Universidad Tecnológica Nacional Facultad Regional Córdoba

Ingeniería Electrónica

CATEDRA

Titulo

SUBTITULO

DOCENTES XXXXXXXXXX XXXXXXXX.

XXXXXXXXXX XXXXXXXX...

COMISIÓN XRX

ALUMNOS XXXXX XXXXX, XXXXX XXXXX. XXXXX

XXXXX XXXXX, XXXXX XXXXX. XXXXX

Córdoba, 21 de octubre de 2023

CONTENIDO

Introducción	3
Marco teorico	3
Primera Parte	3
3.2. Procedimiento	3
3.4. Simulación	3
3.5. Experimental	4
Segunda Parte	7
4.1. Circuito	7
4.2. Procedimiento	7
4.3. Simulación	
4.4. Experimental	9
	Marco teorico Primera Parte 3.1. Circuito

1. Introducción

2. Marco teorico

3. Primera Parte

3.1. Circuito

3.2. Procedimiento

- 1. Armar el circuito seleccionando un correcto valor de R en función del datasheet del DIAC.
- 2. Variar la tensión de alimentación (V1) desde 0V a 50V según la tabla que se observa aquí abajo.
- 3. Medir la corriente y caída de tensión en el DIAC.
- 4. Invertir los terminales del DIAC y repetir las variaciones y mediciones expresadas en el punto 1 y 2

3.3. Calculo de R

3.4. Simulación

Figura 1: Circuito simulado

3.5. Experimental

V_{CC}	$V_{A_1A_2}$	I
5	5	0
10	10	1 uA
15	15	1.5 uA
20	20	2 uA
22	22	2.2 uA
24	24	2.4 uA
26	26	2.6 uA
28	28	2.7 uA
30	30	3 uA
32	32	3.2 uA
33.4	27.2	1.90mA
34	26.8	2.24mA
36	26.1	3.08mA
38	25.6	3.80mA
40	25.1	4.10
42	24.8	5.34mA
45	24.3	6.41mA
48.7	23.9	7.62mA

V_{CC}	$V_{A_1A_2}$	I
5	5	0
10	10	1 uA
15	15	1.5 uA
20	20	2 uA
22	22	2.2 uA
24	24	2.4 uA
26	26	2.6 uA
28	28	2.7 uA
30	30	3 uA
32	32	3.2 uA
33.4	23.2	10.5 mA
34	23.2	11.1 mA
35	23.0	12.3 mA
35.5	22.9	12.8 mA
36	22.8	13.5 mA
37	22.7	14.7 mA
38	22.6	15.8 mA
40	22.5	18.1 mA
42	22.2	20.7 mA
45	22	23.7 mA
50	22.1	29.1 mA
55	22.3	34.6 mA
60	22.5	40.2 mA
63	22.6	43.5 mA

V_{CC}	$V_{A_1A_2}$	I
- 5	<i>-</i> 5	-0
-10	-10	-1 uA
-15	-15	-1.5 uA
-20	-20	-2 uA
-22	-22	-2.2 uA
-24	-24	-2.4 uA
-26	-26	-2.6 uA
-28	-28	-2.7 uA
-30	-30	-3 uA
-32	-32	-3.2 uA
-33	-23	-10.36 mA
-34	-22.7	-11.53 mA
-36	-22.4	-13.72 mA
-38	-22.2	-16.07 mA
-40	-22.0	-18.16 mA
-42	-21.9	-20.60 mA
-45	-21.8	-24.10 mA
-50	-21.7	-29.50 mA
-55	-21.9	-34.40 mA
-6 0	-22.1	-39.70 mA
-63	-22.3	-43.70 mA

Fecha: 2023-10-21 Cátedra: XXXX (XRX)

4. Segunda Parte

4.1. Circuito

4.2. Procedimiento

1. Armar el circuito.

- 2. Colocar la VCC = 0V.
- 3. Cerrar el interruptor Sw.
- 4. Variar el potenciómetro de forma de relevar la tabla.
- 5. Graficar los valores obtenidos y comparar la curva con la de otro componente ya estudiado.
- 6. Abrir el interruptor Sw.
- 7. Colocar un voltímetro en paralelo a la resistencia de carga (RL) y otro en paralelo al Anodo-Catodo del SCR.
- 8. Variar la VCC desde 0V a 600V en pasos de 10V controlando permanentemente lo que sucede en los voltímetros.
- 9. Finalizado el ensayo, ¿noto un cambio de comportamiento en el circuito?, ¿En qué valor de tensión?.
- 10. Desconectando las alimentaciones de tensión, ¿puede analizar el valor ohmico de la resistencia de carga (RL)?, ¿Qué sucedió?.
- 11. Colocar la VG = 0V y cerrar el interruptor Sw.
- 12. Colocar VCC = 100V.
- 13. Subir lentamente el valor de VG hasta observar un cambio importante en la IAK (Disparo del SCR). Tomar nota del valor de VG e IG que produjo ese disparo del SCR.
- 14. Manteniendo el potenciómetro en la posición donde generó el disparo abrir el interruptor Sw y analizar que sucede con la IAK.
- 15. Manteniendo el interruptor Sw abierto bajar el valor de VCC en pasos de 10V anotando el valor de IAK para cada caso. Los últimos 10V antes de llegar a cero deben disminuirse en pasos de 1V.
- 16. Volver a subir paulatinamente la VCC hasta colocarla nuevamente en 100V analizando el comportamiento que tiene la IAK

4.3. Simulación

Figura 2: Circuito simulado

4.4. Experimental

V_G	I_G
0.2	0
0.3	0
0.4	0
0.5	0
0.6	0
0.7	0
0.8	0
0.9	0
1.0	0
1.1	0
1.2	0
1.3	0
	,

