Grundbegriffe der Informatik Aufgabenblatt 1

Matr.nr.:						
Nachname:						
Vorname:						
Tutorium:	Nr.			Naı	ne des Tutors:	
Ausgabe:	28. Ok	tober 20	015			
Abgabe:	6. Nov	6. Novber 2015, 12:30 Uhr				
	im GB	I-Briefk	asten	im l	Intergeschoss	
	von G	ebäude	50.34			
 Lösungen werden nur korrigiert, wenn sie rechtzeitig, in Ihrer eigenen Handschrift, mit dieser Seite als Deckblatt und in der oberen linken Ecke zusammengeheftet 						
abgegeben werden.						
Vom Tutor auszufüllen:						
erreichte Punkte						
Blatt 1:			,	/ 13	(Physik: 13)	
Blätter 1 – 1:			,	/ 13	(Physik: 13)	

Aufgabe 1.1 (3 Punkte)

Es sei M eine Menge und es seien $A \subseteq M$ und $B \subseteq M$. Beweisen Sie:

$$M \setminus (A \cup B) = (M \setminus A) \cap (M \setminus B)$$

Lösung 1.1

- \subseteq : Es sei $x \in M \setminus (A \cup B)$. Dann ist $x \in M$, und $x \notin A \cup B$. Also ist $x \in M$, und $x \notin A$ und $x \notin B$. Somit ist
 - $x \in M$ und $x \notin A$ und
 - $x \in M$ und $x \notin B$.

Damit ist $x \in M \setminus A$ und $x \in M \setminus B$. Folglich ist $x \in (M \setminus A) \cap (M \setminus B)$.

⊇: Es sei $x \in (M \setminus A) \cap (M \setminus B)$. Dann ist $x \in M \setminus A$ und $x \in M \setminus B$. Also ist $x \in M$ und $x \notin A$, und $x \notin A$ und $x \notin B$. Somit ist $x \in M$, und $x \notin A$ und $x \notin B$. Damit ist $x \in M$ und $x \notin A \cup B$. Folglich ist $x \in M \setminus (A \cup B)$.

Korrektur: falls zwei Inklusionen gezeigt: je 1.5 Punkte falls mit lauter "gdw." argumentiert: geeignete Abzüge bei Fehlern

Aufgabe 1.2 (1 + 1 + 1 + 1 + 2 = 6 Punkte)

Es sei $f: A \rightarrow B$ eine Abbildung. Zu f definieren wir die Abbildung

$$f^{-1}: 2^B \to 2^A, M \mapsto \{a \in A \mid f(a) \in M\}$$

Für jedes $M \subseteq B$ nennt man $f^{-1}(M)$ das *Urbild* von M (unter f).

- a) Welche Bedingung muss f erfüllen, damit f^{-1} injektiv ist?
- b) Welche Bedingung muss f erfüllen, damit f^{-1} surjektiv ist?
- c) Es sei $M \subseteq B$. Welche Mengenbeziehung besteht zwischen M und $f(f^{-1}(M))$?
- d) Es sei $M \subseteq A$. Welche Mengenbeziehung besteht zwischen M und $f^{-1}(f(M))$?
- e) Beweisen Sie Ihre Behauptung in Teilaufgabe c).

Lösung 1.2

- a) f muss surjektiv sein.
- b) f muss injektiv sein.
- c) $f(f^{-1}(M)) \subseteq M$. Anders ausgedrückt: $M \supseteq f(f^{-1}(M))$
- d) $M \subseteq f^{-1}(f(M))$. Anders ausgedrückt: $f^{-1}(f(M)) \supseteq M$
- e) Es sei $b \in f(f^{-1}(M))$.
 - Dann gibt es ein $a \in f^{-1}(M)$ mit f(a) = b.
 - $a \in f^{-1}(M)$ bedeutet gerade $f(a) \in M$.
 - Wegen b = f(a), folgt $b \in M$.

Korrektur:

- a) bis d) je 1 Punkt für richtige Antwort; kann man sich Fälle vorstellen für 0.5 Punkte?
- bei e):

Aufgabe 1.3 (0.5 + 1.5 + 2 = 4 Punkte)

a) Nichtnegative ganze Zahlen x_i , $i \in \mathbb{N}_0$, seien wie folgt definiert:

$$x_0=4$$
 ,
$$ext{für jedes } n \in \mathbb{N}_0 \colon x_{n+1} = x_n + 2n + 5 \ .$$

Geben Sie die Zahlenwerte von x_1 , x_2 , x_3 und x_4 an.

- b) Geben Sie für jedes $n \in \mathbb{N}_0$ einen arithmetischen Ausdruck E_n , in dem kein x_i vorkommt, so an, dass gilt: $x_n = E_n$.
- c) Geben Sie die induktive Definition für ganze Zahlen y_i , $i \in \mathbb{N}_0$, so an, dass für jedes $n \in \mathbb{N}_0$ gilt:

$$y_n = \begin{cases} n, & \text{falls } n \text{ gerade ist,} \\ -n, & \text{falls } n \text{ ungerade ist.} \end{cases}$$

Hinweis: In der Definition von y_{n+1} müssen Sie y_n sinnvoll benutzen. "Scheinbenutzungen" wie $\cdots y_n - y_n \cdots$ sind nicht ausreichend.

Lösung 1.3

- a) $x_1 = 9$, $x_2 = 16$, $x_3 = 25$, $x_4 = 36$
- b) $E_n = (n+2)^2$
- c) zum Beispiel:

$$y_0 = 0$$
 für jedes $n \in \mathbb{N}_0$: $y_{n+1} = -y_n + (-1)^{n+1}$

oder

$$y_0 = 0$$

für jedes $n \in \mathbb{N}_0$: $y_{n+1} = y_n + (-1)^{n+1}(2n+1)$

Korrektur:

- a) bei einem Fehler noch 0.5 Punkte, sonst 0 Punkte
- b) was machen wir mit $E_n = n^2 + 4n + 4$?
- c) statt $(-1)^{n+1}$ kann man z. B. auch $(n \mod 2) ((n+1) \mod 2)$ schreiben bitte gründlich prüfen, ob studentische Lösungen korrekt sind und y_n nichttrivial verwendet wird
 - 0.5 Punkte auf Anfang und 1.5 auf richtige Rekursion

Allgemeiner Hinweis: In dieser Vorlesung kommen an einigen Stellen griechische Buchstaben vor. In anderen Vorlesungen wird das auch passieren. Hier ist die Liste der Kleinbuchstaben (manchmal gibt es verschiedene Schreibweisen):

 α , β , γ , δ , ε (oder ε), ζ , η , θ (oder ϑ), ι , κ , λ , μ , ν , ξ , o, π , ρ , σ , τ , ν , φ , χ , ψ , ω Machen Sie sich mit der Schreibweise und den Namen der Zeichen vertraut!