Rashtrasant Tukadoji Maharaj Nagpur University

Department of Mathematics

M.Sc. (Mathematics) Semester I Mid Semester Examination Winter-2022

Time: Two hour	Algebra I	Maximum Marks: 40
Note: Solve Q.1 (A), (B) OR (C)), (D), Q.2 (A), (B) OR (C), ((D)
. 1 (A) State and prove fundamental	theorem of homomorphism.	(10)
(B) Describe all the permutations all the even permutations and	s on the set $\{1,2,3\}$. Find their read all the odd permutation.	spective order. Also, find (10)
	OR	1 set
(C) Let H be a subgroup of a group if $h \in H$ and $x \in G \Longrightarrow xhx^{-1}$	oup G . Prove that H is a normal surface H .	abgroup of G if and only (10)
	etries of a square (Dihedral group D of each possible oreder in dihedral	D_4). (10) group D_4 , and dihedral group D_6 .
2. 2 (A) Prove that A_5 is a simple group	р.	(10)
(B) Prove that every normal series	s of a group G is subnormal but con-	verse may not be true. (10)
	OR	is anything as a single
(C) Prove that $ A_n = \frac{n!}{2}$.		(10)
(D) Prove that any subgroup H o	of a solvable group G is solvable.	(10)

M.Sc. (Mathematics) Semester I MID-SEMESTER EXAMINATION WINTER-2022

Ordinary Differential Equations

[Max.Marks: 40] [Time: 02Hrs] Let ϕ be any solution of an equation $L(y) = y'' + a_1y' + a_2y =$ (A) 0 on an interval I containing a point x_0 . Then prove that for all xin I $\|\phi(x_0)\|e^{-k|x-x_0|} \le \|\phi(x)\| \le \|\phi(x_0)\|e^{k|x-x_0|}$ [10] where $\phi(x)$ is a solution of L(y) = 0. Find two linearly independent solutions of the equation (B) $(3x-1)^2y'' + (9x-3)y' - 9y = 0$, for x > 1/3[10] (C) If ϕ_1 is a solution of $L(y) = y'' + a_1(x)y' + a_2(x)y = 0$ on an interval I and $\phi_1(x) \neq 0$ on I, then prove that a second solution ϕ_2 is given by

 $\phi_2(x) = \phi_1(x) \int_{x_0}^x \frac{1}{[\phi_1(s)]^2} \exp\left[-\int_{x_0}^s a_1(t)dt\right] ds$ [10]

(D) If $\phi_1(x) = x$ and $\phi_2(x) = x^3$ are solutions of $x^3y''' - 3xy' + 3y = 0, x > 0$ then find a third independent solution of the equation. [10]

2 (A) Show that φ₁(x) = |x|^{r₁} and φ₂(x) = |x|^{r₂} are the solutions of the Euler equation x²y" + a x y' + b y = 0, a, b are constants and r₁, r₂ are distinct roots of q(r) = r(r - 1) + ar + b = 0. Discuss the case when r₁ = r₂
(B) Find a solution of the equation 2x²y" + (x² - x)y' + y = 0 in the form of

$$\phi(x) = x^r \sum_{k=0}^{\infty} c_k x^k, x > 0$$
 [10]

[20]

(C) Consider the equation $x^2y'' + a(x)xy' + b(x)y = 0$, where a(x), b(x) have power series expansions convergent for $|x| < r_0, r_0 > 0$. Let r_1, r_2 are roots of indicial polynomial q(r) = 0. Discuss the solutions for the cases (i) $r_1 = r_2$ and (ii) $r_1 - r_2$ is positive integer.

M.Sc. (Mathematics) Semester III MID SEMESTER EXAMINATION WINTER-2022 PROBABILITY AND DISTRIBUTION THEORY

[Time: 02Hrs] [Max.Marks:40]

F. and P. G. F. and hence the mean and variance of the binomial distribution. Give the p.m.f of Poisson distribution. Show that Poisson distribution can be obtained as a limiting case of Binomial distribution. OR Define Geometric distribution. State and prove the lack of memory property of Geometric distribution. Define (a) Joint probability density function (b) Marginal density function	[10]
Give the p.m.f of Poisson distribution. Show that Poisson distribution can be obtained as a limiting case of Binomial distribution. OR Define Geometric distribution. State and prove the lack of memory property of Geometric distribution. Define (a) Joint probability density function	[10]
distribution can be obtained as a limiting case of Binomial distribution. OR Define Geometric distribution. State and prove the lack of memory property of Geometric distribution. Define (a) Joint probability density function	[10]
OR Define Geometric distribution. State and prove the lack of memory property of Geometric distribution. Define (a) Joint probability density function	
OR Define Geometric distribution. State and prove the lack of memory property of Geometric distribution. Define (a) Joint probability density function	100000000000000000000000000000000000000
memory property of Geometric distribution. Define (a) Joint probability density function	100000000000000000000000000000000000000
Define (a) Joint probability density function	
(b) Marginal density function	The Mark
(c) Conditional density function	[06]
The joint p.d.f of two continuous r.vs X and Y is given by	1
$f(x,y) = (2x+y) e^{-x-y}$ for $x > 0$ and $y > 0$ then find the	
marginal densities of X and Y	[04]
Define univariate Normal distribution. Obtain its M. G. F	
and hence the first two moments of it.	[10]
Define Cauchy distribution. Derive its p.d.f. Show that the	[-1
moments of order ≥ 1 , do not exist.	[10]
OR	
	[10]
1' . '1 .'	[10]
	(c) Conditional density function The joint p.d.f of two continuous r.vs X and Y is given by f(x,y) = (2x+y) e ^{-x-y} for x > 0 and y > 0 then find the marginal densities of X and Y Define univariate Normal distribution. Obtain its M. G. F and hence the first two moments of it. Define Cauchy distribution. Derive its p.d.f. Show that the moments of order ≥ 1, do not exist. OR Define Gamma Distribution. Derive its M.G.F. State and prove the additive property of Gamma distribution. Define the Beta distribution of first kind and Beta distribution of second kind. For the first kind of Beta distribution obtain the rth raw moments and hence the mean. Also compute the harmonic mean of Beta

M.Sc. (Mathematics) Semester I
MID SEMESTER EXAMINATION WINTER-2022
REAL ANALYSIS-I

[Time: 02Hrs]	[Max.Mark	s:40]
Que 1 A)	Suppose $\{f_n\}$ is a sequence of functions differentiable on $[a, b]$ and such that $\{f_n(x_0)\}$ converges for some point x_0 on $[a, b]$. If sequence $\{f_n'\}$ converges uniformly on $[a, b]$ then prove that $\{f_n\}$ converges uniformly on $[a, b]$ to a function f and $f'(x) = f(x_0)$.	
B)	$\lim_{n\to\infty} f_n'(x), x\in [a,b]$ Suppose K is compact, and a) $\{f_n\}$ is a sequence of continuous functions on K, b) $\{f_n\}$ converges pointwise to a continuous function f on K, c) $f_n(x) \ge f_{n+1}(x)$ for all $x \in K, n = 1,2,$ Then prove that $f_n \to f$ uniformly on K.	[10]
	OR	[10]
C)		[10]
D)		[10]
Que 2 A)	Prove the following a) If $A \in L(R^n, R^m)$, then prove that $ A < \infty$ and A is uniformly continuous mapping of R^n into R^m . b) If $A, B \in L(R^n, R^m)$ and c is a scalar, then $ A + B \le A + B $ and $ cA = c A $. With the distance between A and B defined as $ A - B $, then $L(R^n, R^m)$ is a metric space.	[10]
ω)	State and prove the chain rule. OR	[10]
C)	Let Ω be the set of all invertible linear operators on \mathbb{R}^n . a) If $A \in \Omega$, $B \in L(\mathbb{R}^n)$ and $ B - A * A^{-1} < 1$, then prove that $B \in \Omega$.	
D)	b) Ω be an open subset of $L(R^n)$ and the mapping A to A^{-1} is continuous on Ω . State and prove Contraction mapping theorem.	[10]

M.Sc. (Mathematics) Semester I MID SEMESTER EXAMINATION WINTER-2022 TOPOLOGY

PT' - OAYY	TOPOLOGY	
[Time: 02Hrs]		[Max.Marks: 40]
Que 1: A) Prove that		
(p)		
$Q_{+} = \left\{ \frac{p}{q} \mid p, q \in Z_{+}, q \neq 0 \right\} \text{ is cou}$	ntable.	(8 Marks) 🦻
B) Prove that a finite product of co	ountable set is countable.	(12 Marks) •
	OR	
C) Prove that		(1436.136
(i) $N_0 N_0 = N_0$		(14 Marks)
(ii) $N_0 c = c$		
(iii) $c.c = c$		
D) Drove that		
D) Prove that		(6 Marks)
$N_0 + N_0 = N_0$		
One: 2 A) If (V a) is a family in		
the. 2 A) II (A, t) is a topological sp	pace and $E \subseteq X$ then $c(E) = E \cup d(E)$.	(10 Marks) •
B) A family β of sets is a base for a	topology for the set $X = \bigcup \{B \mid B \in \beta \}$	6 1 1 100
$B_1, B_2 \in \beta$ and for any $x \in B_1 \cap B_2$	their exist a set $B \in \beta$ such that $x \in B \subseteq$	if and only if for any
2 ,	then exist a set $B \in p$ such that $x \in B \subseteq$	$B_1 \cap B_2$.
		(10 Marks)
	OR	(and the state of
C) D d	OK	
C) Prove that $i(E) = \sim c(\sim E)$		(12 Marks)
D) Let $\{E_{\alpha}\}$ be a collection of sets I X has the following property.	E_{α} in a topological space (X, τ) , then the	e closure operator in
i) $\underset{\alpha}{\bigcup} c\left(E_{\alpha}\right) \subseteq c\left(\underset{\alpha}{\bigcup} E_{\alpha}\right)$	ii) $\bigcap_{\alpha} c(E_{\alpha}) \supseteq c(\bigcap_{\alpha} E_{\alpha})$	(8Marks)