Chapitre 5

Formule de Taylor et Extremums.

5.1 Formules de Taylor à l'ordre deux :

5.1.1 Dérivées partielles secondes :

Définition

Soit D un ouvert de \mathbb{R}^2 et $f:D\to\mathbb{R}$ une fonction de classe \mathscr{C}^1 sur D. Soit $a\in D$

• Si la fonction dérivée partielle $\frac{\partial f}{\partial x}$ admet des dérivées partielles au point a, on les note :

$$\frac{\partial}{\partial x} \frac{\partial f}{\partial x}(a) = \frac{\partial^2 f}{\partial x^2}(a)$$
 et $\frac{\partial}{\partial y} \frac{\partial f}{\partial x}(a) = \frac{\partial^2 f}{\partial y \partial x}(a)$

• De même, si la fonction dérivée partielle $\frac{\partial f}{\partial y}$ admet des dérivées partielles au point a, on les note :

$$\frac{\partial}{\partial x} \frac{\partial f}{\partial y}(a) = \frac{\partial^2 f}{\partial x \partial y}(a)$$
 et $\frac{\partial}{\partial y} \frac{\partial f}{\partial y}(a) = \frac{\partial^2 f}{\partial y^2}(a)$

Remarque : Les dérivées partielles $\frac{\partial^2 f}{\partial x \partial y}$ et $\frac{\partial^2 f}{\partial y \partial x}$ sont également appelées dérivées secondes croisées.

Exemple

 $\overline{\text{Soit } f(x, y)} = x^3 y^2 \text{ Alors}$

$$\frac{\partial f}{\partial x}(x, y) = 3x^2y^2$$
 et $\frac{\partial f}{\partial y}(x, y) = 2x^3y$

et

$$\left\{ \begin{array}{l} \frac{\partial^2 f}{\partial x^2}(x,y) = 6xy^2 \\ \frac{\partial^2 f}{\partial y \partial x}(x,y) = 6x^2y, \end{array} \right. \qquad \text{et} \qquad \left\{ \begin{array}{l} \frac{\partial^2 f}{\partial y^2}(x,y) = 2x^3 \\ \frac{\partial^2 f}{\partial x \partial y}(x,y) = 6x^2y, \end{array} \right.$$

Définition

Une fonction définie sur un ouvert D de \mathbb{R}^2 est de classe \mathscr{C}^2 sur D si et seulement si elle admet des dérivées secondes en tout point et si ses quatre fonctions dérivées partielles secondes sont continues sur D.

L'ensemble des fonctions réelles de classe \mathscr{C}^2 sur D est noté $\mathscr{C}^2(D,\mathbb{R})$.

Théorème 38 (de Schwarz)

Soit D un ouvert de \mathbb{R}^2 si $f:D\to\mathbb{R}$ est de classe \mathscr{C}^2 sur D alors en tout point $a\in D$, on a

$$\frac{\partial^2 f}{\partial x \partial y}(a) = \frac{\partial^2 f}{\partial y \partial x}(a)$$

Corollaire Si f est de classe \mathscr{C}^2 sur D, alors pour tout $a \in D$, on a

$$\frac{\partial^2 f}{\partial x \partial y}(\alpha) = \frac{\partial^2 f}{\partial y \partial x}(\alpha)$$

5.1.2 Formules de Taylor à l'ordre deux :

Approximations linéaire et quadratique :

Soit $f:D\subset\mathbb{R}^2\to\mathbb{R}$ une fonction définie sur un ouver D de \mathbb{R}^2 , $a\in D$ et $h\in\mathbb{R}^2$ tel que $(a+h)\in D$

Définition 57 (Approximations linéaire)

On dit que f admet une approximation linéaire au voisinage de a s'il existe une application linéaire unique $L: \mathbb{R}^2 \to \mathbb{R}$ telle que :

$$f(a+h) = f(a) + L(h) + o(\|h\|^2)$$

avec

$$\lim_{\|h\| \to 0} \frac{\circ (\|h\|^2)}{\|h\|^2} = 0$$

On dit que le terme f(a) + L(h) est l'approché linéaire de f(a+h) tel que $L(h) = \partial_x f(a)h_1 + \partial_y f(a)h_2$ avec $h = (h_1, h_2)$

Définition 58 (Approximations quadratique)

On dit que f admet une approximation quadratique au voisinage de a s'il existe une application linéaire unique $L: \mathbb{R}^2 \to \mathbb{R}$ et une forme quadratique $Q: \mathbb{R}^2 \to \mathbb{R}$ telle que :

$$f(a+h) = f(a) + L(h) + Q(h) + o(\|h\|^2)$$

avec

$$\lim_{\|h\| \to 0} \frac{\circ (\|h\|^2)}{\|h\|^2} = 0$$

On dit que le terme f(a) + L(h) + Q(h) est l'approché quadratique de f(a+h) tel que $Q(h) = \frac{1}{2} [\partial_{xx} f(a) h_1^2 + 2 \partial_{xy} f(a) h_1 h_2 + \partial_{yy} f(a) h_2^2]$ avec $h = (h_1, h_2)$

5.1.3 Formules de Taylor:

Formule de Taylor Lagrange :

Théoréme 39 Soit D un ouvert de \mathbb{R}^2 si $f: D \to \mathbb{R}$ est de classe \mathscr{C}^3 sur D, $a \in D$ et $h \in \mathbb{R}^2$ tel que $(a+h) \in D$

Supposons que le segment géométrique $[a,a+h] \subset D$ alors il existe $\theta \in]0,1[$ tel que : $f(a+h)=f(a)+\partial_x f(a)h_1+\partial_y f(a)h_2+\frac{1}{2}[\partial_{xx}f(a)h_1^2+2\partial_{xy}f(a)h_1h_2+\partial_{yy}f(a)h_2^2]+\frac{1}{6}[\partial_{xxx}f(a+\theta h)h_1^3+3\partial_{xxy}f(a+\theta h)h_1^2h_2+3\partial_{xyy}f(a+\theta h)h_1h_2^2+\partial_{yyy}f(a+\theta h)h_2^3]$

Remarque(Puissances symboliques :)

Soit D un ouvert de \mathbb{R}^2 si $f: D \to \mathbb{R}$ est de classe \mathscr{C}^{k+1} sur D, avec $(k \ge 2)$, $a \in D$ et $h \in \mathbb{R}^2$ on définit le réel :

$$(h_1\partial_x f + h_2\partial_y f)^{[2]}(a) = \partial_{xx} f(a)h_1^2 + 2\partial_{xy} f(a)h_1h_2 + \partial_{yy} f(a)h_2^2$$

dit une puissance symbolique d'ordre deux.

on définit la puissance symbolique d'ordre k par :

$$(h_1\partial_x f + h_2\partial_y f)^{[k]}(a) = \sum_{p=0}^k \mathbb{C}_k^p h_1^p h_2^{k-p} \frac{\partial^k f}{(\partial x)^p (\partial y)^{k-p}}(a)$$

Formule de Taylor Young:

Théoréme 40 Soit D un ouvert de \mathbb{R}^2 si $f: D \to \mathbb{R}$ est de classe \mathscr{C}^3 sur D, $a \in D$ et $h \in \mathbb{R}^2$ tel que $(a+h) \in D$

Supposons que le segment géométrique $[a,a+h] \subset D$ tel que :

$$f(a+h) = f(a) + \partial_x f(a) h_1 + \partial_y f(a) h_2 + \frac{1}{2} [\partial_{xx} f(a) h_1^2 + 2 \partial_{xy} f(a) h_1 h_2 + \partial_{yy} f(a) h_2^2] + o(\|h\|^2)$$

ou

$$f(a+h) = f(a) + (h_1 \partial_x f + h_2 \partial_y f)(a) + \frac{1}{2} [h_1 \partial_x f + h_2 \partial_y f]^{[2]}(a) + o(\|h\|^3)$$

Remarques:

- Le terme $f(a) + (h_1 \partial_x f + h_2 \partial_y f)(a)$ est l'approché linéaire de f(a+h)
- Le terme $f(a) + (h_1\partial_x f + h_2\partial_y f)(a) + \frac{1}{2}[h_1\partial_x f + h_2\partial_y f]^{[2]}(a)$ est l'approché quadratique de f(a+h)

Notations de Monge.

Définition 59 (notations de Monge).

on définit les coefficients p, q, r, s, et t par :

$$p = \frac{\partial f}{\partial x}(a), \quad q = \frac{\partial f}{\partial y}(a), \quad r = \frac{\partial^2 f}{\partial x^2}(a), \quad s = \frac{\partial^2 f}{\partial x \partial y}(a), \quad et \quad t = \frac{\partial^2 f}{\partial y^2}(a)$$

Théoréme 41 (Formule de Taylor-Young 'a l'ordre 2 par notations de Monge) Soit D un ouvert de \mathbb{R}^2 et $f: D \to \mathbb{R}$ une fonction de classe \mathscr{C}^2 sur D. La fonction f admet un développement limité d'ordre 2 en tout point $a \in D$:

$$f(a+h) = f(a) + ph_1 + qh_2 + \frac{1}{2}(rh_1^2 + 2sh_1h_2 + th_2^2) + o(\|h\|^2)$$

avec $h = (h_1, h_2) \in \mathbb{R}^2$

Exemple : Donner un développement limité à l'ordre 2 en (0,0) de la fonction $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par

$$f(x,y) = e^{x\sin(y)}$$

on a
$$f(0,0) = 1$$
 et $p = q = r = t = 0$ et $s = 1$

Pour tout vecteur $h = (h_1, h_2)$, on a donc

$$f((0,0)+(h_1,h_2)) = 1+2h_1h_2+o(\|h\|^2)$$

5.2 Matrice Hessienne:

Définition 60 Soit f, une fonction de classe \mathscr{C}^2 sur D, ouvert de \mathbb{R}^2 à valeurs dans \mathbb{R} , et soita , un point de D.

On appelle $\mathcal{H}_f(a)$, la matrice hessienne de f au point a définie par :

$$\mathcal{H}_f(a) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(a)\right)_{\substack{1 \le i \le 2 \\ 1 \le j \le 2)}} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(a) & \frac{\partial^2 f}{\partial x_2 \partial x_1}(a) \\ \frac{\partial^2 f}{\partial x_1 \partial x_2}(a) & \frac{\partial^2 f}{\partial x_2^2}(a) \end{pmatrix}$$

PROPOSITION 39 •, $\mathcal{H}(a)$ est une matrice symétrique.

• On peut alors ré-écrire la formule de Taylor-Young en utilisant la matrice Hessienne. Pour $h = (h_1, h_2) \in \mathbb{R}^2$

$$f(a+h) = f(a) + h\nabla_f(a) + \frac{1}{2}h\mathcal{H}(a)h^t + o(\|h\|^2)$$

Exemple

Soit
$$f(x,y) = \frac{x-1}{y-1}$$
 et $a = (0,0)$
on a $f(0,0) = 1$ et $\nabla_f(x,y) = (\frac{1}{y-1}, -\frac{x-1}{(y-1)^2})$ alors $\nabla_f(0,0) = (-1,1)$ puis

$$\mathcal{H}_f(x,y) = \begin{pmatrix} 0 & -\frac{1}{(y-1)^2} \\ -\frac{1}{(y-1)^2} & \frac{2(x-1)}{(y-1)^3} \end{pmatrix}$$

ďoù

$$\mathcal{H}_f(0,0) = \left(\begin{array}{cc} 0 & -1 \\ -1 & 2 \end{array}\right)$$

Ainsi:

$$\frac{x-1}{y-1} = 1 - x + y - xy + y^2 + o(\|(x,y)\|^2)$$

5.3 Extremums et points critiques :

5.3.1 Application à l'étude des extremums locau

Maximums et Minimums d'une fonction de deux variables :

Définition 61 Soit D un ouvert de \mathbb{R}^2 et $f:D\to\mathbb{R}$ une fonction réelle de deux variables. Soit $a\in D$. On dit que :

• On dit que f admet un maximum local en a lorsqu'il existe un disque centré en a et de rayon r > 0, $\mathbf{B}(a,r)$ telle que

$$\forall v \in \mathbf{B}(a,r), \quad f(v) \le f(a)$$

• On dit que f admet un minimum local en a lorsqu'il existe un disque centré en a et de rayon r > 0, $\mathbf{B}(a,r)$ telle que

$$\forall v \in \mathbf{B}(a,r), \quad f(v) \ge f(a)$$

• On dit que f admet un maximum global en a lorsque :

$$\forall v \in D, \quad f(v) \leq f(a)$$

• On dit que f admet un minimum global en a lorsque :

$$\forall v \in D, \quad f(v) \ge f(a)$$

- On dit que f admet un extremum local en a lorsque f admet en a un minimum local ou un maximum local.
- On dit que f admet un extremum global en a lorsque f admet en a un minimum local ou un maximum local.

Remarque: Graphiquement, la fonction f admet un extremum local en a si la surface représentant f reste localement en dessous ou au dessus du plan d'équation z = f(a)

PROPOSITION 40 (Cas d'une fonction de classe \mathscr{C}^1) Soit D un ouvert de \mathbb{R}^2 , $f: D \to \mathbb{R}$ une fonction r'eelle de classe \mathscr{C}^1 sur D et $a \in D$ Si f admet un extremum local en a, alors son gradient en a est nul.

Remarque : Autrement dit, pour que f admet un extremum local en a, il est nécessaire (mais non suffisant) que ses dérivées partielles $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ s'annulent en ce point

5.3.2 Point critique

Définition 62 (Point critique)

Soit D un ouvert de \mathbb{R}^2 , $f: D \to \mathbb{R}$ une fonction r'eelle de classe \mathscr{C}^1 sur D et $a \in D$ On dit que a est un **point critique** de f si et seulement si

$$\nabla f(a) = 0$$
 $donc \ ssi$ $\begin{cases} \frac{\partial f}{\partial x}(a) = 0\\ \frac{\partial f}{\partial y}(a) = 0 \end{cases}$

Théoréme 42 Soit f une fonction de classe \mathscr{C}^1 sur un ouvert D. Si f admet un extremum local en $a \in D$, alors a est un point critique de f.

Remarque Un point critique n'est pas toujours un extremum local mais un extremum local se situe toujours en un point critique.

5.3.3 Condition suffisante d'existence d'un extremum local

1^{ére} Méthode

Quelques notions d'Analyse spectrale

Définition 63 Polynôme caractéristique et valeurs propres. Soit M, un matrice symétrique carrée de type $n \times n$

• On appelle polynôme caractéristique de M, le polynôme \mathscr{P}_M défini par la relation :

$$\mathscr{P}_{M}(X) = det(M - XI_{n})$$

• On appelle valeurs propres réelles de M les nombres réels λ racines du polynôme caractéristique de M, autrement dit les solutions de l'équation polynômiale de degré n:

$$det(M-XI_n)=0$$

Remarque : on notera que le degré de \mathscr{P}_M est toujours la dimension de la matrice M.

Le théorème qui suit nous donne une méthode simple permettant de déterminer la nature des points critiques d'une fonction :

Théoréme 43 Soit f, une fonction de classe \mathscr{C}^2 dans un voisinage de a.

On appelle $\mathcal{H}(a)$, la matrice hessienne de f en a. $\mathcal{H}(a)$ est alors une matrice symétrique réelle dont les valeurs propres, nécessairement réelles sont ordonnées comme suit $:\lambda_1 \leq \lambda_2 \leq \lambda_2 \leq \cdots \leq \lambda_n$

On alors:

- Si $\lambda_i > 0$ pour tout $i \in \{1, 2, ..., n\}$, f admet un minimum relatif en a.
- Si $\lambda_i < 0$ pour tout $i \in \{1, 2, ..., n\}$, f admet un maximum relatif en a.
- Si $\lambda_1 < 0$ et $\lambda_n > 0$, alors f n'admet pas d'extremum relatif en a.
- S'il existe $i \in \{1,2,...,n\}$ tel que $\lambda_i = 0$ et si $\forall j \neq i, \quad \lambda_j \geq 0$ ou $\lambda_j \leq 0$, on ne peut rien conclure.

2^{éme} Méthode

Cas de la dimension 2

Nous allons réécrire dans ce paragraphe tous les résultats établis précédemment appliqués au cas de la dimension 2. f désigne donc une fonction définie et de classe \mathscr{C}^2 sur un ouvert $D \subset \mathbb{R}^2$ et a désigne un point de D.

D'aprés Formule de Taylor-Young à l'ordre 2

Soit $a = (a_1, a_2) \in D$, Alors, il existe $\eta > 0$ tel que, pour tous $h = (h_1, h_2) \in \mathbb{R}^2$ vérifiant $||(h_1, h_2)||_2 < \eta$ on a :

$$f(a+h) = f(a) + \partial_x f(a)h_1 + \partial_y f(a)h_2 + \frac{1}{2} [\partial_{xx} f(a)h_1^2 + 2\partial_{xy} f(a)h_1h_2 + \partial_{yy} f(a)h_2^2] + o(\|h\|^2)$$

Soit a un point critique de f . écrivons la formule de Taylor-Young à l'ordre 2 en a avec **les notations de Monge** :

pour tout $h = (h_1, h_2) \in \mathbb{R}^2$ On a

$$f(a+h) - f(a) = \frac{1}{2}(rh_1^2 + 2sh_1h_2 + th_2^2) + o(\|h\|^2)$$

Ainsi, localement, lorsque ||h|| est proche de 0, le signe de f(a+h)-f(a) est celui de $rh_1^2+2sh_1h_2+th_2^2$ Si $r\neq 0$, on a en factorisant :

$$rh_{1}^{2} + 2sh_{1}h_{2} + th_{2}^{2} = r(h_{1}^{2} + 2\frac{s}{r}h_{1}h_{2} + \frac{t}{r}h_{2}^{2}) = r((h_{1} + \frac{s}{r}h_{2})^{2} + (\frac{rt - s^{2}}{r^{2}})h_{2}^{2})$$

donc le signe de f(a+h)-f(a) dépend de celui de s^2-rt et r

- Si $s^2 rt < 0$ la quantité $(h_1 + \frac{s}{r}h_2)^2 + (\frac{rt s^2}{r^2})h_2^2$ est positive et alors a est un extremum local de f. Plus précisément :
- \triangleright , Si r > 0 on a f(a+h) f(a) > 0 Donc a est un minimum local de f
- \triangleright , Si r < 0 on a f(a+h) f(a) < 0 Donc a est un maximu local de f
- Si $s^2 rt > 0$, le sign de f(a+h) f(a) varie selon les valeurs de h_1 et h_2 .
- \triangleright , Si $r \neq 0$ alors f n'admet ni maximum ni minimum local au point a. Dans ce cas, On dit alors que a est un point selle ou point col.
 - ightharpoonup, Si r = 0 et $t \neq 0$ ce cas est analogue au cas précédant.
 - \triangleright , Si r = 0 et t = 0, alors f n'admet ni maximum ni minimum local au point a.
 - Si $s^2 rt = 0$, on ne peut rien conclure.

Remarque:

dans le cas où $rt-s^2=0$ il faut revenir à la définition d'extremum. Si a est un point col, il s'agit d'exhiber des arcs paramétrés qui démontrent que f prend des valeurs positives et négatives dans un voisinage de a.

Sinon, si a est un extremum local, il faut raisonner à l'aide d'inégalités locales.

Exemple : on considère la fonction $f : \mathbb{R}^2 \to \mathbb{R}$ définie par :

$$f(x,y) = x^2 + y^4$$

f est de classe \mathscr{C}^2 sur \mathbb{R}^2 comme somme de fonctions polynômiales et pour tous $(x,y)\in\mathbb{R}^2$

$$\nabla f(x,y) = (2x,4y^3)$$

f n'admet donc qu'une seul point critique :(0,0)

De plus r = 2, t = 0 et s = 0. Donc $rt - s^2 = 0$ On ne peut rien conclure.

Cependant, on a clairement : pour tous $(x, y) \in \mathbb{R}^2$, $f(x, y) \ge 0 = f(0, 0)$ donc f admet en (0, 0) un minimum global.

3^{éme} Méthode

En utilisant la matrice Hessienne :

Soit la matrice Hessienne au point *a*

$$\mathcal{H}_f(a) = \left(\begin{array}{cc} r & s \\ s & t \end{array}\right)$$

On trouve que:

- Si $\det(\mathcal{H}_f(a)) > 0$ et r > 0 alors a est un minimum local.
- Si $\det(\mathcal{H}_f(a)) > 0$ et r < 0 alors a est un maximum local.
- Si $\det(\mathcal{H}_f(a)) < 0$ alors a est un point selle.

Exemple 1:

Etude des points critiques de la fonction f définie sur \mathbb{R}^2 par :

$$f(x, y) = xy$$

Les dérivées partielles sont $\frac{\partial f}{\partial x} = y$ et $\frac{\partial f}{\partial y} = x$ Donc le seul point critique est le point (0,0)

On calcule les dérivées secondes en (0,0) : $r = \frac{\partial^2 f}{\partial x^2} = 0$, $s = \frac{\partial^2 f}{\partial y \partial x} = 1$ et $t = \frac{\partial^2 f}{\partial y^2} = 0$ Donc $s^2 - rt = 1 > 0$ c'est un point col.

Exemple 2: Etude des points critiques de la fonction f définie sur \mathbb{R}^2 par :

$$f(x,y) = x^4 + y^2$$

Les dérivées partielles sont $\frac{\partial f}{\partial x} = 2X$ et $\frac{\partial f}{\partial y} = 2Y$ Donc le seul point critique est le point (0,0)

On calcule les dérivées secondes en (0,0) : $r=\frac{\partial^2 f}{\partial x^2}=2$, $s=\frac{\partial^2 f}{\partial y\partial x}=0$ et $t=\frac{\partial^2 f}{\partial y^2}=2$

Donc $s^2 - rt = -4 < 0$, donc c'est un extremum local.

Comme r > 0, Alors le point (0,0) est un minimum local.

Points critiques des fonctions de plusieurs variables :

Définition 64 Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}$.

On dit que $a = (a_1, a_2, ..., a_n) \in \mathbb{R}^n$ est un point critique de f si :

$$\forall x \in \{1, 2, ..., n\}$$
 $\frac{\partial f}{\partial x_i}(a) = 0$

Et dans ce cas, f(a) s'appelle la valeur critique de f en a.

Remarques:

1. Les points critiques de f sont les solutions du système suivant :

$$\begin{cases} \frac{\partial f}{\partial x_1}(x_1,...,x_n) = 0\\ \frac{\partial f}{\partial x_2}(x_1,...,x_n) = 0\\ \vdots\\ \frac{\partial f}{\partial x_n}(x_1,...,x_n) = 0 \end{cases}$$

- 2. un point critique a est un minimum local si la matrice Hessienne $\mathcal{H}(a)$ est définie positive.
 - un point critique a est un maximum local si la matrice Hessienne $\mathcal{H}(a)$ est définie négative.
 - un point critique a est un point selle si la matrice Hessienne $\mathcal{H}(a)$ est indéfinie.

Méthode de recherche d'extrema locaux sur un ouvert

Pour déterminer les extrema locaux d'une fonction f sur un ouvert Ω , on procèdera comme suit :

- on justifie que f est de classe \mathscr{C}^2 sur Ω ;
- \bullet on calcule le gradient de f, puis on cherche les points critiques;
- on calcule la hessienne de f en le (ou les) points critiques, puis on détermine ses valeurs propres ;ou on calcule $\Delta = s^2 rt$ (r,s et t sont des notations de Monge)
- on identifie la nature local du point critique a à l'aide du signe des valeurs propres de la matrice Hessienne $\mathcal{H}(a)$ ou à l'aide du signe de Δ et r

