Task 1: Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine:

- 1- The absolute humidity
- 2- The wet-bulb temperature
- 3- The mass of water vapor in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Weather Forecast Website example

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

Il tempo oggi in Piacenza Martedì, 03 Dicembre 2019								
	05:00	07:00	10:00	14:00	18:00	19:00	21:00	
	(23)	*	Mc	*	*	*	*	
	Cloud	PartlyCloud	LightCloud	PartlyCloud	Sun	Sun	Sun	
Temperatura effettiva	7°C	6°C	7°C	9°C	5°C	4°C	2°C	
Temperatura percepita	4°C	3°C	5°C	7°C	3°C	2°C	0°C	
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	
Umidità	79 %	81 %	75 %	63 %	74 %	75 %	82 %	
Pressione atmosferica	1023 hPa	1024 hPa	1025 hPa	1025 hPa	1026 hPa	1026 hPa	1027 hPa	
Intensità del vento	15 km/h	12 km/h	13 km/h	13 km/h	8 km/h	8 km/h	8 km/h	
Direzione del vento	←¬	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	>	
	E	E	E	Е	E	E	SE	
Probabilità di nebbia	0 %	0 %	0 %	0 %	0 %	0 %	0 %	
Punto di rugiada	3°C	3°C	3°C	2°C	1°C	0°C	-1°C	
Nuvole	90 %	54 %	34 %	47 %	3 %	3 %	6 %	
	39 %	45 %	33 %	46 %	3 %	3 %	6 %	
Nuvole basse			40.07	13 %	1 %	2 %	2 %	
Nuvole basse Nuvole medie	58 %	32 %	12 %	13 76	1 76	2 70	2 70	

Solving the exercise at 05:00 PM on Tuesday 03/12/2019

- The relative humidity: 79%
- Air total Pressure: 1023 hPa (102.3 Kpa)

Temperature to be utilized: 7 C

Estimating Aula A approx. dimensions:

Length: 20 mWidth: 8 mHeight: 5 m

First, let's try to calculate the relative pressure:

$$\phi = rac{m_v}{m_g} \longrightarrow m_g$$
 the mass of water at sat condition

From Steam tables I can find the saturation pressure of water a 7 C =1.001 kPa Reference website: https://www.engineeringtoolbox.com/water-vapor-saturation-pressure-d-599.html?vA=7&units=C#

$$\phi = \frac{m_v}{m_g} = \frac{P_v}{P_g} \longrightarrow P_g = P_{sat} 7 \, ^{\circ}C = 1.001 \, kPa$$

$$\phi = \frac{P_v}{P_a} \rightarrow P_V = \phi \times P_g = 0.79 * 1.001 = 0.79079 \, kPa$$

partial pressure of dry air: $P_a = P - P_v = 102.3 \ kPa - 0.79079 \ kPa = 101.51 \ kPa$

Second, let's try to calculate the absoloute humidity:

$$\omega = 0.622 \frac{P_v}{P_a} = 0.622 \frac{0.79079}{101.51} = 0.00779 \frac{Kg_{vapour}}{kg_{dryAir}}$$

For ideal gases : $m=\frac{PV}{R_{sp.}T}$ So for air : $m_a=\frac{P_aV_a}{R_aT}$ $R_{sp.}=\frac{R_{global}}{M_{gas}}$ \longrightarrow You can also find them in Tables $R_a=0.287$, $R_v=0.4615$

$$m_a = \frac{101.51 * (20 * 8 * 5)}{0.287 * (273 + 7)} = 1010.55 \, kg \, of \, dry \, air$$
$$m_v = \frac{0.79079 * (20 * 8 * 5)}{0.4615 * (273 + 7)} = 4.895 \, kg$$

The mass of water vapor in the air in ClassRoom A is 4.895 Kg.

From the psychometric chart above, we find that the wet bulb temperature is around 5.7 C

Task 2:

Utilize the same methodology we went through in the class:

Determine

- The sensible and latent load corresponding to internal gains
- The infiltration in a house
- The ventilation loads

With a

- good construction quality
- same geometry as that of the example which is located in Brindisi, Italy

Estimating Aula A approx. dimensions:

Length: 20 mWidth: 8 mHeight: 5 m

• Conditioned floor area 16om2

• Wall area 280m2

• Occupants: 100 persons

• One bedroom space

Calculating Internal gains:

$$\dot{Q}_{ig_{sensible}} = 136 + 2.2 * A_{cf} + 22 N_{oc} = 136 + 2.2 * 160 + 22 * 100 = 136 + 352 + 2200$$

= 2688 W

$$\dot{Q}_{ig_{latent}} = 20 + 0.22 * A_{cf} + 12 N_{oc} = 20 + 0.22 * 160 + 12 * 100 = 20 + 35.2 + 1200 = 1255.2 W$$

Infiltration

Claculating the maximum flow rate of air:

Table 3 Unit Leakage Areas

Construction	Description	A_{ul} , cm ² /m ²
Tight	Construction supervised by air-sealing specialist	0.7
Good	Carefully sealed construction by knowledgeable builder	1.4
Average	Typical current production housing	2.8
Leaky	Typical pre-1970 houses	5.6
Very leaky	Old houses in original condition	10.4

For a good construction quality, the average leakage area is 1.4 cm2/m2

$$A_L = A_{es}A_{ul}$$

where

 A_{es} = building exposed surface area, m²

 A_{ul} = unit leakage area, cm²/m² (from Table 3)

Exposed surface = Wall area +roof area

$$A_{es} = 280 + 160 = 440 \, m^2$$

$$A_L = A_{es} \times A_{ul} = 440 \times 1.4 = 616 \ cm^2$$

 $Q_i = A_L \text{IDF}$

where

 A_L = building effective leakage area (including flue) at reference pressure difference = 4 Pa, assuming discharge coefficient C_D = 1, cm²

IDF = infiltration driving force, $L/(s \cdot cm^2)$

Table 5 Typical IDF Values, L/(s·cm²)

Н,	Heating Design Temperature, °C					Cooling Design Temperature, °C			
m	-40	-30	-20	-10	0	10	30	35	40
2.5	0.10	0.095	0.086	0.077	0.069	0.060	0.031	0.035	0.040
3	0.11	0.10	0.093	0.083	0.072	0.061	0.032	0.038	0.043
4	0.14	0.12	0.11	0.093	0.079	0.065	0.034	0.042	0.049
5	0.16	0.14	0.12	0.10	0.086	0.069	0.036	0.046	0.055
6	0.18	0.16	0.14	0.11	0.093	0.072	0.039	0.050	0.061
7	0.20	0.17	0.15	0.12	0.10	0.075	0.041	0.051	0.068
8	0.22	0.19	0.16	0.14	0.11	0.079	0.043	0.058	0.074

On the 4th row of the above table, we have the H: 5m height.

From the weather data for the city of BRINDISI, we note that:

- Heating DB is 4.1
- Cooling DB is 31.1

$$IDF_{\text{heating}} = 0.066 \frac{L}{s. cm^2}$$
$$IDF_{cooling} = 0.032 \frac{L}{s. cm^2}$$

Calculate the volume:

$$\dot{V}_{infiltration_{heating}} = A_L \times IDF = 616 * 0.066 = 40.656 \frac{L}{s}$$

$$\dot{V}_{infiltration_{cooling}} = A_L \times IDF = 616 * 0.032 = 19.712 \frac{L}{s}$$

$$Q_v = 0.05A_{cf} + 3.5(N_{br} + 1)$$

where

 Q_v = required ventilation flow rate, L/s A_{cf} = building conditioned floor area, m² N_{br} = number of bedrooms (not less than 1)

$$\dot{V}_{ventilation} = 0.05\,A_{cf} + 3.5\,(N_{br} + 1) = 0.05^* \text{160+}\ 3.5^*\,\text{100} = 8 + 350 = 358\,\text{ L/S}$$

$$\dot{V}_{inf-ventilation_{heating}} = 40.656 + 358 = 398.656\,\text{L/s}$$

$$\dot{V}_{inf-ventilation_{cooling}} = 19.712 + 358 = 377.712 L/s$$

From the past lessons:

- Cooling Temperature T cooling= 24 C
- Heating Temperature T heating= 20 C

$$\Delta \text{T cooling = 31.1 °C - 24 °C = 7.1 °C} \\ \Delta \text{T heating = 20 °C - (-4.1) °C = 24.1 °C} \\ \omega_{out} = 0.0132 \frac{kg_{water}}{kg_{dryAir}} \ (from \ cooling \ DB = 31.1 °C)$$

$$\omega_{in} = 0.0093 \frac{kg_{water}}{kg_{dryAir}} (from$$

$$\Delta\omega_{=}0.0132 - 0.0093 = 0.0039 \frac{kg_{water}}{kg_{DryAir}}$$

$$C_{sensible} = 1.23$$
, $C_{latent} = 3010$

$$\dot{Q}_{inf-ventilation_{cooling_{sensible}}} = C_{sensible}\dot{V}\Delta T_{cooling} = 1.23 * 48.8 * 7.9 = 474 \, W$$

$$\dot{Q}_{inf-ventilation_{cooling}} = C_{latent} \dot{V} \Delta \omega_{Cooling} = 3010 * 48.8 * 0.0039 = 572. \ 7 \ W$$

$$\dot{Q}_{inf-ventilation_{\text{heating}g_{sensible}}} = C_{sensible}\dot{V}\Delta T_{\text{heating}} = 1.23 * 87.31 * 24.8 = 2663.4 \, W$$