Exercises

Section 8

8.1 Let X be connected and locally simply connected, and choose a base point x_0 . Show that for any locally constant sheaf (of sets) A, the group $\pi_1(X, x_0)$ acts on the stalk A_{x_0} . Show that this gives a functor $A \mapsto A_{x_0}$ (which is an equivalence of categories between the category of locally constant sheaves on X and the category of sets with a $\pi_1(X, x_0)$ -action.)

Let X be connected and locally simply connected. Let A be a locally constant sheaf, so that $\pi: Et(A) \to X$ is a covering map. Fix x_0 in X and let $p:[0,1] \to X$ be a loop in X based at x_0 . Consider $\pi^{-1}(x_0) \in Et(A)$. Since π is a covering map, there exists a neighborhood U_0 of x_0 in X and a set $S = \pi^{-1}(x_0)$ such that U_0 is evenly covered by π with $\pi^{-1}(U_0) = U_0 \times S$, where S has the discrete topology. (i.e., each $x \in X$ has a neighborhood whose preimage under π is a stack of pancakes with one pancake for each $s \in S = A_x$).

Note that for each $s \in S$ (that is, each point in the fiber of x_0 or equivalently each point in A_{x_0}), the fact that π is a covering map implies that $p:[0,1]\to X$ has a unique lifting, \tilde{p}_s , to a path in Et(A) beginning at s and ending at some $t\in S$ (Munkres Lemma 54.1). Moreover, if p_1 and p_2 are both loops based at x_0 and are homotopic, then the induced paths in Et(A) are homotopic with identical endpoints (Munkres Theorem 54.3). Now we can define an action of $\pi_1(X,x_0)$ on $A_{x_0}=\pi^{-1}(x_0)$ by $p\cdot s=\tilde{p}_s(1)$, where p is a loop based at x_0 , s is in the fiber of x_0 (ie s in the stalk of A_{x_0}) and \tilde{p}_s is the unique lift of p for s implied by the fact that π is a covering map. Note that if e is the constant loop, then $\tilde{e}_s(1)=s$, $\forall s$ so that $e\cdot s=\tilde{e}_s(1)=s$. Since the group operation, *, of $\pi(X,x_0)$ is composition of loops, we also have $p\cdot (q\cdot s)=p\cdot \tilde{q}_s(1)=\tilde{p}_{\tilde{q}_s(1)}(1)=(p*q)\cdot s$. Then $\pi(X,x_0)$ gives an action on A_{x_0} .

Let **LocConSh(X)** be the category of locally constant sheaves on X. Define a morphism $F: \mathbf{LocConSh(X)} \to \mathbf{Set}$ by $A \mapsto A_{x_0}$. If ϕ is a morphism from A to B, define $F\phi: A_{x_0} \to B_{x_0}$ by using the induced map: if $s \in A(U)$ for some $U \subseteq X$, $F(\phi)(germ_{y_0}(s)) = germ_{y_0}(\phi(s))$ for some $y_0 \in U$ (this makes sense since $A_{y_0} \cong A_{x_0}$ and likewise for the stalks of B). Then ϕ is natural and hence gives a functor $\mathbf{LocConSh(X)} \to \mathbf{Set}$.

8.2 Let S^d be a d-dimensional sphere. For any Abelian group A, prove that,

$$H^n(S^d;A) = \begin{cases} A & \text{when } n = 0 \text{ or } n = d \text{ provided } d \neq 0; \\ A \oplus A & \text{when } d = n = 0; \\ 0 & \text{otherwise.} \end{cases}$$

Write S^d as the union of closed subspaces, N and S, the closed northern and southern hemispheres, $S^d = N \cup S$. Note that $S^{d-1} = N \cap S$. We proceed by induction of d and consider the cases $n \neq d$ and n = d separately. The cases n = 0 and d = 0 are obvious (since S^d is connected for d > 0 and S^0 has two components).

Suppose $d \ge 1$ and the result holds for d = 0. By inductive hypothesis, for $n \ne d$ and n > 0, $H^n(S^{d-1}; A|_{S^{d-1}}) = 0$. Then the Mayer-Vietoris sequence:

$$\ldots \to H^{n-1}(S^{d-1}; A\mid_{S^{d-1}}) \to$$

$$H^{n}(S^{d}; A) \to H^{n}(N; A \mid_{N}) \oplus H^{n}(S; A \mid_{S}) \to H^{n}(S^{d-1}; A \mid_{S^{d-1}}) \to \dots$$

becomes:

$$\dots \to 0 \to H^n(S^d; A) \to H^n(N; A \mid_N) \oplus H^n(S; A \mid_S) \to 0 \to \dots$$

And so by exactness, we have

$$\dots \to 0 \to H^n(S^d; A) \xrightarrow{\sim} H^n(N; A \mid_N) \oplus H^n(S; A \mid_S) \to 0 \to \dots$$

It remains to show that $H^n(N;A\mid_N)\oplus H^n(S;A\mid_S)=0$. Notice that N and S are both contractible; that is, they are both homotopic to the 1-point space. Then since $H^n(\{*\};F)=0, \forall n>0$, we must have $H^n(N;A\mid_N)\oplus H^n(S;A\mid_S)\cong 0$, for n>0. Then $H^n(S^d;A)=0$ for all $n\neq d$ and n>0 and for all d.

We now consider the case n = d. By inductive hypothesis, we have $H^{n-1}(S^{d-1}; A) = H^{d-1}(S^{d-1}; A) = A$. So the Mayer-Vietoris sequence:

$$\dots \to H^{d-1}(N; A \mid_N) \oplus H^{d-1}(S; A \mid_S) \to H^{d-1}(S^{d-1}; A \mid_{S^{d-1}}) \to H^d(S^d; A) \to H^d(S^d; A)$$

becomes

$$\dots \to H^{d-1}(N; A \mid_N) \oplus H^{d-1}(S; A \mid_S) \to A \to H^d(S^d; A) \to \dots$$

But by above, this is

$$\dots \to 0 \to A \to H^d(S^d; A) \to \dots$$

which by exactness and the first isomorphism theorem implies $H^d(S^d;A)\cong A$ and so the result follows.