Because the integral $\int_0^1 \frac{\cos(x^{-1}\log(x))}{x} dx$ have infinitely-many oscillation and it is singular at x= 0. The integral can't be found using Trapezoidal or Simpson's.

As suggested by the instruction, we could find the root of f(x) at the points of $1>a_1>a_2>...>0$ by using $a_1=\exp(-b_i)$ and $b=fzero(@(x)\ x^*exp(x)-(i-1/2)^*pi,0)$. Then I implemented a function to calculate I_i by using the integral function. The value of Q_n is the sum of I_i and Q_n should be implemented as a function taken n as input value.

	200	400	600	800	1000
Q_N	0.3220441950248	0.3226943650785	0.3229147223178	0.3230259158662	0.3230930497328
	63	23	01	45	36
Q_hat_N	0.3233674237942	0.3233674306631	0.3233674313729	0.3233674315480	0.3230930497328
	85	15	44	50	36
Q_N	1200	1400	1600	1800	2000
	0.3231380155874	0.3231702535599	0.3231945061529	0.3232134182241	0.3232285817950
	90	17	15	94	80
Q_hat_N	0.3233674316389	0.3233674316532	0.3233674316612	0.3233674316661	0.3233674316692
	16	11	67	50	81

For the same reason above, Aitken's method should be a function that take n as an input. And $Q_hat_N = Q(n) - (((Q(n+1) - Q(n)).^2)/(Q(n+2)-2*Q(n+1) + Q(n)))$. The integral are presented in the figure above.

For the function
$$I(p) = \int_0^1 \frac{\cos(x^{-p}\log(x))}{x} \,\mathrm{d}x$$
 , we can redefine the function

by change -1 to -p. But I don't know how to to find the root of f(x) in this case. So I can't analyze this situation.