Sampling Distribution of  $\overline{X}$ 

Sampling Distribution of  $\overline{p}$ 

18

# **Sampling Distributions**

- Chose a random sample of 30 managers and calculated
  - ► Sample Mean =  $\bar{x}$
  - ▶ Sample Proportion =  $\bar{p}$
- | Proportion of Competing Training (Sample Mean | Sample SD (Sample) | 72372.71 | 3839.873894 | 0.666666667
- $ightharpoonup ar{x}$  is the point estimator of the population mean,  $\mu$ 
  - ▶ Point Estimate:  $\bar{x}$  = \$72,372.71
- $\bar{p}$  is the point estimator of the population proportion, p
  - ▶ Point Estimate:  $\bar{p}$  = 0.67

What would happen if we chose a different sample of 30 managers?\*

If we picked 30 random managers 500 times, the results might look something like this:

| Sample Number | Sample Mean $(\bar{x})$ | Sample Proportion $(\bar{p})$ |
|---------------|-------------------------|-------------------------------|
| 1             | 71,814                  | 0.63                          |
| 2             | 72,670                  | 0.70                          |
| 3             | 71,780                  | 0.67                          |
| 4             | 71,588                  | 0.53                          |
|               |                         |                               |
| *             | •                       | *                             |
|               | *                       | *                             |
| 500           | 71,752                  | 0.50                          |
|               |                         |                               |

20

# **Sampling Distributions**

Make a frequency and relative frequency distribution of the  $\bar{x}$  results:

| Mean Annual Salary (\$) | Frequency | Relative Frequency |
|-------------------------|-----------|--------------------|
| 69,500.00-69,999.99     | 2         | 0.004              |
| 70,000.00-70,499.99     | 16        | 0.032              |
| 70,500.00-70,999.99     | 52        | 0.104              |
| 71,000.00-71,499.99     | 101       | 0.202              |
| 71,500.00-71,999.99     | 133       | 0.266              |
| 72,000.00-72,499.99     | 110       | 0.220              |
| 72,500.00-72,999.99     | 54        | 0.108              |
| 73,000.00-73,499.99     | 26        | 0.052              |
| 73,500.00-73,999.99     | 6         | 0.012              |
| Totals:                 | 500       | 1.000              |



- ▶ The Expected Value of the sample mean  $\bar{x}$ 
  - ightharpoonup Is the mean average of all possible values of  $\bar{x}$  that can be generated by the various simple random samples
- ► Turns out:
  - ▶ The average of all the  $\bar{x}'s$  we could get by sampling 30 managers over and over actually equals the Population Mean,  $\bar{\mu}$



What is it called when the expected value of a point estimator equals the population parameter?\*

24

# Sampling Distributions

| Sample Number | Sample Mean $(\bar{x})$ | Sample Proportion (p̄) |
|---------------|-------------------------|------------------------|
| 1             | 71,814                  | 0.63                   |
| 2             | 72,670                  | 0.70                   |
| 3             | 71,780                  | 0.67                   |
| 4             | 71,588                  | 0.53                   |
| •             | •                       | ·•                     |
| •             |                         | (*)                    |
| •             | •                       |                        |
| 500           | 71,752                  | 0.50                   |

$$\frac{71,814+72,670+71,780+71,588+...+71,752}{500}=\$71,800=\mu=Population\,\textit{Mean}$$

The formula for the standard deviation of  $\bar{x}$  depends on whether the population is finite or infinite.

Using the following notation:

 $\sigma_{\bar{x}}$  = the standard deviation of  $\bar{x}$ , or the standard error of the mean.

 $\sigma$  = the standard deviation of the population.

n = the sample size.

N = the population size.

#### STANDARD DEVIATION OF $\bar{x}$

Finite Population

Infinite Population

$$\sigma_{\overline{x}} = \sqrt{\frac{N-n}{N-1}} \left( \frac{\sigma}{\sqrt{n}} \right)$$

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

(6.2)

26

# Sampling Distributions

▶ Finite population correction factor:

$$\sqrt{\frac{N-n}{N-1}}$$

Finite Population

$$s_{\overline{x}} = \sqrt{\frac{N-n}{N-1}} \left( \frac{s}{\sqrt{n}} \right)$$

- ▶ In many practical sampling situations,
  - ▶ The finite population correction factor is close to 1
  - ▶ So, the difference between the finite and infinite standard deviations is negligible.

In general, you can use

Infinite Population

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

when,  $\frac{n}{N} < 0.05$ 

ESTIMATED STANDARD DEVIATION OF  $\overline{x}$ 

Finite Population

$$s_{\overline{x}} = \sqrt{\frac{N-n}{N-1}} \left( \frac{s}{\sqrt{n}} \right) \qquad \qquad s_{\overline{x}} = \left( \frac{s}{\sqrt{n}} \right)$$

Infinite Population

$$= \left(\frac{s}{\sqrt{n}}\right) \tag{6.3}$$

Estimated standard error:  $s_{\overline{x}} = \frac{s}{\sqrt{n}} = \frac{3,348}{\sqrt{30}} = 611.3.$ 

True standard error:  $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{4,000}{\sqrt{30}} = 730.3.$ 

The difference between  $s_{\overline{x}}$  and  $\sigma_{\overline{x}}$  is due to sampling error.

28

# **Sampling Distributions**

- When the population has a normal distribution,
  - ▶ The sampling distribution of  $\bar{x}$  is normally distributed for any sample size
- When the population does not have a normal distribution
  - ▶ The central limit theorem is helpful in identifying the shape of the sampling distribution of  $\bar{x}$



- Central Limit Theorem
  - ▶ Distribution of the sample mean  $\bar{x}$  can be approximated by a normal distribution as the sample size becomes large.





30

# Sampling Distributions

Central Limit Theorem for Three Populations

- Top panel shows that none of the populations are normally distributed.
- ► Bottom three panels show the shape of the sampling distribution for samples *n* = 2, *n* = 5, and *n* = 30.
- For sample size of 30 or more, it looks closer to normal
- We can assume then, for a sample of 30 or more, the sampling distribution can be approximated by normal distribution.





Sampling Distributions

A Comparison of the Sampling Distributions of  $\bar{x}$  for Simple Random Samples of: n = 30 and n = 100 EAI Employees.

With n = 100,  $\sigma_{\bar{x}} = 400$   $\sigma_{\bar{x}} = 730.3$ 

#### Sampling Distribution of $\overline{p}$ :

The sample proportion  $\overline{p}$  is the point estimator of the population proportion p.

The formula for computing the sample proportion is:

$$\overline{p} = \frac{x}{n}$$

where

x = the number of elements in the sample that possess the characteristic of interest

n =sample size.

34

### Sampling Distributions

Sampling distribution of  $\overline{p}$ : The sampling distribution of  $\overline{p}$  is the probability distribution of all possible values of the sample proportion  $\overline{p}$ .

EXPECTED VALUE OF  $\overline{p}$   $E(\overline{p})=p \end{(6.4)}$  where  $E(\overline{p})=\mbox{the expected value of }\overline{p}$   $p=\mbox{the population proportion}$ 

STANDARD DEVIATION OF P

Finite Population Infinite Population  $\sigma_{\overline{p}} = \sqrt{\frac{N-n}{N-1}} \sqrt{\frac{p(1-p)}{n}} \qquad \sigma_{\overline{p}} = \sqrt{\frac{p(1-p)}{n}}$ 

(6.5)

#### ESTIMATED STANDARD DEVIATION OF $\bar{p}$

Finite Population

$$s_{\overline{p}} = \sqrt{\frac{N-n}{N-1}} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$

Infinite Population

$$s_{\overline{p}} = \sqrt{\frac{\overline{p}(1-\overline{p})}{n}} \tag{6.6}$$

The sampling distribution of  $\overline{p}$  can be approximated by a normal distribution whenever  $np \ge 5$  and  $n(1-p) \ge 5$ .

For our example:  $\bar{p} = 0.63$ , n = 30

$$n\bar{p} = 30(0.63) = 18.9 > 5$$
 and  $n(1-p) = 30(0.37) = 11.1 > 5$ 

36

# **Sampling Distributions**

Sampling Distribution of  $\bar{p}$  for the Proportion of EAI Employees Who Participated in the Management Training Program



Interval Estimation of the Population Mean
Interval Estimation of the Population Proportion

38

### **Interval Estimation**

- ▶ Point estimators are not perfect!
  - ► They do not provide the exact value of the population parameter
- ► An interval estimate
  - computed by adding and subtracting a value, called the margin of error, to the point estimate.
- ► The general form of an interval estimate is:



Point estimate  $\pm$  Margin of error

Interval Estimation of the Population Mean:

- ▶ An interval estimate provides information about how close the point estimate is to the value of the population parameter.
- ▶ General form of an interval estimate of a population mean is:

 $\overline{x} \pm \text{Margin of error}$ 

▶ General form of an interval estimate of a population proportion is:

 $\overline{p} \pm Margin of error$ 

40

#### Interval Estimation

Interval Estimation of the Population Mean (cont.):

For any normally distributed random variable:

- ▶ 90% of the values lie within 1.645 standard deviations of the mean.
- ▶ 95% of the values lie within 1.960 standard deviations of the mean.
- ▶ 99% of the values lie within 2.576 standard deviations of the mean.

Sampling Distribution of the Sample Mean

How many of the  $\bar{x}'s$  are in between the lines? What does this mean?

- ightharpoonup Remember, we do not generally know the population standard deviation,  $\sigma$ 
  - We have to use the sample data to estimate:
    - $\blacktriangleright$   $\sigma$  and  $\mu$
  - ▶ This introduces more uncertainty about the distribution values of  $\bar{x}$ .



42

### **Interval Estimation**

- ► To address this additional source of uncertainty
  - ► Use a probability distribution known as the *t* distribution:
    - ► A family of similar probability distributions.
    - ► The shape of each depends on a the degrees of freedom.
    - Similar in shape to the standard normal distribution, but wider.



Comparison of the Standard Normal Distribution with t Distributions with 10 and 20 Degrees of Freedom

As the degrees of freedom increase, the *t* distribution narrows, its peak becomes higher, and it becomes more similar to the standard normal distribution.



44

#### Interval Estimation

t Distribution with 29 Degrees of Freedom



Use Excel's T.INV.2T function to find the value from a t distribution such that 95% of the distribution is included in the interval  $\pm t$  for 29 degrees of freedom.\*

Intervals Formed Around Sample Means from 10 Independent Random Samples

- Approximately 90% of all the intervals constructed will contain the population mean
- ► We are approximately 90% confident that the interval will include the population mean:
  - ► The value of 0.90 is referred to as the confidence coefficient.
  - ► The interval is called the 90% confidence interval.



46

#### Interval Estimation

- ► The level of significance
  - ▶ is the probability that the interval estimation procedure will generate an interval that does not contain the population mean:

 $\alpha$  = level of significance =1- confidence coefficient