

UNIVERSIDADE FEDERAL DO PIAUÍ CAMPUS SENADOR HELVÍDIO NUNES DE BARROS DISCIPLINA: SISTEMAS INTELIGENTES PROFESSORA: DEBORAH MAGALHÃES MONITOR: DAVI LUÍS

TRABALHO COMPUTACIONAL

1. Descrição do Trabalho

Nesta etapa, nós construímos um notebook para predizer os valores de venda de casas de um região de Seattle, EUA. Desse modo, nos familiarizamos com a linguagem Python para análise de dados: executando comandos no jupyter notebook, carregando e transformando dados, calculando estatísticas dos dados e, finalmente, construindo um modelo de regressão. Com base nisso, o objetivo deste trabalho é construir um modelo de regressão mais preciso para prever os preços das casas considerando mais características dos dados.

1.1. O que você eu vou precisar?

- Ambiente configurado (seguir os slide SI-setup disponibilizados no Sigaa);
- Realizar o download dos dados (home_data.gl.zip) disponível do repositório da disciplina.

1.2. O que deve ser feito?

Três passos deverão ser seguidos neste trabalho computacional:

- Seleção e estatística: selecione apenas as casas com o zipcode = XXX e cálcule o preço médio de vendas.
- 2. **Filtrar os dados:** usar filtros lógicos¹ para selecionar apenas as casas com o atributo 'sqft_living' maior que 2000 sqft e menor que 4000 sqft. Calcule a fração das casas que estão nesse intervalo em relação ao todo.
- 3. **Construir um modelo de regressão:** considerando um número maior de características (caracteristicas_avancadas), construa um novo modelo de regressão. Em seguida, calcule o RMSE (root mean squared error) nos dados de teste para o modelo usando o vetor

_

¹ https://turi.com/products/create/docs/generated/graphlab.SFrame.html

"caracteristicas" e o modelo usando o vetor
"caracteristicas_avancadas". Qual é a diferença no RMSE entre o
modelo treinado com "caracteristicas" e "caracteristicas" avancadas"?

```
caracteristicas = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors',
    'zipcode']
caracteristicas_avancadas = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot',
    'floors', 'zipcode', 'conditions', 'waterfront', 'grade', 'view', 'sqft_above',
    'sqft_basement']
```

Nota 1: ambos os modelos devem ser treinados com o conjunto de dados original e não o conjunto filtrado;

Nota 2: ao fazer a divisão treino/teste, certifique-se de passar o parâmetro seed = 0 para a função random_split;

Nota 3: quando utilizar a função linear_regression.create(), certifique-se de usar o parâmetro validation_set = None.

2. Avaliação

Este trabalho entra na composição da nota referente a segunda avaliação parcial da disciplina e deverá ser entregue no dia **07/12**. A nota do trabalho é **individual** e assumirá o valor de **0-1.5**. Faça o Pull Request com apenas a pasta com seu nome contendo o notebook com extensão "ipynb". **Não** é necessário incluir os dados e, por favor, **não** exclua nenhum arquivo do repositório. **O prazo final para a entrega deste trabalho é 12/04/2017 (quinta-feira)**.

Atenção: se identificada a cópia de código, a nota **zero** será atribuída aos envolvidos.