Oppgaver for kapittel 0

Gruble ??

Av regel ?? har vi at $\angle CBA = \angle CDA$. Da $\angle CPA = \angle DPB$ (de er toppvinkler), er dermed $\triangle PDA \sim \triangle PBC$. Altså har vi at

$$DP \cdot PC = AP \cdot PB$$

Gruble??

Vi har at y=360-x. Da x og y er de tilhørende sentralvinklene til henholdsvis v og u, er

$$2u = 360^{\circ} - 2v$$

$$y = 180^{\circ} - v$$

Gruble??

Da $\triangle ABC$ er rettvinklet, er $\angle CBA = 90^{\circ} - \angle BAC$. Da $\angle BAC$ og $\angle CEB$ er periverivinkler som spenner over samme korde, er $CEB = 180^{\circ} - \angle BAC$. Da E er midtpunktet til kvadratet, er $\angle EBA = 45^{\circ}$, og dermed er

$$v = 180^{\circ} - \angle CEB - \angle EBC$$
$$= 180^{\circ} - (180^{\circ} - \angle BAC) - (45^{\circ} - \angle BAC)$$
$$= 45^{\circ}$$

Gruble??

Da $\angle BAC = \angle CBA = 72^\circ$, er $\triangle ABC$ likebeint (AC = BC) og $\angle ACB = 36^\circ$. Altså er også $\triangle BEC$ likebeint (EB = EC). $\triangle ABC \sim \triangle DBE$ fordi de har $\angle BAC$ felles, og $\angle ACB = \angle EBD$. Vi setter x = AB og y = BC, og får at

$$\frac{AB}{BC} = \frac{EA}{AB}$$

$$\frac{x}{y} = \frac{y-x}{y}$$

$$xy + x^2 - y^2 = 0$$

Av abc-formelen har vi at

$$x = \frac{-y + \pm \sqrt{y^2 - 4y^2}}{2}$$
$$= \frac{-1 \pm \sqrt{5}}{2}y$$

Vi forkaster den negative løsningen for x, og får at

$$BD = \frac{x}{2} = \frac{\sqrt{5} - 1}{4}y$$

Da $\sin 18^{\circ} = \frac{BD}{BC}$, er

$$\sin 18^\circ = \frac{\sqrt{5} - 1}{4}$$

??

a) Vi har at

$$AF = AD = c - r$$

$$FC = CE = a - r$$

Da AF + FC = c, er

$$c - r + a - r = b$$
$$c + a - b = 2r$$

b) Med c som grunnlinje har $\triangle ABC$ høgde b. Av den klassiske arealformelen for en trekant (se MB) og formelen fra Oppgave ?? har vi da at

$$(a+b+c)r = ac$$

$$r = \frac{ac}{a+b+c}$$

c) Av oppgave (a) og (b) er

c +
$$a - b = \frac{2ac}{a+b+c}$$

 $(c+a-b)(a+b+c) = 2ac$
 $(a+c)^2 - b^2 = 2ac$
 $a^2 + c^2 = b^2$

Formelen kjenner vi igjen som Pytagoras' setning.

??

Vi setter $v=\angle BAC$. Da $\angle BAC$ er en periferivinkel, er $\angle BOC=2v$. $\triangle BCO$ er likebeint, og derfor er $\angle CBO=90^{\circ}-u$ (forklar for deg selv hvorfor). Nå har vi at

$$\angle EBC = 90^{\circ} - \angle CBO = u$$

Gruble??

I figuren over merker vi oss at

$$EB = \sin v$$
 $AC = \sin u$ $OE = \cos v$ $OC = \cos u$

Da $\triangle OCA \sim \triangle BEF$, har vi at

$$FE = \frac{BE}{OC}AC = \frac{\sin v}{\cos u}\sin u$$

Videre har vi at $EA = OA - OE = 1 - \cos v$. Tilsvarende er $CH = 1 - \cos u$. I tillegg er

$$DC = FG = (FE + EA)\cos u = \left(\frac{\sin v}{\cos u}\sin u + 1 - \cos v\right)\cos u$$

Nå har vi at

$$OD = OH - CH - DC$$

$$\cos(u+v) = 1 - (1 - \cos u) - \left(\frac{\sin v}{\cos u}\sin u + 1 - \cos v\right)\cos u$$

$$= \cos u \cos v - \sin u \sin v$$

Gruble??

Av regel ?? er $\angle CSA = 2\angle CBA$. Da $\triangle ASC$ er likesidet, er derfor $\angle DSA = \angle CBA$. Følgelig er $\triangle ASD \sim \triangle CBE$. Dette betyr at

$$\frac{a}{EC} = \frac{r}{\frac{1}{2}b}$$
$$r = \frac{ab}{2EC}$$

Da $2A_{\triangle ABC}=EC\cdot c,$ er $EC=\frac{2A_{\triangle ABC}}{c},$ og dermed er

$$r = \frac{abc}{4A_{\triangle ABC}}$$

Gruble??

Gitt $\triangle ABC$, hvor $\angle C=90^\circ$, a=BC, b=AC, og c=AB. Da er $4A_{\triangle ABC}=2ab$. Av gruble ?? er da $r=\frac{c}{2}$. Altså er c=2r, og er dermed en diameter i den omskrevne sirkelen.

Gruble??

Vi setter $\angle ADC = u$. Av regel ?? er $\angle AOC = 2\angle ADC$. Da $\triangle AOC$ er likebeint (AO = CO), er dermed $\angle OAC = 90 - u$, og følgelig er $\angle BAC = u$. Dette betyr at $\triangle ABC$ og $\triangle BDA$ har to vinkler som er parvis like store, og dermed er de formlike. Altså er

$$\frac{AB}{BD} = \frac{BC}{AB}$$
$$AB^2 = BC \cdot BD$$

