

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

A GEOMETRICAL PROBLEM CONNECTED WITH THE CONTINUATION OF A POWER-SERIES

By H. MASCHKE

GIVEN a power-series P(x) with only one singular point A on the circumference of its circle of convergence.

Denote this circle by C_1 , its center by M.

Let us suppose that all the other singular points of the analytic function defined by the element P(x) are so situated as not to interfere with the continuations of P(x) which are to be considered.

The following purely geometrical question arises: How are the intermediate circles to be chosen in order to arrive again at a circle with center M, by a minimum number of continuations around the point A?

To answer this question we consider the total area covered by all direct (first) continuations of P(x). The boundary of this area is the envelope of the circles passing through A whose centers lie on the circumference of C_1 . This envelope is a cardioid C_2 . The boundary of the area covered by all the second continuations is the envelope C_3 of all circles through A whose centers lie on C_2 . Continuing this process, we obtain a series of curves C_2 , C_3 , \cdots , C_n , where C_n is the boundary of the area covered by all (n-1)st continuations.

Counting radii vectores ρ from A and polar angles θ from AM, and taking the radius AM = 1, the equations of the successive curves appear in

the following simple form:

 $egin{aligned} C_1 & ext{(given circle)}: &
ho = 2 \cos heta; \ C_2 & ext{(cardioid)}: &
ho = 4 \cos^2(rac{1}{2} \, heta); \ C_n & ext{(sine-spiral)}: &
ho = 2^n \cos^n(rac{1}{2} \, heta). \end{aligned}$

These curves are so-called sine-spirals.* With regard to the curves C_n the following theorem can easily be proved:

Define a series of points $P_1, P_2, \dots, P_n, \dots$, where P_1 lies arbitrarily on C_1 , and where every P_{n+1} is that point on C_{n+1} (for $n = 1, 2, 3, \dots$)

^{*} Compare Scheffers' article in the Encyklopädie der mathematischen Wissenschaften, vol. III, D4, §§21-24.

in which C_{n+1} is touched by the circle with center P_n and radius P_nA . Then for the polar coordinates ρ_n and θ_n of P_n the following relations hold:

$$\rho_n = \rho_1^n, \quad \theta_n = n\theta_1.$$

Choosing $\rho_1 = 1$, we have $\theta_1 = \pi/3$ and every $\rho_n = 1$. Hence, a circle with radius 1 about A meets C_1, C_2, \dots, C_6 in six points which form a regular hexagon. The curve C_6 passes, therefore, through M.

Six continuations at least are then required in order that the center M shall lie inside of the last one, and seven continuations at least are necessary to reach a circle with M as center.

In order that the sixth continuation shall contain the center M it is necessary that the centers of two consecutive continuations be always separated by one of the curves C_n .

In the adjoining figure the curves C_n are drawn only so far as is required for continuations around A in the positive sense (counter-clockwise), and only that part of them is shown in the figure which lies in a circle with radius 1 about the singular point A as center.

Denote now the center of the n^{th} continuation by T_n . If we wish T_7 to coincide with M, T_6 must lie below the straight line L_1 bisecting AM and perpendicular to it (see diagram). This defines for T_5 also a certain limiting curve L_2 , the locus of the centers of circles passing through A and touching L_1 . Likewise we obtain for T_4 , T_3 , T_2 , T_1 the limiting curves L_3 , L_4 , L_5 , L_6 respectively.

The equations of these curves are:

$$egin{align} L_1 & ext{(straight line)} : rac{1}{
ho} = 2 \cos heta \,; \ L_2 & ext{(parabola)} : & rac{1}{
ho} = 4 \cos^2(rac{1}{2} \; heta) \;; \ L_n & ext{(sine-spiral)} : & rac{1}{
ho} = 2^n \cos^n(rac{1}{n} \; heta). \end{split}$$

These curves L_n are again sine-spirals.

Every L_n (for $n = 1, 2, \dots, 6$) touches the corresponding C_{6-n} (where $C_0 = C_6$) on the unit-circle around A.

Hence, in our diagram, for continuations around A in the positive sense, none of the centers T must lie in the unshaded region of the circle with center A.

64 MASCHKE

Thus we have reached the following result:

In order that the center T_7 of the seventh continuation shall coincide with M it is necessary and sufficient that the center of the first continuation T_1 (for continuations around A in the positive sense) lie in the circle C_1 on the right side of L_6 (compare diagram), and that the centers T_n of any two consecutive continuations be separated not only by a curve C, but also by a curve L.

University of Chicago, October, 1905.