TIPO A

Pregunta 1

$$a. - \sum_{n=0}^{\infty} \left(\left(\frac{2}{e}\right)^n - \left(\frac{4}{3}\right)^n \right)$$

Si tomamos el límite (Criterio del n-ésimo término) se tiene

$$\lim_{n\to\infty}\left(\left(\frac{2}{e}\right)^n-\left(\frac{4}{3}\right)^n\right)=0-\infty=-\infty\neq 0\ \ DIVERGE,$$

O bien se puede analizar las series por separado, recuerde que solo se puede separar si convergen las dos. Por lo que

$$\sum_{n=0}^{\infty} \left(\frac{2}{e}\right)^n$$
 Serie Geometrica con $r = \frac{2}{e} < 1$ CONVERGE

$$\sum_{n=0}^{\infty} \left(\frac{4}{3}\right)^n Serie Geometrica con r = \frac{4}{3} > 1 DIVERGE$$

Ahora se sabe que una serie que converge + diverge = Diverge, pero demostrémoslo

Suponemos que

$$\sum_{n=0}^{\infty} \left(\left(\frac{2}{e} \right)^n - \left(\frac{4}{3} \right)^n \right) \quad CONVERGE$$

Luego se puede sumar y restar series convergente por lo que

$$\sum_{n=0}^{\infty} \left(\left(\frac{2}{e} \right)^n - \left(\frac{4}{3} \right)^n \right) - \sum_{n=0}^{\infty} \left(\frac{2}{e} \right)^n = \sum_{n=0}^{\infty} \left(\frac{2}{e} \right)^n - \left(\frac{4}{3} \right)^n - \left(\frac{2}{e} \right)^n = \sum_{n=0}^{\infty} - \left(\frac{4}{3} \right)^n$$

Por teorema la suma de serie debe ser convergente, pero como es estudio antes, esa serie resultante diverge, luego es FALSA la suposición, la serie original DIVERGE.

$$b. - \sum_{n=1}^{\infty} \tan\left(\frac{1}{\sqrt{n}}\right)$$

Comparamos al límite con $b_n = \frac{1}{\sqrt{n}}$, tal que se tiene

$$\lim_{n \to \infty} \frac{\tan\left(\frac{1}{\sqrt{n}}\right)}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} \frac{\sin\left(\frac{1}{\sqrt{n}}\right)}{\frac{1}{\sqrt{n}}} \cos\left(\frac{1}{\sqrt{n}}\right) \stackrel{a = \frac{1}{\sqrt{n}}}{\Longrightarrow} \lim_{a \to 0} \frac{\sin(a)}{a} \cos(a) = 1$$

Son iguales las series, evaluemos entonces

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \; ; \; Serie \; P \; con \; p = \frac{1}{2} < 1 \; DIVERGE,$$

Por comparación al límite, diverge la serie original

Pregunta 2

Factorizamos el denominador de la función

$$f(x) = \frac{1}{x^2 - 4x + 3} = \frac{1}{(x - 3)(x - 1)}$$

Por fracciones simple se puede tener que

$$f(x) = \frac{1}{2} \frac{1}{x - 3} - \frac{1}{2} \frac{1}{x - 1}$$

Buscamos la serie geométrica de cada parte haciendo modificaciones pertinentes

$$f(x) = \frac{1}{2} \frac{1}{-3} \frac{1}{1 - \frac{1}{3}x} + \frac{1}{2} \frac{1}{1 - x}$$

Luego tenemos

$$f(x) = -\frac{1}{6} \sum_{n=0}^{\infty} \left(\frac{1}{3}x\right)^n + \frac{1}{2} \sum_{n=0}^{\infty} x^n$$

La primera converge para $\left|\frac{1}{3}x\right| < 1 \implies |x| < 3$ y la segunda para |x| < 1

Como las dos convergen entonces podemos simplificar un poco más

$$f(x) = \frac{1}{2} \sum_{n=0}^{\infty} x^n \left(1 - \frac{1}{3^{n+1}} \right)$$

Y converge para la intersección de los conjuntos anteriores es decir |x| < 1

Pregunta 3

Sustituciones diversas, ya que el término

$$\frac{x^2 + y^2}{r}$$

Se repite, podemos realizar un cambio de variable igual a ese término (Resulta este cambio es un poco más laborioso pero sin embargo da, podía también realizar $z = x^2 + y^2$ y sale más fácil)

Sea

$$z = \frac{x^2 + y^2}{x} \implies \frac{dz}{dx} = \frac{\left(2x + 2y\frac{dy}{dx}\right)(x) - (x^2 + y^2)}{x^2}$$

Observamos un poco la ecuación diferencial si dividimos todo por dx

$$2x + 2y\frac{dy}{dx} = \frac{x^2 + y^2}{x} \ln\left(\frac{x^2 + y^2}{x}\right)$$

Busquemos despejar la parte izquierda de la ecuación del cambio de diferencial

Sustituimos el cambio en la ecuación

$$z + x \frac{dz}{dx} = z \ln(z) \implies x \frac{dz}{dx} = z(\ln(z) - 1) \implies \frac{1}{z(\ln(z) - 1)} dz = \frac{dx}{x}$$

Integramos

$$\ln(\ln(z) - 1) = \ln(x) + C \implies \ln(z) - 1 = Kx \implies \ln\left(\frac{x^2 + y^2}{x}\right) - 1 = Kx$$

Realizamos la condición inicial se tiene

$$ln(2) - 1 = K$$

Por lo que la solución será

$$\ln\left(\frac{x^2 + y^2}{x}\right) - 1 = (\ln(2) - 1)x$$

RESULTADO EQUIVALENTE al que se obtiene por la otra sustitución.

Pregunta 4

De igual forma, sustituciones diversas notamos que x + y se repite luego

$$z = x + y \implies \frac{dz}{dx} = 1 + \frac{dy}{dx} \implies \frac{dy}{dx} = \frac{dz}{dx} - 1$$

Sustituyendo en la ecuación diferencial se tiene

$$\frac{dz}{dx} - 1 = \frac{z^2 - 1}{2z + 2} \implies \frac{dz}{dx} = \frac{z^2 - 1}{2z + 2} + 1 \implies \frac{dz}{dx} = \frac{(z^2 + 2z + 1)}{2z + 2} \implies \frac{2z + 2}{z^2 + 2z + 1} dz = dx$$

Integramos

$$\ln(z^2 + 2z + 1) = x + C$$

Regresamos el cambio

$$\ln((x+y)^2 + 2(x+y) + 1) = x + C$$

Aplicamos la condición inicial

$$ln(1+2+1) = C => C = 2 ln(2)$$

Luego la respuesta será

$$(x + y)^2 + 2(x + y) + 1 = 4e^x$$

El ejercicio se resolvía más fácil si se da cuenta de

$$\frac{dy}{dx} = \frac{(x+y)^2 - 1}{2(x+y+1)} = \frac{dy}{dx} = \frac{(x+y-1)(x+y+1)}{2(x+y+1)} = \frac{dy}{dx} = \frac{1}{2}(x+y-1)$$

Es una ecuación lineal primer orden ya que

$$\frac{dy}{dx} - \frac{1}{2}y = \frac{1}{2}(x-1)$$

Factor integrante

$$\mu(x) = e^{\int -\frac{1}{2}dx} = e^{-\frac{1}{2}x}$$

Luego nos queda que

$$\mu(x)y = \frac{1}{2} \int e^{-\frac{1}{2}x} (x-1) dx + C$$

Integramos por parte y queda

$$y = e^{\frac{1}{2}x} \left(\frac{1}{2} \left(-2e^{-\frac{1}{2}x} (x - 1) - 4e^{-\frac{1}{2}x} \right) + C \right) \implies y = \frac{1}{2} \left(-2(x - 1) - 4 \right) + Ce^{\frac{1}{2}x}$$

Evaluamos la condición inicial

$$1 = \frac{1}{2}(-2) + C \implies C = 2$$

La respuesta será

$$v = -x - 1 + 2e^{\frac{1}{2}x}$$

RESPUESTA EQUIVALENTE NUMERICAMENTE A LA OTRA.

PREGUNTA 5

Reducción de orden

$$y'' = \frac{y'}{y^2}$$

Tercer caso, se sugiere que

$$u = y'$$
 y $y'' = \frac{du}{dy}u$

Aplicamos el cambio de variable

$$u\frac{du}{dy} = \frac{u}{y^2} \implies du = \frac{dy}{y^2} \implies u = -\frac{1}{y} + C_1$$

Regresamos el cambio de variable.

$$\frac{dy}{dx} = \frac{C_1 y - 1}{y} \implies \frac{y}{C_1 y - 1} dy = dx$$

Dividimos la fracción de función de (y)

$$\frac{1}{C_1} - \frac{1}{C_1} \frac{1}{C_1 y - 1} dy = dx$$

Integramos

$$\frac{y}{C_1} - \frac{1}{C_1^2} \ln(C_1 y - 1) = x + C_2$$