ugr Universidad de Granada	Fundamentos Físicos y Tecnológicos G.I.I. y G.I.I.M.	Examen de Teoría 5 de Febrero de 2016	
Apellidos:			Firma:
Nombre:	DNI:	Grupo:	

- Responde a cada pregunta en hojas separadas.
- Indica en cada hoja tu nombre, el número de página y el número de páginas totales que entregas.
- Lee detenidamente los enunciados antes de contestar.
- No es obligatorio hacer los ejercicios en el orden en el que están planteados.
- 1. Calcula razonadamente la densidad de carga de una esfera dieléctrica de 2m de radio sabiendo que es capaz de crear una diferencia de potencial de 10V entre dos puntos situados a 1m y 1.5m respectivamente de su centro.(1 punto) Datos: $\varepsilon_0 = 8.85 \ 10^{-12} F/m$, $S^{esfera} = 4\pi r^2$, $S^{cilindro}_{lat} = 2\pi r l$, $S^{cilindro}_{base} = \pi r^2$, $V^{esfera} = \frac{4}{3}\pi r^3$, $V^{cilindro} = \pi r^2 l$.
- 2. En el circuito de la figura 1:
 - a) Calcula los equivalentes Thevenin y Norton del circuito vistos desde los puntos A y B si R=1k Ω , I=1mA, V₁=2V, V₂=4V, V₃=6V.(**2.3 puntos**)
 - b) Calcula las potencias asociadas a las fuentes de corriente I y de tensión V₁ del circuito justificando si son consumidas o suministradas.(0.7 puntos)

Figura 1: Circuito para el problema 2

3. Calcula en el circuito de la figura 2 el punto de polarización del transistor (I_D , V_{DS} y V_{GS}). Datos: V_T =2V (tensión umbral del transistor), $k = 2 \ 10^{-3} A/V^2$, R=1k Ω , V_1 =10V, V_2 =5V, I=1mA. ¿Cuánto vale la potencia consumida por el transistor? (1.5 puntos)

Figura 2: Circuito para el problema 3

- 4. En el circuito de la figura 3, $R_1=1k\Omega$, $R_2=5k\Omega$, L=1mH, $C_1=1\mu F$ y $C_2=10\mu F$.
 - a) Calcula la función de transferencia, su módulo y su argumento. (1 punto)
 - b) Dibujar el diagrama de Bode en amplitud y en fase y explica su significado. A la vista de los resultados, ¿en qué rango de frecuencias habría que trabajar para conseguir una amplitud de señal a la salida menor que la de la entrada? ¿Y para que no haya desfase entre salida y entrada? (0.75 puntos)
 - c) Si colocamos una bobina con autoinducción L_s=10mH conectada entre la salida y la referencia del circuito, ¿cuál es la potencia media e instantánea consumida por este elemento si la entrada es $v_i(t) = 4 \sin(10^2 t + \frac{\pi}{4})V$? (0.75 puntos)

Figura 3: Circuito para el problema 4

- 5. Explica brevemente cómo funciona un transistor MOSFET tipo p. Usa esta explicación para describir brevemente cómo funciona un inversor CMOS y comentar sus ventajas frente a otros inversores.(1 punto)
- 6. Calcule razonadamente y dibuje la característica de transferencia del circuito de la figura 4 si la salida se toma entre los extremos de la resistencia R_1 y la entrada en la fuente que alimenta al circuito. Datos: $V_{\gamma}=0.6V$, y $R_1=R_2=1k\Omega$. (1 punto)

Figura 4: Circuito para el problema 6