Bayes Nets: Approximate Inference

AIMA Chapter 14.5, PRML Chapter 11

Sampling

- Goal: probability P
- Basic idea
 - Draw N samples from a sampling distribution S
 - Compute some quantity from the samples
 - Show this converges to the true probability P

- Why sample?
 - Often very fast to get a decent approximate answer
 - The algorithms are very simple and general (easy to apply to fancy models)
 - They require very little memory (O(n))

Sampling in Bayes Nets

- Prior Sampling
- Rejection Sampling
- Likelihood Weighting
- Gibbs Sampling

Prior Sampling

- For i=1, 2, ..., n (in topological order)
 - Sample X_i from $P(X_i | parents(X_i))$
- Return $(x_1, x_2, ..., x_n)$

Rejection Sampling

- Input: evidence $e_1,...,e_k$
- For i=1, 2, ..., n
 - Sample X_i from $P(X_i | parents(X_i))$
 - If x_i not consistent with evidence
 - Reject: Return, and no sample is generated in this cycle
- Return $(x_1, x_2, ..., x_n)$

- Input: evidence $e_1,...,e_k$
- *w* = 1.0
- for i=1, 2, ..., n
 - if X_i is an evidence variable
 - x_i = observed value_i for X_i
 - Set $w = w * P(x_i | Parents(X_i))$
 - else
 - Sample x_i from P(X_i | Parents(X_i))
- return (x₁, x₂, ..., x_n), w

Sampling distribution (z is sampled and e is fixed evidence)

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | \mathsf{Parents}(Z_i))$$

Now, samples have weights

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | \mathsf{Parents}(E_i))$$

Together, weighted sampling distribution is consistent

$$S_{\text{WS}}(z, e) \cdot w(z, e) = \prod_{i=1}^{l} P(z_i | \text{Parents}(z_i)) \prod_{i=1}^{m} P(e_i | \text{Parents}(e_i))$$
$$= P(\mathbf{z}, \mathbf{e})$$

Importance Sampling

- Likelihood weighting is an instance of importance sampling
 - Suppose it is difficult to sample from p(x)
 - Generate samples from a proposal distribution q(x)
 - q(x) is easy to draw samples from
 - Weight each sample by p(x)/q(x)
- The choice of q(x) would greatly influence the speed of convergence
 - If you want to estimate the expectation of f(x)
 - Then q(x) should be close to being proportional to |f(x)|p(x)

- Likelihood weighting is good
 - All samples are used
 - The values of *downstream* variables are influenced by *upstream* evidence

- Likelihood weighting still has weaknesses
 - The values of *upstream* variables are unaffected by downstream evidence
 - With many downstream evidence, we may
 - mostly get samples that are inconsistent with the evidence and thus have very small weights
 - get a few lucky samples with very large weights,
 which dominate the result
- We would like each variable to "see" all the evidence!

Gibbs Sampling

Gibbs Sampling

- Generate each sample by making a random change to the preceding sample
 - Evidence variables remain fixed. For each of the non-evidence variable, sample its value conditioned on all the other variables
 - $= X_i' \sim P(X_i \mid X_1,...,X_{i-1},X_{i+1},...,X_n)$
 - In a Bayes net

$$P(X_i \mid x_1,...,x_{i-1},x_{i+1},...,x_n)$$

$$= P(X_i \mid markov_blanket(X_i))$$

$$= \alpha P(X_i \mid u_1,...,u_m) \prod_i P(y_i \mid parents(Y_i))$$

Gibbs Sampling Example: P(S | r)

- Step 1: Fix evidence
 - \blacksquare R = true

- Step 2: Initialize other variables
 - Randomly

- Step 3: Repeat
 - Choose an arbitrary non-evidence variable X
 - Resample X from P(X | markov_blanket(X))

Sample $S \sim P(S \mid c, r, \neg w)$

Sample $C \sim P(C \mid s, r)$

Sample $W \sim P(W \mid s, r)$

Why doing this?

- Samples soon begin to reflect all the evidence in the network
- Eventually they are being drawn from the true posterior!

Theorem: Gibbs sampling is consistent

Why does it work? (see AIMA 14.5.2 for details)

- Suppose we run it for a long time and predict the probability of reaching any given state at time t: $\pi_t(x_1,...,x_n)$ or $\pi_t(\underline{\mathbf{x}})$
- Each Gibbs sampling step (pick a variable, resample its value) applied to a state $\underline{\mathbf{x}}$ has a probability $q(\underline{\mathbf{x'}} \mid \underline{\mathbf{x}})$ of reaching a next state $\underline{\mathbf{x'}}$
- So $\pi_{t+1}(\underline{\mathbf{x'}}) = \sum_{\underline{\mathbf{x}}} q(\underline{\mathbf{x'}} \mid \underline{\mathbf{x}}) \ \pi_t(\underline{\mathbf{x}})$ or, in matrix/vector form $\pi_{t+1} = Q\pi_t$
- When the process is in equilibrium $\pi_{t+1} = \pi_t$ so $Q\pi_t = \pi_t$
- This has a unique solution $\pi_t = P(x_1,...,x_n \mid e_1,...,e_k)$
- So for large enough t the next sample will be drawn from the true posterior

Markov Chain Monte Carlo (MCMC)

- MCMC is a family of randomized algorithms for approximating some quantity of interest over a very large state space
 - Markov chain = a sequence of randomly chosen states ("random walk"),
 where each state is chosen conditioned on the previous state
 - **■** Monte Carlo = a very expensive city in Monaco with a famous casino
 - Monte Carlo = an algorithm (usually based on sampling) that is likely to find a correct answer
- MCMC = sampling by constructing a Markov chain
- Gibbs, Metropolis-Hastings, Hamiltonian, Slice, etc.

Metropolis-Hastings

Repeat

- 1. Draw a sample from a proposal distribution g(x'|x)
 - g(x'|x) is typically easy to sample from
- 2. Accept this sample with probability

$$\min\left(1, \frac{P(x')g(x|x')}{P(x)g(x'|x)}\right)$$

 Gibbs is a special case of Metropolis-Hastings in which the acceptance rate is always 1

Summary

Prior Sampling P

Rejection Sampling P(Q | e)

Likelihood Weighting P(Q | e)

