Conjuntos

Cristina Jordán Lluch Instituto de Matemáticas Multidisciplinar Grupo de Modelización Físico-Matemática

Índice

Contenido

- > Introducción
- > Nociones básicas
- > Representación
- > Subconjuntos
- > Operaciones
- > Álgebras de Boole
- > Recubrimiento

Introducción

Ejemplos

8

10

6

Castellón

Valencia

5

6 7

Alicante

Conjuntos

Un conjunto es una colección bien definida de objetos diferenciables entre sí.

Los objetos que forman parte de él se denominan elementos del conjunto.

Notación

Los conjuntos suelen denotarse con letras mayúsculas: A, B, C,...

٧

Nociones básicas

Ejemplos

2

6

8 10

5

Los números 2, 4,6 y 8 son elementos de este conjunto, A

e

o u

Las letras 2, 4,6 y 8 son elementos de este conjunto, B

1 2 3 4

7

Los números 1,2,3,4,5,6, y 7 son elementos de este conjunto, C

Castellón

Valencia

Alicante

Los ciudades Castellón, Valencia y Alicante, son elementos de este conjunto, D

Formas de definir un conjunto

- Por extensión: expresando, entre llaves, todos sus elementos separados por comas.
- Por comprensión: Mediante una propiedad que caracteriza a los elementos del conjunto.

Conjunto especial

> El conjunto vacío Ø es aquel que no tiene ningún elemento

Ejemplos

- A={2,4,6,8,10}
- A es el conjunto de números naturales pares mayores que 2 y menores que 10

- B={a,e,i,o,u}
- B es el conjunto de las vocales

- C={1,2,..., 6,7}
- C es el conjunto de números naturales mayores o iguales que 1 y menores o iguales que 7

Castellón Valencia Alicante

- D={Castellón, Valencia, Alicante}
- D es el conjunto formado por las provincias de la Comunidad Valenciana

Notación

- Los conjuntos suelen denotarse con letras mayúsculas: A, B, C,...
- Los elementos (genéricos) de un conjunto suelen denotarse con letras minúsculas.
- Si C es un conjunto y a es un elemento de C,
 - $a \in C$ significa "a pertenece a C"
 - $a \notin C$ significa "a no pertenece a C".

Regla nemotécnica

"∈" parece una e. En "pertenece" la única vocal es la "e"

Notación

- > Habitualmente se representa con
 - N el conjunto de los números naturales
 - Z el conjunto de los números enteros
 - Q el conjunto de los números racionales
 - R el conjunto de los números reales
 - C el conjunto de los números complejos
- Conjunto de elementos de A tales que verifican la condición P", se escribe $\{x \in A \mid x \text{ verifica P}\},\$ o también $\{x \in A : x \text{ verifica P}\}$

Ejemplos

- A={2,4,6,8,10}
- A es el conjunto de números naturales pares mayores que 2 y menores que 10
- $A=\{x\in\mathbb{N}\ /\ 1\leq x\leq 10\ y\ x\ es\ par\}$

- B={a,e,i,o,u}
- B es el conjunto de las vocales

- *C*={1,2,..., 6,7}
- C es el conjunto de números naturales mayores o iguales que 1 y menores o iguales que 7
- $C=\{x \in \mathbb{N} \mid 1 \le x \le 7\}$

- D={Castellón, Valencia, Alicante}
- D es el conjunto formado por las provincias de la Comunidad Valenciana

Representación

Diagramas de Venn

Los diagramas de Venn permiten visualizar con gran facilidad las propiedades de los conjuntos

Representación

Ejemplos

- $A = \{2,4,6,8,10\}$
- A es el conjunto de números naturales pares mayores que 2 y menores que 10
- $A=\{ x \in \mathbb{N} / 1 \leq x \leq 10 \text{ y x es par} \}$

- B es el conjunto de las vocales

- $C=\{1,2,...,6,7\}$
- C es el conjunto de números naturales mayores o iguales que 1 y menores o iguales que 7
- $C=\{x\in\mathbb{N} \mid 1\leq x\leq 7\}$

- D={Castellón, Valencia, Alicante}
- D es el conjunto formado por las provincias de la Comunidad Valenciana

Representación

Diagramas de Venn

Los diagramas de Venn permiten visualizar con gran facilidad las propiedades de los conjuntos.

Observación

Asumiremos que los conjuntos con los que trabajamos son subconjuntos de un conjunto universal U, señalado en los diagramas con un rectángulo.

Ejemplo

Subconjuntos

Subconjuntos

Dados dos conjuntos A y B, se dice que A es un subconjunto de B o que A está contenido en B si todos los elementos de A pertenecen también a B.

Notación A ⊂ B

Regla nemotécnica

"⊂" parece una "C". Subconjunto y "estar contenido en" es lo mismo.
Contenido empieza por "C"

Subconjuntos

Representación

Si A es subconjunto de B la representación con los diagramas de Venn es

Propiedades

- \triangleright Dado un conjunto C, el conjunto vacío (denotado con \varnothing) y el propio conjunto C son dos subconjuntos de C. Se llaman **subconjuntos impropios** de C.
- > Dados los conjuntos A, B y C,

$$A \subset B \land B \subset C \rightarrow A \subset C$$

Ŋ

Subconjuntos

Conjuntos iguales

Dos conjuntos A y B se dice que son **iguales** si tienen exactamente los mismos elementos.

Notación A = B

Dados dos conjuntos A y B, se tiene que

$$A = B \Leftrightarrow A \subset B \land B \subset A$$

Ejemplo

Considera los conjuntos A y B siguientes. Indica en qué forma se ha expresado cada uno de ellos.

 $A=\{x\in\mathbb{N}\mid x\text{ es múltiplo de 10, mayor o igual que 50 y menor o igual que 100}\}$

B={ 50, 60, 70, 80, 90, 100 }

¿Qué relación hay entre A y B? Justifica tu respuesta.

Subconjuntos

Ejemplo

El equipo de natación femenina de la UPV está formado por Lidia, Eva, y Sonia. Describe todas las posibilidades de obtener medalla de oro que tiene el equipo (es decir, Lidia, o, Eva y Sonia, o...)

М

Subconjuntos

Partes de un conjunto

Sea U el conjunto universal. Si C es un conjunto cualquiera, se denomina conjunto de las **partes de** C al conjunto cuyos elementos son todos los subconjuntos de C.

Notación $\mathcal{P}(C)$

Representación simbólica de la definición $\mathcal{P}(C) = \{A \subset U / A \subset C\}$

Ejemplos

- $\mathcal{P}(\emptyset) = \{\emptyset\}$
- Si A = {a, b, c}
 \$\mathcal{P}(A) = {\\ \Omega\$, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, A}\$

Observación

Sea C un conjunto, entonces

Si
$$A \subset C$$
 , entonces $A \in \mathcal{P}(C)$

Si
$$a \in \mathcal{C}$$
 , entonces $\{a\} \in \mathcal{P}(\mathcal{C})$

Ejemplo

Si Eva, del equipo de natación femenina del que hablábamos antes, se lesiona y no puede asistir al evento, ¿quiénes participarían al final?

Complementario de un conjunto

Dado un conjunto $A \subset U$ se denomina **complementario** de A al conjunto formado por todos los elementos del conjunto universal U que no pertenecen a A.

Notación Ac

Representación simbólica de la definición $A^c = \{ x \in U / x \notin A \}$

Ejemplo

A^c es la zona azul

Propiedades

$$D^{c} = \emptyset$$

$$D^{c} = U$$

$$A = B \rightarrow A^{c} = B^{c}$$

$$A^{c} = B^{c}$$

Ejemplos

- 1. Si $\mathbb R$, conjunto de los números reales, es el conjunto universal, ¿cuál es el complementario del conjunto $\mathbb Q$, conjunto de números racionales?
- 2. ¿Cuál es el complementario del conjunto A_1 respecto el conjunto universal N? A_1 ={ $x \in \mathbb{N} / 1 \le x \le 10$ y x es par}
- 3. ¿Cómo se llama el conjunto de números que están en \mathbb{N} y no están en A_4 ? A_4 ={ $x \in \mathbb{N} / 5 \le x \le 15$ y x es par}

Ejemplo

Se está organizando un viaje a Sevilla para participar en los próximos campeonatos interuniversitarios como representantes de la UPV. Pedro, Ana, Luisa y Miguel van a participar en las pruebas de 100 metros croll y Pedro, Ángel e Isabel en la de 100 espalda. Todos ellos tienen que salir el lunes de la semana que viene. ¿Cuántos billetes habrá que reservar?

Unión de conjuntos

Dados dos conjuntos A y B contenidos en el conjunto universal U, se denomina **unión de** A y B al conjunto formado por todos los elementos que pertenecen a A o a B

Notación AUB

Representación simbólica de la definición $A \cup B = \{ x \in U / x \in A \ \lor x \in B \}$

Ejemplo

A∪B es la zona amarilla

Ejemplo

Volviendo al ejemplo de los campeonatos interuniversitarios en Sevilla, ¿qué alumnos participan en las dos especialidades mencionadas, 100 metros croll y espalda?

Intersección de conjuntos

Dados dos conjuntos A y B contenidos en el conjunto universal U, se denomina intersección de A y B al conjunto formado por todos los elementos que pertenecen a A y a B

Notación A \(\text{B} \)

Representación simbólica de la definición $A \cap B = \{x \in U \mid x \in A \land x \in B\}$

Ejemplo

 $A \cap B$ es la zona amarilla

М

Operaciones

Propiedades

- \triangleright $A \subset A \cup B$
- $\triangleright A \cap B \subset A$
- \triangleright $A \subset B \Leftrightarrow A \cup B = B \Leftrightarrow A \cap B = A$

Conjuntos disjuntos

Dados dos conjuntos A y B se dice que A y B son disjuntos si su intersección es el conjunto vacío

Ejemplo

Si $\mathbb Q$ e $\mathbb I$ denotan, respectivamente, el conjunto de los números racionales e irracionales, $\mathbb Q$ e $\mathbb I$ son disjuntos, puesto que su intersección es el conjunto vacío (es decir, no tienen ningún elemento en común)

٧

Operaciones

Generalización de la unión e intersección de conjuntos

Consideremos un conjunto no vacío I (un conjunto de índices), y sea A_i un conjunto contenido en el conjunto universal U para cada $i \in I$. La unión y la intersección de la colección de conjuntos $\{A_i / i \in I\}$ se definen como:

$$\bigcup_{i \in I} A_i = \{ x / x \in Ai \text{ para algún } i \in I \}$$
$$\bigcap_{i \in I} A_i = \{ x / x \in Ai \text{ para todo } i \in I \}$$

Notación Si la colección consta de un número finito de conjuntos $A_1,...,A_n$, denotaremos su unión y su intersección por

$$A_1 \cup A_2 \cup ... \cup A_n$$
 y $A_1 \cap A_2 \cap ... \cap A_n$ respectivamente.

v

Álgebra de Boole

Propiedades booleanas, (U, ∩)

(U=conjunto universal, A,B \subset U)

1. Propiedades asociativas

$$A \cup (B \cup C) \equiv (A \cup B) \cup C$$

 $A \cap (B \cap C) \equiv (A \cap B) \cap C$

2. Propiedades conmutativas

$$A \cup B \equiv B \cup A$$

 $A \cap B \equiv B \cap A$

3. Propiedades distributivas

$$A \cup (B \cap C) \equiv (A \cup B) \cap (A \cup C)$$

 $A \cap (B \cup C) \equiv (A \cap B) \cup (A \cap C)$

4. Elementos neutros (identidad)

$$A \cup \emptyset \equiv A$$

 $A \cap U \equiv A$

5. Elementos complementarios

$$A \cup A^c \equiv U$$

 $A \cap A^c \equiv \emptyset$

٠

Álgebra de Boole

Comparación: Conjuntos-formas proposicionales

Conjuntos (U, ∩)

1. Propiedades asociativas

$$A \cup (B \cup C) \equiv (A \cup B) \cup C$$

$$A \cap (B \cap C) \equiv (A \cap B) \cap C$$

2. Propiedades conmutativas

$$A \cup B \equiv B \cup A$$

$$A \cap B \equiv B \cap A$$

3. Propiedades distributivas

$$A \cup (B \cap C) \equiv (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) \equiv (A \cap B) \cup (A \cap C)$$

4. Elementos neutros

$$A \cup \emptyset \equiv A$$

$$A \cap U \equiv A$$

5. Elementos complementarios

$$A \cup A^c \equiv U$$

$$A \cap A^c \equiv \emptyset$$

Lógica proposiciones (V, A)

1. Propiedades asociativas

$$P \vee (Q \vee R) \equiv (P \vee Q) \vee R$$

$$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$$

2. Propiedades conmutativas

$$P \lor Q \equiv Q \lor P$$

$$P \wedge Q \equiv Q \wedge P$$

3. Propiedades distributivas

$$P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$$

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

4. Elementos neutros

$$P \lor \phi \equiv P$$

$$P \wedge \tau \equiv P$$

5. Elementos complementarios

$$P \lor \neg P \equiv \tau$$

$$P \wedge P \equiv \phi$$

M

Álgebra de Boole

Propiedades

(U=conjunto universal, A,B \subset U)

1. Absorbentes

$$U \cup A \equiv U$$
$$A \cap \emptyset \equiv \emptyset$$

2. Leyes de absorción

$$A \cup (A \cap B) \equiv A$$

 $A \cap (A \cup B) \equiv A$

3. Idempotentes

$$A \cup A \equiv A$$

 $A \cap A \equiv A$

4. Leyes de De Morgan

$$(A \cup B)_c \equiv A_c \cup B_c$$

 $(A \cap B)_c \equiv A_c \cup B_c$

5. Doble negación

$$(A^c)^c \equiv A$$

.

Álgebra de Boole

Comparación: Conjuntos-formas proposicionales

Conjuntos (U, ∩)

1. Absorbentes

$$U \cup A \equiv U$$

$$A \cap \emptyset \equiv \emptyset$$

2. Simplificativas

$$A \cup (A \cap B) \equiv A$$

$$A \cap (A \cup B) \equiv A$$

3. Idempotentes

$$A \cup A \equiv A$$

$$A \cap A \equiv A$$

4. Leyes de De Morgan

$$(A \cup B)^c \equiv A^c \cap B^c$$

$$(A \cap B)^c \equiv A^c \cup B^c$$

5. Doble negación

$$(A^c)^c \equiv A$$

Lógica proposiciones (V, A)

1. Absorbentes

$$\tau \vee P \equiv \tau$$

$$P \wedge \phi \equiv \phi$$

2. Leyes de absorción

$$P \vee (P \wedge Q) \equiv P$$

$$P \wedge (P \vee Q) \equiv P$$

3. Idempotentes

$$P \vee P \equiv P$$

$$P \wedge P \equiv P$$

4. Leyes de De Morgan

$$\exists (P \land Q) \equiv \exists P \lor \exists Q$$

5. Doble negación

$$\exists (\exists P) \equiv P$$

Ejemplo

El equipo de baloncesto de mi barrio está formado por: Sergio (nuevo), Luis (veterano), Guille (veterano), Ausias (veterano), Carlos (nuevo), Eloy (veterano), Chris (veterano), Alberto (veterano), Nacho (veterano), Fernando (nuevo) y Mario (veterano). Por diferentes razones, Nacho y Carlos no van a poder asistir al partido del próximo domingo. El entrenador decide llevar a los veteranos. ¿A quiénes ha elegido?

М

Operaciones

Diferencia de conjuntos

Dados dos conjuntos A y B contenidos en el conjunto universal U se denomina diferencia del conjunto A menos el B al conjunto formado por todos los elementos que pertenecen a A y no a B

Notación A - B

Representación simbólica de la definición A - B= $\{x \in U \mid x \in A \land x \notin B\}$

Ejemplo

A - B es la zona amarilla

Propiedad

$$A - B = A \cap B^c$$

Diferencia simétrica de dos conjuntos

Dados dos conjuntos A y B contenidos en el conjunto universal U se denomina diferencia simétrica del conjunto y el B al conjunto formado por todos los elementos que pertenecen a A y no a B, unión el conjunto de todos los elementos que pertenecen a B y no a A

Notación A D B

Representación simbólica de la definición

$$A \triangle B = \{ x \in U \ / \ x \in A \ \land \ x \notin B \} \cup \{ x \in U \ / \ x \in B \ \land \ x \notin A \} =$$

$$= (A-B) \cup (B-A) = (A \cup B) - (A \cap B)$$

Ejemplo

 $A \triangle B$ es la zona amarilla

Ejemplos

Si disponemos de pantalones de 3 colores, rojo, negro y blanco, y de camisetas de los tres mismos colores, ¿cuántos equipajes distintos podremos montar?

۲

Operaciones

Producto cartesiano de dos conjuntos

Dados dos conjuntos A y B contenidos en el conjunto universal U, se denomina producto cartesiano de A y B al conjunto al conjunto de pares ordenados (a, b) tales que a pertenece a A y b pertenece a B.

Notación A×B

Representación simbólica de la definición $A \times B = \{ (a, b) \in U \times U / a \in A \land b \in B \}$

Ejemplo

- 1. Sea $A = \{i, j, k\} y B = \{1, 2\}, entonces:$ 1.1. $A \times B = \{(i, 1), (i, 2), (j, 1), (j, 2), (k, 1), (k, 2)\}$ 1.2. $B \times B = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$
- 2. Sean $C = \{x \in \mathbb{N} / 2 \le x \le 5\}$ y D = $\{x \in \mathbb{N} / 1 \le x \le 3\}$. Representa gráficamente , utilizando ejes de coordenadas, el conjunto $C \times D$
- 3. Sean $F=\{x\in\mathbb{R}\ /\ 2\le x\le 5\}$ y $G=\{x\in\mathbb{R}\ /\ 1\le x\le 3\}$. Representa gráficamente , utilizando ejes de coordenadas, el conjunto $F\times G$

۲

Operaciones

Producto cartesiano de n conjuntos

Dados n conjuntos A_1 , A_2 , ..., A_n contenidos en el conjunto universal U se denomina **producto cartesiano de** A_1 , A_2 , ... y A_n al conjunto de n-tuplas ordenadas (a_1 , a_2 , ..., a_n) tales que a_i pertenece a A_i , para todo $i \in \{1, 2, ..., n\}$

Notación $A_1 \times A_2 \times ... \times A_n$

Representación simbólica de la definición

$$A_1 \times A_2 \times ... \times A_n = \{ (a_1, a_2, ..., a_n) / a_i \in A_i \text{ para todo } i \in \{ 1, 2, ..., n \} \}$$

Ejemplo

Sea $A = \{a, b, c\}, B = \{1, 2\} y C = \{6, 7\}, entonces:$ $A \times B \times C = \{(a, 1, 6), (a, 2, 6), (b, 1, 6), (b, 2, 6), (c, 1, 6), (c, 2, 6), (a, 1, 7), (a, 2, 7), (b, 1, 7), (b, 2, 7), (c, 1, 7), (c, 2, 7)\}$

М

Operaciones

Ejercicios

- 1. Del producto cartesiano $A \times A$ se conocen los elementos (a, b) y (l, m), y se sabe que tiene 16 elementos. Determina quién es el conjunto A y escribe el resto de los elementos de $A \times A$.
- 2. Dados los conjuntos $A=\{x,y,z\}$, $B=\{x,y,u\}$ y $C=\{y,z,u\}$, define por extensión los conjuntos:

$$(A \cap B) \times (A \cap C)$$
; $(B \cup C) \times (A \cap C)$; $(A \times A) \cap (A \times B)$

3. ¿De cuántas maneras puede ir vestido un hombre que tiene 5 chaquetas, 3 pantalones y 4 camisas?

Recubrimiento

Ejemplo

Álvaro es alumno de primero de la ETSInf.

Analiza que relación tiene el conjunto A con la unión del resto de conjuntos definidos.

Recubrimiento

Recubrimiento de un conjunto

Se dice que n conjuntos A_1 , A_2 , ..., A_n distintos de vacío constituyen un **recubrimiento** del conjunto B si su unión contiene a B, es decir, si

$$B \subset U_{i \in I} A_i$$

Ejemplo

Sean $A_1 = \{1, 2, 3\}, A_2 = \{2, 3, 4\} \text{ y } A_3 = \{4, 5, 6, 7\}.$

La colección o familia de conjuntos $\{A_1, A_2, A_3\}$ es un recubrimiento del conjunto $B = \{x \in \mathbb{N} \mid 1 \le x \le 5\}$ y no lo es de $C = \{1, 2, 3, 7, 8\}$

Recubrimiento

Ejemplo

Se han marcado todos los productos de un hipermercado con una de las siguientes etiquetas: alimentación, droguería, juguetes, bazar, textil y jardinería. Considera los siguientes conjuntos:

```
A={ productos etiquetados como alimentación}
```

B={ productos etiquetados como droguería}

C={ productos etiquetados como juguete}

D={ productos etiquetados como bazar}

E={ productos etiquetados como textil }

F={ productos etiquetados como jardinería}

Analiza estos conjuntos, la relación entre ellos y con el conjunto universal.

'n

Recubrimiento

Partición de un conjunto

Se dice que $\,$ n conjuntos $A_1,\,A_2\,$, ... , $A_n,\,$ distintos de vacío constituyen una partición del conjunto B si

- $-B = \bigcup_{i \in I} A_i y$
- los conjuntos A_i son disjuntos dos a dos (es decir, $A_i \cap A_j = \emptyset$, si $i \neq j$).

Nota

Toda partición es un recubrimiento

Ejemplo

Sean A_1 = { 1, 2, 3 }, A_2 = { 4, 5, 6 } y A_3 = { 7, 8, 9, 10 }. La colección o familia de conjuntos { A_1 , A_2 , A_3 } es una partición del conjunto B = { $x \in \mathbb{N} \ / \ 1 \le x \le 10$ } y no lo es de C = { $x \in \mathbb{N} \ / \ 1 \le x \le 8$ }, ni de D = { $x \in \mathbb{N} \ / \ 1 \le x \le 12$ }