Modelling as a Core Activity

S. Karolius*

Dept. of Chem. Eng., Norwegian Univ. of Sci. and Tech. mailto: author at ntnu dot no

1. januar 2010

Abstract

This is a short abstract outlining the scope and findings in this work.

Contents

2 Thermodynamics

Contents 123		123	In thermodynamics GIBBS ¹ is an eponym which takes its name from from Josiah Willard Gibbs.
1	Introduction	123	Gibbs -energy is defined as:
2	Thermodynamics	123	2-1-2-0
3	Numerical Methods	123	$G := U - TS - \pi V$

3 Numerical Methods

1 Introduction

Linear models can be represented as follows:

```
\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \tag{1}
```

```
def nr(f,dfdx,x0,tol=1e-12,maxit=13):
""" 1D Newton-Raphson solver """
xk=x0; iflag=False; cflag=False; i=1
while not iflag:
    xkp1 = xk - f(xk)/dfdx(xk) # NR step
cflag = abs(xkp1 - xk) <= tol
if not cflag:
    xk = xkp1; i += 1
iflag = i > maxit
continue
return xk
return xk
```

Listing 1: The "Newton-step" is performed in Line 5

^{*}Copyright © 2017 SK

¹Josiah Willard Gibbs: American scientist who made important theoretical contributions to physics, chemistry, and mathematics.

Index