

Model Optimization and Tuning Phase Template

Date	24 April 2024
Team ID	team-739906
Project Title	Identifying Airline Passenger Satisfaction Using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Decision Tree	<pre>from sklearn.model_selection import GridSearchCV param_grid = { 'criterion': ['gini', 'entropy'], 'max_depth': [None, 5, 10, 15], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] } tree = DecisionTreeClassifier() grid_search = GridSearchCV(estimator=tree, param_grid=param_grid,</pre>	<pre>grid_search= GridSearchCV(estimator= tree,param_gr: grid_search=grid_search.fit(X_train,Y_train) print("Best accuracy=",grid_search.best_score_) print("Best parameters=",grid_search.best_params_) warnings.warn(Best accuracy= 0.9244474806826352 Best parameters= {'criterion': 'entropy', Best parameters= {'criterion':</pre>

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric						
Decision Tree	Decision Tree						

	<pre> ·RandomForest classifier Model accuracy {0.9453551912568307} Accuracy in Percentage 94.5% </pre>				}
	Accuracy in P			f1-score	support
		0.93 0.96			
	accuracy	0.05	2.24	0.95	
Random Forest	macro avg weighted avg	0.95 0.95			
	<pre>cm=confusion_matrix(Y_test,Y_pred) cm</pre>				
	array([[1119, [88,	48], 861]])			

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The Random Forest Boosting model was selected for its superior
	performance, exhibiting high accuracy during hyperparameter tuning.
	Its ability to handle complex relationships ,minimize overfitting, and
	optimize predictive accuracy aligns with project objectives, justifying
Random Forest	its selection as the final model.