

Московский государственный университет имени М. В. Ломоносова

Факультет вычислительной математики и кибернетики Кафедра математической кибернетики

Курсовая работа по теме

«Сложность расшифровки счетчика делимости на три»

Студент 318 группы М. М. Сакович

Научный руководитель д.ф-м.н., доцент. С. Н. Селезнева

Содержание

Введение	3
1. Основные определения	5
2. Постановка задачи	6
3. Основная часть 3.1. Нижние оценки	7 7 8
4. Результаты	11
Литература	12

Введение

В работе рассматривается задача расшифровки функций из некоторого класса. Эта задача состоит в следующем. Нам нужно определить значения на всех наборах некоторой функции f. При этом нам известно, что функция f зависит от n переменных и принадлежит некоторому классу функций K. Более того, мы можем задавать вопросы о значении функции f на наборах и получать правильные ответы. Под сложностью расшифровки понимается число вопросов, которое следует задать, чтобы расшифровать любую функцию из класса K. Образно говоря, мы имеем дело с «черным ящиком», у которого n входов и один выход и про который известно, что он реализует некоторую функцию алгебры логики от n переменных из определенного класса K. Нам нужно определить, какую именно функцию он реализует.

Рассмотрим множество $\{A\}$ алгоритмов, решающих поставленную задачу. Любой паре — алгоритму A и функции $f(x_1,\ldots,x_n)$ — можно сопоставить число $\varphi_K(A,f)$ вопросов о значении функции f на наборах с помощью алгоритма A. Под сложностью алгоритма A понимаем функцию $\varphi_K(A,n) = \max_{f \in K^n} \varphi_K(A,f)$, где K^n — множество всех функций от n переменных из класса K. Под сложностью расшифровки класса K понимаем функцию $\varphi_K(n) = \min_A \varphi_K(A,n)$, где минимум берется по всем алгоритмам A, решающим поставленную задачу.

Впервые задача о расшифровке функций из некоторого класса была рассмотрена для монотонных функций. В 1963 году В. К. Коробков [1] получил следующие оценки расшифровки класса монотонных функций M:

$$\varphi_M(n) \ge C_n^{\lfloor \frac{n}{2} \rfloor} + C_n^{\lfloor \frac{n}{2} \rfloor + 1}.$$

Окончательное решение этой задачи получил Ж.Ансель в [2]

$$\varphi_M(n) = C_n^{\lfloor \frac{n}{2} \rfloor} + C_n^{\lfloor \frac{n}{2} \rfloor + 1}.$$

В настоящее время важна задача расшифровки следующего вида. Пусть задана последовательность функций $g^k(x_1,\ldots,x_k)$ — существенно зависящих от k переменных $(k=0,1,\ldots)$, и рассмотрим класс K функций, в котором K^n содержит функции g^k , существенно зависящие от переменных $x_{i_1},\ldots,x_{i_k},\ k=0,1,\ldots,n$, $1\leq i_1<\ldots< i_k\leq n$. Поэтому, по сути, такая задача заключается в нахождении существенных переменных функции f.

В частности, в [3] были рассмотрены классы: K=D, где $g^k=x_1\vee\ldots\vee x_k$; K=L, где $g^k=x_1\oplus\ldots\oplus x_k$; K=T, где g^k — это пороговая функция с пороговым значением $t,\,0\leq t\leq k$. Из [3] известно, что

$$\varphi_D(n) = \varphi_L(n) = n$$

 $\varphi_T(n) = n - 1 + \lceil \log_2(n+1) \rceil.$

Кроме того рассматриваются подзадачи расшифровки, когда число существенных переменных k известно. В этом случае:

$$\lceil \log_2(\frac{k}{n}) \rceil \le \varphi_{D(k)}(n) \le k \lceil \log_2(\frac{n}{k}) \rceil + 2k - 2$$

$$\lceil \log_2(\frac{k}{n}) \rceil \le \varphi_{L(k)}(n) \le O(k \log_2(\frac{n}{k}))$$

$$\lceil \log_2(kC_n^k + 2) \rceil \le \varphi_{T(k)}(n) \le 2(k - 1) \log_2\left(\frac{n - 1}{k - 1}\right) + 6k - 6 + \lceil \log_2(n + 2) \rceil.$$

Отметим, что алгоритм A расшифровки функций из класса K можно представить в виде двоичного дерева, которое называется дерево решений [4]. Дерево решений D_A — это корневое ориентированное дерево, из любой вершины которого исходит не более двух дуг. Вершины, из которых дуги не исходят, помечены функциями из K^n и называются листьями, остальные вершины помечены наборами, которые задаются в вопросе. Если из вершины исходит две дуги, то они помечены 0 и 1 (условный переход) и если исходит одна дуга, то она без пометки (безусловный переход). Тогда сложностью $\varphi_K(A,n)$ — это длина самой длинной цепи из корня в лист, не включая лист. Из такого представления алгоритмов расшифровки сразу следует, что для любого класса K

$$\varphi_K(n) \ge \lceil \log_2 |K^n| \rceil,$$

т.к. в дереве решений D_A для каждой функции $f \in K^n$ должен быть лист, помеченный этой функцией.

В настоящей работе рассматривается сложность задачи расшифровки счетчика делимости на 3.

1. Основные определения

Пусть $E_2 = \{0,1\}$. Набор $(\alpha_1, \alpha_2, \dots, \alpha_n)$, где $\alpha_i \in E_2, 1 \leq i \leq n$, называется булевым или двоичным набором (вектором). Элементы набора называют компонентами. Число n называется длинной набора. Далее двоичный набор длины n будем обозначать $\tilde{\alpha}$. Множество всех двоичных наборов длины n образует n-мерный булев (или двоичный) куб, который называют также единичным n-мерным кубом и обычно обозначают B^n . Весом набора $\tilde{\alpha}$ (обозначение $|\tilde{\alpha}|$) называют число его координат, равных 1, т.е.

$$|\tilde{\alpha}| = \sum_{i=1}^{n} \alpha_i.$$

Наборы $\tilde{\alpha} \in B^n$ называют вершинами куба B^n . Множество всех вершин куба B^n , имеющих вес k, называется k-м слоем куба B^n (обозначение B^n_k). Набор, все координаты которого равны 0, будем называть нулевым. Набор, все координаты которого равны 1 — единичным. Вес нулевого набора равен 0, а вес единичного — n. Наборы будем называть соседними, если они различаются только в одной координате.

Функция $f(x_1, ..., x_n)$, определенная на множестве $B^n = \{0, 1\}^n$ и принимающая значения из множества $\{0, 1\}$, называется функцией алгебры логики (булевой функцией). Множество всех булевых функций обозначим через P_2 , множество функций зависящих от n переменных $x_1, ..., x_n$, через P_2^n .

Переменная x_i ($1 \le i \le n$) функции $f(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n)$ называется существенной, если можно указать такие наборы $\tilde{\alpha}$ и $\tilde{\beta}$, соседние по i-й компоненте, (т.е $\tilde{\alpha} = (\alpha_1, \ldots, \alpha_{i-1}, 0, \alpha_{i+1}, \ldots, \alpha_n)$ и $\tilde{\beta} = (\alpha_1, \ldots, \alpha_{i-1}, 1, \alpha_{i+1}, \ldots, \alpha_n)$), что $f(\tilde{\alpha}) \ne f(\tilde{\beta})$. В противном случае переменная называется фиктивной. Если у функции все переменные фиктивные, то она является константой.

2. Постановка задачи

Рассмотрим функции: $\tau_0^k(x_1,\ldots,x_k), \tau_1^k(x_1,\ldots,x_k), \tau_2^k(x_1,\ldots,x_k) \in P_2^k$, такие что

$$\tau_i^k(\tilde{\alpha}) = \begin{cases} 1, & |\tilde{\alpha}| \bmod 3 = i, \\ 0, & |\tilde{\alpha}| \bmod 3 \neq i. \end{cases}$$

Пусть $A_i^n = \{ \tau_i^k(x_{i_1}, \dots, x_{i_k}) \mid 1 \leq i_1 < i_2 < \dots < i_k \leq n, k = 0, \dots, n \} i \in \{0, 1, 2\}.$

Рис. 2.1: Класс A_0^n .

Рис. 2.2: Класс A_1^n .

Рис. 2.3: Класс A_2^n .

Положим $A_i = \bigcup_{n \geq 0} A_i^n$. Найдем сложность $\varphi_{A_i}(n)$ расшифровки функции из класса $A_i, \, i \in \{0,1,2\}.$

3. Основная часть

3.1. Нижние оценки

Чтобы дать нижнюю оценку, посчитаем мощность классов A_i^n (i=0,1,2).

Лемма 1. Для всех $n \ge 1$ справедливо $|A_0^n| = |A_1^n| = 2^n$.

Доказательство. Рассмотрим класс A_0^n . Он порождается последовательностью функций $\tau_0^k(\tilde{x})$. Любая функция f из этого класса зависит от n переменных, среди которых любое число существенных. Из этих n переменных можем выбрать 0 существенных переменных, т.е. C_n^0 , 1 существенную переменную, т.е. C_n^1 и т.д. Таким образом, выбранный набор существенных переменных однозначно определяет функцию из класса.

$$|A_0^n| = C_n^0 + C_n^1 + \dots + C_n^n = \sum_{k=0}^n C_n^k = 2^n.$$

Аналогично, $|A_1^n| = 2^n$.

Лемма 2. Для всех $n \ge 1$ справедливо $|A_2^n| = 2^n - n$.

Доказательство. Класс A_2^n порождается последовательностью функций $\tau_2^k(\tilde{x})$. Любая функция f из этого класса зависит от n переменных. В отличие от классов A_0^n и A_1^n , если функция из класса A_2^n существенно зависит от одной переменной, то она никогда не примет значение 1, значит мы не сможем распознать её. Таким образом

$$|A_2(n)| = C_n^0 + C_n^2 + \dots + C_n^n = \sum_{k=0}^n C_n^k - C_n^1 = 2^n - n.$$

Следствие 1. Для всех $n \ge 1$ справедливо

1.
$$\varphi_{A_0}(n) \ge \lceil \log_2 |A_0(n)| \rceil = \log_2 2^n = n$$

$$2. \varphi_{A_1}(n) \ge \lceil \log_2 |A_1(n)| \rceil = \log_2 [2^n] = n$$

$$3. \varphi_{A_2}(n) \ge \lceil \log_2 |A_2(n)| \rceil = \lceil \log_2 (2^n - n) \rceil.$$

7

Лемма 3. При всех n > 2 верно:

$$\lceil \log_2(2^n - n) \rceil = n.$$

Доказательство. Из свойств логарифмов:

$$\lceil \log_2(2^n - n) \rceil = \lceil \log_2(2^n) + \log_2(1 - \frac{n}{2^n}) \rceil =$$
$$= \lceil n + \log_2(1 - \frac{n}{2^n}) \rceil.$$

При n>2 верно $\frac{n}{2^n}<1$, последовательность $\frac{n}{2^n}$ убывает и ограничена нулем снизу.

Значит
$$-1<\log_2(1-\frac{n}{2^n})<0$$
. Отсюда следует, что $\lceil\log_2(1-\frac{n}{2^n})\rceil=0$, откуда $\lceil n+\log_2(1-\frac{n}{2^n})\rceil=n$.

3.2. Верхние оценки

Посмотрим, достигаются ли нижние оценки для классов A_i^n (i=0,1,2).

Алгоритм A_0 .

Вход: Функция $f \in A_0^n$.

Выход: Существенные переменные функции $f \in A_0^n$.

Вопрос i. Рассмотрим набор $\alpha_i = (0, 0, \dots, 0, 1, 0, \dots, 0)$, в котором на i-м месте стоит 1, а на всех остальных местах 0. Зададим i для всех $i = 1, 2, \dots, n$. Если $f(\alpha_i) = 0$, то переменная x_i — существенная.

Теорема 1. Алгоритм A_0 правильно расшифровывает класс A_0 .

 \mathcal{L} оказательство. Рассмотрим функцию f из класса A_0^n на нулевом наборе

$$\tau_0(0,0,\ldots,0) = \{0 \bmod 3 = 0\} = 1.$$

Не задавая вопроса, мы знаем, что любая функция из класса A_0^n на нулевом наборе имеет значение 1.

Если $f(\alpha_i) = 1$, то переменная x_i не влияет на значение функции, т.е. x_i — фиктивная переменная, в противном случае x_i — существенная

Т.о. делаем n запросов $\alpha_1, \alpha_2, \ldots, \alpha_n$ и для каждой из переменных x_1, x_2, \ldots, x_n узнаем, является она существенной или фиктивной.

Теорема 2. При всех n > 0 справедливо $\varphi_{A_0}(n) = n$.

Доказательство. Из следствия 1 следует, что $\varphi_{A_0}(n) \geq n$. Алгоритм A_0 дает верхнюю оценку $\varphi_{A_0}(n) \leq n$. Следовательно $\varphi_{A_0}(n) = n$.

Алгоритм A_1 .

Вход: Функция $f \in A_1^n$.

Выход: Существенные переменные функции $f \in A_1^n$.

Вопрос i. Рассмотрим набор $\alpha_i = (0, 0, \dots, 0, 1, 0, \dots, 0)$, в котором на i-м месте стоит 1, а на всех остальных местах 0. Зададим вопрос i для всех $i = 1, 2, \dots, n$. Если $f(\alpha_i) = 1$, то переменная x_i — существенная.

Теорема 3. Алгоритм A_1 правильно расшифровывает класс A_1 .

$$\tau_1(0,0,\ldots,0) = \{0 \bmod 3 = 0\} = 0.$$

Из этого следует, что не задавая вопроса, мы знаем, что любая функция из класса $A_1(n)$ на нулевом наборе имеет значение 0. Заметим, что если функция f существенно зависит от всех своих переменных, то на любом наборе из первого слоя, функция f принимает значение 1.

Если $f(\alpha_i) = 0$, то переменная x_i не влияет на значение функции, т.е. x_i — фиктивная переменная, в противном случае x_i — существенная

Т.о. делаем n запросов $\alpha_1, \alpha_2, \ldots, \alpha_n$ и для каждой из переменных x_1, x_2, \ldots, x_n узнаем, является она существенной или фиктивной.

Теорема 4. При всех n > 0 справедливо $\varphi_{A_1}(n) = n$.

Доказательство. Следствие 1 дает нижнюю оценку $\varphi_{A_1}(n) \geq n$. Алгоритм A_1 дает верхнюю оценку $\varphi_{A_1}(n) \leq n$. Следовательно $\varphi_{A_1}(n) = n$.

Алгоритм A_2 .

Вход: Функция $f \in A_2^n$.

Выход: Существенные переменные функции $f \in A_2^n$.

Шаг 1. Рассмотрим набор $\tilde{\alpha}_2 = (1, 1, 0, \dots, 0)$. Если $f(\tilde{\alpha}_2) = 1$, то переходим к шагу 3. В противном случае переходим к шагу 2.

Шаг 2. Заменим в наборе $\tilde{\alpha}_i$ первый встречающийся 0 на 1, получим набор $\tilde{\alpha}_{i+1}$. Если $f(\tilde{\alpha}_{i+1})=1$, то переходим к шагу 3. Если набор $\tilde{\alpha}_{i+1}$ — единичный и $f(\tilde{\alpha}_{i+1})=0$, то все переменные функции f — фиктивные, иначе повторяем шаг 2.

Шаг 3. Последняя единица в наборе $\tilde{\alpha}_k$ стоит на k-м месте $(k \leq n)$. Тогда переменная x_k — существенная.

Шаг 4. Построим набор

$$\alpha_{\lceil \frac{k-1}{2} \rceil, k-1} = (1, 1, \dots, 1, 0, \dots, 0, 1, 0, \dots, 0),$$

который получается из набора $\tilde{\alpha}$ заменой 1, стоящих на местах $\lceil \frac{k-1}{2} \rceil, \lceil \frac{k-1}{2} \rceil + 1, \dots, k-1$ на 0.

Если $f(\alpha_{\lceil \frac{k-1}{2} \rceil, k-1}) = 0$, то существенная переменная находится среди

 $x_{\lceil \frac{k-1}{2} \rceil}, \ldots, x_{k-1}$, в противном случае существенная переменная среди $x_1, \ldots, x_{\lfloor \frac{k-1}{2} \rfloor}$. Таким образом мы сузили область поиска вдвое. Аналогичным образом будем заменять половину оставшихся 1 на 0, в зависимости того, в какую половину попадает существенная переменная, до тех пор, пока не останется одна 1, соответствующая переменной x_i . Переменная x_i - является существенной.

Шаг 5. Осталось найти все существенные переменные среди n-k оставшихся. Пусть $\alpha_{i,k}=(0,\ldots,0,1,0,\ldots,0,1,0,\ldots,0)$, где на i-м и k-м местах стоят 1, а на всех остальных 0. Т.к. x_i и x_k - существенные, то $f(\alpha_{i,k})=1$. Для этого составим n-k вопросов:

$$\alpha_{i,k_1} = (0, \dots, 0, 1, 0, \dots, 0, 1, 1, 0, \dots, 0)$$

$$\alpha_{i,k_2} = (0, \dots, 0, 1, 0, \dots, 0, 1, 0, 1, \dots, 0)$$

$$\dots$$

$$\alpha_{i,k_n} = (0, \dots, 0, 1, 0, \dots, 0, 1, 0, 0, \dots, 1).$$

Если $f(\alpha_{i,k_j})=1$ (где $j=k+1,\ldots,n$), то переменная x_j - фиктивная. В противном случае x_j - существенная.

Теорема 5. Алгоритм A_2 правильно расшифровывает класс A_2 .

Доказательство. Среди переменных $x_1, x_2, \ldots, x_{k-1}$ ровно одна существенная, т.к. $\tau_2^k(\tilde{\alpha})$ может принять первый раз значение 1 только в том случае, если на месте двух первых встретившихся существенных переменных в наборе $\tilde{\alpha}$ стоят единицы, а так как добавление единицы на k-е место обращает функцию $\tau_2(\tilde{\alpha})$ в 1, то x_k - вторая существенная переменная, а первая находится среди первых k-1 переменных. Посчитаем, сколько вопросов нам понадобилось.

На первом шаге 1 вопрос. На втором шаге нам понадобилось k-2 вопроса, где $k \le n$. На 5-м шаге n-k. Четвертый шаг по сути является алгоритмом бинарного поиска, сложность которого $\le \log_2(n)$. Таким образом, в худшем случае сложность приведенного алгоритма равна $1+k-2+n-k+\log_2(n)=n-1+\log_2(n)$. \square

Теорема 6. При всех n > 0 справедливо $\varphi_{A_2}(n) \sim n$, при $n \to \infty$.

Доказательство. Из леммы 3 и следствия 1 получаем, что при n>2 верно $\varphi_{A_2}(n)\geq n.$ Рассмотрим случаи, когда n=1 и n=2.

При n=1 функция $f(\alpha) \in A_2(n)$ является константой, так как никогда не примет значение 1. При n=2 верно $\varphi_{A_2}(2) \geq 1$. Получим верхнюю оценку. Зададим вопрос $\alpha(1,1)$. Если $f(\alpha)=1$, то обе переменные существенные, в противном случае функция является константой. Таким образом, для n=1,2 верно $\varphi_{A_2}(n)=n-1$.

При n>2 алгоритм A_2 дает верхнюю ассимптотическую оценку $\varphi_{A_2}(n)\lesssim n$, при $n\to\infty$. Следовательно, $\varphi_{A_2}(n)\sim n$, при $n\to\infty$.

4. Результаты

В работе получены оценки сложности для задачи расшифровки счетчика делимости на 3:

$$arphi_{A_0}(n) = arphi_{A_1}(n) = n,$$
 $arphi_{A_2}(n) \sim n$ при $n \to \infty.$

Литература

- [1] Коробков В.К. O монотонных функциях алгебры логикu// Сб. Проблемы кибернетики. Вып 13. М.: Наука, 1965. С. 5–27.
- [2] Ансель Ж. O числе монотонных булевых функций от n переменных // В кн. Кибернетический сборник. Новая серия. Вып. 5. М.: Мир, 1968. С. 53–57.
- [3] Ryuhei Uehara, Kensei Tsuchida, Ingo Wegener Optimal attribute-efficient learning of disjunction, parity, and threshold functions// Electronic Colloquium on Computational Complexity Report Series, 1996. P. 0–13.
- [4] Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. М.: Мир, 1979.
- [5] Гаврилов Г.П., Сапоженко А.А. Сборник задач по дискретной математике. М.: ФИЗМАТЛИТ, 2004.
- [6] Алексеев В.Б. *Введение в теорию сложности алгоритмов.* М.: Изд. отдел ф-та ВМиК МГУ, 2002.