

回忆: 计算机的工作过程

int a=2,b=3,c=1,y=0; void main(){ y=a*b+c;

下一条指令的地址: ○(PC)+1 → PC

主存 指令		指令	%
地址	操作码	地址码	注释
0	000001	0000000101	取数a至ACC
1	000100	0000000110	乘b得ab,存于ACC中
2	000011	0000000111	加c得ab+c,存于ACC中
3	000010	0000001000	将 $ab+c$,存于主存单元
4	000110	0000000000	停机
5	00000000000000010		原始数据a=2
6	00000000000000011		原始数据b=3
7	00000000000000001		原始数据c=1
8	00000000000000000		原始数据y=0

存储字长 =16bit

王道考研/CSKAOYAN.COM

指令寻址

一条 欲执行 指令 的 地址 指令寻址

(始终由程序计数器PC给出)

 $(PC) + 1 \longrightarrow PC$

指令地址

该系统采用定长指令字结构

指令字长=存储字长=16bit=2B

主存按字编址

王道考研/CSKAOYAN.COM

指令寻址 下一条 欲执行 指令 的 地址

(始终由程序计数器PC给出)

$$(PC) + 1 \longrightarrow PC$$

PC 0 +1

指令地址	操作码	地址码

0	LDA	1000
1	ADD	1001
2	DEC	1200
3	JMP	7
4	LDA	2000
5	SUB	2001
6	INC	
7	LDA	1100
8		🔨

该系统采用<mark>定长指令字结构</mark>

指令字长=存储字长=16bit=2B

主存按字编址

王道考研/CSKAOYAN.COM

5

指令寻址

指令寻址 下一条 欲执行 指令 的 地址

(始终由程序计数器PC给出)

$$(PC) + 1 \longrightarrow PC$$

指令地址 操作码 地址码

LDA	1000
ADD	1001
DEC	1200
JMP	7
LDA	2000
SUB	2001
INC	
LDA	1100
	- 2°
	ADD DEC JMP LDA SUB INC

该系统采用<mark>定长指令字结构</mark>

指令字长=存储字长=16bit=2B

主存按字编址

王道考研/CSKAOYAN.COM

指令寻址 下一条 欲执行 指令 的 地址 (

(始终由程序计数器PC给出)

(PC) + 1
$$\longrightarrow$$
 PC

PC 1 +1

指令地址 操作码 地址码

LDA 1000 0 ADD 1001 1 DEC 1200 2 JMP LDA 2000 SUB 2001 5 6 INC LDA 1100

该系统采用定长指令字结构

指令字长=存储字长=16bit=2B

主存<mark>按字编址</mark>

王道考研/CSKAOYAN.COM

7

指令寻址

指令寻址 下一条 欲执行 指令 的 地址

(始终由程序计数器PC给出)

$$(PC) + 1 \longrightarrow PC$$

指令地址 操作码 地址码

)	LDA	1000
1	ADD	1001
2	DEC	1200
3	JMP	7
4	LDA	2000
5	SUB	2001
5	INC	
7	LDA	1100
3		\$

该系统采用定长指令字结构

指令字长=存储字长=16bit=2B

主存按字编址

王道考研/CSKAOYAN.COM

Q

下一条 欲执行 指令 的 地址 (始终由程序计数器PC给出) 指令寻址

指令地址 0

2

4

6

8

 $(PC) + 2 \longrightarrow PC$

该系统采用定长指令字结构

指令字长=存储字长=16bit=2B

主存按字节编址

王道考研/CSKAOYAN.COM

指令寻址

一条 欲执行 指令 的 地址 (始终由程序计数器PC给出)

读入一个字,根据操作码判 断这条指令的总字节数 n, 修改PC的值

 $(PC) + n \longrightarrow PC$

根据指令的类型,CPU可能还要进 行多次访存,每次读入一个字

指令地址

12

14

0001001111101000 0 2 0011001111101001 0010010010110000 1001000000000111 6 0001011111010000 8 10

0100011111010001

0101011111010001 0001100111000100 该系统采用变长指令字结构

指令字长-存储字长-16bit-2B

主存按字节编址

王道考研/CSKAOYAN.COM

指令寻址 下一条 欲执行 指令 的 地址 (始终由程序计数器PC给出)

顺序寻址

这里的1理解为1个指令字长,实际加的值会因指令长度、编址方式而不同

王道考研/CSKAOYAN.COM

11

指令寻址

一条 欲执行 指令 的 地址 指令寻址

(始终由程序计数器PC给出)

顺序寻址

$$(PC) + "1" \longrightarrow PC$$

跳跃寻址

由转移指令指出

地址码 指令地址 操作码 LDA

0	
1	
2	
2	

5

ADD	1001
DEC	1200
JMP	7
LDA	2000
SUB	2001
INC	
LDA	1100

1000

该系统采用<mark>定长指令字结构</mark>

指令字长=存储字长=16bit=2B

主存按字编址

王道考研/CSKAOYAN.COM

指令寻址 下一条 欲执行 指令 的 地址

(始终由程序计数器PC给出)

顺序寻址 (PC)+"1" → PC

跳跃寻址 由转移指令指出

PC 1 +1

指令地址 地址码 操作码 LDA 1000 0 ADD 1001 1 DEC 1200 2 JMP 3 LDA 2000 SUB 2001 5 INC 6 LDA 1100 8

该系统采用定长指令字结构

指令字长=存储字长=16bit=2B

主存按字编址

王道考研/CSKAOYAN.COM

13

指令寻址 下一条 欲执行 指令 的 地址

(始终由程序计数器PC给出)

顺序寻址 (PC)+

 $(PC) + "1" \longrightarrow PC$

指令地址 操作码 地址码

LDA

当前正在执行的指令

跳跃寻址由

由转移指令指出

执行的指令 2 3 4

5

6

 LDA
 1000

 ADD
 1001

 DEC
 1200

 JMP
 7

 LDA
 2000

 SUB
 2001

 INC

1100

该系统采用<mark>定长指令字结构</mark>

指令字长=存储字长=16bit=2B

主存按字编址

王道考研/CSKAOYAN.COM

指令寻址 下一条 欲执行 指令 的 地址

(始终由程序计数器PC给出)

顺序寻址 (PC)+"1" → PC

跳跃寻址 由转移指令指出

PC 2 +1

 指令地址
 操作码
 地址码

 0
 LDA
 1000

ADD 1001 1 DEC 1200 2 JMP 3 LDA 2000 SUB 2001 5 INC 6 LDA 1100

该系统采用定长指令字结构

指令字长=存储字长=16bit=2B

主存按字编址

王道考研/CSKAOYAN.COM

15

指令寻址

8

指令寻址 下一条 欲执行 指令 的 地址

(始终由程序计数器PC给出)

顺序寻址 (PC)+"1" → PC

跳跃寻址 由转移指令指出

PC 3

指令地址 操作码 地址码

LDA

1100

该系统采用<mark>定长指令字结构</mark>

指令字长=存储字长=16bit=2B

主存按字编址

王道考研/CSKAOYAN.COM

下一条 欲执行 指令 的 地址 (始终由程序计数器PC给出) 指令寻址

指令地址

8

(PC) + "1" → PC 顺序寻址

由转移指令指出 跳跃寻址

操作码

地址码

该系统采用定长指令字结构

指令字长=存储字长=16bit=2B

主存按字编址

JMP: 无条件转移 把PC中的内容改成7

无条件转移指令, 类似C语言的 goto

王道考研/CSKAOYAN.COM

17

指令寻址 一条 欲执行 指令 的 地址 (始终由程序计数器PC给出)

 $(PC) + "1" \longrightarrow PC$ 顺序寻址

跳跃寻址 由转移指令指出

7

顺序寻址 1 顺序寻址 2 顺序寻址 3 4

5

跳跃寻址 7

指令地址 操作码 地址码 LDA 1000 ADD 1001 1200 DEC

JMP 7 LDA 2000 SUB 2001 INC

LDA 1100 该系统采用定长指令字结构

指令字长=存储字长=16bit=2B

主存按字编址

JMP: 无条件转移 把PC中的内容改成7

无条件转移指令, 类似C语言的 goto

王道考研/CSKAOYAN.COM

你还可以在这里找到我们

快速获取第一手计算机考研信息&资料

购买2024考研全程班/领学班/定向班 可扫码加微信咨询

- **⑥** 微博: @王道计算机考研教育
- B站: @王道计算机教育
- 小红书:@王道计算机考研
- 知 知乎: @王道计算机考研
- 対音: @王道计算机考研
- 淘宝: @王道论坛书店