Parallel and Distributed Stochastic Learning

-Towards Scalable Learning for Big Data Intelligence

李武军

南京大学计算机科学与技术系软件新技术国家重点实验室

liwujun@nju.edu.cn

May 14, 2018

Outline

- Introduction
- 2 AsySVRG
- SCOPE
- 4 Conclusion

Machine Learning

Supervised Learning:

Given a set of training examples $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$, supervised learning tries to solve the following regularized empirical risk minimization problem:

$$\min_{\mathbf{w}} f(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{w}),$$

where $f_i(\mathbf{w})$ is the loss function (plus some regularization term) defined on example i, and w is the parameter to learn.

Examples:

- Logistic regression: $f(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} [\log(1 + e^{-y_i \mathbf{x}_i^T \mathbf{w}}) + \frac{\lambda}{2} \|\mathbf{w}\|^2]$ SVM: $f(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} [\max\{0, 1 y_i \mathbf{x}_i^T \mathbf{w}\} + \frac{\lambda}{2} \|\mathbf{w}\|^2]$
- Deep learning models

Unsupervised Learning:

Many unsupervised learning models, such as PCA and matrix factorization, can also be reformulated as similar problems.

Machine Learning for Big Data

For big data applications, first-order methods have become much more popular than other higher-order methods for learning (optimization).

Gradient descent methods are the most representative first-order methods.

(Deterministic) gradient descent (GD):

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta_t [\frac{1}{n} \sum_{i=1}^n \nabla f_i(\mathbf{w}_t)],$$

where t is the iteration number.

- Linear convergence rate: $O(\rho^t)$
- Iteration cost is O(n)
- Stochastic gradient descent (SGD): In the t^{th} iteration, randomly choosing an example $i_t \in \{1, 2, ..., n\}$, then update

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta_t \nabla f_{i_t}(\mathbf{w}_t)$$

- Iteration cost is O(1)
- The convergence rate is sublinear: O(1/t)

Stochastic Learning for Big Data

Researchers recently proposed improved versions of SGD:

SAG [Roux et al., NIPS 2012], SDCA [Shalev-Shwartz and Zhang, JMLR 2013], SVRG [Johnson and Zhang, NIPS 2013]

Number of gradient (∇f_i) evaluation to reach ϵ for smooth and strongly convex problems:

- GD: $O(n\kappa \log(\frac{1}{\epsilon}))$
- SGD: $O(\kappa(\frac{1}{\epsilon}))$
- SAG: $O(n\log(\frac{1}{\epsilon}))$ when $n \ge 8\kappa$
- SDCA: $O((n+\kappa)\log(\frac{1}{\epsilon}))$
- SVRG: $O((n+\kappa)\log(\frac{1}{\epsilon}))$

where $\kappa = \frac{L}{\mu} > 1$ is the condition number of the objective function.

Stochastic Learning:

- Stochastic GD
- Stochastic coordinate descent
- Stochastic dual coordinate ascent

Parallel and Distributed Stochastic Learning

To further improve the learning scalability (speed):

- Parallel stochastic learning:
 One machine with multiple cores and a shared memory
- Distributed stochastic learning:
 A cluster with multiple machines

Key issues: cooperation

- Parallel stochastic learning:
 lock vs. lock-free: waiting cost and lock cost
- Distributed stochastic learning:
 synchronous vs. asynchronous: waiting cost and communication cost

Our Contributions

- Parallel stochastic learning: AsySVRG
 Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee.
- Distributed stochastic learning: SCOPE
 Scalable Composite Optimization for Learning

Outline

- Introduction
- 2 AsySVRG
- SCOPE
- 4 Conclusion

Motivation and Contribution

Motivation:

- Existing asynchronous parallel SGD: Hogwild! [Recht et al. 2011], and PASSCoDe [Hsieh, Yu, and Dhillon 2015]
- No parallel methods for SVRG.
- Lock-free: empirically effective, but no theoretical proof.

Contribution:

- A fast asynchronous method to parallelize SVRG, called AsySVRG.
- A lock-free parallel strategy for both read and write
- Linear convergence rate with theoretical proof
- Outperforms Hogwild! in experiments

AsySVRG: a multi-thread version of SVRG

```
Initialization: p threads, initialize \mathbf{w}_0, \eta;
for t = 0, 1, 2, ... do
   \mathbf{u}_0 = \mathbf{w}_t;
   All threads parallelly compute the full gradient
   \nabla f(\mathbf{u}_0) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(\mathbf{u}_0);
   \mathbf{u} = \mathbf{w}_t;
   For each thread, do:
   for m=1 to M do
       Read current value of \mathbf{u}, denoted as \hat{\mathbf{u}}, from the shared memory.
       And randomly pick up an i from \{1, \ldots, n\};
       Compute the update vector: \hat{\mathbf{v}} = \nabla f_i(\hat{\mathbf{u}}) - \nabla f_i(\mathbf{u}_0) + \nabla f(\mathbf{u}_0);
       \mathbf{u} \leftarrow \mathbf{u} - \eta \hat{\mathbf{v}};
   end for
   Take \mathbf{w}_{t+1} to be the current value of \mathbf{u} in the shared memory;
end for
```

Lock-free Analysis

In all the GD or SGD methods to solve the objective function, the key step can be written as

$$\mathbf{u} \leftarrow \mathbf{u} + \Delta$$

Notation

- $\Delta_{i,j}$: the j^{th} update vector computed by the i^{th} thread;
- $\mathbf{u} \in \mathbb{R}^d$ and $\mathbf{u} = (u^{(1)}, u^{(2)}, \dots, u^{(d)})$:
- $t_{i,j}^{(k)}$: the time when the operation " $u^{(k)} \leftarrow u^{(k)} + \Delta_{i,j}^{(k)}$ " has been completed (Not the time when the operation begins);
- Assuming $\forall i, j, t_{i,j}^{(1)} < t_{i,j}^{(2)} < \ldots < t_{i,j}^{(d)}$, which can be easily guaranteed by programming

Lock-free Analysis: update sequence

Since $u^{(1)}$ can only be changed by at most one thread at any absolute time, these $t_{i,j}^{(1)}$ are different from each other. So we can:

- Sort these $t_{i,j}^{(1)}$ as $t_0^{(1)} < t_1^{(1)} < \ldots < t_{\tilde{M}-1}^{(1)}$ $(\tilde{M} = p \times M)$;
- $\Delta_0, \Delta_1, \ldots, \Delta_{\tilde{M}-1}$ are the corresponding update vectors.

Since it is lock-free, for each update vector Δ_m , the real update vector is $\mathbf{B}_m \Delta_m$ because of over-written. The \mathbf{B}_m is a diagonal matrix whose diagonal elements are 0 or 1.

After all the inner-loop stop, we can get:

$$\mathbf{w}_{t+1} = \mathbf{u}_0 + \sum_{m=0}^{\tilde{M}-1} \mathbf{B}_m \Delta_m \tag{1}$$

Lock-free Analysis: update sequence

According to (1), we define a sequence $\{\mathbf{u}_m\}$ as follows:

$$\mathbf{u}_m = \mathbf{u}_0 + \sum_{i=0}^{m-1} \mathbf{B}_i \Delta_i \tag{2}$$

which means $\mathbf{u}_{m+1} = \mathbf{u}_m + \mathbf{B}_m \Delta_m$.

Note

The sequence $\{\mathbf{u}_m\}$ $(m=1,2,\ldots,\tilde{M}-1)$ is synthetic, and the whole \mathbf{u}_m may never occur in the shared memory. What we can get is only the final value of $\mathbf{u}_{\tilde{M}}$.

Lock-free Analysis: read sequence

Assume the old update vectors $\Delta_0, \Delta_1, \dots, \Delta_{a(m)-1}$ have been completely applied to \mathbf{u} when one thread is reading the shared variable. At the same time, some new update vectors might be updating \mathbf{u} . So we can write $\hat{\mathbf{u}}_m$ read by the thread to compute Δ_m as follows:

$$\hat{\mathbf{u}}_m = \mathbf{u}_{a(m)} + \sum_{i=a(m)}^{b(m)} \mathbf{P}_{m,i-a(m)} \Delta_i$$

where $\mathbf{P}_{m,i-a(m)}$ is a diagonal matrix whose diagonal elements are 0 or 1.

According to the principle of the order, $\Delta_i (i \geq m)$ should not be read by $\hat{\mathbf{u}}_m$. So b(m) < m, which means:

$$\hat{\mathbf{u}}_m = \mathbf{u}_{a(m)} + \sum_{i=a(m)}^{m-1} \mathbf{P}_{m,i-a(m)} \Delta_i$$

Convergence Result for Strongly Convex Problems

With some assumptions, our algorithm gets a linear convergence rate for strongly convex problems:

$$\mathbb{E}f(\mathbf{w}_{t+1}) - f(\mathbf{w}_*) \le \left(c_1^{\tilde{M}} + \frac{c_2}{1 - c_1}\right) \left(\mathbb{E}f(\mathbf{w}_t) - f(\mathbf{w}_*)\right),$$

where $c_1 = 1 - \alpha \eta \mu + c_2$ and $c_2 = \eta^2 (\frac{8\tau L^3 \eta \rho^2 (\rho^{\tau} - 1)}{\rho - 1} + 2L^2 \rho)$, $\tilde{M} = p \times M$ is the total number of iterations of the inner-loop.

Note

Since it is lock-free, we do not know the exact \mathbf{B}_m and we can not take the average sum of $\mathbf{B}_m \mathbf{u}_m$ to be \mathbf{w}_{t+1} .

Convergence Result for Non-Convex Problems

With some assumptions, our algorithm gets a sub-linear convergence rate for non-convex problems:

$$\frac{1}{T\tilde{M}} \sum_{t=0}^{T-1} \sum_{m=0}^{M-1} \mathbb{E} \|\nabla f(\mathbf{u}_{t,m})\|^2 \le \frac{\mathbb{E} f(\mathbf{w}_0) - \mathbb{E} f(\mathbf{w}_T)}{T\tilde{M}\gamma}.$$

Similar to the analysis for strongly convex problems, we construct an equivalent write sequence $\{\mathbf{u}_{t,m}\}$ for the t^{th} outer-loop:

$$\mathbf{u}_{t,0} = \mathbf{w}_t,$$

$$\mathbf{u}_{t,m+1} = \mathbf{u}_{t,m} - \eta \mathbf{B}_{t,m} \hat{\mathbf{v}}_{t,m},$$

where $\hat{\mathbf{v}}_{t,m} = \nabla f_{i_{t,m}}(\hat{\mathbf{u}}_{t,m}) - \nabla f_{i_{t,m}}(\mathbf{u}_{t,0}) + \nabla f(\mathbf{u}_{t,0})$. $\mathbf{B}_{t,m}$ is a diagonal matrix whose diagonal entries are 0 or 1. And $\hat{\mathbf{u}}_{t,m}$ is read by the thread who computes $\hat{\mathbf{v}}_{t,m}$.

Experiments - Convex Case

Experimental platform: A server with 12 Intel cores and 64G memory.

Model: Logistic regression with L2-norm

$$f(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-y_i \mathbf{x}_i^T \mathbf{w}}) + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Data set

dataset	instances	features	memory	type
rcv1	20,242	47,236	36M	sparse
real-sim	72,309	20,958	90M	sparse
news20	19,996	1,355,191	140M	sparse
epsilon	400,000	2,000	11G	dense

We set $\lambda = 10^{-4}$.

Experiments: Computation Cost

(c) news20

Experiments: Total Time Cost

19 / 40

Experiments: Speed up

Experiments - Non-Convex Case

Experimental platform: A server with 12 Intel cores and 64G memory.

Model: A fully-connected neural network

One hidden layer with 100 nodes, sigmoid function for activation.

$$f(\mathbf{w}, \mathbf{b}) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbf{1} \{ y_i = k \} \log o_i^{(k)} + \frac{\lambda}{2} ||\mathbf{w}||^2,$$

where \mathbf{w} is the weights of the neural network, \mathbf{b} is the bias, y_i is the label of instance \mathbf{x}_i , $o_i^{(k)}$ is the output corresponding to \mathbf{x}_i , K is the total number of class labels.

We set $\lambda = 10^{-3}$.

Experiments- Non-Convex Case

Figure: Non-Convex Case.

Outline

- Introduction
- 2 AsySVRG
- SCOPE
- 4 Conclusion

23 / 40

Motivation and Contribution

Motivation:

 Bulk synchronous parallel (BSP) models, such as MapReduce, are commonly considered to be inefficient for distributed stochastic learning. Is there any technique to solve the issues of BSP models?

Contribution:

- A novel distributed stochastic learning method, called scalable composite optimization for learning (SCOPE), with BSP models
- Both computation-efficient and communication-efficient
- Linear convergence rate with theoretical proof
- SCOPE implemented on Spark outperforms other state-of-the-art distributed learning methods on Spark
- Parameter Server with SCOPE outperforms other Parameter Server platforms with stale synchronous parallel (SSP) or asynchronous parallel (ASP) models

Framework of SCOPE on Spark

Figure: Distributed framework of SCOPE on Spark.

Optimization Algorithm: Master

Task of Master in SCOPE:

```
Initialization: p Workers, \mathbf{w}_0; for t=0,1,2,\ldots,T do Send \mathbf{w}_t to the Workers; Wait until it receives \mathbf{z}_1,\mathbf{z}_2,\ldots,\mathbf{z}_p from the p Workers; Compute the full gradient \mathbf{z}=\frac{1}{n}\sum_{k=1}^p\mathbf{z}_k, and then send \mathbf{z} to each Worker; Wait until it receives \tilde{\mathbf{u}}_1,\tilde{\mathbf{u}}_2,\ldots,\tilde{\mathbf{u}}_p from the p Workers; Compute \mathbf{w}_{t+1}=\frac{1}{p}\sum_{k=1}^p\tilde{\mathbf{u}}_k; end for
```

Optimization Algorithm: Workers

Task of Workers in SCOPE:

```
Initialization: initialize \eta and c > 0;
For the Worker k:
for t = 0, 1, 2, ..., T do
   Wait until it gets the newest parameter \mathbf{w}_t from the Master;
   Let \mathbf{u}_{k,0} = \mathbf{w}_t, compute the local gradient sum \mathbf{z}_k = \sum_{i \in \mathcal{D}_t} \nabla f_i(\mathbf{w}_t),
   and then send \mathbf{z}_k to the Master;
   Wait until it gets the full gradient z from the Master;
   for m=0 to M-1 do
      Randomly pick up an instance with index i_{k,m} from \mathcal{D}_k;
      \mathbf{u}_{k,m+1} = \mathbf{u}_{k,m} - \eta(\nabla f_{i_{k,m}}(\mathbf{u}_{k,m}) - \nabla f_{i_{k,m}}(\mathbf{w}_t) + \mathbf{z} + c(\mathbf{u}_{k,m} - \mathbf{w}_t));
   end for
   Send \mathbf{u}_{k,M} or \frac{1}{M}\sum_{m=1}^{M}\mathbf{u}_{k,m}, which is called the locally updated
   parameter and denoted as \tilde{\mathbf{u}}_k, to the Master;
```

Convergence

Let $\alpha=1-\eta(2\mu+c)<1$, $\beta=c\eta+3L^2\eta^2$ and $\alpha+\beta<1$. We have the following theorems:

Theorem

If we take $\mathbf{w}_{t+1} = \frac{1}{p} \sum_{k=1}^{p} \mathbf{u}_{k,M}$, then we can get the following convergence result:

$$\mathbb{E}\|\mathbf{w}_{t+1} - \mathbf{w}^*\|^2 \le (\alpha^M + \frac{\beta}{1-\alpha})\mathbb{E}\|\mathbf{w}_t - \mathbf{w}^*\|^2.$$

Theorem

If we take $\mathbf{w}_{t+1} = \frac{1}{p} \sum_{k=1}^{p} \tilde{\mathbf{u}}_k$ with $\tilde{\mathbf{u}}_k = \frac{1}{M} \sum_{m=1}^{M} \mathbf{u}_{k,m}$, then we can get the following convergence result:

$$\mathbb{E}\|\mathbf{w}_{t+1} - \mathbf{w}^*\|^2 \le \left(\frac{1}{M(1-\alpha)} + \frac{\beta}{1-\alpha}\right) \mathbb{E}\|\mathbf{w}_t - \mathbf{w}^*\|^2.$$

Communication Cost

ullet Traditional mini-batch based methods: O(Tn)

• SCOPE: O(T)

Logistic regression (LR) with a L_2 -norm regularization term:

$$f(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \left[\log(1 + e^{-y_i \mathbf{x}_i^T \mathbf{w}}) + \frac{\lambda}{2} ||\mathbf{w}||^2 \right].$$

Table: Datasets for evaluation.

	#instances	#features	memory	λ
MNIST-8M	8,100,000	784	39G	1e-4
epsilon	400,000	2,000	11G	1e-4
KDD12	73,209,277	1,427,495	21G	1e-4
Data-A	106,691,093	320	260G	1e-6

Two Spark clusters with Intel CPUs:

- small: 1 Master and 16 Workers
- large: 1 Master and 128 Workers

Baselines:

- MLlib [Meng et al., 2015]: MLlib is an open source library for distributed machine learning on Spark. We compare our method with distributed lbfgs for MLlib, which is a batch learning method and faster than the SGD version of MLlib.
- LibLinear [Lin et al., 2014a]: LibLinear is a distributed Newton method, which is also a batch learning method.
- Splash [Zhang and Jordan, 2015]: Splash is a distributed SGD method by using the local learning strategy to reduce communication cost.
- CoCoA [Jaggi et al., 2014]: CoCoA is a distributed dual coordinate ascent method.
- CoCoA+ [Ma et al., 2015]: CoCoA+ is an improved version of CoCoA. CoCoA+ adopts adding rather than average to combine local updates.

Parameter Server with SCOPE (PS-SCOPE)

Figure: Distributed framework of PS-SCOPE.

Experiment for PS-SCOPE

PS-Lite is the parameter server proposed in [Mu Li, et al., OSDI 2014] with SSP/ASP models

Outline

- Introduction
- 2 AsySVRG
- SCOPE
- Conclusion

Conclusion

- Stochastic learning is becoming popular for big data machine learning.
- Lock-free strategy is the key to get a good speedup in parallel stochastic learning.
- With properly designed techniques, BSP models are also efficient for distributed stochastic learning.

Future Work

Open source project:

LIBBLE: A <u>lib</u>rary for <u>big learning</u>

- LIBBLE-Spark: https://github.com/LIBBLE/LIBBLE-Spark/
 - Classification: LR, SVM, LR with L1-norm Regularization
 - Regression: Linear Regression, Lasso
 - Generalized Linear Models: with L2-norm/L1-norm Regularization
 - Dimensionality Reduction: PCA, SVD
 - Matrix Factorization
 - Clustering: K-Means
- LIBBLE-PS: https://github.com/LIBBLE/LIBBLE-PS
- LIBBLE-MultiThread: Parallel Knowledge Graph Embedding https://github.com/LIBBLE/LIBBLE-MultiThread/tree/ master/ParaGraphE
- LIBBLE-DeepLearning

References

- Shen-Yi Zhao, Ru Xiang, Ying-Hao Shi, Peng Gao, Wu-Jun Li. SCOPE: Scalable Composite Optimization for Learning on Spark. Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI), 2017.
- Shen-Yi Zhao, Gong-Duo Zhang, Wu-Jun Li. Lock-Free Optimization for Non-Convex Problems. Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI), 2017.
- Shen-Yi Zhao, Wu-Jun Li. Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee. Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI), 2016.

Q & A

Thanks!

