Centro Federal de Educação Tecnológica de Minas Gerais ENGENHARIA DA COMPUTAÇÃO

Aula 06 Sistemas de Equações Não Lineares

Sistemas de Equações Não Lineares

Alguns métodos vistos anteriormente podem ser generalizados para sistemas de equações não lineares. De maneira geral, um sistema não linear de N equações e N incógnitas por ser apresentado por:

$$\begin{cases} f_1(x_1, x_2, ..., x_m) = 0 \\ f_2(x_1, x_2, ..., x_m) = 0 \\ ... \\ f_m(x_1, x_2, ..., x_m) = 0 \end{cases}$$

Sistemas de Equações Não Lineares

Exemplos - 1:

Sistemas de Equações Não Lineares

Exemplos - 1:

Seja um sistema não linear de duas equações e duas variáveis, dado por:

$$\begin{cases} f(x,y) = 0 \\ g(x,y) = 0 \end{cases}$$

Seja um sistema não linear de duas equações e duas variáveis, dado por:

$$\begin{cases} f(x,y) = 0 \\ g(x,y) = 0 \end{cases}$$

1º Passo – Reescrever o sistema na forma:

$$\begin{cases} x = F(x, y) \\ y = G(x, y) \end{cases}$$

O processo de aproximação sucessiva será dado por:

$$\begin{cases} x_{k+1} = F(x_k, y_k) \\ y_{k+1} = G(x_k, y_k) \end{cases}$$

Esse processo irá convergir se:

- F, G e suas derivadas parciais de primeira ordem sejam contínuas na vizinhança da raiz;
- As desigualdades sejam satisfeitas:

$$|F_x| + |F_y| < 1$$
 $|G_x| + |G_y| < 1$

Uma maneira de acelerar a convergência da iteração do método das aproximações sucessivas é utilizar as mais recentes estimativas de " x_{k+1} " para calcular os valores futuros " x_k ".

Exemplo:

$$\begin{cases} f(x, y) = y + 3xy^2 - 50 \\ g(x, y) = x^2 + xy - 20 \end{cases}$$

Uma maneira de acelerar a convergência da iteração do método das aproximações sucessivas é utilizar as mais recentes estimativas de " x_{k+1} " para calcular os valores futuros " x_k ".

Exemplo:

$$\begin{cases} f(x, y) = y + 3xy^2 - 50 \\ g(x, y) = x^2 + xy - 20 \end{cases}$$

Originalmente, temos:

$$\begin{cases} y_1 = 50 - 3x_0 y_0^2 \\ x_1 = \frac{20 - x_0^2}{y_0} \end{cases}$$

Com a atualização, obtém-se:

$$\begin{cases} y_1 = 50 - 3x_0 y_0^2 \\ x_1 = \frac{20 - x_0^2}{y_1} \end{cases}$$

Exercícios – 1: Calcule os valores de X e Y que satisfazem o sistema não linear abaixo:

$$\begin{cases} f(x,y) = 0.2x^2 + 0.2xy - x + 0.6 = 0 \\ g(x,y) = 0.4x + 0.1xy^2 - y + 0.5 = 0 \end{cases}$$

Considere como chute inicial X=1 e Y=-1, sendo que as raízes encontradas para uma tolerância menor que 10⁻³.

Método de Newton-Raphson (MNR)

A equação de recorrência do MNR é obtida procedendo-se de maneira análoga à empregada para a equação de recorrência do MNR para uma equação, dada por:

$$x_{k+1} = x_k - \frac{F(x_k)}{F'(x_k)}$$

onde:

- F'(x) é uma matriz NxN com os elementos das derivadas parciais, denominada matriz Jacobiana;
- F(x) é um vetor coluna, na forma f(x,y,...,m)=0.

Método de Newton-Raphson (MNR)

O processo para encontrar a raiz se resume em:

- 1º passo) Calcular o vetor F(x), fazendo f(x)=0;
- 2º passo) Calcular a matriz jacobiana F'(x);
- 3º passo) Calcular novos valores X utilizando a fórmula de recorrência.

Método de Newton-Raphson (MNR)

O processo para encontrar a raiz se resume em:

- 1º passo) Calcular o vetor F(x), fazendo f(x)=0;
- 2º passo) Calcular a matriz jacobiana F'(x);
- 3º passo) Calcular novos valores X utilizando a fórmula de recorrência.

Exercício – 2: Calcule as raízes x1,x2 e x3 do sistema, com valores iniciais x1=0.7, x2=x3=1.5:

$$\begin{cases} x_1^2 + x_2^2 + x_3^2 = 9\\ x_1 x_2 x_3 = 1\\ x_1 + x_2 - x_3^2 = 0 \end{cases}$$