Low Voltage Operation STEP-UP DC-DC Converter

DESCRIPTION

The M62216FP is designed as low voltage operation STEP-UP DC-DC converter.

This IC can operate very low input voltage (over 0.9V) and low power dissipation (circuit current is less than $850\mu A$).

So, this IC suitable for power supply of portable system that using low voltage battery (DRY battery, rechargeable battery).

FEATURES

- Pre-Drive type PWM output (Pre-Drive only)
- Low voltage Operation • • • • VIN=0.9V min.
- Low Current Dissipation • • • • • IB=850µA typ.
- Pre-Drive output current can be adjusted
- Built-in ON/OFF Function • • • • IB(OFF)=35µA typ.
- Application for STEP-DOWN Converter can be used

APPLICATION

DC-DC Converter for portable sets of battery used

Low Voltage Operation STEP-UP DC-DC Converter

ABSOLUTE MAXIMUM RATINGS (Ta=25°C, unless otherwise noted)

Symbol	Parameter	Condition	Ratings	Unit
VIN	Input Voltage		15.5	V
VBIAS	Bias Terminal Supply Voltage		15.5	V
VDRIVE1	Drive1 Terminal Supply Voltage		15.5	V
VDRIVE2	Drive2 Terminal Supply Voltage		15.5	V
IDRIVE1	Drive1 Terminal Input Current		100	mA
IDRIVE2	Drive2 Terminal Input Current		10	mA
Pd	Power Dissipation	Ta=25°C	440 (FP) 250 (GP)	mW
Topr	Operating Temperature		-20 ~+85	°C
Tstg	Storage Temperature		-40 ~+150	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C, VIN=1.7V, VOUT=VBIAS=3.0V, unless otherwise noted)

Block	Symbol	Parameter	Test Condition	Limits		Unit	
Block Symbol		Parameter	rest Condition	Min.	Тур.	Max.	Unit
	VIN	Input Voltage Range		0.9		15	V
All Device	VBIAS	BIAS Voltage Setting Range *1		1.7		15	V
	ΙΒ	BIAS Current			850	1200	μΑ
	IB(OFF)	BIAS Current at OFF Mode			35	47	μΑ
Voltage	VREF	Reference Voltage	Use internal amp as Buffer-amp	1.20	1.26	1.32	V
Reference VREF		BIAS Voltage Regulation of VREF	VBIAS=1.7~15V		10	30	mV
	lin	Input Current	IN = 1V / IM		20		nA
Error AV Amp. IFB+	AV	Open Loop Voltage Gain	fIN = 100Hz , Null Amp Operation		70		dB
	IFB+	FB Terminal Sink Current	IN = 1.4V , FB = 1.25V / IM	260	800		μΑ
	IFB-	FB Terminal Source Current	IN = 1.1V , FB = 1.25V / IM	30	45	60	μΑ
Osc.	fosc	Oscillation Frequency	PWM Terminal Monitored	95	125	155	kHz
OSC.	DUTYmax	Maximum ON Duty	PWM Terminal Monitored , IN = 1.1 V	82	87	92	%
Vsat1		Saturation Voltage between PWM Term. and DRIVE1 Term.	IDRIVE1=50mA, IDRIVE2=5mA		0.25	0.5	V
		Saturation Voltage between PWM Term. and DRIVE2 Term.			1.0	1.2	V
OUTPUT	IL1	Leak Current of DRIVE1 Terminal	IN = 1.4V	-1		1	μΑ
[]	IL2	Leak Current of DRIVE2 Terminal	al IN = 1.4V			1	μΑ
VPWM(L)		Output Low Voltage of PWM Terminal	IPWM = 1mA		0.03	0.3	V
	ION	Input Current of ON/OFF Terminal At ON Status			2	3	μΑ
ON/OFF	VTH(ON)	Threshold Voltage of ON/OFF Terminal			0.65	0.75	V

^{*1 :} Setting range of BIAS voltage as same as setting range of output voltage .

Low Voltage Operation STEP-UP DC-DC Converter

Application circuit

(1). Standard Application circuit

VIN : 0.9 ~ 14V VOUT : 1.7 ~ 15V (VOUT > VIN)

(2). Application circuit 1 (VIN 1.7V)

VIN : 1.7 ~ 14V VOUT : 2.5V ~ 15V (VOUT > VIN)

(3). Application circuit 2 (VOUT > 15V)

VIN : 1.7 ~ 15V VOUT : 15V ~ (VOUT > VIN)

(4). Application circuit for STEP-DOWN Circuit

VIN : 2.0 ~ 15V VOUT : 1.7V ~ 14V (VOUT < VIN)

Low Voltage Operation STEP-UP DC-DC Converter

TYPICAL CHARACTERISTICS

Low Voltage Operation STEP-UP DC-DC Converter

Low Voltage Operation STEP-UP DC-DC Converter

Low Voltage Operation STEP-UP DC-DC Converter

*1, *2 : These characteristics show the maximum output load current when start-up. Therefore, output voltage can grown-up to setting voltage less than a curve in the graph when using these external components value.

(• 2SC3052-F : hFE=250 ~ 500, 2SC3439-H : hFE=600 ~ 1200)

Low Voltage Operation STEP-UP DC-DC Converter

Equation for Constants Calculation

Constants	Standard Application Circuit	Application Circuit 1	Application Circuit 2	
TON	VO + VF - VIN	VO + VF - VIN	VO + VF - VIN	
TOFF	VIN - VCE(sat)	VIN - VCE(sat)	VIN - VCE(sat)	
TON+TOFF	1	1	1	
	fosc	fosc	fosc	
TOFF(MIN)	TON + TOFF 1 + TON TOFF	$\frac{\text{TON + TOFF}}{1 + \frac{\text{TON}}{\text{TOFF}}}$	TON + TOFF 1 + TON TOFF	
TON(MAX)	1 roff(MIN)	1 rosc - Toff(MIN)	1 rosc - Toff(MIN)	
lpk	$2*\left(1+\frac{TON}{TOFF}\right)*(Io+IB)$	$2*(1+\frac{TON}{TOFF})*$ lo	$2*\left(1+\frac{TON}{TOFF}\right)*$ lo	
L(MIN)	(VIN - VCE(sat)) 2 * TON(MAX) 2 * fosc	(VIN - VCE(sat)) ^{2 *} TON(MAX) ^{2 *} fosc	(VIN - VCE(sat)) ² * TON(MAX) ² * fosc	
	2 * Vo * (Io + IB)	2 * Vo * Io	2 * Vo * Io	
R1	$\left(\frac{\text{Vo}}{\text{VREF}} - 1\right)^* \text{R2}$	$\left(\frac{\text{Vo}}{\text{VREF}} - 1\right)^* \text{R2}$	$\left(\frac{\text{Vo}}{\text{VREF}} - 1\right) * \text{R2}$	
RD1	Vo - (VBE + Vsat1)	Vo - (VBE + Vsat1)	VIN - (VBE + Vsat1)	
	(lpk / hFE) * A1	(lpk / hFE) * A1	(lpk / hFE) * A1	
RD2	Vo - (VBE + Vsat2)	Vo - (VBE + Vsat2)	VIN - (VBE + Vsat2)	
	(lpk / hFE) * A2	(lpk / hFE) * A2	(Ipk / hFE) * A2	

Constants	STEP-DOWN Circuit	
TON	VO + VF	
TOFF	VIN - VCE(sat) - Vo	
TON+TOFF	1 fosc	
TOFF(MIN)	$\frac{\text{TON + TOFF}}{1 + \frac{\text{TON}}{\text{TOFF}}}$	
TON(MAX)	1 fosc - TOFF(MIN)	
lpk	2 * lo	
L(MIN)	(VIN - VCE(sat) - Vo) * TON(MAX)	
R1	$\left(\frac{\text{Vo}}{\text{VREF}} - 1\right) * \text{R2}$	
RD1	Vo - VBE - Vsat1 lpk / hFE	
RD2	VIN - Vsat2 (lpk / hFE) * A3	

Notice)

- VF : Forward voltage of external diode.
- VCE(sat): Saturation voltage of external transistor.
- VBE : Voltage between Base Emitter of external transistor.
- hFE: hFE of external transistor at saturating.
- A1 : Ratio of current into DRIVE1 terminal.
 (A1 = 0.8 ~ 0.9)
- A2 : Ratio of current into DRIVE2 terminal. (A2 = 1 - A1)
- A3 : Ratio of current into DRIVE2 terminal. (A3 = 0.1 ~ 0.2)
- Set R2 to several K ~ several 10ths k .
- Set current into DRIVE2 terminal more than 100μA.
 (lpk / hFE) * A2 100μA, (lpk / hFE) * A3 100μA,.
- Set lo to 1/5 ~ 1/3 of maximum load current.
- The maximum rating of current of external parts (transistor, diode and inductor) are 1.5 to 2 times of lpk.