Université Pierre et Marie Curie 2005–2006

LM223 maths-info groupes 1, 2, 5 et 6 LM223 maths groupes 1 et 2

Feuille 5

Exercice 1. Calculer le rang et la signature de chacune des formes quadratiques de l'exercice 6 feuille d'exercices 4.

Exercice 2.

1. Trouver un changement de coordonnées qui diagonalise la forme quadratique

$$q: \mathbb{R}^4 \to \mathbb{R}, \ q(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}) = x_1^2 + 2x_1x_2 - 4x_1x_4 + 3x_2^2 + 8x_2x_3 + 6x_3^2 - 2x_4^2.$$

- 2. Déterminer la forme polaire de q (=la forme bilinéaire symétrique associée à q).
- 3. Déterminer le rang de q.
- 4. Déterminer la signature de q.
- 5. Déterminer le noyau de q.

Exercice 3.

1. En utilisant une décomposition en carrés, diagonaliser la forme quadratique

$$q: \mathbb{R}^4 \to \mathbb{R}, \quad q(X) = 4xy + 4yz - 2zt, \quad X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4.$$

- 2. Déterminer la matrice de changement de base (ou son inverse) qui correspond à cette diagonalisation.
- 3. Déterminer la signature de q.

Exercice 4. On désigne par α et β deux réels tels que $\alpha^2 + \beta^2 = 1$. Discuter suivant les valeurs de α et β le rang et la signature de la forme quadratique sur \mathbb{R}^3 dont la matrice dans la base canonique est

$$\begin{pmatrix}
1 & \alpha & 0 \\
\alpha & 1 & \beta \\
0 & \beta & \alpha + \beta
\end{pmatrix}$$

(On utilisera le procédé d'orthogonalisation de Gauss et on distinguera les cas où $\beta = 0$). Représenter graphiquement sur le cercle $\alpha^2 + \beta^2 = 1$ les différents cas.

Exercice 5. Soient $E = M_n(\mathbb{R}), \ q(X) = Tr(X^2) \quad (X \in E).$

- 1. Déterminer la forme polaire $f: E \times E \to \mathbb{R}$ de q.
- 2. Montrer que si A est symétrique non nulle (resp. antisymétrique), alors q(A) > 0 (resp. q(A) < 0).
- 3. Montrer que si A est symétrique, B antisymétrique, alors f(A, B) = 0.
- 4. En déduire le rang et la signature de q. [quelle est la dimension de l'espace des matrices symétriques?]

Exercice 6.

- 1. Trouver un exemple de trois sous-espaces vectoriels F_1 , F_2 , $F_3 \in E$ tels que $F_1 \cap F_2 = F_2 \cap F_3 = F_1 \cap F_3 = \{0\}$ alors que la somme $F_1 + F_2 + F_3$ n'est pas directe.
- 2. Soit Φ une forme quadratique définie, on suppose que F_1 , F_2 , F_3 sont deux à deux Φ -orthogonaux. Montrer que F_1 , F_2 et F_3 sont en somme directe.

Exercice 7.

- 1. Soit $q: E \to K$ une forme quadratique sur un espace vectoriel de dimension finie. Pour tout sous-espace vectoriel $F \subset E$, montrer que l'on a $(F^{\perp})^{\perp} = F + N(q)$.
- 2. Soit $q: E \to K$ une forme quadratique et $F, G \subset E$ des sous espaces vectoriels; montrer qu'alors $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$. Lorsque $\dim(E) < \infty$ et q est non-dégénérée, montrer que l'on a $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.