Modelowanie i identyfikacja – laboratorium 3.

Podstawy estymacji – twierdzenia graniczne, średnia i mediana z próby oraz ich własności

Paweł Wachel

Wymagania wstępne:

- 1. Wymagania wstępne z poprzednich zajęć¹.
- 2. Definicja korelacji i kowariancji zmiennych losowych.
- 3. Defincja i podstawowe własności mediany.
- 4. Zbieżność według prawdopodobieństwa i zbieżność z prawdopodobieństwem 1.
- 5. Centralne twierdzenie graniczne.

Zadania do wykonania:

1. Wygenerować ciąg zmiennych losowych $T = \{X_1, X_2, \dots, X_N\}$ z rozkładu normalnego $\mathcal{N}(\mu, \sigma^2)$. Zaimplementować estymatory

$$\hat{\mu}_N = \frac{1}{N} \sum_{n=1}^N X_n, \quad \hat{s}_N^2 = \frac{1}{N} \sum_{n=1}^N (X_n - \hat{\mu}_N)^2, \quad \hat{S}_N^2 = \frac{1}{N-1} \sum_{n=1}^N (X_n - \hat{\mu}_N)^2. \quad (1)$$

2. Zaimplementować i wykreślić błąd empiryczny

$$Err\{\hat{\mu}_N; \mu\} = \frac{1}{L} \sum_{l=1}^{L} \left[\hat{\mu}_N^{[l]} - \mu \right]^2,$$

gdzie L to stała (np. 10, 20 itp.), a $\hat{\mu}_N^{[1]}, \hat{\mu}_N^{[2]}, \dots, \hat{\mu}_N^{[L]}$ to kolejne realizacje estymatora $\hat{\mu}_N$, skonstruowane w oparciu o niezależne N-elementowe ciągi obserwacji T_1, T_2, \dots, T_L .

- Wykreślić i zinterpretować błąd $Err\left\{ \hat{\mu}_N;\mu\right\}$ w funkcji Ndla dwóch różnych wartości L.
- Przeprowadzić analogiczne badania dla estymatorów \hat{s}_n^2 i \hat{S}_n^2 , tj. zbadać zachowanie błędów $Err\{\hat{s}_n^2;\sigma^2\}$ i $Err\{\hat{S}_n^2;\sigma^2\}$ w funkcji N.
- 3. Powtórzyć eksperymenty z zadania 1. dla zmiennych losowych o rozkładzie Cauchy'ego. Przedyskutować uzyskane wyniki.

¹Całkujemy wiedzę... przynajmniej do wakacji.

Zadania dodatkowe:

- 1. Zaimplementować estymatory kowariancji i korelacji zmiennych losowych X_1 i X_2 , takich że $X_1 \sim U[0,1]$ oraz $X_2 = aX_1 + b$, gdzie a i b są dowolnie wybranymi stałymi. Wykreślić realizacje estymatora korelacji w funkcji liczebności próby N i zinterpretować uzyskane wyniki.
- 2. Niech zmienna losowa X_1 posiada gęstość prawdopodobieństwa taką, że f(x) = f(-x), $\forall x$. Niech ponadto $X_2 = X_1^2$. Przeprowadzić analizę korelacyjną zmiennych losowych X_1 i X_2 i przedyskutować uzyskane wyniki w kontekście ich zależności/niezależności.

Literatura:

- 1. Jakubowski Jacek, Sztencel Rafał. Wstęp do teorii prawdopodobieństwa. Script, 2001.
- 2. Plucińska Agnieszka, Pluciński Edmund. Probabilistyka: rachunek prawdopodobieństwa, statystyka matematyczna, procesy stochastyczne. Wydawnictwa Naukowo-Techniczne, 2000.
- 3. Gajek Lesław, Kałuszka Marek. Wnioskowanie statystyczne: modele i metody. Wydawnictwa Naukowo-Techniczne, 1993.
- 4. Notatki z wykładu.