LUZHE HUANG

PHONE: +1-424-402-2604 EMAIL: LZHUANG0324@UCLA.EDU

LINKEDIN: /LUZHE-HUANG GITHUB: /PORPHURA PAGE: /PORPHURA.GITHUB.IO

SUMMARY

- Graduate with a Ph.D. degree expected in Sep 2024, actively pursuing roles that offer dynamic challenges and focus on the practical application of advanced machine and deep learning technologies
- Proficient in designing and implementing cutting-edge **deep learning** and **machine learning** solutions, espeically for a spectrum of **imaging and vision** challenges, including image enhancement, restoration, segmentation, and translation
- 6 years of dedicated research in the realm of **computational imaging**, speicalizing in **computational microscopy**, with a focus on solving intricate **inverse problems** across diverse imaging modalities
- 15 research articles published on peer-reviewed journals, with first authorship in most, accumulating \sim 300 citations

EDUCATION.

University of California, Los Angeles Ph.D., Electrical and Computer Engineering

Sep 2019 - Present

- GPA: 3.96/4
- Received UCLA Dissertation Year Fellowship and Amazon Fellowship

Zhejiang University | BEng, Optical Science and Engineering, Statistics

Sep 2015 - Jun 2019

- GPA: 3.96/4
- Received National Scholarship twice and Zhejiang University Special Scholarship

PROJECTS (SELECTED)

Self-supervised learning based on physical laws and thought experiments (GedankenNet)

Feb 2022 - Aug 2023

- Developed a novel **self-supervised** neural network using physics-informed learning and **pure artificial data** (thought experiments), showing superior performance and generalization than supervised models
- Addressed the reliance of supervised learning on large-scale, high-quality labels and their limited generalization

Cycle-consistency uncertainty quantification of neural networks on inverse problems

Dec 2022 - Oct 2023

- · Built novel uncertainty quantification for neural networks on inverse problems using forward-backward cycles
- Developed machine learning algorithms to detect corrupted and out-of-distribution data based on cycle consistency

Fourier Imager Network with superior external generalization (FIN)

Aug 2021 - Apr 2022

- Developed FIN, a novel neural network utilizing **global spatial-frequency** information in spatial and Fourier domains, showing superior **external generalization** on unseen distributions
- Enhanced FIN with dynamic network modules (eFIN), showcasing its versatility in multiple image restoration tasks

Recurrent neural network (RNN)-based high-dimensional imaging

Jun 2020 - Jul 2022

• Developed a RNN-based **high-dimensional image reconstruction** approach using sparse sequential low-dimensional measurements, and validated it on various high-dimensional microscopy image reconstruction tasks

Single-shot autofocusing of microscopy image using deep learning (Deep-R)

Sep 2019 - Jan 2021

 Developed Deep-R for offline autofocusing of microscopy images without the prior knowledge or measurement of the system point spread function (PSF)

OCT angiography enabled by statistical characterization of intensity and decorrelation

Jun 2018 - Apr 2019

- Developed a statistical learning algorithm for OCT angiography using the decorrelation and intensity of blood flow signal
- Derived a multi-variate time-series model to characterize and distinguish OCT signals of dynamic and static regions

CAREER EXPERIENCE

Autowise.ai

Shanghai, China

Software R&D Engineer Intern

Feb 2019 - Jun 2019

- Participate in establishing LiDAR calibration models under various weather conditions
- Implement 3D point cloud-based object detection and segmentation

TECHNICAL SKILLS_

Programming P

Python (PyTorch, Tensorflow), R, MATLAB

Frameworks & Tools Zemax, Unity

Professional Service _

- Served as reviewers for top peer-reviewed journals including IEEE Transactions on Medical Imaging, Biomedical Optics Express, Optics Express, etc.
- Reviewed more than 10 research articles.
- Mentored more than 10 undergrad and master students and supervised them conducting research projects in UCLA.
- Served as grader for multiple undergrad- and graduate-level courses in UCLA.

PUBLICATIONS (SELECTED)

- 1. A., Vasily N., Y. B. Sahel, Y. C. Eldar, **L. Huang**, A. Ozcan et al. "Roadmap on Label-Free Super-Resolution Imaging." *Laser & Photonics Reviews* 2200029 (2023)
- 2. J. Park, B. Bai, D. H. Ryu, T. Liu, C. Lee, Y. Luo, M. J. Lee, L. Huang et al. Artificial intelligence-enabled quantitative phase imaging methods for life sciences. *Nature Methods* 20, 1645-1660 (2023)
- 3. **L. Huang**, J. Li, X. Ding et al. Cycle-Consistency-Based Uncertainty Quantification of Neural Networks in Inverse Imaging Problems. *Intelligent Computing*. 2: 0071 (2023)
- 4. **L. Huang**, H. Chen, et al. Self-supervised learning of hologram reconstruction using physics consistency. *Nature Machine Intelligence* 5, 895-907 (2023)
- 5. H. Chen, **L. Huang**¹, et al. eFIN: Enhanced Fourier Imager Network for Generalizable Autofocusing and Pixel Super-Resolution in Holographic Imaging. *IEEE JSTQE*, 29, 4, 1-10 (2023)
- 6. H. Chen, **L. Huang**¹, et al. Fourier Imager Network (FIN): A deep neural network for hologram reconstruction with superior external generalization. *Light: Science & Applications* 11, 254 (2022)
- 7. **L. Huang**, T. Liu, et al. Holographic image reconstruction with phase recovery and autofocusing using recurrent neural networks. *ACS Photonics* 8, 6, 1763-1774 (2021)
- 8. **L. Huang**, H. Chen, Y. Luo, et al. Recurrent neural network-based volumetric fluorescence microscopy. *Light: Science & Applications* 10, 62 (2021)
- 9. Y. Luo, **L. Huang**¹, Y. Rivenson, A. Ozcan, Single-shot autofocusing of microscopy images using deep learning. *ACS Photonics*, 8, 2, 625-638 (2021)
- L. Huang, Y. Fu, R. Chen, et al. SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation based on multi-variate time series model. *IEEE Transactions on Medical Imaging*, 38, 11, 2695-2704 (2019)
- 11. **L. Huang**, X. Wang, Y. Yuan, S. Gu, Y. Shen, An improved algorithm of NLOS imaging based on Bayesian statistics. *JOSA.A* 36, 5, 834-838 (2019)
- 12. **L. Huang**, T. Fang, Q. Shuai, Calibration and imaging of a CT system, *Chinese Journal of Engineering Mathematics*. 34, 1 (2017)

CONFERENCE PUBLICATIONS (SELECTED)_

- 1. **L. Huang**, H. Chen, T. Liu, and A. Ozcan, "Self-supervised, physics-informed learning for hologram reconstruction" in SPIE Photonics West 2024 (AI/ML **Best Paper**)
- 2. **L. Huang**, H. Chen, T. Liu, and A. Ozcan, "Self-supervised neural network for holographic microscopy (invited)," in Conference on Lasers and Electro-Optics, Technical Digest Series, Technical Digest Series (Optica Publishing Group, 2023), paper ATu3Q.4
- 3. **L. Huang**, X. Yang, T. Liu, A. Ozcan, "Few-shot generalizable hologram reconstruction model using a recurrent neural network (RNN) (Conference Presentation)," Proc. SPIE PC12204, Emerging Topics in Artificial Intelligence (ETAI) 2022, PC122040H (4 October 2022)
- 4. **L. Huang**, T. Liu, X. Yang, Y. Luo, Y. Rivenson, and A. Ozcan, "Phase Recovery and Holographic Imaging using Recurrent Neural Networks (RNNs)," in Conference on Lasers and Electro-Optics, Technical Digest Series (Optica Publishing Group, 2022), paper ATh1D.5
- 5. **L. Huang**, T. Liu, X. Yang, Y. Luo, Y. Rivenson, A. Ozcan, "Holographic image reconstruction with phase recovery and autofocusing using recurrent neural networks," Proc. SPIE 11970, Quantitative Phase Imaging VIII, 119700C (2 March 2022)

ACHIEVEMENTS & AWARDS ___

- UCLA Dissertation Year Fellowship
- Amazon Doctoral Student Fellowship
- UCLA ECE Department Fellowship
- Zhejiang University Special Scholarship (Supreme award for Undergraduates)
- Zhejiang University Chu Kochen College Innovation Scholarship
- National Scholarship (×2)
- MATLAB Innovation Prize (Special Prize) in China Undergraduate Mathematical Contest in Modeling

¹ Co-first author		