Bootstrapping

Adam J Sullivan, PhD 04/30/2018

Boostrapping

Goal of Statistics

- · Make inferences about a population based on data.
- · How??
 - Traditional statistical inference is based on the assumption of drawing repeated samples from a population
 - A statistic (e.g. the mean or a regression coefficient) is assumed to be fixed in the population.

What happens?

- · If a researcher were to draw multiple samples, the statistic would be different each time.
- The term sampling distribution refers to the distribution that would result from taking multiple samples from a population and re-estimating a statistic on each new set of observations.
- Many times the sampling distribution is assumed to be normal, and a statistic is declared to be "significant" if the 95% confidence interval (the area under the curve excluding the smallest and largest 2.5% of values) does not include zero.

What if Assumptions are violated?

- · Many times we do not have normally distributed variables.
- For example, consider a linear regression, we assume the residuals are normally distributed.
- If we do not have normally distributed residuals then our standard errors are off and therefore our individual significance tests for the estimates in our regression are off.

In Comes Bootstrapping!

- Bootstrapping is a method of resampling.
- · Researchers use this to help us understand the variance of different estimates.

How does it work?

- · We just discussed using a sample to make inferences about a population.
- · In Bootstrapping, we will treat our sample data as a population.
- · Then we will draw many sample from this new "population."

How does it work?

- · For each sample, we calculate our test statistic and save the information.
- · If we do this say 500 times, we have 500 estimates of our test statistic.
- · We then can get an idea of how variable our test statistic is.

Example

· Let's simulate a dataset so we know what the truth is.

```
truth <- function(x){
   2.34 + 2.68*x - 3.42*x^2
}

noise <- function(x){
   rnorm(length(x), sd=0.1)
}</pre>
```

Example Data

```
set.seed(124)
data <- data_frame(
    x = runif(n=100, min=0, max = 1),
    y = truth(x) + noise(x)
)</pre>
```

10/36

Example Data

Show 10 ▼	entrie	S	Se	earch:				
				X				Υ
	(0.0830154	397990	0555			2.492706	99323396
		0.408794	660819	9694			2.841533	04720815
		0.515284	994151	1443			2.728245	30612371
		0.39688	234962	2523			2.872245	97883287
		0.222722	708247	7602			2.739742	73183848
		0.292349	642841	1145			2.792552	77433931
		0.584065	895760	0432			2.734001	52707463
		0.490911	490749	9568			2.748853	62924033
		0.92299	912404	1269			1.814642	57885602
		0.279794	845962	2897			2.833988	63519112
Showing 1 to 1	10 of 100 evious	0 entries	2	3	4	5	 10	Next

11/36

Example Data: Graph

```
ggplot(data, aes(x = x, y = y)) + stat_function(fun = truth, color = "black", alpha = 0.7, linetype = "dashed") + geom_point(alpha = 0.6)
```

12/36

Example Data: Graph

Our Linear Model

```
library(broom)
mod <- lm(y~poly(x, 2, raw = TRUE), data)
tidy(mod, conf.int=T)[,-c(3:4)]</pre>
```

14/36

Our Linear Model

```
## 1 (Intercept) 2.32 3.04e-84 2.26 2.39
## 2 poly(x, 2, raw = TRUE)1 2.76 1.10e-32 2.45 3.06
## 3 poly(x, 2, raw = TRUE)2 -3.49 1.58e-42 -3.77 -3.20
```

Our Linear Model

Bootstrapping

• We first create 10,000 new datasets

```
data_bootstrap <-
  data %>%
  modelr::bootstrap(10000)
```

Boostrapping

Show 10 ▼ entries		Sear	ch:				
STRAP					.ID		
[object Object]					00001		
[object Object]					00002		
[object Object]					00003		
[object Object]					00004		
[object Object]					00005		
[object Object]					00006		
[object Object]					00007		
[object Object]					80000		
[object Object]					00009		
[object Object]					00010		
Showing 1 to 10 of 10,0	00 entrie	es					
Previous	1 2	3	4	5		1000	Next

Running the lm() on Our Bootstrap

· We first need to create a function that we wish to run

```
fn_mod <- function(data){
  lm(y~poly(x, 2, raw = TRUE), data=data)
}</pre>
```

19/36

1

Running the lm() on Our Bootstrap

• Then we run the fn_mod over the bootstraps

```
data_bootstrap_model <-
  data_bootstrap %>%
  mutate(model = map(strap, fn_mod))
```

Running the lm() on Our Bootstrap

Show 10 ▼ entries	Search	n:			
STRAP	.ID	MODEL			
[object Object]	00001	[object Object]			
[object Object]	00002	[object Object]			
[object Object]	00003	[object Object]			
[object Object]	00004	4 [object Object]			
[object Object]	00005	[object Object]			
[object Object]	00006	[object Object]			
[object Object]	00007	[object Object]			
[object Object]	00008	[object Object]			
[object Object]	00009	[object Object]			
[object Object]	00010	[object Object]			
Showing 1 to 10 of 10,	000 entries				
Previous	1 2 3	4 5 1000) Next		

Getting the Parameters

we use tidy() from the broom package.

```
data_bootstrap_param <-
  data_bootstrap_model %>%
  mutate(param = map(model, tidy)) %>%
  select(.id, param) %>%
  unnest()
```

22/36

Getting the Parameters

Show 10	entrie:	s Search	n:		
.ID	TERM	ESTIMATE	STD.ERROR	STATISTIC	P. VALUE
00001	(Intercept)	2.39012178930062	0.0371826299820924	64.2806006582035	2.50203776389026e- 81
00001	poly(x, 2, raw = TRUE)1	2.47668131375546	0.177500020427133	13.9531325562421	6.35046471404864e- 25
00001	poly(x, 2, raw = TRUE)2	-3.22156084596636	0.168541598052562	-19.1143366574801	1.15982273342521e- 34
00002	(Intercept)	2.30386838623072	0.0336765578170282	68.4116351424071	6.76907087959256e- 84
00002	poly(x, 2, raw = TRUE)1	2.94477405501404	0.150398396856775	19.5798234326817	1.80855762724377e- 35
00002	poly(x, 2, raw = TRUE)2	-3.69795537014388	0.137739046103648	-26.8475459555687	1.07040065499199e- 46
00003	(Intercept)	2.33640081941268	0.0281337136842963	83.0462997395477	6.31803692678483e- 92
00003	poly(x, 2, raw = TRUE)1	2.67719590581824	0.132351855559363	20.2278683173993	1.4216423473885e- 36
00003	poly(x, 2, raw = TRUE)2	-3.4365747870883	0.138901442905594	-24.7411021455264	1.08928740649482e- 43
00004	(Intercept)	2.31968616054047	0.0336456689342167	68.9445695098489	3.23706157774023e- 84

2 3 4 5 ... 3000

Next

23/36

Showing 1 to 10 of 30,000 entries

Previous

Distribution Plots

```
data_bootstrap_param %>%
  ggplot(aes(x = estimate)) +
  geom_histogram(binwidth = 0.05) +
  facet_grid(term ~ ., scales = "free_x")
```

24/36

Distribution Plots

Summarizing the Results

```
data_bootstrap_param_mean <-
  data_bootstrap_param %>%
  group_by(term) %>%
  summarize(estimate_mean = mean(estimate))
```

26/36

Summarizing the Results

Show 10 ▼ entries	Search:					
TERM		Е	STIMA	ATE_	MEAN	
(Intercept)			2	.324709	949341213	
poly(x, 2, raw = TRUE)1		2.75245268430527				
poly(x, 2, raw = TRUE)2			-3	.481919	932215691	
Showing 1 to 3 of 3 entries		Prev	ious	1	Next	

Interquartile Range of Estimates

```
data_bootstrap_param %>%
  group_by(term) %>%
  summarize(
    q_25 = quantile(estimate, 0.25),
    median = median(estimate, 0.5),
    q_75 = quantile(estimate, 0.75)
)
```

28/36

Interquartile Range of Estimates

29/36

Confidence Intervals

```
data_bootstrap_param %>%
  group_by(term) %>%
  summarize(
   lower_95 = quantile(estimate, 0.025),
   upper_95 = quantile(estimate, 0.975)
)
```

30/36

Confidence Intervals

31/36

Add Model Predictions to Plot of Original Data

```
library(tidyr)
library(modelr)
grid <-
    data %>%
    expand(x = seq_range(x, 20))

boot_pred <-
    data_bootstrap_model %>%
    transmute(
        .id,
        data = map2(list(grid), model, add_predictions, var = "y")
    ) %>%
    unnest()
```

Add Model Predictions to Plot of Original Data

Show 10 ▼ entries	Search:				
					X
			0.000	4509398	71370792
			0.0	5147840	60712708
			0.	1025058	72271171
			0.	1535333	38471071
			0.	2045608	04670971
			0.	2555882	70870871
			0.	3066157	X 37070771
			0.1025 0.1535 0.2045 0.2555 0.3066 0.3576 0.4086 0.4596	3576432	03270671
			0.	4086706	69470571
			0.	4596981	35670471
Showing 1 to 10 of 20 entries		Previous	1	2	Next

Add Model Predictions to Plot of Original Data

Show 10 ▼ en	tries		Sea	rch:						
.ID					X			Υ		
00001		0.00	045093	9871370	792		2.391237	796855969		
00001		0.	051478	4060712	2708	2.50908017473733				
00001		(0.10250	5872271	171		2.610145	76579064		
00001		().15353	3338471	071		2.694434	174171962		
00001		().20456	0804670)971		2.761947	10252427		
00001		().25558	3270870)871		2.812682	284820458		
00001		().30661	5737070)771		2.84664197876057			
00001		().35764	3203270)671		2.86382449419222			
00001 - ID		().408670	0669470)571 X		2.86423039449955			
00001		().459698	3135670	^		2.847859	067968254		
Showing 1 to 10 o	f 200,00	0 entr	ies							
Previous	1	2	3	4	5		20000	Next		

Plot Data and Model Estimates

```
ggplot(data = data, mapping = aes(x = x, y = y)) +
  geom_line(
    data = boot_pred %>% filter(as.numeric(.id) < 3000),
    aes(group = .id),
    color = "blue",
    alpha = 0.002
) +
  stat_function(fun = truth, color = "black", linetype = "dashed", size = 1) +
  geom_point(data = data, alpha = 0.5)</pre>
```

35/36

Plot Data and Model Estimates

