## Algorithm and DS - test #1 Bcero 24/30 ?



| front-end_37-38m                                                       |                |
|------------------------------------------------------------------------|----------------|
| Электронная почта * v.zhevaga@gmail.com                                |                |
| Бал                                                                    | лов: 24 из 30. |
| ✓ An algorithm is                                                      | 2 из 2         |
| what a computer does                                                   |                |
| a word from Wikipedia.                                                 |                |
| a finite set of well-defined rules.                                    | <b>✓</b>       |
| the rules at the airport.                                              |                |
|                                                                        |                |
| ★ Check algorithm properties                                           | 0 из 2         |
| should return a value.                                                 | ×              |
| should terminate after a finite time.                                  | <b>✓</b>       |
| makes sure every step should do some work.                             | <b>✓</b>       |
| should save data.                                                      |                |
| makes sure every step in the algorithm must have a method in the code. |                |
| Правильный ответ                                                       |                |
| should terminate after a finite time.                                  |                |
| makes sure every step should do some work.                             |                |

| X Asymptotic analysis is                                                | 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| an analysis of the time it will take to process a very large dataset.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| an analysis of processing time, regardless of the data set.             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| an analysis of a large data set, regardless of processing time.         | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| an analysis of a large data set, with an algorithm set processing time. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Правильный ответ                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| an analysis of the time it will take to process a very large dataset.   | <b>1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 </b> |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ✓ What does 'n' O(n) mean?                                              | 2 🙀 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 'n' is the data that the algorithm received.                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| that the algorithm will require at most 'n' steps.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| that it is a slow algorithm.                                            | Š                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| n' is something important, but I forgot.                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                         | <u>&amp;</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                         | <u>⊕</u><br>≏                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ✓ The asymptotic running time of an algorithm is expressed by           | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| small "o" notation.                                                     | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| big "O" notation.                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Speed" notation.                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| big "P" notation.                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                         | ············                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                         | <b>→</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Analyzing algorithms we count                                  | 2 2           |
|----------------------------------------------------------------|---------------|
| time complexity and break time.                                |               |
| time complexity and space complexity.                          |               |
| space complexity and time recursion                            |               |
| time complexity and memory space                               | 2 2 2         |
|                                                                |               |
| ✓ Which algorithms do have O(n log n) average time complexity? | 2             |
| Merge sort                                                     |               |
| Bubble sort                                                    | ·他创XX         |
| Linear search                                                  |               |
| Quick sort                                                     |               |
| Binary search                                                  |               |
|                                                                |               |
| ✓ What is recursion?                                           | 2 2 2         |
| Spit roasting meat on an open fire.                            | <b>夏</b><br>各 |
| A method in java that prints something.                        | ā             |
| The process where a function defines itself or its type.       | <b>S</b>      |
| A function that calculates how many calories I have eaten.     |               |
| When a function overflows the Stack.                           |               |
|                                                                |               |

| <b>~</b> | A typical 'divide and conquer' algorithm solves a problem through the following steps: |          |
|----------|----------------------------------------------------------------------------------------|----------|
|          | start algorithm                                                                        |          |
|          | divide                                                                                 |          |
|          | return                                                                                 |          |
|          | calculate                                                                              |          |
|          | conquer                                                                                |          |
| <b>~</b> | combine                                                                                |          |
|          | sort                                                                                   |          |
|          |                                                                                        |          |
| <b>✓</b> | Amortized analysis are used for                                                        | 202      |
| <u>~</u> | algorithms where some operations are very slow, but others are faster.                 |          |
|          | algorithms where some operations are very fast, but others are faster.                 |          |
|          | algorithms where we cannot apply Asymptotic Analysis.                                  | <b>X</b> |
|          | algorithms that have a lot of incoming and outgoing data.                              |          |
|          |                                                                                        |          |
|          | What are the main types of amortized analysis?                                         | 2 2      |
|          | managerial analysis                                                                    | 2        |
|          | aggregate analysis                                                                     |          |
|          | logical method                                                                         |          |
| <b>~</b> | accounting method                                                                      |          |
| <b>✓</b> | potential method                                                                       |          |
|          |                                                                                        |          |
|          |                                                                                        |          |

| ✓ What is Dynamic programming?                            | 2 2                                                 |
|-----------------------------------------------------------|-----------------------------------------------------|
| Creating a dynamic array.                                 | À                                                   |
| Simple recursion optimization.                            |                                                     |
| High speed programming.                                   | ×                                                   |
| Programming one recursion that defines another recursion. |                                                     |
|                                                           |                                                     |
| ✓ Stack is                                                |                                                     |
| FIFO                                                      |                                                     |
| <b>✓</b> LIFO                                             |                                                     |
| ☐ FULL                                                    | <b>闽</b>                                            |
| FILO                                                      |                                                     |
| FIFA                                                      |                                                     |
|                                                           | <b>1</b>                                            |
| ✓ Queue is                                                | 2 23 2                                              |
| FIFO                                                      |                                                     |
| LIFO                                                      | **************************************              |
| FULL                                                      |                                                     |
| FILO                                                      |                                                     |
| FIFA                                                      |                                                     |
|                                                           |                                                     |
|                                                           |                                                     |
|                                                           |                                                     |
|                                                           | <b>38</b> €2 €3 €3 €3 €3 €3 €3 €3 €3 €3 €3 €3 €3 €3 |
|                                                           | <b>₩</b>                                            |

| X Select all that classify data structures. | 0 <b>*</b> 2 |
|---------------------------------------------|--------------|
| Array                                       |              |
| Мар                                         |              |
| LinkedList                                  |              |
| Stack                                       | &            |
| Queue                                       |              |
| Tree                                        |              |
| Graph                                       | <b>*</b>     |
| Правильный ответ                            | <b>3</b>     |
| Array                                       |              |
| Map                                         |              |
| LinkedList                                  |              |
| Stack                                       |              |
| Queue                                       |              |
| Tree                                        |              |
| Graph                                       |              |
|                                             | <u> </u>     |

Given an array 'arr[]' of positive integers, flip each group of subarrays to size 'K.'

```
Example 1:
K = 3
arr[] = \{1,2,3,4,5\}
Output: 3 2 1 5 4
Explanation: The first group consists of elements
1, 2, 3. The second group consists of 4,5.
Example 2:
K = 3
arr[] = \{5,6,8,9\}
Output: 8 6 5 9
Your task:
To write a reverse (arr, k) function that takes 'arr[]' and 'K' as input and modifies the
array into place.
function reverseGroup(arr, k) {
    if (k <= arr.length) {
        if (k == 0) {
```

```
if (k <= arr.length) {
    if (k == 0) {
        return arr;
    }
    if (k == arr.length) {
        return arr.reverse();
    }
    return [
        ...arr.slice(0, k).reverse(),
        ...arr.slice(k, arr.length).reverse(),
        ];
    }
}

const arr = [1, 2, 3, 4, 5];
const arr2 = [5, 6, 8, 9];
console.log(reverseGroup(arr, 3)); // => [3, 2, 1, 5, 4]
console.log(reverseGroup(arr2, 3)); // => [8, 6, 5, 9]
```

## **Divide and Conquer**

Баллов: 0 из 0.

Ниже представлены задачи трёх уровней, обычные, с одной и двумя звёздочками. Можно выбрать Нужно решить одну любую задачу, уровень сложности выбираете самостоятельно

```
// Find the smallest positive element, which given sorted array doesn't contain. All
elements of an array are sorted
// Example: [1, 2, 6, 31]
// Result: 3
//
// Example: [2, 3, 4, 6, 9, 11, 15]
// Result: 1
//Expected time complexity O(log(n))
signature example java
public static int smallestMissing(int[] arr) {
// Решение O(n)
function smallestMissing(arr) {
    let count = 0;
    while (arr[count] == count + 1) {
        count++;
    }
    return ++count;
}
const arr_1 = [1, 2, 6, 31];
const arr_2 = [2, 3, 4, 6, 9, 11, 15];
console.log(smallestMissing(arr_1)); // => 3
console.log(smallestMissing(arr_2)); // => 1
```

```
// Find in a sorted array the closest element to the given number from below and above, -1 otherwise
// Example: arr = [0, 1, 2, 6, 31], n = 5
// Result: below = 2, above = 6
//
// Example: arr = [7, 10, 15, 21, 29], n = 31
// Result: below = 29, above = -1
// Example: arr = [7, 10, 15, 21, 29], n = 5
// Result: below = -1, above = 7

//Expected time complexity O(log(n))
signature example java
public static int[] findFloor(int[] arr) {
}
```

```
// Задачка со звёздочкой *
// Implement merge sort algorithm for a singly linked list
Example: given Node(5) -> Node(3) -> Node(6) -> Node(2)
return Node(2) -> Node(3) -> Node(5) -> Node(6)
java example of Node
class Node {
private int data;
private Node next;
Node(int data, Node next) {
this.data = data;
this.next = next;
}
public int getData() {
return data;
}
public void setData(int data) {
this.data = data;
}
public Node getNext() {
return next;
public void setNext(Node next) {
this.next = next;
}
public static Node mergeSort(Node head) {
}
```

```
// Задачка со звёздочкой *

// Find `k` closest elements to a given value in a sorted array

// Example: arr = [0, 5, 8, 10, 12, 16, 17, 22], k = 3, n = 11

// Result: 8, 10, 12

//

// Example: arr = [8, 9, 11, 15, 19,22, 25, 26, 27], k = 4, n = 22

// Result: 19, 22, 25, 26

public static int[] findKClosest(int[] arr, int k, int n) {
}
```

```
// Задачка со двумя звёздочками **
// Sort a doubly-linked list using quick sort
Example:
given Node(5) <-> Node(3) <-> Node(6) <-> Node(2)
return Node(2) <-> Node(3) <-> Node(5) <-> Node(6)
class Node {
int data;
Node next;
Node prev;
public Node(int data, Node next, Node prev) {
this.data = data;
this.next = next;
this.prev = prev;
}
public int getData() {
return data;
}
public void setData(int data) {
this.data = data;
}
public Node getNext() {
return next;
}
public void setNext(Node next) {
this.next = next;
}
public Node getPrev() {
return prev;
}
public void setPrev(Node prev) {
this.prev = prev;
}
}
```

```
public static Node quickSort(Node head) {
}
```

```
// Задачка со двумя звёздочками **
// You are given an array that consists of positive and negative integers. Find the
sum of maximum subarray using divide and conquer
Subarray - any consequent array within array
arr = [1, 2, 3] has following subarrays:
П
[1]
[2]
[3]
[1,2]
[2,3]
[1,2,3]
// Example:
arr = [0, -5, -3, 10, 9, -11, 17, -22]
// Result: 25 (= 10 + 9 - 11 + 17)
// Example: arr = [8, -9, 11, -15, 9, -5, 6, -1, 3, 4]
// Result: 16 (= 9 - 5 + 6 - 1 + 3 + 4)
public static int findTheMax(int[] arr) {;
}
```

## Recursion and dynamic programming

Баллов: 0 из 0.

Ниже представлены задачи трёх уровней, обычные, с одной и двумя звёздочками. Можно выбрать Нужно решить одну любую задачу, уровень сложности выбираете самостоятельно

```
// Given a number representing a distance.
The task is to count total number of possible ways to cover the distance with 1, 2
and 3 steps.
// Example: n = 3
// Result: 4
// Notes:
//1+1+1
//1 + 2
//2 + 1
// 3
//
// Example: n = 4
// Result: 7
// Notes:
//1+1+1+1
//1 + 2 + 1
//2+1+1
//1+1+2
//2 + 2
//3 + 1
//1 + 3
public static int coverDistance(int n) {
}
```

```
// Given an integer array representing coins
// You can consider each coin can be obtained infinite number of times
//
// You have to find the optimal way to make sum by using different combinations of coins.

// Example: sum = 4, coins[] = {1,2,3},
// Optimal solutions: {2, 2} or {1, 3}

public static int[] findCoins(int[] arr, int sum) {
```

```
// Задачка со звёздочкой *

// Given an integer array representing coins

// You can consider each coin can be obtained infinite number of times

//

// You have to find the all ways to make sum by using different combinations of coins.

// Example: sum = 4, coins[] = {1,2,3},

// Result: {1, 1, 1, 1} or {1, 1, 2} or {2, 2} or {1, 3}.

public static int[] findCoins(int[] arr, int sum) {
```

```
// Задачка со двумя звёздочками **

// Given an integer array representing coins

// You can consider each coin can be obtained only one time

// You are given k the number of coins that should be returne

// You have to find the all ways to make sum by using different combinations of coins.

// Example: sum = 4, coins[] = {1,1,1,2,3}, k = 3

// Result: {1, 1, 2}

public static int[] findCoins(int[] arr, int sum, int k) {
```

Data structures Баллов: 0 из 0.

```
// Validate brackets sequence given as string

// Example (())

// Result: true

// Example (()()

// Result: false

// Example )()(

// Result: false

public static boolean validate(String sequence) {

}
```

```
// Задачка со звёздочкой *
// Validate arithmetic expression with numbers and + - * /

// Example 4+5-6*6
// Result: true

// Example 4+-5-6*6
// Result: false

// Example -4/6//6+1-2
// Result: false

public static boolean validate(String sequence) {
```

```
// Задачка со звёздочкой *
```

You are given a singly linked list where each node can contain a child list (which is also a singly linked list). Your task is to transform that structure to the flat singly linked list so each node will have no child lists

```
linked list so each node will have no child lists
Example:
Node(5) -> Node(3) -> Node(6) -> Node(2)
child of Node(5) is Node(1) -> Node(7)
Node(3) has no children
child of Node(6) is Node(9) -> Node(11)
child of Node(2) is Node(8) -> Node(0)
result
Node(5) -> Node(1) -> Node(7) -> Node(3) -> Node(6) -> Node(9) -> Node(11) ->
Node(2) -> Node(8) -> Node(0)
Example:
Node(5) -> Node(3)
child of Node(5) is Node(1) -> Node(7)
child of Node(1) is Node(9) -> Node(11)
child of(7) is Node -> 8
(3) has no childrenNode
result
5) -> -> -> Node(1) -> Node(9) -> Node((11)Node7)Node(8) -> Node(3)Node(
class Node {
int data;
Node next;
Node child;
public Node(int data, Node next, Node child) {
this.data = data;
this.next = next;
this.child = child;
}
public int getData() {
return data;
}
public void setData(int data) {
this.data = data;
```

```
public Node getNext() {
return next;
}
public void setNext(Node next) {
this.next = next;
public Node getChild() {
return child;
public void setChild(Node child) {
this.child = child;
}ansfor
Option 1
// Задачка с двумя звёздочками **
// Validate arithmetic expression with numbers and + - * / and brackets
// Example 4+5-6*6
// Result: true
// Example (4+)5-6*6
// Result: false
// Example (-4/6/(6(2)
// Result: false
public static boolean validate(String sequence) {
}
```

```
// Задачка с двумя звёздочками **

Реализайте очередь на основе структуры данных Stack.

class Queue {

// Добавляем элемент в очередь public void enqueue(int data)

}

// Удалить элемент из queue public T dequeue()

{

}
```

Компания Google не имеет никакого отношения к этому контенту. - <u>Условия использования</u> - <u>Политика</u> конфиденциальности

Google Формы