EE 521 Power System Analysis and EE 523 Power System Stability and Control Algorithms

Preamble and Control Inputs

```
systemName =
"ieee11"

powerFlowMethod =
"NRPF"
```

Read CDF file and store the data in neat MATLAB tables: busData and branchData.

busData = 11×18 table

	bus	busName	IoadFlowArea	lossZone	busType	vFinal
1	1	"Bus 1 HV"	1	1	3	1.0300
2	2	"Bus 2 HV"	1	1	2	1.0100
3	3	"Bus 3 HV"	2	1	2	1.0300
4	4	"Bus 4 HV"	2	1	2	1.0100
5	5	"Bus 5 HV"	1	1	0	1.0060
6	6	"Bus 6 LV"	1	1	0	0.9780
7	7	"Bus 7 ZV"	1	1	0	0.9610
8	8	"Bus 8 TV"	3	1	0	0.9490
9	9	"Bus 9 LV"	2	1	0	0.9710
10	10	"Bus 10 LV"	2	1	0	0.9840
11	11	"Bus 11 LV"	2	1	0	1.0080

branchData = 10×15 table

	i	j	IoadFlowArea	lossZone	ckt	type	R
1	1	5	1	1	1	0	0
2	2	6	1	1	1	0	0
3	3	11	2	1	1	0	0
4	4	10	2	1	1	0	0
5	5	6	1	1	1	0	0.0025
6	6	7	1	1	1	0	0.0010
7	7	8	1	1	1	0	0.0055
8	8	9	2	1	1	0	0.0055
9	9	10	2	1	1	0	0.0010
10	10	11	2	1	1	0	0.0025

Extract Y_{Bus} , Adjacency List E from the branchData table.

ybusTable = 11×11 table

1 2 4 11 0.0000 -59.9880i 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 +59.9880i 22 0.0000 + 0.0000i0.0000 -59.9880i 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i3 3 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 -59.9880i 0.0000 + 0.0000i44 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 -59.9880i 0.0000 + 0.0000i55 0.0000 +59.9880i 0.0000 + 0.0000i0.0000 + 0.0000i3.9604 -99.5701i 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 +59.9880i 0.0000 + 0.0000i0.0000 + 0.0000i-3.9604 +39.6040i 7 7 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i88 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i99 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i10 10 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 +59.9880i 0.0000 + 0.0000i11 11 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 +59.9880i 0.0000 + 0.0000i0.0000 + 0.0000i

Run Newton Raphson Power Flow and obtain a steady state snapshot of the system variables $P_i, Q_i, V_i, \delta_i \ \forall$ buses $i \in [1, N], i \in \mathbb{N}$

Iteration Number 1 Jacobian:

JTable = 17×17 table

	\$delta_2\$	\$delta_3\$	\$delta_4\$	\$delta_5\$	\$delta_6\$	\$delta_7\$
1 \$P_2\$	60.5879	0	0	0	-60.5879	0
2 \$P_3\$	0	61.7876	0	0	0	0
3 \$P_4\$	0	0	60.5879	0	0	0
4 \$P_5\$	0	0	0	101.3916	-39.6040	0
5 \$P_6\$	-60.5879	0	0	-39.6040	199.2017	-99.0099
6 \$P_7\$	0	0	0	0	-99.0099	117.0117
7 \$P_8\$	0	0	0	0	0	-18.0018
8 \$P_9\$	0	0	0	0	0	0
9 \$P_10\$	0	0	-60.5879	0	0	0
10 \$P_11	\$ 0	-61.7876	0	0	0	0
11 \$Q_5\$	0	0	0	-3.9604	3.9604	0
12 \$Q_69	-0	0	0	3.9604	-13.8614	9.9010
13 \$Q_7	0	0	0	0	9.9010	-11.7012

	\$delta_2\$	\$delta_3\$	\$delta_4\$	\$delta_5\$	\$delta_6\$	\$delta_7\$
14 \$Q_8\$	0	0	0	0	0	1.8002
15 \$Q_9\$	0	0	0	0	0	0
16 \$Q_10\$	0	0	-0	0	0	0
17 \$Q_11\$	0	-0	0	0	0	0

Iteration Number 2 Jacobian:

JTable = 17×17 table

	\$delta_2\$	\$delta_3\$	\$delta_4\$	\$delta_5\$	\$delta_6\$	\$delta_7\$
1 \$P_2\$	62.4416	0	0	0	-62.4416	0
2 \$P_3\$	0	64.1116	0	0	0	0
3 \$P_4\$	0	0	62.9589	0	0	0
4 \$P_5\$	0	0	0	106.8334	-42.8853	0
5 \$P_6\$	-62.4416	0	0	-41.5654	211.8705	-107.8634
6 \$P_7\$	0	0	0	0	-105.0023	125.0538
7 \$P_8\$	0	0	0	0	0	-19.2736
8 \$P_9\$	0	0	0	0	0	0
9 \$P_10\$	0	0	-62.9589	0	0	0
10 \$P_11\$	0	-64.1116	0	0	0	0
11 \$Q_5\$	0	0	0	-4.0096	-2.3765	0
12 \$Q_6\$	7.2464	0	0	10.8216	-14.4060	-3.6620
13 \$Q_7\$	0	0	0	0	24.9486	-23.0256
14 \$Q_8\$	0	0	0	0	0	5.8554
15 \$Q_9\$	0	0	0	0	0	0
16 \$Q_10\$	0	0	7.3065	0	0	0
17 \$Q_11\$	0	7.4943	0	0	0	0

Iteration Number 3 Jacobian:
JTable = 17×17 table

	\$delta_2\$	\$delta_3\$	\$delta_4\$	\$delta_5\$	\$delta_6\$	\$delta_7\$
1 \$P_2\$	59.1939	0	0	0	-59.1939	0
2 \$P_3\$	0	62.0471	0	0	0	0
3 \$P_4\$	0	0	59.5177	0	0	0
4 \$P_5\$	0	0	0	101.3844	-39.4132	0
5 \$P_6\$	-59.1939	0	0	-38.0634	192.0894	-94.8321
6 \$P_7\$	0	0	0	0	-92.1279	108.8595
7 \$P_8\$	0	0	0	0	0	-15.9653

3

	\$delta_2\$	\$delta_3\$	\$delta_4\$	\$delta_5\$	\$delta_6\$	\$delta_7\$
8 \$P_9\$	0	0	0	0	0	0
9 \$P_10\$	0	0	-59.5177	0	0	0
10 \$P_11	\$ 0	-62.0471	0	0	0	0
11 \$Q_5\$	0	0	0	-4.0635	-2.8751	0
12 \$Q_6\$	6.9933	0	0	10.6227	-13.4428	-4.1732
13 \$Q_7\$	0	0	0	0	22.8692	-20.6724
14 \$Q_8\$	0	0	0	0	0	5.4665
15 \$Q_9\$	0	0	0	0	0	0
16 \$Q_10	0\$	0	6.9950	0	0	0
17 \$Q_11	\$ 0	7.1920	0	0	0	0

Iteration Number 4 Jacobian:

JTable = 17×17 table

\$delta_2\$ \$delta_3\$ \$delta_4\$ \$delta_5\$ \$delta_6\$ \$delta_7\$ 1 \$P_2\$ 0 0 0 58.8549 0 -58.8549 2 \$P_3\$ 0 61.8842 0 0 0 0 3 \$P_4\$ 0 0 59.1799 0 0 0 4 \$P_5\$ 0 0 0 0 100.8691 -39.0748 5 \$P_6\$ 0 0 -58.8549 -37.7096 190.0235 -93.4590 6 \$P_7\$ 0 0 0 0 -90.7375 107.0731 7 \$P_8\$ 0 0 0 0 0 -15.5496 8 \$P_9\$ 0 0 0 0 0 0 9 \$P_10\$ 0 0 0 0 -59.1799 0 10 \$P_11\$ 0 0 0 -61.8842 0 0 11 \$Q_5\$ 0 0 0 -4.0129 -2.9865 0 12 \$Q_6\$ 0 10.6650 6.9997 0 -13.2670 -4.3977 13 \$Q_7\$ 0 0 0 0 22.8173 -20.4812 14 \$Q 8\$ 0 0 0 0 0 5.5247 15 \$Q 9\$ 0 0 0 0 0 0 16 \$Q_10\$ 0 0 6.9998 0 0 0 17 \$Q_11\$ 0 7.1900 0 0 0 0

Convergence using NRPF achieved in 4 iterations.

resultTable = 11×4 table

. courtius	CSGICTOSIC IIIVI CGDIC								
	Р	Q	V	delta					
1 \$Bus_1\$	6.9995	1.8469	1.0300	0					
2 \$Bus_2\$	6.9997	2.3389	1.0100	-0.1705					

4

	P	Q	V	delta
3 \$Bus_3\$	7.1900	1.7571	1.0300	-0.4727
4 \$Bus_4\$	6.9998	2.0139	1.0100	-0.6506
5 \$Bus_5\$	-0.0009	0.0003	1.0064	-0.1128
6 \$Bus_6\$	-0.0023	0.0010	0.9781	-0.2889
7 \$Bus_7\$	-9.6703	-0.9983	0.9610	-0.4356
8 \$Bus_8\$	0.0003	0.0022	0.9486	-0.6778
9 \$Bus_9\$	-17.6648	-0.9988	0.9714	-0.9152
10 \$Bus_10\$	-0.0009	0.0007	0.9835	-0.7683
11 \$Bus_11\$	-0.0001	0.0001	1.0083	-0.5884

Compare obtained snapshot values of V_i and $\mathit{\delta}_i$ against the ones given in the CDF file.

Obtained Solution vs Given Solution in CDF file for Voltage Angles of 2×10^{-4} ieee11 using NRPF Absolute Error in Radians from deltaFinal in CDF file 0 -2 -4 -6 -8 -10 -12 -14 -16 2 6 8 0 4 10 12 Bus Number

Economic Dispatch and Optimal Power Flow Calculations:

Elapsed time is 1.376304 seconds.

Have a nice day!

In case you encounter a Java Heap Memory error, delete the above gif, or go to Preferences->General->Java Heap Memory and increase the allocated size.