Chemistry of the Super Heavy Elements

Sriram Akella

Tata Institute of Fundamental Research, Mumbai

May 27, 2023

Why Care?

Island of Stability

Super Heavy Elements

Relativistic Effects

Dirac-Coulomb-Breit Hamiltonian

Relativistic Stabilization

Valence Shell Contraction

Fine Structure Splitting

Real Experiments

Summary

Why Care?

Figure: The Nuclear Landscape with the Super Heavy Elements (SHE). Figure from [3].

► "Island of stability" in the nuclear landscape near the SHE region [6]. What chemical properties do these exotic elements have?

Why the Island of Stability?

Figure: Enery levels in the Shell Model. Figure from Krane.

Shell Model

► Nucleon-Nucleon potential is given by Woods-Saxon:

$$V(r) = -\frac{V_0}{1 + \exp[(r - R)/a]},$$
(1)

plus a spin-orbit coupling.

- ► Filled nuclear shells, similar to filled atomic shells, are stable; called magic numbers.
- ► For instance, ²⁰⁸₈₂ Pb is doubly magic and stable.
- ightharpoonup Z = 126 and N = 184 expected to be stable.

Super Heavy Elements

- ▶ $Z \ge 104$ (Rf). Half-lives ranging from milliseconds to a few hours.
- ▶ Heaviest nuclei discovered is Z=118 (Oganesson) by JINR, Dubna, Russia. Most stable isotope has N=176.
- ▶ But how do we study them if they last only a few milliseconds? I'll answer this in my talk today.
- ▶ Before that, let's see what makes super heavy elements different.

Relativistic Effects

- For $Z \sim 100$, the Bohr velocity of electrons becomes relativistic.
- ➤ The energy levels using Dirac equation for hydrogen-like atoms are:

$$E_{n,k} = mc^2 \left(1 + \frac{Z^2 \alpha^2}{\left(n - k + \sqrt{k^2 - Z^2 \alpha^2} \right)^2} \right)^{-1/2}.$$
 (2)

- ▶ For $Z\alpha > 1$, the ground state energy becomes imaginary!
- ► Relativistic effects play a big role for SHEs.

Dirac-Coulomb-Breit Hamiltonian

- ► How do we deal with the relativistic problem?
- Numerically solve the many-body DCB Hamiltonian [4]:

$$H_{DCB} = \sum_{i} H_{D}(i) + \sum_{i < j} \left(\frac{1}{r_{ij}} + B_{ij}\right)$$
 (3)

where,

$$H_D(i) = c\vec{\alpha}_i \vec{p}_i + c^2 (\beta_i - 1) + V^n(i),$$
 (4)

and

$$B_{ij} = -\frac{1}{2} \left[\vec{\alpha}_i \vec{\alpha}_j r_{ij}^{-1} + (\vec{\alpha}_i \vec{r}_{ij}) (\vec{\alpha}_j \vec{r}_{ij}) r_{ij}^{-3} \right].$$
 (5)

▶ H_D is the Dirac Hamiltonian with external nuclear potential $V^n(i)$. The $1/r_{ij}$ is the Coulomb term and B_{ij} is the Breit-term coming from relativistic corrections.

Relativistic Stabilization

Figure: Relativistic stabilization of 6s and 7s shells. Figure from [4].

Surprise: Simulations with relativistic calculations give higher stability to heavy elements.

Valence Shell Contraction

Figure: Relativistic (solid) and non-relativistic (dashed) radial distribution of the 7s valence electrons in Db (Z=105). Figure from [4].

► Relativistic effects contract the valence shells! Chemically inert.

Fine Structure Splitting

IUPAC Periodic Table of the Elements

1 H hydrogen 1.0000 ± 0.0002	2		Key:									13	14	15	16	17	2 He helium 4,0226 ± 0,0001
3 Li lithium 6.94 ± 0.06	4 Be beryllium 9.0122 ± 0.0001		Symbolic name abridged stand atomic weight	ol								5 B boron 10.81 ± 0.02	6 C carbon 12.011 ± 0.002	7 N nitrogen 14.007 ± 0.001	8 0 0xygén 15.999 ± 0.001	9 F fluorine 18.998 ± 0.001	10 Ne neon 20.180 a 0.001
11 Na sodium 22.990 ± 0.001	12 Mg magnesium 24.335 ± 0.002	3	4	5	6	7	8	9	10	11	12	13 AI atuminium 26.982 ± 0.001	14 Si silicon 28.685 a 0.001	15 P phosphorus 30.974 ± 0.001	16 S sulfur 32.06 ± 0.02	17 CI chlorine 35.45 a 0.01	18 Ar argon 39.95 a 0.16
19 K potasskum 39.098 ± 0.001	20 Ca calcium 40.078 ± 0.004	21 Sc scandium 44.956 ± 0.001	22 Ti titanium 47.867 ± 0.001	23 V vanadium 50.942 ± 0.001	24 Cr chromkum 51,995 ± 0.001	25 Mn manganese 54.938 ± 0.001	26 Fe iron 55.845 ± 0.002	27 Co cobalt 58.933 a 0.001	28 Ni nickel 68.693 ± 0.001	29 Cu copper 63.546 ± 0.003	30 Zn zinc 65.38 ± 0.02	31 Ga gallum 69.723 ± 0.001	32 Ge germanium 72.630 ± 0.008	33 As arsenic 74.922 ± 0.001	34 Se selenium 76.971 ± 0.008	35 Br bromine 79.904 ± 0.003	36 Kr krypton 53.798 ± 0.002
37 Rb rubidium 85.468 a 0.001	38 Sr strontium 87.62 ± 0.01	39 Y yttrium 83.906 a 0.001	40 Zr zirconium 91.224 ± 0.002	41 Nb nioblum 92,906 a 0,001	Mo molybdenum 95.95 a 0.01	TC technetium	Ru ruthenium 101.07 ± 0.02	45 Rh rhodium 102.91	46 Pd palladium 108.42 ± 0.01	47 Ag silver 107.87 a 0.01	48 Cd cadmium 112.41 ± 0.01	49 In indium 114.82 ± 0.01	50 Sn lin 118.71	51 Sb antimorry 121.76 a 0.01	52 Te tellurium 127.60 ± 0.03	53 lodine 120.50 a 0.01	54 Xe xenon 131.29 ± 0.01
55 Cs caesium 132.91 ± 0.01	56 Ba barium 137.33 ± 0.01	57-71 lanthanoids	72 Hf hafnium 178.49 ± 0.01	73 Ta tantalum 180.95 ± 0.01	74 W tungsten 183.84 ± 0.01	75 Re rhenium	76 Os osmium 190.23 ± 0.03	77 Ir iridium 192.22 ± 0.01	78 Pt platinum 195.08 ± 0.02	79 Au gold 196.97 a 0.01	80 Hg mercury 200.50 4 0.01	81 TI Bisallium 204.38 ± 0.01	82 Pb lead 207.2 a 1.1	83 Bi bismuth 208.96 ± 0.01	Po potonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 Hs hassium	109 Mt meltnerium	110 Ds darmstadfum (281)	111 Rg roentgenium	Cn copernicium	Nh nihonium	114 FI Rerovium	MC MC moscovium	116 LV Iivermorium	117 Ts tennessine	Og oganesson

IONAL UNION OF APPLIED CHEMISTRY

ш	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ш	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu
ш	lanthanum		praseodymium		promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
П	138.91 a 0.01	140.12 a 0.01	140.91 a 0.01	144.24 a 0.01	[145]	150.36 a 0.02	151.96 a 0.01	157.25 a 0.03	158.93 ± 0.01	162.50 a 0.01	164.93 a 0.01	167.26 a 0.01	168.93 a 0.01	173.05 ± 0.02	174.97 ± 0.01
ı	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
ш	Ac	Th	Pa	Ü	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
ш	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
ш	[227]	232.04 ± 0.01	231.04 ± 0.01	238.03 ± 0.01	[237]	[244]	[243]	[247]	[247]	[261]	[252]	[267]	(258)	(269)	[262]

- Recent numerical calculations predict an electron affinity of 0.076(4) eV [2] for Oganesson (Z=118); a group 18 element.
- ► Flerovium, a group 14 element, is a closed shell atom with zero electron affinity [1].
- ► Fine-structure splitting of orbitals is responsible for these effects. A non-relativistic treatment will not predict them.

Real Experiments

- ► Although computer simulations are very powerful, what about real experiments?
- ► There are some results available for long-lived transactinides [5].
- ► I'm terrible at chemistry and don't want to embarass myself. But from what I understand, there are no discrepancies yet with computer calculations.

Summary

- ► Because of the short lifetimes involved, numerical simulation is the most powerful tool at our disposal.
- ► Relativistic effects result in some surprises.

Take-Home Message

► SHE research is exciting! Imagine how cool it would be to discover a stable SHE with exotic properties?

References

- [1] Anastasia Borschevsky, Valeria Pershina, Ephraim Eliav, and Uzi Kaldor, Electron affinity of element 114, with comparison to sn and pb, Chemical Physics Letters 480 (2009), no. 1, 49–51.
- [2] M. Y. Kaygorodov, L. V. Skripnikov, I. I. Tupitsyn, E. Eliav, Y. S. Kozhedub, A. V. Malyshev, A. V. Oleynichenko, V. M. Shabaev, A. V. Titov, and A. V. Zaitsevskii, *Electron affinity of oganesson*, Phys. Rev. A 104 (2021), 012819.
- [3] Yuri Ts. Oganessian and Krzysztof P. Rykaczewski, A beachhead on the island of stability, Physics Today 68 (201508), no. 8, 32–38.
- [4] Valeria Pershina, Theoretical chemistry of the heaviest elements (2014), 135–239.
- [5] Matthias Schädel, Chemistry of the superheavy elements, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373 (2015), no. 2037, 20140191.
- [6] V.E. Viola and G.T. Seaborg, *Nuclear systematics of the heavy elements—ii lifetimes for alpha, beta and spontaneous fission decay*, Journal of Inorganic and Nuclear Chemistry **28** (1966), no. 3, 741–761.