

Integrated Bridge Project Delivery & Life Cycle Management

FHWA Project: DTFH61-06-D-00037

Krishna K. Verma, P.E.

Principal Bridge Engineer

Contract Officer's Technical Representative

FHWA Advisory Panel

Fred Beckmann

Consultant

Kenneth Hurst

Kansas DOT

Sena Kumarsena

HNTB

Shri Bhide

Bentley System, Inc.

Roy Eriksson

Eriksson Technologies, Inc.

David McQuaid

Consultant

Joan Bowser

New Mexico DOT

Luke Faulkner

AISC, Inc.

Tom Siewert

NIST

George Christian

New York State DOT

Asif Habibullah

Computers and Structures, Inc.

Bill Wright

FHWA (HRDI-06)

Integrated Bridge Project Delivery & Life Cycle Management

FHWA Project: DTFH61-06-D-00037

Presented By

Timothy J. Riordan, P.E. Arora and Associates, P.C.

Dr. Stuart S. Chen, P.E. State University of NY - Buffalo

In Collaboration With

Dr. Jay Puckett, P.E. Arun M. Shirolé, P.E.

What Is It?

- Leveraging of automation and communication technologies for managing bridges through their lifecycle
- Fluid and seamless electronic data exchange, management and access

For What?

- Improved communication of information to efficiently manage bridge related data between stakeholders in
 - bridge design
 - construction
 - operations
 - life cycle management

What Is Current Practice?

A View of the Life Cycle Process

On-Going Efforts To Improve Current Practice

Focus of Current Efforts

- Speed up bridge construction activities
- Simultaneously enhance the quality and durability of bridges being constructed

Emphasis of Current Efforts

- Cost-effective use of prefabrication techniques for bridge components
- Advanced materials technologies, such as self consolidated concrete
- Construction methods, e.g. stage construction, use of SPMTs and incremental launching for bridge superstructures

How Do Other Industries Deliver Projects?

Other Industry Initiatives

- Building and other industries (Auto, Aerospace and Marine) have documented reduced costs, faster delivery and improved quality resulting from 3D-based integrated design and manufacturing processes.
- Recent examples:
 GM Plants, Denver Museum, Queen Mary 2

THE CONSTRUCTION WEEKLY

October 10, 2005 enr.com

The McGraw-Hill Companies

Engineering News-Record

Visions No easy path for post-Katrina planning Energized
Devastation
opens door
for new
power grid

Next Wave U.S. awards \$2.5 billion in new embassy contracts

Benefits Cited – **General Motors Plant (200,000 SF):**

- Completed in 14 months instead of 20 months
- Digital design, built without changes, potential field construction conflicts resolved ahead of time
- Components precisely prefabricated and delivered for assembly at site, no waste bins at the construction site
- Faster, better, cheaper, safer and smiles all around

Queen Mary 2

Benefits Cited – Queen Mary 2 Ship:

- Completely built and in the ocean in two years years saved
- Built in three parts and then assembled together.
- Most complex construction and yet construction conflicts avoided

Types of Benefits cited by Other Industries

- Tangible Benefits:
 - Faster project delivery
 - cost savings
- Intangible Benefits:
 - Process and work-flow re-engineering
 - supply-chain integration
 - risk management and claims mitigation

Types of Benefits cited by Other Industries (cont'd)

- Quasi-tangible Benefits:
 - Improved data availability
 - complete audit trail
 - reduced data entry and improved information management
 - reduced rework
 - improved timely design and construction decision making
 - improved quality of construction

American Institute of Architects (AIA) Two new model agreements for integrated project delivery (IPD)

- Require use of Building Information Models (BIM) and a division of projects into phases
- Provide two (2) levels of Design and Construction integration:
 - 1. Transitional for those unaccustomed to IPD
 - 2. Single purpose entity, offering a fully integrated way to deliver a building

^{*} Excerpts from "AIA Issues New Docs For Integrated Delivery", by Nadine M. Post, ENR.com

FORWARD INTO THE FUTURE BIM Sets New Standards for Transit Design and Construction

* Excerpts from "Doing Business with MTA NYCT" special supplement to May 2008 NY Construction Magazine

- MTA NYCT Design
 Managers each
 selected 1 project in
 2008 for use of BIM
- Implementing BIM on all MTA NYCT projects by 2009
- BIM used to determine that the massive Fulton Street Transit Center project in New York City could proceed with construction while the station remains open to trains and passengers

Genesis of this Project

Piecemeal Progress in the Industry

- Parametric design tools and TransXML omit detailing for fabrication and construction
- 3D pre-cast concrete modeling tools are not (yet) bridge-oriented
- Bridge inspection or design/rating (e.g.) apps each require their own data (re)entry
- 3D geometry created (e.g.) for visualization is not also leveraged for fabrication & construction

Piecemeal Progress in the Industry

- 3D for structural analysis is also not leveraged for other asset management purposes needing such 3D geometry data
- Even when electronic data exchange is pursued, only small pieces of the overall workflow involved in bridge delivery are addressed

- FHWA International Review Tour 1999
 - Prevalent CAD/CAM in Europe, Japan
- FHWA Workshop 2001: "Computer Integrated Steel Bridge Design and Construction: Expanding Automation"

Established a roadmap for integrating steel bridge design-through-construction processes and for advancing the state-of-the-art practice in steel bridge manufacturing automation and productivity

"Theme Areas" Progress:

- 3D Modeling & Electronic Info. Transfer: NCHRP 20-07 Task 149 Project (Completed Nov. 2003)
- Standardized Specs and Approval Processes:
 NSBA/AASHTO Collaboration
- Standardized Design Details: NSBA/ AASHTO Collaboration
- Showcase of Benefits of Automation:

 AASHTO Subcommittee on Bridges and Structures
 Resolution (2005)
 FHWA Project: DTFH61-06-D-00037

2D vs. 3D

2D CAD provides an electronic "drawing board"

2D drawings contain the information

2D drawings human-readable; separate manual data entry is required for analysis

Coordination is difficult; information is scattered among different drawings and specifications clauses

Manual checking

No support for production

3D CAD enables a parametric model

3D model contains the info; drawings are only reports

3D model is computer-readable, such that direct analyses are possible

Coordination is automatic: 3D model is the single source for all product information

Automated checking

Potentially full support for production (via CNC codes etc.)

What This Is About

Project Vision

Overview of Project Vision

- Develop a prototype integrated system illustrating data exchanges and applications
- Address entire bridge life cycle
- Utilize 3-D bridge information modeling (BrIM) as a technology to accelerate bridge project delivery and enhance life cycle management

Overview of Project Vision

 Demonstrate the viability, efficiencies and benefits of the integrated bridge project delivery and life cycle management concept through onehalf-day and two-day presentations of the prototype integrated system to stakeholders around the country

Project Scope

Project Scope

- A large and complex project
- Relates many data exchanges and stakeholders
- Involves development of a prototype not production - software linking appropriate existing commercial software that demonstrates a viable integrated system for bridge project delivery and life cycle management

Project Scope

- Implementation will require initial stakeholder input, mechanics for maintenance, and will illustrate economic benefits and improved quality
- Presentations, seminars, and other information exchanges address the "Stakeholder Engagement and Buy In"

Project Objectives

Project Objectives

- Develop integration and linking software
- Demonstrate utility of an integrated approach
- Promote benefits and efficiencies of this approach
- Develop and conduct one-half and two day workshops
- Make presentations to illustrate use of the system for concrete and steel bridges

- Generate a 3D architectural blueprint for appropriate use, and to facilitate leveraging of data
- Significantly improved 2D design drawings, as well as construction drawings

 Data ownership issues will be addressed with the philosophy espoused by the AISC Code of Standard Practice:

The quality of the contract documents is the responsibility of the entities that produce those documents

Related key issue:

View / Approve / Edit control and tracking

- Highlight the benefits of automation and communication technologies to achieve rapid coordinated bridge design, construction and subsequent life cycle management
- Approach will be implemented by performing an integrated set of overlapping tasks

Conceptual View of the Approach

Summary

- Complex and a non-typical R&D project
- Aimed at establishing the viability of integrated bridge project delivery and life cycle management
- Resulting product:

An integrated prototype system, with linking software, that connects existing commercial software for all major phases of bridge life

Information Workflow

Steel Alternate

TXT - TEXT FILE

XML - EXTENSIBLE MARKUP LANGUAGE

VBA - VISUAL BASIC FOR APPLICATIONS

CSV - COMMA SEPARATED VALUES

BARS/LARS - AASHTOWARE AND BENTLEY SOFTWARE

Information Workflow

Concrete Alternate

TXT - TEXT FILE

XML – EXTENSIBLE MARKUP LANGUAGE

LANDXML - LAND EXTENSIBLE MARKUP LANGUAGE

VBA - VISUAL BASIC FOR APPLICATIONS

CSV - COMMA SEPARATED VALUES

BARS/LARS - AASHTOWARE AND BENTLEY SOFTWARE

