Computing Burrows-Wheeler Similarity Distributions for String Collections

Felipe A. Louza¹

Guilherme P. Telles² Simon Gog³ Zhao Liang ¹

¹Department of Computing and Mathematics University of São Paulo, Brazil

²Instituto de Computação Universidade Estadual de Campinas, Brazil

³eBav Inc., USA

October 9, 2018

 $^{^{1}}$ Supported by the grant #2017/09105-0 from the São Paulo Research Foundation (FAPESP).

Outline

1. Introduction

- 2. Burrows-Wheeler Similarity Distribution (BWSD)
- 3. Algorithm
- 4. Algorithm 2
- 5. Experiments
- 6. References

Burrows-Wheeler transform (BWT):

- ▶ The BWT is a reversible transformation of a string T[1, n] that tends to group identical symbols into runs.
- ▶ BWT(T) is a more compressible string
- ▶ Important to data compression, text indexing, and other applications

abracadabra\$ \xrightarrow{BWT} ard\$rcaaaabb

Figure: David Wheeler - Michael Burrows (1994)

Burrows-Wheeler transform (BWT):

- ▶ The BWT is a reversible transformation of a string T[1, n] that tends to group identical symbols into runs.
- ▶ BWT(T) is a more compressible string.
- Important to data compression, text indexing, and other applications

abracadabra $\$ \xrightarrow{BWT} \text{ard}\$rcaaaabb}$

Figure: David Wheeler - Michael Burrows (1994)

Burrows-Wheeler transform (BWT):

- ▶ The BWT is a reversible transformation of a string T[1, n] that tends to group identical symbols into runs.
- ▶ BWT(T) is a more compressible string.
- ▶ Important to data compression, text indexing, and other applications.

abracadabra $\$ \xrightarrow{BWT}$ ard\$rcaaaabb

Figure: David Wheeler - Michael Burrows (1994)

Burrows-Wheeler transform (BWT):

- ▶ The BWT(T) can be obtained by sorting all rotations of T[1, n].
- ► Taking the last column L=BWT.
- ▶ We assume T[1,n] always ends with a terminator symbol $\$ < c \in \Sigma$

abracadabra\$ \xrightarrow{BWT} ard\$rcaaaabb

- ▶ The BWT(T) can be obtained by sorting all rotations of T[1, n].
- ► Taking the last column L=BWT
- lacktriangle We assume $\mathcal{T}[1,n]$ always ends with a terminator symbol $\$ < c \in \Sigma$

- ▶ The BWT(T) can be obtained by sorting all rotations of T[1, n].
- ▶ Taking the last column L=BWT.
- ▶ We assume T[1, n] always ends with a terminator symbol $\$ < c \in \Sigma$

	abracadabra\$	\xrightarrow{BWT}	ard\$rcaaaabb
-	abracadabra\$a racadabra\$ab acadabra\$abr cadabra\$abracadabra\$abracadabra\$abracadabra\$abracadabra\$abracadabra\$abracadabra\$abracadabra\$abracadabra\$abracadabra\$abracadabra\$abracadabra\$abracadabra	sort →	
	M'		

- ▶ The BWT(T) can be obtained by sorting all rotations of T[1, n].
- ► Taking the last column L=BWT.
- ▶ We assume T[1, n] always ends with a terminator symbol $\$ < c \in \Sigma$

abracadabra\$	\xrightarrow{BWT}	ard\$rca	ıaaabb
		F	L
abracadabra\$		\$abraca	dabra
bracadabra <mark>\$a</mark>		a\$abrac	adabr
racadabra <mark>\$ab</mark>		abra\$ab	racad
acadabra <mark>\$abr</mark>		abracad	labra\$
cadabra <mark>\$abra</mark>		acadabr	a\$abr
adabra\$abrac		adabra	abrac
dabra\$abraca	\xrightarrow{sort}	bra\$abr	acada
abra\$abracad		bracada	bra\$a
bra\$abracada		cadabra	\$abra
ra\$abracadab		dabra\$a	braca
a\$abracadabr		ra\$abra	cadab
\$abracadabra		racadah	ra\$ab_
M'		М	1

- ▶ The BWT(T) can be obtained by sorting all rotations of T[1, n].
- ▶ Taking the last column L=BWT.
- ▶ We assume T[1, n] always ends with a terminator symbol $\$ < c \in \Sigma$

abracadabra\$	\xrightarrow{BWT}	ard\$rca	aaabb
		F	L
abracadabra\$		\$abraca	dabra
bracadabra <mark>\$a</mark>		a\$abrac	adabr
racadabra <mark>\$ab</mark>		abra\$ab	racad
acadabra <mark>\$abr</mark>		abracad	labra\$
cadabra <mark>\$abra</mark>		acadabr	a\$ab <mark>r</mark>
adabra\$abrac		adabra\$	abrac
dabra\$abraca	\xrightarrow{sort}	bra\$abr	acada
abra\$abracad		bracada	ıbra\$ <mark>a</mark>
bra\$abracada		cadabra	\$abra
ra\$abracadab		dabra\$a	braca
a\$abracadabr		ra\$abra	ıcada <mark>b</mark>
\$abracadabra		racadab	ra\$ab_
M'		М	

- ▶ The BWT(T) can be obtained by sorting all rotations of T[1, n].
- ► Taking the last column L=BWT.
- ▶ We assume T[1, n] always ends with a terminator symbol $\$ < c \in \Sigma$.

abracadabra\$	\xrightarrow{BWT}	ard\$rca	aaabb
		F	L
abracadabra\$		\$abraca	adabra
bracadabra <mark>\$a</mark>		a\$abra	
racadabra <mark>\$ab</mark>		abra\$a	
acadabra\$abr		abracad	labra\$
cadabra <mark>\$abra</mark>		acadabı	a\$abr
adabra\$abrac		adabras	abrac
dabra\$abraca	\xrightarrow{sort}	bra\$aba	
abra\$abracad		bracada	abra\$a
bra\$abracada		cadabra	a\$abra
ra\$abracadab		dabra\$	
a\$abracadabr		ra\$abra	
\$abracadabra		racadal	ora\$ab_
M'		M	I

Burrows-Wheeler transform (BWT):

- ▶ The BWT(T) can be obtained by sorting all rotations of T[1, n].
- Taking the last column L=BWT.
- ▶ We assume T[1, n] always ends with a terminator symbol $\$ < c \in \Sigma$.

abracadabra\$	\xrightarrow{BWT}	ard\$rca	aaabb
		F	L
abracadabra\$		\$abraca	adabra
bracadabra\$a		a\$abra	cadab r
racadabra <mark>\$ab</mark>		abra\$al	oraca d
acadabra <mark>\$abr</mark>		abracad	labra\$
cadabra <mark>\$abra</mark>		acadabi	ra\$ab <mark>r</mark>
adabra\$abrac		adabra	abrac
dabra\$abraca	\xrightarrow{sort}	bra\$ab:	racada
abra\$abracad		bracada	abra\$ <mark>a</mark>
bra\$abracada		cadabra	a\$abr <mark>a</mark>
ra\$abracadab		dabra\$	abrac a
a\$abracadabr		ra\$abra	acadab
\$abracadabra		racadal	ora\$ab
M'		N	1

In practice, we sort all suffixes (Suffix Array) \Rightarrow take the preceding symbols as BWT.

BWT for multiple strings:

- ▶ The BWT can be defined for multiple strings $T_1, T_2, ..., T_d$.
 - ▶ Concatenate all strings: $T^{cat} = T_1 \cdot T_2 \cdots T_d$, of length N.
 - ▶ Each T_i is terminated by a distinct symbol $\$_i$, with $\$_1 < \$_2 < \cdots < \$_d$.
- ▶ Compute SA for $T^{cat} \rightarrow BWT$
- ▶ Document array (DA) gives the string id of each BWT symbol

BWT(banana\$1anaba\$2)

i	DA	BWT	suffixes
1	1	а	\$1
2	2	a	\$ 2
3	1	n	a\$1
4	2	b	a\$2
5	2	n	aba\$2
6	1	n	ana\$ ₁
7	2	\$ 1	anaba\$2
8	1	b	anana\$1
9	2	a	ba\$2
10	1	\$ 2	banana\$1
11	1	a	na\$ ₁
12	2	a	naba\$2
13	1	a	nana\$1

BWT for multiple strings:

- ▶ The BWT can be defined for multiple strings $T_1, T_2, ..., T_d$.
 - ▶ Concatenate all strings: $T^{cat} = T_1 \cdot T_2 \cdots T_d$, of length N.
 - ▶ Each T_i is terminated by a distinct symbol $\$_i$, with $\$_1 < \$_2 < \cdots < \$_d$
- ightharpoonup Compute SA for $T^{cat}
 ightarrow BW7$
- ▶ Document array (DA) gives the string id of each BWT symbol

$BWT(banana\$_1anaba\$_2)$

i	DA	BWT	suffixes
1	1	а	\$1
2	2	a	\$ 2
3	1	n	a\$1
4	2	b	a\$2
5	2	n	aba\$2
6	1	n	ana\$ ₁
7	2	\$ 1	anaba\$2
8	1	b	anana\$1
9	2	a	ba\$2
10	1	\$ 2	banana\$1
11	1	a	na\$ ₁
12	2	a	naba\$2
13	1	a	nana\$1

BWT for multiple strings:

- ▶ The BWT can be defined for multiple strings $T_1, T_2, ..., T_d$.
 - ▶ Concatenate all strings: $T^{cat} = T_1 \cdot T_2 \cdots T_d$, of length N.
 - ▶ Each T_i is terminated by a distinct symbol $\$_i$, with $\$_1 < \$_2 < \cdots < \$_d$.
- ▶ Compute SA for $T^{cat} \rightarrow BW^T$
- ▶ Document array (DA) gives the string *id* of each BWT symbol

BWT(banana\$1anaba\$2)

i	DA	BWT	suffixes
1	1	а	\$1
2	2	a	\$2
3	1	n	a\$1
4	2	b	a\$2
5	2	n	aba\$2
6	1	n	ana\$ ₁
7	2	\$ 1	anaba\$2
8	1	b	anana\$1
9	2	a	ba\$2
10	1	\$ 2	banana\$1
11	1	a	na\$ ₁
12	2	a	naba\$2
13	1	a	nana\$ ₁

BWT for multiple strings:

- ▶ The BWT can be defined for multiple strings $T_1, T_2, ..., T_d$.
 - ▶ Concatenate all strings: $T^{cat} = T_1 \cdot T_2 \cdots T_d$, of length N.
 - ▶ Each T_i is terminated by a distinct symbol $\$_i$, with $\$_1 < \$_2 < \cdots < \$_d$.
- ▶ Compute SA for T^{cat} → BWT
- ▶ Document array (DA) gives the string id of each BWT symbol

$BWT(banana\$_1anaba\$_2)$

i	DA	BWT	suffixes
1	1	а	\$ 1
2	2	а	\$2
	1	n	a\$1
4	2	b	a\$2
5	2	n	aba\$2
6	1	n	ana\$ ₁
7	2	\$ ₁	anaba\$2
8	1	b	anana\$1
9	2	а	ba\$2
10	1	\$ ₂	banana\$1
11	1	а	na\$ ₁
12	2	а	naba\$2
13	1	а	nana\$ ₁

BWT for multiple strings:

- ▶ The BWT can be defined for multiple strings $T_1, T_2, ..., T_d$.
 - ▶ Concatenate all strings: $T^{cat} = T_1 \cdot T_2 \cdots T_d$, of length N.
 - ▶ Each T_i is terminated by a distinct symbol $\$_i$, with $\$_1 < \$_2 < \cdots < \$_d$.
- ▶ Compute SA for T^{cat} → BWT
- ▶ Document array (DA) gives the string *id* of each BWT symbol.

BWT(banana\$1anaba\$2)

i	DA	BWT	suffixes
1	1	а	\$1
2	2	а	\$2
3	1	n	a\$1
4	2	b	a\$2
5	2	n	aba\$2
6	1	n	ana\$ ₁
7	2	\$ ₁	anaba\$2
8	1	b	anana\$1
9	2	а	ba\$2
10	1	\$ 2	banana\$1
11	1	а	na\$ ₁
12	2	а	naba\$2
13	1	а	nana\$ ₁

Outline

- 1 Introduction
- 2. Burrows-Wheeler Similarity Distribution (BWSD)
- 3. Algorithm 1
- 4. Algorithm 2
- 5. Experiments
- References

Comparing two strings T_1 , T_2 using BWT($T_1 \cdot T_2$):

- ▶ Key idea: the more the symbols are intermixed in BWT $(T_1 \cdot T_2)$ ⇒ the greater the number of shared substrings
- ▶ First proposed by Mantaci et al. [MRRS08]

BWT(ba	nana\$)
--------	---------

i	BWT	suffixes
1	а	\$
2	n	a\$
3	n	ana\$
4	b	anana\$
5	\$	banana\$
6	a	na\$
7	a	nana\$

BWT(anaba\$)

i	BWT	suffixes
1	a	\$
2	b	a\$
3	n	aba\$
4	\$	anaba\$
4 5 6	a	ba\$
6	a	naba\$

BWT(banana\$1anaba\$2)

i	DA	BWT	suffixes
1	1	a	\$ ₁
2	2	a	\$ 2
3	1	n	a\$ ₁
4	2	b	a\$2
5	2	n	aba\$2
6	1	n	ana\$ ₁
7	2	\$1	anaba\$2
8	1	b	anana\$1
9	2	a	ba\$ ₂
10	1	\$ 2	banana\$ ₁
11	1	a	na\$ ₁
12	2	a	naba\$2
13	1	а	nana\$ ₁

Comparing two strings T_1 , T_2 using BWT($T_1 \cdot T_2$):

- ▶ Key idea: the more the symbols are intermixed in BWT($T_1 \cdot T_2$) \Rightarrow the greater the number of shared substrings \Rightarrow the more similar T_1 and T_2 are.
- ► First proposed by Mantaci et al. [MRRS08]

DMT	(a fr
BWI	banana\$

BWT	suffixes
а	\$
n	a\$
n	ana\$
b	anana\$
\$	banana\$
a	na\$
a	nana\$

BWT(anaba\$)

i	BWT	suffixes
1	a	\$
2	b	a\$
3	n	aba\$
4	\$	anaba\$
5	a	ba\$
6	a	naba\$

BWT(banana\$1anaba\$2)

i	DA	BWT	suffixes
1	1	a	\$ ₁
2	2	а	\$ 2
3	1	n	a \$ ₁
4	2	b	a \$2
5	2	n	aba\$2
6	1	n	ana\$ ₁
7	2	\$1	anaba\$2
8	1	b	anana\$1
9	2	a	ba\$ ₂
10	1	\$ 2	banana\$ ₁
11	1	a	na\$ ₁
12	2	a	naba\$2
13	1	a	nana\$ ₁

Comparing two strings T_1 , T_2 using BWT($T_1 \cdot T_2$):

- ▶ Key idea: the more the symbols are intermixed in BWT($T_1 \cdot T_2$) \Rightarrow the greater the number of shared substrings \Rightarrow the more similar T_1 and T_2 are.
- ▶ First proposed by Mantaci et al. [MRRS08]

BWT	(banana\$)

BW

Τ	suffixes
	\$
	a\$
	ana\$
	anana\$
	banana\$
	na\$
	nana\$

BWT(anaba\$)

i	BWT	suffixes
1	a	\$
2	b	a\$
2 3 4 5 6	n	aba\$
4	\$	anaba\$
5	a	ba\$
6	a	naba\$

BWT(banana\$1anaba\$2)

i	DA	BWT	suffixes
1	1	a	\$ ₁
2	2	a	\$ 2
3	1	n	a\$ ₁
4	2	b	a\$2
5	2	n	aba\$2
6	1	n	ana\$ ₁
7	2	\$1	anaba\$2
8	1	b	anana\$1
9	2	a	ba\$ ₂
10	1	\$ 2	banana\$ ₁
11	1	a	na\$ ₁
12	2	а	naba\$2
13	1	a	nana\$ ₁

Comparing two strings T_1 , T_2 using BWT($T_1 \cdot T_2$):

- ▶ Key idea: the more the symbols are intermixed in BWT($T_1 \cdot T_2$) \Rightarrow the greater the number of shared substrings \Rightarrow the more similar T_1 and T_2 are.
- ▶ First proposed by Mantaci et al. [MRRS08]

BWT	(banana\$)

i	BWT	suffixes
1	а	\$
2	n	a\$
	n	ana\$
4	b	anana\$
5	\$	banana\$
6	a	na\$
7	a	nana\$

BWT(anaba\$)

i	BWT	suffixes
1	a	\$
2	b	a\$
2 3 4 5	n	aba\$
4	\$	anaba\$
5	a	ba\$
6	a	naba\$

BWT(banana\$1anaba\$2)

	•		•
i	DA	BWT	suffixes
1	1	а	\$ 1
2	2	a	\$ 2
3	1	n	a \$ ₁
4	2	b	a \$2
5	2	n	aba\$2
6	1	n	ana\$ ₁
7	2	\$1	anaba\$2
8	1	b	anana\$1
9	2	a	ba\$ ₂
10	1	\$ 2	banana\$ ₁
11	1	a	na\$ ₁
12	2	a	naba\$2
13	1	a	nana\$ ₁

Comparing two strings T_1 , T_2 using BWT($T_1 \cdot T_2$):

- ▶ Key idea: the more the symbols are intermixed in BWT($T_1 \cdot T_2$) \Rightarrow the greater the number of shared substrings \Rightarrow the more similar T_1 and T_2 are.
- ► First proposed by Mantaci et al. [MRRS08]

suffixes

\$ a\$

ana\$ anana\$

banana\$ na\$ nana\$

DMT	(a fr
BWI	banana\$

BWT

3

i	BWT	suffixes
1	a	\$
2	b	a\$
	n	aba\$
4	\$	anaba\$
5	a	ba\$
6	a	naba\$

BWT(anaba\$)

BWT(banana\$1anaba\$2)

i	DA	BWT	suffixes
1	1	a	\$ 1
2	2	a	\$ 2
3	1	n	a\$ ₁
4	2	b	a\$2
5	2	n	aba\$2
6	1	n	ana\$ ₁
7	2	\$1	anaba\$2
8	1	b	anana\$1
9	2	a	ba\$ ₂
10	1	\$ 2	banana\$ ₁
11	1	a	na\$ ₁
12	2	а	naba\$2
13	1	a	nana\$ ₁

Yang et al. [YZW10] introduced the Burrows-Wheeler Similarity Distribution (BWSD):

- ▶ The BWSD(T_1, T_2) is constructed as follows:
 - 1. Create a bitvector $\alpha_{1,2}$, such that $\alpha_{1,2}[i]=0$ if $\mathsf{DA}[i]=1$, $\alpha_{1,2}[i]=1$ otherwise;

BVVI
$$(I_1 I_2)$$
 = aanbnn \mathfrak{p}_1 ba \mathfrak{p}_2 aaa

2. Re-write $\alpha_{1,2}$ in the form:

$$r_{1,2} = 0^1 1^1 0^1 \underline{1^2} 0^1 1^1 0^1 1^1 \underline{0^2} 1^1 0^1 1^0$$

3. Count t_{k_i} be the <u>number of runs</u> 0^{k_j} and 1^{k_j} in r:

$$t_1 = 9, t_2 = 2$$

4. Compute $\operatorname{\underline{sum}}$ of all terms: $s=t_1+t_2+\ldots+t_{k_j}+\ldots+t_{k_{\mathsf{max}}}.$

Yang et al. [YZW10] introduced the Burrows-Wheeler Similarity Distribution (BWSD):

- ▶ The BWSD(T_1, T_2) is constructed as follows:
 - 1. Create a bitvector $\alpha_{1,2}$, such that $\alpha_{1,2}[i] = 0$ if $\mathsf{DA}[i] = 1$, $\alpha_{1,2}[i] = 1$ otherwise;

$$\mathsf{BWT}(\mathit{T}_{1}\mathit{T}_{2}) = \mathtt{aanbnn}\$_{1}\mathtt{ba}\$_{2}\mathtt{aaa}$$

$$\alpha_{1,2} = \{0, 1, 0, \underline{1, 1}, 0, 1, 0, 1, \underline{0, 0}, 1, 0\}$$

2. Re-write $\alpha_{1,2}$ in the form:

$$r_{1,2} = 0^1 1^1 0^1 1^2 0^1 1^1 0^1 1^1 0^2 1^1 0^1 1^0$$

3. Count t_{k_i} be the <u>number of runs</u> 0^{k_j} and 1^{k_j} in r:

$$t_1 = 9, t_2 = 2$$

4. Compute sum of all terms: $s=t_1+t_2+\ldots+t_{k_j}+\ldots+t_{k_{\max}}$.

Yang et al. [YZW10] introduced the Burrows-Wheeler Similarity Distribution (BWSD):

- ▶ The BWSD(T_1, T_2) is constructed as follows:
 - 1. Create a bitvector $\alpha_{1,2}$, such that $\alpha_{1,2}[i] = 0$ if $\mathsf{DA}[i] = 1$, $\alpha_{1,2}[i] = 1$ otherwise;

$$BWT(T_1T_2) = aanbnn\$_1ba\$_2aaa$$

$$\alpha_{1,2} = \{0, 1, 0, \underline{1, 1}, 0, 1, 0, 1, \underline{0, 0}, 1, 0\}$$

2. Re-write $\alpha_{1,2}$ in the form:

$$r_{1,2} = 0^1 1^1 0^1 \underline{1^2} 0^1 1^1 0^1 1^1 \underline{0^2} 1^1 0^1 1^0$$

3. Count t_{k_i} be the <u>number of runs</u> 0^{k_j} and 1^{k_j} in r:

$$t_1 = 9, t_2 = 2$$

4. Compute sum of all terms: $s=t_1+t_2+\ldots+t_{k_j}+\ldots+t_{k_{\max}}$.

Yang et al. [YZW10] introduced the Burrows-Wheeler Similarity Distribution (BWSD):

- ▶ The BWSD(T_1, T_2) is constructed as follows:
 - 1. Create a bitvector $\alpha_{1,2}$, such that $\alpha_{1,2}[i] = 0$ if DA[i] = 1, $\alpha_{1,2}[i] = 1$ otherwise;

$$\mathsf{BWT}(T_1T_2) = \mathtt{aanbnn}\$_1\mathtt{ba}\$_2\mathtt{aaa}$$

$$\alpha_{1,2} = \{0, 1, 0, \underline{1, 1}, 0, 1, 0, 1, \underline{0, 0}, 1, 0\}$$

2. Re-write $\alpha_{1,2}$ in the form:

$$r_{1,2} = 0^1 1^1 0^1 \underline{1^2} 0^1 1^1 0^1 1^1 \underline{0^2} 1^1 0^1 1^0$$

3. Count t_{k_i} be the <u>number of runs</u> 0^{k_j} and 1^{k_j} in r:

$$t_1 = 9, t_2 = 2$$

4. Compute sum of all terms: $s = t_1 + t_2 + \ldots + t_{k_i} + \ldots + t_{k_{\max}}$.

Yang et al. [YZW10] introduced the Burrows-Wheeler Similarity Distribution (BWSD):

- ▶ The BWSD(T_1, T_2) is constructed as follows:
 - 1. Create a bitvector $\alpha_{1,2}$, such that $\alpha_{1,2}[i] = 0$ if $\mathsf{DA}[i] = 1$, $\alpha_{1,2}[i] = 1$ otherwise;

$$\mathsf{BWT}(T_1T_2) = \mathtt{aanbnn}\$_1\mathtt{ba}\$_2\mathtt{aaa}$$

$$\alpha_{1,2} = \{0, 1, 0, \underline{1, 1}, 0, 1, 0, 1, \underline{0, 0}, 1, 0\}$$

2. Re-write $\alpha_{1,2}$ in the form:

$$r_{1,2} = 0^1 1^1 0^1 \underline{1^2} 0^1 1^1 0^1 1^1 \underline{0^2} 1^1 0^1 1^0$$

3. Count t_{k_i} be the <u>number of runs</u> 0^{k_j} and 1^{k_j} in r:

$$t_1 = 9, t_2 = 2$$

4. Compute sum of all terms: $s = t_1 + t_2 + \ldots + t_{k_i} + \ldots + t_{k_{max}}$.

$$s = 11$$

Yang et al. [YZW10] introduced the Burrows-Wheeler Similarity Distribution (BWSD):

- ▶ The BWSD(T_1, T_2) is a probability mass function:
 - $P\{k_i = k\} = t_k/s \text{ for } k = 1, 2, ..., k_{\text{max}}.$
 - ▶ We have:

$$r = 0^1 1^1 0^1 \underline{1^2} 0^1 1^1 0^1 1^1 \underline{0^2} 1^1 0^1 1^0$$

$$t_1 = 9, t_2 = 2 \text{ and } s = 11$$

BWSD(
$$T_1, T_2$$
) is $P\{k_j = 1\} = 9/11, P\{k_j = 2\} = 2/11$

- ▶ Yang et al. [YZW10] defined two distances based on
 - 1. Expectation of BWSD(T_1, T_2).
 - 2. Shannon entropy of BWSD(T_1, T_2).
- Properties
 - ▶ Symmetric: $D_M(T_1, T_2) = D_M(T_2, T_1)$
 - $D_M(T_1, T_1) = 0$

Yang et al. [YZW10] introduced the Burrows-Wheeler Similarity Distribution (BWSD):

- ▶ The BWSD(T_1, T_2) is a probability mass function:
 - $P\{k_i = k\} = t_k/s \text{ for } k = 1, 2, ..., k_{max}.$
 - ▶ We have:

$$r=0^11^10^1\underline{1^2}0^11^10^11^1\underline{0^2}1^10^11^0$$

$$t_1=9, t_2=2 \text{ and } s=11$$

$$\mathsf{BWSD}(T_1,T_2) \text{ is } P\{k_i=1\}=9/11, P\{k_i=2\}=2/11$$

- ▶ Yang et al. [YZW10] defined two distances based on:
 - 1. Expectation of BWSD(T_1, T_2).
 - 2. Shannon entropy of BWSD(T_1, T_2).
- Properties
 - ▶ Symmetric: $D_M(T_1, T_2) = D_M(T_2, T_1)$
 - $D_{M}(T_{1}, T_{1}) = 0$

Yang et al. [YZW10] introduced the Burrows-Wheeler Similarity Distribution (BWSD):

- ▶ The BWSD(T_1, T_2) is a probability mass function:
 - $P\{k_i = k\} = t_k/s \text{ for } k = 1, 2, ..., k_{\text{max}}.$
 - ► We have:

$$r=0^11^10^1\underline{1^2}0^11^10^11^1\underline{0^2}1^10^11^0$$
 $t_1=9, t_2=2$ and $s=11$

BWSD(
$$T_1, T_2$$
) is $P\{k_j = 1\} = 9/11, P\{k_j = 2\} = 2/11$

- ▶ Yang et al. [YZW10] defined two distances based on:
 - 1. Expectation of BWSD(T_1, T_2).
 - 2. Shannon entropy of BWSD(T_1, T_2).
- Properties:
 - ▶ Symmetric: $D_M(T_1, T_2) = D_M(T_2, T_1)$
 - $D_{M}(T_{1}, T_{1}) = 0$

Applications:

- ▶ The BWSD was evaluated with the construction of phylogenetic trees [YCZW10].
- A matrix M_{d×d} with all pairs of distances² is computed ⇒ given as input for algorithms like UPGMA and Neighbor-Joining.

Straightforward algorithm

▶ Compute all pairwise BWT(T_i, T_j), for all $i, j > i \leftarrow O(dN)$ -time

Our contribution

²Actually, only upper triangular entries of $M_{d\times d}$.

Applications:

- ► The BWSD was evaluated with the construction of phylogenetic trees [YCZW10].
- A matrix M_{d×d} with all pairs of distances² is computed ⇒ given as input for algorithms like UPGMA and Neighbor-Joining.

0	$D_M(T_1, T_2)$	$D_M(T_1, T_3)$	$D_M(T_1, T_4)$	$D_M(T_1, T_5)$		
	0	$D_M(T_2, T_3)$	$D_M(T_2, T_4)$	$D_M(T_2, T_5)$		
		0	$D_M(T_3, T_4)$	$D_M(T_3, T_5)$		
			0	$D_M(T_5, T_5)$		
				0		
$M_{d \times d}$						

Straightforward algorithm

▶ Compute all pairwise BWT(T_i, T_j), for all $i, j > i \leftarrow O(dN)$ -time

Our contribution

²Actually, only upper triangular entries of $M_{d\times d}$.

Applications:

- ▶ The BWSD was evaluated with the construction of phylogenetic trees [YCZW10].
- A matrix $M_{d\times d}$ with all pairs of distances² is computed \Rightarrow given as input for algorithms like UPGMA and Neighbor-Joining.

0	$D_M(T_1, T_2)$	$D_M(T_1, T_3)$	$D_M(T_1, T_4)$	$D_M(T_1, T_5)$		
	0	$D_M(T_2, T_3)$	$D_M(T_2, T_4)$	$D_M(T_2, T_5)$		
		0	$D_M(T_3, T_4)$	$D_M(T_3, T_5)$		
			0	$D_M(T_5, T_5)$		
				0		
$M_{d \times d}$						

Straightforward algorithm

▶ Compute all pairwise BWT(T_i, T_j), for all $i, j > i \leftarrow O(dN)$ -time

Our contribution

²Actually, only upper triangular entries of $M_{d\times d}$.

Applications:

- ► The BWSD was evaluated with the construction of phylogenetic trees [YCZW10].
- ▶ A matrix $M_{d\times d}$ with all pairs of distances² is computed \Rightarrow given as input for algorithms like UPGMA and Neighbor-Joining.

0	$D_M(T_1, T_2)$	$D_M(T_1, T_3)$	$D_M(T_1, T_4)$	$D_M(T_1, T_5)$			
	0	$D_M(T_2, T_3)$	$D_M(T_2, T_4)$	$D_M(T_2, T_5)$			
		0	$D_M(T_3, T_4)$	$D_M(T_3, T_5)$			
			0	$D_M(T_5, T_5)$			
				0			
	$M_{d \times d}$						

0	$BWT(T_1T_2)$	$BWT(T_1T_3)$	$BWT(T_1T_4)$	$BWT(T_1T_5)$			
	0	$BWT(T_2T_3)$	$BWT(T_2T_4)$	$BWT(T_2T_5)$			
		0	$BWT(T_3T_4)$	$BWT(T_3T_5)$			
			0	$BWT(T_4T_5)$			
				0			
	BWTs						

Straightforward algorithm:

▶ Compute all pairwise BWT(T_i , T_j), for all $i, j > i \leftarrow O(dN)$ -time.

Our contribution

²Actually, only upper triangular entries of $M_{d\times d}$.

Applications:

- ► The BWSD was evaluated with the construction of phylogenetic trees [YCZW10].
- ▶ A matrix $M_{d \times d}$ with all pairs of distances² is computed \Rightarrow given as input for algorithms like UPGMA and Neighbor-Joining.

				- / 1		
0	$D_M(T_1, T_2)$	$D_M(T_1, T_3)$	$D_M(T_1, T_4)$	$D_M(T_1, T_5)$		
	0	$D_M(T_2, T_3)$	$D_M(T_2, T_4)$	$D_M(T_2, T_5)$		
		0	$D_M(T_3, T_4)$	$D_M(T_3, T_5)$		
			0	$D_M(T_5, T_5)$		
				0		
$M_{d \times d}$						

0	$BWT(T_1T_2)$	$BWT(T_1T_3)$	$BWT(T_1T_4)$	$BWT(T_1T_5)$			
	0	$BWT(T_2T_3)$	$BWT(T_2T_4)$	$BWT(T_2T_5)$			
		0	$BWT(T_3T_4)$	$BWT(T_3T_5)$			
			0	$BWT(T_4T_5)$			
				0			
	BWTs						

Straightforward algorithm:

▶ Compute all pairwise BWT(T_i , T_j), for all $i, j > i \leftarrow O(dN)$ -time.

Our contribution:

²Actually, only upper triangular entries of $M_{d\times d}$.

Outline

- 1. Introduction
- 2. Burrows-Wheeler Similarity Distribution (BWSD)
- 3. Algorithm 1
- 4. Algorithm 2
- 5. Experiments
- 6. References

- 1. Compute BWT and DA for $T^{cat} = T_1 T_2 \dots T_d$.
- 2. Build <u>d</u> bitvectors $B_i[1, N]$, where $B_i[j] = 1$ if DA[j] = i with rank/select support
- 3. For each string T_i , compute $r_{i,j}$, with j > i:

- 1. Compute BWT and DA for $T^{cat} = T_1 T_2 \dots T_d$.
- 2. Build <u>d bitvectors</u> $B_i[1, N]$, where $B_i[j] = 1$ if DA[j] = i with rank/select support.
- 3. For each string T_i , compute $r_{i,j}$, with j > i:

	$T_1 = \text{banana}$, $T_2 = \text{anaba}$, $T_3 = \text{ba}$, $T_4 = \text{banana}$, $T_5 = \text{aba}$																											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	a	a	a	a	a	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	a	\$	а	#	\$	a	а	a	а	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
B ₁	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0
B_2	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
B ₃	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
B ₄	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1
B ₅	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

- 1. Compute <u>BWT and DA</u> for $T^{cat} = T_1 T_2 \dots T_d$.
- 2. Build <u>d</u> bitvectors $B_i[1, N]$, where $B_i[j] = 1$ if DA[j] = i with <u>rank/select support</u>.
- 3. For each string T_i , compute $r_{i,j}$, with j > i:
 - 3.1 Select the intervals DA[a, b] that contain consecutive entries of
 - 3.2 Count k_j occurrences of $j\Rightarrow \underline{0^11^{k_j}}$, $\mathrm{rank}_1(\mathsf{B}_j,b)-\mathrm{rank}_1(\mathsf{B}_j,a)$.
 - 3.3 Whenever $j \notin DA[a, b]$, we collapse $0^{\ell_j} 1^0 0^1 \Rightarrow 0^{\ell_j+1}$.

$$T_1 = banana\$, T_2 = anaba\$, T_3 = ba\$, T_4 = banana\$, T_5 = aba\$$$

$$\frac{1}{2} \begin{bmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} \begin{bmatrix} 5 \\ 6 \end{bmatrix} \begin{bmatrix} 7 \\ 8 \end{bmatrix} \begin{bmatrix} 8 \\ 9 \end{bmatrix} \begin{bmatrix} 9 \\ 10 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1$$

$$\mathbf{r_{1,2}} = 0^1 1^1 0^1 1^2 0^1 1^1 0^1 1^1 0^2 1^1
\mathbf{r_{1,3}} = 0^1 1^1 0^1 1^1 0^2 1^1$$

$$\mathbf{r_{1,4}} = 0^{1}1^{1}0^{1}1^{1}0^{1}1^{1}0^{1}1^{1}0^{1}1^{1}0^{1}1^{1}0^{1}1^{1}$$

$$\mathbf{r_{1,5}} = 0^{1}1^{1}0^{1}1^{2}0^{2}1^{1}$$

- 1. Compute <u>BWT and DA</u> for $T^{cat} = T_1 T_2 \dots T_d$.
- 2. Build <u>d</u> bitvectors $B_i[1, N]$, where $B_i[j] = 1$ if DA[j] = i with rank/select support.
- 3. For each string T_i , compute $r_{i,j}$, with j > i:
 - 3.1 Select the intervals DA[a, b] that contain consecutive entries of i.
 - 3.2 Count k_j occurrences of $j \Rightarrow \underline{0^1 1^{\kappa_j}}$, $\operatorname{rank}_1(\mathsf{B}_j, b) \operatorname{rank}_1(\mathsf{B}_j, a)$
 - 3.3 Whenever $j \notin DA[a, b]$, we collapse $0^{\ell_j 1^0 0^1} \Rightarrow 0^{\ell_j + 1}$.

$$r_{1,2} = 0^{1}1^{1}0^{1}\underline{1}^{2}0^{1}1^{1}0^{1}1^{1}\underline{0}^{2}1^{1} r_{1,3} = 0^{1}1^{1}0^{1}1^{1}\underline{0}^{2}1^{1}$$

$$\begin{array}{l} r_{1,4} = 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 \\ r_{1.5} = 0^1 1^1 0^1 1^2 0^2 1^1 \end{array}$$

- 1. Compute <u>BWT and DA</u> for $T^{cat} = T_1 T_2 \dots T_d$.
- 2. Build <u>d</u> bitvectors $B_i[1, N]$, where $B_i[j] = 1$ if DA[j] = i with rank/select support.
- 3. For each string T_i , compute $r_{i,j}$, with j > i:
 - 3.1 Select the intervals DA[a, b] that contain consecutive entries of i.
 - 3.2 Count k_j occurrences of $j \Rightarrow \underline{0^1 1^{k_j}}$, $\operatorname{rank}_1(B_j, b) \operatorname{rank}_1(B_j, a)$.
 - 3.3 Whenever $j \notin DA[a, b]$, we collapse $0^{\ell_j} 1^0 0^1 \Rightarrow 0^{\ell_j+1}$.

$$\begin{array}{l} r_{1,2} = 0^1 1^1 0^1 \underline{1}^2 0^1 1^1 0^1 1^1 \underline{0}^2 1^1 \\ r_{1,3} = 0^1 1^1 0^1 1^1 \underline{0}^2 1^1 \end{array}$$

$$\begin{array}{l} r_{1,4} = 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 \\ r_{1.5} = 0^1 1^1 0^1 1^2 0^2 1^1 \end{array}$$

- 1. Compute <u>BWT and DA</u> for $T^{cat} = T_1 T_2 \dots T_d$.
- 2. Build <u>d</u> bitvectors $B_i[1, N]$, where $B_i[j] = 1$ if DA[j] = i with rank/select support.
- 3. For each string T_i , compute $r_{i,j}$, with j > i:
 - 3.1 Select the intervals DA[a, b] that contain consecutive entries of i.
 - 3.2 Count k_j occurrences of $j \Rightarrow \underline{0^1 1^{k_j}}$, $\operatorname{rank}_1(B_j, b) \operatorname{rank}_1(B_j, a)$.
 - 3.3 Whenever $j \notin DA[a, b]$, we collapse $0^{\ell_j}1^00^1 \Rightarrow 0^{\ell_j+1}$.

$$T_1 = \mathbf{banana}\$, T_2 = \mathbf{anaba}\$, T_3 = \mathbf{ba}\$, T_4 = \mathbf{banana}\$, T_5 = \mathbf{aba}\$$$

$$= \mathbf{banana}\$, T_5 = \mathbf{aba}\$$$

$$= \mathbf{banana}\$, T_6 = \mathbf{aba}\$$$

$$= \mathbf{banana}\$, T_8 = \mathbf{aba}\$$$

$$= \mathbf{aba}\$, T_8 = \mathbf{aba}\$$$

$$= \mathbf{aba}\$, T_8 = \mathbf{aba}\$, T_8 = \mathbf{aba}\$$$

$$= \mathbf{aba}\$, T_8 = \mathbf{aba}\$, T_8 = \mathbf{aba}\$$$

$$= \mathbf{aba}\$, T_8 = \mathbf{a$$

$$\begin{array}{ll} r_{1,2} = 0^1 1^1 0^1 \underline{1^2} 0^1 1^1 0^1 1^1 \underline{0^2} 1^1 & r_{1,4} = 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 \\ r_{1,3} = 0^1 1^1 0^1 1^1 \underline{0^2} 1^1 & r_{1,5} = 0^1 1^1 0^1 \underline{1^2} \underline{0^2} 1^1 \end{array}$$

- 1. Compute BWT and DA for $T^{cat} = T_1 T_2 \dots T_d$.
- 2. Build <u>d</u> bitvectors $B_i[1, N]$, where $B_i[j] = 1$ if DA[j] = i with rank/select support.
- 3. For each string T_i , compute $r_{i,j}$, with j > i:
 - 3.1 Select the intervals DA[a, b] that contain consecutive entries of i.
 - 3.2 Count k_j occurrences of $j \Rightarrow \underline{0^1 1^{k_j}}$, $\operatorname{rank}_1(B_j, b) \operatorname{rank}_1(B_j, a)$.
 - 3.3 Whenever $j \notin DA[a, b]$, we collapse $0^{\ell_j} 1^0 0^1 \Rightarrow 0^{\ell_j+1}$.

$$\begin{array}{ll} r_{1,2} = 0^1 1^1 0^1 \underline{1^2} 0^1 1^1 0^1 1^1 \underline{0^2} 1^1 & r_{1,4} = 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 \\ r_{1,3} = 0^1 1^1 0^1 \underline{1^1} \underline{0^1} \underline{1^0} \underline{0^2} 1^1 & r_{1,5} = 0^1 1^1 0^1 \underline{1^2} \underline{0^1} \underline{1^0} \underline{0^2} 1^1 \end{array}$$

- 1. Compute BWT and DA for $T^{cat} = T_1 T_2 \dots T_d$.
- 2. Build <u>d</u> bitvectors $B_i[1, N]$, where $B_i[j] = 1$ if DA[j] = i with rank/select support.
- 3. For each string T_i , compute $r_{i,j}$, with j > i:
 - 3.1 Select the intervals DA[a, b] that contain consecutive entries of i.
 - 3.2 Count k_j occurrences of $j \Rightarrow \underline{0^1 1^{k_j}}$, $\operatorname{rank}_1(B_j, b) \operatorname{rank}_1(B_j, a)$.
 - 3.3 Whenever $j \notin DA[a, b]$, we collapse $0^{\ell_j} 1^0 0^1 \Rightarrow 0^{\ell_j+1}$.

$$\begin{array}{ll} \textbf{r}_{1,2} = 0^1 1^1 0^1 \underline{1^2} 0^1 1^1 0^1 1^1 \underline{0^2} 1^1 & \textbf{r}_{1,4} = 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 \\ \textbf{r}_{1,3} = 0^1 1^1 0^1 1^1 \underline{0^2} 1^1 & \textbf{r}_{1,5} = 0^1 1^1 0^1 \underline{1^2} \underline{0^2} 1^1 \end{array}$$

- 1. Compute BWT and DA for $T^{cat} = T_1 T_2 \dots T_d$.
- 2. Build <u>d bitvectors</u> $B_i[1, N]$, where $B_i[j] = 1$ if DA[j] = i with rank/select support.
- 3. For each string T_i , compute $r_{i,j}$, with j > i:
 - 3.1 Select the intervals DA[a, b] that contain consecutive entries of i.
 - 3.2 Count k_j occurrences of $j \Rightarrow \underline{0^1 1^{k_j}}$, $\operatorname{rank}_1(B_j, b) \operatorname{rank}_1(B_j, a)$.
 - 3.3 Whenever $j \notin DA[a, b]$, we collapse $0^{\ell_j} 1^0 0^1 \Rightarrow 0^{\ell_j+1}$.

$$\begin{array}{ll} r_{1,2} = 0^1 1^1 0^1 \underline{1^2} 0^1 1^1 0^1 1^1 \underline{0^1} 1^0 \underline{0^1} 1^1 & r_{1,4} = 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 \\ r_{1,3} = 0^1 1^1 0^1 1^1 \underline{0^2} 1^1 \underline{0^1} 1^0 & r_{1,5} = 0^1 1^1 0^1 \underline{1^2} \underline{0^2} 1^1 \underline{0^1} 1^0 \\ \end{array}$$

- 1. Compute BWT and DA for $T^{cat} = T_1 T_2 \dots T_d$.
- 2. Build <u>d</u> bitvectors $B_i[1, N]$, where $B_i[j] = 1$ if DA[j] = i with <u>rank/select support</u>.
- 3. For each string T_i , compute $r_{i,j}$, with j > i:
 - 3.1 Select the intervals DA[a, b] that contain consecutive entries of i.
 - 3.2 Count k_j occurrences of $j \Rightarrow \underline{0^1 1^{k_j}}$, $\operatorname{rank}_1(B_j, b) \operatorname{rank}_1(B_j, a)$.
 - 3.3 Whenever $j \notin DA[a, b]$, we collapse $0^{\ell_j} 1^0 0^1 \Rightarrow 0^{\ell_j+1}$.

$$\begin{array}{ll} r_{1,2} = 0^1 1^1 0^1 \underline{1^2} 0^1 1^1 0^1 1^1 \underline{0^2} 1^1 & \qquad r_{1,4} = 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 \\ r_{1,3} = 0^1 1^1 0^1 1^1 \underline{0^2} 1^1 \underline{0^2} 1^0 & \qquad r_{1,5} = 0^1 1^1 0^1 \underline{1^2} \underline{0^2} 1^1 \underline{0^2} 1^0 \end{array}$$

- 1. Compute BWT and DA for $T^{cat} = T_1 T_2 \dots T_d$.
- 2. Build <u>d</u> bitvectors $B_i[1, N]$, where $B_i[j] = 1$ if DA[j] = i with rank/select support.
- 3. For each string T_i , compute $r_{i,j}$, with j > i:
 - 3.1 Select the intervals DA[a, b] that contain consecutive entries of i.
 - 3.2 Count k_j occurrences of $j \Rightarrow \underline{0^1 1^{k_j}}$, $\operatorname{rank}_1(\mathsf{B}_j, b) \operatorname{rank}_1(\mathsf{B}_j, a)$.
 - 3.3 Whenever $j \notin DA[a, b]$, we collapse $\underline{0^{\ell_j}1^00^1} \Rightarrow \underline{0^{\ell_j+1}}$.

$$\begin{array}{ll} r_{1,2} = 0^1 1^1 0^1 \underline{1^2} 0^1 1^1 0^1 1^1 \underline{0^2} 1^1 & \qquad r_{1,4} = 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 0^1 1^1 \\ r_{1,3} = 0^1 1^1 0^1 1^1 \underline{0^2} 1^1 \underline{0^3} & \qquad r_{1,5} = 0^1 1^1 0^1 \underline{1^2} \underline{0^2} 1^1 \underline{0^3} \end{array}$$

Running time:

- ▶ For each string T_i : n_i select and $\approx n_i \times d$ rank operations $\leftarrow O(n_i \times d)$ -time
- ▶ O(dN)-time to compute $M_{d\times d}$ ← compute one BWT O(N)-time

Working space

▶ $\frac{dN + o(dN) \text{ bits}}{B_1, B_2, \dots, B_d}$ for the bitvectors with rank/select support. (DA is replaced by

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	a	a	a	a	a	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	a	\$	а	#	\$	a	а	a	a	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
																							•					
B ₁	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0
B ₂	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
B ₃	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
B ₄	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1
B ₅	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	_																							_				

- 1. Sparse bitvectors: $\uparrow O(dN \times \log \frac{N}{avg(n)})$ -time
- 2. Wavelet trees: $\uparrow O(dN \times \lg d)$ -time.

Running time:

- ▶ For each string T_i : n_i select and $\approx n_i \times d$ rank operations $\leftarrow O(n_i \times d)$ -time
- ▶ O(dN)-time to compute $M_{d\times d}$ ← compute one BWT O(N)-time

Working space

▶ $\frac{dN + o(dN) \text{ bits}}{B_1, B_2, \dots, B_d}$ for the bitvectors with rank/select support. (DA is replaced by

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	a	a	a	a	a	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	a	\$	а	#	\$	a	а	a	a	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
																							•					
B ₁	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0
B ₂	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
B ₃	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
B ₄	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1
B ₅	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	_																							_				

- 1. Sparse bitvectors: $\uparrow O(dN \times \log \frac{N}{avg(n_i)})$ -time.
- 2. Wavelet trees: $\uparrow O(dN \times \lg d)$ -time.

Running time:

- ▶ For each string T_i : n_i select and $\approx n_i \times d$ rank operations $\leftarrow O(n_i \times d)$ -time
- ▶ O(dN)-time to compute $M_{d\times d}$ ← compute one BWT O(N)-time

Working space:

▶ $\frac{dN + o(dN) \text{ bits}}{B_1, B_2, \dots, B_d}$ for the bitvectors with rank/select support. (DA is replaced by

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	a	a	a	a	a	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	a	\$	а	#	\$	a	а	a	a	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
																							•					
B ₁	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0
B ₂	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
B ₃	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
B ₄	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1
B ₅	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
		-	-	-	_	_	-						_	-		-		-	-	-		-	-	-		-	-	ت

- 1. Sparse bitvectors: $\uparrow O(dN \times \log \frac{N}{avg(n_i)})$ -time.
- 2. Wavelet trees: $\uparrow O(dN \times \lg d)$ -time.

Running time:

- ▶ For each string T_i : n_i select and $\approx n_i \times d$ rank operations $\leftarrow O(n_i \times d)$ -time
- ▶ O(dN)-time to compute $M_{d\times d}$ ← compute one BWT O(N)-time

Working space:

▶ $\frac{dN + o(dN) \text{ bits}}{B_1, B_2, \dots, B_d}$ for the bitvectors with rank/select support. (DA is replaced by

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	а	а	a	а	а	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	a	\$	a	#	\$	a	a	a	a	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
																					•							
B ₁	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0
B ₂	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
B ₃	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
B ₄	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1
B ₅	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

- 1. Sparse bitvectors: $\uparrow O(dN \times \log \frac{N}{avg(n_i)})$ -time.
- 2. Wavelet trees: $\uparrow O(dN \times \lg d)$ -time.

Running time:

- ▶ For each string T_i : n_i select and $\approx n_i \times d$ rank operations $\leftarrow O(n_i \times d)$ -time
- ▶ O(dN)-time to compute $M_{d\times d}$ ← compute one BWT O(N)-time

Working space:

▶ $\frac{dN + o(dN) \text{ bits}}{B_1, B_2, \dots, B_d}$ for the bitvectors with rank/select support. (DA is replaced by

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	а	а	a	а	а	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	a	\$	a	#	\$	a	a	a	a	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
																					•							
B ₁	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0
B ₂	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
B ₃	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
B ₄	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1
B ₅	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

- 1. Sparse bitvectors: $\uparrow O(dN \times \log \frac{N}{avg(n_i)})$ -time.
- 2. Wavelet trees: $\uparrow O(dN \times \lg d)$ -time.

Outline

- 1. Introduction
- 2. Burrows-Wheeler Similarity Distribution (BWSD)
- 3. Algorithm :
- 4. Algorithm 2
- 5. Experiments
- References

- ▶ Compute BWT and DA for $T^{cat} = T_1 T_2 \dots T_d$.
- ► For i = 1, 2, ..., N do

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	а	a	а	а	а	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	a	\$	а	#	\$	a	а	a	а	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4

- ▶ Compute BWT and DA for $T^{cat} = T_1 T_2 \dots T_d$.
- ▶ For i = 1, 2, ..., N do
 - ► Solve *document-listing* problem for DA[*i*, next[*i*]]:
 - ▶ All r distinct documents with frequencies in the interval $\leftarrow O(r)$ -time

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	а	а	а	a	а	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	а	\$	а	#	\$	a	а	a	a	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
		1					1																					

Steps:

- ▶ Compute <u>BWT and DA</u> for $T^{cat} = T_1 T_2 ... T_d$.
- ▶ For i = 1, 2, ..., N do
 - ► Solve *document-listing* problem for DA[*i*, next[*i*]]:
 - ▶ All r distinct documents with frequencies in the interval $\leftarrow O(r)$ -time.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	а	а	а	а	а	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	a	\$	а	#	\$	a	а	a	a	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
		1					1																					

$$\begin{array}{lll} r_{1,2} = 0^1 1^1 0^1 & & r_{2,3} = \underline{0^1} & & r_{3,4} = 0^1 1^1 & & r_{4,5} = \\ r_{1,3} = 0^1 1^1 0^1 & & r_{2,4} = & & r_{3,5} = 0^1 1^1 & \\ r_{1,4} = 0^1 1^1 & & r_{2,5} = & \\ r_{1,5} = 0^1 1^1 & & & \end{array}$$

 $R[i] = rank_{DA[i]}(DA, i)$, allows to get the frequencies in O(1) time.

Steps:

- ▶ Compute <u>BWT and DA</u> for $T^{cat} = T_1 T_2 ... T_d$.
- ▶ For i = 1, 2, ..., N do
 - ► Solve *document-listing* problem for DA[*i*, next[*i*]]:
 - ▶ All r distinct documents with frequencies in the interval $\leftarrow O(r)$ -time.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	a	a	a	a	a	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	a	\$	а	#	\$	a	a	a	a	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
		1					1																					
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	a	a	a	a	a	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	a	\$	а	#	\$	a	a	a	a	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
			1					Α.																				

$$\begin{array}{lll} r_{1,2} = 0^1 1^1 \frac{0^1}{0^1} & & r_{2,3} = 0^1 1^1 \frac{0^1}{0^1} & & r_{3,4} = 0^1 1^1 & \\ r_{1,3} = 0^1 1^1 \frac{0^1}{0^1} & & r_{2,4} = 0^1 1^1 & \\ r_{1,4} = 0^1 1^1 & & r_{2,5} = 0^1 1^1 & \\ r_{1,5} = 0^1 1^1 & & \end{array} \qquad \begin{array}{ll} r_{3,4} = 0^1 1^1 & & r_{4,5} = 0^1 1^1 & \\ r_{3,5} = 0^1 1^1 & & r_{4,5} = 0^1 1^1 & \\ \end{array}$$

 $R[i] = rank_{DA[i]}(DA, i)$, allows to get the frequencies in O(1) time.

Steps:

- ▶ Compute <u>BWT and DA</u> for $T^{cat} = T_1 T_2 ... T_d$.
- ▶ For i = 1, 2, ..., N do
 - ► Solve *document-listing* problem for DA[*i*, next[*i*]]:
 - ▶ All r distinct documents with frequencies in the interval $\leftarrow O(r)$ -time.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	а	а	a	a	a	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	а	\$	а	#	\$	a	а	a	а	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
		1					1																					
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	а	а	а	а	a	n	Ь	Ь	n	b	n	\$	n	n	\$	Ь	Ь	а	\$	а	#	\$	a	а	а	а	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
			1					1																				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	а	а	a	a	a	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	a	\$	а	#	\$	a	а	a	а	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
				1					1																			

$$\begin{array}{lll} r_{1,2} = 0^1 1^1 \frac{0^1}{2} & & r_{2,3} = 0^1 1^1 \frac{0^1}{2} & & r_{3,4} = 0^1 1^1 \\ r_{1,3} = 0^1 1^1 \frac{0^1}{2} & & r_{2,4} = 0^1 1^1 & & r_{3,5} = 0^1 1^1 \\ r_{1,4} = 0^1 1^1 & & r_{2,5} = 0^1 1^1 & & & \\ r_{1,5} = 0^1 1^1 & & & & \end{array}$$

 $R[i] = rank_{DA[i]}(DA, i)$, allows to get the frequencies in O(1) time.

Running time:

- ▶ We compute DA, prev, next, rmq_{prev}, RMQ_{next} and $R \leftarrow O(N)$ -time.
- ▶ Total O(N + z)-time, where z is the sum of all runs in all $r_{i,j}$

Working space

 $\qquad \qquad \underline{ \text{Quadratic matrix}} \text{ to store } \underline{ \text{all lists } r_{i,j}} \text{ in memory (counters } 0^11^1 \Rightarrow p_{i,j}^1 = 2)$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	а	а	a	a	a	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	а	\$	а	#	\$	a	а	a	а	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4

- 1. Scan DA[1]...DA[N] <u>d times</u>, one for each T_i . \rightarrow store only d lists $r_{DA[i],j}$.
- 2. Running time \uparrow increases to O(dN)

Running time:

- ▶ We compute DA, prev, next, rmq_{prev}, RMQ_{next} and $R \leftarrow O(N)$ -time.
- ▶ Total O(N + z)-time, where z is the sum of all runs in all $r_{i,j}$

Working space

 $\qquad \qquad \underline{ \text{Quadratic matrix}} \text{ to store } \underline{ \text{all lists } r_{i,j}} \text{ in memory (counters } 0^11^1 \Rightarrow p_{i,j}^1 = 2)$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	а	а	a	a	a	n	Ь	Ь	n	b	n	\$	n	n	\$	b	Ь	а	\$	а	#	\$	a	а	a	а	а
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4

- 1. Scan DA[1]...DA[N] <u>d times</u>, one for each T_i . \rightarrow store only <u>d</u> lists $r_{DA[i],j}$
- 2. Running time \uparrow increases to O(dN)

Running time:

- ▶ We compute DA, prev, next, rmq_{prev}, RMQ_{next} and $R \leftarrow O(N)$ -time.
- ▶ Total O(N + z)-time, where z is the sum of all runs in all $r_{i,j}$

Working space:

• Quadratic matrix to store all lists $r_{i,j}$ in memory (counters $0^11^1 \Rightarrow p_{i,j}^1 = 2$).

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	а	а	a	a	a	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	a	\$	a	#	\$	a	а	a	a	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
				1					1																			
					r _{1,2}	2 =	= 0	$^{1}1^{1}$	$\underline{0^1}$		r	2,3	= 0	$(^{1}1^{1})^{1}1^{1}$	0^1		r ₃	,4 =	= <u>0</u> 1	$\frac{1}{1}$		r,	4,5 =	=				
					r _{1,3}	3 =	= 0	$^{1}1^{1}$	$\underline{0^1}$		r	2,4	= 0	$1^{1}1^{1}$			r ₃	,5 =	= <u>0</u> 1	$^{1}1^{1}$								
					r _{1,4}	4 =	= 0	$^{1}1^{1}$ $^{1}1^{1}$			r	2,5	= 0	$^{1}1^{1}$														
					r _{1,!}	5 =	= 0	$^{1}1^{1}$																				

- 1. Scan DA[1]...DA[N] <u>d times</u>, one for each T_i . \rightarrow store only <u>d</u> lists $r_{DA[i],j}$
- 2. Running time \uparrow increases to O(dN)

Running time:

- ▶ We compute DA, prev, next, rmq_{prev}, RMQ_{next} and $R \leftarrow O(N)$ -time.
- ▶ Total O(N + z)-time, where z is the sum of all runs in all $r_{i,j}$

Working space:

• Quadratic matrix to store all lists $r_{i,j}$ in memory (counters $0^11^1 \Rightarrow p_{i,j}^1 = 2$).

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	а	а	a	a	a	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	a	\$	а	#	\$	a	a	a	а	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
				1					1																			
					r _{1,2}	2 =	= 0	$^{1}1^{1}$	0^1		r	2,3	= 0	$^{1}1^{1}$	0^1		r ₃	, ₄ =	= <u>0</u> ¹	1^1		r,	4,5 =	=				
								$^{1}1^{1}$			r	2,4	= 0	$^{1}1^{1}$			r ₃	,5 =	= <u>0</u> ¹	1^{1}								
					r _{1,4}	4 =	= 0	$^{1}1^{1}$			r	2,5	= 0	$^{1}1^{1}$														
					r _{1,}	5 =	= 0	$^{1}1^{1}$																				

- 1. Scan DA[1]...DA[N] \underline{d} times, one for each T_i . \rightarrow store only \underline{d} lists $r_{DA[i],j}$
- 2. Running time \uparrow increases to O(dN)

Running time:

- ▶ We compute DA, prev, next, rmq_{prev}, RMQ_{next} and $R \leftarrow O(N)$ -time.
- ▶ Total O(N + z)-time, where z is the sum of all runs in all $r_{i,j}$

Working space:

• Quadratic matrix to store all lists $r_{i,j}$ in memory (counters $0^11^1 \Rightarrow p_{i,j}^1 = 2$).

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	а	а	а	a	a	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	а	\$	а	#	\$	a	а	a	а	а
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
				1					1																			
					r _{1,2}	2 =	- 0	$^{1}1^{1}$	0^1		r	2,3	= C	$^{1}1^{1}$	0^1		r ₃	,4 =	= <u>0</u> 1	1 ¹		r,	4,5 =	=				
					r _{1,3}	3 =	= 0	$^{1}1^{1}$	0^1		r	2,4	= 0	$^{1}1^{1}$ $^{1}1^{1}$			r ₃	,5 =	= <u>0</u> 1	1^{1}								
					r _{1,4}	4 =	- 0	$^{1}1^{1}$			r	2,5	= 0	$1^{1}1^{1}$														
					r _{1,}	5 =	- 0	$^{1}1^{1}$																				

- 1. Scan DA[1]...DA[N] <u>d</u> times, one for each T_i . \rightarrow store only <u>d</u> lists $r_{DA[i],j}$
- 2. Running time \uparrow increases to O(dN).

Outline

- 1. Introduction
- 2. Burrows-Wheeler Similarity Distribution (BWSD)
- 3. Algorithm :
- 4. Algorithm 2
- 5. Experiments
- 6. References

Implementation:

- ► C++ using SDSL-lite v.2.
- ► Source code: https://github.com/felipelouza/bwsd.

Algorithms

```
▶ SF: straightforward \underline{\mathsf{BWT}}(T_1, T_2), \underline{\mathsf{BWT}}(T_1, T_3), \dots, \underline{\mathsf{BWT}}(T_{d-1}, T_d) \leftarrow O(dN)-time
```

- Algorithm 1
 - 1. BIT: $d \times \text{bitvectors.} \leftarrow O(dN)$ -time
 - 2. BIT_sd: $d \times \text{compressed bitvectors}$ (Elias-Fano). $\leftarrow O(dN \times \log \frac{N}{a \vee \sigma(n)})$ -time
 - 3. WT: 1 wavelet tree. $\leftarrow O(dN \lg d)$ -time
- ► Algorithm 2
 - 1. RMQ_opt: O(N+z)-time
 - 2. RMQ_light: *lightweight* version $\leftarrow O(dN)$ -time.

- ▶ 64 bits Debian GNU/Linux 8 (kernel 3.16.0-4)
- ▶ Intel Xeon Processor E5-2630 v3 20M Cache 2.40-GH, 384 GB of RAM.

Implementation:

- ► C++ using SDSL-lite v.2.
- ► Source code: https://github.com/felipelouza/bwsd.

Algorithms:

- ► SF: straightforward $\underline{\mathsf{BWT}(T_1,T_2)}, \underline{\mathsf{BWT}(T_1,T_3)}, \dots, \underline{\mathsf{BWT}(T_{d-1},T_d)} \leftarrow O(dN)$ -time
- ▶ Algorithm 1
 - 1. BIT: $d \times \text{bitvectors.} \leftarrow O(dN)\text{-time}$
 - 2. BIT_sd: $d \times \text{compressed bitvectors}$ (Elias-Fano). $\leftarrow O(dN \times \log \frac{N}{av\sigma(n)})$ -time
 - 3. WT: 1 wavelet tree. $\leftarrow O(dN \lg d)$ -time
- ► Algorithm 2
 - 1. RMQ_opt: O(N+z)-time
 - 2. RMQ_light: *lightweight* version $\leftarrow O(dN)$ -time.

- ▶ 64 bits Debian GNU/Linux 8 (kernel 3.16.0-4)
- ▶ Intel Xeon Processor E5-2630 v3 20M Cache 2.40-GH, 384 GB of RAM.

Implementation:

- ► C++ using SDSL-lite v.2.
- ► Source code: https://github.com/felipelouza/bwsd.

Algorithms:

- ▶ SF: straightforward $BWT(T_1, T_2), BWT(T_1, T_3), \dots, BWT(T_{d-1}, T_d) \leftarrow O(dN)$ -time
- ▶ Algorithm 1:
 - 1. BIT: $d \times \text{bitvectors.} \leftarrow O(dN) \text{-time}$
 - 2. BIT_sd: $d \times \text{compressed bitvectors (Elias-Fano)}$. $\leftarrow O(dN \times \log \frac{N}{av\sigma(n)})$ -time
 - 3. WT: 1 wavelet tree. $\leftarrow O(dN \lg d)$ -time
- ► Algorithm 2
 - 1. RMQ_opt: O(N+z)-time
 - 2. RMQ_light: lightweight version $\leftarrow O(dN)$ -time

- ▶ 64 bits Debian GNU/Linux 8 (kernel 3.16.0-4)
- ▶ Intel Xeon Processor E5-2630 v3 20M Cache 2.40-GH, 384 GB of RAM.

Implementation:

- ► C++ using SDSL-lite v.2.
- ► Source code: https://github.com/felipelouza/bwsd.

Algorithms:

- ▶ SF: straightforward $BWT(T_1, T_2), BWT(T_1, T_3), \dots, BWT(T_{d-1}, T_d) \leftarrow O(dN)$ -time
- ▶ Algorithm 1:
 - 1. BIT: $d \times \text{bitvectors.} \leftarrow O(dN) \text{-time}$
 - 2. BIT_sd: $\underline{d} \times \text{compressed bitvectors}$ (Elias-Fano). $\leftarrow O(dN \times \log \frac{N}{avg(n)})$ -time
 - 3. WT: 1 wavelet tree. $\leftarrow O(dN \lg d)$ -time
- ▶ Algorithm 2:
 - 1. RMQ_opt: O(N + z)-time.
 - 2. RMQ_light: *lightweight* version $\leftarrow O(dN)$ -time.

- ▶ 64 bits Debian GNU/Linux 8 (kernel 3.16.0-4)
- ▶ Intel Xeon Processor E5-2630 v3 20M Cache 2.40-GH, 384 GB of RAM.

Implementation:

- ► C++ using SDSL-lite v.2.
- ► Source code: https://github.com/felipelouza/bwsd.

Algorithms:

- ▶ SF: straightforward $BWT(T_1, T_2), BWT(T_1, T_3), \dots, BWT(T_{d-1}, T_d) \leftarrow O(dN)$ -time
- ▶ Algorithm 1:
 - 1. BIT: $d \times \text{bitvectors.} \leftarrow O(dN) \text{-time}$
 - 2. BIT_sd: $d \times \text{compressed bitvectors (Elias-Fano)}$. $\leftarrow O(dN \times \log \frac{N}{avg(n)})$ -time
 - 3. WT: 1 wavelet tree. $\leftarrow O(dN \lg d)$ -time
- ▶ Algorithm 2:
 - 1. RMQ_opt: O(N + z)-time.
 - 2. RMQ_light: *lightweight* version $\leftarrow O(dN)$ -time.

- ▶ 64 bits Debian GNU/Linux 8 (kernel 3.16.0-4)
- ▶ Intel Xeon Processor E5-2630 v3 20M Cache 2.40-GH, 384 GB of RAM.

Datasets:

▶ We used d = 15.000 strings from datasets:

dataset	σ	total length	n. of strings	max length	avg length
READS	4	1,422,718	15,000	101	94.85
UNIPROT	25	3,454,210	15,000	2,147	230.28
ESTS	4	11,313,165	15,000	1,560	754.21
WIKIPEDIA	208	25,430,657	15,000	150,768	1,695.38

READS: collection of reads from Human Chromosome 14 (library 1).

UNIPROT: collection of protein sequences from Uniprot/TrEMBL protein database release 2015_09.

2015_09.

ESTS: <u>collection of DNA</u> sequences of ESTs from *C. elegans*.

WIKIPEDIA: collection of pages from a snapshot of the English-language edition of

Wikipedia.

Running time³ and Peak space:

- ▶ Alg. 1 was the fastest: BIT was $2.4 \times \text{faster}$, and BIT_sd $2.0 \times \text{faster}$ than SF.
- ▶ All versions of Alg. 2 were the slowest: we stopped with d = 10,500 strings

³Time to build auxiliary data structures: less than 1% of the total.

Running time³ and Peak space:

- ▶ Alg. 1 was the fastest: BIT was $2.4 \times \text{faster}$, and BIT_sd $2.0 \times \text{faster}$ than SF.
- ▶ All versions of Alg. 2 were the slowest: we stopped with d = 10,500 strings.

³Time to build auxiliary data structures: less than 1% of the total.

Running time and Peak space:

- ▶ The space used by BIT was very large: BIT used $64 \times \text{more space than SF}^4$.
- BIT_sd provides good space-efficient alternative: it used 1.5 x the space of 8

⁴SF: peakspace very close to I/O size: input collection and output matrix.

Running time and Peak space:

- ▶ The space used by BIT was very large: BIT used $64 \times \text{more space than SF}^4$.
- ▶ BIT_sd provides good space-efficient alternative: it used 1.5 × the space of SF.

⁴SF: peakspace very close to I/O size: input collection and output matrix.

Running time and Peak space:

- ▶ The space used by BIT was very large: BIT used $64 \times \text{more space than SF}^4$.
- ▶ BIT_sd provides good space-efficient alternative: it used 1.5 × the space of SF.

⁴SF: peakspace very close to I/O size: input collection and output matrix.

Artificial input:

- ▶ All strings completely "different" \Rightarrow DA = $1^{N/d}2^{N/d}\dots d^{N/d}$ (composed by d runs).
- ▶ In the extreme case, Alg. 2 (RMQ_opt) runs in O(N)-time

Running time:

■ Alo 1 is still the fastest.

Artificial input:

- ▶ All strings completely "different" \Rightarrow DA = $1^{N/d}2^{N/d}\dots d^{N/d}$ (composed by d runs).
- ▶ In the extreme case, Alg. 2 (RMQ_opt) runs in O(N)-time.

- ▶ Alg. 1 is still the fastest, Alg. 2 was 2.75 × faster than SF
- ▶ RMQ_opt and RMQ_light: very close

Artificial input:

- ▶ All strings completely "different" \Rightarrow DA = $1^{N/d}2^{N/d}\dots d^{N/d}$ (composed by d runs).
- ▶ In the extreme case, Alg. 2 (RMQ_opt) runs in O(N)-time.

- ▶ Alg. 1 is still the fastest, Alg. 2 was 2.75 × faster than SF.
- ▶ RMQ_opt and RMQ_light: very close

Alg. 1 implementations avoid rank queries (next is not in the interval).

Artificial input:

- ▶ All strings completely "different" \Rightarrow DA = $1^{N/d}2^{N/d}\dots d^{N/d}$ (composed by d runs).
- ▶ In the extreme case, Alg. 2 (RMQ_opt) runs in O(N)-time.

- ▶ Alg. 1 is still the fastest, Alg. 2 was $\frac{2.75 \times 10^{-2}}{100}$ faster than SF.
- ▶ RMQ_opt and RMQ_light: very close.

Alg. 1 implementations avoid rank queries (next is not in the interval).

Artificial input:

- ▶ All strings completely "different" \Rightarrow DA = $1^{N/d}2^{N/d}\dots d^{N/d}$ (composed by d runs).
- ▶ In the extreme case, Alg. 2 (RMQ_opt) runs in O(N)-time.

- ▶ Alg. 1 is still the fastest, Alg. 2 was $\frac{2.75 \times 10^{-2}}{100}$ faster than SF.
- ▶ RMQ_opt and RMQ_light: very close.

Artificial input:

- ▶ All strings completely "different" \Rightarrow DA = $1^{N/d}2^{N/d}\dots d^{N/d}$ (composed by d runs).
- ▶ In the extreme case, Alg. 2 (RMQ_opt) runs in O(N)-time.

- ▶ Alg. 1 is still the fastest, Alg. 2 was $\frac{2.75 \times 10^{-2}}{100}$ faster than SF.
- ► RMQ_opt and RMQ_light: very close.

Muchas gracias!

louza@usp.br

Outline

- 1. Introduction
- 2. Burrows-Wheeler Similarity Distribution (BWSD)
- 3. Algorithm
- 4. Algorithm 2
- 5. Experiments
- 6. References

Felipe A. Louza, Simon Gog, and Guilherme P. Telles. Inducing enhanced suffix arrays for string collections. *Theor. Comput. Sci.*, 678:22–39, 2017.

S. Mantaci, a. Restivo, G. Rosone, and M. Sciortino. A new combinatorial approach to sequence comparison. *Theory of Computing Systems*, 42(3):411–429, 2008.

Lianping Yang, Guisong Chang, Xiangde Zhang, and Tianming Wang. Use of the Burrows-Wheeler similarity distribution to the comparison of the proteins. *Amino Acids*, 39(3):887–898, 2010.

Lianping Yang, Xiangde Zhang, and Tianming Wang.

The Burrows-Wheeler similarity distribution between biological sequences based on Burrows-Wheeler transform.

Journal of Theoretical Biology, 262(4):742-749, 2010.

Introduction

The terminator problem:

▶ Using distinct terminators $\$_i \Rightarrow$ increases the alphabet size to $\sigma + d$.

$$\textit{T}^{\textit{cat}} = \underline{\textit{T}_{1}[1,\textit{n}_{1}-1]\$_{1}} \cdot \underline{\textit{T}_{2}[1,\textit{n}_{2}-1]\$_{2}} \cdots \underline{\textit{T}_{d}[1,\textit{n}_{d}-1]\$_{d}}$$

▶ SA may be build using only one additional terminator # by gSACA-K [LGT17]

$$T^{cat} = T_1[1, n_1 - 1] \cdot T_2[1, n_2 - 1] \cdot \cdots T_d[1, n_d - 1] \#$$

▶ SA is built in O(N) time, such that \$-symbols are ordered

$$T^{cat}[i] = \$ < T^{cat}[j] = \$ \text{ iff } i < j$$

Introduction

The terminator problem:

▶ Using distinct terminators $\$_i \Rightarrow$ increases the alphabet size to $\sigma + d$.

$$\textit{T}^{\textit{cat}} = \underline{\textit{T}_{1}[1,\textit{n}_{1}-1]\$_{1}} \cdot \underline{\textit{T}_{2}[1,\textit{n}_{2}-1]\$_{2}} \cdots \underline{\textit{T}_{d}[1,\textit{n}_{d}-1]\$_{d}}$$

► SA may be build using only one additional terminator # by gSACA-K [LGT17]:

$$T^{cat} = T_1[1, n_1 - 1] \cdot T_2[1, n_2 - 1] \cdot \cdots T_d[1, n_d - 1]$$

ightharpoonup SA is built in O(N) time, such that \$-symbols are ordered

$$T^{cat}[i] = \$ < T^{cat}[j] = \$ \text{ iff } i < j$$

Introduction

The terminator problem:

▶ Using distinct terminators $\$_i \Rightarrow$ increases the alphabet size to $\sigma + d$.

$$\textit{T}^{\textit{cat}} = \underline{\textit{T}_{1}[1,\textit{n}_{1}-1] \textcolor{red}{\$_{1}}} \cdot \underline{\textit{T}_{2}[1,\textit{n}_{2}-1] \textcolor{red}{\$_{2}}} \cdots \underline{\textit{T}_{d}[1,\textit{n}_{d}-1] \textcolor{red}{\$_{d}}}$$

► SA may be build using only one additional terminator # by gSACA-K [LGT17]:

$$T^{cat} = T_1[1, n_1 - 1] \cdot T_2[1, n_2 - 1] \cdot \cdots T_d[1, n_d - 1]$$

▶ SA is built in O(N) time, such that \$-symbols are ordered:

$$T^{cat}[i] = \$ < T^{cat}[j] = \$ \text{ iff } i < j$$

Algorithm 2

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	a	a	a	a	a	n	Ь	ь	n	Ь	n	\$	n	n	\$	Ь	Ь	a	\$	a	#	\$	a	a	a	a	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
		1					1																					
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	a	а	а	а	а	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	a	\$	а	#	\$	a	а	a	а	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
			1					1																				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	a	а	а	а	а	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	a	\$	а	#	\$	a	а	a	а	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
	\uparrow \uparrow																											
• • •																												
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	а	а	a	а	а	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	a	\$	а	#	\$	a	a	a	а	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
							1							1														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	a	a	a	a	a	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	a	\$	a	#	\$	a	a	a	a	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
	_	_	_		_	_	_	T	_			T																
DIACT	1	2	3	4	5	6		8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT DA	\$ 6	a 1	a 2	a 3	a 4	а 5	n 1	ь 2	ь 3	n 4	Б 5	n 2	\$ 5	n 1	n 4	\$	ь 1	Ь 4	2 2	3	a 5	#	\$ 4	a 1	a 4	2	a 1	a 4
DA	U	1		3	4	5	1		<u> </u>	4	3		3	1	4		1	4		<u> </u>	5	1	4	1	4		1	4
									-											- 1								
														-	-	-												
D14.00	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
BWT	\$	a	a	a	a	a	n	Ь	Ь	n	Ь	n	\$	n	n	\$	Ь	Ь	a	\$	a	#	\$	a	a	a	a	a
DA	6	1	2	3	4	5	1	2	3	4	5	2	5	1	4	2	1	4	2	3	5	1	4	1	4	2	1	4
																									T			T