Math 554

Homework 1

Here are the axioms we have for the order < on the real numbers \mathbb{R} (see the text, Page 2).

(F) For $a, b \in \mathbb{R}$ exactly one of the following holds

$$a < b$$
, $a = b$, or $b < a$.

(Trichotomy principle.)

- (G) If a < b and b < c then a < c (transitivity).
- **(H)** If a < b then for any c we have a + c < b + c. If c > 0 then we also have ac < bc.

In class we showed

Proposition 1. If a < b and c < d, then a + c < b + d.

Proposition 2. If a, c > 0 and a < b and c < d, then ac < bd.

Problem 1. Prove this.

Problem 2. Show a > 0 implies -a < 0. *Hint:* By trichotomy one of -a < 0, -a = 0, or -a > 0 holds. Show that -a = 0 and -a > 0 each lead to a contradiction, which only leaves -a < 0.

Problem 3. Show a < 0 implies -a > 0.

Combining the last two problems gives

Proposition 3. For $a \in \mathbb{R}$ we have a > 0 if and only if -a < 0.

We use the standard notations $a \le b$ to mean a < b or a = b and a > b to mean b < a etc.

Proposition 4. For $a, b \in \mathbb{R}$ show

- (a) a > 0 and b < 0 implies ab < 0,
- (b) a < 0 and b > 0 implies ab < 0, and
- (c) a < 0 and b < 0 implies ab > 0.

Problem 4. Prove this.

Definition 5. If $a \in \mathbb{R}$ the **absolute value** of a is

$$|a| := \begin{cases} a, & a \ge 0; \\ -a, & a < 0. \end{cases}$$

Geometrically |a| is the distance of a from the origin.

Proposition 6. For $a \in \mathbb{R}$

- (a) $|a| \ge 0$,
- (b) |-a| = |a|,
- (c) $a \leq |a|$, and
- (d) $|a|^2 = a^2$.

Problem 5. Prove this.

Proposition 7. If $a, b \in \mathbb{R}$ then |ab| = |a||b|.

Problem 6. Prove this.

Proposition 8. For $a, b \in \mathbb{R}$

$$|a| \le |b|$$
 if and only if $a^2 \le b^2$.

Problem 7. Prove this.

Theorem 9 (Triangle inequality). If $a, b \in \mathbb{R}$ then

$$|a+b| \le |a| + |b|.$$

Problem 8. Prove this. *Hint*: In light of Proposition 8 it is enough to show $|a+b|^2 \le (|a|+|b|)^2$. But $|a+b|^2 = (a+b)^2 = a^2 + 2ab + b^2$ and $(|a|+|b|)^2 = |a|^2 + 2|a||b| + |b|^2 = a^2 + 2|a||b| + b^2$.