

Cloud Computing (24/25) Q/A Session 2

Ilja Behnke (<u>i.behnke@tu-berlin.de</u>)
Philipp Wiesner (<u>wiesner@tu-berlin.de</u>)

Assignment 1

- Submissions from 22 groups
- Reviews and gradings by next week

Assignment 2

- In Assignment 1, you worked with cloud platforms from a user perspective
- For Assignment 2: switch role from cloud user to cloud provider
 - Deploy a cloud platform, make it usable for potential users
 - GCP VMs with nested virtualization are used as hosts

Nested Virtualization

- GCP VMs need to support nested virtualization!
- Which virtualization type supports nested virtualization?

OpenStack

- Free open standard cloud computing platform
- Made up of many components for:
 - Computing
 - Storage
 - Networking
 - Identity management
 - Orchestration
 - ...
- Complex solution that easily exceeds scope of any assignment
- Simplified approach: we will deploy it using kolla-ansible

OpenStack

Kolla-ansible

- Open-source community project since 2014
- Containerized deployment of OpenStack services
- Aims at simplification of OpenStack deployment
- Realized with Infrastructure as Code paradigm
 - → Ansible

Infrastructure as Code (IaC)

- Automates infrastructure provisioning and management using code, ensuring consistency and repeatability
- Advantages:
 - Consistent deployments with fewer manual errors
 - Version-controlled infrastructure configurations
 - Scalable and consistent across environments (e.g., dev, test, prod)

Types of IaC

Imperative

- Specifies <u>how</u> to achieve a desired state
- Manually defining and scripting each step
- Greater control over operations
- Higher complexity and risk of errors

Declarative

- Specifies <u>what</u> the desired state should be
- Easier to maintain and audit
- Relies on tools to handle implementation

Ansible

ANSIBLE

- Published in 2012
- Deployment & configuration described in YAML files
- Agentless -> <u>Push</u>
 - Only OpenSSH (and Python) needed
- Playbooks -> imperative with declarative features
 - Contain configuration, variables and templates of a deployment
 - Using roles
- Roles
 - Describe a configuration of a specific component
 - e.g. database server; set up a VPN

Practical Assignment 2

- Task 1: Prepare GCP VMs for OpenStack
 - Create a shell script that sets up a virtual machine environment
 - Set up disk, image, VMs, VPC networks, firewall rules
 - VMs must support nested virtualization
- Task 2: Install OpenStack
 - Using kolla-ansible
- Task 3: Configure OpenStack
- Task 4: Execute Data Processing Application
 - Deploy Apache Spark
 - Execute JavaSparkPi job

Common Pitfalls & General Remarks

- Make sure IP (v4) forwarding is enabled (cat /proc/sys/net/ipv4/ip_forward)
 - If not, enable it with "sysctl -w net.ipv4.ip_forward=1"
- Firewall Rules, Firewall Rules, Firewall Rules!
- Execute commands one after another; validate before proceeding
- Location of Spark logs depends on your chosen installation path

Assignment Submission: ISIS

- Submit all required files on ISIS
- Resubmissions are possible: only the last submission will be counted
- Submission will be partially validated automatically:
 - Use the correct file names
 - Submit exactly the required files described in the assignment
 - Text with answers to questions in submission text field / separate file

Last Reminder

Always remember to shut down your unused VMs!