TireGround

Davide Stocco

March 2020

Generated by Doxygen 1.8.13

Contents

1	Tire	Groun	d		1
2		_	e Index		5
	2.1	Name	space Lis	t	5
3	Hier	rarchica	al Index		7
	3.1	Class	Hierarchy	y	7
4	Clas	s Inde	X		9
	4.1				9
5	Nan	nespace	e Documo	entation	11
	5.1	TireG	round Na	mespace Reference	11
		5.1.1	Detailed	l Description	13
	5.2	TireG		gorithms Namespace Reference	13
		5.2.1	Detailed	l Description	13
		5.2.2	Function	n Documentation	13
			5.2.2.1	intersectPointSegment()	13
			5.2.2.2	intersectRayPlane()	14
			5.2.2.3	mean()	14
			5.2.2.4	minmax_XY() [1/2]	14
			5.2.2.5	minmax_XY() [2/2]	15
			5.2.2.6	trapezoidArea()	15
			5.2.2.7	weightedMean() [1/2]	15
			5.2.2.8	weightedMean() [2/2]	15
	5.3	TireG	round::RI	OF Namespace Reference	16
		5.3.1	Detailed	1 Description	16
	5.4	TireG	round::RI	OF::algorithms Namespace Reference	16
		5.4.1		Description	17
		5.4.2	Function	n Documentation	17
			5.4.2.1	firstToken()	17
			5.4.2.2	getElement()	17
			5.4.2.3	split()	17
			E 4 2 4	t=:1()	17

6	Clas	s Docu	umentation	19
	6.1	TireG	round::RDF::BBox2D Class Reference	19
		6.1.1	Detailed Description	20
		6.1.2	Constructor & Destructor Documentation	20
			6.1.2.1 BBox2D()	20
		6.1.3	Member Function Documentation	20
			6.1.3.1 print()	20
			6.1.3.2 updateBBox2D()	20
	6.2	TireG	round::Disk Class Reference	20
		6.2.1	Detailed Description	21
		6.2.2	Constructor & Destructor Documentation	21
			6.2.2.1 Disk()	22
		6.2.3	Member Function Documentation	22
			6.2.3.1 contactPlane()	22
			6.2.3.2 contactTriangles()	22
			6.2.3.3 getLineArea()	23
			6.2.3.4 intersectPlane()	23
			6.2.3.5 intersectSegment()	23
			6.2.3.6 isPointInside()	24
			6.2.3.7 segmentArea()	24
			6.2.3.8 segmentLength()	24
			6.2.3.9 set()	24
			6.2.3.10 setOriginXZ()	25
			6.2.3.11 y()	25
	6.3	TireG	round::ETRTO Class Reference	25
		6.3.1	Detailed Description	26
		6.3.2	Constructor & Destructor Documentation	26
			6.3.2.1 ETRTO()	26
		6.3.3	Member Function Documentation	26
			6.3.3.1 print()	26
	6.4	TireG	round::MagicFormula Class Reference	26
		6.4.1	Detailed Description	29
		6.4.2	Constructor & Destructor Documentation	29
			6.4.2.1 MagicFormula()	29
		6.4.3	Member Function Documentation	30
			6.4.3.1 evaluateContact()	30
			6.4.3.2 fourPointsSampling()	30
			6.4.3.3 getArea() [1/2]	30
			6.4.3.4 getArea() [2/2]	30
			6.4.3.5 getEulerAngleX()	31
			6.4.3.6 getEulerAngleY()	31
			6.4.3.7 getEulerAngleZ()	31

		6.4.3.8	getFriction() [1/2]	1
		6.4.3.9	getFriction() [2/2]	1
		6.4.3.10	getMFpoint() [1/2]	1
		6.4.3.11	getMFpoint() [2/2] 32	2
		6.4.3.12	getMFpointRF() [1/2]	2
		6.4.3.13	getMFpointRF() [2/2]	2
		6.4.3.14	getNormal() [1/2]	2
		6.4.3.15	getNormal() [2/2]	3
		6.4.3.16	getRelativeCamber()	3
		6.4.3.17	getRho() [1/2]	3
		6.4.3.18	getRho() [2/2] 34	4
		6.4.3.19	getVolume() [1/2] 34	4
		6.4.3.20	getVolume() [2/2] 34	4
		6.4.3.21	pointSampling()	4
		6.4.3.22	print()	5
		6.4.3.23	printETRTOGeometry()	5
		6.4.3.24	setOrigin() 35	5
		6.4.3.25	setReferenceFrame()	6
		6.4.3.26	setRotationMatrix()	6
		6.4.3.27	setTotalTransformationMatrix()	6
		6.4.3.28	setup() [1/2] 36	6
		6.4.3.29	setup() [2/2] 35	7
6.5	TireGr	ound::RI	DF::MeshSurface Class Reference	7
	6.5.1	Detailed	Description	3
	6.5.2	Constru	ctor & Destructor Documentation	3
		6.5.2.1	MeshSurface() [1/2]	3
		6.5.2.2	MeshSurface() [2/2]	3
	6.5.3	Member	Function Documentation	3
		6.5.3.1	intersectAABBtree()	3
		6.5.3.2	intersectBBox()	9
		6.5.3.3	LoadFile()	9
		6.5.3.4	printData()	9
		6.5.3.5	set()	9
6.6	TireGr	ound::M	ultiDisk Class Reference	O
	6.6.1	Detailed	Description	3
	6.6.2	Constru	ctor & Destructor Documentation	3
		6.6.2.1	MultiDisk() [1/3]	3
		6.6.2.2	MultiDisk() [2/3] 43	3
		6.6.2.3	MultiDisk() [3/3] 44	4
	6.6.3	Member	Function Documentation	4
		6.6.3.1	getArea() [1/2]	4
		6.6.3.2	getArea() [2/2]	5

		6.6.3.3	getDiskFriction()	45
		6.6.3.4	getDiskMFpoint()	45
		6.6.3.5	getDiskMFpointRF()	45
		6.6.3.6	getDiskNormal()	46
		6.6.3.7	getDiskOriginXYZ() [1/2]	46
		6.6.3.8	getDiskOriginXYZ() [2/2]	46
		6.6.3.9	getDiskRho()	46
		6.6.3.10	getEulerAngleX()	47
		6.6.3.11	getEulerAngleY()	47
		6.6.3.12	getEulerAngleZ()	47
		6.6.3.13	getFriction() [1/2]	47
		6.6.3.14	getFriction() [2/2]	47
		6.6.3.15	getMFeffectiveR()	48
		6.6.3.16	getMFeffectiveRF()	48
		6.6.3.17	getMFeffectiveY()	48
		6.6.3.18	getMFpoint() [1/2]	48
		6.6.3.19	getMFpoint() [2/2]	49
		6.6.3.20	getMFpointRF() [1/2]	49
		6.6.3.21	getMFpointRF() [2/2]	49
		6.6.3.22	getNormal() [1/2]	49
		6.6.3.23	getNormal() [2/2]	50
		6.6.3.24	getRelativeCamber()	50
		6.6.3.25	getRho() [1/2]	50
		6.6.3.26	getRho() [2/2]	50
		6.6.3.27	getVolume() [1/2]	51
		6.6.3.28	getVolume() [2/2]	51
		6.6.3.29	pointSampling()	51
		6.6.3.30	print()	52
		6.6.3.31	printETRTOGeometry()	52
		6.6.3.32	setDiskOriginXZ() [1/2]	52
		6.6.3.33	setDiskOriginXZ() [2/2]	52
		6.6.3.34	setOrigin()	53
		6.6.3.35	setReferenceFrame()	53
		6.6.3.36	setRotationMatrix()	53
		6.6.3.37	setTotalTransformationMatrix()	53
		6.6.3.38	setup() [1/2] 5	54
		6.6.3.39	setup() [2/2]	54
6.7	TireGr	ound::Re	ferenceFrame Class Reference	54
	6.7.1	Detailed	Description	55
	6.7.2	Construc	ctor & Destructor Documentation	55
		6.7.2.1	ReferenceFrame()	55
	6.7.3	Member	Function Documentation	56

		6.7.3.1	getEulerAngleX()	6
		6.7.3.2	getEulerAngleY()	6
		6.7.3.3	getEulerAngleZ()	6
		6.7.3.4	set()	6
		6.7.3.5	setOrigin()	6
		6.7.3.6	setRotationMatrix()	6
		6.7.3.7	setTotalTransformationMatrix()	7
6.8	TireGr	ound::Sar	nplingGrid Class Reference	7
	6.8.1	Detailed	Description	7
	6.8.2	Construc	etor & Destructor Documentation	8
		6.8.2.1	SamplingGrid() [1/2]	8
		6.8.2.2	SamplingGrid() [2/2]	8
	6.8.3	Member	Function Documentation	8
		6.8.3.1	set() [1/2]	8
		6.8.3.2	set() [2/2]	9
		6.8.3.3	setSwitchNumber()	9
6.9	TireGr	ound::Sha	ndow Class Reference	9
	6.9.1	Detailed	Description	9
	6.9.2	Construc	ttor & Destructor Documentation	9
		6.9.2.1	Shadow()	0
	6.9.3	Member	Function Documentation	0
		6.9.3.1	update()	0
6.10	TicToc	Class Ref	erence	0
6.11	TireGr	ound::Tire	e Class Reference	1
	6.11.1	Detailed	Description	3
	6.11.2	Construc	etor & Destructor Documentation	3
		6.11.2.1	Tire()	3
	6.11.3	Member	Function Documentation	3
		6.11.3.1	evaluateContact()	4
		6.11.3.2	getArea() [1/2]	4
		6.11.3.3	getArea() [2/2]	4
		6.11.3.4	getEulerAngleX()	4
		6.11.3.5	getEulerAngleY()	4
		6.11.3.6	getEulerAngleZ()	5
		6.11.3.7	getFriction() [1/2]	5
		6.11.3.8	getFriction() [2/2]	5
		6.11.3.9	getMFpoint() [1/2]	5
		6.11.3.10	getMFpoint() [2/2]	5
		6.11.3.11	getMFpointRF() [1/2]	6
		6.11.3.12	getMFpointRF() [2/2]	6
		6.11.3.13	getNormal() [1/2]	6
		6.11.3.14	getNormal() [2/2]	6

	6.11.3.15 getRelativeCamber()	67
	6.11.3.16 getRho() [1/2]	67
	6.11.3.17 getRho() [2/2]	67
	6.11.3.18 getVolume() [1/2]	68
	6.11.3.19 getVolume() [2/2]	68
	6.11.3.20 pointSampling()	68
	6.11.3.21 print()	69
	6.11.3.22 printETRTOGeometry()	69
	6.11.3.23 setOrigin()	69
	6.11.3.24 setReferenceFrame()	69
	6.11.3.25 setRotationMatrix()	70
	6.11.3.26 setTotalTransformationMatrix()	70
	6.11.3.27 setup() [1/2]	70
	6.11.3.28 setup() [2/2]	70
6.12 Tire	Ground::RDF::Triangle3D Class Reference	71
	2.1 Detailed Description	73
	2.2 Constructor & Destructor Documentation	73
	6.12.2.1 Triangle3D()	73
6.12	2.3 Member Function Documentation	73
	6.12.3.1 intersectEdgePlane()	73
	6.12.3.2 intersectPlane()	74
	6.12.3.3 intersectRay()	74
	6.12.3.4 print()	74
	6.12.3.5 setVertices() [1/2]	74
	6.12.3.6 setVertices() [2/2]	75
6.13 Tire	Ground::RDF::TriangleRoad Class Reference	75
	3.1 Detailed Description	77
	3.2 Constructor & Destructor Documentation	77
	6.13.2.1 TriangleRoad()	77
6.13	3.3 Member Function Documentation	77
	6.13.3.1 intersectEdgePlane()	77
	6.13.3.2 intersectPlane()	78
	6.13.3.3 intersectRay()	78
	6.13.3.4 print()	78
	6.13.3.5 setFriction()	78
	6.13.3.6 setVertices() [1/2]	79
	6.13.3.7 setVertices() [2/2]	79
Index		81

TireGround

A repository for the code developed by Davide Stocco for his thesis.

Department of Industrial Engineering

Master Degree in Mechatronics Engineering

EN: Real-Time Computation of Tire/Road Contact using Tailored Algorithms IT: Valutazione Real-Time del Contatto Pneumatico/Strada con Algoritmi Dedicati

Academic Year 2019 · 2020

Author: Davide Stocco

Supervisor & Co-supervisor: Prof. Enrico Bertolazzi & Dr.Eng. Matteo Ragni

MagicFormula tire model usage

1. Load .rdf file.

```
TireGround::RDF::MeshSurface Road(
  "./file.rdf" // Path to the *.rdf file
);
```

2. Initialize the MagicFormula tire model.

```
TireGround::Tire* TireSD = new TireGround::MagicFormula(
   SectionWidth, // [m]
   AspectRatio, // [%]
   RimDiameter, // [in]
   SwitchNumber // Maximum RoadTriangles in the Tire Shadow (switch to sampling)
);
```

3. Contact evaluation.

```
bool Out = TireSD->setup( Road, // Road mesh TransfMat // 4x4 total transformation matrix );
```

4. Data extraction.

```
// Variable initialization (for real numbers)
TireGround::vec3 N;
TireGround::vec3 P;
TireGround::real_type Friction;
TireGround::real_type Rho;
TireGround::real_type RhoDot;
TireGround::real_type RelativeCamber;
TireGround::real_type Area;
TireGround::real_type Volume;
// Data extraction (for real numbers)
TireSD->getNormal(N);
```

```
TireSD->getMFpoint(P);
TireSD->getFriction(Friction);
TireSD->getRho(Rho);
TireSD->getRhoDot(PreviousRho,TimeStep,RhoDot);
TireSD->getRelativeCamber (RelativeCamber);
TireSD->getArea(Area);
TireSD->getVolume(Volume);
// Extract data stucture size
TireGround::int_type size = TireSD->getDisksNumber();
// Variable initialization (for vectors)
TireGround::row vec3 NVec(size);
TireGround::row_vec3 PVec(size);
TireGround::row_vecN FrictionVec(size);
TireGround::row_vecN RhoVec(size);
TireGround::row_vecN RhoDotVec(size);
TireGround::row_vecN RelativeCamberVec(size);
TireGround::row_vecN AreaVec(size);
TireGround::row_vecN VolumeVec(size);
// Data extraction (for vectors)
TireSD->getNormal(NVec);
TireSD->getMFpoint(PVec);
TireSD->getFriction(FrictionVec);
TireSD->getRho(RhoVec);
TireSD->getRhoDot(PreviousRho, TimeStep, RhoDotVec);
TireSD->getRelativeCamber(RelativeCamberVec);
TireSD->getArea(AreaVec);
TireSD->getVolume(VolumeVec);
```

MultiDisk tire model usage

1. Load .rdf file.

```
TireGround::RDF::MeshSurface Road(
   "./file.rdf" // Path to the *.rdf file
);
```

- 2. Initialize the MultiDisk tire model:
 - (a) MultiDisk tire without sidewall radius (uniform cylinder).

```
TireGround::Tire* TireMD = new TireGround::MultiDisk(
   SectionWidth, // [m]
   AspectRatio, // [%]
   RimDiameter, // [in]
   PointsNumber, // Sampling points for each disk
   DisksNumber, // Disks number
   SwitchNumber // Maximum RoadTriangles in the Tire Shadow (switch to sampling)
);
```

(b) MultiDisk tire with sidewall radius (uniform cylinder with filleted sidewall edge).

```
TireGround::Tire* TireMD = new TireGround::MultiDisk(
   SectionWidth, // [m]
   AspectRatio, // [%]
   RimDiameter, // [in]
   SideRadius, // Sidewall radius [m]
   PointsNumber, // Sampling points for each disk
   DisksNumber, // Disks number
   SwitchNumber // Maximum RoadTriangles in the Tire Shadow (switch to sampling)
);
```

(c) MultiDisk tire with custom disks radius.

```
TireGround::Tire* TireMD = new TireGround::MultiDisk(
   SectionWidth, // [m]
   AspectRatio, // [%]
   RimDiameter, // [in]
   RadiusVec, // Disks radius vector [m]
   PointsNumber, // Sampling points for each disk
   SwitchNumber // Maximum RoadTriangles in the Tire Shadow (switch to sampling)
);
```

3. Contact evaluation.

```
bool Out = TireMD->setup( Road, // Road mesh TransfMat // 4x4 total transformation matrix );
```

4. Data extraction for contact point(s).

```
// Variable initialization (for real numbers)
TireGround::vec3 N;
TireGround::vec3 P;
TireGround::real_type Friction;
TireGround::real_type Rho;
TireGround::real_type RhoDot;
TireGround::real_type RelativeCamber;
TireGround::real_type Area;
TireGround::real_type Volume;
// Data extraction (for real numbers)
TireMD->getNormal(N);
TireMD->getMFpoint(P);
TireMD->getFriction(Friction);
TireMD->getRho(Rho);
TireMD->getRhoDot(PreviousRho, TimeStep, RhoDot);
TireMD->getRelativeCamber(RelativeCamber);
TireMD->getArea(Area);
TireMD->getVolume(Volume);
// Extract data stucture size
TireGround::int_type size = TireSD->getDisksNumber();
// Variable initialization (for vectors)
TireGround::row_vec3 NVec(size);
TireGround::row_vec3 PVec(size);
TireGround::row_vecN FrictionVec(size);
TireGround::row_vecN RhoVec(size);
TireGround::row_vecN RhoDotVec(size);
TireGround::row_vecN RelativeCamberVec(size);
TireGround::row_vecN AreaVec(size);
TireGround::row_vecN VolumeVec(size);
// Data extraction (for vectors)
TireMD->getNormal(NVec);
TireMD->getMFpoint(PVec);
TireMD->getFriction(FrictionVec);
TireMD->getRho(RhoVec);
TireMD->getRhoDot(PreviousRho,TimeStep,RhoDotVec);
TireMD->getRelativeCamber(RelativeCamberVec);
TireMD->getArea(AreaVec);
TireMD->getVolume(VolumeVec);
```

Namespace Index

2.1	Namespace 1	List
- • -	1 valiteb pace 1	

Here is a list of all documented namespaces with brief descriptions:

11
13
16
16

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
TireGround::RDF::BBox2D
TireGround::Disk
TireGround::ETRTO
TireGround::RDF::MeshSurface
TireGround::ReferenceFrame 54
TireGround::SamplingGrid
TireGround::Shadow
TicToc
TireGround::Tire
TireGround::MagicFormula
TireGround::MultiDisk
TireGround::RDF::Triangle3D
Time Commanda DDE, Tribut als Dated

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:	
TireGround::RDF::BBox2D	
2D Bounding Box class	19
TireGround::Disk	
Tire disk	20
TireGround::ETRTO	
Tire ETRTO denomination	25
TireGround::MagicFormula	
Pacejka MagicFormula contact model	26
TireGround::RDF::MeshSurface	
Mesh surface	37
TireGround::MultiDisk	
Multi-disk tire contact model	4 0
TireGround::ReferenceFrame	
Reference frame	54
TireGround::SamplingGrid	
Patch evaluation precision	57
TireGround::Shadow	
2D shadow (2D bounding box enhacement)	59
TicToc	60
TireGround::Tire	
Base class for Tire models	61
TireGround::RDF::Triangle3D	
3D triangle (pure geometrical description)	71
TireGround::RDF::TriangleRoad	
3D triangles for road representation	75

Namespace Documentation

5.1 TireGround Namespace Reference

Tire computations routines.

Namespaces

• algorithms

Algorithms for tire computations routine.

• RDF

RDF mesh computations routines.

Classes

• class Disk

Tire disk.

• class ETRTO

Tire ETRTO denomination.

• class MagicFormula

Pacejka MagicFormula contact model.

• class MultiDisk

Multi-disk tire contact model.

• class ReferenceFrame

Reference frame.

• class SamplingGrid

Patch evaluation precision.

• class Shadow

2D shadow (2D bounding box enhacement)

• class Tire

Base class for Tire models.

Typedefs

- typedef double real_type

 Real number type.
- typedef int int_type *Integer number type.*
- typedef Eigen::Vector2i vec2_int
 2D vector type of real integer type
- typedef Eigen::Vector2d vec2

 2D vector type of real number type
- typedef Eigen::Vector3d vec3
 3D vector type of real number type
- typedef Eigen::Vector4d vec4

 4D vector type of real number type
- typedef Eigen::Matrix3d mat3

 3x3 matrix type of real number type
- typedef Eigen::Matrix4d mat4

 4x4 matrix type of real number type
- typedef Eigen::Matrix < real_type, 1, Eigen::Dynamic > row_vecN
 Row vector type real number type.
- typedef Eigen::Matrix< real_type, Eigen::Dynamic, 1 > col_vecN Column vector type real number type.
- typedef Eigen::Matrix < real_type, Eigen::Dynamic, Eigen::Dynamic > matN
 Matrix type of real number type.
- typedef Eigen::Matrix < vec2, 1, Eigen::Dynamic > row_vec2
 Row vector type of 2D vector.
- typedef Eigen::Matrix< vec2, Eigen::Dynamic, 1 > col_vec2

 *Column vector type of 2D vector.
- typedef Eigen::Matrix < vec2, Eigen::Dynamic, Eigen::Dynamic > mat_vec2
 Matrix type of 2D vector.
- typedef Eigen::Matrix < vec3, 1, Eigen::Dynamic > row_vec3

 Row vector type of 3D vector.
- typedef Eigen::Matrix< vec3, Eigen::Dynamic, 1 > col_vec3

 *Column vector type of 3D vector.
- typedef Eigen::Matrix < vec3, Eigen::Dynamic, Eigen::Dynamic > matN_vec3
 Matrix type of 3D vector.
- typedef Eigen::Matrix < mat4, 1, Eigen::Dynamic > row_mat4
 Matrix type of 4x4 matrix.
- typedef std::basic_ostream < char > ostream_type
 Output stream type.

Variables

• real_type const epsilon = std::numeric_limits<real_type>::epsilon()

Epsilon type.

5.1.1 Detailed Description

Tire computations routines.

Typedefs for tire computations routine.

file: PatchTire.hh file: TireGround.hh

5.2 TireGround::algorithms Namespace Reference

Algorithms for tire computations routine.

Functions

• vec3 mean (row_vec3 const &Values)

Calculate arithmetic weighted mean for 3D vectors.

real_type weightedMean (row_vecN const &Values, row_vecN const &Weights)

Calculate arithmetic weighted mean for real numbers.

vec3 weightedMean (row_vec3 const &Values, row_vecN const &Weights)

Calculate arithmetic weighted mean for 3D vectors.

- bool intersectPointSegment (vec2 const &Point1, vec2 const &Point2, vec2 const &PointQ)
- bool intersectRayPlane (vec3 const &planeN, vec3 const &planeP, vec3 const &RayPoint, vec3 const &RayDirection, vec3 &IntersectionPt)

Check if a segment hits a plane and find the intersection point.

void minmax_XY (row_vec3 const &Points, vec2 &XYmin, vec2 &XYmax)

Calculate minumum and maximum in XY plane for 3D vectors.

• void minmax_XY (row_vec2 const &Points, vec2 &XYmin, vec2 &XYmax)

Calculate minumum and maximum in XY plane for 2D vectors.

• real_type trapezoidArea (real_type const Base2, real_type const Base1, real_type const Height)

Calculate area of a trapeziod [m^2].

5.2.1 Detailed Description

Algorithms for tire computations routine.

5.2.2 Function Documentation

5.2.2.1 intersectPointSegment()

Check if a point lays inside or outside a line segment

Warning: The point query point must be on the same rect of the line segment!

Parameters

Point1	Line segment point 1
Point2	Line segment point 2
PointQ	Query point

5.2.2.2 intersectRayPlane()

```
bool TireGround::algorithms::intersectRayPlane (
    vec3 const & planeN,
    vec3 const & planeP,
    vec3 const & RayPoint,
    vec3 const & RayDirection,
    vec3 & IntersectionPt )
```

Check if a segment hits a plane and find the intersection point.

Parameters

planeN	Plane normal vector
planeP	Plane known point
RayPoint	Ray point
RayDirection	Ray direction
IntersectionPt	Intersection point

5.2.2.3 mean()

Calculate arithmetic weighted mean for 3D vectors.

Parameters

Values Values (3D vectors)
---------------------------	---

5.2.2.4 minmax_XY() [1/2]

Calculate minumum and maximum in XY plane for 3D vectors.

Parameters

Points	3D points vector
XYmin	Minimum (X, Y) values
XYmax	Maximum (X, Y) values

5.2.2.5 minmax_XY() [2/2]

Calculate minumum and maximum in XY plane for 2D vectors.

Parameters

Points	2D points vector
XYmin	Minimum (X, Y) values
XYmax	Maximum (X, Y) values

5.2.2.6 trapezoidArea()

Calculate area of a trapeziod [m^2].

Parameters

Base2	Base 1
Base1	Base 2
Height	Heigth

5.2.2.7 weightedMean() [1/2]

Calculate arithmetic weighted mean for real numbers.

Parameters

Values	Values (real numbers)
Weights	Weights (real numbers)

5.2.2.8 weightedMean() [2/2]

```
vec3 TireGround::algorithms::weightedMean (
    row_vec3 const & Values,
    row_vecN const & Weights)
```

Calculate arithmetic weighted mean for 3D vectors.

Values	Values (3D vectors)
Weights	Weights (real numbers)

5.3 TireGround::RDF Namespace Reference

RDF mesh computations routines.

Namespaces

• algorithms

Algorithms for RDF mesh computations routine.

Classes

• class BBox2D

2D Bounding Box class

• class MeshSurface

Mesh surface.

• class Triangle3D

3D triangle (pure geometrical description)

• class TriangleRoad

3D triangles for road representation

Typedefs

- typedef std::shared_ptr < TriangleRoad > TriangleRoad_ptr
 Shared pointer to TriangleRoad object.
- typedef std::vector < TriangleRoad_ptr > TriangleRoad_list
 Vector of shared pointers to TriangleRoad objects.

5.3.1 Detailed Description

RDF mesh computations routines.

5.4 TireGround::RDF::algorithms Namespace Reference

Algorithms for RDF mesh computations routine.

Functions

- void split (std::string const &in, std::vector < std::string > &out, std::string const &token) Split a string into a string array at a given token.
- std::string tail (std::string const &in)

Get tail of string after first token and possibly following spaces.

• std::string firstToken (std::string const &in)

Get first token of string.

• template<typename T >

T const & getElement (std::vector< T > const & elements, std::string const & index)

Get element at given index position.

5.4.1 Detailed Description

Algorithms for RDF mesh computations routine.

5.4.2 Function Documentation

5.4.2.1 firstToken()

```
std::string TireGround::RDF::algorithms::firstToken (  std::string \ const \ \& \ in \ )
```

Get first token of string.

Parameters

```
in Input string
```

5.4.2.2 getElement()

Get element at given index position.

Parameters

elements	Elements vector
index	Index position

5.4.2.3 split()

```
void TireGround::RDF::algorithms::split (
    std::string const & in,
    std::vector< std::string > & out,
    std::string const & token )
```

Split a string into a string array at a given token.

Parameters

in	Input string
out	Output string vector
token	Token

5.4.2.4 tail()

```
std::string TireGround::RDF::algorithms::tail (
```

std::string const & in)

Get tail of string after first token and possibly following spaces.

Parameters

in Input string

Class Documentation

6.1 TireGround::RDF::BBox2D Class Reference

2D Bounding Box class

#include <RoadRDF.hh>

Public Member Functions

• BBox2D ()

Default constructor.

• BBox2D (vec3 const Vertices[3])

Variable set constructor.

• void setXmin (real_type const _Xmin)

Set X_{min} shadow domain.

• void setYmin (real_type const _Ymin)

Set Y_{min} shadow domain.

void setXmax (real_type const _Xmax)

Set X_{max} shadow domain.

void setYmax (real_type const _Ymax)

Set Y_{max} shadow domain.

real_type getXmin (void) const

Get X_{min} shadow domain.

real_type getYmin (void) const

Get Y_{min} shadow domain.

• real_type getXmax (void) const

Get X_{max} shadow domain.

real_type getYmax (void) const

Get Y_{max} shadow domain.

• void clear (void)

Clear the bounding box domain.

• void print (ostream_type &stream) const

Print bounding box domain.

• void updateBBox2D (vec3 const Vertices[3])

Update the bounding box domain with three input vertices.

6.1.1 Detailed Description

2D Bounding Box class

6.1.2 Constructor & Destructor Documentation

6.1.2.1 BBox2D()

Variable set constructor.

Parameters

Vertices | Vertices reference vector

6.1.3 Member Function Documentation

6.1.3.1 print()

Print bounding box domain.

Parameters

stream Output stream type

6.1.3.2 updateBBox2D()

Update the bounding box domain with three input vertices.

Parameters

Vertices Vertices reference vector

The documentation for this class was generated from the following file:

• include/RoadRDF.hh

6.2 TireGround::Disk Class Reference

Tire disk.

```
#include <PatchTire.hh>
```

Public Member Functions

• Disk (Disk &&)=default

Enable && operator.

• Disk ()

Default constructor.

• Disk (vec2 const &_OriginXZ, real_type _OffsetY, real_type _Radius)

Variable set constructor.

• void set (Disk const &in)

Copy the Disk object.

• void setOriginXZ (vec2 const &_OriginXZ)

Set origin on XZ plane.

vec2 const & getOriginXZ (void) const

Get origin vector XZ-axes coordinates.

vec3 getOriginXYZ (void) const

Get origin vector XYZ-axes coordinates.

real_type getOffsetY (void) const

Get origin Y-axis coordinate.

• real_type getRadius (void) const

Get Disk radius.

- void contactTriangles (RDF::TriangleRoad_list const &TriList, ReferenceFrame const &RF, vec3 &Normal, real_type &Friction, real_type &Area) const
- void contactPlane (vec3 const &Normal, vec3 const &Point, ReferenceFrame const &RF, real_type &Area) const
- void pointOnDisk (vec3 const &Normal, ReferenceFrame const &RF, vec3 &DiskPoint, vec3 &NormalOnDisk) const

Get the points on Disk the circumference and on a given plane.

- real_type segmentArea (real_type const Length) const
- bool isPointInside (vec2 const &Point) const

Check if a point in Disk reference frame is inside or outside the Disk.

• real_type y (real_type const x) const

Evaluate Y at a query X value on the lower side Disk circumfererence.

• real_type segmentLength (vec2 const Point1, vec2 const Point2) const

Evaluate a generic segment length given 2 points on the Disk circumfererence.

- int_type intersectSegment (vec2 const &Point1, vec2 const &Point2, vec2 &Intersect1, vec2 &Intersect2) const
- bool intersectPlane (vec3 const &Plane_Normal, vec3 const &Plane_Point, vec3 &Line_← Direction, vec3 &Line_Point) const
- real_type getLineArea (vec2 const &Point1_XZ, vec2 const &Point2_XZ) const Get a two points line segment area [m²] (as ouput) inside the Disk.

6.2.1 Detailed Description

Tire disk.

6.2.2 Constructor & Destructor Documentation

6.2.2.1 Disk()

Variable set constructor.

Parameters

_OriginXZ	(X_0,Z_0) origin coordinate
_OffsetY	Y_0 origin coordinate (offset from center)
_Radius	Radius

6.2.3 Member Function Documentation

6.2.3.1 contactPlane()

```
void TireGround::Disk::contactPlane (
    vec3 const & Normal,
    vec3 const & Point,
    ReferenceFrame const & RF,
    real_type & Area ) const
```

Get the contact area [m^2] inside the single Disk given a plane in absolute reference frame

Parameters

Normal	Plane normal in absolute reference frame
Point	Plane point in absolute reference frame
RF	Tire ReferenceFrame
Area	Contact area [m^2]

6.2.3.2 contactTriangles()

```
void TireGround::Disk::contactTriangles (
    RDF::TriangleRoad_list const & TriList,
    ReferenceFrame const & RF,
    vec3 & Normal,
    real_type & Friction,
    real_type & Area ) const
```

Get area weighted mean road normal versor, area weighted mean friction and contact area [m^2] inside the single Disk of segments described by the intersection of triangles on XZ-plane

Parameters

TriList	Shadow / MeshSurface intersected triangles
RF	Tire ReferenceFrame
Normal	Area weighted mean road normal versor

Friction	Area weighted mean contact friction
Area	Contact area [m^2]

6.2.3.3 getLineArea()

Get a two points line segment area [m^2] (as ouput) inside the Disk.

Parameters

Point1_XZ	Point 1 in Disk reference frame
Point2_XZ	Point 2 in Disk reference frame

6.2.3.4 intersectPlane()

```
bool TireGround::Disk::intersectPlane (
    vec3 const & Plane_Normal,
    vec3 const & Plane_Point,
    vec3 & Line_Direction,
    vec3 & Line_Point ) const
```

Check if two plane intersects and find the intersecting rect given two points in Disk reference frame

Parameters

Plane_Normal	Plane normal vector in Disk reference frame	
Plane_Point	t Plane known point in Disk reference frame	
Line_Direction	ection Rect direction vector in Disk reference frame	
Line_Point	Plane known point in Disk reference frame	

6.2.3.5 intersectSegment()

Find the intersection points between the Disk and a two points line segment in Disk reference frame (output integer gives number of intersection points)

Parameters

Point1 Line segmen	nt point 1 in Disk reference frame
--------------------	------------------------------------

Point2	Line segment point 2 in Disk reference frame
Intersect1	Intersection point 1 in Disk reference frame
Intersect2	Intersection point 2 in Disk reference frame

6.2.3.6 isPointInside()

Check if a point in Disk reference frame is inside or outside the Disk.

Parameters

Point	Query point in Disk reference frame
-------	-------------------------------------

6.2.3.7 segmentArea()

Get the contact patch area under the intersection plane in absolute reference frame [m^2]

Parameters

Length	Chord length
--------	--------------

6.2.3.8 segmentLength()

Evaluate a generic segment length given 2 points on the Disk circumfererence.

Parameters

Point1	Point 1
Point2	Point 2

6.2.3.9 set()

Copy the Disk object.

```
in Disk object to be copied
```

6.2.3.10 setOriginXZ()

Set origin on XZ plane.

Parameters

```
\_OriginXZ New origin on XZ plane
```

6.2.3.11 y()

Evaluate *Y* at a query *X* value on the lower side Disk circumfererence.

Parameters

```
x Query X value
```

The documentation for this class was generated from the following file:

• include/PatchTire.hh

6.3 TireGround::ETRTO Class Reference

Tire ETRTO denomination.

```
#include <PatchTire.hh>
```

Public Member Functions

• ETRTO ()

Default constructor.

- ETRTO (real_type _SectionWidth, real_type _AspectRatio, real_type _RimDiameter) Variable set constructor.
- real_type getSidewallHeight (void) const

Get sidewall height [m].

• real_type getTireDiameter (void) const

Get external tire diameter [m].

real_type getTireRadius (void) const

Get external tire radius [m].

real_type getSectionWidth (void) const

Get section width [m].

• void print (ostream_type &stream) const Display tire data.

6.3.1 Detailed Description

Tire ETRTO denomination.

6.3.2 Constructor & Destructor Documentation

6.3.2.1 ETRTO()

Variable set constructor.

Parameters

_SectionWidth	Tire section width [m]
_AspectRatio	Tire aspect ratio [%]
_RimDiameter	Rim diameter [in]

6.3.3 Member Function Documentation

6.3.3.1 print()

Display tire data.

Parameters

```
stream Output stream type
```

The documentation for this class was generated from the following file:

• include/PatchTire.hh

6.4 TireGround::MagicFormula Class Reference

Pacejka MagicFormula contact model.

```
#include <PatchTire.hh>
```

Inheritance diagram for TireGround::MagicFormula:

Collaboration diagram for TireGround::MagicFormula:

Public Member Functions

• ~MagicFormula ()

Default destructor.

 MagicFormula (real_type const SectionWidth, real_type const AspectRatio, real_type const RimDiameter, int_type const SwitchN)

Variable set constructor.

• void getNormal (vec3 &_Normal) const override

Get contact normal versor.

void getNormal (row_vec3 &_Normal) const override

Get contact normal versors vector.

• void getMFpoint (vec3 &_DiskPoint) const override

Get Magic Formula contact point.

• void getMFpoint (row_vec3 &_DiskPoint) const override

Get Magic Formula contact point vector.

• void getFriction (real_type &_Friction) const override

Get contact point friction.

• void getFriction (row_vecN &_Friction) const override

Get contact point friction vector.

• void getMFpointRF (mat4 &PointRF) const override

 $Get\ Magic\ Formula\ contact\ point\ reference\ frame\ with\ 4x4\ transformation\ matrix.$

- void getMFpointRF (row_mat4 &_MFpointRF) const override
 - Get Magic Formula contact point reference frame vector with 4x4 transformation matrix.
- void getRho (real_type &Rho, real_type &RhoDot, real_type const RhoOld, real_type const Time) const override
- void getRho (row_vecN &Rho, row_vecN &RhoDot, row_vecN const RhoOld, real_type const Time) const override
- void getArea (real_type &_Area) const override
 - Get approximated contact area on Disk plane $[m^2]$.
- void getArea (row_vecN &_Area) const override
 - Get approximated contact area vector on Disk plane [m^2].
- void getVolume (real_type &_Volume) const override
 - Get approximated contact volume [m^3].
- void getVolume (row_vecN &Volume) const override
 - Get approximated contact volume vector $[m^3]$.
- bool setup (RDF::MeshSurface &Mesh, mat4 const &TM) override
 - Update current tire position and find contact parameters.
- void setup (vec3 const &Plane_Normal, vec3 const &Plane_Point, real_type const Plane_←
 Friction, mat4 const &TM) override
- void print (ostream_type &stream) const override
 - Print contact parameters.
- void printETRTOGeometry (ostream_type &stream) const
 - Display Tire ETRTO geometry data.
- G2lib::AABBtree::PtrAABB const getAABBtree (void) const
 - Get total Tire Shadow G2Lib::AABBtree (3D projection on ground)
- G2lib::AABBtree::PtrAABB const getUpperSideAABBtree (void) const
 - Get upper side Tire Shadow G2Lib:AABBtree (3D projection on ground)
- G2lib::AABBtree::PtrAABB const getLowerSideAABBtree (void) const
 - Get lower side Tire Shadow G2Lib:AABBtree (3D projection on ground)
- void setReferenceFrame (ReferenceFrame const &_RF)
- ReferenceFrame const & getReferenceFrame (void) const
 - Get tire ReferenceFrame object.
- void setOrigin (vec3 const &Origin)
 - Set a new tire origin.
- void setRotationMatrix (mat3 const &RotationMatrix)
- void setTotalTransformationMatrix (mat4 const &TM)
- real_type getEulerAngleX (void) const
- real_type getEulerAngleY (void) const
- real_type getEulerAngleZ (void) const
- void getRelativeCamber (real_type &RelativeCamber) const
 - Get relative camber angle [rad].
- int_type getDisksNumber (void) const
 - Dimension of the contact points data structure (disks number)

Protected Member Functions

- MagicFormula (MagicFormula const &)=delete
 - Deleted copy constructor.
- MagicFormula const & operator= (MagicFormula const &)=delete
 - Deleted copy operator.
- void evaluateContact (RDF::TriangleRoad_list const &TriList) override

Evaluate contact with RoadTriangles.

• void fourPointsSampling (RDF::TriangleRoad_list const &TriList, vec3 &P_star)

Perform triangles sampling on 4 points at $\pm 0.1*R$ along X and $\pm 0.3*W$ along Y.

• bool pointSampling (RDF::TriangleRoad_list const &TriList, vec3 const &RayOrigin, vec3 const &RayDirection, vec3 &SampledPt, real_type &TriFriction=quietNaN, vec3 &Tri← Normal=vec3_NaN) const

Perform one point sampling (ray-triangle intersection)

Protected Attributes

• Disk SingleDisk

Single Disk.

vec3 Normal

Contact normal versor.

vec3 MeshPoint

Contact point on Mesh (for Magic Formula)

vec3 DiskPoint

Contact point on undeformed Disk circumference (not for Magic Formula)

real_type Friction

Contact friction.

• real_type Area

Contact area [m^2].

• SamplingGrid Precision

Contacth patch evaluating precision.

• ETRTO TireGeometry

Tire ETRTO denomination.

• ReferenceFrame RF

ReferenceFrame.

Shadow TireShadow

Tire shadow.

6.4.1 Detailed Description

Pacejka MagicFormula contact model.

6.4.2 Constructor & Destructor Documentation

6.4.2.1 MagicFormula()

Variable set constructor.

Parameters

SectionWidth	Tire section width [m]
AspectRatio	Tire aspect ratio [%]
RimDiameter	Rim diameter [in]
2 % witchN	Maximum RoadTriangles in the Tire Shadow (switch to sampling)

6.4.3 Member Function Documentation

6.4.3.1 evaluateContact()

Evaluate contact with RoadTriangles.

Parameters

TriList | Shadow/MeshSurface intersected triangles

Implements TireGround::Tire.

6.4.3.2 fourPointsSampling()

Perform triangles sampling on 4 points at $\pm 0.1*R$ along X and $\pm 0.3*W$ along Y.

Parameters

TriList | Shadow/MeshSurface intersected triangles

```
6.4.3.3 getArea() [1/2]
```

Get approximated contact area on Disk plane [m^2].

Parameters

```
_Area | Contact area [m^2]
```

Implements TireGround::Tire.

```
6.4.3.4 getArea() [2/2]
```

Get approximated contact area vector on Disk plane [m^2].

Parameters

_Area | Contact area vector [m^2]

Implements TireGround::Tire.

```
6.4.3.5 getEulerAngleX()
real_type TireGround::Tire::getEulerAngleX (
             void ) const [inline], [inherited]
Get current Euler angles [ rad] for X-axis
Warning: Factor as [R_z][R_x][R_y]!
6.4.3.6 getEulerAngleY()
real_type TireGround::Tire::getEulerAngleY (
             void ) const [inline], [inherited]
Get current Euler angles [ rad] for Y-axis
Warning: Factor as [R_z][R_x][R_y]!
6.4.3.7 getEulerAngleZ()
real_type TireGround::Tire::getEulerAngleZ (
             void ) const [inline], [inherited]
Get current Euler angles [ rad] for Z-axis
Warning: Factor as [R_z][R_x][R_y]!
6.4.3.8 getFriction() [1/2]
void TireGround::MagicFormula::getFriction (
             real_type & _Friction ) const [inline], [override], [virtual]
Get contact point friction.
Parameters
 Friction
            Contact point friction
Implements TireGround::Tire.
6.4.3.9 getFriction() [2/2]
void TireGround::MagicFormula::getFriction (
             row_vecN & _Friction ) const [inline], [override], [virtual]
Get contact point friction vector.
Parameters
 _Friction
            Contact point friction vector
Implements TireGround::Tire.
6.4.3.10 getMFpoint() [1/2]
void TireGround::MagicFormula::getMFpoint (
             vec3 & _DiskPoint ) const [inline], [override], [virtual]
```

Get Magic Formula contact point.

Parameters

skPoint Magic Formula contact point	_DiskPoint
---------------------------------------	------------

Implements TireGround::Tire.

```
6.4.3.11 getMFpoint() [2/2]
```

Get Magic Formula contact point vector.

Parameters

```
_DiskPoint | Contact point vector on Disk
```

Implements TireGround::Tire.

```
6.4.3.12 getMFpointRF() [1/2]
```

Get Magic Formula contact point reference frame with 4x4 transformation matrix.

Parameters

```
        PointRF
        Magic Formula contact point reference frame
```

Implements TireGround::Tire.

```
6.4.3.13 getMFpointRF() [2/2]
```

Get Magic Formula contact point reference frame vector with 4x4 transformation matrix.

Parameters

```
_MFpointRF | Magic Formula ontact point reference frames vector
```

Implements TireGround::Tire.

```
6.4.3.14 getNormal() [1/2]
```

Get contact normal versor.

Parameters

_Normal	Contact point normal versor
---------	-----------------------------

Implements TireGround::Tire.

```
6.4.3.15 getNormal() [2/2]
```

Get contact normal versors vector.

Parameters

_Normal	Contact point normal direction vector
---------	---------------------------------------

Implements TireGround::Tire.

6.4.3.16 getRelativeCamber()

Get relative camber angle [rad].

Parameters

```
RelativeCamber | Relative camber angle
```

6.4.3.17 getRho() [1/2]

Get contact depth at center point [m] and it time derivative [m/s] Warning: (if negative the tire does not touch the ground)!

Parameters

Rho	Depth at center point [m/s]
RhoDot	Contact depth derivative [m/s]
RhoOld	Previous time step Rho [m]
Time	Time step [s]

Implements TireGround::Tire.

```
6.4.3.18 getRho() [2/2]
```

Get contact depth matrix [m] and it time derivatives [m/s] Warning: (if negative the tire does not touch the ground)!

Parameters

Rho	Depth matrix [m/s]
RhoDot	Contact depth derivative matrix [m/s]
RhoOld	Previous time step Rho matrix [m]
Time	Time step [s]

Implements TireGround::Tire.

```
6.4.3.19 getVolume() [1/2]
```

Get approximated contact volume [m^3].

Parameters

```
_Volume Contact volume [ m^3]
```

Implements TireGround::Tire.

6.4.3.20 getVolume() [2/2]

Get approximated contact volume vector [m^3].

Parameters

Volume	Contact volume vector [m^3]
--------	---------------------------------

Implements TireGround::Tire.

6.4.3.21 pointSampling()

```
bool TireGround::Tire::pointSampling (
```

```
RDF::TriangleRoad_list const & TriList,
vec3 const & RayOrigin,
vec3 const & RayDirection,
vec3 & SampledPt,
real_type & TriFriction = quietNaN,
vec3 & TriNormal = vec3_NaN ) const [protected], [inherited]
```

Perform one point sampling (ray-triangle intersection)

Parameters

TriList	Shadow/MeshSurface intersected triangles
RayOrigin	Ray origin
RayDirection	Ray direction
SampledPt	Intersection point
TriFriction	Intersected triangle friction
TriNormal	Intersected triangle normal

6.4.3.22 print()

Print contact parameters.

Parameters

г		
	stream	Output stream type

Implements TireGround::Tire.

6.4.3.23 printETRTOGeometry()

Display Tire ETRTO geometry data.

Parameters

```
stream Output stream type
```

6.4.3.24 setOrigin()

Set a new tire origin.

Parameters

```
Origin | Tire origin
```

6.4.3.25 setReferenceFrame()

Copy the tire ReferenceFrame object

Warning: Rotation matrix must be orthonormal!

Parameters

 $_RF$

ReferenceFrame object to be copied

6.4.3.26 setRotationMatrix()

Set a new 3x3 rotation matrix

Warning: Rotation matrix must be orthonormal!

Parameters

RotationMatrix	Rotation matrix
----------------	-----------------

6.4.3.27 setTotalTransformationMatrix()

Set 4x4 total transformation matrix

Warning: Rotation matrix must be orthonormal!

Parameters

```
TM | 4x4 total transformation matrix
```

6.4.3.28 setup() [1/2]

Update current tire position and find contact parameters.

Parameters

Mesh	MeshSurface object (road)	
TM	4x4 total transformation matrix	

Implements TireGround::Tire.

```
6.4.3.29 setup() [2/2]
```

```
void TireGround::MagicFormula::setup (
    vec3 const & Plane_Normal,
    vec3 const & Plane_Point,
    real_type const Plane_Friction,
    mat4 const & TM ) [override], [virtual]
```

Update current tire position and find contact parameters with external plane

Parameters

Plane_Normal	Plane normal vector
Plane_Point	Plane known point
Plane_Friction	Friction on plane
TM	4x4 total transformation matrix

Implements TireGround::Tire.

The documentation for this class was generated from the following file:

• include/PatchTire.hh

6.5 TireGround::RDF::MeshSurface Class Reference

Mesh surface.

```
#include <RoadRDF.hh>
```

Public Member Functions

• MeshSurface ()

Default set constructor.

• MeshSurface (TriangleRoad_list const &_PtrTriangleVec)

Variable set constructor.

• MeshSurface (std::string const &Path)

Variable set constructor.

TriangleRoad_list const & getTrianglesList (void) const

Get all triangles inside the mesh as a vector.

• TriangleRoad_ptr const getTriangle (unsigned i) const Get i-th TriangleRoad.

• G2lib::AABBtree::PtrAABB const getAABBPtr (void) const Get AABBtree object.

• void printData (std::string const &FileName) const

Print data in file.

• std::vector< G2lib::BBox::PtrBBox > const & getPtrBBoxList () const

Get the mesh G2lib bounding boxes pointers vector.

• void set (MeshSurface const &in)

Copy the MeshSurface object.

• bool LoadFile (std::string const &Path)

Load the RDF model and print information on a file.

 bool intersectAABBtree (G2lib::AABBtree::PtrAABB const &AABBTreePtr, RDF::Triangle← Road_list &TrianglesList) const

Intersect the mesh AABB tree with an external AABB tree.

• bool intersectBBox (std::vector< G2lib::BBox::PtrBBox > const &BBoxPtr, RDF::Triangle← Road_list &TrianglesList) const

Update the mesh AABBtree with an external G2lib::BBox object pointer vector.

6.5.1 Detailed Description

Mesh surface.

6.5.2 Constructor & Destructor Documentation

```
6.5.2.1 MeshSurface() [1/2]
```

Variable set constructor.

Parameters

6.5.2.2 MeshSurface() [2/2]

Variable set constructor.

Parameters

```
Path Path to the RDF file
```

6.5.3 Member Function Documentation

6.5.3.1 intersectAABBtree()

Intersect the mesh AABB tree with an external AABB tree.

Parameters

AABBTreePtr	External AABBtree object pointer
TrianglesList	Intersected TriangleRoad vector list

6.5.3.2 intersectBBox()

Update the mesh AABBtree with an external G2lib::BBox object pointer vector.

Parameters

BBoxPtr	External G2lib::BBox object pointer vector
TrianglesList	Intersected TriangleRoad vector list

6.5.3.3 LoadFile()

Load the RDF model and print information on a file.

Parameters

```
Path | Path to the RDF file
```

6.5.3.4 printData()

Print data in file.

Parameters

FileName File name in which print data	
--	--

6.5.3.5 set()

Copy the MeshSurface object.

Parameters

in MeshSurface object to be copied

The documentation for this class was generated from the following file:

• include/RoadRDF.hh

6.6 TireGround::MultiDisk Class Reference

Multi-disk tire contact model.

#include <PatchTire.hh>

Inheritance diagram for TireGround::MultiDisk:

Collaboration diagram for TireGround::MultiDisk:

Public Member Functions

- ~MultiDisk ()
 - Default destructor.
- MultiDisk (real_type const SectionWidth, real_type const AspectRatio, real_type const RimDiameter, int_type const PointsN, int_type const DisksN, int_type const SwitchN)

Variable set constructor.

 MultiDisk (real_type const SectionWidth, real_type const AspectRatio, real_type const RimDiameter, real_type const SideRadius, int_type const PointsN, int_type const DisksN, int_type const SwitchN)

Variable set constructor.

 MultiDisk (real_type const SectionWidth, real_type const AspectRatio, real_type const RimDiameter, row_vecN const DisksRadius, int_type const PointsN, int_type const SwitchN)

Variable set constructor.

• real_type getPointstep (void) const

Get grid step on X-axis between sampling points [m].

real_type getDiskStep (void) const

Get step on Y-axis between disks [m].

• void getNormal (vec3 &_Normal) const override

Get contact normal mean versor.

void getDiskOriginXYZ (row_vec3 &Origin) const

Get disks origin (X, Y, Z).

• void getDiskOriginXYZ (int_type const i, vec3 &Origin) const

Get i-th Disk origin (X, Y, Z).

• void setDiskOriginXZ (row_vec2 &Origin)

Set disks origin (X, Y, Z).

• void setDiskOriginXZ (int_type const i, vec2 &Origin)

Set i-th Disk origin (X, Y, Z).

• void getNormal (row_vec3 &_NormalVec) const override

Get contact normal versors vector.

• void getDiskNormal (int_type const i, vec3 &_Normal) const

Get i-th Disk contact normal versor.

• void getMFpoint (vec3 &_DiskPoint) const override

Get Magic Formula contact point.

• void getMFpoint (row_vec3 &_DiskPointVec) const override

Get Magic Formula contact points vector.

• void getDiskMFpoint (int_type const i, vec3 &_DiskPoint) const

Get i-th Disk Magic Formula contact point.

void getFriction (real_type &_Friction) const override

Get area weighted mean contact friction.

• void getFriction (row_vecN &_Friction) const override

Get contact frictions vector.

void getDiskFriction (int_type const i, real_type &_Friction) const

Get i-th Disk contact friction.

• void getMFeffectiveRF (mat4 &PointRF) const

Get effective contact point reference frame with 4x4 transformation matrix.

• void getMFpointRF (mat4 &PointRF) const override

 $Get\ Magic\ Formula\ contact\ point\ reference\ frame\ with\ 4x4\ transformation\ matrix.$

• void getMFpointRF (row_mat4 &PointRF) const override

Get Magic Formula contact point reference frames vector with 4x4 transformation matrix.

void getDiskMFpointRF (int_type const i, mat4 &PointRF) const

Get Disk Magic Formula contact point reference frame with 4x4 transformation matrix.

- void getRho (real_type &Rho, real_type &RhoDot, real_type const RhoOld, real_type const Time) const override
- void getRho (row_vecN &Rho, row_vecN &RhoDot, row_vecN const RhoOld, real_type const Time) const override

- void getDiskRho (int_type const i, real_type &Rho, real_type &RhoDot, real_type const RhoOld, real_type const Time) const
- void getArea (real_type &_Area) const override

Get approximated mean contact area on Disk plane [m^2].

void getArea (row_vecN &_AreaVec) const override

Get approximated contact areas vector on Disk plane $[m^2]$.

• void getVolume (real_type &Volume) const override

Get approximated contact volume [m^3].

void getVolume (row_vecN &Volume) const override

Get approximated contact volumes vector $[m^3]$.

void getMFeffectiveY (real_type &effectiveY) const

Get effective Y-axis coordinate of contact point [m].

void getMFeffectiveR (real_type &Radius) const

Get effective radius of contact point [m].

• bool setup (RDF::MeshSurface &Mesh, mat4 const &TM) override

Update current tire position and find contact parameters.

- void setup (vec3 const &Plane_Normal, vec3 const &Plane_Point, real_type const Plane_←
 Friction, mat4 const &TM) override
- void print (ostream_type &stream) const override

Print contact parameters.

void printETRTOGeometry (ostream_type &stream) const

Display Tire ETRTO geometry data.

• G2lib::AABBtree::PtrAABB const getAABBtree (void) const

Get total Tire Shadow G2Lib::AABBtree (3D projection on ground)

G2lib::AABBtree::PtrAABB const getUpperSideAABBtree (void) const

Get upper side Tire Shadow G2Lib:AABBtree (3D projection on ground)

• G2lib::AABBtree::PtrAABB const getLowerSideAABBtree (void) const

Get lower side Tire Shadow G2Lib:AABBtree (3D projection on ground)

- void setReferenceFrame (ReferenceFrame const &_RF)
- ReferenceFrame const & getReferenceFrame (void) const

Get tire ReferenceFrame object.

void setOrigin (vec3 const &Origin)

Set a new tire origin.

- void setRotationMatrix (mat3 const &RotationMatrix)
- void setTotalTransformationMatrix (mat4 const &TM)
- real_type getEulerAngleX (void) const
- real_type getEulerAngleY (void) const
- real_type getEulerAngleZ (void) const
- void getRelativeCamber (real_type &RelativeCamber) const

Get relative camber angle [rad].

int_type getDisksNumber (void) const

Dimension of the contact points data structure (disks number)

Protected Member Functions

bool pointSampling (RDF::TriangleRoad_list const &TriList, vec3 const &RayOrigin, vec3 const &RayDirection, vec3 &SampledPt, real_type &TriFriction=quietNaN, vec3 &Tri← Normal=vec3_NaN) const

Perform one point sampling (ray-triangle intersection)

Protected Attributes

• SamplingGrid Precision

Contacth patch evaluating precision.

• ETRTO TireGeometry

Tire ETRTO denomination.

ReferenceFrame RF

ReferenceFrame.

• Shadow TireShadow

Tire shadow.

6.6.1 Detailed Description

Multi-disk tire contact model.

6.6.2 Constructor & Destructor Documentation

6.6.2.1 MultiDisk() [1/3]

```
TireGround::MultiDisk::MultiDisk (
    real_type const SectionWidth,
    real_type const AspectRatio,
    real_type const RimDiameter,
    int_type const PointsN,
    int_type const DisksN,
    int_type const SwitchN ) [inline]
```

Variable set constructor.

Parameters

SectionWidth	Tire section width [m]
AspectRatio	Tire aspect ratio [%]
RimDiameter	Rim diameter [in]
PointsN	Sampling points for each Disk (divisions on <i>X</i> -axis)
DisksN	Number of Disks (divisions on Y -axis -1)
SwitchN	Maximum RoadTriangles in the Tire Shadow (switch to sampling)

6.6.2.2 MultiDisk() [2/3]

```
TireGround::MultiDisk::MultiDisk (
    real_type const SectionWidth,
    real_type const AspectRatio,
    real_type const RimDiameter,
    real_type const SideRadius,
    int_type const PointsN,
    int_type const DisksN,
    int_type const SwitchN ) [inline]
```

Variable set constructor.

Parameters

SectionWidth	Tire section width [m]
AspectRatio	Tire aspect ratio [%]
RimDiameter	Rim diameter [in]
SideRadius	Sidewall radius [m]
PointsN	Sampling points for each Disk (divisions on <i>X</i> -axis)
DisksN	Number of Disks (divisions on Y -axis -1)
SwitchN	Maximum RoadTriangles in the Tire Shadow (switch to sampling)

6.6.2.3 MultiDisk() [3/3]

```
TireGround::MultiDisk::MultiDisk (
    real_type const SectionWidth,
    real_type const AspectRatio,
    real_type const RimDiameter,
    row_vecN const DisksRadius,
    int_type const PointsN,
    int_type const SwitchN ) [inline]
```

Variable set constructor.

Parameters

SectionWidth	Tire section width [m]
AspectRatio	Tire aspect ratio [%]
RimDiameter	Rim diameter [in]
DisksRadius	Disks radius vector [m]
PointsN	Sampling points for each Disk (divisions on <i>X</i> -axis)
SwitchN	Maximum RoadTriangles in the Tire Shadow (switch to sampling)

6.6.3 Member Function Documentation

Get approximated mean contact area on Disk plane [m^2].

Parameters

1 4425	Combon to an an I 21
_Area	Contact area [m^2]

Implements TireGround::Tire.

6.6.3.2 getArea() [2/2]

Get approximated contact areas vector on Disk plane [m^2].

Parameters

```
_AreaVec | Contact areas vector [ m^2]
```

Implements TireGround::Tire.

6.6.3.3 getDiskFriction()

Get *i*-th Disk contact friction.

Parameters

i	i-th Disk
_Friction	Disk contact friction

6.6.3.4 getDiskMFpoint()

Get *i*-th Disk Magic Formula contact point.

Parameters

i	i-th Disk
_DiskPoint	Disk Magic Formula contact point

6.6.3.5 getDiskMFpointRF()

Get Disk Magic Formula contact point reference frame with 4x4 transformation matrix.

Parameters

i	i-th Disk
PointRF	Magic Formula contact point reference frame

6.6.3.6 getDiskNormal()

Get *i*-th Disk contact normal versor.

Parameters

i	<i>i</i> -th Disk
_Normal	Contact normal versor

6.6.3.7 getDiskOriginXYZ() [1/2]

Get disks origin (X, Y, Z).

Parameters

Origin Disks origin	Ĺ
-----------------------	---

6.6.3.8 getDiskOriginXYZ() [2/2]

Get *i*-th Disk origin (X, Y, Z).

Parameters

i	i-th Disk
Origin	Disks origin

6.6.3.9 getDiskRho()

```
void TireGround::MultiDisk::getDiskRho (
    int_type const i,
    real_type & Rho,
    real_type & RhoDot,
    real_type const RhoOld,
    real_type const Time ) const
```

Get i-th Disk contact depth [m] and it time derivative [m/s] Warning: (if negative the tire does not touch the ground)!

Parameters

i	i-th Disk
Rho	Disk contact depth
RhoDot	Contact depth derivative [m/s]
RhoOld	Previous time step Rho [m]
Time	Time step $[s]$

6.6.3.10 getEulerAngleX()

Get current Euler angles [rad] for X-axis Warning: Factor as [R_z][R_x][R_y]!

6.6.3.11 getEulerAngleY()

Get current Euler angles [rad] for $\mathit{Y}\text{-axis}$

Warning: Factor as $[R_z][R_x][R_y]!$

6.6.3.12 getEulerAngleZ()

Get current Euler angles [rad] for Z-axis

Warning: Factor as $[R_z][R_x][R_y]!$

6.6.3.13 getFriction() [1/2]

Get area weighted mean contact friction.

Parameters

Erictic	111	Area weighted mean contact friction
_1 / 10110	111	Area weighted mean contact michon

Implements TireGround::Tire.

6.6.3.14 getFriction() [2/2]

Get contact frictions vector.

Parameters

Implements TireGround::Tire.

6.6.3.15 getMFeffectiveR()

Get effective radius of contact point [m].

Parameters

Radius | Effective radius of contact point [m]

6.6.3.16 getMFeffectiveRF()

Get effective contact point reference frame with 4x4 transformation matrix.

Parameters

PointRF | Magic Formula contact point reference frame

6.6.3.17 getMFeffectiveY()

Get effective Y-axis coordinate of contact point [m].

Parameters

```
        effectiveY
        Effective Y-axis coordinate of contact point [m]
```

```
6.6.3.18 getMFpoint() [1/2]
```

Get Magic Formula contact point.

Parameters

_DiskPoint | Magic Formula contact point

Implements TireGround::Tire.

6.6.3.19 getMFpoint() [2/2]

Get Magic Formula contact points vector.

Parameters

_DiskPointVec | Magic Formula contact points vector

Implements TireGround::Tire.

```
6.6.3.20 getMFpointRF() [1/2]
```

Get Magic Formula contact point reference frame with 4x4 transformation matrix.

Parameters

PointRF | Magic Formula contact point reference frame

Implements TireGround::Tire.

6.6.3.21 getMFpointRF() [2/2]

Get Magic Formula contact point reference frames vector with 4x4 transformation matrix.

Parameters

PointRF | Magic Formula contact point reference frames vector

Implements TireGround::Tire.

```
6.6.3.22 getNormal() [1/2]
```

Get contact normal mean versor.

Parameters

_Normal | Contact normal mean versor

Implements TireGround::Tire.

6.6.3.23 getNormal() [2/2]

Get contact normal versors vector.

Parameters

_NormalVec	Contact normal versors vector
------------	-------------------------------

Implements TireGround::Tire.

6.6.3.24 getRelativeCamber()

Get relative camber angle [rad].

Parameters

Relative Camber Relative camber angle

6.6.3.25 getRho() [1/2]

```
void TireGround::MultiDisk::getRho (
    real_type & Rho,
    real_type & RhoDot,
    real_type const RhoOld,
    real_type const Time ) const [override], [virtual]
```

Get contact depth at center point [m] and it time derivative [m/s] Warning: (if negative the tire does not touch the ground)!

Parameters

Rho	Depth at center point [m/s]
RhoDot	Contact depth derivative [m/s]
RhoOld	Previous time step Rho [m]
Time	Time step $[s]$

Implements TireGround::Tire.

6.6.3.26 getRho() [2/2]

Get contact depths vector [m] and it time derivatives [m/s] Warning: (if negative the tire does not touch the ground)!

Parameters

Rho	Depth matrix [m/s]
RhoDot	Contact depth derivative matrix [m/s]
RhoOld	Previous time step Rho matrix [m]
Time	Time step [s]

Implements TireGround::Tire.

```
6.6.3.27 getVolume() [1/2]
```

Get approximated contact volume [m^3].

Parameters

Volume	Contact volume [m^3]
--------	--------------------------

Implements TireGround::Tire.

```
6.6.3.28 getVolume() [2/2]
```

Get approximated contact volumes vector [m^3].

Parameters

Volume Contact volumes vec	tor [m ³]
----------------------------	------------------------

Implements TireGround::Tire.

6.6.3.29 pointSampling()

Perform one point sampling (ray-triangle intersection)

Parameters

TriList	Shadow/MeshSurface intersected triangles
RayOrigin	Ray origin
RayDirection	Ray direction
SampledPt	Intersection point
TriFriction	Intersected triangle friction
TriNormal	Intersected triangle normal

6.6.3.30 print()

Print contact parameters.

Parameters

stream	Output stream type	
--------	--------------------	--

Implements TireGround::Tire.

6.6.3.31 printETRTOGeometry()

Display Tire ETRTO geometry data.

Parameters

stream	Output stream type

6.6.3.32 setDiskOriginXZ() [1/2]

Set disks origin (X, Y, Z).

Parameters

Origin New Disks orig	gin vector
-----------------------	------------

6.6.3.33 setDiskOriginXZ() [2/2]

```
void TireGround::MultiDisk::setDiskOriginXZ (
```

```
int_type const i,
vec2 & Origin ) [inline]
```

Set *i*-th Disk origin (X, Y, Z).

Parameters

i	i-th Disk
Origin	New Disks origin vector

6.6.3.34 setOrigin()

Set a new tire origin.

Parameters

Origin	Tire origin
- 10	

6.6.3.35 setReferenceFrame()

Copy the tire ReferenceFrame object

Warning: Rotation matrix must be orthonormal!

Parameters

_RF | ReferenceFrame object to be copied

6.6.3.36 setRotationMatrix()

Set a new 3x3 rotation matrix

Warning: Rotation matrix must be orthonormal!

Parameters

```
RotationMatrix | Rotation matrix
```

6.6.3.37 setTotalTransformationMatrix()

Set 4x4 total transformation matrix Warning: Rotation matrix must be orthonormal!

Parameters

```
TM | 4x4 total transformation matrix
```

```
6.6.3.38 setup() [1/2]
bool TireGround::MultiDisk::setup (

RDF::MeshSurface & Mesh,
```

Update current tire position and find contact parameters.

mat4 const & TM) [override], [virtual]

Parameters

Mesh	MeshSurface object (road)
TM	4x4 total transformation matrix

Implements TireGround::Tire.

```
6.6.3.39 setup() [2/2]
```

```
void TireGround::MultiDisk::setup (
    vec3 const & Plane_Normal,
    vec3 const & Plane_Point,
    real_type const Plane_Friction,
    mat4 const & TM ) [override], [virtual]
```

Update current tire position and find contact parameters with external plane

Parameters

Plane_Normal	Plane normal vector
Plane_Point	Plane known point
Plane_Friction	Friction on plane
TM	4x4 total transformation matrix

Implements TireGround::Tire.

The documentation for this class was generated from the following file:

• include/PatchTire.hh

6.7 TireGround::ReferenceFrame Class Reference

Reference frame.

```
#include <PatchTire.hh>
```

Public Member Functions

• ReferenceFrame ()

Default constructor.

• ReferenceFrame (vec3 const &_Origin, mat3 const &_RotationMatrix)

Variable set constructor.

• bool isEmpty (void)

Check if ReferenceFrame object is empty.

mat3 const & getRotationMatrix (void) const

Get current 3x3 rotation matrix.

• mat3 getRotationMatrixInverse (void) const

Get current 3x3 rotation matrix inverse.

• vec3 getX (void) const

Get current X-axis versor.

vec3 getY (void) const

Get current Y-axis versor.

• vec3 getZ (void) const

Get current Z-axis versor.

• vec3 const & getOrigin (void) const

Get origin position.

• void setOrigin (vec3 const &_Origin)

Set origin position.

• void setRotationMatrix (mat3 const &_RotationMatrix)

Set 3x3 rotation matrix.

void setTotalTransformationMatrix (mat4 const &TM)

Set 4x4 total transformation matrix.

mat4 getTotalTransformationMatrix (void)

Get 4x4 total transformation matrix.

- void set (ReferenceFrame const &in)
- real_type getEulerAngleX (void) const
- real_type getEulerAngleY (void) const
- real_type getEulerAngleZ (void) const

6.7.1 Detailed Description

Reference frame.

6.7.2 Constructor & Destructor Documentation

6.7.2.1 ReferenceFrame()

Variable set constructor.

Parameters

_Origin	Origin position	
_RotationMatrix	3x3 rotation matrix	

6.7.3 Member Function Documentation

6.7.3.1 getEulerAngleX()

```
real_type TireGround::ReferenceFrame::getEulerAngleX (
             void ) const
Get current Euler angles [ rad] for X-axis
Warning: Factor as [R_z][R_x][R_y]!
6.7.3.2 getEulerAngleY()
real_type TireGround::ReferenceFrame::getEulerAngleY (
             void ) const
Get current Euler angles [ rad] for Y-axis
Warning: Factor as [R_z][R_x][R_y]!
6.7.3.3 getEulerAngleZ()
real_type TireGround::ReferenceFrame::getEulerAngleZ (
             void ) const
Get current Euler angles [ rad] for Z-axis
Warning: Factor as [R_z][R_x][R_y]!
6.7.3.4 set()
void TireGround::ReferenceFrame::set (
             ReferenceFrame const & in ) [inline]
Copy the tire ReferenceFrame object
Warning: Rotation matrix must be orthonormal!
Parameters
     ReferenceFrame object to be copied
6.7.3.5 setOrigin()
void TireGround::ReferenceFrame::setOrigin (
             vec3 const & _Origin ) [inline]
Set origin position.
Parameters
 _Origin
           Origin position
6.7.3.6 setRotationMatrix()
void TireGround::ReferenceFrame::setRotationMatrix (
             mat3 const & _RotationMatrix ) [inline]
Set 3x3 rotation matrix.
```

Parameters

6.7.3.7 setTotalTransformationMatrix()

Set 4x4 total transformation matrix.

Parameters

TM 4x4 total transformation matrix

The documentation for this class was generated from the following file:

• include/PatchTire.hh

6.8 TireGround::SamplingGrid Class Reference

Patch evaluation precision.

```
#include <PatchTire.hh>
```

Public Member Functions

• SamplingGrid ()

Default constructor.

• SamplingGrid (int_type _PointsN, int_type _DisksN)

Variable set constructor.

SamplingGrid (int_type _PointsN, int_type _DisksN, int_type _Switch)

Variable set constructor.

• int_type getPointsNumber (void) const

Get number of sampling points for each Disk (divisions on X-axis)

int_type getDisksNumber (void) const

Get number of Disks (divisions on Y-axis -1)

• unsigned getSwitchNumber (void) const

Get number of maximum RoadTriangles in the Tire Shadow (switch to sampling)

• void setSwitchNumber (int_type const _Switch)

Set number of maximum RoadTriangles in the Tire Shadow (switch to sampling)

- void set (int_type _PointsN, int_type _DisksN, int_type _Switch)
- Set number of divisions.void set (SamplingGrid const &in)

Copy the SamplingGrid object.

13 1 8 7

Detailed Description

Patch evaluation precision.

6.8.1

6.8.2 Constructor & Destructor Documentation

6.8.2.1 SamplingGrid() [1/2]

Variable set constructor.

Parameters

_PointsN	Sampling points for each Disk (divisions on <i>X</i> -axis)
_DisksN	Number of Disks (divisions on Y -axis -1)

6.8.2.2 SamplingGrid() [2/2]

Variable set constructor.

Parameters

_PointsN	Sampling points for each $Disk$ (divisions on X -axis)
_DisksN	Number of Disks (divisions on Y -axis -1)
_Switch	Maximum RoadTriangles in the Tire Shadow (switch to sampling)

6.8.3 Member Function Documentation

Set number of divisions.

Parameters

_PointsN	Sampling points for each Disk (divisions on <i>X</i> -axis)
_DisksN	Number of Disks (divisions on Y -axis -1)
_Switch	Maximum RoadTriangles in the Tire Shadow (switch to sampling)

6.8.3.2 set() [2/2]

Copy the SamplingGrid object.

Parameters

```
in | SamplingGrid object to be copied
```

6.8.3.3 setSwitchNumber()

Set number of maximum RoadTriangles in the Tire Shadow (switch to sampling)

Parameters

```
_Switch | New switch number
```

The documentation for this class was generated from the following file:

• include/PatchTire.hh

6.9 TireGround::Shadow Class Reference

2D shadow (2D bounding box enhacement)

```
#include <PatchTire.hh>
```

Public Member Functions

- Shadow ()
 - Default constructor.
- Shadow (ETRTO const &TireGeometry, ReferenceFrame const &RF)
- void update (ETRTO const &TireGeometry, ReferenceFrame const &RF)
- G2lib::AABBtree::PtrAABB const getAABBtree (void) const

Get total Tire G2Lib::AABBtree (3D projection on ground)

- G2lib::AABBtree::PtrAABB const getUpperSideAABBtree (void) const Get upper side Tire G2Lib:AABBtree (3D projection on ground)
- G2lib::AABBtree::PtrAABB const getLowerSideAABBtree (void) const Get lower side Tire G2Lib:AABBtree (3D projection on ground)

6.9.1 Detailed Description

2D shadow (2D bounding box enhacement)

6.9.2 Constructor & Destructor Documentation

6.9.2.1 Shadow()

Variable set constructor

Warning: Rotation matrix must be orthonormal!

Parameters

TireGeometry	Tire ETRTO denomination
RF	Tire ReferenceFrame

6.9.3 Member Function Documentation

6.9.3.1 update()

Update the 2D tire shadow domain

Warning: Rotation matrix must be orthonormal!

Parameters

TireGeometry	Tire ETRTO denomination
RF	Tire ReferenceFrame

The documentation for this class was generated from the following file:

• include/PatchTire.hh

6.10 TicToc Class Reference

Public Member Functions

- void tic ()
- void **toc** ()
- real_type **elapsed_s** () const
- real_type elapsed_ms () const

The documentation for this class was generated from the following file:

• include/TicToc.hh

6.11 TireGround::Tire Class Reference

Base class for Tire models.

#include <PatchTire.hh>

Inheritance diagram for TireGround::Tire:

Collaboration diagram for TireGround::Tire:

Public Member Functions

- ~Tire ()
 - Default destructor.
- Tire (real_type const SectionWidth, real_type const AspectRatio, real_type const Rim
 — Diameter, int_type const PointsN, int_type const DisksN)

Variable set constructor.

- void printETRTOGeometry (ostream_type &stream) const Display Tire ETRTO geometry data.
- G2lib::AABBtree::PtrAABB const getAABBtree (void) const

Get total Tire Shadow G2Lib::AABBtree (3D projection on ground)

• G2lib::AABBtree::PtrAABB const getUpperSideAABBtree (void) const

Get upper side Tire Shadow G2Lib:AABBtree (3D projection on ground)

G2lib::AABBtree::PtrAABB const getLowerSideAABBtree (void) const

Get lower side Tire Shadow G2Lib:AABBtree (3D projection on ground)

- void setReferenceFrame (ReferenceFrame const & RF)
- ReferenceFrame const & getReferenceFrame (void) const

Get tire ReferenceFrame object.

• void setOrigin (vec3 const &Origin)

Set a new tire origin.

- void setRotationMatrix (mat3 const &RotationMatrix)
- void setTotalTransformationMatrix (mat4 const &TM)
- real_type getEulerAngleX (void) const
- real_type getEulerAngleY (void) const
- real_type getEulerAngleZ (void) const
- void getRelativeCamber (real_type &RelativeCamber) const

Get relative camber angle [rad].

int_type getDisksNumber (void) const

Dimension of the contact points data structure (disks number)

- virtual void getRho (real_type &Rho, real_type &RhoDot, real_type const RhoOld, real_← type const Time) const =0
- virtual void getRho (row_vecN &Rho, row_vecN &RhoDot, row_vecN const RhoOld, real
 _type const Time) const =0
- virtual void getNormal (vec3 &Normal) const =0

Get contact normal versor.

virtual void getNormal (row_vec3 &Normal) const =0

Get contact normal versors vector.

• virtual void getMFpoint (vec3 &Point) const =0

Get Magic Formula contact point.

• virtual void getMFpoint (row_vec3 &Point) const =0

Get Magic Formula contact point vector.

• virtual void getFriction (real_type &Friction) const =0

Get contact point friction.

• virtual void getFriction (row_vecN &Friction) const =0

Get contact frictions vector.

• virtual void getMFpointRF (mat4 &PointRF) const =0

Get Magic Formula contact point reference frame with 4x4 transformation matrix.

• virtual void getMFpointRF (row_mat4 &PointRF) const =0

Get Magic Formula contact point reference frame vector with 4x4 transformation matrix.

• virtual void getArea (real_type &_Area) const =0

Get approximated contact area on Disk plane [m^2].

• virtual void getArea (row_vecN &Area) const =0

Get approximated contact areas vector on Disk plane $[m^2]$.

• virtual void getVolume (real_type &Volume) const =0

Get approximated contact volume $[m^3]$.

• virtual void getVolume (row_vecN &_Volume) const =0

Get approximated contact volume [m^3].

• virtual void evaluateContact (RDF::TriangleRoad list const &TriList)=0

Evaluate contact with RoadTriangles.

• virtual bool setup (RDF::MeshSurface &Mesh, mat4 const &TM)=0

Update current tire position and find contact parameters.

- virtual void setup (vec3 const &Plane_Normal, vec3 const &Plane_Point, real_type const Plane_Friction, mat4 const &TM)=0
- virtual void print (ostream_type &stream) const =0

Print contact parameters.

Protected Member Functions

• Tire (Tire const &)=delete

Deleted copy constructor.

• Tire const & operator= (Tire const &)=delete

Deleted copy operator.

• bool pointSampling (RDF::TriangleRoad_list const &TriList, vec3 const &RayOrigin, vec3 const &RayDirection, vec3 &SampledPt, real_type &TriFriction=quietNaN, vec3 &Tri← Normal=vec3_NaN) const

Perform one point sampling (ray-triangle intersection)

Protected Attributes

• SamplingGrid Precision

Contacth patch evaluating precision.

• ETRTO TireGeometry

Tire ETRTO denomination.

ReferenceFrame RF

ReferenceFrame.

• Shadow TireShadow

Tire shadow.

6.11.1 Detailed Description

Base class for Tire models.

6.11.2 Constructor & Destructor Documentation

6.11.2.1 Tire()

Variable set constructor.

Parameters

SectionWidth	Tire section width [m]
AspectRatio	Tire aspect ratio [%]
RimDiameter	Rim diameter [in]
PointsN	Sampling points for each Disk (divisions on <i>X</i> -axis)
DisksN	Number of Disks (divisions on Y -axis -1)

6.11.3 Member Function Documentation

6.11.3.1 evaluateContact()

Evaluate contact with RoadTriangles.

Parameters

```
TriList | Shadow/MeshSurface intersected triangles
```

Implemented in TireGround::MagicFormula.

```
6.11.3.2 getArea() [1/2]
```

Get approximated contact area on Disk plane [m^2].

Parameters

```
_Area | Contact area [ m^2]
```

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

```
6.11.3.3 getArea() [2/2]
```

Get approximated contact areas vector on Disk plane [m^2].

Parameters

```
Area Contact areas vector [ m^2]
```

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

6.11.3.4 getEulerAngleX()

Get current Euler angles [rad] for X-axis Warning: Factor as $[R_z][R_x][R_y]!$

6.11.3.5 getEulerAngleY()

Get current Euler angles [rad] for Y-axis

Warning: Factor as $[R_z][R_x][R_y]!$

6.11.3.6 getEulerAngleZ()

Get current Euler angles [rad] for Z-axis Warning: Factor as [R_x][R_x]!

```
6.11.3.7 getFriction() [1/2]
```

Get contact point friction.

Parameters

Friction | Contact point friction

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

```
6.11.3.8 getFriction() [2/2]
```

Get contact frictions vector.

Parameters

```
Friction | Contact frictions vector
```

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

```
6.11.3.9 getMFpoint() [1/2]
```

Get Magic Formula contact point.

Parameters

```
Point Magic Formula contact point
```

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

```
6.11.3.10 getMFpoint() [2/2]
```

Get Magic Formula contact point vector.

Point Magic Formula Contact point vector
--

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

Get Magic Formula contact point reference frame with 4x4 transformation matrix.

Parameters

```
PointRF | Magic Formula contact point reference frame
```

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

Get Magic Formula contact point reference frame vector with 4x4 transformation matrix.

Parameters

```
PointRF | Magic Formula ontact point reference frames vector
```

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

Get contact normal versor.

Parameters

```
Normal Contact point normal direction
```

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

Get contact normal versors vector.

Normal Contact point normal direction vector
--

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

6.11.3.15 getRelativeCamber()

Get relative camber angle [rad].

Parameters

RelativeCamber	Relative camber angle	
----------------	-----------------------	--

6.11.3.16 getRho() [1/2]

Get contact depth at center point [m]

Warning: (if negative the tire does not touch the ground)!

Parameters

Rho	Depth at center point [m/s]
RhoDot	Contact depth derivative [m/s]
RhoOld	Previous time step Rho [m]
Time	Time step $[s]$

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

6.11.3.17 getRho() [2/2]

Get contact depth vector [m] and it time derivatives [m/s] Warning: (if negative the tire does not touch the ground)!

Rho	Depth matrix [m/s]
-----	------------------------

RhoDot	Contact depth derivative matrix [m/s]
RhoOld	Previous time step Rho matrix [m]
Time	Time step $[s]$

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

Parameters

act volume [m^3]	Volume
----------------------	--------

Get approximated contact volume [m^3].

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

Parameters

_Volume	Contact volume vector	$[m^3]$	Π

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

6.11.3.20 pointSampling()

Perform one point sampling (ray-triangle intersection)

TriList	Shadow/MeshSurface intersected triangles
RayOrigin	Ray origin
RayDirection	Ray direction

SampledPt	Intersection point
TriFriction	Intersected triangle friction
TriNormal	Intersected triangle normal

6.11.3.21 print()

Print contact parameters.

Parameters

stream	Output stream type
--------	--------------------

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

6.11.3.22 printETRTOGeometry()

Display Tire ETRTO geometry data.

Parameters

stream	Output stream type
--------	--------------------

6.11.3.23 setOrigin()

Set a new tire origin.

Parameters

```
Origin Tire origin
```

6.11.3.24 setReferenceFrame()

Copy the tire ReferenceFrame object

Warning: Rotation matrix must be orthonormal!

 $_RF$

ReferenceFrame object to be copied

6.11.3.25 setRotationMatrix()

Set a new 3x3 rotation matrix

Warning: Rotation matrix must be orthonormal!

Parameters

6.11.3.26 setTotalTransformationMatrix()

Set 4x4 total transformation matrix

Warning: Rotation matrix must be orthonormal!

Parameters

```
TM 4x4 total transformation matrix
```

6.11.3.27 setup() [1/2]

Update current tire position and find contact parameters.

Parameters

Mesh MeshSurface object (road)	
TM	4x4 total transformation matrix

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

6.11.3.28 setup() [2/2]

```
real_type const Plane_Friction,
mat4 const & TM ) [pure virtual]
```

Update current tire position and find contact parameters with external plane

Parameters

Plane_Normal	Plane normal vector
Plane_Point	Plane known point
Plane_Friction	Friction on plane
TM	4x4 total transformation matrix

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

The documentation for this class was generated from the following file:

• include/PatchTire.hh

6.12 TireGround::RDF::Triangle3D Class Reference

3D triangle (pure geometrical description)

```
#include <RoadRDF.hh>
```

Inheritance diagram for TireGround::RDF::Triangle3D:

Collaboration diagram for TireGround::RDF::Triangle3D:

Public Member Functions

• Triangle3D ()

Variable set constructor.

• Triangle3D (vec3 const _Vertices[3])

Variable set constructor.

• void setVertices (vec3 const _Vertices[3])

Set new vertices and update bounding box domain.

• void setVertices (vec3 const &Vertex0, vec3 const &Vertex1, vec3 const &Vertex2)

Set new vertices then update bounding box domain and normal versor.

• vec3 const & getNormal (void) const

Get normal versor.

• vec3 const & getVertex (unsigned i) const

Get i-th vertex.

• BBox2D const & getBBox (void) const

Get Triangle3D bonding box BBox2D.

• void print (ostream_type &stream) const

Print vertices data.

- bool intersectRay (vec3 const &RayOrigin, vec3 const &RayDirection, vec3 &IntPt) const
- int_type intersectEdgePlane (vec3 const &PlaneN, vec3 const &PlaneP, int_type const Edge, vec3 &IntPt1, vec3 &IntPt2) const
- bool intersectPlane (vec3 const &PlaneN, vec3 const &PlaneP, std::vector < vec3 > &IntPts) const

Protected Member Functions

• Triangle3D (Triangle3D const &)=delete

Deleted copy constructor.

• Triangle3D & operator= (Triangle3D const &)=delete

Deleted copy operator.

Protected Attributes

• vec3 Vertices [3]

Vertices reference vector.

• vec3 Normal

Triangle normal versor.

• BBox2D TriangleBBox

Triangle 2D bounding box (XY plane)

6.12.1 Detailed Description

3D triangle (pure geometrical description)

6.12.2 Constructor & Destructor Documentation

6.12.2.1 Triangle3D()

Variable set constructor.

Parameters

_ <i>Vertices</i> Vertices reference vector

6.12.3 Member Function Documentation

6.12.3.1 intersectEdgePlane()

Check if an edge of the Triangle3D object hits a and find the intersection point

PlaneN	Plane normal vector
PlaneP	Plane known point
Edge	Triangle edge number (0:2)
IntPt1	Intersection point 1
IntPt2	Intersection point 2

6.12.3.2 intersectPlane()

Check if a plane intersects a Triangle3D object and find the intersection points

Parameters

PlaneN	Plane normal vector
PlaneP	Plane known point
IntPts	Intersection points

6.12.3.3 intersectRay()

Check if a ray hits a Triangle3D object through Möller-Trumbore intersection algorithm

Parameters

RayOrigin	Ray origin position
RayDirection	Ray direction vector
IntPt	Intersection point

6.12.3.4 print()

Print vertices data.

Parameters

stream	Output stream type
--------	--------------------

6.12.3.5 setVertices() [1/2]

Set new vertices and update bounding box domain.

_Vertices	Vertices reference vector

6.12.3.6 setVertices() [2/2]

```
void TireGround::RDF::Triangle3D::setVertices (
    vec3 const & Vertex0,
    vec3 const & Vertex1,
    vec3 const & Vertex2 ) [inline]
```

Set new vertices then update bounding box domain and normal versor.

Parameters

Vertex0	Vertex 1
Vertex1	Vertex 2
Vertex2	Vertex 3

The documentation for this class was generated from the following file:

• include/RoadRDF.hh

6.13 TireGround::RDF::TriangleRoad Class Reference

3D triangles for road representation

```
#include <RoadRDF.hh>
```

Inheritance diagram for TireGround::RDF::TriangleRoad:

Collaboration diagram for TireGround::RDF::TriangleRoad:

Public Member Functions

• TriangleRoad ()

Default set constructor.

• TriangleRoad (vec3 const _Vertices[3], real_type _Friction)

Variable set constructor.

void setFriction (real_type _Friction)

Set friction coefficient.

real_type getFriction (void) const

Get friction coefficent on the face.

• void setVertices (vec3 const _Vertices[3])

Set new vertices and update bounding box domain.

• void setVertices (vec3 const &Vertex0, vec3 const &Vertex1, vec3 const &Vertex2)

Set new vertices then update bounding box domain and normal versor.

• vec3 const & getNormal (void) const

Get normal versor.

vec3 const & getVertex (unsigned i) const

Get i-th vertex.

• BBox2D const & getBBox (void) const

Get Triangle3D bonding box BBox2D.

• void print (ostream_type &stream) const

Print vertices data.

- bool intersectRay (vec3 const &RayOrigin, vec3 const &RayDirection, vec3 &IntPt) const
- int_type intersectEdgePlane (vec3 const &PlaneN, vec3 const &PlaneP, int_type const Edge, vec3 &IntPt1, vec3 &IntPt2) const
- bool intersectPlane (vec3 const &PlaneN, vec3 const &PlaneP, std::vector< vec3 > &IntPts)
 const

Protected Attributes

• vec3 Vertices [3]

Vertices reference vector.

• vec3 Normal

Triangle normal versor.

BBox2D TriangleBBox

Triangle 2D bounding box (XY plane)

6.13.1 Detailed Description

3D triangles for road representation

6.13.2 Constructor & Destructor Documentation

6.13.2.1 TriangleRoad()

Variable set constructor.

Parameters

_Vertices	Vertices reference vector
_Friction	Friction coefficient

6.13.3 Member Function Documentation

6.13.3.1 intersectEdgePlane()

Check if an edge of the Triangle3D object hits a and find the intersection point

PlaneN	Plane normal vector
PlaneP	Plane known point
Edge	Triangle edge number (0:2)
IntPt1	Intersection point 1
IntPt2	Intersection point 2

6.13.3.2 intersectPlane()

Check if a plane intersects a Triangle3D object and find the intersection points

Parameters

PlaneN	Plane normal vector
PlaneP	Plane known point
IntPts	Intersection points

6.13.3.3 intersectRay()

Check if a ray hits a Triangle3D object through Möller-Trumbore intersection algorithm

Parameters

RayOrigin	Ray origin position
RayDirection	Ray direction vector
IntPt	Intersection point

6.13.3.4 print()

Print vertices data.

Parameters

stream	Output stream type
--------	--------------------

6.13.3.5 setFriction()

Set friction coefficient.

_Friction New friction coefficient

6.13.3.6 setVertices() [1/2]

Set new vertices and update bounding box domain.

Parameters

_Vertices	Vertices reference vector
-----------	---------------------------

6.13.3.7 setVertices() [2/2]

Set new vertices then update bounding box domain and normal versor.

Parameters

Vertex0	Vertex 1
Vertex1	Vertex 2
Vertex2	Vertex 3

The documentation for this class was generated from the following file:

• include/RoadRDF.hh

Index

BBox2D	TireGround::ReferenceFrame, 56
TireGround::RDF::BBox2D, 20	TireGround::Tire, 64
	getEulerAngleZ
contactPlane	TireGround::MagicFormula, 31
TireGround::Disk, 22	TireGround::MultiDisk, 47
contactTriangles	TireGround::ReferenceFrame, 56
TireGround::Disk, 22	TireGround::Tire, 64
	getFriction
Disk	TireGround::MagicFormula, 31
TireGround::Disk, 21	TireGround::MultiDisk, 47
TERRES.	TireGround::Tire, 65
ETRTO	getLineArea
TireGround::ETRTO, 26	TireGround::Disk, 23
evaluateContact	getMFeffectiveRF
TireGround::MagicFormula, 30	TireGround::MultiDisk, 48
TireGround::Tire, 63	getMFeffectiveR
Contains	TireGround::MultiDisk, 48
firstToken	getMFeffectiveY
TireGround::RDF::algorithms, 17	TireGround::MultiDisk, 48
fourPointsSampling	getMFpoint
TireGround::MagicFormula, 30	TireGround::MagicFormula, 31, 32
getArea	TireGround::MultiDisk, 48
TireGround::MagicFormula, 30	TireGround::Tire, 65
TireGround::MultiDisk, 44	getMFpointRF
TireGround::Tire, 64	TireGround::MagicFormula, 32
getDiskFriction	TireGround::MultiDisk, 49
TireGround::MultiDisk, 45	TireGround::Tire, 66
getDiskMFpoint	getNormal
TireGround::MultiDisk, 45	TireGround::MagicFormula, 32, 33
getDiskMFpointRF	TireGround::MultiDisk, 49
TireGround::MultiDisk, 45	TireGround::Tire, 66
getDiskNormal	getRelativeCamber
TireGround::MultiDisk, 46	TireGround::MagicFormula, 33
getDiskOriginXYZ	TireGround::MultiDisk, 50
TireGround::MultiDisk, 46	TireGround::Tire, 67
getDiskRho	getRho
TireGround::MultiDisk, 46	TireGround::MagicFormula, 33, 34
getElement	TireGround::MultiDisk, 50
TireGround::RDF::algorithms, 17	TireGround::Tire, 67
getEulerAngleX	getVolume
TireGround::MagicFormula, 31	TireGround::MagicFormula, 34
TireGround::MultiDisk, 47	TireGround::MultiDisk, 51
TireGround::ReferenceFrame, 56	TireGround::Tire, 68
TireGround::Tire, 64	incoroananine, vo
getEulerAngleY	intersectAABBtree
TireGround::MagicFormula, 31	TireGround::RDF::MeshSurface, 38
TireGround::MultiDisk, 47	intersectBBox

TireGround::RDF::MeshSurface, 39	TireGround::SamplingGrid, 58
intersectEdgePlane	segmentArea
TireGround::RDF::Triangle3D, 73	TireGround::Disk, 24
TireGround::RDF::TriangleRoad, 77	segmentLength
intersectPlane	TireGround::Disk, 24
TireGround::Disk, 23	set
TireGround::RDF::Triangle3D, 73	TireGround::Disk, 24
TireGround::RDF::TriangleRoad, 77	TireGround::RDF::MeshSurface, 39
intersectPointSegment	TireGround::ReferenceFrame, 56
TireGround::algorithms, 13	TireGround::SamplingGrid, 58
intersectRay	setDiskOriginXZ
TireGround::RDF::Triangle3D, 74	TireGround::MultiDisk, 52
TireGround::RDF::TriangleRoad, 78	setFriction
intersectRayPlane	TireGround::RDF::TriangleRoad, 78
TireGround::algorithms, 14	setOrigin
intersectSegment	TireGround::MagicFormula, 35
TireGround::Disk, 23	TireGround::MultiDisk, 53
isPointInside	TireGround::ReferenceFrame, 56
TireGround::Disk, 24	TireGround::Tire, 69
	setOriginXZ
LoadFile	TireGround::Disk, 25
TireGround::RDF::MeshSurface, 39	setReferenceFrame
	TireGround::MagicFormula, 36
MagicFormula	TireGround::MultiDisk, 53
TireGround::MagicFormula, 29	TireGround::Tire, 69
mean	setRotationMatrix
TireGround::algorithms, 14	TireGround::MagicFormula, 36
MeshSurface	TireGround::MultiDisk, 53
TireGround::RDF::MeshSurface, 38	TireGround::ReferenceFrame, 56
minmax_XY	TireGround::Tire, 70
TireGround::algorithms, 14	setSwitchNumber
MultiDisk	TireGround::SamplingGrid, 59
TireGround::MultiDisk, 43, 44	setTotalTransformationMatrix
a sint Committee	TireGround::MagicFormula, 36
pointSampling TimeControl Manis Formula 24	TireGround::MultiDisk, 53
TireGround::MagicFormula, 34	TireGround::ReferenceFrame, 57
TireGround::MultiDisk, 51	TireGround::Tire, 70
TireGround::Tire, 68	setVertices
print TireCrounduETPTO 26	TireGround::RDF::Triangle3D, 74, 75
TireGround::ETRTO, 26	TireGround::RDF::TriangleRoad, 79
TireGround::MagicFormula, 35	setup
TireGround::MultiDisk, 52	TireGround::MagicFormula, 36, 37
TireGround::RDF::BBox2D, 20	TireGround::MultiDisk, 54
TireGround::RDF::Triangle3D, 74	TireGround::Tire, 70
TireGround::RDF::TriangleRoad, 78	Shadow
TireGround::Tire, 69	TireGround::Shadow, 59
printData	split
TireGround::RDF::MeshSurface, 39	TireGround::RDF::algorithms, 17
printETRTOGeometry	ine ore unamental mangerial interpretation in
TireGround::MagicFormula, 35	tail
TireGround::MultiDisk, 52	TireGround::RDF::algorithms, 17
TireGround::Tire, 69	TicToc, 60
ReferenceFrame	Tire
TireGround::ReferenceFrame, 55	TireGround::Tire, 63
incoround	TireGround, 11
SamplingGrid	TireGround::Disk, 20

contactPlane, 22	getRelativeCamber, 50
contactTriangles, 22	getRho, 50
Disk, 21	getVolume, 51
getLineArea, 23	MultiDisk, 43, 44
intersectPlane, 23	pointSampling, 51
intersectSegment, 23	print, 52
isPointInside, 24	printETRTOGeometry, 52
segmentArea, 24	setDiskOriginXZ, 52
segmentLength, 24	setOrigin, 53
set, 24	setReferenceFrame, 53
setOriginXZ, 25	setRotationMatrix, 53
y, 25	setTotalTransformationMatrix, 53
TireGround::ETRTO, 25	setup, 54
ETRTO, 26	TireGround::RDF::BBox2D, 19
print, 26	BBox2D, 20
TireGround::MagicFormula, 26	print, 20
evaluateContact, 30	updateBBox2D, 20
fourPointsSampling, 30	TireGround::RDF::MeshSurface, 37
getArea, 30	intersectAABBtree, 38
getEulerAngleX, 31	intersectBBox, 39
getEulerAngleY, 31	LoadFile, 39
getEulerAngleZ, 31	MeshSurface, 38
getFriction, 31	printData, 39
getMFpoint, 31, 32	set, 39
getMFpointRF, 32	TireGround::RDF::Triangle3D, 71
getNormal, 32, 33	intersectEdgePlane, 73
getRelativeCamber, 33	intersectPlane, 73
getRho, 33, 34	intersectRay, 74
getVolume, 34	print, 74
MagicFormula, 29	setVertices, 74, 75
pointSampling, 34	Triangle3D, 73
print, 35	TireGround::RDF::TriangleRoad, 75
•	intersectEdgePlane, 77
printETRTOGeometry, 35	intersectEuger lane, 77
setOrigin, 35	
setReferenceFrame, 36	intersectRay, 78
setRotationMatrix, 36	print, 78
setTotalTransformationMatrix, 36	setVertices 70
setup, 36, 37	setVertices, 79
TireGround::MultiDisk, 40	TriangleRoad, 77
getArea, 44	TireGround::RDF::algorithms, 16
getDiskFriction, 45	firstToken, 17
getDiskMFpoint, 45	getElement, 17
getDiskMFpointRF, 45	split, 17
getDiskNormal, 46	tail, 17
getDiskOriginXYZ, 46	TireGround::RDF, 16
getDiskRho, 46	TireGround::ReferenceFrame, 54
getEulerAngleX, 47	getEulerAngleX, 56
getEulerAngleY, 47	getEulerAngleY, 56
getEulerAngleZ, 47	getEulerAngleZ, 56
getFriction, 47	ReferenceFrame, 55
getMFeffectiveRF, 48	set, 56
getMFeffectiveR, 48	setOrigin, 56
getMFeffectiveY, 48	setRotationMatrix, 56
getMFpoint, 48	setTotalTransformationMatrix, 57
getMFpointRF, 49	TireGround::SamplingGrid, 57
getNormal, 49	SamplingGrid, 58

```
set, 58
    setSwitchNumber, 59
TireGround::Shadow, 59
    Shadow, 59
    update, 60
TireGround::Tire, 61
    evaluateContact, 63
    getArea, 64
    getEulerAngleX, 64
    getEulerAngleY, 64
    getEulerAngleZ, 64
    getFriction, 65
    getMFpoint, 65
    getMFpointRF, 66
    getNormal, 66
    getRelativeCamber, 67
    getRho, 67
    getVolume, 68
    pointSampling, 68
    print, 69
    printETRTOGeometry, 69
    setOrigin, 69
    setReferenceFrame, 69
    setRotationMatrix, 70
    setTotalTransformationMatrix, 70
    setup, 70
    Tire, 63
TireGround::algorithms, 13
    intersectPointSegment, 13
    intersectRayPlane, 14
    mean, 14
    minmax_XY, 14
    trapezoidArea, 15
    weightedMean, 15
trapezoidArea
    TireGround::algorithms, 15
Triangle3D
    TireGround::RDF::Triangle3D, 73
TriangleRoad
    TireGround::RDF::TriangleRoad, 77
update
    TireGround::Shadow, 60
updateBBox2D
    TireGround::RDF::BBox2D, 20
weightedMean
    TireGround::algorithms, 15
y
    TireGround::Disk, 25
```