The Coordinates Layer

INTERMEDIATE DATA VISUALIZATION WITH GGPLOT2

Rick Scavetta
Founder, Scavetta Academy

Coordinates layer

- Controls plot dimensions
- coord_
 - o e.g. coord_cartesian()

Zooming in

```
• coord_cartesian(xlim = ...)
```

- scale_x_continuous(limits = ...)
- xlim(...)

Original plot

```
iris.smooth <- ggplot(
  iris,
  aes(x = Sepal.Length,
      y = Sepal.Width,
      color = Species)
  ) +
  geom_point(alpha = 0.7) +
  geom_smooth()</pre>
```


scale_x_continuous()

```
iris.smooth +
  scale_x_continuous(limits = c(4.5, 5.5))
```

Removed 95 rows containing non-finite values (stat_smooth).

Removed 95 rows containing missing values (geom_point).

scale_x_continuous()

Original plot

Zoom in with scale_x_continuous()

Part of original data is filtered out!


```
iris.smooth +
  xlim(c(4.5, 5.5))
```

Removed 95 rows containing non-finite values (stat_smooth).

Removed 95 rows containing missing values (geom_point).

coord_cartesian()

```
iris.smooth +
  coord_cartesian(xlim = c(4.5, 5.5))
```


Aspect ratio

- Height-to-width ratio
- Watch out for deception!
- No universal standard so far
- Typically use 1:1 if data is on the same scale

Sunspots

```
library(zoo)
sunspots.m <- data.frame(
    year = index(sunspot.month),
    value = reshape2::melt(sunspot.month)$value)
)

ggplot(sunspots.m, aes(x = year, y = value)) +
    geom_line() +
    coord_fixed() # default to 1:1 aspect ratio</pre>
```


Sunspots

```
ggplot(sunspots.m, aes(x = year, y = value)) +
  geom_line() +
  coord_fixed(0.055)
```


Practice time!

INTERMEDIATE DATA VISUALIZATION WITH GGPLOT2

Coordinates vs. scales

INTERMEDIATE DATA VISUALIZATION WITH GGPLOT2

Rick ScavettaFounder, Scavetta Academy

Plot the raw data

Raw values

Transform the raw data

log10 trans of raw values

Add logtick annotation

log10 trans of raw values

Use scale_*_log10()

```
ggplot(msleep, aes(bodywt, y = 1)) +
  geom_jitter() +
  scale_x_log10(limits = c(1e-03, 1e+04))
```

log10 trans using scale_x_log10()

Compare direct transform and scale_*_log10() output

log10 trans of raw values

log10 trans using scale_x_log10()

Use coord_trans()

```
ggplot(msleep, aes(bodywt, y = 1)) +
  geom_jitter() +
  coord_trans(x = "log10")
```

log10 trans using coord_trans()

Body weight $(\log_{10}(kg))$

Compare scale_*_log10() and coord_trans() output

log10 trans using coord_trans()

Body weight $(\log_{10}(kg))$

log10 trans using scale_x_log10()

Adjusting labels

log10 trans using coord_trans()

log10 trans using scale_x_log10()

Time for exercises

INTERMEDIATE DATA VISUALIZATION WITH GGPLOT2

Double and flipped axes

INTERMEDIATE DATA VISUALIZATION WITH GGPLOT2

Rick ScavettaFounder, Scavetta Academy

Typical axis modifications

- Aspect ratios (see video 1)
 - Adjust for best perspective
- Transformation functions (e.g. log, see video 2)
 - Adjust if original scale is inappropriate
- Double x or y axes
 - Add raw and transformed values
- Flipped axes
 - Change direction of dependencies
 - Change geometry orientation

Typical axis modifications

- Aspect ratios (see video 1)
 - Adjust for best perspective
- Transformation functions (e.g. log, see video 2)
 - Adjust if original scale is inappropriate
- Double x or y axes
 - Add raw and transformed values
- Flipped axes
 - Change direction of dependencies
 - Change geometry orientation

¹ See chapter 4, video 3 for more discussion on double x and y-axes.

Double axes

log10 trans using scale_x_log10()

Adding raw and transformed axes

log10 trans of raw values

Typical axis modifications

- Aspect ratios (see video 1)
 - Adjust for best perspective
- Transformation functions (e.g. log, see video 2)
 - Adjust if original scale is inappropriate
- Double x or y axes
 - Add raw and transformed values
- Flipped axes
 - Change direction of dependencies
 - Change geometry orientation

Flipping axes

coord_flip()

Let's practice!

INTERMEDIATE DATA VISUALIZATION WITH GGPLOT2

Polar coordinates

INTERMEDIATE DATA VISUALIZATION WITH GGPLOT2

Rick ScavettaFounder, Scavetta Academy

Projections control perception

- Cartesian (2d)
 - Orthogonal x and y-axes
 - Modify axis limits and aspect ratio

Projections control perception

- Cartesian (2d)
 - Orthogonal x and y-axes
 - Modify axis limits and aspect ratio
- Maps
 - Many possible projections
 - See next course

A preview of map projections

The Mercator Projection

The Conic Projection

Polar coordinates

- Cartesian (2d)
 - Orthogonal x and y-axes.
- Maps
 - Many projections, see next course
- Polar
 - Transformed Cartesian space

coord_polar()

coord_polar(theta = "y")

```
p + coord_fixed()
```


p + coord_polar(theta = "y")

Let's practice!

INTERMEDIATE DATA VISUALIZATION WITH GGPLOT2

