

Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2018/2019

Tableaukalkül (ohne Gleichheit)

Der Tableaukalkül

Wesentliche Eigenschaften

► Widerlegungskalkül: Testet auf Unerfüllbarkeit

$$M \models A \Leftrightarrow M \cup \{\neg A\} \vdash_{\mathsf{T}} \mathsf{0}.$$

- ► Beweis durch Fallunterscheidung
- Top-down-Analyse der gegebenen Formeln

Der Tableaukalkül

Vorteile

- Intuitiver als Resolution
- Formeln müssen nicht in Normalform sein
- Im aussagenlogischen Fall:
 Falls Formelmenge erfüllbar ist (Beweis schlägt fehl),
 wird ein Gegenbeispiel (eine erfüllende Interpretation)
 konstruiert

Nachteil

► Mehr als eine Regel

Vorbereitung 1

Definition (Vorzeichenformel Syntax)

Eine Vorzeichenformel ist eine Zeichenkette der Gestalt

$$0A ext{ oder } 1A ext{ mit } A \in For 0.$$

0, 1 sind neue Sonderzeichen (die Vorzeichen) im Alphabet der Objektsprache.

Definition (Vorzeichenformeln Semantik)

Wir setzen *val*₁ fort auf die Menge aller Vorzeichenformeln durch

$$val_I(0A) = val_I(\neg A),$$

und

$$val_I(1A) = val_I(A)$$
.

Vorbereitung 2

Uniforme Notation

konjunktive Formeln	disjunktive Formeln
Typ α	Typ β
$1(A \wedge B)$	$0(A \wedge B)$
$0(A \vee B)$	$1(A \vee B)$
$0(A \rightarrow B)$	$1(A \rightarrow B)$
0¬ <i>A</i>	
1 <i>¬A</i>	

Universelle Formeln	existentielle Formeln
Typ γ	Typ δ
$1\forall xA(x)$	$1\exists x A(x)$
$0\exists x A(x)$	$0\forall xA(x)$

Universelle Notation

Die universelle Notation wurde eingeführt von

Raymond Smullyan (1919 – 2017)

Uniforme Notation

Zuordnung Formeln / Unterformeln

α	α_1	α_2		β		
$1(A \wedge B)$	1 <i>A</i>	1 <i>B</i>	•	$0(A \wedge B)$	0 <i>A</i>	0 <i>B</i>
$0(A \vee B)$	0 <i>A</i>	0 <i>B</i>		$1(A \vee B)$	1 <i>A</i>	1 <i>B</i>
$0(A \rightarrow B)$	1 <i>A</i>	0 <i>B</i>		$1(A \rightarrow B)$	0 <i>A</i>	1 <i>B</i>
0 <i>¬Â</i>					'	
1 <i>¬A</i>						
,	$\gamma \mid \gamma$	1		δ	δ_1	
<u>1∀x</u> /	4 1/	4		1∃ <i>xA</i>	1 <i>A</i>	
0∃x	4 04	4		0∀ <i>xA</i>	0 <i>A</i>	

Tableauregeln

Definition: Tableau

Ein Tableau ist ein binärer Baum, dessen Knoten mit Vorzeichenformeln markiert sind.

Definition: Tableauast

Maximaler Pfad in einem Tableau (von Wurzel zu Blatt)

Sei *M* eine Formelmenge, sei *A* eine Formel

Initialisierung

Das Tableau, das nur aus dem Knoten 0*A* besteht, ist ein Tableau für *A* über *M*.

Erweiterung

- ► T ein Tableau für A über M
- ▶ B ein Ast von T
- ► F eine Formel auf B, die kein Atom ist

T' entstehe durch Erweiterung von B gemäß der auf F anwendbaren Regel Dann ist T' ein Tableau für A über M

Voraussetzungsregel

- ► T ein Tableau für A über M
- ► F eine Formel in M

T' entstehe durch Erweiterung eines beliebigen Astes durch 1F Dann ist T' ein Tableau für A über M

Definition: Geschlossener Ast

Ein Ast B eines Tableaus ist geschlossen, wenn

 $1F, 0F \in B$

Definition: Geschlossenes Tableau

Ein Tableau T ist geschlossen, wenn es eine kollisionsfreie Substitution σ gibt, so daß für jeden Ast B von Tder substitutierte Ast $\sigma(B)$ geschlossen ist.

Tableaubeweis

Falls ein geschlossenes Tableau für A über M existiert, so sagen wir

A ist im Tableaukalkül aus dem Voraussetzungen M beweisbar und schreiben

$$M \vdash_{\mathcal{T}} A$$

Ausagenlogisches Beispiel

Ist $((\neg A \rightarrow B) \rightarrow C) \rightarrow ((\neg B \rightarrow A) \rightarrow C)$ eine Tautologie?

Ein prädikatenlogisches Beispiel

Ist $\forall x \ p(x) \rightarrow \exists y \ p(y)$ eine Tautologie?

$$\begin{array}{cccc} 0 \ \forall x \ p(x) \rightarrow \exists y \ p(y) & (\text{Start}) \\ & | & & \\ 1 \ \forall x \ p(x) & (\alpha\text{-Regel}) \\ & | & & \\ 0 \ \exists y \ p(y) & (\alpha\text{-Regel}) \\ & | & & \\ 1 \ p(X) & (\gamma\text{-Regel}) \\ & | & & \\ 0 \ p(Y) & (\gamma\text{-Regel}) \end{array}$$

Ein prädikatenlogisches Beispiel

Ist $\forall x \ p(x) \rightarrow \exists y \ p(y)$ eine Tautologie?

Anwendung der Abschlußregel.

Ein geschlossenes Tableau


```
1[] 0\exists y \forall x p(x, y) \rightarrow \forall x \exists y p(x, y)

2[1] 1\exists y \forall x p(x, y)

3[1] 0\forall x \exists y p(x, y)

4[2] 1\forall x p(x, a)

5[3] 0\exists y p(b, y)

6[4] 1p(X, a)

7[5] 0p(b, Y)

geschlossen mit \sigma(X) = b und \sigma(Y) = a
```

Ein offenes Tableau

1[] $0 \forall x \exists v p(x, v) \rightarrow \exists v \forall x p(x, v)$ $2[1] \quad 0 \exists y \forall x p(x, y)$ $3[1] \quad 1 \forall x \exists v p(x, v)$ $4[2] \quad 0 \forall xp(x, Y)$ 5[3] $1 \exists v p(X, v)$ 6[4] 0p(f(Y), Y)7[5] 1p(X, g(X))p(f(Y), Y) und p(X, g(X)) sind nicht unifizierbar es müßte gelten $\sigma(X) = \sigma(f(Y))$ und $\sigma(Y) = \sigma(g(X))$ also $\sigma(X) = f(g(\sigma(X)))$

Mehrfache Anwendung der γ -Regel

Beweisaufgabe: $p(0) \land \forall x(p(x) \rightarrow p(s(x))) \models p(s(s(0)))$ 1p(0) $1 \forall x (p(x) \rightarrow p(s(x)))$ 0p(s(s(0))) $1p(X) \rightarrow p(s(X))$ 0p(X)0p(p)(s(X)) 1p(s(0)) $\sigma(X) = 0$ 1 $p(Y) \rightarrow p(s(Y))$ 0p(Y)0p(1sp(0s)(Y)) 1p(s(s(0))) $\sigma(Y) = s(0) *$

Korrektheit und Vollständigkeit des Tableaukalküls

Theorem

Sei M eine Formelmenge, sei A eine Formel

A ist eine logische Folgerung aus M genau dann, wenn es einen Tableaubeweis für A über M gibt

In Symbolen:

$$M \models A \Leftrightarrow M \vdash_{\mathcal{T}} A$$

Vorbereitung zum Korrekheitsbeweis

Definition: erfüllbares Tableau

Es seien $A \in For_{\Sigma}$, $M \subseteq For_{\Sigma}$.

Ein Tableau T für A über M heißt M-erfüllbar wenn es eine Interpretation \mathcal{D} über $\overline{\Sigma}$ gibt, mit

- ▶ D ist Modell von M
- ▶ zu jeder Variablenbelegung β gibt es einen Pfad π in T mit $val_{\mathcal{D},\beta}(V) = W$ für alle V auf π .

Dabei ist $\overline{\Sigma} = \Sigma \cup \{f \mid f \text{ neues Funktionssymbol in } T\}$.

Plan für den Korrektheitsbeweis

Theorem

Sei $A \in For_{\Sigma}$, $M \subseteq For_{\Sigma}$, alle ohne freie Variablen Wenn es ein geschlossenes Tableau für A über M gibt, dann ist $M \models A$.

Beweisplan:

```
T_0 Anfangstableau (über 0A) nicht M-erfüllbar \stackrel{(L2)}{\Rightarrow} M \models A \stackrel{:}{\mapsto} T_k Zwischentableau nicht M-erfüllbar (L3) T_{k+1} Zwischentableau nicht M-erfüllbar \stackrel{:}{\mapsto} T_n geschlossenes Tableau nicht M-erfüllbar (L1)
```

Korrektheitsbeweis

Sei $A \in For_{\Sigma}$, $M \subseteq For_{\Sigma}$, alle ohne freie Variablen

Lemma: Endtableau (L1)

Jedes geschlossene Tableau für A über M ist unerfüllbar.

Lemma: Anfangstableau (L2)

Ist das Anfangstableau für A über M nicht M-erfüllbar, so gilt $M \models A$.

Korrektheitsbeweis

Korrektheitslemma (L3)

M sei eine Formelmenge ohne freie Variablen.

Das Tableau T_1 über M gehe aus T über M durch Anwendung einer Tableauregel hervor.

Ist T M-erfüllbar, dann ist auch T₁ M-erfüllbar.

Regelanwendung erhält die Erfüllbarkeit

Kontraposition zu:

Ist T_1 nicht M-erfüllbar, so ist T auch nicht M-erfüllbar.

Beweis des Korrektheitslemma, α -Fall

Beweis des Korrektheitslemma, β -Fall

Beweis des Korrektheitslemma, γ -Fall

Beweis des Korrektheitslemma, δ -Fall

Beweis des Korrektheitslemma, δ -Fall

Nach Voraussetzung sei \mathcal{D} Modell von T über M.

Wir konstruieren eine Interpretation $\mathcal{D}' = (D, I')$, die sich von \mathcal{D} nur darin unterscheidet, daß dem Funktionszeichen f eine Interpretation I'(f) zugeordnet wird.

$$I'(f)(d_1,...,d_n) = ?$$

Für $d_1, \ldots, d_n \in D$ und β mit $\beta(x_i) = d_i$ für $i = 1, \ldots, n$ gilt entweder

$$(\mathcal{D},\beta) \models \exists xF$$

in diesem Fall gibt es ein $d \in D$ mit

$$(\mathcal{D}, \beta_{x}^{d}) \models F(x)$$

oder $(\mathcal{D}, \beta) \models \exists x F$ gilt nicht. Im letzten Fall wählen wir einen beliebigen Wert $d \in D$.

Beweis des Korrektheitslemma, δ -Fall

(Forts.)

Wir wollen zeigen, daß \mathcal{D}' Modell von T_1 ist.

Es sei β eine beliebige Belegung bzgl. \mathcal{D}' , β ist auch Belegung bzgl. \mathcal{D} , da sich der Grundbereich nicht geändert hat.

Es gibt π_0 in T mit $(\mathcal{D}, \beta) \models \pi_0$.

Nur der Fall $\pi_0 = \pi$ ist interessant.

Aus $(\mathcal{D}, \beta) \models \exists x F(x)$ folgt nach Konstruktion von \mathcal{D}' auch

$$(\mathcal{D}',\beta)\models F(f(x_1,\ldots,x_n))$$

Da in den restlichen Formeln des Pfades π und in M das Zeichen f nicht vorkommt, erhalten wir insgesamt

$$(\mathcal{D}',\beta) \models \pi \cup \{F(f(x_1,\ldots,x_n))\} \text{ und } (\mathcal{D}',\beta) \models M.$$

Beweis des Korrektheitlemmas, Voraussetzungsregel

mit $V_M \in M$.

Wir betrachten M-Erfüllbarkeit, also ist V_M offensichtlich erfüllt.

Vollständigkeit des Tableaukalküls

Theorem

Sei A eine Formel und M eine Menge von Formeln jeweils ohne freie Variablen.

Gilt

$$M \models A$$

dann gibt es ein geschlossenes Tableau für A über M.

Konstruktionsvorschrift

Es sei t_1, \ldots, t_n, \ldots eine Aufzählung aller Grundterme.

Parallel zur Konstruktion einer Folge von Tableaus \mathcal{T}_i wird eine Folge von Grundsubstitutionen σ_i erzeugt.

Entsteht \mathcal{T}_{i+1} aus \mathcal{T}_i durch Anwendung einer γ -Regel mit der Formel F auf dem Pfad π dann ist

$$\sigma_{i+1} = \{X/t_n\} \circ \sigma_i,$$

wobei X die neu eingeführte Variable ist und es sich um die n-te Anwendung der γ -Regel für F auf π handelt.

Sonst $\sigma_{i+1} = \sigma_i$.

Ein Pfad π im Tableau \mathcal{T}_i wird nicht erweitert, wenn $\sigma_i(\pi)$ abgeschlossen ist.

Vollständigkeit des Tableaukalküls

Konstruktive Version

Theorem

Sei A eine Formel und M eine Menge von Formeln jeweils ohne freie Variablen.

Gilt $M \models A$ dann terminiert jedes

- ► faire Verfahren.
- das mit 0A und $\sigma_0 = id$ beginnt,
- ▶ und die Konstruktionsvorschrift einhält

nach endlich vielen Schritten in einem geschlossenen Tableau.

Fairness bedeutet, dass auf jedem Pfad, jede mögliche Regelanwendung auch schließlich stattfindet. Insbesondere wird auf jedem offenen Pfad jede γ -Formel unbeschränkt oft benutzt und jede Formel aus M kommt dran.

Details später

Angenommen die fair konstruierte Folge $(\mathcal{T}_0, \sigma_0), \ldots, (\mathcal{T}_n, \sigma_n) \ldots$ terminiert nicht.

Setze
$$\mathcal{T} = \bigcup_{i>0} \mathcal{T}_i$$
 und $\sigma = \bigcup_{i>0} \sigma_i$.

 $\sigma(T)$ ist ein unendlicher endlich verzweigender Baum.

Nach Königs Lemma gibt es einen unendlichen Pfad π in $\sigma(\mathcal{T})$.

Nach Konstruktion muss π ein offener Pfad sein.

Aus π kann man ein (Herbrand-)Modell \mathcal{D} ablesen mit $\mathcal{D} \models M$ und $\mathcal{D} \models \neg A$.

Widerspruch zu $M \models A$.

Details

Königs Lemma

In jedem unendlichen, endlich verzweigenden Baum existiert ein unendlicher Pfad.

Hintikka-Menge

Definition

Eine Menge H geschlossenener Vorzeichenformeln über einer Signatur Σ heißt eine **Hintikka-Menge**, wenn die folgenden Bedingungen erfüllt sind:

- (H 1) Gilt für eine α -Formel $F, F \in H$, dann auch $F_1 \in H$ und $F_2 \in H$.
- (H 2) Gilt $F \in H$ für eine β -Formel F, dann auch $F_1 \in H$ oder $F_2 \in H$.
- (H 3) Gilt $F \in H$ für eine δ -Formel F, dann gibt es einen Grundterm t mit $F_1(t) \in H$.
- (H 4) Gilt $F \in H$ für eine γ -Formel F, dann gilt $F_1(t) \in H$ für jeden Grundterm t.
- (H 5) Für keine A kommen 1A und 0A in H vor.

Details

Modellexistenz

- Jede Hintikka-Menge besitzt ein Herbrand-Modell.
- ► Jeder offene Ast in einem fairen, abgeschlossenen Tableau ist eine Hintikka-Menge.

Unentscheidbarkeit der Prädikatenlogik

Theorem

Die folgenden Probleme sind unentscheidbar:

- 1. Was ist die maximale Anzahl von γ -Regelanwendungen in einem Tableaubeweis einer prädikatenlogische Formel $F \in For_{\Sigma}$?
- Ist eine prädikatenlogische Formel F ∈ For_Σ allgemeingültig? Triviale Signaturen Σ ausgenommen.

Rekursionstheoretische Eigenschaften der Prädikatenlogik

Theorem

- 1. Die Menge der allgemeingültigen Formeln der Prädikatenlogik ist rekursiv aufzählbar.
- 2. Die Menge der erfüllbaren Formeln der Prädikatenlogik ist nicht rekursiv aufzählbar.

Allgemeine Tableauregel

$$\begin{array}{c|cccc} \phi \\ \hline \psi_{1,1} & \cdots & \psi_{n,1} \\ \vdots & & \vdots \\ \vdots & & \ddots & \vdots \\ \psi_{1,K_1} & \cdots & \psi_{n,K_n} \end{array}$$

Um die Teilformeleigenschaft des Tableaukalküls zu gewährleisten, wird gefordert, dass alle Vorzeichenformeln $\psi_{i,j}$ Teilformeln der Vorzeichenformel ϕ sind.

Korrektheit und Vollständigkeit einer Regel

Eine allgemeine Tableauregel

$$\begin{array}{c|cccc}
 & \phi \\
\hline
 & \psi_{1,1} & \cdots & \psi_{n,1} \\
\vdots & & \cdots & \vdots \\
 & \vdots & & \vdots \\
 & \psi_{1,K_1} & \cdots & \psi_{n,K_n}
\end{array}$$

heißt vollständig und korrekt, wenn für jede Interpretation I gilt $val_I(\phi) = W$ gdw es gibt ein i, $1 \le i \le n$, so dass für alle j, $1 \le j \le k_i$ gilt $val_I(\psi_{i,j}) = W$

Tableauregel für den logischen Äquivalenzoperator

\leftrightarrow	W	F
W	W	F
F	F	W

$$\begin{array}{c|c}
1(A \leftrightarrow B) \\
\hline
1A & | 0A \\
1B & | 0B \\
\end{array}$$

$$\begin{array}{c|c}
0(A \leftrightarrow B) \\
\hline
1A & | 0A \\
0B & | 1B \\
\end{array}$$