Aufgabe 1. Seien A, B, C, D wie in der Aufgabenstellung definiert. Gefragt ist, ob die Abbildungen linear sind.

- (1) Für alle $(x, y, z) \in \mathbb{R}^3$ gilt $\mathbf{A}(x, y, z) \stackrel{def}{=} \mathbf{A}(x + 2y, y z) \stackrel{def matrix mult.}{=} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Nach Satz 3.4.7 der Vorlesung ist $\begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \end{pmatrix}$ die Darstellung einer linearen Abbildung. Daher ist \mathbf{A} linear.
- (2) $\boldsymbol{B}((0,0,0)+(0,0,0)) = \boldsymbol{B}(0,0,0) \stackrel{\text{def }\boldsymbol{B}}{=} (0,1) \neq (0,1)+(0,1) = \boldsymbol{B}(0,0,0) + \boldsymbol{B}(0,0,0)$. Daher ist \boldsymbol{B} nicht linear.
- (3) $C((0,1,1) + (0,1,1)) = C(0,2,2) \stackrel{\text{def} B}{=} (4,2) \neq (1,1) + (1,1) = C(0,1,1) + C(0,1,1)$. Daher ist C nicht linear.
- (4) Über \mathbb{R} : Schreibe beliebige $\mathbb{C} \ni z = \begin{pmatrix} \Re z \\ \Im z \end{pmatrix}$ als Spaltenvektor. Wie in (1) ist $\mathbf{D} \begin{pmatrix} \Re z \\ \Im z \end{pmatrix} \stackrel{def \mathbf{B}}{=} \begin{pmatrix} \Re z \\ -\Im z \end{pmatrix} \stackrel{def matrixmult.}{=} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \Re z \\ \Im z \end{pmatrix}$, und \mathbf{D} ist \mathbb{R} -linear.
- (5) Über \mathbb{C} : $\mathbf{D}(iz) \stackrel{def}{=} \mathbf{D} \overline{iz} = -i\overline{z} \stackrel{z\neq 0}{\neq} i\overline{z} = i\mathbf{D}(z)$ für beliebige $z \in \mathbb{C} \setminus \{0\}$. Daher ist \mathbf{D} nicht \mathbb{C} -linear.

Aufgabe 2. Gegeben ist lineares $\boldsymbol{A}: \mathbb{R}^2 \to \mathbb{R}^3$ durch $\boldsymbol{A}(1,2) = (0,3,5)$ und $\boldsymbol{A}(1,-1) = (-3,6,8)$. Zu zeigen: $\boldsymbol{A}(x,y) = (2x-y,x+y,3x-y)$ für $x,y \in \mathbb{R}$ und speziell $\boldsymbol{A}(1,5) = (-3,6,-2)$.

Beweis: Nach Lemma 3.4.3 ist A durch seine Werte auf einer Basis eindeutig gegeben. Entwickele (x, y) nach dem Basiskandidaten (1, 2), (1, -1) von \mathbb{R}^2 . Eine einfache Rechnung zeigt $(x, y) = \left[\frac{x}{3} + \frac{y}{3}\right](1, 2) + \left[\frac{2x}{3} - \frac{y}{3}\right](1, -1)$ (und beweist damit auch die Basiseigenschaft, denn ein zweielementiges Erzeugendensystem im \mathbb{R}^2 ist linear unabhängig). Einsetzen ergibt

$$\boldsymbol{A}(x,y) = \boldsymbol{A}\left(\left[\frac{x}{3} + \frac{y}{3}\right](1,2) + \left[\frac{2x}{3} - \frac{y}{3}\right](1,-1)\right) \stackrel{linear}{=} \left[\frac{x}{3} + \frac{y}{3}\right] \boldsymbol{A}(1,2) + \left[\frac{2x}{3} - \frac{y}{3}\right] \boldsymbol{A}(1,-1)$$

$$\stackrel{vorgabe}{=} \left[\frac{x}{3} + \frac{y}{3}\right](0,3,5) + \left[\frac{2x}{3} - \frac{y}{3}\right](3,0,2) = (2x - y, x + y, 3x + y)$$

und speziell $\mathbf{A}(1,5) = (-3,6,8)$

Aufgabe 3. Gegeben ist lineares $A: \mathbb{R}^3 \to \mathbb{R}^4$ durch A(x, y, z) = (x + 2y + z, y + 3z, -x - y + 2z, x + 3y + 4z). Gesucht: Basen von Bild A, Kern A sowie Rang A, Defekt A.

(1) Z.z.: (5, -3, 1) ist (einelementige) Basis von Kern A. Beweis: Seien $x, y, z \in \mathbb{R}$ so dass 0 = A(x, y, z). Die erste Zeile liefert x = -2y - z. Die zweite liefert y = -3z, und mit der ersten, x = 5z. Daher ist der Kern von A notwendig in $\{(5z, -3z, z) : z \in \mathbb{R}\} = \text{Lin}((5, -3, 1))$ enthalten. Andererseits ist der Kern ein linearer Unterraum. Es reicht, A(5, -3, 1) = 0 zu zeigen, um $\text{Lin}((5, -3, 1)) \subset \text{Kern} A$ zu beweisen. Einsetzen zeigt A(5, -3, 1) = (5 - 6 + 1, -3 + 3, -5 + 3 + 2, 5 - 9 + 4) = 0.

Damit erzeugt das einelementige System (5, -3, 1) den Kern \boldsymbol{A} und ist wegen $(5, -3, 1) \neq 0$ linear unabhängig.

- (2) Defekt $\mathbf{A} \stackrel{def\ def\ ekt}{=} \dim \operatorname{Kern} \mathbf{A} \stackrel{1}{=} |\{(5, -3, 1)\}| = 1$
- (3) Z.z.: (1,0,-1,1), (2,1,-1,3) ist Basis von Bild **A**. Beweis: (i) Nach dem Basisaustauschsatz (und Serie 5) kann man jeden Vektor der kanonischen Basis (1,0,0), (0,1,0), (0,0,1) gegen (5,-3,1) austauschen, denn keiner der Entwicklungskoeffizienten von (5,-3,1) ist Null. Also ist (1,0,0), (0,1,0), (5,-3,1) eine Basis des \mathbb{R}^3 .
 - (ii) Jeder Vektor $w \in \text{Bild} \boldsymbol{A}$ ist $w = \boldsymbol{A}v$ für ein $v \in \mathbb{R}^3$. Das v lässt sich entwickeln als $v = \lambda_1 (1,0,0) + \lambda_2 (0,1,0) + \lambda_3 (5,-3,1)$ mit geeigneten $\lambda_i \in \mathbb{R}$. $w = \boldsymbol{A}(v) \stackrel{\boldsymbol{A} \ linear}{=} \lambda_1 \boldsymbol{A}(1,0,0) + \lambda_2 \boldsymbol{A}(0,1,0) + \lambda_3 \boldsymbol{A}(5,-3,1) \stackrel{kern}{=} \lambda_1 \boldsymbol{A}(1,0,0) + \lambda_2 \boldsymbol{A}(0,1,0)$. Also erzeugt $\boldsymbol{A}(1,0,0), \boldsymbol{A}(0,1,0)$ das Bild.
 - (iii) Seien $\mu_1, \mu_2 \in \mathbb{R}$ mit $0 = \mu_1 \boldsymbol{A}(1,0,0) + \mu_2 \boldsymbol{A}(0,1,0) \stackrel{\boldsymbol{A} \ linear}{=} \boldsymbol{A}(\mu_1(1,0,0) + \mu_2(0,1,0))$. Gemäß Charakterisierung des Kerns gibt es $\mu_3 \in \mathbb{R}$ so dass $\mu_1(1,0,0) + \mu_2(0,1,0) = \mu_3(5,-3,1)$. Wegen linearer Unabhängigkeit (i) ist $\mu_3 = \mu_2 = \mu_2 = 0$. Daher ist $\boldsymbol{A}(1,0,0), \boldsymbol{A}(0,1,0)$ linear unabhängig.
 - (iv) $\mathbf{A}(1,0,0) = (1,0,-1,1), \mathbf{A}(0,1,0) = (2,1,-1,3)$
- (4) Rang $\mathbf{A} \stackrel{def\ rang}{=} \dim \operatorname{Bild} \mathbf{A} \stackrel{3.}{=} |\{\mathbf{A}(1,0,0), \mathbf{A}(0,1,0)\}| = 2$. (NACHTRAG: (3), (4) eleganter: Formel Rang $\mathbf{A} = \dim \mathbb{R}^4 \operatorname{Defekt} \mathbf{A}$, danach "kleinstes" Erzeugendensystem aus den Spalten von A.)

Aufgabe 4.

- (1) Sei $V := W := \mathbb{R}^2$ und $\mathbf{A} : \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (x,0)$ (linear da Projektion) und $S' := \{(0,1)\} \subset \mathbb{R}^2$. $\mathbf{A}^{-1} \text{Lin} S' = \mathbf{A}^{-1} \{(0,y) : y \in \mathbb{R}\} \stackrel{ObildA}{=} \mathbf{A}^{-1} \{0\} = \{(0,y) : y \in \mathbb{R}\}$ und $\text{Lin} \mathbf{A}^{-1} S' = \text{Lin} \varnothing = \{0\}$ sind verschieden.
- (2) Seien A, V, W, W', K wie in der Aufgabe. Z.z.: $A^{-1}W'$ ist Untervektorraum. Beweis: Seien $\lambda \in K$, $u, v \in A^{-1}W'$ beliebig. Also sind A(u), $A(v) \in W'$, und weil W' Unterraum ist, auch $A(u) + \lambda A(v) \in W'$. Wegen $A(u + \lambda v) \stackrel{A \ linear}{=} A(u) + \lambda A(v) \in W'$ ist $u + \lambda v \in A^{-1}W'$. Weil u, v, λ beliebig waren, ist $A^{-1}W'$ Unterraum.