Final Exam(AEM2)

On Monday, 12.13, 09:00-10:30

Classroom: On-Line Test,

Test Problems will be uploaded on Week 15 at ieilmsold.jbnu.ac.kr

Scope: Chapter 14 - Chapter 16, Covered in the class

CHAPTER 16

Laurent Series, Residue Integration

- 16.1 Laurent Series
- 16.2 Singularities and Zeros, Infinity
- 16.3 Residue Integration Method
- 16.4 Residue Integration of Real Integrals

Review Questions and Problems SUMMARY

16.1 Laurent Series (Laurent 급수)

Taylor Series:

If f(z) is analytic at z_0 , then Taylor series can be used.

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

Laurent Series:

If f(z) is not analytic at z_0 , then Taylor series cannot be used.

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

16.1 Laurent Series (Laurent 급수)

THEOREM 1 Laurent's Theorem

Let f(z) be analytic in a domain containing two concentric circles C_1 and C_2 with center z_0 and the annulus between them. Then f(z) can be represented by the Laurent series

(1)
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

If z_0 is the only singular point of f(z) inside C_2 , then the series of the negative powers is called the **principal part** of f(z).

(1)
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$
$$= a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \cdots$$
$$\cdots + \frac{b_1}{z - z_0} + \frac{b_2}{(z - z_0)^2} + \cdots$$

(2)
$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(z^*)}{(z^* - z_0)^{n+1}} dz^*$$

$$b_n = \frac{1}{2\pi i} \oint_C (z^* - z_0)^{n-1} f(z^*) dz^*$$

COMMENT: Simpler Form of Laurent series

(1')
$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$$

$$(1')$$
 $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$ $(2')$ $a_n = \frac{1}{2\pi i} \oint_C \frac{f(z^*)}{(z^*-z_0)^{n+1}} dz^*$

PROOF: Omitted

Uniqueness:

The Laurent series of a given analytic function in its annulus of convergence is unique.

EXAMPLE 1 Use of Maclaurin Series

Find the Laurent series of $z^{-5}\sin z$ with center 0.

Sol.

EXAMPLE 2 Substitution

Find the Laurent series of $z^2 e^{1/z}$ with center 0.

Sol.

$$z^{2} e^{1/z} = z^{2} \left(1 + \frac{1/z}{1!} + \frac{(1/z)^{2}}{2!} + \frac{(1/z)^{3}}{3!} + \frac{(1/z)^{4}}{4!} + \cdots \right)$$

$$= z^{2} \left(1 + \frac{1}{z} + \frac{1}{2z^{2}} + \frac{1}{3!z^{3}} + \frac{1}{4!z^{4}} + \cdots \right)$$

$$= z^{2} + z + \frac{1}{2} + \frac{1}{3!z} + \frac{1}{4!z^{2}} + \cdots$$

EXAMPLE 3 Development of 1/(1-z)

Develop 1/(1-z)

- (a) in nonnegative powers of z
- (b) In negative powers of z.

Sol.

(a) in nonnegative powers of z

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n \qquad (valid if |z| < 1)$$

(b) in negative powers of z.

$$\frac{1}{1-z} = \frac{1}{-z(1-z^{-1})} = \frac{-1}{z} \sum_{n=0}^{\infty} (z^{-1})^n$$

$$= -\sum_{n=0}^{\infty} \frac{1}{z^{n+1}} = -\frac{1}{z} - \frac{1}{z^2} - \cdots \quad (valid if |z| > 1)$$

EXAMPLE 4 Laurent Expansions in Different Concentric Annuli

Find all Laurent series of $1/(z^3-z^4)$ with center 0.

Sol.

(a)
$$|z| < 1$$
:
$$\frac{1}{z^3 - z^4} = \frac{1}{z^3} \cdot \frac{1}{1 - z} = \sum_{n=0}^{\infty} z^{n-3}$$
$$= \frac{1}{z^3} + \frac{1}{z^2} + \frac{1}{z} + 1 + z + z^2 + \cdots$$

(b)
$$|z| > 1$$
:
$$\frac{1}{z^3 - z^4} = \frac{1}{-z^4 (1 - z^{-1})} = -z^{-4} \sum_{n=0}^{\infty} (z^{-1})^n$$
$$= -\sum_{n=0}^{\infty} \frac{1}{z^{n+4}} = -\frac{1}{z^4} - \frac{1}{z^5} - \cdots$$

EXAMPLE 5 Use of Partial Fraction

Find all Taylor and Laurent series of f(z) with center 0.

$$f(z) = \frac{-2z+3}{z^2-3z+2}$$

Sol.

$$f(z) = \frac{-2z+3}{z^2 - 3z+2} = \frac{-2z+3}{(z-1)(z-2)} = \frac{A}{z-1} + \frac{B}{z-2}$$
$$-2z+3 = A(z-2) + B(z-1)$$

By insertion:
$$\begin{cases} z = 1 \colon -2 + 3 = -A \\ z = 2 \colon -4 + 3 = B \end{cases}$$
 By comparing coefficients:
$$-2z + 3 = (A + B)z + (-2A - B) \\ \begin{cases} -2 = A + B \\ 3 = -2A - B \end{cases}$$

$$f(z) = \frac{-2z+3}{z^2-3z+2} = -\frac{1}{z-1} - \frac{1}{z-2}$$

$$-\frac{1}{z-1} = \begin{cases} \sum_{n=0}^{\infty} z^n, & |z| < 1 \\ -\sum_{n=0}^{\infty} 1/z^{n+1}, & |z| > 1 \end{cases}$$

$$-\frac{1}{z-2} = \frac{-1}{-2[1-(z/2)]} = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n \qquad (|z/2| < 1) \quad (|z| < 2)$$
$$-\frac{1}{z-2} = \frac{-1}{z[1-(z/z)]} = \frac{-1}{z} \sum_{n=0}^{\infty} \left(\frac{2}{z}\right)^n \qquad (|z/z| < 1) \quad (|z| > 2)$$

$$-\frac{1}{z-2} = \frac{-1}{z[1-(2/z)]} = \frac{-1}{z} \sum_{n=0}^{\infty} \left(\frac{2}{z}\right)^n \quad (|2/z| < 1) \quad (|z| > 2)$$

$$f(z) = \frac{-2z+3}{z^2-3z+2} = -\frac{1}{z-1} - \frac{1}{z-2}$$

(b)
$$1 < |z| < 2$$

$$f(z) = -\sum_{n=0}^{\infty} \frac{1}{z^{n+1}} + \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^{n}$$

$$= \left(-\frac{1}{z} - \frac{1}{z^{2}} - \frac{1}{z^{3}} + \cdots\right) + \left(\frac{1}{2} + \frac{z}{2^{2}} + \frac{z^{2}}{2^{3}} + \cdots\right)$$

$$f(z) = \frac{-2z+3}{z^2-3z+2} = -\frac{1}{z-1} - \frac{1}{z-2}$$

(c) 2 < |z|

$$f(z) = -\sum_{n=0}^{\infty} \frac{1}{z^{n+1}} - \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{2}{z}\right)^n = -\sum_{n=0}^{\infty} (1+2^n) \frac{1}{z^{n+1}}$$

$$= -\frac{2}{z} - \frac{3}{z^2} - \frac{5}{z^3} - \frac{9}{z^4} - \dots$$

1. Expand the function in a Laurent series that converges for 0 < |z| < R and determine the precise region of convergence.

$$\frac{\cos z}{z^4}$$

$$\frac{\cos z}{z^4} = \frac{1}{z^4} \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + - \cdots \right)$$
$$= \frac{1}{z^4} - \frac{1}{2!} \frac{1}{z^2} + \frac{1}{4!} - \frac{1}{6!} z^2 + \cdots$$

$$R = \infty$$

2. Expand the function in a Laurent series that converges for 0 < |z| < R and determine the precise region of convergence.

$$\frac{\exp{(-1/z^2)}}{z^2}$$

$$\frac{\exp(-1/z^2)}{z^2} = \frac{1}{z^2} \left[1 - \frac{1}{z^2} + \frac{1}{2!} \frac{1}{z^4} - \frac{1}{3!} \frac{1}{z^6} + \cdots \right]$$
$$= \frac{1}{z^2} - \frac{1}{z^4} + \frac{1}{2!} \frac{1}{z^6} - \frac{1}{3!} \frac{1}{z^8} + \cdots$$

$$R = \infty$$

5. Expand the function in a Laurent series that converges for 0 < |z| < R and determine the precise region of convergence.

$$\frac{1}{z^2-z^3}$$

R=1

$$\frac{1}{z^2 - z^3} = \frac{1}{z^2} \frac{1}{1 - z}$$

$$= \frac{1}{z^2} (1 + z + z^2 + z^3 + \cdots)$$

$$= \frac{1}{z^2} + \frac{1}{z} + 1 + z + z^2 + z^3 + \cdots$$

8. Expand the function in a Laurent series that converges for 0 < |z| < R and determine the precise region of convergence.

$$\frac{e^{z}}{z^{2}-z^{3}}$$

$$\frac{e^{z}}{z^{2}-z^{3}} = \frac{1}{z^{2}} \frac{e^{z}}{1-z} = \frac{1}{z^{2}} e^{z} \frac{1}{1-z}$$

$$= \frac{1}{z^{2}} \left(1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots\right) \left(1+z+z^{2}+z^{3}+\cdots\right)$$

$$= \frac{1}{z^{2}} \left(1+2z+\frac{5}{2}z^{2}+\frac{8}{3}z^{3}+\cdots\right)$$

$$= \frac{1}{z^{2}} + \frac{2}{z} + \frac{5}{2} + \frac{8}{3}z + \cdots$$

$$R=1$$

15. Find the Laurent series that converges for $0 < |z - z_0| < R$ and determine the precise region of convergence. Show details.

$$\frac{\cos z}{(z-\pi)^2}, \quad z_0 = \pi$$

$$\cos z = \cos((z-\pi) + \pi) = \cos(z-\pi)\cos\pi + \sin(z-\pi)\sin\pi$$

$$= -\cos(z-\pi)$$

$$\cos w = 1 - \frac{w^2}{2!} + \frac{w^4}{4!} - \frac{w^6}{6!} + \cdots \qquad w = z - \pi$$

$$= -1 + \frac{(z-\pi)^2}{2!} - \frac{(z-\pi)^4}{4!} + \frac{(z-\pi)^6}{6!} - + \cdots$$

$$\frac{\cos z}{(z-\pi)^2} = -(z-\pi)^{-2} + \frac{1}{2} - \frac{1}{24}(z-\pi)^2 + \frac{1}{720}(z-\pi)^4 - + \cdots$$

The principal part is $-(z-\pi)^{-2}$ and the radius of convergence is $0 < |z-\pi| < \infty$ (converges for all $z \neq \pi$).

19. Find all Taylor and Laurent series with center z_0 . Determine the precise regions of convergence. Show details.

$$\frac{1}{1-z^2}, \quad z_0 = 0$$

$$\frac{1}{1-w} = \sum_{n=0}^{\infty} w^n \qquad |w| < 1 \qquad [by (11), p. 694].$$

$$\frac{1}{1-z^2} = \sum_{n=0}^{\infty} (z^2)^n \qquad |z^2| < 1$$

$$= \sum_{n=0}^{\infty} z^{2n} \qquad \text{or} \qquad |z^2| = |z|^2 < 1 \qquad \text{so that } |z| < 1$$

$$= 1 + z^2 + z^4 + z^6 + \cdots.$$

Similarly, we obtain the Laurent series converging for |z| > 1 by the following trick, which you should remember:

$$\frac{1}{1-z^2} = \frac{1}{-z^2 \left(1 - \frac{1}{z^2}\right)} = \frac{1}{-z^2} \cdot \frac{1}{1 - \left(\frac{1}{z}\right)^2}$$

$$= \frac{1}{-z^2} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^{2n}$$

$$= \frac{1}{-z^2} \left(1 + z^{-2} + z^{-4} + z^{-6} + \cdots\right)$$

$$= -\frac{1}{z^2} - \frac{1}{z^4} - \frac{1}{z^6} - \frac{1}{z^8} - \cdots$$

$$= -\sum_{n=0}^{\infty} \frac{1}{z^{2n+2}} \qquad |z| > 1.$$

23. Find all Taylor and Laurent series with center z_0 . Determine the precise regions of convergence. Show details.

$$\frac{z^8}{1 - z^4}, \quad z_0 = 0$$

Case I. |z| < 1

$$\frac{1}{1-w} = \sum_{n=0}^{\infty} w^n \qquad |w| < 1 \qquad [by (11), p. 694].$$

$$\frac{z^8}{1-z^4} = z^8 \frac{1}{1-z^4} = z^8 \sum_{n=0}^{\infty} (z^4)^n = \sum_{n=0}^{\infty} z^{4n+8} \qquad |z| < 1$$
$$= z^8 + z^{12} + z^{16} + \cdots$$

Case II. |z| > 1

From Prob. 19 we know that the Laurent series for

$$\frac{1}{1-w^2} = -\sum_{n=0}^{\infty} \frac{1}{w^{2n+2}} \quad |w| > 1.$$

$$\frac{1}{1-z^4} = -\sum_{n=0}^{\infty} \frac{1}{(z^2)^{2n+2}} = -\sum_{n=0}^{\infty} \frac{1}{z^{4n+4}} \quad |z^2| > 1$$

$$\frac{z^8}{1-z^4} = -z^8 \sum_{n=0}^{\infty} \frac{1}{z^{4n+4}} = -\sum_{n=0}^{\infty} \frac{z^8}{z^{4n+4}} = -\sum_{n=0}^{\infty} z^{4-4n}$$

$$= -z^4 - 1 - z^{-4} - z^{-8} - \cdots$$

The principal part is $-z^{-4} - z^{-8} - \cdots$ and the radius of convergence is |z| > 1.

16.2 Singularities and Zeros. Infinity (특이점과 영점. 무한대)

Singular point: a point where f(z) is not analytic

Zero: a point where f(z)=0

Isolated Singular point: a point z₀ where

- $f(z_0)$ is not analytic and
- z₀ has a neighborhood without further singularities

Example:

tanz has isolated singularities at $\mp \pi/2$, $\mp 3\pi/2$, etc

(1)
$$f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}$$

 z_0 : isolated Singular point

If f(z) has only finite negative terms, then

(2)
$$f(z) = \frac{b_1}{z - z_0} + \frac{b_2}{(z - z_0)^2} + \dots + \frac{b_m}{(z - z_0)^m}$$

 z_0 : a pole of order m

If the order of a pole is infinity, then f(z) has an **isolated** essential singularity(진성특이점).

EXAMPLE 1 Poles, Essential Singularities

Find the poles and orders of the following functions.

$$\frac{1}{z(z-5)^5} + \frac{1}{(z-2)^2}$$
, $e^{1/z}$, $\sin(1/z)$

Sol.

$$f(z) = \frac{1}{z(z-5)^5} + \frac{1}{(z-2)^2}$$

A simple pole at z=0A second order pole at z=2A fifth order pole at z=5

$$f(z) = e^{1/z} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \cdots$$

An essential pole at z=0

$$f(z) = \sin(1/z) = \frac{1}{z} - \frac{1}{3!z^3} + \frac{1}{5!z^5} - + \cdots$$

An essential pole at z=0

EXAMPLE 2 Behavior Near a Pole

Describe the behavior of $f(z) = 1/z^2$ near the pole.

Sol.

$$|f(z)| \rightarrow \infty$$
 as $z \rightarrow 0$ in any manner.

THEOREM 1 Poles

If f(z) is analytic and has a pole at $z=z_0$ $|f(z)| \to \infty$ as $z \to z_0$ in any manner.

PROOF: Omitted(see Prob. 24)

EXAMPLE 3 Behavior Near an Essential Singularity

The function $f(z) = e^{1/z}$ has an essential singularity at z = 0

Describe the behavior of f(z) in an arbitrarily small ϵ -neighborhood of z=0

Sol.

No limit as $z \rightarrow 0$:

Real positive axis: $z = x \rightarrow 0^+$: $f(z) \rightarrow \infty$

Real negative axis: $z = x \rightarrow 0^-$: $f(z) \rightarrow 0$

$$f(z) \rightarrow ?$$
 as $z = re^{i\theta} \rightarrow 0$:

$$f(z)
ightarrow ?$$
 as $z = re^{i heta}
ightarrow 0$:
$$f(z) = e^{1/z} = e^{1/(re^{i heta})} = e^{(\cos heta - i\sin heta)/r} = c_0 e^{ilpha} = c$$
 where $c_0 = e^{\cos heta/r}$, $lpha = -\sin heta/r$
$$\cos heta = r \ln c_0, \quad -\sin heta = lpha r$$

$$\cos^2 heta + \sin^2 heta = r^2 (\ln c_0)^2 + lpha^2 r^2 = 1$$

$$r^2 = \frac{1}{(\ln c_0)^2 + lpha^2}, \quad an heta = -\frac{lpha}{\ln c_0}$$

 $r \rightarrow 0$ by adding multiples of 2π to α leaving c unaltered.

THEOREM 2 Picard's Theorem

If f(z) is analytic and has an isolated essential singularity at a point z_0 , it takes on every value, with at most one exceptional value, in an arbitrarily small ε -neighborhood of z_0 .

PROOF See Ref. [D4], vol. 2. p.258

[D4] Hille, E., Analytic Function Theory. 2vols. 2nd ed. Providence. RI: American Mathematical Society, Reprint V1 1983, V2 2005

Removable Singularities

- f(z) has a removable singularity at $z=z_0$ if
 - f(z) is not analytic at $z=z_0$, but
 - can be made analytic there by assigning a suitable value f(z₀)

Example of Removable Singularities

$$\begin{cases} f(z) = \frac{\sin z}{z}, & z \neq 0 \\ f(0) = 1 \end{cases}$$

Zeros of Analytic Functions

Zero: z_0 is a zero if $f(z_0) = 0$.

Zero of order n: z_0 is a zero of order n if

$$f(z_0) = f'(z_0) = f''(z_0) = \dots = f^{(n-1)}(z_0) = 0$$

Simple zero: Zero of order 1

Example: Zero of order 3

$$f(z) = 3(z-1)^3$$

$$f'(z) = 9(z-1)^2$$

$$f''(z) = 18(z-1)$$

EXAMPLE 4 Zeros

Find zeros of the following functions.

(a)
$$f(z) = 1 + z^2$$
 (e) $f(z) = \sin z$
(b) $f(z) = (1 - z^4)^2$ (f) $f(z) = \sin^2 z$
(c) $f(z) = (z - a)^3$ (g) $f(z) = 1 - \cos z$
(d) $f(z) = e^z$ (h) $f(z) = (1 - \cos z)^2$

Sol.

(a)
$$f(z) = 1 + z^2 = (z+i)(z-i) = 0$$

Simple zeros at $z = \pm i$.

(b)
$$f(z) = (1-z^4)^2 = (z-1)^2(z+1)^2(z-i)^2(z+i)^2$$

Double zeros at $z = \pm 1, \pm i$

- (c) $f(z) = (z-a)^3$ A triple zero at z=a.
- (d) $f(z) = e^z \neq 0$ No zero at all.
- (e) $f(z) = \sin z = 0$ Zeros at $z = n\pi, n = 0, \pm 1, \pm 2, \cdots$

 $(f) f(z) = \sin^2 z$

Double zeros at $z = n\pi$, $n = 0, \pm 1, \pm 2, \cdots$

- (g) $f(z)=1-\cos z$ Simple zeros at $z=2n\pi, \ n=0,\pm 1,\pm 2,\cdots$
- (h) $f(z)=(1-\cos\!z)^2$ Double zeros at $z=2n\pi,\ n=0,\pm 1,\pm 2,\cdots$

Taylor Series of f(z) with an n-th Order Zero at z_0

(3)
$$f(z) = a_n (z - z_0)^n + a_{n+1} (z - z_0)^{n+1} + \cdots$$

 $= (z - z_0)^n [a_n + a_{n+1} (z - z_0) + a_{n+2} (z - z_0)^2 + \cdots]$
 $+ \cdots]$ $(a_n \neq 0)$

THEOREM 3 Zeros

The zeros of an analytic function f(z) ($\neq 0$) are isolated; that is, each of them has a neighborhood that contains no further zeros of f(z).

PROOF Omitted!

THEOREM 4 Poles and Zeros

Let f(z) be analytic at $z=z_0$ and have a zero of n-th order at $z=z_0$. Then

- 1/f(z) has a pole of n-th order at $z=z_0$; and
- so does h(z)/f(z) provided h(z) is analytic at $z\!=\!z_0$ and $h(z_0)\!\neq\!0$

PROOF Omitted!

Riemann Sphere. Point at Infinity

Riemann Sphere:

A sphere S of diameter 1 touching the complex plane at z=0.

Each point on S represents a point on the complex plane except N, and vice versa.

Let the image for the **point at infinity**, denoted ∞ , be N. Then

- -The finite complex plane=The complex plane
- -The extended complex plane

The mapping of the extended complex plane onto the sphere is called a **stereographic projection**.

Analytic or Singular at Infinity

Investigate a function f(z) for large |z|

$$z = 1/w$$
 $f(z) = f(1/w) = g(w)$
 $(4) \quad g(0) = \lim_{w \to 0} g(w)$

Investigate a function g(w) near w=0

f(z) has an n-th order zero at infinity

 $\longrightarrow f(1/w)$ has an n-th order zero at w=0

EXAMPLE 5 Functions Analytic or Singular at Infinity **Entire and Meromorphic Functions**

Find zeros and poles of the following functions.

(a)
$$f(z) = 1/z^2$$
 (d) $f(z) = \cos z$
(b) $f(z) = z^3$ (e) $f(z) = \sin z$

$$(d) f(z) = \cos z$$

(b)
$$f(z) = z^3$$

(e)
$$f(z) = \sin z$$

(c)
$$f(z) = e^z$$

$$f(z)=1/z^2$$
 $f(z)$ has a double pole at $z=\infty$ since $g(w)=f(1/w)=w^2$ has a double zero at $w=0$.

$$f(z)=z^3$$
 $f(z)$ has a triple pole at $z=\infty$ Since $g(w)=f(1/w)=1/w^3$ has a triple zero at $w=0$.

(c)
$$f(z)=e^z$$

$$f(z)$$
 has an essential singularity at $z=\infty$ Since $g(w)=f(1/w)=e^{1/w}$ has an essential singularity at $w=0$.

(d)
$$f(z) = \cos z$$

f(z) has an essential singularity at $z\!=\!\infty$

Since $g(w) = f(1/w) = \cos(1/w)$ has an essential singularity at w = 0.

$$\cos\frac{1}{w} = 1 - \frac{1}{2!} \left(\frac{1}{w}\right)^2 + \frac{1}{4!} \left(\frac{1}{w}\right)^4 - + \cdots$$

(e)
$$f(z) = \sin z$$

f(z) has an essential singularity at $z\!=\!\infty$

Since $g(w) = f(1/w) = \sin(1/w)$ has an essential singularity at w = 0

$$\sin\frac{1}{w} = \left(\frac{1}{w}\right) - \frac{1}{3!} \left(\frac{1}{w}\right)^3 + \frac{1}{5!} \left(\frac{1}{w}\right)^5 - + \dots$$

3. Determine the location and order of the zeros.

$$(z + 81i)^4$$

We claim that $f(z) = (z + 81i)^4$ has a fourth-order zero at z = -81i.

$$f(z) = (z + 81i)^4 = 0$$
 gives $z = z_0 = -81i$.

To determine the order of that zero we differentiate until $f^{(n)}(z_0) \neq 0$.

$$f(z) = (z + 81i)^4,$$
 $f(-81i) = f(z_0) = 0;$
 $f'(z) = 4(z + 81i)^3,$ $f'(-81i) = 0;$
 $f''(z) = 12(z + 81i)^2,$ $f''(-81i) = 0;$
 $f'''(z) = 24(z + 81i),$ $f'''(-81i) = 0;$
 $f^{iv}(z) = 24,$ $f^{iv}(-81i) \neq 0.$

Hence, by definition of order of a zero, we conclude that the order at z_0 is 4.

5. Determine the location and order of the zeros.

$$z^{-2}\sin^2\pi z$$

The point of this, and similar problems, is that we have to be cautious. In the present case, z=0 is not a zero of the given function because

$$z^{-2}\sin^2 \pi z = z^{-2}((\pi z)^2 + \cdots) = \pi^2 + \cdots$$

$$\sin \pi z = 0$$
 $\pi z = \pm n \pi$ $z = \pm n$: double zero

16.3 Residue Integration Method (유수적분법)

Cauchy's residue integration is to calculate

$$\oint_C f(z) dz$$
 C: Simple Closed Path

If f(z) is analytic everywhere on C and inside C:

$$\oint_C f(z) \, dz = 0$$

If f(z) is singular at a point $z=z_0$ inside C but is otherwise analytic on C and inside C as before.

If f(z) is singular at a point $z=z_0$ inside C but is otherwise analytic on C and inside C as before.

Laurent series, for $0<|z-z_0|< R$:

$$f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \frac{b_1}{z-z_0} + \frac{b_2}{(z-z_0)^2} + \cdots$$

$$b_1 = \frac{1}{2\pi i} \oint_C f(z) dz$$

$$(1) \quad \oint_C f(z) dz = 2\pi i b_1$$

$$(1) \oint_C f(z) dz = 2\pi i b_1$$

$$(2) b_1 = \mathop{\mathrm{Res}}_{z=z_0} f(z) : \text{Residue of } f(z)$$
at $z=z_0$

EXAMPLE 1 Integration of an Integral by Means of a Residue

Determine
$$\oint_C f(z)dz = \oint_C \frac{\sin z}{z^4} dz$$

Sol.

$$f(z) = \frac{1}{z^4} \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots \right) = \frac{1}{z^3} - \frac{1}{3!z} + \frac{z}{5!} - \frac{z^3}{7!} + \dots$$

f(z) : has a pole of third order at z=0.

$$\oint_{C} \frac{\sin z}{z^{4}} dz = 2\pi i b_{1} = 2\pi i \left(-\frac{1}{3!}\right) = -\frac{\pi i}{3}$$

EXAMPLE 2 CAUTION! Use the Right Laurent Series

IPLL 2 CAUTION: USE the Right Laurent Series

Determine $\oint_C f(z)dz = \oint_C \frac{1}{z^3 - z^4} dz$

$$f(z) = \frac{1}{z^3} \cdot \frac{1}{1-z} = \frac{1}{z^3} (1+z+z^2+\cdots) \qquad |z| < 1$$
$$= \frac{1}{z^2} + \frac{1}{z} + 1 + z + z^2 + z^3 + \cdots$$

$$\oint_C \frac{1}{z^3-z^4} \, dz = -\, 2\pi i \, b_1 = -\, 2\pi i \, \cdot \, 1 = -\, 2\pi i$$

CAUTION! Use the Right Laurent Series

CAUTION! Incorrect Integration!

Formulas for Residues

Simple pole at z_0 :

(3)
$$\underset{z=z_0}{\text{Res}} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z)$$

(3)
$$\underset{z=z_0}{\text{Res}} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z)$$
(4)
$$\underset{z=z_0}{\text{Res}} f(z) = \underset{z \to z_0}{\text{Res}} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}$$

PROOF

Simple pole at z_0 :

(3)
$$\underset{z=z_0}{\text{Res}} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z)$$

PROOF

$$\begin{split} f(z) = \frac{b_1}{z-z_0} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots \\ (0 < |z-z_0| < R) \end{split}$$

$$\begin{aligned} \lim_{z \to z_0} & f(z)(z-z_0) = \lim_{z \to z_0} \left[b_1 + a_0(z-z_0) + a_1(z-z_0)^2 + \cdots \right] \\ & = b_1 \end{aligned}$$

Simple pole at z_0 :

(4)
$$\underset{z=z_0}{\text{Res}} f(z) = \underset{z \to z_0}{\text{Res}} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}$$

PROOF

$$b_1 = \mathop{Res}_{z \to z_0}(z - z_0) f(z) = \mathop{Res}_{z \to z_0}(z - z_0) \frac{p(z)}{q(z)}$$

q(z) has a simple zero z_0 :

$$q(z) = (z - z_0)q'(z_0) + \frac{(z - z_0)^2}{2!}f''(z_0)$$

$$+ \frac{(z - z_0)^3}{3!}f'''(z_0) + \cdots$$

$$\begin{split} b_1 &= \underset{z \to z_0}{Res} \ (z - z_0) \frac{p(z)}{q(z)} \\ &= \underset{z \to z_0}{Res} \ \frac{p(z)}{q'(z_0) + \frac{z - z_0}{2!} f''(z_0) + \frac{(z - z_0)^2}{3!} f'''(z_0) + \cdots} \\ &= \underset{z \to z_0}{Res} \ \frac{p(z)}{q'(z_0) + \frac{z - z_0}{2!} f''(z_0) + \frac{(z - z_0)^2}{3!} f'''(z_0) + \cdots} \\ &= \frac{p(z_0)}{q'(z_0) + 0 + 0 + \cdots} = \frac{p(z_0)}{q'(z_0)} \end{split}$$

EXAMPLE 3 Residue at a Simple Pole

Determine the residue of f(z) at z=i where

$$f(z) = \frac{9z+i}{z^3+z}$$

Sol.
$$f(z) = \frac{9z+i}{z^3+z} = \frac{9z+i}{z(z+i)(z-i)}$$

$$\underset{z \to i}{Res} f(z) = \lim_{z \to i} (z-i)f(z)$$

$$= \lim_{z \to i} (z-i) \cdot \frac{9z+i}{z(z+i)(z-i)}$$

$$= \lim_{z \to i} \frac{9z+i}{z(z+i)} = \frac{10i}{i \cdot 2i} = -5i$$

Poles of any order at z_0 :

The residue of f(z) at m-th order pole at z_0 is

(5)
$$\underset{z=z_0}{\text{Res}} f(z) = \frac{1}{(m-1)!} \lim_{z \to z_0} \left\{ \frac{d^{m-1}}{dz^{m-1}} \left[(z-z_0)^m f(z) \right] \right\}$$

For a second-order pole (m=2):

$$(5^*) \quad \underset{z=z_0}{\operatorname{Res}} f(z) = \lim_{z \to z_0} \left\{ [(z-z_0)^2 f(z)]' \right\}$$

PROOF Omitted!

EXAMPLE 4 Residue at a Pole of Higher Order

Determine the residue of f(z) at z=1 where

$$f(z) = 50z/(z^3 + 2z^2 - 7z + 4)$$

$$f(z) = \frac{50z}{z^3 + 2z^2 - 7z + 4} = \frac{50z}{(z-1)^2(z+4)}$$

$$\begin{aligned} \mathop{\rm Res}_{z=1} f(z) &= \lim_{z \to 1} \left[(z-1)^2 f(z) \right]' \\ &= \lim_{z \to 1} \left[(z-1)^2 \cdot 50z / \left\{ (z-1)^2 (z+4) \right\} \right]' \\ &= \lim_{z \to 1} \left[\frac{50z}{(z+4)} \right]' = 50 \left[\frac{(z+4)-z}{(z+4)^2} \right]_{z=1} \\ &= 8 \end{aligned}$$

Several Singularities Inside the Contour. Residue Theorem

THEOREM 1 Residue Theorem

f(z): analytic inside a simple closed path C and on C, except for finitely many points, z_1, z_2, \cdots, z_k inside C.

Then

(6)
$$\oint_C f(z)dz = 2\pi i \sum_{j=1}^k \mathop{\rm Res}_{z=z_j} f(z)$$

PROOF

EXAMPLE 5 Integration by the Residue Theorem. Several Contours

Evaluate the following integral CCW around any simple closed path such that

$$J=\oint_C rac{4-3z}{z^2-z}dz$$
 (a) 0 and 1 are inside C (b) 0 is inside, 1 outside (c) 1 is inside, 0 outside

- (d) 0 and 1 are outside

$$\oint_{C} \frac{4-3z}{z^{2}-z} dz = \oint_{C} \frac{4-3z}{z(z-1)} dz = 2\pi i \sum_{j=1}^{k} \underset{z=z_{j}}{\text{Res}} f(z)$$

$$\underset{z=0}{\text{Res}} f(z) = \left[zf(z)\right]_{z=0} = \left[z\frac{4-3z}{z(z-1)}\right]_{z=0} = -4$$

$$\underset{z=1}{\text{Res}} f(z) = \left[(z-1)f(z)\right]_{z=1} = \left[(z-1)\frac{4-3z}{z(z-1)}\right]_{z=1} = 1$$

$$\underset{z=0}{\text{Res }} f(z) = -4$$
 $\underset{z=1}{\text{Res }} f(z) = 1$

(a) 0 and 1 are inside C

$$J=2\pi i \left[\operatorname{Res}_{z=0} f(z) + \operatorname{Res}_{z=1} f(z)\right] = -6\pi i$$

(b) 0 is inside, 1 outside

$$J=2\pi i \left[\operatorname{Res}_{z=0}\right]=-8\pi i$$

(c) 1 is inside, 0 outside

$$J=2\pi i \left[\operatorname{Res}_{z=1} f(z)\right] = 2\pi i$$

(d) 0 and 1 are outside

$$J=0(\because analytic)$$

EXAMPLE 6 Another Application of the Residue Theorem

Calculate
$$\oint_C \frac{\tan z}{z^2 - 1} dz$$

$$\oint_C \frac{\tan z}{z^2 - 1} dz = \oint_C \frac{\tan z}{(z+1)(z-1)} dz$$

$$= 2\pi i [\underset{z=-1}{\text{Res}} f(z) + \underset{z=1}{\text{Res}} f(z)]$$

$$= 2\pi i \{ [\tan z/(z-1)]_{z=-1} + [\tan z/(z+1)]_{z=1} \}$$

$$= 2\pi i \cdot \tan 1 = 9.7855i$$

EXAMPLE 7 Poles and Essential Singularities

Calculate
$$\oint_C \left(\frac{ze^{\pi z}}{z^4 - 16} + ze^{\pi z} \right) dz$$
 $C: 9x^2 + y^2 = 9$, CCW

$$I_1 = \oint_C \frac{ze^{\pi z}}{z^4 - 16} dz = 2\pi i \sum \text{Res}$$

$$z^{4}-16 = (z^{2}+4)(z^{2}-4)$$

= $(z-2i)(z+2i)(z-2)(z+2)$

(4)
$$\underset{z \to z_0}{\text{Res}} f(z) = \frac{p(z_0)}{q'(z_0)}$$

$$I_{1} = \oint_{C} \frac{ze^{\pi z}}{z^{4} - 16} dz = 2\pi i \sum \text{Res } \frac{ze^{\pi z}}{z^{4} - 16}$$

$$= 2\pi i \left[\frac{ze^{\pi z}}{4z^{3}} \Big|_{z=2i} + \frac{ze^{\pi z}}{4z^{3}} \Big|_{z=-2i} \right]$$

$$= 2\pi i \left(-\frac{1}{16} - \frac{1}{16} \right) = -\frac{\pi i}{4}$$

$$I_2 = \oint_C z e^{\pi/z} \, dz = 2\pi i b_1$$

$$\begin{split} I_2 &= \oint_C z e^{\pi/z} \, dz = 2\pi i b_1 \\ z e^{\pi/z} &= z \bigg(1 + \frac{\pi}{z} + \frac{\pi^2}{2! z^2} + \frac{\pi^3}{3! z^3} + \cdots \bigg) \\ &= z + \pi + \frac{\pi^2}{2! z} + \frac{\pi^3}{3! z^2} + \cdots \qquad (|z| > 0) \\ I_2 &= \oint_C z e^{\pi/z} \, dz = 2\pi i b_1 = 2\pi i \cdot \frac{\pi^2}{2!} = \pi^3 i \\ I &= I_1 + I_2 = -\frac{\pi}{4} i + \pi^3 i = 30.221 i \end{split}$$

3. Find all the singularities in the finite plane and the corresponding residues. Show the details. $(\sin 2z)/z^6$

$$z^{-6} \sin 2z = z^{-6} \left(2z - \frac{(2z)^3}{3!} + \frac{(2z)^5}{5!} - \frac{(2z)^7}{7!} + - \cdots \right)$$
$$= \frac{2}{z^5} - \frac{8}{3!} \frac{1}{z^3} + \frac{32}{5!} \frac{1}{z} - \frac{128}{7!} z + - \cdots$$

$$f(z) = \frac{\sin 2z}{z^6}$$
 has a pole of fifth order at $z = z_0 = 0$

The principal part of (B) is
$$\frac{2}{z^5} - \frac{8}{3!} \frac{1}{z^3} + \frac{32}{5!} \frac{1}{z}$$
.

The coefficient of z^{-1} in the Laurent series (C) is

$$b_1 = \frac{32}{5!} = \frac{32}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = \frac{4}{15}.$$

Hence the desired residue at 0 is $\frac{4}{15}$.

$$\operatorname{Res}_{z=z_0=0} \frac{\sin 2z}{z^6} = \frac{1}{(6-1)!} \lim_{z \to 0} \left\{ \frac{d^{6-1}}{dz^{6-1}} \left[(z-0)^6 f(z) \right] \right\}$$

$$= \frac{1}{5!} \lim_{z \to 0} \left\{ \frac{d^5}{dz^5} \left[z^6 \frac{\sin 2z}{z^6} \right] \right\}$$

$$= \frac{1}{5!} \lim_{z \to 0} \left\{ \frac{d^5}{dz^5} \sin 2z \right\} = \frac{1}{5!} \lim_{z \to 0} \left\{ 32 \cos 2z \right\}$$

$$= \frac{4}{15}, \quad \text{as before.}$$

5. Find all the singularities in the finite plane and the corresponding residues. Show the details. $8/(1+z^2)$

singularities at $z_0 = i$ and $z_0 = -i$

Solution 1. By (3), p. 721, we have

$$\operatorname{Res}_{z=i} f(z) = \lim_{z \to i} \left\{ (z - i) \cdot \frac{8}{1 + z^2} \right\} = \lim_{z \to i} \left\{ (z - i) \cdot \frac{8}{(z - i)(z + i)} \right\}$$

$$= \lim_{z \to i} \left\{ \frac{8}{z + i} \right\} = \frac{8}{2i} = \frac{4}{i} = -4i.$$

$$\operatorname{Res}_{z=-i} f(z) = \lim_{z \to -i} \left\{ (z - (-i)) \cdot \frac{8}{(z - i)(z + i)} \right\}$$

$$= \lim_{z \to -i} \left\{ (z + i) \cdot \frac{8}{(z - i)(z + i)} \right\} = \frac{8}{-2i} = 4i.$$

Solution 2. By (4), p. 721, we have

$$\operatorname{Res}_{z=z_0} f(z) = \operatorname{Res}_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)} = \frac{8}{(1+z^2)'} \bigg|_{z=z_0} = \frac{8}{2z} \bigg|_{z=z_0} = \frac{8}{2z_0}$$

$$\operatorname{Res}_{z_0 = i} f(z) = \frac{8}{2i} = -4i,$$

$$\operatorname{Res}_{z_0 = -i} f(z) = \frac{8}{-2i} = 4i,$$

15. Evaluate (counterclockwise). Show the details.

$$\oint_C \tan 2\pi z \, dz, \quad C: |z - 0.2| = 0.2$$

$$f(z) = \tan 2\pi z = \frac{\sin 2\pi z}{\cos 2\pi z} = \frac{p(z)}{q(z)} \qquad p(z) = \sin 2\pi z,$$
$$q(z) = \cos 2\pi z$$

singularities at $\cos 2\pi z = 0$.

$$2\pi z = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2} \cdots, \qquad z = \pm \frac{1}{4}, \pm \frac{3}{4}, \pm \frac{5}{4} \cdots.$$

Res_{$$z_0 = \frac{1}{4}$$} $f(z) = \frac{p(\frac{1}{4})}{q'(\frac{1}{4})} = \frac{1}{-2\pi} = -\frac{1}{2\pi}$.

$$\oint_C f(z) dz = \oint_{C:|z-0.2|=0.2:} \tan 2\pi z \, dz = 2\pi i \cdot \mathop{\rm Res}_{z_0 = \frac{1}{4}} f(z)$$
$$= 2\pi i \left(-\frac{1}{2\pi} \right) = -i$$

17. Evaluate (counterclockwise). Show the details.

= -28.919i

$$\oint_C \frac{e^z}{\cos z} dz, \quad C: |z - \pi i/2| = 4.5$$

$$\cos z = 0 \quad \text{at} \quad z = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2} \cdots.$$
only
$$z = \frac{\pi}{2} \quad \text{and} \quad z = -\frac{\pi}{2} \quad \text{lie within } C.$$

$$\underset{z = \pi/2}{\text{Res}} f(z) = \frac{e^{\pi/2}}{-\sin \pi/2} = -e^{\pi/2},$$

$$\underset{z = -\frac{\pi}{2}}{\text{Res}} f(z) = \frac{e^{-\pi/2}}{-\sin (-\pi/2)} = \frac{e^{-\pi/2}}{\sin \pi/2} = e^{-\pi/2}.$$

$$\oint_C f(z) dz = \oint_{C: |z - \pi i/2| = 4.5} \frac{e^z}{\cos z} dz = 2\pi i \left[\underset{z = \pi/2}{\text{Res}} f(z) + \underset{z = -\pi/2}{\text{Res}} f(z) \right]$$

24. Evaluate (counterclockwise). Show the details.

$$\oint_C \frac{\exp(-z^2)}{\sin 4z} dz, \quad C: |z| = 1.5$$

singularities inside C: $z = -\frac{\pi}{4}$, 0, $\frac{\pi}{4}$

$$\sum_{z=-\pi/4}^{\text{Res}} f(z) = \lim_{z \to -\pi/4} \frac{\exp(-z^2)}{4\cos 4z} = \frac{\exp(-\pi^2/16)}{-4}$$

$$\sum_{z=0}^{\text{Res}} f(z) = \lim_{z \to 0} \frac{\exp(-z^2)}{4\cos 4z} = \frac{1}{4}$$

$$\underset{z=\pi/4}{\text{Res}} f(z) = \lim_{z \to \pi/4} \frac{\exp(-z^2)}{4\cos 4z} = \frac{\exp(-\pi^2/16)}{-4}$$

$$\oint_C \frac{\exp(-z^2)}{\sin 4z} dz = 2\pi i \left[\underset{z=-\pi/4}{\text{Res}} f(z) + \underset{z=0}{\text{Res}} f(z) + \underset{z=\pi/4}{\text{Res}} f(z) \right]$$

16.4 Residue Integration of Real Integrals (실적분의 유수적분)

Integrals of Rational Functions of cosθ and sinθ

(1)
$$J = \int_0^{2\pi} F(\cos\theta, \sin\theta) \, d\theta$$

where

$$F(\cos\theta, \sin\theta)$$
:

- real rational function of $\cos\theta$ and $\sin\theta$, and
- finite on the interval of integration

(1)
$$J = \int_{0}^{2\pi} F(\cos\theta, \sin\theta) d\theta$$

$$e^{i\theta} = z$$

$$dz/d\theta = ie^{i\theta} = iz \quad d\theta = dz/(iz)$$

$$\cos\theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta}) = \frac{1}{2}(z + \frac{1}{z})$$
(2)
$$\sin\theta = \frac{1}{2i}(e^{i\theta} - e^{-i\theta}) = \frac{1}{2i}(z - \frac{1}{z})$$
(3)
$$J = \oint_{C} f(z) \frac{dz}{iz}$$

EXAMPLE 1 An Integral of the Type (1)

Show that
$$\int_0^{2\pi} \frac{d\theta}{\sqrt{2-\cos\theta}} = 2\pi$$

Sol.

$$z = e^{i\theta}$$
 $dz/d\theta = ie^{i\theta} = iz$ $d\theta = dz/(iz)$
 $\cos\theta = (1/2)(e^{i\theta} + e^{-i\theta}) = (z + z^{-1})/2$

$$\int_{0}^{2\pi} \frac{d\theta}{\sqrt{2} - \cos\theta} = \oint_{C} \frac{1}{\sqrt{2} - \frac{1}{2} \left(z + \frac{1}{z}\right)} \frac{dz}{iz}$$

$$\int_{0}^{2\pi} \frac{d\theta}{\sqrt{2} - \cos\theta} = \oint_{C} \frac{1}{\sqrt{2} - \frac{1}{2} \left(z + \frac{1}{z}\right)} \frac{dz}{iz}$$

$$= \oint_{C - \frac{i}{2} (z^{2} - 2\sqrt{2}z + 1)} dz = -\frac{2}{i} \oint_{C} \frac{dz}{(z^{2} - 2\sqrt{2}z + 1)}$$

Poles:

$$z^{2} - 2\sqrt{2}z + 1 = 0$$

$$z = \sqrt{2} \pm \sqrt{(\sqrt{2})^{2}} - 1 = \sqrt{2} \pm 1$$

$$z^{2} - 2\sqrt{2}z + 1 = (z - \sqrt{2} - 1)(z - \sqrt{2} + 1) = 0$$

$$\int_{0}^{2\pi} \frac{d\theta}{\sqrt{2} - \cos\theta} = -\frac{2}{i} \oint_{C} \frac{dz}{(z^{2} - 2\sqrt{2}z + 1)}$$

$$= 2\pi i \left(-\frac{2}{i}\right) \operatorname{Res}_{z = \sqrt{2} - 1} \frac{1}{(z^{2} - 2\sqrt{2}z + 1)}$$

$$= -4\pi \frac{1}{z - \sqrt{2} - 1} \Big|_{z = \sqrt{2} - 1} = 2\pi$$

Improper Integral

(4)
$$\int_{-\infty}^{\infty} f(x)dx$$
: Improper Integral Same meaning

(5')
$$\int_{-\infty}^{\infty} f(x)dz = \lim_{a \to -\infty} \int_{a}^{0} f(x)dx + \lim_{b \to \infty} \int_{0}^{b} f(x)dx$$

If both limit exist, then

(5)
$$\int_{-\infty}^{\infty} f(x)dx = \lim_{R \to \infty} \int_{-R}^{R} f(x)dx$$

Cauchy principal value of the integral:

$$\text{pr.v.} \int_{-\infty}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) dx$$

Cauchy principal value may exist even if the limits in (5') do not.

(5')
$$\int_{-\infty}^{\infty} f(x)dz = \lim_{a \to -\infty} \int_{a}^{0} f(x)dx + \lim_{b \to \infty} \int_{0}^{b} f(x)dx$$

Example:
$$\lim_{R\to\infty}\int_{-R}^R x\,dx = \lim_{R\to\infty}\left(\frac{R^2}{2} - \frac{R^2}{2}\right) = 0$$

$$\lim_{b\to\infty}\int_0^b x\,dx = \infty$$

Calculation of Improper Integral

(4)
$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{\infty} \frac{N(x)}{D(x)} dx$$

Assumption:

- f(x) is a real rational function $\longrightarrow f(z)$ has finitely many poles in the UHP.
- Order of $D(x) \ge Order$ of N(x)+2

then the limits in (5') exist.

Therefore, start from (5).

(5)
$$\int_{-\infty}^{\infty} f(x)dx = \lim_{R \to \infty} \int_{-R}^{R} f(x)dx$$

$$\oint_C f(z)dz = \int_S f(z)dz + \int_{-R}^R f(x)dx$$

$$= 2\pi i \sum_{HC} \operatorname{Res} f(z)$$

$$S$$
 R
 R

(6)
$$\int_{-R}^{R} f(x)dx = 2\pi i \sum_{\mathbf{IHC}} \operatorname{Res} f(z) - \int_{S} f(z)dz$$

IHC: Inside of the Half-Circle

Since
$$\int_S f(z)dz \to 0$$
 as $R \to \infty$ (Proof is at the next page.)

(7)
$$\int_{-\infty}^{\infty} f(x)dx = 2\pi i \sum_{UHP} \operatorname{Res} f(z)$$

PROOF of
$$\int_S f(z)dz \to 0 \ as \ R \to \infty$$

For sufficiently large constants $m{k}$ and $m{R}_0$

$$|f(z)| < \frac{k}{|z|^2}$$
 $(|z| = R > R_0)$

$$\left|\int_S f(z) dz\right| \leq \int_S |f(z)| dz < \frac{k}{R^2} \pi R = \frac{k\pi}{R}$$

Thus,

$$\int_{S} f(z)dz \to 0 \ as \ R \to \infty$$

EXAMPLE 2 An Integral from 0 to ∞

Show that
$$\int_0^\infty \frac{dx}{1+x^4} = \frac{\pi}{2\sqrt{2}}$$

Sol.

$$\int_0^\infty \frac{dx}{1+x^4} = \frac{1}{2} \int_{-\infty}^\infty \frac{dx}{1+x^4}$$

$$= \frac{1}{2} \cdot 2\pi i \sum_{UHP} \operatorname{Res} f(z) = \pi i \sum_{UHP} \operatorname{Res} f(z)$$

$$1+z^4 = 0, \quad z^4 = -1$$

$$z = re^{i\theta} = e^{i[\pi/4 + (2\pi/4)n]}$$

$$\operatorname{Res}_{z=z_{1}} f(z) = \left[\frac{1}{(1+z^{4})'} \right]_{z=z_{1}} = \frac{1}{4z^{3}} \bigg|_{z=e^{i\pi/4}}$$
$$= \frac{1}{4e^{i3\pi/4}} = \frac{1}{4}e^{-i3\pi/4} = -\frac{1}{4}e^{i\pi/4}$$

$$\operatorname{Res}_{z=z_{2}} f(z) = \left[\frac{1}{(1+z^{4})'} \right]_{z=z_{2}} = \frac{1}{4z^{3}} \bigg|_{z=e^{i3\pi/4}} \\
= \frac{1}{4e^{i9\pi/4}} = \frac{1}{4}e^{-i\pi/4}$$

$$\sum_{UHP} \operatorname{Res} f(z) = -\frac{1}{4} e^{i\pi/4} + \frac{1}{4} e^{-i\pi/4} = \frac{1}{4} \cdot \left(-\frac{2i}{\sqrt{2}} \right)$$
$$= -\frac{i}{2\sqrt{2}}$$

$$\int_0^\infty rac{dx}{1+x^4} = \pi i \sum_{UHP} ext{Res} f(z) \ = \pi i \cdot \left(-rac{i}{2\sqrt{2}}
ight) = rac{\pi}{2\sqrt{2}}$$

Fourier Integrals

(8)
$$\int_{-\infty}^{\infty} f(x) \cos sx \, dx \qquad \int_{-\infty}^{\infty} f(x) \sin sx \, dx \qquad (s: real)$$

s:real and positive

$$\int_{-\infty}^{\infty} f(x) \cos sx \, dx = \text{Re} \left[\int_{-\infty}^{\infty} f(x) \, e^{isx} \, dx \right]$$

$$\int_{-\infty}^{\infty} f(x) \sin sx \, dx = \operatorname{Im} \left[\int_{-\infty}^{\infty} f(x) \, e^{isx} dx \right]$$

(9)
$$\int_{-\infty}^{\infty} f(x)e^{isx}dx = 2\pi i \sum_{UHP} \text{Res}[f(z)e^{isz}]$$

Proof of (9) is shown in the next page.

$$\int_{-\infty}^{\infty} f(x) \cos sx \, dx = \operatorname{Re} \left[\int_{-\infty}^{\infty} f(x) \, e^{isx} \, dx \right]$$

$$\operatorname{By} (9)$$

$$\left\{ \int_{-\infty}^{\infty} f(x) \cos sx \, dx = -2\pi \sum_{UHP} \operatorname{Im} \operatorname{Res} \left[f(z) e^{isz} \right] \right.$$

$$\left\{ \int_{-\infty}^{\infty} f(x) \sin sx \, dx = 2\pi \sum_{UHP} \operatorname{Re} \operatorname{Res} \left[f(z) e^{isz} \right] \right.$$

$$\left\{ \int_{-\infty}^{\infty} f(x) \sin sx \, dx = 2\pi \sum_{UHP} \operatorname{Re} \operatorname{Res} \left[f(z) e^{isz} \right] \right.$$

PROOF of (9)
$$\int_{-\infty}^{\infty} f(x)e^{isx}dx = 2\pi i \sum_{UHP} \operatorname{Res}\left[f(z)e^{isz}\right]$$

$$\int_{C} f(z)e^{isz}dz = \int_{S} f(z)e^{isz}dz + \int_{-R}^{R} f(x)e^{isx}dx$$

$$\int_{-R}^{R} f(x)e^{isx}dx = \int_{C} f(z)e^{isz}dz - \int_{S} f(z)e^{isz}dz$$

$$\left|\int_{S} f(z)e^{isz}dz\right| \leq \int_{S} |f(z)e^{isz}|dz < \int_{|z|^{2}} |e^{isz}|dz \quad \text{By degree assumption}$$

$$< \frac{k}{R^{2}} \cdot e^{-y} \cdot \pi R \to 0 \quad \text{as } R \to \infty$$
 Thus,
$$(9) \quad \int_{-R}^{\infty} f(x)e^{isx}dx = 2\pi i \sum_{i=1}^{N} \operatorname{Res}\left[f(z)e^{isz}\right]$$

EXAMPLE 3 An Integral of Fourier Integral

Show that

$$\int_{-\infty}^{\infty} \frac{\cos sx}{k^2 + x^2} dx = \frac{\pi}{k} e^{-ks}$$
(11)
$$\int_{-\infty}^{\infty} \frac{\sin sx}{k^2 + x^2} dx = 0$$
(s > 0, k > 0)

Sol.

(10)
$$\begin{cases} \int_{-\infty}^{\infty} f(x) \cos sx \, dx = -2\pi \sum_{UHP} \operatorname{Im} \operatorname{Res} \left[f(z) e^{isz} \right] \\ \int_{-\infty}^{\infty} f(x) \sin sx \, dx = 2\pi \sum_{UHP} \operatorname{Re} \operatorname{Res} \left[f(z) e^{isz} \right] \end{cases}$$

$$f(x) = 1/(k^2 + x^2)$$
 $f(z)$ has poles at $z = \pm ik$.

Res_{z=ik} $[f(z)e^{isz}] = \operatorname{Res}_{z=ik} \frac{e^{isz}}{k^2 + z^2} = \left[\frac{e^{isz}}{2z}\right]_{z=ik} = \frac{e^{-ks}}{i2k}$

(a)
$$\int_{-\infty}^{\infty} \frac{\cos sx}{k^2 + x^2} dx = -2\pi \operatorname{Im} \operatorname{Res}_{z=ik}^{z=ik} [f(z)e^{isz}]$$
$$= -2\pi \cdot \left[-\frac{e^{-ks}}{2k} \right] = \frac{\pi}{k} e^{-ks}$$

(b)
$$\int_{-\infty}^{\infty} \frac{\sin sx}{k^2 + x^2} dx = 2\pi \operatorname{Re} \operatorname{Res}_{z=ik} [f(z)e^{isz}] = -2\pi \cdot 0 = 0$$

Another Kind of Improper Integral

Consider:

(11)
$$\int_A^B f(x) dx$$
 where $\lim_{x \to a} |f(x)| = \infty$

By definition, (11) means

(12)
$$\int_A^B f(x)dx = \lim_{\epsilon \to 0^+} \int_A^{a-\epsilon} f(x)dx + \lim_{\eta \to 0^+} \int_{a+\eta}^B f(x)dx$$

Neither of two limits may not exist if ϵ and η go to 0 independently, but the limit exists.

(13)
$$\lim_{\eta \to 0^{+}} \left[\int_{A}^{a-\eta} f(x) dx + \int_{a+\eta}^{B} f(x) dx \right] = \text{pr.v.} \int_{A}^{B} f(x) dx$$

Cauchy Principal Value of the integral:

(13)
$$\lim_{\eta \to 0^{+}} \left[\int_{A}^{a-\eta} f(x) dx + \int_{a+\eta}^{B} f(x) dx \right] = \text{pr.v.} \int_{A}^{B} f(x) dx$$

Example: $f(x) = 1/x^3$

Not exist:
$$\lim_{\eta \to 0^+} \int_{-1}^{-\epsilon} \frac{dx}{x^3}$$
 and $\lim_{\eta \to 0^+} \int_{\epsilon}^{1} \frac{dx}{x^3}$

Exist:
$$\text{pr.v.} \int_{-1}^{1} \frac{dx}{x^2} = \lim_{\eta \to 0^+} \left[\int_{-1}^{-\epsilon} \frac{dx}{x^3} + \int_{\epsilon}^{1} \frac{dx}{x^3} \right] = 0$$

THEOREM 1 Simple Poles on the Real Axis

If f(z) has a simple pole at z=a on the real axis, then

$$\lim_{r\to 0} \int_{C_2} f(z) dz = \pi i \operatorname{Res}_{z=a} f(z)$$

$$a-r \stackrel{\circ}{a} a+r x$$

PROOF

$$f(z) = \frac{b_1}{z - a} + g(z)$$
 $b_1 = \mathop{\rm Res}_{z = a} f(z)$

where g(z) is analytic on the semicircle of integration

$$C_2: z=a+re^{i\theta}, \quad 0\leq \theta\leq \pi$$

and for all z between C_2 and the x-axis, and thus bounded on C_2 , or

$$|g(z)| \leq M$$

$$egin{aligned} \int_{C_2}^f f(z) \, dz = & \int_0^\pi rac{b_1}{re^{i heta}} \, ire^{i heta} d heta + \int_{C_2}^g (z) \, dz \ = & b_1\pi i + \int_{C_2}^g (z) \, dz \end{aligned} egin{aligned} \mathcal{C}_2 \ \hline a - r & a & a + r \end{bmatrix} x$$

The second integration:

$$\left| \int_{C_2} g(z) dz \right| \leq \int_{C_2} |g(z)| dz \leq M\pi r \to 0 \quad as \quad r \to 0$$

Thus,

$$\int_{C_2} f(z) dz = b_1 \pi i = \pi i \operatorname{Res}_{z=a} f(z)$$

Principal Value of an Integral from -Infinity to +Infinity

(14) pr.v.
$$\int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum_{UHP} \operatorname{Res} f(z) + \pi i \sum_{real\ Axis} \operatorname{Res} f(z)$$

$$\text{pr.v.} \int_{-\infty}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) dx$$

Assumption:

$$f(x) = N(x)/D(x)$$
:

- f(x) is a real rational function
 - $\longrightarrow f(z)$ has finitely many poles in the UHP.
- Order of $D(x) \ge Order$ of N(x)+2

Integration from $-\infty$ to ∞

$$\lim_{R\to\infty}\lim_{r\to 0}\left[\int_{-R}^{a-r}+\int_{C_2}+\int_{a+r}^R+\int_S\right]$$

$$=2\pi i \mathop{\rm Res}_{UHP}f(z)$$

$$\lim_{R\to\infty}\lim_{r\to 0}\left[\int_{-R}^{a-r}f(z)dz+\int_{a+r}^{R}f(z)dz\right]=\operatorname{pr.v.}\int_{-\infty}^{\infty}f(z)dz$$

$$\lim_{r \to 0} \int_{C_2}^{f(z)} dz = -\pi i \mathop{\mathrm{Res}}_{z=a} f(z)$$
 $(\because Theorem \ 1 \ and \ CW \ direction)$

$$\text{pr.v.} \int_{-\infty}^{\infty} f(z) dz - \pi i \mathop{\mathrm{Res}}_{z=a} f(z) = 2\pi i \sum_{\mathit{UHP}} \mathop{\mathrm{Res}} f(z)$$

$$\operatorname{pr.v.} \int_{-\infty}^{\infty} f(z) dz = 2\pi i \sum_{UHP} \operatorname{Res} f(z) + \pi i \operatorname{Res}_{z=a} f(z)$$

(14) pr.v.
$$\int_{-\infty}^{\infty} f(z) dz = 2\pi i \sum_{UHP} \operatorname{Res} f(z) + \pi i \sum_{real \ Axis} \operatorname{Res} f(z)$$

EXAMPLE 4 Poles on the Real Axis

Find the principal value
$$\text{pr.v.} \int_{-\infty}^{\infty} \frac{dx}{(x^2-3x+2)(x^2+1)}$$

Sol.

$$\operatorname{pr.v.} \int_{-\infty}^{\infty} \frac{dx}{(x^2 - 3x + 2)(x^2 + 1)}$$

$$= 2\pi i \sum_{UHP} \operatorname{Res} f(z) + \pi i \sum_{real \ Axis} \operatorname{Res} f(z)$$

$$(z^2-3z+2)(z^2+1)=(z-1)(z-2)(z+i)(z-i)$$

UHP: z = i

Real axis: z=1, 2

z=1,
$$\operatorname{Res}_{z=1} f(z) = \left[(z-1) \frac{1}{(z^2 - 3z + 2)(z^2 + 1)} \right]_{z=1}$$

= $\left[\frac{1}{(z-2)(z^2 + 1)} \right]_{z=1} = -\frac{1}{2}$

z=2,
$$\operatorname{Res}_{z=2} f(z) = \left[(z-2) \frac{1}{(z^2 - 3z + 2)(z^2 + 1)} \right]_{z=2}$$
$$= \left[\frac{1}{(z-1)(z^2 + 1)} \right]_{z=2} = \frac{1}{5}$$

$$z = i, \operatorname{Res}_{z=i} f(z) = \left[(z - i) \frac{1}{(z^2 - 3z + 2)(z^2 + 1)} \right]_{z=i}$$

$$= \left[\frac{1}{(z^2 - 3z + 2)(z + i)} \right]_{z=i} = \frac{1}{(1 - 3i)(2i)}$$

$$= \frac{1}{6 + 2i} = \frac{6 - 2i}{40} = \frac{3 - i}{20}$$

$$\operatorname{pr.v.} \int_{-\infty}^{\infty} \frac{dx}{(x^2 - 3x + 2)(x^2 + 1)}$$

$$= 2\pi i \sum_{UHP} \operatorname{Res}_{f(z)} f(z) + \pi i \sum_{real \ Axis} \operatorname{Res}_{f(z)}$$

$$= 2\pi i \left(\frac{3 - i}{20} \right) + \pi i \left(-\frac{1}{2} + \frac{1}{5} \right) = \frac{\pi}{10}$$

SUMMARY OF CHAPTER 16

A Laurent series:

(1)
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

(1*) $f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$
 $a_n = \frac{1}{2\pi i} \oint_C \frac{f(z^*)}{(z^* - z_0)^{n+1}} dz^*$

Residue:

(2)
$$b_1 = \underset{z \to z_0}{\operatorname{Res}} f(z) = \frac{1}{2\pi i} \oint_C f(z^*) dz^*$$

$$\therefore \oint_C f(z^*) dz^* = 2\pi i \operatorname{Res}_{z \to z_0} f(z)$$

Residue at a pole of order m:

(3)
$$\operatorname{Res}_{z \to z_0} f(z) = \frac{1}{(m-1)!} \lim_{z \to z_0} \left(\frac{d^{m-1}}{dz^{m-1}} [(z-z_0)^m f(z)] \right)$$

Residue at a simple pole:

$$\operatorname{Res}_{z=z_{0}}^{z=z_{0}} f(z) = \lim_{z \to z_{0}}^{z=z_{0}} [(z-z_{0})f(z)]$$

$$\operatorname{Res}_{z=z_{0}}^{z=z_{0}} \frac{p(z)}{q(z)} = \frac{p(z_{0})}{q'(z_{0})}$$

PROBLEM SET 16.4

1. Evaluate the following integrals and show the details of your work.

$$\int_0^{\pi} \frac{2 d\theta}{k - \cos \theta}$$

$$\int_{0}^{\pi} \frac{2d\theta}{k - \cos \theta} = \frac{1}{2} \int_{0}^{2\pi} \frac{2d\theta}{k - \cos \theta} \qquad e^{i\theta} = z \quad d\theta = dz/(iz) \\ = \oint_{C:|z|=1} \frac{dz/iz}{k - (z+1/z)/2} = \oint_{C:|z|=1} \frac{2idz}{z^{2} - 2kz + 1}$$

$$z^2 - 2kz + 1 = 0$$
 $z = k \pm \sqrt{k^2 - 1}$

$$\int_{0}^{\pi} \frac{2d\theta}{k - \cos \theta} = 2\pi i \operatorname{Res}_{z = k - \sqrt{k^{2} - 1}} \frac{2i}{z^{2} - 2kz + 1}$$
$$= 2\pi i \frac{2i}{2z - 2k} \Big|_{z = k - \sqrt{k^{2} - 1}} = \frac{2\pi}{\sqrt{k^{2} - 1}}$$

PROBLEM SET 16.4

3. Evaluate the following integrals and show the details of your work.

$$\int_0^{2\pi} \frac{1 + \sin \theta}{3 + \cos \theta} d\theta \qquad e^{i\theta} = z \qquad d\theta = dz/(iz)$$

$$\cos \theta = (z + 1/z)/2 \quad \sin \theta = (z + 1/z)/(2i)$$

$$= \oint_{C:|z|=1} \frac{1 + (z - 1/z)/(2i)}{3 + (z + 1/z)/2} \frac{dz}{iz} = \oint_{C:|z|=1} \frac{-z^2 - 2iz + 1}{z(z^2 + 6z + 1)} dz$$

$$z(z^2+6z+1)=0$$
 $z=0$, $z=-3\pm 2\sqrt{2}$

$$\begin{split} \int_0^{2\pi} \frac{1+\sin\theta}{3+\cos\theta} d\theta &= \oint_{C:|z|=1} \frac{-z^2-2iz+1}{z(z^2+6z+1)} dz \\ &= 2\pi i \bigg[\operatorname{Res}_{z=0} \frac{-z^2-2iz+1}{z(z^2+6z+1)} + \operatorname{Res}_{z=-3+2\sqrt{2}} \frac{-z^2-2iz+1}{z(z^2+6z+1)} \bigg] \\ &= 2\pi i \bigg[\frac{-z^2-2iz+1}{3z^2+12z+1} \bigg|_{z=1} + \frac{-z^2-2iz+1}{3z^2+12z+1} \bigg|_{z=-3+2\sqrt{2}} \bigg] = \frac{\pi}{\sqrt{2}} \end{split}$$

PROBLEM SET 16.4

9. Evaluate the following integrals and show the details of your work.

$$\int_{0}^{2\pi} \frac{\cos \theta}{13 - 12\cos 2\theta} \, d\theta \qquad e^{i\theta} = z \quad d\theta = dz/(iz)$$

$$= \int_{0}^{2\pi} \frac{\cos \theta}{13 - 12[\cos^{2}\theta - \sin^{2}\theta]} \, d\theta \qquad = \oint_{C:|z| = 1} \frac{(z + 1/z)/2}{13 - 3[(z + 1/z)^{2} + (z - 1/z)^{2}]} \, \frac{dz}{iz}$$

$$= \frac{i}{2} \oint_{C:|z| = 1} \frac{z^{2} + 1}{6z^{4} - 13z^{2} + 6} \, dz \qquad 6z^{4} - 13z^{2} + 6 = 0 \quad z = \pm \sqrt{\frac{3}{2}}, \pm \sqrt{\frac{2}{3}}$$

$$\int_{0}^{2\pi} \frac{\cos \theta}{13 - 12\cos 2\theta} \, d\theta = \frac{i}{2} \oint_{C:|z| = 1} \frac{z^{2} + 1}{6z^{4} - 13z^{2} + 6} \, dz$$

$$= \frac{i}{2} 2\pi i \left[\frac{\operatorname{Res}}{z} \int_{z = \sqrt{\frac{2}{3}}}^{2\pi} + \operatorname{Res}_{z = -\sqrt{\frac{2}{3}}} \right]$$

$$= \pi \left[\frac{z^{2} + 1}{24z^{3} - 26z} \Big|_{z = \sqrt{\frac{2}{3}}}^{2\pi} + \frac{z^{2} + 1}{24z^{3} - 26z} \Big|_{z = -\sqrt{\frac{2}{3}}}^{2\pi} \right] = 0$$

11. Evaluate
$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^2}$$

(7)
$$\int_{-\infty}^{\infty} f(x)dx = 2\pi i \sum_{UHP} \operatorname{Res} f(z)$$

$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^2} dx = 2\pi i \sum_{UHP} \operatorname{Res} f(z) = 2\pi i \operatorname{Res}_{z=i} f(z)$$

$$= 2\pi i \left[\frac{d}{dz} \left[(z-i)^2 f(z) \right] \right]_{z=i} = 2\pi i \left[\frac{d}{dz} \frac{1}{(z+i)^2} \right]_{z=i}$$

$$= 2\pi i \left[\frac{-2}{(z+i)^3} \right]_{z=i} = 2\pi i \left(-\frac{i}{4} \right) = -\frac{\pi i^2}{2} = \frac{\pi}{2}$$

13. Evaluate
$$\int_{-\infty}^{\infty} \frac{x}{(x^2+1)(x^2+4)} dx$$
.

$$(x^2 + 1)(x^2 + 4) = (x+i)(x-i)(x+2i)(x-2i) = 0, x = \pm i, \pm 2i$$

(7)
$$\int_{-\infty}^{\infty} f(x)dx = 2\pi i \sum_{UHP} \operatorname{Res} f(z)$$

$$\int_{-\infty}^{\infty} \frac{x}{(x^2+1)(x^2+4)} dx = 2\pi i \sum_{UHP} \text{Res} f(z)$$

$$= 2\pi i \left[\underset{z=i}{\text{Res}} f(z) + \underset{z=2i}{\text{Res}} f(z) \right] \qquad \frac{p(z)}{q'(z)} = \frac{z}{4z^3+10z}$$

$$= 2\pi i \left[\frac{p(i)}{q'(i)} + \frac{p(2i)}{q'(2i)} \right] = 2\pi i \left[\frac{i}{6i} + \frac{2i}{-12i} \right] = 0$$

23. Find the Cauchy principal value $\operatorname{pr} \cdot \mathbf{v} \cdot \int_{-\infty}^{\infty} \frac{dx}{x^4 - 1}$.

$$x^4 - 1 = (x-1)(x+1)(x-i)(x+i) = 0, \quad x = \pm 1, \pm i$$

$$\text{pr.v.} \int_{-\infty}^{\infty} \frac{dx}{x^4 - 1} = 2\pi i \sum_{UHP} \text{Res} f(z) + \pi i \sum_{real \ Axis} \text{Res} f(z)$$

$$= 2\pi i \underset{z=i}{\text{Res}} f(z) + \pi i \left[\underset{z=-1}{\text{Res}} f(z) + \underset{z=1}{\text{Res}} f(z) \right]$$

$$= 2\pi i \frac{p(i)}{q'(i)} + \pi i \left[\frac{p(1)}{q'(1)} + \frac{p(-1)}{q'(-1)} \right] \qquad \frac{p(z)}{q'(z)} = \frac{1}{4z^3}$$

$$= 2\pi i \frac{1}{-4i} + \pi i \left[\frac{1}{4} + \frac{1}{-4} \right] = -\frac{\pi}{2}$$

24. Find the Cauchy principal value (showing details): $\int_{-\infty}^{\infty} \frac{dx}{x^4 + 3x^2 - 4}$

(14)
$$\operatorname{pr.v.} \int_{-\infty}^{\infty} f(z) dz = 2\pi i \sum_{UHP} \operatorname{Res} f(z) + \pi i \sum_{real \ Axis} \operatorname{Res} f(z)$$

 $x^4 + 3x^2 - 4 = (x^2 + 4)(x^2 - 1) = (x + 2i)(x - 2i)(x - 1)(x + 1) = 0, x = \pm 2i, \pm 1$
 $\operatorname{pr.v.} \int_{-\infty}^{\infty} \frac{dx}{x^4 + 3x^2 - 4} = 2\pi i \sum_{UHP} \operatorname{Res} f(z) + \pi i \sum_{real \ Axis} \operatorname{Res} f(z)$
 $= 2\pi i \operatorname{Res}_{z=2i} f(z) + \pi i \left[\operatorname{Res}_{z=-1} f(z) + \operatorname{Res}_{z=1} f(z) \right]$
 $= 2\pi i \frac{p(2i)}{q'(2i)} + \pi i \left[\frac{p(-1)}{q'(-1)} + \frac{p(1)}{q'(1)} \right] \qquad \frac{p(z)}{q'(z)} = \frac{1}{4z^3 + 6z}$
 $= 2\pi i \frac{1}{20i} + \pi i \left[\frac{1}{10} + \frac{1}{10} \right] = -\frac{\pi}{10}$

25. Find the Cauchy principal value (showing details): $\int_{-\infty}^{\infty} \frac{x+5}{x^3-x} dx$

(14)
$$\operatorname{pr.v.} \int_{-\infty}^{\infty} f(z) dz = 2\pi i \sum_{UHP} \operatorname{Res} f(z) + \pi i \sum_{real \ Axis} \operatorname{Res} f(z)$$

 $x^3 - x = x (x^2 - 1) = x(x - 1)(x + 1)$
 $\operatorname{pr.v.} \int_{-\infty}^{\infty} \frac{x + 5}{x^3 - x} dx = 2\pi i \sum_{UHP} \operatorname{Res} f(z) + \pi i \sum_{real \ Axis} \operatorname{Res} f(z)$
 $= \pi i \left[\operatorname{Res}_{z = 0} f(z) + \operatorname{Res}_{z = 1} f(z) \right]$
 $= \pi i \left[\frac{p(0)}{q'(0)} + \frac{p(1)}{q'(1)} + \frac{p(-1)}{q'(-1)} \right] \qquad \frac{p(z)}{q'(z)} = \frac{z + 5}{3z^2 - 1}$
 $= \pi i (-5 + 3 + 2) = 0$