We claim:

1	1. An analyzer comprising:
2	a transport system;
3	a liquid dispense or aspirating station;
4	a holder removably located on the transport system, wherein the
5	removable holder comprises:
6	a probe tip dispenser;
7	a fluid supply section for holding a sample;
8	a test element recess for holding one or more test elements
9	or test element holders, wherein the removable holder is configured to
10	contain the test element recess such that a test element can be acted
11	upon by the liquid dispense or aspirating station, while the test element is
12	in the recess; and
13	a measurement device to analyze a sample.
1	2. An analyzer as claimed in claim 1, wherein the removable holder
2	arranges the probe tip dispenser, sample reservoir and test element recess on
3	the same line of travel to intersect the liquid dispense or aspirating station when
4	the removable holder is transported to the station by the transport system.
1	3. An analyzer as claimed in claim 1, wherein the transport system
2	comprises:
3	a first rotor for holding the removable holder; and second rotor arranged
4	concentrically with the first rotor and adapted to receive a test element from the
5	removable holder on the first rotor.

- 1 4. An analyzer as claimed in claim 3, wherein the removable holder 2 arranges the probe tip dispenser, sample reservoir and test element recess on the same line of travel to intersect the liquid dispense or aspirating station when 3 the removable holder is transported to the station by the first rotor. 4.
- 1 An analyzer according to claim 4, wherein the measurement device 2 is arranged to analyze a sample located in the second rotor; and further 3 comprising an incubator arranged in cooperation with the second rotor to 4 incubate a sample disposed in the second rotor.
- 1 6. An analyzer as claimed in claim 3, wherein the second rotor is disposed within the first rotor.

2

- 1 7. An analyzer as claimed in claim 1, further comprising a waste collection container located on the transport system for collecting used probe tips 2 3 and test elements.
- An analyzer as claimed in claim 2, further comprising a waste 1 2 collection container located on the transport system for collecting used probe tips and test elements, and wherein the waste collection container is arranged on the 3 4. line of travel.
- 9. An analyzer as claimed in claim 1, further comprising a centrifuge 1 2 module removably located on the transport system for separating a sample, and wherein the centrifuge module is arranged on the line of travel. 3
- An analyzer as claimed in claim 1, further wherein the removable 1 10. 2 holder comprises at least two removable holders.

1	11. An analyzer as claimed in claim 10, wherein the at least two
2	removable holders include a first removable holder and a second removable
3	holder having different test elements.
1	An analyzer as claimed in claim 11, wherein the first removable
2	holder comprises a dry-slide test element and the second removable holder
3	comprises an immunoassay test reaction container.
1	13. An analyzer as claimed in claim 1, further comprising the test
2	element holder for holding the test element.
1	An analyzer as claimed in claim 13, wherein the test element holder
2	contains one or more of cup-shaped wells and test-strips.
1	15. An analyzer comprising:
2	a transport system;
3	a liquid dispense or aspirating station;
4	a removable centrifuge module removably located on the transport
5	system, wherein the centrifuge is adapted to receive a sample from the
6	liquid dispense or aspirating station; and
7	a measurement device to analyze a sample.

centrifuge module comprises a centrifuge cup and a base for rotatably supporting

16. An analyzer as claimed in claim 15, wherein the removable

1

2

the centrifuge cup.

- 1 17. An analyzer as claimed in claim 16, further comprising a centrifuge 2 station having a drive to engage and to provide rotary motion to the centrifuge 3 cup.
 - 18. A method of transporting a probe tip, a liquid supply system for containing a sample to be analyzed and a test element, to a subsystem in an analyzer comprising:

4 providing the probe tip, liquid supply system and test element;

1

2

3

7

8

1

2

1 2

3

1

2

3

4

1

arranging the probe tip, sample reservoir and test element on a transport system on the same line of travel of the transport system; and

moving the probe tip, sample reservoir and test element past the subsystem.

- 19. A method as claimed in claim 18, wherein substantially no lateral movement is required by the subsystem.
- 20. A method as claimed in claim 18, further comprising a removable holder removably located on the analyzer transport system, wherein the removable holder contains the probe tip, liquid supply system and test element.
- 21. A method as claimed in claim 20, wherein the transport system comprises: a first rotor for holding the removable holder; and second rotor arranged concentrically with the first rotor and adapted to receive the test element from the first rotor.
 - 22. A method of analyzing a sample comprising:
- arranging a sample in a sample reservoir, at least one test element and a probe tip on a first rotor on the same line of travel of a transport system; and

4	moving the transport system to align the probe tip with the proboscis of a
5	liquid dispense and aspirating station;
6	engaging the probe tip with the proboscis;
7	moving the transport system to align the sample reservoir with the liquid
8	dispense and aspirating station;
9	aspirating sample from the sample reservoir;
10	moving the transport system to align the test element with the liquid
l 1	dispense and aspirating station; and
12	dispensing the sample onto the test element, wherein the liquid dispense
13	and aspirating station has substantially no lateral movement.
1	23. A method as claimed in claim 22, further comprising:
2	incubating the test element;
3	moving the transport system to bring the test element into cooperation
4	with a measurement device; and
5	measuring the sample with the measurement device.
1	24. A method as claimed in claim 22, further comprising a removable
2	holder removably located on the analyzer transport system, wherein the
3	removable holder contains the probe tip, sample reservoir and test element.
1	25. A method of analyzing a sample comprising:
2	arranging a sample in a sample reservoir, at least one test element and a
3	probe tip on a first rotor on the same line of travel of the first rotor;
4	rotating the first rotor to align the probe tip with the proboscis of a liquid
5	dispense and aspirating station;
6	angaging the probatin with the probassis:

7	rotating the first rotor to align the sample reservoir with the liquid dispense
8	and aspirating station;
9	aspirating sample from the sample reservoir;
10	rotating the first rotor to align the test element with the liquid dispense and
11	aspirating station;
12	dispensing the sample onto the test element, wherein the liquid dispense
13	and aspirating station has substantially no lateral movement;
14	rotating the first rotor to align the test element with a test element transfer
15	station;
16	transferring the test element to a second rotor;
17	incubating the test element;
18	rotating the second rotor to bring the test element into cooperation with a
19	measurement device; and
20	measuring the sample with the measurement device.
1	26. A method as claimed in claim 25, further comprising a removable
2	holder removably located on the analyzer transport system, wherein the
3	removable holder contains the probe tip; sample reservoir and test element.
1	27. A method as claimed in claim 25, wherein between the steps of
2	aspirating sample from the sample reservoir and rotating the first rotor to align
3	the test element with the liquid dispense and aspirating station the method further
4	comprises:
5	rotating the first rotor to align a centrifuge module with the liquid dispense
6	and aspirating station;
7	dispensing the sample into the centrifuge module, wherein the liquid
8	dispense and aspirating station has substantially no lateral movement;

Attorney Docket No. 0290

- 9 rotating the first rotor to align the centrifuge module with a centrifuge 10 station;
- engaging and rotating a centrifuge cup in the centrifuge module to separate the sample;
- 13 rotating the first rotor to align the centrifuge module with the liquid 14 dispense and aspirating station; and
- aspirating separated sample from the centrifuge module.
- 28. A method according to claim 18 implemented by a computer program interfacing with a computer.
- 29. An article of manufacture comprising a computer usable medium having computer readable program code configured to conduct the method of claim 18.
- 30. A veterinary analyzer comprising an analyzer according to claim 1 and a T4 assay.
- 1 31. An analyzer according to claim 1, wherein the analyzer is a desktop 2 analyzer.