Arbori

Definitie. Arbori oarecare. Parcurgeri. Arbori cu etichete si arbori pentru expresii. Arbore ADT. Implementari ale arborilor. Arbori binari de cautare

Arbori

- Arbori oarecare: colectie de elemente numite noduri

 avand un nod radacina si o relatie de paternitate
 intre noduri fapt ce impune o structura ierarhica
 a nodurilor.
- <u>Definitie</u>: structura recursiva, colectie ierarhica de noduri, fiecare nod:
 - fie este gol
 - fie este o structura care contine o cheie si o colectie de referinte catre noduri *copil*, radacinile n_1 , n_2 , ..., n_k ale sub-arborilor T_1 , T_2 , ..., T_k
- Structura de date pentru colectii non-liniare

Terminologia folosita pentru arbori

- stramosi, descendenti, parinti, copii
- Frunze (noduri fara copii, noduri terminale)
- Noduri interne (noduri cu copii)
 - "radacina" este un nod intern
- Cale (drum)
- Sub-arbori
- Ordinea nodurilor conteaza, frati

Terminologia pentru arbori

Pentru un arbore oarecare T = (V, E) cu radacina $r \in V$:

- Cale (drum): $\langle n_1, n_2, \ldots, n_k \rangle$ astfel incat n_i = parintele lui n_{i+1} pentru $1 \le i \le k$. lungime (cale) = nb_noduri-1
- Adancimea unui nod (varf) $v \in V$ este adancime (v) = lungimea drumului de la r la v
- Inaltimea unui varf $v \in V$ este inaltime(v)=lungimea celui mai lung drum de la v la o frunza
- Inaltimea unui arbore T este inaltime(T)=inaltime(r)
- Nivelul unui varf v∈V este nivel(v)=inaltime(T) adancime(v)
- Diametrul unui arbore: lungimea maxima a unei cai intre 2 frunze, in arbore
- **Sub-arborele** generat de un varf $v \in V$ este un arbore care consta in nodul radacina v si toti descendentii sai din T.

Terminologia pentru arbori - Exemple

- Pentru arborele din imagine:
 - Radacina este a.
 - Frunze: *h*, *g*, *i*, *l*, *m*.
 - Stramosii lui k sunt a,
 c, f.
 - Descendentii lui d sunt h, i, j, l.
 - Parintele lui h este d.
 - Copii /fii lui c sunt f, g.
 - Fratii lui h sunt i, j.
 - Inaltime(T)=inaltime(a) $depth = 3 \frac{n}{2}$

Terminologia pentru arbori oarecare

- Un arbore oarecare este:
 - m-ary daca fiecare varf intern are cel mult m fii.
 - $m = 2 \rightarrow$ arbore binar; $m = 3 \rightarrow$ arbore ternar
 - m-ary intreg ("full") fiecare nod intern are exact m fii
 - complet m-ary daca este arbore full si toate frunzele sunt la nivelul 0
- Limite:
 - Inaltimea maxima a unui arbore cu n varfuri este n 1.
 - Inaltimea maxima a unui arbore binar plin (full) cu n varfuri este (n −1)/2
 - Inaltimea minima a unui arbore binary cu n varfuri este
 Llog₂ n

Parcurgerile unui arbore

Preordine – se viziteaza radacina, apoi tot in preordine se viziteaza nodurile subarborilor care au ca parinte radacina, incepand cu sub-arborele cel mai din stanga.

Preordine (n)

- proceseaza n
- pentru fiecare fiu c al lui n, in ordine de la cel mai din stanga fiu executa Preordine (c)

http://algoviz.org/OpenDSA/Books/Everything/html/GenTreeIntro.html

Parcurgerile unui arbore

Inordine – se viziteaza in inordine primul copil, dupa care se proceseaza radacina, dupa care se viziteaza, in inordine, restul copiilor

Inordine (n)

- Inordine(fiul cel mai din stanga a lui n)
- proceseaza n
- pentru fiecare fiu c al lui n, exceptie facand nodul cel mai din stanga, in ordine de la stanga la dreapta se executa Inordine(c)

Parcurgerile unui arbore

Postordine— pentru un nod se viziteaza in postordine toti sub-arborii care au ca radacini pe fii nodului dat, apoi se viziteaza nodul. Se incepe parcurgerea de la radacina.

Postordine(n)

- pentru fiecare fiu c al lui n, executa Postordine(c)
- proceseaza n

Informatia despre stramosi

- Parcurgerile in preordine si in postordine sunt utile pentru a obtine informatia despre stramosi.
- Sa presupunem ca:
 - post(n) este pozitia unui nod n la o parcurgere in postordinea nodurilor unui arbore si
 - desc(n) este numarul de stramosi propri ai lui n.
 - Atunci nodurile din subarborele care are ca radacina pe n sunt numerotate consecutiv de la post(n)-desc(n) pana la post(n)
- Pentru a verifica daca un nod x este un descendent al unui nod y: post(y)-desc(y) ≤ post(x) ≤ post(y)
- Exercitiu: Verificati relatia pentru preordine!

Exemplu de parcurgeri

- preordine: 1, 2, 5, 3, 6, 10, 7, 11, 12, 4, 8, 9.
- postordine: 5, 2, 10, 6, 11, 12, 7, 3, 8, 9, 4, 1.
- inordine: 5, 2, 1, 10, 6, 3, 11, 7, 12, 8, 4, 9.

Arbori etichetati si arbori pentru expresii

- Arborii binari se pot folosi pentru a reprezenta expresii precum:
 - Propozitii compuse
 - Combinatii de multimi
 - Expresii aritmetice

- Arbore etichetat: fiecare nod are asociata o eticheta sau o valoare
- Arbore pentru expresii aritmetice: nodurile interne reprezinta operatori si frunzele sunt operanzi
 - Operator binar: primul operand este pe frunza stanga iar al doilea operand este pe frunza dreapta
 - Operatori unari: un singul operand pe frunza dreapta

Forme prefix, postfix, infix

- Folosind arborii binari se pot obtine expresii aritmetice in trei reprezentari:
 - Forma infixata:
 - Parcurgere in inordine
 - Se folosesc parantezele pentru a evita ambiguitatile
 - Forma prefixata:
 - Parcurgere in preordine
 - Nu sunt necesare parantezele
 - Forma postfixa:
 - Se foloseste parcurgerea in postordine
 - Nu sunt necesare parantezele
- Expresiile in forma prefixata si postfixa sunt folosite in stiinta calculatoarelor.

Exemplu de arbore pentru expresii:

ADT (Abstract Data Type) Tree

- parent(n, T): returneaza parintele nodului n in arborele T. Pentru radacina returneaza un arbore vid (null) notat Λ .
 - Input: nod, arbore; Output: nod sau Λ
- leftmostChild(n, T): returneaza fiul cel mai din stanga al nodului n din arborele T sau Λ pentru o frunza.
 - Input: nod, arbore; Output: nod sau Λ
- rightSibling(n, T): returneaza fratele din dreapta al nodului n in arborele T sau Λ pentru cel mai din dreapta frate.
 - Input: nod, arbore; Output: nod sau Λ
- label(n, T): returneaza eticheta (valoarea asociata) nodului n in arborele T
 - Input: nod, arbore; Output: eticheta
- root (T): returneaza radacina arborelui T
 - Input: arbore; Output: nod sau Λ
- inord(T), preord(T), postord(T)
- etc...

Implementarea arborilor cu vectori

- Exemplu:
 - fiecare nod are referinta catre indexul nodului parinte
 - stocat in vector

Model logic

(a) Tree

Structura fizica

(b) Data structure

Implementarea arborilor. Liste de fii

Model logic

(a) Tree

(b) Data structure

Reprezentare de arbore binar a arborilor multicai

Arbore binar

Structura recursiva:

- nil (NULL)
- nod, denumit radacina, impreuna cu doi arbori binari - subarborele stang (*left*) si subarborele drept (*right*)

Reprezentare inlantuita:

 campurile cheie, left (stang), right(drept), optional si p(parinte)

Arbori binari de cautare

Definitie:

- arbore binar, chei care pot fi comparate
- nodurile cu chei mai mici decat valoarea
 x a cheii asociate unui anumit nod se gasesc in subarborele stang al acestuia
- nodurile ale caror chei au valori mai mari decat x se gasesc in subarborele sau drept

Operatii:

- search (key, root)
- insert(key, root)
- delete(node, root)
- traverse (inorder, preorder, portorder)
- height(root), diameter(root), successor(node), predecessor(node), etc...

Implementare arbore binar de cautare

```
typedef struct t_node
{
    void *item;
    struct t_node *left;
    struct t_node *right;
    //struct t_node *parent; //optional
} NodeT;
```


Exemplu pseudocod: preordine

Varianta recursiva

```
preorder(node)
  if (node = null)
    return
  visit(node)
  preorder(node.left)
  preorder(node.right)
```


Varianta iterativa

```
iterativePreorder(node)
s ← empty stack
while (not s.isEmpty() or node ≠ null)
  if (node ≠ null)
    visit(node)
    if (node.right ≠ null)
        s.push(node.right)
        node ← node.left
    else
        node ← s.pop()
```

- ? Care sunt secventele generate de parcurgerile in:
- preordine
- inordine
- postordine
- ? Care este complexitatea unei parcurgeri?

Functia de cautare

E.g.key = 22;if (search(root , &key))...

Functia de cautare - varianta recursiva

```
extern int KeyCmp( void *a, void *b );
/* Returns -1, 0, 1 for keys stored with a < b, a == b, a
  > b */
void *search( NodeT *t, void *key ) {
                                                      Less,
   if ( t == (Node)0 ) return NULL;
                                                     search
   switch( KeyCmp( key, ItemKey(t->item) )
                                                      left
      case -1 : return FindInTree( t->left, key );
      case 0: return t->item;
      case +1 : return FindInTree( t->right, key );
                                                 Greater,
                                               search right
```

Functia de cautare - varianta iterativa

```
void *search( NodeT *t, void *key ) {
 while(t !=(Node)0 && KeyCmp(key, ItemKey(t->item)!=0)
     if (KeyCmp(key, ItemKey(t->item)<0)
          t = t->left;
     else
          t = t->right;
    if(t == (Node)0)
       return NULL;
    return
       t->item;
```

Performanta functiei de cautare

- Inaltime h
 - Noduri parcurse pe un drum de la radacina la o frunza
 - Avem nevoie de cel mult h+1 comparatii, deci O(h)
- caz mediu:
 - pp. arborele aproximativ echilibrat: O(log n)
- cazul defavorabil?

Alte operatii de cautare

- cautarea nodului minim
- cautarea nodului maxim
- cautarea predecesorului unui nod internn
- cautarea predecesorului unui nod intern
- cautarea predecesorului unei frunze
- cautarea succesorului unei frunze

Inserarea unui nod

Intotdeauna ca frunza !!!

- Avem nevoie de cel mult *h*+1 comparatii
- Crearea unui nod timp constant
- •Inserarea se face in $c_1(h+1)+c_2$

Exemplu Inserare

Implementarea functiei de inserare

```
static void insert(NodeT **t, NodeT *new)
   NodeT *current = *t;
   /* If it's a null tree, just add it here */
   if (current == NULL)
       *t = new;
       return;
   else
      if(KeyLess(ItemKey(new->item),ItemKey(base->item)))
         AddToTree(&(current->left), new);
      else
         AddToTree(&(current->right), new);
```

Codul aproape identic cu codul de cautare! Complexitate?

Stergerea unui nod

- Mai dificila decat inserarea!
- Idee:
 - se cauta nodul de sters
 - se elimina
 - se reface propr. de ABC
- Cazuri pentru stergere:
 - 1. Nod terminal (frunza)
 - 2. Nod cu un singur fiu
 - 3. Nod cu doi fii
- Exemplu:
 - 1. Stergeti 8, 13, 21 sau 37
 - 2. Stergeti 22
 - 3. Stergeti12, 20 or 29

Exemplu stergere: cazuri 1&2

Exemplu stergere: cazul 3

Cum putem pastra proprietatea de ABC?

Inlocuim cu o valoare intre cei 2 copii!

- succesorul: findMin(node->right)
- predecesorul: findMax(node->left)

Implementarea functiei de stergere

```
BSTDELETE(T,z)
    \triangleright Input: z: node; T: tree

    ○ Output: nothing

1 if z is a leaf
                                 \triangleright (case 0)
       then remove z
   if z has one child
                                \triangleright (case 1)
       then make p[z] point to the child
5 if z has two children
                                ⊳ (case 2)
       then swap z with its successor
             perform case 0 or case 1 to delete it
```

Implementarea functiilor de succesor/findMin

```
BSTMINIMUM(x,k)
    \triangleright Input: x: node; k: key to find

▷ Output: node or NIL(x, k)

    while left[x] \neq NIL
         do x \leftarrow left[x]
                                    BSTSuccessor(x, k)
    return x
                                        \triangleright Input: x: node; k: key to find
                                        Output: node of minimum key
                                        if right[x] \neq NIL
                                            then return BSTMINIMUM(right[x])
                                       y \leftarrow p[x] \triangleright p[x] is parent of node x
                                        while y \neq \text{NIL} \land x = right[y]
                                              do x \leftarrow y
                                                  y \leftarrow p[y]
                                        return y
```

Performanta operatiilor

- Cautare c h
- Inserare c h
- Stergere c h
- h = log n? (cazul mediu, da)
- Aparent eficient!
- Sa se construiasca un arbore cu caracterele:

A B C D E F

Ne-echilibrat - cazul defavorabil O(n)

Compararea performantei

	Arrays Simple, fast Inflexible	Linked List Simple Flexible	Trees Still Simple Flexible
Add	O(1) O(n) <i>inc sort</i> —	$O(1)$ $sort \rightarrow no \ adv$	
Delete	O(n)	O(1) - <i>any</i> O(n) - <i>specific</i>	
Find	O(n) O(logn) binary search	O(n) (no bin search)	O(log n)

Performanta operatiilor

- Cum putem obtine garantia h ~ log n
 - constructia initiala
 - cheile ordonate (crescator, descrescator)?
 - mediane?
 - inserari/stergeri ulterioare nu garanteaza mentinerea proprietatii
 - noduri inserate in ordine aleatoare
 - conditie de echilibru, care
 - asigura inaltimea e O(log n)
 - usor de intretinut la inserari/stergeri
- in curand....

Referinte

- AHU, chapter 3
- CLR, chapters 11.3, 11.4
- CLRS, chapter 10.4, 12
- Preiss, chapter: Trees.
- Knuth, vol. 1, 2.3
- Notes