Proseminar zur Analysis II Sommersemester 2001

Übungsbeispiele Mathematica

1. Differenziere die folgenden Funktionen und zeichne Funktion und Ableitung (in einer Grafik) in einem "vernünftigen" Bereich.

(a)
$$f(x) = \sqrt{1 + x^2}$$

(b)
$$f(x) = \sqrt{\frac{1+x}{1-x}}$$

(c)
$$f(x) = \sqrt{x + \sqrt{x + \sqrt{x}}}$$

(d)
$$f(x) = \log(1 + x^2)$$

(e)
$$f(x) = (1 + e^x)^2$$

$$(f) f(x) = \log \frac{1+x}{1-x}$$

(g)
$$f(x) = x^{x^x}$$

$$(h) f(x) = (x^x)^x$$

(i)
$$f(x) = \frac{(x^3 - 2x + 5)^7}{\sqrt{1 + x^4}}$$

- (j) Für eine Automatisierung (d.h. wenn dir das Eingeben zu fad wird...) bieten sich folgende zwei Vorgangsweisen an:
 - Interaktive Eingabe der Funktion mittels Input-Kommandos und Ausgabe mittels Print.
 - Angabe aller Funktionen in einer Liste (d.h. in der Form functions $[x_{-}] := \{\sqrt{1+x^2}, \sqrt{\frac{1+x}{1-x}}, \ldots\}$), dann Berechnungen und Ausgabe innerhalb einer For-Schleife.

Benutze die Online-Hilfe, um eine der beiden Varianten zu realisieren.

- 2. Berechne und zeichne (in einer Grafik) die ersten 5 Ableitungen der folgenden Funktionen. Achte darauf "vernünftige" x- und y-Bereiche zu verwenden. Hinweis: Um eine Liste mit den Ableitungen als Eintragungen zu erzeugen verwende das Table-Kommando, um diese dem Plot-Befehl sinnvoll übergeben zu können verwende Evaluate.
 - (a) $f(x) = 8x^5 + 5x^4 + 5x^3 x^2 x + 3$
 - (b) f(x) wie in Übungsbeispiel 116.
- 3. Bestimme die Grenzwerte (für $n \to \infty$) der folgenden Folgen.
 - (a) $a_n = \frac{n^k}{a^n}$ für $k \in \mathbb{N}$, a > 1.
 - (b) $a_n = \frac{n!}{a^n} \text{ für } a > 1.$
 - (c) $a_n = \frac{n!}{n^n}$
- 4. Berechne die Grenzwerte der Reihen falls er existiert. Sonst zeige die Divergenz (wenn nötig etwa mittels geiegneter Tests).
 - (a) $\frac{1}{1\cdot 2\cdot 3} + \frac{1}{2\cdot 3\cdot 4} + \dots$
 - (b) $\sum_{n=1}^{\infty} \frac{n}{2^n}$
 - (c) $\sum_{n=1}^{\infty} \frac{i^n}{n}$
 - (d) $\sum_{n=0}^{\infty} \frac{a^n}{n!}$ für $a \in \mathbb{R}$.
 - (e) $\sum_{n=2}^{\infty} \frac{1}{n \log n}$
 - $(f) \sum_{n=1}^{\infty} \frac{n!}{n^n}$
 - (g) $\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!}$
 - $(h) \sum_{k=2}^{\infty} \frac{k}{(\log k)^k}$
 - (i) $\sum_{k=0}^{\infty} (\sqrt[k]{a} 1)$

- 5. Entwickle die folgenden Funktionen in eine Potenzreihe um 0. Der entsprechende Befehl heißt Series; entwickle bis zu einer "vernünftigen" Ordnung.
 - (a) $f(x) = e^x$
 - (b) $g(x) = \sin x$
 - (c) $h(x) = \cos x$
 - (d) Überprüfe mittles der Potenzreihendarstellung von f,g und h die Eulersche Formel.