• β_i eğim parametresinin tahmini, ya da x_i 'nin eğim parametresinin tahmincisi, $\hat{\beta}_i$ (*k* tane var):

$$\hat{\beta}_{j} = \frac{\sum_{i=1}^{n} \hat{r}_{ij} y_{i}}{\sum_{i=1}^{n} \hat{r}_{ij}^{2}}$$

• x_i 'nin eğim parametresinin tahmincisi $\hat{\beta}_i$ (k tane var):

$$\hat{\beta}_{j} = \frac{\sum_{i=1}^{n} \hat{r}_{ij} y_{i}}{\sum_{i=1}^{n} \hat{r}_{ij}^{2}}$$

• Burada \hat{r}_{ij} , x_i 'nin diğer tüm x'ler $(x_1, x_2, \dots, x_{j-1}, x_{j+1}, \dots, x_k)$ üzerine uygulanan regresyondan (1. yardımcı regresyon) elde edilen kalıntılardır.

1. Yardımcı Regresyon Tahmini

$$x_{ij} = \hat{\alpha}_0 + \hat{\alpha}_1 x_{i1} + \hat{\alpha}_2 x_{i2} + \dots + \hat{\alpha}_{j-1} x_{ij-1} + \hat{\alpha}_{j+1} x_{ij+1} + \dots + \hat{\alpha}_k x_{ik} + \hat{r}_{ij} \quad \text{(İndeksli)}$$

- 1. yardımcı regresyondan elde edilen kalıntı \hat{r}_i , x_i içindeki diğer tüm x'lerin $(x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_k)$ etkisi çıkarıldıktan sonraki x_i 'yi ifade eder.
- Bu işlemdeki amaç bağımlı değişken y üzerinde bağımsız değişken x'ler arasındaki çoklu doğrusal bağıntı nedeniyle oluşabilecek dolaylı etkiyi kaldırmaktır.

- Amacımız x_i 'nin y'yi yalın/kısmi olarak ne kadar etkilediğini yani $\hat{\beta}_i$ 'yı bulmaktı.
- Öyleyse $\hat{\beta}_i$, y'nin \hat{r}_i üzerine uygulanan regresyondan (2. yardımcı regresyon) elde edilen eğim parametresinin tahminidir.

2. Yardımcı Regresyon Tahmini

$$y_i = \hat{\delta}_0 + \hat{\beta}_j \hat{r}_{ij} + \hat{\epsilon}_i$$
 (İndeksli)

- $\hat{\epsilon}_i$ ve $\hat{\delta}_0$, sırasıyla 2. yardımcı regresyondaki kalıntıları ve kesim parametresi tahminini ifade eder. Bu değerler bizim ilgi alanımızda değildir.
- 2. yardımcı regresyon basit doğrusal regresyon olduğundan, daha önceden bildiğimiz eğim parametresi tahmicisinin formülünü kullanabiliriz.

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})y_i}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

 \bullet \hat{r}_i , 2. yardımcı regresyonda bağımsız değişken olarak görev yaptığı için formüldeki x'ler yerine konulabilir.

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})y_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \longrightarrow \hat{\beta}_{j} = \frac{\sum_{i=1}^{n} (\hat{r}_{ij} - \bar{\hat{r}}_{j})y_{i}}{\sum_{i=1}^{n} (\hat{r}_{ij} - \bar{\hat{r}}_{j})^{2}}$$

$$\hat{\beta}_{j} = \frac{\sum_{i=1}^{n} (\hat{r}_{ij} - \overbrace{\bar{r}_{j}}) y_{i}}{\sum_{i=1}^{n} (\hat{r}_{ij} - \overbrace{\bar{r}_{j}})^{2}} \longrightarrow \hat{\beta}_{j} = \frac{\sum_{i=1}^{n} \hat{r}_{ij} y_{i}}{\sum_{i=1}^{n} \hat{r}_{ij}^{2}}$$
(1. Yardımcı Regresyondan)

• Kısacası $\hat{\beta}_i, x_i$ içindeki diğer tüm x'lerin $(x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_k)$ etkisi çıkarıldıktan sonraki x_i 'nin bağımlı değişken y'yi etkileyen yalın/kısmi yani ceteris paribus etkisini ifade eder.

Sıfır Koşullu Ortalama Varsayımı (CDR.5) Yorumu

2 Bağımsız Değişkenli Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

• 2 bağımsız değişkenli modelde, u'nun x'lerle ilişkisiz olması varsayımını, yani CDR.5, şu şekilde formüle edebilirz.

$$E(u|x_1, x_2) = E(u|X) = 0$$

- Yani x_1 ve x_2 'nin anakütledeki tüm kombinasyonları için u'nun beklenen değeri sıfırdır.
- Örneğin, ücret modelinde (Slayt 8), ÇDR.5 varsayımı aşağıdaki gibi yazılabilir.

$$wage = \beta_0 + \beta_1 educ + \beta_2 exper + u$$
 (Model)

$$E(u|educ, exper) = 0$$
 (ÇDR.5)

- Bu ücretleri etkileyen diğer faktörlerin (u) ortalama olarak educ ve exper ile ilişkisiz olduğu anlamına gelir.
- Örneğin, doğuştan gelen yetenek (ability) u'nun bir parçası ise, ortalama yetenek düzeyi, eğitim ve tecrübenin tüm kombinasyonlarında aynıdır (sabittir).

Sıfır Koşullu Ortalama Varsayımı (ÇDR.5) Yorumu

• Sınav başarı modelinde (Slayt 9), ÇDR.5 varsayımı aşağıdaki gibi yazılabilir.

$$wage = \beta_0 + \beta_1 e duc + \beta_2 exper + u$$
 (Model)

$$E(u|expend, avginc) = 0$$
 (ÇDR.5)

- Yani, ortalama sınav sonucunu etkileyen diğer faktörler (okula ya da öğrenciye özgü vs.), ortalama olarak, expend ve avginc değişkenleriyle ilişkisizdir.
- Tüketim modelinde (Slayt 11), ÇDR.5 varsayımı aşağıdaki gibi yazılabilir.

$$cons = \beta_0 + \beta_1 inc + \beta_2 inc^2 + u$$
 (Model)

$$E(u|inc,inc^2) = E(u|inc) = 0$$
 (ÇDR.5)

• Burada inc biliniyorken, inc² otomatik olarak bilineceğinden ayrıca koşullu beklenti içinde yazmaya gerek yoktur.

Regresyonun Yorumu: 2 Bağımsız Değişken

Model ve ÖRF

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$
 (Model)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$
 (ÖRF)

 $\Delta \hat{y} = \hat{\beta}_1 \Delta x_1 + \hat{\beta}_2 \Delta x_2$

(Değişim Cinsinden)

- Eğim paramtresi tahmincisi $\hat{\beta}_1$, bağımsız değişken x_1 'in y üzerindeki yalın/kısmi yani ceteris paribus etkisini verir.
- $\hat{\beta}_1$ 'nın yorumu: x_2 sabitken, yani $\Delta x_2 = 0$ iken

$$\Delta \hat{y} = \hat{\beta}_1 \Delta x_1$$

- x_2 sabitken, x_1 'de meydana gelen 1 birimlik değişmenin y'de meydana getireceği ortalama değişim $\hat{\beta}_1$ kadardır.
 - Parametreleri yorumlarken fonksiyonel forma dikkat edilmelidir.
- Benzer şekilde $\hat{\beta}_2$ 'nın yorumu: x_1 sabitken, yani $\Delta x_1 = 0$ iken

$$\Delta \hat{y} = \hat{\beta}_2 \Delta x_2$$

Regresyonun Yorumu: k Bağımsız Değişken

Model ve ÖRF

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$
 (Model)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k$$
 (ÖRF)

$$\Delta \hat{y} = \hat{\beta}_1 \Delta x_1 + \hat{\beta}_2 \Delta x_2 + \dots + \hat{\beta}_k \Delta x_k$$
 (Değişim Cinsinden)

- Eğim paramtresi tahmincisi $\hat{\beta}_j$, bağımsız değişken x_j 'nin y üzerindeki yalın/kısmi yani ceteris paribus etkisini verir.
- $\hat{\beta}_j$ 'nın yorumu: diğer tüm bağımsız değişkenler $(x_1, x_2, \dots, x_{j-1}, x_{j+1}, \dots, x_k)$ sabitken, yani $\Delta x_1 = \Delta x_2 = \dots = \Delta x_{j-1} = \Delta x_{j+1} = \dots = \Delta x_k = 0$ iken

$$\Delta \hat{y} = \hat{\beta}_j \Delta x_j$$

- Diğer tüm bağımsız değişkenler $(x_1, x_2, \ldots, x_{j-1}, x_{j+1}, \ldots, x_k)$ sabitken, x_j 'de meydana gelen 1 birimlik değişmenin y'de meydana getireceği ortalama değişim $\hat{\beta}_j$ kadardır.
 - Parametreleri yorumlarken fonksiyonel forma dikkat edilmelidir.

Örnek: Üniversite Başarı Modeli

Üniversite Basarı Modeli (CDR)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + u$$
 (Tahmin)

$$\widehat{colGPA} = 1.29 + 0.453 \ hsGPA + 0.0094 \ ACT$$
 (Tahmin)

n = 141 Öğrenci; colGPA: Üniversite genel not ortalaması (4 üzerinden); hsGPA: Lise not ortalaması; ACT: Genel yetenek sınav sonucu

- Sabit terim $\hat{\beta}_0 = 1.29$ olarak tahmin edilmiştir.
 - hsGPA = 0 ve ACT = 0 olduğunda modelce tahmin edilen üniversite genel not ortalaması colGPA'yı ifade eder. Ancak örneklemde hsGPA ve ACT'si 0 olan öğrenci olmadığından yorumlanması anlamsızdır.
- ACT'yi sabit tutarak lise not ortalaması hsGPA'yı 1 puan arttırdığımızda üniversite genel not ortalaması colGPA 0.453 puan artar.
- hsGPA'yı sabit tutarak genel yetenek sınav sonucu ACT'yi 1 puan arttırdığımızda üniversite genel not ortalaması colGPA 0.0094 puan artar.

Örnek: Üniversite Başarı Modeli

• Sadece genel yetenek sınav sonucu ACT'yi kullanarak basit regresyon tahmin etseydik:

Üniversite Basarı Modeli (BDR)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + u$$

(Tahmin)

$$\widehat{colGPA} = 2.4 + 0.0271 \ ACT$$

(Tahmin)

- ACT'nin paramatre tahmincisi $\hat{\beta}_2$ önceki çoklu regresyonda bulunandan 3 kat daha vüksek çıktı.
- Bu regresyon, bize lise not ortalaması (hsGPA) aynı olan iki öğrenciyi ortalama olarak karşılaştırma olanağı vermiyor fakat önceki regresyonda veriyordu.
- Lise not ortalaması hsGPA'yı kontrol ettiğimizde genel yetenek sınav sonucu ACT'nin üniversite genel not ortalaması colGPA üzerindeki önemi/etkisi azalıyor.

Örnek: Logaritmik Ücret Modeli

Logaritmik Ücret Modeli

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + u$$
 (Tahmin)

$$ln wage = 0.284 + 0.092 \ educ + 0.0041 \ exper + 0.022 \ tenure$$
(Tahmin)

n=526 Çalışan; wage: Saatlik ücret (dolar); educ: Eğitim düzeyi (yıl); exper: Tecrübe düzeyi (yıl); tenure: Kıdem (yıl)

- Bağımlı değişken logaritmik ve bağımsız değişkenler düzey (log-düzey) olarak modelde yer aldığından paramtere tahmincileri 100 ile çarpılarak % olarak ceteris paribus yorumlanmalıdır.
- Örneğin, exper ve tenure sabit tutulduğunda educ bir yıl arttırılırsa wage ortalama olarak %9.2 (%0.092 × 100) artar.
- Başka bir ifadeyle, *exper* ve *tenure* düzeyleri aynı olan iki çalışandan birinin *educ* düzeyi diğerinden bir yıl fazlaysa, bu iki çalışan için tahmin edilen ücret farkı ortalama olarak %9.2'dir.
- Burada somut iki işçiden değil ortalama durumdan bahsedilmektedir.

Diğer Değişkenleri Sabit Tutmanın Anlamı

• CDR'de parametre tahmincilerini ceteris paribus koşulu altında bağımsız değişkenlerin y üzerindeki yalın/kısmi etkileri olarak yorumluyoruz.

• Örneğin, logaritmik ücret modelinde (Slayt 47) $\hat{\beta}_2 = 0.092$ olması, exper ve

- tenure düzeyleri aynı olan iki çalışandan birinin educ düzeyi 1 yıl fazla olanın ortalama olarak %9.2 daha yüksek ücret alacağı şeklinde yorumlanmıştı.
- Bu yorum, verinin bu şekilde toplandığı anlamına gelmez, yani exper ve tenure düzeyleri aynı olan işçiler özellikle seçilip veri toplanmamıştır.
 - Veri rassal seçilmiş 526 çalışana ait wage, educ, exper ve tenure bilgilerinden oluşuyor.
 - exper ve tenure düzeyi aynı olan çalışanları ayrıca gruplandırmıyoruz.
- Aslında elimizde *exper* ve *tenure* düzeyleri aynı olan çalışanlardan oluşan bir örneklem olsaydı, exper ve tenure bağımsız değişkenlerini modele koymaya gerek kalmazdı.
 - Fakat, bu durum uygulamada çoğunlukla mümkün değildir.
 - Ayrıca ÇDR analizinde yalın/kısmi yani ceteris paribus etki hesaplandığından zaten yukarıdaki gibi bir duruma gerek yoktur.

Birden Fazla Bağımsız Değişkeni Aynı Anda Değiştirmek

- Bazen bağımsız değişken x'lerden birkaçını aynı anda değiştirerek y'de meydana gelen ortalama değişimi ölçmek isteriz.
- Bazı durumlarda ise bağımsız değişken x'lerden biri değiştirildiğinde diğeri de otomatik olarak değisir.
- Örneğin, logaritmik ücret modelinde (Slayt 47) tenure 1 yıl arttırıldığında exper de otomatik olarak 1 yıl artar.

$$\Delta \widehat{\ln wage} = 0.284 \Delta e duc + 0.0041 \Delta exper + 0.022 \Delta tenure$$
 (Değişim Cins.)
= 0.0041 × 0 + 0.0041 × 1 + 0.0022 × 1
= 0.0261

- Burada 0.0261, educ sabit tutulduğunda tenure ve exper 1 yıl arttırılırsa ln waqe'de meydana gelen ortalama etkiyi belirtir.
 - Model log-düzey formunda olduğundan bulunan bu değer 100 ile çarpılarak % olarak ceteris paribus yorumlanmalıdır.
 - Yani, educ sabit tutulduğunda tenure ve exper 1 yıl arttırılırsa waqe ortalama olarak %2.61 (%0.0261 × 100) artar.

Tahmin Edilen Değerler ve Kalıntılar

i'inci Gözlem İçin Tahmin Edilen \hat{y}_i Değeri

$$\underbrace{\hat{y}_i}_{\text{Tahmin Edilen Değer}} = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \dots + \hat{\beta}_k x_{ik} \tag{ÖRF}$$

• x_{ij} değerlerini tahmin edilen regresyonda (ÖRF'de) yerine koyarsak tahmin edilen bağımsız değişken değerlerini yani \hat{y}_i 'yi elde ederiz.

Kalıntılar (Artıklar)

$$\hat{u}_i = y_i - \hat{y}_i$$
Kalıntı (Artık) Gözlemlenen Değer Tahmin Edilen Değer

- Gözlemlenen y_i değerleriyle tahmin edilen değerler \hat{y}_i arasındaki fark kalıntıları \hat{u}_i verir.
- $\hat{u}_i > 0$ ise $y_i > \hat{y}_i$, eksik tahmin yapılmıştır.
- $\hat{u}_i < 0$ ise $y_i < \hat{y}_i$, fazla tahmin yapılmıştır.

SEKK kalıntılarının toplamı ve dolayısıyla da örneklem ortalaması sıfıra eşittir.

$$\sum_{i=1}^{n} \hat{u}_i = 0 \quad \text{ve} \quad \bar{\hat{u}} = 0$$

- Bu durum SEKK birinci sıra koşullarından ilkinin (aynı zamanda örneklem moment koşullarından ilkinin) bir sonucudur. Bakınız Slayt 31.
- Anakütledeki hata terimleri u'nun örneklemdeki analoğu kalıntılar \hat{u} olarak yorumlanabilir fakat kesinlikle aynı şeyler değildir.

$$\underbrace{E(u) = 0}_{\text{Anakütle}} \longrightarrow \underbrace{u}_{\text{Örneklem}}$$

$$\underbrace{E(u) = 0}_{\text{Anakütle}} \longrightarrow \underbrace{E(\hat{u}) = 0}_{\text{Örneklem}}, \quad \underbrace{\bar{u}}_{\text{Orneklem}} \quad \text{ve} \quad \bar{\bar{u}} = 0$$

$$\underbrace{\bar{u}}_{\text{Anakütle}} \longrightarrow \underbrace{\bar{u}}_{\text{Orneklem}}$$

2 Bağımsız değişken x_i ile kalıntı terimleri \hat{u} arasındaki örneklem kovaryansı ve korelasyon katsayısı sıfırdır.

$$Cov(x_j, \hat{u}) = 0$$
 ve $Corr(x_j, \hat{u}) = 0$, $\forall j = 1, 2, ..., k$

- Bu durum diğer SEKK birinci sıra koşullarının (k tane) ve ayrıca diğer örneklem moment koşullarının (k tane) bir sonucudur. Bakınız Slayt 31.
- Bağımsız değişken x_i 'lerle kalıntı \hat{u} 'ların lineer olarak ilişkisizliği çıkarılabilir.

$$Cov(x_j, u) = 0$$
 ve $Corr(x_j, u) = 0$ \longrightarrow $E(x_j u) = 0$ (Anakütle)
 $Cov(x_j, \hat{u}) = 0$ ve $Corr(x_j, \hat{u}) = 0$ \longrightarrow $E(x_j \hat{u}) = 0$ (Örneklem)

$$\underbrace{E(x_{j}u) = 0}_{\text{Anakütle}} \longrightarrow \underbrace{E(x_{j}\hat{u}) = 0 \quad \text{ve} \quad \sum_{i=1}^{n} x_{ij}\hat{u}_{i} = 0}_{\text{Örneklem}}$$

1. ve 2. cebirsel özelliklerin bir sonucu olarak tahmin edilen değerler \hat{y} ile kalıntı terimleri \hat{u} arasındaki örneklem kovaryansı ve korelasyon katsayısı sıfırdır.

$$Cov(\hat{y}, \hat{u}) = 0$$
 ve $Corr(\hat{y}, \hat{u}) = 0$

• Bu özellikten tahmin edilen değerler \hat{y} ile kalıntı terimleri \hat{u} 'ların lineer olarak ilişkisizliği çıkarılabilir.

$$\underbrace{Cov(\hat{y}, \hat{u}) = 0 \quad \text{ve} \quad Corr(\hat{y}, \hat{u}) = 0}_{\text{Örneklem}} \quad \longrightarrow \quad \underbrace{E(\hat{y}\hat{u}) = 0 \quad \text{ve} \quad \sum_{i=1}^{n} \hat{y}_{i}\hat{u}_{i} = 0}_{\text{Örneklem}}$$

Tahmin edilen \hat{y}_i değerlerinin ortalaması gözlemlenen y_i değerlerinin ortalamasına eşittir.

$$y_{i} = \hat{y}_{i} + \hat{u}_{i}$$

$$\sum_{i=1}^{n} y_{i} = \sum_{i=1}^{n} \hat{y}_{i} + \sum_{i=1}^{n} \hat{u}_{i}$$

$$n\bar{\hat{y}} = n\bar{y}$$

$$\bar{\hat{y}} = \bar{y}$$
(1. Cebirsel Özellik)

 \bullet $(\bar{x}_i, \bar{y}: j=1,2,\ldots,k)$ noktası daima ÖRF'den geçer (üzerine düşer).

$$(\bar{x}_j, \bar{y}: j=1,2,\ldots,k) \longrightarrow \bar{y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}_1 + \hat{\beta}_2 \bar{x}_2 + \cdots + \hat{\beta}_k \bar{x}_k + u$$

BDR ve CDR Tahminlerinin Karşılaştırılması

Basit vs. Çoklu Doğrusal Regresyon (2 Değişkenli) Tahmini

$$y = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \tilde{u}$$
 vs. $y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{u}$ (Tahmin)

- Yukarıda verilen regresyonlar arasındaki temel fark, soldaki regresyonda (BDR'de) bağımsız değişken x_2 'nin modele dahil edilmemesidir.
- $\tilde{\beta}_1$ ve $\hat{\beta}_1$ arasındaki ilişki şu şekildedir: $\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \tilde{\delta}_1$
- $\tilde{\delta}_1$, x_2 'nin x_1 üzerine uygulanan regresyondaki eğim parametresi tahminidir.
- Yukarıdaki regresyonlar genelde farklı sonuçlar verir.
- Ancak şu iki durumda eğim parametre tahminleri $\tilde{\beta}_1$ ve $\hat{\beta}_1$ aynı olur.
 - x_2 'nin y üzerindeki kısmi etkisi sıfırdır, yani $\hat{\beta}_2 = 0$
 - Örneklemde x_1 ve x_2 lineer (doğrusal) olarak ilişkisizdir, yani $\tilde{\delta}_1 = 0$.

BDR ve ÇDR Tahminlerinin Karşılaştırılması

BDR Bilgileri

$$y = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \tilde{u} \longrightarrow \tilde{\beta}_1 = \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1) y_i}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1)^2}$$

ÇDR Bilgileri

$$y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{u} \longrightarrow \sum_{i=1}^n x_{i1} \hat{u}_i = 0 \text{ ve } \sum_{i=1}^n \hat{u}_i = 0$$
 (Ana Model)

$$x_2 = \tilde{\delta}_0 + \tilde{\delta}_1 x_1 + \tilde{r}_2 \qquad \longrightarrow \qquad \tilde{\delta}_1 = \frac{\displaystyle\sum_{i=1}^n (x_{i1} - \bar{x}_1) x_{i2}}{\displaystyle\sum_{i=1}^n (x_{i1} - \bar{x}_1)^2} \qquad \qquad \text{(Yardımcı Model)}$$

BDR ve CDR Tahminlerinin Karşılaştırılması

- Şimdi BDR'deki eğim parametresi tahmincisi $\tilde{\beta}_1$ 'nın verilen formülünü
 - CDR modelini
 - ÇDR modelinden elde ettiğimiz cebirsel özellikleri
 - Yardımcı modeldeki eğim parametresi tahmincisi $\tilde{\delta}_1$ 'nın verilen formülünü

kullanarak değiştirelim ve $\tilde{\beta}_1$ ve $\hat{\beta}_1$ arasındaki ilişkiyi bulalım.

$$\begin{split} \tilde{\beta}_1 &= \frac{\sum\limits_{i=1}^n (x_{i1} - \bar{x}_1) y_i}{\sum\limits_{i=1}^n (x_{i1} - \bar{x}_1)^2} = \frac{\sum\limits_{i=1}^n (x_{i1} - \bar{x}_1) (\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \hat{u}_i)}{\sum\limits_{i=1}^n (x_{i1} - \bar{x}_1)^2} \\ &= \frac{\hat{\beta}_0 \sum\limits_{i=1}^n (x_{i1} - \bar{x}_1)}{\sum\limits_{i=1}^n (x_{i1} - \bar{x}_1)^2} + \frac{\hat{\beta}_1 \sum\limits_{i=1}^n (x_{i1} - \bar{x}_1) x_{i1}}{\sum\limits_{i=1}^n (x_{i1} - \bar{x}_1)^2} + \frac{\hat{\beta}_2 \sum\limits_{i=1}^n (x_{i1} - \bar{x}_1) x_{i2}}{\sum\limits_{i=1}^n (x_{i1} - \bar{x}_1)^2} + \frac{\sum\limits_{i=1}^n (x_{i1} - \bar{x}_1) \hat{u}_i}{\sum\limits_{i=1}^n (x_{i1} - \bar{x}_1)^2} \end{split}$$

BDR ve CDR Tahminlerinin Karşılaştırılması

$$\tilde{\beta}_{1} = \frac{\hat{\beta}_{0} \sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}} + \frac{\hat{\beta}_{1} \sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})x_{i1}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}} + \frac{\hat{\beta}_{2} \sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})x_{i2}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}} + \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})x_{i2}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}} + \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}$$

$$= \hat{\beta}_{1} + \hat{\beta}_{2} \underbrace{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})x_{i2}}_{i=1} + \underbrace{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}_{i=1} + \underbrace{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}_{i=1}$$

$$\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \tilde{\delta}_1$$

k-1 vs. k Değişkenli ÇDR Tahminlerinin Karşılaştırılması

k-1 vs. k Değişkenli Çoklu Doğrusal Regresyon Tahmini

$$y = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \tilde{\beta}_2 x_2 + \dots + \tilde{\beta}_{k-1} x_{k-1} + \tilde{u}$$

VS.

$$y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_{k-1} x_{k-1} + \hat{\beta}_k x_k + \hat{u}$$

(Tahmin)

- Yukarıda verilen regresyonlar arasındaki temel fark, soldaki regresyonda bağımsız değişken x_k 'nin modele dahil edilmemesidir.
- $\tilde{\beta}_j$ ve $\hat{\beta}_j$ arasındaki ilişki şu şekildedir: $\tilde{\beta}_j=\hat{\beta}_j+\hat{\beta}_k\tilde{\delta}_j$
- $\tilde{\delta}_j, x_k$ 'nın x_j üzerine uygulanan regresyondaki eğim parametresi tahminidir.
- Yukarıdaki regresyonlar genelde farklı sonuçlar verir.
- Ancak şu iki durumda eğim parametre tahminleri $\tilde{\beta}_i$ ve $\hat{\beta}_i$ aynı olur.
 - x_k 'nin y üzerindeki kısmi etkisi sıfırdır, yani $\hat{\beta}_k = 0$
 - Örneklemde x_i ve x_k lineer (doğrusal) olarak ilişkisizdir, yani $\tilde{\delta}_i = 0$.

Karaler Toplamları (Sum of Squares)

 $\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} \hat{u}_i^2$

• Her bir i gözlemi için gözlemlenen değer, tahmin edilen değer ve kalıntı arasındaki ilişki aşağıdaki gibi gösterilebilir.

$$y_i = \hat{y}_i + \hat{u}_i$$

Her iki tarafın örneklem ortalamalarından sapmalarının karesini alıp toplarsak

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} \left[(\hat{y}_i - \bar{y}) + (\hat{u}_i - \bar{u}) \right]^2$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} \left[(\hat{y}_i - \bar{y}) + \hat{u}_i \right]^2 \qquad (1. \text{ ve 4. Cebirsel Öz.})$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} \hat{u}_i^2 + 2 \sum_{i=1}^{n} \hat{u}_i \hat{y}_i - 2\bar{y} \sum_{i=1}^{n} \hat{u}_i \qquad (3. \text{ Cebirsel Öz.})$$

Karaler Toplamları (Sum of Squares)

• Toplam Kareler Toplamı: SST (Total Sum of Squares) y'deki toplam değişkenliği verir.

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Var(y) = SST/(n-1) olduğuna dikkat edin.

• Açıklanan Kareler Toplamı: SSE (Explained Sum of Squares) modelce açıklanan kısımdaki, yani \hat{y} , değişkenliği verir.

$$SSE = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

• Kalıntı Kareleri Toplamı: SSR (Residual Sum of Squares) kalıntılardaki, yani \hat{u} , değişkenliği verir.

$$SSR = \sum_{i=1}^{n} \hat{u}_i^2$$

Karaler Toplamları (Sum of Squares)

• y'deki toplam değişkenlik aşağıdaki gibi yazılabilir.

$$SST = SSE + SSR$$

$$\underbrace{\sum_{i=1}^{n} (y_i - \bar{y})^2}_{\text{SST}} = \underbrace{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}_{\text{SSE}} + \underbrace{\sum_{i=1}^{n} \hat{u}_i^2}_{\text{SSR}}$$

Uyum İyiliği (Goodness-of-fit)

• y'deki toplam değişkenlik denkleminin her iki tarafını SST'ye bölersek

$$SST = SSE + SSR$$

$$1 = \frac{SSE}{SST} + \frac{SSR}{SST}$$

• Açıklanan kısmın değişkenliğinin toplam değişkenlik içindeki payı regresyonun determinasyon (belirlilik) katsayıdır ve R^2 ile gösterilir.

$$R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

- SSE hiçbir zaman SST'den büyük olamayacağı için $0 \le R^2 \le 1$
- ullet R^2 , u'deki değişkenliğin x tarafından açıklanan kısmının yüzdesini verir. Regresyonun açıklama gücü yükseldikçe R^2 , 1'e yaklasır.
- R² modelin açıklama gücünü (ne kadar iyi fit edildiğini) belirttiği için bazen Uyum İyiliği olarak da adlandırılır.
- R^2 şu şekilde de hesaplanabilir: $R^2 = Corr(y, \hat{y})^2$

Uyum İyiliği (Goodness-of-fit)

Determinasyon katsayısı

$$R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

- Regresyona yeni bir bağımsız değişken x eklendiğinde R^2 her zaman artar (ya da çok nadir aynı kalır). Ya da başka bir deyişle SSE'nin her zaman artmasıdır.
- Örneğin daha önce verilen ÇDR Ücret Modeli'ne (Slayt 8) modelle alakasız bir değişken eklendiğinde dahi R^2 artacaktır.
 - Modele SSN adlı kişinin sosyal güvenlik numarasının son hanesini belirten yeni bir değişken eklediğimizi düşünelim.
 - Emek ekonomisine göre kişinin alacağı ücretin, SSN ile hiçbir ilişkisi yoktur.
 - Fakat SSN'nin modele eklenmesi matematiksel olarak R² değerini arttıracaktır.
- Bu nedenle yeni bir değişkenin modele olan katkısının belirlenmesinde ve ÇDR modellerinde modelin açıklama gücünün belirlenmesinde R^2 iyi bir ölçüt değildir.
- Bu sebeple CDR modellerinde düzeltilmiş R^2 yani \bar{R}^2 kullanılır.
- ullet detaylı olarak daha sonra incelenecektir. O zamana kadar modelin açıklama gücünü belirlemede R^2 değerini kullanacağız.

Uyum İyiliği (Goodness-of-fit): Örnek

Üniversite Basarı Modeli (CDR)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + u$$
 (Tahmin)

$$\widehat{colGPA} = 1.29 + 0.453 \ hsGPA + 0.0094 \ ACT$$
 (Tahmin)

$$n = 141, \quad R^2 = 0.176$$

- Determinasyon katsayısı 0.176 olarak tahmin edilmiştir.
- Üniversite genel not ortalaması colGPA'daki değişkenliğin yaklaşık %17.6'sı hsGPA ve ACT değişkenleriyle açıklanabilmektedir.
- Dışarıda bırakılan birçok faktör olduğundan üniversite genel not ortalaması colGPA'nın küçük bir kısmı açıklanabilmiştir.
- Üniversite genel not ortalaması *colGPA*'yı etkileyen bu modelde yer almayan başka birçok değişken olduğu unutulmamalıdır.

CDR.7: Sabit Varyans Varsayımı (Homoscedasticity)

u hata teriminin bağımsız değişken x'lere göre koşullu varyansı sabittir.

$$Var(u|x_1,x_2,\ldots,x_k)=\sigma^2$$

$$Var(u|X)=\sigma^2$$

$$Var(u)=\sigma^2$$
 (u ve x 'ler bağımsız olduğundan)

- Bu varsayımın sağlanmadığı duruma değişen varyans (heteroscedasticity) denir.
- Bu varsayım SEKK parametre tahmincilerinin varyanslarının ve standart hatalarının türetilmesinde ve etkinlik özelliklerinin belirlenmesinde kullanılır.
- Sapmasızlık için sabit varyans varsayımına ihtiyaç yoktur.
- Örneğin, ücret modelinde (Slayt 8) bu varsayım, model dışında bırakılan faktörler u'nun değişkenliğinin modele dahil edilen tüm bağımsız değişkenlere (educ ve exper) bağlı olmadığını söylemektedir.

Teorem: $\hat{\beta}_i$ 'ların Varyansları

Gauss-Markov varsayımları (ÇDR.1 - ÇDR.7) altında

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)}, \quad SST_j = \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2, \quad \forall j = 1, 2, \dots, k$$

- *SST_i*, *x_i*'deki örneklem değişkenliğini ifade eder.
- R_i^2 ise x_i 'nin diğer tüm x değişkenlerine regresyonundan (sabit terim içeren) elde edilen belirlilik katsayısıdır.
- σ^2 hata varyansıdır. σ ise regresyonun standart sapması olarak adlandırılır.
- Bilinmediği için σ 'nın ve dolayısıyla $Var(\hat{\beta}_i)$ 'nın tahmin edilmesi gerekir.
- $Var(\hat{\beta}_i)$, σ^2 ile aynı yönde ilişkilidir. σ^2 'yi düşürmenin tek yolu güçlü açıklayıcı değişkenleri modele eklemektir.
- $Var(\hat{\beta}_i)$, SST_i ile ters yönde ilişkilidir. SST_i 'yi arttırmanın tek yolu gözlem sayısını arttırmaktır.

Teorem: $\hat{\beta}_i$ 'ların Varyansları

Gauss-Markov varsayımları (ÇDR.1 - ÇDR.7) altında

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)}, \quad \forall j = 1, 2, \dots, k$$

- $Var(\hat{\beta}_i)$, diğer tüm bağımsız değişken x'lerin x_i ile korelasyon düzeyini belirten R_i^2 terimine de bağlıdır.
 - R_i^2 arttıkça $Var(\hat{\beta}_j)$ sınırsız artar. Bakınız Şekil 1.
 - Limitte $R_i^2=1$ olduğunda varyans sonsuz olur (ayrıca $\hat{\beta}_j$ belirsiz olur). Ancak tam çoklu doğrusal bağıntının olmaması varsayımı (ÇDR.4) bu durumu engeller.
- Kısacası, bağımsız değişken x'lerin birbirleriyle doğrusal ilişki düzeyi (çoklu doğrusal bağıntının gücü) arttıkça SEKK parametre tahmincilerinin varyansı artar.
- Bu nedenle istenmeyen durum tam çoklu doğrusal bağıntının olmaması iken dikkat edilmesi durum ise çoklu doğrusal bağıntının gücünün yüksek olmasıdır.

Teorem: $\hat{\beta}_i$ 'ların Varyansları

Gauss-Markov varsayımları (ÇDR.1 - ÇDR.7) altında

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)}, \quad SST_j = \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2, \quad \forall j = 1, 2, \dots, k$$

• Tek bağımsız değişkenli modelde (BDR), R_i^2 terimi parametre tahmincilerinin varyans formülü içinde bulunmaz.

$$y = \beta_0 + \beta_1 x_1 + u$$
 (Model)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1$$
 (Tahmin)

$$x_1 = \hat{\alpha}_0 + \hat{r}_1$$
, $R_1^2 = 0$ (1. Yardımcı Regresyon Tahmini)

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{SST_1(1 - R_1^2)} = \frac{\sigma^2}{SST_1} \longrightarrow Var(\hat{\beta}_1) = \frac{\sigma^2}{SST_x} = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

- SEKK parametre tahmincilerinin varyansı $Var(\hat{\beta}_j)$ 'ların tahmini için öncelikle hata varyansı σ^2 'nin tahmin edilmesi gerekir.
- $Var(\hat{\beta}_j)$ 'ların sapmasız olarak tahmin edilebilmesi için σ^2 'nin de sapmasız tahmin edilmesi gerekir.
- Tahminde hata terimi u gözlemlenemediği için onun örneklem analoğu olan kalıntı \hat{u} kullanılır.

Hata Varyansı σ^2 'nin Tahmini

Hata varyansının sapmasız bir tahmincisi:

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} \hat{u}_i^2}{n-k-1} = \frac{SSR}{n-k-1}$$

- Serbestik derecesi (bağımsız bilgi sayısı) $\longrightarrow s.d. = n (k + 1)$
- Serbestlik derecesi SEKK birinci sıra koşullarından (k+1 tane) gelmektedir. Bu koşullar kalıntı \hat{u} 'nın üzerine k+1 tane kısıt koyar.
- n tane kalıntıdan n-(k+1) tanesi biliniyorsa geriye kalan k+1 kalıntı otomatik olarak bilinecektir. Bu nedenle kalıntıların serbestlik derecesi n-k-1'dir.
- Hata terimi *u*'nun serbestlik derecesi ise *n*'dir.

• $\hat{\sigma}^2$ tahmin edildikten sonra $Var(\hat{\beta}_i)$ 'nın formülünde yerine koyulup $Var(\hat{\beta}_i)$ 'nın tahmini bulunabilir.

$\hat{\beta}_i$ 'ların Varyans Tahminleri

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)} \longrightarrow \widehat{Var(\hat{\beta}_j)} = \frac{\hat{\sigma}^2}{SST_j(1 - R_j^2)}, \quad \forall j = 1, 2, \dots, k$$

- Genelde, $Var(\hat{\beta}_i)$ ve $Var(\hat{\beta}_i)$ arasındaki ayrım net olarak gösterilmez.
- $\hat{\beta}_i$ 'ların varyans tahmini denildiğinde $Var(\hat{\beta}_i)$ kastedilmesine rağmen yazıdaki gösterimde $Var(\hat{\beta}_i)$ kullanılır.
- Bu derste aynı yolu izleyip $\hat{\beta}_i$ 'ların varyans tahminini $Var(\hat{\beta}_i)$ ile göstereceğiz.

SEKK Parametre Tahmincilerinin Varyansı

\hat{eta}_j 'ların Standart Sapmaları (sd)

$$sd(\hat{\beta}_j) = \sqrt{Var(\hat{\beta}_j)} \quad \longrightarrow \quad sd(\hat{\beta}_j) = \frac{\sigma}{\sqrt{SST_j(1-R_j^2)}}, \quad \forall j = 1, 2, \dots, k$$

\hat{eta}_j 'ların Standart Hataları (se)

$$se(\hat{\beta}_j) = \sqrt{\widehat{Var(\hat{\beta}_j)}} \longrightarrow se(\hat{\beta}_j) = \frac{\hat{\sigma}}{\sqrt{SST_j(1 - R_j^2)}}, \quad \forall j = 1, 2, \dots, k$$

- $\hat{\sigma}$ regresyonun standart sapmasının (σ) bir tahmincisidir ve regresyonun standart hatası olarak adlandırılır.
- Regresyona yeni bir bağımsız değişken eklendiğinde $\hat{\sigma}$ azalabilir ya da artabilir.
- $se(\hat{\beta}_j)$ güven aralıklarının hesaplanmasında ve hipotez testlerinin yapılmasında kullanılır.

SEKK Parametre Tahmincilerinin Sapmasızlığı

Teorem: SEKK Parametere Tahmincilerinin Sapmasızlığı

CDR.1-CDR.5 varsayımları altında SEKK parametre tahmincileri sapmasızdır.

$$E(\hat{\beta}_0) = \beta_0$$

$$E(\hat{\beta}_j) = \beta_j, \quad \forall j = 1, 2, \dots, k$$

- Sapmasızlık SEKK parametre tahmincilerinin örneklem dağılımlarının ortalamasının (beklenen değerinin) bilinmeyen anakütle parametrelerine eşit olduğunu söyler.
- İlerleyen slaytlarda sapmasızlık için gerekli olan varsayımların bazıları hakkındaki detaylar verilmiştir.

CDR.1: Gözlem Sayısı

Gözlem sayısı n tahmin edilecek anakütle parametre sayısından büyük ya da en azından eşit olmalıdır.

$$n \ge k + 1$$

ÇDR.2: Parametrelerde Doğrusallık

Model parametrelerde doğrusaldır.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u \checkmark$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \checkmark$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + u \checkmark$$

$$y = \beta_0 + \beta_1^2 x_1 + \beta_2 x_2 + u \checkmark$$

$$y = \beta_0 + \beta_1 x_1 + \sqrt{\beta_2} x_2 + u \checkmark$$

Doğrusal Parametre Tahmincileri

 $\hat{\beta}_i$ parametre tahmincisi aşağıdaki gibi yazılabiliyorsa doğrusaldır.

$$\hat{\beta}_j = \sum_{i=1}^n w_{ij} y_i, \quad \forall j = 1, 2, \dots, k$$

- Burada w_{ij} tüm bağımsız değişken x'lerin bir fonksiyonudur.
- SEKK parametre tahmincileri aşağıdaki gibi yazılabildiğinden doğrusaldır:

$$\hat{\beta}_{j} = \frac{\sum_{i=1}^{n} \hat{r}_{ij} y_{i}}{\sum_{i=1}^{n} \hat{r}_{ij}^{2}} = \sum_{i=1}^{n} w_{ij} y_{i}, \quad \text{burada} \quad w_{ij} = \frac{\hat{r}_{ij}}{\sum_{i=1}^{n} \hat{r}_{ij}^{2}}$$

• \hat{r}_{ij}, x_i 'nin tüm diğer bağımsız değişkenler üzerine regresyonundan elde edilen kalıntı terimidir.

CDR.3: Rassallık

Tahminde kullanılan *n* tane gözlem ilgili anakütleden rassal örnekleme voluyla seçilmiştir. Yani gözlemler stokhastiktir (rassal), deterministik (kesin) değil.

$$\{(x_{i1}, x_{i2}, \dots, x_{ik}, y_i) : i = 1, 2, \dots, n\}$$

CDR.4: Tam Çoklu Doğrusal Bağıntının Olmaması

Örneklemde (ve bu nedenle anakütlede) bağımsız değişkenlerin hiçbiri kendi içinde sabit değildir (yeterli değişenlik vardır) ve bağımsız değişkenler arasında tam çoklu doğrusal bağıntı (TÇDB) yoktur.

$$\sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2 > 0, \quad \forall j = 1, 2, \dots, k$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \longrightarrow x_2 = 2x_1$$
 TÇDB VAR **X**

$$\longrightarrow$$
 $x_2 = x_1^2$ TCDB YOK \checkmark

ÇDR.4: Tam Çoklu Doğrusal Bağıntının Olmaması

Bu varsayım bağımsız değişken x'ler arasında tam doğrusal bir ilişkinin olmaması gerektiğini söyler. Herhangi bir x diğer x'lerin lineer bir kombinasyonu olarak yazılamaz. Yani x'ler arasındaki korelasyon katsayısı 1 olamaz.

- ÇDR.4 varsayımı bağımsız değişken x'lerin arasındaki non-lineer ilişki hakkında hicbir kısıtlamada bulunmaz.
- CDR.4 varsayımı bağımsız değişken x'lerin doğrusal ilişkili olmasına izin verir. Fakat izin verilmeyen tek durum tam doğrusal ilişkinin olmamasıdır.
- x'ler tam ilişkili olursa SEKK parametre tahmincilerinin hesaplanması matematiksel olarak mümkün olmaz (parametre tahmincileri belirsiz olur).
- Bu varsayıma göre bağımsız değişkenler doğrusal ilişkili olabilirler. Zaten, x'ler arasında doğrusal ilişkiye (1'den düşük korelasyona) izin vermezsek ÇDR'den istediğimiz faydayı alamayız.
- Örneğin, sınav başarı modelinde (Slayt 9) ortalama aile geliri avqinc ve öğrencinin eğitim harcaması expend arasında ilişki olduğunu bilerek bu değişkenleri modele sokuyoruz. Amaç ortalama aile geliri avqinc'i kontrol etmektir.

CDR.5: Sıfır Kosullu Ortalama

$$E(u|X) = E(u) = 0$$

$$Cov(x_j, u) = 0$$
, $Corr(x_j, u) = 0$ ve $E(x_j u) = 0$, $\forall j = 1, 2, ..., k$

Sonuç: u ve x_i bağımsızdır. Yani u ve x_i hem lineer hem de non-lineer olarak ilişkisizdir.

- ÇDR.5 varsayımı hata terimi u'nun bağımsız değişken x'lerle ilişkisiz olduğunu, yani x'lerin kesin dışsal (exogenous) olduğunu, söyler.
- Eğer *u*, *x*'lerden biriyle ilişkiliyse, yani ÇDR.5 sağlanmazsa, SEKK parametre tahmincileri sapmalı olur. Bu durumda tahmin sonuçları güvenilir olmaz.
- CDR.5 varsayımının sağlanmadığı durumlar nelerdir?
 - Modelin fonksiyon kalıbının yanlış kurulması (functional form misspecification)
 - Önemli bir değişkenin model dışında bırakılması (omitted variable)
 - Bağımsız değişkenlerde yapılan ölçme hataları (measurement error)
- CDR.5 varsayımı sağlanmıyorsa içsel değişkenler (endogenous variables), yani içsellik, söz konusudur.

SEKK Parametre Tahmincilerinin Etkinliği

Teorem: SEKK Parametere Tahmincilerinin Etkinliği

ÇDR.6-ÇDR.7 varsayımları altında SEKK parametre tahmincileri etkindir.

$$Var(\hat{\beta}_j) = \frac{\hat{\sigma}^2}{SST_j(1 - R_j^2)}, \quad \forall j = 1, 2, \dots, k$$

- SEKK paramatre tahmincileri $\hat{\beta}_j$ 'ların etkin olması en küçük/minimum varyanslı olması anlamına gelir.
- Küçük varyansa sahip parametre tahmincileri $\hat{\beta}_j$ 'ların farklı örneklemlerde elde edilen değerleri gerçek parametre β_j değerinden (beklenen değeri) çok fazla uzaklaşmaz, yani ortalamadan sapma azdır.
- Bu nedenle küçük varyansa sahip parametre tahmincileri $\hat{\beta}_j$ 'lar daha hassas bir tahmin verir.
- Küçük standart hata $se(\hat{\beta}_j)$ 'ye sahip ve dolayısıyla daha hassas olan $\hat{\beta}_j$ 'ların güven aralıklarının hesaplanmasında ve hipotez testlerinin yapılmasında daha kesin istatistiki sonuçlara varabiliriz.

Gauss-Markov Teoremi

Gauss-Markov Teoremi

CDR.1-CDR.7 varsayımları altında SEKK parametre tahmincileri, tüm doğrusal sapmasız tahmin ediciler kümesi içinde en etkin/en iyi (minimum varyanslı) olanlarıdır.

Başka bir ifadeyle, ÇDR.1-ÇDR.7 varsayımları altında SEKK parametre tahmincileri $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_k$ anakütle parametreleri $\beta_0, \beta_1, \beta_2, \dots, \beta_k$ 'nın **D**oğrusal En İyi Sapmasız Tahmin Edicileridir (DESTE ya da BLUE—Best Linear Unbiased Estimator).

- Gauss-Markov teoremi regresyon modelinin SEKK yöntemiyle tahmini için teorik dayanak sağlar.
- Eğer bu varsayımlar sağlanıyorsa SEKK yöntemi dışında başka bir tahmin yöntemine başvurmamıza gerek yoktur. SEKK yöntemi bize doğrusal, sapmasız ve varyansı en düşük (en iyi) tahmincileri vermektedir.
- CDR.1-CDR.7 varsayımlarından biri bile ihlal edilirse Gaus-Markov Teoremi gecersiz olur.
- CDR.5 sağlanmazsa parametre tahmincilerinin sapmasızlık özelliği, CDR.6 ve ÇDR.7 sağlanmazsa etkinlik özelliği kaybolur.

Modele Gereksiz Bağımsız Değişkenlerin Eklenmesi

- Modele gerekli olmadığı halde bir bağımsız değişken eklersek SEKK parametre tahmincileri $\hat{\beta}$ 'lar ve onlarin varyanslarını nasıl etkiler?
- Modele gereksiz bir bağımsız değişken eklenmesi ARF'de bu değişkenin yalın/kısmi etkisinin sıfır olduğu anlamına gelmektedir.
- Yani, model fazla kurulmuştur (overspecification).
- Örneğin, aşağıdaki doğru modelin bilinmediğini ve bağımsız değişken x₃'ü modele gereksiz yere ekleyerek yanlış modelin kullanıldığını düşünelim.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$
 (Doğru Model)
 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$ (Yanlış Model)

• x_3 'ün kısmi etkisi sıfır olmasına rağmen, yani $\beta_3 = 0$, modele koyulduğunda yanlış modelin ARF'si aşağıdaki gibi olur.

Gerekli Bağımsız Değişkenlerin Model Dışında Bırakılması

- Test
- Test

Kaynaklar

Gujarati, D.N. (2009). Basic Econometrics. Tata McGraw-Hill Education.

Güriş, S. (2005). Ekonometri: Temel Kavramlar. Der Yayınevi.

Stock, J.H. and M.W. Watson (2015). Introduction to Econometrics.

Wooldridge, J.M. (2016). Introductory Econometrics: A Modern Approach. Nelson Education.

BDR.5: Sıfır Koşullu Ortalama Varsayımı

$$E(u|X) = E(u) = 0$$

$$Cov(x, u) = 0, \quad Corr(x, u) = 0 \quad \text{ve} \quad E(xu) = 0$$

$$Cov(x, u) = E(xu) - E(x) E(u) = 0$$

$$= 0$$

$$= F(xy) = 0$$

$$=E(xu)=0$$

ÇDR.5: Sıfır Koşullu Ortalama Varsayımı

$$E(u|X) = E(u) = 0$$

$$Cov(x_j, u) = 0, \quad Corr(x_j, u) = 0 \quad \text{ve} \quad E(x_j u) = 0, \quad \forall j = 1, 2, \dots, k$$

$$Cov(x_j, u) = E(x_j u) - E(x_j) \underbrace{E(u)}_{= 0} = 0$$

$$=E(x_ju)=0$$

ÇDR.6: Otokorelasyon Olmaması

$$Cov(u_i, u_s|X) = 0$$
 ve $Cov(u_i, u_s) = 0$, $i \neq s$

$$E(u_i u_s|X) = 0$$
 ve $E(u_i u_s) = 0$, $i \neq s$

$$Cov(u_i, u_s|X) = E(u_i u_s|X) - \underbrace{E(u_i|X)}_{=0} \underbrace{E(u_s|X)}_{=0} = 0$$

$$=E(u_iu_s|X)=0$$

ÇDR.7: Sabit Varyans Varsayımı (Homoscedasticity)

$$E(u^2|X) = \sigma^2$$
 ve $E(u^2) = \sigma^2$

$$Var(u|X) = E(u^{2}|X) - \underbrace{E(u|X)^{2}}_{= 0} = \sigma^{2}$$
$$= E(u^{2}|X) = \sigma^{2}$$

$$=E(u^2|X)=\sigma^2$$

Anakütle Regresyon Fonksiyonu (ARF)

$$E(y|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$
 (ARF)

$$Var(y|X) = \sigma^2$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$

$$E(y|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \underbrace{E(u|X)}_{=0}$$

$$E(y|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$

$$Var(y|X) = Var(u|X)$$

$$Var(y|X) = \sigma^2$$

◀ Sunuma Geri Dör

(ARF)

Parametre Tahmincileri: 2 Bağımsız Değişken

 β_0 kesim parametresinin tahmini $\hat{\beta}_0$:

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}_1 - \hat{\beta}_2 \bar{x}_2$$

- $\hat{\beta}_0$ 'nın formülü
 - SEKK birinci sıra koşullarından ya da örneklem moment koşullarından ilki (Slayt 31)
 - İndeksli haldeki model denklemi
 - Kalıntı û'nın denklemi

kullanılarak çıkarılabilir.

$$\sum_{i=1}^{n} \hat{u}_{i} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i}) = 0$$

$$= \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} \hat{\beta}_{0} - \sum_{i=1}^{n} \hat{\beta}_{1} x_{i1} - \sum_{i=1}^{n} \hat{\beta}_{2} x_{i2} = 0$$

$$= n\bar{y} - n\hat{\beta}_{0} - \hat{\beta}_{1} n\bar{x}_{1} - \hat{\beta}_{2} n\bar{x}_{2} = 0$$

$$= \bar{y} - \hat{\beta}_{0} - \hat{\beta}_{1} \bar{x}_{1} - \hat{\beta}_{2} \bar{x}_{2} = 0$$

Sonuç: $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}_1 - \hat{\beta}_2 \bar{x}_2$

Parametre Tahmincileri: k Bağımsız Değişken

 β_0 kesim parametresinin tahmini $\hat{\beta}_0$ (1 tane var):

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}_1 - \hat{\beta}_2 \bar{x}_2 - \dots - \hat{\beta}_k \bar{x}_k$$

- $\hat{\beta}_0$ 'nın formülü
 - SEKK birinci sıra koşullarından ya da örneklem moment koşullarından ilki (Slayt 31)
 - İndeksli haldeki model denklemi
 - Kalıntı û'nın denklemi

kullanılarak çıkarılabilir.

$$\sum_{i=1}^{n} \hat{u}_{i} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i}) = 0$$

$$= \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} \hat{\beta}_{0} - \sum_{i=1}^{n} \hat{\beta}_{1} x_{i1} - \sum_{i=1}^{n} \hat{\beta}_{2} x_{i2} - \dots - \sum_{i=1}^{n} \hat{\beta}_{k} x_{ik} = 0$$

$$= n\bar{y} - n\hat{\beta}_{0} - \hat{\beta}_{1} n\bar{x}_{1} - \hat{\beta}_{2} n\bar{x}_{2} - \dots - \hat{\beta}_{k} n\bar{x}_{k} = 0$$

$$= \bar{y} - \hat{\beta}_{0} - \hat{\beta}_{1} \bar{x}_{1} - \hat{\beta}_{2} \bar{x}_{2} - \dots - \hat{\beta}_{k} \bar{x}_{k} = 0$$

Sonuç: $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}_1 - \hat{\beta}_2 \bar{x}_2 - \cdots - \hat{\beta}_k \bar{x}_k$

Tahmin Edilen Değerler ve Kalıntıların Cebirsel Özellikleri - 2

$$Cov(x_{j}, \hat{u}) = E(x_{j}\hat{u}) - E(x_{ij})\underbrace{E(\hat{u}_{i})}_{=0} = 0$$

$$= E(x_{j}\hat{u}) = 0$$

$$\text{ya da}$$

$$Cov(x_{j}, \hat{u}) = \frac{\sum_{i=1}^{n} (x_{ij} - \bar{x}_{j})(\hat{u}_{i} - \bar{u})}{n-1} = 0$$

$$Cov(x_{j}, \hat{u}) = \sum_{i=1}^{n} x_{ij}(\hat{u}_{i} - \underbrace{\bar{u}}_{=0}) = 0$$

$$= \sum_{i=1}^{n} x_{ij}\hat{u}_{i} = 0$$
(1. Cebirsel Özellik)

◀ Sunuma Geri Dön

Tahmin Edilen Değerler ve Kalıntıların Cebirsel Özellikleri - 3

$$Cov(\hat{y}, \hat{u}) = Cov(\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k, \hat{u})$$

$$= \hat{\beta}_1 \underbrace{Cov(x_1, \hat{u})}_{=0} + \hat{\beta}_2 \underbrace{Cov(x_2, \hat{u})}_{=0} + \dots + \hat{\beta}_k \underbrace{Cov(x_k, \hat{u})}_{=0} = 0 \quad \text{(Evoryans formulu ve 1. Cebirsel Özellik)}$$

$$= E(\hat{y}\hat{u}) = 0 \quad \text{(Kovaryans formulu ve 1. Cebirsel Özellik)}$$

ve

$$Cov(\hat{y}, \hat{u}) = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})(\hat{u}_i - \underbrace{\bar{\hat{u}}}_{=0}) = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})\hat{u}_i = 0$$
 (1. Cebirsel Özellik)

$$= \sum_{i=1}^{n} \hat{y}_{i} \hat{u}_{i} - \bar{y} \sum_{i=1}^{n} \hat{u}_{i} = 0$$

$$=\sum_{i=1}^n \hat{y}_i \hat{u}_i = 0$$

SEKK Parametre Tahmincilerinin Varyansı

 $\hat{\beta}_i$ 'ların varyansları:

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)}, \quad SST_j = \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2, \quad \forall j = 1, 2, \dots, k$$

• $\hat{\beta}_j$ 'ların varyans formülünü çıkartmada işimizi kolaylaştırmak için 2 bağımsız değişkenli ÇDR modelini kullanacağız.

2 Bağımsız Değişkenli ÇDR Modeli

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + u_i$$
 (Model - İndeksli)
$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2}$$
 (ÖRF - İndeksli)

- 2 bağımsız değişkenli ÇDR modelinde, spesifik olarak $\hat{\beta}_1$ 'nın varyans formülünü çıkartacağız.
- Daha sonra bulduğumuz bu formülü k bağımsız değişkenli ÇDR modelindeki $\hat{\beta}_i$ 'ların varyans formülünü çıkartmada kullanacağız.

2 Bağımsız Değişkenli ÇDR Modeli

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + u_i$$
 (Model - İndeksli)
$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2}$$
 (ÖRF - İndeksli)

1. Yardımcı Regresyon Tahmini

$$x_{i1} = \hat{\alpha}_0 + \hat{\alpha}_1 x_{i2} + \hat{r}_{i1}$$
 (İndeksli)
$$\sum_{i=1}^n \hat{r}_{i1} = 0 \quad \text{ve} \quad \sum_{i=1}^n x_{i2} \hat{r}_{i1} = 0$$
 (Cebirsel Özellikler)

$$\sum_{i=1}^{n} x_{i1} \hat{r}_{i1} = \sum_{i=1}^{n} (\hat{\alpha}_0 + \hat{\alpha}_1 x_{i2} + \hat{r}_{i1}) \hat{r}_{i1} = \hat{\alpha}_0 \sum_{i=1}^{n} \hat{r}_{i1} + \hat{\alpha}_1 \sum_{i=1}^{n} x_{i2} \hat{r}_{i1} + \sum_{i=1}^{n} \hat{r}_{i1}^2$$

$$\sum_{i=1}^{n} x_{i1} \hat{r}_{i1} = \sum_{i=1}^{n} \hat{r}_{i1}^2$$
(Sonra Kullanılacak)

$$\sum_{i=1}^{n} x_{i1} r_{i1} = \sum_{i=1}^{n} r_{i1}^{2}$$
(Sonra Kullanılacak)
$$\sum_{i=1}^{n} \hat{r}_{i1}^{2} = SSR_{1} = SST_{1}(1 - R_{1}^{2})$$
(R² Formülünden)

- $\hat{\beta}_1$ 'nın varyans formülü
 - $\hat{\beta}_1$ 'nın formülü (Slayt 39)
 - 2 bağımsız değişkenli ÇDR model denklemi (Slayt 84),
 - Otokorelasyon olmaması varsayımı, ÇDR.6 (Slayt 17),
 - Sabit varyans varsayımı, ÇDR.7 (Slayt 18),
 - Varyansın bir özelliği $\longrightarrow Var(\sum a_iu_i) = \sum a_iVar(u_i)$, burada a_i 'ler sabit sayılardır ve u_i 'ler ikili olarak ilişkisizdir.
 - R² formülü

kullanılarak çıkarılabilir.

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} \hat{r}_{i1} y_{i}}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}} = \frac{\sum_{i=1}^{n} \hat{r}_{i1} (\beta_{0} + \beta_{1} x_{i1} + \beta_{2} x_{i2} + u_{i})}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}}$$

$$\hat{\beta}_{1} = \frac{\beta_{0} \sum_{i=1}^{n} \hat{r}_{i1} + \beta_{1} \sum_{i=1}^{n} x_{i1} \hat{r}_{i1} + \beta_{2} \sum_{i=1}^{n} x_{i2} \hat{r}_{i1} + \sum_{i=1}^{n} \hat{r}_{i1} u_{i}}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}} = \beta_{1} + \frac{\sum_{i=1}^{n} \hat{r}_{i1} u_{i}}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}}$$

• Alternatif $\hat{\beta}_1$ formülü şimdi $\hat{\beta}_i$ için yazılabilir:

$$\hat{\beta}_{1} = \beta_{1} + \frac{\sum_{i=1}^{n} \hat{r}_{i1} u_{i}}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}} \longrightarrow \hat{\beta}_{j} = \beta_{j} + \frac{\sum_{i=1}^{n} \hat{r}_{ij} u_{i}}{\sum_{i=1}^{n} \hat{r}_{ij}^{2}}$$

• Şimdi, alternatif $\hat{\beta}_1$ formülünün tüm x'lere (X) göre koşullu varyansını alalım.

$$Var(\hat{\beta}_1|X) = \frac{1}{\left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2} Var\left(\sum_{i=1}^n \hat{r}_{i1}u_i|X\right)$$

$$Var(\hat{\beta}_1|X) = \frac{1}{\left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2} \left(\sum_{i=1}^n \hat{r}_{i1}^2 Var(u_i|X)\right) = \frac{1}{\left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2} \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2$$

$$Var(\hat{\beta}_1|X) = \frac{\sigma^2}{\left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2} \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum_{i=1}^n \hat{r}_{i1}^2 \left(\sum_{i=1}^n \hat{r}_{i1}^2\right)^2 \sigma^2 \sum$$

$$Var(\hat{\beta}_1|X) = \frac{\sigma^2}{\sum_{i=1}^n \hat{r}_{i1}^2} = \frac{\sigma^2}{SST_1(1 - R_1^2)}$$

• $\hat{\beta}_1$ 'nın varyans formülü tüm x'lere (X) göre koşullu hesaplanmasına rağmen genelde koşulsuz olarak gösterilir:

$$Var(\hat{\beta}_1|X) = \frac{\sigma^2}{SST_1(1 - R_1^2)} \longrightarrow Var(\hat{\beta}_1) = \frac{\sigma^2}{SST_1(1 - R_1^2)}$$

• $Var(\hat{eta}_1)$ formülü şimdi $Var(\hat{eta}_j)$ için yazılabilir:

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{SST_1(1 - R_1^2)} \longrightarrow Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)}$$

unuma Geri Dön

SEKK Parametere Tahmincilerinin Sapmasızlığı

$$E(\hat{\beta}_0) = \beta_0$$

$$E(\hat{\beta}_j) = \beta_j, \quad \forall j = 1, 2, \dots, k$$

• $\hat{\beta}_0$ ve $\hat{\beta}_j$ 'ların sapmasızlığını kanıtlamada işimizi kolaylaştırmak için 2 bağımsız değişkenli ÇDR modelini kullanacağız.

2 Bağımsız Değişkenli ÇDR Modeli

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + u_i$$
 (Model - İndeksli)
$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2}$$
 (ÖRF - İndeksli)

- 2 bağımsız değişkenli ÇDR modelinde, spesifik olarak $\hat{\beta}_0$ ve $\hat{\beta}_1$ 'nın sapmasızlığını kanıtlacağız.
- Böylelikle, k bağımsız değişkenli ÇDR modelindeki $\hat{\beta}_0$ ve $\hat{\beta}_j$ 'ların sapmasızlığını kanıtlamış olacağız.

- $\hat{\beta}_1$ 'nın sapmasızlığı
 - $\hat{\beta}_1$ 'nın Slayt 84'de gösterilen alternatif formülünün tüm x'lere (X) göre koşullu beklenen değerini alıp
 - Sıfır koşullu ortalama varsayımı, ÇDR.5 (Slayt 16),

kullanalılarak gösterilebilir.

$$\hat{\beta}_1 = \beta_1 + \frac{\displaystyle\sum_{i=1}^n \hat{r}_{i1} u_i}{\displaystyle\sum_{i=1}^n \hat{r}_{i1}^2} \qquad \qquad (\hat{\beta}_1\text{'nın Alternatif Formülü})$$

$$E(\hat{\beta}_1|X) = E\left(\beta_1 + \frac{\sum_{i=1}^n \hat{r}_{i1} u_i}{\sum_{i=1}^n \hat{r}_{i1}^2} \middle| X\right) = \beta_1 + \frac{\left(\sum_{i=1}^n \hat{r}_{i1} \underbrace{E(u_i|X)}\right)}{\sum_{i=1}^n \hat{r}_{i1}^2} = \beta_1$$

$$E(\hat{\beta}_1|X) = \beta_1$$

- \hat{eta}_0 'nın sapmasızlığı
 - $\hat{\beta}_0$ 'nın Slayt 33'deki formülünün tüm x'lere (X) göre koşullu beklenen değerini alıp
 - Model denkleminin toplamları alınarak elde edilen denklem

$$y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + u_{i} \longrightarrow \sum_{i=1}^{n} y_{i} = \sum_{i=1}^{n} (\beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + u_{i})$$

$$n\bar{y} = n\beta_{0} + \beta_{1}n\bar{x}_{1} + \beta_{2}n\bar{x}_{2}$$

$$\bar{y} = \beta_{0} + \beta_{1}\bar{x}_{1} + \beta_{2}\bar{x}_{2}$$

kullanılarak gösterilebilir.

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}_{1} - \hat{\beta}_{2}\bar{x}_{2}$$
 (Slayt 33)
$$E(\hat{\beta}_{0}|X) = E(\bar{y} - \hat{\beta}_{1}\bar{x}_{1} - \hat{\beta}_{2}\bar{x}_{2}|X)$$

$$E(\hat{\beta}_{0}|X) = \bar{y} - \underbrace{E(\hat{\beta}_{1}|X)}_{=\beta_{1}}\bar{x}_{1} - \underbrace{E(\hat{\beta}_{2}|X)}_{=\beta_{2}}\bar{x}_{2}$$

$$E(\hat{\beta}_{0}|X) = \bar{y} - \beta_{1}\bar{x}_{1} - \beta_{2}\bar{x}_{2}$$

$$E(\hat{\beta}_{0}|X) = \beta_{0}$$

• $\hat{\beta}_0$ ve $\hat{\beta}_1$ 'nın sapmasızlığı tüm x'lere (X) göre koşullu hesaplanmasına rağmen genelde koşulsuz olarak gösterilir:

$$E(\hat{\beta}_0|X) = \beta_0 \longrightarrow E(\hat{\beta}_0) = \beta_0$$

 $E(\hat{\beta}_1|X) = \beta_1 \longrightarrow E(\hat{\beta}_1) = \beta_1$

• \hat{eta}_1 'nın sapmasızlığı şimdi \hat{eta}_j için yazılabilir:

$$E(\hat{\beta}_1) = \beta_1 \longrightarrow E(\hat{\beta}_j) = \beta_j, \quad \forall j = 1, 2, \dots, k$$

SEKK Parametere Tahmincilerinin Sapmasızlığı

$$E(\hat{\beta}_0) = \beta_0$$

$$E(\hat{\beta}_j) = \beta_j, \quad \forall j = 1, 2, ..., k$$

Sunuma Geri Döi