Problem B. Permutation Tree

Time limit 2000 ms
Mem limit 262144 kB
OS Windows

You are given a tree T with n vertices. Edge i $(1 \le i \le n-1)$ connects vertices u_i and v_i , T is rooted at x $(1 \le x \le n)$

You have to construct the lexicographically smallest n-permutation p such that the following condition holds:

• If u is an ancestor to v , $p_u < p_v$.

<u>Note</u>: Ancestors of the vertex u are all vertices on the path from the root x to the vertex u, except the vertex u itself.

Input

The first line contains integers n and x ($2 \le n \le 2 \cdot 10^5$) — the number of vertices in the tree and the root.

The next n-1 lines contain integers u_i and v_i $(1 \le v_i, u_i \le n)$ — the vertices that the i-th edge connects.

It is guaranteed that this set of edges forms a tree.

Output

The lexicographically smallest n-permutation that satisfies the given condition

Sample 1

Input	Output
5 3 3 5 1 5 1 2 4 1	3 4 1 5 2

Sample 2

must PREP ecpc Aug 11, 2023

Input	Output	
10 3 5 4 8 3 4 6 5 3 7 9	2 5 1 7 6 8 9 3 4 10	
1 3 5 10 2 9 9 8		

Note

For the first example:

For the second example:

