Solution Section 1.4 – Quadratic Functions

Exercise

For the function $f(x) = x^2 + 6x + 3$

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- f) Find the range and the domain of the function.
- g) Graph the function
- h) On what intervals is the function increasing? decreasing?

Solution

a)
$$x = -\frac{6}{2(1)} = -3$$

 $y = f(-3) = (-3)^2 + 6(-3) + 3 = -6$ Vertex point $(-3, -6)$

- **b)** Line of symmetry: x = -3
- c) Minimum point, value (-3, -6)

d)
$$x = \frac{-6 \pm \sqrt{36 - 12}}{2} = \frac{-6 \pm \sqrt{24}}{2} = \frac{-6 \pm 2\sqrt{6}}{2} = -3 \pm \sqrt{6}$$

$$x = \begin{cases} -3 + \sqrt{6} = -0.5 \\ -3 - \sqrt{6} = -5.45 \end{cases}$$

- e) y-intercept y = 3
- **f)** Range: $[-6, \infty)$ Domain: $(-\infty, \infty)$

g)

h) Decreasing: $(-\infty, -3)$ Increasing: $(-3, \infty)$

For the function $f(x) = x^2 + 6x + 5$

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- f) Find the range and the domain of the function.
- g) Graph the function
- h) On what intervals is the function *increasing? decreasing?*

Solution

a)
$$x = -\frac{6}{2}$$
 $x = -\frac{b}{2a}$

$$x = -\frac{b}{2a}$$

$$y = f(-3) = (-3)^2 + 6(-3) + 5$$

Vertex point: (-3,-4)

- **b)** Axis of symmetry: x = -3
- c) Minimum point @ (-3,-4)

d)
$$x^2 + 6x + 5 = 0$$

 $x = -5, -1$

$$e) \quad x = 0 \quad \rightarrow \quad \underline{y = 5}$$

- f) Domain: \mathbb{R} Range: $[-4, \infty)$

- *h*) Increasing: $(-3, \infty)$
- Decreasing:

For the function $f(x) = -x^2 - 6x - 5$

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- f) Find the range and the domain of the function.
- g) Graph the function
- h) On what intervals is the function increasing? decreasing?

Solution

a)
$$x = -\frac{-6}{-2}$$
 $x = -\frac{b}{2a}$
 $x = -\frac{b}{2a}$
 $y = f(-3) = -9 + 18 - 5$

Vertex point: (-3, 4)

- **b)** Axis of symmetry: x = -3
- c) Maximum point @ (-3, 4)

d)
$$-(x^2 + 6x + 5) = 0$$

 $x = -5, -1$

$$e) \quad x = 0 \quad \rightarrow \quad y = -5$$

f) Domain: \mathbb{R} Range: $(-\infty, 4]$

g)

5-y

4321x

-6-5-4-3-2-1
-1-2-3-

h) Increasing: $(-\infty, -3)$ Decreasing: $(-3, \infty)$

For the function $f(x) = x^2 - 4x + 2$

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- f) Find the range and the domain of the function.
- g) Graph the function
- h) On what intervals is the function increasing? decreasing?

Solution

a)
$$x = -\frac{-4}{2}$$

$$= 2$$

$$f(2) = 4 - 8 + 2$$

$$= -2$$

Vertex point: (2, -2)

- **b)** Axis of symmetry: x = 2
- c) Minimum point @ (2, -2)

d)
$$x^2 - 4x + 2 = 0$$

 $x = \frac{4 \pm \sqrt{8}}{2}$
 $x = 2 \pm \sqrt{2}$

- $e) \quad x = 0 \quad \rightarrow \quad \underline{y = 2}$
- f) Domain: \mathbb{R} Range: $[-2, \infty)$

h) Increasing: $(2, \infty)$ Decreasing: $(-\infty, 2)$

For the function $f(x) = -2x^2 + 16x - 26$

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- f) Find the range and the domain of the function.
- g) Graph the function
- h) On what intervals is the function increasing? decreasing?

Solution

a)
$$x = -\frac{16}{-4}$$
 $x = -\frac{b}{2a}$
 $= 4$
 $f(4) = -32 + 64 - 26$
 $= 6$

Vertex point: (4, 6)

- **b)** Axis of symmetry: x = 4
- c) Maximum point @ (4, 6)

d)
$$-2x^2 + 16x - 26 = 0$$

 $x = \frac{-16 \pm \sqrt{128}}{-4}$
 $x = 4 \pm 2\sqrt{2}$

- $e) \quad x = 0 \quad \rightarrow \quad \underline{y} = -26$
- f) Domain: \mathbb{R} Range: $(-\infty, 6]$

g)

A

4

2

2

4

6

-2

-4

h) Increasing: $(-\infty, 4)$ Decreasing: $(4, \infty)$

For the function $f(x) = x^2 + 4x + 1$

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- f) Find the range and the domain of the function.
- g) Graph the function
- h) On what intervals is the function increasing? decreasing?

Solution

a)
$$x = -\frac{4}{2}$$
 $x = -\frac{b}{2a}$
 $= -2$
 $f(-2) = 4 - 8 + 1$
 $= -3$

Vertex point: (-2, -3)

- **b)** Axis of symmetry: x = -2
- c) Minimum point @ (-2, -3)
- d) $x^2 + 4x + 1 = 0$ $x = \frac{-4 \pm \sqrt{12}}{2}$ $x = -2 \pm \sqrt{3}$
- $e) \quad x = 0 \quad \rightarrow \quad \underline{y = 1}$
- f) Domain: \mathbb{R} Range: $[-3, \infty)$
- h) Increasing: $(-2, \infty)$ Decreasing: $(-\infty, -2)$

For the function $f(x) = x^2 - 8x + 5$

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- f) Find the range and the domain of the function.
- g) Graph the function
- h) On what intervals is the function increasing? decreasing?

Solution

a)
$$x = -\frac{-8}{2}$$
 $x = -\frac{b}{2a}$
 $= 4$
 $f(4) = 16 - 32 + 5$
 $= -11$

Vertex point: (4, -11)

- **b)** Axis of symmetry: x = 4
- c) Minimum point @ (4, -11)

d)
$$x^2 - 8x + 5 = 0$$

 $x = \frac{8 \pm \sqrt{44}}{2}$
 $x = 4 \pm \sqrt{11}$

- $e) \quad x = 0 \quad \rightarrow \quad y = 5$
- f) Domain: \mathbb{R} Range: $[-11, \infty)$
- g) $6\sqrt{y}$ 4 2 -2 -4 -6 -8 -10 -12
- h) Increasing: $(4, \infty)$ Decreasing: $(-\infty, 4)$

For the function $f(x) = x^2 + 6x - 1$

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- f) Find the range and the domain of the function.
- g) Graph the function
- h) On what intervals is the function increasing? decreasing?

Solution

a)
$$x = -\frac{6}{2}$$
 $x = -\frac{b}{2a}$
 $\frac{=-3}{5}$
 $f(-3) = 9 - 18 - 1$
 $= -10$

Vertex point: (-3, -10)

- **b)** Axis of symmetry: x = -3
- c) Minimum point @ (-3, -10)

d)
$$x^2 + 6x - 1 = 0$$

 $x = \frac{-6 \pm \sqrt{40}}{2}$
 $x = -3 \pm \sqrt{10}$

- $e) \quad x = 0 \quad \rightarrow \quad \underline{y = -1}$
- f) Domain: \mathbb{R} Range: $[-10, \infty)$

h) Increasing: $(-3, \infty)$ Decreasing: $(-\infty, -3)$

For the function $f(x) = x^2 + 6x + 3$

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- f) Find the range and the domain of the function.
- g) Graph the function
- h) On what intervals is the function increasing? decreasing?

Solution

a)
$$x = -\frac{6}{2}$$
 $x = -\frac{b}{2a}$
 $= -3$
 $f(-3) = 9 - 18 + 3$
 $= -6$

Vertex point: (-3, -6)

- **b)** Axis of symmetry: x = -3
- c) Minimum point @ (-3, -6)

d)
$$x^2 + 6x + 3 = 0$$

 $x = \frac{-6 \pm \sqrt{24}}{2}$
 $x = -3 \pm \sqrt{6}$

 $e) \quad x = 0 \quad \rightarrow \quad y = 3$

g)

- f) Domain: \mathbb{R} Range: $[-6, \infty)$
- h) Increasing: $(-3, \infty)$ Decreasing: $(-\infty, -3)$

For the function $f(x) = x^2 - 10x + 3$

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- f) Find the range and the domain of the function.
- g) Graph the function
- h) On what intervals is the function increasing? decreasing?

Solution

a)
$$x = -\frac{-10}{2}$$
 $x = -\frac{b}{2a}$
 $= 5$ $f(5) = 25 - 50 + 3$ $= -22$

Vertex point: (5, -22)

- **b)** Axis of symmetry: x = 5
- c) Minimum point @ (5, -22)

d)
$$x^2 - 10x + 3 = 0$$

 $x = \frac{10 \pm \sqrt{88}}{2}$
 $x = 5 \pm \sqrt{22}$

- $e) \quad x = 0 \quad \rightarrow \quad y = 3$
- f) Domain: \mathbb{R} Range: $[-22, \infty)$

h) Increasing: $(5, \infty)$ Decreasing: $(-\infty, 5)$

For the function $f(x) = x^2 - 3x + 4$

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- f) Find the range and the domain of the function.
- g) Graph the function
- h) On what intervals is the function increasing? decreasing?

Solution

a)
$$x = \frac{3}{2}$$
 $x = -\frac{b}{2a}$ $f\left(\frac{3}{2}\right) = \frac{9}{4} - \frac{9}{2} + 4$ $= \frac{7}{4}$

Vertex point:
$$\left(\frac{3}{2}, \frac{7}{4}\right)$$

- **b)** Axis of symmetry: $x = \frac{3}{2}$
- c) Minimum point @ $\left(\frac{3}{2}, \frac{7}{4}\right)$

d)
$$x^2 - 3x + 4 = 0$$

 $x = \frac{3 \pm \sqrt{-7}}{2}$ C

$$e) \quad x = 0 \quad \rightarrow \quad \underline{y = 4}$$

f) Domain:
$$\mathbb{R}$$
 Range: $\left\lceil \frac{7}{4}, \infty \right\rceil$

h) Increasing: $\left(\frac{3}{2}, \infty\right)$ Decreasing: $\left(-\infty, \frac{3}{2}\right)$

For the function $f(x) = x^2 - 3x - 4$

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- f) Find the range and the domain of the function.
- g) Graph the function
- h) On what intervals is the function *increasing? decreasing?*

Solution

a)
$$x = \frac{3}{2}$$
 $x = -\frac{b}{2a}$

$$x = -\frac{b}{2a}$$

$$f\left(\frac{3}{2}\right) = \frac{9}{4} - \frac{9}{2} - 4$$

$$=-\frac{25}{4}$$

Vertex point: $\left(\frac{3}{2}, -\frac{25}{4}\right)$

- **b)** Axis of symmetry: $x = \frac{3}{2}$
- c) Minimum point @ $\left(\frac{3}{2}, -\frac{25}{4}\right)$
- d) $x^2 3x 4 = 0$ x = -1, 4
- $e) \quad x = 0 \quad \rightarrow \quad \underline{y = -4}$

f) Domain: \mathbb{R} Range: $\left[-\frac{25}{4}, \infty\right)$

g)

h) Increasing: $\left(\frac{3}{2}, \infty\right)$

Decreasing:

For the function $f(x) = x^2 - 4x - 5$

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- Find the range and the domain of the function.
- g) Graph the function
- h) On what intervals is the function increasing? decreasing?

Solution

a)
$$x=2$$

$$x = -\frac{b}{2a}$$

$$f\left(\frac{2}{2}\right) = 4 - 8 - 3$$

f(2) = 4 - 8 - 5 = -9Vertex point: (2, -9)

- **b)** Axis of symmetry: x = 2
- c) Minimum point @ (2, -9)

d)
$$x^2 - 4x - 5 = 0$$

 $x = -1, 5$

- $e) \quad x = 0 \quad \rightarrow \quad y = -5$
- *f)* Domain: \mathbb{R}

Range: $[-9, \infty)$

g)

h) Increasing: $(2, \infty)$

Decreasing:

For the function $f(x) = 2x^2 - 3x + 1$

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- f) Find the range and the domain of the function.
- g) Graph the function
- h) On what intervals is the function *increasing? decreasing?*

Solution

a)
$$x = \frac{3}{4}$$
 $x = -\frac{b}{2a}$

$$x = -\frac{b}{2a}$$

$$f\left(\frac{3}{4}\right) = \frac{9}{8} - \frac{9}{4} + 1$$

$$=-\frac{1}{8}$$

Vertex point: $\left(\frac{3}{4}, -\frac{1}{8}\right)$

- **b)** Axis of symmetry: $x = \frac{3}{4}$
- c) Minimum point @ $\left(\frac{3}{4}, -\frac{1}{8}\right)$
- d) $2x^2 3x + 1 = 0$ $x = 1, \frac{1}{2}$
- $e) \quad x = 0 \quad \rightarrow \quad \underline{y = 1}$

f) Domain: \mathbb{R} Range: $\left[-\frac{1}{8}, \infty\right)$

g)

h) Increasing: $\left(\frac{3}{4}, \infty\right)$

Decreasing: $\left(-\infty, \frac{3}{4}\right)$

For the function $f(x) = -x^2 - 3x + 4$

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- f) Find the range and the domain of the function.
- g) Graph the function
- h) On what intervals is the function increasing? decreasing?

Solution

a)
$$x = -\frac{3}{2}$$
 $x = -\frac{b}{2a}$ $f\left(-\frac{3}{2}\right) = -\frac{9}{4} + \frac{9}{2} + 4$ $= \frac{7}{2}$

Vertex point: $\left(-\frac{3}{2}, \frac{7}{2}\right)$

- **b)** Axis of symmetry: $x = -\frac{3}{2}$
- c) Maximum point @ $\left(-\frac{3}{2}, \frac{7}{2}\right)$
- d) $-x^2 3x + 4 = 0$ x = 1, -4
- $e) \quad x = 0 \quad \rightarrow \quad \underline{y = 4}$
- f) Domain: \mathbb{R} Range: $\left(-\infty, \frac{7}{2}\right]$

h) Increasing: $\left(-\infty, -\frac{3}{2}\right)$ Decreasing: $\left(-\frac{3}{2}, \infty\right)$

For the function $f(x) = -2x^2 + 3x - 1$

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- f) Find the range and the domain of the function.
- g) Graph the function
- h) On what intervals is the function *increasing? decreasing?*

Solution

a)
$$x = \frac{3}{4}$$
 $x = -\frac{b}{2a}$

$$x = -\frac{b}{2a}$$

$$f\left(\frac{3}{4}\right) = -\frac{9}{8} + \frac{9}{4} - 1$$

Vertex point:
$$\left(\frac{3}{4}, \frac{1}{8}\right)$$

- **b)** Axis of symmetry: $x = \frac{3}{4}$
- c) Maximum point @ $\left(\frac{3}{4}, \frac{1}{8}\right)$
- $d) -2x^2 + 3x 1 = 0$ $x = 1, \frac{1}{2}$
- $e) \quad x = 0 \quad \to \quad \underline{y = -1}$
- f) Domain: \mathbb{R} | Range: $\left(-\infty, \frac{1}{8}\right]$ |

g)

- **h)** Increasing: $\left(-\infty, \frac{3}{4}\right)$
- Decreasing:

For the function $f(x) = -2x^2 - 3x - 1$

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- f) Find the range and the domain of the function.
- g) Graph the function
- h) On what intervals is the function increasing? decreasing?

Solution

a)
$$x = -\frac{3}{4}$$

$$f\left(-\frac{3}{4}\right) = -\frac{9}{8} + \frac{9}{4} - 1$$

$$= \frac{1}{8}$$

Vertex point: $\left(-\frac{3}{4}, \frac{1}{8}\right)$

- **b)** Axis of symmetry: $x = -\frac{3}{4}$
- c) Maximum point @ $\left(-\frac{3}{4}, \frac{1}{8}\right)$
- d) $-2x^2 3x 1 = 0$ $x = -1, -\frac{1}{2}$
- $e) \quad x = 0 \quad \to \quad \underline{y = -1}$
- f) Domain: \mathbb{R} Range: $\left(-\infty, \frac{1}{8}\right]$

h) Increasing: $(-\infty, -\frac{3}{4})$ Decreasing: $(-\frac{3}{4}, \infty)$

For the function $f(x) = -x^2 - 4x + 5$

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- f) Find the range and the domain of the function.
- g) Graph the function
- h) On what intervals is the function *increasing? decreasing?*

Solution

a)
$$x = -2$$

$$a) \quad \underline{x = -2} \qquad \qquad x = -\frac{b}{2a}$$

$$f\left(-\frac{2}{2}\right) = -4 + 8 + 5$$

$$= 9$$

Vertex point: (-2, 9)

- **b)** Axis of symmetry: x = -2
- c) Maximum point @ (-2, 9)
- d) $-x^2 4x + 5 = 0$ x = 1, -5
- $e) \quad x = 0 \quad \rightarrow \quad \underline{y = 5}$

f) Domain: \mathbb{R} Range: $(-\infty, 9]$

g)

h) Increasing: $(-\infty, -2)$

Decreasing: $(-2, \infty)$

 $f(x) = -x^2 + 4x + 2$ For the function

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- Find the *range* and the *domain* of the function.
- g) Graph the function
- h) On what intervals is the function increasing? decreasing?

Solution

a)
$$\underline{x=2}$$

$$a) \quad \underline{x=2} \qquad \qquad x = -\frac{b}{2a}$$

$$f(2) = -4 + 8 + 2$$

$$= 6$$
Vertex point: (2, 6)

- **b)** Axis of symmetry: x = 2
- c) Maximum point @

$$d) -x^2 + 4x + 2 = 0$$

$$x = \frac{-4 \pm \sqrt{16 + 8}}{-2}$$

$$x = 2 \pm \sqrt{6}$$

- $e) \quad x = 0 \quad \rightarrow \quad \underline{y = 2}$
- *f)* Domain: \mathbb{R}

Range: $(-\infty, 6]$

g)

h) Increasing: $(-\infty, 2)$

Decreasing:

For the function $f(x) = -3x^2 + 3x + 7$

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- f) Find the range and the domain of the function.
- g) Graph the function
- h) On what intervals is the function increasing? decreasing?

$$x = \frac{1}{2}$$

$$x = -\frac{b}{2a}$$

$$f\left(\frac{1}{2}\right) = -\frac{3}{4} + \frac{3}{2} + 7 = \frac{31}{4}$$

Vertex point:
$$\left(\frac{1}{2}, \frac{31}{4}\right)$$

- **b)** Axis of symmetry: $x = \frac{1}{2}$
- c) Maximum point @ $\left(\frac{1}{2}, \frac{31}{4}\right)$
- d) $-3x^2 + 3x + 7 = 0$ $x = \frac{-3 \pm \sqrt{93}}{-6}$

$$x = \frac{3 \pm \sqrt{93}}{6}$$

- $e) \quad x = 0 \quad \rightarrow \quad \underline{y = 7}$
- f) Domain: \mathbb{R} Range: $\left(-\infty, \frac{31}{4}\right]$
- **h)** Increasing: $\left(-\infty, \frac{1}{2}\right)$ Decreasing: $\left(\frac{1}{2}, \infty\right)$

 $f(x) = -x^2 + 2x - 2$ For the function

- a) Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- Find the *range* and the *domain* of the function.
- g) Graph the function
- h) On what intervals is the function increasing? decreasing?

Solution

a)
$$\underline{x=1}$$

$$a) \quad \underline{x=1} \qquad \qquad x = -\frac{b}{2a}$$

$$f(1) = -1 + 2 - 2$$

$$= -1$$

$$Vertex point: (1, -1)$$

- **b)** Axis of symmetry: x = 1
- c) Maximum point @ (1, -1)

$$d) -x^2 + 2x - 2 = 0$$

$$x = \frac{-2 \pm \sqrt{-4}}{-2} \quad \mathbb{C}$$

- $e) \quad x = 0 \quad \to \quad \underline{y = -2}$

f) Domain: \mathbb{R} Range: $(-\infty, -1]$

g)

h) Increasing: $(-\infty, 1)$

Decreasing: $(1, \infty)$

Find the *vertex*, *focus*, and *directrix* of the parabola. Sketch its graph. $20x = y^2$

Solution

$$20x = y^2 \qquad 4px = y^2$$

$$4p = 20 \implies \boxed{p = 5}$$

Vertex: (0, 0)

Focus (5, 0)

Directrix: x = -5

Exercise

Find the *vertex*, *focus*, and *directrix* of the parabola. Sketch its graph. $2y^2 = -3x$

Solution

$$y^2 = -\frac{3}{2}x = 4px$$

$$4p = -\frac{3}{2} \implies \boxed{p = -\frac{3}{8}}$$

Vertex: (0, 0)

Focus: $\left(-\frac{3}{8}, 0\right)$

Directrix: $x = \frac{3}{8}$

Find the *vertex*, *focus*, and *directrix* of the parabola. Sketch its graph. $(x+2)^2 = -8(y-1)$

Solution

$$(x+2)^2 = 4p(y-1)$$

$$4p = -8 \implies \boxed{p = -2}$$

Vertex: (-2, 1)

Focus: (-2, 1-2) = (-2, -1)

Directrix: y = 1 + 2 = 3

Exercise

Find the *vertex*, *focus*, and *directrix* of the parabola. Sketch its graph. $(x-3)^2 = \frac{1}{2}(y+1)$

Solution

$$(x-3)^2 = 4p(y+1)$$

$$4p = \frac{1}{2} \implies \boxed{p = \frac{1}{8}}$$

Vertex: (3, -1)

Focus: $(3, -1 + \frac{1}{8}) = (3, -\frac{7}{8})$

Directrix: $y = -1 - \frac{1}{8}$ $= -\frac{9}{8}$

Find the *vertex*, *focus*, and *directrix* of the parabola. Sketch its graph. $(y+1)^2 = -12(x+2)$

Solution

$$(y+1)^2 = 4p(x+2)$$

$$4p = -12 \implies p = -3$$

Vertex: (-2, -1)

Focus: (-2-3, -1) = (-5, -1)

Directrix: x = -1 + 3 = 2

Exercise

Find the *vertex*, *focus*, and *directrix* of the parabola. Sketch its graph. $y = x^2 - 4x + 2$

Solution

$$y = ax^2 + bx + c \implies a = 1$$

$$p = \frac{1}{4a} = \frac{1}{4}$$

$$p = \frac{1}{4}$$

Vertex: $\begin{cases} h = -\frac{b}{2a} = -\frac{-4}{2(1)} = 2\\ k = 2^2 - 4(2) + 2 = -2 \end{cases}$

$$V = (2, -2)$$

Focus: $\left(2, -2 + \frac{1}{4}\right) = \left(2, -\frac{7}{4}\right)$

Directrix: $y = -2 - \frac{1}{4}$ = $-\frac{9}{4}$

Find the *vertex*, *focus*, and *directrix* of the parabola. Sketch its graph. $y^2 + 14y + 4x + 45 = 0$

Solution

$$y^{2} + 14y = -4x - 45$$

$$y^{2} + 14y + (7)^{2} = -4x - 45 + (7)^{2}$$

$$(y+7)^{2} = -4x + 4$$

$$(y+7)^{2} = -4(x-1)$$

$$4p = -4 \implies p = -1$$

Vertex: (1, -7)

Focus: (1-1, -7) = (0, -7)

Directrix: x = 1+1= 2

Exercise

Find the *vertex*, *focus*, and *directrix* of the parabola. Sketch its graph. $x^2 + 20y = 10$

Solution

$$x^{2} = -20y + 10$$

$$x^{2} = -20\left(y - \frac{1}{2}\right)$$

$$4p = -20 \implies \boxed{p = -5}$$

Vertex: $\left(0, \frac{1}{2}\right)$

Focus: $\left(0, \frac{1}{2} - 5\right) = \left(0, -\frac{9}{2}\right)$

Directrix: $y = \frac{1}{2} + 5$ $= \frac{11}{2}$

Find the *vertex*, *focus*, and *directrix* of the parabola. Sketch its graph. $x^2 = 16y$

Solution

$$x^2 = 16y = 4py$$

$$4p = 16 \implies \boxed{p = 4}$$

Vertex: (0, 0)

Focus: (0, 4)

Directrix: y = -4

Exercise

Find the *vertex*, *focus*, and *directrix* of the parabola. Sketch its graph. $x^2 = -\frac{1}{2}y$

Solution

$$x^2 = -\frac{1}{2}y = 4py$$

$$4p = -\frac{1}{2} \implies \boxed{p = -\frac{1}{8}}$$

Vertex: (0, 0)

Focus: $\left(0, -\frac{1}{8}\right)$

Directrix: $y = \frac{1}{8}$

Find the *vertex*, *focus*, and *directrix* of the parabola. Sketch its graph. $(y+1)^2 = -4(x-2)$

Solution

$$(y+1)^2 = 4p(x-2)$$

$$4p = -4 \implies \boxed{p = -1}$$

Vertex: (2, -1)

Focus: (2-1, -1) = (1, -1)

Directrix: x = 2 + 1

Exercise

Find the *vertex*, *focus*, and *directrix* of the parabola. Sketch its graph. $x^2 + 6x - 4y + 1 = 0$

Solution

$$x^{2} + 6x + \left(\frac{6}{2}\right)^{2} = 4y - 1 + \left(3\right)^{2}$$

$$\left(x+3\right)^2 = 4y + 8$$

$$(x+3)^2 = 4(y+2)$$

$$4p = 4 \implies \boxed{p=1}$$

Vertex: (-3, -2)

Focus: (-3, -2+1) = (-3, -1)

Directrix: y = -2 - 1= -3 |

Find the *vertex*, *focus*, and *directrix* of the parabola. Sketch its graph. $y^2 + 2y - x = 0$

Solution

$$y^{2} + 2y = x$$

$$y^{2} + 2y + \left(\frac{2}{2}\right)^{2} = x + (1)^{2}$$

$$(y+1)^{2} = (x+1)$$

$$4p = 1 \implies \boxed{p = \frac{1}{4}}$$

Vertex: V = (-1, -1)

Focus:
$$F = \left(-1 + \frac{1}{4}, -1\right)$$
$$= \left(-\frac{3}{4}, -1\right)$$

Directrix:
$$x = -1 - \frac{1}{4}$$
$$= -\frac{5}{4}$$

Exercise

Find the *vertex*, *focus*, and *directrix* of the parabola. Sketch its graph. $y^2 - 4y + 4x + 4 = 0$

Solution

$$y^{2} - 4y = -4x - 4$$

$$y^{2} - 4y + \left(\frac{-4}{2}\right)^{2} = -4x - 4 + \left(-2\right)^{2}$$

$$(y - 2)^{2} = -4x$$

$$4p = -4 \implies \boxed{p = -1}$$

Vertex: V = (0, 2)

Focus: F = (-1, 2)

Directrix: x = 1

Find the *vertex*, *focus*, and *directrix* of the parabola. Sketch its graph. $x^2 - 4x - 4y = 4$

Solution

$$x^{2} - 4x = 4y + 4$$
$$x^{2} - 4x + \left(\frac{-4}{2}\right)^{2} = 4y + 4 + \left(-2\right)^{2}$$

$$(x-2)^2 = 4(y+2)$$

$$4p = 4 \implies \boxed{p=1}$$

Vertex: V = (2, -2)

Focus: F = (2, -2+1)= (2, -1)

Directrix: y = -2 - 1= -3

Exercise

Find an equation of the parabola that satisfies the given conditions Focus: F(2,0) directrix: x = -2

Solution

$$x = -2 = -p \rightarrow p = 2$$

$$y^2 = 4px$$

$$y^2 = 8x$$

Exercise

Find an equation of the parabola that satisfies the given conditions Focus: F(0, -40) directrix: y = 4

$$y = 4 = -p \rightarrow p = -4$$

$$x^2 = 4py$$

$$x^2 = -16y$$

Find an equation of the parabola that satisfies the given conditions Focus: F(-3,-2) directrix: y = 1

Solution

$$y = 1 = k - p \rightarrow k - p = 1$$

$$\begin{cases} \frac{h = -3}{k + p} = -2 \rightarrow \begin{cases} k + p = -2 \\ k - p = 1 \end{cases}$$

$$\Rightarrow 2k = -1 \rightarrow k = -\frac{1}{2}$$

$$k - p = 1 \rightarrow p = k - 1$$

$$p = -\frac{1}{2} - 1$$

$$= -\frac{3}{2}$$

$$Vertex: V = \left(-3, -\frac{1}{2}\right)$$

$$(x + 3)^2 = 4\left(-\frac{3}{2}\right)\left(y + \frac{1}{2}\right)$$

 $\left(x+3\right)^2 = -6\left(y+\frac{1}{2}\right)$

Exercise

Find an equation of the parabola that satisfies the given conditions Vertex: V(3,-5) directrix: x=2

Vertex:
$$V(3,-5)$$

$$\begin{cases} h=3\\ k=-5 \end{cases}$$
$$directrix: x=2=h-p$$
$$p=h-2$$
$$=3-2$$
$$=1$$
$$(y-k)^2 = 4p(x-h)$$
$$(y+5)^2 = 4(x-3)$$

Find an equation of the parabola that satisfies the given conditions Vertex: V(-2,3) directrix: y = 5

Solution

Vertex:
$$V(-2, 3)$$

$$\begin{cases} h = -2 \\ k = 3 \end{cases}$$
$$directrix: y = 5 = k - p$$
$$p = k - 5$$
$$= 3 - 5$$
$$= -2 \rfloor$$
$$(x - h)^2 = 4p(y - k)$$
$$(x + 2)^2 = -8(y - 3)$$

Exercise

Find an equation of the parabola that satisfies the given conditions Vertex: V(-1,0) focus: F(-4,0)

Solution

Vertex:
$$V(-1, 0)$$

$$\begin{cases} h = -1 \\ k = 0 \end{cases}$$

$$focus: F(-4,0)$$

$$\begin{cases} h + p = -4 \\ k = 0 \end{cases}$$

$$p = -4 - h$$

$$= -4 + 1$$

$$= -3$$

$$(y - k)^2 = 4p(x - h)$$

$$y^2 = -12(x + 1)$$

Exercise

Find an equation of the parabola that satisfies the given conditions Vertex: V(1,-2) focus: F(1,0)

Vertex:
$$V(1, -2)$$

$$\begin{cases} h=1\\ k=-2 \end{cases}$$

focus:
$$F(1, 0)$$

$$\begin{cases} h=1\\ k+p=0 \Rightarrow \underline{p}=-k=\underline{2} \end{bmatrix}$$
$$(x-h)^2 = 4p(y-k)$$
$$(x-1)^2 = 8(y+2)$$

Find an equation of the parabola that satisfies the given conditions Vertex: V(0, 1) focus: F(0, 2)

Solution

Vertex:
$$V(0, 1)$$

$$\begin{cases} h = 0 \\ k = 1 \end{cases}$$

$$focus: F(0, 2)$$

$$\begin{cases} h = 0 \\ k + p = 2 \end{cases} \Rightarrow \underline{p} = 2 - 1 = \underline{1} \end{bmatrix}$$

$$(x - h)^2 = 4p(y - k)$$

$$x^2 = 4(y - 1)$$

Exercise

Find an equation of the parabola that satisfies the given conditions Vertex: V(3, 2) focus: F(-1, 2)

Vertex:
$$V(3, 2)$$
 $\begin{cases} h = 3 \\ k = 2 \end{cases}$
focus: $F(-1,2)$ $\begin{cases} h+p=-1 \implies p=-1-3=\underline{-4} \\ k=2 \end{cases}$
 $(y-k)^2 = 4p(x-h)$
 $(y-2)^2 = -16(x-3)$