Differential Equations. Week 3

Check that the following differential equations are exact

- 1. (Filippov 186) $2xydx + (x^2 y^2)dy = 0$.
- 2. (Filippov 189) $\frac{y}{x}dx + (y^3 + \ln x)dy = 0$.
- 3. (Filippov 192) $(1 + y^2 \sin 2x) dx 2y \cos^2 x dy = 0$.

Solve the following equations by finding an integrating factor of suitable form, or by making a suitable change of variables.

- 4. (Filippov 195) $(x^2 + y^2 + x)dx + ydy = 0$.
- 5. (Filippov 197) $ydy = (xdy + ydx)\sqrt{1 + y^2}$.
- 6. (Filippov 198) $xy^2(xy' + y) = 1$.
- 7. (Filippov 200) $(y \frac{1}{x})dx + \frac{dy}{y} = 0$.

Solve linear first order differential equation.

- 8. (Filippov 137) (2x+1)y' = 4x + 2y.
- 9. (Filippov 141) $y = x(y' x \cos x)$.
- 10. (Filippov 153) $y' = y^4 \cos x + y \tan x$.
- 11. (Filippov 161) Choose the appropriate independent variable so that the equation $xdx = (x^2 2y + 1)dy$ becomes linear and solve it.
- 12. (Filippov 165) Transform the integral equation $y(x) = \int_0^x y(t)dt + x + 1$ to the differential equation and find its solution.
- 13. (Filippov 177) It is known that y_1 and y_2 are two distinct solutions of the first order linear differential equation. Express the general solution in terms of y_1 and y_2 .

Homework: Filippov 151, 178, 173.