KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF ENGINEERING

B.Sc. (Engineering) Examination, 2004 First Year

EE 151 APPLIED ELECTRICITY

DECEMBER, 2006

I Kirchoff's Laws apply to both linear and nonlinear networks.

II

Ш

A I onlyB II onlyC III onlyD I and II only

Reciprocity Theorem applies to both single- and multi-source networks.

Superposition Theorem applies to both linear and nonlinear networks.

THREE HOURS

		question is followed by four options lettered A to D. Find out the correct option and circle without
<u>an</u>	<u>ıbıg</u>	uity the letter for the option you have chosen.
In	dex	No
1.	W	hich of the following statements are true?
	I	A passive element, which dissipates electrical energy it absorbs, will be represented by resistance.
	II	The voltage-current relationship for a resistance is given by $i = C \frac{dv}{dt}$ if i is shown to be entering
		the negative terminal.
	III	Certain passive elements can deliver energy to a source.
	A	I and II only
	В	I and III only
	C	II and III only
	D	I, II and III
2.	If t	the current $i(t) = 1.5t^2$ flows through a 2-H inductor, find the voltage across the inductor at $t = 4s$ in
	vo	lts
	A	3.0
	В	20
	C	40
	D	60
3.	W	hich of the following statements are true?

4. Calculate the total resistance between terminals A and B of the circuit shown in Fig. 1 in $k\Omega$. All resistances are in $k\Omega$.

- B 32
- C 22
- D 12

Use the circuit in Fig. 2 to answer questions 5 and 6.

- 5. Find the current in the 6-ohm resistor in amps.
 - A 3.5
 - B 2.5
 - C 1.5
 - D 1.0
- 6. Find the voltage across the 6-ohm resistor in volts if a 4.8-ohm resistor is connected in parallel with it.
 - A. 10
 - B. 6
 - C. 3
 - D. 1
- 7. In the circuit shown in Fig. 3, find the value for R in $k\Omega$ such that the current in the 1- $k\Omega$ resistor is 1 mA. $E_1 = 40$ V, $E_2 = 30$ V, $E_3 = 20$ V and $E_4 = 10$ V
 - A 102
 - B 100
 - C 98
 - D 96
- 8. A practical current source with a 1-A short-circuit current and 100-ohm internal

Fig. 3

Fig. 2

12

5

8 A

6

 6Ω

b

6

12

Fig. 1

 4Ω

7 V

В

18

- resistance is to be used to deliver 1/12 A to a 100-ohm load. Determine an external resistance that can be placed across the source terminals, to achieve this result. Express the answer in ohms.
- A 14
- B 10
- C 6
- D 2

- 9. Given that $V_0 = 6 \text{ V}$ and $R_1 = R_2 = 3 \text{ k}\Omega$ in the circuit in Fig. 4, find V_S in volts.
 - A 9
 - B 7
 - C 5
 - D 3

Use the information below to answer questions 10 and 11:

A practical source supplies $I_L = 2 A$ to a 10-ohm load and $I_L = 1 A$ to a 50-ohm load.

- 10. Determine its Thevenin parameter V_{TH} in volts
 - A 80
 - B 75
 - C 70
 - D 65
- 11. Determine its Thevenin parameter R_{TH} in ohms.
 - A. 40
 - B. 35
 - C. 30
 - D. 25

Use the circuit in Fig. 5 to answer questions 12 to 14.

- 12. Find the current I in amps if E2 is deactivated and
 - $E_1 = 24 \text{ V}.$
 - A 6
 - B 5
 - C 4 D 3
- 13. Find the current I in amps if E_1 is deactivated and
 - $E_2=24\ V$
 - A. 6
 - B. 5
 - C. 3
 - D. 1

- 14. Find the current I in amps if $E_1 = 24\ V$ and $E_2 = 12\ V$ and both sources are in circuit.
 - A 5.5
 - B 4.5
 - C 3.5
 - D 2.5

- 15. Three resistors of 4 ohms, 5 ohms and 10 ohms are connected in parallel. A further resistor of 20 ohms is connected in series with this parallel circuit. If the voltage across the 4-ohm resistor is 20 V, what is the supply voltage across the whole circuit in volts?
 - A 240
 - B 220
 - C 200
 - D 180
- 16. Calculate the r.m.s. value of the waveform in Fig. 6
 - A 4.0
 - B 3.0
 - C 2.0
 - D 1.0
- 17. Calculate the average value of the waveform in Fig. 6.
 - A 6.0
 - B 4.5
 - C 3.0
 - D 1.5

18. Four conductors meet at a junction, as shown in Fig. 9. The currents are $i_1 = 5 \sin \omega t$,

$$i_2 = 3\sin(\omega t + 90^\circ)$$
 and $i_3 = 2\sin(\omega t - 90^\circ)$.

Calculate the r.m.s. value of the current i_4 .

- A 7.5
- B 6.3
- C 5.0
- D None of the above.

- 19. An alternating current is represented by $i = 3 + 4\sqrt{2}\sin \omega t + 5\sqrt{2}\sin 3\omega t$. Calculate its average value.
 - A 12.0
 - B 9.0
 - C 6.0
 - D 3.0

20. Calculate the r.m.s. value of the current given in problem 19. A 9.57 B 7.07 C 5.67 D 3.02			
21. An inductor having inductance of $3/\pi$ H is connected in series with an 8-ohm resistor. A 28-V, 1-Hz supply is connected across this series circuit. Determine the voltage across the resistor in volts. A 22.4 B 16.8 C 16.0 D 12.0			
Use the information below to answer questions 22 to 24.			
When a series circuit, containing inductance and resistance, was connected across a 240-V, 50-Hz supply, the current was 4 A and the power taken was 400 W.			
22. Calculate the power factor of the circuit, when connected across the a.c. supply. A 0.912 B 0.615 C 0.417 D 0.312			
23. Calculate the value of the resistance in ohms A 55.0 B 46.7 C 34.5 D 25.0			
24. Calculate the inductance in henries. A 0.515 B 0.437 C 0.256 D 0.174			
Use the information below to answer questions 25 and 26.			
A coil of resistance 30 Ω and inductance 20 mH is connected in parallel with 8 μ F capacitor across a supply of 25 V and frequency $1000/\pi$ Hz.			
25. Calculate the total supply current in amps. A 0.53 B 0.30 C 0.10 D 0.05			

- 26. Calculate the total power taken from the supply in watts.
 - A 11.2
 - B 9.4
 - C 8.3
 - D 7.5
- 27. A circuit has two parallel paths and their impedances are $Z_1 = 10 + j20$ ohm; $Z_2 = -j12.5$ ohm. Calculate the combined impedance.
 - A 10 j20
 - B 15 j15
 - C 21 j18
 - D 10 + j8
- 28. A circuit draws a current of $5\angle 30^{\circ}$ amps when the applied voltage is $200\angle -30^{\circ}$ volts. Calculate the complex apparent power drawn by the circuit in voltamperes.
 - A 866 + j500
 - B 500 j866
 - C 866 j500
 - D 1000 + j0

Use the information below to answer questions 29 and 30.

A single-phase motor connected to a 200-V, 50-Hz supply is developing 5 kW with an efficiency of 80 per cent and a power factor of 0.6 lagging.

- 29. Calculate the input apparent power in kilovoltamperes.
 - A 6.25
 - B 9.30
 - C 10.42
 - D 12.32
- 30. Calculate the reactive power drawn by the motor in kilovars.
 - A 5.85
 - B 7.65
 - C 8.33
 - D 10.75

Use the information below to answer questions 31 to 33.

The load taken from a 200-V single-phase a.c. supply consists of:

- i. a fluorescent lighting load of 800 W at 0.8 power factor lagging
- ii. a motor load of 3 kVA at power factor of 0.6 lagging.

31. Find the total power in kW. A 2.44 B 2.60 C 3.80 D None of the above.			
32. Find the total reactive power in kVAr A 2.0 B 3.0 C 4.0 D 5.0			
33. Find the total current in amps if the total power and reactive power are assumed to be 1.6 kW and 1.2 kVAr respectively. A 4.0 B 6.0 C 10.0 D 14.0			
34. A circuit consists of an impedance of 24 + <i>j</i> 8 ohm in series with two impedances of 0 + <i>j</i> 6 ohm and 0 − <i>j</i> 8 ohm which are parallel. Calculate the total impedance in ohms. A 28∠90° B 40∠53.1° C 51∠36.9° D None of the above.			
Use the information below to answer questions 35 and 36.			
A 250 $\sqrt{3}$ -V, 50-Hz, 3-phase supply delivers 3.75 kVA to a balanced load which has a power factor of 0.6 lagging.			
35. Calculate the line current in amps. A 8.0 B 7.0 C 6.0 D 5.0			
36. Calculate the value of the inductance per phase in henries assuming the load to be star connected. A 0.127 B 0.321 C 0.567 D 0.814			

Use the information below to answer questions 37 and 38.

In a 3-phase, 4-wire system, the line voltage is 400 V and pure resistive loads of 5, 4 and 2.5 kW are connected between the three line conductors respectively and the neutral point.

- 37. Calculate the current in the line to which the 5-kW load is connected in amps.
 - A 10.21
 - B 21.65
 - C 32.74
 - D 53.66
- 38. Calculate the current in the neutral conductor in amps.
 - A 9.5
 - B 8.4
 - C 7.3
 - D 6.7

Use the information below to answer questions 39 and 40.

Three similar coils, each having a resistance 5 ohm and inductance $66/\pi$ mH, are connected in star to a $250\sqrt{3}$ -V, 3-phase, 50-Hz source.

- 39. Calculate the line current in amps.
 - A 51.8
 - B 45.7
 - C 30.2
 - D 20.6
- 40. Calculate the total power absorbed in kilowatts.
 - A 19.5
 - B 18.8
 - C 15.6
 - D 13.7