X.2 LIMITED FLIGHT TEST PLAN

Prepared for

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

15 March 1989

Contract #MDA972-88-C-0058 A 373

APPROVED FOR DE LUCRELEAGE
AND HOLDER LUCRANTE A

AeroLift Inc. 4105 Blimp Blvd. Tillamook, Oregon 97141 503-842-8891

LIMITED FLIGHT TEST PLAN

TABLE OF CONTENTS

CHAPTE	R/SECTIO	N/TITLE	PAGE	
1.0	Intr	Introduction		
2.0	Grou	Ground Rules		
3.0	Syst	em Test Schedule	4	
4.0	Desc	Description of Test Articles		
5.0	Syst	System Test Tasks		
	5.1	Flight Readiness Review (FRR)	15	
	5.2	Training	<u>1</u> 7	
	5.3	Safety	17	
	5.4	System Tests	18	
	5.5	Data Acquisition and Analysis	21	
	5.6	Quick Look Reports	22	
	5.7	Final Report	22	
TABLES				
Т	able 1	36 Foot CycloCrane Model Aerodynamic Surface Specifications	13	
APPEND	IX			
A	ppendix	A Example of X.2 Ground Handling Procedures		

Appendix B Example of Pre and Post Flight Procedures

Appendix C Example of Pilot Test Cards

Appendix D Example of Weight and Balance Data

LIST OF FIGURES

EXHIBIT NUMBER	TITLE	FOLLOWS PAGE
Figure 1	System Test Schedule	4
Figure 2	Previous X.2 Flight Test at Tillamo	ook 5
Figure 3	Perspective of Upgraded X.2 CycloCr	ane 6
Figure 4	Three-View Schematic of the Upgraded X.2 CycloCrane	6
Figure 5	Stalks	7
Figure 6	Aerostat	7
Figure 7	Fabric Tunnels within the Aerostat	7
Figure 8	Ballonet	7
Figure 9	Hirth F-30 110 HP Two-Stroke Engine	? 7
Figure 10	Telemetry Flow Diagram Schematic	8
Figure 11	36 Foot Mccring Model Tail Appendag	re 9
Figure 12	UH-1M Crew Cabin	10
Figure 13	Helicopter Type Controls	10
Figure 14	Helium Purification System	10
Figure 15	MRS Ground Handling Vehicles	11
Figure 16	Mobile Mooring Mast	11
Figure 17	Stalk Support Dollies	11
Figure 18	Tail Winch Truck	12
Figure 19	Tail Ballast Tank	12

LIST OF FIGURES (CON'T)

EXHIBIT NUMBER	TITLE	FOLLOWS PAGE
Figure 20	Lower Cab Transporter	12
Figure 21	Mooring Model General Arrangement	12
Figure 22	36 Foot Mooring Model	12
Figure 23	Ground Crew Training	17
Figure 24	AeroLift Weather Report	17
Figure 25	Master Measurement List	21
Figure 26	Quick Look Report	22

Accesion F	or	1				
NTIS CRA DTIC TAE Unannourid Justificatio	s ce d	<u> </u>				
By per lt: Distribution/						
Avail	աթյիւթ (Codes				
I	ائر. S; ecta					
A-1						

LIMITED FLIGHT TEST PLAN ABBREVIATION TERMINOLOGY

TERM

AACOM Division of Datum, Inc. APU Auxilliary Power Unit ASTO Aerospace Technology Office DARPA Defense Advanced Research Projects Agency

Decibel

DC Direct Current

ABBREVIATION

db

DOD Department of Defense

FRR Flight Readiness Review

GFE Government Furnished Equipment

GOD Ground Operations Director

GSE Ground Support Equipment

MRS Mississippi Road Service

MHZ Megahertz

PCM-FM Pulse Code Modulation Frequency Modulation

RF Radio Frequency

X.2 Experimental 2-ton CycloCrane

1. INTRODUCTION

X.2 LIMITED FLIGHT TEST PLAN

1.0 INTRODUCTION

The X.2 Limited Flight Test Plan is the second deliverable product under the Defense Advanced Research Projects Agency/Aerospace Technology Office (DARPA/ASTO) CycloCrane Program (Item number 0002AB, Contract number MDA972-88-C-0058). The guidelines for this plan were presented in the "Detailed Program Plan for Further Davelopment and Limited Flight Testing of the CycloCrane", dated October 14, 1988.

The principal objectives of the planned tests are to (1) assess a number of ground handling scenarios for the X.2 system to determine the preferred mix of Ground Support Equipment (GSE) and personnel for efficient and safe field operations, and (2) obtain specific performance data needed to support design development; e.g., hover power of new, four engine configuration.

The following sections present particulars related to the planned test activities.

2. GROUND RULES

3. SYSTEM TEST SCHEDULE

2.0 GROUND RULES

There are number of ground rules which have been formulated by AeroLift, in conjunction with DARPA/Aerospace, to impose constraints on planned test work. These generally relate to issues of safety or specific requirements imposed by DARPA/Aerospace on conduct of the test program.

Established ground rules are listed as follows:

- 1. System tests shall be geographically constrained to the airfield boundary at the Port of Tillamook Bay, Tillamook, Oregon.
- 2. Single-line tether tests of the X.2 shall not (a) exceed line lengths of 2,000 feet, (b) have safety factors less than two, and (c) be initiated when winds in excess of 30 mph are expected at operating altitudes.
- 3. Multiple-line tether tests will have the same constraints as single-line tests (as indicated above).
- 4. Planned remote limited flight testing of the X.2 shall be restricted to less than 2,000 feet altitude with expected winds less than 30 mph.
- 5. All system tests involving powered vehicle operations will be in a "heavy" configuration; i.e., slingload or water ballast.
- 6. System tests shall not be initiated when wind conditions exceed 15 mph (crosswind component) on the X.2 when exiting the hangar.
- 7. System tests shall not be initiated if the required instrumentation/data subsystems are not operational.
- 8. Preparation for all planned tests shall be preceded by a full checkout of all hardware/equipment, rehearsal(s) of all required personnel for the required tests, and the employment of Checklists and Test Cards to assure proper execution of tasks.
- 9. Although a certain percentage of hydrogen is present in the aerostat during the helium purification process, at no time shall the maximum percentage be allowed to exceed 10%.

- 10. An updated Weight and Balance Sheet shall be available prior to each test to reflect any changes to initial sheet generated during FRR.
- 11. AeroLift shall notify DARPA/Aerospace 48 hours in advance of any planned system test; e.g., provide the government the opportunity to witness tests, if desired.
- 12. After each system test; e.g., Test T2 X.2 Ground Handling, AeroLift shall review results with DARPA/Aerospace to determine effects, if any, on the next system test.
- 13. AeroLift shall provide for video recording of each system test.

3.0 SYSTEM TEST SCHEDULE

A preliminary schedule for testing was shown in the October "Program Plan" which indicated that the Flight Readiness Review (FRR) would occur in late March 1989, and the system (operational) tests would cover a five month period (April through August 1989). Since that time there have been some delays in the X.2 refurbishment/modification areas. In addition, during the development of this Plan, AeroLift desired a conservative schedule which recognized some contingency time for local weather problems and was keyed to hardware completion dates that appear achievable.

As a consequence, Figure 1, following this page, is the expected schedule for the system test efforts. Since the period for overall system testing is now three, rather than the initial five month projection, AeroLift has provided two modifications to facilitate a much more efficient system test phase. The two changes are (1) splitting the FRR into three segments to allow for DARPA/Aerospace reviews as hardware and procedures are ready, and (2) utilizing the existing 36 foot model of the X.2 as a major tool for training personnel and evaluating ground handling scenarios. That model related activity can (as shown) parallel other program tasks; e.g., perform activities for one or two hours at the start or at the end of each work day.

Figure 1, SYSTEM TEST SCHEDULE.

X.2 REFURBISHMENT X.2 MODIFICATIONS

Propulsion

Power Distribution

Tail

Telemetry

Lower Cab

ASSEMBLE 36' MODEL/GSE

T1 36' MODEL GROUND HANDLING

FLIGHT READINESS REVIEW(FRR)

Eng/Fuel/Pwr Subsystems

c/o System Test Procedures

Full Demonstration

T2 X.2 GROUND HANDLING

T3 X.2 TETHER VARIATIONS

T4 X.2 DATA ACQUISITION

T5 X.2 REMOTE OPERATION

QUICK LOOK REPORTS

FINAL TEST REPORT

4. DESCRIPTION
OF TEST ARTICLES

4.0 DESCRIPTION OF TEST ARTICLES

Fundamentally, a key issue for a CycloCrane system concept is how well it can be handled outside of a hangar in the field; while in a non-flying status. Evaluation of how well that can be done is the principal thrust of this test program. The recently completed tether tests with a 36 foot CycloCrane model showed that there is significant potential for elimination of the mobile mast and stalk dollies (which have been used for the X.2 CycloCrane in the past to go in and out of the hangar, as well as the basic GSE for field operations). The model tether tests also indicated that the degree of static lift attained (maximum) was a direct contributor to the success achieved on the single-line configuration of those tests.

As a consequence of the need for maximizing static lift, AeroLift made the decision to replace the two engine configuration of the experimental X.2 to the current four engine configuration which provides more total power with lower overall aircraft weight (improving static lift of the aircraft). It is noted that this approach was much more cost-effective (dollars and schedule time) than the obvious alternative -- a new, larger aerostat.

The new engines also resulted in changes to the telemetry and power distribution subsystems. Beyond these changes, the discussed model tether tests demonstrated that the ringtail configuration needed internal cross-members for final achievement of stability on the single tether. That model, as discussed in Section 3.0, will also be used in the preparatory phases of this test program.

As a consequence of all the above, a new description is necessary for the aircraft, along with the inclusion of the 36 foot model and its planned GSE. The test articles for the subject program are the Upgraded X.2 CycloCrane System and the 36 foot Model System.

UPGRADED X.2 CYCLOCRANE

The following discussion presents an overall description of the upgraded aircraft, plus the current and planned GSE. Figure 2, following this page, shows the previous X.2 experimental flight test at Tillamook.

Figure 2,
PREVIOUS X.2 EXPERIMENTAL FLIGHT TEST AT TILLAMOOK.

Figure 3, following this page, presents a perspective of the upgraded X.2 CycloCrane and Figure 4 presents a three-view schematic. The aircraft is designed to carry a nominal payload of 2-tons. Its overall length is 178 feet and overall diameter (stalk tip-to-tip) is 140 feet. The aerostat and projecting "T"-form aerodynamic surfaces rotate in hover at 12.75 rpm maximum to provide a resultant airspeed of 60 mph over the wing surfaces (at the top of the "T"). One automatic control loop operates the thrust of the engine/propeller unit to provide the rotational torque corresponding to the particular airspeed/rpm circumstance. Another control loop senses the wing resultant direction and automatically orients the leading edge of the wing normal to the relative wind.

Currently, the cab and the payload are slung from bearing outer races at front and rear of the aerostat (recent studies indicate that certain mission requirements may dictate other locations which can be accommodated by the basic X.2 design). The tail, which is strictly for stability rather than control, is also mounted freely. The internal structure is arranged in space using Kevlar cables to tie together the longitudinal spine and the ends of the tubular cruciform structure which support the blades (base of the "T") and wings.

The blade-wing-engine assemblies ("stalks") are fixed cutboard by external cables, while still allowing the blade and wing panel angles to be changed at the pilots will. The pilot and copilot have a set of helicopter type controls, which allow them to pitch and yaw the aircraft, and to translate along each of the three axis ("direct force control"). Collective variation in angularity of the blades p ovides positive and negative thrust; cyclic variation of blade angle creates pitching and/or yawing response. Cyclic variation in wing angle provides side force and/or positive or negative lift to supplement aerostatic lift.

Aerostatic buoyancy is designed to counteract approximately the vehicle's gross weight plus one-half of the payload weight, positively or negatively as the loading condition requires. The aerodynamic surfaces, which are sized to provide the controllability of an equivalent (payload) helicopter, are driven by hydraulic actuators through servo valves. Control commands are transmitted telemetrically by RF (backed up by an optical fiber link) from the cockpit to the aircraft's nose;

Figure 3. PERSPECTIVE OF UPGRADED X.2 CYCLOCRANE,

Figure 4. THREE-VIEW SCHEMATIC OF THE UPGRADED X,2 CYCLOCRANE

sliprings carry the signals into the rotating system, within which wires distribute the commands to the valves of the individual surfaces. Figure 5, following this page, shows a photograph of the stalks (depicting the "T" configuration of wings and blades.

Aerostat

The aerostat was designed and manufactured by ILC Dover. It has a diameter of 68 feet and is 136 feet long (see Figure 6). The fabric is a polyurethane coated dacron. There are four fabric tunnels within the aerostat to provide access to the structural members (see Figure 7). There is also an airfilled ballonet which runs the length of the aerostat with winches and fans which control, automatically, the hull internal pressures during altitude excursions and/or changes in temperature and barometric pressure as they occur. The ballonet as well as the four fabric tunnels allow access to the internal structure (see Figure 8).

Propulsion Subsystem

The X.2 CycloCrane is powered by four Hirth F-30 (110 horsepower each) two-stroke engines (see Figure 9). The total weight of these four engines with reduction belt drives and exhaust manifolds is 440 pounds. This reduction in total engine weight results in an increase in net buoyancy for the aircraft of 172 pounds. The four propellers are wooden, three-bladed fixed pitch with a diameter of 92 inches. The gear reduction system is 3.5:1, reducing the engine rpm from approximately 5,700 to a propeller rpm of approximately 1,800.

Telemetry Control Subsystem

The telemetry subsystem has been upgraded to accommodate the installation of four engines in place of the original two. It has a truly remote control operation and is relatively simple but reliable. It is a full duplex, PCM-FM data link capable of transmitting 96 discrete and 64 analog signals in each direction. Each channel is sampled at a rate of 64 times a second (this is considered an excellent sampling rate for wing movement between quadrants). Analog channels are digitized to 12 bits. A 12 bit system delivers accuracy of one part in 4096.

A unique system feature is that of data validation

Figure 5.

STALKS (NOTE "T" CONFIGURATION).

Figure 6. AEROSTAT.

Figure 7.
FABRIC TUNNELS WITHIN THE AEROSTAT.

Figure 8.

BALLONET (OPERATES ALONG CENTERLINE TUBING).

Figure 9.
HIRTH F-30 119 HP 2-STROKE ENGINE.

A unique system feature is that of data validation wherein each message or "data frame" is checked for errors upon receipt and prior to presentation as a system output. If, even a single error is detected, the erroneous frame is discarded and the previously received correct frame is again presented as system output and a signal is sent to the external systems to indicate that data is no longer being updated. As soon as any error-free frame is received, it will be presented as a system output. This feature allows the system to operate under conditions where the RF signal is thresholding or interference is being encountered without fear of incorrect commands being transmitted.

The system is to be powered by 28 volts. Current drain at each end of the system will be approximately 4 amperes.

Discrete inputs are optically isolated and require a 28 volt DC signal. Input impedance is 2400 ohms. Discrete outputs are also optically isolated and are capable of sinking up to .5 ampere at 28 volts.

Analog inputs are 0 to plus or minus 5 volts, and input impedance is 10 megohms. Outputs are also 0 to plus or minus 5 volts (see Flow Diagram/Schematic in Figure 10, following this page).

RF transmission is in the 1710 - 1850 MHZ band which is allocated for government services and is administered by DOD. Transmitter output power is 5 watts and receiver threshold is -95 db. Assuming path loss of 80 db between upper and lower cab, the net link gain is in excess of that required to provide suitable signal strength. If the aircraft is operated with the crew cabin remaining on the ground, it would be possible to achieve at least a range of three miles between the crew cabin and the aircraft. Excess gain at this range is 20 db, a margin which is considered to be quite comfortable.

The telemetry equipment which is being manufactured by AACOM for AeroLift is identical to that which is currently flying on a number of remotely piloted aircraft. Consequently, this system has a history of usage in this application with minor modifications.

Figure 10. TELEMETRY FLOW DIAGRAM SCHEMATIC.

Figure 10. TELEMETRY FLOW DIAGRAM SCHEMATIC.

Power Distribution Subsystem

Additional electrical hardware was required to accommodate the installation of four engines in place of the original two. A gel cell battery has been installed in the new crew cabin.

With four engines operating concurrently, the regeneration of electrical power is designed to support a continuous consumption in excess of 200 amperes.

During preparations for tests, the power demand of ground handling operations is supported by an auxiliary power supply. This supply is to be mounted on the platform attached to the crew cabin. This power source is to support in excess of 50 amperes of remote consumption through a "jacked up" voltage regulator to avoid overcharging the small crew cabin battery as well as protecting against depletion because of demands. A voltage drop and drain blocking diode separation is mounted in the crew cabin near the generating source.

Tail

As a result of the 36 foot model tether test, it has been determined that the optimum configuration for maximum stability for the X.2 aircraft, when in a flight tether mode, requires additional aerodynamic surfaces within the ring-tail (a ring with a "plus" configuration). Some preliminary evaluations indicate that the "plus" might be replaced by an inverted "Y" or a single vertical cross-member. This will be verified in early 36 foot model ground handling tests (Test T1 in this Plan). If these weight saving configurations do not prove to be as efficient during these tests, AeroLift will proceed with the ring and plus tail on the X.2 aircraft (see Figure 11, following this page).

Crew Cabin (Lower Cab)

A UH-1M helicopter (furnished GFE) has been modified to accept the required instrumentation and control modifications (see Figure 12). The tail boom of this helicopter has been removed and modifications have been made to adapt the cockpit and the crew compartment to the X.2 CycloCrane. This new crew cabin has been modified to perform dual missions: (1) being slung below the X.2 CycloCrane as the crew cabin, and (2) being completely detached and acting

Figure 11. 36 FOOT MOORING MODEL TAILS.

(TOP: "RING AND PLUS" BOTTOM: RING AND INVERTED "Y")

Figure 12. <u>UH-1M CREW CABIN IN PROCESS OF BEING MODIFIED.</u>

as a control station on the ground for remote control operation.

Most instrumentation is modular. The modules can be disconnected with cannon plugs for ease of operation. This modularity serves a three-fold purpose: (1) they can be rearranged or changed to match crew compatibility and specific requirements for a given mission, (2) as a means of simplifying testing and troubleshooting from the engineer and technician standpoint, and (3) instruments can be selected to provide data acquisition signals.

The flight crew controls and instrument panel have been modified with the objective of maintaining a complete man/machine interface. The CycloCrane will be controlled in approximately the same manner as a helicopter as far as the cyclic stick, the collective stick and the anti-torque (yaw) pedals are concerned. This will allow an experienced helicopter pilot to transition into the CycloCrane with a minimum amount of flying time (see Figure 13, following this page).

Ground Support Equipment (GSE)

Paramount to the successful operations of hybrid aircraft are the GSE and handling methods used by the ground support crew. Since evaluation of the GSE and the ground support crew's method of operations are a major prime target of the limited flight tests, a brief discussion of the GSE is included here:

Helium Purification

The helium purification unit (see Figure 14) is considered to be state-of-the-art with respect to the methods used for helium purification today. A small amount of hydrogen (approximately 10%) is added to the helium in the aerostat. mixture is then withdrawn from the aerostat and passed through a catalytic reaction chamber. Water, produced as a result of this process, is extracted. This removes one of the major contaminates of helium (oxygen). The remaining gas is then forced through a series of four permeable membranes which extract nitrogen from the mixture. The helium that remains is then returned to the aerostat.

Figure 13. HELICOPTER TYPE CONTROLS.

Figure 14. HELIUM PURIFICATION SYSTEM.

helium is 99.5% pure. The entire aerostat can be purified to approximately 99% pure within ten full days of operation.

Mississippi Road Service Vehicles (MRS)

AeroLift anticipates that the MRS vehicles are excellent candidates for use in ground handling the aircraft (see Figure 15, following this page). These vehicles, formerly used by the Seabees have been furnished to AeroLift as GFE. The major attributes of these vehicles for use as GSE are: (1) their size to weight ratio (approximately 39,000 pounds each), (2) the independent front and rear steering allowing extremely short turning radius, (3) their many attachment points that can be used to secure lines or attach winches, and (4) their rough terrain capability.

Mobile Mooring Mast

The mobile mooring mast was designed and constructed by AeroLift and was used in previous testing (see Figure 16). major objective in this system test program is to determine if this mast can be eliminated as part of the ground handling equipment. The mast does, however, facilitate the current ground allows operations and handling aircraft to vector itself into the wind while maintaining a somewhat rigid system structure. It is 70 feet high when the aircraft is positioned in the "X" position with the stalk support dollies attached and can be telescoped to 90 feet to allow the vehicle to rotate and clear the ground or be positioned in the "+" position.

Stalk Dollies

The stalk support dollies are used during the ground handling exercises to maximize the use of the aircraft's strong internal structure to provide stability to the aircraft in high winds when moored to the mobile mast (see Figure 17). They are attached to the lower two stalks when the aircraft is in the "X" position. They also allow the aircraft to vector itself

Figure 15. MRS GROUND HANDLING VEHICLE.

Figure 16.
MOBILE MOORING MAST.

Figure 17. STALK SUPPORT DOLLIES.

into the wind.

Tail Winch Trucks

The tail winch trucks (Figure 18, following this page) are used primarily to insure that the tail can be guided in the proper direction when transporting the aircraft to another point on the ground when crosswinds occur. These are pick-up trucks with winches mounted in the bed and through handling lines to the aircraft control the direction of the tail.

Tail Ballast

The tail ballast was designed and constructed by AeroLift (see Figure 19). It is primarily a water tank on dollies that can swivel and, if given the proper amount of water, keeps the tail from being too light, since the nose is attached to the mobile mooring mast. In addition, its weight assists the tail winch trucks to maintain directional control of the aircraft while being towed on the ground.

Lower Cab Transporter

The lower cab transporter (see Figure 20) was designed and built by AeroLift as a means of transporting the crew cabin to a ground position prior to launch of the aircraft or upon the retrieval of the aircraft.

36 FOOT CYCLOCRANE MODEL

The general arrangement for the 36 foot CycloCrane model with baseline tail configuration that will be used for Test T1 is presented in Figure 21. Its size corresponds to 21.4% of the X.2 aircraft. The model is designed to simulate static lift in mooring exercises as well as ground handling characteristics. Its overall length is 48 feet with a rotor diameter of 37 feet 8 inches. The aerostat is 36 feet long and has a maximum diameter of 18 feet (see Figure 22). For analysis purposes, it is approximated by a 2:1 prolate ellipsoid in projection. Specifications of the airfoil sections of the wings, blades, and tail are provided in Table 1.

Figure 18.
TAIL WINCH TRUCK.

Figure 19.
TAIL BALLAST TANK.

Figure 20. LOWER CAB TRANSPORTER.

Figure 21, 36 FOOT MOORING MODEL GENERAL ARRANGEMENT

REAR VIEW

FRCNT VIEW

Note: All Dimensions in Inches

Figure 22.
36 FOOT MOORING MODEL.

TABLE 1

36 FOOT CYCLOCRANE MODEL AERODYNAMIC SURFACE SPECIFICATIONS

COMPONENT	DIMENSIONS (INCHES)
Wings	
Span Chord Thickness Aspect Ratio	105.75 24.25 6.25 4.36
Blades	
Span Chord Thickness Aspect Ratio	95.50 24.25 6.25 3.94
<u>Tail</u>	
Chord Thickness Number of Panels Diameter	32.00 1.63 18 216

Ground Support Equipment (GSE)

The GSE requirements for the ground handling exercises planned during Test T1 will be a mix of:

- Scaled down items such as the mobile masts and the stalk support dollies (these are being fabricated at AeroLift from common plumbing material)
- Full size items of equipment which are necessary for the scenario evaluations; e.g., MRS vehicles.

System Test T1

The above mentioned GSE along with the 36 foot model will be employed by AeroLift (as discussed in Section 2.0) to train personnel and evaluate ground handling scenarios. The range of scenarios will embrace repetition of the handling techniques employed in prior flight test activities and a number of other approaches that will vary the mix of equipment, personnel and tether options to determine those with the most potential for full evaluation in the X.2 test phases. This system test (Test T1) will be accomplished prior to initiation of the Flight Readiness Review.

5. SYSTEMTEST TASKS

5.0 SYSTEM TEST TASKS

The major tasks associated with the accomplishment of the system test program are the following:

- Flight Readiness Review (FRR)
- Training
- Safety
- System Tests
 - T1 36 Foot Model Ground Handling
 - T2 X.2 Ground Handling
 - T3 X.2 Tether Variations
 - T4 X.2 Data Acquisition
 - T5 X.2 Remote Operation
- Data Acquisition and Analysis
- Quick Look Reports
- Final Report.

These are discussed in the following sections.

5.1 Flight Readiness Review (FRR)

Prior to the initiation of the X.2 system test phases, AeroLift shall demonstrate to DARPA/Aerospace that the upgraded X.2 aircraft, the supporting hardware, and personnel are ready for such testing.

AeroLift proposes to accomplish the segmented FRR through execution of preflight checkout of subsystems in the hangar, briefings to flight test personnel on total operations, and actual rollout from the hangar to test area (with subsequent preparation up to the start position for the first X.2 test; e.g., Test T2 - X.2 Ground Handling).

In support of this scenario, Checklists will have been developed for aircraft and ground equipment subsystems, and ground handling procedures will have been developed subsequent

to the completion of Test T1 - 36 Foot Model Ground Handling (Appendix A presents example procedures).

The preflight checkouts are to assure functional readiness of the air and ground hardware. This is followed by personnel briefings on what the scenario entails, with the operation starting immediately following the briefing. During the pretest checks, the test personnel will implement a dry run of the complete set of Test Cards developed for the tests being planned (in the FRR case, this is Test T2 - X.2 Ground Handling). Beyond providing familiarity with test sequences, this also provides a nominal estimate of the test time that made be required for actual execution. The basic materials also provides a nominal estimate of the test time that made be required for actual execution. The basic materials developed into general categories, as follows:

- · Fround Handling Procedures
- Pre and Post Flight Procedures
- Data Calibration, Checkout and Acquisition Frocedures
- · Emergency Procedures
- · Pre and Post Flight Briefings
 - Weight and Balance Data.

perations are straightforward, while realistic terations of abnormal or emergency situations require terable thought. Beginning with Test T1 - 36 Foot Model and Handling, AeroLift personnel will conduct a continuing alogue on "What If" situations during ground handling or ther operations; e.g., what if a mast tire blows out, a tow that fails, a ground handling line breaks or unexpected winds are. This dialogue also will be continuing between AeroLift ARFA/Aerospace personnel.

intent by AeroLift is to document those emergency tions that have the potential of occurring and that would exactly issues for personnel and/or hardware. Such the ending would be inherent to test crew briefing the energy run activities.

5.2 Training

As noted in Section 3.0, System Test Schedule, AeroLift plans to provide extensive training for system test personnel by use of the 36 foot model in conjunction with companion GSE; e.g., scaled down mobile mast and stalk support dollies, and the tractors recently acquired as GFE. Further, personnel training will evolve through development of system Checklists, briefings, pretest and post test procedures and the Flight Readiness Review segments (see Figure 23, following this page).

For those system tests which require operation of the X.2, flight crew training was achieved to a large degree through previous flight tests, and will be enhanced in this program through development of Test Cards (updated for hardware modifications and scope of planned tests), coupled with dry runs in the lower cab. Further training will occur during powered X.2 phases in Test T3 through T5.

5.3 Safety

. The qualified engineer and an alternate at AeroLift will to designated as the Safety Officer. The safety officer will have the authority to cease any activity during system test operations that could cause potential problems.

Many of the safety aspects are addressed in emergency procedures and "What If" exercises that were discussed previously in Section 5.1, Flight Readiness Review (FRR). However, one prevailing safety aspect is the weather during system tests; e.g., wind. Recognizing its importance, a specific ground rule (noted in Section 2.0, Ground Rules) prevents any attempts to exit the hangar with the X.2 when winds are measured to be greater than 15 mph (crosswind component). In addition to its own weather reporting station (see example on Figure 24), AeroLift currently has arrangements with:

- KTIL Radio Station Located four miles northwest of test site. Used for real time wind direction and speed projections
- <u>United States Coast Guard</u> Located in Astoria,
 Oregon. Used for 30 minute predictions
- <u>Tillamook Airport</u> Adjacent to the test site and used for real time wind direction and speed projections

Figure 23 GROUND CREW TRAINING.

The second of the property of the second between the contract of the

•		and the second section in	
	the second second	- Harris Const	• •

The state of the s Company of the entire of the first

of the first of the file of th and the second of the second o 115

1.0

 $(t_1, \ldots, t_n) = (t_1, \ldots, t_n) + (t_1, \ldots, t_n$ - Para Carlos Agranda - Para A 技術体 - 一群 - -The service of the Barbara Albara and the £. () 71 The state of the first of the state of the s 4.

1	1,300	74 : 50:	71.89-7		SHEFT	CARST	1911/11/11/14	Free col
	1	<u>(</u>	{	!	1984	1414	DECREES	:43 2
B. C. Barriaga			6 + 2 · · · · · · · · ·	in the second	i i	÷ *	44.024	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
10:000	· · · · · · · · · · · · · · · · · · ·	4, 4	~~. <u>12</u>	Tr. M M.	Q)	i)	90	$i_{ij} i_{j} i_{j} j_{j}$
1.144.47		**			,	<i>i</i> ,	2 3 h.	
4 , 2 - 2			t the second			i 3	71 T	A probability
ين يواند ا	·	in 🛔 🔓 🦮	too. I	11.9	Ę.	Q)	1,600	1. N 🙀 🚉
7:50 ;	10000		54.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	()	Q.	157	rr vit
15 2 5 34 374	41 J. F. C.	7. 5. <u>.</u>	Eq. S. g. s. y	1000	1.	1,")	A) 1. 1	1 + 2 + 2
និត្តិសុខ	Miles face	77 A 189	r. 35. 10	1.45%	1, i	17	12. Ext 1	i z 🙀 🗸 i
i 🚉 🛊 👬	c (c	* E	12 (1) ()	***** A	3 B	.1	j (2) i	1,8,53
بقرائي والمنا	in the second	" E	56.1	7. E	1.1	₹Ĵ\$	⇔ 2	1 1 a 1 1
14 g 3 1 2 3 mg	e to the	12 E	Eren Co	"the contract of	1,2	12	€57	1.1 × 1.1
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	* 1	12 mg	"HO. 3	7. C. V	*, *	₹"¥	$\not\leftarrow_{y} \not =$	$i_{2}i_{3}\in\{0\}$
65 ;) 11 1 %	1 Tr. E.	5 to 2 to	Ed.	The first of	1,1	į, r	67	(2) (4) I
6 7 1600		2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	hall a list	st., i	+ 1	4 ⁻ / ₂ \	IAM	* + * *
. 1 − 12 +	• · · · ·		F	12.00	3 3	$\epsilon_{i} \lambda$	150	the first
2 B 1 2	Service Control		1		5.0	E.	1 (4)	1.1 6.1
Ex # 5, 25, 252	5		500 - 1	147 - 14	4.3	<i>3</i> *	1 (-5), 1	10 g 10 c
Soft of the		i e	the state of	÷ .	ŧ.		1 200	to the contract of
Complete States	Property of the second	* 1 * * * *	1.	3: 1 + 2 T +	į	4]	117	* * • 1 1
the second		. 1 . 1	the state of the s	1000		C.C.	¥ +,=:	
liograpy	1.00	.1 7	F		+ ‡	1.4	\$ 5°C 7	100
1000		4. 3 . 4. 5	e., 17	11,11	f #	Ĺ	1.20	1 : - 1 :
S. A. State State	r z r		erin 🕳 🐔		3 3	<u>-</u> /j	THE THE	• •
t sugares t	100 110	31.7	55.0	1.6	Q	Ó	45	$x_{i}^{T} C_{i} = x_{i}^{T} Y$
TIME	to the second	11:144	7:40.0		\$10 \$ \$650 kc	10:50€	3115181A	A first to the green
HT GHT T	0	44.7	6,7.7	यक ः	e: .'	E _c	7.60	11.3
: 1111	1 1	10.111	And the second	1001 1975	: 19: 1 (de	10:160	स्वे : ग रहे(हर	t e · · · · ·
MANGER T		41.	Fritzen	11)	1	21.1	

Bureau of Land Management - Adjacent to test site. Used for speed projections.

During test operations, AeroLift has obtained support from the Tillamook City Rural Fire Protection District for an on-site fire truck and an emergency medical team from the Tillamook County General Hospital for an on-site ambulance in the event of an emergency.

5.4 System Tests

As noted in Figure 1, there are a series of five system tests (T1 through T5), with Test T1, discussed previously, being the 36 foot model evaluation that terminates just prior to the start of the final FRR segment of full X.2 demonstration. Upon completion, and approval of the FRR segment by DARPA/Aerospace, AeroLift shall initiate Test T2 - X.2 Ground Handling.

Details of all planned system tests; e.g., specific sequential steps on Checklists/Test Cards, are to be developed prior to the initiation of a particular system test phase (Appendices B and C illustrates examples of Checklists and Test Card data). Brief descriptions of the planned activities in Test T2 through T5 are presented in the following:

Test T2 - X.2 Ground Handling

Based on the results of the 36 foot model ground handling exercises, the preferred approach will be used in this system test phase involving the nonpowered X.2 aircraft and associated GSE. That scenario will be detailed in specific sequential steps on the Checklists/Test Cards.

It is expected that certain differences; e.g., scale or specific hardware of 36 foot versus the X.2, may require alteration of the preferred scenario prior to execution of the test. After appropriate documentation has been completed, incorporated in the final FRR segment and successfully demonstrated in that segment, AeroLift shall then execute Test T2 in its entirety. A nominal amount of instrumentation; e.g., measure static lift, is required for this test. However, AeroLift will include an assessment of the preferred scenario as it relates to the overall mix of hardware and personnel in the Quick Look Report. Video coverage will be provided of actual flight test execution.

Test T3 - X.2 Tether Variations

This series of tests involve:

- A validation, or not, of the scaleableness of the successful single tether test on the 36 foot model to the full X.2 aircraft, and
- Extension of tether considerations beyond single-line, nonpowered X.2 conditions.

For the first item, the X.2 CycloCrane will be tethered on a 1,000 foot line (previously delineated scale-up length in the 36 foot model tethered test report of July 29, 1988) and its stability assessed under the same static and dynamic conditions that were imposed on the 36 foot model (see same report). If stability is achieved, it will demonstrate that scale factors are correct. If not, modifications would be required to the X.2 to achieve desired levels of stability.

After this phase, a number of tether related variations will be executed and their relative worth determined. These tests will involve:

- Different tether line lengths
- Different tether line attachments; e.g., harness arrangements
- Multiple tether line approaches.

The resultant evaluations will determine a preferred tether line(s) configuration.

It is then planned to assess what improvements; e.g., in level of stability or ability to withstand higher winds, might be gained by presetting angles of aerodynamic surfaces (blades, wings, or stalks). From these test phases, a preferred aerodynamic preset input will evolve.

Finally, with the preferred combination of tether line(s) and aerodynamic surface settings, the X.2 aircraft will be powered (at various rotation speeds from zero to full vehicle rpm) to determine if added benefits are achievable for stability in higher winds.

From these tests, a preferred combination (if any) of tether line(s), aerodynamic surface settings and power settings will evolve for specific stability or wind holding conditions.

For the preferred combination as indicated above, another area of variability also will be evaluated as to the potential for improving tethered operations in the field (increased static lift). This is assessed by increasing static lift through:

- Increased helium purity
- Super heating aerostat
- Possibly reducing "dead weight" of the aircraft by removing nonrelevant hardware.

As stated in Test T2, specific Checklists/Test Cards will be prepared and rehearsed by AeroLift prior to initiation of test phases with video coverage provided during test execution. Quick Look Reports will provide an overall evaluation of achieved results.

Test T4 - Data Acquisition

This system test series is directed toward the acquisition of data such as:

- Control power information on the new, four engine configuration
- Aerodynamic data relevant to needs of the parametric model utilized in the design development activities.

For these tests, the X.2 will be fully instrumented (tentative Master Measurement List shown in Figure 25, following this page) and will be powered while being fixed at both ends of the longitudinal axis between the existing fixed and mobile masts. This is essentially a replication of basic "Spin Rig" set-up that was employed earlier.

In the first series, control power will be assessed at different engine power settings. With the second series, hover power related factors will be determined through a number of wing input excursions at different power settings.

As in Test T2 and Test T3, video coverage will be provided during test executions and Checklists/Test Cards will be prepared in detail prior to initiation of test phases. The results of these tests will be presented in the Quick Look Reports.

Figure 25. MASTER MEASUREMENT LIST.

MEASUREMENT	SENSOR SEN	SENSOR LOCATION	MEASUREMENT	SENSOR SENSOI	SENSOR LOCATION
ENVIRONMENT			CycloCrane Motion	Video Camera	Ground
Time	Clock	Ground	Aircraft Weight	Calc & Load Cell	I
Wind	Anemometer	Ground	Load Weight	Load Cell	Ground
Humidity	Humistat	Ground	Load Factor	Accel	Lower Cab
Ambient Pressure	Barometer	Ground	Crew: Communications	Video Camera	Lower Cab
Ambient Air Temp	Thermometer	Ground	Ground Support Opms	Visual	Ground
Precipitation	Rain Gage	Ground	Flow Field (tufts)	Video Lateral	Ground
)		Payload	Video Longitudnl	Ground
AEROSTAT			Time	Time Code Gen	
Helium Purity Helium Pressure (Ambient)	Gas Chromatograph Dif Press/DP Cell	Ground	Buoyancy (lift)	Load Cell	Lower Cab
Superheat Temp	Thermistor (delta temp)	Acrostat	ROTOR SYSTEM (BLADES & ENGINES)	S & ENGINES)	
Ballonet Fullness	Potentiometer	Plenum	Stalk Position	Potentiometer	Wing Ctr
Ballonet Pressure	DP Cells	Ballonet	Blade Position	Potentiometer	Wing Ctr
			Winglet Position	Potentiometer	Wing Ctr
VEHICLE (STRUCTURE & DYNAMICS)	DYNAMICS)		Engine Speed (RPM)	Tachometer	Lower Cab
Strain Gages	Strain Gages	Struct/Cbl	Operating Time	Hobbs Meter	Enginc
Airspeed (vehicle)	Pitot Tube	Lower Cab	Fuel Consumption	Measure	Fuel Cell
Airspeed (wing)	Anemometer	Wings	Manifold Pressure	MP Gage/Pots	Engine
Relative Wind	Vane/Pot	Wing #1	Cylinder Head Temp	Thermistor	Enginc
Angle of Attack	Vanc/Pot	Wings 1&2	Oil Pressure	Press Transducer	Enginc
Rate of Climb-Descent	ABS Press Cell/	Lower Cab	Oil Temp	Resist Elem	Enginc
	Variometer		Fuel Pressure	Transducer	Lower Cab
Altitude (altimeter)	ABS Press	Lower Cab	Fuel Injector	Pressure Transd	Engine
Angular Accel-Pitch	Accelerometer	Upper Cab	Fire Waming	Flame Det (opt)	Engine
Angular Accel-Roll	Accelerometer	Upper Cab	Throttle Pos (actual)	Potentiometer	Enginc
Angular Accel-Yaw	Accelerometer	Upper Cab			
Pitch Attitude	Gyro		CONTROL SYSTEM		
Roll Attitude	Gyro	Upper Cab	Step Input Wing Vert	Potentiometer	Lower Cab
Yaw Attitude	North Seeker	Upper Cab	Step Input Wing Horz	Potentiometer	Lower Cab
Direction (heading)	North Seeker	Upper Cab	Step Input Blade Yaw	Potentiometer	Lower Cab
Pitch Rate	Rate Gyro	Upper Cab	Step Input Blade Pitch	Potentiometer	Lower Cab
Yaw Rate	Rate Gryo	Upper Cab	Step Input Blade Coll	Potentiometer	Lower Cab
Platform Rate-Roll	Rate Gryo	Upper Cab	Shaft Encoder	Dig Resolver	Upper Cab
Vehicle RPN:	Vch Tach	Upper Cab			

Test T5 - X.2 Remote Operation

Recognizing, from the mission/user interactions, that a very desireable mode of operation is an unmanned X.2 aircraft, AeroLift has configured the vehicle so that remote operation may be assessed. The fuel cell and the APU in the lower cab can be removed from the cab and located on the lower point of the cable truss. The lower cab can then be removed. The resultant configuration can then be remotely operated through the radio link from the detached lower cab.

In this mode, a series of tests will be performed to illuminate the merits or problems of the existing X.2 with respect to remote operations.

Details of required tests will be developed on Checklists/Test Cards prior to test initiation.

Results of Test T5 will be evaluated in the Quick Look Report. Video coverage will be provided during test execution.

5.5 Data Acquisition and Analysis

At noted in Figure 25, the current X.2 aircraft has many sensors installed which were used to gather data in the previous flight test program.

For the planned system tests there are a mix of requirements for data acquisition, from very few to a significant number of measurements. To accommodate this range the acquired AACOM telemetry subsystem (described earlier in Section 4.0, Description of Flight Test Articles) has the capability to handle 64 channels of analog sources and 96 channels of digital data.

Test T1 - 36 Foot Model Ground Handling and Test T2 - X.2 Ground Handling, have a nonpowered aircraft and will require minimal data needs; e.g., measurements to determine static lift. Portions of Test T3 - X.2 Tether Variations, will have powered aircraft phases which require considerably more instrumentation; e.g., monitor power, record control inputs and outputs, and monitor items related to safety. Test T4 - X.2 Data Acquisition and Test T5 - X.2 Remote Operation will require the most instrumentation -- likely, on the order of the Master Measurement List as shown on Figure 25.

AeroLift will perform end-to-end calibrations of all required instrumentation for each system test phase, demonstrating that sensors function properly and that data acquisition and display are suitable; e.g., scale factors. Tabulated and/or

graphical calibration data will be provided to DARPA/Aerospace, as well as description of calibration methods and instruments used.

5.6 Quick Look Reports

The Quick Look Reports are important feedback documentation for AeroLift and DARPA personnel. They provide near real time information, necessary between test series, to allow for judgments on the subsequent tests or need for repetition of portions or all of just completed tests.

AeroLift shall develop these reports in a standard format (refer to Figure 26, following this page) which will allow for coverage of:

- Test anomalies related to hardware, flight crews, ground crews, and associated GSE
- Occurrences/problems pertinent to safety issues
- Ranking of success levels achieved in obtaining required performance data
- Critiques from individual test team members viewpoints, and
- As a result of overall assessment, recommendations for subsequent test activities.

These reports shall be prepared by AeroLift immediately following the conclusion of each individual test, with a copy transmitted to DARPA within 24 hours of the completed test. In addition, the Quick Look Reports, along with data acquired from the completed test; e.g., manual recording and automatic recording, shall be made available in the same time frame to Aerospace for related program activities.

5.7 Final Report

The Final Report shall be a summary of all system test activities performed under the contract, starting with the basic test objectives and proceeding through the FRR, the individual tests, any data analysis performed, and subsequent conclusions and recommendations by AeroLift with respect to the system test program results. Material previously generated in this detailed Limited Flight Test Plan, during the FRR or through Quick Look Reports will be used as appropriate in the development of the Final Report. The basic outline to be used for the Final Report shall be as follows:

Figure 26. QUICK LOOK REPORT.

AEROLIFT, INC. 4105 Blimp Blvd Tillamook, OR. 97141

	I. D.			imamouk, Oh.	97141	X.2	CycloCrops N240A1
	Quick Look Report		Barometric Pressure		λ.2	CycloCrane N240AL	
DATE day I month		ROLL-OUT minute					
Cav	1	11001	minute	Cotside All Telliperatore			
	<u> </u>		<u> </u>	Hangar Temperature			·····
TEST NUME	BER	ROL		Winds			
		hour	minute				
				Clouds			
LOCATIO	N	FLIGH	TTIME				
			minutes	Forecast			
					<u> </u>		
				NOCDEDANCIES NOTED	DUDING FUCIE	i salida	
			L	DISCREPANCIES NOTED	DURING FLIGHT		
							
							·
				TEST OBJEC	CTIVES		
						<u> </u>	<u> </u>
							
							·
				1000 100 000 000 000 000 000 000 000 00	000000000000000000000000000000000000000		
				COMMEN	TS		
	_						
		 -		······································			·
							
							
						<u> </u>	
				··			
			··········				
							
							
			. 		<u></u>		
					Submitte	d bv	
							J. J. Morris
				· _ · - · · - · - · _ · _ · _ · _ · _ ·			Vice President Operations Test Pilot

- Introduction
- Basic Objectives
- Description of X.2 CycloCrane, the 36 foot model and GSE
- Organizational Structure (Air and Ground Crews)
- Preparation Activities
- · Flight Readiness Review
- Test T1 36 Foot Model Ground Handling
- Test T2 X.2 Ground Handling
- Test T3 X.2 Tether Variations
- Test T4 X.2 Data Acquisition
- Test T5 X.2 Remote Operations
- Overall Observations on Test Results
- Conclusions and Recommendations.

All relevant, detailed data/documentation developed during the FRR and flight tests shall be provided to the DARPA/Aerospace as it is developed and will not be included in the Final Report, other than in distilled or encapsulated versions, as appropriate.

The Final Report shall be delivered to DARPA/Aerospace within 15 days of completion of the final test of the contract.

APPENDIX A

EXAMPLE OF X.2 GROUND HANDLING PROCEDURES

CYCLOCRANE POLLOUT AND GROUND HANDLING PROCEDURES

GHE EQUIPMENT NEEDED

- a. Mobile Mooring Mast
- b. Mast Tow Vehicle
- c. Port and Starboard Stalk
- d. Port and Starboard Tail
 Winch Trucks
- e. Tail Ballast Tank
- f. APU
- g. APU Power Cord
- h. Lower Cab Transporter

STAND-BY EQUIPMENT

- a. Fuel Truck
- b. Bucket High Ranger
- c. Boom Truck
 - d. MRS

NOTE:

Parking brakes applied on GHE when parked during procedures.

GHE engines are to be kept running.

GHP GROUND HANDLING PERSONNEL STATION ASSIGNMENTS

Kevin Whitworth		Top of Mast
John McLain	-	Mast Tow Vehicle
Jennifer Sauter	-	Starboard Stalk
Butch Gallucci	_	Port Stalk
Pete Perez	-	Lower Cab Transporter
Floyd Case	-	Port Tail Winch Truck
Mark Govers	-	Port Tail Winch Truck
Eric Baker	_	Starboard Tail Winch Truck
Loran Roberts	_	Starboard Tail Winch Truck
Joe Dick	-	Safety Officer
Steve Shelfer	-	Tail Ballast

LINE DESCRIPTIONS

L1	NOSE LINE
lydi nya nasi kan	This line is attached to the nose docking cone. It is used for undocking and docking of ship to the mast winch docking system.
L2 .	PORT BOW LINE
1 07 Dia 280* Len	This line is used on bow winch trucks for taking lift loads for undocking and raising/lowering of ship operations.
L3	STARBOARD BOW LINE
1/2" Dia 280' Len	This line is used as a safety on bow winch truck during undocking, docking, raising, and lowering ship operations.
L5	LOWER CAB RETRIEVAL LINE
9/16" Dia 150' Len	This line is used on the release and retrieval operations of ground handling.
L6	STALK DROP LINES
1/2" Dia 99' Len	STALK DROP LINES There are four (4) lines. Each is prepacked on the end of each stalk.
1/2" Dia	There are four (4) lines. Each is prepacked on the
1/2" Dia 99' Len	There are four (4) lines. Each is prepacked on the end of each stalk.
1/2" Dia 99' Len <u>L7</u> 1/2" Dia	There are four (4) lines. Each is prepacked on the end of each stalk. TAIL BALLAST LINE This line is used on GHE during hangar rollout and flight operations. During raising and lowering it
1/2" Dia 99' Len L7 1/2" Dia 50' Len	There are four (4) lines. Each is prepacked on the end of each stalk. TAIL BALLAST LINE This line is used on GHE during hangar rollout and flight operations. During raising and lowering it is used as a safety.
1/2" Dia 99' Len L7 1/2" Dia 50' Len L8 1/2" Dia	There are four (4) lines. Each is prepacked on the end of each stalk. TAIL BALLAST LINE This line is used on GHE during hangar rollout and flight operations. During raising and lowering it is used as a safety. PORT TAIL LINE This line is used on GHE during hangar rollout and flight. During raising and lowering it is used as

THE RESERVE OF THE SECOND SECOND

ROLLOUT PROCEDURES

Preflights will have to be done before briefing. After briefing GHP will then take assigned stations. When everyone is in position, radio communication checks by GOD will occur. After communication check, rollout will start with the mast tow vehicle starting, followed by GHV. Radio communications while rolling through hangar doors ("A" zone) will be kept to a minimum.

2 Don Transfer hangar power to APU.

FLIGHT PAD GROUND HANDLING OPERATIONS

When flight pad designation is reached DGH will instruct on positioning of GHE (depending on wind direction with nose into wind). Wind speed and atmospheric conditions will be recorded.

4 Joe Record time, wind speed and atmospheric conditions.

5 Raising of ship begins.

RAISING SHIP ON MAST PROCEDURES

6	John	APU started and adjust Variac.
7	John Ken/Don	Mast raising checklist completed. Report. Begin stalk checklist.
	Steve	To tail ballast. Releases Kevlar onto tail ballast patform.
8	Pete/John	Lower cab transport vehicle will be positioned forward of rotor plane. Uncoil forward Kevlar cables (clear of stalk, wind, etc.).
9	Mark/Loran	Port and starboard tail GHV will be positioned forward of tail during rigging.
10	Butch	Port stalk GHE will be released. Report stalk checklist complete.
11	Jennifer	As ship goes up, starboard stalk will be released when port stalks 3' above stalk GHE.
12	John	Report stalk checklist complete. Announces mast raising.
13	Steve	Tail ballast will be kept tight and let up during raising.
14	Floyd/Eric	Keep level position of ship.
15	John	Announces mast Lp.

SHIP UNDOCKING PROCEDURES

16	Steve	Takes lift load with tail ballast.
17	Mark/Floyd	The tail port GHE will relocate and position itself on centerline of ship, forward of tail (10' - 20').
18	Pete/Art	Move lower cab to behind rotor plane position.
19	JJ/Don or JJ/Art	Position stalks for forward flight.
20	Loran	Take L8 to front of port GHE and attaches as safety line.
		Tail starboard GHE (Chevy) proceed to front of ship. Forward GHE will position at mast on centerline of ship (15' behind mast).
21	Steve	Release tail ballast. L7 is to be unattached. Handle L8 as safety.
22	Loran/Eric	L2 to winch (Loran) and L3 safety (Eric).
23	Loran/Eric Mark/Floyd	Both rucks will then rig for undocking. Rig for flight capability with the rigging of L2 and L3 on forward GHE. L8 and L9 on aft GHE.
24	Eric	Forward GHE winches to take lift load with instructions from top mast person (Kevin) on amount of force needed applied for undocking.
25	Jennifer/Don	Aft sling cables attacked.
26	Steve	GOD will then contact Flight Crew for clearance to undock.
27	Kevin	Unplug APU on mast; release clearance and report.
28	Don	Starts truck APU. Report voltage.
29	Kevin	Following clearance approval, announce undocking. L1 will be passed down for storage as flight article.

SHIP UNDOCKING PROCEDURES (CON'T)

3.0	Art	Gets into cab.
		Crew starts control check. Top lower cab rigger will position rigging for flight article.
31	Eric/Floyd	Forward and aft GHE let up ship. Rigging and raising of ship will then proceed.
32	Steve	L5 rigged. Resume lift load responsibility. Then goes on top of cab for sling rigging.
33	Eric/Loran	L1, L2 and L3 will be positioned for flight on lower cab.
34	John	Backs mast away from ship. Remain in truck.
35	Floyd/Butch	L8 and L9 will be released for flight.
36	JJ/Art	Start engines. Checklist begins.
37	Steve	On start of engines, truck APU stops. APU plug pulled. GHP will position for retrieval of ship.
38	JJ/Art	Begin rotation.

SHIP FLIGHT RETRIEVAL PROCEDURES

DGH WILL ANNOUNCE LANDING GHE AND GHP WILL POSITION THEMSELVES

Lower Cab

RETRIEVAL GHP POSITION ASSIGNMENTS

Support vehicle/beneath lower cab

Lora	n/Eric Forw	ard GHE
Floy	d/Mark Aft	GHE
		RETRIEVAL PROCEDURES
39	Art/JJ/Steve	GOD instructs from what order L1, L2 and L3 will be released by Flight Crew.
4 0	Art/JJ	Turns stalks to forward flight.
41	Kevin/Eric Loran	Unhook L1 and take to upper mast winch for docking. Top of mast L1 line will be rigged for winching in and docking. Forward GHE will attach lines.
42	Floyd/Mark	L8 and L9 will be attached to aft GHE.
		The aft GHE will proceed forward of tail while winching. Forward GHE will hold position. Forward and a t GHE will then winch down ship until L5 line is positioned for winching.
43	Steve	Winch down lower cab to locked position. Forward and aft GHE will follow with lowering operation. Once lowered, cab is locked in transport truck.
44	Don	Truck APU will, be plugged in and started on Flight Engineer's instruction.
45	Floyd/Mark Eric/Loran	Forward and aft GHE will rig for docking. When proper mooring direction is found forward and aft GHE will lower ship for docking to mast

Steve/Pete

with nose high attitude kept.

SHIP FLIGHT RETRIEVAL PROCEDURES (CON'T)

46	John	Mast will be brought up wind for docking.
47	Steve	Aft sling cables unattached and returned behind tail GHE.
÷8	Pete	While lowering of ship, lower cab transport truck moves forward out of rotor plane.
49	Steve/Kevin Floyd/Mark/ Eric	Ship lowering begins and nose winched in for docking.
50	Kevin	Announces when ship safely docked. Reports APU hookup.
51	Art/JJ	Lower stalks positioned to hover.
52	Don	Turns off truck APU.
53	John	Starts mast APU. Adjust Variac.
54 55	Art/JJ/Butch Jennifer/ Butch	L6 lines released, if necessary. Handle L6 lines.
56	Pete	Lower cab truck moves forward.
57	Don/Jennifer	Sling cables coiled and stored for roll-in.

LOWERING SHIP ON MAST PROCEDURES

58	Eric/Loran	Once ship is docked, the forward GHE proceed to tail behind aft GHE winch truck.
59	Art/JJ	Rotate stalks to hover.
60	Jennifer/Don Butch	Place stalk GHE in place. Take hold of L6's mast is being lowered, if necessary. L6 attached to stalk GHE. This keeps ship in "X" configuration.
61	Steve	Tail ballast take lift load.
62	Floyd/Mark	Tail port GHE positions for lowering of ship and roll-in.
63	Loran/Eric	Tail starboard GHE position; for lowering ship and roll-in.
64	John	Announce lowering of mast with acknowledgment from tail GHP. Announce mast down.
65	Butch/Jennifer Don	Stalks secured to GHE; engine stalk first. Open by-pass.
66	Jennifer	Non-engine stalk secured to GHE. Open by-pass.
67	Steve/Don/Ken	Secure forward transport cables. Once flight article lines are stored GOD will instruct mast vehicle to start roll-in.

ROLL-IN PROCEDURES

Roll-in will start with mast moving first. The other GHE following. Roll-in speed determine by DGH. Radio communications while rolling through hangar doors ("A" zone) will be kept to a minimum. Roll-in stops when mast reaches hangar mooring position.

68 Art/JJ/Kevin Wings checked in hover position when entering "A" zone.

APPENDIX B

EXAMPLES OF PRE AND POST FLIGHT PROCEDURES

ELECTRONICS SYSTEM PREFLIGHT

CONDITIONS: Ballonet checked out and flight ready; mechanical personnel out. Computer on in lower cab.

MATERIALS: Intercoms (2), Small-bladed screwdriver, Pencil, Checklist, DMM, Duct tape, Vaccum cleaner.

MEN: Two (1 upper cab, 1 lower cab)

AERO	LIFT,	INC. Page 1 of 2 CYCLO-CRANE N240AL
TECH!	ITEM	Inspector DATE / /
	1.	Ascend mast - open disconnect on platform batteries
	2.	Plug in intercom and contact lower cab
	3.	Check pressure control rack
		A. (4) DP cell plugs secure
		B. Power plugs secure
		C. Switch relay Plug secure
		D. Status plug secure
		E. DP zero plug secure
		F. Dummy plug in helium vent "A" secured
ļ		G. Helium vent "B" plugged in and secured
-	4.	Upper cab reports when helium vents are connected
<u>, </u>	5.	Stand by for zero checks. Lower cab notes any descrepancies.
	6.	Lower cab notes ballonet position and pressures on main and back-up.
<u> </u>	7.	Lower cab disables all pressure control functions and instructs upper
		cab to connect telemtetry pressure control input.
	8.	Lower cab scans telemetric pressure control readings for validity.
<u> </u>	9.	Lower cab re-checks zeroes.
	10.	Lower cab enables fans and allows system to pressurize.
	11.	Lower cab turns off ground support power.
	12.	Upper cab takes voltage readings on both buses report readings.
	13.	Repeat readings with fan running report readings.
Ī	14.	Restore ground support power.
<u> </u>	15.	Check switch panel:
		A. Main power CLOSED
		B. Panel power CLOSED
₹ . 		C. Stalk 2 CLOSED
<u> </u>		D. Stalk 4 CLOSED
		E. Brake release OPEN

ELECTRONICS SYSTEM PREFLIGHT

CONDITIONS: Ballonet checked out and flight ready; mechanical personnel out. Computer on in lower cab.

MATERIALS: Intercoms (2), Small-bladed screwdriver, Pencil, Checklist, DMM, Duct tape, Vaccum cleaner.

MEN: Two (1 upper cab, 1 lower cab)

AERO	LIFT,	INC. Page 2 of 2	CYCLO-CRANE N240AL
TECH	ПЕМ	Inspector	DATE / /
		F. Gage power ON	
		G. All switches in power supply rack ON	
	16.	Lower cab brings up computer	
	17.	Upper cab connects rate gyro	
	18.	Lower cab turns gyro ON	
	19.	Upper cab moves intrument platform; response is noted on CR	Τ
	20.	All gyros OFF	
	21.	Lower cab brings pressure system to FLIGHT READY	
	22.	Upper cab resumes inspection	
	23.	Check remaining plugs and circuit boards for security	
	24.	Read rotation counter; report	
4	25.	Duct tape as required	
_	26.	Vacuum upper cab	·
	27.	Remove intercom, vacuum, tools, lights	
	28.	Plug in rate gyro	
	29.	Remove pressure control line from nose	
	30.	Remove AC line from nose	
	31.	Close disconnect on platform	

AIRFRAME DAILY WORK FORM AEROLIFT, INC. CYCLO-CRANE N24OAL INSPECTOR: DATE 1 1 TIME am pm DATE TIME CREW CHIEF: am pm DATE TECH: TIME am pm JOB DESCRIPTION MATERIALS USED WEIGHT AND LOCATION

AIRFRAME PREFLIGHT CHECKLIST

AEROLIFT	, INC.		CYCLO-CRAN	E N24OAL
TECH	Inspector	Time	Date /	' /
1	Nose Docking System - safety lock ON			
2	Forward Sling Bearing Assembly - che	ck sling cable attach	ment points	
3	Ballonet Winch Inspection			
	A. Brake - tension strap REMOVED	·		
	B. Chains and tension lubrication	·		
	C. Oil level in gear boxes			
	D. Cable covers - fasteners tight an			
	E. Instrumentation - check mounting	grackets and drive	chains	
	F. Wiring - plugs connected			
4	Ballonet Vent - check operation		·	
5	Nose Cap Assembly - roll assembly fre			
6	Ballonet Retraction Fitting Assembly -			ıt
7	Structural Cables and Flex Couplings	(See attached drawi	<u>ng)</u>	
	A. Station A			
	B. Station B			
	C. Station C		·	
	D. Station D		 _	
	E. Station E			
	F. Station F			
	G. Station H			
	H. Station I			
	I. Station J			
8	Stalk Tubes and DP Cells - check mou			
9	Aft Cap Roll Assembly - check movem			
10	···· 			
111			points	
	Blade Support Cables - check and atta	ach lines for security		
	Airfoils - check integrity			
	Airfoil Control Cables - check integrity			
	Blade to Engine Bearing Assembly - g			
16				cation
17			ic bellows	
18	·			
	Airflow Instruments - general inspectio		· · · · · · · · · · · · · · · · · · ·	
	L6 Lines - packed, charges loaded, ch			
21	· · · · · · · · · · · · · · · · · · ·		ougn	
	COMME	NTS		

			AIR	CRAI	FT FI	_IGHT	READINE	ESS F	RELEA	ASE			
	OLIFT,									YCLO	-CRAN	E N24	10AL
FLIGI	HT NO.	month	DATE day	year	hour	ME minute	DAY OF WEEK	K					
									·				
					ACCE	PTABLE	DISCREPANCIES	s					
1													
2													
3													
4													
5				<u>,</u>									
6													,
7													
8													
9													
		Ga	llons	Pour	nds		Nose	Та	ıil	TOT	ΓAL	С	G.
	FUEL	 		<u> </u>	!	LIFT				ı		l	
BAL	LLAST					<u> </u> '		<u> </u>					
		PILOT											
51 IG		OPILOT IGINEER											
PLIG		CHIEF											
SAI		FFICER											
					SI	IGNATUR	RES		НТИОМ	DAY	YEAR	HOUR	MIN
		PILOT											
	CREW	V CHIEF									<u> </u>		
				ít is no	ot relea	sed un	til signed off l	by pilot	└─── },		<u></u>	L	<u></u>
							MENTS						
	<u> 3000000000000000000000000000000000000</u>	<u> </u>				<u> </u>	HYIL-IYI V E					<u> </u>	<u> </u>
					•								
ł													
İ													
}													
A													

GROUND HANDLING EQUIPMENT

AEROLIFT,	INC.						-	CYCLO	-CRAN	E N	240.	AL
Tech	Inspector						month	day	year	hou	r mi	inute
	>0000000000000000000000000000000000000											
		CAB TRANSPORT	TER	FOF PU	3D	CHEVY PU	MAST TRU	TOW CK	FUEL TRUC		BOOM TRUC	
Fuel				_ 						T		
Oil										丁		
Coolant												
Belts												
Battieries												
Tires									}			
Windows cl	ean											
Run-up che	ck									丁		
Winch batte	ries											
Winch cond	lition											
APU fueled	& checked									****	***	
Latch lubed	with pins											
Fuel can ful	ll and aboard									***	****	
		SUPPORT DOLLIES										
				rboard	TAI	L BALLAST	MAST					
Tires							1	 _				
Hammer					*****		.	****	*****	****		***
Fire extingu												-0.XX
Clean - No	debris	***************************************	(****	**************************************			 					
Batteries Appropriate	weight		***		ļ		-		*****	****	****	***
Appropriate APU gas	weignt						3	******	*****	<u> </u>	×××××	XXXX
APU belt				*****								
Top Winch				******	******							
Emerg lowe	ering wrench		***									
Hitches eac		 										
Mast extens	sion winch		XXXX 	*******	**************************************	***************************************	4					
<u>,</u>			1-				+					
<u></u>							1 -					
							I					
			<u> </u>							-		

FLIGHT DISCREPENCIES REPORT

AER	OLIF	r, in						CYCLO-CR	ANE N24OAL
	TIME		FLIGHT NUMBER	month	day	year	Ground Handling Manager		
hr	min	sec							
			Released from		·	Pilot			
	 _		Released from			<u> </u>			
			First engine sta	<u>.rt</u>		Co-pilo			•
	 		Begin rotation	-44		Tit-ba f			
	 		Second engine	stan		Jelight t	ngineer		
			First engine sh Second engine	utdowi	1	Crew C	hiof		
			Total time	Siluto	OWII	10,5,,,	THE		i
	L	D1	`~~``			<u> </u>	ACTION TAICEN		ACTION DV
		U	SCREPANCY				ACTION TAKEN		ACTION BY
					 				·
									·
					}				
							· · · · · · · · · · · · · · · · · · ·		
							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
							 		
									
							······································		

					j				
		· ····							
		,			-+				
			*				, 		
			· · · · · · · · · · · · · · · · · · ·						
SIGN	ATUF	ES							
	PILOT								
		<u> </u>			==				
CREV	V CHIE	F							

AIRFRAME IMMEDIATE POST FLIGHT CHECKLIST

AEROLII	т,	INC.		CYCLO-CRANE	N24CAL
TECH		Inspector	Time	Date /	/
	1	Helium Vent CLOSED			
	2	Measure Tail Lift			
	3	Ballonet Retraction Fittings Assembly - ch		e cable movemer	nt
	4	Ballonet Pressure Relief Valve - check fur	ction		
	5	Ballonet Winch Inspection			
	_	A. Chains and tension lubrication			
		B. Cable covers - fasteners tight and ch			<u> </u>
		C. Instrumentation - check mounting gr	ackets and drive	chains	
	_	D. Wiring - plugs connected			
	6	Nose Cap Assembly - roll assembly free to			
	-7	Ballonet Retraction Fitting Assembly - exe	rcise system for	cable movement	
	_8	Structural Cables and Flex Couplings (Se	e attached draw	ring)	
		A. Station A			
		B. Station B C. Station C			
		D. Station D			
		E. Station E			
`		F. Station F			
		G. Station H			
		H. Station I			
		I. Station J			
	9	Blade and Stalk Support Cables - genera	Linspection		
		Airfoil Control Cables - check integrity		· · · · · · · · · · · · · · · · · · ·	
		Cabane Tubes - check cable attachments	, tube splice, fab	oric bellows	
		Helium Fill Caps - check safety lock and for		· · · · · · · · · · · · · · · · · · ·	
		Airflow Instruments - general inspection			
F					

COMMENTS

ELECTRONICS POSTFLIGHT INSPECTION

AEROL	JFT, I	NC.							CYCLO-CRANE N240AL	
	DATE		TIME S	TART	ED :	TIME FI	NISHED	FLIGHT NUMBER	Crew Chief	
month	day	year			\perp			i I	Technician	
	l ,		}	}	1			j i	i echnician	
	STA	ALKS						VISUAL INSPE	ECTION & SECURITY	
1	2	3	4							
				1	Wir	ng box	(inside a	and out)		
				2	Cal	bling (to	and fro	om)		
				3	Servo valve & feedback pot cannon plugs(3 each)					
				4	Streamer system					
				5						
				6	5 Tie-down jettison system					
				7	Ca	rtridge	remove	d		
				8	Hy	draulic	filter pre	ss-to-fit		

COMMENTS

)

MAINTENANCE/MODIFICATIONS INDEX	INC.	AUTHORIZED DATE WORK DESCRIPTION COMPLETED TECH INSPECTOR								
	AEROLIFT, INC.	DATE AUTHORIZE								

APPENDIX C

EXAMPLE OF PILOT TEST CARDS

FLIGHT DATA RECORD

0.010.0	CYCL D-CHANE N240AL TEST	T T3	CYCLO.	CYCLO-CRANE N240AL TEST 13
		CON-RUINALIOMS		CONBUSTS CONBUSTS
Howar		Buoyancy	Hover	Buoyancy
MR Forward		Load	MR Forward	
Peth		Sing	Dott	UNIS .
	Page 17 of 18	Fuel		Page 18 of 18 Figel
X-57	TASK	TASK DESCRIPTION	Task #	IASK DESCRIPTION
513	F.E. inputs pitch SE and		545	P commands \$10P when DOWN thoust established
813	Pregramands STOP at 15 den.	15 deg. UP	546	P stabilizes aircraft
S. S.	P stabilizes aircraft		547	FE takes all controls except WING VERHCAL
919	LIFE presets pitch 100%, DOWN	DOWN	548	FE presens CORWARD thoust 100% (
617	FF inputs pitch SF and		549	FE inputs FORWARD thrust SF and
518	P commands STOP at 15 degrees DOWN	15 degrees DOWN	550	P commands \$10P when FORWARD thrust established
510	Pstabilizes aircraft		551	P stabilizes aircraft
520	FE takes all controls except W	CEDI WING VERTICAL	552	FE presents AFT thrush 100% (
521	FE presets yaw 100% DIGUT (553	FE inputs AFT thrust SF and
522	FF inputs yaw SF and		554	P commands STOP when AFT thurst established
523	P commands STOP at 20 degrees BIGLIT	20 degrees MCLIT	555	P stabilizes aircraft
524	P stabilizes aircraft		556	FF brings #4 engine to FULL power
525	FE prosets yaw 100% LEFT (FT(557	FE proceed with SECOND ENGINE START CHECKLIST
5264	EE inputs yaw SE and		550	Pinakes normal approach to eab transport vehicle
527	P commands STOP at 20 deg	20 degrees LEFT	559	P maintains hover
528	P stabilizes aircraft		260	GC secures 1.5
529	FE takes all controls except W	cept WING VERTICAL	561	When US secured, FU shuts down engines (normal)
530	FE presels wing transantal 100% RIGHT	at 100% RIGHT (562	GC recovers and secures aircraft
531	FE inputs wing horizontal SF and	tal SF and	563	GC performs roll-in
532	P commands STOP w	P commands STOP when RIGHT trust established	564	
533	P stabilizes aircraft		565	
534	FE presets wing horizontal 100%	al 100% [FFT]	566	
535	FE inputs wing horizontal SF		567	
536	P commands STOP when L	hen Li FT thrust established	568	
537	P stabilizes aircraft		569	
538	FE takes all centrols except WING VERTICAL	CODI WING VERTICAL	570	
539	FE presols wing vertical 100% UI	100% UP (571	
540	FE inculs wing vertical SF and		572	
541	4U north STOP when HU	hen UP thrust established	573	
242	P stabilizes aircraft		574	
13	F. presels wing vertical 100% DOWN	100% DOWN (575	
544	FE inputs wing vertical SF and	SF and	576	

APPENDIX D

EXAMPLE OF WEIGHT AND BALANCE DATA

WEIGHT AND BALANCE (STATIC LIFT)

AEROLIFT, INC.	– – – –	CYC	LO-CRANE N24	OAL		
INSPECTOR:		TIME	DATE / /			
METEOROLOGICAL DATA Barometric Pressi Outside Air Temperat Hangar Temperat Humidity	erature		t Position /Hull Diff Pressu	re		
AEROSTAT LIFT DATA Lift at Nose (Calculate Lift at Tail TOTAL AVAILABLE (Less Lower Cab)		LOWER CAB WEIGHT DATA Cab Weight Empty Fuel Weight Crew Weight Ballast Weight TOTAL LOWER CAB WT.				
	TotaNEPayNE	r summary al Lift Available al Lower Cab Weight T AEROSTATIC LIFT load Weight T BUOYANCY				

)