

Introduction to Cryptography and Security Message Integerity

Slides are taken from Dan Boneh's Course

Outline

1 Message Authentication Codes

2 MACs based on Pseudo Random Functions

MAC padding

Message Integrity

Goal: **integrity**, no confidentiality.

Examples:

- Protecting public binaries on disk.
- Protecting banner ads on web pages.

Message integrity: MACs

Definition

A MAC system $\mathcal{I} = (S, V)$ is a pair of efficient algorithms, S and V,

- where S is called a signing algorithm and V is called a verification algorithm.
- Algorithm S is used to generate tags and algorithm V is used to verify tags.

Integrity requires a secret key

- Attacker can easily modify message m and re-compute CRC.
- CRC designed to detect random, not malicious errors.

Secure MACs

- Attacker's power: **chosen message attack** for m_1, m_2, \ldots, m_q attacker is given $t_i \leftarrow S(k, m_i)$
- Attacker's goal: existential forgery
 produce some new valid message/tag pair (m, t)

$$(m,t) \notin \{(m_1,t_1), \cdots, (m_q,t_q)\}$$

- Thus, attacker cannot produce some new valid message/tag pair (m, t).
- Given (m, t) attacker cannot even produce (m, t') for $t' \neq t$

MAC-game

MAC Challenger

Adversary \mathscr{A}

$$\begin{cases} b=1 & \text{if } V(k,m,t)=yes & \text{and} & (m,t) \not\in \{(m_1,t_1),...,(m_q,t_q)\}\\ b=0 & \text{otherwise} \end{cases}$$

$$\begin{cases} b=1 & \text{if } V(k,m,t)=yes & \text{and} & (m,t) \not\in \{(m_1,t_1),...,(m_q,t_q)\}\\ b=0 & \text{otherwise} \end{cases}$$

Definition

I = (S, V) is a **secure** MAC if for all "efficient" A:

Adv(I, A) = Pr[Challenger outputs 1] is "negligible."

Question

Let I = (S, V) be a MAC. Suppose an attacker is able to find $m_0 \neq m_1$ such that

$$S(k, m_0) = S(k, m_1)$$
 for $1/2$ of the keys $k \in \mathcal{K}$.

Can this MAC be secure?

- 1 Yes, the attacker cannot generate a valid tag for m_0 or m_1
- 2 No, this MAC can be broken using a chosen msg attack
- 3 It depends on the details of the MAC

Question

Let I = (S, V) be a MAC. Suppose S(k, m) is always 5 bits long.

Can this MAC be secure?

- 1 No, an attacker can simply guess the tag for messages
- 2 It depends on the details of the MAC
- 3 Yes, the attacker cannot generate a valid tag for any message

Example: protecting system files

Suppose at install time the system computes:

- Later a virus infects system and modifies system files
- User reboots into clean OS and supplies his password
- Then: secure MAC ⇒ all modified files will be detected

Outline

1 Message Authentication Codes

2 MACs based on Pseudo Random Functions

MAC padding

Secure PRF \Rightarrow Secure MAC

For a PRF $F: K \times X \rightarrow Y$ define a MAC $I_F = (S, V)$ as:

- S(k, m) := F(k, m)
- V(k, m, t): output 'yes' if t = F(k, m) and 'no' otherwise.

A bad example

Suppose $F: K \times X \to Y$ is a secure PRF with $Y = \{0, 1\}^{10}$.

Is the derived MAC I_F a secure MAC system?

- Yes, the MAC is secure because the PRF is secure
- No tags are too short: anyone can guess the tag for any msg
- It depends on the function F

Examples

- AES: a MAC for 16-byte messages.
- Main question: how to convert Small-MAC into a Big-MAC?
- Two main constructions used in practice:
 - CBC-MAC (banking ANSI X9.9, X9.19, FIPS 186-3)
 - HMAC (Internet protocols: SSL, IPsec, SSH,...)
 - Both convert a small-PRF into a big-PRF.

Construction 1: encrypted CBC-MAC

Construction 2: NMAC

cascade m[0] m[1] m[3] m[4] k t II fpad tag

Question

Why the last encryption step in NMAC?

NMAC: suppose we define a MAC I = (S, V) where

$$S(k, m) = \mathsf{cascade}(k, m)$$

- This MAC is secure
- 2 This MAC can be forged without any chosen msg queries
- 3 This MAC can be forged with one chosen msg query
- 4 This MAC can be forged, but only with two msg queries

Question

Why the last encryption step in ECBC-MAC?

Suppose we define a MAC $I_{RAW} = (S, V)$ where

$$S(k, m) = rawCBC(k, m)$$

Then I_{RAW} is easily broken using a 1-chosen msg attack.

Adversary works as follows:

- Choose an arbitrary one-block message $m \in X$
- Request tag for m. Get t = F(k, m)
- Output t as MAC forgery for the 2-block message $(m, t \oplus m)$

Better security: a randomized construction

Comparison

ECBC-MAC is commonly used as an AES-based MAC

- CCM encryption mode (used in 802.11i)
- NIST standard called CMAC

NMAC not usually used with AES or 3DES

- Main reason: need to change AES key on every block requires re-computing AES key expansion
- But NMAC is the basis for a popular MAC called HMAC

Outline

Message Authentication Codes

2 MACs based on Pseudo Random Functions

3 MAC padding

Recall: ECBC-MAC

What if message length is not multiple of block-size?

CBC MAC padding

Bad idea: pad m with 0's

$$m[0]$$
 $m[1]$

 \Rightarrow

m[0]	m[1]	000 · · ·
------	------	-----------

Is the resulting MAC secure?

- 1 Yes, the MAC is secure
- 2 It depends on the underlying MAC
- **3** No, given tag on msg m attacker obtains tag on $m \mid 0$

CBC MAC padding

For security, padding must be invertible!

$$m_0 \neq m_1 \qquad \Rightarrow \qquad \mathsf{pad}(m_0) \neq \mathsf{pad}(m_1)$$

ISO: pad with $1000 \cdots 0$. Add new dummy block if needed.

• The '1' indicates beginning of pad.

$$m[0]$$
 $m[1]$ \Rightarrow $m[0]$ $m[1]$ $1000\cdots$

CMAC

Variant of CBC-MAC where key = (k, k_1, k_2)

- No final encryption step (extension attack thwarted by last keyed xor)
- No dummy block (ambiguity resolved by use of k_1 or k_2)

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you!

