September Week1

PROGRESS

2020019252 김나현

Cache-in-the-Middle (CITM) Attacks: Manipulating Sensitive Data in Isolated Execution Environments

ARM Cache Architecture

N-way Set Associative Cache

Set Associative mapping

N-way Set Associative Cache

The memory's block i

Recording their security state

Arm trust zone

a hardware-based isolation environment for secure code execution

Arm trust zone

a hardware-based isolation environment for secure code execution

separation of the physical DRAM

Into non-secure memory and secure memory

Arm trust zone

conflicting requirements

reluctant to open the secure world for freely installing third-party applications

from device manufacturers

applications expect to be imported into the secure world for an enhanced security protection

IEE Systems

(isolated execution environment)

(a) Architecture of TEE System

(b) Architecture of IEE System

Protected by IEE Monitor Protected by TrustZone

IEE Data Protection

Model 1: Untrusted procedures are allowed to run concurrently with a security–sensitive application on two (or more) different cores in the normal world.

during the "switch in" process

Model 2: Untrusted procedures are NOT allowed to run concurrently with security-sensitive applications in the normal world.

On single-core platforms,

The security-sensitive application

Untrusted ocedures (time shaling)

On multi-core platforms,

no need to allocate core-isolated storage.

security measures

during the IEE's context switching processes

inaccessible —— accessible

during the "switch out" process

during the "switch in" process

CITM Attack Types

Type I. Manipulating core-isolated memory during concurrent execution.

When the core-isolated memory is set as cacheable,

Type II. Bypassing security measures during IEE "switch out" process

Cache Lockdown Technique

Cache

Type III. Misusing incomplete security measures during IEE's context switching.

the memory configuration is achieved through TZASC, but the corresponding cache lines might be still non-secure in the normal world

- Model 1 may suffer from all three identified attacks
- Model 2 vulnerable to Type II and III attacks

Type I and III attacks -> only when memory is employed

Type II attack -> only when the security measures for "switch out" process are performed

CASE STUDY OF CITM ATTACKS

On SANCTUARY, Ginseng, and TrustICE

SANCTUARY

The shareability attribute

shareability

the inner shareability domain the outer shareability domain

The shareability attribute

page table
the physical
address pointing
to a memory page
of core_0

Ginseng: Mapping to Non-Secure Cache

bypass the data cleaning

TrustICE: Incomplete Cache Cleaning

COUNTERMEASURE

Defense Approaches

Because of incoherence between cache and main memory!

1. the memory isolation does not automatically guarantee the cache isolation

(Type I attack)

-> configuring the cache attributes as outer non-cacheable, non-shareable

2. the reading and writing operations are not synchronized between memory and cache

(Type II attack)

-> synchronizing the reading and writing operations between memory and cache

3. the security attribute of a cache line is determined by the status of the core who accesses it, not by TZASC

(Type III attack)

-> cleaning the cache lines during both "switch in" and "switch out" processes, so that attackers could not read residual sensitive data or retain malicious data in the cache.

