

Limites de fonctions

Spécialité Maths

Comportement au voisinage de $\pm\infty$

Soit f une fonction définie au voisinage de $\pm \infty$:

- \Rightarrow f converge en $\pm \infty$ s'il \exists $\ell \in \mathbb{R}$ tq tt intervalle ouvert contenant ℓ contient toutes les valeurs f(x) pour x suffisamment grand (par valeurs négatives pour $\lim_{x \to -\infty}$), ℓ est alors l'unique limite de f en $\pm \infty$
- ♦ Une fonction diverge si elle ne converge pas
- ♦ en ±∞, f diverge vers ±∞ si $\forall A \in \mathbb{R}$, l'intervalle $]A; +\infty[$ ou $]-\infty; A[$ contient toutes les valeurs f(x) pour x suffisamment grand (par valeurs négatives pour $\lim_{x\to -\infty}$)

Comportement au voisinage de $a \in \mathbb{R}$

Soit $(a, b, c) \in \mathbb{R}^3$ tels que $]b; a[\cup]a; c[\in Df]$

- \Rightarrow f **converge** en a si $\exists \ell \in \mathbb{R}$ tq tt intervalle ouvert contenant ℓ contient ttes les valeurs f(x) pr x proche de a
- $\Rightarrow f$ fonction de référence et $a \in Df \Rightarrow \lim_{x \to a} f(x) = f(a)$
- \Rightarrow une fonction diverge en a si elle ne converge pas en a
- \Rightarrow Si la restriction de f à]a;c[ou à]b;a[admet une limite ℓ (finie ou infinie) lorsque $x\to a^\pm$, on dit que f admet une limite à droite (par valeurs supérieures) ou à gauche (par valeurs inférieures) en a.

Asymptote horizontale

Si $\lim_{x\to\pm\infty}f(x)=\ell$, la droite d'équation $y=\ell$ est une asymptote horizontale à la courbe de f en $+\infty$ ou $-\infty$

Asymptote verticale

Si $\lim_{x\to a} f(x) = \pm \infty$, la droite d'équation x=a est une asymptote verticale à la courbe de f

Limites des fonctions usuelles ($p \in \mathbb{N}^* = \text{pair}, i \in \mathbb{N} = \text{impair}$)

inverse

exp et ln

Opérations sur les limites

$\lim f$	0	0	∞	0	ℓ	ℓ	∞	∞
$\lim g$	0	∞	0	ℓ	0	∞	ℓ	∞
$\boxed{\lim(f+g)}$	0	∞	∞	ℓ	ℓ	∞	∞	∞/FI
$\lim(f \times g)$	0	FI	FI	0	0	∞	∞	∞
$\lim(f \div g)$	FI	0	∞	0	∞	0	∞	FI

 $\ell \neq 0$, règle des signes pour les résultats « ∞ »

Théorèmes de comparaison

a désigne un réel ou $+\infty$ ou $-\infty$. Soit f, g, h 3 fonctions définies au voisinage de a. Si $\forall x$ au voisinage de a:

$$\ \, \Leftrightarrow \, f(x) \leq g(x) \text{ et } \lim_{x \to a} f(x) = +\infty \Rightarrow \lim_{x \to a} g(x) = +\infty$$

$$\ \, \Leftrightarrow \, f(x) \leq g(x) \text{ et } \lim_{x \to a} g(x) = -\infty \Rightarrow \lim_{x \to a} f(x) = -\infty$$

 $\Rightarrow \text{ th\'eor\`eme des gendarmes}: f(x) \leq g(x) \leq h(x) \text{ et}$ $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = \ell \Rightarrow \lim_{x \to a} g(x) = \ell$