COGS 225 PROJECT

Dog/Cat Breed Image
Classification/Localization/Segmentation with Transfer Learning

Haenara Shin - A53233226

BACKGROUND

- (-) Classification of breeds in dog or cat is hard to non-expert.
- (-) Some breeds are not familiar with people.
- (-) Fine-grained image recognition is more challenging.

Motivation: There is a need for automated classification method.

Solution & Goal: Dog/Cat image classifier model.

(+) Extra-trial experiment: Based on classification, building the localization (multi-task learning) and segmentation for images.

(+) Potential Real-world Application

- : Helping non-experts to distinguish different species/breeds.
- : Object detection, Products recognition, mammal classification...

PROBLEM STATEMENT

Problem

: In order to address the disadvantages of classification for species/breed images, the efficient automatic classification model should be implemented.

Solution: Building classification models from Convolutional neural networks **Goal**

- 1. **Object Classification:** Given dataset, predict 37 breed classes.
- 2. Object Localization: The head images can be localized.
- 3. **Object Segmentation:** The image can be segmented among foreground and background.

DATASET

- 7349 dog and cat images of 37 breeds (Oxford-IIIT Pet Dataset): http://www.robots.ox.ac.uk/~vqq/data/pets/
- Roughly 200 images per each breed with
 - (i) associated ground truth annotations of species and breed name,
 - (ii) a tight bounding box ROI around the head, and
 - (iii) a pixel level foreground-background segmentation.

- Dog breeds/images: 25/4978
- Cat breeds/images: 12/2371
- The images have large variations in scale, pose and lighting.
- 75% Training set vs. 25% Validation set

(1) Classification

1) Preliminary Test

- a) Vanilla CNN
- b) Learning rate schedule (Exponential decay)
- c) Data augmentation (Cut mix)

2) Transfer learning

Classification - Prelim. Test

*50 epoch

Classification - Transfer Learning (Model)

• 10 pre-trained models are prepared from TensorFlow framework

- Replaced Bottleneck Layer
 - : Global Average Pooling (GAP), One Dense Layer (BatchNormalization, ReLU), and One Dense Layer (softmax)

Classification - Transfer Learning (Results)

	Models									
	VGG16	VGG19	MbNV2	IncpV3	Хсер	DN121	RN50	R152V2	NASMo	InRNV2
Acc. [%]	89.85	91.22	93.28	93.62	94.17	94.51	92.11	91.02	92.87	93.48
*T [s]	50	58	29	30	68	42	38	80	54	68

*50 epoch *T = "avg. time/step

Observation: DenseNet121 shows the best accuracy, but the best cost-efficient model is MobileNetV2.

(2) Localization

1) Preliminary Test

- : Vanilla CNN, and Top 5 Accuracy Pre-trained models
- : Class Activation Map [5] for 2-class vs. 37-class classification

2) Multi-task learning [6]

- : Classification + Localization
- : Top 5 Accuracy Pre-trained models

Localization - Prelim. Test (Models)

3685 annotated images (3000,224,224,3)

(685,224,224,3)

*40 epoch

Model	loU[%]		
Vanilla	49.65		
MbNv2	65.24		
Xcep	62.05		
Inv3	69.32		
InRNv2	66.85		
DN121	70.69		

InceptionV3

25 -	25	
50 -	50 -	
75 -	75 -	
100 -	100 -	
125 -	125 -	
150	150 -	
150 -	150	
200 -	200	SEAN AN

Multi-task Learning!

Localization - Prelim. Test (CAM)

DenseNet121

More actively focusing on the 'local' region.

Localization - Multi-task Learning

3685 annotated images

(3000,224,224,3)

(685,224,224,3)

Pre-trained models

GAP

Classification

(Output: 2, softmax)

Localization

(Output: 4, sigmoid)

Model/Train

All IoU is enhanced!

Model	loU[%]	* T [s]		
MbNv2	71.94	15		
Xcep	73.90	35		
Incpv3	70.58	17		
InRNv2	74.84	34		
DN121	74.78	22		

*40 epoch *T = ~avg. time/step

(3) Segmentation

1) Preliminary Test

: U-Net like model training through random initialization

2) Transfer Learning

: U-Net like model + Pre-trained VGG-16, VGG-19

Segmentation - Prelim. Test

Segmentation - Transfer Learning

U-Net (like VGG-19) + VGG-19

IoU: 90.02%

*20 epoch

*20 epoch

IoU: 90.09%

★ U-Net with pre-trained model's weight shows the improved and better performance

CONCLUSION & Future work

[Goal]

- 1. Classification: Classify 37 breeds.
- 2. Localization: Localize images' head region
- 3. **Segmentation**: Segment images as foreground and background.

[Solution]: CNN with Transfer Learning

- 1. Classification: Transfer learning + Exp. decay learning rate + Cut mix
- 2. **Localization**: Multi-task learning (2-class Classification + Localization)
- 3. **Segmentation**: U-Net with Transfer learning

Future work

: Adaptive learning rate [3]

[Results]

- 1. Classification: DenseNet121 (Acc.), MobileNetV2 (Cost-efficiency)
- 2. Localization: DenseNet121 and InceptionResNetV2 (IoU), MobileNetV2 (Cost-efficiency)
- 3. Segmentation: U-Net with VGG-19 (IoU)
 - → Future work: Test more deeper or sophisticated pre-trained models.
- ★ Every task with pre-trained models in image classification/localization/segmentation shows significantly improved or better performance (Acc. or IoU).

REFERENCES

- [1] http://www.robots.ox.ac.uk/~vgg/data/pets/
- [2] Wei X S, Wu J, Cui Q. Deep learning for fine-grained image analysis: A survey. arXiv preprint arXiv:1907.03069, 2019
- [3] https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1
- [4] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo, *CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features*, arXiv:1905.04899v2, 2019
- [5] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba, *Learning Deep Features for Discriminative Localization*, CVPR, p. 2921-2929, 2016
- [6] Sebastian Ruder, An Overview of Multi-Task Learning in Deep Neural Networks, arXiv:1706.05098v1, 2017
- [7] https://towardsdatascience.com/review-segnet-semantic-segmentation-e66f2e30fb96
- [8] Maayan Frid, Avi Ben, Rula Amer, Hayit Greenspa, *Improving the Segmentation of Anatomical Structures in Chest Radiographs using U-Net with an ImageNet Pre-trained Encoder*, arXiv:1810.02113, 2018