21. Работа газа при изменении его объема. Количество теплоты. Теплоемкость. Рассмотрим понятия работы газа при изменении его объёма, количества теплоты и теплоёмкости.

1. Работа газа при изменении его объёма

Работа газа — это энергия, которую газ передаёт окружающей среде при расширении или сжатии.

Формула:

$$A = \int_{V_1}^{V_2} P \, dV,$$

где:

- *A* работа газа,
- *P* давление газа,
- V_1 и V_2 начальный и конечный объёмы.

Особенности:

- Если газ расширяется ($V_2 > V_1$), работа положительна (A > 0).
- Если газ сжимается ($V_2 < V_1$), работа отрицательна (A < 0).

Пример:

Газ расширяется изотермически от объёма $V_1 = 1 \,\mathrm{m}^3$ до $V_2 = 2 \,\mathrm{m}^3$ при постоянном давлении $P = 10^5 \,\mathrm{\Pia}$. Найдём работу:

$$A = P(V_2 - V_1) = 10^5 \cdot (2 - 1) = 10^5$$
 Дж.

2. Количество теплоты (Q)

Количество теплоты — это энергия, передаваемая системе или от системы в результате теплообмена.

Формула:

$$Q = c m \Delta T$$
,

где:

- Q количество теплоты,
- с удельная теплоёмкость вещества,
- *т* масса вещества,
- ΔT изменение температуры.

Особенности:

- Если система получает тепло, Q>0.
- Если система отдаёт тепло, Q < 0.

3. Теплоёмкость (C)

Теплоёмкость — это количество теплоты, необходимое для изменения температуры системы на 1 градус.

Виды теплоёмкости:

1. Удельная теплоёмкость (с):

$$c = \frac{Q}{m \Lambda T}$$
,

где:

- о c удельная теплоёмкость (Дж/(кг·K)),
- $0 \ \ m$ масса вещества.
- 2. Молярная теплоёмкость (C_{μ}):

$$C_{\mu} = \frac{Q}{v \Lambda T}$$
,

где:

- о $C_{\scriptscriptstyle \mu}$ молярная теплоёмкость (Дж/(моль·К)),
- о v количество вещества (в молях).
- 3. Теплоёмкость при постоянном объёме (C_v):

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V$$

где:

- о U внутренняя энергия системы.
- 4. Теплоёмкость при постоянном давлении (C_P):

$$C_P = \left(\frac{\partial H}{\partial T}\right)_P$$

где:

 $0 \ \ H$ — энтальпия системы.

Связь между C_P и C_V :

$$C_p = C_V + R$$
,

где:

• R — универсальная газовая постоянная ($R \approx 8,31$ Дж/(моль \cdotp K)).

4. Примеры

Пример 1: Работа газа

Газ расширяется изотермически от объёма V_1 = $1\,\mathrm{m}^3$ до V_2 = $3\,\mathrm{m}^3$ при постоянном давлении P= $2\cdot10^5\,\mathrm{\Pi a}$. Найдём работу:

$$A = P(V_2 - V_1) = 2 \cdot 10^5 \cdot (3 - 1) = 4 \cdot 10^5$$
Дж.

Пример 2: Количество теплоты

Масса воды $m=2\,\mathrm{kr}$ нагревается от $T_1=20\,^{\circ}\mathrm{C}$ до $T_2=80\,^{\circ}\mathrm{C}$. Удельная теплоёмкость воды $c=4200\,\mathrm{Дж/(kr \cdot cdotp\,K)}$. Найдём количество теплоты:

$$Q = c m \Delta T = 4200 \cdot 2 \cdot (80 - 20) = 504000$$
Дж.

Пример 3: Теплоёмкость

Для идеального одноатомного газа молярная теплоёмкость при постоянном объёме:

$$C_{\rm V} = \frac{3}{2}R$$
.

При постоянном давлении:

$$C_P = C_V + R = \frac{5}{2}R$$
.

5. Итог

- Работа газа: $A = \int_{V_1}^{V_2} P \, dV$.
- Количество теплоты: $Q = c m \Delta T$.
- Теплоёмкость:
 - о Удельная: $c = \frac{Q}{m \Delta T}$.
 - о Молярная: $C_{\mu} = \frac{Q}{v \Delta T}$.
 - о При постоянном объёме: $C_{V} = \left(\frac{\partial U}{\partial T}\right)_{V}$.
 - о При постоянном давлении: $C_P = C_V + R$.

Эти понятия важны для анализа тепловых процессов в термодинамике.