数值分析习题提示

第一章 误差

1. 计算球体积要使相对误差限为 1%,问度量半径
$$R$$
 时允许的相对误差是多少?答案: $V=\frac{4}{3}\pi R^3$, $\varepsilon_r(V)=\frac{\varepsilon(V)}{V}=\frac{4\pi R^2\varepsilon(R)}{\frac{4}{3}\pi R^3}=3\varepsilon_r(R)$ 。

球体积要使相对误差限为 1%, R 时允许的相对误差是 $\frac{1}{300} = 0.003333$ 。

- 2. 考虑正弦函数 $\sin x$ 的求值,特别是数据传递误差,即自变量 x 发生扰动 h 时函数值的误差。
- (1) 估计 $\sin x$ 的绝对误差。
- (2) 估计 $\sin x$ 的相对误差。
- (3) 估计这个问题的条件数。
- (4) 自变量 x 为何值时,这个问题高度敏感?

答案: (1) $\cos xh$ 。(2) $\cot xh$ 。(3) 相对条件数 $x \cot x$ 。(4) $x = k\pi$, $k \neq 0$ 时,这个问题高度敏感。 注:误差估计与近似值取法有关,要舍去高阶无穷小。如: $\sin(x+h) \approx \sin x + \cos xh$,则误差为 $-\frac{1}{2}\sin xh^2$ 等。

3. 设 $Y_0=28$,按递推公式 $Y_n=Y_{n-1}-\frac{1}{100}\sqrt{783}$, $(n=1,2,\ldots)$ 计算到 Y_{100} 。若取 $\sqrt{783}\approx 27.982$ (保留 5 位有效数字),试问计算 Y_{100} 将有多大误差。

答案: $Y_{100}=Y_0-\sqrt{783}$, $\varepsilon(Y_{100})=\varepsilon(27.982)$ (假设 Y_0 无误差)。 Y_{100} 的误差限为 $\frac{1}{2}\times 10^{-3}$ 。

4. 正方形的边长大约为 100cm, 问测量时允许多大的误差才能使其面积误差不超过 $1cm^2$ 。

答案:测量边长的误差应不超过 0 005cm。

5. 为使近似 $\sin\theta\approx\theta$ 给出的结果能保留 3 位十进制有效数字,问 θ 的取值范围。

答案: 只考虑近似值 θ 取 3 位十进制有效数字的情形。相对误差 $\frac{\theta^2}{6}$ 。

不同 3 位有效数字,相对误差限会有所不同。最小者, $\theta = 9.99 \times 10^k$,误差为 $\theta = 0.005 \times 10^k$,相对误差限 $\frac{1}{1998} \approx \frac{1}{2000}$;最大者, $\theta = 1.00 \times 10^k$,误差为 $\theta = 0.005 \times 10^k$,相对误差限 $\frac{1}{200}$ 。

相对误差小于 $\frac{1}{2000}$, 即 $|\theta| \le 0.05477$, 准确有效数字位数达到 3 位。

$$\frac{1}{2000} \le \frac{\theta^2}{6} \le \frac{1}{200}$$
 时, $0.05477 \le |\theta| \le 0.1732$ 。

 $\frac{1}{2000} \leq \frac{\theta^2}{6} \leq \frac{1}{200} \text{ 时,} 0.05477 \leq |\theta| \leq 0.1732.$ 剩下只需讨论第一位有效数字在小数点后第一位和第二位的情形。 再考虑绝对误差限 $\frac{|\theta|^3}{6}$: 若第一位有效数字在小数点后第一位,则 $\frac{|\theta|^3}{6} \leq 0.0005$, $|\theta|^3 \leq 0.003$, $0.100 < |\theta| < 0.144$;

若第一位有效数字在小数点后第二位,则 $\frac{|\theta|^3}{6} \le 0.00005$, $|\theta|^3 \le 0.0003$, $|\theta| \le 0.0669$ 。 结论: $|\theta| \le 0.0669$, 或 $0.100 \le |\theta| \le 0.144$ 。

6. 设 $f(x) = \ln(x + \sqrt{x^2 + 1})$, 开方和对数取 6 位有效数字, 计算 f(30) 和 f(-30) 的值。计算 过程中尽量避免有效数字的损失。

答案: f(30) = 4.09462, f(-30) = -4.09462。

7. 设 $f(x) = -e^{-2x} + e^x$,对微小的 x 值,x,3x,和 3x(1-x/2) 哪个最精确?误差分别是多少?答案: $-e^{-2x} + e^x = 3x - \frac{3}{2}x^2 + \frac{3}{2}x^3 + \cdots$,3x(1-x/2) 最精确。|x| 很小时, $3x(1-x/2) - f(x) \approx -\frac{3}{2}x^3$ 。

8. 若在计算 $y = \sqrt{x^2 + 1} - 1$ 中至多丢失两位精度,该对 x 怎样限制?

答案: 抵消现象: $\sqrt{x^2+1} \ge 1.01$ 。

 $x^2 \ge 0.0201$; 或 $1 + \frac{1}{2}x^2 \ge 1.01$, $x^2 \ge 0.02$.

上机题

k - 1 s - t

- 1. 编程观察无穷级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 的求和计算。
- (1) 采用 IEEE 单精度浮点数,观察当 n 为何值时求和结果不再变化,将它与理论分析的结论进行比较 (注: 在 MATLAB 中可用 single 命令将变量转成单精度浮点数)。
 - (2) 用 IEEE 双精度浮点数计算 (1) 中前 n 项的和,评估 IEEE 单精度浮点数计算结果的误差。答案:

```
format long
s = single(0); u = single(1); t = 0;
k = 1;
while u ~= s
u = s;
s = s + 1/k; t = t + 1/k;
k = k+1;
end
```

这里单精度浮点数的和为 s=15.404,双精度浮点数的和为 t=15.133。误差 s-t=0.27038。 $s+1/2^{21}==s$ 的逻辑值是 1,即单精度求和不再变化。

2. 编写程序,按 $e = \lim_{n \to \infty} (1 + 1/n)^n$ 计算常数 e,即自然对数的底,具体地,对 $n = 10^k (k = 1, 2, ..., 20)$,计算 $(1 + 1/n)^n$ 。将结果与 $\exp(1)$ 比较,确定近似值的误差。误差是否随 n 的增加而降低?用 MATLAB 画出误差的变化趋势曲线,作出解释。

提示: n 越大, 截断误差越小, 舍入误差越大。

```
k=1:20;
n=10.^k;
x=(1+1./n).^n-exp(1);
plot(x)
```

第二章 方程求根

1. 为求方程 $x^3 - x^2 - 1$ 在 $x_0 = 1.5$ 附近的一个根,设将方程改写为下列等价形式,并建立相应的迭代公式。

(1)
$$x = 1 + 1/x^2$$
, 迭代公式 $x_{k+1} = 1 + 1/x_k^2$;

(2)
$$x^3 = 1 + x^2$$
, 迭代公式 $x_{k+1} = \sqrt[3]{1 + x_k^2}$;

(3)
$$x^2 = 1/(x-1)$$
, 迭代公式 $x_{k+1} = 1/\sqrt{x_k-1}$ 。

试分析每种迭代公式的收敛性,并选取一种公式求出具有四位有效数字的近似根。

答案: 在有根区间 [1.4,1.6] 内,(1) 和 (2) 的 $|\varphi'(x)|<1$,收敛; (3) 的 $|\varphi'(x)|>1$,实数下, $x_7 = 0.880204$,迭代无法进行下去。

复数下,平方根取右半平面,迭代数列的奇数项和偶数项各自收敛到 $x^2 - x + 1$ 的两个根。 近似根 1.466。

2. 研究求 \sqrt{a} 的牛顿公式 $x_{k+1} = \frac{1}{2} \left(x_k + \frac{a}{x_k} \right)$, $x_0 > 0$, 证明对一切 $k = 1, 2, ..., x_k \ge \sqrt{a}$ 且 序列 x_1, x_2, \ldots 是递减的。

答案:
$$x_{k+1} - \sqrt{a} = \frac{1}{2x_k} (x_k - \sqrt{a})^2$$
, 得 $x_k \ge \sqrt{a}$ 。
$$x_{k+1} - x_k = \frac{1}{2x_k} (\sqrt{a} - x_k^2) < 0$$
,序列 x_1, x_2, \dots 是递减的。

3. 证明迭代公式 $x_{k+1} = \frac{x_k(x_k^2 + 3a)}{3x_k^2 + a}$ 是计算 \sqrt{a} 的 3 阶方法。假定初值 x_0 充分靠近根 x^* ,求 $\lim_{k\to\infty} (\sqrt{a} - x_{k+1})/(\sqrt{a} - x_k)^3$

答案:
$$\varphi(x) = \frac{x(x^2 + 3a)}{3x^2 + a}$$
, $\varphi(\sqrt{a}) = \sqrt{a}$. $\varphi'(\sqrt{a}) = \varphi''(\sqrt{a}) = 0$, $\varphi'''(\sqrt{a}) = \frac{3}{2a}$. 迭代法是 3 阶 方法。 $\frac{e_{k+1}}{e_k^3} \to \frac{\varphi'''(\sqrt{a})}{3!} = \frac{1}{4a}$. $\lim_{k \to \infty} \frac{\sqrt{a} - x_{k+1}}{(\sqrt{a} - x_k)^3} = \frac{1}{4a}$.

4. 用下列方法求 $f(x) = x^3 - 3x - 1 = 0$ 在 $x_0 = 2$ 附近的根,根的准确值 $x^* = 1.87938524 \cdots$, 要求计算结果准确到四位有效数字。

- (1) 用牛顿法;
- (2) 用割线法, 取 $x_0 = 2$, $x_1 = 1.9$

答案: (1)
$$x_{k+1} = x_k - \frac{x_k^3 - 3x_k - 1}{3x_k^2 - 3}$$
, $x_2 = 1.879452$

答案: (1)
$$x_{k+1} = x_k - \frac{x_k^3 - 3x_k - 1}{3x_k^2 - 3}$$
, $x_2 = 1.879452$ 。

(2) $x_{k+1} = x_k - \frac{x_k^3 - 3x_k - 1}{x_k^3 - 3x_k - 1}$, $x_2 = 1.881094$, $x_3 = 1.881094$, $x_4 = 1.879411$ 。

5. 用迭代法 $x_{k+1} = \frac{1}{1+x_k}$,求方程 $x^2 + x - 1 = 0$ 的正根 $x^* = \frac{-1 + \sqrt{5}}{2}$ 。取 $x_0 = 1$,问 x_5 具有 几位正确的有效数字?

答案: $x^* = 0.618034$, $x_5 = 0.615385$ 。

上机题

1. 对于方程 $f(x) = x^2 - 3x + 2$,可以有以下多种不动点迭代方式

$$\varphi_1(x)=\frac{x^2+2}{3}$$
, $\varphi_2(x)=\sqrt{3x-2}$, $\varphi_3(x)=3-\frac{2}{x}$, $\varphi_4(x)=\frac{x^2-2}{2x-3}$ 。
(1) 对于根 $x=2$, 通过分析 $|\varphi_i'(2)|$, $(i=1,2,3,4)$ 来分析各个算法的收敛特性。

- (2) 用程序验证分析的结果。

(2)
$$\varphi_1$$
: $x_0 = 3$, $x_1 = 3.6667$, $x_2 = 5.1481$, \cdots ; φ_2 : $x_0 = 3$, $x_1 = 2.6458$, $x_2 = 2.4366$, \cdots ; φ_3 : $x_0 = 3$, $x_1 = 2.3333$, $x_2 = 2.1429$, \cdots ; φ_4 : $x_0 = 3$, $x_1 = 2.3333$, $x_2 = 2.0667$, \cdots

- 2. 考虑 $p(x) = (x-1)\cdots(x-10) = a_0 + a_1x + \cdots + x^{10}$,考虑扰动方程 $p(x) + \varepsilon = 0$ 。
- (1) 求系数 a_0, a_1, \ldots, a_9 ;
- (2) 取 $\varepsilon = 10^{-6}$, $\varepsilon = 10^{-8}$, $\varepsilon = 10^{-10}$, 分析 ε 对根的影响。

提示: 设根是 x^* , 则条件数是 $1/|p'(x^*)|$ 。十个根的条件数都很小。加上系数都是双精度浮点数,影响应该很小。

其他扰动,如: $p(x) + \varepsilon g(x) = 0$,则 $x - x^* \approx -\frac{p(x^*) + \varepsilon g(x^*)}{p'(x^*) + \varepsilon g'(x^*)} \approx -\varepsilon \frac{g(x^*)}{p'(x^*)}$ 。 取 $g = x^{10}$,条件数会很大。同学们可试验观察对各根的影响。