Optimisation

Chapitre 2 : Formes quadratiques

Joseph GERGAUD, Serge GRATTON & Daniel RUIZ

5 septembre 2023

Le but de ce chapitre 2 d'étudier les formes quadratiques dans \mathbb{R}^n

Motivations

 La fonction f dans le problème aux moindres carrées linéaires est une forme quadratique généralisée.

$$(P) \begin{cases} \min f(\beta) = \frac{1}{2}||y - X\beta||^2 \\ \beta \in \mathbb{R}^p. \end{cases}$$

Le développement limité à l'ordre 2 d'une fonction à valeurs dans $\mathbb R$ est une forme quadratique généralisée.

Définition 2.1.1 – Formes bilinéaires

Soit E un espace vectoriel réel de dimension finie. On appelle forme bilinéaire sur E, toute application f de $E \times E$ dans $\mathbb R$ vérifiant les propriétés suivantes, pour tous vecteurs $\mathbf u$, $\widetilde{\mathbf u}$, $\mathbf v$, et $\widetilde{\mathbf v}$ de E et tout scalaire λ de $\mathbb R$:

$$f(\mathbf{u} + \widetilde{\mathbf{u}}, \mathbf{v}) = f(\mathbf{u}, \mathbf{v}) + f(\widetilde{\mathbf{u}}, \mathbf{v}) \qquad f(\lambda \mathbf{u}, \mathbf{v}) = \lambda f(\mathbf{u}, \mathbf{v})$$

$$f(\mathbf{u}, \mathbf{v} + \widetilde{\mathbf{v}}) = f(\mathbf{u}, \mathbf{v}) + f(\mathbf{u}, \widetilde{\mathbf{v}}) \qquad f(\mathbf{u}, \lambda \mathbf{v}) = \lambda f(\mathbf{u}, \mathbf{v})$$

f est en fait linéaire par rapport à chacune de ses deux variables.

Définition 2.1.2 - Formes bilinéaires symétrique

Forme bilinéaire symétrique

Soit E un espace vectoriel réel de dimension finie, et soit f une forme bilinéaire sur E. On dit que f est symétrique si, pour tous vecteurs \mathbf{x} et \mathbf{y} de E, on a :

$$f(\mathbf{x},\mathbf{y})=f(\mathbf{y},\mathbf{x})$$
.

peut écrire, après développement :

Soit $\mathcal{B} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ une base de E. Toute forme bilinéaire f est entièrement déterminée par la connaissance des réels $f(\mathbf{e}_i, \mathbf{e}_j)$, pour tout $1 \le i, j \le n$. En effet, soient $\mathbf{x} = \sum_{i=1}^{n} x_i \mathbf{e}_i$ et $\mathbf{y} = \sum_{i=1}^{n} y_i \mathbf{e}_i$ deux vecteurs de E. Par linéarité à gauche, et à droite, on

$$f(\mathbf{x},\mathbf{y}) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j f(\mathbf{e}_i,\mathbf{e}_j).$$

Introduisons alors
$$\mathbf{X} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 et $\mathbf{Y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, les vecteurs de \mathbb{R}^n formés des

composantes de x et y dans la base \mathcal{B} , et A la matrice des coefficients $f(\mathbf{e}_i, \mathbf{e}_j)$,

$$\mathbf{A} = \left(\begin{array}{ccc} f(\mathbf{e}_1, \mathbf{e}_1) & \dots & f(\mathbf{e}_1, \mathbf{e}_n) \\ \vdots & \ddots & \vdots \\ f(\mathbf{e}_n, \mathbf{e}_1) & \dots & f(\mathbf{e}_n, \mathbf{e}_n) \end{array} \right).$$

En utilisant ces notations, on peut alors écrire la valeur de $f(\mathbf{x}, \mathbf{y})$ en terme du produit matriciel suivant :

$$f(\mathbf{x}, \mathbf{y}) = \mathbf{X}^T \mathbf{A} \mathbf{Y}$$
.

Proposition 2.1.3

Si f est une forme bilinéaire symétrique sur E, alors la matrice associée à f dans une base quelconque de E est symétrique.

Exemple 2.1.1. Exemple dans \mathbb{R}^3

$$f(\mathbf{x}, \mathbf{y}) = x_1 y_1 + 2x_2 y_2 + 3x_3 y_3 + x_1 y_3 + x_3 y_1 + x_2 y_3$$

= $(x_1, x_2, x_3) \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$

Définition 2.2.1 – Formes quadratiques

On appelle forme quadratique associée à la forme bilinéaire f, l'application q définie de E dans $\mathbb R$ par :

$$\forall x \in E, \ q(x) = f(x, x).$$

Remarque 2.2.1.

• On a aussi, en utilisant la matrice ${\bf A}$ de f dans une base ${\cal B}$ de E :

$$q(\mathbf{x}) = \mathbf{X}^T \mathbf{A} \mathbf{X}$$

où X est le vecteur des coordonnées de x dans la base \mathcal{B} . Ainsi, A représente aussi la matrice de la forme quadratique q dans la base \mathcal{B} .

Par contre, la représentation matricielle d'une forme quadratique n'est pas unique.
 En effet, pour une forme quadratique donnée, il existe plusieures formes bilinéaires qui peuvent lui être associées.

Exemple 2.2.1. Exemple dans \mathbb{R}^3

$$f(\mathbf{x}, \mathbf{y}) = x_1 y_1 - 2x_2 y_2 + 3x_3 y_3 + x_1 y_3 + x_3 y_1 + 4x_2 y_3 + 4x_3 y_2$$

$$= (x_1, x_2, x_3) \begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & 4 \\ 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

La forme quadratique associée est

$$q(\mathbf{x}) = x_1^2 - 2x_2^2 + 3x_3^2 + 2x_1x_3 + 8x_2x_3 \quad \text{soit} \quad q(\mathbf{x}) = (x_1, x_2, x_3) \begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & 4 \\ 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Mais on a aussi, du point de vue matriciel :

$$q(\mathbf{x}) = (x_1, x_2, x_3) \begin{pmatrix} 1 & 0 & 2 \\ 0 & -2 & 8 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = (x_1, x_2, x_3) \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 2 & 8 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Remarque 2.2.2.

- Pour un vecteur u ∈ E donné, q(u) est un polynôme homogène de degré 2. Ainsi, tout polynôme homogène de degré 2 par rapport aux coordonnées d'un vecteur u de E peut correspondre à une forme quadratique q.
- En outre, à la question "existe-t-il une forme bilinéaire symétrique dont q soit la forme quadratique et si oui, est-elle unique?", la réponse est "oui".
 Voici comment procéder : il suffit pour cela d'écrire la matrice A = (a_{ij}) associée à ce polynôme homogène de degré 2 en plaçant, sur la diagonale, les coefficients a_{ii} correspondant aux termes en x_i², et sur les termes hors diagonaux a_{ij} et a_{ji} la moitié des coefficients des termes en x_ix_j.
- Enfin, si à une même forme quadratique q, on peut effectivement associer diverses formes bilinéaires f (de matrice associée \mathbf{A}_f dans une base \mathcal{B} fixée), ces formes bilinéaires ont toutes en commun la même partie symétrique :

$$s(\mathbf{u}, \mathbf{v}) = \frac{f(\mathbf{u}, \mathbf{v}) + f(\mathbf{v}, \mathbf{u})}{2}$$
, de matrice associée $\frac{\mathbf{A}_f + \mathbf{A}_f^T}{2}$ indépendante de f .

Exemple 2.2.2. Exemple dans \mathbb{R}^3 :

$$q(\mathbf{x}) = 5x_1^2 + 12x_2^2 - 6x_3^2 - 8x_2x_3 + 5x_3x_1 - x_2x_1,$$

la forme matricielle symétrique associée étant

$$q(\mathbf{x}) = (x_1, x_2, x_3) \begin{pmatrix} 5 & -1/2 & 5/2 \\ -1/2 & 12 & -4 \\ 5/2 & -4 & -6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Soit f une forme bilinéaire symétrique sur E, et q la forme quadratique associée. Pour tous vecteurs \mathbf{u} et \mathbf{v} de E et tout scalaire λ , on a :

- $q(\lambda \mathbf{u}) = f(\lambda \mathbf{u}, \lambda \mathbf{u}) = \lambda^2 q(\mathbf{u}) : q \text{ n'est pas linéaire.}$
- $f(\mathbf{u}, \mathbf{v}) = \frac{1}{4} (q(\mathbf{u} + \mathbf{v}) q(\mathbf{u} \mathbf{v})).$
- $f(\mathbf{u}, \mathbf{v}) = \frac{1}{2} (q(\mathbf{u} + \mathbf{v}) q(\mathbf{u}) q(\mathbf{v})).$
- Pour une forme quadratique q donnée, la forme bilinéaire symétrique f qui lui est associée est aussi appelée forme polaire de q.
- q est dite semi-définie positive ssi $\forall \mathbf{x} \in E, \ q(\mathbf{x}) \geq 0$.
- ullet q est dite semi-définie négative ssi -q est semi-définie positive.
- q est dite indéfinie ssi q n'est ni semi-définie positive, ni semi-définie négative.
- q est dite définie positive si $\forall \mathbf{x} \in E, \ q(\mathbf{x}) \ge 0$ et $q(\mathbf{x}) = 0 \Rightarrow \mathbf{x} = \mathbf{0}$.

Définition 2.3.1 – Produit scalaire

On rappelle que un **produit scalaire** sur un \mathbb{R} -espace vectoriel E est une forme **bilinéaire**, **symétrique**, **et définie positive**. La définie positivité d'une forme bilinéaire f sur E correspond en fait à la définie positivité de sa forme quadratique, à savoir :

$$\forall \mathbf{u} \in E, \ q(\mathbf{u}) = f(\mathbf{u}, \mathbf{u}) \ge 0$$
 et $q(\mathbf{u}) = f(\mathbf{u}, \mathbf{u}) = 0 \Leftrightarrow \mathbf{u} = \mathbf{0}$.

Proposition 2.3.2

Soit E un \mathbb{R} -espace vectoriel de dimension finie, et soit q une forme quadratique définie positive sur E. Alors, la forme polaire de q, qui est une forme bilinéaire symétrique (ou à symétrie hermitienne si le corps de référence est \mathbb{C}) définie positive sur E, constitue un produit scalaire sur E, et pour la norme associée, E est un espace $\mathrm{Eucliden}$. On notera $\langle \mathbf{u} \,,\, \mathbf{v} \rangle$ le produit scalaire.

Exemple 2.3.1. Dans \mathbb{R}^3 , soit la forme quadratique q définie par

$$q(\mathbf{u}) = x^2 + 6xy + 4yz + 14y^2 + z^2$$
,

avec $\mathbf{u} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Voyons si q est définie positive. Pour ce faire, décomposons q en somme de trois carrés dans \mathbb{R} :

$$q(\mathbf{u}) = (x+3y)^2 + 5(y+\frac{2}{5}z)^2 + \frac{1}{5}z^2$$
.

Cette somme de carrés dans $\mathbb R$ est positive, donc la forme quadratique q est semi-définie positive ($\forall \mathbf u \in E, \ q(\mathbf u) \geq 0$). De plus :

$$q(\mathbf{u}) = (x+3y)^2 + 5(y+\frac{2}{5}z)^2 + \frac{1}{5}z^2 = 0 \Leftrightarrow \begin{cases} x+3y=0\\ y+\frac{2}{5}z=0\\ z=0 \end{cases}$$
$$\Leftrightarrow x = y = z = 0$$
$$\Leftrightarrow \mathbf{u} = \mathbf{0}.$$

Bilan : cette forme quadratique est bien définie positive, et la forme bilinéaire symétrique associée

$$f(\mathbf{x}, \mathbf{y}) = x_1 y_1 + 3x_1 y_2 + 3x_2 y_1 + 2x_2 y_3 + 2x_3 y_2 + 14x_2 y_2 + x_3 y_3$$

$$= (x_1, x_2, x_3) \begin{pmatrix} 1 & 3 & 0 \\ 3 & 14 & 2 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

définit bien un produit scalaire sur \mathbb{R}^3 .

Proposition 2.4.1

On démontre les résultats suivants :

- Tout endomorphisme symétrique d'un espace euclidien est diagonalisable.
- Ses valeurs propres sont réelles.
- Les espaces propres sont deux à deux orthogonaux.
- Il existe toujours une base orthonormée formée de vecteurs propres.

Remarque 2.4.1.

 Le fait que, dans un espace euclidien, tout endomorphisme symétrique se diagonalise dans une base orthonormale de vecteurs propres s'écrit en termes d'algèbre linéaire sous la forme :

$$\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$$
, avec $\mathbf{U}^T \mathbf{U} = \mathbf{U} \mathbf{U}^T = \mathbf{I}$ et $\mathbf{\Lambda} = \operatorname{diag}(\lambda_i)_{1 \leq i \leq n}$.

C'est d'ailleurs l'un des principaux intérêts des notations matricielles, à savoir d'exprimer de manière très concise des propriétés ou des transformations.

• Soit q une forme quadratique sur un \mathbb{R} -espace vectoriel euclidien E et f sa forme bilinéaire symétrique associée. Soit \mathbf{A} la matrice symétrique des coefficients $f(\mathbf{e}_i, \mathbf{e}_j)$, où les \mathbf{e}_k sont les vecteurs de la base canonique par exemple.

$$\forall x, y \in E, f(x, y) = X^TAY,$$

X et **Y** étant les vecteurs des composantes de **x** et **y** dans la base $\mathcal{B}=(\mathbf{e}_k)_{1\leq k\leq n}$.

- La matrice A étant symétrique, elle est diagonalisable dans une base orthonormée de vecteurs propres A = UΛU^T, avec U^T = U⁻¹
- Dans la base de vecteurs propres la forme quadratique s'écrit alors

$$\forall \mathbf{x} \in E, \ \ q(\mathbf{x}) = \mathbf{Z}^T \mathbf{\Lambda} \mathbf{Z} = \sum_{i=1}^n \lambda_i z_i^2,$$

où les $z_i,\;i=1,\ldots,n$, sont les composantes de ${f x}$ dans la base des vecteurs propres :

$$\mathbf{x} = \sum_{i=1}^n z_i \mathbf{u}_i \,.$$

Cette dernière égalité peut aussi s'écrire matriciellement sous la forme :

$$X = UZ \Leftrightarrow Z = U^TX$$
.

- Il est à noter que $z_i = \mathbf{u}_i^T \mathbf{X}$ n'est rien d'autre que le produit scalaire du $i^{\text{ème}}$ vecteur propre de \mathbf{A} (i.e. la $i^{\text{ème}}$ colonne de \mathbf{U}) avec le vecteur \mathbf{x} . Cela correspond au calcul des composantes d'un vecteur dans une base orthonormée donnée, que l'on obtient effectivement par produit scalaire avec les vecteurs de cette base.
- D'un point de vue géométrique, l'écriture de q sous la forme

$$\sum_{i=1}^n \lambda_i z_i^2$$

signifie simplement que la forme quadratique q se décompose en paraboles élémentaires, dirigées selon les axes des vecteurs propres \mathbf{u}_i , et de courbures respectives λ_i .

De manière équivalente, on peut aussi dire que les iso-contours

$$q(\mathbf{x}) = C^{\text{ste}}$$

sont des coniques dans \mathbb{R}^n dont les axes principaux correspondent aux vecteurs propres de la matrice \mathbf{A} associée à la forme quadratique q.

• Cas particulier : si la forme quadratique q est définie positive, alors les valeurs propres λ_i ci-dessus sont nécessairement toutes strictement positives, et les iso-contours $q(\mathbf{x}) = C^{\text{ste}}$ correspondent alors à des hyper-ellipsoïdes dans \mathbb{R}^n . Par exemple, $\lambda_1 z_1^2 + \lambda_2 z_2^2 = C$, avec $\lambda_1 > 0$ et $\lambda_2 > 0$, est l'équation d'une ellipse dans \mathbb{R}^2 , et l'équation

$$\lambda_1 z_1^2 + \lambda_2 z_2^2 + \lambda_3 z_3^2 = C,$$

avec $\lambda_{1,2,3}$ strictement positifs, représenterait une surface dans \mathbb{R}^3 du type "ballon de rugby".

La figure ci dessous illustre la forme géométrique d'une nappe quadratique, à savoir le dessin dans \mathbb{R}^3 d'une forme quadratique de \mathbb{R}^2 dans \mathbb{R} , où (x,y) jouent le rôle de $\mathbf{x} \in \mathbb{R}^2$ et $z = \frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x}$ (avec \mathbf{A} matrice 2×2 symétrique définie positive).

FIGURE 1 - Un exemple de forme quadratique en dimension 2

Définition 2.5.1 – Fonctionnelle quadratique généralisée

On appelle Fonctionnelle quadratique généralisée toute application f de \mathbb{R}^n dans \mathbb{R} sous la forme :

$$\forall \mathbf{x} \in \mathbb{R}^n , f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T \mathbf{A} \mathbf{x} - \mathbf{v}^T \mathbf{x} + c,$$

où **A** est une matrice de $\mathcal{M}_n(\mathbb{R})$, **v** un vecteur de \mathbb{R}^n , et *c* une constante réelle. On appelle **terme quadratique** associé à la fonctionnelle *f* le terme $\frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x}$.

Remarque 2.5.1. On peut toujours se ramener au cas où la matrice ${\bf A}$ est symétrique, car on a :

$$\forall \mathbf{u} \in \mathbb{R}^n , \ \mathbf{u}^T \mathbf{A} \mathbf{u} = \mathbf{u}^T \left(\frac{\mathbf{A} + \mathbf{A}^T}{2} \right) \mathbf{u} .$$

$$Q = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}, \quad A = Q \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} Q^T, \quad \mathbf{v} = \begin{pmatrix} 1 & 2 \end{pmatrix}^T.$$

FIGURE 2 – Cas où le rang de **A** est 2. De gauche à droite $\lambda_1=1,\lambda_2=3/2$ (la matrice A est définie positive); $\lambda_1=1,\lambda_2=-3/2$ (la matrice A est indéfinie); $\lambda_1=-1,\lambda_2=-3/2$ (la matrice A est définie négative). $\theta=\pi/6$.

FIGURE 3 – Cas où le rang de **A** est 1; $\lambda_1 = 1, \lambda_2 = 0$ et $\mathbf{v} = \begin{pmatrix} 1 & 2 \end{pmatrix}^T$ dans le premier cas, et $\mathbf{v} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \end{pmatrix}^T$ dans le deuxième cas (le vecteur b est dans l'image de la matrice A), $\theta = \pi/6$.