المممورية المزائرية الحيمةراطية الفعبية

الدبوان الوطبي الاعتمانات والمسابقات * دورة جوان 2008 * المدة : 03 ساعات و 30 د

وزارة التزبية الوطبية امتحان بكالوريا التعليم الثاتوي الشعبة : العلوم التجريبية

اختبار في مادة الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين : الموضوع الأول

<u>لتمرين الأيل (</u> 04,5 نقط)

1 - حل في مجموعة الأعداد المركبة C المعادلة :

 $z^2 - (1+2i)z - 1 + i = 0$

 $|z_1| < |z_2|$: خرمز للحلين بـ $|z_1| < |z_2|$

. بين ان $\left(\frac{z_1}{z_1}\right)^{200z}$ عدد حقيقي

C – المستوي منسوب إلى معلم متعامد و متجانس $O(\overline{u},\overline{v})$.لتكن B ، B و C نقط المستوي التي لاحقائها على الترتيب [٠ ٤٠ - ٤٠

 $Z = \frac{z_2 - 1}{z_1 - 1}$: ليكن Z للعدد المركب حيث Z

 $e^{i(\theta_i+\theta_i)}=e^{i\theta_i} imes e^{i\theta_i}$: و من الخاصية $e^{i\theta}=\cos\theta+i\sin\theta$ انطالقا من التعريف $e^{i(\theta_i+\theta_i)}=e^{i\theta_i}$

. ميث ان : $e^{-r\theta} = \frac{1}{e^{r\theta_1}} = e^{r(q_1-\theta_1)}$ و اعداد حقيقية . برهن ان : $e^{-r\theta} = \frac{1}{e^{r\theta_1}}$

ب) أكتب Z علَى الشكل الأسي . جــ) أكتب Z على الشكل المثلثي و استتنج أن النقطة C هي صورة النقطة Bبتشابه مباشر مركزه A، بطلب تعین زاویته و نسبته.

التمرين الثاني (04 نقط)

(P) الذي معامد و متجانس $(O,\widetilde{i},\widetilde{f},\widetilde{k})$ شعبر المستوى (P) الذي معادلته $(D,\widetilde{i},\widetilde{f},\widetilde{k})$

x+2y-z+7=0

. C(-1,-2,2) و النقط A(2,0,1) و B(3,2,0) و A(2,0,1)

(ABC) لينقط (B+A) و (C) ليست على استقامية ، ثم بين أن المعادلة الديكاراتية المستوى (ABC)y + 2z - 2 = 0:

 $\Delta = 1 - 1$ منظم أن المستويين $\Delta = (ABC)$ متعامدان ، ثم عين تمثيلاً وسيطيا المستقيم $\Delta = 1$ مستقيم تقاطع $ABC)_{\mathcal{S}}(P)$

A ب - احسب المسافة بين النقطة A و المستقيم Δ

 $1+\alpha+\beta\neq 0$ مرجح الجملة $\{(A,1),(B,\alpha),(C,\beta)\}$ حيث β,α عندان حقيقيان يحققان G عندان G عندان حقيقيان يحققان G α عين α حتى تتنمي النقطة α إلى المستقيم

<u> التعرين الثالث (</u> 04 نقط)

.
$$f(x) = \frac{x+2}{-x+4}$$
 بالعبارة: $I = [1,2]$ بالعبارة: $f(x) = \frac{x+2}{-x+4}$ بالعبارة: (1

أ- بين أن الدالة / منز ابدة ثماما على 1 .

I ينتمي إلى f(x) ، I من المجال الم عدد حقيقي x من المجال الم ينتمي الم

2) (س) هي المتتالية العددية المعرقة على ١٧ كما يأتي:

$$u_{n+1} = f(u_n)$$
 $u_0 = \frac{3}{2}$

I - بر هن بالنز اجع أنه من أجل كل عند طبيعي u ، u ينتمي إلى u

ب- أدرس اتجاه تغير المنتالية (س) ، ثم استنج أنها منقاربة.

$$u_n = 1 + \frac{1}{\left(\frac{3}{2}\right)^n + 1}$$
 : n عين النهائة : n

التمرين الرابع (07,5 نقط)

: كما يأتي $[-2,+\infty[$ الدقة فلعندية للمتغير الحقيقي x المعرفة على المجال -1 كما يأتي $f(x)=(ax+b)\ e^{-x}+1$

حیث ه و ه عندان حقیقیان.

- . 1cm للمنحنى المعثل للدالة f في معلم متعامد و متجانس $O(\vec{I}, \vec{f})$ وحدة الطول C_f عين قيمتي a و b بحيث تكون النقطة A(-1,1) نتتمى إلى C_f و معامل توجيه المماس عند A يساوي (-e).
- : كما يلي والمناب المعتبر ال
 - . مُثِلِمها اليباني في نفس المعلم السابق $\left(C_{g}
 ight)$
 - ($\lim_{x\to 0} ue^x = 0$ بين أن $\lim_{x\to 0} g(x) = 1$ و فسر هذه النتيجة بيانوا.(نذكر أن $\lim_{x\to 0} ue^x = 0$
 - ب) ادرس تغيرات الداللة ج ، ثم أنشئ جدول تغيراتها.
 - ج) بيّن أن المنحنى (C_s) يقبل نقطة العطاف I يطلب تعيين احداثيبها.
 - $\cdot I$ عند النقطة المماس المنحنى ($C_{
 m g}$) عند النقطة الم
 - $\cdot (C_{\kappa})$ ارسم (
- و) H الدالة العددية المعرفة على $[-2,+\infty]$ كما يأتي: $H(x)=(\alpha x+\beta)e^{-x}$ حيث α و β عددان حقيقيان. $x\mapsto g(x)-1$ دالة أصلية الدالة : α

السنتنج للدالة الأصابية للدالة ع و الني تتعدم عند القيمة 0.

III) لنكن نم الدالة المعرفة على المجال]0+,2−] كما يأتي:

$$k(x) = g(x^2)$$

باستعمال مشتقة دالة مركبة ، عين انجاه تغير الدالة له ثم شكل جدول تغيراتها .

الصقحة 4/2

التعريث الأولى (03 نقط)

لكل منوال من الأسئلة التالية جواب واحد صحيح لقط . عين الجواب الصحيح معللا اختيارك- نعتبر في الفضاء المنسوب إلى معلم متعامد ومتجانس $(O; ar{t}, ar{f}, ar{k})$ النقط:

$$D(3,2,1) \cdot C(-2,0,-2) \cdot B(4,1,0) \cdot A(1,3,-1)$$

x-3z-4=0 الذي معادلته: (P)

$$ABD$$
) (3 ج ABC) (2 ج BCD) (1 ج BCD) (1 ج BCD) (1 المسئوى (2 المسئو

2) شعاع ناظمي المستوي (P) هو :

$$\vec{n}_{1}(2,0,-1)$$
 (3 ε · $\vec{n}_{2}(-2,0,6)$ (2 ε · $\vec{n}_{1}(1,2,1)$ (1 ε

(P) المسافة بين النقطة (P) و المستوى

$$\frac{2\sqrt{10}}{5}(3_{\overline{c}} \qquad , \qquad \frac{\sqrt{10}}{10}(2_{\overline{c}} \qquad , \qquad \frac{\sqrt{10}}{5}(1_{\overline{c}}$$

التمرين الثاني (05 نقط)

(u)منتالية عددية معرفة كما يلي :

$$u_{n+1} = \frac{2}{3}u_n + 2$$
: n where $u_n = \frac{5}{2}$

ا) i = t الذي معادلته y = x و المنطق (Δ) الذي معادلته y = x و المنطق (Δ) الممثل المشافع متعامد و متجانس (Δ) الممثل المشافع المشافع المتعامد و متجانس (Δ) الممثل المشافع المتعامد و متجانس (Δ) الممثل المشافع المتعامد و متجانس (Δ) الممثل المشافع المتعامد و متجانس (Δ) المشافع المتعامد و متجانس (Δ) المشافع المتعامد و متجانس (Δ) المتعامد و متحانس (Δ) المتحانس (Δ) المتعامد و متحانس (

$$f(x) = \frac{2}{3}x + 2 : \longrightarrow \mathbb{R} \longrightarrow f \text{ that } f$$

 u_1, u_2, u_3, u_4, u_6 : باستعمال الرسم السابق، مثل على حامل محور الفواصل و بدون حساب الحدود

- صع تخمينا حول انجاه تغير المنتانية (u_n) و تقاربها.

. $u_n \le 6$: n جر هن بالتراجع أنه من أجل كل عدد طبيعي -1

ب - تحقق أن (س) متزايدة .

جـ - هل (١١) متقاربة ؟ برز إجابتك .

 $v_{\mu} = u_{\mu} - 6$: π نضع من أجل كل عند طبيعي π

أ – قبت أن (v_n) متتالية هندسية بطلب تعيين أساسها و حدها الأول.

 $\lim_{n\to\infty} u_n$ ب – لَكتب عبارة u_n بدلالة n ثم استنج

```
<u>التعرين الثلث (</u> 05 نقط)
```

إ . حل في مجموعة الأعداد المركبة €المعادلة ذات المجهول ع التالبة:

$$z^2 + iz - 2 - 6i = 0$$

النقطنين ، A و B المنتوي المركب المنسوب إلى معلم متعامد و متجانس $O(\bar{u}, \bar{v})$ النقطنين ، A و B المنتين A

لاحقناهما رم و وبر على النزنيب حيث :

$$z_{B} = -2 - 2i$$
 $z_{A} = 2 + i$

 z_{ω} عبن z_{ω} لاحقة النقطة ω مركز الدائرة (Γ) ذات القطر

.
$$z_c=rac{4-I}{1+I}$$
 حيث z_c النقطة ذات اللاحقة z_c

اكتب z_c على الشكل الجبري ثم أثبت أن النقطة C تنتمي إلى الدائرة (Γ) .

و الذي $M_0(z_0)$ برهن أن عبارة النشابه المباشر S الذي مركزه $M_0(z_0)$ و نسبته $M_0(z_0)$ و زاويته θ و الذي $z'-z_n=ke^{i\theta}\left(z-z_0
ight)$: هي M'(z) النقطة M(z) النقطة M(z)

.
$$z' + \frac{1}{2}i = 2e^{i\frac{\pi}{3}}\left(z + \frac{1}{2}i\right)$$
: عين الطبيعة و العناصر المميزة للتحويل S المعرف بـ : عين الطبيعة و العناصر المميزة التحويل والمعرف بـ : عين الطبيعة و العناصر المميزة التحويل والمعرف بـ : عين الطبيعة و العناصر المميزة التحويل والمعرف بـ : عين الطبيعة و العناصر المميزة التحويل والمعرف بـ : عين الطبيعة و العناصر المميزة التحويل والمعرف بـ : عين الطبيعة و العناصر المميزة التحويل والمعرف بـ : عين الطبيعة و العناصر المميزة التحويل والمعرف بـ : عين الطبيعة و العناصر المميزة التحويل والمعرف بـ : عين الطبيعة و العناصر المميزة التحويل والمعرف بـ : عين الطبيعة و العناصر المميزة التحويل والمعرف بـ : عين الطبيعة و العناصر المميزة التحويل والمعرف بـ : عين الطبيعة و العناصر المميزة التحويل والمعرف المعرف التحويل والمعرف التحويل والتحويل والتحويل

التمرين الرابع (07 نقط)

المفايل هو المنابل هو المعايل البياني للدالة العددية g المعرفة على المجال $-1:+\infty$ كما يأتي $+1:+\infty$

$$g(x) = x^3 + 3x^2 + 3x - 1$$

g(0) = 1) – بقراءة بيانية شكل جدول تغيرات الدللة g و حدّد g(0) وإشارة g(0).

- $g(\alpha)=0$: يحقق =0 من المجال =0, $\frac{1}{2}$ يحقق =0 من المجال =0, =0 بستنتج بشارة =0 على المجال =0; =0 بستنتج بشارة =0 على المجال =0; =0 هي الدالة المعددية المعرفة على المجال =0; =0 بما ياتي =0 هي الدالة المعددية المعرفة على المجال =0; =0 هي الدالة المعددية المعرفة على المجال =0; =0

$$f(x) = \frac{x^3 + 3x^2 + 3x + 2}{(x+1)^2}$$

، $\left(O;ar{t},ar{f}
ight)$ مثيلها البياني في معلم متعامد $\left(\Gamma
ight)$ ،

 $f'(x) = \frac{g(x)}{(x+1)^3}$:]-1;+∞[المجال x من الجم عند حقيقي عند الجم المجال إلى عند حقيقي المجال إلى عند حقيقي المجال المج

حيث " أ هي الدالة المشتقة للدالة [] .

ب) عين دون حساب
$$\frac{f(x)-f(a)}{x-a}$$
 و هُمْرَ النتيجة بيانيا.

ج) احسب :
$$f(x) = \lim_{x \to \infty} \left[f(x) - (x+1) \right]$$
 و فسّر النتيجئين بياتيا.

د) شكل جدول تغيرات الدالة / .

$$\alpha = 0.26$$
 - 3

. 10^{-2} للى f(lpha) عين مدور

$$(\Gamma)$$
 ارسم المنحنی (Γ)

و معدان حقیقیان.
$$f(x) = x + a + \frac{b}{(x+1)^2}$$
 عددان حقیقیان. a

$$F(1)=2$$
 : واثني تحقق $F(1)=1$ الدالة الأصلية للدالة $f(1)=1$ الصفحة $F(1)=1$ واثني تحقق التوفيق التهى