

Course on Atomic Structure for Class XI

 $R_{G}(A)^{1/3}$ Radius of 1-33/10-15 Nucleus 2000 Volt

$$\frac{\lambda_1 = u530A^\circ}{\left(\frac{hc}{\lambda_2} \times \eta_2\right)} = \frac{\left(\frac{hc}{\lambda_1} \times \eta_1 \times 0.47\right)}{\left(\frac{hc}{\lambda_1} \times \eta_2\right)}$$

20% John Hon no. 7 e ejecter no. 7 photon striked Quentum= (0.2) (5-photons) _02//. 0.0/mol 0.05 mol photons

$$\frac{2\lambda}{3a_0} = 3 \pm \sqrt{3}$$

$$2 - 3(3+15) a_0$$

$$\frac{1 = 58.44 \text{ mm}}{25} = E_{1}$$

$$\frac{1}{4857 \text{ cm}^{-1}} = \frac{1}{3}$$

5en 2en 3en

-345 3d Up

-355 4d 5p

-765 5d 4f 6p

85 7d 6f 5g 8p

 $\frac{ns}{s1}$, (n-1) d, (n-2)f, (n-3)g --- $\frac{np}{s1}$

for S' orbital $\frac{R^2(Y)}{= \Psi^2}$ Probability density at nucleus is maximum. Probability - 42 at nucleus is negligible (or zuw)
because of small size of
nucleus

(10)

Orbital angular () m $=\frac{h}{2\pi}\int \mathcal{L}(x+1)$ momentim Spin angular moment $=\frac{5}{2\pi}\int S(s+1)$ $S = \frac{1}{2}$ $\left(-\frac{1}{2}\right)$ Orbit angular $n \frac{L}{2tt}$

(3P) 4d, 5f

Paragraph for questions 14 to 16

15,25,35

The hydrogen-like species Li^{2+} is in a spherically symmetric state S_1 with one radial node. Upon absorbing light the ion undergoes transition to a state S_2 . The state S_2 has one radial node and its energy is equal to the ground state energy of the hydrogen atom. [JEE 2010]

- 9. The state S_1 is :-
 - (A) 1s

(B) 2s

(C) 2p

- (D) 3s
- 10. Energy of the state S_1 in units of the hydrogen atom ground state energy is :-
 - (A) 0.75

(B) 1.50

(C) 2.25

- (D) 4.50
- 11. The orbital angular momentum quantum number of the state S_2 is :-
 - (A) 0

(8) 1

(C) 2

(D)3

Unacademy
Ask a Doubt

Unacademy Ask a Doubt

Ask Unlimited Doubts Ask Doubts At Any Time

Get High-quality Video Solutions In English & Hindi

Receive Exact Matches For Questions

Obtain Instant And Accurate Solutions To Lakhs Of Questions

Get Assistance With Homework

Step 1 Click on 'Doubts & solutions' Step 2 Select 'Take a picture' or 'Choose from Gallery' Step 3 Click/select a picture of your question

Step 5 Choose the subject that the question falls under

Step 6
Sit tight, you'll receive the solution soon!

EXAMDAY

Monthly Batch Tests | 25th of Every Month

Next TEST on 25th September

(S) 5:30PM to 7:00PM

Don't forget to give your Exam. Let's Crack It!

2 • Asked by Aditya

Sir orbital angular momentum bata dijiye plzz

magnetic moment

 $=\int_{1}^{1} n(\eta+2)$

Bohr Magnetin

1. The quantum numbers $\pm 1/2$ and $\pm 1/2$ for the electron spin represent:

[JEE 2001]

- (A) rotation of the electron in clockwise and anticlockwise direction respectively.
- (B) rotation of the electron in anticlockwise and clockwise direction respectively.
- (C) magnetic moment of the electron pointing up and down respectively.
- (D) two quantum mechanical spin states which have no classical analogue

5 • Asked by Aaditya Ag...

F z (x^2-y^2) orbital

3 • Asked by Krishna Xi

.

▲ 19 • Asked by Animesh Ku...

sir ye kuch accha laga to bhej diya, angular wave func for dz^2 orbital, i promise mene zyada tym waste nhi kiya:)

8 • Asked by Yugam

Graph jo last class mein discuss kar rahe the sir

