Yeturi Venkatesh 224102324

Group 07

Digital Signal Processing Lab (EE 521)

Lab 3 Report

Task:

1. Implementation of DFT and FFT algorithms.

Input signal:

Discrete Fourier Transform (DFT):

Discrete Fourier Transform (DFT) converts a finite sequence of equally spaced samples of a function into a same length sequence of equally spaced samples of the discrete time Fourier Transform (DTFT) which is a complex valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence.

$$X_k = \sum_{n=0}^{N-1} x_n e^{-i2\pi kn/N}$$
 $k = 0, \dots, N-1$

$$x_n=rac{1}{N}\sum_{k=0}^{N-1}X_k\mathrm{e}^{i2\pi kn/N}\quad n=0,\ldots,N-1$$

1

Fast Fourier Transform (FFT):

Fast Fourier transform (FFT) is an algorithm that computes DFT of a sequence, or its inverse (IDFT) in O(NlogN) time complexity. A FFT rapidly computes such transformations by factorizing the DFT into a product of sparse (mostly zero) factors.

(magnitude plot)

Code: https://colab.research.google.com/drive/1u0ExKNciqh_c0CMyCjX0De-EjtjVhCL#scrollTo=xr5_K_iKVebZ