

수학 계산력 강화

(2)도형의 대칭이동

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2018-06-04

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다. ◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

01 / 도형의 대칭이동

(1) x축에 대한 대칭이동 (y대신 -y대입)

: $f(x,y) = 0 \rightarrow f(x, -y) = 0$

(2) y축에 대한 대칭이동 (x대신 -x대입)

: $f(x,y) = 0 \rightarrow f(-x,y) = 0$

(3) 원점에 대한 대칭이동 (x대신 -x, y대신 -y대입)

: $f(x,y) = 0 \rightarrow f(-x, -y) = 0$

(4) 직선 y=x에 대한 대칭이동 (x대신 y, y대신 x를 대입)

 $: f(x,y) = 0 \rightarrow f(y,x) = 0$

(5) 직선 y=-x에 대한 대칭이동 (x대신 -y, y대신

 $: f(x,y) = 0 \longrightarrow f(-y,-x) = 0$

☑ 다음 방정식이 나타내는 도형을 x축에 대하여 대칭 이동한 도형의 방정식을 구하여라.

1. y = -x + 2

2. y = -4x + 5

3. $y = x^2 - 2x + 2$

4. $y = 2x^2 - 7x + 3$

5. $(x+1)^2 + (y-1)^2 = 1$

6. $x^2 + y^2 - 4x + 4y - 10 = 0$

□ 다음 방정식이 나타내는 도형을 y축에 대하여 대칭 이동한 도형의 방정식을 구하여라.

7. y = -3x - 1

8. x+2y-4=0

9. $y = x^2 - 4$

10. $y = -x^2 + 7$

11. $(x+2)^2 + (y-1)^2 = 9$

12. $x^2 + y^2 - 4x + 4y - 12 = 0$

 □ 다음 방정식이 나타내는 도형을 원점에 대하여 대칭 이동한 도형의 방정식을 구하여라.

13. x-4y-5=0

14. 2x-3y+5=0

15.
$$y = -x^2 + 2x$$

16.
$$y = x^2 - x + 2$$

17.
$$(x-2)^2 + (y-2)^2 = 4$$

18.
$$x-y^2+4y-2=0$$

ightharpoonup 다음 방정식이 나타내는 도형을 직선 y=x에 대하 여 대칭이동한 도형의 방정식을 구하여라.

19.
$$y = 3x + 1$$

20.
$$2x-y+5=0$$

21.
$$y = x^2 + 1$$

22.
$$x-3y^2+6y-5=0$$

23.
$$(x-2)^2 + (y+2)^2 = 4$$

24.
$$x^2 + y^2 - 8x - 2 = 0$$

 \blacksquare 다음 방정식이 나타내는 도형을 직선 y=-x에 대하 여 대칭이동한 도형의 방정식을 구하여라.

25.
$$y = 3x - 4$$

26.
$$2x+3y+2=0$$

27.
$$y = -2x^2 + 3$$

28.
$$y = 2x^2 - x + 5$$

29.
$$(x-1)^2 + (y+3)^2 = 1$$

30.
$$x^2 + y^2 + 4x + 2y - 1 = 0$$

☑ 다음을 주어진 점 또는 직선에 대하여 대칭이동한 도형의 방정식을 구하여라.

31.
$$x-2y-4=0$$

- (1) x축
- (2) y축
- (3) 원점
- (4) 직선 y = x
- (5) 직선 y =-x

- **32.** $y = x^2 + 6x + 1$
- (1) x축
- (2) y축
- (3) 원점
- (4) 직선 y = x
- (5) 직선 y =-x
- **33.** $(x+2)^2 + (y+1)^2 = 5$
- (1) x축
- (2) y축
- (3) 원점
- (4) 직선 y = x
- (5) 직선 y = -x
- **34.** $x^2 + y^2 2x 2y + 1 = 0$
- (1) *x*축
- (2) y축
- (3) 원점
- (4) 직선 y = x
- (5) 직선 y =-x
- **35.** $x^2+y^2+4x-2y+4=0$
- (1) x축
- (2) y축
- (3) 원점
- (4) 직선 y = x
- (5) 직선 y=-x

- ☑ 다음 도형을 원점에 대하여 대칭이동한 다음, 직선 y = -x에 대하여 대칭이동한 도형의 방정식을 구하 여라.
- **36.** y = -x + 1
- **37.** 2x+4y-1=0
- **38.** 5x-y+3=0
- ☑ 다음 도형을 원점에 대하여 대칭이동한 다음, 직선 y = x에 대하여 대칭이동한 도형의 방정식을 구하여 라.
- **39.** y = 2x + 4
- **40.** 3x-3y+6=0
- **41.** x-y-2=0
- ightharpoonup 다음 도형을 직선 y=-x에 대하여 대칭이동한 다 음, 원점에 대하여 대칭이동한 도형의 방정식을 구하 여라.
- **42.** $y = -x^2 + 2x + 1$
- **43.** $(x-2)^2 + (y+4)^2 = 9$

- **44.** $x-y^2+6y-1=0$
- \blacksquare 다음 도형을 직선 y=x에 대하여 대칭이동한 다음, 원점에 대하여 대칭이동한 도형의 방정식을 구하여
- **45.** $y = x^2 4x$
- **46.** $(x-1)^2 + (y+4)^2 = 1$
- **47.** $x-y^2+2y+3=0$
- ☑ 다음 도형의 방정식을 구하여라.
- **48.** 직선 x+2y+3=0을 x축에 대하여 대칭이동한 후, 다시 원점에 대하여 대칭이동한 직선
- **49.** 직선 2x-y+3=0을 y축에 대하여 대칭이동한 후, 다시 직선 y=x에 대하여 대칭이동한 직선
- **50.** 원 $x^2+y^2+2x-4y+4=0$ 을 원점에 대하여 대칭 이동한 후, 다시 x축에 대하여 대칭이동한 도형
- **51.** 원 $x^2+y^2+4x-6y+9=0$ 을 직선 y=-x에 대 하여 대칭이동한 후, 다시 y축에 대하여 대칭이동한 도형

- \blacksquare 두 직선 l,m이 x축에 대하여 대칭일 때, 상수 a,b의 값을 구하여라.
- **52.** l: y = ax + 4, m: 2x + y + b = 0
- **53.** l:y+ax-5=0, m:-3x-y-b=0
- **54.** l: y = -x + 2a, m: x + by + 4 = 0
- l 위에 있을 때, 상수 k의 값을 구하여라.
- **55.** $O: x^2 + y^2 2kx 4y 8 = 0$, l: y = 2x + 1
- **56.** $O: x^2 + y^2 2kx 6y + 4 = 0$, l: y = -x + 3
- **57.** $O: x^2 + y^2 4x + 2y = 0$, l: y = x + k
- **58.** $O: x^2 + y^2 + 2x 6y = 2$, l: y = -2x k
- \blacksquare 원 O를 직선 y=x에 대하여 대칭이동한 원의 중심 이 직선 l 위에 있을 때, 상수 k의 값을 구하여라.
- **59.** $O:(x-3)^2+y^2=4$, l:y=x-k
- **60.** $O: x^2 + (y+1)^2 = 4$, l: y = -3x + k

- **61.** $O: (x+2)^2 + (y-1)^2 = 5$, l: y = -2x + k
- **62.** $O: (x-3)^2 + (y-1)^2 = 4$, l: x-4y=k
- \blacksquare 직선 l을 직선 y=-x에 대하여 대칭이동하면 원 O의 넓이를 이동분할 때, 상수 k의 값을 구하여라.
- **63.** l:-2x+4y+1=0. $O:(x-k)^2+(y-2)^2=1$
- **64.** l: x+3y+1=0, $O: (x+1)^2+(y-k)^2=4$
- **65.** l: 3x-y+3=0, $O: (x+k)^2+(y-2)^2=9$
- \blacksquare 중심이 A이고 반지름의 길이가 k인 원을 x축에 대 하여 대칭이동하면 점 P를 지난다고 할 때, 양수 k의 값을 구하여라.
- **66.** A(1, -4), P(2, 1)
- **67.** A(3,-2), P(-3,0)
- **68.** A(-2,3), P(2,-2)
- **69.** A(-1, -3), P(1, 3)

- * 다음을 만족시키는 상수 k의 값을 구하여라.
- 70. 직선 y = kx + 4를 y축에 대하여 대칭이동하였다 니 원 $x^2+y^2-4x+4y+7=0$ 의 넓이를 이등분한다.
- **71.** 직선 2x-y+k=0를 원점에 대하여 대칭이동하 였더니 원 $x^2+y^2-2x-8y+12=0$ 에 접한다.
- **72.** 원 $(x-1)^2+(y+2)^2=4$ 를 직선 y=x에 대하여 대칭이동한 원의 중심이 직선 y = kx + 3 위에 있다.
- **73.** 직선 x-y+k=0을 y축에 대하여 대칭이동하면 워 $(x-2)^2 + (y+1)^2 = 2$ 에 접한다.
- **74.** 직선 x+3y+k=0을 직선 y=x에 대하여 대칭 이동한 후, 다시 y축에 대하여 대칭이동한 직선이 점 (4,1)을 지난다.
- **75.** 직선 x-3y+7=0을 직선 y=x에 대하여 대칭 이동한 후, 다시 x축의 방향으로 -1만큼 평행이동 하면 원 $x^2 + y^2 = k$ 에 접한다.
- **76.** 직선 y = 2x + 1을 y축의 방향으로 k만큼 평행이 동한 후, 다시 직선 y = x에 대하여 대칭이동하였더 니 원 $x^2+y^2-4x-5=0$ 의 넓이를 이동분한다.

77. 직선 y = -2x + k를 직선 y = x에 대하여 대칭이 동한 후, x축의 방향으로 -2만큼, y축의 방향으로 2만큼 평행이동하였더니 원 $(x+2)^2+(y-4)^2=16$ 의 넓이를 이등분한다.

- **79.** 직선 3x-2y+4k=0을 x축의 방향으로 2만큼, y축의 방향으로 -1만큼 평행이동한 후, 다시 x축 대하여 대칭이동하였더니 $x^2+y^2-4x+10y+16=0$ 에 접한다.
- f(x,y)=0의 그래프가 다음 그림과 같을 때, 다음 방정식을 그래프로 나타내어라.

80. f(x+3,y)=0

81. f(x,y-1)=0

82. f(x-1,y+1)=0

방정식을 그래프로 나타내어라.

83. f(x, -y) = 0

84. f(-x,y) = 0

85. f(-x,-y) = 0

86. f(y,x) = 0

87. f(-y,-x)=0

정답 및 해설

- 1) y = x 2
- $\Rightarrow y = -x + 2$ 에 y 대신 -y를 대입하면 -y = -x + 2 $\therefore y = x - 2$
- 2) y = 4x 5
- $\Rightarrow -y = -4x + 5$
- $\therefore y = 4x 5$
- 3) $y = -x^2 + 2x 2$
- $\Rightarrow y = x^2 2x + 2$ 에 y 대신 -y를 대입하면 $-y = x^2 - 2x + 2$
- $\therefore y = -x^2 + 2x 2$
- 4) $y = -2x^2 + 7x 3$
- $\Rightarrow -y = 2x^2 7x + 3$
- $\therefore y = -2x^2 + 7x 3$
- 5) $(x+1)^2 + (y+1)^2 = 1$
- \Rightarrow $(x+1)^2 + (y-1)^2 = 1$ 에 y 대신 -y를 대입하면 $(x+1)^2 + (-y-1)^2 = 1$
- $\therefore (x+1)^2 + (y+1)^2 = 1$
- 6) $x^2 + y^2 4x 4y 10 = 0$
- $\Rightarrow x^2 + y^2 4x + 4y 10 = 0$ 에 y 대신 -y를 대입하면 $x^{2} + (-y)^{2} - 4x + 4 \cdot (-y) - 10 = 0$
- $\therefore x^2 + y^2 4x 4y 10 = 0$
- 7) y = 3x 1
- $\Rightarrow y = -3x 1$ 을 y축에 대하여 대칭이동하면
- x 대신 -x를 대입하므로 y=3x-1
- 8) x-2y+4=0
- $\Rightarrow x+2y-4=0$ 에 x 대신 -x를 대입하면
- -x+2y-4=0
- $\therefore x 2y + 4 = 0$
- 9) $y = x^2 4$
- $\Rightarrow y = x^2 4$ 에 x 대신 -x를 대입하면 $y = (-x)^2 - 4$: $y = x^2 - 4$
- 10) $y = -x^2 + 7$
- $\Rightarrow y = -(-x)^2 + 7 :: y = -x^2 + 7$
- 11) $(x-2)^2 + (y-1)^2 = 9$
- \Rightarrow $(x+2)^2 + (y-1)^2 = 9$ 에 x 대신 -x를 대입하면 $(-x+2)^2 + (y-1)^2 = 9$

$$(x-2)^2 + (y-1)^2 = 9$$

- 12) $x^2 + y^2 + 4x + 4y 12 = 0$
- $\Rightarrow (-x)^2 + y^2 4 \cdot (-x) + 4y 12 = 0$
- $\therefore x^2 + y^2 + 4x + 4y 12 = 0$
- 13) x-4y+5=0
- $\Rightarrow -x-4\cdot(-y)-5=0$
- $\therefore x 4y + 5 = 0$
- 14) 2x-3y-5=0
- 2x-3y+5=0에 x 대신 -x, y 대신 -y를 대입하
- 2(-x) 3(-y) + 5 = 0
- -2x+3y+5=0
- $\therefore 2x 3y 5 = 0$
- 15) $y = x^2 + 2x$
- $\Rightarrow y = -x^2 + 2x$ 에 x 대신 -x, y 대신 -y를 대입하
- $-y = -(-x)^2 + 2(-x)$
- $\therefore y = x^2 + 2x$
- 16) $y = -x^2 x 2$
- $\Rightarrow -y = (-x)^2 (-x) + 2$
- $\therefore y = -x^2 x 2$
- 17) $(x+2)^2 + (y+2)^2 = 4$
- \Rightarrow $(x-2)^2 + (y-2)^2 = 4$ 에 x 대신 -x, y 대신 -y를 대입하면 $(-x-2)^2+(-y-2)^2=4$
- $\therefore (x+2)^2 + (y+2)^2 = 4$
- 18) $x+y^2+4y+2=0$
- $\Rightarrow x-y^2+4y-2=0$ 에 x 대신 -x, y 대신 -y를 대 입하면 $-x-(-y)^2+4(-y)-2=0$
- $\therefore x + y^2 + 4y + 2 = 0$
- 19) x 3y 1 = 0
- $\Rightarrow y = 3x + 1$ 에 x 대신 y, y 대신 x를 대입하면 x = 3y+1 : x - 3y - 1 = 0
- 20) x-2y-5=0
- $\Rightarrow 2x-y+5=0$ 에 x 대신 y, y 대신 x를 대입하면 2y-x+5=0 : x-2y-5=0
- 21) $x-y^2-1=0$
- $\Rightarrow y = x^2 + 1$ 에 x 대신 y, y 대신 x를 대입하면 $x = y^2 + 1$: $x - y^2 - 1 = 0$
- 22) $y = 3x^2 6x + 5$
- $\Rightarrow y-3x^2+6x-5=0$
 - $\therefore y = 3x^2 6x + 5$

- 23) $(x+2)^2 + (y-2)^2 = 4$
- \Rightarrow $(x-2)^2+(y+2)^2=4$ 에 x 대신 y, y 대신 x를 대입하면

$$(y-2)^2 + (x+2)^2 = 4$$
 : $(x+2)^2 + (y-2)^2 = 4$

- 24) $x^2 + y^2 8y 2 = 0$
- $\Rightarrow x^2+y^2-8x-2=0$ 에 x 대신 y, y 대신 x를 대입하면

$$y^2 + x^2 - 8y - 2 = 0$$
 : $x^2 + y^2 - 8y - 2 = 0$

- 25) x 3y 4 = 0
- \Rightarrow y=3x-4에 x 대신 -y, y 대신 -x를 대입하면 -x=-3y-4 \therefore x-3y-4=0
- 26) 3x + 2y 2 = 0
- \Rightarrow 2x+3y+2=0에 x 대신 -y, y 대신 -x를 대입하면

$$-2y-3x+2=0$$
 : $3x+2y-2=0$

- 27) $x = 2y^2 3$
- \Rightarrow $y=-2x^2+3$ 에 x 대신 -y, y 대신 -x를 대입하면

$$-x = -2 \cdot (-y)^2 + 3$$
 : $x = 2y^2 - 3$

- 28) $x = -2y^2 y 5$
- $\Rightarrow -x = 2 \cdot (-y)^2 (-y) + 5$

$$\therefore x = -2y^2 - y - 5$$

- 29) $(x-3)^2 + (y+1)^2 = 1$
- \Rightarrow $(x-1)^2 + (y+3)^2 = 1$ 에 x 대신 -y, y 대신 -x 를 대입하면 $(-y-1)^2 + (-x+3)^2 = 1$

$$\therefore (x-3)^2 + (y+1)^2 = 1$$

- 30) $x^2 + y^2 2x 4y 1 = 0$
- $\Rightarrow x^2 + y^2 + 4x + 2y 1 = 0 \text{ M } x \text{ 대신 } -y, y \text{ 대신 } -x$ 를 대입하면

$$(-y)^2 + (-x)^2 + 4 \cdot (-y) + 2 \cdot (-x) - 1 = 0$$

- $\therefore x^2 + y^2 2x 4y 1 = 0$
- 31) (1) x+2y-4=0 (2) x+2y+4=0 (3) x-2y+4=0 (4) 2x-y+4=0 (5) 2x-y-4=0
- \Rightarrow (1) x축: x-2(-y)-4=0, 즉 x+2y-4=0
- (2) $y \stackrel{\text{def}}{=} (-x) 2y 4 = 0$, $\stackrel{\text{def}}{=} x + 2y + 4 = 0$
- (3) 원점: (-x)-2(-y)-4=0, = x-2y+4=0
- (4) 직선 y=x: y-2x-4=0, 즉 2x-y+4=0
- (5) 직선 y = -x: (-y) 2(-x) 4 = 0, 즉 2x y 4 = 0
- 32) (1) $y = -(x+3)^2 + 8$ (2) $y = (x-3)^2 8$ (3)

$$y = -(x-3)^2 + 8$$
 (4) $x = (y+3)^2 - 8$ (5) $x = -(y-3)^2 + 8$

- $\Rightarrow y = x^2 + 6x + 1$ of $|x| = (x+3)^2 8$
- (1) x축: $-y = (x+3)^2 8$

- $y = -(x+3)^2 + 8$
- (2) $y = \{(-x) + 3\}^2 8$
- $\frac{5}{3}$, $y = (x-3)^2 8$
- (3) 원점: $-y = \{(-x) + 3\}^2 8$
- -, $y = -(x-3)^2 + 8$
- (4) 직선 y=x: $x=(y+3)^2-8$
- (5) 직선 y = -x: $-x = \{(-y) + 3\}^2 8$
- -, $x = -(y-3)^2 + 8$
- 33) $(1) \qquad (x+2)^2 + (y-1)^2 = 5$ (2)

$$(x-2)^2 + (y+1)^2 = 5$$
 (3) $(x-2)^2 + (y-1)^2 = 5$

(4)
$$(x+1)^2 + (y+2)^2 = 5$$
 (5) $(x-1)^2 + (y-2)^2 = 5$

- \Rightarrow (1) x축: $(x+2)^2 + \{(-y)+1\}^2 = 5$
- $\frac{5}{7}$, $(x+2)^2 + (y-1)^2 = 5$
- (2) y축: $\{(-x)+2\}^2+(y+1)^2=5$
- $\frac{5}{3}$, $(x-2)^2 + (y+1)^2 = 5$
- (3) 원점: $\{(-x)+2\}^2+\{(-y)+1\}^2=5$
- $-\frac{1}{2}$, $(x-2)^2 + (y-1)^2 = 5$
- (4) 직선 y=x: $(y+2)^2+(x+1)^2=5$
- $(x+1)^2 + (y+2)^2 = 5$
- (5) 직선 y = -x: $\{(-y) + 2\}^2 + \{(-x) + 1\}^2 = 5$
- $\stackrel{\triangle}{=}$, $(x-1)^2 + (y-2)^2 = 5$
- 34) (1) $(x-1)^2 + (y+1)^2 = 1$ (2)

$$(x+1)^2 + (y-1)^2 = 1$$
 (3) $(x+1)^2 + (y+1)^2 = 1$

(4)
$$(x-1)^2 + (y-1)^2 = 1$$
 (5)

$$(x+1)^2 + (y+1)^2 = 1$$

- $\Rightarrow x^2 + y^2 2x 2y + 1 = 0 \text{ on } k! (x-1)^2 + (y-1)^2 = 1$
- (1) x축: $(x-1)^2 + {(-y)-1}^2 = 1$
- $Arr (x-1)^2 + (y+1)^2 = 1$
- (2) $y \stackrel{\text{R}}{=} \{(-x)-1\}^2 + (y-1)^2 = 1$
- (3) 원점: $\{(-x)-1\}^2+\{(-y)-1\}^2=1$
- $\frac{5}{3}$, $(x+1)^2 + (y+1)^2 = 1$
- (4) 직선 y=x: $(y-1)^2+(x-1)^2=1$
- $\frac{4}{3}$, $(x-1)^2 + (y-1)^2 = 1$
- (5) 직선 y=-x: $\{(-y)-1\}^2+\{(-x)-1\}^2=1$
- $\stackrel{\triangle}{\neg}$, $(x+1)^2 + (y+1)^2 = 1$
- 35) $(1) \qquad (x+2)^2 + (y+1)^2 = 1$ (2)

$$(x-2)^2 + (y-1)^2 = 1$$
 (3) $(x-2)^2 + (y+1)^2 = 1$

(4)
$$(x-1)^2 + (y+2)^2 = 1$$
 (5) $(x+1)^2 + (y-2)^2 = 1$

 $\Rightarrow x^2 + y^2 + 4x - 2y + 4 = 0$

$$(x+2)^2 + (y-1)^2 = 1$$

- (1) $x = (x+2)^2 + \{(-y) 1\}^2 = 1$
- $\stackrel{\triangle}{=}$, $(x+2)^2 + (y+1)^2 = 1$
- (2) $y \stackrel{\text{R}}{=} \{(-x) + 2\}^2 + (y-1)^2 = 1$

- -5. $(x-2)^2 + (y-1)^2 = 1$
- (3) 원점: $\{(-x)+2\}^2+\{(-y)-1\}^2=1$
- $\stackrel{\triangle}{=}$, $(x-2)^2 + (y+1)^2 = 1$
- (4) 직선 y=x: $(y+2)^2+(x-1)^2=1$
- $\frac{4}{3}$, $(x-1)^2 + (y+2)^2 = 1$
- (5) 직선 y=-x: $\{(-y)+2\}^2+\{(-x)-1\}^2=1$
- $\stackrel{\triangle}{=}$. $(x+1)^2 + (y-2)^2 = 1$
- 36) y = -x + 1
- ⇒ y =-x+1를 원점에 대하여 대칭이동하면
- x 대신 -x, y 대신 -y를 대입하므로
- $-y = x + 1 \cdots \bigcirc$
- \bigcirc 을 직선 y=-x에 대하여 대칭이동하면
- x 대신 -y, y 대신 -x를 대입하므로
- x = -y + 1 : y = -x + 1
- 37) 4x + 2y 1 = 0
- $\Rightarrow 2x+4y-1=0$ 을 원점에 대하여 대칭이동하면 -2x-4y-1=0
- 이를 직선 y=-x에 대하여 대칭이동하면
- 2y+4x-1=0 : 4x+2y-1=0
- 38) x-5y-3=0
- $\Rightarrow 5x-y+3=0$ 을 원점에 대하여 대칭이동하면 -5x + y + 3 = 0
- 이를 직선 y=-x에 대하여 대칭이동하면
- 5y-x+3=0 : x-5y-3=0
- 39) $y = \frac{1}{2}x + 2$
- $\Rightarrow y = 2x + 4$ 를 원점에 대하여 대칭이동하면
- x 대신 -x, y 대신 -y를 대입하므로
- $-y = -2x + 4 \cdots \bigcirc$
- \bigcirc 을 직선 y=x에 대하여 대칭이동하면
- x 대신 y, y 대신 x를 대입하므로
- -x = -2y + 4, 2y = x + 4
- $\therefore y = \frac{1}{2}x + 2$
- 40) 3x 3y + 6 = 0
- \Rightarrow 3x-3y+6=0을 원점에 대하여 대칭이동하면
- x 대신 -x, y 대신 -y를 대입하므로
- $-3x+3y+6=0 \cdots \bigcirc$
- \bigcirc 을 직선 y=x에 대하여 대칭이동하면
- x 대신 y, y 대신 x를 대입하므로
- -3y+3x+6=0 : 3x-3y+6=0
- 41) x-y-2=0
- ☆ x-y-2=0을 원점에 대하여 대칭이동하면
- x 대신 -x, y 대신 -y를 대입하므로
- -x+y-2=0 ··· \bigcirc
- \bigcirc 을 직선 y=x에 대하여 대칭이동하면
- x 대신 y, y 대신 x를 대입하므로
- -y+x-2=0 : x-y-2=0

- 42) $x+y^2-2y-1=0$
- $\Rightarrow y = -x^2 + 2x + 1$ 를 직선 y = -x에 대하여 대칭이동
- $-x = -(-y)^2 2y + 1$: $x = y^2 + 2y 1$
- 이를 원점에 대하여 대칭이동하면
- $-x = y^2 2y 1$: $x + y^2 2y 1 = 0$
- 43) $(x+4)^2 + (y-2)^2 = 9$
- \Rightarrow $(x-2)^2 + (y+4)^2 = 9$ 를 직선 y = -x에 대하여 대 칭이동하면
- $(-y-2)^2 + (-x+4)^2 = 9$: $(x-4)^2 + (y+2)^2 = 9$
- 이를 원점에 대하여 대칭이동하면
- $(-x-4)^2 + (-y+2)^2 = 9$: $(x+4)^2 + (y-2)^2 = 9$
- 44) $x^2 6x y + 1 = 0$
- $\Rightarrow x-y^2+6y-1=0$ 를 직선 y=-x에 대하여 대칭이
- $-y-(-x)^2-6x-1=0$ $\therefore x^2+6x+y+1=0$
- 이를 원점에 대하여 대칭이동하면
- $(-x)^2 6x y + 1 = 0$ $\therefore x^2 6x y + 1 = 0$
- 45) $x+y^2+4y=0$
- $\Rightarrow y = x^2 4x$ 를 직선 y = x에 대하여 대칭이동하면
- $x = y^2 4y$: $x = y^2 4y$
- 이를 원점에 대하여 대칭이동하면
- $-x = (-y)^2 + 4y$: $x + y^2 + 4y = 0$
- 46) $(x-4)^2 + (y+1)^2 = 1$
- \Rightarrow $(x-1)^2 + (y+4)^2 = 1$ 를 직선 y = x에 대하여 대칭 이동하면
- x 대신 y, y 대신 x를 대입하므로
- $(y-1)^2 + (x+4)^2 = 1 \cdots \bigcirc$
- ①을 원점에 대하여 대칭이동하면
- x 대신 -x, y 대신 -y를 대입하므로
- $(-y-1)^2 + (-x+4)^2 = 1$: $(x-4)^2 + (y+1)^2 = 1$
- 47) $x^2 + 2x + y 3 = 0$
- $\Rightarrow x-y^2+2y+3=0$ 를 직선 y=x에 대하여 대칭이동
- x 대신 y, y 대신 x를 대입하므로
- $y-x^2+2x+3=0 \cdots \bigcirc$
- ①을 원점에 대하여 대칭이동하면
- x 대신 -x, y 대신 -y를 대입하므로
- $-y-(-x)^2-2x+3=0$: $x^2+2x+y-3=0$
- 48) x-2y-3=0
- \Rightarrow 직선 x+2y+3=0을 x축에 대하여 대칭이동한 직 선의 방정식은 x-2y+3=0
- 이 직선을 원점에 대하여 대칭이동한 직선의 방정식
- -x+2y+3=0

따라서 구하는 직선의 방정식은 x - 2y - 3 = 0

- 49) x+2y-3=0
- \Rightarrow 직선 2x-y+3=0을 y축에 대하여 대칭이동한 직 선의 방정식은 -2x-y+3=0
- 이 직선을 y=x에 대하여 대칭이동한 직선의 방정식
- -2y-x+3=0
- 따라서 구하는 직선의 방정식은
- x + 2y 3 = 0
- 50) $(x-1)^2 + (y-2)^2 = 1$
- $\Rightarrow x^2 + y^2 + 2x 4y + 4 = 0 \text{ odd } (x+1)^2 + (y-2)^2 = 1$
- 원 $(x+1)^2+(y-2)^2=1$ 을 원점에 대하여 대칭이동 한 원의 방정식은
- $(-x+1)^2 + (-y-2)^2 = 1$, $(x-1)^2 + (y+2)^2 = 1$
- 이 원을 x축에 대하여 대칭이동한 원의 방정식은
- $(x-1)^2 + (-y+2)^2 = 1$
- 따라서 구하는 원의 방정식은
- $(x-1)^2 + (y-2)^2 = 1$
- 51) $(x-3)^2 + (y-2)^2 = 4$
- $\Rightarrow x^2 + y^2 + 4x 6y + 9 = 0$
- $(x+2)^2 + (y-3)^2 = 4$
- 워 $(x+2)^2 + (y-3)^2 = 4$ 를 직선 y = -x에 대하여 대 칭이동한 원의 방정식은
- $(-y+2)^2 + (-x-3)^2 = 4$, $= (x+3)^2 + (y-2)^2 = 4$
- 이 원을 y축에 대하여 대칭이동한 원의 방정식은
- $(-x+3)^2 + (y-2)^2 = 4$
- 따라서 구하는 원의 방정식은
- $(x-3)^2 + (y-2)^2 = 4$
- 52) a = 2, b = 4
- \Rightarrow 직선 l을 x축에 대하여 대칭이동하면
- 직선 l에 y 대신 -y를 대입하므로
- -y = ax + 4 : ax + y + 4 = 0 ··· \bigcirc
- \bigcirc 은 직선 m과 같으므로 a=2,b=4
- 53) a = -3, b = 5
- \Rightarrow 직선 l을 x축에 대하여 대칭이동하면 직선 l에 y 대신 -y를 대입하므로
- -y+ax-5=0 $\therefore ax-y-5=0$ $\cdots \bigcirc$
- \bigcirc 은 직선 m과 같으므로 a=-3,b=5
- 54) a = -2, b = -1
- \Rightarrow 직선 l을 x축에 대하여 대칭이동하면
- 직선 l에 y 대신 -y를 대입하므로
- -y = -x + 2a $\therefore x y 2a = 0$ \cdots
- \bigcirc 은 직선 m과 같으므로
- -1 = b, 4 = -2a : a = -2, b = -1

55)
$$k = -\frac{1}{2}$$

- \Rightarrow 원 $Q: x^2 + y^2 2kx 4y 8 = 0$ 을 표준형으로 고치면
- $(x-k)^2 + (y-2)^2 = k^2 + 12$
- 원의 중심 (k,2)를 y축에 대하여 대칭이동하면 (-k,2) ··· \bigcirc
- \bigcirc 이 직선 l:y=2x+1 위에 있으므로
- 2 = -2k+1, 2k = -1
- $\therefore k = -\frac{1}{2}$
- 56) k = 0
- \Rightarrow 원 $O: x^2 + y^2 2kx 6y + 4 = 0$ 을 표준형으로 고치면 $(x-k)^2 + (y-3)^2 = k^2 + 5$
- 원의 중심 (k,3)을 y축에 대하여 대칭이동하면 (-k,3) ...
- \bigcirc 이 직선 l:y=-x+3 위에 있으므로
- 3 = k + 3
- $\therefore k = 0$
- 57) k = 1
- \Rightarrow 원 $O: x^2 + y^2 4x + 2y = 0$ 을 표준형으로 고치면 $(x-2)^2 + (y+1)^2 = 5$
- 원의 중심 (2,-1)을 y축에 대하여 대칭이동하면 (-2,-1) ... \bigcirc
- \bigcirc 이 직선 l:y=x+k 위에 있으므로
- -1 = -2 + k
- $\therefore k = 1$
- 58) k = -5
- \Rightarrow 원 $O: x^2 + y^2 + 2x 6y = 2$ 을 표준형으로 고치면 $(x+1)^2 + (y-3)^2 = 15$
- 원의 중심 (-1,3)을 y축에 대하여 대칭이동하면 $(1,3) \cdots \bigcirc$
- \bigcirc 이 직선 l:y=-2x-k 위에 있으므로
- 3 = -2 k
- $\therefore k = -5$
- 59) k = -3
- \Rightarrow 원 $O:(x-3)^2+y^2=4$ 을
- 직선 y=x에 대하여 대칭이동하면
- $x^2 + (y-3)^2 = 4$
- 원의 중심 (0,3)이 직선 l:y=x-k 위에 있으므로 3 = 0 - k
- $\therefore k = -3$
- 60) k = -3
- \Rightarrow 원 $O: x^2 + (y+1)^2 = 4$ 를 직선 y = x에 대하여 대 칭이동하면 $(x+1)^2+y^2=4$
- 원의 중심 (-1,0)이 직선 l:y=-3x+k 위에 있으므 로
- 0 = 3 + k
- $\therefore k = -3$

- 61) k = 0
- \Rightarrow 원 $O: (x+2)^2 + (y-1)^2 = 5$ 를

직선 y=x에 대하여 대칭이동하면

 $(x-1)^2 + (y+2)^2 = 5$

원의 중심 (1,-2)가 직선 l:y=-2x+k 위에 있으므로

- -2 = -2 + k
- $\therefore k = 0$
- 62) k = -11
- \Rightarrow 원 $O:(x-3)^2+(y-1)^2=4$ 를

직선 y=x에 대하여 대칭이동하면

 $(x-1)^2 + (y-3)^2 = 4$

원의 중심 (1,3)이 직선 l:x-4y=k 위에 있으므로

1 - 12 = k

- $\therefore k = -11$
- 63) $k = \frac{5}{4}$
- \Rightarrow 직선 l:-2x+4y+1=0을 직선 y=-x에 대하여 대칭이동하면

2y - 4x + 1 = 0

- $\therefore 4x-2y-1=0 \cdots \bigcirc$
- ①이 원 $O:(x-k)^2+(y-2)^2=1$ 의 넓이를 이동분하 려면

원의 중심 (k,2)을 지나야 한다.

$$4k-4-1=0, \ 4k=5$$
 $\therefore k=\frac{5}{4}$

- 64) k = 4
- \Rightarrow 직선 l:x+3y+1=0을 직선 y=-x에 대하여 대 칭이동하면
- -y-3x+1=0
- $\therefore 3x+y-1=0 \cdots \bigcirc$
- \bigcirc 이 원 $O:(x+1)^2+(y-k)^2=4$ 를 이동분하려면

원의 중심 (-1,k)를 지나야 한다.

- -3+k-1=0 : k=4
- 65) k = -3
- \Rightarrow 직선 l:3x-y+3=0을 직선 y=-x에 대하여 대 칭이동하면
- -3y + x + 3 = 0
- $\therefore x-3y+3=0 \cdots \bigcirc$
- \bigcirc 이 원 $O:(x+k)^2+(y-2)^2=9$ 를 이등분하려면

원의 중심 (-k,2)을 지나야 한다.

- -k-6+3=0, -k=3 $\therefore k=-3$
- 66) $k = \sqrt{10}$
- Arr 중심이 A(1,-4)이고 반지름의 길이가 k인 원의 방정식은

 $(x-1)^2 + (y+4)^2 = k^2 \cdots \bigcirc$

 \bigcirc 을 x축에 대하여 대칭이동하면

$$(x-1)^2 + (-y+4)^2 = k^2$$

$$(x-1)^2 + (y-4)^2 = k^2 \cdots \bigcirc$$

 \bigcirc 이 점 P(2,1)을 지나므로

$$(2-1)^2 + (1-4)^2 = k^2$$
, $k^2 = 10$

$$\therefore k = \sqrt{10} (\because k > 0)$$

- 67) $k = 2\sqrt{10}$
- ightharpoonup 중심이 A(3,-2)이고 반지름의 길이가 k인 원의 방정식은

$$(x-3)^2 + (y+2)^2 = k^2 \cdots \bigcirc$$

③을 x축에 대하여 대칭이동하면

$$(x-3)^2 + (-y+2)^2 = k^2$$

$$(x-3)^2 + (y-2)^2 = k^2 \cdots \bigcirc$$

 \bigcirc 이 점 P(-3,0)을 지나므로

$$(-3-3)^2 + (0-2)^2 = k^2$$
, $k^2 = 40$

- $\therefore k = 2\sqrt{10} \, (\because k > 0)$
- 68) $k = \sqrt{17}$
- \Rightarrow 중심이 (-2,3)이고 반지름의 길이가 k인 원의 방 정식은
- $(x+2)^2 + (y-3)^2 = k^2 \cdots \bigcirc$
- ⇒을 x축에 대하여 대칭이동하면
- $(x+2)^2 + (-y-3)^2 = k^2$
- $(x+2)^2 + (y+3)^2 = k^2 \cdots \bigcirc$
- \bigcirc 이 점 P(2,-2)을 지나므로
- $(2+2)^2 + (-2+3)^2 = k^2$, $k^2 = 17$
- $\therefore k = \sqrt{17} \, (\because k > 0)$
- 69) k = 2
- \Rightarrow 중심이 A(-1,-3)이고 반지름의 길이가 k인 원의 방정식은
- $(x+1)^2 + (y+3)^2 = k^2 \cdots \bigcirc$
- ⊙을 x축에 대하여 대칭이동하면
- $(x+1)^2 + (-y+3)^2 = k^2$
- $(x+1)^2 + (y-3)^2 = k^2 \cdots \bigcirc$
- ©이 점 P(1,3)을 지나므로
- $(1+1)^2 + (3-3)^2 = k^2$, $k^2 = 4$
- $\therefore k = 2(\because k > 0)$
- 70) k = 3
- \Rightarrow 직선 y = kx + 4를 y축에 대하여 대칭이동한 직선 의 방정식은 y = -kx + 4
- $x^2 + y^2 4x + 4y + 7 = 0$ 에서
- $(x-2)^2 + (y+2)^2 = 1$
- 직선 y=-kx+4가 원의 넓이를 이등분하려면 원의 중심 (2,-2)를 지나야 하므로
- -2 = -2k + 4 : k = 3
- 71) k=3 또는 k=-7
- \Rightarrow 직선 2x-y+k=0을 원점에 대하여 대칭이동한 직선의 방정식은

$$-2x-(-y)+k=0$$
 : $2x-y-k=0$

$$x^2+y^2-2x-8y+12=0$$
 of $(x-1)^2+(y-4)^2=5$

직선 2x-y-k=0이 원 $(x-1)^2+(y-4)^2=5$ 와 접하려면 원의 중심 (1,4)와 직선 사이의 거리가 원의 반지름의 길이 $\sqrt{5}$ 와 같아야 하므로

$$\frac{|2-4-k|}{\sqrt{2^2+(-1)^2}} = \sqrt{5}, |k+2| = 5, k+2 = \pm 5$$

 $\therefore k=3$ 또는 k=-7

72) k = 1

 \Rightarrow 원 $(x-1)^2+(y+2)^2=4$ 를 직선 y=x에 대하여 대칭이동한 원의 방정식은

$$(y-1)^2 + (x+2)^2 = 4$$
 : $(x+2)^2 + (y-1)^2 = 4$

이때, 이 원의 중심 (-2,1)이 직선 y=kx+3 위에 있으므로 1=-2k+3 $\therefore k=1$

73) k=3 또는 k=-1

- 직선 x-y+k=0을 y축에 대하여 대칭이동한 직 선의 방정식은 -x-y+k=0 $\therefore x+y-k=0$
- 이 직선이 원 $(x-2)^2+(y+1)^2=2$ 와 접하려면 원의 중심 (2,-1)과 직선 사이의 거리가 원의 반지름 의 길이 $\sqrt{2}$ 와 같아야 하므로 $\frac{|2-1-k|}{\sqrt{1^2+1^2}}=\sqrt{2}$,

$$|k-1|=2$$

 $k-1 = \pm 2$: k=3 $\pm \pm k = -1$

74) k = 11

 \Rightarrow 직선 x+3y+k=0을 직선 y=x에 대하여 대칭이 동한 직선의 방정식은

$$y+3x+k=0$$
 : $3x+y+k=0$

- 이 직선을 y축에 대하여 대칭이동한 직선의 방정식은 -3x+y+k=0 $\therefore 3x-y-k=0$
- 이 직선이 점 (4,1)을 지나므로
- 12-1-k=0 : k=11

75)
$$k = \frac{8}{5}$$

 \Rightarrow 직선 x-3y+7=0을 직선 y=x에 대하여 대칭이 동하면

$$y-3x+7=0$$
, $= 3x-y-7=0$

- 이 직선을 x축의 방향으로 -1만큼 평행이동한 직선 의 방정식은 3(x+1)-y-7=0 $\therefore 3x-y-4=0$
- 이 직선이 원 $x^2 + y^2 = k$ 와 접하려면 원의 중심 (0,0)과 직선 사이의 거리가 원의 반지름의 길이 \sqrt{k} 와 같아야 하므로

$$\frac{|-4|}{\sqrt{3^2 + (-1)^2}} = \sqrt{k}, \ 4 = \sqrt{10k}, \ 16 = 10k$$

$$\therefore k = \frac{8}{5}$$

76) k = 1

Arr 직선 y=2x+1을 y축의 방향으로 k만큼 평행이 동한 직선의 방정식은 y-k=2x+1

이 직선을 다시 직선 y=x에 대하여 대칭이동한 직 선의 방정식은

$$x-k = 2y+1$$
 : $x-2y-k-1 = 0$

$$x^2+y^2-4x-5=0$$
 에서 $(x-2)^2+y^2=9$

직선 x-2y-k-1=0이 원의 넓이를 이등분하려면 원의 중심 (2,0)을 지나야 하므로

$$2-k-1=0$$
 : $k=1$

77) k = 4

- \Rightarrow 직선 y=-2x+k를 직선 y=x에 대하여 대칭이동 한 직선의 방정식은 x=-2y+k
- 이 직선을 다시 x축의 방향으로 -2만큼, y축의 방향으로 2만큼 평행이동한 직선의 방정식은

$$x+2=-2(y-2)+k$$
 : $x+2y-k-2=0$

- 이 직선이 원 $(x+2)^2+(y-4)^2=16$ 의 넓이를 이등 분하려면 원의 중심 (-2,4)를 지나야 하므로
- -2+8-k-2=0 : k=4

78) k = 2

Arr 직선 2x+y+k=0을 y축의 방향으로 2만큼 평행이동한 직선의 방정식은

$$2x + y - 2 + k = 0$$

이 직선을 다시 직선 y=x에 대하여 대칭이동한 직 선의 방정식은

$$2y+x-2+k=0$$
 : $x+2y+k-2=0$

$$x^2 + y^2 - 8x + 4y + 4 = 0$$
 이 사

$$(x-4)^2 + (y+2)^2 = 16$$

직선 x+2y+k-2=0이 원의 넓이를 이등분하려면 원의 중심 (4,-2)를 지나야 하므로

$$4-4+k-2=0$$
 : $k=2$

79)
$$k = \frac{25}{4}$$
 또는 $k = -\frac{1}{4}$

Arr 직선 3x-2y+4k=0을 x축의 방향으로 2만큼, y 축의 방향으로 -1만큼 평행이동하면

$$3(x-2)-2(y+1)+4k=0$$

$$3x-2y+4k-8=0$$

이 직선을 다시 x축에 대하여 대칭이동한 직선의 방 정식은

$$3x+2y+4k-8=0$$

$$x^2+y^2-4x+10y+16=0$$
 에서 $(x-2)^2+(y+5)^2=13$

직선
$$3x+2y+4k-8=0$$
이 원 $(x-2)^2+(y+5)^2=13$ 과 접하려면 원의 중심 $(2,-5)$ 와 직선 사이의 거리가 원의 반지름의 길

이 $\sqrt{13}$ 과 같아야 하므로

$$\frac{|6-10+4k-8|}{\sqrt{3^2+2^2}} = \sqrt{13},$$

$$|4k-12|=13, 4k-12=\pm 13$$

$$\therefore k = \frac{25}{4} \quad \text{Fig. } k = -\frac{1}{4}$$

 \Rightarrow f(x+3,y)=0의 그래프는 f(x,y)=0의 그래프를 x축의 방향으로 -3만큼 평행이동한 것이다.

 \Rightarrow f(x,y-1)=0의 그래프는 f(x,y)=0의 그래프를 y축의 방향으로 1만큼 평행이동한 것이다.

 $\Rightarrow f(x-1,y+1)=0$ 의 그래프는 f(x,y)=0의 그래프 를 x축의 방향으로 1만큼, y축의 방향으로 -1만 큼 평행이동한 것이다.

 \Rightarrow f(x,-y)=0의 그래프는 f(x,y)=0의 그래프를 x축에 대하여 대칭이동한 것이다.

[다른풀이]

원의 중심 (1,3)을 x축에 대하여 대칭이동한 점의 좌 표는 (1,-3)임을 이용할 수도 있다.

즉, f(x, -y) = 0의 그래프는 중심이 (1, -3)이고 반 지름의 길이가 1인 원이다.

 \Rightarrow f(-x,y)=0의 그래프는 f(x,y)=0의 그래프를 y축에 대하여 대칭이동한 것이다.

 \Rightarrow f(-x,-y)=0의 그래프는 f(x,y)=0의 그래프를 원점에 대하여 대칭이동한 것이다.

 \Rightarrow f(y,x)=0의 그래프는 f(x,y)=0의 그래프를 직 선 y=x에 대하여 대칭이동한 것이다.

 \Rightarrow f(-y,-x)=0의 그래프는 f(x,y)=0의 그래프를 직선 y = -x에 대하여 대칭이동한 것이다.