

ESPnet-Codec

Jiatong Shi

Carnegie Mellon University, Langauge Technologies Institute jiatongs@cs.cmu.edu

Content

0011

Motivation

10/27/2024

- Platform Details
 - Methods
 - Evaluation
- Selected Experimental Findings

Motivation of ESPnet-Codec

- Expanded usage of neural codecs
- In the past:
 - Transmission
 - → the most widely used technique in speech/audio technologies
- Now:
 - Downstream modeling (speech/audio generation, etc.)

Potential of going discrete

• The power of connecting to different modalities

AnyGPT (Zhan et al. 2024)

General Formulation of Speech Coding

$$h = E(x)$$

$$c = Q(h)$$

$$\hat{x} = D(c)$$

x: input speech

h: hidden representation

c: codec tokens

 \hat{x} : reconstructed speech

E: Encoder

Q: Quantizer

D: Decoder

Recent advances in the community

- 2021-2022 [5]
 - Soundstream, TFNet, S-TFNet, Encodec, Disen-TF-Codec
- 2023 [10]
 - LMCodec, HiFi-Codec, AudioDec, DAC, VOCOS, Speechtokenizer, Funcodec, RepCodec, TiCodec, HierSpeech++
- 2024 (Jan. -> Jun.) [13]
 - ScoreDec, Language-Codec, AP-Codec, FACodec, ESC, PromptCodec, SemantiCodec, HILCodec, LLM-Codec, PQ-VAE, SQ-Codec, Single-Codec, CodecFake
- 2024 (Jul. -> Dec.) [21]
 - Super-Codec, WavTokenizer, X-Codec, BigCodec, SoCodec, NDVQ, Mimi, DM-Codec, TAAE, DC-Spin, VChangeCodec, LSCodec, SNAC, APCodec, MDCTCodec, SimVQ, UniCodec, PyamidCodec, TAAE, FreeCodec, TS3Codec
- 2025 (Jan. -> Mar.) [8]
 - ComplexDec, X-Codec2, FocalCodec, Baichuan-Audio Tokenizer, UniCodec, FlowDec, BiCodec

More in https://github.com/ga642381/speech-trident

However...

- The concern in fair comparison and comprehensive evaluation
 - Same dataset
 - Controlled experiment
 - Diverse Evaluation Metrics
 - Connection to downstream tasks

ESPnet-Codec

10/27/2024

Platform Supports

Example Neural Codec Models

Model	Sound Representation	Encoder & Decoder	Quantizer	Discriminator
SoundStream (2021)	Time domain	Conv.	RVQ	STFT Discriminator
Encodec (2023)	Time domain	Conv. + RNN	RVQ	MS-STFT Discriminator
DAC (2024)	Time domain	Conv.	RVQ (factorized + L2-normalized)	MSMPMBD
FunCodec (2024)	Spectral domain	Conv.	RVQ	MSD, MPD, MS-STFTD
HiFi-Codec (2024)	Time domain	Conv. + RNN	GRVQ	MS-STFTD

Evaluation

- Reconstruction Evaluation
 - Reconstruction Quality Evaluation with Quality Metrics (VERSA)
 - Reconstruction Quality Evaluation with Codec-SUPERB
- Downstream Evaluation
 - Evaluation conducted on various downstream speech processing tasks

Reconstruction Quality Evaluation with VERSA

- VERSA (Versatile Evaluation for Speech and Audio)
 - Targets a general interface for speech and audio evaluation
 - A collection of conventional/recent automatic quality evaluation metrics
 - Up to 65 metrics with 729 variants supported
 - Highly integrated to speech processing toolkit ESPnet

10/27/2024 CMU-LTI WAV Lab 12

Metrics in VERSA

Dependency	Example Evaluation Metrics
Dependent	MCD, F0-RMSE, F0-CORR, SI-SNR, CI-SDR, PESQ, STOI, WARPQ, VISQOL, SpeechDiscreteBLEU, SpeechDiscreteDistance, SpeechBERT, etc.
Independent	DNSMOS, UTMOS, PLCMOS, SingMOS, Torch-squim (PESQ, STOI, SI-SNR), Sheet-SSQA, PAM, SpoofS, SWR, etc.
Non-matching	CER/WER (ESPnet/ESPnet-OWSM, Whisper),, CLAP-score, Log-WMSE, EMO-SIM, APA, LLR, NOMAD, LLR, etc.
Distributional	FAD, KID, Coverage, Density, KLD

Check full list and details about metrics in our website at https://github.com/wavlab-speech/versa

Codec-SUPERB

Codec SUPERB Challenge @ SLT 2024

Codec Speech processing Universal PERformance Benchmark Challenge

Evaluating the Codec Models on Reconstruction Quality

- Speech recognition (word error rate)
- Emotion recognition (recognition accuracy)
- Speaker verification (equal error rate)
- Audio event classification (classification accuracy)

Downstream Applications

Check our paper for detailed info https://arxiv.org/pdf/2409.15897

- Strong backbone downstream models supported for
 - Speech recognition → WER
 - Text-to-speech → WER, UTMOS, speaker similarity (SPK-SIM)
 - Non-autoregressive TTS
 - SpeechLM-style TTS
 - Speaker recognition → EER
 - Speech separation and enhancement → PESQ, STOI, DNSMOS
 - Singing voice synthesis → MCD, Semitone Accuracy (SACC), SingMOS

Experiments

Check our paper for detailed info https://arxiv.org/pdf/2409.15897

Two data settings

Dataset	Size (Hours)	Domain	Supporting Sampling Rate (Hz)
LibriTTS	560hrs	Speech	16k/24k
AMUSE	30.7khrs	Speech/Audio/Music (24.1k/4.8k/1.8k hrs)	16k/44.1k

• Three models (most widely used models in downstream applications)

Model	Sound Representation	Encoder & Decoder	Quantizer	Discriminator
SoundStream (2021)	Time domain	Conv.	RVQ	STFT Discriminator
Encodec (2023)	Time domain	Conv. + RNN	RVQ	MS-STFT Discriminator
DAC (2024)	Time domain	Conv.	RVQ (factorized + L2-normalized)	MSMPMBD

Reconstruction Experiments

In LibriTTS 16kHz setup:

- Encodec has good performance on 13 metrics
- Soundstream has good performance on 3 metrics (all F0-related)
- DAC has no best performing metrics

In matching experimental setups (for speech modeling), DAC does not demonstrate benefits over Soundstream and Encodec

Comparison of Reconstruction Performance

Effect of Different Sampling Rate

• The behavior of higher sampling rate can be dependent to models

Effect of Different Sampling Rate

• The behavior of higher sampling rate can be dependent to models

Simple STFT discriminator are difficult to expand for high sampling rate modeling than MSMPMB discrimiantor

Model	Training Data	ASR (WER ↓)	SPK (EER↓)	ER (ACC 个)	AEC (ACC 个)	
SoundStream	LibriTTS	5.99	2.8	49.49	51.13	
SoundStream+	AMUSE	5.88	2.4	53.54	68.11	
Encodec	LibriTTS	5.58	2.2	52.53	61.58	
Encodec+	AMUSE	5.98	2.4	50.51	66.50	
DAC	LibriTTS	6.33	3.4	55.56	52.65	
DAC+	AMUSE	6.08	3.2	54.55	61.89	
Original Audio		5.28	1.6	59.60	78.01	

(+ indicated model trained with AMUSE)

Model	Training Data	ASR (WER ↓)	SPK (EER↓)	ER (ACC 个)	AEC (ACC 个)	
SoundStream	LibriTTS	5.99	2.8	49.49	51.13	
SoundStream+	AMUSE	5.88	2.4	53.54	68.11	
Encodec	LibriTTS	5.58	2.2	52.53	61.58	
Encodec+	AMUSE	5.98	2.4	50.51	66.50	
DAC	LibriTTS	6.33	3.4	55.56	52.65	
DAC+	AMUSE	6.08	3.2	54.55	61.89	
Original Audio		5.28	1.6	59.60	78.01	

(+ indicated model trained with AMUSE)

Inclusion of in-domain data could be helpful for related in-domain tasks (e.g., data in general audio domain → AEC task)

Model	Training Data	ASR (WER ↓)	SPK (EER↓)	ER (ACC 个)	AEC (ACC 个)
SoundStream	LibriTTS	5.99	2.8	49.49	51.13
SoundStream+	AMUSE	5.88	2.4	53.54	68.11
Encodec	LibriTTS	5.58	2.2	52.53	61.58
Encodec+	AMUSE	5.98	2.4	50.51	66.50
DAC	LibriTTS	6.33	3.4	55.56	52.65
DAC+	AMUSE	6.08	3.2	54.55	61.89
Original Audio		5.28	1.6	59.60	78.01

(+ indicated model trained with AMUSE)

More data (domains) can help SoundStream and DAC to perform better reconstruction → but not always for Encodec

Model	Training Data	ASR (WER ↓)	SPK (EER↓)	ER (ACC 个)	AEC (ACC 个)
SoundStream	LibriTTS	5.99	2.8	49.49	51.13
SoundStream+	AMUSE	5.88	2.4	53.54	68.11
Encodec	LibriTTS	5.58	2.2	52.53	61.58
Encodec+	AMUSE	5.98	2.4	50.51	66.50
DAC	LibriTTS	6.33	3.4	55.56	52.65
DAC+	AMUSE	6.08	3.2	54.55	61.89
Original Audio		5.28	1.6	59.60	78.01

(+ indicated model trained with AMUSE)

Potential causes:

- The use of RNN in its encoder (difficulty for modeling general audio/music with RNN)

	ASR		NAR-TTS			AR-TTS	
Model	WER ↓	WER ↓	UTMOS 个	SPK-SIM 个	WER ↓	UTMOS 个	SPK-SIM 个
SoundStream	3.7	3.4	2.34	0.58	6.7	3.70	0.63
Encodec	3.6	4.3	2.35	0.59	7.7	3.85	0.63
DAC	3.6	5.2	2.12	0.54	10.2	3.75	0.66
SoundStream+	3.7	4.7	1.84	0.57	9.8	2.97	0.61
Encodec+	3.9	5.4	1.92	0.58	8.6	2.32	0.62
DAC+	4.1	6.2	1.82	0.56	15.9	2.94	0.64

(+ indicated model trained with AMUSE)

	ASR		NAR-TTS			AR-TTS	
Model	WER ↓	WER ↓	UTMOS 个	SPK-SIM 个	WER ↓	UTMOS 个	SPK-SIM 个
SoundStream	3.7	3.4	2.34	0.58	6.7	3.70	0.63
Encodec	3.6	4.3	2.35	0.59	7.7	3.85	0.63
DAC	3.6	5.2	2.12	0.54	10.2	3.75	0.66
SoundStream+	3.7	4.7	1.84	0.57	9.8	2.97	0.61
Encodec+	3.9	5.4	1.92	0.58	8.6	2.32	0.62
DAC+	4.1	6.2	1.82	0.56	15.9	2.94	0.64

(+ indicated model trained with AMUSE)

Compared to model trained on AMUSE, models trained on LibriTTS suggest better performance on almost all metrics

	ASR		NAR-TTS			AR-TTS	
Model	WER ↓	WER ↓	UTMOS 个	SPK-SIM 个	WER ↓	UTMOS 个	SPK-SIM 个
SoundStream	3.7	3.4	2.34	0.58	6.7	3.70	0.63
Encodec	3.6	4.3	2.35	0.59	7.7	3.85	0.63
DAC	3.6	5.2	2.12	0.54	10.2	3.75	0.66
SoundStream+	3.7	4.7	1.84	0.57	9.8	2.97	0.61
Encodec+	3.9	5.4	1.92	0.58	8.6	2.32	0.62
DAC+	4.1	6.2	1.82	0.56	15.9	2.94	0.64

(+ indicated model trained with AMUSE)

Inclusion of data from other domains can **degrade** the performance on ASR, TTS \rightarrow reasonable due to more information to compress with limited bandwidth

	ASR		NAR-TTS			AR-TTS	
Model	WER ↓	WER ↓	UTMOS 个	SPK-SIM 个	WER ↓	UTMOS ↑	SPK-SIM 个
SoundStream	3.7	3.4	2.34	0.58	6.7	3.70	0.63
Encodec	3.6	4.3	2.35	0.59	7.7	3.85	0.63
DAC	3.6	5.2	2.12	0.54	10.2	3.75	0.66
SoundStream+	3.7	4.7	1.84	0.57	9.8	2.97	0.61
Encodec+	3.9	5.4	1.92	0.58	8.6	2.32	0.62
DAC+	4.1	6.2	1.82	0.56	15.9	2.94	0.64

(+ indicated model trained with AMUSE)

Comparison between NAR-TTS and AR-TTS:

- Better intelligibility from NAR-TTS
- Better naturalness from AR-TTS

	ASR	NAR-TTS			AR-TTS		
Model	WER ↓	WER ↓	UTMOS 个	SPK-SIM 个	WER ↓	UTMOS ↑	SPK-SIM 个
SoundStream	3.7	3.4	2.34	0.58	6.7	3.70	0.63
Encodec	3.6	4.3	2.35	0.59	7.7	3.85	0.63
DAC	3.6	5.2	2.12	0.54	10.2	3.75	0.66
SoundStream+	3.7	4.7	1.84	0.57	9.8	2.97	0.61
Encodec+	3.9	5.4	1.92	0.58	8.6	2.32	0.62
DAC+	4.1	6.2	1.82	0.56	15.9	2.94	0.64

(+ indicated model trained with AMUSE)

Non-autoregressive modeling -> easy control for content, difficult control for style Autoregressive modeling -> difficult control for content, better control for speech progression

10/27/2024

	ASR	NAR-TTS			AR-TTS		
Model	WER ↓	WER ↓	UTMOS 个	SPK-SIM 个	WER ↓	UTMOS 个	SPK-SIM 个
SoundStream	3.7	3.4	2.34	0.58	6.7	3.70	0.63
Encodec	3.6	4.3	2.35	0.59	7.7	3.85	0.63
DAC	3.6	5.2	2.12	0.54	10.2	3.75	0.66
SoundStream+	3.7	4.7	1.84	0.57	9.8	2.97	0.61
Encodec+	3.9	5.4	1.92	0.58	8.6	2.32	0.62
DAC+	4.1	6.2	1.82	0.56	15.9	2.94	0.64

(+ indicated model trained with AMUSE)

Compared to SoundStream, Encodec can offer better quality for speech, but at the risk of making it less clear for content modeling

	ASR		NAR-TTS			AR-TTS	
Model	WER ↓	WER ↓	UTMOS 个	SPK-SIM 个	WER ↓	UTMOS 个	SPK-SIM 个
SoundStream	3.7	3.4	2.34	0.58	6.7	3.70	0.63
Encodec	3.6	4.3	2.35	0.59	7.7	3.85	0.63
DAC	3.6	5.2	2.12	0.54	10.2	3.75	0.66
SoundStream+	3.7	4.7	1.84	0.57	9.8	2.97	0.61
Encodec+	3.9	5.4	1.92	0.58	8.6	2.32	0.62
DAC+	4.1	6.2	1.82	0.56	15.9	2.94	0.64

(+ indicated model trained with AMUSE)

Dilemma for Codec:

Better reconstruction quality vs. More focuses on fundamental content information

Downstream Application (Speaker, Enhancement, and Singing Synthesis)

	SPK	SSE			SVS		
Model	EER ↓	PESQ 个	STOI 个	DNSMOS 个	MCD ↓ SACC ↑ SingMOS		
SoundStream	27.5	1.79	0.73	0.93	Cannot work well from reconstruction		
Encodec	15.7	1.85	0.76	0.95			
DAC	29.5	1.73	0.74	0.87			
SoundStream+	15.9	1.76	0.73	0.81	8.82	0.60	2.92
Encodec+	14.1	1.24	0.51	0.62	8.51	0.58	2.86
DAC+	24.6	2.00	0.78	0.87	9.26	0.49	2.58

(+ indicated model trained with AMUSE)

10/27/2024

Downstream Application (Speaker, Enhancement, and Singing Synthesis)

	SPK		SSE			SVS	
Model	EER ↓	PESQ 个	STOI 个	DNSMOS 个	MCD ↓	SACC ↑	SingMOS 个
SoundStream	27.5	1.79	0.73	0.93	-	-	-
Encodec	15.7	1.85	0.76	0.95	-	-	-
DAC	29.5	1.73	0.74	0.87	-	-	-
SoundStream+	15.9	1.76	0.73	0.81	8.82	0.60	2.92
Encodec+	14.1	1.24	0.51	0.62	8.51	0.58	2.86
DAC+	24.6	2.00	0.78	0.87	9.26	0.49	2.58

(+ indicated model trained with AMUSE)

Inclusion of data from other domains can **improve** the performance on SPK, SVS \rightarrow comes from the more diverse information (a trade-off with the finding of ASR/TTS)

Summary

- The comparison of audio codecs presents multiple complexities due to:
 - Diverse downstream applications (understanding vs. generation)
 - Various domains in data (speech, music, general audio)
 - Numerous training hyperparameters (many significantly impacting model performance)
- ESPnet-Codec addresses these challenges by providing:
 - Reproducible modeling frameworks
 - Seamless integration with state-of-the-art downstream systems
 - Ongoing development of comprehensively tuned models for optimal performance

Note: We are continuously adding more models with extensive tuning to achieve best-in-class performance. Please stay tuned for updates!

Summary

- The comparison of audio codecs presents multiple complexities due to:
 - Diverse downstream applications (understanding vs. generation)
 - Various domains in data (speech, music, general audio)
 - Numerous training hyperparameters (many significantly impacting model performance)
- ESPnet-Codec addresses these ch
 - Reproducible modeling framework
 - Seamless integration with state-of-
 - Ongoing development of comprehe

support to various applications in ESPnet, especially the recent SpeechLM project

Note: We are continuously adding more models with extensive tuning to achieve best-in-class performance. Please stay tuned for updates!

Future Works

- Cross-domain adaptation techniques for codec modeling
 - Developing methods to adapt codecs trained on one audio domain (e.g., speech) to perform well on others (e.g., music, environmental sounds)
- End-to-end optimization frameworks
 - Designing systems that jointly optimize codecs with downstream tasks (ASR, TTS, etc.) rather than treating them as separate components
- Community benchmarking platform
 - Establishing standardized evaluation frameworks and datasets to enable fair comparison between different codec approaches

Acknowledgements

Thanks to all the collaborators to these projects, including
Jinchuan Tian (CMU), Yihan Wu (RUC), Jee-weon Jung (CMU->Apple), Jia Qi Yip (NTU - Singapore), Yoshiki Masuyama (TMU), William Chen (CMU), Yuning Wu (RUC),
Yuxun Tang (RUC), Massa Baali (CMU), Dareen Alharhi (CMU), Dong Zhang (FDU),
Ruifan Deng (FDU), Tejes Srivastava (Uchicago), Haibin Wu (NTU – Taiwan),
Hye-Jin Shim (CMU), Alexander H. Liu (MIT), Bhiksha Raj (CMU), Qin Jin (RUC),
Ruihua Song (RUC), Shinji Watanabe (CMU)

Icons and images are either from flaticon.com or generated from Dall-E.

Thank you for listening!

