Épreuve de mathématiques II Correction

Partie I

Étude de quelques propriétés de l'application trace

1. (a) $\forall A, B \in E, \forall \lambda \in \mathbb{R}$, on a $\operatorname{tr}(A + \lambda B) = \operatorname{tr}(A) + \lambda \operatorname{tr}(B)$, donc l'application tr est linéaire.

(b) Posons
$$A = (a_{ij})_{1 \le i,j \le n}$$
, $B = (b_{ij})_{1 \le i,j \le n}$ et $C = AB = (c_{ij})_{1 \le i,j \le n}$ avec $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$. On a

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} c_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki} = \sum_{k=1}^{n} \sum_{i=1}^{n} b_{ki} a_{ik} = \operatorname{tr}(BA).$$

D'autre part, il est clair que $\operatorname{tr}(^tA) = \operatorname{tr}(A)$, donc $\operatorname{tr}(AB) = \operatorname{tr}(^t(AB)) = \operatorname{tr}(^tB^tA) = \operatorname{tr}(^tA^tB)$. D'où l'égalité demandée.

(c) tr est une forme linéaire non nulle puisque $tr(I_n) = n \neq 0$, donc ker(tr) est un hyperplan de E, d'où :

$$\dim \ker \operatorname{tr} = \dim E - 1 = n^2 - 1.$$

(d) $I_n \notin \ker(\operatorname{tr})$, donc $\ker(\operatorname{tr})$ et $\operatorname{Vect}(I_n)$ sont deux sous-espaces supplémentaires de E, d'où :

$$E = \ker(\operatorname{tr}) \oplus \operatorname{Vect}(I_n).$$

(e) Les matrices élémentaires E_{ij} avec $i \neq j$ sont toutes éléments de $\ker(\operatorname{tr})$ et par combinaison linéaire la matrice

$$M = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & \dots & 0 \end{pmatrix}$$

appartient à $\ker(\operatorname{tr})$. M est inversible, car par exemple égale à la matrice de passage de la base canonique $(e_1, e_2, ..., e_n)$ de \mathbb{R}^n à la base $(e_n, e_1, ..., e_{n-1})$.

2. (a) Il est clair que φ est un endomorphisme de E, de plus si $\varphi(M)=0$, alors $M=-\operatorname{tr}(M)I_n$ donc $m_{ij}=0$ pour $i\neq j$ et $\forall i,m_{ii}=-\operatorname{tr}(M)$, d'où $\operatorname{tr}(M)=-n\operatorname{tr}(M)$ ou encore $\operatorname{tr}(M)=0=m_{ii}$ et ceci pour tout i.

Finalement M=0 et par conséquent φ est endomorphisme injectif, donc est un automorphisme de E.

- (b) i. $\varphi(M)=M$ si, et seulement si, $\operatorname{tr}(M)=0$, donc $E_1(\varphi)=\ker(\operatorname{tr})$.
 - ii. $\varphi(M)=(n+1)M$ si, et seulement si, $\operatorname{tr}(M)I_n=nM$ ou encore $M=\frac{\operatorname{tr} M}{n}I_n$ donc $m_{ij}=0$ pour $i\neq j$ et $m_{ii}=\frac{\operatorname{tr} M}{n}$, donc nécessairement $m_{11}=m_{22}=\ldots=m_{nn}$ pour tout i. D'où $M=\lambda I_n$ avec $\lambda\in\mathbb{R}$. Donc $E_{n+1}(\varphi)\subset\operatorname{Vect}(I_n)$. L'inclusion réciproque est évidente. D'où $E_{n+1}(\varphi)=\operatorname{Vect}(I_n)$.
 - iii. D'après les deux questions précédentes 1 et n+1 sont des valeurs propres de φ dont les sous-espaces propres sont $E_1(\varphi)$ et $E_{n+1}(\varphi)$ et comme $E_1(\varphi) = \ker(\operatorname{tr})$ et $E_{n+1}(\varphi) = \operatorname{Vect}(I_n)$, alors les sous-espaces propres sont supplémentaires (la question 1. d) de la partie I), donc φ est diagonalisable.

3. (a) Pour tout $M \in E$, on a :

$$\psi^2(M) = \psi(M) + \operatorname{tr}(M)\psi(J) = M + \operatorname{tr}(M)J + \operatorname{tr}(M)J + \operatorname{tr}(M)J = \psi(M) + \operatorname{tr}(M)J = 2\psi(M) - M,$$
 donc $X^2 - 2X + 1$ est un polynôme annulateur de ψ .

- (b) Puisque $\psi \neq Id_E$, le polynôme annulateur $X^2 2X + 1 = (X 1)^2$ est le polynôme minimal de ψ . Donc 1 est l'unique valeur propre de ψ .
- (c) C'est un résultat du cours : le polynôme minimal de ψ admet une racine double, donc ψ n'est pas diagonalisable.

Partie II Un premier résultat préliminaire

- **1.** Il est clair que v est linéaire, de plus si $x \in F_1$ tel que v(x) = 0, alors u(x) = 0, donc $x \in \ker u \cap F_1 = \{0\}$, donc x = 0. D'autre part $\dim F_1 = \dim Im(u)$, donc v est un isomorphisme.
- 2. (a) Puisque v est un isomorphisme la famille $(\varepsilon_1,...,\varepsilon_r)$ est une base de Im(u). D'après le théorème de la base incomplète, il existe des vecteurs $(\varepsilon_{r+1},...,\varepsilon_n)$ telle que la famille $(\varepsilon_1,...,\varepsilon_r,\varepsilon_{r+1},...,\varepsilon_m)$ soit une base de G.
 - (b) Relativement aux bases précédentes, la matrice de u est de la forme :

$$\operatorname{Mat}_{B,C}(u) = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.$$

3. Notons u l'endomorphisme canoniquement associé à M. D'après ce qui précède il existe une base B de \mathbb{R}^p et une base C de \mathbb{R}^m telles que

$$\operatorname{Mat}_{B,C}(u) = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.$$

Désignons par S la matrice de passage de la base canonique de \mathbb{R}^p à la base B et T la matrice de passage de la base canonique de \mathbb{R}^m à la base C, alors S et T sont inversibles et on a la formule de changement de bases $M = S\mathrm{Mat}_{B,C}(u)T^{-1} = SJ_{m,p,r}T^{-1}$.

- **4.** Si 0 < r = p < m, $J_{m,p,r} = \begin{pmatrix} I_r \\ 0 \end{pmatrix}$.
 - Si 0 < r = m < p, $J_{m,p,r} = (I_r \ 0)$.
 - Si 0 < r = p = m, $J_{m,p,r} = \dot{I}_r$.

Partie III Un deuxième résultat préliminaire

- **1.** Soit $\lambda_1, \lambda_2, ..., \lambda_n$ des scalaires réels tels que $\sum_{i=1}^s \lambda_i l_i^* = 0$, donc $\forall j \in [\![1,s]\!]$, $0 = \sum_{i=1}^s \lambda_i l_i^* (l_j) = \lambda_j$, donc la famille $(l_1^*, l_2^*, ..., l_s^*)$ est libre.
- **2.** Par linéarité, $\forall k \in [1, s], l_k(x) = l_k^* \left(\sum_{j=1}^s x_j l_j \right) = \sum_{j=1}^s x_j l_k^*(l_j) = x_k.$

3. Soit l une forme linéaire et $x=\sum_{i=1}^s x_i l_i$ un élément de L. On a :

$$l(x) = \sum_{i=1}^{s} x_i l(l_i) = \sum_{i=1}^{s} l_i^*(x) l(l_i) = \sum_{i=1}^{s} \alpha_i l_i^*(x)$$

en posant $\alpha_i = l(l_i)$. Nous voyons donc que les s formes linéaires $l_1^*, l_2^*, ..., l_s^*$ engendrent L^* et comme elles sont libres, ces formes linéaires décrivent une base de L^* .

4. D'après ce qui précède, $L^* = \text{Vect}(l_1^*, l_2^*, ..., l_s^*)$, d'où dim $L^* = s = \dim L$.

Partie IV

Une caractérisation d'une forme linéaire sur E

- 1. L'application ϕ_A est clairement linéaire, c'est une conséquence de la linéarité de l'application trace..
- **2.** (a) Soient A et B de E et $\lambda \in \mathbb{R}$. Pour tout $M \in E$, on a :

$$h(A + \lambda B)(M) = \operatorname{tr}((A + \lambda B)M) = \operatorname{tr}(AM) + \lambda \operatorname{tr}(BM) = h(A)(M) + \lambda h(B)(M).$$

Donc h est bien linéaire.

- (b) i. On vérifie facilement que $\phi_A(E_{ij}) = a_{ji}$.
 - ii. Si h(A) = 0, alors, en particulier $\phi_A(E_{ij}) = a_{ji} = 0$ et ceci pour tout (i, j), donc A = 0 et par conséquent h est injective.
- (c) Les espaces $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{M}_n(\mathbb{R})^*$ sont de même dimension finie. Donc l'injectivité de h est équivalente à la bijectivité.

Partie V

Tout hyperplan de E contient au moins une matrice inversible

- 1. Soit φ une forme linéaire non nulle telle que $H=\ker \varphi$. Il suffit donc de montrer que les deux sousespaces H et $\mathrm{Vect}(A)$ sont supplémentaires puisque la somme des dimensions est égale celle de E. Soit $M\in H\cap\mathrm{Vect}(A)$, alors il existe $\lambda\in\mathbb{R}$ tel que $M=\lambda A$ et $\varphi(M)=0$. D'où $\varphi(\lambda A)=\lambda\varphi(A)=0$, comme $\varphi(A)\neq 0$, donc $\lambda=0$ et par conséquent M=0.
- 2. Il existe une matrice B telle que pour toute matrice M, on ait $\varphi(M) = \operatorname{tr}(BM) = \phi_B(M)$ (d'après la question 2.c) de la partie IV). Donc $H = \ker \varphi = \ker(\phi_B)$.
- 3. (a) P_1 est inversible, c'est la matrice de passage de la base canonique $(e_1, e_2, ..., e_n)$ de \mathbb{R}^n à la base $(e_2, e_3, ..., e_n, e_1)$.
 - (b) On vérifie facilement que $tr(R_rP_1)=0$ (R_rP_1 a sa diagonale nulle).
- **4.** B est équivalente à R_r : $PBQ = R_r$, où P et Q sont inversibles. On a donc, pour toute matrice M,

$$\operatorname{tr}(BM) = \operatorname{tr}(P^{-1}R_rQ^{-1}M) = \operatorname{tr}(R_rQMP).$$

Si on trouve Y inversible telle que $\operatorname{tr}(R_rY)$ soit de trace nulle, on a gagné (on pose $M=Q^{-1}YP^{-1}$ qui reste à la fois dans $GL_n(\mathbb{R})$ et dans l'hyperplan H). Pour cela, on peut par exemple poser $Y=P_1$.

Partie VI

Tout hyperplan de E contient au moins une matrice orthogonale

- 1. (a) Posons $C = {}^{t}AB = (c_{ij})_{1 \le i,j \le n}$ avec $c_{ij} = \sum_{k=1}^{n} a_{ki}b_{kj}$. D'où $(A|B) = \operatorname{tr}({}^{t}AB) = \sum_{i=1}^{n} c_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ki}b_{kj}$.
 - (b) Soit H un hyperplan de E, donc il existe une matrice B telle que $H = \ker(\phi_B)$, donc il suffit de prendre $Y = {}^tB$.
 - (c) On peut vérifier facilement que $\forall P_1, P_2 \in E$ et $\forall \lambda \in \mathbb{R}$, on a :

$$\theta_N(\lambda P_1 + P_2) = \lambda \theta_N(P_1) + \theta_N(P_2),$$

et

$$\theta_N(P_1P_2) = \theta_N(P_1)\theta_N(P_2),$$

de plus

$$\theta_N(I_n) = {}^t N I_n N = I_n.$$

Enfin, $\theta_N(P) = {}^t NPN = 0$ si, et seulement si, P = 0, car N est inversible.

En conclusion, θ_N est un automorphisme d'algèbres.

- (d) On a, pour tout $P \in E$, $\theta_{N_1} \circ \theta_{N_2}(P) = \theta_{N_1}({}^t\!N_2 P N_2) = {}^t\!N_1({}^t\!N_2 P N_2) N_1 = {}^t\!(N_2 N_1) P(N_2 N_1) = \theta_{N_2 N_1}(P)$ donc $\theta_{N_1} \circ \theta_{N_2} = \theta_{N_2 N_1}$. En particulier, $\theta_{N_1} \circ \theta_{t N_1} = \theta_{t N_1 N_1} = \theta_{I_n} = Id_E$, donc $(\theta_{N_1})^{-1} = \theta_{t N_1}$.
- **2.** Soit *P* une matrice orthogonale. On a :

$$(\theta_N(P))^{-1} = ({}^t NPN)^{-1}$$
$$= {}^t NP^{-1}N$$
$$= {}^t N^t PN$$
$$= {}^t (\theta_N(P))$$

et donc $\theta_N(P)$ est orthogonale. De plus $\theta_N(P) = P'$ est équivalent à $\theta_{t_N}(P') = P$, il en résulte que θ_N est une bijection de \mathcal{O}_n sur lui-même .

3. Soit *P* une matrice symétrique. On a :

$$\begin{array}{rcl}
^{t}(\theta_{N}(P)) & = & ^{t}(^{t}NPN) \\
 & = & ^{t}N^{t}PN \\
 & = & ^{t}NPN \\
 & = & \theta_{N}(P)
\end{array}$$

et donc $\theta_N(P)$ est symétrique. De plus $\theta_N(P)=P'$ est équivalent à $\theta_{t_N}(P')=P$, il en résulte que θ_N est une bijection de \mathscr{S}_n sur lui-même .

4. On a

$$(\theta_N(Y)|\theta_N(P)) = \operatorname{tr}({}^t({}^tNYN)({}^tNPN))$$

$$= \operatorname{tr}({}^tN{}^tYN{}^tNPN)$$

$$= \operatorname{tr}({}^tN{}^tYPN)$$

$$= \operatorname{tr}({}^tYP)$$

$$= (Y|P)$$

Donc $(\theta_N(Y)|\theta_N(P))=0$ si, et seulement si, (Y|P)=0, c'est-à-dire $P\in \mathscr{H}_Y$ si, et seulement si, $\theta_N(P)\in \mathscr{H}_{\theta_N(Y)}$.

5. (a) Soit $M \in \mathcal{O}_n \cap \mathcal{S}_n$. Puisque M est symétrique, on a les égalités :

$$(Y|M) = ({}^tY|{}^tM) = ({}^tY|M)$$

Donc, si $M \in \mathscr{H}_Y$, les produits scalaires (Y|M) et $({}^t\!Y|M)$ sont nuls. Il en résulte que $\left(\frac{1}{2}(Y+{}^t\!Y)|M\right)=0$, on en déduit que $M \in \mathscr{H}_{Y_s}$.

Réciproquement, si $M \in \mathscr{H}_{Y_s}$, alors $\left(\frac{1}{2}(Y+{}^t\!Y)|M\right)=0$, donc

$$(Y|M) = -({}^t\!Y|M)$$

et puisque M est symétrique,

$$(Y|M) = -({}^t\!Y|^t\!M)$$

ou encore

$$(Y|M) = -(Y|M).$$

On en déduit que (Y|M) = 0, et que $M \in \mathcal{H}_Y$.

On conclusion, on a l'égalité:

$$\mathcal{O}_n \cap \mathcal{S}_n \cap \mathcal{H}_Y = \mathcal{O}_n \cap \mathcal{S}_n \cap \mathcal{H}_{Y_s}$$
.

- (b) La matrice Y_s étant symétrique réelle, donc elle est diagonalisable dans une base orthonormée (théorème spectral), autrement dit il existe une matrice orthogonale U telle que ${}^t\!UY_sU=\theta_U(Y_s)=Y'$ soit diagonale.
- (c) Il est clair que Q est orthogonale et symétrique, de plus $(Q|Y') = \sum_{i=1}^{n} \sum_{j=1}^{n} (Q)_{ij}(Y')_{ij} = 0$ (les deux diagonales de Q et de Y' ne se coupent pas, car n est pair), donc

$$Q \in \mathcal{O}_n \cap \mathcal{S}_n \cap \mathcal{H}_{Y'}$$
.

(d) On a $Q \in \mathscr{O}_n \cap \mathscr{S}_n \cap \mathscr{H}_{\theta_U(Y_s)}$, donc

$$0 = ({}^tUY_sU|Q) = (Y_s|UQ^tU)$$

et par conséquent $UQ^tU \in \mathcal{O}_n \cap \mathcal{S}_n \cap \mathcal{H}_{Y_s} = \mathcal{O}_n \cap \mathcal{S}_n \cap \mathcal{H}_Y$, c'est-à-dire $\theta_{U}(Q) \in \mathcal{O}_n \cap \mathcal{S}_n \cap \mathcal{H}_Y$.

- (e) La matrice $\theta_{tU}(Q)$ répond à la question.
- (a) Soit f l'endomorphisme canoniquement associé à Y (Y donc la matrice de f dans la base canonique de \mathbb{R}^n). Donc, si U est une matrice orthogonale, $\theta_U(Y)$ est la matrice de f dans une autre base orthonormée. Donc pour trouver une telle matrice U il suffit de faire un changement des éléments de la base en permutant les vecteurs de la base de tel manière à avoir

$$|d_{1,1} \le |d_{2,2}| \le \dots \le |d_{n,n}|$$

- (b) Si $d_{n,n} = 0$, alors tous les éléments diagonaux de U sont nuls, dans ce cas on peut prendre la matrice I_n qui est orthogonale.
- (c) i. On a

$${}^tP_{\alpha}P_{\alpha} = \begin{pmatrix} {}^tP' & 0 \\ 0 & {}^tA_{\alpha} \end{pmatrix} \begin{pmatrix} P' & 0 \\ 0 & A_{\alpha} \end{pmatrix} = I_n.$$

Donc P_{α} est orthogonale.

ii.

$$(P_{\alpha}|D) = \sum_{k=1}^{2p-1} (-1)^{k} \varepsilon_{k} d_{kk} + (\varepsilon_{2p} d_{2p,2p} + \varepsilon_{2p+1} d_{2p+1,2p+1}) \cos \alpha$$

$$+ (\varepsilon_{2p+1} d_{2p+1,2p} - \varepsilon_{2p} d_{2p,2p+1}) \sin \alpha$$

$$= \sum_{k=1}^{2p-1} (-1)^{k} |d_{kk}| + (|d_{2p,2p}| + |d_{2p+1,2p+1}|) \cos \alpha$$

$$+ (\varepsilon_{2p+1} d_{2p+1,2p} - \varepsilon_{2p} d_{2p,2p+1}) \sin \alpha$$

Il suffit donc de prendre $a=|d_{2p,2p}|+|d_{2p+1,2p+1}|>0$, $b=\varepsilon_{2p+1}d_{2p+1,2p}-\varepsilon_{2p}d_{2p,2p+1}$ et $c=\sum_{k=1}^{2p-1}(-1)^k|d_{kk}|.$

- iii. Si $|c| \le a$, alors nécessairement $|c| \le \sqrt{a^2 + b^2}$, et donc l'équation $\sin{(\alpha + \beta)} = \frac{c}{\sqrt{a^2 + b^2}}$ en α admet des solutions dans \mathbb{R} .
- iv. Montrons la propriété par récurrence sur p. Pour p = 1, l'inégalité devient

$$a_1 \le a_2 + a_3$$

ce qui est bien vérifie, car $(a_n)_n$ est positive et croissante. Supposons la propriété vraie à l'ordre p. Alors

$$\sum_{k=1}^{2p+1} (-1)^{k-1} a_k = \sum_{k=1}^{2p-1} (-1)^{k-1} a_k - a_{2p} + a_{2p+1}$$

$$\leq a_{2p} + a_{2p+1} - a_{2p} + a_{2p+1}$$

$$\leq 2a_{2p+1}$$

$$\leq a_{2p+2} + a_{2p+3}$$

donc l'inégalité est vraie à l'ordre p+1. Elle est donc vraie pour tout $p \in \mathbb{N}^*$.

v. D'après la question iii.

$$|c| = \sum_{k=1}^{2p-1} (-1)^k |d_{kk}| \le |d_{2p,2p}| + |d_{2p+1,2p+1}| = |a|$$

donc la condition d'existence de α_0 est assurée. D'où $(P_{\alpha_0}|D)=0$.

- vi. On a $P_{\alpha_0} \in \mathcal{O}_n \cap \mathcal{H}_D$, et comme $D = \theta_U(Y)$, alors $\theta_U(P_{\alpha_0}) \in \mathcal{O}_n \cap \mathcal{H}_Y$.
- vii. Si $\det(\theta_{tU}(P_{\alpha_0})) = -1$, alors $\det(-\theta_{tU}(P_{\alpha_0})) = 1$ (n est impair), et donc une des deux matrices $\theta_{tU}(P_{\alpha_0})$) ou $\theta_{tU}(P_{\alpha_0})$) est dans \mathscr{H}_Y et positive.

• • • • • • • •