

# The PSP compact MOSFET model An update

Andries Scholten, Gert-Jan Smit, D.B.M. Klaassen — NXP-TSMC

Research Centre, Eindhoven

Ronald van Langevelde — Philips Research Europe

Gennady Gildenblat, Weimin Wu, Xin Li — Arizona State University

MOS-AK, Eindhoven, April 4th, 2008



#### contents

- why PSP? (recap)
- recent model additions
- simulation time & JUNCAP Express
- upcoming model updates



## why PSP: overview

- transition from subthreshold region to strong inversion
- output conductance
- Gummel symmetry
- capacitances
- thermal noise and induced gate noise
- ...



## from subthreshold region to strong inversion



#### BSIM4

- threshold-voltage based
- gluing function
- PSP
  - surface potential based
  - one well-behavedphysics-based expression
  - leads, e.g., to better g<sub>m3</sub> modelling



## long-channel output conductance



- systematic long-standing problem in BSIM4
- problem gets progressively worse for higher-order derivatives
- analog designers are using these devices!
- also short-channel g<sub>DS</sub> form PSP superior (not shown here)



## **Gummel symmetry**

- MOSFET models describe currents for V<sub>DS</sub> > 0: I=I<sub>+</sub>(V<sub>D</sub>,V<sub>G</sub>,V<sub>S</sub>,V<sub>B</sub>)
- MOSFET is symmetric device (layout extractor doesn't which terminal is source and which is drain)
- for negative VDS source-drain exchange is applied:

$$I_{-}(V_{D}, V_{G}, V_{S}, V_{B}) = -I_{+}(V_{S}, V_{G}, V_{D}, V_{B})$$

- continuity of current and derivatives is not trivial!
- if fulfilled the model is called "Gummel symmetric"
- similar considerations apply to
  - gate current
  - capacitances
- lack of Gummel symmetry one of the long-standing problems in BSIM4
- relevant in RF circuit design:
  - passive mixers
  - variable gm circuits
  - continuous time integrators



# circuit example: passive mixer

### passive RF mixer



from: P. Bendix et al., CICC 2004





## capacitances

$$C_{ij} = (2 \cdot \delta_{ij} - 1) \cdot \frac{\partial Q_i}{\partial V_j}$$

symmetry at  $V_{DS}=0V$ 

$$m{C}_{iD} = m{C}_{iS}$$
 and  $m{C}_{Dj} = m{C}_{Sj}$ 

reciprocity at  $V_{DS}=0V$ 

$$C_{ij} = C_{ji}$$

physics: 7 different capacitance values at  $V_{\rm DS}$ =0V

| <b>C</b> <sub>DD</sub> | C <sub>DG</sub>        | C <sub>DS</sub> | <b>C</b> <sub>DB</sub> |
|------------------------|------------------------|-----------------|------------------------|
| C <sub>GD</sub>        | C <sub>GG</sub>        | C <sub>GS</sub> | $C_{\sf GB}$           |
| C <sub>SD</sub>        | C <sub>SG</sub>        | C <sub>SS</sub> | C <sub>SB</sub>        |
| <b>C</b> <sub>BD</sub> | <b>C</b> <sub>BG</sub> | C <sub>BS</sub> | <b>C</b> <sub>BB</sub> |



# capacitances at $V_{DS}=0V$





## capacitances at $V_{DS}=0V$







#### **BSIM4:**

- symmetry and reciprocity are not satisfied
- sign of C<sub>SD</sub> and C<sub>DS</sub> incorrect
- C<sub>DD</sub> and C<sub>SS</sub> exceeding CGG

## capacitances at $V_{DS}=1V$





#### BSIM4:

- sign of C<sub>SD</sub> and C<sub>DS</sub> incorrect
- C<sub>SS</sub> exceeding C<sub>GG</sub>
- C<sub>DD</sub> too large

## thermal noise and induced gate noise

white – noise gamma factor : 
$$\gamma = \frac{S_{id}}{4 \cdot k_B \cdot T \cdot g_{DSO}}$$







**BSIM4:** incorrect

**PSP:** correct behavior



#### contents

- why PSP? (recap)
- recent model additions
- simulation time & JUNCAP Express
- upcoming model updates



#### new in PSP102.2.0 w.r.t. PSP102.1.1:

- JUNCAP Express: see next part of this presentation
- WPE model added: CMC standard model
- dielectric constant now a parameter:
  leads to more physical modelling of capacitance and tunneling current in high-k dielectric
- addition of <u>DELVTO</u> (threshold voltage shift) and <u>FACTUO</u> (zero-field mobility factor): useful for user-defined additions
  - matching
  - corner modelling
  - layout dependent effects
  - **–** ...
- NF support: number of fingers, including stress effect



### new in PSP102.2.0 w.r.t. PSP102.1.1:

- gate resistance model added:
  - several components
    - distributed silicide resistance ———
    - silicide-to-polysilicon interface resistance
    - vertical poly resistance



- implementation in C-code with optional internal node
  - can be switched off for, e.g., digital design → no additional internal node
  - provides easy way to satisfy the needs of both RF and digital circuit designers



## new in PSP102.2.0 w.r.t. PSP102.1.1:

optional <u>bulk resistance network</u> added:  $\mathsf{R}_{\mathsf{bulk}}$  $R_{\text{juns}}$  $R_{jund}$  $R_{\text{well}}$ 



#### source code PSP102.2.0

- VA-code available at <a href="http://pspmodel.asu.edu/psp\_code.htm">http://pspmodel.asu.edu/psp\_code.htm</a>
- C-code (SiMKit 3.0.3) available at <a href="http://www.nxp.com/models/mos\_models/psp/">http://www.nxp.com/models/mos\_models/psp/</a>



#### contents

- why PSP? (recap)
- recent model additions
- simulation time & JUNCAP Express
- upcoming model updates



## background and general idea

#### background

- JUNCAP2 gives a very accurate description of junction currents and capacitances
- well-defined and physics-based extraction strategy
- model evaluation time is significant, while full accuracy is not always required

#### general idea

- generic method to reduce simulation time for less demanding applications
- no additional characterization/parameter extraction needed (full model parameter set is used)
- can be invoked by simple switch
- requires no insight in which components of junction current are important



### flow chart





## special function count

#### for *currents* (voltage-dependent section of model)

| JUNCAP2        | ехр | sqrt | In | pow |
|----------------|-----|------|----|-----|
| ideal          | 1   |      |    |     |
| SRH            |     | 4    | 2  | 1   |
| TAT            | 1   | 4    |    | 1   |
| BBT            | 1   |      |    | 1   |
| breakdown      |     | 1    |    | 1   |
| subtotal       | 3   | 9    | 2  | 4   |
| total (3 comp) | 9   | 27   | 6  | 12  |

## **JUNCAP2 Express**



#### Note:

- these numbers are maxima
- actual numbers depend on parameter set
- typical parameter set: less than 50%

#### Note:

these numbers are independent of parameter set



## model equations

- model for currents is replaced by very simple equation (sum of three exponentials)
- only five parameters
  - automatically computed during model initialization
  - from full parameter set, using full JUNCAP2 model



guaranteed to be continuous and smooth



### model validation

- Process 1
- VJUNREF = 2V
- ► T= -40, -10, 21, 60, 90, 125, 160, 200 °C

symbols: full JUNCAP2

lines:

JUNCAP2 Express





## simulation speed improvement





## a note on large circuits (i)

- there have been claims that the simulation time ratio PSP vs. BSIM4 would become progressively worse when going to large circuits
  - Simucad, on their website
  - Simucad, WCM publication (not peer reviewed!)
  - HiSIM team, at the MOS-AK 2007
- all experts on circuit simulation know that evaluation time differences become less important for larger transistor count
- claims like this originate from comparing circuit simulations with randomly chosen parameter sets for different models
- instead, one should use parameter sets that match well
- for details: http://www.geia.org/GEIA/files/ccLibraryFiles/Filename/00000003516/NXP runtimes.pdf



## a note on large circuits (ii)

when investigation is carried out properly, the results make sense:







#### contents

- why PSP? (recap)
- recent model additions
- simulation time & JUNCAP Express
- upcoming model updates



#### new in PSP102.3.0 w.r.t. PSP102.2.0:

- <u>asymmetric MOS:</u> separate source/drain parameters for
  - junctions
  - GIDL
  - overlap capacitance
  - overlap gate current
- non-unity slope EF in flicker noise
- will be available in SiMKit 3.1 (May '08)



