Zeeman-Effekt

1 Übersicht

Im Jahre 1846 beobachtete Faraday die Drehung der Schwingungsebene von linear polarisiertem Licht beim Durchgang durch ein magnetisches Feld (Faraday-Effekt). Daraus zog er den Schluss, dass Licht ein elektromagnetischer Vorgang sein muss. Er vermutete, dass magnetische Felder einen Einfluss auf Spektrallinien haben, nachweisen konnte er diesen Einfluss mit den damals zur Verfügung stehenden Mitteln aber nicht. Erst Zeeman gelang es 1896 mit bedeutend stärkeren Magnetfeldern und einem hoch auflösenden Gitterspektralapparat an den Natrium-D-Linien eine Verbreiterung und Polarisation der Linien nachzuweisen. Lorentz gelang es dann, diesen Effekt mit klassischer Elektronentheorie zu beschreiben.

In diesem Versuch sollen die Spektrallinien des Neons und ihre Aufspaltung im Magnetfeld mit einem Gitterspektralapparat untersucht werden.

2 Vorausgesetzte Kenntnisse

Informieren Sie sich über die folgenden Themen bzw. Stichworte.

- Zeeman-Effekt, Spektrallinienaufspaltung
- Landéfaktor
- Drehimpulse \vec{S} , \vec{L} , \vec{J} und ihr Zusammenhang
- LS-, jj-Kopplung
- Quantenzahl M_I, quantenmechanische Auswahlregeln
- Übergänge, polarisiertes Licht, π und σ -Komponente, Singulett und Triplett
- Intensitätsverhältnis der Zeeman-Komponenten
- Czerny-Turner Gitterspektralapparat, Rayleigh-Kriterium, Apparatebreite, Auflösungsvermögen
- FWHM und Standardabweichung
- Dopplerverbreiterung, natürliche Linienbreite
- CCD-Zeilensensor
- Justierlaser, $\lambda = 532$ nm

3 Fragen zur Selbstkontrolle

- 1. Wie hängt die Aufspaltung der Spektrallinien mit dem Magnetfeld zusammen?
- 2. Wieviele verschiedene Werte gibt es für die magnetische Quantenzahl M_I?
- 3. Welche Übergänge emittieren wie polarisiertes Licht? Siehe Termschema Abb. 1.
- 4. Welche Singulettlinien eignen sich besonders gut für die Messung? Schauen Sie sich die Landéfaktoren an (Tab. 1).
- 5. Was ist der Unterschied zwischen einem Ebert und einem Czerny-Turner Gitterspektralapparat?

- 6. Wie wirkt sich der Eintrittsspalt auf das Auflösungssvermögen aus?
- 7. Das Mehrelektronenatom Neon gibt Anlaß zur Betrachtung möglicher Kopplungsmodelle (LS-,jj-Kopplung?) von Drehimpulsen der Elektronenhülle. Welche treten auf, und durch welche Kopplungsarten werden sie beschrieben? Wie ergibt sich der Landé-Faktor in der Russel-Saunders-Kopplung?
- 8. Was ist das Grundprinzip eines Lasers, der grünes Licht emittiert? (Stichwort Frequenzverdopplung)

Abbildung 1: (a) "Supernormaler" Zeeman-Effekt bei einer Kombination $J=0 \leftrightarrow J=1$. (b) Normaler Zeemaneffekt bei einem Übergang ohne J=0-Beteiligung.

4 Versuchsdurchführung

Eine genaue Einweisung in die Versuchsdurchführung erhalten sie vor Ort am Praktikumstag.

5 Auswertung und Protokoll

Das Protokoll sollte (mindestens) die folgenden Punkte behandeln:

- Kurze Übersicht über die Theorie, Kopplungsmodelle, Bezug auf Neon.
- Skizze und Erläuterung des Messaufbaus und der verwendeten Geräte.
- Erläuterung der Versuchsdurchführung, Präsentation der Messdaten und ausführliche Auswertung der Messungen.
- Kopie des Laborbuchs vom Praktikumstag

Literatur

- [1] Hermann Haken, Hans Christoph Wolf Atom- und Quantenphysik: Einführung in die experimentellen und theoretischen Grundlagen, Springer Verlag, 8. Auflage, 2004;
- [2] Karl Heinz Hellwege Einführung in die Physik der Atome, Springer, 4. Auflage, 1974;

	³ P ₁	³ P ₁	³ P ₀	¹ P ₁	Total
	g=1,503	g=1,464		g=1,034	
$^{1}S_{0}$		5400,56Å		5852,49Å	$\tau = 14.4 \text{ns}$
	A=0	$A=0.07\cdot10^7 s^{-1}$	A=0	$A=6.88\cdot10^{7} s^{-1}$	$A=6.95\cdot10^7 s^{-1}$
³ P ₁	5881,90Å	6030,00Å	6163,59Å	6598,95Å	$\tau = 18,8 ns$
g=1,34	$A=0.82\cdot10^7 s^{-1}$	$A=0.48\cdot10^7 s^{-1}$	$A=1,35\cdot10^7 s^{-1}$	$A=2,49\cdot10^7 s^{-1}$	$A=5,32\cdot10^7 s^{-1}$
$^{3}P_{0}$		6074,34Å		6652,09Å	$\tau = 17,6$ ns
	A=0	$A=5,6\cdot10^7 s^{-1}$	A=0	$A=0.09\cdot10^{7} s^{-1}$	$A=5,69\cdot10^7 s^{-1}$
³ P ₂	5944,83Å	6096,16Å		6678,28Å	$\tau = 19, 1ns$
g=1,301	$A=0.9\cdot10^7 s^{-1}$	$A=1,56\cdot10^7 s^{-1}$	A=0	$A=2,77\cdot10^7 s^{-1}$	$A=5,23\cdot10^7 s^{-1}$
¹ P ₁	5975,53Å	6128,45Å	6266,50Å	6717,04Å	$\tau = 19,9$ ns
g=0,999	$A=0.31\cdot10^7 s^{-1}$	$A=0.05\cdot10^{7} s^{-1}$	$A=2,27\cdot10^7 s^{-1}$	$A=2,38\cdot10^7 s^{-1}$	$A=5,02\cdot10^7 s^{-1}$
$^{1}D_{2}$	6143,06Å	6304,79Å		6929,47Å	$\tau = 19,7 \text{ns}$
g=1,229	$A=2,31\cdot10^7 s^{-1}$	$A=0.45\cdot10^{7} s^{-1}$	A=0	$A=2,3\cdot10^7 s^{-1}$	$A=5,07\cdot10^7 s^{-1}$
$^{3}D_{1}$	6217,28Å	6383,00Å	6532,88Å	7024,05Å	$\tau = 19,9 \text{ns}$
g=0,669	$A=0.52\cdot10^{7} s^{-1}$	$A=3.03\cdot10^7 s^{-1}$	$A=1,19\cdot10^7 s^{-1}$	$A=0.3\cdot10^7 s^{-1}$	$A=5.03\cdot10^7 s^{-1}$
$^{3}D_{2}$	6334,43Å	6506,53Å		7173,94Å	$\tau = 19,8 ns$
g=1,137	$A=1,64\cdot10^7 s^{-1}$	$A=2.89\cdot10^7 s^{-1}$	A=0	$A=0.51\cdot10^7 s^{-1}$	$A=5.04\cdot10^7 s^{-1}$
$^{3}D_{3}$	6402,25Å				$\tau = 19,4$ ns
g=1,329	$A = \cdot 10^7 s^{-1}$	A=0	A=0	A=0	$A=5,15\cdot10^7 s^{-1}$
³ S ₁	7032,41Å	7245,17Å	7438,90Å	8082,46Å	$\tau = 24,8 \text{ns}$
g=1,9484	$A=2,44\cdot10^7 s^{-1}$	$A=1.01\cdot10^{7} s^{-1}$	$A=0.3\cdot10^{7} s^{-1}$	$A=0.3\cdot10^7 s^{-1}$	$A=4.04\cdot10^{7} s^{-1}$
		$\tau = 22 \text{ns}$		$\tau = 1,5$ ns	
Total		$A=4,76\cdot10^7 s^{-1}$		$A=66,4\cdot10^7 s^{-1}$	

Tabelle 1: Wellenlängen, Landé-Faktoren, Übergangswahrscheinlichkeiten und Lebensdauern für die $2p^53s-2p^53p$ -Übergänge im neutralen Neon.