

Regression using Energy-Based Models and Noise Contrastive Estimation

Fredrik K. Gustafsson Uppsala University

SysCon μ -seminar February 12, 2021

Energy-Based Models for Deep Probabilistic Regression

Fredrik K. Gustafsson, Martin Danelljan, Goutam Bhat, Thomas B. Schön The European Conference on Computer Vision (ECCV), 2020

How to Train Your Energy-Based Model for Regression

Fredrik K. Gustafsson, Martin Danelljan, Radu Timofte, Thomas B. Schön The British Machine Vision Conference (BMVC), 2020

Accurate 3D Object Detection using Energy-Based Models

Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schön Preprint

Deep Energy-Based NARX Models

Johannes Hendriks, Fredrik K. Gustafsson, Antônio Ribeiro, Adrian Wills, Thomas B. Schön Preprint

An energy-based model (EBM) specifies a probability distribution $p(x; \theta)$ over $x \in \mathcal{X}$ directly via a parameterized scalar function $f_{\theta} : \mathcal{X} \to \mathbb{R}$:

$$p(x;\theta) = \frac{e^{f_{\theta}(x)}}{Z(\theta)}, \quad Z(\theta) = \int e^{f_{\theta}(\tilde{x})} d\tilde{x}$$

An energy-based model (EBM) specifies a probability distribution $p(x; \theta)$ over $x \in \mathcal{X}$ directly via a parameterized scalar function $f_{\theta} : \mathcal{X} \to \mathbb{R}$:

$$p(x;\theta) = \frac{e^{f_{\theta}(x)}}{Z(\theta)}, \quad Z(\theta) = \int e^{f_{\theta}(\tilde{x})} d\tilde{x}$$

By defining $f_{\theta}(x)$ using a deep neural network (DNN), $p(x;\theta)$ becomes expressive enough to learn practically any distribution from observed data.

An EBM specifies a probability distribution $p(x; \theta)$ directly via a parameterized scalar function $f_{\theta}(x)$,

$$p(x;\theta) = \frac{e^{f_{\theta}(x)}}{Z(\theta)}, \quad Z(\theta) = \int e^{f_{\theta}(\tilde{x})} d\tilde{x},$$

where $f_{\theta}(x)$ commonly is defined using a DNN.

An EBM specifies a probability distribution $p(x; \theta)$ directly via a parameterized scalar function $f_{\theta}(x)$,

$$p(x;\theta) = \frac{e^{f_{\theta}(x)}}{Z(\theta)}, \quad Z(\theta) = \int e^{f_{\theta}(\tilde{x})} d\tilde{x},$$

where $f_{\theta}(x)$ commonly is defined using a DNN.

The EBM $p(x;\theta) = e^{f_{\theta}(x)}/\int e^{f_{\theta}(\tilde{x})}d\tilde{x}$ is thus a highly expressive model that puts minimal restricting assumptions on the true distribution p(x).

An EBM specifies a probability distribution $p(x; \theta)$ directly via a parameterized scalar function $f_{\theta}(x)$,

$$p(x;\theta) = \frac{e^{f_{\theta}(x)}}{Z(\theta)}, \quad Z(\theta) = \int e^{f_{\theta}(\tilde{x})} d\tilde{x},$$

where $f_{\theta}(x)$ commonly is defined using a DNN.

The EBM $p(x;\theta) = e^{f_{\theta}(x)} / \int e^{f_{\theta}(\tilde{x})} d\tilde{x}$ is thus a highly expressive model that puts minimal restricting assumptions on the true distribution p(x).

Drawback: the normalizing partition function $Z(\theta) = \int e^{f_{\theta}(\tilde{x})} d\tilde{x}$ is intractable, which complicates evaluating or sampling from $p(x;\theta)$.

An EBM specifies a probability distribution $p(x; \theta)$ directly via a parameterized scalar function $f_{\theta}(x)$,

$$p(x;\theta) = \frac{e^{f_{\theta}(x)}}{Z(\theta)}, \quad Z(\theta) = \int e^{f_{\theta}(\tilde{x})} d\tilde{x},$$

where $f_{\theta}(x)$ commonly is defined using a DNN.

The EBM $p(x;\theta) = e^{f_{\theta}(x)}/\int e^{f_{\theta}(\tilde{x})}d\tilde{x}$ is thus a highly expressive model that puts minimal restricting assumptions on the true distribution p(x).

Drawback: the normalizing partition function $Z(\theta) = \int e^{f_{\theta}(\tilde{x})} d\tilde{x}$ is intractable, which complicates evaluating or sampling from $p(x;\theta)$.

(Compare with normalizing flows which are specifically designed to be easy to both evaluate and sample. EBMs instead prioritize maximum expressivity)

The definition of an EBM $p(x; \theta)$,

$$p(x;\theta) = \frac{e^{f_{\theta}(x)}}{Z(\theta)}, \quad Z(\theta) = \int e^{f_{\theta}(\tilde{x})} d\tilde{x},$$

includes the intractable $Z(\theta) = \int e^{f_{\theta}(\tilde{x})} d\tilde{x}$.

This complicates evaluating or sampling from $p(x; \theta)$.

The definition of an EBM $p(x; \theta)$,

$$p(x;\theta) = \frac{e^{f_{\theta}(x)}}{Z(\theta)}, \quad Z(\theta) = \int e^{f_{\theta}(\tilde{x})} d\tilde{x},$$

includes the intractable $Z(\theta) = \int e^{f_{\theta}(\tilde{x})} d\tilde{x}$.

This complicates evaluating or sampling from $p(x; \theta)$.

In particular, EBMs are challenging to train. A variety of different approaches have therefore been explored in literature.

A very recent tutorial on the subject:

How to Train Your Energy-Based Models

Yang Song, Diederik P. Kingma arXiv:2101.03288

Regression: learn to predict a continuous target $y^* \in \mathcal{Y} = \mathbb{R}^K$ from a corresponding input $x^* \in \mathcal{X}$, given a training set \mathcal{D} of i.i.d. input-target pairs, $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N, (x_i, y_i) \sim p(x, y).$

Regression: learn to predict a continuous target $y^* \in \mathcal{Y} = \mathbb{R}^K$ from a corresponding input $x^* \in \mathcal{X}$, given a training set \mathcal{D} of i.i.d. input-target pairs, $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N, (x_i, y_i) \sim p(x, y).$

We address this task by modelling the distribution p(y|x) with a conditional EBM:

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

Regression: learn to predict a continuous target $y^* \in \mathcal{Y} = \mathbb{R}^K$ from a corresponding input $x^* \in \mathcal{X}$, given a training set \mathcal{D} of i.i.d. input-target pairs, $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N, (x_i, y_i) \sim p(x, y).$

We address this task by modelling the distribution p(y|x) with a conditional EBM:

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

Here, $f_{\theta}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ is a DNN that maps any input-target pair $(x, y) \in \mathcal{X} \times \mathcal{Y}$ directly to a scalar $f_{\theta}(x, y) \in \mathbb{R}$, and $Z(x, \theta)$ is the input-dependent partition function.

EBMs for Regression: train a DNN $f_{\theta}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ to predict a scalar value $f_{\theta}(x,y)$, then model p(y|x) with the conditional EBM $p(y|x;\theta)$:

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

EBMs for Regression: train a DNN $f_{\theta}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ to predict a scalar value $f_{\theta}(x, y)$, then model p(y|x) with the conditional EBM $p(y|x; \theta)$:

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

The EBM $p(y|x;\theta)$ can learn complex target distributions directly from data:

EBMs for Regression: train a DNN $f_{\theta}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ to predict a scalar value $f_{\theta}(x, y)$, then model p(y|x) with the conditional EBM $p(y|x; \theta)$:

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

EBMs for Regression: train a DNN $f_{\theta}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ to predict a scalar value $f_{\theta}(x,y)$, then model p(y|x) with the conditional EBM $p(y|x;\theta)$:

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

We have applied the approach to various regression problems:

- Age estimation, $\mathcal{Y} = \mathbb{R}$.
- Head-pose estimation, $\mathcal{Y} = \mathbb{R}^3$.
- ullet 2D bounding box regression (object detection, visual tracking), $\mathcal{Y}=\mathbb{R}^4$.
- 3D bounding box regression (3D object detection in LiDAR point clouds), $\mathcal{Y} = \mathbb{R}^7$.
- System identification, $\mathcal{Y} = \mathbb{R}$.

Energy-Based Models for Regression - Prediction

EBMs for Regression: train a DNN $f_{\theta}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ to predict a scalar value $f_{\theta}(x, y)$, then model p(y|x) with the conditional EBM $p(y|x; \theta)$:

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

Energy-Based Models for Regression - Prediction

EBMs for Regression: train a DNN $f_{\theta}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ to predict a scalar value $f_{\theta}(x, y)$, then model p(y|x) with the conditional EBM $p(y|x; \theta)$:

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

Given an input x^* at test time, we usually predict y^* by maximizing $p(y|x^*;\theta)$: $y^* = \operatorname*{argmax}_{v} p(y|x^*;\theta) = \operatorname*{argmax}_{v} f_{\theta}(x^*,y)$

Energy-Based Models for Regression - Prediction

EBMs for Regression: train a DNN $f_{\theta}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ to predict a scalar value $f_{\theta}(x, y)$, then model p(y|x) with the conditional EBM $p(y|x; \theta)$:

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

Given an input x^* at test time, we usually predict y^* by maximizing $p(y|x^*;\theta)$:

$$y^* = \underset{y}{\operatorname{argmax}} p(y|x^*; \theta) = \underset{y}{\operatorname{argmax}} f_{\theta}(x^*, y)$$

In practice, $y^* = \operatorname{argmax}_y f_\theta(x^*, y)$ is approximated by refining an initial estimate \hat{y} via T steps of gradient ascent, $y \leftarrow y + \lambda \nabla_y f_\theta(x^*, y)$.

thus finding a local maximum of $f_{\theta}(x^{\star}, y)$. Evaluation of the partition function $Z(x^{\star}, \theta)$ is therefore *not* required.

EBMs for Regression: train a DNN $f_{\theta}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ to predict a scalar value $f_{\theta}(x, y)$, then model p(y|x) with the conditional EBM $p(y|x; \theta)$:

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

EBMs for Regression: train a DNN $f_{\theta}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ to predict a scalar value $f_{\theta}(x,y)$, then model p(y|x) with the conditional EBM $p(y|x;\theta)$:

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

The DNN $f_{\theta}(x, y)$ can be trained using various methods for fitting a density $p(y|x; \theta)$ to observed data $\{(x_i, y_i)\}_{i=1}^N$.

EBMs for Regression: train a DNN $f_{\theta}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ to predict a scalar value $f_{\theta}(x, y)$, then model p(y|x) with the conditional EBM $p(y|x; \theta)$:

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

The DNN $f_{\theta}(x, y)$ can be trained using various methods for fitting a density $p(y|x; \theta)$ to observed data $\{(x_i, y_i)\}_{i=1}^N$.

Generally, the most straightforward such method is probably to minimize the negative log-likelihood $\mathcal{L}(\theta) = -\sum_{i=1}^{N} \log p(y_i|x_i;\theta)$, which for the EBM $p(y|x;\theta)$ is given by,

$$\mathcal{L}(\theta) = \sum_{i=1}^{N} \log \left(\int e^{f_{\theta}(x_i, y)} dy \right) - f_{\theta}(x_i, y_i).$$

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

$$\mathcal{L}(\theta) = -\sum_{i=1}^{N} \log p(y_i|x_i;\theta) = \sum_{i=1}^{N} \log \left(\int e^{f_{\theta}(x_i,y)} dy \right) - f_{\theta}(x_i,y_i).$$

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

$$\mathcal{L}(\theta) = -\sum_{i=1}^{N} \log p(y_i|x_i;\theta) = \sum_{i=1}^{N} \log \left(\int e^{f_{\theta}(x_i,y)} dy \right) - f_{\theta}(x_i,y_i).$$

The integral $\int e^{f_{\theta}(x_i,y)} dy$ is however intractable, preventing exact evaluation of $\mathcal{L}(\theta)$.

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

$$\mathcal{L}(\theta) = -\sum_{i=1}^{N} \log p(y_i|x_i;\theta) = \sum_{i=1}^{N} \log \left(\int e^{f_{\theta}(x_i,y)} dy \right) - f_{\theta}(x_i,y_i).$$

The integral $\int e^{f_{\theta}(x_i,y)} dy$ is however intractable, preventing exact evaluation of $\mathcal{L}(\theta)$.

In Energy-Based Models for Deep Probabilistic Regression, we simply approximated this intractable integral using importance sampling.

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

$$\mathcal{L}(\theta) = -\sum_{i=1}^{N} \log p(y_i|x_i;\theta) = \sum_{i=1}^{N} \log \left(\int e^{f_{\theta}(x_i,y)} dy \right) - f_{\theta}(x_i,y_i).$$

Importance sampling:

$$\begin{aligned}
-\log p(y_i|x_i;\theta) &= \log \left(\int e^{f_{\theta}(x_i,y)} dy \right) - f_{\theta}(x_i,y_i) \\
&= \log \left(\int \frac{e^{f_{\theta}(x_i,y)}}{q(y)} q(y) dy \right) - f_{\theta}(x_i,y_i) \\
&\approx \log \left(\frac{1}{M} \sum_{k=1}^{M} \frac{e^{f_{\theta}(x_i,y^{(k)})}}{q(y^{(k)})} \right) - f_{\theta}(x_i,y_i), \quad y^{(k)} \sim q(y).
\end{aligned}$$

EBMs for Regression: train a DNN $f_{\theta}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ to predict a scalar value $f_{\theta}(x, y)$, then model p(y|x) with the conditional EBM $p(y|x; \theta)$:

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

EBMs for Regression: train a DNN $f_{\theta}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ to predict a scalar value $f_{\theta}(x, y)$, then model p(y|x) with the conditional EBM $p(y|x; \theta)$:

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

Various alternative techniques could however also be employed to train the DNN $f_{\theta}(x, y)$, including noise contrastive estimation (NCE) and score matching.

EBMs for Regression: train a DNN $f_{\theta}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ to predict a scalar value $f_{\theta}(x,y)$, then model p(y|x) with the conditional EBM $p(y|x;\theta)$:

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

Various alternative techniques could however also be employed to train the DNN $f_{\theta}(x, y)$, including noise contrastive estimation (NCE) and score matching.

In **How to Train Your Energy-Based Model for Regression**, we therefore studied in detail how EBMs should be trained specifically for regression problems.

EBMs for Regression: train a DNN $f_{\theta}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ to predict a scalar value $f_{\theta}(x,y)$, then model p(y|x) with the conditional EBM $p(y|x;\theta)$:

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

Various alternative techniques could however also be employed to train the DNN $f_{\theta}(x, y)$, including noise contrastive estimation (NCE) and score matching.

In **How to Train Your Energy-Based Model for Regression**, we therefore studied in detail how EBMs should be trained specifically for regression problems.

We compared six methods on the task of 2D bounding box regression, and concluded that a simple extension of NCE should be considered the go-to training method.

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

Noise contrastive estimation (NCE) entails learning to discriminate between observed data examples and samples drawn from a noise distribution.

$$p(y|x;\theta) = \frac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

Noise contrastive estimation (NCE) entails learning to discriminate between observed data examples and samples drawn from a noise distribution.

Specifically, the DNN $f_{\theta}(x,y)$ is trained by minimizing the loss $J(\theta) = -\frac{1}{N} \sum_{i=1}^{N} J_i(\theta)$,

$$J_{i}(\theta) = \log \frac{\exp\{f_{\theta}(x_{i}, y_{i}^{(0)}) - \log q(y_{i}^{(0)}|y_{i})\}}{\sum_{m=0}^{M} \exp\{f_{\theta}(x_{i}, y_{i}^{(m)}) - \log q(y_{i}^{(m)}|y_{i})\}},$$

where $y_i^{(0)} \triangleq y_i$, and $\{y_i^{(m)}\}_{m=1}^M$ are M samples drawn from a noise distribution $q(y|y_i)$ that depends on the true target y_i .

$$J(\theta) = -\frac{1}{N} \sum_{i=1}^{N} J_i(\theta), \quad J_i(\theta) = \log \frac{\exp\{f_{\theta}(x_i, y_i^{(0)}) - \log q(y_i^{(0)}|y_i)\}}{\sum_{m=0}^{M} \exp\{f_{\theta}(x_i, y_i^{(m)}) - \log q(y_i^{(m)}|y_i)\}},$$
$$y_i^{(0)} \triangleq y_i, \quad \{y_i^{(m)}\}_{m=1}^{M} \sim q(y|y_i) \text{ (noise distribution)}.$$

$$J(\theta) = -\frac{1}{N} \sum_{i=1}^{N} J_i(\theta), \quad J_i(\theta) = \log \frac{\exp\{f_{\theta}(x_i, y_i^{(0)}) - \log q(y_i^{(0)}|y_i)\}}{\sum_{m=0}^{M} \exp\{f_{\theta}(x_i, y_i^{(m)}) - \log q(y_i^{(m)}|y_i)\}},$$
$$y_i^{(0)} \triangleq y_i, \quad \{y_i^{(m)}\}_{m=1}^{M} \sim q(y|y_i) \text{ (noise distribution)}.$$

Effectively, $J(\theta)$ is the softmax cross-entropy loss for a classification problem with M+1 classes (which of the M+1 values $\{y_i^{(m)}\}_{m=0}^M$ is the true target y_i ?).

$$J(\theta) = -\frac{1}{N} \sum_{i=1}^{N} J_i(\theta), \quad J_i(\theta) = \log \frac{\exp\{f_{\theta}(x_i, y_i^{(0)}) - \log q(y_i^{(0)}|y_i)\}}{\sum_{m=0}^{M} \exp\{f_{\theta}(x_i, y_i^{(m)}) - \log q(y_i^{(m)}|y_i)\}},$$
$$y_i^{(0)} \triangleq y_i, \quad \{y_i^{(m)}\}_{m=1}^{M} \sim q(y|y_i) \text{ (noise distribution)}.$$

Effectively, $J(\theta)$ is the softmax cross-entropy loss for a classification problem with M+1 classes (which of the M+1 values $\{y_i^{(m)}\}_{m=0}^M$ is the true target y_i ?).

A simple yet effective choice for the noise distribution $q(y|y_i)$ is a mixture of K Gaussians centered at y_i ,

$$q(y|y_i) = \frac{1}{K} \sum_{k=1}^{K} \mathcal{N}(y; y_i, \sigma_k^2 I).$$

$$J(\theta) = -\frac{1}{N} \sum_{i=1}^{N} J_i(\theta), \quad J_i(\theta) = \log \frac{\exp\{f_{\theta}(x_i, y_i^{(0)}) - \log q(y_i^{(0)}|y_i)\}}{\sum_{m=0}^{M} \exp\{f_{\theta}(x_i, y_i^{(m)}) - \log q(y_i^{(m)}|y_i)\}},$$
$$y_i^{(0)} \triangleq y_i, \quad \{y_i^{(m)}\}_{m=1}^{M} \sim q(y|y_i) \text{ (noise distribution)}.$$

$$J(\theta) = -\frac{1}{N} \sum_{i=1}^{N} J_i(\theta), \quad J_i(\theta) = \log \frac{\exp\{f_{\theta}(x_i, y_i^{(0)}) - \log q(y_i^{(0)}|y_i)\}}{\sum_{m=0}^{M} \exp\{f_{\theta}(x_i, y_i^{(m)}) - \log q(y_i^{(m)}|y_i)\}},$$
$$y_i^{(0)} \triangleq y_i, \quad \{y_i^{(m)}\}_{m=1}^{M} \sim q(y|y_i) \text{ (noise distribution)}.$$

Contact

Fredrik K. Gustafsson, Uppsala University

fredrik.gustafsson@it.uu.se

www.fregu856.com