A INFLUÊNCIA DO BATIMENTO DE PERNAS NO TEMPO DE PARTIDA (15M) EM NADADORES JUVENIS E INFANTIS

MENDONÇA, S., LOURO, H., MARINHO, D., & NEIVA, H.

45º Congresso da APTN, Leiria, Portuga

A INFLUÊNCIA DO BATIMENTO DE PERNAS NO TEMPO DE PARTIDA (15M) EM NADADORES JUVENIS E INFANTIS

MENDONÇA, S., LOURO, H., MARINHO, D., & NEIVA, H.

Perceber qual a influência do batimento de pernas no tempo de partida (15m) em nadadores juvenis e infantis de nível regional. Para tal, adequou-se o critério utilizado por Silva (2006) considerando o tempo de partida como o somatório de quatro tempos parciais,

$$tp = tv + td + tin + tn,$$
 $t em s,$ onde

- \Rightarrow tp, corresponde a tempo de partida, até aos 15 m
- \Rightarrow tv, corresponde ao tempo do vôo
- \Rightarrow td , corresponde ao tempo do deslize
- \Rightarrow tin, corresponde ao tempo de início de nado, ou seja, ao tempo despendido no batimento de pernas em percurso subaquático
- \Rightarrow tn, corresponde ao tempo de nado desde que a cabeça do nadador rompe a superfície da água até que atinge os 15 m.

- Verificar se existem diferenças estatisticamente significativas nas variáveis cronométricas, entre categoria;
- ii) Descobrir se o *tempo de partida* apresenta diferenças estatisticamente significativas, entre categorias, consoante as **condições de execução**;
- iii) Predizer o tp em função das variáveis independentes tv, td, tin e tn.

OBJETIVOS DO ESTUDO

Dez nadadores de nível regional:

- Cinco juvenis (15/16 anos) do sexo masculino:
 - média de idades situa-se nos 15,6 anos,
 - peso médio é de 62,2 kg,
 - altura média de 1,76 m,

AMOSTRA envergadura média de 1,77 m.

- Cinco infantis (13/14 anos), do sexo masculino:
- média de idades situa-se nos 13,2 anos;
- peso médio é de 60,74 kg;
- altura média de 1,67 m;
- I.M.C. médio de de 21,2 kg/m²;
- envergadura média de 1,66 m

PROCEDIMENTOS PARA CAPTAÇÃO, REGISTO E ANÁLISE DE IMAGEM

- Cada atleta nadou três percursos de 25 m crol na sua velocidade máxima efetuando 3 batimentos de perna de mariposa em percurso subaquático após o deslize no primeiro percurso, 5 no segundo e 7 no terceiro;
- Local: piscina com 25 m e seis pistas, tendo sido utilizadas as pistas 3 ou 4;
- Os registos de vídeo dos nadadores efetuaram-se em simultâneo com duas câmaras:
 - uma câmara, estática, foi colocada em meio aquático permitindo captar a entrada na água, o deslize e os batimentos de pernas subaquáticos (duração do deslize e dos batimentos de pernas);
 - outra câmara foi utilizada em meio aéreo, acompanhando lateralmente o nadador durante todo o percurso (a distância do xoo, o tempo do voo, o tempo de nado (tempo desde que o nadador rompe a superfície da água até aos 15 m), o tempo aos 15 m e o tempo aos 25 m)
 - > As imagens captadas foram analisadas com recurso ao software Kinovea.

- Variáveis independentes: a categoria do atleta (inf/juv) e o número de batimentos de pernas (3, 5 ou 7);
- **Variáveis dependentes**: as variáveis cronométricas tp, td, tin, tn, t_{25} e \bar{v}_{15} ;

Microsoft Excel: estatísticas descritivas - média, desvio-padrão, mínimo, máximo, mediana, percentagens;

PROCEDIMENTOS ESTATÍSTICOS

• SPSS: testes de hipótese e regressão linear múltipla (inexistência de condições para aplicação de testes paramétricos)

RESULTADOS: ANÁLISE PERCENTUAL RELATIVA AO *TP*

	Percentagens das variáveis cronométricas do tp				
		juv		inf	
		média(%) s (%)		média (%) (%)	S
	tv	11,71%	1,40%	9,32%	1,54%
3	td	13,07%	3,76%	12,82%	2,58%
batimentos	tin	28,37%	1,51%	30,91%	4,99%
	tn	46,86%	3,82%	46,96%	5,61%
	tv	11,38%	0,64%	9,73%	1,89%
5	td	9,99%	2,98%	12,40%	1,89%
batimentos	tin	35,78%	2,84%	40,18%	4,27%
	tn	42,85%	1,01%	37,69%	4,54%
	tv	11,27%	0,58%	9,58%	1,97%
7	td	9,53%	3,47%	9,62%	1,45%
batimentos	tin	43,99%	5,78%	43,07%	4,58%
	tn	35,21%	3,61%	37,73%	5,18%

- *i)* tv_juv (%) > tv_inf (%)
- os atletas infantis apresentam o desvio padrão das variáveis cronométricas *tv, tin, tn*, superior aos juvenis (pode ser um indicador da existência de características mais diferenciadas nesta faixa etária, como a altura ou a envergadura);
- iii) $> n.^{\circ}$ pernadas => > tin e < tn, (inf/juv);
- iv) Juv: tn predomina sobre as restantes vars. cron. (3 ou 5)
- v) Juv: tin predomina sobre as restantes vars. cron/(7)
- vi) Inf: tn predomina sobre as restantes vars. cron. (3)
- vii) Inf: *tin* predomina sobre as restantes vars. cron. (5 ou7)

RESULTADOS: DIFERENÇAS ENTRE CATEGORIAS

- > Encontraram-se diferenças estatisticamente significativas **entre categorias** nas variáveis t_{in_3} , \bar{v}_{15_3} , t_{d_5} , t_{in_5} , t_{15_7} e \bar{v}_{15_7} .
- O tp apresentou diferenças significativas entre categorias quando os atletas executam 7 batimentos de pernas.

Resultados: Condições de Realização (JUV)

O TP DOS ATLETAS JUVENIS SOFREU
 ALTERAÇÕES SIGNIFICATIVAS ENTRE OS
 TRÊS DIFERENTES NÚMEROS DE
 BATIMENTOS DE PERNA UTILIZADOS

AS DIFERENÇAS ESTATISTICAMENTE
SIGNIFICATIVAS OCORRERAM ENTRE A
UTILIZAÇÃO DE TRÊS E SETE PERNADAS E
ENTRE CINCO E SETE PERNADAS.
NÃO SE OBSERVARAM DIFERENÇAS
ESTATISTICAMENTE SIGNIFICATIVAS ENTRE
A UTILIZAÇÃO DE TRÊS E CINCO PERNADAS.

Neste escalão, o *tp* evolui negativamente (entenda-se diminui) à medida que se aumenta o número de pernadas.

RESULTADOS: CONDIÇÕES DE REALIZAÇÃO (INF)

 No que concerne aos aletas infantis, não se detetou a existência de diferenças estatisticamente significativas entre a

 $O\ tp$ não sofre diferenças significativas à medida que se aumenta o número de pernadas tendo-se que na utilização de três pernadas $M_e=9$; utilização de cinco pernadas $M_e=9,1$ e utilização de sete pernadas $M_e=9,1$.

O modelo de regressão linear múltipla encontrado que permitiu identificar as variáveis tn e *tin* como preditores significativos do *tp* é

$$\widehat{tp} = 0.921 + 1.275tn + 0.955tin$$

- Este modelo permite afirmar que 95% da variabilidade do *tp* é explicado pelas variáveis independentes presentes no modelo;
- A variável que mais influencia o *tp* é o tn, o que confirma importância do aumento do *tin* para a sua otimização.

RESULTADOS: MODELO PREDITIVO TP

Limitações do estudo:

Amostra reduzida, que limita a abrangência do Teorema do Limite Central e consequentemente baliza a análise estatística realizada;

Amostra constituída por nadadores pouco treinados.

SUGESTÕES DE APLICABILIDADE

ESTE ESTUDO PODERÁ SERVIR COMO BASE A OUTRO ESTUDO DE MAIOR ABRANGÊNCIA COM UMA AMOSTRA SUFICIENTEMENTE ELEVADA E CAPAZ DE TRADUZIR DE MODO MAIS EFICIENTE O *TP* PARA A GENERALIDADE DOS ATLETAS, OU MESMO, PARA AVERIGUAR SE SE OBTERIAM OS MESMOS RESULTADOS EM ATLETAS DO SEXO FEMININO;

SUGERE-SE O AUMENTO DO *TIN* E CONSEQUENTE DIMINUIÇÃO DO *TN* PARA PERMITIR A OTIMIZAÇÃO DO *TP*;

AINDA QUE SE DEVA TREINAR OS NADADORES PARA ESTA OTIMIZAÇÃO, RECOMENDA-SE TER EM CONTA A INDIVIDUALIDADE E AS PARTICULARIDADES DE CADA ATLETA NA PREPARAÇÃO ESTRATÉGICA DE MODO

Verificar no documento entregue.

BIBLIOGRAFIA