

(19)

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: **10242638 A**

(43) Date of publication of application: **11.09.98**

(51) Int. Cl **H05K 3/46**
 H05K 3/24
 H05K 3/38
 // **H05K 1/09**

(21) Application number: **09197526**

(71) Applicant: **IBIDEN CO LTD**

(22) Date of filing: **23.07.97**

(72) Inventor: **ASAI MOTO**

(30) Priority: **19.12.96 JP 08354971**
 28.12.96 JP 08357801

**(54) MULTILAYER PRINTED WIRING BOARD AND
ITS MANUFACTURE**

(57) Abstract:

PROBLEM TO BE SOLVED: To prevent the cracks of an interlayer insulating film which occur at heat cycle, by constituting a conductor circuit of an electroless plated film and an electrolytic plated film, and providing a roughened layer at one part of the surface.

SOLUTION: An inner-layer copper pattern 4, is made on a substrate consisting of glass epoxy resin, and an adhesive layer 2 is made on the inner-layer copper pattern 4. An opening for a via hole is made in the adhesive layer 2, and a catalyst nucleus is given to the surface, and then it is soaked in electroless copper plating bath so as to form an electroless plated copper film 12 all over the rough face. The electroless copper plated film 12 is etched to form a conductor circuit consisting of an electroless plated film 12 and an electrolytic copper plated film 13. The substrate of the conductor circuit is soaked in the electroless plating liquid of pH=9 consisting of copper sulfate, nickel sulfate, citric acid, sodium hypophosphite, boric acid, and an interface activator so as to form a roughened layer 11.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-242638

(43)公開日 平成10年(1998)9月11日

(51) Int.Cl.⁶
H 05 K 3/46
3/24
3/38
// H 05 K 1/09

識別記号

F I
H 05 K 3/46
3/24
3/38
1/09

E
A
B
C

審査請求 未請求 請求項の数7 OL (全15頁)

(21)出願番号 特願平9-197526
(22)出願日 平成9年(1997)7月23日
(31)優先権主張番号 特願平8-354971
(32)優先日 平8(1996)12月19日
(33)優先権主張国 日本 (JP)
(31)優先権主張番号 特願平8-357801
(32)優先日 平8(1996)12月28日
(33)優先権主張国 日本 (JP)

(71)出願人 000000158
イビデン株式会社
岐阜県大垣市神田町2丁目1番地
(72)発明者 浅井 元雄
岐阜県揖斐郡揖斐川町北方1-1 イビデン株式会社内
(74)代理人 弁理士 小川 順三 (外1名)

(54)【発明の名称】 多層プリント配線板およびその製造方法

(57)【要約】

【課題】 ピール強度の低下を招かず、ヒートサイクル時に発生する層間絶縁層のクラックを防止すること。

【解決手段】 配線基板の導体回路上に層間絶縁層が形成された多層プリント配線板において、前記導体回路は、無電解めっき膜と電解めっき膜からなり、その表面の少なくとも一部に粗化層を設けてなることを特徴とする多層プリント配線板である。

【特許請求の範囲】

【請求項1】 基板の導体回路上に、層間絶縁層が形成された多層プリント配線板において、

前記導体回路は、無電解めっき膜と電解めっき膜からなり、その表面の少なくとも一部に粗化層を設けてなることを特徴とする多層プリント配線板。

【請求項2】 導体回路が設けられた基板上に層間絶縁層が形成された多層プリント配線板において、

前記導体回路は、無電解めっき膜と電解めっき膜からなり、

該導体回路は、その表面の少なくとも一部に粗化層を設けてなることを特徴とする多層プリント配線板。

【請求項3】 前記導体回路は、少なくとも側面を含む表面の一部に粗化層を設けてなる請求項1または2に記載の多層プリント配線板。

【請求項4】 前記導体回路は、その側面の少なくとも一部に粗化層を設けてなる請求項1または2に記載の多層プリント配線板。

【請求項5】 前記粗化層は、銅ニッケルーリンの合金めっきからなる請求項1～4のいずれか1項に記載の多層プリント配線板。

【請求項6】 基板上に無電解めっきを施した後、めっきレジストを設け、電解めっきを施し、ついで、めっきレジストを除去後、エッチング処理して無電解めっき膜と電解めっき膜からなる導体回路を設け、さらに、導体回路表面の少なくとも一部に粗化層を形成した後、層間絶縁層を設けることを特徴とする多層プリント配線板の製造方法。

【請求項7】 前記粗化層は、銅ニッケルーリンの合金めっきにより形成される請求項6に記載の多層プリント配線板の製造方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、多層プリント配線板とその製造方法に関し、特にはピール強度の低下を招くことなく、ヒートサイクル時におけるクラックの発生を抑制した多層プリント配線板とその製造方法に関する。

【0002】

【従来の技術】 近年、多層配線基板の高密度化という要請から、いわゆるビルドアップ多層配線基板が注目されている。このビルドアップ多層配線基板は、例えば特公平4-55555号公報に開示されているような方法により製造される。即ち、コア基板上に、感光性の無電解めっき用接着剤からなる絶縁材を塗布し、これを乾燥したのち露光現像することにより、バイアホール用開口を有する層間絶縁材層を形成し、次いで、この層間絶縁材層の表面を酸化剤等による処理にて粗化したのち、その粗化面にめっきレジストを設け、その後、レジスト非形成部分に無電解めっきを施してバイアホール、導体回路を形

成し、このような工程を複数回繰り返すことにより、多層化したビルドアップ配線基板が得られる。

【0003】

【発明が解決しようとする課題】 しかしながら、このような多層プリント配線板では、導体回路はめっきレジストの非形成部分に設けられ、めっきレジストは内層にそのまま残存する。そのため、かかる配線基板にICチップ等を搭載すると、ヒートサイクル時にICチップと樹脂絶縁層との熱膨張率の差により、基板が反り、めっきレジストと導体回路間の密着がないことからこれらの境界部分に応力が集中し、この境界部分に接触する層間絶縁層にクラックが発生してしまうという問題があった。

【0004】 本発明は、従来技術が抱える上記問題を解消するためになされたものである。その目的は、他の特性、特にピール強度の低下を招かず、ヒートサイクル時に発生する層間絶縁層のクラックを防止することにある。

【0005】

【課題を解決するための手段】 発明者は、上記目的の実現に向け鋭意研究した結果、以下に示す内容を要旨構成とする発明に想到した。

(1) 本発明の多層プリント配線板は、配線基板の導体回路上に層間絶縁層が形成された多層プリント配線板において、前記導体回路は、無電解めっき膜と電解めっき膜からなり、その表面の少なくとも一部に粗化層を設けてなることを特徴とする。なお、この多層プリント配線板において、導体回路は、少なくとも側面を含む表面の一部に粗化層を設けてなることが好ましく、粗化層は、銅ニッケルーリンの合金めっきからなることが好ましい。

【0006】 (2) 本発明の多層プリント配線板の製造方法は、基板上に無電解めっきを施した後、めっきレジストを設け、電解めっきを施し、ついで、めっきレジストを除去後、エッチング処理して無電解めっき膜と電解めっき膜からなる導体回路を設け、さらに、導体回路表面の少なくとも一部に粗化層を形成した後、層間絶縁層を設けることを特徴とする。なお、上記粗化層は、銅ニッケルーリンの合金めっきにより形成されることが好ましい。

【0007】

【発明の実施の形態】 本発明のプリント配線板では、導体回路が電解めっき膜と無電解めっき膜とで構成され、より内層側に無電解めっき膜が形成され、より外層側に電解めっき膜が形成されている(図18、図19の拡大図参照)。このような構成にすると、導体回路は、電解めっき膜が無電解めっき膜より柔らかく延展性に富むので、ヒートサイクル時に基板に反りが発生しても、層間樹脂絶縁層の寸法変化に追従できるようになる。また、本発明のプリント配線板では、導体回路の表面に粗化層が設けられているので、その導体回路は、層間樹脂絶縁層と強

固に密着し、層間樹脂絶縁層の寸法変化により追従しやすくなっている。

【0008】その結果、本発明のプリント配線板によれば、ICチップを搭載し、-55°C～125°Cのヒートサイクル試験を行った場合でも、導体回路を起点とする層間樹脂絶縁層のクラックの発生を抑制でき、また剥離も見られない。特に、導体回路の少なくとも側面に粗化層を設けることは、導体回路側面とそれに接する層間樹脂との界面を起点として層間樹脂絶縁層に発生するクラックを抑制できる点で、有利である。

【0009】さらに、本発明のプリント配線板では、導体のより内層側を電解めっき膜よりも硬い無電解めっき膜で構成しているので、ピール強度を低下させることができない。というのは、ピール強度は、導体回路の内層側の層間絶縁層と接触する側（後述する無電解めっき用接着剤を層間絶縁剤として採用した場合には、粗化面に接触する部分）の硬さが硬い程大きくなるためである。

【0010】このような多層プリント配線板は、本発明の製造方法によれば、容易に製造することができる。

【0011】なお、特開平6-283860号公報には、内層のめっきレジストを除去して、無電解めっき膜からなる導体回路表面に銅ニッケルーリンからなる粗化層を設け、層間剥離を防止する技術が開示されている。しかしながら、この公報に記載の発明は、実際にICチップを搭載してヒートサイクル試験を行った場合に発生するクラックについての認識が全くなく、また無電解めっき膜のみからなる導体回路を開示するに止まる。しかもその効果について追試を行ったところ（本願比較例参照）、-55°C～125°Cのヒートサイクル試験に関し、1000回程度であればクラックの発生は観られなかつたが、これを超えるとクラックの発生が観察された。それゆえ、この公報に記載の発明は、本願発明とは全く異なるものである。

【0012】本発明において、導体回路表面の粗化層は、エッチング処理、研磨処理、酸化処理、酸化還元処理により形成された銅の粗化面、もしくはめっき被膜により形成された粗化面であることが望ましい。

【0013】特に、この粗化層は、銅ニッケルーリンからなる合金層であることが望ましい。この理由は、この合金層は、針状結晶層であり、ソルダーレジスト層との密着性に優れるからである。また、この合金層上にはなんだ体を形成しても電気導電率に大きな変化がなく、金属パッドの上にもなんだ体を形成できるからである。この合金層の組成は、銅、ニッケル、リンの割合で、それぞれ90～96wt%、1～5wt%、0.5～2wt%であることが望ましい。これらの組成割合のときに、針状の構造を有するからである。

【0014】なお、針状結晶を形成できるCu-Ni-Pの組成を三成分系の三角図に示すと、図20のようになる。この図によれば、(Cu, Ni, P) = (100, 0, 0)、

(90, 10, 0)、(90, 0, 10)で囲まれる範囲がよい。

【0015】また、酸化処理により粗化層を形成する場合は、亜塩素酸ナトリウム、水酸化ナトリウム、リン酸ナトリウムからなる酸化剤の溶液を用いることが望ましい。酸化還元処理により粗化層を形成する場合は、上記酸化処理の後、水酸化ナトリウムと水素化ホウ素ナトリウムからなる還元剤の溶液に浸漬して行うことが望ましい。

10 【0016】このようにして形成される導体回路表面の粗化層は、厚みを1～5μmとすることが望ましい。この理由は、厚すぎると粗化層自体が損傷、剥離しやすく、薄すぎると密着性が低下するからである。

【0017】本発明において、導体回路を構成する前記無電解めっき膜は、厚みを0.1～5μm、より好ましくは0.5～3μmとすることが望ましい。この理由は、厚すぎると層間樹脂絶縁層との追従性が低下し、逆に薄すぎると、ピール強度の低下を招いたり、また電解めっきを施す場合に抵抗値が大きくなつて、めっき膜の厚さにバラツキが発生してしまうからである。

【0018】また、導体回路を構成する前記電解めっき膜は、厚みを5～30μm、より好ましくは10～20μmとすることが望ましい。この理由は、厚すぎるとピール強度の低下を招き、薄すぎると層間樹脂絶縁層との追従性が低下するからである。

【0019】本発明では、導体回路の少なくとも側面に粗化層が形成されていることが望ましい。この理由は、ヒートサイクルにより層間樹脂絶縁層に生じるクラックは、導体回路側面と樹脂絶縁層との密着不良に起因して生じるものであり、このような構成とすることで、導体回路側面と樹脂絶縁層との界面を起点として層間樹脂絶縁層に発生するクラックを防止することができるからである。

【0020】本発明では、上記配線基板を構成する層間樹脂絶縁層として無電解めっき用接着剤を用いることが望ましい。この無電解めっき用接着剤は、硬化処理された酸あるいは酸化剤に可溶性の耐熱性樹脂粒子が、硬化処理によって酸あるいは酸化剤に難溶性となる未硬化の耐熱性樹脂中に分散されてなるものが最適である。酸、酸化剤で処理することにより、耐熱性樹脂粒子が溶解除去されて、表面に蛸つぼ状のアンカーからなる粗化面を形成できるからである。

【0021】上記無電解めっき用接着剤において、特に硬化処理された前記耐熱性樹脂粒子としては、①平均粒径が10μm以下の耐熱性樹脂粉末、②平均粒径が2μm以下の耐熱性樹脂粉末を凝集させた凝集粒子、③平均粒径が2～10μmの耐熱性粉末樹脂粉末と平均粒径が2μm以下の耐熱性樹脂粉末との混合物、④平均粒径が2～10μmの耐熱性樹脂粉末の表面に平均粒径が2μm以下の耐熱性樹脂粉末または無機粉末のいずれか少なくとも

1種を付着させてなる疑似粒子、⑥平均粒径0.1~0.8 μmの耐熱性樹脂粉末および平均粒径0.8 μmを超える平均粒径2 μm未満の耐熱性樹脂粉末との混合物、から選ばれるいずれか少なくとも1種を用いることが望ましい。これらは、より複雑なアンカーを形成できるからである。

【0022】次に、本発明にかかるプリント配線板を製造する一方法について説明する。

(1) まず、コア基板の表面に内層銅パターンを形成した配線基板を作製する。このコア基板への銅パターンの形成は、銅張積層板をエッチングして行うか、あるいは、ガラスエポキシ基板やポリイミド基板、セラミック基板、金属基板などの基板に無電解めっき用接着剤層を形成し、この接着剤層表面を粗化して粗化面とし、ここに無電解めっきを施して行う方法がある。

【0023】さらに必要に応じて、上記配線基板の銅パターン表面に銅ニッケルーリンからなる粗化層を形成する。この粗化層は、無電解めっきにより形成される。この無電解めっきの液組成は、銅イオン濃度、ニッケルイオン濃度、次亜リン酸イオン濃度が、それぞれ $2.2 \times 10^{-2} \sim 4.1 \times 10^{-2}$ mol/l、 $2.2 \times 10^{-3} \sim 4.1 \times 10^{-3}$ mol/l、 $0.20 \sim 0.25$ mol/lであることが望ましい。この範囲で析出する被膜の結晶構造は針状構造になるため、アンカー効果に優れるからである。この無電解めっきの浴には上記化合物に加えて錯化剤や添加剤を加えてよい。粗化層の形成方法としては、この他に前述した酸化(黒化)一還元処理、銅表面を粒界に沿ってエッチングして粗化面を形成する方法などがある。

【0024】なお、コア基板には、スルーホールが形成され、このスルーホールを介して表面と裏面の配線層を電気的に接続することができる。また、スルーホールおよびコア基板の導体回路間には樹脂が充填されて、平滑性を確保してもよい(図1~図4参照)。

【0025】(2) 次に、前記(1)で作製した配線基板の上に、層間樹脂絶縁層を形成する。特に本発明では、層間樹脂絶縁材として前述した無電解めっき用接着剤を用いることが望ましい(図5参照)。

【0026】(3) 前記(2)で形成した無電解めっき用接着剤層を乾燥した後、必要に応じてバイアホール形成用開口を設ける。このとき、感光性樹脂の場合は、露光、現像してから熱硬化することにより、また、熱硬化性樹脂の場合は、熱硬化したのちレーザー加工することにより、前記接着剤層にバイアホール形成用の開口部を設ける(図6参照)。

【0027】(4) 次に、硬化した前記接着剤層の表面に存在するエポキシ樹脂粒子を酸あるいは酸化剤によって溶解除去し、接着剤層表面を粗化処理する(図7参照)。ここで、上記酸としては、リン酸、塩酸、硫酸、あるいは蟻酸や酢酸などの有機酸があるが、特に有機酸を用いることが望ましい。粗化処理した場合に、バイア

ホールから露出する金属導体層を腐食させにくいからである。一方、上記酸化剤としては、クロム酸、過マンガン酸塩(過マンガン酸カリウムなど)を用いることが望ましい。

【0028】(5) 次に、接着剤層表面を粗化した配線基板に触媒核を付与する。触媒核の付与には、貴金属イオンや貴金属コロイドなどを用いることが望ましく、一般的には、塩化パラジウムやパラジウムコロイドを使用する。なお、触媒核を固定するために加熱処理を行うことが望ましい。このような触媒核としてはパラジウムがよい。

【0029】(6) 次に、無電解めっき用接着剤表面に無電解めっきを施し、粗化面全面に無電解めっき膜を形成する(図8参照)。このとき、無電解めっき膜の厚みは0.1~5 μm、より望ましくは0.5~3 μmとする。つぎに、無電解めっき膜上にめっきレジストを形成する(図9参照)。めっきレジスト組成物としては、特にクレゾールノボラックやフェノールノボラック型エポキシ樹脂のアクリレートとイミダゾール硬化剤からなる組成物を用いることが望ましいが、他に市販品を使用することもできる。

【0030】(7) 次に、めっきレジスト非形成部に電解めっきを施し、導体回路、ならびにバイアホールを形成する(図10参照)。このとき、電解めっき膜の厚さは、5~30 μmが望ましい。ここで、上記無電解めっきとしては、銅めっきを用いることが望ましい。

【0031】(8) さらに、めっきレジストを除去した後、硫酸と過酸化水素の混合液や過硫酸ナトリウム、過硫酸アンモニウムなどのエッチング液でめっきレジスト下の無電解めっき膜を溶解除去して、独立した導体回路とする(図11参照)。

【0032】(9) 次に、導体回路の表面に粗化層を形成する(図12参照)。粗化層の形成方法としては、エッチング処理、研磨処理、酸化還元処理、めっき処理がある。これらの処理のうち酸化還元処理は、NaOH(10 g/l)、NaClO₂(40 g/l)、Na₂PO₄(6 g/l)を酸化浴(黒化浴)、NaOH(10 g/l)、NaBH₄(5 g/l)を還元浴とする。また、銅ニッケルーリン合金層からなる粗化層は、無電解めっき処理による析出により形成する。この合金の無電解めっき液としては、硫酸銅1~40 g/l、硫酸ニッケル0.1~6.0 g/l、クエン酸10~20 g/l、次亜リン酸塩10~100 g/l、ホウ酸10~40 g/l、界面活性剤0.01~10 g/lからなる液組成のめっき浴を用いることが望ましい。

【0033】(10) 次に、この基板上に層間樹脂絶縁層として、無電解めっき用接着剤層を形成する(図13参照)。

(11) さらに、(3)~(8)の工程を繰り返してさらに上層の導体回路を設ける(図14~17参照)。なお、ここで、導体回路の表面には前記(9)と同様にして粗化層を形成

してもよい。

【0034】(12)次に、こうして得られた配線基板の表面に、ソルダーレジスト組成物を塗布し、その塗膜を乾燥した後、この塗膜に、開口部を描画したフォトマスクフィルムを載置して露光、現像処理することにより、導体回路のうちパッド部分を露出させた開口部を形成する。ここで、前記開口部の開口径は、パッドの径よりも大きくすることができ、パッドを完全に露出させてもよい。また、逆に前記開口部の開口径は、パッドの径よりも小さくすることができ、パッドの縁周をソルダーレジストで被覆することができる。この場合、パッドをソルダーレジストで抑えることができ、パッドの剥離を防止できる。

【0035】(13)次に、前記開口部から露出した前記パッド部上に「ニッケルー金」の金属層を形成する。

【0036】(14)次に、前記開口部から露出した前記パッド部上にはんだ体を供給する。はんだ体の供給方法としては、はんだ転写法や印刷法を用いることができる。ここで、はんだ転写法は、プリプレグにはんだ箔を貼合し、このはんだ箔を開口部分に相当する箇所のみを残してエッチングすることによりはんだパターンを形成してはんだキャリアフィルムとし、このはんだキャリアフィルムを、基板のソルダーレジスト開口部分にフラックスを塗布した後、はんだパターンがパッドに接触するよう積層し、これを加熱して転写する方法である。一方、印刷法は、パッドに相当する箇所に貫通孔を設けたメタルマスクを基板に載置し、はんだペーストを印刷して加熱処理する方法である。

【0037】

【実施例】

(実施例1)

(1) 厚さ0.6mmのガラスエポキシ樹脂またはBT(ビスマレイミドトリアジン)樹脂からなる基板1の両面に18μmの銅箔8がラミネートされてなる銅張積層板を出発材料とした(図1参照)。この銅張積層板の銅箔8を常法に従いパターン状にエッチング、穴明け、無電解めっきを施すことにより、基板の両面に内層銅パターン4とスルーホール9を形成した(図2参照)。さらに、導体回路4間およびスルーホール9内にビスフェノールF型エポキシ樹脂を充填した(図3参照)。

【0038】(2) 前記(1)の処理を終えた基板を水洗いし、乾燥した後、その基板を酸性脱脂してソフトエッチングし、次いで、塩化パラジウムと有機酸からなる触媒溶液で処理して、Pd触媒を付与し、この触媒を活性化した後、硫酸銅8g/1、硫酸ニッケル0.6g/1、クエン酸15g/1、次亜リン酸ナトリウム29g/1、ホウ酸31g/1、界面活性剤0.1g/1、pH=9からなる無電解めっき浴にてめっきを施し、銅導体回路4の表面にCu-Ni-P合金の厚さ2.5μmの粗化層11(凹凸層)を形成した(図4参照)。

【0039】(3) DMDG(ジエチレングリコールジメチルエーテル)に溶解したクレゾールノボラック型エポキシ樹脂(日本化薬製、分子量2500)の25%アクリル化物を70重量部、ポリエーテルスルфон(PES)30重量部、イミダゾール硬化剤(四国化成製、商品名:2E4M-Z-CN)4重量部、感光性モノマーであるカプロラクトン変成トリス(アクロキシエチル)イソシアヌレート(東亜合成製、商品名:アロニックスM325)10重量部、光開始剤としてのベンゾフェノン(関東化学製)5重量部、光増感剤としてのミヒラーケトン(関東化学製)0.5重量部、さらにこの混合物に対してエポキシ樹脂粒子の平均粒径5.5μmのものを35重量部、平均粒径0.5μmのものを5重量部を混合した後、NMP(ノルマルメチルピロリドン)を添加しながら混合し、ホモディスパーカー攪拌機で粘度12Pa·sに調整し、続いて3本ロールで混練して感光性接着剤溶液(層間樹脂絶縁材)を得た。

【0040】(4) 前記(3)で得た感光性接着剤溶液を、前記(2)の処理を終えた基板の両面に、ロールコータを用いて塗布し、水平状態で20分間放置してから、60℃で30分間の乾燥を行い、厚さ60μmの接着剤層2を形成した(図5参照)。

(5) 前記(4)で接着剤層2を形成した基板の両面に、バイアホールが描画されたフォトマスクフィルムを載置し、紫外線を照射して露光した。

【0041】(6) 露光した基板をDMTG(トリエチレングリコールジメチルエーテル)溶液でスプレー現像することにより、接着剤層に100μmφのバイアホールとなる開口を形成した。さらに、当該基板を超高压水銀灯にて3000mJ/cm²で露光し、100℃で1時間、その後15

30℃で5時間に加熱処理することにより、フォトマスクフィルムに相当する寸法精度に優れ、3個集合して形成された開口(バイアホール形成用開口6)を有する厚さ50μmの接着剤層2を形成した(図6参照)。なお、バイアホールとなる開口6には、粗化層11を部分的に露出させる。

【0042】(7) 前記(5)(6)でバイアホール形成用開口6を形成した基板を、クロム酸に2分間浸漬し、接着剤層表面に存在するエポキシ樹脂粒子を溶解除去して、当該接着剤層の表面を粗化し、その後、中和溶液(シプレイ社製)に浸漬してから水洗した(図7参照)。

(8) 前記(7)で粗面化処理(粗化深さ5μm)を行った基板に対し、パラジウム触媒(アトテック製)を付与することにより、接着剤層2およびバイアホール用開口6の表面に触媒核を付与した。

【0043】(9)以下の組成の無電解銅めっき浴中に基板を浸漬して、粗面全体に厚さ3μmの無電解銅めっき膜12を形成した(図8参照)。

[無電解めっき液]

E D T A	150 g / 1
硫酸銅	20 g / 1

9

HCHO	30 ml / 1
NaOH	40 g / 1
α, α' -ビペリジル	80 mg / 1
PEG	0.1 g / 1

〔無電解めっき条件〕

70°Cの液温度で30分

【0044】(10)前記(9)で形成した無電解銅めっき膜*

〔電解めっき液〕

硫酸	180 g / 1
硫酸銅	80 g / 1
添加剤 (アトックジャパン製、商品名:カパラシドGL)	1 ml / 1

〔電解めっき条件〕

電流密度	1 A / dm ²
時間	30分
温度	室温

【0046】(12)めっきレジスト3を5%KOHで剥離除去した後、そのめっきレジスト3下の無電解めっき膜12を硫酸と過酸化水素の混合液でエッティング処理して溶解除去し、無電解銅めっき膜12と電解銅めっき膜13からなる厚さ18μmの導体回路(バイアホールを含む)5を形成した(図11参照)。

【0047】(13)導体回路5を形成した基板を、硫酸銅8g / 1、硫酸ニッケル0.6g / 1、クエン酸15g / 1、次亜リン酸ナトリウム29g / 1、ホウ酸31g / 1、界面活性剤0.1g / 1からなるpH=9の無電解めっき液に浸漬し、該導体回路5の表面に厚さ3μmの銅ニッケルーリンからなる粗化層11を形成した(図12参照)。このとき、形成した粗化層11をEPMA(蛍光X線分析装置)で分析したところ、Cu: 98mol%、Ni: 1.5mol%、P: 0.5mol%の組成比を示した。

【0048】(14) (4)~(12)の工程を繰り返すことにより、さらに上層の導体回路を形成した配線基板を得た(図13~17参照)。

【0049】(15)一方、DMDGに溶解させた60重量%のクレゾールノボラック型エポキシ樹脂(日本化薬製)のエポキシ基50%をアクリル化した感光性付与のオリゴマー(分子量4000)を46.67g、メチルエチルケトンに溶解させた80重量%のビスフェノールA型エポキシ樹脂(油化シェル製、エピコート1001)15.0g、イミダゾール硬化剤(四国化成製、商品名:2E4MZ-CN)1.6g、感光性モノマーである多価アクリルモノマー(日本化薬製、商品名:R604)3g、同じく多価アクリルモノマー(共栄社化学製、商品名:DPE6A)1.5g、分散系消泡剤(サンノプロ社製、商品名:S-65)0.71gを混合し、さらにこの混合物に対して光開始剤としてのベンゾフェノン(関東化学製)を2g、光増感剤としてのミヒラーケトン(関東化学製)を0.2g加えて、粘度を25°Cで2.0Pa·sに調整したソルダーレジスト組成物を得た。なお、粘度測定は、B型粘度計(東京計器、DVL-B

* 12上に市販の感光性ドライフィルムを貼り付け、マスクを載置して、100mJ/cm²で露光、0.8%炭酸ナトリウムで現像処理し、厚さ15μmのめっきレジスト3を設けた(図9参照)。

【0045】(11)ついで、以下の条件で電解銅めっきを施し、厚さ15μmの電解銅めっき膜13を形成した(図10参照)。

型)で60rpmの場合はローターNo.4、6rpmの場合はローターNo.3によった。

【0050】(16)前記(14)で得られた配線基板に、ソルダーレジスト組成物を20μmの厚さで塗布した。次いで、70°Cで20分間、70°Cで30分間の乾燥処理を行った後、フォトマスクフィルムを載置し、1000mJ/cm²の紫外線で露光し、DMTG現像処理した。さらに、80°Cで1時間、100°Cで1時間、120°Cで1時間、150°Cで3時間の条件で加熱処理し、パッド部分が開口した(開口径200μm)ソルダーレジスト層(厚み20μm)を形成した。

【0051】(17)次に、ソルダーレジスト層を形成した基板を、塩化ニッケル30g / 1、次亜リン酸ナトリウム10g / 1、クエン酸ナトリウム10g / 1からなるpH=5の無電解ニッケルめっき液に20分間浸漬して、開口部に厚さ5μmのニッケルめっき層を形成した。さらに、その基板を、シアノ化金カリウム2g / 1、塩化アンモニウム75g / 1、クエン酸ナトリウム50g / 1、次亜リン酸ナトリウム10g / 1からなる無電解金めっき液に93°Cの条件で23秒間浸漬して、ニッケルめっき層上に厚さ0.03μmの金めっき層を形成した。

【0052】(18)そして、ソルダーレジスト層の開口部に、はんだペーストを印刷して200°Cでリフローすることによりはんだバンプを形成し、はんだバンプを有するプリント配線板を製造した。

【0053】(実施例2)導体回路表面の粗化をエッティングにより行ったこと以外は、実施例1と同様にしてはんだバンプを有するプリント配線板を製造した。このとき、エッティング液は、メック社製の「デュラボンド」なる商品名のものを使用した。

【0054】(実施例3)

A. 無電解めっき用接着剤組成物の調製

①. クレゾールノボラック型エポキシ樹脂(日本化薬製、分子量2500)の25%アクリル化物を80wt%の濃度で