

Visions to Products

# **OnDevice Learning**

Hahn-Schickard

<u>Marcus.rueb@hahn-schickard.de</u>

# What is OnDevice Training and why is it needed?



### Advantages [1]:



**Privacy** 



**Continuously Learning** 



**Energy-saving** 



**Less Communication** 



**Personalized Models** 







# **Applications**









## What does the workflow look like?























# **Data Point Selection**



Which data use to train? How to label Data on Device? What to do with "old data"? [2]









# **Active Learning**



- **1.Least Confidence:** difference between the most confident prediction and 100% confidence
- 2.Margin of Confidence: difference between the top two most confident predictions
- **3.Ratio of Confidence:** ratio between the top two most confident predictions
- **4.Entropy:** difference between all predictions, as defined by information theory [3]



Valuable labeled dataset













# **Train more efficient**



# Backpropagation 100% propagation rate



# Sparse Backpropagation [4] 50% propagation rate







# **Train more efficient**



# Backpropagation

100% propagation rate





### Sparse Backpropagation

50% propagation rate









### Train more efficient



#### 1. Forward Propagation



#### 4. Calculate k

Hahn-Schickard - Marcus Rüb- Marcus.rueb@hahn-schickard.de

Ymax

summed Error Yl

#### 2. Sum magnitudes of local error



Output Groundtruth Input Hidden  $a^l$  $a^{l+1}$ Layer

#### 5. Get Top k

(Top k = 2)

















#### 3. Decide to train Datapoint

$$D^{L} = \left(D_{min} + \alpha^{L} * \frac{\left(D_{max - D_{min}}\right)}{\alpha_{max}^{L}}\right) * \beta^{L}$$

#### 6. Sparse back Propagation



Gradient Hidden Gradient of Input Layer of Output













# **Proposed Workflow**





[5]





## What is Dataset distillation









## **Distill Dataset**





Figure 3. We perform long-range parameter matching between training on distilled synthetic data and training on real data. Starting from the same initial parameters, we train distilled data  $\mathcal{D}_{\text{syn}}$  such that N training steps on them match the same result (in parameter space) from much more M steps on real data.





### **Train Neural Network**



# Backpropagation







# **Check Model Accuracy & Increase Model size**



Model accuracy is typically measured using an accuracy score, which is defined as the proportion of correct predictions out of the total number of predictions. If we denote the number of correct predictions as  $C_{\rm correct}$  and the total number of predictions as  $N_{\rm total}$ , the accuracy score A can be calculated as follows:

$$A = \frac{C_{\text{correct}}}{N_{\text{total}}}$$

Let's denote our original model's architecture as  $\mathcal{M}$  and its accuracy score as A. If A doesn't meet the predefined accuracy standard,  $A_{\text{standard}}$ , we proceed with the enlargement of the model, creating a new model architecture,  $\mathcal{M}'$ . This adjustment can be represented as follows:

$$\mathcal{M}' = egin{cases} \mathcal{M} + \Delta \mathcal{M} & ext{if } A < A_{ ext{standard}} \ \mathcal{M} & ext{otherwise} \end{cases}$$

where  $\Delta \mathcal{M}$  represents the increase in the model's complexity. This increase can be in the form of additional layers, more











### References



- [1] Marcus Rüb, Prof. Dr. Axel Sikora, A Practical View on Training Neural Networks in the Edge, IFAC-PapersOnLine,
- Volume 55, Issue 4, 2022, Pages 272-279, ISSN 2405-8963
- [2] A Comparative Survey of Deep Active Learning.
- Xueying Zhan, Qingzhong Wang, Kuan-hao Huang, Haoyi Xiong, Dejing Dou, and Antoni B. Chan,
- arXiv:2203.13450
- [3] https://towardsdatascience.com/uncertainty-sampling-cheatsheet-ec57bc067c0b
- [4] Rüb, Marcus & Maier, Daniel & Mueller-Gritschneder, Daniel & Sikora, Axel. (2023).
- TinyProp -- Adaptive Sparse Backpropagation for Efficient TinyML On-device Learning.
- GITHUB: https://github.com/r1marcus/TinyProp
- [5] Rüb, Mueller-Gritschneder, Sikora. (2024).
- A Continual and Incremental Learning Approach for TinyML On-device Training Using Dataset Distillation and Model Size Adaption.





# Thank you







#### **Marcus Rüb**

Wissenschaftlicher Mitarbeiter

Hahn-Schickard-Gesellschaft für angewandte Forschung e.V.

Wilhelm-Schickard-Str. 10, 78052 Villingen-Schwenningen Telefon: +49 7721 943-180 Marcus.Rueb@Hahn-Schickard.de

 $\underline{www.Hahn\text{-}Schickard.de}$ 



