Basic Exam Spring 2006

PROBLEM 1

- (A) Define precisely the notion of Riemann integrability for a function f(x) on [0, 1].
- (B) Suppose that $f_n(x)$ is a sequence of Riemann integrable functions on [0, 1] such that $\{f_n(x)\}$ converges uniformly to f(x). Prove that f(x) is Riemann integrable.

PROBLEM 2

Let $F(x) = \sum_{n=0}^{\infty} a_n x^n$ be a power series with $a_n \in \mathbf{R}$. Show that there exists a unique number $\rho \geq 0$ such that F(x) converges if $|x| < \rho$ and F(x) diverges if $|x| > \rho$.

PROBLEM 3

Prove that the series

$$f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n^{5/2}}$$

converges for all $x \in \mathbf{R}$ and that f(x) is a continuous function on \mathbf{R} with a continuous derivative. State clearly any facts you assume.

PROBLEM 4

The point P = (1, 1, 1) lies on the surface S in \mathbf{R}^3 defined by

 $x^2y^3 + x^3z + 2yz^4 = 4$

Prove that there exists a differentiable function f(x, y) defined in an open neighborhood \mathcal{N} of (1, 1) in \mathbf{R}^2 such that f(1, 1) = 1 and (x, y, f(x, y)) lies in S for all $(x, y) \in \mathcal{N}$.

PROBLEM 5

- (A) Define uniform continuity for a function f defined on a metric space X with distance function $\rho(x,y)$.
- (B) Prove that if $0 < \alpha < 1$, then $F(x) = x^{\alpha}$ is uniformly continuous on $[0, \infty)$.

PROBLEM 6

Let W be the subset of the space C[0,1] of real-valued, continuous functions on [0,1] satisfying the conditions:

$$|f(x) - f(y)| < |x - y|$$

$$\int_0^1 f(x)^2 dx = 1$$

- (A) Prove that W is uniformly bounded, i.e., there exists M>0 such that $|f(x)|\leq M$ for all $x\in[0,1]$. Hint: Show first that $|f(0)|\leq 2$ for all $f\in W$.
- (B) Prove that W is a compact subset of C[0,1] under the sup norm $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$.

PROBLEM 7

A matrix T (with entries, say, in the field \mathbf{C} of complex numbers) is diagonalizable if there exists a non-singular matrix S such that STS^{-1} is diagonal. Prove that if $a, \lambda \in \mathbf{C}$ with $a \neq 0$, then the following matrix is not diagonalizable:

$$T = \left(\begin{array}{ccc} 1 & a & 0 \\ 0 & 1 & a \\ 0 & 0 & \lambda \end{array}\right)$$

PROBLEM 8

A linear transformation T is called *orthogonal* if it is non-singular and ${}^tT = T^{-1}$. Prove that if $T : \mathbf{R}^{2n+1} \to \mathbf{R}^{2n+1}$ is orthogonal, then there exists a vector $v \in \mathbf{R}^{2n+1}$ such that $Tv = \pm v$.

PROBLEM 9

Let S be a real, $n \times n$ -symmetric matrix S, i.e., ${}^tS = S$.

- (A) Prove that the eigenvalues of S are real.
- (B) State and prove the Spectral Theorem for S.

PROBLEM 10

Let Y is an arbitrary set of commuting matrices in $M_n(\mathbf{C})$ (i.e., AB = BA for all $A, B \in Y$). Prove that there exists a non-zero vector $v \in \mathbf{C}^n$ which is a common eigenvector of all elements of Y.