### Formas canónicas de una función booleana

Tema 5





#### $\pi$



#### Contenido

- > Forma normal disyuntiva. Suma de minitérminos
- > Forma normal conjuntiva. Producto de maxitérminos
- > Relación entre formas normales

# Universidad de La Laguna

#### Ejercicio 1: Simplificar

$$F(W,X,Y,Z) = X + XYZ + YZ\overline{X} + WX + \overline{W}X + \overline{X}Y$$

| W               | <u>/ X</u>                      | Y                       | Ζ              | <u>F</u>                                |
|-----------------|---------------------------------|-------------------------|----------------|-----------------------------------------|
| 000000011111111 | 0                               | 0                       | 01010101010101 | F 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 |
| 0               | 0                               | 0                       | 1              | 0                                       |
| 0               | 0<br>0<br>0<br>1                | 1                       | 0              | 1                                       |
| 0               | 0                               | 1                       | 1              | 1                                       |
| 0               | 1                               | 0                       | 0              | 1                                       |
| 0               | 1                               | 0                       | 1              | 1                                       |
| 0               | 1<br>0<br>0<br>0<br>0<br>1<br>1 | 1                       | 0              | 1                                       |
| 0               | 1                               | 1                       | 1              | 1                                       |
| 1               | 0                               | 0                       | 0              | 0                                       |
| 1               | 0                               | 0                       | 1              | 0                                       |
| 1               | 0                               | 1                       | 0              | 1                                       |
| 1               | 0                               | 1                       | 1              | 1                                       |
| 1               | 1                               | 0                       | 0              | 1                                       |
| 1               | 1                               | 0                       | 1              | 1                                       |
| 1               | 1<br>1                          | 0 0 1 1 0 0 1 1 0 0 1 1 | 0              | 1                                       |
| 1               | 1                               | 1                       | 1              | 1                                       |



#### Ejercicio 1: Simplificar

$$F(W,X,Y,Z) = X + XYZ + YZ\overline{X} + WX + \overline{W}X + \overline{X}Y$$

$$= X + YZ(X + \overline{X}) + X(W + \overline{W}) + \overline{X}Y$$

$$= X + YZ + X + \overline{X}Y$$

$$= YZ + X + X + \overline{X}Y$$

$$= YZ + X \cdot 1 + \overline{X}Y$$

$$= YZ + X(Y + \overline{Y}) + \overline{X}Y$$

$$= YZ + XY + X\overline{Y} + \overline{X}Y$$

$$= YZ + XY + XY + X\overline{Y} + \overline{X}Y$$

$$= YZ + XY + XY + X\overline{Y} + XY + \overline{X}Y$$

$$= YZ + XY + XY + XY + XY + \overline{X}Y$$

$$= YZ + XY + Y + YY + YY + YY$$

$$= YZ + X + Y + Y + YY + YY + YY$$

$$= X + Y(1 + Z)$$

$$= X + Y$$

# Universidad de La Laguna

#### Ejercicio 1: Simplificar

$$F(W,X,Y,Z) = X + XYZ + YZ\overline{X} + WX + \overline{W}X + \overline{X}Y$$

| W                               | ′ X | Y | Ζ                     | <u>F</u>                             |
|---------------------------------|-----|---|-----------------------|--------------------------------------|
| 0                               | 0   | 0 | 0                     | 0                                    |
| 0                               | 0   | 0 | 1                     | 0<br>0<br>1                          |
| 0<br>0<br>0<br>0<br>0<br>0<br>0 | 0   | 1 | 0                     | 1                                    |
| 0                               | 0   | 1 | 1                     | 1                                    |
| 0                               | 1   | 0 | 0                     | 1                                    |
| 0                               | 1   | 0 | 1<br>0<br>1<br>0<br>1 | 1                                    |
| 0                               | 1   | 1 | 0                     | 1                                    |
| 0                               | 1   | 1 | 1                     | 1                                    |
|                                 | 0   | 0 | 0                     | 0                                    |
| 1                               | 0   | 0 | 1                     | 0                                    |
| 1                               | 0   | 1 |                       | 1                                    |
| 1                               | 0   | 1 | 1                     | 1                                    |
| 1                               | 1   | 0 | 0                     | 1                                    |
| 1                               | 1   | 0 | 1                     | 1<br>1<br>1<br>0<br>0<br>1<br>1<br>1 |
| 1                               | 1   | 1 | 0                     | 1                                    |
| 1                               | 1   | 1 | 1                     | 1                                    |



$$F(W, X, Y, Z) = X + Y$$

$$X \rightarrow X$$
 $Y \rightarrow X$ 
 $Z \rightarrow X$ 
 $F(W,X,Y,Z)$ 

#### Ejercicio 2: Simplificar

$$F(X,Y,Z) = Y\overline{Z}(X\overline{Z} + \overline{Z}) + (\overline{X} + \overline{Z})(\overline{X}Y + Z\overline{X})$$

$$= Y\overline{Z} \cdot \overline{Z}(X + 1) + (\overline{X} + \overline{Z})(\overline{X}Y + Z\overline{X})$$

$$= Y\overline{Z} \cdot \overline{Z} + (\overline{X} + \overline{Z})(\overline{X}Y + Z\overline{X})$$

$$= Y\overline{Z} + (\overline{X} + \overline{Z})(\overline{X}Y + Z\overline{X})$$

$$= Y\overline{Z} + \overline{X} \cdot \overline{X}Y + \overline{X} \cdot Z\overline{X} + \overline{X}Y \cdot \overline{Z} + Z\overline{X} \cdot \overline{Z}$$

$$= Y\overline{Z} + \overline{X}Y + Z\overline{X} + \overline{X}Y\overline{Z} + \overline{X}Z\overline{Z}$$

$$= Y\overline{Z} + \overline{X}Y + Z\overline{X} + \overline{X}Y\overline{Z}$$

$$= Y\overline{Z} + \overline{X}Y + Z\overline{X} + \overline{X}Y + Z\overline{X}$$

$$= Y\overline{Z}(1 + \overline{X}) + \overline{X}Y + Z\overline{X}$$

$$= Y\overline{Z} + \overline{X}Y + Z\overline{X}$$

$$= Y\overline{Z} + \overline{X}Y + Z\overline{X}$$

$$= Z\overline{X} + Y\overline{Z} + \overline{X}Y$$

$$= \overline{X}Z + Y\overline{Z} + \overline{X}Y$$

$$= \overline{X}Z + Y\overline{Z} + \overline{X}Y$$

#### Forma normal disyuntiva. Suma de minitérminos

- > Un minitérmino es un producto lógico que contiene todas las variables, negadas o no.
- > Para 3 variables: a, b, c

|   | abc | Minitérmino       | $m_i$ |
|---|-----|-------------------|-------|
| 0 | 000 | $ar{a}ar{b}ar{c}$ | $m_0$ |
| 1 | 001 | $ar{a}ar{b}c$     | $m_1$ |
| 2 | 010 | $ar{a}bar{c}$     | $m_2$ |
| 3 | 011 | $ar{a}bc$         | $m_3$ |
| 4 | 100 | $aar{b}ar{c}$     | $m_4$ |
| 5 | 101 | $aar{b}c$         | $m_5$ |
| 6 | 110 | $abar{c}$         | $m_6$ |
| 7 | 111 | abc               | $m_7$ |

### F

## **Universidad**de La Laguna

#### Forma normal disyuntiva. Suma de minitérminos

 Obtención de la forma canónica a partir de la Tabla de verdad. Ejemplo:

| $m_i$ | abc | f |
|-------|-----|---|
| $m_0$ | 000 | 0 |
| $m_1$ | 001 | 1 |
| $m_2$ | 010 | 0 |
| $m_3$ | 011 | 1 |
| $m_4$ | 100 | 0 |
| $m_5$ | 101 | 0 |
| $m_6$ | 110 | 0 |
| $m_7$ | 111 | 1 |

$$f(a,b,c) = \sum m(1,3,7) = m_1 + m_3 + m_7 = \bar{a}\bar{b}c + \bar{a}bc + abc$$

$$f(0,0,0) = 0 + 0 + 0 = 0$$

$$f(0,0,1) = 1 + 0 + 0 = 1$$

$$f(0,1,0) = 0 + 0 + 0 = 0$$

$$f(0,1,1) = 0 + 1 + 0 = 1$$

$$f(1,0,0) = 0 + 0 + 0 = 0$$

$$f(1,0,1) = 0 + 0 + 0 = 0$$

$$f(1,1,0) = 0 + 0 + 0 = 0$$

f(1,1,1) = 0 + 0 + 1 = 1



## Universidad de La Laguna

#### Forma normal conjuntiva. Producto de maxitérminos

- Un maxitérmino es una suma lógica que contiene todas las variables, negadas o no.
- > Para 3 variables: a, b, c

|   | abc | Maxitérmino                   | $M_i$ |
|---|-----|-------------------------------|-------|
| 0 | 000 | a+b+c                         | $M_0$ |
| 1 | 001 | $a+b+\bar{c}$                 | $M_1$ |
| 2 | 010 | $a + \overline{b} + c$        | $M_2$ |
| 3 | 011 | $a + \bar{b} + \bar{c}$       | $M_3$ |
| 4 | 100 | $\bar{a} + b + c$             | $M_4$ |
| 5 | 101 | $\bar{a} + b + \bar{c}$       | $M_5$ |
| 6 | 110 | $\bar{a} + \bar{b} + c$       | $M_6$ |
| 7 | 111 | $\bar{a} + \bar{b} + \bar{c}$ | $M_7$ |

### F

#### Forma normal disyuntiva. Suma de maxitérminos

 Obtención de la forma canónica a partir de la Tabla de verdad. Ejemplo:

| $M_i$ | abc | g |
|-------|-----|---|
| $M_0$ | 000 | 0 |
| $M_1$ | 001 | 1 |
| $M_2$ | 010 | 0 |
| $M_3$ | 011 | 1 |
| $M_4$ | 100 | 1 |
| $M_5$ | 101 | 1 |
| $M_6$ | 110 | 0 |
| $M_7$ | 111 | 1 |

$$g(a, b, c) = \prod M(0,2,6) = M_0 \cdot M_2 \cdot M_6$$
$$= (a + b + c)(a + \bar{b} + c)(\bar{a} + \bar{b} + c)$$

$$g(0,0,0) = 0 \cdot 1 \cdot 1 = 0$$

$$g(0,0,1) = 1 \cdot 1 \cdot 1 = 1$$

$$g(0,1,0) = 1 \cdot 0 \cdot 1 = 0$$

$$g(0,1,1) = 1 \cdot 1 \cdot 1 = 1$$

$$g(1,0,0) = 1 \cdot 1 \cdot 1 = 1$$

$$g(1,0,1) = 1 \cdot 1 \cdot 1 = 1$$

$$g(1,1,0) = 1 \cdot 1 \cdot 0 = 0$$

$$g(1,1,1) = 1 \cdot 1 \cdot 1 = 1$$

#### $\pi$



#### Relación entre las formas normales

Maxitérmino y minitérmino son opuestos:

$$-\overline{m_i} = M_i$$

$$-\overline{M_i}=m_i$$

### +

# Universidad de la laguna

#### Relación entre las formas normales

> Ejemplo: obtener la forma normal disyuntiva a partir de la forma conjuntiva  $h(a,b) = m_3 = ab$ 

| ab | h | $M_i$                     | $m_i$                  |
|----|---|---------------------------|------------------------|
| 00 | 0 | $M_0 = a + b$             | $m_0 = \bar{a}\bar{b}$ |
| 01 | 0 | $M_1 = a + \bar{b}$       | $m_1 = \bar{a}b$       |
| 10 | 0 | $M_2 = \bar{a} + b$       | $m_2 = a\bar{b}$       |
| 11 | 1 | $M_3 = \bar{a} + \bar{b}$ | $m_3 = ab$             |

$$h(a,b) = \prod M(0,1,2) = M_0 \cdot M_1 \cdot M_2$$

$$= (a+b)(a+\bar{b})(\bar{a}+b)$$

$$= (aa+a\bar{b}+ba+b\bar{b})(\bar{a}+b)$$

$$= (a+a\bar{b}+ba)(\bar{a}+b)$$

$$= (a+a\bar{b}+ba)(\bar{a}+b)$$

$$= a\bar{a}+ab+a\bar{b}\bar{a}+a\bar{b}b+ba\bar{a}+bab$$

$$= ab+ab$$

$$= ab$$