Практичне завдання № 4 **СТАТИСТИЧНІ МЕТОДИ ЕКОНОМНОГО КОДУВАННЯ**

4.1. Значення ймовірностей p_i , з якими дискретне джерело інформації генерує символи алфавіту, для різних варіантів наведені у табл. 4.1. Побудувати нерівномірні ефективні коди за алгоритмами Шеннона-Фано та Хаффмена. Порівняти ефективність кодів.

Таблиця 4.1.

									,
Варіант	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8	p_9
1	0,42	0,15	0,06	0,04	0,12	0,06	0,04	0,11	0
2	0,19	0,19	0,18	0,02	0,03	0,17	0,01	0,1	0,11
3	0,14	0,27	0,16	0,04	0,03	0,03	0,09	0,03	0,21
4	0,08	0,38	0,22	0,05	0,03	0,12	0,02	0,1	0
5	0,31	0,16	0,15	0,04	0,09	0,05	0,08	0,05	0,07
6	0,09	0,09	0,27	0,22	0,16	0,08	0,03	0,06	0
7	0,14	0,17	0,3	0,03	0,06	0,07	0,05	0,01	0,17
8	0,48	0,01	0,14	0,1	0,08	0,07	0,03	0,03	0,06
9	0,28	0,35	0,1	0,03	0,06	0,04	0,04	0,04	0,06
10	0,24	0,01	0,15	0,14	0,17	0,1	0,06	0,02	0,11
11	0,22	0,34	0,1	0,1	0,09	0,01	0,01	0,04	0,09
12	0,13	0,41	0,21	0,09	0,03	0,02	0,04	0,02	0,05
13	0,05	0,12	0,21	0,14	0,22	0,04	0,05	0,07	0,1
14	0,26	0,25	0,05	0,11	0,16	0,06	0,03	0,04	0,04
15	0,08	0,15	0,27	0,11	0,04	0,07	0,13	0,15	0
16	0,14	0,29	0,26	0,04	0,03	0,08	0,05	0,11	0

Завдання 4.2. Алфавіт дискретного джерела інформації складається з чотирьох символів $X = \{A,B,C,D\}$. Значення ймовірностей виникнення символів для різних варіантів наведені у табл. 4.2. Побудувати нерівномірні ефективні коди за алгоритмами Шеннона-Фано або Хаффмена для кодування поодиноких символів джерела та слів довжиною у два символи. Оцінити та порівняти ефективність отриманих кодів. Побудованими кодами закодувати фрагмент повідомлення довжиною у 30 символів, що був згенерований джерелом.

Таблиця 4.2.

Варіант	p(A)	p(B)	<i>p</i> (<i>C</i>)	p(D)	Фрагмент повідомлення
1	0,37	0,28	0,12	0,23	CBCCADACAADACABBADBBDCDBDDABDD
2	0,08	0,1	0,2	0,62	DBDABABDBBDDADBDBBCDDACBCDDDCB
3	0,31	0,21	0,13	0,35	CAADCBDBABBACDBDCCDCCBDDACCAAD
4	0,39	0,08	0,13	0,4	BAABDCCBBBCCACCAAAAADDCDACDBAB
5	0,01	0,16	0,01	0,82	BCBBBDCAACDAAABBBADDCAABBDCBDD
6	0,3	0,18	0,15	0,37	DBBACABCBCAACCCCCBBBDBDBCABDCD
7	0,02	0,37	0,22	0,39	CCDABABADBCDDCBDBACBACCBCAAACB
8	0,4	0,27	0,14	0,19	BBCDDDADBDADADCBCDBCDBCACAADDB
9	0,46	0,1	0,15	0,29	CCACDACACCDACACDDBCDCBDABADBD
10	0,24	0,14	0,13	0,49	DDABCCDACDDDBCCBBBBAACCADDAAAA
11	0,43	0,13	0,03	0,41	BBCADBCDACCDDBBDBADABBBBBBDBDDB
12	0,08	0,45	0,01	0,46	DCBDBCABDABCABBBAABABBBCBADCCD
13	0,49	0,22	0,11	0,18	AACDBCCABCBADDCBAADABCACACCACC
14	0,43	0,17	0,01	0,39	BCACBBBBCBBCADCCCDDCDCCABDABAD
15	0,39	0,13	0,18	0,3	BADBADDBBBBAADDDCACDCBDDDDAAAD
16	0,41	0,08	0,12	0,39	ACAACDADBCBCBBDBBCCBBDBBDBCADC

- **4.3.** Алфавіт марковського дискретного джерела інформації, що має глибину пам'яті h = 1, складається з трьох символів: $X = \{A,B,C\}$. Значення умовних ймовірностей виникнення символів для різних варіантів наведені у другому стовпчику табл. 4.3.
- 1. Побудувати нерівномірні ефективні коди за алгоритмом Шеннона-Фано або Хаффмена для кодування поодиноких символів джерела та слів довжиною у два символи.
- 2. Побудувати марковський алгоритм для кодування символів джерела.
- 3. Оцінити та порівняти ефективність отриманих кодів та марковського алгоритму.
- 4. Побудованими кодами закодувати фрагмент повідомлення (наведений у третьому стовпчику табл. 4.3) довжиною у 20 символів, що був зґенерований джерелом.

Таблиця 4.2.

	T	· · · · · · · · · · · · · · · · · · ·
Варіант	$ \begin{pmatrix} P(A A) & P(B A) & P(C A) \\ P(A B) & P(B B) & P(C B) \\ P(A C) & P(B C) & P(C C) \end{pmatrix} $	Фрагмент повідомлення
1	0.13 0.2 0.67 0.11 0.05 0.84 0.29 0.3 0.41	CCCACCBBBBCABCBCAACA
2	0.49 0.12 0.39 0.2 0.08 0.72 0.47 0.05 0.48	AAAABABABACAACCCBCCB
3	0.47 0.21 0.32 0.32 0.2 0.48 0.43 0.17 0.4	ACBCCBCAAAACCAACACCA
4	0.34 0.17 0.49 0.16 0.29 0.55 0.49 0.09 0.42	BBBBAACACCCBCABCABAB
5	0.03 0.3 0.67 0.4 0.23 0.37 0.05 0.05 0.9	AABACBBBAABBBBBBBCCC
6	0.05 0.02 0.93 0.23 0.24 0.53 0.24 0.28 0.48	ACCBBBABCBBCBBCBBBAA
7	0.16 0.16 0.68 0.06 0.27 0.67 0.45 0.08 0.47	BCCBABCACABCABCAABCA
8	0.05 0.47 0.48 0.05 0.28 0.67 0.31 0.05 0.64	BABCCBCCCCAAABCBABCB
9	0.3 0.24 0.46 0.44 0.05 0.51 0.47 0.16 0.37	CCBCCABBCABCBBCCCCCC

10	0.28 0.13 0.59 0.36 0.09 0.55	BACABCCBACABCBABACBB
	0.41 0.09 0.5	
	0.03 0.12 0.85	
11	0.04 0.04 0.92	BCBABBCCCCAACACACACA
	0.21 0.16 0.63	
12	0.3 0.11 0.59	
	0.14 0.13 0.73	ABBACBACABCBABCBACBC
	0.08 0.35 0.57	
13	0.24 0.26 0.5	
	0.47 0.01 0.52	ACCCCCBBCCAABAABACCA
	0.45 0.15 0.4	
	0.3 0.3 0.4	
14	0.09 0.27 0.64	ABBAAACCCAABABBABCAB
	0.49 0.01 0.5	
15	0.29 0.23 0.48	
	0.09 0.18 0.73	BACCACABAAABCABACCBC
	0.29 0.32 0.39	
16	0.32 0.25 0.43	
	0.41 0.26 0.33	CCCBAABCABCACCBACBBC
	0.24 0.24 0.52	