	-	
① 35)	# % @@	FS 10 10 15
② (30)	400	10 10 10
③ 45)	7000	10 20 15
(4) (40)	<u>ۿۿڿۿٷۼٷۿڟڂڰۿ</u>	15 10 15
(30)	(P) (P) (P)	10 10 10
(6) (4^) 220 pts		10 10 10
220 pts : otal	<u>)</u> @@@@@	10 10 10 10
11D- ERM 150) pts)		25 30 35 35 35 35
<u>8</u> .50)	BESE	15 10 10 15
950 501	(B)	15 10 15 10
]]]

SUBJECT Derive Wien's Law from Planck Rade Law (AmosT = crist). Work but some numbers re Photo Electric Effect. Algebraic details of Compton Scattering. Time & power scales for classical photo-effect. Most energetic photon-electron collision (Exlafter) >0). H-atom transition rates per Correspondence Principle. Optimum aiming for a QM bullet (uncertainty relations). Ground state of He (Z) atom via uncertainty relations. Time evolution of free-particle packet A(x) exp(ip.x/k). Balancing a QM pencil on its point. Spreading of a QM wavepacket. Why don't people disappear? Frobability density & current p 4 I for KG Egtn. Planewave solutions to KG Egtn. Explicit NR limit. Algebra of Dirac delta fons: 8(kx) = 8(x)/1k1, etc. $x_{op} = i t_0 / 2 p \dots f(x) \rightarrow f(i t_0 / 2 p) \neq F(p) \rightarrow F(-i t_0 / 2 x)$ Effect of complex potential V→V- 22th T on prot. Consin Effect of decom rate P=const >0 on V(1D), and on (p)=mat(x). b=-ito/ox & E=itolot are Hermitian (from deft). Algebra of adjoint operators: (q,q, , qn)+=q, ... q, qt, , etc. Commutator identities: [AB, C] = A[B, C] + [A, C]B, etc. QM Version of 4 mon. L= rxp. [La, Lp] = it Ly, etc. troof of QM Torque Equation: (d/dt)(L)=(FxF). Show Iz=-it 0/04 in sph. cds. Then [Iz, 4]=-it, etc. Estimate of ground-state energies vix uncertainty relations. Condution for enoting of motion in QM stationary states. for 1D bound-state problem, show Egna < Vrim not possible. (d/dt)(\$7/2m), and QM version of the work-energy theorem. Probability of 1x15 2a, when V(x)=N(a2-x2) for 1x15a. Particle in a 1D box: find (x) & (p), variances Δx & Δp, in state n. Particle in a 1D box at energy En: find force exerted on walls. Bound states for m in V(x) = 00, x<0; = 0, for O(x<R; = V. for x>R. Keflection & transmission for m@ E>Vo incident on rect = well. 1D Schrödinger problem for V(x)= -A &(x). Bound-state E. Confluent Elypergeometric ODE; series & polynomial solutions. Hermite polynomials: orthogonality & recurrence relations. For 1D SHO, lowest energy > 2 to wo, per uncertainty relations.

REMARKS -new-- new -~#1, \$505 (170). -new--new-#39, \$520(15in:91). #5, \$505 ('70). Ter Haar # (3.5), Ter Haar # (3.9). TerHaar# (3.76). ~# ①, 中505('ゐ). #9,4505(170) #2, \$507 (Mid , Man). #@, \$505 (70). #(1), \$ 505 (170). -new--hew-#10, 4505('70). #(3), \$505 (170). #44, \$505 (176). #13, \$505(170). #16, \$505 ('70). #17, \$505 (170), new (Saxon#7, p.55).

#(5), \$505(\mathrale{70})MidT. -new-#(0), \$505(\mathrale{70}). #(0), \$505(\mathrale{70}).

new (TerHaar#3.38).

b. 84a, \$505 ('70) notes

#(3), \$505(170) MidT.

#@, \$505(176). #®, \$505(176). #O, \$507(Win.'92).

#@+3,0505(170). new (T.& [#2,6,71). Φ506 PRUBLEMS: Aut. 1993 (cont'd)

#	PTS	SUBJECT	REMARKS
10 33 10 39	15	(p) for SHO wavepacket. (p)= mat(x) & classical limit.	#@, \$505('70).
10) 33	10	For SHO eigenstate n, show (n/V(x)/n) = 1/2 En.	#3, \$505 (170).
45) 34)	20	m in composite state 4 = 2 cn 4, in a 1D box. Find { Cn}, etc.	#四, ゆ505(%).
(1) (3) (40) (39)	10	Variational gnd state of SHO via $\phi(x) = A[1-(x /\alpha)]$.	#@, \$507 (Spr!92).
(40) (36)	10	Variational grid state via $\Psi = \Psi_0 + \lambda \phi$. Show energy $E = E_0 + \lambda^2 E_2 + \cdots$	#@, \$507 (Spr: 92).
39		Orthogonality & completeness of ligenfens 4n (rigid box).	#66, \$505 ('70).
		SHO ground state expand Yo(x) in momentum eigenfong. Find 10(12), etc.	#@, \$505 (\70).
(2) (39) (50) (40)	10	THEOR No. 2010 C. 21 10 [Form for x >> 1v1 >> 2.	#3, \$507 (Spr. 93) #3, \$507 (Spr. 92)
(50) (40)	10	SHO Energy Quantization via Bohr-Sommenfield Formula.	#@, \$507 (Spr. 92)
40	20	am Tunneling there a Contomb Barrier. Cold fusion?	#@, \$507 (Spr. 92)
(13) (43)	30	(<u>)</u>	#19, \$507 (Spr. 92)
40)* (44)	10	Analyse bound states of a double well via WKB. Find and count energy levels for V(x)=-Vosech (x/a).	-new-
	<u> </u>		
FINAL		Prove: (alplB) = (im/k)(Ea-EB)(alx1B) for stationary states.	#6, \$505 (170) Final.
EXAM		Momentum distribution for ground state of 1D 00 rectangular well.	#B, \$ 505 ('70) Final.
(315 pts)	~ . 4	For a complete set, prove: (KIABIM) = { (KIAIL) < (IBIM),	#9, \$507 (Spr.92).
₹.	4)45		
	5)40	tind a value for ΔxΔp in the nth state of a SHO.	-new- #2, φ506 (ξελ.) Hour
	2)75	Lifetime for a particle trapped in a 1D box with 8-fon walls.	
`	8)4	WKB treatment of bound states in a very deep 1D well.	-hew-
.`	770	Variational estimate for bound-state energy in V(x) = - AS(x).	hew-

```
* Total homework pts (sets 1-13): 535 pts (44 probs)
midtern exam: 150 pts (5 probs)
final exam: 315 pts (8 probs)

1000 pts (57 probs)
```

φ506: Aut. 1993

Date	#	Lecture	Assignment
~~~	m		Transmitter.
1) Wed. 25 Aug.	2	Introduction. BB radiation: Classical picture. BB radn: Planck Ansatz. Notion of photon.	1) Probs. 1-3 (35 pts).
2 Mon. 30	3	Correct BB. Photon dynamics. Photo Effect & Compton.	-
Wel. 1 Stpt.		Finish Compton. Start Duality (pp. 1-2)	-
Fri. 3	5	Duality (pp. 2-3). Correspondence Principle (pp. 4-7).	2 Probs. 4-6 (30 pts).
3 Mon. 6 "	-	HOLIDAY (Labor Day)	_
Wed. 8 "	6	Summary to date. de B Hypothesis. Ware prochets,	(A) 7 9(1512)
(4) Mm 13 "	1	Wave packet Ex. Uncertainty Relations. H-atom [pp. 11-14].	(3) Provs. +- 3475 pts 1.
4 Mon. 13 " Wed. 15 "	8	Further Properties of Wave Packets I (pp. Pack 1-4) Further Properties II (pp. Pack 5-8). [3.78pp/lect]	- (34 led bases to date)
Fvi, 17 ^	10	Schrödinger Eg. I : pp. Sch. 1-6. Derivation. KGEg.	- (34 led, pages to date) Probs 10-12 (40 pts).
(5) Mm. 20 h	11	Schrödinger Eq II: pp. Sch. 6-9. KG Eq. Cortinnity.	-
Wed. 22 "	12	Schrödingin Eq. III : bp. Sch. 10-13. Exp. Value Postolule	- A= (
Fri. 24 "	13	Schrödinger Eq. IV: pp. Sch. 14-16. p. y Summary.	5 Prots. 13-15 (30 pts).
6 Mon. 27 "	14	Schrödinger Eq. IV: pp. Sch. 14-16. pm; & Summary. Schrödinger Eq. V: pp. Sch. 16-19. S. Eq. in extl. V.	- ler
Wed. 29 "	15	Schrodinger Eq. VI: bb. Jeh. 14-21, Klmarks, 13.67).	- (55 leer. pages to date)  (6) Probs 16-19 (40 pts).
Fri. 1 Oct.  3 Mm. 4 "	17	Wave Mechanics I: Properties & Structure (pp. Rrp. 1-4). Wave Mechanics II: Prop. & Struct; of Ye (pp. Prop S-8).	(6) Probs 16-79 (40 pts).
Wed 6 "	18	Wave Mechanics III: Fonai Conditions on \$ (pp. Prop. 9-12).	-
_ Fri. 8 ·	19	Wave Mechanics II: QM Eghn-of-Motion lpp. Prop. 13-16).	- no problem set
Mon. 11 "	-	HOLIDAY (Columbus Day)	_
( Wed. 13 "	20	Wave Mechanics V: QM Observability (pt. 17-20).	
Fri. 15 "	21	Wave Mechanics VI! Heisenberg's Uncertainty Rel s (21-24).	Frots 20-23 (40 bts).
9 Mon. 18 "	22	MIDTERM 11-1 PM, AJM 221. 5 broks. 150 pts.	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Wed. 20 "	23	Summary: S. Eq. & Wave Mech 5, Dirac postulates (247713.73	- (82 lect. pages to date) (8) Probs. 24-27 (50 pts).
tri. 22 " (10) Mon. 25 "	25	Schrödinger Solns I. Bound states of a rect well (pp. 1-4).	(3) 17605, 24-27 (30 pts).
Wed. 27 "	76	CANCELLED. Made up on 11/5793 (Variational Aspects). Solns II: Reflection of Transmission at a rect barrier (pp. 5-9).	<u> </u>
Fri. 29 n	27	Solny III: SELO Energies & Hermite boly = 5 (pp. 10-14).	9 Produs, 28-31 (50 pds ),
11 Mon. 1 Nov.	28	Solms II: SHO details of wave fone 4. (x) (b) 15-18).	- (100 lect, pages to date)
West. 3 "	29	JOHNS Y: DHU Wavebacket & classical motion (19-22),	-
Fyi 5 "	30	Johns W.; JHO by operator's 11-4), Variation at Aspects (1-4),	(10) Proly. 32-34 (45pts).
12 Move 8 "   12 m	31 32	finish Variational Aspects (pp. 4-7).	- 1110 look book to dital
Fr. 12 "	33	Expansion Postulate & Completeness I. (pp.1-4) [3.71] Expansion Postulate & Completeness II. (pp. 5-8).	- (119 Lect, pages to date) 11) Probs. 35-38 (40 pts).
(B) Mon. 15 "	34	WKBI: Use of WKB, 1st sol-, remarks (pp. 1-5).	-
Wed. 17 "	35	WKB II: Kemarks (cont'd). Arc models. Neumann (5-8).	<b>-</b>
Fri. 19 "	36	WKB III : trinish Neumann. Turning bt, brother (9-12),	- no problem set,
14 Mon. 22 "	37	WKO IL: Awy's ODE. Connection Formulas (WKB 12-16).	-
Wed. 24		HOLIDAY (Thanskgiving)	12) 12 1 20 10 15 11
Hri. 26 " Mm. 29"	38	TIGHT Reni Consul Care Ben 13 (1. 47-22)	(12) Probs. 39-42 (50 pts).
Well, 1 Dec.	39	WKBV: Review. Connexión forms. BS Quantin (pp.17-20). WKBVI: Barrier Penetration. Field Emission (pp.20-24).	-
fri. 3 "	40	WKB VII: Double-Well & Double-Hump (pp. WKB 25-28)	(13) Probs. 43-44 (40 Hs).
16 Mon. 6 "	41	WKB VIII: Trapping & Metastable State (pp. 29-33)	- 164 pb. 142 lectures
Wed. 8 "	42	SS Pent. Th. I: Intro. 4 Master Eq. (PP SS 1-4).	=> 3.90pp. (lect.)
Fri. 10 "	43	SS Pert. Th. II! The & series, 1st order ( pp. 951-8).	- no set

	) Date	#
<b>①</b>	Wed. 24 Aug. Fri. 26 "	1
2	Mon. 29 "	2
	Wed. 31 " Fri. 2 Sept.	4 5
3	Mm. 5 " Wed 7 "	-
	Fri. 9 n	67
4	Mon. 12 " Wed 14 n (42)	8
7E\	Fri. 16 n	10
5	Mon. 19 n Wed 21 n	11
76	Fri. 23 m - Mm. 26 (63)	13
<u>6</u>	Wed. 28 "	14 15
<b>(7)</b>	Fri. 30 Mm. 3 Oct.	16 17
W	Wed. 5 "	18
PV	Mon. 10 "	19
•	Wed. 12 *(86)	20
9	Pri. 14 r Mon. 17 n	21
	Wed, 19 " Fri. 21 "	73 74
(10)	Mon. 24 "	25
	Wed. 26" Fri, 28 "(108)	76 74
41>	Mon. 31 "	28
	Wed. 2 Nov. Fri. 4	29 30
12	Mon. 7 " Wed. 9 "	31
,	Fri, 11 11 (129)	32 33
13	Mon. 14 *	34
<del></del>	Wed. 16 * Fyi. 18 "	35 36
14>	Mm. 21 " Wid 23 "	37
<del>[2</del> ]	Fri. 25 "	-
<b>3</b>	Mon. 28 " Wid 30 " Fri, 2 Dec.	38 39
42		40
16)	Mon. 5 " Wed. 7"	41
	Fri 9 11 (174)	42 43

Lecture Introd2. Need for QM. BB Rad2. pp. 1-4. BB Rad . Photon dynamics pp. 4-8. Photo- & Compton Effects, pp. 9-12 Duality pp. 1-3. Duality: p. 4; Carrespondence Principle; pp. 5-7. Duality: de Broglie Relations & Unc. Rel^os, b. 8-12 HOLIDAY (Labor Day): 15 Duality & Summery; pp. 12-14. Packets: pp. 1-2. Packets: pp 2-7 (through packet broadening). Review & finish Packets: pp. 2-8, Start Sch. Eq. : pp 1-2. Sch. Eq. pp. 2-8 (const of siy12 dx), [4.67] Sch. Ed, pp 8-13 (exp= value postulate). Sch. Eq. pp. 13-16 (Summary of uses of QM Wfons), Sch. Eq. pp. 17-20 (derive Sch. Eq. in exte pote). Sch. Eg b. 21 (t-indpt eg.). Properties... pp. 1-3.
Properties of 46 (thru Hermitianity): pp. 4-0. [4.50]
Properties of 4 4 4 (thru E-quantization): pp. 9-12. QM Egth of Motion; Communitators; Ham Egs., pp. 13-16. QM Observatility, pp.17-20, [up 3 lectures bia 93]. Heisenberg Unc. Rel : DADB > 2 (C); pp.21-24. Summary! Wave Mechanics, Dirac postulates: pp. 25-27. HOLIDAY (Columbus Day) Schrödinger Solns I: rect. Well, pp. 1-4. [4.30] Schrödinger Solns II : rect. barrier, pp. 5-9, Schrödinger Solns III: SHO. En & Vn, pp. 10-14. Mid Term Preview. Solns IV: SHO eigenfons, pp. 15-17. SHO wavefens, General Notion of Wave Pachets, pp.17-20. [MIDTERM]: 7-9 PM. Probs (1)-(5) (300 pts). 5HO wavepachets: ~ classical motion: pp. 19-22. SHO quantor via at at ops: pp 1-4. Variational Aspects of Schrödinger Eq. pp 1-4. CANCELLED (CAR Of 2). Made up on 12/5 (3SPTh.). Variational Aspects II: pp. 4-7. Expansion Post, & Completeness I, pp. 1-4. [4.16]Expansion Post. & Completeness II, pp. 5-8. WKB I: Intro. Thru Neumann corr=: pp. 1-6. WKBIL: up thru Bohr-Sommerfeld Rule: pp. 7-11. WKB II! de B λ criterion. 1D barraer penetration; 12-16. WKB II: Barrier > Field Emission; Anolde well: pp. 16-19. WKBY: Double-hump problem: pp. W20-23. HOLIDAY (Thanksgiving) WKB VI: Double-hump probil: trapping & decay: pp. 20-26. SSPTh. I: notions & Fund = Eq : pp SS 1-3. SSPTh. II: Soln by iteration, 1st order corres: pp 4-6. SSPTh. III & IV : thrn Ela, degenerate case: pb. 7-14. Non-Rel. El-Atom: pp. 1-6 (thru RIP) & CHG fen). Non-Rel. At-Atom: by. 7-11, EVALUATION.

Assignment 1 Pr. 1-3 (35 pts). [ (Intro.) 2 Pr. 4-6 (30 pts). X _ (Une, Relas) 3 Pr. 7-9 (45 pts). X · [(Packets, KG Eq.) 4 Pr.10-12 (40 pts). X (S-fan, xop+ita/ap). (5) Pr. 13-15 (30 pts) ΛX [ (Complex V; p& E Herm2) 6 Pr. 16-19 (40 pts). I (Commutators, QMX Mon.) 3 Pr. 20-23 (40 pts.) X - 910 assignment -(rect wells) (B) Pr. 24 - 27 (506ts), X - (V~ 8. fcn, some math,) - (SHO gnd state, 9) Pr. 28-31 (50 pts). <u> 1X.</u> (Viriational calons ( completeness for Unlbox! 10 Pr. 32-35 (40 pts) - (WKB: quarks, cold fusion) (1) Pr. 36-37 (50 bts) no assignment (WKB: double well, etc. - ( Spectrum for de easing state ) 12 Pr. 38-40 (50pts). (SS Perton Theory) (3) Pr. 41-43 (30 pts) - Final is Man. 12/12/94. no assignment