Genetic Algorithms

Dr. David Fernández Barrero Dra. Mª Dolores Rodríguez Moreno

Objectives

Specific Objectives

Overview of Genetic Algorithm

Source

• Eiben, A.E. and Smith, J. E. (2003). Introduction to evolutionary computing. Springer

Outline

- Introduction
- Representation of individuals
- Mutation
- Recombination
- Population Models
- Parent Selection
- Survivor Selection
- Conclusions

Introduction (I)

Introduced by Holland in the 70's

- John H. Holland "Adaptation in Natural and Artificial Systems", MIT Press
- GA is the most popular EA
- Usually EAs confused with GA

Canonical GA (which is not canonical)

- Fixed length strings
- Binary codification

Representation	Bit strings
Recombination Mutation	1-point Bit flip
Parent select	Fitness prop
Survivor select	Generational

Introduction (II)

- The GA is a probabilistic search algorithm that iteratively transforms a set (called a population) of mathematical objects each with an associated fitness value, into a new population of offspring using the Darwinian principle
- Attributed features
 - not too fast
 - good heuristic for combinatorial problems
- Special Features:
 - Traditionally emphasizes combining information from good parents (crossover)
 - many variants, e.g., reproduction models, operators

Introduction (III)

GAs have common features

- Representation in strings, named chromosomes
- Mutation and recombination
- Usually fixed length

GAs are like a toolbox with customizable components

- Representations, genetic operators, selections mechanism, ...
- These components are interdependent

Rule of thumb: Small genotype changes \Rightarrow Small phenotype changes

Introduction (III)

- Select parents for the mating pool (size of mating pool = population size)
- Shuffle the mating pool
- For each consecutive pair apply crossover with probability pc, otherwise copy parents
- 4. For each offspring apply mutation (bit-flip with probability pm independently for each bit)
- 5. Replace the whole population with the resulting offspring

Introduction (IV)

Representation	Binary strings
Recombination	N-point or uniform
Mutation	Bitwise bit-flipping with fixed probability
Parent selection	Fitness-Proportionate
Survivor selection	All children replace parents
Speciality	Emphasis on crossover

Outline

- Introduction
- Representation of individuals
- Mutation
- Recombination
- Population Models
- Parent Selection
- Survivor Selection
- Conclusions

Representation

Binary Representation (I)

- The chromosome should in some way contain information about solution which it represents
- The most used way of encoding is a binary string, although depending of the problem one can encode directly integer or real numbers
- The chromosome could look like this:

Chromosome 1	1101100100110110
Chromosome 2	1101111000011110

Binary Representation (II)

- Each chromosome has one binary string
- Each bit in this string can represent some characteristic of the solution or the whole string can represent a number
- Often used to codify non-binary information (not recommended)
 - Pure binary codification
 - Gray coding
 - Custom codification

Integer Representation

- Binary representation not always suitable where different genes can take one of a set of values
- Some problems naturally have integer variables, e.g. image processing parameters
- Others take *categorical* values from a fixed set e.g. {blue, green, yellow, pink}

Real-Valued Representation

- Often most sensible way to represent a candidate solution is a string of real values
- When? Represent genes from a continuous rather than discrete distribution
- Depends on the computer precision = floating-point numbers

Permutation Representation

- Ordering/sequencing problems form a special type
- GA string allows numbers to occur more than once, such sequence of integers will not represent valid permutations
- Task is (or can be solved by) arranging some objects in a certain order
 - Example: sort algorithm: important thing is which elements occur before others (order)
 - Example: Travelling Salesman Problem (TSP): important thing is which elements occur next to each other (adjacency)
- These problems are generally expressed as a permutation:
 - if there are *n* variables then the representation is as a list of *n* integers, each of which occurs exactly once

PR: TSP example

- Some problems involve order
- Sequence of integers
- No repeated numbers
- Range of valid numbers
- Special genetic operators

Integer codification to solve TSP

Outline

- Introduction
- Representation of individuals
- Mutation
- Recombination
- Population Models
- Parent Selection
- Survivor Selection
- Conclusions

Mutation

- The generic name given to operators that use one parent and create one child by applying some random change to representation (genotype)
- The form taken depends on the encodings and the associated parameters (mutation rate)

Mutation for BR

- \bullet Most common considers each gene separately and allows each bit to flip with a small $p_{\rm m}$
- Number of values changed is not fixed, depends on the sequence of random numbers
 - L is the encoding, on average L.p_m values will be changed

- The p_m value depends on the desired outcome
- Most binary coded GAs use mutation rates in a range that in average 1 gene per generation and 1 gene per offspring is mutated

Mutation for IR

- 2 forms with user-defined p_m
- Random Resetting
 - Cardinal attributes
 - All genes are equally likely to be chosen
 - \bullet With p_m a new value is chosen at random from the set of permissible values in each position
- Creep Mutation
 - Ordinal attributes
 - Add a small (+ or -) value to each gene with $p_{\rm m}$

Mutation for FP-R

- Change the allele value for each gene randomly within its domain given Lower (L_i) and Upper (U_i) bound
- 2 types
- Uniform Mutation
 - The alleles values are drawn uniformly randomly from [L_i, U_i]
- Nonuniform with Fixed Distribution
 - Designed to introduce small changes
 - Add a value from a Gaussian distribution, with mean zero and user-specified standard deviation, and then, curtailing the resulting value to $[L_i, U_i]$ if necessary

Mutation for P-R

- Each gene cannot be considered independent
- Find legal mutations moving alleles around the genome
- Mutation parameter now reflects the probability that some operator is applied once to the whole string, rather than individually in each position
- 4 types
 - Insert Mutation
 - Swap Mutation
 - Inversion Mutation
 - Scamble Mutation

Insert Mutation for PR

- Pick two allele values at random
- Move the second to follow the first, shifting the rest along to accommodate
- Note that this preserves most of the order and the adjacency information

123456789

Swap mutation for PR

- Pick two alleles at random and swap their positions
- Preserves most of adjacency information (4 links broken), disrupts order more

Inversion mutation for PR

- Pick two alleles at random and then invert the substring order between them.
- Preserves most adjacency information (only breaks two links) but disruptive of order information

1 2 3 4 5 6 7 8 9

Scramble mutation for PR

- Pick a subset of genes at random
- Randomly rearrange the alleles in those positions

(note subset does not have to be contiguous)

Mutation summary for PR

Outline

- Introduction
- Representation of individuals
- Mutation
- Recombination
- Population Models
- Parent Selection
- Survivor Selection
- Conclusions

Recombination

- Is the process of creating a new individual from the information contained within 2 (o +) parents
- Mechanism to create diversity (= crossover)
 - Applied probabilistically with $p_c = [0.5, 1]$
 - \bullet 2 parents selected, a random var. is drawn from [0,1) and compared to p_c
 - If lower: 2 offspring created by recombination or parents
 - Else are created asexually (i.e. copying the parents)
- Determines the chance that a chosen pair of parents undergoes this operator

Crossover for BR &IR

- Start from 2 parents and create 2 children
- 3 types
 - 1-point Crossover
 - N-point Crossover
 - Uniform Crossover

1-point crossover

- Choose a random point on the two parents
- Split parents at this crossover point
- Create children by exchanging tails

n-point crossover

- Choose n random crossover points
- Split along those points

parents

1 0 0 0 0 0 0 0

children

- Glue parts, alternating between parents
- Generalisation of 1 point (still some positional bias)

Uniform crossover

- It works by treating each gene independently and making a random choice as to which parent it should be inherited from
- Assign 'heads' to one parent, 'tails' to the other
- Flip a coin for each gene of the first child

parents

Make an inverse copy of the gene for the second child

children

Summary Crossover (BR & IR)

One-point crossover

Two-points crossover

Uniform crossover

Crossover for FR

- 2 methods:
- Use = operators for bit-strings but now split between floats
 - That is, an allele is I floating-point value instead of I bit (**Discrete Crossover**)
 - Just M can insert new values, since C just combinations of existing floats
 - If z (offspring) and x & y (parents), then the allele value for gene i is $z_i = x_i$ or y_i with the same likelihood
- In each gene position create a new allele value in the offspring that lies between those of the parents
 - $z_i = \alpha x_i + (i \alpha) y_i \quad \alpha \in [0, i]$
 - Create new gene material (Arithmetic Crossover)
 - Simple Recombination
 - Single Recombination
 - Whole Recombination

Simple Arithmetic R (FR)

- Pick a recombination point k
- For child I, take the first k floats of parent I and put them into the child
- The rest is the arithmetic average of parent 1 & 2

Single Arithmetic R (FR)

- Pick a random allele k
- At that position, take the arithmetic average of the two parents

Whole Arithmetic R (FR)

• Takes the weighted sum of 2 parental alleles for each gene

Child $1 = \alpha \cdot \bar{x} + (1 - \alpha) \cdot \bar{y}$, Child $2 = \alpha \cdot \bar{y} + (1 - \alpha) \cdot \bar{x}$.

Summary R for FR

Crossover operators for P

• "Normal" crossover operators will often lead to inadmissible solutions

• Many specialised operators have been devised which focus on combining order or adjacency information from the two parents

Crossover operators for P

- Idea is to preserve relative order that elements occur
- Informal procedure:
 - 1. Choose an arbitrary part from the first parent
 - 2. Copy this part to the first child
 - 3. Copy the numbers that are not in the first part, to the first child:
 - starting right from cut point of the copied part,
 - using the **order** of the second parent
 - and wrapping around at the end
 - 4. Analogous for the second child, with parent roles reversed

Crossover operators for P

- 4 types:
 - Partially Mapped Crossover
 - Edge Crossover
 - Order Crossover
 - Cycle Crossover

Crossover OR mutation?

- Decade long debate: which one is better / necessary / main-background
- Answer (at least, rather wide agreement):
 - it depends on the problem, but
 - in general, it is good to have both
 - both have another role
 - mutation-only-EA is possible, xover-only-EA would not work

Outline

- Introduction
- Representation of individuals
- Mutation
- Recombination
- Population Models
- Parent Selection
- Survivor Selection
- Conclusions

Population Models

- SGA uses a Generational model (GGA):
 - each individual survives for exactly one generation
 - the entire set of parents is replaced by the offspring
- At the other end of the scale are Steady-State models (SSGA):
 - one offspring is generated per generation,
 - part of the population is replaced
- Generation Gap
 - the proportion of the population replaced
 - 1.0 for GGA, 1/pop_size for SSGA

Outline

- Introduction
- Representation of individuals
- Mutation
- Recombination
- Population Models
- Parent Selection
- Survivor Selection
- Conclusions

Parent Selection

- Selection can occur in two places:
 - Selection from current generation to take part in mating (parent selection)
 - Selection from parents + offspring to go into next generation (survivor selection)
- Selection operators work on whole individual
 - i.e. they are representation-independent
- Distinction between selection
 - operators: define selection probabilities
 - algorithms: define how probabilities are implemented

Implementation example: GA

• Expected number of copies of an individual *i*

$$E(n_i) = \mu \cdot f(i)/\langle f \rangle$$

 $(\mu = \text{pop.size}, f(i) = \text{fitness of } i, \langle f \rangle \text{ avg. fitness in pop.})$

- Roulette wheel algorithm:
 - Given a probability distribution, spin a 1-armed wheel *n* times to make *n* selections
 - No guarantees on actual value of n_i
- Baker's SUS algorithm:
 - *n* evenly spaced arms on wheel and spin once
 - Guarantees $floor(E(n_i)) \le n_i \le ceil(E(n_i))$

Parent Selection

- 4 methods
 - Fitness Proportionate Selection
 - Raking Selection
 - Selection Probabilities
 - Tournament Selection

Fitness-Proportionate Selection

- Problems include
 - One highly fit member can rapidly take over if rest of population is much less fit: Premature Convergence
 - At end of runs when fitnesses are similar, lose selection pressure
 - Highly susceptible to function transposition
- Scaling can fix last two problems
 - Windowing: $f'(i) = f(i) \beta^t$
 - where β is worst fitness in this (last n) generations
 - Sigma Scaling: $f(i) = max(f(i) (\langle f \rangle c \cdot \sigma_f), o.o)$
 - where c is a constant, usually 2.0

Rank – Based Selection

- Attempt to remove problems of FPS by basing selection probabilities on *relative* rather than *absolute* fitness
- Rank population according to fitness and then base selection probabilities on rank where fittest has rank μ and worst rank I
- This imposes a sorting overhead on the algorithm, but this is usually negligible compared to the fitness evaluation time

Tournament Selection

- All methods above rely on global population statistics
 - Could be a bottleneck esp. on parallel machines
 - Relies on presence of external fitness function which might not exist: e.g. evolving game players
- Informal Procedure:
 - Pick *k* members at random then select the best of these
 - Repeat to select more individuals

Outline

- Introduction
- Representation of individuals
- Mutation
- Recombination
- Population Models
- Parent Selection
- Survivor Selection
- Conclusions

Survivor Selection

- Survivor selection can be divided into two approaches:
 - Age-Based Selection
 - e.g. SGA
 - In SSGA can implement as "delete-random" (not recommended) or as first-in-first-out (a.k.a. delete-oldest)
 - Fitness-Based Selection
 - Using one of the methods above

Two Special Cases

- Elitism
 - Widely used in both population models (GGA, SSGA)
 - Always keep at least one copy of the fittest solution so far
- GENITOR: a.k.a. "delete-worst"
 - From Whitley's original Steady-State algorithm (he also used linear ranking for parent selection)
 - Rapid takeover : use with large populations or "no duplicates" policy

Outline

- Introduction
- Representation of individuals
- Mutation
- Recombination
- Population Models
- Parent Selection
- Survivor Selection
- Conclusions

Conclusions

- GA is a search heuristic that mimics the process of natural evolution
- It uses techniques inspired by natural evolution, such as inheritance, mutation, selection, and crossover
- The heuristic is used to generate useful solutions to optimization and search problems

Outline

- Introduction
- Representation of individuals
- Mutation
- Recombination
- Population Models
- Parent Selection
- **Survivor Selection**
- Conclusions
 - Example

An example after Goldberg '89 (1)

- Simple problem: $\max x^2$ over $\{0,1,...,31\}$
- GA approach:
 - Representation: binary code, e.g. 01101 ↔ 13
 - Population size: 4
 - 1-point xover, bitwise mutation
 - Roulette wheel selection
 - Random initialisation
- We show one generational cycle done by hand

x² example: selection

String	Initial	x Value			Expected	Actual
no.	population		$f(x) = x^2$		count	count
1	01101	13	169	0.14	0.58	1
2	$1\ 1\ 0\ 0\ 0$	24	576	0.49	1.97	2
3	$0\ 1\ 0\ 0\ 0$	8	64	0.06	0.22	0
4	$1\ 0\ 0\ 1\ 1$	19	361	0.31	1.23	$\uparrow 1$
Sum			1170	1.00	4.00	4
Average			293	0.25	1.00	1
Max			576	0.49	1.97	2

Probability to be chosen as father $(f_i/\Sigma f_i)$

Numb of copies (f_i/Average f)

Numb of individual next generation

x² example: crossover

String	Mating	Crossover	Offspring	x Value	Fitness
no.	pool	point	after xover		$f(x) = x^2$
1	0 1 1 0 1	4	01100	12	144
2	1 1 0 0 0	4	$1\ 1\ 0\ 0\ 1$	25	625
3	11 000	2	$1\ 1\ 0\ 1\ 1$	27	729
4	10 0 1 1	2	$1\ 0\ 0\ 0\ 0$	16	256
Sum					1754
Average					439
Max					729

X² example: mutation

String	Offspring	Offspring	x Value	Fitness
no.	after xover	after mutation		$f(x) = x^2$
1	01100	1 1 1 0 0	26	676
2	$1\ 1\ 0\ 0\ 1$	$1\ 1\ 0\ 0\ 1$	25	625
3	$1\ 1\ 0\ 1\ 1$	1 1 <u>0</u> 1 1	27	729
4	$1\ 0\ 0\ 0\ 0$	$1\ 0\ 1\ 0\ 0$	18	324
Sum				2354
Average				588.5
Max				729