9.S918: Statistical Inference in Brain and Cognitive Sciences

Week 1 Day 2: Introduction to causal inference

Roger Levy
Dept. of Brain & Cognitive Sciences
Massachusetts Institute of Technology

Feb 5, 2025

A tiny bit of statistics

- On Monday we reviewed basics of probability: the logical calculus of uncertainty—a branch of mathematics
- The primary focus of this class is statistics: the mathematics, science, craft, and art of drawing inferences from data
- The two fields are fundamentally different
- But, probability is used extensively throughout statistics

 Consider a binary random variable Y with two possible outcomes: 0 and 1

- Consider a binary random variable Y with two possible outcomes: 0 and 1
- Y is a Bernoulli random variable with parameter $P(\text{heads}) = \pi$, where $0 \le \pi \le 1$

- Consider a binary random variable Y with two possible outcomes: 0 and 1
- Y is a Bernoulli random variable with parameter $P(\text{heads}) = \pi$, where $0 \le \pi \le 1$
- Figuring out from observed data what the weighting is likely to be is parameter estimation

- Consider a binary random variable Y with two possible outcomes: 0 and 1
- Y is a Bernoulli random variable with parameter $P(\text{heads}) = \pi$, where $0 \le \pi \le 1$
- Figuring out from observed data what the weighting is likely to be is parameter estimation
- In general, we will use ${\bf y}$ to refer to observed-outcome data and θ to refer to the model parameters to be estimated

• **Estimator:** a procedure for guessing a quantity of interest within a population from a sample from that population

- **Estimator**: a procedure for guessing a quantity of interest within a population from a sample from that population
- For example, the **relative frequency estimator**: if we observe *r* instances of heads in *n* coin flips,

$$\widehat{\pi} = \frac{r}{n}$$

- **Estimator:** a procedure for guessing a quantity of interest within a population from a sample from that population
- For example, the relative frequency estimator: if we observe r instances of heads in n coin flips,

"this is an estimator"
$$\widehat{\pi} = \frac{r}{n}$$

- Estimator: a procedure for guessing a quantity of interest within a population from a sample from that population
- For example, the **relative frequency estimator**: if we observe *r* instances of heads in *n* coin flips,

"this is an estimator"
$$\widehat{\pi} = \frac{n}{n}$$

Data are stochastic, so estimators give random variables!

- **Estimator**: a procedure for guessing a quantity of interest within a population from a sample from that population
- For example, the **relative frequency estimator**: if we observe *r* instances of heads in *n* coin flips,

"this is an estimator"
$$\widehat{\pi} = \frac{n}{n}$$

- Data are stochastic, so estimators give random variables!
- **Bias** of an estimator is $E[\widehat{\theta}] \theta$

- **Estimator:** a procedure for guessing a quantity of interest within a population from a sample from that population
- For example, the **relative frequency estimator**: if we observe *r* instances of heads in *n* coin flips,

"this is an estimator"
$$\widehat{\pi} = \frac{r}{n}$$

- Data are stochastic, so estimators give random variables!
- **Bias** of an estimator is $E[\widehat{\theta}] \theta$

$$E[\widehat{\pi}] = E[\frac{r}{n}] = \frac{1}{n}E[r] = \frac{1}{n}\sum_{i=1}^{n}E[Y_i] = \frac{1}{n}n\pi = \pi$$

- Estimator: a procedure for guessing a quantity of interest within a population from a sample from that population
- For example, the **relative frequency estimator**: if we observe *r* instances of heads in *n* coin flips,

"this is an estimator"
$$\widehat{\pi} = \frac{r}{n}$$

- Data are stochastic, so estimators give random variables!
- Bias of an estimator is $E[\widehat{\theta}] \theta$ Here we used linearity of the expectation $E[\widehat{\pi}] = E[\frac{r}{n}] = \frac{1}{n}E[r] = \frac{1}{n}\sum_{i=1}^n E[Y_i] = \frac{1}{n}n\pi = \pi$

- Estimator: a procedure for guessing a quantity of interest within a population from a sample from that population
- For example, the **relative frequency estimator**: if we observe *r* instances of heads in *n* coin flips,

"this is an estimator"
$$\widehat{\pi} = \frac{r}{n}$$

- Data are stochastic, so estimators give random variables!
- Bias of an estimator is $E[\widehat{\theta}] \theta$ Here we used linearity of the expectation $E[\widehat{\pi}] = E[\frac{r}{n}] = \frac{1}{n} E[r] = \frac{1}{n} \sum_{i=1}^{n} E[Y_i] = \frac{1}{n} n\pi = \pi$...so $\widehat{\pi}$ is unbiased

- **Estimator**: a procedure for guessing a quantity of interest within a population from a sample from that population
- For example, the **relative frequency estimator**: if we observe *r* instances of heads in *n* coin flips,

"this is an estimator"
$$\widehat{\pi} = \frac{7}{n}$$

- Data are stochastic, so estimators give random variables!
- Bias of an estimator is $E[\widehat{\theta}] \theta$ Here we used linearity of the expectation $E[\widehat{\pi}] = E[\frac{r}{n}] = \frac{1}{n} E[r] = \frac{1}{n} \sum_{i=1}^{n} E[Y_i] = \frac{1}{n} n\pi = \pi$...so $\widehat{\pi}$ is unbiased
- Variance of an estimator is ordinary variance

- **Estimator**: a procedure for guessing a quantity of interest within a population from a sample from that population
- For example, the **relative frequency estimator**: if we observe *r* instances of heads in *n* coin flips,

"this is an estimator"
$$\widehat{\pi} = \frac{r}{n}$$

- Data are stochastic, so estimators give random variables!
- Bias of an estimator is $E[\widehat{\theta}] \theta$ Here we used linearity of the expectation $E[\widehat{\pi}] = E[\frac{r}{n}] = \frac{1}{n} E[r] = \frac{1}{n} \sum_{i=1}^{n} E[Y_i] = \frac{1}{n} n\pi = \pi$...so $\widehat{\pi}$ is unbiased
- Variance of an estimator is ordinary variance

$$Var(X) \equiv E[(X - E[X])^2]$$

- **Estimator**: a procedure for guessing a quantity of interest within a population from a sample from that population
- For example, the **relative frequency estimator**: if we observe *r* instances of heads in *n* coin flips,

"this is an estimator"
$$\widehat{\pi} = \frac{r}{n}$$

- Data are stochastic, so estimators give random variables!
- Bias of an estimator is $E[\widehat{\theta}] \theta$ Here we used linearity of the expectation $E[\widehat{\pi}] = E[\frac{r}{n}] = \frac{1}{n} E[r] = \frac{1}{n} \sum_{i=1}^{n} E[Y_i] = \frac{1}{n} n\pi = \pi$...so $\widehat{\pi}$ is unbiased
- Variance of an estimator is ordinary variance

$$\operatorname{Var}(X) \equiv E[(X - E[X])^2]$$
 $\operatorname{Var}(\widehat{\pi}) = \frac{\pi(1 - \pi)}{n}$ (see reading materials)

- **Estimator:** a procedure for guessing a quantity of interest within a population from a sample from that population
- For example, the **relative frequency estimator**: if we observe *r* instances of heads in *n* coin flips,

"this is an estimator"
$$\widehat{\pi} = \frac{r}{n}$$

- Data are stochastic, so estimators give random variables!
- Bias of an estimator is $E[\widehat{\theta}] \theta$ Here we used linearity of the expectation $E[\widehat{\pi}] = E[\frac{r}{n}] = \frac{1}{n} E[r] = \frac{1}{n} \sum_{i=1}^{n} E[Y_i] = \frac{1}{n} n\pi = \pi$...so $\widehat{\pi}$ is unbiased
- Variance of an estimator is ordinary variance

$$\operatorname{Var}(X) \equiv E[(X - E[X])^2]$$
 $\operatorname{Var}(\widehat{\pi}) = \frac{\pi(1 - \pi)}{\pi}$ (see reading materials)

Good estimators have favorable bias-variance tradeoff

$$\operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y}) \equiv P(\boldsymbol{y} | \boldsymbol{\theta}) \qquad \hat{\boldsymbol{\theta}}_{MLE} \stackrel{\text{def}}{=} \underset{\boldsymbol{\theta}}{\operatorname{arg\,max}} \operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y}) \qquad \begin{vmatrix} \boldsymbol{i} & \boldsymbol{y_i} \\ 1 & T \\ 2 & T \\ 3 & H \\ T \end{vmatrix}$$

$$\operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y}) \equiv P(\boldsymbol{y}|\boldsymbol{\theta}) \qquad \hat{\boldsymbol{\theta}}_{MLE} \stackrel{\text{def}}{=} \arg \max_{\boldsymbol{\theta}} \operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y})$$

- *p* refers to the value of P(coin toss_i = Heads)
- Likelihood for the following dataset

$$\operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y}) \equiv P(\boldsymbol{y}|\boldsymbol{\theta}) \qquad \hat{\boldsymbol{\theta}}_{MLE} \stackrel{\text{def}}{=} \arg\max_{\boldsymbol{\theta}} \operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y})$$

- p refers to the value of P(coin toss_i = Heads)
- Likelihood for the following dataset

$$\operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y}) \equiv P(\boldsymbol{y}|\boldsymbol{\theta}) \qquad \hat{\boldsymbol{\theta}}_{MLE} \stackrel{\text{def}}{=} \arg\max_{\boldsymbol{\theta}} \operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y})$$

- p refers to the value of P(coin toss_i = Heads)
- Likelihood for the following dataset

$$\operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y}) \equiv P(\boldsymbol{y}|\boldsymbol{\theta}) \qquad \hat{\boldsymbol{\theta}}_{MLE} \stackrel{\text{def}}{=} \arg\max_{\boldsymbol{\theta}} \operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y})$$

- p refers to the value of P(coin toss_i = Heads)
- Likelihood for the following dataset

$$\operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y}) \equiv P(\boldsymbol{y}|\boldsymbol{\theta}) \qquad \hat{\boldsymbol{\theta}}_{MLE} \stackrel{\text{def}}{=} \arg\max_{\boldsymbol{\theta}} \operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y})$$

- p refers to the value of P(coin toss_i = Heads)
- Likelihood for the following dataset

$$\operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y}) \equiv P(\boldsymbol{y}|\boldsymbol{\theta}) \qquad \hat{\boldsymbol{\theta}}_{MLE} \stackrel{\text{def}}{=} \arg\max_{\boldsymbol{\theta}} \operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y})$$

i y_i 1 T 2 T 3 H

- p refers to the value of P(coin toss_i = Heads)
- Likelihood for the following dataset

This is choosing the maximum likelihood estimate (MLE)

$$\operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y}) \equiv P(\boldsymbol{y}|\boldsymbol{\theta}) \qquad \hat{\boldsymbol{\theta}}_{MLE} \stackrel{\text{def}}{=} \underset{\boldsymbol{\theta}}{\operatorname{arg\,max}} \operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y})$$

- *p* refers to the value of P(coin toss_i = Heads)
- Likelihood for the following dataset

This is choosing the maximum likelihood estimate (MLE)

$$\operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y}) \equiv P(\boldsymbol{y}|\boldsymbol{\theta}) \qquad \hat{\boldsymbol{\theta}}_{MLE} \stackrel{\text{def}}{=} \underset{\boldsymbol{\theta}}{\operatorname{arg\,max}} \operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y})$$

- *p* refers to the value of P(coin toss_i = Heads)
- Likelihood for the following dataset

This is choosing the maximum likelihood estimate (MLE)

The MLE also turns out to be the relative frequency estimate (RFE)

(repeat slide from lecture 3)

Introductory causal inference

- You have probably had previous exposure to both probability and statistics
- You are less likely to have had exposure to causal inference
- Causal inference uses probability and statistics, but it is something separate from the traditional construal of those two fields
- You can think of causal inference as being a framework extending more traditional statistics by:
 - Adding new probability-based mathematical constructs; and,
 - Developing a set of practice for statistical inference based on those constructs
- Two causal inference frameworks:
 - The potential outcomes framework
 - The causal graphical models framework

The potential-outcomes framework

- In epidemiology and many other areas of statistics, causal inference was developed out of the idea of potential outcomes (Neyman 1923, Rubin 1974)
- Consider an outcome, Y, and a potential treatment A

Example:

Y: an individual survives to the end of the year (0: no, 1: yes)

A: an individual with heart disease receives a heart transplant (0: no, 1: yes)

• Suppose that A is discrete; for this case, $A \in \{0,1\}$

- Suppose that A is discrete; for this case, $A \in \{0,1\}$
- The **potential outcomes**, or **counterfactual outcomes**, are random variables for Y for each potential value of A

 $Y^{a=0}$

The value that Y would take if A were 0

 $V^{a=1}$

The value that Y would take if A were 1

- Suppose that A is discrete; for this case, $A \in \{0,1\}$
- The **potential outcomes**, or **counterfactual outcomes**, are random variables for Y for each potential value of A

$$Y^{a=0}$$
 The value that Y would take if A were 0 $Y^{a=1}$ The value that Y would take if A were 1

 Counterfactual risk is the expected value of each counterfactual-outcome random variable:

$$E[Y^{a=0}] E[Y^{a=1}]$$

- Suppose that A is discrete; for this case, $A \in \{0,1\}$
- The **potential outcomes**, or **counterfactual outcomes**, are random variables for Y for each potential value of A

$$Y^{a=0}$$
 The value that Y would take if A were 0 $Y^{a=1}$ The value that Y would take if A were 1

 Counterfactual risk is the expected value of each counterfactual-outcome random variable:

$$E[Y^{a=0}] E[Y^{a=1}]$$

Expected value, or expectation, is defined as follows:

$$E[X] = \sum_{x} x P(X = x)$$

Potential-outcome random variables

- Suppose that A is discrete; for this case, $A \in \{0,1\}$
- The **potential outcomes**, or **counterfactual outcomes**, are random variables for Y for each potential value of A

$$Y^{a=0}$$

The value that Y would take if A were 0

$$V^{a=1}$$

The value that Y would take if A were 1

 Counterfactual risk is the expected value of each counterfactual-outcome random variable:

$$E[Y^{a=0}]$$

$$E[Y^{a=1}]$$

Expected value, or expectation, is defined as follows:

$$E[X] = \sum x P(X = x)$$

• So we are interested in (and likewise for $Y^{a=1}$):

$$E[Y^{a=0}] = \sum y P(Y^{a=0} = y) = 0 \times P(Y^{a=0} = 0) + 1 \times P(Y^{a=0} = 1) = P(Y^{a=0} = 1)$$

Potential-outcome random variables

- Suppose that A is discrete; for this case, $A \in \{0,1\}$
- The **potential outcomes**, or **counterfactual outcomes**, are random variables for Y for each potential value of A

$$Y^{a=0}$$
 The value that Y would take if A were 0 $Y^{a=1}$ The value that Y would take if A were 1

 Counterfactual risk is the expected value of each counterfactual-outcome random variable:

$$E[Y^{a=0}] E[Y^{a=1}]$$

Expected value, or expectation, is defined as follows:

$$E[X] = \sum x P(X = x)$$

• So we are interested in (and likewise for $Y^{a=1}$):

$$E[Y^{a=0}] = \sum yP(Y^{a=0} = y) = 0 \times P(Y^{a=0} = 0) + 1 \times P(Y^{a=0} = 1) = \boxed{P(Y^{a=0} = 1)}$$

(1.10.11.01.10.11	$Y^{a=0}$	$Y^{a=1}$
Rheia	0	1
Kronos	1	0
Demeter	0	0
Hades	0	0
Hestia	0	0
Poseidon	1	0
Hera	0	0
Zeus	0	1
Artemis	1	1
Apollo	1	0
Leto	0	1
Ares	1	1
Athena	1	1
Hephaestus	0	1
Aphrodite	0	1
Cyclope	0	1
Persephone	1	1
Hermes	1	0
Hebe	1	0
Dionysus	1	0
$P(Y^{a=*}) = 1$	0.5	0.5

 Suppose we knew what would happen for each individual in the population under each value of the treatment

(Hernan & Robins, 2020, Table				
	$Y^{a=0}$	$Y^{a=1}$		
Rheia	0	1		
Kronos	1	0		
Demeter	0	0		
Hades	0	0		
Hestia	0	0		
Poseidon	1	0		
Hera	0	0		
Zeus	0	1		
Artemis	1	1		
Apollo	1	0		
Leto	0	1		
Ares	1	1		
Athena	1	1		
Hephaestus	0	1		
Aphrodite	0	1		
Cyclope	0	1		
Persephone	1	1		
Hermes	1	0		
Hebe	1	0		
Dionysus	1	0		
$P(Y^{a=*}) = 1$	0.5	0.5		

- Suppose we knew what would happen for each individual in the population under each value of the treatment
- Then we could compute the counterfactual risks:

$$E[Y^{a=0}] = 0.5$$

$$E[Y^{a=1}] = 0.5$$

(Hernan & Robins, 2020, Table $Y^{a=0}$ $Y^{a=0}$					
Rheia	0	1			
Kronos	1	0			
Demeter	0	0			
Hades	0	0			
Hestia	0	0			
Poseidon	1	0			
Hera	0	0			
Zeus	0	1			
Artemis	1	1			
Apollo	1	0			
Leto	0	1			
Ares	1	1			
Athena	1	1			
Hephaestus	0	1			
Aphrodite	0	1			
Cyclope	0	1			
Persephone	1	1			
Hermes	1	0			
Hebe	1	0			
Dionysus	1	0			

0.5

- Suppose we knew what would happen for each individual in the population under each value of the treatment
- Then we could compute the counterfactual risks:

$$E[Y^{a=0}] = 0.5$$
 $E[Y^{a=1}] = 0.5$

$$E[Y^{a=1}] = 0.5$$

 The average causal effect of treatment A is defined as the difference of counterfactual risks:

$$E[Y^{a=1}] - E[Y^{a=0}] = 0$$

(Hernan & Robin	s, 2020,	Table	1.1)
	$Y^{a=0}$	$Y^{a=1}$	_

	$Y^{a=0}$	$Y^{a=1}$
Rheia	0	1
Kronos	1	0
Demeter	0	0
Hades	0	0
Hestia	0	0
Poseidon	1	0
Hera	0	0
Zeus	0	1
Artemis	1	1
Apollo	1	0
Leto	0	1
Ares	1	1
Athena	1	1
Hephaestus	0	1
Aphrodite	0	1
Cyclope	0	1
Persephone	1	1
Hermes	1	0
Hebe	1	0
Dionysus	1	0
$P(Y^{a=*}) = 1$	0.5	0.5

- Suppose we knew what would happen for each individual in the population under each value of the treatment
- Then we could compute the counterfactual risks:

$$E[Y^{a=0}] = 0.5$$
 $E[Y^{a=1}] = 0.5$

• The average causal effect of treatment A is defined as the difference of counterfactual risks:

$$E[Y^{a=1}] - E[Y^{a=0}] = 0$$

Here, treatment is ineffective

(Hernan & Robins, 2020, Table				
	$Y^{a=0}$	$Y^{a=1}$		
Rheia	0	1		
Kronos	1	0		
Demeter	0	0		
Hades	0	0		
Hestia	0	0		
Poseidon	1	0		
Hera	0	0		
Zeus	0	1		
Artemis	1	1		
Apollo	1	0		
Leto	0	1		
Ares	1	1		
Athena	1	1		
Hephaestus	0	1		
Aphrodite	0	1		
Cyclope	0	1		
Persephone	1	1		
Hermes	1	0		
Hebe	1	0		
Dionysus	1	0		
$P(V^{a=*}) - 1$	0.5	0.5		

	L	A	Y	Y^0	Y^1
Rheia	0	0	0	0	?
Kronos	0	0	1	1	?
Demeter	0	0	0	0	?
Hades	0	0	0	0	?
Hestia	0	1	0	?	0
Poseidon	0	1	0	?	0
Hera	0	1	0	?	0
Zeus	0	1	1	?	1
Artemis	1	0	1	1	?
Apollo	1	0	1	1	?
Leto	1	0	0	0	?
Ares	1	1	1	?	1
Athena	1	1	1	?	1
Hephaestus	1	1	1	?	1
Aphrodite	1	1	1	?	1
Polyphemus	1	1	1	?	1
Persephone	1	1	1	?	1
Hermes	1	1	0	?	0
Hebe	1	1	0	?	0
Dionysus	1	1	0	?	0

	L	A	Y	Y^0	Y^1
Rheia	0	0	0	0	?
Kronos	0	0	1	1	?
Demeter	0	0	0	0	? ? ?
Hades	0	0	0	0	?
Hestia	0	1	0	?	0
Poseidon	0	1	0	?	0
Hera	0	1	0	?	0
Zeus	0	1	1	?	1
Artemis	1	0	1	1	?
Apollo	1	0	1	1	? ?
Leto	1	0	0	0	?
Ares	1	1	1	?	1
Athena	1	1	1	?	1
Hephaestus	1	1	1	?	1
Aphrodite	1	1	1	?	1
Polyphemus	1	1	1	?	1
Persephone	1	1	1	?	1
Hermes	1	1	0	?	0
Hebe	1	1	0	?	0
Dionysus	1	1	0	?	0

Naively, we might estimate the counterfactual risks $P(Y^{a=i}=1)$ directly from observed A and Y:

	L	A	Y	Y^0	Y^1
Rheia	0	0	0	0	?
Kronos	0	0	1	1	?
Demeter	0	0	0	0	? ? ?
Hades	0	0	0	0	?
Hestia	0	1	0	?	0
Poseidon	0	1	0	?	0
Hera	0	1	0	?	0
Zeus	0	1	1	?	1
Artemis	1	0	1	1	?
Apollo	1	0	1	1	?
Leto	1	0	0	0	?
Ares	1	1	1	?	1
Athena	1	1	1	?	1
Hephaestus	1	1	1	?	1
Aphrodite	1	1	1	?	1
Polyphemus	1	1	1	?	1
Persephone	1	1	1	?	1
Hermes	1	1	0	?	0
Hebe	1	1	0	?	0
Dionysus	1	1	0	?	0

Naively, we might estimate the counterfactual risks $P(Y^{a=i}=1)$ directly from observed A and Y:

$$\hat{P}_{MLE}(Y=1 | A=0) = \frac{3}{7} \quad \hat{P}_{MLE}(Y=1 | A=1) = \frac{7}{13}$$

	L	A	Y	Y^0	Y^1
Rheia	0	0	0	0	?
Kronos	0	0	1	1	?
Demeter	0	0	0	0	?
Hades	0	0	0	0	?
Hestia	0	1	0	?	0
Poseidon	0	1	0	?	0
Hera	0	1	0	?	0
Zeus	0	1	1	?	1
Artemis	1	0	1	1	?
Apollo	1	0	1	1	?
Leto	1	0	0	0	?
Ares	1	1	1	?	1
Athena	1	1	1	?	1
Hephaestus	1	1	1	?	1
Aphrodite	1	1	1	?	1
Polyphemus	1	1	1	?	1
Persephone	1	1	1	?	1
Hermes	1	1	0	?	0
Hebe	1	1	0	?	0
Dionysus	1	1	0	?	0

Naively, we might estimate the counterfactual risks $P(Y^{a=i}=1)$ directly from observed A and Y:

$$\hat{P}_{MLE}(Y=1 | A=0) = \frac{3}{7} \quad \hat{P}_{MLE}(Y=1 | A=1) = \frac{7}{13}$$

But under what circumstances

$$\hat{P}_{MLE}(Y|A=i) = \hat{P}_{MLE}(Y^{a=i}=1)$$
?

	L	A	Y	Y^0	Y^1	_
Rheia	0	0	0	0	?	_
Kronos	0	0	1	1	?	
Demeter	0	0	0	0	?	
Hades	0	0	0	0	?	
Hestia	0	1	0	?	0	
Poseidon	0	1	0	?	0	
Hera	0	1	0	?	0	,
Zeus	0	1	1	?	1	
Artemis	1	0	1	1	?	
Apollo	1	0	1	1	?	(
Leto	1	0	0	0	?	
Ares	1	1	1	?	1	
Athena	1	1	1	?	1	
Hephaestus	1	1	1	?	1	
Aphrodite	1	1	1	?	1	
Polyphemus	1	1	1	?	1	
Persephone	1	1	1	?	1	
Hermes	1	1	0	?	0	
Hebe	1	1	0	?	0	
Dionysus	1	1	0	?	0	_

Naively, we might estimate the counterfactual risks $P(Y^{a=i}=1)$ directly from observed A and Y:

$$\hat{P}_{MLE}(Y=1 | A=0) = \frac{3}{7} \quad \hat{P}_{MLE}(Y=1 | A=1) = \frac{7}{13}$$

But under what circumstances

$$\hat{P}_{MLE}(Y|A=i) = \hat{P}_{MLE}(Y^{a=i}=1)$$
?

The following is certainly true:

	L	A	Y	Y^0	Y^1
Rheia	0	0	0	0	?
Kronos	0	0	1	1	?
Demeter	0	0	0	0	?
Hades	0	0	0	0	?
Hestia	0	1	0	?	0
Poseidon	0	1	0	?	0
Hera	0	1	0	?	0
Zeus	0	1	1	?	1
Artemis	1	0	1	1	?
Apollo	1	0	1	1	?
Leto	1	0	0	0	?
Ares	1	1	1	?	1
Athena	1	1	1	?	1
Hephaestus	1	1	1	?	1
Aphrodite	1	1	1	?	1
Polyphemus	1	1	1	?	1
Persephone	1	1	1	?	1
Hermes	1	1	0	?	0
Hebe	1	1	0	?	0
Dionysus	1	1	0	?	0

• Naively, we might estimate the counterfactual risks $P(Y^{a=i}=1)$ directly from observed A and Y:

$$\hat{P}_{MLE}(Y=1 | A=0) = \frac{3}{7} \quad \hat{P}_{MLE}(Y=1 | A=1) = \frac{7}{13}$$

But under what circumstances

$$\hat{P}_{MLE}(Y|A=i) = \hat{P}_{MLE}(Y^{a=i}=1)$$
?

The following is certainly true:

$$\hat{P}_{MLE}(Y=1 | A=i) = \frac{\text{Count}(Y=1 \land A=i)}{\text{Count}(A=i)}$$

	L	A	Y	Y^0	Y^1
Rheia	0	0	0	0	?
Kronos	0	0	1	1	?
Demeter	0	0	0	0	?
Hades	0	0	0	0	?
Hestia	0	1	0	?	0
Poseidon	0	1	0	?	0
Hera	0	1	0	?	0
Zeus	0	1	1	?	1
Artemis	1	0	1	1	?
Apollo	1	0	1	1	?
Leto	1	0	0	0	?
Ares	1	1	1	?	1
Athena	1	1	1	?	1
Hephaestus	1	1	1	?	1
Aphrodite	1	1	1	?	1
Polyphemus	1	1	1	?	1
Persephone	1	1	1	?	1
Hermes	1	1	0	?	0
Hebe	1	1	0	?	0
Dionysus	1	1	0	?	0

Naively, we might estimate the counterfactual risks $P(Y^{a=i}=1)$ directly from observed A and Y:

$$\hat{P}_{MLE}(Y=1 | A=0) = \frac{3}{7} \quad \hat{P}_{MLE}(Y=1 | A=1) = \frac{7}{13}$$

But under what circumstances

$$\hat{P}_{MLE}(Y|A=i) = \hat{P}_{MLE}(Y^{a=i}=1)$$
?

The following is certainly true:

$$\hat{P}_{MLE}(Y=1 | A=i) = \frac{\mathsf{Count}(Y=1 \land A=i)}{\mathsf{Count}(A=i)}$$

Consistency: when $A = i, Y = Y^{a=i}$

	L	A	Y	Y^0	Y^1
Rheia	0	0	0	0	?
Kronos	0	0	1	1	? ? ?
Demeter	0	0	0	0	?
Hades	0	0	0	0	?
Hestia	0	1	0	?	0
Poseidon	0	1	0	?	0
Hera	0	1	0	?	0
Zeus	0	1	1	?	1
Artemis	1	0	1	1	?
Apollo	1	0	1	1	? ? ?
Leto	1	0	0	0	?
Ares	1	1	1	?	1
Athena	1	1	1	?	1
Hephaestus	1	1	1	?	1
Aphrodite	1	1	1	?	1
Polyphemus	1	1	1	?	1
Persephone	1	1	1	?	1
Hermes	1	1	0	?	0
Hebe	1	1	0	?	0
Dionysus	1	1	0	?	0

Naively, we might estimate the counterfactual risks $P(Y^{a=i}=1)$ directly from observed A and Y:

$$\hat{P}_{MLE}(Y=1 | A=0) = \frac{3}{7} \quad \hat{P}_{MLE}(Y=1 | A=1) = \frac{7}{13}$$

But under what circumstances

$$\hat{P}_{MLE}(Y|A=i) = \hat{P}_{MLE}(Y^{a=i}=1)$$
?

The following is certainly true:

$$\hat{P}_{MLE}(Y=1 \mid A=i) = \frac{\text{Count}(Y=1 \land A=i)}{\text{Count}(A=i)}$$

$$A=i, Y=Y^{a=i} = \frac{\text{Count}(Y^{a=1}=1 \land A=i)}{\text{Count}(A=i)}$$

$$Count(A=i)$$

$$Count(A=i)$$

$$Count(A=i)$$

$$Count(A=i)$$

	L	A	Y	Y^0	Y^1
Rheia	0	0	0	0	?
Kronos	0	0	1	1	?
Demeter	0	0	0	0	?
Hades	0	0	0	0	?
Hestia	0	1	0	?	0
Poseidon	0	1	0	?	0
Hera	0	1	0	?	0
Zeus	0	1	1	?	1
Artemis	1	0	1	1	?
Apollo	1	0	1	1	?
Leto	1	0	0	0	?
Ares	1	1	1	?	1
Athena	1	1	1	?	1
Hephaestus	1	1	1	?	1
Aphrodite	1	1	1	?	1
Polyphemus	1	1	1	?	1
Persephone	1	1	1	?	1
Hermes	1	1	0	?	0
Hebe	1	1	0	?	0
Dionysus	1	1	0	?	0

Naively, we might estimate the counterfactual risks $P(Y^{a=i}=1)$ directly from observed A and Y:

$$\hat{P}_{MLE}(Y=1 | A=0) = \frac{3}{7} \quad \hat{P}_{MLE}(Y=1 | A=1) = \frac{7}{13}$$

But under what circumstances

$$\hat{P}_{MLE}(Y|A=i) = \hat{P}_{MLE}(Y^{a=i}=1)$$
?

The following is certainly true:

$$\begin{split} \hat{P}_{MLE}(Y=1 \,|\, A=i) &= \frac{\text{Count}(Y=1 \land A=i)}{\text{Count}(A=i)} \\ \hline \textbf{Consistency:} \text{ when } \\ A=i, Y=Y^{a=i} \end{split} = \frac{\text{Count}(Y^{a=1}=1 \land A=i)}{\text{Count}(A=i)} \\ = \hat{P}_{MLE}(Y^{a=i}=1 \,|\, A=i) \end{split}$$

	L	A	Y	Y^0	Y^1
Rheia	0	0	0	0	?
Kronos	0	0	1	1	?
Demeter	0	0	0	0	?
Hades	0	0	0	0	?
Hestia	0	1	0	?	0
Poseidon	0	1	0	?	0
Hera	0	1	0	?	0
Zeus	0	1	1	?	1
Artemis	1	0	1	1	?
Apollo	1	0	1	1	?
Leto	1	0	0	0	?
Ares	1	1	1	?	1
Athena	1	1	1	?	1
Hephaestus	1	1	1	?	1
Aphrodite	1	1	1	?	1
Polyphemus	1	1	1	?	1
Persephone	1	1	1	?	1
Hermes	1	1	0	?	0
Hebe	1	1	0	?	0
Dionysus	1	1	0	?	0

Naively, we might estimate the counterfactual risks $P(Y^{a=i}=1)$ directly from observed A and Y:

$$\hat{P}_{MLE}(Y=1 | A=0) = \frac{3}{7} \quad \hat{P}_{MLE}(Y=1 | A=1) = \frac{7}{13}$$

But under what circumstances

$$\hat{P}_{MLE}(Y|A=i) = \hat{P}_{MLE}(Y^{a=i}=1)$$
?

The following is certainly true:

$$\hat{P}_{MLE}(Y=1 \mid A=i) = \frac{\text{Count}(Y=1 \land A=i)}{\text{Count}(A=i)}$$

$$Consistency: \text{ when } A=i, Y=Y^{a=i}$$

$$= \frac{\text{Count}(Y^{a=1}=1 \land A=i)}{\text{Count}(A=i)}$$

$$= \hat{P}_{MLE}(Y^{a=i}=1 \mid A=i)$$

$$Crucial step; make sure you understand it!$$

So, the following condition suffices:

$$P(Y^{a=i} = 1 | A = i) = P(Y^{a=i} = 1)$$

Remember, $E[Y^{a=i}] = P(Y^{a=i} = 1)$

Estimating causal effects

	L	A	Y	Y^0	Y^1
Rheia	0	0	0	0	?
Kronos	0	0	1	1	?
Demeter	0	0	0	0	?
Hades	0	0	0	0	?
Hestia	0	1	0	?	0
Poseidon	0	1	0	?	0
Hera	0	1	0	?	0
Zeus	0	1	1	?	1
Artemis	1	0	1	1	?
Apollo	1	0	1	1	?
Leto	1	0	0	0	?
Ares	1	1	1	?	1
Athena	1	1	1	?	1
Hephaestus	1	1	1	?	1
Aphrodite	1	1	1	?	1
Polyphemus	1	1	1	?	1
Persephone	1	1	1	?	1
Hermes	1	1	0	?	0
Hebe	1	1	0	?	0

Dionysus

Naively, we might estimate the counterfactual risks $P(Y^{a=i}=1)$ directly from observed A and Y:

$$\hat{P}_{MLE}(Y=1 | A=0) = \frac{3}{7} \quad \hat{P}_{MLE}(Y=1 | A=1) = \frac{7}{13}$$

But under what circumstances

$$\hat{P}_{MLE}(Y|A=i) = \hat{P}_{MLE}(Y^{a=i}=1)$$
?

The following is certainly true:

$$\hat{P}_{MLE}(Y=1 \mid A=i) = \frac{\operatorname{Count}(Y=1 \land A=i)}{\operatorname{Count}(A=i)}$$

$$Consistency: \text{ when } A=i, Y=Y^{a=i}$$

$$= \frac{\operatorname{Count}(Y^{a=1}=1 \land A=i)}{\operatorname{Count}(A=i)}$$

$$= \hat{P}_{MLE}(Y^{a=i}=1 \mid A=i)$$

$$Crucial step; make sure you understand it!$$

So, the following condition suffices:

$$P(Y^{a=i} = 1 | A = i) = P(Y^{a=i} = 1)$$

This is called Exchangeability:

$$Y^a \perp A \mid \{\}$$

Goal: $\hat{P}(Y^a = 1)$

	$Y^{a=0}$	$Y^{a=1}$
Rheia	0	1
Kronos	1	0
Demeter	0	0
Hades	0	0
Hestia	0	0
Poseidon	1	0
Hera	0	0
Zeus	0	1
Artemis	1	1
Apollo	1	0
Leto	0	1
Ares	1	1
Athena	1	1
Hephaestus	0	1
Aphrodite	0	1
Polyphemus	0	1
Persephone	1	1
Hermes	1	0
Hebe	1	0
Dionysus	1	0

Goal:
$$\hat{P}(Y^a = 1)$$

Why is a randomized experiment so powerful?

	$Y^{a=0}$	$Y^{a=1}$
Rheia	0	1
Kronos	1	0
Demeter	0	0
Hades	0	0
Hestia	0	0
Poseidon	1	0
Hera	0	0
Zeus	0	1
Artemis	1	1
Apollo	1	0
Leto	0	1
Ares	1	1
Athena	1	1
Hephaestus	0	1
Aphrodite	0	1
Polyphemus	0	1
Persephone	1	1
Hermes	1	0
Hebe	1	0
Dionysus	1	0

Goal:
$$\hat{P}(Y^a = 1)$$

- Why is a randomized experiment so powerful?
- Recap of exchangeability criterion:

$$Y^a \perp A \mid \{\}$$

	$Y^{a=0}$	$Y^{a=1}$
Rheia	0	1
Kronos	1	0
Demeter	0	0
Hades	0	0
Hestia	0	0
Poseidon	1	0
Hera	0	0
Zeus	0	1
Artemis	1	1
Apollo	1	0
Leto	0	1
Ares	1	1
Athena	1	1
Hephaestus	0	1
Aphrodite	0	1
Polyphemus	0	1
Persephone	1	1
Hermes	1	0
Hebe	1	0
Dionysus	1	0

Goal:
$$\hat{P}(Y^a = 1)$$

- Why is a randomized experiment so powerful?
- Recap of exchangeability criterion:

$$Y^a \perp A \mid \{\}$$

	$Y^{a=0}$	$Y^{a=1}$
Rheia	0	1
Kronos	1	0
Demeter	0	0
Hades	0	0
Hestia	0	0
Poseidon	1	0
Hera	0	0
Zeus	0	1
Artemis	1	1
Apollo	1	0
Leto	0	1
Ares	1	1
Athena	1	1
Hephaestus	0	1
Aphrodite	0	1
Polyphemus	0	1
Persephone	1	1
Hermes	1	0
Hebe	1	0
Dionysus	1	0

Goal:
$$\hat{P}(Y^a = 1)$$

- Why is a randomized experiment so powerful?
- Recap of exchangeability criterion:

$$Y^a \perp A \mid \{\}$$

Rheia
Kronos
Demeter
Hades
Hestia
Poseidon
Hera
Zeus
Artemis
Apollo
Leto
Ares
Athena
Hephaestus
Aphrodite
Polyphemus
Persephone
Hermes
Hebe
Dionysus

Goal: $\hat{P}(Y^a = 1)$

- Why is a randomized experiment so powerful?
- Recap of exchangeability criterion:

$$Y^a \perp A \mid \{\}$$

	A
Rheia	0
Kronos	0
Demeter	0
Hades	0
Hestia	1
Poseidon	1
Hera	1
Zeus	1
Artemis	0
Apollo	0
Leto	0
Ares	1
Athena	1
Hephaestus	1
Aphrodite	1
Polyphemus	1
Persephone	1
Hermes	1
Hebe	1
Dionysus	1

Goal: $\hat{P}(Y^a = 1)$

- Why is a randomized experiment so powerful?
- Recap of exchangeability criterion:

$$Y^a \perp A \mid \{\}$$

Rheia Kronos
Kronos
_
Demeter
Hades
Hestia
Poseidon
Hera
Zeus
Artemis
Apollo
Leto
Ares
Athena
Hephaestus
Aphrodite
Polyphemus
Persephone
Hermes
Hebe
Dionysus

\overline{A}	Y
0	0
0	1
0	0
0	0
1	0
	0
1 1	0
1	1
$0 \\ 0$	1 1
0	0
1	1
1	1
1	1
1	1
1	1
1	1
1	0
1	0
1	0

Goal:
$$\hat{P}(Y^a = 1)$$

- Why is a randomized experiment so powerful?
- Recap of exchangeability criterion:

$$Y^a \perp A \mid \{\}$$

	$Y^{a=0}$	$Y^{a=1}$	\overline{A}	\overline{Y}
Rheia	0	1	0	0
Kronos	1	0	0	1
Demeter	0	0	0	0
Hades	0	0	0	0
Hestia	0	0	1	0
Poseidon	1	0	1	0
Hera	0	0	1	0
Zeus	0	1	1	1
Artemis	1	1	0	1
Apollo	1	0	0	1
Leto	0	1	0	0
Ares	1	1	1	1
Athena	1	1	1	1
Hephaestus	0	1	1	1
Aphrodite	0	1	1	1
Polyphemus	0	1	1	1
Persephone	1	1	1	1
Hermes	1	0	1	0
Hebe	1	0	1	0
Dionysus	1	0	1	0

Goal:
$$\hat{P}(Y^a = 1)$$

- Why is a randomized experiment so powerful?
- Recap of exchangeability criterion:

$$Y^a \perp A \mid \{\}$$

- If we ourselves determine A in a way that is *truly blind to* Y^a , it **imposes** exchangeability!
- We can now go ahead and estimate

$$\hat{P}(Y^{a=i} = 1) = \hat{P}(Y = 1 | A = i)$$

	$Y^{a=0}$	$Y^{a=1}$	A	Y
Rheia	0	1	0	0
Kronos	1	0	0	1
Demeter	0	0	0	0
Hades	0	0	0	0
Hestia	0	0	1	0
Poseidon	1	0	1	0
Hera	0	0	1	0
Zeus	0	1	1	1
Artemis	1	1	0	1
Apollo	1	0	0	1
Leto	0	1	0	0
Ares	1	1	1	1
Athena	1	1	1	1
Hephaestus	0	1	1	1
Aphrodite	0	1	1	1
Polyphemus	0	1	1	1
Persephone	1	1	1	1
Hermes	1	0	1	0
Hebe	1	0	1	0
Dionysus	1	0	1	0

Goal:
$$\hat{P}(Y^a = 1)$$

- Why is a randomized experiment so powerful?
- Recap of exchangeability criterion:

$$Y^a \perp A \mid \{\}$$

- If we ourselves determine A in a way that is *truly blind to* Y^a , it **imposes** exchangeability!
- We can now go ahead and estimate

$$\hat{P}(Y^{a=i} = 1) = \hat{P}(Y = 1 | A = i)$$

Hooray!!!

	$Y^{a=0}$	$Y^{a=1}$	\overline{A}	\overline{Y}
Rheia	0	1	0	0
Kronos	1	0	0	1
Demeter	0	0	0	0
Hades	0	0	0	0
Hestia	0	0	1	0
Poseidon	1	0	1	0
Hera	0	0	1	0
Zeus	0	1	1	1
Artemis	1	1	0	1
Apollo	1	0	0	1
Leto	0	1	0	0
Ares	1	1	1	1
Athena	1	1	1	1
Hephaestus	0	1	1	1
Aphrodite	0	1	1	1
Polyphemus	0	1	1	1
Persephone	1	1	1	1
Hermes	1	0	1	0
Hebe	1	0	1	0
Dionysus	1	0	1	0

 In the real world, many datasets are *not* randomized this way

- In the real world, many datasets are not randomized this way
- Example: let's imagine some other variable that might affect whether treatment A is applied; e.g., L = whether the patient was in critical condition (1=yes, 0=no)

- In the real world, many datasets are not randomized this way
- Example: let's imagine some other variable that might affect whether treatment A is applied; e.g., L = whether the patient was in critical condition (1=yes, 0=no)

	L
Rheia	0
Kronos	0
Demeter	0
Hades	0
Hestia	0
Poseidon	0
Hera	0
Zeus	0
Artemis	1
Apollo	1
Leto	1
Ares	1
Athena	1
Hephaestus	1
Aphrodite	1
Polyphemus	1
Persephone	1
Hermes	1
Hebe	1
Dionysus	1

- In the real world, many datasets are not randomized this way
- Example: let's imagine some other variable that might affect whether treatment A is applied; e.g., L = whether the patient was in critical condition (1=yes, 0=no)

	L	\overline{A}
Rheia	0	0
Kronos	0	0
Demeter	0	0
Hades	0	0
Hestia	0	1
Poseidon	0	1
Hera	0	1
Zeus	0	1
Artemis	1	0
Apollo	1	0
Leto	1	0
Ares	1	1
Athena	1	1
Hephaestus	1	1
Aphrodite	1	1
Polyphemus	1	1
Persephone	1	1
Hermes	1	1
Hebe	1	1
Dionysus	1	1

- In the real world, many datasets are not randomized this way
- Example: let's imagine some other variable that might affect whether treatment A is applied; e.g., L = whether the patient was in critical condition (1=yes, 0=no)

		3
	L	\overline{A}
Rheia	0	0
Kronos	0	0
Demeter	0	0
Hades	0	0
Hestia	0	1
Poseidon	0	1
Hera	0	1
Zeus	0	1
Artemis	1	0
Apollo	1	0
Leto	1	0
Ares	1	1
Athena	1	1
Hephaestus	1	1
Aphrodite	1	1
Polyphemus	1	1
Persephone	1	1
Hermes	1	1
Hebe	1	1
Dionysus	1	1

- In the real world, many datasets are not randomized this way
- Example: let's imagine some other variable that might affect whether treatment A is applied; e.g., L = whether the patient was in critical condition (1=yes, 0=no)

	\(\)	7		
	L	A	$Y^{a=0}$	$Y^{a=1}$
Rheia	0	0	0	1
Kronos	0	0	1	0
Demeter	0	0	0	0
Hades	0	0	0	0
Hestia	0	1	0	0
Poseidon	0	1	1	0
Hera	0	1	0	0
Zeus	0	1	0	1
Artemis	1	0	1	1
Apollo	1	0	1	0
Leto	1	0	0	1
Ares	1	1	1	1
Athena	1	1	1	1
Hephaestus	1	1	0	1
Aphrodite	1	1	0	1
Polyphemus	1	1	0	1
Persephone	1	1	1	1
Hermes	1	1	1	0
Hebe	1	1	1	0
Dionysus	1	1	_ 1	0

- In the real world, many datasets are *not* randomized this way
- Example: let's imagine some other variable that might affect whether treatment A is applied; e.g., L = whether the patient was in critical condition (1=yes, 0=no)
- ullet In general, L will be related to Y^a

		~		
	L	\overline{A}	$Y^{a=0}$	$Y^{a=1}$
Rheia	0	0	0	1
Kronos	0	0	1	0
Demeter	0	0	0	0
Hades	0	0	0	0
Hestia	0	1	0	0
Poseidon	0	1	1	0
Hera	0	1	0	0
Zeus	0	1	0	1
Artemis	1	0	1	1
Apollo	1	0	1	0
Leto	1	0	0	1
Ares	1	1	1	1
Athena	1	1	1	1
Hephaestus	1	1	0	1
Aphrodite	1	1	0	1
Polyphemus	1	1	0	1
Persephone	1	1	1	1
Hermes	1	1	1	0
Hebe	1	1	1	0
Dionysus	1	1	1	0

- In the real world, many datasets are not randomized this way
- **Example:** let's imagine some other variable that might affect whether treatment A is applied; e.g., L = whether the patient was in critical condition (1=yes, 0=no)
- ullet In general, L will be related to Y^a

				*
	*	•		
	L	A	$Y^{a=0}$	$Y^{a=1}$
Rheia	0	0	0	1
Kronos	0	0	1	0
Demeter	0	0	0	0
Hades	0	0	0	0
Hestia	0	1	0	0
Poseidon	0	1	1	0
Hera	0	1	0	0
Zeus	0	1	0	1
Artemis	1	0	1	1
Apollo	1	0	1	0
Leto	1	0	0	1
Ares	1	1	1	1
Athena	1	1	1	1
Hephaestus	1	1	0	1
Aphrodite	1	1	0	1
Polyphemus	1	1	0	1
Persephone	1	1	1	1
Hermes	1	1	1	0
Hebe	1	1	1	0
Dionysus	1	1	_ 1	0

- In the real world, many datasets are not randomized this way
- Example: let's imagine some other variable that might affect whether treatment A is applied; e.g., L = whether the patient was in critical condition (1=yes, 0=no)
- In general, L will be related to Y^a

				_	
	*	1		•	1
	L	A	$Y^{a=0}$	$Y^{a=1}$	Y
Rheia	0	0	0	1	0
Kronos	0	0	1	0	1
Demeter	0	0	0	0	0
Hades	0	0	0	0	0
Hestia	0	1	0	0	0
Poseidon	0	1	1	0	0
Hera	0	1	0	0	0
Zeus	0	1	0	1	1
Artemis	1	0	1	1	1
Apollo	1	0	1	0	1
Leto	1	0	0	1	0
Ares	1	1	1	1	1
Athena	1	1	1	1	1
Hephaestus	1	1	0	1	1
Aphrodite	1	1	0	1	1
Polyphemus	1	1	0	1	1
Persephone	1	1	1	1	1
Hermes	1	1	1	0	0
Hebe	1	1	1	0	0
Dionysus	1	1	1	0	0

- In the real world, many datasets are *not* randomized this way
- Example: let's imagine some other variable that might affect whether treatment A is applied; e.g., L = whether the patient was in critical condition (1=yes, 0=no)
- In general, L will be related to Y^a

	1	\		7 €	1
	L	A	$Y^{a=0}$	$Y^{a=1}$	\overline{Y}
Rheia	0	0	0	1	0
Kronos	0	0	1	0	1
Demeter	0	0	0	0	0
Hades	0	0	0	0	0
Hestia	0	1	0	0	0
Poseidon	0	1	1	0	0
Hera	0	1	0	0	0
Zeus	0	1	0	1	1
Artemis	1	0	1	1	1
Apollo	1	0	1	0	1
Leto	1	0	0	1	0
Ares	1	1	1	1	1
Athena	1	1	1	1	1
Hephaestus	1	1	0	1	1
Aphrodite	1	1	0	1	1
Polyphemus	1	1	0	1	1
Persephone	1	1	1	1	1
Hermes	1	1	1	0	0
Hebe	1	1	1	0	0
Dionysus	1	1	_ 1	0	0

- In the real world, many datasets are not randomized this way
- Example: let's imagine some other variable that might affect whether treatment A is applied; e.g., L = whether the patient was in critical condition (1=yes, 0=no)
- In general, L will be related to Y^a
 - E.g., in this example, patients in critical condition are surely more likely to die overall!

		6			1	7
		\overline{L}	\overline{A}	$Y^{a=0}$	$Y^{a=1}$	\overline{Y}
	Rheia	0	0	0	1	0
	Kronos	0	0	1	0	1
	Demeter	0	0	0	0	0
	Hades	0	0	0	0	0
	Hestia	0	1	0	0	0
	Poseidon	0	1	1	0	0
•	Hera	0	1	0	0	0
	Zeus	0	1	0	1	1
	Artemis	1	0	1	1	1
	Apollo	1	0	1	0	1
	Leto	1	0	0	1	0
	Ares	1	1	1	1	1
	Athena	1	1	1	1	1
	Hephaestus	1	1	0	1	1
	Aphrodite	1	1	0	1	1
	Polyphemus	1	1	0	1	1
	Persephone	1	1	1	1	1
	Hermes	1	1	1	0	0
	Hebe	1	1	1	0	0
_	Dionysus	1	1	1	0	0

- In the real world, many datasets are not randomized this way
- Example: let's imagine some other variable that might affect whether treatment A is applied; e.g., L = whether the patient was in critical condition (1=yes, 0=no)
- In general, L will be related to Y^a
 - E.g., in this example, patients in critical condition are surely more likely to die overall!

 $A \perp Y^a \mid \{\}$

				\ C	\
	*	*			*
	L	A	$Y^{a=0}$	$Y^{a=1}$	Y
Rheia	0	0	0	1	0
Kronos	0	0	1	0	1
Demeter	0	0	0	0	0
Hades	0	0	0	0	0
Hestia	0	1	0	0	0
Poseidon	0	1	1	0	0
Hera	0	1	0	0	0
Zeus	0	1	0	1	1
Artemis	1	0	1	1	1
Apollo	1	0	1	0	1
Leto	1	0	0	1	0
Ares	1	1	1	1	1
Athena	1	1	1	1	1
Hephaestus	1	1	0	1	1
Aphrodite	1	1	0	1	1
Polyphemus	1	1	0	1	1
Persephone	1	1	1	1	1
Hermes	1	1	1	0	0
Hebe	1	1	1	0	0
Dionysus	1	1	1	0	0
					10

- In the real world, many datasets are not randomized this way
- Example: let's imagine some other variable that might affect whether treatment A is applied; e.g., L = whether the patient was in critical condition (1=yes, 0=no)
- In general, L will be related to Y^a
 - E.g., in this example, patients in critical condition are surely more likely to die overall!

				-		
		1	\		7	7
-		L	\overline{A}	$Y^{a=0}$	$Y^{a=1}$	Y
	Rheia	0	0	0	1	0
	Kronos	0	0	1	0	1
	Demeter	0	0	0	0	0
	Hades	0	0	0	0	0
	Hestia	0	1	0	0	0
	Poseidon	0	1	1	0	0
	Hera	0	1	0	0	0
	Zeus	0	1	0	1	1
	Artemis	1	0	1	1	1
	Apollo	1	0	1	0	1
	Leto	1	0	0	1	0
	Ares	1	1	1	1	1
	Athena	1	1	1	1	1
	Hephaestus	1	1	0	1	1
	Aphrodite	1	1	0	1	1
	Polyphemus	1	1	0	1	1
	Persephone	1	1	1	1	1
	Hermes	1	1	1	0	0
	Hebe	1	1	1	0	0
	Dionysus	1	1	1	0	0
						12

	L	\overline{A}	$Y^{a=0}$	$Y^{a=1}$	\overline{Y}
Rheia	0	0	0	1	0
Kronos	0	0	1	0	1
Demeter	0	0	0	0	0
Hades	0	0	0	0	0
Hestia	0	1	0	0	0
Poseidon	0	1	1	0	0
Hera	0	1	0	0	0
Zeus	0	1	0	1	1
Artemis	1	0	1	1	1
Apollo	1	0	1	0	1
Leto	1	0	0	1	0
Ares	1	1	1	1	1
Athena	1	1	1	1	1
Hephaestus	1	1	0	1	1
Aphrodite	1	1	0	1	1
Polyphemus	1	1	0	1	1
Persephone	1	1	1	1	1
Hermes	1	1	1	0	0
Hebe	1	1	1	0	0
Dionysus	1	1	1	0	0

 But now suppose we have observed (i.e., it's in our dataset) the factor L that affected whether the treatment A was applied

				-	
	L	A	$Y^{a=0}$	$Y^{a=1}$	Y
Rheia	0	0	0	1	0
Kronos	0	0	1	0	1
Demeter	0	0	0	0	0
Hades	0	0	0	0	0
Hestia	0	1	0	0	0
Poseidon	0	1	1	0	0
Hera	0	1	0	0	0
Zeus	0	1	0	1	1
Artemis	1	0	1	1	1
Apollo	1	0	1	0	1
Leto	1	0	0	1	0
Ares	1	1	1	1	1
Athena	1	1	1	1	1
Hephaestus	1	1	0	1	1
Aphrodite	1	1	0	1	1
Polyphemus	1	1	0	1	1
Persephone	1	1	1	1	1
Hermes	1	1	1	0	0
Hebe	1	1	1	0	0
Dionysus	1	1	1	0	0
					13

- But now suppose we have observed (i.e., it's in our dataset) the factor L that affected whether the treatment A was applied
- If the following condition holds, it can help us estimate the counterfactual risks $P(Y^a)$:

 $A \perp Y^a \mid L$

	L	A	$Y^{a=0}$	$Y^{a=1}$	Y
Rheia	0	0	0	1	0
Kronos	0	0	1	0	1
Demeter	0	0	0	0	0
Hades	0	0	0	0	0
Hestia	0	1	0	0	0
Poseidon	0	1	1	0	0
Hera	0	1	0	0	0
Zeus	0	1	0	1	1
Artemis	1	0	1	1	1
Apollo	1	0	1	0	1
Leto	1	0	0	1	0
Ares	1	1	1	1	1
Athena	1	1	1	1	1
Hephaestus	1	1	0	1	1
Aphrodite	1	1	0	1	1
Polyphemus	1	1	0	1	1
Persephone	1	1	1	1	1
Hermes	1	1	1	0	0
Hebe	1	1	1	0	0
Dionysus	1	1	1	0	0

- But now suppose we have observed (i.e., it's in our dataset) the factor *L* that affected whether the treatment A was applied
- If the following condition holds, it can help us estimate the counterfactual risks $P(Y^a)$:

$A \perp Y^a \mid L$

 That is, L captures all the information available in A that is relevant to all Y^a

	L	A	$Y^{a=0}$	$Y^{a=1}$	Y
Rheia	0	0	0	1	0
Kronos	0	0	1	0	1
Demeter	0	0	0	0	0
Hades	0	0	0	0	0
Hestia	0	1	0	0	0
Poseidon	0	1	1	0	0
Hera	0	1	0	0	0
Zeus	0	1	0	1	1
Artemis	1	0	1	1	1
Apollo	1	0	1	0	1
Leto	1	0	0	1	0
Ares	1	1	1	1	1
Athena	1	1	1	1	1
Hephaestus	1	1	0	1	1
Aphrodite	1	1	0	1	1
Polyphemus	1	1	0	1	1
Persephone	1	1	1	1	1
Hermes	1	1	1	0	0
Hebe	1	1	1	0	0
Dionysus	1	1	1	0	0
					13

- But now suppose we have observed (i.e., it's in our dataset) the factor L that affected whether the treatment A was applied
- If the following condition holds, it can help us estimate the counterfactual risks $P(Y^a)$:

$A \perp Y^a \mid L$

- That is, L captures all the information available in A that is relevant to all Y^a
- This is called CONDITIONAL EXCHANGEABILITY

Rheia Kronos	0	0	0	- 1	_
Kronos	0		0	1	0
	•	0	1	0	1
Demeter	0	0	0	0	0
Hades	0	0	0	0	0
Hestia	0	1	0	0	0
Poseidon	0	1	1	0	0
Hera	0	1	0	0	0
Zeus	0	1	0	1	1
Artemis	1	0	1	1	1
Apollo	1	0	1	0	1
Leto	1	0	0	1	0
Ares	1	1	1	1	1
Athena	1	1	1	1	1
Hephaestus	1	1	0	1	1
Aphrodite	1	1	0	1	1
Polyphemus	1	1	0	1	1
Persephone	1	1	1	1	1
Hermes	1	1	1	0	0
Hebe	1	1	1	0	0
Dionysus	1	1	1	0	0

	L	A	Y
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
Artemis	1	0	1
Apollo	1	0	1
Leto	1	0	0
Ares	1	1	1
Athena	1	1	1
Hephaestus	1	1	1
Aphrodite	1	1	1
Polyphemus	1	1	1
Persephone	1	1	1
Hermes	1	1	0
Hebe	1	1	0
Dionysus	1	1	0

- Suppose we observe some other potentially relevant factor in our data, such as L= whether the patient was in critical condition (1=yes, 0=no)
- CONDITIONAL EXCHANGEABILITY holds iff the counterfactual outcomes are conditionally independent of treatment, GIVEN this other relevant factor L:

$$A \perp Y^a \mid L$$

 Conditional exchangeability intuitively seems to give us an inroad into estimating the average causal effect of A on Y

 IDENTIFIABILITY means, our assumptions allow the causal effect we are interested in to be uniquely estimated from the available data (set of observed/measured variables)

- IDENTIFIABILITY means, our assumptions allow the causal effect we are interested in to be uniquely estimated from the available data (set of observed/measured variables)
 - "Uniquely estimate": if we had an arbitrary large quantity of data, we could estimate the causal effect with arbitrarily high accuracy and precision

- IDENTIFIABILITY means, our assumptions allow the causal effect we are interested in to be uniquely estimated from the available data (set of observed/measured variables)
 - "Uniquely estimate": if we had an arbitrary large quantity of data, we could estimate the causal effect with arbitrarily high accuracy and precision
- Simple case of unidentifiability: Hernan & Robins's heart transplant example, if L (severity of disease) affects probability of a heart transplant and we don't measure it

- IDENTIFIABILITY means, our assumptions allow the causal effect we are interested in to be uniquely estimated from the available data (set of observed/measured variables)
 - "Uniquely estimate": if we had an arbitrary large quantity of data, we could estimate the causal effect with arbitrarily high accuracy and precision
- Simple case of unidentifiability: Hernan & Robins's heart transplant example, if L (severity of disease) affects probability of a heart transplant and we don't measure it
 - Suppose that people with transplants have lower survival rates: $\hat{P}_{MLE}(Y|A=1) < \hat{P}_{MLE}(Y|A=0)$

- IDENTIFIABILITY means, our assumptions allow the causal effect we are interested in to be uniquely estimated from the available data (set of observed/measured variables)
 - "Uniquely estimate": if we had an arbitrary large quantity of data, we could estimate the causal effect with arbitrarily high accuracy and precision
- Simple case of unidentifiability: Hernan & Robins's heart transplant example, if L (severity of disease) affects probability of a heart transplant and we don't measure it
 - Suppose that people with transplants have lower survival rates: $\hat{P}_{MLE}(Y|A=1) < \hat{P}_{MLE}(Y|A=0)$
 - Could be because heart transplants are dangerous

- IDENTIFIABILITY means, our assumptions allow the causal effect we are interested in to be uniquely estimated from the available data (set of observed/measured variables)
 - "Uniquely estimate": if we had an arbitrary large quantity of data, we could estimate the causal effect with arbitrarily high accuracy and precision
- Simple case of unidentifiability: Hernan & Robins's heart transplant example, if L (severity of disease) affects probability of a heart transplant and we don't measure it
 - Suppose that people with transplants have lower survival rates: $\hat{P}_{MLE}(Y|A=1) < \hat{P}_{MLE}(Y|A=0)$
 - Could be because heart transplants are dangerous
 - Or: sicker people are more likely to get transplants!

- IDENTIFIABILITY means, our assumptions allow the causal effect we are interested in to be uniquely estimated from the available data (set of observed/measured variables)
 - "Uniquely estimate": if we had an arbitrary large quantity of data, we could estimate the causal effect with arbitrarily high accuracy and precision
- Simple case of unidentifiability: Hernan & Robins's heart transplant example, if L (severity of disease) affects probability of a heart transplant and we don't measure it
 - Suppose that people with transplants have lower survival rates: $\hat{P}_{MLE}(Y|A=1) < \hat{P}_{MLE}(Y|A=0)$
 - Could be because heart transplants are dangerous
 - Or: sicker people are more likely to get transplants!

The three criteria for identifiability

- Consistency: $Y = Y^{a=i}$ whenever A = i
 - Consequence: different individuals' outcomes don't affect each other
 - ullet Consequence: there can be no "multiple versions" of the same treatment A in terms of their influence on Y
- **Exchangeability**: for all i, $Y^{a=i} \perp A \mid Z$ for some set of observed variables Z
 - Consequence: there can be no "hidden common causes" or "hidden mediators" of A and $Y^{a=i}$
- Positivity: for all i and all values of Z, $P(A = i \mid Z) > 0$
 - e.g., in our example, it can't be the case that individuals with heart disease are *always* given transplants

What to do with conditional exchangeability

One approach is to

	L	A	Y
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
Artemis	1	0	1
Apollo	1	0	1
Leto	1	0	0
Ares	1	1	1
Athena	1	1	1
Hephaestus	1	1	1
Aphrodite	1	1	1
Polyphemus	1	1	1
Persephone	1	1	1
Hermes	1	1	0
Hebe	1	1	0
Dionysus	1	1	0

	$Y^{a=0}$	$Y^{a=1}$
Rheia	0	1
Kronos	1	0
Demeter	0	0
Hades	0	0
Hestia	0	0
Poseidon	1	0
Hera	0	0
Zeus	0	1
Artemis	1	1
Apollo	1	0
Leto	0	1
Ares	1	1
Athena	1	1
Hephaestus	0	1
Aphrodite	0	1
Cyclope	0	1
Persephone	1	1
Hermes	1	0
Hebe	1	0
Dionysus	1	0

 But, we don't get to see individualspecific counterfactual RV values!

(Hernan & Robin	s, 2020,	Table 1.
	$Y^{a=0}$	$Y^{a=1}$
Rheia	0	1
Kronos	1	0
Demeter	0	0
Hades	0	0
Hestia	0	0
Poseidon	1	0
Hera	0	0
Zeus	0	1
Artemis	1	1
Apollo	1	0
Leto	0	1
Ares	1	1
Athena	1	1
Hephaestus	0	1
Aphrodite	0	1
Cyclope	0	1
Persephone	1	1
Hermes	1	0
Hebe	1	0
Dionysus	1	0

- But, we don't get to see individualspecific counterfactual RV values!
- At most we see one actual outcome

Hernan & Robins, 2020, Table 1.1					
$\overline{ Y^{a=0} Y^{a=1} }$					
Rheia	0		1		
Kronos	1		0		
Demeter	0		0		
Hades	0		0		
Hestia	0 1		0		
Poseidon	1		0		
Hera	0 0		0		
Zeus			1		
Artemis	1		1		
Apollo	$\lfloor 1 \rfloor$		0		
Leto	0		1		
Ares	1		1		
Athena	1		1		
Hephaestus	0		1		
Aphrodite	0		1		
Cyclope	0		1		
Persephone	1		1		
Hermes	1		0		
Hebe	1		0		
Dionysus	1		0		

- But, we don't get to see individualspecific counterfactual RV values!
- At most we see one actual outcome
- Let us bundle up everything we don't know about the process by which actual A and Y were determined into the RV U

(Hernan & Robins, 2020, Table 1.1) $Y^{a=0}$ $Y^{a=1}$					
Rheia 0 1					
_					
)					
)					
)					
)					
)					
)					
L					
L					
)					
L					
L					
L					
L					
L					
L					
)					
)					

- But, we don't get to see individualspecific counterfactual RV values!
- At most we see one actual outcome
- Let us bundle up everything we don't know about the process by which actual A and Y were determined into the RV U

(He	ernan & Robins				1
$\overline{Y^{a=0} Y^{a=1}}$					
-	Rheia	0		1	
	Kronos	1		0	
)	Demeter	0		0	
	Hades	0		0	
	Hestia	0		0	
	Poseidon	1		0	
	Hera	0		0	
	Zeus	1 0 0 0 1 0 0		1	
	Artemis			1	
	Apollo	1		0	
	Leto	0		1	
	Ares	1		1	
	Athena	1		1	
	Hephaestus	0		1	
	Aphrodite	0		1	
	Cyclope	0		1	
	Persephone	1		1	
	Hermes	1		1 0 0	
	Hebe	1		0	
_	Dionysus	1		0	
_				7	

- But, we don't get to see individualspecific counterfactual RV values!
- At most we see one actual outcome
- Let us bundle up everything we don't know about the process by which actual A and Y were determined into the RV U

Confounding!

(Her	rnan & Robins,	202 7a=0	20, T	able	•
_	Rheia	0		1	
	Kronos	1		0	
)	Demeter	0		0	
	Hades	0		0	
	Hestia	0		0	
	Poseidon	1		0	
	Hera	0		0	
	Zeus	0		1	
	Artemis	1		1	
	Apollo	1		0	
	Leto	0 1		1	
	Ares	1		1	
	Athena	1		1	
	Hephaestus	0		1	
	Aphrodite	0		1	
	Cyclope	0		1	
	Persephone	1	\	1	
	Hermes	1	۱ ۱	0	
	Hebe	1		0	
	Dionysus	1		0	
					_

- But, we don't get to see individualspecific counterfactual RV values!
- At most we see one actual outcome
- Let us bundle up everything we don't know about the process by which actual A and Y were determined into the RV U

 This is why randomized experiments are so powerful!

ernan & Robins, 2020, Table 1.					
3	$Y^{a=0}$)]	ra=1	1	
Rheia	0		1		
Kronos	1		0		
Demeter	1 0		0		
Hades	0		0		
Hestia	0		0		
Poseidon	1		0		
Hera	0		0		
Zeus	0		1		
Artemis	1		1		
Apollo	1		0		
Leto	0		1		
Ares	1		1		
Athena	1		1		
Hephaestus	0		1		
Aphrodite	0		1		
Cyclope	0		1		
Persephone	1	1	1		
Hermes	1		0		
Hebe	1		0		
Dionysus	1		0		
				_	

- But, we don't get to see individualspecific counterfactual RV values!
- At most we see one actual outcome
- Let us bundle up everything we don't know about the process by which actual A and Y were determined into the RV U

 This is why randomized experiments are so powerful!

(Hernan & Robins, 2020, Table 1.1) $\frac{1}{Y^{a=0}}$					
Rheia	0		1		
Kronos	1		0		
Demeter	0		0		
Hades	0		0		
Hestia	0		0		
Poseidon	1		0		
Hera	0		0		
Zeus	0		1		
Artemis	1		1		
Apollo			0		
Leto	0		1		
Ares	1		1		
Athena	1		1		
Hephaestus	0		1		
Aphrodite	0		1		
Cyclope	0		1		
Persephone	1		1		
Hermes	1		0		
Hebe	1		0		
Dionysus	1		0		
		17		_	

 Examples like these highlight the value of explicitly representing the unknowns – parts of the causal system that we will not in practice be able to observe

- Examples like these highlight the value of explicitly representing the unknowns – parts of the causal system that we will not in practice be able to observe
- For a system of RVs $V = \{X_i\}$, each gets an unseen "error term" $\{U_i\}$ (not necessarily independent)

- Examples like these highlight the value of explicitly representing the unknowns – parts of the causal system that we will not in practice be able to observe
- For a system of RVs $V=\{X_i\}$, each gets an unseen "error term" $\{U_i\}$ (not necessarily independent)
- A functional causal model then consists of a deterministic system of equations of the form

$$x_i = f_i(pa_i, u_i)$$

- Examples like these highlight the value of explicitly representing the unknowns – parts of the causal system that we will not in practice be able to observe
- For a system of RVs $V=\{X_i\}$, each gets an unseen "error term" $\{U_i\}$ (not necessarily independent)
- A functional causal model then consists of a deterministic system of equations of the form

$$x_i = f_i(pa_i, u_i)$$

• where pa_i is the subset of V that are parents of X_i

Bayes Nets & functional causal models

Bayes Net

X

Corresponding functional causal model

Functional causal model with X causally upstream of Y

Example model & structural equations

$$x = f_1(u_1)$$
 $y = f_2(x, u_2)$

An example structural equation:

$$y = a + bx + u_2$$

(Could be linear regression!)