Nonparametric Methods

Wei Li

Syracuse University

Spring 2021

Nonparametric classification

 ${\bf Nonparametric\ logistic\ regression}$

Additive models

Variable selection in nonparametric regression

Nonparametric classification

knn classifier

For any given $X = x_0$, we find the K closest neighbors to $X = x_0$ in the training data, and examine their corresponding Y.

$$P(Y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in N_K(x_0)} I(y_i = j)$$

Estimate the conditional probability for group j by the proportion out of the k neighbors that are in group j.

Nonparametric density estimation

- ▶ Data $X_1, ..., X_n$ are contained in the unit cube $\mathcal{X} = [0, 1]^p$.
- ightharpoonup Divide \mathcal{X} into bins, or sub-cubes, of length h.
- ▶ There are $M \approx (1/h)^p$ such bins and each has volume h^p .
- ▶ Denote the bins by B_1, \ldots, B_M .
- 1. Assuming the density estimate should be constant in each cube.
- 2. Letting that constant value be proportional to the number of observations falling in the cube

Roughly, this gives a heuristic estimator for a given point $x \in B_j$:

$$\widehat{p}_n(x) = \frac{\text{number of observations within } B_\ell}{n} \times \frac{1}{\text{volume of the bin}}$$

The histogram density estimator is

$$\widehat{p}_h(x) = \sum_{j=1}^{M} \frac{\widehat{\pi}_j}{h^p} I(x \in B_j)$$

where

$$\widehat{\pi}_j = \#\{i : X_i \in B_j\}/n$$

is the fraction of data points in bin B_j .

Parzen estimate

Suppose $p \ge 1$. The smooth **Parzen** estimate is

$$\hat{f}_X(x) = \frac{1}{nh^p} \sum_{i=1}^n K_h(x, x_i)$$

Here, $K_h(x,y) = \bar{K}(\|x-y\|/h)$ for some kernel function \bar{K} .

The kernel is assumed to satisfy

Some commonly used kernels are the following:

Boxcar:
$$\bar{K}(x) = \frac{1}{2}1\{x : |x| \le 1\}$$

Gaussian:
$$\bar{K}(x) = \frac{1}{\sqrt{2}}e^{-x^2/2}$$

Epanechnikov:
$$\bar{K}(x) = \frac{3}{4}(1-x^2) \, 1\{x : |x| \le 1\}$$

Boxcar:
$$\bar{K}(x) = \frac{1}{2}1\{x: |x| \le 1\}$$

Gaussian: $\bar{K}(x) = \frac{1}{\sqrt{2}}e^{-x^2/2}$
Epanechnikov: $\bar{K}(x) = \frac{3}{4}(1-x^2)1\{x: |x| \le 1\}$
Tricube: $\bar{K}(x) = \frac{70}{81}(1-|x|^3)^31\{x: |x| \le 1\}$

Kernel density classification

Suppose for a J class problem, we fit nonparametric density estimates $\hat{f}_j(X), j = 1, \ldots, J$ separately in each of the classes, and we also have estimates of the class priors $\hat{\pi}_j$ (usually the sample proportions).

$$\hat{\Pr}(Y = j \mid X = x_0) = \frac{\hat{\pi}_j \hat{f}_j(x_0)}{\sum_{k=1}^{J} \hat{\pi}_k \hat{f}_k(x_0)}$$

Nonparametric logistic regression

Let $Y \in \{0, 1\}$.

$$f(x) = \log \left(\frac{Pr(Y=1 \mid X=x)}{Pr(Y=0 \mid X=x)} \right)$$

Therefore, $p(x) = Pr(Y = 1|x) = \frac{e^{f(x)}}{1 + e^{f(x)}}$.

logistic smoothing spline estimate of polynomial degree 3 is defined by

$$\hat{f} = \underset{f}{\operatorname{argmin}} \sum_{i=1}^{n} \left(-y_i f(x_i) + \log\left(1 + e^{-f(x_i)}\right) \right) + \frac{\lambda}{2} \left(f^{(2)}(x) \right)^2 dx$$

- \triangleright N_1, \ldots, N_n the natural cubic spline basis
- ▶ the basis matrix $\mathbf{N} \in \mathbb{R}^{n \times n}$
- ightharpoonup penalty matrix $\Omega \in \mathbb{R}^{n \times n}$
- $f(x) = \sum_{j=1}^{n} N_j(x)\theta_j.$

- **p** is the *n*-vector with elements $p(x_i)$,
- ▶ **W** is a diagonal matrix of weights $p(x_i)(1 p(x_i))$

$$\frac{\partial \ell(\theta)}{\partial \theta} = \mathbf{N}^T (\mathbf{y} - \mathbf{p}) - \lambda \mathbf{\Omega} \theta$$
$$\frac{\partial^2 \ell(\theta)}{\partial \theta \partial \theta^T} = -\mathbf{N}^T \mathbf{W} \mathbf{N} - \lambda \mathbf{\Omega}$$

The update equation is

$$\theta^{\text{new}} = (\mathbf{N}^T \mathbf{W} \mathbf{N} + \lambda \mathbf{\Omega})^{-1} \mathbf{N}^T \mathbf{W} (\mathbf{N} \theta^{\text{old}} + \mathbf{W}^{-1} (\mathbf{y} - \mathbf{p}))$$
$$= (\mathbf{N}^T \mathbf{W} \mathbf{N} + \lambda \mathbf{\Omega})^{-1} \mathbf{N}^T \mathbf{W} z$$

$$\begin{aligned} \mathbf{f}^{\text{new}} &= \mathbf{N} \left(\mathbf{N}^T \mathbf{W} \mathbf{N} + \lambda \mathbf{\Omega} \right)^{-1} \mathbf{N}^T \mathbf{W} \left(\mathbf{f}^{\text{old}} + \mathbf{W}^{-1} (\mathbf{y} - \mathbf{p}) \right) \\ &= \mathbf{S}_{\lambda, \mathbf{W}} z \end{aligned}$$

Additive models

In the regression setting, a generalized additive model has the form

$$E(Y \mid X_1, X_2, ..., X_p) = \alpha + f_1(X_1) + f_2(X_2) + \cdots + f_p(X_p)$$

Let $\mu(X) = E(Y|X)$. The generalized additive models:

$$g\{\mu(X)\} = \alpha + \sum_{j=1}^{p} f_j(X_j)$$

- $ightharpoonup g(\mu) = \mu$: additive model for Gaussian response data.
- ▶ $g(\mu) = \text{logit}(\mu)$ or $g(\mu) = \text{probit}(\mu)$: logistic / probit additive models for binary response data.
- $g(\mu) = \log(\mu)$: log-additive model for Poisson count data.

Fitting additive models

$$Y = \alpha + \sum_{j=1}^{p} f_j(X_j) + \varepsilon$$

Penalized sum of squares:

$$\sum_{i=1}^{n} \left\{ y_i - \alpha - \sum_{j=1}^{p} f_j(x_{ij}) \right\}^2 + \sum_{j=1}^{p} \lambda_j \int \left\{ f_j''(t_j) \right\}^2 dt_j$$

where $\lambda_j \geq 0$ are tuning parameters.

The minimizer is an additive cubic spline model; each of the functions f_j is a cubic spline.

Back-fitting algorithm

For any j, $E(Y - \alpha - \sum_{k \neq j} f_k(X_k)|X_j) = f_j(X_j)$.

Suppose our univariate smoother Smooth(z,y) has been chosen $(Smooth(z,y)=\hat{E}(Y=y|Z=z)).$

We initialize $\hat{f}_1, \ldots, \hat{f}_p$ (say, to all to zero), let $\hat{\alpha} = \bar{y}$: cycle over the following steps for $j = 1, \ldots, p, 1, \ldots, p, \ldots$

- ▶ define the response $r_i = y_i \hat{\alpha} \sum_{k \neq i} \hat{f}_k(x_{ik}), i = 1, \dots, n$
- ▶ smooth $\hat{f}_j \leftarrow \text{Smooth}(\mathbf{x}_j, r)$, where $\mathbf{x}_j = (x_{11}, \dots, x_{nj}), r = (r_1, \dots, r_n)$.

Generalized additive logistic regression

$$\log \frac{\Pr(Y=1 \mid X)}{\Pr(Y=0 \mid X)} = \eta(x) = \alpha + f_1(X_1) + \dots + f_p(X_p)$$

Consider using smoothing splines solution:

$$\hat{f} = \underset{f_1, \dots, f_p}{\operatorname{argmin}} \sum_{i=1}^{n} \left(-y_i \eta\left(x_i\right) + \log\left(1 + e^{-\eta(x_i)}\right) \right) + \frac{\lambda}{2} \sum_{j=1}^{p} \int \left(f_j^{(2)}(t_j) \right)^2 dt_j$$

Inference

Let
$$logit(Pr(Y=1|X)) = \theta_0 + \sum_{j=1}^p f_j(X_j)$$
. Suppose $f_j(x_j) = \sum_{k=1}^{M_j} \theta_{jk} h_{jk}(x_j)$

- $\blacktriangleright \{\theta_{jk}: k=1,\ldots,M_j\}$
- $h_j = \{h_{jk} : k = 1, \dots, M_j\}$
- $\bullet \theta = (\theta_0, \theta_1^T, \dots, \theta_p^T)^T$
- ▶ **H** be the $n \times (1+M)$ hat matrix $(M = \sum_{i=1}^{M} M_i)$.

We have

$$cov(\hat{\theta}) = \hat{\Sigma} = (\mathbf{H}^T \mathbf{W} \mathbf{H})^{-1}$$

For
$$\hat{f}_j(x_j) = h_j^T(x_j)\hat{\theta}_j$$
,

- ▶ its variance $var(\hat{f}_j(x_j)) = h_j^T(x_j)\hat{\Sigma}_{j,j}h_j(x_j)$.
- ▶ The pointwise confidence band (biased): $\hat{f}(x_j) \pm 2\sqrt{var(\hat{f}_j(x_j))}$.

Alleviation of the Curse of Dimensionality

If the true function is indeed additive, and each component function is s-times differentiable, then the optimal MSE rate achievable becomes $pn^{-2s/(2s+1)}$.

- \triangleright p does not appear in the exponent in the rate
- ▶ p times univariate optimal rate!

See later on neural network, the curse of dimensionality can be similarly circumvented.

Variable selection in nonparametric regression

Variable selection in nonparametric regression

Additive models

$$f(x) = \beta_0 + \sum_{j=1}^{p} f_j(x_j)$$

Claim X_i as unimportant if the function $f_i = 0$

Two-way interaction model

$$f(x) = \beta_0 + \sum_{j=1}^{p} f_j(x_j) + \sum_{j < k} f_{jk}(x_j, x_k)$$

The interaction effect between X_j and X_k is unimportant if $f_{jk} = 0$.

- Multivariate Adaptive Regression Splines (MARS) (Friedman 1991)
 - ▶ Classification and Regression Tree (CART, Brieman 1985) (not quite do the job)
- ► Goup-LASSO Methods (Huang et al. 2010)
- ► Sparse Additive Models (Ravikuma et al. 2009)