opological properties: S. of. Cannot distinguish [0,13] from [0,2] in terms of continuous functions.

(an distinguish [0,1]: X from Y: [0,1] 1) [23] Wands Y: [0,1) U[2,3]. Nonely Property (i): X has (i) if $\forall f: X \rightarrow \{0,1\}$ continuous map, \times has \Rightarrow if $\forall x, y \in$ \Rightarrow f(i) = y $\forall x, y \in X$, $\exists f: [6,1] \rightarrow X$ continuous map

Dangers with sets: $X = 25 a \text{ set} : 5 \notin 53$ $\begin{cases} Nol \text{ permilled} \end{cases}$ Questin: Does XEX? · If X x x, by defor X x X. ' If $X \in X$, by defin $X \notin X$. Solution: Carefully define (well-formed) expressions (which give sets)

A xions that give existence for sets. (in terms of other sets) Carefully define arbitrary collections.

(e.g. N). ((,d) (5,a2, 5a,63) Define {Xxx} olA, A (index net) · Iry function on A - (to what ?) what in a function anyway?

A function $f: X \to Y$ in identified with its graph;

But not all subsets are graphs; have properfice that f(x) = f(x) = f(x) = f(x)A function $f: X \to Y$ f(x) = f(x) = f(x) f(x) = f(x) = f(x) f(x) = f(x) = f(x) f(x) = f(x) = f(x)Characterize graphs · VxeX, 7 ye Y od. cx, gr & P For collection, no codonain, instead have 'graph-like seta' {Xa}afA: (Graph-like set literarespording to I; {(a, xa): dfA}}

Freally, I. is a set we do not have $\Gamma \subset X \times Y$, instead $\Gamma \subset X \times Set$ · If $p \in \Gamma$. Then $f \in P = (\alpha, s)$, $x \in A$. · If «EA, Is not n.f. (a, s) f [· If $\alpha \in A$, S_1, S_2 sets s.f. $(\alpha, S_1) \in \Gamma$ & $(\alpha, S_2) \in \Gamma$ then S, = Sz Then X, in the unique ret n.t. (x, Xx) & [.

Bain: Arithmetic progression $S(a,b) = \{a+nb: n\in \mathbb{Z}, C\}$. This is a basis as finite intersections of arithmetic progressions are empty or with metic progressions $(\underline{\epsilon}_{z})$ · Notice: Banic rets are chosed. · Finite, sets are not open, i.e. complements of finite sets were only finitely many princess then

