Indian Institute of Technology, Delhi Centre for Energy Studies

ESL 734: Nuclear Energy

Semester II, 2015-2016

Minor-I Examinations

Marks: 20

Duration: 60 minutes

12 Feb. 2016

h di = di

- 1. Find the number of Carbon atoms (${}_{6}^{12}$ C) in 1 cm³ of graphite with density 1.65 gm/cc. [2]
- 2. Show that the kinetic energy of the α particles emitted in an alpha decay is approximately equal to 4Q/A, where Q is the Q-value of the reaction and A is the mass number of parent nucleus. [4]
- 3. In a radioactive decay chain $A \rightarrow B \rightarrow C$, if the element C is stable than determine how the amount of C varies with time. Assume $N_A = N_{A0}$ and $N_B = 0$ at t = 0. Take λ_A and λ_B as decay constants for element A and B respectively. [5]
- 4. If a neutron is elastically scattered from a nucleus (Mass number A) at an angle θ , show that the neutron suffers maximum energy loss when is scattered directly backward.
- 5. A nuclear reactor consuming fissile nuclei (235 U) is operating at a power 0.2 GW with a recoverable energy of 205 MeV. Estimate the burn-up rate of the fissile nuclei.
- 6. Show that if Compton scattering is the dominant mode of γray interaction, the mass attenuation coefficient remains roughly the same for all elements. [2]

Given the following constants:

Avagadro's number, N_A =0.6022 × 10^{24} /mol Boltzmann constant, k_B = 1.38×10^{-23} J/°K Electron charge, q=1.602 × 10^{-19} C Electron rest mass, m_e =9.109 × 10^{-31} kg=0.00549 amu Proton rest mass, m_p =1.672 × 10^{-27} kg=1.007276 amu Neutron rest mass, m_n =1.675 × 10^{-27} kg=1.008665 amu Speed of light, c=3 × 10^8 m/s 1 eV=1.602 × 10^{-19} J Planck constant, h=6.6261 × 10^{-34} J-s Atomic weight of $\frac{^{235}}{^{92}}$ U=235.044 amu

ame for all elements. [2]

hold Ana le

hold Ana le

hold Ana le

Ana le

No e

Ana le

No e

No