PCF8574T I²C 并行口扩展电路

1. 特性

- 操作电压 2.5~6.0V
- 低备用电流(≤10 µ A)
- I2C 并行口扩展电路
- 开漏中断输出
- I²C 总线 实现 8 位远程 I/O □
- 与大多数 MCU 兼容
- 口输出锁存,具有大电流驱动能力,可直接驱动 LED
- 通过3个硬件地址引脚可寻址8个器件(PCF8574A可多达16个)
- DIP16, SO16 或 SSOP20 形式封装

2. 概述

PCF8574 是 CMOS 电路。它通过两条双向总线(I²C)可使大多数 MCU 实现远程 I/O 口扩展。该器件包含一个 8 位准双向口和一个 I²C 总线接口。PCF8574 电流消耗很低,且口输出锁存具有大电流驱动能力,可直接驱动 LED。它还带有一条中断接线(INT)可与 MCU 的中断逻辑相连。通过 INT 发送中断信号,远端 I/O 口不必经过 I²C 总线通信就可通知 MCU 是否有数据从端口输入。这意味着 PCF8574可以作为一个单被控器。

PCF8574 和 PCF8574A 的唯一区别仅在于器件地址不相同。

3. 订单信息

型号		封装		
至与	名称	描述		
PCF8574T S016		塑料小型表面封装		
PCF8574AT	3010	空件小空水曲均衣 		

4. 功能框图

5. 管脚描述

标号	管脚	描述					
	S016	油 处					
A0	1	地址输入 0					
A1	2	地址输入1					
A2	3	地址输入2					
P0	4	准双向 I/O 口 0					
P1	5	准双向 I/O 口 1					
P2	6	准双向 I/O 口 2					
P3	7	准双向 I/O 口 3					
V_{ss}	8	地					
P4	9	准双向 I/O 口 4					
P5	10	准双向 I/O 口 5					
P6	11	准双向 I/O 口 6					
P7	12	准双向 I/O 口 7					
ĪNT	13	中断输入(低电平有效)					
SCL	14	串行时钟线					
SDA	15	串行数据线					
$V_{ m DD}$	16	电源					

管脚配置(S016)

6. I2C 总线特性

I²C 总线用于不同的 IC 或模块之间的双线通信。两条线其中之一为串行数据线(SDA),另一条为串行时钟线(SCL)。当与器件的输出级相连时,这两条线都必须接上拉电阻。数据的传送只有在总线空闲时才能进行。

位传送

在每个时钟脉冲出现时,总线传送一个数据位。在时钟信号高电平期间,SDA 线上的数据位应保持稳定,如果此时改变 SDA 线数据则被认为是总线的控制信号(见图 1)。

起始和停止信号

当总线空闲时,数据和时钟线保持高电平。SCL 线为高电平时,SDA 线电平由高至低的变化定义为总线的起始信号(S); SCL 线为高电平时,SDA 线电平由低至高的变化定义为总线的停止信号(S)(见图 2)。

系统配置

产生信息的器件称为'发送器',接收信息的器件称为'接收器'。控制信息的器件称为'主控器',而由主控器控制的器件称为'被控器'(见图 3)。

图 1 I2C 总线上的位传送

图 2 起始信号和停止信号定义

图 3 系统配置

应答

在起动和停止信号之间所传送的数据数量不受限制。每个 8 位字节之后跟随一个应答位。应答位的时钟脉冲由主控器产生。被控接收器在接收到每一个字节数据之后必须发送一个应答信号;而主控器在接收到被控发送器发送的数据后,也必须发送一个应答信号。在出现与应答位对应的时钟脉冲时,产生应答位的器件将拉低 SDA 线,这样在应答位对应的时钟脉冲高电平期间,SDA 保持低电平状态。建立和保持时间必须纳入考虑。

当主控器作为接收器时,它必须在被控器发送完最后一个字节数据后产生非应答信号,此时发送器必须将数据线释放为高电平,以使主控器能够产生一个停止信号。

图 4 120 总线上的应答

7. 功能描述

寻址

PCF8574 的每个 I/O 口都可单独用作输入或输出。输入通过读模式将数据传送到 MCU (见图 8),输出通过写模式将数据发送到端口(见图 7)。

- (a) PCF8574.
- (b) PCF8574A.

图 6 PCF8574 和 PCF8574A 的从地址

图 8 读模式(输入)

中断(见图9,10)

PCF8574 提供一个可以连接到 MCU 对应输入端的开漏输出口(\overline{INT})。这样可使 PCF8574 能够启动系统中另外一处的动作。在输入模式中,口输入信号的上升或下降沿产生中断。在时间 t_{iv} 之后 \overline{INT} 有效。

当口数据变为初始值或产生中断端口的数据写入/读出时,中断电路复位并重新激活。在下列条件下发生复位:

- 读模式中,SCL 信号上升沿之后的应答位
- 写模式中, SCL 信号从高到低的跳变之后的应答位
- 应答时钟脉冲期间的中断复位可能会导致中断的丢失

中断复位后 I/O 口的每个变化都会被检测,并在下一个时钟上升沿作为 INT 发送。对另一个器件的读写不影响中断电路。

图 9 多个 PCF8574 的中断应用

图 10 I/0 口 P5 的输入变化产生中断

准双向 I/0 口(见图 11)

准双向 I/0 口可用作输入和输出而不需要通过控制寄存器定义数据的方向。上电时 I/0 口为高电平。该模式中只有 V_{DD} 提供的电流有效。在大负载输出时提供额外的强上拉以使电平迅速上升。当输出写为高电平时打开强上拉,在 SCL 的下降沿关闭。I/0 口用作输入之前应当为高电平。

图 11 P3 从低变为高再变为低时的瞬时上拉电流

极限参数

标号	参数	最小值	最大值	单位
V_{DD}	电源电压	-0.5	+7.0	V
$V_{\rm I}$	输入电压	$V_{SS} = 0.5$	$V_{\rm DD} + 0.5$	V
I_{I}	DC 输入电流	_	±20	mA
I_{O}	DC 输出电流	_	±25	mA
I_{DD}	电源电流	_	±100	mA
I_{SS}	电源电流	_	±100	mA
P _{tot}	总功率损耗	-	400	mW
P_{O}	每个输出的功率损耗	_	100	mW
T_{stg}	储存温度	-60	150	$^{\circ}$
T_{amb}	工作环境温度	- 40	+85	$^{\circ}$

DC 电气特性

 $V_{DD}=2.5\sim6.0V; V_{SS}=0V; T_{amb}=-40\sim85^{\circ}C$

标号	参数	条件	最小值	典型值	最大值	单位
电源						
V_{DD}	电源电压		2.5	_	6.0	V
I_{DD}	电源电流	工作模式; V _{DD} =6V;	_	40	100	∝A
		无负载; V _I = V _{DD} 或 V _{ss}				
		$f_{SCL}=100KHz$				
I_{stb}	备用电流	备用模式; V _{DD} =6V;	_	2.5	10	∝A
		无负载; V _I = V _{DD} 或 V _{SS}				
V_{POR}	上电复位电压	V _{DD} =6V;无负载;	_	1.3	2.4	V
		V _I = V _{DD} 或 V _{SS} ;注1				
输入 SCL	;输入/输出 SDA					
V_{IL}	低电平输入电压		-0.5	_	$+0.3~\mathrm{V_{DD}}$	V
V_{IH}	高电平输入电压		$0.7 V_{DD}$	_	$V_{DD}+0.5$	V
I_{OL}	低电平输出电流	$V_{OL}=0.4V$	3	_	_	mA
I_L	漏电流	$V_{I} = V_{DD}$ 或 V_{SS}	- 1	_	+1	∞A
C_{i}	输入电容	$V_{I}=V_{SS}$	_	_	7	pF
1/0 □						
V_{IL}	低电平输入电压		-0.5	_	$+0.3V_{DD}$	V
V _{IH}	高电平输入电压		$0.7 V_{DD}$		V _{DD} +0.5	V
I_{IHL}	通过保护二极管的最	$V_{I} \geqslant V_{DD} \stackrel{\cdot}{old} V_{I} \leqslant V_{SS}$	_	_	±400	∝A
	大允许电流					

I_{OL}	低电平输出电流	$V_{OL}=1V; V_{DD}=5V$	10	25	_	mA
标号	参数	条件	最小值	典型值	最大值	单位
I _{OH}	高电平输出电流	$V_{OH} = V_{SS}$	30	_	300	∝A
I_{OHt}	瞬时上拉电流	应答时高电平(见图13)	_	-1	_	mA
		$V_{OH} = V_{SS}$; $V_{DD} = 2.5V$				
C_{i}	输入电容		_	_	10	pF
Co	输出电容		_	_	10	pF
端口时序	ṣ; C _L ≤100pF(见图 9,1	0)				
t_{pv}	输出数据有效时间		_	_	4	∞s
t_{su}	输入数据建立时间		0	_	_	∝s
t_h	输入数据保持时间		4	_	_	∞s
中断 INT	(见图 12)					
I_{OL}	低电平输出电流	$V_{OL}=0.4V$	1.6	_	_	mA
I_L	漏电流	$V_{ m I}\!\!=\!\!V_{ m DD}$ 或 $V_{ m SS}$	-1	_	+1	∝A
时序; C _L	.≤100pF					
t_{iv}	输入数据有效时间		_	_	4	∝s
t _{ir}	复位延迟时间		_	_	4	∝s
选择输入	\sim A0 \sim A2					
V_{IL}	低电平输入电压		- 0.5	_	$+0.3V_{DD}$	V
V _{IH}	高电平输入电压		$0.7 V_{DD}$	_	V _{DD} +0.5	V
I_{LI}	输入漏电流	V _{DD} 或 V _{DD} 脚	- 250	_	+250	nA

注 1: 上电复位电路复位 I²C 总线逻辑,并将所有 I/O 口都置位为 1。

I2C 总线时序特性

标号	参数	最小值	典型值	最大值	单位
I ² C 总线时	序(见图 12;)				
f_{SCL}	SCL 时钟频率	_	_	100	kHz
t_{SW}	总线容许的尖峰信号宽度	_	_	100	ns
t_{BUF}	总线空闲时间	4. 7	_	_	∝s
t _{SU;STA}	起始信号的建立时间	4. 7	_	_	∝s
$t_{\rm HD;STA}$	起始信号的保持时间	4. 0	_	_	∝s
t_{LOW}	SCL 低电平时间	4. 7	_	_	∝s
t_{HIGH}	SCL 高电平时间	4. 0	_	_	∝s
t _r	SCL 和 SDA 上升时间	_	_	1. 0	∝s
$t_{\rm f}$	SCL 和 SDA 下降时间	_	_	0.3	∝s
$t_{SU;DAT}$	数据建立时间	250	_	_	∝s
t _{HD;DAT}	数据保持时间	0	_	_	∝s
$t_{VD;DAT}$	SCL 低电平到数据输出有效	_	_	3. 4	∝s
$t_{SU;STO}$	停止信号建立时间	4. 0	_	_	∝s

PROTOCOL	START CONDITION (S)	BIT 7 MSB (A7)	BIT 6 (A6)	BIT 0 LSB (R/W)	ACKNOWLEDGE (A)	STOP CONDITION (P)
SCL -	SU;STA	t LOW t HIGH	t SU;DAT t HI		ZD;DAT	t _{SU;STO}
			图 12 I ² C 总	线时序		

S016: 塑料小型表面封装; 16 脚; 本体宽 7.5mm

0 5 10 mm

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	2.65	0.30 0.10	2.45 2.25	0.25	0.49 0.36	0.32 0.23	10.5 10.1	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.10	0.012 0.004		0.01		0.013 0.009	0.41 0.40	0.30 0.29	0.050	0.419 0.394	0.055	0.043 0.016		0.01	0.01	0.004	0.035 0.016	0°