Retail Forecasting Project ETC3550

Chelaka Paranahewa

Statistical features of Australian Retail

Table 1: A few rows of the dataset, Other Retailing in South Australia

State	Industry	Series ID	Month	Turnover
South Australia	Other retailing	A3349433W	1982 Apr	34.2
South Australia	Other retailing	A3349433W	1982 May	34.4
South Australia	Other retailing	A3349433W	1982 Jun	32.7
South Australia	Other retailing	$\mathrm{A3349433W}$	1982 Jul	36.2
South Australia	Other retailing	$\mathrm{A3349433W}$	1982 Aug	36.1
South Australia	Other retailing	A3349433W	$1982~\mathrm{Sep}$	36.0

Australia Retail Turnover Original

Plotting the original dataset, we can see a general trend upwards. The dataset also has a seasonal pattern which during the early 1980 - 1990, was relatively small compared to later years where the spike grows to large proportions.

Transformations and Differencings

```
lambda <- myseries %>%
    features(Turnover, features = guerrero) %>%
   pull(lambda_guerrero)
myseries %>% autoplot(box_cox(Turnover, lambda)) +
    labs(
        title = "Australia Retail Turnover",
        subtitle = "Box-Cox transformed (Guerrero's method)"
   ) +
   ylab("Turnover [million $AUD]")
```

Australia Retail Turnover

Box-Cox transformed (Guerrero's method)


```
fit <- myseries %>%
   model(
        Original = ETS(Turnover),
        Transformed = ETS(box cox(Turnover, lambda))
   )
fit %>%
    select(mable vars(fit)) %>%
```

```
glance()
## # A tibble: 2 x 9
               sigma2 log_lik AIC AICc BIC
                                                      MSE
                                                              AMSE
## .model
                                                                      MAE
    <chr>
                  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                                  <dbl>
                                                             <dbl> <dbl>
                0.00129 -1971. 3977. 3978. 4046. 29.7
## 1 Original
                                                          36.0
                                                                   0.0281
## 2 Transformed 0.00292 -47.7 129. 131. 199. 0.00281 0.00340 0.0422
myseries %>% features(Turnover, unitroot_kpss)
## # A tibble: 1 x 4
   State
##
                                   kpss_stat kpss_pvalue
                    Industry
##
     <chr>
                    <chr>
                                        <dbl>
                                                   <dbl>
## 1 South Australia Other retailing
                                        7.38
                                                    0.01
myseries %>% features(Turnover, unitroot_ndiffs)
## # A tibble: 1 x 3
##
   State
                    Industry
                                   ndiffs
##
    <chr>
                    <chr>>
                                     <int>
## 1 South Australia Other retailing
myseries %>% features(Turnover, unitroot_nsdiffs)
## # A tibble: 1 x 3
##
                                   nsdiffs
    State
                    Industry
##
    <chr>
                    <chr>
                                    <int>
```

1

1 South Australia Other retailing