THAT WHICH IS CLAIMED:

- 1. A catalyst system comprising an ionic liquid dispersed on a support having an average pore diameter greater than about 225 Å.
- 2. A catalyst system in accordance with claim 1 wherein said support has a surface area less than about 700 m²/gram.
- 3. A catalyst system in accordance with claim 1 wherein said support is non-crystalline.
- 4. A catalyst system in accordance with claim 1 wherein said support is non-crystalline and has a surface area less than about 700 m²/gram.
- 5. A catalyst system in accordance with claim 1 wherein said support is silica.
- 6. A catalyst system in accordance with claim 1 wherein said ionic liquid comprises a cation and an anion; wherein said cation is selected from the group consisting of ions defined by the formulas:

$$R_{10}$$
 R_{10}
 R_{11}
 R_{12}

$$R_{18}$$
 R_{19}
 R_{15}
 R_{17}
 R_{16}

and combinations of any two or more thereof, wherein:

R₁, R₂, R₃, R₅, R₆, and R₇ are selected from saturated and unsaturated hydrocarbons containing from 1 to 7 carbon atoms per molecule;

R₄, R₈, R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₁₄, R₁₅, R₁₆, R₁₇, R₁₈, and R₁₉ are selected from saturated and unsaturated hydrocarbons containing from 1 to 7 carbon atoms per molecule, and hydrogen; and

wherein said anion is selected from the group consisting of halides of: Group IIIA metals, copper, zinc, iron and phosphorus.

7. A catalyst system in accordance with claim 6 wherein said anion is selected from the group consisting of AlCl₄, Al₂Cl₇, Al₃Cl₁₀, GaCl₄, Ga₂Cl₇, Ga₃Cl₁₀, CuCl₂, Cu₂Cl₃, Cu₃Cl₄, ZnCl₃, FeCl₃, FeCl₄, Fe₃Cl₇, PF₆, and BF₄.

- 8. A catalyst system in accordance with claim 6 wherein said ionic liquid has the formula R₁R₂R₃NH⁺Al₂Cl₇.
- 9. A catalyst system in accordance with claim 6 wherein said ionic liquid has the formula (CH₃)₃NH⁺Al₂Cl₇.
- 10. A catalyst system in accordance with claim 1 wherein a Group VIII metal compound is dispersed in said ionic liquid.
- 11. A catalyst system in accordance with claim 10 wherein said Group VIII metal compound comprises a platinum compound.
 - 12. A process comprising:
- a) contacting, under conversion conditions, a hydrocarbon feed stream comprising a C_5 paraffin and an initiator with a catalyst system comprising an ionic liquid dispersed on a support; and
- b) withdrawing a product stream comprising a C₄ paraffin and at least one C₆ paraffin.
- 13. A process in accordance with claim 12 wherein said support has an average pore diameter greater than about 225 Å.
- 14. A process in accordance with claim 12 wherein said support has a surface area less than about 700 m²/gram.
- 15. A process in accordance with claim 12 wherein said support is non-crystalline.

- 16. A process in accordance with claim 12 wherein said support is non-crystalline, has an average pore diameter greater than about 225 Å, and has a surface area less than about $700 \text{ m}^2/\text{gram}$.
- 17. A process in accordance with claim 12 wherein said support is silica.
- 18. A process in accordance with claim 12 wherein said ionic liquid comprises a cation and an anion; wherein said cation is selected from the group consisting of ions defined by the formulas:

$$R_{1}$$
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{1}
 R_{1}

and combinations of any two or more thereof, wherein:

 R_{16}

 R_{17}

R₁, R₂, R₃, R₅, R₆, and R₇ are selected from saturated and unsaturated hydrocarbons containing from 1 to 7 carbon atoms per molecule;

R₄, R₈, R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₁₄, R₁₅, R₁₆, R₁₇, R₁₈, and R₁₉ are selected from saturated and unsaturated hydrocarbons containing from 1 to 7 carbon atoms per molecule, and hydrogen; and

wherein said anion is selected from the group consisting of halides of: Group IIIA metals, copper, zinc, iron and phosphorus.

- 19. A process in accordance with claim 18 wherein said anion is selected from the groups consisting of AlCl₄, Al₂Cl₇, Al₃Cl₁₀, GaCl₄, Ga₂Cl₇, Ga₃Cl₁₀, CuCl₂, Cu₂Cl₃, Cu₃Cl₄, ZnCl₃, FeCl₃, FeCl₄, Fe₃Cl₇, PF₆, and BF₄.
- 20. A process in accordance with claim 18 wherein said ionic liquid has the formula $R_1R_2R_3NH^+Al_2Cl_7$.
- 21. A process in accordance with claim 18 wherein said ionic liquid has the formula (CH₃)₃NH⁺Al₂Cl₇.
- 22. A process in accordance with claim 12 wherein said hydrocarbon feed stream comprises at least 50 weight-% isopentane, based on the total weight of said hydrocarbon feed stream.
- 23. A process in accordance with claim 12 wherein said hydrocarbon feed stream comprises in the range of from about 50 to about 95 weight-% isopentane, based on the total weight of said hydrocarbon feed stream.

- 24. A process in accordance with claim 12 wherein said hydrocarbon feed stream comprises in the range of from about 80 to about 98.5 weight-% isopentane, based on the total weight of said hydrocarbon feed stream.
- 25. A process in accordance with claim 12 wherein said conversion conditions include a temperature in the range of from about 100°F to about 1000°F.
- 26. A process in accordance with claim 12 wherein said conversion conditions include a temperature in the range of from about 140°F to about 250°F.
- 27. A process in accordance with claim 12 wherein said conversion conditions include a temperature in the range of from about 150°F to about 220°F.
- 28. A process in accordance with claim 12 wherein said C_4 paraffin of said product stream is isobutane and said C_6 paraffin of said product stream is a hexane isomer.
- 29. A process in accordance with claim 12 wherein said initiator is selected from the group consisting of: 1) an olefin having in the range of from 2 to 20 carbon atoms per molecule, 2) an alkyl halide wherein said alkyl halide has in the range of from 2 to 20 carbon atoms per molecule, and combinations thereof.