Name: Schinteie Gheorghe - Flessandru Group: 3.1 (C.T. I ENG) Lab 1+2

The spring elastic constant evaluation

1. Purpose

The objective of the experiment is to determine the spring constant of a spiral spring using Hooke's law and the period of oscillatory motion in response to a weight. Apparatus: A spiral spring, a set of weights, a weight hanger, a stop watch, and a lab scale.

2. Theory

A. Static method

We use a spiral spring with elastic constant k and undeformed length l_0 and bodies with different mass.

Fig. 1.

When a spring is stretched, according to Hooke's law, a restoring force F proportional to its elongation, x (or $\Delta l=l-l_o$) appears. Every spring obeys the Hooke's law if the deformation is not too great.

$$\vec{F}_e = -k\vec{\Delta l} \tag{1}$$

For the equilibrium

$$\Rightarrow mg = k\Delta l \tag{2}$$

$$k = \frac{mg}{\Delta l} \tag{3}$$

B. Dynamic method

When we move the body connected to a spring from its equilibrium position it starts to oscillate around the equilibrium position under the action of restoring (elastic) force. With x the distance from equilibrium position the Newton's second law is:

$$ma = -kx$$

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$
(4)

We note $\omega = \sqrt{\frac{k}{m}}$ and we call it the natural angular frequency. The second Newton law for the spring (5) is a differential equation having the solution

$$x(t) = A\sin(\omega t + \varphi) \tag{7}$$

The period for the harmonic oscillation is connected to the natural angular frequency throught:

$$\omega = \frac{2\pi}{T} \tag{8}$$

$$\omega = \frac{2\pi}{T}$$

$$k = m\omega^2 = 4\pi^2 \frac{m}{T^2}$$
(8)

hat to do

3. What to do

Static method

1) We measure the undeformed spring length lo.

- 2) We hang the weight hanger with mass m_1 on the spring and we measure the deformed spring length l_1 . We calculate the spring elongation Δl_1 .
- 3) Successively we hang weights (m_i) and we calculate corresponding spring elongations Δl_i .

4) Use the Table 1. for experimental data and calculate elastic constant using relation (3).

- 5) Plot the graph of force (the deformative force) produced by different masses (F=m·g) as a function of the displacement from equilibrium Δl : $F(\Delta l)$. The data should be linear. Hence, the slope of the line will be equal to the spring constant k according to the relation 2.
- $k_{true} = \overline{k} \pm \sigma_{\overline{k}}$, where \overline{k} is the arithmetic mean and $\sigma_{\overline{k}}$ is the standard deviation of the 6) Final result: mean.

$$\Delta k_i = k_i - \overline{k}$$
 $\overline{\Delta k} = \frac{\sum |\Delta k_i|}{n}$ $\sigma_{\overline{k}} = \sqrt{\frac{\sum_{1}^{n} (\Delta k_i)^2}{n(n-1)}}$

Table 1. $l_0 = 44$ cm

Nr.	m	l	Δl	F	k	Ī _k	Δk	σ-	7.
crt	[kg]	[cm]	[m]	[N]	[N/m]	[N/m]	[N/m]	$\sigma_{\overline{k}}$ [N/ m]	k _{true} N/m]
1	0,05	50 S	0,065	0,43	7,538	[2 1/ 222]	0266	[11/111]	[14/111]
2	066 ر0	53.5	0,035	0,646	6,8		-0,372		
3	6,083	55_	0,11	0,8/3	7.39		0,218		
4	0,091	56.5	0,125	0,831	7,128		-0.044		7,172±006
5	0,033	57,5	0,135	0,97	7,185	7,172	0.013	0,061	1,112-000
6	0,105	585	0,145	1,029	7.036		-0.076		
7	0,134	62,5	0,185	1,313	7,097	1	-0,075		
8	0178	68,5	0,245	6744	4,118	1	-0,054		
9	0,207		0,28	2,028	7,242]	0,07		
10	0,24	79	0,33	2,352	4,127		-0,045		

Dynamic method

- 1) Hang the weight hanger with several weights (mass m₁) on the spring and set the equilibrium position of the system.
- 2) Pull the system out of its equilibrium position to make oscillations with 1-2cm amplitude.
- 3) Record the time for n=20 oscilations and find the period: T = t/n.
- 4) Repeat 1), 2) and 3) for different masses.
- 5) Complete the Table 2 using relation (9) for elastic constant.
- 6) Plot the graph of T²(s²) as function of m(kg). The data should be linear. Find elastic constant from the slope (i.e. $T^2 = \frac{4\pi^2}{k} m \iff y = \text{slope} \cdot x$).
- 7) Final result: $k_{true} = \bar{k} \pm \sigma_{\bar{k}}$, where \bar{k} is the arithmetic mean and $\sigma_{\bar{k}}$ is the standard deviation of the mean.

$$\Delta k_i = k_i - \overline{k} \qquad \qquad \overline{\Delta k} = \frac{\sum |\Delta k_i|}{n} \qquad \qquad \sigma_{\overline{k}} = \sqrt{\frac{\sum_1^n (\Delta k_i)^2}{n(n-1)}}$$

Table 2.

L Z.										
Nr.	m	t		T	T^2	k	\overline{k}	Δk	$\sigma_{ar{k}}$	k _{true}
crt.	[kg]	[s]	n	[s]	(s^2)	[N/m]	[N/m]	[N/m]	[N/m]	[N/m]
1	0,06	6,36	12	0,58	0,336	7,047		-0,202		
2	0,09	8,306	12	0,632	0,478	7,43	1	0.191		
3	0,12	5,763	12	0,813	0,66	7,145	_	-0.074		
4	0,15	10,875	12	0,306	0,82	7,218	7,249	-0.031	1.0	7249±904
5	0,18	11,905	12	0,332	0,984	7,218	1,5	-0,031	Q048	0-1
6	0,21	12,743	12	1,061	1,125	7,366	1	0.117		
7	0,24	13,576	12	1,131	1,279	7, 405	1	0.156		1 1
8	0,27	14,666	12	1,222	7,493	7,136	1	-0113		

Compare the results obtained by the 2 methods, respectively by arithmetic and graphic mediation !!


```
5. m = 0.099 \text{ Kg}
  Q=57,5 cm
                                                 0,099
  20 = 44 cm
                                                 9,8
                                           0792
  DQ = 57,5-44=13,5 cm => Ol = 0,135 m
                                          0831
  7= 0,093.9,8 = 0,87 N
                                            0,9702
   K = \frac{0.97}{0.135} = 7,185 N/m
                                              0,105.
                                          9,8
6. m = 0,105 kg
  Q=585 cm
                                        1,0230
  lo=44 cm
  Ne=58,5-44 = 14,5 cm => Sl=0,145 m
  F = 0,105. 3,8 = 1,029 N
   K = \frac{13029}{0.145} = 7.036 N/m
                                            0,134
                                      9,8
  m= 0135 0,134 Kg
  2=62,5 cm
  20=44 cm
   Dl=62,5-44=18,5 cm = Dl=0,185 m
   T = 0,134 · B,8 = 1,313 N
   K = \frac{15313}{9.185} = 7,097 N/m
                                           0,178.
                                   1424
  m = 0,178 Kg
= 68,5 cm
                                      1,7444
  2 = 44 cm
  DL = 68,5 - 44 = 24,5 \text{ cm} = 7DL = 0,245 \text{ m}
  7=0,178.9,8=1,744 N.
  K = 1,744 = 7,118 N/m
```


 $\Delta K_1 = 7,538 - 7,172 = 0,366 N/m$ △K2=6,8-7,172=-0,372N/m DK3 = 7,39-7,172 = 0,218 N/m DK, = 7,128-7,172 = -0,044 N/m DK-= 7,185-7,192=0,013 N/m 1 K = 7,036 - 7,172 = -0,076 N/m DKy = 7,095-7,172=-0,075N/m DK8=7,118-7,172 =-0,054 N/m DKg=7,242-7,172=0,07 N/m DK = 7127 -7172 = -0045 N/m $\frac{\sum_{1}^{10} (0,366 - 0,372 + 0,218 - 0,044 + 0,013 - 0,076 - 0,075 - 0,054 + 0,07 - 0,076$ 5K=0,061 N/m K = 7,172 = 0,061.