

Indian Institute of Technology Bombay

Analog Circuits Lab EE 230

Lab 11 - Electrocardiogram Simulation April 14, 2025

 $\begin{array}{c} {\rm Mridul~Choudhary} \\ {\rm 23B3933} \end{array}$

Contents

1	2nd	l-Order Low-Pass Filter	2
	1.1	Aim	2
	1.2	Design	2
	1.3	Simulation results	
	1.4	Conclusions	5
2	50H	Iz Notch Filter	6
	2.1	Aim	6
	2.2	Design	6
	2.3	Simulation results	
	2.4	Conclusions	
3	Con	mbined Response of LPF + Notch	10
	3.1	Aim	10
	3.2	Design	10
	3.3	Simulation results	
	3.4	Conclusions	
4	Cal	culations	12

1 2nd-Order Low-Pass Filter

1.1 Aim

Design and simulate a 2nd-order low-pass ECG amplifier stage that:

- 1. Provides a DC gain of approximately 28dB
- 2. Exhibits a 3dB cutoff frequency of 150Hz
- 3. Uses ideal op-amp assumptions for analytical transfer functions

1.2 Design

- 1. **Topology:** Two cascaded inverting stages.
- 2. Transfer Function:

$$\frac{V_c}{V_{in}} = -A \times \frac{1}{1 + s\tau_1} \times \frac{1}{1 + s\tau_2} \tag{1}$$

with DC gain A and time constants $\tau_1 = R_7 C_2$, $\tau_2 = R_8 C_3$.

- 3. Component Selection:
 - Adjust resistor ratio to set gain: $A=10^{(28dB/20)}\approx 25;$ so $R_7/R_6\approx 25$ which gives us $R_7=472.256\mathrm{k}\Omega$
 - And 3dB frequency = 150Hz gives us $R_8 = 361.075$ k
- 4. Simulation Steps:
 - AC Sweep (1Hz-10kHz, decade): Plot magnitude of V_c ; extract DC gain and f_{3dB} .
 - Transient Response (2kHz, $1V_{pp}$): Observe input vs. output sine waves.

Figure 1: 2nd Order Low Pass Filter

1.3 Simulation results

Sr. No.	Parameter	Value
1	R_6	$18.8 \mathrm{k}\Omega$
2	R_7	$472.256 \mathrm{k}\Omega$
3	R_8	$361 \mathrm{k}\Omega$
4	C_2	2nF
5	C_3	1nF

Table 1: Parameter Values

Figure 2: AC Analysis

Figure 3: Transient Analysis

1.4 Conclusions

- 1. DC Gain: ~ 28 dB (measured)
- 2. **3dB Cutoff:** ∼150Hz
- 3. **Transient Behavior:** Attenuation of high-frequency components; clean sine at output with expected amplitude scaling.

Thus, the designed filter meets the specifications, providing the desired gain and cutoff, and behaves as a stable 2nd-order low-pass stage.

2 50Hz Notch Filter

2.1 Aim

Implement and simulate a twin-T notch filter that suppresses 50Hz interference by combining:

- 1. A low-pass section (cutoff 20–30Hz)
- 2. A high-pass section (cutoff 80–90Hz)
- 3. Summing network to notch at 50Hz

2.2 Design

- 1. Low-Pass Filter (LPF):
 - Single-pole RC: $f_{c,LP} = \frac{1}{2\pi R_9 C_6} \rightarrow$ choose R_9 for 25Hz cutoff.
 - With $C_6 = 220nF$, we get $R_9 = 28.397k\Omega$.
 - AC Analysis (1Hz-1kHz): Plot voltage across C_6 .
- 2. High-Pass Section (HPF):
 - Single-pole RC: $f_{c,HP} = \frac{1}{2\pi R_{10}C_4} \rightarrow$ choose R_9 for 85Hz cutoff.
 - With $C_4 = 100nF$, we get $R_{10} = 18.724k\Omega$.
 - AC Analysis (0.1Hz–1kHz): Plot voltage across R_{10} .

3. Notch Network:

- Combine LPF output and inverted HPF output (twin-T topology).
- AC Analysis (0.1Hz-1kHz): Plot V_{out} ; tabulate notch depth and half-power frequencies around notch.

Figure 4: The Low-Pass Filter

Figure 5: The High-Pass Filter

Figure 6: The High-Pass Filter

2.3 Simulation results

Sr. No.	Parameter	Value
1	R_9	$28.935 \mathrm{k}\Omega$
2	C_6	220nF
3	R_{10}	$18.724 \mathrm{k}\Omega$
4	C_4	100nF

Figure 7: The Low-Pass Filter Characteristics

Figure 8: The High-Pass Filter Characteristics

Figure 9: The Notch Characteristics

2.4 Conclusions

1. LPF Cutoff: $24.98 \mathrm{Hz} \sim 25 \mathrm{Hz}$

2. HPF Cutoff: $85.5 \mathrm{Hz} \sim 85 \mathrm{Hz}$

3. Notch Depth: 30dB attenuation at 50Hz

4. Bandwidth Around Notch: $\sim \pm 5 Hz$

The twin-T network effectively rejects 50Hz interference while passing frequencies outside the notch with minimal distortion.

3 Combined Response of LPF + Notch

3.1 Aim

Integrate the 2nd-order low-pass filter (Part (a)) with the 50Hz notch filter (Part (b)) and characterize the overall ECG amplifier response:

- 1. Measure DC gain and overall 3dB cutoff
- 2. Verify transient responses at representative frequencies (20Hz, 50Hz, 100Hz, 2kHz)

3.2 Design

- 1. **Topology:** Cascade of Part(a) filter into Part(b) notch network.
- 2. AC Analysis (0.1Hz-1kHz):
 - Plot combined V_{out}
 - Extract overall DC gain (\sim 28dB) and 3dB cutoff (\sim 150Hz).

3. Transient Simulations:

- 20Hz: Low-frequency ECG component passes with correct gain.
- 50Hz: Notch yields deep attenuation in time-domain.
- 100Hz & 2kHz: Observe roll-off per low-pass behavior; high-frequency suppression.

Figure 10: The Combined Circuit

3.3 Simulation results

Figure 11: The Combined Circuit Characteristics

3.4 Conclusions

1. Overall DC Gain: $\sim 28 dB$

2. Overall 6dB Cutoff: $\sim 150 \mathrm{Hz}$

3. Transient Observations:

• 20 Hz: Clean amplification. 50 Hz: Nearly zero output (notch action) 100 Hz & 2 kHz: Progressive attenuation per filter roll-off.

The combined amplifier meets ECG signal requirements: high gain in passband (0.5–150Hz), strong 50Hz rejection, and suppression of unwanted high-frequency noise.

4 Calculations

Figure 12: Calculations 1

Figure 13: Calculations 2