Tema 6. Teoría de números elemental

6.0. Contenido y documentación

- 6.0. Contenido y documentación
- 6.1. Operaciones binarias
 - 6.1.1. Propiedades relacionadas con la divisibilidad
 - 6.1.2. Orden natural de $\mathbb Z$
- 6.2. Divisibilidad
 - 6.2.1. Máximo común divisor
 - 6.2.2. Algoritmo de Euclides
- 6.3. Números primos
- 6.4. Aplicaciones del Algoritmo de Euclides
- 6.5. Ecuaciones Diofánticas
- 6.6. Mínimo común múltiplo
- 6.7. Teorema Fundamental de la Aritmética
- 6.8. Congruencias
 - 6.8.1. Operaciones y congruencias
 - 6.8.2. Teorema de Fermat
- 6.9. Propiedades algebraicas de \mathbb{Z}_n
 - 6.9.1. Propiedad del inverso multiplicativo
- 6.10. Ecuaciones con congruencias
 - 6.10.1. Teorema Chino del Resto
- 6.11. Función de Euler
 - 6.11.2. Sistema reducido de restos

H6a_EstructurasAlgebraicas.pdf

H6b TeoriaNumeros.pdf

H6c Congruencias.pdf

6.1. Operaciones binarias

Definición. Dado un grupo A y dos elementos $a,b \in A$. Definimos una **operación binaria** como aquella mediante la que, a partir de un par ordenado $(a,b) \in A \times A$, hacemos corresponder un número $c \in A$.

En $\mathbb N$ (resp. $\mathbb Z$) podemos definir las operaciones binarias suma (+) y producto escalar (·). Esto quiere decir que para cada par $(a,b)\in\mathbb N\times\mathbb N$ (resp. $\mathbb Z\times\mathbb Z$) tenemos un número $a+b\in\mathbb N$ (resp. $\mathbb Z$) para la operación suma, y otro $ab\in\mathbb N$ (resp. $\mathbb Z$) para la operación producto escalar.

Todas las operaciones binarias cumplen las siguientes propiedades:

- Conmutativa. a+b=b+a y ab=ba.
- Asociativa. (a + b) + c = a + (b + c).

- Elemento neutro (suma). $\forall a \in \mathbb{Z}$ se tiene que a+0=a.
- Elemento neutro (producto). $\forall a \in \mathbb{N}$ (res. \mathbb{Z}) se tiene que $a \cdot 1 = a$.
- Elemento inverso (suma). $\forall a \in \mathbb{Z}, \exists a' \in \mathbb{Z}: a+a'=0$, habitualmente, a'=-a.
- Distributiva. a(b+c) = ab + ac y (a+b)c = ac + bc.

Habitualmente, decimos que $\mathbb Z$ con las operaciones suma (+) y producto escalar (·) es un **anillo** conmutativo.

6.1.1. Propiedades relacionadas con la divisibilidad

Definición. Dados dos enteros $a,b\in\mathbb{Z}$ con b
eq 0. Decimos que a es **divisible** por b si $\exists q\in\mathbb{Z}: a=qb$

Nota. También se aplica para $a,b\in\mathbb{N}$ si $q\in\mathbb{N}$. Notación. b|a

Teorema (**Algoritmo de la división**). Sean $a,b\in\mathbb{Z}$ dos enteros con $b\neq 0$. Entonces, $\exists q,r\in\mathbb{Z}: a=qb+r$, con q y r únicos y con $0\leq r\leq |b|$.

Nota. Si $a,b\in\mathbb{N}$, entonces $q,r\in\mathbb{N}\cup\{0\}$.

6.1.2. Orden natural de ${\mathbb Z}$

En \mathbb{Z} podemos definir el **orden natural** (\leq), un orden total que cumple las siguientes propiedades:

- **Principio del mínimo**. Para todo conjunto $A\subset \mathbb{Z}$, no vacío y acotado inferiormente, se cumple que A tiene un elemento mínimo.
- **Principio del máximo**. Para todo conjunto $A\subset\mathbb{Z}$, no vacío y acotado inferiormente, se cumple que A tiene un elemento máximo.

6.2. Divisibilidad

6.2.1. Máximo común divisor

Definición. Dados tres enteros $a,b,r\in\mathbb{Z}$ con $a,b,r\neq 0$. Decimos que r es un **divisor común** de a y b si r|a y r|b.

Nota. Normalmente, solo consideramos los divisores positivos.

Usaremos con frecuencia que si r|a y r|b, entonces $r\leq |a|$ y $r\leq |b|$, es decir, $r\leq \min\{|a|,|b|\}$. Por tanto, el conjunto de divisores comunes de a y b, $D=\{r\in \mathbb{N}: r|a\wedge r|b\}$ está acotado superiormente por $\min\{|a|,|b|\}$, siempre y cuando $D\neq\emptyset$. Luego, por el Principio del máximo, $\exists\max D$.

Definición. Dados dos enteros $a,b\in\mathbb{Z}$ y el conjunto de sus divisores comunes $D=\{r\in\mathbb{N}:r|a\wedge r|b\}$. Decimos que r_0 es el **máximo común divisor** de a y b si $r_0=\max D$. Notación. $\operatorname{mcd}\ (a,b)$.

6.2.2. Algoritmo de Euclides

Lema 1. Sean $a,b,c,r\in\mathbb{Z}\backslash\{0\}$ cuatro enteros tales que a=cb+r. Entonces, $\mathrm{mcd}\ (a,b)=\mathrm{mcd}\ (b,r)$.

Demostración.

Sean p = mcd(a, b) y q = mcd(b, r).

Por una parte, p|a y p|b, por lo que $\exists s,t\in\mathbb{Z}:a=sp\wedge b=tp$. Si suponemos que r=a-cb=sp-ctp=p(s-ct), entonces p|r y $p\leq \mathrm{mcd}\ (b,r)=q$.

Por otra parte, q|b y q|r, por lo que $\exists u,v\in\mathbb{Z}:b=uq\wedge r=vq$. Si suponemos que a=cb+r=cuq+vq=q(cu+v), entonces q|a y $q\leq \mathrm{mcd}\ (a,b)=p$.

Luego, como $p \leq q$ y $p \geq q$, entonces $p = q \Leftrightarrow \operatorname{mcd}\ (a,b) = \operatorname{mcd}\ (b,r)$. \Box

Lema 2. Sean $a,b\in\mathbb{Z}\backslash\{0\}$ tales que b|a. Entonces, $\operatorname{mcd}(a,b)=|b|$.

Demostración.

Obviamente, |b| divide a b y a, por lo que es divisor común de ambos. Cualquier otro divisor común tiene que ser menor que $\min\{|a|,|b|\}=|b|$, por lo que |b| es el mayor de los divisores comunes de a y b. \square

A partir de los dos lemas anteriores, podemos establecer un procedimiento que nos permite calcular el $\mathrm{mcd}\ (a,b)$ para cualquier $a,b\in\mathbb{Z}\backslash\{0\}$. Este procedimiento se conoce como el **Algoritmo de Euclides**.

Caso general.

Suponemos cuatro enteros $a,b,c_0,r_1\in\mathbb{Z}$ tales que $a=c_0b+r_1$, con $0\leq r_1<|b|$.

- Si $r_1=0$, entonces b|a. Aplicando el Lema 2, $\operatorname{mcd}\ (a,b)=|b|$.
- Si $r_1 \neq 0$, entonces, aplicamos el Lema 1 para deducir que $\operatorname{mcd}(a,b) = \operatorname{mcd}(b,r_1)$. Así, podemos decir que $b = c_1r_1 + r_2$ con $0 \leq r_2 \leq |r_1|$ y volver a empezar.

6.3. Números primos

Definición. Dados dos enteros $a,b \in \mathbb{Z} \setminus \{0\}$. Decimos que a y b son **coprimos** si $\operatorname{mcd}(a,b) = 1$.

Ejemplo 1. Sea $k\in\mathbb{N}$ arbitrario. Demostrar que 7k+3 y 5k+2 son coprimos. Tenemos que demostrar que $\operatorname{mcd}(7k+3,5k+2)=1$. Aplicamos el Algoritmo de Euclides, de forma que 7k+3=(5k+2)+2k+1, por lo que $\operatorname{mcd}(7k+3,5k+2)=\operatorname{mcd}(5k+2,2k+1)$. Seguimos aplicando este procedimiento, de forma que 5k+2=2(2k+1)+k, 2k+1=2(k)+1 y k=k(1). Luego, concluimos que $\operatorname{mcd}(7k+3,5k+2)=\operatorname{mcd}(k,1)=1$, por lo que 7k+3 y 5k+2 son coprimos.

6.4. Aplicaciones del Algoritmo de Euclides

Teorema (Identidad de Bézout). Sea $a,b,m\in\mathbb{Z}\backslash\{0\}$ tres enteros tales que $m=\mathrm{mcd}\ (a,b)>0$. Entonces, $\exists u,v\in\mathbb{Z}: m=ua+vb$.

Demostración.

Por el Algoritmo de Euclides, tenemos que $a=c_0b+r_1$, $b=c_1r_1+r_2...$ de forma que $m=\mod(a,b)=r_{n-1}$.

Si despejamos los restos de las expresiones anteriores, obtenemos que $r_{n-1}=r_{n-3}-c_{n-2}r_{n-2}=...=ua+vb$. \square

Ejemplo 2. Encontrar $u,v\in\mathbb{Z}$ tales que 6=102u+18v. Aplicamos el Algoritmo de Euclides, de forma que $102=5\cdot 18+12$, 18=12+6 y $12=2\cdot 6$. Así, tenemos que $6=18-12=18-(102-5\cdot 18)=-102+6\cdot 18$. Luego, u=-1 y v=6.

Corolario. Sean $a,b\in\mathbb{Z}\backslash\{0\}$ dos enteros. Entonces, a y b son coprimos si y solo si $\exists u,v\in\mathbb{Z}:ua+vb=1$.

Demostración.

 \Rightarrow) Es trivial.

 \Leftarrow) Si m|a y m|b, entonces $\exists k,l\in\mathbb{Z}:a=km$ y b=lm. Luego ua+vb=ukm+vlm=m(uk+vl), de forma que m|(ua+vb)=1. Si m|1, entonces $m\in\{-1,1\}$ y como m>0, pues m=1. Luego, $\mathrm{mcd}\ (a,b)=1$. \square

Lema de Euclides. Sean $a,b,c\in\mathbb{Z}$ tres enteros tales que $a|bc\wedge \operatorname{mcd}(a,b)=1$. Entonces, a|c.

Demostración.

Sabemos que $\operatorname{mcd}(a,b)=1$, entonces $\exists x,y\in\mathbb{Z}:ax+by=1$, de forma que acx+bcy=c. Además, sabemos que a|bc, por lo que a|bcy y a|acx. Luego, $a|(acx+bcy)=c\Rightarrow a|c$. \square

6.5. Ecuaciones Diofánticas

Definición. Dados tres enteros $a,b,c\in\mathbb{Z}$. Llamamos **ecuación diofántica** a aquella de la forma ax+by=c.

Nota. Nos interesa encontrar sus soluciones $(x,y)\in\mathbb{Z} imes\mathbb{Z}$.

Proposición. Sea $a,b,c,d\in\mathbb{Z}$ cuatro enteros tales que $\operatorname{mcd}(a,b)=d$. Entonces, la ecuación diofántica ax+by=c tiene soluciones enteras $\operatorname{mcd}(x,y)$ si y solo si d|c.

Demostración.

 \Rightarrow) Suponemos que existen soluciones enteras, de forma que $\exists u,v\in\mathbb{Z}:au+bv=c$. Como d|a y d|b, entonces $\exists p,q\in\mathbb{Z}:a=pd\wedge b=qd$, de forma que c=au+bv=pdu+qdv=d(pu+qv). Luego, d|c.

 \Leftarrow) Si $d=\operatorname{mcd}\ (a,b)|c$, entonces $\exists m\in\mathbb{Z}:c=md$. Por la Identidad de Bézout, $\exists u,v\in\mathbb{Z}:au+bv=d$, por lo que c=md=mua+mvb. Si ponemos que x=mu e y=mv, tenemos que (mu,mv) es una solución entera de ax+by=c. \square

Teorema. Sean $a,b,c\in\mathbb{Z}$ tres enteros, $d=\mathrm{mcd}\ (a,b)$ y $(x_0,y_0)\in\mathbb{Z} imes\mathbb{Z}$ una solución particular de la ecuación diofántica ax+by=c. Entonces,

cualquier solución de la misma es de la forma $(x,y)=egin{cases} x=x_0+rac{b}{d}n\ y=y_0-rac{a}{d}n \end{cases}, n\in\mathbb{Z}$

Tema 6. Teoría de números elemental

Demostración.

Primero, consideramos
$$x=x_0+\frac{b}{d}n$$
 e $y=y_0-\frac{a}{d}n$ y comprobamos que $ax+by=a\left(x_0+\frac{b}{d}n\right)+b\left(y_0-\frac{a}{d}n\right)=ax_0+\frac{ab}{d}n+by_0-\frac{ab}{d}n=ax_0+by_0=c$. Por lo que efectivamente, (x,y) es solución. Después, consideramos una solución arbitraria (x,y) , de forma que $ax+by=c$ y $ax_0+by_o=c$, por lo que $a(x-x_0)+b(y-y_0)=0$ y $\frac{a}{d}(x-x_0)=\frac{b}{d}(y_0-y)$. Así, $\frac{b}{d}|\frac{a}{d}(x-x_0)\Rightarrow\frac{b}{d}|(x-x_0)$, ya que $\operatorname{mcd}\left(\frac{a}{d},\frac{b}{d}\right)=1$. De forma que $x-x_0=n\frac{b}{d}\Rightarrow x=0$

$$x_0+rac{b}{d}n$$
, con $n\in\mathbb{Z}$. De igual forma, $rac{a}{d}|rac{b}{d}(y_0-y)\Rightarrowrac{a}{d}|(y_0-y)$, e $y_0-y=nrac{a}{d}\Rightarrow y=y_0-rac{a}{d}n$, con $n\in\mathbb{Z}$. \Box

6.6. Mínimo común múltiplo

Definición. Dados tres enteros $a,b,r\in\mathbb{Z}$ con $a,b,r\neq 0$. Decimos que r es un **múltiplo común** de a y b si a|r y b|r.

Nota. Normalmente, solo consideramos los múltiplos positivos.

Definimos el conjunto de múltiplos comunes de a y b como $M=\{r\in\mathbb{N}:a|r\wedge b|r\}=\{r\in\mathbb{N}:\exists k,l\in\mathbb{Z}\ \mathrm{con}\ r=ka=lb\}.$ El conjunto M siempre es distinto del vacío, ya que $|ab|\in M.$

Definición. Dados dos enteros $a,b\in\mathbb{Z}\backslash\{0\}$ y el conjunto de sus múltiplos comunes $M=\{r\in\mathbb{N}:a|r\wedge b|r\}$. Decimos que r_0 es el **mínimo común múltiplo** de a y b si $r_0=\min M$. Notación. $\operatorname{mcm}\ (a,b)$

6.7. Teorema Fundamental de la Aritmética

Teorema Fundamental de la Aritmética. Para todo número natural $n \in \mathbb{N}$, existen una serie de números primos $p_1, p_1, ..., p_s$ y de números naturales $\alpha_1, \alpha_2, ..., \alpha_s \in \mathbb{N}$ tale que $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot ... \cdot p_s^{\alpha_s}$. Esta factorización es única salvo orden.

Usando el Teorema Fundamental de la Aritmética, podemos factorizar dos números $a,b\in\mathbb{N}$ como productos de los mismos primos (admitiendo 0 como exponente). De forma que $a=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot\ldots\cdot p_s^{\alpha_s}$ y $b=p_1^{\beta_1}\cdot p_2^{\beta_2}\cdot\ldots\cdot p_s^{\beta_s}$, con $\alpha_i,\beta_i\in\mathbb{N}\cup\{0\},\forall i.$ Entonces, resulta que: $-\operatorname{mcd}(a,b)=p_1^{\min\{\alpha_1,\beta_1\}}\cdot p_2^{\min\{\alpha_2,\beta_2\}}\cdot\ldots\cdot p_s^{\min\{\alpha_s,\beta_s\}}.$ $-\operatorname{mcm}(a,b)=p_1^{\max\{\alpha_1,\beta_1\}}\cdot p_2^{\max\{\alpha_2,\beta_2\}}\cdot\ldots\cdot p_s^{\max\{\alpha_s,\beta_s\}}.$

6.8. Congruencias

Definición. Sean $a,b\in\mathbb{Z}$ y $n\in\mathbb{N}$ con n>1. Decimos que a es **congruente con** b **módulo** n si n|(b-a).

Notación. $a \equiv b \ (n)$.

En $\mathbb Z$ podemos definir el conjunto cociente de la congruencia como $\mathbb Z/_{\equiv(n)}=\mathbb Z/_{n\mathbb Z}=\mathbb Z_n=\{\overline{0},\overline{1},...,\overline{n-1}\}.$

Definición. Dado un número natural $n \in \mathbb{N}$ con n > 1. Definimos un **sistema completo de restos módulo** n como un conjunto de n enteros donde cada uno es un representantes de cada una de las clases $\overline{0}, \overline{1}, ..., \overline{n-1}$.

Proposición. Sean $n\in\mathbb{N}\setminus\{1\}$ y $a\in\mathbb{Z}$ tales que $\mathrm{mcd}\ (a,n)=1$; y $r_1,r_2,...,r_n$ un sistema completo de restos módulo n. Entonces, $ar_1,ar_2,...,ar_n$ también lo es.

Demostración.

Suponemos que $\exists i,j \in \{1,2,...,n\}: i \neq j \land \overline{ar_i} = \overline{ar_j}$. Entonces, $n|(ar_1-ar_j) \Rightarrow n|a(r_1-r_j)$. Pero sabemos que $\operatorname{mcd}(n,a)=1$, luego, $n|(r_i-r_j) \Rightarrow \overline{r_i} = \overline{r_j}$, lo que nos lleva a una contradicción. \square

6.8.1. Operaciones y congruencias

Para que una operación (*) con clases de equivalencia esté bien definida, se necesita que dicha operación cumple que $\overline{a}*\overline{b}=\overline{a*b}$. En \mathbb{Z}_n esto se cumple para las operaciones suma (+) y producto escalar (·).

Teorema. Sean $a,b,c,d\in\mathbb{Z}$ cuatro enteros y $n\in\mathbb{N}$ un natural con n>1, tales que $\overline{a}=\overline{c}\ (n)$ y $\overline{b}=\overline{d}\ (n)$. Entonces, $\overline{a+b}=\overline{c+d}\ (n)$ y $\overline{ab}=\overline{cd}\ (n)$.

Demostración.

Si $\overline{a}=\overline{c}\ (n)$ y $\overline{b}=\overline{d}\ (n)$, entonces $\exists r,s\in\mathbb{Z}: a-c=rn\wedge b-d=sn$. $\underline{-(a-c)+(b-d)=rn+sn}\Leftrightarrow (a+b)-(c+d)=n(r+s)\Leftrightarrow n|((a+b)-(c+d)). \ \text{Luego}, \ \overline{a+b}=\overline{c+d}\ (n).$ $\underline{-b(a-c)+c(b-d)=brn+csn}\Leftrightarrow ab-bc+bc-cd=n(br+cs)\Leftrightarrow n|(ab-cd). \ \text{Luego}, \ \overline{ab}=\overline{cd}\ (n).$

Corolario. Sean $a,c\in\mathbb{Z}$ dos enteros y $n\in\mathbb{N}$ un natural con n>1 tales que $\overline{a}=\overline{c}$ (n). Entonces, $\overline{ma}=\overline{mc}$ (n) y $\overline{a^m}=\overline{c^m}$ (n), para todo $m\in\mathbb{N}$.

6.8.2. Teorema de Fermat

Teorema Pequeño de Fermat. Sea p un número primo y $a\in\mathbb{N}$ un natural tales que $p\not\mid a$. Entonces, $a^{p-1}\equiv 1$ (p).

Demostración.

Como p es primo y $p \not\mid a$, entonces $\operatorname{mcd}(p,a) = 1$. De esta forma, $\{0,1,...,p-1\}$ es un sistma completo de restos módulo p y $\{0,a,...,a(p-1)\}$ también lo es.

Por lo tanto, cada $i\in\{1,2,...,p-1\}$ es congruente con ja (p) para algún $j\in\{1,2,...,p-1\}$. Si multiplicamos todos los i,j, tenemos que $1\cdot 2\cdot ...\cdot p-1\equiv a\cdot 2a\cdot ...\cdot a^{p-1}(p-1)$ $(p)\Leftrightarrow (p-1)!\equiv a^{p-1}(p-1)!$ (p), de forma que $p|(a^{p-1}(p-1)!-(p-1)!)=((p-1)!(a^{p-1}-1))$. Luego, $\mathrm{mcd}\ (p,(p-1)!)=1$, por lo que $p|(a^{p-1}-a)\Rightarrow a^{p-1}\equiv 1$ (p). \square

Corolario. Sea p un número primo y $a \in \mathbb{N}$ un natural tales que $p \not\mid a$. Entonces, $a^p \equiv a\ (p)$ o, equivalentemente, $p|(a^p-p)$.

6.9. Propiedades algebraicas de \mathbb{Z}_n

Sea $\mathbb{Z}_n=\{\overline{0},\overline{1},...,\overline{n-1}\}$ el conjunto cociente de \mathbb{Z} respecto a la relación de equivalencia $\equiv (n)$. Podemos afirmar que \mathbb{Z}_n es un **anillo conmutativo**, ya que las operaciones suma (+) y producto escalar (·) cumples las siguientes propiedades:

- Conmutativa. $\overline{a}+\overline{b}=\overline{b}+\overline{a}$ y $\overline{a}\overline{b}=\overline{b}\overline{a}$.
- Asociativa. $(\overline{a}+\overline{b})+\overline{c}=\overline{a}+(\overline{b}+\overline{c})$ y $(\overline{a}\overline{b})\overline{c}=\overline{a}(\overline{b}\overline{c})$.
- Distributiva. $\overline{a}(\overline{b}+\overline{c})=\overline{a}\overline{b}+\overline{a}\overline{c}$.
- Elemento neutro. $\overline{a} + \overline{0} = \overline{a}$ y $\overline{a} \cdot \overline{1} = \overline{a}$.

6.9.1. Propiedad del inverso multiplicativo

Definición. Dados p un número primo y $\overline{a} \in \mathbb{Z}_p \setminus \{\overline{0}\}$ una clase de equivalencia. Definimos el **inverso multiplicativo** de \overline{a} en $\mathbb{Z}_p \setminus \{\overline{0}\}$ como un elemento $\overline{b} \in \mathbb{Z}_p \setminus \{\overline{0}\}$ tal que $\overline{a}\overline{b} = \overline{b}\overline{a} = \overline{1}$ (p).

Proposición. Sea p un número primo. Entonces, $\forall \overline{a} \in \mathbb{Z}_p \setminus \{0\}$ existe un único $\overline{b} \in \mathbb{Z}_p \setminus \{\overline{0}\}$ tal que \overline{b} es el inverso multiplicativo de \overline{a} .

Demostración.

Si p es un número primo, entonces, $\mathrm{mcd}\ (a,p)=1$; y, por la Identidad de Bézout, $\exists b,c\in\mathbb{Z}:ab+1$ pc=1, de forma que pc=1-ab y $p|(1-ab)\Leftrightarrow ab\equiv 1\;(p)$. Quedando demostrada la existencia de

Ahora suponemos que existen dos números $b,c\in\mathbb{Z}$ tales que $\overline{ab}=\overline{1}$ y $\overline{ac}=\overline{1}$, es decir, $ab\equiv 1$ (p) y $ac\equiv 1\;(p)$. De esta forma, $ab-ac\equiv 0\;(p)$ y p|(ab-ac)=a(b-c). Sabemos que $p\not\mid a$, por lo que $p|(b-c)\Leftrightarrow b\equiv c\ (p)$ y $\overline{b}=\overline{c}$. Quedando demostrada la unicidad de b. \Box

Definición. Un **cuerpo** es un conjunto, C, cerrado respecto a las operaciones suma y producto escalar, es decir, $\forall a, b \in C$ se tiene que $a + b, a \cdot b \in C$.

6.10. Ecuaciones con congruencias

Definición. Dados dos enteros $a,b\in\mathbb{Z}$ y un natural $n\in\mathbb{N}\setminus\{1\}$. Definimos una **ecuación con congruencias** como aquella de la forma ax = b (n).

Teorema. Sean $a,b\in\mathbb{Z}$, $n\in\mathbb{N}ackslash\{1\}$ y $\mathrm{mcd}\ (a,n)=\mathrm{mcd}\ (a,-n)=d$.

- Si $d \not\mid b$, la ecuación $ax \equiv b\ (n)$ no tiene soluciones en $\mathbb Z$.
 Si d|b, la ecuación $ax \equiv b\ (n)$ tiene en $\mathbb Z$ exactamente d soluciones no congruentes entre sí módulo n.

Demostración.

- Si $d \not | b$, entonces no existe ningún par $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ que sea resultado de la ecuación diofántica ax + ny = b. Por lo que no existe solución para la ecuación $ax \equiv b$ (n).

- Si d|b, entonces ax+ny=b tiene soluciónes enteras (x,y) definida como $x=x_0+\frac{n}{d}k$ e $y=y_0-\frac{a}{d}k$, con $k\in\mathbb{Z}$; siendo (x_0,y_0) una solución particular de ax-ny=b.

Suponemos dos soluciones $x_1=x_0+\frac{n}{d}k_1$ y $x_2=x_0+\frac{n}{d}k_2$, con $k_1,k_2\in\mathbb{Z}$, de forma que $x_1\equiv x_2$ (n). De esta forma, $n|(x_1-x_2)=\left(x_0+\frac{n}{d}k_1-x_0-\frac{n}{d}k_2\right)=\frac{n}{d}(k_1-k_2)$. Como $n|\frac{n}{d}$, entonces $n|(k_1-k_2)\Leftrightarrow k_1\equiv k_2$ (d). \square

6.10.1. Teorema Chino del Resto

Teorema Chino del Resto. Sean $a_1,a_2,...,a_k\in\mathbb{Z}$ una serie de enteros y $m_1,m_2,...,m_k\in\mathbb{N}$ una serie de naturales coprimos dos a dos. Entonces, el

sistema de congruencias $egin{cases} x\equiv a_1\ (m_1)\ x\equiv a_2\ (m_2)\ & ext{tiene solución única módulo }M=\ \dots\ x\equiv a_k\ (m_k) \end{cases}$

....

Demotración.

- Existencia. Para $j\in\{1,2,...,k\}$, definimos M_j como $M_j=\frac{M}{m_j}=m_1\cdot m_2\cdot ...\cdot m_{j-1}\cdot m_{j+1}\cdot m_k$. Por hipótesis, $i\neq j\Rightarrow \operatorname{mcd}\ (m_i,m_j)=1$, por lo que $\operatorname{mcd}\ (m_j,M_j)=1$. Así, \overline{M}_j tiene un único inverso en \mathbb{Z}_{m_j} , \overline{b}_j tal que $M_jb_j\equiv 1\ (m_j)$.

Para lo valores de $a_1,a_2,...,a_k$ dados y los $b_1,b_2,...,b_k$ obtenidos, si $x=\sum_{i=1}^k a_iM_ib_i$. Entonces, $\forall j\in\{1,2,...,k\}$ tenemos que $a_jM_jb_j\equiv a_j\ (m_j)$ y $M_i\equiv 0\ (m_j)$, para $i\neq j$. De forma que $a_iM_ib_i\equiv 0\ (m_j)$ y $x\equiv a_j\ (m_j)$, con j=1,2,...,k.

- Unicidad. Suponemos que existen dos soluciones x e y para el sistema. Por hipótesis, sabemos que $\forall j \in \{1,2,...,k\}$ tenemos que $x \equiv a_j \ (m_j) \land y \equiv a_j \ (m_j)$, de forma que $x-y \equiv 0 \ (m_j) \Leftrightarrow m_j | (x-y)$. Así, tenemos que $\operatorname{mcm} \ (m_1,...,m_k) | (x-y) \Rightarrow M | (x-y)$, ya que los m_i son coprimos dos a dos. Luego, $x \equiv y \ (M)$, de forma que $\overline{x} = \overline{y}$. Llegando a una contradicción. \square

6.11. Función de Euler

Definición. Dado un número natural $n \in \mathbb{N}$. Definimos la **función de Euler** $\phi : \mathbb{N} \to \mathbb{N}$ como $\phi(n) = |\{k \in \mathbb{N} : 1 \le k \le n \text{ con } \operatorname{mcd}(n,k) = 1\}|$. Es decir, la función determina el cardinal del conjunto de números coprimos menores o iguales que n.

Algunas de las principales propiedades de la función de Euler son:

- 1. Sean $n, m \in \mathbb{N}$ dos naturales con $\operatorname{mcd}(n, m) = 1$. Entonces, $\phi(nm) = \phi(n) \cdot \phi(m)$.
- 2. Sea $k\in\mathbb{N}$ un natural y p un número primo. Entonces, $\phi(p^k)=p^{k-1}(p-1)$.

3. Sea $n\in\mathbb{N}$ un natural. Entonces, $\phi(n)=n\cdot\prod_{i=1}^j\left(1-rac{1}{p_i}
ight)$, siendo p_i un número primo tal que $p_i|n$.

Teorema de Euler. Sean $a,n\in\mathbb{N}$ dos naturales con $\mathrm{mcd}\ (a,n)=1$. Entonces, $a^{\phi(n)}\equiv 1\ (n)$.

Ejemplo 3. Encontrar los último dos dígitos del número 123^{442} .

Tenemos que encontrar la solución de la ecuación $123^{442} \equiv x~(100)$.

Primero, vemos que
$$100=2^2\cdot 5^2$$
, de forma que $\phi(100)=100\cdot \left(1-\frac{1}{2}\right)\cdot \left(1-\frac{1}{5}\right)=40.$

A continuación, simplificamos la congruencia: $123=100+23\Rightarrow 123\equiv 23\ (100)$, de forma que $123^{442}\equiv 23^{442}\ (100)$. Vemos que $442=11\cdot 40+2$, de forma que $(23^{11})^{40}\cdot 23^2\equiv 23^{442}$. Por el Teorema de Euler, sabemos que $(23^{11})^{40}\equiv 1\ (100)$, luego $23^{442}\equiv 23^2\ (100)$. Por último, tenemos que $23^2=529=5\cdot 100+29$, por lo que $123^{442}\equiv 29\ (100)$; y las últimas dos cifras de 123^{442} son 29.

Lema. Sean $x,y\in\mathbb{Z}$ dos enterio y $n\in\mathbb{N}\setminus\{1\}$ un natural tales que $x\equiv y$ (n). Entonces, $\mathrm{mcd}\ (x,n)=\mathrm{mcd}\ (y,n)$.

Demostración.

Si $x\equiv y$ (n), entonces $\exists k\in\mathbb{Z}: x-y=kn$, es decir, y=x-kn. Es evidente, que, siendo m= $\mathrm{mcd}\;(x,n), m|x\wedge m|n$, por lo que m|(x-kn)=y. Por lo tanto, como $m|n\wedge m|y$, sabemos que $\mathrm{mcd}\;(x,n)|\mathrm{mcd}\;(y,n)$.

De la misma forma, obtenemos que $\operatorname{mcd}(y,n)|\operatorname{mcd}(x,n)$. Luego, $\operatorname{mcd}(x,n)=\operatorname{mcd}(y,n)$. \square

6.11.2. Sistema reducido de restos

Definición. Sea $n \in \mathbb{N} \setminus \{1\}$. Definimos un **sistema reducido de restos módulo** n como el conjunto de enteros $\{r_i: i \in I\} \subset \mathbb{Z}$ tal que:

- $orall x \in \mathbb{Z}$ con $\operatorname{mcd}\ (x,n) = 1$, existe un $i \in I$ tal que $x \equiv r_i\ (n)$.
- para todo $i,j \in I$ con $i \neq j$, se tiene que $r_i \not\equiv r_i$ (n).
- $\forall i \in I$ se tiene que $\operatorname{mcd}(r_i, n) = 1$.

Nota. Es evidente que $|I| \le n$ y que un sistema reducido de restos se obtiene de un sistema completo, quitando los r_i que no son coprimos con n.

De esta forma, el cardinal de un sistema reducido de restos módulo n viene definido por la función de Euler como $\phi(n)$.

Proposición. Sean $n\in\mathbb{N}\setminus\{1\}$ y $a\in\mathbb{Z}$ tales que $\mathrm{mcd}\ (a,n)=1$; y $r_1,r_2,...,r_n$ un sistema reducido de restos módulo n. Entonces, $ar_1,ar_2,...,ar_n$ también lo es.