Supervised Learning 2

Blaise Hanczar (812-E)

Outline

- Performance estimation
- Classification with reject option
- Multi-class classification

Estimation d'erreur

Distribution des classes

> Construction d'un classeur

Estimation d'erreur

- Base d'apprentissage S={X_i,Y_i} de N exemples
- ullet Construction d'un classeur Ψ_s
- > Calculer le taux d'erreur

Estimation d'erreur

 ϵ_{estim} est il une estimation fiable de ϵ_{true} dans les problèmes à grande dimension et peu d'exemples?

Training and test datatset

Training datatset

- The classes are known
- Use for model learning

Test datatset

- The classes are unknown
- Not use in the model learning
- Use to estimate the performance of the classifier

Data decomposition

Data decompositon

- Training set: 50%
 - Learning the model
- Validation set: 25%
 - Fitting the paramaters
- Test set: 25%
 - Classifier evaluation

Data decomposition classifier train2 Valid **Evaluation** Class Class **Optimal** paramters train1 Data Class class classifier test **Evaluation** Class

Cross validation

- Divide the example set into K distinct sets of the same size (ex: K=10)
- For i = 1:K
 - Training set: K-1 setsAll sets except the i-th set
 - Test set: i-th set
 - Err(i) = compute the error
- Error = $1/K \sum_{i} err(i)$

Case K=N: leave-one-out

Cross Validation

Bootstrap

For = 1:B

- Generate a bootstrap sample of examples
- Training set: examples in the bootstrap sample
- Test set: examples not in the bootstrap sample
- Err(i) = compute the error

Error_bootstrap =
$$1/K \sum_{i} err(i)$$

Boostrap 632:

0.368 X training error + 0.632 bootstrap error

Echantillion Bootstrap

Original	1	2	3	4	5	6	7	8
Training set 1	2	7	8	3	7	6	3	1
Training set 2	7	8	5	6	4	2	7	1
Training set 3	3	6	2	7	5	6	2	2
Training set 4	4	5	1	4	6	4	3	8

Bootstrap 632

Example of estimation design

Error estimation (high sample size)

Error estimation (small sample size)

Confiance Interval

- The estimated error is a statitics, we can compute a confidence interval.
- We need to compute the variance of the error estimator
 - Consider that the erreur estimation follows a binomial distribution

$$Var_{\varepsilon} = \frac{\varepsilon(1-\varepsilon)}{N}$$

The 95% confidence interval is given by

$$\varepsilon_{true} \in \left[\varepsilon - 1.96 \sqrt{Var_{\varepsilon}}; \varepsilon + 1.96 \sqrt{Var_{\varepsilon}} \right]$$

Confidence intervals

Confidence intervals

95.85% of the points are in the confidence interval

Principle of reject option

Pretty good performance of classification may be obtain with regular classifier... but sometimes it is not good enough for practical use (ex: medical application)

Idea: Make a prediction only when we are very confident

To predict 50% of the examples at 95% is better than predict 100% examples at 80%

The power to say "I don't know"

Question

Add a reject option to the classifiers
 Imputs
 Data
 Positive
 Negative
 Reject

Answer

Training set of N examples

Construction of the classic classifier

The errors are close to the seprator

> The farhrest from the separator, the lest number of errors

The examples close to the seperator are rejected.

Performance of classifier with reject option

Classic Classifier

Classification cost

Classifier with rejet option

Classification cost rejection rate

Classifier with reject option

Regular classifier:

$$f: x \mapsto \Re$$

$$\begin{cases} f(x) > 0 \to P \\ f(x) \le 0 \to N \end{cases}$$

Classifier with reject option

$$f: x \mapsto \Re$$

$$\begin{cases} f(x) \ge t_2 \to P \\ f(x) \le t_1 \to N \\ t_2 < f(x) < t_1 \to R \end{cases}$$

Classifier with reject option:

- Classification model
- Threshold t₁
- Threshold t₂

Classifier with reject option

	True class	True class
	Positive	Negative
Predict	True	False
Positive	Positive	Positve
	TP	FP
Predict	False	True
Negative	Negative	Negative
	FN	TN
Reject	Reject	Reject
	Positive	Negative
	RP	RN
Total	P	N

Classification cost

Classification cost:

$$cost = \pi_P C_{TP} \frac{TP}{P} + \pi_P C_{FN} \frac{FN}{P} + \pi_P C_{RP} \frac{RP}{P} + \pi_N C_{TN} \frac{TN}{N} + \pi_N C_{FP} \frac{FP}{N} + \pi_N C_{RN} \frac{RN}{N}$$

	True class	True class
	Positive	Negative
Predict	C_{TP}	C_{FP}
Positive		
Predict	C_{FN}	C_{TN}
Negative		
Reject	C_{RP}	C_{RN}

Classification cost

Classification cost:

$$cost = \pi_P C_{TP} \frac{TP}{P} + \pi_P C_{FN} \frac{FN}{P} + \pi_P C_{RP} \frac{RP}{P} + \pi_N C_{TN} \frac{TN}{N} + \pi_N C_{FP} \frac{FP}{N} + \pi_N C_{RN} \frac{RN}{N}$$

Assume that
$$C_{TN} = C_{TP} = 0$$

$$cost = \pi_P C_{FN} \frac{FN}{P} + \pi_P C_{RP} \frac{RP}{P} + \pi_N C_{FP} \frac{FP}{N} + \pi_N C_{RN} \frac{RN}{N}$$

	True class	True class		
	Positive	Negative		
Predict	0	C_{FP}		
Positive				
Predict	C_{FN}	0		
Negative				
Reject	C_{RP}	C_{RN}		

Classification cost

Classification cost:

$$cost = \pi_P C_{TP} \frac{TP}{P} + \pi_P C_{FN} \frac{FN}{P} + \pi_P C_{RP} \frac{RP}{P} + \pi_N C_{TN} \frac{TN}{N} + \pi_N C_{FP} \frac{FP}{N} + \pi_N C_{RN} \frac{RN}{N}$$

Assume that
$$C_{FN}=C_{FP}=0$$
 $cost=\pi_P C_{FN} \frac{FN}{P} + \pi_P C_{RP} \frac{RP}{P} + \pi_N C_{FP} \frac{FP}{N} + \pi_N C_{RN} \frac{RN}{N}$ Assume that $C_{FN}=1$, $Q=\frac{C_{FP}}{C_{FN}}$ $\pi_P=\pi_N=1/2$ $C_{RN}=C_{RP}=C_R$

$cost = \frac{1}{2} \left(\frac{FN}{P} + Q \frac{FP}{N} + C_R \left(\frac{RP}{P} + \frac{RN}{N} \right) \right)$
$cost = \frac{1}{2} \left(\frac{FN}{P} + Q \frac{FP}{N} + C_R \left(\frac{R}{P+N} \right) \right)$
Si Q=1
$cost = error, rate + C_{P}$ reject, rate

	True class	True class
	Positive	Negative
Predict	0	Q
Positive		
Predict	1	0
Negative		
Reject	C_R	C_R

Performance of a classifier with reject option


```
p(reject) + p(accept) = 1
p(x \in P; f(x) = P; accept)
p(x \in N; f(x) = N; accept)
        \rightarrow p(good;accept)
p(x \in P; f(x) = P; accept)
p(x \in N; f(x) = N; accept)
          p(error;accept)
p(error; accept) + p(good; accept) + p(reject) = 1
p(error | accept)
p(good | accept)
p(error | accept) + p(good | accept) = 1
```

Error-reject Trade-off

Accuracy increase with the rejection rate

What is the best trade-off between error and rejection rate?

Iso-cost line

 $C_R = 0.4$

Define the reject option

- What is the best trade-off between error and rejection rate?
- How to choice the decision threshold that define the reject option?
 - Cost optimization
 - ROC analysis
 - Performance constraints

Cost optimization

- Reject classifier can be view as a combination of two classifiers
- The reject option that minimizes the classification cost can be analytically computed

$$-f'_{ROC}(FP^*_{\beta}) = \frac{C_{RN}}{C_{FN} - C_{RP}} \frac{N}{P}$$
$$-f'_{ROC}(FP^*_{\alpha}) = \frac{C_{RP}}{C_{FP} - C_{RN}} \frac{N}{P}$$

ROC analysis

ROC analysis

ROC analysis

Error-reject Trade-off

Control the classification cost

Classification cost becomes a parameter of classification algorithm

Learning task:

Minimize the rejection rate given the target false positive and negative

$$\begin{aligned} \min & \left| t_1 - t_2 \right| \\ & \left\{ FPR^{cond} \leq FPR^* \right. & \text{Target false positive} \\ & \left\{ FNR^{cond} \leq FNR^* \right. & \text{and negative} \end{aligned}$$

Optimization problem

Heuristic search

No solution

Domain of validity is empty

No solution to the optimization problem

Classification construction fails

Multiple solutions

Several solutions to the optimization problem

Classifier has only one threshold

Reject option not necessary to respect the target error constraints

Muti-class classification

Classification task with K classes $\{C_1, C_2, ..., C_K\}$

Currently, there is no clear solution to the problem of multi-class classification

3 approaches:

- One vs All
- All vs All
- Hierarchical classification

One vs All

K classifiers: a class VS all other classes

$$\begin{cases} C_1 \text{ VS } \{C_2, C_3, ... C_K\} \text{ -> score}_1 \\ C_2 \text{ VS } \{C_1, C_3, ... C_K\} \text{ -> score}_2 \\ ... \\ C_i \text{ VS } \{C_1, ..., C_{i-1}, C_{i+1}, ... C_K\} \text{ -> score}_i \\ ... \\ C_K \text{ VS } \{C_1, C_2, ... C_{K-1}\} \text{ -> score}_K \end{cases}$$

C* <- argmax_i{score₁, score₂,...score_i,...score_K}

All VS All

K(K-1)/2 binary classifiers: C_i VS C_j for all i>j

	C ₁	C ₂	 C _j	 C _K	Total
C ₁		0	1	0	6
C ₂	1		1	0	5
				0	
C _i	1	1		0	10
C _K	0	0	0		2

C* <- argmax_i{Total₁, Total₂,...Total_k}

Hierarchical classification

Performance of multi-class classifiers

Confusion matrix

	C ₁	C ₂	 C _j	•••	C _K
C_1	M ₁₁	M ₁₂	M_{1j}		M_{1K}
C ₂	M ₂₁	M ₂₂			
C _i	M_{j1}	M_{j2}	M_{jj}		M_{jK}
C _K	M _{K1}	M _{K2}	M _{Kj}		M _{KK}

Cost Matrix

	C ₁	C ₂	 C _j	 C_K
C_1	α_{11}	α_{12}	α_{1j}	α_{1K}
C_2	α_{21}	α_{22}		
C _i	α_{j1}	α_{j2}	α_{jj}	α_{jK}
C _K	α_{K1}	α_{K2}	α_{Kj}	α_{KK}

No ROC space can be defined Evaluation done by classification cost