10

15

20

What is claimed is:

1. A semiconductor device comprising a semiconductor layer, which comprises a compound semiconductor using Ga_vAl_{1-v} (where, $0 \le v \le 1$) as the main component of the Group III-elements and N as the main component of the Group V-elements, and a Schottky junction metal layer which is on contact with the semiconductor layer, wherein:

said Schottky junction metal layer comprises a laminated structure wherein a first metal layer is in contact with said semiconductor device, a second metal layer is in contact with the first metal layer, and a third metal layer is in contact with the second metal layer;

said second metal layer comprises a metal material having a higher melting point than those of metal materials in said first metal layer and said third metal layer; and

said third metal layer comprises a metal having a lower resistivity than those of metal materials in said first metal material and said second metal material.

- 2. A semiconductor device according to claim 1, wherein said first metal layer comprises any metal material selected from a group comprising Ni, Pt, Pd, Ni_zSi_{1-z}, Pt_zSi_{1-z}, Pd_zSi_{1-z}, Ni_zN_{1-z}, and Pd_zN_{1-z} (where, 0<z<1); and said second metal layer comprises any metal material selected from a group comprising Mo, Pt, W, Ti, Ta, Mo_xSi_{1-x}, PtxSi_{1-x}, W_xSi_{1-x}, Ti_xSi_{1-x}, Ta_xSi_{1-x}, Mo_xN_{1-x}, W_xN_{1-x}, Ti_xN_{1-x}, and Ta_xN_{1-x} (where, 0<x<1).
- 25 3. A semiconductor device according to claim 2, wherein said third metal layer comprises any metal material selected from a group comprising Au, Cu, Al, and Pt.
- 4. A semiconductor device according to claim 1, wherein said first metal layer comprises any material selected from a group comprising Ni_{z1}Si_{1-z1} (where, $0.4 \le z1 \le 0.75$), Pt_{z2}Si_{1-z2} (where, $0.5 \le z2 \le 0.75$), Pd_{z3}Si_{1-z3} (where, $0.5 \le z3 \le 0.85$), Ni_{z4}N_{1-z4} (where, $0.5 \le z4 \le 0.85$), and Pd_{z5}N_{1-z5} (where, $0.5 \le z5 \le 0.85$); and said second metal layer comprises any material selected from a group comprising any of Mo, Pt, W, Ti, Ta, Mo_xSi_{1-x}, Pt_xSi_{1-x}, W_xSi_{1-x}, Ti_xSi_{1-x}, Ta_xSi_{1-x}, Mo_xN_{1-x}, W_xN_{1-x}, Ti_xN_{1-x}, and Ta_xN_{1-x} (where, 0 < x < 1).

- 5. A semiconductor device according to claim 4, wherein said third metal layer comprises any material selected from a group comprising any of Au, Cu, Al, and Pt.
- 6. A semiconductor device according to claim 1, wherein said first metal layer comprises a metal material having a higher work function than that of said second metal layer.
 - 7. A semiconductor device according to claim 6, wherein said first metal layer comprises a metal material having a higher work function than that of said third metal layer.
 - 8. A semiconductor device according to claim 1, wherein the melting point of said second metal layer is 1,000°C or higher.
- 9. A semiconductor device according to claim 1, wherein said semiconductor layer is formed on a multilayered structure comprising a plurality of compound semiconductor layers formed on a substrate.
- 10. A semiconductor device according to claim 9, wherein said substrate comprises any substrate selected from a group comprising a sapphire substrate, a SiC substrate and a GaN substrate.
 - 11. A semiconductor device according to claim 1, wherein said semiconductor layer is an $Al_uGa_{1-u}N$ layer (where, $0 \le u \le 1$).
 - 12. A semiconductor device according to claim 1, wherein said semiconductor layer is a GaN compound semiconductor electron supplying layer formed on a GaN compound semiconductor channel layer.
- 30 13. A semiconductor device according to claim 12, wherein said GaN compound semiconductor channel layer comprises a compound semiconductor selected from a group comprising GaN and InGaN, and said GaN compound semiconductor electron supplying layer comprises AlGaN.

- 14. A semiconductor device according to claim 1, wherein said semiconductor layer is a GaN compound semiconductor channel layer formed on a GaN compound semiconductor electron supplying layer.
- 5 15. A semiconductor device according to claim 14, wherein said GaN compound semiconductor channel layer comprises a compound semiconductor selected from a group comprising GaN and InGaN, and said GaN compound semiconductor electron supplying layer comprises AlGaN.
- 16. A semiconductor device according to claim 1, wherein said semiconductor layer is a n-type GaN channel layer.
- 17. A semiconductor device comprising a semiconductor layer comprising a compound semiconductor using Ga_vAl_{1-v} (where, 0≤v≤1) as a main component of the Group III-elements and N as a main component of the Group V-elements and a Schottky junction metal layer which is in contact with the semiconductor layer, wherein: said Schottky junction metal layer comprises a laminated structure comprising a first metal layer which is in contact with said semiconductor layer and a second metal layer which is in contact with said first metal layer; and
- said first metal layer comprises a metal material having a higher melting point than that of the metal material in said second metal layer and said second metal layer comprises a metal material having a lower resistivity than that in the metal material of said first metal layer.
- 18. A semiconductor device according to claim 17, wherein said first metal layer comprises any metal material selected from a group comprising Ni_ySi_{1-y}, Pt_ySi_{1-y}, Pd_ySi_{1-y}, Ni_yN_{1-y}, and Pd_yN_{1-y} (where, 0<y<1).
- 19. A semiconductor device according to claim 18, wherein said second metal layer comprises any metal material selected from a group comprising Au, Cu, Al and Pt.
 - 20. A semiconductor device according to claim 17, wherein said first metal layer comprises any metal material selected from a group comprising $Ni_{y1}Si_{1-y1}$ (where, $0.4 \le y1 \le 0.75$), $Pt_{y2}Si_{1-y2}$ (where, $0.5 \le y2 \le 70.5$), $Pd_{y3}Si_{1-y3}$ (where, $0.5 \le y3 \le 0.85$), $Ni_{y4}N_{1-y4}$ (where, $0.5 \le y4 \le 0.85$), and $Pd_{y5}N_{1-y5}$ (where, $0.5 \le y5 \le 0.85$).

- 21. A semiconductor device according to claim 20, wherein said second metal layer comprises any metal material selected from a group comprising Au, Cu, Al, and Pt.
- 22. A semiconductor device according to claim 17, wherein said first metal layer has a higher work function than that of said second metal layer.
 - 23. A semiconductor device according to claim 17, wherein the melting point of said first metal layer is 1,000°C or higher.
- 10 24. A semiconductor device according to claim 17, wherein said semiconductor layer is formed on a multilayered structure comprising a plurality of compound semiconductor layers formed on a substrate.
- 25. A semiconductor device according to claim 17, wherein said substrate
 15 comprises any substrate selected from a group comprising a sapphire substrate, a SiC substrate, and a GaN substrate.
 - 26. A semiconductor according to claim 17, wherein said semiconductor layer is an $Al_uGa_{1-u}N$ layer (where, $0 \le u \le 1$).
 - 27. A semiconductor device according to claim 17, wherein said semiconductor layer is a GaN compound semiconductor electron supplying layer formed on a GaN compound semiconductor channel layer.
- 28. A semiconductor device according to claim 27, wherein said GaN compound semiconductor channel layer comprises a compound semiconductor selected from a group comprising GaN and InGaN, and said GaN compound semiconductor electron supplying layer comprises AlGaN.
- 29. A semiconductor device according to claim 17, wherein said semiconductor layer is a GaN compound semiconductor channel layer formed on a GaN compound semiconductor electron supplying layer.
- 30. A semiconductor device according to claim 29, wherein said GaN compound semiconductor channel layer comprises a compound semiconductor selected from a

35

group comprising GaN and InGaN, and said GaN compound semiconductor electron supplying layer comprises AlGaN.

- 31. A semiconductor device according to claim 17, wherein said semiconductor layer is a n-type GaN channel layer.
- 32. A semiconductor device comprising a semiconductor layer which comprises a compound semiconductor using Ga_vAl_{1-v} (where, $0 \le v \le 1$) as a main component of the Group III-elements and N as a main component of the Group V-elements and a Schottky junction metal layer which is in contact with the semiconductor layer, wherein: 10 said Schottky junction metal layer comprises a laminated structure wherein a first metal layer is in contact with said semiconductor layer, a second metal layer is in contact with said first metal layer, and a third metal layer is in contact with said second metal layer; said first metal layer comprises any metal material selected from a group comprising Ni, Pt, Pd, Ni_zSi_{1-z} , Pt_zSi_{1-z} , Pd_zSi_{1-z} , Ni_zN_{1-z} , and Pd_zN_{1-z} (where, 0<z<1); 15 said second metal layer comprises any metal material selected from a group comprising Mo, Pt, W, Ti, Ta, Mo_xSi_{1-x} , $PtxSi_{1-x}$, W_xSi_{1-x} , Ti_xSi_{1-x} , Ta_xSi_{1-x} , Mo_xN_{1-x} , W_xN_{1-x} , Ti_xN_{1-x} , and Ta_xN_{1-x} (where, 0<x<1); and said third metal layer comprises any metal material selected from a group comprising 20 Au, Cu, Al, and Pt.
- 33. A semiconductor device comprising a semiconductor layer which comprises a compound semiconductor using Ga_vAl_{1-v} (where, 0≤v≤1) as a main component of the Group III-elements and N as a main component of the Group V-elements and a Schottky junction metal layer which is in contact with the semiconductor layer, wherein: said Schottky junction metal layer comprises a laminated structure wherein a first metal layer is in contact with said semiconductor layer and a second metal layer is in contact with said first metal layer; said first metal layer comprises any metal material selected from a group comprising Ni_ySi_{1-y}, Pt_ySi_{1-y}, Pd_ySi_{1-y}, Ni_yN_{1-y}, and Pd_yN_{1-y} (where, 0<y<1); and said second metal layer comprises any metal material selected from a group comprising Au, Cu, Al, and Pt.
 - 34. A semiconductor device comprising a semiconductor layer which comprises a compound semiconductor using Ga_vAl_{1-v} (where, $0 \le v \le 1$) as a main component of the

10

15

20

Group III-elements and N as a main component of the Group V-elements and a Schottky junction metal layer which is in contact with the semiconductor layer, wherein:

said Schottky junction metal layer comprises a laminated structure wherein a first metal layer is in contact with said semiconductor layer and a second metal layer is in contact with said first metal layer and a third metal layer is in contact with said metal layer;

said first metal layer comprises any metal material selected from a group comprising Ni_{z1}Si_{1-z1} (where, $0.4 \le z1 \le 0.75$), Pt_{z2}Si_{1-z2} (where, $0.5 \le z2 \le 0.75$), Pd_{z3}Si_{1-z3} (where, $0.5 \le z3 \le 0.85$), Ni_{z4}N_{1-z4} (where, $0.5 \le z4 \le 0.85$), and Pd_{z5}N_{1-z5} (where, $0.5 \le z5 \le 0.85$);

said second metal layer comprises any metal material selected from a group comprising Mo, Pt, W, Ti, Ta, Mo_xSi_{1-x} , Pt_xSi_{1-x} , W_xSi_{1-x} , Ti_xSi_{1-x} , Ta_xSi_{1-x} , Mo_xN_{1-x} , W_xN_{1-x} , Ti_xN_{1-x} , and Ta_xN_{1-x} (where, 0 < x < 1); and

said third metal layer comprises any metal material selected from a group comprising Au, Cu, Al, and Pt.

35. A semiconductor device comprising a semiconductor layer which comprises a compound semiconductor using Ga_vAl_{1-v} (where, $0 \le v \le 1$) as a main component of the Group III-elements and N as a main component of the Group V-elements and a Schottky junction metal layer which is in contact with the semiconductor layer, wherein said Schottky junction metal layer comprises a laminated structure wherein a first metal layer is in contact with said semiconductor layer and a second metal layer is in contact with said first metal layer;

said first metal layer comprises any metal material selected from a group comprising $Ni_{y1}Si_{1-y1}$ (where, $0.4 \le y1 \le 0.75$), $Pt_{y2}Si_{1-y2}$ (where, $0.5 \le y2 \le 70.5$), $Pd_{y3}Si_{1-y3}$ (where, $0.5 \le y3 \le 0.85$), $Ni_{y4}N_{1-y4}$ (where, $0.5 \le y4 \le 0.85$), and $Pd_{y5}N_{1-y5}$ (where, $0.5 \le y5 \le 0.85$); and

said second metal layer comprises any metal material selected from a group comprising Au, Cu, Al, and Pt.

30