MBA PIONEER 2024

Quantitative Aptitude

DPP:03

Unit Digit Theorem

- Q1 Find the unit digit of the expression:
 - $12 \times 16 \times 18 \times 24$
 - (A) 2

(B) 4

(C) 6

(D) 8

Q2

If
$$a=rac{27^{52}}{3^5}$$

 $+\frac{16^{36}}{4^6}$, then find the last digit of a.

(A) O

(B)1

(C) 5

- (D) 3
- Q3 What is the unit digit of the result of $(12^{12} + 13^{13} + 14^{14} + 15^{15})$?
 - (A)1

(B) 2

(C) 0

- (D) 7
- Q4 The last digit $1^1 imes 2^2 imes 3^3 imes 4^4 imes 5^5 imes 6^6 imes \ldots \infty$ is :
 - (A) O
 - (B)2
 - (C) 5
 - (D) Can't be determined
- Q5

If $N = 17^{5^4}$, then unit digit of N is:

(A)1

(B) 7

(C)9

- (D) 3
- **Q6** A number is of the form $2^a \times 3^b$ where a+b=6. If number is less than 100 but greater than 90, find the unit digit of number. (A)6

- (B) 8
- (C)9
- (D) Can't be determined
- Q7 Find the units digit of the following expression: 9 + 99 + 999 + till 1012 terms.
- **Q8** Find the units digit of expression:

$$(196)^{143} + (174)^{199} + (205)^{218}$$

(A) O

(B) 2

(C)5

- (D) 7
- **Q9** $a=100^{n}-(1+75^{m})$ where $(n,m\in N)$ and m>n) Find the last digit of a
- **Q10** If $[(-9)^m + (-4)^n] \times 2^4 = N$ such that (m=n) and $m, n \in \mathbb{Z}$.

Find the sum of all possible units digit of N.

(A) 10

(B) 12

(C) 6

- (D) 0
- **Q11** $17^{117} = a, 15^{115} = b$ and $n^m = c$. If the units place of $(a \times b \times c)$ is 0, then find the highest possible units digit of n (Given $n,m\in N$)
 - (A) O

(B) 1

(C) 5

- (D) 8
- Q12 What is the sum of all the possible units digit of $(3^x + 5^y + 6^z)$ if x, y and z are natural numbers?
 - (A) 14

(B) 12

(C) 10

- (D) 7
- Q13 abcd is a 4 digit number formed by

(given, each of $x,y,z,t\in N$). Find the largest number abcd such that each digit is distinct.

- (A) 9876
- (B) 9678
- (C) 9867
- (D) None of these
- **Q14** Assume x and y is any natural number. Then, units digit of which one among the options is same as of $x^{21} + y^{21}$.
 - (A) $x^4 + y^4$
 - (B) $x^{10} + y^{10}$
 - (C) $x^{17} + y^{17}$
 - (D) $x^{20} + y^{20}$
- **Q15** If $a+\frac{1}{a}\leq 2$ and $a\in N$, then find the units digit of a^a .
 - (A) 1
 - (B) O
 - (C)2
 - (D) Inadequate data
- **Q16** For $(3^{\mathrm{m}}+3^{\mathrm{n}}) \times (4^{\mathrm{o}}+4^{\mathrm{p}}) \times (5^{\mathrm{q}}+5^{\mathrm{r}})$, each $\times (6^{\rm s} + 6^{\rm t})$

power is any natural number. Find the units digit of the expression.

(A) 1

(B) O

(C) 2

- (D) Either 0 or 1
- Q17 Units digit of $(1 \times 2) + (3 \times 4 \times 5) + (6 \times 7 \times 8 \times 9)$ $+\ldots\ldots+(28\times29\times30\times31\times32\times33$
 - imes 34 imes 35) is
 - (A) 2

(B) 4

(C) 6

- (D) 8
- **Q18** If $\sum_{n=1}^{t} n^2 + 7 = 734$, then what is the units digit of t?

(A) 1

(B) 2

(C)3

- (D) 4
- **Q19** Units digit of 177^n is 3. n can be.
 - (A) 20

(B) 23

(C) 24

- (D) 25
- **Q20** Find the units digit of the following $\left(7 \times 9 \times 11 \times 13 \ldots \times 101\right)^{11 \times 13 \times 15 \ldots \times 23}$
 - (A) 5

(B) 7

(C)9

- (D) 0
- Q21 A 30 days month start with Friday. Find the unit digit of days on which $3^{\rm rd}\,$ Sunday falls.
 - (A) 1

(B) 3

(C)7

- (D) 9
- Find the units digit of $\left[\left(173^{15}\right)^{72}\right]^{41}$ Q22
 - (A) 1

(C)5

- (D) 7
- Q23 Units digit of a number is 2.5 times than its tens place number. Reciprocal of this number is less than original number by 24.96. Find the units place digit of the number.
 - (A) 10

(B) 5

(C) 15

- (D) 9
- Find the units place number of $\frac{(2197)^{169}}{(169)^{39}}$. **Q24**
 - (A) O

(B) 1

(C) 2

- (D) 3
- **Q25** Units place of $1737^{4\,\mathrm{m}+3} (\ \mathrm{m} \in N)$ is same as that of
 - (A) 123^{75}
- (B) 337^{128}
- (C) 413^{145}
- (D) None of these
- Find the unit digit for $34^{34^{34^{34}}}$ **Q26**
- **Q27**

If X = The product of factorials of first 500 odd natural numbers, find the unit digit of X.

Q28 Find the unit digit for the following expression:

 $111^{222}~\times~222^{333}~\times~333^{444}~\times~444^{555}~\times$ 555^{666}

(A) 4

(B) 2

(C) 1

- (D) 0
- Q29 Find the number of positive integer values of 'n' such that n < 10 for which the units digit of $(n)^{n!}$ is maximum possible.
- **Q30** Find the units digit of 7^{1002} 4^{908}
 - (A) 2

(B) 3

(C) 4

(D) 5

Answer Key

Q1	(B)
Q2	(D)
Q3	(C)
Q4	(A)
Q5	(B)
Q6	(A)
Q7	8
Q8	(C)
Q9	4
Q10	(A)
Q11	(D)

Q12

Q13

Q14

Q15

(A)

(D)

(C)

(A)

Q16 (B) (C) Q17 (B) Q18 (B) Q19 Q20 (A) (C) Q21 (A) Q22 (B) Q23 Q24 (D) (C) Q25 Q26 6 Q27 0 (D) Q28 Q29 1

(B)

Q30

Hints & Solutions

Q1 Text Solution:

Taking unit digit of each number, we get $2 \times 6 \times 8 \times 4$

 $\rightarrow 4$

So, unit digit of the given expression =4 Ans. b

Q2 Text Solution:

$$a = rac{27^{52}}{3^5} + rac{16^{36}}{4^6} \ = rac{(3)^{3 imes 52}}{3^5} + rac{16^{36}}{16^3} = 3^{(156-5)} + 16^{(36-3)} \ = 3^{151} + 16^{33}$$

Unit digit of $3^{151}=7$ $\left(3^{4m+3} \text{ type} \right)$ Unit digit of $16^{33}=6$ $\left(6^{\mathrm{Any\,power}}=6\right)$ So, 6+7
ightarrow 3 is the last digit of the given expression.

Ans. d

Q3 Text Solution:

Unit digit of $12^{12}=6$

Unit digit of $13^{13}=3$

Unit digit of $14^{14} = 6$

Unit digit of $15^{15} = 5$

So, digit unit of the expression = (6+3+6+5)

 $\rightarrow 0$

Ans. c

Q4 Text Solution:

The given expression contains 2 and 5. This implies, (2 imes 5) = 0. And any number

multiplied by 0 gives zero. So, unit digit of the given expression is 0. Ans, a

Q5 Text Solution:

$$N = 17^{5^4}$$
 $= 17^{625}$

Unit digit of $17^{625}=7\left(17^{4\,\mathrm{m}+1}\,\mathrm{type}\,\right)$ Ans. b

Q6 Text Solution:

$$N(\text{ say }) = 2^a \times 3^b$$

Also, $a + b = 6$

At a = 5, b = 1,

We get N=96 (Satisfy)

Unit digit = 6

Ans. a

Q7 Text Solution:

As we can see,

Unit digit of each number is 9

There are 1012 such number

So, unit digit of (9 imes 1012) is

= 8

Ans. 8

Q8 Text Solution:

$$(196)^{143} + (174)^{199} + (205)^{218} \ \stackrel{ ext{Unit's place}}{\longrightarrow} 6 + 4 + 5 \ (2\text{m+1 type}) \ \stackrel{ ext{Units'splace}}{\longrightarrow} 5$$

Ans. c

Text Solution:

Topic - Number System

Given, n and $m \in N$ and n < m

Unit digit of 75^{m} will always be 5

So,
$$(1+75^m) \stackrel{unitdigit}{\longrightarrow} 6$$

So,
$$100^{\rm n}-6 \stackrel{\rm unit's digit}{\longrightarrow} 4$$

Q10 Text Solution:

Given, $\mathbf{m}=\mathbf{n}$

Let's take m to be an even number

Then,
$$(-9)^{\mathrm{m}} \stackrel{\mathrm{units \ digit}}{\longrightarrow} 1$$

and
$$(-4)^n \stackrel{\mathrm{units\ digit}}{\longrightarrow} 6$$

Now
$$(-9)^{\mathrm{m}} + (-4)^{\mathrm{n}} \stackrel{\mathrm{units \ digit}}{\longrightarrow} 7$$

So,
$$7 imes 2^4 \stackrel{units digit}{\longrightarrow} 2$$

If we take \boldsymbol{n} to be an odd number

Then,
$$(-9)^{\mathrm{m}} \stackrel{\mathrm{units digit}}{\longrightarrow} 9$$
 (negative number)

and
$$(-4)^n \stackrel{\mathrm{units digit}}{\longrightarrow} 4$$
 (negative number)

Now,
$$\left(-9\right)^{m}+\left(-4\right)^{n}$$
 will give unit digit as 3

So,
$$3 imes 2^4$$
 will give the unit digit as 8

Hence Sum of unit digit of all possible N = (8+2)

Option A

Q11 Text Solution:

Unit digits of $17^{117}=7\left(17^{4\,\mathrm{m}+1}\,\mathrm{type}\,\right)$

Unit digits of $15^{115}=5$

Now, units digit of (7 imes 5) is 5 .

To get 0 as unit digits of (a imes b imes c)

We can multiply $(\mathbf{a} \times \mathbf{b})$ by any even number.

And highest units place of n can be 8 .

Ans, d

Q12 Text Solution:

Given, $(3^x + 5^y + 6^z)$

Units digit of 6^{z} is always 6

Units digit of $\mathbf{5}^{\mathbf{y}}$ is always $\mathbf{5}$

Units digit of $\mathbf{3}^x$ can be $\mathbf{3},\mathbf{9},\mathbf{7}$ or 1.

So, Case
$$-1
ightarrow (3+5+6)
ightarrow 4$$

Case
$$-2
ightarrow (9+5+6)
ightarrow 0$$

$$\operatorname{Case} -3 \to \quad (7+5+6) \to 8$$

and Case
$$-4
ightarrow (1+5+6)
ightarrow 2$$

Sum of all units digit =(4+0+8+2)=14Ans. a

Q13 Text Solution:

$$3^{\mathrm{x}} \stackrel{\mathrm{unitsplace}}{\longrightarrow} 9$$
 (highest possible number)

or
$$a=9$$

$$7^{\mathrm{y}} \stackrel{\mathrm{unitsplace}}{\longrightarrow} 7$$
 (second highest)

As we can't use 9 now

or
$$b=7$$

$$2^{z} \stackrel{\mathrm{unitsplace}}{\longrightarrow} 8$$
 (highest possible number)

or
$$c = 8$$

$$8^{\mathrm{t}} \stackrel{\mathrm{units\; place}}{\longrightarrow} 6$$
 (second highest)

So, abcd
$$=9786$$

Ans. d

Q14 Text Solution:

If we use any digit (1 to 9) such that it is raised to the power of the type $(4 \text{ m} + 1, \text{ m} \in \text{N})$. It will always end in the same digit or $x^5, x^9, x^{13}, x^{17}, x^{21}$ and $y^5, y^9, y^{13}, y^{17}, y^{21}$ So, units digit of $(x^{21} + y^{21})$ is same as the units

digit of $\left(x^{17}+y^{17}\right)$ Ans. c

Q15 Text Solution:

Given, $a \in N$

and
$$a+\frac{1}{a}\leq 2$$

This can only be possible when a=1.

At
$$a = 1, a + \frac{1}{a} = 2$$

For any other natural number,

$$a + \frac{1}{a} > 2$$

Now, 1^1

=1

So, units digit =1

Q16 Text Solution:

Units digit of $\mathbf{5}^q$ is 5 and units digit of $\mathbf{5}^r$ is 5

So,
$$5+5 \stackrel{\text{units digit}}{\longrightarrow} 0$$

And any number having 0 as a units digit, when multiplied by any other number. The units digit of resulting number is also 0.

Ans. b

Q17 Text Solution:

Other expression according to the given expression are

Units digit of 5 term expression = 0,

Units digit of 6 term expression = 0,

Units digit of 7 term expression = 0.

Similarly for 8 term expression, units digit = 0

Units digit of $(3 \times 4 \times 5) = 0$

Units digit of $(6 \times 7 \times 8 \times 9) = 4$

Therefore, units digit of the expression is

$$= 2 + 0 + 4 + 0 + 0 + 0 + 0$$

= 6

Ans. c

Q18 Text Solution:

$$egin{aligned} \sum_{n=1}^t n^2 + 7 &= 734 \ &\Rightarrow rac{t imes (t+1) imes (2t+1)}{6} + 7t &= 734 \end{aligned}$$

Using hit and trial, t=12 satisfy the above equation So, units digit of 12=2 Ans. b

Q19 Text Solution:

We know that,

Units digit of $7^{4\,\mathrm{m}}, 7^{4\,\mathrm{m}+1}, 7^{4\,\mathrm{m}+2}$ and $7^{4\,\mathrm{m}+3}$ are 1,7,9 and 3 respectively.

 $(m \in N)$

So, n is of 4m+3 type.

Option b satisfy.

Ans. b

Q20 Text Solution:

Multiplication of odd numbers give odd numbers and 15 multiplied by any odd number result in the number with 5 as units digit.

Now,
$$5^{\mathrm{Any\ power}} \stackrel{\mathrm{units\ digit}}{\longrightarrow} 5$$

Q21 Text Solution:

 $1^{\rm st}$ day of month is Friday So, $3^{\rm rd}$ day will be Sunday ($1^{\rm st}$ Sunday) And then, $2^{\rm nd}$ Sunday will fall on $10^{\rm th}$ days. This means $3^{\rm rd}$ Sunday will fall on $17^{\rm th}$ days. Ans. c

Q22 Text Solution:

Units digit of 173^{15} is 7 And 7^{72} , units digit =1 This means 1^{41} gives the units digit as 1 . Ans. a

Q23 Text Solution:

Lex x be the tens place digit of number. Then, $2.5\mathrm{x}$ is the units place digit. Now, according to the question

$$x2.5x - \frac{1}{x2.5x} = 24.96$$

 $\Rightarrow 10x + 2.5x - \frac{1}{10x + 2.5x} = 24.96$
 $\Rightarrow 12.5x - \frac{1}{12.5x} = 24.96$

At x=2, above equation satisfy.

Thus, units place number =(2.5 imes 2)=5Ans. b

Q24 Text Solution:

$$\begin{split} &\frac{(2197)^{169}}{(169)^{39}} \\ &= \frac{\left(13^3\right)^{169}}{\left(13^2\right)^{39}} \\ &= \frac{13^{3 \times 169}}{13^{2 \times 39}} \\ &= 13^{507-78} \\ &= 13^{429} \\ &= 13^{429} \xrightarrow{\text{unitsplace}} 3 \quad \left(3^{4 \text{ m}+1} \text{ type, m} \in \mathbb{N}\right) \end{split}$$

Ans. d

Q25 Text Solution:

Units place of $1737^{4\,\mathrm{m}+3}=3$

Checking option \rightarrow

- (a) Units place of $123^{75}=7$
- (b) Units place of $337^{128}=1$
- (c) Units place of $413^{145} = 3$ (Satisfy)

Ans. c

Q26 Text Solution:

As the base is 34, the unit digit will be determined by the unit digit of 34 which is 4.

4 follows a cyclicity of 2 as far as the units digits are concerned.

 $4^{odd\;number}$ always ends with 4 and $4^{even\;number}$ always ends with 6

As, $34^{34^{34}}$ is even, therefore the units digit will be 6

Q27 Text Solution:

$$X = 1! \times 3! \times 5! \times 7! \times 9! \times 11! \dots \times 999!$$

The value of 5! = 120 i.e. it ends in 0.

Therefore the above product would contain atleast one trailing zero, therefore the unit digit

of X is 0.

Q28 Text Solution:

No matter, how big the base, we will only consider its unit digit for the calculation.

Unit digit of 111^{222} will be **1**.

Unit digit of 222^{333} will be same as the unit digit of 2^{333} , 2 has a cyclicity of 4 for its units digits.

333 divided by 4, leaves a remainder of 1, therefore the unit digit will be 2^1 = $\mathbf{2}$

3 also has a cyclicity of 4 for its units digits, 444/4, leaves a remainder of 0, therefore the unit digit will be same as that of 3^4 which is **1** As 4 is raised to odd power, it will always end

with **4**

Further, the powers of 5 always end in 5

Thus, the unit digit of the complete product will be same as that of the product

$$1 \times 2 \times 1 \times 4 \times 5$$

= 0

Q29 Text Solution:

The maximum possible units digit is 9. Let us see, by hit and trial, if there is any value of n which satisfies the given criteria otherwise we will move onto 8 as the units digit.

If n = 2, $2^{2!}$ ends with 4

If n = 3, $3^{3!}$ ends with 9

We will not try n = 4, as the powers of 4 can only have the units digit of 4 or 6.

Similarly, the powers of 5 always end with 5 and the powers of 6 always end with 6.

If n =7, $7^{7!}$ ends with 1 as 7 has a cyclity of 4 for its units digits and 7! is a multiple of 4.

No power of 8 can ever end with 9, so we need not try that.

If n = 9, $9^{9!}$ would end with 1, as 9! is even (divisible by 2)

Therefore, for n < 10, only 1 value satisfies.

Q30 Text Solution:

7 has a cyclicity of 4 for its units digits, remainder when 1002 is divided by 4 is 2. So the units digit of 7^{1002} will be 9 As the power of 4 is even, it will always end with 6. So, the required units digit will be 9 - 6 = 3

