Package 'multilaterals'

October 13, 2022

Type Package
Title Transitive Index Numbers for Cross-Sections and Panel Data
Version 1.0
Date 2017-09-04
Author Edoardo Baldoni
Maintainer Edoardo Baldoni <edoardo.baldoni@gmail.com></edoardo.baldoni@gmail.com>
Description Computing transitive (and non-transitive) index numbers (Coelli et al., 2005 <doi:10.1007 b136381="">) for cross-sections and panel data. For the calculation of transitive indexes, the EKS (Coelli et al., 2005 <doi:10.1007 b136381="">; Rao et al., 2002 <doi:10.1007 978-1-4615-0851-9_4="">) and Minimum spanning tree (Hill, 2004 <doi:10.1257 0002828043052178="">) methods are implemented. Traditional fixed-base and chained indexes, and their growth rates, can also be derived using the Paasche, Laspeyres, Fisher and Tornqvist formulas.</doi:10.1257></doi:10.1007></doi:10.1007></doi:10.1007>
License GPL-3
Imports parallel, ape, igraph
Suggests lattice
LazyData TRUE
NeedsCompilation no
Repository CRAN
Date/Publication 2017-09-07 15:23:58 UTC
R topics documented:
billy_inp_p 2 billy_inp_q 3 billy_out_p 3 billy_out_q 4 chaining 5 dat.p 6 dat.q 6

billy_inp_p

	eks	
	growth	8
	indexes	9
	I_nt	10
	multicomp	10
	multicompPAR	12
	multilateral	13
	multilaterals	16
	rail_out_p	17
	rail_out_q	18
Index		19

billy_inp_p

Billy's Bus Company Data: Inputs Prices

Description

Data set used for example 4.7 and 4.9.3, p.114 and p.124, of *An introduction to Efficiency and Productivity Analysis*, 2nd edition.

Usage

```
data("multil_data")
```

Format

A data frame with 5 observations on the following 4 variables.

year years of observation

- p1 a numeric vector containing prices of labor
- p2 a numeric vector containing prices of capital
- p3 a numeric vector containing prices of other inputs

Source

T. J. Coelli, D. S. Prasada Rao, C. J. O'Donnell, and G. E. Battese. *An introduction to Efficiency and Productivity Analysis*, 2nd edition. Springer Science + Business Media, New York, 2005.

References

billy_inp_q 3

billy_inp_q

Billy's Bus Company Data: Inputs Quantities

Description

Data set used for example 4.7 and 4.9.3, p.114 and p.124, of *An introduction to Efficiency and Productivity Analysis*, 2nd edition.

Usage

```
data("multil_data")
```

Format

A data frame with 5 observations on the following 4 variables.

year years of observation

- x1 a numeric vector containing quantities of labor
- x2 a numeric vector containing quantities of capital
- x3 a numeric vector containing quantities of other inputs

Source

T. J. Coelli, D. S. Prasada Rao, C. J. O'Donnell, and G. E. Battese. *An introduction to Efficiency and Productivity Analysis*, 2nd edition. Springer Science + Business Media, New York, 2005.

References

T. J. Coelli, D. S. Prasada Rao, C. J. O'Donnell, and G. E. Battese. *An introduction to Efficiency and Productivity Analysis*, 2nd edition. Springer Science + Business Media, New York, 2005.

billy_out_p

Billy's Bus Company Data: Outputs Prices

Description

Data set used for example 4.7 and 4.9.3, p.114 and p.124, of *An introduction to Efficiency and Productivity Analysis*, 2nd edition.

Usage

```
data("multil_data")
```

4 billy_out_q

Format

A data frame with 5 observations on the following 3 variables.

year years of observation

- p1 a numeric vector containing prices metropolitan passenger kilometers
- p2 a numeric vector containing prices long distance passenger kilometers

Source

T. J. Coelli, D. S. Prasada Rao, C. J. O'Donnell, and G. E. Battese. *An introduction to Efficiency and Productivity Analysis*, 2nd edition. Springer Science + Business Media, New York, 2005.

References

T. J. Coelli, D. S. Prasada Rao, C. J. O'Donnell, and G. E. Battese. *An introduction to Efficiency and Productivity Analysis*, 2nd edition. Springer Science + Business Media, New York, 2005.

billy_out_q

Billy's Bus Company Data: Outputs Quantities

Description

Data set used for example 4.7 and 4.9.3, p.114 and p.124, of *An introduction to Efficiency and Productivity Analysis*, 2nd edition.

Usage

```
data("multil_data")
```

Format

A data frame with 5 observations on the following 3 variables.

year years of observation

- q1 a numeric vector containing quantities of metropolitan passenger kilometers
- q2 a numeric vector containing quantities of long distance passenger kilometers

Source

T. J. Coelli, D. S. Prasada Rao, C. J. O'Donnell, and G. E. Battese. *An introduction to Efficiency and Productivity Analysis*, 2nd edition. Springer Science + Business Media, New York, 2005.

References

5 chaining

chaining Generate chained index numbers

Description

This function computes chained index numbers using the Laspyeres, Paasche, Fisher and Tornqvist formulas. It also provides the Paasche-Laspeyres spreads.

Usage

```
chaining(data.x, data.y)
```

Arguments

data.x A data frame containing data on prices or quantites. To get a quantity index,

> data.x should contain information on quantities. To get a price index, data.x should contain info on prices. Each column should represent an item of the basket. Temporal and spatial dimensions are represented by row, as in 'long'

formats. Neither id nor time variables should be included among the columns.

data.y A data frame containing data on prices or quantites. It represents the weights to

be used in weighting data contained in data.x. To get a quantity index, data.y should contain information on prices. To get a price index, data.y should contain info on quantities. Each column should represent an item of the basket. Temporal and spatial dimensions are represented by row, as in 'long' formats. Neither

id nor time variables should be included among the columns.

Value

It returns the data frame containing the chained indexes and the Paasche-Laspeyres spreads.

Author(s)

Edoardo Baldoni

References

T. J. Coelli, D. S. Prasada Rao, C. J. O'Donnell, and G. E. Battese. An introduction to Efficiency and Productivity Analysis, 2nd edition. Springer Science + Business Media, New York, 2005.

```
# From An Introduction to Efficiency and Productivity Analysis (Coelli et al., 2005), pag. 127-130
data('multil_data')
chaining(rail_out_q,rail_out_p)
```

6 dat.q

dat.p	Transitive Indexes in Panel Data: Simulated Regional Data on Labor Inputs Prices

Description

A simulated data set in panel data format that can be used to create mst or eks indexes. It contains information on hourly wages for three categories of workers.

Usage

```
data("multil_data")
```

Format

A data frame with 80 observations on the following 5 variables.

year temporal dimension of the panel

region id of the region

- x1 hourly wage of of labor input 1
- x2 hourly wage of of labor input 2
- x3 hourly wage of of labor input 3

dat.q Transitive Indexes in Panel Data: Simulated Regional Data on Labor Inputs Quantities

Description

A simulated data set in panel data format that can be used to create mst or eks indexes. It contains hours wokred for threee categories of workers.

Usage

```
data("multil_data")
```

Format

A data frame with 80 observations on the following 5 variables.

year temporal dimension of the panel

region id of the region

- x1 hours worekd by labor input 1
- x2 hours worekd by labor input 2
- x3 hours worekd by labor input 3

eks 7

eks

eks: transforming a non-transitive index number matrix into a transitive one

Description

This function takes a matrix of all non-transitive binary index numbers comparisons of a data set and transforms it into a matrix of transitive index numbers using the EKS method.

Usage

eks(mat)

Arguments

mat

Matrix of non transitive bilateral comparisons. To be transformed into transitive matrix via the EKS method.

Details

The function should be applied to a matrix that contains superlative index numbers comparisons.

Value

It returns the set of transitive indexes associated with the benchmark unit/period.

Author(s)

Edoardo Baldoni

References

T. J. Coelli, D. S. Prasada Rao, C. J. O'Donnell, and G. E. Battese. *An introduction to Efficiency and Productivity Analysis*, 2nd edition. Springer Science + Business Media, New York, 2005.

```
# Trasforming a non-transitive Fisher matrix into a transitive one
data(multil_data)

I_nt[1,3]*I_nt[3,4]
I_nt[1,4] #non-transitive

I_t = eks(I_nt)
I_t[1,3]*I_t[3,4]
I_t[1,4] #transitive
```

8 growth

growth

Compute growth rates of indexes

Description

This function computes growth rates of variables for panel data sets.

Usage

```
growth(dataset, var.agg)
```

Arguments

dataset A data frame containing numerical data, id and time variables. The panel should

be arranged in long format.

var.agg The name of id variables contained in the dataset. The temporal dimension

should be the first element while the spatial should be the second one.

Value

It returns the data frame of growth rates indexed by time and id.

Author(s)

Edoardo Baldoni

```
library(parallel)
library(igraph)
library(ape)

data('multil_data')
indx = multilateral(dat.q,dat.p,var.agg=c('year','region'),
    transitivity = 'mst', bench = 1, period =2010,
    idx = 'fisher', PAR= FALSE, Cores = detectCores(),plotting= FALSE)

indx = as.data.frame(do.call('cbind',list(indx)))
names(indx) = 'indx'
## try
indx$year = substr(rownames(indx),start=nchar(rownames(indx))-3,stop=nchar(rownames(indx)))
indx$region = substr(rownames(indx),start=nchar(rownames(indx))-6,stop=nchar(rownames(indx))-5)
growth(indx, var.agg=c('year','region'))
```

indexes 9

indexes	indexes: create fixed-base or chained index numbers

Description

It computes fixed-base or chained index numbers from a set of numerical variables. It computes the Laspeyres, Paasche, Fisher and Tornqvist indexes together with the Paasche-Laspeyres spreads and the matrix of factor shares.

Usage

```
indexes(data.x, data.y, type = "fixed-base")
```

Arguments

data.x	A data frame containing data on prices or quantites. To get a quantity index, data.x should contain information on quantities. To get a price index, data.x should contain info on prices. Each column should represent an item of the basket. Temporal and spatial dimensions are represented by row, as in 'long' formats. Neither id nor time variables should be included among the columns.
data.y	A data frame containing data on prices or quantites. It represents the weights to be used in weighting data contained in data.x. To get a quantity index, data.y should contain information on prices. To get a price index, data.y should contain info on quantities. Each column should represent an item of the basket. Temporal and spatial dimensions are represented by row, as in 'long' formats. Neither id nor time variables should be included among the columns.
type	Type of index: 'chained' or 'fixed-base'.

Value

It returns a list of two elements. The first element of the list is a data frame containing the index numbers and the Paasche-Laspeyres spreads. The second element is a matrix containing the factor shares used to compute the indexes.

Author(s)

Edoardo Baldoni

References

10 multicomp

Examples

```
# From An Introduction to Efficiency and Productivity Analysis (Coelli et al., 2005), pag. 127-130
data('multil_data')
indexes(rail_out_q,rail_out_p,'chained')$indexes
```

I_nt

Matrix of bilateral Fisher fixed-base comparisons

Description

Matrix of bilateral quantity Fisher comparisons for region 1 and region 2 and for 2014 and 2015 of the Simulated Regional Data on Labor Inputs Statistics

Usage

```
data("multil_data")
```

Format

```
The format is: num [1:4, 1:4] 1 0.896 0.179 0.137 1.116 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:4] "1.2014" "1.2015" "2.2014" "2.2015" ..$ : chr [1:4] "1.2014" "1.2015" "2.2014" "2.2015"
```

Source

T. J. Coelli, D. S. Prasada Rao, C. J. O'Donnell, and G. E. Battese. *An introduction to Efficiency and Productivity Analysis*, 2nd edition. Springer Science + Business Media, New York, 2005.

References

T. J. Coelli, D. S. Prasada Rao, C. J. O'Donnell, and G. E. Battese. *An introduction to Efficiency and Productivity Analysis*, 2nd edition. Springer Science + Business Media, New York, 2005.

multicomp

multicomp

Description

This function computes transitive index numbers for cross-sections and panel data using either the EKS or the Minimum-spannin-tree method.

Usage

```
multicomp(data.x, data.y, idx = "fisher", transitivity = "mst",
  var.agg, bench, period, plotting = FALSE)
```

multicomp 11

Arguments

data.x A data frame containing data on prices or quantites. To get a quantity index,

data.x should contain information on quantities. To get a price index, data.x should contain info on prices corresponding to the quantities in data.y. Each column should represent an item of the basket. Temporal and spatial dimensions are represented by row, as in 'long' formats. Id and/or time variables must be

included among the columns.

data.y A data frame containing data on prices or quantites. It represents the set of

weights to be used in weighting data contained in data.x. To get a quantity index, data.y should contain information on prices corresponding to quantities in data.x. To get a price index, data.y should contain info on quantities. Each column should represent an item of the basket. Temporal and spatial dimensions are represented by row, as in 'long' formats. Id and/or time variables should be

included among the columns.

idx Index number formula to be used. It should be either 'paasche', 'laspeyres',

'fisher' or 'tornqvist'.

transitivity The transitivization method to be used. It should be either 'eks' or 'mst'.

var.agg The time and id variables of the data frames. In the case of panel data this should

be a vector of two elements where the first element is the name of the column (of data.x and data.y) that contains the time dimension, while the second element is

the name of the column that contains the spatial dimension.

bench The id of the benchmark unit.

period The benchmark period. For cross-sectional data it should be set to NULL.

plotting If set to TRUE, it plots the minimum-spanning-tree.

Value

It returns the vector of transitive index numbers.

Author(s)

Edoardo Baldoni

References

T. J. Coelli, D. S. Prasada Rao, C. J. O'Donnell, and G. E. Battese. *An introduction to Efficiency and Productivity Analysis*, 2nd edition. Springer Science + Business Media, New York, 2005.

R. J. Hill. *Constructing price indexes across space and time: The case of the European Union.* The American Economic Review, 94(5):1379-1410, 2004.

Rao D.S.P., O'Donnell C.J., Ball V.E., 2002. *Transitive Multilateral Comparisons of Agricultural Output, Input, and Productivity: A Nonparametric Approach*. In: Ball V.E., Norton G.W. Agricultural Productivity. Studies in Productivity and Efficiency, vol 2. Springer, Boston, MA.

12 multicompPAR

Examples

```
library(igraph)
library(ape)

data('multil_data')
multicomp(dat.q,dat.p,transitivity='mst',var.agg=c('year','region'),
bench=1,period=2010,idx='fisher',plotting=FALSE)
```

multicompPAR

multicompPAR

Description

This function computes transitive index numbers for cross-sections and panel data using either the EKS or the Minimum-spannin-tree method. It can distribute workload across multiple CPUs.

Usage

```
multicompPAR(data.x, data.y, idx, transitivity, var.agg, bench, period,
  plotting = FALSE, Cores)
```

Arguments

data.x A	data frame	containing	data on	prices or	quantites.	To get a	quantity	index,
----------	------------	------------	---------	-----------	------------	----------	----------	--------

data.x should contain information on quantities. To get a price index, data.x should contain info on prices corresponding to the quantities in data.y. Each column should represent an item of the basket. Temporal and spatial dimensions are represented by row, as in 'long' formats. Id and/or time variables must be

included among the columns.

data.y A data frame containing data on prices or quantites. It represents the set of

weights to be used in weighting data contained in data.x. To get a quantity index, data.y should contain information on prices corresponding to quantities in data.x. To get a price index, data.y should contain info on quantities. Each column should represent an item of the basket. Temporal and spatial dimensions are represented by row, as in 'long' formats. Id and/or time variables should be

included among the columns.

idx Index number formula to be used. It should be either 'paasche', 'laspeyres',

'fisher' or 'tornqvist'.

transitivity The transitivization method to be used. It should be either 'eks' or 'mst'.

var.agg The time and id variables of the data frames. In the case of panel data this should

be a vector of two elements where the first element is the name of the column (of data.x and data.y) that contains the time dimension, while the second element is

the name of the column that contains the spatial dimension.

bench The id of the benchmark unit.

multilateral 13

Numbers of CPUs to be used for the calculations.

period	The benchmark period. For cross-sectional data it should be set to NULL.
plotting	If set to TRUE, it plots the minimum-spanning-tree. It is not available for transitivity='eks'.

Details

Cores

The function uses the function makePSOCKcluster from the parallel package to set up the cluster. No other parallel package is included yet.

Value

It returns the vector of transitive index numbers.

Author(s)

Edoardo Baldoni

References

T. J. Coelli, D. S. Prasada Rao, C. J. O'Donnell, and G. E. Battese. *An introduction to Efficiency and Productivity Analysis*, 2nd edition. Springer Science + Business Media, New York, 2005.

R. J. Hill. *Constructing price indexes across space and time: The case of the European Union.* The American Economic Review, 94(5):1379-1410, 2004.

Rao D.S.P., O'Donnell C.J., Ball V.E., 2002. *Transitive Multilateral Comparisons of Agricultural Output, Input, and Productivity: A Nonparametric Approach*. In: Ball V.E., Norton G.W. Agricultural Productivity. Studies in Productivity and Efficiency, vol 2. Springer, Boston, MA.

Examples

```
library(igraph)
library(ape)
library(parallel)

data('multil_data')
multicompPAR(dat.q,dat.p,transitivity='mst',var.agg=c('year','region'),
bench=1,period=2010,idx='fisher',Cores=1,plotting=FALSE)
```

multilateral multilateral: generate transitive index numbers for cross-sections and panel data

Description

This function computes transitive index numbers for cross-sections and panel data using either the EKS or the Minimum-spannin-tree method. The workload can be distributed across multiple CPUs. The function is a wrapper for the multicomp and multicompPAR functions.

14 multilateral

Usage

```
multilateral(data.x, data.y, idx = "fisher", transitivity = "mst",
var.agg, bench, period, PAR = TRUE, plotting = FALSE, Cores)
```

Arguments

data.x A data frame containing data on prices or quantites. To get a quantity index,

data.x should contain information on quantities. To get a price index, data.x should contain info on prices corresponding to the quantities in data.y. Each column should represent an item of the basket. Temporal and spatial dimensions are represented by row, as in 'long' formats. Id and/or time variables must be

included among the columns.

data.y A data frame containing data on prices or quantites. It represents the set of

weights to be used in weighting data contained in data.x. To get a quantity index, data.y should contain information on prices corresponding to quantities in data.x. To get a price index, data.y should contain info on quantities. Each column should represent an item of the basket. Temporal and spatial dimensions are represented by row, as in 'long' formats. Id and/or time variables should be

included among the columns.

idx Index number formula to be used. It should be either 'paasche', 'laspeyres',

'fisher' or 'tornqvist'.

transitivity The transitivization method to be used. It should be either 'eks' or 'mst'.

var.agg The time and id variables of the data frames. In the case of panel data it should

be a vector of two elements where the first element is the name of the column of data.x (and data.y) that contains the time dimension, while the second element

is the name of the column that contains the spatial dimension.

bench The id of the benchmark unit.

period The benchmark period. For cross-sectional data it should be set to NULL.

PAR If set to TRUE the indexes will be computed in parallel.

plotting If TRUE the plot of the minium-spanning-tree is plotted. It works only if transi-

tivization is set to 'mst'.

Cores Number of CPUs to be used in the parallel calculation procedure. It works only

if PAR is set to TRUE.

Details

It is a wrapper for the multicomp and multicompPAR functions. The function uses the function makePSOCKcluster from the parallel package to set up the cluster. No other parallel package is included yet.

Value

It returns the vector of transitive index numbers.

Author(s)

Edoardo Baldoni

multilateral 15

References

T. J. Coelli, D. S. Prasada Rao, C. J. O'Donnell, and G. E. Battese. *An introduction to Efficiency and Productivity Analysis*, 2nd edition. Springer Science + Business Media, New York, 2005.

R. J. Hill. *Constructing price indexes across space and time: The case of the European Union.* The American Economic Review, 94(5):1379-1410, 2004.

Rao D.S.P., O'Donnell C.J., Ball V.E., 2002. *Transitive Multilateral Comparisons of Agricultural Output, Input, and Productivity: A Nonparametric Approach*. In: Ball V.E., Norton G.W. Agricultural Productivity. Studies in Productivity and Efficiency, vol 2. Springer, Boston, MA.

```
library(igraph)
library(ape)
library(lattice)
library(parallel)
data('multil_data')
## Compare eks method with the mst method.
indx.mst = multilateral(dat.q,dat.p,
  idx='fisher', transitivity='mst',
   var.agg=c('year','region'),bench='1',
  period=2010,
  PAR=FALSE,
  plotting=FALSE,Cores=2)
indx.mst = as.data.frame(do.call('cbind',list(indx.mst)))
names(indx.mst) = 'mst'
indx.eks = multilateral(dat.q,dat.p,
  idx='fisher', transitivity='eks',
  var.agg=c('year','region'),bench='1',
  period=2010,
  PAR=FALSE,
  plotting=FALSE)
indx.eks = as.data.frame(do.call('cbind',list(indx.eks)))
names(indx.eks) = 'eks'
indx = cbind(indx.mst,indx.eks)
indx$year = as.numeric(substr(rownames(indx),
start=nchar(rownames(indx))-3,stop=nchar(rownames(indx))))
indx$region = substr(rownames(indx),
 start=nchar(rownames(indx))-6,stop=nchar(rownames(indx))-5)
xyplot(mst+eks ~ year|region,indx,type='l')
```

16 multilaterals

multilaterals	Transitive Index Numbers for Cross-Sections and Panel Data	

Description

Computing transitive (and non-transitive) index numbers (Coelli et al., 2005 <doi:10.1007/b136381>) for cross-sections and panel data. For the calculation of transitive indexes, the EKS (Coelli et al., 2005 <doi:10.1007/b136381>; Rao et al., 2002 <doi:10.1007/978-1-4615-0851-9_4>) and Minimum spanning tree (Hill, 2004 <doi:10.1257/0002828043052178>) methods are implemented. Traditional fixed-base and chained indexes, and their growth rates, can also be derived using the Paasche, Laspeyres, Fisher and Tornqvist formulas.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index of help topics:

I_nt	Matrix of bilateral Fisher fixed-base
L411 4	comparisons
billy_inp_p	Billy's Bus Company Data: Inputs Prices
billy_inp_q	Billy's Bus Company Data: Inputs Quantities
billy_out_p	Billy's Bus Company Data: Outputs Prices
billy_out_q	Billy's Bus Company Data: Outputs Quantities
chaining	Generate chained index numbers
dat.p	Transitive Indexes in Panel Data: Simulated
	Regional Data on Labor Inputs Prices
dat.q	Transitive Indexes in Panel Data: Simulated
	Regional Data on Labor Inputs Quantities
eks	eks: transforming a non-transitive index number
	matrix into a transitive one
growth	Compute growth rates of indexes
indexes	indexes: create fixed-base or chained index
	numbers
multicomp	multicomp
multicompPAR	multicompPAR
multilateral	multilateral: generate transitive index numbers
	for cross-sections and panel data
multilaterals	Transitive Index Numbers for Cross-Sections and
	Panel Data
rail_out_p	Australian National Railways Data: Output
_ _ ,	Prices
rail_out_q	Australian National Railways Data: Output
_ · · · · _ ·,	Quantities
	£

rail_out_p 17

Author(s)

Edoardo Baldoni

Maintainer: Edoardo Baldoni <edoardo.baldoni@gmail.com>

References

T. J. Coelli, D. S. Prasada Rao, C. J. O'Donnel, and G. E. Battese. *An introduction to Efficiency and Productivity Analysis*, 2nd edition. Springer Science + Business Media, New York, 2005.

R. J. Hill. *Constructing price indexes across space and time: The case of the European Union.* The American Economic Review, 94(5):1379-1410, 2004.

Rao D.S.P., O'Donnell C.J., Ball V.E., 2002. *Transitive Multilateral Comparisons of Agricultural Output, Input, and Productivity: A Nonparametric Approach*. In: Ball V.E., Norton G.W. Agricultural Productivity. Studies in Productivity and Efficiency, vol 2. Springer, Boston, MA.

Examples

```
data('multil_data')
## From 'An introduction to Efficiency and
## Productivity Analysis' (Coelli et al., 2005), page 124-126.
inputIndx = multilateral(data.x=billy_inp_q,data.y=billy_inp_p,var.agg='year',
    idx='fisher',PAR=FALSE,transitivity='eks',bench=2000,period=NULL )
outputIndx = multilateral(data.x=billy_out_q,data.y=billy_out_p, var.agg='year',
    PAR=FALSE,transitivity='mst',bench=2000,period=NULL )
tfpIndx = outputIndx/inputIndx
```

rail_out_p

Australian National Railways Data: Output Prices

Description

Data set used for example 4.10, p.128, of An introduction to Efficiency and Productivity Analysis, 2nd edition.

Usage

```
data("multil_data")
```

Format

A data frame with 12 observations on the following 3 variables.

```
p1 prices of Mainland Freight services ($/NTK)
```

- p2 prices of Tasrail Freight services (\$/NTK)
- p3 prices of Passenger services (\$/PTK)

rail_out_q

Source

T. J. Coelli, D. S. Prasada Rao, C. J. O'Donnell, and G. E. Battese. *An introduction to Efficiency and Productivity Analysis*, 2nd edition. Springer Science + Business Media, New York, 2005.

References

T. J. Coelli, D. S. Prasada Rao, C. J. O'Donnell, and G. E. Battese. *An introduction to Efficiency and Productivity Analysis*, 2nd edition. Springer Science + Business Media, New York, 2005.

rail_out_q

Australian National Railways Data: Output Quantities

Description

Data set used for example 4.10, p.128, of An introduction to Efficiency and Productivity Analysis, 2nd edition.

Usage

```
data("multil_data")
```

Format

A data frame with 12 observations on the following 3 variables.

- x1 quantities of Mainland Freight services (1,000 NTKs)
- x2 quantities of Tasrail Freight services (1,000 NTKs)
- x3 quantities of Passenger services (1,000 PTKs)

Source

T. J. Coelli, D. S. Prasada Rao, C. J. O'Donnell, and G. E. Battese. *An introduction to Efficiency and Productivity Analysis*, 2nd edition. Springer Science + Business Media, New York, 2005.

References

Index

```
* datasets
     billy_inp_p, 2
     billy_inp_q, 3
     billy_out_p, 3
     billy_out_q, 4
     dat.p, 6
     dat.q, 6
     {\tt I\_nt,\, \textcolor{red}{10}}
     rail_out_p, 17
     rail_out_q, 18
* package
     \textit{multilaterals}, \textcolor{red}{16}
billy_inp_p, 2
\verb|billy_inp_q, 3|
billy_out_p, 3
billy_out_q, 4
chaining, 5
dat.p, 6
dat.q, 6
eks, 7
growth, 8
I_nt, 10
indexes, 9
multicomp, 10
multicompPAR, 12
multilateral, 13
multilaterals, 16
\verb|multilaterals-package| (\verb|multilaterals|), \\
rail_out_p, 17
rail_out_q, 18
```