NE 470 Nuclear Reactor Theory I

Group Project #3

Fall 2016

Consider a one-dimensional <u>cylindrical</u> reactor of radius W of a <u>multiplying medium</u> with a water reflector of thickness δW that can be considered "infinite" (i.e., thick enough).

Using <u>n-group</u> diffusion theory (n=2 and n=4) write a computer program that solves the numerical finite-difference model to determine the critical core width of this cylindrical reactor with the composition of a typical PWR as described below. Your results should plot the multi-group flux distribution (separate for each group) across the radius of the cylinder and through the reflector. Use a reflective (mirror) boundary condition at r=0 (J=0) and a zero flux boundary condition at $r=W+\delta W$.

Group Constant	Two-Group		Four-Group			
	1 of 2	2 of 2	1 of 4	3 of 4	3 of 4	4 of 4
ηΣ.	.008476	.18514	.009572	.001193	.01768	.18514
$ \begin{array}{c} \nu \Sigma_{\rm f} \\ \Sigma_{\rm f} \\ \Sigma_{\rm a} \end{array} $.003320	.07537	.003378	.0004850	.006970	.07527
Σ _f	.01207	.1210	.004946	.002840	.03053	.1210
D D	1.2627	.3543	2.1623	1.0867	.6318	.3543
$\Sigma_{\rm R}$.02619	.1210	.08795	.06124	.09506	.1210

Supplement the above properties with the following water reflector properties: D_1 =1.13 cm, D_2 =0.16cm, Σ_{R1} =0.0494 cm⁻¹ = Σ_{s12} , Σ_{a1} =0.0004 cm⁻¹, Σ_{a2} =0.0197 cm⁻¹ Four group cross-sections for water reflector are in a separate file.

- Illustrate differences between the 2 group and the 4 group implementation.
- Each member of the group will provide a written assessment of his or her contribution to the group project, one page maximum. Include in the report.
- Submit the report via Blackboard.
- Prepare a 10-15 minute presentation of your project. The presentation will be scheduled during the week of your final exam.
- Extra credit opportunities (10% each):
 - Evaluate the impact of changing the thermal macroscopic absorption cross-section by 1, 5, 10, and 25%.
 - Evaluate the impact of changing the diffusion coefficient by 1, 5, 10, and 25%.
 - Evaluate the impact of using or not using the extrapolation distance assumption.