$9_{25} (K9a_4)$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{24} - 2u^{23} + \dots + 2b + 1, -u^{24} - 2u^{23} + \dots + a + 5u, u^{25} + 3u^{24} + \dots - 4u - 1 \rangle$$

 $I_2^u = \langle 2b - a - 1, a^2 + 3, u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 27 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^{24} - 2u^{23} + \dots + 2b + 1, -u^{24} - 2u^{23} + \dots + a + 5u, u^{25} + 3u^{24} + \dots - 4u - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{24} + 2u^{23} + \dots - 5u^{2} - 5u \\ \frac{1}{2}u^{24} + u^{23} + \dots - \frac{7}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{7}{2}u^{24} + 9u^{23} + \dots - \frac{33}{2}u - \frac{9}{2} \\ \frac{3}{2}u^{24} + 4u^{23} + \dots - \frac{13}{2}u - \frac{5}{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{3}{2}u^{24} + 3u^{23} + \dots - \frac{15}{2}u - \frac{3}{2} \\ \frac{5}{2}u^{24} + 6u^{23} + \dots - \frac{21}{2}u - \frac{7}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{2}u^{24} + u^{23} + \dots - \frac{3}{2}u + \frac{1}{2} \\ \frac{1}{2}u^{24} + u^{23} + \dots - \frac{3}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{2}u^{24} + u^{23} + \dots - \frac{3}{2}u + \frac{1}{2} \\ \frac{1}{2}u^{24} + u^{23} + \dots - \frac{3}{2}u - \frac{1}{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $2u^{24} + 7u^{23} - 5u^{22} - 42u^{21} - 25u^{20} + 108u^{19} + 144u^{18} - 128u^{17} - 357u^{16} + 2u^{15} + 526u^{14} + 286u^{13} - 498u^{12} - 538u^{11} + 238u^{10} + 584u^{9} + 35u^{8} - 389u^{7} - 165u^{6} + 164u^{5} + 119u^{4} - 22u^{3} - 38u^{2} - 6u - 5$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{25} - u^{24} + \dots + 4u + 4$
c_2,c_8	$u^{25} + 2u^{24} + \dots + 3u + 1$
c_3, c_6	$u^{25} - 3u^{24} + \dots - 4u + 1$
<i>C</i> 5	$u^{25} + 11u^{24} + \dots - 2u + 1$
c_7, c_9	$u^{25} + 8u^{24} + \dots + 11u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{25} + 15y^{24} + \dots - 88y - 16$
c_2, c_8	$y^{25} + 8y^{24} + \dots + 11y - 1$
c_{3}, c_{6}	$y^{25} - 11y^{24} + \dots - 2y - 1$
<i>C</i> 5	$y^{25} + 9y^{24} + \dots - 2y - 1$
c_7, c_9	$y^{25} + 20y^{24} + \dots + 251y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.781818 + 0.585895I		
a = -0.235890 - 0.629868I	1.52493 + 0.43356I	-3.08804 + 0.04506I
b = 0.734813 + 0.804167I		
u = 0.781818 - 0.585895I		
a = -0.235890 + 0.629868I	1.52493 - 0.43356I	-3.08804 - 0.04506I
b = 0.734813 - 0.804167I		
u = -0.840318 + 0.621070I		
a = 0.114344 + 0.489930I	2.10182 + 2.44039I	-0.16599 - 3.61173I
b = 0.723797 + 0.117969I		
u = -0.840318 - 0.621070I		
a = 0.114344 - 0.489930I	2.10182 - 2.44039I	-0.16599 + 3.61173I
b = 0.723797 - 0.117969I		
u = -0.479273 + 0.936834I		
a = 0.544317 + 0.502084I	6.34798 - 5.44271I	-0.49829 + 3.51350I
b = -0.776571 + 0.974090I		
u = -0.479273 - 0.936834I		
a = 0.544317 - 0.502084I	6.34798 + 5.44271I	-0.49829 - 3.51350I
b = -0.776571 - 0.974090I		
u = -0.563663 + 0.911236I		
a = 0.646213 - 0.436873I	6.92874 + 0.59688I	0.46758 - 1.80507I
b = -0.842489 - 0.787076I		
u = -0.563663 - 0.911236I		
a = 0.646213 + 0.436873I	6.92874 - 0.59688I	0.46758 + 1.80507I
b = -0.842489 + 0.787076I		
u = 0.903290 + 0.591334I	1 1 4000	4 100FF : F 40464F
a = -1.72740 - 1.15219I	1.14086 - 5.11531I	-4.18255 + 5.48464I
b = 0.719637 - 0.929655I		
u = 0.903290 - 0.591334I	1 1 4000 + # 11 # 01 #	4 100FF F 40 46 4 F
a = -1.72740 + 1.15219I	1.14086 + 5.11531I	-4.18255 - 5.48464I
b = 0.719637 + 0.929655I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.073950 + 0.294320I		
a = 1.15104 + 1.96262I	-3.46537 - 1.05922I	-11.39395 + 0.37058I
b = -0.071208 + 0.875733I		
u = 1.073950 - 0.294320I		
a = 1.15104 - 1.96262I	-3.46537 + 1.05922I	-11.39395 - 0.37058I
b = -0.071208 - 0.875733I		
u = -1.012760 + 0.537221I		
a = -0.77689 + 2.25052I	-1.91594 + 5.41987I	-7.35697 - 6.54919I
b = 0.204213 + 1.096690I		
u = -1.012760 - 0.537221I		
a = -0.77689 - 2.25052I	-1.91594 - 5.41987I	-7.35697 + 6.54919I
b = 0.204213 - 1.096690I		
u = 0.819709		
a = 0.530934	-1.19408	-8.44380
b = -0.251925		
u = -0.706780 + 0.369020I		
a = 0.42079 - 1.91115I	-0.62342 - 1.39976I	-3.04278 + 0.06062I
b = 0.427994 - 1.010940I		
u = -0.706780 - 0.369020I		
a = 0.42079 + 1.91115I	-0.62342 + 1.39976I	-3.04278 - 0.06062I
b = 0.427994 + 1.010940I		
u = -1.089150 + 0.711472I		
a = -0.490999 - 0.203095I	5.32382 + 5.36637I	-1.53322 - 3.05337I
b = -0.865451 + 0.706038I		
u = -1.089150 - 0.711472I		
a = -0.490999 + 0.203095I	5.32382 - 5.36637I	-1.53322 + 3.05337I
b = -0.865451 - 0.706038I		
u = 1.306760 + 0.052319I		
a = -0.27343 - 1.51011I	-0.20167 + 2.66172I	-2.71477 - 3.57661I
b = -0.691717 - 0.872891I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.306760 - 0.052319I		
a = -0.27343 + 1.51011I	-0.20167 - 2.66172I	-2.71477 + 3.57661I
b = -0.691717 + 0.872891I		
u = -1.139240 + 0.687767I		
a = 1.14519 - 1.80727I	4.33274 + 11.39030I	-3.28983 - 7.76664I
b = -0.753308 - 1.027550I		
u = -1.139240 - 0.687767I		
a = 1.14519 + 1.80727I	4.33274 - 11.39030I	-3.28983 + 7.76664I
b = -0.753308 + 1.027550I		
u = -0.144497 + 0.357570I		
a = 1.21724 - 0.74670I	-0.33578 - 1.50728I	-2.97928 + 4.31266I
b = 0.316251 - 0.806276I		
u = -0.144497 - 0.357570I		
a = 1.21724 + 0.74670I	-0.33578 + 1.50728I	-2.97928 - 4.31266I
b = 0.316251 + 0.806276I		

II.
$$I_2^u = \langle 2b - a - 1, \ a^2 + 3, \ u - 1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} a \\ \frac{1}{2}a + \frac{1}{2} \end{pmatrix}$$

$$a_2 = \begin{pmatrix} \frac{1}{2}a - \frac{1}{2} \\ \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} \frac{1}{2}a - \frac{1}{2} \\ \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_8 = \begin{pmatrix} \frac{1}{2}a - \frac{1}{2} \\ \frac{1}{2}a + \frac{1}{2} \end{pmatrix}$$

$$a_8 = \begin{pmatrix} \frac{1}{2}a - \frac{1}{2} \\ \frac{1}{2}a + \frac{1}{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -2a 9

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	u^2
c_2, c_7	$u^2 - u + 1$
c_3,c_5	$(u-1)^2$
c_6	$(u+1)^2$
c_8, c_9	$u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing	
c_1, c_4	y^2	
c_2, c_7, c_8 c_9	$y^2 + y + 1$	
c_3, c_5, c_6	$(y-1)^2$	

(vi) Complex Volumes and Cusp Shapes

	Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.00000		
a =	1.73205I	-1.64493 + 2.02988I	-9.00000 - 3.46410I
b =	0.500000 + 0.866025I		
u =	1.00000		
a =	-1.73205I	-1.64493 - 2.02988I	-9.00000 + 3.46410I
b =	0.500000 - 0.866025I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_4	$u^2(u^{25} - u^{24} + \dots + 4u + 4)$
c_2	$(u^2 - u + 1)(u^{25} + 2u^{24} + \dots + 3u + 1)$
c_3	$((u-1)^2)(u^{25} - 3u^{24} + \dots - 4u + 1)$
c_5	$((u-1)^2)(u^{25}+11u^{24}+\cdots-2u+1)$
c_6	$((u+1)^2)(u^{25} - 3u^{24} + \dots - 4u + 1)$
c_7	$(u^2 - u + 1)(u^{25} + 8u^{24} + \dots + 11u - 1)$
c ₈	$(u^2 + u + 1)(u^{25} + 2u^{24} + \dots + 3u + 1)$
<i>c</i> 9	$(u^2 + u + 1)(u^{25} + 8u^{24} + \dots + 11u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^2(y^{25} + 15y^{24} + \dots - 88y - 16)$
c_2,c_8	$(y^2 + y + 1)(y^{25} + 8y^{24} + \dots + 11y - 1)$
c_3, c_6	$((y-1)^2)(y^{25}-11y^{24}+\cdots-2y-1)$
<i>C</i> ₅	$((y-1)^2)(y^{25} + 9y^{24} + \dots - 2y - 1)$
c_7, c_9	$(y^2 + y + 1)(y^{25} + 20y^{24} + \dots + 251y - 1)$