Poročilo projekta

Matematično modeliranje

Sara Bizjak

Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za matematiko

Kazalo

1	PR	EDSTAVITEV PROBLEMA	2
2	\mathbf{M}^{A}	TEMATIČNO OZADJE	2
3		ŠITEV PROBLEMA Matlabove datoteke	3 4
4		IMERI GIBANJA	5
	4.1	Primer 1	5
	4.2	Primer 2	6
	4.3	Primer 3	6
	4.4	Primer 4	7
	4.5	Primer 5	7
	4.6	Primer 6	8

1 PREDSTAVITEV PROBLEMA

Rešujemo problem otroka, ki se sprehaja po ravnem igrišču na mivki, za seboj pa vleče na vrvico privezano igračo tako, da je vrvica vseskozi napeta. Otrokovo gibanje opišemo s parametrično krivuljo. Program izračuna sled gibanja igrače po mivki in izriše animacijo.

2 MATEMATIČNO OZADJE

Rešujemo primer naloge, kjer gibanje igrače določimo z rešitvijo diferencialne enačbe.

Ker lahko za rešitev diferencialne enačbe v Matlabu uporabimo že vgrajeno funkcijo ode45, bomo reševanje diferencialnih enačb izpustili. Ponovimo samo nekaj osnovnih pojmov.

Ker imamo podatek o hitrosti, rešujemo DE prvega reda.

Enačbi, v kateri nastopa neznana funkcija in njen odvod, pravimo **diferencialna enačba prvega reda**. Najsplošnejša oblika diferencialne enačbe prvega reda je

$$F(x, y, dy) = 0,$$

kjer je F dana funkcija treh spremenljivk, y=y(x) pa je neznana funkcija. Smiselno je zahtevati, da je definicijsko območje neznane funkcije odprt interval, sicer imamo težave z računanjem njenih odvodov. Pogosto lahko iz F(x,y,dy)=0 izrazimo dy kot funkcijo x in y. V tem primeru pravimo, da smo diferencialno enačbo prevedli na **standardno obliko**.

Vgrajena Matlabova funkcija za reševanje diferencialnih enačb izgleda takole:

$$[X,Y] = ode45(odefun, [x0, b], y0).$$

3 REŠITEV PROBLEMA

Poznamo parametrizacijo krivulje, po kateri se premika otrok. Ker je vrvica med otrokom in igračo vedno napeta, vemo, da sta vedno enako oddaljena. Igrača se vedno giba v smeri otroka. Poznamo smer igrače, velikost hitrosti pa je odvisna od kota med smerjo gibanja otroka in smerjo vrvice. Njene pozicije oz. krivuljo gibanja torej dobimo kot rešitev diferencialne enačbe.

Z x(t) in y(y) je označena parametrizacija otroka, z $x_i(t)$ in $y_i(t)$ pa igrače. Odvodi so označeni kot dx(t), dy(t), $dx_i(t)$ in $dy_i(t)$.

Poznamo parametrizacijo otroka, torej x(t) in y(t). Vemo, da vektor hitrosti igrače kaže v smeri proti otroku (po vrvici). Torej za smer hitrosti igrače velja

$$x - smer : x(t) - x_i(t)$$

$$y - smer : y(t) - y_i(t).$$

Vektor smeri normiramo in ga pomnožimo z normo hitrosti otroka.

$$\left(\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} - \begin{bmatrix} x_i(t) \\ y_i(t) \end{bmatrix}\right) \cdot \frac{\left\| \begin{bmatrix} dx(t) \\ dy(t) \end{bmatrix} \right\|}{\left\| \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} - \begin{bmatrix} x_i(t) \\ y_i(t) \end{bmatrix} \right\|}$$
(1)

Da ohranjamo razdaljo oz. napeto vrvico med otrokom in igračo, račun (1) pomnožimo še s kosinusom kota med hitrostjo otroka in daljico, ki povezuje igračo in otroka. Kosinus kota dobimo s skalarnim produktom, in sicer

$$\cos \varphi = \frac{\left[dx(t), dy(t)\right] \cdot \begin{bmatrix} x(t) - x_i(t) \\ y(t) - y_i(t) \end{bmatrix}}{\left\| \begin{bmatrix} dx(t) \\ dy(t) \end{bmatrix} \right\| \cdot \left\| \begin{bmatrix} x(t) - x_i(t) \\ y(t) - y_i(t) \end{bmatrix} \right\|}.$$
 (2)

Če pomnožimo (1) in (2), dobimo sistem

$$\begin{bmatrix} dx_i(t) \\ dy_i(t) \end{bmatrix} = \frac{\begin{bmatrix} x(t) - x_i(t) \\ y(t) - y_i(t) \end{bmatrix} \cdot \left(\begin{bmatrix} dx(t), dy(t) \end{bmatrix} \cdot \begin{bmatrix} x(t) - x_i(t) \\ y(t) - y_i(t) \end{bmatrix} \right)}{\left\| \begin{bmatrix} x(t) - x_i(t) \\ y(t) - y_i(t) \end{bmatrix} \right\|^2}.$$
(3)

Sistem (3) sovpada s funkcijo, ki jo vstavimo v Matlabovo vgrajeno funkcijo za reševanje diferencialnih enačb ode45.

$$odefun = @(t, P) \frac{\begin{bmatrix} x(t) - x_i(t) \\ y(t) - y_i(t) \end{bmatrix} \cdot \left(\begin{bmatrix} dx(t), dy(t) \end{bmatrix} \cdot \begin{bmatrix} x(t) - x_i(t) \\ y(t) - y_i(t) \end{bmatrix} \right)}{\left\| \begin{bmatrix} x(t) - x_i(t) \\ y(t) - y_i(t) \end{bmatrix} \right\|^2},$$

$$kjer\ P = \begin{bmatrix} x_i(t) \\ y_i(t) \end{bmatrix}.$$

Pri reševanju je predpostavljeno, da je vrvica dolga toliko, kot je začetna oddaljenost igrače in otroka. Igrača svoje gibanje vedno začne v koordinatnem izhodišču, torej v točki (0, 0), kar je tudi nastavljen začetni pogoj pri reševanju diferencialne enačbe.

3.1 Matlabove datoteke

Rešitev diferencialne enačbe izračunamo s funkcijo v datoteki igraca.m. Datoteki risi_otrok.m in risi_igraca.m izriseta krivuljo, po kateri se gibata otrok oziroma igrača. Gibanje izrišemo s pomočjo animacija.m. Vse skupaj poženemo z datoteko test.m, kjer sta določena parametrizacija krivulje, po kateri se giba otrok, in njen odvod.

4 PRIMERI GIBANJA

Poglejmo si nekaj primerov gibanja. Modra barva krivulje označuje gibanje otroka, rdeča pa igrače.

4.1 Primer 1

Gibanje otroka po krivulji s parametrizacijo:

$$x(t) = cos(t),$$

$$y(t) = sin(t).$$

Če se otrok premika v krogu, igrača pa je na začetku v središču kroga (torej je vrvica dolga enako kot radij - predpostavka), ostane igrača ves čas na istem mestu.

4.2 Primer 2

Gibanje otroka po krivulji s parametrizacijo:

$$x(t) = 2 \cdot cos(t),$$

$$y(t) = 3 \cdot sin(t).$$

4.3 Primer 3

Gibanje otroka po krivulji s parametrizacijo:

$$\begin{aligned} x(t) &= t + \cos(t), \\ y(t) &= t + \sin(t). \end{aligned}$$

4.4 Primer 4

Gibanje otroka po krivulji s parametrizacijo:

$$x(t) = t + cos(t),$$

$$y(t) = t - sin(t).$$

4.5 Primer 5

Gibanje otroka po krivulji s parametrizacijo:

$$x(t) = t + cos(t) + sin(t),$$

$$y(t) = t + sin(t) - cos(t).$$

4.6 Primer 6

Gibanje otroka po krivulji s parametrizacijo:

$$\begin{aligned} x(t) &= t + cos(t) - sin(t), \\ y(t) &= t + sin(t) + cos(t). \end{aligned}$$

Literatura

[1] J Cimprič: Diferencialne enačbe, FMF, skripta, dostopno na https://www.fmf.uni-lj.si/cimpric/skripta/del6.pdf.