COMP4222 Machine Learning with Structured Data

Graph Neural Networks 1

Instructor: Yangqiu Song

Slides credits: Jure Leskovec, William L. Hamilton, Rex Ying, Rok Sosic

Embedding Nodes

• Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the original network.

Embedding Nodes

Two Key Components

Encoder maps each node to a low-dimensional vector.

$${\rm ENC}(v) = \mathbf{z}_v \quad \text{embedding}$$
 node in the input graph

 Similarity function specifies how relationships in vector space map to relationships in the original network.

Shallow Encoders

• So far we have focused on "shallow" encoders, i.e. embedding lookups:

Shallow Encoders

- Limitations of shallow embedding methods:
 - O(|V|) parameters are needed:
 - No sharing of parameters between nodes
 - Every node has its own unique embedding
 - Inherently "transductive":
 - Cannot generate embeddings for nodes that are not seen during training
 - Do not incorporate node features:
 - Many graphs have features that we can and should leverage

From "Shallow" to "Deep"

 We will now discuss "deeper" methods based on graph neural networks.

$$ENC(v) =$$

- complex function that depends on graph structure
- $\mathrm{ENC}(v) = {}^{\circ}$ multiple layers of non-linear transformations based on graph structure
- In general, all of these more complex encoders can be combined with the similarity functions from the previous section.

Deep Graph Encoders

Tasks on Networks

Node classification

Predict a type of a given node

Link prediction

- Predict whether two nodes are linked
- Community detection
 - Identify densely linked clusters of nodes
- Network similarity
 - How similar are two (sub)networks

Modern Machine Learning

• Modern deep learning toolbox is designed for simple sequences & grids

Networks are Far More Complex!

- Arbitrary size and complex topological structure (i.e., no spatial locality like grids)
 - No fixed node ordering or reference point
 - Often dynamic and have multimodal features

Real-World Graphs

But our graphs look like this:

- There is no fixed notion of locality or sliding window on the graph
- Graph is permutation invariant

From Images to Graphs

Single CNN layer with 3x3 filter

- Transform information at the neighbors and combine it:
 - Transform "messages" h_i from neighbors: $W_i h_i$
 - Add them up: $\sum_i W_i h_i$

A Naïve Approach

- Join adjacency matrix and features
- Feed them into a deep neural net:

- Issues with this idea:
 - O(N) parameters
 - Not applicable to graphs of different sizes
 - Not invariant to node ordering

General Idea: Graph Convolution

CNN on an image:

Goal is to generalize convolutions beyond simple lattices Leverage node features/attributes (e.g., text, images)

Setup

- Assume we have a graph *G*:
 - *V* is the vertex set.
 - A is the adjacency matrix (assume binary).
 - v is a node in V; N(v) is the set of neighbors of v
 - $X \in \mathbb{R}^{m \times |V|}$ is a matrix of node features.
 - Attributes, text, image data, E.g.,
 - Social network: user profile, user image
 - Biological network: gene expression profiles, functional information
 - Node degrees, clustering coefficients, etc.
 - Indicator vectors (i.e., one-hot encoding of each node)
 - Retrieve from an embedding matrix which is learnable

Permutation Invariance

- Graph does not have a canonical order of the nodes!
- We can have many different order plans.

Graph and node representations should be the same for Order plan 1 and Order plan 2

Permutation Invariance

- What does it mean by "graph representation is same for two order plans"?
- Consider we learn a function f that maps a graph G = (A,X) to a vector \mathbb{R}^d then

$$f(\mathbf{A}_1, \mathbf{X}_1) = f(\mathbf{A}_2, \mathbf{X}_2)$$

Permutation Invariance

- What does it mean by "graph representation is same for two order plans"?
- Consider we learn a function f that maps a graph G = (A, X) to a vector \mathbb{R}^d then

$$f(\boldsymbol{A}_1, \boldsymbol{X}_1) = f(\boldsymbol{A}_2, \boldsymbol{X}_2)$$

- Then if $f(A_i, X_i) = f(A_j, X_j)$ for any order plan i and j, we formally say f is a permutation invariant function.
 - For a graph with m nodes, there are m! different order plans.

Permutation Equivariance

• Similarly for node representation: We learn a function f that maps nodes of G to a matrix \mathbb{R}^{m*d}

Permutation Equivariance

For node representation

- Consider we learn a function f that maps a graph G = (A,X) to a matrix \mathbb{R}^{m*d}
 - graph has m nodes, each row is the embedding of a node.
- For two order plans, the vector of node at the same position is the same!
- Similarly, if this property holds for any pair of order plan i and j, we say f is a permutation equivariant function.

Graph Neural Network Overview

 Graph neural networks consist of multiple permutation equivariant / invariant functions

Graph Neural Network Overview

- Are other neural network architectures, e.g., MLPs, permutation invariant / equivariant?
 - No.

Outline for this Section

- We will now discuss "deeper" methods based on graph neural networks.
 - 1. The Basics
 - 2. GraphSAGE

The Basics: Graph Neural Networks

Based on material from:

- Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data Engineering Bulletin on Graph Systems.
- Scarselli et al. 2005. <u>The Graph Neural Network Model</u>. *IEEE Transactions* on Neural Networks.

Graph Convolutional Networks

• Idea: Node's neighborhood defines a computation graph

- Key idea: Generate node embeddings based on local neighborhoods.
- Intuition: Nodes aggregate information from their neighbors using neural networks

• Intuition: Network neighborhood defines a

- Nodes have embeddings at each layer.
- Model can be arbitrary depth.
- "Layer-0" embedding of node u is its input feature, i.e. x_{ii} .
- Layer-K embedding gets information from nodes that are K hops away

• Key distinctions are in how different approaches aggregate information across the layers.

 Basic approach: Average neighbor information and apply a neural network.

The Math

• Basic approach: Average neighbor messages and apply a neural network.

32

Equivariant Property

 Message passing and neighbor aggregation in graph convolution networks is permutation equivariant

Equivariant Property

Message passing and neighbor aggregation in graph convolution

networks is permutation equivariant

Matrix Formulation

Many aggregations can be performed efficiently by (sparse) matrix operations

• Let
$$H^k = \left[h_1^k, \dots, h_V^k\right]^T$$

- Then $\sum_{u \in N_n} h_u^k = A_{v,:} H^k$
 - N_v is the set of neighbours of v
- Let D be diagonal matrix where

•
$$D_{v,v} = Degree(v) = |N_v|$$

• The inverse of *D* is also a diagonal matrix

•
$$D_{v,v}^{-1} = 1/|N_v|$$

Therefore

$$\sum_{u \in N_v} \frac{h_u^k}{|N_u|} \longrightarrow H^{k+1} = D^{-1}AH^k$$

Matrix Formulation

- Re-writing update function in matrix form $H^{k+1} = \sigma(D^{-1}AH^kW_k^T + H^kB_k^T)$
 - Red: neighbourhood aggregation
 - Blue: self transformation

• In practice, this implies that efficient sparse matrix multiplication can be used (A is sparse)

 Note: not all GNNs can be expressed in matrix form, when aggregation function is complex

How do we train the model to generate "highquality" embeddings?

Need to define a loss function on the embeddings, $L(z_A)$!

 \mathbf{W}_k : weight matrix for neighborhood aggregation

 \mathbf{B}_k : weight matrix for transforming hidden vector of self

$$\mathbf{h}_{v}^{0} = \mathbf{x}_{v} \qquad \text{(i.e., what we learn)}$$

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \right), \ \forall k \in \{1, ..., K\}$$

$$\mathbf{z}_{v} = \mathbf{h}_{v}^{K}$$

- After K-layers of neighborhood aggregation, we get output embeddings for each node.
- We can feed these embeddings into any loss function and run stochastic gradient descent to train the aggregation parameters.

- Train in an unsupervised manner using only the graph structure.
 - Use only the graph structure
 - "Similar" nodes have similar embeddings
- Unsupervised loss function can be anything from the last section, e.g., based on
 - Random walks (node2vec, DeepWalk)
 - Adjacent neighbor similarity
 - Node proximity in the graph (higher order relation similarity)

• Alternative: Directly train the model for a supervised task (e.g., node classification):

e.g., an online social network

• Alternative: Directly train the model for a supervised task (e.g., node classification):

Overview of Model Design

2) Define a loss function on the embeddings, L (z_u)

Overview of Model Design

Overview of Model

Inductive Capability

 The same aggregation parameters are shared for all nodes.

Inductive Capability: New Graphs

Inductive node embedding --> generalize to entirely unseen graphs

e.g., train on protein interaction graph from model organism A and generate embeddings on newly collected data about organism B

Inductive Capability

Many application settings constantly encounter previously unseen nodes. e.g., Reddit, YouTube, GoogleScholar,

Need to generate new embeddings "on the fly"

Quick Recap

- Recap: Generate node embeddings by aggregating neighborhood information.
 - Allows for parameter sharing in the encoder.
 - Allows for inductive learning.

Neighborhood Aggregation

 Key distinctions are in how different approaches aggregate messages

GraphSAGE

Based on material from:

Hamilton et al., 2017. <u>Inductive Representation Learning on Large Graphs</u>.
NIPS.

GraphSAGE Idea

 So far we have aggregated the neighbor messages by taking their (weighted) average, can we do better?

GraphSAGE Idea

GraphSAGE Differences

Simple neighborhood aggregation:

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \right)$$

GraphSAGE:

concatenate self embedding and neighbor embedding

$$\mathbf{h}_v^k = \sigma\left(\left[\mathbf{W}_k \cdot \mathbf{AGG}\left(\{\mathbf{h}_u^{k-1}, \forall u \in N(v)\}\right), \mathbf{B}_k \mathbf{h}_v^{k-1}\right]\right)$$
 generalized aggregation

GraphSAGE Variants

Mean:

$$AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{k-1}}{|N(v)|}$$

- Pool
 - Transform neighbor vectors and apply symmetric vector function.

$$\operatorname{AGG} = \bigvee \{ \{ \mathbf{Q} \mathbf{h}_u^{k-1}, \forall u \in N(v) \} \}$$

- LSTM:
 - Apply LSTM to random permutation of neighbors.

$$AGG = LSTM ([\mathbf{h}_u^{k-1}, \forall u \in \pi(N(v))])$$

Summary

- The Basics
- GraphSAGE
 - Generalized neighborhood aggregation.

Still a very active research field