16 Anon.

ETRA Privacy and Ethics Statement

 In this paper, the authors proposed the use of iris style feature for iris recognition, and the use of neural style transfer to mask identifiable iris style features. The former is proved to be most robust against image rotation and perspective transform, which can enhance iris-based authentication and identification, while the latter can be used to secure iris-based biometrics. The authors have also shown that the risk of misuse of iris style transfer for malicious purposes, such as faking one's presence, is relative low compared to previous works.

A Implementation

We published our code on https://github.com/AnonymWriter/Iris-Style-Transfer for reproducibility. The repository is anonymized for review.

B Randomness

To guarantee reproducibility, we fixed random seed to 42 at the very beginning of our program. The random seed was fed to *numpy.random.seed*, *torch.manual_seed*, and *random.seed*.

C Dataset

The OpenEDS2019 [Garbin et al. 2019] dataset contains four parts, namely: segmentation data, generative data, sequence data, and corneal topography data. We considered only the segmentation data, whose details are given in Table 3.

Property	OpenEDS2019 (segmentation)
samples	12,759
users	152
modality	grayscale image
resolution	640×400
ground truth	segmentation labels

Table 3. Experiment environment.

D Environment

Our environment by date November 1st, 2024 was listed in Table 4. It should be noticed that although our code can be run on a device without dedicated GPU, it is recommended to run the program on a computer with \geq 32GB RAM and a dGPU with \geq 32GB VRAM.

		Software	Version
Hardware	Specification	OS	Ubuntu 22.04.4 LTS
CPU	AMD EPYC 7763 64-Core	Python	3.12.4 by Anaconda
GPU	NVIDIA A100 80GB PCIe×4	PyTorch	2.4.1 for CUDA 12.4
Memory	1TB	Scikit-Learn	1.4.2
		WandB	0.18.5

Table 4. Experiment environment.

E Hyperparameters

For training the classifiers, we used the Adam optimizer and conducted grid search in range $\{1e-6, 1e-5, 1e-4, 1e-3, 1e-2\}$ for optimal learning rates. The best performing learning rates were 1e-5 for both feature sets. For style transfer, we followed the instruction given by [Gatys 2017], namely using an LBFGS optimize with learning 1.0. Throughout the experiments, we used a batch size of 64. The hyperparameters were listed in Table 5 for a clear view.

18 Anon.

Hyperparameter	Value
optimizer (classifiers)	Adam
optimizer (style transfer)	LBFGS
learning rate (classifiers)	1 <i>e</i> – 5
learning rate (style transfer)	1.0
batch size	64
image scaling	224×224

Table 5. Details of hyperparameters.

F Model Structures

We implemented two different projection heads. The first one was designed for conventional VGG features, whereas the second was tailor for style features. We designed the structures of both heads so that they resemble the original VGG projection head as much as possible. The architectures of them are given in Tables 6 and 7:

Layer	Specification		
AdaptiveAvgPoll2d	$output_size = (7, 7)$		
Flatten	-		
Linear	in = 25,088, out = 4.096, bias = True		
ReLU	inplace = True		
Dropout	p = 0.5, inplace = True		
Linear	in = 4,096, out = 4,096, bias = True		
ReLU	inplace = True		
Dropout	p = 0.5, inplace = True		
Linear	in = 4,096, out = 151, bias = True		

Table 6. Structure of projection head (VGG feature).

Layer	Specification	
Linear	in = 1,920 , out = 4.096, bias = True	
ReLU	inplace = True	
Dropout	p = 0.5, inplace = True	
Linear	in = 4,096, out = 4,096, bias = True	
ReLU	inplace = True	
Dropout	p = 0.5, inplace = True	
Linear	in = 4,096, out = 151, bias = True	

Table 7. Structure of projection head (style feature).

G Additional Results

Additional results measured with F1 score and Matthews correlation coefficient (MCC) were given here.

Received 1 November 2024; revised XXX; accepted XXX

Manuscript submitted to ACM

Fig. 9. Test performance of style feature and common CNN feature for iris recognition.

Fig. 10. Style feature vs. common CNN feature regarding robustness against random rotation and perspective transformation (F1 score).

Fig. 11. Style feature vs. common CNN feature regarding robustness against random rotation and perspective transformation (MCC).