Tissue-Class Segmentation

Overall Pipeline

Image segmentation

- · We are often interested in subdividing or segmenting the brain into meaningful biological regions of interest (ROIs) for an analysis.
- Examples: tissue segmentation, segmentation of gray matter structures, segmentation of pathology (MS lesions, tumors, ...)
- We will perform 3-class tissue segmentation in R using fslr and ANTSR:
 - Cerebrospinal fluid (CSF)
 - Gray Matter (GM)
 - White Matter (WM)

Loading Data

• Let's read in the training T1 and brain mask for subject 05 (not 01!).

```
library(ms.lesion)
library(neurobase)
all_files = get_image_filenames_list_by_subject(
   group = "training",
   type = "coregistered")
files = all_files$training05 # NOT training subject 1!
t1 = readnii(files["T1"])
rt1 = robust_window(t1)
mask = readnii(files["Brain_Mask"])
```

Tissue Segmentation: Large Outliers

- · Many tissue class segmentations are based on k-means clustering.
- These methods can be skewed by large outliers.

```
hist(t1, mask = mask, breaks = 2000); text(x = 800, y = 3000, "outliers!")
```


Where are the outliers?

ortho2(rt1, t1 > 400, xyz = xyz(t1 > 400)) # xyz - cog of a region

Cleaning up values: Masking the image

```
t1[ t1 < 0 ] = 0
t1 = mask_img(t1, mask)
rt1 = robust_window(t1)</pre>
```

What does the histogram look like now?

hist(rt1, mask = mask, breaks = 2000);

Tissue Segmentation using FSL FAST

- FAST is based on a hidden Markov random field model and an Expectation-Maximization algorithm (Zhang, Brady, and Smith 2001).
- · It jointly produces a bias field corrected image and a probabilistic tissue segmentation.
- More robust to noise and outliers than finite mixture model-based methods that do not incorporate spatial information.

The fslr function fast calls fast from FSL. The --nobias option tells FSL to not perform inhomogeneity correction (N4 already performed in ANTSR).

FAST Results

FAST assumes three tissue classes and produces an image with the three labels, ordered by increasing within-class mean intensities. In a T1 image, this results in:

- · Level 1: CSF
- · Level 2: Gray Matter
- · Level 3: White Matter

FAST: White Matter

```
ortho2(rt1, t1fast == 3, col.y = alpha("red", 0.5), text = "White Matter")
```


FAST: Gray Matter

```
ortho2(rt1, t1fast == 2, col.y = alpha("red", 0.5), text = "Gray Matter")
```


FAST: CSF

```
ortho2(rt1, t1fast == 1, col.y = alpha("red", 0.5), text = "CSF")
```


Removing large values: Is there an effect?

FAST with Window: White Matter

FAST with Window: Gray Matter

FAST with Window: CSF

FAST Results

- · Overall the results look good
 - Not much difference after dampening outliers using robust_window

Tissue Segmentation using ANTsR, extrantsr

- Uses Atropos (Avants et al. 2011)
 - 3D K-means clustering + a Markov random field
- The extrantsr::otropos function works with nifti objects
 - calls ANTSR::atropos function

```
t1_otropos = otropos(a = t1, x = mask) # using original data
t1seg = t1 otropos$segmentation
```

Atropos: White Matter

```
ortho2(rt1, t1seg == 3, col.y = alpha("red", 0.5), text = "White Matter")
```


Atropos: Gray Matter

```
ortho2(rt1, t1seg == 2, col.y = alpha("red", 0.5), text = "Gray Matter")
```


Atropos: CSF

```
ortho2(rt1, t1seg == 1, col.y = alpha("red", 0.5), text = "CSF")
```


Default Atropos Results

- · Overall the results do not look good
 - The k-means clustering is affected by large outliers
- We will try using robust_window

Atropos using Windowing

```
robust_t1_otropos = otropos(a = rt1, x = mask) # using robust
robust_t1seg = robust_t1_otropos$segmentation
```

double_ortho(rt1, robust_t1seg)

Atropos with Window: White Matter

```
ortho2(rt1, robust_t1seg == 3, col.y = alpha("red", 0.5), text = "White Matter")
```


Atropos with Window: Gray Matter

```
ortho2(rt1, robust_t1seg == 2, col.y = alpha("red", 0.5), text = "Gray Matter")
```


Atropos with Window: CSF

```
ortho2(rt1, robust_t1seg == 1, col.y = alpha("red", 0.5), text = "CSF")
```


Atropos with Window Results

- · Overall the results look like they reasonably separate the classes
 - No ground truth
- · Winsorizing large outliers aided the k-means clustering
 - Results much better than running Atropos on the raw data

Atropos WM vs. FAST WM

Estimating the Volume of Each Class

We can create a table which will count the number of voxels in each category:

Estimating the Volume of Each Class

By multiplying by the voxel resolution (in cubic centimeters) using the voxres function, we can get volumes

Website

http://johnmuschelli.com/imaging_in_r

References

Avants, Brian B, Nicholas J Tustison, Jue Wu, Philip A Cook, and James C Gee. 2011. "An Open Source Multivariate Framework for N-Tissue Segmentation with Evaluation on Public Data." 9 (4). Springer:381–400.

Zhang, Yongyue, Michael Brady, and Stephen Smith. 2001. "Segmentation of Brain MR Images Through a Hidden Markov Random Field Model and the Expectation-Maximization Algorithm." 20 (1):45–57. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=906424.