

תכנון רכב עבור 8 נוסעים

<u>שמות המגישים:</u>

מוחמד מחמאיד

איתי שטר

שם המרצה: מר דן הרמן

מבוא.1

בפרויקט של קורס תכנון רכב מתוך התמחות רכב באפקה, התבקשנו לתכנן מכונית לשמונה נוסעים.

במדינה שלנו, עקב גידול כמות הרכבים הרבה (בשנת 2021 נוספו לכבישי ישראל כ- 405 אלף מכוניות חדשות לעומת כ- 254 אלף שנגרעו ממנו- גידול נטו של 150 אלף מכוניות אלף מכוניות חדשות לעומת כ- 254 אלף שנגרעו ממנו- גידול נטו של 150 אלף מכוניות (4.4%), וגידול הנסועה של האזרחים, תוך שימוש בתשתיות שלא תואמות לגידול, נוצרו פקקי ענק שרק ילכו ויגברו עם השנים.

המדינה מנסה לעודד את האזרחים לוותר על הרכבים ע"י סלילת נתיבים שיתופיים (קארפול), סלילת נת"צ ואפילו מאיימת בגביית מס תל אביב עבור כניסה לעיר בשעות (קארפול), סלילת נת"צ ואפילו מאיימת בגביית מס תל אביב עבור כניסה לעיר בשעות העומס. אך קיים גם פער בתחבורה הציבורית הקיימת, דבר המשליך על שימוש גובר ברכבים פרטיים ובעצם מבטל את ניסיונות המדינה לטפל בבעיה. בנוסף לכל זה לרוב ישנה גם מצוקת חנייה בהגעה ליעד הנבחר ואף מחירי דלק שרק עולים לאור המלחמה בין רוסיה לאוקראינה.

ישנם מקומות עבודה אשר מעודדים את העובדים שלהם להגיע לעבודה יחד ע"י נסיעה שיתופית ואף מתמרצת את אותם עובדים, ויש מקומות עבודה אשר מפעילים שירותי הסעות עפ"י חלוקה לערי מגורים (לדוגמה – תעשייה אווירית).

בפרויקט זה אנו מנסים לשלב בין שני הפתרונות לכדי פתרון אחד בדמות רכב הסעה זול יחסית, מרווח ונוח היכול לאסוף עובדים ולאפשר להם להגיע לעבודה ללא פקקים וגם לחסוך לחברות את עלות שכירת מערך ההיסעים ע"י החזקת צי רכבים מסוג זה.

כחלק מהפתרונות שהצגנו ניתן למנות רכב מרווח בתצורת 2+2+2+2, חסכוני, מושבים מודולארים, וזול.

לאור הרצון שלנו כמתכנני רכב מסוג זה, למדנו כיצד אנו נדרשים לשלב בתהליך התכנון חשיבה מעמיקה על כל פרמטר, חזרה אחורה במידת הצורך ואף השוואה תמידית עם המתחרים שלנו על מנת שנוכל לעמוד הן ביעדים והמדדים שהגדרנו והן באיכות הרכב שאנו רוצים לייצר.

2. הגדרת דרישות

לצוות הוגדר לתכנן רכב עבור 8 נוסעים בתצורת 7+1.

השימוש המרכזי יהיה ברכב עבור נסיעה בין עירונית, ועל כן אנו מתכננים אותו להיות חסכוני בדלק.

ברכב המתוכנן נפח תא המטען כאשר המושבים לא מקופלים הוא 250 ליטר כאשר הוא מכיל 8 נוסעים מתוך הבנה שמדובר ברכב היסעים ולכן לא נדרש מקום עודף עבור ציוד. כאשר מקפלים מושבים הנפח גדל בהתאם ומגיע במקסימום (כאשר נוסעים 2 נוסעים בלבד – 2500 ליטר).

ביצועי הרכב נמדדו ביחס למתחרות שבחרנו בקטגוריה הזו, תוך מתן דגש לחיסכון בדלק, נוחות, קומפקטיות ומחיר קניה נמוך.

יעדים ומדדים לפרויקט:

:זול

- מחיר קנייה נמוך בקטגוריה הפשוטה.
 - חיסכון בדלק.
 - עלויות אחזקה נמוכות.

נוחות:

- .2+2+2+2 תצורת נוסעים
 - מרווח בין המושבים.
 - מושבים מודולרים.

נפח:

. נפח אכסון מירבי שלא בא על חשבון נוחות הנוסעים.

בטיחותי:

. בעל האביזרים החדשניים על מנת לאפשר בטיחות עבור הנוסעים.

3. סקר מצב קיים

בחרנו להציג 3 אפשרויות מסוגם שונים אך כמובן שיש עוד הרבה אפשרויות שמהוות לנו תחרות.

8 המשפחתית המפוארת המסיעה Cadilac escalde - המשפחתית המפוארת המסיעה נפשות בתצורת 2+3+3:

המתחרה השנייה שנציג היא Land rover discovery 130 המאפשרת נסיעת שטח למשפחה בעלת 8 נפשות בתצורת 2+3+3, בעלת נפח אחסון גדול מאוד כאשר המושבים מקופלים (2516 ליטר) אך יקרה מאוד:

מתחרת שלישית שבחרנו להציג היא Maxus Mifa 9 הסינית החשמלית. תצורת הנסיעה היא: 2+2+2 כאשר יש 7 נוסעים. היא חסכונית מאוד, מפוארת ומתהדרת בנוחות והיוקרה שהיא מעניקה תוך מחיר התחלתי יחסית זול ביחס לשאר (החל מ140000 שח). נציין שלא מצאנו אפשרות ל 8 נוסעים אך לקחנו אותה כדוגמה לנוחות וליוקרה שאנו רוצים לייצר ברכב שלנו:

:benchmark – נתבונן על טבלת ה

Vanpool	MAXUS MIFA 9	Land rover discovery 130	Cadilac escalade	מאפיינים
150000 החל מ	החל מ 140000	החל מ 800000	החל מ 250000	מחיר יעד ללקוח הסופי
1+7	1+7	1+7	1+7	מס' נוסעים
				מידות ומשקלות
3500	2310	3380	3357	משקל כולל מותר GVW
2500		2664	2429	משקל עצמי
				מטען מועיל
4	5	5	5	פתחים לנוסעים ולמטען
6050	5270	5358	5382	אורך כולל [מ"מ]
1705	2000	2008	2060	רוחב [מ"מ]
2040	1840	1970	1847	גובה [מ"מ]
4000	3200		3071	בסיס גלגלים [מ"מ]
1505		1706		מפשק גלגלים קדמי [מ"מ]
1500		1701		מפשק גלגלים אחורי [מ"מ]
170		250		מרווח גחון [מ"מ]
לא מקופל 100		2516	925	נפח תא מטען [ליטר]
80		88	109	נפח מיכל דלק
				ביצועים
13		8.9	5.9	תאוצה מ0 ל100 קמ"ש
165	180	188	201	מהירות מקסימלית
		9		צריכת דלק משולבת רשמית
10			11	פליטת CO2 [גר' לק"מ]
				רדיוס סיבוב מינימלי
255/55R17		255/65R19	275/50R22	צמיגים
V6 דיזל	חשמלי	MHEV דיזל 6 צילינדר טורי	V8	מנוע
250/3000	180 kW/ 245 hp	250/4000	420/5600	הספק מירבי
280 [N/m]	350 [N/m]	60/1750	460/4100	מומנט מירבי
3600		2997	6200	נפח מנוע
				יחס דחיסה
				גידוש
AWD	אחורית	4x4	אחורית	סוג הנעה
				נוחות
				בטיחות
				תקינה
	595			טווח נסיעה בעיר
	440			טווח נסיעה משולב
	11			זמן טעינה [שעה]
	90 kWh			סוללה

4. הגדרת מפרט:

הגדרת מספר הנוסעים הוגדרו על ידי הלקוח ,כאשר שאר ההגדרות נובעות מתוך הסקר ההשוואתי .

היתרון היחסי הינו:

- .1 מחיר
- 2- הפחתת הספק ומשקל.
 - 3- חיסכון בדלק.
- 4-2 סדר מושבים 2+2+2+2 (מנוחה) במקום 2+3+3.

מידות כלליות ראשוניות שהגדרנו מתוך ביצוע הסקר ההשוואתי:

בסיס הגלגלים הוגדר להיות 4000 מ"מ מכיוון שהרכב שלנו מכיל 4 שורות

קוטר גלגל: 746 מ"מ

.מ"מ 6050 מ"מ

גובה: 1802 מ"מ.

רוחב: 1700 מ"מ.

מפשק גלגלים קדמי : 1505 מ"מ עבר שינוי לפי המלצת מרצה בגלל כושר תמרון

מפשק גלגלים אחורי :1500 מ"מ עבר שינוי לפי המלצת מרצה בגלל כושר תמרון

מרווח גחון : 170 מ"מ.

. הספק : 250 כ"ס

.NM 280 : מומנט

. ע6- 3600 : נפח מנוע

עדכנו את מידות הבאות: אורך, גובה, רוחב, מפשק גלגלים קדמי ואחורי, בסיס גלגלים

5. בחירת צמיגים:

תחילה נבצע הנחות וחישובים על מנת לדעת את העומסים הפועלים על הסרנים:

נלקח ממצגת דינמיקה של גוף קשיח של איתמר שרון

מתוך הנתונים שהגדרנו, נניח מיקום מרכז מסה:

- משקל כולל מותר הוא 3500 קייג
 - . הגדרנו רוחק סרנים 4 מטר
- נניח חלוקת משקל 50:50 על הסרן הקמי והאחורי.
- . אנו מניחים כי מרחק מרכז המסה מהסרן הקדמי הינו 2 מטר
 - מתקבל שמרחק מרכז המסה מהסרן האחורי הינו 2 מטר .

$$4 [m]$$

$$2 [m] \otimes 2 [m]$$

$$F_{Z_{front}} = \frac{2}{4} \cdot 3500 \cdot 9.81 = 18884.25 \; [N] = 1750 \; [Kg]$$
 ריאקציה קדמית:

$$F_{Z_R} = \frac{2}{4} \cdot 3500 \cdot 9.81 = 18884.25 \ [N] = 1750 \ [Kg]$$
 : ריאקציה אחורית

מתוך החישוב אנו מקבלים:

עומס על הסרן הקדמי: [kg] 1750

עומס על הסרן האחורי: [kg] 1750

מכאן שעומס על גלגל קדמי אחד הוא: [kg] מכאן שעומס על גלגל קדמי

.875 [kg] עומס על גלגל אחורי אחד הוא:

לאחר שיש ברשותנו את נתונים האלו נוכל כעת לבחור מידת LI לצמיג:

occ disc	p. 102).								
LI	kg	LI	kg	LI	kg	LI	kg	LI	kg
50	190	65	290	80	450	95	690	110	1060
51	195	66	300	81	462	96	710	111	1090
52	200	67	307	82	475	97	730	112	1120
53	206	68	315	83	487	98	750	113	1150
54	212	69	325	84	500	99	775	114	1180
55	218	70	335	85	515	100	800	115	1215
56	224	71	345	86	530	101	825	116	1250
57	230	72	355	87	545	102	850	117	1285
58	236	73	365	88	560	103	875	118	1320
59	243	74	375	89	580	104	900	119	1360
60	250	75	387	90	600	105	925	120	1400
61	257	76	400	91	615	106	950	121	1450
62	265	77	412	92	630	107	975	122	1500
63	272	78	425	93	650	108	1000	123	1550
64	280	79	437	94	670	109	1030	124	1600

 $875 \ [kg]$ לגלגל הקדמי בחרנו עומס זהה כמו לגלגל האחורי והוא:

עבור בחירת לחץ צמיג, נחליט על מהירות הנסיעה המרבית של הרכב. אפיון המהירות תלוי ב2 פרמטרים:

- מהי מטרת הרכב?
 הרכב הוא רכב היסעים שיתופי (carpool) מפואר המאפשר למקומות תעסוקה
 לעודד את העובדים להגיע יחד ובכך לנצל את הנתיבים השיתופיים ההולכים וגדלים
 בארץ, ולהפחית עומס ופקקים.
- היכן הרכב מיועד לנסוע?
 הרכב מיועד לנסיעה בין עירונית ממקום המגורים למקום העבודה. נסיעה זו
 מאופיינת בכבישים מהירים על כביש סלול ולכן להתאמת הצמיג יש השפעה גדולה
 הן על חיסכון בדלק והן על איכות הנסיעה עבור הנוסעים.

לכן נבחר שהרכב שלנו יהיה מאופיין במהירות מקסימלית:

	-	
R	106 mph	170 km/h

כעת נבחר לחץ אוויר בצמיג הקדמי והאחורי:

	Load capacity (kg) at tyre pressure (bar)							
Load Index	2.0	2.1	2.2	2.3	2.4	2.5		
90	500	520	540	560	580	600		
91	515	535	555	575	595	615		
92	525	550	570	590	610	630		
93	545	565	585	610	630	650		
94	560	585	605	625	650	670		
95	575	600	625	645	670	690		
96	595	620	640	665	685	710		
97	610	635	660	685	705	730		
98	625	650	675	700	725	750		
99	650	675	700	725	750	775		
100	670	695	720	750	775	800		
101	690	720	745	770	800	825		
102	710	740	765	795	825	850		
103	730	760	790	820	845	875		
104	755	785	815	840	870	900		
105	775	805	835	865	895	925		
106	795	825	860	890	920	950		
107	815	850	880	910	945	975		
108	835	870	905	935	970	1000		
109	860	895	930	965	995	1030		

ע"פ חלוקת המשקלים והעומסים, ניתן לראות שלחץ הצמיג נבחר להיות: 2.5 Bar בגלגלים הקדמיים במצב לא מועמס ובגלגלים האחוריים 2.6 Bar.

Speed capacity of the				Spe	ed Sym	bols			
vehicle (incl. tolerance, about 9 km/h, 6 mph)	Q	R	S	Т	U	Н	V	W	Υ
about 9 km/n, 6 mpn/				Tyr	e pressi	ure*)			
(km)					(bar)				
<u>≤</u> 160	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
<mark>170</mark>		2.6	2.6	2.6	2.6	2.6	2,6	2.5	2.5
180			2.6	2.6	2.6	2.6	2.6	2.5	2.5
190				2.7	2.7	2.7	2.7	2.5	2.5
200					2.7	2.7	2.7	2.6	2.5
210						2.8	2.8	2.7	2.5
220							2.8	2.8	2.5
230							2.8	2.9	2.6
240							2.8	3.0	2.7
250								3.0	2.8
260								3.0	2.9
270								3.0	3.0
280									3.0
290									3.0
300									3.0

ברכב שלנו אין נסיעה במצב עמוס ונסיעה במצב לא עמוס מכיוון שהרכב הוא רכב הסעות שיתופי ורוב נסיעותיו מתבצעות כשהוא מלא ב- 8 נוסעים.

כעת נבחר צמיג מתוך קטלוג של חברת continental:

	Tyre		Permitted	Tyre dir	nensions	Radius	Rolling
Size	Load Index	Load	rims 1	Max. s	tandard		circumference
		capacity		value in o	operation 2)		. 450
						stat.	+ 1.5 %
		len	(measuring	Width	Outer-Ø	+/-2%	-2.5 %
	LI	kg	rim bold)	(mm)	(mm)	(mm)	(mm)
65 series							
235/65 R 16	103	875	6½ J	245			
			7 J	250	724	322	2172
			7½ J	255			
			8 J	260			
			81/2 J	265			
255/65 R 16	109	1030	7 J	265			
			71/2 J	270	752	332	2251
			8 J	275			
			81/2 J	280			
			9 J	285			
215/65 R 17	98	750	6 J	225			
210/00/11/17	99	775	6 1/2 J	230	724	325	2172
	55	110	7 J	235		525	
			7½ J	240			
225/65 R 17	102	850	6J	232			
225/65 R 17 XL	106	950	61/2 J	237	736	330	2208
223/03 N 1/ AL	100	930	7 J	242	730	330	2200
			7½J	247			
005/05 D 47	400	075	8 J	252			_
235/65 R 17	103	875	6½ J	245	750	005	0054
005105 D 17 18	104	900	7 J	250	750	335	2251
235/65 R 17 XL	108	1000	7½ J	255			
			8 J	260			
			81/2 J	265			
245/65 R 17	107	975	7 J	258	762	340	2288
245/65 R 17 XL	111	1090	7½ J	263			
			8 J	268			
			8½ J	273			
255/65 R 17	110	1060	7 J	265			
255/65 R 17 XL	114	1180	71/2 J	270	778	345	2330
			8 J	275			
			81/2 J	280			
			9 J	285			
265/65 R 17	112	1120	7½ J	278			
265/65 R 17 XL	116	1250	8 J	283	790	350	2367
		. 200	81/2 J	288			
			9 J	293			
			9½ J	298			

רצמיג הנבחר הוא: Continental 235/65 R16

6. אריזתיות:

6.1. מיקום נהג ונוסע

נקודת ה- H היא נקודה המייצגת את גובה המושב מהקרקע (גובה המושב מרצפת הרכב +מרווח הגחון) והיא מכתיבה את תנוחת הישיבה, זווית הראיה ומיקום הנהג, באופן כללי, ביחס לשאר הרכב.

נקודה זו מחלקת (על פי נתונים סטטיסטיים) את הגובה האופטימאלי לפי סוג הרכב המתוכנן.

האחוזון ה- 95 מתייחס למרבית האוכלוסייה, ולכן ניתן לסטות במעט מהמידות הנתונות ואין הכרח למידה מדויקת ספציפית. קיים טווח מידות קטן.

DRIVER & FRONT PASSENGER

REAR OCCUPANTS

		Heel to Ground (Ref)	Chair Height H30	H point to ground H5	Back Angle A40	Effective Head Room H61	Upward Vision Angle A60	Downw'd Vision Angle A61	Shoulder Room W3	Hip Room	Lateral Location W20	Couple	Chair Height	Back Angle A40-2	Effective Head Room H61-2	Shoulder Room W3-2	Hip Room W5-2	Lateral Location W20-2
	NEV	325	400	725	15.0	1075	11.0	10.0			275			-	-		-	-
	SPORTS CAR	175	150	325	28.0	950	8.0	5.0	1350	1275	325/400	-	100	-	-	-	-	-
	MICRO CAR	350	275	625	21.0	1000	14.0	11.0	1200	1150	300	-	-	-			-	-
	SMALL ELECTRIC CAR	450	250	700	24.0	975	15.0	9.0	1325	1325	350	750	275	26.0	950	1325	1325	325
ARS	SMALL CAR	225	250	475	24.0	975	15.0	7.0	1350	1325	350	750	275	27.0	950	1350	1325	325
Ü	MEDIUM CAR	250	250	500	24.0	975	14.0	7.0	1475	1400	350	850	275	27.0	950	1475	1400	325
	MEDIUM COUPE	250	175	425	24.0	950	13.0	5.0	1375	1325	350	750	200	27.0	875	1375	1325	325
	LARGE CAR	275	250	525	24.0	975	14.0	6.0	1500	1450	375	900	275	27.0	975	1500	1450	400
	LARGE LUXURY CAR	275	275	550	22.0	975	15.0	7.0	1550	1500	400	975	300	28.0	975	1550	1450	375
	MINIVAN	425	350	775	20.0	1010	19.0	11.0	1575	1525	425	850	375	22.0	1000	1575	1525	400
	SMALL SUV	400	350	750	22.0	1010	15.0	9.0	1425	1400	400	800	375	24.0	1000	1425	1375	375
	MEDIUM SUV	450	300	750	22.0	1010	14.0	6.0	1500	1450	400	825	325	24.0	1000	1500	1450	425
S	LARGE SUV	450	325	775	22.0	1025	14.0	7.0	1650	1600	375	875	350	24.0	1025	1650	1600	375
RUCKS	SMALL TRUCK	400	300	700	22.0	1010	14.0	7.0	1475	1450	375	625	325	18.0	950	1475	1425	400
F	LARGE 4x4 TRUCK	600	350	950	22.0	1025	15.0	8.0	1700	1650	475	950	375	18.0	1025	1700	1650	475
	COMMERCIAL VAN	725	350	1075	22.0	1010	10.0	10.0	1675	1625	525	900	425	19.0	1000	1675	1625	500

נבחר ברכב LARGE SUV ולכן המידות הינן:

גובה עקב לקרקע: 450 מ"מ

גובה המושב: 325 מ"מ

גובה בסיס לנקודת :775H מ"מ

מרווח ראש אפקטיבי: 1025 מ"מ

סך כל הגובה מהבסיס לקצה הראש: 1800 מ"מ

גובה הרכב שהוגדר: 1900 מ"מ

זווית הראייה של הנהג, כפי שנדרש, היא 14 מעלות מעל ומתחת לקו האופק:

6.2. מיקום הנוסעים בספסל האחורי

ספסל הנוסעים האחורי תוכנן בצורה המאפשרת לתת מענה לפתרון שתי בעיות:

- 1. כתוצאה מהגדרת תצורת הרכב למבנה 2+2+2+2, יש לאפשר אכלוס 8 נוסעים מבוגרים .
 - .2 אזור תא המטען של הרכב.

לצורך פתרון שתי הבעיות השתמשנו במספר דרכים יצירתיות המייצרות יתרונות וחסרונות לכל מצב.

ראשית, נתייחס לאכלוס המושבים האחוריים על ידי שמונה מבוגרים.

לצורך נוחות הגישה, החלטנו שתהיה דלת אחת(חשמלי צד) ומדרגה חשמלית על מנת לאפשר גישה נוחה לספסל האחורי .

החיסרון הוא בדלת צד בעלת ממדים גדולים יחסית.

. בנוסף לתא מטען אנו נאפשר קיפול מושבים לקבלת יותר נפח מטען

6.3. מיקום מטען

מיקום המטען נקבע להיות בחלקו האחורי של הרכב ממספר סיבות כגון השארת מקום לכלל מערכת ההיגוי ומרחב תמרון לגלגלים הקדמיים (זווית היגוי), מקום לתושבות הבולמים ומקום לאמצעים הבטיחותיים להגנה מפני תאונות חזית.

מצב זה לא מאפשר אחסנת מטען מקדימה ולכן הוחלט שתא המטען יהיה מאחור.

מרחק עבור המטען:

6.4. מיקום וסידור חטיבת הינע

מיקום חטיבת ההינע נקבע להיות בחזית הרכב.

דרישות למתלים: מתלה קל, בעל יכולת תמרון גבוהה, ריכוך מהמורות ודינאמי, מחיר זול.

המתלה נפוץ ביותר כיום ברכבים משפחתיים ומסוג זה הוא מתלה מסוג מק'פירסון.

מאפשר לנו מערכת עצמאית לכל גלגל, מבחינת אריזתיות בעל נפח מינימלי, קל משקל, מאפשר יכולות תמרון מעולות, נפוץ מאוד ולכן עלויות יחסית זולות.

6.5. מיקום פתחים

השלדה הנבחרת לבניית רכב זה הינה שלדה אינטגרלית אחודה מכמה סיבות:

- 1. שלדה זו נפוצה מאוד ברכבים מודרניים בשל חוזקה הרב לעומת משקלה הקל יחסית לשלדת סולם.
 - 2. שלדה זו מספקת הגנה לנוסעי הרכב, בידוד מהסביבה ותנאי האקלים.
- 3. שלדה זו יכולה לשאת את העומסים המתוכננים לכלי הרכב ללא צורך בחלקים נוספים כגון מרכב וכו.'

סה"כ מתוכננים 6 פתחים מרכזיים בשלדה: 3 פתחי דלתות נוסעים המיועדים לכניסה ויציאת הנוסעים מהרכב, פתח אחד עבור תא מטען המיועד לטעינה ופריקת ציוד ופתח אחד עבור חטיבת הינע המיועד לטיפולים שוטפים במנוע ובשאר הרכיבים הנדרשים לכך. פתח אחרון הוא חלון ארוך כמו אוטובוס.

7. חטיבת הינע + חיזוי ביצועים

חטיבת ההינע של הרכב נדרשת לענות על כלל ההתנגדויות במהלך הנסיעה - כוח האצה, התמודדות עם שיפוע כביש, התנגדות צמיגים לגלגול והתנגדות האוויר.

נחשב את הכוחות וההספק הנדרש בכמה מצבים - כושר מעלה מקסימלי, מהירות שיוט, מהירות מקסימלית, כושר מעלה מקסימלי בכביש מהיר, תאוצה מקסימלית בין מהירויות.

חישוב הספק, מומנט וסל"ד מצב מתמיד של מישור:

$$F_T = F_{rr} + F_{air}$$

נגדיר נתונים:

שטח פנים הרכב המתוכנן כ- 3 מ"ר.

מקדם הגרר המוערך הוא כ- 0.34 עפ"י טבלת מקדמי גרר אופייניים.

מהירות שיוט נדרשת 120 קמ"ש.

מהירות טיפוס במעלה 10%

מידות הצמיג – 275/55/R17

התנגדות צמיג לגלגול – בחרנו מתוך מפרט את האפשרות הקרובה יותר והיא:

Tire type	Dry asphalt/concreteWet asphalt	Road typ ○ Dry earth road ○ Wet earth road	○ Hard-packed snow○ Ice
Friction Coefficient: 0.80 Rolling Resistance Coeff	icient: 0.008		

 $R_r = 0.008$ לכן מקדם התנגדות לגלגול:

FIG. 2-Effect of tire construction on rolling resistance coefficient (car tires) [7].

הספק מירבי עבור מהירות מקסימלית:

כוח התנגדות לגלגול:

$$F_{rr} = mg \cdot R_r = 3500 \cdot 9.81 \cdot 0.008 = 0.275 [kN]$$

התנגדות אווירודינאמית:

$$F_{Air} = 0.5 \cdot \rho \cdot A \cdot CD \cdot V^2 = 0.5 \cdot 1.226 \cdot 3 \cdot 0.34 \cdot \left(\frac{170}{3.6}\right)^2 = 1.394 [kN]$$

חישוב הספק נדרש למצב מתמיד במישור עבור מהירות מקסימלית:

$$P = F_t \cdot v = (0.275 + 1.394) \cdot \frac{170}{3.6} = 78.81 [kw] = 107.1 [hp]$$

מומנט נדרש בגלגל:

$$M_T = F \cdot r = 1669 \cdot 0.330 = 550.77 [N \cdot m]$$

:סל"ד גלגל

$$n = \frac{60 \cdot v}{2\pi \cdot r} = \frac{60 \cdot 47.22}{2\pi \cdot 0.330} = 1366 [RPM]$$

<u>כעת נחשב עבור מצב מתמיד במישור עם מהירות שיוט – 120 קמ"ש:</u>

כוח התנגדות לגלגול:

$$F_{rr} = mg \cdot R_r = 3500 \cdot 9.81 \cdot 0.008 = 0.275 [kN]$$

:התנגדות אווירודינאמית

$$F_{Air} = 0.5 \cdot \rho \cdot A \cdot CD \cdot V^2 = 0.5 \cdot 1.226 \cdot 3 \cdot 0.34 \cdot \left(\frac{120}{3.6}\right)^2 = 0.695 [kN]$$

חישוב הספק נדרש למצב מתמיד במישור:

$$P = \left(0.97 \cdot \frac{120}{3.6}\right) = 32.33 \ [kW] = 44 \ [hp]$$

 $r = 0.330 \, [m]$ רדיוס הגלגל:

מומנט בגלגל:

$$M_T = F \cdot R = 970 \cdot 0.330 = 320.1 [N \cdot m]$$

:סל"ד גלגל

$$n = \frac{60 \cdot v}{2\pi \cdot R} = \frac{60 \cdot 33.33}{2\pi \cdot 0.330} = 964.5 [RPM]$$

כוח נדרש לשיפוע 30%:

$$F_{Hill} = mg \cdot sin\alpha = 3500 \cdot 9.81 \cdot 0.287 = 9.85 [kN]$$

כוח התנגדות לגלגול:

$$F_{rr} = mg \cdot R_r \cdot sin\alpha = 3500 \cdot 9.81 \cdot 0.008 \cdot 0.287 = 0.079 [kN]$$

התנגדות אווירודינאמית:

$$F_{Air} = 0.5 \cdot \rho \cdot A \cdot CD \cdot V^2 = 0.5 \cdot 1.226 \cdot 3 \cdot 0.34 \cdot \left(\frac{100}{3.6}\right)^2 = 0.482 [kN]$$

:הספק

$$P = F \cdot v = 9.929 \cdot 27.78 = 275.83 [kW] = 375 [hp]$$

מומנט בגלגל:

$$M_T = F \cdot R = 9929 \cdot 0.330 = 3276.6 [N \cdot m]$$

:סל"ד גלגל

$$n = \frac{60 \cdot v}{2\pi \cdot R} = \frac{60 \cdot 27.78}{2\pi \cdot 0.330} = 804 [RPM]$$

כוח נדרש לעקיפה בשיפוע 6% (עליות לירושלים):

$$F_{Hill} = mg \cdot sin\alpha = 3500 \cdot 9.81 \cdot 0.06 = 2.06 [kN]$$

כוח התנגדות לגלגול:

$$F_{rr} = mg \cdot R_r \cdot sin\alpha = 3500 \cdot 9.81 \cdot 0.008 \cdot 0.06 = 0.0165 [kN]$$

:התנגדות אווירודינאמית

$$F_{Air} = 0.5 \cdot \rho \cdot A \cdot CD \cdot V^2 = 0.5 \cdot 1.226 \cdot 3 \cdot 0.34 \cdot \left(\frac{120}{3.6}\right)^2 = 0.695 [kN]$$

כוח תאוצה בין 120-100 קמ"ש:

$$F = ma \rightarrow a = \frac{\Delta v}{\Delta t} = \frac{5.56}{5} = 1.11 \left[\frac{m}{s^2} \right] \rightarrow 3500 \cdot 1.11 = 3.885 [kN]$$

:הספק

$P = F \cdot v = 6.6565 \cdot 33.33 = 222 [kW] = 301 [hp]$

מומנט בגלגל:

$$M_T = F \cdot R = 6656 \cdot 0.330 = 2196.5 [N \cdot m]$$

:סל"ד גלגל

$$n = \frac{60 \cdot v}{2\pi \cdot R} = \frac{60 \cdot 33.33}{2\pi \cdot 0.330} = 964.5 [RPM]$$

כוח האצה 100-0:

$$a = \frac{P}{1.04 \cdot m \cdot v} = \frac{4 \cdot 60000}{1.04 \cdot 3500 \cdot \frac{100}{3.6}} = 2.37 \left[\frac{m}{s^2} \right]$$

$$F_a = m \cdot a = 3500 \cdot 2.37 = 8.31 [kN]$$

כוח התנגדות לגלגול:

$$F_{rr} = mg \cdot R_r = 3500 \cdot 9.81 \cdot 0.008 = 0.275 [kN]$$

זמן האצה ממהירות 0 למהירות 100 קמ"ש:

$$t = \frac{\Delta v}{a} = \frac{\frac{100}{3.6}}{2.37} = 11.72 [sec]$$

לאחר ביצוע חישובים אלו נעזרנו בטבלת חיזוי ביצועים כדי לראות האם החישובים שביצענו נכונים והאם ניתן להסתמך עליהם. נציג את הטבלה כעת:

vehicle tested load	3500	kg								
			ואקדמים	המכללה ה	\neg					
Cd	0.34		31 13 17111		1 1 1 /	אניו				
frontal area	2.7825	sq m	ת/–אביב	המכללה ה להנדסה ב						
			הנדסה גבוהה	<u> </u>						
tire - ground interface										
effective rolling radius		meter								
rev's per km	482	revolutions		41.5						
coef. Of rolling resistance	0.008									
יש להכניס ערכים בתאים בלבן				־סת רכב	הרמן הנד					
תאים בצהוב מכילים תוצאות ביניים										
תאים בירוק מכילים תוצאות ביצועים										
			מהירות	description of						
performance	שיוט במישור			שיפוע מקסימלי						
speed [kph]	120	80		15	ביצועים					
slope [deg]	0	0.10	0	16.7	מבוקשים					
acceleration [m/sec^2]	0.5		0	0						
rolling resistance [N]	274.7	274.2	274.7	263.1						
climb resistance [N]	0.0		0.0	9866.5						
acceleration load [m/sec^2]	1750.0			0.0						
aerodynamic resistance [N]	630.7	280.3	1265.8	9.9						
F [N] Total resistance to motion	2655.4	2608.7	1540.5	10139.5						
torque [Nm]	876.275		508.352	3346.026		-				
power required [KW]	88.513 965	57.972 643	72.744 1366	42.248 121	דרושים בגלגל					
rev's [rpm]	965	643	1366	121	7X1X1					
overall transmission efficiency	0.9	0.9	0.9	0.9			ְ של מערכת ה	mana maha		
final drive ratio	0.9		0.9	0.9			של מערכת ה כלל בצמוד ז			
gear ratio	0.75			5						
number of motors	0.75	1.5	0.75	5			בתנאי הנסיו נועים שמניעי		של ההילון בו	יחט ויעבו וו
total motor torque [Nm]	649.093	318.845	376.557	371.781	נתוני	ם את הוכב	נועים שנזניעי	מספו המו		
total motor torque [NM]	98.347	64.413	80.827	46.942	נונוני דרושים	-				
motor speed [rpm]	98.34 <i>1</i> 1447	1929	2050	1206	דרושים במנוע					
motor speed [rpm]	1447	1929	2050	1200	בנונוע					

החלטנו להתבסס על ערכי הטבלה שקיבלנו ולכן בחרנו מנוע 137 [kw] – FTP החלטנו לכער: מערכי הטבלה שקיבלנו ולכן בחרנו מנוע

:מתוך דף יצרן

ON ROAD APPLICATIONS **NEF**SERIES

N45 ENT VI

137 kW (186 HP) @ 2500 rpm - 750 Nm @ 1400 rpm

EURO VI

Specifications		
Thermodynamic cycle		Diesel 4 stroke
Air handling		TAA
Arrangement		4L
Bore x Stroke	mm	104 x 132
Total displacement	l	4.5
Valves per cylinder	n°	4
Cooling		liquid
Direction of rotation (viewed facing flywheel)		CCW
Compression ratio		17 : 1
Injection system		Electronic Common Rail

Thermodynamic cycle		_	Diesel 4 stroke
Air handling			TAA
Arrangement			4L
Bore x Stroke		mm	104 x 132
Total displacement			4.5
Valves per cylinder		n°	4
Cooling			liquid
Direction of rotation (viewed facing flywheel)			CCW
Compression ratio			17 : 1
Injection system			Electronic Common Rail
Peak power [*]		kW(HP)	137 (186)
At speed		rpm	2500
Peak torque		Nm(kgm)	750 (76)
At speed		rpm	1400
Maximum no load governed speed at max rating		rpm	2800
Minimum idling speed		rpm	750 ± 50
Minimum starting temperature without auxiliaries		°C	-15
Oil and oil filter maintenance interval for replacement [**]			
	Urban mission	km	40000
	Interurban mission	km	60000
	On highway mission	km	80000
Dry weight (standard configuration without: oil, cooling,			
clutch, A/C Compressor)		kg	400

ניתן לראות שכל החיצים מגיעים לערכי מומנט גבוהים יותר ממה שנדרש עבור אותו סל"ד מתוך הטבלה ולכן אנו מבינים שהמנוע שלנו מתאים לביצועי הרכב החזויים.

8. טבלה משקלית ומפרט טכני:

.8.1 מפרט טכני:

Vanpool	מאפיינים					
150000 החל מ	מחיר יעד ללקוח הסופי					
1+7	מס' נוסעים					
	מידות ומשקלות					
3500	משקל כולל מותר GVW					
2500	משקל עצמי					
4	פתחים לנוסעים ולמטען					
6050	אורך כולל [מ"מ]					
1700	רוחב [מ"מ]					
1802	גובה [מ"מ]					
4000	בסיס גלגלים [מ"מ]					
1505	מפשק גלגלים קדמי [מ"מ]					
1500	מפשק גלגלים אחורי [מ"מ]					
170	מרווח גחון [מ"מ]					
לא מקופל 100	[ליטר] נפח תא מטען					
80	נפח מיכל דלק					
	ביצועים					
11.72	תאוצה מ0 ל100 קמ"ש					
170	מהירות מקסימלית					
5.35	רדיוס סיבוב מינימלי					
235/65R16	צמיגים					
דיזל V8	מנוע					
134 kw / 2500 [rpm]	הספק מירבי					
750 [N/m]	מומנט מירבי					

:8.2 טבלה משקלית:

							טבלת משקל פרויקטלית לרכב
			Z מיקום	Y מיקום	X מיקום		
מומנט Z	מומנט Y	מומנט X	[מ"מ]	[מ"מ]	[מ"מ]	משקל [ק"ג]	רכיב
819600	0	2600400	683	0	2167	1200	שלדה
500000	0	1000000	1000		2000	500	מרכב
67500	0	0	150	0	0	450	חטיבת הינע - מנוע ודיפרנציאל להתקנה אורכית
18560	16000	64000	232	200	800	80	נהג
18560	94800	64000	232	1185	800	80	נוסע ליד הנהג
37120	0	295040	232	0	1844	160	נוסעים בשורה 2
37120	0	450720	232	0	2817	160	נוסעים בשורה 3
			232	0	3870	160	נוסעים בשורה 4
0	0	0				30	גלגלים
26000	0	312000	400	0	4800	65	מיכל דלק
50000	0	480000	500	0	4800	100	מטען
0	0	0					
0	0	0					
0	0	0					
0	0	0					
0	0	0					
Z	Υ	X					
527.5	37.1	1764.2	מיקום מרכז כובד		[ק"ג]	2985	סך הכל
					[מ"מ]	4000	בסיס גלגלים
					[מ"מ]	1500	מפסק גלגלים
					[ק"ג]	1668	עומס על הסרן הקדמי
					[ק"ג]	1317	עומס על הסרן האחורי
				על 5%	אסור שיעלה	2%	הפרש משקל בין ימין לשמאל

נשים לב שהורדנו את משקל הרכב ל- [kg] 2985 [kg] שחזינו בתחילה.

.8.3 מידות כלליות של הרכב

9. סיכום ומסקנות

- בפרויקט זה נתבקשנו לתכנן רכב ל8 נוסעים. בחרנו לתכנן רכב היסעים קארפול שיעזור אפרויקט זה נתבקשנו לתכנן רכב ע"י שימוש בנתיבי נת"צ המתפתחים בארץ.
- פרויקט זה המחיש לנו את הקושי בתכנון רכב, את הצורך לקבלת החלטות בהתחלה תוך ידיעה שעם הקדמות הפרויקט הדברים ישתנו ועל התלות של כל תחום בשני.
- עיתן לומר שהחשיבה המעמיקה עבור כל מכלול והדילמות שנציבו בפנינו גרמו לנו להתנסות במערכת קבלת ההחלטות והשיקולים של המתכננים, עבור כל מכלול או מערכת ברכב היו מספר חלופות אפשריות והבחירה של החלופה הטובה ביותר עבור היישום הנדרש באחריות המתכנו בלבד!
- בפרויקט זה הבנו שקיימת חשיבות רבה למיקום כל מערכת ברכב וההשפעה שלה על התנהגות הרכב. השתמשנו רבות בידע שרכשנו בקורס מערכות רכב ודינמיקה של כלי רכב על מנת להגיע לנוחות מקסימלית לנוסעים.
- ◄ אנו בחרנו בפלטפורמה של רכב היסעים מפואר, זול וחסכוני. בהיבט המפואר אנו מבינים שהחלטה זו גרמה לרכב שלנו להיות ארוך יותר מה שמשפיע על המשקל, רדיוס פניות. הושבת הנוסעים בתצורת 2+2+2+2 לא הכי אידיאלית עבור יצרני רכב, אך בחירה זו לימדה אותנו המון בקורס זה.
 - ✓ עבור היבט החסכוני, בהסתכלות אחורה היינו צריכים לעשות את הרכב חשמלי. אנו מעודדים בפרויקט זה נסיעה שיתופית ולכן אם הרכב היה חשמלי זה היה אידיאלי. השילוב של תחבורה שיתופית ותחבורה ירוקה לא מזהמת יכולה לגרום לחברות לרצות רכב כזה שיחליף את מאגר הרכבים הקיימים. היה מאתגר מבחינתנו לבחור דווקא מנוע דיזל על פני מנוע חשמלי ולכן אנו שמחים שלבסוף נשארנו עם ההחלטה הראשונית להשתמש במנוע בעירה.
 - יכולנו לבחור מהירות מקסימלית גבוה יותר מתוך נתוני המנוע הנבחר והטבלה לחיזוי ביצועים מה שישפיע על בחירת צמיגים אחרים, אך לאור אפיון הרכב בתחילה כרכב היסעים שיתופי בחרנו להישאר עם אפיון המהירות המקסימלי שהגדרנו בתחילה.

לסיכום – הרחבנו את אופקינו מקורס זה בצורה שלא חשבנו שנוכל. הטבילה במים העמוקים של תכנון רכב והתמודדות עם כל הבעיות והדרישות הקיימות בעולם הרכב הכינו אותנו לעבודתנו בעתיד בתחום זה.