Solutions d'exercices choisis 6.4

6.1
$$\overrightarrow{BS} = -\vec{u} + \vec{w}, \ \overrightarrow{DS} = -\vec{v} + \vec{w}, \ \overrightarrow{DB} = \vec{u} - \vec{v}, \ \overrightarrow{CA} = -\vec{u} - \vec{v}$$

6.2
$$\vec{a} = \overrightarrow{AC}, \ \vec{b} = \overrightarrow{CA} + \overrightarrow{CD}, \ \vec{c} = \vec{0}, \ \vec{d} = \overrightarrow{DC}$$

6.3
$$\vec{x} = 4\vec{a} + 5\vec{b}$$

6.4
$$\overrightarrow{CD} = -\frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right)$$

Par définition, le vecteur nul \vec{e} est colinéaire à tous les vecteurs. Sinon, les paires de vecteurs 6.5 \vec{a} et \vec{d} , \vec{b} et \vec{h} , \vec{c} et \vec{q} sont colinéaires.

6.6 a)
$$\overrightarrow{OG} = \frac{1}{3} \left(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} \right)$$
 b) $G(\frac{a_1 + b_1 + c_1}{3}, \frac{a_2 + b_2 + c_2}{3})$ c) $G(3, 1)$

$$\mathbf{6.7} \quad \vec{d} = \left[\begin{array}{c} 5 \\ -5 \end{array} \right]$$

b)
$$\sqrt{77}$$

c)
$$6\sqrt{3}$$

6.9
$$\vec{e}_1 = \frac{1}{7}\vec{a}$$
 et $\vec{e}_2 = -\frac{1}{7}\vec{a}$

b) Oui

6.11 a)
$$C(1,1)$$

b) C(6,3,4)

6.12
$$\vec{v} = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$$

6.13
$$-\frac{1}{8}\vec{v}$$

6.14 a)
$$\angle(\vec{a}, \vec{b}) \approx 1.05 \text{ rad} \approx 60.26^{\circ}$$

b) $\angle(\vec{a}, \vec{b}) \approx 1.64 \text{ rad} \approx 94.1^{\circ}$

6.15
$$-1/6$$

6.18
$$\alpha = \pi/2, \ \beta = \pi/4 \ \text{et} \ \gamma = \pi/4$$

6.19 a)
$$\vec{a}_{\vec{b}} = 3\vec{b} = \begin{bmatrix} 6 \\ 6 \\ 3 \end{bmatrix}$$
 et $||\vec{a}_{\vec{b}}|| = 9$

b)
$$\vec{a}_{\vec{b}} = \frac{23}{19} \vec{b} = \frac{1}{19} \begin{bmatrix} 69 \\ -115 \\ -46 \end{bmatrix}$$
 et $||\vec{a}_{\vec{b}}|| = \frac{23\sqrt{38}}{19}$

6.20
$$\vec{u} = \frac{13}{2}\vec{v} = \begin{bmatrix} 26\\32.5 \end{bmatrix}$$

$$\mathbf{6.21} \quad \vec{u} = \left[\begin{array}{c} 13/8 \\ -13/4 \end{array} \right]$$

6.22 a)
$$\begin{bmatrix} -12 \\ -4 \\ 8 \end{bmatrix}$$

c)
$$6(\vec{a} \wedge \vec{b}) = \begin{bmatrix} -72 \\ -24 \\ 48 \end{bmatrix}$$

c)
$$6(\vec{a} \wedge \vec{b}) = \begin{bmatrix} -72 \\ -24 \\ 48 \end{bmatrix}$$
 e) -44
f) $-2(\vec{a} \wedge \vec{b}) = \begin{bmatrix} 24 \\ 8 \\ -16 \end{bmatrix}$

6.257/2

Le produit mixte $(\vec{a}, \vec{b}, \vec{c})$ est nul.

6.27 Oui

a) sécantes 6.28

b) parallèles

c) sécantes

d) confondues

6.29 a) $\begin{cases} x_1 = 1 + \lambda \\ x_2 = 2 + 3\lambda \end{cases}, \quad \lambda \in \mathbb{R}.$

b) $(d): x_1 + 3x_2 = 17$

6.30 a) $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} -12 \\ 5 \end{bmatrix}$, $\lambda \in \mathbb{R}$ b) $(\Delta): 5x_1 + 12x_2 = 37$

6.31 a) (d): x + 4y = 23

6.32Elles sont parallèles et distinctes.

6.33 8/5

6.34 4x - 3y = 23 et 4x - 3y = -7

6.35 $\left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{c} 2 \\ 3 \end{array} \right] + \lambda \left[\begin{array}{c} -5 \\ 1 \end{array} \right], \quad \lambda \in \mathbb{R} \qquad \text{et} \qquad \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{c} 2 \\ 3 \end{array} \right] + \lambda \left[\begin{array}{c} 1 \\ 0 \end{array} \right], \quad \lambda \in \mathbb{R}$

6.36 y = 1 et 4x + 3y = 7

6.37 A'(-4,0)

6.38 $8x_1 - 15x_2 + 10 = 0$ et $8x_1 - 15x_2 + 112 = 0$

6.39 $\arccos(\frac{31}{\sqrt{886}}) \approx 0.16 \text{ rad}$

6.40 x + 5y = 14 et 5x - y = 18

6.41 a) $\begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} 2 \\ 3 \\ 1 \end{vmatrix} + \lambda \begin{vmatrix} -10 \\ 4 \\ -5 \end{vmatrix}, \lambda \in \mathbb{R}$

b) Non

c) Oui, en (0, 19/5, 0)

d) Oui, en (19/2, 0, 19/4)

6.42 $4x_1 - 2x_2 - x_3 + 3 = 0$

6.43 $x_1 - 3x_2 - 2x_3 = 0$

e) sécantes

f) perpendiculaires

g) parallèles

h) parallèles

c) $\begin{cases} x = 7/2 + 3\lambda \\ y = -2\lambda \end{cases}, \quad \lambda \in \mathbb{R}.$

d) (0,11) et (11/3,0)

b) (d): 3x + 7y = -23

6.44
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 5 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix} + \mu \begin{bmatrix} 5 \\ -5 \\ 0 \end{bmatrix}, \quad \lambda, \mu \in \mathbb{R}$$

$$\mathbf{6.45} \quad 5x_1 - 2x_2 + 5x_3 = 8 \qquad \text{ et } \qquad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -4 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \mu \begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}, \quad \lambda, \mu \in \mathbb{R}$$

Le produit scalaire entre le vecteur directeur de la droite et le vecteur normal du plan est

$$\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} 6 \\ 7 \\ -5 \end{bmatrix} = 6 + 14 - 20 = 0$$

6.47 a)
$$3x_1 - 2x_2 + 4x_3 = 29$$

b)
$$4x_1 - 6x_2 - 4x_3 = 2$$
 c) $2x_1 + 3x_2 - x_3 = 9$

c)
$$2x_1 + 3x_2 - x_3 = 9$$

c) Les deux plans n'étant pas parallèles, la distance les séparant n'est pas définie.

6.49
$$x + y - 2z = 6$$

6.50
$$P'(\frac{19}{3}, \frac{14}{3}, \frac{17}{3})$$

6.52
$$\arccos(\frac{3}{2\sqrt{21}}) \approx 1.24 \text{ rad} \approx 70.89^{\circ}$$

6.53 a)
$$\arccos(\frac{3}{2\sqrt{21}}) \approx 1,24 \text{ rad}$$

b)
$$(d): \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ -9 \\ -7 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 7 \\ 5 \end{bmatrix}, \quad \lambda \in \mathbb{R}$$

c)
$$(\pi): x + 2y - 3z = 3$$

6.54
$$25\sqrt{\frac{3}{278}}$$

6.55 a)
$$(d): \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 9 \\ -1 \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}, \qquad \lambda \in \mathbb{R}$$

b)
$$\arccos(\sqrt{\frac{3}{11}}) \approx 1.02 \text{ rad}$$

c)
$$(\pi): y-z+1=0$$

		·	
· ·			
			į.
			j