Esercizio 1 Dati i punti (-1,1), (1,1), (k,h), con $h,k \in \mathbb{R}$, si chiede di determinare per quali valori di k e h è possibile determinare una parabola $y = ax^2 + bx + c$, con $a,b,c \in \mathbb{R}$ e $a \neq 0$, passante per i tre punti dati.

Esercizio 2 In \mathbb{R}^4 con coordinate canoniche (x, y, z, t) consideriamo il sottospazio U di equazioni cartesiane x + y - t = 0, y - 2z + 3t = 0 e il sottospazio

$$W_k = \langle (2, -1, 1, k), (1, 1, 1, 1) \rangle,$$

dipendente da un parametro reale k.

- a) Determinare al variare del parametro k la dimensione e una base di $U \cap W_k$;
- b) Determinare una base di $U + W_k$ per ogni $k \in \mathbb{R}$;
- c) Stabilire se esiste un sottospazio V di \mathbb{R}^4 di dimensione 1 tale che $V \cap U = \{0_{\mathbb{R}^4}\}$ e $V \cap W_2 = \{0_{\mathbb{R}^4}\}$. In caso positivo determinare tale sottospazio V.

Esercizio 3 In \mathbb{R}^4 con coordinate canoniche (x, y, z, t) sia U il sottospazio di equazione cartesiana x - 2y + 3z + t = 0.

- a) Giustificare il fatto che U ha dimensione 3 e determinare una base $B = (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$ di U.
- b) Sia F l'unico endomorfismo di U tale che $F(\mathbf{b}_1) = F(\mathbf{b}_2) = F(\mathbf{b}_3) = \mathbf{b}_1 + 2\mathbf{b}_2 + \mathbf{b}_3$. Determinare F(2, 1, 1, -3).
- c) Stabilire se F è diagonalizzabile.
- d) Determinare gli autospazi di F.