The street of th

- 1. Use of a peptide comprising a chain of 7 to 17 contiguous amino acids derived from the region of human TNF- α from Ser¹⁰⁰ to Glu¹¹⁶ or from the region of mouse TNF- α from Ser⁹⁹ to Glu¹¹⁵ for the manufacture of a medicament for treating oedema.
- 2. Use of a peptide according to claim 1, wherein said peptide comprises a chain of 11 to 16 contiguous amino acids.
- 3. Use of a peptide according to claim 1, wherein said peptide comprises a chain of 13 to 15 contiguous amino acids.
- 4. Use of a peptide according to claim 1, wherein said peptide comprises a chain of 14 contiguous amino acids.
- 5. Use of a peptide according to claim 4, wherein said chain of 14 contiguous amino acids are chosen from the group consisting of the contiguous amino acid sequences QRETPEGAEAKPWY and PKDTPEGAELKPWY.
- 6. Use of a peptide according to any of claims 1 to 5, wherein said peptide is circularized.
- 7. Use of a peptide according to claim 6, wherein said peptide is circularized by replacing the NH₂- and COOH-terminal amino acids by cysteine so that a disulfide bridge is formed between the latter cysteines.
- 8. Use of a peptide according to claim 7, wherein said circularized peptides are chosen from the group consisting of the circularized peptides CGQRETPEGAEAKPWYC and CGPKDTPEGAELKPWYC.
- 9. Use of a peptide according to any of claims 1 to 8, wherein said oedema is pulmonary oedema. 10. A pharmaceutical composition for treating oedema comprising a peptide according to any of claims 1 to 9.