

Befektetések I.

4. előadás Részvénypiaci befektetések és kockázataik, Markowitz-modell, CAPM

2023.03.28.

Póra András

pora.andras@gtk.bme.hu

Mai érdekesség: YTD 2023

- Bankrendszerbe vetett hit a bankválságok miatt csökken
 BTC újra rakétázik?
- Nvidia, akkor most a BTC bányászattól függ vagy a Chat GPT-től? Esetleg bonyolultabb? ©

Kapcsolódó érdekesség: arany vs BTC a háború kitörésekor

És azóta: a kép árnyaltabb lett

- Háború kezdete tavaly: kiderül melyik a tényleges menekülőeszköz.

Mi a hozam?

- Nyereség = minden nyereség vagy veszteség az adott befektetésből, árfolyamnyereség/veszteség + osztalék.
- Pl. 100 db részvény 50 USD-s áron → 5 000 USD, de megváltozik a részvényérték. Az első esetben 69,96 \$-ra, a másodikban 39,78 \$-ra. Időközben 81 \$ osztalékot is fizetett a cég, kérdés, mennyi a nyereség?
 - Az árfolyamnyereség/veszteség dollárban:
 - 1. Eset: (69,96-50)*100 = 1 996 USD
 - 2. Eset: (39,78-50)*100 = 1 022 USD
 - Az osztalékbevétel mindkét esetben: 81 USD
 - A teljes nyereség tehát:
 - 1. Eset: (69,96-50)*100 + 81 = 2 077 USD
 - 2. Eset: (39,78-50)*100 + 81 = 941 USD
- Az egy részvényre eső osztalék (D) = 81/100= 0,81 USD
- Az **osztalékhozam = D_{t+1}/P_t = 0.81/50 = 0.0162 = 1.62\%**
- Az **árfolyamnyereség** százalékban (1. eset)= $(P_{t+1}-P_t)/P_t = (69,96-50)/50 = 0,3992 = 39,92%$
- Befektetési időtávra jutó hozam: osztalékhozam + árfolyamnyereség (1. eset)= (D_{t+1}+P_{t+1}-P_t)/ P_t = 0,4154 = 41,54%
- Évesítés: (1+ hozam)^ (periódusok száma az évben)-1 = éves effektív hozam (mértani átlag)
 - 1. Példa: hozamunk 10% volt négy hónap alatt = $(1+0,1) ^ (12/4) 1 = 1,1^3 1 = 1,331 1 = 0,331 = 33,1%-os éves hozam.$
 - 2. Példa: hozamunk 10% volt négy év alatt = $(1+0,1) ^ (1/4) 1 = 1,1^3 1 = 1,0241 1 = 0,0241 = 2,41%-os éves hozam.$

Case 1

\$69.96

\$5,000

\$6,996

\$ 81

\$1,996

Ending Stock Price

December 31 value

Capital gain or loss

Dividend income

January 1 value

Case 2

\$39.78

\$5,000

\$3,978

\$ 81

-\$1,022

Történeti hozamok

	Average Annual Returns: 1926–2006					
	Investment	Average Return				
	Large stocks	12.3%				
	Small stocks	17.4				
	Long-term corporate bonds	6.2				
	Long-term government bonds	5.8				
	U.S. Treasury bills	3.8				
Ī	Inflation	3.1				

Source: Stocks, Bonds, Bills, and Inflation Yearbook™, Ibbotson Associates, Inc., Chicago (annually updated by Roger G. Ibbotson and Rex A. Sinquefield). All rights reserved.

- Néhány eszközcsoport történelmi hozamai:
 - Nagyvállalatok (S&P500);
 - Kisvállalatok (Russel2000);
 - Vállalati kötvények;
 - USA hosszú lejáratú (20 év) államkötvények (T-Notes);
 - USA rövid lejáratú (3 hónap) államkötvények (T-Bills).
 - Arany;
 - CPI = fogyasztói árindex, infláció.

Source: Jeremy J. Siegel, Stocks for the Long Run, 3rd ed. (New York: McGraw-Hill, 2003). Update through 2007 provided by Jeremy J. Siegel.

De tényleg igaz?

- Edward McQuarrie (prof em., the Leavey School of Business at Santa Clara University in California);
- USA kötvény és részvényhozamok vizsgálata 1793-tól;
- 40 évet (1943-1982) leszámítva nagyjából ugyanazt hozták hosszú tavon a részvények és a kötvények;
- A kötvények 1982 óta jobban teljesítenek, mint a részvények!
- Ha ez igaz, akkor a befektetőknek teljesen más alapon kell az eszközkategóriák között választaniuk a jövőben

https://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=340720

BME-GTK PENZUGYEN

Mi a kockázat?

- A hozam bizonytalan, kérdés, hogyan lehet megbecsülni?
- A várható éves átlagos hozam mellé a hozamok varianciáját, illetve szórását lehet még jellemző mutatóként demonstrálni → ez a legalapvetőbb kockázati mutató;
- Az éves hozamok eloszlására a legtöbb modell normáleloszlást becsül, de láthatjuk az ábrán, hogy ez nem teljesül tökéletesen (viszont egyszerű);
- A szórás átszámolása: $\sigma_{\rm n} = \sigma_{\rm i} / \sqrt{1/n}$ (ahol az n a periódusszám), tehát pl. a heti és az éves közötti átszámítás: $\sigma_{\rm éves} = \sigma_{\rm heti} / \sqrt{1/52} = \sigma_{\rm heti} * \sqrt{52}$
- A legnagyobb napi változások a Dow Jones Indexben:

Rank +	Date +	Close +	Net change \$	% Change +	Rank \$	Date +	Close +	Net change \$	% Change \$
1	1933-03-15	62.10	+8.26	+15.34	1	1987-10-19	1,738.74	-508.00	-22.61
2	1931-10-06	99.34	+12.86	+14.87	2	1929-10-28	260.64	-38.33	-12.82
3	1929-10-30	258.47	+28.40	+12.34	3	1929-10-29	230.07	-30.57	-11.73
4	1932-09-21	75.16	+7.67	+11.36	4	1929-11-06	232.13	-25.55	-9.92
5	2008-10-13	9,387.61	+936.42	+11.08	5	1899-12-18	58.27	-5.57	-8.72
6	2008-10-28	9,065.12	+889.35	+10.88	6	1932-08-12	63.11	-5.79	-8.40
7	1987-10-21	2,027.85	+186.84	+10.15	7	1907-03-14	76.23	-6.89	-8.29
8	1932-08-03	58.22	+5.06	+9.52	8	1987-10-26	1,793.93	-156.83	-8.04
9	1932-02-11	78.60	+6.80	+9.47	9	2008-10-15	8,577.91	-733.08	-7.87
10	1929-11-14	217.28	+18.59	+9.36	10	1933-07-21	88.71	-7.55	-7.84
11	1931-12-18	80.69	+6.90	+9.35	11	1937-10-18	125.73	-10.57	-7.75

Historical Returns, Standard Deviations, and Frequency Distributions: 1926–2006

^{*}The 1933 small-company stocks total return was 142.9 percent.

Source: Stocks, Bonds, Bills, and Inflation Yearbook™, Ibbotson Associates, Inc., Chicago (annually updated by Roger G. Ibbotson and Rex A. Sinquefield). All rights reserved.

Kamatláb és kockázati prémium

- - Megtakarítások kínálata;
 - Megtakarítások kereslete
 - Kormányzat kereslete/kínálata, a jegybanki akciókkal együtt.
- Nominális kamatláb: R= a fentieknek megfelelően kialakult piaci "ár" → bankbetét, kötvényhozam stb. mindig nominális;
- Reálkamatláb: r = (1+R) / (1+i)-1 = (R-i)/(1+i), ahol i az infláció
 (CPI) → a negyedik tényező tehát az infláció;
- Fischer-féle egyenlet: R = r + E(i), ahol E(i) a várt infláció (CPI)
 → a nominális kamatláb változása az infláció jövőbeli változását is előrejelzi;
- Adóhatás, adózás utáni kamatláb: R*(1-t), ahol t az adókulcs.
- Kockázatmentes kamatláb/hozam: általában az adott tartási periódus (pl. 3 hónap) államkötvényhozama, illetve egy olyan eszköz hozama, aminek a hozamszórása nulla körüli.
- Kockázati prémium: az adott eszköz évesített hozama, és a kockázatmentes éves kamatláb közötti különbség, tehát többlethozam.
 - Pl. Nagyvállalati részvények: 12,3%-3,8% = 8,5%.
- A többlethozam=a kockázati prémiummal.

Figure 5.2 Nominal and real wealth indexes for investments in Treasury bills, 1970–2012 (inset figure is for 1926–2012)

Average Annual Returns and Risk Premiums: 1926–2006						
Investment	Average Return	Risk Premium				
Large stocks	12.3%	8.5%				
Small stocks	17.4	13.6				
Long-term corporate bonds	6.2	2.4				
Long-term government bonds	5.8	2.0				
U.S. Treasury bills	3.8	0.0				

Source: Stocks, Bonds, Bills, and Inflation Yearbook™, Ibbotson Associates, Inc., Chicago (annually updated by Roger G. Ibbotson and Rex A. Singuefield). All rights reserved.

BME-GTK PENZUGYEK

Egy portfolió hozama és kockázata

• Egy portfolió hozama:

Ahol
$$R_p$$
 = a portfolió hozama w_i = i eszköz súlya r_i = i eszköz hozama

$$R_{p} = \sum_{i=1}^{n} w_{i} * ri$$

- Egy **portfolió kockázata**, már nehezebben meghatározható, hiszen az egyes papírok kockázata egymással is korrelál, akár ellentétes előjellel;
- Pl. két eszköz esetén a portfolió szórás négyzete (varianciája):

$$\sigma_{p}^{2} = (w_{1}\sigma_{1})^{2} + (w_{2}\sigma_{2})^{2} + 2w_{1}w_{2}COV(r_{1}, r_{2}) = (w_{1}\sigma_{1})^{2} + (w_{2}\sigma_{2})^{2} + 2w_{1}w_{2}\rho\sigma_{1}\sigma_{2}$$

Ahol σ_p = a portfolió hozamának szórása σ_i = az i eszköz hozamának szórása w_i = az i eszköz súlya ρ = a két eszköz hozama közötti korrelációs együttható

Minél több eszköz, annál több negatív korreláció
 a diverzifikációval csökken a portfolió egyedi papírokból eredő (az ún. idioszinkratikus) kockázata, a piaci (rendszer) kockázat marad meg, kellően nagy számú elem esetén.

A Markowitz-modell: a hatékony portfoliók elmélete

- Henry Markowitz 1952 Journal of Finance → a többeszközös portfoliók kockázatát és hozamát vizsgálja, a kérdés: hogyan érhetünk el minél magasabb hozamot/alacsonyabb kockázatot → 1990 Nobel-díj;
- A befektetők tetszőleges eszközt választhatnak, ebből jön létre az ún. befektetési univerzum, amely a portfolió-kombinációk kockázat/hozam koordinátái szerint rajzolódik ki;
- A hatékony portfolió: minden portfolió, amely az adott kockázati szint mellett a lehető legnagyobb hozamot biztosítja, illetve adott hozamszint mellett a lehető legkisebb kockázattal jár;
- Hatékony piaci görbe: a hatékony portfoliókat tartalmazó vonal a befektetési univerzum síkján, a befektetési univerzum határvonala;
- Globális minimum varianciájú portfolió: a legkisebb kockázattal járó portfolió (nem a legalacsonyabb hozam!).

A befektetői magatartásról

- Kockázati preferencia/étvágy: különböző kockázatosságú lehetőségek közül, adott döntési helyzetben melyiket választja a befektető.
- Kockázatkerülő befektető:
 - a befektetők többsége;
 - biztos hozamot választja a bizonytalannal szemben;
 - többletkockázatot csak megfelelő ellentételezésér Globális vállal;
 - két azonos hozamú befektetés közül az alacsonyabb kockázatút választja, nagyobb kockázat csak a kockázati prémium ellenében;
- Kockázatkereső/szerető befektető: nulla kockázati prémiumnál is hajlandó kockázatot vállalni;
- **Kockázatsemleges befektető**: kizárólag a várható hozam alapján dönt, nem érdekli a hozam szórása;
- Az egyes befektetők közömbösségi görbéit a Markowitz-féle hatékony piaci görbével "ütköztetve" lehet a (racionális) befektetői döntéseket megindokolni.

A tőkepiaci árfolyamok modellje (CAPM)

- Jack Treynor, William F. Sharpe, John Lintner és Jan Mossin fejlesztette ki egymástól függetlenül az 1960-as években, a Markowitz-féle hatékony portfóliók elméletére építve.;
- A tőkepiaci árfolyamok modellje (capital assets pricing model, CAPM): egy eszköz elméletben elvárható hozamát adja, az adott eszköz kockázatosságának függvényében;
- Segítség egy megfelelően diverzifikált portfólió előállításához, illetve fenntartásához;
- Alkalmas portfóliók és egyedi eszközök árazására;
- A Markowitz-féle elmélet mellé a CAPM bevezette a kockázatmentes kamatlábat biztosító befektetést, mint eszközt;
- Ennek segítségével a mindenkori befektető megoszthatja a befektetését a kockázatmentes eszköz, és a hatékony/piaci portfólió között;
- Több lehetősége is van tehát így a befektetésre, sőt, ha **a kockázatmentes kamatlábon hitelt is lehet felvenni**, még inkább bővülnek a lehetőségei;
- Tulajdonképpen az egységes piaci portfólió és a kockázatmentes eszköz segítségével bármilyen hozam-kockázat karakterisztikájú portfólió létrehozható.

A CAPM feltételezései

Minden befektető:

- racionálisan viselkedik, hasznosságot maximalizál;
- kockázatkerülő;
- **3. diverzifikál**, több eszköz között;
- 4. homogén várakozásokkal rendelkezik;
- 5. árelfogadó, nem tudja befolyásolni az árakat;
- 6. kölcsön tud venni és kölcsön tud adni a kockázatmentes kamatlábon/hozamon, limit nélkül;
- 7. adó és tranzakciós költség nélkül kereskedik;
- 8. olyan eszközökkel kereskedik, melyek tökéletesen oszthatóak és likvidek;
- 9. tökéletesen informált.

Racionális, kockázatkerülő befektető

Hatékony ("súrlódásmentes") tőkepiac

BME-GTK PENZÜGYEK

A tőkepiaci egyenes

- A tőkepiaci egyenes (Capital Market Line, CML): a kockázatmentes eszköz hozamát mutató pontból a hatékony piaci görbéhez húzott érintő. Ha a befektető mindig a legmagasabb hozamot keresi a legalacsonyabb kockázattal párosítva, akkor ezek a leghatékonyabb portfoliók.
- A kockázatmentes eszköz bevezetése → megváltozik a hatékony befektetések görbéje → a Markowitz-féle görbe helyett a tőkepiaci egyenes;
- a) pont optimálisabb befektetés b) pontnál, hiszen ugyanakkora hozamnál alacsonyabb kockázatot képvisel. Ugyanígy c) pont is hatékonyabb, hiszen ugyanakkora kockázatra nagyobb hozamot biztosít;
- A pontok közötti **választás a befektetői döntés kérdése** → az adott befektető **kockázati étvágyának a függvénye**.
- A kockázatmentes eszköz/forrás és a piaci portfólió között osztható a vagyon, de – ha hatékony portfóliót akarnak kialakítani, akkor – a tőkepiaci egyenes mentén mozognak;
- Az a) esetben a befektető tehát kockázatkerülőbb, mint c) esetben, ugyanakkor még mindig hajlandó hitelt felvenni a nagyobb elérhető hozamért.

BME-GTK PENZÜGYEK

A béta

- A CAPM nagy hangsúlyt helyez a portfólió-diverzifikációra: kizárólag a nem diverzifikálható kockázat számít (az egyedi kockázatok diverzifikálhatóak) → a befektetők nem díjazzák az egyedi, csak a piachoz köthető kockázatot → béta (ß) bevezetése;
- A béta (ß): az adott eszköz hozamának együtt mozgása a piaci hozammal, tehát tulajdonképpen az adott eszköz hozamának érzékenysége a piaci mozgásokra, avagy a nem diverzifikálható kockázat

 tulajdonképpen az eszköz piaci kockázata;
- A béta egy regressziós egyenes meredeksége (statisztikai lineáris regressziós együttható) → hogyan változik az eszköz hozama az egységes piac hozamának változása függvényében;
- Ezt a regressziós egyenest nevezik az adott eszköz karakterisztikus egyenesének is;
- A teljes piaci portfólió 1-es bétájú eszköz (önmagával mozog együtt);
- A nulla bétájú eszköz a kockázatmentes eszköz → hozamának tehát a kockázatmentes kamatlábbal kell megegyeznie, hiszen ha nem így lenne, akkor 1. korlátlanul vásárolnák a befektetők, ezzel leszorítva a kamatszintet vagy 2. addig vennék fel a hitelt az alacsonyabb kamatlábon, amíg meg nem emelkedne az egyensúlyi szintig.

$$\beta_i = \frac{\text{COV}_{RiRm}}{\sigma_{Rm}^2}$$

 COV_{RiRm} =a piaci hozam és az értékpapír hozama közötti kovariancia = σ_{Ri} * σ_{Rm} * ρ_{RiRm} σ_{Rm} = a piaci hozam szórása

β = 1, a piaci portfolió. Ha a piaci hozam 1%-kal változik, akkor a részvény hozama is 1%-kal változik;

β > 1, a részvény hozama volatilisebb, mint a piac

0 < **β** < **1**, a részvény hozama kevésbé volatilis, mint a piac

0=ß, a kockázatmentes eszköz bétája , **ß<0**, ha a piac emelkedik, a részvény szinte mindig csökken.

Az értékpapírpiaci egyenes

- **Egy portfólió bétája**: a portfólióban található eszközök bétájának aránnyal súlyozott átlaga;
- Bármilyen értékpapír hozamát így elő lehet állítani a kockázatmentes eszköz és a teljes piaci portfólió (az 1-es bétájú eszköz) hozamából;
- Emiatt a CAPM modellben a béta és a várható hozam között lineáris az összefüggés → ez az ún. értékpapírpiaci egyenes (Security Market Line, SML) → tulajdonképpen ez a kockázat (piaci) és hozam közötti kapcsolat;
- Ha egy eszköz hozam-kockázat értéke nem ezen az egyenesen fekszik

 a racionális befektetők vásárlással vagy értékesítéssel kikényszerítik, hogy odakerüljön;
- Ha az egyenes felett található → alulértékelt (hiszen adott kockázatra jobb hozamot ad) → akkor addig veszik amíg le nem esik az egyenesre.

 $\beta_p = \text{portfólió bétája}$ $w_i = \text{az i eszköz súlya a portfólióban}$ $\beta_i = \text{az i értékpapír bétája.}$

A CAPM-modell elvárt hozama

- A CAPM modell szerint az eszköz elvárt hozama = a kockázatmentes hozam + kockázati prémium;
- A kockázati prémium (tehát a kockázatmentes hozam feletti hozama) = a béta és a piaci portfólió kockázati prémiumának szorzata;
- Alfa (α): az adott papír/portfolió tényleges hozamának a piaci hozam/index feletti része → az aktív kereskedés mérőszáma, eszköze;
- Jensen alfa (α_J): az adott portfolió tényleges hozamának és a CAPM szerinti elvárt hozamának különbsége.

$$r_i = r_f + \beta_i * (r_m - r_f)$$

Kockázati prémium

$$\alpha = r_{ti} - r_{m}$$

$$\alpha_j = r_{ti} - r_i$$

 r_i = az i értékpapír elvárt hozama r_{ti} = az i értékpapír tényleges hozama r_f = a kockázatmentes hozam β_i = az i értékpapír bétája r_m = a piaci hozam.

A CAPM továbbfejlesztése: Fama-French háromfaktoros modell

- A CAPM évtizedekig szinte egyeduralkodó a portfólió-menedzserek módszereiben;
- Eugene Fama és Kenneth French (2004): a gyakorlatban nem működik jól a modell → vannak bizonyos eltérések, melyeket nem magyaráz a CAPM;
- Helyette egy háromfaktoros modellt javasoltak → figyelembe vették azt az empirikusan megfigyelt hatást, hogy
 - az alacsony piaci kapitalizációjú ("small caps"); és
 - a magas egy részvényre eső könyv szerinti érték/részvényár ("book value/price" azaz BV/P) arányú
 papírok jobban teljesítenek arányosan, mint az egyéb értékpapírok.
- A 3 faktoros modell képlete:

$$r_i = r_f + \beta_i * (r_m - r_f) + b_s * SMB + b_v * HML + \alpha$$

r_i = az i értékpapír hozama

 $r_f = a$ kockázatmentes hozam

 $\beta_i = az i$ értékpapír bétája

 $r_m = a piaci hozam$

SMB ("small minus big") = az alacsony és a magas kapitalizációjú papírok hozama közötti különbség

HML ("high minus low") = a magas és alacsony BV/P arányú papírok hozama közötti különbség

 $\mathbf{b_s}$ és $\mathbf{b_v}$ pedig egy bétához hasonlóan számolt lineáris regressziós koefficiens.

α = a fentiekkel nem magyarázható extra hozam

A háromfaktoros modell jelentősen emelte a CAPM modell magyarázó erejét 🗡 2015-ben még két faktort adtak hozzá (profitabilitás és beruházás).

Léteznek ennél sokkal több faktoros modellek is, a kutatásban továbbra is jelenlévő irány a CAPM alapú faktormodellek előállítása és tesztelése.

Mintafeladat

- "A" részvény múltbeli hozama 10% ß=1
- "B" részvény múltbeli hozama 17%,ß = 1,5
- A piaci hozam 11%
- A kockázatmentes hozam 5%
- A CAPM alapján melyik vásárlása előnyösebb?
- Mekkora a részvény alfája?
- Hol helyezkednek el az értékpapírpiaci egyenesen?

- R_A = 5% + 1*(11%-5%) = 11% α = 10%-11%= -1% = Jensen alfa (ha CAPM hozam és a piaci hozam megegyezik, akkor egyenlő), bár ha az alfa negatív, az már önmagában is negatív \rightarrow az értékpapírpiaci egyenes alatt van, el kell adni;
- $R_B = 5\% + 1.5*(11\%-5\%) = 14\% \alpha = 17\%-11\% = 6\%$ Jensen alfa=17%-14%=3% \rightarrow az értékpapírpiaci egyenes felett van, meg kell venni \rightarrow ez az előnyösebb papír.