Центр тяжести

$$\gamma = \lim_{\Delta v o 0} \left(rac{\Delta P}{\Delta v}
ight) = rac{dP}{dv}$$
 - Вес на единицу объема. $ho = rac{\gamma}{g}, \quad \Delta P_i = \gamma_i \Delta V_i = g_i \cdot
ho_i \cdot \Delta v_i$ $ec{r_0} = rac{\sum\limits_{i=1}^n (P_i \cdot ec{r_i})}{\sum\limits_{i=1}^n P_i} = rac{\sum\limits_{i=1}^n (\gamma_i \cdot \Delta v_i \cdot ec{r_i})}{\sum\limits_{i=1}^n (\gamma_i \cdot \Delta v_i)}$ $\gamma_i =
ho_i \cdot g_i; \quad ec{r_0} = rac{\sum\limits_{i=1}^n (\rho_i \cdot g_i \cdot \Delta v_i \cdot ec{r_i})}{\sum\limits_{i=1}^n (\rho_i \cdot g_i \cdot \Delta v_i)}$

Если тело мало, то $g_i=\mathrm{const}$ по V_i , тогда:

$$ec{r_0} = rac{\sum\limits_{i=1}^n (
ho_i \cdot \Delta v_i \cdot ec{r_i})}{\sum\limits_{i=1}^n (
ho_i \cdot \Delta v_i)}$$
 - радиус-вектор центра масс тяжести,

где
$$\sum_{i=1}^n (
ho_i \cdot \Delta v_i)$$
 - масса тяжести.

Если γ_i, ρ - непрерывные функции для всех точек тела, то $\Rightarrow \rho_i$ - одинаково для всех слагаемых.

$$r_0 \equiv rac{\int\limits_V^{}
ho \cdot ec{r} \cdot dv}{\int\limits_V^{}
ho \cdot dv}$$

1. Физический смысл:

- Центр тяжести точка приложения равнодействующей сил тяжести
- Для однородного тела совпадает с центром масс