

In the Claims:

1. (Previously Amended) A heat-sensitive stencil sheet, which comprises a laminate of a thermoplastic resin film and a fiber-containing porous substrate, said stencil sheet satisfying $0.150 \leq T-H$ wherein T means an arithmetic average value ($g \cdot cm/cm$) of absolute values of KES bending torque in lengthwise direction of the stencil sheet at curvatures of +2.3 and -2.3 (cm^{-1}), H means a bending hysteresis ($g \cdot cm/cm$), and T-H means a residual torque ($g \cdot cm/cm$).
2. (Previously Canceled)
3. (Previously Canceled)
4. (Previously Added) A heat-sensitive stencil sheet according to claim 1, wherein said heat-sensitive stencil sheets has a KES bending rigidity value B per unit length of $0.02\text{ gf cm}^2/cm$ or more.
5. (Previously Added) A heat-sensitive stencil sheet according to claim 4, wherein said value B is in a cross-wise direction with respect to said heat-sensitive stencil sheet.
6. (Previously Added) A heat-sensitive stencil sheet according to claim 4, wherein said value B is in the length wise direction of said heat-sensitive stencil sheet.
7. (Previously Added) A heat-sensitive stencil sheet according to claim 1, wherein the tensile strength in the lengthwise direction is 0.3 kgf/cm or more.
8. (Previously Added) A heat-sensitive stencil sheet according to claim 4, wherein the tensile strength in the lengthwise direction is 0.3 kgf/cm or more.

9. (Previously Added) A heat-sensitive stencil sheet according to claim 1, wherein said porous substrate comprises synthetic fibers.

10. (Previously Added) A heat-sensitive stencil sheet according to claim 1, wherein said porous substrate is mainly composed of synthetic fibers.

11. (New) A heat-sensitive stencil sheet according to claim 1, wherein a release agent is provided on a surface of said thermoplastic film which is not laminated to said substrate.

12. (New) A stencil printing method having reduced incidence of stencil sheets jamming in a stencil printing apparatus that includes a printing drum, and essentially avoiding creasing a heat-sensitive stencil sheet on said printing drum during stencil printing, said method comprising

providing a heat-sensitive stencil sheet comprising a laminate of a thermoplastic resin film and a fiber-containing porous substrate, wherein the provided heat-sensitive stencil sheet is selected so as to satisfy $0.150 \leq T-H$ wherein T means an arithmetic average value ($g \cdot cm/cm$) of absolute values of KES bending torque in lengthwise direction of the stencil sheet at curvatures of $+2.3$ and -2.3 (cm^{-1}), H means a bending hysteresis ($g \cdot cm/cm$), and T-H means a residual torque ($g \cdot cm/cm$);

feeding said heat-sensitive stencil sheet to said stencil printing apparatus; and

conducting stencil printing using said apparatus, wherein during stencil printing creasing said heat-sensitive stencil sheet when winding or holding same on said printing drum is at least essentially avoided.