PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-060397

(43) Date of publication of application: 06.03.2001

(51)Int.CI.

G11C 16/06

(21)Application number: 11-233567

(71)Applicant: NEC IC MICROCOMPUT SYST

LTD

(22)Date of filing:

20.08.1999

(72)Inventor: MIIKE SHOGO

(54) SEMICONDUCTOR MEMORY

(57)Abstract:

PROBLEM TO BE SOLVED: To increase operation speed and to reduce circuit scale by switching an address signal for read-out, an address signal for write-in, or an address signal for erasion for each bank in accordance with read-out operation, write-in operation, or erasing operation for each bank, and outputting it. SOLUTION: This device has such constitution that a switching section 110 switching a latch address of an external address input and an internal address is collected to one place in an address buffer 100, and read-out routes are separated from read-out routes of banks A, B through the other route. For example, when the bank A reads out and the bank B writes in, in the address buffer 100, a switch 111 outputs an external address as a bank A address based on a bank switch, a switch 112 outputs a latch address outputted from the switching section 110 switching a latch address and an internal address as a bank B address based on the bank switch.

LEGAL STATUS

[Date of request for examination]

13.07.2000

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-60397 (P2001-60397A)

(43)公開日 平成13年3月6日(2001.3.6)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

G11C 16/06

G11C 17/00

636A 5B025

審査請求 有 請求項の数9 OL (全 12 頁)

(21)出願番号

特願平11-233567

(22)出願日

平成11年8月20日(1999.8.20)

(71)出願人 000232036

日本電気アイシーマイコンシステム株式会

社

神奈川県川崎市中原区小杉町1丁目403番

53

(72)発明者 三池 祥五

神奈川県川崎市中原区小杉町一丁目403番

53 日本電気アイシーマイコンシステム株

式会社内

(74)代理人 100080816

弁理士 加藤 朝道

Fターム(参考) 5B025 AD01 AD02 AE05

(54) 【発明の名称】 半導体記憶装置

(57)【要約】

【課題】複数バンク構成の不揮発性半導体記憶装置おいて、高速化を図るとともに回路規模を低減するアドレスバッファ回路の提供。

【解決手段】バンクアドレスを供給するアドレスバッファが、外部アドレス入力が第1のバンクの読出用のアドレスとして入力される第1のスイッチと、外部アドレス入力が第2のバンクの読出用のアドレスとして入力される第2のスイッチと、前記外部アドレス入力を書き込み用のアドレスとして、また内部アドレスを消去用のアドレスとして入力するラッチ回路とを備え、前記ラッチ回路から出力されたアドレスは、前記第1、第2のスイッチに供給され、前記第1、第2のスイッチは、バンク毎に、該バンクが読み出し動作、書き込み又は消去動作であるかに応じてバンクスイッチ信号に基づき、読み出し用のアドレスと、書き込み用のアドレス又は消去用のアドレスの一方のうちのいずれかをバンクアドレスとして出力する。

【特許請求の範囲】

【請求項1】アドレス信号を入力とし、バンク毎に設けられたアドレスデコーダに対してそれぞれバンクアドレス信号を供給するアドレスバッファ回路を備えた不揮発性型の半導体記憶装置であって、

前記アドレスバッファ回路が、バンク毎の、読み出し動作と、書き込み動作又は消去動作とに応じて、読み出し用アドレス信号、書き込み用アドレス信号又は消去用アドレス信号をバンク毎に切替えて出力する手段を備えたことを特徴とする半導体記憶装置。

【請求項2】前記アドレスバッファ回路において、前記書き込み用アドレス信号が、外部から入力されたアドレス信号をラッチ回路でラッチしたラッチアドレスからなり、

前記消去用アドレス信号が、装置内部で生成される内部 アドレスからなり、

前記ラッチアドレスと前記内部アドレスの切替え部及び 前記ラッチ回路を、複数のバンク間で共有してなる、こ とを特徴とする請求項1記載の半導体記憶装置。

【請求項3】前記アドレスバッファ回路において、前記 20 読み出しアドレス及び書き込み用アドレス信号が、外部 から入力されたアドレス信号をラッチ回路でラッチした ラッチアドレスからなり、

前記消去用アドレス信号が、装置内部で生成される内部 アドレスからなり、

前記ラッチアドレスと前記内部アドレスの切替え部及び 前記ラッチ回路を、バンク毎に、それぞれ備えたことを 特徴とする請求項1記載の半導体記憶装置。

【請求項4】メモリセルアレイを複数のバンクで構成し、前記複数のバンクのうち一のバンクで消去又は書き込みが行われている時に、他のバンクからの読み出しを可能とした電気的に書き込み及び消去可能な不揮発性半導体記憶装置であって、

外部から入力されたアドレスが第1のバンクの読み出し 用のアドレス信号経路を介して入力される第1のスイッチと

前記外部から入力されたアドレスが第2のバンクの読み出し用のアドレス信号経路を介して入力される第2のスイッチと、

前記外部から入力されたアドレスを書き込み用のアドレ 40 スとして、又は、内部アドレスを消去用のアドレスとして切替えて入力するラッチ回路と、を備え、

前記ラッチ回路から出力されたアドレスは、前記第1及 び第2のスイッチに供給され、

前記第1及び第2のスイッチは、バンク毎に、各バンクの制御信号に基づき、該バンクが読み出し動作であるか、あるいは、書き込み又は消去動作のいずれであるかに応じて、読み出し用のアドレスと、書き込み用のアドレス又は消去用のアドレスのいずれかをバンクアドレスとして、該バンクのアドレスデコーダに出力するアドレ

スバッファ回路を備えたことを特徴とする不揮発性半導 体記憶装置。

【請求項5】メモリセルアレイを2つのバンクで構成し、これら2つのバンクのうち、一方のバンクで消去または書き込みが行われている時に、他のバンクからの読み出しを可能とした電気的に書き込み及び消去可能な不揮発性半導体記憶装置であって、

外部アドレス入力から各バンクに対応したバンクアドレス出力までの経路として、前記外部アドレス入力を読み 10 出し用のアドレスとしてバンク毎にそれぞれ出力する第 1及び第2の信号経路と、

前記外部アドレス入力又は消去用の内部アドレスをラッチ回路でラッチしたラッチアドレスを1つにまとめた専用の信号経路と、を備え、

バンクの書き込み又は消去時には、前記専用の信号経路から出力が、前記第1の信号経路及び/又は前記第2の信号経路の出力端から対応するバンクへのアドレスとして出力される、ことを特徴とする不揮発性半導体記憶装置。

【請求項6】メモリセルアレイを少なくとも第1及び第2のバンクで構成し、前記第1及び第2のバンクのうち一のバンクで消去又は書き込みが行われている時に、他のバンクからの読み出しを可能とした電気的に書き込み及び消去可能な不揮発性半導体記憶装置であって、

外部から入力されたアドレスは、第1のバンクスイッチ信号に基づき、前記第1のバンクの読み出し時にオンとされ、前記第1のバンクの書き込み又は消去時にオフに設定される第1のスイッチを介して、第1のバッファ回路の入力端に接続されるとともに、第2のバンクスイッチ信号に基づき、前記第2のバンクの読み出し時にオンとされ、前記第2のバンクの書き込み又は消去時にオフに設定される第2のスイッチを介して第2のバッファ回路の入力端に接続され、さらに、

前記外部から入力されたアドレスは、前記第1及び第2のバンクスイッチ信号に基づき、前記第1及び第2のバンクがともに読み出し時にオン状態とされる第3のスイッチを介してラッチ回路の入力端に接続され、

内部アドレスが、消去制御信号に基づき、バンクの消去 動作時にオンとされる第4のスイッチを介して前記ラッ チ回路の入力端に接続され、

前記ラッチ回路の出力端は、前記第1のバンクスイッチ信号に基づき、前記第1のバンクの書き込み又は消去時にオンに設定される第5のスイッチを介して前記第1のバッファ回路の入力端に接続されるとともに、前記第2のバンクスイッチ信号に基づき、前記第2のバンクの書き込み又は消去時にオンに設定される第6のスイッチを介して前記第2のバッファ回路の入力端に接続され、

前記第1及び第2のバッファ回路から、前記第1及び第2のバンクのアドレスデコーダに対してバンクアドレス 50 をそれぞれ出力する構成とされてなるアドレスバッファ 回路を備えたことを特徴とする、不揮発性半導体記憶装 置。

【請求項7】前記第1及び第2のスイッチがクロックドインバータよりなる、ことを特徴とする、請求項6記載の不揮発性半導体記憶装置。

【請求項8】前記第1乃至第6のスイッチがトランスファゲートよりなる、ことを特徴とする、請求項6記載の不揮発性半導体記憶装置。

【請求項9】メモリセルアレイを少なくとも第1、第2 クセスされ、その閾値電圧に応じてビット線はのバンクで構成してなる電気的に書き込み及び消去可能 10 流に応じて読み出し回路でその値を読み出す。な不揮発性半導体記憶装置であって、 【0003】従来のフラッシュメモリにおいて

外部から入力されたアドレスは、第1のバンクスイッチ信号に基づき、前記第1のバンクの読み出し時のオンとされ、前記第1のバンクの書き込み又は消去時にオフに設定される第1のスイッチを介して第1のラッチ回路の入力端に接続されるとともに、第2のバンクスイッチ信号に基づき、前記第2のバンクの読み出し時のオンとされ、前記第2のバンクの書き込み又は消去時にオフに設定される第2のスイッチを介して第2のラッチ回路の入力端に接続され、

内部アドレスが、消去制御信号に基づき、バンクの消去 動作時にオンとされる第3、及び第4のスイッチをそれ ぞれ介して前記第1及び第2のラッチ回路の入力端にそ れぞれ接続され、

前記第1及び第2のラッチ回路の出力端はそれぞれ第1 及び第2のバッファ回路の入力端に接続され、

前記第1及び第2のバッファ回路から、前記第1及び第2のバンクのアドレスデコーダにバンクアドレスをそれぞれ出力する構成とされてなるアドレスバッファを備えたことを特徴とする不揮発性半導体記憶装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体記憶装置に関し、特に、メモリセルアレイが複数のバンクからなる不揮発性半導体装置のアドレスバッファ回路に関する。 【0002】

【従来の技術】電気的に書き込み及び消去可能な不揮発性記憶装置(EEPROM:Electrically Erasable and Programmable RCM)のうち、セクタ(ブロック)単位に一括消去可能なEEPROMであるフラッシュメモリのメモリセルアレイにおいて、各メモリセルトランジスタはフローティングゲートを有し、コントロールゲートはXデコーダからのワード線に接続され、ドレインはビット線に接続され、Yデコーダでオン・オフ制御されるYスイッチを介して読み出し・書き込み回路に接続されており、同一セクタの複数のメモリセルのソースは共通接続されてソース線制御回路(「ソース線スイッチ」あるいは「ソースデコーダ回路」ともいう)に接続されている。プログラム時には、メモリセルトランジスタのコントロールゲートに所定の高電圧(Vpp)を印加

し、ドレインに例えば5V程度の電圧を与え、ソースを接地することで、電子をフローティングゲートに注入し、一方、消去時には、メモリセルトランジスタのドレインをオープン、コントロールゲートを接地し、ソースに高電圧(Vpp)を印加し、フローティングゲート中の電子の引き抜きを行う。また読み出し時には、Xデコーダで選択されたワード線とYデコーダで選択されるYスイッチに接続するビット線との交差するメモリセルがアクセスされ、その閾値電圧に応じてビット線に流れる電流に応じて読み出し回路でその値を読み出す。

【0003】従来のフラッシュメモリにおいては、一般的に、メモリセルアレイを複数のバンクに分ける構成がとられていない。このため、Xデコーダ回路、Yデコーダ回路、及びソース線制御回路へそれぞれアドレス信号を供給するアドレスバッファは、例えば図10に示すように、外部アドレス入力が直接デコーダ側へ出力される構成とされている。

【0004】すなわち外部アドレス信号は、初段回路3 01に入力され、ラッチ制御信号でオン・オフ制御され るトランスファゲートTG2を介してラッチ回路302 20 に入力され、また内部アドレスは消去フラグが活性化さ れたときオンするトランスファゲートTG1を介してラ ッチ回路302に入力され、ラッチ回路302の出力は 反転バッファ I N V 3 を介してアドレスバッファ出力信 号として不図示のアドレスデコーダに供給される。ラッ チ回路302は、入力端と出力端が互いに接続されたイ ンバータINV1とインバータINV2とから構成され ている。このうちインバータINV1はラッチ制御信号 でオン・オフ制御されるクロックドインバータよりな る。初段回路301において、スタンバイ制御信号が活 性化された場合、外部アドレスの入力レベルに依存せず 初段回路301の電流をオフさせる。

【0005】書き込み及び読み出し時には、ラッチ制御信号が活性化され、外部アドレス入力がラッチ回路302でラッチされ、不図示のデコーダ回路にアドレス信号として出力される。消去動作はチップ内部で自動的に行われ、チップ内部で生成された内部アドレスは、消去フラグオン時のオン状態とされるトランスファゲートTG1を介してラッチ回路302に入力され、ソース線制御回路に入力され、各セクタの消去動作が行われる。

[0006]

【発明が解決しようとする課題】 このような構成のアドレスバッファを備えたフラッッシュメモリにおいて、メモリセルへの書き込みや消去中の読み出しの同時実行を行うことはできない。

されており、同一セクタの複数のメモリセルのソースは 【 0007】また複数のバンクに分割されたメモリセル 共通接続されてソース線制御回路(「ソース線スイッ 構成とする半導体記憶装置が開発・製品化されている チ」あるいは「ソースデコーダ回路」ともいう)に接続 が、この場合、バンク毎のアドレス制御を行うことが必 されている。プログラム時には、メモリセルトランジス 要とされ、回路規模が増大する、という問題点を有して タのコントロールゲートに所定の高電圧(V pp)を印加 50 いる。そして、フラッシュメモリにバンク構成を適用し た場合にも同様な問題点を有することになる。

【0008】たとえば特開平11-86576号公報に は、メモリセルアレイを2分割し、各メモリセルアレイ (メモリセルブロック) に対してそれぞれに専用の読み 出し回路を備え、分割された一方のメモリセルアレイに 対して消去動作(消去あるいは書き込み動作)を行って いる場合でも、他方のメモリセルアレイに対して読み出 しあるいは書き込み動作を行うことができる同時動作 (デュアルオペレーション)機能を有するフラッシュメ モリの構成が開示されている。このデュアルオペレーシ 10 ョン機能対応のフラッシュメモリは、デュアルオペレー ション非対応のフラッシュメモリと比べて、2つのメモ リセルアレイに対応する第1、第2の読み出し回路、ア ドレス判定回路、第1、第2の読み出し回路の出力を入 力とし出力を出力バッファ回路に接続する第1のマルチ プレクサ、第1、第2の読み出し回路の出力を入力とし 出力を書き込み/消去判定回路に出力する第2のマルチ プレクサを備えている。そして上記特開平11-865 76号公報には、デュアルオペレーション機能を有する フラッシュメモリにおいて、回路の複雑化やチップ面積 20 の増大を伴うこと無く、分割されるメモリセルブロック のビット構成を可変にすることを可能としたフラッシュ メモリの構成が提案されている。

【0009】上記特開平11-86576号公報に記載 されるデュアルオペレーション機能を有するフラッシュ メモリにおいて、デコーダ回路にアドレス信号を供給す るアドレスバッファ回路においてアドレス切替を行うこ とに関する考慮・工夫はいっさい開示されていない。

【0010】また例えば特開平5-54682号公報に 動作及び読み出し動作を同時にもしくは並行して行うと とを可能とした不揮発性半導体メモリの構成が提案され ている。しかしながら、上記特開平5-54682号公 報にも、アドレス信号を入力とするアドレスレジスタ側 でブロックの切替を行うという工夫はいっさい開示され ていない。

【0011】したがって、本発明は、上記問題点に鑑み てなされたものであって、その目的は、複数バンク構成 のフラッシュメモリ等の不揮発性の半導体装置におい て、高速化を図るとともに回路規模を低減するアドレス 40 バッファ回路を提供することにある。

[0012]

【課題を解決するための手段】前記目的を達成する本発 明は、アドレス信号を入力とし、バンク毎に設けられた アドレスデコーダに対してそれぞれバンクアドレス信号 を供給するアドレスバッファ回路を備えた不揮発性型の 半導体記憶装置であって、前記アドレスバッファ回路 が、バンク毎の、読み出し動作と、書き込み動作又は消 去動作とに応じて、読み出し用アドレス信号、書き込み 用アドレス信号又は消去用アドレス信号をバンク毎に切 50 デコーダ102A、102Bを介して選択される。各バ

替えて出力する手段を備えている。

【0013】本発明は、前記アドレスバッファ回路にお いて、前記書き込み用アドレス信号が外部から入力され たアドレス信号をラッチした信号からなり、前記消去用 アドレス信号が装置内部で生成された内部アドレスから なり、前記外部から入力されたアドレス信号又は前記内 部アドレスをラッチするラッチ回路を複数のバンク間で 共有してなる構成とされる。

【0014】本発明においては、メモリセルアレイを複 数のバンクで構成し、前記複数のバンクのうち一のバン クで消去又は書き込みが行われている時に、他のバンク からの読み出しを可能とした電気的に書き込み及び消去 可能な不揮発性型の半導体記憶装置であって、外部から 入力されたアドレスが第1のバンクの読み出し用のアド レス信号経路を介して入力される第1のスイッチと、前 記外部から入力されたアドレスが第2のバンクの読み出 し用のアドレス信号経路を介して入力される第2のスイ ッチと、前記外部から入力されたアドレスを書き込み用 のアドレスとして、又は、内部アドレスを消去用のアド レスとして入力するラッチ回路と、を備え、前記ラッチ 回路から出力されたアドレスは、前記第1及び第2のス イッチに供給され、前記第1及び第2のスイッチは、バ ンク毎に、各バンクの制御信号に基づき、該バンクが読 み出し動作であるか、あるいは、書き込み又は消去動作 のいずれであるかに応じて、読み出し用のアドレスと、 書き込み用のアドレス又は消去用のアドレスのいずれか をバンクアドレスとして、該バンクのアドレスデコーダ に出力するアドレスバッファ回路を備えている。

【0015】また本発明は、アドレスバッファ回路が、 は、メモリセルアレイの異なったブロックに対し、消去 30 前記消去用アドレス信号が装置内部で生成された内部ア ドレスからなり、前記外部から入力されたアドレス信号 又は前記内部アドレスを切替えてラッチするラッチ回路 をバンク毎にそれぞれ備えた構成としてもよい。

[0016]

【発明の実施の形態】本発明の実施の形態について説明 する。本発明は、フラッシュメモリのメモリセルアレイ を2つのバンクで構成し、これら2つのバンクのうち、 1つのバンクで消去または書き込みが行われている時 に、他のバンクからの読み出し可能な半導体記憶装置の アドレスバッファ回路において、外部アドレス入力から 各バンクに対応したバンクアドレス出力までを、読み出 し用の各バンク毎の信号経路と、書き込み用のラッチア ドレスと消去用の内部アドレスを1つにまとめた専用の 経路と、を備えたものである。

【0017】本発明の不揮発性半導体記憶装置は、その 好ましい一実施の形態において、図1を参照すると、メ モリセル領域は、バンクAとバンクBの2つのバンクに 分割されており、各バンクのメモリセル (memory cell s) 101A、101Bはそれぞれアドレス情報を基に

7

ンクA、Bのメモリセル101A、101Bから読み出 されたデータはスイッチ103を介して、バンクスイッ チ (Bank Switch) の選択情報に基づき、読み出しが選 択されているバンクのメモリセルから読み出されたデー タを外部に出力する。

【0018】読み出し、書き込み、及び消去について、 バンクAとバンクBにおける同時実行の組み合わせとし て、例えば表]に示すように、5種類の組み合せがあ る。

[0019]

【表】】

No.	バンクAの状態	バンクBの状態
1	読み出し	書き込み
2	読み出し	消去
3	書き込み	読み出し
4	消去	読み出し
5	消去	消去

【0020】このようなバンクの読み出し、書き込み、 消去の同時実行の組み合せに対して、アドレス信号A。 ~A。をそれぞれ入力とするアドレスバッファ(adb uf) 100は、バンクスイッチ (Bank Switch) によ り、各バンクA、Bのデコーダ102A、102Bへそ れぞれバンクAアドレス、バンクBアドレス)を出力す る。

【0021】このアドレスバッファ100からの出力 (バンクAアドレス、バンクBアドレス)には、表1に 示した同時実行の組み合わせバターンに応じて、3つの アドレス情報、すなわち外部アドレス、ラッチアドレ ス、内部アドレスを区分して出力させており、

- ・外部アドレス=読み出し、
- ・ラッチアドレス=書き込み、
- ・内部アドレス=消去

にそれぞれ対応させている。

【0022】表1に示した同時実行の組み合わせと3つ のアドレス情報の対応は、表2のような動作を実行す る。

[0023]

【表2】

No.	バンク Aアドレス	バンクBアドレス
1	外部アドレス	ラッチアドレス
2	外部アドレス	内部アドレス
3	ラッチアドレス	外部アドレス
4	内部アドレス	外部アドレス
5	内部アドレス	内部アドレス

【0024】図2は、本発明の一実施の形態におけるア ドレスバッファ10の構成の一例を示す図である。図2 50 きは、アドレスバッファ(100)において、スイッチ

を参照すると、本発明の一実施の形態において、アドレ スパッファ(100)は、外部から入力されたアドレス が第1のバンクの読み出し用のアドレスとして入力され る第1のスイッチ(111)と、外部から入力されたア ドレスが第2のバンクの読み出し用のアドレスとして入 力される第2のスイッチ(112)と、外部から入力さ れたアドレスを書き込み用のアドレスとして、また内部 アドレスを消去用のアドレスとして入力するラッチ部 (110) と、を備え、ラッチ部(110) からの出力

10 は、第1、第2のスイッチ(111、112)に供給さ れ、第1、第2のスイッチ(111、112)では、バ ンク毎に、該バンクが読み出し動作、書き込み又は消去 動作であるかに応じてバンクスイッチ信号に基づき、読 み出し用のアドレスと、書き込み用のアドレス又は消去 用のアドレスの一方のうちのいずれかをバンクアドレス として、該バンクのアドレスデコーダに出力する。

【0025】すなわち外部アドレスは、バンクAの読み 出し経路と、バンクBの読み出し経路としてスイッチ (111、112)の一の入力端にそれぞれ入力される 20 とともに、外部アドレスのラッチアドレス又は内部アド レスとを切替える切替え部(110)を備え、切替え部 (110)の出力はスイッチ(111、112)の他の 入力端にそれぞれ入力され、スイッチ(111、11 2)は、一の入力端から入力された外部アドレスと、他 の入力端から入力されたラッチアドレス又は内部アドレ スのうちのいずれかを、バンクスイッチで選択してバン クAアドレス、バンクBアドレスとして出力する。な お、内部アドレスは、外部端子から入力される外部アド レスとは相違して、チップ内でカウンタ等により内部で 30 生成されるアドレス信号である。

【0026】このように、本発明の一実施の形態におい ては、外部アドレス入力のラッチアドレスと内部アドレ スを切り替える切替部(110)をアドレスバッファ (100)内で共通して1箇所にまとめ、バンクA、B の読み出しのルートとは、別のルートを介して分けた構 成としており、回路規模を縮減し、且つ、簡易な構成の アドレスバッファにて、バンク切り替えが可能であり、 アドレスバッファから各バンク向けにバンクアドレスを 出力することができるため、メモリセル選択時のアクセ 40 スを高速化する。

【0027】図2を参照すると、バンクAが読み出し、 バンクBが書き込みのときは、アドレスバッファ(10 O) において、スイッチ(111)は、バンクスイッチ に基づき、外部アドレスをバンクAアドレスとして出力 し、スイッチ(112)は、バンクスイッチに基づき、 ラッチアドレスと内部アドレスを切替える切替部(11 0) から出力されるラッチアドレスをバンクBアドレス として出力する。

【0028】バンクAが読み出し、バンクBが消去のと

(111)は、バンクスイッチに基づき、外部アドレス をバンクAアドレスとして出力し、スイッチ(112) は、バンクスイッチに基づき、ラッチアドレスと内部ア ドレスを切替える切替部(110)から出力される内部 アドレスをバンクBアドレスとして出力する。

【0029】バンクAが書き込み、バンクBが読み出し のときは、アドレスバッファ(100)において、スイ ッチ(111)は、バンクスイッチに基づき、ラッチア ドレスと内部アドレスを切替える切替部(110)から 出力されるラッチアドレスをバンクAアドレスとして出 10 力し、スイッチ(112)は、バンクスイッチに基づ き、外部アドレスをバンクBアドレスとして出力する。 【0030】バンクAが消去、バンクBが読み出しのと きは、アドレスバッファ (100) において、スイッチ (111)は、バンクスイッチに基づき、ラッチアドレ スと内部アドレスを切替える切替部(110)から出力 される内部アドレスをバンクAアドレスとして出力し、 スイッチ(112)は、バンクスイッチに基づき、外部 アドレスをバンクBアドレスとして出力する。

【0031】バンクAが消去、バンクBが消去のとき は、アドレスバッファ(100)において、スイッチ (111)は、バンクスイッチに基づき、ラッチアドレ スと内部アドレスを切替える切替部(110)から出力 される内部アドレスをバンクAアドレスとして出力し、 スイッチ(112)は、バンクスイッチに基づき、ラッ チアドレスと内部アドレスを切替える切替部(110) から出力される内部アドレスをバンクBアドレスとして 出力する。

【0032】本発明の一実施の形態において、アドレス バッファ回路は、外部から入力されたアドレスは、第1 のバンクスイッチ信号(Bank Switch A)の値に基づ き、第1のバンクの読み出し時のオンとされ、第1のバ ンクの書き込み又は消去時にオフに設定される第1のス イッチ(CINV1)を介して第1のバッファ回路(I NV2)の入力端に接続され、前記外部から入力された アドレスが第2のバンクスイッチ信号(Bank Swithc A) により、第2のバンクの読み出し時のオンとされ、 前記第2のバンクの書き込み又は消去時にオフに設定さ れる第2のスイッチ(CINV2)を介して第2のバッ ファ回路(INV3)の入力端に接続され、外部から入 40 において、各アドレス信号 A。~ A。をそれぞれ入力とす 力されたアドレスは、第1及び第2のバンクスイッチ信 号 (BankSwitch A、Bank Switch B) の値により、第 1及び第2のバンクがともに読み出し時にオン状態とさ れる第3のスイッチ(TG2)を介してラッチ回路(3 02)の入力端に接続され、さらに、内部アドレスが消 去制御信号(Erase)に基づき、バンクの消去動作時に オンとされる第4のスイッチ (TG1)を介してラッチ 回路(302)の入力端に接続され、ラッチ回路(30 2) の出力端は、第1のバンクスイッチ信号(Bank Sw itch A) により、第1のバンクの書き込み又は消去時

にオンに設定される第5のスイッチ(TG3)を介して 第1のバッファ回路(INV2)の入力端に接続される とともに、第2のバンクスイッチ信号(Bank Switch B) により、第2のバンクの書き込み又は消去時にオン に設定される第6のスイッチ(TG4)を介して第2の バッファ回路(INV3)の入力端に接続され、第1及 び第2のバッファ回路(INV2、INV3)から、第 1及び第2のバンクのアドレスデコーダにバンクアドレ スがそれぞれ供給される。

【0033】本発明は、別の実施の形態において、アド レスバッファは、外部から入力されたアドレスが第1の バンクスイッチ信号 (Bank Switch A) により、第1 のバンクの読み出し時のオンとされ、第1のバンクの書 き込み又は消去時にオフに設定される第1のスイッチ (TG2)を介して第1のラッチ回路(302A)の入 力端に接続され、前記外部から入力されたアドレスが第 2のバンクスイッチ信号により、第2のバンクの読み出 し時のオンとされ、前記第2のバンクの書き込み又は消 去時にオフに設定される第2のスイッチ(TG3)を介 20 して第2のラッチ回路(302B)の入力端に接続さ れ、内部アドレスが、消去制御信号に基づき、バンクの 消去動作時にオンとされる第3、第4のスイッチ(TG 1、(TG4)を介して第1及び第2のラッチ回路(3 02A、302B)の入力端にそれぞれ接続され、第1 及び第2のラッチ回路(302A、302B)の出力端 はそれぞれ第1及び第2のバッファ回路(BUF1、B UF2)の入力端に接続され、第1及び第2のバッファ 回路(BUF1、BUF2)から、第1及び第2のバン クのアドレスデコーダに対してバンクアドレスがそれぞ 30 れ供給される。この実施の形態によれば、一方のバンク で書き込み動作時に他のバンクで消去動作を行うことが できる。

[0034]

【実施例】上記した本発明の実施の形態についてさらに 詳細に説明すべく、本発明の実施例について図面を参照 して説明する。

【0035】図3は、本発明の一実施例をなすバンク切 り替え可能なアドレスバッファ回路の構成を示す図であ る。なお、図3に示したアドレスバッファ回路は、図1 るアドレスバッファ(adbuf)に対応する。

【0036】図3を参照すると、本発明の一実施例にお けるアドレスバッファ回路において、外部アドレスを入 力する初段回路301は、スタンバイ時に電流を抑制す るためのスタンバイ制御信号が活性化された場合、アド レスの入力レベルに依存せず、初段回路301の電流を オフさせる。

【0037】初段回路301の出力は、バンクA、バン クB、ラッチ回路302の3方向に分岐入力される。す 50 なわち、初段回路301の出力は、クロックドインバー

タCINV1を介して反転型のバッファINV2の入力 端に接続されるとともに、インバータINV1とトラン スファゲートTG2とを介してラッチ回路302の入力 端に接続され、さらにクロックドインバータCINV2 を介して反転型のバッファ【NV3の入力端に接続され

【0038】クロックドインバータは、図9(a)に示 したように、高電位側電源VDDと低電位側電源VSS 間に直列に接続されたPチャネルMOSトランジスタP M2と、ゲートが入力端子に共通接続されドレインが出 10 力端子に共通接続されたPチャネルMOSトランジスタ PM1とNチャネルMOSトランジスタNM1よりなる CMOSインバータと、NチャネルMOSトランジスタ NM2とからなり、PチャネルMOSトランジスタPM 2、NチャネルMOSトランジスタNM2のゲートに相 補の制御信号 ϕ 、 ϕ が入力され、クロックドインバー タは制御信号φがLowレベルのときオン、φがHig h レベルのときオフする。

【0039】図3において、クロクッドインバータは、 図9(b)に示す記法に従い、図9(a)のPチャネル 20 MOSトランジスタPM2のゲートに入力される制御信 号のみが示されており、NチャネルMOSトランジスタ NM2へ入力される相補の制御信号は省略されている。 【0040】すなわち図3を参照すると、クロックドイ ンバータCINV1において、PチャネルMOSトラン ジスタPM2のゲートには、バンクスイッチAをインバ ータINV6で反転した信号が接続され、NチャネルM OSトランジスタNM2のゲートには、PチャネルMO SトランジスタPMIのゲートに入力される信号の相補 信号(バンクスイッチAと同一の論理の信号)が入力さ 30 TG1を介してラッチ回路302の入力端に入力され れ、クロックドインバータCINV1は、バンクAの読 み出し時、すなわちバンクスイッチAが非活性(Hig hレベル)のときオン状態とされ、バンクスイッチAが 活性状態(Lowレベル)のときオフとされる。

【0041】クロックドインバータCINV2のPチャ ネルMOSトランジスタPM2のゲートには、バンクス イッチBをインバータINV7で反転した信号が接続さ れ、NチャネルMOSトランジスタNM2のゲートに は、PチャネルMOSトランジスタPM2のゲートに入 力される信号の相補信号(バンクスイッチBと同一の論 40 スタのゲートに入力される制御信号だけが示されてお 理の信号)が入力され、クロックドインバータCINV 2は、バンクBの読み出し時、すなわちバンクスイッチ Bが非活性(Highレベル)のときオン状態とされ、 バンクスイッチBが活性状態(Lowレベル)のときオ フとされる。

【0042】トランスファゲートTG2は、並列接続さ れたPチャネルMOSトランジスタとNチャネルMOS トランジスタよりなり、バンクスイッチAをインバータ INV6で反転した信号とバンクスイッチBをインバー タINV7で反転した信号とを入力としこれらの否定論 50 る。

理和を出力するNOR回路の出力が、バンクスイッチ (Bank Switch) として、トランスファゲートTG2の NチャネルMOSトランジスタのゲートに入力され、N OR回路の出力を不図示のインバータで反転した信号 が、トランスファゲートTG2のPチャネルMOSトラ ンジスタのゲートに接続され、バンクスイッチA、Bが ともに非活性(Highレベル)のとき(バンクA、B がともに読み出し動作)、NOR回路の出力はHigh レベルとなり、トランスファゲートTG2はオン状態と され、これ以外の場合、トランスファゲートTG2はオ フ状態とされる。

【0043】反転バッファINV2、INV3の出力は それぞれバンクAアドレス、バンクBアドレスとして各 バンクのデコーダ (図1の102A、102B) に供給 される。

【0044】ラッチ回路302の出力端は、トランスフ ァゲートTG3、TG4を介して反転バッファINV 4、 INV5に入力端に接続されている。

【0045】トランスファゲートTG3を構成するNチ ャネルMOSトランジスタとPチャネルMOSトランジ スタのゲートには、バンクスイッチAをインバータIN V6で反転した信号とその反転信号が入力され、バンク スイッチAが活性化(Lowレベル)のときオンする。 【0046】トランスファゲートTG4を構成するNチ ャネルMOSトランジスタとPチャネルMOSトランジ スタのゲートには、バンクスイッチBをインバータIN V7で反転した信号とその反転信号が入力され、バンク スイッチBが活性化(Lowレベル)のときオンする。 【0047】内部アドレス信号は、トランスファゲート る。

【0048】トランスファゲートTG1を構成するNチ ャネルMOSトランジスタとPチャネルMOSトランジ スタのゲートには、消去信号 (Erase) とその相補信号 がそれぞれ入力され、消去信号が活性化状態(High レベル)のときオンする。

【0049】図3において、トランスファゲート (CM OS型トランスファゲート) TG1~TG4への制御信 号は、トランスファゲートのNチャネルMOSトランジ り、トランスファゲートのPチャネルMOSトランジス タのゲートに、該制御信号をインバータで反転した相補 信号を入力する接続構成は省略されている。

【0050】読み出し時のルートとしては、バンクA側 には、オン状態とされたクロックドインバータCINV 1の出力が反転バッファ 1 N V 2 からバンクA アドレス として出力され、バンクB側の読み出しでは、オン状態 とされたクロックドインバータCINV2の出力が反転 バッファINV3からバンクBアドレスとして出力され

【0051】バンクA側に、外部アドレスのラッチアド レス又は内部アドレスを出力する場合、クロックドイン バータCINV1はオフとされ、トランスファゲートT G3がオンとされ、バンクB側に、外部アドレスのラッ チアドレス又は内部アドレスを出力する場合、クロック ドインバータCINV2はオフとされ、トランスファゲ ートTG4がオンとされる。

【0052】ラッチ回路302の出力ノードであるライ ンdは、入力した外部アドレスのラッチアドレスと内部 アドレスをまとめたルートであり、書き込みや消去の時 10 に、バンクスイッチAとバンクスイッチBによって出力 の切り替えを行う。

【0053】バンクAアドレス、バンクBアドレスは、 それぞれ各バンクの各デコーダに供給され、書き込みや 消去と読み出しの同時実行機能として、各々のバンクで 別々の制御が可能となる。

【0054】図4は、図3のラッチ回路302と、内部 アドレスを入力するトランスファゲートTG1の構成を 示す図である。ラッチ回路302は、入力と出力が接続 されたインバータ I N V 6、 I N V 7 からなるフリップ 20 フロップとして構成されており、インバータINV7の 出力を入力とするインバータINV8を備え、内部アド レスを入力とするトランスファゲートTG1には、消去 信号と消去信号をインバータINV9で反転した信号と がNチャネルMOSトランジスタのゲートとPチャネル MOSトランジスタのゲートにそれぞれ入力されてお り、消去信号がハイレベルのときトランスファゲートT G1はオンし、内部アドレスがラッチ回路302に供給 される。

【0055】図2のノードc、dでは、書き込みの時の 30 アドレスラッチと消去の時の内部アドレスの切り替えを 行っており、書き込みのときには、バンクスイッチ(Ba nkSwitch)が活性化され、すなわちNOR回路の出力は Lowレベルとなり、トランスファゲートTG2がオフ し、外部のアドレスをラッチ回路302でラッチしたラ ッチアドレスがラインdに出力される。

【0056】消去のときには、NOR回路の出力である バンクスイッチ (Bank Switch) はLowレ ベルとなり、消去(Erase)フラグが活性化され し、トランスファゲートTG1がオンし、内部アドレス をラッチ回路302でラッチしたアドレスがラインdに 出力される。

【0057】図5は、本発明の一実施例の動作について 説明するためのタイミング図であり、バンクAを書き込 み (バンクスイッチAをLowレベル)、バンクBを読 み出し (バンクスイッチBをHighレベル) とした同 時実行動作が示されている。図3及び図5を参照して本 発明の一実施例における書き込みと読み出しの同時実行

ンク毎の書き込みを制御するための入力される信号であ

【0058】はじめにバンクスイッチA、Bがともに非 活性状態(Highレベル)とされており、バンクスイ ッチA、Bの反転信号を入力とするNOR回路の出力で あるパンクスイッチ (Bank Switch) はHighレベル となり、トランスファゲートTG2はオン状態とされ、 またトランスファゲートTG1はオフ状態とされ、初段 回路301からの外部アドレス入力がトランスファゲー トTG2を介してラッチ回路302に入力されラッチさ れる。

【0059】つづいて書き込みフラグの活性化により、 **書き込みを行うバンクA側のバンクスイッチAを活性化** し(Lowレベルとする)、クロックドインバータCI NV1がオフとされ、トランスファゲートTG3がオン し、バンクAの出力として、ラッチ回路302でラッチ したラッチアドレスがトランスファゲートTG3を介し て反転バッファ INV 2から出力され、バンクBの出力 としては外部アドレスをそのまま出力する。

【0060】バンクAアドレスとして、書き込みフラグ が活性化された時のラッチアドレス「YYY」が出力さ れ、バンクBアドレスとしては外部アドレスと同じコー ドが出力される。

【0061】図6は、バンクAの消去とバンクBの読み 出しの同時実行の動作を示すタイミング図である。消去 フラグの活性化により、消去を行うバンクA側のバンク スイッチAを活性化し(Lowレベル)、トランスファ ゲートTG2はオフし、オン状態のトランスファゲート TG1を介してラッチ回路302に内部アドレスが入力 され、また、消去フラグの活性化により、バンクA側の バンクスイッチAが活性化され(Lowレベルとな る)、トランスファゲートTG3がオンして、ラッチ回

路302からの内部アドレスがトランスファゲートTG 3を介して反転バッファ INV 2 に供給され、バンクA の出力として内部アドレスが出力され、一方、バンクB の出力としては、クロックドインバータCINV2を介 して外部アドレスがそのまま出力される。すなわち、バ ンクAアドレスには、消去フラグの活性化時以降の、内 部アドレスである「 $\alpha \alpha \alpha$ 」、「 $\beta \beta \beta$ 」が出力され、 (Highレベル)、トランスファゲートTG2がオフ 40 バンクBアドレスには、外部アドレスと同じコードが出 力される。

【0062】次に本発明の第2の実施例について説明す る。図7は、本発明の第2の実施例の構成を示す図であ る。図7において、図3と同一の要素には同一の参照符 号が付されている。図7を参照すると、本発明の第2の 実施例においては、クロクッドインバータCINV1、 CINV2の代わりに、CMOS型のトランスファゲー トTG5、TG6を用いている。あるいはCMOS型の トランスファゲートTG5、TG6の代わりに、Nチャ の動作ついて説明する。なお、書き込みフラグは、各バ 50 ネルMOSトランジスタによるスイッチとしてもよい。

【0063】次に本発明の第3の実施例について説明する。上記各実施例では、2バンクアドレスの同時実行制御する構成において、外部アドレスのラッチと内部アドレスの切り替え箇所を1個所にまとめることにより、出力までの高速アクセスと回路規模の縮減を図るものであるが、バンク毎のアドレス同時実行制御を実現することによっても同様の効果を得ることができる。

【0064】図8は、本発明の第3の実施例の構成を示 す図である。図8を参照すると、外部アドレスを入力と する初段回路301の出力は、バンクスイッチAでオン 10 オフ制御されるトランスファゲートTG2を介してラッ チ回路302Aの入力端に接続されるとともに、バンク スイッチBでオン・オフ制御されるトランスファゲート TG3を介してラッチ回路302Bの入力端に接続さ れ、内部アドレスは消去フラグでオン・オフ制御される トランスファゲートTG1、TG4を介してラッチ回路 302A、302Bの入力端にそれぞれ接続されおり、 ラッチ回路302A、302Bの出力は、バッファBU F1、BUF2を介してバンクAアドレス、バンクBア ドレスとしてバンクA、Bのデコーダにそれぞれ供給さ 20 路の構成を示す図である。 れる。本発明の第3の実施例においては、バンク毎に、 外部アドレスのラッチ部と内部アドレスのラッチ回路及 びその切り替え部を備えている。このため、2パンクに 別々のアドレスをラッチさせることができ、書き込みや 消去中の読み出しという動作が実現される。

【0065】また本発明の第3の実施例では、2バンクに別々のアドレスをラッチさせたり、別々の内部アドレスを出力させることができるため、書き込みと消去の同時実行も実現可能である。

[0066]

【発明の効果】以上説明したように、本発明によれば、 下記記載の効果を奏する。

【0067】本発明の第1の効果は、外部アドレスとラッチアドレスと内部アドレスの3つのアドレス情報について、バンク毎に出力の切り分けを行う際に、ラッチアドレスと内部アドレスを1つのルートにまとめたことにより、読み出しルートの負荷を軽減することができ、アドレスの出力段までの回路の段数を縮減し、アクセスの高速化を図ることができる、ということである。

【0068】本発明の第2の効果は、内部アドレスと外 40部アドレスのラッチの切り替え部を各パンク毎に2個所置くのではなく、2パンクに共通に配置することで、回路規模を縮減することができる、ということである。

16

【0069】本発明の第3の効果は、バンク毎に、外部アドレスのラッチ部と内部アドレスのラッチ部及び切り替え部をそれぞれ備えたことにより、バンク毎に別々のアドレスをラッチさせることができ、このため、書き込みや消去中の読み出し、及び書き込みと消去のバンク間での同時実行を行うことができる、ということである。【図面の簡単な説明】

【図1】本発明の一実施の形態の構成を示す図である。

【図2】本発明の一実施の形態におけるアドレスバッファの構成を示す図である。

【図3】本発明の一実施例をなすアドレスバッファ回路 の構成を示す図である。

【図4】本発明の一実施例におけるアドレスバッファ回路のラッチ回路周辺の構成を示す図である。

【図5】本発明の一実施例の動作を説明するためのタイミング図である。

【図6】本発明の一実施例の動作を説明するためのタイミング図である。

【図7】本発明の別の実施例をなすアドレスバッファ回 0 路の構成を示す図である。

【図8】本発明のさらに別の実施例をなすアドレスバッファ回路の構成を示す図である。

【図9】クロックドインバータの構成を示す図である。 【図10】従来のアドレスバッファの構成を示す図であ

【符号の説明】

100 アドレスバッファ

101A バンクAメモリセル(メモリセルアレイ部)

101B バンクBメモリセル (メモリセルアレイ部)

30 102A バンクAデコーダ

102B バンクBデコーダ

103 スイッチ

110 アドレスラッチ及び内部アドレス切替部

111、112 スイッチ

301 初段回路

302、302A、302B、ラッチ回路

AO、A1、…、An アドレス信号

BUF1、BUF2 バッファ

CINV1、CINV2 クロックドインバータ

INV1~INV9 インバータ

TG1、TG2、TG3、TG4、TG5 トランスファゲート

【図2】

【図3】

'【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

