

Principal Component Analysis

Machine Learning

Christian Igel
Department of Computer Science

Basic questions

- Principal component analysis (PCA, Karhunen-Loève transform) is arguably the most fundamental unsupervised learning algorithm.
- It is frequently used for (linear) reduction, (lossy) data compression, feature extraction, and data visualization.
- Let's consider $S=\{m{x}_1,\ldots,m{x}_N\}$ with $m{x}_1,\ldots,m{x}_N\in\mathcal{X}=\mathbb{R}^d.$
- We ask how
 - to reduce the length of the description to k < d variables such that as much information as possible is preserved?
 - many dimensions are needed to capture a certain percentage of the variability of the data?
 - to visualize the data in two or three dimensions preserving as much of its variability as possible?

Outline

Warmup: Basis and Coordinate System

More Warmup: Matrix Decomposition

3 Principal Component Analysis

4 Summary

Outline

Warmup: Basis and Coordinate System

More Warmup: Matrix Decomposition

- Principal Component Analysis
- Summary

Basis vectors

- Basis: Set of linearly independent basis vectors u_1, \ldots that, in a linear combination, can represent every vector in given vector space
- Ortho*normal* basis: Basis vectors are orthogonal (i.e., $\boldsymbol{u}_i^\mathsf{T} \boldsymbol{u}_j = 0$ for $i \neq j$) and have unit length, $\|\boldsymbol{u}_i\| = \sqrt{\boldsymbol{u}_i^\mathsf{T} \boldsymbol{u}_1} = 1$
- Example: $x \in \mathbb{R}^2$, orthonormal basis

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$,

$$\mathbf{x} = (1,0)^{\mathsf{T}} x_1 + (0,1)^{\mathsf{T}} x_2$$

• Example can be read as "way from $\mathbf{0}$ to \mathbf{x} : First go x_1 units in the direction $(1,0)^{\mathsf{T}}$ and then x_2 units in direction $(1,0)^{\mathsf{T}}$ "

2-dimensional example

Changing basis

• Changing basis means "expressing the way using two other, non-parallel directions u_1 and u_2 : First go z_1 units in the direction u_1 and then z_2 units in direction u_2 ":

$$\boldsymbol{x} = \sum_{i=1}^d z_i \boldsymbol{u}_i = \sum_{i=1}^d (\boldsymbol{x}^\mathsf{T} \boldsymbol{u}_i) \boldsymbol{u}_i$$

 A lower dimensional representation uses "fewer directions" and a (different) origin/starting point.

Orthogonal matrix

- Gather basis vectors in $d \times d$ matrix U such that the columns of U correspond to the basis vectors.
- ith column of U is given by u_i .
- Square matrix composed of an orthonormal basis is an orthogonal matrix having the property $\boldsymbol{U}^{\mathsf{T}} = \boldsymbol{U}^{-1}$.
- Define $d \times k$ matrix U_k as the first k basis vectors.
- ith column of $m{U}_k$ is given by $m{u}_i$ and the ith row of $m{U}^\mathsf{T}$ by $m{u}_i^\mathsf{T}$.

Outline

Warmup: Basis and Coordinate System

More Warmup: Matrix Decomposition

- 3 Principal Component Analysis
- Summary

Eigenvectors and eigenvalues

• For an eigenvector $u_i \in \mathbb{R}^d$ of the $d \times d$ matrix S it holds by definition:

$$oldsymbol{S}oldsymbol{u}_i=\lambda_ioldsymbol{u}_i$$

 λ_i is the corresponding eigenvalue.

• We consider only consider eigenvectors of unit length and assume that the eigenvectors are sorted according to $i < j \Rightarrow \lambda_i \geq \lambda_j$.

Eigen decomposition of real symmetric matrix

Any $\mathit{real\ symmetric\ } d \times d$ matrix M can be decomposed as:

$$oldsymbol{M} = oldsymbol{Q} oldsymbol{\Lambda} oldsymbol{Q}^\mathsf{T}$$

with

- $oldsymbol{Q} \in \mathbb{R}^{d imes d}$ being orthogonal,
- $oldsymbol{Q}^\mathsf{T} = oldsymbol{Q}^{-1}$,
- $\Lambda \in \mathbb{R}^{d \times d} = \operatorname{diag}(\lambda_1, \dots, \lambda_d)$ being diagonal, with $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_d$ being the eigenvalues of M, and
- ullet the columns of Q being the corresponding eigenvectors.

Singular value decomposition (SVD)

Any real $N \times d$ matrix X can be decomposed (let's assume $N \geq d$) as:

$$oldsymbol{X} = oldsymbol{U} oldsymbol{\Gamma} oldsymbol{V}^\mathsf{T}$$

with

- $\boldsymbol{U} \in \mathbb{R}^{N \times d}$ having orthonormal columns,
- $\Gamma \in \mathbb{R}^{d \times d} = \operatorname{diag}(\gamma_1, \dots, \gamma_d)$ being diagonal with $\gamma_1 \geq \gamma_2 \geq \dots \geq \gamma_d$
- $oldsymbol{V} \in \mathbb{R}^{d imes d}$ being orthogonal.

The columns of V are the right singular vectors of X.

SVD example

drawing modified from Wikimedia Commons

SVD and eigen decomposition

- When M is positive semi-definite, its eigen decomposition is also a SVD.
- The right singular vectors of X are the eigenvectors of $X^{\mathsf{T}}X$.
- $X^{\mathsf{T}}X$ is positive (semi-) definite (i.e., all eigenvalues are non-negative), and the singular values of X are the square roots of the eigenvalues of $X^{\mathsf{T}}X$.

Outline

Warmup: Basis and Coordinate System

- More Warmup: Matrix Decomposition
- Principal Component Analysis
- Summary

Basic questions

- Principal component analysis (PCA, Karhunen-Loève transform) is arguably the most fundamental unsupervised learning algorithm.
- It is frequently used for (linear) reduction, (lossy) data compression, feature extraction, and data visualization.
- Let's consider $S=\{m{x}_1,\ldots,m{x}_N\}$ with $m{x}_1,\ldots,m{x}_N\in\mathcal{X}=\mathbb{R}^d.$
- We ask how
 - to reduce the length of the description to k < d variables such that as much information as possible is preserved?
 - many dimensions are needed to capture a certain percentage of the variability of the data?
 - to visualize the data in two or three dimensions preserving as much of its variability as possible?

Example: Cambridge face database

Basic idea

• Find k-dimensional affine linear model $f: \mathbb{R}^k \to \mathbb{R}^d$ of the d-dimensional data representing S as accurately as possible:

$$f(\boldsymbol{z}) = \boldsymbol{b} + \boldsymbol{U}_k \boldsymbol{z} ,$$

where $\boldsymbol{z} \in \mathbb{R}^k$, $\boldsymbol{b} \in \mathbb{R}^d$, and $\boldsymbol{U}_k \in \mathbb{R}^{d \times k}$.

- Vectors $u_1, \ldots, u_k \in \mathbb{R}^d$ are the columns of U_k and we require them to be pairwise orthogonal and of unit length.
- Model represents data in \mathbb{R}^d by k-dimensional parameters z.

Reconstruction error

 We measure model quality by sum-of-squares reconstruction error

$$J = \frac{1}{N} \sum_{i=1}^{N} \| \boldsymbol{x}_i - f(\boldsymbol{z}_i) \|^2.$$

Formal goal of PCA

$$\min_{\boldsymbol{b}, \boldsymbol{U}_k, \{\boldsymbol{z}_1, ..., \boldsymbol{z}_N\}} \frac{1}{N} \sum_{i=1}^{N} \|\boldsymbol{x}_i - f(\boldsymbol{z}_i)\|^2$$

subject to the constraints on $oldsymbol{U}_k$.

Solution

• The choice for b is the empirical mean:

$$\overline{\boldsymbol{x}} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_i$$

Data points should be encode by

$$oldsymbol{z}_i = oldsymbol{U}_k^\mathsf{T} (oldsymbol{x}_i - \overline{oldsymbol{x}})$$
 .

• k columns of \boldsymbol{U}_k should correspond to the first k eigenvectors of the data covariance matrix or empirical covariance matrix

$$S = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{x}_i - \overline{\boldsymbol{x}}) (\boldsymbol{x}_i - \overline{\boldsymbol{x}})^\mathsf{T}$$
.

Mean face

$$\overline{\boldsymbol{x}} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_i$$

Eigenfaces

Reconstruction using eigenfaces

using all, 300, 200, 100 eigenfaces

PCA algorithm

Algorithm 1: dimensionality reduction using PCA

Input: data $S = \{x_1, \dots, x_N\}$, number of dimensions k

- 1 compute the empirical mean $\overline{m{x}} = rac{1}{N} \sum_{i=1}^N m{x}_i$
- 2 compute empirical covariance matrix

$$oldsymbol{S} = rac{1}{N} \sum_{i=1}^{N} (oldsymbol{x}_i - \overline{oldsymbol{x}}) (oldsymbol{x}_i - \overline{oldsymbol{x}})^\mathsf{T}$$

- 3 compute the $d \times k$ matrix \boldsymbol{U}_k composed of the first k eigenvectors of \boldsymbol{S} , where the eigenvectors are ordered by decreasing eigenvalue
- 4 compute $oldsymbol{z}_i = oldsymbol{U}_k^{\mathsf{T}}(oldsymbol{x}_i \overline{oldsymbol{x}})$ for $i = 1, \dots, N$

Output: mean \overline{x} , principal components U_k , projected data $\{z_1, \ldots, z_N\}$, model $f(z) = \overline{x} + U_k z$

Eckart and Young theorem

The (squared) Frobenius norm of an $N \times d$ matrix \boldsymbol{X} is

$$\|\boldsymbol{X}\|_F^2 = \sum_{n=1}^N \sum_{i=1}^d x_{ij}^2$$
.

The $N \times d$ matrix $\tilde{\boldsymbol{X}}$ with rank k approximating the $N \times d$ matrix \boldsymbol{X} best in terms of the Frobenius norm $\|\boldsymbol{X} - \tilde{\boldsymbol{X}}\|_F^2$ is

$$\tilde{\boldsymbol{X}} = \boldsymbol{X}\boldsymbol{V}_k\boldsymbol{V}_k^\mathsf{T} \ ,$$

where $oldsymbol{V}_k$ is the matrix of top-k right singular vectors of $oldsymbol{X}$.

Maximizing variance

- We measure the variability of S by the trace $\operatorname{trace}\{S\} = \sum_{i=1}^d s_{ii} = \sum_{i=1}^d \lambda_i = \sum_{j=1}^d \boldsymbol{u}_j^\mathsf{T} S \boldsymbol{u}_j$. (Sum of the eigenvalues of a diagonalizable matrix is equal to its trace.)
- Accordingly the variability of z_1, \ldots, z_N is

$$\frac{1}{N} \sum_{i=1}^{N} \left[\boldsymbol{U}_{k}^{\mathsf{T}} \boldsymbol{x}_{i} - \boldsymbol{U}_{k}^{\mathsf{T}} \overline{\boldsymbol{x}} \right] \left[\boldsymbol{U}_{k}^{\mathsf{T}} \boldsymbol{x}_{i} - \boldsymbol{U}_{k}^{\mathsf{T}} \overline{\boldsymbol{x}} \right]^{\mathsf{T}} = \sum_{j=1}^{k} \boldsymbol{u}_{j}^{\mathsf{T}} \boldsymbol{S} \boldsymbol{u}_{j} .$$

Minimizing reconstruction error corresponds to maximizing variance.

Variance of faces

first two eigenvalues vs. eigenvalues 99 and 100

"Explained variance"

We have:

$$\operatorname{trace}\{oldsymbol{S}\} = \sum_{j=1}^d oldsymbol{u}_j^{\mathsf{T}} oldsymbol{S} oldsymbol{u}_j = \sum_{i=1}^d \lambda_i$$

The quotient

$$\frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{d} \lambda_i}$$

measures the fraction of variance "explained" by the first \boldsymbol{k} principal components.

Linear and non-linear example

Outline

Warmup: Basis and Coordinate System

More Warmup: Matrix Decomposition

- Principal Component Analysis
- Summary

Summary

Principal component analysis (PCA) is frequently used for

- dimensionality reduction,
- noise reduction, and
- visualization.

lt

- is an affine linear model of the data,
- is a change of basis, new basis vectors are orthogonal,
- · minimizes reconstruction error, and
- maximizes variance.

