PSD@CBM firmware description (draft, for internal use)

Finogeev Dmitry, INR RAS

March 29, 2021

Actual version of the document is available at github: https://github.com/dfinogee/PSD-readout-manual/raw/main/PSD_readout_manual.pdf

Contents

1		C data processing
	1.1	Component channels_calc
	1.2	Component common data collector
	1.3	Component common_data_collector
2		C control
	2.1	ADC control units
	2.2	ADC Control registers
	2.4	ADC Status registers
3		I modules
	3.1	PSD CRI data sorting
	3.2	ADC GBT emulator
	3.3	ADC GBT reader
	3.4	GBT Data Sorter component
	3.5	IPbus face component
	26	Evaluation Doord for readout

1 ADC data processing

PSD_data_readout component receive data from all ADCs, process waveform and output data in GBT packets. Schematic of component is presented on fig. 1.

Figure 1: ADC data readout scheme

1.1 Component channels calc

Channel_calc component scheme is presented on figure 2. ADC data inverted for negative signals, zero level and RMS are calculated and available from slow control.

Figure 2: Channel data processing scheme

Strobe_generator component forms waveform gate, start and stop signals by threshold crossing taking waveform length and offset parameters. Waveform data that are available from the start (zero level) are latched while strobe. Signal diagram of the component is presented on figure 3 To reduce the probability of being triggered by a noise event, three neighboring points are compared with threshold. Central point is compared with the threshold value and two side points with half of threshold value.

Waveform offset parameter determine waveform position in gate, if it is 0, first point in waveform strobe is the point above threshold (the third point compared to half of threshold value). Maximum offset value is 13. Latched baseline level is value before point above threshold.

If one channel in common trigger mask parameter cross threshold, common trigger is generated. All channels in common trigger output parameter take waveform similar to they has threshold crossing together.

Figure 3: Signal waveform strobe (length 16, offset 3)

Ch_data_collector store waveform point in raw_fifo by strobe signal and start waveform data (zero level) by start signal. When charge ready signal raised, charge and start data from header_fifo stored in data_fifo as hit packed header. This allow to upgrade charge calculation with fitting procedure and change calculation delay. In next cycle waveform points are read from raw_fifo and (if sending wf points parameter is set on) stored as hit data in ch_data_fifo. After hit packet stored, ready signal raised or dropped signal in case fifo was full and hit packet was dropped. Ready and dropped signals are synchronous to threshold crossing and used for event ADC timestamp. Signals diagram of the component is presented on figure 4. The write size of ch_data_fifo should be equal to ceil(calculation_delay / waveform_lenght)*waveform_lenght. The size of ch_header_fifo should be ceil(calculation_delay / waveform_lenght). Write rate for mentioned fifo is equal to read rate. In case data-fifo is full while charge ready signal, hit is dropped and dropped-hits counter increased by 1. Dropped-hits counter is available in channel status and reset after each register reading.

Readout-rate component allow to measure hit rate per channel. Waveform-start signals counted with 16bit counter and 70Hz rate. Each 70 Hz cycle, count is stored in 128 shift register. Rate-mean register store the summ of values stored in shift register. Two modes: low-rate and normal are available for rate reading. In normal mode for 16 bit status register available rate-mean[22 downto 7] and result is rate/70Hz. In low-rate mode (channel-low-rate-count bit) rate-mean[15 downto 0] available for status register and result is rate/70*128Hz.

Figure 4: Channel data collecting signals

Signals could be processed one after another without dead time. If next adc point after waveform gate is higher than threshold, new signal gate is formed. Signal time is next adc cycle after first gate, not is real time of second waveform threshold crossing. Signal diagram for such case is presented on figure 5.

Figure 5: Channel data collecting signals

1.2 Component common data collector

Each channel generate single strobe with fixed latency to threshold crossing indicating waveform measurement. 32 bit strobe word is stored to data_wf_calc_fifo with mc index and ADC timestamp. FSM read stored strobes and collect data from fired channels storing outputs to common_data_fifo, each event header word with timing and data size info stored in common_header_fifo. Schematic represented on figure 3.

Figure 6: Data collecting scheme from all channels fifos

FSM is switched from wait to start state when data_wf_calc_fifo_isempty became '0' and fifo output is latched. Priority encoder show next fired channel from strobe and data collected from fired channel to common_data_fifo with hit_packet_iterator. Input to priory encoder is shifted to bit after fired channel when iterator reach last fired channel. Priority encoder could be equal or less than 32 bit. Simulation outputs presented on figure 4.

Figure 7: Data collecting signal from all channels fifos

Collecting data from all channels takes two additional FSM cycle. Mean hit rate per channel in case all channels fired is SYSCKL / total channels + 2 cycle / packet length. Test beam: $80 \mathrm{MHz}$ / 12 / $5 = 1.3 \mathrm{MHz}$. Final setup: 120 (240) / 32 / 1 = 3.5 (7) MHz.

1.3 Component GBT _data_sender

Data stored in common_data_fifo in component common_data_collector are read by system clock with writing rate. Event and microslice headers are formed by data from common_header_fifo. Built GBT data packets are stored in gbt_data_fifo and read by GBT TX clock. Signal diagram is presented on figure 8.

Figure 8: Channel data collecting signals

Data rate limit is 80bit X $40 \mathrm{MHz} = 0.4~\mathrm{GB/s(GBT)}$. Hit rate limit per channel (without microslice word) is $40 \mathrm{MHz} / 33$ (packet length) = 1,2 MHz in case all channels are fired. The rate could be increased to 2.4 MHz hits per channel in case all 32 channels are fired. If one hit data will be less than 40bit event packet will contain 17 GBT words.

GBT packet format is presented on tables: 1, 2, 3

word type	79 76	75 72	71 64	63 48	47 40	39 32	31 16	15 0
ms header	0xA	0x0			ms index			
event header	0xB	ADC idx**	02	x0	n fired channels	words in packet *	adc t	ime
hit header		hit header (tab. 1)						
hit data	hit data (tab. 2)							
hit data	hit data (tab. 2)							
hit data				h	it data (tab. 2)			
hit data	hit data (tab. 2)							
event header	0xB	ADC idx**	02	x0	n fired channels	words in packet *	adc t	ime

Table 1: GBT data format. [* number of GBT words in event packet: event header + all hit packets] [** ADC board index]

word	79 72	71 64	63 36	35 16	15 0
1	$_{ m channel}$	words in packet *	0x0	signal charge	waveform zero level

Table 2: hit packet header. [* total GBT words in hit packet: header + data words]

word	79 64	63 48	47 32	31 16	15 0
1	0x0	waveform point n	waveform point $n+1$	waveform point $n+2$	waveform point $n+3$

Table 3: hit packet data word.

2 ADC control

2.1 ADC control units

Status and Control of ADC and EvB are 64 arrays each of 32 bit words. ADC control system include 4 firmware units: gbt-control-sender, gbt-control-reader, gbt-status-sender, gbt-status-reader.

gbt-control-sender send control packet (129 X 16bit) via gbt to ADC by start command initiated by software. Packet could be send at any time and is not in conflict with microslice flow to ADC. gbt-control-reader receive control packet, and update registers array with received strobe.

word	value
0	0xABBA
1	control(0)(150)
2	control(0)(3116)
3	control(1)(15 0)
4	control(1)(31 16)
127	control(63)(150)
128	control(63)(31 16)

Table 4: Control packet to ADC.

gbt-status-sender send status or control registers from ADC (packet 32 X 80bit). The transaction is initiated periodically, also control registers is sent back after each new configuration. Status/control packet is prioritized to data flow, and gbt-data-fifo is not readed while transaction. To separate data flow status word starts with 0xE, control with 0xF.

bits	79 76	75 64	63 32	31 0	
word	code	addr	reg1	reg0	
0	E	0	status(1)	status(0)	
1	Е	2	status(3)	status(2)	
31	E	30	status(31)	status(30)	

Table 5: Status packet from ADC.

bits	79 76	75 64	63 32	31 0	
word	code	addr	reg1	reg0	
0	F	0	control(1)	control(0)	
1	F	2	control(3)	control(2)	
31	F	30	control(31)	control(30)	

Table 6: Control packet from ADC.

gbt-status-reader read each gbt word stars with 0xE or 0xF and update control or status registers. Two counters indicate the time passed from last update. Read back control register is compared with actual one.

2.2 ADC Control registers

addr	31 30	29 28 27 24 23 20 19 16	15 14	1312 118 74 30		
0	0x0	threshold ch1	0x0	threshold ch0		
1	0x0	${ m threshold}$ ch3	0x0	threshold ch2		
2	0x0	${ m threshold}$ ch 5	0x0	threshold ch4		
3	0x0	threshold ch7	0x0	threshold ch6		
4	0x0	threshold ch9	0x0	threshold ch8		
5	0x0	threshold ch11	0x0	threshold ch10		
6	0x0	threshold ch13	0x0	threshold ch12		
7	0x0	threshold ch15	0x0	threshold ch14		
8	0x0	threshold ch17	0x0	threshold ch16		
9	0x0	threshold ch19	0x0	threshold ch18		
10	0x0	${ m threshold} { m ch} 21$	0x0	threshold ch20		
11	0x0	${ m threshold} { m ch} 23$	0x0	threshold ch22		
12	0x0	${ m threshold} { m ch25}$	0x0	threshold ch24		
13	0x0	threshold ch27	0x0	threshold ch26		
14	0x0	threshold ch29	0x0	threshold ch28		
15	0x0	threshold ch31	0x0	threshold ch30		

Table 7: ADC channels threshold control.

addr	31 28 27	24 23 20	19 16	15 12	11 8	74 30
16	0x0 status ch sel		waveform length 03 [(reg+1)*4]	strobe offset 012	control bits	
17	$\operatorname{negative\ channel\ mask\ ibit} = \operatorname{ich}$					
18				I2C HV bus		
19	microslice gen counter@25ns					
20	microslice period					
21	common trigger mask *					
22	common trigger output **					
23	$ ext{trigger pulser rate [count @ ADC clock] } (0x0 = ext{off})$					
24	${ m status\ send\ rate\ }(0{ m x}0={ m off})$ ${ m control\ send\ rate\ }(0{ m x}0={ m off})$					

Table 8: ADC readout control. [* channels set generates common trigger] [** triggered channels set]

bit	$\operatorname{description}$			
0	send waveform			
1	ms gen standalone			
2	readout fsm reset			
3	errors reset			
4	channel low rate count			
5	reset channels drop counter			

Table 9: Control bits

addr	31 25	24 24	23 23	22 16	15 8	70
18	0x0	start	WR	i2c dev addr	mem addr	data

Table 10: HV control via I2C.

2.3 ADC Status registers

Status registers map is presented on table 11.

addr	31 30 29 28 27 24 23 20 19 16	15 14 13 12 11 8 7 4 3 0			
0	microslice index 31 0				
1	microslice index 63 32				
2	ADC time				
3	RX wrclk err cnt	RX err frclk cnt			
4	RX err detect cnt	I2C HV bus			
5	0x0	temp			
6	sel. channel baseline rms	sel. channel baseline			
7	sel. channel dropped hits	sel. channel hit rate			

Table 11: ADC channels threshold control.

addr	15 10	9 9	88	7 0	
4	0x0	error ack	busy	DATA	

Table 12: HV status via I2C.

Status registers comments:

- RX err detect cnt counter@RXclk of RX error detected bit.
- $\bullet~\rm RX~err~frclk~cnt$ counter@RXclk of state when frame clock is not ready.
- RX wrclk err cnt counter@RXclk of state when word clock is not ready.

2.4 EvB Control

range	description
0 63	EvB control
64 127	ADC control
128 191	EvB status
192 255	ADC status
256	EvB GBT readout
257	EvB readout fifo count

Table 13: EvB registers mapping

addr	31 28	27 24	23 20	19 16	15 12	11 8	74	3 0			
0		0x0 control word									
1		microslice gen counter@25ns									
2	microslice period										

Table 14: Evaluation board control registers.

bit	$\operatorname{description}$
0	data processing reset
1	error reset

Table 15: Control word bits

addr	31 28	27 24	23 20	19 16	15 12	11 8	74	30	
0		0x0		control status	GBT status				
1		sorter	ms droppe	sorter hit dropped					
2	g	bt reader l	link 1 ms d	gbt reader link 0 ms dropped					
3		st	atus age			control	age		

Table 16: Evaluation board status registers.

bit	description
0	MGT phalin cpll lock
1	RX word clock ready
2	RX frame clock ready
3	MGT link ready
4	TX reset done
5	TX FSM reset done
6	RX ready
7	RX error detected
8	RX error latched

Table 17: GBT status bits

bit	addr	$\operatorname{description}$
0	16	control readback correct

Table 18: control status bits

3 CRI modules

3.1 PSD CRI data sorting

Figure 9: PSD data processing in CRI

3.2 ADC GBT emulator

ADC GBT emulator generate GBT ADC packets filling hit packages with continuous hit counter. Parameters are:

- $\bullet\ {\rm ms_index}$ current microslice index @GBTclk to generate ms headers.
- event_rate is number of GBT clock cycles between packets (from start to start). If previous packet was not sent, and is time to generate new one, new one skipped.
- nch in even number of hits per event 1 ... 32. Emulate fired channels.

• hit packet len - number of hit packet words, including hit header 1 ... 5.

Emulator FSM is based on three counters, signals diagram is presented on figure 10; generated data format is presented on figure 11.

Figure 10: ADC GBT emulator signals

word type	79 76	75 72	71 64	63 48	47 40	39 32	31 16	15 0
ms header	0xA		ms index					
event header	0xB	ADC idx**	0x0	n hits packet len *			0x	0
hit header	$_{ m hit}$	number	words in hit packet ***			ms index		
hit data		hit counter [790]						
hit data		hit counter [790]						
hit data		hit counter [790]						
hit data		hit counter [790]						
		101						
event header	0xB	ADC idx**	0x0		n hits	packet len *	0x	0
	····							

Table 19: GBT data format. [* number of GBT words in event packet: event header + all hit packets] [** ADC board index] [*** total words in hit packet, including hit header]

3.3 ADC GBT reader

ADC GBT reader reads GBT packets from one GBT link and store its to fifo event_fifo. With last packet data word header word pushed to separate fifo header_fifo with packet length and microslice index. Event packet skipped when one of fifos is full. After reset fsm starts wait microslice header. Packets reads according to size in header and fsm wait next packet or microslice header. If next word after packet is neither ms or packet header, fsm starts wait ms header. Data drop info state is not implemented yet. Signal diagram is presented on figure 13.

Figure 11: ADC GBT packets reader

3.4 GBT Data Sorter component

Components header_fifo and event_fifo from adc-gbt-readers for all gbt links are connected to gbt-data-sorter component. Each new microslice value collected in ms-fifo. FSM switch thought all gbt links and read all one by one links with microslice less or equal to current microslice. Data for links with equal microslice to current-ms output from the sorter, for links with less microslice data is dropped. When all links have ms higher than current ms or are empty means that all data for current microslic are read. Such condition starts counter to wait data from all links. Then counter reach value 127, FSM swithced to next-ms state. Next microslice read from fifo and header with new ms value sent to output stream. Signal diagram presented on figure 12 Output data represent combined GBT packets from all GBT link. All events from GBT links for one microslice follows one after another. Data for different microslices divided by microslice header with format 0xDAF0 + microslice (64bit).

Figure 12: gbt-data-sorter signals diagram: mew ms read and event sent from one link

3.5 IPbus face component

IPbus-face-component read data stream from gbt-data-sorter and resize data to width 32 bit. Data stream from gbt-data-sorter stored in fifo-ipbus-face with 80bit write width and 160 read width. Output 160bit word divided in 5 32bit words. Each IPbus read cycle counter 0..4 increased by one, fifo-ipbus-face readed when counter equal 4 and ipbus-read signal is up. While reading empty fifo-ipbus-face all bits are '1'. Signals diagram is presented on figure 13.

Figure 13: IPbus-face signals diagram

3.6 Evaluation Board for readout

Kintex Evaluation board include CRI data processing module and use IPbus-face module for readout. Real GBT link is connected to 0 link, other links can receive data from emulators. Simple microslice generator is used to provide ms to gbt-data-sorter and to ADC board. Tables 14 and 16 present control and status registers map. GBT slow control and IPbus readout ported via dedicated addresses prioritized to status and control registers (could replace status and control registers), shown in table ??