

Order Sensitive Data Structures

Example

- There are ~10⁶⁰ small molecules that might be therapeutic drugs;
- Only a small handful can be tested in vitro in a lab setting;
- Many fewer still can be tested in vivo or in clinical trials;
- Rank these candidates from highest to lowest priority, place in a Maximum Priority Queue (MaxPQ)

Simple Linked or Sequential Allocation lead to *linear time* enqueue.

enqueue(E)

enqueue(B)


```
public interface PriorityQueue<T extends Comparable<T>> {
    void enqueue(T item);
    T <u>dequeue();</u>
    boolean isEmpty();
    int size();
    String toString();
```

Trees

S is a Set of Symbols

$$S = \{A_{2}, B_{1}, C_{0}\}$$

Trees(S)

Trees(S) = {
$$A_k(t_1, ..., t_k) \mid k \ge 0$$
,
 $A_k \text{ in S and}$
 $t_i \text{ in Trees(S)}$ }

Trees are defined recursively.

Example

```
Trees(\{A_{2,}, B_{1,}, C_{0}\}) = \{C_{0}(), B_{1}(C_{0}()), A_{2}(C_{0}(), C_{0}()), A_{2}(B_{1}(C_{0}()), C_{0}()), \dots \}
```

Simplifying the Notation

• If the arity is 0, leave out the parentheses. So $C_0()$ is written as C_0 .

Omit the arities

Trees(
$$\{A_2, B_1, C_0\}$$
) = $\{C, B(C), A(C, C), A(B(C), C), ... \}$

Tree Diagrams

A path is a Sequence of Edges

Depth of a Node – length of path from root

Height of a Tree – maximum depth

Binary Tree – Maximum arity is 2

Binary Tree – Maximum arity is 2

Representations of Nodes in Binary Trees

Threaded Representation of Nodes

Full Binary Tree – arity of every interior node = 2

Complete Binary Tree – All depths are full except possibly the last one, then all to the left

The middle tree is complete but not full.

Perfect Binary Tree - All depths are full

We'll discuss perfect binary trees next time.

Complete binary trees are of interest because they have

- 1. a natural sequential representation
- 2. logarithmic height

Navigation in Complete Binary Trees

$$parent(N) = N / 2$$

$$leftChild(N) = N * 2$$

$$rightChild(N) = N * 2 + 1$$

Binary Heaps

A (max) binary heap is a complete binary tree in which the value at every interior node is greater than or equal to the values in the child nodes.

Migrating Values along Paths in a Heap


```
private void sink(int k) {
    while (2 * k <= N) {
        int j = 2 * k;
        if (j < N && less(j, j + 1)) j++;
        if (!less(k, j)) break;
        exch(k, j);
        k = j;
    }
}</pre>
```



```
private void swim(int k) {
    while (k > 1 && less(k / 2, k)) {
        exch(k, k / 2);
        k = k / 2;
    }
}
```

Swimming


```
private void build() {
    for (int i = n / 2; i > 0; i--)
        sink(i);
}
```

Build


```
private void build() {
    for (int i = n / 2; i > 0; i--)
        sink(i);
}
```

Build


```
public void add(T key) {
    if (n == a.length - 1) resize(2 * a.length);
    a[++n] = key;
    swim(n);
}
```



```
public void add(T key) {
   if (n == a.length - 1) resize(2 * a.length);
   a[++n] = key;
   swim(n);
}
```

