U.S. DEPARTMENT OF COMMERCE National Technical Information Service

AD-A024 541

COMBUSTOR DESIGN FOR LOW COST EXPENDABLE TURBOJETS

AIR FORCE INSTITUTE OF TECHNOLOGY

March 1976

This Document Contains Pagels
Reproduced From
Reproduced Copy
Best Available

KEEP UP TO DATE

Between the time you ordered this raport—which is only one of the hundreds of thousands in the NTIS information collection available to you—and the time you are reading this message, several new reports relevant to your interests probably have entered the collection.

Subscribe to the Weskly Government Abstracts series that will bring you summaries of new reports as soon as they are received by NTIS from the originators of the research. The WGA's are an NTIS weekly newsletter service covering the most recent research findings in 25 areas of industrial, technological, and sociological interest—invaluable information for executives and professionals who must keep up to date.

The executive and professional information service provided by NTIS in the Weekly Government Abstracts newsletters will give you thorough and comprehensive coverage of government-conducted or sponsored research activities. And you'll get this important information within two weeks of the time it's released by originating agencies.

WGA newsletters are computer produced and electronically photocomposed to slash the time gap between the release of a report and its availability. You can learn about technical innovations immediately—and use them in the most meaningful and productive ways possible for your organization. Please request NTIS-PR-205/PCW for more information.

The weekly newsletter series will keep you current. But learn what you have missed in the past by ordering a computer NTISearch of all the research reports in your area of interest, dating as far back as 1964, if you wish. Please request NTIS-PR-186/PCN for more information.

WRITE: Managing Editor

5285 Port Royal Road Springfield, VA 22161

Keep Up To Date With SRIM

SRIM (Selected Research in Microfiche) provides you with regular, automatic distribution of the complete texts of NTIS research reports only in the subject areas you select. SRIM covers almost all Government research reports by subject area and/or the originating Federal or local government agency. You may subscribe by any category or subcategory of our WGA (Weekly Government Abstracts) or Government Reports Announcements and Index categories, or to the reports issued by a particular agency such as the Department of Defense, Federal Energy Administration, or Environmental Protection Agency. Other options that will give you greater selectivity are available on request.

The cost of SRIM service is only 45¢ domestic (60¢ foreign) for each complete

microfiched report. Your SRIM service begins as soon as your order is received and processed and you will receive biweekly shipments thereafter. If you wish, your service will be backdated to furnish you microfiche of reports issued earlier.

Because of contractual arrangements with several Special Technology Groups, not all NTIS reports are distributed in the SRIM program. You will receive a notice in your microfiche shipments identifying the exceptionally priced reports not available through SRIM.

A deposit account with NTIS is required before this service can be initiated if you have specific questions concerning this service, please call (703) 451-1558, or write NTIS, attention SRIM Product Manager.

This information product distributed by

U.S. DEPARTMENT OF COMMERCE National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161 AD A 0 24541

This Document Contains Pagels
Reproduced From
Reproduced Copy
Best Available Copy

0,5

COMBUSTOR DESIGN FOR LOW COST EXPENDABLE TURBOJETS

THESIS

GAE/AE/76M-1

Raymond L. Greene Major USAF

DISTRIBUTION STATISHENT A

Approved for public release.

Distribution Unlimited

ADA024325

COMBUSTOR DESIGN FOR IOW COST EXPENDABLE TURBOJETS

THESIS

GAE/AE/76M-1

Raymond L. Greene Major USAF

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U. S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22141

Approved for public release; distribution unlimited

	ليبيك يضبرون لاختال المسرسيس فيهون في ترجيها واليبيية والمرجية والمرجونية والكيور فالشاب والكوان سيكان سيكان والمست
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT NUMBER AE/76M-1	D. S. RECIPIENT'S CATALOG N'IMBER
4. TITLE (and Sublitle)	5. TYPE OF REPORT & PERIOD COVERED MS Thesis
COMBUSTOR DESIGN FOR LOW-COST EXPENDABLE JET ENGINES	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	S. CONTRACT OR GRANT NUMBER(4)
Raymond L. Greene Major USAF	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Air Force Institute of Technology (AFIT-EN) Wright-Patterson AFB, Ohio 45433	AREA S SUIN WILL HUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
	March, 1976
	15. NUMBER OF PAGES 53
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS, (of this report)
	1
	Unclassified
	Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; dist. Thion unlin	Se. DECLASSIFICATION/DOWNGRADING
Approved for public release; dist. wtion unling the statement of the abstract entered in Block 20, if different in	ise. DECLASSIFICATION/DOWNGRADING
Approved for public release; distriction unlin	isa. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; dist. "tion unling" 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different to approved for public release JERRY C. HVR, Capt, USAF	SCHEDULE The DECLASSIFICATION/DOWNGRADING Atted Tom Report)

The development of two experimental burners was completed as part of a project to evaluate the suitability of the use of converted reciprocating engine turbochargers as expendable jet engines for remotely piloted vehicles.

As a result of analytic studies, Burner "A" was constructed as a reverse flow burner and was designed to accept a mass flow up to 0.75 lbm/sec.

Burner "B" was also reverse and designed for a mass flow up to 1.5 lbm/sec.

Both burners operated successfully on their respective turbochargers.

		g s agitifican sellans a
Unclassified SECURITY CLASSIFICATION OF THIS	DAGE (Miles Date Televal)	
Maximum thrust achieved value could be extended unds with afterburning.		cated that this and to 95-100

COMBUSTOR DESIGN FOR

LOW COST

EXPENDABLE TURBOJETS

THESIS

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

Ъу

Raymond L. Greene, B.S., E.S.

Major

USAF

Graduate Aeronautical Engineering
March 1976

Approved for public release; distribution unlimited.

レン

Preface

The increasing sophisication of defensive weapons during the latter part of the 1960's resulted in reduced effectiveness of direct action by manned aircraft. During this period, the success of short range guided weapons, such as laser guided bombs, anti-radiation missiles and other homing or guided weapons has been well documented. Recent developments in defensive systems have increased the need for advanced stand-off weapons and for remotely-piloted reconnaissance and decoy vehicles.

Because of the high cost of small jet engines, these remotely-piloted vehicles have been relatively expensive.

The rurpose of this study was to evaluate one alternative to the current high cost engine. This alternative was a proposal by the AF Aero Propulsion Laboratory to examine the suitability of using reciprocating engine turbo-superchargers as expendable small turbojet engines.

Specifically, this study covers the major component required for such a conversion, the combustor and its associated hard-ware.

I wish to thank Dr. William Elrod for the direction and support given to me in his capacity as my thesis advisor. I would also like to thank Mr. David Wilkinson from the Aero-Propulsion Laboratory, Mr. Millard Wolfe and the personnel of the AFIT Shop, Mr. William Baker, Mr. John Parks, and Mr. John Flahive for invaluable assistance and advice.

Raymond L. Greene

Contents

Prefa	ice		,		•	•	•	•		•	•	·		•	•	•	•		•	•			Page 11
List	of Fig	ıres	•		•	•		•		•	•		•	•	•	•	٠	•	•	•	•	•	v
List	of Tab	les.	•		•	•		•	•	٠	•	•	•	•	•	•		•	•	•	•	•	vi
List	of Sym	alod	•	• •	•	•	•	•	•	•	ı	•	•	•	•	•		•	•	a	•	•	vii
Absti	act		•		•	•		•	•	•	•	•		9	•	•		•		•	•	•	viii
ı.	Intr	oduct	ior	ı,	•		•	•		•	٠	•	•			•	•	•		•	•		1
		Back Obje Scop	ct:	Lve	s a	and	1 (ri	ite	eri	la	•	•	•	•	•		•			•		1 2 2
II.	Desc	ripti	.on	of	tł	ne	Cc	ml	ous	sto	r	Ьe	esi	gr	ı .		•			•			6
		Burn Burn Igni Fuel	er to:	"B' cs.	" . •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		6 8 8
III.	Burne	er Te	st	Apj	paı	cat	us											•				•	11
		The The The Inst	Fue Igr	el S nit:	3ys 1or	ste 1 S	em Sys	ite	· •m	•	•	•	r r	•	•	•	•	•	•	•	•	•	11 11 11 13
IV.	Analy	rtic	Dev	relo	opa	ne:	t	an	ıd	Re	su	1	s	•	•	•		•	•	•			14
٧.	Burne	er Te	st	Sta	and	l I)ev	el	.oı	ome	nt	. 3	ınd	F	es	sul	ts		•	•			17
		Burn Dete Bu Bu	rmi ine		t1c	n'.	oī •	` A	ve	ra	ge •	. E	ki	t.	Te	Iw	ei	at	ur	e		•	17 18 18 21
VI.	Burne	r De	vel	.opı	ner	ıt	an	d	Re	ອຣນ	цt	s	on	. t	he	E	lng	ji r	ıe	•	•	•	23
		Engi Burn	ne er	Per	rfo rfo) Tu	an an	ce	; . ; .	•	•				•								23 24

	Page
VII. Conclusions and Recommendations	. 26
Recommendations	. 26
Bibliography	. 28
Appendix A: Development of Orifice Curves	. 29
Appendix B: Combustor Air Flow Calculations	. 32
Appendix C: Results of Cycle Analysis	. 34
Vita	. 42

<u>List of Figures</u>

Figure		Page
1	Engine J-l ith Burner "A"	. 4
2	Engine J-2 with Burner "B"	. 5
3	General Dimensions of Burner "A"	7
4	General Dimensions of Burner "B"	. 9
5	Comparison of Nozzle Flow Rates	. 10
6	Schematic of Burner Test Stand	. 12
7	Effect of Burner Exit Temperature and Pressure Drop on Engine Thrust	. 15
8	Burner "A" Hot Spot	
9	Deflector Vane	18
10	Temperature Profile of Burner "A"	. 19
11	Temperature Profile in the Turbine Housing	. 20
12	Development of Orifice Curves	31

<u>List of Tables</u>

Table	<u>P</u>	age
1	Instrumentation	13
2	Velocities : Burner "A"	16
3	Velocities in Burner "B"	16

List of Symbols

Symbol	Quantity	<u>Units</u>
A	Area	sq. in.
F(M)	Function of Mach Number	
M	Mach number	
រាំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំ	Mass flow	lbm/sec
P	Pressure	psia
R	Gas constant	lbf-ft/OR-1bm
R <u>e</u>	Reynolds number	
Т	Temperature	o _R
u	Velocity	fps
¥	Weight flow in combustor	lbm/sec
β	Orifice diameter ratio	
γ	Ratio of opecific heats	
Subscripts		
a.	Air	
f	Fuel	
8	Static conditions	
t	Total conditions	

Abstract

The development of two experimental burners was completed as a part of a project to evaluate the suitability of the use of converted reciprocating engine turbochargers as expendable jet engines for remotely piloted vehicles. Analysis of the variables affecting the turbocharger engine indicated that a 10 percent variation in pressure loss in the burner would have a neglible effect on the thrust produced. A 10 percent variation in temperature at the burner exit was a significant factor.

Considering the analytic results, it was decided to construct two burners, both reverse flow to reduce the size of the overall machine. Burner "A" was designed for an air capacity of up to 0.75 lbm/sec with the exit leading directly into the turbine. The airflow through the inlet of the burner entered the annular plenum in a direction perpendicular to the burner axis. Total pressure losses in this burner were measured at 1 percent for cold flow and 3 percent for hot flow.

Burner "B" was designed increasing the velocity through the liner air holes and reducing the velocity in the combustion region. Because of these changes, pressure loss was increased to 8 percent. The air inlet was also changed to inject the air tangentially in order to introduce swirl into the burning region. The swirl created a more even exit temperature. This burner produced satisfactory results on the test rig and was further tested on the turbochargers. Texts on the turbachargers resulted in pulsating and intermittant operation. Fuel novzles with better atomization corrected this condition and allowed smooth operation of the machines with various turbine nozzles.

Final experimental results indicated the following factors had the greatest effect on the turbocharger-engine performance. In order of decreasing importance, these factors are (1) burner instability caused by burner/turbocharger interaction such as downstream torching of unburned fuel etc., (2) burner mass-flow limits which appeared to be lower than the turbocharger maximum flow, and (3) the airflow conditions in the burner plenum.

`__**

COMBUSTOR DESIGN FOR

LOW-COST

EXPENDABLE TURBOJETS

I. Introduction

The increasing sophistication of anti-aircraft defensive systems in recent years has created a need for expendable, low-cost vehicles to perform a variety of missions. The high cost of the current small jet engines has prevented the development of a true low-cost vehicle. Ajet engine built with a turbocharger is a possible solution to the problem of high engine cost. This study examines the combustor, a major component required for the development of low-cost engines. Concurrently, a study examining turbocharger performance was conducted by Capt. Tommy J. Kent (Ref. 5).

Background Information

The USAF has established a requirement for remotely-piloted vehicles (RPV's) to perform a variety of missions. These
missions include tactical reconnaisance, electronic jamming
and interrogation, ordnance delivery, decoy and target missions.

Current engines which are available to meet these mission requirements are limited to small reciprocating engines and a few small
turbojets which cost approximately \$85 / 1b thrust (Ref. 7).

This limitation in powerplants has restricted the sizes of RPV's
and made the jet-powered versions relatively expensive. In
order to reduce the powerplant limitation, the AF Aero Propulsion

Laboratory is exploring alternative systems. A proposal for one of these systems is to convert an ordinary supercharger into a small turbojet engine by adding a combustor, inlet and nozzle. Superchargers are available in a wide range of sizes for approximately \$500 each. The performance required for this application is 100 lb. static thrust and a one time operation for 30 minutes.

Objectives and Criteria

The purpose of this study is to design and test two comtustion chambers for use in examining the feasibility of using
converted turbochargers as low-cost expendable jet engines.

Further, it is desired to identify and define burner characteristics which have the greatest effect on turbocharger performance. Suitable burner operation is considered to exist
when continuous burning throughout the required range of turbocharger operation is achieved with no hot spots of sufficient
intensity to cause physical damage to the machinery. For this
study, no attempt was made to reduce weight. Figures 1 and 2
on the following pages show both turbochargers with the respective burners attached. The burner liners are shown with each
machine.

Scope

The immediate problem was to provide a preliminary combustor with which testing of the turbocharger could begin. It was decided to design two combustors, a boiler plate model, Burner "A", which could be used for immediate testing of the first engine (#J1) to be built using the Rajay turbocharger, and a more refined Burner "B" as a follow-on to be used on engine J2 to be built with the larger AiResearch turbocharger. Only minor modifications were to be made to Burner "A" while major changes were to be incorporated, as necessary, into Burner "B".

Fig. 1 Engine J-1 with Burner "A"

Fig. 2 Engine J-2 with Burner "B"

.

II. Description of the Combustor Designs

Two complete combustors were designed. Burner "A" for the smaller Rajay turbocharger (mass flow to .75 lbm/sec) and Burner "B" for the AiResearch turbocharger (mass flow to 1.5 lbm/sec). Each burner consisted of an outer shell forming a reverse flow plenum, a burner liner, adaptors at the inlet and exit to connect to the turbocharger, ignitors and the fuel spray nozzles.

Burner "A"

The outer shell of Burner "A" was constructed from steel pipe with a 3.5-inch inside diameter and a 13-inch length.

The annular area around the liner was constructed equal to the cross-sectional area of the liner. The total air flow area through the liner from the annular area was three times the cross-sectional area of the liner in order to minimize pressure losses (See Appendix B). Air distribution was designed for 20% at the front of the liner for fuel atomization, 15% immediately behind the ignitors to complete stoichiometric conditions and 65% evenly distributed along the remaining liner length for cooling. The liner was made of 321 stainless steel and was 2.375 inches across the inside diameter. A swirler collar was located at the front of the liner. An adaptor and instrumentation collar, located at the end of the burner, served as a heat expansion joint. Figure 3 shows the general dimensions.

Burner "B"

The outer shell of Burner "B" was constructed with stainless steel sheet 1/16 inch thick. The forward dome, liner and
ignitor were standard fittings from an MA-IA Jet Aircraft Starting Unit (JASU). An MA-IA liner was adapted for use in this
burner because experimental results indicated that the velocity
in Burner "A" was too high. Calculations showed the velocity
in the stoichiometric section of Burner "B" to be approximately
30 ft/sec compared to 50 ft/sec in Burner "A". Inlet air flow
was directed tangentially into the plenum. Overall length excluding the burner to turbine adaptor was 14 inches and overall diameter was 74 inches. Figure 4 shows the general dimensions.

Ignitors

Fuel Nozzles

For Burner "A" the ignitor electrodes were constructed of stainless steel and set opposite each other with a .25 inch gap between them centered inside the liner. Automotive sparkplugs were also used and proved satisfactory although starting was slower. An aircraft ignitor plug was used on Burner "B".

Oil furnace fuel nozzles, made by the Delavan Company, Des Moines, Iowa, were used in both combustors.

The fuel nozzles used had a solid cone spray at an 80 degree angle of spray and were rated at 4 gal/hr, 6 gal/hr, 8 gal/hr and 14 gal/hr. Fuel was delivered to the nozzles at pressures between 20 psi and 150 psi. The minimum pressure for atomization of the fuel was 15 - 20 psi. The nozzle location was

adjustable along the burner axis in both combustors.

In addition to the furnace nozzles, a hollow cone spray nozzle from an MA-IA JASU was used on Burner "B". Minimum pressure for good atomization with this nozzle was 10 psi and flow rate changes were greater with fuel pressure changes. Figure 5 shows a comparison of flow rates for each nozzle over the operating pressure range.

Fig. 5 Comparison of Nozzle Flow Rates

III. Burner Test Apparatus

The Air Supply

A diagram of the experimental apparatus showing Burner "A", the plenum chamber, the orifice and ducting is presented in Figure 6A. The ducting is a standard 3-inch pipe which was connected to an MA-IA JASU by a 3-inch flexible hose. Air leaving the plenum was delivered by a 2-inch pipe with a 90 degree elbow to simulate the installation on the turbocharger. The air supply was controlled by a 3-inch gate valve located 24 diameters upstream from the orifice. The air supply system was identical for the Burner "B" tests except that the 2-inch section after the plenum was replaced with a 3-inch section.

The Fuel System

A diagram of the fuel system is shown in Figure 6B. The fuel system consisted of an 80 gallon tank, a fuel filter and shut-off valve, a solenoid shut-off valve, a manual needle valve, and a flow meter. The system was pressurized to 200 psi using high pressure nitrogen.

The Ignition System

The ignition system consisted of a 10,000 volt transformer, a Variac transformer, a remote switch, an apparatus switch and the electrodes. The Variac was used to reduce voltage in order to slow down the rate of breakdown in the insulators on the locally constructed ignitors. Commercial sparkplugs did not require any special care.

Instrumentation

Instrumentation was located at stations 2, 3, 4, 5, and 6 as shown in Figure 6A. The following table lists the location and type of instrumentation at each station.

Table 1
Instrumentation

Station	Thermo- Couples	Static Pressure	Total Pressure
2	0	2	0
3	1	0	1
4	0	3	0
5	0	2	0
6	1	3	ı

A 1.8 inch diameter square-edged orifice was installed at station 2 for metering the air flow. The thermocouple at station 6 was moveable and was used to obtain the burner exit temperature profile. This thermocouple was made of unshielded chromel-alumel wire; the one at station 3 was shielded iron-constantan. Pressure measurements were read on 5 U-tube mercury manometers, 2 precision pressure gauges calibrated in "Hg, and 3 pressure gauges reading in psi. Temperatures were recorded on 3 Honeywell temperature recorders.

IV. Analytic Development and Results

The design of the combustors was constrained by three general factors, the physical size of the turbochargers, the results of the cycle analysis from the "Design Point Turbine Engine Performance Program" (Ref. 10), and the burner areas required by the estimated mass flow. Because of the short distance between the compressor exit and the turbine inlet on the turbochargers, the combustors were designed for reverse flow. Reverse flow allows a more compact package and reduces duct lengths.

The cycle analysis showed that the temperature at the burner exit has a significant effect on engine performance, while pressure loss in the burner has a lessor effect. Figure 7 shows the effects of temperature and pressure loss variations on thrust for each turbocharger.

Calculations for determining the required areas to maintain appropriate velocities in the various burner sections were based on values obtained by using weight flow function (Ref. 3)

$$F_{(M)} = \frac{W\sqrt{T_t R}}{P_t A}$$
 (1)

Table 2 lists the calculated velocities in each section of Burner "A" for a flow rate of 0.75 lbm/sec. Area calculations for primary and secondary air flow were based on one dimensional flow and on chart values (Ref. 4) for minimum pressure loss and good fuel atomization. Appendix B describes the details of the calculations.

Fig. ? Effect of Burner Exit Temperature and Fressure Drop on Engine Thrust

Burner "E" was designed in a similar manner for a flow rate of 1.5 lbm/sec except for parameters fixed by the MA-IA liner. The inlet air was injected tangentially in the burner plenum to create more uniform flow conditions and eliminate stagnation regions which occurred in the plenum of Burner "A". Table 3 lists the calculated velocities in the different sections of Burner "B".

Table 2 Burner "A" Velocities @ m = 0.75 lbm/sec

<u>Station</u>	Mach	Velocity
Inlet section	C.17	214 fps
Plenum mid-point	0.03	38 fps
Stoichiometric section	0.04	50 fps
Burner exit	0.25	546 fps
Adaptor exit	0.25	546 fps

Table 3 Burner "B" Velocities @ n = 1.5 lbm/sec

<u>Station</u>	Mach	Velocity
Inlet section	0.10	126 fps
Plenum mid-point	0.06	76 fps
Stoichiometric section	0.02	27 fps
Burner exit	0.15	340 fps
Adaptor exit	0.25	322 fps

V. Burner Test Stand Development and Results

Development of the burner on the test stand was controlled by two requirements. First, modifications were made to achieve satisfactory burner operation and second, measurements were made to determine the average exit temperature. This temperature was required for later analysis of the complete engine.

Burner Modifications

And the state of t

During testing of Burner "A" with the exhaust open to atmospheric pressure, burning was observed in the lower half of
the plenum between the inlet and the ignitor (see Figure 8
below). A hot spot developed in this part of the combustor
both on the plenum shell and on the liner, of sufficient intensity to melt down one ignitor and warp the liner.

To correct the hot spot problem, the ignitors were moved forward and a deflector vane was installed in the inlet as shown

1

in Figure 9. This modification cooled the hot spot enough that the liner no longer became red hot. Satisfactory operation was achieved over the expected range of the turbocharger for engine J-1.

Fig. 9 Deflector Vane

Determination of Average Exit Temperature

The average exit temperature of the burner was determined by integration of the measured temperature profiles across the burner exit. These surveys were accomplished using an unshielded chromel-alumel thermocouple. The burner exit was open to atmospheric pressure.

Burner "A"

Burner "A" shows a large gradient across the exit with the highest temperatures concentrated on the inlet side of the combustor. Figure 10 shows the results of this survey.

Fig. 10 - Temperature Profile Eurner "A"

Attempts to reduce the exit temperature gradient by inducing swirl in the plenum, adding a swirler at the fuel nozzle, and altering secondary airflow near the burner exit were unsuccessful. Integration of the temperature profile, however, resulted in an average temperature which was 87 percent of the peak temperature.

The temperature survey in the flow channel of the turbine bousing was conducted by moving the temperature axially across the channel at the points shown in Figure 11. From Point 2 to Point 4, the temperature was constant across the channel and was approximately equal to the integrated value for the average burner exit temperature. Because the turbine wheel was removed, the temperatures at Points 5 through 8 were not considered accurate due to the flow exiting through the turbine exhaust.

The temperature profiles at each point did remain flat, however, indicating that turbulent mixing in the turbine housing tended to eliminate uneven temperature distributions from the burner exit.

Tmax=1420 F.		
	Point	Temperature
8 2 2	1	
	2	1230 ⁵
X	3	1280°
7- + + -3	4	1240°
	5	1150°
\x \ \x \	6	
6/	7	1050°
1 5	8	1060°

Fig. 11 - Temperature Profile in the Turbine Housing

A confirmation of the average temperature value was attempted by hot and cold flow comparisons. Using Equation 1, the relationship between mass flow at the burner exit is

$$\frac{\left[F_{W}^{2}P_{t}^{2}\right]}{T_{t}W^{2}} = \left[\frac{F_{W}^{2}P_{t}^{2}}{T_{t}W^{2}}\right]_{Hot} \tag{2}$$

assuming $\frac{\sqrt{R}}{A}$ is the same in the two cases. Choked flow was established by using a baffle plate across the burner exit and maintaining the combustion chamber pressure between 2.8 and 3.3 atmospheres. Using $\gamma = 1.4$ cold and 1.32 hot, the value for the function of Mach number (Ref. 3) was

$$F_{(M)} = 3.79$$

GAE/AE/76M-1

Therefore, the equation

$$T_{\text{(Hot)}} = T_{\text{(Cold)}} \underbrace{\frac{W_{\text{(Cold)}}^2 P_{\text{t(Hot)}}^2 3.79}{W_{\text{(Hot)}}^2 P_{\text{t(Cold)}}^2 3.88}^2}$$
(3)

was solved for average exit temperature.

Exit temperatures obtained by this method ranged from 80 percent to 100 percent of the measured peak temperature. This method was inconclusive because the squaring of errors in mass flow and pressure measurements could induce errors up to 20 percent in the calculated exit temperature.

Burner "B"

In view of the experience with Burner "A", Burner "B" was designed with a tangential air inlet to provide swirl of sufficient strength to develop more uniform conditions in the plenum. Test stand results showed no hot spots and a more even temperature profile. Maximum temperature was recorded on the burner centerline and showed a temperature variation of 300 F. from the liner wall to the center. Testing on the turbocharger, however, resulted in unstable operation even though the burner alone was stable. During further testing, it was discovered that unburned gases reaching the tailpipe were afterburning intermittantly. These intermittant pulses were transmitted throughout the engine and caused severe surging. Better atomization of the fuel was effective in eliminating this problem. The furnace nozzle was replaced with a hollow cone MA-IA nozzle which began proper spray patterns at 10 psi above combustion

GAE/AE/76M-1

()

chamber pressure and developed a finer spray.

VI. Burner Development and Results on the Engine

Both turbocharger engines were run using their respective combustors. Results obtained fit into two categories; those having a direct effect on engine thrust and performance, and those affecting the burner alone.

Engine Performance

The small engine (J-1) operated successfully over a wide range of temperatures and pressures. Burner stability on the engine was good and no significant problems were observed. Thrust measurements were not obtained due to bearing failure in the turbocharger.

The larger turbocharger operated successfully with two different turbine housings, and achieved a thrust of 53 pounds and 55 pounds (See Ref. 5 for detailed engine performance).

Surging and instabilities prevented operation on three other turbine housings. Stability of the burner on the combustor test stand did not insure stability of the burner/turbo-charger combination. A significant factor adversely affecting stability with engine operation was the presence of unburned fuel downstream of the burner exit. This unburned fuel caused intermittant afterburning which in turn caused turbocharger surging.

Intermittant afterburning and burning in the turbine occurred with even small amounts of unburned fuel present. The burning in the turbine caused significantly increased turbine temperatures.

These temperatures were not measured, but were judged qualitatively by visual observation. The turbine wheel operated without any apparent redness when downstream fuel was alsent, but was bright red when burning occurred in the turbine housing. With this afterburning, the turbine exit temperature exceeded 1600 F. which was considered unacceptable for this investigation.

Non-uniform temperature distribution from the burner was reduced by turbulent mixing of the flow in the inlet duct of the turbine housing. The flow mixing of the turbine housing created relatively uniform temperatures at the turbine as shown in Figure 11. Average turbine entry temperature can be read directly by locating a probe at the end of the inlet duct (Point 3 in Fig. 11).

Burner Performance

and the second s

Self-sustaining combustion in Burner "A" was not possible without the plenum burning outside the liner and the associated liner hot spots (See Fig. 8). Velocity in the combustion section of Burner "A", up to 50 ft/sec, was too high. Sustained combustion was probably achieved because the liner acted as a hot surface re-ignition source (Ref. 9). The hot surface was the result of burning outside the liner which was caused by recirculation from the inside of the liner back to the plenum.

Burner "A" had too low a velocity through the liner side holes. The turbulent velocity components inside the liner exceeded the inflow velocity causing back flow from the liner region to the plenum. This problem was caused by too small a pressure differential across the liner, a condition shown by the burner pressure loss measurements. Burner "A" had only a 1 percent pressure loss through the entire burner during cold flow measurements.

With increased blockage to increase the pressure drop across the liner, sustained combustion was precluded. With the flow blockage in place, varying the mass flow did not produce a stable operating point. Low mass flow resulted in the flame advancing upstream and "over-rich" flame-cut occurring. Increasing the mass flow resulted in "lean" flame-out. Because no constant velocity section existed, the flame front was always unstable and tended to move either upstream or downstream. As the flame front moved upstream, the velocity of the air flow decreased allowing the flame to move farther upstream into an overly rich region; as the flame moved downstream, the velocity of the air increased causing the flame to move farther downstream into an overly lean region.

VII. Conclusions and Recommendations

The concept of converting a two bacharger into a low-cost jet engine was demonstrated. Specific conclusions relating the particular equipment used in this study are listed below.

- (1). Two combustors were designed and constructed which performed successfully on their respective engines. Engine J-2 achieved a maximum thrust of 55 pounds.
- (2). Furnace nozzles were unsatisfactory for operation of Burner "B" due to pour atomization.
- (3). Turbulent mixing in the turbine housing tended to eliminate uneven burner exit temperatures.
- (4). Unburned fuel leaving the combustor caused stability problems and turbine temperature problems.

Recommendations

In order to extend the operating range of the present configuration or develop a more advanced combustor, a further investigation of the stability problem is necessary. The following studies would be valuable.

- (1). A study to isolate burner instabilities from turbocharger instabilities. This study can use the present experimental apparatus by using the MA-LA JASU to drive the burner and turbine. The engine compressor air can then be discharged against a back pressure allowing individual measurements of turbine and compressor effects.
 - (2). A study to determine velocity profiles within the

combustor both upstream and downstream, required for stable operation.

- (3). A study extending the operating range of the present J-2 engine configuration by fine-tuning measures, such as hardening up the fuel system, fuel pre-heat, and other alterations to improve combustor efficiency.
- (4). A study to examine operating characteristics of the J-1 engine. Experimental equipment is available to complete this project except for the engine exhaust nozzles.

Bi bliography

- 1. Ames Research Staff, Equations, Tables and Charts for Compressible Flow, Report No. 1135, Washington, D.C., U.S. Government Frinting Office, 1953.
- 2. A.S.M.E. Fluid Meters. Their Theory and Application, America: Society of Mechanical Engineers, New York, 1959.
- 3. Elelfelt, Ivan H., Graphical Presentation of Compressible Flow Functions, Technical Information Series No. R52GL-300, General Electric Technical Data Center, Schenectady, New York, 1952.
- 4. Hill, Philip G. & Peterson, Carl R., Mechanics and Thermodynamics of Propulsion, Reading, Massachusetts, Addison-Wesley Publishing Company, 1970, (p. 150).
- 5. Kent, Tommy J., Conceptual Study for the Development of Low-Cost Turbojets, Thesis, Air Force Institute of Technology, Wright-Patterson AFB, Ohio, March, 1976. Unpub.
- 6. MacInnes, Hugh, How to Select and Install Turbochargors, Tucson, Arizona, H. P. Books, 1971, (p. 151).
- 7. Taylor, John W. R., Janes All the World's Aircraft, London, 1974 1975.
- 8. Vincent, E. T., The Theory and Design of Cas Turbine and Jet Engines, New York, McGraw Hill Book Go., Icc., 1950.
- 9. Weiss, Kenneth E., The Design and Fertormance of a Streamlined Flame Holder, Thesis, Air Force Institute of Technology, Wright-Patterson AFB, Ohio, August, 1956.
- 10. Witherell, R. E., Design Foint Turbine Engine Performance Frogram, Air Force Aero Propulsion Laboratory, Technical Report No. TR-68-88, Wright-Patterson AFB, Ohio, September 1968.

Appendix A

Development of Crifice Curves

1.

Development of Orifice Curves: (Ref. 2)

$$\dot{m}_a = 0.525 \, KY_i d^2 \sqrt{Y_i (P_i - P_a)}$$
 $R_a = \frac{4 \dot{m}}{\pi D_{AI}} = 316,000 \, \dot{m}$

$$K = {0.6532 \atop 0.6506}$$
 for 100,000 Re 0.6506 for 500,000 Re

$$K_{\text{average}} = 0.652$$

$$Y_1 = 1 - (0.41 + 0.35B^4) \frac{\chi}{R}$$
; $R = 1.4$

B chosen equal to 0.6 Dia.

Dia of pipe 3.156"; Dia of Orifice 1.894"

Fig. 12 Ordfice Calibration Curve

Appendix B

Combustor Air Flow Calculations

Areas

Calculations for determining the required areas within the combustor were made using the weight flow function with an assigned Mach number. For calculation of the required Mach the following values were used

$$Y = 1.3$$
 ; $Y = 1.4$
 $T_T = T_S$
 $T_T = 660 R$; $T_T = 2160 R$
 $M = 4/\sqrt{YRT}$

Using the weight flow function

$$F_{CM} = \frac{W\sqrt{R}T_{T}}{P_{T}A}$$

and assuming equal distribution of mass flow throughout the burner, areas were calculated for the inlet, plenum and liner crosssection.

Primary and secondary air holes were selected for 20% at the front of the liner for fuel atomization, 13% to complete the stoichiometric section and 67% evenly distributed for cooling (Ref. 8). The total area for primary and secondary air was selected from chart values (Ref. 4) to minimize total pressure loss. The measured pressure loss in Burner "A" was 3 percent and in Burner "B" it was 8 percent.

()

Appendix C

Results of Cycle Analysis

using

"Design Point Turbine Engine Performance Program"

SFCU

= 2.02747

.

The state of the s

TURBOCHARGER BASELINE ENGINE (RAJAY HODEL 370 E) BASE POINT HPEXT = 0.00 LCSL = 0.000cg HCSL = 7.00000 PC9L9W= 3.00000 PCBLC9= 1.10001 PCBLNZ= 0.00000 PCSLC = (.nneno PCBLT4= 0.00C01 PCFLHP= 0.000C0 PROA 2.500 BPR = 0.000 WAENG = - 66 PRFT 1.0000 STAFT = 1.00000 WA24 Z 0.000 PRFH ETAF4 = 1.00005 = 1.0000 WA21 .663 PRLP **±** 1.0000 ETALP = 1.000ng WA22 깒 .663 PRC 2.8000 ETAC = .65000 WA3 .663 OPD **= 0.00000** DPFH = 0.80000 DPC 0.00000 ~ PRESSURFS IN ATMOSPHERES P1 1.000 T1 = 518.67 H1 123.92 2 **P2** 1. COO T 2 == 518.57 H2 = 123.92 P21H 1.000 T 21 3 518.67 H21 # 123.92 PZIL 1.000 **PSSF** 1.000 T22 518.67 H22 2 123.92 P22 # 1.000 **z** ' **P3** 2.800 T3 = 790.77 **H3** 189.46 2 P4 ¥ 2.660 T4 2160.01 H4 564.92 DP8 .0500 X ETAS -9000n FAP.4 = .02302 P41 z 2.660 T41 = 2159.99 H41 564.92 P5 æ 1.290 **T5** I 1938.74 H5 3 500.86 PRTH = 2.0616 ETATH = .65091 npt = 0.00000 P51 z 1.290 T51 = 1939,74 500.86 **H51** = P55 * 1.290 T 55 = 1935.74 H55 500.86 PRTL × .9998 ETATL = 1.00000 OPE = 0.00000 P56 1.290 T 56 = 1938.74 **H**56 500.86 PB = 1.290 T6 = 1938.74 H6 2 500.86 P7 * 1.290 17 = 1938.74 H7 1 50G.86 PB 1.290 TB · 1938.74 HA 500.86 **Y9** 1285.76 T 59 1322.98 HS9 467.83 2 P24 2 0.000 T24 .0.00 3 H24 2 0.00 **P26** 2 0.040 T 26 3 0.00 H25 # 0.00 **P27** 2 0.000 T 27 * 0.00 H27 2 0.00 **P28** 0.000 T 28 × 3.00 **H28** 2 0.00 **V29** 0.00 TS29 3 0.00 **HS29** 0.00 FAR41 = .02302 FAR51 = .02332 FARS6 = . 12302 FART 02302 FARS = .02302 FAR27 = 0.00000 HV = 1736n.2 HV7 = 0.0 HV27 2 0.0 CA 1.00000 V 9 1285.76 V29 0.00 .FN/HA = 40.853 THG9 = 40.553 THG29 = 0.000 ETAP ETATHM= 1.00000 = 1.00000 = 1.00000 EYAO

2

27.1

FN

×

27.1

FG

SFCU

= 4.40785

TURBOCHARGER (RAJAY 370 E) ENGINE WITH COMP MAP A/B HPEXT = 0.00 LCSL = 0.00000 HCSL = 0.00000PCOLON= r.coron PCSL09= 0.00000 PCBLNZ = 0.00000 PC9LC = 0.00000 PC9LT4= 0.00000 PC9LHP= 0.00000 PRGA = 2.800 9 PR 盂 0.000 MAENG = PRFT 1.0000 ETAFT = 1.00000 0.000 WAZ4 = PRFH 1.0000 ETAFH = 1.00000 HAZ1 = • 663 PRLP 1.0000 ETALP = 1.03000 MAZZ * .663 PRC ETAC .65000 2.8600 2 WA3 = .663 DPFH = 0.00000 OPD = 0.00000 OPC = 0.00000 PRESSUPES IN ATMOSPHERES P1 · = 1.000 T1 518.67 H1 123.92 2 x P2 T 2 1.000 2 513.67 H2 = 123.92 P21H 1.000 T21 518.67 H 21 123.92 × PZIL 1.000 z PSSF 1.COO T22 518.57 2 = H22 = 123.92 P22 * 1.000 P3 = 2.800 **T3** = 790.77H3 **=** 189.46 94 z 2.660 T4 = 2160.00 44 = 564.92 DPA •û≥00 ETA3 = 苯 .90000 FAR4 I .02332 2.650 = 2159.99 H41 P41 # T41 # 554.92 P5 = 1.290 T5 **= 1938.74** 45 3 500.86 PRTH 2.0615 ETATH = DPT = .65000 = 0.03000 P51 # 1.290 T51 = 1938.74 H51 = 500.36 P55 ¥ 1.290 **455** = 1938.74 H55 = 500.86 PRTL .9998 ETATL = 1.00000 = UPE = 0.00000 P56 T 56 = 1938.74 = 500.86 # 1.290 H55 PB = 1.290 TR ≈ 1938.74 46 = 500.86 **P7 T7** = 3960.00 1.225 47 = 1187.83# # A/B * * ETABAB= .90000 0P8A8 = .05000PB * 1.225 TS **3960.01** = 1187.83H8 49 = 1655.05 **TS9** = 3799.70 HS9 = 1133.11P24 0.000 T24 **9**2 0.00 H24 0.00 x 0.00 **P26** * 0.COO T26 **326** 0.00 P27 T27 0.00 H27 . 0-000 * * 0.00 P28 8 0. roo **85T** 2 0.6C. H28 3 0.00 **Y29 TS29** 0.00 Æ 0.00 **HS29 ₹** 8.00 FARS1 = .02302 F4R51 = .02302 .02302 FAP56 = .06722 FART FAR3 = .06722 FAR27 = 0.00000HV = 17360.2 HV7 × 15818.2 HV27 0.0 GA = 1.00000 **V9** = 1675.35 V29 = 0.00 FN/WA = 54.898 THG9 = 54.998 THG29 = 0.000 ETAP **= 1.00370** ETATHM= 1.00000

#

36.4

FN

FG

ETAO = 1.00000

36.4

TURBOCHARGER (AIRESEARCH T18A E) ENGINE BASE POINT

HPFXT = PCBLOH=PCBLC = PROA =	0.00 9.0000 8.0000 4.000	LCSL = PC9L09= PC9LT4= BPR =	0.00001 7.00003 0.0000 0.000	HCSL = PCBLH7= PCBLHP= WAENG =	0.00000 0.00000 0.00000 1.39
PRFT = PRLP = PRC = OPO =	1.0000 1.0000 1.0000 4.0000	ETAFT = ETAFH = ETALP = ETAC = DPF4 =	1.00000 1.00000 1.00000 .65000	WA24 = WA21 = WA22 = WA3 = DPC =	0.000 1.359 1.389 1.389 0.00000
PRESSURF P1 = P2 = P21H = P21L =	1.000 1.000 1.000 1.000	SPHERES T1 = T2 = T21 =	518.67 518.67 518.67	H1 = H2 = H21 =	123.92 123.92 123.92
P22L = P22 = P3 = P4	1.000 1.000 4.000 3.600 .0500 3.600	T22 = T3 = T4 = ETA3 = T41 =	518.67 903.38 2160.99 .90000 2159.99	H22 = H3 = H44 = FAR4 = H41 =	123.92 217.01 563.75 .02126 563.75
P5 = PRTH = P51 = P55 = PRTL =	1.418 2.6796 1.418 1.418	T5 = ETATH = T51 = T55 = ETATL =	1843.03 .70001 1843.03 1943.03 1.00000	H5 = 0PT = H51 = H55. = 1PE = H56 = H56	472.61 0.90000 472.61 472.61 0.00000
P56 = F6 = F7 = F8 = F9 = F9	1.418 1.418 1.418 1.418 1.457.97	T56 # T6 # T7 = T8 # TS9 =	1543.03 1843.03 1843.03 1863.03	H6 = H7 = H8 = H\$9 =	472,61 472.61 472.61 478.14
P24 = P26 = P27 = P28 = W29 =	0.00 0.00 0.00 0.00 0.00	T24 = T26 = T27 = T28 = T529 =	0.00 0.00 0.00 0.00 0.00	H24 = H26 = H27 = H28 = HS29 =	
CA =	.02126 17360.2		0.02125	FAR56 # FAR27 # HV27 # V29 #	0.0360.0
FM/WA = ETAP = SFCU =	46.279 1.00000 1.65398	THG9 = ETATHM= FG =	1.00000	THG29 = ETAO = FN =	: 1.00000

C. Line of the London Conference

TURBOCHARGER (AIRESEARCH Y18A E) ENGINE WITH COMP MAP = 0.00000 HCSL = 0.00000 0.00 LCSL MPEXT = PC9LNZ= 0.00000 PC3L09= 0.00000 PCBLOW= 0.00000 PCREHP= U.03000 PCSLC = 0.00000 PCSLT4= 0.50000 0.000 WAENG = 1.25 3.310 BPR PROA WA24 0.933 1.0000 TTAFT = 1.00000 2 PRFT 1.250 ETAFH = 1.00000 WA21 = 1.0000 PRFH WA22 = 1.250 ETALP = 1.00000 PRLP 1.0000 WA3 160 1.253 ETAT Ξ .720Cn PRC 3.3100 Z = 0.00000DPC DPFH = 0.00003 = 0.00600 OPD PRESSURES IN ATMOSPHERES **H1** 123.92 518.67 1.090 T1 P1 × 412 123.92 1.000 518.57 = T2 = **P2** 123.92 1.000 H 21 T21 515.67 £ P21H 1.000 P21L E H22 123.92 1.000 T22 519.67 P22L = 1.000 P22 2 194.53 H3 T3 511.59 표 3.310 # P3 3 44 564.71 3.145 TL = 2160.07 94 2 FAR4 .02270 ETAS .9000C = .0500 = OPS Œ 564.71 44 T41 = 2159.99= 3.145 P41 T5 = 1921.25 45 = 495.66 1.524 P5 2 0.00000 OPT .70000 # ETATH = PRTH 2.0628 495.65 451 P51 1.524 T51 = 1921.25 2 495.66 = 1921.25 H55 1.525 T 55 P55 2 **NPF** 2.02002 ETATL = 1.00000 PRTL .9995 495.66 156 = 1921.25 **H56** = 1.525 P56 32 495.66 46 1.525 T6 = 1921.25P6 霊 **H7** 495.66 77 **1921.25 P7** 1.525 ¥ 495.66 BH 3 1.525 TA = 1921.25 28 442.65 HS9 = 1629.07 **TS9** = 1734.33× 48 3.00 0.00 **H24** T 24 * 224 2 0.000 0.00 **H26** T25 3 9.00 # P26 0.000 22 0.00 H27 0.000 0.00 T 27 * # P27 * 0.03 T28 0.00 H28 ¥ P28 0.000 3 0.00 HS29 · = **TS29** 9.00 0.00 ¥29 22 .02270 .02270 .02273 FARSS = FAR51 = FAR41 = FAR27 = 0.00000 .02279 FARS * .02270 FAR7 0.0 HV7 0. 7 HV27 33 MA 17360.2 = 1629.07 0.00 V29 = 1.UUC80 V9 CI THG29 = 0.000 51.783 51.753 THG9 FN/HA z TTATHM# 1.50000 ETAO z 1.03000 # 1.07070 FTAP 64.7 64.7 FG FN SFCU **= 1.57816**

44

TURBOCHARGER (ATRESEARCH T18A E) ENGINE WITH COMP MAP

```
9.90
                  LCSL = 0.03000
                                     HCSL = 0.00000
HPEXT =
                  PC8L08= 0.00000
                                     PCBLNZ= 0.00000
PCRLOW= 3.00000
                  PC9LT4= 0.00001
                                     PC9LHP# 0.00000
PCBLC = C.00000
                  B ၁၀ 🗷
                                                1.39
                             6.000
                                     WAENG =
PROA
          4.000
                  ETAFT = 1.00000
                                                0.036
                                     W424
PRFT
          1.0000
                  ETAFH = 1.00000
PRFH
          1.0000
                                     WAZ1
                                          2
                                                1.389
      =
                                     M122
                                                1.389
PRLP
      =
          1.00007
                  ETALP = 1.00000
                                           =
PRC
         4.0000
                  STAC
                        = .6670n
                                     EAW
                                           =
                                                1.389
                  DPFH = 0.00000
                                     9PC
                                           = 0.00000
DPD
      = C.0G000
PRESSURES IN ATMOSPHERES
                                     H1
P1
           1.000
                  T1
                            518.67
                                               123.92
      E
P2
                  T2
                                     42
           1.C00
                            518.67
                                           =
                                               123.92
                         =
      2
                                               123.92
P21H
           1.000
                  T 21
                         ≈
                            518.57
                                     H 21
      ×
           1.000
P21L
      =
P22L
      =
           1.000
                  T22
                           518.67
                                     H22
                                           3
                                               123.92
                         2
P22
           1.000
      z
P3
      =
           4.000
                  T 3
                           393.73
                                     H3
                                               214.62
                         92
P4
      =
           3.800
                  T4
                         = 2160.01
                                     44
                                           =
                                               553.85
                  ET43
                           .93000
                                     FAR4
                                           = ...02141
DPS
           .0500
                  T41
                         = 2159.99
                                     441
                                           =
                                               563.85
P41
           3.900
      E
                  T5
P5
      78
           1.459
                         = 1951.34
                                     45
                                           =
                                              475.84
PRTH
      *
         2.5044
                  ETATH =
                           .70000
                                     DPT
                                           = 3.09000
P51
          1.459
                  T51
                         = 1951.34
                                     H51
                                           =
                                               475.04
      =
                                               475.04
           1.459
                  T55
                         = 1851.35 H55
P55
      *
                                           =
                  ETATL = 1.00000
                                     J.P.E.
                                              3.00230
PRTL
      æ
           .9999
                                           =
                  T56
                         = 1851.35
                                     455
                                           7
                                               475.04
P56
      =
           1.459
P6
           1.459
                  T6.
                         = 1351.35
                                     46
                                               475.04
      72
                                     H?
                  T7
                         = 1851.35
                                               475.04
P7
           1.459
      #
                                           I
                                           = '
                                              475.04
PB
      #
           1.459
                  T 8
                         = 1851.35
                                     HB
49
      = 1517.05
                  TS9
                         = 1687.94
                                     HS9
                                               429.07
P24
           0.000
                  T24
                               0.00
                                     H24
                                                 0.00
                         =
                                           #
      *
659
           0.100
                  T26
                              9.00
                                     H26
                                           =
                                                 0 · · C
      #
                                     427
P27
           0.000
                  T 27
                                                 0.00
                         =
                               7.70
                                           =
                              0.00
P28
           95T 000.0
                         #
                                     H28
                                           z
                                                 0.00
      =
Y29
      #
            0.00
                  TSZ9
                         *
                               0.00
                                     HS29
                                                 0.00
                                     FARSS #
                                               . 92141
                  FAR51 =
                            .C2141
FAR41 =
          .02141
                                     FAR27 = 0.00000
FAR7
          .02141
                  FARS =
                            .02141
                                                  0.0
      = 1736c.2
                  HV7
                                0.0
                                     HV27
HV
                         *
                                           x
      m 1.00000
                  ٧ġ
                         a 1517.05
                                     V29
                                           =
                                                 0.00
CA
FN/HA =
                  THG9 =
         49.151
                            48 . 161
                                     THG29 =
                                                3.000
ETAP
     = 1.07000
                  ETATHM= 1.00000
                                     ETAO = 1.00800
SFCU = 1.60063
                  FG
                         ==
                              66, 9
                                     FN
                                           2
                                                 66.9
```

.

TURBOCHARGER (AIRESEARCH TABA E) ENGINE HITH COMP MAP A/B

```
HPEXT =
                           = D. 00000
                    LCSL = 0.00000
PCBLOB= 0.00000
                                        HCSL = 0.09000
             9.98
                                        PCSLNZ= 0.00000
PC8LOW= 0.00000
                                        DCBFAb= 0.00000
PC9LC = 0.00000
                    PCBLT4= 0.60000
                                                     1.25
                                0.003
PROA
           3.310
                    BPR
                                        WAENG =
                                                    0.000
PRFT
          1.0000
                    ETAFT = 1.00000
                                        4424
                                               =
                    ETAFH = 1.03000
                                        WAZ1
                                                    1.250
PRFH
          1.0000
                                                    1.250
                                        HA22
                                               =
                    ETALP = 1.00000
PRLP
          1.0000
                               .72090
                                                    1.250
PRO
          3.3100
                    ETAS
                           =
                                        WAS
       = 0.60000
                    DPFH
                           = 0.00000
                                        DPC
                                                 0.33000
OPO
PRESSUPES IN ATMOSPHERES
                                                  123.92
P1
       I
            1.200
                    T1
                              518.67
                                        H1
                                                  123.92
            1.000
                    TZ
                              514.67
                                        42
                                               Ξ
P2
                           I
       #
                                                  123.92
            1.000
                    T21
                               519.57
                                        421
P21H
                           =
       =
P21L
       =
            1.030
                                        422
                                               =
                                                  123.92
            1.000
                    T22
                           z
                              518.57
P22L
       2
            1.000
P22
       =
                                        43
                                                   194.53
P3
       =
            3.310
                    T3
                               311.59
                                               z
            3.145
                    T4
                           = 2160.50
                                        44
                                                  564.71
P4
       .0500
                    EATE
                               .93000
                                        F4R4
                                                   .02270
DPB
       쑏
            3.145
                                                   564.71
P41
                                        441
                    T41
                           = 2157.99
       =
           1.524
                    T5
                           = 1921.25
                                        H5
                                               =
                                                  495.66
P5
       =
                                        DOT
                                               = 0.00000
          2.0628
                    ETATH =
                              .70000
PRTH
       =
                                                  495.66
                           = 1921.25
                                        H51
            1.524
                    T51
P51
       z
                    T55
                           = 1921.25
                                        H55
                                                  495.66
            1.525
P55
                                        JP=
                                                 9.00000
                    ETATL = 1.00000
                                               =
            .9098
PRTL
       2
                                        456
                                                   495.66
                                               =
            1.525
                    T56
                           = 1221.25
P56
       Ŧ
                           = 1921.25
                                        HA
                                                   495.66
P6
                    TE.
       포
            1.525
                                               = 1157.82
                           = 3960.00
                                        H7
P7
                    17
            1.448
       I
                                        OPEA? =
                                                   .05000
                               .93433
                    ETABAB=
 #
       A/B
                                               = 1187.8?
                    TB
                           = 3960.01
                                        H8
PB
            1.448
       *
                                        459
                                               = 1090.01
       = 2212.75
                    T59
                           = 3572.99
49
                                                     0.00
                    T 24
                                 0.00
                                        H24
                                               Ŧ
P24
            C. COO
                           Ŧ
       =
                                 0.00
                                        1126
                                               =
                                                     0.00
P26
            0.000
                    T26
       E
                                 9.30
                                        H27
                                                     0.00
            0.900
                    T 27
                           3
                                               ×
P27
       -
                                        H28
                                                     0.00
            0.000
                    T 28
                                 0.00
                           3
P28
       *
                                 9000
                                        HS29
                                                     0.99
             0.0C
                    TS29
                           3
V29
                                                   . 92278
                                        FARS6 =
                               .02270
           .02270
FAR41 =
                    FAR51 =
                                        FAP27 =
                                                 0.00000
                    FPARA
                               .05721
FART
           .06721
                                                      0.0
       = 17360 a 2
                    HV7
                           = 15818.2
                                        HV27
                                               ×
HV
                           = 2212.75
                                        ¥29
                                                     C. 00
         1.00000
                    V9
CV
                               73.397
                                        THG29 =
                                                    0.000
                    THG9
FN/WA =
           73.397
                                                  1.00003
                              _.00000
                                        ETAO
ETAP
         1.03990
                    STAT.
                                        FN
                                                     91.7
                    FG
                                 91.7
SFCU
         3.29667
       *
```

TURBOCHARGER (AIPESEAPCH T18A E) ENGINE WITH COMP MAP A/B

1

THE PARTY OF THE P

-

```
LOSL
                                        HCSL
HPEXT &
             3.90
                             9.0000
                                                 ე. ებიიე
                           T
                                               Ħ
                    คิดีสีโอละ จังกัวอัก
                                        PCBLNZ = 0.00000
PCBLOW= 3.00000
PCPLC = 0.80000
                    PC3LT4= 0.00000
                                        PCBLHP= 0.00008
PROA
                    308
                                        WAENG =
            4.070
                                0.000
                                                     1.39
PRFT
          1.3090
                    ETAFT = 1.00000
                                        WAZ4
                                                    9.000
                                                    1.389
PRFH
          1.0000
                    ETAFH = 1.00000
                                        HA21
PRLP
                                        SSAW
           1.0000
                    ETALP =
                             1.00000
                                                    1.389
       æ
                                               Ŧ
PRC
          4.0003
                    ETAC
                               .66700
                                        WA3
                                               =
                                                    1.389
       =
DPD
       = A.98002
                    DPF4
                           = 0.00000
                                        OPC
                                                 0.00000
PRESSURES IN ATMOSPHERES
           1.000
P1
       ¥
                    T1
                              519.67
                                        H1
                                                   123092
                    T 2
P2
            1.500
                                        H2
                                                   123.92
                           #
                              513.67
P21H
                                                   123.92
           1.000
                    T 21
                               518.57
                                        H21
       z
                           77
P21L
       æ
           1.000
P22L
           1.000
                    T 22
                                        H22
                                                  123.92
       Z
                           E
                              515.57
P22
           1.690
       =
           4.000
                                        H3
P3
                    73
                              893.73
                                                   214.52
PL
           3.800
                    T4
                           = 2160.00
                                        H4
                                               =
                                                   563.85
            . 6500
DP9
                    ETAS
                               -90000
                                        FAR4
                                                   . 92141
       Ŧ
P41
                    TL1
           3. 503
                                        H41
       #
                           = 2153.99
                                                  563.85
P5
                    T5
                                        45
           1.459
                           = 1851.34
                                                  475.04
       =
PRTH
          2.6044
                                        DPT
                    ETATH =
                               .70000
                                                 0.00000
       X
                                               =
           1.459
                    T51
                           = 1951.34
P51
                                        H51
                                                  475.04
       ×
                                               =
P55
           1.459
                    T55
                           = 1851.35
                                        H55
                                                  475.04
PRTL
                                        DPE
           .9993
                    ETATL = 1.00000
                                                 0.00000
       I
           1.459
                    T56
P56
                           = 1351.35
                                        H55
                                               Ŧ
                                                  475.04
       *
                                                  475.04
PF
           1.459
                    TH
                           = 1851.35
                                        H6
                                               =
F7
                    T7 -
           1.386
                           = 3960.00
                                        H7
       ±
                                               = 1187.79
                                        DPRAB =
 8
       A/B
                    ETABAS=
                              .90000
                                                   . 05000
           1.356
                    TB
PS
                           × 3360.01
                                        HA
                                                 1187.79
         2082.49
                           = 3735.89
                                                 1101.16
49
                    T 59
                                        HS9
           6.00A
                                 3.00
P24
                   T 24
                                        H24
                                                     9.00
                                               22:
       P26
           6.090
                                 0.00
                                        H26
                                                     0.00
                   T26
                           Ŧ
       z
                                               T
                                 0.00
P27
           0.000
                    T 27
                                        H27
                                                     0.00
                           *
                                               2
       •
P2 8
           0-000
                    T 23
                                 9.00
                                        H28
                                                     0.00
       糕
                                 0.00
429
            0.00
                    TS29
                                        HS29
                                                     0.00
                   F4951 =
FR441 =
          .02141
                              .02141
                                        FA956 =
                                                  . 92141
FAR7
          .06719
                   FARS
                              .06719
                                        FAR27 =
                                                 0.00000
                    HV7
HV
       17360.2
                           = 17818.2
                                        HV27
                                                      0.0
                                               •
         1.06000
                             2082.49
                                                     0.00
CA
                    V9
                                        V29
FN/WA =
          69.075
                    TH69
                           E
                              69.175
                                        THG29 =
                                                    0.000
ETAP
         1.00000
                    ETATHME
                             1.00000
                                        ETAO
                                                 1.00000
       = 3.50191
SFCU
                    FĢ
                                 95.9
                                        FN
                                                     95.9
```

Vita

Raymond Lawrence Greene was born on 19 February 1939 in Detroit, Michigan, the son of Robert E. and Natalie I. Greene. He graduated in June 1957 from Taylor Center High School, Taylor Center, Michigan and attended the United States Air Force Academy graduating in 1964 with a Bachelor of Science degree in Engineering. After graduating, he was commissioned and assigned to Moody Air Force Base, Georgia for undergraduate pilot training. From Moody, he was assigned to Reese Air Force Base, Texas as a T-38 instructor. In January 1969, he was reassigned to MacDill Air Force Base, Florida for F-4 upgrading enroute to Southeast Asia. He was assigned to Ubon Royal Thai Air Force Base from September 1969 until July 1970. From September 1970 until June 1974 he was assigned to Bentwaters Royal Air Force Base, England serving various positions in operations and maintenance. After completion of this assignment he was selected to attend the Air Force Institute of Technology in the graduate Aeronautical Engineering Program.

Permanent Address: Route 2, Box 250-B

Lake Wales, Florida

This thesis was typed by: Mrs. Donna V. Greene