WHAT IS CLAIMED IS:

- 1. A glycopeptide substituted with one or more substituents each comprising one or more phosphono groups; or a pharmaceutically acceptable salt, or stereoisomer, or prodrug thereof.
- 5 2. The glycopeptide of claim 1, wherein the glycopeptide is substituted at the C-terminus with a substituent comprising one or two phosphono groups.
 - 3. The glycopeptide of claim 1, wherein the glycopeptide is substituted at the R-terminus with a substituent comprising one or two phosphono groups.
- 4. The glycopeptide of claim 3, wherein the substituent at the R-terminus is N(phosphonomethyl)aminomethyl; N-(2-hydroxy-2-phosphonoethyl)aminomethyl; Ncarboxymethyl-N-(phosphonomethyl)aminomethyl; N,Nbis(phosphonomethyl)aminomethyl; or N-(3-phosphonopropyl)aminomethyl.

1

5. The glycopeptide of claim 1 which is a compound of formula I:

wherein:

5

 R^1 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and $-R^a-Y-R^b-(Z)_x$; or R^1 is a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$, R^f , $-C(O)R^f$, or $-C(O)-R^a-Y-R^b-(Z)_x$;

 $R^2 \ is \ hydrogen \ or \ a \ saccharide \ group \ optionally \ substituted \ with \\ -R^a-Y-R^b-(Z)_x, \ R^f, \ -C(O)R^f, \ or \ -C(O)-R^a-Y-R^b-(Z)_x;$

10 R^3 is $-OR^c$, $-NR^cR^c$, $-O-R^a-Y-R^b-(Z)_x$, $-NR^c-R^a-Y-R^b-(Z)_x$, $-NR^cR^e$, or $-O-R^e$; or R^3 is a nitrogen-linked, oxygen-linked, or sulfur-linked substituent that comprises one or more phosphono groups;

 R^4 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and

a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$, R^f , $-C(O)R^f$, or $-C(O)-R^a-Y-R^b-(Z)_x$, or R^4 and R^5 can be joined, together with the atoms to which they are attached, form a heterocyclic ring optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$;

 R^5 is selected from the group consisting of hydrogen, halo, $-CH(R^c)-NR^cR^c$, $-CH(R^c)-NR^cR^e$, $-CH(R^c)-NR^c-R^a-Y-R^b-(Z)_x$, $-CH(R^c)-NR^c-R^a-C(=O)-R^x$, and a substituent that comprises one or more phosphono groups;

 R^6 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$, R^f , $-C(O)R^f$, or $-C(O)-R^a-Y-R^b-(Z)_x$, or R^5 and R^6 can be joined, together with the atoms to which they are attached, form a heterocyclic ring optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$;

 R^7 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, and $-C(O)R^d$;

R⁸ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R⁹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

 R^{10} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; or R^8 and R^{10} are joined to form $-Ar^1-O-Ar^2-$, where Ar^1 and Ar^2 are independently arylene or heteroarylene;

15

10

5

20

25

R¹¹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic, or R¹⁰ and R¹¹ are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring;

 R^{12} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, $-C(O)R^d$, $-C(NH)R^d$, $-C(O)NR^cR^c$, $-C(O)OR^d$, $-C(NH)NR^cR^c$, $-R^a-Y-R^b-(Z)_x$, and $-C(O)-R^a-Y-R^b-(Z)_x$, or R^{11} and R^{12} are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring;

R¹³ is selected from the group consisting of hydrogen or -OR¹⁴;

R¹⁴ is selected from hydrogen, -C(O)R^d and a saccharide group;
each R^a is independently selected from the group consisting of alkylene,
substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene;

each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and $-C(O)R^d$;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R^e is a saccharide group;

20

5

10

15

25

each R^f is independently alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, or heterocyclic;

R^x is an N-linked amino saccharide or an N-linked heterocycle;

5 X¹, X² and X³ are independently selected from hydrogen or chloro; each Y is independently selected from the group consisting of oxygen, sulfur,

$$-S-S-, -NR^{c}-, -S(O)-, -SO_{2}-, -NR^{c}C(O)-, -OSO_{2}-, -OC(O)-, -NR^{c}SO_{2}-,$$

$$-C(O)NR^c-, -C(O)O-, -SO_2NR^c-, -SO_2O-, -P(O)(OR^c)O-, -P(O)(OR^c)NR^c-, \\$$

$$-OP(O)(OR^c)O-, -OP(O)(OR^c)NR^c-, -OC(O)O-, -NR^cC(O)O-, -NR^cC(O)NR^c-,$$

10 $-OC(O)NR^{\circ}$ -, -C(=O)-, and $-NR^{\circ}SO_2NR^{\circ}$ -;

each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic;

n is 0, 1 or 2; and

x is 1 or 2;

or a pharmaceutically acceptable salt, stereoisomer, or prodrug thereof; provided at least one of R³ and R⁵ is a substituent comprising one or more phosphono groups.

- 6. The glycopeptide of claim 5 wherein R^1 is a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$, R^f , $-C(O)R^f$, or $-C(O)-R^a-Y-R^b-(Z)$.
- 7. The glycopeptide of claim 5 wherein R^1 is a saccharide group of the formula:

wherein R^{15} is $-R^a-Y-R^b-(Z)_x$, R^f , $-C(O)R^f$, or $-C(O)-R^a-Y-R^b-(Z)_x$; and R^{16} is hydrogen or methyl.

- 8. The glycopeptide of claim 6 wherein R^2 , R^4 , R^6 , and R^7 are each hydrogen.
- 9. The glycopeptide of claim 8 wherein R^3 is -OH.
- 5 10. The glycopeptide of claim 8 wherein R³ is a nitrogen-linked, oxygen-linked, or sulfur-linked substituent that comprises one or more phosphono groups.
 - 11. The glycopeptide of claim 10 wherein R^3 is a group of the formula $O-R^a-P(O)(OH)_2$, $-S-R^a-P(O)(OH)_2$, or $-NR^c-R^a-P(O)(OH)_2$.
- The glycopeptide of claim 8 wherein R⁵ is a group of the formula
 -CH(R²¹)-N(R^c)-R^a-P(O)(OH)₂; wherein R²¹ is hydrogen or R^d.
 - 13. The glycopeptide of claim 12 wherein R⁵ is -CH-NH-R^a-P(O)(OH)₂.

14. The glycopeptide of claim 5 which is a compound of formula II:

$$R^{19}$$
 $N-R^{20}$
 R^{19}
 $N-R^{20}$
 R^{19}
 R^{10}
 R^{10}

wherein:

5

R¹⁹ is hydrogen;

 R^{20} is $-R^a - Y - R^b - (Z)_x$, R^f , $-C(O)R^f$, or $-C(O) - R^a - Y - R^b - (Z)_x$; and R^a , Y, R^b , Z, x, R^f , R^3 , and R^5 have the values defined in claim 5; or a pharmaceutically acceptable salt, or stereoisomer, or prodrug thereof; provided at least one of R^3 and R^5 is a substituent comprising one or more phosphono groups.

- 15. The glycopeptide of claim 14 wherein R^3 is -OH.
- 10 16. The glycopeptide of claim 14 wherein R³ is a nitrogen-linked, oxygen-linked, or

sulfur-linked substituent that comprises one or more phosphono groups.

- 17. The glycopeptide of claim 14 wherein R^3 is a group of the formula $O-R^a-P(O)(OH)_2$, $-S-R^a-P(O)(OH)_2$, or $-NR^c-R^a-P(O)(OH)_2$.
- 18. The glycopeptide of claim 14 wherein R⁵ is a group of the formula -(CH(R²¹)-N(R^c)-R^a-P(O)(OH)₂; wherein R²¹ is hydrogen or R^d.
 - 19. The glycopeptide of claim 14 wherein R²⁰ is -CH₂CH₂-NH-(CH₂)₉CH₃;
 -CH₂CH₂CH₂-NH-(CH₂)₈CH₃; -CH₂CH₂CH₂CH₂-NH-(CH₂)₇CH₃;
 -CH₂CH₂-NHSO₂-(CH₂)₉CH₃; -CH₂CH₂-NHSO₂-(CH₂)₁₁CH₃;
 -CH₂CH₂-S-(CH₂)₈CH₃; -CH₂CH₂-S-(CH₂)₉CH₃; -CH₂CH₂-S-(CH₂)₁₀CH₃;
- $$\begin{split} &- \text{CH}_2\text{CH}_2\text{CH}_2 \text{S} (\text{CH}_2)_8\text{CH}_3; \text{CH}_2\text{CH}_2\text{CH}_2 \text{S} (\text{CH}_2)_9\text{CH}_3; \text{CH}_2\text{CH}_2\text{CH}_2 \text{S} (\text{CH}_2)_3 \text{CH}_2\text{CH}_2\text{CH}_3; \text{CH}_2\text{CH}_3; \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3; \\ &- \text{CH}_2\text{CH}_2 \text{S}(\text{O}) (\text{CH}_2)_9\text{CH}_3; \text{CH}_2\text{CH}_2 \text{S} (\text{CH}_2)_6\text{Ph}; \text{CH}_2\text{CH}_2 \text{S} (\text{CH}_2)_8\text{Ph}; \\ &- \text{CH}_2\text{CH}_2 \text{S} (\text{CH}_2)_8\text{Ph}; \text{CH}_2\text{CH}_2 \text{NH} \text{CH}_2 \text{4} (\text{4} \text{Cl} \text{Ph}) \text{Ph}; \\ &- \text{CH}_2\text{CH}_2 \text{NH} \text{CH}_2 \text{4} [\text{4} (\text{CH}_3)_2\text{CHCH}_2] \text{Ph}; \text{CH}_2\text{CH}_2 \text{NH} \text{CH}_2 \text{4} (\text{4} \text{CF}_3 \text{Ph}) \text{Ph}; \end{split}$$
- $\begin{array}{ll} -\text{CH}_2\text{CH}_2-\text{S}-\text{CH}_2\text{-4}-(4-\text{Cl-Ph})-\text{Ph}; -\text{CH}_2\text{CH}_2-\text{S}(\text{O})-\text{CH}_2\text{-4}-(4-\text{Cl-Ph})-\text{Ph}; \\ -\text{CH}_2\text{CH}_2-\text{S}-\text{CH}_2\text{-4}-(4-\text{Cl-Ph})-\text{Ph}; -\text{CH}_2\text{CH}_2\text{CH}_2-\text{S}(\text{O})-\text{CH}_2\text{-4}-(4-\text{Cl-Ph})-\text{Ph}; \\ -\text{CH}_2\text{CH}_2-\text{S}-\text{CH}_2\text{-4}-[3,4-\text{di-Cl-Ph}\text{CH}_2\text{O}-)-\text{Ph}; -\text{CH}_2\text{CH}_2-\text{NHSO}_2-\text{CH}_2\text{-4}-[4-(4-\text{Cl-Ph})-\text{Ph}; \\ -\text{CH}_2\text{CH}_2\text{CH}_2-\text{NHSO}_2-\text{CH}_2-\text{A}-(4-\text{Cl-Ph})-\text{Ph}; \\ -\text{CH}_2\text{CH}_2\text{CH}_2-\text{NHSO}_2-\text{CH}_2\text{-4}-(\text{Ph-C}\equiv\text{C}-)-\text{Ph}; -\text{CH}_2\text{CH}_2\text{CH}_2-\text{NHSO}_2-\text{4}-(4-\text{Cl-Ph})-\text{Ph}; \\ -\text{CH}_2\text{CH}_2\text{CH}_2-\text{NHSO}_2-\text{CH}_2\text{-4}-(\text{naphth-2-yl})-\text{Ph}. \end{array}$
 - 20. The glycopeptide of claim 14 wherein R³ is -OH; R⁵ is N-(phosphonomethyl)-aminomethyl; R¹⁹ is hydrogen, and R²⁰ is -CH₂CH₂-NH-(CH₂)₉CH₃; or a pharmaceutically acceptable salt thereof.

- 21. The glycopeptide of claim 14 wherein R³ is -OH; R⁵ is N-(phosphonomethyl)-aminomethyl; R¹⁹ is hydrogen, and R²⁰ is -CH₂CH₂-NH-(CH₂)₉CH₃.
- 22. The glycopeptide of claim 20 which is the hydrochloride salt.
- 23. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a glycopeptide of any one of claims 1, 5, 14, and 20.
 - 24. The pharmaceutical composition of Claim 23, which comprises a cyclodextrin.
 - 25. The composition of claim 24 wherein the cyclodextrin is hydroxypropyl-β-cyclodextrin.
- The composition of claim 25 which comprises from about 250 mg to about 1000 mg of the glycopeptide and from about 250 mg to about 10 g hydroxypropyl-β-cyclodextrin.
 - 27. The composition of claim 26 wherein the weight ratio of hydroxypropyl-β-cyclodextrin to the glycopeptide is from about 1:1 to about 10:1 inclusive.
- 15 28. A method for preparing a glycopeptide as described claim 1 which is substituted at the C-terminus, comprising derivatizing a corresponding starting glycopeptide wherein the C-terminus is a carboxy group.
 - 29. A method for preparing a glycopeptide as described claim 1 which is substituted at the R-terminus, comprising derivatizing a corresponding starting glycopeptide

wherein the R-terminus is unsubstituted.

- 30. A method of treating a mammal having a bacterial disease, the method comprising administering to the mammal a therapeutically effective amount of a glycopeptide of any one of claims 1, 5, 14, or 20.
- 5 31. A method of treating a mammal having a bacterial disease, the method comprising administering to the mammal a therapeutically effective amount of a pharmaceutical composition of any one of claims 23.