MATH 392 Problem Set 3

Sam D. Olson

Note on PS3

Time Taken

Total Time on Exercises from the Book: X hours Solving Exercises from the Book: $4\ 1/2$ hours LaTeX writeup of Exercises from the Book: $3\ 1/2$ hours

Additional Notes

- This Problem Set does not contain the Case Study. It will be turned in on Monday, 2/17/2020.
- Answers to All 8 problems are included.

Exercises from the book

7.5: 5

Let
$$y = \sum_{i=1}^{n} x_i$$

Additionally, denote: $\bar{x} = x_1, ..., x_n$

Then, for y > 0 the likelihood function is given by:

$$f_n(\bar{x} \mid \theta) = \frac{e^{-n\theta}\theta^y}{\prod\limits_{i=1}^n x_i!}$$

Let $L(\theta) = log(f_n(\bar{x} \mid \theta))$

Note that $\prod_{i=1}^{n} x_i!$ does not depend on θ , as such, let $\psi = \prod_{i=1}^{n} x_i!$

Then we may write:

$$L(\theta) = -n\theta + ylog(\theta) - \psi$$

Then we may take the derivative of $L(\theta)$ with respect to θ , giving us:

$$\frac{\partial L\left(\theta\right)}{\partial \theta} = -n + \frac{y}{\theta}$$

To determine the M.L.E. of θ , we maximize this equation and set it equal to zero, such that:

$$0 = -n + \frac{y}{\theta} \to n = \frac{y}{\theta} \to \hat{\theta} = \frac{y}{n}$$

1

(A): Thus, the M.L.E. of θ is $\hat{\theta} = \frac{y}{n} = \bar{x}_n$.

(B): If y = 0, and if $\theta \neq 0$ ($\theta > 0$), then $\theta = 0$ is not in the parameter space, Ω , then the M.L.E. of θ does not exist.

For additional commentary, we may note that if y = 0, then the likelihood function $f_n(\bar{x} \mid \theta)$ is a decreasing function of θ . As such, the maximum of the derivative of $L(\theta)$ occurs when $\theta = 0$. However, $\theta > 0$ is a condition of θ , and as such, the M.L.E. of θ does not exist.

7.5: 8

Let
$$y = \sum_{i=1}^{n} x_i$$

Additionally, denote: $\bar{x} = x_1, ..., x_n$

We note the likelihood function, $f_n(\bar{x} \mid \theta)$, as:

$$f_n(\bar{x} \mid \theta) = \begin{cases} e^{\theta - y} & \text{for } x > \theta \\ 0 & \text{for } x \leq \theta \end{cases}$$

Let $L(\theta) = log(f_n(\bar{x} \mid \theta))$

Then, for $x > \theta$, we may write:

$$L\left(\theta\right) = \theta - y$$

Then we may take the derivative of $L(\theta)$ with respect to θ , setting it equal to 0 to maximize the likelihood function, giving us:

$$\frac{\partial L\left(\theta\right)}{\partial \theta} = 0 \to 1 = 0$$

(A): As this is markedly false, we conclude the M.L.E. of θ does not exist.

Alternatively, we may not that $\forall x_i \in \bar{x}, f_n(\bar{x} \mid \theta)$ will be maximized when θ is maximized (while holding the relation $\theta < x$). As such, $\theta < min(x_1, ..., x_n)$. However, due to the **strict inequality**, the maximum $\theta = min(x_1, ..., x_n)$ cannot be used as an estimate of θ . As such, the M.L.E. of θ does not exist.

We may take advantage of the example provided in the book to create another version of the p.d.f. for which the M.L.E. of θ will exist. To do so, let the **strict inequality** be swapped with the **weak inequality**, such that we may write:

$$f(x \mid \theta) = \begin{cases} e^{\theta - y} \text{ for } x \ge \theta \\ 0 \text{ for } x < \theta \end{cases}$$

We may then note the likelihood function of this p.d.f as:

$$f_n(\bar{x} \mid \theta) = \begin{cases} e^{\theta - y} \text{ for } x \ge \theta \\ 0 \text{ for } x < \theta \end{cases}$$

We may then note: The likelihood function will be non-zero for $\theta \leq min(x_1,...,x_n)$.

(B): Thus, the M.L.E. of θ , $\hat{\theta} = min(x_1, ..., x_n)$

7.5: 11

Note, as we are dealing with the interval $[\theta_1, \theta_2]$, we know $\theta_1 \leq \theta_2$

We may then write the p.d.f. of each x i as:

$$f(x_i \mid \theta_1, \theta_2) = \begin{cases} \frac{1}{\theta_2 - \theta_1} & \text{for } \theta_1 \le x \le \theta_2 \\ 0 & \text{otherwise} \end{cases}$$

Letting $\bar{x} = x_1, ..., x_n$, we may then write the likelihood function as:

$$f_n\left(\bar{x}\mid\theta_1,\theta_2\right) = \left\{\frac{1}{(\theta_2 - \theta_1)}^n \ for \ \theta_1 \leq min(x_1,...,x_n) \leq max(x_1,...,x_n) \leq \theta_2\\ 0 \ otherwise \right\}$$

We may then note that $f_n(\bar{x} \mid \theta_1, \theta_2)$ is maximized when $\theta_2 - \theta_1$ is minimized.

Thus, we may note:

$$min(\theta_2) = max(x_1, ..., x_n)$$

And

$$max(\theta_1) = min(x_1, ..., x_n)$$

Thus, the M.L.E. of θ may be written: $\theta = (\hat{\theta_1} = min(x_1, ..., x_n), \hat{\theta_2} = max(x_1, ..., x_n))$.

7.5: 12

Let
$$\theta = \theta_1, ..., \theta_n$$

Note the following relations for use later: $k \ge 2$, $0 \le \theta_i \le 1$, $\theta_1 + ... + \theta_k = 1$, and $n_1 + ... + n_k = n$ Then, the likelihood function is given by:

$$f_n(\bar{x} \mid \theta_1, ..., \theta_k) = \prod_{i=1}^k \theta_i^{n_i} = \theta_1^{n_1} ... \theta_k^{n_k}$$

For ease of computation, let $L(\theta) = log(f_n(\bar{x} \mid \theta_1, ..., \theta_k))$

Note that:
$$\theta_k = 1 - \sum_{i=1}^{k-1} \theta_i$$

Then we may write:

$$L(\theta) = \sum_{i=1}^{k} n_i log(\theta_i)$$

Then we may take the derivative with respect to θ_i , giving us:

$$\frac{\partial L\left(\theta\right)}{\partial \theta_{i}} = \frac{\partial \left(n_{k}\left(1 - \sum\limits_{i=1}^{k-1} \theta_{i}\right) + \sum\limits_{i=1}^{k-1} n_{i}log(\theta_{i})\right)}{\partial \theta_{i}}$$

This evaluates to:

$$\frac{\partial L\left(\theta\right)}{\partial \theta_{i}} = -\frac{n_{k}}{\left(1 - \sum\limits_{i=1}^{k-1} \theta_{i}\right)} + \frac{n_{i}}{\theta_{i}} = -\frac{n_{k}}{\theta_{k}} + \frac{n_{i}}{\theta_{i}}$$

To determine the M.L.E. of θ_i , we maximize this equation and set it equal to zero, such that:

$$0 = -\frac{n_k}{\theta_k} + \frac{n_i}{\theta_i} \to \frac{n_k}{\theta_k} = \frac{n_i}{\theta_i}$$
 for $i = 1, ..., k-1$

For i = 1, ..., k, if we set $\theta_i = \alpha n_i$, then it follows:

$$1 = \sum_{i=1}^{k} \theta_i = \sum_{i=1}^{k} \alpha n_i = \alpha \sum_{i=1}^{k} n_i$$

Noting that $\sum_{i=1}^{n} n_i = n$, we may then say:

$$1 = \alpha n \to \alpha = \frac{1}{n}$$

We may then write, for i = 1, ..., k, the M.L.E. of θ_i is:

$$\hat{\theta_i} = \alpha n_i = n_i/n$$

Intuitively, and similar to other applications of the M.L.E., this results says that the M.L.E. of the individuals of the type i is the proportion of individuals of type i.

7.6: 3

Let m denote the median of the Exponential distribution.

Note the median of the Exponential distribution may be derived from the following equation:

$$\int_{0}^{m} \beta e^{-\beta x} dx = \frac{1}{2}$$

Evaluating this integral gives us:

$$\frac{1}{2} = 1 - e^{-\beta m} \rightarrow 1 = 2 - e^{-\beta m}$$

Solving for m, we take the log of the above equation, giving us:

$$0 = log(2) - \beta m \rightarrow \beta m = log(2) \rightarrow m = \frac{log(2)}{\beta}$$

Thus, for $\hat{\beta}$, the sample median, $\hat{m} = \frac{\log(2)}{\hat{\beta}}$

All praise the glorious tables at the back of the book For our purposes, note the mean of the Exponential distribution, $\mu = \frac{1}{\beta}$.

Solving for β , we then have $\beta = \frac{1}{\mu}$

For the sample mean, \bar{x}_n , note: $\hat{\beta} = \frac{1}{\bar{x}_n}$

Thus, for the sample median, we have:

$$\hat{m} = \frac{\log(2)}{\frac{1}{\bar{x}_n}} = \bar{x}_n \log(2)$$

7.6: 12

Note from the prior exercise, the parameter $\hat{\beta} = \frac{1}{\bar{x}_n}$

Additionally, we may once again **praise the glorious tables at the back of the book** and note the mean of the Exponential distribution is given by: $\mu = \frac{1}{\beta}$

Via application of the Law of Large Numbers, we may then write:

$$\lim_{n \to \infty} Pr\left(\mid \bar{x}_n - \frac{1}{\beta}\mid\right) = 1 \equiv \bar{x}_n \xrightarrow{p} \frac{1}{\beta} = \mu$$

And

$$\lim_{n \to \infty} Pr\left(|\bar{\beta} - \beta|\right) = 1 \equiv \bar{\beta} \stackrel{p}{\to} \beta$$

It then follows that the sequence of M.L.E.s of β , $\hat{\beta}$, is a consistent sequence of M.L.E.s of β

7.6: 14

The M.L.E., \hat{p} , is the proportion of butterflies in the sample with the special type of marking on their wings. Of note, this holds regardless of the sampling plan, as noted in the section *Sampling Plans* (pp.439-441) of the book. Therefore, using this method, we have:

(A):
$$\hat{p} = \frac{5}{43}$$

And

(B):
$$\hat{p} = \frac{3}{58}$$

Alternatively, and with greater difficulty, we can take the likelihood function using the Binomial distribution, written:

$$f_n\left(\bar{x}\mid p\right) = \binom{n}{x} p^x \left(1-p\right)^{n-x}$$

Where n denotes the total number of butterflies and x denotes the number of butterflies with the special type of marking on their wings.

Let
$$L(p) = log(f_n(\bar{x} \mid p))$$

Taking the derivative with respect to p gives us:

$$\frac{\partial L\left(p\right)}{\partial p} = \frac{\partial \left(log\binom{n}{x} + xlog(p) + (n-x)log(1-p)\right)}{\partial p} = \frac{x}{p} - \frac{n-x}{1-p}$$

Setting this equation equal to zero, we then solve for p:

$$\frac{n-x}{1-p}=\frac{x}{p}\rightarrow p\frac{n-x}{1-p}=x\rightarrow \frac{1}{p}=\frac{n-x+x}{x}=\frac{n}{x}$$

Solving for p gives us:

 $p=\frac{x}{n}$, which confirms our above use of the sample proportion for the M.L.E. of p.

7.6: 23

Note, the mean is the first moment and the variance is the second moment. Their respective relations are given as follows:

(1): 1st Moment,
$$X_i = \frac{\alpha}{\alpha + \beta}$$
 (2): 2nd Moment, $X_i^2 = \frac{\alpha(\alpha + 1)}{(\alpha + \beta)(\alpha + \beta + 1)}$

We set these, respectively, equal to the sample moments m_1 and m_2 , and then use relations (1) and (2) to solve for α and β .