# **Unified Path Following Guidance for VTOL Vehicles**

Junwoo Hwang

Intermediate Presentation

**Supervisors** 

Jaeyoung Lim / Florian Achermann / David Rohr / Roland Siegwart (ASL) Thomas Stastny (Auterion) / Hwangnam Kim (Korea University) Autonomous Systems Lab

LEE J 205 12:20 pm

#### **GOAL**

- Unified Path Following Algorithm for both Multicopter & Fixed-Wing
- Wind-robust guidance







#### **Current Status #1**

#### Implementation of a NPFG Library in an OpenAl Gym Environment

- Multicopter Point-mass model
- Fixed-wing Lateral acceleration command model





#### **Current Status #2**

#### **Analysis of the limitations of NPFG**

- Track keeping feature calculates a sub-optimal airspeed target (MC)
  - Under-utilizes the multicopter's agility

2. **Vector Field doesn't consider jerk limit** required by the vehicle (especially

Multicopter)



#### **Current Status #3**

- Formulating air-velocity reference vector calculation method
  - a. Respecting the Jerk constraint
- 2. Visualizing air-velocity reference vector around path





#### **Future Work**

- 1. Formulating new velocity reference vector logic & track error boundary generation logic respecting vehicle's **jerk** limits (MC)
- 2. Incorporating **wind** into the guidance
- 3. Quantitative **analysis** on the new guidance law's PF capability







#### **Timeline**

|                                          | Noven         | nber          | December |               |               | 9             | Janua | ry   |    |    |    | Februa | ıry |    | March |      |
|------------------------------------------|---------------|---------------|----------|---------------|---------------|---------------|-------|------|----|----|----|--------|-----|----|-------|------|
|                                          | <del>21</del> | <del>28</del> | 5        | <del>12</del> | <del>19</del> | <del>26</del> | 2     | 9    | 16 | 23 | 30 | 6      | 13  | 20 | 27    | 4    |
| Background                               |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| <u>Literature review</u>                 |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Thesis Problem definition                |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Simulation Environment                   |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Evaluate NPFG for MC/FW in Windy Wings   |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Evaluate Jerk induced by NPFG (MC)       |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Benchmark against NPFG                   |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Include Wind dynamics in Simulation      |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Benchmark new formulation in Wind        |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Theoretical Formulation                  |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Formulate new ref vector for multicopter |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Apply new formulation for VTOL           |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Consider wind into guidance              |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Testing                                  |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Implement new guidance in PX4            |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Evaluate new formulation on real MC      |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Evaluate new formulation on real FW      |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Evaluate new formulation on real VTOL    |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Documentation                            |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Weekly report (due Sunday, 3pm CET)      | ~             | <b>~</b>      | <b>~</b> | ~             | <b>~</b>      | <b>~</b>      |       |      |    |    |    |        |     |    |       |      |
| Latex lemplate familiarity               |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Intermediate presentation                |               |               |          |               |               |               |       | 9.01 |    |    |    |        |     |    |       |      |
| Prepare final presentation               |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |
| Final report writing                     |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       | 8.03 |
|                                          |               |               |          |               |               |               |       |      |    |    |    |        |     |    |       |      |

# Thank you!



#### Reference

- Drone SVG
- Plane SVG
- Quantum Vector
- Quad PF Diagram: Fig 10 from 'Rubi et al. 2020'
- Fixed Wing PF Diagram: Cover of 'Sujit et al. 2014'
- Feasible Bearing directional guidance: <u>TJ PhD Paper</u>, Figure 4.4
- Path Following Simulation paths: <u>Medusa Paper</u>, Figure 7.6
- Mario Mystery Box PNG
- Feasibility Barrier diagram: TJ PhD Paper, Figure 4.2
- Wind Disturbance diagram: Fig 14 from 'Rubi et al. 2020'
- 3D NPFG: Fig 3 from 'Cho et al. 2015'
- All the vehicles: <u>Video</u>
- Look ahead angle diagram from 3D NPFG paper, Figure 4

# **Appendix A**





# **Appendix B**



# **Appendix C**



#### **Multicopter Point-mass model**



# **Track-keeping**



#### **Limitations of NPFG Track-keeping feature**



#### **Limitations of NPFG Track-keeping feature**

```
float NPFG::minGroundSpeed(const float normalized_track_error, const float feas)
328
             // minimum ground speed demand from track keeping logic
329
330
             min gsp track keeping = 0.0f;
331
332
             if (en track keeping && en wind excess regulation ) {
                     // zero out track keeping speed increment when bearing is feasible
333
                     // maximum track keeping speed increment is applied until we are within
334
                     // a user defined fraction of the normalized track error
335
                     min_qsp_track_keeping_ = (1.0f - feas) *
336
                                                              min_gsp_track_keeping_max_ * math::constrain(
337
                                                       normalized track error / NTE FRACTION, 0.0f,
338
                                                       1.0f);
339
340
             // minimum ground speed demand from minimum forward ground speed user setting
341
342
             float min gsp desired = 0.0f;
343
344
             if (en min ground speed && en wind excess regulation ) {
                     min qsp desired = min qsp desired ;
345
346
347
348
             return math::max(min_gsp_track_keeping_, min_gsp_desired);
     } // minGroundSpeed
349
```

Minimum Ground Speed

•

1 - feasibility

Χ

Minimum Ground Speed Track-Keeping

Minimum Ground Speed

1 - feasibility

X

Minimum Ground Speed Track-Keeping



















# Disregard the Slides after this one

#### **Other**





#### **Future Work**























