§4. Бесконечно малые и бесконечно большие функции

Определение 4.1. Функция f(x) называется бесконечно малой при $x \to a$, если существует $\lim_{x \to a} f(x) = 0$ (под a может пониматься и один из символов ∞ ,

 $+\infty$ или $-\infty$).

Так, функция $1/x^p$ — бесконечно малая при $x \to +\infty$ и $\forall p > 0$, поскольку $\lim_{x \to +\infty} 1/x^p = 0$ для $\forall p > 0$ (пример 1.6).

Бесконечно малые функции имеют такие же свойства, как и бесконечно малые последовательности.

Свойства бесконечно малых функций

Теорема 4.1. Сумма и произведение конечного числа бесконечно малых функций при $x \rightarrow a$ есть бесконечно малые функции при $x \rightarrow a$.

Эта теорема следует из теоремы об арифметических операциях над функциями, имеющими предел (теорема 2.2).

Теорема 4.2. Произведение функции f(x), бесконечно малой при $x \to a$, на функцию g(x), ограниченную на U(a) — некоторой проколотой окрестности точки a, есть бесконечно малая функция при $x \to a$.

▶ $\lim_{x\to a} f(x) = 0$, а из ограниченности функции g(x) следует, что найдётся число M>0 такое, что неравенство |g(x)| < M будет справедливо для $\forall x \in \mathring{U}(a)$. Для $\forall \varepsilon > 0$ можно найти $\delta(\varepsilon) > 0$ такое, что для $\forall x \in U_{\delta}(a) \subset U(a)$ выполняется неравенство $|f(x)| < \varepsilon/M$ (определение 1.2). Тогда для этих же значений x имеем $|f(x)g(x)| < \varepsilon$, а это и означает, что $\lim_{x\to a} f(x)g(x) = 0$. ◀

Пример 4.1. Показать, что $\lim_{x\to 0} x \sin(1/x) = 0$.

▶ $\lim_{x\to 0} \sin(1/x)$ не существует (пример 1.3), но функция $\sin(1/x)$ ограничена в

своей области определения ($|\sin(1/x)| \le 1$ при $\forall x: x \ne 0$). Функция $x\sin(1/x)$ является бесконечно малой при $x \to 0$ в силу теоремы 4.2.

Теорема 4.3. Для того, чтобы число A было пределом функции f(x) при $x \to a$, необходимо и достаточно, чтобы выполнялось равенство:

$$f(x) = A + \alpha(x), \tag{4.1}$$

где $\alpha(x) \to 0$ при $x \to a$.

▶Пусть $\exists \lim_{x \to a} f(x) = A$ и $\alpha(x) = f(x) - A$, тогда $\lim_{x \to a} \alpha(x) = \lim_{x \to a} (f(x) - A) = \lim_{x \to a} f(x) - A = A - A = 0$. Итак, для f(x) получаем равенство (4.1), где $\alpha(x) \to 0$ при $x \to a$.

Предположим теперь, что выполняется равенство (4.1), где $\alpha(x) \to 0$ при $x \to a$. Имеем $\lim_{x \to a} f(x) = \lim_{x \to a} (A + \alpha(x)) = A$.

Определение 4.2. Функция f(x) называется бесконечно большой при $x \to a$ если она определена на U(a) — некоторой проколотой окрестности точки a и для любой последовательности $\{x_n\} \subset U(a)$, сходящейся к a, соответствующая последовательность значений функции $\{f(x_n)\}$ является бесконечно большой $(f(x_n) \to \infty$ при $n \to \infty$). Обозначение: $\lim_{x \to a} f(x) = \infty$.

Замечание 4.1. Определение 4.2 можно назвать, аналогично определению 1.1, определением бесконечно большой функции по Гейне. Определение бесконечно большой функции можно сформулировать и по Коши, аналогично определению 1.2 (см. [1]).

Замечание 4.2. Определение 4.2 можно переформулировать на случай, когда $\lim_{x\to a} f(x) = \pm \infty$. Это определение и теорему 4.2 можно переформулировать и на случай, когда под a понимают один из символов ∞ , $+\infty$, $-\infty$.

Пример 4.2. Показать, что $\lim_{x\to +\infty} a^x = +\infty$ при a > 1.

▶ Возьмём $\forall \{x_n\}$: $\lim_{n\to +\infty} x_n = +\infty$ и покажем что $a^{x_n} \to +\infty$ при $n \to +\infty$. В соответствии с определением бесконечно большой последовательности (определение 4.2 главы 2) для числа $M_1 > 0$ существует номер $N(M_1)$ такой, что для $n > N(M_1)$ верно неравенство $x_n > M_1$. Пусть $M_1 = \log_a M$, где M = 1 любое положительное число, при M = 1 при M = 1 верно неравенство M = 1 верно неравенство M = 1 верно неравенство определения, что M = 1 при M =

Теорема 4.4 (о связи бесконечно малых и бесконечно больших функций).

Пусть дана функция f(x), отличная от нуля на U (a). Тогда:

- 1) если $f(x) \rightarrow 0$ при $x \rightarrow a$, то $1/f(x) \rightarrow \infty$ при $x \rightarrow a$;
- 2) если $f(x) \to \infty$ при $x \to a$, то $1/f(x) \to 0$ при $x \to a$.

Эта теорема следует из теоремы о связи между бесконечно малыми и бесконечно большими последовательностями (теорема 4.4 глава 2), определения 1.1 и определения бесконечно большой функции (определение 4.2).

Пример 4.3. Показать, что функция $f(x) = x^p$ – бесконечно большая при $x \to +\infty$ для $\forall p > 0$.

▶ Функция $g(x) = 1/x^p$ — бесконечно малая при $x \to +\infty$ для $\forall p > 0$ (пример 1.6 и определение 4.1). Поскольку f(x) = 1/g(x), то $f(x) = x^p$ — бесконечно большая функция при $x \to +\infty$ для $\forall p > 0$ (теорема 4.4). \blacktriangleleft

Арифметические операции над бесконечно большими функциями

Теорема 4.5. Если $f(x) \to \pm \infty$ и $g(x) \to \pm \infty$ при $x \to a$, либо функция g(x) ограничена на U(a), то и $f(x) + g(x) \to \pm \infty$ при $x \to a$ (здесь нужно брать либо везде знак «+», либо везде знак «-»).

Теорема 4.6. Если $f(x) \to \infty$, а $g(x) \to \infty$ или $g(x) \to A \neq 0$ при $x \to a$, то и $f(x) \cdot g(x) \to \infty$ при $x \to a$.

Эти теоремы следуют из теорем об арифметических операциях над бесконечно большими последовательностями (теоремы 4.5 – 4.6 глава 2), определения предела функции в точке по Гейне (определение 1.1) и определения бесконечно большой функции (определение 4.2).

Пример 4.4. Найти $\lim_{x\to +\infty} P_n(x), \ P_n(x)=a_0x^n+a_1x^{n-1}+\ldots+a_{n-1}x+a_n,$ $a_0\neq 0$.

►Имеем $P_n(x) = x^n(a_0 + a_1x^{-1} + ... + a_{n-1}x^{1-n} + a_nx^{-n})$. Поскольку $\lim_{x \to +\infty} x^n = +\infty$, а

 $\lim_{x\to +\infty}(a_0+a_1x^{-1}+\ldots+a_{n-1}x^{1-n}+a_nx^{-n})=a_0$ (примеры 4.3, 1.6 и теорема 2.2), то

 $\lim_{x\to +\infty} P_n(x) = \pm \infty$ (теорема 4.6, знак бесконечности совпадает со знаком a_0).