Fiches de Révision MP

TOME II - Mathématique

Jean-Baptiste Théou

Licence

J'ai décidé d'éditer cet ouvrage sous la licence Créative Commons suivante : CC-by-nc-sa. Pour plus d'information :

http://creative commons.org/licenses/by-nc-sa/2.0/fr/.

Ce type de licence vous offre une grande liberté, tout en permettant de protéger mon travail contre une utilisation commercial à mon insu par exemple.

Pour plus d'information sur vos droits, consultez le site de Créative Commons

Avant-propos

Il y a un plus d'un an, au milieu de ma SUP MP, j'ai décidé de faire mes fiches de révision à l'aide de Latex, un "traitement de texte" très puissant. Il en résulte les fiches qui suivent. Je pense que travailler sur des fiches de révision, totalement séparé de notre cours, est un énorme plus, et réduit grandement la quantité de travail pour apprendre son cours, ce qui laisse plus de temps pour les exercices. Mon experience en tout cas va dans ce sens, j'ai notablement progressé à l'aide de ces fiches.

J'ai décidé de les rassembler sous forme d'un "livre", ou plutôt sous forme d'un recueil. Ce livre à pour principal interet pour moi d'être transportable en cours. C'est cet interet qui m'a poussé à faire ce livre.

Dans la philosophie de mes fiches de révision, ce livre est disponible gratuitement et librement sur mon blog. Il est édité sous License Créative Commons. Vous pouvez librement adapter ce libre à vos besoins, les sources Latex sont disponibles sur mon blog. Je pense que pour être en accord avec la philosophie de ces fiches, il serai bien que si vous effectuez des modifications de mon ouvrage, vous rendiez ces modifications disponible à tous. Je laisserai volontiers une place pour vos modifications sur mon blog. Je pense sincèrement que ce serai vraiment profitable au plus grand nombre, et dans la logique de mon travail.

J'ai hiérarchisé mon ouvrage de façon chronologique. Les parties sont rangées dans l'ordre "d'apparition" en MP, tout en conservant une certaine logique dans les parties. J'ai mis en Annexe des petites fiches de méthodologie, qui peuvent s'avérer utiles.

Je vous souhaite une bonne lecture, et surtout une bonne réussite.

Jean-Baptiste Théou

Remerciements

Je tient à remercier Georges Marin, Professeur de Physique-Chimie en MP au Lycée Lesage et François Brunou, Professeur de Mathématiques en MP au Lycée Lesage. Sans eux, ce livre ne pourrai exister.

Première partie Révisions

Chapitre 1

Rappels et Compléments

1.1 Relations de comparaison

1.1.1 Relations d'équivalence

Soit R une relation.

Énoncé 1 R est une relation d'equivalence sur E si et seulement si :

- I) R est réflexive : $\forall x \in E, xRx$
- II) R est symétrique : $\forall (x,y) \in E^2 \ tq \ xRy$, on as : yRx
- III) R est transitive: $\forall (x, y, z) \in E^3$ tq xRy et yRz, on as: xRz

1.1.2 Fonction module

Énoncé 2 La fonction module, fonction de [a,b] dans \Re , est une fonction continue

1.1.3 Voisinage fondamental

Définition 1 On défini un voisinage fondamental de $x_0 \in \overline{\Re}$ par :

- $\rightarrow Si \ x_0 \in \Re : V = [x_0 r, x_0 + r]$
- $\rightarrow Si \ x_0 = +\infty : V = \int a \cdot \infty \int$
- $\rightarrow Si x_0 = -\infty : V = [-\infty, a]$

1.1.4 Négligabilité

Énoncé 3 Soient u et v deux fonctions de \Re dans K, définies sur un même voisinage de 0. Par exemple, définies sur]-r,r], avec r>0.

On dit que u est négligable devant v en 0 si et seulement si, $\exists r' \in]0, r[$ et h, une fonction définie par :

$$h:]-r', r'[\to K$$

avec $\lim_{n} h = 0$ telque:

$$\forall x \in]-r', r'[\ u(x) = v(x).h(x)$$

On le note

$$u = o(v)$$

Propriété 1 Soit u fonction de V dans K, avec V voisinage fondamental de $x_0 \in \bar{\mathbb{R}}$. Si λ est une constante de K^* , indépendante de la variable x, alors :

$$o(\lambda.u) = o(u)$$

Propriété 2 Soient $o_1(u), o_2(u), ..., o_p(u)$ fonctions négligable devant u. Si p ne dépend pas de la variable x:

$$o_1(u) + o_2(u) + \dots + o_p(u) = o(u)$$

Notation d'Hardy et de Landau

Énoncé 4 Soient u et v deux fonctions de \Re dans K, définies sur un voisinage]-r,r[, avec r>0, en 0.

$$u \ll v \Leftrightarrow u = o(v)$$

La première notation est la notation d'Hardy. La seconde est celle de Landau.

1.1.5 Équivalence

Énoncé 5 Soient u et v deux fonctions de \Re dans K, définies sur un voisinage]-r,r[, avec r>0, de 0. On dit que u est équivalent à v en 0 si et seulement si, $\exists r' \in]0,r[$ et h, une fonction définie par :

$$h:]-r', r'[\to K$$

 $avec \lim_{\Omega} h = 1 \ telque$:

$$\forall x \in]-r', r'[\ u(x) = v(x).h(x)$$

On le note:

$$u \sim v$$

Propriété 3 Soient u et v deux fonctions équivalente en x_0 . Nous avons, si α est indépendant de la variable :

$$u \underset{x_0}{\sim} v \Rightarrow u^{\alpha} \underset{x_0}{\sim} v^{\alpha}$$

Propriété 4 Avec les conditions précédentes, nous avons :

$$u \underset{x_0}{\sim} v \Leftrightarrow u \underset{x_0}{=} v + o(v)$$

$$u \underset{x_0}{\sim} v \Leftrightarrow u - v \underset{x_0}{\ll} v$$

Par symétrie, on peut inverser ces relations.

Propriété 5 Soient u et v deux applications de V dans K, définies sur un voisinage fondamental V de $x_0 \in \overline{\mathbb{R}}$.

Si $u \underset{x_0}{\sim} v$, et $u(x) \underset{x_0}{\rightarrow} l \in C$ ou $l \in \overline{\Re}$, alors :

$$v(x) \underset{x_0}{\rightarrow} l$$

Propriété 6 Avec les conditions précédentes : $Si\ u(x) \underset{x_0}{\sim} u_1(x)$ et $v(x) \underset{x_0}{\sim} v_1(x)$, alors :

$$u(x).v(x) \underset{x_0}{\sim} u_1(x).v_1(x)$$

$$\frac{u}{v} \sim \frac{u_1}{v_1}$$

Propriété 7 Si $u(x) \underset{x_0}{\sim} v(x)$ et si u et v restent > 0 au voisinage de x_0 et si u(x) et v(x) tendent vers $l \in \mathbb{R}_+ - \{1\}$ en x_0 , alors :

$$ln(u) \underset{x_0}{\sim} ln(v)$$

1.1.6 Négligabilité et équivalence

Propriété 8 Soient u et v deux fonctions de V dans K, avec V un voisinage fondamental de $x_0 \in \mathbb{R}$.

Alors:

$$u \underset{x_0}{\sim} v \Rightarrow o(u) \underset{x_0}{=} o(v)$$

Propriété 9 Si $u_1, u_2, ..., u_p$ sont des fonctions de \Re dans K, définies sur un voisinage]-r, r[, avec r>0, de 0. Si $u_1 \underset{>}{\gg} u_2 \underset{>}{\gg} ... \underset{>}{\gg} u_p$, alors :

$$u_1 + ... + u_p \sim u_1$$

1.1.7 Lien entre limite et somme

Propriété 10 Soient $h_2, h_3, ..., h_p$ fonctions telque :

$$\forall k \in \{2, ..., p\} \lim_{n \to \infty} h_k = 0$$

La conséquence suivante est vraie uniquement si p est indépendant de x:

$$\lim_{0} h_2 + \dots + h_p = 0$$

1.1.8 Signe et équivalent

Propriété 11 Soient u et v deux fonctions de \Re dans \Re définies sur un voisinage de 0, telque :

$$u \sim v$$

alors, $\exists \alpha > 0$ telque $\forall x \in]-\alpha, \alpha[$, u(x) et v(x) ont même signe et même points d'annulation. "Un équivalent contrôle localement le signe"

1.1.9 Domination - Grand O

Définition 2 Soient u et v deux fonctions de \Re dans K, définies sur un voisinage]-r,r[, avec r>0, de 0.

On dit que u est dominé par v si et seulement si, $\exists r' \in]0,r[$ et h, une fonction définie par :

$$h:]-r', r'[\to K$$

 $avec\ h\ born\'ee\ sur\]-r',r'[\ telque\ :$

$$\forall x \in]-r', r'[\ u(x) = v(x).h(x)$$

On le note:

$$u = O(v)$$

1.1.10 Dans le cas des suites

Domination - Grand O

Définition 3 Soient (u_n) et (v_n) deux suites à valeurs dans K.

$$u_n = O(v_n) \Leftrightarrow (\exists n_0 \in N, \exists (h_n)_{n > n_0} \ tq \ \forall n \ge n_0 \ u_n = v_n.h_n)$$

avec $(h_n)_{n>n_0}$ suite bornée.

1.2 Fonctions

1.2.1 Fonctions continue sur un segments

Soit f fonction continue de [a, b] dans \Re .

Propriété 12 f est bornée sur [a,b] :

$$\exists M \in \Re^+ \ tq \ \forall x \in [a,b] \ |f(x)| \le M$$

Propriété 13 f est majorée et minorée, et atteint son Sup et son Inf en des points de [a, b] :

$$\exists \alpha \in [a,b] \ tq \ Sup_{[a,b]}f = f(\alpha)$$

Propriété 14 f est uniformement continue sur [a,b]

1.2.2 Fonctions continue par morceaux sur un intervalle

Propriété 15 Si f est continue par morceau sur un intervalle I, il en est de même pour |f|.

Propriété 16 L'ensemble des application d'un intervalle I, à valeur dans K, continue par morceaux sur I, est une algèbre.

C'est à dire que cet espace est stable par addition, produit par un scalaire, et par produit. Mais cet ensemble n'est pas stable par composition.

1.2.3 Théorème des accroissements finis

La notation $f \in C^n([a,b], \Re)$ signifie que f est de classe de C^n de [a,b] dans \Re

Définition 4 Soit $f \in C^1([a,b], \Re)$, alors :

$$\exists c \in (]a, b[\ tq\ f(b) - f(a) = f'(c)(b - a)$$

1.2.4 Inégalité des accroissement finis

Définition 5 Soit $f \in C^1([a, b], K)$.

 $Si\ f'\ est\ born\'ee\ sur\ [a,b],\ alors:$

$$|f(b) - f(a)| \le \sup_{[a,b]} up|f'|.(b-a)$$

On démontre le lien entre le signe de la dérivée et les variations de la fonction à l'aide de cette inégalité.

1.2.5 Théorème de Rolles

Énoncé 6 Soit f application continue sur [a,b] et dérivable sur [a,b]. Si f(a) = f(b), alors :

$$\exists c \in [a, b[tq f'(c) = 0]$$

1.2.6 Théorème des valeurs intermédiaire

Les trois propriétés suivantes sont équivalentes.

Propriété 17 Soit f application continue de I dans \Re , avec I intervalle inclus dans \Re . Alors f(I) est aussi un intervalle

Propriété 18 Soit f application de A dans \Re , définie et continue sur [a,b]. Si:

$$f(a).f(b) \le 0$$

Alors:

$$\exists c \in [a,b] \ tq \ f(c) = 0$$

Propriété 19 Soit f application continue de I dans \Re .

 $\forall (x,x') \in I^2$, tous y compris entre f(x) et f(x') est une valeur de f sur [x,x']

Cas particuliers

Propriété 20 Soit f, fonction de \Re dans \Re , continue sur [a,b]. Alors f([a,b]) = [m,M], avec :

$$m = Inf_{[a,b]}f$$
$$M = Sup_{[a,b]}f$$

Propriété 21 Soit f fonction de \Re dans \Re , continue et strictement croissante sur un intervalle I. Alors f induit une bijection de I sur f(I), qui est lui même un intervalle, et sa bijection réciproque, f^{-1} , de f(I) dans I, est également continue et strictement croissante.

On peut préciser f(I). Quand I possède une borne ouverte, on fait appelle à la limite de f en la valeur de cette borne, et quand I possède une borne fermée, on prend la valeur de f en cette borne. Par exemple :

$$I =]a, b] \rightarrow f(I) = \left[\lim_{a} f, f(b) \right]$$

Propriété 22 Soit f fonction de \Re dans \Re , croissante sur I. Alors :

 \rightarrow Soit f n'est pas majorée sur I, alors dans ce cas :

$$f(x) \underset{x \to \infty}{\to} \infty$$

 \rightarrow Soit f est majorée sur I, alors dans ce cas :

$$f(x) \underset{x \to \infty}{\longrightarrow} Supf_I$$

1.2.7 Lien entre limite et bornée

Propriété 23 Soit f fonction de \Re dans K, définie sur un voisinage de $x_0 \in \overline{\Re}$. Si f a une limite finie quand x tend vers x_0 , alors il existe un voisinage de x_0 V telque f soit bornée sur V.

1.2.8 Étude de Arctan

Dans le cas d'une étude asymptotique de arctan au voisinage de ∞ , la propriété suivant peut etre utile :

Propriété 24

$$\forall u \in \Re^+ \ arctan(u) + arctan(\frac{1}{u}) = \varepsilon \cdot \frac{\pi}{2}$$

 $avec \ arepsilon = +1 \ si \ u \ est \ positif, -1 \ si \ u \ est \ n\'egatif$

1.2.9 Limite d'une fonction

Propriété 25 Soit f une fonction complexe.

 $(f \ est \ continue \ par \ morceaux) \Leftrightarrow (Re(f) \ et \ Im(f) \ sont \ continue \ par \ morceaux)$

Propriété 26 Soit f fonction complexe, décomposable en $f = f_1 + if_2$. Soit $(l_1, l_2) \in \Re^2$

$$(\lim_{\infty} f = l = l_1 + i l_2) \Leftrightarrow (\lim_{\infty} f_1 = l_1 \ et \ \lim_{\infty} f_2 = l_2)$$

1.2.10 Injectivité

Définition 6 Soit f application de A dans A'. f est injective si et seulement si :

$$\forall (x, x') \in A \ f(x) = f(x') \Rightarrow x = x'$$

Propriété 27 Soit f application linéaire entre deux espaces vectoriels.

$$(f \ est \ injective) \Leftrightarrow Ker(f) = \{0\}$$

1.2.11 Surjectivité

Définition 7 Soit f application de A dans A'. f est surjective si et seulement si :

$$\forall y \in A' \ \exists x \in A \ tq \ f(x) = y$$

On peut aussi écrire ce si et seulement si sous la forme :

$$f(A) = A'$$

1.2.12 Bijectivité

Définition 8 Soit f une application de A dans A'. f est une bijection de A sur A' si et seulement si :

$$\forall y \in A' \ \exists ! x \in A \ tq \ f(x) = y$$

Dans ce cas, on peut définir l'application réciproque f^{-1} :

$$f^{-1}:A'\to A$$

$$y \to f^{-1}(y)$$

avec $f^{-1}(y)$ l'unique antécédent de y par f.

Propriété 28 f est une bijection si f est injective et surjective.

Propriété 29 Soit f une fonction bijective. Si $x \in A$, $y \in A'$.

$$(f(x) = y) \Leftrightarrow (x = f^{-1}(y))$$

Et:

$$f-1of = Id_A$$

$$f \circ f - 1 = I d_{A'}$$

1.2.13 Difféomorphisme

Définition 9 Soit f une application C^k d'un intervalle I dans \Re , avec $k \in N^*$ (le cas k=0 est écarté, car ce cas possède un nom différent).

On dit que f réalise un C^k -difféomorphisme de I sur f(I) si et seulement si :

- \rightarrow f réalise une bijection de I sur f(I)
- $\rightarrow f \operatorname{est} C^k \operatorname{sur} I$
- \rightarrow La fonction réciproque, f^{-1} de f(I) dans I, est également C^k sur f(I).

On dit que f est un C^{∞} difféomorphisme de I sur f(I) si f est un C^k difféomorphisme de I sur f(I) pour tous $k \in N^*$

Théorème 1 Soit f une application de classe C^k de \Re dans \Re , avec $k \in N^*$ sur un intervalle $IC\Re$.

Alors f est un C^k difféomorphisme de I sur f(I) si et seulement si f' ne s'annule pas sur I. Dans le cas, d'apres le théorème des valeurs intermédiaire, f' garde donc un signe continue sur I. Si $\forall x \in I$:

- $\rightarrow f'(x) > 0$, alors f est un C^k difféomorphisme strictement croissant
- $\rightarrow f'(x) < 0$, alors f est un C^k difféomorphisme strictement décroissant

1.3 Développements limités

1.3.1 Lien entre développement limité et dérivabilité

Soit f fonction de \Re dans K définies sur un voisinage V_0 de 0. Supposons que f admet un développement limité d'ordre 1 de la forme : f(x) = a + bx + o(x)

Propriété 30

 $(f \ admet \ un \ d\'{e}veloppement \ limit\'{e} \ d'ordre \ 1 \ en \ 0) \Leftrightarrow (f \ est \ d\'{e}rivable \ en \ 0)$

Propriété 31 On obtient les égalités suivantes :

$$f(0) = a$$

$$f(0) = b$$

De plus, l'équation de la tangente en 0 au graphe de f est :

$$y = a + bx$$

1.3.2 Position relative de la courbe par rapport à la tangente

Soit f fonction de \Re dans K définies sur un voisinage V_0 de 0. Supposons que f admet un développement limité d'ordre 2 de la forme : $f(x) = a + bx + cx^p + o(x^p)$, avec $c \neq 0$.

Propriété 32 La position de la courbe par rapport à sa tangente au voisinage du point d'abscisse O=(0,a), est donnée à l'aide du signe de $c.x^p$ (Voir Signe et équivalent)

1.3.3 Développement limités usuels

1.3.4 Développement asymptotique d'une "échelle de comparaison E"

Définition 10 Soit $x_0 \in \mathbb{R}$, et E un ensemble de fonction de \mathbb{R} dans K, dont chacune est définie sur un voisinage fondamental de x_0 .

On dit que f admet un développement asymptotique dans l'échelle E à la précision $o(u_p)$, $u \in E$, s'il existe des applications $u_1, ..., u_p$ appartenant à E et des scalaires $\lambda_1, \lambda_2, ..., \lambda_p \in K^p$, non tous nuls, et un voisinage fondamental V de x_0 telque :

$$u_1 \gg \dots \gg u_p$$

$$\forall x \in V \ f(x) = \lambda_1 \cdot u_1(x) + \dots + \lambda_p \cdot u_p(x) + o(u_p(x))$$

Exemples d'échelle de comparaison E

 \rightarrow Pour $x_0 \in \Re$, l'échelle des dévellopements limités en x_0 :

$$E = \{x \mapsto (x - x_0)^n, n \in N\}$$

 \rightarrow Pour $x_0 \in \Re$:

$$E = \{x \mapsto (x - x_0)^n, n \in Z\}$$

 \rightarrow Pour $x_0 = \infty$:

$$E = \left\{ x \mapsto x^{\alpha} (\ln(x))^{\beta} e^{P(x)}, \ P(x) = \sum_{i=1}^{q} q_i x^{\gamma_i}, \ (\alpha, \beta) \in \Re^2, \ q \in N^*, \ q_i \in \Re^*, \ \gamma_i \in \Re^{*+} \right\}$$

1.4 Intégrale

1.4.1 Somme de Riemmann

Soit f, fonction continue par morceaux de [a,b] dans K. Soit (u_n) la somme de Riemmann associé à f

Propriété 33 Quand n tend vers l'infini, le nombre de termes tend vers l'infini, et chacun des termes tend vers 0. La limite de la somme n'est pourtant pas nul

Propriété 34

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \sum_{k=0}^{n-1} \frac{b-a}{n} \cdot f(x_k) = \int_a^b f$$

1.4.2 Inégalité de majoration

Propriété 35 Soit f fonction continue par morceaux de [a,b], a<b, dans K.

$$|\int_{a}^{b} f| \le \int_{a}^{b} |f|$$

Croissance de l'intégrale

Propriété 36 Soient f,g deux fonctions continue par morceaux de [a,b] a < b dans \Re . Si.

$$f \leq g$$

alors:

$$\int_a^b f \le \int_a^b g$$

1.4.3 Inégalité de Cauchy-Schwarz

Énoncé 7 Soit u et v deux vecteur d'un \Re espace vectoriel. :

$$< u|v> \le ||u||.||v||$$

Propriété 37 Si f et g sont deux applications continue par morceaux de [a,b] dans K, alors :

$$|\int_a^b f(t)g(t)dt| \leq \sqrt{\int_a^b |f(t)|^2 dt}.\sqrt{\int_a^b |g(t)|^2 dt}$$

Le produit scalaire sous jacents dans le cas réel est :

$$\langle f|g \rangle = \int_a^b f(t).g(t)dt$$

A l'aide de ceci, on peut démontrer l'inégalité des accroissements finis.

1.4.4 Intégrale et négligabilité

Propriété 38 Si u et v sont deux applications de \Re dans K, continue sur un voisinage de θ (pour que l'on puisse définir les intégrales). Alors :

$$u \ll v \Rightarrow \int_0^x u \ll \int_0^x v$$

1.5 Vrac

1.5.1 Suite géométrique

Propriété 39 La somme d'une suite géométrique de raison z est donnée par, pour $z \neq 1$:

$$1 + z + \dots + z^n = \frac{1 - z^{n+1}}{1 - z}$$

Pour z = 1:

$$1 + z + \dots + z^n = n + 1$$

Application aux matrices

Soit A une matrice carrée.

De même, on obtient, si (I-A) est inversible :

$$I + A + A^{2} + ... + A^{n} = (I - A)^{-1}(I - A^{n+1})$$

$$I + A + A^{2} + ... + A^{n} = (I - A^{n+1})(I - A)^{-1}$$

On observe que les matrices commutent (Ce qui n'est pas le cas général)

1.5.2 Suite complexe

Soit (u_n) une suite de complexe.

Propriété 40

$$\lim_{n \to \infty} |u_n| = 0 \Leftrightarrow \lim_{n \to \infty} u_n = 0$$

1.5.3 Utilisations des inégalités

Soient (u_n) et (v_n) deux suites qui tendent vers l et l'

Propriété 41 $Si \ \forall n \in N \ u_n \leq v_n, \ alors \ l \leq l'.$

Mais si Si $\forall n \in N \ u_n < v_n$, alors $l \leq l'$.

On observe donc qu'il est plus "facile" de travailler sur des inégalités large.

1.5.4 Densité

Soient A et A' deux sous ensembles non vide de C, avec A inclue dans A'.

Énoncé 8 On dit que A est dense dans A' si :

$$\forall a' \in A', \ \forall \varepsilon > 0, \ \exists a \in A \ tq \ |a' - a| \le \varepsilon$$

 $\textbf{Propriété 42} \ \textit{On dit que A est dense dans A' si tous points de A' est la limite d'une suite de points de A}$

1.5.5 Formule du binôme et dérivée

Définition 11 Soit a et b deux complexes :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k . b^{n-k}$$

Propriété 43 On peut étendre la formule du binome au dérivation d'un produit de fonction :

$$(f.g)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}.g^{(n-k)}$$

Propriété 44 De même, on peut étendre cette formule aux matrices si les deux matrices commutent.

Soient A et B deux matrice carrée telque AB=BA:

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k . B^{n-k}$$

1.5.6 Dérivée successives de cosinus et sinus

Énoncé 9 Soit $n \in N$:

$$\cos^{(n)}(x) = \cos(x + n \cdot \frac{\pi}{2})$$

$$sin^{(n)}(x) = sin(x+n.\frac{\pi}{2})$$

Propriété 45 $\forall k \in N$:

$$cos^{(2k)} = (-1)^k . cos(x)$$

$$sin^{(2k+1)} = (-1)^{k+1} cos(x)$$

1.5.7 Régle de d'Alembert

Soit (u_n) une suite de réels positifs. Supposons que :

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = a$$

- \rightarrow Si a \in [0,1[, (u_n) converge vers 0
- \rightarrow Si a>1, (u_n) diverge vers $+\infty$

1.5.8 Nombre complexe

Propriété 46 Si z = x + iy, avec x,y deux réels, alors :

$$|x| \leq |z|$$

$$|y| \le |z|$$

1.6 Les polynomes

1.6.1 Polynomes irréductibles

Propriété 47 Si K est un corps commutatif, tous polynomes de K[X] s'écrit comme le produit d'un nombres de polynomes irréductible de K[X] et cette écriture est unique à l'ordre près des facteurs.

Énoncé 10 Les polynomes irréductibles de C[X] sont les polynomes du 1^{er} degrés. Les polynomes irréductibles de C[X] unitaire sont les polynome $aX + \lambda$, avec λ un complexe et a=1.

Énoncé 11 Les polynomes irréductibles de $\Re[X]$ sont les polynomes du 1^{er} degrés et les polynomes du 2^{nd} degrés avec discriminant négatif.

1.6.2 Racine et ordre de multiplicité

Définition 12 Soit λ un complexe.

 λ est une racine d'ordre n de $P \in K[X]$ si et seulement si $(X - \lambda)^n$ divise P et que $(X - \lambda)^{n+1}$ ne le divise pas.

Propriété 48 Soit λ un complexe.

 λ est une racine d'ordre n de $P \in K[X]$ si et seulement si :

$$\forall k \in \{0, n-1\} \ P^{(k)}(\lambda) = 0$$

et que

$$P^{(n)}(\lambda) \neq 0$$

Propriété 49 Soit z un complexe.

On peut factoriser $z^n - 1$ sous la forme :

$$z^{n} - 1 = \prod_{k=0}^{n-1} (z - e^{i\frac{k2\pi}{n}})$$

Propriété 50 D'après la propriété précédente, et en utilisant le faite que :

$$1 + z + \dots + z^{n-1} = \frac{z^n - 1}{z - 1}$$

On obtient que :

$$1+z+\ldots+z^{n-1} = \prod_{k=1}^{n-1} (z-e^{i\frac{k2\pi}{n}})$$

Propriété 51 Soit $P \in \Re[X]$, et λ une racine complexe de P, avec λ non réel. Alors :

$$mult_P(\bar{\lambda}) = mult_P(\lambda)$$

Deuxième partie Intégrales, Fonctions

Chapitre 1

Intégrales généralisées, Fonctions intégrables

1.1 Applications continues par morceaux

En ce qui concerne les intégrales, le programme se limite aux applications continues par morceaux.

1.1.1 Définitions

Définition 13 Soit f, une application (fonction définies sur tous l'espace de départ) de [a,b] dans K, avec a et b deux réels, a < b.

On dit que f est continue par morceaux sur [a,b] s'il existe une subdivision finie de [a,b]:

$$a = x_0 < x_1 < \dots < x_p = b$$

telque:

- $\rightarrow \forall i \in \{0, ..., p-1\}, f \ est \ C^0 \ sur \]x_i, x_{i+1}[$
- $\rightarrow \forall i \in \{1,...,p-1\}$, f admet une limite finie à droite et une limite finie à gauche de x_i
- \rightarrow f admet une limite finie à droite en a et une limite finie à gauche en b

Définition 14 On peut définir pour tous $i \in \{0,...,p-1\}$ des applications continues \tilde{f}_i de $[x_i,x_{i+1}]$ dans K, définies par :

$$\rightarrow Si \ x \in]x_i, x_{i+1}[\ f_i(x) = f(x)]$$

$$\to \widetilde{f}_i(x_i) = \lim_{x \to x_i^+} f(x)$$

$$\rightarrow \tilde{f}_{i}(x_{i+1}) = \lim_{x \to x_{i+1}^{-}} f(x)$$

 $\stackrel{\sim}{f}_i$ est donc le prolongement par continuité de f sur $[x_i,x_{i+1}]$

Il existe aussi la variante suivante de cette définition :

Définition 15 Soit f application de [a, b] dans K.

f est continue par morceaux si il existe une subdivision finie de [a,b]:

$$a = x_0 < x_1 < \dots < x_p = b$$

et des applications continues, avec $i \in \{0,...,p-1\}$:

$$\widetilde{f}: [x_i, x_{i+1}] \to K$$

 $telque, \forall i \in \{0, ..., p-1\}$:

$$f_{]x_i,x_{i+1}[} = \widetilde{f}_i$$

Définition 16 Soit I un intervalle quelconque de \Re et f, application de I dans K. On dit que f est continue par morceaux sur I si f est continue par morceaux sur tous segments (intervalle borné fermé) [a,b]CI

Propriété 52 Si f est une application continue par morceaux de [a, b] dans K, alors:

$$\int_{a}^{b} f = \sum_{i=0}^{p-1} \int_{x_{i}}^{x_{i+1}} \widetilde{f}_{i}$$

Propriété 53 Soient f,q fonctions de [a,b] dans K. Si f est une application intégrable au sens de Riemann sur [a, b] et si g ne diffère qu'en un nombre finie de point de f, alors g est également intégrable au sens de Riemann et :

$$\int_{a}^{b} g = \int_{a}^{b} f$$

Convergence d'une intégrale 1.2

1.2.1Convergence vers ∞

Définition 17 Soit f application continue par morceaux de $[a, \infty]$ dans K. Alors, $\forall x \in [a, \infty[$, f est continue par morceaux sur [a, x] et on peut calculer :

$$\int_{a}^{x} f$$

C'est à dire que l'on peut définir une nouvelle application F:

$$F: [a, \infty] \to K$$

$$x \mapsto \int_{a}^{x} f$$

Lorsque F a une limite finie, quand $x \to \infty$, on dit que $\int_a^\infty f$ converge, et on note :

$$\int_{a}^{\infty} f = \lim_{x \to \infty} F(x)$$

En réalité, on devrai dire que $\int_a^\infty f$ existe, ou que $\int_a^x f$ converge quand $x \to \infty$

Propriété 54 $Si \alpha \in \Re \ et \ a \in \Re^{+*}$:

 $\int_a^\infty \frac{dt}{t^\alpha}$ converge si et seulement si $\alpha > 1$. De plus, on peux calculer la limite par primitivation.

Propriété 55 Soit f une application continue par morceaux de $[a, \infty[$ dans K, et si $b \in [a, \infty[$

$$\int_a^\infty f \ converge \ si \ et \ seulement \ si \ \int_b^\infty f \ converge$$

Dans ce cas, on obtient la relation de Chasles :

$$\int_{a}^{\infty} f = \int_{a}^{b} f + \int_{b}^{\infty} f$$

1.2.2 Convergence vers 0

Définition 18 Soit f application continue par morceaux $de \]0,a]$ dans K. Alors on peut définir F, fonction $de \]0,a]$ dans K, défini par :

$$\forall x \in]0,a] F(x) = \int_{T}^{a} f$$

Car f est continue par morceaux sur [x,a] On dit que $\int_0^a f$ converge lorsque F(x) a une limite finie quand x tend vers 0^+ . En réalité, on devrai dire que $\int_0^a f$ existe, ou que $\int_0^a f$ converge quand $x \to 0^+$

Propriété 56 Si $\alpha \in \Re$ et $a \in \Re^{+*}$:

 $\int_0^a rac{dt}{t^lpha} \ converge \ si \ et \ seulement \ si \ lpha < 1.$

De plus, on peux calculer la limite par primitivation.

Propriété 57 Soit f une application continue par morceaux de [0, a] dans K.

$$\forall b \in]0,a] \int_0^a f$$
 converge si et seulement si $\int_0^b f$ converge

 $Dans\ ce\ cas,\ on\ obtient\ la\ relation\ de\ Chasles:$

$$\int_{0}^{a} f = \int_{0}^{b} f + \int_{b}^{a} f$$

1.3 Résultats spécifiques sur les applications de $[a; \infty[$ à valeurs dans K

1.3.1 Limite de l'application et convergence de l'intégrale

Soit f, application continue par morceaux sur $[a; \infty]$ à valeurs dans K, avec $a \in \Re$.

Propriété 58 Si f a une limite finie $l, l \in K$, quand $x \to \infty$, et si $\int_a^{\infty} f$ converge, alors l=0

Propriété 59 Si f est à valeur réelle et si f a une limite $l, l \in \Re + \{+\infty; -\infty\}$, quand $x \to \infty$, et si $\int_a^\infty f$ converge, alors l=0.

Propriété 60 Soit f application continue par morceaux de $[a, \infty[$ dans \Re . \int_a^{∞} peut être convergente sans que f ait une limite en ∞ , ou que f soit bornée.

1.3.2 Caractérisation séquentielle d'une limite

Propriété 61 Soit f application continue par morceaux de $[a, \infty[$ dans K. Soit $l \in K$

$$(\lim_{x\to\infty} f(x) = l) \Leftrightarrow (\forall (x_n) \text{ à valeur dans } [a, \infty[\text{ tendant vers } \infty, \ f(x_n) \underset{n\to\infty}{\to} l)$$

Propriété 62 Soit f application de \Re dans K définies sur un voisinage V de $x_0 \in \bar{\Re}$, et $l \in K$ (ou $l \in \bar{\Re}$ si $K=\Re$)

$$(\lim_{\substack{x \to x_0 \\ x \in V}} f(x) = l) \Leftrightarrow (\forall (x_n) \text{ à valeur dans } V, \text{ tendant vers } x_0, f(x_n) \xrightarrow[n \to \infty]{} l)$$

Définitions et propriétés générales 1.4

Dans les chapitres suivants, on adopte la notation suivante :

$$\int_{a}^{\alpha} f = \lim_{x \to \alpha} \int_{a}^{x} f$$

Définition 19 *Soit* $a \in \mathbb{R}$, *et* $\alpha \in \mathbb{R} + \{+\infty\}$, *avec* $a \leq \alpha$.

Soit f application continue par morceaux de $[a, \alpha]$.

On peut alors définir F:

$$F:[a,\alpha[\,\to K$$

$$x \mapsto \int_{a}^{x} f$$

On dit que $\int_a^{\alpha} f$ converge si et seulement si F(x) a une limite finie dans K quand x tend vers α par valeur inferieur.

On note alors \int_a^{α} cette limite.

Propriété 63 Soit f application continue par morceaux de $[a, \alpha]$ dans K.

 $Si \ b \in [a, \alpha[$:

$$\left(\int_a^\alpha f \ converge \ \right) \Leftrightarrow \left(\int_b^\alpha f \ converge \ \right)$$

Dans ce cas, nous avons la relation de Chasles suivante :

$$\int_{a}^{\alpha} f = \int_{a}^{b} f + \int_{b}^{\alpha} f$$

Propriété 64 Soit f application continue par morceaux de $[a, \alpha]$ dans K. $\forall \lambda \in \Re$:

$$\lambda f: [a, \alpha] \to K$$

$$x \to \lambda f(x)$$

est une fonction continue par morceaux et :

$$\left(\int_{a}^{\alpha} f \ converge\right) \Rightarrow \left(\int_{a}^{\alpha} \lambda f \ converge\right)$$

 $Et \ dans \ ce \ cas :$

$$\int_{a}^{\alpha} \lambda f = \lambda \int_{a}^{\alpha} f$$

Propriété 65 Soient f et g deux applications continues par morceaux de $[a, \alpha]$ dans K.

Alors f+g est continue par morceaux. Si $\int_a^{\alpha} f$ et $\int_a^{\alpha} g$ converge, alors $\int_a^{\alpha} f + g$ converge et :

$$\int_{a}^{\alpha} f + g = \int_{a}^{\alpha} f + \int_{a}^{\alpha} g$$

Propriété 66 Soit f application de $[a, \alpha[$ dans C. Soient $f_1 = Re(f)$ et $f_2 = Im(f)$. f est continue par morceaux sur $[a, \alpha] \Leftrightarrow f_1$ et f_2 sont continue par morceaux sur $[a, \alpha]$. Dans ce cas:

$$\left(\int_a^{\alpha} f \ converge\right) \Leftrightarrow \left(\int_a^{\alpha} f_1 \ et \ \int_a^{\alpha} f_2 \ convergent\right)$$

. On obtient alors:

$$\int_{a}^{\alpha} f = \int_{a}^{\alpha} f_{1} + i \int_{a}^{\alpha} f$$

Propriété 67 Soit f application continue par morceaux de $[a, \alpha]$ dans K, avec :

$$\alpha \in \Re \cup \{-\infty\}$$
$$\beta \in \Re \cup \{+\infty\}$$
$$\alpha \le \beta$$

Soit $\gamma \in]\alpha, \beta[$ Si f est continue par morceaux sur $]\alpha, \gamma[$ et sur $]\gamma, \beta[$ On dit que $\int_{\alpha}^{\beta} f$ converge si les intégrales $\int_{\alpha}^{\gamma} f$ et $\int_{\gamma}^{\beta} f$ convergent. On obtient alors que :

$$\int_{\alpha}^{\beta} f = \int_{\alpha}^{\gamma} f + \int_{\gamma}^{\beta} f$$

1.5 Convergence Absolue, Fonctions intégrables sur un intervalle

Dans ce chapitre, nous allons nous limiter aux applications continue par morceaux de $[a, \alpha[$ dans K, avec :

$$\alpha \in \Re \cup \{-\infty\}$$
$$a \in \Re, \ a < \alpha$$

Mais les définitions et résultats se généralise sur des applications continues par morceaux sur $]\alpha, \beta[$ ou sur $]\alpha, \gamma[,]\gamma, \beta[$.

1.5.1 Convergence Absolue

Définition 20 Soit f application continue par morceaux sur $[a, \alpha[$ dans K. L'application g:

$$g: [a, \alpha[\to \Re^+]$$

 $x \mapsto |f(x)|$

est aussi continue par morceaux sur $[a, \alpha[$.

On dit que f est intégrable sur $[a, \alpha[$ ou que $\int_a^{\alpha} f$ converge absolument lorsque $\int_a^{\alpha} |f|$ converge

Propriété 68

$$(\int_{a}^{\alpha} f \ converge \ absolument) \Rightarrow (\int_{a}^{\alpha} f \ converge)$$

1.5.2 Critère de Cauchy

Critère de Cauchy pour les suites

Énoncé 12 On dit qu'une suite (u_n) a valeur dans K vérifie le critère de Cauchy si et seulement si:

$$\forall \varepsilon > 0, \exists N_0 \in N \ tq \ \forall (p,q) \in N^2 \ tq \ p \ et \ q \ge N_0 :$$

$$|u_p - u_q| \le \varepsilon$$

En faite, on obtient une définition équivalente en se limitant aux couples $(p,q) \in N^2$ telque q < p. Ce qui donne :

 (u_n) est une suite de Cauchy si et seulement si :

$$\forall \varepsilon > 0, \exists N_0 \in N \ tq \ \forall q > p \geq N_0 \ |u_p - u_q| \leq \varepsilon$$

Propriété 69 Toutes suites (u_n) à valeur dans \Re vérifiant le critère de Cauchy converge.

Propriété 70 Toutes suite de Cauchy à valeur dans C converge dans C

Critère de Cauchy pour les fonctions

Définition 21 Soit f fonction de \Re dans K, définie sur un voisinage V de $x_0 \in \bar{\Re}$. On dit que f vérifie le critère de Cauchy en x_0 si et seulement si :

$$\forall \varepsilon > 0, \exists U \ voisinage \ de \ x_0 \ dans \ V \ tq \ \forall (x, x') \in U^2, |f(x) - f(x')| \leq \varepsilon$$

Propriété 71 Avec les notations précédantes, si f, fonction de \Re dans K, définie au voisinage de $x_0 \in \overline{\Re}$, admet un limite finie en x_0 , alors f vérifie le critère de Cauchy en x_0

Propriété 72 Si f, fonction de \Re dans K, définie au voisinage de $x_0 \in \bar{\Re}$, vérifie le critère de Cauchy en x_0 , alors f admet une limite finie en x_0

1.6 Convergence des intégrales de fonctions positives - Intégrabilité

1.6.1 Propriétés fondamentale

Propriété 73 Soit f, application continue par morceaux de [a,b] dans \Re . Si f est à valeurs positives sur [a,b], alors :

$$x \mapsto \int_{a}^{x} f(t)dt$$
 est croissante

Convergence d'une intégrale de fonction positive par majoration

Propriété 74 Soient f et g deux fonction continue par morceaux de [a,b] dans \Re . $Si \forall t \in [a,b] \ 0 \leq f(t) \leq g(t)$, alors:

$$(\int_{a}^{b} g \ converge \) \Rightarrow (\int_{a}^{b} f \ converge \ et \ 0 \le \int_{a}^{b} f(t) \le \int_{a}^{b} g(t))$$
$$(\int_{a}^{b} g \ diverge \) \Rightarrow (\int_{a}^{b} f \ diverge$$

Intégration par domination

Propriété 75 Soient f et g deux fonctions continue par morceaux de [a,b] dans K. Si f = O(g) (Grand O), alors :

$$(g intégrable sur [a,b]) \Rightarrow (f intégrable sur [a,b])$$

Convergence des intégrales de fonction positive

Propriété 76 Soient f et g deux fonction continue par morceaux de [a,b] dans \Re , telque :

$$\rightarrow$$
 f et g soit de signe constant au voisinage de b

alors:

$$\left(\int_{a}^{b} g \ converge \ \right) \Leftrightarrow \left(\int_{a}^{b} f \ converge \right)$$
$$\left(\int_{a}^{b} g \ diverge \ \right) \Leftrightarrow \left(\int_{a}^{b} f \ diverge \right)$$

On dit que ces deux intégrales sont de même nature.

Propriété 77 Soit b réel fini > a.

Si f est une fonction continue par morceaux de [a,b] dans K, et si f a une limite finie en b⁻, alors:

$$\int_{a}^{b} f \ converge$$

1.6.2 Règles de Riemann

En ∞

Soit $a \in \Re$

Énoncé 13 Soit f fonction continue par morceaux de $[a, \infty[$ dans K. Si il existe $\alpha > 1$ telque $t^{\alpha}f(t) \underset{t \to \infty}{\to} 0$, alors f est intégrable sur $[a, \infty[$.

Propriété 78 Soit f fonction de $[a, \infty[$ dans \Re , continue par morceaux. Si $tf(t) \underset{t \to \infty}{\to} 0$, alors :

$$\int_{a}^{\infty} f \ diverge$$

En 0

Soit $a \in \Re$

Énoncé 14 Soit f fonction continue par morceaux de]0,a] dans K. Si il existe $\alpha < 1$ telque $t^{\alpha}f(t) \underset{t \to O^{+}}{\to} 0$, alors f est intégrable sur]0,a].

Propriété 79 Soit f fonction de]0,a] dans \Re , continue par morceaux. Si $tf(t) \underset{t \to 0^+}{\to} 0$, alors :

$$\int_0^a f \ diverge$$

1.6.3 Intégrale de Bertrand

Propriété 80 *Soit* a>1 *et* $(\alpha,\beta)\in\Re^2$.

$$\left(\int_a^\infty \frac{dx}{x^\alpha ln(x)^\beta} \ converge \ \right) \Leftrightarrow (\alpha > 1, \ ou \ \alpha = 1, \beta > 1)$$

Propriété 81 Soit $a \in [0, 1[$ et $(\alpha, \beta) \in \mathbb{R}^2$.

$$\left(\int_0^a \frac{dx}{x^{\alpha} \ln(x)^{\beta}} \ converge\right) \Leftrightarrow (\alpha < 1, \ ou \ \alpha = 1, \beta > 1)$$

1.7 Intégration par parties - Changement de variable

1.7.1 Intégration par parties

Définition 22 Soient u et v deux applications de [a,b[dans K C^1 par morceaux et continue sur [a,b[.

$$\int_{a}^{b} u'.v = [u.v]_{a}^{b} - \int_{a}^{b} u.v'$$

Avec:

$$[u.v]_a^b = \lim_{x \to b^-} [u.v]_a^x$$

1.7.2 Changement de variable

Soit f fonction continue sur [a,b[, à valeur dans K. Soit g fonction C^1 sur [a',b'] à valeur dans [a,b[, avec a=g(a'), b= $\lim_{x\to b^-} g(x)$.

$$\int_{a}^{b} f(t).dt = \int_{a'}^{b'} f(g(u)).g'(u).du$$

1.8 Quelques espaces remarquables

Dans tous ce chapitre, on considère que I est un intervalle fondamental.

Définition 23 On dit que I est un intervalle fondamental si :

$$I = [a, b]; I = [a, b]; I = [a, b]; I = [a, b]$$

Avec, selon les cas :

$$a \in \Re \ ou \ a \in \Re \cup \{-\infty\}$$

$$b \in \Re \ ou \ b \in \Re \cup \{+\infty\}$$

Cette notation est une notation personnelle.

Propriété 82 L'ensemble des applications continue par morceaux de I dans K telque $\int_I f$ converge est un K espace vectoriel

Propriété 83 L'ensemble L^1_{cpm} , qui est l'ensemble des applications continue par morceaux sur I, à valeur dans K, et intégrable sur I, est un K espace vectoriel. C'est un sous-espace vectoriel de l'espace précédent.

Propriété 84 L'ensemble L^2_{cpm} , qui est l'ensemble des applications continue par morceaux sur I, à valeur dans K, de carrée intégrable sur I, est un K espace vectoriel.

Lemme 1 Soit a et b deux complexes :

$$|a+b|^2 \le 2.(|a|^2 + |b|^2)$$

Si a et b sont réel, ce lemme devient :

$$(a+b)^2 < 2.(a^2+b^2)$$

1.9 Remarque concernant le reste

Définition 24 Soit f fonction de [a,b[dans K, avec a réel et $b \in \Re \cup \{+\infty\}$, continue par morceaux et telque \int_a^b converge.

On a donc aussi:

$$\forall x \in [a, b] \int_{x}^{b} f \ converge$$

On peut donc définir le reste intégrale au voisinage de b, notée R(x):

$$R: [a,b] \to K$$

$$x \mapsto \int_x^b f$$

Propriété 85 Avec les notations et définition précédantes, on obtient que :

$$\lim_{x \to b^{-}} R(x) = 0$$

$^{\mathsf{Chapitre}}\,2$

Intégrales à paramètres

2.1 Théorème de continuité

Soit:

$$f: X \times I \to K$$

 $(x,t) \mapsto f(x,t)$

avec X et I intervalles de \mathbb{R} .

On peut définir :

$$F(x) = \int_{I} f(x, t) dt$$

à condition suffisante que $t \mapsto f(x,t)$ soit C^0 par morceaux sur I et que $\int_I f(x,t) dt$ converge. Si cette condition est satisfaite, pour tout $x \in X$, on peut définir une nouvelle application :

$$F: X \to K$$

 $x \mapsto F(x)$

Avec:

$$F(x) = \int_{I} f(x, t)dt$$

Théorème 2 Avec les notations précédentes, si :

- $\rightarrow \forall x \in X, t \mapsto f(x,t)$ est continue par morceaux sur I
- $\rightarrow \forall t \in I, x \mapsto f(x,t) \text{ est continue sur } X$
- \rightarrow Condition de domination : $\exists \varphi: I \rightarrow \mathbb{R}_+$, condition par morceaux, intégrable sur I, telque :

$$\forall (x,t) \in X \times I |f(x,t)| \le \varphi(t)$$

Alors F est définie et continue sur X.

 $\textbf{Propriété 86} \ \textit{En considérant que la continuité est une propriété locale, on peut remplacer la condition de domination par : } \\$

 $\forall [a,b]c\ X,\ \exists \varphi_{[a,b]}:I \to \Re_+\ continue\ par\ morceaux\ et\ intégrale\ sur\ I\ telle\ que\ :$

$$\forall x \in [a, b] \ \forall t \in I, |f(x, t)| \le \varphi_{[a, b]}(t)$$

2.2 Théorème de classe C^1

Théorème 3 Soit f :

$$f: \mathbb{R}^2 \to K$$

 $(x,t) \mapsto f(x,t)$

Avec K un corps, X et I deux intervalles de \mathbb{R} . Si:

- $\rightarrow \forall x \in X, t \mapsto f(x,t)$ est continue par morceaux sur I

$$\forall (x,t) \in X \times I \mid \frac{\partial f}{\partial x}(x,t) \mid \leq \varphi(t)$$

Alors F:

$$F:X\to K$$

$$x \mapsto F(x)$$

Avec:

$$F(x) = \int_{I} f(x, t)dt$$

est définie et de classe C^1 sur X et :

$$\forall x \in X \ F'(x) = \int_{I} \frac{\partial f}{\partial x}(x, t) dt$$

On appelle ceci formule de dérivation soussigne intégrale de Lipnitz

Propriété 87 En considérant que la continuité est une propriété locale, on peut remplacer la condition de domination par :

 $\forall [a,b]c\ X,\ \exists \varphi_{[a,b]}:I \to \Re_+\ continue\ par\ morceaux\ et\ intégrale\ sur\ I\ telle\ que\ :$

$$\forall x \in [a, b] \ \forall t \in I, |\frac{\partial f}{\partial x}(x, t)| \le \varphi_{[a, b]}(t)$$

Théorème de classe C^p (Hors programme) 2.3

Théorème 4 Soit F:

$$F: x \mapsto \int_{I} f(x,t)dt$$

avec f une fonction de XxI dans K, avec X et I des intervalles inclus dans \mathbb{R} . Si:

- $\rightarrow \forall t \in I, x \mapsto f(x,t) \text{ est } C^p \text{ sur } X, p \in \mathbb{N}.$
- \rightarrow Condition de domination : $\forall x \in X, \forall k \in [|0,p|], t \mapsto \frac{\partial^k f}{\partial x^k}(x,t)$ est continue par morceaux sur I, et $\forall k \in [|0,p|], \exists \varphi_k$ fonction de I dans \mathbb{R}_+ , continue par morceaux sur I et intégrable $sur\ I\ telque$:

$$\forall (x,t) \in X \times I, \ |\frac{\partial^k f}{\partial x^k}(x,t)| \le \varphi_k(t)$$

Alors F est C^p sur X et les dérivées succésives s'obtienne en dérivant sous le signe intégrale

Propriété 88 Comme dans les théorèmes précédent, en considérant le caractère locale de la classe C^p , on peut se ramener pour la condition de domination à tout segment inclu dans X. On peut aussi considéré une famille d'intervalle exaustives.

Approximation uniforme

3.1 Approximation uniforme par des fonctions en escaliers

Théorème 5 Soit [a,b] un segment inclu dans \mathbb{R} .

Pour toute fonctions f de [a,b] dans K ,ou plus généralement dans E, un K espace vectoriel normée, et $\forall \varepsilon > 0$:

$$\exists \varphi : [a,b] \to K \ ou \ E$$

fonction en escalier, telle que :

$$\| f - \varphi \|_{\infty,[a,b]} < \varepsilon$$

Il existe plusieurs variantes de théorème :

Théorème 6 Caractérisation séquentielle :

Avec les notations précédentes, quelque soit f, fonction de [a,b] dans K ou E, il existe une suite de fonctions en escalier (φ_n) de [a,b] dans K ou E, convergeant uniformement vers f sur [a,b]

Théorème 7 L'ensemble \mathcal{E} des fonctions en escalier de [a,b] dans K ou E est dense dans l'ensemble C_{pm} des fonctions continue par morceaux de [a,b] dans K ou E.

3.2 Généralisation aux fonctions continues par morceaux

Avec les notations précédentes :

Soit f une fonction de [a,b] dans K ou E, continue par morceaux. C'est à dire qu'il existe une subdivision, noté σ :

$$a = a_0 < \dots < a_p = b$$

telque f soit continue sur $]a_k, a_{k+1}[$, $k \in [|0, p-1|]$, et f admet une limite à droite et à gauche en a_k , à droite en a_0 , a gauche en a_p .

On peut donc définir f_k , le prolongement par continuité de f sur $[a_k, a_{k+1}]$.

Soit $\varepsilon > 0$. Il existe φ_k en escalier sur $[a_k, a_{k+1}]$ telque :

$$|| f_k - \varphi_k ||_{\infty,[a,b]} < \varepsilon$$

On peut donc définir φ , commme coincident avec les φ_k et égale à f aux bornes des intervalles. On obtient donc que :

$$\| f - \varphi \|_{\infty,[a,b]} < \varepsilon$$

3.3 Théorème

Définition 25 Soit $\varphi : [a,b] \to E$. On dit que φ est affine si il existe une subdivision :

$$a < x_0 < \dots < x_p = b$$

telque:

$$\forall k \in [[0, p-1]], \ \exists (\overrightarrow{\alpha_k}, \overrightarrow{\beta_k}) \in E^2 \ tq \ \forall t \in]x_k, x_{k+1}[\ \varphi(t) = t.\overrightarrow{\alpha_k} + \overrightarrow{\beta_k}]$$

Théorème 8 Soit f, application continue de [a,b] dans E, un K espace vectoriel normé (En particulier, on peut avoir $E = \mathbb{R}$ ou \mathbb{C}).

Alors, $\forall \varepsilon > 0$, $\exists \varphi : [a,b] \to E$, continue et affine par morceaux, telque :

$$\| f - \varphi \|_{\infty,[a,b]} \le \varepsilon$$

Ce théorème est inutile en pratique.

3.4 Théorème d'approximation uniforme de Weierstrass

Théorème 9 Soit $f \in C([a,b],K)$, avec $K = \mathbb{R}$ ou \mathbb{C} .

Alors, $\forall \varepsilon > 0, \exists P \in K[X] \ telque :$

$$|| f - P ||_{\infty,[a,b]} \le \varepsilon$$

Il existe, comme précédement, des variantes de ce théorème :

Théorème 10 Caractérisation séquentielle.

Pour tout $f \in C([a,b],K)$, $\exists (P_n)$ suite de polynomes $\in K[X]$ convergeant uniformement vers f sur [a,b].

Théorème 11 L'ensemble des fonctions polynomiales de [a,b] dans K est dense dans l'ensemble des fonctions continue de [a,b] dans K.

Troisième partie

Suites, Séries

Chapitre 1

Suite de fonctions ou d'application -Convergence uniforme

1.1 Convergence simple

Définition 26 Soit A une ensemble (en général, A est un intervalle), et $(E, \|\ \|)$ un K espace vectoriel normé.

Soit (f_n) une suite d'application de $A \to E$.

On dit que cette suite converge simplement sur A si :

$$\forall x \in A \ (f_n(x)) \ converge \ dans \ (E, \| \ \|)$$

Lorsque que c'est le cas, la limite de $f_n(x)$ quand n tend vers ∞ dépend a priori de x. On peut donc définir une nouvelle application :

$$f: A \to E$$

$$x \mapsto f(x) = \lim_{n \to \infty} f_n(x)$$

On dit que f est la limite simple de f_n sur A.

1.2 Convergence uniforme d'une suite d'applications

Propriété 89 L'ensemble B(A,E) des applications bornées d'un ensemble A dans un K espace vectoriel normes $(E,|| \parallel)$ est un K sous espace vectoriel des applications de A dans E. De plus :

$$B(A, E) \to \Re^+$$

$$f\mapsto \parallel f\parallel_{\infty,A}=\mathop{Sup}\nolimits\parallel f\parallel$$

est une norme

Définition 27 Soit (f_n) une suite d'application de A, qui est un ensemble de E, un K espace vectoriel normé (E, || ||), et f une application de A dans E. On dit que (f_n) converge uniformement vers f sur A si :

$$\exists n_0 \in N \ tq \ \forall n \geq n_0 \ f_n - f \in B(A, E) \ (born\acute{e}e)$$

$$|| f_n - f ||_{\infty, A} \underset{n \mapsto \infty}{\longrightarrow} 0$$

En général, la première condition est évidente. Il faut donc se concentrer sur la deuxième propriété. En pratique, $E=\Re$ et A=I c \Re .

Propriété 90 Soit (f_n) une suite d'application de A, un ensemble, dans (E, || ||), un K espace vectoriel normée.

 $Si(f_n)$ converge uniformement vers f sur A:

$$f:A\to E$$

Alors (f_n) converge simplement vers f sur A.

Propriété 91 Cette propriété est utile pour prouver la non convergence uniforme. Soit (f_n) une suite d'application de A, un ensemble, dans (E, || ||) un K espace vectoriel normée. Si (f_n) convergent uniformement vers f, application de A dans E, alors :

$$\forall (x_n) \in A^N \ f_n(x_n) - f(x_n) \underset{n \to \infty}{\longrightarrow} \overrightarrow{0}$$

De plus, (x_n) n'est pas necessairement convergente et cette notion n'a meme pas de sens si il n'y a pas de distance de défini sur A.

1.3 Théorème classique sous les hypothèses de convergence uniforme

1.3.1 Théorème de continuité

Théorème 12 Soit (f_n) une suite d'application de $I \mapsto K$, avec I un intervalle de \Re , convergent uniformement vers f, application de I dans K, sur tout le segment [a,b] inclu dans I. Si $\forall n \in N$, f_n est continue en $x_0 \in I$, alors f est continue en x_0 . Si $\forall n \in N$, f_n est continue sur I, alors f est continue sur I.

Généralisation 1 Soit (f_n) une suite d'application de A dans E, avec A une partie non vide d'un espace vectoriel normée, E un K espace vectoriel. Si:

- $\rightarrow \forall n \in N \ f_n \ est \ continue \ sur \ A, \ respectivement \ en \ a \in A.$
- \rightarrow (f_n) converge uniformement vers $f: A \rightarrow E$ sur tout compact $\in A$

Alors, f est continue sur A, respectivement en a.

Définition 28 Un compact est une extension du théorème de Bolzano-Weistrass, qui dit que de toute suite convergente on peut extraire une suite croissante.

1.3.2 Théorème d'interversion des limites, ou théorème de la double limite

Théorème 13 Soit (f_n) une suite d'application de I dans K, avec I un intervalle non vide de \Re , convergent uniformement sur I, vers un application f de I dans K.

Soit $a \in \mathbb{R}$ un point de I ou une extrémité de I.

 $Si \ \forall n \in N :$

$$f_n(x) \underset{x \to a}{\to} l_n \in K$$

avec $x \in a$, alors:

- $\rightarrow (l_n)$ converge vers une limite $l \in K$.
- $\rightarrow f(x) \underset{x \to a}{\rightarrow} l, \ avec \ x \in a.$

Définition 29 On dit qu'un espace vectoriel normée qu'il est complet si toute suite de cette espace vérifiant le critère de cauchy converge.

Les espaces vectoriel normée complet sont appellé espace de Banach

Généralisation 2 Soit (f_n) une suite d'application de A dans E, avec A une partie non vide d'un espace vectoriel normée, et E un K espace vectoriel normée complet.

Si (f_n) converge uniformement sur A vers une application f de A dans E, si $a \in \overline{A}$ c'est à dire si tout voisinage de a rencontre A, et si $\forall n \in N$ $f_n(x) \underset{x \to a}{\to} l_n \in E$, avec $x \in A$, alors:

- \rightarrow (l_n) converge vers $l \in E$.
- \rightarrow De plus $f(x) \underset{x \rightarrow a}{\rightarrow} l$, avec $x \in A$. On peut écrire ceci sous la forme suivante :

$$\lim_{x \to a, \ x \in A} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to a, \ x \in A} f_n(x)$$

On peut inverser les limites dans ce cas.

1.3.3 Théorème d'integration sur un segment sous les hypothèses de convergence uniforme

Théorème 14 Soit (f_n) une suite d'application continue sur un segment [a,b], à valeur dans K, convergent uniformement sur [a,b] vers f, application de [a,b] dans K. Alors:

- \rightarrow f est continue sur [a,b]
- $\rightarrow \int_a^b f_n = \int_a^b f$ quand $n \rightarrow \infty$

On peut écrire la deuxième conclusion sous la forme :

$$\lim_{n \to \infty} \int_{a}^{b} f_n = \int_{a}^{b} \lim_{n \to \infty} f_n$$

Généralisation 3 Ce théorème reste valable lorsqu'on remplace l'ensemble d'arrivé par un K espace vectoriel normée complet E. Ceci suppose d'avoir, au préalable défini $\int_a^b g$ pour g fonction de [a,b] dans E, un espace de banach, au moins continue par morceaux.

1.3.4 Thérorème de classe C^1

Théorème 15 Soit (f_n) une suite d'application de I, un intervalle de \Re , dans K. On suppose que :

- $\rightarrow \forall n \in N \ f_n \ est \ C^1 \ sur \ I$
- \rightarrow La suite (f_n) converge simplement sur I vers une application f de I dans K
- \rightarrow La suite (f'_n) converge uniformement sur tout segment [a,b] inclu I vers une application g de I dans

Alors:

- $\rightarrow f$ est de classe C^1 sur I
- $\rightarrow f'=g$
- $\rightarrow f_n$ converge uniformement vers f sur tout segment inclu dans I.

La conclusion 2 peut aussi s'écrire sous la forme :

$$\frac{d}{dx}\lim_{n\to\infty}f_n = \lim_{n\to\infty}\frac{d}{dx}f_n$$

Généralisation 4 Le théorème précédent reste vrai quand on remplace l'ensemble d'arrivé par un espace vectoriel normée complet, un espace de Barach

1.3.5Théorème de classe C^p

Théorème 16 Soit (f_n) une suite d'application de I, un intervalle de \Re , dans K. Soit $p \in N^*$. On suppose que:

- $\rightarrow \forall n \in N \ f_n \ est \ C^p \ sur \ I$
- \rightarrow Les suites $(f_n), (f'_n), ..., (f_n^{(p-1)}$ converge simplement sur I vers une application f de I dans
- \rightarrow La suite $(f_n^{(p)})$ converge uniformement sur tout segment [a,b] inclu I vers une application g

Alors:

- \rightarrow La limite simple f de la suite (f_n) est C^p sur I.
- $\rightarrow \forall k \in [1, p] \ f^{(k)}$ est la limite simple de la suite $(f_n^{(k)})$
- $\rightarrow \forall k \in [0,p] \ (f_n^{(k)})$ converge uniformement vers $f^{(k)}$ sur tout segment de I.

Généralisation 5 Ce théorème reste valable quand on remplace l'ensemble d'arrivé par un espace vectoriel complet.

1.3.6 Théorème de classe C^{∞}

Définition 30 Une application de I, un intervalle inclu dans \Re , dans K est dite de classe C^{∞} sur $I \ si \ \forall p \in N^* \ elle \ est \ C^p \ sur \ I.$

On en déduit facilement du théorème C^p précédent que si (f_n) est une suite d'application de I dans K, et si:

- $\rightarrow \ \forall n \in N \ f_n$ est de classe C^{∞} sur I
- $\rightarrow \forall k \in N \ (f_n^{(k)})$ converge uniformement sur tout segment inclu dans I

Alors:

- \rightarrow La limite simple f de la suite (f_n) est C^{∞} sur I.
- $\to \forall k \in N \ (f_n^{(k)})$ converge uniformement vers $f^{(k)}$ sur tout segment inclu dans I. Pour définir le classe C^p dans le cas d'un espace E, on utilise le taux de variation

Théorème de convergence monotone et convergence dom-1.4iné

Théorème de convergence monotone

Définition 31 La suite (f_n) d'application de I dans \Re est dite monotone si $\forall x \in I$, $(f_n(x))$ est monotone

Théorème 17 Soit I un intervalle quelconque de \Re (pas forcément un segment), et (f_n) une suite d'application continue par morceaux sur I, à valeur dans \Re , convergent simplement sur I vers f, application de I dans \Re , également continue par morceaux. Si :

- \rightarrow La suite (f_n) est monotone
- \rightarrow Si f_0 et f sont intégrable sur I

Alors:

 $\begin{array}{l} \rightarrow \ \forall n \in N \ f_n \ est \ int\'egrable \ sur \ I \\ \rightarrow \ \int_I f_n \rightarrow \int_I f \ quand \ n \rightarrow \infty \end{array}$

$$\rightarrow \int_I f_n \rightarrow \int_I f \ quand \ n \rightarrow \infty$$

La deuxieme conclusion peut s'écrire sous la forme :

$$\lim_{n \to \infty} \int_I f_n = \int_I \lim_{n \to \infty} f_n$$

1.4.2 Théorème de la convergence dominée

Théorème 18 Soit I un intervalle quelconque inclu dans \Re , et (f_n) une suite d'application de I dans K, continue par morceaux, convergent simplement vers f, application de I dans K, également continue par morceaux.

 $Si \exists g$, application de I dans \Re^+ , continue par morceaux et intégrale sur I, telque (condition de domination):

$$\forall n \in N, \ \forall x \in I, \ |f_n(x)| \le g(x)$$

Alors:

 \rightarrow Les f_n et f sont intégrable sur I

$$\rightarrow \int_I f_n = \int_I f \ quand \ n \rightarrow \infty.$$

On peut écrire cette dernière conséquence sous la forme suivante :

$$\lim_{n \to \infty} \int_{I} f_n = \int_{I} \lim_{n \to \infty} f_n$$

Série numérique

2.1 Définitions

2.1.1 Définitions générales

Définition 32 Soit (u_n) une suite à valeur dans K. On appelle série de terme général u_n , et on note $\sum_{n} u_n$ cette nouvelle suite, de terme générale :

$$S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n$$

 S_n est appelé somme partiel de rang n de la série $\sum\limits_n u_n$

Définition 33 On dit que la série $\sum_{n} u_n$ converge si la suite (S_n) des sommes partiel converge dans K.

On note alors:

$$\sum_{k=0}^{\infty} u_k$$

cette limite.

En général, on note également S cette limite, et on appelle S somme de la série.

Propriété 92 Si la série $\sum_{n} u_n$ converge, alors $u_n \to 0$ quand $n \to +\infty$.

2.1.2 Reste d'ordre n

Définition 34 Si $\sum_n u_n$ converge, on peut définir R_n , le reste d'ordre n de la série $\sum_n u_n$, par :

$$R_n = \lim_{p \to \infty} \sum_{k=n+1}^p u_k$$

Propriété 93 On obtient les relations suivantes :

$$S_n + R_n = S$$

$$\lim_{n\to\infty} R_n \to 0$$

2.2 Quelques propriétés générales

Dans tout ce chapitre, $(u_n),(v_n),...$ sont des suites à valeurs dans K

Propriété 94 Supposons que $\sum_n u_n$ et $\sum_n v_n$ converge, alors la série de terme général $w_n = u_n + v_n$ converge, et on as :

$$\sum_{k=0}^{\infty} w_k = \left(\sum_{k=0}^{\infty} u_k\right) + \left(\sum_{k=0}^{\infty} v_k\right)$$

Propriété 95 Soit $\lambda \in K$.

Si $\sum_{n} u_n$ converge, il en est de même de la série de terme général $w_n = \lambda u_n$, et alors :

$$\sum_{k=0}^{\infty} w_k = \lambda \left(\sum_{k=0}^{\infty} u_k \right)$$

Propriété 96 Soit (z_n) est une suite à valeur dans C.

 $Si(x_n) = Re(z_n)$ et $(y_n) = Im(z)$, donc $z_n = x_n + iy_n$, alors:

$$(\sum_{n} z_n \ converge \) \Leftrightarrow (\sum_{n} x_n \ et \ \sum_{n} y_n \ converge \)$$

Définition 35 On dit que la série de terme général u_n converge absolument, ou que la suite (u_n) est sommable, si la série $\sum_{n} |u_n|$ converge.

Théorème 19 L'absolu convergence de la série de terme général u_n implique la converge de la série de terme général u_n .

Dans ce cas, on as:

$$|\sum_{k=0}^{\infty} u_k| \le \sum_{k=0}^{\infty} |u_k|$$

Propriété 97 Pour tous n_0 entier naturel, on peut modifier les n_0 premier termes de la suite (u_n) sans modifier la convergence de la série de terme général u_n .

On peut écrire ceci sous la forme :

 $Si(v_n)$ vérifie à partir du rang n_0 $v_n = u_n$, alors :

$$(\sum_{n} v_n \ converge) \Rightarrow (\sum_{n} u_n \ converge)$$

Propriété 98 Toute suite (a_n) est une somme partielle d'une série u, à un terme constant près.

$$\forall n \in N \ a_n = \sum_{k=1}^n (a_k - a_{k-1}) + a_0$$

2.3 Séries à termes réels positifs (ou de signe constant)

Propriété fondamentale 1 Soit (u_n) une suite à valeur réel positive.

Alors la suite des sommes partielle S_n est croissante. Donc :

- \rightarrow Soit (S_n) est majorée, et alors elle converge vers $S = SupS_n$
- \rightarrow Soit (S_n) n'est pas majorée, alors $S_n \xrightarrow{\infty} \infty$. On ecrit :

$$\sum_{k=0}^{\infty} u_k = +\infty$$

Propriété 99 Si (u_n) et (v_n) sont à terme réels positifs telque

$$0 \le u_n \le v_n$$

Alors:

 $\rightarrow \sum\limits_{n}v_{n}\ converge \Rightarrow \sum\limits_{n}u_{n}\ converge\ et$:

$$0 \le \sum_{k=0}^{\infty} u_k \le \sum_{k=0}^{\infty} v_k$$

 $\rightarrow \sum_{n} u_n \ diverge \Rightarrow \sum_{n} v_n \ diverge$

Propriété 100 Soient (u_n) et (v_n) deux suites à termes réel positifs. Si $u_n = O(v_n)$ (Grand O), et si $\sum_n v_n$ converge, alors $\sum_n u_n$ converge

Propriété 101 Soient (u_n) et (v_n) deux suites à termes réels positifs, ou simplement de signe constant.

Si $u_n \sim v_n$, alors:

$$(\sum_{n} u_n \ converge \) \Leftrightarrow (\sum_{n} v_n \ converge \)$$

On dit que $\sum_{n} u_n$ et $\sum_{n} u_n$ ont même nature.

2.3.1 Convergence des séries de Riemann

Définition 36 On appelle série de Riemann les séries de terme général, avec $\alpha \in \Re$:

$$u_n = \frac{1}{n^{\alpha}}$$

Propriété 102 Soit (u_n) la suite de terme général :

$$u_n = \frac{1}{n^{\alpha}}$$

Alors:

$$(\sum_{n} u_n converge) \Leftrightarrow (\alpha > 1)$$

Propriété 103 La comparaison série-intégrale (Qui consiste à encadrer la somme partiel, ou le reste partiel, par des intégrales de la fonction) précédent permet d'obtenir un équivalent simple, quand le cas de série de terme général $u_n = \frac{1}{n^{\alpha}}$:

- $\rightarrow De S_n \ dans \ le \ cas \ divergent$
- $\rightarrow De R_n$, dans le cas convergent.

2.3.2 Règle de Riemann

Propriété 104 Soit (u_n) suite à valeur réelle ou complexe. Si $\exists \alpha > 1$ telque $n^{\alpha}u_n \underset{\infty}{\to} 0$, alors $\sum_{n} |u_n|$ converge. On dit aussi que la suite (u_n) est sommable

Propriété 105 Soit (u_n) suite à valeur réelle. Si $nu_n \xrightarrow[]{} \infty$, alors $\sum_n u_n$ diverge. On a meme :

$$\sum_{n=0}^{\infty} u_n = \infty$$

2.3.3 Série de Bertrand

Définition 37 Ce sont les séries de terme général :

$$u_n = \frac{1}{n^{\alpha} . ln(n)^{\beta}}$$

Propriété 106 Une série de Bertrand converge si et seulement si :

$$\alpha > 1$$
 ou $\alpha = 1$ et $\beta > 1$

2.3.4 Propriété de Cauchy

Soit u, la fonction définie $\forall n_0 \in N$, par :

$$u: [n_0, \infty[\to \Re$$

 $t \to u(t)$

u est une application continue par morceaux et monotone. On obtient que :

$$(\sum_{n} u(n) \text{ converge }) \Leftrightarrow (\int_{n_0}^{\infty} u \text{ converge })$$

On dit que la série et l'intégrale ont même nature.

2.3.5 Règle de d'Alembert

Propriété 107 Soit (u_n) une suite de réels telque $\forall n \Leftrightarrow \geq n_0, u_n > 0$, et telque :

$$\frac{u_{n+1}}{u_n}\underset{\infty}{\to} l\in\bar{\Re^+}$$

Alors:

 $- \rightarrow Si \ l > 1$, alors la série de terme général u_n diverge grossièrement

 $- o Si \ l < 1$, alors la série converge

2.4 Séries alternées

Définition 38 Soit (u_n) une suite de réels.

On dit que (u_n) est alternée si elle est du type :

$$\forall n \in \mathbb{N}, \ u_n = (-1)^n.a_n$$

Ou du type:

$$\forall n \in \mathbb{N}, \ u_n = (-1)^{n+1}.a_n$$

Avec (a_n) , suite de réels positive. Dan ces deux cas :

$$a_n = |u_n|$$

La série $\sum_{n} u_n$ est dites alternée sur la suite (u_n) est alternée.

2.4.1 Critère de Leibniz ou Critère spécial des séries alternée

Énoncé 15 Soit $\sum_{n} u_n$ une série alternée.

Si:

$$- \to La \ suite \ (u_n) \underset{\infty}{\to} 0$$

 $- \rightarrow (|u_n|)$ est une suite décroissante

Alors:

$$- \rightarrow La \ s\'{e}rie \sum u_n \ converge$$

 $- \rightarrow \forall n \in \mathbb{N}, \ \stackrel{\circ}{le} \ signe \ de \ R_n \ est \ le \ signe \ de \ son \ premier \ terme, \ et :$

$$|R_n| \le |u_{n+1}|$$

Ce résultat est valable aussi si on considère que S, la limite de la série, est le reste d'ordre -1.

Propriété 108 Sous les hypothèses de la série alternée, la somme S est comprise entre deux sommes partielle consécutive, S_n et S_{n+1} , et ceci $\forall n \in N$

Propriété 109 Si la série n'est alternée, et ne vérifie le fait que la suite $(|u_n|)$ n'est décroissante qu'a partir d'un rang n_0 , alors la série converge toujours, et le regle sur le reste reste valable, à partir du rang n_0 .

Lors d'exercice, le point le plus souvent difficile est de démontrer que la suite des valeurs absolu décroit.

2.5 Quelques espaces remarquables

Propriété 110 L'ensembles des suites $(u_n) \in K^N$ telque $\sum_n u_n$ converge est un sous espace vectoriel de K^N . (Stable par addition et par multiplication par un scalaire).

2.5.1 Ensemble $l^{1}(K)$

Définition 39 L'ensemble $l^1(K)$ est l'ensemble des suites sommables à valeurs dans K. Cette ensemble est un sous espace vectoriel de l'espace vectoriel vu ci dessus.

Propriété 111 Soit (u_n) une suite à valeur dans K.

Si la suite (u_n) est sommable, la serie $\sum_n u_n$ converge aussi (L'absolu convergence implique la convergence). $l^1(K)$ est donc inclu dans l'espace vectoriel vu au début de ce chapitre.

Propriété 112 Supposons que $u=(u_n)$ et $v=(v_n)$ soient sommable. L'inégalité suivante :

$$0 \le |u_n + v_n| \le |u_n| + |v_n|$$

Montre que u+v est également sommable.

Propriété 113 Soit λ un scalaire.

$$u \in l^1(K) \Rightarrow \lambda.u \in l^1(K)$$

2.5.2 Ensemble $l^{2}(K)$

Définition 40 L'ensemble $l^2(K)$ est l'ensemble des suites de carrées sommable, c'est à dire telque :

$$\sum_n |u_n^2|$$

converge.

On montre que l'ensemble précédent est inclu dans cette ensemble.

2.6 Sommation par paquets ou associativité de la sommation

Définition 41 Soit (u_n) une suite à valeur dans K telque $\sum_n u_n$ converge.

Soit:

$$S = \sum_{k=0}^{\infty} u_k$$

Donnons nous une application ϕ défini par :

$$\phi: N \to N$$

telque ϕ soit une application strictement croissante.

Une telle application étant donnée, définisoons à partir de (u_n) et de ϕ une nouvelle suite (v_n) de terme général :

$$v_n = u_{\phi_{(n-1)+1}} + \dots + u_{\phi_n}$$

Propriété 114 Avec les notations précédentes, le fait que la série de terme général u_n converge implique que la série de terme général v_n converge, et vers S aussi.

Chapitre 3

Sommation des relations de comparaison

3.1 Cas sommable

Dans tous ce chapitre, les relations de sommation sont des relations consernant les restes

$$\sum_{k=n+1}^{\infty} u_k$$

Hypothèses générales 1 Dans l'ensemble de cette fiche, (u_n) et (v_n) sont deux suites définies à partir d'un certain rang N_0 .

- $\rightarrow (u_n)$ est une suite à valeur C.
- $\rightarrow (v_n)$ est une suite à valeur dans \Re^+ , ou à valeur réelles et de signe constant.

3.1.1 Négligabilité

Théorème 20 Avec les hypothèses précédentes : Supposons que (v_n) soit sommable et que :

$$u_n \ll v_n$$

Alors (u_n) est également sommable, et, $\forall n \geq N_0$:

$$\sum_{k=n+1}^{\infty} u_k \ll \sum_{k=n+1}^{\infty} v_k$$

On peut aussi enoncer ce théorème, mais avec les notations de Landau.

Théorème 21 Sous les hypothèses de départ : Supposons que (v_n) soit sommable et que :

$$u_n = o(v_n)$$

Alors $(o(v_n))$ est sommable et

$$\sum_{k=n+1}^{\infty} o(v_k) \ll o(\sum_{k=n+1}^{\infty} v_k)$$

Propriété 115 Soit (a_n) et (b_n) deux suites. Si :

$$a_n \underset{\infty}{\ll} b_n \Leftrightarrow \forall \varepsilon > 0 \\ \exists N \in N \ tq \ \forall n \geq N, \ |a_n| \leq \varepsilon |b_n|$$

3.1.2 Domination

Théorème 22 Avec les hypothèses précédentes : Supposons que (v_n) soit sommable et que :

$$u_n \underset{\infty}{\preccurlyeq} v_n$$

Alors (u_n) est également sommable, et, $\forall n \geq N_0$:

$$\sum_{k=n+1}^{\infty} u_k \preccurlyeq \sum_{k=n+1}^{\infty} v_k$$

On peut aussi enoncer ce théorème, mais avec les notations de Landau.

Théorème 23 Sous les hypothèses de départ :

Supposons que (v_n) soit sommable et que :

$$u_n = O(v_n)$$

Alors $(O(v_n))$ est sommable et

$$\sum_{k=n+1}^{\infty} O(v_k) \ll O(\sum_{k=n+1}^{\infty} v_k)$$

Propriété 116 Soit (a_n) et (b_n) deux suites. Si :

$$a_n \stackrel{\prec}{\underset{\sim}{\longrightarrow}} b_n \Leftrightarrow \exists M \in \Re+, \ \exists N \in N, \ tq \ \forall n \geq N, \ |a_n| \leq M|b_n|$$

3.1.3 Equivalence

Sous les hypothèses du préambule, en particulier sur le fait que (v_n) soit de signe constant à partir d'un certain rang n_0 : Si :

$$u_n \underset{\infty}{\sim} v_n$$
 et (v_n) est sommable

Alors:

$$(u_n)$$
 est sommable et $\sum_{k=n+1}^{\infty} u_n \sim \sum_{k=n+1}^{\infty} v_n$

3.2 Cas non sommable

Dans tout ce chapitre, les relations de sommation concerne les sommes partielle :

$$\sum_{n_0}^n u_k$$

3.2.1 Négligabilité

Théorème 24 Avec les hypothèses précédentes, en particulier (v_n) de signe constant à partir d'un certain rang :

Supposons que (v_n) ne soit pas sommable et que :

$$u_n \ll v_n$$

Alors:

$$\sum_{k=n_0}^n u_k \ll \sum_{k=n_0}^n v_k$$

Mais nous n'avons pas d'information sur la sommabilité ou la non sommabilité de (u_n) .

On peut aussi enoncer ce théorème, mais avec les notations de Landau.

Théorème 25 Sous les hypothèses de départ :

Supposons que (v_n) ne soit pas sommable et que :

$$u_n = o(v_n)$$

Alors:

$$\sum_{k=n_0}^n o(v_k) \ll o(\sum_{k=n_0}^n v_k)$$

3.2.2 Domination

Théorème 26 Avec les hypothèses précédentes : Supposons que (v_n) ne soit pas sommable et que :

$$u_n \preceq v_n$$

Alors $\forall n \geq N_0$:

$$\sum_{k=n_0}^n u_k \preccurlyeq \sum_{k=n_0}^n v_k$$

On peut aussi enoncer ce théorème, mais avec les notations de Landau.

Théorème 27 Sous les hypothèses de départ : Supposons que (v_n) ne soit pas sommable et que :

pposons que (v_n) ne son pas sommanie et que :

$$u_n \underset{\infty}{=} O(v_n)$$

Alors:

$$\sum_{k=n_0}^n O(v_k) \ll O(\sum_{k=n_0}^n v_k)$$

3.2.3 Equivalence

Sous les hypothèses du préambule, en particulier sur le fait que (v_n) soit de signe constant à partir d'un certain rang n_0 : Si :

$$u_n \underset{\infty}{\sim} v_n$$
 et (v_n) n'est pas sommable

Alors, (u_n) n'est pas sommable et :

$$\sum_{k=n_0}^n u_n \sim \sum_{k=n_0}^n v_n$$

Chapitre 4

Séries d'applications

4.1 Définitions

Définition 42 Soit (u_n) une suite d'application d'un ensemble A a valeurs dans un K espace vectoriel normée E, munie de la norme $\| \cdot \|$.

En pratique, A est un intervalle inclu dans \Re , et E sera presque toujours K, et donc dans ce cas :

$$\| \| = \| \|$$

À partir de cette suite d'application de A dans E, on peut construire une nouvelle suite d'application (S_n) :

$$S_n:A\to E$$

$$x \mapsto S_n(x) = \sum_{k=0}^n u_k(x)$$

Cette nouvelle suite (S_n) s'appelle la série d'application de terme général u_n , et se note : $\sum_n u_n$

4.1.1 Convergence simple

Définition 43 On dit que $\sum_{n} u_n$ converge simplement sur A si la suite d'application (S_n) converge simplement sur A. Lorsque que c'est le cas, on peut définir une nouvelle application :

$$S:A\to E$$

$$x\mapsto \sum_{k=0}^\infty u_k(x)$$

On dit que S, application de A dans E, est la limite simple de la serie. On peut également, lorsqu'il y a convergence simple de la série sur A, définir l'application R_n :

$$R_n:A\to E$$

$$x \to \sum_{k=n+1}^{\infty} u_k(x)$$

Et nous avons les relations suivantes :

$$S = S_n + R_n$$

$$\forall x \in A \ R_n(x) \to \overrightarrow{0} \in E$$

On dit aussi, pour la dernière relation, que (R_n) converge simplement vers $\tilde{0}$ sur A

4.1.2 Convergence absolue

Définition 44 On dit que la série d'application $\sum_{n} u_n$ converge absolument sur A si :

$$\forall x \in A \sum_{n} \| u_n(x) \|$$
 converge

Propriété 117 Si E = K, la convergence absolue de $\sum_{n} u_n$ sur A implique ma convergence simple de cette série d'application sur A.

Cette propriété reste vrai sur E est un K espace vectoriel normée complet, dit de Banach

4.1.3 Convergence uniforme

Définition 45 On dit que la série d'application $\sum_{n} u_n$ converge uniformement sur A si la suite d'application (S_n) converge uniformement sur A.

Lorsque c'est le cas, la série d'application converge simplement sur A.

Notons S la limite simple de (S_n) . Dire que la série d'application converge sur A signifie que :

$$\parallel S_n - S \parallel_{\infty, A} \xrightarrow[n \to \infty]{} 0 \Leftrightarrow \parallel R_n \parallel_{\infty, A} \xrightarrow[n \to \infty]{} 0$$

Et qu'il existe un rang a partir du quel R_n est bornée.

On peut dire ceci de la façon suivante aussi. La serie d'application de terme général u_n converge uniformement sur A:

- \rightarrow La serie converge simplement sur A (Pour l'existence de S, donc de (R_n))
- \rightarrow La suite (R_n) converge uniforment sur A.

Propriété 118 Si (S_n) converge uniformement sur A vers S, alors :

On écrit de même :

$$\forall (x_n)R_n(x_n) \to \overrightarrow{0} \in E$$

Cette propriété est utile pour montrer la non convergence uniforme.

4.1.4 Convergence normale, ou convergence au sens de Weirstrass

Définition 46 On dit qu'une série d'application $\sum_{n} u_n$ converge normalement sur A si u_n est bornée sur A, au moins à partir d'un certain indice n_0 , au quel cas on peut définir sa norme infini, et si

$$\sum_{n} \| u_n \|_{\infty,A} \quad converge$$

Propriété 119 Si la série d'application de terme général u_n converge normalement sur A, alors :

La série converge absolument sur A

et si E est complet (en particulier E=K), alors

La série converge uniformement sur A

4.2 Théorème classique sous hypothèse de convergence uniforme

4.2.1 Théorème de continuité

Théorème 28 Soit (u_n) une suite d'application de I, un intervalle inclu dans \Re , dans K. Si $\forall n \in N$ u_n est continue en $x_0 \in I$, respectivement continue sur I, et si $\sum_n u_n$ converge uniformement sur I, alors :

$$S = \sum_{k=0}^{\infty} u_k$$
 est continue en x_0 , respectivement sur I

Théorème 29 De plus, consient que la continuité est une propriété locale, on peut énoncer le théorème précédent de la façon suivante :

Soit (u_n) une suite d'application continue sur I, un intervalle de \Re , et à valeur dans K. Si la série de fonctions converge uniformement sur tout segment inclu dans I, alors S est continue sur I

Définition 47 Un sous ensemble d'un K espace vectoriel normée E est dit compact si de toute suite (x_n) à valeur dans K, on peut extraire une sous-suite $(x_{\phi(n)}, avec \phi application strictement croissante de <math>N$ dans N, convergent vers un élement de K.

Généralisation 6 Soit (u_n) une suite d'application de A dans E, avec A un sous ensemble non vide d'un K espace vectoriel normée E', et E un K espace vectoriel normée. Si:

- $\rightarrow \forall n \in N \ u_n \ est \ continue \ sur \ A$
- $\rightarrow \sum_{n} u_n$ converge uniformenet sur tout compact inclu dans A

Alors S est continue sur A

4.2.2 Théorème d'inversion de la limite et de la somme

Théorème 30 Soit (u_n) une suite d'application de I, un intervalle inclue dans \Re , dans K, et $a \in I$, ou a une extrémité, ou $a = \pm \infty$. Si :

 $\rightarrow \ \forall n \in N$:

$$\lim_{x \to a, x \in A} u_n(x) = l_n \in K$$

 $\rightarrow \sum_{n} u_n(x)$ converge uniforment sur I

Alors la série $\sum_{n} l_n$ converge et :

$$S(x) \underset{x \to a, x \in A}{\longrightarrow} \sum_{k=0}^{\infty} l_k$$

On peut aussi ecrire ceci sous la forme :

$$\lim_{x \to a, x \in A} \sum_{k=0}^{\infty} u_k(x) = \sum_{k=0}^{\infty} \lim_{x \to a, x \in A} u_k(x)$$

Généralisation 7 Ce théorème reste valable pour des applications u_n de [a,b] dans E, un K espace vectoriel complet, à condition d'avoir défini ce qu'est l'intégrale de u_n dans cette espace.

4.2.3 Théorème de classe C^1

Théorème 31 Soit (u_n) une suite d'application de I dans K, avec I un intervalle de \Re . Si:

- $\rightarrow \forall n \in N, u_n \text{ est de classe } C^1 \text{ sur } I.$
- $\rightarrow \sum_n u_n$ converge simplement sur I
- $\rightarrow \sum_n u_n'$ converge uniformement sur I, ou sur tout segment de I

Posons:

$$S = \sum_{k=0}^{\infty} u_k$$

Alors:

- $\rightarrow S \ est \ C^1 \ sur \ I$
- \rightarrow On peut exprimer S', la dérivé de S de la façon suivante (dérivation terme à terme) :

$$S' = \sum_{k=0}^{\infty} u'_k$$

 \rightarrow La suite (u_n) converge uniforment sur tout segment inclue dans I.

Généralisation 8 Ce théorème reste valable pour des applications u_n de [a,b] dans E, un K espace vectoriel complet.

4.2.4 Théorème de classe C^p

Théorème 32 Soit (u_n) une suite d'application de I dans K, avec I un intervalle de \Re , et $p \in N^*$ Si.

- $\rightarrow \forall n \in \mathbb{N}, u_n \text{ est de classe } \mathbb{C}^p \text{ sur } I.$
- $\rightarrow \ \forall k \in [0, p-1] \ \sum_n u_n^{(k)} \ converge \ simplement \ sur \ I$
- $ightarrow \sum_n u_n^{(p)}$ converge uniformement sur I, ou sur tout segment de I

Posons:

$$S = \sum_{k=0}^{\infty} u_k$$

Alors:

- $\rightarrow S \ est \ C^1 \ sur \ I$
- $\rightarrow \forall k \in [0, p-1]$, on peut exprimer $S^{(k)}$, la dérivé k-ème de S de la façon suivante (dérivation terme à terme) :

$$S^{(k)} = \sum_{t=0}^{\infty} u_t^{(k)}$$

 $\rightarrow \forall k \in [0, p], \ la \ suite \ (u_n^{(k)}) \ converge \ uniforment \ sur \ tout \ segment \ inclue \ dans \ I.$

Généralisation 9 Ce théorème reste valable pour des applications u_n de [a,b] dans E, un K espace vectoriel complet.

4.2.5 Théorème de classe C^{∞}

Théorème 33 Soit (u_n) une suite d'application de I dans K, avec I un intervalle de \Re , et $p \in N^*$ Si:

 $\rightarrow \forall n \in N, u_n \text{ est de classe } C^{\infty} \text{ sur } I.$

 $\rightarrow \forall p \in N \sum_{n} u_n^{(p)}$ converge uniformement sur I ou sur tout segment de I

Posons:

$$S = \sum_{k=0}^{\infty} u_k$$

Alors:

 $\rightarrow S \ est \ C^{\infty} \ sur \ I$

 $\rightarrow \forall p \in N$, on peut exprimer $S^{(p)}$, la dérivé p-ème de S de la façon suivante (dérivation terme à terme):

$$S^{(p)} = \sum_{t=0}^{\infty} u_t^{(p)}$$

Généralisation 10 Ce théorème reste valable pour des applications u_n de [a,b] dans E, un K espace vectoriel complet.

Chapitre 5

Série entière

5.1 Définitions, rayon de convergence

5.1.1 Défintions

Définition 48 On appelle série entière une série d'application $\sum_{n} u_n$ où les u_n sont des monomes à coefficient réels ou complexe, définis sur \Re ou C, par :

$$u_n:K\to K$$

$$t \mapsto a_n t^n$$

En général, u_n est une application d'un corps dans ce même corps.

5.1.2 Abus de notation

Par abus de notation, car on assimile de faite série d'application et série numérique, on note souvent $\sum_n a_n.x^n$, respectivement $\sum_n a_n.z^n$, ou lieu de $\sum_n u_n$.

5.1.3 Rayon de convergence

Définition 49 Étant donnée une série entière $\sum_{n} a_{n}.z^{n}$, c'est a dire étant donnée une suite (a_{n}) de complexe, on appelle rayon de convergence de cette série entière, noté parfois $\rho(\sum a_{n}.z^{n})$:

$$\rho(\sum_n a_n.z^n) = Sup\{r \in \Re_+ / (|a_n|r^n) \text{ soit major\'ee }\}$$

Propriété 120 Dans le cas ou l'ensemble défini ci-dessus et non majorée, on convient que $\rho(\sum_n a_n.z^n) = +\infty$

Propriété 121 Soit $\sum_{n} a_n.z^n$ une série entière, avec (a_n) suite de complexe, et $R = \rho(\sum_{n} a_n.z^n)$.

- \rightarrow Si $R=+\infty$: La série converge simplement dans C et converge normalement sur tout disque ferme $\bar{B}(0,\alpha)$, avec $\alpha \geq 0$, et meme converge normalement sur tout compact inclu dans C.
- \rightarrow Si R est un réel > 0: La série converge sur tout disque ouvert B(0,R). La série converge normalement sur tout disque fermé $\bar{B}(0,\alpha)$ inclu dans B(O,R), et meme converge normalement sur tout compact inclu dans B(O,R).

Vocabulaire 1 B(O,R) s'appelle le disque ouvert de convergence de la série entière $\sum_{n} a_n . z^n$.

5.1.4Lemme d'Abel

Soit $z_0 \neq 0$. Si $(|a_n|.|z_0|^n)$ est majorée, $\forall \alpha \in [0, z_0[$, la série $\sum_n a_n.z^n$ converge normalement sur $\bar{B}(O, \alpha)$

5.2Propriétés utilse au calcul du rayon de convergence

Dans tout ce chapitre, (a_n) et (b_n) désigne des suites de compact, et λ désigne un complexe non nuls

Propriété 122

- opriété 122 $\rightarrow \rho(\sum_{n} a_{n}.z^{n}) = \rho(\sum_{n} |a_{n}|.z^{n})$ $\rightarrow \rho(\sum_{n} \lambda a_{n}.z^{n}) = \rho(\sum_{n} a_{n}.z^{n})$ $\rightarrow Si z_{0} \in C, tq \sum_{n} a_{n}.z_{0}^{n} converge, alors <math>\rho(\sum_{n} a_{n}.z^{n}) \geq |z_{0}|$. Il en est de meme si la suite $(a_{n}.z^{n})$
- est bornée ou si la suite converge \rightarrow Si $z_0 \in C$, $tq \sum_{n=0}^{\infty} a_n \cdot z_0^n$ diverge, alors $\rho(\sum_{n=0}^{\infty} a_n \cdot z_0^n) \leq |z_0|$. Il en est de meme si la suite $(a_n \cdot z_0^n)$ n'est pas bornée ou si la suite ne tend pas vers 0.

Propriété 123 $Si \forall n \geq n_0, on a$:

$$|a_n| \le |b_n|$$

Alors:

$$\rho(\sum_n a_n.z^n) \ge \rho(\sum_n b_n.z^n)$$

Propriété 124 Si on a :

$$|a_n| \underset{n \to +\infty}{\sim} |b_n|$$

Alors:

$$\rho(\sum_{n} a_{n}.z^{n}) = \rho(\sum_{n} b_{n}.z^{n})$$

Règle de d'Alembert pour les séries entières

Soit $\sum_{n} a_n . z^n$ une série entière.

Si $\forall n \geq n_0 | a_n \neq 0 |$, et si :

$$\frac{|a_{n+1}|}{|a_n|} \to l \in \Re_+ \cup \{+\infty\}$$

Alors:

$$\rho(\sum_{n} a_{n}.z^{n}) = \frac{1}{l}$$

avec les conventions suivantes :

$$l = 0 \Rightarrow \rho(\sum_n a_n.z^n) = +\infty$$

$$l = +\infty \Rightarrow \rho(\sum_{n} a_n.z^n) = 0$$

Somme et produit de deux séries entières 5.3

Somme de deux séries entières

Propriété 125 Si $\sum_{n} a_n.z^n$ et $\sum_{n} b_n.z^n$ converge, alors $\sum_{n} (a_n + b_n).z^n$ converge et nous avons :

$$\sum_{n=0}^{+\infty} (a_n + b_n) \cdot z^n = \sum_{n=0}^{+\infty} a_n \cdot z^n + \sum_{n=0}^{+\infty} b_n \cdot z^n$$

Corollaire 1 Si:

$$R_A = \rho(\sum_n a_n.z^n)$$

$$R_B = \rho(\sum_n b_n.z^n)$$

$$R_S = \rho(\sum_n (a_n + b_n).z^n)$$

Alors on obtient que:

$$R_S \ge min(R_A, R_B)$$

De plus, si $R_A \neq R_B$, alors :

$$R_S = min(R_A, R_B)$$

5.3.2 Produit de deux séries entières

Propriété 126 Si $\sum_{n} a_n$ et $\sum_{n} b_n$ sont deux séries numériques, à valeurs dans \Re ou dans C, absolument convergente, et si :

$$c_n = \sum_{k=0}^{n} a_k . b_{n-k}$$

Alors:

- $\rightarrow \sum_{n} c_n$ est absolument convergente.
- \rightarrow Nous avons l'égalité suivante :

$$\left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right) = \sum_{n=0}^{\infty} c_n$$

Propriété 127 Si $z \in C$ est telque $\sum_n a_n.z^n$ et $\sum_n b_n.z^n$ converge absolument, alors :

- $\rightarrow \sum_{n} c_{n}.z^{n}$ est absolument convergente.
- \rightarrow Nous avons l'égalité suivante :

$$\left(\sum_{n=0}^{\infty} a_n . z^n\right) \left(\sum_{n=0}^{\infty} b_n . z^n\right) = \sum_{n=0}^{\infty} c_n . z^n$$

Définition 50 La suite (c_n) défini par :

$$c_n = \sum_{k=0}^{n} a_k . b_{n-k}$$

est parfois appelé produit de cauchy des suites (a_n) et (b_n)

5.3.3 Propriétés sur les exponentiels complexes

Propriété 128 Soit z et z' deux complexes. Nous avons la propriété suivante :

$$e^z.e^{z'} = e^{z+z'}$$

Corollaire 2 D'après la propriété précédente, on obtient que :

$$\forall z \in C \ e^z \neq 0 \ et \ (e^z)^{-1} = e^{-z}$$

$$\forall z \in C, \ \forall n \in Z, \ (e^z)^n = e^{nz}$$

5.3.4 Continuité

Propriété 129 $Si R = \rho(\sum_n a_n.z^n)$, alors :

$$z \mapsto \sum_{n=0}^{+\infty} a_n . z^n$$

est continue sur B(0,R)

5.4 Classe C^{∞}

Soit $\sum_{n} a_n . x^n$ une série entière de rayon R>0 (on peut avoir $R = \infty$).

Alors:

$$S: x \mapsto \sum_{n=0}^{\infty} a_n.x^n$$

est défini au moins sur]-R,R[. Cet intervalle est appelé intervalle de convergence.

Propriété 130 Nous avons les propriétés suivantes :

$$\rho(\sum_{n} n.a_{n}.x^{n-1}) = \rho(\sum_{n} a_{n}.x^{n})$$

$$\rho(\sum_{n} (n+1).a_{n+1}.x^n) = \rho(\sum_{n} a_n.x^n)$$

Théorème 34 Soit $\sum_{n} a_n . x^n$ une série entière de rayon R > 0 (On peut avoir $R = +\infty$).

Alors sa somme :

$$S:]-R,R[\to K$$

$$x \mapsto \sum_{n=0}^{+\infty} a_n . x^n$$

est C^{∞} sur l'intervalle de convergence, et les dérivés $S^{(k)}$ s'obtiennent à l'aide d'une dérivation terme à terme :

$$\forall x \in]-R, R[, S^{(p)}(x) = \sum \frac{n!}{(n-p)!} a_n . x^{n-p}$$

Corollaire 3 On obtient le corrolaire suivant :

$$\forall x \in]-R, R[S(x) = \sum_{n=0}^{\infty} \frac{S^{(n)}(0)}{n!} x^n$$

Corollaire 4 Soient $\sum_{n} a_n . x^n$ et $\sum_{n} b_n . x^n$ deux séries entière de rayon R_a et R_b strictement positif. Si:

$$\forall x \in]-r, r[\sum_{n} a_n . x^n = \sum_{n} b_n . x^n$$

avec:

$$0 < r \le min(R_a, R_b)$$

Alors, on en déduit que :

$$a_n = b_n$$

La conclusion reste valable en supposant seulement que l'égalité des sommes est vérifié pour tout x appartenant à un intervalle de longeur >0.

Corollaire 5 Si $\sum_{n} a_n.x^n$ est une série entière de rayon R > 0, alors :

$$\rho(\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}) = R$$

Et:

$$x \mapsto \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$$

est une primitive de

$$x \mapsto \sum_{n=0}^{\infty} a_n x^n$$

sur] - R, R[

5.5 Fonctions développable en série entière

Dans ce chapitre, on se limite à la variable réelle.

Définition 51 Soit f fonction de \mathbb{R} dans \mathbb{R} et $x_0 \in \mathbb{R}$.

On dit que f est développable en série entière en x_0 , ou au voisinage de x_0 , si il existe un r > 0 et une série entière $\sum_{n} a_n . x^n$, c'est à dire $\exists (a_n) \in \mathbb{R}^{\mathbb{N}}$, de rayon $R \geq r$ tq:

$$\forall x \in]-r, r[\ f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

Propriété 131 Soit f une fonction décomposable en série entière en x_0 . Son développement est le développement de Taylor en x_0 , c'est à dire :

$$\forall x \in]x_0 - r, x_0 + r[f(x)] = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Corollaire 6 On peut obtenir un développement limité en x_0 de f, à l'ordre n, en tronquant le développement en série entière.

$$f(x) = \sum_{x \to x_0}^{n} \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k + o((x - x_0)^n)$$

5.5.1 Quelques développement en série entière classique

Nous avons les développement classique suivant :

$$\rightarrow \forall z \in \mathbb{C} \text{ tq } |z| < 1:$$

$$\frac{1}{1-z} = \sum_{k=0}^{\infty} z^k$$

$$\rightarrow \forall z \in \mathbb{C} \text{ tq } |z| < 1$$
:

$$\frac{1}{1+z} = \sum_{k=0}^{\infty} (-1)^k . z^k$$

$$\rightarrow \forall x \in [-1, 1[:$$

$$ln(1-x) = -\sum_{k=1}^{\infty} \frac{x^k}{k}$$

$$\rightarrow \forall x \in]-1,1]:$$

$$ln(1+x) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k}$$

$$\forall x \in \mathbb{R}:$$

$$e^{x} = \sum_{k=1}^{\infty} \frac{x^{k}}{k!}$$

$$\forall x \in \mathbb{C}:$$

$$e^{z} = \sum_{k=1}^{\infty} \frac{z^{k}}{k!}$$

$$\forall x \in \mathbb{R}:$$

$$ch(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$$

$$\forall x \in \mathbb{R}:$$

$$sh(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$$

$$\forall x \in \mathbb{R}:$$

$$cos(x) = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k}}{(2k)!}$$

$$\forall x \in \mathbb{R}:$$

$$sin(x) = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k+1}}{(2k+1)!}$$

$$\forall x \in \mathbb{R}:$$

$$sin(x) = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k+1}}{(2k+1)!}$$

$$degree :$$

$$avec:$$

5.5.2 Développement en série entière des fractions rationnelles

Propriété 132 Soit f une fraction rationnelle, $f = \frac{P}{Q}$, avec $(P,Q) \in \mathbb{C}[X]^2$, premiers entre eux. Si 0 n'est pas un pôle de f, alors f est un développable en série entière en 0 sur B(0,r), avec :

 $\begin{cases} a_0 = 1 \\ a_k = \frac{\alpha \cdot (\alpha - 1) \dots (\alpha - k + 1)}{k!} \end{cases}$

$$r = \min_{\alpha \in Z(Q)} \lvert \alpha \rvert$$

De plus, la série entière en question, qui est la série de Taylor de f, est de rayon r.

5.6 Extension à $\mathbb C$ des fonctions trigonométrique

Nous avons les développement en série entière classique pour les fonctions exp, sh, ch dans $\mathbb C$ et de cos et sin dans $\mathbb R$. En observant que les rayons de convergence de ces séries sont infini, on peut donc obtenir les fonctions cos et sin dans $\mathbb C$, en considérent le développement en série entière identique, mais avec une variable complexe.

5.6.1 Lien entre trigonométrie circulaire et trigonométrie hyperbolique

On montre, en utilisant le développement en série entière, que $\forall z \in \mathbb{C}$:

$$\operatorname{ch}(iz) = \cos(z)$$

$$sh(iz) = i.sin(z)$$

En remplacant z par iz, on obtient :

$$cos(iz) = ch(z)$$

$$sin(iz) = i.sh(z)$$

Compléments sur les séries

6.1 Intégration des séries de fonctions

Théorème 35 Théorème d'interversion du signe σ et du signe intégrale.

Soit u une série d'application $u_n: I \to K$, avec I un intervalle quelconque, continue par morceaux et convergent simplement sur I. On suppose que chaque u_n est intégrale sur I.

 $Si \int |u_n| \ converge, \ alors:$

$$\stackrel{n_I}{ o} \sum \int_I u_n \ converge$$

$$\rightarrow \int_I S \stackrel{n=0}{=} \sum_{n=0}^{\infty} \int_I u_n$$

La dernière conséquence est bien une propriété d'interversion du signe σ et du signe intégrale.

6.2 Rudiment sur les séries doubles

Définition 52 Étant donnée un ensemble I, on appelle famille à valeur dans K et indexé par I, et on note $(u_i)_{i\in I}$, une application :

$$I \stackrel{u}{\to} K$$

$$i \to u_i$$

Soit (u_{ij}) une famille de complexe. (u_{ij}) est une application :

$$u: \mathbb{N} \times \mathbb{N} \to K$$

$$(i,j) \mapsto u_{ij}$$

Définition 53 On dira que :

$$\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} u_{ij}$$

existe si et seulement si :

$$\rightarrow \forall i \in \mathbb{N} \sum_{i} u_{ij} \ converge$$

 \rightarrow En supposant la condition précédente vérifié, et en notant :

$$S_i = \sum_{j=0}^{\infty} u_{ij}$$

$$\sum_{i} S_{i}$$
 converge

Théorème 36 Soit (u_{ij}) une famille à valeur dans \mathbb{C} . Si $\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} |u_{ij}|$ existe, alors on peut permutter les sommmes (elles existent), et on a égalité entre les différentes sommmes doubles.

Chapitre 7

Séries d'endomorphismes et de matrices

7.1 Définitions et propriétés générales

Définition 54 Soit E un K espace vectoriel normé de dimension finie n et $(f_k)_{n \in \mathbb{N}}$ une suite d'endomorphisme de E.

On appelle série de terme général f_k la nouvelle suite $(S_k)_{k\in\mathbb{N}}$ défini par :

$$S_k = \sum_{i=0}^k f_i$$

On note $\sum_{k} f_k = (S_k)_{k \in \mathbb{N}}$.

On dit que la série converge lorsque S_k à une limite dans $\mathcal{L}(E)$, et on note alors :

$$S = \sum_{i=0}^{\infty} f_i$$

cette limite. Dans ce cas, nous pouvons définir aussi :

$$R_k = \lim_{p \to \infty} \sum_{i=k+1}^p f_i = \sum_{i=k+1}^{\infty} f_i$$

qui est le reste de la série. On as trivialement, lorsque la série converge (Pour pouvoir définir le reste) :

$$S = S_k + R_k$$

et

$$R_k \underset{k \to \infty}{\longrightarrow} \tilde{0}$$

De plus, comme on a supposé E de dimension finie ici, $\mathcal{L}(E)$ est aussi de dimension finie, donc la convergence ne dépend pas de la norme choisie sur $\mathcal{L}(E)$.

Nous avons aussi une définition analogue dans le cas d'une suite de matrice.

Propriété 133 Si B est une base de E et si $A_k = mat_B(f_k)$ alors :

$$\sum_{i=0}^{k} A_i = mat_B(\sum_{i=0}^{k} f_k)$$

et $\sum_{k} f_k$ converge si et seulement si $\sum_{k} A_k$ converge, et dans ce cas :

$$\sum_{k=0}^{\infty} A_k = mat_B(\sum_{k=0}^{\infty} f_k)$$
$$\sum_{i=k+1}^{\infty} A_i = mat_B(\sum_{i=k+1}^{\infty} f_i)$$

Définition 55 Si $\parallel \parallel'$ est une norme quelconque sur $\mathcal{L}(E)$ et si $(f_k)_{k\in\mathbb{N}}$ est une suite d'endomorphisme de E, on dit que $\sum_k f_k$ converge absolument au sens de $\parallel \parallel'$ si :

$$\sum_{k} \parallel f_{k} \parallel' converge$$

Nous avons une définition analogue pour les matrices.

Propriété 134 Si $\sum_k f_k$ converge absolument, alors $\sum_k f_k$ converge dans $\mathcal{L}(E)$. Nous avons la même propriété pour les matrices.

7.1.1 Exemple : La série géométrique

Propriété 135 S'il existe une norme sous-multiplicative $\| \| \sup \mathcal{L}(E)$ telque $\| f \| < 1$ alors $\sum_{k} f^{k}$ converge

7.2 Exponentielle d'endomorphisme ou de matrice

7.2.1 Propriétés et définitions

Définition 56 Si $f \in \mathcal{L}(E)$, avec E un K espace vectoriel normé de dimension finie N, avec $K = \mathbb{R}$ ou \mathbb{C} , alors $\sum_{n} \frac{f^n}{n!}$ converge dans $\mathcal{L}(E)$ et on note :

$$e^f = \sum_{k=0}^{\infty} \frac{f^n}{n!}$$

De même, si $A \in \mathcal{M}_N(K)$, alors $\sum_n \frac{A^n}{n!}$ converge et on note :

$$e^A = \sum_{k=0}^{\infty} \frac{A^n}{n!}$$

Propriété 136 Si $u \in C^1(I, K)$, avec I intervalle $\subset \mathbb{R}$, alors, avec $A \in \mathcal{M}_N(K)$:

$$I \xrightarrow{f} \mathcal{M}_N(K)$$
$$t \mapsto e^{u(t)A}$$

 $est C^1 sur I et :$

$$\forall t \in I \ f'(t) = u'(t)Ae^{u(t)A}$$
$$= u'(t)e^{u(t)A}A$$

7.3 Applications de l'exponentielle de matrices à la résolution d'un système différentiel linéaire à coefficient constant

Définition 57 Un système différentielle linéaire est un système du type :

$$\begin{cases} x'_1 = a_{11}(t)x_1 + \dots + a_{1n}(t)x_n + b_1(t) \\ \vdots \\ x'_n = a_{n1}(t)x_1 + \dots + a_{nn}(t)x_n + b_n(t) \end{cases}$$

avec les a_{ij} et les b_i des applications données de I dans $K=\mathbb{R}$ ou \mathbb{C} , avec $I\subset\mathbb{R}$.

Les x_j sont des applications inconnu que l'on cherche dans l'ensemble $C^1(I,K)$. On remarque que le nombre d'inconnu est égale au nombre d'équations.

Ce système est dit à coefficients constant lorsque les a_{ij} sont des applications constantes. Le système est dit homogène lorsque les b_i sont toutes des applications nulles.

Dans la suite, on va supposer que le système est à coefficients constants. Notons :

$$A = (a_{ij}) \in \mathcal{M}_n(K)$$

$$B: I \to K^n$$
$$t \mapsto \begin{pmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{pmatrix}$$

$$X: I \to K^n$$

$$t \mapsto \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}$$

Avec ces notations, on obtient que x_1, \ldots, x_n sont solution sur I du système différentielle précédent si et seulement si:

$$X \in C^1(I, K), \ \forall t \in I \ \frac{dX}{dt} = AX + B(t)$$

Théorème 37 Nous avons un théorème de Cauchy-Lipschitz pour les systèmes :

Soit $\frac{dX}{dt} = A(t)X + B(t)$, avec A et B défini comme précédement, continue sur un intervalle

 $I \subset \mathbb{R}$, c'est à dire que toutes leurs composantes sont continues sur I. Alors $\forall X_0 = \begin{pmatrix} x_{01} \\ \vdots \\ x_{0n} \end{pmatrix} \in K^n$

et $\forall t_0 \in I$, il existe une unique solution de (S) vérifiant la condition initiale $X(t_0) = X_0$, c'est à dire:

$$\begin{cases} x_1(t_0) = x_{01} \\ \vdots \\ x_n(t_0) = x_{0n} \end{cases}$$

Corollaire 1 Sous les hypothèses précédente concernant I (intervalle $\subset \mathbb{R}$) et $A \in C(I, \mathcal{M}_n(K))$, l'ensemble des solutions de (S_0) sur I est a valeur dans K^n est un K espace vectoriel de dimension n

Corollaire 2 Sous les hypothèses ci-dessus concernant I,A et b, l'ensemble des solutions de (S) sur I à valeurs dans K^n est un espace affinie de direction vectorielle (S_0) . C'est à dire si u est une solution particuliere de (S):

$$Sol_{(S)}(I, K^n) = \{U + X, X \in Sol_{(S_0)}(I, K^n)\}$$

Quatrième partie Équations différentielles

Chapitre]

Équations différentielles

1.1 Équations différentielle linéaire du 1^{er} ordre

Définition 58 Une équation différentielle linéaire du 1^{er} ordre est une équation du type :

$$\alpha(t).y' + \beta(t).y = \gamma(t) (E)$$

Avec:

$$\begin{cases} \alpha, \beta, \gamma \in C(I, K), \ I \ Intervallec \mathbb{R} \\ y \in C^1(I, K) \ est \ une \ application \ incconue \end{cases}$$

On dit que (E) est résolue, par rapport à y, sur I lorsque α ne s'annule par sur I. Dans ce cas :

$$(E) \Leftrightarrow y' + a(t)y = b(t)$$

Définition 59 On appelle équation homogène associé à (E), ou équation sans second membre, noté (E_0) :

$$y' + a(t)y = 0$$

Théorème 38 Théorème de Cauchy-Lipschitz linéaire du première ordre : Avec les notations et hypothèses précédentes, si (E) est résolue sur I, alors :

$$\forall t_0 \in I \ \forall y_0 \in K, \ \exists ! y \in Sol(E) \ tq \ y(t_0) = y_0$$

Corollaire 3 Toujours avec les mêmes notation et hypothèses :

- $\rightarrow Sol(E_0)$ est un K espace vectoriel de dimension 1
- \rightarrow Sol(E) est un K espace affine de direction Sol(E₀)

1.2 Equations différentielle linéaire du second ordre

Définition 60 Une équation différentielle linéaire du 2^{nd} ordre est une équation du type :

$$\alpha(t).y'' + \beta(t).y' + \gamma(t).y = \delta(t) (E)$$

Avec:

$$\begin{cases} \alpha,\beta,\gamma,\delta\in C(I,K),\ I\ Intervallec\mathbb{R}\\ y\in C^2(I,K)\ est\ une\ application\ incconue \end{cases}$$

On dit que (E) est résolue, par rapport à y, sur I lorsque α ne s'annule par sur I. Dans ce cas :

$$(E) \Leftrightarrow y'' + a(t)y' + b(t)y = h(t)$$

Théorème 39 Sous les hypothèses précédent, en particulier le fait que (E) est résolue sur I, alors, $\forall t_0 \in I, \ \forall (y_0, y_0') \in K^2, \exists ! y \in Sol(E) \ tq$:

$$\begin{cases} y(t_0) = y_0 \\ y'(t_0) = y'_0 \end{cases}$$

Corollaire 4 Sous les hypothèses précédentes :

$$\begin{cases} Sol(E_0) = & K \text{ espace vectoriel de dimension 2} \\ Sol(E) = & K \text{ espace affine de direction vectoriel } Sol(E_0) \end{cases}$$

1.2.1 Cas Particuliers

Considérons une équation différentielle linéaire de 2^{nd} ordre à coefficiant constant :

$$y'' + ay' + by = h(t) (E)$$

 $\left\{ \text{ a et b sont des constantes indépendente de la variable du corps K} \right. \right. h \in C(I,K)$

Dans ce cas, on résout l'équation caractéristique associé :

$$r^2 + ar + b = 0$$

 $\mathbf{Si} \; \mathbf{K} = \mathbb{C}$

Si l'équation caractérisitique a deux solutions Notons r_1, r_2 ces deux solutions disctinct.

$$Sol(E_0) = Vect(t \mapsto e^{r_1 \cdot t}, t \mapsto e^{r_2 \cdot t})$$

Si l'équation caractérisitique a racine double Notons r cette solution :

$$Sol(E_0) = Vect(t \mapsto t.e^{r.t}, t \mapsto e^{r.t})$$

Si $K = \mathbb{R}$

Si l'équation caractérisitique a deux solutions Notons r_1, r_2 ces deux solutions disctinct.

$$Sol(E_0) = Vect(t \mapsto e^{r_1.t}, t \mapsto e^{r_2.t})$$

Si l'équation caractérisitique a racine double Notons r cette solution :

$$Sol(E_0) = Vect(t \mapsto t.e^{r.t}, t \mapsto e^{r.t})$$

Si l'équation caractéristique à deux racines non réelles Notons :

$$r_1 = \alpha + i\beta$$

$$r_2 = \alpha - i\beta$$

$$Sol(E_0) = Vect(t \mapsto e^{\alpha \cdot t}.cos(\beta \cdot t), t \mapsto e^{\alpha \cdot t}.sin(\beta \cdot t))$$

1.2.2 Solutions de (E)

Si l'on possède une solution particulier de (E_0) , on peut résoudre, si cette solution ne s'annule pas sur I, completement l'équation (E) par la méthode de variation de la constante.

1.3 Équations différentielle (non linéaire) du 1^{er} ordre, résolue

Définition 61 Un ouvert de $\mathbb B$ est défini par :

 $(U \ est \ un \ ouvert) \Leftrightarrow (\forall M \in U, \exists r > 0 \ tq \ B(M, r)cU)$

Avec:

$$B(M,r) = \left\{P \in \mathbb{R}^2/ \parallel \overrightarrow{MP} \parallel < \overrightarrow{r} \right\}$$

Le fait que U soit ouvert ne dépend pas de la norme choisie, car toutes les normes sont équivalente entre dimension finies.

Cette équation est une équation du type:

$$y' = f(y, t)$$

avec f une fonction de \mathbb{R}^2 dans \mathbb{R} , de classe C^1 sur un ouvert U de \mathbb{R}^2 .

Définition 62 Une solution de (E) est une application $y \in C^1(I, \mathbb{R})$, avec I intervalle de \mathbb{R} telle $que: \begin{cases} \forall t \in I, \ (t, y(t)) \in U \\ \forall t \in I, \ y'(t) = f(t, y(t)) \end{cases}$

Définition 63 Une solution y est dite maximale si on ne peut pas la prolonger en une solution de (E) sur un intervalle $I' \supseteq I$.

C'est à dire qu'il n'existe pas de solutionz de (E) sur $I' \supseteq I$ telque :

$$y = z_{|I|}$$

Théorème 40 Théorème de Cauchy-Lipshitz pour les équations différentielles (non linéaire) du 1^{er} ordre résolue.

Si $f \in C^1(U, \mathbb{R})$ avec U ouvert de \mathbb{R}^2 , $\forall (t_0, y_0) \in U$, l'équation (E) : y' = f(t, y) admet une solution maximale et une seule, noté $y \in C^1(I, \mathbb{R})$, avec I un intervalle $\ni t_0$, telque :

$$y(t_0) = y_0$$

De plus, pour une telle solution maximale, I est ouvert. Si $z \in C^1(J, \mathbb{R})$ est une solution de (E) sur $J \ni t_0$ vérifiant $z(t_0) = y_0$, alors :

$$\begin{cases} JcI \\ z = y_{|J} \end{cases}$$

Autrement dit, toutes solutions de (E) se prolonge en une unique solution maximale.

Corollaire 5 Si z_1 et z_2 sont des solutions de (E) sur des intervalles J_1 et J_2 contenant t_0 et si:

$$z_1(t_0) = z_2(t_0)$$

Alors:

$$z_1|J_1 \wedge J_2 = z_2|J_1 \wedge J_2$$

1.3.1 Équation à variable séparable

Définition 64 C'est une équation différentielle du 1^{er} ordre équivalente à une équation du type :

$$f(y).y' = g(t) (E)$$

Avec f et g des fonctions de \mathbb{R} dans \mathbb{R} .

Si I est un intervalle sur lequel f ne s'annulent pas :

$$(E) \Leftrightarrow y' = \frac{g(t)}{f(y)} = F(t, y)$$

Si f est continue sur I, et ne s'annule pas sur I, et si g est continue sur $J \in \mathbb{R}$, alors F précédement définie est continue sur JxI. On le démontre à l'aide de fonctions composées.

1.3.2 Énoncé simplifié du théorème de Cauchy-Lipschitz pour les équations différentielle du 1^{er} ordre autonomes

Définition 65 Une équation différentielle est dites autonome si elle est indépendente de t. C'est à dire si c'est une équation du type :

$$y' = f(y) (E)$$

Si $f \in C^1(J, \mathbb{R})$, avec J intervalle ouvert de \mathbb{R} .

 $\forall t_0 \in \mathbb{R}, \forall y_0 \in J$, il existe une solution maximale et une seule de (E), noté $y \in C^1(I, \mathbb{R})$ telle que $y(t_0) = y_0$.

De plus, l'intervalle de définition d'une telle solution maximale est un ouvert $\ni t_0$.

Toute solution z de (E) sur un intervalle $I' \in I$ vérifiant le meme condition initiale est la restriction sur I' de y.

Corollaire 6 Si z_1 et z_2 sont deux solutions de (E) sur des intervalles J_1 et J_2 , vérfiant une même condition initiale en $t_0 \in J_1 \cap J_2$, alors z_1 et z_2 coincident sur $J_1 \cap J_2$

y' = f(y) est un cas particulier de y' = F(t,y) avec :

$$F: \mathbb{R}^2 \to \mathbb{R}$$

$$(t,y) \mapsto f(y)$$

On peut donc appliquer directement le théorème de Cauchy-Lipschitz en considérant comme ouvert U $\mathbb B\times J$

1.4 Équation différentielle (non linéaire) du 2nd ordre, résolue

C'est une équation du type:

$$y'' = f(t, y, y') (E)$$

Théorème 41 Théorème de Cauchy-Lipschitz pour une équation différentielle (non linéaire) du 2^{nd} ordre.

Si $f \in C^1(U,\mathbb{R})$, avec U un ouvert de \mathbb{R}^2 , alors : $\forall (t_0,y_0,y_0') \in U$, il existe une unique solution maximale de (E), noté $y \in C^2(I,\mathbb{R})$, avec I un intervalle de \mathbb{R} , c'est à dire que :

$$\begin{cases} \forall t \in I, \ (t, y(t), y'(t)) \in U \\ \forall t \in I, \ y''(t) = f(t, y(t), y'(t)) \end{cases}$$

Vérifiant les conditions initiale suivante :

$$\begin{cases} y(t_0) = y_0 \\ y'(t_0) = y'_0 \end{cases}$$

De plus, l'intervalle I de définition d'une telle solution maximale est ouvert.

Toute solution z de (E) sur un intervalle $J \ni t_0$ et vérifiant les mêmes conditions initiales est la restrictions de J sur y.

$$\begin{cases} JcI \\ \forall t \in J \ z(t) = y(t) \end{cases}$$

Corollaire 7 Si deux solutions z_1 et z_2 de (E) sur J_1 et J_2 vérifiant la même condition initiale en t_0 , alors z_1 et z_2 coincident sur $J_1 \cap J_2$

1.4.1 Énoncé simplifié pour les équations différentielles autonomes

C'est une équation du type :

$$y^{\prime\prime}=f(y,y^\prime)$$

Si $f \in C^1(W, \mathbb{R})$, W un ouvert de \mathbb{R}^2 , alors $\forall t_0 \in \mathbb{R}$, $\forall (y_0, y_0') \in W$, (E) admet une solution et une seule, maximale, de (E), noté $y \in C^1(I, \mathbb{R})$, I intervalle $\in t_0$, c'est à dire :

$$\begin{cases} \forall t \in I, \ (y(t), y'(t)) \in W \\ \forall t \in I, \ y''(t) = f(y(t), y'(t)) \end{cases}$$

vérifiant la condition initiale.

De plus, l'intervalle de définition d'une telle solution maximale est ouvert. Toute solution de (E) se prolonge en une unique solution maximale

Corollaire 8 Si z_1 et z_2 sont deux solutions de (E), sur J_1 et sur J_2 , $\ni t_0$, et si ces solutions vérifient les même conditions initiale, alors :

$$\forall t \in J_1 \cap J_2, \ z_1(t) = z_2(t)$$

1.5 Système différentielles (non linéaire) autonome du 1^{er} ordre, de deux équations à deux inconnus

Définition 66 Ce sont les systèmes différentielles du type :

$$(S): \begin{cases} x' = f(x,y) \\ y' = g(x,y) \end{cases}$$

Le système est dit autonome car la variable t dont dépendent les deux fonctions x et y ne figurent pas dans les équations.

Dans ce chapitre, nous faisons les hypothèses suivantes : f et g sont deux applications de $C^1(U,\mathbb{R})$, avec U un ouvert de \mathbb{R}^2 , c'est à dire que f et g admettent des dérivées partielles du 1^{er} ordre, continues sur U

Définition 67 On dit que x et y sont des solutions de (S) sur $I \in \mathbb{R}$ si x et $y \in C^1(I, \mathbb{R})$ telque :

$$\forall t \in I, (x(t), y(t)) \in U$$

$$\forall t \in I \begin{cases} x'(t) = f(x(t), y(t)) \\ y'(t) = g(x(t), y(t)) \end{cases}$$

Dans ce cas, x et y sont solutions de (S) sur I c \mathbb{R} .

1.5.1 Ecriture synthétique du système (S)

Notons X la fonction suivante :

$$X: \mathbb{R} \to \mathbb{R}^2$$

$$t \mapsto X(t)$$

Avec:

$$X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

X est $C^1(I,\mathbb{R}^2)$ si x et y sont elle même C^1 sur I, avec I intervalle de \mathbb{R} . Dans ce cas :

$$\forall t \in I \ X'(t) = \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix}$$

D'autre part, définissons :

$$F: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto F(x,y)$

Avec:

$$F(x,y) = \begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}$$

De plus, F est de classe C^1 de U sur \mathbb{R}^2 , c'est à dire admet des dérivées partielles continues sur U si et seulement si f et g sont $C^1(U,\mathbb{R})$.

Dans ce cas, on obtient les dérivées partielles de F par dérivée composantes par composantes.

Définition 68 F est appelé champs de vecteur de classe C^1 sur l'ouvert U de \mathbb{R}^2

A l'aide de ces notations, on obtient que x et y sont solutions de (S) sur I si et seulement si :

$$X \in C^{1}(I, \mathbb{R}^{2})$$

$$\forall t \in I, \ X(t) \in U$$

$$\forall t \in I, \ X'(t) = F(X(t))$$

On résume donc les trois conditions en disant que X est solution sur I de l'équation différentielle vectorielle :

$$X' = F(X) (E)$$

Définition 69 Une solution X de (E) est dite maximale si elle n'est pas prolongable en une solution de (E) sur un intervalle $I' \supseteq I$

Théorème 42 Théorème de Cauchy-Lipschitz.

Sous les hypothèses précédente, c'est à dire essentiellement $F \in C^1(U, \mathbb{R}^2)$, avec U un ouvert de \mathbb{R}^2 , l'équation (E):

$$X' = F(X)$$

admet $\forall t_0 \in \mathbb{R}$ et tout $X_0 = (x_0, y_0) \in U$ une unique solution maximale X:

$$X:I\to\mathbb{R}^2$$

$$t \mapsto X(t)$$

Avec:

$$X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

De classe C^1 sur I telle que $X(t_0) = X_0$. De telles solutions maximales de (E) s'appelle des courbes intégrale de champs F. De plus :

- → L'intervalle de définition d'un solution maxe de (E) est ouvert
- \rightarrow Toutes solutions de (E) sur un intervalle J est la restriction à J d'une solution maximale

Corollaire 9 Si Z_1 et Z_2 sont deux solutions de (E) défini sur J_1 et J_2 , vérifiant les mêmes conditions initiales, alors :

$$\forall t \in J_1 \cap J_2 \ Z_1(t) = Z_2(t)$$

Cinquième partie Réduction d'endomorphismes

Réduction des endomorphismes et des matrices - Première Partie

1.1 Système linéaire

Considérons un système linéaire (s) à n équations et à n inconnes. On peut écrire (S) sous sa forme matricielle :

$$AX = B$$

Avec : A la matrice des coefficiant, X la matrice des inconnue et B la matrice des seconds membres.

Définition 70 Un système linéaire admet une unique solution si et seulement si A est inversible, donc si $det(A) \neq 0$ ou rang (A) = n.

Dans ce cas, on dit que le système linéaire est inversible, ou que c'est un système de Cramer. L'unique solution est donnée par :

$$\Omega = A^{-1}.B$$

1.2 Détermination de l'inverse de A

1.2.1 Méthode directe

Pour déterminer l'inverse de A, avec A une matrice inversible, on peut utiliser la formule suivante (Voir fiche de révision Sup) :

$$A^{-1} = \frac{1}{\det(A)} \cdot {^tCom(A)}$$

Cependant, la complexité de cette méthode (c'est à dire le nombre d'opération élémentaire à effectuer) est équivalente en l'infini à $n^2.n!$. Ceci rend cette méthode totalement inutilisable pour n superieur à quelque unité.

1.2.2 Méthode du pivot de Gauss

À l'aide d'opération élémentaire, on peut modifier le système pour obtenir un système triangulaire. Avec cette méthode, la complexité de l'algorithme de résolution du système est équivalente en l'infini à $\frac{n^3}{3}$. La complexité est donc tout à fait acceptable.

Détails de la méthode général

Définition 71 Une famille est un ensemble ordonée, qui accepte les répétitions

Sachant que A est inversible, la famille $(C_1, ... C_n)$ des colonnes de A est libre, on peut donc trouver un pivot non nul.

On fixe un pivot non nul (à l'aide de permutation si besoin), et élimine l'inconnu du pivot dans toutes les autres ligne par substitution. Et on intère la méthode pour toutes les inconnus, jusqu'a obtenir un système triangulaire.

Défault de la méthode du pivot de Gauss

Cette méthode est extrèmement instable numériquement. Il y a des erreurs d'arrondi lors des calculs (incontournable), mais ces erreurs peuvent être multiplié par un facteur extremement grand si le pivot est "petit". Cette méthode n'est donc pas fiable pour les grands système.

1.2.3 Méthode de Jacobi

La méthode de Jacobi s'applique à la résolution des systèmes Strictement diagonalement dominant

Définition 72 Un système (S), ou la matrice A, est dit Strictement diagonalement dominant $(notée\ Sdd)\ si$:

$$\forall i \in [1, n] |a_{ii}| > \sum_{j \neq i} |a_{ij}|$$

Détails de la méthode général

La méthode de Jacobi consite à réecrire le systeme Sdd sous la forme suivante : On résoud ce systeme en considérant que les coefficiant non diagonaux dans le systeme de départ sont nul. On obtient donc une valeur approché de la solution, on la note X_0 par exemple. Puis on itere le procédé avec la formule suivante :

$$X_{k+1} = A.X_k + b$$

Cette formule devient par récurrence :

$$\forall k \in N \ X_k - \Omega = A^k (X_0 - \Omega)$$

Le comportement de (X_k) dépend donc principalement de A^k . On montre que si M, la matrice des coefficients, est Sdd, alors :

$$\lim_{k \to \infty} A^k = \overrightarrow{0}$$

Avec $\overrightarrow{0}$ l'élément nul de l'espace $M_n,$ l'espace des matrices carrée d'ordre n. On obtient donc que :

$$\forall X_0 \in K^N \quad \lim_{k \to \infty} X_k = \Omega$$

La convergence de la méthode de Jacobi est donc indépendante de l'approximation initale. Cette méthode est donc stable numériquement.

1.3 Valeur propres, vecteurs propre, sous-espace vectoriel propre

1.3.1 Vecteurs propres

Définition 73 Soit E un K espace vectoriel et $f \in (L)(E)$, le groupe des endomorphisme de E dans E.

On dit que $\overrightarrow{x} \in E$ est un vecteur propre de f si $f(\overrightarrow{x})$ est parralèle à \overrightarrow{x} , c'est à dire si :

$$\exists \lambda \in K \ tq \ f(\overrightarrow{x}) = \lambda \overrightarrow{x}$$

Avec λ qui a priori dépend de \overrightarrow{x} .

Propriété 137
$$\rightarrow Si \overrightarrow{x} = \overrightarrow{0}$$
, $alors \forall \lambda \in K \ f(\overrightarrow{0}) = \lambda . \overrightarrow{0}$
 $\rightarrow Si \overrightarrow{x} \neq 0$, $alors il existe au plus un $\lambda \in K \ tq \ f(\overrightarrow{x}) = \lambda \overrightarrow{x}$$

1.3.2Valeur propre

Définition 74 On appele valeur propre de l'endomorphisme tout $\lambda \in K$ tq:

$$\exists \overrightarrow{x} \in E - \{0\} \ tq \ f(\overrightarrow{x}) = \lambda \overrightarrow{x}$$

On enlève $\overrightarrow{0}$ pour la propriété vu ci-dessus.

1.3.3 Propriétés et définitions

Définition 75 Les vecteurs $\overrightarrow{x} \in E$ tq $f(\overrightarrow{x}) = \lambda \overrightarrow{x}$ sont appelé vecteur propre associé à la valeur

Leurs ensembles est égale à $Ker(f - \lambda Id)$. C'est un sous espace vectoriel de E, appelé sous espace vectoriel associé à la valeur propre λ .

L'ensemble des valeurs propres de f est appelé spectre de f, notée $S_p(f)$:

$$\lambda \in S_p(f) \Leftrightarrow Ker(f - \lambda.Id) \neq \left\{\overrightarrow{0}\right\}$$

Théorème 43 Des sous espaces vectoriel propre, d'un endomorphisme f, associés à des valeur propre deux à deux différentes sont en somme direct.

Propriété 138 Nous avons les propriétés suivantes :

Si la dimension de E est fini, nous avons la propriété suivante :

 $\rightarrow f \ est \ bijective \Leftrightarrow 0 \notin S_n(f)$

Propriété 139 Dans un système aux vecteurs propres (C'est à dire un système définissant l'espace $Ker(f-\lambda Id)$, les équations sont toujours liée entre elles, autrement dit elle sont linéairement dépendentes. Ce système n'est donc pas un système de Cramer, ce n'est donc pas un système inversible.

1.3.4 Cas des matrices

On appele $v_p, \overrightarrow{v_p}$, sous espace propre, spectre de A le $v_p, \overrightarrow{v_p}$, sous espace propre, spectre de f, l'endomorphisme canoniquement associé à A :

$$f:K^n\to K^n$$

$$X \mapsto A.X$$

Donc, par définition:

$$\lambda \in S_p(A) \Leftrightarrow \exists X \in K^n, \ X \neq \overrightarrow{0} \ tq \ AX = \lambda X$$

Cas où E est de dimension finie : Polynôme caractéris-1.4 tique

Dans tout ce chapitre, E est un K espace vectoriel de dimension n et $f \in \mathcal{L}(E)$

Propriété 140 On montre que $S_p(f)$ est l'ensemble des racines dans K du poylome $P_f \in K[X]$, défini par :

$$P_f(X) = det(f - X.id)$$

Ce polynome est aussi notée χ_f . On défini aussi ce polynome par :

$$P_f(X) = det(X.id - f)$$

Ces deux définitions sont équivalente, sauf qu'il y a un rapport $(-1)^n$ entre les deux, car :

$$det(-g) = (-1)^n . det(g)$$

Par extension au matrice, on obtient que :

$$P_f(X) = det(A - X.I_n)$$

Propriété 141 L'ensembles des valeurs propre d'un endomorphisme est aussi l'ensemble des racines du polyôme P_f .

Définition 76 Soit $f \in \mathcal{L}(E)$, avec E un K espace vectoriel de dimension finie n. On appelle polynome caractéristique de f le polynome :

$$P_f(X) = det(f - \lambda.id) \in K[X]$$

Définition 77 Soit $A \in \mathcal{M}_n(K)$.

On appelle polynome caractéristique de A:

$$P_A = \det(A - X.I_n)$$

Propriété 142 Si f est l'endomorphisme de K^n canoniquement associé à A, alors :

$$P_A(X) = P_f(X)$$

Propriété 143 Soit $f \in \mathcal{L}(E)$, E un K espace vectoriel de dimension n. On obtient que :

$$P_f(X) = (-1)^n \left[X^n - Trace(f).X^{n-1} + \dots + (-1)^n.det(f) \right]$$

Les coefficients dans les ... ne sont pas à connaître.

Théorème 44 Soit $f \in \mathcal{L}(E)$, avec E un K espace vectoriel de dimension n. Alors :

$$\forall \lambda \in S_n(f), \ 1 \leq dim(Ker(f - \lambda.Id) \leq mult_{P_s}(\lambda))$$

Avec $mult_{P_f}(\lambda)$ la multiplicité de λ dans les racines de P_f

1.4.1 Relations entre les racines d'un polynome et ses racines

Propriété 144 Soit P un polynome scindé de la forme :

$$P(X) = (X - \lambda_1) \dots (X - \lambda_n)$$

= $X^n + \alpha_{n-1} \cdot X^{n-1} + \dots + \alpha_1 + \alpha_0$

On obtient les relations suivantes :

$$\alpha_{n-1} = -\sum_{i=1}^{n} \lambda_{i}$$

$$\alpha_{n-2} = -\sum_{\substack{i,j=1\\i < j}}^{n} \lambda_{i} \cdot \lambda_{j}$$

$$\vdots = \vdots$$

$$\alpha_{0} = (-1)^{n} \lambda_{1} \dots \lambda_{n}$$

1.5 Diagonalisabilité

1.5.1 Définitions

Définition 78 Soit $f \in \mathcal{L}(E)$, avec E un K espace vectoriel de dimension n. On dit que f est diagonalisable s'il existe une base B de E tq $mat_B(f)$ soit diagonale :

$$mat_B(f) = \begin{pmatrix} \lambda_1 & & (0) \\ & \ddots & \\ (0) & & \lambda_n \end{pmatrix}$$

Quitte à réordonnée les vecteurs de B, il existe aussi une base B' de E telque :

Avec les λ_i deux à deux distincts. On obtient alors que :

$$P(X) = (\lambda_1 - X)^{n_1} \dots (\lambda_p - X)^{n_p} = (-1)^n (X - \lambda_1)^{n_1} \dots (X - \lambda_p)^{n_p}$$

Le polynome est donc scindé. Comme les λ_i sont deux à deux distincts, on obtient que :

$$n_i = multi_{P_f}(\lambda_i)$$

De plus, nous avons les résultats suivants :

- $\rightarrow Ker(f \lambda_1.Id)$ est le sous espace vectoriel engendré par les n_1 premiers vecteurs de B'
- \rightarrow $Ker(f-\lambda_2.Id)$ est le sous espace vectoriel engendré par les n_2 vecteurs suivants de B'
- $\rightarrow Etc \dots$

Enfin, on obtient que les sous espaces vectoriel propres sont supplémentaire.

Théorème 45 Soit $f \in \mathcal{L}(E)$, avec E un K espace vectoriel de dimension finie n. Les conditions suivantes sont équivalente :

- $\rightarrow f$ est diagonalisable
- $\rightarrow P_f \ est \ scinde \ et \ \forall \lambda \in Sp(f), \ dim(f \lambda.Id) = mult_{P_f}(\lambda)$
- $\rightarrow \ Les \ sous \ espaces \ propres \ de \ f \ sont \ supplémentaire$
- $\rightarrow \sum_{\lambda \in S_n(f)} dim(Ker(f \lambda.Id)) = dim(E)$

1.5.2 Cas particulier des valeurs propres simples

Propriété 145 Soit $f \in \mathcal{L}(E)$, E un K espace vectoriel de dimension finies n. Si $\lambda \in S_p(f)$ est une racine simple de P_f , on obtient que :

$$dim(Ker(f - \lambda.Id) = 1$$

Les sous espaces associé à une valeur propre simple sont donc des droites vectoriel, appelé droite propre

Propriété 146 Si P_f est un polynome scindé, c'est à dire que f admet n valeurs propres simple, alors on as :

$$\forall k \in \{1, ..., n\} \ dim(Ker(f - \lambda_k.Id)) = multi_{P_f}(\lambda_k) = 1$$

On en déduit donc que f est diagonalisable et que tout ses sous espaces vectoriel propres sont des droites vectoriel.

1.5.3 Cas d'une matrice

Définition 79 Soit $A \in \mathcal{M}_n(K)$. On dit que A est diagonalisable si f, l'endomorphisme canoniquement associé à A est diagonalisable

Propriété 147 Soit $A \in \mathcal{M}_n(K)$. Nous avons la propriété suivantes :

(A est diagonalisable)
$$\Leftrightarrow$$
 ($\exists P \in GL_n(K) \ tq \ P^{-1}.A.P \ soit \ diagonale$)

Théorème 46 Soit $A \in \mathcal{M}_n(\Re)$, une matrice symétrique réelle, alors A est orthonormalement diagonalisable, c'est à dire que A est diagonalisable (P_A est scindé dans $\Re[X]$) et ses espaces propres, qui sont supplémentaire, sont deux à deux orthogonaux dans \Re^n euclidien canonique, c'est à dire munie du produit scalaire canonique.

1.6 Trigonalisabilité

Définition 80 Soit $f \in (E)$, avec E un K espace vectoriel de dimension finie n. On dit que f est trigonalisable si il existe une base B de E telque $mat_f(B)$ soit triangulaire superieur.

Définition 81 *Soit* $A \in \mathcal{M}_n(K)$.

On dit que A est trigonalisable si l'endomorphisme canoniquement associée à A est trigonalisable.

Propriété 148 Soit $A \in \mathcal{M}_n(K)$. Nous avons la propriété suivantes :

(A est trigonalisable)
$$\Leftrightarrow$$
 ($\exists P \in GL_n(K) \ tq \ P^{-1}.A.P$ soit triangulaire superieur)

Théorème 47 Soit $f \in \mathcal{L}(E)$, avec E une K espace vectoriel de dimension finie n.

$$(f \ est \ trigonalisable) \Leftrightarrow (P_f \ est \ scind\'e \ dans \ K[X])$$

Corollaire 7 Soit E un C espace vectoriel de dimension finie, alors tout $f \in \mathcal{L}(E)$ est trigonalisable. De même, toute matrice $A \in \mathcal{M}_n(C)$ est trigonalisable

$^{\circ}$ Chapitre $^{\circ}$

Réduction des endomorphismes et des matrices - Deuxième Partie

2.1 Polynomes d'endomorphisme ou de matrice

Dans ce chapitre, toutes les relations vu sont transposable aux matrices

Définition 82 Soit f une application linéaire de E dans E, avec E un K espace vectoriel. Soit $P \in K[X]$ défini par :

$$P = a_0 + a_1.X + \dots + a_p.X^p$$

Avec $\forall i \ a_i \in K$. On défini :

$$P(f) = a_0.Id + a_1.f + \dots + a_p.f^p$$

Avec:

De meme, si $A \in \mathcal{M}_n(K)$:

$$P(A) = a_0.I_n + a_1.A + a_p.A^p$$

Propriété 149 Soit B est une base de E, avec E un K espace vectoriel de dimension fini, $f \in \mathcal{L}(E)$ et $A = mat_B(f)$. On obtient:

$$P(A) = mat_B(P(f))$$

Propriété 150 Soit P_1 et $P_2 \in K[X]$, $\lambda \in K$, $f \in \mathcal{L}(E)$.

Nous avons les résultats suivants :

$$(P_1 + P_2)(f) = P_1(f) + P_2(f)$$
$$(\lambda P_1)(f) = \lambda P_1(f)$$
$$(P_1 \cdot P_2)(f) = P_1(f)oP_2(f)$$

De ce dernier résultat, on obtient que :

$$P_1(f)oP_2(f) = P_2(f)oP_1(f)$$

Définition 83 Soit f un endomorphisme de E, avec E un K espace vectoriel et :

$$K[f] = \{P(f), P \in K[X]\}$$

Soit $A \in \mathcal{M}_n(K)$.

On note:

$$K[A] = \{ P(A), P \in K[X] \}$$

Propriété 151 Les espaces défini ci dessus sont des sous algèbres commutaive de respectivement $(\mathcal{L}(E), +, \lambda, o)$ et $(\mathcal{M}_n(K), +, \lambda, x)$

2.2 Idéaux de K[X]

Définition 84 On appelle idéale de K[X] toute partie non vide \mathcal{I} de K[X] tq:

- ightarrow I est stable par +
- $\rightarrow \forall P \in \mathcal{I} \ et \ \forall Q \in K[X], \ PQ \in \mathcal{I}$

De cette définition, on obtient que :

$$P \in \mathcal{I} \Rightarrow -P \in \mathcal{I}$$
$$0 \in \mathcal{I}$$

Avec ici 0, le polynome constant nul.

2.2.1 Exemple

Nous avons les ensembles suivants, qui sont des idéaux triviaux :

$$\mathcal{I} = \{0\}$$

Celui ci constitue l'idéal nul.

$$K[X] = \mathcal{I}$$

Définition 85 Soit P un polynome de K[X]. On défini l'idéal engendré par P, noté [P], par :

$$[P] = \{PQ, Q \in K[X]\}$$

C'est donc l'ensemble constitué des multiples de P.

2.2.2 Définitions et théorème

Définition 86 Un idéal engendrée par un seul polynome, du type [P], est appelé idéal principale

Théorème 48 Tout idéal de K[X] est principale. On dit donc que l'anneau K[X] est principale.

Définition 87 Soit I, un idéal de K/X/, donc un idéal idéal.

On appelle générateurs de \mathcal{I} les polynomes ω telque :

$$\mathcal{I} = [\omega]$$

Propriété 152 Les générateurs ω se déduisent les uns des autres par multiplication par une constante non nulle $\lambda \in K^*$.

De plus, si $\mathcal{I} \neq \{0\}$, alors les générateurs ont tous le même degrés :

$$deg(\omega) = min \{ deg(P), P \in \mathcal{I} - \{0\} \}$$

Propriété 153 De la propriété précédente, on déduit que si :

- $\rightarrow \omega \in \mathcal{I}$
- $\rightarrow deg(\omega)min \{deg(P), P \in \mathcal{I} \{0\}\} \ Alors :$

$$\mathcal{I} = [\omega]$$

Définition 88 L'unique générateur unitaire d'un idéal $\mathcal I$ non nul est appelé polynome minmale de l'idéal $\mathcal I$

2.2.3 Application au pgcd de deux polynomes, et à l'algorithme d'Euclide

Soit P_1 et P_2 deux polynomes de K[X] non tous les deux nuls. On sait que $[P_1, P_2]$ est un idéal de K[X], donc un idéal principale. On obtient donc qu'il existe un unique $\omega \in K[X] - \{0\}$ telque :

$$[P_1, P_2] = [\omega]$$

On montre que ω est le pgcd de P_1 et P_2

Algorithme d'Euclide

Cet algoritme se base sur la propriété suivante :

$$\forall Q \in K[X] [P_1, P_2] = [P_1, P_2 + Q.P_1]$$

2.2.4 Polynome annulateur d'un endomorphisme ou d'une matrice, Polynome minimal d'un endomorphisme ou d'une matrice

Définition 89 Soit $f \in \mathcal{L}(E)$, avec E un K espace vectoriel.

On dit que $P \in K[X]$ annule f, ou que P est un polynome annulateur de f, ou encore que f annule P si:

$$P(f) = \tilde{0}$$

De meme, si $A \in \mathcal{M}_n(K)$, on dit que P annule A si :

$$P(A) = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}$$

Propriété 154 L'ensemble $A_{nn}(f)$ (Notation non standard), des polynomes annulateur de f, défini par :

$$A_{nn}(f) = \{ P \in K[X] \ tq \ P(f) = \tilde{0} \}$$

Cet ensemble est un idéal de K/X/.

Définition 90 On appelle polynome minimale de f, noté ω_f , l'unique polynome unitaire telque que :

$$A_{nn}(f) = [\omega]$$

On défini de même le polynome minimal d'une matrice

Propriété 155 Soit $f \in \mathcal{L}(E)$, avec E un K espace vectoriel de dimension finie, B une base de E et $A = mat_B(f)$.

On obtient dans ce cas que :

$$\omega_A = \omega_f$$

Propriété 156 Soit E une K espace vectoriel de dimension n.

On obtient que, $\forall f \in \mathcal{L}(E)$:

$$A_{nn} \neq \{O\}$$

Donc que:

$$\omega_f \neq 0$$

Propriété 157 Soit $f \in \mathcal{L}(E)$, avec E un K espace vectoriel.

Si $\omega_f \neq 0$ et $d = deg(\omega_f)$, alors $(Id, f, ..., f^{d_1})$ est une base de K[f], en particulier :

$$dim K[f] = deg(\omega_f)$$

2.2.5 Théorème de Cayley-Hamilton

Théorème 49 Soit $f \in \mathcal{L}(E)$, avec E un K espace vectoriel de dimension fini. On obtient alors que :

$$P_f(f) = \tilde{0}$$

Nous avons les équivalences suivantes :

$$(P_f(f) = \tilde{0}) \Leftrightarrow (P_f \in A_{nn}(f)) \Leftrightarrow (\omega_f | P_f)$$

Corollaire 8 Si E est une K espace vectoriel de dimension n, et $f \in \mathcal{L}(E)$, alors deg $w_f \leq n$

2.2.6 Relation entre valeurs propres et racines des polynomes annulateurs

Propriété 158 Soit $f \in \mathcal{L}(E)$, avec E un K espace vectoriel (E peut être un espace de dimension infini).

Si f annule $P \in K[X]$, alors:

$$S_p(f)cZ(P)$$

Avec Z(P) l'ensemble des zéros de P, c'est à dire l'ensemble des racines de P.

Lemme 2 Si $f(\overrightarrow{x}) = \lambda . \overrightarrow{x}$, alors :

$$\forall P \in K[X] \ P(f)(\overrightarrow{x}) = P(\lambda)(\overrightarrow{x})$$

Propriété 159 Si $f \in \mathcal{L}(E)$, avec E un K espace vectoriel de dimension finies, alors :

$$S_p(f) = Z(w_f)$$

Cependant, ceci ne nous donne bien évidement aucune information sur la multiplicité des racines.

Propriété 160 Soit f et g deux endomorphisme de E dans E. Si:

$$fog = gof$$

C'est à dire, si les deux endomorphimes communent, alors Ker(g) et Im(g) sont stable par f

2.3 Lemme des noyaux

Propriété 161 Soit $f \in \mathcal{L}(E)$, avec E un K espace vectoriel. Soit P_1 et P_2 deux polynomes de K[X], premiers entre eux. On obtient alors :

$$Ker(P_1.P_2)(f) = Ker(P_1)(f) \oplus Ker(P_2)(f)$$

Généralisation 11 Soit $f \in \mathcal{L}(E)$, avec E un K espace vectoriel. Soit P_1, \ldots, P_k des polynomes de K[X] deux à deux premiers entre eux. Soit $P = P_1 \ldots P_k$, on obtient alors :

$$Ker(P)(f) = Ker(P_1)(f) \oplus \cdots \oplus Ker(P_k)(f)$$

2.3.1 Application fondamentale de Lemme des noyaux

Soit $f \in \mathcal{L}(E)$, avec E un K espace de dimension n telque P_f soit scindé sur K[X]. On peut donc écrire P_f sous la forme :

$$P_f(X) = (-1)^n (X - \lambda_1)^{n_1} \dots (X - \lambda_n)^{n_p}$$

En utilisant conjointement le lemme des noyaux et le théorème de Cayley-Hamilton, on obtient que :

$$P_f(f) = (-1)^n \cdot (f - \lambda_1 \cdot Id)^{n_1} o \dots o (f - \lambda_p \cdot Id)^{n_p} = \tilde{0}$$

Grâce au lemme des noyaux, on obtient que :

$$E = E_1 \oplus \cdots \oplus E_p$$

Avec :

$$E_k = Ker(f - \lambda_k.Id)^{n_k}$$

On peut obtenir à partir de tout ceci une matrice diagonale par bloc, de la forme :

$$mat_{B}(f) = \begin{pmatrix} \lambda_{1} & & & & \\ \lambda_{1} & & & & \\ & \ddots & & & \\ & & \lambda_{2} & & \\ & & & \lambda_{2} & \\ & & & & \ddots & \\ & & & & \lambda_{p} & \\ & & & & \ddots & \\ & & & & \lambda_{p} & \\ & & & & & \lambda_{p} \end{pmatrix}$$

2.4 Endomorphismes et matrices nilpotants

Définition 91 Soit $f \in \mathcal{L}(E)$.

f est dit nilpotant si il existe $p \in N^*$ telque :

$$f^p = \tilde{0}$$

La définition est analogue pour les matrices

Propriété 162 Soit E un C espace vectoriel de dimension n et $f \in \mathcal{L}(E)$, alors les conditions suivantes sont équivalentes :

- $\rightarrow f$ est nilpotant
- $\rightarrow S_p(f) = \{0\}$
- $\rightarrow \exists B \text{ base de } E \text{ telque } mat_B(f) \text{ soit une matrice stricement triangulaire, } c'est à dire triangulaire avec tous ces termes diagonaux nuls.}$

Définition 92 On appelle indice de nilpotence de f le plus petit entier ν telque :

$$f^{\nu} = \tilde{0}$$

Si E est un C espace vectoriel de dimension n, on obtient que :

$$\nu > n$$

Plus précisement, on obtient que :

$$w_f = X^{\nu}$$

2.5 Nouveaux critères de trigonabilité

Théorème 50 Soit $f \in \mathcal{L}(E)$, avec E un K espace vectoriel de dimension n. Les conditions suivantes sont équivalentes :

- $\rightarrow f$ est trigonalisable
- $\rightarrow f$ annule un polynome scindé sur K
- $\rightarrow w_f$ est scindé sur K

2.5.1 Réduction de Dunford

Si:

$$w_f = (X - \lambda_1)^{m_1} ... (X - \lambda_p)^{m_p}$$

avec les λ_k deux à deux distinct, alors on obtient que, d'après le lemme de noyaux :

$$E = E_1 \oplus ... \oplus E_P$$

avec:

$$E_k = Ker(f + \lambda_k.id)^{m_k}$$

On peut donc choisir une base de chaqu'un des E_k , notée B_k , telque :

$$mat_{B_k} f_{\parallel E_k} = \begin{pmatrix} \lambda_k & (a_{ij}) \\ & \ddots & \\ (0) & & \lambda_k \end{pmatrix}$$

C'est donc une matrice triangulaire superieur. De plus, on a :

$$B = B_1 \vee \cdots \vee B_P$$

qui est une base de E. On obtient donc que :

$$mat_B f = \begin{pmatrix} n'_1 & \dots & n'_p \\ A_1 & & (0) \\ & \ddots & \\ (0) & & A_p \end{pmatrix} \updownarrow n'_p$$

Avec $A_k = mat_{B_k} f_{\parallel E_k}$. On montre de plus qu'en réalité :

- $\rightarrow n_k'$ est en réalité egale à $mult_{Pf}(\lambda_k)$
- $\rightarrow E_k^n = \operatorname{Ker}(f-\lambda.id)^{n_k}$

2.6 Nouveau critère de diagonabilité

Théorème 51 Soit $f \in \mathcal{L}(E)$, avec E un K espace vectoriel de dimension finies. Les propositions suivantes sont équivalente :

- $\rightarrow f$ est diagonalisable
- \rightarrow f annule un polynome scindé sur K à racine simple
- $\rightarrow w_f$ est scindé sur K à racine simple

De plus, nous savons que :

$$Z(w_f) = S_p(f)$$

La première proposition s'écrit donc :

$$w_f(X) = (X - \lambda_1)...(X - \lambda_p)$$

ou

$$S_p(f) = \{\lambda_1, ..., \lambda_p\}$$

Sixième partie Espaces vectoriels normés

Chapitre

Espaces vectoriels normés - Première partie

1.1 Norme - Distance - Définitions

1.1.1 Définitions

Définition 93 Soit E un K espace vectoriel.

On appelle norme de E toutes application de $E \to \mathbb{R}^+$, que l'on note N ou $\|\ \|$, et vérifiant les axiomes suivants :

$$\rightarrow Si \overrightarrow{x} \in E, N(\overrightarrow{x}) = 0 \Rightarrow \overrightarrow{x} = \overrightarrow{0}$$

$$\rightarrow \forall \lambda \in K, \forall \overrightarrow{x} \in E, N(\lambda \overrightarrow{x} = /\lambda/N(\overrightarrow{x}))$$

$$\rightarrow \forall (\overrightarrow{x}, \overrightarrow{y}) \in E^2 \ N(\overrightarrow{x} + \overrightarrow{y}) \leq N(\overrightarrow{x}) + N(\overrightarrow{y})$$

1.1.2 Conséquence immédiate des axiomes

$$\rightarrow N(\overrightarrow{0}) = 0$$

$$\rightarrow \ \forall (\overrightarrow{x_1},...,\overrightarrow{x_p}) \in E^p, \ \mathcal{N}(\overrightarrow{x_1}+...+\overrightarrow{x_p}) \leq N(\overrightarrow{x_1})+...+N(\overrightarrow{x_p})$$

$$\rightarrow \ \forall (\overrightarrow{x},\overrightarrow{y}) \in E^2 \mid \parallel \overrightarrow{x} \parallel - \parallel \overrightarrow{y} \parallel \mid \leq \parallel \overrightarrow{x} + \overrightarrow{y} \parallel$$

$$\rightarrow$$
 De meme : $\forall (\overrightarrow{x},\overrightarrow{y}) \in E^2 \mid \parallel \overrightarrow{x} \parallel - \parallel \overrightarrow{y} \parallel \mid \leq \parallel \overrightarrow{x} - \overrightarrow{y} \parallel$

1.2 Distance

1.2.1 Définitions

Définition 94 Soit ε un ensemble quelconque, non vide. On appelle distance sur ε toutes applications :

$$d: \varepsilon \times \varepsilon \to \mathbb{R}^+$$

$$(\overrightarrow{x}, \overrightarrow{y}) \mapsto d(\overrightarrow{x}, \overrightarrow{y})$$

vérifiant les axiomes suivantes :

$$\rightarrow$$
 Si x et y sont dans ε , $d(x,y) = 0 \Leftrightarrow x = y$

$$\rightarrow \ \forall (x,y) \in \varepsilon^2, \ d(x,y) = d(y,x)$$

$$\rightarrow \forall (x,y,z) \in \varepsilon^3, d(x,z) \leq d(x,y) + d(y,z)$$

1.2.2 Conséquence

Des axiomes précédents, on peut étendre l'axiome n°2 :

$$\forall (x_1, ..., x_p) \in \varepsilon^p, \ d(x_1, ..., x_p) \le d(x_1, x_2) + ... + d(x_{p-1}, x_p)$$

1.2.3 Distance déduite d'une norme

Définition 95 Soit ε un K espace affine et $\| \ \|$ une norme sur $\overrightarrow{\varepsilon}$, l'espace vectoriel associé à l'espace affine.

On appelle distance déduite de $\| \ \| \ sur \ \varepsilon \ l$ 'application :

$$d: \varepsilon \times \varepsilon \to \mathbb{R}^+$$

$$(x,y) \mapsto d(x,y) = \parallel x - y \parallel$$

1.3 Exemple classique de normes dans un espaces de dimension finies

1.3.1 La norme $\| \|_{\infty}$ sur K^n

Définition générale

Soit X la matrice défini par :

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in K^n = M_{n,1}(K)$$

On associe le n-upplet à une matrice colonnes.

On défini la norme $||X||_{\infty} = \max(|x_k|)$

Cas d'un espace de dimension n

Soit E un K espace vectoriel de dimension n, et B= $(\overrightarrow{e_1},...,\overrightarrow{e_n})$ une base de E. Si :

$$\overrightarrow{x} = x_1 \cdot \overrightarrow{e_1} + \dots + x_n \overrightarrow{e_n}$$

On défini $\|\overrightarrow{x}\|_{\infty,B} = \max(|x_k|)$

1.3.2 La norme $\| \|_1$ sur K^n

Définition générale

Soit X la matrice défini par :

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in K^n = M_{n,1}(K)$$

On associe le n-upplet à une matrice colonnes.

On défini la norme par :

$$\parallel X \parallel_1 = \sum_{k=1}^n |x_k|$$

Cas d'un espace de dimension n

Soit E un K espace vectoriel de dimension n, et B= $(\overrightarrow{e_1},...,\overrightarrow{e_n})$ une base de E. Si :

$$\overrightarrow{x} = x_1 \cdot \overrightarrow{e_1} + \dots + x_n \overrightarrow{e_n}$$

On défini :

$$\parallel \overrightarrow{x} \parallel_{1,B} = \sum_{k=1}^{n} |x_k|$$

1.3.3 La norme $\| \cdot \|_2$ sur K^n

Définition

Avec les même notations :

$$\parallel X \parallel_2 = \sqrt{\sum_{k=1}^n |x_k|}$$

Cas particulier : $\mathbf{K} = \mathbb{R}$

La norme défini ci dessus vérifie dans ce cas :

$$\| \|_2 = \sqrt{\langle X|X \rangle}$$

Si:

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

et:

$$Y = \begin{pmatrix} y_1 \\ \cdot \\ \cdot \\ y_n \end{pmatrix}$$

Alors:

$$\langle X|Y \rangle = \sum_{k=1}^{n} x_k.y_k$$

Ceci est le produit scalaire canonique de \mathbb{R}^n . C'est l'unique produit scalaire sur \mathbb{R}^n qui fasse de la base canonique une base orthonormée.

Dans ce cas, l'inégalité triangulaire s'appelle l'inégalité de Minkowski

1.4 Convergence au sens d'une norme ou d'une distance -Norme équivalente

1.4.1 Au sens d'une distance

Définition 96 Soit (ε, d) un espace métrique, et (x_n) une suite de point de ε . On dit que (x_n) converge vers $x \in \varepsilon$ au sens de la distance d si et seulement si :

$$d(x_n, x) \underset{n \mapsto \infty}{\longrightarrow} 0$$

1.4.2 Au sens d'une norme

Définition 97 Soit (E, || ||) un K espace vectoriel normé, et $(\overrightarrow{x_n})$ une suite d'éléments de E. On dit que la suite $(\overrightarrow{x_n})$ converge vers $\overrightarrow{l} \in E$ au sens de la norme || || si et seulement si :

$$\|\overrightarrow{x_n} - \overrightarrow{l}\|_{n \mapsto \infty} 0$$

En théorie, cette définition ramène le problème à un problème de convergence dans \mathbb{R}^+ . La notion de norme sert à unifier les études de convergence.

Propriété 163 Cette propriété est un cas particulier de la définition au sens d'une distance, en utilisant la norme déduit de la norme.

1.4.3 Norme équivalente

Définition 98 Soit || || et || || deux normes sur un même K espace vectoriel de E. Ces deux normes sont dites équivalente si il existe α et β deux réels strictement positif telque :

$$\| \|' \le \alpha \| \|$$

$$\| \| \le \beta \| \|'$$

Définition 99 On peut écrire cette définition sous la forme suivante : Ces deux normes sont équivalente si les deux applications suivantes :

$$E - \{0\} \to \mathbb{R}^+$$

$$\overrightarrow{x} \mapsto \frac{\parallel \overrightarrow{x'} \parallel'}{\parallel \overrightarrow{x'} \parallel}$$

et

$$E - \{0\} \to \mathbb{R}^+$$

$$\overrightarrow{x} \mapsto \frac{\parallel \overrightarrow{x} \parallel}{\parallel \overrightarrow{x} \parallel'}$$

sont majorées.

Propriété 164 Il résulte de ce qui précède que si $\| \|$ et $\| \|'$ sont deux normes équivalente sur le K espace vectoriel E:

$$\overrightarrow{x_n} \xrightarrow{\sim} \overrightarrow{x'} \ dans \ (E, \|\ \|) \Leftrightarrow \overrightarrow{x_n} \xrightarrow{\sim} \overrightarrow{x'} \ dans \ (E, \|\ \|')$$

Propriété 165 Nous avons aussi la propriété réciproque :

Soient $\| \| et \| \|'$ deux normes sur un meme K espace vectoriel E telque pour toutes suite $(\overrightarrow{x_n}) \in E^N$, et pour tous $\overrightarrow{x} \in E$:

$$\overrightarrow{x_n} \underset{\infty}{\rightarrow} \overrightarrow{x'} \ dans \ (E, \|\ \|) \Leftrightarrow \overrightarrow{x_n} \underset{\infty}{\rightarrow} \overrightarrow{x'} \ dans \ (E, \|\ \|')$$

Alors ces deux normes sont équivalentes.

1.5 Convergence dans les K espaces vectoriel de dimension finies

Théorème 52 Si E est un K espace vectoriel de dimension finie, alors toutes les normes sur E sont équivalentes

Corollaire 1 La converge vers $\overrightarrow{x} \in E$ d'une suite $(\overrightarrow{x_n}) \in E^N$ ne dépend pas de la norme choisie si E est un K espace vectoriel de dimension finie.

Propriété 166 Soit $B = (\overrightarrow{e_1}, ..., \overrightarrow{e_p})$ une base du K espace vectoriel E. Si:

$$\overrightarrow{x_n} = x_n^1 \overrightarrow{e_1} + \ldots + x_n^p . \overrightarrow{e_p}$$

$$\overrightarrow{x} = x^1 \overrightarrow{e_1} + \dots + x^p . \overrightarrow{e_p}$$

Alors:

$$\overrightarrow{x_n} \underset{\infty}{\rightarrow} \overrightarrow{x} \Leftrightarrow x_n^1 \underset{\infty}{\rightarrow} x^1, ..., x_n^p \underset{\infty}{\rightarrow} x^p$$

On peut écrire ceci de la façon suivante : $\overrightarrow{x_n} \to \overrightarrow{x}$ si et seulement si il y a convergence composant par composant.

Espace vectoriel normé - Deuxième partie

2.1 Interieur d'un ensemble, ensemble ouvert

Définition 100 Soit (E,d) un espace métrique. En général, E est un K espace vectoriel munie d'une norme $\|\ \|$, et d est la distance déduite de cette norme. Soit A un ensemble non vide de E. On dit que $a \in E$ est intérieur à A, si il existe r > 0 telque :

Définition 101 On appelle interieur de A, et on le note $\overset{\circ}{A}$, l'ensemble des points interieurs à a.

Définition 102 A est dit ouvert si tout point de A est interieur à A. C'est à dire si :

AcA

Or, par définition, nous avons :

 $\stackrel{o}{\Delta}_{C}\Delta$

Donc, nous avons l'équivalence suivante :

$$(A \ est \ un \ ouvert) \Leftrightarrow (A = \overset{o}{A})$$

Propriété 167 Nous avons les propriétés suivantes :

- \rightarrow \emptyset est un ouvert par convention.
- \rightarrow E est un ouvert
- \rightarrow Une intersection finie d'ouvert est un ouvert.
- → Une réunion quelconque (finie ou infinie) d'ouvert est un ouvert.

Propriété 168 A est le plus grand (Au sens de l'inclusion) ouvert inclu dans A.

Exemple

Nous avons un exemple classique :

ightarrow Les boules ouvertes d'une espace métrique sont des ouverts

2.2 Adérence d'un ensemble, ensemble fermé

Considérons toujours A, un sous ensemble non vide d'un espace métrique (E,d).

Définition 103 On dit que $x \in E$ est adhérent à A s'il existe une suite (a_n) d'élements de A telque :

$$a_n \underset{n \to \infty}{\to} x$$

x peut être ou ne pas être un élement de A.

Si d est une distance déduite d'une norme $\|\ \|$, on peut écrire cette condition sous la forme :

$$\|a_n - x\|_{n \to +\infty} \to 0$$

Par définition, tout point de A est adhérent à A

Propriété 169 Nous avons la propriété suivante :

$$(x \ est \ adh\'erent \ \grave{a} \ A) \Leftrightarrow (\forall \varepsilon > 0, \ B(x,\varepsilon) \cap A \neq \emptyset$$

On dit que x est adhérent à A si pour tout $\varepsilon > 0$, $B(x, \varepsilon)$ rencontre A.

Définition 104 L'ensemble des points adhérent à A, s'appelle l'adhérence à A, et est noté \overline{A} . Par définition, nous avons donc :

$$\stackrel{o}{A} c A c \overline{A}$$

Définition 105 Un sous ensemble A d'un ensemble normé (E,d) est dit fermé s'il est égale à son adhérence, c'est à dire si $A=\overline{A}$. Et comme par définition nous avons l'une des inclusions, on obtient que A est fermé si et seulement si :

$$\overline{A}cA$$

Définition 106 On appelle complémentaire de A, et on le note C_A , l'ensemble défini par :

$$C_A = E - A$$

Propriété 170 Nous avons la propriété suivante :

$$A \ est \ ferm\'e \Leftrightarrow C_A \ est \ ouvert$$

Propriété 171 Caractérisation séquentielle :

A est fermé si et seulement si toute suite convergente d'élement de A à sa limite dans A.

Propriété 172 Nous avons les propriétés suivantes :

- $\rightarrow \emptyset$ est un fermé
- $\rightarrow E$ est un fermé
- → La réunion d'un nombre fini de fermés est un fermé
- → Une intersection quelconque de fermés est un fermé

Propriété 173 Nous avons les propriétes suivantes :

- \rightarrow A est le plus petit fermé (au sens de l'inclusion) contenant A.
- \rightarrow Dans un espace vectorielle normé, la boule fermé $\overline{B}(x_0,r)$ est l'adhérence de $B(x_0,r)$. Celà n'est pas nécessairement vrai dans un espace métrique.

Exemples

Il y a un exemple classique de fermé :

ightarrow Les boules fermés d'un espace métrique sont des fermés.

2.3 Frontière

Définition 107 Soit A une partie non vide d'un espace métrique (E,d). On appelle frontière de A, et on le note parfois ∂A , l'ensemble défini par :

$$\partial A = \overline{A} \cap \overline{C_A}$$

Propriété 174 Nous avons la propriété suivante :

$$\partial A = \overline{A} - \overset{o}{A}$$

2.4 Diamètre d'une partie bornée

Définition 108 Une partie A d'un espace métrique (E,d) est dit borné si :

$$\exists M \in \mathbb{R}_+, \ \exists x_0 \in E, \ tq \ \forall x \in Ad(x_0, x) \leq M$$

Cette définition est équivalente à :

$$\exists M \in \mathbb{R}_+, \ \exists x_0 \in E, \ tq \ Ac\overline{B}(x_0, M)$$

Propriété 175 Si cette condition est remplie, alors :

$$\forall x_1 \in E, \exists M_1 \in \mathbb{R}_+, tq \ \forall x \in A, \ d(x_1, x) \leq M_1$$

2.5 Ensembles compacts

2.6 Définitions et propriétés

2.6.1 Définition de Bolzano-Weierstrass

Définition 109 Un sous ensemble C d'un espace vectoriel normée E (ou un espace métrique (E,d), avec d la distance déduite de la norme), munie de la norme $\|\ \|$, est dit compact si de toute suite (γ_n) à valeur dans C, on peut extraire une sous-suite $(\gamma_{\phi(n)})$, avec ϕ une application strictement croissante de N dans N, qui converge vers un éléments de C.

2.6.2 Théorème

Théorème 53 Tout segment [a,b] inclu dans \Re est compact, c'est à dire que de toute suite bornée on peut extraire une suite qui converge.

Théorème 54 Nous avons les propriétes suivantes :

- → Tout compact est fermé et borné
- ightarrow Tout fermé inclus dans un compact est compact
- \rightarrow $[a_1,b_1]\times...\times[a_n,b_n]$ est un compact de $(\mathbb{R}^n,\|\ \|_{\infty})$, ou même de $(\mathbb{R}^n,\|\ \|)$ car toutes les normes sont équivalentes en dimension finie.

Théorème 55 Dans un espace vectoriel de dimension finie, tout ensemble, non vide, fermé et borné est un compact.

Propriété 176 Si (x_n) est une suite d'élements d'un espace métrique convergeant vers l, alors :

$$K = \{x_n, n \in \mathbb{N}\} \cup \{l\}$$

est un compact.

Corollaire 10 Soit f une application de E dans E', avec E et E' des espaces vectoriels normés ou des espaces métriques, définie sur une partie non vide A c E.

f est continue sur A si et seulement si f est continue sur tout compact inclu dans A.

- $\rightarrow f(C)$ est un compact de E'
- \rightarrow f est bornée sur C, c'est à dire :

$$\exists M \in \mathbb{R}^+ \ tq \ \forall \gamma \in \mathbb{C}, \ \| \ f(\gamma) \|' \leq M$$

- $\rightarrow f$ est uniformement continue sur C
- \rightarrow Si E'= \Re , alors f atteint ces bornes.

Chapitre 3

Espace Prehilbertiens, Espaces euclidiens

Ce chapitre se réfère aux chapitres de MPSI et de MP sur les espaces vectoriels normés. Certaines propriétés établie précédement ne seront pas re-mentionné, mais font partie intégrante de ce chapitre. Dans le cours de MPSI, qui contient la grande majorité des élements non revu ici, on considère un espace euclidien. Mais ces propriétés, si elle n'ont pas été reproduite ici, s'étendent aux espaces $\mathbb R$ prehilbertien.

3.1 Norme euclidienne

Définition 110 Soit E un \mathbb{R} espace vectoriel.

On appelle norme euclidienne sur E une norme N telle qu'il existe un produit scalaire :

$$\varphi: E \times E \to \mathbb{R}$$

vérifiant :

$$\forall \overrightarrow{x} \in E, \ N(\overrightarrow{x}) = \sqrt{\varphi(\overrightarrow{x}, \overrightarrow{x})}$$

Définition 111 Un \mathbb{R} espace vectoriel munie d'un produit scalaire, c'est à dire le couple (E, </>), s'appelle un espace préhilbertien réel.

On appelle espace euclidien un espace préhilbertien réel de dimension finie.

Propriété 177 On montre que l'application :

$$E \to \mathbb{R}_+$$

$$\overrightarrow{x} \mapsto \parallel \overrightarrow{x} \parallel = \sqrt{\langle \overrightarrow{x} | \overrightarrow{x} \rangle}$$

est une norme sur E. Cette norme est appelée norme euclidienne déduite du produit scalaire </>>

3.2 Propriétés Elémentaire

3.2.1 Identités de polarisation

Définition 112 On appelle identité de polarisation une égalité qui permet d'exprimer le produit scalaire au moyen de la norme euclidienne seule. Nous avons donc les égalités suivantes :

$$\langle \overrightarrow{x} | \overrightarrow{y} \rangle = \frac{1}{2} (\parallel \overrightarrow{x} + \overrightarrow{y} \parallel^2 - \parallel \overrightarrow{x} \parallel^2 - \parallel \overrightarrow{y} \parallel^2)$$
$$\langle \overrightarrow{x} | \overrightarrow{y} \rangle = \frac{1}{4} (\parallel \overrightarrow{x} + \overrightarrow{y} \parallel^2 - \parallel \overrightarrow{x} - \overrightarrow{y} \parallel^2)$$

3.2.2 Identités du Parallélogramme et de la médiane

Énoncé 16 En généralisant la propriété en géométrie élémentaire, on obtient que dans le cas d'un \mathbb{R} espace vectoriel prehilbertien, on a :

$$2.(\parallel \overrightarrow{x} \parallel^2 + \parallel \overrightarrow{y} \parallel^2) = \parallel \overrightarrow{x} + \overrightarrow{y} \parallel^2 + \parallel \overrightarrow{x} - \overrightarrow{y} \parallel^2$$

On obtient aussi une égalité de la médiane, mais elle n'a pas de valeur ajouté par rapport à l'égalité précédente.

Propriété 178 Si une norme vérifié l'égalité ci-dessus, alors c'est une norme euclidienne

3.3 Forme linéaire dans un espace euclidien

Propriété 179 Si E est un \mathbb{R} espace vectoriel préhilbertien, muni du produit scalaire </>, alors : $\forall \overrightarrow{e} \in E$, l'application :

$$\varphi_{\overrightarrow{e}}: E \to \mathbb{R}$$

$$\overrightarrow{x} \rightarrow <\overrightarrow{e}|\overrightarrow{x}>$$

est une forme linéaire continue non nulee si et seulement si $\overrightarrow{e} \neq \overrightarrow{0}$

Propriété 180 Si E est un \mathbb{R} espace vectoriel euclidien, alors pour toute forme linéaire $\varphi \in E^*$, l'ensemble des formes linéaires sur E, il existe un unique vecteur $\overrightarrow{e} \in E$ telque :

$$\varphi = \varphi_e$$

C'est à dire telque :

$$\forall \overrightarrow{x} \in E, <\overrightarrow{e} | \overrightarrow{x} >$$

Corollaire 11 Tout hyperplan d'un \mathbb{R} espace vectoriel euclidien est l'orthogonal d'une droite vectorielle.

3.4 Théorème de projection orthogonale sur un sous espace de dimension finie

Cette section s'appuit fortement sur la section "Projection orthogonale" dans le livre de révision de Mathématiques de MPSI.

3.4.1 Inégalité de Bessel

Avec les notations présenté dans l'ouvrage MPSI, on a :

$$||p(\overrightarrow{x})||^2 = \sum_{i=1}^p \langle \overrightarrow{e_i} | \overrightarrow{x} \rangle^2$$

On obtient donc que:

$$\sum_{i=1}^{p} <\overrightarrow{e_i}|\overrightarrow{x}>^2 \leq \parallel\overrightarrow{x}\parallel^2$$

Ceci constitue l'inégalité de Bessel.

3.4.2 Norme d'un projecteur orthogonal subordonnée à la norme euclidienne

Soit E un \mathbb{R} espace vectoriel préhilbertien, et $\| \|$ la norme euclidienne de E. Soit F un sous espace vectoriel de E, de dimension fini, et p le projecteur orthogonal sur F. Alors :

$$||p||_* = 1$$

Si $F \neq \left\{\overrightarrow{0}\right\}$, avec, par définition :

$$\parallel p \parallel_* = \sup_{\overrightarrow{x} \in E - \{\overrightarrow{0}\}} \frac{\parallel p(\overrightarrow{x}) \parallel}{\parallel \overrightarrow{x} \parallel}$$

3.4.3 Projection orthogonale sur une droite vectorielle

Soit $D = Vect(\overrightarrow{u})$ une droite vectorielle d'un \mathbb{R} espace vectoriel préhilbertien E, et p le projecteur orthogonal sur D. Alors :

$$\forall \overrightarrow{x} \in E, \ p(\overrightarrow{x}) = \frac{\langle \overrightarrow{x} | \overrightarrow{u} \rangle}{\| \overrightarrow{\overrightarrow{u}} \|^2}.\overrightarrow{u}$$

3.4.4 Théorème de la base orthonormée incomplète dans un espace vectoriel euclidien

Soit E un \mathbb{R} espace vectoriel euclidien de dimension n et $(\overrightarrow{e_1},...,\overrightarrow{e_p})$ un système orthonormé de E. Si p<n, alors il existe un système orthonormée $(\overrightarrow{e_{p+1}},...,\overrightarrow{e_n})$ telque $(\overrightarrow{e_1},...,\overrightarrow{e_n})$ soit une base orthonormée de E.

3.5 Orthogonal d'une partie, sous-espaces orthogonaux

Corollaire 12 Pour que \overrightarrow{x} , un vecteur de E, soit orthogonal à un sous espace vectoriel F, il faut et il suffit que \overrightarrow{x} soit orthogonal à une famille génératrice de F.

3.5.1 Propriétés

Soit E un \mathbb{R} espace vectoriel prehilbertien. Soit A et B deux parties de E, F et G de sous espaces vectoriel de E. Nous avons les propriétés suivantes :

- \rightarrow A c B \Rightarrow A^{\perp} c B^{\perp}
- $\to (F+G)^{\perp} = F^{\perp} + G^{\perp}$. Cette propriété se généralise pour un plus grand nombre de sous espace.
- $\to F^{\perp} + G^{\perp}$ c $(F \cap G)^{\perp}$. Si E est un espace de dimension finie, il y a égalité. Cette propriété se généralise elle aussi.
- \rightarrow F c $F^{\perp\perp}.$ Il y a égalité dans le cas d'un espace de dimension finie.

3.5.2 Sous-espaces Vectoriels orthogonaux

Définition 113 On dit que des sous espaces vectoriels $F_1, ..., F_p$ d'un \mathbb{R} espace vectoriel prehilbertien E sont supplémentaire orthogonaux s'ils sont supplémentaire et orthogonaux deux à deux. On le note :

$$E = F_1 \stackrel{\perp}{\oplus} \dots \stackrel{\perp}{\oplus} F_n$$

Propriété 181 Si les F_i précédents sont des sous espaces vectoriel deux à deux orthogonaux, et si B_i est une famille orthogonale (respectivement orthonormée) de F_i , alors $B_1 \vee ... \vee B_p$ est une famille orthogonale (respectivement orthonormée) de $F_1 \stackrel{\perp}{\oplus} ... \stackrel{\perp}{\oplus} F_p$. Il en est de même si on considère une base au lieu d'une famille

Propriété 182 Si $B_1, ..., B_p$ sont des familles orthogonales (respectivement orthnormée) telque $\forall i \neq j \in [1, p]$, tout vecteur de B_i soit orthogonal à tout vecteur de B_j , alors les $F_i = Vect(B_i)$ sont des sous espaces vectoriels deux à deux orthogonaux et $B_1 \vee ... \vee B_p$ est une base orthogonale (respectivement orthonormée) de :

$$F_1 \stackrel{\perp}{\oplus} \dots \stackrel{\perp}{\oplus} F_p$$

3.6 Orthonormalisation de Gram-Schmidt

Théorème 57 Soit (u_i) une famille libre d'un \mathbb{R} espace vectoriel préhilbertien E, avec $i \in I = [1, n]$ ou $i \in I = \mathbb{N}^*$.

Alors, il existe une unique famille orthonormée (e_i) telle que :

- $\rightarrow \forall i \in I, \ Vect(\overrightarrow{e_1}, ..., \overrightarrow{e_i}) = Vect(\overrightarrow{u_1}, ..., \overrightarrow{u_i})$
- $\rightarrow \forall i \in I, <\overrightarrow{u_i}|\overrightarrow{e_i}>=0$

L'unicité provient de la seconde condition.

3.6.1 Traduction matricielle

Propriété 183 $\forall A \in Gl_n(\mathbb{R}), \exists !(Q,R) \in \mathcal{M}_n(\mathbb{R})^2$ avec Q orthogonale et R triangulaire supérieur à diagonale strictement positive telque :

$$A = QR$$

A l'aide de cette propriété, on peut traduire matriciellement l'orthonormalisation de Gram-Schmidt.

3.7 Endomorphismes Orthogonaux, Matrices orthogonales

Dans cette section, on généralise les résultats vu en MPSI, dans le cas ou l'espace de départ n'est pas forcémement l'espace d'arrivé.

3.7.1 Isométries vectorielles

Propriété 184 Soient E et E' deux \mathbb{R} espace vectoriel préhilbertiens de f une application de E dans E', qui n'est pas supposé linéaire. On a alors équivalence entre les deux conditions suivantes :

- $\rightarrow f \ conserve \ le \ produit \ scalaire : \forall \overrightarrow{x}, \overrightarrow{x}' \in E^2 \ < f(\overrightarrow{x})|f(\overrightarrow{x}')> = < \overrightarrow{x}|\overrightarrow{x}'>$
- $\rightarrow f$ est linéaire et conserve la norme : $\forall \overrightarrow{x} \in E, \parallel f(\overrightarrow{x} \parallel = \parallel \overrightarrow{x} \parallel$

Définition 114 Une telle application f est appelé isométrie vectorielle de E dans E'.

Propriété 185 Toute isométrie vectorielle est injective.

3.7.2 Matrices orthogonales

Définition 115 Une matrice orthogonale est une matrice $A \in \mathcal{M}_n(\mathbb{R})$ telque ${}^tA.A = I_n$. On note $O_n(\mathbb{R})$ l'ensembles des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$. D'apres la caractérisation précédente, on obtient que l'inverse d'une matrice orthogonale est sa transposé.

Propriété 186 $(O_n(\mathbb{R}), \times)$ est un sous groupe de $(Gl_n(\mathbb{R}, \times))$. Nous avons donc les propriétés suivantes :

- \rightarrow I_n est une matrice orthogonale
- \rightarrow Le produit de deux matrices orthogonales est une matrice orthogonales
- ightarrow L'inverse d'une matrice orthogonale est une matrice orthogonale

 $\textbf{Propriété 187} \ \textit{Soit E un espace vectoriel euclidien. Nous avons les propriétés suivantes}:$

- \rightarrow Si $f \in O(E)$, alors la matrice de f dans n'importe quelle base orthonormée est orthogonale
- \rightarrow Si $f \in \mathcal{L}(E)$, et si il existe une base orthonormée dans laquelle f est représenté par une matrice orthogonale, alors $f \in O(E)$

Lien avec les bases orthonormées

Propriété 188 Nous avons les propriétés suivantes :

- → Si E est un espace vectoriel euclidien, la matrice de passage d'une base orthonormée à une autre base orthonormée est une matrice orthogonale.
- \rightarrow Si B est une base orthonormée de E et si la matrice de passage entre B et B' est une matrice orthogonale, alors B' est aussi une base orthonormée de E.
- $A \in \mathcal{M}_n(\mathbb{R})$ est une matrice orthogonale si et seulement si ses colonnes forment une base orthonormée dans \mathbb{R}^n euclidien canonique. Il en est de même si on considère les lignes.

Déterminant d'un endomorphisme orthogonal

Propriété 189 $Si A \in O_n(\mathbb{R})$, alors :

$$det(A) = \pm 1$$

Propriété 190 Si $f \in O(E)$, avec E un \mathbb{R} espace vectoriel euclidien, alors :

$$det(f) = \pm 1$$

Propriété 191 Les endomorphismes orthogonaux de déterminant +1 sont dits directs ou positif. Les endomorphismes orthogonaux de déterminant -1 sont dits indirects ou négatif.

Valeurs propres d'un endomorphisme orthogonal ou d'une matrice orthogonale

Soit
$$A \in O_n(\mathbb{R})$$

Propriété 192 Les valeurs propres complexes d'une matrice orthogonale sont de module 1.

Symétries orthogonales

Définition 116 Soit E un \mathbb{R} espace vectoriel euclidien de dimension finie n et F un sous espace vectoriel de E. Nous avons donc :

$$E = F \oplus F^{\perp}$$

On peut donc définir la symétrie orthogonale s par rapport à F et parralèlement de F^{\perp} :

$$s: E \to E$$

$$\overrightarrow{x} = \overrightarrow{x_1} + \overrightarrow{x_2} \to s(\overrightarrow{x}) = \overrightarrow{x_1} - \overrightarrow{x_2}$$

Avec $\overrightarrow{x_1} \in F$ et $\overrightarrow{x_2} \in F^{\perp}$.

Propriété 193 Nous avons la propriété suivante :

$$s \in O(E)$$

Réduction orthonormale d'un endomorphisme orthogonal

Théorème 58 Soit $f \in O(E)$, avec E un \mathbb{R} espace vectoriel euclidien. Alors, il existe au moins une base orthonormée B de E telle que :

$$mat_B(f) = \begin{pmatrix} \boxed{R_1} & & (0) \\ & \ddots & \\ (0) & & \boxed{R_p} \end{pmatrix}$$

Avec $R_k = (1)$ ou $R_k = (-1)$ ou :

$$R_k = \begin{pmatrix} \cos(\theta_k) & -\sin(\theta_k) \\ \sin(\theta_k) & \cos(\theta_k) \end{pmatrix}$$

 $O_k \neq 0$ [π]. Dans ce dernier cas, R_k représente une rotation d'angle θ_k

Adjoint d'un endomorphisme, Endomorphisme et matrice symétrique

4.1 Rappel

Soit E un \mathbb{R} espace vectoriel, $B=(\overrightarrow{e_1},\ldots,\overrightarrow{e_n})$ une base orthonormé de E. Soit x et x' deux vecteurs de E. Soit X et X' les matrices de x et x' dans B. On obtient que :

$$\langle x|x'\rangle = ^t X.X'$$

4.2 Propriétés - Définition d'un adjoint

Propriété 194 Soit E un \mathbb{R} espace vectoriel euclidien de $f \in \mathcal{L}(E)$. Alors :

$$\exists! f^* \in (E) \ tq \ \forall (\overrightarrow{x}, \overrightarrow{y}) \in E^2 \ < f(\overrightarrow{x}) | \overrightarrow{y} > = < \overrightarrow{x} | f^*(\overrightarrow{y}) >$$

 $\textbf{D\'efinition 117} \ f^* \ est \ appel\'e \ l'adjoint \ de \ f, \ pour \ un \ produit \ scalaire \ d\'efini.$

Propriété 195 Si E est un \mathbb{R} espace vectoriel euclidien, et B une base orthonormée de E, alors :

$$mat_B f^* = t (mat_B f)$$

Définition 118 Un endomorphisme f d'un \mathbb{R} espace vectoriel euclidien E est dit auto-adjoint ou symétrique si:

$$f^* = f$$

Propriété 196 Soit $f \in \mathcal{L}(E)$, avec E un \mathbb{R} espace vectoriel euclidien.

- \rightarrow Si f est symétrique, alors quelque soit la base orthonormée B de E, la matrice de f dans cette base est symétrique.
- \rightarrow S'il existe une base orthonormée B de E telque la matrice de f soit symétrique, alors f est symétrique

4.3 Propriétés élémentaires

Dans tout ce paragraphe, E désigne un $\mathbb R$ espace vectoriel euclidien. f et g désigne des endomorphisme de E.

Propriété 197 Nous avons les propriétés suivantes :

- $\rightarrow (f+g)^* = f^* + g^*$
- $\rightarrow \forall \lambda \in \mathbb{R} \ (\lambda.f)^* = \lambda.f^*$
- $\rightarrow (f \circ g)^* = g^* \circ f^*$

$$\rightarrow (f^*)^* = f$$

Propriété 198 Nous avons les propriétés suivantes :

$$Ker(f^*) = (Im(f))^{\perp}$$

$$Im(f^*) = (Ker(f))^{\perp}$$

Propriété 199 Si $\lambda \in Sp(f)$ et $\lambda' \in Sp(f^*)$. Si $\lambda \neq \lambda'$, alors : $Ker(f - \lambda.Id)$ et $Ker(f^* - \lambda'.Id)$ sont orthogonaux.

Propriété 200 Soit F un sous espace vectoriel de E.

 $(F \ est \ stable \ par \ f) \Leftrightarrow (F^{\perp} \ est \ un \ sous \ espace \ vectoriel \ stable \ par \ f)$

4.3.1 Cas ou f et g sont symétrique

Corollaire 13 L'ensemble des endomorphismes symétriques de E est un sous espace vectoriel de $\mathcal{L}(E)$.

Corollaire 14 Nous avons les égalités suivantes :

$$Ker(f) = (Im(f))^{\perp}$$

$$Im(f) = (Ker(f))^{\perp}$$

Corollaire 15 Si λ et λ' sont deux valeurs propres distinct d'un endomorphisme f symétrique, alors :

 $Ker(f - \lambda.Id)$ et $Ker(f - \lambda'.Id)$ sont orthogonaux.

Corollaire 16 Si f est symétrie et si F est un sous espace vectoriel de E:

 $(F \ est \ stable \ par \ f) \Leftrightarrow (F \ est \ un \ sous \ espace \ vectoriel \ stable \ par \ f)$

4.4 Théorème d'orthogonalisation

Théorème 59 Soit E un \mathbb{R} espace vectoriel euclidien de dimension finie n. Soit f un endomorphisme symétrique de E. Alors :

- $\rightarrow P_f$ est scindé sur \mathbb{R} , c'est à dire que le spectre complexe de f est égale au spectre réel de f.
- \rightarrow Les sous espaces vectoriels propre de f sont deux à deux orthogonaux et supplémentaires. En particulier, f est diagonalisable.
- \rightarrow Il existe une base orthonormée de diagonalisation de f, c'est à dire une base orthonormée de E formée de vecteurs propres de f.
- → Réciproquement, si f est un endomorphisme de E orthonormalement diagonalisable, c'est à dire si f admet une base orthonormée de diagonalisation, alors f est symétrique.

4.4.1 Corollaire matricielle

Si $A \in \mathcal{M}_n(\mathbb{R})$ est symétrique, alors A est orthonormalement diagonalisable, c'est à dire qu'il existe $P \in O_n(\mathbb{R})$ telque $P^{-1}.A.P$ soit diagonale. Dans ce cas $P^{-1} = P^{\perp}$

4.5 Caractéristation par l'adjoint de certains endomorphismes classiques d'un espace euclidien

Dans tout ce paragraphe, E désigne un \mathbb{R} espace vectoriel euclidien, $f \in \mathcal{L}(E)$.

 ${f Propriét\'e}$ 201 f est un projecteur orthogonal si et seulement si :

$$\begin{cases} fof = f \\ f^* = f \end{cases}$$

Propriété 202 Nous avons la propriété suivante :

$$(f \in O(E)) \Leftrightarrow (f \circ f^* = I d_E)$$

Propriété 203 Nous avons la propriété suivante :

$$f \ est \ symétrique \ orthogonale \ \Leftrightarrow \begin{cases} f^2 = Id \\ f^* = f \end{cases}$$

Chapitre 5

Formes quadratiques

5.1 Formes quadratiques sur \mathbb{R}^n

Définition 119 On appelle forme quadratique sur \mathbb{R}^n toute application polynomiale homogène du second degrès de \mathbb{R}^n dans \mathbb{R} , donc une application défini par :

$$\mathbb{R}^n \xrightarrow{q} \mathbb{R}$$

$$X \mapsto q(X)$$

Si:

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Alors:

$$q(X) = \sum_{i=1}^{n} a_{ii}.x_i^2 + 2.\sum_{1 \le i < j \le n} a_{ij}.x_j.x_i$$

Avec:

$$\forall i > j, \ a_{ij} = a_{ji}$$

5.1.1 Forme bilinéaire symétrique associé à une forme quadratique

Propriété 204 Si q est une forme quadratique sur \mathbb{R}^n , il existe une unique forme bilinéaire symétrique φ sur \mathbb{R}^n telle que :

$$\forall X \in \mathbb{R} \ q(X) = \varphi(X, X)$$

 φ est appelé forme polaire de q.

On montre que l'unicité est du à l'identité de polarisation, qui permet d'exprimer φ explicitement en fonction de q.

5.1.2 Expressions matricielles de q et de φ

Propriété 205 Soient q et φ une forme quadratique et sa forme polaire associé sur \mathbb{R}^n , alors:

$$\forall X \in \mathbb{R}^n \ q(X) = ^t X.A.X$$

$$\forall (X, X') \in \mathbb{R}^n \ \varphi(X, X') = ^t X.A.X'$$

Avec A matrice symétrique.

Propriété 206 Il existe une unique matrice $A \in \mathcal{M}_n(\mathbb{R})$ symétrique telque :

$$\forall X \in \mathbb{R}^n \ q(X) = ^t X.A.X$$

A est appelé la matrice de la forme quadratique q dans la base canonique, et se note :

$$A = mat_{can}(q)$$

De même, A est l'unique matrice symétrique de $\mathcal{M}_n(\mathbb{R})$ telque :

$$\forall (X, X') \in (\mathbb{R}^n)^2 \ \varphi(X, X') = t^X . A. X'$$

On obtient:

$$A = mat_{can}(q) = mat_{can}(\varphi) = (a_{ij})$$

Avec:

$$\forall (i,j) \in [|1,n|]^2 \ a_{ij} = \varphi(\overrightarrow{e_i},\overrightarrow{e_j})$$

Avec $(\overrightarrow{e_1},...,\overrightarrow{e_n})$ la base canonique de \mathbb{R}^n .

5.1.3 Endomorphisme symétrique de \mathbb{R}^n associé à une forme quadratique q

 \mathbb{R}^n est munie du produit scalaire canonique. q est une forme quadratique sur \mathbb{R}^n , de forme polaire φ , de matrice A sur la base canonique.

Propriété 207 Il existe un unique endomorphisme f de \mathbb{R}^n symétrique telque :

$$\forall X \in \mathbb{R}^n \ q(X) = \langle f(X) | X \rangle$$

Cet endomorphisme vérifie aussi :

$$\forall (X, X') \in (\mathbb{R}^n)^2 < f(X), X' > = < X | f(X') > = \varphi(X, X')$$

f est appelé l'endomorphisme symétrique associé à q dans $(\mathbb{R}^n, < | >)$. De plus, nous avons :

$$mat_{cam}(f) = mat_{cam}(q)$$

5.1.4 Théorème de réduction orthonormale d'une forme quadratique de \mathbb{R}^n

Théorème 60 \mathbb{R}^n étant munie de son produit scalaire canonique euclidien, et q étant une forme quadratique sur \mathbb{R}^n , il existe $B=(\overrightarrow{u_1},...,\overrightarrow{u_n})$ base orthonormée de \mathbb{R}^n telque si :

$$X = x_1 \cdot \overrightarrow{u_1} + \dots + x_n \cdot \overrightarrow{u_n}$$

alors:

$$q(X) = \lambda_1 \cdot x_1^2 + \dots + \lambda_n \cdot x_n^2$$

ou les λ_i sont des valeurs propres associés à f, l'endomorphisme symétrique canoniquement associé à q. Une telle base B s'obtient en orthonormalisent f. En résumé, par un changement de base, on fait "disparaître" les termes rectangles $(x_i, x_j, ...)$

5.1.5 Version matricielle du théorème de réduction orthonormale

Soit q une forme quadratique sur \mathbb{R}^n , et φ sa forme polaire. Soit A la matrice de q dans la base canonique, et f l'endomorphisme symétrique canoniquement associé à q dans \mathbb{R}^n euclidien canonique.

Si $X \in \mathbb{R}^n$:

$$q(X) = {}^t X.A.X = \langle f(X)|X \rangle$$

Changement de base

Soit B une nouvelle base de \mathbb{R}^n , $B=(\overrightarrow{u_1},...,\overrightarrow{u_n})$ et P la matrice de passage entre la base canonique et B. Soit $X'=mat_B(X)$. On sait que :

$$X = PX'$$

Donc:

$$q(X) = {}^t X.({}^t P.A.P).X'$$

Posons A' = ${}^tP.A.P.$ A' est symétrique et c'est l'unique matrice symétrique vérifiant l'expression précédent $\forall X \in \mathbb{R}^n$. Par définition :

$$A' = mat_B(q)$$

Propriété 208 $Si\ A = (a'_{ij}),\ alors$:

$$\forall (i,j) \in [|1,n|]^2 \ a'_{ij} = \varphi(\overrightarrow{u_i}, \overrightarrow{u_j})$$

De plus, si B est une base orthonormée, alors :

$$A - = {}^{t} P.A.P = P^{-1}.A.P$$

5.2 Généralisation : Formes quadratiques sur un espace vectoriel E

Définition 120 Soit E un \mathbb{R} espace vectoriel quelconque, non nécessairement de dimension finie. On appelle forme quadratique sur E une application $q: E \to \mathbb{R}$ tel qu'il existe φ application de $E \times E \to \mathbb{R}$ bilinéaire symétrique vérifiant :

$$\forall \overrightarrow{x} \in E, q(\overrightarrow{x}) = \varphi(\overrightarrow{x}, \overrightarrow{x})$$

Propriété 209 Avec les notations précédentes, φ est alors unique et appelé forme polaire q.

Propriété 210 En conservant les notations précédentes :

$$\forall (\overrightarrow{x}, \overrightarrow{y}) \in E^2 \ \varphi(\overrightarrow{x}, \overrightarrow{y}) = \frac{1}{4} [q(\overrightarrow{x} + \overrightarrow{y}) - q(\overrightarrow{x} - \overrightarrow{y})]$$

Propriété 211 Si q est une forme quadratique sur E, $\forall \lambda \in \mathbb{R}$:

$$\forall \overrightarrow{x} \in E \ q(\lambda, \overrightarrow{x}) = \lambda^2 . q(\overrightarrow{x})$$

5.2.1 Exemples

Les formes quadratiques défini à la section précédente sur \mathbb{R}^n sont des formes quadratiques au sens de la nouvelle définition générale. Réciproquement, toute forme quadratique sur $E=\mathbb{R}^n$ au sens de la nouvelle définition est une application polynomiale homogène du 2^{nd} degrès. En résumé, les formes quadratiques définies au paragraphe 1 sur \mathbb{R}^n sont des cas particuliers des formes quadratiques défini globalement.

5.2.2 Expression dans une base, matrice d'une forme quadratique dans une base

Propriété 212 Soit q, application de E dans \mathbb{R} , une forme quadratique sur un \mathbb{R} espace vectoriel E de dimension n. φ est sa forme polaire. Soit $B=(\overrightarrow{u_1},...,\overrightarrow{u_n})$ une base de E. Si:

$$\begin{cases} \overrightarrow{x} = x_1.\overrightarrow{u_1} + \ldots + x_n.\overrightarrow{u_n} \\ \overrightarrow{y} = y_1.\overrightarrow{u_1} + \ldots + y_n.\overrightarrow{u_n} \end{cases}$$

Alors:

$$\begin{cases} q(\overrightarrow{x}) = \sum_{i=1}^{n} a_{ii}.x_i^2 + 2. \sum_{1 \le i < j \le n} a_{ij}.x_i.x_j \\ \varphi(\overrightarrow{x}, \overrightarrow{y}) = \sum_{(i,j) \in [|1,n|]^2} a_{ij}.x_i.x_j \end{cases}$$

Réciproquement, si q est une application E dans \mathbb{R} , alors :

$$\forall \overrightarrow{x} \in E \ q(\overrightarrow{x}) \sum_{i=1}^{n} a_{ii}.x_{i}^{2} + 2. \sum_{1 \leq i \leq n} a_{ij}.x_{i}.x_{j}$$

alors q est une forme quadratique et sa forme polaire φ est définie par :

$$\varphi: E \times E \to \mathbb{R}$$

$$(\overrightarrow{x}, \overrightarrow{y}) \mapsto \sum_{(i,j) \in [1,n]^2} a_{ij}.x_i.x_j$$

Définition 121 Avec les notations précédentes, la matrice $A=(a_{ij})$ telque :

$$\forall (i,j) \in [1,n] \ a_{ij} = \varphi(\overrightarrow{u_i}, \overrightarrow{u_j})$$

A est appelé matrice de q ou de φ dans la base B.

Propriété 213 Avec les notations et définitions précédentes, A est l'unique matrice symétrique de $\mathcal{M}_n(\mathbb{R})$ telque :

$$\forall \overrightarrow{x} = \sum_{i=1}^{n} x_i . \overrightarrow{u_i} \in E, q(\overrightarrow{x}) = {}^{t} X.A.X$$

Avec X la matrice de \overrightarrow{x} dans B.

5.2.3 Changement de Base

Soit E un \mathbb{R} espace vectoriel de dimension finie n, B et B' deux bases de E. Soit P la matrice de passage entre B et B'. q est une forme quadratique sur E. A est la matrice de q dans B, A' la matrice de q dans B':

$$A' = t^P.A.P$$

Définition 122 Si A et A' deux matrices de $\mathcal{M}_n(\mathbb{R})$. On dit que A et A' sont congruente s'il existe $P \in Gl_n(\mathbb{R})$ telque :

$$A' = {}^{t} P.A.P$$

On défini ainsi une relation d'équivalence sur E. Deux matrices congruentes sont en particulier équivalentes. Donc deux matrices congruentes ont même rang.

Définition 123 Soit q une forme quadratique sur un \mathbb{R} espace vectoriel de dimension finie. On appelle rang de q le rang de sa matrice sur une base B de E. Cette définition ne dépend pas de la base B choisie.

Définition 124 Si E est un \mathbb{R} espace vectoriel de dimension finie n et q une forme quadratique sur E. On dit que q est non dégénéré si $\operatorname{rang}(q)=n$, c'est à dire si la matrice de q sur une base est inversible.

5.2.4 Endomorphisme symétriques associés à une forme quadratique dans un espace vectoriel euclidien

Propriété 214 Soit quine forme quadratique sur un \mathbb{R} espace vectoriel euclidien E, alors il existe un unique endomorphisme $f \in \mathcal{L}(E)$, symétrique (pour le produit scalaire de E) telque :

$$\forall \overrightarrow{x} \in E \ q(\overrightarrow{x}) = \langle f(\overrightarrow{x}) | \overrightarrow{x} \rangle$$

En outre, quelque soit la base B orthonormée de E :

$$mat_B(f) = mat_B(q)$$

De plus, si φ est la forme polaire de q:

$$\forall (\overrightarrow{x}, \overrightarrow{y}) \in E^2, \ \varphi(\overrightarrow{x}, \overrightarrow{y}) = \langle f(\overrightarrow{x}) | \overrightarrow{x} \rangle = \langle \overrightarrow{x} | f(\overrightarrow{x}) \rangle$$

5.2.5 Réduction orthonormale d'une forme quadratique dans un espace vectoriel euclidien

Théorème 61 Soit E un \mathbb{R} espace vectoriel euclidien de dimension n, q une forme quadratique sur E, alors il existe une base B orthonormée de E et des réels $\lambda_1, ..., \lambda_n$ telque :

$$\forall \overrightarrow{x} = x_1.\overrightarrow{u_1} + \dots + x_n.\overrightarrow{u_n} \in E \ q(\overrightarrow{x}) = \sum_{i=1}^n \lambda_i.x_i^2$$

Une telle base B s'obtient en orthonormalisent l'endomorphisme symétrique f associé à q. Avec les notations précédentes, si $\overrightarrow{y} = y_1.\overrightarrow{u_1} + ... + y_n.\overrightarrow{u_n}$ et si φ est la forme polaire de q :

$$\varphi(\overrightarrow{x}, \overrightarrow{y}) = \sum_{i=1}^{n} \lambda_i . x_i . y_i$$

5.3 Application à la réduction de coniques

Définition 125 Soit E un \mathbb{R} espace affine de dimension 2. Soit \mathcal{R} un repère de E. On appelle conique au sens large un sous ensemble (Γ) de E admettent dans \mathcal{R} une équation du type :

$$P(x,y) = 0$$

Avec P polynome du second degrès :

$$P(x,y) = a.x^{2} + 2.b.x.y + c.y^{2} + u.x + v.y + h$$

Avec $(a,b,c) \neq (0,0,0)$. Soit $\Omega = (O,\overrightarrow{i},\overrightarrow{j})$. On défini une forme quadratique q par :

$$\overrightarrow{E} \to \mathcal{R}$$

$$x.\overrightarrow{i} + y.\overrightarrow{j} \mapsto a.x^2 + 2.b.x.y + c.y^2$$

 $\overrightarrow{A}vec$ \overrightarrow{E} l'espace vectoriel associé à E. Nous avons donc :

$$mat_{(\overrightarrow{i},\overrightarrow{j})}(q) = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

On défini de même une forme linéaire l par :

$$\overrightarrow{E} \to \mathcal{R}$$

$$x.\overrightarrow{i} + y.\overrightarrow{j} \mapsto u.x + v.y$$

Avec ces notations, l'équation de (Γ) s'écrit :

$$M \in (\Gamma) \Leftrightarrow q(\overrightarrow{OM}) + l(\overrightarrow{OM}) + h = 0$$

Propriété 215 Si \mathcal{R}' est un autre repère de (E) si (Γ) a pour équation P(x,y)=0, avec P polynome du 2^{nd} degrès. dans le repère \mathcal{R} , alors (Γ) a pour équation :

$$Q(x,y) = 0$$

avec Q polynome du 2^{nd} degrès. Autrement dit, la définition ci-dessus ne dépend pas du repère choisi.

5.3.1Cas général

On suppose ici E euclidien et $\mathcal R$ un repère orthonormée. En réduisant d'abord orthonormalement q, ce qui revient à un changement de repère par rotation, puis en effectuant éventuellement un deuxième changement de repère par translation, on montre qu'il existe un repère orthonormée \mathcal{R}_1 dans lequel (Γ) à une équation du type (a,b>0):

 \rightarrow Coniques non dégénéré :

$$\rightarrow \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} = 1$$
. C'est une ellipse, q a deux valeurs propres de même signe

$$ightarrow rac{x_1^2}{a^2} + rac{y_1^2}{b^2} = 1$$
. C'est une ellipse, q a deux valeurs propres de même signe $ightarrow rac{x_1^2}{a^2} - rac{y_1^2}{b^2} = 1$. C'est une hyperbole, q a deux valeurs propres de signe contraire $ightarrow x_1^2 = 2.p.y_1$. C'est une parabole, q a 1 valeur propre nulle. $ightarrow$ Coniques dégénéré :

$$\rightarrow \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} = 0.$$
 (Γ) est réduit au point (0,0).

$$\rightarrow \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} = \alpha < 0.$$
 (Γ) est égale au vide.

Pour déterminer la conique associé à (Γ) , on peut utiliser la méthode suivantes : Soit A la matrice de q ou de f dans une base orthonormée de dimension 2. Soit λ_1 et λ_2 les valeurs propres associé à A. On montre que :

- $\rightarrow \lambda_1$ et λ_2 non nulle et de même signe $\Leftrightarrow \det(A) > 0$
- $\rightarrow \lambda_1$ et λ_2 non nulle et de signe contraire $\Leftrightarrow \det(A) < 0$

De plus, si (Γ) est une conique dégénéré, les sous espaces propres vectoriels de f fournissent les dimensions vectorielles des axes de la conique.

Dans le cas d'un hyperbole, on obtient les droites parallèles au asymptotes en annulant q.

Catalogue des quadriques dans un \mathbb{R} espace affine E (eu-5.4clidien) de dimension 3

Définition 126 On appelle quadrique de (E) un ensemble (Σ) telque qu'il existe un repère $\mathbb R$ de Edans lequel (Σ) a pour équation P(x,y,z) = 0, avec P un polynome à coefficient réele du 2^{nd} degrès.

Propriété 216 Dans ce cas, $\forall R'$ repère de (E), (Σ) admet également une éguation polynomiale de degrès 2 dans \mathcal{R}' .

5.4.1Catalogue des quadriques

On suppose E euclidien, \mathcal{R} un repère orthonormée. Pour simplifier l'équation de (Σ) , on commence par réduire orthonormalement la forme quadratique \underline{q} , c'est à dire diagonalisé orthonormalement la forme quadratique \underline{q} , c'est à dire diagonalisé orthonormalement la forme quadratique \underline{q} , c'est à dire diagonalisé orthonormalement la forme quadratique \underline{q} , c'est à dire diagonalisé orthonormalement la forme quadratique \underline{q} , c'est à dire diagonalisé orthonormalement la forme quadratique \underline{q} , c'est à dire diagonalisé orthonormalement la forme quadratique \underline{q} , c'est à dire diagonalisé orthonormalement la forme quadratique \underline{q} , c'est à dire diagonalisé orthonormalement la forme quadratique \underline{q} , c'est à dire diagonalisé orthonormalement la forme quadratique \underline{q} , c'est à dire diagonalisé orthonormalement la forme quadratique \underline{q} , c'est à dire diagonalisé orthonormalement quadratique \underline{q} , c'est à direction quadratique \underline{q} , c'est à dir malement l'endomorphisme symétrique f qui va de \overrightarrow{E} dans \overrightarrow{E} associé à q. On sait que l'on peut eliminer les termes rectangles. On va classer les quadriques possibles suivant, essentiellement, le nombre de valeur propre non nulle.

Les trois valeurs propres sont non nulle

En développent les expressions, on montre que l'on obtient qu'il $\exists \Omega \in E \ / \ Si \ M \equiv_{\mathcal{R}''} (X, Y, Z)$, alors:

$$M \in (\Sigma) \Leftrightarrow \lambda_1.X^2 + \lambda_2.Y^2 + \lambda_3.Z^2 = h'$$

On montre que ceci équivaut à :

$$\begin{cases} \varepsilon_1 . \frac{X^2}{a^2} + \varepsilon_2 . \frac{Y^2}{b^2} + \varepsilon_3 . \frac{Z^2}{c^2} = 1 \text{ si } h' \neq 0. \\ \varepsilon_1 . \frac{X^2}{c^2} + \varepsilon_2 . \frac{Y^2}{b^2} + \varepsilon_3 . \frac{Z^2}{c^2} = 0 \text{ si } h' = 0. \end{cases}$$

Avec $\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = \pm 1$. Quitte à permutter les vecteurs $\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}$ de la base B', nous avons les possibilités suivantes :

$$(\varepsilon_1, \varepsilon_2, \varepsilon_3) = (+1, +1, +1) (1)$$

$$(\varepsilon_1, \varepsilon_2, \varepsilon_3) = (+1, +1, -1)$$
 (2)

$$(\varepsilon_1, \varepsilon_2, \varepsilon_3) = (+1, -1, -1)$$
 (3)

$$(\varepsilon_1, \varepsilon_2, \varepsilon_3) = (-1, -1, -1)$$
 (4)

Dans tous les cas suivants, on montre que l'on obtient les cas suivantes à partir de cas plus simple, au moyen d'affinité.

Cas (1) Σ est défini par :

$$\frac{X^2}{a^2} + \frac{Y^2}{b^2} + \frac{Z^2}{c^2} = 1$$

La quadrique se déduit de la sphère unité par au plus 3 affinité droites. On obtient un ellipsoïde (allongé ou aplati). Ω est un center de symétrie. Les axes de coordonnée dans \mathcal{R}'' en sont les axes de symétries.

Cas (1') (Σ) est défini par :

$$\frac{X^2}{a^2} + \frac{Y^2}{b^2} + \frac{Z^2}{c^2} = 0$$

C'est une quadrique dégénéré associé à 1 point :

$$(\Sigma) = \{\Omega\}$$

Cas (2) (Σ) est défini par :

$$\frac{X^2}{a^2} + \frac{Y^2}{b^2} - \frac{Z^2}{c^2} = 1$$

 (Σ) est un hyperboloide elliptique à une nappe

Cas (2') (Σ) est défini par :

$$\frac{X^2}{a^2} + \frac{Y^2}{b^2} - \frac{Z^2}{c^2} = 0$$

 (Σ) est le cône asymptote de l'hyperbolide elliptique précédent.

Cas (3) (Σ) est défini par :

$$\frac{X^2}{a^2} - \frac{Y^2}{b^2} - \frac{Z^2}{c^2} = 1$$

 (Σ) est un hyperbolide elliptique de révolution à deux nappes

Cas (3') (Σ) est défini par :

$$\frac{X^2}{a^2} - \frac{Y^2}{b^2} - \frac{Z^2}{c^2} = 0$$

 (Σ) est le cone asymptote du cas précédent.

Cas (4) (Σ) est défini par :

$$-\frac{X^2}{a^2} - \frac{Y^2}{b^2} - \frac{Z^2}{c^2} = 1$$

$$(\Sigma) = \emptyset$$

Cas (4') (Σ) est défini par :

$$-\frac{X^2}{a^2} - \frac{Y^2}{b^2} - \frac{Z^2}{c^2} = 0$$

$$(\Sigma) = \{\Omega\}$$

Deux valeurs propres distinct, la troisième nulle

Quitte à réordonnée les vecteurs propres, $\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}$ de la vase B' on peut supposé :

$$\lambda_1 \neq 0, \ \lambda_2 \neq 0, \ \lambda_3 = 0$$

De la même façon que précédement :

$$\begin{cases} \varepsilon_{1} \cdot \frac{X^{2}}{a^{2}} + \varepsilon_{2} \cdot \frac{Y^{2}}{b^{2}} = Z \text{ si } \omega'_{0} \neq 0. \\ \varepsilon_{1} \cdot \frac{X^{2}}{a^{2}} + \varepsilon_{2} \cdot \frac{Y^{2}}{b^{2}} = 1 \text{ si } \omega'_{0} = 0, \ h' \neq 0. \\ \varepsilon_{1} \cdot \frac{X^{2}}{a^{2}} + \varepsilon_{2} \cdot \frac{Y^{2}}{b^{2}} = 0 \text{ si } \omega'_{0} = 0, \ h' = 0. \end{cases}$$

Quitte à permutter $\overrightarrow{u_1}, \overrightarrow{u_2}$, on peut avoir les cas suivants :

$$(\varepsilon_1, \varepsilon_2) = (+1, +1) (1)$$

$$(\varepsilon_1, \varepsilon_2) = (-1, -1) (2)$$

$$(\varepsilon_1, \varepsilon_2) = (+1, -1) (3)$$

Cas (1) (Σ) est défini par :

$$\frac{X^2}{a^2} + \frac{Y^2}{b^2} = Z$$

 (Σ) est un paraboloide elliptique

Cas (2) (Σ) est défini par :

$$-\frac{X^2}{a^2} - \frac{Y^2}{b^2} = Z$$

On peut se ramener au cas précédent en changent de repère.

Cas (3) (Σ) est défini par :

$$\frac{X^2}{a^2} - \frac{Y^2}{b^2} = Z$$

 (Σ) est un paraboloide hyperbolique.

Dans les cas suivants, l'équation est du type :

$$f(X,Y) = 0$$

On montre que ces surfaces sont des cylindres.

Cas (4) (Σ) est défini par :

$$\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 0$$

 (Σ) est l'intersection des plans X=0 et Y=0. C'est à dire :

$$(\Sigma) = (\Omega.Z) = \Omega + Vect(\overrightarrow{u_3})$$

C'est une quadrique dégénéré.

Cas (5) (Σ) est défini par :

$$\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 0$$

 (Σ) est la réunion de deux plans parallèle à Oz.

Cas (6) (Σ) est défini par :

$$-\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1$$

 $(\Sigma) = \emptyset$

Cas (7) (Σ) est défini par :

$$\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1$$

 (Σ) est un cylindre hyperbolique de génératrice parallèle à Ωz .

Cas (8) (Σ) est défini par :

$$\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1$$

 (Σ) est un cylindre hyperbolique de génératrice parallèle à Ωz .

Une seule valeur propre non nulle

Quitte à réordonnée les vecteurs propres, $\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}$ de la vase B' on peut supposé :

$$\lambda_1 \neq 0, \ \lambda_2 = 0, \ \lambda_3 = 0$$

Cas 1 Si $(v', w') \neq (0, 0)$. Dans un certain repère, on montre que l'équation de (Σ) est donnée par :

$$X^2 - 2.p.Y = 0$$

 (Σ) est un cylindre parabolique de génératice paralèlle (Ωz)

Cas 2 Si (v', w') = (0, 0), on obtient une équation du type :

$$X^2 = h''$$

Nous avons les cas suivants :

$$\rightarrow$$
 h" $< 0 \Rightarrow (\Sigma) = 0$

$$\rightarrow$$
 h" = 0 \Rightarrow (Σ) est le plan X=0

 \rightarrow h" $> 0 \Rightarrow (\Sigma)$ est la réunion de deux plans

Chapitre 6

Applications linéaires continues, normes subordonnées

6.1 Application linéaires continues

Soient (E, || ||) et (E', || ||') deux K espaces vectoriel $(K = \mathbb{R} \text{ ou } \mathbb{C})$ et $f \in \mathcal{L}(E, E')$. Rappel:

f est continue sur $E \Leftrightarrow f$ est continue en tout $\overrightarrow{x_0} \in E$

$$\Leftrightarrow \ \forall \overrightarrow{x_0} \in E \ \lim_{\overrightarrow{x} \to \overrightarrow{x_0}} f(\overrightarrow{x}) = f(\overrightarrow{x})$$

$$\Leftrightarrow \forall \overrightarrow{x_0} \in E, \forall \varepsilon > 0, \exists \alpha > 0 \ / \ \parallel \overrightarrow{x} - \overrightarrow{x_0} \parallel \le \alpha \Rightarrow \parallel f(\overrightarrow{x}) - f(\overrightarrow{x_0}) \parallel' \le \varepsilon$$

Propriété 217 Nous avons la propriété suivante :

 $f \in \mathcal{L}(E, E')$ est continue sur $E \Leftrightarrow f$ est continue en $\overrightarrow{0}$

Propriété 218 $f \in \mathcal{L}(E, E')$ est continue sur $E \Leftrightarrow f$ est bornée sur $\overline{B}(\overrightarrow{0}, 1)$ avec :

$$\overline{B}(\overrightarrow{0},1)) \left\{ \overrightarrow{x} \in E \ / \ \parallel \overrightarrow{x} \parallel \leq 1 \right\}$$

Propriété 219 Soit $f \in \mathcal{L}(E, E')$, avec E et E' des K espaces vectoriels normés.

 $f \ est \ continue \ sur \ E \ \Leftrightarrow \ f \ est \ born\'ee \ sur \ la \ sph\`ere \ unit\'e$

Avec $S(\overrightarrow{0},1)$ la sphère unité définie par :

$$S(\overrightarrow{0},1) = \{\overrightarrow{x} \in E \ / \ \parallel \overrightarrow{x} \parallel = 1\}$$

Théorème 62 Si E est un K espace vectoriel normé de dimension finie, et E' un K espace vectoriel normé, alors toute application linéaire $\in \mathcal{E}, \mathcal{E}'$ est continue.

Rappel:

La somme de deux applications continues sur E est continue sur E (qu'elles soient ou non linéaire). Le produit par $\lambda \in K$ ($K = \mathbb{R}$ ou \mathbb{C}) d'une application continue sur E est continue sur E (toujours que l'application soit linéaire ou non).

Si : $fE \to E'$ et $E' \to E''$ sont des applications continues alors gof aussi (encore une fois que f et g soient linéaire ou non).

Il en résulte, dans le cas des applications linéaires, les propriétés suivantes :

Propriété 220 L'ensembe $\mathcal{L}_C(E, E')$ des applications linéaires continues de l'espace vectoriel normé E dans l'espace vectoriel normé E' est un K sous espace vectoriel de $\mathcal{L}(E, E')$ [pour les lois + et λ .]

Propriété 221 $\mathcal{L}_C(E) = \mathcal{L}_C(E, E)$ est une K-algèbre de $\mathcal{L}(E)$ [pour les lois $+,\lambda$. et o]

6.2 Normes subordonnées

6.2.1 Propriété et définition

Définition 127 Soient (E, || ||) et (E', || ||') deux K espace vectoriel normé $(K = \mathbb{R} \text{ ou } \mathbb{C})$, alors :

$$\mathcal{L}_{C}(E, E') \to \mathbb{R}$$

$$f \mapsto \parallel f \parallel_{*} = \sup_{\overrightarrow{x} \in \overline{B}(\overrightarrow{0}, 1)} \parallel f(\overrightarrow{x}) \parallel'$$

est une norme sur $\mathcal{L}_C(E, E')$ appelé norme subordonnée aux normes $\| \|$ sur E et $\| \| '$ sur E'.

NB

f étant linéaire contiue, f est bornée sur $\overline{B}(\overrightarrow{0},1)$, donc $\sup_{\overrightarrow{x}\in \overline{B}(\overrightarrow{0},1)} \|f(\overrightarrow{x})\|'$ existe dans \mathbb{R}_+

Propriété 222 $Si f \in \mathcal{L}_C(E, E')$:

$$\sup_{\overrightarrow{x} \in \overline{B}(\overrightarrow{0},1)} \| f(\overrightarrow{x}) \|' = \sup_{\overrightarrow{x} \in S(\overrightarrow{0},1)} \| f(\overrightarrow{x}) \|' = \sup_{\overrightarrow{x} \in E - \{\overrightarrow{0}\}} \frac{\| f(\overrightarrow{x}) \|'}{\| \overrightarrow{x} \|}$$

$$= \sup_{\overrightarrow{x} \in \overline{B}(\overrightarrow{0},1), \overrightarrow{x} \neq \overrightarrow{0}} \frac{\| f(\overrightarrow{x}) \|'}{\| \overrightarrow{x} \|}$$

6.2.2 Normes Matricielle subordonnée

Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$ et f:

$$f: \mathbb{R}^p \to \mathbb{R}^n$$
$$X \mapsto AX$$

l'application linéaire canoniquement associé à A.

Munissons \mathbb{R}^p d'une norme $\| \|$ et \mathbb{R}^n d'une norme $\| \|'$. On note alors : $\| A \|_* = \| f \|_*$ la norme de f subordonnée aux normes $\| \|$ et $\| \|'$. Donc :

$$\parallel A \parallel_* = \sup_{\overrightarrow{x} \in E - \left\{\overrightarrow{0}\right\}} \frac{\parallel AX \parallel'}{\parallel X \parallel} = \sup_{\overrightarrow{x} \in \overline{B}(\overrightarrow{0}, 1)} \parallel AX \parallel' = \sup_{\overrightarrow{x} \in S(\overrightarrow{0}, 1)} \parallel AX \parallel'$$

Propriété 223 L'application :

$$\mathcal{M}_{n,p}(\mathbb{R}) \to \mathbb{R}$$

$$A \mapsto \parallel A \parallel_*$$

est une norme sur $\mathcal{M}_{n,p}(\mathbb{R})$.

6.2.3 Propriété fondamentale de la norme $\| \cdot \|_*$

Propriété 224 Soit $f \in \mathcal{L}_C(E, E')$, avec toujours les mêmes notations pour E et E'. Alors $\forall \overrightarrow{x} \in E$:

$$|| f(\overrightarrow{x}) || \le || f ||_* || \overrightarrow{x} ||$$

Corollaire:

Si $f \in \mathcal{L}_C(E, E')$, alors f est $||f||_*$ lipchitzienne et donc uniformement continue. Corollaire fondamentale :

La norme $\| \|_*$ est sous multiplicative. C'est à dire que si $f \in \mathcal{L}_C(E, E')$ et $g \in \mathcal{L}_C(E, E')$, avec $(E, \| \|)$, $(E', \| \|')$ et $(E'', \| \|'')$ des K espaces vectoriels normés alors :

$$\| gof \|_{*} \le \| f \|_{*} \| g \|_{*}$$

Nous avons la propriété analogue pour les matrices.

6.2.4 Norme d'Algèbre

Définition 128 Soit $(A, +, \lambda, \times)$ une K-algèbre, avec $K = \mathbb{R}$ ou \mathbb{C} .

Une norme sur le K espace vectoriel $(A, +, \lambda)$ est appelé norme d'Algèbre si elle est sous multiplicative, c'est à dire si :

$$\forall (x,y) \in \mathcal{A} \parallel x \times y \parallel \leq \parallel x \parallel \parallel y \parallel$$

 $(A, +, \lambda, \times, || ||)$ est appelé alors une Algèbre normé.

Norme subordonnée à $\| \ \|_1$

Considérons le cas ou $K = \mathbb{R}$. Pour obtenir le résultat suivant, comme dans tout les cas suivant, on cherche à majorer la norme $\| \ \|_*$ subordonnée à la norme considéré, puis à montrer un X particulier qui permet d'obtenir l'égalité. Si \mathbb{R}^n est munie de $\| \ \| = \| \ \|_1$, alors :

$$\parallel A \parallel_* = \max_{1 \le j \le n} \parallel C_j \parallel_1$$

Dans ce cas, le X particulier à considérer est : Si $\max_{1 \le j \le n} \|C_j\|_1 = \|C_{j0}\|$, alors $X = C_{j0}$. On obtient un résultat équivalent dans le cas où $K = \mathbb{C}$.

Norme subordonnée à $\|\ \|_{\infty}$

Considérons le cas ou $K = \mathbb{R}$. Dans ce cas, on obtient que :

$$\parallel A \parallel_* = \max_{1 \le i \le n} \parallel L_i \parallel_1$$

Dans ce cas, le X particulier à considérer est : Si $\max_{1 \le i \le n} \| L_i \|_{1} = \| L_{i0} \|_{1} = \| a_{i0,1} \dots a_{i0,n}$, alors on prend :

$$X = \begin{pmatrix} signe(a_{i0,1}) \\ \vdots \\ signe(a_{i0,n}) \end{pmatrix}$$

Norme subordonnée à $\| \ \|_2$, la norme euclidienne canonique sur \mathbb{R}^n

Au cours de la démonstration, nous avons énoncé les définitions et propritétés suivantes :

Définition 129 Un endomorphisme f d'un \mathbb{R} espace vectoriel euclidien E est dit positif (repectivement défini positif) si la forme quadratique qui lui est associé est positive (respectivement définie positive)

Propriété 225 Si f est un endomorphisme d'un \mathbb{R} espace vectoriel euclidien E:

$$f \ positif \Leftrightarrow S_p(f) \subset \mathbb{R}_+$$
$$f \ défini \ positif \Leftrightarrow S_p(f) \subset \mathbb{R}_+^*$$

On obtient en faisant comme d'habitude : $Si \parallel \parallel = \parallel \parallel_2$, la norme euclidienne canonique de \mathbb{R}^n , alors $\forall A \in \mathcal{M}_n(\mathbb{R})$:

$$||A||_* = \sqrt{\rho({}^tAA)}$$

Avec $\rho(^tAA)$ le rayon spectral de tAA .

6.2.5 Suite d'endomorphisme en dimension finie

Propriété 226 Soit $(f_k)_{k\in\mathbb{N}}$ une suite d'endomorphisme d'un K espace vectoriel normé $(E, \parallel \parallel)$ de dimension finie et $f \in \mathcal{L}(E)$. Alors les conditions suivantes sont équivalentes :

- $\rightarrow f_k \rightarrow f$ quand $k \rightarrow \infty$ (de plus, les espaces sont de dimensions finies, donc la convergence ne dépend pas de la norme considéré)
- $\rightarrow f_k$ converge uniformement vers f sur toute parties bornées.

Septième partie Annexe

Intégrales généralisées

A.1 Convergence d'une intégrale

A.1.1 Propriétés

Il existe trois propriétés qui permettent de prouver la convergence, d'une intégrale complexe, à l'aide d'une intégrale "simple".

- → La convergence d'une intégrale de fonction positive par majoration (Implication)
- → L'intégration par domination (Implication)
- → La convergence des intégrale de fonction positive par equivalence (Équivalence)

A.1.2 Fonctions "classique"

Il existe plusieurs "cas" standard, au quel on peut se rapporter pour démontrer la convergence d'une intégrale

En ∞

Nous retiendrons que dans l'étude en $+\infty$, les α "tendent plus vers l'infini" (utilisation du > dans les relations).

Nous avons la règle de Riemann :

Propriété 227 Soit f fonction continue par morceaux de $[a, \infty[$ dans K. Si il existe $\alpha > 1$ telque :

$$t^{\alpha}f(t) \underset{t\to\infty}{\to} 0$$

Alors f est intégrable (converge absolument) sur $[a, \infty[$

Nous avons aussi l'intégrale de Bertrand :

Propriété 228 Soit a un réel strictement superieur à 1, et $(\alpha, \beta) \in \Re^2$.

$$\left(\int_a^\infty \frac{dx}{x^\alpha ln(x)^\beta} \ converge \ \right) \Leftrightarrow (\alpha > 1, \ ou \ \alpha = 1, \beta > 1)$$

La propriété suivante n'est qu'un cas particulier de l'intégrale de Bertrand, ou $\beta=0$:

Propriété 229 Soit $a \in \Re$, a > 0:

$$\left(\int_a^\infty \frac{dt}{t^\alpha}\right) \ converge \ \Leftrightarrow (\alpha>1)$$

$\mathbf{En} \ \mathbf{0}$

Nous retiendrons que l'ordre de l'étude en 0, les α "tend en quelque sorte plus vers 0" (utilisation du < dans les relations).

Nous avons la règle de Riemann :

Propriété 230 Soit f fonction continue par morceaux de]0,a] dans K.

Si il existe $\alpha < 1$ telque :

$$t^{\alpha}f(t) \underset{t\to 0^{+}}{\longrightarrow} 0$$

Alors f est intégrable (converge absolument) sur]0,a]

Dans le cas de l'intégralde de Bertrand, nous retiendrons que le second cas, $\alpha=1,\ \beta>1,$ est identique en l'infini et en 0.

Nous avons aussi l'intégrale de Bertrand :

Propriété 231 Soit a un réel telque $a \in]0,1[$, et $(\alpha,\beta) \in \Re^2$.

$$\left(\int_0^a \frac{dx}{x^\alpha ln(x)^\beta} \ converge \ \right) \Leftrightarrow (\alpha < 1, \ ou \ \alpha = 1, \beta > 1)$$

La propriété suivante n'est qu'un cas particulier de l'intégrale de Bertrand, ou $\beta=0$:

Propriété 232 Soit $a \in \Re$, a > 0:

$$\left(\int_0^a \frac{dt}{t^{\alpha}}\right) \ converge \ \Leftrightarrow (\alpha < 1)$$

A.2 Divergence d'une intégrale

A.2.1 Les règles de Riemann

Les règles de Riemann nous donne les moyens de prouver la divergence d'une intégrale.

En ∞

Soit f fonction de $[a, \infty[$ dans \Re , continue par morceaux. Si :

$$t.f(t) \underset{t \to \infty}{\to} 0$$

Alors:

$$\int_{a}^{\infty}$$
 diverge

En 0

Soit f fonction de]0,a] dans \Re , continue par morceaux. Si :

$$t.f(t) \underset{t\to 0}{\longrightarrow} 0$$

Alors:

$$\int_0^a \text{diverge}$$

Développement asymptotiques

Il existe une méthodologie "classique" à utiliser dans le cas d'un développement asymptotique.

B.1 Fonction du type f^{α} , ou $\ln(f)$

Pour obtenir le développement asymtotique de fonction du type f^{α} , ou $\ln(f)$, on range les termes de façon prépondérant décroissante, puis on met toujours le terme prépondérant en facteur, et enfin on effectue un développement limité avec le reste, qui tend vers 0.

Exemple : Considérons le fonction $\ln(x^2 + x + 1)$. Cette fonction est rangé en considérant la prépondérance en l'infini. On obtient donc :

$$ln(x^{2} + x + 1) = ln((x^{2})(1 + \frac{1}{x} + \frac{1}{x^{2}})$$

$$ln(x^2 + x + 1) = ln(x^2) + ln(1 + \frac{1}{x} + \frac{1}{x^2})$$

On effectue un développement limité de la forme $\ln(1+u)$, avec u qui tend vers 0.

B.2 Développement asymptotique de S_n ou de R_n dans le cas d'une série

La première question à se poser est de savoir si la série $\sum_n u_n$ converge.

B.2.1 Si la série converge

Si la série converge, alors :

$$\lim_{n \to \infty} S_n = S$$

On poursuit en écrivant l'égalité suivante :

$$S_n = S - R_n$$

Pour continuer le développement asymptotique, il faut donc détérminer un équivalent à R_n

B.2.2 Si la série diverge

Alors on cherche directement un équivalent de S_n

B.2.3 Méthode à suivre

Pour obtenir un équivalent de S_n , dans le cas divergent, ou un équivalent de R_n dans le cas convergent, on simplifie le problème en remplacent u_k par un équivalent w_k plus simple. On obtient alors :

$$S_n \sim \sum_{k=n_0}^n w_k$$
 cas non sommable

$$R_n \sim \sum_{k=n+1}^{\infty} w_k$$
 cas sommable

L'utilisation de ceci ramène le problème de recherche d'équivalent de la somme partielle ou du reste de la série $\sum_k w_k$, avec (w_k) appartenant à une échelle de comparaison. :

$$w_k = k^{\alpha} . ln(k)^{\beta} . e^{P(k)}$$

Avec P(k) un pseudo polynome.

Pour obtenir un équivalent, on distingue deux cas :

- \rightarrow Si (w_k) est à variation lente (P=0 ou deg(P)<1), alors on encadre par des intégrales
- \rightarrow Si (w_k) est à variation rapide $(\deg(P) \ge 1)$, on utilise une comparaisons asymptotique entre $w_{k+1} w_k$ et w_k .

Les relations de comparaions utilisable dans le second cas sont :

Séries

C.1 Propriétés générales

Pour montrer la convergence d'une série $\sum_n u_n$, il faut déjà vérifier que $(u_n) \underset{\infty}{\to} 0$. Ceci est une condition necessaire, mais non suffisante.

Nous avons trois propriétés générales qui implique la convergence à l'aide d'un terme générale plus simple :

- \rightarrow La convergence d'une série de terme général positive par majoration (Implication)
- → L'intégration par domination (Implication)
- → La convergence d'une serie de terme générale par équivalence (Équivalence)

C.2 Règle usuelle

C.2.1 Convergence des séries de Riemann

Soit une séries de Riemman, de terme général :

$$u_n = \frac{1}{n^{\alpha}}$$

Cette série converge si et seulement si :

$$(\alpha > 1)$$

C.2.2 Règle de Riemann - Convergence

Soit (u_n) une suite à valeur complexe. Si il existe $\beta > 1$ telque :

$$(n^{\beta}.u_n \underset{\infty}{\to} 0$$

Alors (u_n) est sommable

C.2.3 Règle de Riemann - Divergence

Soit (u_n) une suite à valeur réelle. Si :

$$n.u_n \underset{\infty}{\to} \infty$$

Alors la série de terme générale u_n diverge.

C.2.4 Série de Bertrand

Soit une série de Bertrand, de terme général :

$$u_n = \frac{1}{n^{\alpha} . ln(n)^{\beta}}$$

Cette série converge si et seulement si :

$$(\alpha > 1 \text{ ou } \alpha = 1 \text{ et } \beta > 1)$$

C.2.5 Règle de d'Alembert

Soit (u_n) une suite de réels telques $\forall n \geq n_0, \, u_n > 0$ et telque :

$$\frac{u_{n+1}}{u_n} \xrightarrow{\infty} l$$

Alors:

- \rightarrow Si l > 1, alors la série de terme général u_n diverge grossièrement
- \rightarrow Si l< 1, alors la série converge

Calcul matriciel par blocs

D.1 Produit matriciel par blocs

Considérons deux matrices A et A' :

$$A = \begin{array}{ccc} & \stackrel{\beta_1}{\longleftrightarrow} & \dots & \stackrel{\beta_p}{\longleftrightarrow} \\ & \stackrel{\vdots}{\longleftrightarrow} & \dots & \stackrel{A_{1p}}{\longleftrightarrow} \\ & \vdots & \ddots & \vdots \\ & \alpha_n \updownarrow & A_{n1} & \dots & A_{np} \end{array}$$

$$A' = \begin{array}{cccc} & \stackrel{\gamma_1}{\longleftrightarrow} & \dots & \stackrel{\gamma_q}{\longleftrightarrow} \\ & \beta_1 \updownarrow & \boxed{A'_{11}} & \dots & \boxed{A'_{1q}} \\ & \vdots & \ddots & \vdots \\ & \beta_p \updownarrow & \boxed{A'_{p1}} & \dots & \boxed{A'_{pq}} \end{array}$$

Avec:

$$\begin{cases} A_{ij} \in \mathcal{M}_{\alpha_i,\beta_j}(K) \\ A'_{kl} \in \mathcal{M}_{\beta_k,\gamma_l}(K) \end{cases}$$

On défini de plus :

$$\begin{cases} \alpha = \alpha_1 + \dots + \alpha_n \\ \beta = \beta_1 + \dots + \beta_p \\ \gamma = \gamma_1 + \dots + \gamma_q \end{cases}$$

On obtient, pour le produit de A' par A:

$$A.A' = \begin{pmatrix} \boxed{C_{11}} & \dots & \boxed{C_{1q}} \\ \vdots & \ddots & \vdots \\ \boxed{C_{n1}} & \dots & \boxed{C_{nq}} \end{pmatrix}$$

Avec:

$$C_{ij} = \sum_{k=1}^{p} A_{ik}.A'_{kj}$$

L'ordre du produit réalisé dans la somme a une importance à priori, car le produit des matrices n'est pas commuatif, à priori.

D.1.1 Cas particuliers

Matrices diagonales

Soient A et A' deux matrices diagonales :

$$A = \begin{pmatrix} \beta_1 & \dots & \beta_n \\ \hline A_{11} & & (0) \\ & \ddots & \\ (0) & & A_{nn} \end{pmatrix}$$

$$A' = \begin{pmatrix} \boxed{A'_{11}} & & & (0) \\ & \ddots & & \\ (0) & & \boxed{A'_{nn}} \end{pmatrix} \updownarrow \beta_n$$

On obtient, pour le produit :

$$A.A' = \begin{pmatrix} A_{11}.A'_{11} & & (0) \\ & \ddots & \\ & (0) & & A_{nn}.A'_{nn} \end{pmatrix}$$

Matrices Triangulaires

Soient A et A' deux matrices triangulaire :

$$A = \begin{pmatrix} \beta_1 & \dots & \beta_n \\ \hline A_{11} & & (A) \\ & \ddots & \\ (0) & & A_{nn} \end{pmatrix}$$

$$A' = \begin{pmatrix} \boxed{A'_{11}} & & (A') \\ & \ddots & \\ (0) & & \boxed{A'_{nn}} \end{pmatrix} \updownarrow \beta_1$$

On obtient, pour le produit :

$$A.A' = \begin{pmatrix} A_{11}.A'_{11} & & (B) \\ & \ddots & \\ & (0) & & A_{nn}.A'_{nn} \end{pmatrix}$$

D.2 Calcul de déterminants de matrices triangulaires par blocs

D.2.1 Propriétés

Propriété 233 Nous avons la propriété suivantes :

$$det \begin{pmatrix} \overbrace{A_{11}}^{n_1} & \stackrel{n_2}{\leftrightarrow} \\ \hline 0 & A_{12} \\ \hline A_{22} \end{pmatrix} = det(A_{11}).det(A_{22})$$

Avec:

$$\begin{cases} A_{11} \in \mathcal{M}_{n_1}(K) \\ A_{22} \in \mathcal{M}_{n_2}(K) \end{cases}$$

D.2.2 Généralisation

Propriété 234 On peut généraliser la propriété de la façon suivante :

$$det \begin{pmatrix} A_{11} & & & A_{pp} \\ & \ddots & & \\ & & A_{pp} \end{pmatrix} = det(A_{11}) \dots det(A_{pp})$$

Points importants pour obtenir l'équation réduit d'un quadrique (Σ) et l'identifier

Nous avons les points suivants :

- \rightarrow Réduire orthonormalement la forme quadratique q associé à (Σ) . Dans certains cas, pour identifier (Σ) , la connaisance des valeurs propres suffit.
- \rightarrow Si l'équation réduite f(X,Y,Z)=0 est homogène, donc de degrés 2, (Σ) est une surface conique de sommet Ω .
- \rightarrow Si l'équation réduite ne contient pas de Z (par exemple) du type f(X,Y)=0, (Σ) est une surface cylindrique de génératrice parallèle à Ωz .
- \rightarrow S'il s'agit d'identifier (Σ), on peut encore simplifier l'équation réduite en transformant (Σ) par des affinités droites de base l'un des plans de coordonnées.

Table des matières

Li	cence	e		i
A	vant-	propos		iii
R	emer	ciemen	nts	v
Ι	Ré	vision	ns	1
1	Rap	pels et	t Compléments	3
	1.1		ons de comparaison	3
		1.1.1	Relations d'équivalence	3
		1.1.2	Fonction module	3
		1.1.3	Voisinage fondamental	3
		1.1.4	Négligabilité	3
		1.1.5	Équivalence	4
		1.1.6	Négligabilité et équivalence	5
		1.1.7	Lien entre limite et somme	5
		1.1.8	Signe et équivalent	5
		1.1.9	Domination - Grand O	5
		1.1.10	Dans le cas des suites	5
	1.2	Fonction	ons	6
		1.2.1	Fonctions continue sur un segments	6
		1.2.2	Fonctions continue par morceaux sur un intervalle	6
		1.2.3	Théorème des accroissements finis	6
		1.2.4	Inégalité des accroissement finis	6
		1.2.5	Théorème de Rolles	6
		1.2.6	Théorème des valeurs intermédiaire	6
		1.2.7	Lien entre limite et bornée	7
		1.2.8	Étude de Arctan	7
		1.2.9	Limite d'une fonction	7
		1.2.10	Injectivité	7
		1.2.11	Surjectivité	8
		1.2.12	Bijectivité	8
		1.2.13	Difféomorphisme	8
	1.3	Dévelo	oppements limités	9
		1.3.1	Lien entre développement limité et dérivabilité	9
		1.3.2	Position relative de la courbe par rapport à la tangente	9
		1.3.3	Développement limités usuels	9
		1.3.4	Développement asymptotique d'une "échelle de comparaison E"	9
	1.4	Intégra	ale	10

		1.4.1 Somme de Riemmann	10
		1.4.2 Inégalité de majoration	10
		1.4.3 Inégalité de Cauchy-Schwarz	10
		1.4.4 Intégrale et négligabilité	11
	1.5	Vrac	11
		1.5.1 Suite géométrique	11
		1.5.2 Suite complexe	11
		1.5.3 Utilisations des inégalités	11
		1.5.4 Densité	11
			12
		1.5.5 Formule du binôme et dérivée	
		1.5.6 Dérivée successives de cosinus et sinus	12
		1.5.7 Régle de d'Alembert	12
		1.5.8 Nombre complexe	12
	1.6	Les polynomes	12
		1.6.1 Polynomes irréductibles	12
		1.6.2 Racine et ordre de multiplicité	13
ΙΙ	Tr	ntégrales, Fonctions	15
		regrates, remembris	10
1	$\operatorname{Int} \epsilon$	egrales généralisées, Fonctions intégrables	17
	1.1	Applications continues par morceaux	17
		1.1.1 Définitions	17
	1.2	Convergence d'une intégrale	18
		1.2.1 Convergence vers ∞	18
		1.2.2 Convergence vers 0	19
	1.3	Résultats spécifiques sur les applications de $[a; \infty[$ à valeurs dans K	19
		1.3.1 Limite de l'application et convergence de l'intégrale	19
		1.3.2 Caractérisation séquentielle d'une limite	19
	1.4	Définitions et propriétés générales	20
	1.5	Convergence Absolue, Fonctions intégrables sur un intervalle	21
	1.0	1.5.1 Convergence Absolue	21
		1.5.2 Critère de Cauchy	21
	1.0		$\frac{21}{22}$
	1.6	Convergence des intégrales de fonctions positives - Intégrabilité	
		1.6.1 Propriétés fondamentale	22
		1.6.2 Règles de Riemann	23
		1.6.3 Intégrale de Bertrand	23
	1.7	Intégration par parties - Changement de variable	23
		1.7.1 Intégration par parties	23
		1.7.2 Changement de variable	23
	1.8	Quelques espaces remarquables	24
	1.9	Remarque concernant le reste	24
2	Tntá	ormalos à panamàtros	25
2	2.1	égrales à paramètres Théorème de continuité	25 25
	2.2 2.3	Théorème de classe C^1	25 26
	۷.۵	Theoreme de classe C. (Hors brogramme)	∠0
3	App	proximation uniforme	27
	3.1	Approximation uniforme par des fonctions en escaliers	27
	3.2	Généralisation aux fonctions continues par morceaux	27
	3.3	Théorème	28
	3.4	Théorème d'approximation uniforme de Weierstrass	28

II	Ι	Suites, Séries	29
1	Sui	ite de fonctions ou d'application - Convergence uniforme	31
	1.1	Convergence simple	31
	1.2		31
	1.3	VI	32
		1.3.1 Théorème de continuité	32
		1.3.2 Théorème d'interversion des limites, ou théorème de la double limite	32
		1.3.3 Théorème d'integration sur un segment sous les hypothèses de convergence	
		uniforme	33
		1.3.4 Thérorème de classe C^1	33
		1.3.5 Théorème de classe C^p	34
		1.3.6 Théorème de classe C^{∞}	34
	1.4	Théorème de convergence monotone et convergence dominé	34
		1.4.1 Théorème de convergence monotone	34
		1.4.2 Théorème de la convergence dominée	35
2	Sáz	rie numérique	37
4	2.1		37 37
	2.1		37
		2.1.1 Définitions générales	37 37
	0.0	2.1.2 Reste d'ordre n	
	2.2	V 1 O O	38
	2.3	, and the same of	38
		2.3.1 Convergence des séries de Riemann	39
		2.3.2 Règle de Riemann	39
		2.3.3 Série de Bertrand	39
		2.3.4 Propriété de Cauchy	40
		2.3.5 Règle de d'Alembert	40
	2.4		40
		2.4.1 Critère de Leibniz ou Critère spécial des séries alternée	40
	2.5	Quelques espaces remarquables	41
		2.5.1 Ensemble $l^1(K)$	41
		2.5.2 Ensemble $l^2(K)$	41
	2.6	Sommation par paquets ou associativité de la sommation	41
3	Soi	mmation des relations de comparaison	43
	3.1	-	43
		3.1.1 Négligabilité	43
		3.1.2 Domination	44
		3.1.3 Equivalence	44
	3.2	•	44
	0.2	3.2.1 Négligabilité	44
		3.2.2 Domination	45
		3.2.3 Equivalence	45
		Sizio Zquitaionee () () () () () () () () () (
4	Sér	ries d'applications	47
	4.1		47
		4.1.1 Convergence simple	47
		4.1.2 Convergence absolue	48
		4.1.3 Convergence uniforme	48
		4.1.4 Convergence normale, ou convergence au sens de Weirstrass	48
	4.2	71	49
		4.2.1 Théorème de continuité	49
		4.2.2 Théorème d'inversion de la limite et de la somme	49
		4.2.3 Théorème de classe C^1	50
		4.2.4 Théorème de classe C^p	50
		4.2.5 Théorème de classe C^{∞}	51

5	Séri	e entière	53
	5.1	Définitions, rayon de convergence	53 53 53 53
	5.2	5.1.4 Lemme d'Abel	54 54
	5.3	5.2.1 Règle de d'Alembert pour les séries entières	54 54
		5.3.1 Somme de deux séries entières	54 55
		5.3.3 Propriétés sur les exponentiels complexes	55 56
	5.4	Classe C^{∞}	56
	5.5	Fonctions développable en série entière	57 57
		5.5.2 Développement en série entière des fractions rationnelles	58
	5.6	Extension à $\mathbb C$ des fonctions trigonométrique	58
		5.6.1 Lien entre trigonométrie circulaire et trigonométrie hyperbolique	58
6		npléments sur les séries	59
	6.1 6.2	Intégration des séries de fonctions	59 59
7	Séri	les d'endomorphismes et de matrices	61
	7.1	Définitions et propriétés générales	61
		7.1.1 Exemple : La série géométrique	62
	7.2	Exponentielle d'endomorphisme ou de matrice	62 62
	7.3	Applications de l'exponentielle de matrices à la résolution d'un système différentiel linéaire à coefficient constant	65
ΙV	/ É	Équations différentielles	65
1	Équ	ations différentielles	67
	1.1	Équations différentielle linéaire du 1^{er} ordre	67
	1.2	Equations différentielle linéaire du second ordre	67
		1.2.1 Cas Particuliers	68
		1.2.2 Solutions de (E)	68
	1.3	Équations différentielle (non linéaire) du 1^{er} ordre, résolue	69
		1.3.1 Équation à variable séparable	69
		férentielle du 1^{er} ordre autonomes	70
	1.4	Équation différentielle (non linéaire) du 2^{nd} ordre, résolue	70
	1.5	1.4.1 Énoncé simplifié pour les équations différentielles autonomes Système différentielles (non linéaire) autonome du 1^{er} ordre, de deux équations à	71
	110	deux inconnus	71 71
\mathbf{V}	\mathbf{R}	éduction d'endomorphismes	73
1	Réd	luction des endomorphismes et des matrices - Première Partie	7 5
	1.1	Système linéaire	75
	1.2	Détermination de l'inverse de A	75
		1.2.1 Méthode directe	75

		1.2.2 Méthode du pivot de Gauss	75
		1.2.3 Méthode de Jacobi	76
	1.3	Valeur propres, vecteurs propre, sous-espace vectoriel propre	76
		1.3.1 Vecteurs propres	76
		1.3.2 Valeur propre	77
		1.3.3 Propriétés et définitions	77
			77
	1.4		77
			78
	1.5	1 0	79
	1.0		79
			79
			80
	1.6		80
	1.0	Trigonansabilite	00
2	Réc	uction des endomorphismes et des matrices - Deuxième Partie	81
	2.1	Polynomes d'endomorphisme ou de matrice	81
	2.2	Idéaux de K[X]	82
		2.2.1 Exemple	82
		2.2.2 Définitions et théorème	82
			82
		2.2.4 Polynome annulateur d'un endomorphisme ou d'une matrice, Polynome min-	
		• • • • • • • • • • • • • • • • • • • •	83
			83
			84
	2.3	·	84
		·	84
	2.4		85
	2.5	•	85
	2.0	<u> </u>	86
	2.6		86
	2.0	Trouveau erroere de diagonaomie	00
T 7			~ -
V	1 1	spaces vectoriels normés	87
1	Esp	aces vectoriels normés - Première partie	89
	1.1		89
		1.1.1 Définitions	89
			89
	1.2	•	89
			89
			90
		•	90
	1.3		90
	1.0		90
		11 1130	90
		11 11-	
	1 4	11 11-	91
	1.4		91
			91
			92
		1	92
	1.5	Convergence dans les K espaces vectoriel de dimension finies	92

2	Esp	ce vectoriel normé - Deuxième partie 95
	2.1	Interieur d'un ensemble, ensemble ouvert
	2.2	Adérence d'un ensemble, ensemble fermé
	2.3	Frontière
	2.4	Diamètre d'une partie bornée
	2.5	Ensembles compacts
	2.6	Définitions et propriétés
		2.6.1 Définition de Bolzano-Weierstrass
		2.6.2 Théorème
3	Esp	ce Prehilbertiens, Espaces euclidiens 99
	3.1	Norme euclidienne
	3.2	Propriétés Elémentaire
		3.2.1 Identités de polarisation
		3.2.2 Identités du Parallélogramme et de la médiane
	3.3	Forme linéaire dans un espace euclidien
	3.4	Théorème de projection orthogonale sur un sous espace de dimension finie 100
		3.4.1 Inégalité de Bessel
		3.4.2 Norme d'un projecteur orthogonal subordonnée à la norme euclidienne 101
		3.4.3 Projection orthogonale sur une droite vectorielle
	0.5	3.4.4 Théorème de la base orthonormée incomplète dans un espace vectoriel euclidien 101
	3.5	Orthogonal d'une partie, sous-espaces orthogonaux
		3.5.1 Propriétés
	3.6	3.5.2 Sous-espaces Vectoriels orthogonaux
	5.0	3.6.1 Traduction matricielle
	3.7	Endomorphismes Orthogonaux, Matrices orthogonales
	0.1	3.7.1 Isométries vectorielles
		3.7.2 Matrices orthogonales
4		int d'un endomorphisme, Endomorphisme et matrice symétrique 105
	4.1	Rappel
	4.2 4.3	Propriétés - Définition d'un adjoint
	4.0	4.3.1 Cas ou f et g sont symétrique
	4.4	Théorème d'orthogonalisation
	1.1	4.4.1 Corollaire matricielle
	4.5	Caractéristation par l'adjoint de certains endomorphismes classiques d'un espace
		euclidien
_	10.	100
5	5.1	nes quadratiques \mathbb{R}^n
	5.1	5.1.1 Forme bilinéaire symétrique associé à une forme quadratique
		5.1.1 Forme bilinearie symetrique associe à une forme quadratique $\dots \dots \dots$
		5.1.3 Endomorphisme symétrique de \mathbb{R}^n associé à une forme quadratique q 110
		5.1.4 Théorème de réduction orthonormale d'une forme quadratique de \mathbb{R}^n 110
		5.1.5 Version matricielle du théorème de réduction orthonormale
	5.2	Généralisation : Formes quadratiques sur un espace vectoriel E
		5.2.1 Exemples
		5.2.2 Expression dans une base, matrice d'une forme quadratique dans une base . 111
		5.2.3 Changement de Base
		5.2.4 Endomorphisme symétriques associés à une forme quadratique dans un es-
		pace vectoriel euclidien
		5.2.5 Réduction orthonormale d'une forme quadratique dans un espace vectoriel
		euclidien
	5.3	Application à la réduction de coniques

	5.4	Catalogue des quadriques dans un $\mathbb R$ espace affine E (euclidien) de dimension 3 1	14 14 14
6	Apr 6.1 6.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 20 20 20 20 21 21
V	II	Annexe 12	23
A	A.1	Convergence d'une intégrale	25 25 25 25 26 26
В	B.1	Fonction du type f^{α} , ou $\ln(f)$	27 27 27 27 27 28
C	Séri C.1 C.2	Propriétés générales 1 Règle usuelle 1 C.2.1 Convergence des séries de Riemann 1 C.2.2 Règle de Riemann - Convergence 1 C.2.3 Règle de Riemann - Divergence 1 C.2.4 Série de Bertrand 1	29 29 29 29 29 29 30 30
D	D.1	Produit matriciel par blocs	31 32 33 33 33
E	Pointifie	nts importants pour obtenir l'équation réduit d'un quadrique (Σ) et l'identr	35