

This is a demo of all the Markdown2Pdf features.

# **Common Markdown Functionality**

# h1 Heading

# h2 Heading

# h3 Heading

h4 Heading

h5 Heading

h6 Heading

#### **Horizontal Rules**

#### **Unordered List**

- This
- is
  - o my
  - o unordered
    - List

#### **Ordered Lists**

```
1. This
```

2. Is

i. my

ii. ordered

a. List

# **Example PDF**

### **Paragraphs**

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

## **Text-Styling**

- This Text is italic.
- This Text is **bold**.
- This Text is **bold and italic**.
- This Text is strike through.
- This Text is code.

#### Links

This has a Link.

### **Images**



### **Blockquotes**

This is a Quote.

This is a quote,

going over multiple lines

This is a quote,

With a Subquote

#### Code blocks

# Page 2/4

# **Example PDF**

```
public void Main(string[] args) {
   Console.WriteLine("Hello World!");
}
```

### **Tables**

| Value         | Туре    |
|---------------|---------|
| "Hello World" | string  |
| 7             | integer |
| true          | boolean |

### **Task Lists**

- ☑ Write the press release
- Update the website
- Contact the media

# Latex

$$\sum_{k=0}^{n} = \frac{i}{k}$$

$$\sum_{k=0}^n = \frac{i}{k}$$

$$\sum_{k=0}^{n} = \frac{i}{k}$$

$$A = \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}$$

Latex Color works

#### In a Table

| Name                | Formula                                                |
|---------------------|--------------------------------------------------------|
| CNF                 | $(A \vee \neg B \vee C) \wedge (\neg A \vee B \vee C)$ |
| Binomal coefficient | $\binom{n}{k} = \frac{n!}{k!(n-k)!}$                   |

# Example PDF

Matrix 
$$\begin{pmatrix} -3 & 4 \\ 1 & -2 \end{pmatrix}$$

# **Mermaid Graphs**

