MATH 425b ASSIGNMENT 2 SPRING 2016 Prof. Alexander Due Wednesday February 3.

Chapter 7 # 18 and:

- (I) Suppose \mathcal{F} is an equicontinuous subset of C[a,b]. Show that $\overline{\mathcal{F}}$ (the closure in the uniform metric) is equicontinuous.
- (II) Let $\alpha > 0$ and define

$$E = \{ f \in C[0,1] : f(0) = 0, |f(y) - f(x)| \le |y - x|^{\alpha} \text{ for all } x, y \}.$$

- (a) Show that E is equicontinuous.
- (b) Show that E is a closed subset of C[0,1] (with the uniform metric, as always.)
- (c) Show that E is compact (as a subset of C[0,1].)
- (III)(a) Let [0, A] be an interval and P a polynomial. Show that for every $\epsilon > 0$ there is a polynomial Q with rational coefficients such that $||P Q||_{\infty} < \epsilon$, on [0, A].
 - (b) Show that C[0, A] has a countable subset which is dense.
- (IV) Suppose \mathcal{A} is an algebra of continuous complex-valued functions on a set E, and \mathcal{A} separates points. Show that \mathcal{A} is not equicontinuous.
- (V) For this problem, $||f||_{\infty}$ means $\sup_{x \in \mathbb{R}} |f(x)|$, i.e. the sup is over all of \mathbb{R} . Note that the problem would be false if we only looked at the functions on a bounded interval.
 - (a) Show that if P is a nonconstant polynomial then $||P||_{\infty} = \infty$.
- (b) Show that if a function $f: \mathbb{R} \to \mathbb{R}$ is a uniform limit of polynomials (that is, $||P_n f||_{\infty} \to 0$), then f itself is a polynomial.
- (VI) Show that a complex-valued function on [1, 1] is continuous if and only if it can be written as the uniform limit of a sequence of polynomial functions.

HINTS: (Note (I), (II), (VI) should be easier than (III), (IV), (V).)

- (16) Mimic parts of the proof of Theorem 7.25.
- (I) Show that if some δ works for all $f \in \mathcal{F}$, then this same δ works for limit points (in the uniform metric) of \mathcal{F} .
- (II)(a) Use the definition directly.
- (III) For (b), use (a).

- (IV) If $f \in \mathcal{A}$ satisfies $f(x_1) \neq f(x_2)$ for some x_1, x_2 , what happens when you multiply f by a large constant? By taking x_1, x_2 close together (quantify what this means!) you can show equicontinuity fails.
- (V)(a) If P has degree k, consider $P(x)/x^k$ as $x \to \infty$.
 - (b) Consider $P_n P_m$. Note if f is a polynomial then taking $P_n = f$ for all n is allowed.