7. Polinomio de Taylor – Extremos

- 01) Sea $p(x, y) = x^2 xy + y^3 3$ el polinomio de Taylor de 3° orden del campo escalar f en un entorno del punto (1,2).
 - a) Expréselo en potencias de (x-1) e (y-2).
 - b) ¿Cuál es el valor de f en (1,2)?, ¿se puede calcular con el polinomio dado sin obtener la forma pedida en "a"?.
- 02) Dadas las superficies de ecuación z = f(x, y) y z = p(x, y), donde p es la función polinómica que resulta de desarrollar f en un entorno de (x_0, y_0) hasta el orden n, verifique que ambas superficies tienen el mismo plano tangente en el punto $(x_0, y_0, f(x_0, y_0))$. (*)
- 03) Desarrolle los siguientes campos por Taylor hasta 2° orden en un entorno de \overline{A} .
 - a) $f(x, y) = x y \sqrt{6 x}$, $\overline{A} = (2,3)$.
 - b) $f(x, y) = y \ln(x) + x \ln(y x)$, $\overline{A} = (1,2)$.
 - c) $f(x, y, z) = e^{xz} (z+1)\sqrt{y-x}$, $\overline{A} = (1,2,0)$.
 - d) $f(x, y, z) = \cos(x + y)e^{z-x}$, $\overline{A} = (0,0,0)$.
- 04) Calcule en forma aproximada: a) $0.98^{2.01}$, b) $\sqrt{3.99} + \sqrt[3]{8.06}$, c) 8.97 / 3.02.
- 05) Dada f(x, y) = y g(x) con g derivable, halle g(x) tal que en un entorno del punto (x_0, y_0) con $y_0 \ne 0$ resulte $f(x, y) \cong g(x_0)(x + y x_0)$.
- 06) Dada $f: \Re^2 \to \Re$, analice en cada caso si f(0,0) es extremo local; en caso afirmativo clasifíquelo y calcule su valor.
 - a) $f(x,y) = 2 + \sqrt{|xy|}$. b) $f(x,y) = x^3 + xy^2$. c) $f(x,y) = (y-x^3)(x-y^2)$.
- 07) Siendo $f(x, y) = (x + y)^4$, demuestre que $f(-a, a) \ \forall a \in \Re$ es extremo local en sentido amplio.
- 08) Estudie la existencia de extremos relativos (locales) y de extremos absolutos en sus dominios naturales de:
 - a) $f(x, y) = x^2 + y^2 + xy^2$. d) $f(x, y) = \ln(y x)$.
 - b) $f(x,y) = x^3 x^2 + xy$. e) $f(x,y) = \sqrt{10 (x-4)^2 (y-2)^2}$.
 - c) $f(x,y) = \sqrt{y-x}$. f) $f(x,y,z) = x^2 + y^4 + z^3$.
- 09) Analice la existencia de extremos absolutos de $f(x, y) = x/(x^2 + y^2 + 1)$ en la región $D = \{(x, y) \in \Re^2 / x^2 + y^2 \le 2x\}$, identifíquelos e indique en qué puntos se producen.
- 10) Demuestre que la gráfica de $f(x, y) = 6 + x^3$ tiene infinitos puntos con plano tangente horizontal, pero en ninguno de ellos el valor de f es un extremo.
- 11) Una chapa circular plana $S = \{(x,y) \in \Re^2/x^2 + y^2 \le 4\}$ tiene una densidad de carga electrostática $\sigma(x,y) = 2xy^2 x^2$ en μ Coul/cm². Halle los puntos de máxima y mínima densidad de carga; no olvide analizar en puntos de la frontera.
- 12) Aplicando Taylor resulta $f(x, y) \cong 7x + y + xy y^2 4x^2$ en un entorno de $\overline{A} = (1,1)$; analice si $f(\overline{A})$ es extremo local, en caso afirmativo clasifíquelo y calcule su valor.

En general, en (x_0, y_0) coinciden los valores de f y p y los de todas sus derivadas hasta el orden n inclusive.

- 13) Conectando en paralelo n resistores con resistencias eléctricas R_1 , ..., R_n se obtiene una resistencia eléctrica equivalente R_{EQ} tal que $(R_{EQ})^{-1} = (R_1)^{-1} + \cdots + (R_n)^{-1}$. Sabiendo que R_1 , ..., R_n son positivas, demuestre que R_{EQ} es menor que cada una de ellas (con lo cual es menor que la menor).
- 14) Dada z = f(x, y) definida implícitamente por F(x, y, z) = 0, suponga $F \in C^2$ y el punto $\overline{A} = (x_0, y_0, z_0) / F(\overline{A}) = 0 \land F_z'(\overline{A}) \neq 0$.

Demuestre que si (x_0, y_0) es punto estacionario de f entonces:

$$f''_{xx}(x_0, y_0) = -\frac{F''_{xx}(\overline{A})}{F'_{z}(\overline{A})} , f''_{xy}(x_0, y_0) = -\frac{F''_{xy}(\overline{A})}{F'_{z}(\overline{A})} , f''_{yy}(x_0, y_0) = -\frac{F''_{yy}(\overline{A})}{F'_{z}(\overline{A})} .$$

- 15) Aplicando el teorema de existencia de las funciones definidas implícitamente, demuestre que $x^2 + 4y^2 + z^2 = 36$ define dos funciones φ_1 y φ_2 de las variables x e y que producen extremos relativos en (0,0); uno es máximo y el otro es mínimo. Halle las funciones correspondientes e interprete geométricamente.
- 16) Dada la superficie S de ecuación $x^2 + 4y^2 + 9z^2 = 1$. Suponiendo una representación del tipo $z = \varphi(x, y)$, ¿en qué puntos φ produce extremos locales?, ¿es una única función φ ?.
- 17) Analice la existencia de extremos relativos, clasifíquelos y calcule sus valores.

a)
$$f(x, y) = 4x^3 + 4y^3 + 12x^{-1} + 12y^{-1}$$
.

- b) $f(x, y) = x y^2 x^3 + 2xy$.
- c) $f(x, y) = (2 4x + 3y)^4$. Ejemplo con infinitos puntos de mínimo.
- d) f(x, y) definida implícitamente por $xy-z\cos(yz)+1=0$.
- e) f(x, y, z) = xy + xz en puntos de la superficie de ec. $\overline{X} = (u, u v, v^2)$ con $(u, v) \in \Re^2$.
- f) $f(x, y, z) = z^2(x+9) 6y$ en puntos de la recta de ec. $\overline{X} = (2t, 4t, t)$ con $t \in \Re$.
- 18) Determine los puntos de la curva de ecuación $4y^2 18x + 9x^2 16y = 11$ más próximo y más alejado del punto (1,7).
- 19) Un cuerpo tiene forma de cilindro circular recto de volumen *V*, siendo *A* el área de su superficie frontera. Determine las dimensiones del cuerpo (diámetro y altura) si se desea ...
 - a) ... volumen máximo para área A dada.
 - b) ... área mínima para volumen V dado.
- 20) Se desea construir un camino de la menor longitud posible (recto) que permita unir dos rutas cuyas trazas locales tienen ecuaciones 4x + 4y = 5 e $y = -x^2$, halle los puntos de ambas rutas a interconectar por dicho camino.

Cuestionario

- a) La función del ítem 17a genera máximo local y mínimo local, observe que el máximo es menor que el mínimo. ¿Por qué pueden ocurrir estas situaciones?.
- b) Proponga f tal que $f(x_0,y_0)$ sea mínimo local y el Hessiano sea nulo en (x_0,y_0) .
- c) Dada f diferenciable, si $f(x_0,y_0)$ es extremo local, demuestre que el plano tangente a la gráfica de f en $(x_0,y_0,f(x_0,y_0))$ es paralelo al plano xy.
- d) Proponga una función de dos variables que produzca extremo local en un punto donde no es derivable.