Übungen zur Mathematik für Naturwissenschaftler I (WS 07/08)

PD Dr. Uwe Riedel, Dr. W. Bessler

Aufgabe 1:

Berechnen Sie Summe, Differenz, Produkt und Quotienten der Zahlen z_1 und z_2 .

a)
$$z_1 = 2 - 3i$$
, $z_2 = 1 + i$

b)
$$z_1 = 1 - 3i$$
, $z_2 = -i$

Veranschaulichen Sie die vier Grundrechenarten in der Gauß'schen Zahlenebene an Hand der Teilaufgabe a).

Aufgabe 2:

Berechnen Sie die Darstellung z = a + ib der folgenden komplexen Ausdrücke:

a)
$$\sqrt{-1}$$

b)
$$\sqrt{-8}$$

c)
$$\sqrt{8}$$

d)
$$\sqrt{-i} - i^{3/2}$$

e)
$$(1+i)^3$$

$$f) \ \frac{1-i}{i^3 - 2i^2 + 2i + 1}$$

g)
$$3e^{\frac{i\pi}{2}}$$

b)
$$\sqrt{-8}$$
 c) $\sqrt{8}$ d) $\sqrt{-i} - i^{3/2}$ f) $\frac{1-i}{i^3-2i^2+2i+1}$ g) $3e^{\frac{i\pi}{2}}$ h) $2(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$

Berechnen Sie die Darstellungen $z = r(\cos \phi + i \sin \phi)$ und $z = re^{i\phi}$ der folgenden komplexen Ausdrücke:

i)
$$2 + 2i$$

j)
$$(2+2i)^3$$
 k) $3e^{\frac{i\pi}{2}}$

k)
$$3e^{\frac{i\pi}{2}}$$

$$l) \sqrt{-9} + i \sin \frac{3\pi}{2}$$

Hinweis: Kein Taschenrechner. Benutzen Sie für j) die Moivre-Formel.

Aufgabe 3:

Anwendung der komplexen Zahlen in der Beschreibung von elektrischen Schaltkreisen

Analog des Widerstandes für Gleichstromschaltungen definiert man für Wechelströme einen komplexen Widerstand, die sogenannte Impedanz Z = a + ib.

Für die Impedanz eines ohmschen Widerstandes R gilt: $Z_R = R$.

Für die Impedanz eines Kondensators der Kapazität C gilt: $Z_C = -i/(\omega C)$, mit ω als Kreisfrequenz des Wechselstroms.

Weiterhin gilt die Kirchhoffsche Regel für Parallelschaltungen: $1/Z_{parallel} = \sum (1/Z_{einzel})$

Berechnen Sie die Impedanz $Z_{parallel} = a + ib$ der Parallelschaltung eines Widerstandes R und eines Kondensators der Kapazität C.

Aufgabe 4:

Beweisen Sie unter Verwendung der Euler'schen Formeln und der Definitionsgleichungen der Hyperbelfunktionen (siehe Vorlesung) die folgenden Zusammenhänge der trigonometrischen Funktionen:

a)
$$(\sin x)^2 + (\cos x)^2 = 1$$

b)
$$\sinh x = -i\sin(ix)$$

c)
$$\cosh x = \cos(ix)$$