# Réseaux Master 1 Niveau paquet

Louis-Claude Canon louis-claude.canon@univ-fcomte.fr

Bureau 429C

Master 1 informatique – Semestre 7

## **Paquet**

- ▶ Un paquet est l'unité de données de la couche "réseau".
- ► Contient un en-tête et des données.

Place dans la pile réseau

Adressage IP

Structure des données

Matériel associé

Déroulements des communications

#### Place dans la pile réseau

Adressage IF

Structure des données

Matériel associé

Déroulements des communications

## Place dans la pile réseau

- ► Niveau 3 : réseau.
- Supposition : on sait transmettre des données sur un lien.
- Objectif : acheminer des données entre des équipements sur des liens distincts.
- ► Ce cours se focalise sur les protocoles IPv4 et IPv6.

| Processus<br>d'envoi  | ı                     |              |        |    |              |        |          | Donnée |    | (           | Processus<br>de réception |
|-----------------------|-----------------------|--------------|--------|----|--------------|--------|----------|--------|----|-------------|---------------------------|
| Application           | Protocole application |              |        |    |              |        |          | ⇒      |    | Application |                           |
| Présentation          | Protocole Présentaion |              |        |    | <del>\</del> | PH     | H Donnée |        | □  |             | Présentation              |
| Session               | Protocole Session 📛   |              |        | Ţ. | SH           | Donnée |          |        | □  |             | Session                   |
| Transport             | Protoco<br>Transpo    | ټ            | ТН     |    | Donnée       |        |          | □⇒     |    | Transport   |                           |
| Réseau                | Protocole<br>Réseau   | <del>\</del> | RH     |    | Donnée       |        |          |        |    |             | Réseau                    |
| Liaison de<br>données | Ţ                     | LH           | Donnée |    |              |        |          |        | LT | ⇒           | Liaison de<br>données     |
| Physique              | <b>⇔</b>              |              | Bits   |    |              |        |          |        |    | □⇒          | Physique                  |
|                       |                       |              |        |    |              |        |          |        |    |             |                           |

Chemin du message/paquet

Place dans la pile réseau

#### Adressage IP

Structure des données

Matériel associé

Déroulements des communications

#### Structure d'adresse IP

- Pourquoi des adresses? Pour acheminer des données, il faut pouvoir identifier les machines.
- ▶ Différence avec les adresses MAC : hiérarchie pour identifier des groupes d'adresse.
- Nécessaire pour mettre en place routages efficaces et des politiques et de sécurité.
- ► Adresses découpées en 2 parties (RFC 790) : partie réseau (net-id) et partie hôte (host-id).

#### Adresse IPv4

- ▶ 4 octets : a.b.c.d où a, b, c et d sont compris entre 0 et 255.
- ► Exemple : 192.168.0.1 avec 3 octets de net-id, 1 octet de host-id.

```
+-----+ | net-id | host-id |

+-----+ | 192.168.0 | 1 | |

+-----+
```

 Chaque interface réseau possède une adresse IPv4 (un seul réseau par lien).

#### Adresse IPv6

- ▶ 16 octets : s:t:u:v:w:x:y:z où chaque symbole représente 4 caractères hexadécimaux.
- Exemple: 2001:0db8:0000:0000:0202:b3ff:fe1e:8329.
- ► Règles d'abréviation :
  - Supprimer tous les zéros inutiles : 2001:db8:0:0:202:b3ff:fe1e:8329.
  - Raccourcir le premier plus long bloc contenant au moins 2 zéros successifs : 2001:db8::202:b3ff:fe1e:8329.
  - Utiliser des minuscules.
- ▶ Les adresses assignables commencent par les bits 001.
- Chaque interface réseau peut avoir plusieurs adresses IPv6 (plusieurs réseaux par lien).

## Identification de la partie réseau

- ► IPv4:
  - Notation CIDR (Classless Inter-Domain Routing) :
    - ightharpoonup a.b.c.d/n avec n entre 0 et 32.
    - ▶ Si les 32 n derniers bits sont nuls, il s'agit d'un bloc d'adresses.
    - ► Sinon, il s'agit d'une adresse spécifique.
    - Exemples: 192.168.0.0/24 désigne un bloc de 256 adresses;
       192.168.0.1/24 désigne une adresse avec 24 bits pour la partie réseau.
  - Masque de réseau :
    - Alternative à la notation CIDR.
    - ightharpoonup n bits à 1 suivi de 32 n bits à zéro en décimal.
    - Exemple: 192.168.0.0/24 équivaux 192.168.0.0 avec un masque de 255.255.255.0 (24 bits à 1 dans le masque).
  - ► Classes d'adresses (historique) : classe A = /8, classe B = /16, classe C = /24.
- ► IPv6:
  - ► Toujours les 8 premiers octets (préfixe /64).
  - ▶ Utilisation de la notation CIDR pour manipuler les blocs d'adresses.

## Adresses privés

Comment gérer un réseau privé dont les machines ne doivent pas être accessibles depuis l'extérieur (i.e., pas d'adresses globales)?

- ▶ Pour IPv4, on a les classes privés (blocs d'adresses réservés).
  - ▶ A: 10. ... (16 millions d'adresses), 10/8
  - ▶ B : 172.16. à 172.31. (1 million d'adresses), 172.16/12
  - ► C: 192.168. ... (65k adresses), 192.168/16
  - Ces adresses ne sont pas routées sur Internet (nécessite un NAT).
- Pour IPv6, les adresses possèdent une portée (scope) : locale ou globale.
  - ► fe80::/64 pour les adresses sur un lien (link-local) : fe80::/10 suivi de 54 bits à 0
  - ▶ fd00::/8 pour les adresses ULA (Unique Local IPv6 Unicast Address) sur un site local : fc00::/7 suivi d'un bit à 1, de 40 bits de *global ID* et de 16 bits de réseau.
  - ▶ On rajoute une adresse globale à l'interface pour accéder à Internet.

## Adresses spéciales

- ▶ Pour IPv4, on a les adresses réseau et de diffusion (broadcast) :
  - Adresse réseau : partie hôte (host-id) à zéro.
  - ▶ Adresse de diffusion : partie hôte avec que des bits à 1.
  - ▶ Un réseau avec un masque à 24 bits, contient 256 adresses mais seulement 254 sont assignables.
  - ► Exemple : pour le réseau 192.168.0.128/25, l'adresse de réseau est 192.168.0.128, l'adresses de diffusion est 192.168.0.255 et les machines peuvent être numérotées de 129 à 254.
- ▶ Pour IPv6, il n'y a pas d'adresse réseau et de diffusion mais 3 types d'adresses :
  - Unicast : représente une seule interface (2000::/3).
  - ▶ Anycast : représente un groupe d'interfaces, chaque paquet n'étant reçu que par une seule interface (2000::/3).
  - Multicast : représente un groupe d'interfaces, chacune recevant tous les paquets (ff00::/8).

Place dans la pile réseau

Adressage IP

Structure des données

Matériel associé

Déroulements des communications

| Version             | IHL     | ToS      | Total Length         |  |  |  |  |
|---------------------|---------|----------|----------------------|--|--|--|--|
|                     | Identif | ication  | Flgs Fragment Offset |  |  |  |  |
| Time To Live        |         | Protocol | Header Checksum      |  |  |  |  |
| Source Address      |         |          |                      |  |  |  |  |
| Destination Address |         |          |                      |  |  |  |  |

**Options** 

**Padding** 



## Encapsulation des données

Louis-Claude Canon RESO – Paquet 17 / 33

Place dans la pile réseau

Adressage IF

Structure des données

Matériel associé

Déroulements des communications

#### Routeur

- Chaque réseau est connecté à un routeur.
- Les routeurs sont tous connectés entre eux (Internet).
- Les paquets dont la destination n'est pas sur le même lien sont transmis au routeur le plus proche.

```
----+ Internet/routeurs |
Routeur
Switch
```



## Autres équipements

- ▶ Pare-feu.
- ▶ Proxy, passerelle.
- ► NAT.

Place dans la pile réseau

Adressage IP

Structure des données

Matériel associé

Déroulements des communications

Conclusion

23 / 33

x=84:4b:f5:49:49:c4

y=d4:be:d9:20:5b:45

z=FF:FF:FF:FF:FF

m=172.21.71.21

n=172.21.71.241

# Exemple d'une communication sur le même lien (IPv4)



Requête ARP

Réponse ARP

Communication IP





ICMPv6 Type = 135Src = A

Dst = solicited-node multicast of B

Data = link-layer address of A

Query = what is your link address?

ICMPv6 Type = 136 Src = B

Dst = A

Data = link-layer address of B

A and B can now exchange packets on this link



# ICMPv6 Protocols: SLAAC + DAD



## Exemple d'un acheminement sur plusieurs routeurs



# **Network Topology**



## **Data Flow**



Place dans la pile réseau

Adressage IF

Structure des données

Matériel associé

Déroulements des communications

## Différences IPv4/IPv6

- Adresses sur 128 bits plutôt que 32 bits.
- ► Longueur de la partie réseau fixe (64 bits).
- ▶ Mécanisme d'obtention d'adresse automatique (SLAAC¹).
- Plusieurs adresses par interface et plusieurs réseaux par lien.
- Plus de diffusion (remplacée par une meilleur gestion intégrée des groupes multicast et anycast).
- ► Autres améliorations : qualité de service, routage plus efficace (longueur d'en-tête fixe), sécurité (IPSec), mobilité, . . .

1. Stateless Address Autoconfiguration.

## Déploiement IPv6

#### Deux solutions :

- Maintenir deux piles réseaux (dual stack) où cohabitent les deux protocoles quand les équipements le permettent.
- ▶ Mise en place de tunnels : encapsuler les paquets IPv6 dans des paquets IPv4 (ou inversement).
- Processus de transition :
  - On ne change pas un réseau qui marche ("If it ain't broke, don't fix it").
  - Élaboration d'une architecture IPv6.
  - Intégration des éléments de transition au fur et à mesure avec les interventions classiques.
  - ► Ce qui est essentiel est d'avoir un plan de transition (architecture, formation du personnel, test des fonctionnalités, . . . ).

#### Bilan

- Permet de transmettre des données avec peu de surcout.
- Contrôle d'intégrité.
- ▶ Pas de garanti que les paquets soient reçus.
- Taille du réseau mondiale.
- Quelques outils logiciels pour échanger directement des paquets (raw socket, ping, traceroute, ...).