

چالش دوم: Tweet Sentiment Extraction

فراهمآورنده: سینا حیدری زمستان ۹۸ برای مشاهده ی جزئیات این چالش در کگل به لینک زیر مراجعه کنید.

https://www.kaggle.com/c/tweet-sentiment-extraction/overview

۱ در مورد این چالش

"My ridiculous dog is amazing." [sentiment: positive]

بهدلیل تعداد بالای توییتهایی که در هر لحظه ردوبدل می شود، تایین اینکه تمایل یک توییت مشخص بر روی شرکتها از شرکتها، اشخاص یا برندها چه تاثیری (مثبت یا منفی) می گذارد سخت است. امروزه، پی بردن به تمایل متنها از آن جهت اهمیت یافته که تصمیمها و واکنشها در طی چند لحظه اتفاق افتاده و بهروزرسانی می شود. اما چه کلماتی باعث تعیین تمایل متنها می شود؟ در این چالش، باید بخشی از یک توییت (کلمه یا عبارت) را جدا کنیم که تمایل را تحت تاثیر قرار می دهد.

۲ راه حل

در مورد این گزارش

در این نوتبوک، ساختار مجموعهداده را به طور خلاصه توضیح داده، ویژگیهای جدید را تولید و آنالیز می کنیم؛ سپس، مجموعهداده را با استفاده از Seaborn ،Matplotlib و Plotly مصورسازی خواهیم کردم. ما به این مسئله، به عنوان یک مسئله $^{\prime}$ کواهیم پرداخت.

بررسی اکتشافی داده، اطلاعاتی به ما میدهد که بر اساس آن میتوانیم نوع مدل خود را انتخاب کرده و بهدرستی شخصی سازی کنیم.

Named Entity Recognition

NER شاید اولین قدم برای استخراج اطلاعات باشد که تلاش می کند موجودیتهای اسمدار را در متن شناسایی کرده و آنها را بهدستههای از پیش تعیین شده (همچون اسم افراد، سازمانها، موقعیتها، عبارتهای زمان، کمیتها، واحدهای پول، درصدها و غیره) نسبت دهد. NER در زمینههای مختلف ^۱NLP کاربرد دارد و می تواند بهسوالهای دنیای واقعی جواب دهد. نمونههایی از این سوالها را در زیر می بینید:

Named-entity recognition \

Natural Language Processing

- کدام شرکتها در مقالهی خبری مشخصی ذکر شده بودند؟
- آیا محصول مشخصی در شکایتها یا نقدها ظاهر شده است؟
- آیا یک توییت شامل اسم یک شخص میشود؟ آیا این توییت موقعیت شخص را هم شامل میشود؟

ما از Spacy برای ساختن مدلهای شخصی سازی شده مان استفاده خواهیم برد. نمونه یی از کاربرد NER بر اساس مدل اصلی Spacy که با مجموعه داده σ OntoNotes آموزش دیده را در زیر مشاهده می کنید. این مدل از موجودیتهای زیر پشتیبانی می کند.

TYPE	DESCRIPTION
PERSON	People, including fictional.
NORP	Nationalities or religious or political groups.
FAC	Buildings, airports, highways, bridges, etc.
ORG	Companies, agencies, institutions, etc.
GPE	Countries, cities, states.
LOC	Non-GPE locations, mountain ranges, bodies of water.
PRODUCT	Objects, vehicles, foods, etc. (Not services.)
EVENT	Named hurricanes, battles, wars, sports events, etc.
WORK_OF_ART	Titles of books, songs, etc.
LAW	Named documents made into laws.
LANGUAGE	Any named language.
DATE	Absolute or relative dates or periods.
TIME	Times smaller than a day.
PERCENT	Percentage, including "%".
MONEY	Monetary values, including unit.
QUANTITY	Measurements, as of weight or distance.
ORDINAL	"first", "second", etc.
CARDINAL	Numerals that do not fall under another type.

طبقهبندی در سطح موجودیت، روی متن نمونه:

```
doc = nlp('European authorities fined Google a record $5.1 billion on
    Wednesday for abusing its power in the mobile phone market and
    ordered the company to alter its practices')
pprint([(X.text, X.label_) for X in doc.ents])
```

```
[('European', 'NORP'),
  ('Google', 'ORG'),
  ('$5.1 billion', 'MONEY'),
  ('Wednesday', 'DATE')]
```

در بخش بررسی اکتشافی داده خواهیم دید که برای بیشتر توییتهای بی تمایل (neutral) جواب (selected_text) دقیقا برابر با متن توییت می باشد؛ از این رو مدلی برای این دسته از توییتها تعلیم نخواهیم داد. اما دو دسته توییتهای منفی و مثبت وجود دارد که هر کدام نیازمند یک مدل هستند. بهطور خلاصه، دو موجودیت اسمدار (مثبت و منفی) خواهیم داشت که برای هر کدام یک مدل آموزش می دهیم. ورودی مدل توییتهای مثبت، آن سطرهایی از مجموعه داده است که تمایل مثبت دارد و ورودی مدل توییتهای منفی آن سطرهایی از مجموعه داده است که تمایل مثبت دارد و سطرهایی می شود نیز همان selected_text می باشد.

۳ پیادهسازی

بارگذاری پکیجهای مورد نیاز

```
1 import re
2 import string
3 import numpy as np
4 import random
5 import pandas as pd
6 import matplotlib.pyplot as plt
7 import seaborn as sns
8 %matplotlib inline
g from plotly import graph_objs as go
import plotly.express as px
import plotly.figure_factory as ff
12 from collections import Counter
14 from PIL import Image
15 from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
18 import nltk
19 from nltk.corpus import stopwords
21 from tqdm import tqdm
22 import os
23 import nltk
24 import spacy
25 import random
26 from spacy.util import compounding
27 from spacy.util import minibatch
29 import warnings
warnings.filterwarnings("ignore")
32 import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
      print(os.path.join(dirname, filename))
35
37 # Any results you write to the current directory are saved as output.
```

خواندن داده

```
print(train.shape)
print(test.shape)
```

```
(27481, 4)
(3534, 3)
```

train.info()

2

ما تنها یک مقدار null در دادهی آموزشی داریم. سطر شامل این مقدار را از دادهی آموزشی حذف میکنیم.

train.dropna(inplace=True)

train.info()

2

هیچ مقدار null در دادهی تست وجود ندارد.

بررسي اكتشافي داده

train.head()

٥

Out[8]:

	textID	text	selected_text	sentiment
0	cb774db0d1	I`d have responded, if I were going	I'd have responded, if I were going	neutral
1	549e992a42	Sooo SAD I will miss you here in San Diego!!!	Sooo SAD	negative
2	088c60f138	my boss is bullying me	bullying me	negative
3	9642c003ef	what interview! leave me alone	leave me alone	negative
4	358bd9e861	Sons of ****, why couldn't they put them on t	Sons of ****,	negative

train.describe()

Out[9]:

	textID	text	selected_text	sentiment
count	27480	27480	27480	27480
unique	27480	27480	22463	3
top	609f4a0832	can't wait to crack it open and no doubt will	good	neutral
freq	1	1	199	11117

حال، بیاید نگاهی به توزیع توییتها در دادهی تست بیاندازیم.

```
temp = train.groupby('sentiment').count()['text'].reset_index().
sort_values(by='text',ascending=False)
temp.style.background_gradient(cmap='Purples')
```

Out[10]:


```
plt.figure(figsize=(12,6))
sns.countplot(x='sentiment',data=train)
```


برای مصورسازی بهتر، یک Funnel-chart از داده ترسیم می کنیم:

```
fig = go.Figure(go.Funnelarea(
   text =temp.sentiment,
   values = temp.text,
   title = {"position": "top center", "text": "Funnel-Chart of Sentiment Distribution"}
   ))
   fig.show()
```


مواردی که تا کنون از داده میدانیم:

- o میدانیم selected_text زیرمجموعه یی از text است.
- \circ میدانیم selected_text تنها یک بخش از text را شامل می شود. یعنی، از بخشی از یک عبارت و بخشی از یک عبارت دیگر را شامل نمی شود. برای مثال؛ اگر text برابر با:

«Spent the entire morning in a meeting w/ a vendor, and my boss was not happy w/ them. Lots of fun. I had other plans for my morning»

باشد؛ selected_text مى تواند «my boss was not happy w/ them. Lots of fun» يا «Morning vendor, باشد، اما نمى تواند برابر با boss was not happy w/ them. Lots of fun» باشد، اما نمى تواند برابر با and my boss»

- با وجود گفتگوی کگلی که از طریق این لینک قابل دسترسی است، میدانیم که توییتهای بیطرف، دارای
 ۹۷ درصد شباهت ژاکارد بین text و selected_text میباشد.
- همچنین با استفاده از گفتگویی که از طریق این لینک در اختیارمان قرار دارد، میدانیم selected_text در بعضی سطرها از میان یک کلمه شروع میشود، در نتیجه selected_text همیشه معنادار نیست. از آنجایی که ما نمیدانیم خروجی مجموعه تست هم این ناسازگاری را دارد یا نه، مطمئن نیستیم حذف علائم نگارشی رویکرد خوبی باشد.

توليد متافيچرها

از آنجایی که میخواهیم selected_text-که زیرمجموعه یی از text است-را پیش بینی کنیم، ویژگیهایی که تولیدشان سودمند خواهد بود عبارت است از:

- o اختلاف بین تعداد کلمات در text و selected_text
 - ∘ ضریب شباهت ژاکارد برای text و selected_text ∘

تابع برای ضریب ژاکارد:

```
def jaccard(str1, str2):
    a = set(str1.lower().split())
    b = set(str2.lower().split())
    c = a.intersection(b)
    return float(len(c)) / (len(a) + len(b) - len(c))
```

بهدست آوردن ضریب ژاکارد برای تمام سطرهای دادهی آموزشی:

```
results_jaccard=[]

for ind,row in train.iterrows():
    sentence1 = row.text
    sentence2 = row.selected_text

jaccard_score = jaccard(sentence1,sentence2)
    results_jaccard.append([sentence1,sentence2,jaccard_score])
```

اضافه کردن ویژگیهای موردنظر - Num_word_text ،Num_words_ST و difference_in_words -بهدادهی آموزشی

```
train['Num_words_ST'] = train['selected_text'].apply(lambda x:len(str(x
        ).split())) #Number Of words in Selected Text
train['Num_word_text'] = train['text'].apply(lambda x:len(str(x).split
        ())) #Number Of words in main text
train['difference_in_words'] = train['Num_word_text'] - train['
        Num_words_ST'] #Difference in Number of words text and Selected
        Text.
```

نمونه یی از دادهی آموزشی بعد از اضافه کردن متافیچرها:

Out[17]:

	textID	text	selected_text	sentiment	jaccard_score	Num_words_ST	Num_word_text	difference_in_words
0	cb774db0d1	I'd have responded, if I were going	I'd have responded, if I were going	neutral	1.000000	7	7	0
1	549e992a42	Sooo SAD I will miss you here in San Diego!!!	Sooo SAD	negative	0.200000	2	10	8
2	088c60f138	my boss is bullying me	bullying me	negative	0.166667	2	5	3
3	9642c003ef	what interview! leave me alone	leave me alone	negative	0.600000	3	5	2
4	358bd9e861	Sons of ****, why couldn`t they put them on t	Sons of ****,	negative	0.214286	3	14	11

حال بیایید نگاهی به توزیع متافیچرها بیاندازیم.

```
hist_data = [train['Num_words_ST'],train['Num_word_text']]

group_labels = ['Selected_Text', 'Text']

# Create distplot with custom bin_size

fig = ff.create_distplot(hist_data, group_labels,show_curve=False)

fig.update_layout(title_text='Distribution of Number Of words')

fig.update_layout(
    autosize=False,
    width=900,
    height=700,
    paper_bgcolor="LightSteelBlue",

fig.show()
```


نمودار تعداد کلمات از این نظر حائز اهمیت است که توییتهایی که تعداد کلماتشان بیشتر از ۲۵ تا میباشد بسیار کمتر هستند، از این رو منحنی توزیع چوله به راست است.

حالا مفید است نگاهی هم به توزیع اختلاف تعداد کلمات و ضریب ژاکارد در تمایلها بیاندازیم.

قادر به ترسیم KDE Plot برای توییتهای بی تمایل (Neutral) نیستیم، چراکه برای اکثر توییتهای خنثی اختلاف میان تعداد کلمات در text و selected_text برابر صفر است.

به همان دلیل ذکر شده در مورد ترسیم KDE Plot برای اختلاف کلمات در توییتهای خنثی، قادر به ترسیم KDE برای ضریب ژاکارد در توییتهای خنثی نیز نیستیم.

ما می توانیم چند گرایش جالب را در اینجا ببینیم:

- توییتهای مثبت و منفی کوتوز بالایی دارند، از این رو، توییتها در دو ناحیه ی کمتراکم و پرتراکم متمرکز شدهاند.
 - توییتهای خنثی مقدار کورتوز پایینی دارند و یک برآمدگی تراکم در نزدیکی مقادیر ۱ وجود دارد.

نتيجهگيري

با مشاهده ی پلات ضریب ژاکارد، می توان دید برای توییتهای مثبت و منفی، در نزدیکی ۱ برآمدگی وجود دارد. این یعنی، یک خوشه از توییتها وجود دارد که در آنها text و selected_text شباهت بالایی دارند.
 اگر بتوانیم آن خوشهها را پیدا کنیم، با صرف نظر از کلاسهای selected_text، می توانیم selected_text را پیش بینی کنیم.

بیایید بررسی کنیم که آیا میتوان این خوشهها را پیدا کرد:

```
k = train[train['Num_word_text'] <= 2]
k.groupby('sentiment').mean()['jaccard_score']</pre>
```

```
Out[25]:
sentiment
negative 0.788580
neutral 0.977805
positive 0.765700
Name: jaccard_score, dtype: float64
```

مى توان ديد شباهتى ميان text و selected_text وجود دارد. بياييد با دقت بيشتر بررسى كنيم:

```
| k[k['sentiment'] == 'positive']
```

واضح است که بیشتر مواقع، text و selected_text برابر هستند.

یاکسازی داده

حالا استخراج اطلاعات از كلمات توييتها را آغاز خواهيم كرد. بياييد اول دادهي آموزشي را پاكسازي كنيم:

```
def clean_text(text):
    '''Make text lowercase, remove text in square brackets, remove links,
        remove punctuation
and remove words containing numbers.'''

text = str(text).lower()

text = re.sub('\[.*?\]', '', text)

text = re.sub('\[.*?\]', '', text)

text = re.sub('<.*?\+', '', text)

text = re.sub('<.*?\+', '', text)

text = re.sub('\[.*s]', re.escape(string.punctuation), '', text)

text = re.sub('\n', '', text)</pre>
```

Out[26]:

	textID	text	selected_text	sentiment	jaccard_score	Nu
68	fa2654e730	Chilliin	Chilliin	positive	1.0	1
80	bbbc46889b	THANK YYYYYYYY0000000000UUUUUI	THANK YYYYYYYY0000000000UUUUUI	positive	1.0	2
170	f3d95b57b1	good morning	good morning	positive	1.0	2
278	89d5b3f0b5	Thanks	Thanks	positive	1.0	1
429	a78ef3e0d0	Goodmorning	Goodmorning	positive	1.0	1
			···			
26689	e80c242d6a	Goodnight;	Goodnight;	positive	1.0	1
26725	aad244f37d	*hug*	*hug*	positive	1.0	1
26842	a46571fe12	congrats!	congrats!	positive	1.0	1
26959	49a942e9b1	Happy birthday.	Happy birthday.	positive	1.0	2
27292	47c474aaf1	Good choice	Good	positive	0.5	1

```
text = re.sub('\w*\d\w*', '', text)
return text

train['text'] = train['text'].apply(lambda x:clean_text(x))
train['selected_text'] = train['selected_text'].apply(lambda x: clean_text(x))

train.head()
```

Out[29]:

	textID	text	selected_text	sentiment	jaccard_score	Num_words_ST	Num_word_text	difference_in_words
0	cb774db0d1	id have responded if i were going	id have responded if i were going	neutral	1.000000	7	7	0
1	549e992a42	sooo sad i will miss you here in san diego	sooo sad	negative	0.200000	2	10	8
2	088c60f138	my boss is bullying me	bullying me	negative	0.166667	2	5	3
3	9642c003ef	what interview leave me alone	leave me alone	negative	0.600000	3	5	2
4	358bd9e861	sons of why couldnt they put them on the rel	sons of	negative	0.214286	3	14	11

selected_text رایج ترین کلمات در

Out[30]:

	Common_words	count
0	I	7200
1	to	5305
2	the	4590
3	а	3538
4	my	2783
5	you	2624
6	and	2321
7	it	2158
8	is	2115
9	in	1986
10	for	1854
11	im	1676
12	of	1638
13	me	1540
14	on	1488
15	so	1410
16	have	1345
17	that	1297
18	but	1267
19	good	1251

مشاهده می کنید که stopword ها را حذف نکردهایم (برای نمونه: کلمهی to).

```
def remove_stopword(x):
    return [y for y in x if y not in stopwords.words('english')]
strain['temp_list'] = train['temp_list'].apply(lambda x:remove_stopword(x))
```

Out[33]:

	Common_words	count
1	good	1251
2	day	1058
3	love	909
4	happy	852
5	like	774
6	get	772
7	dont	765
8	go	700
9	cant	613
10	work	612
11	going	592
12	today	564
13	got	558
14	one	538
15	time	534
16	thanks	532
17	lol	528
18	really	520
19	u	519

رایج ترین کلمات در text

Out[36]:

رایج ترین کلمات در تمایلها

```
Positive_sent = train[train['sentiment']=='positive']
Regative_sent = train[train['sentiment']=='negative']
Reutral_sent = train[train['sentiment']=='neutral']
```

رایج ترین کلمات در توییتهای مثبت

Out[39]:

	Common_words	count
0	good	826
1	happy	730
2	love	697
3	day	456
4	thanks	439
5	great	364
6	fun	287
7	nice	267
8	mothers	259
9	hope	245
10	awesome	232
11	im	185
12	thank	180
13	like	167
14	best	154
15	wish	152
16	amazing	135
17	really	128
18	better	125
19	cool	119

رایج ترین کلمات در توییتهای منفی

Out[41]:

	Common_words	count
1	miss	358
2	sad	343
3	sorry	300
4	bad	246
5	hate	230
6	dont	221
7	cant	201
8	sick	166
9	like	162
10	sucks	159
11	feel	158
12	tired	144
13	really	137
14	good	127
15	bored	115
16	day	110
17	hurts	108
18	work	99
19	get	97

رایج ترین کلمات در توییتهای خنثی

Out[41]:

- مشاهده میشود کلماتی همچون lol .cant .u .got .dont .go .get و ادر هر سه کلاس تمایل مشترک هستند، نکتهی جالب اینجاست که کلماتی همچون: cant و dont طبیعتا منفی هستند و کلمه یی همچون: lol .dont مثبت است. آیا دادهی ما اشتباه برچسب خورده؟-بعد از آنالیز N-gram دید بهتری به این موضوع خواهیم داشت.
 - بررسی کلمات یکتا در تمایلهای مختلف جالب است.

کلمات یکتا در هر تمایل

ما کلمات متمایز را برای هر تمایل-با استفاده از تابع words_unique-به ترتیب زیر بررسی خواهیم کرد:

- مثبت
- منفی
- خنثی

```
raw_text = [word for word_list in train['temp_list1'] for word in
     word_list]
```

توییتهای مثبت

```
Unique_Positive= words_unique('positive', 20, raw_text)
print("The top 20 unique words in Positive Tweets are:")
Unique_Positive.style.background_gradient(cmap='Greens')
```

The top 20 unique words in Positive Tweets are

Out[48]

Tree Of Unique Positive Words


```
7 plt.title('DoNut Plot Of Unique Positive Words')
8 plt.show()
9
```

DoNut Plot Of Unique Positive Words

توييتهاي منفي

```
Unique_Negative= words_unique('negative', 10, raw_text)
print("The top 10 unique words in Negative Tweets are:")
Unique_Negative.style.background_gradient(cmap='Reds')

4
```

he top 20 unique words in Positive Tweets are:

Out[48]:

	words	count
0	congratulations	29
1	thnx	10
2	appreciated	8
3	shared	7
4	presents	7
5	greetings	7
6	blessings	6
7	mothersday	6
8	mcr	6
9	coolest	6
10	honored	6
11	goood	6
12	wango	5
13	actress	5
14	mint	5
15	dayyyy	5
16	ciara	5
17	twin	5
18	kudos	5
19	hurray	5

DoNut Plot Of Unique Positive Words

توييتهاي خنثي

```
Unique_Neutral= words_unique('neutral', 10, raw_text)
print("The top 10 unique words in Neutral Tweets are:")
Unique_Neutral.style.background_gradient(cmap='Oranges')
```

The top 20 unique words in Positive Tweets are:

Out[48]

حال که کلمات متمایز را بررسی کردیم، دید به مراتب واضحتری از داده داریم. این کلمات یکتا از تعیین کنندگان قوی sentiment برای توییتها میباشند.

مدلسازي

این مسئله می تواند به شکلهای زیر مدل شود:

- Named Entity Recognition o
 - Question-Answering o
- من یک رویکرد دیگر -که Nick در کرنلاش به اشتراک گذاشته-یافتم که از مفهوم Gini Impurity استفاده کرده تا به کلمات درون توییتها وزن بدهد، سپس پیشبینی بر اساس آن وزنها اتفاق میافتد. میتوانید از طریق این لینک به کرنل رجوع کنید.
 - یک ایدهی متفاوت تر از طریق این لینک قابل دسترسی است.
 - یک رویکرد مفید دیگر: لینک

منابع

- ۹ برای مدلینگ مسئله بهعنوان مسئلهی NER: لینک
- o برای مدلینگ مسئله به عنوان مسئله ی Question-Answering: لینک

مدل کردن مسئله بهعنوان مسئلهی NER

NER یک استاندارد برای مسئلههای پردازش زبان طبیعی است، که شامل استخراج موجودیتهای اسمدار-مردم، مکانها، سازمانها و غیره-از دادهی متنی و طبقهبندی آنها در مجموعهای از دستهها میباشد. برای درک بهتر NER به این لینک مراجعه کنید. مواردی در مورد مدلمان:

- ما برای توییتهای بی تمایل، از text به جای selected_text استفاده خواهیم کرد-بهدلیل ضریب بالای ژاکارد در آنها.
- همچنین در توییتهایی که کمتر از سه کلمه دارند هم text را به جای selected_text به کار خواهیم برد.
 - دو مدل را برای توییتهای مثبت و توییتهای منفی آموزش داده میشوند.
 - ∘ داده پیشپردازش نخواهد شد، چرا که selected_text تنها شامل متن خام میشود.

خواندن دادههای آموزشی و آزمایشی

رایج ترین کلمات در توییتهای منفی

```
df_train['Num_words_text'] = df_train['text'].apply(lambda x:len(str(x)
.split())) #Number Of words in main Text in train set
```

انتخاب توییتهای که بیشتر از دو کلمه را شامل میشوند

```
df_train = df_train[df_train['Num_words_text']>=3]
```

تابعی برای ذخیره کردن مدل در مسیر داده شده

```
def save_model(output_dir, nlp, new_model_name):
    ''' This Function Saves model to
    given output directory'''

output_dir = f'../working/{output_dir}'
    if output_dir is not None:
    if not os.path.exists(output_dir):
    os.makedirs(output_dir)
    nlp.meta["name"] = new_model_name
    nlp.to_disk(output_dir)
    print("Saved model to", output_dir)
```

تابعی برای دریافت کردن مسیر مدلها

```
def get_model_out_path(sentiment):
    Returns Model output path
```

```
model_out_path = None
if sentiment == 'positive':
model_out_path = 'models/model_pos'
elif sentiment == 'negative':
model_out_path = 'models/model_neg'
return model_out_path
```

تابعی برای دریافت کردن داده با فرمتی که برای Spacy NER مناسب است

```
def get_training_data(sentiment):
    '''

Returns Trainong data in the format needed to train spacy NER

'''

train_data = []

for index, row in df_train.iterrows():
    if row.sentiment == sentiment:
    selected_text = row.selected_text
    text = row.text
    start = text.find(selected_text)
    end = start + len(selected_text)
    train_data.append((text, {"entities": [[start, end, 'selected_text' ]]}))
    return train_data
```

آموزش مدلها

```
sentiment = 'positive'

train_data = get_training_data(sentiment)

model_path = get_model_out_path(sentiment)

# For DEmo Purposes I have taken 3 iterations you can train the model as you want

train(train_data, model_path, n_iter=3, model=None)

sentiment = 'negative'

train_data = get_training_data(sentiment)

model_path = get_model_out_path(sentiment)

train(train_data, model_path, n_iter=3, model=None)

train(train_data, model_path, n_iter=3, model=None)
```

پیشبینی با مدلهای آموزش داده شده

```
def predict_entities(text, model):
   doc = model(text)
   ent_array = []
```

```
for ent in doc.ents:
    start = text.find(ent.text)
    end = start + len(ent.text)
  new_int = [start, end, ent.label_]
if new_int not in ent_array:
   ent_array.append([start, end, ent.label_])
selected_text = text[ent_array[0][0]: ent_array[0][1]] if len(
     ent_array) > 0 else text
  return selected_text
12
MODELS_BASE_PATH = '../input/tse-spacy-model/models/'
3 if MODELS_BASE_PATH is not None:
   print("Loading Models from ", MODELS_BASE_PATH)
    model_pos = spacy.load(MODELS_BASE_PATH + 'model_pos')
    model_neg = spacy.load(MODELS_BASE_PATH + 'model_neg')
   for index, row in df_test.iterrows():
     text = row.text
10
     output_str = ""
     if row.sentiment == 'neutral' or len(text.split()) <= 2:</pre>
11
     selected_texts.append(text)
12
     elif row.sentiment == 'positive':
13
     selected_texts.append(predict_entities(text, model_pos))
14
     selected_texts.append(predict_entities(text, model_neg))
df_test['selected_text'] = selected_texts
```

Loading Models from .../input/tse-spacy-model/models/

```
df_submission['selected_text'] = df_test['selected_text']
df_submission.to_csv("submission.csv", index=False)
display(df_submission.head(10))
4
```

textID selected_text 0 f87dea47db Last session of the day http://twitpic.com/67d 1 96d74cb729 exciting 2 eee518ae67 Recession 3 01082688c6 happy bdayl 4 33987a8ee5 I like itI! 5 726e501993 visitorsI	≥zh
1 96d74cb729 exciting 2 eee518ae67 Recession 3 01082688c6 happy bdayl 4 33987a8ee5 I like it!!	ezh
2 eee518ae67 Recession 3 01082688c6 happy bday! 4 33987a8ee5 I like it!!	
3 01082688c6 happy bday! 4 33987a8ee5 I like itil	
4 33987a8ee5 I like it!!	
1 0000700000 111101111	
5 726e501993 visitors!	
6 261932614e HATES	
7 afa11da83f blocked	
8 e64208b4ef and within a short time of the last clue all	
9 37bcad24ca What did you get? My day is alright haven`	

سخن پایانی

کگل همیشه فرصت زیادی برای رقابتها در نظر می گیرد، اینگونه شر کت کنندگان می توانند یاد بگیرند و رشد کنند. همانطور که عهد کرده بودیم یک مدل همراه با توضیحاتاش را ارائه کردیم؛ برای مطالعه بیشتر، می توانید مستندات spacy را در این کرنل مطالعه کنید.

References

- [1] A simple solution using only word counts
- [2] Twitter sentiment Extaction-Analysis, EDA and Model
- [3] NER training using spacy (Ensemble)
- [4] Question-Answering Starter pack