Online tools for planetary sciences

B. Carry¹ & M. Mahlke² ¹Lagrange, Observatoire de la Côte d'Azur, Nice ¹Institut d'Astrophysique Spatiale, Orsay

— A typical research project

Why shared resources? Examples How to do it? Typical tasks and solutions Hands-on!

— A typical research project

Repetitive (and tedious) tasks!

- Planning and conduction of observations
 - Observations already exist?
 - Target/sample available? visible?
- Gathering ancillary data for the analysis
 - Complementary information diameter, fall/find, ...
 - \circ Context for research another population
- Repetitive low-level analysis
 - Spectral classification
 - Cross-matches & merges

Why shared resources? Examples How to do it? Typical tasks and solutions Hands-o

—— Shared resources save community time =

Tedious tasks? Share the load!

- Many agencies have the mission to support the community ESO/ESA/NASA, JPL/MPC/IMCCE, ...
- \circ The expertize is in the community \to individual initiatives SSHADE, Meteoretical Bulletin, SMASS
- ▶ More time for your research

Tedious tasks? Automatize them!

- Click, click, click... copy-paste, click...
- Or code some processes to work for you
- Virtual Observatory & Community librairies

Community services are less prone to errors!

- One user \rightarrow one α -, β -tester, user...
- \circ Many users \to bug reports! and community solutions & patches!
- ▶ Robustness of analysis → results

—— Pointing a telescope

Example

Where do I point the telescope from the name of a target?

nared resources? Examples How to do it? Typical tasks and solutions Hands-on!

—— Pointing a telescope

Example

Where do I point the telescope from the name of a target?

Answer: CDS, IMCCE Miriade, JPL SSD, MPC, Lowell AstEph

— Visibility of targets

Example

Can I observe asteroids Raymond, Delsanti, 7561 and 10281? And M31 and M67?

Visibility of targets

Example

Can I observe asteroids Raymond, Delsanti, 7561 and 10281? And M31 and M67?

Answer: IMCCE ViSiON, Lowell AstObs, airmass.org

Example

What is the taxonomy of Vernazza? the diameter of Groussin?

—— Accessing data

Example

What is the taxonomy of Vernazza? the diameter of Groussin?

Answer: IMCCE SsODNet, JPL sbdb, OCA MP3C, Lowell AstInfo, SiMDA

nared resources? Examples **How to do it?** Typical tasks and solutions Hands-or

- Web forms Access at human-scale
 - Reprocess archival observations
 - Need to contextualize and complement
 - Perform operations beyond our confort zone
- Shared libraries Automatize and rationalize
 - Local installation & calls
 - \circ Part of codes, scripts \rightarrow repeatability
- Web services and APIs Use remote resources
 - Send query & get answer
 - Maintenance on the provider side

ared resources? Examples **How to do it?** Typical tasks and solutions Hand

- Web forms Access at human-scale
 - Reprocess archival observations
 - Need to contextualize and complement
 - Perform operations beyond our confort zone
- Shared libraries Automatize and rationalize
 - Local installation & calls
 - \circ Part of codes, scripts \rightarrow repeatability
- Web services and APIs Use remote resources
 - Send query & get answer
 - Maintenance on the provider side

- Web forms Access at human-scale
 - Reprocess archival observations
 - Need to contextualize and complement
 - Perform operations beyond our confort zone
- Shared libraries Automatize and rationalize
 - Local installation & calls
 - \circ Part of codes, scripts \rightarrow repeatability
- Web services and APIs Use remote resources
 - Send query & get answer
 - Maintenance on the provider side

nared resources? Examples **How to do it?** Typical tasks and solutions Hands-on!

—— Pimp my processing

- Web forms Access at human-scale
 - Reprocess archival observations
 - Need to contextualize and complement
 - Perform operations beyond our confort zone
- Shared libraries Automatize and rationalize
 - Local installation & calls
 - Part of codes, scripts → repeatability
- Web services and APIs Use remote resources
 - Send query & get answer
 - Maintenance on the provider side

Reddened solar spectrum

import numby as no

must be repeatedly called

sbpy's sbpy.spectroscopy.SpectralGradient can be used to redden a solar spectrum, although this approach may be revised with future sbpy capabilities.

```
Import marginallub pupels as pit
Import marginallub pupels as pit
Import marginallub pupels spectralized 
fres sby, spectracing theory spectralized 
fres sby, call bapars fan cond.

[20 [22] sum = Sum, free, builtin("640-2044A")
www = np, limport(3), 0.0, 300 " u.us
us = sum = Sum, free, builtin("640-2044A")
us = sum, free, builtin("640-
```

NAMINIA'S Source spectrum is tapered. Symphot-observation!
NAMINIA'S strong System of Spectrum is tapered.
14.0 to 7.100 ms
Sources (Gradient and switch be hard photometry proposed as manufactes. To use it by a spectrum the function to colorify.

In [3]: color_index = u.Quantity([5.to_color((0.55 * u.um, w)) for w in wave])
express in Linear units (reflectance)
r = 10**(0.4 * color_index_value)

"" ax = ptt.gcal)
ax.plottwave, fluxd, label="solar spectrue")
ax.plottwave, r= fluxd, label= reddened by () '.fornat(\$))
ptt.sept.mol.gcal
ptt.sept.mol.gcal
ptt.legend()
ptt.legend()

ared resources? Examples **How to do it?** Typical tasks and solutions Har

- Web forms Access at human-scale
 - Reprocess archival observations
 - Need to contextualize and complement
 - Perform operations beyond our confort zone
- Shared libraries Automatize and rationalize
 - Local installation & calls
 - Part of codes, scripts → repeatability
- Web services and APIs Use remote resources
 - Send query & get answer
 - Maintenance on the provider side

```
> for astronomy.opc. toport PPC
>>> result = PBC.query.op)cut("asteroid", number=50788)
>> result = PBC.query.op)cut("asteroid", number=50788)
>>> result [PI nume"], result(EI] "itssermed_junter"]

>>> result
([Anaboute...augnitude": 144.22",
[Anaboute...augnitude": 144.22",
[Anaboute...augnitude": 134.22",
[Anaboute...augnitude
```

```
A hitter//son/mere fr/auchservices/ministe/ani/enhemer-shattnames-ahans (f) 110% vi 🗘
# Flag: 1
# Ticket: 170035302027106600
# Selar system object asbameris by TMCCE/MESSMICHRES
# Asteroid | 41927 Bonal
# Source: ASTORB
# Author: L.H. Wasserma
# Reference peach: 7404789 5
# Ochil pre covered: 0817 icure
# BMS or maximum residual: 0.2805.01 * 0.05005.04 */d
# Absolute magnitude H: 15, 100
# Slope parameter G: 0.150
 # Orbital period: 1.975794525+03 jours
 # Greates mass. 0 00005-00 be
# Dynamical class: Madutas
# Taxonomic class: 7 . 7 .
# Clanatary theory: THECO194
 # Procession/outstien model: Tairbass
 # Melativistic perturbations: yes
 # METALLIVISTIC PERTURBATIONS: yes
 arranc/min
                                                                                                                  arcasc (min
  2824-82-88788-88-88 888 488 54 28 85855 414 87 36 4223
                                                                                       170 38
                                                                                                                    0.10305+00
  2024 02 07700-00-00 000 409 53 36 01275 414 12 7 5592
                                                                                1.98
  2824-82-88788-88-88-888 489 52 5 32512 414 21 11 4627
                                                                                1.66
                                                                                                     -0.45055400
                                                                                                                     0 1021E+00
                                                                                                                                   -2.75174
  2024-02-10T00:00:00.000 +09 51 19.57009 +14 25 43.7138
                                                                                                                     0.18906+00
```

shared resources? Examples How to do it? **Typical tasks and solutions** Hands-o

— Typical tasks and some solutions

IMCCE VOSSP

- Forms: https://ssp.imcce.fr/forms
- APIs: https://ssp.imcce.fr/webservices/
- Several services for SSOs:
 - o SkyBot: cone-search to list SSOs in a field of view
 - SkyBot 3D: get the position of all SSOs at a given epoch
 - Miriade/ephemoo : compute the ephemerides of positions, orientations, rise-transit-set, etc)
 - Miriade/ephemph : compute the physical ephemerides (orientations)
 - Miriade/rts: compute the rise-transit-set times
 - Miriade/vision: tool to plan nights of observations

JPL Solar System Dynamics

- Forms: https://ssd.jpl.nasa.gov/
- APIs: https://ssd-api.jpl.nasa.gov/
- · Several services for SSOs:
 - · Horizons: Compute ephemerides
 - Identification: List SSOs in a field of view
 - What's Observable? : Lsit all SSOs visible from a location

Lowell Observatory services

https://asteroid.lowell.edu/

ed resources? Examples How to do it? Typical tasks and solutions **Hands-on!**

Let's get some hands-on experience =

1. Today: From GUI to scripts

- Find objects in an image using aladin and SkyBoT
- The same, with python

2. Today: Getting used to APIs

- o Some exerices on ephemerides Preparing observation, locating objects
- More advanced exercices How is Solar system today? Getting ready for LSST

3. Thursday: Easy access to data and parameters of objects

- Common resources for meteorites and Solar System objects
- Efficient data access with APIs

4. Thursday: Getting and analyzing spectra

- How to search and obtain spectra?
- Tools for classification