## Комбинаторика и теория графов Лекционный материал

Посов Илья Александрович

запись конспекта: Штейнберг Эмиль

дата лекции: осенний семестр 2021/2022

## 1 Бинарные отношения

#### 1.1 Определение

**Определение.** Пусть m и n — некие непустые множества, R — подмножество произведения множеств  $n \times m$ , то есть всего множества пар из элементов R. Бинарным отношением называется это множество R.

**Пример.** Если  $n = \{a, b, c\}$ , то  $n \times n = \begin{cases} aa & ba & ca \\ ba & bb & bc \\ ca & cb & cc \end{cases}$ . Если  $m = \mathbb{N}$ , то  $m \times m$  — бесконечное множество из пар натуральных чисел.

#### 1.2 Обозначение

Бинарное отношение между двумя элементами x и y обозначается  $(x, y) \in R$ , однако мы будем использовать более привычное обозначение: xRy.

## 1.3 Примеры бинарных отношений

1. Пусть  $m=\mathbb{R}$ . Возьмем такие x и y, что x>y. Тогда:

$$3R2, \frac{3R4}{}$$
 — отношение "больше".

2. Пусть  $m = \mathbb{R}$ . Возьмем такие x и y, что  $x \geq y$ . Тогда:

7R6, 7R7, 7R8 — отношение "больше или равно".

3. Пусть  $m = \mathbb{R}$ . Возьмем такие x и y, что x = y. Тогда:

#### 7R7, 7R8 — отношение "равно".

Примечание. Далее будем обозначать подмножество R более привычно: как выполняемое соотношение, например вместо 3R2 будет использоваться 3>2.

- 4. Пусть  $m = \mathbb{R}$ . Зададим бинарное отношение "примерно равно"( $\approx$ ) при условии |x y| < 1. То есть,  $5.5 \approx 5$ ,  $213.1 \approx 212.11$ ,  $1 \approx 2$ .
- 5. Пусть  $m = \mathbb{R}$ . Зададим бинарное отношение "#", которое будет означать, что  $x^2 > y$ . То есть, 2#3, 4#15, 3#9.
- 6. Пусть  $m = \mathbb{R} \cup \{0\}$ . Зададим бинарное отношение делимости ( $\dot{z}$ ), что будет означать, что найдется такое p, что x = py. То есть,  $4 \vdots 2$ ,  $100 \vdots 25$ ,  $11 \vdots 4$ .
- 7. Пусть m множество прямых на плоскости. Зададим бинарное отношение параллельности ( $\parallel$ ), которое будет означать, что прямые  $l_1$  и  $l_2$  либо не пересекаются, либо совпадают. То есть  $l_1 \parallel l_2$  прямые параллельны (не пересекаются или совпадают),  $l_1 \parallel l_2$  прямые не параллельны (пересекаются).
- 8. Пусть m множество прямых на плоскости. Зададим бинарное отношение перпендикулярности ( $\bot$ ), которое будет означать, что прямые  $l_1$  и  $l_2$  пересекаются под прямым углом (90°). То есть  $l_1 \perp l_2$  прямые перпендикулярны (пересекаются под прямым углом),  $l_1 \perp l_2$  прямые не перпендикулярны (пересекаются не под прямым углом).
- 9. Пусть m студент в ЛЭТИ. Зададим бинарное отношение ">", которое будет означать, что средний балл студента x больше, чем студента y. То есть,  $x \triangleright y$  средний балл больше,  $x \triangle y$  средний балл меньше или равен.
- 10. Пусть m пользователь Одноклассников. Зададим бинарное отношение " $\heartsuit$ ", которое будет означать, что пользователь x находится в друзьях у пользователя y. То есть,  $x \heartsuit y$  пользователи в друзьях,  $x \heartsuit y$  пользователи не в друзьях.

Бинарные отношения можно задавать на любом множестве, главное, чтобы сопоставляемые элементы были элементами из одного множества.

#### 1.4 Свойства

1. **Определение.** Бинарное отношение R называют  $pe \phi nekcushum$ , если  $\forall x \in m$  выполняется условие xRx.

Замечание. Если подобрать один контрпример, то отношение не является рефлексивным. Это является примером того, что обычно обратное доказать проще, чем доказать прямо.

**Пример.** " $\geq$ "— рефлексивно, "="— рефлексивно, ">"— не рефлексивно.

2. Определение. Бинарное отношение R называют антирефлексивным, если  $\forall x \in m$  выполняется условие xRx.

Замечание. Существуют отношения не рефлексивные и не антирефлексивные, однако одновременно рефлексивных и нерефлексивных не может существовать (доказательство очевидно).

**Пример.** ">"и "<"— антирефлексивны, "#"(из примера 5) — не рефлексивно и не антирефлексивно.

3. Определение. Бинарное отношение R называют cummempuuhum, если  $\forall x, y \in m$  выполняется условие xRy = yRx.

**Пример.** "="— симметрично, ">"и "<"— не симметрично.

4. Определение. Бинарное отношение R называют антисимметричным, если  $\forall x \neq y \in m$  выполняется условие xRy = yRx.

**Пример.** " $\geq$ "и " $\leq$ "— асимметричны.

5. **Определение.** Бинарное отношение R называют *асимметричным*, если  $\forall x, y \in m$  выполняется условие xRy = yRx.

**Пример.** ">"и "<"— асимметричны.

**Утверждение.** Множество R – асимметрично означает то, что оно антисимметрично и и антирефлексивно.

Замечание.  $\square$  (пустое отношение) — асимметрично (не содержит ни одной пары на множестве R).

6. Определение. Бинарное отношение R называют mpaнзитивным, если  $\forall x, y, z \in m$  при xRy, yRz выполняется условие xRz.

**Пример.** ">,  $\geq$ "и "<,  $\leq$ "— транзитивны,  $\perp$ — не транзитивно.

Примечание. Свойства так же зависят от выбранного множества. Например, если взять делимость из примера 6, то оно является антисимметричным, однако для целых чисел  $(x \in \mathbb{Z})$  отношение не будет являться антисимметричным (4 : -4 = -4 : 4).

#### 1.5 Отношение эквивалентности

**Определение.** Отношение R называется *отношением эквивалентности*, если R — рефлексивно, симметрично и транзитивно.

**Пример.** Отношение равенства ("=") является отношением эквивалентности на любом множестве.

- 1.  $\forall x \ x = x$  рефлексивно.
- 2.  $\forall x, y \ x = y \Leftrightarrow y = x$  симметрично.
- 3.  $\forall x, y, z \ x = y = z$  транзитивно.

Также отношения  $\|, \equiv_n$  являются отношениями эквивалентности. Отношение "больше или равно" (" $\geq$ ") не отношение эквивалентности.

Проверим следующее отношение:

Отношение  $\uparrow$  на множестве  $\mathbb{N}$ : выполняется условие  $x \uparrow y$ , если x и y содержат одинаковое количество цифр.

Пример.  $2 \uparrow 5$ ,  $12 \uparrow 42$ ,  $3 \uparrow 33$ .

- 1.  $\forall x \ x \uparrow x$  рефлексивно.
- 2.  $\forall x, y \ x \uparrow y \Leftrightarrow y \uparrow x$  симметрично.
- 3.  $\forall x, y, z \ x \uparrow y \uparrow z$  транзитивно.

Отношение † является отношением эквивалентности.

#### 1.6 Классы

**Определение.** Если R является *отношением эквивалентности* на множестве  $\mathbb{M}$ , и  $x \in \mathbb{M}$ , то  $\mathbb{M}_x$  — это набор таких y, что xRy.

**Пример.** Равенство ("="):  $\mathbb{M}_5 = 5$ ,  $\equiv_3$ :  $\mathbb{M}_2 = \{2, 5, 8, \dots\}$ , параллельность ("||"):  $\mathbb{M}_l$  содержит все прямые, параллельные l.

**Утверждение.** Если R — отношение эквивалентности на множестве  $\mathbb{M}$ , то при  $\forall x, y \in \mathbb{M}$   $\mathbb{M}_x = \mathbb{M}_y$  или  $\mathbb{M}_x \cap \mathbb{M}_y \neq \emptyset$ .

Доказательство. Если  $\mathbb{M}_x \cap \mathbb{M}_y \neq \emptyset$ , то существует  $z \in \mathbb{M}_x$  и  $\mathbb{M}_y$ . Тогда xRz и yRz, а по свойству симметричности zRy и по свойству транзитивности xRy.

Теперь проверим, что класс  $\mathbb{M}_x = \mathbb{M}_y$ . Возьмем  $u \in \mathbb{M}_x$ , проверим, что  $u \in \mathbb{M}_y$ . Мы знаем, что из  $u \in \mathbb{M}_x$  следует, что xRu, а также и xRy, тогда по симметричности yRx, а по транзитивности yRu, значит  $u \in \mathbb{M}_y$ , то есть множества одинаковые.

**Следствие.** Если R — отношение эквивалентности на множестве  $\mathbb{M}$ , тогда  $\mathbb{M}$  разбито на несколько классов эквивалентности, которые не пересекаются.

$$\mathbb{M} = \mathbb{M}_1 \cup \mathbb{M}_2 \cup \cdots \cup \mathbb{M}_n$$

**Пример.** Возьмем  $\equiv_3$  на множестве  $\mathbb{N}$ . То есть:

$$\mathbb{N} = \{0, 3, 6, \dots\} \cup \{1, 4, 7, \dots\} \cup \{2, 5, 8, \dots\}$$

Замечание. Если есть  $\mathbb{M} \neq \emptyset$ , разбитое на  $\mathbb{M}_i \neq \emptyset$ , тогда можно ввести отношения R.

$$xRy$$
, если для  $M_i$   $x, y \in M_i$ 

**Пример.** Рассмотрим все прямые на плоскости — это множество  $\mathbb{M}$ . Тогда среди всех прямых найдется бесконечное количество параллельных прямых. Здесь, отношение эквивалентности R является параллельность (" $\bot$ "), а классом  $\mathbb{M}_i$ — их направление.

#### 1.7 Отношения порядка

Для простого понимания: имеется в виду не эквивалентность, а степени сравнения — выше, лучше, сильнее, быстрее, важнее и т.д.

**Определение.** Пусть дано бинарное отношение R, которое транзитивно, антисимметрично. Тогда, если оно:

- 1. Рефлексивно, то R нестрогий порядок ( $\leq$  / $\geq$ ).
- 2. Антирефлексивно, то R-cmporuŭ порядок  $(\prec/\succ)$ .

Примечание. Введенные понятия:

Если 
$$a \succ b$$
,  $b \succ c$ , то  $a \succ c$  — транзитивность. Если  $a \succ b$ , то  $b \succ a$  — антисимметричность.

**Пример.** Отношение > на  $\mathbb{R}$  — строгий порядок,  $\ge$  на  $\mathbb{R}$  — нестрогий порядок,

: на  $\mathbb{N}$  — нестрогий порядок (число всегда делится само на себя).

**Определение.** Пусть R — строгий или нестрогий порядок. Тогда R называется линейным порядком, если  $\forall x \neq y$ , то xRy или yRx.

Замечание. Если существуют такие x и y, что xRy или yRx, то R называют частичным порядком.

Пример. Рассмотрим некоторые примеры:

- 1. > линейный порядок.
- 2. ≥ линейный порядок.
- 3. : частичный порядок.

**Утверждение.** Если  $\succ -$  строгий или нестрогий порядок на конечном множестве  $\mathbb{M}$  ( $\forall \alpha \in \mathbb{M} \ |\alpha| < \infty$ ). Тогда существует минимальный x, u для  $\forall y \neq x \ x \succ y$ .

**Пример.** Возьмем отношение  $\geq$  на множестве  $\{1,2,3,4,5\}$ . Тогда минимальный x=1, так как  $\forall y \ 1$ 

Доказательство единственности. Берем  $x_1$  — любой элемент отношения  $\succ$  конечного множества  $\mathbb{M}$ . Если он не минимальный, значит существует другой минимальный  $x_2 \neq x_1$ , такой что  $x_1 \succ x_2$ . Если же  $x_2$  не минимальный, то существует другой минимальный  $x_3 \neq x_2$ , такой что  $x_2 \succ x_3$ . И так далее...

Если мы не можем найти минимальный элемент, значит по свойству конечности множества  $\mathbb{M}$  последний  $x_i$  будет являться минимальным (точнее говоря, существующие  $x_i$  будут повторяться).

$$x_i \succ x_{i+1} \succ x_{i+2} \succ \cdots \succ x_{j-1} \succ x_j = x_i$$

Отношение  $\succ$  — транзитивно, то есть  $x_i \succ x_{j-1} \succ x_i$ . А это невозможно по антисимметричности.

## 2 Топологическая сортировка

**Определение.** Отношение  $R_1$  на множестве  $\mathbb{M}$  расширяет  $R_2$  на  $\mathbb{M}$ , если  $R_2 \subset R_1$ .

Замечание.  $R_1$  добавляет пары где xRy. То есть из  $xR_2y$  следует, что  $xR_1y$ .

**Теорема** (о топологической сортировке). Если отношение порядка  $\succ$  — строгое или нестрогое на конечном множестве  $\mathbb{M}$ , то существует  $\gg$  — отношение линейного порядка на  $\mathbb{M}$ , такое что  $\gg$  расширяет  $\succ$ .

Пример. Пусть есть отношение порядка подчинения сотрудников:



топологическая сортировка

где  $\Gamma Д$  — генеральный директор, О — начальник отдела, С — сотрудник.

Доказательство. Найдем минимальный элемент отношения  $\succ$  (пусть это  $x_1 \in \mathbb{M}$ ) и удалим его из множества. Теперь имеем ограниченное отношение  $\succ |_{\mathbb{M}-\{x_1\}}$ . Очевидно, что это новое отношение имеет те же свойства, что и изначальное (антисимметрично, транзитивно и рефлексивно/антирефлексивно). В нем тоже есть минимальный элемент  $x_2$ , который мы удаляем и получаем ограниченное множество  $\succ |_{\mathbb{M}-\{x_1,x_2\}}$ . Продолжаем...

В какой-то момент по свойству конечности множество  $\mathbb{M} - \{ \forall x_i \}$  станет пустым. Итого, имеем последовательность  $\{x_1, x_2, \dots, x_n\}$ , где n = |M| — размер исходного множества  $\mathbb{M}$ .

Вводим новый порядок  $x_i \ll x_j$  для i < j:

$$x_1 \ll x_2 \ll \cdots \ll x_n$$

**Почему**  $\ll$  расширяет  $\prec$  ? Если  $x \prec y$ , то x был удален из множества раньше y, следовательно  $x \ll y$ .

Замечание. Алгоритм поиска минимума и удаления не самый эффективный. Более эффективно будет сделать поиск в глубину и построить обратную нумерацию.

Замечание. Топологическая сортировка — практически важная задача. Как пример зависимостей: нельзя расдать листовки, пока они не напечатаны, при этом нельзя распечатать листовки, пока нет чернил и бумаги.

## 3 Транзитивное замыкание

По решению задачи топологической сортировки мы расширяли порядок до линейности. Теперь перед нами стоит задача расширить отношение до транзитивности.

Пример. Пусть есть отношение подчиненности:



где  $\Gamma Д$  — генеральный директор, О — начальник отдела, С — сотрудник. Черным цветом показана изначальная связь. Мы можем сказать, что  $\Gamma ДRO1$  и O1RC1, но отсюда не следует, что  $\Gamma ДRC1$ .

Для этого в множество необходимо добавить пару  $\Gamma \square RC1$ , чтобы отношение стало транзитивным (красный цвет). Аналогично для  $\Gamma \square RC2$ .

**Теорема.** Пусть R — отношение на множестве  $\mathbb{M}$  и существует такое отношение  $\overline{R}$  на том же множестве, что:

- 1.  $\overline{R}$  расширяет R  $(R \subset \overline{R})$ .
- $2. \ \overline{R} m$ ранзитивно
- 3.  $\overline{R}$  минимальное транзитивное расширение, то есть если  $\tilde{R}$  транзитивное расширение R, то  $\tilde{R}\supset \overline{R}$ .

*Условное доказательство*. Рассмотрим все транзитивные расширения отношения  $\{\overline{R_i}\}$  и посчитаем R как пересечение всех  $\overline{R_i}$  (берем те ребра, которые есть только у транзитивного расширения).

**Пример.** Пусть множество  $\mathbb{M}=\{a,b,c,d\}$  и на нем есть отношения aRb,bRc,bRd. Мы можем его любым способом достроить до транзитивного (к примеру, достроим отношения aRc,aRd,cRd). Минимальным элементом  $\overline{R}$  будет являться пересечение всех таких транзитивных отношений, и оно подходит под все условия:

- 1.  $\overline{R}$  расширяет R (пусть xRy, тогда  $\forall \overline{R_i} \ x\overline{R_i}y$ , значит  $x\overline{R}y$ ).
- 2.  $\overline{R}$  транзитивно (пусть  $x\overline{R}y$ , а  $y\overline{R}z$ , то  $\forall \overline{R_i}\ x\overline{R_i}y, y\overline{R_i}z$ , значит  $x\overline{R_i}z$ , то есть  $x\overline{R}z$ ).
- 3.  $\overline{R}$  минимальное транзитивное расширение (так как пересечение находится  $\forall \overline{R_i}$ ).
- 0. Существует ли  $\overline{R_i}$ ? Скажем, что  $R_1$  полное отношение =  $\mathbb{M} \times \mathbb{M}$ . Получили, что расширить можно в любом случае.

## 4 Графы

## 4.1 Неориентированный граф

**Определение.** Неориентированный граф G — это объект  $(\mathbb{V}, \mathbb{E})$  от двух аргументов, где  $\mathbb{V}$  — множество вершин графа, а  $\mathbb{E} \subset \{(u, v), u, v \in \mathbb{V}\}$  — множество неупорядоченных пар из двух вершин  $(pe6pa\ rpa\phi a)$ . Граф обладает хотя бы двумя вершинами, соединенными между собой.

Замечание. Как рисовать:

- 1. Вершины обозначаются точками  $(\cdot)$  или кругами  $(\circ)$ .
- 2. Ребра обозначаются линиями между двумя вершинами. Важен только факт соединения.

**Пример.** Граф (важно только наличие соединений, форма определяется фантазией):



**Определение.** Граф G называется *полным*, если  $\forall u, v \in \mathbb{V} \ (u, v) \in \mathbb{E}$ .

Примечание. V — от слова <math>vertex (англ. вершина),  $\mathbb{E}$  — от слова edge (англ. ребро).

**Определение.** *Размер* (порядок) графа определяется как количество вершин:

$$|G| = |\mathbb{V}| = n$$

Есои количество ребер  $|\mathbb{E}|=m,$  то иногда говорят, что G — это (n,m)-граф.

**Определение.** Ствень вершины  $v \in \mathbb{V}$  — это количество ребер, которым она принадлежит.

$$\deg v = |\{(v, u) \mid (v, u) \in \mathbb{E}\}|$$

**Определение.** k-регулярным графом называется граф, все степени вершин которого равны k.

#### 4.2 Путь в графе

Определение. Путь в графе — последовательность вершин-ребер

$$v_1, e_1, v_2, e_2, \ldots, v_n$$

Причем, каждый e ведет от вершины  $v_i$  к  $v_i+1$ .

**Пример.** a,b,c,d — подразумевается путь в графе от а к b, от b к c, и так далее.

**Определение.** Замкнутый путь — такой путь, если первая и последняя вершина одинаковые.

**Определение.** *Незамкнутый путь* — такой путь, если первая и последняя вершина не совпадают.

**Определение.**  $Простой \ nymb$  — такой путь, который содержит только различные ребра.

Пример. Рассмотрим некоторые примеры путей:

- 1. b, e, d, c, e простой путь, так как ребра не повторяются (однако вершина е повторяется).
- 2. a, b, c, d, e, c, d, e, b, a непростой замкнутый путь.
- 3. Рассмотрим граф G:



Путь k,b,a,c,b,k — не простой путь, так как ребро e=(b,d) повторяется. А путь b,c,a,b,k,l,m,k — простой, так как ребра не повторяются.

**Определение.** *Циклом* называется замкнутый путь в графе, все вершины которого разные. *Цепью* называется открытый путь в графе, все вершины которого разные (кроме первой с последней).

Пример. Рассмотрим следующие графы:



**Теорема.** Если между вершинами и и v существует путь, то существует и цепь между этими вершинами.

Доказательство. Пусть есть путь  $u, e_1, v_1, e_2, v_2, \ldots, e_n, v$ . Рассмотрим все такие возможные пути и возьмем самый короткий. Поймем, что это и есть uenb. Представим, что какие то вершины совпали:

$$u \dots v_i \dots v_j \dots v, \ v_i = v_j$$

Тогда среднюю часть можно убрать, и тогда это не самый короткий путь. Противоречие.  $\hfill\Box$ 

**Теорема.** Если есть простой замкнутый путь через ребро е, то есть и цикл через это ребро.

Доказательство. Аналогично предыдущей теореме, можно найти самый короткий путь, где ребро не повторяется.  $\Box$ 

#### 4.3 Связность графа

**Определение.** Граф G-cвязан, если  $\forall u,v\in\mathbb{V}$  существует цепь из u в v.

Пример. Рассмотрим следующие примеры:



Введем отношение  $\equiv$  на вершинах графа: скажем, что  $u \equiv v$ , если существует путь из u в v. Проверим, что  $\equiv$  — отношение эквивалентности:

- 1. Рефлексивно  $u \equiv u$  (верно).
- 2. Симметрично  $u \equiv v$ , следовательно  $v \equiv u$  (верно).
- 3. Транзитивно  $u \equiv v$ ,  $v \equiv w$ , значит  $u \equiv w$  (верно).

**Определение.** Классы эквивалентности  $\equiv - \kappa$ омпоненты связности.

Пример. Пусть имеется граф:



**Определение.** G' — называется *подграфом* G, если из изначального графа выделить некоторые вершины, то есть он является подмножеством изначального множества вершин и ребер. По-научному, подграф G' определяется выражением:

$$G' = (\mathbb{V} \setminus \{v\}, \mathbb{E} \setminus \{(v, u) \mid (v, u) \in \mathbb{E}\})$$

3амечание. G является своим подграфом, а пустой граф  $\emptyset$  — подграфом любого графа.

**Пример.** Граф G' является подграфом графа G:



**Определение.** Пусть существует граф G. Ребро e называется *мостом*, если при его удалении из графа количество компонентов связности G < количество компонентов связности подграфов G.

**Пример.** В графе G ребра, выделенные красным, являются мостами:



**Определение.** Ствень связности графа G — это минимальное количество ребер, которое нужно удалить, чтобы граф G стал несвязным. Двусвязный граф — граф степени связности не меньше двух, то есть граф без мостов.

**Пример.** Некоторые примеры графов n-ной степени связности:



**Определение.** Вершина  $v \in \mathbb{V}$  графа G называется *точкой сочленения*, если при ее удалении из графа (с ребрами) количество компонентов связности G < количество компонентов связности подграфов G. В частном случае, точкой сочленения является вершина моста.

Сосчитаем количество ребер в графе.

**Теорема.** В графе  $G = (\mathbb{V}, \mathbb{E})$  количество ребер определяется как полусумма всех степеней вершин графа.

$$|\mathbb{E}| = \frac{1}{2} \sum_{v \in \mathbb{V}} \deg v$$

Доказательство. Мы знаем, что  $\deg v$  — количество ребер, выходящих из вершины. Складывая их, мы посчитали все ребра по два раза, так как у ребра ровно две вершины. Следовательно, чтобы получить количество ребер, нужно разделить это число на 2.

**Следствие.** Сумма степеней вершин графа G, а также количество его вершин c нечетной степенью всегда четные.

Задача. На Землю прилетели 15 трехруких инопланетян. Могут ли они взяться за руки так, чтобы не было ни одной свободной руки?

**Решение.** Нет, нельзя, так как количество вершин нечетной степени — 15, а должно быть четное количество.

**Определение.** Висячая вершина v — это вершина степени 1 (deg v=1).

**Теорема.** Если в графе G нет висячих вершин, то существует цикл.

Доказательство. Берем ребро  $e=(u_1,u_2)$  из конечного графа G. Мы знаем, что  $u_2$  — не висячая вершина, значит из нее есть какое-то другое ребро  $e_1=(u_2,u_3)$ .  $u_3$  — тоже не висячая, и из нее тоже есть новое ребро. И так далее. Тогда по условию, в какой-то момент в графе вершина  $u_n$  нового ребра  $e_n$  точно совпадет с какой-то старой вершиной  $u_i$ ,  $1 \le i < n$ . Получили цикл  $u_i, u_{i+1}, \ldots, u_n$ .

**Определение.** Дерево — связный граф без циклов.

Пример. Примеры деревьев:



Теорема. В любом дереве хотя бы две висячие вершины.

Доказательство. Берем любую вершину. Если она не висячая, идем по ребру к следующей. Если снова не висячая, то продолжаем идти из нее. Так как циклы в графе отсутствуют, то в какой-то момент мы достигнем конца графа в висячей вершине. Теперь начнем путь из найденной вершины, и повторим алгоритм. Опять же, в какой-то момент мы упремся в висячую вершину. Итого, получили как минимум две висячие вершины.

**Теорема.** Если  $G = (\mathbb{V}, \mathbb{E}) - \partial epeso, mo |\mathbb{V}| = |\mathbb{E}| + 1.$ 

Доказательство по индукции. Пусть меняется количество вершин.

- 1. База: количество вершин  $|\mathbb{V}|=1$ . Следовательно,  $|\mathbb{E}|=0$ , то есть  $|\mathbb{V}|=|\mathbb{E}|+1$ .
- 2. Продолжение: рассмотрим произвольное дерево и найдем висячую вершину и удалим ее вместе с единственным ее ребром. При этом граф остался деревом, так как циклы не появились, и он остался связным, а |E| и |V| уменьшились на единицу. Продолжая, получим дерево из одной вершины, а по базе теорема сходится.

## 5 Полный граф

Теорема. Если есть п вершин, то:

- 1.  $C_n^2 = \frac{n(n-1)}{2}$  pecep.
- 2. Степени всех вершин n-1. Так как  $\sum_{v\in\mathbb{V}} \deg v = 2|E|$ , то  $|E| = \frac{n(n-1)}{2}$

Пример. Следующие графы являются полными:







## 6 Планарные графы

**Определение.** Планарные  $гра\phiы$  — это те графы, которые можно нарисовать на плоскости так, чтобы ребра не пересекались.

Пример. Пример "правильного" и "неправильного" планарных графов:



**Теорема** (Формула Эйлера). Если связный планарный граф  $G = (\mathbb{V}, \mathbb{E})$  нарисован на плоскости, то у него можно посчитать грани f. Пусть  $|\mathbb{V}| = n, |\mathbb{E}| = m$ . Тогда:

$$n - m + f = 2$$

Задача. Посчитать грани следующих графов:



Доказательство. Индукция по количеству ребер.

**База:** G — дерево. Понятно, что у него одна грань.

$$m-n+f = n - (n-1) + 1 = 2$$



**Переход:** G — неизвестно. Если G' имеет меньше ребер, то верно. Если G — не дерево, значит есть цикл. Возьмем любое ребро цикла — вокруг него точно 2 грани. Теперь удалим это ребро и получим G', G'

тоже связен и планарен. Тогда n' — вершины, m' — ребра, f' — грани графа G'. Количество вершин не изменилось: n' = n - 1. Количество ребер и граней стало меньше на 1: m' = m - 1, f' = f - 1. Получили:

$$n' - m' + f' = 2 \Leftrightarrow n - (m - 1) + (f - 1) = n - m + f = 2$$



Следствие. Некоторые следствия из формулы Эйлера:

- 1. Не важно, как рисовать планарный граф, количество граней постоянно.
- 2. Теорема про многогранники. Если взять куб, то по формуле Эй-лера: 8-12+6=2

Становится понятно если отобразить куб в виде планарного графа:



3. Если граф G планарен (не обязательно связан), то:

$$n-m+f=1+|\kappa$$
омпоненты связности

4. У каждой грани как минимум 3 ребра.

Доказательство. Посчитаем количество ребер у грани. Можно заметить, что каждое ребро посчитано один или два раза. Тогда:

$$2m \geq \sum_{f \in \mathbb{F}} |\mathbb{E}|$$
 вокруг  $f \geq 3f$ 

Следовательно:

$$3f \leq 2m$$

Тогда:

$$n-m+f=2 \qquad (\times 3)$$
 
$$3n-3m+3f=6 \quad \Leftrightarrow \quad 3n-3m+2m \geq 6$$

Итого получили, что  $m \leq 3n-6$  в связном планарном графе G. Физический смысл: ребер не может быть очень много.



5. Полный граф при  $n \ge 5$  не планарен.



граф планарен



граф не планарен

Доказательство. Если n=5, то  $m=\frac{5\cdot 4}{2}=10$ . Тогда  $10\leq 3\cdot 5-6=9$  — неверно, значит граф не планарен. Любой граф с большим количеством не планарен тем более.

3амечание. Пусть  $K_5$  — полный граф с количеством вершин, равным 5.

**Утверждение.** Граф  $K_{3,3}$  — тоже не планарен.



Доказательство. В графе n = 6, m = 9:  $9 < 3 \cdot 6 - 6 = 12$  — сходится.

Рассмотрим количество граней при планарности: 6 - 9 + f = 2, следовательно f=5 граней. В  $K_{3,3}$  все циклы четные (ход лево-право или право-лево). Следовательно у грани должно быть как минимум 4 ребра.

$$4f \leq \sum_{f \in \mathbb{F}} |\mathbb{E}|$$
 вокруг  $f = 2m$ 

m должно быть хотя бы больше 2f, но  $9 \geq 2 \cdot 5$ .

**Теорема** (Понтрягина-Куратовского). Граф G планарен только, если он не содержит подграфов  $G_i'$ , стягивающихся к  $K_5$  и к  $K_{3,3}$ .

Примечание. Стягивающийся  $\kappa$  G граф — граф  $G_1$ , похожий на граф Gпри определенных манипуляциях с ребрами.

#### Пример. Пример стягивающихся графов:



стягивается к  $K_{3,3}$ 



стягивается к  $K_5$ 

#### Хроматизм 7

**Определение.** Пусть  $G = (\mathbb{V}, \mathbb{E})$  — граф. Раскраска графа G в k цветов это

функция 
$$c: \mathbb{V} \to \{1 \dots k\}$$

причем, если есть ребро (u,v), то  $c(u) \neq c(v)$ .

#### Пример. Раскраска графа:



граф раскрашен в 3 цвета



не раскраска графа

**Задача.** Какие графы можно раскрасить в 1 цвет? Ответ: графы без ребер.

Задача. Какие графы можно раскрасить в 2 цвета?

**Определение.** Граф G называется  $\partial$  вудольным, если его можно раскрасить в 2 цвета.

Пример. Двудольные графы:



Примечание. Граф  $K_{3,3}$  — двудолен.

Замечание. Двудольные графы часто рисуют из двух частей (две доли), связанных только в одном направлении (рабочие/задания, студенты/оценки).



**Теорема.**  $\Gamma$  раф  $G - \partial s y \partial o$ лен только, если всего его циклы имеют четную  $\partial$ лину.

Доказательство четности циклов из двудольности. Если бы цикл был нечетный, то конечные цвета будут повторятся, и их нельзя будет соединить. То есть должно быть одинаковое количество разных цветов.  $\square$ 

Доказательство двудольности из четности циклов. "Подвесим граф за вершину". Тогда эта вершина связана только с вершинами другого цвета. Следующая вершина опять с другим цветом. И так далее, рассматриваем ребра, которые не идут назад — назначаем цвета по уровням графа в глубину. Почему обратные ребра ничего не портят? Они не соединяют одинаковые цвета, потому что иначе цикл был бы нечетный.

## 8 Хроматизм

**Определение.** Если  $G=(\mathbb{V},\mathbb{E})$  — граф, тогда  $\chi(G)$  — *хроматическое число*, то есть минимальное количество цветов, в которые можно раскрасить граф G.

Пример. Примеры расчетов хроматических чисел:



можно раскрасить минимум в 3 цвета



можно раскрасить минимум в 2 цвета

**Следствие.** Хроматическое число полного графа K равно количеству его вершин:

$$\chi(K_{|\mathbb{V}|}) = |\mathbb{V}|$$

Замечание. Если  $k \ge \chi(G)$ , то граф можно раскрасить в k цветов.

**Утверждение 1.** Хроматическое число графа G всегда не больше максимальной степени вершины плюс один.

$$\chi(G) \le \max \deg v + 1$$



Доказательство. Индукция по количеству вершин.

**База.** n=0, m=1 — верно, так как  $\max \deg =0 \Rightarrow \chi(G) \geq 1$ .

**Переход.** Граф G, v — вершина максимальной степени  $= \Delta$ . Удаляем ее и получаем подграф G'. Максимальная степень подграфа точно не больше степени изначального графа. Попробуем раскрасить в  $\Delta + 1$  цвет. Однако цвет запрещен. Значит в  $\Delta$  цветов раскрасить можно. Продолжая, дойдем то единственной вершины.



**Утверждение 2.** Если граф G — планарный, то его можно раскрасить не более чем в 5 цветов.

Задача. Во сколько цветов достаточно раскрасить страны на географической карте, чтобы любые две соседние не имели один цвет?



Доказательство. В G есть вершина степени  $\leq 5$ . Если нет, то все степени  $\geq 6$ , значит сумма степеней всех вершин равна хотя бы 6n  $(n = |\mathbb{V}|)$ . Мы знаем, что сумма степеней вершин равна удвоенному количеству ребер.

Соответственно ребер хотя бы 3m, однако так не бывает, ведь количество ребер должно быть меньше или равно 3n-6.

Раскрашиваем в пять цветов по индукции.

База. Графы из 5 вершин точно можно раскрасить в пять цветов.

**Переход.** Пусть есть граф G с n>5 вершин. Предполагаем, что для него есть раскраска. Берем вершину v, у которой степень  $\leq 5$ . Рассмотрим граф без этой вершины и раскрасим его. Если мы для каждой соседней вершины  $v_i$  используем не более четырех цветов, то раскрашиваем ее пятым — следовательно, для v есть цвет. Если для соседних вершин используются все пять цветов, то снова попробуем убрать вершину из этого графа — получили одну грань. Возьмем случайные две вершины, не соединенные ребром, и стянем их к v — получим граф  $\tilde{G}$ . Этот граф также остается планарным, при этом у него будет n-2 вершины. Значит, две стянутых вершины можно раскрасить в один цвет, следовательно для v также будет цвет.



Примечание. Между какими-то двумя вершинами точно нет ребра, в другом случае граф будет стягивающимся к  $K_5$ , то есть он не был бы планарным.

**Задача.** Во сколько цветов на самом деле можно раскрасить планарный граф?

**Гипотеза** (Проблема 4-ех красок). Любой планарный граф можно раскрасить в 4 цвета.

## 9 Хроматические многочлены

**Определение.** Пусть  $\chi(G,k)$  — это функция, которая возвращает количество способов раскраски графа G по k цветам.

Утверждение. Рассмотрим некоторые функции:

- 1. Граф без ребер:  $\chi(\emptyset_n, k) = k^n$
- 2. Полный граф:  $\chi(K_n,k)=k(k-1)(k-2)\dots(k-n+1)=\frac{k!}{(k-n)!}=k^{\underline{n}}$
- 3. Дерево:  $\chi(T_n, k) = k(k-1)^{n-1}$  (по методу подвешивания вершины)
- 4. Граф  $\overline{G} = (\mathbb{V}, \mathbb{E})$  с каким-то ребром e = (u, v). Граф  $G = \overline{G} \backslash e$ . Граф  $G = G^{\circ} c$ тянутый в одну вершину. Можно заметить, что количество способов раскрасить G в k цветов. Вершины u v имеют либо одинаковый цвет, либо разный цвет. Если имеют разный цвет, то таких способов столько же, сколько раскрасить  $\overline{G}$ . Если цвет одинаковый, то столько же, сколько u  $G^{\circ}$ . То есть:

$$\chi(G, k) = \chi(\overline{G}, k) + \chi(G^{\circ}, k)$$



Следствие (к пункту 4). Обратное условие:

$$\chi(\overline{G}, k) = \chi(G, k) - \chi(G^{\circ}, k)$$

$$G = \overline{G} + A$$

$$G^{\circ}$$

$$\chi(\overline{G},k) = k(k-1)(k-2)(k-3) + k(k-1)(k-2) = k(k-1)(k-2)^2$$

5. Цикл:  $\chi(C_n, k) = \chi(T_n, k) - \chi(C_{n-1}, k) = \chi(T_n, k) - \chi(T_{n-1}, k) + \chi(C_{n-2}, k) = \dots - останавливаемся на цикле длиной три, иначе не получим цикл. В финале получим сумму, являющуюся геометрической прогрессией с шагом <math>1-k$  и первым членом  $(-1)^n \cdot k(k-1)$ :

$$\chi(C_n, k) = k(k-1)^{n-1} - k(k-1)^{n-2} + \dots \pm k(k-1) \pm k = (k-1)^n - (-1)^n$$

**Утверждение.** Пусть есть граф G и он имеет висячую вершину v, и  $G' = G \backslash v$ . Тогда:

$$\chi(G, k) = \chi(G', k) \cdot (k - 1)$$



**Утверждение.** Если в графе G есть вершина v, образующая треугольник c двумя случайными вершинами, то:

$$\chi(G, k) = \chi(G', k) \cdot (k - 2)$$



**Утверждение.** Пусть  $G=G_1'\cup G_2'$ , при этом отсутствуют ребра между  $G_1'$  и  $G_2'$ . Тогда:

$$\chi(G,k) = \chi(G_1',k) \cdot \chi(G_2',k)$$



**Пример.** Рассмотрим преобразование графа G. Красные вершины удаляются:



$$\chi(G_1',k) = \chi(G_2',k)(k-2) = \chi(G_3',k)(k-1)(k-2) = k(k-1)^2(k-2)^2$$

**Утверждение.**  $\chi(G,k)$  — хроматический многочлен, обладающий данными свойствами:

- 1. Старший коэффициент всегда равен 1;
- 2. Степень многочлена = n (количество вершин = n);
- 3. Знаки многочлена всегда чередуются;
- 4. Младший коэффициент всегда равен 0;
- 5. Количество ребер графа G равно абсолютному значению коэффииента при  $k^{n-1}$ .

Доказательство. Индукция по количеству вершин.

**База.** Рассматриваем пустой граф из n вершин:  $\chi(\emptyset, k) = k^n$  — это действительно многочлен, удовлетворяющий всем свойствам.

**Переход.** Пусть есть граф с m ребер. Рассмотрим следующий пример:

$$\chi(\bullet,k) = \chi(\bullet,k) - \chi(\bullet,k)$$

Ребер стало меньше. Рассмотрим свойства:

- 1. Коэффициент остался:  $1 \cdot k^n k^{n-1} + \cdots$ ;
- 2. Степень осталась n следует из предыдущего;
- 3. Знаки чередуются:  $k^n (k^{n-1} k^{n-2} \cdots) + \cdots = k^n k^{n-1} + k^{n-2} + \cdots;$

- 4. Младший коэффициент: 0 0 = 0;
- 5. Количество ребер: —ребра  $\cdot k^{n-1} k^{n-1} = -k^{n-1} \cdot (\text{ребра} + 1).$

**Утверждение.** Хроматическое число многочлена  $\chi(G)$  равно первому значению корня многочлена, при котором не получается ноль.

## 10 Эйлеровы графы

Задача. Нарисовать данный граф, не проводя по одному ребру дважды:



**Определение.** Эйлеров путь — простой путь, содержащий все ребра.

Определение. Эйлеров цикл — цикл, содержащий все ребра.

**Утверждение.** Пусть G содержит эйлеров цикл, тогда G связен, u deg v — четная  $\forall v \in \mathbb{V}$ .



Прямое доказательство. Если граф G связен, то до каждой вершины можно дойти. Мы в нее вошли и вышли одинаковое количество раз, соответственно в любом случае степень такой вершины будет четной.  $\square$ 

Обратное доказательство. Начнем строить цикл. Идем из любой вершины, выбираем ребро, которое еще не использовалось. Вершину мы могли посещать до этого, то есть мы пришли в нее, и вышли одинаковое количество раз. Пусть мы в нее пришли еще раз, получим нечетную степень. Следовательно должно быть еще одно ребро, а если мы застряли, то мы из этой вершины начали (ведь вышли из нее только один раз). Итого, каждая степень четная. □



Замечание. Если есть два цикла в одной вершине, то их можно объединить:



**Теорема.** Граф G содержит эйлеров путь, если он связен, а также если степени всех вершин четные, или степени любых двух из них нечетные, а все остальные четные.

*Примечание.* Необходимо начать эйлеров путь из одной из нечетных вершины, при этом концом должна быть вторая вершина.

**Определение.** *Гамильтонов путь/цикл* — простая цепь/цикл по всем вершинам, не повторяясь.

Пример. Примеры гамильтоновых пути и цикла:



*abcde* — гамильтонов путь



abcdefga — гамильтонов цикл

## 11 Длина, диаметр, радиус

**Определение.** Длина nymu в графе G — это количество ребер в пути.

Пример. Рассмотрим следующий пример:



путь от a до f: abcdf — длина 4 acrdf — длина 4 acdf — длина 3 abcedf — длина 5

**Определение.** Расстоянием между вершинами d(u, v) называется минимальная длина пути между вершинами u и v. Частный случай, длина равна  $+\infty$ , если пути между этими вершинами не существует.

**Пример.** Из предыдущего примера: d(a, f) = 3.

**Определение.** *Диаметром графа* называется максимальное расстояние между вершинами графа.

**Пример.** В примере выше: расстояние d(a,f) является максимальным, следовательно диаметр графа G=3. Еще один пример:



Заметим, что остальные расстояния (важно — **HE** пути)  $\leq 4$ .

**Определение.** Для каждой вершины графа  $G = (\mathbb{V}, \mathbb{E})$  можно посчитать максимальное расстояние до других вершин. Обозначим это  $paduy-com\ вершины$ :

$$r(v) = \max \left\{ d(u, v) \mid u \in \mathbb{V} \right\}$$

Тогда, радиусом графа является минимальное значений r(v):

$$r(G) = \min \left\{ r(v) \mid v \in \mathbb{V} \right\}$$

**Определение.** Вершины с минимальным радиусом называют *центра-ми графа*.

Пример. Из прошлого примера:



Таким образом, радиус графа  $r(G) = \min\{4, 3, 4, 3, 2, 3, 4, 3, 4\} = 2$ . Центр помечен черным цветом.

Примечание. Центров графа может быть несколько.



Утверждение. В любом графе  $G = (\mathbb{V}, \mathbb{E}) \ d(G) \le 2r(G)$ .

Доказательство. Пусть c — центр графа,  $c, u, v \in \mathbb{V}$ .

$$u \leq r$$
  $c \leq r$ 

Заметим, что  $d(c,u) \le r(G)$ ,  $d(c,v) \le r(G)$ , следовательно по транзитивности  $d(u,v) = d(c,u) + d(c,v) \le 2r(G)$ . При этом максимум среди двух вершин d(u,v) также  $\le 2r(G)$ .

**Утверждение.** В дереве может быть не более двух центров.

Доказательство от обратного. Пусть центров в дереве  $3:\{c_1,c_2,c_3\}$ . Построим пути между  $c_1$  и  $c_2$ , а затем между  $c_2$  и  $c_3$  (вспоминая, что в дереве может быть только один путь).



Если оба полученных пути проходят через одну вершину "развилка" $c_0$ , то ее радиус меньше остальных центров.

$$r(c_0) < r(c_1) = r(c_2) = r(c_3) = r(G)$$

Следовательно, на самом деле, вершина  $c_0$  является центром, а  $r(G) = r(c_0)$ , что значит, что центров не 3, а уже 1. Пришли к противоречию.

Условное доказательство. Еще один вариант доказательства: удалим листья дерева (висячие вершины) и получим дерево, в котором все оставшиеся расстояния уменьшились на единицу. Соответственно, так как уменьшились все расстояния, то центр (или центры) не изменились. Продолжая удалять снова висячие вершины, мы дойдем до дерева, в котором останется одна или две вершины. Соответственно, эти вершины и будут центрами.

# 12 Утверждения про ориентированные графы

Замечание. Далее иногда будут использоваться ориентированные графы.

**Определение.** В ориентированном графе (*орграфе*)  $G = (\mathbb{V}, \mathbb{E})$  множество ребер  $\mathbb{E}$  является множеством упорядоченных пар.

Примечание. Ребра в ориентированных графах часто называют дугами.

Пример. Ориентированный граф:



Замечание. Существует взвешенный граф — такой граф  $G = (\mathbb{V}, \mathbb{E})$ , в котором у каждого ребра есть вес, то есть функция f, которая сопоставляет ребрам  $e \in \mathbb{E}$  вещественное число  $a \in \mathbb{R}$ .



Определение. Расстояние на графе с весами считается как минимальная сумма весов по всем путям.

$$d = \min \sum_{i}^{|\mathbb{E}|} a_i$$

**Пример.** Рассмотрим следующий ориентированный граф и найдем расстояние от a до b:

$$d(acdb) = 1 + 4 + 2 = 7$$

$$d(acdefb) = 1 + 4 + 3 + 1 + 5 = 14$$

$$d(aefb) = 2 + 1 + 5 = 8$$

$$d(aedb) = 2 + 3 + 2 = 7$$

$$d(a, b) = 7$$

**Ответ:** d(a, b) = 7.

Замечание. Расстояние во взвешенном графе не всегда удается посчитать.

Пример. Рассмотрим следующий ориентированный граф и найдем расстояние от a до b:



Если продолжить так проходить по циклу бесконечное количество раз, то и расстояние будет стремиться к  $-\infty$ . То есть расстояние не будет найдено. Условно, d(a,b) можно обозначить  $-\infty$ .

**Утверждение.** В графе есть все расстояния в том случае, если в графе нет циклов отрицательной длины.

Доказательство. Пусть цикл существует. Значит по нему можно пройтись n раз, а при  $n \to \infty$   $d \to -\infty$ , откуда следует, что любые две вершины данного цикла не имеют расстояния. Другими словами, если не расстояния, то для двух вершин существуют сколь угодно маленькие пути.

## 13 Представление графа в компьютере

1. Матрица смежности: таблица  $|\mathbb{V}|^2$ , где каждая ячейка  $a_{i,j} = \begin{cases} 0 \\ 1 \end{cases}$  (содержит 0/1 для описания отсутствия/наличия ребра). Эта матрица всегда симметрична для неориентированного графа.



Для графов с весами ячейка матрицы будет содержать вес ребра, или  $+\infty$ , если ребра нет.



|   | 1         | 2         | 3         | 4         |
|---|-----------|-----------|-----------|-----------|
| 1 |           | 15        | $+\infty$ | $+\infty$ |
| 2 | 10        |           | 21        | $+\infty$ |
| 3 | $+\infty$ | $+\infty$ | $+\infty$ | 14        |
| 4 | $+\infty$ | 42        | $+\infty$ | $+\infty$ |

Объем памяти:  $|\mathbb{V}|^2$ .

2. Списки смежности: для каждой вершины задается множество смежных  ${\bf c}$  ней вершин.



Объем памяти:  $\approx |E|$ .

- 3. Матрицы и списки инцидентности.
- 4. Неявные способы.

**Задача** (Обход шахматной доски конем). Пусть есть шахматная доска. Она является графом из  $8 \times 8$  вершин, а ребра соединяют вершины, в которые может походить конь.

| _ |   |   |   |   |   |  |
|---|---|---|---|---|---|--|
|   |   |   |   |   |   |  |
|   |   |   |   |   |   |  |
|   |   | × |   | × |   |  |
|   | × |   |   |   | × |  |
|   |   |   | 0 |   |   |  |
|   | × |   |   |   | × |  |
|   |   | × |   | × |   |  |
|   |   |   |   |   |   |  |

Можно для любой клетки рассчитать, куда можно из нее попасть. Смысл задачи: поиск гамильтоного цикла в графе.

## 14 Алгоритмы теории графов

**Задача.** Дано две вершины u и v. Найти расстояние d(u,v) и восстановить путь, на котором достигается это расстояние.

Замечание. Оказывается, что найти путь от u до v — это задача, аналогичная поиску пути от u до всех остальных вершин.

### 14.1 Алгоритм Форд-Беллмена

Дан граф  $G=(\mathbb{V},\mathbb{E})$ , вершина  $u\in\mathbb{V}$  и вес каждого ребра  $f_i(e)$ . Необходимо найти расстояния d(u,v) для любой вершины  $v\in\mathbb{V}$ . Будем писать d(v)=d(u,v), так как u — константная вершина, она не меняется. Будем хранить в массиве d текущие найденные расстояния. Начальные условия:

$$d(u) = 0,$$
  $d(v) = +\infty, (v \neq u)$ 

На каждом шаге делается релаксация ребра  $e=(v_1,v_2)$ . Если  $d(v_1)+f(v_1,v_2)< d(v_2)$ , тогда меняем  $d(v_2)$  на  $d(v_1)+f(v_1,v_2)$ . Повторяем n-1 раз с перебором всех ребер e, каждое из которых релаксируется.

Время работы алгоритма: 
$$pprox |\mathbb{V}| \cdot |\mathbb{E}| \leq |\mathbb{V}|^3$$

Замечание. В неориентированном графе каждое ребро считается и релаксируется как два ребра.

Пример. Возьмем следующий граф:



Инициализируем алгоритм:

Ответ: d(v) = 6.

*Примечание.* Если после шага в следующем шаге данные не изменились, то работу алгоритма можно прервать.

#### 14.1.1 Корректность алгоритма Форда-Беллмана

**Теорема.** B конце выполнения алгоритма массив d будет содержать расстояния от вершины.

Доказательство. Оказывается, после каждой итерации цикла релаксации всех ребер, массив d хранит числа  $d_i(v) \leq \min$  длин путей, в которых  $\leq i$  ребер. Действительно:

**База.**  $i=0, \min(\text{путь из 0 ребер})$  — такой путь только из вершины, саму в себя.  $d(A)=0, \ d(u)=+\infty.$ 

**Переход.** Пусть есть оптимальный путь из i+1 ребра.



По предположению, d(c) = dist(A,C). Длина пути  $A \to C \to B$  равна  $dist(A,C) + \mathrm{Bec}(CB)$ . Проверка:  $d(C) + \mathrm{Bec}(CB) \le d(k)$ . Оптимальный путь окажется меньше или равным взятого пути, что значит, что значение массива d гарантировано обновится до оптимального.



 $\Pi pumeчaнue$ . Почему проходится n-1 этапов? Оптимальный путь не содержит циклов.



*Примечание.* Достоинство алгоритма Форда-Беллмана заключается в том, что он работает с любыми весами.

Замечание. Мы вычисляем только расстояния, но сам путь при этом неизвестен. Как восстановить путь?

#### 14.1.2 Восстановление пути

Для того, чтобы по алгоритму Форда-Беллмана можно было узнать путь, будем хранить информацию об успешных релаксациях. Пусть есть изначально пустой массив вершин prev. Если релаксация вершин  $u \to v$  успешна, то prev(v) = u — оптимальный путь в v лежит через u.



Восстановить путь в B:

$$prev(prev(B)) \rightarrow prev(B) \rightarrow B = A \rightarrow C \rightarrow B$$

В общем случае путь  $A \to v$ :

$$A \to prev(\dots) \to \dots \to prev(prev(v)) \to prev(v) \to v$$

#### 14.2 Алгоритм Дейкстры

Замечание. В отличие от Алгоритма Форда-Беллмана этот алгоритм требует, чтобы вес каждого ребра был положительным.

Дан граф  $G=(\mathbb{V},\mathbb{E}),\ A\in\mathbb{V}$ . Найти расстояния до всех вершин d(u)=dist(A,u). В начале мы точно знаем, что  $d(A)=0,\ d(u\neq A)=+\infty$ . Будем обходить все вершины. Зададим множество обработанных вершин p, которое изначально будет пустым.

Повторяем  $n=|\mathbb{V}|$  раз: выбрать из всех вершин, кроме обработанных, где d(u) — минимально.После этого необходим цикл: для каждого  $e=(u,v)\in\mathbb{E}$  релаксируем ребро e. После выполнения цикла  $p=p_u\{u\}$  — то есть вершина тоже стала обработанной. Идем к следующей итерации.

#### 14.2.1 Эффективность алгоритма

В алгоритме производится обход каждой вершины. При этом каждое ребро мы проходим только один раз. Минимальные элемент можно найти по алгоритму с логарифмической сложностью. Итого:

$$|\mathbb{V}| \cdot \log |\mathbb{V}| \quad \Leftrightarrow \quad O(n) = n \log n$$

#### 14.2.2 Пример вычислений

Пример. Возьмем следующий граф:



В графе есть пять вершин, значит по алгоритму нужно пройтись по циклу пять раз.

Ит. 1: 
$$\min = A$$
  $A_0 \to_1 B_{+\infty}$   $A_0 \to_3 C_{+\infty}$   $A_0 \to$ 

#### 14.2.3 Корректность алгоритма

 ${\it Идея \ ancopumma}$ . На каждом шаге d(u) равно минимуму среди путей из A в u, в которых используются только обработанные вершины. Докажем по индукции.

**База.** Шаг нулевой: d(A) = 0,  $d(u) = +\infty$  — инициализация соответствует алгоритму.

**Переход.** Пусть есть какое-то множество обработанных вершин p. В нем точно будет A. Также есть оставшиеся необработанные вершины за пределами множества p. Выбрали минимум  $u = \min v \in \mathbb{V} \setminus \{p\}$ . Пусть есть следущий оптимальный путь в u:

$$A \to \cdots \to \overline{u} \to \cdots \to u$$

При этом расстояние до  $\overline{u}$  равно d из обработанных вершин, а  $dist(\overline{u})=dist(u)-x$ . По индукционному предположению,  $dist(\overline{u})=d(\overline{u})$ . Тогда, получили, что  $d(u)>d(\overline{u})$ , то есть можно было бы выбрать  $d(\overline{u})$  — противоречие с тем, что  $d(u)=\min$ .

Пути через p уже были рассмотрены на предыдущих шагах, соответственно рассматриваются пути по необработанным вершинам.



Если необработанная вершина — искомая (v), то мы уже нашли нужное расстояние. Осталось рассмотреть другую вершину (u):

$$dist(A, u) + \omega(u, v) = dist(A, v)$$

Релаксация  $u \to v$  успешна, и d(v) получит оптимальное расстояние.  $\square$ 

#### 14.2.4 Восстановление пути

По аналогии с алгоритмом Форда-Беллмана, нужен массив вершин prev. То есть при успешной релаксации  $u \to v$  запоминаем prev(v) = u.

Пример. Обращаясь к примеру выше:



Получившийся путь  $A \to E$ :

$$prev(C) \rightarrow prev(D) \rightarrow prev(E) \rightarrow E = A \rightarrow C \rightarrow D \rightarrow E$$

#### 14.3 Алгоритм Флойда

Дан граф  $G = (\mathbb{V}, \mathbb{E})$ . В алгоритме реализуется таблица размером  $|\mathbb{V}| \times |\mathbb{V}|$ , состоящая из расстояний d(u, v). Таким образом находятся все расстояния от любой вершины u к любой другой вершине v.

**Инициализация алгоритма.** Для инициализации берется начальная таблица  $d_0$ , удовлетворяющая следующим условиям:

$$\begin{cases} d(u, u) = 0 \\ d(u, v) = \begin{cases} \infty, & u \neq v \\ \text{Bec}(u, v), & u \to v \end{cases} \end{cases}$$

После инициализации начинается перебор вершин. Для каждой вершины  $k \in \mathbb{V}$  перебираем вершины  $u \in \mathbb{V}$ , а для каждой вершины v, соответственно, еще вершину v. И для такой вершины начинаем "релаксировать" ребра, то есть если d(u,v) > d(u,k) + d(k,v), то d(u,v) меняем на d(u,k) + d(k,v).

По аналогии с программированием получается тройной цикл:

for each k in  $\mathbb{V}$ : for each u in  $\mathbb{V}$ : for each v in  $\mathbb{V}$ :

if 
$$(d(u, v) > d(u, k) + d(k, v)) \implies d(u, v) = d(u, k) + d(k, v)$$

Пример. Разберем алгоритм на примере:



Начинаем обход:

## 14.4 Корректность алгоритма Флойда

**Утверждение.** После шага k в d(u,v) содержится минимальная длина пути  $u \to v$ , в котором содержатся только вершины от 1 до k.

Доказательство по индукции. Индукция по вершинам k.

**База.** Пусть k=0. Если путь  $u\to v$  существует, и в нем используются вершина до k, при этом k=0 означает, что вершин таких нет, то любое d(u,v) уже является минимальным.

**Переход.** Необходимо рассмотреть все пути  $u \to v$ , которые содержат вершины от 1 до k+1. Допустим, что есть оптимальный путь  $u \to v$  через k+1 вершин. Есть два случая:

1. В таком пути нет вершины k+1, значит этот путь имеет длину d(u,v) (по индукционному предположению).

2. Этот путь содержит вершину k+1. Тогда путь имеет длину d(u, k+1) + d(k+1, v).

$$\underbrace{\mathbf{u}}_{k_i \in [1 \to k+1]} \underbrace{-\mathbf{k}}_{k_j \in [1 \to k+1]} \underbrace{-\mathbf{v}}_{k_j \in [1 \to$$

Получившийся путь и является условием, проверяющимся в алгоритме. Меньший вариант записывается, то есть в этом случае точно будет расстояние d(u,v).

Получили, что в конце алгоритма для каждого случая в таблице будет точно определено расстояние  $u \to v$ .

Замечание. Путь можно восстановить с помощью определения двумерного массива through: при выполнении условия цикла в алгоритме массива заполняется данной обрабатываемой вершиной k. Если в массиве не указан путь для двух вершин, значит оптимальным путем является само ребро между ними.

Замечание. Алгоритм Флойда также работает для поиска транзитивного замыкания бинарных отношений.

**Утверждение.** Пусть R — бинарное отношение на множестве  $\mathbb{M}$ . R является транзитивным замыканием R, если оно расширяет отношение R, является транзитивным и минимальным.

**Пример.** Рассмотрим не транзитивное отношение R на следующем примере:



Чтобы сделать отношение транзитивным, нужно добавить все подобные ребра, удовлетворяющие такому условию:



**Теорема.** Пусть есть бинарное отношение R на множестве  $\mathbb{M}$ , а  $G = (\mathbb{M}, \mathbb{R})$  — граф этого отношения. Тогда транзитивное замыкание  $R = \overline{R}$  — это такое отношение  $x\overline{R}y$ , которое показывает, что существует путь из x в y.

Доказательство. Докажем свойства транзитивного замыкания:

- 1.  $\overline{R} \supset R$ , так как если xRy, то есть путь из одного ребра, тогда  $x\overline{R}y$ .
- 2.  $\overline{R}$  транзитивно, так как если  $x\overline{R}y$  и  $y\overline{R}z$ , то  $x\overline{R}z$ : очевидно, что если существует путь  $x\to y$  и  $y\to z$ , то из x можно попасть в z.
- 3. Пусть  $\overline{\overline{R}}$  транзитивно, и существует путь из x в y:

$$x \to x_1 \to x_2 \to x_3 \to \cdots \to y$$

Тогда, если  $xRx_1$ , то  $x\overline{\overline{R}}x_1$ . При этом если  $x_1Rx_2$ , то  $x_1\overline{\overline{R}}x_2$ , а значит  $x\overline{\overline{R}}x_2$ . И так далее, по транзитивности; в итоге получится, что  $x\overline{\overline{R}}y$ . Таким образом,  $\overline{\overline{R}}\supset \overline{R}\supset R$ .

Применим алгоритм Флойда к графу  $G=(\mathbb{M},\mathbb{R})$ . Инициализация алгоритма имеет вид

$$\begin{cases} d_0(x,y) = 1, \text{ если } xRy \\ d_0(x,y) = \infty, \text{ если } xRy \end{cases}$$

В результате алгоритма будет построена матрица отношений между вершинами, выраженными в количестве переходов. Если значение на пересечении первой и второй вершин (столбца и строки матрицы) будет конечным числом, то путь между данными вершинами существует. Если оно равно  $\infty$  — то не существует.

Замечание. На практике не обязательно считать количество переходов, если нас интересует только информация о наличии или отсутствии пути между двумя вершинами. Достаточно один раз зафиксировать наличие одного пути.

#### 15 Потоки в сетях

**Определение.** Cemb — это ориентированный граф  $G = (\mathbb{V}, \mathbb{E})$ , в котором  $s, t \in \mathbb{V}$ , причем не существует ребер вида  $e_s = (u_i, s)$  и  $e_t = (t, v_i)$ .

Другими словами можно сказать, что в вершину s не входят никакие ребра, а из вершины t — не выходят. Также существует функция c, сопоставляющая каждому ребру e натуральные числа  $n \in \mathbb{N}$ , называющаяся nponyckhoù cnocoбностью peбра.

**Определение.** Поток f в сети G это функция, сопоставляющая ребрам e действительные числа  $r \in \mathbb{R}$ , причем значение функции не превосходит пропускную способность ребра, а алгебраическая сумма потоков в вершинах v, таких что  $v \neq s$  и  $v \neq t$ , должна быть нулем.

**Пример.** Рассмотрим следующий пример. Вес ребра является пропускной способностью, а в скобках указан поток:



## 16 Потоки в сетях

**Пример.** Рассмотрим следующий пример. Текущий поток будем обозначать в скобках:



Поток f = 4 (из истока вытекает в сумме 4, в сток — втекает 4).

**Теорема.** Дана сеть (G,c), поток  $f \to G$ . Тогда

$$\sum_{u: e = (s,u)} f(e) = \sum_{u: e = (u,t)} f(e)$$

Доказательство. Рассмотрим сумму всех ребер  $\sum_{e \in \mathbb{E}}$ . Мы знаем, что алгебраическая сумма потоков в  $\forall u \backslash s, t$  равна нулю. Так как мы рассматриваем все вершины, кроме s и t, а s — единственная вершина только с исходящими ребрами, и t — единственная вершина только с входящими ребрами, то сумма всех таких сумм ребер, соединяющих вершины  $\forall u \backslash s, t$ , равна 0. Соответственно, вытекающий поток будет равен втекающему.

 $\it Замечание.$  Величина, равная вытекающему из  $\it s$  и втекающему в  $\it t,$  называется  $\it величиной потока.$ 

$$\sum_{u: e=(s,u)} f(e) = \sum_{u: e=(u,t)} f(e) = w(f)$$

**Определение.**  $Paspes \mathbb{C}$  в сети (G,c), где G — граф  $(\mathbb{V},\mathbb{E})$ , — это деление общей сети на два непересекающихся множества вершин, при этом исток попадает в первое множество, а сток — во второе.

$$\mathbb{C} = (\mathbb{V}_1, \mathbb{V}_2) : \begin{cases} s \in \mathbb{V}_1 \\ t \in \mathbb{V}_2 \\ \mathbb{V}_1 \cup \mathbb{V}_2 = \mathbb{V} \\ \mathbb{V}_1 \cap \mathbb{V}_2 = \emptyset \end{cases}$$

Пример. Разрез:



**Определение.** *Ребрами разреза*  $\mathbb{E}_{\mathbb{C}}$  называется множество всех ребер, которые соединяют ребра из  $\mathbb{V}_1$  и  $\mathbb{V}_2$ .

$$\mathbb{E}_{\mathbb{C}}^+$$
 — прямые ребра разреза ( $\mathbb{V}_1 \to \mathbb{V}_2$ ).  $\mathbb{E}_{\mathbb{C}}^-$  — обратные ребра разреза ( $\mathbb{V}_1 \leftarrow \mathbb{V}_2$ ).

**Пример.** Для удобства множества  $\mathbb{V}_1$  и  $\mathbb{V}_2$  обозначены синим и желтым цветом, соответственно, прямые ребра — красным, обратные — зеленым.



**Определение.** *Величина разреза* равна сумме всех пропускных способностей прямых ребер.

$$c(\mathbb{C}) = \sum_{e \in \mathbb{E}_{\mathbb{C}}^+} c(e)$$

**Пример.** Дана сеть (G,c) и разрез  $\mathbb{C}$  — условная пунктирная линия, отделяющая два множества вершин  $\mathbb{V}_1$  (левая половина) и  $\mathbb{V}_2$  (правая половина).



**Утверждение.** Пусть есть сеть (G,c), где G — граф ( $\mathbb{V}m\mathbb{E}$ ), поток f в сети, разрез  $\mathbb{C}=(\mathbb{V}_1,\mathbb{V}_2)$ . Тогда

$$w(\mathbb{C}, f) = \sum_{e \in \mathbb{E}_{\mathbb{C}}^+} f(e) - \sum_{e \in \mathbb{E}_{\mathbb{C}}^-} f(e)$$

**Пример.** Возьмем пример из начала, в котором множество вершин  $\mathbb{V}_1$  обозначено синим цветом, а множество вершин  $\mathbb{V}_2$  — желтым. Прямые ребра обозначены красным цветом, обратные — зеленым.



$$w(f)=1+3=2+2=4$$
 
$$\sum_{e\in\mathbb{E}_{\mathbb{C}}^+}f(e)=1+3+0+2=6, \qquad \sum_{e\in\mathbb{E}_{\mathbb{C}}^-}f(e)=2$$
 Действительно,  $w(\mathbb{C},f)=\sum_{e\in\mathbb{E}_{\mathbb{C}}^+}f(e)-\sum_{e\in\mathbb{E}_{\mathbb{C}}^-}f(e)=6-2=4$ 

Доказательство. Посчитаем сумму

$$\sum_{v \in \mathbb{V}_1} (\sum_{e: e = (u,v)} f(e) - \sum_{e: e = (v,u)} f(e))$$

Рассмотрим два способа:

1. Для  $\forall v \in \mathbb{V}_1 \backslash \{s\}$  внутренняя сумма равна нулю. Для v=s получается

$$w(f) = \sum_{e: e=(s,u)} f(e)$$

2. Рассмотрим сумму по дугам  $(u \in \mathbb{V}_1, v \in \mathbb{V}_2)$ :

$$\sum_{e=(u,v)} (f(e) - f(e)) + \sum_{e \in \mathbb{E}_{\mathbb{C}}^+} f(e) - \sum_{e \in \mathbb{E}_{\mathbb{C}}^-} f(e) = 0 + w(\mathbb{C}, f) = w(\mathbb{C}, f)$$

Замечание. В любом разрезе  $w(f) = w(\mathbb{C}, f)$ .

**Задача.** Решается задача о максимальном потоке в сети, то есть такой поток f, что  $w(f) \to \max$ .

**Утверждение.** Дана сеть (G,c), разрез  $\mathbb{C}$ . Тогда величина потока не превосходит величину разреза.

$$w(f) \leq c(\mathbb{C})$$

Доказательство. По утверждению о величине потока:

$$w(f) = w(\mathbb{C}, f) = \sum_{e \in \mathbb{E}_{\Gamma}^+} f(e) - \sum_{e \in \mathbb{E}_{\Gamma}^-} f(e) \le \sum_{e \in \mathbb{E}_{\Gamma}^+} f(e) \le \sum_{e \in \mathbb{E}_{\Gamma}^+} c(e)$$



Зная, что  $\mathbb{E}_{\mathbb{C}}^+c(e)=c(\mathbb{C})$ , получили, что

$$w(f) \le c(\mathbb{C})$$

Следствие.  $B \ cemu \ (G,c) \ w(f_{\max}) \le c(\mathbb{C}_{\min}) \Leftrightarrow \max w(f) \le \min c(\mathbb{C}).$ 

**Теорема** (Форда-Фалкерсона). *На самом деле, в сети* (G,c), где G $\operatorname{гра} \phi (\mathbb{V}, \mathbb{E}), c(e) \in \mathbb{N}$  (для простоты считаем, что пропускные способности положительные целые):

$$w(f_{\max}) = c(\mathbb{C}_{\min})$$

**Определение.** Дополнительный граф  $\overline{G}$  для потока — это взвешенный граф, который имеет вершины  $\overline{\mathbb{V}} = \mathbb{V}$ , а ребра  $\overline{\mathbb{E}}$ , такие что если f(e) < 0c(e), где  $e=(u,v)\in\mathbb{E}$ , то существует ребро e'=(u',v'), для которого вес g(e') = c(e) - f(e). Если f(e) > 0 для e = (u, v), то нужно добавить обратное ребро e'' = (v', u'), а его вес q(e'') = f(e).

#### Пример. Изначальный граф:



Дополнительный граф:



Доказательство. Начнем с нулевого поток и будем его постепенно увеличивать. Построим дополнительный граф  $\overline{G}$ , найдем в нем путь из s в t и минимальный вес q(e) = x в нем.



Вычтем в дополнительном графе x на каждом ребре.



Поймем, что новый поток f' остался потоком и величина нового потока увеличилась на x. Проверяем, что это поток  $0 \le f'(e) \le c(e)$ . Если уменьшаем по обратному, то он остался положительным, если увеличиваем по прямому, то он не может превысить c(e).

Сумма входящих потоков в вершину должна быть равна сумме выходящих, так как изменение затрагивает весь путь через такую вершину,

дящих, так как изменение затрагивает весь путь через такую вершину, следовательно величина потока какого-то входящего ребра увеличилось на x, ровно как величина какого-то выходящего.

Значит 
$$f'$$
 — поток.

Пример. Рассмотрим граф из предыдущей лекции:



Найдем для него максимальный поток. Будем строить дополнительные графы:



Таким образом общий поток стал выглядеть как



а дополнительный граф — это



Теперь продолжаем искать пути в дополнительном графе.

Финальный поток будет иметь вид:



Если нарисовать дополнительный граф, то можно будет понять, что мы не можем увеличить поток, так как путей из s не будет. Это следует из того, что дуги  $s \to a$  и  $s \to c$  имеют поток, равный их пропускной способности, следовательно пропустить больший поток не получится.

Продолжение доказательства теоремы Форда-Фалкерсона. Почему, если нет путей, то поток является максимальным?

Пусть множество  $\mathbb{V}_1$  — вершины, достижимые из s по ребрам дополнительного графа  $\mathbb{V}_2 = \mathbb{V} \backslash \mathbb{V}_2$ . Если путей в t из s нет, то  $t \in \mathbb{V}_2$ , а  $\mathbb{V}_1 \cap \mathbb{V}_2 = \emptyset$ , что означает, что получен разрез  $\mathbb{C}$ . Прямые ребра  $\mathbb{E}_{\mathbb{C}}^+$  в конечном дополнительном графе отсутствуют, так как путей из  $\mathbb{V}_1$  в  $\mathbb{V}_2$  не существует. Определим размер разреза:

$$c(\mathbb{C}) = \sum_{e \in \mathbb{E}_{\mathbb{C}}^+} c(e) = \sum_{e \in \mathbb{E}_{\mathbb{C}}^+} f(e) - \sum_{e \in \mathbb{E}_{\mathbb{C}}^-} f(e) = c(f)$$

Для любого разреза  $\mathbb C$  его величина всегда больше или равна величине любого потока f.

$$c(\mathbb{C}) \ge c(f)$$

Значит поток можно только уменьшить, так как  $c(\mathbb{C})$  — минимальный разрез, а c(f) — это максимальный поток, следовательно f является максимальным потоком.

**Следствие.** Метод Флойда-Фалкерсона строит минимальный разрез и максимальный поток.

Пример. Минимальный разрез и максимальный поток:



**Утверждение 3.** Если каждый раз искать путь с минимальным количеством ребер, то время поиска максимального потока пропорционально  $\mathbb{V}^2\mathbb{E}$ .

**Утверждение 4.** Эффективный алгоритм для плоской (планарной) сети, то есть без пересечения ребер: поиск самого верхнего пути.

# 16.1 Паросочетания

**Определение.** Паросочетанием называется подмножество ребер  $\mathbb{P} \subset \mathbb{E}$ , такое что ребра из  $\mathbb{P}$  не имеют общих вершин.

**Определение.** *Максимальное паросочетание* — это подмножество ребер  $\mathbb{P} \in \mathbb{E}$ , такое что количество паросочетаний  $|\mathbb{P}| \to \max$  из возможных.

**Задача** (о паросочетаниях). Дан двудольный граф  $G = (\mathbb{U}, \mathbb{V}, \mathbb{E})$ .



#### Пример. Разберем пример:



В этом примере нельзя получить 4 паросочетания, так как две вершины второго множества — висячие — соединены с одной вершиной первого множества. Следовательно можно получить максимум 3 (помечены толстыми линиями).

**Задача** (о паросочетаниях, через потоки). Оказывается, что задачу о нахождении максимального паросочетания можно привести к виду задачи о нахождении потока. Для этого задаем вершину s, дуги **из которой** соединяют все вершины  $u \in \mathbb{U}$ , и вершину t дуги **в которую** соединяют все вершины  $v \in \mathbb{V}$ . Ребра данного двудольного графа приводим к виду ориентированных в направлении из множества  $\mathbb{U}$  в множество  $\mathbb{V}$ .



**Утверждение.** Каждому потоку из  $\{0,1\}$  соответствует паросочетание.

Доказательство. Ребра с f(e)=1 это ребра паросочетания, так как входящий поток равен выходящему, а выходить в таком случае может максимум f(e)=1 для каждой вершины. Значит, вершины пересекаться не будут, что и требуется от задачи.

Следствие. Максимальный поток в такой задаче определяет размер максимального паросочетания.

**Пример.** Рассмотрим пример. Строим паросочетание по методу Флойда-Фалкерсона:



- 1. Сначала берем путь  $s \to a \to A \to t$ , тогда находим одно паросочетение (a,A). После этого дуги этого пути разворачиваем.
- 2. Пути  $s \to b \to A \to t$  и  $s \to a \to C \to t$  невозможны, так как теперь прийти в t не получится: содержащиеся дуги развернуты  $s \leftarrow a$  и  $A \leftarrow t$ .
- 3. Берем путь  $s \to c \to B \to t$ , получая еще одно паросочетание (c, B).

Больше прийти в t нельзя ни по какому пути. Алгоритм завершается. Значит, размер максимального паросочетания равен 2. При этом  $\mathbb{P} = \{(a, A); (c, B)\}.$ 

# 17 Контролирующее множество

**Определение.** Пусть есть граф  $G=(\mathbb{V},\mathbb{E})$ , тогда  $\mathbb{W}\in\mathbb{V}$  называется контролирующим множеством, если  $\forall e=(u,v)\in\mathbb{E}$  устроено так, что  $u\in\mathbb{W}$  или  $v\in\mathbb{V}$ .

**Пример.** Контролирующим множеством  $\mathbb{W}$  будут являться вершины u и v.

$$\mathbb{W} = \{u, v\}$$

3амечание.  $\mathbb{W} = \mathbb{V}$  — всегда контролирующее множество.

Задача (о минимальном контролирующем множестве). Будем решать эту задачу для двудольного графа.

#### Пример. Рассмотрим пример:



Здесь минимальным контролирующем множеством являются вершины, окрашенные в красный цвет.

**Утверждение.** В любом двудольном графе  $G = (\mathbb{U} \cup \mathbb{V}, \mathbb{E})$  размер контролирующего множества не может быть меньше максимального количества паросочетаний.

$$|\mathbb{W}| \geq |\mathbb{P}|$$

Доказательство. Пусть есть случайный двудольный граф, у в котором вершины имеют только единичную степень. Тогда контролирующим множеством можно выбрать ровно в два раза меньше таких вершин. При этом, по определению максимального паросочетания, эти оставшиеся вершины будут соединены с соответствующими только единожды, то есть у каждого ребра из множества паросочетаний точно есть вершина из контролирующего множества.

**Утверждение.** На самом деле, размер контролирующего множества равен максимальному количеству паросочетаний.

$$|\mathbb{W}| = |\mathbb{P}|$$

Доказательство. Построим на графе максимальное паросочетание с помощью задачи о потоках (по алгоритму Форда-Фалкерсона). Рассмотрим получившийся разрез  $\mathbb{C}$ .

Пусть u — ребра из s, v — ребра до t. Ребро из  $(v \cap \mathbb{V}_1)$  в  $(u \cap \mathbb{V}_2)$  не может идти, так как  $\mathbb{V}_1 \cap \mathbb{V}_2 = \emptyset$  по определению разреза. Если ребро идет в обратную сторону, то до него дошли ранее через v и множество  $\mathbb{V}_1$  должно было измениться. Пришли к противоречию. Следовательно, в минимальном разрезе нет ребер между  $(v \cap \mathbb{V}_1)$  и  $(u \cap \mathbb{V}_2)$ , и минимальным контролирующим множеством является

$$\mathbb{W} = (u \cap \mathbb{V}_2) \cup (v \cap \mathbb{V}_1)$$

Сделаем некоторые выводы:

Вывод 1. Из построения максимального паросочетания следует построение минимальное контролирующее множество.

Вывод 2. Размер разреза определим с вводом переменных:

- $\bullet$  |u| = x
- $|u \cap \mathbb{V}_2| = a$
- $|v \cap \mathbb{V}_1| = b$

Тогда:

$$|\mathbb{C}| = \sum_{e=(u,v)} 1 = x - a + b,$$

если  $u \in \mathbb{V}_1$  и  $v \in \mathbb{V}_2$ .

# 18 Обход графа

Под *обходом графа* имеется в виду **поиск в глубину** и **поиск в ширину**, а также связанные с этим алгоритмы.

#### 18.1 Общие положения

Определимся с тем, как устроен обход графа. В первую очередь необходима линейная структура данных D:  $cme\kappa$  или ovepedь. Для них есть операции: положить вершину v в D ( $v \to D$ ), посмотреть вершину ( $\prec D$ ) и достать ее оттуда ( $D \to$ ).

- Под *стеком* подразумевается структура "первый вошел последний вышел".
- Под  $ouepe\partial_b n$  подразумевается структура "первый вошел первый вышел".

Пример. Рассмотрим такие примеры:

| Стег            | K   | Очередь         |            |  |
|-----------------|-----|-----------------|------------|--|
| $a \to D$       | a   | $a \to D$       | a          |  |
| $b \to D$       | ba  | $b \to D$       | ab         |  |
| $c \to D$       | cba | $c \to D$       | abc        |  |
| $\prec D$ =     | = c | $\prec D$ =     | = a        |  |
| $D \rightarrow$ | ba  | $D \rightarrow$ | bc         |  |
| $\prec D$ =     | = b | $\prec D$ =     | = <i>b</i> |  |

# 18.2 Алгоритм

Для поиска в глубину используется D= стек, а для поиска в ширину — D= очередь. Рассмотрим алгоритм:

- 1. Поиск всегда начинается с определенной вершины. Добавляем в структуру D начальную вершину  $v_0 \colon v_0 \to D$ ;
- 2. Пока D не пуст, рассматриваем вершину в ней:  $\prec D$ .

Если есть ребро e=(u,v), такое что мы не были в v (нет пометки), то кладем вершину в структуру D (и ставим пометку):  $v\to D$ ; Иначе нужно достать вершину из  $D\colon D\to$ .

**Пример.** Рассмотрим обход на примере графа G:



| В глубину | В ширину |
|-----------|----------|
| a         | a        |
| ba        | ab       |
| dba       | abc      |
| edba      | bc       |
| dba       | bcd      |
| ba        | bcde     |
| a         | cde      |
| ca        | cdef     |
| fca       | cdefg    |
| ca        | defg     |
| gca       | efg      |
| ca        | fg       |
| a         | g        |
| Ø         | Ø        |

# 19 Алгоритмы, основанные на обходе графов

**Утверждение.** Поиск в глубину перебирает вершины в таком же порядке, что и Алгоритм Дейкстры (все ребер берутся за единицу).

Доказательство. Действительно, добавление вершины в D (стек) является аналогом релаксации ребра (u,v), а удаление вершины из D — убирание вершины с минимальным расстоянием.



Задача (пример). Найти путь в лабиринте от начальной точки до конечной (стены помечены квадратом, начальная точка кружком, конечная – крестом):

|  |  |   | 0 |               | 6  | 5  | 4  | 3  | 2 | 1 | 0 |
|--|--|---|---|---------------|----|----|----|----|---|---|---|
|  |  |   |   |               | 7  |    |    |    |   |   | 1 |
|  |  |   |   |               | 8  | 9  | 10 | 9  | 8 |   | 2 |
|  |  |   |   | $\Rightarrow$ |    |    |    |    | 7 |   | 3 |
|  |  |   |   |               | 10 | 9  | 8  | 7  | 6 | 5 | 4 |
|  |  |   |   |               | 11 |    |    |    |   |   | 5 |
|  |  | X |   |               | 12 | 13 | 14 | 15 | X |   | 6 |

Результат (путь помечен стрелочками):

|               |               |               |               |              |              | 0            |
|---------------|---------------|---------------|---------------|--------------|--------------|--------------|
|               |               |               |               |              |              | $\downarrow$ |
|               |               |               |               |              |              | $\downarrow$ |
|               |               |               |               |              |              | <b>+</b>     |
| <b>1</b>      | $\leftarrow$  | $\leftarrow$  | $\leftarrow$  | $\leftarrow$ | $\leftarrow$ | $\leftarrow$ |
|               |               |               |               |              |              |              |
| $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | ×            |              |              |

# 19.1 Полный поиск в глубину

Алгоритм заключается в том, что пока есть непосещенная вершина u, нужно выполнять поиск в глубину от этой вершины (актуально для несвязных графов и ориентированных графов).

Примечание. Будем использовать сокращения:

- Поиск в глубину DFS (depth-first search)
- Поиск в ширину BFS (breadth-first search)

**Утверждение.** Пусть  $G=(\mathbb{V},\mathbb{E})$  — ориентированный граф без циклов, в котором есть путь  $u\to v$  (но нет пути  $v\to u$ ). Тогда после полного DFS

 $r \partial e \ b - o \delta p a m н ы й н о м е p в е p ш и н ы.$ 

1. Сначала попали в вершину u



В стеке будет путь  $u \to \cdots \to v$ , значит сначала из стека уйдет v, а потом u.

2. Сначала попали в вершину v Циклы в графе отсутствуют, следовательно мы закончим поиск из v, так и не попав в u. Соответственно, номер вершине v мы присвоим раньше, и из стека она уйдет раньше.

Получили, что в обоих случаях вершина v будет иметь меньший обратный номер, чем вершина u.

Следствие. С помощью этого утверждения выполняется эффективный алгоритм топологической сортировки.

Пример (топологическая сортировка). Отсортируем следующий граф:



Ответ. Топологическая сортировка имеет вид:

| d | е | a | h | g | f | c | b |
|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Замечание. Можно заметить, что все имеющиеся ребра графа в табличной записи идут справа налево.

### 20 Компоненты сильный связности

**Определение.** Если есть граф  $G = (\mathbb{V}, \mathbb{E})$ , то на нем можно ввести отношение взаимной достижимости:

$$u \leftrightarrow v$$
, если есть пути  $u \to v, v \to u$ 

Компонентами сильной связности называются подграфы основного графа G, среди которых найдутся такие, что из одного подграфа нельзя попасть в другой (что называется сильной связью).

 $\Pi$ римечание. Компоненты сильной связности можно представить в виде графа конденсации — то есть тем графом, в котором одна компонента сильной связности представляется одной вершиной.

Замечание. Граф конденсации не имеет циклов.

**Утверждение.** Пусть граф  $G = (\mathbb{V}, \mathbb{E})$  — ориентированный, и имеет  $G^{\circ}$  — граф конденсации G. Проведем полный DFS для графа G. Тогда, если в  $G^{\circ}$  есть путь из  $u^{\circ} \to v^{\circ}$ , то  $\forall u \in u^{\circ}, v \in v^{\circ}$ 

$$\max_{u \in u^{\circ}} b(u) > \max_{v \in v^{\circ}} b(v)$$

Доказательство. Аналогично прошлому утверждению.

**Следствие** (Поиск компонент связности). *Алгоритм состоит из двух шагов:* 

- 1. Производится полный DFS.
- 2. Находим  $b(u) \to \max$ . Делаем DFS по обратным ребрам.