

# A Study of Transfer Learning for Skin Lesion Classification

Fábio Maia

https://fabiomaia.github.io

#### Structure

- 1. Motivation
- 2. Objectives
- 3. Background
- 4. Transfer Learning Experiments
- 5. End-to-end Learning Experiments
- 6. Conclusions

#### **Motivation**

- Deep learning is very exciting but requires a large amount of training data and vast computational resources
- In practice, obtaining a large dataset for training a model for a particular task is often very difficult and most research teams also don't have many computational resources
- Transfer learning emerges as a strategy for deep learning that doesn't require as much data or computational resources
- In particular, skin lesion classification is an application which transfer learning can solve quite usefully in order to aid diagnoses of skin lesions

#### Objectives

- 1. Train models based on different strategies of transfer learning from the VGG16 model trained on ImageNet
- 2. Train models of custom CNN architectures based around reasonable heuristics
- 3. Compare and discuss results

#### Structure

- 1. Motivation
- 2. Objectives
- 3. Background
- 4. Transfer Learning Experiments
- 5. End-to-end Learning Experiments
- 6. Conclusions

#### Convolutional Neural Networks

- FCNN are a class of feedforward ANN, that unfortunately don't scale well to most problems in computer vision due to the curse of dimensionality
- CNN are another class of feedforward ANN, originally designed for computer vision problems, whose architecture takes advantage of the assumption that the input is an image

### CNN: three-dimensional composition of neurons



# CNN: local connectivity and parameter sharing



#### CNN: downsampling

#### Single depth slice

6 8 3 0

max pool with 2x2 filters and stride 2

| 6 | 8 |
|---|---|
| 3 | 4 |

#### VGG16



#### Transfer Learning

- Total Parameter Extraction without Fine Tuning
- Total Parameter Extraction with Fine Tuning
- Partial Parameter Extraction



#### Structure

- 1. Motivation
- 2. Objectives
- 3. Background
- 4. Transfer Learning Experiments
- 5. End-to-end Learning Experiments
- 6. Conclusions

#### ISIC 2018 Dataset



class balance augmentation



#### VGG16



#### Transfer Learning Common Procedure

- 1. Standardize training and validation samples relative to ImageNet
- 2. Define specific network architecture
  - Extract **e** layers and freeze **f** layers from the pre-trained model
  - Global average pooling
  - 1 fully-connected layer of 512 ReLU-activated neurons
  - 1 fully-connected layer of 1 sigmoid-activated neuron
- 3. Some parameters are transferred and others follow Xavier initialization
- 4. SGD with 32 sample batches and momentum  $\gamma = 0.9$ 
  - $\circ$  Binary cross entropy cost function and explicit L2 regularization with cross-validated  $\lambda$
  - o Initial learning rate  $η = 10^{-4}$  that decays by a factor of 10 if validation accuracy has not improved  $+10^{-3}$  in the last 10 epochs
  - Shuffle samples every epoch
  - $\circ$  Train for a maximum of 1000 epochs, stopping early if the loss has not changed  $\pm 10^{-3}$  in the last 30 epochs

#### VGG16

























#### Total Parameter Extraction without Fine Tuning



# Good generalization performance on validation set

|    | c  | ``        | 4                   | 1                  |
|----|----|-----------|---------------------|--------------------|
| e  | Ĵ  | $\lambda$ | $A_{train}$         | $A_{val}$          |
| 18 | 18 | 0.0001    | 1.0                 | 0.914              |
| 18 | 18 | 0.000154  | 0.995               | 0.9                |
| 18 | 18 | 0.000239  | 1.0                 | 0.911              |
| 18 | 18 | 0.000368  | 1.0                 | 0.908              |
| 18 | 18 | 0.000569  | 0.994               | 0.904              |
| 18 | 18 | 0.000879  | 0.998               | 0.911              |
| 18 | 18 | 0.00136   | 0.998               | 0.911              |
| 18 | 18 | 0.0021    | 0.994               | 0.908              |
| 18 | 18 | 0.00324   | 0.991               | 0.902              |
| 18 | 18 | 0.005     | 0.975               | 0.893              |
|    |    |           | $0.995 \pm 0.00713$ | $0.906 \pm 0.0061$ |



# Data augmentation is very important



#### Partial Parameter Extraction w/ and w/o Finetuning



#### Models do not converge



## Cross-validating new learning rates



### Appropriate learning rate allows convergence



#### Total Parameter Extraction with Finetuning



## 8% increase in performance

| e  | f  | λ        | $A_{train}$   | $A_{val}$           |
|----|----|----------|---------------|---------------------|
| 18 | 14 | 0.0001   | 1.0           | 0.928               |
| 18 | 14 | 0.000154 | 1.0           | 0.923               |
| 18 | 14 | 0.000239 | 1.0           | 0.925               |
| 18 | 14 | 0.000368 | 1.0           | 0.926               |
| 18 | 14 | 0.000569 | 1.0           | 0.925               |
| 18 | 14 | 0.000879 | 1.0           | 0.921               |
| 18 | 14 | 0.00136  | 1.0           | 0.923               |
| 18 | 14 | 0.0021   | 1.0           | 0.927               |
| 18 | 14 | 0.00324  | 1.0           | 0.925               |
| 18 | 14 | 0.005    | 1.0           | 0.925               |
|    |    |          | $1.0 \pm 0.0$ | $0.925 \pm 0.00194$ |

| e  | f  | λ        | $A_{train}$     | $A_{val}$         |
|----|----|----------|-----------------|-------------------|
| 18 | 10 | 0.0001   | 0.5             | 0.5               |
| 18 | 10 | 0.000154 | 1.0             | 0.926             |
| 18 | 10 | 0.000239 | 1.0             | 0.928             |
| 18 | 10 | 0.000368 | 1.0             | 0.922             |
| 18 | 10 | 0.000569 | 1.0             | 0.933             |
| 18 | 10 | 0.000879 | 1.0             | 0.925             |
| 18 | 10 | 0.00136  | 1.0             | 0.935             |
| 18 | 10 | 0.0021   | 1.0             | 0.931             |
| 18 | 10 | 0.00324  | 1.0             | 0.929             |
| 18 | 10 | 0.005    | 1.0             | 0.929             |
|    |    |          | $0.95 \pm 0.15$ | $0.886 \pm 0.129$ |

| e  | f | λ        | $A_{train}$     | $A_{val}$         |   |
|----|---|----------|-----------------|-------------------|---|
| 18 | 6 | 0.0001   | 0.5             | 0.5               |   |
| 18 | 6 | 0.000154 | 0.5             | 0.5               |   |
| 18 | 6 | 0.000239 | 1.0             | 0.93              |   |
| 18 | 6 | 0.000368 | 0.5             | 0.5               |   |
| 18 | 6 | 0.000569 | 1.0             | 0.925             |   |
| 18 | 6 | 0.000879 | 1.0             | 0.922             |   |
| 18 | 6 | 0.00136  | 0.5             | 0.501             |   |
| 18 | 6 | 0.0021   | 0.501           | 0.498             |   |
| 18 | 6 | 0.00324  | 1.0             | 0.917             |   |
| 18 | 6 | 0.005    | 1.0             | 0.922             |   |
|    |   |          | $0.75 \pm 0.25$ | $0.711 \pm 0.212$ |   |
|    |   |          |                 |                   | 4 |

| e  | f | λ        | $A_{train}$     | $A_{val}$         |
|----|---|----------|-----------------|-------------------|
| 18 | 3 | 0.0001   | 1.0             | 0.9               |
| 18 | 3 | 0.000154 | 0.5             | 0.5               |
| 18 | 3 | 0.000239 | 0.5             | 0.5               |
| 18 | 3 | 0.000368 | 1.0             | 0.915             |
| 18 | 3 | 0.000569 | 1.0             | 0.926             |
| 18 | 3 | 0.000879 | 1.0             | 0.927             |
| 18 | 3 | 0.00136  | 1.0             | 0.933             |
| 18 | 3 | 0.0021   | 1.0             | 0.931             |
| 18 | 3 | 0.00324  | 0.5             | 0.5               |
| 18 | 3 | 0.005    | 0.5             | 0.5               |
|    |   |          | $0.8 \pm 0.245$ | $0.753 \pm 0.207$ |

|   | e  | f | λ        | $A_{train}$   | $A_{val}$         |  |
|---|----|---|----------|---------------|-------------------|--|
|   | 18 | 0 | 0.0001   | 0.5           | 0.5               |  |
|   | 18 | 0 | 0.000154 | 1.0           | 0.916             |  |
|   | 18 | 0 | 0.000239 | 1.0           | 0.9               |  |
|   | 18 | 0 | 0.000368 | 0.5           | 0.5               |  |
| ĺ | 18 | 0 | 0.000569 | 0.5           | 0.5               |  |
|   | 18 | 0 | 0.000879 | 0.501         | 0.5               |  |
| ı | 18 | 0 | 0.00136  | 0.5           | 0.5               |  |
| ì | 18 | 0 | 0.0021   | 0.5           | 0.5               |  |
|   | 18 | 0 | 0.00324  | 0.5           | 0.5               |  |
|   | 18 | 0 | 0.005    | 0.5           | 0.5               |  |
|   |    |   |          | $0.6 \pm 0.2$ | $0.582 \pm 0.163$ |  |

## Adam optimizer allows such models to converge



#### Structure

- 1. Motivation
- 2. Objectives
- 3. Background
- 4. Transfer Learning Experiments
- 5. End-to-end Learning Experiments
- 6. Conclusions

- 32 3×3 filters, stride of 1, zero padding, ReLU activated
- 32 3×3 filters, stride of 1, zero padding, ReLU activated
- 2×2 max pooling with stride 2
- 64 3×3 filters, stride of 1, zero padding, ReLU activated
- 64 3×3 filters, stride of 1, zero padding, ReLU activated
- 2×2 max pooling with stride 2
- 128 3×3 filters, stride of 1, zero padding, ReLU activated
- 128 3×3 filters, stride of 1, zero padding, ReLU activated
- 2×2 max pooling with stride 2
- 512 fully-connected ReLU-activated neurons
- 512 fully-connected ReLU-activated neurons
- 1 fully-connected sigmoid-activated neuron for binary classification

| λ        | $A_{train}$        | $A_{val}$          |
|----------|--------------------|--------------------|
| 0.0001   | 0.737              | 0.726              |
| 0.000154 | 0.734              | 0.724              |
| 0.000239 | 0.795              | 0.785              |
| 0.000368 | 0.782              | 0.768              |
| 0.000569 | 0.723              | 0.72               |
| 0.000879 | 0.724              | 0.72               |
| 0.00136  | 0.723              | 0.718              |
| 0.0021   | 0.721              | 0.716              |
| 0.00324  | 0.719              | 0.709              |
| 0.005    | 0.713              | 0.704              |
|          | $0.737 \pm 0.0267$ | $0.729 \pm 0.0248$ |





- 32 3×3 filters, stride of 1, zero padding, ReLU activated
- 2×2 max pooling with stride of 2
- 64 3×3 filters, stride of 1, zero padding, ReLU activated
- 2×2 max pooling with stride of 2
- 512 fully-connected ReLU-activated neurons
- 1 fully-connected sigmoid-activated neuron for binary classification

| λ        | $A_{train}$         | $A_{val}$           |
|----------|---------------------|---------------------|
| 0.0001   | 0.737               | 0.724               |
| 0.000154 | 0.736               | 0.72                |
| 0.000239 | 0.734               | 0.72                |
| 0.000368 | 0.731               | 0.717               |
| 0.000569 | 0.724               | 0.716               |
| 0.000879 | 0.724               | 0.719               |
| 0.00136  | 0.725               | 0.719               |
| 0.0021   | 0.718               | 0.71                |
| 0.00324  | 0.714               | 0.706               |
| 0.005    | 0.711               | 0.703               |
|          | $0.725 \pm 0.00865$ | $0.715 \pm 0.00645$ |





# Comparison



# Comparison

| Model                                        |       | AUC   | P     | R     | $F_1$ |
|----------------------------------------------|-------|-------|-------|-------|-------|
| Custom 2 $\lambda = 0.0003684$               | 0.738 | 0.737 | 0.761 | 0.738 | 0.732 |
| Custom 1 $\lambda = 0.00023853$              | 0.781 | 0.781 | 0.785 | 0.781 | 0.78  |
| VGG16 $e = 18, f = 10, \lambda = 0.00056898$ | 0.943 | 0.943 | 0.945 | 0.943 | 0.943 |

#### Structure

- 1. Motivation
- 2. Objectives
- 3. Background
- 4. Transfer Learning Experiments
- 5. End-to-end Learning Experiments

#### 6. Conclusions

## **Takeaways**

- Appropriate and reasonable data augmentation techniques are essential;
- Parameters from lower layers seem to be more sensitive to overshooting updates when compared to higher layers. Adaptive optimizers or carefully set learning rates solve the problem.
- Extracting only a subset of parameters from a pre-trained model can simultaneously provide good generalization performance as well as a more compact and computationally efficient model for certain applications;
- Extracting parameters up to the highest layer and fine-tuning the parameters up to the middle
  layers is the strategy that yielded the best generalization performance, a result which can be taken
  as a simple guiding heuristic;
- Designing a custom CNN and training it from scratch is difficult because it requires reasoning about and cross-validating many hyperparameters simultaneously
- Transfer learning emerges as the clear practical solution to a lot of problems where data is scarce

#### **Future Work**

- Study transfer learning applied to skin lesion classification with respect to more recent, state-of-the-art architectures;
- Study of optimizers and learning rates in transfer learning applied to skin lesion classification, perhaps even developing optimizers or learning rate schedules specific to transfer learning.

# Thank you