K-Theory and The Index Theorem

Lectured by Bai-Ling WANG Noted by Fang-Rong ZHAN

Lecture 1-3 are trivial. So starts from Lecture 4.

1 Lecture 1

Linear algebra.

Topology.

Differential geometry.

2 Lecture 2

Transition function.

Theorem 2.1 (Reconstruction Theorem.).

Examples.

3 Lecture 3

Operations on vector bundles.

- 1. Dual bundle.
- 2. Direct sum.
- 3. Tensor product.
- 4. Pullback.
- 5. Subbundles & quotient bundles.

4 Lecture 4

Classifying vector bundles.

Lemma 4.1. Given a vector bundle E over a compact Hausdorff space X with transition functions $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \operatorname{GL}(k,\mathbb{R})$ for a finite open covering $\{U_{\alpha}\}_{\alpha=1}^{N}$, then there is a continuous map (called classifying map)

$$f_E: X \to \operatorname{Gr}_k(\mathbb{R}^{k \times N})$$

such that $f^*\xi_k \cong E$.

Proof. Choose a PoU $\{\rho_{\alpha}\}$ subordinated to $\{U_{\alpha}\}$. Define

$$F: E \to \prod_{\alpha=1}^N \varphi_{\alpha}(\pi^{-1}(U_{\alpha})) \xrightarrow{\prod \pi^{\alpha}} \mathbb{R}^{k \times N}$$

by $(x, v) \mapsto \prod_{\alpha} \rho_{\alpha}(\pi^{\alpha} \circ \varphi_{\alpha}(x, v))_{\alpha}$, where $\pi^{\alpha} : \varphi_{\alpha}(\pi^{-1}(U_{\alpha})) \cong U_{\alpha} \times \mathbb{R}^{k} \to \mathbb{R}^{k}$ is the projection. Note that if $(x, v) \notin \pi^{-1}(U_{\alpha})$, then $\rho_{\alpha}(x) = 0$, hence $\rho_{\alpha}(\pi \circ \varphi_{\alpha}(x, v)) = 0$. For all x,

$$E_x \xrightarrow{F} \mathbb{R}^{k \times N}$$

is injective and linear.

Define $f_E(x) := F(E_x) \in \operatorname{Gr}_k(\mathbb{R}^{k \times N})$. We need to check $E \cong f_E^* \xi_k$, i.e.

$$E \xrightarrow{\tilde{F}} \xi_k$$

$$\downarrow \qquad \cup \qquad \qquad \downarrow$$

$$X \longrightarrow \operatorname{Gr}_k(\mathbb{R}^{k \times N})$$

is a pullback. Note that $\tilde{F}(x, v) = (f_E(x), F(v))$, so the commutativity is obvious.

Lemma 4.2. If $f_{E_0} \simeq f_{E_1} : X \to Y$, then $E_0 \cong E_1$.

More generally we have

Lemma 4.3. If $f_0 \simeq f_1 : X \to Y$, then $f_0^* \xi \cong f_1^* \xi$.

Proof. Let $F:[0,1]\times X\to Y$ be the homotopy, $E:=F^*\xi$ the pullback bundle. We want to show $E|_{0\times X}\cong E|_{1\times X}$.

Note that for all t,

$$\operatorname{Hom}(E_t, E_t) \hookrightarrow \operatorname{Hom}(E, [0, 1] \times E_t)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$t \times X \hookrightarrow \longrightarrow [0, 1] \times X$$

where the horizon arrows are closed embeddings. Recall that

Lemma 4.4 (Tietze extension theorem for section).

$$\begin{array}{ccc}
\xi|_A & \longrightarrow & \xi \\
s_A & & \bigcup & & \downarrow & \uparrow \exists s \\
A & \longleftrightarrow & X
\end{array}$$

such that $s|_A = s_A$.

For a section $(\mathrm{id}_{E_t}: E_x \cong E_x) \in \mathrm{Hom}(E_t, E_t)$, we have a section s which extends id_{E_t} . Since isomorphism of vector bundle is an open condition, there is a neighborhood Δ_t of t such that $s|_{\Delta_t \times X}: E|_{\Delta_t \times X} \cong \Delta_t \times X$. By compactness of [0,1], we derived $E|_{0 \times X} \cong E|_{1 \times X}$, completing the proof.

Proof of the Tietze extension theorem for section. Recall the original version of Tietze extension theorem:

$$A \xrightarrow{\mathcal{O}} X$$

$$f \xrightarrow{\downarrow} \mathcal{J}$$

$$\mathbb{R}$$

such that $\tilde{f}|_A = f$.

Locally, the diagram of the section version turns into

$$(A \cap U_{\alpha}) \times \mathbb{R}^{k} \longleftrightarrow U_{\alpha} \times \mathbb{R}^{k}$$

$$\downarrow s_{A}^{\alpha} \downarrow \qquad \qquad \downarrow \downarrow \exists s^{\alpha}$$

$$A \cap U_{\alpha} \longleftrightarrow U_{\alpha}$$

the existence of dashed arrow is by the original version of Tietze extension theorem. Since $s_A^{\alpha} = g_{\alpha\beta} s_A^{\beta}$ leads to $s^{\alpha} = g_{\alpha\beta} s^{\beta}$ on $U_{\alpha\beta}$, it *is* a global section.

Then we can come to the proof that homotopical transition functions give rise to isomorphic vector bundle.

Theorem 4.5. If $\{g_{\alpha\beta}^0\}$ and $\{g_{\alpha\beta}^1\}$ are two homotopic transition functions of two vector bundles E_0 and E_1 , then $E_0 \cong E_1$.

Proof. Let $g_{\alpha\beta}^t(x):[0,1]\times U_{\alpha\beta}\to \mathrm{GL}(k,\mathbb{R})$ be the homotopy,

$$\tilde{E} = \frac{\bigsqcup_{\alpha} [0, 1] \times U_{\alpha} \times \mathbb{R}^{k}}{(t, x, v)_{\beta} \sim (t, x, g_{\alpha\beta}^{t}(x)v)_{\alpha}}$$

the bundle over $[0,1] \times X$. Then the classifying map $f_{\tilde{E}}$ gives the homotopy between f_{E_0} and f_{E_1} , therefore $E_0 \cong f_{E_0}^* \xi_k \cong f_{E_1}^* \xi_k \cong E_1$ as bundle isomorphism from above *lemmata*.

Some applications.

Example 4.1 (Real vector bundle over \mathbb{S}^1 .). Let $\mathbb{S}^1 = U_0 \cap U_1$ be the canonical decomposition. $g_{01}: U_{01} \to \operatorname{GL}(k, \mathbb{R})$ is homotopic to $\tilde{g}_{01}: \{\pm 1\} \to \operatorname{GL}(k, \mathbb{R})$. Since $\operatorname{GL}(k, \mathbb{R})$ has two connected component, we write $\operatorname{GL}_{\pm}(k, \mathbb{R}) := \{g | \det g > 0 \text{ or } < 0\}$.

Case I. If $g_{01}(-1)$ and $g_{01}(1)$ are in the same component, say $GL_+(k, \mathbb{R})$, then \tilde{g}_{01} is homotopic to a constant map to I_k . Hence $E \cong \mathbb{S}^1 \times \mathbb{R}^k$.

Case II. If $g_{01}(1) \in GL_+(k,\mathbb{R}), g_{01}(-1) \in GL_-(k,\mathbb{R})$, then g_{01} is homotopic to $\tilde{g}_{01}: 1 \mapsto$

$$I_k, -1 \mapsto \begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & -1 \end{bmatrix}$$
. Hence

$$E \cong (\mathbb{S}^1 \times \mathbb{R}^{k-1}) \oplus \frac{[0,1] \times \mathbb{R}}{(0,\nu) \sim (1,-\nu)} \cong \underline{\mathbb{R}}^{k-1} \oplus \underline{\mathbb{R}}_{-1}.$$

Since $\underline{\mathbb{R}}_{-1} \oplus \underline{\mathbb{R}}_{-1} \cong \underline{\mathbb{R}}^2$, above are all the cases. The reason for the isomorphism is that $\begin{bmatrix} -1 \\ & -1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ & 1 \end{bmatrix}$ can be connected by a path.

Example 4.2 (Complex vector bundle over \mathbb{S}^1 .). Since $g_{01}: \{\pm 1\} \to \operatorname{GL}(k, \mathbb{C})$ and $\operatorname{GL}(k, \mathbb{C})$ is path-connected, g_{01} is homotopic to a constant map to I_k , therefore $E \cong \mathbb{S}^1 \times \mathbb{C}^k \cong \underline{\mathbb{C}}^k$.

Example 4.3 (Complex vector bundle over \mathbb{S}^2 .). Let $S^2 = U_0 \cup U_1$ s.t. $g_{01} : U_0 \cap U_1 \sim \mathbb{S}^1 \to GL(k,\mathbb{C})$. We have

$$[\mathbb{S}^1, \mathrm{GL}(k, \mathbb{C})] = [\mathbb{S}^1, \mathrm{U}(k)] \cong \mathbb{Z}(k \ge 1).$$

When k = 1, $[\mathbb{S}^1, \operatorname{GL}(1, \mathbb{C})] = [\mathbb{S}^1, \mathbb{S}^1 \times (0, \infty)] = [\mathbb{S}^1, \mathbb{S}^1] \cong \mathbb{Z}$, therefore the isomorphic class L_d of line bundles is classified by a integer d, which equals to the Chern number $d = \langle c_1(L_d), [\mathbb{S}^2] \rangle$.

It is easy to see that $L_{d_1} \oplus L_{d_2} \cong L_{d_1+d_2} \oplus \underline{\mathbb{C}}$.

$$g(t) = \begin{bmatrix} z^{i d_1} \\ 1 \end{bmatrix} \begin{bmatrix} \cos(\frac{\pi}{2}t) & -\sin(\frac{\pi}{2}t) \\ \sin(\frac{\pi}{2}t) & \cos(\frac{\pi}{2}t) \end{bmatrix} \begin{bmatrix} z^{i d_2} \\ 1 \end{bmatrix} \begin{bmatrix} \cos(\frac{\pi}{2}t) & -\sin(\frac{\pi}{2}t) \\ \sin(\frac{\pi}{2}t) & \cos(\frac{\pi}{2}t) \end{bmatrix}^{-1}$$

is a homotopy between $e^{\mathrm{i}\,\theta}\mapsto\begin{bmatrix}e^{\mathrm{i}\,d_1\theta}&\\&e^{\mathrm{i}\,d_2\theta}\end{bmatrix}$ to $e^{\mathrm{i}\,\theta}\mapsto\begin{bmatrix}e^{\mathrm{i}(d_1+d_2)\theta}&\\&1\end{bmatrix}$, which are the transition functions.