INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Mid-Spring Semester Examination, 2018-2019

Subject: Instability and Patterning of Thin Polymer Films Subject No.: CH 62052

Date: Time: 2 Hrs Full Marks: 30 No. of Students: 44

Instructions:

- 1. All Questions are compulsory.
- 2. Be Precise with your answers. Long, redundant answers can potentially fetch zero!
- 3. Use Figures as and When Necessary

.....

- 1. (a) You would like to use contact angle goniometry with suitable probing liquids to measure the surface tension of a solid substrate. What is the limiting value of surface tension you can predict and why? (1)
 - (b) Equilibrium contact angles of Diodomethane, Water and Glycerol are 39.4°, 60.9° and 63.1° respectively on clay surface. (3)

Calculate the LW and AB components and the total of Surface tension of Clay.

Data Given (mJ/m ²):	$\gamma^{ ext{LW}}$	γ_	γ^+	γTotal
Water	21.8	25.5	25.5	72.8
Diodomethane	50.8	0	0	50.8
Glycerol	34.0	57.4	3.2	64.0

(c) What are Cassie and Wenzel States of Wetting? How does the apparent equilibrium contact angle change on a patterned surface for a material that is exhibiting Wenzel state of wetting? Is it possible under any condition to obtain apparent hydrophobicity with a hydrophilic base material? (1+1.5+1.5=4)

Total Marks in Question 1: (8)

- 2. Two identical colloidal particles are immersed in a liquid. Explore all possible cases and comment on the conditions of colloidal stability. Total Marks in Question 2: (4)
- 3. (a) Derive the Young Laplace Equation for an arbitrarily curved surface at a point where the two orthogonal Radii of curvature are R₁ and R₂. What is the limitation of this form of the equation? (2)
 - (b) Draw an arbitrary axisymmetric surface and show (based on proper, detailed figures and all appropriate assumptions) how you would write down the expressions for its area and volume. (2)
 - (c) Why is the liquid side pressure lower if it has a concave meniscus? (2)
 - (d) What is the role of surface tension in spontaneous instability of thin films? (2)

Total Marks in Question 3: (8)

- **4.** (a) Show that for a thin film, $G_{Film}^{LW} = -G_{Interface}^{LW}$. Find out the expression of G_{Film}^{LW} . (1+2)
 - (b) Obtain an expression for the Excess Interfacial Free Energy (ΔG_{Ex}^{LW}) for a thin film of material 2 coated on a semi infinite substrate of materials 1. (2)
 - (c) Define Effective Interface Potential, Conjoining Pressure and Disjoining Pressure. (2)
 - (d) Discuss how the Sign of A_E can be correlated to film stability. (2)
 - (e) Show that $A_{12} = \sqrt{(A_{11}.A_{22})}$ (1)

Total Marks in Question 4: (10)

Useful Expressions:

1)
$$G^{lw}(d) = -\left(\frac{A_{12}}{12\pi}\right) \left[\frac{1}{(d_1+d_2+d)^2} + \frac{1}{d^2} - \frac{1}{(d+d_1)^2} - \frac{1}{(d+d_2)^2}\right]$$

2) $A_{12} = (\rho_1 \rho_2 \pi^2 N_A^2 \beta_{12}) / (M_1 M_2)$

3)
$$\gamma_{12}^{AB} = 2 \left[\sqrt{\gamma_1^+ \gamma_1^-} + \sqrt{\gamma_2^+ \gamma_2^-} - \sqrt{\gamma_1^+ \gamma_2^-} - \sqrt{\gamma_2^+ \gamma_1^-} \right]$$